

1653
#3Please type a plus sign (+) inside this box →
**TRANSMITTAL
FORM**

(to be used for all correspondence after initial filing)

RECEIVED

JUL 31 2002

958

AUG 01 2002

Total Number of Pages in This Submission

Application Number

10/083,424

Filing Date

February 26, 2002

First Name Inventor

Jin-Kyoo KIM et al

Group Art Unit

1653

Examiner Name

Unknown

TECH CENTER 1600/2900

Attorney Docket Number

5294-000006

ENCLOSURES (check all that apply)

 Fee Transmittal Form Assignment Papers
(for an Application) After Allowance Communication to Group Fee Attached Drawing(s) Appeal Communication to Board of Appeals and Interferences Amendment / Response Licensing-related Papers Appeal Communication to Group
(Appeal Notice, Brief, Reply Brief) After Final Petition Proprietary Information Affidavits/declaration(s) Petition to Convert to a Provisional Application Status Letter Extension of Time Request Power of Attorney, Revocation Change of Correspondence Address Other Enclosure(s)
(please identify below): Express Abandonment Request Terminal Disclaimer Information Disclosure Statement Request for Refund Certified Copy of Priority Document(s) CD, Number of CD(s) _____

Remarks

The Commissioner is hereby authorized to charge any additional fees that may be required under 37 CFR 1.16 or 1.17 to Deposit Account No. 08-0750. A duplicate copy of this sheet is enclosed.

 Response to Missing Parts/ Incomplete Application Response to Missing Parts under 37 CFR 1.52 or 1.53**SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT**

Firm or Individual name	Harness, Dickey & Pierce, P.L.C.	Attorney Name G. Gregory Schivley	Reg. No. 27,382
Signature			
Date	July 23, 2002		

CERTIFICATE OF MAILING/TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231, or facsimile transmitted to the U.S. Patent and Trademark Office on the date indicated below.

Typed or printed name	G. Gregory Schivley	Date	July 23, 2002
Signature			

RECEIVED

AUG 01 2002

대한민국 특허청
KOREAN INTELLECTUAL PROPERTY OFFICE

TECH CENTER 1600/2900

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출원번호 : 특허출원 2001년 제 52934 호
Application Number PATENT-2001-0052934

출원년월일 : 2001년 08월 30일
Date of Application AUG 30, 2001

출원인 : (주)아비코아생명공학연구소
Applicant(s) AVICORE BIO TECHNOLOGY INSTITUTE INC.

2002 년 02 월 05 일

특 허 청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【제출일자】	2001.08.30
【발명의 명칭】	조류 콕시듬증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 scFv 재조합 항체 Recombinant ScFv Antibodies Specific to Eimeria spp. Responsible for Coccidiosis
【발명의 영문명칭】	
【출원인】	
【명칭】	(주)아비코아생명공학연구소
【출원인코드】	1-2001-034930-9
【대리인】	
【성명】	최홍순
【대리인코드】	9-1998-000576-4
【포괄위임등록번호】	2001-050888-9
【대리인】	
【성명】	김경철
【대리인코드】	9-2000-000251-8
【포괄위임등록번호】	2001-050889-6
【대리인】	
【성명】	양부현
【대리인코드】	9-1999-000421-2
【포괄위임등록번호】	2001-050890-9
【발명자】	
【성명의 국문표기】	김진규
【성명의 영문표기】	KIM, Jin Kyoo
【주민등록번호】	580717-1067518
【우편번호】	641-773
【주소】	경상남도 창원시 사림동 9호 창원대학교 미생물학과
【국적】	KR
【발명자】	
【성명의 국문표기】	한재용
【성명의 영문표기】	HAN, Jae Yong

1020010052934

출력 일자: 2002/2/7

【주민등록번호】	610409-1405718
【우편번호】	441-744
【주소】	경기도 수원시 권선구 서둔동 103 서울대학교 농생명공학부 농생명공 학사업단
【국적】	KR
【발명자】	
【성명의 국문표기】	송기덕
【성명의 영문표기】	SONG,Ki Duck
【주민등록번호】	700221-1475721
【우편번호】	302-793
【주소】	대전광역시 서구 월평2동 주공아파트 202동 1102호
【국적】	KR
【발명자】	
【성명의 국문표기】	김성원
【성명의 영문표기】	KIM,Sung Won
【주민등록번호】	740105-1113528
【우편번호】	641-773
【주소】	경상남도 창원시 사림동 9호 창원대학교 미생물학과
【국적】	KR
【발명자】	
【성명의 국문표기】	민원기
【성명의 영문표기】	MIN,Won Gi
【주민등록번호】	650125-1455417
【우편번호】	641-773
【주소】	경상남도 창원시 사림동 9호 창원대학교 미생물학과
【국적】	KR
【발명자】	
【성명의 국문표기】	손은정
【성명의 영문표기】	SON,Eun Jung
【주민등록번호】	750522-2906511
【우편번호】	641-773
【주소】	경상남도 창원시 사림동 9호 창원대학교 생물학과
【국적】	KR

1020010052934

출력 일자: 2002/2/7

【발명자】

【성명의 국문표기】 릴레호즈 , 현순

【성명의 영문표기】 LILLEHOJ,Hyun Soon

【주소】 미합중국 , 메릴랜드, 벨츠빌, 유.에스. 디파트먼트 오브 어 그라컬쳐, 앤니멀 앤드 내츄럴 리소스 인스티튜트, 에피디 미올로지 앤드 시스터 매틱 래브러토리, 패러사이트 바이올로지

【국적】 US

【발명자】

【성명의 국문표기】 릴레호즈 , 에릭 피터

【성명의 영문표기】 LILLEHOJ,Erik Peter

【주소】 미합중국 , 메릴랜드, 발티모어, 유니버시티 오브 메릴랜드, 스쿨 오 브 파머시, 디파트먼트 오브 파머슈티컬 사이언스

【국적】 US

【공지예외적용대상증명서류의 내용】

【공개형태】 간행물 발표

【공개일자】 2001.03.07

【공지예외적용대상증명서류의 내용】

【공개형태】 간행물 발표(2건)

【공개일자】 2001.04.12

【심사청구】 청구

【핵산염기 및 아미노산 서열목록】

【서열개수】 40

【서열목록의 전자문서】 첨부

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인 최홍
순 (인) 대리인
김경철 (인) 대리인
양부현 (인)

【수수료】

【기본출원료】 20 면 29,000 원

【가산출원료】 75 면 75,000 원

【우선권주장료】 0 건 0 원

【심사청구료】 45 항 1,549,000 원

1020010052934

출력 일자: 2002/2/7

【합계】	1,653,000 원
【감면사유】	소기업 (70%감면)
【감면후 수수료】	495,900 원
【첨부서류】	1. 요약서·명세서(도면)_1통 2. 소기업임을 증명하는 서류_1 통

1020010052934

출력 일자: 2002/2/7

【요약서】

【요약】

본 발명은 조류 콕시듐증을 유발하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 신규한 scFv 항체에 관한 것으로서, 보다 상세하게는 본 발명은 scFv 재조합 항체의 제조에 특히 적합한 신규한 중사슬 및 경사슬의 가변성 부위, 이를 이용한 scFv 재조합 항체에 관한 것으로서, 본 발명의 scFv 재조합 항체는 항체로서의 기능을 충분히 발휘하면서도, 그 작은 크기 때문에 우수한 조직 투과 특성을 나타내고, 대장균과 같은 원핵세포 숙주를 통하여 대량으로 얻을 수 있으며, 조류 콕시듐증의 수동적 면역화에 이용될 수 있고, 에이메리아 백신 항원에 대한 친화성 정제에 이용될 수 있다.

【대표도】

도 8

【색인어】

콕시듐증, 항체, 하이브리도마, scFv, 발현 벡터, 재조합 항체, 면역

1020010052934

출력 일자: 2002/2/7

【명세서】

【발명의 명칭】

조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 scFv 재조합 항체{Recombinant ScFv Antibodies Specific to Eimeria spp. Responsible for Coccidiosis}

【도면의 간단한 설명】

도 1은 본 발명의 일 구현예에 따라 실시되는 가변성 부위의 클로닝 전략을 개략적으로 나타내는 모식도;

도 2는 하이브리도마 세포주로부터 분리된 가변성 부위를 코딩하는 DNA 서열을 PCR 증폭한 결과를 나타내는 사진;

도 3a는 본 발명에 의해 염기 서열이 결정된 조류 콕시듐증에 대한 단일클론 항체의 중사슬의 염기 서열과 생식세포 계열의 염기 서열의 유사도를 나타내는 도면;

도 3b는 본 발명에 의해 염기 서열이 결정된 조류 콕시듐증에 대한 단일클론 항체의 λ -경사슬의 염기 서열과 생식세포 계열의 염기 서열의 유사도를 나타내는 도면;

도 3c는 하이브리도마 6D-12-G10으로부터 수득한 단일클론 항체의 중사슬의 염기 서열과 생식세포 계열의 염기 서열의 유사도를 나타내는 도면;

도 3d는 하이브리도마 6D-12-G10으로부터 수득한 단일클론 항체의 λ -경사슬의 염기 서열과 생식세포 계열의 염기 서열의 유사도를 나타내는 도면;

도 4a는 도 3a로부터 추론된 아미노산 서열의 유사도를 나타내는 도면;

도 4b는 도 3b로부터 추론된 아미노산 서열의 유사도를 나타내는 도면;

도 5는 본 발명에 의해 규명된 조류 콕시듐증에 대한 단일클론 항체를 인코딩하는 서열로부터 유사 유전자의 유전자 역전을 보여 주는 도면;

도 6은 본 발명의 발현 벡터의 일 구현예를 나타내는 유전자 지도;

도 7은 본 발명에 의해 생산된 scFv의 분자량 및 정제도를 나타내는 SDS-PAGE 겔 사진;

도 8은 본 발명에 의해 생산된 scFv의 항원 결합능을 ELISA로 분석한 결과를 나타내는 그래프;

도 9a는 하이브리도마 6D-12-G10으로부터 유래된 scFv 재조합물이 발현 벡터 내로 삽입되었음을 보여주는 겔 사진;

도 9b는 본 발명의 scFv 중 6D12HL의 정제 및 분자량을 보여 주는 SDS-PAGE 겔 사진;

도 10은 본 발명의 scFv 중 6D12HL의 면역 블롯팅 결과를 나타내는 겔 사진; 및

도 11은 본 발명의 scFv 중 6D12HL의 항원 결합능을 ELISA로 분석한 결과를 나타내는 그래프.

1020010052934

출력 일자: 2002/2/7

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<17> 본 발명은 재조합 항체에 관한 것으로서, 보다 상세하게는 조류 콕시듐증을 유발하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 신규한 scFv 항체에 관한 것이다.

<18> 에이메리아 (*Eimeria*) 속에 속하는 장내 기생충, 예컨대 에이메리아 아세르부리나 (*Eimeria acervulina*)에 의해 유발되는 조류 콕시듐증 (coccidiosis)은 가금 산업에서 상당한 경제적 손실을 초래하는 질병이다. 상기 질병을 치료하기 위하여, 전체 기생충의 이용을 통한 치료 방법 또는 화합 요법제의 개발 등이 이루어 졌으나 이들은 큰 단점을 갖고 있다. 예컨대, 상기 기생충의 복잡한 생활사 및 닦을 감염시키는 종의 다양성에 의하여 전체 기생충을 이용한 면역방법은 종-특이성을 나타내며, 크로스-특이성은 나타내지 않는다는 문제점이 있다 (Reynaud, C.A. et al., *Eur. J. Immunol.* 21:2661(1991)). 한편, 항-콕시디아 (coccidia) 의약은 고가이고, 의약 내성이 발전된다는 문제점을 갖고 있다. 따라서, 많은 연구들이 면역 조절의 개발에 초점이 맞추어져 있으며, 상기 면역 조절은 숙주 면역계에 의한 방어적 면역 반응을 유도하는 표적 항원의 동정 및 그 특성 연구에 의해 크게 좌우된다.

<19> 콕시듐증에 대한 면역 조절의 개발에 대한 현재의 노력들은 세포 매개성 면역반응을 유발하는 에이메리아 기생충의 면역원성 애피토프의 동정을 포함한다 (Lillehoj,

1020010052934

출력 일자: 2002/2/7

H.S. et al., *Avian Dis.*, 44:408-425(2000)). 일반적으로, 두가지 면역학적 전략이 계획되고 있다. 첫 번째는 숙주 세포 수용체에 결합하는 기생충의 단백질로부터 유래되는 재조합 서브유니트 백신을 이용하는 것이며, 이는 조류 콕시디아 기생충들이 숙주의 장 표면 상피의 세포를 통해 숙주로 들어가기 때문이다 (Al-Attar, M.A. et al., , 73:494-502(1987); 및 Lawn, A.M. et al., *J. Parasitol.*, 68:1117-1123(1982)). 두 번째 전략은 숙주 세포와 기생충의 상호작용을 방해하는 항체를 이용하는 수동적 면역화 방법이다 (Sasaki, K. et al., *J. Parasitol.*, 82:82-87(1996)).

<20> 다수의 포자충 항원이 마우스 항체를 이용하여 동정되었고 (Speer, C.A. et al., *J. Protozool.*, 30:548-554(1983)), 이들의 cDNA가 서브유니트 백신의 개발을 위해 클로닝 되었다 (Castle, M.D. et al., *J. Parasitol.*, 77:384-390(1991); 및 Ko, C. et al., *Mol. Bio. Parasitol.*, 41:53-64(1990)). 그러나, 상기 항체들의 효능에 대하여 부정적인 견해가 나오고 있고 (Trout, J. et al., *J. Parasitol.*, 73:790-792(1993)), 이는 닭 및 마우스에서 분리된 면역 혈청에 의해 인지되는 표적 항원이 상이하기 때문이다 (Jenkins, M.C. et al., *Mol. Bio. Parasitol.*, 25:155-164(1987)).

<21> 따라서, 상기한 측면에서, 조류 콕시듐증을 유발하는 표적 항원의 동정을 위해 닭 항체가 보다 바람직하다.

<22> 최근에, 에이메리아 항원을 인지하는 4종의 닭 단일클론 항체(Mabs: 2-1, 5D11, 8C3 및 13C8)가 개발되었고 (Lillehoj, H.S. et al., *Eimeria. Poult. Sci.*, 73:1685-1693(1994) 및 Sasai, K. et al.,

1020010052934

출력 일자: 2002/2/7

J. Parasitol., 82:82-87(1996)), 이들의 생화학적 특성을 규명하였다. 상기 항체에 의해 인지되는 항원의 면역학적 특성은 현재 연구 중이다. 한편, 상기 개발된 닭 단일 클론 항체는 에이메리아 아세르부리나의 근첨 복합체에 위치해 있는 표면 항원을 인지한다는 것을 규명하였고, 이와 같은 사실은 수동적 면역화에 항-에이메리아 Mabs가 이용될 수 있음을 나타내는 것이다. 그러나, 닭 하이브리도마는 항체의 생성능이 작고, 비특이성 IgM을 생성시키며, 항체를 생성시키는 능력이 감소된다는 문제점을 갖고 있다 (Nishinaka, S. et al., *J. Immunol. Methods.*, 139:217-222(1991) 및 Nishinaka, S. et al., *J. Vet. Med. Sci.*, 58:1053-1056(1996)).

<23> 한편, 미합중국 특허 제 4,710,377 호는 에이메리아 종의 포자 소체 (sporozoites)에 대한 단일클론 항체에 대한 발명을 개시하고 있고, 미합중국 특허 제 5,656,485 호는 조류 콕시듐증에 대한 항체의 합성을 유도할 수 있는 항원성 조성물을 개시하고 있으며, 미합중국 특허 제 5,635,181 호는 재조합 항-콕시디아 백신을 개시하고 있고, 미합중국 특허 제 4,301,148 호는 항콕시디아 의약을 개시하고 있다.

<24> 본 명세서 전체에 걸쳐 다수의 특허문헌 및 논문이 참조되고 그 인용이 표시되어 있다. 인용된 특허문헌 및 논문의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.

1020010052934

출력 일자: 2002/2/7

【발명이 이루고자 하는 기술적 과제】

- <25> 따라서, 본 발명의 목적은 조류 콕시듐증을 유발하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 신규한 항체의 중사슬 및 경사슬의 가변성 부위를 제공하는 데 있다.
- <26> 본 발명의 다른 목적은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 신규한 항체의 중사슬 및 경사슬의 가변성 부위를 코딩하는 DNA를 제공하는 데 있다.
- <27> 본 발명의 또 다른 목적은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대하여 반응하는 신규한 scFv (single chain variable fragment) 항체를 제공하는 데 있다.
- <28> 본 발명의 다른 목적은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 신규한 scFv를 코딩하는 DNA를 제공하는 데 있다.
- <29> 본 발명의 다른 목적은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 신규한 scFv의 제조방법을 제공하는 데 있다.
- <30> 본 발명의 다른 목적은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 scFv 발현용 벡터를 제공하는 데 있다.

