Math 2102: Homework 4 Due on: Apr. 4 at 11:59 pm.

All assignments must be submitted via Moodle. Precise and adequate explanations should be given to each problem. Exercises marked with Extra might be more challenging or a digression, so they won't be graded.

- 1. Let $T, S: V \to V$ be two operators on a finite-dimensional inner product space. Assume that TS = ST.
 - (i) Prove that there is an orthonormal basis of V with respect to which T and S are upper-triangular.
 - (ii) Assume that T is normal. Use (i) to give a different proof of the complex spectral theorem.
- 2. Let $\mathbb{F} = \mathbb{R}$, $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{C}$. Recall the definition of $T_{\mathbb{C}} : V_{\mathbb{C}} \to V_{\mathbb{C}}$ from Exercise 3 in HW 2.
 - (i) Show that $u + iv \in G(\lambda, T_{\mathbb{C}})$ if and only if $u iv \in G(\lambda, T_{\mathbb{C}})$.
 - (ii) Show that the (algebraic) multiplicity of λ as an eigenvalue of $T_{\mathbb{C}}$ is the same as the (algebraic) multiplicity of $\overline{\lambda}$ as an eigenvalue of $T_{\mathbb{C}}$.
 - (iii) Use (ii) to show that if dim V is an odd number, then $T_{\mathbb{C}}$ has a real eigenvalue.
 - (iv) Use (iii) to give an alternative proof of Proposition 6 in the Lecture Notes, namely that $\dim V$ is odd then T has an eigenvalue.
- 3. Assume $\mathbb{F} = \mathbb{C}$ and consider $T \in \mathcal{L}(V)$ an operator on a finite-dimensional vector space. Prove that there does not exist a decomposition of V into a direct sum of two T-invariant subspaces if and only if the minimal polynomial of T is $(z \lambda)^{\dim V}$ for some $\lambda \in \mathbb{C}$.
- 4. Let V and W be two finite-dimensional inner product spaces.
 - (i) Prove that $\langle S, T \rangle := \operatorname{tr}(T^*S)$ determines an inner product on $\mathcal{L}(V, W) \times \mathcal{L}(V, W)$.
 - (ii) Let $B_V = \{e_1, \dots, e_n\}$ be an orthonormal basis of V and $B_W = \{f_1, \dots, f_m\}$ be an orthonormal basis of W. Let $\langle -, \rangle_{\text{std}} : \mathbb{F}^{mn} \times \mathbb{F}^{mn} \to \mathbb{F}$ be the standard inner product on \mathbb{F}^{mn} (i.e. Example 23 (i) and (ii) from the Lecture Notes). Let $\mathcal{M}(-, B_V, B_W) : \mathcal{L}(V, W) \stackrel{\sim}{\to} \mathbb{F}^{mn}$ be the isomorphism given by the matrix coefficients. Prove that

$$\langle S, T \rangle = \langle \mathcal{M}(S, B_V, B_W), \mathcal{M}(T, B_V, B_W) \rangle_{\text{std}}$$

for all $S, T \in \mathcal{L}(V, W)$.