Počítačové a komunikačné siete

Internet Protocol version 6 (IPv6)

Prednáška 9

Opakovanie minulej prednášky

» IPv4 subnetting

- Net ID, ak PC1 ma IP 20.20.140.20/20
- Broadcast, ak PC2 ma IP 172.16.32.96/26

» TCP

- Riadenie toku
- Riadenie zahltenie
- cwnd, rwnd, mss, ssthresh, SS, CA
- ARQ metódy

Čo nás čaká na prednáške

- » IPv6 štruktúra paketu
- » Problémy IPv4
- » IPv6 adresy a rozsahy
- » Autokonfigurácia a NDP
- » IPv6 subnetting
- » Koexistencia IPv4 a IPv6

Sieťová vrstva

Aplikačná vrstva Prezentačná Aplikačná vrstva vrstva Relačná vrstva Transportná vrstva Transportná vrstva Sieťová vrstva Sieťová vrstva Linková vrstva Linková vrstva

IPv4 paket

- \rightarrow Version = 0b0100
- » DS = Packet Priority (možno použiť na QoS)
- » TTL = Limituje počet hopov medzi smerovačmi
- » Protocol = Vnorený protokol ako napr. TCP
- » Source IP Address = zdrojový uzol
- » Destination IP Address = cieľový uzol

IPv6 paket

- » IPv6 paket jednoduchší, nie menší
- » Pevná dĺžka paketu 40B
- » 16B adresy
- » Niektoré polia premenované
- » Polia odstránené z IPv4:
 - Flags
 - Fragment Offset
 - Header Checksum

IPv6 paket

- \rightarrow Version = 0b0110
- » Traffic Class = Priority
- » Flow Label = možnosť spracovať paket podľa priradenia k toku
- » Payload Length = dĺžka vnorených dát (Total Length z IPv4)
- » Next Header = Vnorený protokol (Protocol z IPv4)
- » Hop Limit = Max. počet hopov medzi smerovačmi (TTL IPv4)

Problémy IPv4

- » Nedostatok verejných IPv4 adries (~4x10^9)
- » Rastúca komplexnosť smerovacích tabuliek
- » Globálna dostupnosť
- » NAT
- » IoT

IPv₆

- » Väčší adresný priestor (~340 x10^36)
- » Hierarchické adresovanie
- » Eliminácia NAT
- » Jednoduchšie spracovanie paketov
- » E2E fragmentácia = žiadna fragmentácia paketov smerovačmi po trase
- » Žiadny broadcast

- » IPv6 adresa 128b = 16B
- » Hexadecimal zápis, "hextety" oddelené ":"

```
2001:0db8:0000:1111:0000:0000:0000:0200
```

- » Povolené aj skrátené tvary, pri dodržaní 2 pravidiel:
 - Vynechanie 0 na začiatku hextetu
 - Náhrada nulových hextetov cez "::"

» Plný tvar

```
2001:0db8:0000:1111:0000:0000:0000:0200
```

» Vynechanie 0 na začiatku hextetu

```
2001:db8:0:1111:0:0:0:200
```

» Nahradenie jedného neprerušeného sledu nulových hextetov

```
2001:db8:0:1111::200
```


» Aké sú skrátené tvary pre adresu?

2001:0db8:cafe:0000:0000:002e:0000:7334

» Aké sú skrátené tvary pre adresu?

2001:0db8:cafe:0000:0000:002e:0000:7334

» Riešenie

2001:db8:cafe:0:0:2e:0:7334

2001:db8:cafe::2e:0:7334

» Je skrátený tvar adresy správny?

2001:0db8:0000:00a3:abcd:0000:0000:1234

2001:db8::a3:abcd::1234

» Je skrátený tvar adresy správny?

2001:0db8:0000:00a3:abcd:0000:0000:1234

2001:db8::a3:abcd::1234

» Riešenie

− Nie ,;:" môže byť v adrese iba raz

2001:db8:0:a3:abcd::1234

» Použitie v URL, alebo zápisoch spolu s portom sa ohraničí "[]"

```
https://[2001:db8:a3:abcd::1234]/
```

[2001:db8:a3:abcd::1234]:443

» Zápis aj s identifikáciou sieťového rozhrania

2001:db8:a3:abcd::1234%2

IPv6 rozsahy adries

- » Unicast
- » Multicast
- » Anycast

» Každé rozhranie môže mať niekoľko IPv6 adries, nie iba jednu ako v IPv4.

