# MODEL PREDICTIVE CONTROL

#### LINEAR TIME-VARYING AND NONLINEAR MPC

#### Alberto Bemporad

imt.lu/ab

# **COURSE STRUCTURE**

- ✓ Basic concepts of model predictive control (MPC) and linear MPC
  - Linear time-varying and nonlinear MPC
  - Quadratic programming (QP) and explicit MPC
- Hybrid MPC
- Stochastic MPC
- Learning-based MPC

#### Course page:

http://cse.lab.imtlucca.it/~bemporad/mpc\_course.html



### LPV MODELS

Linear Parameter-Varying (LPV) model

$$\begin{cases} x_{k+1} = A(p(t))x_k + B(p(t))u_k + B_v(p(t))v_k \\ y_k = C(p(t))x_k + D_v(p(t))v_k \end{cases}$$

that depends on a vector p(t) of parameters

- The weights in the quadratic performance index can also be LPV
- The resulting optimization problem is still a QP

$$\min_{z} \frac{1}{2}z'H(p(t))z + \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}' F(p(t))'z$$
s.t. 
$$G(p(t))z \le W(p(t)) + S(p(t)) \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$

• The QP matrices must be constructed online, contrarily to the LTI case

# LINEARIZING A NONLINEAR MODEL: LPV CASE

An LPV model can be obtained by linearizing the nonlinear model

$$\begin{cases} \frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t), p_c(t)) \\ y_c(t) &= g(x_c(t), p_c(t)) \end{cases}$$

- $p_c \in \mathbb{R}^{n_p}$  = a vector of exogenous signals (e.g., ambient conditions)
- At time t, let  $\bar{x}_c(t)$ ,  $\bar{u}_c(t)$ ,  $\bar{p}_c(t)$  be nominal values, that we assume constant in prediction, and linearize

$$\frac{d}{d\tau}(x_c(t+\tau) - \bar{x}_c(t)) = \frac{d}{d\tau}(x_c(t+\tau)) \simeq \underbrace{\frac{\partial f}{\partial x}\Big|_{\substack{\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t)\\A_c(t)}}}_{A_c(t)}(x_c(t+\tau) - \bar{x}_c(t)) + \underbrace{\frac{\partial f}{\partial u}\Big|_{\substack{\bar{x}_c(t), \bar{u}_c(t), \bar{p}_c(t)\\B_{vc}(t)}}}_{B_{vc}(t)} \cdot 1$$

- Convert  $(A_c, [B_c\,B_{vc}])$  to discrete-time and get prediction model  $(A, [B\,B_v])$
- ullet Same thing for the output equation to get matrices C and  $D_v$

### LTV MODELS

Linear Time-Varying (LTV) model

$$\begin{cases} x_{k+1} = A_{k}(t)x_{k} + B_{k}(t)u_{k} \\ y_{k} = C_{k}(t)x_{k} \end{cases}$$

- ullet At each time t the model can also change over the prediction horizon k
- Possible measured disturbances are embedded in the model
- Online optimization is still a QP

$$\min_{z} \frac{1}{2}z'H(t)z + \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}' F(t)'z$$
s.t. 
$$G(t)z \le W(t) + S(t) \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$

As for LPV-MPC, the QP matrices cannot be constructed offline

# LINEARIZING A NONLINEAR MODEL: LTV CASE

(no preview:  $\bar{p}_c(t+k) \equiv \bar{p}_c(t)$ )

• LPV/LTV models can be obtained by linearizing a nonlinear model

$$\begin{cases} \frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t), p_c(t)) \\ y_c(t) &= g(x_c(t), p_c(t)) \end{cases}$$

At time t, consider nominal trajectories

$$\begin{array}{lcl} U & = & \{\bar{u}_c(t), \bar{u}_c(t+T_s), \ldots, \bar{u}_c(t+(N-1)T_s)\} \\ & & \text{(example: } U \text{ = shifted previous optimal sequence or input ref. trajectory)} \\ P & = & \{\bar{p}_c(t), \bar{p}_c(t+T_s), \ldots, \bar{p}_c(t+(N-1)T_s)\} \end{array}$$

