Projektarbeit

Sarah Stefan Sebastian Golchert Markus Weißflog Marco Hänsel

Softwaretechnik SoSe 18

Inhaltsverzeichnis

	Vorstellung AllSecure	4
1	Projektumfeld/Kundenvorstellung	5
2	Zielbestimmung	6
3	Produkteinsatz	7
4	Produktübersicht	
4.1	Kontexmodell	8
4.2	Haupt UseCases	8 - 9
5	Produktfunktionen	
5.1	verfeinertes UseCase	10
5.2	UseCase Beschreibung	11-12
5.3	Aktivitätendiagramme	
5.3.1	Funktionen	13-14
5.3.2	Prozeduren	15-17
6	Produktdaten	18
6.1	ER-Modell	19
6.2	Relationales Modell	20
7	Technische Produktumgebung	21
8	Wochenplan	22-
9	Glossar /Abkürzungen	

Vorstellung AllSecure

Sebastian Golchert (ÜG A) Finanzberatung/ Kundendienst

Marco Hänsel (ÜG A) Communication Management

Markus Weißflog (ÜG A) Finanzchef

Sarah Stefan (ÜG A) Sachberaterin

Wir bieten unseren Kunden alles rund um Versicherungen an und sind auf der Suche nach einer Software-Lösung, die unseren Arbeitsalltag deutlich erleichtern soll. Wir möchten eine Datenbank aller Kunden mit zugehörigen Lebensdaten, Hobbys, Aktivitäten usw.

- Eventuell kommende Versicherungszahlungen kalkulieren
- Ermitteln, welches Versicherungsmodell zum jeweiligen Kunden am besten passt
- Welche Angebote wir bieten können
- Wie viel Gewinn uns der Kunde einbringt
- Bei einer Neuanlegung von Kunden sollen passende Versicherungsmodelle ermittelt und eine Gewinnkalkulation
- sowie eine Risikokalkulation erstellt werden
- Bestehende Versicherungen des Kunden gegen unsere Produkte abwägen
- Kundenseitige Überversicherung aufdecken

Unsere Ideen werden von dem Team Bieb.O (Leon Pakzad, Livia Schumm, Timo Weiß) umgesetzt und verwirklicht.

Wir beschäftigen uns in unserem Projekt mit Bieb.O, einem jungen Start-Up-Unternehmen, welches Roboter für Büroartikel herstellt und verkauft. Die leitenden Geschäftsführer sind Leon Pakzad (Chief Technology Officer), Livia Schumm (Chief Visionary Officer) und Timo Weiß (Chief Information Officer), insgesamt gibt es in etwa 20 Mitarbeiter.

Ihr Ziel ist es schnell zu expandieren. Das Unternehmen hat einen Standort, an dem sie vor Ort ihre Roboter und Ersatzteile verkaufen, sowie einen Online-Shop leiten. Die Roboter werden von ihnen montiert und programmiert. Die einzelnen Komponenten und Baugruppen dafür kaufen sie von verschiedenen Firmen dazu.

Die Geschäftsführer wünschen sich ein Softwaresystem, mit dem sie ihre Ressourcen und Abläufe effizienter

Bieb.O, ein junges Start-Up-Unternehmen, gegründet im Oktober 2017, welchesRoboter für Büroartikel herstellt und verkauft. Die leitenden Geschäftsführer sind Leon Pakzad (Chief Technology Officer), Livia Schumm (Chief Visionary Officer) und Timo Weiß (Chief Information Officer).

Sie sind in unserem Projekt die Auftraggeber. Insgesamt gibt es in der Firma etwa 20 Mitarbeiter. Ihr Ziel ist es schnell zu expandieren. Das Unternehmen hat aktuell einen Standort, an dem sie vor Ort ihre Roboter und Ersatzteile verkaufen, sowie einen Online-Shop leiten. Die Roboter werden von ihnen entwickelt, montiert und programmiert. Die einzelnen Komponenten und Baugruppen dafür kaufen sie von verschiedenen Firmen dazu.

2 Zielbestimmung

Bieb.O möchte ein Softwaresystem, um ihr Materialmanagement zu vereinfachen und zu optimieren. Die unternehmensinternen Abläufe sind grundlegend gegliedert in Mitarbeiterverwaltung, Entwicklung, Fertigung, Materialverwaltung, Versand und einen Webshop.

