Temperature dependence of biomass and ecosystem function depend on species interactions. Supplementary File 2: Phytoplankton and oxygen flux results in main text.

0.5. Temporal Results: Chlorophyll over time (8 weeks)


```
## Model selection table
##
       (Int) trp.lvl
                         wek trp.lvl:wek df
                                              logLik AICc delta weight
                                       + 8 -194.716 406.1 0.00 0.922
## CT2 2.542
                   + -0.1161
## CT3 2.819
                   + -0.1665
                                          6 -199.331 411.0 4.97 0.077
                     -0.1665
                                          4 -206.272 420.7 14.66 0.001
## CT4 2.409
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | Tank'
```

0.5. Temporal Results: Pp size over time (8 weeks)

0.5. Temporal Results: Chlorophyll over temperatures

1. Trophic Cascade Results (Figure 2 Main text)

1.1 Trophic cascade (TC) is defined as log(PZN/PZ) for Chlorophyll a

Histogram of TCchla\$TC

1.2 duplicate TC analysis with TCmb

"' $\{r, echo = FALSE\}$

$$\begin{split} & \text{TCmodb} < -\text{lme}(\text{TCMb} \sim \text{I}(\text{invTavg-mean}(\text{invTavg})) week, \ random = \sim 1/power \ + \ 1/week, \ data = TCvol, \\ & method = \text{``REML''}, \ na.action = na.omit) \ TCmodc < - \ lme(TCMb \sim I(\text{invTavg-mean}(\text{invTavg})) \text{week}, \ random \\ & = \sim 1|\text{power}, \ data = \text{TCvol}, \ method = \text{``REML''}, \ na.action = na.omit) \\ & \text{anova}(\text{TCmodc}, \ \text{TCmodb}) \end{split}$$

```
#* fixed effects model:
TCVmodb <- lme(TCMb ~ 1 + I(invTavg-mean(invTavg))*week, random = ~ 1|power, data=TCvol, method="ML", n
TCVmodc <- lme(TCMb ~ 1 + I(invTavg-mean(invTavg)) + week, random = ~ 1|power, data=TCvol, method="ML",
TCVmodd <- lme(TCMb ~ 1 + I(invTavg-mean(invTavg)), random = ~ 1|power, data=TCvol, method="ML", na.act
TCVmode <- lme(TCMb ~ 1 + week, random = ~ 1|power, data=TCvol, method="ML", na.action=na.omit)
TCVmodf <- lme(TCMb ~ 1 + week, random = ~ 1|power, data=TCvol, method="ML", na.action=na.omit)</pre>
```

1.1.2 Use nlme to compare fixed and ranefs

Table S2. 1: Model selection results for Trophic Cascade strength (Chl a) for linear mixed effects model

TCVres <- data.frame(model.sel(TCVmodb, TCVmodc, TCVmodd, TCVmode, TCVmodf))

	Int	Т	Wk	T*Wk	df	logLik	AICc	d	w
TCmodb	0.18	0.03	0.13	-0.13	6	-73.17	159.50	0.00	0.749796131
TCmodc	-0.02	-0.82	0.15	NA	5	-75.55	161.91	2.41	0.224356212
TCmode	0.57	NA	0.05	NA	4	-79.67	167.88	8.39	0.011316356
TCmodf	0.57	NA	0.05	NA	4	-79.67	167.88	8.39	0.011316356
TCmodd	0.83	0.00	NA	NA	4	-80.93	170.40	10.90	0.003214947