• Integrate the model from  $\bar{x}_c(t)$  and get nominal state/output trajectories

$$X = \{\bar{x}_c(t), \bar{x}_c(t+T_s), \dots, \bar{x}_c(t+(N-1)T_s)\}$$
  
$$Y = \{\bar{y}_c(t), \bar{y}_c(t+T_s), \dots, \bar{y}_c(t+(N-1)T_s)\}$$

• Examples:  $\bar{x}_c(t) =$  current state / equilibrium state / reference state

# **LINEARIZATION AND TIME-DISCRETIZATION**

• Linearize the nonlinear model around the nominal states and inputs at each prediction time  $t+kT_s, k=0,\ldots,N-1$ :

$$\frac{dx_c}{dt} = f(x_c, u_c, \bar{p}_c) \approx \underbrace{f(\bar{x}_c, \bar{u}_c, \bar{p}_c)}_{\underbrace{d\bar{x}_c}} + \underbrace{\frac{\partial f}{\partial x_c}\Big|_{\bar{x}_c, \bar{u}_c, \bar{p}_c}}_{\bar{x}_c, \bar{u}_c, \bar{p}_c} + \underbrace{\frac{\partial f}{\partial u_c}\Big|_{\bar{x}_c, \bar{u}_c, \bar{p}_c}}_{\bar{x}_c, \bar{u}_c, \bar{p}_c}$$

$$y = g(x_c) \approx \underbrace{g(\bar{x}_c, \bar{p}_c)}_{\bar{y}_c} + \underbrace{\frac{\partial g}{\partial x_c}\Big|_{\bar{x}_c, \bar{p}_c}}_{\underline{x}_c, \bar{p}_c}$$

$$\underbrace{f(x_c, \bar{u}_c, \bar{p}_c)}_{\bar{x}_c, \bar{p}_c} + \underbrace{\frac{\partial g}{\partial x_c}\Big|_{\bar{x}_c, \bar{p}_c}}_{\underline{x}_c, \bar{p}_c}$$

$$\underbrace{f(x_c, \bar{u}_c, \bar{p}_c)}_{\underline{x}_c, \bar{p}_c} + \underbrace{\frac{\partial f}{\partial u_c}\Big|_{\bar{x}_c, \bar{u}_c, \bar{p}_c}}_{\underline{x}_c, \bar{p}_c}$$

• Define  $x\triangleq x_c-\bar{x}_c, u\triangleq u_c-\bar{u}_c, y\triangleq y_c-\bar{y}_c$  and get the linear system

$$\frac{dx}{dt} = A_c(t + kT_s)x + B_c(t + kT_s)u \qquad y = C(t + kT_s)x$$

• Convert linear model to discrete-time and get matrices  $(A_k(t), B_k(t), C_k(t))$ 

# LINEARIZATION AND TIME-DISCRETIZATION

Finally, we have approximated the NL model as the LTV model

$$\begin{cases}
\underbrace{x_{c}(k+1) - \bar{x}_{c}(k+1)}_{x_{c}(k) - \bar{y}_{c}(k)} = A_{k}(t)\underbrace{(x_{c}(k) - \bar{x}_{c}(k))}_{x_{k}} + B_{k}(t)\underbrace{(u_{c}(k) - \bar{u}_{c}(k))}_{y_{k}} \\
\underbrace{y_{c}(k) - \bar{y}_{c}(k)}_{y_{k}} = C_{k}(t)\underbrace{(x_{c}(k) - \bar{x}_{c}(k))}_{x_{k}}
\end{cases}$$

(the notation "(k)" is a shortcut for " $(t+kT_s)$ ")

