Devoir à la maison n° 19

À rendre le 6 mai

On dispose $n \ge 2$ boules dans une urne, numérotées $1, 2, \ldots, n$. Un premier joueur effectue des tirages sans remise (et « au hasard » chaque fois parmi les boules restantes), jusqu'au premier tour X_1 où il tire la boule n.

1) Montrer que X_1 suit une loi uniforme sur $\{1, \ldots, n\}$.

Un second joueur entre alors en scène et deux situations vont être considérées.

- 2) Dans le premier cas, ce joueur effectue X_2 tirages jusqu'à obtenir la boule de plus grand numéro parmi les boules restantes (on pose $X_2 = 0$ lorsqu'il ne reste plus de boules dans l'urne).
 - a) Déterminer la loi de X_2 conditionnellement à l'événement $[X_1 = j]$, pour tout $j \in \{1, \ldots, n\}$.

C'est-à-dire : on déterminera les $P_{[X_1=j]}(X_2=\ell)$ pour tout ℓ .

- b) X_2 est-elle indépendante de X_1 ?
- c) Calculer l'espérance de X_2 .
- 3) Dans le second cas, s'il reste au moins une boule dans l'urne, le second joueur tire simplement une boule au hasard, dont on note X_3 le numéro.
 - a) Déterminer la loi conditionnelle de X_3 par rapport à l'événement $[X_1 = j]$, pour chaque $j \leq n-1$.
 - b) Comment définir X_3 lorsqu'il n'y a plus de boules dans l'urne, de sorte que X_3 soit indépendante de X_1 ?

— FIN —