Algebra 1 Uni Heidelberg

Mit Liebe gemacht von: NIKOLAUS SCHÄFER

Inhaltsverzeichnis

1. Elementare Gruppentheorie	S
1. Gruppen und Homomorphismen	4
2. Normalteiler und Faktorgruppen	6
3. Zyklische Gruppen	9
II. Ringe	10
4. Ringe und Ideale	11
5. Polynomringe	14
6. Primfaktorzerlegung	16
7. Lokalisierung	18
8. Primfaktorzerlegung in Polynomringen	20
III. Algebraische Körpererweiterungen	22
9. Die Charakteristik	23
10. Endliche und algebraische Körpererweiterungen	25
11. Algebraischer Abschluss	28
12. Normale Körpererweiterungen	29
13. Separable Körpererweiterungen	31
14. Endliche Körper	34
IV. Galoistheorie	35
15. Galoiserweiterungen	37
16. Galoisgruppe von Polynomen	39
17. Einheitswurzeln	42
V. Fortführung der Gruppentheorie	44
18. Gruppenoperationen	45
19. Sylowgruppen	47
20. Auflösbare Gruppen	48

Teil I. Elementare Gruppentheorie

1. Gruppen und Homomorphismen

Erinnerung an LA: Monoid/Gruppe

Wir schreiben Monoide/Gruppen multiplikativ und bezeichnen das neutrale Element mit e

Definition 1.0.1. *M* Monoid, $N \subseteq M$

N heißt ein Untermonoid von $M \Leftrightarrow$ es gilt:

- (a) $e \in N$
- (b) $a, b \in N \Rightarrow ab \in N$

Beispiel 1.0.2. $2\mathbb{N}_0 := \{2a | a \in \mathbb{N}_0\}$ ist ein Untermonoid von \mathbb{N}_0 bzgl. "+"

Definition 1.0.3. *G* Gruppe, $H \subseteq G$

H heißt Untergruppe von $G \Leftrightarrow \text{Es gilt:}$

- (a) H ist ein Untermonoid von G
- (b) $a \in H \Rightarrow a^{-1} \in H$ (hierbei bezeichne a^{-1} das Inverse zu a)

Beispiel 1.0.4. *K* Körper \Rightarrow $SL(n,K) := \{A \in GL(n,K) | \det(A) = 1\}$ (spezielle lineare Gruppe) ist eine Untergruppe von GL(n,K) (beachte: $\det(A^{-1}) = \det(A)^{-1}$)

Anmerkung: Ist G eine Gruppe und $H \subseteq G$ eine Untergruppe, dann ist H mit der eingeschränkten Verknüpfung von G eine Gruppe. (analog für (Unter-)monoide).

Bemerkung 1.0.5. (Untergruppenkriterium)

G Gruppe, $H \subseteq G$. Dann sind äquivalent:

- (i) H ist eine Untergruppe von G
- (ii) $H \neq \emptyset$ und für alle $a, b \in H$ ist $ab^{-1} \in H$

Beispiel 1.0.6. Für jedes $n \in \mathbb{Z}$ ist $n\mathbb{Z} = \{na | a \in \mathbb{Z}\}$ eine Untergruppe von \mathbb{Z} , denn:

- $n\mathbb{Z} \neq \emptyset$ wegen $0 \in n\mathbb{Z}$
- $a, b \in n\mathbb{Z} \Rightarrow \text{Es existiert } \tilde{a}, \tilde{b} \in \mathbb{Z} \text{ mit } a = n\tilde{a}, b = n\tilde{b} \Rightarrow a b = n\tilde{a} n\tilde{b} = n(\tilde{a} \tilde{b}) \in n\mathbb{Z}$

Bemerkung 1.0.7. *G* Gruppe, $(H_i)_{i \in I}$ Familie von Untergruppen von *G*

Dann ist $H := \bigcap_{i \in I} H_i$ eine Untergruppe von G

Definition 1.0.8. *G* Gruppe, $M \subseteq G$ Teilmenge

 $< M > := \bigcap_{H \subseteq G \text{ mit } H \supseteq M} H$ heißt die von M erzeugte Untergruppe von G.

Ist $M = \{x_1, \dots, x_r\}$ endlich, dann schreiben wir auch $\langle x_1, \dots, x_r \rangle$ für $\langle \{x_1, \dots, x_r\} \rangle$

Existiert ein $x \in G$ mit $G = \langle x \rangle$, so heißt G zyklisch.

Anmerkung: $\langle M \rangle$ ist die kleinste Untergruppe von G, die M enthält.

Bemerkung 1.0.9. *G* Gruppe, $M \subseteq G$. Dann gilt:

$$\langle M \rangle = \{x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} | n \in \mathbb{N}_0, x_1, \ldots, x_n \in M, \varepsilon_1, \ldots, \varepsilon_n \in \{\pm 1\}\}$$

Folgerung 1.0.10. *G* Gruppe, $x \in G$

Dann gilt: $\langle x \rangle = \{x^n | n \in \mathbb{Z}\}$

Insbesondere ist $\langle x \rangle$ abelsch, und jede zyklische Gruppe ist abelsch.

Beispiel 1.0.11. $\mathbb{Z} = <1>$, denn: $<1>=\{n\cdot 1|n\in\mathbb{Z}\}=\mathbb{Z}$, insbesondere ist \mathbb{Z} zyklisch.

Erinnerung: an LA: Gruppenhomomorphismus

Bemerkung 1.0.12. G, G' Gruppen, $\varphi : G \to G'$ Homomorphismus. Dann gilt:

- (a) $H \subseteq G$ Untergruppe $\Rightarrow \varphi(H) \subseteq G'$ Untergruppe
- (b) $H' \subseteq G'$ Untergruppe $\Rightarrow \varphi^{-1}(H') \subseteq G$ Untergruppe

Definition 1.0.13. G, G' Gruppen, e' neutrale Element von $G', \varphi : G \to G'$ Homomorphismus

$$\ker(\varphi) := \varphi^{-1}(\{e'\}) = \{a \in G | \varphi(a) = e'\}$$
 heißt der Kern von φ

$$im(\varphi) := \varphi(G) = \{\varphi(a) | a \in G\}$$
 heißt das Bild von φ

Bemerkung 1.0.14. G, G' Gruppen, $\varphi : G \to G'$ Homomorphismus. Dann gilt:

- (a) $\ker(\varphi) \subseteq G$ ist eine Untergruppe
- (b) $im(\varphi) \subseteq G'$ ist eine Untergruppe
- (c) φ injektiv $\Leftrightarrow \ker(\varphi) = \{e\}$
- (d) φ surjektiv $\Leftrightarrow im(\varphi) = G'$

Beispiel 1.0.15. $sgn: S_N \to \{\pm 1\}$

 $A_n := \ker(sgn) = \{\pi \in S_n | sgn(\pi) = 1\}$ ist eine Untergruppe von S_n , die alternierende Gruppe.

Definition 1.0.16. G, G' Gruppen, $\varphi : G \rightarrow G'$ Homomorphismus

φ heißt:

Monomorphismus $\Leftrightarrow \varphi$ ist injektiv

Epimorphismus $\Leftrightarrow \varphi$ ist surjektiv

Isomorphisms $\Leftrightarrow \varphi$ ist bijektiv

Ist G = G' und φ ein Isomorphismus, dann heißt φ ein Automorphismus von G. Zwei Gruppen heißen isomorph \Leftrightarrow Es gibt einen Isomorphismus zwischen ihnen.

Anmerkung: $\varphi: G \to G'$ Isomorphismus, dann ist die Umkehrabbildung $\varphi^{-1}: G' \to G$ ein Homomorphismus (also auch ein Isomorphismus)

Bemerkung 1.0.17. G, G' Gruppen, $\varphi : G \to G'$ Homomorphismus. Dann sind äquivalent:

- (i) φ ist ein Isomorphismus
- (i) Es existiert ein Homomorphismus (Isomorphismus) $\psi: G' \to G$ mit $\varphi \circ \psi = id_{G'}$, und $\psi \circ \varphi = id_G$ Insbesondere ist für eine Gruppe G die Menge $Aut(G) := \{ \varphi: G \to G | \varphi \text{ ist ein Automorphismus} \}$ eine Gruppe bzgl. " \circ ".

Bemerkung 1.0.18. *G* Gruppe, $a \in G$

Dann ist die Abbildung $\tau_a:G\to G,g\mapsto ag$ ("Linkstranslation mit a") bijektiv (aber für $a\neq e$ kein Gruppenhomomorphismus). Insbesondere ist $\tau_a\in S(G)$

Bemerkung 1.0.19. *G* Gruppe. Dann ist die Abbildung $\varphi: G \to S(G)$, $a \mapsto \tau_a$ ein Monomorphismus

Folgerung 1.0.20. (Satz von Cayley)

G endliche Gruppe mit n Elementen. Dann existiert ein Monomorphismus $G \to S_n$ (d.h. G kann bis auf Isomorphie als Untergruppe der S_n aufgefasst werden.)

Bemerkung 1.0.21. G Gruppe, $a \in G$

Dann ist die Abbildung $\varphi_a:G\to G,\,g\mapsto aga^{-1}$ ("Konjugation mit a") ist ein Automorphismus von G

2. Normalteiler und Faktorgruppen

In diesem Abschnitt sei G stets ein Gruppe

Bemerkung 2.0.1. $H \subseteq G$ Untergruppe. Durch $a \sim_H b \Leftrightarrow b^{-1}a \in H$ ist eine Äquivalenzrelation auf G erklärt. Die Äquivalenzklasse von $a \in G$ ist durch $aH := \{ah|h \in H\}$ gegeben. Insbesondere gilt für $a,b \in G$: Entweder ist aH = bH oder $aH \cap bH = \emptyset$

Definition 2.0.2. $H \subseteq G$ Untergruppe

Eine Linksnebenklasse von H in G ist eine Teilmenge von G der Gestalt $aH = \{ah | h \in H\}$,

d.h. eine Äquivalenzklasse bzgl. " \sim_H ". Elemente einer Linksnebenklasse heißen Repräsentanten. Die Menge der Linksnebenklasssen von H in G mit G/H

Satz 2.0.3. $H \subseteq G$ Untergruppe. Dann gilt:

- (a) Je zwei Linksnebenklassen von H in G sind gleichmächtig
- (b) Je zwei Linksnebenklassen von H in G sind entweder gleich oder disjunkt
- (c) G ist die disjunkte Vereinigung der Linksnebenklassen von H in G

Anmerkung: In analoger Weisen zu Linksnebenklassen von H in G sind Rechtsnebenklassen von H in G erklärt, nämlich als Teilmengen der Gestalt: $Ha = \{ha | h \in H\}$

Menge der Rechtsnebenklassen von H in G: $H \setminus G$, $a \in G$

Es ist im Allgemeinen $aH \neq Ha$

Bemerkung 2.0.4. $H \subseteq G$ Untergruppe. Dann gilt:

Die bijektive Abbildung $\psi: G \to G, a \mapsto a^{-1}$ induziert eine bijektive Abbildung $\phi: G/H \to H \setminus G, aH \mapsto Ha^{-1} = \psi(aH)$

Definition 2.0.5. $H \subseteq G$ Untergruppe

Die Ordnung von G ist die Anzahl der Elemente von G, falls diese endlich ist, sonst ∞ . Bezeichnung: ord(G) Der Index von H in G ist die Anzahl der Linksnebenklassen von H in G, falls diese endlich sonst ∞ . Bezeichnung: G:H

Anmerkung: Wegen 2.4 stimmt (G:H) mit der Anzahl der Rechtsnebenklassen von H in G überein.

Satz 2.0.6. (Satz von Lagrange) $H \subseteq G$ Untergruppe

Dann gilt: $ord(G) = ord(H) \cdot (G:H)$

Insbesondere ist ord(H) ein Teiler von ord(G)

Definition 2.0.7. $H \subseteq G$ Untergruppe

H heißt Normalteiler von G (normale Untergruppe)

 $\Leftrightarrow aH = Ha$ für alle $a \in G$ Bezeichnung: $H \unlhd G$

In diesem Fall bezeichnet man die Nebenklasse aH = Ha auch als die Restklasse von a modulo H

Beispiel 2.0.8.

- (a) G Gruppe $\Rightarrow \{e\} \leq G$, $G \leq G$
- (b) G abelsche Gruppe \Rightarrow Jede Untergruppe von G ist Normalteiler

Bemerkung 2.0.9. $H \subseteq G$ Untergruppe. Dann sind äquivalent:

- (i) $H \triangleleft G$
- (ii) $aHa^{-1} = H$ für alle $a \in G$
- (iii) $aHa^{-1} \subseteq H$ für alle $a \in G$
- (iv) $aba^{-1} \in H$ für alle $a \in G, b \in H$

Bemerkung 2.0.10. G, G' Gruppen, $\varphi : G \to G'$ Homomorphismus. Dann gilt:

- (a) $H' \triangleleft G' \Rightarrow \varphi^{-1}(H') \triangleleft G$
- (b) $\ker(\varphi) \leq G$
- (c) $H \leq G$ und φ surjektiv $\Rightarrow \varphi(H) \leq G'$

Anmerkung: $im(\varphi)$ ist im allgemeinen kein Normalteiler von G'

Beispiel 2.0.11. $A_n \leq S_n$, denn $A_n = \ker(sgn)$

Bemerkung 2.0.12. $H \subseteq G$ Untergruppe, mit (G:H) = 2. Dann ist $H \triangleleft G$

Bemerkung 2.0.13. $H \triangleleft G$

Die Menge der Restklassen G/H wird mittels der Verknüpfung:

$$G/H \times G/H \rightarrow G/H$$
, $(aH) \cdot (bH) := abH$

zu einer Gruppe, der Faktorgruppe von G modulo H

Beispiel 2.0.14.

- (a) $G = \mathbb{Z}$, $H = m\mathbb{Z} \leadsto \mathbb{Z}/m\mathbb{Z}$ mit der Verknüpfung $\overline{a} + \overline{b} = \overline{a+b}$
- (b) K Körper, G = GL(n,K), $H = \{aE_n | a \in K^*\} \leadsto PGL(n,K) := G/H$ heißt die projektive allgemeine lineare Gruppe

Bemerkung 2.0.15. $H \triangleleft G$

Dann ist die Abbildung $\pi: G \to G/H$, $a \mapsto aH$ ein Epimorphismus mit $\ker(\pi) = H$ π heißt die kanonische Projektion von G nach G/H

Folgerung 2.0.16. $H \subseteq G$ Untergruppe. Dann sind äquivalent:

- (i) $H \triangleleft G$
- (ii) Es existiert ein Gruppe G', Homomorphismus $\varphi : G \to G'$ mit $\ker(\varphi) = H$

Bemerkung 2.0.17. $H \triangleleft G$, $\pi : G \rightarrow G/H$ kanonische Projektion. Dann ist die Abbildung

 $\phi: \{ \text{Untergruppen von } G/H \} \rightarrow \{ \text{Untergruppen } V \text{ von } G \text{ mit } V \supseteq H \}, U \mapsto \pi^{-1}(U)$

ist eine inklusionserhaltende Bijektion, und es gilt: $U \triangleleft G/H \Leftrightarrow \phi(U) \triangleleft G$

Satz 2.0.18. G, G' Gruppen, $\varphi : G \to G'$ Homomorphismus, $N \leq G$ mit $N \subseteq \ker(\varphi)$ Dann existiert ein eindeutig bestimmter Gruppenhomomorphismus. $\overline{\varphi} : G/N \to G'$, so dass folgendes Diagramm kommutiert:

d.h. $\overline{\varphi} \circ \pi = \varphi$. Explizit ist $\overline{\varphi}$ gegeben durch $\overline{\varphi} : G/N \to G'$, $aN \mapsto \varphi(a)$

Satz 2.0.19. (Homomorphiesatz)

G, G' Gruppen, $\varphi : G \rightarrow G'$ Homomorphismus

Dann gibt es einen eindeutig bestimmten Isomorphismus $\phi: G/\ker(\varphi) \to im(\varphi)$, sodass folgendes Diagramm kommutiert:

$$G \xrightarrow{\varphi} G'$$

$$\downarrow \qquad \qquad \downarrow i$$

$$G/\ker(\varphi) \xrightarrow{\cong} im(\varphi)$$

Hierbei ist π die kanonische Projektion, i die Inklusionsabbildung. Die Abbildung ϕ ist explizit gegeben durch $\phi(a\ker(\phi)) = \phi(a)$

Anmerkung: Häufig verwendet man davon nur $G/\ker(\varphi) \cong im(\varphi)$

Definition 2.0.20. $H_1, H_2 \subseteq G$ Untergruppen

$$H_1H_2 := \{h_1h_2|h_1 \in H_1, h_2 \in H_2\}$$

Bemerkung 2.0.21. $H_1, H_2 \subseteq G$ Untergruppen. Dann gilt:

- (a) $H_1 \unlhd G$ oder $H_2 \unlhd G \Rightarrow H_1 H_2 \subseteq G$ Untergruppe
- (b) $H_1 \leq G$ und $H_2 \leq G \Rightarrow H_1 H_2 \leq G$.