Alternative: while integrating, also compute the sensitivities

$$A_k(t) = \frac{\partial \bar{x}_c(t + (k+1)T_s)}{\partial \bar{x}_c(t + kT_s)}$$

$$B_k(t) = \frac{\partial \bar{x}_c(t + (k+1)T_s)}{\partial \bar{u}_c(t + kT_s)}$$

$$C_k(t) = \frac{\partial \bar{y}_c(t + kT_s)}{\partial \bar{x}_c(t + kT_s)}$$

# INTEGRATION, LINEARIZATION, AND TIME DISCRETIZATION

· Forward Euler method

$$\bar{x}_c(k+1) = \bar{x}_c(k) + T_s f(\bar{x}_c(k), \bar{u}_c(k), \bar{p}_c(k))$$

$$A(k) = I + T_s A_c(k)$$

$$B(k) = T_s B_c(k)$$



Leonhard Paul Euler (1707-1783)

- For improved accuracy we can use smaller integration steps  $rac{T_s}{N}, N \geq 1$ :
  - 1.  $x = \bar{x}_c(k), A = I, B = 0$
  - 2. for n=1 to N do
    - $A \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k), \bar{p}_c(k))\right) A$
    - $B \leftarrow \left(I + \frac{T_s}{N} \frac{\partial f}{\partial x_c}(x, \bar{u}_c(k), \bar{p}_c(k))\right) B + \frac{T_s}{N} \frac{\partial f}{\partial u}(x, \bar{u}_c(k), \bar{p}_c(k))$
    - $x \leftarrow x + \frac{T_s}{N} f(x, \bar{u}_c(k), \bar{p}_c(k))$
  - 3.  $\operatorname{return} \bar{x}_c(k+1) \approx x$  and  $\operatorname{matrices} A(k) = A, B(k) = B$
- Note that integration, linearization, and time-discretization are combined
- See also references in (Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

Process model is LTV

$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + (6 + \sin(5t))y = 5\frac{du}{dt} + \left(5 + 2\cos\left(\frac{5}{2}t\right)\right)u$$



 LTI-MPC cannot track the setpoint, LPV-MPC tries to catch-up with time-varying model, LTV-MPC has preview on future model values

>> openExample('mpc/TimeVaryingMPCControlOfATimeVaryingLinearSystemExample')

• Define LTV model

```
Models = tf; ct = 1;
for t = 0:0.1:10
    Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
    ct = ct + 1;
end

Ts = 0.1; % sampling time
Models = ss(c2d(Models,Ts));
```

#### • Design MPC controller

```
sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % average model time
p = 3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);

mpcobj.MV = struct('Min',-2,'Max',2); % input constraints
mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);
```

Simulate LTV system with LTI-MPC controller

```
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmove(mpcobj,xmpc,y,1); % Apply LTI MPC
    x = real_plant.A*x + real_plant.B*u;
end
```

Simulate LTV system with LPV-MPC controller

```
for ct = 1:(Tstop/Ts+1)
    real_plant = Models(:,:,ct); % Get the current plant
    y = real_plant.C*x;
    u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);
    x = real_plant.A*x + real_plant.B*u;
end
```

Simulate LTV system with LTV-MPC controller

• Simulate in Simulink



Simulink block

need to provide 3D array of future models

Adaptive MPC (mask) (link) The Adaptive MPC Controller block lets you design and simulate an adaptive model predictive controller defined in the Model Predictive Control Toolhox. **Parameters** Adaptive MPC Controller | mpcobi Initial Controller State xmpc General Online Features Others Prediction Model ☐ Linear Time-Varying (LTV) plants (model expects 3-D signals) Constraints ☐ Lower MV limits (umin) Upper MV limits (umax) ☐ Lower OV limits (ymin) ☐ Upper OV limits (ymax) Custom constraints (E. F. G. S) Weights OV weights (y.wt) ☐ MV weights (u.wt) ☐ MVRate weights (du.wt) ☐ Slack variable weight (ecr.wt) Prediction and Control Horizons Adjust prediction horizon (p) and control horizon (m) at run time Maximum prediction horizon 10 Cancel

