Deep Learning Using TensorFlow

Section 3.1: EWMA + Momentum

Outline

- Problems with Gradient Descent Algorithm
- Moving Average
- Weighted Moving Average
- Exponentially Weighted Moving Average (EWMA)
- Momentum based Gradient Descent Algorithm
- Nestirov Gradient Descent Algorithm
- Reducing the Data Points for Approximate Gradient
 - Stochastic Gradient Descent Algorithm
 - Mini Batch Gradient Descent Algorithm

What is Gradient Descent Algorithm?

- Suppose a function y = f(x) is given
 - Gradient Descent algorithm allows us to find the values of 'x' where the 'y' value becomes minimum or maximum values
- The Gradient Descent algorithm can be extended to any function with 2 or more variables z = f(x, y)
- Function y=f(x)
- Gradient Descent Algorithm: Minimum
 - Initialize the value of x
 - Learning rate = η
 - While NOT converged:
 - $x^{t+1} \leftarrow x^t \eta \frac{\partial y}{\partial x} \|_{x^t}$

- Function z=f(x,y)
- Gradient Descent Algorithm: Minimum
 - Initialize the value of x and y
 - Learning rate = η
 - While NOT converged:

$$x^{t+1} \leftarrow x^t - \eta \frac{\partial z}{\partial x} \|_{x^t, y^t}$$

$$y^{t+1} \leftarrow y^t - \eta \frac{\partial z}{\partial y} \parallel_{x^t, y^t}$$

Example#1 Error Function

- *Error Function*: $y = f(x) = 1 e^{-(x-2)^2}$
- $\frac{dy}{dx} = 2(x-2)e^{-(x-2)^2}$
- The error function 'y' is almost flat
 - $f(x) = 0: -\infty < x < 0$ and
 - f(x) = 0: $4 < x < \infty$

Example#1 Gradient Descent Algorithm

- Starting Point = -4
- Number of iteration = 1,000

Starting Point = -4, DOES NOT CONVERGE

Example#1: After 1,000 iteration Starting Point

<u>-3, -2, -1, -0.5</u>

Starting Point = -3, -2, -1: 'x' value DOES NOT CONVERGE

Starting Point = -0.5,

'x' value CONVERGES AFTER 250 ITERATIONS

Error Function

Derivative of Error Function

~ 0

©2020 Dr. Ash Pahwa

Example#2 Error Function

• Error Function =
$$y = -\frac{e^x}{1+x^2}$$

$$\frac{dy}{dx} = \frac{(1+x^2)\frac{d}{dx}(e^x) - e^x \frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$

$$\frac{dy}{dx} = -\frac{e^x (1-x)^2}{(1+x^2)^2}$$

- _____
- Gradient Descent Algorithm
 - Starting point: x = 0
 - Till x < 0.99
 - Descend smoothly using GD
 - After x > 0.99 (as $x \to 1$)
 - Cannot move further because the line is flat
- Solution
 - Exponentially Weighted Moving Average

$$y = -\frac{e^x}{1 + x^2}$$

$$\frac{dy}{dx} = -\frac{e^x (1-x)^2}{(1+x^2)^2}$$

Example#2 After 10,000 Iterations We cannot move beyond 1

```
> xStart = -1.0
> learningRate = 0.1
> maxLimit = 10000
> xStartHistory = rep(0,maxLimit)
> for ( i in 1:maxLimit )
    xStartHistory[i] = xStart
    xStart = xStart - learningRate * dy dx(xStart)
    if ( i %% 1000 == 0 ) { cat ("i = ",i, "xstart = ",
xStart, "\n")
    1000 \text{ xstart} = 0.9861112
i = 2000 \text{ xstart} = 0.9928911
i = 3000 \text{ xstart} = 0.9952164
   4000 \text{ xstart} = 0.9963939
i = 5000 \text{ xstart} = 0.9971056
i = 6000 \text{ xstart} = 0.9975825
i = 7000 \text{ xstart} = 0.9979243
i = 8000 \text{ xstart} = 0.9981814
i = 9000 \text{ xstart} = 0.9983817
i = 10000 \text{ xstart} = 0.9985423
> plot(xStartHistory, type='l', ylim=c(-5,3),
main="xStart")
> abline(h=1,col='red')
```


