Quantum teleportation from the perspective of nonlocality

Paul Skrzypczyk Joint work with Ivan Šupić and Daniel Cavalcanti

June 20, 2017

Outline

- 1. Family tree of Nonlocality
- 2. Which states demonstrate non-classical teleportation?
- 3. Testing for teleportation with convex optimisation
- 4. Witnesses of non-classical teleportation
- 5. Quantifying entanglement with teleportation
- 6. Conclusions

Family tree of Nonlocality

Family tree of nonlocality

Bell nonlocality

$$P(a, b|x, y)$$

$$= tr[(M_{a|x} \otimes M_{b|y})\rho^{AB}]$$

- About the correlations between the measurements of Alice and Bob
- Alice and Bob receive classical inputs
- Playground for device-independent quantum information

Family tree of nonlocality

EPR Steering

$$\sigma_{a|x} = \operatorname{tr}_{A}[(M_{a|x} \otimes \mathbb{I})\rho^{AB}]$$

- About the correlations between the measurements of Alice and the states prepared for Bob
- Assume Alice can do tomography or perform known measurements
- Playground for one-sided device-independent quantum information

Family tree of nonlocality

a b

Bell nonlocality

Buscemi nonlocality

Buscemi nonlocality

$$\begin{aligned} P(a,b|\psi_{x},\psi_{y}) \\ &= \text{tr}[(M_{a}^{A'A} \otimes M_{b}^{BB'}) \\ &\times (\psi_{x}^{A'} \otimes \rho^{AB} \otimes \psi_{y}^{B'})] \end{aligned}$$

- About the correlations between the measurement of Alice and Bob
- Inputs encoded in unknown quantum states ψ_X and ψ_Y .
- Alice and Bob perform joint measurements on input state and on shared state
- Playground for measurement-device-independent quantum information

Family tree of nonlocality

Teleportation

$$\sigma_{a|\psi_{x}} = \operatorname{tr}_{A'A}[(M_{a}^{A'A} \otimes \mathbb{I}) \\ \times (\psi_{x}^{A'} \otimes \rho^{AB})]$$

- About the correlations between the measurements of Alice and the states prepared for Bob
- Alice performs joint measurement on unknown input state $\psi_{\rm x}$
- Nonlocal part of teleportation affect Alice's measurement has on Bob's system
- Do not consider the local part classical communication + local operations (corrections) on Bob's side

Which states demonstrate

non-classical teleportation?

Which states are useful for teleportation?

$$\sigma_{a|\psi_{x}} = \operatorname{tr}_{A'A}[(M_{a}^{A'A} \otimes \mathbb{I}) \\ \times (\psi_{x}^{A'} \otimes \rho^{AB})]$$

- State is useful for teleportation if average fidelity of teleportation is better than the classical fidelity of teleportation
- · Average fidelity of teleportation

$$\overline{F}_{\text{tel}} = \frac{1}{|x|} \sum_{a,x} \langle \psi_x | U_a \sigma_{a|\psi_x}^B U_a^{\dagger} | \psi_x \rangle$$

 Classical fidelity of teleportation best fidelity that can be obtained without sharing entanglement

Which states are useful for teleportation?

$$\sigma_{a|\psi_{\mathsf{X}}} = \operatorname{tr}_{\mathsf{A}'\mathsf{A}}[(\mathsf{M}_{a}^{\mathsf{A}'\mathsf{A}} \otimes \mathbb{I}) \\ imes (\psi_{\mathsf{X}}^{\mathsf{A}'} \otimes \rho^{\mathsf{A}\mathsf{B}})]$$

· HHH '99

$$\overline{F}_{\text{tel}} = \frac{dSF(\rho) + 1}{d + 1}$$

 $SF(\rho)$ singlet fraction

· HHH '99

$$\overline{F}_{cl} = \frac{2}{d+1}$$

· Useful for teleportation iff

$$SF(\rho) > \frac{1}{d}$$

Bound entangled states useless

Using the full data in a teleportation experiment

$$\sigma_{a|\psi_{x}} = \operatorname{tr}_{A'A}[(M_{a}^{A'A} \otimes \mathbb{I}) \times (\psi_{x}^{A'} \otimes \rho^{AB})]$$

- Average fidelity of teleportation is only a single figure of merit with which to judge an experiment
- In principle can use full observable data available in analysis.
- Related question: When can the observable data in a teleportation experiment be explained classically?
- Do there exists states for which SF < 1/d but nevertheless $\sigma_{a|\psi_{\rm x}}$ cannot be explained classically?