Block Parameters: Adaptive MPC Controller

mpc\_timevarying.mdl

- MPC control of a diabatic continuous stirred tank reactor (CSTR)
- Process model is nonlinear (Seborg, Edgar, Mellichamp, 2004)

$$\frac{dC_A}{dt} = \frac{F}{V}(C_{Af} - C_A) - C_A k_0 e^{-\frac{\Delta E}{RT}}$$

$$\frac{dT}{dt} = \frac{F}{V}(T_f - T) + \frac{UA}{\rho C_p V}(T_j - T) - \frac{\Delta H}{\rho C_p} C_A k_0 e^{-\frac{\Delta E}{RT}}$$



- $\,T$  : temperature inside the reactor [K] (state)
- $C_A$ : concentration of the reactant in the reactor  $[kgmol/m^3]$  (state)
- $T_j$ : jacket temperature [K] (input)
- $T_f$ : feedstream temperature [K] (measured disturbance)
- $\,C_{Af}$  : feedstream concentration  $[kgmol/m^3]$  (measured disturbance)
- Objective: manipulate  $T_j$  to regulate  $C_A$  on desired setpoint

>> edit ampccstr\_linearization

(MPC Toolbox)

#### Process model:

```
>> mpc_cstr_plant
```

```
Feed Temperature

To

Coolart Temperature

Reactor Temperature

Teed Temperature

Reactor Concentration

To

CSTR
```

```
% Create operating point specification.
plant mdl = 'mpc cstr plant';
op = operspec(plant mdl);
op.Inputs(1).u = 10; % Feed concentration known @initial condition
op.Inputs(1).Known = true;
op.Inputs(2).u = 298.15; % Feed concentration known @initial condition
op.Inputs(2).Known = true;
op.Inputs(3).u = 298.15; % Coolant temperature known @initial condition
op.Inputs(3).Known = true;
[op point, op report] = findop(plant mdl,op); % Compute initial condition
x0 = [op report.States(1).x;op report.States(2).x];
y0 = [op report.Outputs(1).y;op report.Outputs(2).y];
u0 = [op report.Inputs(1).u;op report.Inputs(2).u;op report.Inputs(3).u];
% Obtain linear plant model at the initial condition.
sys = linearize(plant mdl, op point);
sys = sys(:,2:3); % First plant input CAi dropped because not used by MPC
```

#### • MPC design

```
% Discretize the plant model
Ts = 0.5: % hours
plant = c2d(sys,Ts);
% Design MPC Controller
% Specify signal types used in MPC
plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1:
plant.OutputGroup.Unmeasured = 2;
plant.InputName = 'Ti', 'Tc';
plant.OutputName = 'T', 'CA';
% Create MPC controller with default prediction and control horizons
mpcobj = mpc(plant);
% Set nominal values in the controller
mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 0]);
```

#### MPC design (cont'd)

```
% Set scale factors because plant input and output signals have different
% orders of magnitude
Uscale = [30 50];
Yscale = [50 10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.MV(1).ScaleFactor = Uscale(2);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);
% Let reactor temperature T float (i.e. with no setpoint tracking error
% penalty), because the objective is to control reactor concentration CA
% and only one manipulated variable (coolant temperature Tc) is available.
mpcobj.Weights.OV = [0 1];
% Due to the physical constraint of coolant jacket, Tc rate of change is
% bounded by degrees per minute.
mpcobi.MV.RateMin = -2:
mpcobj.MV.RateMax = 2;
```

