Theoretical Computer Science - Exercise 11

SS 2022 Jochen Schmidt

Please prepare the following exercises at home prior to the tutorial:

Exercise 1

To solve a given problem, an algorithm A and an algorithm B are available. The execution times are $t_A=2n^2$ and $t_B=8n^{1.75}$, where n is are the number of input data. It is reasonable to switch between

Exercise 2

A sorting algorithm needs exactly 1ms to sort 1000 data records. The time T(n) required by some sorting algorithm to sort n data records is directly proportional to n log n, i.e., T(n) = c n log n. The time to sort N data records has been measured and is given by T_N .

- a) Specify a formula for T(n) as a function of T_N. Does the base of the logarithm matter?
- b) Let $T_N = 1$ ms to sort 1000 data records. Calculate the time it takes to sort 1,000,000 records.

Exercise 3

- a) An algorithm with complexity $O(n^2)$ requires 2ms to process 400 data records. How long does it take for 8000 records?
- b) An algorithm needs 10s to process 1000 data records. How long does it take for 100,000 records if the complexity is O(n)? How long for complexity $O(n^3)$?

Exercise 4

Each of the expressions below specifies the computation time for an algorithm to solve a size n problem. Enter the complexity order in O-notation.

Expression	O()
5 + 0,001n ³ + 0,025n	
100n + 20n ^{1,5} + 10n log ₁₀ n	
$n^2 \log_2 n + n(\log_2 n)^2$	
100000n + 10n ²	
n log₃ n + n log₂ n	
0,03 log ₄ n + log ₂ log ₂ n	_

Exercise 5

Given are two algorithms A and B, which require $T_A(n) = 5n \log_{10} n$ and $T_B(n) = 25n$ microseconds for a problem of size n.

- a) Which algorithm is the better one in terms of O-notation?
- b) From what amount of data does the better performance apply?

Exercise 6

The obvious algorithm for calculating x^n requires n-1 multiplications. Specify a faster **recursive** algorithm for the special case that the exponent is a power of two, i.e., $n=2^m$, and calculate its complexity in Onotation (the number of multiplications required is counted here).

We will do the following exercises together during the tutorial:

Exercise 7

Determine the complexity of the following code snippets in O-notation (n is the size of the data):