Parte VIII: Normalização

Bases de Dados

MI/LCC/LEG/LERSI/LMAT

Parte VIII Normalização

Ricardo Rocha DCC-FCUP

1

Bases de Dados 2006/2007

Parte VIII: Normalização

Desenho de BDs Relacionais

- Algumas questões sobre o desenho de BDs relacionais:
 - Como é que se desenha uma boa BD relacional?
 - Qual é o critério para quantificar a qualidade e funcionalidade de um modelo relacional?
 - Porque é que um determinado agrupamento dos atributos em relações é melhor do que outro agrupamento?
- A qualidade de um modelo relacional pode ser quantificada de dois pontos de vista:
 - Lógico ou conceptual: como é que os utilizadores interpretam o significado das relações e dos seus atributos. Um bom modelo do ponto de vista lógico permite que os utilizadores compreendam claramente o significado dos dados e os possam manipular correctamente.
 - Implementação: como é que os tuplos das relações são guardados e manipulados físicamente na BD. Um bom modelo do ponto de vista da implementação garante uma maior eficiência das operações de acesso aos dados, minimiza o espaço necessário para guardar os tuplos das relações e evita informação incorrecta ou supérflua.

Ricardo Rocha DCC-FCUP

Regras Para o Bom Desenho de BDs Relacionais

- **Regra 1**: Os atributos de uma relação devem representar apenas uma entidade ou um relacionamento.
 - Atributos de entidades ou relacionamentos diferentes devem estar separados o mais possível. Apenas chaves externas devem ser usadas para referenciar outras relações.
 - É mais fácil explicar o significado de uma relação se esta representar apenas uma entidade ou relacionamento. Evita ambiguidades no significado das relações.
- Exemplo de uma boa relação do ponto de vista lógico mas que viola a regra 1:
 - EMP_DEP(NomeEmp, NumBI, Endereço, DataNasc, NumDep, NomeDep, GerenteBI)
- Problemas com a relação EMP DEP:
 - Os valores dos atributos NomeDep e GerenteBI aparecem repetidos para os empregados que trabalham num mesmo departamento.

Ricardo Rocha DCC-FCUP

3

Bases de Dados 2006/2007

Parte VIII: Normalização

Regras Para o Bom Desenho de BDs Relacionais

- Regra 2: Evitar a possibilidade de ocorrerem anomalias nas operações de inserção, remoção ou alteração.
 - Se por razões de eficiência isso não for possível, garantir que os utilizadores/programas que manipulam a BD conhecem essas anomalias e as evitam.
- Exemplo de anomalias de inserção em EMP DEP:
 - Não é possível inserir um novo departamento a menos que seja associado a um empregado.
 - Ao inserir um empregado é necessário garantir que os valores dos atributos NomeDep e GerenteBI são consistentes com os dos restantes empregados desse departamento.
- Exemplo de anomalias de remoção em EMP_DEP:
 - Se removermos o último empregado para um determinado departamento, então a informação desse departamento também é removida.
- Exemplo de anomalias de alteração em EMP_DEP:
 - A alteração do nome de um departamento leva a que essa alteração tenha que ser feita sobre todos os tuplos dos empregados que nele trabalham.

Ricardo Rocha DCC-FCUP

Regras Para o Bom Desenho de BDs Relacionais

- Regra 3: Evitar atributos que possam ter valores NULL numa grande parte dos tuplos duma relação.
 - Colocar esse tipo de atributos em relações separadas juntamente com a chave primária.
 - Minimiza o espaço necessário para guardar os tuplos da relação e evita problemas no cálculo de funções de agregações sobre esses atributos.

■ Exemplo:

■ Se apenas 5% dos empregados tiverem gabinete individual não faz sentido incluir um atributo NumGabinete na relação EMP_DEP. Uma melhor solução será criar uma relação GABINETE(EmpBI, NumGabinete) para guardar essa informação.

Ricardo Rocha DCC-FCUP

5

Bases de Dados 2006/2007

Parte VIII: Normalização

Regras Para o Bom Desenho de BDs Relacionais

- **Regra 4**: Evitar relações que tenham atributos relacionados que não são sejam combinações do tipo chave externa com chave primária.
 - Operações de junção sobre esses atributos poderão originar tuplos falsos. Não verificam a **propriedade de junção-não-aditiva** (ou junção-sem-perdas de informação).
- Considere as seguintes relações e assuma que a localização de cada projecto é única, ou seja, dois projectos diferentes têm sempre localizações diferentes:
 - TRAB_PROJ(<u>EmpBI</u>, <u>NumProj</u>, Horas, NomeProj, LocalizaçãoProj)
 - EMP_LOC(<u>NomeEmp</u>, <u>LocalizaçãoProj</u>)
- Problemas com as relações TRAB_PROJ e EMP_LOC:
 - A operação de junção natural TRAB_PROJ * EMP_LOC dá origem a mais tuplos do que aqueles que seriam obtidos pela junção das tabelas originais TRABALHA_EM, PROJECTO e EMPREGADO. Note que isto acontece mesmo com localizações únicas para cada projecto.

