PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	A1	(11) International Publication Number: WO 00/27861
C07H 21/00		(43) International Publication Date: 18 May 2000 (18.05.00)
(21) International Application Number: PCT/US (22) International Filing Date: 12 November 1999 (CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 60/108,255 12 November 1998 (12.11.9	98) (Published With international search report.
(71) Applicant: THE BOARD OF TRUSTEES OF THE STANFORD JUNIOR UNIVERSITY [US/US]; 900 Welch Road, Palo Alto, CA 94304 (US).		
(72) Inventors: CONTI, Marco; 24 Ryan Court, Stan 94305 (US). PAHLKE, Gudrun; Apartment Coleman Avenue, Menlo Park, CA 94025 (US).		
(74) Agent: FIELD, Bret, E.; Bozicevic, Field & Francis L 200, 285 Hamilton Avenue, Palo Alto, CA 94301		te .
(54) Title: NOVEL PHOSPHODIESTERASE INTERAC	TING	PROTEINS

(57) Abstract

Nucleic acid compositions encoding novel PDE interacting proteins, as well as the novel PDE interacting proteins themselves, are provided. Also provided are methods of producing the subject nucleic acid and protein compositions. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including research, diagnostic, and therapeutic agent screening applications, as well as in treatment therapies for disease conditions associated with PDE activity, particularly inflammatory diseases.

...

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	EŚ	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados .	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	· KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	- NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		•
					•		
i							

NOVEL PHOSPHODIESTERASE INTERACTING PROTEINS

ACKNOWLEDGMENT OF GOVERNMENT SUPPORT

This invention was made with Government support under Grant No. HD20788 awarded by the National Institutes of Health. The Government has certain rights in this invention.

10 INTRODUCTION

Field of the Invention

5

15

20

25

30

The field of the invention is cyclic nucleotide phosphodiesterases, particularly cAMP phosphodiesterases.

Background of the Invention

Cyclic nucleotide phosphodiesterases are a class of enzymes that catalyze the hydrolysis of phosphodiester bonds in cyclic nucleotides, e.g. cAMP. Cyclic nucleotides are important second messengers that regulate and mediate a number of cellular responses to extracellular signals, such as hormones, light and neurotransmitters. Since cyclic nucleotide phosphodiesterases modulate the concentration of cyclic nucleotides, these enzymes play a significant role in signal transduction. There are at least ten different classes of cyclic phosphodiesterases, seven of which are: (I) Ca(2+)/calmodulin-dependent PDEs; (II) cGMP-stimulated PDEs; (III) cGMP-inhibited PDEs; (IV) cAMP-specific PDEs; (V) cGMP-specific PDEs; (VI) photoreceptor PDEs; and (VII) high-affinity, cAMP-specific PDEs. Because of their role in signal transduction, cyclic nucleotide phosphodiesterases have been pursued as therapeutic or pharmacologic targets in the modulation of a variety of distinct physiological processes.

cAMP phosphodiesterase inhibitors hold great promise as therapeutic agents for use in the treatment of inflammation. Specifically, data indicates that these types of inhibitors are as effective, or even more effective, than adrenal steroids in suppressing most functions of inflammatory cells, including: migration, adhesion and secretion of cytokines. Specific cAMP phosphodiesterase inhibitors that have been studied include: rolipram, theophylline, and the like. In addition, research is ongoing to identify new cAMP phosphodiesterase inhibitors.

Despite their promise as anti-inflammatory therapeutic agents, cAMP-phosphodiesterase inhibitors identified to date have demonstrated significant toxic side effects that have limited to their generalized use in the treatment of inflammation.

As such, there is continued interest in the identification of new, more selective cAMP phosphodiesterase inhibitors for potential use as anti-inflammatory therapeutic agents. These efforts have employed recombinant phosphodiesterases for automated screening of candidate agents. Use of recombinant phosphodiesterases in screening applications has, however, been problematic as such recombinant enzymes have altered conformation as compared to their naturally occurring counterparts, which affects the interaction with potential inhibitors and thereby confounds the results that are obtained. As such, the screening results obtained by using such recombinant proteins are problematic.

Therefore, there is much interest in the further elucidation of the conformation of phosphodiesterases and other factors that may modulate the interaction of these enzymes with inhibitors.

15 Relevant Literature

The role of cAMP phosphodiesterases in inflammatory processes is reviewed in Torphy, Am. J. Respir. Crit. Care Med. (1998) 157:351-370. *See also* Houslay et al., Adv. Pharmacol (1998) 44: 225-342 and Spina et al., Adv. Pharmacol (1998) 44: 33-89, as well as U.S. Patent No. 5,798,373, the disclosure of which is herein incorporated by reference.

20

5

10.

SUMMARY OF THE INVENTION

Nucleic acid compositions encoding phosphodiesterase interacting proteins, e.g. myomegalin, as well as the polypeptide compositions encoded thereby, are provided. Also provided are complexes of the subject phosphodiesterase interacting protein with a phosphodiesterase enzyme. The subject polypeptide and nucleic acid compositions, as well as complexes thereof, find use in a variety of applications, including research, diagnostic, and therapeutic agent identification and screening applications, as well as in therapeutic applications.

30

25

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides the amino acid sequence of rat myomegalin.

Figure 2 provides the cDNA sequence of a clone having an open reading frame encoding the myomegalin protein having the amino acid sequence of Figure 1.

Figure 3 provides the nucleic acid sequence from the first met to the first stop codon in the sequence of Figure 2.

Figure 4 provides the nucleic acid sequence of human myomegalin.

Figure 5 provides the amino acid sequence of human myomegalin.

Figure 6 provides the amino acid sequence of rat M14 protein.

DETAILED DESCRIPTION OF THE INVENTION

Novel phosphodiesterase interacting proteins, particularly myomegalin, as well as nucleic acid compositions encoding the same, are provided. Also provided are complexes of the subject proteins and phosphodiesterases. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including research, diagnostic, and therapeutic agent identification and screening applications, as well as in therapeutic applications.

Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.

In this specification and the appended claims, the singular forms "a," "an," and "the"

include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

NUCLEIC ACID COMPOSITIONS

5

20

30

Nucleic acid compositions encoding phosphodiesterase (PDE) interacting proteins, as well as fragments thereof, are provided. The subject nucleic acid compositions encode proteins that interact with a phoshodiesterase enzyme, modulate its conformation and direct

its location in a cell. In other words, the proteins encoded by the subject nucleic acid compositions are those that target a (PDE) to a particular subcellular compartment and alter the function and/or properties of the PDE. Of particular interest are nucleic acid compositions which encode proteins that bind to a PDE IV isoenzyme, including PDE4A, PDE4B, PDE4C, PDE4D, and the like.

5

10

15

20

25

30

By nucleic acid composition is meant a composition comprising a sequence of DNA having an open reading frame that encodes a PDE interacting polypeptide, i.e. a gene encoding a polypeptide that interacts with a PDE (e.g. binds to and targets a PDE), and is capable, under appropriate conditions, of being expressed as a PDE interacting polypeptide. Also encompassed in this term are nucleic acids that are homologous, substantially similar or identical to the nucleic acids encoding PDE interacting polypeptides or proteins. Thus, the subject invention provides genes encoding mammalian PDE interacting proteins, such as genes encoding human PDE interacting polypeptides and homologs thereof, as well as non-human mammalian PDE interacting polypeptides and homologs thereof, e.g. rat and mouse proteins.

Of particular interest is a nucleic acid composition encoding a myomegalin protein, particularly a mammalian myomegalin protein, described in greater detail *infra*, or a fragment or homolog thereof. Specific nucleic acid compositions of interest include: polynucleotides encoding a rat myomegalin protein, such as polynucleotides having a nucleotide sequence found in SEQ ID NOs: 1 or 3, including polynucleotides in which the entire sequence is the same as the sequence of SEQ ID NOs. 1 or 3; and polynucleotides encoding human myomegalin protein, such as polynucleotides having a nucleotide sequence found in SEQ ID NO:04, including polynucleotides in which the entire sequence is the same as the sequence of SEQ ID NOs. 04, as well as those in which the entire sequence is the same as the sequence of an ORF found in SEQ ID NO:04.

Also of interest are nucleic acid compositions encoding an M14 polypeptide, described in greater detail *infra*, or a fragment or homolog thereof. Specific nucleic acid compositions of interest include polynucleotides encoding a rat M14 polypeptide, such as polynucleotides encoding an M14 polypeptide having the amino acid sequence set forth in SEQ ID NO:08. Polynucleotides encoding M14 homologs, and polynucleotides encoding PDE-interacting fragments of an M14 polypeptide, are also of interest.

Also of interest are nucleic acid compositions encoding a huntingtin-interacting protein, e.g., HIP1. Specific nucleic acid compositions of interest include a polynucleotide encoding a human HIP1 polypeptide, including, for example, a polynucleotide as disclosed in GenBank Accession No. U79734.

5

10

15

20

25

30

The source of homologous genes to those specifically listed above may be any mammalian species, e.g., primate species, particularly human, rodents, such as guinea pigs and mice, canines, felines, bovines, ovines, equines, yeast, nematodes, etc. Between mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g. at least 75% sequence identity, usually at least 90%, more usually at least 95% between nucleotide sequences. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al. (1990), J. Mol. Biol. 215:403-10. Unless stated otherwise herein, all sequence identity figures provided in this application are determined using the BLAST program at default settings (e.g. w=4; T=17). The sequences provided herein are essential for recognizing genes encoding PDE interacting protein-related and homologous polynucleotides in database searches.

Nucleic acids encoding the subject PDE interacting proteins and polypeptides of the subject invention may be cDNAs or genomic DNAs, as well as fragments thereof. Also provided are genes comprising the subject nucleic acid compositions, where the term "gene" shall be intended to mean the open reading frame encoding specific PDE interacting proteins and polypeptides, and introns, as well as adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, being removed by nuclear RNA splicing, to create a continuous open reading frame encoding an PDE interacting protein.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include the 3' and 5' untranslated regions found in the mature mRNA. It may further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

The nucleic acid compositions of the subject invention may encode all or a part of the subject PDE interacting proteins and polypeptides, described in greater detail *infra*. Double or single stranded fragments may be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, *etc*. For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt.

The genes of the subject invention are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a sequence encoding a PDE interacting protein or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant," i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

In addition to the plurality of uses described in greater detail in following sections, the subject nucleic acid compositions find use in the preparation of all or a portion of the PDE interacting polypeptides, as described below.

POLYPEPTIDE COMPOSITIONS

、 5

10

15

20

25

30

Also provided by the subject invention are PDE interacting proteins and polypeptides, i.e. proteins and polypeptides that are capable of binding to and modulating PDEs, specifically cAMP-PDEs, and more particularly cAMP-PDE4 isoforms, such as PDE4A, PDE4B, PDE4C, PDE4D, and the like.

The term polyeptide composition as used herein refers to both the full length proteins as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring proteins, where such variations are homologous or substantially similar to the naturally occurring protein, as described in greater detail below, be the naturally occurring protein the human protein, rat protein, or protein from some other species which naturally expresses an PDE interacting protein, usually a mammalian species. In the following description of the subject invention, the term PDE interacting protein is used to refer not only to the human form of such proteins, but also to homologs thereof expressed in non-human species, e.g. murine, rat and other mammalian species.

5

10 .

15

20

25

30

The subject PDE proteins are, in their natural environment, capable of modulating the form/function of PDEs, as well as targeting PDEs to specific subcellular compartments within a cell. In many embodiments, the subject PDE interacting proteins serve as PDE anchoring proteins.

In many embodiments, the subject proteins are characterized by the presence of one or more coiled domains and leucine zippers. Furthermore, in certain embodiments, e.g. certain rat myomegalin proteins, the subject proteins have a region of high homology with *Drosophila* centrosomin, whereby high homology is meant at least about 30, usually at least about 40 % sequence identity.

In many embodiments, the proteins range in length from about 1500 to 3000, usually from about 1600 to 2800 and more usually from about 1650 to 2600 amino acid residues, and the projected molecular weight of the subject proteins based solely on the number of amino acid residues in the protein ranges from about 150 to 320, usually from about 160 to 300 kDa, where the actual molecular weight may vary depending on the amount of glycolsylation, if any, of the protein and the apparent molecular weight may be considerably less (40 to 50 kDa) due to SDS binding on gels. On other embodiments, the length of the proteins may be much smaller, e.g. as in the case of splice variants or post translated products, where the length in these proteins may be as short as 40%, usually no shorter than about 50% of the above lengths.

Of particular interest in many embodiments are proteins that are non-naturally glycosylated. By non-naturally glycosylated is meant that the protein has a glycosylation pattern, if present, which is not the same as the glycosylation pattern found in the corresponding naturally occurring protein. For example, a human phosphodiesterase binding

protein of the subject invention and of this particular embodiment is characterized by having a glycosylation pattern, if it is glycosylated at all, that differs from that of naturally occurring human PDE binding protein. Thus, the non-naturally glycosylated PDE interacting or binding proteins of this embodiment include non-glycosylated PDE interacting proteins, i.e. proteins having no covalently bound glycosyl groups.

5

10

15

20

25

30

A PDE interacting protein of the subject invention of particular interest is myomegalin, particularly mammalian myomegalin and more particularly, rat or human myomegalin. In many embodiments, mammalian myomegalin ranges in length from about 2000 to 3000, usually from about 2200 to 2800 and more usually from about 2300 to 2600 aa residues. The projected molecular weight of these myomegalin proteins based solely on the number of amino acid residues in the protein ranges from about 220 to 320, usually from about 220 to 300 and more usually from about 240 to 300 kDa, where the actual molecular weight may vary depending on the amount of glycolsylation, if any, of the protein and the apparent molecular weight may be considerably less (40 to 50 kDa) due to SDS binding on gels. Also of interest are mammalian myomegalin proteins that are shorter than those described above, where these shorter proteins could be splice variants or the products of post-translational activity, and the like.

Of particular interest in certain embodiments is the rat myomegalin protein, where the rat myomegalin protein of the subject invention has an amino acid sequence that is substantially the same as or identical to the sequence appearing as SEQ ID NO:02 *infra* and appearing in Figure 1. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the sequence of SED ID NO:02. Also of particular interest is an approximately 65 kDa rat myomegalin protein expressed in rat testis. Yet another protein of particular interest is the human myomegalin protein of the subject invention which has an amino acid sequence that is substantially the same as or identical to the sequence appearing as SEQ ID NO:05 *infra* and appearing in Figure 5. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the sequence of SED ID NO:05.

Another PDE interacting protein of the subject invention of particular interest is M14, particularly mammalian M14, and more particularly, rat or human M14. In many embodiments, mammalian M14 ranges in length from about 1500 to about 2000, usually from

about 1600 to about 1800, usually from about 1650 to about 1700, and more usually from about 1670 to about 1690 amino acid residues. The projected molecular weight of these M14 polypeptides, based solely on the number of amino acid residues in the protein, ranges from about 150 to about 200 kDa, usually from about 160 to about 180 kDa, usually from about 165 to about 170 kDa. Rat M14 protein has a mobility on SDS-PAGE of about 185 kDa. The actual molecular weight may vary depending on the amount of glycosylation or other post-translational modifications, if any, of the protein, and the apparent molecular weight may be considerably less (e.g. 40-50 kDa) due to SDS binding on gels. Also of interest are PDE-interacting fragments of the above-described M14 proteins.

5

10

15

20

25

30

Of particular interest in certain embodiments is a rat M14 protein, where the rat M14 protein of the subject invention has an amino acid sequence that is substantially the same or identical to the sequence set forth in SEQ ID NO:08 and appearing in Figure 6. By substantially the same as is meant a protein having a sequence that has at least about 80%, usually at least about 90% and more usually at least about 98% sequence identity with the sequence of SED ID NO:08. Proteins homologous to rat M14 are also of interest, including, e.g., an Ese2L protein as described in Sengar et al. (1999) *EMBO J.* 18:1159-1171.

Also of interest are huntingtin interacting proteins, and PDE-interacting fragments, variants and homologs thereof. In some embodiments, huntingtin interacting protein (HIP) is a human HIP1 protein having an amino acid sequence as disclosed in GenBank Accession No. U79734, The human HIP1 protein is described in Kalchman et al. (1997) *Nature Genetics* 16:44-53.

In addition to the specific PDE interacting proteins described above, homologs or proteins (or fragments thereof) from other species, i.e. other animal or plant species, are also provided, where such homologs or proteins may be from a variety of different types of species, usually mammals, e.g. rodents, such as mice, rats; domestic animals, e.g. horse, cow, dog, cat; and humans. By homolog is meant a protein having at least about 35 %, usually at least about 40% and more usually at least about 60 % amino acid sequence identity with a specific PDE interacting protein as identified in: (a) SEQ ID NO: 02 and appearing in Figure 1; or (b) SEQ ID NO:05 and appearing in Figure 5; or (c) SEQ ID NO:08 and appearing in Figure 6.

The PDE interacting proteins of the subject invention (e.g. human myomegalin, rat myomegalin or homologs thereof) are present in a non-naturally occurring environment, e.g.

are separated from their naturally occurring environment. In certain embodiments, the subject protein is present in a composition that is enriched for the subject protein as compared to the protein in its naturally occurring environment. As such, purified PDE interacting protein is provided, where by purified is meant that PDE interacting protein is present in a composition that is substantially free of non PDE interacting proteins, where by substantially free is meant that less than 90 %, usually less than 60 % and more usually less than 50 % of the composition is made up of non-PDE interacting proteins.

5

10

15

20

25

30

In certain embodiments of interest, the PDE interacting protein is present in a composition that is substantially free of the constituents that are present in its naturally occurring environment. For example, a human PDE interacting protein comprising composition according to the subject invention in this embodiment will be substantially, if not completely, free of those other biological constituents, such as proteins, carbohydrates, lipids, etc., with which it is present in its natural environment. As such, protein compositions of these embodiments will necessarily differ from those that are prepared by purifying the protein from a naturally occurring source, where at least trace amounts of the protein's constituents will still be present in the composition prepared from the naturally occurring source.

The PDE interacting protein of the subject invention may also be present as an isolate, by which is meant that the PDE interacting protein is substantially free of both non-PDE interacting proteins and other naturally occurring biologic molecules, such as oligosaccharides, polynucleotides and fragments thereof, and the like, where substantially free in this instance means that less than 70 %, usually less than 60% and more usually less than 50 % of the composition containing the isolated PDE interacting protein is a non-PDE interacting protein naturally occurring biological molecule. In certain embodiments, the subject protein is present in substantially pure form, where by substantially pure form is meant at least 95%, usually at least 97% and more usually at least 99% pure.

In addition to the naturally occurring proteins, polypeptides which vary from the naturally occurring proteins are also provided. By polypeptides is meant proteins having an amino acid sequence encoded by an open reading frame (ORF) of an gene according to the subject invention, described *supra*, including the full length protein and fragments thereof, particularly biologically active fragments and/or fragments corresponding to functional domains; and including fusions of the subject polypeptides to other proteins or parts thereof. Fragments of interest will typically be at least about 10 aa in length, usually at least about 50

aa in length, and may be as long as 300 aa in length or longer, but will usually not exceed about 1000 aa in length, where the fragment will have a stretch of amino acids that is identical to the protein of SEQ ID NO:02, SEQ ID NO:05, or SEQ ID NO:08, or a homolog thereof; of at least about 10 aa, and usually at least about 15 aa, and in many embodiments at least about 50 aa in length.

PREPARATION OF PDE INTERACTING POLYPEPTIDES

5

10

15

20

25

30

The subject PDE interacting proteins and polypeptides may be obtained from naturally occurring sources or synthetically produced. Where obtained from naturally occurring sources, the source chosen will generally depend on the species from which the PDE interacting protein is to be derived, e.g. muscle tissue, heart tissue, brain tissue, testis tissue, and the like.

The subject PDE interacting polypeptide compositions may be synthetically derived by expressing a recombinant gene encoding the PDE interacting protein, such as the polynucleotide compositions described above, in a suitable host. For expression, an expression cassette may be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions may be native to the gene encoding the particular PDE interacting protein, or may be derived from exogenous sources.

Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding heterologous proteins. A selectable marker operative in the expression host may be present. Expression vectors may be used for the production of fusion proteins, where the exogenous fusion peptide provides additional functionality, i.e. increased protein synthesis, stability, reactivity with defined antisera, an enzyme marker, e.g. β -galactosidase, etc.

Expression cassettes may be prepared comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest is the use of sequences that allow for the expression of functional epitopes or domains, usually at least about 8 amino acids in length, more usually at least about 15 amino acids in length, to about 25 amino acids, and up to the complete open reading frame of the gene. After

introduction of the DNA, the cells containing the construct may be selected by means of a selectable marker, the cells expanded and then used for expression.

The subject proteins and polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli*, *B. subtilis*, *S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, *e.g.* COS 7 cells, may be used as the expression host cells. In some situations, it is desirable to express the subject proteins in eukaryotic cells, where the protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Polypeptides that are subsets of the complete protein sequence may be used to identify and investigate parts of the protein important for function.

Once the source of the protein is identified and/or prepared, e.g. a transfected host expressing the protein is prepared, the protein is then purified to produce the desired PDE interacting protein comprising composition. Any convenient protein purification procedures may be employed, where suitable protein purification methodologies are described in Guide to Protein Purification, (Deuthser ed.) (Academic Press, 1990). For example, a lysate may be prepared from the original source, e.g. naturally occurring cells or tissues that express a PDE interacting protein or the expression host expressing the PDE interacting protein, and purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, and the like.

USES OF THE SUBJECT POLYPEPTIDE AND NUCLEIC ACID COMPOSITIONS

The subject polypeptide and nucleic acid compositions find use in a variety of different applications, including diagnostic, and therapeutic agent screening/discovery/preparation applications, as well as the treatment of disease conditions associated with PDE interacting protein activity.

GENERAL APPLICATIONS

5

10

15

20

25

The subject nucleic acid compositions find use in a variety of applications, including:

(a) the identification of PDE interacting protein gene homologs, e.g. myomegalin homologs;

(b) as a source of novel promoter elements; (c) the identification of PDE interacting protein

expression regulatory factors; (d) as probes and primers in hybridization applications, e.g. PCR; (e) the identification of expression patterns in biological specimens; (f) the preparation of cell or animal models for PDE interacting protein function; (g) the preparation of *in vitro* models for PDE interacting protein function; etc.

5

10

15

20

25

Identification of homologs

Homologs of the PDE interacting protein gene, e.g. the myomegalin gene, or the M14 gene, are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6×SSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1×SSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1×SSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes.

Identification of Novel Promoter Elements

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for regulation in tissues where the subject gene is expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter region are useful for determining natural variations in expression, particularly those that may be associated with disease.

30 Identification of Expression Regulatory Factors

Alternatively, mutations may be introduced into the promoter region to determine the effect of altering expression in experimentally defined systems. Methods for the identification

of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell et al. (1995), Mol. Med. 1:194-205; Mortlock et al. (1996), Genome Res. 6:327-33; and Joulin and Richard-Foy (1995), Eur. J. Biochem. 232:620-626.

The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of expression of the subject gene, e.g. the myomegalin gene, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans*-acting factors that regulate or mediate expression of the subject gene. Such transcription or translational control regions may be operably linked to a gene of the subject invention in order to promote expression of wild type or altered PDE interacting protein, e.g. myomegalin, or other proteins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

Probes and Primers

Small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, as described in the previous section. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.

25

30

5

10

15

20

Identification of Expression Patterns in Biological Specimens

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature. Briefly, DNA or mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA

sample is separated by gel electrophoresis, transferred to a suitable support, e.g. nitrocellulose, nylon, etc., and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, in situ hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of gene expression in the sample.

The Preparation of PDE Interacting Protein Mutants

The sequence of a gene according to the subject invention, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, etc. The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, i.e. will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions, deletions, or a combination thereof. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, e.g. with the FLAG system, HA, etc. For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for in vitro mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin et al. (1993), Biotechniques 14:22; Barany (1985), Gene 37:111-23; Colicelli et al. (1985), Mol. Gen. Genet. 199:537-9; and Prentki et al. (1984), Gene 29:303-13. Methods for site specific mutagenesis can be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp. 15.3-15.108; Weiner et al. (1993), Gene 126:35-41; Sayers et al. (1992), Biotechniques 13:592-6; Jones and Winistorfer (1992), Biotechniques 12:528-30; Barton et al. (1990), Nucleic Acids Res 18:7349-55; Marotti and Tomich (1989), Gene Anal. Tech. 6:67-70; and Zhu (1989), Anal Biochem 177:120-4. Such mutated genes may be used to study structure-function relationships of PDE interacting proteins, or to alter properties of the protein that affect its function or regulation.

5

10

15

20

25

Production of In Vivo Models of PDE Interacting Protein Function

5

10

15

20

25

30

The subject nucleic acids can be used to generate transgenic, non-human animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the normal PDE interacting protein gene locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

The modified cells or animals are useful in the study of PDE interacting protein function and regulation. For example, a series of small deletions and/or substitutions may be made in the host's native PDE interacting protein gene to determine the role of different exons in cholesterol metabolism, e.g. cholesterol ester synthesis, cholesterol absorption, etc.

Specific constructs of interest include anti-sense constructs which will block PDE interacting protein expression, expression of dominant negative gene mutations, and over-expression of PDE interacting protein genes. Where a particular genetic sequence is introduced, the introduced sequence may be either a complete or partial sequence of an PDE interacting protein gene native to the host, or may be a complete or partial sequence that is exogenous to the host animal, e.g., a human sequence. A detectable marker, such as lac Z, may be introduced into the locus, where upregulation of gene expression will result in an easily detected change in phenotype.

One may also provide for expression of the gene or variants thereof in cells or tissues where it is not normally expressed, at levels not normally present in such cells or tissues, or at abnormal times of development.

DNA constructs for homologous recombination will comprise at least a portion of the gene native to the species of the host animal, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination.

Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990), Meth. Enzymol. 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor

(LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, *etc.*, *e.g.* to determine the effect of a candidate drug on PDE interacting binding protein activity and/or the enzymatic activity of the PDE/PDE interacting protein complex.

Production of In Vitro Models of PDE Interacting Protein Function

One can also use the polypeptide compositions of the subject invention to produce in vitro models of PDE interacting protein function. In addition to the subject PDE interacting protein, such models will generally include at least a PDE as well as a cyclic nucleotide, and a means to monitor the activity of the enzyme in the presence of the PDE interacting protein, e.g. a labeled isotope, etc.

DIAGNOSTIC APPLICATIONS

5

10

15

20

25

30

Also provided are methods of diagnosing disease states associated with PDE interacting protein activity, e.g. based on observed levels of PDE interacting protein or the expression level of the gene in a biological sample of interest. Samples, as used herein, include

biological fluids such as semen, blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid and the like; organ or tissue culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

5

10

15

20

25

30

A number of methods are available for determining the expression level of a gene or protein in a particular sample. Diagnosis may be performed by a number of methods to determine the absence or presence or altered amounts of normal or abnormal PDE interacting protein in a patient sample. For example, detection may utilize staining of cells or histological sections with labeled antibodies, performed in accordance with conventional methods. Cells are permeabilized to stain cytoplasmic molecules. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the secondary antibody conjugated to a flourescent compound, e.g. fluorescein, rhodamine, Texas red, etc. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc.

Alternatively, one may focus on the expression of the gene. Biochemical studies may be performed to determine whether a sequence polymorphism in an coding region or control regions is associated with disease. Disease associated polymorphisms may include deletion or truncation of the gene, mutations that alter expression level, that affect the activity of the protein, etc.

Changes in the promoter or enhancer sequence that may affect expression levels of the gene can be compared to expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a

reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, *etc.* that provides for convenient quantitation; and the like.

5

10

15

20

25

30

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence, e.g. a disease associated polymorphism. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express the subject gene may be used as a source of mRNA, which may be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki, et al. (1985), Science 239:487, and a review of techniques may be found in Sambrook, et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2B14.33. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990), Nucl. Acids Res. 18:2887-2890; and Delahunty et al. (1996), Am. J. Hum. Genet. 58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. ³²P, ³⁵S, ³H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods, and the sequence of bases compared to a wild-type sequence. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US 5,445,934, or in

WO 95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

Screening for mutations may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in the subject PDE interacting proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded protein may be determined by comparison with the wild-type protein.

Diagnostic methods of the subject invention in which the level of expression is of interest will typically involve comparison of the PDE interacting protein nucleic acid abundance of a sample of interest with that of a control value to determine any relative differences, where the difference may be measured qualitatively and/or quantitatively, which differences are then related to the presence or absence of an abnormal gene expression pattern. A variety of different methods for determining the nucleic acid abundance in a sample are known to those of skill in the art, where particular methods of interest include those described in: Pietu et al., Genome Res. (June 1996) 6: 492-503; Zhao et al., Gene (April 24, 1995) 156: 207-213; Soares, Curr. Opin. Biotechnol. (October 1997) 8: 542-546; Raval, J. Pharmacol Toxicol Methods (November 1994) 32: 125-127; Chalifour et al., Anal. Biochem (February 1, 1994) 216: 299-304; Stolz & Tuan, Mol. Biotechnol. (December 19960 6: 225-230; Hong et al., Bioscience Reports (1982) 2: 907; and McGraw, Anal. Biochem. (1984) 143: 298. Also of interest are the methods disclosed in WO 97/27317, the disclosure of which is herein incorporated by reference.

30

25

5

10

15

20

SCREENING ASSAYS

5

10

15

20

25

30

The subject PDE interacting proteins and polypeptides find use in various screening assays designed to identify therapeutic agents. The screening assays may be designed to identify agents that modulate, e.g. inhibit or enhance, the activity of the PDE interacting protein directly and thereby modulate the activity of the particular PDE that depends on the presence of the PDE interacting protein for its function. Alternatively, the assay may be designed to identify those agents that modify, e.g. enhance or inhibit, the activity of the PDE when present as a complex with the PDE interacting protein.

Of particular interest are screening methods that provide for qualitative/quantitative measurements of a PDE enzyme activity in the presence of a particular candidate therapeutic agent and its PDE interacting protein, as such screening methods are capable of identifying highly selective PDE modulatory, e.g. inhibitory, agents. For example, the assay could be an assay which measures the activity of a PDE interacting protein/enzyme complex in the presence and absence of a candidate inhibitor agent. In this preferred screening assay embodiment, the PDE interacting protein/PDE complex will generally be a naturally occurring complex, i.e. a complex between a cyclic nucleotide PDE and its naturally occurring PDE interacting protein partner. Of particular interest are complexes between a cAMP-PDEIV and a myomegalin protein.

The screening method may be an *in vitro* or *in vivo* format, where both formats are readily developed by those of skill in the art. Depending on the particular method, one or more of, usually one of, the components of the screening assay may be labeled, where by labeled is meant that the components comprise a detectable moiety, *e.g.* a fluorescent or radioactive tag, or a member of a signal producing system, *e.g.* biotin for binding to an enzyme-streptavidin conjugate in which the enzyme is capable of converting a substrate to a chromogenic product.

A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc. may be used. Specific PDE activity assays of interest include those described in U.S. Patent Nos. 5,798,373 and 5,580,888, the disclosures of which are herein incorporated by reference.