Satz 2.0.22. (Erster Isomorphiesatz) $H \subseteq G$ Untergruppe, $N \leq G$

Dann gilt: Die Inklusion $H \stackrel{i}{\hookrightarrow} HN$ und die kanonische Projektion $\pi: HN \to HN/N$ induzieren einen Isomorphismus $H/H \cap N \stackrel{\cong}{\longrightarrow} HN/N$, $a(H \cap N) \mapsto aN$

Satz 2.0.23. (Zweiter Isomorphiesatz)

 $N, H \leq G$ mit $N \subseteq H$. Dann ist die Abbildung:

 $(G/N)/(H/N) \rightarrow G/H, (aN)H/N \mapsto aH$ ein Isomorphismus.

3. Zyklische Gruppen

Bemerkung 3.0.1. G Gruppe. Dann sind äquivalent:

- (i) G ist zyklisch
- (ii) Es gibt ein Epimorphismus $\varphi : \mathbb{Z} \to G$

Satz 3.0.2. Die Untergruppen von \mathbb{Z} sind genau die folgenden:

$$\{0\}, n\mathbb{Z} = \{na|a \in \mathbb{Z}\}, n \in \mathbb{N}$$

Für $n \in \mathbb{N}$ gilt: $n\mathbb{Z} \cong \mathbb{Z}$

Anmerkung: alternatives Argument: Untergruppen von $\mathbb{Z} = \mathbb{Z}$ -Untermodul von $\mathbb{Z} = \text{Ideale in } \mathbb{Z}, \mathbb{Z} \text{ HIR.}$

Folgerung 3.0.3. *G* zyklische Gruppe. Dann gilt:

$$G\cong egin{cases} \mathbb{Z}, ext{ falls } ord(G)=\infty \ \mathbb{Z}/n\mathbb{Z}, ext{ falls } ord(G)=n\in\mathbb{N} \end{cases}$$

Satz 3.0.4. *G* zyklische Gruppe, $H \subseteq G$ Untergruppe. Dann gilt:

- (a) H ist zyklisch
- (b) G/H ist zyklisch

Definition 3.0.5. *G* Gruppe, $a \in G$

 $ord(a) := min\{n \in \mathbb{N} | a^n = e\}$, falls ein $n \in \mathbb{N}$ existiert mit $a^n = e$

(Andernfalls setzt man $ord(a) := \infty$)

heißt die Ordnung des Elements a.

Bemerkung 3.0.6. *G* Gruppe, $a \in G$. Dann gilt: $ord(a) = ord(\langle a \rangle)$

Folgerung 3.0.7. *G* Gruppe, $a \in G$

Dann gilt: ord(a)|ord(G)

Satz 3.0.8. G endliche Gruppe mit ord(G) = p, p Primzahl

Dann gilt: *G* ist zyklisch, insbesondere $G \cong \mathbb{Z}/p\mathbb{Z}$

Satz 3.0.9. (Kleiner Satz von Fermat) G endliche Gruppe, $a \in G$

Dann gilt: $a^{ord(G)} = e$

Definition 3.0.10. $(G_i)_{i \in I}$ Familie von Gruppen

Das kartesische Produkt $\prod_{i \in I} G_i$ wird durch komponentenweise Verknüpfung zu einer Gruppe.

Diese bezeichnet man als das direkte Produkt über die Famile $(G_i)_{i \in I}$

Satz 3.0.11. (Hauptsatz über endlich erzeugte abelsche Gruppen)

G endlich erzeugte abelsche Gruppe (d.h. es existieren $m \in \mathbb{N}, x_1, \dots, x_m \in G$ mit $G = \langle x_1, \dots, x_m \rangle$).

Dann existieren eindeutig bestimmte Zahlen $r,s \in \mathbb{N}_0, d_1, \dots, d_s \in \mathbb{N}_{>1}$ mit $d_1 | \dots | d_s$, sodass

 $G \cong \mathbb{Z}^r \times \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_s\mathbb{Z}.$

Beispiel 3.0.12. Bis auf Isomorphie gibt es folgende abelsche Gruppen der Ordnung 24:

 $\mathbb{Z}/24\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$

Teil II.

Ringe

4. Ringe und Ideale

In diesem Abschnitt sei R stets ein kommutativer Ring.

Bemerkung 4.0.1. $I \subseteq R$ Ideal, $\pi : R \to R/I$ kanonische Projektion

Dann ist die Abbildung:

 $\phi:\{ ext{ Ideale in }R/I\} o\{ ext{ Ideale } ilde{I} ext{ in }R ext{ mit } ilde{I}\geq I\}$ $J\mapsto \pi^{-1}(J)$

eine inklusionserhaltende Bijektion

Satz 4.0.2. (Homomorphiesatz für Ringe) R' kommutativer Ring, $\varphi: R \to R'$ Ringhomomorphismus

Dann gibt es einen eindeutig bestimmten Ringisomorphismus

 $\phi: R/\ker(\varphi) \to im(\varphi)$, sodasss folgendes Diagramm kommutiert:

$$R \xrightarrow{\varphi} R'$$

$$\pi \downarrow \qquad \qquad \uparrow i$$

$$R/\ker(\varphi) \xrightarrow{\cong} im(\varphi)$$

Hierbei ist π die kanonische Projektion, i die Inklusionsabbildung. Die Abbildung ϕ ist explizit gegeben durch $\phi(a + \ker(\varphi)) = \varphi(a)$ für alle $a \in R$.

Definition 4.0.3. *R* heißt Körper $\Leftrightarrow R^* = R \setminus \{0\}$

Anmerkung: Insbesondere R = 0 kein Körper.

Satz 4.0.4. $R \neq 0$. Dann sind äquivalent:

- (i) R ist ein Körper
- (ii) (0) und (1) = R sind die einzigen Ideale in R
- (iii) Jeder Ringhomomorphismus $\varphi: R \to S$ in einen kommutativen Ring $S \neq 0$ ist injektiv.

Bemerkung 4.0.5. $I, J \subseteq R$ Ideale. Dann sind:

 $I+J:=\{a+b|a\in I,b\in J\}, I\cap J, IJ:=\{\sum\limits_{i=1}^n a_ib_i|n\in\mathbb{N}_0,a_1,\ldots,a_n\in I,b_1,\ldots,b_n\in I\}$ Ideale in R. Analog für endliche Familie von Idealen, insbesondere $I^n:=\underbrace{I\cdots I}_{\text{n-mal}}$ für $n\in\mathbb{N}$.

Konvention: $I^0 := (1) = R$

I, J heißen relativ prim $\Leftrightarrow I + J = (1)$

Anmerkung: Offenbar ist die Multiplikation von Idealen assoziativ, Klammerung nicht notwendig.

Beispiel 4.0.6. $R = \mathbb{Z}, I = (2), J = (3)$

•
$$I+J=(1)$$
, denn $1=\underbrace{(-1)\cdot 2}_{\in (2)}+\underbrace{1\cdot 3}_{\in (3)}\in I+J$

- $I \cap J = (6)$
- IJ = (6)

Bemerkung 4.0.7. $I,J,K\subseteq R$ Ideale. Dann gilt:

(a)
$$I(J+K) = IJ + IK$$

(b)
$$(I \cap J)(I + J) \subseteq IJ \subseteq I \cap J$$

(c)
$$I + J = (1) \Rightarrow I \cap J = IJ$$

Bemerkung 4.0.8. $I_1, \ldots, I_n \subseteq R$ paarweise relativ prime Ideale. Dann gilt:

$$I_1 \cdot \ldots \cdot I_n = I_1 \cap \ldots \cap I_n$$

Bemerkung 4.0.9. $(R_i)_{i \in I}$ Familie von Ringen

Das kartesische Produkt $\prod R_i$ wird durch komponentenweise Addition und Multiplikation zu einem Ring. Diesen bezeichnet man als das direkte Produkt über die Familie $(R_i)_{i \in I}$.

Satz 4.0.10. (Chinesischer Restsatz)

 $I_1, \ldots, I_n \subseteq R$ Ideale, $\varphi : R \to \prod_{i=1}^n R/I_i, r \mapsto (r+I_1, \ldots, r+I_n)$ (ist offenbar Ringhomomorphismus). Dann gilt: (a) φ surjektiv \Leftrightarrow Die Ideale I_1, \ldots, I_n sind paarweise relativ prim,

(b)
$$\ker(\varphi) = \bigcap_{i=1}^{n} I_i$$

(c)
$$\varphi$$
 injektiv $\Leftrightarrow \bigcap_{i=1}^{n} I = (0)$

Insbesondere erhalten wir unter der Voraussetzung, dass I_1, \ldots, I_n paarweise relativ prim sind, einen Ringisomorphismus: $R/\bigcap_{i=1}^n I_i \cong R/I_1 \times \cdots \times R/I_n$

Beispiel 4.0.11. $\varphi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, a \mapsto (a+2\mathbb{Z}, a+3\mathbb{Z})$

ist surjektiv wegen (2) + (3) = (1)

 $\ker(\varphi) = (2) \cap (3) = (6)$ D.h. φ induziert einen Ringisomorphismus $\mathbb{Z}/6\mathbb{Z} \stackrel{\cong}{\to} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Folgerung 4.0.12. $m_1, \ldots, m_n \in \mathbb{Z}$ paarweise teilerfremd, $a_1, \ldots, a_n \in \mathbb{Z}$

Dann hat das System von Kongruenzen

$$x \equiv a_1 \pmod{m_1}$$
:

$$x \equiv a_n \pmod{m_n}$$

eine Lösung. Ist $x \in \mathbb{Z}$ eine Lösung des Systems, dann ist die Menge aller Lösungen gegeben durch $x + m_1 \cdot \dots \cdot m_n \mathbb{Z}$

Definition 4.0.13. $I \subseteq R$ Ideal. I heißt:

Primideal $\Leftrightarrow I \neq R$ und für alle $x, y \in R$ gilt: $xy \in I \Rightarrow x \in I$ oder $y \in I$

maximales Ideal $\Leftrightarrow I \neq R$ und es existiert kein Ideal $J \subseteq R$ mit $I \subseteq J \subseteq R \Leftrightarrow I \neq R$ und für alle Ideale $J \subseteq R$ gilt: $I \subseteq J \Rightarrow I = J$ (d.h. I ist maximal bzgl. $I \subseteq I'$ unter allen Idealen $I \in R$ in I

Bemerkung 4.0.14. $I \subseteq R$ Ideal. Dann gilt:

- (a) I Primideal $\Leftrightarrow R/I$ nullteilerfrei
- (b) I maximales Ideal $\Leftrightarrow R/I$ Körper

Folgerung 4.0.15. $I \subseteq R$ maximales Ideal. Dann ist I ein Primideal.

Bemerkung 4.0.16. $n \in \mathbb{N}$. Dann sind äquivalent:

- (i) *n* ist eine Primzahl
- (ii) $\mathbb{Z}/n\mathbb{Z}$ ist nullteilerfrei
- (iii) $\mathbb{Z}/n\mathbb{Z}$ ist ein Körper

Folgerung 4.0.17.

Primideale in \mathbb{Z} : (0), (p) für p Primzahl

maximale Ideale in \mathbb{Z} : (p) für p Primzahl

Satz 4.0.18. $R \neq 0$. Dann besitzt R ein maximales Ideal.

Folgerung 4.0.19. Es gilt:

- (a) Jedes Ideal $I \subseteq R$ ist in einem maximalen Ideal von R enthalten.
- (b) Jede Nichteinheit in R ist einem maximalen Ideal von R enthalten.

5. Polynomringe

In diesem Abschnitt sei R stets ein kommutativer Ring.

Notation: $n \in \mathbb{N}$

 $R[X_1,\ldots,X_n]:=\{\sum_{i=(i_1,\ldots,i_n)\in\mathbb{N}_0^n}a_iX_1^{i_1}\cdot\ldots\cdot X_n^{i_n}|a_i\in R \text{ mit }a_i=0 \text{ für fast alle }i\in\mathbb{N}_0^n\} \text{ mit "blicher Polynomaddition und multiplikation ist ein kommutativer Ring, der Polynomring "ber R" in den Variablen <math>X_1,\ldots,X_n$.

Anmerkung:

- für eine präzise Definition vgl. Übung
- Es lassen sich auch Polynomringe $R[X_i|i \in I]$ für beliebige Indexmengen I definieren.
- Offenbar ist R ein Unterring von $R[X_1, ..., X_n]$ und $R[X_1, ..., X_n] = (R[X_1, ..., X_{n-1}])[X_n]$

Satz 5.0.1. (Universelle Eigenschaft von Polynomringen)

R, S kommutative Ringe, $\varphi : R \to S$ Ringhomomorphismus, $\alpha_1, \dots \alpha_n \in S$

Dann existiert ein eindeutig bestimmter Ringhomomorphismus

$$\phi: R[X_1, \ldots, X_n] \to S \text{ mit } \phi(X_i) = \alpha_i \text{ für } i = 1, \ldots, n \text{ und } \phi|_R = \phi$$

Folgerung 5.0.2. $a \in R$

Dann existiert ein surjektiver Ringhomomorphismus $\phi_a: R[X] \to R$ mit $\phi_a|_R = id_R$, $\phi_a(X) = a$ (Einsetzungshomomorphismus)

(explizit:
$$\phi_a(\sum\limits_{i=0}^n b_i X^i) = \sum\limits_{i=0}^n b_i a^i$$
)
Für $f \in R[X]$ setzen wir $f(a) := \phi_a(f)$

Anmerkung: $f \in R[X]$. Dann erhalten wir eine Abbildung $f^* : R \to R$, $a \mapsto f(a)$

Im Allgemeinen ist f durch die Abbildung f^* nicht eindeutig bestimmt:

z.B.
$$R = \mathbb{Z}/2\mathbb{Z}$$
, $f_1 = 0$, $f_2 = (X - \overline{1})X$. Dann ist $f_1(\overline{0}) = \overline{0} = f_2(\overline{0})$, $f_1(\overline{1}) = \overline{0} = f_2(\overline{1})$. Dann sind f_1^*, f_2^* die Nullabbildungen, jedoch $f_1 \neq f_2$.

Definition 5.0.3. $f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0 \in R[X] \text{ mit } a_n \neq 0.$

Dann heißt n der Grad von f (Bezeichnung: deg(f)), a_n der Leitkoeffizient von f (Bezeichnung: l(f))

$$f$$
 heißt normiert $\Leftrightarrow l(f) = 1$
 $\deg(0) := -\infty, l(0) := 0$

Bemerkung 5.0.4. $f,g \in R[X]$. Dann gilt:

- (a) l(fg) = l(f)l(g), falls l(f) oder l(g) kein Nullteiler ist.
- (b) $\deg(fg) \leq \deg(f) + \deg(g)$ ("=", falls l(f) oder l(g) kein Nullteiler ist)
- (c) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}\ (\text{"=", falls }\deg(f) \ne \deg(g))$

Bemerkung 5.0.5. R nullteilerfrei. Dann gelten:

- (a) R[X] nullteilerfrei
- (b) $R[X_1, ..., X_n]$ nullteilerfrei
- (c) $R[X]^* = R^*$
- (d) $(R[X_1,...,X_n])^* = R^*$

Satz 5.0.6. (Division mit Rest)

$$f,g \in R[X], l(g) \in R^*$$

Dann existieren eindeutig bestimmte Polynome $q, r \in R[X]$ mit f = qg + r und $\deg(r) < \deg(g)$

Definition 5.0.7. $\alpha \in R$, $f \in R[X]$

 α heißt Nullstelle von $f \Leftrightarrow f(\alpha) = 0$.

Bemerkung 5.0.8. $f \in R[X], \alpha \in R$ Nullstelle von f

Dann existiert ein $q \in R[X]$ mit $f = (X - \alpha)q$

Folgerung 5.0.9. *R* nullteilerfrei, $f \in R[X], f \neq 0, n := \deg(f)$

Dann besitzt f in R höchstens n Nullstellen.

Beispiel 5.0.10. $R = \mathbb{Z}/8\mathbb{Z}$ (nicht nullteilerfrei: $\overline{0} = \overline{2} \cdot \overline{4}$), $f = X^2 - \overline{1}$ f hat die Nullstellen $\overline{1}, \overline{3}, \overline{5}, \overline{7}$ (obwohl $\deg(f) = 2$).

6. Primfaktorzerlegung

In diesem Abschnitt sei R stets ein nullteilerfreier kommutativer Ring.

