

### Unidade Curricular de Processamento de Big Data

## Projeto Final



## Elaborado por:

André Simões Novo, n.º 93343 Sebastião Manuel Inácio Rosalino, n.º 98437

Licenciatura de Ciência de Dados - 2º ano - Turma CD Ano Letivo 2021/2022 - 2º Semestre

#### **Professores:**

Adriano Lopes João Pedro Oliveira

Data de entrega: 09 abril de 2022

# Índice

| 1.  | Objetivo e plano de trabalho                               | 3 |
|-----|------------------------------------------------------------|---|
| 2.  | Identificação do domínio de dados e formulação do problema | 3 |
| 3.  | Análises aos dados e testes realizados                     | 4 |
| 4.  | Algoritmo implementado                                     | 7 |
| 5.  | AWS                                                        | 7 |
| 6.  | Conclusão                                                  | 8 |
| Bib | liografia consultada                                       | 8 |

## 1. Objetivo e plano de trabalho

O presente trabalho tem por objetivo implementar uma solução computacional para estudo e análise de um problema com dados em larga escala, envolvendo a construção de um modelo de aprendizagem automática. Os dados tratados são de grande dimensão e foram retirados da Open Data da AWS (https://registry.opendata.aws/).

No desenvolvimento do presente trabalho, para além da capacidade computacional que os seus autores dispunham, foram utilizados serviços em ambiente *cloud* da Amazon para contexto académico: o AWS Academy.

Em termos de ferramentas, o projeto foi implementado recorrendo a funcionalidades disponibilizadas pelo Apache Spark e à linguagem de programação Python.

A implementação da solução teve por base a metodologia ML Pipeline, sistematizada na figura abaixo (retirada dos slides da UC):



Procurar-se-á, no presente relatório, descrever resumidamente as fases de realização do trabalho, a forma de implementação do algoritmo e as principais conclusões retiradas da sua utilização.

## 2. Identificação do domínio de dados e formulação do problema

## a) Domínio dos dados

Como primeira tarefa, procedeu-se à pesquisa de um *dataset* (na Open Data da AWS) que contivesse, no mínimo, 3 GB de tamanho.

Para além desta condição, procurou-se escolher uma base de dados que contivesse informação interessante e, ao mesmo tempo, pertinente para o desenvolvimento das tarefas do projeto proposto.

O dataset escolhido integra dados de viagens realizadas por táxis e outros veículos de aluguer na cidade de Nova Iorque entre 2009 e 2021 (New York City Taxi and Limousine Commission (TLC) Trip Record Data), cujo link de acesso é o seguinte:

https://registry.opendata.aws/nyc-tlc-trip-records-pds/

De modo a cumprir o requisito de tamanho mínimo do conjunto de dados a estudar, optou-se por trabalhar os dados dos meses de julho e agosto de 2014, cujo tamanho ascende a 4.1 GB. O *dataset* inclui 25 795 242 registos.

O conjunto dos dados descreve, no essencial, todos os elementos relevantes de uma viagem efetuada por táxi ou por outro veículo de aluguer, desde o número de passageiros transportados, ao valor total pago por viagem, à rota percorrida, etc. (ver na seção 3 toda a estrutura de dados).

#### b) Formulação do problema

Os dados em análise traduzem um histórico de viagens na cidade de Nova York efetuadas por viaturas de aluguer, recolhendo informação dos operadores do setor registados na NYC Taxi & Limousine Commission.

Esta informação é de grande importância para as empresas do setor, no sentido em que lhes pode obter *insights* sobre, entre outros aspetos, custos médios por viagem, número de passageiros por viagem, percursos mais procurados, adequabilidade da frota, distâncias percorridas, custos com portagens, impostos, entre outros elementos.

No presente trabalho, com base num histórico de viagens de 2 meses procurar-se-á explicar/prever o valor (*total\_amount*) que um cliente irá pagar numa futura viagem através da aplicação de um modelo de aprendizagem supervisionada, usando um algoritmo de regressão linear e utilizando as variáveis do *dataset* que apresentação uma maior correlação com a varável a explicar (*total\_amount*).

A resolução deste problema pode gerar valor aos clientes e às empresas, porquanto pode disponibilizar o custo aproximado da viagem previamente à sua realização; adequar a escolha e distância dos percursos ao valor da despesa prevista; adequar a viatura e o serviço às características da viagem (tempo, n.º de passageiros, rota, etc.).

Neste quadro, o objetivo do presente trabalho passa por prever, com base em dados históricos padronizados, o custo que uma viagem deverá ter, conhecendo as suas características especificas (preditores).

#### 3. Análises aos dados e testes realizados

Formulado o problema e conhecido o objetivo a prosseguir, iniciou-se o processo de tratamento de dados, tendo sido percorridas as seguintes etapas:

 1ª) - Extração dos dados do *dataset*, recolhendo a informação dos meses de julho e agosto de 2014 (cumprindo os critérios do trabalho).