A variety of different candidate agents may be screened by the above methods. Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

5

10

15

20

25

30

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

PDE INTERACTING PROTEIN NUCLEIC ACID AND POLYPEPTIDE THERAPEUTIC COMPOSITIONS

The nucleic acid compositions of the subject invention also find use as therapeutic agents in situations where one wishes to enhance the PDE interacting protein activity in a host, e.g. in a mammalian host in which PDE interacting protein activity is sufficiently low such that a disease condition is present, etc. The PDE interacting protein genes, gene fragments, or the encoded proteins or protein fragments are useful in gene therapy to treat disorders associated with defects the PDE interacting protein gene expression. Expression vectors may be used to introduce the gene into a cell. Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation

region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a period of at least about several days to several weeks.

The gene or protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.

METHODS OF MODULATING PDE INTERACTING PROTEIN ACTIVITY IN A HOST

5

10

15

25

30

Also provided are methods of regulating, including enhancing and inhibiting, PDE interacting protein activity in a host. Where the PDE interacting protein activity occurs in vivo in a host, an effective amount of active agent that modulates the activity, e.g. reduces the activity, of the PDE interacting protein in vivo (e.g. the activity of the naturally occurring PDE/interacting protein complex), is administered to the host. The active agent may be a variety of different compounds, including a naturally occurring or synthetic small molecule compound, an antibody, fragment or derivative thereof, an antisense composition, and the like.

Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Also of interest as active agent are antibodies that modulate, e.g. reduce, if not inhibit, PDE interacting protein activity in the host. Suitable antibodies are obtained by immunizing a host animal with peptides comprising all or a portion of the subject proteins, such as found in the polypeptide compositions of the subject invention. Suitable host animals include mouse, rat sheep, goat, hamster, rabbit, etc. The origin of the protein immunogen may be mouse, human, rat, monkey etc. The host animal will generally be a different species than the immunogen, e.g. human protein used to immunize mice, etc.

5

10

15

20

25

30

The immunogen may comprise the complete protein, or fragments and derivatives thereof. Preferred immunogens comprise all or a part of the PDE interacting protein, where these residues contain the post-translation modifications, such as glycosylation, found on the native protein. Immunogens comprising the extracellular domain are produced in a variety of ways known in the art, e.g. expression of cloned genes using conventional recombinant methods, isolation from HEC, etc.

For preparation of polyclonal antibodies, the first step is immunization of the host animal with the immunogen, where the immunogen will preferably be in substantially pure form, comprising less than about 1% contaminant. The immunogen may comprise complete PDE interacting protein, fragments or derivatives thereof. To increase the immune response of the host animal, the protein or peptide may be combined with an adjuvant, where suitable adjuvants include alum, dextran, sulfate, large polymeric anions, oil & water emulsions, e.g. Freund's adjuvant, Freund's complete adjuvant, and the like. The immunogen may also be conjugated to synthetic carrier proteins or synthetic antigens. A variety of hosts may be immunized to produce the polyclonal antibodies. Such hosts include rabbits, guinea pigs, rodents, e.g. mice, rats, sheep, goats, and the like. The immunogen is administered to the host, usually intradermally, with an initial dosage followed by one or more, usually at least two, additional booster dosages. Following immunization, the blood from the host will be collected, followed by separation of the serum from the blood cells. The Ig present in the resultant antiserum may be further fractionated using known methods, such as ammonium salt fractionation, DEAE chromatography, and the like.

Monoclonal antibodies are produced by conventional techniques. Generally, the spleen and/or lymph nodes of an immunized host animal provide a source of plasma cells. The plasma cells are immortalized by fusion with myeloma cells to produce hybridoma cells. Culture supernatant from individual hybridomas is screened using standard techniques to

identify those producing antibodies with the desired specificity. Suitable animals for production of monoclonal antibodies to the human protein include mouse, rat, hamster, etc. To raise antibodies against the mouse protein, the animal will generally be a hamster, guinea pig, rabbit, etc. The antibody may be purified from the hybridoma cell supernatants or ascites fluid by conventional techniques, e.g. affinity chromatography using PDE-interacting protein bound to an insoluble support, protein A sepharose, etc.

5

10

15

20

25

30

The antibody may be produced as a single chain, instead of the normal multimeric structure. Single chain antibodies are described in Jost et al. (1994) <u>I.B.C.</u> 269:26267-73, and others. DNA sequences encoding the variable region of the heavy chain and the variable region of the light chain are ligated to a spacer encoding at least about 4 amino acids of small neutral amino acids, including glycine and/or serine. The protein encoded by this fusion allows assembly of a functional variable region that retains the specificity and affinity of the original antibody.

For *in vivo* use, particularly for injection into humans, it is desirable to decrease the antigenicity of the antibody. An immune response of a recipient against the blocking agent will potentially decrease the period of time that the therapy is effective. Methods of humanizing antibodies are known in the art. The humanized antibody may be the product of an animal having transgenic human immunoglobulin constant region genes (see for example International Patent Applications WO 90/10077 and WO 90/04036). Alternatively, the antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see WO 92/02190).

The use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu et al. (1987) P.N.A.S. 84:3439 and (1987) J. Immunol. 139:3521). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (U.S. Patent nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human constant regions genes may be found in Kabat et al. (1991) Sequences of Proteins of Immunological Interest, N.I.H. publication no. 91-3242. Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector

functions, such as complement fixation, or activity in antibody-dependent cellular cytotoxicity. Preferred isotypes are IgG1, IgG3 and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. The chimeric, humanized antibody is then expressed by conventional methods.

5

10

15

20

25

30

Antibody fragments, such as Fv, F(ab)₂ and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab)₂ fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon to yield the truncated molecule.

Consensus sequences of H and L J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.

Expression vectors include plasmids, retroviruses, YACs, EBV derived episomes, and the like. A convenient vector is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviral LTRs, e.g. SV-40 early promoter, (Okayama et al. (1983) Mol. Cell. Bio. 3:280), Rous sarcoma virus LTR (Gorman et al. (1982) PN.A.S. 79:6777), and moloney murine leukemia virus LTR (Grosschedl et al. (1985) Cell 41:885); native Ig promoters, etc.

In yet other embodiments of the invention, the active agent is an agent that modulates, and generally decreases or down regulates, the expression of the gene in the host. Antisense molecules can be used to down-regulate expression of the protein in cells. The anti-sense reagent may be antisense oligonucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules

inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences.

5

10

15

20

25

30

Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996), Nature Biotechnol. 14:840-844).

A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an *in vitro* or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra, and Milligan et al., supra.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O-phosphorothioate, 3'-CH₂-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to

PCT/US99/26860 WO 00/27861

enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5- propynyl-2'-deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

5

15

20

25

30

As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes 10 may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. (1995), Nucl. Acids Res. 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin et al. (1995), Appl. Biochem. Biotechnol. 54:43-56.

As mentioned above, an effective amount of the active agent is administered to the host, where "effective amount" means a dosage sufficient to produce a desired result, where the desired result in the desired modulation, e.g. enhancement, reduction, of PDE interacting protein activity, which in turn leads to a desired effect on the state of the disease condition being treated, e.g. a reduction in the level of inflammation, etc.

In the subject methods, the active agent(s) may be administered to the host using any convenient means capable of resulting in the desired inhibition of PDE interacting protein activity. Thus, the agent can be incorporated into a variety of formulations for therapeutic administration. More particularly, the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols.

As such, administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.

In pharmaceutical dosage forms, the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds. The following methods and excipients are merely exemplary and are in no way limiting.

5

10

15

20

25

30

For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.

The agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.

The agents can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.

Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.

Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous

administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.

The term "unit dosage form," as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.

5

10

15

20

25

30

The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.

Where the agent is a polypeptide, polynucleotide, analog or mimetic thereof, e.g. antisense composition, it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth *et al.* (1992), *Anal Biochem* 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang *et al.* (1992), *Nature* 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.

Those of skill in the art will readily appreciate that dose levels can vary as a function of the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.

The subject methods find use in the treatment of a variety of different disease conditions involving PDE interacting protein activity, particularly in those disease conditions in which the selective inhibition of PDE activity, more particularly PDEIV activity, results in treatment of the disease condition where targeting of the PDE interacting protein by the therapeutic agent results in modulated, e.g. reduced or enhanced, activity of its corresponding PDE.

Specific disease of interest as treatable by the subject methods include: asthma, including inflamed lung associate asthma, cystic fibrosis, inflammatory airway disease, chronic bronchitis, eosinophilic granuloma, psoriasis and other benign and malignant proliferative skin diseases, endotoxic shock, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury, or the myocardium and brain, inflammatory arthritis, chronic gloerulonephritis, atopic dermatitis, urticaria, adult respiratory distress syndrome, diabetes insipidus, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, arterial restinosis and artherosclerosis, inflammatory diseases associated with irritation and pain, rheumatoid arthritis, ankylosing spondylitis, transplant rejection and graft versus host disease, disease conditions associated with hypersecretion of gastric acid, disease conditions in which cytokines are mediators, e.g. sepsis, and septic shock, and the like.

By treatment is meant at least an amelioration of the symptoms associated with the pathological condition afflicting the host, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g. symptom, associated with the pathological condition being treated, such as inflammation, etc. As such, treatment also includes situations where the pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g. prevented from happening, or stopped, e.g. terminated, such that the host no longer suffers from the pathological condition, or at least the symptoms that characterize the pathological condition.

A variety of hosts are treatable according to the subject methods. Generally such hosts are "mammals" or "mammalian," where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), and primates (e.g., humans, chimpanzees, and monkeys). In many embodiments, the hosts will be humans.

Kits with unit doses of the active agent, usually in oral or injectable doses, are provided. In such kits, in addition to the containers containing the unit doses will be an informational package insert describing the use and attendant benefits of the drugs in treating pathological condition of interest. Preferred compounds and unit doses are those described herein above.

30

5

10

15

20

25

The following examples are offered primarily for purposes of illustration. It will be readily apparent to those skilled in the art that the formulations, dosages, methods of

administration, and other parameters of this invention may be further modified or substituted in various ways without departing from the spirit and scope of the invention.

EXPERIMENTAL

5 I. Screening of the yeast two hybrid system cDNA brain library

To identify proteins that interact with a PDE4, cDNA coding for the amino terminus of PDE4D3 or for a region corresponding to a.a. 114-672 were inserted into pGBT9 vectors and used for screening of a Matchmaker rat brain library subcloned in pGAD10 vector (Clontech, Palo Alto, CA). The fragment encoding the autoinhibitory (UCR2), catalytic, and carboxy terminal domains of rPDE4D3 (aa 114-672) was amplified by PCR with the full-length cDNA using the following forward and reverse primers with incorporated restriction sites and Stop codon. EcoRI: 5' CGG AAT TCG AGG AGG CCT ACC AGA AAC 3' (GUPA4) (SEQ ID NO:06) and Sall/TAG: 5' TGA GTC GAC TAC GTG TCA AGG CAA CAA TGG TC 3' (GUPA3) (SEQ ID NO:07). The PCR products were cloned into

EcoRI/Sall site of pGBT9 (Clontech) downstream of the Gal4 activation domain. The PCR was performed in presence of recombinant Pfu polymerase (Stratagene) at low cycle number (10 cycles) to ensure high fidelity reading. The insertions were entirely sequenced to confirm the correct reading frame and the sequence. Sequencing was performed by the Molecular Biology facility at Stanford University using the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq DNA Polymerase, FS (Perkin Elmer).

Of the positive clones isolated from the screening of the rat brain library, 187 gave strong positive signal while 81 gave only a weak signal. Of the strong positive clones, PBP46 was further characterized. This clone contained an insert of approximately 2.8 kb. The interaction of the clone with the PDE was confirmed by subcloning the cDNA fragment in both pGBT9 and pGAD10 and by testing growth and β -galactosidase activity in the yeast two hybrid system. The clone continued to show strong interaction with the 1.6 fragment of PDE4D3.

II. Screening for the full length myomegalin clone

15

20

25

A homology search (BLAST) using the sequence of PBP46 clone showed no significant identity to sequences in any public domain database. This clone was then used to probe a blot with RNA from multiple tissues. A transcript of approximately 8.0-8.5 kb

hybridized to the probe in several tissues, the highest level of expression being observed in the rat skeletal muscle and heart. Lower levels of expression were detected in brain, liver and lung. In the testis a transcript of 2.0-2.4 kb was consistently observed. The expression in the testis was confirmed by PCR and by screening a rat testis library. Two clones containing the 3' end sequence of myomegalin were retrieved from this library.

To obtain the complete sequence of the 8.0-8.5 transcript, a rat skeletal muscle cDNA library was screened with the PBP46 cDNA. From this screening, 2 clones were retrieved. However, the clones did not yield a complete ORF. Screening was then repeated six more times with oligonucleotides corresponding to the 5' end of the longest clones. From this multiple screening, 21 overlapping clones were obtained. Merging of the sequences from the different clones yielded a 9 kb sequence, a size in agreement with the size of the transcript derived from rat heart and skeletal muscles. See Fig. 2. Conceptual translation of the nucleotide sequence uncovered an open reading frame of a protein of 2324 amino acids corresponding to a calculated MW of 261 kDa. See Fig. 1.

To analyze tissue distribution of the rat myomegalin transcripts, Northern blot analysis was performed using radioactively labeled probes corresponding to the 3' end (probe 1; 1000 bp) and the 5' end (probe 2; 665 bp) of the myomegalin open reading frame. Transcripts of various sizes were found in various tissues using either probe 1 or probe 2 or both. The results indicated that there are at least four different transcripts of rat myomegalin: two expressed in heart (7.5 and 5.9 kb); two in skeletal muscle (7.5 and 4.3 kb) and one in testis (2.5 kb). The 2.5 kb variant roughly corresponds to the PBP46 clone, and is expressed exclusively in rat testis.

III. Screening of the EST/database

5

10

15

20

25

30

To determine whether mouse or human sequences analogous to the rat myomegalin are present in public domain databases, the rat sequence was used for a BLAST search of GenBank and EST libraries. The following EST were retrieved. AA755885, AA110441, W23471, AA333456, AA489265. These sequences are more than 90% homologous to the rat sequence. Sequence AL021920 contains a genomic fragment from human chromosome 1p35.1-p36.21. Several exons overlap with the rat sequence from residue 1215 until residue 1444. Thus myomegalin must reside on human chromosome 1p35.1-p36. KIAA0454 (accession # AB007923), KIAA0477 (accession # AB007946) are two clones containing

portion of the human myomegalin sequence since they are more than 90% homologous to the rat ORF. These human clones were merged to obtain a full length human sequence homologous to myomegalin. See Fig. 4. The human open reading frame coded for a protein of 2517 residues and a calculated molecular weight of 282.1 kDa. See Fig. 5.

Alignment of the human and rat sequence showed identity from aa 235 of rat myomegalin to the end. In the amino terminus region, the two sequences showed only weak homologies. The reason for this discrepancy is at present unclear. It is possible that it is due to species differences. The junction where the rat sequence diverges from the human was derived from four clones isolated from the rat skeletal muscle library, lessening the possibility that cloning artifact is at the basis of this discrepancy. The presence of the junction was further confirmed by PCR analysis of rat heart mRNA (data not shown). However, further blast searches with the region encompassing the 5' end of myomegalin did not yield mouse EST fragments overlapping the junction. Conversely, several EST clones confirming the human junction were retrieved from human and mouse EST databases.

15

10

5

IV. Protein/protein interaction

Several attempts were made to confirm the interaction between myomegalin and PDE4D3. However, due to the insolubility of the full length or truncated myomegalin immunoprecipitation experiments could not be performed. In an alternative approach, PBP46 was cotransfected with PDE4D3 in COS 7 cells and the PDE activity was determined in the particulate fraction of the cell. If PDE4D3 interacts with PBP46, an increase in the particulate PDE activity would be expected. Two to three fold increase in the particulate PDE4D3 activity was detected when plasmids containing PBP46 and PDE4D3 were cotransfected in COS7 cells.

25

30

20

V. Subcellular localization of myomegalin

To investigate the subcellular localization of myomegalin the PBP46 clone was subcloned in frame to a flag tag and expressed in COS7 cells. The recombinant protein thus obtained was entirely recovered in the particulatefraction and could be extracted only with buffer containing SDS. Expression in transfected cells was further assessed by immunofluorescence (IF) using the flag antibody. The flag tagged recombinant protein

encoded in PBP46 was entirely localized in the Golgi/centrosomal region of COS7 cells. No attempts were made to express the full-length myomegalin cDNA.

VI. Western blot analysis of muscle and testis extracts

5

10

15

20

25

30

Polyclonal antibodies were raised in rabbit against peptides corresponding to the carboxyl terminus region of myomegalin. These antibodies recognize in testis a protein of approximately 64 kDa. In heart and muscle, proteins of 280,250 and 200 kDa were observed. It is at present unknown whether these are native proteins or products of proteolysis. When these antibodies were used for IF localization, a region corresponding to the Golgi/centrosomal region is intensely labeled.

It is apparent from the above results and discussion that polynucleotides encoding novel mammalian PDE interacting proteins, such as myomegalin, as well as the novel polypeptides encoded thereby, are provided. The subject invention is important for both research and therapeutic applications. For example, identification of the subject PDE interacting proteins provides for the ability to screen potential PDE inhibitors with PDE/PDE interacting protein complexes, where the results of such screening procedures should be more indicative of *in vivo* activity of a potential agent than screening procedures in which PDE is used by itself. Accordingly, the subject invention provides for a significant contribution to the

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

1. A polynucleotide present in other than its natural environment encoding a PDE interacting polypeptide.

5

- 2. The polynucleotide according to Claim 1, wherein said polynucleotide encodes a myomegalin protein.
 - 3. A fragment of a polynucleotide according to Claim 1.

10

- 4. An PDE interacting polypeptide present in other than its naturally occurring environment.
- 5. The polypeptide according to Claim 4, wherein said polypeptide is a myomegalin protein.
 - 6. A fragment of a polypeptide according to Claim 4.
 - 7. Substantially pure PDE interacting protein.

20

30

- 8. Isolated PDE interacting protein.
- An expression cassette comprising a transcriptional initiation region functional in an expression host, a polynucleotide having a nucleotide sequence found in the nucleic acid
 according to Claim 1 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.
 - 10. A cell comprising an expression cassette according to Claim 9 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of introduction of said expression cassette into said host cell.
 - 11. The cellular progeny of the cell according to Claim 10.

WO 00/27861

12. A method of producing an PDE interacting polypeptide, said method comprising:

growing a cell according to Claim 10, whereby said polypeptide is expressed; and isolating said polypeptide substantially free of other proteins.

5

- 13. A monoclonal antibody binding specifically to a PDE interacting protein.
- 14. The monoclonal antibody according to Claim 13, wherein said antibody inhibits the activity of at least one of PDE or a PDE interacting protein.

10

- 15. The monoclonal antibody according to Claim 13, wherein said antibody is a humanized antibody.
- 16. A method of determining whether an agent modulates the activity of a PDE, said method comprising:

contacting a complex of said PDE and a PDE interacting protein with said agent; and determining the effect of said agent on the activity of said PDE.

17. The method according to Claim 16, wherein said agent is a small molecule.

20

- 18. The method according to Claim 16, wherein said agent is an antibody.
- 19. The method according to Claim 18, wherein said agent is a monoclonal antibody.

25

20. A method for modulating the activity of a PDE interacting protein, said method comprising:

contacting said PDE interacting protein with an agent that modulates the activity of said PDE interacting protein.

30

FIG. 1

>myomegalin protein MSNGYRTLSQHLNDLKKENFSLKLRIYFLEERMQQKYEVSREDVYKRNIELKVEVESLKRELQDRKQHL HKTWADEEDLNSQNEAELRRQVEEPQQETEHVYELLDNNIQLLQEESRFAKDEATQMETLVEAEKGCNL ELSERWKDATKNREDAPGDQVKLDQYSAALAQRDRRIEELRQSLAAQEGLVEQLSREKQQLLHLLEEPG GMEVOPMPKGLPTQQKPDLNETPTTQPSVSDSHLAELQDKIQQTEVTNKILQEKLNDMSCELRSAQESS QKQDTTIQSLKEMLKSRESETEELYQVIEGQNDTMAKLPEMLHQSQLGQLQSSEGIAPAQQQVALLDLO SALFCSQLEIQKLQRLLRQKERQLADGKRCMQFVEAAAQEREQQKEAAWKHNQELRKALQHLQGELHSK SQQLHVLEAEKYNEIRTQGQNIQHLSHSLSHKEQLIQELQELLQYRDTTDKTLDTNEVFLEKLRQRIQD RAVALERVIDEKFSALEEKDKELRQLRLAVRDRDHDLERLRCVLSANEATMQSMESLLRARGLEVEQLI ATCQNLQWLKEELETKFGHWQKEQESIIQQLQTSLHDRNKEVEDLSATLLHKLGPGQSEVAEELCQRLQ RKERVLQDLLSDRNKQAMEHEMEVQGLLQSMGTREQERQAVAEKMVQAFMERNSELQALRQYLGGKELM AASQAFISNQPAGATSVGPHHGEQTDQGSTQMPSRDDSTSLTAREEASIPRSTLGDSDTVAGLEKELSN AKEELELMAKKERESQIELSALQSMMAVQEEELQVQAADLESLTRNIQIKEDLIKDLQMQLVDPEDMPA MERLTQEVLLLREKVASVEPQGQEGSENRRQQLLLMLEGLVDERSRLNEALQAERQLYSSLVKFHAQPE ISERDRTLQVELEGAQVLRSRLEEVLGRSLERLSRLETLAAIGGATAGDETEDTSTQFTDSIEEEAAHN SHQQLIKVSLEKSLTTMETQNTCLQPPSPVGEDGNRHLQEEMLHLRAEIHQPLEEKRKAEAELKELKAQ IEEAGFSSVSHIRNTMLSLCLCLENAELKEQMGEAMSDGWEVEEDKEKGEVMVETVVAKGGLSEDSLQA EFRKVQGRLKSAYNIINLLKEQLVLRSSEGNTKEMPEFLVRLAREVDRMNMGLPSSEKHQHQEQENMTA RPGPRPQSLKLGTALSVDGYQLENKSQAQDSGHQPEFSLPGSTKHLRSQLAQCRQRYQDLQEKLLISEA TVFAQANQLEKYRAILSESLVKQDSKQIQVDLQDLGYETCGRSENEAEREETTSPECEEHGNLKPVVLV EGLCSEQGYLDPVLVSSPVKNPWRTSQEARRIQAQGTSDNSSLLRKDIRNLKAQLPNAYKVLQNLRSRV ${\tt RSLSATSDYSSSLERPRKLIAVATLEGASPHSVTDEDEGLLSDGTGAFYPPGLQAKKNLENLIQRVSQL}$ EAQLPKTGLEGKLAEELKSASWPGKYDSLIQDQARKTVISASENTKREKDLFSSHPTFERYVKSFEDLL ${\tt RNNDLTTYLGQSFREQLSSRRSVTDRLTSKFSTKDHKSEKEEVGLEPLAFRFSRELQEKEKVIEVLQAK}$ VDTRFFSPPSSHAASESHRCASSTSFLSDDIEACSDMDVASEYTHYEEKKPSPSNSAASASQGLKGEPR ${\tt SSSISLPTPQNPPKEASQAQPGFHFNSIPKPASLSQAPMHFTVPSFMPFGPSGPPLLGCCETPVVSLAE}$ AOOELOMLOKOLGRSVSIAPPTSTSTLLSNHTEASSPRYSNPAQPHSPARGTIELGRILEPGYLGSGQW DMMRPQKGSISGELSSGSSMYQLNSKPTGADLLEEHLGEIRNLRQRLEESICVNDRLREQLQHRLSSTA RENGSTSHFYSQGLESMPQLYNENRALREENQSLQTRLSHASRGHSQEVDHLREALLSSSSQLQELEKE LEQQKAERRQLLEDLQEKQDEIVHFREERLSLQENNSRLQHKLALLQQQCEEKQQLSLSLQSELQIYES LYENPKKGLKAFSLDSCYQVPGELSCLVAEIRALRVQLEQSIQVNNRLRLQLEQQMDHGAGKASLSSCP VNQSFSÅKAELANQQPPFQGSAASPPVRDVGLNSPPVVLPSNSCSVPGSDSAIISRTNNGSDESAATKT PPKMEVDAADGPFASGHGRHVIGHVDDYDALQQQIGEGKLLIQKILSLTRPARSVPALDAQGTEAPGTK SVHELRSSARALNHSLEESASLLTMFWRAALPNSHGSVLVGEEGNLMEKELLDLRAQVSQQQQLLQSTA VRLKTANQRKKSMEQFIVSHLTRTHDVLKKARTNLEMKSFRALMCTPAL (SEQ ID NO:01)

FIG. 2 >MYOMEGALIN complete DNA

CCGGTCCCCTTTGGTAGTAGTATCTCAGAGCTCGCCCCATAGTTTCATAGTTCATGTCTGGTTTGTTCT TATGCTTTCCCCAGAGCTTCGAGACAGCCTTTGAGTCCACCAGCTTGAATATGCCCTTTTCTCTCTGAG TCCATTTAATATACCTGGGACAAGTATTTTTATCTTGAAGCAGATCTAAAAGAAACTCCCACAGATAGG TTGTGTTTCCTTTTCCTCTGGCTTTCTTCTTGACTCCTAACTCAGGAGACCCATTGGAAACTGGTG ACTGCTGGGTCTTTGGTTTACGGCCAACTTTCTTCTTTTTCATTGGTTCGTGGCTGTCTGGTGAAGTAT GGATAGGCGAGGCATCCATTGGTTCAGACTCCTCTGTTGACACCTCCACTACAGTCTCCGTAATGACAT CTGGCCTCATCGCAGCATGGATAAAATCGGATTCTTGAATCCTCAAGCAGGTAGGAGACTCCATATGAA GCAGGGCTTCAGCAGCTTCAATGGTCTTATCCGTACAGTGTGCATTACTGCTGTGAACTGATGCTTCCA CGGCCCGGATGAGCAGATCCAGCTGGTTCGTGGGTCCCTCATGCAGAGACGTCGCCATGTTTATCCCGG GGCTGGAACTGCTTCACATTGACTTACACCCTGAGCAGCGGCGACAGGGGAGAAGGCGGAACCCGC GGCCGGAGACACACGCCGTGCGGGCGCACACACTCACGCACTCGCACACACTCCGACGCCCGGATCCT AACGGCAGGGGCGCCGCCCGGCTGGCAACGCGATCCTTCCGCCCCGCGCCCAGACAGGAAGTCC CGGGCGCCGGCAGCCACGGCACGGACACCTGAGGCTGGGGAGCCCGCAGGCCGCCCTCGGGGACG CGGGCCTCGGCAGGAAAAGGCGCGCTTCACGTTCTGCGGAAGCGAAGTCTGCAAATGTCCCCTCAGCAT GGTCTTCCTCCTGGCTCAATCTGTCTCACCTTCAGGTGATCCTAGGACTGGGGCTCCTTTCCAGGTCCC CAGTTTCTCAAGTCGATCTTCTACCTCCCTCTTGATTTTCTACTCCATTGCTGGAAAGCTCCAGAACAG AGCCTCCGCCGCCAACCACTGCTGATGCCATCGCGTCTTCCCTGAGCAAGTTTCGAACGCTGCGAATCA **ATGTAATTACGCCTCAGATGATTGCCAGGGTTATCGGTTTCATGTTCTAATTCAATAGTGATGGAGTAG** ACATCCAGAAGTCCAGTCTTCTAAAGATGATTAACCAGAGGGTAGTTTGACGGTTAAGTAGTCTAAGCA TCCTTCACCGTTTCCACACTCCCAAGAGCTGAACTCTAAACCAGCAGCTCTCTGGAGCTACTGCTCTCC ACAGGACGAGACAAACCGCGGCTATGTCGCCTTAGCCCTCGGGGTCCCACAGCCTCAGCAGCGTCCTAG CCTGCCGGTCCATGCCACGGCAAGGCTGCACCGTGTTCCAGGGGTGAAGGGGGCGATCGGGCATGCTC CTCCCCATGGGTCGCCCACCATGTCTAATGGATATCGCACTCTGTCCCAGCACCTCAATGACCTGAAGA AGGAGAACTTCAGCCTCAAGCTGCGCATCTACTTCCTGGAGGAGCGCATGCAACAGAAGTATGAAGTCA GCCGGGAGGACGTCTACAAGCGGAACATTGAGCTGAAGGTTGAAGTGGAGAGCCTGAAACGAGAGCTCC AGGACAGGAAACAGCATCTACATAAAACATGGGCCGATGAGGAGGATCTCAACAGCCAGAATGAAGCAG AGCTCCGGCGCCAGGTTGAAGAACCGCAGCAGGAGACAGAACACGTTTATGAGCTCCTAGACAACAACA TTCAGCTGCTGCAGGAGGAATCCAGGTTTGCAAAGGATGAAGCCACACAGATGGAGACTCTGGTGGAGG CAGAGAAGGGGTGTAATCTGGAGCTCTCAGAGAGGGTGGAAGGATGCTACCAAGAACAGGGAAGATGCAC CGGGAGACCAGGTGAAGCTTGACCAATATTCTGCGGCACTGGCTCAGAGGGACAGGAGAATTGAAGAGC TGAGGCAGAGCTTGGCTGCCCAGGAGGGGCTTGTGGAACAGCTGTCTCGAGAGAAACAACAACTGTTAC ATCTGCTGGAGGAGCCTGGGGGCATGGAAGTGCAGCCCATGCCTAAAGGGTTACCCACGCAACAAAAGC CAGACCTAAATGAGACCCCTACAACCCAGCCATCTGTGTCTGATTCCCACCTGGCAGAACTCCAGGACA AAATCCAGCAAACAGAGGTCACCAACAAGATTCTTCAAGAGAAACTGAATGACATGAGCTGTGAGCTCA GATCTGCACAGGAGTCGTCTCAGAAGCAAGATACGACAATCCAAAGCCTCAAGGAAATGCTAAAGAGCA GGGAAAGTGAGACTGAAGAGCTGTACCAGGTGATTGAAGGTCAAAATGACACAATGGCAAAGCTTCCGG **AAATGCTACACCAGAGCCAGCTCGGACAGCTCCAGAGGTCAGAGGGCATTGCCCCTGCTCAGCAGCAAG** AGAGAGCAGCAGCAGGAAGCTGCTTGGAAACATAACCAGGAATTACGAAAAGCTTTGCAACACCTCC AAGGAGAACTGCACAGTAAGAGCCAACAGCTCCACGTTCTGGAGGCAGAAAAATATAATGAAATTCGAA CCCAGGGACAAACATTCAACACCTAAGTCACAGTCTGAGTCACAAAGAGCAGCTAATTCAGGAACTTC AGGAGCTCCTACAGTATCGGGATACCACAGACAAAACTCTAGACACAAATGAGGTGTTTCTTGAGAAAC TACGGCAACGAATACAAGACCGGGCAGTTGCTCTAGAGCGGGTTATAGATGAAAAGTTCTCTGCTCTAG AAGAAAAGGACAAGGAACTGCGGCAGCTCCGGCTTGCTGAGGGGACCGAGACCATGACTTAGAGAGAC TGCGTTGTGTCCTGTCTGCCAATGAAGCTACCATGCAAAGTATGGAGAGTCTCCTGAGGGCCAGAGGCC TTGGCCACTGGCAGAAGGAACAGGAGAGCATCATTCAGCAGTTACAGACATCTCTGCATGACAGGAACA AAGAAGTAGAGGATCTCAGTGCAACTTTGCTCCACAAACTTGGACCCGGCCAGAGTGAAGTAGCTGAGG CCATGGAGCACGAGATGGAGGTCCAGGGACTGCTCCAGTCGATGGGCACCCGGGAACAGGAAAGACAGG CTGTTGCAGAAAAATGGTACAAGCCTTCATGGAAAGAAACTCGGAATTACAGGCCCTGCGGCAGTATC TAGGCCCCCACCATGGAGAGCAAACTGACCAAGGTTCTACGCAGATGCCCTCTCGAGACGACAGCACCT CGCTGACTGCCAGAGAGGAGGCCAGCATACCCCGGTCTACATTAGGAGACTCAGACACAGTTGCAGGGC TGGAGAAAGAACTGAGCAATGCCAAGGAGGAGCTTGAGCTCATGGCCAAAAAAGAAAAGAAAAAGCCAGA TAGAATTGTCTGCCCTGCAGTCCATGATGGCTGTGCAAGAGGAAGAGCTGCAGGTGCAGGCTGCTGACT TGGAGTCCCTGACCAGGAACATACAGATAAAAGAAGACCTCATAAAGGACCTGCAAATGCAACTGGTTG

