Project Theta Progress Report

Brian Qiu, Benjamin Hsieh, Siyao Chang, Boying Gong, Jiang Zhu

November 12, 2015

Background

The Paper

- Neural Basis of Loss Aversion in Decision-Making Under Risk
- ► Decisions influenced more by potential loss than by potential gain?

Paper Purpose

- Investigate whether potential loss/gain coded the same neurally
- ▶ Brain activation results in different regions points towards yes

The Data

- ▶ 16 subjects, 3 runs, 256 unique combinations total
- Behavioral data, BOLD data

Initial Analysis

-Basic preprocessing so far: identify dvars (RMS of signal derivative) and fd

Initial work

EDA

- downloaded data
- simple plots, summary statistics

Plan

Models and analysis

Behavioral analysis

Logistic regression model on the behavioral data:

$$logit(Y_{resp}) = \beta_0 + \beta_{loss} * X_{loss} + \beta_{gain} * X_{gain} + \epsilon$$
 (1)

Calculate the the behavioral loss aversion:

$$\lambda = -\beta_{loss}/\beta_{gain} \tag{2}$$

Models and analysis (Continued)

Linear Regression on BOLD data

For each voxel i, we fit a multiple linear model:

$$Y_i = \beta_{i,0} + \beta_{i,loss} * X_{loss} + \beta_{i,gain} * X_{gain} + \epsilon_i$$
 (3)

For each voxel, we calculate the neural loss aversion η_i :

$$\eta_i = (-\beta_{loss}) - \beta_{gain} \tag{4}$$

Models and analysis (Continued)

 Whole brain analysis of correlation between neural activity and behavioral response across participants

Examine the relationship between neural activity and behavioral using the following regression model:

$$\lambda = \alpha_0 + \alpha_1 * \eta + \epsilon \tag{5}$$

Models and analysis (Continued)

- Inferences on Data
- 1. Test the normal assumption of residuals in linear models
- 2. Test of significance of coefficients
- 3. Calculate the (adjusted) R squares.

Explanation on model simplification

Use of Data

Leave out the regressor euclidean distance to indifference

Simplification of regression on BOLD data

Perform simple linear models rather than mixed effect models

Issues with analyses and potential solutions

- ► Selecting specific regions to further explore correlation between neural and behavioral activity
- 1. Further research on brain
- Look for regions with most significant neural loss aversion and regression coefficients
- Producing heat map

Need to map bold data onto standard brain

Our Process

Hardest part of process?

- Working with the FMRI data and trying to understand our paper
- Keeping up with documentation

Success in overcoming these obstacles?

- Using git workflows to raise issue and problems for the group.
- ▶ Limited success in the FMRI part, still figuring things out.

Issues facing the team?

- Debugging each other's code when travis CI fails in a pull request
- ► Addressing this by meeting up for teamwork or ask for help
- Most helpful?
 - Python/numpy, lab sections with git workflows
- Most confusing?
 - ► FMRI analysis

What do you need to do to successfully complete the project?

- Have a clear idea of what we can get done
- ▶ Make work as reproducible as possible

Diffuculty in reproducibility?

- Very frustrating if Travis fails on a pull request
- Remembering to write documentation in the scripts
- ► Test functions for plotting functions are hard to write/assert
- With a lot of work we may be able to get most of it reproducible

Remaining weeks:

- Could cover:
 - ► Software tools like statmodels, make and toolkits that are frequently used in fMRI research
 - ▶ More regression: linear and logistic