Die Entwicklung gliedert sich in Software-Entwicklung und Konstruktion.

Die Fertigung besteht aus Montage, Inbetriebnahme, Endtest und Reparatur. In der Montage werden die Bauteile zu fertigen Robotern montiert und ein erster mechanischer Test durchgeführt. In der Inbetriebnahme werden mechanische und elektronische Komponenten einzeln auf Funktion geprüft, die Software installiert und ein erster Funktionstest durchgeführt. Im Endtest wird die komplette Funktion des Roboters genau geprüft und der Auslieferungszustand hergestellt. In der Reparatur werden Schadensanalysen erstellt und die defekten Roboter repariert.

Die Materialverwaltung gliedert sich in Lagerverwaltung, Einkauf und Verkauf. Lagerverwaltung beinhaltet die Übersicht über die vorhandenen, ausgehenden und eingehenden Bauteile. Der Einkauf vergleicht Lieferanten und bezieht die Bauteile von ihnen. Der Verkauf verkauft die fertigen Roboter und Ersatzteile.

Der Versand kümmert sich um das Versenden von Robotern und Ersatzteilen zu den Kunden. Im Webshop können sich Kunden ihre Roboter konfigurieren und bestellen.

Im gewünschten Softwaresystem soll die Materialverwaltung realisiert werden. Der Kunde möchte erkennen, ob für einen gewünschten Roboter alle benötigten Bauteile im Lager vorhanden sind. Für einen konfigurierten Roboter soll eine Preiskalkulation auf Basis von Material- und Produktionskosten stattfinden. Die in Frage kommenden Lieferanden sollen verglichen werden und der jeweils Günstigste ermittelt werden können. Der Einkauf soll katalogisiert werden.

Wünschenswert, aber nicht essentiell notwendig wäre, zu erkennen, wenn sich ein Roboter nicht mehr rentiert.

Nicht realisiert werden sollen Mitarbeiterverwaltung, Entwicklung, Fertigung, Versand und der Webshop.

Unser Produkt soll den Lagermitarbeitern den Einkauf und die Lagerverwaltung vereinfachen und strukturieren. Wir bieten Bieb.O ein Materialmanagementsystem, in welchem sie schnell sehen können wie z.B. der aktuelle Lagerbestand ist. Sie können einfach die Materialbestellungen eines Monats auswerten, erkennen, welches Bauteil wie oft in welchem Roboter verbaut wird und sie können ihre verwendeten Bauteile verwalten und neue hinzufügen. Die Lagermitarbeiter sollen außerdem die günstigsten Lieferanten aus vorhandenen Angeboten auswählen können und deren Kontaktdaten angezeigt bekommen.

Des Weiteren ist das System so konzipiert, dass es mit der Firma mitwachsen und erweitert werden kann bezüglich der Lagerstandorte und Expansion der gesamten Firmenstruktur.

4. Produktübersicht

Bild 4.1 Kontexmodell mit Systemgrenzen

Bild 4.2 HauptUseCase "Frtigung"

Bild 4.3 HAuptUseCase "Materialverwaltung"

Bild 4.4 HauptUseCase "Verkauf"

Bild 4.5 HauptUseCase "Webshop"

5.1 verfeinertes UseCase "Materialverwaltung"

Use Case Name	Einkauf		
Beschreibung	Es werden die günstigste Lieferant und die monatlichen Materialbestellungen angezeigt.		
Akteure	Lagermitarbeiter		
Auslöser	Lagermitarbeiter will Einkauf organisieren (Bestellung anzeigen und tätigen)		
Vorbedingungen	Öffnet Einkauf		
Normalablauf	1.Bestellung tätigen E1: Roboterpreis ausgeben I1: Lieferantenauswahl E2: Kontaktdaten anzeigen E3: neuen Lieferant anlegen I2: günstigsten Lieferanten anzeigen 2.Bestellung anzeigen E4: Materialbestellungen eines Monats anzeigen		
Alternativer Ab- lauf	A1 Lieferantname nicht vorhanden? Weiter mit E2		
Ablauf mit Fehlern	Exeption 1: Falscher Lieferant ausgegeben Lieferant nicht vorhanden Exeption 2: Ungültiger Monat		
	Eingabe prüfen		
	Exeption 3: Gültige Daten eingegeben, aber liegen in Zukunft Daten liegen in Zukunft, bitte Daten prüfen		
	Exeption 4: eingegebene Daten liegen vor der Gründung des Unternehmens Daten liegen vor Gründung, Eingabe prüfen		
	Exeption 5: es gab keine Bestellungen in diesem Monat, Daten sind gültig keine Bestellung		
Nachbedingung	Einkauf abgeschlossen		