va

Example#2 After 1,000,000 Iterations We cannot move beyond 1

```
> xStart = -1.0
> learningRate = 0.1
> maxLimit = 1000000
> xStartHistory = rep(0, maxLimit)
> for ( i in 1:maxLimit )
  xStartHistory[i] = xStart
   xStart = xStart - learningRate * dy dx(xStart)
    if ( i \% 100000 == 0 ) { cat ("i = ", i, "xstart = ", xStart, "\n")}
i = 100000 \text{ xstart} = 0.999853
i = 200000 \text{ xstart} = 0.9999265
 = 300000 \text{ xstart} = 0.999951
 = 400000 \text{ xstart} = 0.9999632
 = 500000 \text{ xstart} = 0.9999706
 = 600000 \text{ xstart} = 0.9999755
i = 700000 \text{ xstart} = 0.999979
i = 800000 \text{ xstart} = 0.9999816
i = 900000 \text{ xstart} = 0.9999837
i = 1000000 \text{ xstart} = 0.9999853
> plot(xStartHistory,type='l',ylim=c(-5,3), main="xStart")
> abline(h=1,col='red')
```


- If the error function has a very small gradient value
 - Starting point is on the flat surface
 - Neural network will take a long time to converge

- When the gradient becomes zero
 - Find some way to move forward
- Step size is not only a function of current gradient at time 't'
 - But also previous gradient at time 't-1'
- Solution
 - Momentum
 - Exponentially Weighted Moving Average of Gradient

•
$$x_{t+1} = x_t - \eta \frac{\partial z}{\partial x} - \left(previous \ values \ of \ \frac{\partial z}{\partial x} \right)$$

Momentum Based GD

Ball gains momentum while rolling down a slope

- Time t1
 - Ask for direction (Measure Gradient)
 - Take a small step in that direction
- Time t2
 - Ask for direction (Measure Gradient)
 - If the direction computed ay time 't2' is same as the direction at time 't1'
 - Take a bigger step in that direction
- Time t3
 - Ask for direction (Measure Gradient)
 - If the direction computed ay time 't3' is same as the direction at time 't1' and 't2'
 - Take a bigger step in that direction
- Momentum is building as we are moving along
- Speed at which we are moving will increase with time

Other Solutions to Gradient Descent Algorithm Problem

- Solution#1: Increase the step size
 - Momentum based GD
 - Nesterov GD
- Solution#2: Reducing the data points for approximate gradient
 - Stochastic Gradient Descent
 - Mini Batch Gradient Descent
- Solution#3: Adjust the Learning rate (η)
 - AdaGrad
 - RMSProp
 - Adam

- Function y=f(x)
- Gradient Descent Algorithm: Minimum
 - Initialize the value of x
 - Learning rate = η
 - While NOT converged:

•
$$x^{t+1} \leftarrow x^t - \eta \frac{\partial y}{\partial x} \|_{x^t}$$

Moving Average

Traditional

- * Moving Average
- * Exponentially Weighted Moving Average (EWMA)
- When the data fluctuates
 - We need to compute the average to smooth the data
- Solution
 - Moving Average
 - Weighted Moving Average
 - Exponentially Weighted Moving Average

	Α	В
1	Step#	Derivative
2	1	0.8550
3	2	0.8470
4	3	1.0000
5	4	0.6350
6	5	0.3460
7	6	2.1460
8	7	1.3280
9	8	1.3220
10	9	3.1240
11	10	1.0120
12	11	1.2800
13	12	2.4350
14	13	1.0160
15	14	3.4650
16	15	1.1070
17	16	1.1720
18	17	3.4320
19	18	0.8360
20	19	0.1420
21	20	0.3450
22	21	2.6030
23	22	0.7390
24	23	0.7160
25	24	0.8800
26	25	1.0080
27	26	0.1120
28	27	0.3610
20		

3-Step & 4-Step Moving Average

- 4 Step Moving average is smoother than 3-Step Moving Average
- Small `n'-Step Moving average
 - Driving a small car
 - Fast and picks up speed faster
 - Not very smooth
- Large `n'-Step Moving average
 - Driving a 18-wheeler Truck
 - Smooth ride
 - Sluggish slow to pick up speed

