EXAM IN COMPLEX ANALYSIS

Problem 1 Give geometric description of the set $\{z \in \mathbb{C}; \operatorname{Re} z = |z-1|\}$

Problem 2 Find the image of the set $\{z \in \mathbb{C}; |z| > 1\}$ under the mapping

$$w = w(z) = 2\frac{2z - 1}{z - 2}.$$

Problem 3 Find analytic function f(z) such that

$$\operatorname{Re} f(x, y) = x \cos x \cosh y + y \sin x \sinh y$$

and f(0) = 0.

Problem 4 Find the Taylor series entered at 0 for the function

$$f(z) = \frac{1}{1 + z + z^2}.$$

Hint: Multiply both numerator and denominator on 1-z.

Problem 5 Find $\operatorname{Res}_{\infty} z \cos^2 \frac{\pi}{z}$.

Problem 6 Evaluate the integral (taken in contrclockwise direction)

$$\int_{|z|=2} \frac{z}{z+1} e^{1/z} dz$$

Problem 7 Evaluate the integral

$$\int_{-\infty}^{\infty} e^{ix} \frac{\sqrt{x+i}}{x^2+1} dx,$$

where the branch of the square root is defined by the relation $\sqrt{z+i}|_{z=0}=e^{i\pi/4}.$

Problem 8 Evaluate the integral

$$\int_0^\infty \frac{\log x}{(x+1)^2} dx.$$

Problem 9 Find (any) conformal mapping of the unit disk onto the domain $D = \{z \in \mathbb{C}; |\operatorname{Re} z| < 1\} \setminus [0, +i\infty)$ (vertical strip without positive imaginary ray).