3/12

FIG. 2 (CONT)

ACCCTGAAGATATGCCAGCCATGGAGCGCCTGACCCAAGAGGTCTTACTTCTTCGGGAAAAAGTTGCTT CAGTGGAACCCCAGGGTCAGGAAGGGTCAGAGAACAGGAGACAACAGTTGCTGCTGATGTTAGAAGGAC TAGTGGATGAACGGAGTCGGCTCAACGAGGCCCTGCAAGCTGAGCGGCAGCTCTACAGCAGCCTGGTCA AGTTCCATGCCCAACCAGAGATCTCTGAGAGAGACCGAACTCTGCAGGTGGAACTGGAAGGGGCCCAGG TGTTACGCAGTCGACTAGAAGAAGTTCTTGGAAGAAGCCTGGAGCGCTTAAGCAGGCTGGAGACCCTGG AGGAGGAGGCTGCACAACAGCCACCAGCAACTCATCAAGGTGTCTTTGGAGAAAAGCCTGACCACCA TGGAGACCCAGAACACATGTCTTCAGCCCCCTTCCCCAGTAGGAGGATGGTAACAGGCATCTTCAGG AAGAAATGCTCCACCTGAGGGCTGAAATCCACCAGCCCTTAGAAGAGAAGAGAAAAGCTGAGGCAGAAC tcaaggagctaaaggctcaaattgaggaagcaggattctcctctgtgtcccacatcaggaacaccatgc TGAGCCTTTGCCTTGAGAATGCAGAGCTGAAAGAGCAGATGGGAGAAGCAATGTCTGATGGAT GGGAGGTGGAGGAAGACAAGGAGAAGGGCGAGGTGATGGTGGAGACCGTGGTGGCCAAAGGGGGTCTGA GTGAGGACAGCCTTCAGGCTGAGTTCAGGAAAGTCCAGGGGAGACTCAAGAGTGCCTACAACATCATCA ACCTCCTCAAAGAGCAGCTGGTCCTGAGAAGCTCGGAAGGGGAACACTAAGGAGATGCCAGAGTTCCTCG TGCGCCTGGCCAGGGAGGTGGACAGAATGAACATGGGCTTGCCTTCCTCGGAGAAGCATCAACACCAAG AACAGGAGAATATGACCGCAAGGCCTGGCCCCAGGCCCCAGAGTCTCAAGCTTGGGACAGCTCTCTCAG TAGACGGCTACCAACTGGAGAACAAGTCCCAGGCCCAAGACTCTGGACATCAGCCAGAATTTAGCCTAC CAGGGTCCACCAAACACCTGCGCTCCCAGCTGGCTCAGTGTAGACAACGGTACCAAGATCTCCAGGAGA AGCTGCTCATCTCAGAAGCCACTGTGTTTGCCCAGGCAAACCAGCTAGAGAAGTACAGAGCCATATTAA GTGAATCCCTGGTGAAGCAGGACAGCAAGCAGATCCAGGTGGACCTTCAGGACCTGGGCTATGAGACTT GTGGCCGAAGTGAGAATGAAGCTGAACGTGAGGAGACCACCAGCCCTGAGTGTGAGGAGCACGGTAACC TGAAGCCTGTGGTGGTAGGAAGGCTTGTGCTCTGAGCAAGGGTACCTGGACCCTGTCTTGGTCAGCT CACCTGTGAAGAACCCTTGGAGAACAAGCCAGGAAGCCAGAAGAATCCAGGCACAAGGAACTTCAGACA ACAGCTCTCTCCTGAGGAAGGACATCCGAAATCTGAAAGCCCAGCTACCGAATGCCTACAAGGTCCTTC AGAACCTGAGGAGCCGGGTCCGGTCCCTGTCTGCCACAAGCGATTACTCATCGAGTCTGGAGAGACCCC GCAAGCTGATAGCCGTGGCAACCCTTGAGGGGGCCTCACCCCACAGTGTCACTGATGAAGACGAAGGCT TGTTGTCAGATGGCACCGGGGCTTTTTACCCTCCAGGGCTCCAGGCCAAAAAGAATCTAGAGAATCTCA TGAAGTCCGCCTCGTGGCCTGGAAAATACGATTCTTTGATTCAGGATCAGGCCCGAAAAACTGTCATAT CTGCGTCCGAAAATACXAAAAGGGAGAAGGATTTGTTTTCTTCTCACCCAACATTCGAAAGATACGTCA AATCTTTTGAAGACCTCCTGAGGAACAACGACTTGACTACCTGGGCCAGAGCTTCCGGGAACAAC TTAGTTCAAGGCGTTCAGTGACAGACAGGCTGACCAGCAAATTCAGCACAAAGGATCATAAGAGTGAAA aagaagaagttgggcttgagccactggccttcaggttcagcagggaattacaggagaaagagaaagtga TTGAAGTCCTGCAGGCCAAGGTGGATACCCGGTTTTTCTCACCCCCCAGCAGCCATGCTGCGTCTGAGT CCCACCGTTGTGCCAGCACCATCTTTCCTGTCGGATGACATAGAAGCCTGCTCTGACATGGACGTAG CCAGCGAGTACACACTATGAAGAGAAGAAGCCCTCACCCAGTAACTCAGCAGCCAGTGCATCTCAGG GGCTTAAGGGCGAGCCCAGAAGCAGCTCCATCAGCTTGCCAACTCCCCAGAACCCCCCTAAGGAGGCCA GCCAGGCCCAGCCAGGCTTTCACTTTAACTCCATACCCAAGCCGGCTAGCCTTTCCCAGGCACCAATGC **ACTTCACTGTACCCAGCTTCATGCCTTTCGGCCCCTTCTGGGCCTCCCTTCTTGGTTGCTGTGAGACAC** CAGTGGTGTCCTTGGCTGAGGCTCAACAAGAGCTGCAGATGCTGCAGAAGCAGCTGGGACGAAGTGTTA GCAACCCTGCTCAGCCCCACTCCCCAGCAAGGGGCACCATAGAGCTGGGCAGAATCCTGGAGCCTGGAT ACCTGGGCAGCGGCCAGTGGGACATGATGAGGGCCTCAGAAAGGGAGCATCTCTGGGGAGCTGTCCTCAG GCTCCTCGATGTACCAGCTTAACTCCAAACCCACAGGGGCCGACCTGTTGGAAGAGCATTTAGGTGAGA TCCGGAACCTGCGCCAGCGCCTGGAGGAGTCCATATGTGTCAATGACAGGCTACGGGAGCAGCTGCAGC ATAGGCTCAGCTCCACGGCCGAGAAAATGGTTCCACCTCTCACTTCTACAGTCAGGGCCTGGAGTCCA TGCCTCAGCTCTACAATGAGAACAGAGCCCTCAGGGAAGAAAACCAAAGCCTGCAGACACGGCTCAGTC ATGCTTCCAGGGGACACTCCCAGGAAGTGGACCACCTGAGGGGAGGCTCTGCTTTCCTCAAGTTCCCAGC TCCAGGAGCTGGAGAAGGAGCTGGAGCAGCAGAAGGCTGAGCGGCGGCAGCTTCTGGAAGACTTGCAGG AGAAGCAGGATGAGATCGTGCATTTCCGAGAGGAGGGGTGTCCCTCCAGGAAAACAACTCCAGGCTGC AGCACAAGCTGGCCCTCCTGCAACAACAGTGTGAGGAGAAACAGCAGCTCTCCCTGTCCCTGCAGTCAG AGCTCCAGATCTACGAGTCCCTCTACGAAAATCCTAAGAAGGGCTTGAAAGCCTTCAGCCTAGATTCCT GTTACCAAGTCCCGGGTGAGTTGAGCTGCCTGGTGGCAGAGATTCGAGCTCTGAGAGTGCAGTTGGAGC AGAGCATTCAAGTGAACAACCGTCTGCGGCTGCAGCTGGAACAGCAGATGGATCACGGTGCTGGCAAAG CCAGTCTCAGTTCCTGCCCTGTTAACCAGAGCTTCTCAGCCAAGGCGGAGCTGGCAAACCAGCAGCCAC CCTTCCAAGGTTCAGCTGCTTCCCCTCCAGTCCGGGACGTTGGCTTGAATTCTCCACCCGTGGTCCTCC AGTCTGCAGCAACGAAGACCCCTCCCAAGATGGAGGTCGATGCTGCTGATGGCCCATTTGCCAGTGGAC ACGGCAGACACGTCATCGGCCATGTGGATGACTACGACGCCCTACAGCAGCAGATTGGGGAAGGGAAGC TGCTGATCCAAAAGATACTGTCTCTCACGAGGCCAGCACGCAGCGTCCCTGCACTGGACGCGCAGGGCA

FIG.2 (CONT)

CAGAGGCACCAGGTACCAAAAGTGTCCATGAGCTTCGGAGCAGCGCCAGGGCTCTGAACCACAGCCTAG AAGAGTCAGCTTCCCTCCTCACCATGTTCTGGAGAGCAGCTTTGCCAAACTCTCATGGTTCTGTACTGG TAGGCGAAGAGGGAAACCTGATGGAGAAAGAACTCCTAGACCTGCGAGCCCAAGTGTCCCAACAGCAAC AGCTCCTTCAGAGCACTGCTGTGCGTCTGAAGACGGCCAACCAGAGGAAGAAAAGCATGGAGCAGTTCA TCGTGAGCCATCTGACCAGGACCCATGATGTCTTGAAGAAAGCACGGACTAATTTAGAGATGAAATCCT TCAGGGCCCTGATGTGCACTCCAGCCTTGTGACCCTTGCCTTCCAGGAGCCACATAAAAGGCGAAGCCA ACCTGGTCCGACTCCTCCCTGCTGGAGCTCCAGGGAAGGGCTCATATATGTGTCCACATGGGACAGGC AGGAAGGAAAGTGGCATCCTGACAATGAATATGATTAGCCAAGGCCCACTGGGCCCATCACTAAGCAAA ACTCATGTAGACTGTGTAGAAGGCCCCCCGGCACTGCTTCTAGACAGCCTCAGCAGCACGGTGCCCCACC TGTGGTCCCAATGCCAACGCTCCTCAGACAGTTGTAAAAGCACACATCATTGAGTGGCAGCGTCCAGCC GGACACTGTTGGAGACTACCAAACCCCTCACTGACCCAGTCTTGGGCCAGGCCAGCTCTGTGGGCCAAG TCTGGTAGTACTTTGGTCTCTACCACCACACCAGAGAGTCTATATAGCAAATGTGGTAACTTGTAGG TGCCCTGCACTTAGCCTAGCACCTTCTGTTTCTTACGTGATCTCAAGTTGAACCAACTTCCTTAACTCT GCTGTCCCCTGAATCCTAACTTCCCTCAGGGGAATTGGAGATTGGTGGCCACATCATGCCTATTGAATG TTTAGTGAACAGCATATCGGTGCCTCTTAATGGCATGGGCAAGGCCTGCTCTGTACTGAAGACTGTGTC TTCACAGTGCTCATAGGACGTGGGTGTGTGTATAAATGTATAATATAGATTTATATATGTCGCTATGGC ATTAAAGCTAACTGTGTAC (SEQ ID NO:02)

FIG. 3.

MYOMEGALIN firstMET until stop ATGTCTAATGGATATCGCACTCTGTCCCAGCACCTCAATGACCTGAAGAAGGAGAACTTCAGCCTCAAG CTGCGCATCTACTTCCTGGAGGAGCGCATGCAACAGAAGTATGAAGTCAGCCGGGAGGACGTCTACAAG CGGAACATTGAGCTGAAGGTTGAAGTGGAGAGCCTGAAACGAGAGCTCCAGGACAGGAAACAGCATCTA CATAAAACATGGGCCGATGAGGAGGATCTCAACAGCCAGAATGAAGCAGAGCTCCGGCGCCAGGTTGAA GAACCGCAGCAGGAGACAGGAACACGTTTATGAGCTCCTAGACAACAACATTCAGCTGCTGCAGGAGGAA TCCAGGTTTGCAAAGGATGAAGCCACACAGATGGAGACTCTGGTGGAGGCAGAGAAGGGGTGTAATCTG GAGCTCTCAGAGAGGTGGAAGGATGCTACCAAGAACAGGGAAGATGCACCGGGAGACCAGGTGAAGCTT GACCAATATTCTGCGGCACTGGCTCAGAGGGACAGGAGATTGAAGAGCTGAGGCAGAGCTTGGCTGCC CAGGAGGGCTTGTGGAACAGCTGTCTCGAGAGAAACAACAGCTGTTACATCTGCTGGAGGAGCCTGGG GGCATGGAAGTGCAGCCCATGCCTAAAGGGTTACCCACGCAACAAAAGCCAGACCTAAATGAGACCCCT ACAACCCAGCCATCTGTGTCTGATTCCCACCTGGCAGAACTCCAGGACAAAATCCAGCAAACAGAGGTC ACCAACAAGATTCTTCAAGAGAAACTGAATGACATGAGCTGTGAGCTCAGATCTGCACAGGAGTCGTCT CAGAAGCAAGATACGACAATCCAAAGCCTCAAGGAAATGCTAAAGAGCAGGGAAAGTGAGACTGAAGAG CTGTACCAGGTGATTGAAGGTCAAAATGACACAATGGCAAAGCTTCCGGAAATGCTACACCAGAGCCAG CTCGGACAGCTCCAGAGCTCAGAGGGCATTGCCCCTGCTCAGCAGCAAGTGGCCCTGCTTGACCTTCAG AGTGCTCTGTTCTGCAGCCAGCTTGAAATCCAGAAGCTCCAGAGGCTGTTACGCCAGAAAGAGCGTCAG GCTGCTTGGAAACATAACCAGGAATTACGAAAAGCTTTGCAACACCTCCAAGGAGAACTGCACAGTAAG AGCCAACAGCTCCACGTTCTGGAGGCAGAAAAATATAATGAAATTCGAACCCAGGGACAAAACATTCAA CACCTAAGTCACAGTCTGAGTCACAAAGAGCAGCTAATTCAGGAACTTCAGGAGCTCCTACAGTATCGG GATACCACAGACAAAACTCTAGACACAAATGAGGTGTTTCTTGAGAAACTACGGCAACGAATACAAGAC CGGCAGTTGCTCTAGAGCGGGTTATAGATGAAAAGTTCTCTGCTCTAGAAGAAAAGGACAAGGAACTG CGGCAGCTCCGGCTTGCTGTGAGGGACCGAGACCATGACTTAGAGAGACTGCGTTGTGTCCTGTCTGCC **AATGAAGCTACCATGCAAAGTATGGAGAGTCTCCTGAGGGCCAGAGGCCTGGAAGTGGAGCAGTTAATT** GCCACCTGCCAAAACCTCCAGTGGTTGAAGGAAGAATTGGAAACCAAGTTTGGCCACTGGCAGAAGGAA CAGGAGACCATCATTCAGCAGTTACAGACATCTCTGCATGACAGGAACAAAGAAGTAGAGGATCTCAGT GCAACTTTGCTCCACAAACTTGGACCCGGCCAGAGTGAAGTAGCTGAGGAGCTGTGCCAGCGCCTGCAG GTCCAGGGACTGCTCCAGTCGATGGGCACCCGGGAACAGGAAAGACAGGCTGTTGCAGAAAAAATGGTA GCAGCATCTCAGGCATTCATCTCTAACCAACCAGCTGGAGCGACTTCTGTAGGCCCCCACCATGGAGAG CAAACTGACCAAGGTTCTACGCAGATGCCCTCTCGAGACGACACCTCGCTGACTGCCAGAGAGGAG TCCATGATGGCTGTGCAAGAGGAAGAGCTGCAGGTGCAGGCTGCTGACTTGGAGTCCCTGACCAGGAAC ATACAGATAAAGAAGACCTCATAAAGGACCTGCAAATGCAACTGGTTGACCCTGAAGATATGCCAGCC ATGGAGCGCCTGACCCAAGAGGTCTTACTTCTTCGGGAAAAAGTTGCTTCAGTGGAACCCCAGGGTCAG GAAGGCTCAGAGAACAGGAGACAACAGTTGCTGCTGATGTTAGAAGGACTAGTGGATGAACGGAGTCGG CTCAACGAGGCCCTGCAAGCTGAGCGGCAGCTCTACAGCAGCCTGGTCAAGTTCCATGCCCAACCAGAG ATCTCTGAGAGAGCCGAACTCTGCAGGTGGAACTGGAAGGGGCCCAGGTGTTACGCAGTCGACTAGAA GAAGTTCTTGGAAGAAGCCTGGAGCGCTTAAGCAGGCTGGAGACCCTGGCCGCCATTGGAGGTGCTACT AGCCACCAGCAACTCATCAAGGTGTCTTTGGAGAAAAGCCTGACCACCATGGAGACCCAGAACACATGT CTTCAGCCCCTTCCCCAGTAGGAGAGGATGGTAACAGGCATCTTCAGGAAGAAATGCTCCACCTGAGG GCTGAAATCCACCAGCCCTTAGAAGAGAAGAGAAAAGCTGAGGCAGAACTCAAGGAGCTAAAGGCTCAA ATTGAGGAGCAGGATTCTCCTCTGTGTCCCACATCAGGAACACCATGCTGAGCCTTTGCCTTTGCCTT GAGTTCAGGAAAGTCCAGGGGAGACTCAAGAGTGCCTACAACATCATCAACCTCCTCAAAGAGCAGCTG GTCCTGAGAAGCTCGGAAGGGAACACTAAGGAGATGCCAGAGTTCCTCGTGCCCTGGCCAGGGAGGTG GACAGAATGAACATGGGCTTGCCTTCCTCGGAGAAGCATCAACACCAAGAACAGGAGAATATGACCGCA AGGCCTGGCCCCAGGCCCCAGAGTCTCAAGCTTGGGACAGCTCTCTCAGTAGACGGCTACCAACTGGAG AACAAGTCCCAGGCCCAAGACTCTGGACATCAGCCAGAATTTAGCCTACCAGGGTCCACCAAACACCTG CGCTCCCAGCTGGCTCAGTGTAGACAACGGTACCAAGATCTCCAGGAGAAGCTGCTCATCTCAGAAGCC ACTGTGTTTGCCCAGGCAAACCAGCTAGAGAGTACAGAGCCATATTAAGTGAATCCCTGGTGAAGCAG GACAGCAAGCAGATCCAGGTGGACCTTCAGGACCTGGGCTATGAGACTTGTGGCCGAAGTGAGAATGAA GCTGAACGTGAGGACCACCAGCCCTGAGTGTGAGGAGCACGGTAACCTGAAGCCTGTGGTGCTGGTG GAAGGCTTGTGCTCTGAGCAAGGGTACCTGGACCCTGTCTTGGTCAGCTCACCTGTGAAGAACCCTTGG AGAACAAGCCAGGAAGCCAGAAGAATCCAGGCACAAGGAACTTCAGACAACACCTCTCTCCTGAGGAAG

GACATCCGAAATCTGAAAGCCCAGCTACCGAATGCCTACAAGGTCCTTCAGAACCTGAGGAGCCGGGTC

FIG. 3 (cont)

CGGTCCCTGTCTGCCACAAGCGATTACTCATCGAGTCTGGAGAGACCCCGCAAGCTGATAGCCGTGGCA ACCCTTGAGGGGGCCTCACCCCACAGTGTCACTGATGAAGACGAAGGCTTGTTGTCAGATGGCACCGGG GCTTTTTACCCTCCAGGGCTCCAGGCCAAAAAGAATCTAGAGAATCTCATCCAGAGAGTATCCCAGCTG GGAAAATACGATTCTTTGATTCAGGATCAGGCCCGAAAAACTGTCATATCTGCGTCCGAAAATACXAAA AGGGAGAAGGATTTGTTTCTCTCACCCAACATTCGAAAGATACGTCAAATCTTTTGAAGACCTCCTG **AGGAACAACGACTTGACTACCTGGGCCAGAGCTTCCGGGAACAACTTAGTTCAAGGCGTTCAGTG** ACAGACAGGCTGACCAGCAAATTCAGCACAAAGGATCATAAGAGTGAAAAAGAAGAAGTTGGGCTTGAG CCACTGGCCTTCAGGTTCAGCAGGGAATTACAGGAGAAAGAGAAAGTGATTGAAGTCCTGCAGGCCAAG GTGGATACCCGGTTTTTCTCACCCCCCAGCAGCCATGCTGCGTCTGAGTCCCACCGTTGTGCCAGCAGC GAAGAGAAGACCCTCACCCAGTAACTCAGCAGCCAGTGCATCTCAGGGGCCTTAAGGGCGAGCCCAGA CACTTAACTCCATACCCAAGCCGGCTAGCCTTTCCCAGGCACCAATGCACTTCACTGTACCCAGCTTC ATGCCTTTCGGCCCCTCTGGGCCTCCCCTTCTTGGTTGCTGAGACACCAGTGGTGTCCTTGGCTGAG GCTCAACAGAGCTGCAGATGCTGCAGAAGCAGCTGGGACGAAGTGTTAGCATTGCCCCTCCCACCTCC ACATCCACGTTGCTTAGCAACCACAGAAGCTAGCTCTCCCCGCTACAGCAACCCTGCTCAGCCCCAC TCCCCAGCAAGGGGCACCATAGAGCTGGGCAGAATCCTGGAGCCTGGATACCTGGGCAGCGGCCAGTGG GACATGATGAGGCCTCAGAAAGGGAGCATCTCTGGGGAGCTGTCCTCAGGCTCCTCGATGTACCAGCTT AACTCCAAACCCACAGGGGCCGACCTGTTGGAAGAGCATTTAGGTGAGATCCGGAACCTGCGCCAGCGC CTGGAGGAGTCCATATGTGTCAATGACAGGCTACGGGAGCAGCTGCAGCATAGGCTCAGCTCCACGGCC CGAGAAAATGGTTCCACCTCTCACTTCTACAGTCAGGGCCTGGAGTCCATGCCTCAGCTCTACAATGAG AACAGAGCCCTCAGGGAAGAAACCAAAGCCTGCAGACACGCTCAGTCATGCTTCCAGGGGACACTCC CAGGAAGTGGACCACCTGAGGGAGGCTCTGCTTTCCTCAAGTTCCCAGCTCCAGGAGCTGGAGAAGGAG CTGGAGCAGCAGAAGGCTGAGCGGCGGCAGCTTCTGGAAGACTTGCAGGAGAAGCAGGATGAGATCGTG CATTTCCGAGAGGGGGGGTGTCCCTCCAGGAAAACAACTCCAGGCTGCAGCACAAGCTGGCCCTCCTG CAACAACAGTGTGAGGAGAACAGCAGCTCTCCCTGTCCCTGCAGTCAGAGCTCCAGATCTACGAGTCC CTCTACGAAAATCCTAAGAAGGGCTTGAAAGCCTTCAGCCTAGATTCCTGTTACCAAGTCCCGGGTGAG TTGAGCTGCCTGGTGGCAGAGATTCGAGCTCTGAGAGTGCAGTTGGAGCAGAGCATTCAAGTGAACAAC CGTCTGCGGCTGCAGCTGGAACAGCAGATGGATCACGGTGCTGGCAAAGCCAGTCTCAGTTCCTGCCCT GTTAACCAGAGCTTCTCAGCCAAGGCGGAGCTGGCAAACCAGCAGCCACCCTTCCAAGGTTCAGCTGCT TCCCCTCCAGTCCGGGACGTTGGCTTGAATTCTCCACCCGTGGTCCTCCCCAGCAATTCGTGCTCTGTT CCTGGCTCAGACTCTGCCATCATCAGTAGGACAAACAATGGTTCGGATGAGTCTGCAGCAACGAAGACC CCTCCCAAGATGGAGGTCGATGCTGATGGCCCATTTGCCAGTGGACACGGCAGACACGTCATCGGC CATGTGGATGACTACGACGCCCTACAGCAGCAGATTGGGGAAGGGAAGCTGCTGATCCAAAAGATACTG TCTCTCACGAGGCCAGCACGCAGCGTCCCTGCACTGGACGCGCAGGGCACAGAGGCACCAGGTACCAAA AGTGTCCATGAGCTTCGGAGCAGCGCCAGGGCTCTGAACCACGCCTAGAAGAGTCAGCTTCCCTCCTC ACCATGTTCTGGAGAGCAGCTTTGCCAAACTCTCATGGTTCTGTACTGGTAGGCGAAGAGGGAAACCTG **ATGGAGAAGGACTCCTAGACCTGCGAGCCCAAGTGTCCCAACAGCAACAGCTCCTTCAGAGCACTGCT** GTGCGTCTGAAGACGGCCAACCAGAGGAAGAAAAGCATGGAGCAGTTCATCGTGAGCCATCTGACCAGG ACCCATGATGTCTTGAAGAAGCACGGACTAATTTAGAGATGAAATCCTTCAGGGCCCTGATGTGCACT CCAGCCTTGTGA (SEQ ID NO:03)

7/12 FIG. 4 Human mycmegalin cDNA

```
1 GGATCCTTGA GGGCACTGGT GCGACTTTCA GGTGAGGTCT TAGCAGATGA
  51 AAGCGGCTGG CTGTGGCCCG CGCCAGTAGT GCTTTCTGCT CCGCACTCGC
 101
     CGTGAGCCAG GTGTGCAACC GGATTTGGGG CGAGGGTCGC GCTGGCTACC
      TCGCATGCGC AGAGCCGGAA GCCCGCTGAC CGGACTACAG CTCCCAGAAG
 151
     AGCCTTGTGG AGGCCGCAGA CGCGAAGCCG CTGGCGCCAT CTTGAAATCT
 201
      GATCCTCCAT CCCCGAGGCT TTGCGTCTGC GCGGCCGGCC GCTGCTGCTC
 251
      CGGGAGCCCA GTCTGCTAAA AGGGGAGGAC GTTGAGGACG CGGCGGCTGG
      CGGGAGAGAC AGCTGGGGAG AGACATGGCA GGGTCGGAGC GCGGCCTGCG
 351
 401
      CCTCTGTCAC TCAGCATCCT CTTAGGCGTT TCCACGCCCG CCCCCTGCCC
 451
      GAGGGCCGG GCTGACGGCT CTGGTACCCG GAGTCGGCGC GCGGGGCAGG
      GGCGCGCCCC TGCAGAGTGG GGACCCCACT GGGCTGTGCC ATGCTGACCG
 501
     GAGACCACCG AGGCGGGAGA CAGAGCGCGG CGAAGAGCCA TTGAGTGGTC
 551
      ACCCAGTAGC CGCCGCCGCC GCCGCCTCGG GAAGCTTGCC ACCCGCTAGG
      AGGGAAGATG AAGGAGATTT GCAGGATCTG TGCCCGAGAG CTGTGTGGAA
 651
 701
      ACCAGCGGCG CTGGATCTTC CACACGGCGT CCAAGCTCAA TCTCCAGGTT
      CTGCTTTCGC ACGTCTTGGG CAAGGATGTC CCCCGCGATG GCAAAGCCGA
 751
      GTTCGCTTGC AGCAAGTGTG CTTTCATGCT TGATCGAATC TATCGATTCG
 801
      ACACAGTTAT TGCCCGGATT GAAGCGCTTT CTATTGAGCG CTTGCAAAAG
 901
      CTGCTACTGG AGAAGGATCG CCTCAAGTTC TGCATTGCCA GTATGTATCG
 951
      GAAGAATAAC GATGACTCTG GCGCGGAGAT CAAGGCGGGG AATGGGACGG
      TTGACATGTC CGTCTTACCC GATGCGAGAT ACTCTGCACT GCTCCAGGAG
1001
      GACTTCGCCT ATTCAGGGTT TGAGTGCTGG GTGGAGAATG AGGATCAGAT
1051
1101
     CCAGGAGCCA CACAGCTGCC ATGGTTCAGA AGGCCCTGGA AACCGACCCA
      GGAGATGCCG TGGTTGTGCC GCTTTGCGGG TTGCTGATTC TGACTATGAA
1201
      GCCATTTGTA AGGTACCTCG AAAGGTGGCC AGAAGTATCT CCTGCGGCCC
      TTCTAGCAGG TGGTCGACCA GCATTTGCAC TGAAGAACCA GCGTTGTCTG
1251
      AGGTTGGGCC ACCCGACTTA GCAAGCACAA AGGTACCCCC AGATGGAGAA
1301
1351
     AGCATGGAGG AAGAGACGCC TGGTTCCTCT GTGGAATCTT TGGATGCAAG
      CGTCCAGGCT AGCCCTCCAC AACAGAAAGA TGAGGAGACT GAGAGAAGTG
1451
      CAAAGGAACT TGGAAAGTGT GACTGTTGTT CAGATGATCA GGCTCCGCAG
1501
      CATGGGTGTA ATCACAAGCT GGAATTAGCT CTTAGCATGA TTAAAGGTCT
      TGATTATAAG CCCATCCAGA GCCCCCGAGG GAGCAGGCTT CCGATTCCAG
1551
     TGAAATCCAG CCTACCTGGA GCCAAGCCTG GCCCTAGCAT GACAGATGGA
1601
      GTTAGTTCCG GTTTCCTTAA CAGGTCTTTG AAACCCCTTT ACAAGACACC
     TGTGAGTTAT CCCTTGGAGC TTTCAGACCT GCAGGAGCTG TGGGATGATC
1701
      TCTGTGAAGA TTATTTGCCG CTCCGGGTCC AGCCCATGAC TGAAGAGTTG
1751
      CTGAAACAAC AAAAGCTGAA TTCACATGAG ACCACTATAA CTCAGCAGTC
1801
     TGTATCTGAT TCCCACTTGG CAGAACTCCA GGAAAAAATC CAGCAAACAG
1851
      AGGCCACCAA CAAGATTCTT CAAGAGAAAC TTAATGAAAT GAGCTATGAA
      CTAAAGTGTG CTCAGGAGTC GTCTCAAAAG CAAGATGGTA CAATTCAGAA
1951
2001
      CCTCAAGGAA ACTCTGAAAA GCAGGGAACG TGAGACTGAG GAGTTGTACC
      AGGTAATTGA AGGTCAAAAT GACACAATGG CAAAGCTTCG AGAAATGCTG
2051
      CACCAAAGCC AGCTTGGACA ACTTCACAGC TCAGAGGGTA CTTCTCCAGC
2101
      TCAGCAACAG GTAGCTCTGC TTGATCTTCA GAGTGCTTTA TTCTGCAGCC
2201
     AACTTGAAAT ACAGAAGCTC CAGAGGGTGG TACGACAGAA AGAGCGCCAA
2251
      CTGGCTGATG CCAAACAATG TGTGCAATTT GTAGAGGCTG CAGCACACGA
2301
      GAGTGAACAG CAGAAAGAGG CTTCTTGGAA ACATAACCAG GAATTGCGAA
      AAGCCTTGCA GCAGCTACAA GAAGAATTGC AGAATAAGAG CCAACAGCTT
2351
2401
      CGTGCCTGGG AGGCTGAAAA ATACAATGAG ATTCGAACCC AGGAACAAAA
2451
      CATCCAGCAC CTAAACCATA GTCTGAGTCA CAAGGAGCAG TTGCTTCAGG
2501
      AATTTCGGGA GCTCCTACAG TATCGAGATA ACTCAGACAA AACCCTTGAA
2551
      GCAAATGAAA TGTTGCTTGA GAAACTTCGC CAGCGAATAC ATGATAAAGC
2601
      TGTTGCTCTG GAGCGGGCTA TAGATGAAAA ATTCTCTGCT CTAGAAGAGA
2651
      AAGAAAAGA ACTGCGCCAG CTTCGTCTTG CTGTGAGAGA GCGAGATCAT
2701
      GACTTAGAGA GACTGCGCGA TGTCCTCTCC TCCAATGAAG CTACTATGCA
      AAGTATGGAG AGTCTCCTGA GGGCCAAAGG CCTGGAAGTG GAACAGTTAT
2751
      CTACTACCTG TCAAAACCTC CAGTGGCTGA AAGAAGAAAT GGAAACCAAA
2851
      TTTAGCCGTT GGCAGAAGGA ACAAGAGAGT ATCATTCAGC AGTTACAGAC
2901 GTCTCTTCAT GATAGGAACA AAGAAGTGGA GGATCTTAGT GCAACACTGC
```