5 Produktfunktionen

Use Case Name	Lagerverwaltung
Beschreibung	Wird für die Bearbeitung der Bauteillagerung, und Änderung der Bestände genutzt
Akteure	Lagermitarbeiter
Auslöser	Lagermitarbeiter will Lager organisieren und Roboter verwalten
Vorbedingungen	Öffnet Lagerverwaltung
Normalablauf	1.Organisation der Lagervorgänge E1: Bauteil entnehmen E2: neue Bauteile anlegen E3: Lagerbestand ändern 2.Roboterverwalten E4: Anzeigen ob Bauteil vorhanden
	E5: Roboterkomponenten anzeigen
Alternativer Ab- lauf	A1 Bauteil nicht vorhanden? Weiter mit E2
Ablauf mit Fehlern	Exeption 1: Robotername nicht vorhanden Eingabe prüfen
	Exeption 2: Bauteil für Roboter fehlt Auflistung der fehlenden Bauteile
	Exeption 3: Roboter kann gebautt werden, aber Mindestbestand wird unterschritten Angabe welches Bauteil unterschritten wurde mit Ausgabe von Mindest- und Ist-Stückzahl
	Exeption 4: neue Bauteile können nicht aufgenommen werden weiter mit UC Lagervorgänge
	Exeption 5: Bauteile können nicht ein- oder ausgelagert werden weiter mit UC Lagervorgänge
Nachbedingung	Lagerbedingungen stimmen

^{5.2} UseCase Beschreibung "Lagerverwaltung"

5.3.1 "Roboterkomponenten vorhanden"

5.3.1 "günstigsten Lieferenanten ausgeben"

5.3.1 "Roboterpreis berechnen"

5.3.2 "Bauteil aus Lager entnehmen"

5.3.2 "Kontaktdaten anzeigen"

5.3.2 "Bauteil anlegen"

5.3.2 "Welche Bauteile in welchem Roboter verbaut, mit Stückzahl"

5.3.2 "Materialbestellung für einen Monat anzeigen"

6 Produktdaten

Die Lieferanten sollen mit Name, Adresse, Ansprechpartner, E-Mail und Telefonnummer (Festnetz) erfasst werden. Ein Lieferant hat dabei einen eindeutigen Namen. Der Einfachheit halber wird hier angenommen, dass ein Lieferant nur eine Adresse, eine Telefonnummer und eine E-Mail-Adresse besitzt. Die Adresse wird mit Länderkürzel gemäß ISO-3166, PLZ, Ort, Straße und Hausnummer erfasst (Es werden vorerst nur Lieferanten innerhalb Deutschlands verwendet werden). Ein Lieferant besitzt also genau eine Adresse. Jeder Lieferant hat gegenüber der Fa. Bieb.O genau einen Ansprechpartner, welcher mit Vor- und Nachname und eventuellem akademischem Titel erfasst werden soll. Bei Problemen jeglicher Art will der Kunde jederzeit einen Ansprechpartner mit zugehörigen Kontaktdaten durch Angabe eines Lieferanten erfragen können.

Ein Lieferant kann mehrere Bauteile anbieten mit jeweils einem genauen Preis. Unterschiedliche Lieferanten können dabei gleiche Bauteile zu unterschiedlichen Konditionen anbieten. Die angebotenen Bauteile werden mit Name und Preis in € erfasst. Auf Basis dessen soll erkannt werden können, welcher Lieferant die besten Konditionen besitzt. Es sollen auch Lieferanten aufgenommen werden können, bei denen noch nicht geordert wurde bzw. die aktuell keine Angebote von Bauteilen haben.

Die Einkäufe der Fa. Bieb.O sollen mit Datum, Lieferant, Bauteil, Stückzahl und Einkaufspreis gespeichert werden. Ein Einkauf beinhaltet ein oder mehrere Bauteile von genau einem Lieferanten mit jeweiliger Stückzahl.

Die gesamten Bauteile im Unternehmen sollen mit zugehörigem Namen und Einzelverkaufspreis erfasst sein.

