Doble Grado en Ingeniería Informática y Matemáticas

Cálculo I - Supremo e ínfimo. Ejercicios resueltos

1. Prueba que un conjunto no vacío $A \subset \mathbb{R}$ está acotado si, y sólo si, hay un número real M > 0 tal que para todo $a \in A$ se verifica que $|a| \leq M$.

Solución. Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado. Esto quiere decir que A está mayorado y minorado, es decir, existen números reales α , β verificando que $\alpha \leqslant x \leqslant \beta$ para todo $x \in A$. Tenemos así que para $x \in A$ es $-x \leqslant -\alpha$ y $x \leqslant \beta$. Definamos $M = \max\{-\alpha, \beta\}$. Para todo $x \in A$ se verifica que:

$$\left. \begin{array}{l} x \leqslant \beta \leqslant M \\ -x \leqslant -\alpha \leqslant M \end{array} \right\} \Longrightarrow |x| \leqslant M$$

Recíprocamente, si hay un número real M>0 tal que para todo $a\in A$ se verifica que $|a|\leqslant M$, entonces se tiene que $-M\leqslant a\leqslant M$ para todo $a\in A$, por tanto M es un mayorante y -M es un minorante de A, es decir, A está acotado.

2. Calcula el conjunto de los mayorantes y de los minorantes de A en los siguientes casos: i) $A = \mathbb{R}^+$, ii) $A = \mathbb{R}^-$, iii) $A = \{x \in \mathbb{R} : 1 < x < 2\}$, iv) $A = \{x \in \mathbb{R} : 1 \le x \le 2\}$.

Solución. i) \mathbb{R}^+ no está mayorado pues si un número $z \in \mathbb{R}$ es un mayorante de \mathbb{R}^+ habría de ser $z \geqslant 1$ y, por tanto, z > 0. Pero entonces se tiene que $z + 1 \in \mathbb{R}^+$ y z + 1 > z lo que contradice que z sea mayorante de \mathbb{R}^+ . Por definición de \mathbb{R}^+ , 0 es un minorante de \mathbb{R}^+ y, por tanto, todo número $z \leqslant 0$ es minorante de \mathbb{R}^+ . Si z > 0 entonces se tiene que 0 < z/2 < z lo que prueba que z no es minorante de \mathbb{R}^+ . Por tanto, el conjunto de los minorantes de \mathbb{R}^+ es \mathbb{R}^-_0 .

iii) Por definición del conjunto $A=\{x\in\mathbb{R}:1< x<2\}$, 1 es un minorante y 2 es un mayorante de A. Por tanto, todo número $z\geqslant 2$ es mayorante de A y todo número $z\leqslant 1$ es minorante de A. Sea 1< z<2 entonces se tiene que $1<\frac{1+z}{2}< z<\frac{z+2}{2}<2$ lo que prueba que z no es minorante de A (porque el número $\frac{1+z}{2}\in A$ y $\frac{1+z}{2}< z$) y tampoco es un mayorante de A (porque el número $\frac{z+2}{2}\in A$ y $z<\frac{2+z}{2}$). Por tanto, el conjunto de los mayorantes de A es $[2,+\infty[$ y el conjunto de los minorantes de A es $]-\infty,1]$.

- 3. a) Describe el conjunto de los mayorantes de un conjunto no vacío y mayorado de números reales.
 - b) Describe el conjunto de los minorantes de un conjunto no vacío y minorado de números reales.

Solución. a) Sea A un conjunto no vacío y mayorado de números reales. Sabemos, por el Principio del Supremo, que hay un número real, β , que es el mínimo mayorante de A. Por tanto, ningún número menor que β es mayorante de A y todo número mayor o igual que β es un mayorante de A. Concluimos que el conjunto de los mayorantes de A es la semirrecta $[\beta, +\infty[$.

