Vector Algebra

1 12^{th} Maths - Exercise 10.3.13

1. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, find the value of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{c} and \overrightarrow{c} are unit vectors such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , $\overrightarrow{c$

2 Solution

The given vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors

The magnitudes vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are

$$\|\overrightarrow{a}\| = \sqrt{1^2} = 1 \tag{1}$$

$$, \left\| \overrightarrow{b} \right\| = \sqrt{1^2} = 1 \tag{2}$$

$$\|\overrightarrow{c}\| = \sqrt{1^2} = 1 \tag{3}$$

The Given equation is $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$

$$\left\| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right\|^2 = 0^2 \tag{4}$$

$$\|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2 + \|\overrightarrow{c}\|^2 + 2(\overrightarrow{a}\overrightarrow{b} + \overrightarrow{b}\overrightarrow{c} + \overrightarrow{c}\overrightarrow{a}) = 0$$
 (5)

$$||1||^2 + ||1||^2 + ||1||^2 + 2(\overrightarrow{a}\overrightarrow{b} + \overrightarrow{b}\overrightarrow{c} + \overrightarrow{c}\overrightarrow{a}) = 0$$
 (6)

$$3 + 2(\overrightarrow{a}\overrightarrow{b} + \overrightarrow{b}\overrightarrow{c} + \overrightarrow{c}\overrightarrow{a}) = 0 \tag{7}$$

$$\overrightarrow{a}\overrightarrow{b} + \overrightarrow{b}\overrightarrow{c} + \overrightarrow{c}\overrightarrow{a} = \frac{-3}{2} \qquad (8)$$