Topologie des espaces vectoriels normés

Dans tout le chapitre, E est un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

I. Ouverts et fermés

I.1. Parties ouvertes

Définition. Soient $a \in E$ et $V \subset E$. On dit que V est un voisinage de a s'il existe $r \in \mathbb{R}^*_+$ tel que la boule ouverte B(a,r) soit incluse dans V.

On dit qu'une partie Ω de E est un **ouvert** si c'est un voisinage de chacun de ses points, c'est-à-dire si $\forall a \in \Omega \ \exists r \in \mathbb{R}_+^* \ B(a,r) \subset \Omega$.

L'ensemble E lui-même, \emptyset , et toutes les boules ouvertes, sont des ouverts.

Proposition I.1. Si $(\Omega_1, \Omega_2, \dots, \Omega_n)$ est une famille finie d'ouverts de E, alors $\bigcap_{k=1}^n \Omega_k$ est un ouvert.

 $Si(\Omega_i)_{i\in I}$ est une famille **quelconque** d'ouverts de E, alors $\bigcup_{i\in I} \Omega_i$ est un ouvert.

Proposition I.2. Si deux normes sur E sont équivalentes, alors elles définissent les mêmes ouverts.

I.2. Parties fermées

Définition. On dit qu'une partie F de E est **fermée** si son complémentaire $E \setminus F$ est ouvert.

L'ensemble E lui-même, \varnothing , les singletons, et toutes les boules fermées, sont des fermés.

Proposition I.3. Si $(F_i)_{i\in I}$ est une famille quelconque de fermés de E, alors $\bigcap_{i\in I} F_i$ est un fermé.

 $Si(F_1, F_2, ..., F_n)$ est une famille **finie** de fermés de E, alors $\bigcup_{k=1}^n F_k$ est un fermé.

Proposition I.4. Soit F une partie de E. Il y a équivalence entre les deux propriétés :

- i. F est fermée;
- ii. pour toute suite convergente (u_n) d'éléments de F, on a $\lim u_n \in F$.

 $Autrement\ dit,\ F\ est\ ferm\'ee\ si\ et\ seulement\ si\ elle\ contient\ tous\ ses\ points\ adh\'erents.$

Proposition I.5. Si F est un fermé de \mathbb{R} qui admet une borne supérieure (respectivement inférieure), alors $\sup F \in F$ (respectivement $\inf F \in F$).

I.3. Intérieur, adhérence

Définition. Soient $a \in E$ et $A \subset E$. On dit que a est un **point intérieur** à A s'il existe $r \in \mathbb{R}_+^*$ tel que $B(a,r) \subset A$, c'est-à-dire si A est un voisinage de a.

L'ensemble des points intérieurs à A est appelé intérieur de A et noté Å.

Proposition I.6. Soit $A \subset E$. Alors

- \circ \mathring{A} est un ouvert inclus dans A;
- \circ si Ω est un ouvert inclus dans A, alors Ω est inclus dans \mathring{A} .

L'intérieur de A est donc, au sens de l'inclusion, le plus grand ouvert inclus dans A.

Définition. Soient $a \in E$ et $A \subset E$. On dit que a est **adhérent** à A si, pour tout $r \in \mathbb{R}_+^*$, la boule ouverte B(a,r) contient au moins un point de A.

L'ensemble des points adhérents à A est appelé adhérence de A et noté \overline{A} .

Proposition I.7. Un point a est adhérent à une partie A si et seulement si il existe une suite d'éléments de A qui converge vers a.

Proposition I.8. Soit $A \subset E$. Alors

- $\circ \overline{A}$ est un fermé qui contient A;
- \circ si F est un fermé qui contient A, alors F contient \overline{A} .

L'adhérence de A est donc, au sens de l'inclusion, le plus petit fermé contenant A.

Proposition I.9. Une partie A de E est ouverte si et seulement si $\mathring{A} = A$; elle est fermée si et seulement si $\overline{A} = A$.

Définition. On appelle frontière d'une partie A de E l'ensemble $\overline{A} \setminus \mathring{A}$; c'est aussi $\overline{A} \cap \overline{(E \setminus A)}$.

I.4. Parties denses

Définition. Une partie D de E est dite **dense** dans E si $\overline{D} = E$; cela équivaut à dire que tout élément de E est limite d'une suite d'éléments de D.

Proposition I.10. Si deux fonctions sont continues sur E et sont égales sur une partie dense dans E, alors elles sont égales sur E.