【발명의 구성 및 작용】

- <31> 본 발명의 일 양태에 따르면, 본 발명은 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 39로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는

1020010052934

출력 일자: 2002/2/7

에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 제공한다.

<32> 본 발명의 다른 양태에 따르면, 본 발명은 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 제공한다.

<33> 본 발명은 상술한 종래 기술의 문제점, 특히 하이브리도마 세포주로부터 콕시듐증에 대한 항체를 얻는 방법의 문제점을 개선하고자 개발된 것이다. 본 발명자들은 하이브리도마 기술의 한계점을 극복하기 위하여, 유전자 재조합 기술을 채택하였고, 항체의 특성 중 항체가 항원과 결합하여 항체의 기능을 발휘하는 데에는 항원 결합 도메인, 즉 중사슬과 경사슬 (λ 또는 κ)의 가변성 부위 (variable region)가 필수적으로 요구된다 는 특성을 이용하였다.

<34> 본 발명자들은 상기의 가변성 부위를 포함하는 재조합 항체를 제조하기 위하여, 상술한 항체 중사슬 및 경사슬의 가변성 부위를 얻었다.

<35> 한편, 본 발명의 또 다른 양태에 따르면, 본 발명은 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를

1020010052934

출력 일자: 2002/2/7

코딩하는 DNA를 제공한다. 바람직하게는, 상기 DNA 서열은 서열번호 17, 서열번호 19, 서열번호 21, 서열번호 23 및 서열번호 38로 구성된 군으로부터 선택되는 뉴클레오티드 서열을 갖는다.

<36> 본 발명의 다른 양태에 따르면, 본 발명은 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA를 제공한다. 바람직하게는, 상기 DNA 서열은 서열번호 25, 서열번호 27, 서열번호 29, 서열번호 31 및 서열번호 39로 구성된 군으로부터 선택되는 뉴클레오티드 서열을 갖는다.

<37> 상술한 에이메리아 종의 포자소체 표면 항원에 대한 항체의 중사슬 및 경사슬의 가변성 부위를 코딩하는 DNA는 다음과 같은 기본적인 전략에 따라 얻은 것이다: 마우스 와 사람과 같은 포유동물과는 다르게, 닭에서의 면역글로불린 유전자 다양성은 유전자 역전 (gene conversion)에 의해 주로 이루어진다 (Renaud, C. A. et al., *CeII*, 40:283-291(1985); Reyanud, C.A. et al., *CeII*, 48:379-388(1987); Reyanud, C.A. et al., *CeII*, 59:171-183(1989); 및 Rose, M.E., *Immune reponse in parasitic Infections; Immunology, Immunopathology, Immunoprophylaxis*, CRC Press, Boca Raton, Florida, p.275(1987)). 보다 상세하게는, 서열 공여자인 업스트림 유사 가변성 부위 유전자 (upstream pseudo variable region genes)의 역전에 의해 중사슬과 λ -경사슬의 위치 각각에서 단일의 면역글로불린 가변성 단편 및 연결 (joining) 단편이 다양화 된다.

(Reyanud, C.A. et al., *Cell*, 48:379-388(1987); Reyanud, C.A. et al., *Cell*, 59:171-183(1989); Rose, M.E., , CRC Press, Boca Raton, Florida, p.275(1987); 및 Thompson, C.B. et al., *Cell*, 48:369-378(1987)). 더욱이, 상기 유사 유전자의 서열은 5'- 및 3'-말단 부위에서 상당히 보전되어 있고, 이와 같은 사실은 성숙된 B 세포 또는 하이브리도마에서 모든 가변성 부위가 동일한 말단을 갖는다는 것을 나타내기 때문에, 상기 닫에서의 유전자 역전 메카니즘은 중사슬 및 λ -경사슬 당 프라이머 1 쌍을 이용하여 다양성 부위 유전자를 증폭할 수 있도록 한다.

<38> 상기 유전자를 증폭하는 방법은 통상적인 PCR 방법 (Saiki, R.K., *PCR Technology, Principles and Applications for DNA Amplification*, Erlich, H.A. ed., Stockton Press, New York(1989))을 이용하여 실시될 수 있다. PCR 시 이용되는 본 발명의 프라이머는 상술한 유사 유전자의 말단 서열의 보전성에 기초하여 제작한 것으로서, 중사슬의 가변성 부위를 코딩하는 유전자를 증폭하는 데 이용되는 프라이머는 서열번호 33 및 서열번호 34에 기재된 아미노산 서열을 코딩하는 염기 서열을 각각 포함하는 1쌍의 프라이머가 바람직하고, 보다 바람직하게는 상기 프라이머 1쌍 중 서열 33에 기재된 아미노산 서열을 코딩하는 염기 서열을 포함하는 프라이머는 서열 1의 염기 서열을 포함하는 프라이머 또는 그의 상보적 서열을 포함하는 프라이머이고, 서열 34에 기재된 아미노산 서열을 코딩하는 염기 서열을 프라이머는 서열 2의 염기 서열을 포함하는 프라이머 또는 그의 상보적 서열을 포함하는 프라이머이다.

<39> 경사슬의 가변성 부위를 코딩하는 유전자를 증폭하는 데 이용되는 프라이머는 서열 번호 35 및 서열번호 36에 기재된 아미노산 서열을 코딩하는 염기 서열을 각각 포함하는

1쌍의 프라이머가 바람직하고, 보다 바람직하게는 상기 프라이머 1쌍 중 서열 35에 기재된 아미노산 서열을 코딩하는 염기 서열을 포함하는 프라이머는 서열 3의 염기 서열을 포함하는 프라이머이고, 서열 36에 기재된 아미노산 서열을 코딩하는 염기 서열을 프라이머는 서열 4의 염기 서열을 포함하는 프라이머이다.

<40> 더욱이, 본 발명에 이용될 수 있는 상기 프라이머 들은 DNA 주형과 혼성화(hybridization)되어 DNA 증폭 반응에서 자신의 기능을 할 수 있을 정도로 DNA 주형과 비공유적으로 결합될 수 있는 염기 서열을 포함한다. 즉, DNA 주형에 대하여 완전하게 왓슨/크릭 염기-쌍을 이루는 것 뿐만 아니라, 부분적으로 왓슨/크릭 염기-쌍을 이루지 못하는 부분이 있다 하더라도, 프라이머로서의 기능을 할 수 있을 정도의 DNA 주형에 대한 결합능을 갖는 프라이머를 포함한다.

<41> 본 발명의 다른 양태에 따르면, 본 발명은 (a) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위; 및 (b) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위가 연결되어 이루어진 에이메리아 종의 포자소체 표면 항원에 대한 scFv (single chain variable fragment) 항체를 제공한다.

<42> 본 발명의 바람직한 구현예에 따르면, 상기 중사슬의 가변성 부위가 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위는 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드이다.

1020010052934

출력 일자: 2002/2/7

- <43> 본 발명의 바람직한 구현예에 따르면, 상기 중사슬의 가변성 부위가 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위는 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드이다.
- <44> 본 발명의 다른 바람직한 구현예에 따르면, 상기 중사슬의 가변성 부위가 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위는 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드이다.
- <45> 상기 중사슬의 가변성 부위가 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위는 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드가 바람직하다.
- <46> 본 발명의 바람직한 구현예에 따르면, 상기 중사슬의 가변성 부위가 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위는 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드이다.
- <47> 본 발명의 다른 변형예에 따르면, 상기 scFv 항체는 중사슬의 가변성 부위 및 경사슬의 가변성 부위 사이에 링커 (linker)를 추가적으로 포함한다. 상기 링커는 중사슬 및 경사슬의 가변성 부위를 인위적으로 연결하여 scFv 항체의 항원 결합능을 안정화시키기 위하여 당업계에서 통상적으로 이용되는 펩티드이다 (참조문헌: 예컨대 GS 링커는 Huston, et al., *Methods in Enzymology*, 203:46-88(1991), EK 링커는 Whitlow, et al., *Protein Eng.*, 6:989(1993)). 상기 링커는 일반적으로 글리신 및 세린 아미노산으로 구성이 되며, 그 길이는 15-18 아미노산이다.

<48> 따라서, 본 발명의 scFv 항체에 있어서, 가장 바람직한 조합은 (a) 서열번호 18의 중사슬-링커-서열번호 26의 경사슬, (b) 서열번호 20의 중사슬-링커-서열번호 28의 경사슬, (c) 서열번호 22의 중사슬-링커-서열번호 30의 경사슬, (d) 서열번호 24의 중사슬-링커-서열번호 32의 경사슬, 및 (e) 서열번호 38의 중사슬-링커-서열번호 40의 경사슬이다.

<49> 본 발명의 다른 양태에 따르면, 본 발명은 (a) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 및 (b) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA가 연결되어 이루어진 에이메리아 종의 포자소체 표면 항원에 대한 scFv를 코딩하는 DNA를 제공한다.

<50> 본 발명의 바람직한 구현예에 따르면, 상기 scFv를 코딩하는 DNA는 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.

<51> 본 발명의 다른 바람직한 구현예에 따르면, 상기 scFv를 코딩하는 DNA는 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.

- <52> 본 발명의 또 다른 바람직한 구현예에 따르면, 상기 scFv를 코딩하는 DNA는 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <53> 본 발명의 바람직한 구현예에 따르면, 상기 scFv를 코딩하는 DNA는 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <54> 본 발명의 바람직한 구현예에 따르면, 상기 scFv를 코딩하는 DNA는 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <55> 본 발명의 보다 바람직한 구현예에 따르면, 상기 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이고, 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이며, 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 21의 DNA이고, 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 23의 DNA이며, 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 38의 DNA이다.
- <56> 본 발명의 보다 바람직한 구현예에 따르면, 상기 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 25의 DNA이고, 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 27의 DNA이며, 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 29의 DNA이고, 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 31의 DNA이다.

1020010052934

출력 일자: 2002/2/7

DNA이며, 그리고 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 39의 DNA이다.

<57> 본 발명의 변형예에 있어서, 상기 scFv를 코딩하는 DNA는 중사슬 가변성 부위를 코딩하는 DNA 서열 및 경사슬 가변성 부위를 코딩하는 DNA 서열 사이에 링커를 코딩하는 DNA 서열이 추가적으로 포함된다.

<58> 본 발명의 다른 양태에 따르면, 본 발명은 (a) (i) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 그리고 (ii) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA를 포함하는 scFv 유전자 재조합물을 발현 벡터 내로 클로닝 하는 단계; (b) 상기 발현 벡터로 숙주 세포를 형질전환 하는 단계; 그리고 (c) 상기 형질전환된 숙주 세포를 이용하여 scFv를 발현 하여 scFv를 수득하는 단계를 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 scFv의 제조방법을 제공한다.

<59> 본 발명의 제조방법에서 이용되는 숙주 세포는 발현 벡터의 발현에 통상적으로 이용되는 진핵 세포 및 원핵 세포 모두 가능하나, 바람직하게는 상업적으로 구입이 용이한 대장균 또는 바실러스 등이고, 대장균이 이용되는 경우에는 BMH71-18 또는 BL21(DE) 등이 이용될 수 있다.

1020010052934

출력 일자: 2002/2/7

- <60> 본 발명의 바람직한 구현예에 따르면, 본 발명의 재조합 scFv가 적용되는 조류는 콕시듐증이 발병되는 조류, 예컨대 닭, 오리, 칠면조, 메추리, 꿩, 타조, 거위 등을 포함하나, 이에 한정되는 것은 아니다.
- <61> 본 발명의 바람직한 구현예에서, 본 발명의 재조합 항체가 작용하는 에이메리아 종 (*Eimeria spp.*)은 조류의 콕시듐증을 유발시키는 에이메리아 아세르부리나 (*Eimeria acervulina*), 에이메리아 테넬라 (*Eimeria tenella*), 에이메리아 맥시마 (*Eimeria maxima*), 에이메리아 콕시디아 (*Eimeria coccidia*), 에이메리아 미티스 (*Eimeria mitis*), 에이메리아 프래콕스 (*Eimeria praecox*), 에미메리아 브루네티 (*Eimeria brunetti*), 에미메리아 네카트릭스 (*Eimeria necatrix*), 에이메리아 미바티 (*Eimeria mivati*) 및 에이메리아 하가니 (*Eimeria hagani*) 등을 포함하나, 이에 한정되는 것은 아니다.
- <62> 한편, 에이메리아는 복잡한 감염 생활사를 갖고 있으며, 그 중에서 무성의 침투성 포자 소체 (sporozoites)는 닭의 소화관 내에서 형성되며, 상피 세포에 침침투하여 사이존트 (schizont)로 통칭되는 다핵 구조로 발전된다. 따라서, 본 발명은 에이메리아 종의 포자소체의 표면 항원에 작용하는 항체를 제조하는 것을 목적으로 한다.
- <63> 본 발명의 바람직한 구현예에 따르면, 상기 scFv 유전자 재조합물은 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <64> 본 발명의 다른 바람직한 구현예에 따르면, 상기 scFv 유전자 재조합물은 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.

1020010052934

출력 일자: 2002/2/7

- <65> 본 발명의 또 다른 바람직한 구현예에 따르면, 상기 scFv 유전자 재조합물은 서열 번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <66> 본 발명의 다른 바람직한 구현예에 따르면, 상기 scFv 유전자 재조합물은 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <67> 본 발명의 다른 바람직한 구현예에 따르면, 상기 scFv 유전자 재조합물은 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것이다.
- <68> 본 발명의 다른 변형예에 따르면, 상기 scFv 유전자 재조합물은 중사슬 가변성 부위를 코딩하는 DNA 및 경사슬 가변성 부위를 코딩하는 DNA 사이에 링커를 코딩하는 서열이 추가적으로 포함한다. 상기 링커의 추가적인 삽입은 다양한 방법을 통하여 할 수 있고, 예컨대, scFv 유전자 재조합물을 구축하는 과정에서 오버랩-연장 PCR (Horton, R.M. et al., *Gene*, 77:61-68(1989))을 실시함으로써 가능하다.
- <69> 본 발명의 보다 바람직한 구현예에 따르면, 상기 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이고, 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이며, 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 21의 DNA이고, 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 23의 DNA이며, 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 38의 DNA이다.

1020010052934

출력 일자: 2002/2/7

<70> 본 발명의 보다 바람직한 구현예에 따르면, 상기 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 25의 DNA이고, 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 27의 DNA이며, 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 29의 DNA이고, 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 31의 DNA이며, 그리고 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 39의 DNA이다.

<71> 본 발명의 방법에 있어서, 상기 형질전환 단계는 발현 벡터를 숙주 세포 내로 운반 시켜 실시된다. 상기 형질전환 방법은 숙주 세포가 원핵 세포인 경우, CaCl_2 방법 (Cohen, S.N. et al., *Proc. Natl. Acad. Sci. USA*, 70:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., *Proc. Natl. Acad. Sci. USA*, 70:2110-2114(1973); 및 Hanahan, D., *J. Mol. Biol.*, 166:557-580(1983)) 및 전기 천공 방법 (Dower, W.J. et al., *Nucleic Acids Res.*, 16:6127-6145(1988)) 등에 의해 실시될 수 있다. 또한, 숙주 세포가 진핵 세포인 경우에는, 미세 주입법 (Capecchi, M.R., *Cell*, 22:479(1980)), 칼슘 포스페이트 침전법 (Graham, F.L. et al., *Virology*, 52:456(1973)), 전기 천공법 (Neumann, E. et al., *EMBO J.*, 1:841(1982)), 리포좀-매개 형질감염법 (Wong, T.K. et al., *Gene*, 10:87(1980)), DEAE-덱스트란 처리법 (Gopal, *Mol. Cell Biol.*, 5:1188-1190(1985)), 및 유전자 밤바드먼트 (Yang et al., *Proc. Natl. Acad. Sci.*, 87:9568-9572(1990)) 등에 의해 발현 벡터를 숙주 세포 내로 주입할 수 있다.

<72> 숙주 세포 내로 주입된 발현 벡터는 숙주 세포 내에서 발현되어 목적의 scFv 항체를 얻게 된다. 본 발명의 바람직한 구현예에 따르면, 상기 발현 벡터가 *lac* 프로모터

1020010052934

출력 일자: 2002/2/7

를 포함하는 경우에는 숙주 세포에 이소프로필- β -D-티오갈락토피라노시드 (IPTG)를 처리하여 유전자 발현을 유도할 수 있다.

