(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A2

(51) International Patent Classification7: C07K 14/00

(21) International Application Number: PCT/JP00/05356

(22) International Filing Date: 10 August 2000 (10.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/230344	17 August 1999 (17.08.1999)	JР
11/252551	7 September 1999 (07.09.1999)	JР
11/281132	1 October 1999 (01.10.1999)	JР
11/301624	22 October 1999 (22.10.1999)	JР
11/313877	4 November 1999 (04.11.1999)	JР

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, vectors for these DNAs, eukaryotic expression expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

2

BACKGROUND ART

5

10

15

20

25

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as injection or the drip, so that they possess hidden potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like currently employed as pharmaceuticals. In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

3

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

5

10

15

20

25

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

4

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

15

20

25

10

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA

25

encoding said protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein and an antibody directed to said protein.

10 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03171.

Fig. 2 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03424.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP03444.

20 Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03478.

Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03499.

		Fig.	6	il	lus	trat	es	the
	hydrophol	oicity/hyd:	cophilicity	profile	of	the	protein	encoded
	by clone	нр03500.						
		Fig.	7	il	llus	trat	es	the
5	hydrophol	bicity/hyd:	cophilicity	profile	of	the	protein	encoded
	by clone	HP10691.						
		Fig.	8	i	llus	trat	es	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
	by clone	HP10703.						
10		Fig.	9	i	llus	trat	es	the
	hydropho	bicity/hyd:	rophilicity	profile	of	the	protein	encoded
	by clone	HP10711.						
		Fig.	. 10	i	llu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
15	by clone	HP10712.						
		Fig.	11	i	llu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
•	by clone	нрозо10.						
		Fig.	. 12	j	llu	stra	tes	the
20	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
	by clone	нР03576.	•					
		Fig.	13	į	illu	stra	tes	the
	hydropho	bicity/hyd	rophilicity	profile	of	the	protein	encoded
	by clone	e HP03611.						
25		Fig.	14	•	illu	stra	ites	the

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03612.

Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10407.

Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10713.

Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10714.

Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10716.

15 Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10717.

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10718.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03745.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP03747.

Fig. 23 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10719.

5 Fig. 24 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10720.

Fig. 25 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10721.

Fig. 26 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10725.

Fig. 27 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10727.

Fig. 28 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10728.

20 Fig. 29 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10730.

Fig. 30 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded 25 by clone HP10742.

Fig.

		Fig.	31	i.	llustra	tes .	the
	hydrophol	oicity/hydro	philicity	profile	of the	protein	encoded
	by clone	HP03800.			•		
		Fig.	32	i	llustra	tes	the
5	hydrophol	oicity/hydro	philicity	profile	of the	protein	encoded
	by clone	нр03831.					
		Fig.	33	i	llustra	tes	the
	hydrophol	bicity/hydro	philicity	profile	of the	protein	encoded
•	by clone	нр03879.					
10		Fig.	34	i	llustra	tes	the
	hydrophol	bicity/hydro	philicity	profile	of the	protein	encoded
	by clone	HP03880.					
		Fig.	35	i	llustra	tes	the
	hydrophol	bicity/hydro	philicity	profile	of the	protein	encoded
15	by clone	HP10704.					
		Fig.	36	i	llustra	tes	the
	hydrophol	bicity/hydro	philicity	profile	of the	protein	encoded
	by clone	HP10715.					
•	•	Fig.	37	·i	llustra	tes	the
20	hydropho	bicity/hydro	philicity	profile	of the	protein	encoded
	by clone	HP10724.					
		Fig.	38	i	llustra	tes	the
	hydropho	bicity/hydro	philicity	profile	of the	protein	encoded
	by clone	HP10733.					
25		Fig.	39	i	llustra	tes	the

39

illustrates

	hydrophol	oicity/hydrophi	licity	profile	of	the	protein	encode	:d
	by clone	HP10734.							
		Fig.	40	i	llus	trat	es	th	ıe
	hydrophol	oicity/hydrophi	licity	profile	of	the	protein	encode	:d
5	by clone	HP10756.							
		Fig.	41	i	llus	trat	tes	th	ıe
	hydrophol	oicity/hydrophi	licity	profile	of	the	protein	encode	:d
	by clone	HP03670.							
		Fig.	42	i	llus	trat	tes	th	ıe
10	hydrophol	oicity/hydrophi	licity	profile	of	the	protein	encode	:d
	by clone	HP03688.							
		Fig.	43	i	llus	trat	tes	th	ıe
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encode	:d
	by clone	HP03825							
15		Fig.	44	i	llus	strat	tes	th	ıe
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encode	ed
	by clone	HP03877.							
		Fig.	45	i	llus	stra	tes	th	ıe
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encode	∌d
20	by clone	HP10765.							
		Fig.	46	i	.llus	stra	tes	th	ıe
	hydrophol	bicity/hydrophi	licity	profile	of	the	protein	encode	ed
	by clone	HP10766.							
		Fig.	47	i	llus	stra	tes	th	ıe

hydrophobicity/hydrophilicity profile of the protein encoded

10

by clone HP10770.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10772.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10773.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10776.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for 15 preparing peptides by the chemical synthesis based on the amino acid sequences of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing 20 proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a 25

12

template. Alternatively, incorporation of the translated region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant

5

10

15

20

25

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultivated, whereby the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. 10 Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

5

15

20

25

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic

5

10

15

20

25

15

chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come

within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

5

10

15

20

25

The cDNAs of the present invention can be cloned. for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A)* RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be cloned from the CDNA libraries by synthesizing oligonucleotide on the basis of base sequences of portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known

17

in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which oligonucleotides are then used as the primers.

5

10

15

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Tables 1 and 2 summarizes the clone number (HP number), the cell from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

Table			 			
SEQ	ID NO	o. <u>.</u>	HP number	Cell	Number of bases	Number of amino acid residues
1,	11,	21	HP03171	Thymus	2042	267
2,	12,	22	HP03424	Liver	1433	419
3,	13,	23	HP03444	Kidney	1917	415
4,	14,	24	HP03478	Umbilical cord blood	2258	380
5,	15,	25	HP03499	Kidney	1973	585
6,	16,	26	HP03500	kidney	1606	331
7,	17,	27	HP10691	Umbilical cord blood	2380	345
8,	18,	28	HP10703	Kidney	2017	89
9,	19,	29	HP10711	Kidney	1606	406
10,	20,	30	HP10712	Kidney	1695	192
31,	41,	51	HP03010	Kidney	1551	377
32,	42,	52	HP03576	Kidney	1713	81
33,	43,	53	HP03611	Kidney	1758	487
34,	44,	54	HP03612	Kidney	1550	375
35,	45,	55	HP10407	Stomach cancer	1485	350
36,	46,	56	HP10713	Kidney	2694	667
37,	47,	57	HP10714	Umbilical cord blood	3297	464
38,	48,	58	HP10716	Umbilical cord blood	2126	470
39,	49,	59	HP10717	Kidney	1781	243
40,	50,	60	HP10718	Umbilical cord blood	1788	270
61,	71,	81	HP03745	Kidney	1376	389
62,	72,	82	HP03747	Umbilical cord blood	2392	348
63,	73,	83	HP10719	Kidney	1416	261
64,	74,	84	HP10720	Kidney	1347	222
65,	75,	85	HP10721	Kidney	2284	183

Table 2

SEC) ID 1		HP number	Cell	Number of bases	Number of amino acid residues
66,	76,	86	HP10725	Kidney	1737	262
67,	77,	87	HP10727	Umbilical cord blood	1556	168
68,	78,	88	HP10728	Umbilical cord blood	1855	243
69,	79,	89	HP10730	Umbilical cord blood	2530	428
70,	80,	90	HP10742	Umbilical cord blood	1911	283
91,	101,	111	HP03800	Umbilical cord blood	1633	476
92,	102,	112	HP03831	Kidney	1095	226
93,	103,	113	HP03879	Kidney	1602	305
94,	104,	114	HP03880	Kidney	897	227
95,	105,	115	HP10704	Kidney	1866	441
96,	106,	116	. HP10715	Umbilical cord blood	2198	265
97,	107,	117	HP10724	Umbilical cord blood	2180	208
98,	108,	118	HP10733	Umbilical cord blood	1527	400
99,	109,	119	HP10734	Umbilical cord blood	1905	192
100,	110,	120	HP10756	Kidney	998	260
121,	131,	141	HP03670	Umbilical cord blood	1622	337
122,	132,	142	HP03688	Umbilical cord blood	2475	236
123,	133,	143	HP03825	Kidney	1739	560
124,	134,	144	HP03877	Kidney	2005	406
125,	135,	145	HP10765	Umbilical cord blood	1558	453
126,	136,	146	HP10766	Kidney	1005	59
127,	137,	147	HP10770	Kidney	969	210
128,	138,	148	HP10772	Kidney	1241	165
129,	139,	149	HP10773	Kidney	1174	162
130,	140,	150	HP10776	Kidney	1012	221

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human

20

tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

5

10

15

20

25

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can

be utilized as the probes for the genetic diagnosis.

5

10

15

20

25

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom (JP-A 7-313187). Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for

22

introduction of DNA).

5

10

15

20

25

Research Uses and Utilities

. The polynucleotides provided by the present invention can be used by the research community for various The polynucleotides can be used to express recombinant protein for analysis, characterization therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA patients to identify potential sequences in disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein

23

(such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell '75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for highthroughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

24

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses ·

5

10

15

20

25

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

WO 01/12660

Activity

5

10

15

20

25

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

- cytokine production and/or for 5 Assays proliferation of spleen cells, lymph node cells thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan 10 eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- 15 Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology.

 20 J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a.

Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

20

5

10

15

5

10

15

20

25

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity. including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections such candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune

pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host disease and autoimmune gravis, inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. suppression in which immune is desired conditions, (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

5

10

15

20

25

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may preventing the induction of an immune response. functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by

30

the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

5

10

15

20

25

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will situations of tissue, skin useful in and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. tissue transplants, rejection Typically, in of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.

Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate

5

10

15

20

25

32

activation of T cells that are reactive against self tissue and which promote the production of cvtokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking induce antigen-specific tolerance reagents may autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents preventing or alleviating autoimmune disorders can determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

33

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

5

10

15

20

25

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte

antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

5

10

15

20

25

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a

10

15

cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β , microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;

15

20

25

Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

37

Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

10

15

20

25

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those

described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

5

10

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or

5

10

15

20

erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting and proliferation of megakaryocytes growth consequently of platelets thereby allowing prevention or treatment of various platelet disorders thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo conjunction with (i.e., in bone marrow transplantation or with peripheral progenitor transplantation (homologous or heterologous)) as cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

25 Suitable assays for proliferation and

5

differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

10 Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, in: Methylcellulose colony forming assays, described Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New 15 York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. 20 Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New 25 York, NY. 1994; Long term bone marrow cultures in the

41

presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth

repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

5

10

15

20

25

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by а composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or

ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel ligament defects. syndrome and other tendon or compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

The protein of the present invention may also be neural cells and for proliferation of for useful regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein 20 may be used in the treatment of diseases of the peripheral injuries, peripheral nerve such as nervous system, localized neuropathies, neuropathy and peripheral central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic 25

44

sclerosis, and Shy-Drager syndrome. Further lateral conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, spinal cord disorders, head trauma such and as diseases such stroke. cerebrovascular as Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

5

10

15

20

25

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be

useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

5

10

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

5

10

15

20

25

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et

al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial cells. epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized of lymphocytes, For example, attraction infections. monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

48

chemotaxis.

5

10

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other

49

hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

25

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen

presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

5

10

15

20

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity

51

may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated rejection, hyperacute nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

20 <u>Tumor Inhibition Activity</u>

5

10

15

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

52

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

5

10

15

20

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body for example, shape (such as, part size or augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other

nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold

54

Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

5

15

20

25

(1) Selection of cDNAs Encoding Proteins Having10 Hydrophobic Domains

Human liver cDNA library (WO 98/21328) and human stomach cancer cDNA library (WO 98/21328), as well as the cDNA libraries constructed from human kidney mRNA (Clontech), human thymus mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

55

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

5

10

15

20

25

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_nT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 µl containing 12.5 µl µ of T_NT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBg/ μ l), $0.5~\mu l$ of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 µl of the reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

56

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

5

10

15

20

25

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10° COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAM™ (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

57

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

5

10

15

20

25

A plasmid vector containing the cDNA of present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.2) to a concentration of 2 µg/µl. 25 µl each (a total of 50 μ l) of the thus-prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at The generation of an antibody was confirmed by immunostaining of COS7 cells into which the corresponding vector had been introduced or by Western blotting using a

58

cell lysate or a secreted product.

5

10

15

20

25

(5) Clone Examples

<HP03171> (SEQ ID NOS: 1, 11 and 21)

Determination of the whole base sequence of the cDNA insert of clone HP03171 obtained from cDNA library of human thymus revealed the structure consisting of a 90-bp 5'-untranslated region, a 804-bp ORF, and a 1148-bp 3'untranslated region. The ORF encodes a protein consisting of 267 amino acid residues and there existed one putative transmembrane domain. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 30,234 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Thr-Thr at position 169).

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to chicken putative transmembrane protein E3-16 (Accession No. AAB70816). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and chicken putative

transmembrane protein E3-16 (GG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.0% in the entire region.

Table 3

5

WO 01/12660

60

HP RATRRINKRGAKNCNAIRHFENTFVVETLICGVV

..... *. **. * **. ***** *. . *****

GG KEAMKGIQKREAVNCRKIRHFENRFAMETLICEQ

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL036384) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03424> (SEQ ID NOS: 2, 12 and 22)

Determination of the whole base sequence of the cDNA insert of clone HP03424 obtained from cDNA library of human liver revealed the structure consisting of a 4-bp 5'-untranslated region, a 1260-bp ORF, and a 169-bp 3'-untranslated region. The ORF encodes a protein consisting of 419 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight

61

of 46,375 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Ala-Ser at position 29, Asn-Val-Thr at position 40, Asn-Cys-Thr at position 112, Asn-Lys-Ser at position 135, Asn-Ile-Ser at position 172 and Asn-Phe-Ser at position 189). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH Table shows the (Accession No. 006003). protein comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the intermediate region of 218 amino acid residues.

5

10

15

20

Table 4

HP	MSCAGRAGPARLAALALLTCSLWPARADNASQEYYTALINVTVQEPGRGAPLTFRIDRGR
НР	YGLDSPKAEVRGQVLAPLPLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKIS
НР	RAAFHNAVAVVIYNNKSKEEPVTMTHPGTGDIIAVMITELRGKDILSYLEKNISVQMTIA
	.* ** *.*. *.* . *
DM	MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGYNVTISII
НР	VGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAA
	* **.*.****** *. *****.**.**.**.
DM	EGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQAKDQQSRNLCSVT
НР	KKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEH
	**** **.* * .* *.* * * **.***.********
DM	KKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCIDPWLIEH
HP	CTCPMCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLEPLR
	****** * * *
DM	RTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQPLQPLQ
НР	TSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW
	.**
DM	ASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMPHAITAS

63

HP F

DM HQVTDV

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA082118) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03444> (SEQ ID NOS: 3, 13 and 23)

Determination of the whole base sequence of the cDNA insert of clone HP03444 obtained from cDNA library of human kidney revealed the structure consisting of a 209-bp 5'-untranslated region, a 1248-bp ORF, and a 460-bp 3'-untranslated region. The ORF encodes a protein consisting of 415 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was somewhat smaller than the molecular

weight of 45,691 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 42 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 24.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human type I procollagen C-proteinase enhancer protein (Accession No. BAA23281). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human type I procollagen C-proteinase enhancer protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.6% in the entire region.

20 Table 5

5

10

15

HP MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYP

* **. * * **** *** . . *****. . **

CP MLPAATASLLGPLLTACALLPFA-Q-GQTPNYTRPVFLCGGDVKGESGYVASEGFPNLYP

	HP	PNSKCTWKITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGH-ANGQRIGRFCGTFRPG
		.*.**** *.** . ********.******
•	CP	${\tt PNKECIWTITVPEGQTVSLSFRVFDLELHPACRYDALEVFAGSGTSGQRLGRFCGTFRPA}$
5	HP	${\tt ALVSSGNKMMVQMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDR}$
		.**********.**** * ******
	СР	PLVAPGNQVTLRMTTDEGTGGRGFLLWYSGRATSGTEHQFCGGRLEKAQGTLTTPNWPES
	ım	DUDA OUTOUTHUA DUNIOL TEL VEEVEDUEDDING DUDUUA VENG CEUTE A DEL CUVO CE
	MР	DYPAGVTCVWHIVAPKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGD
10		***. *. * ***. ** . *. *. *. ***** *. ***** *. ***** *. *
	CP	DYPPGISCSWHIIAPPDQVIALTFEKFDLEPDTYCRYDSVSVFNGAVSDDSRRLGKFCGD
	HP	SPPAPIVSERNELLIQFLSDLSLTADGFIGHYIFRPKKLPTTTE
		. ** ** ****. **. ***** . * *
15	СР	AVPGSISSEGNELLVQFVSDLSVTADGFSASYKTLPRGTAKEGQGPGPKRGTEPKVKLPP
٠,	НР	QPVTTTFPVTTGLKTTVALCQQKCRRTGTLEGNYCSSDFVLAGTVITTITRDG-SLHATV

	ĊP	${\tt KSQPPEKTEESPSAPDAPTCPKQCRRTGTLQSNFCASSLVVTATVKSMVREPGEGLAVTV}$
20 .		
	HP	SIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRRGLNYIIMGQVGEDGRGKIM-PNSF
		.. **.*. * * * **** * * **** * *. *
	СР	SLIGAYKTGGLDLPSPPTGASLKFYVPCKQCPPMKKGVSYLLMGQV-EENRGPVLPPESF

66

5

10

15

20

25

CP VVLHRPNQDQILTNLSKRKCPSQPVRAAASQD

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D78874) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03478> (SEQ ID NOS: 4, 14 and 24)

Determination of the whole base sequence of the cDNA insert of clone HP03478 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 224-bp 5'-untranslated region, a 1143-bp ORF, and a 891-bp 3'-untranslated region. The ORF encodes a protein consisting of 380 amino acid residues and there existed five putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the

protein was similar to Halocynthia roretzi HrPET-1 protein (Accession No. BAA81907). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Halocynthia roretzi HrPET-1 protein (HR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.8% in the entire region.

Table 6

5

10

	HP	MLQTLYDYFWWERLWLPVNLTWADLEDRDGRVYAKASDLYITLPLALLFLIVRYFFEL
15		.* .**** **** ****. ******. * . * . * . *
	HR	MDLLMDLYHWFWNEKFWLPQNLTWEDLKRTEEKQFGETRDLWLTFPLCITVLCIRFSVEK
	HP	YVATPLAALLNIKEKTRLRAPPNATLEHFYLTSGKQPKQVEVELLSRQSGLSGRQVERWF
		.* **. *** * .**. * **** **. **
20	HR	GIARPLGKWLNLSERLHTPPRENIVLEKVYKTITRKPNYSQVEDLCKQTGWRKHEINVWF
	HP	RRRRNQDRPSLLKKFREASWRFTFYLIAFIAGMAVIVDKPWFYDMKKVWEGYPIQSTIPS
		***. *.**. ***. *. *. *. ** **
	HR	RKKNLVGRPTTLTKFQETFWRFAFYLTSFFYGLYVMYDQECVWQTEKCFSNYPEDHVLSQ

	HP Q-YWYYMIELSFYWSLLFSIASDVKRKDFKEQIIHHVATIILISFSWFANYIRAGTLIMA
	. *. **. ***. ** ****** * . *** *. *
	HR KIYYYYLIELAFYSATTLTQFFDVKRKDFWEMFIHHIVTIILLCGSYTLNYTKMGAFILV
5	HP LHDSSDYLLESAKMFNYAGWKNTCNNIFIVFAIVFIITRLVILPFWILHCTLVYPLELYP
	.***.** *** .** * ** *. * * ******
	HR VHDSADFYIEFAKMGKYANNSLVTNVGFISFTISFFLSRLVILPLWIVPSIWFYGIYTYN
	HP AFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSEGEEAAAG
LO	********************************
	HR CAMA-WLFCALL-ILQLLHFYWFSHIVKAAYASILVGVIERDTRSESEDSSAEDETAKYS
	HP GGAKSRPLANGHPILNNNHRKND
	*.
L 5	HR VGSGDYTESNGIHKRVVTAR

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T27334) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

5

10

15

Determination of the whole base sequence of the cDNA insert of clone HP03499 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 1758-bp ORF, and a 86-bp 3'untranslated region. The ORF encodes a protein consisting of 585 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 63 kDa that was almost identical with the molecular weight of 63,987 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 82 kDa. In addition, there exist in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-Ile-Thr at position 89, Asn-Glu-Thr at position 106, Asn-Ala-Thr at position 189, Asn-Arg-Thr at position 220 and Asn-Ala-Thr at position 315).

The search of the protein database using the amino 20 acid sequence of the present protein revealed that the protein was similar to Chinese hamster hypothetical protein 2BE2121 (Accession No. A30227). Table 7 shows comparison between amino acid sequences of the human protein the present invention (HP) and Chinese 25 hypothetical protein 2BE2121 (CH). Therein, the marks of -,

*, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.8% in the entire region.

Table 7

5

25

HP MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAITLRRPGCELEACSPDADMLDYLLSLG 10 ..***.*. CH SWSENILDYFLRNS HP QISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLGTANETGVPIMAHPPTIY CH QITTEDGAEIIWYHAANHKSQMQEALRSAAHMIEADVLLPS--DGSEHGQPIMAHPPEMN 15 HP SDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIWINADILKGP CH SDNTLQEWLAEVM-KSNKGIKLDFKSLAAARASMLFLDNVKQH--LQCPVWMNADVLPGP 20 HP NMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMSTSPNRTYTQAMVEKMHELVGGVPQ CH NG-SSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPEKVNEGYSWTMVKEMDYICSGLTQ

HP RVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYD

71

. ******... **... ***... ***... **..

HP IFEPLLSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTL

5 *.** .***

10

15

20

25

CH ILEPQSHEFKQAIGI

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R92398) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03500> (SEQ ID NOS: 6, 16 and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03500 obtained from cDNA library of human kidney revealed the structure consisting of a 134-bp 5'-untranslated region, a 996-bp ORF, and a 476-bp 3'-untranslated region. The ORF encodes a protein consisting of 331 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

10

15

20

25

translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 37,694 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the amino acid sequence of the protein matched with that of human hypothetical protein (Accession No. AAC05803) in which a region of 62 amino acid residues from glycine at position 88 to lysine at position 149 was deleted.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340631) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10691> (SEQ ID NOS: 7, 17 and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10691 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 246-bp 5'-untranslated region, a 1038-bp ORF, and a 1096-bp 3'-untranslated region. The ORF encodes a protein consisting of 345 amino acid residues and there existed at least two putative transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the

10

15

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human BB1 protein (Accession No. AAB37433). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human BB1 protein (BB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The C-terminal region of 215 amino acid residues of the present protein shared a homology of 81.9% with the N-terminal region of human BB1 protein.

Table 8

HP MSPEEWTYLVVLLISIPIGFLFKKAGPGLKRWGAAAVGLGLTLFTCGPHTLHSLVTILGT

20

HP WALIQAQPCSCHALALAWTFSYLLFFRALSLLGLPTPTPFTNAVQLLLTLKLVSLASEVQ

HP DLHLAQRKEMASGFSKGPTLGLLPDVPSLMETLSYSYCYVGIMTGPFFRYRTYLDWLEQP

MASGFSKGPTLGLLRRALPDGDT-QLQLLLRGNHDRPVLPLPHLPGLAGAA

BB

10

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W48653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

BB NIDCYSTDFCVRVRDGMRYWNMTVQWWLAQYIYKSAPARSYVLRTAWTMLLSAYWHGLHP

<HP10703> (SEQ ID NOS: 8, 18 and 28)

Determination of the whole base sequence of the CDNA insert of clone HP10703 obtained from cDNA library of human kidney revealed the structure consisting of a 359-bp

10

15

20

25

5'-untranslated region, a 270-bp ORF, and a 1388-bp 3'-untranslated region. The ORF encodes a protein consisting of 89 amino acid residues and there existed one putative transmembrane domain. Figure 8 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18 kDa that was larger than the molecular weight of 10,469 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T08343) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10711> (SEQ ID NOS: 9, 19 and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10711 obtained from cDNA library of human kidney revealed the structure consisting of a 29-bp 5'-untranslated region, a 1221-bp ORF, and a 356-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 9 depicts the

5

10

15

20

25

76

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 44 kDa that was almost identical with the molecular weight of 43,836 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Ser-Thr at position 65, Asn-Trp-Ser at position 95, Asn-Val-Ser at position 134, Asn-Ile-Thr at position 159, Asn-Gly-Ser at position 187, Asn-Arg-Ser at position 230 and Asn-Leu-Thr at position 333). Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 36.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse kidney predominant protein (Accession No. BAA92527). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse kidney predominant protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 79.9% in the entire region.

Table 9

5

78

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA362394) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10712> (SEQ ID NOS: 10, 20 and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10712 obtained from cDNA library of human kidney revealed the structure consisting of a 52-bp 5'-untranslated region, a 579-bp ORF, and a 1064-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino

acid sequence of the present protein revealed that the
protein was similar to mouse calcium channel gamma 5 subunit
(Accession No. CAB86387). Table 10 shows the comparison
between amino acid sequences of the human protein of the
present invention (HP) and mouse calcium channel gamma 5

subunit (MM). Therein, the marks of -, *, and represent a
gap, an amino acid residue identical with that of the
protein of the present invention, and an amino acid residue
similar to that of the protein of the present invention,
respectively. The both proteins shared a homology of 75.0%

in the entire region.

Table 10

HS MTAVGVQAQRPLGQRQPRRSFFESFIRTLIITCVALAVVLSSVSICDGHWLLAEDRLFGL

80

HS HSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGFTLMFWCEFTASFLLFLNAIS

MM RSRRKWAIGSYLLLVAFILSSGGLLTFIILLKNQINLLGFTLMFWCEFTASFLFFLNAAS

5

HS GLHINSITHPWE

*****. *. **.

MM GLHINSLTQPWDPPAGTLAYRKRGYDGTSLI

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA910339) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03010> (SEQ ID NOS: 31, 41 and 51)

Determination of the whole base sequence of the

CDNA insert of clone HP03010 obtained from cDNA library of

human kidney revealed the structure consisting of a 97-bp

5'-untranslated region, a 1134-bp ORF, and a 320-bp 3'
untranslated region. The ORF encodes a protein consisting of

377 amino acid residues and there existed at least eight

putative transmembrane domains. Figure 11 depicts the

81

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was almost identical with the molecular weight of 41,462 predicted from the ORF as well as a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. AAC34490). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 42.0% in the entire region other than the N-terminal region.

20

5

10

15

Table 11

HP MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARG

* *.

	HP	KNASDMPETITSRDAARFPIIASCTLLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHT
		** * *** * **.*.* * .*
	AT	VKDTPPTETMSKEHAMRFPLVGSAMLLSLFLLFKFLSKDLVNAVLTAYFFVLGIVALSAT
5		
	HP	${\tt ISPFMNKFFPASFPNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRK}$
		. * *
	AT	LLPAIRRFLPNPWNDNLIVWRFPYFKSLEVEFTKSQVVAGIPGTFFCAWYAWKK
10	HP	HWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKSFEAPI
		. * **. * *. * ** **
	AT	HWLANNILGLSFCIQGIEMLSLGSFKTGAILLAGLFFYDIFWVFFTPVMVSVAKSFDAPI
	HP	KLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIF
15		**. **
	AT	KLLFPTGDALRPYSMLGLGDIVIPGIFVALALRFDVSRRRQPQ-YFTSAFIGYAV
	HP	GLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYEESNPKDPAAVTES
		*. *** .*. *. ****** ***
20	AT	GVILTIVVMNWFQAAQPALLYIVPAVIGFLASHCIWNGDIKPLLAFDESKTEE-ATTDES
	HP	KEGTEASASKGLEKKEK
		**
	AT	KTSEEVNKAHDE

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA380429) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03576> (SEQ ID NOS: 32, 42 and 52)

Determination of the whole base sequence of the cDNA insert of clone HP03576 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 246-bp ORF, and a 1379-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed two putative transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 9,178 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human vacuolar proton ATPase 9 kDa (Accession No. NP_003936). Table 12 shows the comparison

between amino acid sequences of the human protein of the present invention (HP) and human vacuolar proton ATPase 9 kDa (VP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 71.2% in the entire region.

10 Table 12

HP MTAHSFALPVIIFTTFWGLVGIAGPWFVPKGPNRGVIITMLVATAVCCYLFWLIAILAQL

VP MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWLIAILAQL

15

5

HP NPLFGPQLKNETIWYVRFLWE

VP NPLFGPQLKNETIWYLKYHWP

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W22566) among ESTs. However, since they are partial sequences, it can not be judged

85

whether or not they encode the same protein as the protein of the present invention.

<HP03611> (SEQ ID NOS: 33, 43 and 53)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03611 obtained from cDNA library of human kidney revealed the structure consisting of a 189-bp 5'-untranslated region, a 1464-bp ORF, and a 105-bp 3'untranslated region. The ORF encodes a protein consisting of 487 amino acid residues and there existed eleven putative 13 Figure depicts the transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human cystine/glutamate transporter Table 13 shows the comparison (Accession No. BAA82628). between amino acid sequences of the human protein of the (HP) and human cystine/glutamate present invention transporter (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.8% in the entire region other than the N-terminal region.

Table 13 5 HP MGDTGLRKRREDEKS1QSQEPKTTSLQKELGLISGIS11VGT11GS *.... *.... *. *. ***. *****. CG MVRKPVVSTISKGGYLQGNVNGRLPSLGNKEPPGQEKVQLKRKVTLLRGVSIIIGTIIGA HP GIFVSPKSVLSNTEAVGPCLIIWAACGVLATLGALCFAELGTMITKSGGEYPYLMEAYGP 10 CG GIFISPKGVLONTGSVGMSLTIWTVCGVLSLFGALSYAELGTTIKKSGGHYTYILEVFGP HP IPAYLFSWASLIVIKPTSFAIICLSFSEYVCAPFYVGCKPPQIVVKCLAAAAILFISTVN _ **. _ *. *. *. *. *. *. *. *. *. *. *. . * . . * . . * . . * 15 CG LPAFVRVWVELLIIRPAATAVISLAFGRYILEPFFIQCEIPELAIKLITAVGITVVMVLN HP SLSVRLGSYVQNIFTAAKLVIVAIIIISGLVLLAQGNTKNFDNSFEGAQLSVGAISLAFY *.**. .. .* ..* **. . ***..*. * .*.*.*. * . *. **** CG SMSVSWSARIQIFLTFCKLTAILIIIVPGVMQLIKGQTQNFKDAFSGRDSSITRLPLAFY 20 HP NGLWAYDGWNQLNYITEELRNPYRNLPLAIIIGIPLVTACYILMNVSYFTVMTATELLQS

CG YGMYAYAGWFYLNFVTEEVENPEKTIPLAICISMAIVTIGYVLTNVAYFTTINAEELLLS

- HP QAVAVTFGDRVLYPASWIVPLFVAFSTIGAANGTCFTAGRLIYVAGREGHMLKVLSYISV
 .******.*.* * **.***.*.*.**.****...** *
 CG NAVAVTFSERLLGNFSLAVPIFVALSCFGSMNGGVFAVSRLFYVASREGHLPEILSMIHV
- - HP ISKPITMHLQMLMEVVPPEEDPE
 .*. **. **...*** *.

CG MSEKITRTLQIILEVVPEEDKL

15

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R07056) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

88

Determination of the whole base sequence of the cDNA insert of clone HP03612 obtained from cDNA library of human kidney revealed the structure consisting of a 153-bp 5'-untranslated region, a 1128-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of 375 amino acid residues and there existed seven putative transmembrane domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 39 kDa that was somewhat larger than the molecular weight of 37,930 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human monocarboxylate transporter (Accession No. AAC70919). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human monocarboxylate transporter (MC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the N-terminal region of 192 amino acid residues.

5

10

15

Table 14

MTPQPAGPPDGGWGWVVAAAAFAINGLSYGLLRSLGLAFPDLAEHFDRSAQDTAW
.*. *******.*.*. * * * * *
MPPMPSAPPVHPPPDGGWGWIVVGATFISIGFSYAFPKAVTVFFKEIQQIFHTTYSEIAW
ISALALAVQQAASPVGSALSTRWGARPVVMVGGVLASLGFVFSAFASGLLHLYLGLGLLA
. * *. **. * * . * *
ISSIMLAVMYAGGPVSSVLVNKYGSRPVVIAGGLLCCLGMVLASFSSSVVQLYLTMGFIT
GFGWALVFAPALGTLSRYFSRRRVLAVGLALTGNGASSLLLAPALQLLLDTFGWRGALLL
* * * *** ** * . * * * ** * * *
GLGLAFNLQPALTIIGKYFYRKRPMANGLAMAGNPVFLSSLAPFNQYLFNTFGWKGSFLI
LGAITLHLTPCGALLLPLVLPGDPPAPPRSPLAALGLSLFTRRAFSIFALGTALVGGGYF
** *. *.**
LGSLLLNACVAGSLMRPLGPNQTTSKSKNKTGKTEDDSSPKKIKTKKSTWEKVNKYLDFS
VPYVHLAPRFRPGPGGIRSSAGGGRGCDGGCGRPAGLRVAGRPRLGAPPAAAGRIRGSDW
LFKHRGFLIYLSGNVIMFLGFFAPIIFPAPYAKDQGIDEYSAAFLLSVMAFVDMFARPSV
AGAVGGGAGARGGRRRELGGSPAGRGCGLWAERGELRPAGFRCTPRAGGRRRCGAGHRAG
Social modulus social management in the modulus of the modul
•

90

HP DDADEPRGAPGPSPVRLPKG

MC TLMDLVGAPRFSSAVGLVTIVECGPVLLGPPLAGKLVDLTGEYKYMYMSCGAIVVAASVW

5

10

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI742291) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10407> (SEQ ID NOS: 35, 45 and 55)

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10407 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 100-bp 5'-untranslated region, a 1053-bp ORF, and a 332-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed at least four putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the

10

15

protein was longer by 35 amino acid residues at the N-terminus than human hypothetical protein (Accession No. CAB43375).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a clone beginning from the 117th base of the present cDNA (Accession No. AL050274).

<HP10713> (SEQ ID NOS: 36, 46 and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10713 obtained from cDNA library of human kidney revealed the structure consisting of a 79-bp 5'-untranslated region, a 2004-bp ORF, and a 611-bp 3'untranslated region. The ORF encodes a protein consisting of 667 amino acid residues and there existed nine putative transmembrane domains. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse retinoic acid-responsive protein (Accession No. AAC16016). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse retinoic acid-

responsive protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.1% in the entire region.

Table 15

- HP MSSQPAGNQTSPGATEDYSYGSWYIDEPQGGEELQPEGEVPSCHTSIPPGLYHACLAS

 *.***.*.*.*** *****.** *.***.***.***

 MM MESQASENGSQTSSGVTDDYS--SWYIEEPLGAEEVQPEGVIPLCQLTAPPALLHACLAS

	HP SKGLQSSYSEEYLKNLLCKKKLGSSYH-ISKHGFLSWAKVCLKHCIYIPQPGFHLPLKLV
	*. ***. ****. ***. ***. * . * . **
	MM SQGLQTSYSEKYLRTLLCPKKLDSCSHPASKRSLLSRAWAFSHHSIYTPQPGFRLPLKLV
5	HP LSATLTGTAIYQVALLLLVGVVPTIQKVRAGVTTDVSYLLAGFGIVLSEDKQEVVELVKH
	.*******.******************************
	MM ISATLTGTATYQVALLLLVSVVPTVQKVRAGINTDVSYLLAGFGIVLSEDRQEVVELVKH
	HP HLWALEVCYISALVLSCLLTFLVLMRSLVTHRTNLRALHRGAALDLSPLHRSPHPSRQAI
10	****.******* ***.*.****************
	MM HLWTVEACYISALVLSCASTFLLLIRSLRTHRANLQALHRGAALDLDPPLQSIHPSRQAI
	HP FCWMSFSAYQTAFICLGLLVQQIIFFLGTTALAFLVLMPVLHGRNLLLFRSLESSWPFWL
	· ****. ***** ******. ******. *****. *. *
15	MM VSWMSFCAYQTAFSCLGLLVQQVIFFLGTTSLAFLVFVPLLHGRNLLLLRSLESTWPFWL
	HP TLALAVILQNMAAHWVFLETHDGHPQLTNRRVLYAATFLLFPLNVLVGAMVATWRVLLSA
	*, *******, **, ** **, *, *****, *, ******
•	MM TVALAVILQNIAANWIFLRTHHGYPELTNRRMLCVATFLLFPINMLVGAIMAVWRVLISS
20	
	HP LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSLLPR
	, ******** ***, ***, ***, **, **,
	MM LYNTVHLGQMDLSLLPQRAASLDPGYHTYQNFLRIEASQSHPGVIAFCALLLHAPSPQPR
25	HP TMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVFRKT

HP ALLGANGAQP

5 ****** .*.

20

25

MM ALTSAKANGTQP

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI760170) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10714> (SEQ ID NOS: 37, 47 and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10714 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 82-bp 5'-untranslated region, a 1395-bp ORF, and a 1820-bp 3'-untranslated region. The ORF encodes a protein consisting of 464 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

5

10

15

20

25

vitro translation resulted in formation of a translation product of 49 kDa that was somewhat smaller than the molecular weight of 52,340 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 52 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 164 and Asn-Asp-Ser at position 320). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from threonine at position 22.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA861134) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10716> (SEQ ID NOS: 38, 48 and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10716 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 60-bp 5'-untranslated region, a 1413-bp ORF, and a 653-bp 3'-untranslated region. The ORF encodes a protein consisting of 470 amino acid residues and there existed one

96

putative transmembrane domain at the N-terminus. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was larger than the molecular weight of 52,086 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-90 (Accession No. AAD34085). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-90 (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the entire region.

20 Table 16

HP MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLDYTQTSDPG

HP RHVMLLRAVPGGAGDASVLPSLPREGQEKVLDRLDFVLTSLVALRREVEELRSSLRGLAG

5

10

	HP	EIVGEVRCHMEENQRVARRRRFPFVRERSDSTGSSSVYFTASSGATFTDAESEGGYTTAN
	CG	MALAARLWRLLPFRRGAAPGSRLPA
5	HP	AESDNERDSDKESEDGEDEVSCETVKMGRKDSLDLEEEAASGASSALEAGGSSGLEDVLP
	CG	GPSGSRGIAAPARFRGFEVMGNPGTFNRGLLLSALSYLGFETYQVISQAAVVHATAKVEE
	НР	LLQQADELHRGDEQGKREGFQLLLNNKLVYGSRQDFLWRLARAYSDMCELT-EEVSEKKS
10	CG	.*.*** ** .* .*** .******* .***** ILEQADYLYESGETEK—LYQLLTQYK—ESEDAELLWRLARASRDVAQLSRTSEEEKKL
٠	НР	YALDGKEEAEAALEKGDESADCHLWYAVLCGQLAEHESIQRRIQSGFSFKEHVDKAIALQ * *. **** * * ***
15	CG	LVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELN
· .		PENPMAHFLLGRWCYQVSHLSWLEKKTATALLESPLSATVEDALQSFLKAEELQPGFSKA * *.* *** * * * *
20		
	НР	GRVYISKCYRELGKNSEARWWMKLALELPDVTKEDLAIQKDLEELEVILRD
	CG	NLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA852295) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10717> (SEQ ID NOS: 39, 49 and 59)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10717 obtained from cDNA library of human kidney revealed the structure consisting of a 73-bp 5'-untranslated region, a 732-bp ORF, and a 976-bp 3'untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed two putative 19 transmembrane domains. Figure depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was larger than the molecular weight of 26,270 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI478174) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

99

encode the same protein as the protein of the present invention.

<HP10718> (SEQ ID NOS: 40, 50 and 60)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10718 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 86-bp 5'-untranslated region, a 813-bp ORF, and a 889-bp 3'-untranslated region. The ORF encodes a protein consisting of 270 amino acid residues and there existed three putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was smaller than the molecular weight of 31,116 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y53C10A (Accession No. CAA22139). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y53C10A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the

present invention, respectively. The both proteins shared a homology of 54.8% in the entire region other than the N-terminal region.

5 Table 17

10

HP MAGAEDWPGQ

CE MTSSSAASSSTTTSSTMMPDENECLKKEEERFKSPDPAPTLDEEVDIDTLPSMLEDDPNG

HP QLELDEDEASCCRWGAQHAGARELAALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARW

CE NVVECDLGFKGPRWGPQHAGAKKLASMYSKEKRLQEKVSLFAAIFLFSIVFIN-LLLS-W

15 HP EDT-PLVILGVVAGALIADFLSGLVHWGADTWGSVELPIVGKAFIRPFREHHIDPTAIT

CE ESSIWVSVLVSAVLGIMTADFASGLVHWAADTFGSVE-TWFGRSFIRPFREHHVDPTAIT

HP RHDFIETNGDNCLVTLLPLLNMAYKFRTHSPEALEQ--LYPWECFVFCLIIFGTFTNQIH

20 ***. *. ******. . *** . *. . * . . * . . * * . . * **. . . *****

CE RHDIVEVNGDNCMLCVGPLLWILYQQMTYQRDAITQWATFHW-YILLLGIYVALTNQIH

HP KWSHTYFGLPRWVTLLQDWHVILPRKHHRIHHVSPHETYFCITTGWLNYPLEKIGFWRRL

25 CE KWSHTYFGLPTWVVFLQKAHIILPRSHHKIHHISPHACYYCITTGWLNWPLEYIGFWRKM

101

HP EDLIQGLTGEKPRADDMXWAQKIK

* ** . **. **. *** *..

CE EWVVTTVTGMQPREDDLKWATKLQ

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA176107) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, the region from position 466 to position 778 of the cDNA of the present invention matched with the region from position 2 to position 314 of human ubiquitin-conjugating enzyme E2 variant 1 (Accession NO. NM_003349) although no match was observed in another region.

<HP03745> (SEQ ID NOS: 61, 71 and 81)

20

25

15

Determination of the whole base sequence of the cDNA insert of clone HP03745 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1170-bp ORF, and a 107-bp 3'-untranslated region. The ORF encodes a protein consisting of 389 amino acid residues and there existed at least nine

102

putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 7 (Accession No. NP_003974). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 7 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.0% in the N-terminal region of 397 amino acid residues.

Table 18

20

25

5

10

15

HP

MDRGEKIQLKRVFGYWWGTSFLLINIIG

.*..***. .. *.*... *.**

SC MEAREPGRPTPTYHLVPNTSQSQVEEDVSSPPQRSSETMQLKKEISLLNGVSLVVGNMIG

	.*********** *.** ***** ** *** * *
	SC SGIFVSPKGVLVHT-ASYGMSLIVWAIGGLFSVVGALCYAELGTTITKSGASYAYILEAF
	HP GSTVAFLNLWTSLFLGSGVVAG-QALLLAEYSIQPFFPSCSVPKLPKKCLALAMLWIVGI
5	*****.**
	SC GGFIAFIRLWVSLLVVEPTGQAIIAITFANYIIQPSFPSCDPPYLACRLLAAACICLLTF
	HP LTSRGVKEVTWLQIASSVLKVSILSFISLTGVVFLIRGKKENVERFQNAFDAELPDISHL
	** ** . ** * * . *.* . *.**.* . **
10	SC VNCAYVKWGTRVQDTFTYAKVVALIAIIVMGLVKLCQG——HSEHFQDAFEGSSWDMGNL
	HP IQAIFQGYFAYSGELKKPRTTIPKCIFTALPLVTVVYLLVNISYLTVLTPR
	.* *.** ** **.*.*.*.*
	SC SLALYSALFSYSGWDTLNFVTEEIKNPERNLPLAIGISMPIVTLIYILTNVAYYTVLNIS
15	
	HP EILSSDAVAITWADRAFPSLAWIMPFAISTSLFSNLLISIFKSSRPIYLASQEGQLPLLF
	******.*.*.**.* * ** *** ****.*.**
	SC DVLSSDAVAVTFADQTFGMFSWTIPIAVALSCFGGLNASIFASSRLFFVGSREGHLPDLL
20	HP NTLNSHS-SPFTAVLLLVTLGSLAIILTSLIDLINYIFFTGSLWSILLMIGILRRRYQEP
	SC SMIHIERFTPIPALLFNCTMALIYLIVEDVFQLINYFSFSYWFFVGLSVVGQLYLRWKEP
	HP NLSIPYKVKLDF
25	* * *

104

SC KRPRPLKLSVFFPIVFCICSVFLVIVPLFTDTINSLIGIGIALSGVPFYFMGVYLPESRR

<HP03747> (SEQ ID NOS: 62, 72 and 82)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03747 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 21-bp 5'-untranslated region, a 1047-bp ORF, and a 1324-bp 3'-untranslated region. The ORF encodes a protein consisting of 348 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,685 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from proline at position 39.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human endoplasmic reticulum glycoprotein (Accession No. NP_006807). Table 19 shows the comparison between amino acid sequences of the human protein

of the present invention (HP) and human endoplasmic reticulum glycoprotein (ER). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.1% in the entire region.

Table 19

10

25

- ER MAAEGWIWRWGWGRRCLGRPGLLGPGPGPTTPLFLLLL-LGSVTADITDGNS-EHLK
- HP VHFKIHGQGKKNLHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVF

 20 ****.** ********.*. ******.*. ******

 ER VHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDET-TERVF

106

15 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262924) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10719> (SEQ ID NOS: 63, 73 and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10719 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp

5'-untranslated region, a 786-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 261 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 33 kDa that was larger than the molecular weight of 27,435 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from asparagine at position 19.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse endomucin (Accession No. AAD05208). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse endomucin (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

108

m	_	h	1	e	2	n
	а	1)		•		u

		•
	HP	MELLQVTIL-FLLP-SIC-SSNSTGVL-EAANNSLVVTTTKPSITTPNTESLQKNVVTPT
		* ***. *. * ***. *. *
5	ММ	MRLLQATVLFFLLSNSLCHSEDGKDVQNDSIPTPAETSTTKASVTIPGIVSV-TNPNKPA
		·
	HP	TGTTPKGTITNELLKMSLMSTATFLTSKDEGLKATTTDVRKNDSIISNVTVTSVTLPNAV
		.**.*.****
	ММ	DGTPPEGTTKSDVSQTSLVTTINSLTTPKHEVGTTTEGPLRNESSTMKITVPNTPTSNAN
LO		•
	НР	STLQSSKPKTETQSSIKTTEIPGSVLQPDASPSKTGTLTSIPVTIPENTSQSQVIGTEGG
		****. *** **.
	ММ	STLPGSQNKITTQLLDALPKITATPSASLTTAHTMSLLQDTEDR
L5	НР	KNASTSATSRSYSSIILPVVIALIVITLSVFVLVGLYRMCWKADPGTPENGNDQPQSDKE
		* *. * * * * * * * * * * * * * * * *
	ММ	KIATTPSTTPSYSSIILPVVIALVVITLLVFTLVGLYRICWKRDPGTPENGNDQPQSDKE
	HP	SVKLLTVKTISHESGEHSAQGKTKN
20		******
- -	мм	SVKLLTVKTISHESGEHSAQGKTKN
	nui	O. HDDI - HI TOHNOODHOH GOHTHA

The search of the GenBank using the base sequences

of the present cDNA has revealed the registration of

sequences that shared a homology of 90% or more (for example, Accession No. AA486620) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10720> (SEQ ID NOS: 64, 74 and 84)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10720 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 669-bp ORF, and a 653-bp 3'untranslated region. The ORF encodes a protein consisting of 222 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the In vitro Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,219 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 35 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-qlycosylation may occur (Asn-Val-Thr at position 76 and Asn-His-Thr at position 93). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

expect that the mature protein starts from glutamic acid at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792241) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10721> (SEQ ID NOS: 65, 75 and 85)

5

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10721 obtained from cDNA library of human kidney revealed the structure consisting of a 74-bp 5'-untranslated region, a 552-bp ORF, and a 1658-bp 3'untranslated region. The ORF encodes a protein consisting of 183 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 19,989 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 22 kDa. Application of the (-3,-1) rule, a method for predicting the

111

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R27187) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

•

15

20

25

<HP10725> (SEQ ID NOS: 66, 76 and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10725 obtained from cDNA library of human kidney revealed the structure consisting of a 235-bp 5'-untranslated region, a 789-bp ORF, and a 713-bp 3'-untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed one putative transmembrane domain. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

112

Accession No. AI127782) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10727> (SEQ ID NOS: 67, 77 and 87)

5

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10727 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 102-bp 5'-untranslated region, a 507-bp ORF, and a 947-The ORF encodes a protein bp 3'-untranslated region. consisting of 168 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was larger than the molecular weight of 17,822 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 29.

The search of the GenBank using the base sequences

of the present cDNA has revealed the registration of

113

sequences that shared a homology of 90% or more (for example, Accession No. R80316) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10728> (SEQ ID NOS: 68, 78 and 88)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10728 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 221-bp 5'-untranslated region, a 732-bp ORF, and a 902-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 26,534 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H23535) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

114

<HP10730> (SEQ ID NOS: 69, 79 and 89)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10730 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 27-bp 5'-untranslated region, a 1287-bp ORF, and a 1216-bp 3'-untranslated region. The ORF encodes a protein consisting of 428 amino acid residues and there existed one Figure 29 putative transmembrane domain. depicts hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. Doolittle method, of the In translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight of 48,992 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C19105) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10742> (SEQ ID NOS: 70, 80 and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10742 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 231-bp 5'-untranslated region, a 852-bp ORF, and a 828-

115

bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed two putative transmembrane domains. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was smaller than the molecular weight of 31,629 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35949) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03800> (SEQ ID NOS: 91, 101 and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03800 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 67-bp 5'-untranslated region, a 1431-bp ORF, and a 135-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

116

vitro translation resulted in formation of a translation product of 55 kDa that was almost identical with the molecular weight of 54,110 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Lys-Thr at position 81, Asn-Met-Thr at position 132, Asn-Val-Thr at position 307 and Asn-Gln-Thr at position 346). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 23.

5

10

15

20 -

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mosquito vitellogenic carboxypeptidase (Accession No. P42660). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mosquito vitellogenic carboxypeptidase (VC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region. In addition, the C-terminal portion beginning from alanine at position 182 matched with human probable carboxypeptidase (Accession No. AAC23787) except one amino acid residue.

Table 21 5 MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPK-GDSGQPLFLTPYIEAGKIQKG HP VC MVKFHLLVLIAFTCYTCSDATLWNPYKKLMRGSASPPRPGESGEPLFLTPLLQDGKIEEA HP RELSLYGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSM 10 VC RNKARVNHPMLSSVESYSGFMTVDAKHNSNLFFWYVPAKNNREQAPILVWLQGGPGASSL HP FGLFVEHGPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVAR 15 VC FGMFEENGPFHIHRNKSVKQREYSWHQNHHMIYIDNPVGTGFSFTDSDEGYSTNEEHVGE HP DLYSALIOFFOIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGD VC NLMKF100FFVLFPNLLKHPFY1SGESYGGKFVPAFGYAIH--NSQSQPKINLQGLAIGD 20 HP GYSDPESIIGGYAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGD VC GYTDPI NOI.-NYGEYLYELGLIDLNGRKKFDEDTAAAIACAERKDMNSANRLIQGLFDG-

	HP LTSDPSYFQNVTGCSNYYNFLRC-TEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVE
•	* ****** *.******** *********
	VC LDGQESYFKKVTGFSSYYNFIKGDEESKQDSVLMEFLSNPEVRKGIHVGELPFHDSDGHN
5	HP KYLREDTVQSVKPWLTEIMNNYKVLIYNGQLDIIVAAALTEHSLMGMDWKGSQEYKK
	* *, *** * ** *, **. ****** * * . ** * *. ***.
	VC KVAEMLSEDTLDTVAPWVSKLLSHYRVLFYNGQLDIICAYPMTVDFLMKMPFDGDSEYKR
	HP AEKKVWKIFKSDSEVAGYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDP
10	* * *.*.** * * * *** . *** . *
	VC ANREIYRVDGEIAGYKKRAGRLQEVLIRNAGHMVPRDQPKWAFDMITSFTHKNYL
	HP YVG

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA095665) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03831> (SEQ ID NOS: 92, 102 and 112)

Determination of the whole base sequence of the cDNA insert of clone HP03831 obtained from cDNA library of

119

human kidney revealed the structure consisting of a 191-bp 5'-untranslated region, a 681-bp ORF, and a 223-bp 3'-untranslated region. The ORF encodes a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino 10 acid sequence of the present protein revealed that the protein was similar to human claudin-10 (Accession No. NP 008915). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention 15 (HP) and human claudin-10 (CD). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 76.2% in the entire region. 20 The C-terminal region downstream from glycine at position 72 completely matched with that sequence.

120

	HP	MSRAQ1WALVSGVGGFGALVAATTSNEWKVTTRASSV1TATWVYQGLWMNCAGNALGS
		* ** ***.****** *
	CD	MASTASEIIAFMVS:ISGWVLVSSTLPTDYWKVSTIDGTVITTATYWANLWKACVTDSTGV
_	IID	ENCODINETTENNACATO A COCI MI A AVOI CEECCI E AL ECHVOTOVO CODVAVAVI A CLA
5	MP	FHCRPHFTIFKVAGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA
		. * **********************
	CD	SNCKDFPSMLALDGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA
	HP	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
10		****************
	CD	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
	HP	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

15	CD	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N41613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

121

Determination of the whole base sequence of the cDNA insert of clone HP03879 obtained from cDNA library of human kidney revealed the structure consisting of a 33-bp 5'-untranslated region, a 918-bp ORF, and a 651-bp 3'-untranslated region. The ORF encodes a protein consisting of 305 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 34,073 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human NADH-cytochrome b5 reductase (Accession No. Y09501). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human NADH-cytochrome reductase (CT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 63.5% in the entire region other than the N-terminal region.

20

5

10

Table 23

	HP	MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHN
		* .** * .** .*. ** ***.* **.
5	CT	MGAQLSTLGHMVLFPVWFLYSLLMKLFQRS-TPAITLESPDIKYPLRLIDREIISHD
	HP	TKRFRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKG
		*. ******* *. ******. *****. **. *
	CT	TRRFRFALPSPQHILGLPVGQHIYLSARIDGNLVVRPYTPISSDDDKGFVDLVIKVYFKD
10		
	НР	${\tt VHPKFPEGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLG}$
		. *****. *******. * ** *******. * ***. *.
	CT	THPKFPAGGKMSQYLESMQIGDTIEFRGPSGLLVYQGKGKFAIRPDKKSNPIIRTVKSVG
15	HP	MIAGGTGITPMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLW

	CT	MIAGGTGITPMLQVIRAIMKDPDDHTVCHLLFANQTEKDILLRPELEELRNKHSARFKLW
	HP	FTLDHPPKDWAYSKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQK
20		.****.*.******* ***.***********
	CT	YTLDRAPEAWDYGQGFVNEEMIRDHLPPPEEEPLVLMCGPPPMIQYACLPNLDHVGHPTE
	μр	MRFTY
	111	
25	CT.	PCEVE

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F06459) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03880> (SEQ ID NOS: 94, 104 and 114)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03880 obtained from cDNA library of human kidney revealed the structure consisting of a 98-bp 5'-untranslated region, a 684-bp ORF, and a 115-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed a putative 227 secretory signal at the N-terminus. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,717 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat phosphatidylethanolamine-binding protein (Accession No. P31044). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and phosphatidylethanolamine-binding protein (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the region of 133 amino acid residues other than the N-terminal region.

Table 24

HP MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV

20

25

5

10

15

RN

MAADISQWAGPLSLQEVDEPPQHALRVDYGGVTV

HP VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG

.. * * * *. **. ***** . * * * * . * * * . . . **

RN DELGKVLTPTQVMNRPSSISWDGLDPGKLYTLVLTDPDAPSRKDPKFREWHHFLVVNMKG

HP ADLKKGKIQGQELSAYQAPSPPAHSGFHRYQFFVYLQEGKV——ISLLP-KENKTRGSWK

.*..*. **.**..** ..** ..**

RN NDISSGTV——LSEYVGSGPPKDTGLHRYVWLVYEQEQPLNCDEPILSNKSGDNRGKFK

5

HP MDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRERASEPKHKNQAEIAAC

...* ...***.* *.* * *.*.

RN VESFRKKYHLGAPVAGTCFQAEWDDSVPKLHDQLAGK

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H83784) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10704> (SEQ ID NOS: 95, 105 and 115)

Determination of the whole base sequence of the cDNA insert of clone HP10704 obtained from cDNA library of human kidney revealed the structure consisting of a 141-bp 5'-untranslated region, a 1326-bp ORF, and a 399-bp 3'-untranslated region. The ORF encodes a protein consisting of 441 amino acid residues and there existed eight putative transmembrane domains. Figure 35 depicts the

5

10

15

20

25

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human unknown gene product (Accession No. AAC27544). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human unknown gene product (UP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the entire region.

Table 25

HP MAIHKALVMCLGLPLFLFPG-AWAQGHVPPGCSQGLNPLYYNLCDRSGAWGIVLE

* **... * ... ** * .***. *

UN MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVE

	HP	TCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINTEW
		.*. ****.****.***** *.*. ** ** ** * **. **
	UN	ICSVRRFLWGVLFALCFSCLLSQAWRVRRLVRHGTGPAGWQLVGLALCLMLVQVIIAVEW
5		•
	HP	LIITLVRGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALCGR
		*** * * .*** * .***.
	UN	LVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLCGK
10	HP	YKRWRKHGVFVLLTTATSVAIWVVWIVMYTYGN-KQHNSPTWDDPTLAIALAANAWAFVL
		. *** *. *. *. ** ***. *
	UN	FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVFVI
	HP	FYVIPEVSQVTKSSPEQSYQGDMYPTRGVGY-ETILKEQ-KGQSMFVENKAFSMDEPVAA
15		**** * * ** ** ** **
	UN	FHAIPEI-HCTLLPALQENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHNAA
	HP	KRPVS-PYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSANSTLRA
		* *
20	UN	LRTAGFPNGSLGKRPSGSLGKRPSAPFRSNVYQPTEMAVVLNGGTIPTAPPSHTGRHLW
	HP	EDMYSAQSHQAATPPKDGKNSQVFRNPYVWD

128

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA346702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10715> (SEQ ID NOS: 96, 106 and 116)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10715 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 49-bp 5'-untranslated region, a 798-bp ORF, and a 1351-bp 3'-untranslated region. The ORF encodes a protein consisting of 265 amino acid residues and there existed two putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was larger than the molecular weight of 29,217 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI381750) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

129

invention.

5

10

15

20

25

<HP10724> (SEQ ID NOS: 97, 107 and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10724 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 68-bp 5'-untranslated region, a 627-bp ORF, and a 1485-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was almost identical with the molecular weight of 23,850 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T78035) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10733> (SEQ ID NOS: 98, 108 and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10733 obtained from cDNA library of human umbilical cord blood revealed the structure consisting

5

10

15

of a 102-bp 5'-untranslated region, a 1203-bp ORF, and a 222-bp 3'-untranslated region. The ORF encodes a protein consisting of 400 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was larger than the molecular weight of 43,151 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 52, Asn-Ala-Ser at position 131, Asn-Ile-Thr at position 145 and Asn-Leu-Ser at position 343). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 33.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster

GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the entire region.

Table 26

132

	HP	DPWLLDHRTCPMCKLDVIKALGYWGEPGDVQEMPAPESPPGRDPAANLSLALPDDDGSDE
		****. ********** ** *.*
	DM	DPWLIEHRTCPMCKLDVLKFYGY-VVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQ
5	HP	SSPPSASPAESEPQCDPSFKGDAGENTALLEAGRSDSRHGGPIS
		* * *
	DM	PLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMP

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI286184) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10734> (SEQ ID NOS: 99, 109 and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10734 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 124-bp 5'-untranslated region, a 579-bp ORF, and a 1202-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

20

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human sodium channel ß2 subunit (Accession No. AAD47196). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human sodium channel ß2 subunit (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 26.3% in the N-terminal region of 152 amino acid residues.

Table 27

HP MFCPLKLILLPVLLDYSLGLNDLNVS-PPELTVHVGDSALMGCVFQS--TEDK

20 ...*. *....* *..*. *..* *..* *..*

SC MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNH

HP CIFKIDWTLSPGEHAKDE-YVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQEA

*...** ... * * *...**.

SC KQFSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPE

5

10

134

HP DQGTYICEIRLKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVE

SC DEGIYNCYIMNPPDRHRGHGKIHLQVLMEEPPERDFTVAVIVGASVGGFLAVVILVLMVV

5

HP WIFSGRRAKVTRRKHHCVREGSG

SC KCVRRKKEQKLSTDDLKTEEEGKTDGEGNPDDGAK

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C03216) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10756> (SEQ ID NOS: 100, 110 and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10756 obtained from cDNA library of human kidney revealed the structure consisting of a 49-bp 5'-untranslated region, a 783-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 260 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 40 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,356 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW027769) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03670> (SEQ ID NOS: 121, 131 and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03670 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 77-bp 5'-untranslated region, a 1014-bp ORF, and a 531-bp 3'-untranslated region. The ORF encodes a protein consisting of 337 amino acid residues and there existed at least seven putative transmembrane domains. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0260

(Accession No. BAA13390). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0260 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.6% in the entire region other than the N-terminal region. In addition, the C-terminal region beginning from leucine at position 77 matched with human putative Sqv-7-like protein (Accession No. AJ005866) except one amino acid residue.

Table 28

15

10

5

HP

MTAGGQAEAEGAGGEPG

- KI NSWSPLGAAAAGPRAARPRRQATAAAAAMAEVHRRQHARVKGEAPAKSSTLRDEEELGMA
- HP AARLPSRVARLLSALFYGTCSFLIVLVNKALLTTYGFPSPIFLGIGQMAATIMILYVSKL

 .**. * ***. . ***. . **. * ***. . . *. . *. . *. . *. . *. . *. . *. . *.

 KI SAETLTVFLKLLAAGFYGVSSFLIVVVNKSVLTNYRFPSSLCVGLGQMVATVAVLWVGKA

137

ΚI	LRVVKFPDLDRNVPRKTFPLPLLYFGNQITGLFSTKKLNLPMFTVLRRFSIL	FTMFAEGV
----	--	----------

- HP ILGKQYSLNIILSVFAIILGAFIAAGSDLAFNLEGYIFVFLNDIFTAANGVYTKQKMDPK
 .* * .* . * * . * * * . * * * . * * * . * * * . * * * . * . * * . * . * * . * . * * . * . * * . * . * * . * . * * . * * . * . * * .
- 5 KI LLKKTFSWGIKMTVFAMIIGAFVAASSDLAFDLEGYAFILINDVLTAANGAYVKQKLDSK

 - HP TVLCSYYNSALTTAVVGAIKNVSVAYIGILIGGDYIFSLLNFVGLNICMAGGLRYSFLTL

 ****. *******. ** ***. .. ****. .. *****. **. **. **. **. **. **. **.

 KI TVLCTQYNSALTTTIVGCIKNILITYIGMVFGGDYIFTWTNFIGLNISIAGSLVYSYITF
- 15 HP SSQLKPKPVGEENICLDLKS

10

... .*. .*. * **.*.

KI TEEQLSKQ-SEANNKLDIKGKGAV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R24922) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

138

invention.

5

10

15

20

25

<HP03688> (SEQ ID NOS: 122, 132 and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03688 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 35-bp 5'-untranslated region, a 711-bp ORF, and a 1729-bp 3'-untranslated region. The ORF encodes a protein consisting of 236 amino acid residues and there existed five putative transmembrane domains. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein W02D9 (Accession No. CAB03470). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein W02D9 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.8% in the entire region other than the N-terminal

139

region. Table 29 MAEAEE 5 HP CE MEILNLSSKFSLSDKPCQKFIFSLFSAVQNSRFKIISFPEIHQKPLPQEEMNSFGNASVD HP SPGDPGTASPRPLFAGLSDISISQDIPVEGEITIPMRSRIREFDSSTLNESVRNTIMRDL **. . . . **. *. *. . **. 10 CE IDMLEQEMAAEQTANLSGNIAGMSAPKSSSNRRGPMQEVDLDAEFDTLEEPVWDTVKRDV HP KAVGKKFMHVLYPR-KSNTLLRDWDLWGPLILCVTLALMLQRDSADSEKDGGPQFAEVFV CE LTVGAKFTHVVLPHGDKQQLLRDWDLWGPLFICVGLALLLQH---NGGTESAPQFTQVFT 15 HP IVWFGAVTITLNSKLLGGNISFFQSLCVLGYCILPLTVAMLICRLVLLADPGPVNFMVRL CE ITFFGSVIVTANIKLLGGNISFFQSLCVIGYCLLPPFVAAVLCSL-FLHGI----AFPLRL 20 HP FVVIVMFAWSIVASTAFLADSQPPNRRALAVYPVFLFYFVISWMILTFTPQ CE LITSIGFVWSTYASMGFLAGCQPDKKRLLVIYPVFLFYFVVSWMIISHS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T51465) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03825> (SEQ ID NOS: 123, 133 and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03825 obtained from cDNA library of human kidney revealed the structure consisting of a 20-bp 5'-untranslated region, a 1683-bp ORF, and a 36-bp 3'untranslated region. The ORF encodes a protein consisting of 560 amino acid residues and there existed seven putative transmembrane domains. Figure 43 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 56 kDa that was smaller than the molecular weight of 64,047 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Mycobacterium tuberculosis hypothetical protein Rv0235c (Accession No. CAB07001). Table 30 shows the comparison between amino acid sequences

5

10

of the human protein of the present invention (HP) and Mycobacterium tuberculosis hypothetical protein Rv0235c (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the entire region other than the N-terminal region. In addition, the region from alanine at position 293 to proline at position 502 matched with human putative novel protein c360B4.1 (Accession No. CAB56180).

Table 30

	HP	CPLWTLSRLPQHTPTSRIVLWGFRWLIFRIMLGAGLIKIRGDRCWRDLTCMDFHYETQPM
		.* .**. ***. ***. ***. ***. ****. *****
	MT	GNERTAPPILTLLLA-RWLLFRVEFGAGLIKMRGDSCWRSLTCLYYHHETQPM
5		·
	HP	PNPVAYYLHHSPWWFHRFETLSNHFIELLVPFFLFLGRRACIIHGVLQILFQAVLIVSGN
		*.*** * .**.***** * * ***
	MT	PGPLSWFFHHLPKPLHRIEVAGNHFAQLVVPFGLFTPQPAASIAAAIIVVTQLWLVASGN
10	HP	LSFLNWLTMVPSLACFDDATLGFLFPSGPGSLKDRVLQMQRDIRGARPEPRFGSVVRRAA
		.*.***** ***** *.*
	MT	FSWLNWLTILLACSAIDTSS-AAALLPMPAQPALSAPPQWFAGLVV
	HP	NVSLGVLLAWLSVPVVLNLLSSRQVMNTHFNSLHIVNTYGAFGSITKERAEVILQGTASS
15		*** ** . *****.* ** ***.******** *****
	MT	VFTAAVLLLSYWPARNLLSSHQRMNMSFNPFHLVNTYGAFGSICRTRREVVIEGTDES
	HP	NASAPDAMWEDYEFKCKPGDPSRRPCLISPYHYRLDWLMWFAAFQTYEHNDWIIHLAGKL
20	MT	-PITEQTVWKAYEFKGKPGDPRRLPRQWAPYHLRLDWLMWFAAISPGYALPWMTPFLNRL
	HP	LASDAEALSLLAHNPFAGRPPPRWVRGEHYRYKFSRPGGRHAAEGKWWVRKRIGAYFPPL
		* . * * . * * * * * * *
	MT	LRNDPATLKLLRHNPFP-QSPPRYVRAQLYQYRFTTVAELRRDRA-WWHRTLIGRYVPPM

143

HP SLEELRPYFRDRGWPLPGPL

** ..

MT SLRKVASPPAD

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA019047) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03877> (SEQ ID NOS: 124, 134 and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03877 obtained from cDNA library of human kidney revealed the structure consisting of a 106-bp 5'-untranslated region, a 1221-bp ORF, and a 678-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed four putative transmembrane domains. Figure 44 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 49 kDa that was somewhat larger than the molecular weight of 46,208 predicted from the ORF.

144

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y37D8A (Accession No. CAA21543). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y37D8A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.2% in the intermediate region of 329 amino acid residues.

15 Table 31

5

10

20

25

HP . MAENG

CE MAKKOKKSTEKSERTVEFKEPPKPANSEERLVSTROFLAKIGOKKLIKKKVKNFRFSKKT

CE FIDFFSENQKKNCRLKPAGRGMKPSPSQNTLNRMERETIVFWRRPHIVIPYALMEIAHLA

HP KEWTSKLWHRQSIVVSFLLLLAVLIATYYVEGVHQQYVQRIEKQFLLYAYWIGLGILSSV

		* * *. ** *** * *. *
	CE	VELFFKILAHKTVLLLTAISIGLAVYGYHAPGAHQEHVQTIEKHILWWSWWVLLGVLSSI
	HP	GLGTGLHTFLLYLGPHIASVTLAAYECNSVNFPEPPYPDQIICPDEEGTEGTISLWSIIS
5		***. ******. ******. **. **. **. **. * **
	CE	GLGSGLHTFLIYLGPHIAAVTMAAYECQSLDFPQPPYPESIQCPSTKSSI-AVTFWQIVA
	HP	KVRIEACMWGIGTAIGELPPYFMARAARLSGAEPDDEEYQEFEEMLEHAESAQDFA-
		. * ** ***. ******************
10	CE	KVRVESLLWGAGTALGELPPYFMARAARISGQEPDDEEYREFLELMNADKESDADQKLSI
	НР	-SRAKLAVQKLVQKVGFFGILACASIPNPLFDLAGITCGHFLVPFWTFFGATLIGKAIIK
		·*** *····** *** *********************
15	CE	VERAKSWVEHNIHRLGFPGILLFASIPNPLFDLAGITCGHFLVPFWSFFGATLIGKALVK
	HP	MHIQKIFVIITFSKHIVEQMVAFIGAVPGIGPSLQKPFQEYLEAQRQKLHHKSEMGTPQG
		. *. *. **. *
	CE	MHVQMGFVILAFSDHHAENFVKILEKIPAVGPYIRQPISDLLEKQRKALHKTPGEHSEQD
20	НР	ENWLSWMFEKLVVVMVCYFILSIINSMAQSYAKRIQQRLNSEEKTK
	CE	LIDEENQSFEEEEEAVTPPSSCPLLLSDGFEGVVVKK

146

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T18977) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10765> (SEQ ID NOS: 125, 135 and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10765 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 30-bp 5'-untranslated region, a 1362-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 453 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was almost identical with the molecular weight of 47,724 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792834) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

encode the same protein as the protein of the present invention.

<HP10766> (SEQ ID NOS: 126, 136 and 146)

5

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10766 obtained from cDNA library of human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 180-bp ORF, and a 675-bp 3'untranslated region. The ORF encodes a protein consisting of 59 amino acid residues and there existed two putative transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 10 kDa or less that was almost identical with the molecular weight of 6,098 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85491) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10770> (SEQ ID NOS: 127, 137 and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10770 obtained from cDNA library of

human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 633-bp ORF, and a 186-bp 3'-untranslated region. The ORF encodes a protein consisting of 210 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was larger than the molecular weight of 22,156 predicted from the ORF.

5

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792771) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10772> (SEQ ID NOS: 128, 138 and 148)

Determination of the whole base sequence of the

CDNA insert of clone HP10772 obtained from cDNA library of
human kidney revealed the structure consisting of a 19-bp
5'-untranslated region, a 498-bp ORF, and a 724-bp 3'untranslated region. The ORF encodes a protein consisting of
165 amino acid residues and there existed four putative
transmembrane domains. Figure 48 depicts the

WO 01/12660

5

10

15

20

149

PCT/JP00/05356

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11871) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10773> (SEQ ID NOS: 129, 139 and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10773 obtained from cDNA library of human kidney revealed the structure consisting of a 186-bp 5'-untranslated region, a 489-bp ORF, and a 499-bp 3'untranslated region. The ORF encodes a protein consisting of 162 amino acid residues and there existed four putative transmembrane domains. Figure 49 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

sequences that shared a homology of 90% or more (for example, Accession No. N33828) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10776> (SEQ ID NOS: 130, 140 and 150) .

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10776 obtained from cDNA library of human kidney revealed the structure consisting of a 207-bp 5'-untranslated region, a 666-bp ORF, and a 139-bp 3'untranslated region. The ORF encodes a protein consisting of 221 amino acid residues and there existed three putative transmembrane domains. Figure 50 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 24,883 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI929639) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

15

20

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, 5 expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane. they are considered to be proteins controlling proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be 10 employed as pharmaceuticals such as carcinostatic agents which act to the proliferation and/or control differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in quantities. Cells into which these genes introduced to express these proteins can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

25 The present invention provides also

5

10

15

corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified 20 expression of the gene(s) corresponding polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and 25 Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254;

153

Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39: all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) 5 corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control 10 regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein), In addition, organisms are provided in which the gene(s) corresponding to the 15 sequences disclosed herein have been polynucleotide partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished 20 through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, 25

5

10

15

20

25

154

preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed

155

protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is,

156

naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

5

10

15

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer'	Temperature
·	Hybrid	(bp) *		and Buffer
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
			45°C; 1×SSC,50%	0.3×SSC
			formamide	
D	DNA: RNA	<50	T _b *; 1×SSC	T _o *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
			50°C; 1×SSC,50%	0.3×SSC
		<u> </u>	formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50%	
			formamide	
Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
,			45°C; 4×SSC,50%	
			formamide	ļ
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
1			50°C; 4×SSC,50%	
			formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50%	
			formamide	
N	DNA: DNA	<50	T _n *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50%	
			formamide	
P	DNA: RNA	<50	Tp*; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
_			45°C; 6×SSC,50%	
	!		formamide	
R	RNA: RNA	<50	T ₈ *; 4×SSC	T _R *; 4×SSC

158

‡ : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

5

15

 \dagger : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH,PO4, and 1.25mM 10 EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

T. - T.: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(^{\circ}C) = 2 (\#of A + T bases) + 4 (\# of G + C bases)$. For hybrids 20 between 18 and 49 base pairs in length, $T_m(^{\circ}C)=81.5 +$ $16.6(\log_{10}[Na^{+}]) + 0.41 (%G+C) - (600/N)$, where N is the number of bases in the hybrid, and [Na] is the concentration of sodium ions in the hybridization buffer ([Na*] for 25 $1\times SSC=0.165M$).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

160

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS:
 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.

5

20

- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

Fig.1

Fig.