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

Normalização de Relações

- Processo de análise que minimiza redundância de dados e minimiza anomalias nas operações de modificação dos dados. As relações que não satisfazem certas propriedades **formas normais** são sucessivamente decompostas em relações mais pequenas de modo a satisfazerem as propriedades pretendidas (Codd 1972).
- As formas normais são como que orientações para o desenho de boas relações. As formas normais existentes são:
 - 1NF Primeira forma normal
 - 2NF Segunda forma normal
 - 3NF Terceira forma normal
 - BCNF Forma normal de Boyce–Codd
 - 4NF Quarta forma normal
 - 5NF Quinta forma normal
- Nem sempre é necessário normalizar uma BD até à última formal normal (por vezes, 3NF ou BCNF é suficiente).

Ricardo Rocha DCC-FCUP

7

Bases de Dados 2006/2007

Parte VIII: Normalização

1NF - Primeira Forma Normal

- Um esquema relacional está na primeira forma normal se todos os atributos forem atómicos (não divisíveis).
- Normalização 1NF
 - Decompor atributos compostos em atributos atómicos.
 - O atributo Nome pode ser decomposto em (NomeP, NomeF).
 - O atributo Endereço pode ser decomposto em (Morada, Cidade, CódigoPostal).
 - Decompor atributos multi-valor em relação com chave externa.
 - A relação DEPARTAMENTO(Nome, <u>Num</u>, {Localização}) pode ser decomposta em DEPARTAMENTO(Nome, <u>Num</u>, <u>Localização</u>), mas a melhor solução é decompor em DEPARTAMENTO(Nome, <u>Num</u>) e LOCALIZAÇÕES_DEP(<u>NumDep</u>, <u>Localização</u>) pois evita redundância.

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

Dependências Funcionais

- Dependência funcional (FD) é uma restrição entre 2 conjuntos de atributos.
- Seja $R(A_1, A_2, ..., A_n)$ um esquema relacional e sejam X e Y dois subconjuntos de atributos de R. Diz-se que X determina funcionalmente Y (ou que Y depende funcionalmente de X), representado por $X \to Y$, se quaisquer dois tuplos de R que têm os mesmos valores em X também têm os mesmos valores em Y.

$$X \rightarrow Y \equiv \forall t_1, t_2 \in r(R): t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

- Interpretação:
 - Os valores da componente Y de tuplos de R dependem dos valores da componente X.
 - Os valores da componente X de tuplos de R determinam os valores da componente Y.
- As chaves de uma relação são casos particulares de dependências funcionais. Se X for uma chave de R então X → Y para qualquer subconjunto Y de atributos de R.
- O facto de $X \rightarrow Y$ em R nada permite concluir acerca de $Y \rightarrow X$ em R.

Ricardo Rocha DCC-FCUP

9

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências Funcionais

- Considere a seguinte relação:
 - EMP_PROJ(<u>EmpBI</u>, <u>NumProj</u>, Horas, NomeEmp, NomeProj, LocalizaçãoProj)
- Dependências funcionais da relação EMP_PROJ:
 - EmpBI → NomeEmp
 - NumProj → {NomeProj, Localização}
 - $\{EmpBI, NumProj\} \rightarrow Horas$

EMP PROJ

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

Dependências Funcionais

- Normalmente, a partir de um conjunto de dependências funcionais é possível inferir outras dependências funcionais.
- Regras de inferência de Armstrong (1974):
 - Regra Reflexiva: Se X \supseteq Y então X \rightarrow Y (ou X \rightarrow X).
 - Regra Aditiva: Se $X \to Y$ então $XZ \to YZ$ (ou se $X \to Y$ então $XZ \to Y$).
 - Regra Transitiva: Se $X \to Y$ e $Y \to Z$ então $X \to Z$.
- O **fecho** de um conjunto de dependências funcionais F é o conjunto F⁺ de todas as dependências funcionais que podem ser inferidas a partir de F.
- O **fecho** de um conjunto de atributos X de F é o conjunto X^+ de todas os atributos que podem ser inferidos a partir de X.
- F⁺ e X⁺ podem ser calculados por aplicação sucessiva das regras de Armstrong.