Summary of best model: trophic cascade strength

```
## Linear mixed-effects model fit by maximum likelihood
   Data: TCchla
         AIC
##
                  BIC
                         logLik
     158.345 172.6371 -73.17248
##
##
## Random effects:
   Formula: ~1 | power
##
           (Intercept) Residual
## StdDev:
             0.1498711 0.5883612
##
## Fixed effects: TC ~ 1 + I(invTavg - mean(invTavg)) * week
##
                                        Value Std.Error DF
                                                             t-value p-value
## (Intercept)
                                    0.1800156 0.2347745 67
                                                            0.766760 0.4459
## I(invTavg - mean(invTavg))
                                    0.0312063 0.4087578 67 0.076344
                                                                      0.9394
                                    0.1334953 0.0379404 67 3.518551 0.0008
## I(invTavg - mean(invTavg)):week -0.1257280 0.0572430 67 -2.196390 0.0315
## Correlation:
##
                                   (Intr) I(nT-m(T)) week
## I(invTavg - mean(invTavg))
                                    0.530
                                   -0.920 -0.424
## I(invTavg - mean(invTavg)):week -0.335 -0.906
                                                      0.187
## Standardized Within-Group Residuals:
                        Q1
                                   Med
## -2.21341355 -0.48187644 -0.06052218 0.43164327
## Number of Observations: 80
```

```
## Number of Groups: 10
## Approximate 95% confidence intervals
##
   Fixed effects:
##
##
                                         lower
                                                      est.
                                                                 upper
## (Intercept)
                                   -0.27673063 0.1800157 0.63676193
## I(invTavg - mean(invTavg))
                                   -0.76401909 0.0312063 0.82643170
                                    0.05968344 0.1334953
                                                           0.20730721
## I(invTavg - mean(invTavg)):week -0.23709240 -0.1257280 -0.01436351
## attr(,"label")
  [1] "Fixed effects:"
##
    Random Effects:
##
##
    Level: power
##
                        lower
                                   est.
## sd((Intercept)) 0.02252525 0.1498711 0.9971638
##
##
    Within-group standard error:
##
       lower
                           upper
                  est.
## 0.4932259 0.5883612 0.7018465
```

Figure S2. 2: Trophic Cascade strength by temperature and week

1.2. Strength of trophic cascade on NPP2

Histogram of TCNPP\$TC

2.1 Phytoplankton abundance (for Figure 3, Table 2 main text)

Figure S2. 3: Chlorophyll a concentration

Histogram of data\$chla

Histogram of log(data\$chla)

2.1.1 Phytoplankton abundance candidate models

Table S2. 2: Model selection results for Phytoplankton (Chl a) for linear mixed effects model

	Int	TL	Tw	Tt	Tw*Tt	Tw*TL	Tt*TL	df	logLik	AICc	d	W
modPB8	2.05	+	-0.66	1.30	NA	+	+	11	-162.86	348.87	0.00	9.528594 e - 01
modPB7	2.05	+	-0.96	1.30	NA	NA	+	9	-168.05	354.89	6.02	4.701760e-02
modPBF	2.14	+	-0.52	2.16	1.34	+	NA	10	-172.91	366.78	17.91	1.229740e-04
modPB4	1.50	NA	-0.96	1.70	0.96	NA	NA	6	-207.94	428.24	79.37	5.540632e-18
modPB6	1.91	+	-0.66	NA	NA	+	NA	8	-206.58	429.79	80.92	2.557698e-18
modPB3	1.50	NA	-0.96	1.71	NA	NA	NA	5	-211.73	433.72	84.85	3.574194e-19
modPB5	1.91	+	-0.96	NA	NA	NA	NA	6	-211.45	435.26	86.39	1.655581e-19
modPB2	1.50	NA	-0.96	NA	NA	NA	NA	4	-218.40	444.97	96.10	1.288997e-21
modPB1	1.90	+	NA	NA	NA	NA	NA	5	-257.21	524.68	175.81	6.335854e-39
modPB0	1.49	NA	NA	NA	NA	NA	NA	3	-264.15	534.41	185.54	4.894727e-41

Table S2. 3: Parameter estimates from model PB8 (Table S2.1) for Phytoplankton (Chl a) for linear mixed effects model

Ea	lower	upper
1.30	0.84	1.76
3.15	2.76	3.54
1.65	1.19	2.10
	1.30 3.15	1.30 0.84 3.15 2.76

2.1.1b Phytoplankton metabolic biomass candidate models

2.2 Net ecosystem oxygen production

Histogram of data1\$NPP2 Histogram of log(data1\$NPP2

Table S2. 4: Model selection results for Net Ecosystem Oxygen Production, with 1|Tank as a random effect. Model terms are: intercept (Int), trophic treatment (TL), Temperature - weekly average (Tw), temperature - expt average (Tt), interaction terms and statistical estimates