Im Lager sollen die Bestände an Bauteilen abgebildet werden. Dazu gibt es eine tatsächlich vorhandene Ist-Stückzahl und eine möglichst nicht zu unterschreitende Mindest-Stückzahl am Lagerort. Fällt der Bestand eines Bauteils unter die Mindest-Stückzahl, soll eine Meldung erfolgen.

Weiterhin soll es möglich sein, neue Bauteile in das System aufzunehmen.

Ein spezieller Roboter setzt sich aus einem oder mehreren Bauteilen zusammen. Seine Bezeichnung und seine Bauteile mit zugehöriger Stückzahl sollen aufgelistet werden können. Auf Basis dessen will der Kunde erkennen, ob für diesen Roboter alle Bauteile im Lager vorrätig sind. Wenn dies der Fall ist, sollen diese im Lager reserviert werden können, andernfalls soll eine Meldung ausgegeben werden. Weiterhin sollen für einen Roboter seine Produktionskosten erfasst sein und eine Preiskalkulation für den Verkauf erfolgen. Der Preis errechnet sich dabei aus dem Verkaufspreis der verwendeten Bauteile und den jeweiligen Produktionskosten des Roboters.

6.1 ER-Modell

Spalte	Datentyp [Länge]	Null- Option	Constraints	Bemerkungen
Angebot AID APreis	int decimal(7,2)			beginnend bei 1
BID LID	varchar(50) int	not null	Foreign Key mit Referenz auf Bauteile (BID) Foreign Key mit Referenz auf Lieferanten (LID)	
Warenkorb Pos WStückzahl	tinyint	not null		beginnend bei 1, innerhalb eines Warenkorbes dürfen keine doppelten Nummern vorkommen
AID EID	int	not null not null	Foreign Key mit Referenz auf Angebot (AID) Foreign Key mit Referenz auf Einkäufe (EID)	Primärschlüssel kombiniert Primärschlüssel kombiniert
Einkaeufe EID Bestelldatum	int date	not null auto_increment not null	Primary Key	beginnend bei 1
Bauteile BID BBezeichnung VKPreis	int varchar(80) decimal(7,2)		Primary Key Unique Key	beginnend bei 1
Roboterkomponenten RKStückzahl BID RID	int varchar(50) int	not null not null not null	Foreign Key mit Referenz auf Bauteile (BID) Foreign Key mit Referenz auf Roboter (RID)	Primärschlüssel kombiniert Primärschlüssel kombiniert
Roboter RID RBezeichnung ProdKosten	int varchar(80) decimal(7,2)		Primary Key Unique Key	beginnend bei 1
Ansprechpartner APartnerID akadTitel Vorname Nachname	int varchar(20) varchar(50) varchar(50)		Primary Key Check (Prof., Dr., Prof. Dr.)	beginnend bei 1 andere Titel sollen nicht erfasst werden
Lieferanten LID LName AdriD APartnerID Email TelFest	int varchar(80) int int varchar(50) varchar(20)		Primary Key Foreign Key mit Referenz auf Adressen (AdrID) Foreign Key mit Referenz auf Ansprechpartner (APartnerII	beginnend bei 1
Adressen AdrID Land PLZ Ort Straße	int char(2) char(5) varchar(50) varchar(50)		Primary Key Check Muster: nur Buchstaben Check Muster: nur Ziffern	beginnend bei 1 Länderkürzel nach ISO 3166, zweistellig
HNr	varchar(10)			Nummer und eventueller Buchstabenzusatz
<mark>Lager</mark> LagerID AdrID	int int	not null auto_increment not null	Primary Key Foreign Key mit Referenz auf Adressen (AdrID)	beginnend bei 1
Lagerbestand LagerID BID IstStk MdstStk	int varchar(50) int int	not null not null not null default: 0 not null	Foreign Key mit Referenz auf Lager (LagerID) Foreign Key mit Referenz auf Bauteile (BID)	

5.2 Relationales Modell

7 Technische Produktumgebung

Das Softwaresystem ist für Microsoft Windows 7 und Windows 10 entwickelt, auf Basis des Microsoft SQL Server 2014.

Später wird das System mit einer übersichtlichen, leicht zu bedienenden GUI zu bedienen sein, die eine einfache, aber dennoch hochinformative Interaktion ermöglicht.