Ricardo Rocha DCC-FCUP

1

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências Funcionais

- Fecho das dependências funcionais da relação EMP_PROJ:
 - $\{\text{EmpBI}\}^+ \rightarrow \{\text{EmpBI}, \text{NomeEmp}\}$
 - {NumProj} + → {NumProj, NomeProj, Localização}
 - {EmpBI, NumProj}⁺ → {EmpBI, NumProj, Horas, NomeEmp, NomeProj, LocalizaçãoProj}

EMP_PROJ

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

Dependências Funcionais

- Uma dependência funcional $X \to Y$ diz-se **parcial** se a remoção de algum atributo de X não deixar de determinar funcionalmente Y.
 - $X \to Y$ é uma dependência funcional parcial se $\exists A \in X: (X A) \to Y$
- Uma dependência funcional $X \to Y$ diz-se **completa** (ou **não parcial**) se a remoção de um qualquer atributo de X deixar de determinar funcionalmente Y.
 - $X \to Y$ é uma dependência funcional completa se $\forall A \in X$: $(X A) \nrightarrow Y$
- Exemplos para a relação EMP_PROJ:
 - {EmpBI, NumProj} → NomeEmp é uma dependência funcional parcial porque EmpBI → NomeEmp também se verifica.
 - {EmpBI, NumProj} → Horas é uma dependência funcional completa porque nem EmpBI → Horas nem NumProj → Horas se verificam.

Ricardo Rocha DCC-FCUP

13

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências Funcionais

- Uma dependência funcional $X \to Y$ diz-se **transitiva** se existir um conjunto de atributos não-chave que depende funcionalmente de X e determina funcionalmente Y.
 - $X \to Y$ é uma dependência funcional transitiva se $\exists Z$ não-chave: $X \to Z$ e $Z \to Y$.
- Exemplo para a relação EMP_DEP:
 - NumBI → {NomeDep, GerenteBI} é uma dependência funcional transitiva porque NumBI → NumDep, NumDep → {NomeDep, GerenteBI} e NumDep não pertence a nenhuma chave candidata de EMP_DEP.

EMP DEP

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

3NF – Definição Mais Geral (Múltiplas Chaves)

- Um esquema relacional está na terceira forma normal se para qualquer dependência funcional $X \to A$ com $A \notin X$, ou (i) X é uma superchave ou (ii) A é um atributo de uma qualquer chave.
- Dito de outro modo, um esquema relacional está na terceira forma normal se para todos os atributos não-chave A com $X \to A$ e A $\notin X$, X é uma superchave. Se X não é uma superchave, então X ou faz parte de uma chave (logo $X \to A$ é uma dependência parcial e viola 2NF) ou X não faz parte de qualquer chave (S \to X para alguma chave S e logo S \to A é uma dependência transitiva).
- Definição alternativa: Um esquema relacional está na terceira forma normal se todos os atributos não-chave:
 - não dependem parcialmente de qualquer chave (2NF).
 - não dependem por transitividade de qualquer chave.

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

BCNF - Forma Normal de Boyce-Codd

- Um esquema relacional está na forma normal de Boyce–Codd se para qualquer dependência funcional X → A com A ∉ X, X é uma superchave.
- A diferença para 3NF é a inexistência da possibilidade de A ser um atributo de uma qualquer chave. Note-se que se um esquema relacional está na BCNF então também está na 3NF. O inverso pode não ser verdadeiro.
- Na prática, quando um esquema relacional está na 3NF, normalmente também está na BCNF. A excepção é quando existe uma dependência X → A com X sem ser uma superchave e A sendo um atributo de uma chave.

Ricardo Rocha DCC-FCUP

Ricardo Rocha DCC-FCUP

23

Normalização BCNF ■ A normalização BCNF não verifica a propriedade de preservação das dependências, podendo originar a perca de dependências funcionais. PROPRIEDADE 2 NumRegistro Concelho NumLoteamento Área BCNF REGISTRO NumRegistro NumLoteamento Área ÁREA_CONCELHO NumRegistro NumLoteamento Área

Decomposição com Junção-Não-Aditiva

- Seja R um esquema relacional e seja D={R₁, R₂} uma decomposição de R. Diz-se que D constitui uma **decomposição com junção-não-aditiva** relativamente a um conjunto F de dependências funcionais se para qualquer estado R = R₁ * R₂, ou seja, as **operações de junção não originam tuplos falsos**.
- Uma decomposição D={R₁, R₂} de R verifica a **propriedade de junção-não-aditiva** relativamente a um conjunto F de dependências funcionais se e só se:
 - \blacksquare $(R_1 \cap R_2) \to (R_1 R_2) \in F^+$, ou
 - $\blacksquare (R_1 \cap R_2) \to (R_2 R_1) \in F^+.$
- As normalizações 2NF, 3NF e BCNF devem verificar sempre a propriedade de junção-não-aditiva.

