Continuous	Optimization:	Assignment	6
------------	---------------	------------	---

Due on June 4, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

The strong Wolfe condition states that for some $\eta \in (\gamma, 1), \gamma \in (0, 1)$, the following holds:

$$\left| \left\langle \nabla f(x^{(k)} + \tau_k d^{(k)}), d^{(k)} \right\rangle \right| \le \eta \left| \left\langle \nabla f(x^{(k)}), d^{(k)} \right\rangle \right|$$

We know the iterative update step for $x^{(k+1)}$ is defined as: $x^{(k+1)} = x^{(k)} + \tau_k d^{(k)}$. The strong curvature condition can be rewritten as such:

$$\left| \left\langle \nabla f(x^{(k+1)}), d^{(k)} \right\rangle \right| \le \eta \left| \left\langle \nabla f(x^{(k)}), d^{(k)} \right\rangle \right|$$

By the definition of descent direction, $\langle \nabla f(x^{(k)}), d^{(k)} \rangle < 0$ and $\eta > 0$, we get

$$\langle \nabla f(x^{(k+1)}), d^{(k)} \rangle \ge \eta \langle \nabla f(x^{(k)}), d^{(k)} \rangle$$
$$\langle \nabla f(x^{(k+1)}), d^{(k)} \rangle - \langle \nabla f(x^{(k)}), d^{(k)} \rangle \ge \eta \langle \nabla f(x^{(k)}), d^{(k)} \rangle - \langle \nabla f(x^{(k)}), d^{(k)} \rangle$$
$$\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), d^{(k)} \rangle \ge (\eta - 1) \langle \nabla f(x^{(k)}), d^{(k)} \rangle > 0$$

We know $\tau_k > 0$

$$\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), \tau_k d^{(k)} \rangle > 0$$

 $\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle > 0$
 $\langle y^{(k)}, s^{(k)} \rangle > 0$

Exercise 2

The secant equation is given by $B_{k+1}s^{(k)} = y^{(k)}$ which is a system of n linear equations (assume the dimension is n). The choice of B_{k+1} is constrained by these n equations which results in a degree of freedom of n. On the other hand, the curvature condition:

$$\langle s^{(k)}, B_{k+1} s^{(k)} \rangle = \langle s^{(k)}, y^{(k)} \rangle$$
$$\langle s^{(k)}, B_{k+1} s^{(k)} \rangle - \langle s^{(k)}, y^{(k)} \rangle = 0$$
$$\langle s^{(k)}, B_{k+1} s^{(k)} - y^{(k)} \rangle = 0$$

It can be satisfied not only by setting $B_{k+1}s^{(k)} - y^{(k)} = 0$ which is the same as the secant equation, but also by setting $B_{k+1}s^{(k)} - y^{(k)}$ to be orthogonal to $s^{(k)}$. This gives more degree of freedom of choosing B_{k+1} .