• Simulink diagram



>> edit ampc\_cstr\_linearization

#### • Closed-loop results









Closed-loop results with LTI-MPC, same tuning



#### • Closed-loop results









- Goal: Control longitudinal acceleration and steering angle of the vehicle simultaneously for autonomous driving with obstacle avoidance
- Approach: MPC based on a bicycle-like kinematic model of the vehicle in Cartesian coordinates



$$\begin{cases} \dot{x} &= v\cos(\theta + \delta) \\ \dot{y} &= v\sin(\theta + \delta) \\ \dot{\theta} &= \frac{v}{L}\sin(\delta) \end{cases}$$

$$\begin{array}{c|c} (x,y) & \text{Cartesian position of front wheel} \\ \theta & \text{vehicle orientation} \\ L & \text{vehicle length} = 4.5 \text{ m} \\ \end{array}$$

 $\left| egin{array}{c} v \end{array} \right| \; {
m velocity \; at \; front \; wheel} \ \delta \; \left| \; {
m steering \; input} \right| \;$ 

• Let  $x_n, y_n, \theta_n, v_n, \delta_n$  be nominal state/input trajectories satisfying

$$\begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \dot{\theta}_n \end{bmatrix} = \begin{bmatrix} v_n \cos(\theta_n + \delta_n) \\ v_n \sin(\theta_n + \delta_n) \\ \frac{v_n}{L} \sin(\delta_n) \end{bmatrix}$$
 feasible nominal trajectory

Linearize the model around the nominal trajectory:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} \approx \begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \dot{\theta}_n \end{bmatrix} + A_c \begin{bmatrix} x - x_n \\ y - y_n \\ \theta - \theta_n \end{bmatrix} + B_c \begin{bmatrix} v - v_n \\ \delta - \delta_n \end{bmatrix}$$
 linearized model

where  $A_c$ ,  $B_c$  are the Jacobian matrices

$$A_c = \begin{bmatrix} 0 & 0 & -v_n \sin(\theta_n + \delta_n) \\ 0 & 0 & v_n \cos(\theta_n + \delta_n) \\ 0 & 0 & 0 \end{bmatrix} \quad B_c = \begin{bmatrix} \cos(\theta_n + \delta_n) & -v_n \sin(\theta_n + \delta_n) \\ \sin(\theta_n + \delta_n) & v_n \cos(\theta_n + \delta_n) \\ \frac{1}{L} \sin(\delta_n) & \frac{v_n}{L} \cos(\delta_n) \end{bmatrix}$$

• Use first-order Euler method to discretize model:

$$A = I + T_s A_c$$
,  $B = T_s B_c$ ,  $T_s = 50 \,\mathrm{ms}$ 

• Constraints on inputs and input variations  $\Delta v_k = v_k - v_{k-1}$ ,  $\Delta \delta_k = \delta_k - \delta_{k-1}$ :

$$\begin{array}{lll} -20 \leq v \leq 70 & \text{km/h} & \text{velocity constraint} \\ -45 \leq \delta \leq 45 & \text{deg} & \text{steering angle} \\ -5 \leq \Delta\delta \leq 5 & \text{deg} & \text{steering angle rate} \end{array}$$

Stage cost to minimize:

$$(x - x_{\rm ref})^2 + (y - y_{\rm ref})^2 + \Delta v^2 + \Delta \delta^2$$

- **Prediction horizon:** N=30 (prediction distance =  $NT_sv$ , for example 25 m at 60 km/h)
- Control horizon:  $N_u = 4$
- Preview on reference signals available

#### Closed-loop simulation results



- Linear Parameter-Varying (LPV) MPC Model linearized @t and used @t + k,  $\forall k$
- Linear Time-Varying (LTV) MPC Model linearized @t + k,  $\forall k$

<sup>&</sup>quot;Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.