Definition 6.0.1. $\pi \in R \setminus (R^* \cup \{0\})$

 π heißt Primelement \Leftrightarrow Aus $\pi|ab$ mit $a,b\in R$ folgt $\pi|a$ oder $\pi|b$

 π heißt irreduzibel \Leftrightarrow Aus $\pi = ab$ mit $a, b \in R$ folgt stets $a \in R^*$ oder $b \in R^*$

Anmerkung:

- In LA2 gezeigt π Primelement $\Rightarrow \pi$ irreduzibel
- Es gibt Beispiele für irreduzible Elemente, die keine Primelemente sind

Bemerkung 6.0.2. $\pi \in R \setminus (R^* \cup \{0\})$. Dann sind äquivalent:

- (i) π ist irreduzibel
- (ii) (π) ist maximal bzgl. " \subseteq " in $\{I \subseteq R | I \text{ ist Hauptideal}\}$

Satz 6.0.3. *R* HIR. $\pi \in R \setminus (R^* \cup \{0\})$. Dann sind äquivalent:

- (i) π ist irreduzibel
- (ii) π ist Primelement
- (iii) (π) ist maximales Ideal in R

Bemerkung 6.0.4.

 $a \in R$ habe Zerlegungen $a = p_1 \cdot \ldots \cdot p_r = q_1 \cdot \ldots \cdot q_s$

Dann ist r = s und nach Umnummerieren ist $p_i = q_i$ für i = 1, ... r

Satz 6.0.5. Es sind äquivalent:

- (i) Jedes $a \in R \setminus (R^* \cup \{0\})$ lässt sich eindeutig bis auf Reihenfolge und Assoziiertheit als Produkt irreduzibler Elemente aus R schreiben.
- (ii) Jedes $a \in R \setminus (R^* \cup \{0\})$ lässt sich als Produkt von Primelementen aus R schreiben.

In diesem Fall heißt R ein faktorieller Ring.

Folgerung 6.0.6. *R* faktorieller Ring, $\pi \in R \setminus (R^* \cup \{0\})$. Dann sind äquivalent:

- (i) π irreduzibel
- (ii) π Primelement

 $\varepsilon \in \{\pm 1\}$ schreiben.

Insbesondere lässt sich in R jedes Element aus $R \setminus (R^* \cup \{0\})$ eindeutig bis auf Reihenfolge und Assoziiertheit als Produkt von Primelementen schreiben.

Satz 6.0.7. R HIR. Dann ist R faktoriell.

Bemerkung 6.0.8. R faktorieller Ring. \mathbb{P} Vertretersystem von Primelementen von R modulo " $\hat{=}$ ", $a \in R \setminus \{0\}$. Dann existieren eindeutig bestimmte $v_p(a) \in \mathbb{N}_0$ für $p \in \mathbb{P}$, $\varepsilon \in R^*$ mit $v_p(a) = 0$ für fast alle $p \in \mathbb{P}$, sodass: $a = \varepsilon \prod p^{v_p(a)}$

Beispiel 6.0.9.
$$R = \mathbb{Z}$$
, wähle $\mathbb{P} = \{ p \in \mathbb{N} | p \text{ Primelement} \}$. Jedes $a \in \mathbb{Z} \setminus \{0\}$ lässt sich eindeutig als $a = \varepsilon \prod_{p \in \mathbb{P}} p^{\nu_p(a)}$,

z.B. $90 = 2 \cdot 3^2 \cdot 5$, d.h. $v_2(90) = 1$, $v_3(90) = 1$, $v_5(90) = 1$, $v_p(90) = 0$ für $p \in \mathbb{P} \setminus \{2, 3, 5\}, \varepsilon = 1$

Bemerkung 6.0.10. *R* HIR, $a_1, \ldots, a_n \in R$ Dann gilt:

(a)
$$GGT(a_1,\ldots,a_n)\neq\emptyset$$

(b)
$$d \in GGT(a_1,\ldots,a_n) \Leftrightarrow (d) = (a_1,\ldots,a_n)$$

Folgerung 6.0.11. *R* HIR, $a, b \in R$, $d \in GGT(a, b)$

Dann existiert $u, v \in R$ mit d = ua + vb

Bemerkung 6.0.12. R faktorieller Ring, \mathbb{P} Vertretersystem von Primelementen von R modulo " $\hat{=}$ ", $a_1, \ldots, a_n \in R \setminus \{0\}$ mit $a_i = \varepsilon_i \prod_{n \in \mathbb{P}} p^{v_p(a_i)}$, $\varepsilon_i \in R^*$, $i = 1, \ldots, n$

Dann gilt:

$$GGT(a_1,\ldots,a_n) \neq \emptyset$$
, und es ist $\prod_{p \in \mathbb{P}} p^{min\{v_p(a_1),\ldots v_p(a_n)\}} \in GGT(a_1,\ldots,a_n)$.

Anmerkung: In faktoriellen Ringen existieren GGTs, 6.10(b), 6.11 sind jedoch im Allgemeinen nicht erfüllt.

Satz 6.0.13. *R* euklidischer Ring. Dann ist *R* ein HIR.

Folgerung 6.0.14. *R* euklidischer Ring. Dann ist *R* faktoriell.

7. Lokalisierung

In diesem Abschnitt sei R stets ein kommutativer Ring

Satz 7.0.1. $S \subseteq R$ Untermonoid bzgl. "·", dann gilt:

- (a) Aus $R \times S$ ist durch $(r_1, s_1) \sim (r_2, s_2) \Leftrightarrow \text{Es existiert ein } t \in S \text{ mit } tr_2s_1 = tr_1s_2 \text{ eine Äquivalenzrelation gegeben.}$ Wir setzen $S^{-1}R = (R \times S)/\sim$ (Menge der Äquivalenzklassen), $\frac{r}{s}$ bezeichnet die Äquivalenzklasse von $(r,s) \in$ $R \times S$
- (b) $S^{-1}R$ ist ein Ring via

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} := \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}, \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} := \frac{r_1 r_2}{s_1 s_2}$$

 $\frac{r_1}{s_1} + \frac{r_2}{s_2} := \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}, \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} := \frac{r_1 r_2}{s_1 s_2}$ $S^{-1}R \text{ heißt der Quotientenring (Bruchring) von } R \text{ nach der Nennermenge } S.$

- (c) Die Abbildung $\tau_s: R \to S^{-1}R$, $r \mapsto \frac{r}{1}$ ist ein Ringhomomorphismus.
- (d) τ_s injektiv $\Leftrightarrow S$ enthält keinen Nullteiler.

Satz 7.0.2. $S \subseteq R$ Untermonoid bzgl. "·". Dann gilt:

Für jeden kommutativen Ring T und jeden Ringhomomorphismus $\varphi: R \to T$ mit $\varphi(S) \subseteq T^*$ gibt es genau einen Ringhomomorphismus $\psi : S^{-1}R \to T$ mit $\psi \circ \tau_s = \varphi$:

Explizit ist ψ gegeben durch $\psi(\frac{r}{s}) = \varphi(r)\varphi(s)^{-1}$ für $r \in R, s \in S$

Bemerkung 7.0.3. R nullteilerfrei. Dann gilt:

- (a) $Quot(R) := (R \setminus \{0\})^{-1}R$ ist ein Körper, der Quotientenkörper von R.
- (b) In Quot(R) ist $\frac{r_1}{s_1} = \frac{r_2}{s_2} \Leftrightarrow r_1s_2 = r_2s_1$ (für alle $r_1, r_2 \in R, s_1, s_2 \in R \setminus \{0\}$)
- (c) Die Abbildung $R \to Quot(R)$, $r \mapsto \frac{r}{1}$ ist ein injektiver Ringhomomorphismus.

Folgerung 7.0.4. R nullteilerfrei, K Körper, $\varphi: R \hookrightarrow K$ injektiver Ringhomomorphismus. Dann existiert ein eindeutig bestimmter Körperhomomorphismus $\psi: Quot(R) \hookrightarrow K$, sodass das folgende Diagramm kommutiert:

(d.h. $\psi \circ \tau = \varphi$)

Anmerkung: Körperhomomorphismen sind immer injektiv (denn: $\varphi: K \to L$ Körperhomomorphismus $\Rightarrow \ker(\varphi) \subseteq$ K ist ein Ideal, somit $\ker(\varphi) = (0)$ oder $\ker(\varphi) = (1)$ und es ist $\varphi(1) = 1 \neq 0$, d.h. $1 \notin \ker(\varphi)$. Also $\ker(\varphi) = (0)$. Philosophie hinter 7.0.4: Quot(R) ist der kleinste Körper, in den R eingebettet werden kann.

Bemerkung 7.0.5. *R* faktorieller Ring, \mathbb{P} Vertretersystem von Primelementen von *R* modulo " $\hat{=}$ ", $x \in Quot(R), x \neq R$

Dann existieren eindeutig bestimmte $v_p(x) \in \mathbb{Z}$ für $p \in \mathbb{P}$ mit $v_p(x) = 0$ für fast alle $p \in \mathbb{P}$ und $\varepsilon \in R^*$ mit $x = \varepsilon \prod_{p \in \mathbb{P}} p^{\nu_p(x)}$

Es gilt: $x \in R \Leftrightarrow v_p(x) \ge 0$ für alle $p \in \mathbb{P}$.

Konvention: $v_p(0) := \infty$

Beispiel 7.0.6. $R = \mathbb{Z}$, \mathbb{P} Menge aller Primzahlen in \mathbb{N}

$$v_2(\frac{2}{9}) = v_2(\frac{2^1}{3^2}) = v_2(2^1 \cdot 3^{-2}) = 1, v_3(\frac{2}{9}) = -2, v_p(\frac{2}{9}) = 0$$
 für alle Primzahlen $p \neq 2, 3$.

Bemerkung 7.0.7. *R* faktorieller Ring, $x, y \in Quot(R)$. Dann gilt:

- (a) *p* Primelement in $R \Rightarrow v_p(xy) = v_p(x) + v_p(y)$
- (b) Ist $v_p(x) = 0$ für alle Primelemente $p \in R \Rightarrow x \in R^*$

8. Primfaktorzerlegung in Polynomringen

In diesem Abschnitt sei R stets ein faktorieller Ring.

Ziel R[T] ist faktoriell.

Definition 8.0.1. $f = a_r T^r + \ldots + a_1 T + a_0 \in Quot(R)[T], p \in R$ Primelement Wir setzen $v_p(f) := \min_{i=0,\ldots,r} v_p(a_i)$

Bemerkung 8.0.2. $f \in Quot(R)[T]$. Dann gilt:

(a) Ist \mathbb{P} ein Vertretersystem von Primelementen von R, dann ist $v_p(f) = 0$ für fast alle $p \in \mathbb{P}$.

(b) $f \in R[T] \Leftrightarrow v_p(f) \ge 0$ für fast alle $p \in \mathbb{P}$

Satz 8.0.3. $p \in R$ Primelement, $f, g \in Quot(R)[T]$. Dann gilt:

$$v_p(fg) = v_p(f) + v_p(g)$$

Folgerung 8.0.4. $h \in R[T]$ normiert. Es sei h = fg mit normierten Polynomen $f, g \in Quot(R)[T]$ Dann gilt: $f, g \in R[T]$

Definition 8.0.5. $f = a_n T^n + ... + a_1 T + a_0 \in R[T]$

f heißt primitiv $\Leftrightarrow 1 \in GGT(a_0, \dots, a_n) \Leftrightarrow v_p(f) = 0$ für alle Primelemente $p \in R$

Beispiel 8.0.6. • Jedes normierte Polynom aus R[T] ist primitiv

• $R = \mathbb{Z}$: $f = 5T^2 + 3T + 9 \in \mathbb{Z}[T]$ ist primitiv

Bemerkung 8.0.7. $0 \neq f \in Quot(R)[T]$

Dann exisitert ein $a \in Quot(R), a \neq 0$ und ein primitives Polynom $\tilde{f} \in R[T]$ mit $f = a\tilde{f}$.

Satz 8.0.8. (Satz von Gauß) Es gilt:

- (a) R[T] ist faktoriell
- (b) Ein Polynom $q \in R[T]$ ist genau dann ein Primelement in R[T], wenn gilt:
 - (i) $q \in R$ und q ist Primelement in R

oder

(ii) q ist primitiv in R[T] und Primelement in Quot(R)[T]

Folgerung 8.0.9. $f \in R[T]$ primitiv. Dann sind äquivalent:

- (i) f ist Primelement in R[T]
- (ii) f ist Primelement in Quot(R)[T]

Folgerung 8.0.10. $n \in \mathbb{N}$. Dann ist $R[T_1, \ldots, T_n]$ faktoriell.

Beispiel 8.0.11.

- (a) K Körper $\Rightarrow K[T_1, \dots, T_n]$ faktoriell
- (b) $\mathbb{Z}[T_1,\ldots,T_n]$ faktoriell

Anmerkung: R[T] und Quot(R)[T] sind faktorielle Ringe, d.h. "Primelemente" und "irreduzible Elemente" sind äquivalent. Im Folgenden werden wir immer von irreduziblen Polynomen sprechen.

Bemerkung 8.0.12. $f \in Quot(R)[T]$ mit $\deg(f) \ge 1$. Sei $f = c\tilde{f}$ mit $c \in Quot(R)^*$, $\tilde{f} \in R[T]$ primitiv. Dann sind äquivalent:

- (i) f ist irreduzibel in Quot(R)[T]
- (ii) \tilde{f} ist irreduzibel in Quot(R)[T]
- (iii) \tilde{f} ist irreduzibel in R[T]

Ziel: Kritierien, wann ein Polynom irreduzibel ist.

Satz 8.0.13. (Reduktionskriterium) $p \in R$ Primelement, $f \in R[T]$, $f \neq 0$, $p \nmid l(f)$ Wir betrachten den Ringhom. $\varphi : R[T] \to R/(p)[T]$, $\sum\limits_{i=0}^{n} a_i T^i \mapsto \sum\limits_{i=0}^{n} \bar{a}_i T^i$ (Koeffizientenprojektion) Dann gilt:

- (a) Ist $\varphi(f)$ irreduzibel in R/(p) [T], dann ist f irreduzibel in Quot(R)[T]
- (b) Ist $\varphi(f)$ irreduzibel in R/(p) [T], und ist f primitiv, dann ist f irreduzibel in R[T]

Anmerkung:

- Satz (drüber) wird häufig angewendet, wenn R HIR, p Primelement in R. Dann ist (p) nach 6.3 maximales Ideal in R, also R/(p) Körper, R/(p) [T] faktoriell
- andere Anwendung: $R = K[T_1, ..., T_n]$, K Körper, $p = T_n$ (ist Primelement) $\Rightarrow R/(p) = K[T_1, ..., T_{n-1}]$, Problem um eine Variable reduziert.

Beispiel 8.0.14. $R = \mathbb{Z}$, $f = X^3 + 7X^2 + 4X - 5 \in \mathbb{Z}[X]$ ist irreduzibel in $\mathbb{Z}[X]$ und in $\mathbb{Q}[X]$ denn: Reduktionskriterium mit p = 2: $\varphi(f) = X^3 + X^2 + \bar{1} \in \mathbb{F}_2[X]$ ist irreduzibel (andernfalls hätte $\varphi(f)$ wegen $\deg(\varphi(f)) = 3$ einen Teiler vom Grad 1, also eine Nullstelle in \mathbb{F}_2 : $\varphi(f)(\bar{0}) = \bar{1}$, $\varphi(f)(\bar{1}) = \bar{1}$)

Satz 8.0.15. (Eisensteinisches Irreduzibilitästkriterium)

 $f = a_n T^n + \ldots + a_0 \in R[T]$ primitiv mit $\deg(f) \ge 1$ $p \in R$ Primelement mit $p \nmid a_n, p \mid a_i$ für $0 \le i < n, p^2 \nmid a_0$ Dann ist f irreduzibel in R[T] und in Quot(R)[T].

Beispiel 8.0.16.

- (a) $f = T^3 + 5T^2 + 5 \in \mathbb{Z}[T]$ ist irreduzibel in $\mathbb{Z}[T]$ und in $\mathbb{Q}[T]$ (Eisenstein mit p = 5)
- (b) p Primzahl. Dann ist $f = T^{p-1} + T^{p-2} + \ldots + 1 = \frac{T^p 1}{T 1}$ irreduzibel in $\mathbb{Z}[T]$ und in $\mathbb{Q}[T]$.

f irreduzibel $\Leftrightarrow f(T+1)$ irreduzibel (vgl. Blatt 7, A2)

$$f(T+1) = \frac{(T+1)^p - 1}{T+1-1} = \frac{T^p + \binom{p}{1}T^{p-1} + \dots + \binom{p}{p-1}T^2 + \binom{p}{p-1}T}{T} = T^{p-1} + \binom{p}{1}T^{p-2} + \dots + \binom{p}{p-2}T + \binom{p}{p-1}T = T^{p-1} + \binom{p}{1}T^{p-2} + \dots + \binom{p}{p-2}T + \binom{p}{p-1}T = T^{p-1}T^2 + \dots + \binom{p}{p-1}T^2 +$$

 $\Rightarrow f(T+1)$ irreduzibel nach Eisenstein-Kriterium $\Rightarrow f$ irreduzibel.