FIGURE 4 (CONT)

			00) + 2000		
2951	TCTGCAAACT	TGGACCAGGG	CAGAGTGAGA	TAGCAGAGGA	GCTGTGCCAG
3001	CGTCTACAGC	GAAAGGAAAG	GATGCTGCAG	GACCTTCTAA	GTGATCGAAA
3051	TAAACAAGTG	CTGGAACATG	AAATGGAGAT	TCAAGGCCTG	CTTCAGTCTG
3101	TCACCACCAG	GGAGCAGGAA	AGCCAAGCTG	CTGCAGAGAA	GTTGGTGCAA
3151		AAAGAAATTC			
	GCCTTAATGG	TCCCTGATGT	CCCAACCACC	CATCTCTAAC	CARCARCETC
3201	AGGGAGAGAC	TCCCTGATGT	CCCAAGCACC	CATCTCTAAC	CAACAAGCIG
3251	AAGTTACCCC	CACTGGCCGT	CTTGGAAAAC	AGACTGATCA	AGGTTCAATG
3301	CAGATACCTT	CCAGAGATGA	TAGCACTTCA	TTGACTGCCA	AAGAGGATGT
3351	CAGCATACCC	AGATCCACAT	TAGGAGACTT	GGACACAGTT	GCAGGGCTGG
3401	AAAAAGAACT	GAGTAATGCC	AAAGAGGAAC	TTGAACTCAT	GGCTAAAAAA
3451		GTCAGATGGA			
3501		GAGCTGCAGG			
	CCARCAGAA	GATTAAAGAA	CATCTCATAA	ACCACCTCCA	AATGCAACTG
3551	GGMACATACA	GATIAAAGAA	DAICICALAA	COCCECTOCA	ACCA ACMOMM
3601	GTTGATCCTG	AAGACATACC	AGCTATGGAA	CGCCTGACCC	AGGAAGICII
3651	ACTTCTTCGG	GAAAAAGTTG	CTTCAGTAGA	ATCCCAGGGT	CAAGAAATTT
3701		AAGACAACAG			
3751	GAACGGAGTC	GGCTCAATGA	GGCCTTACAA	GCAGAGAGAC	AGCTCTATAG
3801	CAGTCTGGTG	AAGTTCCATG	CCCATCCAGA	GAGCTCTGAG	AGAGACCGAA
3851	CTCTGCAGGT	GGAACTGGAA	GGGGCTCAGG	TGTTACGCAG	TCGGCTAGAA
3901		GAAGAAGCTT			
	CCCCATTCIIG	GGTGCAGCTG	CAGGGGATGA	CACCGAAGAT	ACARCACTC
3951					
4001	AGTTCACTGA	CAGTATTGAG	GAGGAGGCTG	CACACCATAG	TCACCAGCAA
4051	CTTGTCAAGG	TGGCTTTGGA	GAAAAGTCTG	GCAACTGTGG	AGACCCAGAA
4101	CCCATCTTTT	TCCCCTCCTT	CTCCGATGGG	AGGGGACAGT	AACAGGTGTC
4151	TTCAGGAAGA	AATGCTCCAC	CTGAGGGCTG	AGTTCCACCA	GCACTTAGAA
4201	GAGAAGAGGA	AAGCTGAGGA	GGAACTGAAG	GAGCTAAAGG	CTCAAATTGA
4251	GGAAGCAGGA	TTCTCCTCAG	TGTCCCACAT	CAGGAACACC	ATGCTGAGCC
4301		GAATGCGGAG			
4351		AGATCGAGGA			
	CAIGGAIGGG	ACCAAAGAGG	CTCTCXCTCX	CACTACCCTT	CACCCTCACT
4401	GACIGIGGIA	ACCAMAGAGG	CECTORGION	CCCACAATAT	CARCAACCEC
4451	TCAGAAAGCT	CCAGGGAAAA	CIGAAGAAIG	CCCACAATAT	CHICAMCCIC
4501	CTCAAAGAAC	AACTTGTGCT	GAGTAGCAAG	GAAGGGAATA	GTAAACTTAC
4551	TCCAGAGCTC	CTTGTGCATC	TGACCAGCAC	CATTGAAAGA	ATAAACACAG
4601	AACTGGTTGG	TTCCCCTGGG	AAGCACCAAC	ACCAAGAGGA	GGGGAATGTG
4651	ACTGTGAGGC	CTTTCCCCAG	ACCCCAGAGC	CTTGACCTTG	GGGCTACCTT
4701	CACAGTGGAT	GCCCACCAAT	TGGATAACCA	GTCCCAGCCT	CGTGACCCTG
4751	GGCCTCAGTC	AGCGTTTAGC	CTACCAGGGT	CCACCCAGCA	CCTGCGCTCC
4801	CAGCTGTCAC	AATGCAAACA	ACGCTATCAA	GATCTCCAGG	AGAAGCTGCT
4851	CCTATCAGAA	GCCACTGTCT	TTGCTCAGGC	TAACGAGCTG	GAGAAATACA
4901	CACTTATCCT	TACAGGTGAA	TOOTTOOTO	ACCACCACAC	CAAGCAGATC
4951	CACCECCACC	TCCAGGACCT	CCCCTATCAC	ACTTCTCCCC	CAACCGAGAA
	CAGGIGGACC	CCAGGACCI	COLCIAIGAG	WCT IGIGGC	CACCACAACA
5001		CGGGAGGAAA			
5051	GCCTCAAGGA	AATGGTCCTG	ATGGAGGGC	TGTGCTCTGA	GCAGGGACGC
5101	CGGGGCTCAA	CACTGGCTAG	TTCCTCTGAG	AGGAAGCCCT	TGGAGAACCA
5151	GCTAGGGAAG	CAGGAAGAGT	TCCGGGTATA	TGGAAAGTCA	GAAAACATCT
5201	TGGTCCTACG	AAAGGACATC	AAAGATCTGA	AGGCCCAGCT	GCAGAATGCC
5251	AACAAGGTCA	TTCAAAACCT	CAAGAGCCGG	GTCCGGTCCC	TCTCAGTTAC
5301	AAGTGATTAT	TCGTCTAGTC	TGGAAAGACC	CCGGAAGCTG	AGAGCTGTTG
5351	GCACCTTGGA	GGGGTCTTCA	CCTCATAGTG	TCCCTGATGA	GGATGAGGGG
5401					TTCAGGCCAA
5451	NA ACCACCEC	GAGAGTCTCA	TCCACACACACT	ATCCCACCTC	CACCCCACC
	AAAGGACCIG	GAGAGICICA	CLCAGAGAGI	ATCCCAGCTG	CACATCACCC
5501		TGGACTAGAA			
5551	TCGTGGCCTG	GGAAATATGA	TTCCCTGATT	CAGGATCAGG	CCCGGGAACT
5601					TGTTATCTTA
5651					TCTCCTAAGG
5701	AGCAATGACA	TTGACTACTA	CCTGGGACAG	AGCTTCCGGG	AGCAACTCGC
5751	CCAGGGAAGC	CAGCTGACAG	AGAGGCTCAC	CAGCAAACTC	AGCACCAAGG
5801					GGCCCTCAGG
5851					TCCTGCAGGC
5901					GCCTTGTCTG
5951					TGAACTGGAA
J 7 J L	ACT SCEACCO	- LU LUCUMOU			CONTRACTORING

9/12

FIGURE 4(CONT)

6001	GCCTGCTCTG	ACATGGACAT	AGTCAGCGAG	TACACACACT	ATGAAGAGAA
6051	GAAAGCTTCT	CCCAGTCACT	CAGATTCCAT	CCATCATTCG	AGTCATTCTG
6101	CTGTGTTGTC	TTCTAAACCA	TCATCAACCA	GTGCATCTCA	GGGGGCTAAG
6151	GCCGAATCCA		CATCAGCTTG	CCAACTCCCC	
6201	CAAGGAGGCC		ATTCAGGCTT	TCATTTTCAC	TCCATACCCA
6251	AGCTGGCTAG		GCACCATTGC	CCTCAGCTCC	ATCCAGCTTC
6301		GCCCCACTGG		CTTGGCTGCT	GTGAGACACC
6351	AGTGGTCTCC	TTGGCTGAGG	CTCAGCAGGA	GCTACAGATG	
6401	AGTTGGGAGA	AAGTGCCAGC	ACTGTTCCTC	CTGCTTCCAC	AGCTACATTG
6451	CTGAGCAACG	ACTTGGAAGC	CGACTCTTCC	TACTACCTCA	ACTCTGCCCA
6501	GCCTCACTCT	CCTCCAAGGG	GCACCATAGA	ACTGGGAAGA	ATCCTAGAGC
6551	CTGGGTACCT	GGGCAGCAGT	GGCAAGTGGG	ATGTGATGAG	GCCTCAGAAA
6601	GGGAGTGTAT	CTGGGGACCT	ATCCTCAGGC	TCCTCTGTGT	ACCAGCTTAA
6651	CTCCAAACCC	ACAGGGGCTG	ACCTGCTGGA	AGAGCATCTT	GGTGAAATCC
6701	GGAACCTGCG	CCAGCGCCTG	GAGGAGTCCA	TCTGCATCAA	TGACCGCCTA
6751	CGGGAGCAAC	TGGAACACCG	GCTGACCTCT	ACTGCTCGTG	GAAGGGGATC
6801	CACTTCTAAC	TTCTACAGTC	AGGGCCTGGA		CAGCTCTGCA
6851	ATGAGAACAG	AGTCCTCAGG			
				GAAGACTTCA	GGCTCAACTG
6901	AGTCATGTTT		CTCCCAGGAA		TGAGGGAGGC
6951	TCTGCTGTCC		ACCTTCAAGA		GAGCTGGAGC
7001	ACCAGAAGGT		CAGCTTTTGG	AAGACTTGAG	GGAGAAGCAG
7051	CAAGAGGTCT	TGCATTTCAG	GGAGGAACGT	CTTTCCCTCC	AGGAAAACGA
7101	CTCCAGTGGG	CCTTGCCTCT	CCCTGGTCAG	ACTGCAGCAC	AAGCTGGTTC
7151	TCCTGCAGCA	ACAGTGTGAA	GAGAAACAGC	AGCTCTTTGA	GTCCCTCCAG
7201	TCAGAGCTAC	AAATCTACGA	GGCACTTTAT	GGCAATTCCA	AGAAGGGGCT
7251	GAAAGCTTAC	AGCCTGGATG	CCTGTCACCA	AATCCCTTTG	AGCAGTGACC
7301	TGAGCCACCT	GGTGGCAGAG	GTACGAGCTC	TGAGAGGGCA	GCTGGAGCAG
7351	AGCATTCAGG	GGAACAATTG	TCTGCGACTG		AGCAGCTGGA
7401	GAGCGGTGCT		GCCTCAGCCC		AACCAGAACT
7451	TCCCAGCCAG			AGCTGCTCCT	CCAAGATTCA
7501	GCTGTGTCCC	CTCCAGTCCG	GGATGTTGGT	ATGAATTCCC	CAGCTCTGGT
7551	CTTCCCCAGC	TCTGCTTCCT	CTACTCCTGG	CTCAGAAACG	
7601	ACAGAGCAAA		TTGGATACTT	CTCCAGTAAT	GAAGACCCCT
7651					
	CCCAAGCTAG		TACTGATGGC	TCCTTTGCCA	
7701	CCGCCATGTC			CAGTGCCCTA	AGACAGCAGA
7751	TTGCGGAGGG	CAAGCTGCTG	·	TAGTGTCTCT	TGTGAGATCA
7801	GCGTGCAGCT	TCCCTGGCCT	TGAAGCCCAA		TGCTAGGCAG
7851	CAAAGGTATT	CATGAGCTTC	GGAGCAGCAC	CAGTGCCCTG	CACCATGCCC
7901	TAGAGGAGTC	GGCTTCCCTC	CTCACCATGT	TCTGGAGAGC	AGCCCTGCCA
7951	AGCACCCACA	TCCCTGTGCT	GCCTGGCAAA	GTGGGAGAAT	CAACAGAAAG
8001	GGAACTTCTG	GAACTGAGAA	CCAAAGTATC	CAAACAGGAG	CGGCTCCTTC
8051	AGAGCACAAC	TGAGCATCTG	AAGAACGCCA	ACCAGCAGAA	GGAGAGCATG
8101	GAGCAGTTCA	TCGTCAGCCA	GCTAACCAGA	ACACATGATG	TTTTAAAGAA
8151	GGCAAGGACT	AACTTAGAGG	TGAAATCCCT	AAGGGCTCTG	CCATGTACTC
8201	CAGCCTTGTG	ACCCTTGCCT	TCCAGGAACC	ATGCAAGAAG	CGCAGCCACC
8251	AGAAGTCCTT	AAAACAGCAG	GAAAGGTGGG	CCTGTCCCCC	TTTTGTGCAG
8301		GCTGAGGAGC	ATCTGGGCCT		
8351			AGAGATGTAT		
8401			GCTATGGAAT		
8451			GATGCGTAGT		
8501					
8551			AGCAGCTTGG		
			GAGATGGAAA		
8601			CGTGGTCCCA		
8651			GAGCAGCGGT		
8701	CGGGGGCTCA	GTGAGCACTA	CTCACAGATC	CACACCTGAC	CCTGTTGGGT
8751	CGAGTCAGGC	TGGGCCTTGG	TCTGCACTGT	AGCACCTGTG	TTCTTTGAGT
8801			CTTCCCAGAT		
8851	GCACATCCTA	TTTCTTTTCT	TCTATGATAT	CCAAATTGGA	CTGACCTCAC
8901	TTCAAAGTTG	CTGTCCCATT	TTGTCACCCT	ATCTTATCTC	GGGGAAATTG
8951	CAGACTGATG	GCCAGACCAA	CTCTGTTGAA	ATTCTTGCAT	AGAGCAAACC
9001	TGTGCTCATT	TTTAAGTGGC	ATGGGAGAGG	CCCCCAGCCT	AGTAAAGCCT

PCT/US99/26860

WO 00/27861

10/12

FIGURE 4 (CONT)

9051	AGTCTGTGTC	TTCACAGTGC	TGGTAGAATG	TGTTTGTGTG	TATAAATATA
9101	TGATATAGAT	TTATATATGT	TGCTAACGCC	ATATATTGAA	GGCCAACATA
9151	ACTGGTGGAC	AGGGTGGGTG	ACAGAAAATG	AAAGCCTTTT	TGGTGATTGT
9201	TAAAGCAAGA	TGTGTATAAA	GAAATAAATA	GTTTTTCTTT	C (SEQ ID NO:04)

11/12 FIG. 5

>Human myomegalin protein 1 MKEICRICAR ELCGNORRWI FHTASKLNLQ VLLSHVLGKD VPRDGKAEFA 51 CSKCAFMLDR IYRFDTVIAR IEALSIERLQ KLLLEKDRLK FCIASMYRKN 101 NDDSGAEIKA GNGTVDMSVL PDARYSALLQ EDFAYSGFEC WVENEDOIOE 151 PHSCHGSEGP GNRPRRCRGC AALRVADSDY EAICKVPRKV ARSISCGPSS 201 RWSTSICTEE PALSEVGPPD LASTKVPPDG ESMEEETPGS SVESLDASVQ ASPPOOKDEE TERSAKELGK CDCCSDDQAP QHGCNHKLEL ALSMIKGLDY KPIQSPRGSR LPIPVKSSLP GAKPGPSMTD GVSSGFLNRS LKPLYKTPVS 301 351 YPLELSDLQE LWDDLCEDYL PLRVQPMTEE LLKQQKLNSH ETTITQQSVS 401 DSHLAELQEK IQQTEATNKI LQEKLNEMSY ELKCAQESSQ KQDGTIQNLK 451 ETLKSRERET EELYOVIEGO NDTMAKLREM LHQSQLGQLH SSEGTSPAQO 501 QVALLDLQSA LFCSQLEIQK LQRVVRQKER QLADAKQCVQ FVEAAAHESE 551 QQKEASWKHN QELRKALQQL QEELQNKSQQ LRAWEAEKYN EIRTQEQNIQ 601 HLNHSLSHKE QLLQEFRELL QYRDNSDKTL EANEMLLEKL RQRIHDKAVA 651 LERAIDEKFS ALEEKEKELR QLRLAVRERD HDLERLROVL SSNEATMQSM 701 ESLLRAKGLE VEQLSTTCQN LQWLKEEMET KFSRWQKEQE SIIQQLQTSL 751 HDRNKEVEDL SATLLCKLGP GQSEIAEELC QRLQRKERML QDLLSDRNKQ 801 VLEHEMEIQG LLQSVSTREQ ESQAAAEKLV QALMERNSEL QALRQYLGGR 851 DSLMSQAPIS NQQAEVTPTG RLGKQTDQGS MQIPSRDDST SLTAKEDVSI 901 PRSTLGDLDT VAGLEKELSN AKEELELMAK KERESOMELS ALQSMMAVQE 951 EELOVOAADM ESLTRNIQIK EDLIKDLOMO LVDPEDIPAM ERLTQEVLLL 1001 REKVASVESQ GQEISGNRRQ QLLLMLEGLV DERSRLNEAL QAERQLYSSL 1051 VKFHAHPESS ERDRTLQVEL EGAQVLRSRL EEVLGRSLER LNRLETLAAI 1101 GGAAAGDDTE DTSTEFTDSI EEEAAHHSHQ QLVKVALEKS LATVETQNPS 1151 FSPPSPMGGD SNRCLQEEML HLRAEFHQHL EEKRKAEEEL KELKAQIEEA 1201 GFSSVSHIRN TMLSLCLENA ELKEQMGEAM SDGWEIEEDK EKGEVMVETV 1251 VTKEGLSESS LQAEFRKLQG KLKNAHNIIN LLKEQLVLSS KEGNSKLTPE 1301 LLVHLTSTIE RINTELVGSP GKHQHQEEGN VTVRPFPRPQ SLDLGATFTV 1351 DAHQLDNQSQ PRDPGPQSAF SLPGSTQHLR SQLSQCKQRY QDLQEKLLLS 1401 EATVFAQANE LEKYRVMLTG ESLVKQDSKQ IQVDLQDLGY ETCGRSENEA 1451 EREETTSPEC EEHNSLKEMV LMEGLCSEQG RRGSTLASSS ERKPLENQLG 1501 KOEEFRVYGK SENILVLRKD IKDLKAQLQN ANKVIQNLKS RVRSLSVTSD 1551 YSSSLERPRK LRAVGTLEGS SPHSVPDEDE GWLSDGTGAF YSPGLQAKKD 1601 LESLIQRVSQ LEAQLPKNGL EEKLAEELRS ASWPGKYDSL IQDQARELSY 1651 LROKIREGRG ICYLITRHAK DTVKSFEDLL RSNDIDYYLG QSFREQLAQG 1701 SOLTERLTSK LSTKDHKSEK DOAGLEPLAL RLSRELQEKE KVIEVLOAKL 1751 DARSLTPSSS HALSDSHRSP SSTSFLSDEL EACSDMDIVS EYTHYEEKKA 1801 SPSHSDSIHH SSHSAVLSSK PSSTSASQGA KAESNSNPIS LPTPQNTPKE 1851 ANQAHSGFHF HSIPKLASLP QAPLPSAPSS FLPFSPTGPL LLGCCETPVV 1901 SLAEAQQELQ MLQKQLGESA STVPPASTAT LLSNDLEADS SYYLNSAQPH 1951 SPPRGTIELG RILEPGYLGS SGKWDVMRPQ KGSVSGDLSS GSSVYQLNSK 2001 PTGADLLEEH LGEIRNLRQR LEESICINDR LREQLEHRLT STARGRGSTS 2051 NFYSOGLESI POLCNENRVL REDNRRLQAQ LSHVSREHSQ ETESLREALL SSRSHLQELE KELEHQKVER QQLLEDLREK QQEVLHFREE RLSLQENDSS 2151 GPCLSLVRLQ HKLVLLQQQC EEKQQLFESL QSELQIYEAL YGNSKKGLKA 2201 YSLDACHQIP LSSDLSHLVA EVRALRGQLE QSIQGNNCLR LQLQQQLESG 2251 AGKASLSPSS INQNFPASTD PGNKQLLLQD SAVSPPVRDV GMNSPALVFP SSASSTPGSE TPIINRANGL GLDTSPVMKT PPKLEGDATD GSFANKHGRH 2301 2351 VIGHIDDYSA LRQQIAEGKL LVKKIVSLVR SACSFPGLEA QGTEVLGSKG 2401 IHELRSSTSA LHHALEESAS LLTMFWRAAL PSTHIPVLPG KVGESTEREL 2451 LELRTKVSKO ERLLOSTTEH LKNANOOKES MEQFIVSQLT RTHDVLKKAR 2501 TNLEVKSLRA LPCTPAL (SEQ ID NO:05)

12/12 FIGURE 6

M14 PROTEIN

MMAOFPTAMNGGPNMWAITSEERTKHDKQFDNLKPSGGYITGDQARTFFLQSGLPAPVL <u>AEIWALSDLNKDGKMDQQEFSIAMKLIKLKLQGQQLPVVLPPIMKQPPMFSPLISARFG</u> MGSMPNLSIHQPLPPVAPITAPLSSATSGTSIPPLMMPAPLVPSVSTSSLPNGTASLIQ PLSIPYSSSTLPHASSYSLMMGGFGGASIQKAQSLIDLGSSSSTSSTASLSGNSPKTGT SEWAVPOPSRLKYROKFNSLDKSMSGYLSGFQARNALLQSNLSQTQLATIWTLADIDGD GOLKAEEFILAMHLTDMAKAGOPLPLTLPPELVPPSFRGGKQIDSINGTLPSYQKTQEE EPQKKLPVTFEDKRKANYERGNMELEKRRQVLMEQQQREAERKAQKEKEEWERKQRELQ EQEWKKQLELEKRLEKQRELERQREEERRKEIERREAAKQELERQRRLEWERIRRQELL NOKNREQEEIVRLNSKKKSLHLELEAVNGKHQQISGRLQDVRIRKQTQKTELEVLDKQC DLEIMEIKOLOOELOEYONKLIYLVPEKOLLNERIKNMQLSNTPDSGISLLHKKSSEKE ELCORLKEQLDALEKETASKLSEMDSFNNQLKCGNMDDSVLQCLLSLLSCLNNLFLLLK **ELRESYNTOOLALEOLHKIKRDKLKELERKRLEQIQKKKLEDEAARKAKQGKENLWKES** IRKEEEEKQKRLQEEKSQDRTQEEERKTEAKQSETARALVNYRALYPFEARNHDEMSFN SGDI IOVDEKTVGEPGWLYGSFQGKFGWFPCNYVEKMLSSDKTPSPKKALLPPAVSLSA TSAAPQPLCSNQPAPVTDYQNVSFSNLNVNTTWQQKSAFTRTVSPGSVSPIHGQGQAVE NLKAOALCSWTAKKENHLNFSKHDVITVLEOOENWWFGEVHGGRGWFPKSYVKIIPGSE VKRGEPEALYAAVNKKPTSTAYPVGEEYIALYSYSSVEPGDLTFTEGEELLVTQKDGEW WTGSIGERTGIFPSNYVRPKDQENVGNASKSGASNKKPEIAQVTSAYAASGAEQLSLAP GOLILILKKNSSGWWQGELQARGKKRQKGWFPASHVKLLGPSAERTTPAFHAVCQVIAM YDYIANNEDELNFSKGQLINVMNKDDPDWWQGEINGVTGLFPSNYVKMTTDSDPSQQWC ADLQALDTMQPMERKRQGYIHELIETEERYMDDLQLVIEVFQKRMAESGFLTEAEMALI FVNWKELIMSNTKLLKALRVRKKTGGEKMPVEMMGDILAAELSHMOAYIRFCSCQLNGA ALLOOKTDEDADFKEFLKKLASDPRCKGMPLSSFLLKPMQRITRYPLLIRSILENTPQN HVDHSSLKLALERAEELCSOVNEGVREKENSDRLEWIOAHVQCEGLAEQLIFNSLTNCL GPRKLLYSGKLYKTKSNKELHGFLFNDFLLLTYLVRQFAASSGFEKLFSSKSSAQFKMY KTPIFLNEVLVKLPTDPSSDEPVFHISHIDRVYTLRTDNINERTAWVQKIKAASEQYID TEKKKREKAYQARSQKTSGIGRLMVHVIEATELKACKPNGKSNPYCEISMGSQSYTTRT LODTLNPKWNFNCOFFIKDLYQDVLCLTMFDRDQFSPDDFLGRTEVPVAKIRTEQESKG PTTRRLLLHEVPTGEVWVRFDLQLFEQKTLL (SEQ ID NO:08)

SEQUENCE LISTING

<110> Conti, Marco Pahlke, Gudrun <120> Novel Phosphodiesterase Interacting Proteins <130> SUN-101PCT <140> 60/108,255 <141> 1998-11-12 <160> 8 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 2326 <212> PRT <213> rat <400> 1 Met Ser Asn Gly Tyr Arg Thr Leu Ser Gln His Leu Asn Asp Leu Lys 10 Lys Glu Asn Phe Ser Leu Lys Leu Arg Ile Tyr Phe Leu Glu Glu Arg 20 25 Met Gln Gln Lys Tyr Glu Val Ser Arg Glu Asp Val Tyr Lys Arg Asn 40 45 Ile Glu Leu Lys Val Glu Val Glu Ser Leu Lys Arg Glu Leu Gln Asp 55 Arg Lys Gln His Leu His Lys Thr Trp Ala Asp Glu Glu Asp Leu Asn 70 75 Ser Gln Asn Glu Ala Glu Leu Arg Arg Gln Val Glu Glu Pro Gln Gln 85 90 Glu Thr Glu His Val Tyr Glu Leu Leu Asp Asn Asn Ile Gln Leu Leu 100 105 110 Gln Glu Glu Ser Arg Phe Ala Lys Asp Glu Ala Thr Gln Met Glu Thr 115 120 125 Leu Val Glu Ala Glu Lys Gly Cys Asn Leu Glu Leu Ser Glu Arg Trp 130 135 Lys Asp Ala Thr Lys Asn Arg Glu Asp Ala Pro Gly Asp Gln Val Lys 150 155 Leu Asp Gln Tyr Ser Ala Ala Leu Ala Gln Arg Asp Arg Ile Glu 165 170 175 Glu Leu Arg Gln Ser Leu Ala Ala Gln Glu Gly Leu Val Glu Gln Leu 180 185 190 Ser Arg Glu Lys Gln Gln Leu Leu His Leu Leu Glu Glu Pro Gly Gly 200 205 Met Glu Val Gln Pro Met Pro Lys Gly Leu Pro Thr Gln Gln Lys Pro 210 215 220 Asp Leu Asn Glu Thr Pro Thr Thr Gln Pro Ser Val Ser Asp Ser His 230 235 Leu Ala Glu Leu Gln Asp Lys Ile Gln Gln Thr Glu Val Thr Asn Lys 245 250 Ile Leu Gln Glu Lys Leu Asn Asp Met Ser Cys Glu Leu Arg Ser Ala 260 265 270 Gln Glu Ser Ser Gln Lys Gln Asp Thr Thr Ile Gln Ser Leu Lys Glu 275 280 285 Met Leu Lys Ser Arg Glu Ser Glu Thr Glu Glu Leu Tyr Gln Val Ile