• Add position constraint  $y > 0 \,\mathrm{m}$ 



- Linear Parameter-Varying (LPV) MPC
   Linear Time-Varying (LTV) MPC
  - Model linearized @t
- Model linearized  $@t + k, k = 0, \dots, N-1$

#### LTV KALMAN FILTER

Process model = LTV model with noise

$$x(k+1) = A(k)x(k) + B(k)u(k) + G(k)\xi(k)$$
  
$$y(k) = C(k)x(k) + \zeta(k)$$

 $\xi(k)\in\mathbb{R}^q$  = zero-mean white **process noise** with covariance  $Q(k)\succeq 0$   $\zeta(k)\in\mathbb{R}^p$  = zero-mean white **measurement noise** with covariance  $R(k)\succ 0$ 

• measurement update:

$$M(k) = P(k|k-1)C(k)'[C(k)P(k|k-1)C(k)' + R(k)]^{-1}$$

$$\hat{x}(k|k) = \hat{x}(k|k-1) + M(k)(y(k) - C(k)\hat{x}(k|k-1))$$

$$P(k|k) = (I - M(k)C(k))P(k|k-1)$$

time update:

$$\hat{x}(k+1|k) = A(k)\hat{x}(k|k) + B(k)u(k) P(k+1|k) = A(k)P(k|k)A(k)' + G(k)Q(k)G(k)'$$

• Note that here the observer gain L(k) = A(k)M(k)

### **EXTENDED KALMAN FILTER**

 For state estimation, an Extended Kalman Filter (EKF) can be used based on the same nonlinear model (with additional noise)

$$x(k+1) = f(x(k), u(k), \xi(k))$$
  
$$y(k) = g(x(k)) + \zeta(k)$$

measurement update:

$$\begin{array}{rcl} C(k) & = & \frac{\partial g}{\partial x}(\hat{x}_{k|k-1}) \\ M(k) & = & P(k|k-1)C(k)'[C(k)P(k|k-1)C(k)'+R(k)]^{-1} \\ \text{consumed by MPC} & \to \hat{x}(k|k) & = & \hat{x}(k|k-1)+M(k)\left(y(k)-g(\hat{x}(k|k-1))\right) \\ P(k|k) & = & (I-M(k)C(k))P(k|k-1) \end{array}$$

time update:

$$\begin{split} \hat{x}(k+1|k) &= f(\hat{x}(k|k), u(k)) \\ A(k) &= \frac{\partial f}{\partial x}(\hat{x}_{k|k}, u(k), E[\xi(k)]), \ G(k) = \frac{\partial f}{\partial \xi}(\hat{x}_{k|k}, u(k), E[\xi(k)]) \\ P(k+1|k) &= A(k)P(k|k)A(k)' + G(k)Q(k)G(k)' \end{split}$$



Nonlinear prediction model

$$\begin{cases} x_{k+1} &= f(x_k, u_k) \\ y_k &= g(x_k, u_k) \end{cases}$$

- Nonlinear constraints  $h(x_k, u_k) \leq 0$
- Nonlinear performance index  $\min \, \ell_N(x_N) + \sum \, \ell(x_k,u_k)$
- Optimization problem: nonlinear programming problem (NLP)

$$\begin{aligned} \min_{z} & F(z, x(t)) \\ \text{s.t.} & G(z, x(t)) \leq 0 \\ & H(z, x(t)) = 0 \end{aligned} \qquad z = \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \\ x_1 \\ \vdots \\ x_N \end{bmatrix}$$

$$z = \begin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \\ x_1 \\ \vdots \\ x_N \end{bmatrix}$$

# **NONLINEAR OPTIMIZATION**

- (Nonconvex) NLP is harder to solve than QP
- Convergence to a global optimum may not be guaranteed
- Several NLP solvers exist (such as Sequential Quadratic Programming (SQP))
   (Nocedal, Wright, 2006)
- NLP can be useful to deal with strong dynamical nonlinearities and/or nonlinear constraints/costs
- NL-MPC is less used in practice than linear MPC

### **FAST NONLINEAR MPC**

(Lopez-Negrete, D'Amato, Biegler, Kumar, 2013)