Weighted Moving Average

Moving Average + Weighted Average

Weighted Moving Average

More recent data has more weight

	А	В	С	
1	Derivative	Weight	Weighted Derivative	
2	0.8550	0.1875	0.1603	
3	0.8470	0.1875	0.1588	
4	1.0000	0.3750	0.3750	
5	0.6350	0.7500	0.4763	
6	0.3460	1.5000	0.5190	
7	2.1460	3.0000	6.4380	
8				
9		Sum:	8.1274	
10	Weighted average:		1.3546	
11	Unweighted average:		0.9715	
12				

	Α	В	С	
			Weight as	
1	L	Weight	percentage	
2		0.1875	3%	
3		0.1875	3%	
4		0.3750	6%	
5		0.7500	13%	
6		1.5000	25%	
7		3.0000	50%	
8				
9	Total	6.0000	100%	
10				

6-Step MA vs 6-Step Weighted MA

	Α	В	C	D	Ε	F	G
1	Step	Derivative		6-Step MA		Weights	6-Step Weighted MA
2	1	0.8550				0.1875	
3	2	0.8470				0.1875	
4	3	1.0000				0.3750	
5	4	0.6350				0.7500	
6	5	0.3460				1.5000	
7	6	2.1460		0.9715		3.0000	1.3546
8	7	1.3280		1.0503			1.3412
9	8	1.3220		1.1295			1.3340
10	9	3.1240		1.4835			2.2233
11	10	1.0120		1.5463			1.6131
12	11	1.2800		1.7020			1.4747
13	12	2.4350		1.7502			1.9421
14	13	1.0160		1.6982			1.4789
15	14	3.4650		2.0553			2.5001
16	15	1.1070		1.7192			1.7706
17	16	1.1720		1.7458			1.4755
18	17	3.4320		2.1045			2.4718
19	18	0.8360		1.8380			1.6317
20	19	0.1420		1.6923			0.9251
21	20	0.3450		1.1723			0.5982
22	21	2.6030		1.4217			1.6016
23	22	0.7390		1.3495			1.2056
24	23	0.7160		0.8968			0.9203
25	24	0.8800		0.9042			0.8893
26	25	1.0080		1.0485			0.9518
27	26	0.1120		1.0097			0.5672
28	27	0.3610		0.6360			0.4350
20							

Line Color	Strategy	Conclusion		
Blue Line	Original Derivative	Noisy		
Black Solid Line	6-Step Moving Average	Smother		
Black Dotted Line	6-Step Weighted Moving Average	Smoother than 6-day moving average		

Moving Weighted Average

- How to decide the length of moving average?
- How to decide the weights?
- These questions are answered by Exponentially Weighted Moving Average (EWMV)

Exponentially Weighted Moving Averages (EWMA)

Exponentially Weighted Moving Average of Gradients

- $update_t = \gamma * update_{t-1} + \eta \frac{\partial z}{\partial x}|_t$
- $x_{t+1} = x_t update_t$
- _____
- $update_0 = 0$
- $update_1 = \gamma * update_0 + \eta \frac{\partial z}{\partial x}|_1$
- $update_2 = \gamma * update_1 + \eta \frac{\partial z}{\partial x}|_2 = (\gamma^2 * update_0) + (\gamma * \eta \frac{\partial z}{\partial x}|_1) + (\eta \frac{\partial z}{\partial x}|_2)$
- $update_3 = \gamma * update_2 + \eta \frac{\partial z}{\partial x}|_3 = (\gamma^3 * update_0) + (\gamma^2 * \eta \frac{\partial z}{\partial x}|_1) + (\gamma * \eta \frac{\partial z}{\partial x}|_2) + (\eta \frac{\partial z}{\partial x}|_3)$
- $update_4 = \gamma * update_3 + \eta \frac{\partial z}{\partial x}|_4 = (\gamma^4 * update_0) + (\gamma^3 * \eta \frac{\partial z}{\partial x}|_1) + (\gamma^2 * \eta \frac{\partial z}{\partial x}|_2) + (\gamma * \eta \frac{\partial z}{\partial x}|_3) + (\eta \frac{\partial z}{\partial x}|_4)$
- $update_t = \gamma * update_{t-1} + \eta \frac{\partial z}{\partial x}|_t = (\gamma^t * update_0) + \left(\gamma^{t-1} * \eta \frac{\partial z}{\partial x}|_1\right) + \left(\gamma^{t-2} * \eta \frac{\partial z}{\partial x}|_2\right) + \dots + \left(\eta \frac{\partial z}{\partial x}|_t\right)$