IPv6 rozsahy adries

» Unicast

- Global Unicast Address (GUA) unikátna a platná globálne, ako "public" IPv4, smerovateľná v Internete
- Link Local Address (LLA) na pripojenie v lokálnom segmente a platná iba tam, nesmerovateľná v Internete
- Unique Local Address (ULA) zriedkavé použitie, smerovateľná iba v organizácii a nie v Internete, podobné "private" IPv4

IPv6 rozsahy adries

» Global Unicast Address (GUA)

2000::/3

» Link Local Address (LLA)

fe80::/10 (reálne

fe80::/64)

» Loopback ::1/128

» Unique Local Address (ULA)

fc00::/7

» Multicast address

ff00::/8 (najčastejšie

ff02::/16)

» ID rozhrania

- » Pri množstve adries, ktoré môže mať 1 rozhranie nie je manuálna konfigurácia škálovateľná
- » Autokonfigurácia náhradou za DHCP z IPv4
 - LLA autokonfigurácia adresy
 - GUA autokonfigurácia adresy

- » LLA autokonfigurácia adresy (SLAAC)
 - Link-local prefix FE80::/64
 - Interface ID vygenerovane Modified EUI-64 / random
- » Overenie konfliktov pomocou NDP Duplicate Address Detection

- » GUA autokonfigurácia adresy
 - SLAAC (podobne ako pri LLA)
 - Prefix z RA správy
 - Interface ID z Modified EUI-64 / random
 - LLA smerovača ako default gateway
- » Overenie konfliktov cez NDP Duplicate Address Detection

- » GUA autokonfigurácia adresy
 - SLAAC a bezstavové DHCPv6
 - SLAAC adresa z RA
 - LLA smerovača ako default gateway
 - DHCPv6 na ostatné, napr. adresa DNS, NTP, ...
- » Overenie konfliktov cez NDP Duplicate Address Detection

- » GUA autokonfigurácia adresy
 - Stavové DHCPv6 všetko iba z DHCPv6 servera
 - Rovnaké ako DHCP v IPv4
 - Proces a správy:
 - SOLICIT multicast na ff02::1:2
 - ADVERTISE
 - REQUEST
 - REPLY
- » Overenie konfliktov cez NDP Duplicate Address Detection

- » NDP má podobnú funkciu ako ARP a ICMP v IPv4
- » NDP definuje 5 ICMPv6 správ, 4 dôležité pre IPv6 autokonfiguráciu
 - Router Solicitation
 - Router Advertisement
 - Neighbor Solicitation
 - Neighbor Advertisement
 - Redirect

Messaging Between an IPv6 Router and an IPv6 Device

Messaging Between IPv6 Devices

Duplicate Address Detection (DAD)

IPv6 subnetting

» Triviálne oproti IPv4 – dôrazné odporúčanie používať iba subnet prefix /64

IPv6 subnetting

- » GUA subnetting
 - Global routeing prefix (48b=6B)
 - Subnet ID (16b=2B)
 - Interface ID (64b=8B)

Koexistencia IPv4 a IPv6

» Mechanizmy na prechod k IPv6

- Dual stack IPv4 aj IPv6 na zariadeniach fungujú v rovnakom čase
- Tunneling transport IPv6 paketov zabalených v IPv4 paketoch cez IPv4 sieť
- Translation NAT64 podobne ako RFC1918 privátne adresy v IPv4

IPv6 bezpečnosť

- » Dual stack a zabudnuté / žiadne IPv6 pravidlá na FW
- » NDP jednoducho zneužiteľné
- » Lokálne zabezpečenie (First hop)
 - IPv6 Snooping / ND Inspection
 - RA Guard
- » Alebo NDP nahradit' Secure Neighbor Discovery (SEND)

Zhrnutie prednášky

- » IPv6 paket
- » IPv6 adresy
- » NDP
- » Modified EUI-64
- » Autokonfigurácia

Otázky?