Ricardo Rocha DCC-FCUP

25

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências Multi-Valor

- **Dependência multi-valor** (**MVD**) é uma restrição entre 2 atributos multi-valor e independentes da mesma relação. Para manter a relação consistente, uma MVD obriga a repetir todos os valores de um atributo para cada valor do outro atributo.
- Considere a relação EMP_PROJS_DEPS que relaciona cada empregado com os projectos em que trabalha e os seus dependentes. Um empregado pode trabalhar em vários projectos e ter vários dependentes. A dependência multi-valor resulta do facto de juntarmos dois relacionamentos 1:N na mesma relação.

EMP_PROJS_DEPS	NomeEmp	NomeProj	NomeDep
	Silva	ProjX	João
	Silva	ProjX	Maria
	Silva	ProjY	João
	Silva	ProjY	Maria

Ricardo Rocha DCC-FCUP

Dependências Multi-Valor

■ Seja R($A_1, A_2, ..., A_n$) um esquema relacional e sejam X e Y dois subconjuntos de atributos de R. Diz-se que X multi-determina Y, representado por X → Y, se os valores da componente Y de tuplos de R dependem apenas do valor da componente X, mas para cada valor da componente X, os valores da componente Y aparecem repetidos para cada valor distinto da componente Z (Z = R - (X Y Y)).

$$\exists t_1,\,t_2\in r(R)\colon t_1[X]=t_2[X] \implies \exists t_3,\,t_4\in r(R)\colon t_3[X]=t_4[X]=t_1[X]=t_2[X],$$

 $t_3[Y] = t_1[Y] e t_4[Y] = t_2[Y],$ $t_3[Z] = t_2[Z] e t_4[Z] = t_1[Z],$ onde Z = R - (X Y Y).

Ricardo Rocha DCC-FCUP

27

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências Multi-Valor

- Regras de inferência para dependências funcionais (FD) e multi-valor (MVD):
 - **Regra Reflexiva para FDs**: Se $X \supseteq Y$ então $X \rightarrow Y$.
 - **Regra Aditiva para FDs**: Se $X \rightarrow Y$ então $XZ \rightarrow YZ$.
 - **Regra Transitiva para FDs**: Se $X \to Y$ e $Y \to Z$ então $X \to Z$.
 - Regra Complementar para MVDs: Se X → Y então X → (R (X Y Y)).
 - Regra Aditiva para MVDs: Se X → Y e W ⊇ Z, então WX → YZ.
 - Regra Transitiva para MVDs: Se $X \twoheadrightarrow Y$ e $Y \twoheadrightarrow Z$, então $X \twoheadrightarrow (Z Y)$.
 - **Regra Replicação para FDs em MVDs**: Se $X \rightarrow Y$, então $X \rightarrow Y$.
 - Regra Aglutinante para FDs e MVDs: Se $X \twoheadrightarrow Y$ e $\exists W: W \cap Y$ é vazio, $W \rightarrow Z$ e $Y \supseteq Z$, então $X \rightarrow Z$.
- O **fecho** de um conjunto de F de FDs e MVDs é o conjunto F⁺ de todas as FDs e MVDs que podem ser inferidas por aplicação sucessiva das regras de inferência.

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

4NF - Quarta Forma Normal

- Um esquema relacional R está na quarta forma normal relativamente a um conjunto F de dependências funcionais e multi-valor se para cada dependência multi-valor não-trivial X → Y em F⁺, X é uma superchave.
- Uma dependência multi-valor $X \twoheadrightarrow Y$ diz-se **trivial** em R quando não especifica nenhuma restrição com significado, ou seja, quando $Y \subseteq X$ ou X Y Y = R.
- A 4NF evita os problemas de consistência e redundância relacionados com as dependências multi-valor.
- As dependências multi-valor da relação EMP_PROJS_DEPS violam a 4NF:
 - NomeEmp → NomeProj
 - NomeEmp → NomeDep

