NATIONAL UNIVERSITY OF SINGAPORE

CS4236 - CRYPTOGRAPHY THEORY AND PRACTICE

(Semester 1: AY2021/2022)

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS

This assessment paper contains **FIVE** (5) sections totalling **FORTY** (40) marks, and comprises **TEN** (10) printed pages including this one.

This is an **OPEN BOOK** assessment, and you are to answer **ALL** questions. You may cite any result in the lecture notes or tutorials. Answer **ALL** questions within the space provided in this booklet (write on the backs of pages if you need more room).

Please write your Student Number below. (Do not write your name).

STUDENT NO:			

This portion is for examiners use only.

Question		Marks	Remark
General topics, short answers	Q1 (8)		
MAC and HASH	Q2 (10)		
Symmetric encryption	Q3 (7)		
Asymmetric encryption	Q4 (8)		
Signatures and secrets	Q5 (7)		
Total:	Q1-5 (40)		

<mark>Q1</mark> (Short A	Answer Questions)	(8 marks)
In the follow	ring short questions, each answer is worth either 1 (ONE) or 2 (TWO) ma	ırks.
	ate the bias for $x \oplus y$ (with x, y independent) when $\varepsilon(x) = 0.2$ and $\varepsilon(y) = 0.2$ vorking.	0.3. Show (2 marks)
Answer:		
-	n what limits are usually placed on decryption oracles used in adversarial ng properties of encryption schemes.	games for (1 mark)
Answer:		
•	Proof of work schemes involve finding something with a lot of zeros. I wan words what is meant by this. What do you need to do to prove you hork:"?	-
Answer:		

Q1 (Short Ar	nswer Questions)	(Continued)
1.4 Show th	nat $G(x) \stackrel{\text{def}}{=} x \mod p$, cannot be a PRG.	(2 marks)
Answer:		
with the	te the entropy in bits/symbol, of a source emitting the 4 see probability of E being 0.5, X being 0.25, and A and I lities. Show your working.	~
Answer:		

Q2 (MAC and HASH) (10 marks) 2.1 Assume you were investigating a new MAC scheme based on $Enc_k(H(m))$, where the HASH is SHA3, and the encryption is AES in CBC mode. Show how you could forge a fresh (m',t) pair for any m', but without finding a (HASH) collision. You have an example of a valid (m',t) pair, and control over an AES in CBC encryption mechanism $\operatorname{Enc}_{k,\mathrm{IV}}(p)$. Show clearly each step in your attack. (4 marks) **Answer:** 2.2 Rainbow tables and the birthday attack are both attacks applied to hashes. However, each attempts a different task. Explain clearly what each attack attempts to do. (2 marks)

Answer:

Q2 ((MAC an	nd HASH) (Continu	ued
2.3		/prove that there exists a MAC that is secure (existentially unforgeable) but though secure. (4 mag)	
A	Answer:		

Q3 ((Symmet	ric encryption)	(7 marks)
3.1		authenticated encryption scheme, why is the encrypt-and-authentica ered to be unsafe (or to have issues)?	te scheme (2 marks)
A	Answer:		
3.2	stitutio	explain why in symmetric systems based on rounds, the rounds include ns and permutations. Why could we not have a system based just on ation or permutation alone?	
A	Answer:		

Q3 (Symmetric encryption)

(Continued)

3.3 Shown above is an example of a single stage of differential analysis, based on the substitution and permutation from the toy example. If the input bits of interest for S_1 were 1001 (i.e. 9), which (16-bit) input and output bits would be most useful for differential analysis, and what would the differential probability $\Pr[\langle \Delta_{in}, \Delta_{out} \rangle]$ of this be? (3 marks)

Answer:				
---------	--	--	--	--

Q4 (A	Asymmetric encryption)	(8 marks)
4.1	Textbook RSA is deterministic, and so if someone sends adversary can know this. Assuming that a challenger ne though, an adversary might still be able to differentiate be expecting: $m_1 = \text{``Attack at dawn}$ $m_2 = \text{``Attack at noon'}$	ver sent the same message twice etween (say) two messages it was
	where each message encodes to a single 2048 bit integer ciphertext $c = m^e mod N$. Explain how an attacker might two messages is in the ciphertext, even if the attacker do keys used.	be able to identify which of the
A	answer:	
4.2	Explain why you might use $g = X$ rather than $g = Y$ for a In your answer you should explain what constraints or iss	
	why you would choose one generator over another.	
A	answer:	

(Continued)

key enco	e is going to send a message to Bob using ECC <i>encryption</i> . Bob has a private/secret $K_S = \langle 4, E_{31}(1,1), (0,1) \rangle$, and public key $K_P = \langle (22,21), E_{31}(1,1), (0,1) \rangle$. If Alice ded her message as the point $(4,21)$, and chooses a random value $k=2$, what message she send to Bob? Show your working
Answer	:

Q4 (Asymmetric encryption)

Q5 (Signatu	res and secrets)	(7 marks)
5.1	Explaiı	n why canonical verification of a signature is not possible.	(2 marks)
A	answer:		
5.2	Explaii	n why hash-and-sign is better than (say) sign-and-hash.	(2 marks)
A	answer:		
5.3		dman's VSS scheme, the key k is masked as $c = \mathcal{H}(a_0) \oplus k$, rather than plain why this is done in this scheme (and not in Shamir's for example)?	
A	answer:		

=== END OF PAPER ===