300

295

Glu Gly Gln Asn Asp Thr Met Ala Lys Leu Pro Glu Met Leu His Gln

```
305
                   310
                                      315
Ser Gln Leu Gly Gln Leu Gln Ser Ser Glu Gly Ile Ala Pro Ala Gln 325 330 335
Gln Gln Val Ala Leu Leu Asp Leu Gln Ser Ala Leu Phe Cys Ser Gln
           340
                             345
                                               350
Leu Glu Ile Gln Lys Leu Gln Arg Leu Leu Arg Gln Lys Glu Arg Gln
      355
                        360
                                           365
Leu Ala Asp Gly Lys Arg Cys Met Gln Phe Val Glu Ala Ala Ala Gln
             375
                                 380
Glu Arg Glu Gln Gln Lys Glu Ala Ala Trp Lys His Asn Gln Glu Leu
385 390 395 400
Arg Lys Ala Leu Gln His Leu Gln Gly Glu Leu His Ser Lys Ser Gln
             405
                                  410
Gln Leu His Val Leu Glu Ala Glu Lys Tyr Asn Glu Ile Arg Thr Gln
           420
                             425
Gly Gln Asn Ile Gln His Leu Ser His Ser Leu Ser His Lys Glu Gln
       435
                         440
                                           445
Leu Ile Gln Glu Leu Gln Glu Leu Leu Gln Tyr Arg Asp Thr Thr Asp
            455
                                        460
Lys Thr Leu Asp Thr Asn Glu Val Phe Leu Glu Lys Leu Arg Gln Arg
465 470 475 480
Ile Gln Asp Arg Ala Val Ala Leu Glu Arg Val Ile Asp Glu Lys Phe
485 490 495
Ser Ala Leu Glu Glu Lys Asp Lys Glu Leu Arg Gln Leu Arg Leu Ala
         500
                            505
                                               510
Val Arg Asp Arg Asp His Asp Leu Glu Arg Leu Arg Cys Val Leu Ser
       515
                         520
                                             525
Ala Asn Glu Ala Thr Met Gln Ser Met Glu Ser Leu Leu Arg Ala Arg
              535
                                   540
Gly Leu Glu Val Glu Gln Leu Ile Ala Thr Cys Gln Asn Leu Gln Trp 545 550 555 560
Leu Lys Glu Glu Leu Glu Thr Lys Phe Gly His Trp Gln Lys Glu Gln
              565
                                570
Glu Ser Ile Ile Gln Gln Leu Gln Thr Ser Leu His Asp Arg Asn Lys
          580
                             585
                                                 590
Glu Val Glu Asp Leu Ser Ala Thr Leu Leu His Lys Leu Gly Pro Gly
      595
                         600
Gln Ser Glu Val Ala Glu Glu Leu Cys Gln Arg Leu Gln Arg Lys Glu
  610
                     615
                                        620
Arg Val Leu Gln Asp Leu Leu Ser Asp Arg Asn Lys Gln Ala Met Glu
                  630
                                     635
His Glu Met Glu Val Gln Gly Leu Leu Gln Ser Met Gly Thr Arg Glu
              645
                                650
                                                   655
Gln Glu Arg Gln Ala Val Ala Glu Lys Met Val Gln Ala Phe Met Glu
           660
                             665
                                                670
Arg Asn Ser Glu Leu Gln Ala Leu Arg Gln Tyr Leu Gly Gly Lys Glu
      675
                680
                                            685
Leu Met Ala Ala Ser Gln Ala Phe Ile Ser Asn Gln Pro Ala Gly Ala
             695
Thr Ser Val Gly Pro His His Gly Glu Gln Thr Asp Gln Gly Ser Thr
               710
                                     715
Gln Met Pro Ser Arg Asp Asp Ser Thr Ser Leu Thr Ala Arg Glu Glu
              725
                                 730
Ala Ser Ile Pro Arg Ser Thr Leu Gly Asp Ser Asp Thr Val Ala Gly
           740
                              745
Leu Glu Lys Glu Leu Ser Asn Ala Lys Glu Glu Leu Glu Leu Met Ala
       755
                 760 . . 765
Lys Lys Glu Arg Glu Ser Gln Ile Glu Leu Ser Ala Leu Gln Ser Met
                      775
                                       780
Met Ala Val Gln Glu Glu Leu Gln Val Gln Ala Ala Asp Leu Glu
                790
                                    795
Ser Leu Thr Arg Asn Ile Gln Ile Lys Glu Asp Leu Ile Lys Asp Leu
                                  810
```

```
Gln Met Gln Leu Val Asp Pro Glu Asp Met Pro Ala Met Glu Arg Leu
          820
                          825
                                             830
Thr Gln Glu Val Leu Leu Arg Glu Lys Val Ala Ser Val Glu Pro
       835
                       840
                                         845
Gln Gly Gln Glu Gly Ser Glu Asn Arg Arg Gln Gln Leu Leu Met
                    855
                                     860
Leu Glu Gly Leu Val Asp Glu Arg Ser Arg Leu Asn Glu Ala Leu Gln
               870
                                 875
Ala Glu Arg Gln Leu Tyr Ser Ser Leu Val Lys Phe His Ala Gln Pro
                     890
            885
Glu Ile Ser Glu Arg Asp Arg Thr Leu Gln Val Glu Leu Glu Gly Ala
         900 905
                                    910
Gln Val Leu Arg Ser Arg Leu Glu Glu Val Leu Gly Arg Ser Leu Glu
                                         925
      915 920
Arg Leu Ser Arg Leu Glu Thr Leu Ala Ala Ile Gly Gly Ala Thr Ala
              935
                                   940
Gly Asp Glu Thr Glu Asp Thr Ser Thr Gln Phe Thr Asp Ser Ile Glu
        950
                          955
Glu Glu Ala Ala His Asn Ser His Gln Gln Leu Ile Lys Val Ser Leu
          965 970 975
Glu Lys Ser Leu Thr Thr Met Glu Thr Gln Asn Thr Cys Leu Gln Pro
         980 985
                                           990
Pro Ser Pro Val Gly Glu Asp Gly Asn Arg His Leu Gln Glu Glu Met
                       1000
                              1005
      995
Leu His Leu Arg Ala Glu Ile His Gln Pro Leu Glu Glu Lys Arg Lys
   1010
              1015
                              1020
Ala Glu Ala Glu Leu Lys Glu Leu Lys Ala Gln Ile Glu Glu Ala Gly
        1030 1035
Phe Ser Ser Val Ser His Ile Arg Asn Thr Met Leu Ser Leu Cys Leu
1045 1050 1055
Cys Leu Glu Asn Ala Glu Leu Lys Glu Gln Met Gly Glu Ala Met Ser
         1060 1065
                                           1070
Asp Gly Trp Glu Val Glu Glu Asp Lys Glu Lys Gly Glu Val Met Val 1075 1080 1085
Glu Thr Val Val Ala Lys Gly Gly Leu Ser Glu Asp Ser Leu Gln Ala
   1090 1095 1100
Glu Phe Arg Lys Val Gln Gly Arg Leu Lys Ser Ala Tyr Asn Ile Ile
1105 1110 1115 1120
Asn Leu Leu Lys Glu Gln Leu Val Leu Arg Ser Ser Glu Gly Asn Thr
1125 1130 1135
Lys Glu Met Pro Glu Phe Leu Val Arg Leu Ala Arg Glu Val Asp Arg
          1140
                           1145 1150
Met Asn Met Gly Leu Pro Ser Ser Glu Lys His Gln His Gln Glu Gln
      1155
                       1160
                                         1165
Glu Asn Met Thr Ala Arg Pro Gly Pro Arg Pro Gln Ser Leu Lys Leu
  1170
                   1175
                            1180
Gly Thr Ala Leu Ser Val Asp Gly Tyr Gln Leu Glu Asn Lys Ser Gln 1185 1190 1195 1200
Ala Gln Asp Ser Gly His Gln Pro Glu Phe Ser Leu Pro Gly Ser Thr
           1205 1210 1215
Lys His Leu Arg Ser Gln Leu Ala Gln Cys Arg Gln Arg Tyr Gln Asp
          1220 1225 1230
Leu Gln Glu Lys Leu Leu Ile Ser Glu Ala Thr Val Phe Ala Gln Ala
             1240
      1235
                                1245
Asn Gln Leu Glu Lys Tyr Arg Ala Ile Leu Ser Glu Ser Leu Val Lys
        1255
                             1260
Gln Asp Ser Lys Gln Ile Gln Val Asp Leu Gln Asp Leu Gly Tyr Glu
1265 1270 1275 1286
Thr Cys Gly Arg Ser Glu Asn Glu Ala Glu Arg Glu Glu Thr Thr Ser
             1285
                             1290
Pro Glu Cys Glu Glu His Gly Asn Leu Lys Pro Val Val Leu Val Glu
1300 1305 1310
Gly Leu Cys Ser Glu Gln Gly Tyr Leu Asp Pro Val Leu Val Ser Ser
```

1315 1320 Pro Val Lys Asn Pro Trp Arg Thr Ser Gln Glu Ala Arg Arg Ile Gln 1335 1330 1340 Ala Gln Gly Thr Ser Asp Asn Ser Ser Leu Leu Arg Lys Asp Ile Arg 1345 1350 1355 1360 Asn Leu Lys Ala Gln Leu Pro Asn Ala Tyr Lys Val Leu Gln Asn Leu 1365 1370 1375 Arg Scr Arg Val Arg Ser Leu Ser Ala Thr Ser Asp Tyr Ser Ser Ser 1380 1385 1390 Leu Glu Arg Pro Arg Lys Leu Ile Ala Val Ala Thr Leu Glu Gly Ala 1395 1400 1405 Ser Pro His Ser Val Thr Asp Glu Asp Glu Gly Leu Leu Ser Asp Gly 1415 1420 1410 Thr Gly Ala Phe Tyr Pro Pro Gly Leu Gln Ala Lys Lys Asn Leu Glu 1425 1430 1435 1440 Asn Leu Ile Gln Arg Val Ser Gln Leu Glu Ala Gln Leu Pro Lys Thr 1445 1450 1455 Gly Leu Glu Gly Lys Leu Ala Glu Glu Leu Lys Ser Ala Ser Trp Pro 1460 1465 1470 Gly Lys Tyr Asp Ser Leu Ile Gln Asp Gln Ala Arg Lys Thr Val Ile 1475 1480 1485 Ser Ala Ser Glu Asn Thr Lys Arg Glu Lys Asp Leu Phe Ser Ser His 1490 1495 1500 Pro Thr Phe Glu Arg Tyr Val Lys Ser Phe Glu Asp Leu Leu Arg Asn 1505 1510 1515 1520 Asn Asp Leu Thr Thr Tyr Leu Gly Gln Ser Phe Arg Glu Gln Leu Ser 1525 1530 1535 Ser Arg Arg Ser Val Thr Asp Arg Leu Thr Ser Lys Phe Ser Thr Lys 1540 1545 1550 Asp His Lys Ser Glu Lys Glu Glu Val Gly Leu Glu Pro Leu Ala Phe 1555 1560 1565 Arg Phe Ser Arg Glu Leu Gln Glu Lys Glu Lys Val Ile Glu Val Leu 1570 1575 1580 Gln Ala Lys Val Asp Thr Arg Phe Phe Ser Pro Pro Ser Ser His Ala 1590 1595 Ala Ser Glu Ser His Arg Cys Ala Ser Ser Thr Ser Phe Leu Ser Asp 1605 1610 1615 Asp Ile Glu Ala Cys Ser Asp Met Asp Val Ala Ser Glu Tyr Thr His 1620 1625 1630 Tyr Glu Glu Lys Lys Pro Ser Pro Ser Asn Ser Ala Ala Ser Ala Ser 1635 1640 1645 Gln Gly Leu Lys Gly Glu Pro Arg Ser Ser Ser Ile Ser Leu Pro Thr 1655 1650 1660 Pro Gln Asn Pro Pro Lys Glu Ala Ser Gln Ala Gln Pro Gly Phe His 1670 1675 Phe Asn Ser Ile Pro Lys Pro Ala Ser Leu Ser Gln Ala Pro Met His 1685 1690 1695 Phe Thr Val Pro Ser Phe Met Pro Phe Gly Pro Ser Gly Pro Pro Leu 1700 1705 1710 Leu Gly Cys Cys Glu Thr Pro Val Val Ser Leu Ala Glu Ala Gln Gln 1715 1720 1725 Glu Leu Gln Met Leu Gln Lys Gln Leu Gly Arg Ser Val Ser Ile Ala 1735 1730 1740 Pro Pro Thr Ser Thr Leu Leu Ser Asn His Thr Glu Ala Ser 1750 1755 Ser Pro Arg Tyr Ser Asn Pro Ala Gln Pro His Ser Pro Ala Arg Gly
1765 1770 1775 Thr Ile Glu Leu Gly Arg Ile Leu Glu Pro Gly Tyr Leu Gly Ser Gly 1780 1785 1790 Gln Trp Asp Met Met Arg Pro Gln Lys Gly Ser Ile Ser Gly Glu Leu 1795 1800 1805 Ser Ser Gly Ser Ser Met Tyr Gln Leu Asn Ser Lys Pro Thr Gly Ala 1815 1820

Asp Leu Leu Glu Glu His Leu Gly Glu Ile Arg Asn Leu Arg Gln Arg 1830 1835 Leu Glu Glu Ser Ile Cys Val Asn Asp Arg Leu Arg Glu Gln Leu Gln 1845 1850 1855 His Arg Leu Ser Ser Thr Ala Arg Glu Asn Gly Ser Thr Ser His Phe 1865 1860 1870 Tyr Ser Gln Gly Leu Glu Ser Met Pro Gln Leu Tyr Asn Glu Asn Arg 1875 1880 1995 Ala Leu Arg Glu Glu Asn Gln Ser Leu Gln Thr Arg Leu Ser His Ala 1890 1895 1900 Ser Arg Gly His Ser Gln Glu Val Asp His Leu Arg Glu Ala Leu Leu 1910 1915 Ser Ser Ser Ser Gln Leu Gln Glu Leu Glu Lys Glu Leu Glu Gln Gln 1925 1930 1935 Lys Ala Glu Arg Arg Gln Leu Leu Glu Asp Leu Gln Glu Lys Gln Asp 1940 1945 1950 Glu Ile Val His Phe Arg Glu Glu Arg Leu Ser Leu Gln Glu Asn Asn 1955 1960 1965 Ser Arg Leu Gln His Lys Leu Ala Leu Leu Gln Gln Gln Cys Glu Glu 1970 1975 1980 Lys Gln Gln Leu Ser Leu Ser Leu Gln Ser Glu Leu Gln Ile Tyr Glu 1990 1995 Ser Leu Tyr Glu Asn Pro Lys Lys Gly Leu Lys Ala Phe Ser Leu Asp 2005 2010 2015 Ser Cys Tyr Gln Val Pro Gly Glu Leu Ser Cys Leu Val Ala Glu Ile 2020 2025 2030 Arg Ala Leu Arg Val Gln Leu Glu Gln Ser Ile Gln Val Asn Asn Arg 2040 2035 2045 Leu Arg Leu Gln Leu Glu Gln Gln Met Asp His Gly Ala Gly Lys Ala 2050 2055 2060 Ser Leu Ser Ser Cys Pro Val Asn Gln Ser Phe Ser Ala Lys Ala Glu 2065 2070 2075 Leu Ala Asn Gln Gln Pro Pro Phe Gln Gly Ser Ala Ala Ser Pro Pro 2085 2090 2095 Val Arg Asp Val Gly Leu Asn Ser Pro Pro Val Val Leu Pro Ser Asn 2100 2105 2110 Ser Cys Ser Val Pro Gly Ser Asp Ser Ala Ile Ile Ser Arg Thr Asn 2115 2120 2125 Asn Gly Ser Asp Glu Ser Ala Ala Thr Lys Thr Pro Pro Lys Met Glu 2130 2135 2140 Val Asp Ala Ala Asp Gly Pro Phe Ala Ser Gly His Gly Arg His Val 2145 2150 2155 Ile Gly His Val Asp Asp Tyr Asp Ala Leu Gln Gln Gln Ile Gly Glu 2165 2170 2175 Gly Lys Leu Leu Ile Gln Lys Ile Leu Ser Leu Thr Arg Pro Ala Arg 2180 2185 2190 Ser Val Pro Ala Leu Asp Ala Gln Gly Thr Glu Ala Pro Gly Thr Lys 2195 2200 2205 Ser Val His Glu Leu Arg Ser Ser Ala Arg Ala Leu Asn His Ser Leu 2210 2215 2220 Glu Glu Ser Ala Ser Leu Leu Thr Met Phe Trp Arg Ala Ala Leu Pro 2230 2235 2240 Asn Ser His Gly Ser Val Leu Val Gly Glu Glu Gly Asn Leu Met Glu 2245 2250 2255 Lys Glu Leu Leu Asp Leu Arg Ala Gln Val Ser Gln Gln Gln Leu 2260 2265 2270 Leu Gln Ser Thr Ala Val Arg Leu Lys Thr Ala Asn Gln Arg Lys Lys 2275 2280 2285 Ser Met Glu Gln Phe Ile Val Ser His Leu Thr Arg Thr His Asp Val 2290 2295 2300 Leu Lys Lys Ala Arg Thr Asn Leu Glu Met Lys Ser Phe Arg Ala Leu 2310 2315 Met Cys Thr Pro Ala Leu

2325

```
<210> 2
<211> 9679
<212> DNA
<213> rat
<220>
<221> misc_feature
<222> (1)...(9679)
<223> n = A, T, C or G
<400> 2
coggtoccot tiggtagtag tatotoagag otogoccoat agtitoatag ticatgtotg
                                                                        60
gtttgttctt atgctttccc cagagettcg agacageett tgagtccacc agettgaata
                                                                       120
tgcccttttc tctctgagtc catttaatat acctgggaca agtattttta tcttgaagca
                                                                       180
gatctaaaag aaactcccac agataggttg tgtttccttt tccttctctg gctttcttct
                                                                       240
tgactcctaa ctcaggagac ccattggaaa ctggtgactg ctgggtcttt ggtttacggc
                                                                       300
caactttctt ctttttcatt ggttcgtggc tgtctggtga agtatggata ggcqaqqcat
                                                                       360
ceattggttc agactcctct gttgacacct ccactacagt ctccgtaatg acatctggcc
                                                                       420
tcatcgcagc atggataaaa tcggattctt gaatcctcaa gcaggtagga gactccatat
                                                                       480
gaagcagggc ttcagcagct tcaatggtct tatccgtaca gtgtgcatta ctgctgtgaa
                                                                       540
ctgatgcttc cacggcccgg atgagcagat ccagctggtt cgtgggtccc tcatgcagag
                                                                       600
acgtcgccat gtttatcccg gggctggaac tgctgcttca cattgactta caccctgagc
                                                                       660
ageggegaca ggggagaagg eggaaccege ggeeggagae acaegeegtg egggeggeae
                                                                       720
                                                                       780
acactcacgc actcgcacac actccgacgc ccggatcctt gcgcgtcctc cgacaggaag
eggeggeegg ecegeeteee geegeeggge tgageageee caceacetaa eggeaggge
                                                                       840
ggcggcggcc ccggctggca acgcgatcct tccgccccgc gcccagacag gaagtcccgg
                                                                       900
                                                                       960
gegeograp ccapeggeeg caeggacace tgaggetggg gageeegcag geogeecteg
                                                                      1020
gggacgcggg cctcggcagg aaaaggcgcg cttcacgttc tgcggaagcg aagtctgcaa
atgtcccctc agcatggtct tcctcctggc tcaatctgtc tcaccttcag gtgatcctag
                                                                      1080
gactggggct cctttccagg tccccagttt ctcaagtcga tcttctacct ccctcttgat
                                                                      1140
tttctactcc attgctggaa agctccagaa cagagcctcc gccgccaacc actgctgatg
                                                                      1200
ccatcgcgtc ttccctgagc aagtttcgaa cgctgcgaat caatgtaatt acggctcaga
                                                                      1260
                                                                      1320
tgattgccag ggttatcggt ttcatgttct aattcaatag tgatggagta gacatccaga
agtecagtet tetaaagatg attaaccaga gggtagtttg acggttaagt agtetaagca
                                                                      1380
                                                                      1440
tectteaceg tttecacact eccaagaget gaactetaaa ecageagete tetggageta
                                                                      1500
etgetetece tecaegtege egtgteeett geeetteeee teagggeege agaeeggeeg
agcegeegea geegeeegee gttggeeegg egteetgegg gaageegagg gggeeteeee
                                                                      1560
gggccaccgc gcgagccgct ccgcaccaca ggacgagaca aaccgcggct atgtcgcctt
                                                                      1620
agcecteggg gteccaeage etcageageg tectageetg eccgetecat gecaeggeaa
                                                                      1680
ggctgcaccg tgttccaggg gtgaaggggg cgatcgggca tgctcctccc catgggtcgc
                                                                      1740
ccaccatgtc taatggatat cgcactctgt cccagcacct caatgacctg aagaaggaga
                                                                      1800
                                                                      1860
acttcagect caagetgege atetacttee tggaggageg catgeaacag aagtatgaag
                                                                      1920
tcagccggga ggacgtctac aagcggaaca ttgagctgaa ggttgaagtg gagagcctga
                                                                      1980
aacgagaget ccaggacagg aaacagcate tacataaaac atgggeegat gaggaggate
                                                                      2040
tcaacagcca gaatgaagca gagctccggc gccaggttga agaaccgcag caggagacag
                                                                      2100
aacacgttta tgagctccta gacaacaaca ttcagctgct gcaggaggaa tccaggtttg
                                                                      2160
caaaggatga agccacacag atggagactc tggtggaggc agagaagggg tgtaatctgg
ageteteaga gaggtggaag gatgetaeca agaacaggga agatgeaecg ggagaecagg
                                                                      2220
                                                                      2280
tgaagcttga ccaatattct gcggcactgg ctcagaggga caggagaatt gaagagctga
                                                                      2340
ggcagagctt ggctgcccag gaggggcttg tggaacagct gtctcgagag aaacaacaac
tgttacatct gctggaggag cctgggggca tggaagtgca gcccatgcct aaagggttac
                                                                      2400
ccacgcaaca aaagccagac ctaaatgaga cccctacaac ccagccatct gtgtctgatt
                                                                      2460
cccacctggc agaactccag gacaaaatcc agcaaacaga ggtcaccaac aagattcttc
                                                                      2520
                                                                      2580
aagagaaact gaatgacatg agctgtgagc tcagatctgc acaggagtcg tctcagaagc
aagatacgac aatccaaagc ctcaaggaaa tgctaaagag cagggaaagt gagactgaag
                                                                      2640
                                                                      2700
agetgtacca ggtgattgaa ggtcaaaatg acacaatggc aaagetteeg gaaatgetae
accagageca geteggacag etecagaget cagagggeat tgeceetget cageageaag
                                                                      2760
                                                                      2820
tggccctgct tgaccttcag agtgctctgt tctgcagcca gcttgaaatc cagaagctcc
agaggetgtt aegecagaaa gagegteage tggetgaegg caageggtge atgeaatttg
                                                                      2880
                                                                      2940
tggaggctgc agcacaggag agagagcagc agaaggaagc tgcttggaaa cataaccagg
aattacgaaa agctttgcaa cacctccaag gagaactgca cagtaagagc caacagctcc
                                                                      3000
```

```
acgttctgga ggcagaaaa tataatgaaa ttcgaaccca gggacaaaac attcaacacc
                                                                      3060
taagtcacag totgagtcac aaagagcago taattcagga acttcaggag ctootacagt
                                                                      3120
atcgggatac cacagacaaa actctagaca caaatgaggt gtttcttgag aaactacggc
                                                                      3180
aacgaataca agaccgggca gttgctctag agcgggttat agatgaaaag ttctctgctc
                                                                      3240
tagaagaaaa ggacaaggaa ctgcggcagc tccggcttgc tgtgagggac cgagaccatg
                                                                      3300
acttagagag actgcgttgt gtcctgtctg ccaatgaagc taccatgcaa agtatggaga
                                                                      3360
gtctcctgag ggccagaggc ctggaagtgg agcagttaat tgccacctgc caaaacctcc
                                                                      3420
agtggttgaa ggaagaattg gaaaccaagt ttggccactg gcagaaggaa caggagagca
                                                                      3480
tcattcagca gttacagaca tctctgcatg acaggaacaa agaagtagag gatctcagtg
                                                                      3540
caactttgct ccacaaactt ggacccggcc agagtgaagt agctgaggag ctgtgccagc
                                                                      3600
gcctgcagcg gaaggaaagg gtgctgcagg accttctgag tgatcggaac aaacaagcca
                                                                      3660
tggagcacga gatggaggtc cagggactgc tccagtcgat gggcacccgg gaacaggaaa
                                                                      3720
gacaggctgt tgcagaaaaa atggtacaag ccttcatgga aagaaactcg gaattacagg
                                                                      3780
ccctgcggca gtatctaggg gggaaggaat taatggcagc atctcaggca ttcatctcta
                                                                      3840
accaaccage tggagegaet tetgtaggee eccaccatgg agageaaact gaccaaggtt
                                                                      3900
ctacgcagat gccctctcga gacgacagca cctcgctgac tgccagagag gaggccagca
                                                                      3960
taccccggtc tacattagga gactcagaca cagttgcagg gctggagaaa gaactgagca
                                                                      4020
atgccaagga ggagcttgag ctcatggcca aaaaagaaag agaaagccag atagaattgt
                                                                      4080
ctgccctgca gtccatgatg gctgtgcaag aggaagagct gcaggtgcag gctgctgact
                                                                      4140
tggagtccct gaccaggaac atacagataa aagaagacct cataaaggac ctgcaaatgc
                                                                      4200
aactggttga ccctgaagat atgccagcca tggagcgcct gacccaagag gtcttacttc
                                                                      4260
ttcgggaaaa agttgcttca gtggaacccc agggtcagga agggtcagag aacaggagac
                                                                      4320
aacagttgct gctgatgtta gaaggactag tggatgaacg gagtcggctc aacgaggccc
                                                                      4380
tgcaagctga gcggcagctc tacagcagcc tggtcaagtt ccatgcccaa ccagagatct
                                                                      4440
ctgagagaga ccgaactctg caggtggaac tggaaggggc ccaggtgtta cgcagtcgac
                                                                      4500
tagaagaagt tettggaaga ageetggage gettaageag getggagace etggeegeea
                                                                      4560
ttggaggtgc tactgcaggc gatgagactg aagatacaag cacacagttc acagacagca
                                                                      4620
ttgaggagga ggctgcacac aacagccacc agcaactcat caaggtgtct ttggagaaaa
                                                                      4680
geetgaeeae catggagaee cagaacacat gtetteagee ceetteeea gtaggagagg
                                                                      4740
atggtaacag gcatcttcag gaagaaatgc tccacctgag ggctgaaatc caccagccct
                                                                      4800
tagaagagaa gagaaaagct gaggcagaac tcaaggagct aaaggctcaa attgaggaag
                                                                      4860
caggattete etetgtgtee cacateagga acaceatget gageetttge etttgeettg
                                                                      4920
agaatgcaga gctgaaagag cagatgggag aagcaatgtc tgatggatgg gaggtggagg
                                                                      4980
aagacaagga gaagggcgag gtgatggtgg agaccgtggt ggccaaaggg ggtctgagtg
                                                                      5040
aggacagcct tcaggctgag ttcaggaaag tccaggggag actcaagagt gcctacaaca
                                                                      5100
tcatcaacct cctcaaagag cagctggtcc tgagaagctc ggaagggaac actaaggaga
                                                                      5160
tgccagagtt cctcgtgcgc ctggccaggg aggtggacag aatgaacatg ggcttgcctt
                                                                      5220
ecteggagaa geatcaacae caagaacagg agaatatgae egcaaggeet ggeeceagge
                                                                      5280
cccagagtct caagcttggg acagctctct cagtagacgg ctaccaactg gagaacaagt
                                                                      5340
cccaggccca agactetgga catcagccag aatttagcct accagggtcc accaaacacc
                                                                      5400
tgcgctccca gctggctcag tgtagacaac ggtaccaaga tctccaggag aagctgctca
                                                                      5460
totcagaago cactgtgttt goccaggcaa accagotaga gaagtacaga gocatattaa
                                                                      5520
gtgaatccct ggtgaagcag gacagcaagc agatccaggt ggaccttcag gacctgggct
                                                                      5580
atgagacttg tggccgaagt gagaatgaag ctgaacgtga ggagaccacc agccctgagt
                                                                      5640
gtgaggagca cggtaacctg aagcctgtgg tgctggtgga aggcttgtgc tctgagcaag
                                                                      5700
ggtacctgga ccctgtcttg gtcagctcac ctgtgaagaa cccttggaga acaagccagg
                                                                     5760
aagccagaag aatccaggca caaggaactt cagacaacag ctctctcctg aggaaggaca
                                                                      5820
tecgaaatet gaaageeeag etacegaatg eetacaaggt eetteagaac etgaggagee
                                                                      5880
gggtccggtc cctgtctgcc acaagcgatt actcatcgag tctggagaga ccccgcaagc
                                                                      5940
tgatagccgt ggcaaccett gagggggcct caccccacag tgtcactgat gaagacgaag
                                                                      6000
gcttgttgtc agatggcacc ggggcttttt accctccagg gctccaggcc aaaaagaatc
                                                                      6060
tagagaatet catecagaga gtateceage tggaggeeea geteeeeaaa aetggaetag
                                                                      6120
aagggaaget ggetgaagaa etgaagteeg eetegtggee tggaaaatae gattetttga
                                                                      6180
ttcaggatca ggcccgaaaa actgtcatat ctgcgtccga aaatacnaaa agggagaagg
                                                                      6240
attigitito tictcaccca acattogaaa gatacgicaa atcittigaa gaccicciga
                                                                      6300
ggaacaacga cttgactact tacctgggcc agagetteeg ggaacaactt agtteaagge
                                                                      6360
gttcagtgac agacaggctg accagcaaat tcagcacaaa ggatcataag agtgaaaaag
                                                                      6420
aagaagttgg gettgageea etggeettea ggtteageag ggaattacag gagaaagaga
                                                                      6480
aagtgattga agtcctgcag gccaaggtgg atacccggtt tttctcaccc cccagcagcc
                                                                      6540
atgotgogto tgagtoccae ogttgtgoca gcagcacato tttoctgtog gatgacatag
                                                                      6600
aagcctgctc tgacatggac gtagccagcg agtacacaca ctatgaagag aagaagccct
                                                                      6660
cacccagtaa ctcagcagcc agtgcatctc aggggcttaa gggcgagccc agaagcagct
                                                                      6720
ccatcagett gccaactece cagaaceeee ctaaggagge cagecagget cagecagget
                                                                      6780
```

```
6840
ttcactttaa ctccataccc aagccggcta gcctttccca ggcaccaatg cacttcactg
tacccagett catgoettte ggeecetetg ggeeteecet tettggttge tgtgagacae
                                                                      6900
cagtggtgtc cttggctgag gctcaacaag agctgcagat gctgcagaag cagctgggac
                                                                      6960
quagtottag cattoccct cccacctcca catccacgtt gcttagcaac cacacagaag
                                                                      7020
ctagetetee cegetacage aaccetgete ageceeacte eccageaagg ggcaccatag
                                                                      7080
                                                                      7140
agctgggcag aatcctggag cctggatacc tgggcagcgg ccagtgggac atgatgaggc
ctcaqaaaqq qaqcatctct ggggagctgt cctcaggctc ctcgatgtac cagcttaact
                                                                      7200
                                                                      7260
ccaaacccac aggggccgac ctgttggaag agcatttagg tgagatccgg aacctgcgcc
agegeetgga ggagteeata tgtgteaatg acaggetaeg ggageagetg cageatagge
                                                                      7320
tcagctccac ggcccgagaa aatggttcca cctctcactt ctacagtcag ggcctggagt
                                                                      7380
                                                                      7440
ccatgcctca gctctacaat gagaacagag ccctcaggga agaaaaccaa agcctgcaga
                                                                      7500
cacqqctcag tcatqcttcc aggggacact cccaggaagt ggaccacctg agggaggctc
                                                                      7560
tgctttcctc aagttcccag ctccaggage tggagaagga gctggagcag cagaaggctg
ageggeggea gettetggaa gaettgeagg agaageagga tgagategtg cattteegag
                                                                      7620
aggagaget gteettecag gaaaacaact ccaggetgea geacaagetg geetteetge
                                                                      7680
                                                                      7740
aacaacagtg tgaggagaaa cagcagctct ccctgtccct gcagtcagag ctccagatct
                                                                      7800
acgagtocct ctacgaaaat cctaagaagg gcttgaaagc cttcagccta gattcctgtt
accaagtccc gggtgagttg agctgcctgg tggcagagat tcgagctctg agagtgcagt
                                                                      7860
                                                                      7920
tggagcagag cattcaagtg aacaaccgtc tgcggctgca gctggaacag cagatggatc
acggtgctgg caaagccagt ctcagttcct gccctgttaa ccagagcttc tcagccaagg
                                                                      7980
                                                                      8040
cggagctggc aaaccagcag ccaccettce aaggttcagc tgcttcccct ccagtccggg
                                                                      8100
acqttqqctt qaattctcca cccqtqqtcc tccccaqcaa ttcqtqctct gttcctqqct
                                                                      8160
caqactetge cateateagt aggacaaaca atggttegga tgagtetgea geaacgaaga
cccctcccaa gatggaggtc gatgctgctg atggcccatt tgccagtgga cacggcagac
                                                                      8220
acgtcatcgg ccatgtggat gactacgacg ccctacagca gcagattggg gaagggaagc
                                                                      8280
                                                                      8340
tgctgatcca aaagatactg tctctcacga ggccagcacg cagcgtccct gcactggacg
cgcagggcac agaggcacca ggtaccaaaa gtgtccatga gcttcggagc agcgccaggg
                                                                      8400
                                                                      8460
ctctgaacca cagcctagaa gagtcagctt ccctcctcac catgttctgg agagcagctt
                                                                      8520 -
tgccaaactc tcatggttct gtactggtag gcgaagaggg aaacctgatg gagaaagaac
                                                                      8580
tectagacet gegageecaa gtgteecaae ageaacaget cetteagage actgetgtge
                                                                      8640
gtctgaagac ggccaaccag aggaagaaaa gcatggagca gttcatcgtg agccatctga
                                                                      8700
ccaggaccca tgatgtcttg aagaaagcac ggactaattt agagatgaaa tccttcaggg
                                                                      8760
ccctgatgtg cactccagcc ttgtgaccct tgccttccag gagccacata aaaggcgaag
                                                                      8820
ccaggagtcc ttaaaacagc aggaagggtg ggcctgcccg cccctagtac agctgcctgt
                                                                      8880
ctgctgagga atacctggtc cgactcctcc cctgctggag ctccagggaa gggctcatat
                                                                      8940
atgtqtccac atqqqacaqq caggaaqqaa agtggcatcc tgacaatgaa tatgattagc
                                                                      9000
caaggeecac tgggeecate actaageaaa acteatgtag actgtgtaga aggeeceeg
                                                                      9060
gcactgette tagacageet cageageaeg gtgeccaeet egttacagtt eteaceteaa
                                                                      9120
gatagccaac tcaggggaac taggacctta ccacccacaa acaggatgtg tggtcccaat
gccaacgete etcagacagt tgtaaaagca cacatcattg agtggcageg tecageegga
                                                                      9180
                                                                      9240
cactgttgga gactaccaaa cccctcactg acccagtctt gggccaggcc agctctgtgg
gccaagtctg gtagtacttt ggtctctacc accacaccag agagagtcta tatagcaaat
                                                                      9300
gtggtaactt gtaggtgccc tgcacttagc ctagcacctt ctgtttctta cgtgatctca
                                                                      9360
                                                                      9420
aqttqaacca acttccttaa ctctgctgtc ccctgaatcc taacttccct caggggaatt
ggagattggt ggccacatca tgcctattga atgtttagtg aacagcatat cggtgcctct
                                                                      9480
                                                                      9540
taatggcatg ggcaaggcct gctctgtact gaagactgtg tcttcacagt gctcatagga
cgtgggtgtg tgtataaatg tataatatag atttatatat gtcgctatgg ctatgtgttg
                                                                      9600
                                                                      9660
aaggccagca taagtgcaga gcgatgggtg agaagacgct aagcagtctt tcttatggct
                                                                      9679
attaaagcta actgtgtac
```

```
<210> 3
<211> 6981
<212> DNA
<213> rat
<220>
<221> misc_feature
<222> (1)...(6981)
<223> n = A,T,C or G
<400> 3
```

```
atgtctaatg gatatcgcac tctgtcccag cacctcaatg acctgaagaa ggagaacttc
                                                                        60
agectcaage tgegeateta etteetggag gagegeatge aacagaagta tgaagteage
                                                                       120
cgggaggacg tctacaagcg gaacattgag ctgaaggttg aagtggagag cctgaaacga
                                                                       180
gagetecagg acaggaaaca geatetacat aaaacatggg eegatgagga ggateteaac
                                                                       240
agccagaatg aagcagaget eeggegeeag gttgaagaac egcagcagga gacagaacae
                                                                       300
gtttatgagc tectagacaa caacatteag etgetgeagg aggaateeag gtttgeaaag
                                                                       360
gatgaagcca cacagatgga gactetggtg gaggcagaga aggggtgtaa tetggagete
                                                                       420
tcagagaggt ggaaggatgc taccaagaac agggaagatg caccgggaga ccaggtgaag
                                                                       480
cttgaccaat attctgcggc actggctcag agggacagga gaattgaaga gctgaggcag
                                                                       540
agettggetg eccaggaggg gettgtggaa cagetgtete gagagaaaca acaactgtta
                                                                       600
catctgctgg aggageetgg gggeatggaa gtgcageeca tgcctaaagg gttacecacg
                                                                       660
caacaaaagc cagacctaaa tgagacccct acaacccagc catctgtgtc tgattcccac
                                                                       720
ctggcagaac tccaggacaa aatccagcaa acagaggtca ccaacaagat tcttcaagag
                                                                       780
aaactgaatg acatgagetg tgageteaga tetgeacagg agtegtetea gaageaagat
                                                                       840
acgacaatcc aaagcctcaa ggaaatgcta aagagcaggg aaagtgagac tgaagagctg
                                                                       900
taccaggtga ttgaaggtca aaatgacaca atggcaaagc ttccggaaat gctacaccag
                                                                       960
agccageteg gacageteca gageteagag ggcattgece etgeteagea geaagtggee
                                                                      1020
ctgcttgacc ttcagagtgc tctgttctgc agccagcttg aaatccagaa gctccagagg
                                                                      1080
ctgttacgcc agaaagagcg tcagctggct gacggcaagc ggtgcatgca atttgtggag
                                                                      1140
gctgcagcac aggagagaga gcagcagaag gaagctgctt ggaaacataa ccaggaatta
                                                                      1200
cgaaaagctt tgcaacacct ccaaggagaa ctgcacagta agagccaaca gctccacgtt
                                                                      1260
ctggaggcag aaaaatataa tgaaattcga acccagggac aaaacattca acacctaagt
                                                                      1320
cacagtetga gtcacaaaga gcagetaatt caggaacttc aggageteet acagtategg
                                                                      1380
gataccacag acaaaactct agacacaaat gaggtgtttc ttgagaaact acggcaacga
                                                                      1440
atacaagacc gggcagttgc tctagagcgg gttatagatg aaaagttctc tgctctagaa
                                                                      1500
gaaaaggaca aggaactgcg gcagctccgg cttgctgtga gggaccgaga ccatgactta
                                                                      1560
gagagactgc gttgtgtcct gtctgccaat gaagctacca tgcaaagtat ggagagtctc
                                                                      1620
ctgagggcca gaggcctgga agtggagcag ttaattgcca cctgccaaaa cctccagtgg
                                                                      1680
ttgaaggaag aattggaaac caagtttggc cactggcaga aggaacagga gagcatcatt
                                                                      1740
cagcagttac agacatetet geatgacagg aacaaagaag tagaggatet cagtgeaact
                                                                      1800
ttgctccaca aacttggacc cggccagagt gaagtagctg aggagctgtg ccagcgcctg
                                                                      1860
cagcggaagg aaagggtget gcaggacett etgagtgate ggaacaaaca agccatggag
                                                                      1920
cacgagatgg aggtccaggg actgctccag tcgatgggca cccgggaaca ggaaagacag
                                                                      1980
gctgttgcag aaaaaatggt acaagccttc atggaaagaa actcggaatt acaggccctg
                                                                      2040
cggcagtatc taggggggaa ggaattaatg gcagcatctc aggcattcat ctctaaccaa
                                                                      2100
ccagctggag cgacttctgt aggcccccac catggagagc aaactgacca aggttctacg
                                                                      2160
cagatgccct ctcgagacga cagcacctcg ctgactgcca gagaggaggc cagcataccc
                                                                      2220
cggtctacat taggagactc agacacagtt gcagggctgg agaaagaact gagcaatgcc
                                                                      2280
aaggaggagc ttgagctcat ggccaaaaaa gaaagagaaa gccagataga attgtctgcc
                                                                      2340
ctgcagtcca tgatggctgt gcaagaggaa gagctgcagg tgcaggctgc tgacttggag
                                                                      2400
tecetgacca ggaacataca gataaaagaa gaceteataa aggaeetgca aatgeaactg
                                                                      2460
gttgaccctg aagatatgcc agccatggag cgcctgaccc aagaggtctt acttcttcgg
                                                                      2520
gaaaaagttg cttcagtgga accccagggt caggaagggt cagagaacag gagacaacag
                                                                      2580
ttgctgctga tgttagaagg actagtggat gaacggagtc ggctcaacga ggccctgcaa
                                                                      2640
gctgagcggc agctctacag cagcctggtc aagttccatg cccaaccaga gatctctgag
                                                                      2700
agagaccgaa ctctgcaggt ggaactggaa ggggcccagg tgttacgcag tcgactagaa
                                                                      2760
gaagttettg gaagaageet ggagegetta ageaggetgg agaeeetgge egecattgga
                                                                      2820
ggtgctactg caggcgatga gactgaagat acaagcacac agttcacaga cagcattgag
                                                                      2880
gaggaggctg cacacaacag ccaccagcaa ctcatcaagg tgtctttgga gaaaagcctg
                                                                     2940
accaccatgg agacccagaa cacatgtett cageceeett ecceagtagg agaggatggt
                                                                     3000
aacaggcatc ttcaggaaga aatgctccac ctgagggctg aaatccacca gcccttagaa
                                                                     3060
gagaagagaa aagctgaggc agaactcaag gagctaaagg ctcaaattga ggaagcagga
                                                                     3120
ttctcctctg tgtcccacat caggaacacc atgctgagcc tttgcctttg ccttgagaat
                                                                     3180
gcagagctga aagagcagat gggagaagca atgtctgatg gatgggaggt ggaggaagac
                                                                      3240
aaggagaagg gcgaggtgat ggtggagacc gtggtggcca aagggggtct gagtgaggac
                                                                     3300
agcetteagg etgagtteag gaaagteeag gggagaetea agagtgeeta caacateate
                                                                      3360
aacctcctca aagagcagct ggtcctgaga agctcggaag ggaacactaa ggagatgcca
                                                                     3420
gagttcctcg tgcgcctggc cagggaggtg gacagaatga acatgggctt gccttcctcg
                                                                     3480
gagaagcatc aacaccaaga acaggagaat atgaccgcaa ggcctggccc caggccccag
                                                                     3540
agtotcaago ttgggacago tototcagta gacggotaco aactggagaa caagtoccag
                                                                     3600
gcccaagact ctggacatca gccagaattt agcctaccag ggtccaccaa acacctgcgc
                                                                     3660
teccagetgg etcagtgtag acaaeggtae caagatetee aggagaaget geteatetea
                                                                     3720
gaagccactg tgtttgccca ggcaaaccag ctagagaagt acagagccat attaagtgaa
                                                                     3780
```