<73> 본 발명의 다른 양태에 따르면, 본 발명은 (a) (i) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 그리고 (ii) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA를 포함하는 scFv 유전자 재조합물; 그리고 (b) 상기 scFv 유전자 재조합물에 작동적으로 연결된 프로모터를 포함하는 에이메리아 종의 포자소체 표면 항원에 대한 scFv 발현용 벡터를 제공한다.

<74> 본 발명의 벡터에 있어서, 상술한 본 발명의 제조방법과 공통되는 내용은 명세서의 과도한 복잡한 피하기 위하여 그 기재를 생략한다. 예컨대, 본 발명의 벡터에 있어서, scFv 유전자 재조합물, 이용되는 중사슬 및 경사슬의 가변성 부위를 코딩하는 DNA 서열 및 링커 등에 대한 내용은 상술한 본 발명의 제조방법과 공통되는 내용을 갖는다.

<75> 본 발명의 scFv 발현용 벡터는 scFv 재조합 항체가 숙주 세포 외로 분비되는 것을 용기하게 하기 위하여, 바람직하게는 pel B, gene III 또는 ompA 등의 리더 서열을 추가적으로 포함한다.

1020010052934

출력 일자: 2002/2/7

<76> 또한, scFv 발현용 벡터는 그로부터 발현되는 scFv의 정제를 용이하게 하기 위하여, 다른 서열과 융합되어 있는 것이 바람직하다. 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제 (Pharmacia, USA), 말토스 결합 단백질 (NEB, USA), FLAG (IBI, USA) 및 6x His (hexahistidine; Quiagen, USA) 등이 있고, 가장 바람직하게는 6x His이며, 그 이유는 이러한 추가적인 서열은 항원성이 없고, 단백질 즉 중사슬 및 경사슬의 가변성 부위의 폴딩을 방해하지 않기 때문이다. 상기 정제를 위한 추가적인 서열 때문에, 숙주에서 발현된 단백질은 친화성 크로마토그래피를 통하여 신속하고, 용이하게 정제된다.

<77> 본 발명의 바람직한 구현예에 따르면, 상기 융합 서열이 포함되어 있는 벡터에 의해 발현된 융합 단백질은 친화성 크로마토그래피에 의해 정제된다. 예컨대, 글루타티온-S-트랜스퍼라제가 융합된 경우에는 이 효소의 기질인 글루타티온을 이용할 수 있고, 6x His이 이용된 경우에는 Ni-NTA His-결합 레진 컬럼 (Novagen, USA)을 이용하여 소망하는 scFv 재조합 항체를 신속하고 용이하게 얻을 수 있다.

<78> 한편, 본 발명의 scFv 발현용 벡터가 원핵 세포를 숙주로 하는 경우에는, 바람직하게는 강한 프로모터, 예컨대 p_L^λ 프로모터, trp 프로모터, Iac 프로모터, T7 프로모터 등을 포함하며, 진핵 세포를 숙주로 하는 경우에는 바람직하게는 포유동물 세포의 지놈으로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)를 포함한다.

<79> 또한, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 젠타마이신, 카베니실린, 클로람페니

1020010052934

출력 일자: 2002/2/7

콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있고, 바람직하게는 비용의 측면을 고려하여 암피실린 또는 젠타마이신 내성 유전자가 있다.

<80> 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.

<81> **실시예**

<82> **실험 재료 및 실험 방법**

<83> I. 닭

<84> 생식 가능한 난자로서 수득한 화이트 레그흔 교잡 (SC^R)의 수정된 난자를 상업적으로 구입 가능한 브리더 (Hyline International, USA)로부터 얻었고, 상기 수정 난자를 미합중국, 메릴랜드 주의 기생충 면역생물학 실험실 (Parasite Immunobiology Laboratory)에서 부화시켰으며, 3 주령까지 부화기에서 유지하였고, 이어, 와이어 군집 케이쥐에서 유지하였다. 닭은 깨끗한 와이어-바닥 케이쥐에서 사육 하였다. 실험 대상의 닭은 특정 병원체에 노출되지 않도록 주의하였다. 음식과 물에 대해서는 무제한적으로 접근 가능하도록 하였다.

1020010052934

출력 일자: 2002/2/7

<85> II. 에이메리아 아세르부리나 포자 소체 (sporozoites)의 준비

<86> 에이메리아 아세르부리나 (#84 USDA 규주, 미합중국)의 포자 난모 세포를 수집하였다.
다. 이어, 행크스 균형 염 용액 (Hank's balanced salt solution: HBSS) 내의 0.125%
(w/v) 트립신 (Sigma, USA) 및 1% 토로데옥시콜리산을 포함하는 용액 (pH 7.6) 내에서
41°C에서 10분 동안 상기 난모 세포를 5% CO₂ 항온기에서 엑스시스팅 (excysting)하여
포자 소체를 얻었다. 이렇게 하여 얻어진 포자 소체를 DEAE-셀룰로오스 컬럼 (DE52;
Whatman Paper Ltd., USA)을 이용하여 세포 조각들로부터 분리하여 순수하게 포자 소체
만을 수득하였다.

<87> III. 포자 소체 항원의 준비

<88> 인산염-완충 염수 (PBS)내의 상기 포자 소체 ($10^9/ml$)을 드라이아이스를 이용하여
6회 얼림-해동을 실시한 다음, 실온까지 가온하였다. 이어, 포자 소체를 Microson
Ultrasonic Cell Disruptor (Heat System, USA)를 이용하여 4°C에서 초음파 처리하여,
포자 소체의 표면 항원을 수득하였다.

<89> IV. 닭 B-세포 하이브리도마의 제조

<90> 가. 하이브리도마 세포 주 2-1, 5D11, 8C3 및 13C8의 제조

<91> 콕시디아 항원에 대해 특이성을 갖는 단일클론 항체를 생성하는 하이브리도마를 제
조하기 위하여, 우선, 에이메리아 아세르부리나로부터 얻은 상기 III의 항원을 프로인드
불완전 보조액으로 유탁액화 한 다음, 상기 유탁액을 6-12 주령의 상기 I의 SC 닭에 근

육내 주사 하였다. 동일한 제제를 이용하여 두 번째 주사를 실시하였고, 추가적인 면역화는 보조제 없는 상기 제제를 이용하여 정맥내 주사를 1 주일 간격으로 실시하여 이루어졌다. 최종적인 부스팅은 세포 융합 3일 전에 정맥내 주사를 하여 실시하였다. 이어, 하이브리도마의 제조는 Nishinaka et al.에 의해 제시된 방법을 이용하여 다음과 같이 실시하였다 (Nishinaka, S. et al., *J. Immunol. Methods.*, 139:217-222(1991); 및 Nishinaka, S. et al., *J. Vet. Med. Sci.*, 58:1053-1056(1996)): 최종 면역화를 실시한 다음 3일 후에, 비장의 단일 세포 혼탁액을 피콜-페이크 밀도 구배를 이용하여 500 g에서 20°C에서 20분 동안 원심분리 하여 얻었다. 세포 융합은 Lillehoj, H.S. et al., *Poul. Sci.*, 73:1685-1693(1994)에 개시된 방법에 따라, R27H4 비분비 닭 마이엘로마 세포주 (일본국 NKK Corporation, Biotechnology Development Center의 Nishinaka S. 박사로부터 구입)를 이용하여 폴리에틸렌 글리콜 4000 (Sigma)에서 실시 하였다. 융합된 세포를 10% 우태아 혈청과 히포크산틴-아미노프테린-티미딘 (HAT; Sigma)이 함유된 이스코브스 변형 둘베코스 배지 (IMDM)에서 혼탁하고, 96-웰 마이크로배양 플레이트에 플레이팅 하였다. 2주 경과한 다음, 효소-결합 면역흡착 분석법 (ELISA: Langone, J.J. et al., *Immunochemical Techniques*, Part A. Methods in Enzymology, 92, Academic Press(1983)))에 따라, 고체 상에 고정된 포자 소체 항원 (상기 Ⅲ에서 수득한 것)으로 하이브리드 클론을 스크리닝 하였다. 목적의 단일클론 항체를 생성하는 하이브리도마는 공급 세포 (feeder cell)로서 조사한 비장 세포 ($2 \times 10^6/\text{웰}$)를 이용하여 제한 회석으로 클로닝 하였다. 이렇게 얻은 하이브리도마 세포를 각각 "2-1, 5D11, 8C3 및 13C8"로 명명하였다. 이와 같이 수득한 하이브리도마 세포주를 분류한 기준은, a) 분비하는 항체의 서브타입 차이, b) 항체의 분비 및 생성율 차이, c) 항원 결합능 차이,

1020010052934

출력 일자: 2002/2/7

및 d) 항원 내에서 인지하는 에피토프의 차이이다. 하이브리도마로부터 유래된 희석하지 않은 배양 혼탁액을 모든 실험에서 이용하였다.

<92> 나. 하이브리도마 세포주 6D-12-G10의 제조

<93> ① CD8⁺ 세포의 준비

<94> 비장을 6-8 주령의 상기 I의 SC 닦으로부터 얻고, 주사기 플런저로 스크린체를 통하여 HBSS 내에서 부수었다. 단일의 세포 혼탁액을 히스토파이크 1077 밀도구배 배지 (Sigma) 상에 놓고 1,800 rpm으로 20분 동안 실온에서 원심분리 하였다.

1020010052934

출력 일자: 2002/2/7

이어, 경계면에 있는 림프구를 파스테르 피펫으로 수득하고 HBSS 내에서 3회 세척하였다. CD8⁺ T 세포 하이브리도마는 비장 림프구와 R 1/5 닝 T 림프종 세포 (미합중국, Animal and Natural Resources Institute, Parasite Biology, Epidemiology, Systemic Laboratory, Lillehoj 박사로부터 구입)를 폴리에틸렌 글리콜 4,000에서 융합하여 얻고, 하이브리도마 세포를 10% 우태아 혈청 및 히포크산틴-아미노프테린-티미딘 (HAT, Sigma)이 함유된 IMDM에서 재현탁 한 다음, 96-웰 마이크로배양 플레이트에 플레이팅 하였다. 10-14일이 경과한 다음, 성장을 나타내는 웰을 24-웰 플레이트에 플레이팅 하고, 10% 우태아 혈청 및 히포크산틴-티미딘이 함유된 IMDM에서 성장시켰다. 하이브리도마 세포가 집합성을 나타낼 때, Lillehoj et al., *Eur. J. Immun.* 18:2059-2065(1988)에 개시된 방법에 따라 CD8 항원을 검출할 수 있는 단일클론 항체를 이용하여 포지티브 웰의 세포의 반을 플로우 시토메트리로 분석 하였다. 염색된 세포를 EPICS 프로필 II 플로우 시토메트리 (Coulter Cooperation, Hialeah, Florida)를 이용하여 분석 하였다. 각각의 하이브리도마에 대하여, 10⁴ 생존 세포를 분석 하였다. CD8⁺ T 세포 하이브리도마는 공급 세포로서 조사한 비장 세포 (2×10^6 /웰)를 이용하여 제한 희석으로 클로닝 하였다 (Lillehoj et al., *Eur. J. Immun.* 18:2059-2065(1988)). CD8⁺ 항원을 발현하는 하이브리도마 세포를 성장시키고, 일부분은 다른 실험을 위하여 냉동 하였다.

<95> ②. 하이브리도마 세포주 6D-12-G10의 제조

<96> CD8⁺ 림프구에 대하여 결합 특이성을 나타내는 콕시디아 항원에 대한 단일클론 항체를 생성하는 하이브리도마를 제조하기 위하여, 우선, 에이메리아 아세르부리나로부터

얻은 상기 III의 항원으로 전흡착된 10^8 CD8⁺ T 세포를 6-12 주령의 상기 I의 SC 닭에 근육내 주사 하였다. 상기 전흡착은 10% 우태아 혈청이 함유된 IMDM 1 ml 내에서 CD8⁺ 림프구와 상기 III의 항원을 2시간 동안 37°C에서 항온 처리하여 실시 하였고, 이어 3회 세척한 다음, 10^8 CD8⁺ T 세포를 HBSS 0.5 ml에서 재현탁하고, 프로인드 불완전 보조액으로 유탁액화 한 다음, 6-12 주령의 상기 I의 SC 닭에 근육내 주사 하였다. 동일한 제제를 이용하여 두 번째 주사를 실시하였고, 추가적인 면역화는 보조제 없는 상기 제제를 이용하여 정맥내 주사를 1 주일 간격으로 실시하여 이루어졌다. 최종적인 부스팅은 세포 융합 3일 전에 정맥내 주사를 하여 실시하였다. 이어, 하이브리도마의 제조는 Nishinaka et al.에 의해 제시된 방법을 이용하여 다음과 같이 실시하였다 (Nishinaka, S. et al., *J. Immunol. Methods.*, 139:217-222(1991); 및 Nishinaka, S. et al., , 58:1053-1056(1996)): 최종 면역화를 실시한 다음 3일 후에, 비장의 단일 세포 혼탁액을 피콜-페이크 밀도 구배를 이용하여 500 g에서 20°C에서 20분 동안 원심분리 하여 얻었다. 세포 융합은 Lillehoj, H.S. et al., *Poul. Sci.*, 73:1685-1693(1994)에 개시된 방법에 따라, R27H4 비분비 닭 마이엘로마 세포주 (일본국, NKK Corporation, Biotechnology Development Center의 Nishinaka S. 박사로부터 구입)를 이용하여 폴리에틸렌 글리콜 4000 (Sigma)에서 실시 하였다. 융합된 세포를 10% 우태아 혈청과 HAT이 함유된 IMDM에서 혼탁하고, 96-웰 마이크로배양 플레이트에 플레이팅 하였다. 2주 경과한 다음, ELISA 방법에 따라, 고체 상에 고정된 포자 소체 항원 (상기 III에서 수득한 것)으로 하이브리드 클론을 스크리닝 하였다. 목적의 단일클론 항체를 생성하는 하이브리도마는 공급 세포로서 조사한 비장 세포 (2×10^6 /웰)를 이용하여 제한

1020010052934

출력 일자: 2002/2/7

회석으로 클로닝 하였다. 이렇게 얻은 하이브리도마 세포를 "6D-12-G10"이라 명명하였다.

<97> V. 중사슬 및 λ-경사슬 가변성 도메인 유전자의 분리 및 증폭

<98> 총 RNA를 Trizol™ 시약 (Life Technologies Inc, USA)을 이용하여 판매자의 프로토콜에 따라 상기 IV에서 얻은 2-1, 5D11, 8C3, 13C8 및 6D-12-G10 하이브리도마 세포로부터 각각 정제하였다. 정제한 총 RNA 5 mg에 우선, DNase I 5 유니트를 첨가하여 지놈 DNA의 오염을 방지하였고, RNase-부재 물에서 재현탁시킨 다음, 50 ng/ μ l 올리고 (dT)₁₂₋₁₅ 프라이머와 혼합하였다. 이어, 혼합물을 10분 동안 70°C까지 가열하고, 42°C에서 5분 동안 항온 처리한 다음, 10x PCR 완충액 2 μ l, 25 mM MgCl₂ 2 μ l, 10 mM dNTPs 1 μ l 및 0.1 M DTT 2 μ l를 포함하는 반응액을 첨가하였다. 그런 다음, Superscript II 역전사 효소 200 유니트를 첨가하고, 42°C에서 50분 동안 항온처리 하였고, 최종적으로 70°C에서 15분 동안 가열하여 반응을 종결시켰다. 잔여 RNA를 제거하기 위하여, RNaseH 1 μ l를 첨가하고 37°C에서 20분 동안 항온 처리 하였다. RNase 절단 이후에, 생성된 cDNA 1/10을 중사슬 및 경사슬의 증폭을 위하여 이용하였다. PCR 반응은 Taq DNA 중합효소 (Promega, USA)를 이용하여 다음과 같이 실시하였다: 95°C, 4분 1 사이클; 95°C 30초, 55°C 30초, 및 72°C 1분, 30 사이클; 및 최종 연장반응 72°C 7분.

<99> PCR 반응시 이용된 프라이머는 다음과 같다: 중사슬의 가변성 부위에 대한 전방향 프라이머는 5'-ggaggagacgtgacttcggt-3', 역방향 프라이머는

1020010052934

출력 일자: 2002/2/7

5'-gccgtgacgtggacgagtcc-3'이며, 경사슬의 가변성 부위에 대한 전방향 프라이머는 5'-taggacggtcagggttgtccc-3', 역방향 프라이머는 gcgctgactcagccgtcctcg-3'이다.