- b) Sea A un conjunto no vacío y minorado de números reales. Sabemos, por el Principio del Ínfimo, que hay un número real, α , que es el máximo minorante de A. Por tanto, ningún número mayor que α es minorante de A y todo número menor o igual que α es un minorante de A. Concluimos que el conjunto de los minorantes de A es la semirrecta $]-\infty,\alpha]$.
- 4. Sea $A\subseteq\mathbb{R}$ un conjunto no vacío y acotado. Definamos $-A=\{-a:a\in A\}$. ¿Qué relación hay entre los números $\sup(A)$, $\inf(A)$, $\sup(-A)$, $\inf(-A)$?

Solución. Sea $\beta=\sup(A)$. Tenemos que $a\leqslant\beta$ para todo $a\in A$ y, por tanto, $-\beta\leqslant-a$ para todo $a\in A$, lo que nos dice que $-\beta$ es un minorante de -A. Sea z un minorante de -A, esto es, $z\leqslant-a$ para todo $a\in A$. Entonces $a\leqslant-z$ para todo $a\in A$, por lo que -z es un mayorante de A y, como

 β es el mínimo mayorante de A, tenemos que $\beta \leqslant -z$, es decir, $z \leqslant -\beta$. Hemos probado así que $-\beta$ es el máximo minorante de -A, es decir, $-\beta = \inf(-A)$.

En la igualdad que acabamos de probar $-\sup(A) = \inf(-A)$ podemos sustituir el conjunto A por -A y obtenemos que $-\sup(-A) = \inf(A)$.

- 5. Sean A, B, conjuntos no vacíos y acotados de números reales. Justifica las siguientes afirmaciones:
 - i) Si $A \subseteq B$ entonces $\sup(A) \leqslant \sup(B)$, $\inf(A) \geqslant \inf(B)$.
 - ii) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}.$

Solución. i) Para todo $b \in B$ se verifica que $b \le \sup(B)$ y, como $A \subset B$, en particular para todo $a \in A$ se verifica que $a \le \sup(B)$. Por tanto $\sup(B)$ es un mayorante de A y, en consecuencia, $\sup(A) \le \sup(B)$ ya que, por definición, $\sup(A)$ es el mínimo mayorante de A.

Para todo $b \in B$ se verifica que $b \geqslant \inf(B)$ y, como $A \subset B$, en particular para todo $a \in A$ se verifica que $a \geqslant \inf(B)$. Por tanto $\inf(B)$ es un minorante de A y, en consecuencia, $\inf(A) \geqslant \inf(B)$ ya que, por definición, $\inf(A)$ es el máximo minorante de A.

- ii) Como $A \subset A \cup B$ y $B \subset A \cup B$, por el apartado anterior, se verifica que $, \sup(A) \leqslant \sup(A \cup B)$ y $, \sup(B) \leqslant \sup(A \cup B)$, lo que implica que $\max\{\sup(A), \sup(B)\} \leqslant \sup(A \cup B)$. La desigualdad contraria es consecuencia de que $\max\{\sup(A), \sup(B)\}$ es, evidentemente, un mayorante de $A \cup B$.
- 6. Sean A y B conjuntos acotados de números reales tales que $A \cap B \neq \emptyset$.
 - a) Probar que $A \cap B$ está acotado y que

$$\max \{\inf(A), \inf(B)\} \leq \inf(A \cap B), \quad \sup(A \cap B) \leq \min \{\sup(A), \sup(B)\}$$

- b) Mostrar con un ejemplo que las dos desigualdades pueden ser estrictas.
- c) Probar que si A y B son intervalos, dichas desigualdades son igualdades.

Solución. a) Para todo $x \in A \cap B$ se verifica que:

$$\left. \begin{array}{l} \inf(A) \leqslant x \leqslant \sup(A) \\ \inf(B) \leqslant x \leqslant \sup(B) \end{array} \right\} \Longrightarrow \\ \max \left\{ \inf(A), \inf(B) \right\} \leqslant x \leqslant \min \left\{ \sup(A), \sup(B) \right\}$$

Por tanto, $\max \{\inf(A), \inf(B)\}$ es un minorante de $A \cap B$ y $\min \{\sup(A), \sup(B)\}$ es un mayorante de $A \cap B$. En consecuencia, sin más que tener en cuenta las definiciones de ínfimo y de supremo, se verifica que:

$$\max \{\inf(A), \inf(B)\} \leqslant \inf(A \cap B) \quad \text{y} \quad \sup(A \cap B) \leqslant \min \{\sup(A), \sup(B)\}$$

