INFORMATION THEORY & CODING

Week 6: Source Coding 2

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

October 23, 2023

Review Summary

Classes of codes

Prefix codes ⇒ Uniquely decodable codes ⇒ Nonsingular codes

Kraft inequality

Prefix codes
$$\Leftrightarrow \sum D^{-\ell_i} \leq 1$$
.

Outline

- Extended Kraft inequality for prefix code
- Kraft inequality for uniquely decodable code Uniquely decodable code does NOT provide more choices than prefix code
- Bounds on optimal expected length

Entropy length is achievable when jointly encoding a random sequence.

Extended Kraft Inequality

Theorem 5.5.1 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of codewords, i.e., the codeword lengths satisfy the extended Kraft inequality,

$$\sum_{i=1}^{\infty} D^{-\ell_i} \le 1$$

Conversely, given any ℓ_1, ℓ_2, \ldots satisfying the extended Kraft inequality, we can construct a prefix code with these codeword lengths.

Extended Kraft Inequality

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of codewords.

Proof.

Consider the ith codeword $y_1y_2\cdots y_{\ell_i}$. Let $0.y_1y_2\cdots y_{\ell_i}$ be the real number given by the D-ary expansion

$$0.y_1y_2\cdots y_{\ell_i} = \sum_{j=1}^{\ell_i} y_j D^{-j},$$

which corresponds to the interval

$$[0.y_1y_2\cdots y_{\ell_i}, 0.y_1y_2\cdots y_{\ell_i} + \frac{1}{D^{\ell_i}}).$$

Extended Kraft Inequality

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of codewords.

Proof. (cont.)

By the prefix condition, these intervals are disjoint in the unit interval [0,1]. Thus, the sum of their lengths is ≤ 1 . This proves that

$$\sum_{i=1}^{\infty} D^{-\ell_i} \le 1.$$

For converse, reorder indices in increasing order and assign intervals as we walk along the unit interval.

Theorem 5.2.3 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy the Kraft inequality

$$\sum D^{-\ell_i} \leq 1.$$

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a uniquely decodable code with these codeword lengths.

Proof.

Consider C^k , the k-th extension of the code by k repetitions. Let the codeword lengths of the symbols $x \in \mathcal{X}$ be $\ell(x)$. For the k-th extension code, we have

$$\ell(x_1, x_2, \ldots, x_k) = \sum_{i}^{k} \ell(x_i).$$

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy the Kraft inequality

$$\sum D^{-\ell_i} \leq 1.$$

Proof. (cont.)

Consider

$$\left(\sum_{\mathbf{x}\in\mathcal{X}} D^{-\ell(\mathbf{x})}\right)^k = \sum_{\mathbf{x}_1\in\mathcal{X}} \sum_{\mathbf{x}_2\in\mathcal{X}} \cdots \sum_{\mathbf{x}_k\in\mathcal{X}} D^{-\ell(\mathbf{x}_1)} D^{-\ell(\mathbf{x}_2)} \cdots D^{-\ell(\mathbf{x}_k)}$$

$$= \sum_{\mathbf{x}_1,\mathbf{x}_2,\cdots\mathbf{x}_k\in\mathcal{X}^k} D^{-\ell(\mathbf{x}_1)} D^{-\ell(\mathbf{x}_2)} \cdots D^{-\ell(\mathbf{x}_k)}$$

$$= \sum_{\mathbf{x}^k\in\mathcal{X}^k} D^{-\ell(\mathbf{x}^k)}$$

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy the Kraft inequality

$$\sum D^{-\ell_i} \leq 1.$$

Proof. (cont.)

Let ℓ_{max} be the maximum codeword length and a(m) is the number of source sequences x^k mapping into codewords of length m. Unique decodability implies that $a(m) \leq D^m$. We have

$$\left(\sum_{x \in \mathcal{X}} D^{-\ell(x)}\right)^k = \sum_{x^k \in \mathcal{X}^k} D^{-\ell(x^k)} = \sum_{m=1}^{k\ell_{\text{max}}} a(m)D^{-m}$$

$$\leq \sum_{m=1}^{k\ell_{\text{max}}} D^m D^{-m}$$

$$= k\ell_{\text{max}}$$

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must satisfy the Kraft inequality

$$\sum D^{-\ell_i} \leq 1.$$

Proof. (cont.)

$$\left(\sum_{x\in\mathcal{X}}D^{-\ell(x)}\right)^k\leq k\ell_{\mathsf{max}}.$$

Hence,

$$\sum_{i} D^{-\ell_{i}} \leq (k\ell_{\mathsf{max}})^{1/k}$$

holds for all k. Since the RHS $\rightarrow 1$ as $k \rightarrow \infty$, we prove the Kraft inequality. For the converse part, we can construct a prefix code as in **Theorem 5.2.1**, which is also uniquely decodable.