Fig.3

Fig.4

5/50

Fig.5

6/50

Fig.6

Fig.7

Fig.8

Fig.9

Fig. 11

Fig.12

Fig. 13

Fig. 14

Fig. 15

16/50

Fig. 16

Fig. 17

Fig. 1

Fig. 19

Hydrophilicity/Hydrophobicity

Fig.20

Fig.21

- Hydrophilicity/Hydrophobicity

Fig.22

Fig.23

Hydrophilicity/Hydrophobicity

-ig.24

Fig.25

26/50

Fig.26

PCT/JP00/05356 WO 01/12660

Hydrophilicity/Hydrophobicity.

-ig.28

Fig.29

30/50

Fig. 30

Fig.3

Fig.32

Fig. 33

Fig.34

Fig. 35

Fig.36

Fig.37

Fig.38

Fig. 39

Fig.40

Fig.41

Fig.42

Fig.43

Fig.44

Fig. 45

Fig. 46

Ηλακορλιμοίτη/Ηγακορλορίοιτη

Fig.47

Fig.48

Fig.49

WO 01/12660

Hydrophilicity/Hydrophobicity

1 /307

SEQUENCE LISTING

<110> Sagami Chemical Research Center,

Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662029

<150> JP 11-230344

<151> 1999-08-17

<150> JP 11-252551

<151> 1999-09-07

<150> JP 11-281132

<151> 1999-10-01

<150> JP 11-301624

<151> 1999-10-22

<150> JP 11-313877

<151> 1999-11-04

2 /307

<160> 150 <210> 1 <211> 267 <212> PRT <213> Homo sapiens <400> 1 Met Val Lys Ile Ser Phe Gln Pro Ala Val Ala Gly Ile Lys Gly Asp Lys Ala Asp Lys Ala Ser Ala Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala Arg Glu Glu Gln Pro Pro Gln His Arg Ser Lys Arg Gly Ser Ser Val Gly Gly Val Cys Tyr Leu Ser Met Gly Met Val Val Leu Leu Met Gly Leu Val Phe Ala Ser Val Tyr Ile Tyr Arg Tyr Phe Phe Leu Ala Gln Leu Ala Arg Asp Asn Phe Phe Arg Cys Gly Val Leu Tyr Glu Asp Ser Leu Ser Ser Gln Val Arg Thr Gln Met Glu Leu Glu Glu Asp Val Lys Ile Tyr Leu Asp Glu Asn Tyr Glu Arg

Ile Asn Val Pro Val Pro Gln Phe Gly Gly Gly Asp Pro Ala Asp Ile

Ile	His	Asp	Phe	Gln	Arg	Gly	Leu	Thr	Ala	Tyr	His	Asp	Ile	Ser	Leu
145					150					155			•		160
Asp	Lys	Cys	Tyr	Val	Ile	Glu	Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro	Pro
				165					170					175	
Arg	Asn	Phe	Trp	Glu	Leu	Leu	Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu
	٠		180					185					190		
Pro	Gln	Thr	Tyr	Ile	Ile	Gln	Glu	Glu	Met	Val	Val	Thr	Glu	His	Val
		195					200					205			
Ser	Asp	Lys	Glu	Ala	Leu	Gly	Ser	Phe	Ile	Tyr	His	Leu	Cys	Asn	Gly
	210					215					220				
Lys	Asp	Thr	Tyr	Arg	Leu	Arg	Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn
225					230	•	•	•		235					240
Lys	Arg	Gly	Ala	Lys	Asn	Cys	Asn	Ala	Ile	Arg	His	Phe	Glu	Asn	Thr
				245					250					255	
Phe	Val	Val	Glu	Thr	Leu	Ile	Cys	Gly	Val	Val					
			260					265							
							•								
⟨21	0> 2														
<21	1> 4	19								•					
<21	2> P	RT													
<213> Homo sapiens															
<40	0> 2	;		•											
Met	Ser	Cys	Ala	Gly	Arg	Ala	Gly	Pro	Ala	Arg	Leu	Ala	Ala	Leu	Ala
1				5	;				10)				15	,
Leu	Leu	Thr	· Cvs	: Ser	Leu	Tr	Pro	Ala	Are	Ala	. Asp	Asn	ı Ala	Ser	Gln

			20					25					30		
3lu '	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Prọ	Gly	Arg
	٠.	35					40					45			•
Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	Leu	Asp
	50					55					60				
Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	Pro	Leu
65					70					75					80
His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	Phe	Phe
				85					90					95	
Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	Gly	Asn
			100					105					110		
Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	Ala	Val
		115					120		•			125			
Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	Thr	Met
	130					135					140				
Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu
145					150	•				155	j				160
Arg	G1y	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	. Asn	Ile	Ser	. Val	Gln
				165	;			•	170)				175	;
Met	Thr	Ile	Ala	val	Gly	Thr	Arg	, Met	Pro	Pro	Lys	. Asr	n Phe	Ser	Arg
			180)				185	;				190)	
Gly	Ser	Leu	ı Val	Phe	e Val	Ser	· Ile	e Ser	Phe	e Ile	e Val	l Lei	ı Met	: Ile	Ile
		195	5				200)				20	5		
Ser	. Sei	r Ala	a Tr	p Let	ı Ile	e Phe	Ty:	r Phe	e Ile	e Gl	n Ly:	s Il	e Ar	g Tyı	r Thi
	210	`				219	5				22	0			

Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	Lys	Lys
225					230					235					240
Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	Lys	Glü
				245					250					255	
Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	Tyr	Lys
			260					265					270		
Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	His	Lys
		275					280			•		285			
Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	Met	Cys
	290					295					300				
Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro	Cys
305					310	ı				315					320
Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln	Ala
				325	ì				330					335	
Val	Asn	Arg	Arg	Ser	· Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	Ser	Leu
			340)				345					350		
Gly	Leu	ı Glu	ı Pro	Leu	ı Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	Gln	Asp
		355	5				360)				365	;		
G1 _y	, Glu	ı Let	ı Thı	r Pro	·Arg	g Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	Thr	Lys
	370)			•	375	5				380)			
Glı	ı Trj	p Phe	e Ile	e Ile	e Ala	a Sei	- Phe	Gly	r Leu	ı Lev	ı Ser	Ala	Leu	Thr	Leu
38	5				390)				398	5				400
Cy	s Ty:	r Me	t Ile	e Il	e Ar	g Ala	a Thu	r Ala	a Sei	r Lei	ı Ası	n Ala	a Asr	ı Glu	ı Val
				40	5				410	0				415	5
C1.	. T	n DL	_												

<210)> 3														
<21	l > 4 1	15	•												•
<212	2> PF	RT													
<213	3> Ho	omo :	sapi	ens				-							
<400)> 3														
Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1				5					10					15	
Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
			20					25					30		
Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
		.35					40					45			
Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
	50					55					60				
Val	Pro	Glu	Gly	Lys	Val	Val	Val	Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu
65					70					75					80
Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly
				85					90					95	
His	Ala	Asn	Gly	Gln	Arg	Ile	Gly	Arg	Phe	Cys	Gly	Thr	Phe	Arg-	Pro
			100					105					110		
Gly	Ala	Leu	Val	Ser	Ser	Gly	Asn	Lys	Met	Met	Val	Gln	Met	Ile	Ser
		115					120					125			
		110													
Asp	Ala		Thr	Ala	Gly	Asn	Gly	Phe	Met	Ala	Met	Phe	Ser	Ala	Ala
Asp	Ala 130		Thr	Ala	Gly	Asn 135	Gly	Phe	Met	Ala	Met 140	Phe	Ser	Ala	Ala

145					150					155					160
Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro
				165					170	·		٠	•	175	
Ala	Gly	Val	Thr	Cys	Val	Trp	His	Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu
			180					185					190	•	
Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys
		195					200					205	٠		
Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala
	210					215					220				
Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val
225		•			230					235					240
Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu
				245					250					255	
Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu
			260					265					270		
Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr
		275					280					285			
Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	Cys	Gln	Gln	Lys	Cys	Arg	Arg	Thr
	290					295					300				
Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly
305					310					315					320
Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	Asp	Gly	Ser	Leu	His	Ala	Thr	Val
				325					330					335	
Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	Gly	Asn	Leu	Ala	Ile	Gln	G1n	Ala
			340					345					350		

Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	Thr	Val	Val	Cys	Lys	Gln	Cys	Pro
		355					360					365			
Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	Ile	Île	Met	Gly	Gln	Val	Gly	Glu
	370					375					380				
Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys
385					390					395					400
Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	Ala	Leu	Lys	Asn	Lys	Gln	Cys	
				405					410					415	
<210	0> 4														
<21	1> 3	80										•			
<21	2> P	RT												•	
⟨21	3> H	ошо	sapi	ens											
<40	0> 4														
Met	Leu	Gln	Thr	Leu	Tyr	Asp	Tyr	Phe	Trp	Trp	Glu	Arg	Leu	Trp	Leu
1				5	;				10	1				15	
Pro	Val	Asr	Leu	. Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val
			20)				25	;				30		
Tyr	Ala	Lys	s Ala	Ser	. Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu
		38	5				40)				45	;		
														_	T
Phe	e Leu	ı Ile	e Val	l Arg	g Tyr	Phe	Phe	Glu	ı Let	ı Tyı	· Val	Ala	1 Thr	Pro	Leu
Phe	Let		e Val	l Arg	g Tyr	Phe		Glu	ı Lev	1 Ту1	- Va] 60		. Thr	rPro	Leu
	50)				55	5				60)			Pro
	50 a Ala)				58 Lys	5				60 Let)			

				85					90					95	
Gln	Val	Glu	Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Ģly	Arg
			100			•	•	105	٠				110		
Gln	Val	Glu	Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser
		115					120					125			
Leu	Leu	Lys	Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu
	130					135		•			140				
Ile	Ala	Phe	Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe
145		•			150					155					160
Tyr	Asp	Met	Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile
				165					170					175	
Pro	Ser	Gln	Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser
			180					185					190		
Leu	Leu	Phe	Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu
		195					200					205			
Gln	Ile	Ile	His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp
	210	ı				215					220				
Phe	Ala	Asn	Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp
225	•		•	•	230					235	,				240
Ser	Ser	Asp	Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly
				245	;				250)				255	
Trp	Lys	. Asn	Thr	Cys	s Asn	Asn	Ile	Phe	Ile	. Val	Phe	Ala	Ile	Val	Phe
			260)				265	5				270)	
Ile	: 11	e Thr	- Arg	g Lei	ı Val	Ile	Leu	Pro	Phe	Tr	Ile	Leu	ı His	Cys	Thr
		275	5				280)				289	5		

10 /307

Leu Val Tyr Pro Leu Glu Leu Tyr Pro Ala Phe Phe Gly Tyr Tyr Phe Phe Asn Ser Met Met Gly Val Leu Gln Leu Leu His Ile Phe Trp Ala Tyr Leu Ile Leu Arg Met Ala His Lys Phe Ile Thr Gly Lys Leu Val Glu Asp Glu Arg Ser Asp Arg Glu Glu Thr Glu Ser Ser Glu Gly Glu Glu Ala Ala Ala Gly Gly Gly Ala Lys Ser Arg Pro Leu Ala Asn Gly His Pro Ile Leu Asn Asn Asn His Arg Lys Asn Asp ⟨210⟩ 5 <211> 585 <212> PRT <213> Homo sapiens <400> 5 Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys Trp Val Phe Ala Gly Ile Thr Cys Val Ser Val Val Val Ile Ala Ala Ile Val Leu Ala Ile Thr Leu Arg Arg Pro Gly Cys Glu Leu Glu Ala Cys Ser Pro Asp Ala Asp Met Leu Asp Tyr Leu Leu Ser Leu Gly Gln Ile Ser Arg

	50					55					60				
Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	Ḥis	Ala	Ala	Asn	Ser	Lys	Lys
65		•		•	70					75	•				80
Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	Glu	Ala	Asp
				85					90					95	
Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	Val	Pro	Ile
		*	100					105					110		
Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	Glu	Gln	Trp
		115					120					125			
Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	Leu	Asp	Phe
	130			•		135					140			÷	
Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	Arg	Gln	Leu
145					150					155					160
Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	Ala	Asp	Ile
				165					170					175	
Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	Ala	Thr	Gln
			180					185					190		
Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	Leu	Ser	Pro
		195					200					205			٠
Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	Thr	Tyr	Thr
	210					215					220				
Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	Val	Pro	Gln
225					230					235					240
Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	Ala	Trp	Pro
				245					250)				255	

His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	Leu	Thr	Leu
			260	-		ē		265					270		
Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	Leu	Tyr	Val
		275					280					285			
Arg	Asp	Asn	Thr	Ala	Val	His	Gln	Val	Tyr	Tyr	Asp	Ile	Phe	Glu	Pro
	290					295					300				
Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	Arg	Lys	Pro
305					310					315					320
Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	Leu	Pro	Gly
				325					330					335	
Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	Gln	Gly	Ser
		•	340					345					350		
Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	Met	Ile	Leu
		355					360					365	-		
Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	Val	Pro	Ile
	370					375					380				
Val	His	Thr	Pro	Ser	Gly	Asn	Ile	Leu	Thr	Leu	Glu	Ser	Cys	Leu	Gln
385					390				••	39 5					400
Gln	Leu	Ala	Thr	His	Pro	Gly	His	Trp.	Gly	Ile	His	Leu	Gln	Ile	Ala
				405					410					415	
Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	Arg	Leu	Ser
			420					425					430		
Ser	Leu	G1y	Leu	Leu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	Lys	Ile	Ser
		435					440					445			
His	G1y	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	Glu	Leu	Leu

13 /307

Thr Ala Val Ala Glu Val Phe Pro His Val Thr Val Ala Pro Gly Trp Pro Glu Glu Val Leu Gly Ser Gly Tyr Arg Glu Gln Leu Leu Thr Asp Met Leu Glu Leu Cys Gln Gly Leu Trp Gln Pro Val Ser Phe Gln Met Gln Ala Met Leu Leu Gly His Ser Thr Ala Gly Ala Ile Gly Arg Leu Leu Ala Ser Ser Pro Arg Ala Thr Val Thr Val Glu His Asn Pro Ala Gly Gly Asp Tyr Ala Ser Val Arg Thr Ala Leu Leu Ala Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn

<210> 6

<211> 331

<212> PRT

<213> Homo sapiens

<400> 6

Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly Pro Phe Ser Phe

1 5 10 15

Leu	Leu	Leu	Val	Leu	Leu	Leu	Val	Thr	Arg	Ser	Pro	Val	Asn	Ala	Cys
			20					25					30		•
Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	Phe	Ser	Phe	Glu
		35					40					45			
Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	Pro	Arg	Asp	Arg
	50					55					60				
Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	Ala	Pro	Glu	Asn
65					70					75					80
Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	Ala	Thr	Gly	Val
				85					90					95	
Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	Val	Leu	Met	His
			100					105		•			110		
Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	Arg	Leu	Cys	Asp
		115					120					125			
Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	Ala	Asn	His	Arg
	130)				135					140				
Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	Leu	Arg	Glu	Ala
145	,				150)				155					160
Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thr	Ile	Phe	Phe	Asp	Val	Lys
				165	5				170)				175	,
Gly	His	s Ala	His	s Lys	: Ala	Thr	Glu	Ala	Leu	ı Lys	Lys	Met	Tyr	Met	Glu
			180)				185	•				190)	
Phe	Pro	o Gli	ı Let	1 Ту1	Asr	n Asr	s Ser	· Val	(Va	l Cys	Sei	. Phe	Leu	Pro	Glu
		199	5 .				200)				205	5		
Va!	l Ile	e Tv	r Lys	s Met	t Arı	g Glr	n Thi	: Ası	Ar	g Ası	Va!	l Ile	Thu	r Ala	a Leu

15 /307

Thr His Arg Pro Trp Ser Leu Ser His Thr Gly Asp Gly Lys Pro Arg 240 -Tyr Asp Thr Phe Trp Lys His Phe Ile Phe Val Met Met Asp Ile Leu Leu Asp Trp Ser Met His Asn Ile Leu Trp Tyr Leu Cys Gly Ile Ser Ala Phe Leu Met Gln Lys Asp Phe Val Ser Pro Ala Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser Ser Tyr Ile Thr 315 . Asp Ser Met Val Glu Asp Cys Glu Pro His Phe <210> 7 <211> 345 <212> PRT <213> Homo sapiens <400> 7 Met Ser Pro Glu Glu Trp Thr Tyr Leu Val Val Leu Leu Ile Ser Ile Pro Ile Gly Phe Leu Phe Lys Lys Ala Gly Pro Gly Leu Lys Arg Trp

Gly	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys	Gly	Pro
		35					40					45			
His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala	Leu	Ile
	50					55					60				
Gln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp	Thr	Phe
65					70					75					80
Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu	Pro	Thr
				85					90					95	
Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	G1n	Leu	Leu	Leu	Thr	Leu	Lys	Leu
			100					105					110		
Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	Arg	Lys
		115					120					125		•	
Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	Leu	Pro
	130					135					140				
Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	Tyr	Val
145					150					155					160
Gly	Ile	Met	Thr	G1y	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	Asp	Trp
				165					170	١				175	
Leu	Glu	G1n	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	Leu	Leu
			180)				185	;				190	ı	
Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	G1y	Leu	Leu	Phe	Leu	Leu	Ser
		195	5				200)				205	5		
Ser	His	Leu	ı Phe	Pro	Leu	G1u	ı Ala	Val	Arg	Glu	ı Asp	Ala	Phe	Туг	Ala
	210)				215	5				220)			
A	. Dr.	. 1 ~.	, Dr	. 41-	Arc	ים ו	ı Phe	Tur	· Met	· 114	Pro	. Va¹	l Phe	Phe	Ala

17 /307

Phe Arg Met Arg Phe Tyr Val Ala Trp Ile Ala Ala Glu Cys Gly Cys .255 Ile Ala Ala Gly Phe Gly Ala Tyr Pro Val Ala Ala Lys Ala Arg Ala Gly Gly Gly Pro Thr Leu Gln Cys Pro Pro Pro Ser Ser Pro Glu Lys Ala Ala Ser Leu Glu Tyr Asp Tyr Glu Thr Ile Arg Asn Ile Asp Cys Tyr Ser Thr Asp Phe Cys Val Arg Val Arg Asp Gly Met Arg Tyr Trp Asn Met Thr Val Gln Trp Trp Leu Ala Gln Tyr Ile Tyr Lys Ser Ala Pro Ala Arg Ser Tyr Val Leu Arg Leu <210> 8 ⟨211⟩ 89 <212> PRT <213> Homo sapiens **<400> 8** Met Tyr Met Gln Asp Tyr Trp Arg Thr Trp Leu Lys Gly Leu Arg Gly Phe Phe Phe Val Gly Val Leu Phe Ser Ala Val Ser Ile Ala Ala Phe

18 /307

Cys Thr Phe Leu Val Leu Ala Ile Thr Arg His Gln Ser Leu Thr Asp 35 40 45 Pro Thr Ser Tyr Tyr Leu Ser Ser Val Trp Ser Phe Ile Ser Phe Lys 50 55 60 Trp Ala Phe Leu Leu Ser Leu Tyr Ala His Arg Tyr Arg Ala Asp Phe 70 **75** 65 Ala Asp Ile Ser Ile Leu Ser Asp Phe 85 <210> 9 <211> 406 <212> PRT <213> Homo sapiens <400> 9 Met Arg Gly Ser Val Glu Cys Thr Trp Gly Trp Gly His Cys Ala Pro 15 1 5 10 Ser Pro Leu Leu Leu Trp Thr Leu Leu Leu Phe Ala Ala Pro Phe Gly 20 25 Leu Leu Gly Glu Lys Thr Arg Gln Val Ser Leu Glu Val Ile Pro Asn 35 40 45 Trp Leu Gly Pro Leu Gln Asn Leu Leu His Ile Arg Ala Val Gly Thr 50 55 60 Asn Ser Thr Leu His Tyr Val Trp Ser Ser Leu Gly Pro Leu Ala Val 70 75 80 Val Met Val Ala Thr Asn Thr Pro His Ser Thr Leu Ser Val Asn Trp

				85					90					95	
Ser	Leu	Leu	Leu	Ser	Pro	Ģlu	Pro	Asp	Gly	Gly	Leu	Met	Va _. l	Leu	Pro _.
		٠	100					105			·		110		•
Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu
		115					120					125			
Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly
	130					135					140				
Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile
145					150					155					160
Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His
				165					170					175	
Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe
			180					185					190		
Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg
		195					200					205			
Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly
	210					215				-	220				
Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
225			٠		230					235					240
Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	G1n	His	Ser	Ile
				245					250					255	
Asp	Asp	G1u	Tyr	Ala	Pro	Ala	Val	Phe	Gln	Leu	Asp	G1n	Leu	Leu	Trp
			260)				265					270		
Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser
		275	,				280					285	5		

Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro
	290					295				·	300				
Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Île	Val	Arg
305					310					315					320
Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe
				325					330					335	
Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	Trp	Asp	G1n	His	Tyr	Leu	Ser	Trp
			340					345					350		
Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro
		355					360					365			
Leu	Val	Leu	Gly	Ile	Met	Ala	Val	Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met
	370	•			·	375					380				
Leu	Leu	Gly	Gly	Gly	Leu	Val	Leu	Leu	Leu	His	His	Lys	Lys	Tyr	Ser
385					390					395					400
Glu	Tyr	Gln	Ser	Ile	Asn									ė	
				405											
<21	0> 1	0													
<21	1> 1	92						-				•			
<21	2> P	RT													
<21	3> H	omo	sapi	ens											
<4 0	0> 1	0													
Met	Thr	Ala	Val	Gly	Val	Gln	Ala	Ġln	Arg	Pro	Leu	Gly	Gln	Arg	Gln
1				5					10	ı				15	
Pro	Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr

21 /307

			20					25					30		
Cys	Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	G1y
		35				٠	40					45			
His	Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys
	50					55					60				
Thr	Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	G1n
65					70					75					80
Ala	His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val
				85					90					95	
Gly	Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met
			100					105					110		
Val	Ser	Gln	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met
		115					120				••	125			
Gly	Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu
	130					135					140				
Leu	Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	Gln	Val	Thr	Leu	Ile	Gly	Phe
145					150					155					160
Thr	Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu
				165	•				170					175	
Asn	Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	Glu
			180					185					190		

<210> 11

⟨211⟩ 801

<212> DNA

22 /307

	**	•
(213)	Homo	sapiens
/ L		

<400> 11

atggtgaaga ttagetteea geeegeegtg getggeatea agggegaeaa ggetgaeaag 60 120 gcgtcggcgt cggcccctgc gccggcctcg gccaccgaga tcctgctgac gccggctagg 180 gaggagcagc ccccacaaca tcgatccaag agggggagct cagtgggcgg cgtgtgctac 240 ctgtcgatgg gcatggtcgt gctgctcatg ggcctcgtgt tcgcctctgt ctacatctac 300 agatacttct ttcttgcaca gctggcccga gataacttct tccgctgtgg tgtgctgtat 360 gaggactece tgteeteeca ggteeggaet cagatggage tggaaagagga tgtgaaaate 420 tacctcgacg agaactacga gcgcatcaac gtgcctgtgc cccagtttgg cggcggtgac 480 cctgcagaca tcatccatga cttccagcgg ggtctgactg cgtaccatga tatctccctg 540 gacaagtgct atgtcatcga actcaacacc accattgtgc tgccccctcg caacttctgg 600 gageteetea tgaaegtgaa gagggggaee tacetgeege agaegtaeat cateeaggag 660 gagatggtgg tcacggagca tgtcagtgac aaggaggccc tggggtcctt catctaccac ctgtgcaacg ggaaagacac ctaccggctc cggcgccggg caacgcggag gcggatcaac 720 780 aagcgtgggg ccaagaactg caatgccatc cgccacttcg agaacacctt cgtggtggag 801 acgctcatct gcggggtggt g

⟨210⟩ 12

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 12

atgagetgeg eggggegge gggeeetgee eggetegeeg egetegeeet getgaeetge 60
ageetgtgge eggeaegge agacaaegeg ageeaggagt actacaegge geteateaac 120
gtgaeggtge aggageeegg eegeggegee eegeteaegt ttegeatega eegegggege 180

23 /307

tacgggcttg	actccccaa	ggccgaggtc	cgcggccagg	tgctggcgcc	gctgccctc	240
cacggagttg	ctgatcatct	gggctgtgat	ccacaaaccc	ggttctttgt	ccctcctaat	300
atcaaacagt	ggattgcctt	gctgcagagg	ggaaactgca	cgtttaaaga	gaaaatatca	360
cgggccgctt	tccacaatgc	agttgctgta	gtcatctaca	ataataaatc	caaagaggag	420
ccagttacca	tgactcatcc	aggcactgga	gatattattg	ctgtcatgat	aacagaattg	480
aggggtaagg	atattttgag	ttatctggag	aạaaacatct	ctgtacaaat	gacaatagct	540
gttggaactc	gaatgccacc	gaagaacttc	agccgtggct	ctctagtctt	cgtgtcaata	600
tcctttattg	ttttgatgat	tatttcttca	gcatggctca	tattctactt	cattcagaag	660
atcaggtaca	caaatgcacg	cgacaggaac	cagcgtcgtc	tcggagatgc	agccaagaaa	720
gccatcagta	aattgacaac	caggacagta	aagaagggtg	acaaggaaac	tgacccagac	780
tttgatcatt	gtgcagtctg	catagagagc	tataagcaga	atgatgtcgt	ccgaattctc	840
ccctgcaagc	atgttttcca	casatcctgc	gtggatccct	ggcttagtga	acattgtacc	900
tgtcctatgt	gcaaacttaa	tatattgaag	gccctgggaa	ttgtgccgaa	tttgccatgt	960
actgataacg	tagcattcga	tatggaaagg	ctcaccagaa	cccaagctgt	taaccgaaga	1020
tcagccctcg	gcgacctcgc	cggcgacaac	tcccttggcc	ttgagccact	tcgaacttcg	1080
gggatctcac	ctcttcctca	ggatggggag	ctcactccga	gaacaggaga	aatcaacatt	1140
gcagtaacaa	aagaatggtt	tattattgcc	agttttggcc	tcctcagtgc	cctcacactc	1200
tgctacatga	tcatcagagc	cacagctagc	ttgaatgcta	atgaggtaga	atggttt	1257

<210> 13

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 13

24 /307

cg	cggcagc	agtccccaga	gagacctgtt	ttcacatgtg	gtggcattct	tactggagag	120
tctį	ggattta	ttggcagtga	aggttttcct	ggagtgtacc	ctccaaatag	caaatgtact	180
tgga	aaaatca	cagttcccga	aggaaaagta	gtcgttctca	atttccgatt	catagacctc	240
gag	agtgaca	acctgtgccg	ctatgacttt	gtggatgtgt	acaatggcca	tgccaatggc	300
cag	cgcattg	gccgcttctg	tggcactttc	cggcctggag	cccttgtgtc	cagtggcaac	360
aag	atgatgg	tgcagatgat	ttctgatgcc	aacacagctg	gcaatggctt	catggccatg	420
ttc	tccgctg	ctgaaccaaa	cgaaagaggg	gatcagtatt	gtggaggact	ccttgacaga	480
cct	tccggct	cttttaaaac	ccccaactgg	ccagaccggg	attaccctgc	aggagtcact	540
tgt	gtgtggc	acattgtagc	cccaaagaat	cagcttatag	aattaaagtt	tgagaagttt	600
gat	gtggagc	gagataacta	ctgccgatat	gattatgtgg	ctgtgtttaa	tggcggggaa	660
gtc	aacgatg	ctagaagaat	tggaaagtat	tgtggtgata	gtccacctgc	gccaattgtg	720
tct	gagagaa	atgaacttct	tattcagttt	ttatcagact	taagtttaac	tgcagatggg	780
ttt	attggtc	actacatatt	caggccaaaa	aaactgccta	caactacaga	acagcctgtc	840
acc	accacat	tecetgtaac	cacgggttta	aaaaccaccg	tggccttgtg	tcaacaaaag	900
tgt	agacgga	cggggactct	ggagggcaat	tattgttcaa	gtgactttgt	attagccggc	960
act	gttatca	caaccatcac	tcgcgatggg	agtttgcacg	ccacagtctc	gatcatcaac	1020
ato	tacaaag	agggaaattt	ggcgattcag	caggcgggca	agaacatgag	tgccaggctg	1080
act	tgtcgtct	gcaagcagtg	ccctctcctc	agaagaggto	taaattacat	tattatgggc	1140
cas	agtaggtg	aagatgggcg	aggcaaaatc	atgccaaaca	gctttatcat	gatgttcaag	1200
900	raadaata	agaageteet	ggatgeetta	ลลลลสสสส	aatgt		1245

⟨210⟩ 14

⟨211⟩ 1140

<212> DNA

<213> Homo sapiens

25 /307

⟨400⟩ 14

60	tgtgaacttg	tgtggctgcc	tgggaacgtc	ttacttctgg	ccttgtatga	atectccaga
				•	-	
120	agatctctat	ccaaagcctc	cgtgtctacg	ccgagatgga	atctagaaga	acctgggccg
180	gctgtacgtg	acttctttga	atcgttcgat	gctcttcctc	ccctggcctt	atcacgctgc
240	ggcacctccc	ctcggctgcg	aaggagaaaa	cttgaacata	tggctgccct	gctacaccac
300	ggtggaagta	agcccaagca	agtggcaagc	ctacctgacc	tggaacattt	aacgccacct
360	gttccgtcgc	tagagcgttg	ggccgccagg	cgggctctct	cccggcagag	gagettttgt
420	ctggagattc	gagaagccag	aagaagttcc	cagtctcctc	aggaccggcc	cgccgcaacc
480	accctggttc	ttgtggataa	atggccgtca	cattgccggc	tgattgcctt	acattttacc
540	ttcccagtat	gcactatccc	cccatacaga	ggagggatat	agaaagtttg	tatgacatga
600	tgcctctgat	tcttcagcat	tggtccctgc	ttccttctac	tgattgaact	tggtactaca
660	cattctcatc	tggccaccat	atccaccatg	ggaacagatc	aggatttcaa	gtcaagcgaa
720	tctgcatgac	taatcatggc	gctgggactc	ttacatccga	ggtttgccaa	agcttttcct
780	gaagaacacc	acgcgggatg	atgtttaact	gtcagccaag	acctgctgga	tcttccgatt
840	ggtcatcctg	tcacccgact	gtttttatca	cttcgccatt	tcttcatcgt	tgcaacaaca
900	tgccttcttt	agctctatcc	tacccactgg	caccctggtg	tcctgcattg	cccttctgga
960	cttctgggcc	tgctgcatat	gttctacagc	catgatggga	tcttcaattc	ggctattact
1020	agatgaacgc	agctggtaga	ataactggaa	ccacaagttc	tgcgcatggc	tacctcattt
1080	gggaggagca	ctgcagctgg	ggggaggagg	gagctcagag	aagaaacaga	agtgaccggg
1140	taagaatgac	acaaccatcg	atcctcaata	tggccacccc	ccctagccaa	aagagccggc

⟨210⟩ 15

<211> 1755

<212> DNA

<213> Homo sapiens

26 /307

⟨400⟩ 15

. 60	cggcattacc	gggtgtttgc	caggtcaagt	atcaaagaat	gggagcagtt	atggtctgca
120	gcggccaggc	tcaccctgcg	gtccttgcca	tgccgcaata	tggtggtcat	tgtgtgtctg
180	gagcctgggc	actacctgct	gacatgctgg	ccctgatgcc	aggcctgcag	tgtgagctgg
240	cagcaagaaa	acgcagccaa	acctggtacc	cttggaggtc	ggcgagatgc	cagatcagcc
300	caatgtagaa	aggctgacgt	acagtcctgg	cagcaacatc	ctgccctgaa	gccatgacag
360	cactatctac	cacaccccc	cccatcatgg	gacaggagtt	cagccaatga	gggctcggca
420	aaagggcatc	gctcttccca	gctgtgctgg	gtggctggac	cactggagca	agtgacaaca
480	gcggcagctg	tggacctcct	ggcccctccc	caaggcagtg	tcaagaacat	aaactggact
540	aaagggcccc	ctgacatctt	tggatcaacg	gcggcccata	gcaaagtccg	acagaggaag
600	ccaggagaag	tggccctggt	acacagttcc	ggtcaatgcc	tctcaactga	aacatgctca
660	gtcccaaac	acatgtccac	accaccttct	tccaggctgg	ctaccctatc	tatcccaagg
720	agtgccccag	tggtgggagg	atgcacgagc	ggtggagaag	cccaagccat	aggacgtaca
780		cctggcccca				
840		aggetgeete				
		tccaccaagt				
960		tgaatgccac				
1020	tgacggtctg	tgcctgggga	cttctccagc	cctgatccct	caggaggcag	atgtactaca
1080		aaacagcaac				
1140		agggaactgt				
1200	ctgcctgcag	cgctggagtc	aacatcctga	tccaagtggc	ttgttcatac	cccgtgccca
1260		aaatagcgga				
1320		ttggcctctt				
	tgtggctggc	tccccggcca	agtttttcgg	ctcccacggg	gggccaaaat	gtgtgggttg
1440	accaggctgg	tgactgtggc	ttcccccacg	ggctgaggtc	ttacagctgt	agagagetge

27 /307

cctgaggagg	tgctgggcag	tggctacagg	gaacagctgc	tcacagatat	gctagagttg	1500
tgccaggggc	tctggcaacc	tgtgtccttc	cagatgcagg	ccatgctgct	gggccacagc	1560
acagctggag	ccataggcag	gctgctggca	tectecece	gggccaccgt	cacagtggag	1620
cacaacccag	ctgggggcga	ctatgcctct	gtgaggacag	cattgctggc	agctagggct	1680
gtggacagga	cccgagtcta	ctacaggcta	cccagggct	accacaagga	cttgctggct	1740
catgttggta	gaaac					175

<210> 16

⟨211⟩ 993

<212> DNA

<213> Homo sapiens

<400> 16

atgtggctgt gggaggacca gggcggcctc ctgggccctt tctccttcct gctgctagtg
ctgctgctgg tgacgcgag cccggtcaat gcctgcctcc tcaccggcag cctcttcgtt
ctactgcgcg tcttcagctt tgagccggtg ccctcttgca gggccctgca ggtgctcaag
ccccgggacc gcattctgc catcgcccac cgtggcggca gccacgacgc gcccgagaac
acgctggcgg ccattcggca ggcagctaag aatggagcaa caggcgtgga gttggacatt
gagtttactt ctgacgggat tcctgtctta atgcacgata acacagtaga taggacgact
gatgggactg ggcgattgtg tgatttgaca tttgaacaaa ttaggaagct gaatcctgca
gcaaaccaca gactcaggaa tgattccct gatgaaaaga tccctaccct aagggaagct
gttgcagagt gcctaaaacca taacctcaca atcttcttg atgtcaaagg ccatgcacac
aaggctactg aggctctaaa gaaaatgtat atggaattc ctcaactgta taataatagt
gtggtctgtt ctttcttgcc agaagttac tacaagatga gacaaacaga tcgggatgta
ataacagcat taactcacag accttggagc ctaagccata caggagatgg gaaaccacgc
tatgatactt tctggaaaca ttttatattt gttatgatgg acattttgct cgattggagc

28 / 307

atgcataata	tcttgtggta	cctgtgtgga	atttcagctt	tcctcatgca	aaaggatttt	840
gtatccccgg	cctacttgaa	gaagtggtca	gctaaaggaa	tccaggttgt	tggttggact	900
gttaatacct	ttgatgaaaa	gagttactac	gaatcccatc	ttggttccag	ctatatcact	960
gacagcatgg	tagaagactg	cgaacctcac	ttc			993

⟨210⟩ 17

<211> 1035

<212> DNA

<213> Homo sapiens

⟨400⟩ 17

60 atgtcgcctg aagaatggac gtatctagtg gttcttctta tctccatccc catcggcttc 120 ctctttaaga aagccggtcc tgggctgaag agatggggag cagccgctgt gggcctgggg ctcaccctgt tcacctgtgg cccccacact ttgcattctc tggtcaccat cctcgggacc 180 tgggccctca ttcaggccca gccctgctcc tgccacgccc tggctctggc ctggactttc 240 tectatetee tgttetteeg ageceteage etcetgggee tgeceactee caegecette 300 360 accaatgccg tccagctgct gctgacgctg aagctggtga gcctggccag tgaagtccag 420 gacctgcatc tggcccagag gaaggaaatg gcctcaggct tcagcaaggg gcccaccctg 480 gggctgctgc ccgacgtgcc ctccctgatg gagacactca gctacagcta ctgctacgtg 540 ggaatcatga caggcccgtt cttccgctac cgcacctacc tggactggct ggagcagccc 600 ttccccgggg cagtgcccag cctgcggccc ctgctgcgcc gcgcctggcc ggccccgctc 660 ttcggcctgc tgttcctgct ctcctctcac ctcttcccgc tggaggccgt gcgcgaggac 720 gccttctacg cccgcccgct gcccgcccgc ctcttctaca tgatccccgt cttcttcgcc 780 ttccgcatgc gcttctacgt ggcctggatt gccgccgagt gcggctgcat tgccgccggc tttggggcct accccgtggc cgccaaagcc cgggccggag gcggccccac cctccaatgc 840 900 ccaccccca gcagtccgga gaaggcggct tccttggagt atgactatga gaccatccgc

29 /307

aacatcgact	gctacagcac	agatttctgc	gtgcgggtgc	gcgatggcat	gcggtactgg	960
aacatgacgg	tgcagtggtg	gctggcgcag	tatatctaca	agagcgcacc	tgcccgttcc	1020
tatgtcctgc	gcctt		•			1035
<210> 18						
<211> 267						
<212> DNA						
<213> Homo	sapiens					
<400> 18						
atgtacatgc	aagattattg	gaggacctgg	ctcaaggggc	tgcgcggctt	cttcttcgtg	60
ggcgtcctct	tctcggccgt	ctccatcgct	gccttctgca	ccttcctcgt	gctggccatc	120
acccggcatc	agageeteae	agaccccacc	agctactacc	tctccagcgt	ctggagcttc.	180
atttccttca	agtgggcctt	cctgctcagc	ctctatgccc	accgctaccg	ggctgacttt	240
gctgacatca	gcatcctcag	cgatttc				267
<210> 19						
<211> 1218						
<212> DNA						
<213> Homo	sapiens					
<400> 19						
atgcgcggct	ctgtggagtg	cacctggggt	tgggggcact	gtgccccag	cccctgctc	60
ctttggactc	tacttctgtt	tgcagcccca	tttggcctgc	tgggggagaa	gacccgccag	120
gtgtctctgg	aggtcatccc	taactggctg	ggcccctgc	agaacctgct	tcatatacgg	180
gcagtgggca	ccaattccac	actgcactat	gtgtggagca	gcctggggcc	tctggcagtg	240

gtaatggtgg ccaccaacac cccccacagc accctgagcg tcaactggag cctcctgcta

300

30 /307

tcccctgagc	ccgatggggg	cctgatggtg	ctccctaagg	acagcattca	gttttcttct	360
gcccttgttt	ttaccaggct	gcttgagttt	gacagcacca	acgtgtccga	tacggcagca	420
aagcctttgg	gaagaccata	tcctccatac	tccttggccg	atttctcttg	gaacaacatc	480
actgattcat	tggatcctgc	caccctgagt	gccacatttc	aaggccaccc	catgaacgac	540
cctaccagga	cttttgccaa	tggcagcctg	gccttcaggg	tccaggcctt	ttccaggtcc	600
agccgaccag	cccaaccccc	tcgcctcctg	cacacagcag	acacctgtca	gctagaggtg	660
gccctgattg	gagcctctcc	ccggggaaac	cgttccctgt	ttgggctgga	ggtagccaca	720
ttgggccagg	gccctgactg	ccctcaatg	caggagcagc	actccatcga	cgatgaatat	780
gcaccggccg	tcttccagtt	ggaccagcta	ctgtggggct	ccctcccatc	aggctttgca	840
cagtggcgac	cagtggctta	ctcccagaag	ccggggggcc	gagaatcagc	cctgccctgc	900
caagcttccc	ctcttcatcc	tgccttagca	tactctcttc	cccagtcacc	cattgtccga	960
gccttctttg	ggtcccagaa	taacttctgt	gccttcaatc	tgacgttcgg	ggcttccaca	1020
ggccctggct	attgggacca	acactacctc	agctggtcga	tgctcctggg	tgtgggcttc	1080
cctccagtgg	acggcttgtc	cccactagtc	ctgggcatca	tggcagtggc	cctgggtgcc	1140
ccagggctca	tgctgctagg	gggcggcttg	gttctgctgc	tgcaccacaa	gaagtactca	1200
gagtaccagt	ccataaat					1218

⟨210⟩ 20

⟨211⟩ 576

<212> DNA

<213> Homo sapiens

<400> 20

atgactgccg tcggcgtgca ggcccagagg cetttgggcc aaaggcagcc ccgccggtcc 60
ttctttgaat cettcatccg gaccetcate atcacgtgtg tggccctggc tgtggtcctg 120
tcctcggtct ccatttgtga tgggcactgg etcctggctg aggaccgcct ettcgggctc 180

31 /307

tggcacttct gcaccaccac caaccagagt gtgccgatct gcttcagaga cctgggccag	240
geceatgtge eegggetgge egtgggeatg ggeetggtae geagegtggg egeettggee	300
gtggtggccg ccatttttgg cctggagttc ctcatggtgt cccagttgtg cgaggacaaa	360
cactcacagt gcaagtgggt catgggttcc atcctcctcc tggtgtcttt cgtcctctcc	420
teeggeggge teetgggttt tgtgateete eteaggaace aagteacaet categgette	480
accetaatgt tttggtgega atteaetgee teetteetee tetteetgaa egecateage	540
ggccttcaca tcaacagcat cacccatccc tgggaa	576
<210> 21	
<211> 2042	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (91)(894)	
<400> 21	
tccggtgcct gcagagctcg gagcggcgga ggcagagacc gaggctgcac cggcagaggc	60
tgcggggcgg acgcgcggcc cggcgcagcc atg gtg aag att agc ttc cag	111
Met Val Lys Ile Ser Phe Gln	
1 5	
ccc gcc gtg gct ggc atc aag ggc gac aag gct gac aag gcg tcg gcg	159
Pro Ala Val Ala Gly Ile Lys Gly Asp Lys Ala Asp Lys Ala Ser Ala	
10 15 20	
teg gee eet geg eeg gee teg gee ace gag ate etg etg acg eeg get	207

Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala

	25					30					35					
agg	gag	gag	cag	ссс	cca	caa	cat	cga	tcc	aag	agg	ggg	agc	tca	gtg	. 258
Arg	Glu	Glu	Gln	Pro	Pro	Gln	His	Arg	Ser	Lys	Arg	Gly	Ser	Ser	Val	٠
40					45				•	50					55	
ggc	ggc	gtg	tgc	tac	ctg	tcg	atg	ggc	atg	gtc	gtg	ctg	ctc	atg	ggc	303
Gly	Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly	Met	Val	Val	Leu	Leu	Met	Gly	
				60					65					70		
ctc	gtg	ttc	gcc	tct	gtc	tac	atc	tac	aga	tac	ttc	ttt	ctt	gca	cag	35 1
Leu	Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr	Arg	Tyr	Phe	Phe	Leu	Ala	Gln	
			75					80					85			
ctg	gcc	cga	gat	aac	ttc	ttc	cgc	tgt	ggt	gtg	ctg	tat	gag	gac	tcc	399
Leu	Ala	Arg	Asp	Asn	Phe	Phe	Arg	Cys	Gly	Val	Leu	Tyr	Glu	Asp	Ser	
		90					95					100				
ctg	tcc	tcc	cag	gtc	cgg	act	cag	atg	gag	ctg	gaa	gag	gat	gtg	aaa	447
Leu	Ser	Ser	Gln	Val	Arg	Thr	Gln	Met	Glu	Leu	Glu	Glu	Asp	Val	Lys	
	1 0 5					110					115					
atc	tac	ctc	gac	gag	aac	tac	gag	cgc	atc	aac	gtg	cct	gtg	ccc	cag	498
Ile	Tyr	Leu	Asp	Glu	Asn	Tyr	Glu	Arg	Ile	Asn	Val	Pro	Val	Pro	G1n	
120					125					130					135	•
ttt	ggc	ggc	ggt	gac	cct	gca	gac	atc	atc	cat	gac	ttc	cag	cgg	ggt	543
Phe	Gly	Gly	Gly	Asp	Pro	Ala	Asp	Ile	Ile	His	Asp	Phe	Gln	Arg	Gly	
				140					145					150		
ctg	act	gcg	tac	cat	gat	atc	tcc	ctg	gac	aag	tgc	tat	gtc	atc	gaa	591
Leu	Thr	Ala	Tyr	His	Asp	Ile	Ser	Leu	Asp	Lys	Cys	Tyr	Val	Ile	Glu	
			155					160					165			

ctc	aac	acc	acc	att	gtg	ctg	ccc	cct	cgc	aac	ttc	tgg	gag	ctc	ctc	639
Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro	Pro	Arg	Asn	Phe	Trp	Glu	Leu	Leu	
		170			•		175					180	٠	•	.•	
atg	aac	gtg	aag	agg	ggg	acc	tac	ctg	ccg	cag	acg	tac	atc	atc	cag	687
Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu	Pro	G1n	Thr	Tyr	Ile	Ile	Gln	
	185					190					195					
gag	gag	atg	gtg	gtc	acg	gag	cat	gtc	agt	gac	aag	gag	gcc	ctg	ggg ·	735
				Val												
200	-				205	010		,41	501	210	2,0	014	1110	Dou		
															215	
tcc	ttc	atc	tac	cac	ctg	tgc	aac	ggg	aaa	gac	acc	tac	cgg	ctc	cgg	783
Ser	Phe	Ile	Tyr	His	Leu	Cys	Asn	Gly	Lys	Asp	Thr	Tyr	Arg	Leu	Arg	
		•		220	•				225				•	230		
cgc	cgg	gca	acg	cgg	agg	cgg	atc	aac	aag	cgt	ggg	gcc	aag	aac	tgc	831
Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn	Lys	Arg	Gly	Ala	Lys	Asn	Cys	
			235					240					245			
aat	gcc	atc	cgc	cac	ttc	gag	aac	acc	ttc	gtg	gtg	gag	acg	ctc	atc	879
				His												
11011					1110	ora		*****	1110	741	141		1111	DCu	116	
		250					255					260			•	
tgc	ggg	gtg	gtg	tgag	gccc	tc c	tccc	ccag	ga ac	cccc	tgc	gtg	gtted	ctc		930
Cys	Gly	Val	Val													
	265															
tttt	ctto	tt t	ccgg	ctgo	t ct	ctgg	ccct	cct	cctt	ccc	ccts	gctta	agc 1	ttgta	ctttg	990
gace	cgtt	tc t	atag	gaggt	g ac	atgt	ctct	. cca	itte	tct	ccas	accci	tgc (caco	tccct	1050
gtac	caga	igc t	gtga	itcto	t ce	gtgg	gggg	g ccc	atct	ctg	ctga	acct	ggg 1	tgtgg	gcggag	1110
ggao	72 o o o	og t	orte	rcass	or to	,+++	ctai	· atr		tat	o++	7996	sta 1	70001	00000	1170

34 /307

agcctgggcc	cacagctgca	ccggcagccc	aaggggaagg	accggttggg	ggagccgggc	1230
atgtgaggcc	ctgggcaagg	ggatggggct	gtgggggcgg	ggcggcatgg	gcttcagaag	1290
tatctgcaca	attagaaaaag	tcctcagaag	cttttcttg	gagggtacac	tttcttcact	1350
gtccctattc	ctagacctgg	ggcttgagct	gaggatggga	cgatgtgccc	agggaggac	1410
ccaccagagc	acaagagaag	gtggctacct	gggggtgtcc	cagggactct	gtcagtgcct	1470
tcagcccacc	agcaggagct	tggagtttgg	ggagtgggga	tgagtccgtc	aagcacaact	1530
gttctctgag	tggaaccaaa	gaagcaagga	gctaggaccc	ccagtcctgc	ccccaggag	1590
cacaagcagg	gtccctcag	tcaaggcagt	gggatgggcg	gctgaggaac	ggggcaggca	1650
aggtcactgc	tcagtcacgt	ccacggggga	cgagccgtgg	gttctgctga	gtaggtggag	1710
ctcattgctt	tctccaagct	tggaactgtt	ttgaaagata	acacagaggg	aaagggagag	1770
ccacctggta	cttgtccacc	ctgcctcctc	tgttctgaaa	ttccatcccc	ctcagcttag	1830
gggaatgcac	ctttttccct	ttccttctca	cttttgcatg	tttttactga	tcattcgata	1890
tgctaaccgt	tctcagccct	gagccttgga	gaggagggct	gtaacgcctt	cagtcagtct	1950
ctggggatga	aactcttaaa	tgctttgtat	attttctcaa	ttagatctct	tttcagaagt	2010
gtctatagaa	caataaaaat	cttttacttc	tg			2042

<210> 22

<211> 1433

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (5)...(1264)

<400> 22

	1	l			!	5				10	0					
ctc	gcc	ctg	ctg	acc	tgc	agc	cţg	tgg	ccg	gca	cgg	gca	gac	aac	gcg	94
Leu	Ala	Leu	Leu	Thr	Cys	Ser	Leu	Trp	Pro	Ala	Arg	Ala	Asp	Asn	Ala	
15					20					25					30	
agc	cag	gag	tac	tac	acg	gcg	ctc	atc	aac	gtg	acg	gtg	cag	gag	ccc	142
Ser	Gln	Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Pro	
				35					40	•				45		
ggc	cgc	ggc	gcc	ccg	ctc	acg	ttt	cgc	atc	gac	cgc	ggg	cgc	tac	ggg	190
Gly	Arg	Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	
			50					55					60			
ctt	gac	tcc	ccc	aag	gcc	gag	gtc	cgc	ggc	cag	gtg	ctg	gcg	ccg	ctg	238
Leu	Asp	Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	
		65					70					75				
ccc	ctc	cac	gga	gtt	gct	gat	cat	ctg	ggc	tgt	gat	cca	caa	acc	cgg	286
Pro	Leu	His	G1y	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	
	80					85					90					
ttc	ttt	gtc	cct	cct	aat	atc	aaa	cag	tgg	att	gcc	ttg	ctg	cag	agg	334
Phe	Phe	Val	Pro	Pro	Asn	Ile	Lys ·	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	
95					100				•	105			•		110	
gga	aac	tgc	acg	ttt	aaa	gag	aaa	ata	tca	cgg	gcc	gct	ttc	cac	aat	382
Gly	Asn	Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	
				115					120					125		
gca	gtt	gct	gta	gtc	atc	tac	aat	aat	aaa	tcc	888	gag	gag	cca	gtt	430
Ala	Val	Ala	Val	Val	Ile	Tyr	Asn		Lys	Ser	Lys	Glu		Pro	Val	
			130					135					140			

acc	arg	act	cat	cca	ggc	act	gga	gat	att	att	gct	gtc	atg	ata	aca	4/8
Thr	Met	Thr	His	Pro	Gly	Thr	Gly	Asp _.	Ile	Ile	Ala	Val	Met	Ile	Thr	
		145		•		•	150	•				155				
gaa	ttg	agg	ggt	aag	gat	att	ttg	agt	tat	ctg	gag	aaa	aac	atc	tct	526
Glu	Leu	Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	
	160					165					170					
gta	caa	atg	aca	ata	gct	gtt	gga	act	cga	atg	cca	ccg	aag	aac	ttc	574
Val	G1n	Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	
175					180					185					190	
agc	cgt	ggc	tct	cta	gtc	ttc	gtg	tca	ata	tcc	ttt	att	gtt	ttg	atg	622
Ser	Arg	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	
				195					200					205	-	٠.
att	att	tct	tca	gca	tgg	ctc	ata	ttc	tac	ttc	att	cag	aag	atc	agg	670
Ile	Ile	Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	
			210					215					220			
tac	aca	aat	gca	cgc	gac	agg	aac	cag	cgt	cgt	ctc	gga	gat	gca	gcc	718
Tyr	Thr	Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	
		225					230					235				
aag	aaa	gcc	atc	agt	aaa	ttg	aca	acc	agg	aca	gta	aag	aag	ggt	gac	766
Lys	Lys	Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	
	240					245					250					
aag	gaa	act	gac	сса	gac	ttt	gat	cat	tgt	gca	gtc	tgc	ata	gag	agc	814
Lys	Glu	Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	
255					260					265					270	
tat	aag	cag	aat	gat	gtc	gtc	cga	att	ctc	ccc	tgc	aag	cat	gtt	ttc	862

Tyr	Lys	Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	
				275			•		280					285		
cac	aaa	tcc	tgc	gtg	gat	ссс	tgg	ctt	agt	gaa	cat	tgt	acc	tgt	cct	910
His	Lys	Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	
			290					295					300			
atg	tgc	aaa	ctt	aat	ata	ttg	aag	gcc	ctg	gga	att	gtg	ccg	aat	ttg	958
Met	Cys	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	
		305					310					315				
cca	tgt	act	gat	aac	gta	gca	ttc	gat	atg	gaa	agg	ctc	acc	aga	acc	1006
Pro	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	
	320					325					330					
caa	gct	gtt	aac	cga	aga	tca	gcc	ctc	ggc	gac	ctc	gcc	ggc	gac	aac	1054
					Arg									•		
335			•••	0	340				,	345			,		350	
	ctt	aac	ctt	asa.	cca	ctt	caa	act	tea		ato	tca	cct	ctt		1102
																, 1102
Ser	Leu	GIÀ	Leu		Pro	Leu	Arg	inr		GIÀ	116	Ser	rro		rro	
				355					360					365		
					act											1150
G1n	Asp	Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	
			370					375					380			
aca	aaa	gaa	tgg	ttt	att	att	gcc	agt	ttt	ggc	ctc	ctc	agt	gcc	ctc	1198
Thr	Lys	Glu	Trp	Phe	Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	
		385					390					395				
aca	ctc	tgc	tac	atg	atc	atc	aga	gcc	aca	gct	agc	ttg	aat	gct	aat	1246
Thr	Leu	Cys	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	

400	405	410		
gag gta gaa tgg	ttt tgaagaagaa aaaa	cctgct ttctgactga	ttttgcctt	1300
Glu Val Glu Trp	Phe		•	
415				
gaaggaaaaa agaad	cctatt tttgtgcatc at	ttaccaat catgccaca	c aagcatttat	1360
ttttagtaca tttta	attttt tcataaaatt go	taatgcca aagctttgt	a ttaaaagaaa	1420
taaataataa aat				1433
⟨210⟩ 23	•			
<211> 1917				
<212> DNA				
⟨213⟩ Homo sapi	ens			
<220>				
<221> CDS				
⟨222⟩ (210)(1457)			
<400> 23				
gtatccccg gcta	acctggg ccgcccgcg g	cggtgcgcg cgtgagag	gg agcgcgcggg	60
cagcegageg cegg	tgtgag ccagcgctgc t	gccagtgtg agccagcg	ct gctgccagtg	120
tgagcggcgg tgtg	gagogog gtgggtgogg a	ggggcgtgt gtgccggc	gc gcgcgccgtg	180
gggtgcaaac cccg	gagegte taegetgee at	g agg ggc gcg aac	gcc tgg gcg	233
	Ме	et Arg Gly Ala Asn	Ala Trp Ala	
		1 . 5		
cca ctc tgc ct	g ctg ctg gct gcc go	cc acc cag ctc tcg	cgg cag cag	281
Pro Leu Cys Le	u Leu Leu Ala Ala A	la Thr Gln Leu Ser	Arg Gln Gln	
10	15	20		

cc	cca	gag	aga	cct	gtt	ttc	aca	tgt	ggt	ggc	att	ctt	act	gga	ga	ıg	329
er .	Pro	G1u	Arg	Pro	Val	Phe	Thr	Cys	Gl _, y	Gly	Ile	Leu	Thr	Gly	G]	lų.	
25					30					35				-	4	10	•
ct	gga	ttt	att	ggc	agt	gaa	ggt	ttt	cct	gga	gtg	tac	cct	cca	aa	at	377
Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly	Phe	Pro	Gly	Val	Tyr	Pro	Pro	A:	sn	
				45					50					55	;		
agc	aaa	tgt	act	tgg	aaa	atc	aca	gtt	ccc	gaa	gga	aaa	gta	gtc	g	tt	425
Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr	Val	Pro	Glu	Gly	Lys	Val	Val	. Va	al	
			60					65					70	1			
ctc	aat	ttc	cga	ttc	ata	gac	ctc	gag	agt	gac	aac	ctg	tgo	cgc	t	at	473
Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu	Glu	Ser	Asp	Asn	Leu	Cys	Are	g T	yr	
		75	i	•		•	80					85	,				
gac	ttt	gtg	gat	gtg	tac	aat	ggc	cat	gcc	aat	ggo	cag	g cgc	ati	t g	gc	521
Asp	Phe	(Val	Asp	Val	Tyr	Asn	Gly	His	Ala	Asn	Gly	Glr	Arg	g Ile	e G	lly	
	90)				95					100)					
cgc	tto	tg1	t ggo	act	ttc	cgg	cct	gga	gcc	ctt	gte	tco	ag¹	t gg	са	ac	569
Arg	Phe	Cy:	s Gly	7 Thr	Phe	Arg	Pro	Gly	Ala	Leu	(Va	Sea	r Se	r G1 :	y A	Asn	
105	i				110)				115	5				1	120	
				g cag													617
Lys	Me	t Me	t Va	l Glr	n Met	: Ile	e Sei	r Ası	Ala	a Ası	1 Th	r Al	a Gl	y As	n (Gly	
				125	5				130)				13	15		
tto	at	g gc	c at	g tte	c tco	gc1	t gc	t gaa	а сса	a aa	c ga	a ag	a gg	g ga	it (cag	665
Pho	e Me	t Al	a Me	t Ph	e Sei	r Ala	a Ala	a Glu	u Pro	o Ası	n Gl	u Ar	g Gl	y As	sp (Gln	
			14	0				14	5				15	0			
ta	t tø	t ge	a gg	a ct	c ct	t ga	c ag	a cc	t tc	c gg	c to	t tt	t as	a ac	cc	ccc	713

Tyr	Cys	Gly	Gly	Leu	Leu	Asp	Arg	Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	
		155					160					165				
aac	tgg	сса	gac	cgg	gat	tac	cct	gca	gga	gtc	act	tgt	gtg	tgg	cac	761
Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro	Ala	Gly	Val	Thr	Cys	Val	Trp	His	
	170					175					180					
att	gta	gcc	cca	aag	aat	cag	ctt	ata	gaa	tta	aag	ttt	gag	aag	ttt	809
Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu	Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	
185					190					195					200	
gat	gtg	gag	cga	gat	aac	tac	tgc	cga	tat	gat	tat	gtg	gct	gtg	ttt	857
Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys	Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	
				205					210					215		
aat	ggc	ggg	gaa	gtc	aac	gat	gct	aga	aga	att	gga	aag	tat	tgt	ggt	905
Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala	Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	
			220					225					230			
gat	agt	cca	cct	gcg	cca	att	gtg	tct	gag	aga	aat	gaa	ctt	ctt	att	953
Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val	Ser	G1ụ	Arg	Asn	Glu	Leu	Leu	Ile	
		235					240					245				
cag	ttt	tta	tca	gac	tta	agt	tta	act	gca	gat	ggg	ttt	att	ggt	cac	1001
Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu	Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	
	250					255					260					
tác	ata	ttc	agg	cca	aaa	aaa	ctg	cct	aca	act	aca	gaa	cag	cct	gtc	1049
Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu	Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	
265					270					275					280	
acc	acc	aca	ttc	cct	gta	acc	acg	ggt	tta	888	acc	acc	gtg	gcc	ttg	1097
Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr	Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	

2	285	290	295
tgt caa caa aag 1	tgt aga cgg acg	ggg act ctg gag	ggc aat tat tgt 1145
Cys Gln Gln Lys (Cys Arg Arg Thr	Gly Thr Leu Glu	Gly Asn Tyr Cys
300		305	310
tca agt gac ttt g	gta tta gcc ggc	act gtt atc aca	acc atc act cgc 1193
Ser Ser Asp Phe V	Val Leu Ala Gly	Thr Val Ile Thr	Thr Ile Thr Arg
315	320		325
gat ggg agt ttg o	cac gcc aca gtc	tcg atc atc aac	atc tac aaa gag 1241
Asp Gly Ser Leu I	His Ala Thr Val	Ser Ile Ile Asn	Ile Tyr Lys Glu
330	335	340	
gga aat ttg gcg a	att cag cag gcg	ggc aag aac atg	agt gcc agg ctg 1289
Gly Asn Leu Ala	Ile Gln Gln Ala	Gly Lys Asn Met	Ser Ala Arg Leu
345	350	355	360
act gtc gtc tgc	aag cag tgc cct	ctc ctc aga aga	ggt cta aat tac 1337
Thr Val Val Cys 1	Lys Gln Cys Pro	Leu Leu Arg Arg	Gly Leu Asn Tyr
;	365	370	375
att att atg ggc	caa gta ggt gaa	gat ggg cga ggc	aaa atc atg cca 1385
Ile Ile Met Gly	Gln Val Gly Glu	Asp Gly Arg Gly	Lys Ile Met Pro
380	•	385	390
aac agc ttt atc	atg atg ttc aag	acc aag aat cag	aag ctc ctg gat 1433
Asn Ser Phe Ile	Met Met Phe Lys	Thr Lys Asn Gln	Lys Leu Leu Asp
395	400		405
gcc tta aaa aat	aag caa tgt taac	agtgaa ctgtgtcc	at ttaage 1480
Ala Leu Lys Asn	Lys Gln Cys		
410	415		

PCT/JP00/05356 WO 01/12660

42 /307

tgtattctgc	cattgccttt	gaaagatcta	tgttctctca	gtagaaaaaa	aaatacttat	1540
aaaattacat	attctgaaag	aggattccga	aagatgggac	tggttgactc	ttcacatgat	1600
ggaggtatga	ggcctccgag	atagctgagg	gaagttcttt	gcctgctgtc	agaggagcag	1660
ctatctgatt	ggaaacctgc	cgacttagtg	cggtgatagg	aagctaaaag	tgtcaagcgt	1720
tgacagcttg	gaagcgttta	tttatacatc	tctgtaaaag	gatattttag	aattgagttg	1780
tgtgaagatg	tcaaaaaaag	attttagaag	tgcaatattt	atagtgttat	ttgtttcacc	1840
ttcaagcctt	tgccctgagg	tgttacaatc	ttgtcttgcg	ttttctaaat	caatgcttaa	1900
taaaatattt	ttaaagg					1917

<210> 24

<211> 2258

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (225)...(1367)

<400> 24

60 tttttcccgg ctgggctcgg gctcagctcg actgggctcg gcggcggcg gcggcggcgc 120 180 ggaggagag cgcggggagc caggcctcgg ggcctcggag caaccacccg agcagacgga 233 gtacacggag cagcggccc ggccccgcca acgctgccgc cggg atg ctc cag Met Leu Gln

1

281 acc ttg tat gat tac ttc tgg tgg gaa cgt ctg tgg ctg cct gtg aac Thr Leu Tyr Asp Tyr Phe Trp Trp Glu Arg Leu Trp Leu Pro Val Asn

	5					10					15					•
ttg	acc	tgg	gcc	gat	cta	gaa	gac	cga	gat	gga	cgt	gtc	tac	gcc	aaa	329
Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val	Tyr	Ala	Lys	
20					25					30					35	
gcc	tca	gat	ctc	tat	atc	acg	ctg	ccc	ctg	gcc	ttg	ctc	ttc	ctc	atc	377
Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu	Phe	Leu	Ile	
				40					45					50		
gtt	cga	tac	ttc	ttt	gag	ctg	tac	gtg	gct	aca	cca	ctg	gct	gcc	ctc	425
Val	Arg	Tyr	Phe	Phe	Glu	Leu	Tyr	Val	Ala	Thr	Pro	Leu	Ala	Ala	Leu	
			55					60					65			
ttg	aac	ata	aag	gag	aaa	act	cgg	ctg	cgg	gca	cct	ccc	aac	gcc	acc	473
Leu	Asn	Ile	Lys	G1u	Lys	Thr	Arg	Leu	Arg	Ala	Pro	Pro	Asn	Ala	Thr	
		70					75					80				
ttg	gaa	cat	ttc	tac	ctg	acc	agt	ggc	aag	cag	ccc	aag	cag	gtg	gaa	521
Leu	Glu	His	Phe	Tyr	Leu	Thr	Ser	Gly	Lys	Gln	Pro	Lys	Gln	Val	Glu	
	85					90					95					
gta	gag	ctt	ttg	tcc	cgg	cag	agc	ggg	ctc	tct	ggc	cgc	cag	gta	gag	569
Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Gly	Arg	Gln	Val	Glu	
100					105				•	110					115	
cgt	tgg	ttc	cgt	cgc	cgc	cgc	aac	cag	gac	cgg	ccc	agt	ctc	ctc	aag	617
Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser	Leu	Leu	Lys	
				120					125					130		
aag	ttc	cga	gaa	gcc	agc	tgg	aga	ttc	aca	ttt	tac	ctg	att	gcc	ttc	665
Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu	Ile	Ala	Phe	
			135					140					145			

att	gcc	ggc	atg	gcc	gtc	att	gtg	gat	888	ccc	tgg	ttc	tat	gac	atg	713
Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe	Tyr	Asp	Met	
		150		•			155					160				
aag	aaa	gtt	tgg	gag	gga	tat	ccc	ata	cag	agc	act	atc	cct	tcc	cag	761
Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile	Pro	Ser	Gln	
	165					170					175					
tat	tgg	tac	tac	atg	att	gaa	ctt	tcc	ttc	tac	tgg	tcc	ctg	ctc	ttc	809
Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser	Leu	Leu	Phe	
180					185					190					195	
agc	att	gcc	tct	gat	gtc	aag	cga	aag	gat	ttc	aag	gaa	cag	atc	atc	857
Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu	Gln	Ile	Ile	
				200					205					210		٠
cac	cat	gtg	gcc	acc	atc	att	ctc	atc	agc	ttt	tcc	tgg	ttt	gcc	aat	905
His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp	Phe	Ala	Asn	
			215					220					225			
tac	atc	cga	gct	ggg	act	cta	atc	atg	gct	ctg	cat	gac	tct	tcc	gat	953
Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp	Ser	Ser	Asp	
		230)				235	i				240)			
tac	ctg	ctg	gag	tca	gcc	aag	ate	ttt	aac	tac	gcg	gga	tgg	888	аас	1001
Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	. Phe	Asn	Tyr	Ala	Gly	Trp	Lys	Asn	
	245	5				250)				255	5				
aco	tgo	880	aac	ato	tto	ato	gto	tto	gco	att	gti	t ttt	ato	ato	acc	1049
Thi	r Cys	s Ası	n Asr	Ile	Phe	e Ile	· Va	l Phe	Ala	ı Ile	Va:	l Phe	e Ile	e Ile	e Thr	
260)				269	5				270)				275	
cg	a cta	g gt	ato	cts	z cc	tto	tg	g ato	cti	g cat	tg	c ac	c ct	g gt	g tac	1097

Arg Leu Val Ile Leu	Pro Phe Trp	Ile Leu His	Cys Thr Leu _{ Val Tyr	
280		285	290	
cca ctg gag ctc tat	cct gcc ttc	ttt ggc tat	tac ttc ttc aat tcc	1145
Pro Leu Glu Leu Tyr	Pro Ala Phe	Phe Gly Tyr	Tyr Phe Phe Asn Ser	
295		300	305	
atg atg gga gtt cta	cag ctg ctg	cat atc ttc	tgg gcc tac ctc att	1193
Met Met Gly Val Leu	Gln Leu Leu	His Ile Phe	Trp Ala Tyr Leu Ile	
310	315		320	
ttg cgc atg gcc cac	aag ttc ata	act gga aag	ctg gta gaa gat gaa	1241
Leu Arg Met Ala His	Lys Phe Ile	Thr Gly Lys	Leu Val Glu Asp Glu	٠
325	330		335	
cgc agt gac cgg gaa	gaa aca gag	agc tca gag	ggg gag gag gct gca	1289
Arg Ser Asp Arg Glu	Glu Thr Glu	Ser Ser Glu	Gly Glu Glu Ala Ala	
340	345	350	355	
gct ggg gga gga gca	aag agc cgg	ccc cta gcc	aat ggc cac ccc atc	1337
Ala Gly Gly Gly Ala	Lys Ser Arg	g Pro Leu Ala	Asn Gly His Pro Ile	٠
360)	365	370	
ctc aat aac aac cat	cgt aag aat	t gac tgaacca	tta ttccagctgc ctccc	a 1390
Leu Asn Asn Asn His	Arg Lys Ası	n Asp		
375		380		
gattaatgca taaagcca	ag gaactacc	ct gctccctgcg	ctatagggtc actttaag	ct 1450
ctggggaaaa aggagaaa	agt gagaggag	ag ttctctgcat	cctccctcct tgcttgtc	ac 1510
ccagttgcct ttaaacca	aaa ttctaacc	ag cctatcccca	ggtaggggga cgttggtt	at 1570
attctgttag aggggga	cgg tcgtattt	tc ctccctacco	e gecaagteat cettteta	ct 1630
gcttttgagg ccctccc	tca gctctctg	tg ggtaggggti	acaattcaca ttccttat	tc 1690

46 /307

tgagaatttg	gccccagctg	tttgcctttg	actccctgac	ctccagagcc	agggttgtgc	1750
cttattgtcc	catctgtggg	cctcattctg	ccaaagctgg	accaaggcta	acctttctaa	1810
gctccctaac	ttgggccaga	aaccaaagct	gagcttttaa	ctttctccct	ctatgacaca	1870
aatgaattga	gggtaggagg	agggtgcaca	taacccttac	cctacctctg	ccaaaaagtg	1930
ggggctgtac	tggggactgc	tcggatgatc	tttcttagtg	ctacttcttt	cagctgtccc	1990
tgtagcgaca	ggtctaagat	ctgactgcct	cctttctctg	gcctcttccc	ccttccctct	2050
tctcttcagc	taggctagct	ggtttggagt	agaatggcaa	ctaattctaa	ttttattta	2110
ttaaatattt	ggggttttgg	ttttaaagcc	agaattacgg	ctagcaccta	gcatttcagc	2170
agagggacca	ttttagacca	aaatgtactg	ttaatgggtt	ttttttaaa	attaaaagat	2230
taaataaaaa	atattaaata	aaacatgg				2258

<210> 25

(211) 1973

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (130)...(1887)

<400> 25

gagcagacca ggcccggtgg agaattaggt gctgctggga gctcctgcct cccacaggat 60
tccagctgca gggagcctca gggactctgg gccgcacgga gttgggggca ttccccagag 120
agcgtcgcc atg gtc tgc agg gag cag tta tca aag aat cag gtc aag 168
Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys

1 5 10

tgg gtg ttt gcc ggc att acc tgt gtg tct gtg gtg gtc att gcc gca 216

Trp	Val	Phe	Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	
	15					20					25					
ata	gtc	ctt	gcc	atc	acc	ctg	cgg	cgg	cca	ggc	tgt	gag	ctg	gag	gcc	264
Ile	Val	Leu	Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	Glu	Leu	Glu	Ala	
30					35					40					45	
tgc	agc	cct	gat	gcc	gac	atg	ctg	gac	tac	ctg	ctg	agc	ctg	ggc	cag	312
Cys	Ser	Pro	Asp	Ala	Asp	Met	Leu	Asp	Tyr	Leu	Leu	Ser	Leu	Gly	Gln	
				50					55					60		
atc	agc	cgg	cga	gat	gcc	ttg	gag	gtc	acc	tgg	tac	cac	gca	gcc	aac	360
Ile	Ser	Arg	Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	
			65					70					75			
agc	aag	aaa	gcc	atg	aca	gct	gcc	ctg	aac	agc	aac	atc	aca	gtc	ctg	408
Ser	Lys	Lys	Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	
		80					85					90				
gag	gct	gac	gtc	aat	gta	gaa	ggg	ctc	ggc	aca	gcc	aat	gag	aca	gga	456
Glu	Ala	Asp	Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	
	95					100					105	•				•
gtt	ccc	atc	atg	gca	cac	ccc	ccc	act	atc	tac	agt	gac	aac	aca	ctg	504
Val	Pro	Ile	Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	
110					115					120					125	
gag	cag	tgg	ctg	gac	gct	gtg	ctg	ggc	tct	tcc	caa	aag	ggc	atc	888	552
Glu	G1n	Trp	Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	
				130					135	•				140		
ctg	gac	ttc	aag	aac	atc	aag	gca	gtg	ggc	ccc	tcc	ctg	gac	ctc	ctg	600
Leu	Asp	Phe	Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	

			145					150					155			
cgg	cag	ctg	aca	gag	gaja	ggc	888	gtc	cgg	cgg	ccc	ata	tgg	atc	88C.	648
Arg	Gln	Leu	Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	
		160					165					170				
gct	gac	atc	tta	aag	ggc	ccc	aac	atg	ctc	atc	tca	act	gag	gtc	aat	696
Ala	Asp	Ile	Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	
	175					180					185					
gcc	aca	cag	ttc	ctg	gcc	ctg	gtc	cag	gag	aag	tat	ccc	aag	gct	acc	744
Ala	Thr	Gln	Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	
190					195					200					205	
cta	tct	cca	ggc	tgg	acc	acc	ttc	tac	atg	tcc	acg	tcc	сса	aac	agg	792
Leu	Ser	Pro	Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	
				210					215				ė	220		
acg	tac	acc	caa	gcc	atg	gtg	gag	aag	atg	cac	gag	ctg	gtg	gga	gga	840
Thr	Tyr	Thr	Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	
			225					230					235			
gtg	ccc	cag	agg	gtc	acc	ttc	cct	gta	cgg	tct	tcc	atg	gtg	cgg	gct	888
Val	Pro	Gln	Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	
		240					245	•				250				
gcc	tgg	ссс	cac	ttc	agc	tgg	ctg	ctg	agc	caa	tct	gag	agg	tac	agc	936
Ala	Trp	Pro	His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	
	255					260					265					
ctg	acg	ctg	tgg	cag	gct	gcc	tcg	gac	ccc	atg	tcg	gtg	gaa	gat	ctg	984
Leu	Thr	Leu	Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	
270					275					280					285	

ctc tac gtc cgg gat aa	e act gct gtc cac caa	gtc tac tat gac atc 1032
Leu Tyr Val Arg Asp As	n Thr Ala Val His Gln	Val Tyr Tyr Asp Ile
290	295	300
ttt gag cct ctc ctg tc	a cag ttc aag cag ctg	gcc ttg aat gcc aca 1080
Phe Glu Pro Leu Leu Se	r Gln Phe Lys Gln Leu	Ala Leu Asn Ala Thr
305	310	315
cgg aaa cca atg tac ta	c aca gga ggc agc ctg	atc cct ctt ctc cag 1128
Arg Lys Pro Met Tyr Ty	r Thr Gly Gly Ser Leu	Ile Pro Leu Leu Gln
320	325	330
ctg cct ggg gat gac gg	t ctg aat gtg gag tgg	ctg gtt cct gac gtc 1176
Leu Pro Gly Asp Asp Gl	y Leu Asn Val Glu Trp	Leu Val Pro Asp Val
335	340	345
cag ggc agc ggt aaa ac	a gca aca atg acc ctc	cça gac aca gaa ggc 1224
Gln Gly Ser Gly Lys Th	r Ala Thr Met Thr Leu	Pro Asp Thr Glu Gly
350 35	360	365
atg atc ctg ctg aac ac	t ggc ctc gag gga act	gtg gct gaa aac ccc 1272
Met Ile Leu Leu Asn Th	r Gly Leu Glu Gly Thr	Val Ala Glu Asn Pro
370	375	380
gtg ccc att gtt cat ac	t cca agt ggc aac atc	ctg acg ctg gag tcc 1320
Val Pro Ile Val His Th	r Pro Ser Gly Asn Ile	Leu Thr Leu Glu Ser
385	390	395
tgc ctg cag cag ctg gc	c aca cat ccc gga cac	tgg ggc atc cat ttg 1368
Cys Leu Gln Gln Leu Ala	a Thr His Pro Gly His	Trp Gly Ile His Leu
400	405	410
caa ata gcg gag ccc gc	a gcc ctc cgg cca tcc	ctg gcc ttg ctg gca 1416