- Fast MPC: exploit sensitivity analysis to compensate for the computational delay caused by solving the NLP
- Key idea: pre-solve the NLP between step t-1 and t based on the predicted state  $x^*(t)=f(x(t-1),u(t-1))$  in background
- $\bullet \ \ \text{Get} \ u^*(t) \ \text{and sensitivity} \ \frac{\partial u^*}{\partial x}\bigg|_{x^*(t)} \ \text{within sample interval} \ [(t-1)T_s, tT_s)$
- At time t, get x(t) and compute

$$u(t) = u^*(t) + \frac{\partial u^*}{\partial x}(x(t) - x^*(t))$$

- A.k.a. advanced-step MPC (Zavala, Biegler, 2009)
- Note that still one NLP must be solved within the sample interval

# FROM LTV-MPC TO NONLINEAR MPC

- How to use the LTV-MPC machinery to handle nonlinear MPC?
- Key idea: Solve a sequence of LTV-MPC problems at each time t

#### For h = 0 to $h_{\text{max}} - 1$ do:

- 1. Simulate from x(t) with inputs  $U_h$  and get state trajectory  $X_h$
- 2. Linearize around  $(X_h, U_h)$  and discretize in time
- 3. Get  $U_{h+1}^*$  = **QP solution** of corresponding LTV-MPC problem
- 4. Line search: find optimal step size  $\alpha_h \in (0,1]$ ;
- 5. Set  $U_{h+1} = (1 \alpha_h)U_h + \alpha_h U_{h+1}^*$ ;

Return solution  $U_{h_{max}}$ 



• Special case: just solve one iteration with  $\alpha=1$  (a.k.a. Real-Time Iteration) (Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC

"Model Predictive Control" - © 2023 A. Bemporad. All rights reserved.

# **NONLINEAR MPC**

(Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

#### • Example



### **ADVANTAGES OF NONLINEAR MPC**

- Better exploits nonlinear prediction models than LTV-MPC
  - Physics-based models (= white-box models)
  - Machine-learned models (= black-box models, e.g., neural networks)
- Can handle nonlinear inequality constraints (and nonlinear cost functions)











# **ODYS EMBEDDED MPC TOOLSET**

 ODYS Embedded MPC is a software toolchain for design and deployment of MPC solutions in industrial production



- Support for linear & nonlinear MPC and extended Kalman filtering
- Extremely flexible, all MPC parameters can be changed at runtime (models, cost function, horizons, constraints, ...)
- Integrated with ODYS QP Solver for max speed, low memory footprint, and robustness (also in single precision)

  odys.it/qp
- Library-free C code, MISRA-C 2012 compliant
- Currently used worldwide by several automotive OEMs in R&D and production
- Support for neural networks as prediction models (ODYS Deep Learning)

#### HANDLING DELAYS IN NLMPC

Nonlinear prediction model with input delay:

$$\begin{cases} x(t+1) &= f(x(t), u(t-\tau)) \\ y(t) &= g(x(t)) \end{cases}$$

$$\underbrace{ u(t) \underbrace{ u(t-1) \dots u(t-\tau)}_{t} \underbrace{ f(\cdot) \underbrace{ x(t)}_{t} g(\cdot) \underbrace{ y(t)}_{t} }_{t}$$

 $\bullet \;\; \text{Design MPC for } \\ \text{delay-free model:} \; u(t) = f_{\text{MPC}}(\bar{x}(t))$ 

$$\left\{ \begin{array}{ll} \bar{x}(t+1) & = & f(\bar{x}(t),u(t)) \\ \bar{y}(t) & = & g(\bar{x}(t)) \end{array} \right. \text{ subject to constraints on } u,y$$

• Simulate the prediction model to estimate the future state:

$$\bar{x}(t) = \hat{x}(t+\tau) = f(x(t+\tau-1), u(t-1)) = \ldots = \underbrace{f(f(\ldots f(x(t), u(t-\tau)))}_{\text{only depends on past inputs!}}$$

- Compute the MPC control move  $u(t) = f_{\mathrm{MPC}}(\hat{x}(t+\tau))$