Wann?	Wie lange?	Was?	Wer?
29.05.2018	1,5h	- Treffen mit	Sarah Stephan,
		Kunden/Ansprechpartnern	Marco Hänsel,
		- erste Einblicke in Unternehmen und	Sebastian Golchert,
		Erwartungen	Markus Weißflog
30.05.2018	2h	- erste Umsetzungsstrategien	Sarah Stephan,
		überlegen, aufstellen	Marco Hänsel,
		- Unternehmensübersicht	Sebastian Golchert,
		aufstellen/Unternehmen vorstellen	Markus Weißflog
31.05.2018	2h	- Treffen mit	Sarah Stephan,
		Kunden/Ansprechpartnern:	Marco Hänsel,
		Betriebsinfos von Bieb.O	Sebastian Golchert,
		- Zielbestimmungen aufstellen	Markus Weißflog
04.06.2018	2h	- erster Entwurf Entitätsbeschreibung	Sebastian Golchert,
		- erster Entwurf ER-Modell	Markus Weißflog
06.06.2018	2h	- Konzept zu Diagrammen erarbeiten	Sarah Stephan,
		- Fragestunde mit	Marco Hänsel,
		Kunden/Ansprechpartnern	Sebastian Golchert,
		- Versionskontrolle	Markus Weißflog
11.06.2018	1h	- Konzept zu Diagrammen erarbeiten	Marco Hänsel,
		- Versionskontrolle	Sebastian Golchert,
			Markus Weißflog
13.06.2018	2h	- ER-Modell weiterführen	Sebastian Golchert,
		- Entitätsbeschreibung weiterführen	Markus Weißflog
13.06.2018	2h	- HauptUseCase angelegt	Sarah Stephan
		- Verfeinerung begonnen	Marco Hänsel,
18.06.2018	2h		Marco Hänsel,
			Sebastian Golchert
18.06.2018	2h	- Entitätsbeschreibung: Spezifikationen	Sebastian Golchert,
		überarbeitet, Lagermitarbeiter entfernt	Markus Weißflog
		- ER-Modell: spezifiziert, ID's	
		reduziert, Beziehungen eingefügt	
18.06.2018	2h	- Use-Case-Diagramm erstellen	Sarah Stephan
		- Kontextmodell aufstellen	Marco Hänsel,
20.06.2018	2h	- eER-Modell erstellen	Sarah Stephan,
			Sebastian Golchert
20.06.2018	2h		Markus Weißflog
21.06.2018	2h	- ER-Mdell komplettieren	Markus Weißflog
		- Erstellungsskript begonnen, create	
		Database	
25.06.2018	2h	- Entitätsbeschreibung konkretisiert	Sebastian Golchert,
		- ER-Modell: Warenkorb eingefügt,	Markus Weißflog
		Beziehungen überarbeitet, ID bei	
		Ansprechpartner eingefügt	
		- Relationales Modell: grobe	
		Spaltenübersicht für die Tabellen Angebot,	
		Bauteile und Einkäufe; Ansprechpartner, Lieferanten, Adressen hinzugefügt	
25.06.2018	2h	Projektdokumentation begonnen	Sarah Stephan
25.00.2010	211	1 Tojoktaokamentanion begomien	Marco Hänsel,
25.06.2018	2,5h	- Erstellungsskript: Erstellung der	Markus Weißflog
22.00.2010	4,511	Listenangsskripti Eistenang aci	THUINUS WCIIJIIUE

