FIRST SEMESTER 2021-22 | Course Handout Part II

Date: 20 Aug 2021

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F415 (3 1 4)

Course Title : Introduction to MEMS (https://classroom.google.com/u/2/c/MjU2NTgwMzQ0Mjg5)

Instructor-in-charge: Prof. Sanket Goel (https://www.bits-pilani.ac.in/Hyderabad/sgoel/Profile)

Teaching Assistants : Mr. Sohan Dudala and Mr. Paver Sai Kumar

Schedule : Lec () || Lab ()

Discipline Elective FD : ECE, EEE, EEI, ChemE, MechE, ManufE; Minor (Robotics and Automation)

Discipline Elective HD: Communication, Embedded System, Microelectronics, Electronics & Control, Design,

Mechanical, Thermal

Lab website : http://mmne.in/

Scope and Objectives: The course includes basic concepts in MEMS (Micro Electromechanical Systems) with a view to address students all the disciplines. The discussion on topics like MEMS design, Microfabrication, Microfluidics, Microsensors and Diverse applications have been structured in the course plan. The objective of the course is to equip the students from various aspects and with basic knowledge of the area of MEMS.

Text Book:

Tai-Ran Hsu, MEMS and Micro systems Design and Manufacture, Tata McGraw Hill, 2002

Reference Books:

- 1. G.K. Ananthsuresh et al, 'Micro and Smart Systems', Wiley, India, 2010.
- 2. Nitaigour P. Mahalik, MEMS, Tata McGraw Hill, 2007
- 3. Marc Madou, Fundamentals of Microfabrication, CRC Press, 2002.
- 4. Chang Liu, Foundation of MEMS, Pearson Education Inc., NJ, 2006
- 5. Nadim Maluf, Introduction to Microelectromechanical Systems Engineering, Artech House, 2000.
- 6. Stephen D. Senturia, *Microsystem Design*, Kluwer Academic Publishers, 2001
- 7. Gad- el-Hak, Introduction to MEMS, CRC Press, 2010.

Course Plan:

#	Learning Objectives	Topics to be covered	Lectures	Chapter in the
		-		Text Book
1	Introduction – history, funda	2	Ch. 1 & 2 (T),	
	career opportunities, research areas in MEMS			Class notes
2	To understand MEMS	Working principles of various micro sensors	3	Ch. 3 & 6 (T),
	fundamentals and	and actuators in microsystems., Scaling Laws		Class notes
	components	in MEMS		
3	To understand basic MEMS	Engineering Science for MEMS, Materials for	3	Ch. 7(T),
	Engineering & Science	MEMS		Class notes
4	To understand the	Clean Environment, Clean User, Clean Process	3	Class notes
	Environment to do the			
	MEMS Fabrication process			
5	To understand MEMS	Microfabrication Processes I - lithography	6	Ch. 8 (T),
	fabrication processes			Class notes
6	To understand MEMS	Microfabrication Processes II - soft-	5	Ch. 8 (T),
	fabrication processes	lithography, 3D printing		Class notes
7	To understand how to	SEM, TEM, Raman, Confocal, XRD, UV-VIS-	4	Class notes
	characterize MEMS devices	IR		
8	To understand Microfluidics	Microfluidics – fundamentals, design	6	Class notes
		parameters, fabrication aspects,		

		characterization, applications		
9	To understand Biomedical	MEMS devices used for various Biomedical	2	Class notes
	applications for MEMS	applications, such as biosensing, medical		
		devices, diagnostics etc		
10	To understand Biochemical	MEMS devices used for various Biochemical	2	Class notes
	applications	applications, environmental, mining,		
		monitoring adulteration, Soil parameters etc.		
11	To understand Energy	MEMS devices for Energy applications - Solar,	2	Class notes
	applications	Fuel cells, Supercapacitors		
12	To understand Automotive	MEMS devices for automobiles, aerospace,	2	Class notes
	and Defense applications	defence and military applications		
13	To understand Microsystem	Integration constraints, industrial applications,	2	Ch. 10(T)
	design considerations	troubleshooting		
14	To understand MEMS	Function of packaging, requirements,	Self-study	Ch. 11(T)
	packaging	integration, advantages, applications		
		Total	42	

Evaluation Scheme:

		Weightage			
Component	Duration	%	Marks	Date &Time	Nature of Compone nt
MidSem Exam	1 hr 30 mins	25	75	22/10/2021 9.00 - 10.30AM	All Open Book
Comprehensive Exam	2 hrs	40	120	22/12 FN	during the
Quizzes ¹		5	15	TBA	current
Lab ²		15	45	TBA	Semester
Lab Quiz	30 mins	5	15	TBA	
Project ³		10	30	TBA	
Total		100	300		

Lab Experiments

- i. Introduction to the software COMSOL and its application in MEMS/Microfluidics.
- ii. Simulation of MEMS Sensors/Actuators using COMSOL
- iii. Microfluidic simulations using COMSOL: Laminar Flow; Convection diffusion; Conjugate heat transfer.
- iv. Development of Micro-device using FDM based 3D printing.
- v. Development of electrically conductive polymers using CO2 Laser.
- vi. Development of PCB/ μ -devices using dry film resist based photolithography.
- vii. Development of micro-devices using Direct Laser Writing (DLW) & Soft Lithography.
- viii. Fundamentals of Clean room and demonstration of Electron Beam Vapour Deposition.
- ix. Characterization I: Study of Scanning Electron Microscopy
- x. Characterization II: Four Probe, Tensiometer, etc.
- xi. Project Lab I
- xii. Project Lab II

Consultation Hour: As per mutual convenience via Google-Meet.

Notices: will be posted on Google Classroom

Make-up Policy: Prior permission of IC is required for make-up. No make-up allowed for quizzes and lab quiz.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Please contact the Instructor In-Charge for any questions

¹ Total 4 quizzes will be taken and the best 3 will be considered for the final evaluation. No makeup will be allowed for quizzes.

² The marks will be based on the lab reports and lab performance

³ Evaluation: Project Outline - 20%, Project Report - 30%, Presentation and Demo - 50%