(c) k Körper, R = k[t], K := Quot(R) =: k(t) (Körper der rationalen Funktionen über k in der Variablen t) Sei $f = T^n - t \in R[T]$.

R ist faktoriell, t ist Primelement in R. $\Rightarrow f$ irreduzibel in R[T] und in K[T] (nach Eisenstein).

Teil III.

Algebraische Körpererweiterungen

9. Die Charakteristik

In diesem Abschnitt sei R stets ein kommutativer Ring

Bemerkung 9.0.1. Es gilt:

(a) Es gibt genau einen Ringhomomorphismus $\phi_R : \mathbb{Z} \to R$. Für diesen gilt:

$$\varphi_R(n) = n \cdot 1_R := \begin{cases}
\underbrace{1_R + \ldots + 1_R}_{n \text{-mal}}, & \text{falls } n \in \mathbb{N} \\
0_R, & \text{falls } n = 0 \\
-\underbrace{(1_R + \ldots + 1_R)}_{(-n) \text{-mal}}, & \text{falls } -n \in \mathbb{N}
\end{cases}$$

(b) R nullteilerfrei $\Rightarrow \ker(\varphi_R) \subseteq \mathbb{Z}$ Primideal, insbesondere ist $\ker(\varphi) = \begin{cases} (0) & \text{oder} \\ (p) & \text{für eine Primzahl } p \in \mathbb{N} \end{cases}$

Definition 9.0.2. R nullteilerfrei, \mathbb{P} Menge der Primzahlen in \mathbb{N}

Das eindeutig bestimmte $n \in \mathbb{P} \cup \{0\}$ mit $\ker(\varphi_R) = (n)$ heißt die Charakteristik von R. Bezeichnung: $\operatorname{char}(R)$.

Anmerkung: Offenbar ist $char(R) = \min\{n \in \mathbb{N} | n \cdot 1_R = 0\}$, falls dieses existiert, sonst = 0

Beispiel 9.0.3.

- (a) $char(\mathbb{Q}) = char(\mathbb{R}) = char(\mathbb{C}) = 0$
- (b) p Primzahl, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \Rightarrow char(\mathbb{F}_p) = p$ (hier ist $\varphi_{\mathbb{Z}/p\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, n \mapsto \bar{n}$ mit $\ker(\varphi_{\mathbb{Z}/p\mathbb{Z}}) = p\mathbb{Z}$)

Bemerkung 9.0.4. R nullteilerfrei, S nullteilerfreier kommutativer Ring

- (a) Existiert ein injektiver Ringhomomorphismus $i: R \hookrightarrow S$, dann ist char(R) = char(S)
- (b) R, S Körper mit $char(R) \neq char(S) \Rightarrow$ Es existiert kein Körperhomomorphismus von R nach S.

Folgerung 9.0.5. R nullteilerfrei. Dann ist char(R) = char(Quot(R))

Beispiel 9.0.6.

p Primzahl, $K = \mathbb{F}_p(t) = Quot(\mathbb{F}_p[t])$ ist ein Körper mit char(K) = p (und unendlich vielen Elementen)

Definition 9.0.7. *K* Körper. Der Durchschnitt aller Teilkörper (Unterringe von *K*, die selbst Körper sind) von *K* heißt der Primkörper von *K*

Anmerkung: Dies ist selbst ein Körper, der kleinste Teilkörper von K

Bemerkung 9.0.8. *K* Körper, $P \subseteq K$ Primkörper von *K*. Dann gilt:

- (a) $charK = 0 \Leftrightarrow P \cong \mathbb{Q}$
- (b) $charK = p > 0 \Leftrightarrow P \cong \mathbb{F}_p$

Definition 9.0.9. *K* Körper mit char(K) = p > 0.

Die Abbildung $\sigma_K : K \to K$, $a \mapsto a^p$ heißt der Frobeniushomomorphismus von K.

Bemerkung 9.0.10. *K* Körper mit char(K) = p > 0. Dann gilt:

- (a) σ_K ist ein Körperhomomorphismus
- (b) K endlicher Körper $\Rightarrow \sigma_K$ ist Körperautomorphismus.

Bemerkung 9.0.11. *K* Körper mit char(K) = p > 0, *P* Primkörper von *K*.

Dann gilt: $P = \{a \in K | \sigma_K(a) = a\}$

10. Endliche und algebraische Körpererweiterungen

Definition 10.0.1. L Körper, $K \subseteq L$ Teilkörper

Sprechweise: L ist Erweiterungskörper von K, L|K ist eine Körpererweiterung.

Vermöge $K \times L \to L$, $(x,y) \mapsto xy$ als skalare Multiplikation wird L zu einem K-Vektorraum.

 $[L:K] := dim_K L \in N \cup \{\infty\}$ heißt der Grad der Körpererweiterung L|K

L|K heißt endlich, falls [L:K] endlich ist.

Beispiel 10.0.2.

- (a) $\mathbb{C}|\mathbb{R}$ ist eine Körpererweiterung mit $[\mathbb{C}:\mathbb{R}]=2$
- (b) $\mathbb{R}[\mathbb{Q}]$ ist eine Körpererweiterung mit $[\mathbb{R}:\mathbb{Q}]=\infty$, denn: Falls $[\mathbb{R}:\mathbb{Q}]=n\in\mathbb{N}$, dann wäre $\mathbb{R}\cong\mathbb{Q}^n$ abzählbar. 4
- (c) K Körper, $K(t) = Quot(K[t]) \Rightarrow K(t)|K$ ist eine Körpererweiterung mit $[K(t):K] = \infty$, denn: $(t^i)_{i \in \mathbb{N}_0}$ ist K-linear unabhängig (und unendlich).

Bemerkung 10.0.3. L|K Körpererweiterung. Dann sind äquivalent:

- (i) [L:K] = 1
- (ii) L = K

Satz 10.0.4. (Gradsatz) M|L|K Körpererweiterung. Dann gilt:

$$[M:K] = [M:L][L:K]$$

Anmerkung: Ist $(x_i)_{i \in I}$ Basis von M als L-Vektorraum und $(y_j)_{j \in J}$ Basis von L als K-Vektorraum $\Rightarrow (x_i y_j)_{(i,j) \in I \times J}$ ist Basis von M als K-Vektorraum.

Folgerung 10.0.5. M|L|K Körpererweiterung, [M:K] Primzahl.

Dann ist: L = K oder L = M

Definition 10.0.6. L|K Körpererweiterung, $\alpha_1, \ldots, \alpha_n \in L$

Die Familie $(\alpha_1, \dots, \alpha_n)$ heißt algebraisch unabhängig (transzendent) über K

- \Leftrightarrow Der Ringhomomorphismus $\phi: K[X_1, \dots, X_n] \to L, f \mapsto f(\alpha_1, \dots, \alpha_n)$ ist injektiv
- \Leftrightarrow Es existiert kein $f \in K[X_1, \dots, X_n], f \neq 0$ mit $f(\alpha_1, \dots, \alpha_n) = 0$

Andernfalls heißt die Familie algebraisch abhängig über *K*.

n = 1: $\alpha \in L$ heißt algebraisch über K

- \Leftrightarrow (α) ist algebraisch abhängig über K
- \Leftrightarrow Der Ringhomomorphismus. $\phi: K[X] \to L, f \mapsto f(\alpha)$ ist nicht injektiv
- \Leftrightarrow Es existiert ein $f \in K[X]$, $f \neq 0$ mit $f(\alpha) = 0$

Andernfalls heißt α transzendent über K.

Beispiel 10.0.7.

- (a) $\sqrt{2} \in \mathbb{R}$ ist algebraisch über \mathbb{Q} , denn für $f = X^2 2 \in \mathbb{Q}[X]$ ist $f(\sqrt{2}) = 0$
- (b) π ist transzendent über \mathbb{Q} (Satz von Lindemann)
- (c) (π, π^2) ist algebraisch abhängig über \mathbb{Q} , denn für $f = X_1^2 X_2 \in \mathbb{Q}[X_1, X_2]$ ist $f(\pi, \pi^2) = 0$
- (d) π ist algebraisch über \mathbb{R} , denn für $f = X \pi \in \mathbb{R}[X]$ ist $f(\pi) = 0$
- (e) Ist (e, π) transzendent über \mathbb{Q} ? Ungelöst

Definition 10.0.8. L|K heißt algebraisch \Leftrightarrow Jedes Element aus L ist algebraisch über K.

Beispiel 10.0.9.

- (a) $\mathbb{C}|\mathbb{R}$ ist algebraisch, denn $\alpha = a + ib \in \mathbb{C}$ mit $a, b \in \mathbb{R}$ ist eine Nullstelle von $X^2 2aX + (a^2 + b^2) \in \mathbb{R}[X]$
- (b) K Körper, K(t) Körper der rationalen Funktionen über K in der Variablen t
- K(t)|K ist nicht algebraisch, denn: $t \in K(t)$ ist nicht algebraisch über K:

Die Abbildung: $\phi: K[X] \to K(t)$, $f \mapsto f(t)$ ist injektiv (genauer: ein Isomorphismus von K[X] auf dem Unterring $K[t] \subseteq K(t)$).

Bemerkung 10.0.10. L|K Körpererweiterung, $\alpha \in L$ algebraisch über K, $\phi : K[X] \to L$, $g \mapsto g(\alpha)$. Dann gilt:

- (a) Es gibt genau ein normiertes Polynom kleinsten Grades $f \in K[X]$ mit $f(\alpha) = 0$
- (b) f ist irreduzibel
- (c) $ker(\phi) = (f)$

f heißt das Minimalpolynom von α über K.

Bemerkung 10.0.11. L|K Körpererweiterung, $\alpha \in L$. Dann gilt:

 $K[\alpha] := \{c_0 + c_1 \alpha + \ldots + c_n \alpha^n | n \in \mathbb{N}_0, c_1, \ldots, c_n \in K\} = im(\phi) \text{ für } \phi : K[X] \to L, g \mapsto g(\alpha) \text{ ist der kleinste Teilring von } L, \text{ der } K \text{ und } \alpha \text{ umfasst und heißt der von } \alpha \text{ über } K \text{ erzeugte Teilring von } L.$

 $K(\alpha) := Quot(K[\alpha]) \subseteq L$ ist der kleinste Teilkörper von L, der K und α umfasst und heißt der von α über K erzeugte Teilkörper von L ("K adjungiert α ")

Satz 10.0.12. L|K Körpererweiterung, $\alpha \in L$ algebraisch über K, $f \in K[X]$ Minimalpolynom von α über K. Dann gilt:

- (a) $K[\alpha]$ ist ein Körper, d.h. $K[\alpha] = K(\alpha)$
- (b) Der Homomorphismus $\phi: K[X] \to L$, $g \mapsto g(\alpha)$ induziert einen Isomorphismus $\overline{\phi}: K[X]/(f) \stackrel{\sim}{\to} K(\alpha)$
- (c) $[K(\alpha):K] = \deg(f)$, insbesondere ist $K(\alpha)|K$ eine endliche Körpererweiterung.

Beispiel 10.0.13. L|K Körpererweiterung, $\alpha \in L$ algebraisch über K, $\alpha \neq 0$. Wie findet man $\alpha^{-1} \in K[\alpha]$?

Sei
$$f = X^n + c_{n-1}X^{n-1} + \ldots + c_0 \in K[X]$$
 Minimalpolynom über K

$$n=1: f=X+c_0, f(\alpha)=0 \Rightarrow \alpha+c_0=0 \Rightarrow \alpha=-c_0 \in K^* \Rightarrow \alpha^{-1}=-c_0^{-1} \in K \subseteq K[\alpha]$$

 $n \ge 2$: $c_0 \ne 0$, da f irreduzibel.

$$\Rightarrow 0 = \alpha^{-1} f(\alpha) = \alpha^{-1} (\alpha^n + c_{n-1} \alpha^{n-1} + \dots + c_0)$$

$$\Rightarrow -c_0\alpha^{-1} = \alpha^{n-1} + c_{n-1}\alpha^{n-2} + \ldots + c_1$$

$$\Rightarrow \alpha^{-1} = -c_0^{-1}(\alpha^{n-1} + c_{n-1}\alpha^{n-2} + \dots + c_1) \in K[\alpha]$$

Bemerkung 10.0.14. L|K algebraische Körpererweiterung, $[L:K] < \infty$, $\alpha \in L$, $h_{\alpha}: L \to L$, $b \mapsto \alpha b$ (ist ein K-VR-Endomorphismus.) Dann stimmt das Minimalpolynom von α über K mit dem Minimalpolynom von h_{α} überein.

Satz 10.0.15. L|K endliche Körpererweiterung. Dann ist L|K algebraisch.

Anmerkung: Es gibt eine algebraische Körpererweiterungen, die nicht endlich sind (vgl. Bsp. 10.24)

Folgerung 10.0.16. L|K Körpererweiterung, $\alpha \in L$ algebraisch über K.

Dann ist $K(\alpha)|K$ algebraisch.

Bemerkung 10.0.17. L|K Körperweiterung, $S \subseteq L$. Dann gilt:

- (a) $K[S] := \{ f(\alpha_1, \dots, \alpha_n) | n \in \mathbb{N}_0, f \in K[X_1, \dots, X_n], \alpha_1, \dots, \alpha_n \in S \}$ ist der kleinste Teilring von L, der K und S umfasst.
- (b) K(S) := Quot(K[S]) ist der kleinste Teilkörper von L, der K und S umfasst.

(c)
$$K(S) = \bigcup_{T \subseteq S \text{ endl.}} K(T)$$

Ist
$$S = \{\alpha_1, \dots, \alpha_n\}$$
 endlich, so schreiben wir $K[S] = K[\alpha_1, \dots, \alpha_n] = \{f(\alpha_1, \dots, \alpha_n) | f \in K[X_1, \dots, X_n]\}$

$$K(S) = K(\alpha_1, \dots, \alpha_n) = Quot(K[\alpha_1, \dots, \alpha_n])$$

Definition 10.0.18. L|K Körpererweiterung

Für $\alpha \in L$ heißt $[K(\alpha) : K]$ der Grad von α über K.

L|K heißt einfach \Leftrightarrow Es existiert ein $\alpha \in L$ mit $L = K(\alpha)$.

L|K heißt endlich erzeugt \Leftrightarrow Es existiert ein $\alpha_1, \ldots, \alpha_n \in L$ mit $L = K(\alpha_1, \ldots, \alpha_n)$.

Beispiel 10.0.19. $\mathbb{C}|\mathbb{R}$ ist einfach wegen $\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i]$

Satz 10.0.20. L|K Körpererweiterungen, $\alpha_1, \ldots, \alpha_n \in L$ algebraisch über $K, L = K(\alpha_1, \ldots, \alpha_n)$

Dann gilt:

- (a) $L = K[\alpha_1, \ldots, \alpha_n]$
- (b) L|K endlich, insbesondere algebraisch

Folgerung 10.0.21. L|K Körpererweiterung. Dann sind äquivalent:

- (i) L|K ist endlich.
- (ii) L wird über K von endlich vielen algebraischen Elementen erzeugt, d.h. es existieren $\alpha_1, \ldots, \alpha_n \in L$, $\alpha_1, \ldots, \alpha_n$ algebraisch über K mit $L = K(\alpha_1, \ldots, \alpha_n)$
- (iii) L|K ist eine endlich erzeugte algebraische Körpererweiterung, d.h. L|K algebraisch und es existieren $\alpha_1, \ldots, \alpha_n \in L$ mit $L = K(\alpha_1, \ldots, \alpha_n)$

Folgerung 10.0.22. L|K Körpererweiterung. Dann sind äquivalent:

- (i) L|K ist algebraisch
- (ii) L wird über K von algebraischen Elementen erzeugt.

Folgerung 10.0.23. L|K Körpererweiterung, $M := \{\alpha \in L | \alpha \text{ ist algebraisch ""uber } K\}$. Dann gilt:

- (a) M ist eine Teilkörper von L, der sogenannte algebraische Abschluss von K in L
- (b) M|K ist algebraisch

Beispiel 10.0.24. $K = \mathbb{Q}, L = \mathbb{C}$

 $\mathbb{Q}^{alg} := \{ \alpha \in \mathbb{C} | \alpha \text{ ist algebraisch "uber } \mathbb{Q} \} = \text{algebraischer Abschluss von } \mathbb{Q} \text{ in } \mathbb{C} \text{ ist eine algebraische Erweiterung von } \mathbb{Q}.$

1. $[\mathbb{O}^{alg}:\mathbb{O}]=\infty$, denn:

Sei $n \in \mathbb{N}$, p Primzahl $\Rightarrow f := X^n - p \in \mathbb{Q}[X]$ irreduzibel von Grad n wegen dem Eisensteinkriterium, es existieren $\alpha \in \mathbb{C}$ mit $f(\alpha) = 0 \Rightarrow \alpha \in \mathbb{Q}^{alg}$, $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}^{alg}$

Wegen
$$[\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg(f) = n \text{ folgt } [\mathbb{Q}^{alg} : \mathbb{Q}] \ge n$$

2. \mathbb{Q}^{alg} ist abzählbar, denn:

 $P:=\{f\in \mathbb{Q}[X]|f \text{ irreduzibel, normiert}\}$ ist abzählbar, denn $\mathbb{Q}[X]$ ist abzählbar. \mathbb{Q}^{alg} ist als Menge aller NS in \mathbb{C} aller Polynome aus P dann auch abzählbar. Insbesondere existiert in \mathbb{C} überabzählbar viele Elemente, die transzendent über \mathbb{Q} sind.

