

Web Scraping II

Recap of Web Scraping I

- Final 3 Data Frames From Tutorial 7 Should All Be Saved to CSV's on PC
 - FINAL_VIOLENT.CSV
 - FINAL_ZIP.CSV
 - FINAL_STATE_ABBREV.CSV
- Think About What Other City Information Could Potentially Be a Factor in Violent Crimes
- Think About What Other City Information Could Potentially Be Influenced by the Prevalence of Violent Crimes

Tutorial 8 Introduction

- Step 1: Open Tutorial 8
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest (Requires Internet)
- Step 3: Switch Knitter
- Step 4: Read the Introduction

Part 1: Connection to Population Change and Density

Step 1: Select the Link and Observe the Following Table

Rank	Name	State	2019 Population ▼	2016 Population	2010 Census	Change	2019 Density ☰
1	New York	New York	8,601,186	8,537,673	8,175,133	0.25%	11,056/km²
2	Los Angeles	California	4,057,841	3,976,322	3,792,621	0.67%	3,343/km²
3	Chicago	Illinois	2,679,044	2,704,958	2,695,598	-0.32%	4,550/km²
4	Houston	Texas	2,359,480	2,303,482	2,099,451	0.80%	1,431/km²
5	Phoenix	Arizona	1,711,356	1,615,017	1,445,632	1.91%	1,276/km²
6	Philadelphia	Pennsylvania	1,576,596	1,567,872	1,526,006	0.18%	4,537/km²

Step 2: Questions?

- What is the Connection to Violent Crimes?
- How is this Useful When Related to Violent Crimes?

Part 1: Connection to Population Change and Density

- Step 3: Run Chunk 1
 - What is required to convert the Percentage Change to a numeric variable?
 - What is required to convert the 2019 Density to a numeric variable?
- Step 4: Run Chunk 2
 - Notice: /.*
- Step 5: No-Knitter

- Step 1: Selector Gadget Website
 - Open Source
 - Chrome Extension Exists
 - Easy: Drag Link to Bookmark
 Bar as Webpage Explains

- Step 2: Observe the Article on 2018's Safest and Most Dangerous States
 - What info could be of use?
 - Do you agree identification?

Step 3: Information of Interest

Safe vs Dangerous

- 1. Vermont
- 2. Maine
- 3. Minnesota
- 4. Utah
- 5. New Hampshire
- 6. Connecticut
- 7. Rhode Island
- 8. Hawaii
- 9. Massachusetts
- 10. Washington

- 1. Mississippi
- 2. Louisiana
- 3. Oklahoma
- 4. Texas
- 5. Florida
- 6. Arkansas
- 7. Alabama
- 8. Missouri
- 9. Alaska
- 10. South Carolina

 Goal: Scrape this Information into Vectors in R to Create a Table

- Step 4: Identifying CSS Selector
 - Go to Web Page
- 1) https://www.securitysales.com/fire-intrusion/2018-safest-most-dangerous-states-us/
 - Choose SelectorGadget in Bookmark Tab

Locate This Box

- Step 4: Continued
 - Find Content You Want

 Point and Click to Select Info

 Info We Want is Highlighted

 Info We Don't Want, As Well

- Step 4: Continued
 - Find Content You Don't Want

Hover Over Text We Don't Want

- Point and Clicks to Deselect
- Locate This Box

- Step 4: Continued
 - Locate This Box

```
#articleContentWrapper li Clear (20) Toggle Position XPath Help X
```

- Copy CSS Selector "#articleContentWrapper li"
- Step 5: Run Chunk 1

```
SAFE_VS_DANGEROUS = URL.SAFE_VS_DANGEROUS %>%

read_html() %>%

html_nodes(css="#articleContentWrapper li") %>%

html_text()
```

- Step 6: Run Chunk 2
 - What About the Other States?
- Step 7: Walk-off Knit

Closing

Disperse and Make Reasonable Decisions