<100> PCR 생성물을 1% 아가로스 젤 상에서 분리하였고, QiaEX II DNA 추출 키트 (Qiagen, USA)를 이용하여 추출하였다. 정제된 PCR 생성물은 pGEM-T 벡터 (Promega, USA)를 이용하여 클로닝하고, Sambrook, J. et al., *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY(1991)에 개시된 방법에 따라 JM109 (Promega)에 형질전환 하였다.

<101> 상술한 실험 전략은 도 1에 도식적으로 나타나 있다.

<102> VI. 클로닝된 가변성 도메인 유전자의 서열 결정

<103> Qiagen 플라스미드 정제 키트를 이용하여 플라스미드 DNA를 준비한 다음, 거대-다이 총결자 사이를 시퀀싱 레디 키트 (PE Applied Biosystems, USA)를 이용하여 ABI 377 자동 서열 결정기로 서열 결정을 하였다. 결정된 서열을 CB 계통의 생식세포 계열 VH1-JH 서열 및 V_{1λ}-J_λ 서열 (Reynaud, C.A. et al., *CeII*, 48:379-388(1987); 및 Reynaud, C.A. et al., *CeII*, 59:171-183(1989))과 비교하여 그 특징을 분석 하였다.

<104> VII. 재조합 scFv 유전자의 제조

<105> 가. 2-1 및 5D11 하이브리도마 세포주로부터 재조합 scFv 유전자의 제조

<106> 2-1 및 5D11 하이브리도마 세포로부터 얻은 상기 V의 단일클론 항체의 가변성 부위 cDNA를 이용하여 오버랩-연장 PCR (Horton, R.M. et al.,

1020010052934

출력 일자: 2002/2/7

Gene, 77:61-68(1989))을 실시하여 가변성 부위 재조합체를 증폭 하였다. 다음과 같이 PCR을 실시하여 V_L -GS 링커- V_H (LH 재조합체) 및 V_H -GS 링커- V_L (HL 재조합체) 증폭물을 얻었다: 중사슬 가변성 부위 및 경사슬 가변성 부위 cDNA 각각 100 ng, 프라이머 50 pmole 및 *Taq* DNA 중합효소 (Promega, USA) 5 유니트를 이용하여 PCR을 15 사이클 동안 실시하였고, 온도 조건은 95°C 1분 및 75°C 4분이고, 최종 연장 반응은 72°C에서 10분 이었다. 이용된 프라이머는 LH 재조합 중, 중사슬인 경우에는 5'-ggcggaggtggctctggcggtggcggatcggccgtgacgttggacgagtcc-3' (역방향 프라이머) 및 5'-ggaggagacgatgacttcggt-3' (전방향 프라이머)이고, 경사슬인 경우에는 5'-gcgctgactcagccgtcctcg-3' (역방향 프라이머) 및 5'-agagccacacctccgcctgaaccgcctccacccggaggagacgatgacttcggt-3' (전방향 프라이머)이고, HL 재조합 중, 중사슬인 경우에는 5'-gccgtgacgttggacgagtcc-3' (역방향 프라이머) 및 5'-agagccacacctccgcctgaaccgcctccacccggaggagacgatgacttcggt-3' (전방향 프라이머)이며, 경사슬인 경우에는 5'-ggcggaggtggctctggcggtggcggatcggcgctgactcagccgtcctcg-3' (역방향 프라이머) 및 5'-taggacggtcagggttgtccc-3' (전방향 프라이머)이다.

<107> PCR 증폭물은 가변성 부위 유전자 이외에 중간에 GS 링커를 포함한다. GS 링커는 글리신 및 세린을 포함하는 15개의 아미노산으로 구성된 올리고펩티드로서, 중사슬 및 경사슬의 가변성 부위를 연결하여 항체의 기능을 하도록 한다. GS 링커의 아미노산 서열은 다음과 같다: N-gggsgggsgggsggg-C

<108> PCR 산물을

1020010052934

출력 일자: 2002/2/7

SfiI 또는 *NotI* 제한효소 자리를 포함하는 scFv (single chain variable fragment) 프라이머를 이용하여 상기한 방법과 동일하게 실시하였고, 95°C 4분 동안 1 사이클, 60°C 1분, 72°C 1분 및 94°C 1분의 조건으로 30 사이클, 최종 연장 반응은 72°C에서 7분 동안 실시 하였다. 이용된 프라이머의 염기 서열은 LH 재조합의 경우에는
5'-gtcctcgcaactgcggcccagccggccatggccgcgctgactcagccgtcctcg-3' (역방향 프라이머, 밑줄은 *Sfi I* 제한 효소 자리이다) 및 5'-ggccacccttgcggccgcggaggagacgatgacttcggt-3' (전방향 프라이머, 밑줄은 *Not I* 제한 효소 자리이다)이고, HL 재조합의 경우에는
5'-gtcctcgcaactgcggcccagccggccatggccgcgtgacgttggacgagtcc-3' (역방향 프라이머, 밑줄은 *Sfi I* 제한 효소 자리이다) 및 5'-ggccacccttgcggccgcgttaggacggtcagggttgtccc-3' (전방향 프라이머, 밑줄은 *Not I* 제한 효소 자리이다)이다.

<109> 재증폭된 산물을 *SfiI* 및 *NotI* (Promega, USA)로 절단한 다음, 5' PeI B 리더 서열 및 3' 헥사히스티딘 표지를 포함하고 pUC 119로부터 유래된 scFv 발현 벡터에 클로닝 하였다 (참조: Kim, J.K. et al., *Eur. J. Immunol.*, 24:542-548(1994)).

<110> 최종적으로 구축된 발현벡터의 유전자 지도는 첨부한 도 6과 같다.

<111> 나. 6D-12-G10 하이브리도마 세포주로부터 재조합 scFv 유전자의 제조

<112> 6D-12-G10 하이브리도마 세포로부터 얻은 상기 V의 단일클론 항체의 가변성 부위 cDNA를 이용하여 오버랩-연장 PCR (Horton, R.M. et al., *Gene*, 77:61-68(1989))을 실시하여 가변성 부위 재조합체를 증폭 하였다. 다음과 같이 PCR을 실시하여 V_H-EK 링커-V_L 증폭물을 얻었다: cDNA는 중사슬 가변성 부위 및 경사슬 가변성 부위 각각

1020010052934

출력 일자: 2002/2/7

100 ng, 프라이머 50 pmole 및 *Taq* DNA 중합효소 (Promega, USA) 5 유니트를 이용하여 PCR을 30 사이클 동안 실시하였고, 95°C, 4분 1 사이클; 55°C 30초, 72°C 1분 및 95°C 30초 30 사이클; 및 최종 연장반응 72°C 7분 이었다. 이용된 프라이머는 중사슬인 경우에는 5'-gtcctcgcaactgcggcccagccggccatggccgcccgtgacgttggacgagtcc-3' (역방향 프라이머, 밑줄은 *Sfi* I 제한 효소 자리이다) 및 5'-ttcaccactccgggttgccgctaccggaaatagagccggaggagacgatgacttcggtccgtggcc-3' (전방향 프라이머)이고, 경사슬인 경우에는 5'-agcggcaaaccgggagtggtaaggtagcactaaaggtgcgctgactcagccgtcctcggtgtcagca-3' (역방향 프라이머) 및 5'-ggccaccttgcggccgcttaggacggtcagggttgtccc-3' (전방향 프라이머, 밑줄은 *Not* I 제한 효소 자리이다)이다.

<113> PCR 증폭물은 가변성 부위 유전자 이외에 중간에 EK 링커를 포함한다. EK 링커는 글루탐산 및 리신을 포함하는 18개의 아미노산으로 구성된 올리고펩티드로서, 중사슬 및 경사슬의 가변성 부위를 연결하여 항체의 기능을 하도록 한다. EK 링커의 아미노산 서열은 다음과 같다: N-gstsgsgkpgsgegstkg-C

<114> PCR 산물을 상기 중사슬의 역방향 프라이머 및 경사슬의 전방향 프라이머를 이용하여 상기한 방법과 동일하게 실시하였고, 95°C 1분, 75°C 4분 및 최종 연장 반응 72°C에서 10분의 조건으로 PCR을 15 사이클 실시하였다.

<115> 재증폭된 산물을 *Sfi* I 및 *Not* I (Promega, USA)로 절단한 다음, 5' PeI B 리더 서열 및 3' 헥사히스티딘 표지를 포함하고 pUC 119로부터 유래된 scFv 발현 벡터에 클로닝 하였다 (참조: Kim, J.K. et al., *Eur. J. Immunol.*, 24:542-548(1994)).

<116> 최종적으로 구축된 발현벡터의 유전자 지도는 첨부한 도 6과 같다.

<117> VIII. scFv 항체의 발현 및 정제

<118> scFv 유전자를 포함하는 상기 VII의 벡터를 이용하여 *E. coli* BMH71-18 (미합중국 텍사스 주립대학 서던웨스턴 미디칼 센타의 E. Sally Ward 박사로부터 구입)를 Hanahan 방법으로 형질전환시켰다 (Kim, J.K. et al., *Eur. J. Immunol.*, 24:542-548(1994)). 형질전환된 세포를, 100 $\mu\text{g}/\text{ml}$ 암피실린 (Sigma, USA)과 1% (w/v) 포도당을 포함하는 2X TY 브로스 (20 g 트립تون, 10 g 이스트 추출물, 10 g NaCl/l ; Difco, USA)에서 하룻밤 동안 30°C에서 일정한 교반을 하면서 배양 하였다. 이어, 배양된 세포를 3,500 rpm에서 10분 동안 실온에서 원심분리하여 세포를 수집하고, 2X TY 브로스를 이용하여 1회 세척하였다. 그런 다음, 세포를 100 $\mu\text{g}/\text{ml}$ 암피실린과 1.0 mM 이소프로필-β-D-티오갈락토피라노시드 (Gold Biotechnology, USA)를 포함하는 2X TY 브로스에 재현탁시키고, 180 rpm으로 교반하면서 25°C에서 5-6시간 동안 유전자 발현을 유도 하였다. 재조합 scFv 항체를 정제하기 위하여, 우선 세포를 4°C에서 원심분리하여 수집한 다음, 250 mM NaCl, 50 mM Tris-HCl, pH 7.5 및 1.0 mg 리소자임 (Sigma) 내에서 초음파 처리하고, 10,000 rpm에서 30분 동안 4°C에서 원심분리하여 세포 조각들을 제거하였다. 이어, 상층액을 Ni-NTA His-결합 레진 컬럼 (Novagen, USA)에 적용하고, 결합된 항체를 수거하였으며, 이러한 크로마토그래피 과정은 제조자가 제공한 프로토콜에 따라 실시하였다. 정제된 항체를 소듐 도데실 살레이트-폴리아크릴아미드 겔 전기영동 (SDS-PAGE) 시료 완충액 (0.125 M Tris-HCl, pH 6.8, 4% SDS, 20% 글리세롤, 10% 2-머르캅토에탄올, 0.004% 브로모페놀 블루)에 재현탁하고, 94°C에서 4분 동안 가열한 다음, Mini-Protein II 전기영동 장치 (Bio-Rad, USA)를 이용하여 15% SDS-폴리아크릴아미드 겔 상에서 전기영동 하였다

1020010052934

출력 일자: 2002/2/7

전기 영동이 종결된 다음, 10% 아세트산/50% 메탄올 내의 0.25% 쿠마시 블루를 이용하여 염색을 실시하였다.

<119> IX. ELISA

<120> 평판 96-웰 마이크로타이터 플레이트 (Costar, USA)를 0.1 M 소듐 카보네이트 완충액 (pH 9.6) 내에서 에이메리아 항원 ($10 \mu\text{g}/\text{ml}$) $100 \mu\text{l}$ 로 4°C 에서 하룻밤 동안 코팅하고, 0.05% 트원-20 (PBS-T)를 포함하는 PBS (pH 7.2)로 3회 세척하였다. 이어, 웰을 1% 우혈청 알부민 (BSA; Sigma)를 포함하는 PBS $200 \mu\text{l}$ 로 1시간 동안 실온에서 블록킹한 다음, PBS-1% BSA 내의 상기 VII에서 수득한 재조합 항체 ($100 \mu\text{g}/\text{ml}$) $100 \mu\text{l}$ 를 첨가하고, 실온에서 2시간 동안 항온 처리하였다. 그런 다음, PBS-T로 3회 세척하고, PBS-1% BSA에서 1:3,000으로 희석된 호스래디쉬 폐록시다제-접합 폴리히스티딘 단일클론 항체 (Sigma) $100 \mu\text{l}/\text{웰}$ 을 첨가한 다음, 실온에서 40분 동안 항온 처리하고, 4회 세척하였다. 폐록시다제 활성은 0.05 M 포스페이트-시트레이트 완충액 (pH 5.0)에서 0.01% (w/v) 테트라메틸벤지딘 (Sigma) $100 \mu\text{l}$ 과 반응시켜 검출하였고, 반응 종결은 2 N H_2SO_4 $50 \mu\text{l}$ 로 실시하였으며, 광학밀도는 마이크로타이터 플레이트 판독기 (Bio-Rad)를 이용하여 450 nm에서 측정하였다.

<121> X. 면역형광 분석 (Immunofluorescence Assay: IFA)

<122> 전-세척 유리 슬라이드 (Corning, USA) 상의 상기 II에서 준비된 공기-건조

1020010052934

출력 일자: 2002/2/7

포자 소체를 재조합 scFv 항체 100 μl 로 실온에서 40분 동안 항온 처리하고, PBS로 3회 세척 하였다. 이어, 슬라이드를 PBS-1% BSA에서 1:3,000으로 희석된 폴리히스티딘 항체 (Sigma) 100 μl 로 40분 동안 실온에서 항온 처리하고, PBS로 4회 세척한 다음, 풀루오레신 이소티오사이아네이트 (FITC)-표지 토키 항-마우스 IgG (PBS-1% BSA에서 1:3,000으로 희석) 100 μl 로 40분 동안 항온 처리하고, PBS로 3회 세척 하였다. 그리고 나서, 슬라이드를 0.01% 에반스 블루로 카운터염색하고, PBS로 3회 세척한 다음, Vectashield 마운팅 미디엄 (Vector, USA)에 마운팅한 다음, 40X 매몰렌즈와 Texas Red/FITC 이중 짜장 필터 세트가 구비된 에피형광 현미경 (Carl Zeiss, 독일국)으로 사진화 하였다.

<123> XI. 면역블롯 분석

<124> 상기 III에서 수득한 에이메리아 항원을 SDS-PAGE 시료 완충액에 재현탁하고, 가열한 다음, 상술한 바와 같이 SDS-PAGE를 실시하였다. 분리된 단백질을 Mini-Protean II 전이 챔버 (Bio-Rad)를 이용하여 Immobilon-P 막 (Millipore, USA)에 전이시키고, 1% 비지방 건조 밀크를 함유하는 PBS 내에서 하룻밤 동안 4°C에서 상기 막을 블록킹한 다음, PBS-T로 2회 세척하였다. 이어, 상기 VII에서 수득한 재조합 scFv 항체 (PBS-1% BSA에서 1:1,600으로 희석)로 40분 동안 실온에서 항온 처리한 다음, 호스래디쉬 폐록시다제-접합 폴리히스티딘 항체 (PBS-1% BSA에서 1:3,000으로 희석)로 40분 동안 항온 처리하였다. 그런 다음, 상기 막을 PBS-T로 5회, 증류수로 5회 세척하고, Sigma Fast DAB 폐록시다제 기질 (Sigma)을 이용하여 발색을 유도하였다.

<125> 실험 결과

<126> I. 닭 단일클론 항체의 중사슬 및 λ -경사슬의 가변성 부위의 PCR 증폭

<127> 상기 실험에서 얻은 PCR 증폭물을 아가로스 젤에서 전기영동하여 그 크기를 확인하였다 (참조: 도 2). 첨부 도 2에서 A는 중사슬에 대한 것이고, 1번 레인은 5D11, 2번 레인은 8C3, 3번 레인은 13C8 및 4번 레인은 2-1 하이브리도마에 대한 것이며, B는 λ -경사슬에 대한 것이고, 5번 레인은 5D11, 6번 레인은 8C3, 7번 레인은 13C8 및 8번 레인은 2-1 하이브리도마에 대한 것이다. 도 2에서 확인할 수 있듯이, 중사슬의 DNA 크기는 약 340 bp이고, λ -경사슬의 DNA 크기는 약 325 bp이다. 상기 실험 방법에 기재된 바와 같이, cDNA 합성 전에 DNase 절단을 실시하였기 때문에, 지금 DNA로부터의 PCR 증폭 오염은 배제된다.