- b) $A = \{1, 2, 3\}, B = \{0, 2, 4\}.$
- c) Si A y B son intervalos acotados, como el supremo y el ínfimo de A y B son los extremos de dichos intervalos, podemos considerar que A y B son intervalos cerrados. Pongamos A=[a,b], B=[c,d]. Tenemos que:

$$x\!\in\![a,b]\cap[c,d] \Leftrightarrow \left. \left. \begin{array}{l} a\leqslant x\leqslant b \\ c\leqslant x\leqslant d \end{array} \right. \right\} \Leftrightarrow \\ \max\left\{a,c\right\}\leqslant x\leqslant \min\left\{b,d\right\} \Leftrightarrow x\in\left[\max\left\{a,c\right\},\min\left\{b,d\right\}\right] \right. \\ \left. \left. \begin{array}{l} \left. \left(a,c\right)\right\rangle \leqslant x\leqslant \min\left\{b,d\right\}\right\rangle \leqslant x\in\left[\max\left\{a,c\right\}\right\rangle \leqslant x\in\left[\max\left\{a,c\right\}\right]\right] \right. \\ \left. \left. \left(a,c\right)\right\rangle \leqslant x\in\left[\min\left\{b,d\right\}\right] \right. \\ \left. \left(a,c\right)\right\rangle \leqslant x\in\left[\min\left\{a,c\right\}\right] \right. \\ \left(a,c\right)\left(a,c\right)\right\rangle \leqslant x\in\left[\min\left\{a,c\right\}\right] \right. \\ \left(a,c\right)\left(a,c\right)\right\rangle \leqslant x\in\left[\min\left\{a,c\right\}\right] \right. \\ \left(a,c\right)\left(a,c\right)\left(a,c\right)\right\rangle \leqslant x\in\left[\min\left\{a,c\right\}\right] \right. \\ \left(a,c\right)\left(a,$$

Es decir, hemos probado que

$$A \cup B = [a, b] \cap [c, d] = [\max\{a, c\}, \min\{b, d\}]$$

claro está, esto es así siempre que $\max{\{a,c\}} \le \min{\{b,d\}}$ porque en otro caso la intersección es vacía. Es claro que:

$$\inf(A \cap B) = \max\{a, c\} = \max\{\inf(A), \inf(B)\}$$
 y $\sup(A \cap B) = \min\{b, d\} = \min\{\sup(A), \sup(B)\}$.

7. Sean $A \subset \mathbb{R}$ no vacío y mayorado, y $B \subset \mathbb{R}$ no vacío y minorado. Definamos:

$$A - B = \{a - b : a \in A, b \in B\}.$$

Prueba que A - B está mayorado y se verifica la igualdad:

$$\sup(A - B) = \sup(A) - \inf(B).$$

Solución. Pongamos $\alpha = \sup(A)$, $\beta = \inf(B)$. Para todo $a \in A$ y para todo $b \in B$ se verifica que $a \leqslant \alpha$ y $\beta \leqslant b$ lo que implica que $a - b \leqslant \alpha - \beta$. Por tanto $\alpha - \beta$ es un mayorante de A - B. Por tanto, A - B está mayorado y, además, deducimos que $\gamma = \sup(A - B) \leqslant \alpha - \beta$. Probaremos seguidamente la desigualdad contraria.

Para todo $a \in A$ y para todo $b \in B$ se verifica que $a-b \leqslant \gamma$. Consideremos en esta desigualdad $b \in B$ fijo. Tenemos entonces que para todo $a \in A$ es $a \leqslant b + \gamma$, lo que nos dice que $b + \gamma$ es un mayorante de A y, por la definición de supremo, debe verificarse que $\alpha \leqslant b + \gamma$; desigualdad que podemos escribir en la forma $\alpha - \gamma \leqslant b$. Como esta última desigualdad es válida cualquiera sea $b \in B$, deducimos que $\alpha - \gamma$ es un minorante de B y, por la definición de ínfimo, debe verificarse que $\alpha - \gamma \leqslant \beta$, esto es, $\alpha - \beta \leqslant \gamma$. Concluimos así que $\gamma = \alpha - \gamma$.