tccctggtga	agcaggacag	caagcagatc	caggtggacc	ttcaggacct	gggctatgag	3840
acttgtggcc	gaagtgagaa	tgaagctgaa	cgtgaggaga	ccaccagccc	tgagtgtgag	3900
gagcacggta	acctgaagcc	tgtggtgctg	gtggaaggct	tgtgctctga	gcaagggtac	3960
ctggaccctg	tcttggtcag	ctcacctgtg	aagaaccctt	ggagaacaag	ccaggaagcc	4020
agaagaatcc	aggcacaagg	aacttcagac	aacagctctc	tcctgaggaa	ggacatccga	4080
aatctgaaag	cccagctacc	gaatgcctac	aaggtccttc	agaacctgag	gagccgggtc	4140
cggtccctgt	ctgccacaag	cgattactca	tcgagtctgg	agagaccccg	caagctgata	4200
gccgtggcaa	cccttgaggg	ggcctcaccc	cacagtotca	ctgatgaaga	ccaacctto	4260
ttgtcagatg	gcaccggggc	tttttaccct	ccagggctcc	aggccaaaaa	gaatctagag	4320
aatctcatcc	agagagtatc	ccagctggag	gcccagctcc	ccaaaactgg	actagaaggg	4380
aagctggctg	aagaactgaa	gtccgcctcg	tggcctggaa	aatacgattc	tttgattcag	4440
gatcaggccc	gaaaaactgt	catatctgcg	tccgaaaata	cnaaaaggga	gaaggatttg	4500
ttttcttctc	acccaacatt	cgaaagatac	gtcaaatctt	ttgaagacct	cctgaggaac	4560
aacgacttga	ctacttacct	gggccagagc	ttccgggaac	aacttagttc	aaggcgttca	4620
gtgacagaca	ggctgaccag	caaattcagc	acaaaggatc	ataagagtga	aaaagaagaa	4680
gttgggcttg	agccactggc	cttcaggttc	agcagggaat	tacaggagaa	agagaaagtg	4740
attgaagtcc	tgcaggccaa	ggtggatacc	cggtttttct	caccccccag	cagccatgct	4800
gcgtctgagt	cccaccgttg	tgccagcagc	acatctttcc	tgtcggatga	catagaagcc	4860
tgctctgaca	tggacgtagc	cagcgagtac	acacactatg	aagagaagaa	gccctcaccc	4920
agtaactcag	cagccagtgc	atctcagggg	cttaagggcg	agcccagaag	cagctccatc	4980
agcttgccaa	ctccccagaa	cccccctaag	gaggccagcc	aggcccagcc	aggettteac	5040
tttaactcca	tacccaagcc	ggctagcctt	tcccaggcac	caatgcactt	cactgtaccc	5100
agcttcatgc	ctttcggccc	ctctgggcct	ccccttcttg	gttgctgtga	gacaccagtg	5160
gtgtccttgg	ctgaggctca	acaagagctg	cagatgctgc	agaagcagct	gggacgaagt	5220
gttagcattg	cccctcccac	ctccacatcc	acgttgctta	gcaaccacac	agaagctagc	5280
tctccccgct	acagcaaccc	tgctcagccc	cactccccag	caaqqqqcac	catagagetg	5340
ggcagaatcc	tggagcctgg	atacctgggc	agcggccagt	gggacatgat	gaggcctcag	5400
aaagggagca	tctctgggga	gctgtcctca	ggctcctcga	tgtaccagct	taactccaaa	5460
cccacagggg	ccgacctgtt	ggaagagcat	ttaggtgaga	tccggaacct	gcgccagcgc	5520
ctggaggagt	ccatatgtgt	caatgacagg	ctacgggagc	agctgcagca	taggctcagc	5580
tccacggccc	gagaaaatgg	ttccacctct	cacttctaca	gtcagggcct	ggagtccatg	5640
cctcagctct	acaatgagaa	cagagccctc	agggaagaaa	accaaagcct	gcagacacgg	5700
ctcagtcatg	cttccagggg	acactcccag	gaagtggacc	acctgaggga	ggctctgctt	5760
tcctcaagtt	cccagctcca	ggagctggag	aaggagctgg	agcagcagaa	ggctgagcgg	5820
cggcagcttc	tggaagactt	gcaggagaag	caggatgaga	tcgtgcattt	ccgagaggag	5880
aggctgtccc	tccaggaaaa	caactccagg	ctgcagcaca	agctggccct	cctgcaacaa	5940
cagtgtgagg	agaaacagca	gctctccctg	tccctgcagt	cagageteca	gatctacgag	6000
tccctctacg	aaaatcctaa	gaagggcttg	aaagccttca	gcctagattc	ctgttaccaa	6060
gtcccgggtg	agttgagctg	cctggtggca	gagattcgag	ctctgagagt	gcagttggag	6120
cagagcattc	aagtgaacaa	ccgtctgcgg	ctgcagctgg	aacagcagat	ggatcacggt	6180
gctggcaaag	ccagtctcag	ttcctgccct	gttaaccaga	gcttctcagc	caaggcggag	6240
ctggcaaacc	agcagccacc	cttccaaggt	tcagctgctt	cccctccagt	ccgggacgtt	6300
ggcttgaatt	ctccacccgt	ggtcctcccc	agcaattcgt	gctctgttcc	tggctcagac	6360
tctgccatca	tcagtaggac	aaacaatggt	tcggatgagt	ctgcagcaac	gaagacccct	6420
cccaagatgg	aggtcgatgc	tgctgatggc	ccatttgcca	gtggacacgg	cagacacgtc	6480
atcggccatg	tggatgacta	cgacgcccta	cagcagcaga	ttggggaagg	gaagctgctg	6540
atccaaaaga	tactgtctct	cacgaggcca	gcacgcagcg	tccctqcact	ggacgcgcag	6600
ggcacagagg	caccaggtac	caaaagtgtc	catgagette	ggagcagcgc	cagggctctg	6660
aaccacagcc	tagaagagtc	agcttccctc	ctcaccatgt	tctggagagc	agctttgcca	6720
aactctcatg	gttctgtact	ggtaggcgaa	gagggaaacc	tgatggagaa	agaactccta	6780
gacctgcgag	cccaagtgtc	ccaacagcaa	cagctccttc	agagcactgc	tgtgcgtctg	6840
aagacggcca	accagaggaa	gaaaagcatg	gagcagttca	tcgtgagcca	tctgaccagg	6900
acccatgatg	tcttgaagaa	agcacggact	aatttagaga	tgaaatcctt	cagggccctg	6960
atgtgcactc	cagccttgtg	a				6981

<210> 4 <211> 9241 <212> DNA <213> human

<400> 4

```
ggatccttga gggcactggt gcgactttca ggtgaggtct tagcagatga aagcggctgg
                                                                        60
ctgtggcccg cgccagtagt gctttctgct ccgcactcgc cgtgagccag gtgtgcaacc
                                                                       120
ggatttgggg cgagggtcgc gctggctacc tcgcatgcgc agagccggaa gcccgctgac
                                                                       180
cggactacag ctcccagaag agccttgtgg aggccgcaga cgcgaagccg ctggcgccat
                                                                       240
cttgaaatct gatectecat ceeegagget ttgegtetge geggeeggee getgetgete
                                                                       300
cgggagccca gtctgctaaa aggggaggac gttgaggacg cggcggctgg cgggagagac
                                                                       360
agctggggag agacatggca gggtcggagc gcggcctgcg cctctgtcac tcagcatcct
                                                                       420
cttaggogtt tocacgooog coccetgees gagggggggg getgacgget stggtacceg
                                                                       48Û
gagtcggcgc gcggggcagg ggcgcgcccc tgcagagtgg ggaccccact gggctgtgcc
                                                                       540
atgctgaccg gagaccaccg aggcgggaga cagagcgcgg cgaagagcca ttgagtggtc
                                                                       600
acceagtage egeogeogec geogeotogg gaagettgee accegetagg agggaagatg
                                                                       660
aaggagattt gcaggatctg tgcccgagag ctgtgtggaa accagcggcg ctggatcttc
                                                                       720
cacacggcgt ccaagctcaa tctccaggtt ctgctttcgc acgtcttggg caaggatgtc
                                                                       780
ccccgcgatg gcaaagccga gttcgcttgc agcaagtgtg ctttcatgct tgatcgaatc
                                                                       840
tatcgattcg acacagttat tgcccggatt gaagcgcttt ctattgagcg cttgcaaaag
                                                                       900
ctgctactgg agaaggatcg cctcaagttc tgcattgcca gtatgtatcg gaagaataac
                                                                       960
gatgactetg gegeggagat caaggegggg aatgggaegg ttgacatgte egtettacee
                                                                      1020
gatgcgagat actctgcact gctccaggag gacttcgcct attcagggtt tgagtgctgg
                                                                      1080
gtggagaatg aggatcagat ccaggagcca cacagctgcc atggttcaga aggccctgga
                                                                      1140
aaccgaccca ggagatgccg tggttgtgcc gctttgcggg ttgctgattc tgactatgaa
                                                                      1200
gccatttgta aggtacctcg aaaggtggcc agaagtatct cctgcggccc ttctagcagg
                                                                      1260
tggtcgacca gcatttgcac tgaagaacca gcgttgtctg aggttgggcc acccgactta
                                                                      1320
gcaagcacaa aggtaccccc agatggagaa agcatggagg aagagacgcc tggttcctct
                                                                      1380
gtggaatctt tggatgcaag cgtccaggct agccctccac aacagaaaga tgaggagact
                                                                      1440
gagagaagtg caaaggaact tggaaagtgt gactgttgtt cagatgatca ggctccgcag
                                                                      1500
catgggtgta atcacaagct ggaattagct cttagcatga ttaaaggtct tgattataag
                                                                      1560
cccatccaga gcccccgagg gagcaggett ccgattccag tgaaatccag cctacctgga
                                                                      1620
gccaagcctg gccctagcat gacagatgga gttagttccg gtttccttaa caggtctttg
                                                                      1680
aaaccccttt acaagacacc tgtgagttat cccttggagc tttcagacct gcaggagctg
                                                                      1740
tgggatgatc tctgtgaaga ttatttgccg ctccgggtcc agcccatgac tgaagagttg
                                                                      1800
ctgaaacaac aaaagctgaa ttcacatgag accactataa ctcagcagtc tgtatctgat
                                                                      1860
toccacttgg cagaactcca ggaaaaaatc cagcaaacag aggccaccaa caagattett
                                                                      1920
caagagaaac ttaatgaaat gagctatgaa ctaaagtgtg ctcaggagtc gtctcaaaag
                                                                      1980
caagatggta caattcagaa cctcaaggaa actctgaaaa gcagggaacg tgagactgag
                                                                      2040 -
gagttgtacc aggtaattga aggtcaaaat gacacaatgg caaagcttcg agaaatgctg
                                                                      2100
caccaaagcc agcttggaca acttcacagc tcagagggta cttctccagc tcagcaacag
                                                                      2160
gtagctctgc ttgatcttca gagtgcttta ttctgcagcc aacttgaaat acagaagctc
                                                                      2220
cagagggtgg tacgacagaa agagcgccaa ctggctgatg ccaaacaatg tgtgcaattt
                                                                      2280
gtagaggctg cagcacacga gagtgaacag cagaaagagg cttcttggaa acataaccag
                                                                      2340
gaattgcgaa aagccttgca gcagctacaa gaagaattgc agaataagag ccaacagctt
                                                                      2400
cgtgcctggg aggctgaaaa atacaatgag attcgaaccc aggaacaaaa catccagcac
                                                                      2460
ctaaaccata gtctgagtca caaggagcag ttgcttcagg aatttcggga gctcctacag
                                                                      2520
tatogagata actoagacaa aaccottgaa gcaaatgaaa tgttgottga gaaacttogo
                                                                      2580
cagcgaatac atgataaagc tgttgctctg gagcgggcta tagatgaaaa attctctgct
                                                                      2640
ctagaagaga aagaaaaaga actgcgccag cttcgtcttg ctgtgagaga gcgagatcat
                                                                      2700
gacttagaga gactgcgcga tgtcctctcc tccaatgaag ctactatgca aagtatggag
                                                                      2760
agtotoctga gggccaaagg cotggaagtg gaacagttat otactacotg toaaaacoto
                                                                      2820
cagtggctga aagaagaaat ggaaaccaaa tttagccgtt ggcagaagga acaagagagt
                                                                      2880
atcattcagc agttacagac gtctcttcat gataggaaca aagaagtgga ggatcttagt
                                                                      2940
gcaacactgc totgcaaact tggaccaggg cagagtgaga tagcagagga gctgtgccag
                                                                      3000
cgtctacagc gaaaggaaag gatgctgcag gaccttctaa gtgatcgaaa taaacaagtg
                                                                      3060
ctggaacatg aaatggagat tcaaggcctg cttcagtctg tgagcaccag ggagcaggaa
                                                                      3120
agccaagctg ctgcagagaa gttggtgcaa gccttaatgg aaagaaattc agaattacag
                                                                      3180
geoetgegee aatatttagg agggagagae teeetgatgt eecaageace catetetaae
                                                                      3240
caacaagetg aagttacccc cactggccgt cttggaaaac agactgatca aggttcaatg
                                                                      3300
cagatacctt ccagagatga tagcacttca ttgactgcca aagaggatgt cagcataccc
                                                                      3360
agatecacat taggagaett ggacacagtt geagggetgg aaaaagaaet gagtaatgee
                                                                      3420
aaagaggaac ttgaactcat ggctaaaaaa gaaagagaaa gtcagatgga actttctgct
                                                                      3480
ctacagtcca tgatggctgt gcaggaagaa gagctgcagg tgcaggctgc tgatatggag
                                                                      3540
tetetgacca ggaacataca gattaaagaa gateteataa aggacetgea aatgeaactg
                                                                      3600
gttgatcctg aagacatacc agctatggaa cgcctgaccc aggaagtctt acttcttcgg
                                                                      3660
gaaaaagttg cttcagtaga atcccagggt caagaaattt caggaaaccg aagacaacag
                                                                      3720
ttgctgctga tgctagaagg actagtagat gaacggagtc ggctcaatga ggccttacaa
                                                                      3780
```

```
gcagagagac agctctatag cagtctggtg aagttccatg cccatccaga gagctctgag
                                                                      3840
agagaccgaa ctctgcaggt ggaactggaa ggggctcagg tgttacgcag tcggctagaa
                                                                      3900
gaagttettg gaagaagett ggagegetta aacaggetgg agaccetgge egecattgga
                                                                      3960
ggtgcagctg caggggatga caccgaagat acaagcactg agttcactga cagtattgag
                                                                      4020
gaggaggctg cacaccatag tcaccagcaa cttgtcaagg tggctttgga gaaaagtctg
                                                                      4080
gcaactgtgg agacccagaa cccatctttt tcccctcctt ctccgatggg aggggacagt
                                                                      4140
aacaggtgtc ttcaggaaga aatgctccac ctgagggctg agttccacca gcacttagaa
                                                                      4200
gagaagga aagctgagga ggaactgaag gagctaaagg ctcaaattga ggaagcagga
                                                                      4260
ttctcctcag tgtcccacat caggaacacc atgctgagcc tttgccttga gaatgcggag
                                                                      4320
ctgaaagagc agatgggaga agcaatgtct gatggatggg agatcgagga agacaaggag
                                                                      4380
aagggcgagg tgatggttga gactgtggta accaaagagg gtctgagtga gagtagcctt
                                                                      4440
caggotgagt toagaaagot coagggaaaa otgaagaatg cocacaatat catcaacoto
                                                                      4500
ctcaaagaac aacttgtgct gagtagcaag gaagggaata gtaaacttac tccagagctc
                                                                      4560
cttgtgcatc tgaccagcac cattgaaaga ataaacacag aactggttgg ttcccctggg
                                                                      4620
aagcaccaac accaagagga ggggaatgtg actgtgaggc ctttccccag accccagagc
                                                                      4680
cttgaccttg gggctacctt cacagtggat gcccaccaat tggataacca gtcccagcct
                                                                      4740
cgtgaccctg ggcctcagtc agcgtttagc ctaccagggt ccacccagca cctgcgctcc
                                                                      4800
cagctgtcac aatgcaaaca acgctatcaa gatctccagg agaagctgct gctatcagaa
                                                                      4860
gccactgtct ttgctcaggc taacgagctg gagaaataca gagttatgct tacaggtgaa
                                                                      4920
teettggtga ageaggaeag caageagate caggtggaee teeaggaeet gggetatgag
                                                                      4980
acttgtggcc gaagcgagaa tgaggctgaa cgggaggaaa ccaccagtcc tgagtgtgag
                                                                      5040
gagcacaaca gcctcaagga aatggtcctg atggaggggc tgtgctctga gcagggacgc
                                                                      5100
eggggeteaa caetggetag tteetetgag aggaageeet tggagaacea getagggaag
                                                                      5160
caggaagagt tccgggtata tggaaagtca gaaaacatct tggtcctacg aaaggacatc
                                                                      5220
aaagatotga aggoocagot goagaatgoo aacaaggtoa ttoaaaacot caagagoogg
                                                                      5280
gtccggtccc tctcagttac aagtgattat tcgtctagtc tggaaagacc ccggaagctg
                                                                      5340
agagetgttg geacettgga ggggtettea eeteatagtg teeetgatga ggatgagggg
                                                                      5400
tggctgtctg atggcactgg ggctttctac tctccagggc ttcaggccaa aaaggacctg
                                                                      5460
gagagtetea tecagagagt atcecagetg gaggeecage teccaaaaaa tggactagaa
                                                                      5520
gagaagctgg ctgaggagct gagatcagcc tcgtggcctg ggaaatatga ttccctgatt
                                                                      5580
caggatcagg cccgggaact gtcttaccta cggcaaaaaa tacgagaagg gagaggtatt
                                                                      5640
tgttatctta tcacccggca tgcaaaagat acagtaaaat cttttgagga tctcctaagg
                                                                      5700
agcaatgaca ttgactacta cctgggacag agcttccggg agcaactcgc ccagggaagc
                                                                      5760
cagctgacag agaggctcac cagcaaactc agcaccaagg atcataaaag tgagaaagat
                                                                      5820
caagctggac ttgagccact ggccctcagg ctcagcaggg agctgcagga gaaggagaaa
                                                                      5880
gtgattgaag teetgeagge caagetggat geteggteee teacaceete cageageeat
                                                                      5940
                                                                      6000
geettgtetg acteccaccg eteteccage ageacetett teetgtetga tgaactggaa
gcctgctctg acatggacat agtcagcgag tacacact atgaagagaa gaaagcttct
                                                                      6060
                                                                      6120
cccagtcact cagattccat ccatcattcg agtcattctg ctgtgttgtc ttctaaacca
                                                                      6180
tcatcaacca gtgcatctca gggggctaag gccgaatcca acagcaaccc catcagcttg
ccaactcccc agaatacccc caaggaggcc aaccaggccc attcaggctt tcattttcac
                                                                      6240
tocatacoca agotggotag cottoctoag goaccattgo cotcagetoc atocagette
                                                                      6300
ctgcctttca gccccactgg ccctctcctc cttggctgct gtgagacacc agtggtctcc
                                                                      6360
ttggctgagg ctcagcagga gctacagatg ctgcagaagc agttgggaga aagtgccagc
                                                                      6420
actittcctc ctgcttccac agctacattg ctgagcaacg acttggaagc cgactcttcc
                                                                      6480
                                                                      6540
tactacetea actetgecea geeteactet eetecaaggg geaccataga actgggaaga
atcctagage ctgggtacet gggcagcagt ggcaagtggg atgtgatgag gcctcagaaa
                                                                      6600
                                                                      6660
gggagtgtat ctggggacct atcctcaggc tcctctgtgt accagettaa ctccaaaccc
acaggggctg acctgctgga agagcatctt ggtgaaatcc ggaacctgcg ccagcgcctg
                                                                      6720
gaggagteca tetgeateaa tgacegeeta egggageaae tggaacaceg getgacetet
                                                                      6780
actgctcgtg gaaggggatc cacttctaac ttctacagtc agggcctgga gtccatacct
                                                                      6840
cagetetgea atgagaacag agteeteagg gaagacaate gaagaettea ggeteaaetg
                                                                      6900
agtcatgttt ccagagagca ctcccaggaa acagaaagcc tgagggaggc tctgctgtcc
                                                                      6960
                                                                      7020
totogatoco acottoaaga gotggaaaag gagotggago accagaaggt ggaaaggoag
                                                                      7080
cagcttttgg aagacttgag ggagaagcag caagaggtct tgcatttcag ggaggaacgt
ctttccctcc aggaaaacga ctccagtggg ccttgcctct ccctggtcag actgcagcac
                                                                      7140
aagctggttc tcctgcagca acagtgtgaa gagaaacagc agctctttga gtccctccag
                                                                      7200
                                                                      7260
tcagagctac aaatctacga ggcactttat ggcaattcca agaaggggct gaaagcttac
                                                                      7320
agcotggatg cotgtoacca aatocotttg agcagtgaco tgagcoacct ggtggcagag
gtacgagete tgagagggca getggageag ageatteagg ggaacaattg tetgegaetg
                                                                      7380
cagetgeaac ageagetgga gageggtget ggeaaageea geeteageee etecteeatt
                                                                      7440
                                                                      7500
aaccagaact toccagocag cactgaccot ggaaacaago agotgotoot ccaagattoa
gctgtgtccc ctccagtccg ggatgttggt atgaattccc cagctctggt cttccccagc
                                                                      7560
```

```
tetgetteet etacteetgg eteagaaacg eccataatea acagageaaa tggettgggt
                                                                   7620
ttggatactt ctccagtaat gaagacccct cccaagctag agggtgatgc tactgatggc
                                                                   7680
tcctttgcca ataagcatgg ccgccatgtc attggccaca ttgatgacta cagtgcccta
                                                                   7740
agacagcaga ttgcggaggg caagctgctg gtcaaaaaga tagtgtctct tgtgagatca
                                                                   7800
gcgtgcagct tccctggcct tgaagcccaa ggcacagagg tgctaggcag caaaggtatt
                                                                   7860
catgagette ggageageae cagtgeeetg caccatgeee tagaggagte ggetteeete
                                                                   7920
ctcaccatgt tetggagage agecetgeea ageacceaea tecetgtget geetggeaaa
                                                                   7980
gtgggagaat caacagaaag ggaacttctg gaactgagaa ccaaagtatc caaacaggag
                                                                   8040
cggctccttc agagcacaac tgagcatctq aaqaacgcca accagcaqaa ggagagcatq
                                                                   8100
gagcagttca tcgtcagcca gctaaccaga acacatgatg ttttaaagaa ggcaaggact
                                                                   8160
aacttagagg tgaaatccct aagggctctg ccatgtactc cagccttgtg acccttgcct
                                                                   8220
tccaggaacc atgcaagaag cgcagccacc agaagtcctt aaaacagcag gaaaggtggg
                                                                   8280
cetgtecccc ttttgtgcag ctacetatet getgaggage atetgggeet cattecteca
                                                                   8340
agtccacggg agggtccaga agagggagtc agagatgtat cctggtggag ctgggagaaa
                                                                   8400
ggcagaaagc ctttctgaca gctatggaat acgattagcc aaggtccact tggcccagca
                                                                   8460
ctaagaaaaa gatgcgtagt ttgcacagaa ggttttgtga tcctgcctct caacagcccc
                                                                   8520
agcagettgg gaactageaa gagcacattt ettgeeteat cagetgteet gagatggaaa
                                                                   8580
actcagtgga tataggaccc tgattccgat gaaaggggca cgtggtccca atgctggagc
                                                                   8640
tectetggca ggttetaaaa geacactaet gageageggt geeetgeegg acactgetgg
                                                                   8700
cgggggctca gtgagcacta ctcacagatc cacacctgac cctgttgggt cgagtcaggc
                                                                   8760
tgggccttgg tctgcactgt agcacctgtg ttctttgagt tcacatcatg aatgtggtga
                                                                   8820
8880
ccaaattgga ctgacctcac ttcaaagttg ctgtcccatt ttgtcaccct atcttatctc
                                                                   8940
ggggaaattg cagactgatg gccagaccaa ctctgttgaa attcttgcat agagcaaacc
                                                                   9000
tgtgctcatt tttaagtggc atgggagagg cccccagcct agtaaagcct agtctgtgtc
                                                                   9060
ttcacagtgc tggtagaatg tgtttgtgtg tataaatata tgatatagat ttatatatgt
                                                                   9120
tgctaacgcc atatattgaa ggccaacata actggtggac agggtgggtg acagaaaatg
                                                                   9180
aaagcctttt tggtgattgt taaagcaaga tgtgtataaa gaaataaata gtttttcttt
                                                                   9240
                                                                   9241
```

```
<210> 5
<211> 2517
<212> PRT
<213> human
<400> 5
```

