1. BUT

Le but de cette manipulation est de :

- Tracer les caractéristiques courant/tension de la diode à jonction et diode Zener;
- Voir des exemples de lours applications.

2-3 Caractéristique (élVd) d'une divée a) Caractéristique directe

En faisant varier E à partir de O V, fizer Vd et relever le courant 1d correspondant.

Veiller à ne pas dépasser un courant de 70 mA.

V ₄ (V)	0,1	0.25	0.4	0.5		10
I ₄ (mA)	0,004	000	003	- A	2	10

Caractéristique inverse

En faisant varier E a partir de OV, relever Vd et ld. <u>Ne pas dépasser une tension Vd de 10V.</u>

V ₄ (V)	1	2	3	4	5	
4(miA)	0,000	D DOL	6 00 7	0 00 0	0.04	
- Allerton	-1000	0,000	0,00	0,000	0.0.7	

a for me sinisoidale

4.2.1 Stabilisateur de tempos

tension de sortie Vs pour :

✓ Une tension de la charge Vs(ts) ✓ Une fluctuation de la tension E

- a. variation de la charge
- > Fixer Eà 15V
- > Faites varier la charge et relever le courant ls

I. (AA)	16	24	30	35	80
V: (W H)				26	12

b. fluctuation de l'entrée

- > Fixer Rch à 100
- > Faites varier E autour de 15V, et relever Vs.

E(V)	15	15.5	16
Ns(mV)	4	1,4	4.2

> Conclure

4.2.2. Montage écrêteur

a) Choisir un signal triangulaire, de fréquence de 1 KHz et d'amplitude 15 V, pour Ve

En adoptant comme schéma equivalent de la diode Zener en inverse le schéma ci-dessous, déterminer VI et l'

$$V_{\frac{1}{2}} = AV \quad \text{et} \quad \lambda_A = 5 \cdot Ae^{-3}$$
where
$$C_{\frac{1}{2}} = \frac{V_{\frac{3}{2}}}{Ad} = 2eo.n$$

4. APPLICATIONS

4.1. Dinde à Janction

a. Sedecisement mono alternance

- Choisir sur la GBF la fonction
 Sinuscidale, la tréquence 50 Hz.
 Régier l'ampôtude de Ve à 12V.
- Foscilloscope les tensions Ve et Vs.

 Tracer l'alture de Ve et Vs. Interpréte

- l'allace montre que vs est en phase avec ve : mais l'amphibide de vs cert bien retreinte per capport à ve suite à l'anstance de la chode reponsable sur ce changement. Engardant

c) Exploration de la caractéristique Ve(le) Tracer sur le même graphe les caractéristiques directes et inverse de la diode. 0.2 _ directe 0,15 _ inverse 241 6,05 Approcher la caractéristique directe par deux demi- droites. e,1 0,2 0,3 0,4 0,5 0,6 0,3 0,6 3 Vd

> Determiner volo et roi du schéma équivalent de la diode directe.

In a d'après la valear du GBF, et Lorseque la chiede fonctionne
chart volo: 1,2 V et roi = volo: 1,2 \\

Lt roi = 0 lorsque \land 0,55 \\

Lt roi = 0 lorsque \land 0

Quel est le schéma équivalent de la diode inverse,

on trouve

3. DIODE ZENER

1. Généralités

La diode Zener est une diode à jonction, qui permet la circulation d'un courant en inverse sous une tension quasi-constante Vz. En direct, la diode Zener est identique à une jonction.