8. Sean A y B conjuntos no vacíos de números reales positivos. Supongamos que A está mayorado y que $\beta = \inf(B) > 0$. Definamos:

$$C = \left\{ \frac{a}{b} : a \in A, \ b \in B \right\}.$$

Prueba que ${\cal C}$ está mayorado y se verifica la igualdad:

$$\sup(C) = \frac{\sup(A)}{\inf(B)}.$$

¿Qué puede decirse de C si $\beta = 0$?

Solución. Pongamos $\alpha = \sup(A)$. Para todo $a \in A$ y para todo $b \in B$ se verifica que:

$$\begin{array}{c} 0 < a \leqslant \alpha \\ 0 < \beta \leqslant b \end{array} \right\} \quad \Longrightarrow \quad \left\{ \begin{array}{c} 0 < a \leqslant \alpha \\ 0 < \frac{1}{b} \leqslant \frac{1}{\beta} \end{array} \right\} \Longrightarrow \quad \frac{a}{b} \leqslant \frac{\alpha}{\beta}$$

Hemos probado así que $\frac{\alpha}{\beta}$ es un mayorante de C. Luego $\sup(C) \leqslant \frac{\alpha}{\beta}$ porque el supremo es el mínimo mayorante. Pongamos $\gamma = \sup(C)$.

Tenemos ahora que para todo $a \in A$ y para todo $b \in B$ se verifica que $\gamma \geqslant \frac{a}{b}$. Multiplicando por b > 0, tenemos $b\gamma \geqslant a$. Esta última desigualdad nos dice que para cada elemento $b \in B$ se verifica que el número $b\gamma$ es un mayorante de A. Luego $b\gamma \geqslant \alpha$. Como $\gamma > 0$, multiplicando esta última desigualdad por $\frac{1}{\gamma}$ obtenemos que $b \geqslant \frac{\alpha}{\gamma}$. Como esto es cierto para todo $b \in B$ resulta que el número $\frac{\alpha}{\gamma}$ es un minorante de C, luego $\frac{\alpha}{\gamma} \leqslant \beta$ porque el ínfimo es el máximo minorante. Deducimos que $\gamma \geqslant \frac{\alpha}{\beta}$ y, teniendo en cuenta la desigualdad antes obtenida, concluimos que $\gamma = \frac{\alpha}{\beta}$.

Si $\beta=0$, entonces C no está mayorado. En efecto, sea M>0 y elijamos un elemento fijo $a_0\in A$. El número $\frac{a_0}{M}$ no puede ser un minorante de B (porque el máximo minorante de B es 0), es decir, se verifica que hay algún elemento $b_0\in B$ tal que $b_0<\frac{a_0}{M}$. Deducimos que $M<\frac{a_0}{b_0}$, lo que nos dice que M no es mayorante de C.

9. Sean A y B conjuntos no vacíos de números reales positivos y supongamos que A está mayorado. Probar que el conjunto

$$C = \left\{ a^2 - b : a \in A, b \in B \right\}$$

está mayorado y calcular su supremo.

Solución. Sea $\alpha = \sup(A)$. Como $B \subset \mathbb{R}^+$, B está minorado. Sea $\beta = \inf(B)$. Para todo $a \in A$ y para todo $b \in B$ tenemos que:

$$\begin{array}{c} 0 < a \leqslant \alpha \\ \beta \leqslant b \end{array} \right\} \quad \Longrightarrow \quad \left\{ \begin{array}{c} a^2 \leqslant \alpha^2 \\ -b \leqslant -\beta \end{array} \right\} \Longrightarrow \quad a^2 - b \leqslant \alpha^2 - \beta$$

Hemos probado que el número $\alpha^2 - \beta$ es un mayorante de C. Por tanto, C está mayorado. Sea $\gamma = \sup(C)$. Como γ es, por definición, el mínimo mayorante de C, tenemos que $\gamma \leqslant \alpha^2 - \beta$. Probaremos la desigualdad contraria.