<128> II. 닭 중사슬 및 λ -경사슬의 클로닝된 가변성 부위의 서열 분석

<129> 하이브리도마 2-1, 5D11, 13C8, 8C3 및 6D-12-G10으로부터 분리된 중사슬의 가변성 부위에 대한 서열은 서열목록의 서열 17, 서열 19, 서열 21, 서열 23 및 서열 38에 각각 나타나 있고, λ -경사슬의 가변성 부위에 대한 서열은 서열 25, 서열 27, 서열 29, 서열 31 및 서열 40에 각각 나타나 있다.

<130> 또한, CB 계통의 생식세포 계열 VH1-JH 서열 및 V 1_{λ} -J $_{\lambda}$ 서열과의 서열 비교는 도 3a, 도 3b, 도 3c 및 도 3d에 나타나 있다. 도 3a 및 도 3b에서 생식세포 계열과 동일성을 나타내는 부위는 점으로, 해당하는 서열이 없는 부위는 대쉬로 나타내었다. 도

1020010052934

출력 일자: 2002/2/7

3c 및 도 3d에서 생식세포 계열과 동일성을 나타내는 부위는 별표 (*), 해당하는 서열이 없는 부위는 콜론 (:)으로 나타내었다.

<131> 상보성 결정 부위 (complementarity determining region: 이하, "CDR"이라 한다) 및 PCR 프라이머 부위는 생식세포 계열 서열에 표시되어 있고, λ -경사슬에서의 염기 치환 및 추가는 각각 볼드체 및 이태릭체로 표시되어 있다. 한편, 프레임워크 (FR) 및 CDR은 Kabat, E.A. et al., Sequences of proteins of immunological interest. U.S. Dept. Health and Human Services, NIH publication No. 91-3242, 5th ed.(1991)에 개시된 방법에 따라 결정하였다.

<132> 5종의 단일클론 항체 및 생식세포 계열의 서열 비교를 통하여, 서열의 차이는 주로 CDR에서 이루어짐을 확인하였다. 예를 들어, 2-1 클론의 λ -경사슬의 CDR1에서 15개의 뉴클레오티드 (gctggaaagttactat)의 삽입이 확인되었고, 13C8 및 8C3의 CDR3도 각각 15개 뉴클레오티드 (gatagtgattatgtt)의 삽입 및 6개 뉴클레오티드 (atttat)의 삽입이 확인되었다. 결손은 4종의 단일클론 항체에서 확인되었고, 예를 들어, 2-1의 CDR3에서 3개의 뉴클레오티드 (gca)가 결손되어 있고, 13C8 및 8C3의 CDR3에서 3개의 뉴클레오티드 (agc)가 결손되어 있으며, 6D-12-G10의 V_L cDNA의 CDR3에서 3개의 뉴클레오티드가 결손되어 있다.

<133> 본 발명에 의해 규명된 λ -경사슬의 가변성 부위의 서열 및 CB 계통으로부터 유래된 25개의 유사 유전자 (pseudogenes; Reyanud, C.A., et al.,

Cell, 48:379-388(1987))와 다른 닭 계통의 공지된 유사 유전자 (Kondo, T.H. et al., , 23:245-249(1993))의 서열을 비교하여 유전자 역전을 확인하였고, 그 결과는 도 5에 나타나 있다. 예를 들어, 2-1 클론의 CDR1 및 CDR2는 ψ V λ 8로부터, 5D11은 ψ V λ 14와 ψ V λ 7로부터, 8C3은 ψ V23와 ψ V12로부터, 13C8은 ψ V14와 ψ V12 또는 ψ V13으로부터 유래된 것으로 확인 되었다. 한편, 6D-12-G10의 V_L cDNA에서 196 bp 부위 (뉴클레오티드 49-244)는 유사 유전자 ψ 7과 동일하다.

<134> 이렇게 확인된 유전자 역전은 재배열된 가변성 유전자에서의 유전자 역전에 대하여 이미 발표된 것 (Lillehoj, H.S. et al., *Avian Dis.*, 44:408-425(2000))과 유사한 특성을 나타내었다. 공여 유사 유전자와 생식세포 계통 유전자의 경계는 명확하지 않았고, 때때로 1개 이상의 후보 유사 유전자가 확인되었으며, 이는 다수의 유전자 역전이 1개의 가변성 부위에서 발생 되었음을 보여준다.

<135> 상술한 실험 결과는, 본 발명에 의해 클로닝된 유전자와 상기 유전자의 서열에 가장 유사한 공지된 생식세포 계열의 서열의 차이는 유사 유전자-VL 유전자 서열의 유전자 역전 (Reyanud, C.A., et al., *Cell*, 48:379-388(1987))에 의해 이루어진다는 것을 명확하게 나타낸다. 또한, 도 3에서 확인할 수 있듯이, V λ 1 유전자에서 16개의 단독 염기 치환이 확인되었고, 이러한 결과는 체세포 고변이 (hypermutation)의 가능성 나타내는 것이다. 상기 16개의 염기 치환 가운데, 8개의 변이는 CDR에서, 나머지 8개는 FR에서 발생 하였다. CDR에서의 점 돌연변이의 클러스터 (8개 중 7개)는 CDR3에서 발견 되기 때문에, CDR3에서의 염기 치환은 체세포 고변이로 추측된다.

<136> 상술한 실험 결과는 하이브리도마로부터 유래된 성숙 면역글로불린에 대한 것이므로, B 세포의 친화성 선택의 결과에 의해 CDR에는 더욱 더 많은 변이가 축적될 것으로

추측된다. 서열 비교 및 분석은 중사슬에 대해서는 언급되어 있지 않은 바, 이는 유사 유전자-VH 서열 및 생식세포계통 D 부위에 대한 완전한 규명이 이루어져 있지 않기 때문이다 (Reynaud, C.A. et al., *Cell*, 59:171-183(1989); 및 Rose, M.E. et al., , CRC Press, Boca Raton, Florida, p.275(1987)). 그러나, 도 3 및 도 4에서 확인할 수 있듯이, 본 발명의 4종의 클론과 생식세포계통의 서열의 차이는 주로 중사슬의 CDR에서 발생하였다.

<137> 화이트 레그흔 계통에 대한 생식세포계 및 유사 유전자 서열은 현재까지도 규명되어 있지 않으나, 본 발명에서 이용된 프라이머는 PCR에 의한 닦 가변성 부위 유전자를 획득하는 데 유용하다. 이와 같은 결론은, 대부분의 화이트 레그흔 계통에서 중사슬 및 λ -경사슬의 가변성 부위의 5' 및 3' 말단에서 DNA 다형성이 거의 발생하지 않는 사실에 의해서도 증명된다 (Benatar, T. et al., *Eur. J. Immunol.*, 23:2448(1993)).

<138> 한편, 하이브리도마 2-1, 5D11, 13C8, 8C3 및 6D-12-G10으로부터 분리된 중사슬의 가변성 부위에 대한 아미노산 서열은 서열목록의 서열 18, 서열 20, 서열 22, 서열 24 및 서열 39에 각각 나타나 있고, λ -경사슬의 가변성 부위에 대한 아미노산 서열은 서열 26, 서열 28, 서열 30, 서열 32 및 서열 41에 각각 나타나 있다. 또한, CB 계통의 생식세포 계열 VH1-JH 서열 및 $V1_{\lambda}$ - J_{λ} 서열과의 서열 비교는 도 4a 및 도 4b에 나타나 있다. 도 4a 및 도 4b에서 생식세포 계열과 동일성을 나타내는 부위는 점으로, 해당하는

출력 일자: 2002/2/7

1020010052934

서열이 없는 부위는 대쉬로 나타내었으며, 중사슬에서의 D 유전자의 아미노산 서열은 X
로 표시하였다.

<139> 도 4a 및 도 4b에서 확인되는 클로닝된 유전자 및 CB 계통의 생식세포 계열의 아미노산 서열의 차이는 도 3a 및 도 3b에서 확인되는 결과와 일치하며, 이는 클로닝된 유전자 및 생식세포 계열의 차이는 중사슬 및 λ -경사슬의 CDR에서 주로 발생한다는 것을 보여준다.

<140> 도 4에서 볼 수 있듯이, 본 발명의 4종의 클론은 이들의 CDR의 아미노산 서열은 각각 매우 상이하다. 항원 결합 특이성은 중사슬 및 경사슬의 CDR에 의해 주로 결정되기 때문에, 상기한 사실은 각각의 클론이 에이메리아 표면 항원의 다른 에피토프를 인식하고 있음을 나타낸다.

<141> 결론적으로, 본 발명에 의해 규명된 모든 서열은 중사슬 및 λ -경사슬에서 단독의 재배열된 가변성 유전자의 유전자 전환에 대한 충분한 정보를 제공한다. 더욱이, 닭에서의 면역글로불린 유전자 다양성을 초래하는 유전자 역전은 본 발명의 프라이머를 이용하여 닭 재조합 항체 단편을 생산할 수 있는 가능성을 보다 개선시킨다.

<142> III. scFv 유전자의 클로닝 및 발현

<143> 상기 실험 방법 VII에서 구축된 2-1, 5D11, 13C8 및 8C3로부터 유래되는 scFv 재조

합의 크기를

NotI 효소로 절단하여 확인하였고, 그 결과 절단 전의 플라스미드의 크기는 약 4.0 kb이며, 절단 후, 삽입 서열 (경사슬의 가변성 부위 및 중사슬의 가변성 부위를 인코딩하는 유전자)의 크기는 약 720-750 bp로 확인 되었다. 또한, 6D-12-G10으로부터 유래된 scFv 재조합도 도 9a에서 볼 수 있듯이, *NotI* 효소로 절단 후의 크기가 약 4.0 kb이었으며, 비재조합 플라스미드의 크기 보다 약 720-750 bp보다 컸다. 이는 6D12HL 삽입 서열에 따른 크기의 차이이다.

<144> 대장균 숙주 세포에서의 발현을 통해 수득한 정제된 scFv은 5D11LH, 5D11HL, 2-1LH 및 2-1HL의 경우에는 배양물 1 l 당 약 5 mg 이었고, 6D12HL의 경우에는 약 7 mg/l 이었고, 이와 같은 결과는 수용성의 안정되고 기능성을 나타내는 scFv 담 항체가 단백질 발현의 가장 바람직한 숙주인 원핵세포에서 항상성을 갖고 고수율로 수득할 수 있음을 나타내는 것이다. 결국, 하이브리도마 세포를 이용할 경우의 문제점들이 극복된다. 즉, 하이브리도마 세포를 이용하는 경우에는 배지 배양물 1 l 당 0.1 mg 이하의 항체를 얻을 수 있지만, 본 발명의 발현 벡터를 이용하여 항체를 생산하는 경우에는 단시간 내에 50배-70배의 항체를 얻을 수 있다.

<145> 또한, 도 7에서 볼 수 있듯이, 정제된 재조합 항체, 5D11LH, 5D11HL 및 2-1LH는 약 31 kDa의 분자량을 나타내었고, 2-1HL 항체는 약 30 kDa의 분자량을 나타내었다. 한편, 도 9b에서 볼 수 있듯이, 정제된 재조합 항체 6D12HL은 약 31.0 kDa의 분자량을 나타내었다.

1020010052934

출력 일자: 2002/2/7

<146> IV. scFv 항체의 항원 결합 특성

<147> 상기 실험 방법 VIII에서 클로닝 및 발현된 5D11LH, 5D11HL, 2-1LH 및 2-1HL scFv 항체의 항원 결합 특성을 ELISA, IFA 및 면역블롯 분석을 실시하여 확인하였다. 도 8에서 확인할 수 있듯이, 항체 2-1LH, 5D11LH 및 5D11HL은 에이메리아 아세르부리나 포자 소체 항원에 대하여 매우 강한 결합 활성을 나타내었으나, 2-1HL 항체는 에이메리아 항원에 대하여 결합 활성을 나타내지 않았다. 한편, 도 8에서 대조군은 BSA 네가티브 대조군이고, 별 표시는 대조군과 유의적으로 차이가 나는 군을 나타낸 것이다. IFA 결과에 따르면, 상기 ELISA 결과와 유사하게 2-1LH, 5D11LH 및 5D11HL 항체는 에이메리아 아세르부리나의 표면 항원에 대하여 결합 활성을 나타내었다.

<148> 한편, scFv 항체는 일반적으로 V_H -링커- V_L (HL) 순서로 구축이 되지만 (de Haard H, Henderikx P., et al., *Adv. Drug Deliv. Rev.*, 31:5-31(1998)), 본 발명에 있어서는 H-L 항체보다 LH 항체 (5D11LH 항체 및 2-1LH 항체)가 보다 월등한 항원 결합능을 갖고 있다. 상술한 내용 및 도 8에서 확인할 수 있듯이, 2-1HL은 에이메리아 항원에 대하여 반응성을 나타내지 않았다.

<149> 마우스 H-L 조합은 기능적인 항체를 생성하지 못했고, 이는 항원 결합능을 위한 V_H 및 V_L 의 N- 및/또는 C-말단 부위에 대한 요구성에 기인한다는 공지 문헌 (de Haard H, Henderikx P., et al., *Adv. Drug Deliv. Rev.*, 31:5-31(1998); 및 Padlan, E.A., *Mol. Immunol.*, 28:489-498(1991))의 내용은, 상술한 본 발명의 결과의 중요성을 보다 강조하는 것이다.

<150> 6D12HL에 대한 면역블롯 결과를 보여 주는 도 10에서, 17.0 kDa의 에이메리아 아세르부리나 단백질이 6D12HL 항체에 의해 블로킹 되어 검출됨을 확인할 수 있다. 도 10에서 1번 레인은 시료를 로딩한 것이고, 2번 레인은 분자량 마커를 로딩한 것이다. 6D12HL에 대한 ELISA 실험 결과를 보여 주는 도 11에서, 6D12HL scFv 항체가 에이메리아 아세르부리나 포자 소체의 수용성 항원에 대하여 양-의존적 반응성을 나타냄을 확인할 수 있다. 또한, IFA 결과에 따르면, 상기 ELISA 결과와 유사하게 6D12HL 항체는 에이메리아 아세르부리나의 표면 항원에 대하여 결합 활성을 나타냄을 확인할 수 있었다.

<151> 본 발명에 의해 구축된 scFv 재조합 항체는 상기한 바와 같이 그 크기가 약 31 kDa, 즉 완전한 IgG의 크기의 약 1/5 정도이고, 항원에 대한 결합능을 갖는 항체로서의 기능을 갖는 것이다. 결국, 본 발명의 scFv 재조합 항체는 우수한 조직 투과 특성을 나타내며, 이러한 특성은 에이메리아 기생충의 침투 특성에 비추어 보건대 중요한 요소이다. 더욱이, 본 발명의 scFv 재조합 항체는 대장균과 같은 원핵세포 숙주를 통하여 대량으로 얻을 수 있기 때문에, 조류 콕시듐증의 수동적 면역화에 이용될 수 있고, 에이메리아 백신 항원에 대한 친화성 정제에 이용될 수 있다.

【발명의 효과】

<152> 본 발명은 조류 콕시듐증을 유발하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 신규한 항체의 중사슬 및 경사슬의 가변성 부위 그리고 그를 코딩하는 DNA를 제공한다. 또한, 본 발명은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소

체 표면 항원에 대하여 반응하는 신규한 scFv (single chain variable fragment) 항체 및 그를 코딩하는 DNA를 제공한다. 한편, 본 발명은 조류 콕시듐증을 유발하는 에이메리아 종의 포자소체 표면 항원에 대한 신규한 scFv의 제조방법 및 이에 이용되는 scFv 발현용 벡터를 제공한다. 본 발명의 scFv 재조합 항체는 항체로서의 기능을 충분히 발휘하면서도, 그 작은 크기 때문에 우수한 조직 투과 특성을 나타내고, 대장균과 같은 원핵세포 숙주를 통하여 대량으로 얻을 수 있으며, 조류 콕시듐증의 수동적 면역화에 이용될 수 있고, 에이메리아 백신 항원에 대한 친화성 정제에 이용될 수 있다.

【특허청구범위】**【청구항 1】**

서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위.

【청구항 2】

서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위.

【청구항 3】

서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA.

【청구항 4】

제 3 항에 있어서, 상기 DNA는 서열번호 17, 서열번호 19, 서열번호 21, 서열번호 23 및 서열번호 37로 구성된 군으로부터 선택되는 뉴클레오티드 서열을 갖는 것을 특징으로 하는 DNA.

【청구항 5】

서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA.

【청구항 6】

제 5 항에 있어서, 상기 DNA는 서열번호 25, 서열번호 27, 서열번호 29, 서열번호 31 및 서열번호 39로 구성된 군으로부터 선택되는 뉴클레오티드 서열을 갖는 것을 특징으로 하는 DNA.