1	Gln	Ile	Ala	Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	
		415					420					425					
	cgc	ctc	tcc	agc	ctt	ggc	ctc	ttg	cat	tgg	cct	gtg	tgg	gtt	ggg	gcc	1464
	Arg	Leu	Ser	Ser	Leu	Gly	Leu	Ļeu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	
	430					435					440					445	
	888	atc	tcc	cac	ggg	agt	ttt	tcg	gtc	ccc	ggc	cat	gtg	gct	ggc	aga	1512
	Lys	Ile	Ser	His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	
					450					455					460		
	gag	ctg	ctt	aca	gct	gtg	gct	gag	gtc	ttc	ccc	cac	gtg	act	gtg	gca	1560
	Glu	Leu	Leu	Thr	Ala	Val	Ala	Glu	Val	Phe	Pro	His	Val	Thr	Val	Ala	
				465					470					475			
	cca	ggc	tgg	cct	gag	gag	gtg	ctg	ggc	agt	ggc	tac	agg	gaa	cag	ctg	1608
	Pro	Gly	Trp	Pro	Glu	Glu	Val	Leu	Gly	Ser	Gly	Tyr	Arg	Glu	Gln	Leu	
			480					485					490				
	ctc	aca	gat	atg	cta	gag	ttg	tgc	cag	ggg	ctc	tgg	caa	cct	gtg	tcc	1656
	Leu	Thr	Asp	Met	Leu	Glu	Leu	Cys	Gln	Gly	Leu	Trp	G1n	Pro	Val	Ser	
		495	•				500					505					
	ttc	cag	atg	cag	gcc	atg	ctg	ctg	ggc	cac	agc	aca	gct	gga	gcc	ata	1704
	Phe	Gln	Met	Gln	Ala	Met	Leu	Leu	Gly	His	Ser	Thr	Ala	G1y	Ala	Ile	
	510					515					520					525	
	ggc	agg	ctg	ctg	gca	tcc	tcc	ccc	cgg	gcc	acc	gtc	aca	gtg	gag	cac	1752
	Gly	Arg	Leu	Leu	Ala	Ser	Ser	Pro	Arg	Ala	Thr	Val	Thr	Val	Glu	His	
					530					535					540		
	aac	cca	gct	ggg	ggc	gac	tat	gcc	tct	gtg	agg	aca	gca	ttg	ctg	gca	1800
	Asn	Pro	Ala	Gly	Gly	Asp	Tyr	Ala	Ser	Val	Arg	Thr	Ala	Leu	Leu	Ala	

51 /307

545 550 555 get agg get gtg gae agg ace ega gte tae tae agg eta eee eag gge 1848 Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly 560 565 570 tac cac aag gac ttg ctg gct cat gtt ggt aga aac tgagcaccca ggggtg 1900 Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn 575 580 585 gtgggccagc ggacctcagg gcggaggctt cccacgggga ggcaggaaga aataaaggtc 1960 tttggctttc tcc 1973 <210> 26 ⟨211⟩ 1606 <212> DNA <213> Homo sapiens <220> <221> CDS **<222> (135)... (1130)** <400> 26 attgtgcggc gctggtcccc tcagagggtt cctgctgctg ccggtgcctt ggaccctccc 60 cctcgcttct cgttctactg ccccaggagc ccggcgggtc cgggactccc gtccgtgccg 120 gtgcggcgc cggc atg tgg ctg tgg gag gac cag ggc ggc ctc ctg ggc 170 Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly 1 5 10 cct ttc tcc ttc ctg ctg cta gtg ctg ctg ctg gtg acg cgg agc ccg 218 Pro Phe Ser Phe Leu Leu Leu Val Leu Leu Leu Val Thr Arg Ser Pro

		15					20					25				
gtc	aat	gcc	tgc	ctc	ctc	acc	ggc	agc	ctc	ttc	gtt	cta	ctg	cgc	gtc .	266
Val	Asn	Ala	Cys	Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	
	30					35					40					
ttc	agc	ttt	gag	ccg	gtg	ссс	tct	tgc	agg	gcc	ctg	cag	gtg	ctc	aag	314
Phe	Ser	Phe	Glu	Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	
45					50					55					60	
ccc	cgg	gac	cgc	att	tct	gcc	atc	gcc	cac	cgt	ggc	ggc	agc	cac	gac	362
Pro	Arg	Asp	Arg	Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	
				65					70					75		
gcg	ccc	gag	aac	acg	ctg	gcg	gcc	att	cgg	cag	gca	gct	aag	aat	gga	410
Ala	Pro	Glu	Asn	Thr	Leu	Ala	Ala	Ile	Arg	G1n	Ala	Ala	Lys	Asn	Gly	
			80					85					90			
gca	aca	ggc	gtg	gag	ttg	gac	att	gag	ttt	act	tct	gac	ggg	att	cct	458
Ala	Thr	Gly	Val	Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	
		95					100					105				
gtc	tta	atg	cac	gat	aac	aca	gta	gat	agg	acg	act	gat	ggg	act	ggg	506
Val	Leu	Met	His	Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	
-	110					115					120					
cga	ttg	tgt	gat	ttg	aca	ttt	gaa	caa	att	agg	aag	ctg	aat	cct	gca	554
Arg	Leu	Cys	Asp	Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	
125					130					135					140	
gca	aac	cac	aga	ctc	agg	aat	gat	ttc	cct	gat	gaa	aag	atc	cct	acc	602
Ala	Asn	His	Arg	Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	
				145					150					155		

cta	agg	gaa	gct	gtt	gca	gag	tgc	cta	aac	cat	aac	ctc	aca	atc	ttc	650
Leu	Arg	Glu	Ala	Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thṛ	Ile	Phe	. •
			160					165					170		•	
ttt	gat	gtc	aaa	ggc	cat	gca	cac	aag	gct	act	gag	gct	cta	aag	aaa	698
Phe	Asp	Val	Lys	Gly	His	Ala	His	Lys	Ala	Thr	G1u	Ala	Leu	Lys	Lys	
		175					180					185				
atg	tat	atg	gaa	ttt	cct	caa	ctg	tat	aat	aat	agt	gtg	gtc	tgt	tct	746
Met	Tyr	Met	Glu	Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	
	190					195					200					
ttc	ttg	cca	gaa	gtt	atc	tac	aag	atg	aga	caa	aca	gat	cgg	gat	gta	794
Phe	Leu	Pro	Glu	Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val	
205					210					215		-			220	•
ata	aca	gca	tta	act	cac	aga	cct	tgg	agc	cta	agc	cat	aca	gga	gat	842
Ile	Thr	Ala	Leu	Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp	
				225					230					235		
ggg	aaa	cca	cgc	tat	gat	act	ttc	tgg	aaa	cat	ttt	ata	ttt	gtt	atg	890
Gly	Lys	Pro	Arg	Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	· Val	Met	
			240					245					250)		
atg	gac	att	ttg	ctc	gat	tgg	agc	.atg	cat	aat	atc	ttg	tgg	tac	ctg	938
Met	Asp	Ile	Leu	Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Leu	Tr	Туг	Leu	
		255	i				260	•				265	;			
tgt	gga	att	tca	gct	ttc	cto	atg	caa	aag	gat	ttt	gta	tco	cce	gcc	986
Cys	Gly	Ile	Ser	Ala	Phe	Leu	Met	Gln	Lys	Asp	Phe	Va]	Sea	r Pro	Ala	
	270)				275	;				280)				
tac	tte	g 88g	aag	tgg	tca	gct	aaa	gga	ato	cag	g gtt	gti	gg	t tg	g act	1034

54 /307

Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr	
285 290 295 300	
gtt aat acc tit gat gaa aag agt tac tac gaa tee eat ett ggt tee	1082
Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser	
305 310 315	
age tat ate act gae age atg gta gaa gae tge gaa cet cae tte	1127
Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe	
320 325 330	
tag actttcacgg tgggacgaaa cgggttcaga aactgccagg ggcctcatac	1180
agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt gactcacaca	1240
aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg tgttgccacc	1300
atgeaceatg geatgeeaga gtteaacact gttgetettg aaaatetggg tetgaaaaaa	1360
cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag tgaggataag	1420
cacagattga attgtacaat ttgcagatgc agatgtaaat gcatgggaca tgcatgataa	1480
ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac tcagctatgt	1540
taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta aaaggagcac	1600
taaagg	1606

⟨210⟩ 27

⟨211⟩ 2380

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (247)...(1284)

55 /307

<400> 27

agtg	tgga	cc t	ggac	tcga	ia to	ccgt	tgcc	gac	tege	gct	ctcg	gctt	ct g	ctcc	ggggc	. 6	50	-
ttct	tccc	tg c	ccgo	ccgg	g go	cct	gaccg	tgg	ctto	ttc	cccg	gcct	ga t	ctgo	gcagc	12	50	
ccgg	cggg	cg c	ccag	gaagg	ga go	eaggo	ggcg	cgg	gggg	gcg	ctgg	gcgg	gg g	aggo	gtggc	18	30	
cgga	gctg	cg g	cggc	aago	g gg	gctgg	gact	gct	cggc	cgc	ctcc	tgcc	cg g	cgag	cagct	24	10	
caga	icc a	tg t	cg c	ct g	gaa g	gaa t	gg a	icg t	tat d	ta g	tg g	tt c	tt c	tt a	itc	28	38	
	M	let S	Ser F	ro (Glu (Glu 1	îrp 1	hr 1	[yr [.eu V	al V	al L	.eu L	eu I	le			
		1				5					10							
tcc	atc	ccc	atc	ggc	ttc	ctc	ttt	aag	aaa	gcc	ggt	cct	ggg	ctg	aag	33	36	
Ser	Ile	Pro	Ile	Gly	Phe	Leu	Phe	Lys	Lys	Ala	Gly	Pro	Gly	Leu	Lys			
15					20					25					30			
aga	tgg	gga	gca	gcc	gct	gtġ	ggc	ctg	ggg	ctc	acc	ctg	ttc	acc	tgt	. 38		• *
Arg	Trp	Gly	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys			
				35					40					45				
ggc	ccc	cac	act	ttġ	cat	tct	ctg	gtċ	acc	atc	ctc	ggg	acc	tgg	gcc	43	32	
Gly	Pro	His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala			
			50					55					60					
ctc	att	cag	gcc	cag	ccc	tgc	tcc	tgc	cac	gcc	ctg	gct	ctg	gcc	tgg	48	80	
Leu	Ile	<u>G</u> ln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp			
		65					70					75						
act	ttc	tcc	tat	ctc	ctg	ttc	ttc	cga	gcc	ctc	agc	ctc	ctg	ggc	ctg	52	28	
Thr	Phe	Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu			
	80					85					90							
ccc	act	ccc	acg	ccc	ttc	acc	aat	gcc	gtc	cag	ctg	ctg	ctg	acg	ctg	5	76	٠
Pro	Thr	Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	Gln	Leu	Leu	Leu	Thr	Leu			

95					100					105					110	
aag	ctg	gtg	agc	ctg	gcc	agt	gaa	gtc	cag	gac	ctg	cat	ctg	gcc	cag	624
Lys	Leu	Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	
				115					120					125		
agg	aag	gaa	atg	gcc	tca	ggc	ttc	agc	aag	ggg	ccc	acc	ctg	ggg	ctg	672
Arg	Lys	Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	
			130					135					140			
ctg	ccc	gac	gtg	ccc	tcc	ctg	atg	gag	aca	ctc	agc	tac	agc	tac	tgc	720
Leu	Pro	Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	
		145					150					155				
tac	gtg	gga	atc	atg	aca	ggc	ccg	ttc	ttc	cgc	tac	cgc	acc	tac	ctg	768
Tyr	Val	Gly	Ile	Met	Thr	Gly	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	
	160					165					170	ı				
gac	tgg	ctg	gag	cag	ccc	ttc	ccc	ggg	.gca	gtg	ccc	agc	ctg	cgg	ccc	816
Asp	Trp	Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	
175					180					185					190	
ctg	ctg	cgc	cgc	gcc	tgg	ccg	gcc	ccg	ctc	ttc	ggo	ctg	ctg	tto	ctg	864
Leu	Leu	Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	Gly	Leu	Let	. Phe	Leu	
				195	;				200	,				205		
ctc	tcc	tct	cac	ctc	ttc	ccg	ctg	gag	gcc	gtg	cgc	gag	g gad	gco	ttc	912
Leu	Ser	Ser	His	Leu	Phe	Pro	Lev	Glu	Ala	Va1	Arg	g Glu	ı Ası	Ala	Phe	
			210)				215	5				220)		
tac	gco	cgc	ccg	cte	ccc	gco	cgo	cto	tto	tac	at	g ato	c cc	c gt	ttc	960
Туз	- Ala	Are	g Pro	Leu	ı Pro	Ala	Arg	z Leu	. Phe	туз	Me	t Ile	e Pr	o Va	l Phe	
		225	5				230)				23	5			

ttc	gcc	ttc	cgc	atg	cgc	ttc	tac	gtg	gcc	tgg	att	gcc	gcc	gag	tgc	1008
Phe	Ala	Phe	Arg	Met	Arg	Phe	Tyr	Val	Ala	Trp	Ile	Ala	Ala	Glu	Cys	
	240	•	••			245					250					•
ggc	tgc	att	gcc	gcc	ggc	ttt	ggg	gcc	tac	ccc	gtg	gcc	gcc	aaa	gcc	1056
Gly	Cys	Ile	Ala	Ala	Gly	Phe	Gly	Ala	Tyr	Pro	Val	Ala	Ala	Lys	Ala	
255	•				260					265					270	
cgg	gcc	gga	ggc	ggc	ccc	acc	ctc	caa	tgc	cca	ссс	ccc	agc	agt	ccg	1104
Arg	Ala	Gly	Gly	Gly	Pro	Thr	Leu	Gln	Cys	Pro	Pro	Pro	Ser	Ser	Pro	
				275		÷			280					285		
gag	aag	gcg	gct	tcc	ttg	gag	tat	gac	tat	gag	acc	atc	cgc	aac	atc	1152
Glu	Lys	Ala	Ala	Ser	Leu	Glu	Tyr	Asp	Tyr	Glu	Thr	Ile	Arg	Asn	Ile	
			290	•				295					300			
gac	tgc	tac	agc	aca	gat	ttc	tgc	gtg	cgg	gtg	cgc	gat	ggc	atg	cgg	1200
Asp	Cys	Tyr	Ser	Thr	Asp	Phe	Cys	Val	Arg	Val	Arg	Asp	Gly	Met	Arg	
		305					310					315				
tac	tgg	aac	atg	acg	gtg	cag	tgg	tgg	ctg	gcg	cag	tat	atc	tac	aag	1248
Tyr	Trp	Asn	Met	Thr	Val	Gln	Trp	Trp	Leu	Ala	Gln	Tyr	Ile	Tyr	Lys	
	320					325					330					
agc	gca	cct	gcc	cgt	tcc	tat	gtc	ctg	cgc	ctt	tag	aagc	aga	aact	cagcc	1300
Ser	Ala	Pro	Ala	Arg	Ser	Tyr	Val	Leu	Arg	Leu						
335	;				340	•				345	;					
ggg	tgcg	gcg	gctc	acgc	ct g	gaat	ccca	g ca	cttt	ggga	ggc	ccas	gca	ggtg	gatcat	1360
gag	gago	gcc	tgga	ccat	gc t	gctg	agcg	c ct	actg	gcac	ggc	ctcc	acc	cggg	ctacta	1420
cct	gago	ttc	ctga	ccat	cc c	gctg	tgcc	t gg	ctgo	cgag	ggo	cggc	tgg	agto	agccct	1480
gra	70000	rcaa	ctas	gece	28 8	gggc	caga	a gg	ccts	ggac	tg:	gtgo	act	ggt1	cctgaa	1540

58 / 307

gatgcgcgcc	tatgactaca	tgtgcatggg	cttcgtgctg	ctctccttgg	ccgacaccct	1600
80.00.00.00.					_	
toggtactgg	gcctccatct	acttctgtat	ccacttcctg	gccctggcag	ccctggggct	1660
ggggctggct	ttaggtgggg	gcagccccag	ccggcggaag	gcagcatccc	agcccaccag	1720
ccttgccccg	gagaagctcc	gggaggagta	agctgtcacg	acgetecete	tgccagctgg	1780
tcccgggaat	tctgtgaacc	aggctgctgt	ctcctccca	gaaagagtcc	ttaccttgga	1840
gagggtcctg	gagagaattt	cctcttcccc	agctaaatac	cctgcctgca	actgaagcag	1900
acccgggggt	gtcctccctg	ccctctgccc	agaggccacc	tccactccta	caaaatcaaa	1960
gtattgtcca	gacaagagtc	actggcccct	gctccagctt	ctgggtatcc	agagagcact	2020
gcacttcccc	aaaacggaag	gggccctgg	gcagtgggtt	ttgggcaaat	tccctttctt	2080
tgcatccaca	atgtggggtc	ggagcttggg	ggcaggtcct	gggagtggga	agcctcttcc	2140
ttgtgtcttt	cgctccactt	ttagctcatc	gcaccaatat	tgcagacttg	gaaggaagca	2200
taagcttccc	atttcacaaa	ggggaaactg	aggtgcgggt	gcgcgggcct	ggggacggcc	2260
gtcccatggc	ttccatctga	gccacctcgg	gaccccagca	ctcctggcgc	cctcttctca	2320
tegettggee	tatgacaggt	caccgtgtgt	aaatctttcc	caataaagtg	ttgcacaaag	2380

<210> 28

<211> 2017

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (360)...(629)

<400> 28

tccacacatt aagaaacgct ggtggagttt taaatgcctc tccggggaag gaggaaagcc 60
tgagaatgaa tctgacctca gacccaaatc cattcaacgg agttctggta atttggaaga 120

ggaagagca acctggaaac tgacaggaaa ggatgacaag ttgggagtca caggtatatg	180
	240
tgggcctcc ccatgtggat ccttagtgct gtggcagage ccttgttatt gtgctgggat	
ttccctcca gctcccggcc ggaagctggg ctcacgtggg agctcagtgc cctcctgcta	300
agatetgte tetteettae aatggggtge tggeaetgtg ggteetggtg acgeaegtg	359
tg tac atg caa gat tat tgg agg acc tgg ctc aag ggg ctg cgc ggc	407
et Tyr Met Gln Asp Tyr Trp Arg Thr Trp Leu Lys Gly Leu Arg Gly	
1 5 10 15	•
to the the gtg gge gte etc the teg gee gte tee atc get gee the	455
the Phe Phe Val Gly Val Leu Phe Ser Ala Val Ser Ile Ala Ala Phe	
20 25 30	
ege ace tte ete gtg etg gee ate ace egg cat eag age ete aca gae	503
Cys Thr Phe Leu Val Leu Ala Ile Thr Arg His Gln Ser Leu Thr Asp	
35 40 45	
ecc acc ago tac tac etc tec ago gto tgg ago tto att tec tto aag	551
Pro Thr Ser Tyr Tyr Leu Ser Ser Val Trp Ser Phe Ile Ser Phe Lys	-
	599
tgg gee tte etg ete age ete tat gee eac ege tae egg get gae ttt	555
Trp Ala Phe Leu Leu Ser Leu Tyr Ala His Arg Tyr Arg Ala Asp Phe	
65 70 75 80	
gct gac atc agc atc ctc agc gat ttc tgacccaggg ggtg	640
Ala Asp Ile Ser Ile Leu Ser Asp Phe	
85	
aggicitige accetggggg ggeettagga cetggaetea geetetgaga tgitgggaga	700
ggctactccc acccctggt gaccccagaa ctgtggcaga aaatacacag caggacgagt	760
gtggtctccc aggaagetgt cetgecegte ceetttegag gaaacetgag tgtggtagag	820
ANALYTICS TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTA	

60 /307

aggggatcct	gccatgttgt	tcctcatcag	cctggccaga	gggcagcttt	agaccttttc	880
aaatgaatct	gttttctttt	ctttcttttt	ttttctttt	tttttttt	ttgagatgga	940
gtcttactct	gtcacccagg	ctggagtgca	gtagtgcgat	ctcagctcac	tgcaacctcc	1000
gcctcccagg	ttcaagcaat	tctcctgcct	tggcctctca	agtagctggg	attacaggca.	1060
tctgccacca	tgcccggcaa	atttttgtgt	ttttagtaga	gacagggttt	tgccatgttg	1120
gccaggctgg	tctcgaactc	ctgatctcag	gtgattcacc	cgcctcagcc	ttccaaagtg	1180
ctgggattat	aggtgtgagc	caccgcgccc	ggcctggatc	tgttttctta	gcacgcagtg	1240
aggaatcttt	gtacttaagg	ccagggcaac	aaagtcaaga	ggtcaaggtg	tagggccatg	1300
aggcctggac	ctatgctgca	ggcaagggtt	tccatccccg	ctgccctagg	cactctcttc	1360
ccaaggccag	gttgggcacc	tggggaggtc	agttcagaaa	tatctagcag	agacctctta	1420
aacccccatc	ccagcacccc	atcctgttgt	tcccagagct	ggtctcccat	gagtgtgcta	1480
gagccagata	gccgtggccc	cccacccatc	tcactcacac	acacaggcat	ccatacaccc	1540
cagaagactt	cccaaatgag	gccagactca	gggtcacggg	gaatgtgctt	ctgccctgt	1600
aagggctttg	gggaaggggg	caacatagta	gaggctggaa	agagccccca	aacctgtgcc	1660
catgcccctc	cagccctgcg	tttccattct	gccttctcag	agtgcccttg	ctgcacccag	1720
accaccggcc	aggagagacc	ttctctccca	ctccagcccc	tctcactgcc	cttcaactag	1780
agctttcacc	tttttacatt	tcccttctga	aggacacaaa	tctgcttttc	tgcccataca	1840
ctggcccaag	ggctcaccta	acttgggagg	gaaggggctg	ttggtacaag	gatgattttc	1900
tgttagactg	ccattttgca	cggtctcccc	cttcccatct	gatgtgtcct	gcccctcagc	1960
tetttasett	atrtototra	ctgtcacttt	agcaaaaata	cagoggocat	ttgtatc	2017

⟨210⟩ 29

<211> 1606

<212> DNA

<213> Homo sapiens

<220>			
<221> CDS			
⟨222⟩ (30)(1250)	•	· .	
⟨400⟩ 29			
acctcttccg tcggctgaat tgcggcc	gt atg cgc gg	c tct gtg gag t	gc acc 53
	Met Arg Gl	y Ser Val Glu (Cys Thr
	1 .	5	
tgg ggt tgg ggg cac tgt gcc c	cc agc ccc ct	g ctc ctt tgg	act cta 101
Trp Gly Trp Gly His Cys Ala P	ro Ser Pro Le	eu Leu Leu Trp	Thr Leu
10 15		20	
ctt ctg ttt gca gcc cca ttt g	gc ctg ctg g	gg gag aag acc	cgc cag 149
Leu Leu Phe Ala Ala Pro Phe C	Gly Leu Leu G	ly Glu Lys Thr	Arg Gln
25 30	:	35 ຸ	40
gtg tct ctg gag gtc atc cct a	aac tgg ctg g	gc ccc ctg cag	aac ctg 197
Val Ser Leu Glu Val Ile Pro	Asn Trp Leu G	ly Pro Leu Gln	Asn Leu
45	50		55
ctt cat ata cgg gca gtg ggc	acc aat tcc a	ca ctg cac tat	gtg tgg 245
Leu His Ile Arg Ala Val Gly	Thr Asn Ser T	hr Leu His Tyr	Val Trp
60	65	70	
agc agc ctg ggg cct ctg gca	gtg gta atg g	gtg gcc acc aac	acc ccc 293
Ser Ser Leu Gly Pro Leu Ala	Val Val Met V	/al Ala Thr Asn	Thr Pro
75	80	85	
cac agc acc ctg agc gtc aac	tgg agc ctc	ctg cta tcc cct	gag ccc 341
His Ser Thr Leu Ser Val Asn	Trp Ser Leu	Leu Leu Ser Pro	Glu Pro
90 95		100	

gat	ggg	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	389
Asp	Gly _.	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	G1n	Phe	Ser	Ser	
105					110	•		•		115					120	
gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	437
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	
				125					130					135		
gat	acg	gca	gca	aag	cct	ttg	gga	aga	cca	tat	cct	cca	tac	tcc	ttg	485
Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
			140					145					150)		
gcc	gat	ttc	tct	tgg	aac	вас	atc	act	gat	tca	ttg	gat	cct	gcc	acc	533
Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	
		155		•			160					165				
ctg	agt	gcc	aca	ttt	caa	ggc	cac	ccc	atg	aac	gac	cct	acc	agg	act	581
Leu	Ser	Ala	Thr	Phe	G1n	Gly	His	Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	
	170)				175					180	1				
ttt	gcc	aat	ggc	agc	ctg	gcc	ttc	agg	gtc	cag	gcc	ttt	tco	agg	tcc	629
Phe	Ala	Asr	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln	Ala	Phe	Sei	r Arg	Ser	
185	5				190)				195	•				200	
ago	cga	a cca	g gcc	caa	ccc	cct	cgc	ctc	ctg	cac	aca	gca	a ga	c acc	tgt	. 677
Ser	· Arg	g Pro	Ala	a Gln	Pro	Pro	Arg	Leu	Leu	His	Thr	Ala	a As	p Thi	Cys	
				205	5				210	•				215	5	
cag	g cta	a ga	g gt	g gco	ct	g ati	gga	g gcc	tct	ccc	cgg	g gg	a aa	c cg	t tcc	728
Gl	ı Let	u Gl	u Va	l Ala	a Lei	u Ile	e Gly	y Ala	Ser	Pro	Ar	g Gl	y As	n Ar	g Ser	
			22	0				225	5				23	0		
cti	z tt	t gg	g ct	g gai	g gt	a gc	c ac	a ttg	ggg	ca	g gg	c cc	t ga	c tg	c ccc	77:

Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		235				-	240					245				
tca	átg	cag	gag	cag	cac	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcc	gtc	· 821
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	250					255					260					
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	869
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	
265					270					275					280	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	ggg	ggc	cga	gaa	tca	917
G1n	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
		•		285					290					295		
gcc	ctg	ccċ	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	965
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
			300					305					310			
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	ggg	tcc	cag	aat	aac	1013
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	
		315					320					325				
ttc	tgt	gcc	ttc	aat	ctg	acg	ttc	ggg	gct	tcc	aca	ggc	cct	ggc	tat	1061
Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	Gly	Pro	Gly	Tyr	
	330)				335					340					
tgg	gac	caa	cac	tac	ctc	agc	tgg	tcg	atg	ctc	ctg	ggt	gtg	ggc	ttc	1109
Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp	Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	
345	;				350	1				355	;				360	
cct	. cca	gtg	g gac	ggo	ttg	tcc	сса	cta	gtc	ctg	ggc	ato	ate	g gca	gtg	1157
Pro	. Dr	. Val	l Acr	. G1 s	r Leu	Ser	Pro	Leu	Val	Ler	ı Gly	. Ile	Met	: Ala	. Val	

64 / 307

365 370 375 gcc ctg ggt gcc cca ggg ctc atg ctg cta ggg ggc ggc ttg gtt ctg 1205 Ala Leu Gly Ala Pro Gly Leu Met Leu Leu Gly Gly Gly Leu Val Leu 380 385 390 ctg ctg cac cac aag aag tac tca gag tac cag tcc ata aat taa 1250 Leu Leu His His Lys Lys Tyr Ser Glu Tyr Gln Ser Ile Asn 395 400 405 ggcccgctct ctggagggaa ggacattact gaacctgtct tgctgtgcct cgaaactctg 1310 gaggttggag catcaagttc cagccggccc cttcactccc ccatcttgct tttctgtgga 1370 acctcagagg ccagcctcga cttcctggag acccccaggt ggggcttcct tcatactttg 1430 . 1490 ttgggggact ttggaggcgg gcaggggaca gggctattga taaggtcccc ttggtgttgc cttcttgcat ctccacacat ttcccttgga tgggacttgc aggcctaaat gagaggcatt 1550 1606 ctgactggtt ggctgccctg gaaggcaaga aaatagattt atttttttc acaggg

<210> 30

<211> 1695

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (53)... (631)

<400> 30

acageegage agetggageg ategaggetg cageggggee geegggegea ge atg

55

Met

act	gcc	gtc	ggc	gtg	cag	gcc	cag	agg	cct	ttg	ggc	caa	agg	cag	ccc	103
Thr .	Ala	Val	Gly	Val	G1n	Ala	Gln	Arg	Pro	Leu	Gly	Gln	Arg	Gln	Pro	
			5					10					15			
cgc	cgg	tcc	ttc	ttt	gaa	tcc	ttc	atc	cgg	acc	ctc	atc	atc	acg	tgt	151
Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr	Cys	
		20					25					30				
gtg	gcc	ctg	gct	gtg	gtc	ctg	tcc	tcg	gtc	tcc	att	tgt	gat	ggg	cac	199
Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly	His	
	35					40					45					
tgg	ctc	ctg	gct	gag	gac	cgc	ctc	ttc	ggg	ctc	tgg	cac	tto	tgc	acc	247
Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys	Thr	
50					55					60					65	
acc	acc	aac	cag	gagt	gtg	ccg	atc	tgc	ttc	aga	gac	ctg	ggo	cag	gcc	295 ⁻
Thr	Thr	- Ası	ı Glr	. Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	Glr	n Ala	
				70)				75	;				80)	
cat	gtg	g cc	c ggg	g ctg	gcc	gtg	ggc	ate	ggc	cte	gta	e cgo	age	c gt	g ggc	343
His	Va:	l Pr	o Gly	y Leu	ı Ala	Val	Gly	Met	: Gly	Leu	ı Val	l Arg	Se:	r Va	l Gly	
			8	5				90)				9	5		
gcc	tt	g gc	c gt	g gtg	g gcc	gco	ati	t tti	t ggo	cti	g ga	g tte	c ct	c at	g gtg	391
Ala	Le	u Al	a Va	l Va	l Ala	a Ala	a Ile	e Ph	e Gly	y Le	u Gl	u Ph	e Le	u Me	t Val	
•		10	0				10	5				11	0			
tco	ca	gtt	g tg	c ga	g ga	c aa	a ca	c tc	a ca	g tg	с ва	g tg	g gt	c at	g ggt	439
Sei	- G1	n Le	u Cy	s Gl	u As	p Ly	s Hi	s Se	r Gl	n Cy	s Ly	s Tr	p Va	1 Me	t Gly	
	11	.5				12	0				12	:5				
tc	c at	c ct	c ct	c ct	g gt	g tc	t tt	c gt	c ct	c tc	c to	c gg	c gg	g ct	c ctg	487

Ser Ile Leu Leu Val Ser Phe Val Leu Ser Ser Gly Gly Leu Leu	
130 135 140 145	
ggt ttt gtg atc ctc ctc agg aac caa gtc aca ctc atc ggc ttc acc	535
Gly Phe Val Ile Leu Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr	
150 155 160	
cta atg ttt tgg tgc gaa ttc act gcc tcc ttc ctc ctc ttc ctg aac	583
Leu Met Phe Trp Cys Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn	
165 170 175	
gcc atc agc ggc ctt cac atc aac agc atc acc cat ccc tgg gaa tg	630
Ala Ile Ser Gly Leu His Ile Asn Ser Ile Thr His Pro Trp Glu	
180 185 190	
accgtggaaa ttttaggccc cctccaggga catcagattc cacaagaaaa tatggtcaaa	690
atgggacttt tccagcatgt ggcctctggt ggggctgggt tggacaaggg ccttgaaacg	750
gctgcctgtt tgccgataac ttgtgggtgg tcagccagaa atggcccggg ggcctctgca	810
cetggtetge agggeeagag geeaggaggg tgeeteagtg ceaceaactg caeaggetta	870
gccagatgtt gattttagag gaagaaaaaa acattttaaa actccttctt gaattttctt	930
ccctggactg gaatacagtt ggaagcacag gggtaactgg tacctgagct agctgcacag	990
ccaaggatag ttcatgcctg tttcattgac acgtgctggg ataggggctg cagaatccct	1050
ggggctccca gggttgttaa gaatggatca ttcttccagc taagggtcca atcagtgcct	1110
attettecae cageteaaag ggeettegta tgtatgteee tggetteage tttggteatg	1170
ccaaagaggc agagttcagg attccctcag aatgccctgc acacagtagg tttccaaacc	1230
attigactcg gtttgcctcc ctgcccgttg tttaaacctt acaaaccctg gataacccca	1290
tettetagea getggetgte eeetetggga getetgeeta teagaaceet acettaaggt	1350
gggtttcctt ccgagaagag ttcttgagca agctctccca ggagggccca cctgactgct	1410
aatacacagc cctccccaag gcccgtgtgt gcatgtgtct gtcttttgtg agggttagac	1470

67 /307

1530

1590

1650

1695

agco	tca	ggg (cacca	attt	tt a	atcc	caga	a ca	catt	tcaa	aga	gcac	gta '	tctaį	gacct	g
ctg	gacto	ctg	cagg	gggti	ga gg	gggg	aaca	g cga	agago	ettg	ggta	aatga	att :	aacad	ccat	g
ctg	ggga	tgc :	atgga	aggt	ga a	gggg	gcca	g gaa	accas	gtgg	aga	tttc	cat	cctte	zccag	c
acgi	tctg	tac	ttctį	gttca	at ta	aaag	tgcto	c cci	tttci	tagt	cct	tt				
<210)> 3 :	l														
<21 1	1> 37	77														
<212	2> PI	TS														
<213	3> Ho	это :	sapi	ens												
<400)> 31	l														
Met	Asp	Ser	Ala	Leu	Ser	Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	
1				5					10					15		
Gly	Pro	Thr	Asn	Ser	Thr	Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile	
			20					25					30			
Ala	Leu	Ala	Tyr	Gly	Ser	Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe	
		35					40					45				
Phe	Gly	Ala	Leu	Arg	Ser	Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser	
	50					55					60					
Asp	Met	Pro	Glu	Thr	Ile	Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	
65					70					75					80	
Ile	Ala	Ser	Cys	Thr	Leu	Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	
				85					90					95		
Ser	Gln	Glu	Tyr	Ile	Asn	Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	
			100					105					110			

Gly Ile Leu Ala Leu Ser His Thr Ile Ser Pro Phe Met Asn Lys Phe

		115					120					125			
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gl'n	Tyr	Gln	Leu	Leu	Phe	Thr	Gln
	130					135					140				
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr
145					150					155					160
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr
				165					170					175	
Leu	Leu	Arg	Lys	His	Trp	Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe
			180					185					190		
Ser	Leu	Asn	Gly	Val	Glu	Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly
		195					200					205			
Cys	Ile	Leu	Leu	Gly	Gly	Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe
	210					215					220				
Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile
225					230					235					240
Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn
				245					250					255	
Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe
			260	•				265	:				270		
Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His
		275					280					285			
Thr	Tyr	Phe	Tyr	Thr	Ser	Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu
	290					295					300				
Thr	Ile	Phe	Ile	Met	His	Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu
305					310					315					320

Tyr	Leu	Val	Pro	Ala	Cys	Ile	Gly	Phe	Pro	Val	Leu	Val	Ala	Leu	Ala
			-	325					330					335	
Lys	Gly	Glu	Val	Thr	Glu	Met	Phe	Ser	Tyr	Glu	Glu	Ser	Asn	Pro	Lys
			340					345					350		
Asp	Pro	Ala	Ala	Val	Thr	Glu	Ser	Lys	Glu	Gly	Thr	Glu	Ala	Ser	Ala
		355					360					365			
Ser	Lys	Gly	Leu	Glu	Lys	Lys	Glu	Lys							
	370					375									
<210)> 32	2													
<211	l> 81	L													
<212	2> PF	RT.													
<213	3> Hc	mo :	sapie	ens											
<400	> 32	:													
Met	Thr	Ala	His	Ser	Phe	Ala	Leu	Pro	Val	Ile	Ile	Phe	Thr	Thr	Phe
1.	,			5					10					15	
Trp	Gly	Leu	Val	Gly	Ile	Ala	Gly	Pro	Trp	Phe	Val	Pro	Lys	Gly	Pro
-			20					25					30		
Asn	Arg	Gly	Val	Ile	Ile	Thr	Met	Leu	Val	Ala	Thr	Ala	Val	Cys	Cys
		35					40					45			
Tyr	Leu	Phe	Trp	Leu	Ile	Ala	Ile	Leu	Ala	G1n	Leu	Asn	Pro	Leu	Phe
	50					55					60			_	-
Gly	Pro	Gln	Leu	Lys	Asn		Thr	Ile	Tro	Tvr		Arø	Phe	Len	Trn
-										-,-					
65				•	70					75					80

Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	Ala	Ile	Leu
145					150					155					160
Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	Ser	Tyr	Val
				165					170					175	
Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	Ile	Ile	Ile
			180					185					190		
Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	Asn	Phe	Asp
		195					200					205			
Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	Ser	Leu	Ala
	210					215					220				
Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln	Leu	Asn	Tyr
225					230					235					240
Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro	Leu	Ala	Ile
				245					250					255	
Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	Met	Asn	Val
			260					265					270		
Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	Ser	Gln	Ala
		275					280					285			
Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	Ser	Trp	Ile
	290					295					300				
Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	Asn	Gly	Thr
305					310					315					320
Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	Glu	Gly	His
				325					330					335	
Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	Thr	Pro	Ala

72 /307

			340					345					350		
Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	Ile	Ile	Pro
-		355					360					365			
Gly	Asp	Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	Ala	Trp	Leu
	370					375					380				
Phe	Tyr	Gly	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	Phe	Thr	Arg
385					390					395					400
Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	Pro	Val	Leu
				405					410					415	
Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	Ile	Ser	Lys
			420					425					430		
Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	Ser	Gly	Leu
		435					440					445			
Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	Ala	Gln	Lys
	450					455					460				
Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	Glu	Val	Val
465					470					475					480
Pro	Pro	Glu	Glu	Asp	Pro	Glu									
				485										•	

⟨210⟩ 34

<211> 375

<212> PRT

<213> Homo sapiens

⟨400⟩ 34

Met	Thr	Pro	Gln	Pro	Ala	Gly	Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val
.1	•			5					10					15	
Val	Ala	Ala	Ala	Ala	Phe	Ala	Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu
			20					25					30		
Arg	Ser	Leu	Gly	Leu	Ala	Phe	Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg
		35					40					45			
Ser	Ala	Gln	Asp	Thr	Ala	Trp	Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	Gln
	50					55					60				
Gln	Ala	Ala	Ser	Pro	Val	Gly	Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala
65					70					75					80
Arg	Pro	Val	Val	Met	Val	Gly	Gly	Val	Leu	Ala	Ser	Leu	Gly	Phe	Val
				85					90					95	
Phe	Ser	Ala	Phe	Ala	Ser	Gly	Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly
			100					105					110		
Leu	Leu	Ala	Gly	Phe	Gly	Trp	Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly
		115					120					125			
Thr	Leu	Ser	Arg	Tyr	Phe	Ser	Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu
	130					135					140				
Ala	Leu	Thr	Gly	Asn	Gly	Ala	Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu
145					150					155					160
Gln	Leu	Leu	Leu	Asp	Thr	Phe	Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu
				165					170					175	
Gly	Ala	Ile	Thr	Leu	His	Leu	Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro
			180					185					190		
Len	Val	Len	Pro	G1 v	Asp	Pro	Pro	Ala	Pro	Pro	Arø	Ser	Pro	Leu	Ala

			195					200					205			
Al	a i	Leu	Gly	Leu	Ser	Leu	Phe	Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala
		210					215				•	220				
Le	u	Gly	Thr	Ala	Leu	Val	Gly	Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His
22	5					230					235					240
Le	u .	Ala	Pro	Arg	Phe	Arg	Pro	Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala
					245					250					255	
Gl	y	Gly	Gly	Arg	Gly	Cys	Asp	Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu
				260					265					270		
Ar	g	Val	Ala	Gly	Arg	Pro	Arg	Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly
			275					280				٠	285			
Ar	g	Ile	Arg	Gly	Ser	Asp	Trp	Ala	Gly	Ala	Val	G1 _y	Gly	Gly	Ala	Gly
		290					295					300				
Al	a	Arg	Gly	Gly	Arg	Arg	Arg	Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg
30	5					310					315					320
Gl	y	Cys	Gly	Leu	Trp	Ala	Glu	Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe
					325					330					335	
Ar	g	Cys	Thr	Pro	Arg	Ala	Gly	Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His
				340					345					350		
Ar	g	Ala	Gly	Asp	Asp	Ala	Asp	Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser
			355					360					365			
Pr	0	Val	Arg	Leu	Pro	Lys	Gly									
		370					375									

<211	> 35	50													
<212	2> PF	rr													
<213	3> Ho	omo s	sapie	ens			•		•	•					
<400	> 35	5													
Met	Ala	Thr	Thr	Ala	Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly
1				5					10					15	
Pro	Glu	Trp	Gly	G1y	Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala
			20					25					30		
Val	Ile	Asp	Met	Glu	Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu
		35					40					45			
Asp	Met	Gly	Glu	Leu	His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala
	50					55				•	60				
Asp	Ala	Ala	Asp	Ala	Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu
65					70					75					80
Gly	Met	Lys	Gly	Phe	Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln
				85					90					95	
Met	Trp	Gln	Ala	Gly	Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr
			100					105					110		
Ala	Asn	Ile	Asp	Ile	Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln
		115					120					125			
Val	Arg	Ser	Arg	Leu	Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn
	130					135					140				
Phe	Pro	Gln	Lys	Ile	Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val
145					150					155					160
Phe	Thr	Leu	Val	Ala	Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr

				165					170					175	
Ile	Ile	Arg	Glu	Gly	Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe
			180					185					190		
Gly	Tyr	Trp	Leu	Gly	Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu
		195					200					205			
Cys	Asn	Ala	Gln	Ile	Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr
	210					215					220				
Gly	Leu	Phe	Gly	His	Cys	Ile	Val	Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His
225					230					235					240
Leu	His	Ala	Leu	Phe	Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser
				245					250					255	
Thr	Leu	Arg	Met	Val	Ala	Val	Leu	Val	Ser	Arg	Thr	Val	Gly	Pro	Thr
			260					265					270		
Gln	Arg	Leu	Leu	Leu	Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Met	Leu	Phe
		275					280					285			
Leu	Leu	Tyr	Leu	His	Phe	Ala	Tyr	His	Lys	Val	Val	G1u	Gly	Ile	Leu
	290					295					300				
Asp	Thr	Leu	Glu	Gly	Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg
305					310					315					320
Asp	Ile	Pro	Ala	Met	Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu
				325					330					335	
Asn	Ala	Thr	Ala	Lys	Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His		
			340					345					350		

<211	> 66	57													
<212	2> Pi	RT													
<213	3> Ho	omo s	sapie	ens											
<400)> 36	õ													
Met	Ser	Ser	Gln	Pro	Ala	Gly	Asn	Gln	Thr	Ser	Pro	G1y	Ala	Thr	Glu
1				5					10					15	
Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	Pro	Gln	Gly	Gly	Glu
			20					25					30		
Glu	Leu	G1n	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	His	Thr	Ser	Ile	Pro
		35					40					45			
Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	Ser	Ile	Leu	Val	Leu
	50					55					60				
Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	Leu	Trp	Pro	Asp	Cys
65					70					75					80
Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	Asp	Phe	Leu	Ala	Gly
				85					90					95	
Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Väl	Phe	Met	Val	Leu	Leu	Ser
			100					105					110		
Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	Leu	Pro	Phe	Leu	Thr
		115					120					125			
Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	Glu	Ala	Pro	Arg	Gly
	130					135					140				
Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	Ala	Leu	Tyr	Tyr	Pro
145					150					155					160
Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	His	Thr	Ala	Ala	His	Leu	Leu	Gly

				165					170					175	
Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	Val	Trp	Gln	Arg	Ala
			180					185					190		
Glu	Cys	Pro	G1n	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	Tyr	Ser	Leu	Leu	Ala
		195					200					205			
Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	Ser	Leu	Trp	Tyr	Pro
	210					215					220				
Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	Gly	Ala	Gly	Ser	Lys
225					230					235					240
Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	Arg	Asn	Leu	Leu	Cys
				245					250					255	
Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	Lys	His	Gly	Phe	Leu
			260				•	265					270		
Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	Tyr	Thr	Pro	Gln	Pro
		275					280					285			
Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	Ala	Thr	Leu	Thr	Gly
	290					295					300				
Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	Val	Gly	Val	Val	Pro
305			. •		310					315					320
Thr	Ile	Gln	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	Asp	Val	Ser	Tyr	Leu
				325					330					335	
Leu	Ala	Gly	Phe	Gly	Ile	Val	Leu	Ser	Glu	Asp	Lys	Gln	Glu	Val	Val
			340					345					350		
Glu	Leu	Val	Lys	His	His	Leu	Trp	Ala	Leu	Glu	Val	Cys	Tyr	Ile	Ser
		355					360					365	j		

Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	Val	Leu	Met	Arg	Ser
	370·					375					380				-
Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	His	Arg	Gly	Ala	Ala
385					390					395					400
Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	Pro	Ser	Arg	G1n	Ala
				405					410					415	
Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	Thr	Ala	Phe	Ile	Cys
			420					425					430		
Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	Leu	Gly	Thr	Thr	Ala
		435					440					445			
Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	Gly	Arg	Asn	Leu	Leu
	450					455					460				
Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	Trp	Leu	Thr	Leu	Ala
465					470					475					480
Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	Trp	Val	Phe	Leu	Glu
				485					490					495	
Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	Arg	Val	Leu	Tyr	Ala
			500)				505					510		-
Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	Val	Gly	Ala	Met	Val
		515	;				520	ı				525	,		
Ala	Thr	Trp	Arg	Val	Leu	Leu	Ser	Ala	Leu	Tyr	Asr	Ala	Ile	His	Leu
	530)				535	5				540)			
G1 y	Gln	Met	: Asp	Leu	s Ser	Leu	ı Lev	Pro	Pro	Arg	, Ala	Ala	Thr	Leu	Asp
545	j				550)				555	j				560
D	. c1.	. Т	- Т	. ፕե	. Т	. A+.	- Ac-	Dha	ام آ	ilve	. T14	G1.	, V21	Ser	·Gln

80 /307

Ser His Pro Ala Met Thr Ala Phe Cys Ser Leu Leu Cln Ala Gln . Ser Leu Leu Pro Arg Thr Met Ala Ala Pro Gln Asp Ser Leu Arg Pro Gly Glu Glu Asp Glu Gly Met Gln Leu Leu Gln Thr Lys Asp Ser Met Ala Lys Gly Ala Arg Pro Gly Ala Ser Arg Gly Arg Ala Arg Trp Gly Leu Ala Tyr Thr Leu Leu His Asn Pro Thr Leu Gln Val Phe Arg Lys Thr Ala Leu Leu Gly Ala Asn Gly Ala Gln Pro <210> 37 <211> 464 <212> PRT <213> Homo sapiens <400> 37 Met Ile Val Cys Leu Leu Phe Met Met Ile Leu Leu Ala Lys Glu Val Gln Leu Val Asp Gln Thr Asp Ser Pro Leu Leu Ser Leu Leu Gly Gln Thr Ser Ser Leu Ser Trp His Leu Val Asp Ile Val Ser Tyr Gln Ser

Val	Leu	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	Pro	Ser	Ile	Ile	Leu	Ala
	50					55					60				
Lys	Glu	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	Leu	Leu	Lys	Val	Ser	Ala
65					70					75					80
Gly	Leu	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	His	Leu	Asp	Ala	Val	Pro
				85					90					95	
Lys	Cys	Gln	Ala	Phe	Thr	His	Gln	Met	Val	Gln	Phe	Leu	Ser	Thr	Leu
			100					105					110		
Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	Leu	Glu	Gln	Glu	Met	Ser
		115					120					125			
Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	Pro	Pro	Asp	Met	Asp	Ser
	130)				135					140			•	
Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	Phe	Met	Glu	Val	Leu	Met
145	;		•		150					155					160
Met	: Met	: Asr	Asr	ı Ala	Thr	Ile	Pro	Thr	Ala	Glu	Phe	Leu	Arg	g Gly	Ser
				165	5				170)				175	;
Ile	e Arg	g Thi	Tr	Ile	e Gly	Glr	ı Lys	Met	His	Gly	Leu	ı Val	Va1	Leu	Pro
			180)				185	5				190)	
Le	u Lei	u Thi	r Ala	a Ala	a Cys	s Glı	n Šei	r Leu	ı Ala	a Ser	· Val	l Ar	g Hi	s Met	t Ala
		19	5				200)				20	5		
Gl	u Th	r Th	r Gl	u Ala	a Cy:	s Il	e Thi	r Ala	a Ty	r Phe	e Ly:	s Gl	u Se	r Pro	o Leu
	21	0				21	5				22	0			
As	n Gl	n As	n Se	r Gl	y Tr	p G1	y Pr	o Il	e Le	u Va	l Se	r Le	u Gl	n Va	l Pro
22	5				23	0				23	5				240
C1	וו ב	u Th	r Mo	t G1	u G1	u Ph	e Le	u G1	n G1	u Cy	s Le	u Th	r Le	u Gl	y Ser

				245					250					255	
Гут	Leu	Thr	Leų	Tyr	Val	Tyr	Leu	Leu	Gln	Cys	Leu	Asn	Ser	Glu	Gln
			260			•		265					270		
Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	Ile	Leu	Ser	Lys	Trp	Leu
		275					280					285			
Glu	Gl n	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	Glu	Ala	Lys	Leu	Phe	Leu
	290					295		,			300				
Trp	Trp	His	G1n	Val	Leu	Gln	Leu	Ser	Leu	Ile	Gln	Thr	Glu	Gln	Asn
305	•				310					315					320
Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	Ile	Leu	Leu	Leu	Val	Gln
				325					330					335	
Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	Glu	Arg	Leu	Ser	Ser	Gly	Ile	Leu
			340					345					350		
Gly	Ala	Ile	Gly	Phe	Gly	Arg	Lys	Ser	Pro	Leu	Ser	Asn	Arg	Phe	Arg
		355					360					365			•
Val	Val	Ala	Arg	Ser	Met	Ala	Ala	Phe	Leu	Ser	Val	Gln	Val	Pro	Met
	370					375					380				
Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	Glu	Leu	His	Leu	Thr	Pro
385					390		•			395					400
Lys	Ala	Gln	Gln	Ala	Leu	Asn	Ala	Leu	Glu	Ser	Met	Ala	Ser	Ser	Lys
				405					410					415	
Gln	Tyr	Val	Glu	Tyr	Gln	Asp	Gln	Ile	Leu	Gln	Ala	Thr	Gln	Phe	Ile
			420					425					430		
Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	Lys	Ser	Phe	Leu	Ala	Leu
		435					440					445	;		

WO 01/12660

83 /307

Leu Val Asn Cys Leu Tyr Pro Glu Val His Tyr Leu Asp His Ile Arg <210> 38 <211> 470 <212> PRT <213> Homo sapiens <400> 38 Met Ser Arg Leu Gly Ala Leu Gly Gly Ala Arg Ala Gly Leu Gly Leu Leu Leu Gly Thr Ala Ala Gly Leu Gly Phe Leu Cys Leu Leu Tyr Ser Gln Arg Trp Lys Arg Thr Gln Arg His Gly Arg Ser Gln Ser Leu Pro Asn Ser Leu Asp Tyr Thr Gln Thr Ser Asp Pro Gly Arg His Val Met Leu Leu Arg Ala Val Pro Gly Gly Ala Gly Asp Ala Ser Val Leu Pro

Ser Leu Pro Arg Glu Gly Gln Glu Lys Val Leu Asp Arg Leu Asp Phe

Val Leu Thr Ser Leu Val Ala Leu Arg Arg Glu Val Glu Glu Leu Arg

Ser Ser Leu Arg Gly Leu Ala Gly Glu Ile Val Gly Glu Val Arg Cys

His Met Glu Glu Asn Gln Arg Val Ala Arg Arg Arg Phe Pro Phe

	130					135					140				
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr
145	•				150					155					160
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr
				165					170					175	
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu
		•	180					185					190		
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly
		195					200					205			
Arg	Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser
	210					215			•		220				
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro
225					230					235					240
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys
				245					250					255	
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser
			260					265					270		
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys
		275					280					285	i		
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly
	290	+				295					300)			
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp
305					310)				315	5				320
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly	Glr	Leu	ı Ala	a Glu	His	Glu
				325	5				330)				335	5

85 /307

Ser Ile Gln Arg Arg Ile Gln Ser Gly Phe Ser Phe Lys Glu His Val Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala His Phe Leu Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Leu Glu Lys Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Thr Val Glu Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pro Gly Phe Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Glu Leu Gly Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Glu Leu Pro Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Glu Glu Leu Glu Val Ile Leu Arg Asp

<210> 39

<211> 243

<212> PRT

<213> Homo sapiens

<400> 39

Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe

1				5					10					15	
Ser	Val	Thr	Pro	Tyr	Thr	Pro	Ser	Thr	Ala	Asp	Ile	Gln	Val	Ser	Asp
			20					25					30	٠	
Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	Ile	Phe	Leu	Gly
		35					40					45			
Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	Lys	Tyr	Gln	Gly
	50					55					60				
Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	Val	Leu	Leu	Ser
65					70					75					80
Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	Phe	Lys	Met	Leu
				85					90					95	
Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	Pro	Asp	Ser	Glu
			100					105			-		110		
Gln	Thr	Pro	Gly	Gly	Pro	Ser	Phe	Val	Phe	Thr	Gly	Ile	Asn	Gln	Pro
		115					120					125			
Ile	Thr	Phe	His	Gly	Ala	Thr	Val	Val	Gln	Tyr	Ile	Pro	Pro	Pro	Tyr
	130					135					140				
Gly	Ser	Pro	Glu	Pro	Met	Gly	Ile	Asn	Thr	Ser	Tyr	Leu	Gln	Ser	Val
145					150					155					160
Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	Ala	Ala	Ala	Met
				165					170					175	
Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	Asp	Asn	Ser	Ala
			180					185					190		
Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	Gly	Gly	Asn	His
		195					200					205			

87 /307

Arg Pro Asn Pro Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu Glu Ala Cys Ala Cys Phe Ser Pro Pro Pro Tyr Glu Glu Ile Tyr Ser Leu Pro Arg <210> 40 <211> 270 <212> PRT <213> Homo sapiens <400> 40 Met Ala Gly Ala Glu Asp Trp Pro Gly Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly Ala Gln His Ala Gly Ala Arg Glu Leu Ala Ala Leu Tyr Ser Pro Gly Lys Arg Leu Gln Glu Trp Cys Ser Val Ile Leu Cys Phe Ser Leu Ile Ala His Asn Leu Val His Leu Leu Leu Leu Ala Arg Trp Glu Asp Thr Pro Leu Val Ile Leu Gly Val Val Ala Gly Ala Leu Ile Ala Asp Phe Leu Ser Gly Leu Val His Trp Gly Ala Asp Thr Trp Gly Ser Val Glu Leu Pro Ile Val Gly Lys Ala

88 /307

Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	Ile	Asp	Pro	Thr	Ala	Ile	Thr
		115					120					125			
Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	Asp	Asn	Cys	Leu	Val	Thr	Leu
	130					135					140				
Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys	Phe	Arg	Thr	His	Ser	Pro	Glu
145					150					155					160
Ala	Leu	Glu	G1n	Leu	Tyr	Pro	Trp	Glu	Cys	Phe	Val	Phe	Cys	Leu	Ile
				165					170					175	
Ile	Phe	Gly	Thr	Phe	Thr	Asn	G1n	Ile	His	Lys	Trp	Ser	His	Thr	Tyr
			180					185					190		
Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	Leu	Gln	Asp	Trp	His	Val	Ile
		195					200		·			205			
Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	His	Val	Ser	Pro	His	Glu	Thr
	210					215					220				
Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu	Asn	Tyr	Pro	Leu	Glu	Lys	Ile
225					230					235					240
Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leu	Ile	Gln	Gly	Leu	Thr	Gly	Glu
				245					250					255	
Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp	Ala	Gln	Lys	Ile	Lys		
			260					265					270		

<210> 41

<211> 1131

<212> DNA

<213> Homo sapiens

89 /307

<400> 41

atggactcgg	ccctcagcga	tccgcataac	ggcagtgccg	aggcaggcgg	cccaccaac	60
agcactacgc	ggccgccttc	cacgcccgag	ggcatcgcgc	tggcctacgg	cagcctcctg	120
ctcatggcgc	tgctgcccat	cttcttcggc	gccctgcgct	ccgtacgctg	cgccgcggc	180
aagaatgctt	cagacatgcc	tgaaacaatc	accagccggg	atgccgcccg	cttccccatc	240
atcgccagct	gcacactctt	ggggctctac	ctctttttca	aaatattctc	ccaggagtac	300
atcaacctcc	tgctgtccat	gtatttcttc	gtgctgggaa	tcctggccct	gtcccacacc	360
atcagcccct	tcatgaataa	gtttttcca	gccagctttc	caaatcgaca	gtaccagctg	420
ctcttcacac	agggttctgg	ggaaaacaag	gaagagatca	tcaattatga	atttgacacc	480
aaggacctgg	tgtgcctggg	cctgagcagc	atcgttggcg	tctggtacct	gctgaggaag	540
cactggattg	ccaacaacct	ttttggcctg	gccttctccc	ttaatggagt	agagctcctg	600
cacctcaaca	atgtcagcac	tggctgcatc	ctgctgggcg	gactcttcat	ctacgatgtc	660
ttctgggtat	ttggcaccaa	tgtgatggtg	acagtggcca	agtccttcga	ggcaccaata	720
aaattggtgt	ttccccagga	tctgctggag	aaaggcctcg	aagcaaacaa	ctttgccatg	780
ctgggacttg	gagatgtcgt	cattccaggg	atcttcattg	ccttgctgct	gcgctttgac	840
atcagcttga	agaagaatac	ccacacctac	ttctacacca	gctttgcagc	ctacatcttc	900
ggcctgggcc	ttaccatctt	catcatgcac	atcttcaagc	atgctcagcc	tgccctccta	960
tacctggtcc	ccgcctgcat	cggttttcct	gtcctggtgg	cgctggccaa	gggagaagtg	1020
acagagatgt	tcagttatga	ggagtcaaat	cctaaggatc	cagcggcagt	gacagaatcc	1080
aaagagggaa	cagaggcatc	agcatcgaag	gggctggaga	agaaagagaa	a	1131

<210> 42

<211> 243

<212> DNA

<213> Homo sapiens

60

120

180

240

300

360

420

480

540

600

660

720

780

90 / 307

<400>	42
--------------------	----

atgacggcgc actcattcgc cctcccggtc atcatcttca ccacgttctg gggcctcgtc 60
ggcatcgccg ggccctggtt cgtgccgaag ggacccaacc gcggagtgat catcaccatg 120
ctggtcgcca ccgccgtctg ctgttacctc ttctggctca tcgccatcct ggcgcagctg 180
aaccccctgt tcgggcccca gctgaagaat gagaccatct ggtacgtgcg cttcctgtgg 240
gag 243

<210> 43

⟨211⟩ 1461

<212> DNA

<213> Homo sapiens

<400> 43

atgggggata ctggcctgag aaagcggaga gaggatgaga agtcgatcca gagccaagag
cctaagacca ccagtctcca aaaggagctg ggcctcatca gtggcatctc catcatcgtg
ggcaccatca ttggctctgg gatcttcgtt tcccccaagt ctgtgctcag caacacggaa
gctgtggggc cctgcctcat catatgggcg gcttgcgggg tcctcgcgac gctgggtgcc
ctgtgctttg cggagcttgg cacaatgatc accaagtcag ggggagagta tccctacctg
atggaggcct acgggcccat ccccgcctac ctcttctcct gggccagcct gatcgtcatt
aagcccacgt ccttcgccat catctgcctc agcttctccg agtatgtgt tgcgcccttc
tatgtgggct gcaagcctcc tcaaatcgtt gtgaaatgcc tggccgccgc cgccatcttg
ttcatctcga cagtgaactc actgagcgtg cggctgggaa gctacgtcca gaacatcttc
accgcggcca agctggtgat cgtggccatc atcatcatca gcgggctggt gctcctggcc
caaggaaaca caaagaattt tgataattct ttcgagggcg cccagctgtc tgtgggagcc
atcagcctgg cgttttacaa tggactctgg gcctatgatg gatggaatca actcaattac
atcacagaag aacttagaaa cccttacaga aacctgcctt tggccattat catcgggatc

91/307

cccctggtga	cggcgtgcta	catcctcatg	aacgtgtcct	acttcaccgt	gatgactgcc	840
accgaactcc	tgcagtccca	ggcggtggct	gtgacatttg	gtgaccgtgt	tctctatcct	900
gcttcttgga	tcgttccact	ttttgtggca	ttttcaacca	tcggtgctgc	taacgggacc	960
tgcttcacag	cgggcagact	catttacgtg	gcgggccggg	agggtcacat	gctcaaagtg	1020
ctttcttaca	tcagcgtcag	gcgcctcact	ccagcccccg	ccatcatctt	ttatggtatc	1080
atagcaacga	tttatatcat	ccctggtgac	ataaactcgt	tagtcaatta	tttcagcttt	1140
gccgcatggc	tgttttatgg	cctgacgatt	ctaggactca	tcgtgatgag	atttacaagg	1200
aaagagctgg	aaaggcctat	caaggtgccc	gtagtcattc	ccgtcttgat	gacactcatc	1260
tctgtgtttt	tggttctggc	tccaatcatc	agcaagccca	cctgggagta	cctctactgt	1320
gtgctgttta	tattaagcgg	ccttttattt	tacttcctgt	ttgtccacta	caagtttgga	1380
tgggctcaga	aaatctcaaa	gccgattacc	atgcaccttc	agatgctaat	ggaagtggtc	1440
ccaccggagg	aagaccctga	g				1461

⟨210⟩ 44

<211> 1125

<212> DNA

<213> Homo sapiens

⟨400⟩ 44

atgaccccc agcccgcg acccccgat gggggctggg gctggtggt ggcggccgca 60° gccttcgcga taaacgggct gtcctacggg ctgctgcgct cgctgggcct tgccttccct 120 gaccttgccg agcactttga ccgaagcgcc caggacactg cgtggatcag cgccctggcc 180 ctggccgtgc agcaggagc cagcccgtg ggcagcgccc tgagcacgg ctggggggcc 240 cgccccgtgg tgatggttgg gggggtcctc gcctcgctgg gcttcgtctt ctcggetttc 300 gccagcggtc tgctgcatct ctacctcggc ctggggcctc tcgctggttt tggttgggcc 360 ctggtgttcg cccccgcct aggcaccctc tcgcgttact tctcccgccg tcgagtcttg 420

92 /307

gcggtggggc	tggcgctcac	cggcaacggg	gcctcctcgc	tgctcctggc	gcccgccttg	480
cagcttctcc	tcgatacttt	cggctggcgg	ggcgctctgc	tcctcctcgg	cgcgatcacc	540
ctccacctca	cccctgtgg	cgccctgctg	ctacccctgg	tccttcctgg	agaccccca	600
gccccaccgc	gtagtcccct	agctgccctc	ggcctgagtc	tgttcacacg	ccgggccttc	660
tcaatctttg	ctctaggcac	agccctggtt	gggggcgggt	acttcgttcc	ttacgtgcac	720
ttggctcccc	gctttagacc	ggggcctggg	gggatacgga	gcagcgctgg	tggtggccgt	780
ggctgcgatg	ggggatgcgg	gcgcccggct	ggtctgcggg	tggctggcag	accaaggctg	840
ggtgcccctc	ccgcggctgc	tggccgtatt	cggggctctg	actgggctgg	ggctgtgggt	900
ggtggggctg	gtgcccgtgg	tgggcggcga	agagagctgg	gggggtcccc	tgctggccgc	960
ggctgtggcc	tatgggctga	gcgcggggag	ttacgccccg	ctggttttcg	gtgtactccc	1020
cgggctggtg	ggcgtcggag	gtgtggtgca	ggccacaggg	ctggtgatga	tgctgatgag	1080
cctcgggggg	ctcctgggcc	ctccctgtc	aggcttccta	aggga .		1125

⟨210⟩ 45

⟨211⟩ 1050

<212> DNA

<213> Homo sapiens

<400> 45

93 / 307

aagatggtca	acttcccca	gaaaattgca	ggtgaactct	atggacctct	catgctggtc	480
ttcactctgg	ttgctatcct	actccatggg	atgaagacgt	ctgacactat	tatccgggag	540
ggcaccctga	tgggcacagc	cattggcacc	tgcttcggct	actggctggg	agtctcatcc	600
ttcatttact	tccttgccta	cctgtgcaac	gcccagatca	ccatgctgca	gatgttggca	660
ctgctgggct	atggcctctt	tgggcattgc	attgtcctgt	tcatcaccta	taatatccac	720
ctccacgccc	tcttctacct	cttctggctg	ttggtgggtg	gactgtccac	actgcgcatg	780
gtagcagtgt	tggtgtctcg	gaccgtgggc	cccacacagc	ggctgctcct	ctgtggcacc	840
ctggctgccc	tacacatgct	cttcctgctc	tatctgcatt	ttgcctacca	caaagtggta	900
gaggggatcc	tggacacact	ggagggcccc	aacatcccgc	ccatccagag	ggtccccaga	960
gacatccctg	ccatgctccc	tgctgctcgg	cttcccacca	ccgtcctcaa	cgccacagcc	1020
aaagctgttg	cggtgaccct	gcagtcacac				1050

<210> 46

<211> 2001

<212> DNA

<213> Homo sapiens

<400> 46

atgtcgtccc agccagcagg gaaccagacc tcccccgggg ccacagagga ctactcctat 60 ggcagctggt acatcgatga gccccagggg ggcgaggagc tccagccaga gggggaagtg 120 ccctcctgcc acaccagcat accacccggc ctgtaccacg cctgcctggc ctcgctgtca 180 atccttgtgc tgctgctcct ggccatgctg gtgaggcgcc gccagctctg gcctgactgt 240 gtgcgtggca ggcccggcct gcccagccct gtggatttct tggctggga caggccccgg 300 gcagtgcctg ctgctgttt catggtcctc ttgagetccc tgtgtttgct gctccccgac 360 gaggacgcat tgcccttcct gactctcgcc tcagcacca gccaagatgg gaaaactgag 420 gctccaagag gggcctggaa gatactggga ctgttctatt atgctgcct ctactaccct 480

ctggctgcct gtgccacggc tggccacaca gctgcacacc tgctcggcag cacgctgtcc	540
tgggcccacc ttggggtcca ggtctggcag agggcagagt gtccccaggt gcccaagatc	600
tacaagtact actooctgct ggcctccctg cotctcctgc tgggcctcgg attoctgagc	660
ctttggtacc ctgtgcagct ggtgagaagc ttcagccgta ggacaggagc aggctccaag	720
gggctgcaga gcagctactc tgaggaatat ctgaggaacc tcctttgcag gaagaagctg	780
ggaagcagct accacacctc caagcatggc ttcctgtcct gggcccgcgt ctgcttgaga	840
cactgcatct acactccaca gccaggattc catctcccgc tgaagctggt gctttcagct	900
acactgacag ggacggccat ttaccaggtg gccctgctgc tgctggtggg cgtggtaccc	960
actatccaga aggtgagggc aggggtcacc acggatgtct cctacctgct ggccggcttt	1020
ggaatcgtgc tctccgagga caagcaggag gtggtggagc tggtgaagca ccatctgtgg	1080
gctctggaag tgtgctacat ctcagccttg gtcttgtcct gcttactcac cttcctggtc	1140
ctgatgcgct cactggtgac acacaggacc aaccttcgag ctctgcaccg aggagctgcc	1200
ctggacttga gtcccttgca tcggagtccc catccctccc gccaagccat attctgttgg	1260
atgagettea gtgeetacea gaeageettt atetgeettg ggeteetggt geageagate	1320
atcttcttcc tgggaaccac ggccctggcc ttcctggtgc tcatgcctgt gctccatggc	1380
aggaacetee tgetetteeg tteeetggag teetegtgge cettetgget gaetttggee	1440
ctggctgtga tcctgcagaa catggcagcc cattgggtct tcctggagac tcatgatgga	1500
cacccacage tgaccaaccg gegagtgete tatgcageca cetttettet ettececete	1560
aatgtgctgg tgggtgccat ggtggccacc tggcgagtgc tcctctctgc cctctacaac	1620
gccatccacc ttggccagat ggacctcagc ctgctgccac cgagagccgc cactctcgac	1680
cccggctact acacgtaccg aaacttcttg aagattgaag tcagccagtc gcatccagcc	1740
atgacageet tetgeteect geteetgeaa gegeagagee teetaceeag gaccatggea	1800
gcccccagg acagcctcag accaggggag gaagacgaag ggatgcagct gctacagaca	1860
aaggacteca tggccaaggg agctaggeee ggggccagee geggeaggge tegetggggt	1920
ctggcctaca cgctgctgca caacccaacc ctgcaggtct tccgcaagac ggccctgttg	1980

PCT/JP00/05356

95 / 307

ggtgccaatg gtgcccagcc c

2001

<210> 47

⟨211⟩ 1392

<212> DNA

<213> Homo sapiens

<400> 47

60 atgattgtct gcctcctttt catgatgatt ttattggcaa aggaagttca actggtagac caaacagatt cacctttact tagtctcctt ggacagacaa gctcactttc atggcatctt 120 180 gtggatattg tgtcgtacca gagtgtgcta agttatttca gcagccatta cccgccgtcc atcatcctgg caaaagaatc ttatgctgaa ttaatcatga agctcctaaa agtgtctgcg 240 300 ggcctttcta ttcctactga cagccagaag catcttgatg cagttccaaa atgccaagct tttactcatc agatggttca attcctcagc accctggaac aaaatggaaa aatcacctta 360 420 gcagtcctag aacaggaaat gtctaagctc ttagacgata tcattgtctt taacccgccc 480 gacatggaca gccagacccg ccacatggcc ctcagcagcc tctttatgga agtcctgatg 540 atgatgaaca acgcgactat tccaacagca gagttccttc ggggcagtat ccggacctgg 600 attggccaaa aaatgcatgg gctggtggtg ctgccccttt taacagcagc ctgccagagc ctggcgtccg tccgccacat ggctgagact acagaagcct gcatcactgc ctacttcaaa 660 720 gaaagccctc tcaatcagaa ttcaggatgg ggacccattc tggtatccct tcaggttccc 780 gagctcacca tggaagagtt cctgcaggag tgcctcacct tgggcagtta cttgactctt 840 tacgtctact tgcttcagtg tttaaacagc gaacagactt taaggaatga aatgaaagtg 900 ctgctcatct taagcaagtg gctggaacag gtgtacccaa gctccgtgga ggaagaggca 960 aagctgtttt tgtggtggca ccaagtcctt cagctctccc tcattcagac agagcagaat gactccgtcc tgacagaatc tgtcattcga attctgctct tggttcagag caggcagaac 1020 1080 ctcgtggctg aggagagact cagctctggg atcctggggg caattgggtt tggccggaag

PCT/JP00/05356 WO 01/12660

96 / 307

tcgcctttgt	ctaacaggtt	ccgagtggtt	gcccgaagca	tggctgcctt	cctttcagtt	1140
caggttccta	tggaagatca	gatccgtttg	aggcctggct	ctgaattaca	tctgaccccc	1200
aaagctcagc	aggctctgaa	tgctcttgaa	tccatggcat	caagtaagca	gtatgttgaa	1260
taccaggatc	aaatattgca	agccacccaa	tttataaggc	atcctggcca	ttgccttcaa	1320
gatgggaaaa	gcttcttggc	tcttctcgtt	aactgtctgt	atccagaagt	gcattatttg	1380
gaccacatac	ga					1392

<210> 48

<211> 1410

<212> DNA

(213) Homo sapiens

<400> 48

atgtctagac tgggagccct gggtggtgcc cgtgccgggc tgggactgtt gctgggtacc 120 gccgccggcc ttggattcct gtgcctcctt tacagccagc gatggaaacg gacccagcgt catggccgca gccagagcct gcccaactcc ctggactata cgcagacttc agatcccgga 180 cgccacgtga tgctcctgcg ggctgtccca ggtggggctg gagatgcctc agtgctgccc 240 300 agccttccac gggaaggaca ggagaaggtg ctggaccgcc tggactttgt gctgaccagc cttgtggcgc tgcggcggga ggtggaggag ctgagaagca gcctgcgagg gcttgcgggg 360 420 gagattgttg gggaggtccg atgccacatg gaagagaacc agagagtggc tcggcgga 480 aggtttccgt ttgtccggga gaggagtgac tccactggct ccagctctgt ctacttcacg gcctcctcgg gagccacgtt cacagatgct gagagtgaag ggggttacac aacagccaat geggagtetg acaatgageg ggactetgae aaagaaagtg aggaegggga agatgaagtg agctgtgaga ctgtgaagat ggggagaaag gattctcttg acttggagga agaggcagct tcaggtgcct ccagtgccct ggaggctgga ggttcctcag gcttggagga tgtgctgccc ctcctgcagc aggccgacga gctgcacagg ggtgatgagc aaggcaagcg ggagggcttc

540

600

660

720

780

97 /307

ag	ctgctgc	tcaacaacaa	gctggtgtat	ggaagccggc	aggactttct	ctggcgcctg	840
zcç	cgagcct	acagtgacat	gtgtgagctc	actgaggagg	tgagcgagaa	gaagtcatat	900
gcc	ctagatg	gaaaagaaga	agcagaggct	gctctggaga	agggggatga	gagtgctgac	960
tgt	cacctgt	ggtatgcggt	gctttgtggt	cagctggctg	agcatgagag	catccagagg	1020
cgc	atccaga	gtggctttag	cttcaaggag	catgtggaca	aagccattgc	tctccagcca	1080
gaa	aacccca	tggctcactt	tcttcttggc	aggtggtgct	atcaggtctc	tcacctgagc	1140
tgg	ctagaaa	aaaaaactgc	tacagccttg	cttgaaagcc	ctctcagtgc	cactgtggaa	1200
gat	gccctcc	agagcttcct	aaaggctgaa	gaactacagc	caggattttc	caaagcagga	1260
agg	gtatata	tttccaagtg	ctacagagaa	ctagggaaaa	actctgaagc	tagatggtgg	1320
atg	gaagttgg	ccctggagct	gccagatgtc	acgaaggagg	atttggctat	ccagaaggac	1380
ctg	gaagaac	tggaagtcat	tttacgagac				1410