Para todo $a \in A$ y para todo $b \in B$ tenemos que $a^2 - b \leqslant \gamma$, es decir, $a^2 \leqslant \gamma + b$. Consideremos ahora que $b \in B$ es un elemento fijo en B. Como 0 < a y las raíces conservan el orden en los reales positivos, tenemos que $a \leqslant \sqrt{\gamma + b}$. Esta desigualdad, válida para todo $a \in A$, nos dice que el número $\sqrt{\gamma + b}$ es un mayorante de A, luego $\alpha \leqslant \sqrt{\gamma + b}$. Como son números positivos, elevando al cuadrado, obtenemos que $\alpha^2 \leqslant \gamma + b$, es decir, $\alpha^2 - \gamma \leqslant b$. Como esta desigualdad es válida cualquiera sea $b \in B$, el número $\alpha^2 - \gamma$ es un minorante de B y, por tanto, $\alpha^2 - \gamma \leqslant \beta$, porque β es el máximo minorante de B. Hemos obtenido así que $\alpha^2 - \beta \leqslant \gamma$.

De las dos desigualdades obtenidas resulta $\gamma = \alpha^2 - \beta$.

10. Sean $A \subset \mathbb{R}$ y $B \subset \mathbb{R}$ conjuntos no vacíos y supongamos que $\inf(A) > \sup(B)$. Definamos:

$$C = \left\{ \frac{1}{a-b} : a \in A, b \in B \right\}$$

Prueba que $\sup(C) = \frac{1}{\inf(A) - \sup(B)}$.

Solución. Pongamos $\gamma = \sup(C)$, $\alpha = \inf(A)$, $\beta = \sup(B)$. Probemos que $\gamma \leqslant \frac{1}{\alpha - \beta}$. Ello equivale a probar que $\frac{1}{\alpha - \beta}$ es un mayorante de C. En efecto, para todo $a \in A$ y para todo $b \in B$ se verifica que:

$$\left. \begin{array}{l} \alpha \leqslant a \\ b \leqslant \beta \end{array} \right\} \Longrightarrow \ a - b \geqslant \alpha - \beta > 0 \ \Longrightarrow \ \frac{1}{a - b} \leqslant \frac{1}{\alpha - \beta}$$

Por otra parte, para todo $a \in A$ y para todo $b \in B$ se verifica que

$$0 < \frac{1}{a - b} \leqslant \gamma \implies a - b \geqslant \frac{1}{\gamma} \implies a \geqslant b + \frac{1}{\gamma}$$

Esta última desigualdad nos dice que para cada $b \in B$ el número $b + \frac{1}{\gamma}$ es un minorante de A, luego, por definición de ínfimo, ha de ser $\alpha \geqslant b + \frac{1}{\gamma}$. Deducimos que para todo $b \in B$ es $b \leqslant \alpha - \frac{1}{\gamma}$, lo que nos dice que el número $\alpha - \frac{1}{\gamma}$ es un mayorante de B, luego, por definición de supremo, ha de de ser $\beta \leqslant \alpha - \frac{1}{\gamma}$. Hemos probado así que $\frac{1}{\gamma} \leqslant \alpha - \beta$, es decir, $\gamma \geqslant \frac{1}{\alpha - \beta}$. Esta desigualdad y la anterior prueban la igualdad del enunciado.

11. Sean A y B conjuntos no vacíos de números reales positivos. Supongamos que B está mayorado y que $\sup(B) < \inf(A)\inf(B)$. Definimos el conjunto

$$U = \left\{ \frac{1}{ab - c} : a \in A, b \in B, c \in B \right\}.$$

Prueba que U está mayorado y calcula $\sup(U)$.

