

Implementing Finite Element Methods Using Firedrake

November 2024

What is Firedrake?

► Firedrake is an automated system for solving PDEs using finite element methods (FEM).

What is Firedrake?

- ► Firedrake is an automated system for solving PDEs using finite element methods (FEM).
- ► Firedrake allows high level specification of finite element problems through code that looks like maths.

- ► Firedrake is an automated system for solving PDEs using finite element methods (FEM).
- ► Firedrake allows high level specification of finite element problems through code that looks like maths.
- ▶ These automatically translated by the system into high performance compiled code.

- ► Firedrake is an automated system for solving PDEs using finite element methods (FEM).
- ► Firedrake allows high level specification of finite element problems through code that looks like maths.
- ▶ These automatically translated by the system into high performance compiled code.
- Advanced and customizable solvers enabled by seamless integration with PETSc.

Solving a PDE using FEMs

► Consider the following problem

$$-\Delta u + u = f$$
, in $\Omega \subset (0,1)^2$,
 $\nabla u \cdot \vec{n} = 0$, on $\partial \Omega$,

where \vec{n} is the outward unit normal to the boundary $\partial\Omega$

▶ Write the PDE in its variational form.

- ▶ Write the PDE in its variational form.
- \triangleright I.e, multiplying by a test function v and integrating by parts over the domain.

- Write the PDE in its variational form.
- \triangleright I.e, multiplying by a test function ν and integrating by parts over the domain.
- ▶ We find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v - \underbrace{\int_{\partial \Omega} v \nabla u \cdot \vec{n}}_{=0, \text{ by BCs}} + \int_{\Omega} u v = \int_{\Omega} f v, \quad \forall v \in H^1(\Omega),$$

Discretising the domain Ω

Firedrake can build many standard meshes, including UnitSquareMesh.

For complicated geometries, one can use mesh generators such as Gmsh.

The discrete level

Given $V_h \subset H^1_0(\Omega)$ a finite-dimensional space. At the discrete level, we solve for

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h + \int_{\Omega} u_h v_h = \int_{\Omega} f v_h, \quad \forall v_h \in V_h \subset H^1(\Omega),$$

Nodal basis functions (Lagrange elements)

Figure: The Lagrange triangle for $q=\{1,2,3,4,5,6\}$

Nodal Basis

Given the location of N degrees of freedoms x_i , $i=0,\ 1,\ 2,\ ...,\ N-1$. the associated nodal basis function ϕ satisfies

$$\phi_i(x_j) = \delta_{ij}$$

where δ_{ij} is the Kronecker delta.

Linear Lagrange basis functions

At vertices
$$p_1 = (0,0), p_2 = (0,1), p_3 = (1,0),$$
 we have

$$\phi_1 = 1 - x - y$$
, $\phi_2 = y$, $\phi_3 = x$.

Linear algebraic formulation

- ightharpoonup Let $V_h = \operatorname{Span}\{\phi_1, \phi_2, \dots, \phi_n\},\$
- \triangleright u_h can be expanded as

$$u_h = \sum_{i=1}^N U_j \phi_j, \quad v_h = \phi_i.$$

Thus, we solve for U_i such that

$$\sum_{i} a(\phi_{j}, \phi_{i}) U_{j} = F(\phi_{i}),$$

where

$$a(\phi_j, \phi_i) = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i + \phi_j \phi_i$$
 $F(\phi_j) = \int_{\Omega} f \phi_i.$

Firedrake implementation


```
from firedrake import *
# Constuct 50 by 50 square mesh
mesh = UnitSquareMesh(50, 50)
# Piecewise continuous linear polynomials.
V = FunctionSpace(mesh, "CG", 1)
# The trial and Test functions.
u = TrialFunction(V)
v = TestFunction(V)
```


Firedrake implementation continued


```
#The right hand side
f = Function(V)
x, y = SpatialCoordinate(mesh)
f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2))
# The bilinear and linear forms
a = (inner(grad(u), grad(v)) + inner(u, v)) * dx
 = inner(f, v) * dx
#Define a function that holds the solution.
u = Function(V)
```