Optimal Codes

Problem To find the set of lengths $\ell_1, \ell_2, \dots, \ell_m$ satisfying the Kraft inequality and whose expected length $L = \sum p_i \ell_i$ is minimized.

Optimization:

minimize
$$L=\sum p_i\ell_i$$
 subject to $\sum D^{-\ell_i}\leq 1$ and ℓ_i 's are integers.

Optimal Codes

Theorem 5.3.1

The expected length L of any prefix D-ary code for a random variable X is no less than $H_D(X)$, i.e.,

$$L \geq H_D(X)$$
,

with equality iff $D^{-\ell_i} = p_i$.

Proof.

$$L - H_D(X) = \sum p_i \ell_i - \sum p_i \log_D \frac{1}{p_i}$$

$$= -\sum p_i \log_D D^{-\ell_i} + \sum p_i \log_D p_i$$

$$= \sum p_i \log_D \frac{p_i}{r_i} - \log_D c$$
"=" holds if $c = 1$
and $r_i = p_i$.
$$= D(\mathbf{p} \| \mathbf{r}) + \log_D \frac{1}{c} \ge 0$$

where
$$r_i = D^{-\ell_i} / \sum_i D^{\ell_j}$$
 and $c = \sum_i D^{-\ell_i} \leq 1$.

Optimal Codes

Theorem 5.3.1

The expected length L of any prefix D-ary code for a random variable X is no less than $H_D(X)$, i.e.,

$$L \geq H_D(X)$$
,

with equality iff $D^{-\ell_i} = p_i$.

Definition

A probability distribution is called D-adic if each of the probabilities is equal to D^{-n} for some n. Thus, we have equality in the theorem iff the distribution of X is D-adic.

Remark

 $H_D(X)$ is a lower bound on the optimal code length. The equality holds iff p is D-adic.

Bound on the Optimal Code Length

Theorem 5.4.1 (Shannon Codes)

Let $\ell_1^*, \ell_2^*, \dots, \ell_m^*$ be optimal codeword lengths for a source distribution \mathbf{p} and a D-ary alphabet, and let L^* be the associated expected length of an optimal code $(L^* = \sum p_i \ell_i^*)$. Then

$$H_D(X) \le L^* < H_D(X) + 1.$$

Proof.

Take $\ell_i = \lceil -\log_D p_i \rceil$. Since

$$\sum_{i\in\mathcal{X}} D^{-\ell_i} \leq \sum p_i = 1,$$

these lengths satisfy Kraft inequality and we can create a prefix code. Thus, $L^* \leq \sum p_i \lceil -\log_D p_i \rceil$

$$f \leq \sum p_i |-\log_D p_i|$$

$$< \sum p_i (-\log_D p_i + 1)$$

$$= H_D(X) + 1.$$

Bound on the Optimal Code Length

Theorem 5.4.2

Consider a system in which we send a sequence of n symbols from X. The symbols are assumed to be i.i.d. according to p(x). The minimum expected codeword length per symbol satisfies

$$\frac{H(X_1, X_2, \dots, X_n)}{n} \leq L_n^* < \frac{H(X_1, X_2, \dots, X_n)}{n} + \frac{1}{n}.$$

Proof.

First,

$$L_n = \frac{1}{n} \sum p(x_1, x_2, \dots, x_n) \ell(x_1, x_2, \dots, x_n) = \frac{1}{n} E[\ell(X_1, X_2, \dots, X_n)]$$

We also have

$$H(X_1, X_2, \dots, X_n) \le E[\ell(X_1, X_2, \dots, X_n)] < H(X_1, X_2, \dots, X_n) + 1.$$

Since
$$X_1, X_2, ..., X_n$$
 are i.i.d., $H(X_1, X_2, ..., X_n) = nH(X)$.

Textbook

Related Sections: 5.3 - 5.5