<210> 49

<211> 729

<212> DNA

<213> Homo sapiens

<400> 49

atggagcagg gcagcggccg cttggaggac ttccctgtca atgtgttctc cgtcactcct 60 120 tacacaccca gcaccgctga catccaggtg tccgatgatg acaaggcggg ggccaccttg 180 ctcttctcag gcatctttct gggactggtg gggatcacat tcactgtcat gggctggatc aaataccaag gtgtctccca ctttgaatgg acccagctcc ttgggcccgt cctgctgtca 240 300 gttggggtga cattcatcct gattgctgtg tgcaagttca aaatgctctc ctgccagttg 360 tgcaaagaaa gtgaggaaag ggtcccggac tcggaacaga caccaggagg accatcattt gttttcactg gcatcaacca acccatcacc ttccatgggg ccactgtggt gcagtacatc 420 480 cctcctcctt atggttctcc agagcctatg gggataaata ccagctacct gcagtctgtg

PCT/JP00/05356 WO 01/12660

98 / 307

60

720

780

810

gtgagcccct	gcggcctcat	aacctctgga	ggggcagcag	ccgccatgtc	aagtcctcct	540
caatactaca	ccatctaccc	tcaagaṭaac	tctgcatttg	tggttgatga	gggctgcctt	600
tctttcacgg	acggtggaaa	tcacaggccc	aatcctgatg	ttgaccagct	agaagagaca	660
cagctggaag	aggaggcctg	tgcctgcttc	tetectecce	cttatgaaga	aatatactct	720
ctccctcgc			•			729

<210> 50

⟨211⟩ 810

<212> DNA

<213> Homo sapiens

<400> 50

atggcgggcg ccgaggactg gccgggccag cagctggagc tggacgagga cgaggcgtct 120 tgttgccgct ggggcgcgca gcacgccggg gcccgcgagc tggctgcgct ctactcgcca ggcaagcgcc tccaggagtg gtgctctgtg atcctgtgct tcagcctcat cgcccacaac 180 ctggtccatc tcctgctgct ggcccgctgg gaggacacac ccctcgtcat actcggtgtt 240 300 gttgcagggg ctctcattgc tgacttcttg tctggcctgg tacactgggg tgctgacaca 360 tggggctctg tggagctgcc cattgtgggg aaggctttca tccgaccett ccgggagcac 420 cacattgacc caacagctat cacacggcac gacttcatcg agaccaacgg ggacaactgc 480 ctggtgacac tgctgccgct gctaaacatg gcctacaagt tccgcaccca cagccctgaa 540 gccctggagc agctataccc ctgggagtgc ttcgtcttct gcctgatcat cttcggcacc 600 ttcaccaacc agatccacaa gtggtcgcac acgtactttg ggctgccacg ctgggtcacc ctcctgcagg actggcatgt catcctgcca cgtaaacacc atcgcatcca ccacgtctca 660 ccccacgaga cctacttctg catcaccaca ggctggctca actaccctct ggagaagata ggcttctggc gacgcctgga ggacctcatc cagggcctga cgggcgagaa gcctcgggca gatgacatga aatgggccca gaagatcaaa

<210> 5 3	l														•	
<211> 1	551													•		
<212> DI	A															
<213> H	omo s	apie	ns													
<220>																
<221> C	DS															·
<222> (98)	. (12	31)													
<400> 5	1															
caagggg	aac g	tggc	tttc	c ct	gcag	agco	ggt	gtct	ccg	cctg	cgto	cc t	gctg	gcag	ca	60
accggag	ctg g	agto	ggat	c co	gaac	gcac	cct	cgcc	atg	gac	tcg	gco	cto	ag	С	115
									Met	. Asp	Ser	Ala	a Lei	ı Se	r	•
									1	l			ļ	5		
gat ccg	cat	aac	ggc	agt	gcc	gag	gca	ggc	ggc	ссс	acc	aac	agc	act		163
Asp Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	Gly	Pro	Thr	Asn	Ser	Thr	,	
		10					15					20				•
acg cgg	ccg	cct	tcc	acg	ccc	gag	ggc	atc	gcg	ctg	gcc	tac	ggc	agc	;	211
Thr Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile	Ala	Leu	Ala	Tyr	Gly	Ser	•	
	25					30			-		35					
ctc cts	ctc	atg	gcg	ctg	ctg	ccc	atc	ttc	ttc	ggc	gcc	ctg	cgc	tcc	;	259
Leu Le	ı Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe	Phe	Gly	Ala	Leu	Arg	Ser	•	
40)				45					50						
gta cg	c tgc	gcc	cgc	ggc	aag	aat	gct	tca	gac	atg	cct	gaa	aca	ato	3	307
Val Ar	g Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser	Asp	Met	Pro	Glu	Thr	· Ile	е	
55				60)				65	;				70	0 ,	

acc	agc	cgg	gat	gcc	gcc	cgc	ttc	ccc	atc	atc	gcc	agc	tgc	aca	ctc	355
Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	Ile	Ala	Ser	Cys	Thr	Leu	
				75					80				•	85		
ttg	ggg	ctc	tac	ctc	ttt	ttc	aaa	ata	ttc	tcc	cag	gag	tac	atc	aac	403
Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	Ser	Gln	Glu	Tyr	Ile	Asn	
			90					95					100		•	
ctc	ctg	ctg	tcc	atg	tat	ttc	ttc	gtg	ctg	gga	atc	ctg	gcc	ctg	tcc	451
Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	Gly	Ile	Leu	Ala	Leu	Ser	
		105					110					115				
cac	acc	atc	agc	ccc	ttc	atg	aat	aag	ttt	ttt	cca	gcc	agc	ttt	cca	499
His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	Phe	Pro	Ala	Ser	Phe	Pro	٠
	120				•	125					130	•	,			
aat	cga	cag	tac	cag	ctg	ctc	ttc	aca	cag	ggt	tct	ggg	gaa	aac	aag	547
Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	Gly	Ser	Gly	Glu	ı Asr	Lys	
135					140)				145					150	
gaa	gag	ato	ato	aat	tat	gaa	ttt	gac	acc	aag	gac	ctg	gtg	g tgo	ctg	595
Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	Lys	Asp	Leu	ı Val	L Cy:	s Leu	
				155	5				160)				16	5	
ggo	cte	ago	ago	ato	gti	t ggo	gto	tgg	g tac	ctg	cte	gagg	g aag	g ca	c tgg	643
Gly	Lei	ı Ser	Se1	r Ile	e Val	l Gly	/ Val	l Trị	Туг	Leu	ı Let	ı Arş	g Ly:	s Hi	s Trp	
			170)				179	5				18	0		
att	gc	aac	c aac	c ct	t tti	t gge	ct	g gc	c tto	c tco	c ct	t aa	t gg	a gt	a gag	691
Ile	Ala	a Ası	n Ası	n Lei	u Ph	e Gl	y Le	u Ala	a Pho	e Se	r Lei	u Ası	n G1	y Va	1 Glu	L
		18	5				19	0				19	5			
cto	ct	g ca	c ct	c aa	c aa	t gt	c ag	c ac	t gg	c tg	c at	c ct	g ct	g gg	c gga	739

Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	Cys	Ile	Leu	Leu	Gly	Gly	
	200					205				•	210					
ctc	ttc	atc	tac	gat	gtc	ttc	tgg	gta	ttt [']	ggc	acc	aat	gtg	atg	gtg	787
Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	Gly	Thr	Asn	Val	Met	Val	
215					220					225					230	
aca	gtg	gcc	aag	tcc	ttc	gag	gca	cca	ata	aaa	ttg	gtg	ttt	ccc	cag	835
Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	Gln	
				235					240					245		
gat	ctg	ctg	gag	aaa	ggc	ctc	gaa	gca	aac	aac	ttt	gcc	atg	ctg	gga	883
Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	
			250					255					260			
ctt	gga	gat	gtc	gtc	att	cca	ggg	atc	ttc	att	gcc	ttg	ctg	ctg	cgc	931
Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	
		265	;				270	1				275	,			
ttt	gao	ato	agc	ttg	aag	aag	aat	acc	cac	acc	tac	ttc	tac	acc	agc	979
Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Туг	Thr	Ser	
	280)				285	i				290)				
ttt	gca	a gco	tac	ato	ttc	ggc	ctg	ggc	ctt	acc	ato	tto	ato	ate	g cac	1027
Phe	Ala	a Ala	a Tyr	Ile	Phe	Gly	Leu	Gly	Leu	Thr	Ile	Phe	e Ile	e Met	His	
295	;				300)				305	5				310	
ato	: tte	c aag	g cat	gct	cag	g cct	gco	cto	cta	tac	ct	ggto	ccc	c gc	c tgc	1075
Ιle	e Ph	e Ly:	s His	s Ala	a Glr	n Pro	Ala	a Leu	ı Leu	Туз	Le	ı Val	l Pro	o Ala	a Cys	
				319	5				320)				32	5	
ato	gg	t tt	t cc1	t gt	c cti	g gtg	g gcı	g ct	g gcc	aag	g gg	a ga	a gt	gac	a gag	1123
Ile	e Gl	v Ph	e Pro	ya.	l Lei	u Vai	l Ala	a Lei	u Ala	a Lys	s Gl	y Gl	u Va	l Th	r Glu	l

102/307

	330	335	340	
atg ttc agt	tat gag gag t	ca aat cct aag g	at cea geg gea gtg ace	1171
Met Phe Ser	Tyr Glu Glu S	er Asn Pro Lys A	sp Pro Ala Ala Val Thi	r
345		350	355	
gaa tcc aaa	gag gga aca g	ag gca tca gca t	cg aag ggg ctg gag aa	g 1219
Glu Ser Lys	Glu Gly Thr G	lu Ala Ser Ala S	er Lys Gly Leu Glu Ly	s
360	3	65	370	
aaa gag aaa	tg atgcagctgg	tgcccgagcc tctc	agggcc agaccagaca	1270
Lys Glu Lys	;			
375				
gatgggggct	gggcccacac agg	gogtgoac oggtagag	ggg cacaggaggc caagggc	agc 1330
tccaggacag	ggcagggggc ago	caggatac ctccagco	cag gcctctgtgg cctctgt	ttc 1390
cttctccctt	tcttggccct cc	tetgetee teeceaca	acc ctgcaggcaa aagaaac	ccc 1450
cagcttcccc	cctcccggg age	ccaggtgg gaaaagt	ggg tgtgattttt agatttt	gta 1510
ttgtggactg	attttgcctc ac	attaaaaa ctcatcc	cat g	1551
	•			

<210> 52

⟨211⟩ 1713

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (89)...(334)

<400> 52

tctcagcgcg ctgcccggct ggggacccgc gcacctgcag cgcccgctgc tcggccctgc

atcetgeetg ggeateetge geeeggee atg acg geg cae tea tte gee etc	112
Met Thr Ala His Ser Phe Ala Leu	
1 5	
ccg gtc atc atc ttc acc acg ttc tgg ggc ctc gtc ggc atc gcc ggg	160
Pro Val Ile Ile Phe Thr Thr Phe Trp Gly Leu Val Gly Ile Ala Gly	
10 15 20	
ccc tgg ttc gtg ccg aag gga ccc aac cgc gga gtg atc atc acc atg	208
Pro Trp Phe Val Pro Lys Gly Pro Asn Arg Gly Val Ile Ile Thr Met	
25 30 35 40	
ctg gtc gcc acc gcc gtc tgc tgt tac ctc ttc tgg ctc atc gcc atc	256
Leu Val Ala Thr Ala Val Cys Cys Tyr Leu Phe Trp Leu Ile Ala Ile	
45 50 55	
ctg gcg cag ctg aac ccc ctg ttc ggg ccc cag ctg aag aat gag acc	304
Leu Ala Gln Leu Asn Pro Leu Phe Gly Pro Gln Leu Lys Asn Glu Thr	
60 65 70	
atc tgg tac gtg cgc ttc ctg tgg gag tgacccgcc gcccccgacc	350
Ile Trp Tyr Val Arg Phe Leu Trp Glu	
75 80	
caggtgccca gctctcggaa tgactgtggc tccactgtcc ctgacaaccc cttcgtccgg	410
accetecce acacaactat gtetggteac cagetecete etgetggeac ceagagacce	470
ggacccgcag ggcctgcctg gttcctggaa gtcttcccag tcttcccagc cagcccgggc	530
cctggggagc cctgggcaca gcagcggccg aggggatgtc ctgctccaat acccgcactg	590
ctctggagtt tgccctcttt cccaaggaga tgctgctggg gagctggtat gggtggggtc	650
tttcccttta cagacggggc agatgccagg actcagccca tcctgaggag gacacgtgtc	710
ctcatggaga gggtgctccg gcccaggcgg gggagtcagt gcccagtcag cagctctgcc	770

104/307

accatcctgc	tgggaactgg	gggggcctct	attgggttat	aggcaaggcc	ttttctctgg	830
catggaattg	ttaattttct	gacacgtcta	gatgtgaaat	ttctgaaaat	gttgaagcag	890
agaaacattc	acacacaaaa	agcaacatag	tcatgtgggt	ccagatggcc	tcagtcctag	950
atgttggcac	cctttgctgt	gtctcctcag	agtatcctgt	tccgcctcct	gccacctgga	1010
cctccctcag	tggatgtctt	ccctccccg	acccagcct	gtcagtccga	gcacagtgca	1070
ggtttggctc	tgacttgggc	ttttggctgc	agtgggggtg	gatttcagag	cctctcatgg	1130
cagcatctaa	gtgaccagag	ctgggatgag	agagggaag	gggcaatgtg	agtggcgcta	1190
tgggacgggc	cagccctgct	cctgagccag	cccgccctc	tgcccctgg	ccctgggctc	1250
tgtgctaggg	atggtgaaga	atgggggcgt	gccagcctgg	caggagtggg	aagcaacacg	1310
caggggtccc	ggacctctcc	agccttgccc	tcacgcttac	ccgagctccc	agtgtggtta	1370
gcacagagct	cacccacctt	gcctggctcc	cagctggggc	ctgtcctcac	tggtgctcca	1430
ggggaagaaa	cgacagcctc	acttctgtat	ggactgctga	tgtggcctgc	catcctgttc	1490
agcgggcatt	gtctttggag	cagcaggaga	ataggatgcc	tetcactcac	atgccagttc	1550
ctggctggcc	agctgctcag	ggctcaggct	ggggcctccc	attgacatcc	tcccctaca	1610
ctccctctct	gagcctccgt	cgccctcct	gttgggtaag	ggtgttgagt	gtgacttgtg	1670
ctgaaaacct	ggttcatata	taataaataa	tggtgatgaa	aag		1713

⟨210⟩ 53

<211> 1758

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (190)...(1653)

<400> 53

tttctagggt tggaccgtgc aggcacgggc ggtcagctgg gccgcagctc ctccggctct	60
gcagggtcac ggaggaagcc agctccccta gtccaggccg agcttgcact tgcgtcttgt	120
ctgctgctgc tgaaccaaga tttagctgtg cgccctcctt gcagtctcct ggaaccagca	180
ggaggaaac atg ggg gat act ggc ctg aga aag cgg aga gag gat gag	228
Met Gly Asp Thr Gly Leu Arg Lys Arg Arg Glu Asp Glu	
1 5 10	
aag tog ato cag ago caa gag oot aag aco aco agt oto caa aag gag	276
Lys Ser Ile Gln Ser Gln Glu Pro Lys Thr Thr Ser Leu Gln Lys Glu	
15 20 25	
ctg ggc ctc atc agt ggc atc tcc atc atc gtg ggc acc atc att ggc	324
Leu Gly Leu Ile Ser Gly Ile Ser Ile Ile Val Gly Thr Ile Ile Gly	
30 35 40 45	
tct ggg atc ttc gtt tcc ccc aag tct gtg ctc agc aac acg gaa gct	372
Ser Gly Ile Phe Val Ser Pro Lys Ser Val Leu Ser Asn Thr Glu Ala	
50 55 60	
gtg ggg ccc tgc ctc atc ata tgg gcg gct tgc ggg gtc ctc gcg acg	420
Val Gly Pro Cys Leu Ile Ile Trp Ala Ala Cys Gly Val Leu Ala Thr	
65 70 75	
ctg ggt gcc ctg tgc ttt gcg gag ctt ggc aca atg atc acc aag tca	468
Leu Gly Ala Leu Cys Phe Ala Glu Leu Gly Thr Met Ile Thr Lys Ser	
80 85 90	
ggg gga gag tat ccc tac ctg atg gag gcc tac ggg ccc atc ccc gcc	516
Gly Gly Glu Tyr Pro Tyr Leu Met Glu Ala Tyr Gly Pro Ile Pro Ala	
95 100 105	
tac ctc ttc tcc tgg gcc agc ctg atc gtc att aag ccc acg tcc ttc	564

Tyr	Leu	Phe	Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe	
110					115					120					125	
gcc	atc	atc	tgc	ctc	agc	ttc	tcc	gag	tat	gtg	tgt	gcg	ccc	ttc	tat	612
Ala	Ile	Ile	Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr	
				130					135					140		
gtg	ggc	tgc	aag	cct	cct	caa	atc	gtt	gtg	aaa	tgc	ctg	gcc	gcc	gcc	660
Val	Gly	Cys	Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	
			145					150					155			
gcc	atc	ttg	ttc	atc	tcg	aca	gtg	aac	tca	ctg	agc	gtg	cgg	ctg	gga	708
Ala	Ile	Leu	Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	
		160					165					170				
agc	tac	gtc	cag	aac	atc	ttc	acc	gcg	gcc	aag	ctg	gtg	atc	gtg	gcc	756
Ser	Tyr	Val	Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	
	175					180					185					
atc	atc	atc	atc	agc	ggg	ctg	gtg	ctc	ctg	gcc	caa	gga	aac	aca	aag	804
Ile	Ile	Ile	Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	
190					195					200					205	
aat	ttt	gat	aat	tct	ttc	gag	ggc	.gcc	cag	ctg	tct	gtg	gga	gco	atc	852
Asn	Phe	Asp	Asn	Ser	Phe	Ģlu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	
				210)				215					220)	
ago	ctg	gcg	ttt	tac	aat	gga	ctc	tgg	gcc	tat	gat	gga	tgg	g aat	caa	900
Ser	Leu	Ala	Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	· Asp	Gly	Tr	Ası	ı Gln	
			225	,				230	ı				235	5		
cto	aat	tac	ato	aca	gaa	gaa	ctt	aga	aac	cct	tac	aga	aad	ct	g cct	948
Leu	Asr	ı Tyr	· Ile	Thi	- Glu	ı Glu	Leu	Arg	Asn	Pro	Ty	. Ar	, Ası	n Lei	ı Pro	

		240					245					250				
ttg	gcc	att	atc	atc	ggg	atc	ccc	ctg	gtg	acg	gcg	tgc	tac	atc	ctc	996
Leu	Ala	Ile	lle	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	
	255					260					265					
atg	aac	gtg	tcc	tac	ttc	acc	gtg	atg	act	gcc	acc	gaa	ctc	ctg	cag	1044
Met	Asn	Val	Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	G1u	Leu	Leu	Gln	
270					275					280					285	
tcc	cag	gcg	gtg	gct	gtg	aca	ttt	ggt	gac	cgt	gtt	ctc	tat	cct	gct	1092
Ser	Gln	Ala	Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	
				290					295					300		
tct	tgg	atc	gtt	сса	ctt	ttt	gtg	gca	ttt	tca	acc	atc	ggt	gct	gct	1140
Ser	Trp	Ile	Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	
			305					310					315			
aac	ggg	acc	tgc	ttc	aca	gcg	ggc	aga	ctc	att	tac	gtg	gcg	ggc	cgg	1188
Asn	Gly	Thr	Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	
		320					325					330				
gag	ggt	cac	atg	ctc	aaa	gtg	ctt	tct	tac	atc	agc	gtc	agg	cgc	ctc	1236
Glu	Gly	His	Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	
•	335					340				•	345					
act	cca	gcc	ccc	gcc	atc	atc	ttt	tat	ggt	atc	ata	gca	acg	att	tat	1284
Thr	Pro	Ala	Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	
350)				355					360					365	
ato	ato	cct	ggt	gac	ata	aac	tcg	tta	gtc	aat	tat	ttc	agc	ttt	gcc	1332
Ile	Ile	Pro	Gly	Asp	Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	
				370)				375	;				380)	

108/307

gca	tgg	ctg	ttt	tat	ggc	ctg	acg	att	cta	gga	ctc	atc	gtg	atg	aga	1380
Ala	Trp	Leu	Phe	Tyr	Gly	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	
			385					390					395			
ttt	aca	agg	aaa	gag	ctg	gaa	agg	cct	atc	aag	gtg	ccc	gta	gtc	att	1428
Phe	Thr	Arg	Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	
		400					405					410				
ccc	gtc	ttg	atg	aca	ctc	atc	tct	gtg	ttt	ttg	ġtt	ctg	gct	cca	atc	1476
Pro	Val	Leu	Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	
	415					420					425					
atc	agc	aag	ссс	acc	tgg	gag	tac	ctc	tac	tgt	gtg	ctg	ttt	ata	tta	. 1524
Ile	Ser	Lys	Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	
430					435					440					445	
agc	ggc	ctt	tta	ttt	tac	ttc	ctg	ttt	gtc	cac	tac	aag	ttt	gga	tgg	1572
Ser	Gly	Leu	Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	
				450					455					460		
gct	cag	aaa	atc	tca	aag	ccg	att	acc	atg	cac	ctt	cag	atg	cta	atg	1620
Ala	Gln	Lys	Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	
			465					470					475			
gaa	gtg	gtc	cca	ccg	gag	gaa	gac	cct	gag	taac	caago	ctc o	egtet	tcttg	gt	1670
Glu	Val	Val	Pro	Pro	Glu	Glu	Asp	Pro	Glu							
		480					485									
agco	aagt	tca g	gctga	atti	ta tt	ttct	taag	g caa	itati	tgt	ggti	tatti	tct 1	tccti	ttttt	1730
ctta	acgaa	ata a	aaata	ataci	tc ag	gatgt	tt									1758

⟨210⟩ 54

<211> 1550	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (154)(1281)	
· <400> 54	
ctctgtttac cgagagagcc cgtccaagtt gggctccatc gctgccctcg ctccccttcg	60
gggcctccgc ccgcctggga agcagagaga aagccgggcc cagcccttcc tcacccttcc	120
cctccccgca ccgcccggag aggtcggacg gcg atg acc ccc cag ccc gcc gga	174
Met Thr Pro Gln Pro Ala Gly	
1 5	
ccc ccg gat ggg ggc tgg ggc tgg gtg gtg gcg gcc gca gcc ttc gcg	222
Pro Pro Asp Gly Gly Trp Gly Trp Val Val Ala Ala Ala Ala Phe Ala	
10 15 20	
ata aac ggg ctg tcc tac ggg ctg ctg cgc tcg ctg ggc ctt gcc ttc	270
Ile Asn Gly Leu Ser Tyr Gly Leu Leu Arg Ser Leu Gly Leu Ala Phe	
25 30 35	
cct gac ctt gcc gag cac ttt gac cga agc gcc cag gac act gcg tgg	.318
Pro Asp Leu Ala Glu His Phe Asp Arg Ser Ala Gln Asp Thr Ala Trp	
40 45 50 55	
atc agc gcc ctg gcc ctg gcc gtg cag cag gca gcc agc ccc gtg ggc	366
Ile Ser Ala Leu Ala Leu Ala Val Gln Gln Ala Ala Ser Pro Val Gly	
60 65 70	
age gee etg age acg ege tgg ggg gee ege eee gtg gtg atg gtt ggg	414

Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala	Arg	Pro	Val	Val	Met	Val	Gly	
			75					80			•		85			
ggc	gtc	ctc	gcc	tcg	ctg	ggc	ttc	gtc	ttc	tcg	gct	ttc	gcc	agc	ggt	462
Gly	Val	Leų	Ala	Ser	Leu	Gly	Phe	Val	Phe	Ser	Ala	Phe	Ala	Ser	Gly	
		90					95					100				
ctg	ctg	cat	ctc	tac	ctc	ggc	ctg	ggc	ctc	ctc	gct	ggc	ttt	ggt	tgg	510
Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Phe	Gly	Trp	
	105					110					115					
gcc	ctg	gtg	ttc	gcc	ccc	gcc	cta	ggc	acc	ctc	tcg	cgt	tac	ttc	tcc	558
Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly	Thr	Leu	Ser	Arg	Tyr	Phe	Ser	
120					125					130					135	
cgc	cgt	cga	gtc	ttg	gcg	gtg	ggg	ctg	gcg	ctc	acc	ggc	aac	ggg	gcc	606
Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu	Ala	Leu	Thr	Gly	Asn	Gly	Ala	
				140					145					150		
tcc	tcg	ctg	ctc	ctg	gcg	ссс	gcc	ttg	cag	ctt	ctc	ctc	gat	act	ttc	654
Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu	Gln	Leu	Leu	Leu	Asp	Thr	Phe	
			155					160					165			
ggo	tgg	cgg	ggc	gct	ctg	ctc	ctc	ctc	ggc	gcg	atc	acc	ctc	cac	ctc	702
Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu	Gly	Ala	Ile	Thr	Leu	His	Leu	
	÷	170					175					180				
acc	ccc	tgt	ggc	gcc	ctg	ctg	cta	ccc	ctg	gtc	ctt	cct	gga	gac	ccc	750
Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro	Leu	Val	Leu	Pro	Gly	Asp	Pro	
	185	i				190					195			•		
cca	gcc	cca	ccg	cgt	agt	ccc	cta	gct	gcc	ctc	ggc	ctg	agt	ctg	ttc	798
Pro	Δla	Pro	Pro	Aro	Ser	Pro	Leu	Ala	Ala	Leu	Glv	Leu	Ser	Leu	Phe	

200					205					210					215	
aca	cgc	cgg	gcc	ttc	tca	atc	ttt	gct	cta	ggc	aca	gcc	ctg	gtt	ggg	846
Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala	Leu	Gly	Thr	Ala	Leu	Val	Gly	
				220					225					230		
ggc	ggg	tac	ttc	gtt	cct	tac	gtg	cac	ttg	gct	ccc	cgc	ttt	aga	ccg	894
Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His	Leu	Ala	Pro	Arg	Phe	Arg	Pro	
			235					240					245			
ggg	cct	ggg	ggg	ata	cgg	agc	agc	gct	ggt	ggt	ggc	cgt	ggc	tgc	gat	942
Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Cys	Asp	
		250					255					260				
ggg	gga	tgc	ggg	cgc	ccg	gct	ggt	ctg	cgg	gtg	gct	ggc	aga	cca	agg	990
Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu	Arg	Val	Ala	Gly	Arg	Pro	Arg	·· .
	265					270					275					
ctg	ggt	gcc	cct	ссс	gcg	gct	gct	ggc	cgt	att	cgg	ggc	tct	gac	tgg	1038
Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly	Arg	Ile	Arg	Gly	Ser	Asp	Trp	
280					285					290					295	
gct	ggg	gct	gtg	ggt	ggt	ggg	gct	ggt	gcc	cgt	ggt	ggg	cgg	cga	aga	1086
Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly	Ala	Arg	Gly	Gly	Arg	Arg	Arg	
				300					305					310		
gag	ctg	ggg	ggg	tcc	cct	gct	ggc	cgc	ggc	tgt	ggc	cta	tgg	gct	gag	1134
Glu	Leu	Gly	Gly	Ser	Pro	Ala	G1 y	Arg	Gly	Cys	Gly	Leu	Trp	Ala	Glu	
			315					320					325			
cgc	ggg	gag	tta	cgc	ccc	gct	ggt	ttt	cgg	tgt	act	ccc	cgg	gct	ggt	1182
Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe	Arg	Cys	Thr	Pro	Arg	Ala	Gly	
		330					335					340				

112/307

ggg cgt cgg agg tgt ggt gca ggc cac agg gct ggt gat gat gct gat	1230
Gly Arg Arg Cys Gly Ala Gly His Arg Ala Gly Asp Asp Ala Asp	
345 350 355	
gag cct cgg ggg gct cct ggg ccc tcc cct gtc agg ctt cct aag gga	1278
Glu Pro Arg Gly Ala Pro Gly Pro Ser Pro Val Arg Leu Pro Lys Gly	
360 365 370 375	
tg agacaggaga cttcaccgcc tctttcctcc tgtctggttc tttgatcctc	1330
tccggcagct tcatctacat agggttgccc agggcgctgc cctcctgtgg tccagcctcc	1390
cctccagcca cgcctccccc agagacgggg gagctgcttc ccgctcccca ggcagtcttg	1450
ctgtccccag gaggccctgg ctccactctg gacaccactt gttgattatt ttcttgtttg	1510
agcccctccc ccaataaaga atttttatcg ggttttcctg	1550
<210> 55	
⟨211⟩ 1485	
<212> DNA	
<213> Homo sapiens	
<220>	

<221> CDS

⟨222⟩ (101)...(1153)

⟨400⟩ 55

cteteetega eeetggaegt etacetteeg gaggeecaca tettgeecac teegegegegegeggggetagege gggttteage gaegggagee eteaagggae atg gea act aca geg 115

Met Ala Thr Thr Ala

1

gcg ccg gcg ggc gcc cga aat gga gct ggc ccg gaa tgg gga ggg 163

Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly	Pro	Glu	Trp	Gly	Gly	
				10					15					20		
ttc	gaa	gaa	aac	atc	cag	ggc	gga	ggc	tca	gct	gtg	att	gac	atg	gag	211
Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala	Val	Ile	Asp	Met	Glu	
			25					30					35			
аас	atg	gat	gat	acc	tca	ggc	tct	agc	ttc	gag	gat	atg	ggt	gag	ctg	259
Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu	Asp	Met	Gly	Glu	Leu	
		40					45					50				
cat	cag	cgc	ctg	cgc	gag	gaa	gaa	gta	gac	gct	gat	gca	gct	gat	gca	307
His	Gln	Arg.	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala	Asp	Ala	Ala	Asp	Ala	
	55					60					65					
gct	gct	gct	gaa	gag	gag	gat	gga	gag	ttc	ctg	ggc	atg	aag	ggc	ttt	355
Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu	Gly	Met	Lys	Gly	Phe	
70					75					80					85	
aag	gga	cag	ctg	agc	cgg	cag	gtg	gca	gat	cag	atg	tgg	cag	gct	ggg	403
Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln	Met	Trp	Gln	Ala	Gly	
				90					95					100		
aaa	aga	caa	gcc	tcc	agg	gcc	ttc	agc	ttg	tac	gcc	aac	atc	gac	atc	451
Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr	Ala	Asn	Ile	Asp	Ile	
			105					110					115	i		
ctc	aga	ccc	tac	ttt	gat	gtg	gag	cct	gct	cag	gtg	cga	agc	agg	ctc	499
Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln	Val	Arg	Ser	Arg	Leu	
		120		•			125					130)			
ctg	gag	tcc	atg	atc	cct	atc	aag	atg	gtc	aac	ttc	ccc	cag	g aaa	att	54
Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn	Phe	Pro	Glr	ı Lys	Ile	

	135					140					145					
gca	ggt	gaa	ctc	tat	gga	cct	ctc	atg	ctg	gtc	ttc	act	ctg	gtt	gct	595
Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val	Phe	Thr	Leu	Val	Ala	
150					155					160					165	
atc	cta	ctc	cat	ggg	atg	aag	acg	tct	gac	act	att	atc	cgg	gag	ggc	643
Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr	Ile	Ile	Arg	Glu	Gly	
				170					175					180		
acc	ctg	atg	ggc	aca	gcc	att	ggc	acc	tgc	ttc	ggc	tac	tgg	ctg	gga	691
Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	Gly	Tyr	Trp	Leu	Gly	
			185					190					195			
gtc	tca	tcc	ttc	att	tac	ttc	ctt	gcc	tac	ctg	tgc	aac	gcc	cag	atc	739
Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Ĺeu	Cys	Asn	Ala	Gln	Ile	
		200					205	,				210				
acc	atg	ctg	cag	atg	ttg	gca	ctg	ctg	ggc	tat	ggc	ctc	ttt	ggg	cat	787
Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr	Gly	Leu	Phe	Gly	His	
	215	i				220)				225	•				
tgc	att	gto	ctg	ttc	atc	acc	tat	aat	atc	cac	ctc	cac	gco	cto	ttc	835
Cys	Ile	Val	Leu	Phe	Ile	Thr	Туз	. Asn	Ile	His	Leu	His	Ala	a Leu	Phe	
230					235	i				240)				245	-
tac	cto	tto	tgg:	ctg	g ttg	gtg	g gg1	t gga	ctg	tcc	aca	cte	g cg	c atg	ggta	883
Tyr	Leu	Phe	Trp	Leu	ı Leu	Va1	G1;	y Gly	Leu	Ser	Thi	Leu	ı Ar	g Met	: Val	
				250)				255	5				260)	
gca	gtg	g ttg	g gte	tc1	t cgg	g acc	c gt	g gg	ccc	aca	a cag	g cgs	g ct	g ct	ctc	931
Ala	Va:	l Lei	u Va]	l Se	r Arg	g Thi	r Va	1 G1;	y Pro	Th	r Glı	n Arı	g Le	u Le	ı Leu	
			269	5				27	0				27	5		

115/307

tgt	ggc	acc	ctg	gct	gcc	cta	cac	atg	ctc	ttc	ctg	ctc	tat	ctg	cat	979
Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Meţ	Leu	Phe	Leu	Leu	Tyr	Leu	His	
		280					285					290				
ttt	gcc	tac	cac	aaa	gtg	gta	gag	ggg	atc	ctg	gac	aca	ctg	gag	ggc	1027
Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu	Asp	Thr	Leu	Glu	Gly	
	295					300					305					
ccc	aac	atc	ccg	ссс	atc	cag	agg	gtc	ссс	aga	gac	atc	cct	gcc	atg	1075
Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg	Asp	Ile	Pro	Ala	Met	
310					315					320					325	
ctc	cct	gct	gct	cgg	ctt	ccc	acc	acc	gtc	ctc	aac	gcc	aca	gcc	aaa	1123
Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu	Asn	Ala	Thr	Ala	Lys	
				330	•				335					340		٠
gct	gtt	gcg	gtg	acc	ctg	cag	tca	cac	tga	ccca	acc 1	tgaa	attc	tt		1170
Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His								
			345			,		350				÷				
ggc	cagt	cct	cttt	cccg	ca g	ctgc	agag	a gg:	agga	agac	tat	taaa	gga	cagt	cctgat	1230
gac	atgt	ttc	gtag	atgg	gg t	ttgc	agct	g cc	actg	agct	gta	gctg	cgt :	aagta	acctcc	1290
ttg	atgc	ctg	tcgg	cact	tc t	gaaa	ggca	c aa	ggcc	aaga	act	cctg	gcc	agga	ctgcaa	1350
ggc	tctg	cag	ccaa	tgca	ga a	aatg	ggtc	a gc	tcct	ttga	gaa	cccc	tcc	ccac	ctaccc	1410
ctt	cctt	cct	cttt	atct	ct c	ccac	attg	t.ct	tgct	aaat	ata	gact	tgg	taat	taaaat	1470
gtt	gatt	gaa	gtct	g											•	1485

<210> 56

<211> 2694

<212> DNA

<213	> Ho	mo s	apie	ns												
<220	>															
<221	> CD	S														
<222	> (8	0)	. (20	83)												
<400	> 56	,														
gtag	acto	tg c	ggat	cccg	a ga	ccag	cgcc	act	cato	ctg	cago	acte	gg 8	acag	gacag	ra 60
gcag	gaga	ag g	gcca	gaga	atg	tcg	tcc	cag	cca	gca	ggg	aac	cag	aco	tcc	112
					Met	Ser	Ser	Gln	Pro	Ala	Gly	Asr	Glr	Thi	Ser	
					1				٤	5				10)	
ccc	ggg	gcc	aca	gag	gac	tac	tcc	tat	ggc	agc	tgg	tac	atc	gat	gag	160
Pro	Gly	Ala	Thr	Glu	Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	
			15					20					25	•		
ссс	cag	ggg	ggc	gag	gag	ctc	cag	cca	gag	ggg	gaa	gtg	ссс	tc¢	tgc	208
Pro	Gln	Gly	Gly	Glu	Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	
		30					35					40				
cac	acc	agc	ata	cca	ccc	ggc	ctg	tac	cac	gcc	tgc	ctg	gcc	tcg	ctg	256
His	Thr	Ser	Ile	Pro	Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	
	45					50					55					
tca	atc	ctt	gtg	ctg	ctg	ctc	ctg	gcc	atg	ctg	gtg	agg	cgc	cgc	cag	304
Ser	Ile	Leu	Val	Leu	Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	
60					65					70					75	
ctc	tgg	cct	gac	tgt	gtg	cgt	ggc	agg	ccc	ggc	ctg	ccc	agc	cct	gtg	352
Leu	Trp	Pro	Asp	Cys	Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	
				80					85					90)	
gat	ttc	ttg	gct	ggg	gac	agg	ccc	cgg	gca	gtg	cct	gct	gct	gtt	ttc	400

Asp	Phe	Leu	Ala	Gly	Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Val	Phe	
			95					100					105			
atg	gtc	ċtc	ttg	agc	tcc	ctg	tgt	ttg	ctg	ctc	ccc	gac	gag	gac	gca	448
Met	Val	Leu	Leu	Ser	Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	
		110					115					120				
ttg	ccc	ttc	ctg	act	ctc	gcc	tca	gca	ccc	agc	caa	gat	ggg	aaa	act	496.
Leu	Pro	Phe	Leu	Thr	Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	
	125					130					135					
gag	gct	cca	aga	ggg	gcc	tgg	aag	ata	ctg	gga	ctg	ttc	tat	tat	gct	544
Glu	Ala	Pro	Arg	Gly	Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	
140					145		•			150					155	
gcc	cto	tac	tac	cct	ctg	gct	gcc	tgt	gcc	acg	gct	ggc	cac	aca	gct	592
Ala	Leu	ı Tyr	Tyr	Pro	Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	, His	Thr	Ala	
				160)				165					170)	
gca	cac	cte	g cto	ggc	ago	acg	ctg	tcc	tgg	gco	cac	ct1	t ggg	ggto	cag	640
Ala	His	s Leu	ı Let	ı Gly	, Sei	Thr	Leu	Ser	Trp	Ala	His	s Lei	u Gly	/ Val	Gln	
			179	5				180)			٠	18	5		
gto	tg:	g ca	g ag	g gca	a gag	g tgt	ccc	cag	g gte	cco	. aa	g at	c ta	c aag	g tac	688
															s Tyr	
		19					198					20				
tac	e tc	c ct	g ct	g gc	c tc	c cte	cc1	t cto	c ct	g ct	g gg	c ct	c gg	a tt	c ctg	736
															e Leu	
·	20					210					21					
ag			g ta	c cc	t gt	g ca	g ct	g gt	g ag	a ag	c tt	c ag	gc cg	t ag	g aca	a 784
															g Thi	

220					225					230					235	
gga	gca	ggc	tcc	aag	ggg	ctg	cag	agc	agc	tac	tct	gag	gaa	tat	ctg	. 832
Gly	Ala	Gly	Ser	Lys	Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	
				240					245					250		
agg	аас	ctc	ctt	tgc	agg	aag	aag	ctg	gga	agc	agc	tac	сас	acc	tcc	880
Arg	Asn	Leu	Leu	Cys	Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	
			255					260					265			
aag	cat	ggc	ttc	ctg	tcc	tgg	gcc	cgc	gtc	tgc	ttg	aga	cac	tgc	atc	928
Lys	His	Gly	Phe	Leu	Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	
		270					275					280				
tac	act	сса	cag	cca	gga	ttc	cat	ctc	ccg	ctg	aag	ctg	gtg	ctt	tca	976
Tyr	Thr	Pro	Gln	Pro	Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	
	285					290					295					
gct	aca	ctg	aca	ggg	acg	gcc	att	tac	cag	gtg	gcc	ctg	ctg	ctg	ctg	1024
Ala	Thr	Leu	Thr	Gly	Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	
300					305					310					315	
gtg	ggc	gtg	gta	ccc	act	atc	cag	aag	gtg	agg	gca	ggg	gtc	acc	acg	1072
Val	Gly	Val	Val	Pro	Thr	Ile	Gln	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	
				320		-			325					330		
gat	gtc	tcc	tac	ctg	ctg	gcc	ggc	ttt	gga	atc	gtg	ctc	tcc	gag	gac	1120
Asp	Val	Ser	Tyr	Leu	Leu	Ala	Gly	Phe	Gly	Ile	Val	Leu	Ser	Glu	Asp	
			335					340					345	•		
aag	cag	gag	gtg	gtg	gag	ctg	gtg	aag	cac	cat	ctg	tgg	gct	ctg	gaa	1168
Lys	Gln	Glu	Val	Val	Glu	Leu	Val	Lys	His	His	Leu	Trp	Ala	Leu	Glu	
		350)				355	;				360)			

gtg	tgc	tac	atc	tca	gcc	ttg	gtc	ttg	tcc	tgc	tta	ctc	acc	ttc	ctg	1216
Val	Cys	Tyr	Ile	Ser	Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr.	Phe	Leu	
	365		٠			370					375		٠		•	
gtc	ctg	atg	cgc	tca	ctg	gtg	aca	cac	agg	acc	aac	ctt	cga	gct	ctg	1264
Val	Leu	Met	Arg	Ser	Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	
380					385					390					395	
cac	cga	gga	gct	gcc	ctg	gac	ttg	agt	ccc	ttg	cat	cgg	agt	ccc	cat	1312
His	Arg	Gly	Ala	Ala	Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	
				400					405					410		
ccc	tcc	cgc	caa	gcc	ata	ttc	tgt	tgg	atg	agc	ttc	agt	gcc	tac	cag	1360
Pro	Ser	Arg	G1n	Ala	Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	
			415					420					425			
aca	gcc	ttt	atc	tgc	ctt	ggg	ctc	ctg	gtg	cag	cag	atc	atc	ttc	ttc	1408
Thr	Ala	Phe	Ile	Cys	Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	
		430					435					440				
ctg	gga	acc	acg	gcc	ctg	gcc	ttc	ctg	gtg	ctc	atg	cct	gtg	ctc	cat	1456
Leu	Gly	Thr	Thr	Ala	Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	
	445					450					455					
ggc	agg	aac	ctc	ctg	ctc	ttc	cgt	tcc	ctg	gag	tcc	tcg	tgg	ccc	ttc	1504
Gly	Arg	Asn	Leu	Leu	Leu	Phe	Arg	Ser	Leu	G1u	Ser	Ser	Trp	Pro	Phe	
460)				465	,				470)				475	
tgg	ctg	act	ttg	gcc	ctg	gct	gtg	atc	ctg	cag	g aac	atg	gca	gcc	cat	1552
Trp	Leu	Thr	Leu	Ala	Leu	Ala	Val	Ile	Leu	Glr	Asr	Met	: Ala	Ala	His	
				480)				485	;				490)	
tgg	gto	: ttc	cte	gag	act	: cat	gat	; gga	cac	cca	a cag	g ctg	g acc	aac	cgg	1600

Trp	Val	Phe	Leu	Glu	Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	
			495					500					505			
cga	gtg	ctc	tat	gca	gcc	acc	ttt	ctt	ctc	ttc	ссс	ctc	aat	gtg	ctg .	1648
Arg	Val	Leu	Tyr	Ala	Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	
		510					515					520				
gtg	ggt	gcc	atg	gtg	gcc	acc	tgg	cga	gtg	ctc	ctc	tct	gcc	ctc	tac	1696
Val	Gly	Ala	Met	Val	Ala	Thr	Trp	Arg	Val	Leu	Leu	Ser	Ala	Leu	Tyr	
	525					530					535					
aac	gcc	atc	cac	ctt	ggc	cag	atg	gac	ctc	agc	ctg	ctg	cca	ccg	aga	1744
Asn	Ala	Ile	His	Leu	Gly	Gln	Met	Asp	Leu	Ser	Leu	Leu	Pro	Pro	Arg	
540					545					550					555	
gcc	gcc	act	ctc	gac	ccc	ggc	tac	tac	acg	tac	cga	aac	ttc	ttg	aag	1792
Ala	Ala	Thr	Leu	Asp	Pro	Gly	Tyr	Tyr	Thr	Tyr	Arg	Asn	Phe	Leu	Lys	
				560					565					570		
att	gaa	gtc	agc	cag	tcg	cat	cca	gcc	atg	aca	gcc	ttc	tgc	tcc	ctg	1840
Ile	Glu	Val	Ser	Gln	Ser	His	Pro	Ala	Met	Thr	Ala	Phe	Cys	Ser	Leu	
			575					580					585			
ctc	ctg	caa	gcg	cag	agc	ctc	cta	ccc	agg	acc	atg	gca	gcc	ccc	cag	1888
Leu	Leu	Gln	Ala	Gln	Ser	Leu	Leu	Pro	Arg	Thr	Met	Ala	Ala	Pro	Gln	
		590					595					600				
gac	agc	ctc	aga	cca	ggg	gag	gaa	gac	gaa	ggg	atg	cag	ctg	cta	cag	1936
Asp	Ser	Leu	Arg	Pro	Gly	Glu	Glu	Asp	Glu	Gly	Met	Gln	Leu	Leu	Gln	
	605					610					615					
aca	aag	gac	tcc	atg	gcc	aag	gga	gct	agg	ccc	ggg	gcc	agc	cgc	ggc	1984
Thr	Lys	Asp	Ser	Met	Ala	Lys	Gly	Ala	Arg	Pro	Gly	Ala	Ser	Arg	Gly	

121/307

620 6	25	630	635
agg gct cgc tgg ggt c	tg gcc tac acg	ctg ctg cac aac cca	acc ctg 2032
Arg Ala Arg Trp Gly L	eu Ala Tyr Thr I	eu Leu His Asn Pro	Thr Leu
640	6	645	650
cag gtc ttc cgc aag a	cg gcc ctg ttg g	ggt gcc aat ggt gcc	cag ccc 2080
Gln Val Phe Arg Lys T	hr Ala Leu Leu (Gly Ala Asn Gly Ala	Gln Pro
655	660	. 665	j
tgagggcagg gaaggtcaa	c ccacctgccc ato	ctgtgctg aggcatgtto	2130
ctgcctacca tcctcctccc	tecceggete tect	tcccagc atcacaccag	ccatgcagcc 2190
agcaggtcct ccggatcacc	gtggttgggt ggag	ggtctgt ctgcactggg	agcctcagga 2250
gggctctgct ccacccactt	ggctatggga gago	ccagcag gggttctgga	gaaagaaact 2310
ggtgggttag ggccttggtc	caggagccag ttg	agccagg gcagccacat	ccaggcgtct 2370
ccctaccctg gctctgccat	cagccttgaa ggg	ectegat gaageettet	ctggaaccac 2430
tccagcccag ctccacctca	gccttggcct tcad	cgctgtg gaagcagcca	aggcacttcc 2490
tcacccctc agcgccacgg	acctctctgg gga	gtggccg gaaagctccc	gggcctctgg 2550
cctgcagggc agcccaagtc	atgactcaga cca	ggtccca cactgagctg	cccacactcg 2610
agagccagat atttttgtag	tttttatgcc ttt	ggctatt atgaaagagg	ttagtgtgtt 2670
ccctgcaata aacttgttcc	tgag		2694

<210> 57

<211> 3297

<212> DNA

<213≻ Homo sapiens

<220>

<221> CDS

122/307

<222> (83)(1477)			
<400> 57			
ggggtctgta ctctgtgaag tc	aactgggt tagtgt	gctc tctgatgcct gg	aattccag 60
tecceaceca gaaaceegca ge	atg att gtc tg	c ctc ctt ttc atg	atg att 112
	Met Ile Val Cy	s Leu Leu Phe Met	Met Ile
	1	5	10
tta ttg gca aag gaa gtt	caa ctg gta gac	caa aca gat tca c	ct tta 160
Leu Leu Ala Lys Glu Val	Gln Leu Val Asp	Gln Thr Asp Ser F	ro Leu
15	20		25
ctt agt ctc ctt gga cag	aca agc tca ctt	tca tgg cat ctt g	gtg gat 208
Leu Ser Leu Leu Gly Gln	Thr Ser Ser Leu	Ser Trp His Leu V	al Asp
30	35	40	
att gtg tcg tac cag agt	gtg cta agt tat	ttc agc agc cat 1	tac ccg 256
Ile Val Ser Tyr Gln Ser	Val Leu Ser Tyr	Phe Ser Ser His	Tyr Pro
45	50	55	
ccg tcc atc atc ctg gca	aaa gaa tot tat	gct gaa tta atc	atg aag 304
Pro Ser Ile Ile Leu Ala	Lys Glu Ser Tyr	Ala Glu Leu Ile	Met Lys
60	65	70	
ctc cta aaa gtg tct gcg	ggc ctt tct att	t cct act gac agc	cag aag 352
Leu Leu Lys Val Ser Ala	Gly Leu Ser Ile	e Pro Thr Asp Ser	Gln Lys
75 80		85	90
cat ctt gat gca gtt cca	aaa tgc caa gc	t ttt act cat cag	atg gtt 400
His Leu Asp Ala Val Pro	Lys Cys Gln Ala	a Phe Thr His Gln	Met Val

100

caa ttc ctc agc acc ctg gaa caa aat gga aaa atc acc tta gca gtc

105

448

Gln	Phe	Leu	Ser	Thr	Leu	Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	
			110					115					120			
cta	gaa	cag	gaa	atg	tct	aag	ctc	tta	gac	gat	atc	att	gtc	ttt	aac	496-
Leu	Glu	Gln	Glu	Met	Ser	Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	
		125					130					135				
ccg	ccc	gac	atg	gac	agc	cag	acc	cgc	cac	atg	gcc	ctc	agc	agc	ctc	544
Pro	Pro	Asp	Met	Asp	Ser	Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	
	140					145					150					
ttt	atg	gaa	gtc	ctg	atg	atg	atg	aac	aac	gcg	act	att	cca	aca	gca	592
Phe	Met	Glu	Val	Leu	Met	Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	
155					160		٠			165					170	
gag	ttc	ctt	cgg	ggc	agt	atc	cgg	acc	tgg	att	ggc	caa	aaa	atg	cat	640
Glu	Phe	Leu	Arg	Gly	Ser	Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	
				175	1				180					185		
ggg	ctg	gtg	gtg	ctg	ccc	ctt	tta	aca	gca	gcc	tgc	cag	agc	ctg	gcg	688
Gly	Leu	Val	Val	Leu	Pro	Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	
			190)				195	5				200	١		
tcc	gto	cgc	cac	atg	gct	gag	act	aca	gaa	gcc	tgo	ato	act	gcc	tac	736
Ser	· Val	Arg	, His	Met	: Ala	Glu	Thr	Thr	Glu	Ala	Cys	: Ile	Thir	Ala	Tyr	
		205	5				210)				215	5			
tto	aaa	gaa	a ago	cct	t ctc	aat	cag	g aat	t tca	gga	tgg	g gga	s ccc	ati	ctg	784
Phe	e Lys	Glu	ı Ser	Pro	Leu	ı Asn	Glr	ı Ası	n Ser	Gly	Tr	Gly	Pro	Ile	e Leu	
	220)				225	;				230	0				
gta	a tco	cti	t cas	g gti	t cc	c gag	cto	c ac	c at	g gaa	a ga	g tt	ct	g ca	g gag	832
Va:	l Sei	r Lei	ı G1:	n Va	1 Pro	o Glu	ı Lei	u Th	r Mei	t Glu	ı Gl	u Ph	e Lei	ı Glı	n Glu	

235					240					245					250	
tgc	ctc	acc	ttg	ggc	agt	tac	ttg	act	ctt	tac	gtc	tac	ttg	ctt	cag	880
Cys	Leu	Thr	Leu	Gly	Ser	Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	
				255					260					265		
tgt	tta	aac	agc	gaa	cag	act	tta	agg	aat	gaa	atg	aaa	gtg	ctg	ctc	928
Cys	Leu	Asn	Ser	Glu	Gln	Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	
	٠		270					275					280			
atc	tta	agc	aag	tgg	ctg	gaa	cag	gtg	tac	cca	agc	tcc	gtg	gag	gaa	976
Ile	Leu	Ser	Lys	Trp	Leu	Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	
		285					290					295				
gag	gca	aag	ctg	ttt	ttg	tgg	tgg	cac	caa	gtc	ctt	cag	ctc	tcc	ctc	1024
Glu	Ala	Lys	Leu	Phe	Leu	Trp	Trp	His	Gln	Val	Leu	Gln	Leu	Ser	Leu	
	300					305					310					
att	cag	aca	gag	cag	aat	gac	tcc	gtc	ctg	aca	gaa	tct	gtc	att	cga	1072
Ile	Gln	Thr	Glu	Gln	Asn	Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	
315					320					325					330	
att	ctg	ctc	ttg	gtt	cag	agc	agg	cag	aac	ctc	gtg	gct	gag	gag	aga	1120
Ile	Leu	Leu	Leu	Val	Gln	Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	Glu	Arg	
				335					340		•			345		
ctc	ago	tct	ggg	ato	ctg	ggg	gca	att	ggg	ttt	ggc	cgg	888	g tcg	cct	1168
Leu	Ser	Ser	Gly	Ile	Leu	Gly	Ala	Ile	Gly	Phe	Gly	Arg	Lys	s Ser	Pro	
			350)				355	;				360)		
ttg	tct	aac	agg	tto	cga	gtg	gtt	gcc	cga	ago	atg	gct	gc	t tto	ctt	1216
Leu	Sea	- Asr	Arg	g Phe	Arg	, Val	. Val	Ala	Arg	Ser	Met	Ala	Ala	a Phe	Leu	
		365	5				370)				375	5			

tca	gtt	cag	gtt	cct	atg	gaa	gat	cag	atc	cgt	ttg	agg	cct	ggc	tct	1264
Ser	Val	Gln	Val	Pro	Met	Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	
•	380					385				•	390	•				
gaa	tta	cat	ctg	acc	ссс	aaa	gct	cag	cag	gct	ctg	aat	gct	ctt	gaa	1312
Glu	Leu	His	Leu	Thr	Pro	Lys	Ala	G1n	Gln	Ala	Leu	Asn	Ala	Leu	Glu	
395					400					405					410	
tcc	atg	gca	tca	agt	aag	cag	tat	gtt	gaa	tac	cag	gat	caa	ata	ttg	1360
Ser	Met	Ala	Ser	Ser	Lys	Gln	Tyr	Val	Gļu	Tyr	Gln	Asp	Gln	Ile	Leu	
				415					420					425		
caa	gcc	acc	caa	ttt	ata	agg	cat	cct	ggc	cat	tgc	ctt	caa	gat	ggg	1408
Gln	Ala	Thr	Gln	Phe	Ile	Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	
			430					435	-				440			
aaa	agc	ttc	ttg	gct	ctt	ctc	gtt	aac	tgt	ctg	tat	сса	gaa	gtg	cat	1456
Lys	Ser	Phe	Leu	Ala	Leu	Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	
		445					450					455				
tat	ttg	gac	cac	ata	cga	tagi	tta a	acact	tgagį	gc to	cttg	aaaa	a cc	catt	gctg	1510
Tyr	Leu	Asp	His	Ile	Arg											
	460															
ttt	atgt	tta	catt	taac ⁻	tt ti	gctgi	ttgc	a ca	agta	actt	tgc	tcaa	ttg	cact	gtagag	1570
ctc	agtt	tgg (ccaa	tgtg	ta g	ttga	ctga	g at	gcaa	gttg	gga	ggcg	tta	gata	ttagat	1630
aat	tttg	ggg	tgtg	tgtg	tg t	gtgtį	gtgt	g tg	tttt	ctta	gct	ctta	aga (cctt	ctgggg	1690
act	cttt	aag '	tttt	tata	tt t	atcc	acaa	g ag	aaac	ttac	taa	gttc	cac	ttgg	gtgcag	1750
agc	cact	cac	agtt	gccg	aa t	gtcc	cagt	c at	ctca	caag	acc	tcca	gat	ggag	ttcttt	1810
gta	tgtt	tcc	actt	ctgt	ct c	tgtt:	ttat	g ta	aatg	ttcc	aga	tctg	aca	acct	tggaag	1870
tca	ctca	gta	ccct	tact	tt t	Baac	cca	t tt:	gtgt	tcct	cca	aagt	aaa :	gaag	tcaatt	1930

ttgaa	aaaatt	tctgcatttc	tcaaatgtgg	acaaatacaa	tagttttaaa	gtattgtttt	1990
tctca	agaagg	gagataaaaa	tgccgagtta	gttaaagtgg	gtcatgtgta	aaatacgacc	2050
actt	gatcgt	gattatagtg	ggcagtagag	atgatgacaa	gtcaatttcc	atccagccgt	2110
gtato	cctcat	ggagaagctg	cctgtctgaa	tcaggatggc	aagctggcag	tctgggagga	2170
gcat	gttttg	cacagatgtt	ttgtttggtc	cacttggtga	ggagtgcaga	cagggctgcc	2230
tctc	tctagt	cgggagagtc	tgtgcattcc	ctcgggccct	gaccctagcc	tcattcacat	2290
cact	tgcccc	tgtcgacacc	taagtttgca	ccctttgata	gacaccatgt	tcgatatctg	2350
aaag	gctcag	tgtcaggaga	cagagactga	gggagactga	agacctgatt	ctctgttccc	2410
tgct	tgtttt	ttaacttcaa	actcagatga	agccaatgga	cctgctgaaa	cacttgtctg	2470
tgga	aactgg	gtcaggtcgg	gagatctact	gaaatttggc	ttttttcca	tagccacgtg	2530
cctt	ctgttg	ttgacagttc	attcattacc	aaagcctgtg	tgtaactttg	ccttgttctg	2590
tggc	catctt	cttgctcatg	ttatttctcc	tgggaatgag	cagtttgact	tctgttccca	2650
cgtt	cctcat	tctatcagct	ctagatggat	tttgcctgca	tagctggctt	aatatgtctt	2710
tgtg	tatggg	tagtctgtag	cctgagaata	tttacctaaa	aatgtctaaa	cagccaccaa	2770
gaat	gtttat	aggggtatag	gaatatagtt	aacagagtgc	taatctctcc	tcaaatgtcc	2830
tttt	ggaatg	cttcccccaa	aattgggaag	ttggtaggag	cttttcttta	ctttgaattt	2890
cttt	acttgg	acagaacgat	tctgccttaa	agacacgctt	tgcagctctg	ataaagaaca	2950
tccc	tgttta	gtctcttgag	ttttacaggc	cacaaaatgt	ccgtctcaga	gggatctgtc	3010
tcag	cttttc	ttatttttgc	ttctctccgt	ttţcaaaatt	aatcatcttg	ttctctgtat	3070
aaga	aaattt	gagaagctgt	ggacaattta	atagtctgat	ctggcaacag	cgatttttgt	3130
ttgg	gaaatat	tttgtgtttt	ctttgaggag	gatataatta	ctgatatcct	aggatgtgaa	3190
attt	tttgagt	gacagtatgc	acattttaaa	gaaaattatg	attaatctgt	ataatgtttt	3250
ttgg	gtctgta	aaaattataa	aaaataaaat	catttatctt	tggttgt		3297

127/307

<211	> 21	26														
<212	> DN	ÍΑ														
<213	> Hc	ошо s	sapie	ns						•	٠		•			
<220	>												ē			
<22 1	> CI	S														
<222	> (6	51)	. (14	173)												
<400	> 58	3														
aaca	ctga	ca g	gcgtg	gagco	c go	egge	gctg	g ctg	gccat	ggt	ggct	ggc	ggc (gggt	tgcag	c 60
atg	tct	aga	ctg	gga	gcc	ctg	ggt	ggt	gcc	cgt	gcc	ggg	ctg	gga	ctg	108
Met	Ser	Arg	Leu	Gly	Ala	Leu	G1y	Gly	Ala	Arg	Ala	Gly	Leu	G1y	Leu	
1				5					10					15		
ttg	ctg	ggt	acc	gcc	gcc	ggc	ctt	gga	ttc	ctg	tgc	ctc	ctt	tac	agc	156
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
			20					25					30			
cag	cga	tgg	aaa	cgg	acc	cag	cgt	cat	ggc	cgc	agc	cag	agc	ctg	ccc	204
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Arg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro	
		35					40					45				
aac	tcc	ctg	gac	tat	acg	cag	act	tca	gat	ccc	gga	cgc	cac	gtg	atg	252
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
	50					55					60					
ctc	ctg	cgg	gct	gtc	cca	ggt	ggg	gct	gga	gat	gcc	tca	gtg	ctg	ccc	300
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65					70					75					80	
agc	ctt	cca	cgg	gaa	gga	cag	gag	aag	gtg	ctg	gac	cgc	ctg	gac	ttt	348

Ser Leu Pro Arg Glu Gly Gln Glu Lys Val Leu Asp Arg Leu Asp Phe

				85					90					95		
gtg	ctg	açc	agc	ctt	gtg	gcg	ctg	cgg	cgg	gag	gtg	gag	gag	ctg	aga	396
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg	
			100					105					110			
agc	agc	ctg	cga	ggg	ctt	gcg	ggg	gag	att	gtt	ggg	gag	gtc	cga	tgc	444
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	Gly	Glu	Val	Arg	Cys	
		115					120					125				
cac	atg	gaa	gag	aac	cag	aga	gtg	gct	cgg	cgg	cga	agg	ttt	ccg	ttt	492
His	Met	Glu	Glu	Asn	G1n	Arg	Val	Ala	Arg	Arg	Arg	Arg	Phe	Pro	Phe	
	130					135					140					
gtc	cgg	gag	agg	agt	gac	tcc	act	ggc	tcc	agc	tct	gtc	tac	ttc	acg	540
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr	•
145					150					155					160	
gcc	tcc	tcg	gga	gcc	acg	ttc	aca	gat	gct	gag	agt	gaa	ggg	ggt	tac	588
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr	
				165					170					175		
aca	aca	ġcc	aat	gcg	gag	tct	gac	aat	gag	cgg	gac	tct	gac	aaa	gaa	636
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu	
			180					185					190			
agt	gag	gac	ggg	gaa	gat	gaa	gtg	agc	tgt	gag	act	gtg	aag	atg	ggg	684
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly	
		195	;				200)				205	5			
aga	aag	gat	tct	ctt	gac	ttg	gag	gaa	gag	gca	gct	tca	ggt	gcc	tcc	732
Arg	Lys	Asp	Ser	Leu	Asp	Leu	G1u	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser	
	210)				215	;				220)				

agt	gcc	ctg	gag	gct	gga	ggt	tcc	tca	ggc	ttg	gag	gat	gtg	ctg	ccc	780
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro	
225					230		•			235					240	
ctc	ctg	cag	cag	gcc	gac	gag	ctg	cac	agg	ggt	gat	gag	caa	ggc	aag	828
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	G1u	Gln	Gly	Lys	
				245					250					255		
cgg	gag	ggc	ttc	cag	ctg	ctg	ctc	aac	aac	aag	ctg	gtg	tat	gga	agc	876
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser	
			260					265					270			
cgg	cag	gac	ttt	ctc	tgg	cgc	ctg	gcc	cga	gcc	tac	agt	gac	atg	tgt	924
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys	
		275					280					285				
gag	ctc	act	gag	gag	gtg	agc	gag	aag	aag	tca	tat	gcc	cta	gat	gga	972
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly	
	290					295					300					
aaa	gaa	gaa	gca	gag	gct	gct	ctg	gag	aag	ggg	gat	gag	agt	gct	gac	1020
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp	
305			•		310					315			٠		320	
tgt	cac	ctg	tgg	tat	gcg	gtg	ctt	tgt	ggt	cag	ctg	gct	gag	cat	gag	1068
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly	Gln	Leu	Ala	Glu	His	Glu	
				325					330					335		
agc	atc	cag	agg	cgc	atc	cag	agt	ggc	ttt	agc	ttc	aag	gag	cat	gtg	1116
Ser	Ile	Gln	Arg	Arg	Ile	Gln	Ser	Gly	Phe	Ser	Phe	Lys	G1u	His	Val	
			340					345					350			
gac	888	gcc	att	gct	ctc	cag	cca	gaa	aac	ccc	atg	gct	cac	ttt	ctt	1164

Asp	Lys	Ala	Ile	Ala	Leu	Gln	Pro	Glu	Asn	Pro	Met	Ala	His	Phe	Leu	
		35 <u>5</u>					360				٠.	365				
ctt	ggc	agg	tgg	tgc	tat	cag	gtc	tct	cac	ctg	agc	tgg	cta	gaa	aaa	1212
Leu	Gly	Arg	Trp	Cys	Tyr	Gln	Val	Ser	His	Leu	Ser	Trp	Leu	Glu	Lys	
	370					375					380					
aaa	act	gct	aca	gcc	ttg	ctt	gaa	agc	cct	ctc	agt	gcc	act	gtg	gaa	1260
Lys	Thr	Ala	Thr	Ala	Leu	Leu	Glu	Ser	Pro	Leu	Ser	Ala	Thr	Val	Glu	
385					390					395					400	
gat	gcc	ctc	cag	agc	ttc	cta	aag	gct	gaa	gaa	cta	cag	cca	gga	ttt	1308
Asp	Ala	Leu	Gln	Ser	Phe	Leu	Lys	Ala	Glu	Glu	Leu	G1n	Pro	Gly	Phe	
				405					410					415	j	
tcc	888	gca	gga	agg	gta	tat	att	tcc	aag	tgc	tac	aga	gaa	cta	ggg	1356
Ser	Lys	Ala	Gly	Arg	Val	Tyr	Ile	Ser	Lys	Cys	Туг	Arg	g Glu	Leu	ı Gly	
			420)				425					430)		
															g cca	1404
Lys	s Ası	n Sei	Glu	ı Ala	a Arg	g Trp	Tr	Met	Lys	: Lev	ı Ala	a Lei	u Glu	ı Let	ı Pro	
		435					440					44				
															a ctg	1452
As	p Va	1 Th	r Ly:	s Glu	u Asj	p Lei	ı Al:	a Ile	e Gla	n Ly:	s As	p Le	u Gl	u Gl	u Leu	
	45					45					46					
ga	a gt	c at	t tt	a cg	a ga	c ta	acca	cgtt	tca	ctgg	cct	tcat	gact	tg		1500
G1	u Va	1 I1	e Le	u Ar	g As	p										
46					47											
															gagatca	
gg	aaac	caca	caa	atct	gtc	tcct	gggt	ct g	actg	ctac	c ca	ctac	cact	ccc	cattagt	1620

131/307

taatttattc	taacctctaa	cctaatctag	aattggggca	gtactcatgg	cttccgtttc	1680
tgttgttctc	tcccttgagt	aatctcttaa	aaaaatcaag	attcacacct	gccccaggat	1740
tacacatggg	tagagcctgc	aagacctgag	accttccaat	tgctggtgag	gtggatgaac	1800
ttcaaagcta	taggaacaaa	gcacataact	tgtcacttta	atctttttca	ctgactaata	1860
ggactcagta	catatagtct	taagatcata	ccttacctac	caaggtaaaa	agagggatca	1920
gagtggccca	cagacattgc	tttcttatca	cctatcatgt	gaattctacc	tgtattcctg	1980
ggctggacca	cttgataact	tccagtgtcc	tggcagcttt	tggaatgaca	gcagtggtat	2040
ggggtttatg	atgctataaa	acaatgtctg	aaaagttgcc	tagaatatat	tttgttacaa	2100
acttgaaata	aaccaaattt	gatgtt				2126

<210> 59

<211> 1781

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (74)... (805)

<400> 59

aatttggacc tgtgattcct tggttctcac aatcctctcc actctaagaa gcagggtgag 60
cccacaagga gca atg gag cag ggc agc ggc cgc ttg gag gac ttc cct 109
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro

1 5 10

gtc aat gtg ttc tcc gtc act cct tac aca ccc agc acc gct gac atc

157

Val Asn Val Phe Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile

15 20 25

cag	gtg	tcc	gat	gat	gac	aag	gcg	ggg	gcc	acc	ttg	ctc	ttc	tca	ggc	205
Gln	Val	Ser	Asp	Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	
	30				•	35					40				•	•
atc	ttt	ctg	gga	ctg	gtg	ggg	atc	aca	ttc	act	gtc	atg	ggc	tgg	atc	253
Ile	Phe	Leu	Gly	Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	
45					50					55					60	
aaa	tac	caa	ggt	gtc	tcc	cac	ttt	gaa	tgg	acc	cag	ctc	ctt	ggg	ccc	301
Lys	Tyr	Gln	Gly	Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	
				65					70					75		
gtc	ctg	ctg	tca	gtt	ggg	gtg	aca	ttc	atc	ctg	att	gct	gtg	tgc	aag	349
Val	Leu	Leu	Ser	Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	
			80					. 85					90			
ttc	aaa	atg	ctc	tcc	tgc	cag	ttg	tgc	aaa	gaa	agt	gag	gaa	agg	gtc	397
Phe	Lys	Met	Leu	Ser	Cys	G1n	Leu	Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	
		95					100					105				
ccg	gac	tcg	gaa	cag	aca	cca	gga	gga	cca	tca	ttt	gtt	ttc	act	ggc	445
Pro	Asp	Ser	Glu	G1n	Thr	Pro	Gly	G1 y	Pro	Ser	Phe	Val	Phe	Thr	Gly	
	110					115					120					
atc	aac	caa	ccc	atc	acc	ttc	cat	ggg	gcc	act	gtg	gtg	cag	tac	atc ·	493
Ile	Asn	Gln	Pro	Ile	Thr	Phe	His	Gly	Ala	Thr	Val	Val	Gln	Tyr	Ile	
125					130					135					140	
cct	cct	cct	tat	ggt	tct	cca	gag	cct	atg	ggg	ata	aat	acc	agc	tac	541
Pro	Pro	Pro	Tyr	Gly	Ser	Pro	Glu	Pro	Met	Gly	Ile	Asn	Thr	Ser	Tyr	
				145					150					155		
ctg	cag	tct	gtg	gtg	agc	ccc	tgc	ggc	ctc	ata	асс	tct	gga	ggg	gca	589

Leu	Gln	Ser	Val	Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	
			160					165					170			
gca	gcc	gcc	atg	tca	agt	cct	cct	caa	tac	tac	acc	atc	tac	cct	caa	637
Ala	Ala	Ala	Met	Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	
		175					180					185				
gat	aac	tct	gca	ttt	gtg	gtt	gat	gag	ggc	tgc	ctt	tct	ttc	acg	gac	685
Asp	Asn	Ser	Ala	Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	
	190					195					200					
ggt	gga	aat	cac	agg	ccc	aat	cct	gat	gtt	gac	cag	cta	gaa	gag	aca	733
Gly	Gly	Asn	His	Arg	Pro	Asn	Pro	Asp	Val	Asp	Gln	Leu	Glu	Glu	Thr	
205					210					215					220	
cag	ctg	gaa	gag	gag	gcc	tgt	gcc	tgc	ttc	tçt	cct	ccc	cct	tat	gaa	781
Gln	Leu	Glu	Glu	Glu	Ala	Cys	Ala	Cys	Phe	Ser	Pro	Pro	Pro	Tyr	Glu	
				225					230)				235		
gaa	ata	tac	tct	ctc	cct	cgc	tag	aggo	t at	tctg	atat	aat	aaca	caa		830
Glu	Ile	Tyr	Ser	Leu	Pro	Arg	3									
			240)												
tgo	tcag	gctc	aggg	gagca	ag t	gttt	ccgt	tc at	ttgtt	acct	gad	caaco	gtg	gtgt	tctatg	890
ttg	gtaad	ctt	caga	agtt	ac a	gcag	gege	cc a	ggcag	gcctg	aca	agaga	atca	ttca	aggggg	950
gaa	aagg	ggaa	gtgg	ggagg	gtg (aati	ttct	ca g	attgg	gtaaa	a aa	ttag	gctg	ggct	ggggaa	1010
ati	tctc	ctcc	ggaa	acagi	ttt (caaat	ttcc	ct c	gggta	aagaa	a at	ctcc	tgta	taag	ggttcag	1070
ga	gcag	gaat	ttca	actt	ttt (catc	cacca	ac c	ctcc	ccct	t ct	ctgt	agga	agge	attggt	1130
gg	ctca	attt	taa	cccc	agc a	agcc	aatg	ga a	aaat	cacg	a ct	tctg	agac	ttt	ggagtt	1190
tc	caca	gagg	tga	gagt	cgg	gtgg	gaag	ga a	gcag	ggaa	g ag	aaag	cagg	ccc	agctgga	1250
ga	tttc	ctgg	tgg	ctgt	cct	tggc	ccca	aa g	caga	ctca	c ta	atcc	caaa	caa	ctcagct	1310

134/307

gccatctggc	ctctctgagg	actctgggta	ccttaaagac	tataaaacaa	аасаааасаа	1370
aaacatcaaa	ccaatgaaat	aaaataaatc	atgtctcctg	ctagaatagt	attggatacc	1430
tgactaaatt	acacaaaata	gaccataata	ggatagcact	gtgaatacat	ccttcccgat	1490
cactgagtca	cagtgaccct	tggctgctgc	agttctcgtc	tgcaaggttg	aagcttgacg	1550
tgtgatgaac	atgggtgggc	tcttggtcca	ccccaggctg	gggcctgcgc	caagcatgaa	1610
ctagctggga	ccagtggctg	acagaacaca	ggacttccct	aagtacccgt	aggtccgtgg	1670
agcaagacag	agcagagttg	ccatgtcaac	acatggggaa	tgatatgata	gaaacaatct	1730
ttatgactaa	aagaaactca	tcttcttcat	taaaaaaact	ttggtgtcct	t	1781

<210> 60

<211> 1788

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (87)...(899)

<400> 60

attgggcggc gtgatctcgc cgcggttccg cggccctgcc gccgccgccg ccagcagagc 60 gcaccgggcc gatcgggcga gtggcc atg gcg ggc gcc gag gac tgg ccg ggc 113