【청구항 7】

하기의 중사슬의 가변성 부위 및 경사슬의 가변성 부위가 연결되어 이루어진 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체:

(a) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위; 및

(b) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위.

【청구항 8】

제 7 항에 있어서, 상기 중사슬의 가변성 부위가 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위가 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드인 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

【청구항 9】

제 7 항에 있어서, 상기 중사슬의 가변성 부위가 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위가 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드인 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

【청구항 10】

제 7 항에 있어서, 상기 중사슬의 가변성 부위가 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위가 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드인 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

1020010052934

출력 일자: 2002/2/7

【청구항 11】

제 7 항에 있어서, 상기 중사슬의 가변성 부위가 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위가 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드인 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

【청구항 12】

제 7 항에 있어서, 상기 중사슬의 가변성 부위가 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드인 경우에는 상기 경사슬의 가변성 부위가 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드인 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

【청구항 13】

제 7 항에 있어서, 상기 scFv 항체는 중사슬의 가변성 부위 및 경사슬의 가변성 부위 사이에 링커를 추가적으로 포함하는 것을 특징으로 하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 항체.

【청구항 14】

하기의 중사슬의 가변성 부위를 코딩하는 DNA 및 경사슬의 가변성 부위를 코딩하는 DNA가 연결되어 이루어진 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv를 코딩하는 DNA:

- (a) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 및
- (b) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA.

【청구항 15】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것을 특징으로 하는 DNA.

1020010052934

출력 일자: 2002/2/7

【청구항 16】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것을 특징으로 하는 DNA.

【청구항 17】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것을 특징으로 하는 DNA.

【청구항 18】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것을 특징으로 하는 DNA.

【청구항 19】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA 및 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA가 연결되어 이루어진 것을 특징으로 하는 DNA.

1020010052934

출력 일자: 2002/2/7

【청구항 20】

제 14 항에 있어서, 상기 scFv를 코딩하는 DNA는 중사슬 가변성 부위를 코딩하는 DNA 서열 및 경사슬 가변성 부위를 코딩하는 DNA 서열 사이에 링커를 코딩하는 DNA 서열이 추가적으로 포함하는 것을 특징으로 하는 DNA.

【청구항 21】

제 14 항 내지 제 20 항 중 어느 한 항에 있어서, 상기 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이고, 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이며, 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 21의 DNA이고, 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 23의 DNA이며, 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 37의 DNA인 것을 특징으로 하는 DNA.

【청구항 22】

제 14 항 내지 제 20 항 중 어느 한 항에 있어서, 상기 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 25의 DNA이고, 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 27의 DNA이며, 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 29의 DNA이고, 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 31의

1020010052934

출력 일자: 2002/2/7

DNA이며, 그리고 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 39의 DNA인 것을 특징으로 하는 DNA.

【청구항 23】

다음의 단계를 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv의 제조방법:

(a) (i) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 그리고 (ii) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA를 포함하는 scFv 유전자 재조합물을 발현 벡터 내로 클로닝 하는 단계;

(b) 상기 발현 벡터로 숙주 세포를 형질전환 하는 단계; 그리고

(c) 상기 형질전환된 숙주 세포를 이용하여 scFv를 발현하여 scFv를 수득하는 단계.

1020010052934

출력 일자: 2002/2/7

【청구항 24】

제 23 항에 있어서, 상기 숙주 세포는 원핵 세포인 것을 특징으로 하는 scFv의 제조방법.

【청구항 25】

제 24 항에 있어서, 상기 원핵 세포는 대장균인 것을 특징으로 하는 scFv의 제조방법.

【청구항 26】

제 23 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 15의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 27】

제 23 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 16의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 28】

제 23 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 17의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv의 제조방법.

1020010052934

출력 일자: 2002/2/7

【청구항 29】

제 23 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 18의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 30】

제 23 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 19의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 31】

제 23 항 내지 제 30 항 중 어느 한 항에 있어서, 상기 scFv 유전자 재조합물은 중사슬 가변성 부위를 코딩하는 DNA 및 경사슬 가변성 부위를 코딩하는 DNA 사이에 링커를 코딩하는 서열이 추가적으로 포함하는 것을 특징으로 하는 scFv의 제조방법.

【청구항 32】

제 23 항 내지 제 30 항 중 어느 한 항에 있어서, 상기 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이고, 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이며, 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 21의 DNA이고, 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 23의

DNA이며, 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 37의 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 33】

제 23 항 내지 제 30 항 중 어느 한 항에 있어서, 상기 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 25의 DNA이고, 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 27의 DNA이며, 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 29의 DNA이고, 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 31의 DNA이며, 그리고 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 39의 DNA인 것을 특징으로 하는 scFv의 제조방법.

【청구항 34】

다음을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 scFv 발현용 벡터:

(a) (i) 서열번호 18, 서열번호 20, 서열번호 22, 서열번호 24 및 서열번호 38로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (

Eimeria spp.)의 포자소체 표면 항원에 대한 항체의 중사슬의 가변성 부위를 코딩하는 DNA; 그리고 (ii) 서열번호 26, 서열번호 28, 서열번호 30, 서열번호 32 및 서열번호 40로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 에이메리아 종 (*Eimeria spp.*)의 포자소체 표면 항원에 대한 항체의 경사슬의 가변성 부위를 코딩하는 DNA를 포함하는 scFv 유전자 재조합물; 그리고

(b) 상기 scFv 유전자 재조합물에 작동적으로 연결된 프로모터.

【청구항 35】

제 34 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 15의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 36】

제 34 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 16의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 37】

제 34 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 17의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

1020010052934

출력 일자: 2002/2/7

【청구항 38】

제 34 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 18의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 39】

제 34 항에 있어서, 상기 scFv 유전자 재조합물은 상기 청구항 19의 scFv를 코딩하는 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 40】

제 34 항 내지 제 39 항 중 어느 한 항에 있어서, 상기 scFv 유전자 재조합물은 중사슬 가변성 부위를 코딩하는 DNA 및 경사슬 가변성 부위를 코딩하는 DNA 사이에 링커를 코딩하는 서열이 추가적으로 포함하는 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 41】

제 34 항 내지 제 39 항 중 어느 한 항에 있어서, 상기 서열번호 18의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이고, 서열번호 20의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 17의 DNA이며, 서열번호 22의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 21의 DNA이고, 서열번호 24의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 23의

1020010052934

출력 일자: 2002/2/7

DNA이며, 서열번호 38의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 38의 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 42】

제 34 항 내지 제 39 항 중 어느 한 항에 있어서, 상기 서열번호 26의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 25의 DNA이고, 서열번호 28의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 27의 DNA이며, 서열번호 30의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 29의 DNA이고, 서열번호 32의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 31의 DNA이며, 그리고 서열번호 40의 아미노산 서열을 포함하는 폴리펩티드를 코딩하는 DNA는 서열번호 39의 DNA인 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 43】

제 34 항 내지 제 39 항 중 어느 한 항에 있어서, 상기 scFv 발현용 벡터는 상기 scFv 유전자 재조합물의 업스트림에 리더 서열을 코딩하는 DNA 서열을 추가적으로 포함하는 것을 특징으로 하는 scFv 발현용 벡터.

【청구항 44】

제 34 항에 있어서, 상기 프로모터는 pL^{λ} 프로모터, trp 프로모터 및 lac 프로모터 및 T7 프로모터로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 scFv 발현용 벡터

【청구항 45】

제 34 항에 있어서, 상기 scFv 발현용 벡터는 상기 scFv 유전자 재조합물의 다운스 트림에 글루타티온 S-트랜스퍼라제, 말토스 결합 단백질, FLAG 또는 6x His을 코딩하는 DNA 서열을 추가적으로 포함하는 것을 특징으로 하는 scFv 발현용 벡터.

【도면】

【도 1】

【도 2】

【도 3a】

GERMLINE	<u>GCCGTGACGTTGGACGAGTCCGGGGCGGCCTCCAGACGCCCGAAGAGC</u>	50
	CKVHBACK	
2-1HC	G....
5D11HC	G....
13C8HC	G...G
8C3HC	G...G
GERMLINE	<u>GCTCAGCCTCGTCTGCAAGGCCTCCGGTTCACCTTCAGCAGTTACAACA</u>	100
	CDR1	
2-1HC	CC. TGG..
5D11HC	G.....
13C8HC	G.....
8C3HC	TGC..
.....	100
.....	100
.....	100
GERMLINE	<u>TGGGTTGGGTGCGACAGGCGCCCCGCAAGGGGCTGGAGTTCTCGCTGGT</u>	150
2-1HC	..ATG.....A.....	GG.....G...
5D11HC	..AT.....	A.A.....G...
13C8HCA.....	A.....G...
8C3HC	..CAC.....C...A....T.A.....	A.A...T.A...
GERMLINE	<u>ATTGAC--AACACTGGTAGATACACAGGCTACGGTCGGCGGTGAAGGG</u>	197
	CDR2	
2-1HC	..AG.CT.....GTA.....C.C.....	197
5D11HC	..AGA.....GTGA.....TAG. T.TA.....G.	197
13C8HC	..A.AAA..TGA.....T.GG..AA.....C.C.....	200
8C3HCT---GCTGG.....G.TAG.....TA.....G.....C.....	197
GERMLINE	<u>CCGTGCCACCATCTCGAGGGACAAACGGGCAGAGCACAGTGAGGCTGCAGC</u>	247
2-1HC	TC.....
5D11HC
13C8HC	A.....
8C3HCG.....	C.....
GERMLINE	<u>TGAACAAACCTCAGGGCTGAGGACACCGGCACCTACTACTGCGCCAAAGCT</u>	297
2-1HC	G.....
5D11HC	T.....AG.
13C8HCC.....T.....GT.....A...G..A.	297
8C3HCCTG.....T.....	297
GERMLINE	<u>D segment</u> <u>JH gene</u>	
	<u>GCTGGTNN</u>	341
	CDR3	
2-1HC	. G. . C. TATTGTGCTGGT-----TG. . G....GA.....	335
5D11HCT. TA. GGTAGTTGGAGAGGT-----T. A....GA.....	338
13C8HCT. AA. AGTGGTTACCC-----GA....C.GA.....	338
8C3HCT. . C. GTGTGGCTATGATTGGTGT-----T.A. A.....	341
GERMLINE	<u>ATGGGGCCACGGGACCGAAGTCATCGTCTCCTCC</u>	375
	CKVHFOR	
2-1HC	369
5D11HC	372
13C8HC	372
8C3HC	375

【도 3b】

GERMLINE	<u>GCGCTGACTCAGCCGTCCCTCGGTGTCAGCGAACCCGGGAGGAACCGCTCAA</u>	50
	CKVLBACK	
2-1LCA.....A.....A.....	50
5D11LCA.....T.....A.....	50
13C8LCA.....T.....	50
8C3LCA.....T.....A.....G.	50
GERMLINE	<u>GATCACCTGCTCCGGGATAGCAGCTAC</u> -----TATGGCT	85
	CDR1	
2-1LCG. G.....GCTGGAAGTTACTAT.....	100
5D11LCGC.....GTATAGG-----	85
13C8LCGC.....TATGG.....	85
8C3LCG. A. A.....	85
GERMLINE	<u>GGTACCAGCAGAAGGCACCTGGCAGTGCCCCGTCACTGTGATCTATGAC</u>	135
2-1LCC.....	150
5D11LCT.....T.....T.....	135
13C8LCT.....T.....	135
8C3LCT.....AT.....	135
GERMLINE	<u>AACACCAACAGACCCCTCGAACATCCCTCACGATTCTCCGGTCCAATC</u>	185
	CDR2	
2-1LCCT....	200
5D11LCGA. G. G.....	185
13C8LCA. G. G.....	185
8C3LCA. G. G.....C.	185
GERMLINE	<u>CGGCTCCACAGCCACATTAACCATCACTGGGTCCGAGCCGACGACAATG</u>	235
2-1LCAA.....A. T. G. G. G.....	250
5D11LCA. G. G.....A.....G. G. G.....	235
13C8LCG. G. G. G.....	235
8C3LCAA.....G. G. G. G.....	235
GERMLINE	<u>CTGTCTATTACTGTGCGAGTACAGACAGCAGCAGTACT</u> -----GCA-----GGTATA	282
	CDR3	=>
2-1LCG. CTTC.....TTA. GT.....	294
5D11LCG. A. G. A. AT. C. TAC.....AT.....	282
13C8LCG. A. G. ---A. ---TGATAGTGATTATGTT.....	294
8C3LCT. GTGCCCTGG. A. T---C. ATTAT. TT.....	285
GERMLINE	<u>TTTGGGGCCGGGACAACCCCTGACCGTCCTA</u>	312
	CKVLFOR	
2-1LC	C.....	324
6D12LC	309
5D11LC	312
13C8LC	324
8C3LC	315

【도 3c】

Germline	<u>GCCGTCACGTGGCAGATC</u> GCCCCCTTCAAGACGCCGAAGCGCTTCACTCTGCAAGGCTTCGGTTACATGGATTACA	120
6D-12-G10	Primer V _A B *****	CDR1 *****

Germline	CCGGGTAACGGCTCGAGTTCTGTCTGT <u>ATTTGACA</u> ACTCTGTAGATACTACAGGTACCCGTCCTGCCAACATCTGGGACAACGGCACAGTGTAGG	240
6D-12-G10	*****A*****AA*****AT***CA*****TG***T***A*****G*****G	240

Germline	<u>ACCGAAGTCATGGTCTCTCC</u>	381
	Primer V _H P	*****
CD-12-C10	*****	*****

【도 3d】

【도 4a】

Germline	AVTLDESGGLQTPGRALSLVCKASGFTFSSYNMGWVRQAPGKGLEFVAG	50
CDR1		
2-1 HC	G.....HG.	50
5D11 HC	G.....D.	50
8C3 HC	GG.....SIGG.	50
13C8 HC	GG.....G.LD.	50
Germline	<u>IDNT-GRYTGYGSAVKGRATISRDNGQSTVRLQLNNLRAEDTGTYYCAKA</u>	99
CDR2		
2-1 HC	S..-.T..Y.AP.....	98
5D11 HC	RSD-.SSIY..A.....L.....S	99
8C3 HC	.AG-.GS.Y..A.Q..V.....L.....L.....F...	99
13C8 HC	.KKND.SW.N.AP.....D..I.V.TRD	100
Germline	<u>AGXXX--XX-----XTAGSIDAWGHGTEIVSS</u>	124
CDR3		
2-1 HC	-GGAY--CA----GCG.D.....	122
5D11 HC	--SY----GSWRGST.D.....	123
8C3 HC	SRCGYDWCS----DN.....	124
13C8 HC	VNSGY-----PD.AD.....	123

【도 4b】

Germline	ALTQPSSVSANPGGTVKITCSGDSSY-----YGWYQQKAPGSAPVTVIY	44
CDR1		
2-1 LC	E.....GG..AGSYY.....A.....	49
5D11 LC	L.E.E.....GRYR.....SS.....	44
8C3 LC	I.E.E.....GNN.....S.....	44
13C8 LC	L.....G----SYG..F..S..P..	44
Germline	<u>DNTNRPSNIPSRSFGSKSGSTATLTITGVRADDEAVYYCASTDSSST---</u>	91
CDR2		
2-1 LC	L...N.....QVE.....G.F..YV--	94
5D11 LC	DK..D.....D.G.....Q.E.....GNA.NNTY--	91
8C3 LC	Y.NK..D.....P..N.....E.....F.GAWE..PI--	91
13C8 LC	W-NK..D.....E.....GNA..NTADSD	94
Germline	<u>-AGIFGAGTTLTVL</u>	104
2-1 LC	--..L.....106	
5D11 LC	-DP.....104	
8C3 LC	YV.....105	
13C8 LC	YV.....108	

1020010052934

출력 일자: 2002/2/7

【5】

Antibody	FR1	CDR1	FR2	CDR2	FR3	CDR3
5D11	ψV4 and ψV27/18/23/24	ψV14	ψV7	ψV7	ψV7/12	ψV12 and V11
8C3	ψV24	ψV23	ψV7	ψV12	ψV7/10/12, ψV2/8/17, and ψV13	ψV13
13C8	ψV4	ψV14	ψV6 and ψV11	ψV14 and ψV12/13	ψV11	ψV12 and ψV20
2-1	ψV4 and ψV5/8/14	ψV8	ψV8	ψV8	ψV8 and ψV14	ψV14 and ψV3