Existem 12.484.250 registos com pelo menos um valor omisso, o que correspondia a 48.4 % do número total de linhas.

Optou-se por não eliminar os registos com *nulls* já que a sua eliminação significaria a perda de quase metade do *dataset*. Verificou-se, ainda, que a sua manutenção não criava dificuldades acrescidas à realização do trabalho.

2<sup>a</sup>) - Análise à estrutura das variáveis e respetiva classificação

| Nome da variável   | Definição                      | Classificação |
|--------------------|--------------------------------|---------------|
| Vendor_id          | Código do prestador do serviço | String        |
| pickup_datetime    | Inicio da viagem               | String        |
| dropoff_datetime   | Fim da viagem                  | String        |
| passenger_count    | Número de passageiros          | Integer       |
| trip_distance      | Distância percorrida           | Double        |
| pickup_longitude   | Longitude do sítio inicial     | Double        |
| pickup_latitude    | Latitude do sítio inicial      | Double        |
| rate_code          | Tarifa da rota                 | Integer       |
| store_and_fwd_flag | Registo guardado ou não        | String        |
| dropoff_longitude  | Longitude do sítio final       | Double        |
| dropoff_latitude   | Latitude do sítio final        | Double        |
| payment_type       | Tipo de pagamento              | String        |
| fare_amount        | Valor das tarifas da viagem    | Double        |
| surcharge          | Valor das sobretaxas           | Double        |
| mta_tax            | Imposto sobre o serviço        | Double        |
| tip_amount         | Valor da gorjeta               | Double        |
| tolls_amount       | Portagens da viagem            | Double        |
| total_amount       | Total pago                     | Double        |

- 3ª) Constituiu-se uma subamostra para realização de tarefas intensivas e frequentes, composta por 10% dos dados [1.269.809 de registos]. Esta subamostra permitiu uma análise detalhada da informação, a sua melhor compreensão e a produção de alguns indicadores estatísticos. Foi criada, neste âmbito, uma nova coluna (variável) correspondente à duração da viagem Trip\_Duration (fim início). Para isso foi necessário converter as variáveis *pickup\_datetime* e *dropoff\_datetime* (que estavam previamente em string) em datas.
- 4ª) A análise, compreensão e limpeza de informação incidiu, no âmbito desta sub-amostra, sobre as seguintes variáveis:
  - i) rate\_code (tarifa da rota), concluindo-se que existiam 7 "tarifas de rota" diferentes (0 a 6). Foram eliminados todos os registos que tinham uma "tarifa de rota" superior a 6, por se concluir que eram outliers (pe.: uma única viagem) ou valores incorretos;
  - ii) payment\_type (tipo de pagamento), concluindo-se que os tipos de pagamentos frequentes são: Credit card; Cash; No charge; Dispute; Unknown;
  - iii) Passenger\_count (número de passageiros), concluindo-se que existiam entre 0 a 9 passageiros. Considerou-se que o "0" poderia corresponder a apenas transporte de bagagem;
  - iv) Store\_and\_fwd\_flag (registo guardado ou não), concluindo-se que a maioria dos motoristas não guardam os dados logo que após o final da viagem, por razões de ligação.

Todas as demais variáveis não suscitaram dúvidas o seu âmbito de aplicação.

5<sup>a</sup>) - Após a compreensão e limpeza de dados, procedeu-se à análise estatística e descritiva dos dados, sendo de relevar os seguintes aspetos para a resposta ao problema formulado: A distância máxima da viagem foi de: 90.4 (milhas) e o valor pago pela viagem varia entre: min [2.5] e max [550.0].

## Análise gráfica:

a) Cálculo e representação gráfica do valor médio pago por tipo de pagamento

|   | Método de pagamento | Total médio pago por passageiro |
|---|---------------------|---------------------------------|
| 0 | DIS                 | 12.209143                       |
| 1 | UNK                 | 7.260346                        |
| 2 | CRD                 | 10.231366                       |
| 3 | CSH                 | 7.439904                        |
| 4 | NOC                 | 11.081927                       |



b) Cálculo e representação gráfica do valor médio pago por tarifa de viagem





c) Representação gráfica da evolução das receitas no período em análise



6<sup>a</sup>) Escolha do conjunto de variáveis a usar na implementação do algoritmo

O critério para escolha das variáveis a usar atendeu à correlação entre os preditores numéricos e a variável alvo.

Os valores de correlação podem ser observados na imagem seguinte:

| passenger_count : 0.01569829163999021     |
|-------------------------------------------|
|                                           |
| trip_distance : 0.9236638149761347        |
| pickup longitude : -0.0038727737744397306 |
| ' '= '                                    |
| pickup_latitude : 0.004279754854484198    |
|                                           |
| rate_code : 0.5653735408337559            |
| store and fwd flag : 0.014237776734215224 |
|                                           |
| dropoff_longitude : -0.003437077639327101 |
| dropoff latitude : 0.003650084376583162   |
| droport_tatitude . 0.003030004370303102   |
| fare_amount : 0.9827981937840934          |
|                                           |
| surcharge : -0.05109163183034506          |
| mta tax : -0.2990729548469016             |
| med_edx : 012330723340403010              |
| tip_amount : 0.6492654979008966           |
|                                           |
| tolls_amount : 0.6735357837188547         |
| trip duration : 0.8151073023644785        |
| [Stage 278:>                              |
| total_amount : 1.0                        |

Após análise das correlações, escolheu-se como preditores promissores os seguintes: 'trip\_distance', ' rate\_code', ' fare\_amount', ' tip\_amount', ' tolls\_amount', ' trip\_duration'.