Contributions Made by Previous Gradient

 γ^n

	Α	В	С	D	Е	F	G	Н	1	J	
1											
2	Gamma	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	
3	1	0.9000	0.8000	0.7000	0.6000	0.5000	0.4000	0.3000	0.2000	0.1000	
4	2	0.8100	0.6400	0.4900	0.3600	0.2500	0.1600	0.0900	0.0400	0.0100	
5	3	0.7290	0.5120	0.3430	0.2160	0.1250	0.0640	0.0270	0.0080	0.0010	
6	4	0.6561	0.4096	0.2401	0.1296	0.0625	0.0256	0.0081	0.0016	0.0001	
7	5	0.5905	0.3277	0.1681	0.0778	0.0313	0.0102	0.0024	0.0003	0.0000	
8	6	0.5314	0.2621	0.1176	0.0467	0.0156	0.0041	0.0007	0.0001	0.0000	
9	7	0.4783	0.2097	0.0824	0.0280	0.0078	0.0016	0.0002	0.0000	0.0000	
10	8	0.4305	0.1678	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000	0.0000	
11	9	0.3874	0.1342	0.0404	0.0101	0.0020	0.0003	0.0000	0.0000	0.0000	
12	10	0.3487	0.1074	0.0282	0.0060	0.0010	0.0001	0.0000	0.0000	0.0000	
13	11	0.3138	0.0859	0.0198	0.0036	0.0005	0.0000	0.0000	0.0000	0.0000	
14	12	0.2824	0.0687	0.0138	0.0022	0.0002	0.0000	0.0000	0.0000	0.0000	
15	13	0.2542	0.0550	0.0097	0.0013	0.0001	0.0000	0.0000	0.0000	0.0000	
16	14	0.2288	0.0440	0.0068	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000	
17	15	0.2059	0.0352	0.0047	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	
18	16	0.1853	0.0281	0.0033	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	
19	17	0.1668	0.0225	0.0023	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	
20	18	0.1501	0.0180	0.0016	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	
21	19	0.1351	0.0144	0.0011	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	
22	20	0.1216	0.0115	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
23											

Moving Weighted Average Select the value of $\gamma = 0.5$

	Α	F
1		
2	Gamma	0.5
3	1	0.5000
4	2	0.2500
5	3	0.1250
6	4	0.0625
7	5	0.0313
8	6	0.0156
9	7	0.0078
10	8	0.0039
11	9	0.0020
12	10	0.0010
13	11	0.0005
14	12	0.0002
15	13	0.0001
16	14	0.0001
17	15	0.0000
18	16	0.0000
19	17	0.0000
20	18	0.0000
21	19	0.0000
22	20	0.0000
23		

- How to decide the length of moving average?
 - Window length = 14
- How to decide the weights?
 - Weights are computed automatically

Solution#1: Momentum Based Gradient Descent Algorithm

Solution#1: Increase the step size

- Momentum based GD
- Nesterov GD

Solution#2: Reducing the data points for approximate gradient

- Stochastic Gradient Descent
- Mini Batch Gradient Descent

Solution#3: Adjust the Learning rate (η)

- AdaGrad
- RMSProp
- Adam

Example#1

- *Error Function*: $y = f(x) = 1 e^{-(x-2)^2}$
- $\frac{dy}{dx} = 2(x-2)e^{-(x-2)^2}$
- The error function 'y' is almost flat
 - f(x) = 0: $-\infty < x < 0$ and
 - f(x) = 0: $4 < x < \infty$