Met Ala Gly Ala Glu Asp Trp Pro Gly

1 5

cag cag ctg gag ctg gac gag gac gag gcg tct tgt tgc cgc tgg ggc 161

Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly

10 15 20 25

gcg cag cac gcc ggg gcc cgc gag ctg gct gcg ctc tac tcg cca ggc 209

Ala	Gln	His	Ala	Gly	Ala	Arg	Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly	
				. 30.					35					40		
aag	cgc	ctc	cag	gag	tgg	tgc	tct	gtg	atc	ctg	tgc	ttc	agc	ctc	atc	257
Lys	Arg	Leu	Gln	Glu	Trp	Cys	Ser	Val [.]	Ile	Leu	Cys	Phe	Ser	Leu	Ile	
			45					50					55			
gcc	cac	aac	ctg	gtc	cat	ctc	ctg	ctg	ctg	gcc	cgc	tgg	gag	gac	aca	305
Ala	His	Asn	Leu	Val	His	Leu	Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp	Thr	
		60					65					70				
ccc	ctc	gtc	ata	ctc	ggt	gtt	gtt	gca	ggg	gct	ctc	att	gct	gac	ttc	353
Pro	Leu	Val	Ile	Leu	Gly	Val	Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe	
	75					80					85					
ttg	tct	ggc	ctg	gta	cac	tgg	ggt	gct	gac	aca	tgg	ggc	tct	gtg	gag	401
Leu	Ser	Gly	Leu	Val	His	Trp	Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu	
90					95					100					105	
ctg	ccc	att	gtg	ggg	aag	gct	ttc	atc	cga	ccc	ttc	cgg	gag	cac	cac	449
Leu	Pro	Ile	Val	Gly	Lys	Ala	Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	
				110					115					120	1	
att	gao	cca	aca	gct	atc	aca	cgg	cac	gac	ttc	ato	gag	acc	aac	ggg	497
Ile	Ası	Pro	Thr	Ala	Ile	Thr	Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	
			125	;				130					135	;		
gac	aad	c tgo	ctg	gtg	aca	ctg	ctg	ccg	ctg	cta	aac	atg	gcc	tac	aag	545
Asp	Ası	n Cys	Leu	ı Val	Thr	Leu	Leu	Pro	Leu	Leu	ı Ası	n Met	t Ala	Туз	Lys	
		140)				145	5				150)			
tto	cg	c acc	cac	ago	cct	t gas	gco	ctg	gag	cag	g cta	a tao	c ccc	tg:	g gag	593
Phe	. Ar	g Thi	r His	s Sei	r Pro	Glı	ı Ala	a Leu	ı Glu	ı Glr	ı Le	u Ty	r Pro	Tr	o Glu	

155					160					165					
tgc ttc	gtc	ttc	tgc	ctg	atc	atc	ttc	ggc	acc	ttc	acc	aac	cag	atc	641
Cys Phe	Val	Phe	Cys	Leu	Ile	Ile	Phe	Gly	Thr	Phe	Thr	Asn	Gln	Ile	
170				175					180					185	
cac aag	tgg	tcg	cac	acg	tac	ttt	ggg	ctg	cca	cgc	tgg	gtc	acc	ctc	689
His Lys	Trp	Ser	His	Thr	Tyr	Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	
			190					195					200		
ctg cag	gac	tgg	cat	gtc	atc	ctg	сса	cgt	aaa	cac	cat	cgc	atc	cac	737
Leu Gl	Asp	Trp	His	Val	Ile	Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	
		205					210					215			
cac gt	tca	ccc	cac	gag	acc	tac	ttc	tgc	atc	acc	aca	ggc	tgg	ctc	785
His Va	l Ser	Pro	His	Glu	Thr	Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu .	
	220					225					230				
aac ta	c cct	ctg	gag	aag	ata	ggc	ttc	tgg	cga	cgc	ctg	gag	gac	ctc	833
Asn Ty	r Pro	Leu	Glu	Lys	Ile	Gly	Phe	Trp	Arg	Arg	g Leu	Glu	Asp	Leu	
23	5				240)				245	5				
atc ca	g ggo	ctg	acg	ggc	gag	aag	cct	cgg	gca	gat	t gac	atg	aaa	tgg	881
Ile Gl	n Gly	Leu	Thr	Gly	Glu	Lys	Pro	Arg	Ala	Ası	Asp	Met	Lys	Trp	
250				255	;				260)				265	
gcc ca	g aag	g ato	aaa	taa	ic ti	tctc	gago	ctg	ctac	ctg	gtts	gccaa	acc		930
Ala Gl	n Ly:	s Ile	Lys	5											
			270)											
ttccc1	agcc	ccca	aaac	cga a	agcc	atct	gc c	aaati	tcca	g cc	tctt	tgag	ctg	gcccctc	990
cagat	gaga	gga	catc	tcc 1	tggg	ctgg	gc c	cagg	tacc	с са	gccc	accc	ctc	atgacac	1050
agaata	cttg	agc	cact	gat 1	tttt	catt	tc t	tttt	tttt	t tt	tttc	ctcg	gcc	cctcctc	1110

137/307

agccacctga	gttgctctat	ctgcaagcct	gactctgcca	gcctcccctg	gtagagagga	1170
ggtttaccca	ctccctgcac	gcctgccgtc	cctgccccgc	tgggcagccc	ttcagtgtgg	1230
ctggcgttgg	ggccagtgag	ttgcctcttt	ccctccttgt	ctggccccag	tggtctgggg	1290
agcccccagg	cacacctaag	cgtcgtggag	cattgttctg	ccacagccct	gcatactgac	1350
cccgggaggc	tgggcaggtg	gacagcccca	gccaccacct	tcagcctagc	ctgtccccca	1410
aggatggtga	agctcagcag	gggtctgagg	gtagccggcc	agaagaggct	ggaacctcct	1470
gctcaagtct	agacccctac	ttctctgctg	ccccaccct	gccagagctg	atgtttccaa	1530
taccaagatg	tcttcacagg	gcacagcccc	tgcagagcat	cttggtcatt	tggaagagga	1590
cacggtatcc	cctctggcca	gagtatgtca	gagaaggaag	agtagggctt	ttttgttttg	1650
tttttttta	aaggtgcttg	cttgtttaat	gtaaataata	gaaagcctta	atatcttttc	1710
tgtaacacgg	agtaatattt	taatgtcatg	ttttggatgt	acataatata	tttataacaa	1770
agcagcaaga	gtctactt	,				1788

⟨210⟩ 61

<211> 389

<212> PRT

<213> Homo sapiens

<400> 61

Met Asp Arg Gly Glu Lys Ile Gln Leu Lys Arg Val Phe Gly Tyr Trp

1 5 10 15

Trp Gly Thr Ser Phe Leu Leu Ile Asn Ile Ile Gly Ala Gly Ile Phe

20 25 30

Val Ser Pro Lys Gly Val Leu Ala Tyr Ser Cys Met Asn Val Gly Val

35 40 45

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr

	50					55					60				
Leu	Cys	Ser	Ala	Glu	Ile	Ser	lle	Ser	Phe	Pro	Cys	Ser	Gly	Ala	G1n
65					70					75					80
Tyr	Tyr	Phe	Leu	Lys	Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn
				85					90					95	
Leu	Trp	Thr	Ser	Leu	Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala
•			100					105					110		
Leu	Leu	Leu	Ala	Glu	Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser
		115					120					125			
Val	Pro	Lys	Leu	Pro	Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile
	130					135					140				
Val	Gly	Ile	Leu	1 Thr	Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln
145	;				150					155					160
Ile	Ala	Ser	Ser	r Val	Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	lle	Ser	Leu
				165	Ì				170)				175	;
Thr	Gly	/ Val	l Val	l Phe	Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asr	ı Val	Glu	Arg
			180	0				185	•				190		
Phe	e Gli	n Ası	n Ala	a Phe	e Asp	Ala	Glu	Leu	Pro	Asp	Ile	e Sei	r His	Leu	Ile
		19	5				200)				209	5		
Gl	n Ala	a Il	e Ph	e Gli	n Gly	, Туз	r Phe	e Ala	туз	Se:	r Gly	y Gl	u Leu	Lys	Lys
	21	0				218	5				220	0			
Pr	o Ar	g Th	r Th	r Il	e Pro	o Ly:	s Cy:	s Ile	e Pho	e Th	r Ala	a Le	u Pro) Let	u Val
22	5				230	0				23	5				240
Th	r Va	l Va	l Ty	r Le	u Le	u Va	l As	n Il	e Se	r Ty	r Le	u Th	r Val	Le	u Thr
				24	5				25	0				25	5

139/307

Pro	Arg	Glu	Ile	Leu	Ser	Ser	Asp	Ala	Val	Ala	Ile	Thr	Trp	Ala	Asp
		•	260	•				265					270		
Arg	Ala	Phe	Pro	Ser	Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr
		275					280					285			
Ser	Leu	Phe	Ser	Asn	Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro
	290					295					300				
Ile	Tyr	Leu	Ala	Ser	Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr
305					310					315					320
Leu	Asn	Ser	His	Ser	Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr
				325					330					335	
Leu	Gly	Ser	Leu	Ala	Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn
			340					345					350		
Tyr	Ile	Phe	Phe	Thr	Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly
		355					360					365			
Ile	Leu	Arg	Arg	Arg	Tyr	Gln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys
	370					375					380				
Val	Lys	Leu	Asp	Phe											
385															•
<21	0> 6	2													
<21	1> 3	48													
<21	2> P	RT													•
<21	3> H	ото	sapi	ens	٠										
<40	0> 6	2													

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg Arg

1				5					10					15	
Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met	Leu	Leu	Leu	Leu	Leu	Leu
			20					25				•	30	•	
Leu	Gly	Ser	Gly	Gln	Gly	Pro	Gln	Gln	Val	Gly	Ala	Gly	Gln	Thr	Phe
		35					40					45			
Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	Lys	Pro	Tyr	Gln	Gly	Val
	50					55					60				
Gly	Thr	Gly	Ser	Ser	Ser	Leu	Trp	Asn	Leu	Met	Gly	Asn	Ala	Met	Val
65					70					75					80
Met	Thr	Gln	Tyr	Ile	Arg	Leu	Thr	Pro	Asp	Met	Gln	Ser	Lys	Gln	Gly
				85					90					95	
Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	Arg	Asp	Trp	Glu	Leu	Gln
			100					105					110		
Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	Lys	Asn	Leu	His	Gly	Asp
		115					120					125			
Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	Met	Gln	Pro	Gly	Pro	Val
	130)				135	;				140				
Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	Gly	Val	Phe	Val	Asp	Thr
145	;				150)				155					160
Tyr	Pro	Asn	Glu	Glu	Lys	Glr	Gln	Glu	Arg	, Val	Phe	Pro	Tyr	Ile	Ser
				165	5				170)				175	i
Ala	a Met	t Val	. Asr	ı Asr	ı Gly	r Sei	c Leu	ı Ser	Tyr	Asp	His	s Glu	ı Arg	Asp	Gly
			180)				185	5				190)	
Ar	g Pro	o Thi	r Glu	ı Leı	ı G1;	y G1:	y Cys	s Thi	r Ala	a Ile	e Val	l Arg	g Asr	Let	His
		10	5				200)				209	5		

141/307

[yr /	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	Lys	Arg	His	Leu	Thr	Ile
;	210					215					220				
Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	Arg	Asp	Cys	Ile	Glu	Val
225					230		-			235					240
Pro	Gly	Val	Arg	Leu	Pro	Arg	Gly	Tyr	Tyr	Phe	Gly	Thr	Ser	Ser	Ile
				245					250					255	
Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	Ile	Ser	Leu	Lys	Leu	Phe
			260					265					270	I	
Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	G1u	Glu	Lys	Leu	His	Arg	Asp
		275					280)				285	5		
Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	Leu	Pro	Glu	ı Met	; Thr	· Ala
	290) .				295	5				300)			
Pro	Leu	ı Pro	Pro	Leu	ı Ser	Gly	, Leu	ı Ala	Let	ı Phe	e Leu	ı Ile	e Val	l Phe	e Phe
305					310					318					320
Ser	Lei	ı Val	l Phe	e Sei	r Val	l Ph	e Ala	a Ile	e Va	1 Il	e Gl	y Il	e Il	e Lei	и Туг
				329					33					33	
Asr	. Ly	s Tr	p Gl	n Gl	u G1:	n Se	r Ar	g Ly	s Ar	g Ph	е Ту	r			
			34					34							
40	. ^\	co													

<210> 63

⟨211⟩ 261

<212> PRT

<213> Homo sapiens

⟨400⟩ 63

Met Glu Leu Leu Gln Val Thr Ile Leu Phe Leu Leu Pro Ser Ile Cys

1				5					10					15	
Ser	Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val
			20		•	•	•	25					30		
Val	Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser .	Leu
		35					40					45			
Gln	Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr
	50					55		•			60				
Ile	Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe
65					70					75					80
Leu	Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg
				85					90					95	
Lys	Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu
			100)				105					110		
Pro	Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr
		115	5				120	•				125	,		
Gln	Ser	: Ser	: Ile	e Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro
	130)				135	j				140)			
Asp	Ala	a Ser	r Pro	Se1	Lys	Thr	· Gly	Thr	Leu	1 Thr	Ser	: Ile	Pro	Val	Thr
145	5				150)				158	5				160
Ile	Pro	o G1	u Ası	n Thi	r Sei	Glr	ı Sei	Glr	val	l Ile	e Gly	y Thi	r Glu	Gly	Gly
				16	5				170)				175	i
Lys	s Ası	n Al	a Se	r Th	r Se	r Ala	a Thi	r Sei	r Ar	g Sei	r Ty	r Sei	r Sei	: Ile	Ile
			18	0				189	5				190)	
Le	u Pr	o Va	l Va	1 II	e Al	a Le	u Il	e Va	1 11	e Th	r Le	u Se	r Va	l Phe	e Val
		19	5				20	0				20	5		

143/307

Leu Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly Lys Thr Lys Asn <210> 64 <211> 222 <212> PRT (213) Homo sapiens <400> 64 Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro Ser Lys Asn His Thr Leu

144/307

				85					90					95	
Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile	Arg	Met	Asn	Lys	Asn	Arg	Ile
•	٠		100					105					110		
Asn	Asn	Ala.	Phe	Phe	Leu	Asn	Asp	Gln	Thr	Leu	Glu	Phe	Leu	Lys	Ile
		115					120					125			
Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp	Pro	Ser	Val	Pro	Ile	Trp	Ile
	130					135					140				
Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile	Ile	Ile	Val	Ala	Ile	Ala	Leu
145					150					155					160
Leu	Ile	Leu	Ser	Gly	Ile	Trp	Gln	Arg	Arg	Arg	Lys	Asn	Lys	Glu	Pro
		•		165					170					175	
Ser	Glu	Val	Asp	Asp	Ala	Glu	Asp	Lys	Cys	Glu	Asn	Met	Ile	Thr	Ile
			180					185					190		-
Glu	Asn	Gly	Ile	Pro	Ser	Asp	Pro	Leu	Asp	Met	Lys	Gly	Gly	His	Ile
		195					200					205			
Asn	Asp	Ala	Phe	Met	Thr	Glu	Asp	Glu	Arg	Leu	Thr	Pro	Leu		
	210					215				•	220				
<210)> 6	5													
<21 1	l> 18	33													
<212	2> PI	RT													
<213	3> H		sapi	ens									•		
<400)> 69	5													
Met	Gly	Val	Arg	Val	His	Val	Val	Ala	Ala	Ser	Ala	Leu	Leu	Tyr	Phe

10

15

1

145/307

Ile	Leu	Leu	Ser	Gly	Thr	Arg	Cys	Glu	Glu	Asn	Cys	Gly	Asn	Pro	Glu
			20					25					30		
His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	Ile	Trp	Leu	Leu
		35					40					45			
Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	Thr	Ser	Leu	Cys
	50					55					60				
Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	G1n	Asn	Gly	Glu	Asp	Gly	Gly
65					70					75					80
Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	His	Asp	Ser	Thr
				85					90					95	
Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	Gly	Pro	Ala	Ala
			100					105	,				110		
Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	Leu	Gly	Gln	Leu
		115	i				120					125			
Pro	Ser	Ser	Leu	. Asp	Thr	Leu	Pro	Gly	Tyr	Glu	Glu	Ala	Leu	His	Met
	130)				135	5				140)			
Ser	Arg	, Phe	Thr	Val	Ala	Met	. Cys	Gly	Glr	Lys	. Ala	Pro	Asp	Leu	Pro
145	5				150)				155	5				160
Pro	Val	Pro	Glu	ı Glu	Lys	Glr	ı Leu	ı Pro	Pro	Thi	r Glu	ı Lys	s Glu	ı Ser	Thi
				165	5				170)				175	5
Arg	g Ile	e Val	l Ası	Sei	r Trj	Ası	n								
			180)											

<210> 66

⟨211⟩ 262

<212	?> PF	ζΓ													
<21 3	3> Ho	omo s	apie	ens											
<400)> 66	5												•	
Met	Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn
1				5		•			10					15	
Lys	Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn
			20					25					30		
Tyr	Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys
		35					40					45			
Glu	Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly
	50	•				55					60				
Ser	Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile
65					70					75	~				80
Pro	Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val
				85					90					95	
Phe	Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe
			100					105					110		
Phe	Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser
		115					120		-			125			
Ser	Thr	Val	Ala	Phe	Asp	Glu	Ala	Asp	Ile	Tyr	Leu	Asn	Ile	Thr	Asn
	130					135					140				
Ile	Leu	Asn	Ile	Ser	Asn	Gly	Asn	Tyr	Tyr	Pro	Ile	Met	Val	Thr	Gln
145					150					155					160
Leu	Thr	Leu	Glu	Val	Leu	His	Leu	Ser	Leu	Val	Val	Gly	Gln	Val	Ser
				165					170)				175	

147/307

Asn Asn Leu Leu His Ile Gly Pro Leu Ala Ser Glu Gln Met Phe Tyr Ala Val Ala Thr Lys Ile Arg Asp Glu Asn Thr Tyr Lys Ile Cys Thr Trp Leu Glu Ile Lys Val His His Val Leu Leu His Ile Gln Gly Thr Leu Thr Cys Ser Tyr Leu Ser His Ser Glu Gln Leu Val Phe Gln Ser Tyr Glu Tyr Val Asp Cys Arg Gly Asn Ala Ser Val Pro His Gln Leu Thr Pro His Pro Pro <210> 67 <211> 168 <212> PRT <213> Homo sapiens **<400> 67** Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Lys Asp Ala Pro Ser Asn Cys Val Val Tyr Pro Ser Ser Ser Gln Glu Ser Glu Asn Ile Thr Ala Ala Ala Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys

	50					55					60				
Leu	Pro	Leu	Ile	Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser
65					70			•		7 5					80
Asn	Arg	Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly
				85					90					95	
Ile	Glu	Asn	Pro	Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro
			100					105					110		
Glu	Ala	Lys	Val	Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	G1n	Arg	Gln	Pro
		115					120					125			
Ser	Glu	Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro	Leu	Ser
	130					135					140				
Pro	Pro	G1y	Pro	Gly	Asp	Val	Phe	Phe	Pro	Ser	Leu	Asp	Pro	Val	Pro
145					150					155					160
Asp	Ser	Pro	Asn	Phe	Glu	Val	Ile								
				165											
<21	0> 6	8													
<21	1> 2	43													
<21	2> F	PRT													٠
<21	.3> E	lomo	sapi	ens											
<40	0> 6	88													
Met	Ser	e Ser	Gly	Thr	Glu	Leu	Leu	Trp	Pro	Gly	, Ala	Ala	Leu	Leu	Val
1	ļ			5	;				10)				15	,
Leu	ı Lev	ı Gly	v Val	Ala	a Ala	Ser	Leu	Cy:	s Val	l Ar	g Cys	Se1	r Arg	Pro	Gly
			20)				25	5				30)	

la	Lys	Arg	Ser	Glu	Lys	Ile	Tyr	Gln	Gln	Arg	Ser	Leu	Arg	Glu	Asp
		35					40					45			
31n	G1n	Ser	Phe	Thr	Gly	Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala
	50					55					60				
lrp	Pro	Gly	Pro	Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu
65					70					75					80
Leu	Gln	Phe	Tyr	Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln
				85	;				90)				95	,
Asn	Phe	Ser	Lys	Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	ı Ala	Tyr	Ile	Asp
			100)				105	;				110)	
Pro	lle	e Ala	a Met	t Glu	ı Tyı	Tyr	- Ası	n Trp	G13	, Arg	g Phe	e Sei	r Lys	s Pro	Pro
		119	5				120	0				129	5		
Glu	ı As	p As	p As	p Al	a Ası	n Sei	r Ty:	r Glu	ı Ası	n Va	1 Le	u Il	е Су	s Ly:	s Gln
	13	0				13	5				14	0			
Ly	s Th	r Th	r Gl	u Th	r Gl	y Al	a Gl	n Gl	n Gl	u Gl	y Il	e Gl	y Gl	y Le	u Cys
14	5				15	0				15	5				160
Ar	g G1	y As	p Le	u Se	r Le	u Se	r Le	u Al	a Le	u Ly	s Th	r Gl	y Pr	o Th	r Ser
				16	55				17	0				17	5
G1	y Le	eu Cy	rs Pr	o Se	er Al	a Se	r Pr	o Gl	u Gl	u As	sp Gl	lu G1	u Se	er Gl	u Asp
			18	30				18	15				19	0	
Ty	r G	ln A	sn Se	er A	la Se	er Il	le H	is G	n Ti	rp Ai	rg G	lu So	er Ai	rg Ly	s Val
		19	95				20	00				20	05		
Me	et G	ly G	ln L	eu G	ln A	rg G	lu A	la S	er P	ro G	ly P	ro V	al G	ly S	er Pro
	2	10				2	15				2	20			
	C	1 C	1 Δ	en G	lv G	lu P	ro A	sp T	vr V	al A	sn G	ly G	lu ·V	al A	la Ala

150/307

Thr Glu Ala <210> 69 <211> 428 <212> PRT <213> Homo sapiens <400> 69 Met Ala Arg Ser Leu Cys Pro Gly Ala Trp Leu Arg Lys Pro Tyr Tyr Leu Gln Ala Arg Phe Ser Tyr Val Arg Met Lys Tyr Leu Phe Phe Ser Trp Leu Val Val Phe Val Gly Ser Trp Ile Ile Tyr Val Gln Tyr Ser Thr Tyr Thr Glu Leu Cys Arg Gly Lys Asp Cys Lys Lys Ile Ile Cys Asp Lys Tyr Lys Thr Gly Val Ile Asp Gly Pro Ala Cys Asn Ser Leu Cys Val Thr Glu Thr Leu Tyr Phe Gly Lys Cys Leu Ser Thr Lys Pro Asn Asn Gln Met Tyr Leu Gly Ile Trp Asp Asn Leu Pro Gly Val Val Lys Cys Gln Met Glu Gln Ala Leu His Leu Asp Phe Gly Thr Glu Leu

Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr
	130					135					140				
Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys
145					150					155					160
Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr
				165					170					175	
Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly	Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys
			180					185					190		
Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu	Asn	Glu	Phe	Leu	Leu	Met	Val	Ile
		195					200					205			
Leu	Gln	Asp	Lys	Glu	His	Thr	Pro	Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp
	210		•			215					220				
Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser
225					230					235					240
Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser
				245					250					255	
Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala
			260	1				265					270		
Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	Asp	Val	Phe	His	Gly	Pro	Tyr	Gly
		275					280					285			
Asn	Phe	Leu	Met	Cys	Asp	Thr	Ser	Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp
	290)				295	,				300				
Lys	Tyr	Asp	Leu	Lys	Met	Val	Asp	Met	Arg	Lys	Ile	Val	Pro	Glu	Thr
305	5				310)				315	,				320
Asr	Leu	I.vs	: G 1u	ı Leu	ı Ile	Lvs	: Asp	Arg	His	Cys	Glu	Ser	Asp	Leu	Asp

				325					330					335	
Cys	Val	Tyr	Gly	Thr	Asp	Cys	Arg	Thr	Ser	Cys	Asp	Gln	Ser	Thr	Met
•		•	340					345	•				350		
Lvs	Cvs	Thr	Ser	Glu	Val	Ile	Gln	Pro	Asn	Leu	Ala	Lvs		Cvs	G1n
2,0	0,0	355	•••				360					365		-,-	
I	Lou		Asp	Turn	ī au	Lau		G1 _w	A10	Dro	Sor		Τlο	Ara.	Gl.
Leu		Lys	vsh	1 9 1	Leu		шR	Oly	NIA	110		oru	116	vr. R.	GIG
	370		•			375					380				
Glu	Leu	Glu	Lys	Gln	Leu	Tyr	Ser	Cys	Ile	Ala	Leu	Lys	Val	Thr	Ala
385					390					395					400
Asn	Gln	Met	Glu	Met	G1u	His	Ser	Leu	Ile	Leu	Asn	Asn	Leu	Lys	Thr
				405					410					415	
Leu	Leu	Trp	Lys	Lys	Ile	Ser	Tyr	Thr	Asn	Asp	Ser				
			420					425							
<210)> 7()													
<21	1> 28	83													
<21	2> PI	RT													
<21 :	3> H	OEEO :	sapi	ens											
<40	0> 70	0										•			
Met	Pro	His	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His
1				5					10					15	
Gly	Ala	Gln	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr
			20					25					30		
Leu	Trp	Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val
		35					40					45			

Leu	His	Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys
	50					55					60				
Ser	Leu	Ala	Glu	Gl u	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser
65					70					75					80
Tyr	Trp	Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly
				85					90		-			95	
Ala	Leu	Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala
			100					105					110		
Val	Gly	Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln
		115					120					125			
Ala	Leu	Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile
	130					135					140				
Ser	Ala	Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala
145					150					155					160
Trp	Ser	Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln
				165					170					175	
Ala	Arg	Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly
			180					185					190		
Ala	Val	Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val
		195					200					205			
Pro	Asp	Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys
	210					215					220				
Leu	Pro	Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr
225					230					235					240
Ser	Asn	Ser	Ile	Tyr	G1u	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	Gln

154/307

245 250 255

Met Thr Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly

260 265 270

Arg Arg Lys Arg Leu Leu Trp Ala Ala

275 280

<210> 71

<211> 1167

<212> DNA

<213> Homo sapiens

<400> 71

60 atggatagag gggagaaaat acagctcaag agagtgtttg gatattggtg gggcacaagt tttttgctta ttaatatcat tggtgcagga atttttgtgt cccccaaagg tgtgttggca 120 180 tactcttgca tgaacgtggg agtctccctg tgcgtttggg ctggctgtgc catactggcc atgacatcaa ctctttgctc tgcagagata agtataagct tcccatgcag tggagctcaa 240 300 tactattttc tcaagagata ctttggctcc acggttgctt ttttgaatct ctggacatcc 360 ttgtttctgg ggtcaggggt agttgctggc caagctctgc tccttgctga gtacagcatc 420 cagcettttt ttcccagetg ctctgtccca aagetgccta agaaatgtct ggcattggcc 480 atgttgtgga ttgtaggaat tctgacttct cgtggtgtga aagaagtgac ttggcttcag 540 atagctagct cagtgctgaa agtgtccata cttagcttca tttccctaac tggagtagtg ttcctgataa gagggaaaaa ggagaatgta gaacgatttc agaatgcttt tgatgctgaa 600 cttccagata tctctcacct tatacaagcc atcttccaag gatattttgc atattcaggg 660 720 gagetgaaga ageceagaac aacaatteee aaatgeatat ttaetgegtt acetetggtg 780 actgtagttt atttactggt taacatttcc tatctgactg ttctgacacc cagggaaatt 840 ctctcttcag atgctgtagc tatcacatgg gctgatcgag cttttccctc attagcatgg

155/307

attatgcctt	ttgctatttc	tacctcatta	tttagcaacc	ttctgatttc	tatatttaaa	900
tcttcgagac	caatatatct	tgcaagccaa	gagggccagc	tgcctttgct	atttaataca	960
cttaatagtc	actettetee	atttacagct	gtgctactac	ttgtcacttt	gggatccctt	1020
gcaattatct	taacaagtct	aattgatttg	ataaactata	ttttttcac	gggttcatta	1080
tggtctatat	tattaatgat	aggaatacta	aggcggagat	accaggaacc	caatctatct	1140
ataccttata	aggtaaaatt	ggatttc				1167

⟨210⟩ 72

<211> 1044

<212> DNA

<213> Homo sapiens

<400> 72

60 atggcggcga ctctgggacc ccttgggtcg tggcagcagt ggcggcgatg tttgtcggct 120 cgggatgggt ccaggatgtt actccttctt cttttgttgg ggtctgggca ggggccacag 180 caagtcgggg cgggtcaaac gttcgagtac ttgaaacggg agcactcgct gtcgaagccc 240 taccagggtg tgggcacagg cagttcctca ctgtggaatc tgatgggcaa tgccatggtg 300 atgacccagt atatccgcct taccccagat atgcaaagta aacagggtgc cttgtggaac 360 cgggtgccat gtttcctgag agactgggag ttgcaggtgc acttcaaaat ccatggacaa 420 ggaaagaaga atctgcatgg ggatggcttg gcaatctggt acacaaagga tcggatgcag 480 ccagggcctg tgtttggaaa catggacaaa tttgtggggc tgggagtatt tgtagacacc 540 taccccaatg aggagaagca gcaagagcgg gtattcccct acatctcagc catggtgaac 600 aacggctccc tcagctatga tcatgagcgg gatgggcggc ctacagagct gggaggctgc 660 acagccattg tccgcaatct tcattacgac accttcctgg tgattcgcta cgtcaagagg 720 catttgacga taatgatgga tattgatggc aagcatgagt ggagggactg cattgaagtg 780 cccggagtcc gcctgccccg cggctactac ttcggcacct cctccatcac tggggatctc

PCT/JP00/05356 WO 01/12660

156/307

60

300

420

480

540

600

660

720

780

783

tcagata	atc	atgatgtcat	ttccttgaag	ttgtttgaac	tgacagtgga	gagaacccca	840
gaagagg	aaa	agctccatcg	agatgtgttc	ttgccctcag	tggacaatat	gaagctgcct	900
gagatga	cag	ctccactgcc	gccctgagt	ggcctggccc	tcttcctcat	cgtcttttc	960
tccctgg	tgt	tttctgtatt	tgccatagtc	attggtatca	tactctacaa	caaatggcag	1020
gaacaga	gcc	gaaagcgctt	ctac ·				1044

⟨210⟩ 73

(211) 783

<212> DNA

<213> Homo sapiens

<400> 73

atggaactgc ttcaagtgac cattetttt ettetgeeca gtatttgeag cagtaacage 120 acaggtgttt tagaggcagc taataattca cttgttgtta ctacaacaaa accatctata 180 acaacaccaa acacagaatc attacagaaa aatgttgtca caccaacaac tggaacaact cctaaaggaa caatcaccaa tgaattactt aaaatgtctc tgatgtcaac agctactttt 240 ttaacaagta aagatgaagg attgaaagcc acaaccactg atgtcaggaa gaatgactcc 360 atcatttcaa acgtaacagt aacaagtgtt acacttccaa atgctgtttc aacattacaa agttccaaac ccaagactga aactcagagt tcaattaaaa caacagaaat accaggtagt gttctacaac cagatgcatc accttctaaa actggtacat taacctcaat accagttaca attccagaaa acacctcaca gtctcaagta ataggcactg agggtggaaa aaatgcaagc acttcagcaa ccagccggtc ttattccagt attattttgc cggtggttat tgctttgatt gtaataacac tttcagtatt tgttctggtg ggtttgtacc gaatgtgctg gaaggcagat ccgggcacac cagaaaatgg aaatgatcaa cctcagtctg ataaagagag cgtgaagctt cttaccgtta agacaatttc tcatgagtct ggtgagcact ctgcacaagg aaaaaccaag aac

157/307

(210>	74
-------	----

<211> 666

<212> DNA

<213> Homo sapiens

<400> 74

60 atgttgtggc tgctcttttt tctggtgact gccattcatg ctgaactctg tcaaccaggt gcagaaaatg cttttaaagt gagacttagt atcagaacag ctctgggaga taaagcatat 120 180 gcctgggata ccaatgaaga atacctcttc aaagcgatgg tagctttctc catgagaaaa 240 gttcccaaca gagaagcaac agaaatttcc catgtcctac tttgcaatgt aacccagagg 300 gtatcattct ggtttgtggt tacagaccct tcaaaaaaatc acacccttcc tgctgttgag 360 gtgcaatcag ccataagaat gaacaagaac cggatcaaca atgccttctt tctaaatgac 420 caaactctgg aatttttaaa aatcccttcc acacttgcac cacccatgga cccatctgtg 480 cccatctgga ttattatatt tggtgtgata ttttgcatca tcatagttgc aattgcacta 540 ctgattttat cagggatctg gcaacgtaga agaaagaaca aagaaccatc tgaagtggat gacgctgaag ataagtgtga aaacatgatc acaattgaaa atggcatccc ctctgatccc 600 660 ctggacatga agggagggca tattaatgat gccttcatga cagaggatga gaggctcacc 666 cctctc

<210> 75

⟨211⟩ 549

<212> DNA

(213) Homo sapiens

<400> 75

158/307

gggacgagat gtgaggaaaa ctgtggtaat cctgaacatt gcctgaccac agactgggta 120 catctctggt atatatggtt gctagtggta attggcgcgc tgcttctcct gtgtggcctg 180 240 acgtecetgt getteegetg etgetgtetg ageegeeage aaaatgggga agatggggge ccaccacct gtgaagtgac cgtcattgct ttcgatcacg acagcactct ccagagcact 300 360 atcacatctc tgcagtcggt gtttggccct gcagctcgga ggatcctggc tgtggctcac 420 tcccacaget ccctgggcca getgccctcc tetttggaca ccctcccagg gtatgaagaa 480 gctcttcaca tgagtcgctt cacagtagcc atgtgcgggc agaaagcacc tgatctaccc ccagtacctg aagaaaagca gctgcctcca acagagaagg agtcgactcg aatagttgac 540 549 tcttggaac

<210> 76

<211> 786

<212> DNA

<213> Homo sapiens

<400> 76

60 atgggtaaga cgttttccca gctgggctct tggcgggagg atgagaacaa gtcaatcctg 120 tcctccaaac cagccattgg cagcaaggct gtcaactact ccagcaccgg tagcagcaag 180 tctttttgtt cctgtgtgcc ttgtgaagga actgctgatg ccagcttcgt gacttgtccc 240 acctgccagg gcagtggcaa gattccccaa gagctggaga agcagttggt ggctctcatt 300 ccctatgggg accagagget gaagcccaag cacacgaagc tetttgtgtt cetggccgtg 360 ctcatctgcc tggtgacctc ctccttcatc gtctttttcc tgtttccccg gtccgtcatt 420 gtgcagcctg caggcctcaa ctcctccaca gtggcctttg atgaggctga tatctacctc aacataacga atatettaaa cateteeaat ggeaactaet acceeattat ggtgacacag 480 540 ctgacceteg aggttetgea cetgtecete gtggtgggge aggtttecaa caacettete 600 ctacacattg gccctttggc cagtgaacag atgttttacg cagtagctac caagatacgg

159/307

gatgaaaaca	catacaaaat	ctgtacctgg	ctggaaatca	aagtccacca	tgtgcttttg	660
cacatccagg	gcaccctgac	ctgttcatac	ctgagccatt	cagagcagct	ggtctttcag	720
agctatgaat	atgtggactg	ccgaggaaac	gcatctgtgc	cccaccagct	gacccctcac	780
ccacca						786

<210> 77

<211> 504

<212> DNA

<213> Homo sapiens

<400> 77

60 atgggcgtcc ccacggccct ggaggccggc agctggcgct ggggatccct gctcttcgct ctcttcctgg ctgcgtccct aggcaaagat gcaccatcca actgtgtggt gtacccatcc 120 180 tcctcccagg agagtgaaaa catcacggct gcagccctgg ctacgggtgc ctgcatcgta 240 ggaatcetet geeteeect cateetgete etggtetaca agcaaaggea ggeageetee 300 aaccgccgtg cccaggagct ggtgcggatg gacagcaaca ttcaagggat tgaaaacccc 360 ggctttgaag cctcaccacc tgcccagggg atacccgagg ccaaagtcag gcacccctg 420 tcctatgtgg cccagcggca gccttctgag tctgggcggc atctgctttc ggagcccagc 480 accecctgt ctectecagg ccccggagac gtettettec catecetgga ccctgteect gactetecaa actttgaggt cate 504

<210> 78

<211> 729

<212> DNA

<213> Homo sapiens

<400> 78

160/307

atgagctcgg	ggactgaact	gctgtggccc	ggagcagcgc	tgctggtgct	gttgggggtg	60
gcagccagtc	tgtgtgtgcg	ctgctcacgc	ccaggtgcaa	agaggtcaga	gaaaatctac	120
cagcagagaa	gtctgcgtga	ggaccaacag	agctttacgg	ggtcccggaċ	ctactccttg	180
gtcgggcagg	catggccagg	acccctggcg	gacatggcac	ccacaaggaa	ggacaagctg	240
ttgcaattct	accccagcct	ggaggatcca	gcatcttcca	ggtaccagaa	cttcagcaaa	300
ggaagcagac	acgggtcgga	ggaagcctac	atagacccca	ttgccatgga	gtattacaac	360
tgggggcggt	tctcgaagcc	cccagaagat	gatgatgcca	attcctacga	gaatgtgctc	420
atttgcaagc	agaaaaccac	agagacaggt	gcccagcagg	agggcatagg	tggcctctgc	480
agaggggacc	tcagcctgtc	actggccctg	aagactggcc	ccacttctgg	tctctgtccc	540
tctgcctccc	cggaagaaga	tgaggaatct	gaggattatc	agaactcagc	atccatccat	600
cagtggcgcg	agtccaggaa	ggtcatgggg	caactccaga	gagaagcatc	ccctggcccg	660
gtgggaagcc	cagacgagga	ggacggggaa	ccggattacg	tgaatgggga	ggtggcagcc	720
acagaagcc						729

<210> 79

<211> 1284

<212> DNA

<213> Homo sapiens

<400> 79

atggcgagga gtctctgtcc gggggcctgg ctaaggaaac cctattacct ccaggctcgc 60
ttctcatatg tgcggatgaa atatctttc ttttcctggt tagtggtttt tgttggaagc 120
tggattatat atgtgcagta ttctacctat acagaattat gcagaggaaa ggactgtaag 180
aaaataatat gtgacaagta caagactgga gttattgatg ggcctgcatg taacagcctt 240
tgtgttacag aaactcttta ctttggaaaa tgtttatcca ccaagcccaa caatcagatg 300
tatttaggga tttgggataa tctaccaggt gttgtgaaat gtcaaatgga acaagcgctt 360

161/307

ttį	ggaad	ctga	attggaa	cca	agaaaaga	aa	tagtgctatt	tgataa	gcca	420
cta	actgi	tạca	aaaattt	aaa	gaaatggt	ct	atagtctctt	taaggo	aaaa	480
aaį	ggaaa	acct	ctctgaa	ctg	gttaatct	ca	tcttgacggt	ggctga	tgga .	540
gce	caggi	tttc	cttggga	gaa	gcaaagtc	gg	catgggcact	tcttca	actg	600
tte	ctcat	tggt	gatactt	caa	gataaaga	ac	atacccccaa	attaat	ggga	660
aco	ctcta	atgt	gatggaa	agt	gttgaata	ta	cctctcttta	tggaat	aagc	720
tca	attga	aact	ttttatt	cca	tctgggtt	ca	gaagaagcat	ggatca	gctg	780
ca	tggc	caag	aaaggcc	aaa	atagccat	ag	gacttctaga	atttgt	ggaa	840
atį	ggcc	ccta	cggaaat	ttc	ctcatgtg	cg	atactagtgc	caaaaa	ccta	900
ata	aagta	atga	tttgaaa	atg	gtggatat	ga	gaaaaattgt	gccaga	gaca	960
aa	ctta	ttaa	ggatcgt	cac	tgtgagtc	tg	atttggactg	tgtcta	tggc	1020
ga:	acta	gctg	tgatcag	agt	acaatgàa	gt	gtacttcaga	agtgat	acaa	1080
ca	aaago	cttg	tcagtta	ctc	aaagacta	cc	tactgcgtgg	tgctcc	aagt	1140
aa	gaati	taga	aaagcag	ctt	tattcttg	ta	ttgctctcaa	agtcac	agca	1200
aa	atgga	aca	ttctttg	ata	ctasatsa	cc	taaaaacatt	attgtg	gaag	1260
ac:	actas	atos	ctct							1284

<210> 80

<211> 849

<212> DNA

<213> Homo sapiens

<400> 80

atgccccact ccagcctgca tccatccatc ccgtgtccca ggggtcacgg ggcccagaag 60 gcagccttgg ttctgctgag tgcctgcctg gtgacccttt gggggctagg agagccacca 120 gagcacactc tccggtacct ggtgctccac ctagcctccc tgcagctggg actgctgtta 180

162/307

aacggggtct	gcagcctggc	tgaggagctg	caccacatcc	actccaggta	ccggggcagc	240
tactggagga	ctgtgcgggc	ctgcctgggc	tgcccctcc	gccgtggggc	cctgttgctg	300
ctgtccatct	atttctacta	ctecctccca	aatgcggtcg	gcccgccctt	cacttggatg	360
cttgccctcc	tgggcctctc	gcaggcactg	aacatcctcc	tgggcctcaa	gggcctggcc	420
ccagctgaga	tctctgcagt	gtgtgaaaaa	gggaatttca	acgtggccca	tgggctggca	480
tggtcatatt	acatcggata	tctgcggctg	atcctgccag	agctccaggc	ccggattcga	540
acttacaatc	agcattacaa	caacctgcta	cggggtgcag	tgagccagcg	gctgtatatt	600
ctcctcccat	tggactgtgg	ggtgcctgat	aacctgagta	tggctgaccc	caacattcgc	660
ttcctggata	aactgcccca	gcagaccgct	gaccgtgctg	gcatcaagga	tcgggtttac	720
agcaacagca	tctatgagct	tctggagaac	gggcagcgga	acctgcagat	gacagcagct	780
tctcgctgtc	ccaggaggtt	ctccggcacc	tgcggcagga	ggaaaaggaa	gaggttactg	840
tgggcagct				•	•	849

<210> 81

⟨211⟩ 1376

<212> DNA

<213≻ Homo sapiens

<220>

<221> CDS

⟨222⟩ (100)...(1269)

<400> 81

atttttattt caggaatcca tcaacatcct ttgcagctac ataggcagga aaatctagaa 60
attgtaattt atatagaatt ttaaaactct tcaattaca atg gat aga ggg gag 114
Met Asp Arg Gly Glu

5

1

aaa	ata	cag	ctc	aag	aga	gtg	ttt	gga	tat	tgg	tgg	ggc	aca	agt	ttt	162
Lys	Ile	Gln	Leu	Lys	Arg	Val	Phe	Gly	Tyr	Trp	Trp	Gly	Thr	Ser	Phe	
				10					15					20		
ttg	ctt	att	aat	atc	att	ggt	gca	gga	att	ttt	gtg	tcc	ccc	aaa	ggt	210
Leu	Leu	Ile	Asn	Ile	Ile	Gly	Ala	G1y	Ile	Phe	Va1	Ser	Pro	Lys	Gly	
			25					30					35			
gtg	ttg	gca	tac	tct	tgc	atg	aac	gtg	gga	gtc	tcc	ctg	tgc	gtt	tgg	258
Val	Leu	Ala	Tyr	Ser	Cys	Met	Asn	Val	Gly	Val	Ser	Leu	Cys	Val	Trp	
		40					45					50				
gct	ggc	tgt	gcc	ata	ctg	gcc	atg	aca	tca	act	ctt	tgc	tct	gca	gag	306
Ala	Gly	Cys	Ala	Ile	Leu	Ala	Met	Thr	Ser	Thr	Leu	Cys	Ser	Ala	Glu	
	55	•				60		•			65		٠			
ata	agt	ata	agc	ttc	cca	tgc	agt	gga	gct	caa	tac	tat	ttt	ctc	aag	354
Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	Tyr	Tyr	Phe	Leu	Lys	
70					7 5					80					85	
aga	tac	ttt	ggc	tcc	acg	gtt	gct	ttt	ttg	aat	ctc	tgg	aca	tcc	ttg	402
Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	Leu	Trp	Thr	Ser	Leu	
				90					95					100		
ttt	ctg	ggg	tca	ggg	gta	gtt	gct	ggc	caa	gct	ctg	ctc	ctt	gct	gag	450
Phe	Leu	G1y	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	Leu	Leu	Leu	Ala	Glu	
			105					110	•				115			
tac	agc	atc	cag	cct	ttt	ttt	ccc	agc	tgc	tct	gtc	сса	aag	ctg	cct	498
Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	Val	Pro	Lys	Leu	Pro	
		120					125					130				
ลลฮ	ลลล	tøt	ctø	gca	ttσ	gcc	atg	ttg	tgg	att	gta	7 78	att	ctø	act	546

Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile	Val	Gly	Ile	Leu	Thr	
	135					140					145					
tct	cgť	ggt	gtg	aaa	gaa	gtg	act	tgg	ctt	cag	ata	gct	agc	tca	gtg	594
Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	Ile	Ala	Ser	Ser	Val	
150					155					160					165	
ctg	aaa	gtg	tcc	ata	ctt	agc	ttc	att	tcc	cta	act	gga	gta	gtg	ttc	642
Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	Thr	Gly	Val	Val	Phe	
				170					175					180		
ctg	ata	aga	ggg	aaa	aag	gag	aat	gta	gaa	cga	ttt	cag	aat	gct	ttt	690
Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	Phe	G1n	Asn	Ala	Phe	
			185					190					195			
gat	gct	gaa	ctt	cca	gat	atc	tct	cac	ctt	ata	caa	gcc	atc	ttc	caa	738
Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile	Gln	Ala	Ile	Phe	Gln	
		200					205					210				
gga	tat	ttt	gca	tat	tca	ggg	gag	ctg	aag	aag	ccc	aga	aca	aca	att	786
Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys	Pro	Arg	Thr	Thr	Ile	
	215					220					225					
ccc	aaa	tgc	ata	ttt	act	gcg	tta	cct	ctg	gtg	act	gta	gtt	tat	tta	834
Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val	Thr	Val	Val	Tyr	Leu	
230					235					240					245	
ctg	gtt	aac	att	tcc	tat	ctg	act	gtt	ctg	aca	ccc	agg	gaa	att	ctc	882
Leu	Val	Asn	Ile	Ser	Tyr	Leu	Thr	Val	Leu	Thr	Pro	Arg	Glu	Ile	Leu	
				250					255					260		
tct	tca	gat	gct	gta	gct	atc	aca	tgg	gct	gat	cga	gct	ttt	ccc	tca	930
Ser	Ser	Asn	Ala	Val	Ala	Ile	Thr	Trn	Ala	Asp	Arg	Ala	Phe	Pro	Ser	

			265					270					275			
tta	gca	tgg	att	atg	cct	ttt	gct	att	tct	acc	tca	tta	ttt	agc	aac	978
Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser-	Thr	Ser	Leu	Phe	Ser	Asn	
		280					285					290				
ctt	ctg	att	tct	ata	ttt	aaa	tct	tcg	aga	cca	ata	tat	ctt	gca	agc	1026
Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro	Ile	Tyr	Leu	Ala	Ser	
	295					300					305					
caa	gag	ggc	cag	ctg	cct	ttg	cta	ttt	aat	aca	ctt	aat	agt	cac	tct	1074
Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr	Leu	Asn	Ser	His	Ser	
310					315					320					325	
tct	cca	ttt	aca	gct	gtg	cta	cta	ctt	gtc	act	ttg	gga	tcc	ctt	gca	1122
Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr	Leu	Gly	Ser	Leu	Ala	٠
				330					335					340		
att	atc	tta	aca	agt	cta	att	gat	ttg	ata	aac	tat	att	ŧtt	ttc	acg	1170
Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn	Tyr	Ile	Phe	Phe	Thr	
			345					350					355			
ggt	tca	tta	tgg	tct	ata	tta	tta	atg	ata	gga	ata	cta	agg	cgg	aga	1218
Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly	Ile	Leu	Arg	Arg	Arg	
		360			-		365					370				
tac	cag	gaa	ccc	aat	cta	tct	ata	cct	tat	aag	gta	aaa	ttg	gat	ttc	1266
Tyr	Gln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys	Val	Lys	Leu	Asp	Phe	
	375					380					385					
taa	t tc	tttt	ctgt	gtg	aaat	aac	agat	attg	ag t	ataa	ctgt	a tt	taag	atta		1320
taa	tear	900	atrt	ataa	at a	σatr	ttot	a 33	tant	raat	tac	tata	222	caca	tσ	1376

<210> 82				
<211> 2392				
<212> DNA			•	•
<213> Homo sapiens				
<220>				
<221> CDS				
⟨222⟩ (22) (1068)				
<400> 82				
gaagggtcgt tggtgggaaa g	atg gcg gcg	act ctg gga cc	c ctt ggg tcg	51
	Met Ala Ala	Thr Leu Gly Pro	o Leu Gly Ser	
	1	5	10	
tgg cag cag tgg cgg cga	tgt ttg tcg	gct cgg gat gg	g tcc agg atg	99
Trp Gln Gln Trp Arg Arg	Cys Leu Ser	Ala Arg Asp Gl	y Ser Arg Met	
15		20	25	
tta ctc ctt ctt ctt ttg	ttg ggg tct	ggg cag ggg cc	a cag caa gtc	147
Leu Leu Leu Leu Leu	Leu Gly Ser	Gly Gln Gly Pr	o Gln Gln Val	
30	35		40	
ggg gcg ggt caa acg ttc	gag tac ttg	aaa cgg gag ca	c tcg ctg tcg	195
Gly Ala Gly Gln Thr Phe	Glu Tyr Leu	Lys Arg Glu Hi	s Ser Leu Ser	
45	50	5	55	
aag ccc tac cag ggt gtg	ggc aca ggc	agt tcc tca ct	g tgg aat ctg	243
Lys Pro Tyr Gln Gly Val	Gly Thr Gly	Ser Ser Ser Le	u Trp Asn Leu	
60	65	70		
atg ggc aat gcc atg gtg	atg acc cag	tat atc cgc ct	t acc cca gat	291 .
Met Glv Asn Ala Met Val	Met Thr Gln	Tyr Ile Arg Le	eu Thr Pro Asp	

75					80					85					90	
atg	caa	agt	aaa	cag	ggt	gcc	ttg	tgg	аас	cgg	gtg	cca	tgt	ttc	ctg	339
Met	G1n	Ser	Lys	Gln	Gly	Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu ·	
				95					100					105		
aga	gac	tgg	gag	ttg	cag	gtg	cac	ttc	aaa	atc	cat	gga	caa	gga	aag	387
Arg	Asp	Trp	Glu	Leu	Gln	Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	
			110					115					120			
aag	aat	ctg	cat	ggg	gat	ggc	ttg	gca	atc	tgg	tac	aca	aag	gat	cgg	435
Lys	Asn	Leu	His	Gly	Asp	Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	
		125					130					135				
atg	cag	сса	ggg	cct	gtg	ttt	gga	aac	atg	gac	aaa	ttt	gtg	ggg	ctg	483
Met	Gln	Pro	Gly	Pro	Val	Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	
	140					145					150					
gga	gta	ttt	gta	gac	acc	tac	ссс	aat	gag	gag	aag	cag	caa	gag	cgg	531
Gly	Val	Phe	Val	Asp	Thr	Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	
155					160					165					170	
gta	ttc	ссс	tac	atc	tca	gcc	atg	gtg	aac	aac	ggc	tcc	ctc	agc	tat	579
Val	Phe	Pro	Tyr	Ile	Ser	Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	
				175					180		•			185		
gat	cat	gag	cgg	gat	ggg	cgg	cct	aca	gag	ctg	gga	ggc	tgc	aca	gcc	627
Asp	His	Glu	Arg	Asp	Gly	Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	Ala	
			190					195					200			
att	gtc	cgc	aat	ctt	cat	tac	gac	acc	ttc	ctg	gtg	att	cgc	tac	gtc	675
Ile	Val	Arg	Asn	Leu	His	Tyr	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	
		205					210					215				

aag	agg	cat	ttg	acg	ata	atg	atg	gat	att	gat	ggc	aag	cat	gag	tgg	723
Lys	Arg	His	Leu	Thr	Ile	Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	•
	220					225			-		230					
agg	gac	tgc	att	gaa	gtg	ccc	gga	gtc	cgc	ctg	ссс	cgc	ggc	tac	tac	771
Arg	Asp	Cys	Ile	Glu	Val	Pro	Gly	Val	Arg	Leu	Pro	Arø	Glv	Tyr	Tyr	
235					240					245					250	
ttc	ggc	acc	tcc	tcc	atc	act	ggg	gat	ctc	tca	gat	aat	cat	gat	gtc	819
Phe	Gly	Thr	Ser	Ser	Ile	Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	
				255					260					265		
att	tcc	ttg	aag	ttg	ttt	gaa	ctg	aca	gtg	gag	aga	acc	cca	gaa	gag	867
Ile	Ser	Leu	Lys	Leu	Phe	Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	Glu	
			270					275					280			
gaa	aag	ctc	cat	cga	gat	gtg	ttc	ttg	ccc	tca	gtg	gac	aat	atg	aag	915
Glu	Lys	Leu	His	Arg	Asp	Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	
		285					290					295				
ctg	cct	gag	atg	aca	gct	cca	ctg	ccg	ссс	ctg	agt	ggc	ctg	gcc	ctc	963
Leu	Pro	Glu	Met	Thr	Ala	Pro	Leu	Pro	Pro	Leu	Ser	Gly	Leu	Ala	Leu	
	300					305					310					
ttc	ctc	atc	gtc	ttt	ttc	tcc	ctg	gtg	ttt	tct	gta	ttt	gcc	ata	gtc	1011
Phe	Leu	Ile	Val	Phe	Phe	Ser	Leu	Val	Phe	Ser	Val	Phe	Ala	Ile	Val	
315					320					325					330	
att	ggt	atc	ata	ctc	tac	aac	aaa	tgg	cag	gaa	cag	ago	cga	aag	cgc	1059
Ile	Gly	Ile	Ile	Leu	Tyr	Asn	Lys	Trp	Gln	Glu	Gln	Ser	Arg	Lys	Arg	
				335					340					345		
ttc	ton	tas	ac c	ctcc	tøct	g cc	acca	cttt	tot	gact	øtc	acco	atos	99		1110

169/307

Phe Tyr

tatggaagga	gcaggcactg	gcctgagcat	gcagcctgga	gagtgttctt	gtctctagca	1170
gctggttggg	gactatattc	tgtcactgga	gttttgaatg	cagggacccc	gcattcccat	1230
ggttgtgcat	ggggacatct	aactctggtc	tgggaagcca	cccaccccag	ggcaatgctg	1290
ctgtgatgtg	cctttccctg	cagtccttcc	atgtgggagc	agaggtgtga	agagaattta	1350
cgtggttgtg	atgccaaaat	cacagaacag	aatttcatag	cccaggctgc	cgtgttgttt	1410
gactcagaag	gcccttctac	ttcagttttg	aatccacaaa	gaattaaaaa	ctggtaacac	1470
cacaggettt	ctgaccatcc	attcgttggg	ttttgcattt	gacccaaccc	tctgcctacc	1530
tgaggagctt	tctttggaaa	ccaggatgga	aacttcttcc	ctgccttacc	ttcctttcac	1590
tccattcatt	gtcctctctg	tgtgcaacct	gagctgggaa	aggcatttgg	atgcctctct	1650
gttggggcct	ggggctgcag	aacacacctg	cgtttcactg	gccttcatta	ggtggcccta	1710
gggagatggc	tttctgcttt	ggatcactgt	tccctagcat	gggtcttggg	tctattggca	1770
tgtccatggc	cttcccaatc	aagtctcttc	aggccctcag	tgaagtttgg	ctaaaggttg	1830
gtgtaaaaat	caagagaagc	ctggaagaca	tcatggatgc	catggattag	ctgtgcaact	1890
gaccagctcc	aggtttgatc	aaaccaaaag	caacatttgt	catgtggtct	gaccatgtgg	1950
agatgtttct	ggacttgcta	gagcctgctt	agctgcatgt	tttgtagtta	cgatttttgg	2010
aatcccactt	tgagtgctga	aagtgtaagg	aagctttctt	cttacacctt	gggcttggat	2070
attgcccaga	gaagaaattt	ggctttttt	ttcttaatgg	acaagagaca	gttgctgttc	2130
tcatgttcca	agtctgagag	caacagaccc	tcatcatctg	tgcctggaag	agttcactgt	2190
cattgagcag	cacagcctga	gtgctggcct	ctgtcaaccc	ttattccact	gccttatttg	2250
acaaggggtt	acatgctgct	caccttactg	ccctgggatt	aaatcagtta	caggccagag	2310
tctccttgga	gggcctggaa	ctctgagtcc	tcctatgaac	ctctgtagcc	taaatgaaat	2370
tcttaaaatc	accgatggaa	cc				2392

(211) 1410					
<212> DNA					
<213> Homo s	apiens				
<220>					
<221> CDS					
<222> (55)	. (840)				
<400> 83	-				
attgtccctg c	ctgcttctg g	agaaagaag at	attgacac cato	ctacggg cacc	atg 57
					Met
					1
gaa ctg ctt	caa gtg acc	att ctt ttt	ctt ctg ccc	agt att tgc	agc 105
Glu Leu Leu	Gln Val Thr	Ile Leu Phe	Leu Leu Pro	Ser Ile Cys	Ser
	5	10	*	15	
agt aac agc	aca ggt gtt	tta gag gca	gct aat aat	tca ctt gtt	gtt 153
Ser Asn Ser	Thr Gly Val	Leu Glu Ala	Ala Asn Asn	Ser Leu Val	Val
20		25		30	
act aca aca	aaa cca tct	ata aca aca	cca aac aca	gaa tca tta	cag 201
Thr Thr Thr	Lys Pro Ser	Ile Thr Thr	Pro Asn Thr	Glu Ser Leu	Gln
35		40	45		
aaa aat gtt	gtc aca cca	aca act gga	aca act cct	aaa gga aca	atc 249
Lys Asn Val	Val Thr Pro	Thr Thr Gly	Thr Thr Pro	Lys Gly Thr	Ile
50	55		60		65
acc aat gaa	tta ctt aaa	atg tct ctg	atg tca aca	gct act ttt	tta 297
Thr Asn Glu	Leu Leu Lys	Met Ser Leu	Met Ser Thr	Ala Thr Phe	Leu
	70		75	80	

aca	agt	888	gat	gaa	gga	ttg	aaa	gcc	aca	acc	act	gat	gtc	agg	aag	345
Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg	Lys	
		•	85					90					95			
aat	gac	tcc	atc	att	tca	aac	gta	aca	gta	aca	agt	gtt	aca	ctt	cca	393
Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu	Pro	
		100					105					110				
aat	gct	gtť	tca	aca	tta	caa	agt	tcc	aaa	ссс	aag	act	gaa	act	cag	441
Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr	Gln	
	115					120					125					
agt	tca	att	aaa	aca	aca	gaa	ata	cca	ggt	agt	gtt	cta	caa	cca	gat	489
Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro	Asp	
130					135					140					145	
gca	tca	cct	tct	aaa	act	ggt	aca	tta	acc	tca	ata	cca	gtt	aca	att	537
Ala	Ser	Pro	Ser	Lys	Thr	Gly	Thr	Leu	Thr	Ser	Ile	Pro	Val	Thr	Ile	
				150					155					160		
cca	gaa	aac	acc	tca	cag	tct	caa	gta	ata	ggc	act	gag	ggt	gga	aaa	585
Pro	Glu	Asn	Thr	Ser	Gln	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly	Lys	
			165					170					175			
aat	gca	agc	act	tca	gca	acc	agc	cgg	tct	tat	tcc	.agt	att	att	ttg	633
						Thr										
		180					185	0		-,-		190				
cca	ata		ott	act	tta	att		ata	909	ctt	tca		+++	att	cta	681
						Ile								_	_	001
		191	116	VIG	Leu		val	116	ш	ren		Tai	rne	191	ren	
	195		4		_ 4	200					205					a 00
& L &	gg L	TTQ	tac	cga	atg	LZC	ταα	aag	gca	gat	CCE	ggc	аса	cca	gaa	729

172/307

Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr	Pro Glu
210 215 . 220	225
aat gga aat gat caa cct cag tct gat aaa gag agc gtg aag	ctt ctt 777
Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys	Leu Leu
230 235	240
acc gtt aag aca att tet cat gag tet ggt gag cac tet gca	caa gga 825
Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala	Gln Gly
245 250 255	
aaa acc aag aac tga cagcttgagg aattctctcc acacctaggc aat	aattacg 880
Lys Thr Lys Asn	
260	
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc a	gaatcaatc 940
ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa g	tgatgtcca 1000
gctgacatgc aataatttga tggaatcaaa aagaaccccg gggctctcct g	ttctctcac 1060
atttaaaaat tccattactc catttacagg agcgttccta ggaaaaggaa t	tttaggagg 1120
agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata g	gcatgactt 1180
tccttaatgt ttaaagtttt ccgggccaag aatttttatc catgaagact t	tcctacttt 1240
tctcggtgtt cttatattac ctactgttag tatttattgt ttaccactat g	ttaatgcag 1300
ggaaaagttg cacgtgtatt attaaatatt aggtagaaat cataccatgc ta	
	actttgtac 1360

⟨210⟩ 84

<211> 1347

<212> DNA

<213> Homo sapiens

<220	>															
<221	> CI	OS .														
<222	> (2	26)	. (69	4)											•	
<400	> 84	ŀ														
gcct	tgtg	gtt t	tcca	ccct	g aa	aga	atg	ttg	tgg	ctg	ctc	ttt	ttt	ctg	gtg	52
							Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	
							1				5					
act	gcc	att	cat	gct	gaa	ctc	tgt	caa	cca	ggt	gca	gaa	aat	gct	ttt	100
Thr	Ala	Ile	His	Ala	Glu	Leu	Cys	G1n	Pro	Gly	Ala	Glu	Asn	Ala	Phe	
10					15					20					25	
aaa	gtg	aga	ctt	agt	atc	aga	aca	gct	ctg	gga	gat	aaa	gca	tat	gcc	148
Lys	Val	Arg	Leu	Ser	Ile	Arg	Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	•
				30					35					40		
tgg	gat	acc	aat	gaa	gaa	tac	ctc	ttc	aaa	gcg	atg	gta	gct	ttc	tcc	196
Trp	Asp	Thr	Asn	Glu	Glu	Tyr	Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	
			45					50					55			
atg	aga	aaa	gtt	ccc	aac	aga	gaa	gca	aca	gaa	att	tcc	cat	gtc	cta	244
Met	Arg	Lys	Val	Pro	Asn	Arg	Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	
		60					65					70				
ctt	tgc	aat	gta	acc	cag	agg	gta	tca	ttc	tgg	ttt	gtg	gtt	aca	gac	292
Leu	Cys	Asn	Val	Thr	Gln	Arg	Val	Ser	Phe	Trp	Phe	Val	Val	Thr	Asp	
	75					80					85					
cct	tca	aaa	aat	cac	acc	ctt	cct	gct	gtt	gag	gtg	caa	tca	gcc	ata	340
Pro	Ser	Lys	Asn	His	Thr	Leu	Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile	
00					05					100					105	

ga atg aac aag aac cgg atc aac aat gcc ttc ttt cta aat gac caa	388
urg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp Gln	
110 115 120	
act ctg gaa ttt tta aaa atc cct tcc aca ctt gca cca ccc atg gac	436
Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro Met Asp	
125 130 135	
cca tot gtg ccc atc tgg att att ata ttt ggt gtg ata ttt tgc atc	484
Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile Phe Cys Ile	
140 145 150	
atc ata gtt gca att gca cta ctg att tta tca ggg atc tgg caa cgt	532
Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly Ile Trp Gln Arg	•
155 160 165	
aga aga aag aac aaa gaa cca tct gaa gtg gat gac gct gaa gat aag	580
Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp Asp Ala Glu Asp Lys	
170 175 180 185	
tgt gaa aac atg atc aca att gaa aat ggc atc ccc tct gat ccc ctg	628
Cys Glu Asn Met Ile Thr Ile Glu Asn Gly Ile Pro Ser Asp Pro Leu	
190 195 200	
gac atg aag gga ggg cat att aat gat gcc ttc atg aca gag gat gag	676
Asp Met Lys Gly Gly His Ile Asn Asp Ala Phe Met Thr Glu Asp Glu	
205 210 215	
agg ctc acc cct ctc tgaagggct gttgttctgc ttcctcaaga aattaaacat	730
Arg Leu Thr Pro Leu	
220	
ttgtttctgt gtgactgctg agcatcctga aataccaaga gcagatcata tattttgttt	790

175/307

caccattctt	cttttgtaat	aaattttgaa	tgtgcttgaa	agtgaaaagc	aatcaattat	850
acccaccaac	accactgaaa	tcataagcta	ttcacgactc	aaaatattct	aaaatatttt	910
tctgacagta	tagtgtataa	atgtggtcat	gtggtatttg	tagttattga	tttaagcatt.	970
tttagaaata	agatcaggca	tatgtatata	ttttcacact	tcaaagacct	aaggaaaaat	1030
aaattttcca	gtggagaata	catataatat	ggtgtagaaa	tcattgaaaa	tggatccttt	1090
ttgacgatca	cttatatcac	tctgtatatg	actaagtaaa	caaaagtgag	aagtaattat	1150
tgtaaatgga	tggataaaaa	tggaattact	catatacagg	gtggaatttt	atcctgttat	1210
cacaccaaca	gttgattata	tattttctga	atatcagccc	ctaataggac	aattctattt	1270
gttgaccatt	tctacaattt	gtaaaagtcc	aatctgtgct	aacttaataa	agtaataatc	1330
atctctttt	gattgtg					1347

<210> 85

<211> 2284

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (75)... (626)

. <400> 85

aaaatggcac agagcattga aaggaggcaa cggatgccca gtgcaagatt ctgaagaagc 60
aggaattcag cccg atg gga gtc cga gtt cat gtc gtg gcg gcc tca gcc 110
Met Gly Val Arg Val His Val Val Ala Ala Ser Ala

1 5 10

ctg ctg tat ttc atc ctg ctt tct ggg acg aga tgt gag gaa aac tgt 158
Leu Leu Tyr Phe Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys

		15					20					25					
ggt	aat	cct	gaa	cat	tgc	ctg	асс	aca	gac	tgg	gta	cat	ctc	tgg	ta	t	206
Gly	Asn	Pro	Glu	His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Ту	r	
	30					35					40						
ata	tgg	ttg	cta	gtg	gta	att	ggc	gcg	ctg	ctt	ctc	ctg	tgt	ggc	ct	g	254
Ile	Trp	Leu	Leu	Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Le	eu	
45					50					55					6	60	
acg	tcc	ctg	tgc	ttc	cgc	tgc	tgc	tgt	ctg	agc	cgc	cag	caa	aat	g	gg	302
Thr	Ser	Leu	Cys	Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	G.	ly	
				65					70					75	5		
gaa	gat	ggg	ggo	cca	cca	ccc	tgt	gaa	gtg	acc	gtc	att	gct	tto	g	at	350
Glu	Asp	Gly	Gly	/ Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	e A	sp	
			80)				85	j				90)			
cac	gae	c age	c ac	t cto	cag	agc	act	ato	aca	tct	ctg	cag	g tcg	g gt	g t	tt	398
His	. As	p Se	r Th	r Lei	ı Gln	Ser	Thr	· Ile	Thr	Ser	Leu	ı Glı	n Sei	r Va	1 P	he	
		9	5				100)				10	5				
ggo	cc	t gc	a gc	t cg	g agg	g ato	ct	g gc1	t gtg	g gct	cac	c to	c ca	c ag	c t	cc	446
Gl	y Pr	o Al	a Al	a Ar	g Arg	g Ile	e Le	ı Ala	a Val	l Ala	a His	s Se	r Hi	s Se	rS	Ser	
	11	0				118	5				12	0					
ct	g gg	c ca	g ct	g cc	c tc	c tc	t tt:	g ga	c ac	c ct	c cc	a gg	g ta	t ga	ia į	gaa	494
Le	u G1	y Gl	n Le	eu Pr	o Se	r Se	r Le	u As	p Th	r Le	u Pr	o Gl	у Ту	r Gl	lu (Glu	
12	5				13	0				13	5					140	
				tg ag													542
A1	a L	eu Hi	is M	et Se	er Ar	g Ph	e Th	ır Va	al Al	a Me	t Cy	rs G	ly G	ln L	ys	Ala	
				1/	15				15	0				1	55		

cct gat cta ccc cca gta cct gaa gaa aag cag ctg cct cca aca gag	590
Pro Asp Leu Pro Pro Val Pro Glu Glu Lys Gln Leu Pro Pro Thr Glu	
160 165 170	
aag gag tog act oga ata gtt gac tot tgg aac tgatgag agotgtoatt	640
Lys Glu Ser Thr Arg Ile Val Asp Ser Trp Asn	•
175 180	
ttataaatag gagtggagtg atgtccagag tctgtgggaa aatggaacac atactttct	700
aaccctcaga agttttaaga tggcatctaa caccatcatt ctatgggaaa gatggttctt	760
actcttcgtt cacaggcctt tatatcttcc gatacagaat gctctaattg ggaactctaa	820
ttttgtatcc aatggccaaa atctgcaagt aatctctagc cacactgatt actactaaac	880
caggaaagca tcaaggtatc ttgaattcct ttaactattg agtgcatata gaattcctgt	940
acceacatga tactgeaagt tgtgtetete tetgteaget aatceactge ggttaactgg	1000
aaaagaaaga caacagtgtc agcacagcca tcgacattaa tgcactgaat gcatgcatct	1060
ttcctcctga gacagcaatc gattttacac cgaatgacaa tgatcatctt agacagcaca	1120
acatacccac toggatatot aaaagctagg gatggcattg ctgatatggg caaagagaac	1180
acagtatagt atttaagtgc caaatatcag tetttettte tetetggtee tacceeteag	1240
cagtatgaaa aactccatac tgtgcagtca cagttggatt aattcttcag ttcctccgca	1300
ctgcaaacac atatatgtgc gcacatgcat gtatacctgc accctgtttt aactctaaag	1360
gaatagtgtt getttaette ttteetgttt tgeetggaee aettaaagee acaacacete	1420
tatagtgaca cacgctagtc tctagtggtg gccctcactg ccacctagag gagccatggt	1480
ggaaaacaca ctctctctt tgagcctatc tgcacatctc tcgagttctt ggagcaaaaa	1540
ctaaatgctg aactaagcct ggttgagatg cttcccatgg accatgccgc agcacagtgc	1600
taatctatcc acaaaacata ccacctccca aagtattatt attggaaaat cgaggaagtg	1660
acgeacattt agggaaaaac tacteacett agaaaagtea etgaaateet ttttttttt	1720
tttgagatgg agttttgctc ttgtagccca ggctgggatg caatggcatg gtctcagctc	1780

178/307

actgtaacct	ccacctcccg	gattcaagca	attcttctgc	ctcagcttcc	cgactagctg	1840
ggattacagc	tgcctgccac	cgtgcccagc	taatttttgt	atttttagtg	gagagggggt	1900
ttcaccatgt	tggccagtct	ggtctagaac	tcctgacgtc	aggtgatccg	cccaccttgg	1960
cctcccaaag	tgctggaatt	agaggcctga	cccctgctc	ctggcctgaa	atctttaaag	2020
ccgtttttc	cctaaaaaac	gggaaataat	aacacctcag	aaggtttttg	tgaagatcaa	2080
agaagctaaa	tatatgtggc	atgatttgta	aagtgttatg	catatgtatg	ttattcttcc	2140
tactgtcttc	taaccttccc	ttgcctgcta	tgacttatct	gagagccatg	ttcccattta	2200
tctttttgcc	aactatgtta	ctgttgtcac	acctgaaatg	gctttgtttt	tatcaataaa	2260
tacttgttga	ttgtggtaaa	cagc				2284

<210> 86

<211> 1737

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (236)...(1024)

<400> 86

Met

1

ggt aag acg ttt tcc cag ctg ggc tct tgg cgg gag gat gag aac aag

286

Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn	Lys		
•			5					10					15				
tca	atc	ctg	tcc	tcc	aaa	cca	gcc	att	ggc	agc	aag	gct	gtc	aac	tac	33	4
Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	Tyr		
		20					25					30					
tcc	agc	acc	ggt	agc	agc	aag	tct	ttt	tgt	tcc	tgt	gtg	cct	tgt	gaa	38	2
Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	Glu		
	35	-				40					45						
gga	act	gct	gat	gcc	agc	ttc	gtg	act	tgt	ccc	acc	tgc	cag	ggc	agt	43	0
Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	Ser		
50					55					60					65		
ggc	aag	att	ccc	caa	gag	ctg	gag	aag	cag	ttg	gtg	gct	ctc	att	ccc	47	8
Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	Pro		
				70					75					80			
tat	ggg	gac	cag	agg	ctg	aag	ccc	aag	cac	acg	aag	ctc	ttt	gtg	ttc	52	:6
Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	Phe		
			85			•		90					95	,			
ctg	gcc	gtg	ctc	ato	tgc	ctg	gtg	acc	tcc	tcc	tto	ato	gto	ttt	ttc	57	74
Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	· Val	Phe	Phe	٠	
		100)				105	•				110)				
ctg	ttt	ccc	cgg	tco	gto	att	gtg	cag	cct	gca	ggo	cto	aac	tco	tcc	62	22
Leu	Phe	Pro	Arg	Ser	· Val	Ile	Val	Gln	Pro	Ala	Gly	, Lei	ı Ası	ı Sei	Ser		
	115	5				120)				128	5					
aca	gte	gco	ttt	ga1	t gag	g gct	gat	ato	tac	cto	880	ata	a ac	g aa	t atc	6	70
Thi	· Val	Ala	. Phe	. Ası	Glu	ı Ala	. Ası	Ile	. Tyr	Leu	ı Ası	n Il	e Thi	r Asi	n Ile		

180/307

130	135		140	145
tta aac atc	tcc aat ggc aa	tac tac ccc	att atg gtg a	ca cag ctg 718
Leu Asn Ile	Ser Asn Gly As	Tyr Tyr Pro	Ile Met Val T	hr Gln Leu
	150	155	i	160
acc ctc gag	gtt ctg cac ct	g tee ete gtg	gtg ggg cag g	tt tcc aac 766
Thr Leu Glu	Val Leu His Le	u Ser Leu Val	Val Gly Gln V	al Ser Asn
	165	170	1	75
aac ctt ctc	cta cac att gg	c cct ttg gcc	agt gaa cag a	tg ttt tac 814
Asn Leu Leu	Leu His Ile Gl	y Pro Leu Ala	ser Glu Gln M	et Phe Tyr
180		185	190	
gca gta gct	acc aag ata cg	g gat gaa aa	c aca tac aaa a	tc tgt acc 862
Ala Val Ala	Thr Lys Ile A	g Asp Glu As	n Thr Tyr Lys I	le Cys Thr
195	20	00	205	
tgg ctg gaa	atc aaa gtc ca	c cat gtg ct	t ttg cac atc o	eag ggc acc 910
Trp Leu Glu	Ile Lys Val H	s His Val Le	u Leu His Ile (Gln Gly Thr
210	215		220	225
ctg acc tgt	tca tac ctg a	ge cat tea ga	g cag ctg gtc	ttt cag agc 958
Leu Thr Cys	Ser Tyr Leu S	er His Ser Gl	u Gln Leu Val 1	Phe Gln Ser
	230	23	5	240
tat gaa'tat	gtg gac tgc c	ga gga aac go	a tot gtg ccc	cac cag ctg 1006
Tyr Glu Tyr	Val Asp Cys A	rg Gly Asn Al	a Ser Val Pro	His Gln Leu
	245	250		255
acc cct cac	cca cca tgaco	tgtc tgctgtc	cct gtactccagg	cacctgcaac 1060
Thr Pro His	Pro Pro			