Solución. Pongamos $\alpha = \inf(A)$, $\beta = \inf(B)$ y $\gamma = \sup(B)$. Las hipótesis $A \subset \mathbb{R}^+$, $B \subset \mathbb{R}^+$ y $\gamma < \alpha\beta$ implican que $\alpha > 0$ y $\beta > 0$. Para todos $a \in A$, $b, c \in B$ se verifica que

$$\left. \begin{array}{l} 0 < \alpha \leqslant a \\ 0 < \beta \leqslant b \\ c \leqslant \gamma \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} 0 < \alpha \beta \leqslant ab \\ -\gamma \leqslant -c \end{array} \right\} \Longrightarrow 0 < \alpha \beta - \gamma \leqslant ab - c \Longrightarrow \frac{1}{ab - c} \leqslant \frac{1}{\alpha \beta - \gamma}$$

Obtenemos así que $\frac{1}{\alpha\beta-\gamma}$ es un mayorante de U. Pongamos $\lambda=\sup(U)$ el mínimo mayorante de U. Por tanto tenemos que $\lambda\leqslant\frac{1}{\alpha\beta-\gamma}$. También hemos obtenido que ab-c>0 para todos $a\in A,b,c\in B$.

Para todos $a \in A$, b, $c \in B$ se verifica que

$$\frac{1}{ab-c} \leqslant \lambda \Longrightarrow ab-c \geqslant \frac{1}{\lambda} \Longrightarrow ab-\frac{1}{\lambda} \geqslant c$$

Esta desigualdad, válida para todos $a \in A$, $b, c \in B$, implica que, fijados $a \in A$ y $b \in B$, el número $ab - \frac{1}{\lambda}$ es un mayorante de B, por lo que debe ser mayor o igual que el mínimo mayorante de B, es decir:

$$ab - \frac{1}{\lambda} \geqslant \gamma \Longrightarrow a \geqslant \frac{1}{b} \left(\gamma + \frac{1}{\lambda} \right)$$

Esta desigualdad, válida para todos $a \in A$, $b \in B$, implica que, fijado $b \in B$, el número $\frac{1}{b} \left(\gamma + \frac{1}{\lambda} \right)$ es un minorante de A, por lo que debe ser menor o igual que el máximo minorante de A, es decir:

$$\alpha \geqslant \frac{1}{b} \left(\gamma + \frac{1}{\lambda} \right) \Longrightarrow b \geqslant \frac{1}{\alpha} \left(\gamma + \frac{1}{\lambda} \right)$$

Esta desigualdad, válida para todo $b \in B$, implica que el número $\frac{1}{\alpha} \left(\gamma + \frac{1}{\lambda} \right)$ es un minorante de B, por lo que debe ser menor o igual que el máximo minorante de B, es decir:

$$\beta \geqslant \frac{1}{\alpha} \left(\gamma + \frac{1}{\lambda} \right) \Longrightarrow \alpha \beta - \gamma \geqslant \frac{1}{\lambda} \Longrightarrow \frac{1}{\alpha \beta - \gamma} \leqslant \lambda$$

Concluimos, por tanto, que $\lambda = \frac{1}{\alpha \beta - \gamma}$.

12. Calcula el $\inf(A)$ y el $\sup(A)$ donde

$$A = \left\{ (-1)^n \frac{n-1}{n} : n \in \mathbb{N} \right\}.$$

Debes razonar tus respuestas. ¿Tiene A máximo o mínimo?

Solución. Pongamos

$$A = \left\{ (-1)^n \left(1 - \frac{1}{n} \right) : n \in \mathbb{N} \right\} = \left\{ 1 - \frac{1}{2n} : n \in \mathbb{N} \right\} \cup \left\{ -1 + \frac{1}{2n-1} : n \in \mathbb{N} \right\}$$

Para todo $n \in \mathbb{N}$ se verifica que:

$$-1 < -1 + \frac{1}{2n-1} < 1 - \frac{1}{2n} < 1$$

por lo que -1 es un minorante y 1 es un mayorante de A.

