

Binary Classification / Perceptron

Nicholas Ruozzi
University of Texas at Dallas

Supervised Learning

- Input: $(x_1, y_1), ..., (x_n, y_n)$
 - $-x_i$ is the i^{th} data item and y_i is the i^{th} label
- Goal: find a function f such that $f(x_i)$ is a "good approximation" to y_i
 - Can use it to predict y values for previously unseen x values

Examples of Supervised Learning

Spam email detection

Handwritten digit recognition

Stock market prediction

More?

Supervised Learning

- Hypothesis space: set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space

— How do we measure the quality of f?

Regression

Squared loss function used to measure the error of the approximation

Linear Regression

 In typical regression applications, measure the fit using a squared loss function

$$L(f, y_i) = (f(x_i) - y_i)^2$$

- Want to minimize the average loss on the training data
- For linear regression, the learning problem is then

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax_i + b - y_i)^2$$

• For an unseen data point, x, the learning algorithm predicts f(x)

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

```
+
+ + +
+ - +
+ - +
+ - +
+ - -
```


- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

Linear Separators

In n dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

with
$$w \in \mathbb{R}^n$$
, $b \in \mathbb{R}$

• Hyperplanes divide \mathbb{R}^n into two distinct sets of points (called halfspaces)

$$w^T x + b > 0$$

$$w^T x + b < 0$$

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

The Linearly Separable Case

- Input $(x^{(1)}, y_1), ..., (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, 1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = w^T x + b$$

How should we choose the loss function?

The Linearly Separable Case

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, 1\}$
- Hypothesis space: separating hyperplanes

$$f_{w,b}(x) = w^T x + b$$

- How should we choose the loss function?
 - Count the number of misclassifications

$$loss = \sum_{i} |y_i - sign(f_{w,b}(x^{(i)}))|$$

Tough to optimize, gradient contains no information

The Linearly Separable Case

- Input $(x^{(1)}, y_1), ..., (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, 1\}$
- Hypothesis space: separating hyperplanes

$$f_{w,b}(x) = w^T x + b$$

- How should we choose the loss function?
 - Penalize each misclassification by the size of the violation

$$perceptron \ loss = \sum_{i} \max\{0, -y_i f_{w,b}(x^{(i)})\}$$

Modified hinge loss (this loss is convex, but not differentiable)

The Perceptron Algorithm

Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = \sum_{i:-y_{i}f_{w,b}(x^{(i)})\geq 0} -y_{i}x^{(i)}$$

$$\nabla_b(perceptron\ loss) = \sum_{i:-y_i f_{w,b}(x^{(i)}) \ge 0} -y_i$$

The Perceptron Algorithm

Try to minimize the perceptron loss using (sub)gradient descent

$$w^{(t+1)} = w^{(t)} + \gamma_t \cdot \sum_{i: -y_i f_{w(t), b(t)} (x^{(i)}) \ge 0} y_i x^{(i)}$$

$$b^{(t+1)} = b^{(t)} + \gamma_t \cdot \sum_{i: -y_i f_{w(t), b(t)} \left(x^{(i)}\right) \ge 0} y_i$$

• With step size γ_t (sometimes called the learning rate)

Stochastic Gradient Descent

- To make the training more practical, stochastic gradient descent is used instead of standard gradient descent
- Approximate the gradient of a sum by sampling a few indices (as few as one) uniformly at random and averaging

$$\nabla_{x} \left[\sum_{i=1}^{n} g_{i}(x) \right] \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{x} g_{i_{k}}(x)$$

here, each i^k is sampled uniformly at random from $\{1, ..., n\}$

Stochastic gradient descent converges under certain assumptions on the step size

Stochastic Gradient Descent

• Setting K=1, we can simply pick a random observation i and perform the following update if the i^{th} data point is misclassified

$$w^{(t+1)} = w^{(t)} + \gamma_t y_i x^{(i)}$$
$$b^{(t+1)} = b^{(t)} + \gamma_t y_i$$

and

$$w^{(t+1)} = w^{(t)}$$

 $b^{(t+1)} = b^{(t)}$

otherwise

• Sometimes, you will see the perceptron algorithm specified with $\gamma_t=1$ for all t

Application of Perceptron

- Spam email classification
 - Represent emails as vectors of counts of certain words (e.g., sir, madam, Nigerian, prince, money, etc.)
 - Apply the perceptron algorithm to the resulting vectors
 - To predict the label of an unseen email:
 - Construct its vector representation, x'
 - Check whether or not $w^Tx' + b$ is positive or negative

Perceptron Learning

Drawbacks:

- No convergence guarantees if the observations are not linearly separable
- Can overfit
 - There are a number of perfect classifiers, but the perceptron algorithm doesn't have any mechanism for choosing between them

What If the Data Isn't Separable?

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

What If the Data Isn't Separable?

- Input $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^m with an associated sign (either +/- corresponding to 0/1)
- An example with m=2

Perceptron algorithm only works for linearly separable data

Can add features to make the data linearly separable over a larger space!

The idea:

- Given the observations $x^{(1)}$, ..., $x^{(n)}$, construct a feature vector $\phi(x)$
- Use $\phi(x^{(1)}), \dots, \phi(x^{(n)})$ instead of $x^{(1)}, \dots, x^{(n)}$ in the learning algorithm
- Goal is to choose ϕ so that $\phi(x^{(1)}), \ldots, \phi(x^{(n)})$ are linearly separable
- Learn linear separators of the form $w^T \phi(x)$ (instead of $w^T x$)
- Warning: more expressive features can lead to overfitting

Examples

$$-\phi(x_1,x_2) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This is just the input data, without modification

$$-\phi(x_1, x_2) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

 This corresponds to a second degree polynomial separator, or equivalently, elliptical separators in the original space

Support Vector Machines

How can we decide between two perfect classifiers?

 What is the practical difference between these two solutions?