Satz 10.0.25. M|L|K Körpererweiterung, $\alpha \in M$. Dann gilt:

- (a) α algebraisch über L und L|K algebraisch $\Rightarrow \alpha$ algebraisch über K
- (b) M|K algebraisch $\Leftrightarrow M|L$ algebraisch und L|K algebraisch

11. Algebraischer Abschluss

Satz 11.0.1. *K* Körper, $f \in K[X]$, $\deg(f) \ge 1$

Dann existiert eine endliche Körpererweiterung L|K, sodass f eine Nullstelle in L hat.

Definition 11.0.2. K Körper

K heißt algebraisch abgeschlossen

- \Leftrightarrow Jedes $f \in K[X]$, $\deg(f) \ge 1$ besitzt eine Nullstelle in K
- \Leftrightarrow Jedes $f \in K[X], f \neq 0$ kann in der Form $f = c(X \alpha_1) \cdot \ldots \cdot (X \alpha_n)$ mit $n = \deg(f), c \in K^*$, geschrieben werden.

Bemerkung 11.0.3. K Körper. Dann sind äquivalent:

- (i) *K* ist algebraisch abgeschlossen
- (ii) Es gibt keine echte algebraische Erweiterung L|K
- (iii) Es gibt keine echte endliche Erweiterung L|K

Satz 11.0.4. K Körper. Dann existiert ein algebraisch abgeschlossener Erweiterungskörper von K

Folgerung 11.0.5. K Körper

Dann existiert ein algebraisch abgeschlossener Erweiterungskörper \bar{K} von K, sodass $\bar{K}|K$ algebraisch ist. Mann nennt \bar{K} einen algebraischen Abschluss von K

Beispiel 11.0.6. \mathbb{O}^{alg} aus Bsp 10.24 ist ein algebraischer Abschluss von \mathbb{O} .

Aber: $\mathbb C$ ist kein algebraischer Abschluss von $\mathbb Q$

Ziel: Je zwei algebraische Abschlüsse von *K* sind isomorph.

Definition 11.0.7.
$$K, L$$
 Körper, $\sigma: K \to L$ Körperhomomorphismus, $f = a_n X^n + \ldots + a_0 \in K[X]$ $f^{\sigma} := \sigma(a_n) X^n + \ldots + \sigma(a_0) \in L[X]$

Bemerkung 11.0.8. K,L Körper, K'|K einfache algebraische Körpererweiterung, etwa $K' = K(\alpha)$, $f \in K[X]$ Minimalpolynom von α über K, $\sigma : K \to L$ Körperhomomorphismus. Dann gilt:

- (a) Ist $\sigma': K' \to L$ Körperhomomorphismus, der σ fortsetzt, d.h. $\sigma'|_K = \sigma$, dann ist $\sigma'(\alpha)$ eine Nullstelle von $f^{\sigma} \in L[X]$
- (b) Zu jeder Nullstelle $\beta \in L$ von f^{σ} gibt es genau eine Fortsetzung $\sigma' : K' \to L$ von σ mit $\sigma'(\alpha) = \beta$.

Insbesondere ist die Anzahl der Fortsetzungen σ' von σ nach K' gleich der Anzahl der verschiedenen Nullstellen von f^{σ} in L, also $\leq \deg(f)$.

Satz 11.0.9. K'|K algebraische Körpererweiterung, L algebraisch abgeschlossener Körper, $\sigma: K \to L$ Körperhomomorphismus. Dann gilt:

- (a) σ besitzt eine Forsetzung $\sigma': K' \to L$
- (b) Ist K' algebraisch abgeschlossen und $L|\sigma(K)$ algebraisch, dann ist jede Fortsetzung von σ nach K' ein Isomorphismus.

Folgerung 11.0.10. *K* Körper, $\bar{K_1}$, $\bar{K_2}$ algebraische Abschlüsse von *K*.

Dann existiert ein Isomorphismus $\bar{K_1} \stackrel{\sim}{\to} \bar{K_2}$, der $id_K : K \to K$ fortsetzt.

Anmerkung: Dieser Isomorphismus existiert, es gibt aber keine kanonische Wahl: Man sagt: \bar{K}_1 , \bar{K}_2 sind unterkanonisch isomorph.

12. Normale Körpererweiterungen

In diesem Abschnitt sei K stets ein Körper.

Definition 12.0.1. L|K, L'|K Körpererweiterungen, $\sigma: L \to L'$ Körperhomomorphismus σ heißt K-Homomorphismus $\Leftrightarrow \sigma|_K = id_K$

Definition 12.0.2. $F = (f_i)_{i \in I}$ Familie nichtkonstanter Polynome mit Koeffizienten in K.

Ein Erweiterungskörper L von K heißt ein Zerfällungskörper der Familie F über K, wenn gilt:

- (a) Jedes f_i zerfällt über L vollständig in Linearfaktoren und
- (b) L|K wird von den Nullstellen der f_i , $i \in I$ in L erzeugt.

Anmerkung

- $F = (f), f \in K[X]$ nichtkonstant, \bar{K} ein algebraischer Abschluss von K, $\alpha_1, \dots, \alpha_n$ Nullstellen von f in $\bar{K} \Rightarrow L := K(\alpha_1, \dots, \alpha_n)$ ein Zerällungskörper von F über K (kurz: Zerfällungskörper von f über K)
- $F = (f_1, \dots, f_n) \Rightarrow$ Zerfällungskörper von F ist ein Zerfällungskörper von $f_1 \cdot \dots \cdot f_n$ und umgekehrt
- $F = (f_i)_{i \in I}$: Man erhält einen Zerfällungskörper, indem man sämtliche Nullstellen der f_i , $i \in I$ in einem festen algebraischen Abschluss von K zu K adjungiert.

Somit: Existenz von Zerällungskörper ist stets gesichert.

Beispiel 12.0.3. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ ist ein Zerfällungskörper der Familie $(X^2 - 2, X^2 - 3)$ über \mathbb{Q} .

Satz 12.0.4. $F = (f_i)_{i \in I}$ Familie nicht-konstanter Polynome mit Koeffizienten in K, L_1 , L_2 Zerfällungskörper von F. $\bar{L_2}$ ein algebraischer Abschluss von L_2 .

Dann gilt: Jeder K-Homomorphismus $\bar{\sigma}: L_1 \to \bar{L}_2$ beschränkt sich zu einem K-Isomorphismus $\sigma: L_1 \stackrel{\sim}{\to} L_2$ (d.h. $\sigma(L_1) = L_2$)

Folgerung 12.0.5. F Familie nicht konstanter Polynome über K

Dann sind je zwei Zerfällungskörper von F über K (unkanonisch) K-isomorph.

Satz 12.0.6. L|K algebraische Körpererweiterung. Dann sind äquivalent:

- (i) Jeder K-Homomorphismus $\tau: L \to \bar{L}$ in einen algebraischen Abschluss \bar{L} von L schränkt sich zu einem Automorphismus von L ein, d.h. $\tau(L) = L$.
- (ii) L ist Zerfällungskörper einer Familie von Polynomen über K.
- (iii) Jedes irreduzible Polynom aus K[X], das in L eine Nullstelle hat, zerfällt in L[X] vollständig in Linearfaktoren. L|K heißt normal, wenn eine der obigen Bedingungen erfüllt ist.

Anmerkung: zu (i): Ein algebraischer Abschluss $\bar{L}|L$ ist eine Körpererweiterung, d.h. kommt mit einer Einbettung $L \hookrightarrow \bar{L}$ daher. Es gibt aber im Allgemeinen mehr K-Homomorphismen von L nach \bar{L} als diesen einen.

Beispiel 12.0.7.

- (a) \bar{K} ein algebraischer Abschluss von $K \Rightarrow \bar{K}|K$ normal, denn: Bedingung (iii) ist erfüllt.
- (b) $K = \mathbb{Q}$, $\alpha = \sqrt[3]{2} \in \mathbb{R}$ (d.h. die eindeutig bestimmte reelle Nullstelle von $f = X^3 2 \in \mathbb{Q}[X]$)

 $L = \mathbb{Q}(\alpha), \bar{L} = \mathbb{Q}^{alg}$ ist ein algebraischer Abschluss von L

Wir betrachten den eindeutig bestimmten \mathbb{Q} -Hom. $\sigma: \mathbb{Q}(\alpha) \to \mathbb{Q}^{alg}$ mit $\sigma(\alpha) = \alpha e^{2\pi i/3}$

(beachte: $f(\alpha^{2\pi i/3}) = (\alpha e^{2\pi i/3})^3 - 2 = \alpha^3 \cdot 1 - 2 = 0$

Dies ist wohldefiniert, denn $\sigma(\alpha) = \alpha e^{2\pi i/3}$ ist eine Nullstelle von f in \mathbb{Q}^{alg} .

Es ist $\sigma(\mathbb{Q}(\alpha)) \neq \mathbb{Q}(\alpha)$, denn: $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, $\sigma(\alpha) \notin \mathbb{R}$

Also ist $\mathbb{Q}(\alpha)|\mathbb{Q}$ nicht normal, da (i) verletzt.

Alternatives Argument: $f = X^3 - 2 \in \mathbb{Q}[X]$ (irreduzibel nach Eisenstein) besitzt die Nullstelle $\alpha = \sqrt[3]{2}$ in $\mathbb{Q}(\sqrt[3]{2})$. Wäre $\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q}$ normal, so würde f in $\mathbb{Q}(\sqrt[3]{2})[X]$ als auch in $\mathbb{R}[X]$ in Linearfaktoren zerfallen f (also auch (iii) verletzt).

Folgerung 12.0.8. M|L|K Körpererweiterung, M|K normal. Dann ist auch M|L normal.

Bemerkung 12.0.9. L|K Körpererweiterung mit [L:K] = 2. Dann ist L|K normal.

Beispiel 12.0.10. Normalität ist nicht transitiv in Köpertürmen M|L|K

Sei $f = X^4 - 2 \in \mathbb{Q}[X] \stackrel{\text{Eisenstein}}{\Rightarrow} f$ irreduzibel in $\mathbb{Q}[X]$.

Sei $\alpha = \sqrt[4]{2} \in \mathbb{Q}^{alg}$ die eindeutig bestimmte positive reelle Nullstelle von f, setze $M := \mathbb{Q}(\alpha) \Rightarrow [M : \mathbb{Q}] = \deg(f) = 1$

 $M|\mathbb{Q}$ ist nicht normal, denn: Für $\beta=i\alpha\in\mathbb{Q}^{alg}$ ist $f(\beta)=0$, aber $\beta\notin M$ wegen $M\subseteq\mathbb{C}\backslash\mathbb{R},\,\beta\in\mathbb{R}$

$$\alpha^2 = \sqrt{2}$$
 ist Nullstelle von $X^2 - 2 \in \mathbb{Q}[X] \stackrel{X^2 = 2 \text{ irred.}}{\Longrightarrow} [\mathbb{Q}(\alpha^2) : \mathbb{Q}] = 2$

$$\alpha^{2} = \sqrt{2} \text{ ist Nullstelle von } X^{2} - 2 \in \mathbb{Q}[X] \xrightarrow{X^{2} - 2 \text{ irred.}} [\mathbb{Q}(\alpha^{2}) : \mathbb{Q}] = 2,$$

$$4 = [M : \mathbb{Q}] = \underbrace{[M : \mathbb{Q}(\alpha^{2})]}_{=2} \underbrace{[\mathbb{Q}(\alpha^{2}) : \mathbb{Q}]}_{=2} \xrightarrow{12.9} M|\mathbb{Q}(\alpha^{2}), \mathbb{Q}(\alpha^{2})|\mathbb{Q} \text{ normal, aber } M|\mathbb{Q} \text{ nicht normal.}$$

Definition 12.0.11. L|K algebraischer Körpererweiterung. Eine Körpererweiterung L'|K mit $L' \supseteq L$ heißt normale Hülle von L|K, wenn gilt:

- (a) L'|K normal
- (b) Kein echter Zwischenkörper $L \subseteq M \subseteq L'$ ist normal über K.

Satz 12.0.12. *L*|*K* algebraische Körpererweiterung. Dann gilt:

- (a) Es gibt zu L|K eine normale Hülle L'|K, diese ist bis auf (unkanonsiche) L-Isomorphie eindeutig bestimmt.
- (b) L|K endlich $\Rightarrow L'|K$ endlich
- (c) Ist M|L algebraisch, M|K normal, dann kann man $L \subseteq L' \subseteq M$ wählen. Als Teilkörper von M ist L' eindeutig betimmt: Ist $(\sigma_i)_{i \in J}$ die Familie aller *K*-Homomorphismen von *L* nach *M*, so ist $L' = K((\sigma_i(L))_{i \in J})$ Mann nennt L' die normale Hülle von L in M.

13. Separable Körpererweiterungen

In diesem Abschnitt sei K stets ein Körper.

Definition 13.0.1. \bar{K} ein algebraischer Abschluss von K, $f \in K[X]$, $\alpha \in \bar{K}$ mit $f(\alpha) = 0$ α heißt eine Nullstelle der Vielfachheit r von $f \Leftrightarrow \operatorname{In} \bar{K}[X]$ gilt $(X - \alpha)^r | f, (X - \alpha)^{r+1} \nmid f$ α heißt mehrfache Nullstelle von $f \Leftrightarrow \operatorname{Die Vielfachheit}$ von α ist > 1 f heißt separabel $\Leftrightarrow f$ hat keine mehrfachen Nullstellen von \bar{K} Andernfalls heißt f inseparabel.

Anmerkung: Die (In-)separabilität von f ist unabhängig von der Wahl von \bar{K} (da je zwei algebraische Abschlüsse von K stets K-isomorph sind).

Definition 13.0.2.
$$f = a_n X^n + \ldots + a_0 \in K[X]$$

Dann heißt $f' = na_k X^{n-1} + (n-1)a_{n-1} X^{n-2} + \ldots + a_1 \in K[X]$ die formale Ableitung von f .

Bemerkung 13.0.3. $f,g \in K[X]$. Dann gilt:

(a)
$$(f+g)' = f'+g'$$

(b) $(fg)' = f'g+fg'$

Bemerkung 13.0.4. L|K Körpererweiterung, $f,g\in K[X]$. Dann gilt:

$$ggT_{K[X]}(f,g) = ggT_{L[X]}(f,g)$$

Bemerkung 13.0.5. $f \in K[X], \deg(f) \ge 1$

Dann gilt: Die mehrfache Nullstelle von f in einem algebraischen Abschluss \bar{K} von K sind genau die gemeinsamen Nullstellen von f und f' in \bar{K} , d.h. die Nullstellen von $ggT_{K[X]}(f,f')$ in \bar{K} .

Bemerkung 13.0.6. $f \in K[X]$ irreduzibel, $\deg(f) \ge 1$. Dann sind äquivalent:

- (i) f ist separabel
- (ii) $f' \neq 0$

Anmerkung: ohne die Voraussetzung "f irred." wird $(ii) \Rightarrow (i)$ falsch: (z.B. $f = X^2 \in \mathbb{Q}[X]$ hat $f' = 2X \neq 0$, aber $f = X^2$ ist inseparabel)

Folgerung 13.0.7. $char(K) = 0, f \in K[X]$ irreduzibel

Dann ist f separabel.

Beispiel 13.0.8. $f = X^p - t \in \mathbb{F}_p(t)[X]$ ist irreduzibel nach Bsp 8.0.16(c), aber f inseparabel wegen $f' = pX^{p-1} = 0$

Bemerkung 13.0.9. *char*(K) = p > 0, $a \in K$, $r \in \mathbb{N}$

Dann existiert in \bar{K} genau eine p^r -te Wurzel aus a (d.h. genau ein $\beta \in \bar{K}$ mit $\beta^{p^r} = a$).

