

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ интеллект	Информатика и системы управления и искусственный												
КАФЕДРА	Системы обработки информации и управления												
Лаборатој	оная работа №2 по курсу «Методы машинного												
обучения	обучения в автоматизированных системах обработки												

информации и управления»

Подготовили:

Чжан Чжиси

ИУ5И-25М

01.05.2024

Проверил:

Гапанюк Ю. Е.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - і. устранение пропусков в данных;
 - іі. кодирование категориальных признаков;
 - ііі. нормализация числовых признаков.

Устранение пропусков в данных

Используемый набор данных - классический набор данных "Взрослые", который обычно применяется для задач классификации и прогнозирования. Он содержит ряд сведений о характеристиках взрослых людей, а также целевую переменную, указывающую, превышает ли годовой доход каждого человека 50 000 долларов. Характеристики в наборе данных включают возраст, категорию работы, образование, семейное положение, профессию, расу, пол, доход от капитала, потери капитала и количество часов, отработанных в неделю.

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	income
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

```
print("Размер набора данных. ", data.shape)
missing_values = data.ismull().sum()
print("\nКоличество отсутствующих значений. \n", missing_values)

print("\nтип данных. \n", data.dtypes)

Размер набора данных. (32561, 15)

Количество отсутствующих значений.
age 0
workclass 1836
fnlwgt 0
education 0
```

education-num
marital-status
occupation
relationship
race
sex
capital-gain
capital-loss
hours-per-week
native-country
income
dtype: int64

```
int64
         age
        workclass
                               object
                                 int64
       fnlwgt
        education
                               object
        education-num
                                int64
       marital-status
                               object
        occupation
                               object
       relationship
                               object
                               object
        race
       sex
                               object
       capital-gain
                                int64
        capital-loss
                                 int64
       hours-per-week
                                int64
       native-country
                               object
       income
dtype: object
                               object
data_cleaned = data.dropna()
for column in ['workclass', 'occupation', 'native-country']:
   mode_value = data_cleaned[column].mode()[0]
   data_cleaned[column].fillna(mode_value, inplace=True)
missing_values_cleaned = data_cleaned.isnull().sum() print("Количество отсутствующих эначений после обработки, \n", missing_values_cleaned)
data_cleaned.head()
Количество отсутствующих значений после обработки.
age
workclass
fnlwgt
education
                     0
                 education-num
marital-status
occupation
relationship
race
sex
sex
capital-gain
capital-loss
hours-per-week
native-country
income
dtype: int64
```

тип данных.

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	income
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

Рис.1-Устранение пропусков в данных

Кодирование категориальных признаков

```
from sklearn.preprocessing import OneHotEncoder

categorical_features = ['workclass', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country', 'income']

onehot_encoder = OneHotEncoder(sparse=False, drop='first')

encoded_features = onehot_encoder.fit_transform(data_cleaned[categorical_features])

encoded_column_names = onehot_encoder.get_feature_names_out(categorical_features)

encoded_df = pd.DataFrame(encoded_features, columns=encoded_column_names)

encoded_df.head()
```

	workclass_ Local-gov	workclass_ Private	workclass_ Self-emp- inc	workclass_ Self-emp- not-inc	workclass_ State-gov	workclass_ Without- pay	marital- status_ Married- AF- spouse	marital- status_ Married- civ- spouse	marital- status_ Married- spouse- absent	marital- status_ Never- married		native- country_ Puerto- Rico	native- country_ Scotland	native- country_ South	native- country_ Taiwan
0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0		0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0		0.0	0.0	0.0	0.0
2	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
3	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1222	0.0	0.0	0.0	0.0
4	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0		0.0	0.0	0.0	0.0

Рис. 2 – Кодирование категориальных признаков

Нормализация числовых признаков.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

def diagnostic_plots(df, variable):
    plt.figure(figsize=(15, 6))

# Гистограмма
plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    plt.title('Гистограмма')

# Q-Q график
plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.title('Q-Q график')

plt.show()

# Дававте имитируем процесс нормализации для переменнов "age" в вашем набо
diagnostic_plots(data_cleaned, 'age')
```


Рис.3- Исходное распределение

```
# Mero Ru npeobpasoeahur

# Norapummu veckoe npeobpasoeahue

data_cleaned['age_log'] = np.log(data_cleaned['age'])

diagnostic_plots(data_cleaned, 'age_log')

# Obpathoe npeobpasoeahue

data_cleaned['age_inverse'] = 1 / data_cleaned['age']

diagnostic_plots(data_cleaned, 'age_inverse')

# Keanpathue kopehu

data_cleaned['age_sqrt'] = np.sqrt(data_cleaned['age'])

diagnostic_plots(data_cleaned, 'age_sqrt')

# Boseenehue ectenehue

data_cleaned['age_power'] = np.power(data_cleaned['age'], 2)

diagnostic_plots(data_cleaned, 'age_power')

# Преобразование вокса-Кокса

from scipy.stats import boxcox

data_cleaned['age_boxcox'], _ = boxcox(data_cleaned['age'])

diagnostic_plots(data_cleaned, 'age_boxcox')

# Преобразование вокса-Кокса

from scipy.stats import boxcox

data_cleaned['age_boxcox'], _ = boxcox(data_cleaned['age'])

diagnostic_plots(data_cleaned, 'age_boxcox')

# Преобразование во-Джонсона

from scipy.stats import yeojohnson

data_cleaned['age_yeojohnson'], _ = yeojohnson(data_cleaned['age'])

diagnostic_plots(data_cleaned, 'age_yeojohnson')
```


Рис.4- Логарифмическое преобразование

Рис.5- Обратное преобразование

Рис.6- Квадратный корень

Рис.7- Возведение в степень

Рис.8- Преобразование Бокса-Кокса

Рис.9- Преобразование Йео-Джонсона