	Int	TL	Tw	Tt	Tw*Tt	Tw*TL	Tt*TL	df	logLik	AICc	d	W
$\overline{\mathrm{modNPP8}}$	-6.42	+	0.29	-1.40	NA	+	+	11	-266.47	556.21	0.00	3.878747e-01
$\operatorname{modNPPF}$	-6.42	+	0.37	-1.42	0.84	+	+	12	-265.54	556.60	0.39	3.192963e-01
modNPP7	-6.41	+	0.03	-1.39	NA	NA	+	9	-269.68	558.22	2.01	1.421535 e-01
modNPP3	-6.15	NA	0.02	-0.96	NA	NA	NA	5	-274.36	559.01	2.80	9.557409 e-02
modNPP4	-6.15	NA	0.02	-0.96	0.61	NA	NA	6	-273.86	560.12	3.91	5.487563e- 02
modNPP0	-6.15	NA	NA	NA	NA	NA	NA	3	-283.15	572.41	16.20	1.179389e-04
modNPP2	-6.15	NA	0.03	NA	NA	NA	NA	4	-283.13	574.44	18.23	4.265400 e - 05
modNPP1	-6.26	+	NA	NA	NA	NA	NA	5	-282.25	574.78	18.57	3.596974 e - 05
modNPP6	-6.26	+	0.27	NA	NA	+	NA	8	-279.83	576.34	20.13	$1.647426 \mathrm{e}\text{-}05$
modNPP5	-6.26	+	0.03	NA	NA	NA	NA	6	-282.23	576.85	20.64	1.278556e-05

NPP Coefficients

Table S2. 5: Parameter estimates from model NPP8 (Table S2.3) for Net Ecosystem Oxygen Productivity (NEP) for linear mixed effects model (For MS Figure 3)

	Ea	lower	upper
P	-1.41	-2.24	-0.58
PZ	-1.21	-2.36	-0.07
PZN	-0.99	-2.10	0.12

2.2 Net ecosystem oxygen consumption (ER)

Histogram of data\$ER2

Histogram of log(data\$ER2)

Table S2. 6: Model selection results for Net Ecosystem Respiration, with 1|Tank as a random effect. Model terms are: intercept (Int), trophic treatment (TL), Temperature - weekly average (Tw), temperature - expt average (Tt), interaction terms and statistical estimates

•	Int	TL	Tw	Tt	Tw*Tt	Tw*TL	Tt*TL	df	logLik	AICc	d	W
$\overline{\mathrm{modER7}}$	-6.09	+	0.11	-1.32	NA	NA	+	9	-185.88	390.54	0.00	6.849070e-01
modER8	-6.09	+	0.02	-1.32	NA	+	+	11	-184.58	392.31	1.77	2.824415 e-01
modERF	-6.04	+	0.06	-0.85	0.43	+	NA	10	-187.83	396.63	6.09	3.262787e-02
modER3	-5.79	NA	0.11	-0.67	NA	NA	NA	5	-201.37	413.00	22.46	9.087033e-06
modER4	-5.79	NA	0.11	-0.68	0.50	NA	NA	6	-200.45	413.27	22.73	7.947617e-06
modER1	-5.94	+	NA	NA	NA	NA	NA	5	-202.46	415.18	24.64	3.058608e-06
modER5	-5.94	+	0.11	NA	NA	NA	NA	6	-201.75	415.85	25.31	2.182667e-06
modER6	-5.94	+	0.02	NA	NA	+	NA	8	-200.49	417.60	27.06	9.127731e-07
modER0	-5.79	NA	NA	NA	NA	NA	NA	3	-207.04	420.17	29.63	2.518649 e-07
modER2	-5.79	NA	0.11	NA	NA	NA	NA	4	-206.32	420.82	30.28	1.825257 e-07

ER coefficients

Table S2. 7: Confidence intervals for model ER7 (Table S2.5) (For MS Figure 3

	Ea	lower	upper
P	-1.3150573	-1.8189019	-0.8112127
PZ	-0.9065681	-1.3325385	-0.4805977
PZN	-0.3177815	-0.8197504	0.1841874

Figure 3 (Full)

Figure S2. 5: Manuscript figure 3: Effects of temperature on oxygen flux and phytoplankton standing stock

##