Example#1: Gradient Descent Does not converge after 1,000,000 iterations

```
> xStart = -2.0
> learningRate = 0.1
> maxLimit = 1000000
> xStartHistory = rep(0, maxLimit)
> for ( i in 1:maxLimit )
  xStartHistory[i] = xStart
  xStart = xStart - learningRate * dy dx(xStart)
+ }
> plot(xStartHistory,type='l',ylim=c(-5,3))
> text(500000,-2.5,"X Value")
> abline(h=2, col='dark red', lwd=3)
> text(500000,2.5,"Minimum Point")
> >
```


Example#1: Gradient Descent with Momentum Converges after 150,000 Iterations

```
xStart = -2.0
learningRate = 0.1
# Momentum
                                                  0
maxLimit = 160000
xStartHistory = rep(0, maxLimit)
                                                  \overline{\phantom{a}}
qamma = 0.9
update = 0
for ( i in 1:maxLimit ) {
 xStartHistory[i] = xStart
                                                             50000
                                                                      100000
                                                                               150000
 gradient = dy dx(xStart)
                                                                   Index
 update = (gamma * update) + (learningRate * gradient)
 xStart = xStart - update
plot(xStartHistory, type='l')
abline (h=2, col='red')
```

- $update_t = \gamma * update_{t-1} + \eta \frac{\partial z}{\partial x}|_t$
- $x_{t+1} = x_t update_t$

Example#1: Just Before Reaching the Minimum Point Oscillation

```
Expand when the values are converging
> xStartHistorySmall = xStartHistory[148500:149500]
> plot(xStartHistorySmall,type='l')
> abline(h=2,col='red')
>
                                         xStartHistorySmall
                                                    200
                                                                       800
                                                           400
                                                                 600
                                                                             1000
                                                             Index
```

Example#2

- Error Function = $y = -\frac{e^x}{1+x^2}$
- $\frac{dy}{dx} = \frac{(1+x^2)\frac{d}{dx}(e^x) e^x \frac{d}{dx}(1+x^2)}{(1+x^2)^2}$
- $\frac{dy}{dx} = -\frac{e^x (1-x)^2}{(1+x^2)^2}$

```
> # Example#2
> #
> x = seq(-5, 5, 0.1)
> y1 = (exp(x)/(1+x^2))
> y2 = (-1)*y1
> plot(x,y2,type='l',ylim=c(-
4,0), lwd=3, col='black')
> abline(v=0)
> abline(h=0)
> abline(v=0.99)
> \text{text}(0.6, -2, "x=0.99")
> dy dx = function (w1)
+ {
  dy dx n = exp(w1)*((1-w1)^2)
 dy dx d = (1 + w1^2)^2
   return( -dy dx n/dy dx d)
> slope = dy dx(x)
> points(x,slope,type='l',col='red')
> text(3,-1,"Derivative of Error Function")
>
```


Example#2: Gradient Descent Does not converge after 1,000,000 iterations

Example #2: Gradient Descent with Momentum

Crosses the line x=1 in 10 iterations

```
xStart = -1.0
learningRate = 0.1
maxLimit = 20
xStartHistory = rep(0, maxLimit)
qamma = 0.9
update = 0
for ( i in 1:maxLimit )
  xStartHistory[i] = xStart
  gradient = dy dx(xStart)
  update = (gamma * update) + (learningRate * gradient)
  xStart = xStart - update
  if ( i %% 1000 == 0 ) { cat ("i = ",i, "xstart = ", xStart,
#plot(xStartHistory,type='1',ylim=c(-5,3), main="xStart")
plot(xStartHistory, type='l')
abline (h=1, col='red')
```


- $update_t = \gamma * update_{t-1} + \eta \frac{\partial z}{\partial x}|_t$
- $x_{t+1} = x_t update_t$
- $update_t = \gamma * update_{t-1} + \eta \frac{\partial z}{\partial x}|_t = \left(\gamma^{t-1} * \eta \frac{\partial z}{\partial x}|_1\right) + \left(\gamma^{t-2} * \eta \frac{\partial z}{\partial x}|_2\right) + \dots + \left(\eta \frac{\partial z}{\partial x}|_t\right)$