## 4. Algoritmo implementado

Foi utilizado um modelo de aprendizagem supervisionada, baseado em regressão linear.

[Ver código da solução aplicacional nos notebooks remetidos]

O algoritmo de regressão opera através da divisão da subamostra em conjuntos de treino (70%) e teste (30%).

A aprendizagem algorítmica sobre os preditores é efetuada no conjunto de treino e a previsão do *total\_amount* é feita no conjunto de teste.

Os resultados obtidos foram:

a) R quadrado sobre o conjunto de teste = 0.994238

O que significa que 99.4% (0,994238x100) da variância do total gasto por cliente é explicada pela variação dos preditores.

b) Root Mean Squared Error (RMSE) no conjunto de treino = 0.965403

O que significa que o afastamento das previsões obtidas pela regressão face ao real observado foi 0.9654 %.

#### 5. AWS

Passou-se o dataset para a AWS de modo a usufruir dos serviços cloud de modo a permitir utilizar o dataset na sua integra (meses de julho e agosto). Exemplo de medidas descritivas sobre a totalidade dos dados:

| ++                                                |                                                                                |
|---------------------------------------------------|--------------------------------------------------------------------------------|
| summary                                           | total_amoun                                                                    |
| ++                                                |                                                                                |
| count                                             | 2579520                                                                        |
| mean                                              | 15.3561947620731                                                               |
| stddev                                            | 12.84216978074252                                                              |
| min                                               | 2.                                                                             |
| max                                               | 597.                                                                           |
| ++                                                |                                                                                |
|                                                   |                                                                                |
| ++                                                |                                                                                |
|                                                   |                                                                                |
|                                                   |                                                                                |
| summary                                           | trip_duration                                                                  |
| summary                                           |                                                                                |
| summary                                           | trip_duration                                                                  |
| summary <br>++<br>  count                         | trip_duration                                                                  |
| summary <br>++<br>  count <br>  mean              | trip_duration<br>25795207                                                      |
| summary <br>++<br>  count <br>  mean              | trip_duration<br>25795207<br>778.4846959359543                                 |
| summary <br>++<br>  count <br>  mean <br>  stddev | trip_duration<br>25795207<br>778.4846959359543<br>6614.14062636973             |
| summary <br>++<br>  count <br>  mean <br>  stddev | trip_duration<br>25795207<br>778.4846959359543<br>6614.14062636973<br>-7595670 |

#### 6. Conclusão

Face aos bons resultados do modelo concluímos que os preditores escolhidos ['trip\_distance', ' rate\_code', ' fare\_amount', ' tip\_amount', ' tolls\_amount', ' trip\_duration'] são adequados para explicar a despesa total que será efetuada numa determinada viagem, o que já era esperado face às altas correlações dos preditores com a variável alvo.

Com esta informação, as empresas podem planear melhor a sua atividade, designadamente na definição do número de carros a ter em frota, do número de motoristas a contratar, das receitas potenciais, dos percursos mais rentáveis, das tarifas a aplicar, etc.

Cumpriu-se, assim, o objetivo proposto com o presente trabalho: prever, com elevada fiabilidade, o custo total que uma viagem deverá poderá ter, conhecendo as suas características especificas.

#### Nota final:

Conjuntamente com o presente relatório, enviam-se no ficheiro .zip os *notebooks* com a solução computacional desenvolvida, incluindo o notebook realizado na AWS.

## Bibliografia consultada

- Building A Linear Regression with PySpark and MLlib consultado em <a href="https://towardsdatascience.com/building-a-linear-regression-with-pyspark-and-mllib-d065c3ba246a">https://towardsdatascience.com/building-a-linear-regression-with-pyspark-and-mllib-d065c3ba246a</a>
- Open Data da AWS consultado em https://registry.opendata.aws/
- New York City Taxi and Limousine Commission (TLC) Trip Record Data) consultado em https://registry.opendata.aws/nyc-tlc-trip-records-pds/
- Big Data: Algorithms, Analytics, and Applications. Kuan-Ching Li et al., 2015, Chapman and Hall/CRC
- Learning Spark: lightning-fast big data analysis. H. Karau, A. Konwinski, P. Wendell & M. Zaharia, 2015, O'Reilly Media, Inc.
- Spark: The definitive guide: Big data processing made simple. B. Chambers, M. Zaharia, 2018, O'Reilly Media, Inc.