Firedrake implementation continued


```
# How to solver the linear system. LU factorisation!
sp={'ksp_type': 'preonly', 'pc_type': 'lu'}

# Solve
solve(a == L, u, solver_parameters=sp)
```


Strong PDE

Strong PDE Pen and paper

Strong PDE Pen and paper Variational form

Advection equation

Governing PDE

Consider the problem

$$abla \cdot ({m b} u) = 0, \quad \text{in } \Omega \subset [0,5] \times [10^{-3},60], \\ + \text{BCs} \quad \text{on } \partial \Omega$$

Here **b** determines the advection direction, taken to be $\mathbf{b} = \begin{bmatrix} 1, & \frac{-1}{c\sqrt[4]{y^3}} \end{bmatrix}$ and c is a constant.

▶ This problem can be written in the variational form as

$$-\int_{\Omega}(oldsymbol{b}u)\cdot
abla v+\int_{\partial\Omega}v(oldsymbol{b}u)\cdotec{n}$$

Advection solution

Double Slit Experiment

A YouTuber asked people on the street: "What is light?" Here's how they responded:

- Light is brightness, I guess.
- ► We have auras, which are light!
- Lights up the room, it makes it not dark!
- ▶ It goes in your eyes and then you see stuff.

This is not an easy question!

- ▶ In the late 1600s, Newton proposed light was a stream of particles.
- Huygens proposed that light was a wave.
- ▶ This debate was settled by the Thomas Young's double slit experiment.

Figure: Thomas Young's handwritten notes from 1803.

- Particles go through each slit and produce two spots underneath.
- ▶ A wave from one slit interacts with waves from others slits.
- ► If the peak of one wave meets up with the bottom from the other, we get destructive interference (no waves).

Youtube channels citations

Looking Glass Universe

@LookingGlassUniverse · 328K subscribers · 85 videos

My name is Mithuna Yoganathan and I did my PhD in theoretical physics at the University ...more

Veritasium •

@veritasium * 16.5M subscribers - 413 videos An element of truth - videos about science, edu

anatoms.com and 5 more links Subscribe

The Royal Institution •

Explosive short films, full length talks from the world's leading scientists and writers, and whose right on journal of the control of the co

Governing PDEs

► Consider the Wave equation of the form

$$u_{tt} - \Delta u = 0$$
, in Ω suitable BCs on $\partial \Omega$

► Finite element methods are used to discretise in space, and explicit-Euler to discretise the time coordinate.

Flow Past a Cylinder

► How does fluid flow around a cylinder?

- ► How does fluid flow around a cylinder?
- ▶ This depends on the cylinder size, the inflow velocity, viscosity of the fluid.

- ► How does fluid flow around a cylinder?
- ▶ This depends on the cylinder size, the inflow velocity, viscosity of the fluid.
- ▶ These three components form what is called "Reynold number".

- How does fluid flow around a cylinder?
- ▶ This depends on the cylinder size, the inflow velocity, viscosity of the fluid.
- ▶ These three components form what is called "Reynold number".
- ▶ At a large Reynold number, the fluid becomes unstable and vortex shedding occur.

- ► How does fluid flow around a cylinder?
- ► This depends on the cylinder size, the inflow velocity, viscosity of the fluid.
- ▶ These three components form what is called "Reynold number".
- ▶ At a large Reynold number, the fluid becomes unstable and vortex shedding occur.
- ▶ This pattern called the Von Carman Vortex street.

Vortex shedding modelling

Consider the following Navier-Stokes problem,

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \text{ in } \Omega,$$
$$\nabla \cdot \boldsymbol{u} = 0 \text{ in } \Omega,$$
$$+ BCs$$

where f is a source function, \boldsymbol{u} is the fluid velocity, p is its pressure, and ν is the viscosity constant.

Thank You!