All entangled states demonstrate non-classical teleportation

$$\sigma_{a|\psi_{x}} = \operatorname{tr}_{A'A}[(M_{a}^{A'A} \otimes \mathbb{I}) \\ \times (\psi_{x}^{A'} \otimes \rho^{AB})]$$

- All entangled states produce data in a teleportation experiment that cannot be reproduced classically
- Use ψ_X which are tomographically complete i.e. allow for process tomography
- Alice performs partial (or full) Bell state measurement

$$\begin{split} M_0^{A'A} &= \left| \Phi^+ \right\rangle \langle \Phi^+ | \\ M_1^{A'A} &= \mathbb{I} - \left| \Phi^+ \right\rangle \langle \Phi^+ | \end{split}$$

convex optimisation

Testing for teleportation with

Teleportation operators

$$\begin{split} \sigma_{a|\psi_{\mathsf{X}}} &= \mathsf{tr}_{\mathsf{A}'\mathsf{A}}[(\mathsf{M}_{a}^{\mathsf{A}'\mathsf{A}} \otimes \mathbb{I})(\psi_{\mathsf{X}}^{\mathsf{A}'} \otimes \rho^{\mathsf{A}\mathsf{B}})] \\ &= \mathsf{tr}_{\mathsf{A}'}[\tilde{\mathsf{M}}_{a}^{\mathsf{A}'\mathsf{B}}(\psi_{\mathsf{X}}^{\mathsf{A}'} \otimes \mathbb{I})] \end{split}$$

$$\tilde{M}_{a}^{A'B} = \operatorname{tr}_{A}[(M_{a}^{A'A} \otimes \mathbb{I})(\mathbb{I}^{A'} \otimes \rho^{AB})]$$

No-signalling condition

$$\sum_{a} \tilde{M}_{a}^{A'B} = \mathbb{I}^{A'} \otimes \rho^{B}$$

$$\begin{split} \cdot \text{ If } \rho^{AB} \text{ is separable } \rho^{AB} &= \sum_{\lambda} p_{\lambda} \rho_{\lambda}^{A} \otimes \rho_{\lambda}^{B} \\ \tilde{M}_{a}^{A'B} &= \operatorname{tr}_{A} [(M_{a}^{A'A} \otimes \mathbb{I}) (\mathbb{I}^{A'} \otimes \sum_{\lambda} p_{\lambda} \rho_{\lambda}^{A} \otimes \rho_{\lambda}^{B})] \\ &= \sum_{\lambda} p_{\lambda} \tilde{M}_{a|\lambda}^{A'} \otimes \rho_{\lambda}^{B} \end{split}$$

$$ilde{\mathsf{M}}_{a|\lambda}^{\mathsf{A}'} = \mathsf{tr}_{\mathsf{A}}[\mathsf{M}_a^{\mathsf{A}'\mathsf{A}}(\mathbb{I}^{\mathsf{A}'}\otimes
ho_\lambda^{\mathsf{A}})]$$

• $\tilde{M}_a^{A'B}$ seperable operator

• Test for classical teleportation for observed data $\sigma_{a|\psi_{\mathbf{x}}}$

given
$$\sigma_{a|\psi_x}$$

find $\tilde{M}_a^{A'B}$
s.t. $\operatorname{tr}_{A'}[\tilde{M}_a^{A'B}(\psi_x^{A'}\otimes \mathbb{I})] = \sigma_{a|\psi_x},$
 $\tilde{M}_a^{A'B}$ separable,
 $\sum_a \tilde{M}_a^{A'B} = \mathbb{I} \otimes \rho^B$

- If feasible solution exists, provides classical teleportation operators which reproduce data
- If problem is infeasible, certifies that the data is non-classical.

Witnesses of non-classical

teleportation

- Dual formulation of membership problem provides teleportation witness
- Operators $F_{a|\psi_x}$ such that

$$eta = \sum_{a.\mathbf{x}} \mathrm{tr}[F_{a|\psi_{\mathbf{x}}}\sigma_{a|\psi_{\mathbf{x}}}] > eta_{\mathrm{cl}}$$

certify the infeasibility of the membership problem

• β_{cl} classical bound of witness

Comparison with average fidelity of teleportation

 Average fidelity of teleportation special instance of teleportation witness

$$F_{a|\psi_x} = \frac{1}{|x|} U_a^{\dagger} |\psi_x\rangle \langle \psi_x | U_a$$

- Bound entangled states cannot violate average fidelity witness, but violate other witnesses
- General construction of teleportation witness from entanglement witness, similar to MDI nonlocality witnesses

teleportation

Quantifying entanglement with

Quantifying entanglement with teleportation

 Teleportation witnesses can be made quantitative if additional structure is imposed

$$W_a = -\sum_{\mathbf{x}} \psi_{\mathbf{x}} \otimes F_{a|\psi_{\mathbf{x}}}$$
 ent witness $1 + \frac{1}{od} \mathrm{tr} \sum_{a,\mathbf{x}} F_{a|\psi_{\mathbf{x}}} \geq 0$

$$E_R(\rho^{AB}) \ge \sum_{a.x} \operatorname{tr}[F_{a|\psi_x}\sigma_{a|\psi_x}]$$

 $E_R(\rho^{AB})$ Robustness of entanglement

Comparison with average fidelity of teleportation

Average fidelity of teleportation

$$E_R(\rho^{AB}) \ge \frac{\overline{F}_{tel} - \overline{F}_{cl}}{\overline{F}_{cl} - 1/d}$$

• Ideal teleportation, $\overline{F}_{tel} = 1$

$$E_R(\rho^{AB}) \geq d$$

Conclusions

Conclusions

- Teleportation can be placed in a family tree of nonlocality, as a one-sided measurement-device-independent paradigm
- Every entangled state can produce non-classical teleportation data
- Tools of convex optimisation can be used to analyse teleportation, leading to teleportation witnesses and to teleportation quantifiers