Satz 13.0.10. char(K) = p > 0. $f \in K[X]$ irreduzibel, \bar{K} ein algebraischer Abschluss von K $r := max\{m \in \mathbb{N}_0 | \text{ Es ex. } h \in K[X] \text{ mit } f(X) = h(X^{p^m})\}, g \in K[X] \text{ mit } f(X) = g(X^{p^r}).$ Dann gilt:

- (a) Jede Nullstelle von f in \bar{K} hat Vielfache p^r
- (b) g ist irreduzibel und separabel
- (c) Die Nullstelle von f in \bar{K} sind genau die p^r -ten Wurzeln der Nullstellen von g in \bar{K}

Beispiel 13.0.11. $f = X^p - t \in \mathbb{F}_p(t)[X]$ (vgl. Bsp. 13.0.8). Hier ist r = 1, g = X - t (dann $f = g(X^p)$)

Definition 13.0.12. L|K algebraische Körpererweiterung, $\alpha \in L$

 α heißt separabel über $K \Leftrightarrow \text{Es gibt ein separables Polynom } f \in K[X]$ mit $f(\alpha) = 0 \Leftrightarrow \text{Das Minimalpolynom von } \alpha$ über K ist separabel

L|K heißt separabel \Leftrightarrow Jedes Element $\alpha \in L$ ist separabel über K

K heißt vollkommen (perfekt) \Leftrightarrow Jede algebraische Erweiterung von K ist separabel.

Folgerung 13.0.13. char(K) = 0. Dann ist K vollkommen.

Beispiel 13.0.14. $\alpha \in \overline{\mathbb{F}_p(t)}$ Nullstelle von $X^p - t \in \mathbb{F}_p(t)[X]$

 \Rightarrow Die Erweiterung $\mathbb{F}_p(t)(\alpha)|\mathbb{F}_p(t)$ ist nicht separabel, da $X^p - t \in \mathbb{F}_p(t)[X]$ (Minimalpolynom von α , da irreduzibel) inseparabel. Insbesondere ist $\mathbb{F}_p(t)$ nicht vollkommen.

Definition 13.0.15. L|K algebraische Körpererweiterung, \bar{K} ein algebraischer Abschluss von K $[L:K]_s := \#Hom_K(L,\bar{K})$ heißt der Separabilitätsgrad von L über K.

Anmerkung: Die ist unabhängig von der Wahl von \bar{K} (da je zwei algebraische Abschlüsse von K K-isomorph sind)

Bemerkung 13.0.16. \bar{K} ein algebraischer Abschluss von K, $\alpha \in \bar{K}$, $f \in K[X]$ Minimalpolynom von α über K Dann gilt:

- (a) $[K(\alpha):K]_s$ = Anzahl der verschiedenen Nullstellen von $f \in \overline{K}$
- (b) α separabel über $K \Leftrightarrow [K(\alpha) : K]_s = [K(\alpha) : K]$
- (c) Gilt char(K) = p > 0, und ist p^r die Vielfachheit der Nullstelle von α von f, so ist $[K(\alpha) : K] = p^r[K(\alpha) : K]_s$

Satz 13.0.17. M|L|K algebraische Körpererweiterung. Dann gilt:

$$[M:K]_s = [M:L]_s[L:K]_s$$

Satz 13.0.18. *L*|*K* endliche Körpererweiterung. Dann gilt:

- (a) Falls char(K) = 0, dann $[L:K] = [L:K]_s$
- (b) Falls char(K) = p > 0, dann existiert ein $r \in \mathbb{N}_0$ mit $[L:K] = p^r[L:K]_s$

Insbesondere gilt stets: $[L:K]_s|[L:K]$

Satz 13.0.19. *L*|*K* endliche Körpererweiterung. Dann sind äquivalent:

- (i) L|K separabel
- (ii) Es gibt über K separable Elemente $\alpha_1, \ldots, \alpha_n \in L$ mit $L = K(\alpha_1, \ldots, \alpha_n)$
- (iii) $[L:K]_s = [L:K]$

Folgerung 13.0.20. L|K endliche Körpererweiterung, char(K) = p > 0, $p \nmid [L : K]$ Dann ist L|K separabel.

Folgerung 13.0.21. L|K algebraisch. Dann sind äquivalent:

- (i) L|K separabel
- (ii) L wird über K von separablen Elementen erzeugt.

Ist eine der Bedingungen erfüllt, dann $[L:K] = [L:K]_s$

Folgerung 13.0.22. M|L|K algebraische Körpererweiterung. Dann sind äquivalent:

- (i) M|K separabel
- (ii) M|L separabel und L|K separabel

Definition 13.0.23. K heißt separabel abgeschlossen \Leftrightarrow Es existiert keine nichttriviale separable Erweiterung von K

Beispiel 13.0.24. K algebraisch abgeschlossen $\Leftrightarrow K$ separabel abgeschlossen.

Satz 13.0.25. Es gibt einen separablen abgeschlossenen Erweiterungskörper K^{sep} von K, sodass $K^{sep}|K$ algebraisch und separabel ist. Man nennt K^{sep} einen separablen Abschluss von K. K^{sep} ist bis auf (unkan.) K-Isomorphie eindeutig bestimmt.

Beispiel 13.0.26. K vollkommen \Rightarrow Jeder algebraische Abschluss von K ist auch ein separabler Abschluss von K.

Satz 13.0.27. (Satz vom primitiven Element)

L|K endlich separable Körpererweiterung. Dann existiert ein $\alpha \in L$ mit $L = K(\alpha)$, d.h. L|K ist einfach. Man nennt α ein primitives Element von L|K.

Anmerkung: Beweis hat gezeigt: Für $\#K = \infty$ sind fast alle Elemente $a + \lambda b$, $\lambda \in K$ primitive Elemente von K(a,b) (für a,b separabel über K).

Beispiel 13.0.28. $a,b \in \mathbb{Q} \Rightarrow \sqrt{a} + \sqrt{b}$ ist ein primitives Element von $\mathbb{Q}(\sqrt{a},\sqrt{b})|\mathbb{Q}$, denn: $\mathbb{Q}(\sqrt{a}+\sqrt{b})=$ $\mathbb{Q}(\sqrt{a},\sqrt{b})$

$$''\subseteq''$$
 klar

$$\stackrel{-}{"} \supseteq \stackrel{-}{"} \underbrace{a-b}_{\in \mathbb{Q}} = (\sqrt{a} - \sqrt{b})(\underbrace{\sqrt{a} + \sqrt{b}}_{\mathbb{Q}(\sqrt{a} + \sqrt{b})}) \Rightarrow \sqrt{a} - \sqrt{b} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$$
Es ist $\sqrt{a} = \frac{1}{2}((\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})) \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$

Es ist
$$\sqrt{a} = \frac{1}{2}((\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})) \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$$

analog für $\sqrt{b} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$

14. Endliche Körper

Bemerkung 14.0.1. F endlicher Körper. Dann gilt:

- (a) $char(\mathbb{F}) = p$ für eine Primzahl p
- (b) Der Primkörper von \mathbb{F} ist kanonisch isomorph zu \mathbb{F}_p
- (c) \mathbb{F} enthält genau $q = p^n$ Elemente, $n = [\mathbb{F} : \mathbb{F}_p]$
- (d) \mathbb{F} ist Zerällungskörper des Polynom $X^q X$ über \mathbb{F}_p
- (e) $\mathbb{F}|\mathbb{F}_p$ ist eine normale Körpererweiterung

Satz 14.0.2. p Primzahl. Dann gilt:

- (a) Zu jedem $n \in \mathbb{N}$ existiert ein Erweiterungskörper $\mathbb{F}_q|\mathbb{F}_p$ mit $q=p^n$ Elementen. Dieser ist als Zerfällungskörper des separablen Polynoms $X^q-X\in\mathbb{F}_p[X]$ eindeutig bis auf (unkanonische) Isomorphie bestimmt. \mathbb{F}_q besteht aus den q Nullstellen von $X^q-X\in\mathbb{F}_p[X]$ in einem algebraischen Abschluss von \mathbb{F}_p
- (b) \mathbb{F} endlicher Körper der Charakteristik $p \Rightarrow \text{Es}$ existieren eindeutig bestimmte $n \in \mathbb{N}$, sodass $\mathbb{F} \cong \mathbb{F}_{p^n}$

Anmerkung: Es gilt zwar $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, aber für n > 1 gilt stets $\mathbb{F}_{p^n} \ncong \mathbb{Z}/p^n\mathbb{Z}$ (rechts steht ein nicht-nullteilerfreier Ring).

Folgerung 14.0.3. p Primzahl. Man bette die Körper $\mathbb{F}_q, q = p^n, n \in \mathbb{N}$ ein einen festen algebraischen Abschluss $\overline{\mathbb{F}}_p$ von \mathbb{F}_p ein. Dann gelten:

- (a) $\mathbb{F}_q \subseteq \mathbb{F}_{q'}$ mit $q = p^n$, $q' = p^{n'} \Leftrightarrow n | n'$
- (b) Die Erweiterung des Typs $\mathbb{F}_{q'}|\mathbb{F}_q$ sind bis auf Isomorphie die einzigen Erweiterungen zwischen endlichen Körpern der Charakteristik p

Folgerung 14.0.4. K endlicher Körper. Dann gilt:

- (a) Ist L|K eine algebraische Erweiterung, dann ist L|K normal und separabel
- (b) K ist vollkommen

Satz 14.0.5. p Primzahl, $r \in \mathbb{N}$, $q = p^r$, $\mathbb{F}_{q'} | \mathbb{F}_q$ endliche Körpererweiterungen von Grad n. Dann ist $Aut_{\mathbb{F}_q}(\mathbb{F}_{q'})$ eine zyklische Gruppe der Ordnung n, erzeugt vom relativen Frobeniusautomorphismus $\sigma = \sigma^r_{\mathbb{F}_{q'}} : \mathbb{F}_{q'} \to \mathbb{F}_{q'}, a \mapsto a^q$ (hierbei ist $\sigma_{\mathbb{F}_{q'}} : \mathbb{F}_{q'} \to \mathbb{F}_{q'}, a \mapsto a^p$ der Frobeniusautomorphismus aus 9.0.9)

Satz 14.0.6. *R* nullteilerfreier kommutativer Ring, $H \subseteq R^*$ endliche Untergruppe. Dann ist H zyklisch.

Folgerung 14.0.7. p Primzahl, $n \in \mathbb{N}$, $q = p^n$. Dann ist \mathbb{F}_q^* eine zyklische Gruppe der Ordnung q - 1.

Teil IV.

Galoistheorie

Idee:

K Körper, $f \in K[X]$, L ein Zerfällungskörper von f über K. Wir studieren die Nullstellen von f mit Hilfe der gruppentheoretischen Eigenschaften von $Aut_{K(L)}$. In diesem Kapitel sei K stets ein Körper.

15. Galoiserweiterungen

Definition 15.0.1. L|K algebraische Körpererweiterung

L|K heißt galoisch (Galoiserweiterung): $\Leftrightarrow L|K$ normal und separabel. In diesem Fall heißt $Gal(L|K) := Aut_K(L)$ die Galoiseruppe von L|K.

Beispiel 15.0.2.

- (a) $f \in K[X]$ separabel, L Zerfällungskörper von $f \Rightarrow L|K$ galoisch
- (b) p Primzahl, $r \in \mathbb{N}$, $q = p^r \Rightarrow$ Jede algebraische Erweiterung $\mathbb{F}|\mathbb{F}_q$ ist galoisch (Folgerung 14.0.4(a)). Ist $\mathbb{F}_{q'}|\mathbb{F}_q$ eine endliche Erweiterung mit $q' = q^n$, dann ist $Gal(\mathbb{F}_{q'}|\mathbb{F}_q)$ zyklisch von der Ordnung n. Ein Erzeuger ist der relative Frobenius $\mathbb{F}_{q'} \to \mathbb{F}_{q'}$, $a \mapsto a^q$ (Satz 14.0.5)

Bemerkung 15.0.3. L|K endlich normale Körpererweiterung. Dann gilt:

- (a) $ord(Aut_K(L)) \leq [L:K]$
- (b) L|K galoisch $\Leftrightarrow ord(Aut_K(L)) = [L:K]$

Beispiel 15.0.4. $\mathbb{C}|\mathbb{R}$ ist galoisch $[\mathbb{C}:\mathbb{R}]=2\Rightarrow ord((Gal(\mathbb{C}|\mathbb{R}))=2$. Das nichttriviale Element ist die komplexe Konjugation.

Bemerkung 15.0.5. L|K Galoiserweiterung. E Zwischenkörper vom L|K (d.h. $K \le E \le L$). Dann gilt:

- (a) L|E ist galoisch und Gal(L|E) ist in natürlich Weise eine Untergruppe von Gal(L|K)
- (b) Ist E|K galoisch, so beschränkt sich jeder K-Automorphismus von L zu einem K-Automorphismus von E und $\pi: Gal(L|K) \to Gal(E|K)$, $\sigma \mapsto \sigma|_E$ ist eine surjektiver Gruppenhomorphismus mit $\ker(\pi) = Gal(L|E)$

Satz 15.0.6. *L* Körper, $G \le Aut(L)$ Untergruppe.

 $L^G := \{a \in L | \sigma(a) = a \text{ für alle } \sigma \in G\}$ heißt Fixkörper L unter G (insbesondere ist L^G ein Körper!). Es gilt:

- (a) Ist G endlich, oder $L|L^G$ algebraisch, dann ist $L|L^G$ galoisch.
- (b) Ist G endlich, dann ist $L|L^G$ endlich galoisch mit $Gal(L|L^G) = G$
- (c) Ist $L|L^G$ algebraisch und G nicht endlich, dann ist $L|L^G$ eine unendliche Galoiserweiterung und $Gal(L|L^G)$ enthält G als Untergruppe.

Folgerung 15.0.7. L|K normale Körpererweiterung $G = Aut_K(L)$. Dann gilt:

- (a) $L|L^G$ ist eine Galoiserweiterung mit Galoisgruppe G.
- (b) Ist L|K separabel, dann ist $K = L^G$

Satz 15.0.8. (Hauptsatz der Galoistheorie)

L|K endliche Galoiserweiterung, G = Gal(L|K). Dann gilt:

(a) Die Abbildungen:

{Untergruppen von G} $\xrightarrow{\phi}$ Zwischenkörper von L|K

$$\begin{matrix} \longleftarrow \\ \psi \\ H \longmapsto L^{2} \\ Gal(L|E) \longleftarrow E \end{matrix}$$

sind (inklusionsumkehrend), bijektiv und invers zueinander.

(b) $L^H|K$ normal (d.h. galoisch) $\Leftrightarrow H \preceq G$

In diesem Fall induziert die Einschränkungsabbildung

$$G \to Gal(L^H|K), \ \ \sigma \mapsto \sigma|_{I^H}$$

einen Isomorphismus $G/H \stackrel{\cong}{\to} Gal(L^H|K)$.

Anmerkung: Der Beweis von (a) zeigt: Ist L|K unendlich, so ist immer noch $\phi \circ \psi = id$, insbesondere ist ψ injektiv (aber im Allgemeinen nicht mehr surjektiv).

Folgerung 15.0.9. L|K endlich separable Körpererweiterung $\Rightarrow L|K$ hat nur endlich viele Zwischenkörper.

Anmerkung: Es gibt endlich inspeparable Erweiterungen mit unendlich vielen Zwischenkörpern.

Definition 15.0.10. L Körper, $E, E' \le L$ Teilkörper

EE' := E(E') = E'(E) heißt das Kompositum von E und E'.

Anmerkung: EE' ist der kleinste Teilkörper von L, der E und E' enthält.

Beispiel 15.0.11.

$$L = \mathbb{R}, E = \mathbb{Q}(\sqrt{2}), E' = \mathbb{Q}(\sqrt{5}), EE' = \mathbb{Q}(\sqrt{2}, \sqrt{5})$$

Folgerung 15.0.12. L|K endliche Galoiserweiterung, EE' Zwischenkörper von L|K, H = Gal(L|E), H' = Gal(L'|E)(sind Untergruppen von Gal(L|K)). Dann gilt:

- (a) $E \subseteq E' \Leftrightarrow H \supseteq H'$ (d.h. ϕ , ψ aus 15.0.8 sind inklusionsumkehrend)
- (b) $EE' = L^{H \cap H'}$
- (c) $E \cap E' = L^{<H,H'>}$

Definition 15.0.13. L|K endliche Galoiserweiterung

L|K heißt abelsch (bzw. zyklisch) $\Leftrightarrow Gal(L|K)$ ist abelsch (bzw. zyklisch)

Folgerung 15.0.14. L|K endlich abelsche (bzw. zyklische) Galoiserweiterung. Dann gilt:

Für jeden Zwischenkörper E von L|K sind L|E und E|K endliche abelsche (bzw. zyklische) Galoiserweiterung.