WO 00/27861

Met Lys Glu Ile Cys Arg Ile Cys Ala Arg Glu Leu Cys Gly Asn Gln Arg Arg Trp Ile Phe His Thr Ala Ser Lys Leu Asn Leu Gln Val Leu 25 Leu Ser His Val Leu Gly Lys Asp Val Pro Arg Asp Gly Lys Ala Glu 40 45 Phe Ala Cys Ser Lys Cys Ala Phe Met Leu Asp Arg Ile Tyr Arg Phe 55 60 Asp Thr Val Ile Ala Arg Ile Glu Ala Leu Ser Ile Glu Arg Leu Gln 75 70 Lys Leu Leu Glu Lys Asp Arg Leu Lys Phe Cys Ile Ala Ser Met 85 90 Tyr Arg Lys Asn Asn Asp Asp Ser Gly Ala Glu Ile Lys Ala Gly Asn 100 105 Gly Thr Val Asp Met Ser Val Leu Pro Asp Ala Arg Tyr Ser Ala Leu 115 120 Leu Gln Glu Asp Phe Ala Tyr Ser Gly Phe Glu Cys Trp Val Glu Asn 135 Glu Asp Gln Ile Gln Glu Pro His Ser Cys His Gly Ser Glu Gly Pro 150 Gly Asn Arg Pro Arg Arg Cys Arg Gly Cys Ala Ala Leu Arg Val Ala 165 170 175 Asp Ser Asp Tyr Glu Ala Ile Cys Lys Val Pro Arg Lys Val Ala Arg 185 Ser Ile Ser Cys Gly Pro Ser Ser Arg Trp Ser Thr Ser Ile Cys Thr

```
195
                          200
                                            205
Glu Glu Pro Ala Leu Ser Glu Val Gly Pro Pro Asp Leu Ala Ser Thr
                    215
                                        220
Lys Val Pro Pro Asp Gly Glu Ser Met Glu Glu Glu Thr Pro Gly Ser
                 230
                                    235
Ser Val Glu Ser Leu Asp Ala Ser Val Gln Ala Ser Pro Pro Gln Gln
           245
                                250
Lys Asp Glu Glu Thr Glu Arg Ser Ala Lys Glu Leu Gly Lys Cys Asp
                    265
         260
Cys Cys Ser Asp Asp Gln Ala Pro Gln His Gly Cys Asn His Lys Leu
      275
                        280
                                  285
Glu Leu Ala Leu Ser Met Ile Lys Gly Leu Asp Tyr Lys Pro Ile Gln
                   295
                                        300
Ser Pro Arg Gly Ser Arg Leu Pro Ile Pro Val Lys Ser Ser Leu Pro
              310
                                   315
Gly Ala Lys Pro Gly Pro Ser Met Thr Asp Gly Val Ser Ser Gly Phe
             325
                                330
Leu Asn Arg Ser Leu Lys Pro Leu Tyr Lys Thr Pro Val Ser Tyr Pro
          340
                            345
                                             350
Leu Glu Leu Ser Asp Leu Gin Glu Leu Trp Asp Asp Leu Cys Glu Asp
                         360
                                           365
Tyr Leu Pro Leu Arg Val Gln Pro Met Thr Glu Glu Leu Leu Lys Gln
                    375
                                      380
Gln Lys Leu Asn Ser His Glu Thr Thr Ile Thr Gln Gln Ser Val Ser
         390
                                   395
Asp Ser His Leu Ala Glu Leu Gln Glu Lys Ile Gln Gln Thr Glu Ala
        405 410
Thr Asn Lys Ile Leu Gln Glu Lys Leu Asn Glu Met Ser Tyr Glu Leu 420 425 430
Lys Cys Ala Gln Glu Ser Ser Gln Lys Gln Asp Gly Thr Ile Gln Asn
      435
                440
Leu Lys Glu Thr Leu Lys Ser Arg Glu Arg Glu Thr Glu Glu Leu Tyr
  450
                     455
                                       460
Gln Val Ile Glu Gly Gln Asn Asp Thr Met Ala Lys Leu Arg Glu Met
                 470
                                    475
Leu His Gln Ser Gln Leu Gly Gln Leu His Ser Ser Glu Gly Thr Ser
             485
                              490
                                                   495
Pro Ala Gln Gln Val Ala Leu Leu Asp Leu Gln Ser Ala Leu Phe
          500
                          505
                                               510
Cys Ser Gln Leu Glu Ile Gln Lys Leu Gln Arg Val Val Arg Gln Lys
     515
                       520
                                           525
Glu Arg Gln Leu Ala Asp Ala Lys Gln Cys Val Gln Phe Val Glu Ala
  530
                     535
                                       540
Ala Ala His Glu Ser Glu Gln Gln Lys Glu Ala Ser Trp Lys His Asn
          550
                                   555
Gln Glu Leu Arg Lys Ala Leu Gln Gln Leu Gln Glu Glu Leu Gln Asn
             565
                       570
Lys Ser Gln Gln Leu Arg Ala Trp Glu Ala Glu Lys Tyr Asn Glu Ile
Arg Thr Gln Glu Gln Asn Ile Gln His Leu Asn His Ser Leu Ser His
       595
                         600
                                           605
Lys Glu Gln Leu Leu Gln Glu Phe Arg Glu Leu Leu Gln Tyr Arg Asp
                     615
                                        620
Asn Ser Asp Lys Thr Leu Glu Ala Asn Glu Met Leu Leu Glu Lys Leu
                630
                                    635
Arg Gln Arg Ile His Asp Lys Ala Val Ala Leu Glu Arg Ala Ile Asp
645 650 655
Glu Lys Phe Ser Ala Leu Glu Glu Lys Glu Lys Glu Leu Arg Gln Leu
         660
                            665
                                               670
Arg Leu Ala Val Arg Glu Arg Asp His Asp Leu Glu Arg Leu Arg Asp
                         680
Val Leu Ser Ser Asn Glu Ala Thr Met Gln Ser Met Glu Ser Leu Leu
                      695
```

```
Arg Ala Lys Gly Leu Glu Val Glu Gln Leu Ser Thr Thr Cys Gln Asn
                  710
                                    715
Leu Gln Trp Leu Lys Glu Glu Met Glu Thr Lys Phe Ser Arg Trp Gln
              725
                                730
Lys Glu Gln Glu Ser Ile Ile Gln Gln Leu Gln Thr Ser Leu His Asp
          740
                            745
Arg Asn Lys Glu Val Glu Asp Leu Ser Ala Thr Leu Leu Cys Lys Leu
       755
                       760
                                         765
Gly Pro Gly Gln Ser Glu Ile Ala Glu Glu Leu Cys Gln Arg Leu Gln
                  775
                                780
Arg Lys Glu Arg Met Leu Gln Asp Leu Leu Ser Asp Arg Asn Lys Gln
                790
                                  795
Val Leu Glu His Glu Met Glu Ile Gln Gly Leu Leu Gln Ser Val Ser
             805
                                810
Thr Arg Glu Gln Glu Ser Gln Ala Ala Ala Glu Lys Leu Val Gln Ala
          820
                             825
Leu Met Glu Arg Asn Ser Glu Leu Gln Ala Leu Arg Gln Tyr Leu Gly
      835
                        840
                                           845
Gly Arg Asp Ser Leu Met Ser Gln Ala Pro Ile Ser Asn Gln Gln Ala
                     855
                                       860
Glu Val Thr Pro Thr Gly Arg Leu Gly Lys Gln Thr Asp Gln Gly Ser
               870
                                   875
Met Gln Ile Pro Ser Arg Asp Asp Ser Thr Ser Leu Thr Ala Lys Glu
             885
                                890
                                                   895
Asp Val Ser Ile Pro Arg Ser Thr Leu Gly Asp Leu Asp Thr Val Ala
          900
                          905
                                              910
Gly Leu Glu Lys Glu Leu Ser Asn Ala Lys Glu Glu Leu Glu Leu Met
       915
                        920
                                           925
Ala Lys Lys Glu Arg Glu Ser Gln Met Glu Leu Ser Ala Leu Gln Ser
   930
                    935
                                       940
Met Met Ala Val Gln Glu Glu Leu Gln Val Gln Ala Ala Asp Met
                950
                                   955
Glu Ser Leu Thr Arg Asn Ile Gln Ile Lys Glu Asp Leu Ile Lys Asp
             965
                                970
                                                   975
Leu Gln Met Gln Leu Val Asp Pro Glu Asp Ile Pro Ala Met Glu Arg
         980
                          985
                                              990
Leu Thr Gln Glu Val Leu Leu Leu Arg Glu Lys Val Ala Ser Val Glu
                                 1005
       995
                1000
Ser Gln Gly Gln Glu Ile Ser Gly Asn Arg Arg Gln Gln Leu Leu
                    1015
                                       1020
Met Leu Glu Gly Leu Val Asp Glu Arg Ser Arg Leu Asn Glu Ala Leu
                1030
                                   1035
Gln Ala Glu Arg Gln Leu Tyr Ser Ser Leu Val Lys Phe His Ala His
             1045
                                1050
                                                  1055
Pro Glu Ser Ser Glu Arg Asp Arg Thr Leu Gln Val Glu Leu Glu Gly
          1060
                           1065
                                              1070
Ala Gln Val Leu Arg Ser Arg Leu Glu Glu Val Leu Gly Arg Ser Leu
       1075
                         1080
                                          1085
Glu Arg Leu Asn Arg Leu Glu Thr Leu Ala Ala Ile Gly Gly Ala Ala
                    1095
                                      1100
Ala Gly Asp Asp Thr Glu Asp Thr Ser Thr Glu Phe Thr Asp Ser Ile
                                  1115
                1110
Glu Glu Glu Ala Ala His His Ser His Gln Gln Leu Val Lys Val Ala
           1125 1130 1135
Leu Glu Lys Ser Leu Ala Thr Val Glu Thr Gln Asn Pro Ser Phe Ser 1140 1145 1150
Pro Pro Ser Pro Met Gly Gly Asp Ser Asn Arg Cys Leu Gln Glu Glu
       1155
                         1160
                                           1165
Met Leu His Leu Arg Ala Glu Phe His Gln His Leu Glu Glu Lys Arg
  1170
                   1175
                                       1180
Lys Ala Glu Glu Leu Lys Glu Leu Lys Ala Gln Ile Glu Glu Ala
                          1195
     1190
Gly Phe Ser Ser Val Ser His Ile Arg Asn Thr Met Leu Ser Leu Cys
```

1205 1210 Leu Glu Asn Ala Glu Leu Lys Glu Gln Met Gly Glu Ala Met Ser Asp 1220 1225 1230 Gly Trp Glu Ile Glu Glu Asp Lys Glu Lys Gly Glu Val Met Val Glu 1235 1240 1245 Thr Val Val Thr Lys Glu Gly Leu Ser Glu Ser Ser Leu Gln Ala Glu 1255 1260 Phe Arg Lys Leu Gln Gly Lys Leu Lys Asn Ala His Asn Ile Ile Asn 1270 1275 Leu Leu Lys Glu Gln Leu Val Leu Ser Ser Lys Glu Gly Asn Ser Lys 1285 1290 1295 Leu Thr Pro Glu Leu Leu Val His Leu Thr Ser Thr Ile Glu Arg Ile 1300 1305 1310 Asn Thr Glu Leu Val Gly Ser Pro Gly Lys His Gln His Gln Glu Glu 1315 1320 1325 Gly Asn Val Thr Val Arg Pro Phe Pro Arg Pro Gln Ser Leu Asp Leu 1330 1335 1340 Gly Ala Thr Phe Thr Val Asp Ala His Gln Leu Asp Asn Gln Ser Gln 1350 1355 Pro Arg Asp Pro Gly Pro Gln Ser Ala Phe Ser Leu Pro Gly Ser Thr 1365 1370 1375 1365 1370 Gln His Leu Arg Ser Gln Leu Ser Gln Cys Lys Gln Arg Tyr Gln Asp 1380 1385 1390 Leu Gln Glu Lys Leu Leu Ser Glu Ala Thr Val Phe Ala Gln Ala 1395 - 1400 1405 Asn Glu Leu Glu Lys Tyr Arg Val Met Leu Thr Gly Glu Ser Leu Val 1410 1415 1420 Lys Gln Asp Ser Lys Gln Ile Gln Val Asp Leu Gln Asp Leu Gly Tyr 1425 1430 1435 1446 1440 Glu Thr Cys Gly Arg Ser Glu Asn Glu Ala Glu Arg Glu Glu Thr Thr 1445 1450 1455 Ser Pro Glu Cys Glu Glu His Asn Ser Leu Lys Glu Met Val Leu Met 1465 1460 1470 Glu Gly Leu Cys Ser Glu Gln Gly Arg Arg Gly Ser Thr Leu Ala Ser 1475 1480 1485 Ser Ser Glu Arg Lys Pro Leu Glu Asn Gln Leu Gly Lys Gln Glu Glu 1490 1495 1500 Phe Arg Val Tyr Gly Lys Ser Glu Asn Ile Leu Val Leu Arg Lys Asp 1505 1510 1515 1520 Ile Lys Asp Leu Lys Ala Gln Leu Gln Asn Ala Asn Lys Val Ile Gln 1525 1530 1535 Asn Leu Lys Ser Arg Val Arg Ser Leu Ser Val Thr Ser Asp Tyr Ser 1540 1545 1550 Ser Ser Leu Glu Arg Pro Arg Lys Leu Arg Ala Val Gly Thr Leu Glu 1555 1560 1565 Gly Ser Ser Pro His Ser Val Pro Asp Glu Asp Glu Gly Trp Leu Ser 1570 1575 1580 Asp Gly Thr Gly Ala Phe Tyr Ser Pro Gly Leu Gln Ala Lys Lys Asp 1595 1590 Leu Glu Ser Leu Ile Gln Arg Val Ser Gln Leu Glu Ala Gln Leu Pro 1605 1610 Lys Asn Gly Leu Glu Glu Lys Leu Ala Glu Glu Leu Arg Ser Ala Ser 1620 1625 1630 Trp Pro Gly Lys Tyr Asp Ser Leu Ile Gln Asp Gln Ala Arg Glu Leu 1635 1640 1645 Ser Tyr Leu Arg Gln Lys Ile Arg Glu Gly Arg Gly Ile Cys Tyr Leu 1650 1655 1660 Ile Thr Arg His Ala Lys Asp Thr Val Lys Ser Phe Glu Asp Leu Leu 1670 1675 Arg Ser Asn Asp Ile Asp Tyr Tyr Leu Gly Gln Ser Phe Arg Glu Gln 1685 1690 1695 Leu Ala Gln Gly Ser Gln Leu Thr Glu Arg Leu Thr Ser Lys Leu Ser 1700 1705 1710

Thr Lys Asp His Lys Ser Glu Lys Asp Gln Ala Gly Leu Glu Pro Leu 1715 1720 1725 Ala Leu Arg Leu Ser Arg Glu Leu Gln Glu Lys Glu Lys Val Ile Glu 1735 1740 Val Leu Glin Ala Lys Leu Asp Ala Arg Ser Leu Thr Pro Ser Ser Ser 1750 1755 His Ala Leu Ser Asp Ser His Arg Ser Pro Ser Ser Thr Ser Phe Leu 1765 1770 1775 Ser Asp Glu Leu Glu Ala Cys Ser Asp Met Asp Ile Val Ser Glu Tyr 1780 1785 1790 Thr His Tyr Glu Glu Lys Lys Ala Ser Pro Ser His Ser Asp Ser Ile 1795 1800 1805 His His Ser Ser His Ser Ala Val Leu Ser Ser Lys Pro Ser Ser Thr 1815 1820 Ser Ala Ser Gln Gly Ala Lys Ala Glu Ser Asn Ser Asn Pro Ile Ser 1835 1830 Leu Pro Thr Pro Gln Asn Thr Pro Lys Glu Ala Asn Gln Ala His Ser 1845 1850 1855 Gly Phe His Phe His Ser Ile Pro Lys Leu Ala Ser Leu Pro Gln Ala 1860 1865 1870 Pro Leu Pro Ser Ala Pro Ser Ser Phe Leu Pro Phe Ser Pro Thr Gly 1875 1880 1885 Pro Leu Leu Gly Cys Cys Glu Thr Pro Val Val Ser Leu Ala Glu 1890 1895 1900 Ala Gln Gln Glu Leu Gln Met Leu Gln Lys Gln Leu Gly Glu Ser Ala 1910 1915 1920 Ser Thr Val Pro Pro Ala Ser Thr Ala Thr Leu Leu Ser Asn Asp Leu 1925 1930 1935 Glu Ala Asp Ser Ser Tyr Tyr Leu Asn Ser Ala Gln Pro His Ser Pro 1945 1950 1940 Pro Arg Gly Thr Ile Glu Leu Gly Arg Ile Leu Glu Pro Gly Tyr Leu 1955 1960 1965 Gly Ser Ser Gly Lys Trp Asp Val Met Arg Pro Gln Lys Gly Ser Val 1970 1975 1980 Ser Gly Asp Leu Ser Ser Gly Ser Ser Val Tyr Gln Leu Asn Ser Lys 1990 1995 2000 Pro Thr Gly Ala Asp Leu Leu Glu Glu His Leu Gly Glu Ile Arg Asn 2005 2010 2015 Leu Arg Gln Arg Leu Glu Glu Ser Ile Cys Ile Asn Asp Arg Leu Arg 2020 2025 2030 Glu Gln Leu Glu His Arg Leu Thr Ser Thr Ala Arg Gly Arg Gly Ser 2040 2045 Thr Ser Asn Phe Tyr Ser Gln Gly Leu Glu Ser Ile Pro Gln Leu Cys 2050 2055 2060 Asn Glu Asn Arg Val Leu Arg Glu Asp Asn Arg Arg Leu Gln Ala Gln 2070 2075 Leu Ser His Val Ser Arg Glu His Ser Gln Glu Thr Glu Ser Leu Arg 2090 2085 2095 Glu Ala Leu Leu Ser Ser Arg Ser His Leu Gln Glu Leu Glu Lys Glu 2100 2105 2110 Leu Glu His Gln Lys Val Glu Arg Gln Gln Leu Leu Glu Asp Leu Arg 2115 2120 2125 Glu Lys Gln Gln Glu Val Leu His Phe Arg Glu Glu Arg Leu Ser Leu 2130 2135 2140 Gln Glu Asn Asp Ser Ser Gly Pro Cys Leu Ser Leu Val Arg Leu Gln 2150 2155 His Lys Leu Val Leu Leu Gln Gln Gln Cys Glu Glu Lys Gln Gln Leu 2165 2170 2175 Phe Glu Ser Leu Gln Ser Glu Leu Gln Ile Tyr Glu Ala Leu Tyr Gly 2180 2185 2190 Asn Ser Lys Lys Gly Leu Lys Ala Tyr Ser Leu Asp Ala Cys His Gln 2195 2200 2205 2205 Ile Pro Leu Ser Ser Asp Leu Ser His Leu Val Ala Glu Val Arg Ala

```
2210
                     2215
                                      2220
Leu Arg Gly Gln Leu Glu Gln Ser Ile Gln Gly Asn Asn Cys Leu Arg
                         2235
               2230
                                                    2240
Leu Gln Leu Gln Gln Leu Glu Ser Gly Ala Gly Lys Ala Ser Leu
            2245
                              2250
                                                 2255
Ser Pro Ser Ser Ile Asn Gln Asn Phe Pro Ala Ser Thr Asp Pro Gly
          2260
               2265
                                             2270
Asn Lys Gln Leu Leu Gen Asp Ser Ala Val Ser Pro Pro Val Arg
      2275
               2280
                                  2285
Asp Val Gly Met Asn Ser Pro Ala Leu Val Phe Pro Ser Ser Ala Ser
   2290
                   2295
                             2300
Ser Thr Pro Gly Ser Glu Thr Pro Ile Ile Asn Arg Ala Asn Gly Leu
      2310
                                 2315
Gly Leu Asp Thr Ser Pro Val Met Lys Thr Pro Pro Lys Leu Glu Gly
             2325
                              2330
                                                2335
Asp Ala Thr Asp Gly Ser Phe Ala Asn Lys His Gly Arg His Val Ile
          2340
                          2345
                                             2350
Gly His Ile Asp Asp Tyr Ser Ala Leu Arg Gln Gln Ile Ala Glu Gly
      2355
                       2360
                                        2365
Lys Leu Leu Val Lys Lys Ile Val Ser Leu Val Arg Ser Ala Cys Ser
   2370
                   2375
                                      2380
Phe Pro Gly Leu Glu Ala Gln Gly Thr Glu Val Leu Gly Ser Lys Gly
               2390
                                 2395
Ile His Glu Leu Arg Ser Ser Thr Ser Ala Leu His His Ala Leu Glu
             2405
                              2410
                                                2415
Glu Ser Ala Ser Leu Leu Thr Met Phe Trp Arg Ala Ala Leu Pro Ser
         2420 2425
                                            2430
Thr His Ile Pro Val Leu Pro Gly Lys Val Gly Glu Ser Thr Glu Arg
            2440
                             2445
      2435
Glu Leu Leu Glu Leu Arg Thr Lys Val Ser Lys Gln Glu Arg Leu Leu
   2450
                    2455
                                      2460
Gln Ser Thr Thr Glu His Leu Lys Asn Ala Asn Gln Gln Lys Glu Ser
                2470
                                  2475
Met Glu Gln Phe Ile Val Ser Gln Leu Thr Arg Thr His Asp Val Leu
             2485
                              2490
                                                2495
Lys Lys Ala Arg Thr Asn Leu Glu Val Lys Ser Leu Arg Ala Leu Pro
        2500
                          2505
                                             2510
Cys Thr Pro Ala Leu
 . 2515
<210> 6
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Primers
cggaattcga ggaggcctac cagaaac
                                                              27
<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Primers
                                                              32
tgagtcgact acgtgtcaag gcaacaatgg tc
<210> 8
```

-18-

<211> 1683 <212> PRT <213> rat <400> 8 Met Met Ala Gln Phe Pro Thr Ala Met Asn Gly Gly Pro Asn Met Trp 5 10 Ala Ile Thr Ser Glu Glu Arg Thr Lys His Asp Lys Gln Phe Asp Asn 20 Leu Lys Pro Ser Gly Gly Tyr Ile Thr Gly Asp Gln Ala Arg Thr Phe 35 40 Phe Leu Gln Ser Gly Leu Pro Ala Pro Val Leu Ala Glu Ile Tro Ala 55 Leu Ser Asp Leu Asn Lys Asp Gly Lys Met Asp Gln Gln Glu Phe Ser 70 . 75 Ile Ala Met Lys Leu Ile Lys Leu Lys Leu Gln Gln Gln Leu Pro 85 90 Val Val Leu Pro Pro Ile Met Lys Gln Pro Pro Met Phe Ser Pro Leu 100 105 . 110 Ile Ser Ala Arg Phe Gly Met Gly Ser Met Pro Asn Leu Ser Ile His 115 120 125 Gln Pro Leu Pro Pro Val Ala Pro Ile Thr Ala Pro Leu Ser Ser Ala 135 140 Thr Ser Gly Thr Ser Ile Pro Pro Leu Met Met Pro Ala Pro Leu Val 155 150 Pro Ser Val Ser Thr Ser Ser Leu Pro Asn Gly Thr Ala Ser Leu Ile 165 170 Gln Pro Leu Ser Ile Pro Tyr Ser Ser Ser Thr Leu Pro His Ala Ser 180 185 190 190 Ser Tyr Ser Leu Met Met Gly Gly Phe Gly Gly Ala Ser Ile Gln Lys 195 200 Ala Gln Ser Leu Ile Asp Leu Gly Ser Ser Ser Ser Thr Ser Ser Thr 210 215 220 Ala Ser Leu Ser Gly Asn Ser Pro Lys Thr Gly Thr Ser Glu Trp Ala 230 235 Val Pro Gln Pro Ser Arg Leu Lys Tyr Arg Gln Lys Phe Asn Ser Leu 250 245 255 Asp Lys Ser Met Ser Gly Tyr Leu Ser Gly Phe Gln Ala Arg Asn Ala 260 265 270 Leu Leu Gln Ser Asn Leu Ser Gln Thr Gln Leu Ala Thr Ile Trp Thr 275 280 285 Leu Ala Asp Ile Asp Gly Asp Gly Gln Leu Lys Ala Glu Glu Phe Ile 295 300 Leu Ala Met His Leu Thr Asp Met Ala Lys Ala Gly Gln Pro Leu Pro 310 315 Leu Thr Leu Pro Pro Glu Leu Val Pro Pro Ser Phe Arg Gly Gly Lys 325 330 335 Gln Ile Asp Ser Ile Asn Gly Thr Leu Pro Ser Tyr Gln Lys Thr Gln 340 345 Glu Glu Glu Pro Gln Lys Lys Leu Pro Val Thr Phe Glu Asp Lys Arg 355 360 365 Lys Ala Asn Tyr Glu Arg Gly Asn Met Glu Leu Glu Lys Arg Arg Gln 370 375 380 Val Leu Met Glu Gln Gln Gln Arg Glu Ala Glu Arg Lys Ala Gln Lys 385 390 395 400 Glu Lys Glu Glu Trp Glu Arg Lys Gln Arg Glu Leu Gln Glu Gln Glu 405 410 415 Trp Lys Lys Gln Leu Glu Leu Glu Lys Arg Leu Glu Lys Gln Arg Glu 420 425 430 Leu Glu Arg Gln Arg Glu Glu Glu Arg Arg Lys Glu Ile Glu Arg Arg 435 440 445 Glu Ala Ala Lys Gln Glu Leu Glu Arg Gln Arg Arg Leu Glu Trp Glu 455

