Mintオペレーティングシステムにおける 仮想ネットワークインタフェースの改善

平成31年2月15日 岡山大学 工学部 情報系学科 吉田 修太郎

背景と目的

Mint:

1台の計算機上で 複数のOS(OSノード)を走行

<仮想ネットワークインタフェース (VNI)>

- (1) OSノード間でEthernet互換の 通信を実現
- (2) IPIでハードウェア割込みを代替
- (3) 共有メモリの特定領域(送受信バッファ)を介してパケットを送受信
- (4) 通信性能について課題有

AP AP data data write `read Protocol stack Protocol stack Eth packet Eth packet VNI copy VNI copy IPI **Shared memory** Eth packet

OSnode0

既存のVNIにおける課題の解消

OSnode1

既存のVNIにおける課題

(課題1) TCPプロトコルを用いた通信におけるスループットの向上 TCPプロトコルを用いた通信のスループットは約128Mbps

(課題2) OSノード間における排他制御の検討

- (A) 共有メモリの使用はOSノード間で排他制御を要する
- (B) OSノード間における排他制御は未実装であり、 共有メモリへのアクセスを時分割で行わない限り 通信できない

通信性能の向上は望めない

送受信バッファの構成を見直し、共有メモリの使用についてOSノード間における排他制御の必要性を検討

No.3

既存の送受信バッファにおける 構成と処理流れ

パケット用バッファ: パケットを格納

オフセット管理部:パケットの格納位置を管理

バッファ管理部:パケット用バッファの各領域が使用中か否か管理

既存の送受信バッファにおける 構成と処理流れ

バッファ管理部、オフセット管理部、パケット用バッファのいずれの領域においても、複数のOSノードが同時に書き込む可能性有

OSノード間の競合を生じる可能性有

OS ノード間で競合を生じない 送受信バッファ構成

- (1) パケットを格納する領域を宛先ごとに分割する
- (2) 送受信バッファにおける1つの分割した領域に対する書込みは、 それぞれ1つのOSノードのみが行う

送受信バッファの操作はOSノード間で競合しない

スループット計測

<目的>

(1) 送受信バッファの改変による, VNIを用いた通信にお けるスループットの変化を調査する

く環境>

OS	Debian 7.11
カーネル	Mint(Linux kernel v3.15 から改変)
起動するOSノード数	2
各OSノードの持つコア数	1
CPU	Intel Core i7-4770 (3.40GHz)
メモリの容量	16GB
メモリI/Oの帯域幅	25.6GB/sec
共有メモリのサイズ	16MB
送受信バッファのサイズ	392,200B

く手法>

- (1) 通信プロトコルとしてUDPプロトコルを用いた場合と TCPプロトコルを用いた場合の2つの場合について 通信のスループットを計測
- (2) 計測にはユーザプログラムを用いる

計測用プログラムの処理流れ

- (1) 1 回 15,000Byte の send()/recv() を 10 回繰り返す
- (2) recv() したデータの量を, recv() に要した時間で割る

スループットの計測結果

<結果>

送受信バッファ	TCP		UDP	
改変前		128Mbps		65Gbps
改変後		10Gbps		75Gbps

<改変前と改変後の比較>

- (1) UDPプロトコルを用いた通信とTCPプロトコルを用いた通信のどちらの場合においてもスループットは向上
- (2) UDPプロトコルを用いた通信と比較して, TCPプロトコルを用いた通信の方がスループットの上昇率が大きい

まとめ

く実績>

- (1) 送受信バッファにおける構成の再検討
- (2) 送受信バッファの再実装
- (3) VNI を用いた通信のスループット計測
 - (A) 既存の VNI による通信
 - (B) 送受信バッファを再実装したVNIによる通信

<今後の課題>

再実装した送受信バッファ構成では、通信するOSノードの増加に伴い、より多くのパケット用バッファを要する

予備スライド

Mintの構成例

改変前のVNIを用いた通信の処理流れ

改変後のVNIを用いた通信の処理流れ

改変後の送受信バッファにおける 問題点

- (1) 通信するOSノードの増加に伴い, より多くの パケット用バッファを要する
- (2) n個のOSノード間で通信するとき、 要するパケット用バッファは $_{n}C_{2} \times 2$ 個

例:通信するOSノード数100のとき

$$_{100}$$
 C $_2 \times 2 = 4950$

- (1) パケット用バッファの大きさの最大値は 2 つのOSノード間で通信する場合の 1/2475
- (2) パケット用バッファの大きさを392,200B (計測時と同じ大きさ)とした場合, 送受信バッファの大きさは約1.8GB

No.15

通信するOSノード数が3のときの 送受信バッファ

共有メモリ

OSノード1からのパケット用 リングバッファ

OSノード2からのパケット用 リングバッファ

OSノード0からのパケット用 リングバッファ

OSノード1からのパケット用 リングバッファ

OSノード0宛パケット用の 領域

OSノード2宛パケット用の 領域

パケット用バッファ0-2 head1-2 tail1-2 パケット用バッファ1-2

head0-2

tail0-2

No.16

送受信バッファにおける 構成の比較

	利点	欠点
改変前	パケット用バッファの 利用効率高	要排他制御 送受信に要する処理多
改変後	排他制御不要 送受信に要する処理少	パケット用バッファの 利用効率低

- (1) 排他制御の必要性 ・・・改変後が有利 排他制御によるオーバーヘッド, 実装の手間に影響
- (2) パケット用バッファの利用効率 ・・・改変前が有利 各OSノード間で利用できるパケット用バッファのサイズに影響
- (3) 送受信に要する処理の量 通信のオーバーへッドに影響

•••改変後が有利と予想