Ricardo Rocha DCC-FCUP

29

Normalização 4NF

- Sempre que decompomos um esquema relacional R em dois esquemas relacionais $R_1 = (X \ Y \ Y)$ e $R_2 = (R Y)$ com base numa MVD $X \twoheadrightarrow Y$, então a decomposição verifica a propriedade de junção-não-aditiva.
- Dois esquemas relacionais R₁ e R₂ constituem uma decomposição com junção-nãoaditiva de R relativamente a um conjunto F de dependências funcionais e multivalor se e só se:
 - $\blacksquare \ (R_1 \cap R_2) \twoheadrightarrow (R_1 R_2) \in F^+, \, \text{ou}$
 - $(R_1 \cap R_2) \twoheadrightarrow (R_2 R_1) \in F^+$.
- Por vezes, pode acontecer que não existe uma decomposição com junção-não-aditiva em apenas duas relações, mas existe em mais do que duas relações. Isso pode verificar-se mesmo que nenhuma FD viole as formas normais até à BCNF e nenhuma MVD não-trivial viole a 4NF. Sobra então o outro tipo de dependência que nos conduz à 5NF.

Ricardo Rocha DCC-FCUP

31

Bases de Dados 2006/2007

Parte VIII: Normalização

Dependências de Junção

- Dependência de junção (JD) é uma restrição entre tuplos.
- Seja R um esquema relacional e seja R₁, R₂, ..., R_n uma decomposição de R. Diz-se que JD(R₁, R₂, ..., R_n) é uma dependência de junção de R se qualquer estado de R tem uma decomposição com junção-não-aditiva em R₁, R₂, ..., R_n, ou seja:

$$r(R) = * (r(R_1), r(R_2), ..., r(R_n))$$

- Uma dependência de junção JD(R₁, R₂, ..., R_n) diz-se **trivial** em R quando não especifica nenhuma restrição com significado, ou seja, quando um dos R_i é igual a R
- Uma MVD é um caso especial de JD para n = 2. Ou seja, a JD(R_1 , R_2) implica a MVD ($R_1 \cap R_2$) \rightarrow ($R_1 R_2$).

Ricardo Rocha DCC-FCUP

Parte VIII: Normalização

Dependências de Junção

- Considere a relação FORNECIMENTO(NomeForn, NomeComp, NomeProj) e suponha que se verifica a seguinte restrição: se um fornecedor F fornece a componente C e se um projecto P encomenda a componente C e se o fornecedor F fornece o projecto P, então o fornecedor F fornece a componente C ao projecto P.
- A restrição anterior obriga que os dois últimos tuplos da tabela ao lado existam para qualquer estado da relação FORNECIMENTO em que os primeiros cinco tuplos também existem.
- Isto significa que existe uma dependência de junção JD(R1, R2, R3) em que R1(NomeForn, NomeComp), R2(NomeForn, NomeProj) e R3(NomeComp, NomeProj).

NomeForn	NomeComp	NomeProj
F1	C2	Р3
F2	C1	P2
F2	С3	P1
F3	C2	P2
F3	C1	P1
F2	C1	P1
F3	C1	P2

Ricardo Rocha DCC-FCUP

33

Bases de Dados 2006/2007

Parte VIII: Normalização

5NF - Quinta Forma Normal

- Um esquema relacional R está na quinta forma normal relativamente a um conjunto F de dependências funcionais, multi-valor e de junção se para cada dependência de junção não-trivial JD(R₁, R₂, ..., R_n) em F⁺, cada R_i é uma superchave.
- A 5NF evita os problemas de consistência relacionados com as dependências de junção.
 FORNECIMENTO

 NomeForn
 NomeComp
 NomeProj

 5NF
 SNF

 R1
 R2
 R3

 NomeForn
 NomeComp
 NomeProj
 NomeComp
 NomeProj

■ Note que a junção natural de quaisquer duas das três relações pode originar tuplos falsos, mas a junção das 3 relações não!

Ricardo Rocha DCC-FCUP

Bases de Dados 2006/2007 Parte VIII: Normalização Normalização 5NF FORNECIMENTO NomeForn NomeComp NomeProj F1 F2 **C1** P2 F2 **P1 C3 P2** F3 **C2 C1 P1 F3** F2 **C1 P1** F3 **C1 P2** R1 NomeForn NomeComp R3 NomeComp R2 NomeForn NomeProj NomeProj **F1 C2 F1 P3 C2 P3** F2 **C1** F2 **P2 C1 P2** F2 **C3 C3 P1 F2 P1 F3 C2 C2 P2 F3 P2** C1 **F3 C1** F3 **P1 P1** Ricardo Rocha DCC-FCUP 35