260

181/307

cctggtctat	atctcccaca	actccctggt	gactaaggaa	ggactacaga	ggctttgcca	1120
aaggagaagc	cctgcctcat	cacaccctta	cctcccaccc	cctcagcaca	ggaagettge	1180
tttgaagtta	acttcataca	cacacactca	tatcctccag	tttcccccag	attctttcag	1240
gggctgccat	cagattctgc	ccttggttag	ttttttgttt	tttttttgg	tagagacaga	1300
gtctcactgt	tggtccaggt	tggttttgaa	ctcctgggct	caagcgatcc	tcccttcttg	1360
gcctcccaaa	gcacttggat	tacagatgtg	agcctgtgcc	tggctggtct	ttcttgagga	1420
aaatctgacc	tggcattttc	ttgaggcacc	ttagattccc	tggagtggca	cctggccttt	1480
ctgtactgag	cacctggtca	gtctgaaggg	ggcatttcac	cccagctcca	tcagggctgg	1540
cagtcccgtc	tgaatgtgga	gagagctgta	gttttatctg	gcttttaaaa	catggacctg	1600
ccggctgggc	gcagtggctt	acacctgtaa	tcccagtact	ttgggaggcc	gaagtgggtg	1660
gatcacttga	gggcaggagt	tcgtgaccag	cctggtcaac	atggtgaaac	cttgtctcta	1720
ctaaaaatac	aaaaatt					1737

⟨210⟩ 87

<211> 1556

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (103)...(609)

<400> 87

agegeteact egetegeact eagtegegg aggetteece gegeeggeeg egteeegee 60 geteeegge accagaagtt eetetgegeg teegaeggeg ac atg gge gte eec 114 Met Gly Val Pro

acg	gcc	ctg	gag	gcc	ggc	agc	tgg	cgc	tgg	gga	tcc	ctg	ctc	ttc	gct	162
Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser	Leu	Leu	Phe	Ala	
5		•			10			•		15					20	
ctc	ttc	ctg	gct	gcg	tcc	cta	ggc	aaa	gat	gca	cca	tcc	aac	tgt	gtg	210
Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	
				25					30					35		
gtg	tac	cca	tcc	tcc	tcc	cag	gag	agt	gaa	aac	atc	acg	gct	gca	gcc	258
Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	
			40					45					50)		
ctg	gct	acg	ggt	gcc	tgc	atc	gta	gga	atc	ctc	tgc	ctc	ccc	cto	atc	306
Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	Gly	Ile	Leu	Cys	Leu	Pro	Leu	Ile	
		55					60					65	;			٠
ctg	ctc	ctg	gtc	tac	aag	caa	agg	cag	gca	gcc	tcc	aac	cgo	cgt	gcc	354
Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asr	Arg	Arg	g Ala	
	70)				7 5					80)				
cag	gag	ctg	gtg	cgg	atg	gac	agc	aac	att	caa	ggg	g att	t gaa	a aad	ccc	402
Glr	Glu	. Leu	l Val	Arg	Met	Asp	Ser	Asn	Ile	Glr	ı Gly	r Ile	e Glu	ı Ası	n Pro	
85	5	•			90	ì				98	5				100	
ggo	ttt	t gaa	gco	tca	сса	cct	gcc	cag	ggg	g ata	a cco	ga	g gc	c aa	a gtc	450
Gl	y Phe	e Glu	ı Ala	a Ser	Pro	Pro	Ala	Glr	Gly	r Ile	e Pro	Gl:	u Al	a Ly	s Val	
				109	5				110)				11	5	
ag	g cad	c cc	ct	g tc	tat	gtg	g gco	c cag	g cgg	g ca	g cc	t tc	t ga	g tc	t ggg	498
Ar	g His	s Pr	o Le	u Sei	r Tyı	r Val	l Ala	a Gla	n Arg	g Gl	n Pr	o Se	r Gl	u Se	r Gly	
			12	0				12	5				13	0		
cg	g ca	t ct	g ct	t tc	g gag	g cc	c ag	c ac	c cc	c ct	g tc	t co	t cc	a gg	c ccc	546

Arg His Leu Leu Ser Glu Pı	o Ser Thr Pro Leu Ser	r Pro Pro Gly Pro	
. 135	140	145	
gga gac gtc ttc ttc cca to	c ctg gac cct gtc cc	t gac tct cca aac	594
Gly Asp Val Phe Phe Pro Se	er Leu Asp Pro Val Pro	o Asp Ser Pro Asn	
150 15	55 160	0	
ttt gag gtc atc tagc ccag	ctgggg gacagtgggc tgt	tgtggct gggtctgggg	650
Phe Glu Val Ile			
165			
caggtgcatt tgagccaggg ctg	gctctgt gagtggcctc ct	tggcctcg gccctggttc	710
cctccctcct gctctgggct cag	atactgt gacatcccag aa	gcccagcc cctcaacccc	770
tctggatgct acatggggat gct	ggacggc tcagcccctg tt	ccaaggat tttggggtgc	830
tgagattctc ccctagagac ctg	aaattca ccagctacag at	gccaaatg acttacatct	890
taagaagtet cagaacgtec age	ccttcag cagctctcgt to	tgagacat gagccttggg	950
atgtggcagc atcagtggga caa	gatggac actgggccac co	tcccaggc accagacaca	1010
gggcacggtg gagagacttc tcc	cccgtgg ccgccttggc to	ecccgttt tgcccgaggc	1070
tgctcttctg tcagacttcc tct	ttgtacc acagtggctc tg	ggggccagg cctgcctgcc	1130
cactggccat cgccaccttc ccc	agetgee tectaceage ag	tttctctg aagatctgtc	1190
aacaggttaa gtcaatctgg ggc	ttccact gcctgcattc ca	agtccccag agcttggtgg	1250
tcccgaaacg ggaagtacat att	ggggcat ggtggcctcc gt	tgagcaaat ggtgtcttgg	1310
gcaatctgag gccaggacag atg	ttgcccc acccactgga ga	atggtgctg agggaggtgg	1370
gtggggcctt ctgggaaggt gag	tggagag gggcacctgc co	eccegecet ecceatecee	1430
tactcccact gctcagcgcg ggd	ccattgca agggtgccac a	caatgtett gtecaceetg	1490
ggacacttct gagtatgaag cg	ggatgeta ttaaaaacta c	atggggaaa caggtgcaaa	1550 .
ccctaa			1556

<210> 88	
<211> 1855	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
⟨222⟩ (222) (953)	
<400> 88	
cagagatgga atttcaccgt gttgcctagg ctggtctgga gctcttgatc tcaagcgatc	60
ctccctgcct cggcctccca acgtgctggg attataggcg tgagccaccg ctcctggcca	120
gggtctgttc ctagttgcaa cagttcttgg aaacccactc gagagggcca cgcctccatt	180
caccaggica egcateacaa gaggicaacae caggagicaa e atg age teg ggg	233
Met Ser Ser Gly	
. 1	
act gaa ctg ctg tgg ccc gga gca gcg ctg ctg gtg ctg ttg ggg gtg	281
Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val Leu Leu Gly Val	
5 10 15 20	
gca gcc agt ctg tgt gtg cgc tgc tca cgc cca ggt gca aag agg tca	329
Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly Ala Lys Arg Ser	
25 30 35	
gag aaa atc tac cag cag aga agt ctg cgt gag gac caa cag agc ttt	377
Glu Lys Ile Tyr Gln Gln Arg Ser Leu Arg Glu Asp Gln Gln Ser Phe	
40 45 50	
acg ggg tcc cgg acc tac tcc ttg gtc ggg cag gca tgg cca gga ccc	425

		55					60					65				
ctg	gcg	gac	atg	gca	ccc	aca.	agg	aag	gac	aag	ctg	ttg	caa	ttc	tac	473
Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu	Leu	Gln	Phe	Tyr	
	70					75					80					
ccc	agc	ctg	gag	gat	cca	gca	tct	tcc	agg	tac	cag	aac	ttc	agc	aaa	521
Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln	Asn	Phe	Ser	Lys	
85					90					95					100	
gga	agc	aga	cac	ggg	tcg	gag	gaa	gcc	tac	ata	gac	ccc	att	gcc	atg	569
G1 y	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp	Pro	Ile	Ala	Met	
				105					110					115		
gag	tat	tac	aac	tgg	ggg	cgg	ttc	tcg	aag	ccc	cca	gaa	gat	gat	gat	617
Glu	туг	Tyr	. Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro	Glu	Asp	Asp	Asp	•
			120)				125					130)		
gco	aat	t tc	c tac	gag	g aat	gtg	ctc	att	tgc	aag	cag	aaa	acc	e aca	gag	665
Ala	a Ası	n Set	r Tyı	Glu	ı Asn	Val	Leu	ı Ile	Cys	Lys	Glr	Ly:	s Thi	r Thi	Glu	
		13	5				140)				14	5			
ac	a gg	t gc	c cas	g cas	g gag	ggg	ata	a ggt	ggo	cto	tge	ag	a gg	g ga	ctc	713
Th	r Gl	y Al	a Gl	n Gli	n Glu	ı Gly	, Ile	e Gly	, Gly	y Leu	ı Cy:	s Ar	g Gl	y As	p Leu	
	15	0				159	5				16	0		•		
ag	c ct	g to	a ct	g gc	c ct	g aa	g ac	t gg	c cc	c act	t tc	t gg	t ct	c tg	t ccc	761
Se	r Le	u Se	r Le	u Al	a Le	u Ly:	s Th	r Gl	y Pr	o Thi	r Se	r Gl	y Le	u Cy	s Pro	
16	5				17	0				17	5				180	
to	t go	c to	c cc	g ga	a ga	a ga	t ga	g ga	a tc	t ga	g ga	t ta	t ca	ig as	c tca	809
Se	er Al	la Se	er Pr	o Gl	u Gl	u As	p G1	u Gl	u Se	r Gl	u As	р Ту	r Gl	ln As	n Ser	•
				18	15				19	0				19	95	

gca tcc atc cat cag tgg cgc gag tcc agg aag gtc atg ggg caa ctc	857
Ala Ser Ile His Gln Trp Arg Glu Ser Arg Lys Val Met Gly Gln Leu	-
200 205 210	
cag aga gaa gca tcc cct ggc ccg gtg gga agc cca gac gag gag gac	905
Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp	
215 220 225	
ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc	950
Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala	
230 235 240	
tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca	1010
togotgoott ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt	1070
gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg	1130 .
aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct	1190
ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag	1250
gatttaggat aagctgtcac ccagtcccca taacaaaacc actgtccaac actggtatct	1310
gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta	1370
aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga	1430
tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc	1490
atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg	1550
gcttcagttc actcaggaag aaatgaggct gtcgccatct ttatgtgctt ccagtggaaa	1610
tgtcacttgc tacagacaat agtgcatgag agtctagaga agtagtgacc agaacagggc	1670
agagtaggte cectecatgg ceetgaatee teetetgete cagggetgge etetgeagag	1730
ctgattaaac agtgttgtga ctgtctcatg ggaagagctg gggcccagag ggaccttgag	1790
tcagaaatgt tgccagaaaa agtatctcct ccaaccaaaa catctcaata aaaccatttt	1850
agttg	1855

<210> 89	
<211> 2530	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
⟨222⟩ (28) (1314)	
⟨400⟩ 89	
agcgcggcgg ggcgatgtgt gattacc atg gcg agg agt ctc tgt ccg ggg	51
Met Ala Arg Ser Leu Cys Pro Gly	
1 5	
gcc tgg cta agg aaa ccc tat tac ctc cag gct cgc ttc tca tat gtg	99
Ala Trp Leu Arg Lys Pro Tyr Tyr Leu Gln Ala Arg Phe Ser Tyr Val	
10 15 20	
cgg atg aaa tat ctt ttc ttt tcc tgg tta gtg gtt ttt gtt gga agc	147
Arg Met Lys Tyr Leu Phe Phe Ser Trp Leu Val Val Phe Val Gly Ser	
25 30 35 40	
tgg att ata tat gtg cag tat tct acc tat aca gaa tta tgc aga gga	195
Trp Ile Ile Tyr Val Gln Tyr Ser Thr Tyr Thr Glu Leu Cys Arg Gly	
45 50 55	
aag gac tgt aag aaa ata ata tgt gac aag tac aag act gga gtt att	243
Lys Asp Cys Lys Lys Ile Ile Cys Asp Lys Tyr Lys Thr Gly Val Ile	
60 65 70	
met man oot mee tot een een ott tot ott ene mee ett tan tit	291

Asp Gly Pro Ala Cys Asn Ser Leu Cys Val Thr Glu Thr Leu Tyr Phe	
75 80 85	
gga aaa tgt tta tcc acc aag ccc aac aat cag atg tat tta ggg att	339
Gly Lys Cys Leu Ser Thr Lys Pro Asn Asn Gln Met Tyr Leu Gly Ile	
90 95 100	
tgg gat aat cta cca ggt gtt gtg aaa tgt caa atg gaa caa gcg ctt	387
Trp Asp Asn Leu Pro Gly Val Val Lys Cys Gln Met Glu Gln Ala Leu	
105 110 115 120	
cat ctt gat ttt gga act gaa ttg gaa cca aga aaa gaa ata gtg cta	435
His Leu Asp Phe Gly Thr Glu Leu Glu Pro Arg Lys Glu Ile Val Leu	
125 130 135	
ttt gat aag cca act aga gga act act gta caa aaa ttt aaa gaa atg	483
Phe Asp Lys Pro Thr Arg Gly Thr Thr Val Gln Lys Phe Lys Glu Met	
140 145 150	
gtc tat agt ctc ttt aag gca aaa ttg ggt gac caa gga aac ctc tct	531
Val Tyr Ser Leu Phe Lys Ala Lys Leu Gly Asp Gln Gly Asn Leu Ser	
155 160 165	
gaa ctg gtt aat ctc atc ttg acg gtg gct gat gga gac aaa gat ggc	579
Glu Leu Val Asn Leu Ile Leu Thr Val Ala Asp Gly Asp Lys Asp Gly	•
170 175 180	
cag gtt tcc ttg gga gaa gca aag tcg gca tgg gca ctt ctt caa ctg	627
Gln Val Ser Leu Gly Glu Ala Lys Ser Ala Trp Ala Leu Leu Gln Leu	
185 190 195 200	
aat gaa ttt ctt ctc atg gtg ata ctt caa gat aaa gaa cat acc ccc	675
Acr Clu Dho Lou Leu Met Val Ile Leu Gln Asp Lys Glu His Thr Pro	

PCT/JP00/05356 WO 01/12660

189/307

210

215

	205	210	215	
aaa tta atg gga	ttc tgt ggt ga	c ctc tat gtg at	g gaa agt gtt gaa	723
Lys Leu Met Gly	Phe Cys Gly As	p Leu Tyr Val Me	t Glu Ser Val Glu	
220		225	230	
tat acc tct ctt	tat gga ata ag	c ctt cct tgg gt	c att gaa ctt ttt	771
Tyr Thr Ser Leu	Tyr Gly Ile Se	er Leu Pro Trp Va	I lle Glu Leu Phe	
235	24	10	245	
att cca tct ggg	ttc aga aga ag	gc atg gat cag ct	g ttc aca cca tca	819
Ile Pro Ser Gly	Phe Arg Arg S	er Met Asp Gln Le	eu Phe Thr Pro Ser	
250	255	26	60	
tgg cca aga aag	g gcc aaa ata g	cc ata gga ctt c	ta gaa ttt gtg gaa	867
Trp Pro Arg Lys	s Ala Lys Ile A	la Ile Gly Leu L	eu Glu Phe Val Glu	
265	270	275	280	
gat gtt ttc ca	t ggc ccc tac g	ga aat ttc ctc a	tg tgc gat act agt	915
Asp Val Phe Hi	s Gly Pro Tyr C	Gly Asn Phe Leu M	let Cys Asp Thr Ser	
	285	290	295	
gcc aaa aac ct	a gga tat aat g	gat aag tat gat t	tg aaa atg gtg gat	963
Ala Lys Asn Le	eu Gly Tyr Asn A	Asp Lys Tyr Asp L	Leu Lys Met Val Asp	
. 30	00	305	310	
atg aga aaa at	tt gtg cca gag	aca aac ctg aaa (gaa ctt att aag gat	1011
Met Arg Lys I	le Val Pro Glu	Thr Asn Leu Lys (Glu Leu Ile Lys Asp	
315		320	325	
cgt cac tgt g	ag tot gat ttg	gac tgt gtc tat	ggc aca gat tgt aga	1059
Arg His Cys G	lu Ser Asp Leu	Asp Cys Val Tyr	Gly Thr Asp Cys Arg	
330	335		340	

act agc tgt gat cag agt aca atg aag tgt act tca gaa gtg ata caa	1107
Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln	
345 350 355 360	
cca aac ttg gca aaa gct tgt cag tta ctc aaa gac tac cta ctg cgt	1155
Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg	
365 370 375	
ggt gct cca agt gaa att cgt gaa gaa tta gaa aag cag ctt tat tct	1203
Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser	
380 385 390	
tgt att gct ctc aaa gtc aca gca aat caa atg gaa atg gaa cat tct	1251
Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser	
. 395 400 405	
ttg ata cta aat aac cta aaa aca tta ttg tgg aag aaa att tcc tac	1299
Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr	
410 415 420	
act aat gac tot tagttoatt tggacataat taccatttta agaaacctgc	1350
Thr Asn Asp Ser	
425	
cacttttaaa gaacaatttt gagcattaaa aaaaaatggc ttcaaattcc tgccagtt	
acaaaactcc ttccccccag gcctgagaag ccatcagtat gtgattactg aagtaatg	
aggtgtagga tcaacaggtc cccaagatgt cattcctgcc cttttagaag ccctgtta	
tctccgaagt acattcattg tgtaactatt ttgactgact ttaaaaaacca atgctgtg	
aagcttcatt ccataaacat caacagtgag tgatttgtag atttacctta gccaaaat	_
caatgctgga agcattgtgt ttgcattgaa gctgctgttc aacaagaaaa tttataaa	
tactaatgtc ttagcatggt aaagtttgca cattaacaga aattaagact gcaaagca	agg 1770

191/307

ttaaaci	ttgc	ttctttataa	aacagatgtt	gggttaatag	catggtttac	tgtattaaag	1830
acttata	acac	ccatttttaa	cctcattcag	acatcaagtt	atgtgtagct	tcacaatggt	1890
tcaagt	ggct	tacttcaaga	aatcttatac	ttgacagtac	accaatttta	ttgactaaaa	1950
atggat	gaac	tttcctaaag	attcaaaggg	cccatcttag	tatcacgcag	ctgactgagc	2010
ccttca	aaac	tgacatctta	aggcccaatc	aagatccaca	tatcctgatt	ttgaactatg	2070
tgaaag	tggg	actgttaagt	gcaagactaa	aataaattat	agcagacttt	ttagtaataa	2130
ctttcc	attt	tcaaacagta	tatcctgtgg	gccaaagggc	tatttcttaa	agaggcatgt	2190
aaatgt	attt	atttatctaa	tgttttttc	cccatgtaaa	cttgatatac	aaggtttagt	2250
atttgc	tcct	ctttcatatt	attttcacac	gtatactcag	atttggcatg	tacctttcaa	2310
catctc	cata	aaattaaaca	ccttttggag	aaaagatcca	ctattttctg	ctcaaaggtt	2370
tcgcct	acct	aaagtggaac	atgttaaaaa	tctatgtgac	catcactgga	cagctttctc	2430
tcaaaa	cttt	ccttcaacgc	catggattag	caccagtttt	gtttacttta	aggtactttt	2490
000011	cato	atctaattat	aataaatooa	tggaagaaat			2530

<210> 90

<211> 1911

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (232)...(1083)

<400> 90

aaaatatgag acggggaatc atcgtgtgat gtgtgtgctg cctttggctg agtgtgtgga 60
gtcctgctca ggtgttaggt acagtgtgtt tgatcgtggt ggcttgaggg gaacccgctg 120
ttcagagctg tgactgcggc tgcactcaga gaagctgccc ttggctgctc gtagcgccgg 180

gccti	tctc	tc c	tcgt	catc	a tc	caga	gcag	cca	gtgt	ccg	ggag	gcag	aa g	atg	ccc	237
														Met	Pro	
														1		
cac	tcc	agc	ctg	cat	cca	tcc	atc	ccg	tgt	ccc	agg	ggt	cac	ggg .	gcc	285
His :	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His	Gly	Ala	
		5					10					15				
cag	aag	gca	gcc	ttg	gtt	ctg	ctg	agt	gcc	tgc	ctg	gtg	acc	ctt	tgg	333
Gln	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr	Leu	Trp	
	20					25					30					
ggg	cta	gga	gag	cca	сса	gag	cac	act	ctc	cgg	tac	ctg	gtg	ctc	cac	381
Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val	Leu	His	
35			•		40					45					50	
cta	gcc	tcc	ctg	cag	ctg	gga	ctg	ctg	tta	aac	ggg	gtc	tgc	agc	ctg	429
Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys	Ser	Leu	
				55					60					65		
gct	gag	gag	ctg	cac	cac	atc	cac	tcc	agg	tac	cgg	ggc	agc	tac	tgg	477
Ala	Glu	G1u	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser	Tyr	Trp	
			70	ı				75					80	1		
agg	act	gtg	g cgg	gcc	tgc	ctg	ggc	tgc:	ccc	ctc	cgc	cgt	ggg	gcc	ctg	525
Arg	Thr	· Va]	l Arg	Ala	Cys	Leu	Gly	, Cys	Pro	Leu	Arg	, Are	Gly	Ala	Leu	
		8	5				90)				9	5			
ttg	cte	g cti	g tcc	atc	tat	ttc	tac	c tac	tcc	cto	cca	a aa	t gcg	ggto	ggc	573
Leu	Leu	ı Le	u Ser	: Ile	туз	r Phe	Туз	r Tyr	Ser	r Leu	ı Pro	Asi	n Ala	a Val	Gly	
	100)				105	5				110	0				
CCE	z cc	c tt	c act	t tgg	g at	g cti	t gc	c ct	c ct	g gg	c ct	c tc	g ca	g gca	ctg	621

Pro I	Pro	Phe	Thr	Trp	Met	Leu .	Ala	Leu	Leu	GIY	Leu	Ser	GIN .	MIA .	Leu	
115					120					125					130	-
aac a	atc	ctc	ctg	ggc	ctc	aag	ggc	ctg	gcc	сса	gct	gag	atc	tct	gca	669
Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	
				135					140					145		
gtg	tgt	gaa	aaa	ggg	aat	ttc	aac	gtg	gcc	cat	ggg	ctg	gca	tgg	tca	717
Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala	Trp	Ser	
			150					155					160			
tat	tac	atc	gga	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	765
Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln	Ala	Arg	
		165	;				170					175				
att	cga	act	: tac	aat	cag	cat	tac	aac	aac	ctg	cta	cgg	ggt	gca	gtg	813
Ile	Arg	Thi	Tyr	Asr	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly	Ala	Val	
	180)				185					190)				
agc	cas	g cgs	g cts	g tai	t att	ctc	ctc	cca	ttg	gac	tgt	ggg	gtg	cct	gat	861
Ser	Glı	ı Arı	g Lei	ı Tyı	r Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val	Pro	Asp	
195					200)				205	,				210	
aac	ct	g ag	t at	g gc	t gad	ccc	aac	att	cgc	ttc	cte	g gat	aaa	ctg	ccc	909
Asn	Le	u Se	r Me	t Al	a Ası	Pro	Asn	Ile	Arg	g Phe	e Lei	u Asp	Lys	Leu	Pro	
				21	5				220)				225	5	
cag	ca	g ac	c gc	t ga	c cg	t gc1	t ggc	ato	c aag	g gat	t cg	g gti	t tac	ago	aac	957
Gln	G1	n Th	r Al	a As	p Ar	g Ala	a Gly	, Ile	e Ly:	s Ası	Ar	g Va	l Ty	r Sea	r Asn	•
			23	0				23	5				240)		
ago	:∙at	c ta	it ga	ıg ct	t ct	g ga	g 88	c gg	g ca	g cg	g aa	c ct	g ca	g at	g aca	1005
															t Thr	

194/307

245	250	255	
gca gct tct cgc tgt ccc agg	agg ttc tcc ggc	acc tgc ggc agg agg	1053
Ala Ala Ser Arg Cys Pro Arg	Arg Phe Ser Gly	Thr Cys Gly Arg Arg	
260 265		270	
aaa agg aag agg tta ctg tgg	gca gct tgaagacc	tc agcggtgccc	1100
Lys Arg Lys Arg Leu Leu Trp	Ala Ala		•
275 280		•	
agtacctcca cgatgtccca agago	ctgag ctcctcatca	gtggaatgga aaagcccctc	1160
cctctccgca cggatttctc ttgag	gaccca gggtcaccag	gccagagcct ccagtggtct	1220
ccaagcetet ggactggggg ctete	ttcag tggctgaatg	tccagcagag ctatttcctt	1280
ccacaggggg ccttgcaggg aaggg	stccag gacttgacat	cttaagatgc gtcttgtccc	1340
cttgggccag tcatttcccc tctc	tgagcc tcggtgtctt	caaccigiga aatgggatca	1400
taatcactgc cttacctccc tcac	ggttgt tgtgaggact	gagtgtgtgg aagttttca	1460
taaactttgg atgctagtgt actt	aggggg tgtgccaggt	gtctttcatg gggccttcca	1520
gacccactcc ccacccttct cccc	ttcctt tgcccgggga	cgccgaactc tctcaatggt	1580
atcaacaggc tccttcgccc tctg	gctcct ggtcatgttc	cattattggg gagccccago	1640
agaagaatgg agaggaggag gagg	ctgagt ttggggtatt	gaatcccccg gctcccacc	e 1700
tgcagcatca aggttgctat ggac	tetect geegggeaac	tettgegtaa teatgaeta	t 1760
ctctaggatt ctggcaccac ttcc	ttccct ggccccttaa	gcctagctgt gtatcggca	c 1820
ccccacccca ctagagtact ccct	ctcact tgcggtttcc	ttatactcca cccctttct	c 1880
	thagat t		1911

⟨210⟩ 91

aacggtcctt ttttaaagca catctcagat t

<211> 476

<212> PRT

(213>	Но	mo s	apie	ns											
(400>	91						•								
Met V	al (Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1				5					10					15	
Pro (Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
			20					25					30		
Met I	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
		35					40					45			
Ile (Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
	50					55					60				
Pro !	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	Thr	Val
65					70				-	75					80
Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	Ala	Gln
				85					90					95	
Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	Gly	Pro
			100)				105					110)	
Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	Tyr	· Val
		115	,				120					125	5		٠
Val	Thr	Ser	Asr	n Met	Thr	Leu	Arg	Asp	Arg	g Asp	Phe	Pro	Trp	Thi	Thr
	130	٠				135					140)			
Thr	Leu	Ser	Met	t Let	ı Tyr	·Ile	Asp	Asn	Pro	Val	Gly	Thi	Gly	y Pho	Ser
145					150)				155	5				160
Phe	Thr	Ası	As _l	p Thi	r His	s Gly	Туг	Ala	Va:	l Ası	n Glu	ı As	p As	p Va	l Ala
				169	5				170	0				17	5
Arg	Asp	Lei	и Ту	r Se	r Ala	a Leu	ı Ile	e Gli	n Ph	e Ph	e Gl	n Il	e Ph	e Pr	o Glu

			180					185					190		
Γyr i	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	Gly	Lys
		195				•	200	•				205			
[yr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	Val	Arg
:	210					215					220				
Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	Tyr	Ser
225					230					235					240
Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	Gln	Ile
				245					250					255	
Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	Cys	His
			260					265					270		
Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	Phe	Glu
		275					280					285			
Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro	Ser	Tyr
	290	+			٠	295	;				300				
Phe	Gln	Asn	Val	Thr	Gly	Cys	Ser	Asn	Tyr	Tyr	Asn	Phe	Leu	Arg	Cys
305					310)				315					320
Thr	Glu	Pro	Glu	ı Asp	G1r	Leu	ı Tyr	Tyr	Val	Lys	Phe	Leu	ı Ser	Leu	Pro
				325	5				330)				335	5
Glu	Va]	l Ar g	g Glr	n Ala	ı Ile	e His	s Val	l Gly	Asn	Glr	Thr	Phe	e Asr	ı Asp	Gly
			340)				345	;				350)	•
Thr	· 11	e Vai	l Glu	ı Ly:	s Ty	r Lei	ı Arı	g Glu	ı Asp	Th:	r Val	l Gli	n Sei	r Vai	l Lys
		35					36					36			
Pro	Tr	p Le	u Th	r Gl	u Il	e Me	t As	n Ası	n Tyr	r Ly:	s Va	l Le	u Il	е Ту	r Ası
	37					37					38				

197/307

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu His Ser Leu Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly <210> 92 <211> 226 <212> PRT <213> Homo sapiens <400> 92 Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys Val Thr Thr Arg Ala Ser Ser Val Ile Thr Ala Thr Trp Val Tyr Gln Gly Leu Trp Met Asn Cys Ala Gly Asn Ala Leu Gly Ser Phe His Cys Arg Pro His

	50						55					60				
Phe	Thr	I	le	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	Arg	Gly	Leu
65			•			70		-			75					80
Met	Ile	A	la	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	Phe	Ala	Leu
					85	i				90					95	
Phe	Gly	. 1	let	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	Ala	Lys	Ala
				100					105					110		
Lys	Ile	e 1	Ala	Cys	Le	ı Ala	a Gly	Ile	Val	Phe	Ile	Leu	Ser	Gly	Leu	Cys
			115					120)				125	•		
Ser	Me	t '	Thr	Gly	Су	s Se	r Leu	тут	Ala	Asn	Lys	Ile	Thr	Thr	Glu	Phe
	13	0					138	5				140)			
Phe	As	р	Pro	Leu	ı Ph	e Va	l Gl	ı Glı	ı Lys	з Туг	c Glu	ı Let	Gly	, Ala	Ala	Leu
145	5					15	0				155	5 -				160
Phe	e I1	е	Gly	Tr	p Al	a Gl	y Al	a Se	r Le	ı Cy:	s Ile	e Ile	e Gly	y Gly	Val	Ile
					16	5				170	0				175	5
Phe	е Су	rs	Phe	e Se	r Il	e Se	r As	p As	n As	n Ly	s Th	r Pr	o Ar	g Tyi	Thr	Tyr
				18	0				18	5				190)	
Ası	n G	l y	Ala	a Th	r Se	er Va	al Me	t Se	r Se	r Ar	g Th	r Ly	s Ty	r Hi	s Gly	y Gly
•			19	5				20	0				20	5		
G1	u A	sp	Ph	e Ly	rs T	hr T	hr As	n Pr	o Se	r Ly	s Gl	n Ph	e As	p Ly	s As	n Ala
	2	10					2	15				22	20			
Ту	r V	al														
22	25															

211> 305
212> PRT
(213) Homo sapiens
(400> 93
Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly
1 5 10 15
Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg
20 25 30
Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu
35 40 45
Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe
50 55 60
Arg Phe Ala Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly
65 70 75 80
Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg
85 90 95
Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu
100 105 110
Val Ile Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly
115 120 125
Gly Lys Met Ser Gln Tyr Leu Asp Ser Leu Lys Val Gly Asp Val Val
130 135 140
Glu Phe Arg Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His
145 150 155 160
Phe Asn Ile Gln Pro Asn Lys Lys Ser Pro Pro Glu Pro Arg Val Ala

200/307

Lys Lys Leu Gly Met Ile Ala Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile Arg Ala Ile Leu Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr Leu Asp His Pro Pro Lys Asp Trp Ala Tyr Ser Lys Gly Phe Val Thr Ala Asp Met Ile Arg Glu His Leu Pro Ala Pro Gly Asp Asp Val Leu Val Leu Cys Gly Pro Pro Pro Met Val Gln Leu Ala Cys His Pro Asn Leu Asp Lys Leu Gly Tyr Ser Gln Lys Met Arg Phe Thr Tyr ⟨210⟩ 94 **<211> 227** <212> PRT (213) Homo sapiens <400> 94

Met	Gly	Trp	Thr	Met	Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Leu	Gly	Leu
. 1				5					10					15	
Met	Met	Val	Val	Thr	Gly	Asp	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His
			20					25					30		
Glu	Ala	Leu	Leu	Asp	Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val
		35					40					45			
Phe	Tyr	Pro	Glu	Leu	Gly	Asn	Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys
	50					55					60				
Asn	Asn	Tyr	Arg	Gln	Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys
65					70					75					80
Phe	Pro	Gly	Ala	Val	Asp	Gly	Ala	Thr	Tyr	Ile	Leu	Val	Меt	Val	Asp
				85					90					95	
Pro	Asp	Ala	Pro	Ser	Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His
			100					105					110		
Trp	Leu	Val	Thr	Asp	Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile
		115					120					125			
Gln	Gly	Gln	Glu	Leu	Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His
	130					135					140)			
Ser	Gly	Phe	His	Arg	Tyr	Glń	Phe	Phe	Val	Tyr	Leu	G1n	Glu	Gly	Lys
145					150					155	;				160
Val	Ile	Ser	Leu	Leu	Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys
				165					170)				175	
Met	Asp	Arg	, Phe	Leu	Asn	Arg	Phe	His	Leu	Gly	, Glu	ı Pro	Glu	Ala	Ser
			180)				185	,				190)	
Thr	Gln	Phe	. Het	Thr	Gln	Asr	Tyr	G1n	. Asp	Sei	Pro	Thr	r Leu	Gln	Ala

202/307

Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 210 . Ala Ala Cys <210> 95 <211> 441 <212> PRT <213> Homo sapiens <400> 95 Met Ala Ile His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe Leu Phe Pro Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser Gln Gly Leu Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala Trp Gly Ile Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr Phe Val Leu Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp Thr Lys Lys Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly Thr Leu Gly Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp

Phe	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu	Phe	Gly	Val	Leu	Phe	Ala
		115					120					125			
Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val	Phe	Ala	Leu	Asn	Phe	Leu
	130					135					140				
Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp	Val	Ile	Phe	Thr	Val	Ala
145					150					155					160
Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	Ile	Ile	Asn	Thr	Glu	Trp	Leu	Ile
				165					170					175	
Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	Gly	Pro	Gln	Gly	Asn	Ser
			180	İ				185					190		
Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	Ala	Ile	Ala	Asn	Met	Asp
		195					200					205			
Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	Leu	Leu	Leu	Gly	Ala	Phe
	210)				215	: 				220	•			
Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	Tyr	Lys	Arg	Trp	Arg	Lys
225	;				230)				235	5				240
His	Gly	/ Val	l Phe	e Val	Leu	Leu	. Thr	Thr	Ala	Thr	Ser	· Val	Ala	Ile	Trp
				245	5				250)				255	
Val	\ Va	l Trị	o Ile	e Val	L Met	. Tyı	Th:	Tyr	Gly	Asn	ı Lys	Glr	ı His	Asn	Ser
			26	0				265	5				270)	
Pro	Th:	r Tr	p As _l	p Ası	p Pro	Th:	r Lei	ı Ala	ı Ile	Ala	a Leu	ı Ala	a Ala	Asn	Ala
		27	5				280)				28	5		
Tr	p Ala	a Ph	e Va	l Le	u Pho	е Ту	r Va	l Ile	e Pro	Glu	u Va	l Se	r Glr	\ Val	Thr
	29	0				29	5				30	0			
Lv	. S.	~ C^	- D-	o G1	G1	n Se	r Tv	r Gli	n Gl	v Ası	o Me	t Tv	r Pro	Th:	r Arg

Gly Val Gly Tyr Glu Thr Ile Leu Lys Glu Gln Lys Gly Gln Ser Met Phe Val Glu Asn Lys Ala Phe Ser Met Asp Glu Pro Val Ala Ala Lys Arg Pro Val Ser Pro Tyr Ser Gly Tyr Asn Gly Gln Leu Leu Thr Ser Val Tyr Gln Pro Thr Glu Met Ala Leu Met His Lys Val Pro Ser Glu Gly Ala Tyr Asp Ile Ile Leu Pro Arg Ala Thr Ala Asn Ser Gln Val Met Gly Ser Ala Asn Ser Thr Leu Arg Ala Glu Asp Met Tyr Ser Ala Gln Ser His Gln Ala Ala Thr Pro Pro Lys Asp Gly Lys Asn Ser Gln Val Phe Arg Asn Pro Tyr Val Trp Asp

⟨210⟩ 96

<211> 265

<212> PRT

<213> Homo sapiens

⟨400⟩ 96

Met Ala Ala Ala Val Pro Lys Arg Met Arg Gly Pro Ala Gln Ala Lys

5 10 15

Leu	Leu	Pro	Gly	Ser	Ala	Ile	Gln	Ala	Leu	Val	Gly	Leu	Ala	Arg	Pro
			20				•	25					30		
Leu	Val	Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val
		35					40					45			
Ser	Arg	Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser
	50					55					60				
Thr	Pro	Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser
65					70					75					80
Ile	Ser	Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys
				85					90					95	:
Ser	Gly	Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser
			100					105					110		
Gln	G1u	G.Lu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp
		115	,				120					125	•		
Leu	Leu	Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp
	130)				135	,				140)			
Asr	Gly	/ Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg
145	5				150)				155	j				160
Asp	Asp	Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	ı Asr	ı Arg	g Gly	Tyr	Met
				165	5				170)				175	,
Glu	ı Ile	e Glu	ı Glr	Sei	· Val	Lys	s Ser	Phe	e Lys	s Met	t Pro	Sei	r Ser	Asn	Ile
			180)				189	5				190)	
Gl	ı Glı	u Glu	u Asp	Sei	r His	s Pho	e Phe	e Phe	e His	s Lei	ı Ile	e Ile	e Phe	e Ala	. Phe
		19	5				200)				20	5		
C	a T1.	a A1.	o Vo	l Va	l Tu	r [1]	e Thi	r Tvi	r Hi	s Ası	n Lv:	s Arı	e Lvs	s Ile	e Phe

206/307

Leu Leu Val Gln Ser Arg Lys Trp Arg Asp Gly Leu Cys Ser Lys Thr Val Glu Tyr His Arg Leu Asp Gln Asn Val Asn Glu Ala Met Pro Ser Leu Lys Ile Thr Asn Asp Tyr Ile Phe <210> 97 <211> 208 <212> PRT <213> Homo sapiens <400> 97 Met Leu Gly Leu Leu Val Ala Leu Leu Ala Leu Gly Leu Ala Val Phe Ala Leu Leu Asp Val Trp Tyr Leu Val Arg Leu Pro Cys Ala Val Leu Arg Ala Arg Leu Leu Gln Pro Arg Val Arg Asp Leu Leu Ala Glu Gln Arg Phe Pro Gly Arg Val Leu Pro Ser Asp Leu Asp Leu Leu Leu His Met Asn Asn Ala Arg Tyr Leu Arg Glu Ala Asp Phe Ala Arg Val Ala His Leu Thr Arg Cys Gly Val Leu Gly Ala Leu Arg Glu Leu Arg Ala

207/307

His Thr Val Leu Ala Ala Ser Cys Ala Arg His Arg Arg Ser Leu Arg Leu Leu Glu Pro Phe Glu Val Arg Thr Arg Leu Leu Gly Trp Asp Asp Arg Ala Phe Tyr Leu Glu Ala Arg Phe Val Ser Leu Arg Asp Gly Phe Val Cys Ala Leu Leu Arg Phe Arg Gln His Leu Leu Gly Thr Ser Pro Glu Arg Val Val Gln His Leu Cys Gln Arg Arg Val Glu Pro Pro Glu Leu Pro Ala Asp Leu Gln His Trp Ile Ser Tyr Asn Glu Ala Ser Ser Gln Leu Leu Arg Met Glu Ser Gly Leu Ser Asp Val Thr Lys Asp Gln <210> 98 <211> 400 <212> PRT <213> Homo sapiens **<400> 98** Met Ala Trp Arg Arg Glu Ala Ser Val Gly Ala Arg Gly Val Leu Ala Leu Ala Leu Leu Ala Leu Ala Leu Cys Val Pro Gly Ala Arg Gly Arg Ala Leu Glu Trp Phe Ser Ala Val Val Asn Ile Glu Tyr Val Asp

		35					40					45			
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe
	50					55			-	•	60				
Gly	Asp	Ser	Ser	Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro
65					70					75					80
Trp	Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe
				85					90				•	95	
Phe	Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu
			100					105					110		
Val	Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala
		115					120					125			
Arg	Arg	Asn	Ala	Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly
	130	١				135					140	}			
Asn	lle	Thr	Leu	Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val
145	,				150)				155	j				160
Ile	e Met	Ile	. Ser	Tyr	Pro	Lys	Gly	Arg	Glu	ı Ile	e Leu	Glu	ı Leu	Val	Gln
				165	5				170)				175	
Lys	s Gly	Ile	Pro	o Val	l Thr	Met	. Thr	· Ile	Gly	y Val	Gly	/ Thi	Arg	His	Val
			180)				185	5				190)	
Glu	n Glu	ı Phe	e Ile	e Sei	r Gly	/ Glr	s Ser	· Val	l Val	l Pho	e Va	l Ala	a Ile	: Ala	Phe
		199	5				200)			٠	20	5		
11	e Thi	r Me	t Me	t Ile	e Ile	e Sei	r Lei	ı Ala	a Tr	p Le	u Il	e Ph	е Туг	Tyr	Ile
	210	0				21	5				22	0			
G1	n Ar	g Ph	e Le	u Ty	r Th	r Gl	y Se	r Gli	n Il	e Gl	y Se	r Gl	n Sei	r His	s Arg
22	5				23	0				23	5				240

209/307

Lys	Glu	Thr	Lys	Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Val	Lys
				245					250					255	
His	Gly	Glu	Lys	Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys
			260					265					270		
Ile	Glu	Asn	Phe	Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys
		275					280					285			
His	Ile	Phe	His	Arg	Ile	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg
	290					295					300				
Thr	Cys	Pro	Met	Cys	Lys	Leu	Asp	Val	Ile	Lys	Ala	Leu	Gly	Tyr	Trp
305					310					315					320
Gly	Glu	Pro	Gly	Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro
				325					330					335	
Gly	Arg	Asp	Pro	Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp
			340)				345	,				350		
Gly	Ser	· Asp	Glu	. Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Λla	Glu	Ser	Glu
		355	5				360)				365	;		
Pro	Gln	ı Cys	. Asp) Pro	Ser	Phe	. Lys	Gly	/ Asp	Ala	Gly	Glu	ı Asn	Thr	Ala
	370)				375	5				380)			
Leu	ı Let	ı Glu	ı Ala	ı Gly	Arg	Ser	. Asp	Ser	r Arg	g His	Gly	Gly	Pro	Ile	Ser
385	5				390)				398	5				400

⟨210⟩ 99

⟨211⟩ 192

<212> PRT

<213> Homo sapiens

<400> 99						
Met Phe Cys P	ro Leu Lys	Leu Ile l	Leu Leu F	Pro Val	Leu Leu A	sp Tyr
1	5	·	10			15
Ser Leu Gly L	eu Asn Asp	Leu Asn	Val Ser I	Pro Pro	Glu Leu T	hr Val
	20		25		30	
His Val Gly A	Asp Ser Ala	Leu Met	Gly Cys '	Val Phe	Gln Ser T	hr Glu
35		40			45	
Asp Lys Cys	lle Phe Lys	Ile Asp	Trp Thr	Leu Ser	Pro Gly (Glu His
50		55		60		
Ala Lys Asp (Glu Tyr Val	Leu Tyr	Tyr Tyr	Ser Asn	Leu Ser	Val Pro
65	70	•		75		80
Ile Gly Arg	Phe Gln Asr	Arg Val	His Leu	Met Gly	Asp Asn	Leu Cys
	85		90	**		95
Asn Asp Gly	Ser Leu Lei	ı Leu Gln	Asp Val	Gln Glu	Ala Asp	Gln Gly
	100	•	105		110	
Thr Tyr Ile	Cys Glu Il	e Arg Leu	Lys Gly	Glu Ser	Gln Val	Phe Lys
115		120			125	
Lys Ala Val	Val Leu Hi	s Val Leu	Pro Glu	Glu Pro	Lys Glu	Leu Met
130	•	135		140		
Val His Val	Gly Gly Le	u Ile Gln	Met Gly	Cys Val	Phe Gln	Ser Thr
145	. 15			155		160
Glu Val Lys	His Val Th	r Lys Val	Glu Trp	Ile Phe	Ser Gly	Arg Arg
•	165		170			175
Ala Lys Val	Thr Arg Ar	g Lys His	s His Cys	. Val Ar	g Glu Gly	Ser Gly
-	180		185		190	

<210	> 10	0													
<211	> 26														
<212	> PR	T													
<213	> H o	mo s	apie	ens											
<400	> 10	0													
Met	Ala	Gly	Ser	Pro	Leu	Leu	Trp	Gly	Pro	Arg	Ala	Gly	Gly	Val	Gly
1				5					10					15	
Leu	Leu	Val	Leu	Leu	Leu	Leu	Gly	Leu	Phe	Arg	Pro	Pro	Pro	Ala	Leu
			20					25					30		
Cys	Ala	Arg	Pro	Val	Lys	Glu	Pro	Arg	Gly	Leu	Ser	Ala	Ala	Ser	Pro
		35					40					45			
Pro	Leu	Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro
	50					55					60				
Arg	Gly	Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala
65					70					75					80
His	Leu	Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln
				85					90					95	
Glu	Ala	Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	Val
			100					105					110		
Trp	Gly	Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp
		115					120					125			
Pro	Asp	Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	Ala	Arg
	130					135					140				
ום 1	Asn	Pro	Ala	Ala	Leu	Ala	Ala	Gln	Leu	Val	Pro	Ala	Pro	Val	Pro

145	150		155	160
Ala Ala Ala I	Leu Arg Pro Arg	Pro Pro Val	Tyr Asp Asp Gly	Pro Ala
	165	170		175
Gly Pro Asp	Ala Glu Glu Ala	Gly Asp Glu	Thr Pro Asp Val	Asp Pro
	180	185	190	
Glu Leu Leu	Arg Tyr Leu Leu	Gly Arg Ile	Leu Ala Gly Ser	Ala Asp
195		200	205	
Ser Glu Gly	Val Ala Ala Pro	Arg Arg Leu	Arg Arg Ala Ala	Asp His
210	215		220	
Asp Val Gly	Ser Glu Leu Pro	Pro Glu Gly	Val Leu Gly Ala	Leu Leu
225	230		235	240
Arg Val Lys	Arg Leu Glu Thr	Pro Ala Pro	Gln Val Pro Ala	Arg Arg
	245	250		255
Leu Leu Pro	Pro			
	260			
<210> 101				
<211> 1428				
<212> DNA				
<213> Homo s	sapiens			
<400> 101				
atggttggtg d	catgtggaa ggtga	ttgtt tcgctg	gtcc tgttgatgcc	tggccctgt 6
	tegeteect ataca			
	tctcacccc ttaca			
agtttggtcg g	gecettteee aggae	tgaac atgaag	agtt atgccggctt	cctcaccgtg 24

aataagactt	acaacagcaa	cctcttcttc	tggttcttcc	cagctcagat	acagccagaa	300
gatgccccag	tagttctctg	gctacagggt	gggccgggag	gttcatccat	gtttggactc	. 360
tttgtggaac	atgggcctta	tgttgtcaca	agtaacatġa	ccttgcgtga	cagagacttc	420
ccctggacca	caacgctctc	catgctttac	attgacaatc	cagtgggcac	aggcttcagt	480
tttactgatg	atacccacgg	atatgcagtc	aatgaggacg	atgtagcacg	ggatttatac	540
agtgcactaa	ttcagttttt	ccagatattt	cctgaatata	aaaataatga	cttttatgtc	600
actggggagt	cttatgcagg	gaaatatgtg	ccagccattg	cacacctcat	ccattccctc	660
aaccctgtga	gagaggtgaa	gatcaacctg	aacggaattg	ctattggaga	tggatattct	720
gatcccgaat	caattatagg	gggctatgca	gaattcctgt	accaaattgg	cttgttggat	780
gagaagcaaa	aaaagtactt	ccagaagcag	tgccatgaat	gcatagaaca	catcaggaag	840
cagaactggt	ttgaggcctt	tgaaatactg	gataaactac	tagatggcga	cttaacaagt	900
gatecttett	acttccagaa	tgttacagga	tgtagtaatt	actataactt	tttgcggtgc	960
acggaacctg	aggatcagct	ttactatgtg	aaatttttgt	cactcccaga	ggtgagacaa	1020
gccatccacg	tggggaatca	gacttttaat	gatggaacta	tagttgaaaa	gtacttgcga	1080
gaagatacag	tacagtcagt	taagccatgg	ttaactgaaa	tcatgaataa	ttataaggtt	1140
ctgatctaca	atggccaact	ggacatcatc	gtggcagctg	ccctgacaga	gcactccttg	1200
atgggcatgg	actggaaagg	atcccaggaa	tacaagaagg	cagaaaaaaa	agtttggaag	1260
atctttaaat	ctgacagtga	agtggctggt	tacatccggc	: aagcgggtga	cttccatcag	1320
gtaattatto	gaggtggagg	acatattta	ccctatgacc	agcctctgag	g agcttttgac	1380
atgattaato	gattcattta	tggaaaagga	tgggatcctt	atgttgga		1428

⟨210⟩ 102

<211> 678

<212> DNA

<213> Homo sapiens

214/307

<400> 102

atgtccaggg o	egcagatetg	ggctctggtg	tctggtgtcg	gagggtttgg	agctctcgtt	60
gctgctacca (cgtccaatga	gtggaaagtg	accacgcgag	cctcctcggt	gataacagcc	120
acttgggttt a	accagggtct	gtggatgaac	tgcgcaggta	acgcgttggg	ttctttccat	180
tgccgaccgc a	attttactat	cttcaaagta	gcaggttata	tacaggcatg	tagaggactt	240
atgategetg	ctgtcagcct	gggcttcttt	ggttccatat	ttgcgctctt	tggaatgaag	300
tgtaccaaag	tcggaggctc	cgataaagcc	aaagctaaaa	ttgcttgttt	ggctgggatt	360
gtattcatac	tgtcagggct	gtgctcaatg	actggatgtt	ccctatatgc	aaacaaaatc	420
acaacggaat	tctttgatcc	tctctttgtt	gagcaaaagt	atgaattagg	agccgctctg	480
tttattggat	gggcaggagc	ctcactgtgc	ataattggtg	gtgtcatatt	ttgcttttca	540
atatctgaca	acaacaaaac	acccagatac	acatacaacg	gggccacatc	tgtcatgtct	600
tctcggacaa	agtatcatgg	tggagaagat	tttaaaacaa	caaacccttc	aaaacagttt .	660
gataaaaatg	cttatgtc					678

<210> 103

<211> 915

<212> DNA

<213> Homo sapiens

<400> 103

atggggatcc agacgagccc cgtcctgctg gcctccctgg gggtggggct ggtcactctg 60 ctcggcctgg ctgtgggct ctacttggtt cggaggtcc gccggcctca ggtcactctc 120 ctggacccca atgaaaagta cctgctacga ctgctagaca agacgactgt gagccacaac 180 accaagaggt tccgctttgc cctgcccacc gcccaccaca ctctggggct gcctgtgggc 240 aaacatatct acctctccac ccgaattgat ggcagcctgg tcatcaggcc atacactcct 300 gtcaccagtg atgaggatca aggctatgtg gatcttgtca tcaaggtcta cctgaagggt 360

215/307

gtgcacccca	aatttcctga	gggagggaag	atgtctcagt	acctggatag	cctgaaggtt	420
ggggatgtgg	tggagtttcg	ggggccaagc	gggttgctca	cttacactgg	aaaagggcat	480
tttaacattc	agcccaacaa	gaaatctcca	ccagaacccc	gagtggcgaa	gaaactggga	540
atgattgccg	gcgggacagg	aatcacccca	atgctacagc	tgatccgggc	catcctgaaa	600
gtccctgaag	atccaaccca	gtgctttctg	ctttttgcca	accagacaga	aaaggatatc	660
atcttgcggg	aggacttaga	ggaactgcag	gcccgctatc	ccaatcgctt	taagctctgg	720
ttcactctgg	atcatcccc	aaaagattgg	gcctacagca	agggctttgt	gactgccgac	780
atgatccggg	aacacctgcc	cgctccaggg	gatgatgtgc	tggtactgct	ttgtgggcca	840
ccccaatgg	tgcagctggc	ctgccatccc	aacttggaca	aactgggcta	ctcacaaaag	900
atgcgattca	cctac					915

<210> 104

<211> 681

<212> DNA

<213> Homo sapiens

<400> 104

atgggttgga caatgagget ggtcacagca gcactgttac tgggtctcat gatggtggtc 60 actggagacg aggatgagaa cagcccgtgt gcccatgagg ccctcttgga cgaggacacc 120 ctcttttgcc agggccttga agttttctac ccagagttgg ggaacattgg ctgcaaggtt 180 gttcctgatt gtaacaacta cagacagaag atcacctcct ggatggagcc gatagtcaag 240 ttcccggggg ccgtggacgg cgcaacctat atcctggtga tggtggatcc agatgcccct 300 agcagagcag aacccagaca gagattctgg agacattggc tggtaacaga tatcaagggc 360 gccgacctga agaaagggaa gattcagggc caggagttat cagcctacca ggctccctcc 420 ccaccggcac acagtggctt ccatcgctac cagttctttg tctatcttca ggaaggaaaa 480 gtcatctctc tccttcccaa ggaaaacaaa actcgaggct cttggaaaat ggacagattt 540

216/307

ctgaaccgtt	tccacctggg	cgaacctgaa	gcaagcaccc	agttcatgac	ccagaactac	600
caggactcac	caaccctcca	ggctcccaga	gaaagggcca	gcgagcccaa	gcacaaaaac	660
caggcggaga	tagctgcctg	С	•		٠.	681

<210> 105

⟨211⟩ 1323

<212> DNA

<213> Homo sapiens

<400> 105

60 atggccatcc acaaagcctt ggtgatgtgc ctgggactgc ctctcttcct gttcccaggg gcctgggccc agggccatgt cccacccggc tgcagccaag gcctcaaccc cctgtactac 120 180 aacctgtgtg accgctctgg ggcgtggggc atcgtcctgg aggccgtggc tggggggggc 240 attgtcacca cgtttgtgct caccatcatc ctggtggcca gcctcccctt tgtgcaggac 300 accaagaaac ggagcctgct ggggacccag gtattcttcc ttctggggac cctgggcctc ttctgcctcg tgtttgcctg tgtggtgaag cccgacttct ccacctgtgc ctctcggcgc 360 420 ttcctctttg gggttctgtt cgccatctgc ttctcttgtc tggcggctca cgtctttgcc 480 ctcaacttcc tggcccggaa gaaccacggg ccccggggct gggtgatctt cactgtggct 540 ctgctgctga ccctggtaga ggtcatcatc aatacagagt ggctgatcat caccctggtt 600 cggggcagtg gcgagggcgg ccctcagggc aacagcagcg caggctgggc cgtggcctcc 660 ccctgtgcca tcgccaacat ggactttgtc atggcactca tctacgtcat gctgctgctg 720 ctgggtgcct tcctgggggc ctggcccgcc ctgtgtggcc gctacaagcg ctggcgtaag 780 catggggtct ttgtgctcct caccacagcc acctccgttg ccatatgggt ggtgtggatc 840 gtcatgtata cttacggcaa caagcagcac aacagtccca cctgggatga ccccacgctg gccatcgccc tcgccgccaa tgcctgggcc ttcgtcctct tctacgtcat ccccgaggtc 900 960 tcccaggtga ccaagtccag cccagagcaa agctaccagg gggacatgta ccccacccgg

217/307

aggcgtggct atgagaccat cctgaaagag cagaagggtc agagcatgtt cgtggagaac 1020
aaggcctttt ccatggatga gccggttgca gctaagaggc cggtgtcacc atacagcggg 1080
tacaatgggc agctgctgac cagtgtgtac cagcccactg agatggccct gatgcacaaa 1140
gttccgtccg aaggagctta cgacatcatc ctcccacggg ccaccgccaa cagccaggtg 1200
atgggcagtg ccaactcgac cctgcgggct gaagacatgt actcggccca gagccaccag 1260
gcggccacac cgccgaaaga cggcaagaac tctcaggtct ttagaaaccc ctacgtgtg 1320
gac 1323

<210> 106

<211> 795

<212> DNA

<213> Homo sapiens

⟨400⟩ 106

60 atggccgctg ccgtcccgaa gaggatgagg gggccagcac aagcgaaact gctgcccggg 120 teggecated aagedettgt ggggttggeg eggeegetgg tettggeget eetgettgtg 180 teegeegete tateeagtgt tgtateaegg actgatteae egageecaae egtaeteaae 240 tcacatattt ctaccccaaa tgtgaatgct ttaacacatg aaaaccaaac caaaccttct 300 atttcccaaa teagcaccae ceteceteee acgaegagta ceaagaaaag tggaggagca 360 tetgtggtee etcatecete geetaeteet etgteteaag aggaagetga taacaatgaa 420 gatcctagta tagaggagga ggatcttctc atgctgaaca gttctccatc cacagccaaa gacactetag acaatggega ttatggagaa ccagactatg actggaccac gggccccagg 480 540 gacgacgacg agtctgatga caccttggaa gaaaacaggg gttacatgga aattgaacag 600 tcagtgaaat cttttaagat gccatcctca aatatagaag aggaagacag ccatttcttt 660 tttcatctta ttatttttgc tttttgcatt gctgttgttt acattacata tcacaacaaa 720 aggaagattt ttcttctggt tcaaagcagg aaatggcgtg atggcctttg ttccaaaaca

218/307

gtggaatacc	atcgcctaga	tcagaatgtt	aatgaggcaa	tgccttcttt	gaagattacc	780
aatgattaţa	ttttt					795
	. ·					
<210> 107						
<211> 624						
<212> DNA						
<213> Homo	sapiens		•			
<400> 107						
atgctggggc	tgctggtggc	gttgctggcc	ctggggctcg	ctgtctttgc	gctgctggac	60
gtctggtacc	tggtgcgcct	tccgtgcgcc	gtgctgcgcg	cgcgcctgct	gcagccgcgc	120
gtccgtgacc	tgctagctga	gcagcgcttc	ccgggccgcg	tgctgccctc	ggacttggac	180
ctgctgttgc	acatgaacaa	cgcgcgctac	ctgcgcgagg	ccgactttgc	gcgcgtcgcg	240
cacctgaccc	gctgcggggt	gctcggggcg	ctgagggagt	tgcgggcgca	cacggtgctg	300
gcggcctcgt	gcgcgcgcca	ccgccgctcg	ctgcgcctgc	tggagccctt	cgaggtgcgc	360
acccgcctgc	tgggctggga	cgaccgcgcg	ttctacctgg	aggcgcgctt	tgtcagcctg	420
cgggacggtt	tcgtgtgcgc	gctgctgcgc	ttccggcagc	acctgctggg	cacctcaccc	480
gagcgcgtcg	tgcagcacct	gtgccagcgc	agggtggagc	cccctgagct	gcccgctgat	540
ctgcagcact	ggatctccta	caacgaggcc	agcagccagc	tgctccgcat	ggagagtggg	600
ctcagtgatg	tcaccaagga	ccag		-		624

<210> 108

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 108

atggcgtggc	ggcggcgcga	agccagcgtc	ggggctcgcg	gcgtgttggc	tctggcgttg	00
ctcgccctgg	ccctgtgcgt	gcccggggcc	cggggccggg	ctctcgagtg	gttctcggcc	120
gtggtaaaca	tcgagtacgt	ggacccgcag	accaacctga	cggtgtggag	cgtctcggag	180
agtggccgct	tcggcgacag	ctcgcccaag	gagggcgcgc	atggcctggt	gggcgtcccg	240
tgggcgcccg	gcggagacct	cgagggctgc	gcgcccgaca	cgcgcttctt	cgtgcccgag	300
cccggcggcc	gaggggccgc	gccctgggtc	gccctggtgg	ctcgtggggg	ctgcaccttc	360
aaggacaagg	tgctggtggc	ggcgcggagg	aacgcctcgg	ccgtcgtcct	ctacaatgag	420
gagcgctacg	ggaacatcac	cttgcccatg	tctcacgcgg	gaacaggaaa	tatagtggtc	480
attatgatta	gctatccaaa	aggaagagaa	attttggagc	tggtgcaaaa	aggaattcca	540
gtaacgatga	ccataggggt	tggcacccgg	catgtacagg	agttcatcag	cggtcagtct	600
gtggtgtttg	tggccattgc	cttcatcacc	atgatgatta	tctcgttagc	ctggctaata	660
ttttactata	tacagcgttt	cctatatact	ggctctcaga	ttggaagtca	gagccataga	720
aaagaaacta	agaaagttat	tggccagctt	ctacttcata	ctgtaaagca	tggagaaaag	780
ggaattgatg	g ttgatgctga	aaattgtgca	gtgtgtattg	aaaatttcaa	agtaaaggat	840
attattagaa	ttctgccate	caagcatatt	tttcatagaa	tatgcattga	cccatggctt	900
ttggatcaco	gaacatgtco	: aatgtgtaaa	cttgatgtca	tcaaagccct	aggatattgg	960
ggagagcct	g gggatgtaca	ggagatgcct	gctccagaat	ctcctcctgg	aagggatcca	1020
gctgcaaat	t tgagtctago	tttaccagat	gatgacggaa	gtgatgagag	cagtecacca	1080
tcagcctcc	c ctgctgaato	tgagccacag	g tgtgatccca	a gctttaaagg	g agatgcagga	1140
gaaaatacg	a cattoctao:	a apooppoagi	agtgactcto	ggcatggagg	acccatctcc	1200

<210> 109

<211> 576

<212> DNA

<213> Homo sapiens

220/307

<400> 109

atgttttgcc	cactgaaact	catcctgctg	ccagtgttac	tggattattc.	cttgggcctg	60
aatgacttga	atgtttcccc	gcctgagcta	acagtccatg	tgggtgattc	agctctgatg	120
ggatgtgttt	tccagagcac	agaagacaaa	tgtatattca	agatagactg	gactctgtca	180
ccaggagagc	acgccaagga	cgaatatgtg	ctatactatt	actccaatct	cagtgtgcct	240
attgggcgct	tccagaaccg	cgtacacttg	atgggggaca	acttatgcaa	tgatggctct	300
ctcctgctcc	aagatgtgca	agaggctgac	cagggaacct	atatctgtga	aatccgcctc	360
aaaggggaga	gccaggtgtt	caagaaggcg	gtggtactgc	atgtgcttcc	agaggagccc	420
aaagagctca	tggtccatgt	gggtggattg	attcagatgg	gatgtgtttt	ccagagcaca	480
gaagtgaaac	acgtgaccaa	ggtagaatgg	atattttcag	gacggcgcgc	aaaggtaaca	540
aggaggaaac	atcactgtgt	tagagaaggc	tctggc			576

⟨210⟩ 110

<211> 780

<212> DNA

<213> Homo sapiens

<400> 110

60 atggcggggt cgccgctgct ctgggggccg cgggccgggg gcgtcggcct tttggtgctg 120 ctgctgctcg gcctgtttcg gccgccccc gcgctctgcg cgcggccggt aaaggagccc 180 egeggeetaa gegeagegte teegeeettg getgagaetg gegeteeteg eegetteegg 240 cggtcagtgc cccgaggtga ggcggcgggg gcggtgcagg agctggcgcg ggcgctggcg 300 catctgctgg aggccgaacg tcaggagcgg gcgcgggccg aggcgcagga ggctgaggat 360 cagcaggcgc gcgtcctggc gcagctgctg cgcgtctggg gcgccccccg caactctgat ccggctctgg gcctggacga cgaccccgac gcgcctgcag cgcagctcgc tcgcgctctg 420 480 ctccgcgccc gccttgaccc tgccgccctc gcagcccagc ttgtccccgc gcccgtcccc

221/307

gcc	gcgg	gcgc	tccg	acco	cg (gccc	cggt	c ta	cgac	gace	gco	ccgo	eggg	ccc	ggat	gct	5	40
gag	gagg	gcag	gcga	cgag	gac a	acccg	gacgt	g ga	ccc	gàgo	tgt	tgag	ggta	ctt	gctg	gga	60) 0
cgga	atto	ttg	cggg	aago	gc g	ggact	ccga	g ge	ggte	gcag	ccc	cgce	gccg	cct	ccgc	cgt	66	30
gcc	gccg	acc	acga	tgtg	gg	ctctg	gagct	g cc	ccct	gagg	gcg	tgct	tggg	ggcg	gctg	ctg	72	20
cgt	gtga	aac	gcct	agag	ac c	ccgg	cgcc	с са	ggtg	cctg	cac	gccg	gcct	ctte	gcca	ссс	78	30
<210)> 1	11													•			
<211	1> 1	633																
<212	2> D	NA																
<213	3> H	omo	sapi	ens														
<220)>																	
<221	> c	DS																
<222	;> (68).	(1	498)								·						
<400	> 1	11																
acaa	ccg	gct	gggg	tcct	tg c	gcgc	cgcg(g ct	cagg	gagg	agc	accg	act	gcgc	cgca	acc	6	0
ctga	gag	atg	gtt	ggt	gcc	atg	tgg	aag	gtg	att	gtt	tcg	ctg	gtc	cts	g	10	9
		Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Let	u		
		1				5					10							
ttg	atg	cct	ggc	ccc	tgt	gat	ggg	ctg	ttt	cgc	tcc	cta	tac	aga	agt	t	15	7
Leu	Met	Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	r		
15					20					25					30)		
gtt	tcc	atg	cca	cct	aag	gga	gac	tca	gga	cag	cca	tta	ttt	ctc	acc	3	20	5
						Gly												
				35					40					45				

cct tac att gaa gct ggg aag atc caa aaa gga aga gaa ttg agt ttg

253

Pro	Tyr	Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	
			50					55					60			
gtc	ggc	cct	ttc	cca	gga	ctg	aac	atg	aag	agt	tat	gcc	ggc	ttc	ctc	301
Val	Gly	Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	
		65					70					75				
acc	gtg	aat	aag	act	tac	aac	agc	aac	ctc	ttc	ttc	tgg	ttc	ttc	cca	349
Thr	Val	Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	
	80					85					90					
gct	cag	ata	cag	cca	gaa	gat	gcc	cca	gta	gtt	ctc	tgg	cta	cag	ggt	397
Ala	Gln	Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	
95					100	ı				105					110	
ggg	ccg	gga	ggt	tca	tcc	atg	ttt	gga	ctc	ttt	gtg	gaa	cat	ggg	cct	445
Gly	Pro	Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	ı His	Gly	Pro	
				115	j				120					125	5	
tat	gtt	gto	aca	agt	aac	atg	acc	ttg	cgt	gac	aga	gad	tto	ccc	tgg	493
Tyr	Val	Val	Thr	- Ser	. Asn	Met	Thr	Leu	Arg	Asp	Are	g Ası	Phe	e Pro	Trp	
			130)				135	•				140)		
acc	aca	ace	g cto	tco	c ate	g ctt	tac	att	. gac	aat	cca	a gt	g gg	c aca	a ggc	541
Thr	Thr	Thr	r Leu	ı Sei	r Met	t Leu	Туз	r Ile	e Asp	Asn	Pro	o Va	1 G1;	y Thi	r Gly	
		149	5				150)				15	5			
															c gat	
Phe	e Sei	r Phe	e Thi	r As	p Ası	p The	Hi	s Gly	у Туз	r Ala	a Va	l As	n Gl	u As	p Asp	1
	160)				165	5				17	0				
gta	a gca	a cg	g ga	t tt	a ta	c agi	t gc	a cta	a at	t ca	g tt	t tt	с са	g at	a ttt	637
Val	l Ala	a Ar	g As	p Le	u Ty	r Sei	r Al	a Le	u Il	e Gli	n Ph	e Ph	e Gl	n II	e Phe	•

175					180					185					190	
cct	gaa	tat	aaa	aat.	aat	gac	ttt	tat	gtc	act	ggg	gag	tct	tat	gca	685
Pro	Glu	Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	
				195	•				200					205		
ggg	aaa	tat	gtg	сса	gcc	att	gca	cac	ctc	atc	cat	tcc	ctc	aac	cct	733
Gly	Lys	Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	
			210					215					220			
gtg	aga	gag	gtg	aag	atc	aac	ctg	aac	gga	att	gct	att	gga	gat	gga	781
Val	Arg	Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	
		225					230					235				
tat	tct	gat	ссс	gaa	tca	att	ata	ggg	ggc	tat	gca	gaa	ttc	ctg	tac	829
Tyr	Ser	Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	
	240					245					250					
caa	att	ggc	ttg	ttg	gat	gag	aag	caa	aaa	aag	tac	ttc	cag	aag	cag	877
Gln	Ile	Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	
255					260					265					270	
tgc	cat	gaa	tgc	ata	gaa	cac	atc	agg	aag	cag	aac	tgg	ttt	gag	gcc	925
Cys	His	Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	
	•	٠		275	ı				280)				285	i	
ttt	gaa	ata	ctg	gat	aaa	cta	cta	gat	ggc	gac	tta	aca	agt	gat	cct	973
Phe	Glu	Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	ı Thr	· Ser	· Asp	Pro	
			290	ı				295					300)		
tct	tac	ttc	cag	aat	gtt	aca	gga	tgt	agt	aat	. tac	: tat	. aac	: ttt	ttg	1021
															Leu	
	-	305					310					318				

egg	tgc	acg	gaa	cct	gag	gat	cag	ctt	tac	tat	gtg	aaa	ttt	ttg	tca	1069
Arg	Cys	Thr	Glu	Pro	Glu	Asp	Gln	Leu	Tyr _.	Tyr	Val	Lys	Phe	Leu	Ser	
	320	•				325					330					
ctc	cca	gag	gtg	aga	caa	gcc	atc	cac	gtg	ggg	aat	cag	act	ttt	aat	1117
Leu	Pro	Glu	Val	Arg	Gln	Ala	Ile	His	Val	G1y	Asn	Gln	Thr	Phe	Asn	
335					340					345					350	
gat	gga	act	ata	gtt	gaa	aag	tac	ttg	cga	gaa	gat	aca	gta	cag	tca	1165
Asp	Gly	Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Ser	
				355					360					365	•	
gtt	aag	cca	tgg	tta	act	gaa	atc	atg	aat	aat	tat	aag	gtt	ctg	atc	1213
Val	Lys	Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	: Val	Leu	ı Ile	
		•	370)				375					380)		
															g cac	
Tyr	Asr	Gly	y Glr	Leu	Asp	Ile	Ile	. Val	Ala	Ala	Ala	a Lei	ı Thi	r Glu	ı His	
		38					390					399				
															g gca	
Ser	Le	u Me	t Gly	y Met	t Asp) Trp	Lys	s Gly	Ser	Glr	Glu	u Ty.	r Ly	s Ly:	s Ala	l
	40					409					410					1055
															t ggt	
Gl	u Ly	s Ly	s Va	l Tr	p Ly:	s Ile	e Pho	e Lys	s Sei			r Gl	u Va	l Al	a Gly	
41					420					42					430	
															t gga	
Ту	r Il	e Ar	g Gl	n Al	a Gl	y As	p Ph	e Hi			1 II	e Il	e Ar		y Gl	у
				43					44					44		
gg	а са	t at	t tt	a cc	c ta	t ga	с са	g cc	t ct	g ag	a go	t ti	tt ga	ac at	g at	t 1453

Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile	
450 455 460	
aat cga ttc att tat gga aaa gga tgg gat cct tat gtt gga taaac	1500
Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly	
465 470 475	
taccttccca aaagagaaca tcagaggttt tcattgctga aaagaaaatc gtaaaaacag	1560
aaaatgtcat aggaataaaa aaattatctt ttcatatctg caagattttt ttcatcaata	1620
aaaattatcc ttg	1633
⟨210⟩ 112	
<211> 1095	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (192) (872)	
<400> 112	
ctttaaaatg tcattggtaa accatacttg atcctaaatt cctgtacttc ctcaggccat	60
ccgagcatga aacgctgtca cctacccaca tccgctggct gtgacgcttg tcaaagtgtt	-120
ctctatcggc tgcatgccta gaccaccaaa gcgttctgac cggacagtgt cactggagaa	180
ggcggcgcga c atg tcc agg gcg cag atc tgg gct ctg gtg tct ggt gtc	230
Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val	
1 5 10	
gga ggg ttt gga gct ctc gtt gct gct acc acg tcc aat gag tgg aaa	278
Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys	

	15					20					25					
gtg	acc	acg	cga	gcc	tcc	tcg	gtg	ata	aca	gcc	act .	tgg	gtt	tac	cag	326
Val	Thr	Thr	Arg	Ala	Ser	Ser	Val	Ile	Thr	Ala	Thr	Trp	Val	Tyr	Gln	•
30					35					40					45	
ggt	ctg	tgg	atg	aac	tgc	gca	ggt	aac	gcg	ttg	ggt	tct	ttc	cat	tgc	374
Gly	Leu	Trp	Met	Asn	Cys	Ala	Gly	Asn	Ala	Leu	Gly	Ser	Phe	His	Cys	
				50					55					60		•
cga	ccg	cat	ttt	act	atc	ttc	aaa	gta	gca	ggt	tat	ata	cag	gca	tgt	422
Arg	Pro	His	Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	
			65					70					75			
aga	gga	ctt	atg	atc	gct	gct	gtc	agc	ctg	ggc	ttc	ttt	ggt	tcc	ata	470
Arg	Gly	Leu	Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	
		80					85					90				
ttt	gcg	ctc	ttt	gga	atg	aag	tgt	acc	aaa	gtc	gga	ggc	tcc	gat	aaa	518
Phe	Ala	Leu	Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Ġly	Ser	Asp	Lys	
	95					100					105					
gcc	aaa	gct	aaa	att	gct	tgt	ttg	gct	ggg	att	gta	ttc	ata	ctg	tca	566
Ala	Lys	Ala	Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	
110					115					120	1	•			125	
ggg	ctg	tgc	tca	atg	act	gga	tgt	tcc	cta	tat	gca	aac	aaa	ato	aca	614
Gly	Leu	Cys	Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asr	Lys	Ile	Thr	
				130)				135	;				140)	
acg	gaa	ttc	ttt	gat	cct	ctc	ttt	gtt	, gag	caa	aag	tat	gaa	tta	gga	662
Thr	Glu	Phe	Phe	Asp	Pro	Leu	Phe	· Val	Glu	Gln	Lys	: Туі	Glu	ı Leu	ı Gly	
			145	,				150)				159	5		