Analysis of Momentum Based Gradient Descent Algorithm

- Pros: The algorithm moves faster on the flat surface
- Cons: But it over shoots when it arrives the minimum point
 - Then it has to be backtrack
 - When the algorithm reaches close to the minimum point, it starts oscillating

Solution to Momentum Nesterov Momentum

- Before jumping to the next check the gradient at the next step also
- If the next step gradient forces to take a 'U' turn
 - Reduce the size of the step

Yurii Nesterov

- Nesterov is most famous for his work in convex optimization, including his 2004 book, considered a canonical reference on the subject
- His main novel contribution is an accelerated version of gradient descent that converges considerably faster than ordinary gradient descent (commonly referred as Nesterov momentum or Nesterov accelerated gradient, in short — NAG)

Yurii Nesterov

2005 in Oberwolfach

Born January 25, 1956 (age 63)

Moscow, USSR

Citizenship Russia

Alma mater Moscow State University (1977)

Awards Dantzig Prize, 2000

John von Neumann Theory Prize,

2009

EURO Gold Medal, 2016

Scientific career

Fields Convex optimization,

Semidefinite programming,

Nonlinear programming,

Numerical analysis, Applied mathematics

Solution#2: Reducing the Data Points for Approximate Gradient

Mini Batch Gradient Descent Stochastic Gradient Descent

Solution#1: Increase the step size

- Momentum based GD
- Nesterov GD

Solution#2: Reducing the data points for approximate gradient

- Stochastic Gradient Descent
- Mini Batch Gradient Descent

Solution#3: Adjust the Learning rate (η)

- AdaGrad
- RMSProp
- Adam

Gradient

- The gradient descent algorithm uses all the data points to compute gradient
- If the number of data elements are large
 - It takes a lot of time to compute gradient
- Suppose we take less number of elements to compute the gradient
 - Solution will be approximate but faster

Types of Gradient Descent

- Mini Batch Gradient Descent
 - Data is divided into small batches
 - Compute gradient using batch data
 - The value of 'x' is incremented
- Stochastic Gradient Descent
 - Randomly select 'n' data points
 - Compute the gradient
 - The value of 'x' is incremented

Mini Batch Gradient Descent

- Batch Gradient Descent
 - Gradient is not computed using all the data values
 - Gradient is approximate
 - It is possible that the descent may not be smooth

Mini Batch Gradient Descent

$$\nabla RSS(b,m) = \left| \frac{\partial RSS(m,b)}{\partial b} \frac{\partial RSS(m,b)}{\partial m} \right| = \begin{vmatrix} -2\sum_{i=1}^{N} (y_i - (mx_i + b)) \\ -2\sum_{i=1}^{N} (y_i - (mx_i + b))x_i \end{vmatrix}$$

- Gradient Descent
 - Compute gradient using all data elements
 - Update the value of 'x'
 - End of epoch#1
- Mini Batch Gradient Descent: Divide the data into many batches
 - 1st Batch
 - Compute gradient using the 1st batch of data
 - Gradient may not be precise
 - Update the value of 'x'
 - 2nd Batch
 - Compute gradient using the 2nd batch of data
 - Update the value of 'x'
 - Continue till all data is used to compute gradient
 - End of epoch#1
 - In a single epoch, 'x' value is incremented many times

Stochastic Gradient Descent

$$\nabla RSS(b,m) = \left| \frac{\partial RSS(m,b)}{\partial b} \frac{\partial RSS(m,b)}{\partial m} \right| = \begin{vmatrix} -2\sum_{i=1}^{N} (y_i - (mx_i + b)) \\ -2\sum_{i=1}^{N} (y_i - (mx_i + b))x_i \end{vmatrix}$$

 Batch size is determined by selecting the data element randomly

Summary

- Problems with Gradient Descent Algorithm
- Moving Average
- Weighted Moving Average
- Exponentially Weighted Moving Average (EWMA)
- Momentum based Gradient Descent Algorithm
- Nestirov Gradient Descent Algorithm
- Reducing the Data Points for Approximate Gradient
 - Stochastic Gradient Descent Algorithm
 - Mini Batch Gradient Descent Algorithm