Arg Ile Arg Arg Gln Glu Leu Leu Asn Gln Lys Asn Arg Glu Gln Glu Glu Ile Val Arg Leu Asn Ser Lys Lys Ser Leu His Leu Glu Leu Glu Ala Val Asn Gly Lys His Gln Gln Ile Ser Gly Arg Leu Gln Asp Val Arg Ile Arg Lys Gln Thr Gln Lys Thr Glu Leu Glu Val Leu Asp Lys Gln Cys Asp Leu Glu Ile Met Glu Ile Lys Gln Leu Gln Glu 530 540 Leu Gln Glu Tyr Gln Asn Lys Leu Ile Tyr Leu Val Pro Glu Lys Gln Leu Leu Asn Glu Arg Ile Lys Asn Met Gln Leu Ser Asn Thr Pro Asp Ser Gly Ile Ser Leu Leu His Lys Lys Ser Ser Glu Lys Glu Glu Leu 580 585 590 Cys Gln Arg Leu Lys Glu Gln Leu Asp Ala Leu Glu Lys Glu Thr Ala Ser Lys Leu Ser Glu Met Asp Ser Phe Asn Asn Gln Leu Lys Cys Gly 610 615 620 Asn Met Asp Asp Ser Val Leu Gln Cys Leu Leu Ser Leu Leu Ser Cys Leu Asn Asn Leu Phe Leu Leu Leu Lys Glu Leu Arg Glu Ser Tyr Asn Thr Gln Gln Leu Ala Leu Glu Gln Leu His Lys Ile Lys Arg Asp Lys Leu Lys Glu Leu Glu Arg Lys Arg Leu Glu Gln Ile Gln Lys Lys Leu Glu Asp Glu Ala Ala Arg Lys Ala Lys Gln Gly Lys Glu Asn Leu Trp Lys Glu Ser Ile Arg Lys Glu Glu Glu Glu Lys Gln Lys Arg Leu Gln Glu Glu Lys Ser Gln Asp Arg Thr Gln Glu Glu Glu Arg Lys Thr Glu Ala Lys Gln Ser Glu Thr Ala Arg Ala Leu Val Asn Tyr Arg Ala Leu Tyr Pro Phe Glu Ala Arg Asn His Asp Glu Met Ser Phe Asn Ser Gly Asp Ile Ile Gln Val Asp Glu Lys Thr Val Gly Glu Pro Gly Trp
770 775 780 Leu Tyr Gly Ser Phe Gln Gly Lys Phe Gly Trp Phe Pro Cys Asn Tyr Val Glu Lys Met Leu Ser Ser Asp Lys Thr Pro Ser Pro Lys Lys Ala Leu Leu Pro Pro Ala Val Ser Leu Ser Ala Thr Ser Ala Ala Pro Gln Pro Leu Cys Ser Asn Gln Pro Ala Pro Val Thr Asp Tyr Gln Asn Val 835 840 845 Ser Phe Ser Asn Leu Asn Val Asn Thr Thr Trp Gln Gln Lys Ser Ala Phe Thr Arg Thr Val Ser Pro Gly Ser Val Ser Pro Ile His Gly Gln Gly Gln Ala Val Glu Asn Leu Lys Ala Gln Ala Leu Cys Ser Trp Thr Ala Lys Lys Glu Asn His Leu Asn Phe Ser Lys His Asp Val Ile Thr Val Leu Glu Gln Gln Glu Asn Trp Trp Phe Gly Glu Val His Gly Gly 915 920 925 Arg Gly Trp Phe Pro Lys Ser Tyr Val Lys Ile Ile Pro Gly Ser Glu Val Lys Arg Gly Glu Pro Glu Ala Leu Tyr Ala Ala Val Asn Lys Lys Pro Thr Ser Thr Ala Tyr Pro Val Gly Glu Glu Tyr Ile Ala Leu Tyr

_	_	_	_	965		_		_	970				_	975	
Ser	Tyr	Ser	Ser	Val	Glu	Pro	Gly		Leu	Thr	Phe	Thr		Gly	Glu
	_	_	980			_	_	985		_	_		990		
GLu	Leu		Val	Thr	GIn	Lys			Glu	Trp	Trp			Ser	Ile
47 .	~-	995		~-			1000		_	_		1005		_	
GIĀ			Thr	GIĀ	TTE			Ser	Asn	Tyr			Pro	Lys	Asp
-3	1010					1015		_	_		1020		_		_
		Asn	Val	GIY			Ser	Lys	Ser			Ser	Asn	Lys	
102					1030		_		_	1035		_			1040
Pro	GLu	ile	Ala			Thr	Ser	Ala			Ala	Ser	GLY		
_,	_	_	_	1045				_	1050			_	_	1055	
GIn	Leu	Ser	Leu		Pro	GLY	Gln			Leu	Ile	Leu			Asn
.	a	~ 1	1060		~ 1 -	- 1	~ 3.	1065			_		1070		_
ser	Ser		Trp	Trp	GIN	GIA			GIn	Ala	Arg		. –	Lys	Arg
C1	T	1075		DL.	D	21-	1080		17- 1	•	•	1085		.	_
GIN			Trp	Pne	PIO			HIS.	val	ьys			GTÄ	Pro	Ser
21-	1090		mL -	mh	D==	1095		w: _	21-	17-1	1100		17-1	-1 -	* * -
110		Arg	Thr	Int	1110		Pne	uis	ALA	1115		GIN	val	TTE	
) .cm	П	Tla			N en	G1.,	7			×	nh'a		1120
Mec	TÄT	ASP	Tyr	1125		ASII	ASII	GIU	ASP 1130		red	Asn	Pne		_
G1	G1-	Ton	Ile			Mot	N an	T ***			D	n	m	1135	
GIY	GIII	neu	1140		Vai	IJC C	ASII	1145		Asp	FIO	ASP	1150		GIN
G) w	Glu	Tla	Asn	•	t/a 1	Thr	Glw			Dro	Sár	No.			T
GLY	Gru	1155		GLY	Val	1111	1160		Ine	FIU	Ser	1165	-	val	пАг
Met	Thr		Asp	Ser	Aen	Pro			Gln	Trn	Cure			Lau	Gl n
1100	1170		-upp	561	rwp	1175		GIII	GIII	ııp	1180		Asp	Leu	GIH
Ala			Thr	Met	Gln			Glu	Ara	T.vs			G1 v	ጥኒታ	Tle
118					1190				9	1195		0211	OL,	- 1 -	1200
		Leu	Ile				Glu	Ara	Tvr			Asp	Leu	Gln	
				1205					1210					1215	
Val	Ile	Glu	Val	Phe	Gln	Lys	Arq	Met	Ala	Glu	Ser	Glv	Phe	Leu	Thr
Val	Ile	Glu	Val 1220		Gln	Lys	Arg	Met 1225		Glu	Ser	Gly	Phe 1230		Thr
			1220)				1225	5			_	1230)	
			1220 Met)			Phe	1225 Val	5			_	1230 Leu)	
Glu	Ala	Glu 1235	1220 Met) Ala	Leu	Ile	Phe 1240	1225 Val	Asn	Trp	Lys	Glu 1245	1230 Leu) Ile	Met
Glu Ser	Ala Asn 1250	Glu 1235 Thr	1220 Met Lys) Ala Leu	Leu Leu	Ile Lys 1255	Phe 1240 Ala	1225 Val Leu	Asn Arg	Trp Val	Lys Arg 1260	Glu 1245 Lys	1230 Leu Lys	lle Thr	Met Gly
Glu Ser	Ala Asn 1250	Glu 1235 Thr	1220 Met Lys) Ala Leu	Leu Leu	Ile Lys 1255	Phe 1240 Ala	1225 Val Leu	Asn Arg	Trp Val	Lys Arg 1260	Glu 1245 Lys	1230 Leu Lys	lle Thr	Met Gly
Glu Ser	Ala Asn 1250 Glu	Glu 1235 Thr	1220 Met) Ala Leu	Leu Leu	Ile Lys 1255 Glu	Phe 1240 Ala	1225 Val Leu	Asn Arg	Trp Val	Lys Arg 1260 Ile	Glu 1245 Lys	1230 Leu Lys	lle Thr	Met Gly
Glu Ser Gly 126	Ala Asn 1250 Glu	Glu 1235 Thr O Lys	1220 Met Lys	Ala Leu Pro	Leu Leu Val 1270	Ile Lys 1255 Glu	Phe 1240 Ala Met	1225 Val Leu Met	Asn Arg Gly	Trp Val Asp 1275	Lys Arg 1260 Ile	Glu 1245 Lys Leu	1230 Leu Lys Ala	Ile Thr Ala	Met Gly Glu 1280
Glu Ser Gly 126: Leu	Ala Asn 1250 Glu Ser	Glu 1235 Thr) Lys His	1220 Met 5 Lys Met Met	Ala Leu Pro Gln 1285	Leu Leu Val 1270 Ala	Ile Lys 1255 Glu Tyr	Phe 1240 Ala Met	1225 Val Leu Met	Asn Arg Gly Phe 1290	Trp Val Asp 1275 Cys	Lys Arg 1260 Ile Ser	Glu 1245 Lys Leu Cys	1230 Leu Lys Ala Gln	Ile Thr Ala Leu 1295	Met Gly Glu 1280 Asn
Glu Ser Gly 126: Leu	Ala Asn 1250 Glu Ser	Glu 1235 Thr) Lys His	1220 Met Lys Met Met Leu	Ala Leu Pro Gln 1285 Leu	Leu Leu Val 1270 Ala	Ile Lys 1255 Glu Tyr	Phe 1240 Ala Met	1225 Val Leu Met Arg	Asn Arg Gly Phe 1290 Asp	Trp Val Asp 1275 Cys	Lys Arg 1260 Ile Ser	Glu 1245 Lys Leu Cys	1230 Leu Lys Ala Gln	Ile Thr Ala Leu 1295	Met Gly Glu 1280 Asn
Glu Ser Gly 1269 Leu Gly	Ala Asn 1250 Glu Ser Ala	Glu 1235 Thr) Lys His	1220 Met Lys Met Met Leu 1300	Ala Leu Pro Gln 1285 Leu	Leu Val 1270 Ala Gln	Lys 1255 Glu Tyr	Phe 1240 Ala Met Ile	Val Leu Met Arg	Asn Arg Gly Phe 1290 Asp	Trp Val Asp 1275 Cys Glu	Lys Arg 1260 Ile Ser Asp	Glu 1245 Lys Leu Cys	1230 Leu Lys Ala Gln Asp 1310	Thr Ala Leu 1295 Phe	Met Gly Glu 1280 Asn Lys
Glu Ser Gly 1269 Leu Gly	Ala Asn 1250 Glu Ser Ala	Glu 1235 Thr Lys His Ala	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu	Leu Val 1270 Ala Gln	Lys 1255 Glu Tyr	Phe 1240 Ala Met Ile Lys Ser	Val Leu Met Arg Thr 1305 Asp	Asn Arg Gly Phe 1290 Asp	Trp Val Asp 1275 Cys Glu	Lys Arg 1260 Ile Ser Asp	Glu 1245 Lys Leu Cys Ala	Leu Lys Ala Gln Asp 1310	Thr Ala Leu 1295 Phe	Met Gly Glu 1280 Asn Lys
Glu Ser Gly 1269 Leu Gly Glu	Ala Asn 1250 Glu Ser Ala	Glu 1235 Thr Lys His Ala Leu 1315	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu Lys	Leu Val 1270 Ala Gln Leu	Lys 1255 Glu Tyr Gln Ala	Phe 1240 Ala Met Ile Lys Ser 1320	Val Leu Met Arg Thr 1305 Asp	Asn Arg Gly Phe 1290 Asp Pro	Trp Val Asp 1275 Cys Glu Arg	Lys Arg 1260 Ile Ser Asp Cys	Cys Ala Lys 1325	Lys Ala Gln Asp 1310 Gly	Ile Thr Ala Leu 1295 Phe Met	Met Gly Glu 1280 Asn Lys Pro
Glu Ser Gly 1269 Leu Gly Glu	Ala Asn 1250 Glu Ser Ala Phe	Glu 1235 Thr D Lys His Ala Leu 1315 Ser	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu Lys	Leu Val 1270 Ala Gln Leu Leu	Lys 1255 Glu Tyr Gln Ala	Phe 1240 Ala Met Ile Lys Ser 1320 Pro	Val Leu Met Arg Thr 1305 Asp	Asn Arg Gly Phe 1290 Asp Pro	Trp Val Asp 1275 Cys Glu Arg	Lys Arg 1260 Ile Ser Asp Cys	Cys Leu Cys Ala Lys 1325	Lys Ala Gln Asp 1310 Gly	Ile Thr Ala Leu 1295 Phe Met	Met Gly Glu 1280 Asn Lys Pro
Glu Ser Gly 1265 Leu Gly Glu Leu	Ala Asn 1250 Glu Ser Ala Phe Ser 1330	Glu 1235 Thr Lys His Ala Leu 1315 Ser	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu Lys	Leu Leu Val 1270 Ala Gln Leu Leu	Lys 1255 Glu Tyr Gln Ala Lys 1335	Phe 1240 Ala Met Ile Lys Ser 1320 Pro	Leu Met Arg Thr 1305 Asp	Asn Arg Gly Phe 1290 Asp Pro	Trp Val Asp 1275 Cys Glu Arg	Lys Arg 1260 Ile Ser Asp Cys Ile 1340	Cys Leu Cys Ala Lys 1325	Lys Lys Ala Gln Asp 1310 Gly Arg	Ile Thr Ala Leu 1295 Phe Met	Met Gly Glu 1280 Asn Lys Pro
Glu Ser Gly 1265 Leu Gly Glu Leu	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu	Glu 1235 Thr Lys His Ala Leu 1315 Ser	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu Lys	Leu Val 1270 Ala Gln Leu Leu Ile	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu	Phe 1240 Ala Met Ile Lys Ser 1320 Pro	Leu Met Arg Thr 1305 Asp	Asn Arg Gly Phe 1290 Asp Pro	Trp Val Asp 1275 Cys Glu Arg Arg	Arg 1260 Ile Ser Asp Cys Ile 1340 Gln	Cys Leu Cys Ala Lys 1325	Lys Lys Ala Gln Asp 1310 Gly Arg	Ile Thr Ala Leu 1295 Phe Met	Met Gly Glu 1280 Asn Lys Pro Pro Asp
Glu Ser Gly 126 Leu Gly Glu Leu Leu 134	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu	Glu 1235 Thr Lys His Ala Leu 1315 Ser	Met Lys Met Leu 1300 Lys Phe	Ala Leu Pro Gln 1285 Leu Lys Leu Ser	Leu Val 1270 Ala Gln Leu Leu Ile 1350	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu	Phe 1240 Ala Met Ile Lys Ser 1320 Pro	Leu Met Arg Thr 1305 Asp Met Asn	Asn Arg Gly Phe 1290 Asp Pro Gln Thr	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355	Arg 1260 Ile Ser Asp Cys Ile 1340 Gln	Cys Leu Cys Ala Lys 1325 Thr	Lys Lys Ala Gln Asp 1310 Gly Arg	Ile Thr Ala Leu 1295 Phe Met Tyr	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360
Glu Ser Gly 126 Leu Gly Glu Leu Leu 134	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu	Glu 1235 Thr Lys His Ala Leu 1315 Ser	1220 Met Lys Met Met Leu 1300 Lys	Ala Leu Pro Gln 1285 Leu Lys Leu Ser	Leu Val 1270 Ala Gln Leu Leu Ile 1350 Leu	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu	Phe 1240 Ala Met Ile Lys Ser 1320 Pro	Leu Met Arg Thr 1305 Asp Met Asn	Asn Arg Gly Phe 1290 Asp Pro Gln Thr	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala	Arg 1260 Ile Ser Asp Cys Ile 1340 Gln	Cys Leu Cys Ala Lys 1325 Thr	Lys Lys Ala Gln Asp 1310 Gly Arg	Ile Thr Ala Leu 1295 Phe Met Tyr Vál	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser
Glu Ser Gly 126 Leu Gly Glu Leu Leu 134 His	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser	Glu 1235 Thr Lys His Ala Leu 1315 Ser	Met Lys Met Leu 1300 Phe Arg	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365	Leu Val 1270 Ala Gln Leu Leu Ile 1350 Leu	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu	Phe 1240 Ala i Met Ile Lys Ser 1320 Pro i Glu Leu	1225 Val Leu Met Arg Thr 1305 Asp Met Asn Glu	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala	Arg 1260 Ile Ser Asp Cys Ile 1340 Gln	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr	Lys Ala Gln Asp 1310 Gly Arg His	Ile Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser
Glu Ser Gly 126 Leu Gly Glu Leu Leu 134 His	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser	Glu 1235 Thr Lys His Ala Leu 1315 Ser	1220 Met Lys Met Met Leu 1300 Lys Phe Arg Leu Glu	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly	Leu Val 1270 Ala Gln Leu Leu Ile 1350 Leu	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu	Phe 1240 Ala i Met Ile Lys Ser 1320 Pro i Glu Leu	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg 1370 Glu	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala	Arg 1260 Ile Ser Asp Cys Ile 1340 Gln	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr	1230 Leu Lys Ala Gln Asp 1310 Gly Arg His Leu	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser
Glu Ser Gly 1265 Leu Gly Glu Leu 1345 His	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser Val	Glu 1235 Thr 1 Lys His Ala Leu 1315 Ser 0 Ile Ser Asn	1220 Met Lys Met Met Leu 1300 Lys Phe Arg Leu	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly	Leu Val 1270 Ala Gln Leu Leu Leu Val Val Val	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Glu	1225 Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys 1385	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala	Lys Arg 1260 Ile Ser Asp Cys Ile Gln Glu Ser	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu	Leu Lys Ala Gln Asp 1310 Gly Arg Arg Arg Arg Arg Arg	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu
Glu Ser Gly 1265 Leu Gly Glu Leu 1345 His	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser Val	Glu 1235 Thr 10 Lys His Ala Leu 1315 Ser O Ile Ser Asn	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly	Leu Val 1270 Ala Gln Leu Leu Leu Val Val Val	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Glu Cys	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys Glu	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala	Lys Arg 1260 Ile Ser Asp Cys Ile Gln Glu Ser	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu	Leu Lys Ala Gln Asp 1310 Gly Arg Arg Arg Arg Arg Arg Cla	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu
Glu Ser Gly 1265 Leu Gly Glu Leu 1344 His Gln Trp	Ala Asn 1256 Glu Ser Ala Phe Ser 1330 Leu Ser Val	Glu 1235 Thr 10 Lys His Ala Leu 1315 Ser O Ile Ser Asn Gln 1395	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys Gly His	Leu Val 1270 Ala 6Gln Leu 11e 1350 Leu Val Val	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg	Phe 1240 Ala Met Lys Ser 1320 Pro Glu Leu Glu Cys 1400	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys 1385 Glu	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Gly	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala Asn Leu	Lys Arg 1260 Ile Ser Asp Cys Ile Gln Glu Ser Ala	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405	Leu Lys Ala Gln Asp 1310 Gly Arg Leu Arg Leu	Ile Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile
Glu Ser Gly 1265 Leu Gly Glu Leu 1344 His Gln Trp	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser Val Ile Asn	Glu 1235 Thr 1235 Lys His Ala Leu 1315 Ser O Ile Ser Asn Gln 1395 Ser	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys Gly His	Leu Val 1270 Ala 6Gln Leu 11e 1350 Leu Val Val	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Glu Cys 1400 Leu	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys 1385 Glu	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Gly	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala Asn Leu	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Gln Glu Ser Ala	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405 Leu	Leu Lys Ala Gln Asp 1310 Gly Arg Leu Arg Leu	Ile Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile
Glu Ser Gly 1265 Leu Gly Glu Leu 1345 His Gln Trp	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser Val Ile Asn 1410	Glu 1235 Thr 125 Lys His Ala Leu 1315 Ser Office Asn Gln 1395 Ser Office Ser	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly His	Leu Val 1270 Ala 6 Gln Leu 1350 Leu Val Val Val	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys 1415	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Glu Cys 1400 Leu	Val Leu Met Arg Thrr1305 Asp Met Asn Glu Lys 1383 Glu Gly	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Glu Gly	Trp Val Asp 1275 Cys Glu Arg Pro 1355 Ala Asn Leu Arg	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Glu Ser Ala Lys 1420	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405 Leu	Leu Lys Ala Gln Asp 1310 Gly Arg Arg Leu Arg Leu Leu Leu Leu	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu Leu Tyr	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile
Glu Ser Gly 126 Leu Gly Glu Leu 134 His Gln Trp Phe	Ala Asn 1256 Glu Ser Ala Phe Ser 1330 Leu Ser Val Ile Asn 1410 Lys	Glu 1235 Thr 125 Lys His Ala Leu 1315 Ser Office Asn Gln 1395 Ser Office Ser	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly His	Leu Val 1270 Ala 6 Gln Leu 1350 Leu Val Val Val Asn	Lys 1335 Leu Ala Arg Gln Cys 1415 Lys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Glu Cys 1400 Leu	Val Leu Met Arg Thrr1305 Asp Met Asn Glu Lys 1383 Glu Gly	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Glu Gly	Trp Val Asp 1275 Cys Glu Arg Pro 1355 Ala Asn Leu Arg Glu	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Glu Ser Ala Lys 1420 Leu	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405 Leu	Leu Lys Ala Gln Asp 1310 Gly Arg Arg Leu Arg Leu Leu Leu Leu	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu Leu Tyr	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile Ser Leu
Glu Ser Gly 126 Leu Gly Glu Leu 134 His Gln Trp Phe Gly 142	Ala Asn 1256 Glu Ser Ala Phe Ser 1330 Leu Ser Val Ile Asn 1410 Lys 5	Glu 1235 Thr Lys Lys His Ala Leu 1315 Ser O Ile Ser Asn Gln 1399 Ser O Leu	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu Glu 1380 Ala b	Ala Leu Pro Gln 1285 Leu Lys Lys Leu Lys His Thr	Leu Val 1270 Ala 6 Gln Leu Leu Val Val Val Val Asn Thr 1430	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys 1415 Lys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Cys 1400 Leu Ser	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys 1385 Glu Gly Asn	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Gly Pro Lys	Trp Val Asp 1275 Cys Glu Arg Pro 1355 Ala Asn Leu Arg Glu 1435	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Gln Glu Ser Ala Lys 1420 Leu	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405 Leu His	1230 Leu Lys Ala Gln Asp 1310 Gly Arg His Leu Arg 1390 Gln i	Ile Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu Leu Tyr	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile Ser Leu 1440
Glu Ser Gly 126 Leu Gly Glu Leu 134 His Gln Trp Phe Gly 142	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Leu Ser Val Ile Asn 1410 Lys 5	Glu 1235 Thr Lys Lys His Ala Leu 1315 Ser O Ile Ser Asn Gln 1399 Ser O Leu	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Ala	Ala Leu Pro Gln 1285 Leu Lys Lys Leu Lys His Thr Lys Leu	Leu Val 1270 Ala 6 Gln Leu Leu Val Val Val Val Asn Thr 1430 Leu	Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys 1415 Lys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Cys 1400 Leu Ser	Val Leu Met Arg Thr 1305 Asp Met Asn Glu Lys 1385 Glu Gly Asn	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Glu Gly Pro Lys Leu	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala Asn Leu Arg Glu 1435 Val	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Gln Glu Ser Ala Lys 1420 Leu	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Asn Glu Asp Glu 1405 Leu His	1230 Leu Lys Ala Gln Asp 1310 Gly Arg His Leu Arg 1390 Gln i	Ile Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu Leu Tyr Phe	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile Ser Leu 1440 Ala
Glu Ser Gly 1265 Leu Gly Glu Leu 134 His Gln Trp Phe Gly 142 Phe	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Ser Val Ile Asn 1410 Lys Asn	Glu 1235 Thr Lys Lys His Ala Leu 1315 Ser Office Ser Asn Gln 1395 Ser Cheu Asp	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu 1380 Leu Tyr Phe	Ala Leu Pro Gln 1285 Leu Lys Leu Ser Lys 1365 Gly His Thr Lys	Leu Leu Val 1270 Ala Gln Leu Leu Val Val Asn Thr 14336 Leu 6	Ile Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys 1415 Lys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Cys 1400 Leu Ser Thr	Val Leu Met Arg Thr 1305 Asp Met Lys 1385 Glu Gly Asn Tyr	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg 1370 Glu Gly Pro Lys Leu 1450	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala Asn Leu Arg Glu 435 Val	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Gln Glu Ser Ala Lys 1420 Lys Arg	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Glu Asp Glu 1405 Leu His Gln	Leu Lys Ala Gln Asp 1310 Gly Arg His Leu Arg Gln Color	Ile Thr Ala Leu 1295 Phe Met Tyr Vál Cys 1375 Leu Tyr Leu Tyr Ala 1455	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile Ser Leu 1440 Ala
Glu Ser Gly 1265 Leu Gly Glu Leu 134 His Gln Trp Phe Gly 142 Phe	Ala Asn 1250 Glu Ser Ala Phe Ser 1330 Ser Val Ile Asn 1410 Lys Asn	Glu 1235 Thr Lys Lys His Ala Leu 1315 Ser Office Ser Asn Gln 1395 Ser Cheu Asp	1220 Met Lys Met Leu 1300 Lys Phe Arg Leu Glu 1380 Ala b	Ala Leu Pro Gln 1285 Leu Lys Lys Leu Lys Leu Lys Leu Lys Leu Lys Leu Lys Leu 1365 Gly His Lys Leu 1445 Glu	Leu Leu Val 1270 Ala Gln Leu Leu Val Val Asn Thr 14336 Leu 6	Ile Lys 1255 Glu Tyr Gln Ala Lys 1335 Leu Ala Arg Gln Cys 1415 Lys	Phe 1240 Ala Met Ile Lys Ser 1320 Pro Glu Leu Cys 1400 Leu Ser Thr	Val Leu Met Arg Thr 1305 Asp Met Lys 1385 Glu Gly Asn Tyr	Asn Arg Gly Phe 1290 Asp Pro Gln Thr Arg Gly Pro Lys Leu 1450 Ser	Trp Val Asp 1275 Cys Glu Arg Arg Pro 1355 Ala Asn Leu Arg Glu 435 Val	Lys Arg 1260 Ile Ser Asp Cys Ile 1340 Gln Glu Ser Ala Lys 1420 Lys Arg	Glu 1245 Lys Leu Cys Ala Lys 1325 Thr Glu Asp Glu 1405 Leu His Gln	Leu Lys Ala Gln Asp 1310 Gly Arg His Leu Arg Gln Color	Thr Ala Leu 1295 Phe Met Tyr Val Cys 1375 Leu Leu Tyr Phe Ala 1455 Gln	Met Gly Glu 1280 Asn Lys Pro Pro Asp 1360 Ser Glu Ile Ser Leu 1440 Ala

Lys Met Tyr Lys Thr Pro Ile Phe Leu Asn Glu Val Leu Val Lys Leu 1475 1480 · 1485 Pro Thr Asp Pro Ser Ser Asp Glu Pro Val Phe His Ile Ser His Ile 1490 1500 1495 Asp Arg Val Tyr Thr Leu Arg Thr Asp Asn Ile Asn Glu Arg Thr Ala 1505 1510 1515 Trp Val Gln Lys Ile Lys Ala Ala Ser Glu Gln Tyr Ile Asp Thr Glu 1525 1530 1535 Lys Lys Lys Arg Glu Lys Ala Tyr Gln Ala Arg Ser Gln Lys Thr Ser 1540 1545 1550 Gly Ile Gly Arg Leu Met Val His Val Ile Glu Ala Thr Glu Leu Lys 1560 1555 1565 Ala Cys Lys Pro Asn Gly Lys Ser Asn Pro Tyr Cys Glu Ile Ser Met 1570 1575 1580 Gly Ser Gln Ser Tyr Thr Thr Arg Thr Leu Gln Asp Thr Leu Asn Pro 1585 1590 1595 Lys Trp Asn Phe Asn Cys Gln Phe Phe Ile Lys Asp Leu Tyr Gln Asp 1610 1605 Val Leu Cys Leu Thr Met Phe Asp Arg Asp Gln Phe Ser Pro Asp Asp 1620 1625 Phe Leu Gly Arg Thr Glu Val Pro Val Ala Lys Ile Arg Thr Glu Gln 1635 1640 1645 Glu Ser Lys Gly Pro Thr Thr Arg Arg Leu Leu His Glu Val Pro 1650 1655 1660 Thr Gly Glu Val Trp Val Arg Phe Asp Leu Gln Leu Phe Glu Gln Lys 1665 1670 1675 1680 Thr Leu Leu

International application No. PCT/US99/26860

			~				
	SSIFICATION OF SUBJECT MATTER :C07H 21/00						
US CL	: 536/23.2		:				
According t	to International Patent Classification (IPC) or to both	national classification and IPC					
	DS SEARCHED						
Minimum d	ocumentation scarched (classification system follows	d by classification symbols)	•				
U.S. :	536/23.2						
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched				
			and more sometime				
	lata base consulted during the international search (na	•	scarch terms used)				
BIOSIS (CA CAPLUS EMBASE MEDLINE GENBANK SEQ	UENCE SEARCH					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
x	KALCHMAN, M.A. HIP1, a huma	n homologue of S.cerevisiae	1-3, 9-12.				
	Sla2p, interacts with membrane-associ	_	·				
	Nature Genetics. May 1997, Vol. 16	, No. 1 pages 44-53, entire	•				
	document.						
x	Database GenBank Accession No.	075042 SEVI N et al	1-3				
^	'Characterization of cDNA clones		1-3				
	libraries from human brain'., 01 Nove						
	, 01 100						
X	Database GenBank Accession No. 075065. SEKI, N. et al. 1-3						
	'Characterization of cDNA clones in size-fractionated cDNA						
	libraries from human brain'. 01 Nove	mber 1998.					
x	Database GenBank Accession No. AA9	87244 NCI CGAD 'National	3				
^	Cancer Institute, Cancer Genome Anat		,				
	Gene Index'. 27, July 1998.	omy Project (CCPII), Pullor					
	,						
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.					
•	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl	rnational filing date or priority ication but cited to understand				
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention				
	rise document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered					
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"Y" document of particular relevance: the	adalas ad farmado				
•	scial reason (as specified) cument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such	step when the document is				
me		being obvious to a person skilled in t	he art				
the	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same paten					
Date of the	actual completion of the international search	Date of mailing of the international sea	irch report				
19 JANU	ARY 2000	10 FEB 2000					
	nailing address of the ISA/US	Authorized officer	K				
Box PCT	ner of Patents and Trademarks	MANJUNATH RAO					
	n, D.C. 20231 Io. (703) 305-3230	Telephone No. (703) 308-0196					

International application No.
PCT/US99/26860

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
x	Database GenBank Accession No. AA664799. NCI-CGAP 'National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gen Index'. 13, February 1998.	3
ĸ	Database GenBank Accession No. AB007923. OHARA, O. 'Homo sapiens mRNA for KIAAA0454 protein, partial cds.' 13, August 1998.	
X	GenBank Accession No. AB007946. O'HARA et al. 'Homo sapiens male brain cDNA to mRNA, clone lib:pBluescriptII SK plus clone:HH0492'. 13 August 1998.	3
x	Database GenBank Accession No. AA671390. MARRA et al. 'The WashU-HHMI Mouse EST Project'. 25 November 1997	3
x	Database GenBank Accession No. AA110441. MARRA, M. et al. 'The WashU-HHMI Mouse EST Project'. 03 February 1997.	3
,		

International application No. PCT/US99/26860

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-3 and 9-12
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International application No. PCT/US99/26860

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-3 and 9-12, drawn to polynucleotides encoding PDE-binding proteins.

Group II, claims 4-8, drawn to PDE-binding proteins.

Group III, claims 13-15, drawn to a monocional antibody.

Group IV, claims 16-19, drawn to a method of determining the agent that modulates PDE activity.

Group V, claim 20, drawn to a method of modulating PDE activity.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The polynucleotides encoding PDE-interacting proteins are known in the prior art and does not contribute over the prior art (Kalchman et al. Nature Genetics, May 1997, Vol. 16(1):44-53).

Group I is a product; this shares the special technical feature of DNA molecules which groups II-V do not share.

Group II is a product; this shares the special technical feature of a protein which groups I and III-V do not share.

Group III is a product; this shares the special technical feature of an antibody which groups I,II, IV-V do not share.

Groups IV and V are processes; this shares the special technical feature of uncharacterized chemical compounds which groups I-III do not share.