

3)
$$V_{x} = 20V$$
. $120V$
 $50L$
 $60L$
 $40L$
 $10V$
 $110V$
 $12V$

[kCl]

$$I_1 = I_2 + I_3 \cdots (i)$$

along L1, [kVL]

 $5I_1 + 10I_3 = 20 - 10 = 10$

along L2, [kVL]

 $-10I_3 + 10I_2 = 10 - 0$

... (ii)

solving (i), (ii) and (iii), $I_1 = 1.5 A, \quad I_2 = 1.25 A, \quad I_3 = 0.25 A$ (values may change — follow the steps)

4)
$$\sqrt{x} = 40 V$$
 $20 \Omega \sqrt{1}$
 $10 \Omega - \sqrt{2}$
 $40 V$
 $20 \Omega \Omega$
 10Ω
 10Ω
 10Ω
 10Ω

Here,
$$\frac{1}{20} \Rightarrow \frac{41}{5}$$

at node $\frac{1}{20} \Rightarrow \frac{41}{5} = \frac{\frac{1}{20}}{5}$
 $\frac{\frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20}}{10} = 0$
 $\Rightarrow \frac{1}{20} + \frac{1}{20} + \frac{1}{20} = 0$

... (i)

at node
$$V_2$$
, $\frac{V_2-V_1}{J_0} + \frac{V_2}{J_0} - 4I_x = 0$

$$\Rightarrow V_2\left(\frac{1}{J_0} + \frac{1}{J_0}\right) - V_1\left(\frac{1}{J_0} + \frac{1}{5}\right) = 0$$

$$\Rightarrow V_2\left(\frac{1}{5}\right) - V_1\left(\frac{1}{J_0} + \frac{1}{5}\right) = 0 \quad ... \quad (1)$$

Solving (i) and (ii), $V_1 = 40V$, $V_2 = V_0 = 60V$.

$$V = 50i + 200$$

$$V = 50i + 200$$

$$V = \frac{V_0}{50} - \frac{200}{50}$$

$$V = \frac{V_0}{50} - \frac{200}{50}$$

$$V = \frac{V_0}{50} - \frac{V_0}{50}$$

across A-B node will

always provide 200V

BC: Resiston,
$$R_{BC} = \frac{1}{slope} = \frac{1}{4-(-5)} = 1 \text{ K.D.}$$

CD: (i) current source in parallel to a resistor

$$R_{eD} = \frac{1}{\text{slope}} = \frac{1}{\frac{.6-4}{10-4}} = \frac{1}{\frac{2}{6}} = 3K \Omega$$

at point C,
$$i=4 \text{ mA}$$
, $V=4V$
 0.000 $4 = \frac{4}{3} + I_0 \Rightarrow I_0 = (4-\frac{4}{3}) = 2.67 \text{ mA}$

'similarly for (1). You need to solve either in 1st on 2nd method.

b)
$$V=2V$$
 is within BC region. It is represented by a resistor. So, $I_2 = \frac{V}{R} = \frac{2}{1} = 2 \text{ mA}$.

d) 15kn 6kn 10v 10v 10v 10v 1kn = RBC

$$1_1 = 1_2 + 1_3$$
 [KCL]

KVL at L1, $5I_1 + 10I_3 = 20 - 0$ KVL at L2, $-10I_3 + 6I_2 + 1I_2 = 0 - 10 - 0$ 0 = 1 = 1.55 mA $I_2 = 0.32 \text{ mA}$ $I_3 = 1.22 \text{ mA}$

[in question, some values were in D; so answers may change.