Lecture 7: Irreducible Representations

Filipp Furche

Chem 150/250 Fall 2023

10/13/2023

http://ffgroup.chem.uci.edu

Direct Sums

• Direct sum of two vector spaces V_1, V_2 :

$$V_1 \oplus V_2 = (v_1, v_2) | v_1 \in V_1, v_2 \in V_2$$

- Example: $\mathbb{R}^3 = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$
- Often called "direct product", but the direct (Cartesian) product (x) of sets does not imply linear structure. Do not confuse with outer (tensor) product!
- (v_1,v_2) is also written $v_1\oplus v_2$ and represented by "vector of vectors" $\begin{pmatrix} v_1\\v_2 \end{pmatrix}$
- Direct sum of linear operators $P_1: V_1 \to V_1$ and $P_2: V_2 \to V_2:$ $P_1 \oplus P_2: V_1 \oplus V_2 \to V_1 \oplus V_2$ such that

$$P_1 \oplus P_2(v_1, v_2) = (P_1v_1, P_2v_2).$$

• Matrix notation:

$$\textbf{P}_1 \oplus \textbf{P}_2 = \begin{pmatrix} \textbf{P}_1 & \textbf{0} \\ \textbf{0} & \textbf{P}_2 \end{pmatrix}$$

Irreducible Representations

- Consider group $G = \{a, b, \ldots\}$
- Direct sum of two representations $\Gamma_1 = \{ \mathbf{P}_1(a), \mathbf{P}_1(b), \ldots \}$, $\Gamma_2 = \{ \mathbf{P}_2(a), \mathbf{P}_2(b), \ldots \}$ of \mathcal{G} :

$$\Gamma_1 \oplus \Gamma_2 = \{ \mathsf{P}_1(\mathsf{a}) \oplus \mathsf{P}_2(\mathsf{a}), \mathsf{P}_1(\mathsf{b}) \oplus \mathsf{P}_2(\mathsf{b}), \ldots \}$$

- A representation that can be written as ("decomposed/subduced into") a direct sum of two or more nontrivial representations of G is reducible.
- An irreducible representation (IRREP) is not reducible.

Properties of IRREPs

- Number of IRREPs = number of classes. Finite for finite groups!
- ullet Every reducible representation Γ can be decomposed into IRREPs:

$$\Gamma = \alpha \oplus \beta \oplus \cdots$$

The same IRREP may appear multiple times ("inequivalent" IRREPs)

 Similarly, the underlying representation space is direct sum of IRREP spaces invariant under a given IRREP:

$$S_{\Gamma} = S_{\alpha} \oplus S_{\beta} \oplus \cdots$$

ullet Dimension $\dim(S_lpha)=n_lpha d_lpha$, with "IRREP dimension" d_lpha

$$\dim(S_{\Gamma}) = n_{\alpha}d_{\alpha} + n_{\alpha}d_{\beta} + \cdots$$

• Multiplicity of an IRREP α in REP Γ :

$$n_{\alpha} = \frac{1}{g} \sum_{a \in G} \chi_{\alpha}^{*}(a) \chi_{\Gamma}(a)$$

IRREP characters of point groups available in character tables

Example: $C_{2\nu}$

Character table:

C_{2v}		C_2		$\sigma_{v'}$	
A_1	1	1	1	1	$z; x^2; y^2; z^2$
A_2	1	1	-1	-1	R_z ; xy
B_1	1	-1	1	-1	$y; R_x; yz$
B_2	1	-1	-1	1	x ; R_y ; xz

• Decomposition of Γ_r into IRREPs:

• Analogous: $n_{A_2} = 0$, $n_{B_1} = n_{B_2} = 1$.