【도 6】

【도 7】

【도 8】

1020010052934

출력 일자: 2002/2/7

【도 9a】

【도 9b】

1020010052934

출력 일자: 2002/2/7

【도 10】

【도 11】

【서열목록】

<110> Avicore Biotechnology Institute Inc. <120> Recombinant ScFv
Antibodies Specific to Eimeria spp. Responsible for Coccidiosis <130>
Avicore-1 <160> 40 <170> KopatentIn 1.71 <210> 1 <211> 21 <212>

DNA <213> Artificial Sequence <220> <223> forward primer for PCR
amplification of heavy chain variable region <400> 1 ggaggagacg
atgacttcgg t 21 <210> 2 <
211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse
primer for PCR amplification of heavy chain variable region <400> 2
gccgtgacgt tggacgagtc c 21 <
210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223>
forward primer for PCR amplification of light chain variable region <
400> 3 taggacggtc agggttgtcc c
21 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220>
<223> reverse primer for PCR amplification of light chain variable
region <400> 4 gcgctgactc agccgtcctc g
21 <210> 5 <211> 51 <212> DNA <213> Artificial Sequence <220>
<223> reverse primer for PCR amplification of heavy chain variable
region <400> 5 ggcggaggta gctctggcgg tggcggatcg gccgtgacgt tggacgagtc c
51 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220>
<223> reverse primer for PCR amplification of heavy chain variable
region <400> 6 ggaggagacg atgacttcgg t
21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220>
<223> reverse primer for PCR amplification of light chain variable
region <400> 7 gcgctgactc agccgtcctc g

21 <210> 8 <211> 51 <212> DNA <213> Artificial Sequence <220>
<223> forward primer for PCR amplification of light chain variable
region <400> 8 agagccacct ccgcctgaac cgccctccacc taggacggtc agggttgtcc c
51 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220>
<223> reverse primer for PCR amplification of heavy chain variable
region <400> 9 gccgtgacgt tggacgagtc c
21 <210> 10 <211> 51 <212> DNA <213> Artificial Sequence <220> <
223> forward primer for PCR amplification of heavy chain variable
region <400> 10 agagccacct ccgcctgaac cgccctccacc ggaggagacg atgacttcgg t
51 <210> 11 <211> 51 <212> DNA <213> Artificial Sequence <220> <
223> reverse primer for PCR amplification of light chain variable
region <400> 11 ggccggaggtg gctctggcgg tggccgatcg gcgctgactc agccgtcctc g
51 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <
223> forward primer for PCR amplification of light chain variable
region <400> 12 taggacggtc agggttgtcc c
21 <210> 13 <211> 55 <212> DNA <213> Artificial Sequence <220> <
<223> reverse primer for PCR amplification of scFv <400> 13 gtcctcgcaa
ctgcggccca gccggccat ggccgcgtg actcagccgt cctcg 55 <210> 14
<211> 39 <212> DNA <213> Artificial Sequence <220> <223> forward
primer for PCR amplification of scFv <400> 14 ggccacctt gcggccgcgg
aggagacgt gacttcgtt 39 <210> 15 <211> 55

<212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR
 amplification of scFv <400> 15 gtcctcgcaa ctgcggccca gccggccat ggccgcccgtg
 acgttggacg agtcc 55 <210> 16 <211> 39 <212> DNA <213>
 Artificial Sequence <220> <223> forward primer for PCR amplification of scFv
 <400> 16 ggccaccctt gcggccgcta ggacggtcag gtttgtccc
 39 <210> 17 <211> 369 <212> DNA <213> chicken hybridoma cell line
 2-1 <220> <221> CDS <222> (1)..(369) <400> 17 gcc gtg acg ttg gac gag
 tcc ggg ggc ggc ctc cag acg ccc gga gga 48 Ala Val Thr Leu Asp Glu Ser
 Gly Gly Gly Leu Gln Thr Pro Gly Gly 1 5 10
 15 gcg ctc agc ctc gtc tgc aag gcc tcc ggg ttc acc ttc agc agc cat
 96 Ala Leu Ser Leu Val Cys Lys Ala Ser Gly Phe Thr Phe Ser Ser His
 20 25 30 ggc atg atg tgg gtg cga
 cag acg ccc ggc aag ggg ctg gag tgg gtc 144 Gly Met Met Trp Val Arg Gln
 Thr Pro Gly Lys Gly Leu Glu Trp Val 35 40
 45 gcg ggt att agc aac act ggt act tac acg tac tac gcg ccg gcg
 gtg 192 Ala Gly Ile Ser Asn Thr Gly Thr Tyr Thr Tyr Tyr Ala Pro Ala Val
 50 55 60 aag ggc cgt gcc
 acc atc tcg agg gac aac ggg cag agc aca gtg agg 240 Lys Gly Arg Ala Thr
 Ile Ser Arg Asp Asn Gly Gln Ser Thr Val Arg 65 70
 75 80 ctg cag ctg aac aac ctc agg gct gag gac acc ggc acc
 tac tac tgc 288 Leu Gln Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Thr Tyr

Tyr Cys	85	90	95
gcc aaa ggt ggt gct tat tgt gct ggt tgt ggt gac atc gac gca			336 Ala
Lys Gly Gly Ala Tyr Cys Ala Gly Cys Gly Gly Asp Ile Asp Ala			
105	110	tgg ggc cac ggg acc gaa gtc atc gtc tcc tcc	
369 Trp Gly His Gly Thr Glu Val Ile Val Ser Ser			
115	120	<210> 18 <211> 123	
<212> PRT <213> chicken hybridoma cell line 2-1 <400> 18 Ala Val Thr Leu Asp			
Glu Ser Gly Gly Leu Gln Thr Pro Gly Gly 1 5			
10	15	Ala Leu Ser Leu Val Cys Lys Ala Ser Gly Phe Thr Phe Ser	
Ser His	20	25	30 Gly Met Met Trp
Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Trp Val 35 40			
45	Ala Gly Ile Ser Asn Thr Gly Thr Tyr Thr Tyr Tyr Ala Pro Ala Val 50		
55	60	Lys Gly Arg Ala Thr Ile Ser Arg Asp Asn Gly Gln Ser Thr	
Val Arg 65	70	75	80 Leu Gln
Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Thr Tyr Tyr Cys 85			
90	95	Ala Lys Gly Gly Ala Tyr Cys Ala Gly Cys Gly Gly Asp Ile	
Asp Ala	100	105	110 Trp Gly His Gly
Thr Glu Val Ile Val Ser Ser 115 120 <210>			
19 <211> 372 <212> DNA <213> chicken hybridoma cell line 5D11 <220> <			
221> CDS <222> (1)..(372) <400> 19	gcc gtg acg ttg gag tcc ggg ggc		
ggc ctc cag acg ccc gga gga	48 Ala Val Thr Leu Asp Glu Ser Gly Gly Gly		

Leu	Gln	Thr	Pro	Gly	Gly	1	5	10										
15	gcg ctc agc ctc gtc tgc aag gcc tcc ggg ttc gac ttc agc agt tac																	
96	Ala	Leu	Ser	Leu	Val	Cys	Lys	Ala	Ser	Gly	Phe	Asp	Phe	Ser	Ser	Tyr		
20																gac atg att tgg gtg cga		
	cag	gcg	ccc	ggc	aag	ggg	ctg	gaa	tac	gtc						144 Asp Met Ile Trp Val Arg Gln		
	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Tyr	Val							35	40	
45																gcg ggt att aga agt gat ggt agt agc ata tac tac ggg gcg gcg		
gtg																192 Ala Gly Ile Arg Ser Asp Gly Ser Ser Ile Tyr Tyr Gly Ala Ala Val		
50																aag ggc cgt gcc		
	acc	atc	tcg	agg	gac	aac	ggg	cag	agt	act	ctg	agg				240 Lys Gly Arg Ala Thr		
	Ile	Ser	Arg	Asp	Asn	Gly	Gln	Ser	Thr	Leu	Arg					65	70	
75																ctg cag ctg aac aac ctc agg gct gag gac acc ggc acc		
	tat	tac	tgc													288 Leu Gln Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Thr Tyr		
	Tyr	Cys														85	90	95
	gcc	aaa	agt	tct	tat	ggt	agt	tgg	aga	ggt	tct	act	ggt	gac	atc	gac		336 Ala
	Lys	Ser	Ser	Tyr	Gly	Ser	Trp	Arg	Gly	Ser	Thr	Gly	Asp	Ile	Asp			100
105																gca tgg ggc cac ggg acc gaa gtc atc gtc tcc		
tcc																372 Ala Trp Gly His Gly Thr Glu Val Ile Val Ser Ser		
115																<210> 20 <211> 124		
<212>	PRT	<213>	chicken	hybridoma	cell	line	5011	<400>	20	Ala	Val	Thr	Leu					
Asp	Glu	Ser	Gly	Gly	Leu	Gln	Thr	Pro	Gly	1						5		

10 15 Ala Leu Ser Leu Val Cys Lys Ala Ser Gly Phe Asp Phe Ser
 Ser Tyr 20 25 30 Asp Met Ile Trp
 Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Val 35 40
 45 Ala Gly Ile Arg Ser Asp Gly Ser Ser Ile Tyr Tyr Gly Ala Ala Val 50
 55 60 Lys Gly Arg Ala Thr Ile Ser Arg Asp Asn Gly Gln Ser Thr
 Leu Arg 65 70 75 80 Leu Gln
 Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Thr Tyr Tyr Cys 85
 90 95 Ala Lys Ser Ser Tyr Gly Ser Trp Arg Gly Ser Thr Gly Asp
 Ile Asp 100 105 110 Ala Trp Gly His
 Gly Thr Glu Val Ile Val Ser Ser 115 120
 <210> 21 <211> 372 <212> DNA <213> chicken hybridoma cell line 13C8
 <220> <221> CDS <222> (1)..(372) <400> 21 gcc gtg acg ttg gac gag tcc
 ggg ggc ggc ctc cag acg ccc gga gga 48 Ala Val Thr Leu Asp Glu Ser Gly
 Gly Gly Leu Gln Thr Pro Gly Gly 1 5 10
 15 ggg ctc agc ctc gtc tgc aag ggc tcc ggg ctc gac ttc agc agt tat
 96 Gly Leu Ser Leu Val Cys Lys Gly Ser Gly Leu Asp Phe Ser Ser Tyr
 20 25 30 35 40
 cag gca ccc ggc aag ggg ctg gaa ttc gtc 144 Ala Met Gly Trp Val Arg Gln
 Ala Pro Gly Lys Gly Leu Glu Phe Val 35 40
 45 gcg ggt att aaa aaa aat gat ggt agt tgg aca aac tac gcg ccg
 gcg 192 Ala Gly Ile Lys Lys Asn Asp Gly Ser Trp Thr Asn Tyr Ala Pro Ala

1020010052934

출력 일자: 2002/2/7

50	55	60	gtg cag ggc cgt
gcc acc atc tcg agg gac aac ggg caa agc aca gtg 240 Val Gln Gly Arg Ala			
Thr Ile Ser Arg Asp Asn Gly Gln Ser Thr Val	65		70
75	80	agg ctg cag ctg aac aac ctc agg gct gac gac acc ggc	
atc tac gtc	288	Arg Leu Gln Leu Asn Asn Leu Arg Ala Asp Asp Thr Gly Ile	
Tyr Val	85	90	95
tgc acc aga gat gtt aat agt ggt tac cct gat gct gct gac atc gac		336	Cys
Thr Arg Asp Val Asn Ser Gly Tyr Pro Asp Ala Ala Asp Ile Asp		100	
105	110	gca tgg ggc cac ggg acc gaa gtc atc gtc tcc	
tcc	372	Ala Trp Gly His Gly Thr Glu Val Ile Val Ser Ser	
115	120	<210> 22 <211> 124	
<212> PRT <213> chicken hybridoma cell line 13C8 <400> 22 Ala Val Thr Leu			
Asp Glu Ser Gly Gly Leu Gln Thr Pro Gly Gly	1	5	
10	15	Gly Leu Ser Leu Val Cys Lys Gly Ser Gly Leu Asp Phe Ser	
Ser Tyr	20	25	30 Ala Met Gly Trp
Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Phe Val		35	40
45	Ala Gly Ile Lys Lys Asn Asp Gly Ser Trp Thr Asn Tyr Ala Pro Ala	50	
55	60	Val Gln Gly Arg Ala Thr Ile Ser Arg Asp Asn Gly Gln Ser	
Thr Val	65	70	75
80 Arg Leu			
Gln Leu Asn Asn Leu Arg Ala Asp Asp Thr Gly Ile Tyr Val		85	
90	95	Cys Thr Arg Asp Val Asn Ser Gly Tyr Pro Asp Ala Ala Asp	

Ile Asp	100	105	110 Ala Trp Gly His
Gly Thr Glu Val Ile Val Ser Ser		115	120
<210> 23 <211> 375 <212> DNA <213> chicken hybridoma cell line 8C3			
<220> <221> CDS <222> (1)..(375) <400> 23 gcc gtg acg ttg gac gag tcc			
ggg ggc ggc ctc cag acg ccc gga gga		48 Ala Val Thr Leu Asp Glu Ser Gly	
Gly Gly Leu Gln Thr Pro Gly Gly	1	5	10
15 ggg ctc agc ctc gtc tgc aag gcc tcc ggg ttc tct atc ggc ggt tac			
96 Gly Leu Ser Leu Val Cys Lys Ala Ser Gly Phe Ser Ile Gly Gly Tyr			
20 25 30 atc atg cac tgg gtg cgc			
cag acg cct gga aag ggg ctg gaa tac gtt		144 Ile Met His Trp Val Arg Gln	
Thr Pro Gly Lys Gly Leu Glu Tyr Val		35	40
45 gca ggt att gat gct ggt ggt agc aca tac tac ggg gcg gcg			
gtg 192 Ala Gly Ile Asp Ala Gly Gly Ser Thr Tyr Tyr Gly Ala Ala Val			
50 55 60 cag ggc cgt gcc			
acc gtc tcg agg gac aac ggg cag agc aca ctg agg		240 Gln Gly Arg Ala Thr	
Val Ser Arg Asp Asn Gly Gln Ser Thr Leu Arg	65	70	
75 80 ctg cag ctg aac aac ctc agg ctg gag gac acc ggc acc			
tac ttc tgc 288 Leu Gln Leu Asn Asn Leu Arg Leu Glu Asp Thr Gly Thr Tyr			
Phe Cys 85 90 95			
gcc aaa gct tct cgg tgt ggc tat gat tgg tgt tct gct gat aac atc		336 Ala	
Lys Ala Ser Arg Cys Gly Tyr Asp Trp Cys Ser Ala Asp Asn Ile		100	

105 110 gac gca tgg ggc cac ggg acc gaa gtc atc gtc
 tcc tcc 375 Asp Ala Trp Gly His Gly Thr Glu Val Ile Val Ser
 Ser 115 120 125
 <210> 24 <211> 125 <212> PRT <213> chicken hybridoma cell line 8C3 <400>
 24 Ala Val Thr Leu Asp Glu Ser Gly Gly Leu Gln Thr Pro Gly Gly 1
 5 10 15 Gly Leu Ser Leu Val Cys Lys Ala Ser
 Gly Phe Ser Ile Gly Gly Tyr 20 25
 30 Ile Met His Trp Val Arg Gln Thr Pro Gly Lys Gly Leu Glu Tyr Val 35
 40 45 Ala Gly Ile Asp Ala Gly Gly Ser Thr Tyr Tyr Gly Ala
 Ala Val 50 55 60 Gln Gly Arg Ala Thr Val
 Ser Arg Asp Asn Gly Gln Ser Thr Leu Arg 65 70
 75 80 Leu Gln Leu Asn Asn Leu Arg Leu Glu Asp Thr Gly Thr Tyr
 Phe Cys 85 90 95 Ala Lys Ala
 Ser Arg Cys Gly Tyr Asp Trp Cys Ser Ala Asp Asn Ile 100
 105 110 Asp Ala Trp Gly His Gly Thr Glu Val Ile Val Ser Ser
 115 120 125 <210> 25 <211> 324 <212>
 DNA <213> chicken hybridoma cell line 2-1 <220> <221> CDS <222>
 (1)..(324) <400> 25 gcg ctg act cag ccg tcc tcg gtg tca gca aac cca gga gaa
 acc gtc 48 Ala Leu Thr Gln Pro Ser Ser Val Ser Ala Asn Pro Gly Glu Thr
 Val 1 5 10 15 aag
 atc acc tgc tcc ggg ggt ggc agc tac gct gga agt tac tat tat 96 Lys Ile

