Lecture 7 EM Waves & Radio Frequency-Based Sensors

- Doubts?
 - How does the polarization vector affect capacitance in the dielectric medium?
 - Frequency of System and Resonance Frequency.

How polarization vector effect capacitance in dielectric medium

1. Polarization Vector (P):

 The polarization vector represents the electric dipole moment per unit volume of a dielectric material:

$$ec{P}=\chi_e\epsilon_0ec{E}$$

where:

- χ_e = electric susceptibility of the material
- ϵ_0 = permittivity of free space
- \vec{E} = electric field
- Polarization occurs when the dielectric material in a capacitor becomes polarized in response to the applied electric field.
- The positive and negative charges within the dielectric material align slightly, creating induced dipoles.

2. Polarization and Electric Displacement Field (\vec{D}):

The electric displacement field (\vec{D}) is given by:

$$ec{D} = \epsilon_0 ec{E} + ec{P}$$

or

$$ec{D} = \epsilon ec{E}$$

where:

- $\epsilon = \epsilon_0 (1 + \chi_e) = \epsilon_0 \epsilon_r$
- ϵ_r = relative permittivity (dielectric constant)

3. Capacitance with Dielectric:

The capacitance of a capacitor without a dielectric is:

$$C_0 = rac{\epsilon_0 A}{d}$$

When a dielectric is introduced, the capacitance becomes:

$$C = rac{\epsilon A}{d} = rac{\epsilon_0 \epsilon_r A}{d}$$

Thus:

$$C = \epsilon_r \times C_0$$

This shows that introducing a dielectric increases the capacitance by a factor of the dielectric constant (ϵ_r) .

4. How Polarization Affects Capacitance:

- The polarization vector (\vec{P}) increases the **effective charge storage capacity** of the capacitor by reducing the effective electric field between the plates.
- This happens because the induced electric field from the polarization opposes the external field, leading to a reduced net field inside the dielectric.
- As a result, more charge can be stored for the same applied voltage, effectively increasing the capacitance.
- The higher the polarization (\vec{P}), the greater the relative permittivity (ϵ_r), and therefore, the **higher** the capacitance.

What is a Bound Charge?

A **bound charge** is a charge that is associated with the **molecules or atoms** of a dielectric material and cannot move freely. These charges arise due to the **polarization** of the dielectric when an external electric field is applied.

There are two types of bound charges:

1. Volume Bound Charge Density (ρ_b):

$$ho_b = -
abla \cdot \mathbf{P}$$

It represents the charge density distributed throughout the volume of a polarized material.

2. Surface Bound Charge Density (σ_b):

$$\sigma_b = \mathbf{P} \cdot \mathbf{n}$$

It represents the bound charge accumulated at the surface of the dielectric.

EM wave frequency and resonance frequency:

Aspect	Frequency of EM Wave	Resonance Frequency
Definition	The number of oscillations of electric and magnetic fields per second.	The natural frequency at which a system oscillates with maximum amplitude.
Origin	Determined by the source of the wave (e.g., antenna, light source).	Determined by the system's properties (e.g., LC components, mass).
Nature	Intrinsic to the wave itself.	Inherent to the system; changes with system characteristics.
Change with Medium	Remains constant when changing medium.	Can change if the system's properties change (like inductance).
Context	Applies to light , radio waves , microwaves , etc .	Applies to oscillating systems (like circuits or vibrating objects).
Effect on Amplitude	Amplitude does not inherently increase or decrease.	Amplitude maximizes when excited at resonance frequency.
Application	Communication, optics, microwave heating.	Radio tuning, electrical circuits, mechanical resonance.

Key Points-

- The **EM wave frequency** generated by the radio station is **fixed** and determined by the station.
- The resonance frequency of the radio circuit must be adjusted (by changing the capacitance) to match the EM wave frequency.
- When matched, resonance occurs, resulting in maximum signal reception.

How the Frequencies Interact:

- When the EM wave frequency (100 MHz) matches the resonance frequency (100 MHz) of the LC circuit, the circuit resonates.
- This resonance maximizes the current and voltage in the radio circuit, allowing for efficient signal reception.
- If the radio is tuned to a different frequency (e.g., 101 MHz), the circuit does not resonate, and the signal is weak or absent.

What Changes: Wavelength and Speed

The **speed (v)** and **wavelength (\lambda)** of the wave change according to the medium's properties:

Speed of EM Wave in a Medium:

$$v=rac{c}{\sqrt{\epsilon_r \mu_r}}$$

Where:

- c = Speed of light in a vacuum (3 \times 10⁸ m/s)
- ϵ_r = Relative permittivity of the medium
- μ_r = Relative permeability of the medium

Relationship between Speed, Wavelength, and Frequency:

$$v = f\lambda$$

Relationship between Speed, Wavelength, and Frequency:

$$v = f\lambda$$

Since frequency (f) is constant, the change in speed (v) directly affects the wavelength (λ):

$$\lambda = rac{v}{f}$$

Change in Wavelength:

When an EM wave moves from one medium to another:

$$\frac{\lambda_2}{\lambda_1} = \frac{v_2}{v_1} = \frac{n_1}{n_2}$$

Where n is the **refractive index**:

$$n = \frac{c}{v}$$