227/307

gcc	gct	ctg	ttt	att	gga	tgg	gca	gga	gcc	tca	ctg	tgc	ata	att	ggt	710
Ala	Ala	Leu	Phe	Ile	Gly	Trp	Ala	Gly	Ąlа	Ser	Leu	Cys	Ile	Ile	Gly	
		160					165					170	·			
ggt	gtc	ata	ttt	tgc	ttt	tca	ata	tct	gac	aac	aac	aaa	aca	ccc	aga	758
Gly	Val	Ile	Phe	Cys	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	
	175					180					185					
tac	aca	tac	aac	ggg	gcc	aca	tct	gtc	atg	tct	tct	cgg	aca	aag	tat	806
Tyr	Thr	Tyr	Asn	Gly	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	
190					195					200					205	
cat	ggt	gga	gaa	gat	ttt	aaa	aca	aca	aac	cct	tca	aaa	cag	ttt	gat	854
His	Gly	Gly	Glu	Asp	Phe	Lys	Thr	Thr	Asn	Pro	Ser	Lys	Gln	Phe	Asp	
				210)				215	i	•			220)	
aaa	aat	gct	tat	gto	t a	aaag	agct	c go	gggc	aago	t go	ectet	tga			900
Lys	. Asr	ı Ala	а Туг	· Val	L											
			228	5												
gti	ttgt	tata	aaa	gcgaa	act g	gttca	ıcaaa	aa te	gatco	ccato	aaı	ggcc	ctcc	cata	aattaac	960
act	tcaa	aact	att	tttaa	aaa t	tatgo	atti	tg aa	agca	tctg	t tg	attg	tatg	gatı	gtaagtg	1020
tte	ctta	cata	gtt	agtta	ata 1	tacta	aatca	at t	ttct	gttg	t gg	cttt	ctat	aaa	aaataaa	1080
ca	gttt	attt	aca	gg		-										1095

⟨210⟩ 113

<211> 1602

<212> DNA

<213> Homo sapiens

<220>

(221)	> CD	S														
<222	> (3	4)	. (95	1)												
<400	> 11	3						•	•							
tttg	tcag	gt g	gtgg	agga	a aa	ggcg	ctcc	gtc	atg	ggg	ato	cag	acg	gago	ccc	54
									Met	Gly	Ile	G1n	Thr	: Ser	Pro	
									1	ļ			Ε	5		
gtc	ctg	ctg	gcc	tcc	ctg	ggg	gtg	ggg	ctg	gtc	act	ctg	ctc	ggc	ctg	102
Val	Leu	Leu	Ala	Ser	Leu	Gly	Val	Gly	Leu	Val	Thr	Leu	Leu	Gly	Leu	
		10					15					20				
gct	gtg	ggc	tcc	tac	ttg	gtt	cgg	agg	tcc	cgc	cgg	cct	cag	gtc	act	150
Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg	Ser	Arg	Arg	Pro	Gln	Val	Thr	
	25					30					35		•			
ctc	ctg	gac	ccc	aat	gaa	aag	tac	ctg	cta	cga	ct.g	cta	gac	aag	acg	198
Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu	Leu	Arg	Leu	Leu	Asp	Lys	Thr	
40					45					50					55	
act	gtg	agc	cac	aac	acc	aag	agg	ttc	cgc	ttt	gcc	ctg	ccc	acc	gcc	246
Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe	Arg	Phe	Ala	Leu	Pro	Thr	Ala	
				60					65					70		
cac	cac	act	ctg	ggg	ctg	cct	gtg	ggc	aaa	cat	atc	tac	ctc	tcc	acc	294
His	His	Thr	Lèu	Gly	Leu	Pro	Val	Gly	Lys	His	Ile	Tyr	Leu	Ser	Thr	
			75					80					85			
cga	att	gat	ggc	agc	ctg	gtc	ato	agg	cca	tac	act	cct	gtc	acc	agt	342
														Thr		
•		90					95					100				
gat	gae			ggo	: tat	gtg	gat	ctt	gto	atc	aag	gto	: tac	ctg	aag	390
9-4	9-6	, ,,		50-			_		-							

Asp Glu Asp Gln Gly Tyr Val Asp Leu Val Ile Lys Val Tyr Leu Lys	
105 110 115	
ggt gtg cac ccc aaa ttt cct gag gga ggg aag atg tct cag tac ctg	438
Gly Val His Pro Lys Phe Pro Glu Gly Gly Lys Met Ser Gln Tyr Leu	
120 125 130 135	
gat agc ctg aag gtt ggg gat.gtg gtg gag ttt cgg ggg cca agc ggg	486
Asp Ser Leu Lys Val Gly Asp Val Val Glu Phe Arg Gly Pro Ser Gly	
140 145 150	
ttg ctc act tac act gga aaa ggg cat ttt aac att cag ccc aac aag	534
Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn Ile Gln Pro Asn Lys	
155 160 165	
aaa tot cca cca gaa ccc cga gtg gcg aag aaa ctg gga atg att gcc	582
Lys Ser Pro Pro Glu Pro Arg Val Ala Lys Lys Leu Gly Met Ile Ala	
170 175 180	
ggc ggg aca gga atc acc cca atg cta cag ctg atc cgg gcc atc ctg	630
Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile Arg Ala Ile Leu	
185 190 195	
aaa gtc cct gaa gat cca acc cag tgc ttt ctg ctt ttt gcc aac cag	678
Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln	•
200 205 210 215	
aca gaa aag gat atc atc ttg cgg gag gac tta gag gaa ctg cag gcc	726
Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala	
220 225 230	
ege tat ecc aat ege tit aag ete tgg tie act etg gat eat eec eea	774
Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr Leu Asp His Pro Pro	

	235		240		245		
aaa gat t	gg gcc ta	ac agc aag	ggc ttt	gtg act (gcc gac atg	atc cgg	822
Lys Asp T	rp Ala T	yr Ser Lys	Gly Phe	Val Thr	Ala Asp Met	Ile Arg	
2	250		255		260		
gaa cac c	ctg ccc g	ct cca ggg	gat gat	gtg ctg	gta ctg ctt	tgt ggg	870
Glu His I	Leu Pro A	la Pro Gly	Asp Asp	Val Leu	Val Leu Leu	Cys Gly	
265		270		;	275		
cca ccc o	cca atg g	tg cag ctg	gcc tgc	cat ccc	aac ttg gac	aaa ctg	918
Pro Pro I	Pro Met V	al Gln Leu	Ala Cys	His Pro	Asn Leu Asp	Lys Leu	
280		285		290		295	
ggc tac	tca caa a	ag atg cga	ttc acc	tac tg a	gcatcctcc a	gcttccctg	970
Gly Tyr	Ser Gln L	ys Met Arg	Phe Thr	Tyr		· · ·	
	3	300		305			
gtgctgtt	cg ctgcag	gtigt tecce	atcag ta	ctcaagca	ctataagcct	tagattcctt	1030
tcctcaga	gt ttcagg	gtttt ttcag	ttaca to	tagagctg	aaatctggat	agtacctgca	1090
ggaacaat	at tcctg	tagcc atgga	agagg go	caaggctc	agtcactcct	tggatggcct	1150
cctaaatc	tc cccgt	ggcaa caggt	ccagg ag	aggcccat	ggagcagtct	cttccatgga	1210
gtaagaag	ga aggga	gcatg tacgo	ttggt co	aagattgg	ctagttcctt	gatagcatct	1270
tactctca	icc ttett	tgtgt ctgt@	gatgaa ag	gaacagtc	tgtgcaatgg	gttttactta	1330
aacttcac	tg ttcaa	cctat gagca	aatct gi	atgtgtga	gtataagttg	agcatagcat	1390
acttccag	gag gtggt	cttat ggaga	atggca ag	gaaaggagg	aaatgatttc	ttcagatctc	1450
aaaggagt	tct gaaat	atcat attt	ctgtgt gi	tgtctctct	cagcccctgc	ccaggctaga	1510
gggaaaca	agc tactg	ataat cgaa	aactgc t	gtttgtggc	aggaacccct	ggctgtgcaa	1570
ataaatg	ggg ctgag	gcccc tgtg	tgatat t	g			1602

PCT/JP00/05356

210> 114	
211> 897	
(212> DNA	
(213) Homo sapiens	
(220)	
(221> CDS	
(222) (99)(782)	
<400> 114	
agtcctccca aagtacttgt gtccgggtgg tggactggat tcgctgcgga gccctggaag	60
ctgcctttcc ttctccctgt gcttaaccag aggtgccc atg ggt tgg aca atg	113
Met Gly Trp Thr Met	
1 5	
agg ctg gtc aca gca gca ctg tta ctg ggt ctc atg atg gtg gtc act	161
Arg Leu Val Thr Ala Ala Leu Leu Leu Gly Leu Met Met Val Val Thr	
10 15 20	
gga gac gag gat gag aac agc ccg tgt gcc cat gag gcc ctc ttg gac	209
Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His Glu Ala Leu Leu Asp	
25 30 35	
gag gac acc ctc ttt tgc cag ggc ctt gaa gtt ttc tac cca gag ttg	257
Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val Phe Tyr Pro Glu Leu	-
40 45 50	•
ggg aac att ggc tgc aag gtt gtt cct gat tgt aac aac tac aga cag	305
Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys Asn Asn Tyr Arg Gln	
55 60 65	
aag atc acc tcc tgg atg gag ccg ata gtc aag ttc ccg ggg gcc gtg	353

Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys	Phe	Pro	Gly	Ala	Val	
70					75					80					85	
gac	ggc	gca	acc	tat	atc	ctg	gtg	atg	gtg	gat	cca	gat	gcc	cct	agc	401
Asp	Gly	Ala	Thr.	Tyr	Ile	Leu	Val	Met	Val	Asp	Pro	Asp	Ala	Pro	Ser	
				90					95					100		
aga	gca	gaa	ccc	aga	cag	aga	tťc	tgg	aga	cat	tgg	ctg	gta	aca	gat	449
Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His	Trp	Leu	Val	Thr	Asp	
			105					110					115			
atc	aag	ggc	gcc	gac	ctg	aag	aaa	ggg	aag	att	cag	ggc	cag	gag	tta	497
Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile	G1n	Gly	Gln	Glu	Leu	
		120					125					130				
tca	gcc	tac	cag	gct	ccc	tcc	cca	ccg	gca	cac	agt	ggc	ttc	cat	cgc	545
Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His	Ser	Gly	Phe	His	Arg	
	135					140	1				145					
tac	cag	ttc	ttt	gto	tat	ctt	cag	gaa	gga	aaa	gtc	atc	tct	cto	ctt	593
Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gln	Glu	Gly	Lys	Val	Ile	Ser	Leu	Leu	
150	١				155					160)				165	
ccc	aag	gaa	aac	aaa	act	cga	ggc	tct	tgg	aaa	atg	gac	aga	ttt	ctg	641
Pro	Lys	Glu	ı Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys	Meț	. Asp	Are	g Phe	e Leu	
	•			170)				175	ı				180)	
															g acc	689
Asr	Arg	? Phe	His	s Lev	ı Gly	Gli	ı Pro	Glu	Ala	Ser	Thr	Glr	1 Ph	e Met	t Thr	
			189	5				190	}				19	5		
cag	g aad	tac	cag	g ga	tca	ı cca	acc	cto	cag	gct	t cc	aga	a ga	a ag	g gcc	737
Glr	n Ası	ı Tyı	r Glı	n Ası	Sei	r Pro	Th:	Leu	Glr	Ala	a Pro	o Ar	g Gl	u Arı	g Ala	

200	205	210	
agc gag ccc aag cac aaa	aac cag gcg gag a	ta gct gcc tgc t	780
Ser Glu Pro Lys His Lys	Asn Gln Ala Glu I	le Ala Ala Cys	
215	220	225	
agatagccgg ctttgccatc cg	ggcatgtg gccacact	ge ceaceacega egatgtgggt	840
atggaacccc ctctggatac ag	aacccett etttteca	aa taaaaaaaaa atcatcc	897
<210> 115			
<211> 1866			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS			
<222> (142)(1467)			
<400> 115			
gcccgcatgc gggggcgtgg ca	ngtcaacag caacaaco	ca cacgeeggca gggeeagaaa	60
ctcccatctc cctcaccage c	ggaaagtac gagtegge	tc agcctggagg gacccaacca	120
gagcctggcc tgggagccag g	atg gcc atc cac a	aaa gcc ttg gtg atg tgc	171
	Met Ala Ile His I	lys Ala Leu Val Met Cys	
	1	5 10	
ctg gga ctg cct ctc ttc	ctg ttc cca ggg g	gcc tgg gcc cag ggc cat	219
Leu Gly Leu Pro Leu Phe	Leu Phe Pro Gly	Ala Trp Ala Gln Gly His	
15	20	25	
gtc cca ccc ggc tgc agc	caa ggc ctc aac	ccc ctg tac tac aac ctg	267
Val Pro Pro Gly Cys Ser	Gln Gly Leu Asn	Pro Leu Tyr Tyr Asn Leu	

			.30					35					40				
tgt g	ac e	cgc	tct	ggg	gcg	tgg	ggc	atc	gtc	ctg	gag	gcic	gtg	gct	gg	g	315
Cys A	sp /	Arg	Ser	Gly	Ala	Trp	Gly	Ile	Val	Leu	Glu	Ala	Val	Ala	G1	y	
		45					50					55					
gcg g	gc	att	gtc	acc	acg	ttt	gtg	ctc	acc	atc	atc	ctg	gtg	gcc	ag	gc	363
Ala G	ly	Ile	Val	Thr	Thr	Phe	Val	Leu	Thr	Ile	Ile	Leu	Val	Ala	Se	er	
	60					65					70						
ctc c	cc	ttt	gtg	cag	gac	acc	aag	aaa	cgg	agc	ctg	ctg	ggg	acc	C	ag	411
Leu F	oro	Phe	Val	Gln	Asp	Thr	Lys	Lys	Arg	Ser	Leu	Leu	Gly	Thr	G	ln	
75					80					85					9	90	
gta 1	ttc	ttc	ctt	ctg	ggg	acc	ctg	ggc	ctc	ttc	tgc	cto	gtg	ttt	g	СС	459
Val I	Phe	Phe	Leu	Leu	Gly	Thr	Leu	Gly	Leu	Phe	Cys	Leu	ı Val	Phe	A	la	
				95					100)	-	•		109	5		
tgt	gtg	gtg	aag	ccc	gac	ttc	tcc	acc	tgt	gcc	tct	cg	g cgo	tto	С	tc	507
Cys	Val	Val	Lys	s Pro	Asp	Phe	Ser	Thr	Cys	Ala	Ser	Ar	g Ar	g Pho	e L	.eu	
			110)				115	•				120	0			
ttt	ggg	gtt	ct	g tto	gco	ato	tgc	ttc	tct	tgt	cte	g gc	g gc	t ca	C E	gtc	555
Phe	Gly	Val	Le	u Phe	e Ala	Ile	Cys	Phe	e Ser	r Cys	s Lei	u Al	a Al	a Hi	s \	Val	
		125	5				130)				13	5				
ttt	gcc	cto	aa	c tte	cte	g gco	c cgg	g aag	g aad	c ca	c gg	g cc	c cg	g gg	C 1	tgg	603
Phe	Ala	Le.	ı As	n Pho	e Lei	ı Ala	a Arg	g Ly:	s Ası	n Hi	s Gl	y Pr	o Ar	g G1	y ·	Trp	
	140)				14	5				15	0					
gtg	ato	e tt	c ac	t gt	g gc	t ct	g ct	g ct	g ac	c ct	g gt	a ga	g gt	c at	c	atc	651
Val	Ile	e Ph	e Th	r Va	1 Al	a Le	u Le	u Le	u Th	r Le	u Va	1 G	lu Va	1 II	le	Ile	-
155					16	0				16	5					170	

aat	aca	gag	tgg	ctg	atc	atc	acc	ctg	gtt	cgg	ggc	agt	ggc	gag	ggc	699
Asn	Thr	Glu	Trp	Leu	Ile	Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly·	
				175				•	180	•				185		
ggc	cct	cag	ggc	aac	agc	agc	gca	ggc	tgg	gcc	gtg	gcc	tcc	ccc	tgt	747
Gly	Pro	Gln	Gly	Asn	Ser	Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	
			190					195					200			
gcc	atc	gcc	aac	atg	gac	ttt	gtc	atg	gca	ctc	atc	tac	gtc	atg	ctg	795
Ala	Ile	Ala	Asn	Met	Asp	Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	
		205					210					215				
ctg	ctg	ctg	ggt	gcc	ttc	ctg	ggg	gcc	tgg	ccc	gcc	ctg	tgt	ggc	cgc	843
Leu	Leu	Leu	Gly	Ala	Phe	Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	
	220					225					230	•				
tac	aag	cgc	tgg	cgt	aag	cat	ggg	gtc	ttt	gtg	ctc	ctc	acc	aca	gcc	891
Tyr	Lys	Arg	Trp	Arg	Lys	His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	
235					240					245	•				250	
acc	tcc	gtt	gcc	ata	tgg	gtg	gtg	tgg	atc	gto	atg	tat	act	tac	ggc	939
Thr	Ser	Val	Ala	Ile	Trp	Val	Val	Trp	Ile	Val	Met	Tyr	Thi	Tyr	Gly	
				255					260	}				265	•	
aac	aag	cag	cac	aac	agt	ccc	acc	tgg:	gat	gac	ccc	ace	cte	g gcc	atc	987
Asn	Lys	Gln	His	Asn	Ser	Pro	Thr	Trp	Asp	Asp	Pro	Thi	: Le	ı Ala	Ile	
			270)				275	,				280)		
gco	: ct	gcc	gcc	aat	gco	tgg	gco	tto	gto	cto	: tto	ta c	gte	c ato	ccc	1035
Ala	ı Leı	ı Ala	Ala	Asn	Ala	Trp	Ala	a Phe	e Val	Le	ı Phe	y Ty	r Va	l Ile	e Pro	
		285	5				290)				29	5			
gaį	ggto	tec	cag	ggtg	g acc	aag	g tc	c ago	c cca	a ga	g caa	a ag	c ta	c ca	g ggg	1083

Glu	Val	Ser	Gln	Val	Thr	Lys	Ser	Ser	Pro	Glu	Gln	Ser	Tyr	Gln	Gly	
	300					305					310					
gac	atg	tac	ccc	acc	cgg	ggc	gtg	ggc	tat	gag	acc	atc	ctg	aaa	gag	11,31
Asp	Met	Tyr	Pro	Thr	Arg	Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	
315					320					325	•				330	
cag	aag	ggt	cag	agc	atg	ttc	gtg	gag	aac	aag	gcc	ttt	tcc	atg	gat	1179
Gln	Lys	Gly	Gln	Ser	Met	Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	
				335					340					345		
gag	ccg	gtt	gca	gct	aag	agg	ccg	gtg	tca	cca	tac	agc	ggg	tac	aat	1227
Glu	Pro	Val	Ala	Ala	Lys	Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	
			350					355					360			
ggg	cag	ctg	ctg	acc	agt	gtg	tac	cag	ccc	act	gag	atg	gcc	ctg	atg	1275
Gly	Gln	Leu	Leu	Thr	Ser	Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met	
		365	;				370)				375				
cac	aaa	gtt	ccg	tcc	gaa	gga	gct	tac	gac	atc	atc	ctc	cca	cgg	gcc	1323
His	Lys	Val	Pro	Ser	Glu	Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala	
	380)				385	i				390)				
acc	gco	aac	ago	cag	gte	atg	ggc	agt	gcc	aac	tcg:	aco	cte	g cgg	gct	1371
Thr	Ala	Asr	ı Sei	Gln	Val	Met	Gly	/ Ser	Ala	Asn	Ser	Thr	Leu	ı Arg	, Ala	
395	5				400)				405	·				410	
gaa	ga c	ate	g tac	tcg	g gcc	cag	g ago	cac	cag	gce	gco	aca	cc	g ccg	g aaa	1419
Glu	ı Asp	Me1	t Tyı	. Sei	- Ala	Glr	n Sei	r His	Glr	n Ala	ı Ala	i Thi	Pro	o Pro	Lys	
				418	5				420)				425	õ	
gad	c gg	c aa	g aad	c tci	t ca	ggto	c tti	t aga	a aad	ccc	c tac	c gt	g tg	g ga	2	1464
Ası	o G1	y Ly:	s Ası	n Sei	r Glı	ı Va	l Pho	e Are	g Ası	n Pro	э Туг	r Va	l Tr	p Ası	p	

237/307

430	435	440	
tgagtc agcggtggcg agga	agaggcg gtcggatttg ggg	agggccc tgaggacctg	1520
gccccgggca agggactctc	caggeteete eteceeetge	caggeceage aacatgtgee	1580
ccagatgtgg aagggcctcc	ctctctgcca gtgtttgggt	gggtgtcatg ggtgtcccca	1640
cccactcctc agtgtttgtg	gagtcgagga gccaacccca	gcctcctgcc aggatcacct	1700
cggcggtcac actccagcca	aatagtgttc tcggggtggt	ggctgggcag cgcctatgtt	1760
tetetggaga tteetgeaac	ctcaagagac ttcccaggcg	ctcaggcctg gatcttgctc	1820
ctctgtgagg aacaagggtg	cctaataaat acatttctgc	tttatt	1866
<210> 116			
<211> 2198			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS	·		
<222> (50)(847)			
<400> 116			
aaaatggcgt agagcctagc	aacagcgcag gctcccagcc	gagteegtt atg gee	55
		Met Ala	•
		1	•
gct gcc gtc ccg aag ag	g atg agg ggg cca gca	caa gcg aaa ctg ctg	103
Ala Ala Val Pro Lys Ar	g Met Arg Gly Pro Ala	Gln Ala Lys Leu Leu	
5	10	15	

ccc ggg tcg gcc atc caa gcc ctt gtg ggg ttg gcg cgg ccg ctg gtc

Pro Gly Ser Ala Ile Gln Ala Leu Val Gly Leu Ala Arg Pro Leu Val

151

	20					25					30						
ttg	gcg	ctc	ctg	ctt	gtg	tcc	gcc	gct	cta	tcc	agt	gtt	gta	tca	cgg	. 19	9
Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	Ser	Arg		
35					40					45					50		
act	gat	tca	ccg	agc	cca	acc	gta	ctc	aac	tca	cat	att	tct	acc	cca	24	17
Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	Thr	Pro		
				55					60					65			
aat	gtg	aat	gct	tta	aca	cat	gaa	aac	caa	acc	aaa	cct	tct	att	tcc	29	95
Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	Ile	Ser		
			70					75					80				
caa	atc	agc	acc	acc	ctc	cct	ccc	acg	acg	agt	acc	aag	aaa	agt	gga	34	13
Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	Ser	Gly		
		85					90					95					•
gga	gca	tct	gtg	gtc	cct	cat	ccc	tcg	cct	act	cct	ctg	tct	caa	gag	39	91
Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	Gln	Glu		
	100					105					110						
gaa	gct	gat	aac	aat	gaa	gat	cct	agt	ata	gag	gag	gag	gat	ctt	ctc	43	39
Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp	Leu	Leu		
115					120					125					130		
atg	ctg	aac	agt	tct	cca	tcc	aca	gcc	aaa	gac	act	cta	gac	aat	ggc	48	37
Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	Asn	Gly		
				135					140					145			
gat	tat	gga	gaa	cca	gac	tat	gac	tgg	acc	acg	ggc	ccc	agg	gac	gac	53	35
Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	Asp	Asp		
			150					155					160				

gac	gag	tct	gat	gac	acc	ttg	gaa	gaa	aac	agg	ggt	tac	atg	gaa	att	583
Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	Glu	Ile	
		165					170					175			•	
gaa	cag	tca	gtg	aaa	tct	ttt	aag	atg	cca	tcc	tca	aat	ata	gaa	gag	631
Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	Glu	Glu	
	180					185					190					
gaa	gac	agc	cat	ttc	ttt	ttt	cat	ctt	att	att	ttt	gct	ttt	tgc	att	679
Glu	Asp	Ser	His	Phe	Phe	Phe	His	Leu	Ile	Ile	Phe	Ala	Phe	Cys	Ile	
195					200					205					210	
gct	gtt	gtt	tac	att	aca	tat	cac	aac	aaa	agg	aag	att	ttt	ctt	ctg	727
Ala	Val	Val	Tyr	Ile	Thr	Tyr	His	Asn	Lys	Arg	Lys	Ile	Phe	Leu	Leu	
				215					220					225	•	
gtt	caa	agc	agg	aaa	tgg	cgt	gat	ggc	ctt	tgt	tcc	aaa	aca	gtg	gaa	775
Val	Gln	Ser	Arg	Lys	Trp	Arg	Asp	Gly	Leu	Cys	Ser	Lys	Thr	Val	Glu	
			230)				235					240)		
tac	cat	cgc	cta	gat	cag	aat	gtt	aat	gag	gca	atg	cct	tct	ttg	aag	823
Tyr	His	Arg	Leu	. Asp	Gln	Asn	Val	. Asn	Glu	Ala	Met	Pro	Ser	Leu	Lys	
		245	;				250)			•	255	5			
att	acc	aat	∵gat	: tat	att	ttt	taa	agc	acte	tgat	.tt g	gaati	ttgct	tt		870
Ιlε	e Thr	Asr	ı Asp) Tyr	Ile	Phe	:									
	260)				265	5									
ate	gtaat	ttt	attt	gctt	ga c	tttl	tata	at ga	itati	tgtgo	aaa	atgt:	ttgc	cata	aggcaat	930
tg	gtact	taa	atga	igagg	gtg a	gtci	ctc	tt ti	tgcci	ttggt	gc1	tttg	gaaa	tta	aatgtca	990
															gtccaaa	
															tttatta	

240/307

tgcttcttct ggaagtatta gtgatgctac ttttaaaaaga tcccaaactt gtaactaaat	1170
tctgacatat ctgttactgc tgactcacat tcattctccg ccattcaaat actattttt	1230
atccacattt ttttttgttc ccaaactgta atgtacaagg atatgtgtga taatgctttg	1290
gatttgagta atatttttt ttcttccaag aaaactgctt tggatatttt tagataattt	1350
aaacataatt taggataatg atattgctca atctgaccac aattttaggt aaaacattaa	1410
atgtgtcaag aaatcttggc aacagagact ctgcagcttg cagtggacat agataaaatg	1470
ttacagagat actattttt tggttggaat tactatatta aatttagaag cagaaactgg	1530
taaaatgtta aatacatgta caattgcttt tagttagcaa ttgattgtag catgggttcc	1590
tccaaggttt caagcaatgg gcagagttta aaattatatc agattcgttt acttcgttta	1650
ttattttaca gtaaatttga ataaatctta ggggtcatta tcacttaaat aatactgtac	1710
ctaggtcttt caaattaaaa ttatacctga atgaagttgt ttgtatacat aaaggatatt	1770
tgtgtacaat tacctttttt cccccacact tgttttcttt gtttttgttt tttatggcaa	1830
ctggaaagta tttactatgg gattcattta tgtctgtctt tctatcataa agaattgatc	1890
aatatgtaaa tatgtgattt gaaccatggt tgacttacaa gtgtcactac agctttttag	1950
aaaacatagc cctaatatat gttaagcagg acccgggtga gccagtgggc ttgcgcttta	2010
tgtagagctg gaagaaggcc gtccatcctg tctcttgggc ggacagtgta ctttcctaat	2070
agggaaggga agcacaatgg aaatacccct gaaccgtttt attgcagtaa ttttttcat	2130
atctgaaact attatttaat attttgaata agattttaaa aaataaat	2190
aatctatg	2198

<210> 117

<211> 2180

<212> DNA

<213> Homo sapiens

<220>

(221) CDS	
(222) (69)(695)	٠
<400> 117	
aaccagegee geggacaeeg geaeeggege caeggaetee geaggaeeee gegeeegeeg	60
ecgeeget atg etg ggg etg etg gtg geg ttg etg gee etg ggg ete get	110
Met Leu Gly Leu Leu Val Ala Leu Leu Ala Leu Gly Leu Ala	
1 5 10 .	
gtc ttt gcg ctg ctg gac gtc tgg tac ctg gtg cgc ctt ccg tgc gcc	158
Val Phe Ala Leu Leu Asp Val Trp Tyr Leu Val Arg Leu Pro Cys Ala	
15 20 25 30	
gtg ctg cgc gcg cgc ctg ctg cag ccg cgc gtc cgt gac ctg cta gct	206
Val Leu Arg Ala Arg Leu Leu Gln Pro Arg Val Arg Asp Leu Leu Ala	
35 40 45	
gag cag cgc ttc ccg ggc cgc gtg ctg ccc tcg gac ttg gac ctg ctg	254
Glu Gln Arg Phe Pro Gly Arg Val Leu Pro Ser Asp Leu Asp Leu Leu	
50 55 60	
ttg cac atg aac aac gcg cgc tac ctg cgc gag gcc gac ttt gcg cgc	302
Leu His Met Asn Asn Ala Arg Tyr Leu Arg Glu Ala Asp Phe Ala Arg	
65 70 75	
gtc gcg cac ctg acc cgc tgc ggg gtg ctc ggg gcg ctg agg gag ttg	350
Val Ala His Leu Thr Arg Cys Gly Val Leu Gly Ala Leu Arg Glu Leu	
80 85 90	
cgg gcg cac acg gtg ctg gcg gcc tcg tgc gcg cgc cac cgc cgc tcg	398
Arg Ala His Thr Val Leu Ala Ala Ser Cys Ala Arg His Arg Arg Ser	
95 100 105 110	

ctg	cgc	ctg	ctg	gag	ccc	ttc	gag	gtg	cgc	acc	cgc	ctg	ctg	ggc	tgg	446
Leu	Arg	Leu	Leu	Glu _.	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp	
				115			•		120					125		
gac	gac	cgc	gcg	ttc	tac	ctg	gag	gcg	cgc	ttt	gtc	agc	ctg	cgg	gac	494
Asp	Asp	Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Asp	
			130					135					140			
ggt	ttc	gtg	tgc	gcg	ctg	ctg	cgc	ttc	cgg	cag	cac	ctg	ctg	ggc	acc	542
Gly	Phe	Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	Gln	His	Leu	Leu	Gly	Thr	
		145					150					155				
tca	ccc	gag	cgc	gtc	gtg	cag	cac	ctg	tgc	cag	cgc	agg	gtg	gag	ccc	590
Ser	Pro	Glu	Arg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	G1u	Pro	
	160)				165	•		٠		170	•			-	
															gcc	638
Pro	Glu	Leu	Pro	Ala	Asp	Leu	G1n	His	Trp	Ile	Ser	Tyr	· Asr	ı Glu	ı Ala	
178	•				180)				185	j				190	
															aag	686
Sei	- Sei	r Glr	ı Lei	ı Lev	ı Arg	Me1	: Glu	ı Sei	Gly	/ Lei	ı Sei	· Ası	y Val		r Lys	
				198					200					20		
ga	c ca	g tga	accgo	cc ac	ctto	caca	c cgt	tctg	cct	ggc	cacca	atc (ctgg	gcct	gg	740
	Gli															
															ctcctga	800
															ctctgtg	860
															ctgccct	920
															cactcat	980
σt	gggc	ctag	gta	gggg	agg	atgg	tgcc	tg g	agca	gagg	g ac	ccac	aagt	gcc	tcccgag	1040

243/307

cctagatcct	ggctcggacc	actgcaaggg	ccgaggcagg	gccagaccag	agcatcctgg	1100
gtacaggcct	gggctctcca	gggcctgggc	ctgattcagg	tgcagtgggc	actcctgaag	1160
ggtcagagcg	gcatctgcca	ggcagcccct	ctggcttccg	ctgaggtggt	tgcaggcctg	1220
gggcagagcc	tgggtggtca	gaggccgggg	ctagaggcag	atggaaggga	ggcatttgct	1280
gacagaggac	ggggcacccg	ggctcccact	gcagtcggcc	ttgcctcctc	ctcctcctct	1340
acctccagtc	aggctggacg	ggagggtagc	cttgtggctg	agaggggtca	gactaggtgg	1400
cacaggggct	cctggaaaga	cagcaggctt	cctgctgggc	gttcccttgt	tggagggaat	1460
agagtggggg	tgggactctg	caggggtgtc	cttgtccact	cgcacccctc	gccgcccacc	1520
agggccatgc	tctgtgactt	gggctgatcc	ccaccettte	tgggcctaca	gcaccacagg	1580
ccgctgtacc	cccttagagc	tgccctctc	tggcctggcc	ggcagacgtc	ttcttaactc	1640
ctctgtcctc	tatattcagc	atgttccttg	tcagctgctg	ggccggccct	gccttgcgct	1700
agcagagcct	ctcctggcag	cttctcaggt	ctccctaatg	gagacaccag	gctactagga	1760
cactggctgg	ggccaccccc	tcctgcctaa	tgcctcacct	tacagctggg	gaaactgagg	1820
cctggaatgg	cccagagtca	ccaaggcaaa	gttggggctg	gtcccagcct	gaggctccag	1880
ctgatgccct	cagctcccag	agagggggtg	ccccatctag	ctgggtgcag	gggtcactgc	1940
ttgtcagctc	agggccctgt	gcccgcttgc	ctgttcccct	acatctgtgc	ctgcacatcc	2000
agaactgcct	ccttgccgct	gcctccagga	agcccacctt	gagccagagt	caagggctgc	2060
agcactgccc	gatagaacac	gcccgccctc	actgctgttc	ttgccttaca	gccaccatgg	2120
gaaagctgca	acctttctgt	tttatttaaa	gaaagcccaa	cattaaaggg	ttttcattgc	2180

<210> 118

<211> 1527

<212> DNA

<213> Homo sapiens

⟨220⟩

244/307

WO 01/12660

<221	> CD	S												•		
<222	> (1	03).	(1	305)												
<400	> 11	8														
agto	ttcc	ag g	gcgg	cggt	g gg	tgtc	cgct	tct	ctct	gct	cttc	gact	gc a	ccgc	actcg	60
cgcg	tgac	cc t	gact	cccc	c ta	gtca	gctc	agc	ggtg	ctg	cc a	tg g	cg t	.gg c	gg	114
											M	et A	la T	rp A	rg	
												1				
cgg	cgc	gaa	gcc	agc	gtc	ggg	gct	cgc	ggc	gtg	ttg	gct	ctg	gcg	ttg	162
Arg	Arg	Glu	Ala	Ser	Val	Gly	Ala	Arg	Gly	Val	Leu	Ala	Leu	Ala	Leu	
5					10					15					20	
ctc	gcc	ctg	gcc	ctg	tgc	gtg	ccc	ggg	gcc	cgg	ggc	cgg	gct	ctc	gag	210
Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala	.Arg	Gly	Arg	Ala	Leu	Glu	
				25					30					35		
tgg	ttc	tcg	gcc	gtg	gta	aac	atc	gag	tac	gtg	gac	ccg	cag	acc	aac	258
Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	Pro	Gln	Thr	Asn	
			40					45					50			
ctg	acg	gtg	tgg	agc	gtc	tcg	gag	agt	ggc	cgc	ttc	ggc	gac	agc	tcg	306
Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	Gly	Asp	Ser	Ser	
		55					60					65				
ccc	aag	gag	ggc	gcg	cat	ggc	ctg	gtg	ggc	gtc	ccg	tgg	gcg	ccc	ggc	354
															Gly	
	70		·			75					80					
gga			gag	g ggc	tgo	gcg	ccc	gac	ace	g cgc	ttc	tto	gte	g ccc	gag	402
JU-	_				_											

Gly Asp Leu Glu Gly Cys Ala Pro Asp Thr Arg Phe Phe Val Pro Glu

90

85

95

100

ccc	ggc	ggc	cga	ggg	gcc	gcg	ccc	tgg	gtc	gcc	ctg	gtg	gct	cgt	ggg	450
Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	Val	Ala	Arg	Gly	
				105					110					115		•
ggc	tgc	acc	ttc	aag	gac	aag	gtg	ctg	gtg	gcg	gcg	cgg	agg	aac	gcc	498
Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	Arg	Arg	Asn	Ala	
			120					125					130			
tcg	gcc	gtc	gtc	ctc	tac	aat	gag	gag	cgc	tac	ggg	aac	atc	acc	ttg	546
Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	Asn	Ile	Thr	Leu	
		135					140					145				
ccc	atg	tct	cac	gcg	gga	aca	gga	aat	ata	gtg	gtc	att	atg	att	agc	594
Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	Ile	Met	Ile	Ser	
	150)				155					160)			•	
tat	cca	aaa	gga	aga	gaa	att	ttg	gag	ctg	gtg	caa	aaa	gga	att	cca	642
Tyr	Pro	Lys	Gly	Arg	Glu	ı Ile	Leu	Glu	Leu	Val	Gln	Lys	Gly	ı Ile	e Pro	
165	,				170)				175	5				180	-
gta	ace	g ate	g acc	ata	a ggg	ggtt	ggo	acc	cge	g cat	t gta	сая	g gag	g tto	atc	690
Val	Thi	r Met	t Thi	r Ile	e Gly	/ Val	G1 _y	/ Thr	. Are	g His	s Val	l Gl	ı Glı	ı Ph	e Ile	
				189	5				190)				19	5	
ago	gg	t ca	g tc	t gtį	g gt	g tti	t gte	g gco	ati	t gc	c tt	c at	e ac	c at	g atg	738
Sei	c Gl	y Gl	n Sei	r Val	l Va	l Pho	e Va	l Ala	a Ile	e Ala	a Pho	e Il	e Th	r Me	t Met	
			20	0				209	5				21	0		
at	t at	c tc	g tt	a gc	c tg	g cta	a at	a tt	t ta	c ta	t at	a ca	g cg	t tt	c cta	786
H	e Il	e Se	r Le	u Al:	a Tr	p Le	u Il	e Ph	е Ту	r Ty	r Il	e Gl	n Ar	g Ph	e Leu	
		21	5				22	0				22	5			
ta	t ac	t gg	c tc	t ca	g at	t gg	a ag	t ca	g ag	с са	t ag	a aa	a ga	a ac	t aag	834

[yr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	Lys	Glu	Thr	Lys	
	230					235					240					
aaa	gtt	att	ggc	cag	ctt	cta	ctt	cat	act	gta	aag	cat	gga	gaa	aag	882
Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Vaĺ	Lys	His	Gly	Glu	Lys	
245					250					255					260	
gga	att	gat	gtt	gat	gct	gaa	aat	tgt	gca	gtg	tgt	att	gaa	aat	ttc	. 930
Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys	Ile	Glu	Asn	Phe	
				265					270					275		
aaa	gta	aag	gat	att	att	aga	att	ctg	cca	tgc	aag	cat	att	ttt	cat	978
						Arg										
			280)				285					290	•		
aga	ata	tgo	att	gac	cca	tgg	ctt	ttg	gat	cac	cga	aca	tgt	сса	atg	1026
Arg	Πle	e Cys	s Ile	e Asp	Pro	Trp	Leu	Leu	ı Asp	His	Arg	g Thr	Cys	Pro	Met	
		29					300					305				
tgt	aaa	a ct	t gai	t gto	ato	aaa	gcc	cta	gga	tat	. tgg	g gga	a gag	g cct	ggg	1074
Cys	Ly:	s Le	u Ası	p Val	l Ile	e Lys	Ala	Leu	ı Gly	Tyr	Tr	o G13	/ Glu	ı Pro	Gly	
	31					315					320					
gat	gt	аса	g ga	g atį	g cc	t gct	cca	ı gaa	a tct	cct	cc	t gga	a agg	g ga	t cca	1122
															p Pro	
329					33					335					340	
gci	t gc	a aa	t tt	g ag	t ct	a gci	t tta	a cc	a gat	t gat	t ga	c gg	a ag	t ga	t gag	1170
															p Glu	
				34					350					35		
80	c a 2	t co	a co			c to	c cc	t gc	t ga	a tc	t ga	ig cc	a ca	g tg	t gat	1218
															s Asp	

	360	365	37	70
ccc agc ttt	aaa gga gat g	ca gga gaa aat	acg gca ttg ci	ta gaa gcc 1266
Pro Ser Phe	Lys Gly Asp A	la Gly Glu Asn	Thr Ala Leu Le	eu Glu Ala
375		380	385	
ggc agg agt	gac tct cgg c	at gga gga ccc	atc tcc tagcad	eac 1310
Gly Arg Ser	Asp Ser Arg H	is Gly Gly Pro	Ile Ser	
390	3	95	400	
gtgcccactg a	aagtggcacc aac	agaagtt tggcttg	gaac taaaggacat	tttatttttt 1370
ttactttagc a	acataatttg tat	atttgaa aataatg	tat attattttad	ctattagatt 1430
ctgatttgat a	atacaaagga cta	agatatt ttcttct	tga agagacttt	cgattagtcc 1490
tcatatattt a	atctactaaa ata	gagtgtt taccatg	5 .	1527
<210> 119				
<211> 1905				
<212> DNA				
<213> Homo s	sapiens			
<220>				
<221> CDS				
<222> (125) .	(703)			
<400> 119				
gageetaace t	agagtgctc gca	gcagtct ttcagtt	gag cttggggact	gcagctgtgg 60
ggagatttca g	tgcattgcc tcc	cctgggt gctcttc	atc ttggatttga	aagttgagag 120
cagc atg ttt	tgc cca ctg	aaa ctc atc ctg	ctg cca gtg t	ta ctg gat 169
Met Phe	Cys Pro Leu	Lys Leu Ile Leu	Leu Pro Val L	eu Leu Asp
1	5		10	15

tat	tcc	ttg	ggc	ctg	aat	gac	ttg	aat	gtt	tcc	ccg	cct	gag	cta	ac	a	217
Гуr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Th	ır	
				20					25		•			30		•	
gtc	cat	gtg	ggt	gat	tca	gct	ctg	atg	gga	tgt	gtt	ttc	cag	agc	ac	ca	265
Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	G1n	Ser	Tł	nr	
			35					40					45				
gaa	gac	aaa	tgt	ata	ttc	aag	ata	gac	tgg	act	ctg	tca	cca	gga	g	ag	313
Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	G	lu	
		50					55					60					
cac	gcc	aag	gac	gaa	tat	gtg	cta	tac	tat	tac	tcc	aat	cto	agt	t g	tg	361
His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	r V	al	
	65	;				70					75	,					
cct	att	gge	g cgc	ttc	cag	aac	cgc	gta	cac	ttg	atg	ggg	gad	aac	c t	ta	409
Pro	Ile	Gly	Arg	, Phe	Gln	Asn	Arg	Val	His	Leu	ı Met	Gly	Ası	Ası	n L	.eu	
80)				85	;				90)					95	
tgo	aa	t gai	t ggo	tct:	cto	cte	cto	caa	gat	gte	g caa	ga	g gc	t ga	c c	ag	457
Cys	s Ası	n Ası	o Gly	, Ser	Leu	ı Lev	ı Lev	ı Glr	n Asp	val	l Glr	ı Glu	. Al	a As	р (Gln	
				100)				108	5				11	0		
gg	a ac	c ta	t at	c tgi	t gaa	a ato	c cg	cto	c aaa	a ggs	g gai	g ag	c ca	g gt	g	ttc	505
G1					s Glu												
			11					120					12				
aa	g aa	g gc	g gt	g gt:	a ct	g ca	t gt	g ct	t cc	a ga	g ga	g cc	с аа	a ga	ıg	ctc	553
					l Le												
,		13					13					14					
at	a at			a aa	t ge	a tt	g at	t ca	g at	g gg	a tg	t gt	t ti	c ca	ag	agc .	601

Met Val His Val Gly Gly Leu Ile Gln Met Gly Cys Val Phe Gln Ser	
145 150 155	
aca gaa gtg aaa cac gtg acc aag gta gaa tgg ata ttt tca gga cgg	649
Thr Glu Val Lys His Val Thr Lys Val Glu Trp Ile Phe Ser Gly Arg	
160 165 170 175	
cgc gca aag gta aca agg agg aaa cat cac tgt gtt aga gaa ggc tct	697
Arg Ala Lys Val Thr Arg Arg Lys His His Cys Val Arg Glu Gly Ser	
180 185 190	
ggc tgatggtatc aggacaaagg tagaatcagg cacatgagga ggtgttgcaa	750
Gly	
gagectggge tttggtgett atcagaactg gacettetee tageaattte agetttetgg	810
tgggaaagat aactccaatg aagaacaaga acaagaagat gatgatgatg cttaactttt	870
tggatgccga tatgagattg tacatgagga gattgtattt cgttactacc acaaactcag	930
gatgtctgcg gagtactccc agagctgggg ccacttccag aatcgtgtga acctggtggg	990
ggacattttc cgcaatgacg gttccatcat gcttcaagga gtgagggagt cagatggagg	1050
aaactacacc tgcagtatcc acctagggaa cctggtgttc aagaaaacca ttgtgctgca	1110
tgtcageceg gaagageete gaacaetggt gacceeggca geeetgagge etetggtett	1170
gggtggtaat cagttggtga tcattgtggg aattgtctgt gccacaatcc tgctgctccc	1230
tgttctgata ttgatcgtga agaagacctg tggaaataag agttcagtga attctacagt	1290
cttggtgaag aacacgaaga agactaatcc agagataaaa gaaaaaccct gccattttga	1350
aagatgtgaa ggggagaaac acatttactc cccaataatt gtacgggagg tgatcgagga	1410
agaagaacca agtgaaaaat cagaggccac ctacatgacc atgcacccag tttggccttc	1470
tctgaggtca gatcggaaca actcacttga aaaaaagtca ggtgggggaa tgccaaaaac	1530
acagcaagcc ttttgagaag aatggagagt cccttcatct cagcagcggt ggagactctc	1590
tectgtgtgt gteetgggee actetaceag tgattteaga etecegetet eceagetgte	1650

ctcctgtctc a	attettteet	caatacact	g aagat	tggaga a	tttggagco	tggcaga	igag 1710
actggacagc							
gagtgggaca							
tcagaccctc							
		98445					1905
aaaccaaccc	adatt						
(010) 100							
<210> 120							
<211> 998							
<212> DNA							
<213> Homo	sapiens						
⟨220⟩							
<221> CDS							
<222> (50)	(832)						
<400> 120			•				
gcacttgcca	gccagtccg	c ccgtccgg	gag ccc	ggctcgc	tggggcago	atg gc	55
						Met Ala	a
						1	
ggg tcg cc	g ctg ctc	tgg ggg co	cg cgg	gcc ggg	ggc gtc	ggc ctt	ttg 103
Gly Ser Pr							
	5		10		15		
gtg ctg ct		gge etg t	tt cgg	ccg ccc	ccc gcg	ctc tgc	gcg 151
Val Leu Le	eu Leu Leu		He ALE	110 110		Dom 0,0	
20		25			30		
		ccc cgc g					
Arg Pro Va	al Lys Glu	Pro Arg G	ly Leu	Ser Ala	Ala Ser	Pro Pro	Leu

35					40					45					50	
gct	gag	act	ggc	gct	cct	cgc	cgc	ttc	cgg	cgg	tca	gtg	ccc	cga	ggt	247
Ala	Glu	Thr	Gly	Ala	Pro	Arg [.]	Arg	Phe	Arg	Arg	Ser	Val	Pro	Arg	Gly	
				55					60					65		
gag	gcg	gcg	ggg	gcg	gtg	cag	gag	ctg	gcg	cgg	gcg	ctg	gcg	cat	ctg	295
Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala	His	Leu	
			70					75					80			
ctg	gag	gcc	gaa	cgt	cag	gag	cgg	gcg	cgg	gcc	gag	gcg	cag	gag	gct	343
Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln	Glu	Ala	
		85					90					95				
gag	gat	cag	cag	gcg	cgc	gtc	ctg	gcg	cag	ctg	ctg	cgc	gtc	tgg	ggc	391
Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	G1n	Leu	Leu	Arg	Val	Trp	Gly	
	100					105					110					
gcc	ccc	cgc	aac	tct	gat	ccg	gct	ctg	ggc	ctg	gac	gac	gac	ccc	gac	439
Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp	Pro	Asp	
115					120					125					130	
gcg	cct	gca	gcg	cag	ctc	gct	cgc	gct	ctg	ctc	cgc	gco	cg(cti	gac	487
Ala	Pro	Ala	Ala	G1n	Leu	Ala	Arg	Ala	Leu	Leu	Are	, Ala	Arg	g Let	ı Asp	
				135	,		-		140)				149	5	
cct	gco	gcc	cto	gca	gcc	cag	ctt	gtc	ccc	gcg	ccc	gto	c cc	c gc	c gcg	535
Pro	Ala	a Ala	. Leu	ı Ala	Ala	Glr	ı Leu	ı Val	Pro	Ala	Pro	o Vai	l Pr	o Ala	a Ala	
			150)				155	5				16	0		
gcg	g cto	c cga	a ccc	cgg	ccc	cce	ggto	tac	gad	gad	gg	c cc	c gc	g gg	c ccg	583
Ala	a Lei	ı Arı	g Pro	Arg	g Pro	Pro	o Vai	l Tyr	r Asp	Asp	Gl;	y Pr	o Al	a Gl	y Pro	
		16	5				170)				17	5			

252/307

gat	gct	gag	gag	gca	ggc	gac	gag	асв	ccc	gac	gtg	gac	ccc	gag	ctg	631
lsp	Ala	Glú	Glu	Ala	Gly	Asp	Glu	Thr	Pro	Asp	Val	Asp	Pro	Glu _.	Leu	
	180					185		•			190					
ttg	agg	tac	ttg	ctg	gga	cgg	att	ctt	gcg	gga	agc	gcg	gac	tcc	gag	679
Leu	Arg	Tyr	Leu	Leu	Gly	Arg	Ile	Leu	Ala	Gly	Ser	Ala	Asp	Ser	Glu	
195					200					205					210	
ggg	gtg	gca	gcc	ccg	cgc	cgc	ctc	cgc	cgt	gcc	gcc	gac	cac	gat	gtg	727
			Ala													
				215					220					225		
ggc	tct	, gag	ctg	ccc	cct	gag	ggc	gtg	ctg	ggg	gcg	ctg	ctg	cgt	gtg	775
															y Val	
			230					235			•		240			
aaa	ı cg	c cta	a gag	gaco	cc ₈	g gcg	g cc	cag	gtg	g cct	gca	i cgo	c cgc	cto	ttg	823
															ı Leu	
		24					25					25				
cc	а сс	c t :	gagca	actgo	ec c	ggate	cccg	t gca	accc	tggg	acc	caga	agt (gccc	ccgcca	880
	o Pr															
	26															
tc			agg	actg	ctc	cccg	ccag	ca c	gtcc	agag	c aa	ctta	cccc	ggc	cagccag	940
															gcagc	998
55			- 0 -	JU 1												

⟨210⟩ 121

<211> 337

<212> PRT

<213> Homo sapiens

253/307

> 12	21													
Thr	Ala	Gly	Gly	Gln	Ala	Glu	Ala	Glu	Gly	Ala	Gly	Gļy	Glu	Pro
			5					10					15	
Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	Leu	Leu	Ser	Ala	Leu
		20					25					30		
Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	Val	Asn	Lys	Ala	Leu
	35					40					45			
Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	Leu	Gly	Ile	Gly	Gln
50					55					60				
Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys	Ile
				70					75					80
His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	Val	Lys	Leu	Phe	Pro
			85					90					95	
Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	Gly	Leu	Ser	Ser	Thr
		100)				105	;				110		
Lys	Leu	. Ser	Leu	Pro	Met	. Phe	Thr	Val	Leu	Arg	Lys	: Phe	Thr	Ile
	115	5				120)				125	5		
Leu	ı Thı	Leu	ı Lev	ı Leu	Glu	ı Thr	· Ile	e Ile	e Leu	Gly	/ Lys	s Gln	Tyr	Ser
130) .				139	5		•		140)			
ı Asr	ı Ile	e Ile	e Lei	ı Ser	· Val	l Phe	Ala	ı Ile	e Ile	e Leu	ı Gly	, Ala	Phe	Ile
5				150)				159	5				160
a Ala	a Gly	y Se	r Ası	Leu	ı Ala	a Phe	e Ası	n Lei	ı Glu	ı Gly	у Ту	r Ile	Phe	e Val
			169	5				170	0				175	5
	Thr Ala Tyr Thr 50 Ala His	Ala Ala Tyr Gly 35 Thr Thr 50 Ala Ala His Phe Pro Leu 115 Leu Thr 130 Asn Ile	Thr Ala Gly Ala Ala Arg 20 Tyr Gly Thr 35 Thr Thr Tyr 50 Ala Ala Thr His Phe Pro Pro Leu Leu 100 Lys Leu Ser 115 Leu Thr Leu 130 Asn Ile Ile	Thr Ala Gly Gly 5 Ala Ala Arg Leu 20 Tyr Gly Thr Cys 35 Thr Thr Tyr Gly 50 Ala Ala Thr Ile His Phe Pro Asp 85 Pro Leu Leu Tyr 100 Lys Leu Ser Leu 115 Leu Thr Leu Leu 130 Asn Ile Ile Leu 5	Thr Ala Gly Gly Gln 5 Ala Ala Arg Leu Pro 20 Tyr Gly Thr Cys Ser 35 Thr Thr Tyr Gly Phe 50 Ala Ala Thr Ile Met 70 His Phe Pro Asp Phe 85 Pro Leu Leu Tyr Val 100 Lys Leu Ser Leu Pro 115 Leu Thr Leu Leu Leu 130 Asn Ile Ile Leu Ser 5	Thr Ala Gly Gly Gln Ala 5 Ala Ala Arg Leu Pro Ser 20 Tyr Gly Thr Cys Ser Phe 35 Thr Thr Tyr Gly Phe Pro 50 55 Ala Ala Thr Ile Met Ile 70 His Phe Pro Asp Phe Asp 85 Pro Leu Leu Tyr Val Gly 100 Lys Leu Ser Leu Pro Met 115 Leu Thr Leu Leu Leu Glu 130 138 1 Asn Ile Ile Leu Ser Val 3 Ala Gly Ser Asp Leu Ala 4 Ala Gly Ser Asp Leu Ala	Thr Ala Gly Gly Gln Ala Glu 5 Ala Ala Arg Leu Pro Ser Arg 20 Tyr Gly Thr Cys Ser Phe Leu 35 40 Thr Thr Tyr Gly Phe Pro Ser 50 55 Ala Ala Thr Ile Met Ile Leu 70 His Phe Pro Asp Phe Asp Lys 85 Pro Leu Leu Tyr Val Gly Asn 100 Lys Leu Ser Leu Pro Met Phe 115 120 Leu Thr Leu Leu Leu Glu Thr 130 135 Asn Ile Ile Leu Ser Val Phe 150 Ala Gly Ser Asp Leu Ala Phe	Thr Ala Gly Gly Gln Ala Glu Ala 5 Ala Ala Arg Leu Pro Ser Arg Val 20 25 Tyr Gly Thr Cys Ser Phe Leu Ile 35 40 Thr Thr Tyr Gly Phe Pro Ser Pro 50 55 Ala Ala Thr Ile Met Ile Leu Tyr 70 His Phe Pro Asp Phe Asp Lys Lys 85 Pro Leu Leu Tyr Val Gly Asn His 100 105 Lys Leu Ser Leu Pro Met Phe Thr 115 120 Leu Thr Leu Leu Leu Glu Thr Ile 130 135 Asn Ile Ile Leu Ser Val Phe Ala 150 Ala Gly Ser Asp Leu Ala Phe Asa	Thr Ala Gly Gly Gln Ala Glu Ala Glu 5 10 Ala Ala Arg Leu Pro Ser Arg Val Ala 20 25 Tyr Gly Thr Cys Ser Phe Leu Ile Val 35 40 Thr Thr Tyr Gly Phe Pro Ser Pro Ile 50 55 Ala Ala Thr Ile Met Ile Leu Tyr Val 70 His Phe Pro Asp Phe Asp Lys Lys Ile 85 90 Pro Leu Leu Tyr Val Gly Asn His Ile 100 105 Lys Leu Ser Leu Pro Met Phe Thr Val 115 120 Leu Thr Leu Leu Leu Glu Thr Ile Ile 130 135 Asn Ile Ile Leu Ser Val Phe Ala Ile 150 Ala Gly Ser Asp Leu Ala Phe Asn Leu	Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly 5 10 Ala Ala Arg Leu Pro Ser Arg Val Ala Arg 20 25 Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu 35 40 Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe 50 55 Ala Ala Thr Ile Met Ile Leu Tyr Val Ser 70 75 His Phe Pro Asp Phe Asp Lys Lys Ile Pro 85 90 Pro Leu Leu Tyr Val Gly Asn His Ile Ser 100 105 Lys Leu Ser Leu Pro Met Phe Thr Val Leu 115 120 Leu Thr Leu Leu Leu Glu Thr Ile Ile Leu 130 135 A Asn Ile Ile Leu Ser Val Phe Ala Ile Ile 150 150 156 A Ala Gly Ser Asp Leu Ala Phe Asn Leu Glu	The Ala Gly Gly Gln Ala Glu Ala Glu Gly Ala 5 10 Ala Ala Arg Leu Pro Ser Arg Val Ala Arg Leu 20 25 Tyr Gly The Cys Ser Phe Leu Ile Val Leu Val 35 40 The The Tyr Gly Phe Pro Ser Pro Ile Phe Leu 50 55 60 Ala Ala The Ile Met Ile Leu Tyr Val Ser Lys 70 75 His Phe Pro Asp Phe Asp Lys Lys Ile Pro Val 85 90 Pro Leu Leu Tyr Val Gly Asn His Ile Ser Gly 100 105 Lys Leu Ser Leu Pro Met Phe The Val Leu Arg 115 120 Leu The Leu Leu Leu Glu The Ile Ile Leu Gly 130 135 146 148 150 155 140 151 150 155 161 161 161 175 175 176 177 178 178 178 178 178 178 178 178 178	Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly Ala Gly 5 10 Ala Ala Arg Leu Pro Ser Arg Val Ala Arg Leu Leu 20 25 Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu Val Asn 35 40 45 Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe Leu Gly 50 55 60 Ala Ala Thr Ile Met Ile Leu Tyr Val Ser Lys Leu 70 75 His Phe Pro Asp Phe Asp Lys Lys Ile Pro Val Lys 85 90 Pro Leu Leu Tyr Val Gly Asn His Ile Ser Gly Leu 100 105 Lys Leu Ser Leu Pro Met Phe Thr Val Leu Arg Lys 115 120 125 Leu Thr Leu Leu Leu Glu Thr Ile Ile Leu Gly Lys 130 135 140 Asn Ile Ile Leu Ser Val Phe Ala Ile Ile Leu Gly 150 155 Ala Gly Ser Asp Leu Ala Phe Asn Leu Glu Gly Tyr	Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly Ala Gly Gly 5 10 Ala Ala Arg Leu Pro Ser Arg Val Ala Arg Leu Leu Ser 20 25 30 Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu Val Asn Lys 35 40 45 Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe Leu Gly Ile 50 55 60 Ala Ala Thr Ile Met Ile Leu Tyr Val Ser Lys Leu Asn 70 75 His Phe Pro Asp Phe Asp Lys Lys Ile Pro Val Lys Leu 85 90 Pro Leu Leu Tyr Val Gly Asn His Ile Ser Gly Leu Ser 100 105 110 Lys Leu Ser Leu Pro Met Phe Thr Val Leu Arg Lys Phe 115 120 125 Leu Thr Leu Leu Leu Glu Thr Ile Ile Leu Gly Lys Gln 130 135 140 Asn Ile Ile Leu Ser Val Phe Ala Ile Ile Leu Gly Ala 6 150 155	Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly Ala Gly Gly Glu 5 10 15 Ala Ala Arg Leu Pro Ser Arg Val Ala Arg Leu Leu Ser Ala 20 25 30 Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu Val Asn Lys Ala 35 40 45 Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe Leu Gly Ile Gly 50 55 60 Ala Ala Thr Ile Met Ile Leu Tyr Val Ser Lys Leu Asn Lys 70 75 His Phe Pro Asp Phe Asp Lys Lys Ile Pro Val Lys Leu Phe 85 90 95 Pro Leu Leu Tyr Val Gly Asn His Ile Ser Gly Leu Ser Ser 100 105 110 Lys Leu Ser Leu Pro Met Phe Thr Val Leu Arg Lys Phe Thr 115 120 125 Leu Thr Leu Leu Leu Glu Thr Ile Ile Leu Gly Lys Gln Tyr 130 135 140 A Asn Ile Ile Leu Ser Val Phe Ala Ile Ile Leu Gly Ala Phe 150 150 155 A Ala Gly Ser Asp Leu Ala Phe Asn Leu Glu Gly Tyr Ile Phe

185

180

190

254/307

Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Asn
		195					200					205			
Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	Ile	Ile	Ser	Val	Ser	Thr	Gly
	210					215					220				
Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	Lys	Asn	Val	Val	Phe
225					230					235					240
Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	Phe	Leu	Leu	Met	Tyr
				245					250					255	
Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	Leu	Thr	Thr	Ala	Val
			260	•				265					270		
Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	Ile	Gly	Ile	Leu	Ile
		275					280					285			
Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	Val	Gly	Leu	Asn	Ile
	290					295					300				
Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	Thr	Leu	Ser	Ser	Gln
305					310					315					320
Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	Cys	Leu	Asp	Leu	Lys
				325					330					335	

Ser

⟨210⟩ 122

⟨211⟩ 236

<212> PRT

<213> Homo sapiens

255/307

<400)> 12	22													
Met	Ala	Glu	Ala	Glu	Glu	Ser	Pro	G1y	Asp	Pro	Gly	Thr	Ala	Ser	Pro
1				5					10					15	
Arg	Pro	Leu	Phe	Ala	Gly	Leu	Ser	Asp	Ile	Ser	Ile	Ser	G1n	Asp	Ile
			20					25					30		
Pro	Val	Glu	Gly	Glu	Ile	Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu
		35					40			•		45			
Phe	Asp	Ser	Ser	Thr	Leu	Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg
	50					55					60				
Asp	Leu	Lys	Ala	Val	Gly	Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg
65					70					75					80
Lys	Ser	Asn	Thr	Leu	Leu	Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile
				85					90					95	
Leu	Cys	Val	Thr	Leu	Ala	Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser
			100					105					110		
Glu	Lys	Asp	Gly	Gly	Pro	Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp
		115					120					125			
Phe	Gly	Ala	Val	Thr	Ile	Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn
	130					135		٠			140				
Ile	Ser	Phe	Phe	Gln	Ser	Leu	Cys	Val	Leu	Gly	Tyr	Cys	Ile	Leu	Pro
145					150					155					160
Leu	Thr	Val	Ala	Met	Leu	Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro
				165					170					175	
C1v	Dro	Va1	Acn	Pho	Vat	Va 1	Ara	ارم ا	Pho	Va 1	Val	Ile	Va1	Met	Phe

185

180

190

256/307

Ala Trp Ser Ile Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg Ala Leu Ala Val Tyr Pro Val Phe Leu Phe Tyr Phe Val Ile Ser Trp Met Ile Leu Thr Phe Thr Pro Gln <210> 123 <211> 560 <212> PRT <213> Homo sapiens <400> 123 Met Ala Ala Pro Ala Glu Ser Leu Arg Arg Arg Lys Thr Gly Tyr Ser Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro Gly Arg Gly Pro Ala Gly Ser Pro Ala His Leu His Thr Gly Thr Phe Trp Leu Thr Arg Ile Val Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe Val Ala Phe Leu Val Ala Phe His Gln Asn Lys Gln Leu Ile Gly Asp Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr Phe Gln Asp Arg Thr Ser Trp Glu Val Phe Ser Tyr Met Pro Thr Ile Leu Trp Leu Met Asp Trp

			100					105					110		
Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	Ala	Leu	Leu	Gly	Leu	Gly
	•	115		٠			120					125			
Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	Ala	Asn	Met	Leu	Leu	Met
	130					135					140				
Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	Val	Asn	Val	Gly	His	Val
145					150					155					160
Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	Leu	Glu	Thr	Gly	Phe	Leu
				165					170					175	
Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	Ser	Arg	Leu	Pro	Gln	His
			180					185					190		
Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	Phe	Arg	Trp	Leu	Ile	Phe
		195					200					205			
Arg	lle	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	Ile	Arg	Gly	Λsp	Arg	Cys
	210					215					220				
Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	Tyr	Glu	Thr	Gln	Pro	Met
225					230)				235	i				240
Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	Ser	Pro	Trp	Trp	Phe	His
				245					250					255	
Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	Glu	Leu	Leu	Val	Pro	Phe
			260)				265	ı				270	ı	
Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	Ile	His	Gly	Val	Leu	Gln
		275	;				280)				285	•		
Ile	Leu	Phe	Gln	Ala	Val	Leu	Ile	Val	Ser	Gly	/ Asn	Leu	. Ser	Phe	Leu
	200					295	;				300)			

Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	Cys	Phe	Asp	Asp	Ala	Thr
305					310					315					320
Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	Ser	Leu	Lys	Asp	Arg	Val
				325			•		330					335	
Leu	Gln	Met	Gln	Arg	Asp	Ile	Arg	Gly	Ala	Arg	Pro	Glu	Pro	Arg	Phe
			340					345					350		
Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	Ser	Leu	Gly	Val	Leu	Leu
		355					360					365			
Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Asn	Leu	Leu	.Ser	Ser	Arg	Gln
	370					375					380				
Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	Ile	Val	Asn	Thr	Tyr	Gly
385					390					395					400
Ala	Phe	Gly	Ser	Ile	Thr	Lys	Glu	Arg	Ala	Glu	Va <u>l</u>	Ile	Leu	Gln	Gly
				405					410					415	
Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	Ala	Met	Trp	Glu	Asp	Tyr
			420					425					430		
Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	Arg	Arg	Pro	Cys	Leu	Ile
		435					440					445			
Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	Met	Trp	Phe	Ala	Ala	Phe
	450					455					460				
Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	His	Leu	Ala	Gly	Lys	Leu
465					470					475					480
Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	Leu	Ala	His	Asn	Pro	Phe
				485					490					495	
Δ1°	Clv	Ara	Dro	Pro	Pro	Aro	Trn	Val	Ara	G1v	Glu	Hie	Tur	Ara	Tur

				500					505					510		
Lys	Phe	e S	er	Arg	Pro	Gly	Gly	Arg	His	Ala	Ala	Glu	Gly	Lys	Trp	Trp
		5	15					520				٠	525			
Val	Are	g L	.ys	Arg	Ile	Gly	Ala	Tyr	Phe	Pro	Pro	Leu	Ser	Leu	Glu	Glu
•	530)					535					540				
Leu	Ar	g F	ro	Tyr	Phe	Arg	Asp	Arg	Gly	Trp	Pro	Leu	Pro	Gly	Pro	Leu
545						550					555					560
<21	0> :	124	1													
<21	1> 4	400	5													
<21	2 > 1	PR	Γ													
<21	3>	Hoi	no s	sapie	ens											
<40	0>	12	4													
Met	Al	a (Glu	Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	Ala	Met	Asn
1					5					10					15	
Lys	G1	u	His	His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu
				20					25	i				30		
Lys	Ly	s	Arg	Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg
			35					40)				45	,		
Gln	Pr	о.	Leu	Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	e Leu	Val	Ile
	5	0					55	,				60)			
Leu	ιĹy	'S	Glu	Trp	Thr	Ser	Lys	Leu	ı Trp	His	Arg	Glr	Ser	r Ile	Val	Val
65	5					70)				75	i				80
Ser	- Ph	ıe	Leu	Leu	Leu	Leu	Ala	Val	Leu	ı Ile	e Ala	The	Ty1	r Tyr	Val	Glu
					QE					90)				95	;

Gly	Val	His	Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu
			100					105					110		
Tyr	Ala	Tyr	Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly
		115					120					125			
Thr	Gly	Leu	His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser
	130					135					140				
Val	Thr	Leu	Ala	Ala	Tyr	Glu-	- Cy s	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro
145					150					155					160
Pro	Tyr	Pro	Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly
				165					170					175	
Thr	Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys
			180					185					i90		
Met	Trp	Gly	Ile	G1y	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met
		195					200					205			
Ala	Arg	Ala	Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr
	210					215					220				
Gln	Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe
225					230					235					240
Ala	Ser	Arg	Ala	Lys	Ļeu	Ala	Val	G1n	Lys	Leu	Val	Gln	Lys	Val	Gly
				245					250					255	
Phe	Phe	Gly	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp
			260					265					270		
Leu	Ala	Gly	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe
		275					280					285	,		
Pho	៤ 1 v	Δla	Thr	ارم آ	Ila	Glv	i.vs	Ala	He	Tle	l.vs	Met	His	Ile	Gln

261/307

	290					295					300				
Lys	Ile	Phe	Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	G1n	Met
305					310					315		٠			320
Val	Ala	Phe	Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys
				325					330					335	
Pro	Phe	Gln	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys
			340					345					350		
Ser	Glu	Met	Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe
		355					360					365			
Glu	Lys	Leu	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile
	370					375					380				
Asn	Ser	Met	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ile	Gln	Gḷn	Arg	Leu	Asn
385					390					395					400
	Glu	Glu	Lys	Thr						395					400
	Glu	Glu	Lys	Thr 405						395					400
	Glu	Glu	Lys							395					400
Ser	Glu 0> 1:		Lys							395					400
Ser		25	Lys							395					400
Ser <21 <21	0> 1:	25 53	Lys							395					400
<pre><21 <21 <21</pre>	0> 1: 1> 4: 2> P:	25 53 RT	Lys sapi	405						395					400
<pre><21 <21 <21 <21 <21</pre>	0> 1: 1> 4: 2> P:	25 53 RT omo		405						395					400
<pre><21 <21 <21 <21 <40</pre>	0> 1: 1> 4: 2> P: 3> H: 0> 1:	25 53 RT omo		405 ens	Lys	Val	Leu	Leu	Trp		Gln	Leu	Cys	Ala	
<pre><21 <21 <21 <21 <40</pre>	0> 1: 1> 4: 2> P: 3> H: 0> 1:	25 53 RT omo	sapi	405 ens	Lys	Val	Leu	Leu	Trp	Leu	Gln	Leu	Cys	Ala 15	

25

20

30

Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val
		35					40					45			
Glu	Phe	Pro	Ala	Asp	Lys	Met	Val	Ser	Val	Leu	Val	Gln	Glu	Gly	His
	50					55					60				
Ala	Val	Ser	Asp	Met	Leu	Leu	Pro	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala
65					70					75					80
Ser	Gly	Ala	Gly	Phe	Gly	Val	Ser	Asp	Val	Gly	Ser	His	Leu	Asp	Cys
				85					90			•		95	
Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp
			100					105					110		
His	Asp	Pro	His	Leu	Trp	Arg	Ser	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe
		115					120					125			
Phe	Val	Asp	Ala	Glu	Arg	Val	Pro	Cys	Arg	His	Asp	Asp	Val	Phe	Phe
	130					135				,	140				
Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro
145					150					155					160
Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp
				165					170					175	
Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe
			180					185					190		
His	Gly	Pro	Gly	Ala	Leu	Ser	Val	Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro
		195					200					205	•		
Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala
	210					215					220)			
Ala	1.eu	Leu	Gln	Pro	Leu	Glv	Glv	Arg	Cys	Pro	Gln	Ala	Ala	Cys	His

225					230					235					240
Ser	Ala	Ļeu	Arg	Pro	G1n	Gly	Gln	Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val
				245			•		250					255	
Val	Leu	Leu	Thr	His	Gly	Pro	Ala	Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala
			260					265					270		
Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln
		275					280					285			
Val	Ala	Val	Ser	Lys	Val	Pro	Arg	Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp
	290					295					300				
Thr	Glu	Ile	Gln	Val	Val	Leu	Val	Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly
305					310					315					320
Ala	Gly	Ąrg	Leu	Àla	Arg	Ala	Leụ	Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly
		•		325	i				330)			•	335	
Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	Thr	Met	Arg	Glu	Ser	Gly	Ala	His
			340)				345	;				350		
Val	Trp	Gly	Ser	Ser	· Ala	Ala	Gly	Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala
		358	;				360)				365	5		
Val	Leu	ı Let	ı Ala	Leu	ı Leu	ı Val	Leu	ı Lev	ı Val	Ala	. Pro	Pro	Leu	Leu	Arg
	370)				375	5				380).			
Are	g Ala	a Gly	/ Arg	g Let	ı Arg	g Trp	o Arg	g Are	g His	s Glu	ı Ala	a Ala	a Ala	Pro	Ala
389	5				390)				39	5				400
Gl	, Ala	a Pro	o Lei	ı Gl	y Phe	e Arı	g Ası	n Pro	o Va	l Pho	e Ası	p Va	l Thr	Ala	a Ser
				40	5				41	0				415	5
Glı	ı Gl	u Le	u Pro	o Le	u Pr	o Ar	g Ar	g Le	u Se	r Le	u Va	l Pr	o Lys	s Ala	a Ala
			420	0				42	5				430)	

264/307

Ala Asp Ser Thr Ser His Ser Tyr Phe Val Asn Pro Leu Phe Ala Gly 445 440 435 Ala Glu Ala Glu Ala 450 ⟨210⟩ 126 <211> 59 <212> PRT <213> Homo sapiens **<400>** 126 Met Thr Ser Val Ser Thr Gln Leu Ser Leu Val Leu Met Ser Leu Leu . 15 5 10 Leu Val Leu Pro Val Val Glu Ala Val Glu Ala Gly Asp Ala Ile Ala 30 20 25 Leu Leu Gly Val Val Leu Ser Ile Thr Gly Ile Cys Ala Cys Leu 35 40 45 Gly Val Tyr Ala Arg Lys Arg Asn Gly Gln Met 55 50 <210> 127 <211> 210 <212> PRT <213> Homo sapiens <400> 127

Met Ala Leu Pro Gln Met Cys Asp Gly Ser His Leu Ala Ser Thr Leu

1				5					10					15	
	_	•				_	•	-		., .		,, ,	4.3		Tri .
Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	Thr	Val	Val	Leu	Val	Ala	Gly	Thr
			20					25					30		
Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly
		35					40					45			
Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro
	50					55					60				
Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu
65					70					75					80
	Leu	Ile	Glv	Leu	Leu	Trp	Ser	Val	Lvs	Ala	Ser	Ile	Pro	Gly	Pro
			,	85		•			90					95	
Dwa	A	Tun	Aan		T.,	u; ~	Lou	Sar		Acn	Lou	Tur	Tur		The
Pro	Arg	ırp		FFO	lyr	птъ	Leu		VI R	nsp		1 91	Tyr	Leu	1111
			100					105					110		
Val	Glu	Ser	Ser	Glu	Lys	Ģlu	Ser	Cys	Arg	Thr	Pro	Lys	Val	Val	Asp
		115					120					125			
Ile	Pro	Thr	Tyr	Glu	Glu	Ala	Val	Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro
	130					135					140				
Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr	Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly
145					150					155					160
	Arø	Asn	Ala	Leu			Thr	Gln	Pro	Ala	Trn	Pro	Pro	Pro	Ser
001	6	пор			200		••••	02	170					175	
				165							_				
Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr
			180					185					190		
Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	Gly	Leu	Val	Gln	Thr	Ala	Arg	Gly
•		195					200					205			