Thr Cys Ser Gly Gly Ser Tyr Ala Gly Ser Tyr Tyr Tyr 20
 25 30 ggc tgg tac cag cag aag gca cct gcc agt gcc
 cct gtc act gtg atc 144 Gly Trp Tyr Gln Gln Lys Ala Pro Ala Ser Ala Pro
 Val Thr Val Ile 35 40 45
 tat gac aac acc aac aga ccc tcg aac atc cct tca cga ttc tcc ggt 192 Tyr
 Asp Asn Thr Asn Arg Pro Ser Asn Ile Pro Ser Arg Phe Ser Gly 50
 55 60 tcc cta tcc ggc tcc aca aac aca tta
 acc atc act ggg gtc caa gtc 240 Ser Leu Ser Gly Ser Thr Asn Thr Leu Thr
 Ile Thr Gly Val Gln Val 65 70 75
 80 gag gac gag gct gtc tat tac tgt ggg agc ttc gac agc agt tat gtt
 288 Glu Asp Glu Ala Val Tyr Tyr Cys Gly Ser Phe Asp Ser Ser Tyr Val
 85 90 95 ggt ata ctt ggg gcc ggg aca
 acc ctg acc gtc cta 324 Gly Ile Leu Gly Ala Gly Thr Thr
 Leu Thr Val Leu 100 105
 <210> 26 <211> 108 <212> PRT <213> chicken hybridoma cell line 2-1 <400>
 26 Ala Leu Thr Gln Pro Ser Ser Val Ser Ala Asn Pro Gly Glu Thr Val 1
 5 10 15 Lys Ile Thr Cys Ser Gly Gly Ser
 Tyr Ala Gly Ser Tyr Tyr Tyr 20 25
 30 Gly Trp Tyr Gln Gln Lys Ala Pro Ala Ser Ala Pro Val Thr Val Ile 35
 40 45 Tyr Asp Asn Thr Asn Arg Pro Ser Asn Ile Pro Ser Arg Phe
 Ser Gly 50 55 60 Ser Leu Ser Gly Ser Thr

Asn Thr Leu Thr Ile Thr Gly Val Gln Val	65	70
75	80 Glu Asp Glu Ala Val Tyr Tyr Cys Gly Ser Phe Asp Ser Ser	
Tyr Val	85	90
Gly Ala Gly Thr Thr Leu Thr Val Leu		100
<210> 27 <211> 312 <212> DNA <213>	chicken hybridoma cell line 5D11	
<220> <221> CDS <222> (1)..(312) <400>	27 gcg ctg act cag ccg tcc tcg	
gtg tca gca aac ctg gga gaa acc gtc		48 Ala Leu Thr Gln Pro Ser Ser Val
Ser Ala Asn Leu Gly Glu Thr Val	1	5
15	gaa atc acc tgc tcc ggg ggc agg tat agg tat ggc tgg tat cag cag	
96 Glu Ile Thr Cys Ser Gly Gly Arg Tyr Arg Tyr Gly Trp Tyr Gln Gln		
20	25	30
cct gtc act gtg atc tat gac aac gac aag		aag tca tct ggc agt gcc
Val Thr Val Ile Tyr Asp Asn Asp Lys		144 Lys Ser Ser Gly Ser Ala Pro
45	aga ccc tcg gac atc cct tca cga ttc tcc ggt tcc aaa tcc gac	
tcc	192 Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Ser Asp Ser	
50	55	60
acc atc act ggg gtc caa gcc gag gac gag gct gtc		acg ggc aca tta
Ile Thr Gly Val Gln Ala Glu Asp Glu Ala Val	65	70
75	80 tat tac tgt ggg aat gca gac aac aat act tac gat cct	
ata ttt ggg	288 Tyr Tyr Cys Gly Asn Ala Asp Asn Asn Thr Tyr Asp Pro Ile	
Phe Gly	85	90
		95

gcc ggg aca acc ctg acc gtc cta 312 Ala
 Gly Thr Thr Leu Thr Val Leu 100
 <210> 28 <211> 104 <212> PRT <213> chicken hybridoma cell line 5D11 <400>
 28 Ala Leu Thr Gln Pro Ser Ser Val Ser Ala Asn Leu Gly Glu Thr Val 1
 5 10 15 Glu Ile Thr Cys Ser Gly Gly Arg Tyr
 Arg Tyr Gly Trp Tyr Gln Gln 20 25
 30 Lys Ser Ser Gly Ser Ala Pro Val Thr Val Ile Tyr Asp Asn Asp Lys 35
 40 45 Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Ser
 Asp Ser 50 55 60 Thr Gly Thr Leu Thr Ile
 Thr Gly Val Gln Ala Glu Asp Glu Ala Val 65 70
 75 80 Tyr Tyr Cys Gly Asn Ala Asp Asn Asn Thr Tyr Asp Pro Ile
 Phe Gly 85 90 95 Ala Gly Thr
 Thr Leu Thr Val Leu 100 <210> 29 <211> 324 <
 212> DNA <213> chicken hybridoma cell line 13C8 <220> <221> CDS <222>
 (1)..(324) <400> 29 gcg ctg act cag ccg tcc tcg gtg tca gca aac ctg gga gga
 acc gtc 48 Ala Leu Thr Gln Pro Ser Ser Val Ser Ala Asn Leu Gly Gly Thr
 Val 1 5 10 15 1 aag
 atc acc tgc tcc ggg ggc agc tat ggc tat ggc tgg ttc cag cag 96 Lys Ile
 Thr Cys Ser Gly Gly Ser Tyr Gly Tyr Gly Trp Phe Gln Gln 20
 25 30 aag tca cct ggc agt gcc cct gtc cct gtg atc
 tac tgg aac aac aag 144 Lys Ser Pro Gly Ser Ala Pro Val Pro Val Ile Tyr

Trp Asn Asn Lys	35	40	45
aga ccc tcg gac atc cct tca cga ttc tcc ggt tcc aaa tcc ggc tcc			192 Arg
Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Ser Gly Ser			50
55	60	aca gcc aca tta acc atc act ggg gtc	
cga gcc gag gac gag gct gtc		240 Thr Ala Thr Leu Thr Ile Thr Gly Val Arg	
Ala Glu Asp Glu Ala Val	65	70	75
80 tat tac tgt ggg aat gca gac agc aat act gct gat agt gat tat gtt			
288 Tyr Tyr Cys Gly Asn Ala Asp Ser Asn Thr Ala Asp Ser Asp Tyr Val			
85	90	95	ggt ata ttt ggg gcc ggg aca
acc ctg acc gtc cta		324 Gly Ile Phe Gly Ala Gly Thr Thr	
Leu Thr Val Leu		100	105
<210> 30 <211> 108 <212> PRT <213> chicken hybridoma cell line 13C8 <400>			
30 Ala Leu Thr Gln Pro Ser Ser Val Ser Ala Asn Leu Gly Gly Thr Val		1	
5	10	15	Lys Ile Thr Cys Ser Gly Gly Ser Tyr
Gly Tyr Gly Trp Phe Gln Gln		20	25
30 Lys Ser Pro Gly Ser Ala Pro Val Pro Val Ile Tyr Trp Asn Asn Lys		35	
40	45	Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Ser	
Gly Ser	50	55	60 Thr Ala Thr Leu Thr Ile
Thr Gly Val Arg Ala Glu Asp Glu Ala Val	65		70
75	80	Tyr Tyr Cys Gly Asn Ala Asp Ser Asn Thr Ala Asp Ser Asp	
Tyr Val	85	90	95 Gly Ile Phe

1020010052934

출력 일자: 2002/2/7

Gly Ala Gly Thr Thr Leu Thr Val Leu	100	105
<210> 31 <211> 315 <212> DNA <213>	chicken hybridoma cell line 8C3	
<220> <221> CDS <222> (1)..(315) <400>	31 gcg ctg act caa ccg tcc tcg	
gtg tca gcg atc ccg gga gaa acc gtc	48 Ala Leu Thr Gln Pro Ser Ser Val	
Ser Ala Ile Pro Gly Glu Thr Val 1	5	10
15 gag atc acc tgc tcc ggg ggt aac aac tac tat ggc tgg tat cag cag		
96 Glu Ile Thr Cys Ser Gly Gly Asn Asn Tyr Tyr Gly Trp Tyr Gln Gln		
20 25 30 aaa tca cct ggc agt gcc		
cct gtc act gtg atc tac tac aac aac aag	144 Lys Ser Pro Gly Ser Ala Pro	
Val Thr Val Ile Tyr Tyr Asn Asn Lys 35	40	
45 aga ccc tcg gac atc cct tca cga ttc tcc ggt tcc aaa ccc ggc		
tcc 192 Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Pro Gly Ser		
50 55 60 aca aac aca tta		
acc atc act ggg gtc cga gcc gag gac gag gct gtc 240 Thr Asn Thr Leu Thr		
Ile Thr Gly Val Arg Ala Glu Asp Glu Ala Val 65 70		
75 80 tat ttc tgt ggt gcc tgg gaa agt agt cct att tat gtt		
ggt ata ttt 288 Tyr Phe Cys Gly Ala Trp Glu Ser Ser Pro Ile Tyr Val Gly		
Ile Phe 85 90 95		
ggg gcc ggg aca acc ctg acc gtc cta 315 Gly		
Ala Gly Thr Thr Leu Thr Val Leu 100		
105 <210> 32 <211> 105 <212> PRT <213>		

chicken hybridoma cell line 8C3 <400> 32 Ala Leu Thr Gln Pro Ser Ser Val Ser
 Ala Ile Pro Gly Glu Thr Val 1 5 10
 15 Glu Ile Thr Cys Ser Gly Gly Asn Asn Tyr Tyr Gly Trp Tyr Gln Gln
 20 25 30 Lys Ser Pro Gly Ser Ala Pro Val Thr
 Val Ile Tyr Tyr Asn Asn Lys 35 40 45
 Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Pro Gly Ser 50
 55 60 Thr Asn Thr Leu Thr Ile Thr Gly Val Arg Ala Glu Asp Glu
 Ala Val 65 70 75 80 Tyr Phe
 Cys Gly Ala Trp Glu Ser Ser Pro Ile Tyr Val Gly Ile Phe 85
 90 95 Gly Ala Gly Thr Thr Leu Thr Val Leu 100
 105 <210> 33 <211> 7 <212> PRT <213> Artificial Sequence <220> <
 223> reverse primer for PCR amplification of heavy chain variable
 region <400> 33 Ala Val Thr Leu Asp Glu Ser 1 5
 <210> 34 <211> 7 <212> PRT <213> Artificial Sequence <220> <223>
 forward primer for PCR amplification of heavy chain variable region <
 400> 34 Ser Ser Val Ile Val Glu Thr 1 5 <210> 35
 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> reverse
 primer for PCR amplification of light chain variable region <400> 35
 Ala Leu Thr Gln Pro Ser Ser 1 5 <210> 36 <211> 7
 <212> PRT <213> Artificial Sequence <220> <223> forward primer for PCR
 amplification of light chain variable region <400> 36 Leu Val Thr

Leu Thr Thr Gly	1	5	<210>	37 <211>	381 <212>
DNA <213>		chicken hybridoma cell line 6D-12-G10 <220> <221>		CDS <222>	
(1)..(381) <400>		37 gcc gtg acg ttg gac gag tcc ggg ggc ggc ctc cag acg ccc			
gga aga		48 Ala Val Thr Leu Asp Glu Ser Gly Gly Gly Leu Gln Thr Pro Gly			
Arg	1	5	10	15	gcg
ctc agc ctc gtc tgc aag gcc tcc ggg ttc acc ttc agc agt tat				96 Ala Leu	
Ser Leu Val Cys Lys Ala Ser Gly Phe Thr Phe Ser Ser Tyr				20	
25	30	ggc atg gtc tgg gtg cga cag gcg ccc ggc aag			
ggg ctg gaa tac gtc		144 Gly Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly			
Leu Glu Tyr Val		35	40	45	
gct gaa att atc aca act ggt aga gac aca tgg tat ggg acg gcg gtg				192 Ala	
Glu Ile Ile Thr Thr Gly Arg Asp Thr Trp Tyr Gly Thr Ala Val				50	
55	60	aag ggc cgt gcc acc atc tcg agg gac			
aac ggg cag agt aca gtg agg		240 Lys Gly Arg Ala Thr Ile Ser Arg Asp Asn			
Gly Gln Ser Thr Val Arg	65		70	75	
80	ctg cag ctg aac aac ctc agg gct gaa gac acc ggc atc tac tac tgc				
288 Leu Gln Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Ile Tyr Tyr Cys					
85	90	95	gcc aaa tgc agt tat gag tgt		
act agt agt tgt tgg ggt tat act gat		336 Ala Lys Cys Ser Tyr Glu Cys Thr			
Ser Ser Cys Trp Gly Tyr Thr Asp		100		105	
110	atg atc gac gca tgg ggc cac ggg acc gaa gtc atc gtc tcc tcc				

381 Met Ile Asp Ala Trp Gly His Gly Thr Glu Val Ile Val Ser Ser
 115 120 125 <210> 38 <211> 127
 <212> PRT <213> chicken hybridoma cell line 6D-12-G10 <400> 38 Ala Val Thr
 Leu Asp Glu Ser Gly Gly Leu Gln Thr Pro Gly Arg 1 5
 10 15 Ala Leu Ser Leu Val Cys Lys Ala Ser Gly Phe Thr Phe Ser
 Ser Tyr 20 25 30 Gly Met Val Trp
 Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr Val 35 40
 45 Ala Glu Ile Ile Thr Thr Gly Arg Asp Thr Trp Tyr Gly Thr Ala Val 50
 55 60 Lys Gly Arg Ala Thr Ile Ser Arg Asp Asn Gly Gln Ser Thr
 Val Arg 65 70 75 80 Leu Gln
 Leu Asn Asn Leu Arg Ala Glu Asp Thr Gly Ile Tyr Tyr Cys 85
 90 95 Ala Lys Cys Ser Tyr Glu Cys Thr Ser Ser Cys Trp Gly Tyr
 Thr Asp 100 105 110 Met Ile Asp Ala
 Trp Gly His Gly Thr Glu Val Ile Val Ser Ser 115 120
 125 <210> 39 <211> 312 <212> DNA <213> chicken hybridoma cell line
 6D-12-G10 <220> <221> CDS <222> (1)..(312) <400> 39 gcg ctg act cag
 ccg tcc tcg gtg tca gca aac ctg gga gga acc gtc 48 Ala Leu Thr Gln Pro
 Ser Ser Val Ser Ala Asn Leu Gly Gly Thr Val 1 5
 10 15 aag atc acc tgc tcc ggg agt agt ggc agc tat ggc
 tgg tat cag cag 96 Lys Ile Thr Cys Ser Gly Ser Ser Gly Ser Tyr Gly Trp
 Tyr Gln Gln 20 25 30

aag tca cct ggc agt gcc cct gtc act gtg atc tat tac aac gac aag	144	Lys	
Ser Pro Gly Ser Ala Pro Val Thr Val Ile Tyr Tyr Asn Asp Lys	35		
40	45	aga ccc tcg gac atc cct tca cga ttc tcc	
ggt tcc aaa tcc ggc tcc	192	Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly	
Ser Lys Ser Gly Ser	50	55	60
acg ggc aca tta acc atc act ggg gtc caa gcc gag gac gag gct gtc	240	Thr	
Gly Thr Leu Thr Ile Thr Gly Val Gln Ala Glu Asp Glu Ala Val	65		
70	75	80	tat ttc tgt gag agt aca gac tac
agt agt act gat ata ttt ggg gcc	288	Tyr Phe Cys Glu Ser Thr Asp Tyr Ser	
Ser Thr Asp Ile Phe Gly Ala	85	90	
95	ggg aca acc ctg acc gtc cta ggt		
312 Gly Thr Thr Leu Thr Val Leu Gly			
100		<210> 40 <211> 104 <	
212> PRT <213> chicken hybridoma cell line 6D-12-G10 <400> 40 Ala Leu Thr			
Gln Pro Ser Ser Val Ser Ala Asn Leu Gly Gly Thr Val 1	5		
10	15	Lys Ile Thr Cys Ser Gly Ser Ser Gly Ser Tyr Gly Trp Tyr	
Gln Gln	20	25	30 Lys Ser Pro Gly
Ser Ala Pro Val Thr Val Ile Tyr Tyr Asn Asp Lys	35	40	
45 Arg Pro Ser Asp Ile Pro Ser Arg Phe Ser Gly Ser Lys Ser Gly Ser	50		
55	60	Thr Gly Thr Leu Thr Ile Thr Gly Val Gln Ala Glu Asp Glu	
Ala Val 65	70	75	80 Tyr Phe

1020010052934

출력 일자: 2002/2/7

Cys Glu Ser Thr Asp Tyr Ser Ser Thr Asp Ile Phe Gly Ala

85

90

95 Gly Thr Thr Leu Thr Val Leu Gly

100