Satz 15.0.15. L|K Körpererweiterung, E, E' Zwischenkörper, sodass E|K und E'|K endlich galoisch. Dann gilt: (a) (Translationssatz) EE'|K ist eine endliche Galoiserweiterung, und der Homomorphismus

$$\varphi: Gal(EE'|E) \to Gal(E'|E \cap E'), \quad \sigma \mapsto \sigma|_{E'}$$

ist ein Isomorphismus

(b) Der Homomorphismus $\psi: Gal(EE'|K) \rightarrow Gal(E|K) \times Gal(E'|K)$, $\sigma \mapsto (\sigma|_E, \sigma|_{E'})$ ist injektiv. Gilt $E \cap E' = K$, ist ψ auch surjektiv, d.h. ein Isomorphismus.

Bemerkung 15.0.16. L|K endlich Galoiserweiterung, $a \in L$ mit L = K(a), $H \subseteq Gal(L|K)$ Untergruppe.

Wir setzen
$$f_H := \prod_{\sigma \in H} (X - \sigma(a)) = \sum_{i=0}^m c_i X^i \in L[X], m = ord(H)$$
. Dann gilt: (a) f_H ist das Minimalpolynom von a über L^H

(b)
$$L^H = K(c_0, \dots c_{m-1})$$

16. Galoisgruppe von Polynomen

Definition 16.0.1. $f \in K[X]$ separabel, $\deg f \ge 1$, L Zerfällungskörper von f über K Gal(f) := Gal(L|K) heißt die Galoisgruppe von f über K.

Satz 16.0.2. $f \in K[X]$ separabel, $\deg(f) \ge 1$, L Zerfällungskörper von f über K, $\alpha_1, \ldots, \alpha_n$, die Nullstelle von f in L. Dann gilt:

(a) Die Abbildung $\varphi : Gal(L|K) \to S(\{\alpha_1, \dots, \alpha_n\}) \cong S_n, \ \sigma \mapsto \sigma|_{\{\alpha_1, \dots, \alpha_n\}}$ ist ein injektiver Gruppenhomomorphismus, d.h. man kann Gal(L|K) als Untergruppe von S_n auffassen.

(b) [L:K] = ord(Gal(L|K))|n!

(c) f irreduzibel $\Leftrightarrow Gal(L|K)$ operiert transitiv auf $\{\alpha_1, \ldots, \alpha_n\}$, d.h. für alle $1 \le i, j \le n$ existiert $\sigma \in Gal(L|K)$ mit $\sigma(\alpha_i) = \alpha_j$

Folgerung 16.0.3. L|K endliche Galoiserweiterung, [L:K] = n

Dann lässt sich Gal(L|K) als Untergruppe der S_n auffassen.

Beispiel 16.0.4. $char(K) \neq 2$, $f = X^2 + aX + b \in K[X]$ habe keine Nullstellen in K.

 $\Rightarrow f$ irreduzibel, $f' = 2X + a \neq 0 \Rightarrow f$ separabel

Sei \overline{K} ein algebraischer Abschluss von K, $\alpha, \beta \in \overline{K}$ Nullstellen von $f \Rightarrow \alpha\beta = b \Rightarrow \beta = \frac{b}{\alpha}$

 $\Rightarrow K(\alpha)$ ist Zerfällungskörper von f über K, $[K(\alpha):K]=2$

 $\Rightarrow Gal(f) = Gal(K(\alpha)|K)$ zyklische Gruppe der Ordnung 2, erzeugt von $\sigma : K(\alpha) \to K(\alpha), \alpha \mapsto \beta$

Definition 16.0.5. $f \in K[X]$, \overline{K} algebraischer Abschluss von K, $n = \deg(f)$, $\alpha_1, \ldots, \alpha_n$ Nullstelle von f in \overline{K} $\Delta_f := \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2$ heißt die Diskriminante von f

Bemerkung 16.0.6. $f \in K[X]$. Dann gilt:

(a)
$$f = X^2 + aX + b \Rightarrow \Delta_f = a^2 - 4b$$

(b)
$$f = X^3 + aX + b \Rightarrow \Delta_f = -4a^3 - 27b^2$$

Bemerkung 16.0.7. $f \in K[X]$. Dann gilt:

- (a) f separabel $\Leftrightarrow \Delta_f \neq 0$
- (b) $\Delta_f \in K$. Insbesondere ist Δ_f unabhängig von der Wahl von \bar{K}

Bemerkung 16.0.8. $char(K) \neq 2$, $f \in K[X]$ separabel, $\alpha_1, \ldots, \alpha_n$ Nullstellen von f in \bar{K} , $L := K(\alpha_1, \ldots, \alpha_n)$ $\varphi : Gal(L|K) \to S_n$ wie in 16.0.2. Dann sind äquivalent:

- (i) Δ_f ist ein Quadrat in K
- (ii) $\varphi(Gal(L|K)) \subseteq A_n$

Anmerkung: Ist β_1, \ldots, β_n eine Umnummerierung von $\alpha_1, \ldots, \alpha_n$ etwa $\beta_i = \alpha_{\pi(i)}$ für ein $\pi \in S_n$, ist $\psi : Gal(L|K) \hookrightarrow S_n$ die Abbildung aus 16.0.2 zu β_1, \ldots, β_n , dann gilt für Gal(L|K), $i \in \{1, \ldots, n\} : \beta_{\psi(\sigma)(i)} = \sigma(\beta_i) = \sigma(\alpha_{\pi(i)} = \alpha_{\phi(\sigma)(\pi(i))} = \beta_{\pi^{-1}(\phi(\sigma)(\pi(i)))}$, d.h. $\psi(\sigma) = \pi^{-1}\phi(\sigma)\pi$, insbesondere ist $sgn(\psi(\sigma)) = sgn(\phi(\sigma))$. Insbesondere macht es Sinn, $sgn(\sigma) := sgn(\phi(\sigma))$ und von " $Gal(f) \subseteq A_n$ " zu sprechen.

Bemerkung 16.0.9. $char(K) \neq 2,3, f = X^3 + aX + b \in K[X]$ irreduzibel. Dann gilt:

(a) f ist separabel

(b)
$$Gal(f) \cong \begin{cases} A_3, \text{ falls } \Delta_f = -4a^3 - 27b^2 \text{ ein Quadrat in } K \text{ ist} \\ S_3, \text{ falls } \Delta_f = -4a^3 - 27b^2 \text{ kein Quadrat in } K \text{ ist} \end{cases}$$

Beispiel 16.0.10.

(a) $f = X^3 - X + 1 \in \mathbb{Q}[X]$ ist irreduzibel, $\Delta_f = -4(-1)^3 - 27 = -23$ kein Quadrat in $\mathbb{Q} \Rightarrow Gal(f) \cong S_3$

(b)
$$f = X^3 - 3X + 1 \in \mathbb{Q}[X]$$
 ist irreduzibel, $\Delta_f = -4(-3)^3 - 27 = 81 = 9^2 \Rightarrow Gal(f) \cong A_3$

Bemerkung 16.0.11. T_1, \ldots, T_n Variablen, k Körper, $L = k(T_1, \ldots, T_n) = Quot(k[T_1, \ldots, T_n])$. Dann gilt: (a) Jedes Element $\pi \in S_n$ induziert einen Automorphismus von L:

$$\frac{g(T_1,\ldots,T_n)}{h(T_1,\ldots,T_n)}\longmapsto \frac{g(T_{\pi(1)},\ldots,T_{\pi(n)})}{h(T_{\pi(1)},\ldots,T_{\pi(n)})},$$

dadurch erhalten wir eine Inklusion $S_n \subseteq Aut(L)$

 $K := L^{S_n}$ heißt der Körper der symmetrischen rationalen Funktionen in n Variablen T_1, \dots, T_n mit Koeffizienten in k.

(b) L|K ist eine Galoiserweiterung mit $Gal(L|K) \cong S_n$, insbesondere ist [L:K] = n!

Definition 16.0.12. T_1, \ldots, T_n Variablen, k Körper. Wir definieren Polynome $s_0(T_1, \ldots, T_n), \ldots, s_n(T_1, \ldots, T_n) \in k[T_1, \ldots, T_n]$ durch:

$$\prod_{i=1}^{n} (X - T_i) = \sum_{i=0}^{n} (-1)^{j} s_j(T_1, \dots, T_n) X^{n-j} \in k[T_1, \dots, T_n][X]$$

 $s_j(T_1, ..., T_n)$ heißt das j-te elementarsymmetrische Polynome in $T_1, ..., T_n$. Ist die Anzahl der Variablen aus dem Kontext klar, schreibt man kurz s_j

Beispiel 16.0.13.

$$n = 1: X - T_1 \stackrel{!}{=} s_0(T_1)X - s_1(T_1) \Rightarrow s_0(T_1) = 1, s_1(T_1) = T_1$$

$$n = 2: (X - T_1)(X - T_2) = X^2 - (T_1 + T_2)X + T_1T_2 \stackrel{!}{=} s_0(T_1, T_2)X^2 - s_1(T_1, T_2)X + s_2(T_1, T_2)$$

$$\Rightarrow s_0(T_1, T_2) = 1, s_1(T_1, T_2) = T_1 + T_2, s_2(T_1, T_2) = T_1T_2$$
all gemein: $s_0(T_1, \dots, T_n) = 1, s_1(T_1, \dots, T_n) = T_1 + \dots + T_n, s_2(T_1, \dots, T_n) = T_1T_2 + T_1T_3 + \dots + T_{n-1}T_n, s_n(T_1, \dots, T_n) = T_1 + \dots + T_n$

Bemerkung 16.0.14. $T_1, ..., T_n$ Variablen k Körper, $L = k(T_1, ..., T_n)$, $K = L^{S_n}$, $f = \prod_{i=1}^n (X - T_i) \in L[X]$. Dann gilt:

- (a) $s_j \in K$ für j = 1, ..., n, insbesondere $f \in K[X]$
- (b) $k(s_1,\ldots,s_n)\subseteq K$
- (c) L ist Zerfällungskörper von f über K
- (d) f ist irreduzibel in K[X]
- (e) f ist separabel
- (f) $Gal(f) \cong S_n$ (über K)

Satz 16.0.15. (Hauptsatz über symmetrisch rationale Funktionen)

 T_1, \ldots, T_n Variablen, k Körper, $L = k(T_1, \ldots, T_n), K = L^{S_n}$. Dann gilt:

- (a) $K = k(s_1, ..., s_n)$
- (b) s_1, \ldots, s_n sind algebraisch unabhängig über k

Insbesondere lässt sich jede symmetrisch rationale Funktion eindeutig als rationale Funktion in den elementarsymmetrischen Polynomen darstellen, d.h. für alle $f \in K$ existieren eindeutig bestimmte $g \in k(T_1, ..., T_n)$, sodass $f(T_1, ..., T_n) = g(s_1, ..., s_n)$

Definition 16.0.16. T_1, \ldots, T_n Variablen, k Körper

$$p(X) = X^n + T_1 X^{n-1} + \dots, T_{n-1} X + T_n \in k(T_1, \dots, T_n)[X]$$

heißt das allgemeine Polynom n-ten Grades über k.

Die Gleichung p(X) = 0 heißt die allgemeine Gleichung *n*-ten Grades über *k*.

Satz 16.0.17. k Körper, T_1, \ldots, T_n Variablen. Dann gilt:

- (a) Das allgemeine Polynom n-ten Grades $p(X) \in k(T_1, ..., T_n)[X]$ ist irreduzibel und separabel
- (b) $Gal(p(X)) \cong S_n$

17. Einheitswurzeln

Bemerkung 17.0.1. $n \in \mathbb{N}$. Dann sind äquivalent:

- (i) $f = X^n 1 \in K[X]$ ist separabel
- (ii) $char(K) \nmid n$

Definition 17.0.2. $n \in \mathbb{N}$ mit $char(K) \nmid n, \overline{K}$ ein algebraischer Abschluss von K. Ein Element $\zeta \in \overline{K}$ heißt eine n-te Einheitswurzel (EW) $\Leftrightarrow \zeta^n = 1$.

Die Menge der *n*-ten Einheitswurzel in \bar{K} wir mit μ_n bezeichnet und ist offenbar eine Untergruppe von \bar{K}^*

Satz 17.0.3. $n \in \mathbb{N}$ mit $char(K) \nmid n$

Dann ist μ_n eine zyklische Gruppe der Ordnung n

Definition 17.0.4. $n \in \mathbb{N}$ mit $char(K) \nmid n$

 $\zeta \in \mu_n$ heißt eine primitive *n*-te Einheitswurzel $\Leftrightarrow \zeta$ ist ein Erzeuger der zyklischen Gruppe μ_n .

Beispiel 17.0.5. $K = \mathbb{C}$, $\zeta_n = e^{2\pi i/n}$ ist eine primitive *n*-te Einheitswurzel.

Definition 17.0.6. Die Abbildung $\varphi : \mathbb{N} \to \mathbb{N}$, $n \mapsto ord((\mathbb{Z}/n\mathbb{Z})^*)$ heißt die Eulersche φ -Funktion.

Bemerkung 17.0.7. $n \in \mathbb{N}$. Dann gilt:

- (a) $\varphi(n) = \#\{a \in \mathbb{N}_0 | 0 \le a < n, ggT(a, n) = 1\}$
- (b) $m, n \in \mathbb{N}$ teilerfremd $\Rightarrow \varphi(mn) = \varphi(m)\varphi(n)$
- (c) *p* Primzahl, $r \in \mathbb{N} \Rightarrow \varphi(p^r) = \varphi^{r-1}(p-1)$

(d)
$$n = p_1^{e_1} \cdot \dots \cdot p_r^{e_r}$$
 Primfaktorzerlegung von $n \Rightarrow \varphi(n) = \prod_{i=1}^r p_i^{e_i-1}(p_i-1) = n \prod_{p \text{ PZ mit } p|n} (1-\frac{1}{p})$

Bemerkung 17.0.8. $n \in \mathbb{N}$, $a \in \mathbb{Z}$. Dann sind äquivalent:

- (i) \bar{a} erzeugt die additive zyklische Gruppe $\mathbb{Z}/n\mathbb{Z}$
- (ii) \bar{a} ist Einheit im Ring $\mathbb{Z}/n\mathbb{Z}$
- (iii) ggT(a,n) = 1

Insbesondere enthält $\mathbb{Z}/n\mathbb{Z}$ genau $\varphi(n)$ Elemente, die $\mathbb{Z}/n\mathbb{Z}$ erzeugen.

Bemerkung 17.0.9. $n \in \mathbb{N}$ mit $char(K) \nmid n, \zeta \in \overline{K}$ primitive n-te Einheitswurzel. Dann gilt:

- (a) Es gibt genau $\varphi(n)$ primitive *n*-te Einheitswurzeln in \bar{K} .
- (b) Die primitiven *n*-ten Einheitswurzeln in \bar{K} sind genau von der Form ζ^r mit $1 \le r < n$, ggT(r,n) = 1

Bemerkung 17.0.10. $n \in \mathbb{N}$ mit $char(K) \nmid n, \zeta \in \mu_n$ primitive n-te Einheitswurzel

Dann ist $K(\mu_n) = K(\zeta)|K$ eine endliche Galoiserweiterung.

Satz 17.0.11. $n \in \mathbb{N}$ mit $char(K) \nmid n, \zeta_n \in \overline{K}$ primitive n-te Einheitswurzel. Dann gilt:

- (a) $K(\zeta_n)|K$ ist eine endliche abelsche Galoiserweiterung mit Grad $\leq \varphi(n)$
- (b) Es existiert ein injektiver Gruppenhomomorphismus

$$\chi: Gal(K(\zeta_n)|K) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^*,$$

sodass für jede n-te Einheitswurzel $\zeta \in K(\zeta_n)$ und jedes $\sigma \in Gal(K(\zeta_n)|K)$ gilt: $\sigma(\zeta) = \zeta^{\chi(\sigma)}$ (hierbei ist $\zeta^{\bar{a}} := \zeta^a$ für $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$).

 χ heißt der zyklotomische Charakter.

Ziel: Für $K = \mathbb{Q}$ ist χ ein Isomorphismus.

Definition 17.0.12. $n \in \mathbb{N}, \zeta_n \in \overline{\mathbb{Q}}$ primitive n-te Einheitswurzel

 $\mathbb{Q}(\zeta_n)$ heißt *n*-ter Kreisteilungskörper

$$\phi_n = \prod_{\zeta \text{ prim. } n\text{-te Einheitswurzel in }\bar{\mathbb{Q}}} (X-\zeta) \in \mathbb{Q}(\zeta_n)[X] \text{ heißt das } n\text{-te Kreisteilungspolynom.}$$

Bemerkung 17.0.13. $n \in \mathbb{N}$. Dann gilt:

(a)
$$\phi_n \in \mathbb{Q}[X]$$

(b)
$$\deg(\phi_n) = \varphi(n)$$

(c)
$$p$$
 Primzahl $\Rightarrow \phi_p = X^{p-1} + X^{p-2} + ... + X + 1$

Anmerkung: (a) zeigt insbesondere, dass ϕ_n unabhängig von der Wahl von $\bar{\mathbb{Q}}$

Satz 17.0.14. $n \in \mathbb{N}$. Dann gilt:

(a)
$$\phi_n \in \mathbb{Z}[X]$$

(b) ϕ_n ist irreduzibel in $\mathbb{Z}[X]$

Folgerung 17.0.15. $n \in \mathbb{N}$, ζ_n primitive n-te Einheitswurzel in $\overline{\mathbb{Q}}$. Dann gilt:

(a)
$$[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$$

(b) Der zyklotomische Charakter $\chi: Gal(\mathbb{Q}(\zeta_n)|\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*$ aus 17.0.11(b) ist (für $K = \mathbb{Q}$) ein Isomorphismus.

