C '11	\ / · / ·		D .	۸ .
Guilherme	Vinicilie	Karhosa	Paraira	Δmorim
CHILLICHIE	v iiiicius	Darbusa	i ciciia	

Protótipo de baixo custo para integração do AVS em sistemas embarcados

Guilherme Vinícius Barbosa Pereira Amorim

Protótipo de baixo custo para integração do AVS em sistemas embarcados

Monografia apresentada durante o Seminário dos Trabalhos de Conclusão do Curso de Graduação em Engenharia Elétrica da UFMG, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

Universidade Federal de Minas Gerais – UFMG Escola de Engenharia Curso de Graduação em Engenharia Elétrica

Orientador: Prof. Ricardo de Oliveira Duarte

Belo Horizonte
2022

Agradecimentos

Sumário

1	INTRODUÇÃO
1.1	Objetivos
1.2	Estrutura
2	REFERENCIAL TEÓRICO
2.1	Computação em nuvem com a AWS
2.2	AWS Lambda
2.3	AWS IoT
2.4	Amazon Alexa
2.5	Trabalhos correlatos
3	METODOLOGIA 1
4	RESULTADOS E DISCUSSÃO
5	CONCLUSÕES

1 Introdução

Atualmente o termo 'sistemas embarcados' não está muito presente no cotidiano brasileiro, mas essa tecnologia é responsável por fornecer equipamentos inteligentes como semáforos de trânsito, relógios, respiradores mecânicos, roteadores e aparelhos de ar-condicionado, por exemplo. Em termos simples, pode-se definir um sistema embarcado como um dispositivo controlado por um computador encapsulado. Ou seja, um sistema embarcado é na verdade um sistema microprocessado. Dentre as principais vantagens de sistemas embarcados, destaca-se o baixo custo, a eficiência e a facilidade de programação (NORLETO, 2020).

O primeiro sistema embarcado é o AGC (Apollo Guidance Computer). Ele foi desenvolvido nos EUA por Charles Stark Draper do MIT em 1966 (EMBARCADOS, 2014). Desde então, os sistemas embarcados ficaram mais acessíveis, mais velozes e mais compactos.

Com o passar dos anos, novas tecnologias foram adicionadas à sistemas embarcados, como por exemplo o Wifi, o bluetooth etc. Na última década foi observado a acensão de assistentes virtuais como a Alexa e o Google Assistent. A Alexa foi criada em 2014 e apareceu pela primeira vez como parte das caixas de som. Hoje a Alexa, a partir de comandos de voz, pode realizar pesquisas, mandar executar uma lista de músicas, disparar um alarme etc (VIGLIAROLO, 2017). Segundo o site oficial da Amazon Alexa (2022), o serviço permite a conexão com dispositivos, efetuar comandos por voz, interpretá-los e tomar uma ação correspondente. Isso tudo acontece por meio do Web Service da Amazon (AWS).

Visto que a tecnologia AWS e AVS (Alexa Voice Service) é recente, ainda não se observa a fácil e barata integração das assistentes de voz à sistemas embarcados. Existem hoje no mercado grandes empresas, como a STMicroeletronics, que produzem documentação e kits com o fim padronizar e facilitar o desenvolvimento de sistemas embutidos. Contudo, poucos exemplos são encontrados de como integrar assistentes pessoais a esses sistemas.

Diante do que foi dito, este trabalho se propõe permitir a fácil integração de sistemas embarcados à tecnologia AVS.

1.1 Objetivos

Este trabalho tem o objetivo de criar um protótipo de baixo custo que permite a fácil integração da assistente de voz Alexa (AVS) em sistemas embarcados.

Os seus objetivos específicos são:

- a) suporte à rede Wifi IEEE 802.11 (2,4 GHz);
- b) detecção de palavra de ativação ("Alexa");
- c) responder o usuário por voz;
- d) ser configurado pelo aplicativo Amazon Alexa;
- e) criação de um Application Note.

1.2 Estrutura

O trabalho será apresentado em cinco capítulos. O capítulo 1 apresenta a introdução e os objetivos. O capítulo 2 apresenta o referencial teórico, contextualizando o projeto e citando trabalhos correlatos. O capítulo 3 contém o desenvolvimento do trabalho, apresentando requisitos funcionais e não-funcionais, ferramentas utilizadas e a implementação. O capítulo 4 expõe e faz a análise dos resultados. O capítulo 5, por fim, conclui o trabalho listando vantagens e desvantagens do protótipo, e as sugestões para trabalhos futuros.

2 Referencial teórico

2.1 Computação em nuvem com a AWS

A Amazon Web Services, Inc. (AWS) é uma empresa subsidiária da Amazon responsável por fornecer a seus clientes plataformas para a computação em nuvem sob demanda via Internet. Empresas fazem uso desse serviço para a criação e execução de aplicações virtuais sem um custo inicial, uma vez que a AWS tem o pay-as-you-go como modelo de precificação. Ou seja, o cliente faz o pagamento conforme o uso (AWS, 2019). Em 2022, a AWS é capaz de oferecer a seus clientes mais de duzentos serviços em nuvem nas áreas de tecnologias de computação, banco de dados, machine learning, inteligência artificial etc.

Ademais, a AWS conta com 84 zonas de disponibilidade em 26 regiões geográficas. Esse modelo de região e zona de disponibilidade da AWS foi reconhecido pelo Gartner, empresa de pesquisa e consultoria em tecnologia da informação (TI), como o método recomendado para executar aplicativos corporativos que exigem alta disponibilidade (AWS, 2022).

Dentre os diversos serviços fornecidos pela AWS, o projeto fará uso do AWS Lambda e do AWS IoT para a integração da AVS em sistemas embutidos. A Figura 2 mostra os logos da AWS e da amazon alexa, e dos serviços AWS lambda e AWS Iot. A Figura 1 mostra o diagrama de integração dos serviços AWS e da amazon alexa no projeto.

Figura 1 – Diagrama de uso dos serviços AWS e AVS no projeto.

Fonte: Autor (2022)

Figura 2 – Logo Amazon AWS

Fonte: Amazon AWS (2022)

Figura 4 – Logo Amazon AWS IoT

Fonte: Amazon AWS (2022)

Figura 3 – Logo Amazon AWS Lambda

Fonte: Amazon AWS (2022)

Figura 5 – Logo Amazon Alexa

Fonte: Amazon Alexa (2022)

2.2 AWS Lambda

O AWS Lambda é um serviço de computação sem servidor orientado a eventos que permite a execução em nuvem de códigos (lambdas) de praticamente qualquer tipo de aplicativo ou serviço de *back-end*. Em termos simples, o AWS Lambda permite o acionamento de mais de duzentos serviços da AWS, pagando-se somente pelo recurso utilizado. Nesse projeto, o AWS Lambda será utilizado para a integração do serviço AWS IoT à AVS. A Figura 3 mostra o logo do serviço AWS Lamba.

2.3 AWS loT

2.4 Amazon Alexa

2.5 Trabalhos correlatos

3 Metodologia

4 Resultados e Discussão

5 Conclusões