Probemos que 1 es el mínimo mayorante de A. Sea u < 1. Como 1 - u > 0, tenemos que:

$$u < 1 - \frac{1}{2n} \Longleftrightarrow \frac{1}{2n} < 1 - u \Longleftrightarrow n > \frac{1}{2(1-u)}$$

Por la propiedad arquimediana del orden de \mathbb{R} , sabemos que hay números naturales, n_0 , que verifican la desigualdad $n_0 > \frac{1}{2(1-u)}$ (por ejemplo $n_0 = E(\frac{1}{2(1-u)}) + 1$). Tomando uno cualquiera de ellos se tiene que $u < 1 - \frac{1}{2n_0}$, lo que prueba que u no es mayorante de A.

Hemos probado que $1 = \sup(A)$. Como $1 \notin A$, A no tiene máximo.

Lo que queda lo haces tú.

13. Sea A el conjunto de números reales definido como sigue:

$$A = \left\{ \frac{3n^2 - 2n - 1}{n^2} : n \in \mathbb{N} \right\}$$

Calcula el supremo y el ínfimo de A. ¿Tiene A máximo o mínimo? Justifica tus respuestas.

Solución. Los elementos de A son los números de la forma $\frac{3n^2-2n-1}{n^2}=3-\frac{2}{n}-\frac{1}{n^2}$ para $n=1,2,3,\ldots$ Para n=1 tenemos que $0\in A$. Además, como evidentemente

$$3n^2 - 2n - 1 \ge 3n - 2n - 1 \ge n - 1 \ge 0$$

se tiene que 0 es un minorante de A. Luego min(A) = 0. En consecuencia, inf(A) = 0.

Como para todo $n \in \mathbb{N}$ es $3 - \frac{2}{n} - \frac{1}{n^2} < 3$, tenemos que 3 es un mayorante de A. Veamos que es el mínimo mayorante de A. Para ello probaremos que si z < 3 entonces z no es mayorante de A. En efecto, si z < 3 hay elementos de A que son mayores que z. Para ello es suficiente tomar un número natural n suficientemente grande para que se verifique la desigualdad:

$$z < 3 - \frac{2}{n} - \frac{1}{n^2} \tag{1}$$

Veamos que, efectivamente, hay números naturales que verifican la desigualdad (1). Dicha desigualdad puede escribirse como sigue:

$$z < 3 - \frac{2}{n} - \frac{1}{n^2} \iff \frac{2}{n} + \frac{1}{n^2} < 3 - z$$
 (2)

Puesto que $\frac{1}{n^2} \leqslant \frac{1}{n}$, se tiene que $\frac{2}{n} + \frac{1}{n^2} \leqslant \frac{3}{n}$. Elijamos $n \in \mathbb{N}$ de forma que $\frac{3}{n} < 3 - z$ o, lo que es igual, por ser 3 - z > 0, tal que $n > \frac{3}{3-z}$. Que hay números naturales que verifican esta última desigualdad es consecuencia de la propiedad arquimediana del orden de \mathbb{R} . Sea, pues, $n \in \mathbb{N}$ un número natural tal que $n > \frac{3}{3-z}$ (por ejemplo, podemos tomar $n = E\left(\frac{3}{3-z}\right) + 1$), entonces tenemos que:

$$\frac{2}{n} + \frac{1}{n^2} \leqslant \frac{3}{n} < 3 - z$$

lo que prueba la desigualdad (2) y, por tanto la (1). Hemos probado así que $\sup(A)=3$. Como $3\not\in A, A$ no tiene máximo.

14. a) Sean A, B, conjuntos no vacíos y mayorados de números reales positivos. Consideramos el conjunto $AB = \{ab : a \in A, b \in B\}$. Prueba que AB está mayorado y

$$\sup(AB) = \sup(A)\sup(B) \tag{3}$$

b) Considera ahora los conjuntos

$$A = \left\{2 - \frac{1}{n} : n \in \mathbb{N}\right\}, \quad B = \left\{3 + \frac{1}{n} : n \in \mathbb{N}\right\}, \quad C = \left\{\left(2 - \frac{1}{n}\right)\left(3 + \frac{1}{n}\right) : n \in \mathbb{N}\right\}.$$

Calcula el supremo de A,B,C e indica cuáles de ellos tienen máximo. Comprueba si se verifican la igualdad

$$\sup(C) = \sup(A)\sup(B) \tag{4}$$

¿Hay alguna contradicción con lo afirmado en el apartado a)?