		Tabellen	
		- Erstellung Relationales Modell	
26.06.2018	2,5h	- Relationales Modell vervollständigen	Markus Weißflog
20.00.2010	2,511	- Erstellungsskript: Constraints einfügen	Warkus Wenshog
27.06.2018	2h	- verfeinertes Use Case:	
		Materialverwaltung	
27.06.2018	2h	- Testdaten zusammenstellen	Markus Weißflog
28.06.18	2h	Erst Entwürfe Aktivitätsdigramme	Marco Hänsel
30.06.2018		- eER-Modell: Lager geändert;	Sebastian Golchert
		Lagerbestand hinzugefügt	
30.06.2018	3,5h	- Testdaten zusammenstellen	Markus Weißflog
	,	- Relationalen Modell komplettieren	
01.07.2018	2,5h	- Testdaten zusammenstellen	Markus Weißflog
02.07.2018	2h	Erstellungsskript: Testdaten einfügen	Markus Weißflog
03.07.2018	4h	Erstellungsskript: Testdaten	Markus Weißflog
		nachbereiten, Constraints überprüfen,	
		Funktionen schreiben (Roboterpreis	
		berechnen, günstigsten Lieferanten	
		auswählen)	
03.07.2018	2h	- Dokumentation bearbeiten	Sarah Stefan
			Marco Hänsel
04.07.2018	6h	- Erstellungsskript: Prozeduren	Markus Weißflog
		schreiben (Kontaktdaten für einen	
		Lieferanten anzeigen,	
		Materialbestellungen eines Monats	
		auflisten, Anzeigen welches Bauteil	
		im Roboter verbaut wird), Funktion	
		schreiben (Anzeigen ob alles für einen	
		Roboter vorhanden ist)	
		- Aktivitätsdiagramme für	
		Roboterpreisberechnung, Auflistung	
		der Bauteile eines Roboters und	
		Ausgeben der Kontaktdaten eines	
0.1.07.2010		Lieferanten erstellen	
04.07.2018	2h	- Funktionserstellung SQL;	
		Dokumentation überarbeitet;	
		Aktivitätsdiagramm Stückzahlprüfung	
04.07.10	41	überarbeitet	G 1 G/ C
04.07.18	4h	Weiterarbeit Projektdokument	Sarah Stefan
05.07.2018	3h	Erstellungsskript: Prozeduren	Markus Weißflog
		schreiben (Bauteile hinzufügen,	
		Bauteile für Roboter aus dem Lager	
05.07.18	4h	entnehmen), Trigger schreiben Funktion und Prozedur schreiben	Marco Hänsel
05.07.18			
00.07.2018	1,5h	Prozeduren und Funktionen testen, Fehler beheben	Markus Weißflog
06.07.10	215		Maraa Hänaal
06.07.18	2h 2h	Aktivitätendiagramm Marco Hänse	
09.07.2018	∠n	- Aktivitätsdiagramme überarbeiten	Marco Hänsel,
		- TODO's verfassen	Markus Weißflog
		- Entitätsbeschreibung überarbeiten	

8 Wochenplan

09.07.2018	3h	- Aktivitätsdiagramme überarbeiten	Sarah Stephan,
		- restliche Aufgaben verteilen	Marco Hänsel,
		- Dokumentation besprechen	Sebastian Golchert,
			Markus Weißflog
10.07.18	7h	Projektdokumentation layouten	Marco Hänsel
10.07.18	4h	UseCase Beschreibungen	Sarah Stephan,
		-eER-Modell	Marco Hänsel,
		-Layoutbesprechung	Sebastian Golchert,
		ProjektdokumentationSarah	Markus Weißflog

ER-Modell:

- APartnerID = Ansprechpartner Identifikation
- akadTitel = akademischer Titel
- LID = Lieferanten Identifikation
- LName = Lieferantenname
- TelFest = Telefon Festnetz
- AID = Angebotsidentifikation
- APreis = Angebotspreis
- Pos = Position
- WStückzahl = Warenkorbstückzahl
- EID = Einkäufe Identifikation
- AdrID = Adressidentifikation
- PLZ = Postleitzahl
- HNr = Hausnummer
- BID = Bauteile Identifikation
- BBezeichnung = Bauteilebezeichnung
- VKPreis = Verkaufspreis
- RKStückzahl = Roboterkomponentenstückzahl
- IstStk = Ist Stückzahl
- MdstStk = Mindeststückzahl
- RID = Roboter Identifikation
- RBezeichnung = Roboterbezeichnung
- ProdKosten = Produktionskosten

Materialmanagement = Verwaltung sowie zeitliche, mengenmäßige, qualitative und eventuell auch räumliche Planung und Steuerung der Materialbewegungen innerhalb eines Unternehmens und zwischen dem Unternehmen und seiner Umwelt. Sie koordiniert den Warenfluss zwischen Lieferanten, Kunden, Bedarfsträgern (zum Beispiel Produktion) und den Lagern.

Preiskalkulation = Ermittlung des Angebotspreises mithilfe der Kostenrechnung; bezeichnet auf dieser Basis die Berechnung eines Endverbraucherpreises, also des Preises, für den eine Ware oder Dienstleistung letztlich auf dem Markt angeboten wird

Bestellpunktverfahren = Bestellungen von Lagerware werden dann, wenn eine bestimmte Anzahl der Lagerware er reicht wird, getätigt