MTH 411 Post Midterm Notes

Philip Warton

November 9, 2020

1 Midterm Solutions and Review

1.1 Let (M,d) be a metric space with the discrete metric. Show that any convergent sequence is eventually constant.

Proof. Let (x_n) be a convergent sequence in the space. Choose $\epsilon = 1$. Our sequence will eventually be in the epsilon ball of its limit, and therefore it will be eventually constant.

1.2 The set $A = \{y \in M : d(x,y) \le r\}$ is called the closed ball with radius r about x.

1.2.1 Show that A is closed.

Proof. Assume that (y_n) is a convergent sequence in A. We will show that its limit is in A. Let $\epsilon > 0$ be arbitrary. Then,

$$d(x,y) \leqslant d(x,y_n) + d(y_n,y) \leqslant r + \epsilon$$

Since this is true for any $\epsilon > 0$ we say that $d(x, y) \leq r$, and $y \in A$.

1.2.2 Give an example where A is not the closure of the open ball.

Choose the space of integers, with an open ball radius 1 around 0. Then $B_1(0) = \{0\}$ is already closed, and is a proper subset of A.

1.3 If $x_n \to x$ in a metric space, show that $d(x_n, y) \to d(x, y)$.

Proof. By the reverse triangle inequality and the squeeze theorem, the result follows trivially.

1.4 Show that the collection of polynomials with integer coefficients is countable.

Proof. Let \mathcal{P} be the set of all polynomials with integer coefficients, \mathcal{P}_n be the set of polynomials $p(x) = \sum_{k=0}^n a_k x^k$ with integer coefficients and degree at most n. Then

$$\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$$

To show that \mathcal{P}_n are countable, map \mathcal{P}_{n-1} onto Z^n with the bijection:

$$f(z_1, z_2, \cdots, z_3) = \sum_{k=1}^{n} z_k x^k$$

Then we assume that \mathbb{Q}^n is countable, and $\mathbb{Z}^n \subset \mathbb{Q}^n$ and we say that \mathcal{P} must be countable.

2 Continuity

3 Homeomorphisms

4 Completeness

Definition 4.1 (Totally Bounded). We define total boundedness to be the following: a set A in a metric space (M,d) is totally

bounded ⇔

$$\forall \epsilon > 0, \exists n \in \mathbb{N}, x_1, \cdots, x_n \in M : A \subset \bigcup_{j=1}^n B_{\epsilon}(x_j)$$

If we look at $B_1(0) \in l_1$, we find that although this set is bounded, it is not totally bounded.

Theorem 4.1. We can characterize total boundedness by: $\forall \epsilon > 0 \exists n \in \mathbb{N}, A_1, \cdots, A_n \subset A \text{ such that } diam(A_j) < \epsilon, j = 1, \cdots, n$ and $A \subset \bigcup_{j=1}^n A_j$.

The property of total boundedness can be considered as a generalization of compactness.

Definition 4.2 (Bounded). We say that a set $A \subset M$ is bounded if there exists some ball of finite radius such that A is contained in this ball.

Lemma 4.1. Let (x_n) be a sequence in (M,d) and $A = \{x_n | n \in \mathbb{N}\}$ its range.

- (i) if (x_n) is Cauchy, then A is totally bounded
- (ii) if A is totally bounded, then x_n has a Cauchy subsequence

Proof. (i) Let $\epsilon > 0$ be arbitrary. Since (x_n) is Cauchy, we say that for some $N \in \mathbb{N}$, for every $m, n \geq N, d(x_m, x_n) < \epsilon$. So we say that $\bigcup_{n=1}^N B_{\epsilon}(x_n) \supset A$ and is a finite union of open balls, and is therefore open.

(ii) If A is finite, then every sequence $(x_n) \in A$ has a constant subsequence. Otherwise, A will be infinite.

Definition 4.3. A metric space (M, d) is complete if every Cauchy sequence in M converges to a point in M.

Of course the set of real numbers will be complete, however the set of rational numbers will not be complete. The Lebesgue space ℓ_2 is complete. To prove this is fairly difficult.

Theorem 4.2. For any metric space M, the following are equivalent

- (i) M is complete
- (ii) The Nested Set Property holds
- (iii) The Bolzano Weirstrass Property holds. That is, every totally bounded set has a limit point

This is another way to characterize completeness, this time for a normed vector space.

Theorem 4.3. A normed vector space V is complete if and only If

$$\sum_{n=1}^{\infty} ||x_n|| < \infty \Rightarrow \sum_{n=1}^{\infty} x_n \text{ converges in } V$$

Every absolutely summable series in V is summable.

Proof. \implies Assume V is complete, and let $(x_n) \subset V$ be such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Let S_n be the sequence of partial sums. We wish to show that S_n is a cauchy sequence.

$$||S_n - S_m|| = ||\sum k = m + 1^n x_k|| \le \sum_{k=m+1}^n ||x_k|| \to 0$$

Thus (S_n) is a Cauchy sequence in V. Since V is complete (S_n) converges to $S = \sum_{k=1}^{\infty} x_k$.

Note: Banach Space is a complete normed vector space V.

Definition 4.4. A function $f:(M,d)\to (N,s)$ is called Lipschitz if there is a constant $k<\infty$ such that $s(f(x),f(y))\leq kd(x,y)$ for every $x,y\in M$.

Immediately it should be clear that a Lipschitz mapping will be continuous.

Proof. Let $x_n \to x$ in M. Then $d(x, x_n) \to 0$. So $s(f(x), f(x_n)) < kd(x, x_n) \to 0$. Thus $s(f(x), f(x_n)) \to 0$ and f is continuous.

Definition 4.5. A map $f: M \to M$ on a metric space (M, d) is called a contraction if there is $0 \le \alpha < 1$ such that $d(f(x), f(y)) \le \alpha d(x, y)$.

Since a contraction is Lipschitz with $k = \alpha$ it is continuous.

Definition 4.6. Let $f: M \to M$. Any $x \in M$ such that f(x) = x is called a fixed point of f.

Theorem 4.4. (Contraction Mapping Theorem, Banach Fixed Point Theorem) Let (M,d) be a complete metric space and let $f: M \to M$ be a contraction. Then, f has a unique fixed point. For any $x_0 \in M$, the iteration $x_{n+1} = f(x_n)$ converges to x. One has $d(x_n, x) \leq d(x_1, x_0) \frac{\alpha^n}{1-\alpha}$.

Definition 4.7. Let f'(x) = f(x), $f^{n+1}(x) = f(f^n(x))$, i.e. f^n is the *n*-fold composition of f with itself.

Proof. The sequence x_n can be written as $x_n = f^n(x_0)$. Let $x_0 \in M$ be arbitrary.

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1}))$$

$$\leq \alpha d(x_n, x_{n-1}) = \alpha d(f(x_{n-1}), f(x_{n-2}))$$

$$\leq \alpha^2 d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq \alpha^n d(x_1, x_0) = c\alpha^n$$

$$c = d(x_1, x_0)$$