Remote Sensing

(521 M7100) 2016

Due Date: 2016-6-8

Assignment #4

(1) Image Reading and Displaying:

(a) Code a program (using Matlab or C++) to read the image data to the PC memory. The image information is as follows:

Image File	MS.img	Pan.img
Image Width	800	3200
Image Height	600	2400
Bands Number	4	1
Data Type	Unsigned Integer	Unsigned Integer
Interleave	BSQ	N/A

The images can be downloaded from:

https://ceiba.ntu.edu.tw/course/ab0fc4/hw/images.rar

(b) Enhance and display the images as gray or true color. Explain the enhancement method you use, and describe the image content from the images.

(2) Geometric Correction:

- (a) Please complete the geometric correction of the Pan.img and MS.img respectively using the reference GIS data (1/1000 cartography). The GIS data can be downloaded from: https://ceiba.ntu.edu.tw/course/ab0fc4/hw/GIS.rar
- (b) Select a mathematical distortion model for the geometric correction and explain why the distortion model is selected by you.
- (c) Find two sets of ground control points (GCPs) from the GIS data, one for geometric correction (control points) and the other for the assessment of RMS errors (test points).
- (d) Calculate and list the coefficients of the transform models and print the corrected images. Also calculate the Root Mean Square Error (RMSE) of this transformation.
- (e) Exchange the control points for test points and repeat the transformation calculation again. Describe the phenomenon you has observed?
- (f) Finally, draw some conclusions for the procedure of this geometric correction.