266/307

Gly Ser

210

(210) 128

<211> 165

<212> PRT

<213> Homo sapiens

<400> 128

Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg Arg Arg Phe Leu Leu

1 5 10 15

Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu Gly Asp Ala Gly Pro

20 25 30

Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys Pro Leu Pro Arg Leu

35 40 45

Asn Ile His Ser Gly Phe Trp Ile Leu Ala Ser Ile Val Val Thr Tyr

50 55 60

Tyr Val Asp Phe Phe Lys Thr Leu Lys Glu Asn Phe His Thr Ser Ser

65 70 75 80

Trp Phe Leu Cys Gly Ser Ala Leu Leu Leu Val Ser Leu Ser Ile Ala

85 90 95

Phe Tyr Cys Ile Val Tyr Leu Glu Trp Tyr Cys Gly Ile Gly Glu Tyr

100 105 110

Asp Val Lys Tyr Pro Ala Leu Ile Pro Ile Thr Thr Ala Ser Phe Ile

115 120 125

Ala Ala Gly Ile Cys Phe Asn Ile Ala Leu Trp His Val Trp Ser Phe

267/307

Phe Thr Pro Leu Leu Phe Thr Gln Phe Met Gly Val Val Met Phe Ile Thr Leu Leu Gly <210> 129 <211> 162 <212> PRT <213> Homo sapiens <400> 129 Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln Phe Leu Leu Leu Ser Tyr Asp Leu Phe Val Asn Ser Phe Ser Glu Leu Leu Gln Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln Asp Ile Ala Val Leu Phe Asn Ile Ile Ile Ile Phe Leu Met Phe Phe Asn Thr Phe Val Phe Gln Ala Gly Leu Val Asn Leu Leu Phe His Lys Phe Lys Gly Thr Ile Ile Leu Thr Ala Val Tyr Phe Ala Leu Ser Ile Ser Leu His Val Trp Val Met Asn Leu Arg Trp Lys Asn Ser Asn Ser Phe Ile Trp

Thr A	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	Ala	Val
		115					120					125			
Leu '	T		Tur	Dha	Tvr	lve		Thr	Ala	Val	Arg	Leu	Gly	Asp	Pro
		cys	ıyı	THE	1 7 1		111 8	••••			140		·		
	130					135								61 .	V - 1
His	Phe	Tyr	Gln	Asp	Ser	Leu	Trp	Leu	Arg	Lys	Glu	Phe	мет	GIN	
145					150					155					160
Arg	Arg											•			
<210)> 1	30													
<211	ı> 2	21													
<212	2> P	RT		•											
<213	3> H	omo	sapi	ens											
<400	0> 1	30													
Met	Ala	Leu	ı Ala	a Lev	ı Ala	a Ala	a Lei	ı Ala	a Ala	a Val	Glu	ı Pro	o Ala	Cys	Gly
1					5				10)				15	5
Ser	Arg	у Туз	r Gl	n Gli	n Lei	u Gla	n Ası	n Glu	ı Glu	ı Glu	ı Sei	r Gl	y Glu	ı Pro	o Glu
			2	0				2	5				30)	
Gln	Ala	a Ala	a Gl	y As	p Al	a Pr	o Pr	o Pr	о Ту:	r Se	r Se	r Il	e Sei	r Ala	a Glu
		3	5				4	0			•	4	5		
Ser	Ala	a Al	а Ту	r Ph	e As	р Ту	r Ly	s As	p Gl	u Se	r Gl	y Ph	e Pr	o Ly	s Pro
	5	0				5	5				6	0			
Pro	Se:	r Ty	r As	n Va	1 Al	a Th	r Th	r Le	u Pr	o Se	r Ty	r As	p Gl	u Al	a Glu
65						0				7					80
		r Ly	s Al	a Gl	u Al	a Th	ır Il	le Pr	o Le	u Va	l Pr	o Gl	ly Ar	g As	p Glu
	-	•			35					0					5

Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile		
			100					105					110		•		
Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe		
		115					120					125					
Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala		
	130					135					140						
Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp		
145					150					155					160		
Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly		
				165					170					175			
Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe		
			180					185				-	190				
Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	Lys	Val	Arg	Lys	Met	Pro	Glu	Thr		
		195	,				200	,				205	i				
Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	Val	Leu	Phe	Ile	Tyr	•				
	210					215	;				220)					
<21	0> 1	31															
<21	1> 1	011															
<21	.2> [NA															
<21	. 3> E	lomo	sapi	ens													
<40)0> 1	31															
ate	gacge	gccg	gcgg	ccag	gc o	gagg	gccga	e g	gege!	tggcg	g ggg	gagce	ccgg	cgcg	ggcgcgg	6	60
															ettecte	12	20
															tttcctt	18	30

270/307

ggaattggac	agatggcagc	caccataatg	atactatatg	tgtccaagct	aaacaaaatc	240
attcacttcc	ctgattttga	taagaaaatt	cctgtaaagc	tgtttcctct	gcctctcctc	300
tacgttggaa	accacataag	tggattatca	agcacaagta	aattaagcct	accgatgttc	360
accgtgctca	ggaaattcac	cattccactt	accttacttc	tggaaaccat	catacttggg	420
aagcagtatt	cactcaacat	catcctcagt	gtctttgcca	ttattctcgg	ggctttcata	480
gcagctgggt	ctgaccttgc	ttttaactta	gaaggctata	tttttgtatt	cctgaatgat	540
atcttcacag	cagcaaatgg	agtttatacc	aaacagaaaa	tggacccaaa	ggagctaggg	600
aaatacggag	tacttttcta	caatgcctgc	ttcatgatta	tcccaactct	tattattagt	660
gtctccactg	gagacctgca	acaggctact	gaattcaacc	aatggaagaa	tgttgtgttt	720
atcctacagt	ttcttctttc	ctgttttttg	gggtttctgc	tgatgtactc	cacggttctg	780
tgcagctatt	acaattcagc	cctgacgaca	gcagtggttg	gagccatcaa	gaatgtatcc	840
gttgcctaca	ttgggatatt	aatcggtgga	gactacattt	tctctttgtt	aaactttgta	900
gggttaaata	tttgcatggc	agggggcttg	agatattcct	tțttaacact	gagcagccag	960
ttaaaaccta	aacctgtggg	tgaagaaaac	atctgtttgg	atttgaagag	c	1011

<210> 132

<211> 708

<212> DNA

<213> Homo sapiens

<400> 132

atggcggaag cggaggagtc tccaggagac ccggggacag catcgccag gccctgttt 60 gcaggccttt cagatatatc catctcacaa gacatccccg tagaaggaga aatcaccatt 120 cctatgagat ctcgcatccg ggagtttgac agctccacat taaatgaatc tgttcgcaat 180 accatcatgc gtgatctaaa agctgttggg aaaaaattca tgcatgttt gtacccaagg 240 aaaagtaata ctcttttgag agattgggat ttgtggggcc ctttgatcct ttgtgtgaca 300

271/307

ctcgcattaa	tgctgcaaag	agactctgca	gatagtgaaa	aagatggagg	gccccaattt	360
gcagaggtgt	ttgtcattgt	ctggtttggt	gcagttacca	tcaccctcaa	ctcaaaactt	420
cttggaggga	acatatcttt	ttttcagagc	ctctgtgtgc	tgggttactg	tatacttccc	480
ttgacagtag	caatgctgat	ttgccggctg	gtacttttgg	ctgatccagg	acctgtaaac	540
ttcatggttc	ggctttttgt	ggtgattgtg	atgtttgcct	ggtctatagt	tgcctccaca	600
gctttccttg	ctgatagcca	gcctccaaac	cgcagagccc	tagctgttta	tcctgttttc	660
ctottttact	ttgtcatcag	ttggatgatt	ctcaccttta	ctcctcag		708

⟨210⟩ 133

<211> 1680

<212> DNA

(213) Homo sapiens

<400> 133

atggcggcgc ccgcggagtc gctgaggagg cggaagactg ggtactcgga tccggagcct 60 gagtegeege eegegeeggg gegtggeeee geaggetete eggeeeatet eeacaeggge 120 accttctggc tgacccggat cgtgctcctg aaggccctag ccttcgtgta cttcgtggca 180 tteetggtgg ctttccatca gaacaagcag ctcatcggtg acagggggct getteeetgc 240 300 agagtgttcc tgaagaactt ccagcagtac ttccaggaca ggacgagctg ggaagtcttc 360 agctacatgc ccaccatcct ctggctgatg gactggtcag acatgaactc caacctggac ttgctggctc ttctcggact gggcatctcg tctttcgtac tgatcacggg ctgcgccaac 420 atgettetea tggetgeeet gtggggeete tacatgteee tggttaatgt gggeeatgte 480 tggtactett teggatggga gteceagett etggagaegg ggtteetggg gatetteetg 540 tgccctctgt ggacgctgtc aaggctgccc cagcataccc ccacatcccg gattgtcctg 600 tggggcttcc ggtggctgat cttcaggatc atgcttggag caggcctgat caagatccgg 660 ggggaccggt gctggcgaga cctcacctgc atggacttcc actatgagac ccagccgatg 720

272/307

cccaatcctg	tggcatacta	cctgcaccac	tcaccctggt	ggttccatcg	cttcgagacg	780
ctcagcaacc	acttcatcga	gctcctggtg	cccttcttcc	tcttcctcgg	ccggcgggcg	840
tgcatcatcc	acggggtgct	gcagatcctg	ttccaggccg	tcctcatcgt	cagcgggaac	900
ctcagcttcc	tgaactggct	gactatggtg	cccagcctgg	cctgctttga	tgacgccacc	960
ctgggattct	tgttccctc	tgggccaggc	agcctgaagg	accgagttct	gcagatgcag	1020
agggacatcc	gaggggcccg	gcccgagccc	agattcggct	ccgtggtgcg	gcgtgcagcc	1080
aacgtctcgc	tgggcgtcct	gctggcctgg	ctcagcgtgc	ccgtggtcct	caacttgctg	1140
agctccaggc	aggtcatgaa	cacccacttc	aactctcttc	acatcgtcaa	cacttacggg	1200
gccttcggaa	gcatcaccaa	ggagcgggcg	gaggtgatcc	tgcagggcac	agccagetee	1260
aacgccagcg	ccccgatgc	catgtgggag	gactacgagt	tcaagtgcaa	gccaggtgac	1320
cccagcagac	ggccctgcct	catctccccg	taccactacc	gcctggactg	gctgatgtgg	1380
ttcgcggcct	tccagaccta	cgagcacaac	gactggatca	tccacctggc	tggcaagctc	1440
ctggccagcg	acgccgaggc	cttgtccctg	ctggcacaca	accccttcgc	gggcaggccc	1500
ccgcccaggt	gggtccgagg	agagcactac	aggtacaagt	tcagccgtcc	tgggggcagg	1560
cacgccgccg	agggcaagtg	gtgggtgcgg	aagaggatcg	gagcctactt	ccctccgctc	1620
agcctggagg	agctgaggcc	ctacttcagg	gacceteget	ggcctctgcc	cgggcccctc	1680

<210> 134

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 134

atggcagaga atggaaaaaa ttgtgaccag agacgtgtag caatgaacaa ggaacatcat 60
aatggaaatt tcacagaccc ctcttcagtg aatgaaaaga agaggaggga gcgggaagaa 120
aggcagaata ttgtcctgtg gagacagccg ctcattacct tgcagtattt ttctctggaa 180

273/307

atccttgtaa	tcttgaagga	atggacctca	aaattatggc	atcgtcaaag	cattgtggtg	240
tcttttttac	tgctgcttgc	tgtgcttata	gctacgtatt	atgttgaagg	agtgcatcaa	300
cagtatgtgc	aacgtataga	gaaacagttt	cttttgtatg	cctactggat	aggcttagga	360
attttgtctt	ctgttgggct	tggaacaggg	ctgcacacct	ttctgcttta	tctgggtcca	420
catatagcct	cagttacatt	agctgcttat	gaatgcaatt	cagttaattt	tecegaacea	480
ccctatcctg	atcagattat	ttgtccagat	gaagagggca	ctgaaggaac	catttctttg	540
tggagtatca	tctcaaaagt	taggattgaa	gcctgcatgt	ggggtatcgg	tacagcaatc	600
ggagagctgc	ctccatattt	catggccaga	gcagctcgcc	tctcaggtgc	tgaaccagat	660
gatgaagagt	atcaggaatt	tgaagagatg	ctggaacatg	cagagtetge	acaagacttt	720
gcctcccggg	ccaaactggc	agttcaaaaa	ctagtacaga	aagttggatt	ttttggaatt	780
ttggcctgtg	cttcaattcc	aaatccttta	tttgatctgg	ctggaataac	gtgtggacac	840
tttctggtac	ctttttggac	cttctttggt	gcaaccctaa	ttggaaaago	aataataaaa	900
atgcatatco	agaaaatttt	tgttataata	acattcagca	a agcacatagt	ggagcaaatg	960
gtggctttca	ttggtgctgt	cccggcata	ggtccatcto	tgcagaagco	atttcaggag	1020
tacctggagg	g ctcaacggca	a gaagettead	cacaaaagc	g aaatgggcad	caccacaggga	1080
gaaaactggt	t tgtcctgga	t gtttgaaaag	g ttggtcgtt	g tcatggtgtg	ttacttcatc	1140
ctatctatca	a ttaactcca	t ggcacaaag	t tatgccaaa	c gaatccagca	a geggttgaac	1200
tcagaggaga	a aaactaaa					1218

<210> 135

<211> 1359

<212> DNA

<213> Homo sapiens

<400> 135

274/307

tccaaactct gg	gtccccaa c	acggacttc	gacgtcgcag	ccaactggag	ccagaaccgg	120
acccegtgeg ce	ggcggcgc c	gttgagttc	ccggcggaca	agatggtgtc	agtcctggtg	180
caagaaggtc ac	gccgtctc a	agacatgctc	ctgccgctgg	atggggaact	cgtcctggct	240
tcaggagccg ga	ttcggcgt	ctcagacgtg	ggctcgcacc	tggactgtgg	cgcgggcgaa	300
cctgccgtct tc	cgcgactc 1	tgaccgcttc	tcctggcatg	acccgcacct	gtggcgctct	360
ggggacgagg ca	cctggcct	cttcttcgtg	gacgccgagc	gcgtgccctg	ccgccacgac	420
gacgtcttct tt	ccgcctag	tgcctccttc	cgcgtggggc	teggeeetgg	cgctagcccc	480
gtgcgtgtcc gc	agcatctc	ggctctgggc	cggacgttca	cgcgcgacga	ggacctggct	540
gttttcctgg cg	tcccgcgc	gggccgccta	cgcttccacg	ggccgggcgc	gctgagcgtg	600
ggccccgagg ac	tgcgcgga	cccgtcgggc	tgcgtctgcg	gcaacgcgga	ggcgcagccg	660
tggatctgcg cg	ggccctgct	ccagcccctg	ggcggccgct	gccccaggc	cgcctgccac	720
agegeeetee gg	gcccaggg	gcagtgctgt	gacctctgtg	gagccgttgt	gttgctgacc	780
caeggeeeeg ca	atttgacct	ggagcggtac	cgggcgcgga	tactggacac	cttcctgggt	840
ctgcctcagt a	ccacgggct	gcaggtggcc	gtgtccaagg	tgccacgctc	gtcccggctc	900
cgtgaggccg a	tacggagat	ccaggtggtg	ctggtggaga	atgggcccga	gacaggcgga	960
gcggggcggc t	ggcccgggc	cctcctggcg	gacgtcgccg	g agaacggcga	ggccctcggc	1020
gtcctggagg c	gaccatgcg	ggagtcgggc	gcacacgtct	ggggcagcto	cgcggctggg	1080
ctggcgggcg g	cgtggcggc	tgccgtgctg	ctggcgctgc	tggtcctgct	t ggtggcgccg	1140
ccgctgctgc g	ccgcgcggg	gaggctcagg	tggaggagg	c acgaggcgg(e ggeeeegget	1200
ggagcgcccc t	cggcttccg	caacccggtg	ttcgacgtga	a cggcctccg	a ggagctgccc	1260
ctgccgcggc g	gctcagcct	ggttccgaag	geggeegea	g acagcacca;	g ccacagttac	1320
tteateage e	tetattege	COOPPCCESS	gccgaggcc			1359

⟨210⟩ 136

<211> 177

275/307

<212> DNA

<213> Homo sapiens

<400> 136

atgacctcag tttcaacaca gttgtcctta gtcctcatgt cactgctttt ggtgctgcct 60 gttgtggaag cagtagaagc cggtgatgca atcgcccttt tgttaggtgt ggttctcagc 120 attacaggca tttgtgcctg cttgggggta tatgcacgaa aaagaaatgg acagatg 177 atgacctcag tttcaacaca gttgtcctta gtcctcatgt cactgctttt ggtgctgcct 60 gttgtggaag cagtagaagc cggtgatgca atcgcccttt tgttaggtgt ggttctcagc 120 attacaggca tttgtgcctg cttgggggta tatgcacgaa aaagaaatgg acagatg 177

⟨210⟩ 137

<211> 630

<212> DNA

<213> Homo sapiens

<400> 137

60 atggccctgc cccagatgtg tgacgggagc cacttggcct ccaccctccg ctattgcatg 120 acagtcagcg gcacagtggt tctggtggcc gggacgctct gcttcgcttg gtggagcgaa 180 ggggatgcaa ccgcccagcc tggccagctg gccccaccca cggagtatcc ggtgcctgag 240 ggecceagec ecctgeteag gteegteage ttegtetget geggtgeagg tggeetgetg 300 ctgctcattg gcctgctgtg gtccgtcaag gccagcatcc cagggccacc tcgatgggac 360 ccctatcacc tctccagaga cctgtactac ctcactgtgg agtcctcaga gaaggagagc 420 tgcaggaccc ccaaagtggt tgacatcccc acttacgagg aagccgtgag cttcccagtg 480 gccgagggc ccccaacacc acctgcatac cctacggagg aagccctgga gccaagtgga tcgagggatg ccctgctcag cacccagccc gcctggcctc cacccagcta tgagagcatc 540 600 agccttgctc ttgatgccgt ttctgcagag acgacaccga gtgccacacg ctcctgctca

ggcctggttc	agactgcacg	gggaggaagt				630
<210> 138						-
<211> 495			•			
<212> DNA						
<213> Homo	sapiens				•	
<400> 138						
atggactcct	cgcgggcccg	acagcagctc	cggcggcgat	tcctcctcct	gccggacgcc	60
gaggcccagc	tggaccgcga	gggtgacgcc	gggccggaaa	cctccacagc	tgttgagaaa	120
aaggagaaac	ctcttccaag	acttaatatc	cattctggat	tctggatttt	ggcatccatt	180
gttgtgacct	attatgttga	cttctttaaa	accettaaag	aaaacttcca	cactagcagc	240
tggtttctct	gtggcagtgc	cttgttgctt	gtcagtttat	caattgcatt	ttactgcata	300
gtctacctgg	aatggtattg	tggaattgga	gaatatgatg	tcaagtatcc	agccttgata	360
cccattacca	ctgcctcctt	tattgcagca	ggaatttgct	tcaacattgc	tttatggcat	420
gtgtggtcgt	ttttcactcc	attgttgttg	tttacccagt	ttatgggggt	tgtcatgttt	480
atcacactcc	ttgga					495
<210> 139						
<211> 486				-		
<212> DNA						
<213> Homo	sapiens					
<400> 139						٠
atgctccaga	ccagtaacta	cagcctggtg	ctctctctgc	agttcctgct	gctgtcctat	60
gacctctttg	tcaattcctt	ctcagaactg	ctccaaaaga	ctcctgtcat	ccagcttgtg	120
atattaataa	taanggatat	tannatooto	tteaacatea	tcatcatttt	ceteatette	180

277/307

ttcaacacct	tcgtcttcca	ggctggcctg	gtcaacctcc	tattccataa	gttcaaaggg	240
accatcatcc	tgacagctgt	gtactttgcc	ctcagcatct	cccttcatgt	ctgggtcatg	300
aacttacgct	ggaaaaaactc	caacagcttc	atatggacag	atggacttca	aatgctgttt	360
gtattccaga	gactagcagc	agtgttgtac	tgctacttct	ataaacggac	agccgtaaga	420
ctaggcgatc	ctcacttcta	ccaggactct	ttgtggctgc	gcaaggagtt	catgcaagtt	480
cgaagg						486

<210> 140

<211> 663

<212> DNA

<213> Homo sapiens

<400> 140

60 atggcgttgg cgttggcggc gctggcggcg gtcgagccgg cctgcggcag ccggtaccag 120 cagttgcaga atgaagaaga gtctggagaa cctgaacagg ctgcaggtga tgctcctcca 180 ccttacagca gcatttctgc agagagcgca gcatattttg actacaagga tgagtctggg 240 tttccaaagc ccccatctta caatgtagct acaacactgc ccagttatga tgaagcggag 300 aggaccaagg ctgaagctac tatccctttg gttcctggga gagatgagga ttttgtgggt 360 cgggatgatt ttgatgatgc tgaccagctg aggataggaa atgatgggat tttcatgtta 420 actititica tggcattcct ctttaactgg attgggtttt tcctgtcttt ttgcctgacc 480 acttcagctg caggaaggta tggggccatt tcaggatttg gtctctctct aattaaatgg 540 atcetgattg teaggtttte cacetattte eetggatatt ttgatggtea gtactggete 600 tggtgggtgt tccttgtttt aggctttctc ctgtttctca gaggatttat caattatgca 660 aaagttcgga agatgccaga aactttctca aatctcccca ggaccagagt tctctttatt 663 tat

(210>	14	l														
(211>	16	22														
(212)	DN	A										-				
<213>	Ho	no s	apie	ns												
<220>	•															
<221>	CD:	S														
<222	> (7	8)	. (10	91)												
<400	> 14	1														
ctct	tccc	cg g	cccg	gccg	g gc	ggga	ccag	tgc	gcag	ccg	gggc	tggc	gg (gcggc	gggg	t 60
ccgc	gggg	cc g	cagg	ag a	tg a	icg g	cc g	gc g	gc c	ag g	cc g	ag g	cc e	gag g	ggc	110
				V	let 1	Thr A	la G	ly G	ly G	ln A	la G	lu A	la (Glu (Gly	
					1				5					10		
gct	ggc	ggg	gag	ccc	ggc	gcg	gcg	cgg	ctg	ccc	tcg	cgg	gtg	gcc	cgg	158
Ala	Gly	Gly	Glu	Pro	Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	
			15					20					25		•	
ctg	ctg	tcg	gcg	ctc	ttc	tac	ggg	acc	tgc	tcc	ttc	ctc	atc	gtg	ctt	206
Leu	Leu	Ser	Ala	Leu	Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	
		30					35					40				
gtc	aac	aag	gcg	ctg	ctg	acc	acc	tac	ggt	ttc	ccg	tca	cca	att	ttc	25 4
Val	Asn	Lys	Ala	Leu	Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	
	45					50					55					
ctt	gga	att	gga	cag	atg	gca	gcc	acc	ata	atg	ata	cta	tat	gtg	tcc	302
Leu	Gly	Ile	Gly	Gln	Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	
60					65					70					75	ı
aag	cta	aac	aaa	atc	att	cac	ttc	cct	gat	ttt	gat	aag	aaa	att	cct	350

Lys	Leu	Asn	Lys	Ile	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	
				80					85					90		
gta	aag	ctg	ttt	cct	ctg	cct	ctc	ctc	tac	gtt	gga	aac	cac	ata	agt	398
Val	Lys	Leu	Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	
			95					100					105			
gga	tta	tca	agc	aca	agt	aaa	tta	agc	cta	ccg	atg	ttc	acc	gtg	ctc	446
Gly	Leu	Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	
		110					115					120				
agg	aaa	ttc	acc	att	cca	ctt	acc	tta	ctt	ctg	gaa	acc	atc	ata	ctt	494
Arg	Lys	Phe	Thr	Ile	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	
	125					130					135					
ggg	aag	cag	tat	tca	ctc	aac	atc	atc	ctc	agt	gtc	ttt	gcc	att	att	542
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	Ile	Leu	Ser	Val	Phe	Ala	Ile	Ile	
140					145					150					155	
ctc	ggg	gct	ttc	ata	gca	gct	ggg	tct	gac	ctt	gct	ttt	aac	tta	gaa	590
Leu	Gly	Ala	Phe	Ile	Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phe	Asn	Leu	Glu	
				160					165					170)	
ggc	tat	att	ttt	gta	ttc	ctg	aat	gat	atc	ttc	aca	gca	gca	aat	gga	638
G1y	Туз	: Ile	Phe	Val	Phe	Leu	Asr	n Asp	Ile	Phe	Thr	Ala	Ala	Asr	n Gly	
			175)				180)				185	5		
gtt	tat	t acc	aaa	cag	aaa	ate	gad	c cca	aag	gag	cta	ggg	g aaa	tao	gga	686
Val	Tyı	r Thi	Lys	Gln	Lys	Met	. Asp	Pro	Lys	Glu	Leu	ı Gly	/ Lys	Tyı	r Gly	
		190)				199	5				200)			
gta	cti	t tto	tac	aat	gcc	tgo	tte	c ate	att	ato	cca	a act	t cti	t at	t att	734
Va]	Lei	u Phe	e Tyr	Asn	Ala	Cys	s Pho	e Met	: Ile	e Ile	e Pro	Th:	r Lei	ı Ile	e Ile	!

	205					210					215					
agt	gtc	tcc	act	gga	gac	ctg	caa	cag	gct	act	gaa	tţc	aac	caa	tgg	782
Ser	Val	Ser	Thr	Gly	Asp	Leu	Gln	G1n	Ala	Thr	Glu	Phe	Asn	Gln	Trp	•
220					225					230					235	
aag	aat	gtt	gtg	ttt	atc	cta	cag	ttt	ctt	ctt	tcc	tgt	ttt	ttg	ggg	830
Lys	Asn	Val	Val	Phe	Ile	Leu	G1n	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	
				240					245					250		•
ttt	ctg	ctg	atg	tac	tcc	acg	gtt	ctg	tgc	agc	tat	tac	aat	tca	gcc	878
Phe	Leu	Leu	Met	Tyr	Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	
			255					260					265			
ctg	acg	aca	gca	gtg	gtt	gga	gcc	atc	aag	aat	gta	tcc	gtt	gcc	tac	926
Leu	Thr	Thr	Ala	Val	Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	
		270					275					280				
att	ggg	ata	tta	atc	ggt	gga	gac	tac	att	ttc	tct	ttg	tta	aac	ttt	974
Ile	Gly	Ile	Leu	Ile	Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	
	285					290					295					
gta	ggg	tta	aat	att	tgc	atg	gca	ggg	ggc	ttg	aga	tat	tcc	ttt	tta	1022
Val	Gly	Leu	Asn	Ile	Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	
300					305					310					315	
aca	ctg	agc	agc	cag	tta	aaa	cct	aaa	cct	gtg	ggt	gaa	gaa	aac	atc	1070
Thr	Leu	Ser	Ser	Gln	Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	G1u	Asn	Ile	
				320					325					330)	
tgt	ttg	gat	ttg	aag	agc	ta	aaga	gtct	gc a	gcag	gatt	g ga	gact	gact		1120
Cys	Leu	Asp	Leu	Lys	Ser											

PCT/JP00/05356

WO 01/12660

281/307

tgtgactgcg ggctgggggg gcattcccag taggaatgtg aagccagagg tttcggattc	1180
gtgacateca ecceetggge aagtgagage atetgeaaaa tgeaaagaga actaceteat	1240
atgcaggatg agccaatggc agtctcaaga aatgtactcg ggcgacacct tacctgtgga	1300
aagcaaatct tttcaaaata agccactggg actcggtagg tggagcccca gctgctcttc	1360
tagggaccta tggggccttc gtggcatctc tgtgctgtgt gctggggagg aggttgatgt	1420
aatggtgact cttttctgat cagcaccttg gccgtgattc ccaaggtccc agccaaagca	1480
aagggccagt tgtttcagtt taaacagaca tgtctttagt ctaataaaat tagttaactg	1540
ccagtaaagt tatttgttag ctttgatgaa agctatgttg gtatctttcc ctaatcatca	1600
aagtaaataa aaaatcattt ct	1622
<210> 142	
<211> 2475	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
⟨222⟩ (36) (746)	
<400> 142	
acctgtggga gcgacccggg agaaggaggg ccaag atg gcg gaa gcg gag gag	53
Met Ala Glu Ala Glu Glu	
1 5	
tet cea gga gae eeg ggg aca gea teg eec agg eec etg ttt gea gge	101
Ser Pro Gly Asp Pro Gly Thr Ala Ser Pro Arg Pro Leu Phe Ala Gly	

15

ctt tca gat ata tcc atc tca caa gac atc ccc gta gaa gga gaa atc

10

20

149

Leu	Ser	Asp	Ile	Ser	Ile	Ser	Gln	Asp	Ile	Pro	Val	Glu	Gly	Glu	Ile	
		25					30					35				
acc	att	cct	atg	aga	tct	cgc	atc	cgg	gag	ttt	gac	agc	tcc	aca	tta	197
Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu	Phe	Asp	Ser	Ser	Thr	Leu	
	40					45					50					
aat	gaa	tct	gtt	cgc	aat	acc	atc	atg	cgt	gat	cta	aaa	gct	gtt	ggg	245
Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	Asp	Leu	Lys	Ala	Val	Gly	
55					60		٠			65					70	
aaa	aaa	ttc	atg	cat	gtt	ttg	tac	cca	agg	aaa	agt	aat	act	ctt	ttg	293
Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg	Lys	Ser	Asn	Thr	Leu	Leu	
				75					80					85		
aga	gat	tgg	gat	ttg	tgg	ggc	cct	ttg	atc	ctt	tgt	gtg	aca	ctc	gca	341
Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	Leu	Cy.s	Val	Thr	Leu	Ala	
			90					95					100			
tta	atg	ctg	caa	aga	gac	tct	gca	gat	agt	gaa	aaa	gat	gga	ggg	ccc	389
Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	Glu	Lys	Asp	Gly	Gly	Pro	
		105					110					115				
caa	ttt	gca	gag	gtg	ttt	gtc	att	gtc	tgg	ttt	ggt	gca	gtt	acc	atc	437
Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	Phe	Gly	Ala	Val	Thr	Ile	
	120					125					130					
acc	ctc	aac	tca	aaa	ctt	ctt	gga	ggg	aac	ata	tct	ttt	ttt	cag	agc	488
Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	Ile	Ser	Phe	Phe	Gln	Ser	
135					140					145					150	
ctc	tgt	gtg	ctg	ggt	tac	tgt	ata	ctt	ccc	ttg	aca	gta	gca	atg	ctg	533
Len	Cvs	Val	Leu	Glv	Tvr	Cvs	Ile	Leu	Pro	Leu	Thr	Val	Ala	Met	Leu	

155	160 165	
att tgc cgg ctg gta ctt ttg gct	t gat cca gga cct gta aac ttc atg	581
Ile Cys Arg Leu Val Leu Leu Ala	a Asp Pro Gly Pro Val Asn Phe Met	
170	175 180	
gtt cgg ctt ttt gtg gtg att gtg	g atg ttt gcc tgg tct ata gtt gcc	629
Val Arg Leu Phe Val Val Ile Val	l Met Phe Ala Trp Ser Ile Val Ala	
185 190	195	
tcc aca gct ttc ctt gct gat agc	c cag cct cca aac cgc aga gcc cta	677
Ser Thr Ala Phe Leu Ala Asp Ser	r Gln Pro Pro Asn Arg Arg Ala Leu	
200 205	210	
gct gtt tat cct gtt ttc ctg ttt	t tac ttt gtc atc agt tgg atg att	725
Ala Val Tyr Pro Val Phe Leu Phe	e Tyr Phe Val Ile Ser Trp Met Ile	
215 220	225 230	
ctc acc ttt act cct cag taaatca	a ggaatgggaa attaaaaaacc agtgaattga	780
Leu Thr Phe Thr Pro Gln		
235		
aagcacatct gaaagatgca attcaccat	tg gagctttgtc tctggccctt atttgtctaa	840
ttttggaggt atttgataac tgagtaggt	tg aggagattaa aagggagcca tatagcactg	900
tcacccctta tttgaggaac tgatgtttg	ga aaggetgtte ttttetetet taatgteatt	960
tctttaaaaa tacatgtgca tactacaca	ac agtatataat geeteettaa ggeatgatgg	1020
agtcaccgtg gtccatttgg gtgacaacc	ca gtgacttggg aagcacatag atacatctta	1080
caagttgaat agagttgata actattttc	ca gttttgagaa taccagttca ggtgcagctc	1140
ttaaacacat tgccttatga ctattagaa	at atgcctctct tttcataaat aaaaatacat	1200
ggtctatatc cattttcttt tatttctct	tc tcttaagctt aaaaaggcaa tgagagaggt	1260
taggagtggg ttcatacacg gagaatgag	ga aaacatgcat taaccaatat tcagattttg	1320

284/307

	atcaggggaa	attctacact	tgttgcaaaa	aaaaaaaaa	aaaaagcaaa	gggcctctaa	1380
	agaatcagcc	tctttggtcc	ctttgtgctg	tcaccttttt	gccatgttta	acagcatctt	1440
	ggttggcact	ctagtcttaa	tcttgctcct	taactttgaa	tatgcagtct	aaaatgtcag	1500
	tagtcaacat	gtaattttcc	tttgaaattc	tgaatattcc	agtgctggaa	cttatccaaa	1560
	aagaagacct	cagaaactta	gattggtaga	tctctagtgc	atattatcat	gtgggcacct	1620
	tctcttaggg	tggaatgagg	cagtctggat	gcagcatagt	taaaaggagc	tgtttaatat	1680
	tctctgtagt	ctggcctctt	aactagaaag	taaagctaaa	tcagaagcct	gtatttaacc	1740
	atgtgaacag	ggagggattt	agtgttctga	tggctgatta	atagaacagc	tagatactta	1800
	gagcatgacg	tgggatggga	tgagtttaca	gctgctgcct	tttcatggtg	agcttagcag	1860
	ttttctcatt	agatgtgttt	ttttgggttg	gggaatagca	atttatttta	ttgattttag	1920
	actttatcaa	gctaattagc	tcccctttag	ataagtacat	gttgcacatg	tgcacctact	1980
	tgtaatctca	gatatttatg	cacacaagtg	tgaaggtttt	tcagggagca	gagcatctgg	2040
	gacaggctga	ttctgagcta	aacagggctc	ctttaaggca	atatgaactg	ttgccttcta	2100
	taaattgcac	attgaggaac	tctaatagac	aaagattagg	tgtcaggcag	aaaacactca	2160
	ttgtaaatat	actattagtt	gataaacata	ggactttett	attccccagt	ttttctttat	2220
	catataattt	aaatatttat	tcattttgta	tttaaagact	acctacacat	agatatatga	2280
	ttccaaagtc	atactttctc	catccccaca	ttagccaagt	gaatacaggg	ccaaatgggt	2340
	tcttggaatg	ataataacaa	agcattacaa	agtgggtccc	cttggttcca	gccttgtcca	2400
1	gagtttttgg.	ttatatattt	ctatttatta	caatttacct	tttaaattgt	aaaataaacc	2460
	tttgtgtgga	cagag					2475

⟨210⟩ 143

<211> 1739

<212> DNA

<213> Homo sapiens

285/307

<220>	
<221> CDS	
<222> (21) (1703)	
<400> 143 ·	
tgcgccctga cagcccaaca atg gcg gcg ccc gcg gag tcg ctg agg agg	50
Met Ala Ala Pro Ala Glu Ser Leu Arg Arg	•
1 5 10	•
cgg aag act ggg tac tcg gat ccg gag cct gag tcg ccg ccc gcg c	ecg 98
Arg Lys Thr Gly Tyr Ser Asp Pro Glu Pro Glu Ser Pro Pro Ala P	?ro
15 20 25	
ggg cgt ggc ccc gca ggc tct ccg gcc cat ctc cac acg ggc acc t	tc 146
Gly Arg Gly Pro Ala Gly Ser Pro Ala His Leu His Thr Gly Thr P	he .
30 35 40	
tgg ctg acc cgg atc gtg ctc ctg aag gcc cta gcc ttc gtg tac t	tc 194
Trp Leu Thr Arg Ile Val Leu Leu Lys Ala Leu Ala Phe Val Tyr P	he
45 50 55	
gtg gca ttc ctg gtg gct ttc cat cag aac aag cag ctc atc ggt g	ac 242
Val Ala Phe Leu Val Ala Phe His Gln Asn Lys Gln Leu Ile Gly A	sp
60 65 70	
agg ggg ctg ctt ccc tgc aga gtg ttc ctg aag aac ttc cag cag t	ac 290
Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln T	yr
75 80 85 ·	90

95 100 105

338

ttc cag gac agg acg agc tgg gaa gtc ttc agc tac atg ccc acc atc

Phe Gln Asp Arg Thr Ser Trp Glu Val Phe Ser Tyr Met Pro Thr Ile

ctc	tgg	ctg	atg	gac	tgg	tca	gac	atg	aac	tcc	aac	ctg	gac	ttg	ctg	386
Leu	Trp	Leu	Met	Asp	Trp	Ser	Asp	Жet	Asn	Ser	Asn	Leu	Asp	Leu	Leu	
			110					115					120			•
gct	ctt	ctc	gga	ctg	ggc	atc	tcg	tct	ttc	gta	ctg	atc	acg	ggc	tgc	434
Ala	Leu	Leu	Gly	Leu	Gly	Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	
		125					130					135				
gcc	aac	atg	ctt	çtc	atg	gct	gcc	ctg	tgg	ggc	ctc	tac	atg	tcc	ctg	482
Ala	Asn	Met	Leu	Leu	Met	Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	
	140					145					150					
gtt	aat	gtg	ggc	cat	gtc	tgg	tac	tct	ttc	gga	tgg	gag	tcc	cag	ctt	530
Val	Asn	Val	Gly	His	Val	Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	
155					160					165					170	
ctg	gag	acg	ggg	ttc	ctg	ggg	atc	ttc	ctg	tgc	cct	ctg	tgg	acg	ctg	578
Leu	Glu	Thr	Gly	Phe	Leu	Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	
				175					180					185		
tca	agg	ctg	ccc	cag	cat	acc	ccc	aca	tcc	cgg	att	gtc	ctg	tgg	ggc	626
Ser	Arg	Leu	Pro	G1n	His	Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	
			190					195					200)		
ttc	cgg	tgg	ctg	atc	ttc	agg	atc	atg	ctt	gga	gca	ggc	ctg	ato	aag	674
Phe	Arg	Trp	Leu	Ile	Phe	Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	
		205					210	ı				215	•			
atc	cgg	ggg	gac	cgg	tgc	tgg	cga	gac	cto	acc	tgo	ate	gac	tto	cac	722
Ile	Arg	G1y	Asp	Arg	Cys	Trp	Arg	, Asp	Leu	Thr	Cys	Met	. Asp	Phe	His	
	220)				225	i				230)				
tat	gag	acc	cag	ccg	atg	ccc	aat	cct	gte	g gca	tac	: tac	cte	g cad	cac	770

Tyr Glu Thr Gln	Pro Met Pro Asn	Pro Val Ala Tyr	Tyr Leu His His
235	240	245	250
tca ccc tgg tgg	ttc cat cgc ttc	gag acg ctc agc	aac cac ttc atc 818
Ser Pro Trp Trp	Phe His Arg Phe	Glu Thr Leu Ser	Asn His Phe Ile
	255	260	265
gag ctc ctg gtg	ccc ttc ttc ctc	ttc ctc ggc cgg	egg geg tgc atc 866
Glu Leu Leu Val	Pro Phe Phe Leu	Phe Leu Gly Arg	Arg Ala Cys Ile
270		275	280
atc cac ggg gtg	ctg cag atc ctg	ttc cag gcc gtc	ctc atc gtc agc 914
Ile His Gly Val	Leu Gln Ile Leu	Phe Gln Ala Val I	Leu Ile Val Ser
285	290	:	295
ggg aac ctc agc	ttc ctg aac tgg	ctg act atg gtg	ccc agc ctg gcc 962
Gly Asn Leu Ser	Phe Leu Asn Trp	Leu Thr Met Val	Pro Ser Leu Ala
300	305	310	
tgc ttt gat gac	gcc acc ctg gga	ttc ttg ttc ccc	tct ggg cca ggc 1010
Cys Phe Asp Asp	Ala Thr Leu Gly	Phe Leu Phe Pro	Ser Gly Pro Gly
315	320	325	330
agc ctg aag gad	cga gtt ctg cag	atg cag agg gac	atc cga ggg gcc 1058
Ser Leu Lys Asp	Arg Val Leu Gln	Met Gln Arg Asp	Ile Arg Gly Ala
	335	340	345
cgg ccc gag ccc	aga ttc ggc tcc	gtg gtg cgg cgt	gca gcc aac gtc 1106
Arg Pro Glu Pro	Arg Phe Gly Ser	Val Val Arg Arg	Ala Ala Asn Val
350	•	355	360
tcg ctg ggc gtc	ctg ctg gcc tgg	ctc agc gtg ccc	gtg gtc ctc aac 1154
Ser Leu Gly Val	Leu Leu Ala Trp	Leu Ser Val Pro	Val Val Leu Asn

		365					370					375				
ttg	ctg	agc	tcc	agg	cag	gtc	atg	aac	acc	cac	ttc _.	aac	tct	ctt _.	cac	1202
Leu	Leu	Ser	Ser	Arg	Gln	Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	
	380					385 .					390					
atc	gtc	aac	act	tac	ggg	gcc	ttc	gga	agc	atc	acc	aag	gag	cgg	gcg	1250
Ile	Val	Asn	Thr	Tyr	Gly	Ala	Phe	Gly	Ser	Ile	Thr	Lys	Glu	Arg	Ala	
395					400					405					410	
gag	gtg	atc	ctg	cag	ggc	aca	gcc	agc	tcc	aac	gcc	agc	gcc	ccc	gat	1298
Glu	Val	Ile	Leu	Gln	Gly	Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	
				415					420					425		
gcc	atg	tgg	gag	gac	tac	gag	ttc	aag	tgc	aag	cca	ggt	gac	ccc	agc	1346
Ala	Met	Trp	Glu	Asp	Tyr	Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	
		•	430					435					440			
aga	cgg	ссс	tgc	ctc	atc	tcc	ccg	tac	cac	tac	cgc	ctg	gac	tgg	ctg	1394
Arg	Arg	Pro	Cys	Leu	Ile	Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	•
		445					450					455				
atg	tgg	ttc	gcg	gcc	ttc	cag	acc	tac	gag	cac	aac	gac	tgg	atc	atc	1442
Met	Trp	Phe	Ala	Ala	Phe	Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	
	460					465					470					
cac	ctg	gct	ggc	aag	ctc	ctg	gcc	agc	gac	gcc	gag	gcc	ttg	tcc	ctg	1490
His	Leu	Ala	Gly	Lys	Leu	Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	
475					480					485					490	
ctg	gca	cac	aac	ccc	ttc	gcg	ggc	agg	ccc	ccg	ccc	agg	tgg	gtc	cga	1538
Leu	Ala	His	Asn	Pro	Phe	Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	
				405					500					505		

gga gag cac tac agg tac aag ttc agc cgt cct ggg ggc agg cac gcc	1586								
Gly Glu His Tyr Arg Tyr Lys Phe Ser Arg Pro Gly Gly Arg His Ala									
510 515 520									
gcc gag ggc aag tgg tgg gtg cgg aag agg atc gga gcc tac ttc cct	1634								
Ala Glu Gly Lys Trp Trp Val Arg Lys Arg Ile Gly Ala Tyr Phe Pro									
525 530 535									
ccg ctc agc ctg gag gag ctg agg ccc tac ttc agg gac cgt ggg tgg	1682								
Pro Leu Ser Leu Glu Glu Leu Arg Pro Tyr Phe Arg Asp Arg Gly Trp									
540 545 550									
cet etg ece ggg ece ete tagaegtgea ecagaaataa aggegaagae	1730								
Pro Leu Pro Gly Pro Leu									
555 560									
ccagccccc	1739								
<210> 144									
<211> 2005									
<212> DNA									
<213> Homo sapiens									
<220>									
<221> CDS									
<222> (107) (1327)									
<400> 144									
ggagcccagc ggcgggtgtg agagtccgta aggagcagct tccaggatcc tgagatccgg 60									
agcagccggg gtcggagcgg ctcctcaaga gttactgatc tatgaa atg gca gag 115									
Met Ala Glu									

290/307

		•											1			
aat	gga	aaa	aat	tgt	gac	cag	aga	cgt	gta	gca	atg	aac	aag	gaa	cat	163
Asn	Gly	Lys	Asn	Cys	Asṗ	Gln	Arg	Arg	Val	Ala	Met	Asn	Lys	Glu	His	•
	5					10					15					
cat	aat	gga	aat	ttc	aca	gac	ccc	tct	tca	gtg	aat	gaa	aag	aag	agg	211
His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	G1u	Lys	Lys	Arg	
20					25					30					35	
agg	gag	cgg	gaa	gaa	agg	cag	aat	att	gtc	ctg	tgg	aga	cag	ccg	ctc	259
Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	Gln	Pro	Leu	
				40					45					50		
att	acc	ttg	cag	tat	ttt	tct	ctg	gaa	atc	ctt	gta	atc	ttg	aag	gaa	307
Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	Leu	Lys	Glu	•
			55					60					65			
tgg	acc	tca	aaa	tta	tgg	cat	cgt	caa	agc	att	gtg	gtg	tct	ttt	tta	355
Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	Ser	Phe	Leu	
		70					75					80				
ctg	ctg	ctt	gct	gtg	ctt	ata	gct	acg	tat	tat	gtt	gaa	gga	gtg	cat	403
Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	Gly	Val	His	
	85					90					95					
caa	cag	tat	gtg	caa	cgt	ata	gag	aaa	cag	ttt	ctt	ttg	tat	gcc	tac	451
Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	G1n	Phe	Leu	Leu	Tyr	Ala	Tyr	
100					105		•			110					115	
tgg	ata	ggc	tta	gga	att	ttg	tct	tct	gtt	ggg	ctt	gga	aca	ggg	ctg	499
Tro	Ile	Glv	Leu	G1 v	Ile	Leu	Ser	Ser	Val	Glv	Leu	Glv	Thr	Glv	Leu	

125

120

130

cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gtt	aca	tta .	547
His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser	Val	Thr	Leu	
		•	135					140		•			145			
gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	ccc	gaa	cca	ccc	tat	cct	595
Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	Tyr	Pro	
		150					155					160				
gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	att	tct	643
Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	Ile	Ser	
	165					170					175					
ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	tgg	ggt	691
Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	Trp	Gly	
180					185					190					195	
atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	aga	gca	739
Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	Arg	Ala	
				200					205					210		
gct	cgc	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	gaa	ttt	787
Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr	Gln	Glu	Phe	
			215					220					225			
gaa	gag	atg	ctg	gaa	cat	gca	gag	tct	gca	caa	gac	ttt	gcc	tcc	cgg	835
Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe	Ala	Ser	Arg	
		230					23 5					240				
gcc	aaa	ctg	gca	gtt	caa	aaa	cta	gta	cag	aaa	gtt	gga	ttt	ttt	gga	883
								Val								
	245					250				•	255	•			•	
att		gcc	tgt	gct	tca		сса	aat	cct	tta		gat	cte	gct	gga	931
				_		-						-	0			

Ile Leu Ala	Cys Ala Ser	Ile Pro Asn Pr	ro Leu Phe Asp Leu	Ala Gly
260	265		270	275
ata acg tgt	gga cac ttt	ctg gta cct t	tt tgg acc ttc ttt	ggt gca 979
Ile Thr Cys	Gly His Phe	Leu Val Pro Pl	he Trp Thr Phe Phe	Gly Ala
	280	28	85	290
acc cta att	gga aaa gca	ata ata aaa a	tg cat atc cag aaa	att ttt 1027
Thr Leu Ile	Gly Lys Ala	Ile Ile Lys Mo	et His Ile Gln Lys	Ile Phe
	295	300	305	•
gtt ata ata	aca ttc agc	aag cac ata g	tg gag caa atg gtg	gct ttc 1075
Val Ile Ile	Thr Phe Ser	Lys His Ile V	al Glu Gln Met Val	Ala Phe
310		315	320	
att ggt gct	gtc ccc ggc	ata ggt cca to	ct ctg cag aag cca	ttt cag 1123
Ile Gly Ala	Val Pro Gly	Ile Gly Pro S	er Leu Gln Lys Pro	Phe Gln
325		330	335	
gag tac ctg	gag gct caa	cgg cag aag c	tt cac cac aaa agc	gaa atg 1171
Glu Tyr Leu	Glu Ala Gln	Arg Gln Lys L	eu His His Lys Ser	Glu Met
340	345		350	355
ggc aca cca	cag gga gaa	aac tgg ttg t	cc tgg atg ttt gaa	aag ttg 1219
Gly Thr Pro	Gln Gly Glu	Asn Trp Leu S	er Trp Met Phe Glu	Lys Leu
	360	3	65	370
gtc gtt gtc	atg gtg tgt	tac ttc atc c	ta tot atc att aac	tcc atg 1267
Val Val Val	Met Val Cys	Tyr Phe Ile L	eu Ser Ile Ile Asn	Ser Met
	375	380	385	
gca caa agt	tat gcc aaa	cga atc cag c	ag cgg ttg aac tca	gag gag 1315
Ala Cla San	T A1-	Ana Ila Cla C	ln Arg Leu Asn Ser	Clu Clu

293/307

390 395 400 aaa act aaa taagta gagaaagttt taaactgcag aaattggagt ggatgggttc 1370 Lys Thr Lys 405 tgccttaaat tgggaggact ccaagccggg aaggaaaatt cccttttcca acctgtatca 1430 atttttacaa ctttttcct gaaagcagtt tagtccatac tttgcactga catacttttt 1490 ccttctgtgc taaggtaagg tatccaccct cgatgcaatc caccttgtgt tttcttaggg 1550 tggaatgtga tgttcagcag caaacttgca acagactggc cttctgtttg ttactttcaa 1610 aaggcccaca tgatacaatt agagaattcc caccgcacaa aaaaagttcc taagtatgtt 1670 aaatatgtca agctttttag gcttgtcaca aatgattgct ttgttttcct aagtcatcaa 1730 1790 aatgtatata aattatctag attggataac agtcttgcat gtttatcatg ttacaattta atattccatc ctgcccaacc cttcctctc catcctcaaa aaagggccat tttatgatgc 1850 attgcacacc ctctggggaa attgatcttt aaattttgag acagtataag gaaaatctgg 1910 ttggtgtctt acaagtgagc tgacaccatt ttttattctg tgtatttaga atgaagtctt 1970

⟨210⟩ 145

<211> 1558

<212> DNA

<213> Homo sapiens

gaaaaaaact ttataaagac atctttaatc attcc

<220>

<221> CDS

<222> (31)...(1392)

<400> 145

tcccggtcgg gtgcaaggag ccgaggcgag atg ggc gtc ctg ggc cgg gtc ctg

2005

294/307

Met Gly Val Leu Gly Arg Val Leu

ctg tgg ctg cag ctc tgc gca ctg acc cag gcg gtc tcc aaa ctc tgg Leu Trp Leu Gln Leu Cys Ala Leu Thr Gln Ala Val Ser Lys Leu Trp gtc ccc aac acg gac ttc gac gtc gca gcc aac tgg agc cag aac cgg Val Pro Asn Thr Asp Phe Asp Val Ala Ala Asn Trp Ser Gln Asn Arg acc ccg tgc gcc ggc gcc gtt gag ttc ccg gcg gac aag atg gtg Thr Pro Cys Ala Gly Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val tca gtc ctg gtg caa gaa ggt cac gcc gtc tca gac atg ctc ctg ccg Ser Val Leu Val Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro ctg gat ggg gaa ctc gtc ctg gct tca gga gcc gga ttc ggc gtc tca Leu Asp Gly Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser gac gtg ggc tcg cac ctg gac tgt ggc gcg ggc gaa cct gcc gtc ttc Asp Val Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe ege gae tet gae ege tte tee tgg eat gae eeg eac etg tgg ege tet Arg Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser ggg gac gag gca cct ggc ctc ttc ttc gtg gac gcc gag cgc gtg ccc

Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val Pro

				125					130					135		
tgc	cgc	cac	gac	gac	gtc	ttc	ttt	ccg	cct	agt	gcc	tcc	ttc	cgc	gtg	486
Cys	Arg	His	Asp	Asp	Val	Phe	Phe	Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	
			140					145					150			
ggg	ctc	ggc	cct	ggc	gct	agc	ccc	gtg	cgt	gtc	cgc	agc	atc	tcg	gct	534
Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	
		155					160					165				
ctg	ggc	cgg	acg	ttc	acg	cgc	gac	gag	gac	ctg	gct	gtt	ttc	ctg	gcg	582
Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp	Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	
	170					175					180					
tcc	cgc	gcg	ggc	cgc	cta	cgc	ttc	cac	ggg	ccg	ggc	gcg	ctg	agc	gtg	630
Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	His	Gly	Pro	Gly	Ala	Leu	Ser	Val	
185					190					195					200	
ggc	ccc	gag	gac	tgc	gcg	gac	ccg	tcg	ggc	tgc	gtc	tgc	ggc	aac	gcg	678
Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	
				205					210					215		
gag	gcg	cag	ccg	tgg	atc	tgc	gcg	gcc	ctg	ctc	cag	ccc	ctg	ggc	ggc	726
Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	Ala	Leu	Leu	Gln	Pro	Leu	Gly	Gly	
			220					225					230			
cgc	tgc	ccc	cag	gcc	gcc	tgc	cac	agc	gcc	ctc	cgg	ccc	cag	ggg	cag	774
Arg	Cys	Pro	Gln	Ala	Ala	Cys	His	Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln	
		235					240					245				
tgc	tgt	gac	ctc	tgt	gga	gcc	gtt	gtg	ttg	ctg	acc	cac	ggc	ccc	gca	822
			Leu	_	-											
=	250	•		-	•	255					260		•			

ttt	gac	ctg	gag	cgg	tac	cgg	gcg	cgg	ata	ctg	gac	acc	ttc	cte	ggt	870
Phe	Asp	Leu	Glu	Arg	,Tyr	Arg	Ala	Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	
265					270)	٠		•	275					280	
ctg	cct	cag	tac	cac	ggg	ctg	cag	gtg	gcc	gtg	tcc	aag	gtg	cca	cgc	918
Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln	Val	Ala	Val	Ser	Lys	Val	Pro	Arg	
				285					290					295	i	
tcg	tcc	cgg	ctc	cgt	gag	gcc	gat	acg	gag	atc	cag	gtg	gtg	ctg	gtg	966
Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp	Thr	Glu	Ile	Gln	Val	Val	Leu	Val	
			300					305					310			
gag	aat	ggg	ccc	gag	aca	ggc	gga	gcg	ggg	cgg	ctg	gcc	cgg	gcc	ctc	1014
Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly	Ala	Gly	Arg	Leu	Ala	Arg	Ala	Leu	
•		315					320					325			•	
ctg	gcg	gac	gtc	gcc	gag	aac	ggc	gag	gcc	ctc	ggc	gtc	ctg	gag	gcg	1062
Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly	Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	
	330					335					340					
acc	atg	cgg	gag	tcg	ggc	gca	cac	gtc	tgg	ggc	agc	tcc	gcg	gct	ggg	1110
Thr	Met	Arg	Glu	Ser	Gly	Ala	His	Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	
345					350					355					360	
ctg	gcg	ggc	ggc	gtg	gcg	gct	gcc	gtg	ctg	ctg	gcg	ctg	ctg	gtc	ctg	1158
Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala	Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	
				365					370					375		
ctg	gtg	gcg	ccg	ccg	ctg	ctg	cgc	cgc	gcg	ggg	agg	ctc	agg	tgg	agg	1206
Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg	Arg	Ala	Gly	Arg	Leu	Arg	Trp	Arg	
			380					385					390			
agg	cac	gag	gcg	gcg	gcc	ccg	gct	gga	gcg	ccc	ctc	ggc	ttc	cgc	aac	1254

297/307

Arg His	Glu Ala	Ala Ala	Pro Ala	Gly Ala	Pro Leu	Gly Phe	Arg Asn	
	3 95		400			405 .		
ccg gtg	ttc gac	gtg acg	gcc tcc	gag gag	ctg ccc	ctg ccg	cgg cgg	1302
Pro Val	Phe Asp	Val Thr	Ala Ser	Glu Glu	Leu Pro	Leu Pro	Arg Arg	
410			415		420			
ctc agc	ctg gtt	ccg aag	gcg gcc	gca gac	agc acc	agc cac	agt tac	1350
Leu Ser	Leu Val	Pro Lys	Ala Ala	Ala Asp	Ser Thr	Ser His	Ser Tyr	
425		430			435		440	
ttc gtc	aac cct	ctg ttc	gcc ggg	gcc gag	gcc gag	gcc t ga	geggeege	1400
Phe Val	Asn Pro	Leu Phe	Ala Gly	Ala Glu	Ala Glu	Ala		
		445		450				
ctgaccgt	cg acct	tggggc to	ctccaccc	c ctctgg	cccc agt	cgaactg.g	ggggctagcc	1460
acctcctc	gt ccag	cccca a	acctcccc	t teettt	cccc ctc	ctccggg g	gccaaggac	1520
agggtggc	ct tacto	cagtaa a	ggtgtttc	c tgcacc	tg			1558
<210> 14	6							
<211> 10	05							
<212> DN	IA .							
<213> Ho	omo sapio	ens						
<220>								
<221> CD	S							
<222> (1	51)(330)						
<400> 14	6							
atteetgt	aa tggc	tgcttc ci	tagaaggto	c gtgtca	cgtg gaa	cctctta a	itctcagcat	60

ccggagctcc aggaagggaa aatttcaagt cagatagaat tctatatata ccatttcttt 120

ggaaccttca gccctcaaga ttccaacatc atg acc tca gtt tca aca cag ttg	174
Met Thr Ser Val Ser Thr Gln Leu	
1 5	
tcc tta gtc ctc atg tca ctg ctt ttg gtg ctg cct gtt gtg gaa gca	222
Ser Leu Val Leu Met Ser Leu Leu Leu Val Leu Pro Val Val Glu Ala	
10 15 20	
gta gaa gcc ggt gat gca atc gcc ctt ttg tta ggt gtg gtt ctc agc	270
	210
Val Glu Ala Gly Asp Ala Ile Ala Leu Leu Cly Val Val Leu Ser	
25 30 35 40	
att aca ggc att tgt gcc tgc ttg ggg gta tat gca cga aaa aga aat	318
Ile Thr Gly Ile Cys Ala Cys Leu Gly Val Tyr Ala Arg Lys Arg Asn	
45 50 55	
gga cag atg tga ctttgaaagg cctactgagt caaacctcac cctgaaaacc	370
Gly Gln Met	
tttgcgcttt agaggctaaa cctgagattt ggtgtgtgaa aggttccaag aatcagtaaa	430
taagggagtt tcacattttt cattgtttcc atgaaatggc aacaaacata catttataaa	490
ttgaaaaaaa aatgttttet ttacaacaaa taatgcacag aaaaatgcag cctataattt	550
gctagttagg tagtcaaaga agtaagatgg ctgaaattta cataagtaat atttcataat	610
cttagaattc teteaaagea tgtgaaatag gaagaaggaa gttettgeee agaatettag	670
gaaatcacca ctgttcggtt ataatcactg cctcctgaat cgttgaggag tcttttaaat	730
tagatttttg ttttgttgtc tcccaagtta atattatatt	790
aaaaaggaaa actittatct ctagggaaaa aacatttaga aaaatgtatt cagtgtatct	850
aatactgaaa tgcggaaaaa aatttaatgt taaaaaaaaa actatagaca ttgacatgga	910
aaagagattt aatgttttga aaaaaaactt tatattaact gagtaacatc ctcctgatga	970
gaagtactat attaaatata aacccattat gttat	1005

(21 0)> 14	17														
<211	> 96	59														
<212	2> D1	A														
<213	3> Ho	omo :	sapie	ens												
<220)>															
<221) CI	os														
<222	2> (1	151).	(7	783)												
<400)> 14	17														
gctg	ggaca	acc i	tggag	gctgo	ec c	gagga	acgc	g gag	ggaga	agac	ccga	iggg1	tcg	ccgc	tggtag	g 60
ggto	egcto	cag (ccte	gccg	tc ci	ttca	ccac	c aca	acct	tcac	ctgo	gcc	cag (ctcc	ctgcgc	120
gcct	tggad	cag	cgcct	tgct	gc co	cgcc	tccc	g at	g gc	ct	g cc	ca	g at _i	g tg	t gac	174
								Met	t Ala	a Lei	ı Pro	Glı	n Me	t Cy	s Asp	
]	1			{	5			
ggg	agc	cac	ttg	gcc	tcc	acc	ctc	cgc	tat	tgc	atg	aca	gtc	agc	ggc	222
Gly	Ser	His	Leu	Ala	Ser	Thr	Leu	Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	
	10					15					20					
aca	gtg	gtt	ctg	gtg	gcc	ggg	acg	ctc	tgc	ttc	gct	tgg	tgg	agc	gaa	270
Thr	Val	Val	Leu	Val	Äla	Gly	Thr	Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	
25					30					35					40	
ggg	gat	gca	acc	gcc	cag	cct	ggc	cag	ctg	gcc	cca	ccc	acg	gag	tat	318
Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly	Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	
				45					50					55		
ccg	gtg	cct	gag	ggc	ccc	agc	ccc	ctg	ctc	agg	tcc	gtc	agc	ttc	gtc	366
Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro	Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	

			60					65					70			
tgc	tgc	ggt	gca	ggt	ggc	ctg	ctg	ctg	ctc	att	ggc	ctg	ctg	tgg	tcc	414
Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu	Leu	Leu	Ile	Gly	Leu	Leu	Trp	Ser	
		75					80					85				
gtc	aag	gcc	agc	atc	cca	ggg	cca	cct	cga	tgg	gac	ccc	tat	cac	ctc	462
Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro	Pro	Arg	Trp	Asp	Pro	Tyr	His	Leu	
	90					95					100					
tcc	aga	gac	ctg	tac	tac	ctc	act	gtg	gag	tcc	tca	gag	aag	gag	agc	510
Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr	Val	Glu	Ser	Ser	Glu	Lys	Glu	Ser	
105					110					115					120	
tgc	agg	acc	ccc	aaa	gtg	gtt	gac	atc	ссс	act	tac	gag	gaa	gcc	gtg	558
Cys	Arg	Thr	Pro	Lys	Val	Val	Asp	Ile	Pro	Thr	Tyr	Glu	Glu	Ala	Val	
				125		•			130		•			135		
agc	ttc	cca	gtg	gcc	gag	ggg	ccc	cca	aca	cca	cct	gca	tac	cct	acg	606
Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro	Pro	Thr	Pro	Pro	Λla	Tyr	Pro	Thr	
			140					145					150			
gag	gaa	gcc	ctg	gag	cca	agt	gga	tcg	agg	gat	gcc	ctg	ctc	agc	acc	654
Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly	Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	
		155					160					165				
cag	ccc	gcc	tgg	cct	cca	ccc	agc	tat	gag	agc	atc	agc	ctt	gct	ctt	702
Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser	Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	
	170					175					180					
gat	gcc	gtt	tct	gca	gag	acg	aca	ccg	agt	gcc	aca	cgc	tcc	tgc	tca	7 50
Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr	Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	
185					190					195					200	

ggc ctg gtt cag	act gca cgg gga	gga agt taaagg	ctcc tagcaggtcc	800
Gly Leu Val Gln	Thr Ala Arg Gly	Gly Ser		
	205	210		
tgaatccaga gaca	aaaatg ctgtgcctto	tccagagtct ta	tgcagtgc ctgggacaca	860
gtaggcactc agca	aacgtt cgttgttgaa	ggctgttcta tt	tatctatt gctgtataac	920
aaaccacccc agaa	tttagt ggcttaaaat	aaatcccatt tt	attatgt	969
<210> 148				
<211> 1241				
<212> DNA				
<213> Homo sapi	ens			
<220>				
<221> CDS				
<222> (20) (5	517)			
<400> 148				
atttcggggc ggta	ccaag atg gac tco	c tog ogg god o	ga cag cag ctc cgg	52
	Met Asp Ser	Ser Arg Ala A	rg Gln Gln Leu Arg	
	1	5	10	
cgg cga ttc ctc	ctc ctg ccg gac	gcc gag gcc ca	ng ctg gac cgc gag	100
			n Leu Asp Arg Glu	
15	-	20	25	
			ng aaa aag gag aaa	148
			lu Lys Lys Glu Lys	
30	35	in ald lat Ol	40	
		*** *** ***		106
cct ctt cca aga	ctt aat atc cat	tot gga tto tg	gg att ttg gca tcc	196

Pro	Leu	Pro	Arg	Leu	Asn	Ile	His	Ser	Gly	Phe	Trp	Ile	Leu	Ala	Ser		
	45					50					55						
att	gtt	gtg	acc	tat	tat	gtt	gac	ttc	ttt	aaa	acc	ctt	aaa	gaa	aac		244
Ile	Val	Val	Thr	Tyr	Tyr	Val	Asp	Phe	Phe	Lys	Thr	Leu	Lys	Glu	Asn		
60					65					70					75		
ttc	cac	act	agc	agc	tgg	ttt	ctc	tgt	ggc	agt	gcc	ttg	ttg	ctt	gtc		292
Phe	His	Thr	Ser	Ser	Trp	Phe	Leu	Cys	Gly	Ser	Ala	Leu	Leu	Leu	Val		
				80					85					90			
agt	tta	tca	att	gca	ttt	tac	tgc	ata	gtc	tac	ctg	gaa	tgg	tat	tgt		340
Ser	Leu	Ser	Ile	Ala	Phe	Tyr	Cys	Ile	Val	Tyr	Leu	Glu	Trp	Tyr	Cys		
			95				•	100					105				
gga	att	gga	gaa	tat	gat	gtc	aag	tat	сса	gcc	ttg	ata	ccc	att	acc		388
Gly	Ile	Gly	Glu	Tyr	Asp	Val	Lys	Tyr	Pro	Ala	Leu	Ile	Pro	Ile	Thr		
		110					115					120					
act	gcc	tcc	ttt	att	gca	gca	gga	att	tgc	ttc	aac	att	gct	tta	tgg		436
Thr	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Ile	Cys	Phe	Asn	Ile	Ala	Leu	Trp		
	125					130					135						
cat	gtg	tgg	tcg	ttt	ttc	act	cca	ttg	ttg	ttg	ttt	acc	cag	ttt	atg		484
His	Val	Trp	Ser	Phe	Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met		
140					145					150					155		
ggg	gtt	gtc	atg	ttt	atc	aca	ctc	ctt	gga	tga	ttt	ccga	agag	ac			530
Gly	Val	Val	Met	Phe	Ile	Thr	Leu	Leu	Gly								
				160					165	;							
agg	gtct	tct	atgt	tgcc	ca g	gctg	tctt	t ga	acto	ctgg	gat	caag	tga	tcct	cctg	cc	590
tca	gcct	tcg	aagt	agtt	gg g	acta	cagg	c cc	acgo	cacc	gtg	cctg	gct	ggac	atgt	aa	650

303/307

atttgaagtg	aatggttaaa	catccagcta	gctgaaagca	tggcagaccc	taacagaaaa	710
gctacagtgt	gtttttgcag	ctatgaagtg	aatggtttcc	tggggaaaat	tgtgactttg	770
tataactgtt	gttgaaacca	gaataaatta	tatttcactt	gcatatgcat	aaattattaa	830
aattttcaga	agtcagtgat	acagaagtac	tattttgcaa	tgttaatctg	tttgagtctt	890
tggagaaagt	ggtttcattg	taggtacata	gtgcactgtt	aatatttaa	acaagtagtt	950
cactcttcca	tttaagggat	agcagttcct	tgtataaaat	gactggatgt	gtataaagga	1010
attatgttgt	catgtgcctt	taaccagctt	tagtaattac	tataatctca	tatttatgat	1070
agttttgtta	ggtgacagga	ccaaatgaaa	atattttatg	ttttctcatc	actttagatt	1130
ttatcattat	gtacattact	gggtttttag	catttcctaa	tgtgaagttt	taatcacttt	1190
taagtataca	ttttttctg	tatcatttaa	ataaaatatt	tttataactt	t	1241

<210> 149

<211> 1174

<212> DNA

⟨213⟩ Homo sapiens

<220>

<221> CDS

⟨222⟩ (187)... (675)

1

<400> 149

ggaagccggg acgatgtccg catgacaacc gacgttggag tttggaggtg cttgccttag 60
agcaagggaa acagctctca ttcaaaggaa ctagaagcct ctccctcagt ggtagggaga 120
cagccaggag cggttttctg ggaactgtgg gatgtgccct tgggggcccg agaaaacaga 180
aggaag atg ctc cag acc agt aac tac agc ctg gtg ctc tct ctg cag 228

Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln

5 10

ttc	ctg	ctg	ctg	tcc	tat	gac	ctc	ttt	gtc	aat	tcc	ttc	tca	gaa	ctg	276
Phe	Leu	Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu	
15					20				•	25				•	30	
ctc	caa	aag	act	cct	gtc	atc	cag	ctt	gtg	ctc	ttc	atc	atc	cag	gat	324
Leu	Gln	Lys	Thr	Pro	Val	Ile	G1n	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	
				35					40					45		
att	gca	gtc	ctc	ttc	aac	atc	atc	atc	att	ttc	ctc	atg	ttc	ttc	aac	372
Ile	Ala	Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn	
			50					55					60			
acc	ttc	gtc	ttc	cag	gct	ggc	ctg	gtc	aac	ctc	cta	ttc	cat	aag	ttc	420
Thr	Phe	Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe	
		65					70					7 5				
aaa	ggg	acc	atc	atc	ctg	aca	gct	gtg	tac	ttt	gcc	ctc	agc	atc	tcc	468
Lys	Gly	Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser	
	80					85					90					
ctt	cat	gtc	tgg	gtc	atg	aac	tta	cgc	tgg	aaa	aac	tcc	aac	agc	ttc	516
Leu	His	Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	
95					100					105					110	
ata	tgg	aca	gat	gga	ctt	caa	atg	ctg	ttt	gta	ttc	cag	aga	cta	gca	564
Ile	Trp	Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	
				115	•				120					125		
gca	gtg	ttg	tac	tgc	tac	ttc	tat	aaa	cgg	aca	gcc	gta	aga	cta	ggc	612
Ala	Val	Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	Val	Arg	Leu	Gly	
			130					135					140			
gat	cct	cac	ttc	tac	cag	gac	tct	ttg	tgg	ctg	cgc	aag	gag	ttc	atg	660

305/307

Asp	Pro	His	Phe	Tyr	Gln	Asp	Ser	Leu	Trp	Leu	Arg	Lys	Glu	Phe	Met
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

150 155 145 710 caa gtt cga agg tgacctct tgtcacactg atggatactt ttccttcctg Gln Val Arg Arg 160 770 atagaagcca catttgctgc tttgcaggga gagttggccc tatgcatggg caaacagctg 830 gactttccaa ggaaggttca gactagctgt gttcagcatt caagaaggaa gatcctccct cttgcacaat tagagtgtcc ccatcggtct ccagtgcggc atcccttcct tgccttctac 890 950 ctctgttcca cccctttcc ttcctttcct ctctgtacca ttcattctcc ctgaccggcc tttcttgccg agggttctgt ggctcttacc cttgtgaagc ttttccttta gcctgggaca 1010

1130 tacgtgctcc tgactgatca caccgcagac atttagattt ttatacccaa ggcactttaa

1070

gaaggacctc ccagccccca aaggatctcc cagtgaccaa aggatgcgaa gagtgatagt

1174 aaaaatgttt tataaataga gaataaattg aattettgtt ccat

⟨210⟩ 150

(211) 1012

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (208)...(873)

<400> 150

gcctcttccc caggggccgc gtcggagcct ccgcggcggc ggcggtgctt acagcctgag 60 120 aagagegtet egeeegggag eggeggegge categagace cacceaagge gegteeeet cggcctccca gcgctcccaa gccgcagcgg ccgcgcccct tcagctagct cgctcgctcg 180

ctct	tgct	tcc	ctgct	tgccı	gg ct	tgcg	cc at	tg go	eg ti	tg go	g ti	tg g	cg g	cg c	tg	231
							Me	et A	la L	eu Al	la Le	eu A	la A	la Ļ	eu .	
								1				5				•
gcg	gcg	gtc	gag	ccg	gcc	tgc	ggc	agc	cgg	tac	cag	cag	ttg	cag	aat	279
Ala	Ala	Val	Glu	Pro	Ala	Cys	Gly	Ser	Arg	Tyr	Gln	Gln	Leu	Gln	Asn	
	10					15					20					
gaa	gaa	gag	tct	gga	gaa	cct	gaa	cag	gct	gca	ggt	gat	gct	cct	cca	327
Glu	Glu	Glu	Ser	Gly	Glu	Pro	Glu	Gln	Ala	Ala	Gly	Asp	Ala	Pro	Pro	
25					30					35					40	
cct	tac	agc	agc	att	tct	gca	gag	agc	gca	gca	tat	ttt	gac	tac	aag	375
Pro	Tyr	Ser	Ser	Ile	Ser	Ala	Glu	Ser	Ala	Ala	Tyr	Phe	Asp	Tyr	Lys	
			•	45					50					55		
gat	gag	tct	ggg	ttt	cca	aag	ссс	cca	tct	tac	aat	gta	gct	aca	aca	423
Asp	Glu	Ser	Gly	Phe	Pro	Lys	Pro	Pro	Ser	Tyr	Asn	Val	Ala	Thr	Thr	
			60					65					70			
ctg	ccc	agt	tat	gat	gaa	gcg	gag	agg	acc	aag	gct	gaa	gct	act	atc	471
Leu	Pro	Ser	Tyr	Asp	Glu	Ala	Glu	Arg	Thr	Lys	Ala	Glu	Ala	Thr	Ile	
		7 5					80					85				
cct	ttg	gtt	cct	ggg	aga	gat	gag	gat	ttt	gtg	ggt	cgg	gat	gat	ttt	519
Pro	Leu	Val	Pro	Gly	Arg	Asp	Glu	Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	
	90					95					100					
gat	gat	gct	gac	cag	ctg	agg	ata	gga	aat	gat	ggg	att	ttc	atg	tta	567
Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile	Gly	Asn	Asp	G1y	Ile	Phe	Met	Leu	
105					110					115					120	
act	ttt	ttc	atg	gca	ttc	ctc	ttt	aac	tgg	att	ggg	ttt	ttc	ctg	tct	615

Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	
				125					130				•	135		
ttt	tgc	ctg	acc	act	tca	gct	gca	gga	agg	tat	ggg	gcc	att	tca	gga	663
Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	
			140					145					150			
ttt	ggt	ctc	tct	cta	att	aaa	tgg	atc	ctg	att	gtc	agg	ttt	tcc	acc	711
Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	•
		155					160					165				
tat	ttc	cct	gga	tat	ttt	gat	ggt	cag	tac	tgg	ctc	tgg	tgg	gtg	ttc	759
Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	
	170					175					180					
ctt	gtt	tta	ggc	ttt	ctc	ctg	ttt	ctc	aga	gga	ttt	atc	aat	tat	gca	807
Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	
185					190					195					200	
aaa	gtt	cgg	aag	atg	сса	gaa	act	ttc	tca	aat	ctc	ccc	agg	acc	aga	855
Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	
				205					210					215		
gtt	ctc	ttt	att	tat	taaa	agat	gtt	ttctį	ggcaa	aa gg	gcct	tccti	g ca	ttta [.]	tgaa	910
Val	Leu	Phe	Ile	Tyr					•				·		•	
	220 .															
ttc	ttctctctca agaagcaaga gaacacctgc aggaagtgaa tcaagatgca gaacacagag														970	
gaa	taat	cac (ctgc	ttta	aa aa	aaata	aaag	t ac	tgttį	gaaa	ag					1012