Definition 17.0.16. *K* Körper, $n \in \mathbb{N}$ mit $char(K) \nmid n$, \overline{K} ein algebraischer Abschluss von K.

$$\phi_{n,K}:=\prod_{\zeta ext{prim. n-te EW in }ar{K}}(X-\zeta) \in K[X]$$
 heißt das n-te Kreisteilungspolynom über K .

Anmerkung: $\phi_{n,K} \in K[X]$ folgt analog zu 17.0.13(a)

Bemerkung 17.0.17. *K* Körper, $n \in \mathbb{N}$ mit $char(K) \nmid n, \psi : \mathbb{Z} \to K$ kanonischer Homomorphismus (vgl. 9.0.1(a)) Dann gilt: $\phi_{n,K} = \phi_n^{\psi}$

Satz 17.0.18. q Primzahlpotenz, $n \in \mathbb{N}$ mit ggT(q,n) = 1, $\psi : \mathbb{Z} \to \mathbb{F}_q$ kanonischer Homomorphismus, $\zeta \in \overline{\mathbb{F}}_q$ primitive n-te Einheitswurzel $\sigma \in Gal(\mathbb{F}_q(\zeta_n)|\mathbb{F}_q)$ relativer Frobeniusautomorphismus (vgl. 14.0.15), $\chi : Gal(\mathbb{F}_q(\zeta_n)|\mathbb{F}_q) \to (\mathbb{Z}/n\mathbb{Z})^*$ zyklotomischer Charakter. Dann gilt:

(a)
$$\chi(\sigma) = \bar{q}$$

(b) χ induziert einen Isomorphismus zwischen $Gal(\mathbb{F}_q(\zeta_n)|\mathbb{F}_q)$ und der von \bar{q} erzeugten Untergruppe von $(\mathbb{Z}/n\mathbb{Z})^*$

(c)
$$[\mathbb{F}_q(\zeta_n) : \mathbb{F}_q] = ord_{(\mathbb{Z}/n\mathbb{Z})^*}(\bar{q})$$

(d) $\phi_{n,\mathbb{F}_q} = \phi_n^{\psi}$ ist irreduzibel in $\mathbb{F}_q[X] \Leftrightarrow \bar{q}$ erzeugt $(\mathbb{Z}/n\mathbb{Z})^*$

Teil V.

Fortführung der Gruppentheorie

18. Gruppenoperationen

Definition 18.0.1. *G* Gruppe (im Folgenden stets multiplikativ geschrieben), *M* Menge. Eine Operation (Aktion, Wirkung) von *G* auf *M* ist eine Abbildung

$$G \times M \to M$$
, $(g,x) \mapsto gx$

sodass gilt:

- (a) 1x = x für alle $x \in M$
- (b) (gh)x = g(hx) für alle $g, h \in G, x \in M$

Beispiel 18.0.2.

- (a) Die Multiplikation $G \times G \to G$, $(g,h) \mapsto gh$ ist eine G-Operation auf M = G, die Linkstranslation.
- (b) Durch $G \times G \to G$, $(g,h) \mapsto ghg^{-1}$ ist eine Operation von G auf M = G gegeben, die Konjugation.
- (c) L|K Galoiserweiterung $\Rightarrow G = Gal(L|K)$ operiert auf M = L (bzw. $M = L^*$) via $G \times L \to L$, $(\sigma, x) \mapsto \sigma(x)$ (bzw. $G \times L^* \to L^*$, $(\sigma, x) \mapsto \sigma(x)$)

Bemerkung 18.0.3. G Gruppe, M Menge. Dann gilt: Die Abbildungen

$$\begin{cases} \text{Gruppenhom.} \\ G \to S(M) \end{cases} \longleftrightarrow \begin{cases} \text{Operationen von } G \\ \text{auf } M \end{cases}$$

$$\varphi: G \to S(M) \longmapsto G \times M \to M, \ (g,x) \mapsto \varphi(g)$$

$$G \to S(M), \ g \mapsto \tau_g \longleftrightarrow G \times M \to M, \ (g,x) \mapsto gx$$

mit $\tau_g: M \to M, x \mapsto gx$

sind bijektiv und invers zueinander.

Bemerkung 18.0.4. *G* Gruppe. Wir setzen für $g \in G$: $int_g : G \to G$, $h \mapsto ghg^{-1}$

Dann gilt:

- (a) $int_g \in Aut(G) \subseteq S(G)$ für alle $g \in G$
- (b) Die Abbildung $int: G \rightarrow Aut(G), g \mapsto int_g$ ist ein Gruppenhomomorphismus

Definition 18.0.5. G Gruppe, $int : G \rightarrow Aut(G)$ wie in 18.0.4

 $int(G) \subseteq Aut(G)$ heißt die Gruppe der inneren Automorphismen von G.

$$Z(G) := \ker(int) = \{g \in G | int_g = id_G\} = \{g \in G | int_g(h) = ghg^{-1} = h \ \forall h \in G\} = \{g \in G | gh = hg \ \forall h \in G\}$$
 heißt das Zentrum von G .

Beispiel 18.0.6. $Z(S_3) = \{id\}$

Bemerkung 18.0.7. G Gruppe. Dann gilt:

- (a) $Z(G) \leq G$, Z(G) abelsch
- (b) $G/Z(G) \cong int(G)$
- (c) G abelsch $\Leftrightarrow int(G) = \{id_G\}$
- (d) G/Z(G) zyklisch $\Leftrightarrow G$ abelsch.

Definition 18.0.8. *G* Gruppe, *M* Menge, *G* operiere auf $M, x \in M$.

 $Gx := \{gx | g \in G\} \subseteq M$ heißt die Bahn von X (Orbit von X)

 $G_x := \{g \in G | gx = x\} \subseteq G$ heißt der Stabilisator (Isotropiegruppe, Standgruppe) von X

Bemerkung 18.0.9. *G* Gruppe, *M* Menge, *G* operiere auf *M*. Dann gilt:

- (a) Für alle $x \in M$ ist $G_x \subseteq G$ eine Untergruppe
- (b) Durch $x \sim y \Leftrightarrow \text{Es existiert ein } g \in G \text{ mit } gx = y \text{ ist eine Äquivalenzrelation auf } A \text{ gegeben: Die Äquivalenzklasse}$ von $x \in M$ ist die Bahn von x.
- (c) *M* ist die disjunkte Vereinigung von Bahnen.
- (d) Für $x \in M$ induziert $G \to M$, $g \mapsto gx$ eine Bijektion $G/G_x \stackrel{\sim}{\to} Gx$

Hierbei bezeichnet G/G_x die Menge der Linksnebenklassen von G_x in G.

(Beachte: G_x ist im Allgemeinen kein Normalteiler von G).

Satz 18.0.10. (Bahnengleichung)

G Gruppe, M endliche Menge, G operiere auf $M. x_1, ..., x_n$ Vertretersystem der Bahnen von M. Dann gilt:

$$\#M = \sum_{i=1}^{n} \#Gx_i = \sum_{i=1}^{n} (G:G_{x_i})$$

Definition 18.0.11. *G* Gruppe, $S \subset G$ Teilmenge

 $Z_s := \{g \in G | gs = sg \text{ für alle } s \in S\}$ heißt der Zentralisator von S in G

 $N_s := \{g \in G | gS = Sg\}$ heißt der Normalisator von S in G.

Bemerkung 18.0.12. *G* Gruppe, $S \subseteq G$ Teilmenge. Dann gilt:

- (a) Z_s , N_s sind Untergruppen von G
- (b) $Z_s \subseteq N_s$
- (c) $S \subseteq G$ Untergruppe $\Rightarrow N_s$ ist die größte Untergruppe H in G, sodass $S \subseteq H$.

Satz 18.0.13. *G* endlicher Gruppe, x_1, \ldots, x_n Vertretersystem der Bahnen in $G \setminus Z(G)$ bzgl. der Konjugation (vgl. 18.2(b)). Dann gilt:

$$ord(G) = ord(Z(G)) + \sum_{i=1}^{n} (G : Z_{\{x_i\}})$$

19. Sylowgruppen

Definition 19.0.1. *G* endliche Gruppe, *p* Primzahl

G heißt p-Gruppe \Leftrightarrow Es existiert ein $n \in \mathbb{N}_0$ mit $ord(G) = p^n$

 $H \subseteq G$ Untergruppe heißt p-Sylowgruppe von $G \Leftrightarrow H$ ist eine p-Gruppe mit $p \nmid (G : H) \Leftrightarrow$ Es existiert ein $k \in \mathbb{N}_0$, $m \in \mathbb{N}$ mit $ord(G) = p^k m$, $ord(H) = p^k$ und $p \nmid m$

Anmerkung: $\{1\}$ ist eine *p*-Gruppe für alle Primzahlen *p*

Für alle Primzahlen p mit $p \nmid ord(G)$ ist $\{1\} \subseteq G$ eine p-Sylowgruppe.

Beispiel 19.0.2.
$$G = A_4 \Rightarrow ord(G) = 12 = 2^2 \cdot 3$$

G besitzt genau eine 2-Sylowgruppe (mit 4 Elementen), nämlich < (12)(34),(13)(24)>.

und 4 3-Sylowgruppen (mit jeweils 3 Elementen), nämlich < (123) >, < (124) >, < (134) >, < (234) >.

Bemerkung 19.0.3. *G* endliche Gruppe *p* Primzahl. Dann gilt:

- (a) G p-Gruppe, $g \in G \Rightarrow ord(g)$ ist eine p-Potenz
- (b) $H \subseteq G$ p-Sylowgruppe, $H' \subseteq G$ p-Gruppe mit $H \subseteq H' \Rightarrow H = H'$

Satz 19.0.4. *p* Primzahl, G p-Gruppe, ord(G) > 1. Dann gilt:

- (a) p|ord(Z(G))
- (b) $Z(G) \neq \{1\}$

Folgerung 19.0.5. p Primzahl, G Gruppe der Ordnung p^2 . Dann ist G abelsch.

Satz 19.0.6. (Sylowsätze)

G endliche Gruppe, p Primzahl. Dann gilt:

- (a) G besitzt eine p-Sylowgruppe
- (b) Ist $H \subseteq G$ eine p-Untergruppe, dann existiert eine p-Sylowgruppe $S \subseteq G$ mit $H \subseteq S$.
- (c) Ist $S \subseteq G$ eine p-Sylowgruppe, dann ist jede zu S konjugierte Untergruppe von G eine p-Sylowgruppe von G. Je zwei p-Sylowgruppen von G sind konjugiert zueinander.
- (d) Für die Anzahl s_p der p-Sylowgruppen von G gilt: $s_p|ord(G), s_p \equiv 1 \pmod{p}$

Folgerung 19.0.7. *G* endliche Gruppe, *p* Primzahl. Dann gilt:

- (a) $p|ord(G) \Leftrightarrow \text{Es existiert ein } g \in G \text{ mit } ord(g) = p$
- (b) *G p*-Gruppe \Leftrightarrow Für alle $g \in G$ existiert ein $r \in \mathbb{N}_0$ mit $ord(g) = p^r$

Folgerung 19.0.8. *G* endliche Gruppe, *p* Primzahl. Dann gilt:

Besitzt G genau eine p-Sylowgruppe S, dann ist $S \underline{\lhd} G$

Beispiel 19.0.9. G Gruppe mit 30 Elementen \Rightarrow G besitzt einen nichttrivialen Normalteiler, denn:

$$ord(G) = 30 = 2 \cdot 3 \cdot 5 \Rightarrow \text{Für } p \in \{2,3,5\} \text{ gilt } s_p | 30 \text{ und } s_p \equiv 1 \pmod{p} \Rightarrow s_2 \in \{1,3,5,15\}, s_3 \in \{1,10\}, s_5 \in \{1,6\}.$$
 Annahme: $s_2, s_3, s_5 > 1 \Rightarrow s_3 = 10, s_5 = 6$

Sind H_1 , H_2 verschiedene 5-Sylowgruppen von G, dann $H_1 \cap H_2 \subsetneq H_1$, $ord(H_1 \cap H_2)|ord(H_1) = 5$ und somit $H_1 \cap H_2 = \{1\}$

 \Rightarrow *G* enthält $s_5 \cdot (5-1) = 6 \cdot 4 = 24$ Elemente der Ordnung 5

Analog: *G* enthält $s_3 \cdot (3-1) = 10 \cdot 2 = 20$ Elemente der Ordnung 3

 $\Rightarrow ord(G) > 44 \nleq zu \ ord(G) = 30$

20. Auflösbare Gruppen

Definition 20.0.1. *G* Gruppe. $a, b \in G, H, H' \subseteq G$ Untergruppen

 $[a,b] := aba^{-1}b^{-1}$ heißt der Kommutator von a und b

$$[H,H'] := < \{[h,h']|h \in H, h' \in H'\} >$$

[G, G] heißt der Kommutator von G

Bemerkung 20.0.2. G Gruppe. Dann gilt:

- (a) [G,G] besteht aus allen endlichen Produkten von Kommutatoren aus G.
- (b) $[G,G] \triangleleft G$
- (c) G/[G,G] abelsch
- (d) Ist $N \triangleleft G$, sodass G/N abelsch ist, dann ist $N \supseteq [G,G]$

Bemerkung 20.0.3. Es gilt:

(a) $[S_n, S_n] = A_n$ für $n \ge 2$

(b)
$$[A_n, A_n] = \begin{cases} \{()\} & \text{für } n = 2, 3 \\ V_4 := \{(), (12) \circ (34), (13) \circ (24), (14) \circ (23)\} & \text{für } n = 4 \\ A_n & \text{für } n \ge 5 \end{cases}$$

Definition 20.0.4. *G* Gruppe $D^{\circ}G := G, D^{i+1}G := [D^iG, D^iG]$ für alle $i \in \mathbb{N}_0$

 D^iG heißt der *i*-te iterierte Kommutator.

Bemerkung 20.0.5. *G* Gruppe. Dann ist $G = D^{\circ}G \supseteq D^{1}G \supseteq D^{2}G \supseteq ... \supseteq D^{i}G \supseteq ...$ eine Kette von Untergruppen von G mit $D^{i+1}G \subseteq D^{i}G$ und $D^{i}G/D^{i+1}G$ abelsch für alle $i \in \mathbb{N}_{0}$

Definition 20.0.6. *G* Gruppe. Eine Kette von Untergruppen $G = G_0 \supseteq G_1 \supseteq ... \supseteq G_n = \{1\}$ heißt eine Normalreihe von $G \Leftrightarrow G_{i+1} \unlhd G_i$ für alle $i \in \{0, ..., n-1\}$

 G_i/G_{i+1} , $i=0,\ldots,n-1$ heißen die Faktoren der Normalreihe.

G heißt auflösbar $\Leftrightarrow G$ besitzt eine Normalreihe, deren sämtliche Faktoren abelsch sind.

Satz 20.0.7. *G* Gruppe. Dann sind äquivalent:

- (i) G ist auflösbar
- (ii) Es existiert ein $n \in \mathbb{N}_0$ mit $D^nG = \{1\}$

Beispiel 20.0.8. Jede abelsche Gruppe ist auflösbar: $D^1G = [G, G] = \{1\}$

Bemerkung 20.0.9. Die symmetrische Gruppe S_n ist auflösbar für $n \le 4$, nicht auflösbar für $n \ge 5$

Satz 20.0.10. *G* endlich auflösbare Gruppe. Dann gilt:

Jede echt absteigende Normalreihe von *G* mit abelschen Faktoren lässt sich zu einer Normalreihe verfeinern, deren Faktoren zyklisch von Primzahl-Ordnung sind.

Bemerkung 20.0.11. *G* auflösbare Gruppe, $H \subseteq G$ Untergruppe. Dann ist H auflösbar.

Bemerkung 20.0.12. *G* Gruppe, $H \subseteq G$. Dann sind äquivalent:

- (i) G auflösbar
- (ii) H und G/H auflösbar

Satz 20.0.13. p Primzahl, G p-Gruppe

Dann ist G auflösbar und es existiert eine Normalreihe

$$G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = \{1\},$$

sodass G_i/G_{i+1} zyklisch der Ordnung p sind.