Solución. a) Sean $\alpha = \sup(A)$ (el mínimo mayorante de A) y $\beta = \sup(B)$ (el mínimo mayorante de B). Para todos $a \in A$ y $b \in B$ se verifica que:

$$\begin{cases}
0 < a \leqslant \alpha \\
0 < b \leqslant \beta
\end{cases} \implies ab \leqslant \alpha\beta \tag{5}$$

Por tanto $\alpha\beta$ es un mayorante de AB.

Sea $\gamma = \sup(AB)$. Como γ es, por definición, el mínimo mayorante de AB, se tiene que $\gamma \leqslant \alpha\beta$.

Por otra parte, para todos $a \in A$ y $b \in B$ se verifica que $ab \leqslant \gamma$. Multiplicando esta desigualdad por 1/b (que es positivo) obtenemos $a \leqslant \gamma/b$. Esta desigualdad nos dice que para cada $b \in B$ el número γ/b es un mayorante de A. Como α es el mínimo mayorante de A debe ser $\alpha \leqslant \gamma/b$. Hemos obtenido que para todo $b \in B$ es $\alpha \leqslant \gamma/b$ o, lo que es igual, $b \leqslant \gamma/\alpha$. Por tanto, γ/α es un mayorante de B y, en consecuencia, debe ser $\beta \leqslant \gamma/\alpha$ porque β es el mínimo mayorante de B. Hemos probado que $\beta \leqslant \gamma/\alpha$ o, lo que es igual, $\alpha\beta \leqslant \gamma$. Como también sabemos que $\gamma \leqslant \alpha\beta$, concluimos que $\gamma = \alpha\beta$.

b) Para todo $n \in \mathbb{N}$ se tiene que $2 - \frac{1}{n} < 2$. Por tanto, 2 es un mayorante de A. Como la sucesión $\{x_n\}$ definida por $x_n = 2 - \frac{1}{n}$ converge a 2, dado un número u < 2 existirá un n_0 tal que para todo $n \geqslant n_0$ se tendrá que $u < x_n < 2$. Como para todo $n \in \mathbb{N}$ es $x_n \in A$ deducimos que u no es mayorante de A. Hemos probado que el mínimo mayorante de A es 2. Luego $\sup(A) = 2$. Como $2 \not\in A$, A no tiene máximo.

Tenemos que $4 \in B$ y para todo $n \in \mathbb{N}$ es $3 + \frac{1}{n} \le 4$. Luego $\max(B) = 4$. Por tanto $\sup(B) = \max(B) = 4$.

Tenemos que

$$\left(2-\frac{1}{n}\right)\!\left(3+\frac{1}{n}\right) = 6 - \frac{1}{n} - \frac{1}{n^2} < 6 \qquad \text{para todo } n \!\in\! \mathbb{N}$$

Por tanto 6 es un mayorante de C. Como la sucesión $\{z_n\}$ dada por $z_n=6-\frac{1}{n}-\frac{1}{n^2}$ converge a 6, dado un número u<6 existirá un n_0 tal que para todo $n\geqslant n_0$ se tendrá que $u< z_n<6$. Como para todo $n\in\mathbb{N}$ es $z_n\in C$ deducimos que u no es mayorante de C. Hemos probado que el mínimo mayorante de C es 6. Luego $\sup(C)=6$. Como $6\not\in C$, C no tiene máximo.

Evidentemente, no se cumple la igualdad $\sup(C) = \sup(A) \sup(B)$. Esto no contradice en nada el apartado a) porque el conjunto C no es igual al conjunto AB. De hecho C es un subconjunto estricto de $AB = \left\{ \left(2 - \frac{1}{n}\right)\left(3 + \frac{1}{m}\right) : n \in \mathbb{N}, m \in \mathbb{N} \right\}$ (los productos de todos los elementos de A por todos los elementos de B).