II. Topologie et continuité

II.1. Topologie induite

Définition. Soit $A \subset E$. On dit qu'une partie Ω (respectivement F) de A est un ouvert relatif (respectivement fermé relatif) de A s'il existe un ouvert Ω_1 de E tel que $\Omega = A \cap \Omega_1$ (respectivement un fermé F_1 de E tel que $F = A \cap F_1$).

Proposition II.1. Une partie Ω de A est un ouvert relatif de A si et seulement si, pour tout $a \in \Omega$, il existe $r \in \mathbb{R}_+^*$ tel que $B(a,r) \cap A \subset \Omega$.

Une partie F de A est un fermé relatif de A si et seulement si tous les points de A adhérents à F, appartiennent à F.

Proposition II.2. Les résultats sur union et intersection d'ouverts ou de fermés restent valables pour des ouverts ou fermés relatifs de A.

II.2. Parties ouvertes et continuité

Théorème II.3. Soit $A \subset E$; soit f une application de A dans un espace vectoriel normé F, continue sur A. Soit B une partie de F. Si B est un ouvert (respectivement un fermé) de F, alors $f^{-1}(B)$ est un ouvert relatif (respectivement fermé relatif) de A.

III. Parties compactes

III.1. Généralités

Définition. Soit $K \subset E$. On dit que K est une partie **compacte**, ou est un **compact**, si toute suite d'éléments de K admet une valeur d'adhérence dans K.

Proposition III.1. Si une partie est compacte, alors elle est fermée et bornée.

Proposition III.2. Si une suite d'éléments d'un compact a une seule valeur d'adhérence, alors cette suite converge.

Proposition III.3. Toute partie fermée d'un compact est compacte.

III.2. Compacts en dimension finie

Théorème III.4. De toute suite bornée de \mathbb{R}^n ou \mathbb{C}^n , on peut extraire une suite convergente.

Théorème III.5. Si E est un espace de dimension finie, alors les compacts de E sont exactement les parties fermées et bornées.

Proposition III.6. Dans un espace E quelconque, tout sous-espace de dimension finie est fermé.

III.3. Continuité et parties compactes

Théorème III.7. L'image d'un compact par une application continue, est un compact.

Théorème III.8. Une fonction continue sur un compact K à valeurs réelles, est bornée sur K et atteint ses bornes.

Théorème III.9. Si une application est continue sur un compact, alors elle est uniformément continue sur ce compact.

III.4. Équivalence des normes en dimension finie

Théorème III.10. Dans un espace de dimension finie, toutes les normes sont équivalentes entre elles.

III.5. Produits de compacts

Proposition III.11. Si A et B sont des parties compactes de E et F respectivement, alors $A \times B$ est une partie compacte de l'espace produit $E \times F$.

IV. Connexité par arcs

IV.1. Définition

Définition. Soit $(a,b) \in E^2$. On appelle **chemin** de a à b toute application f de [0,1] dans E, continue sur [0,1], vérifiant f(0) = a et f(1) = b.

Une partie C de E est dite **connexe par arcs** si, pour tout $(a,b) \in C^2$, il existe un chemin f de a à b vérifiant $\forall t \in [0,1]$ $f(t) \in C$.

Proposition IV.1. Toute partie convexe est connexe par arcs.

Proposition IV.2. Les parties connexes par arcs de \mathbb{R} sont les intervalles.

IV.2. Continuité et connexité

Théorème IV.3. L'image d'un connexe par arcs par une application continue, est connexe par arcs.

Proposition IV.4. Soit C une partie connexe par arcs de E, et f une application continue sur C, à valeurs dans \mathbb{R} . Alors, f vérifie la propriété des valeurs intermédiaires : si a et b sont dans f(C), alors tout l'intervalle borné par a et b est inclus dans f(C).

IV.3. Composante connexe par arcs

Soit $A \subset E$. On définit une relation \sim_A sur A par : si $(a,b) \in A^2$, $a \sim_A b$ si et seulement si il existe un chemin de a à b qui ne sort pas de A; c'est-à-dire une application continue de [0,1] dans E telle que f(0)=a, f(1)=b et $f(t) \in A$ pour tout $t \in [0,1]$.

Proposition IV.5. La relation \sim_A est une relation d'équivalence.

Définition. Les classe d'équivalence de la relation \sim_A sont appelées les composantes connexes par arcs de A.

La composante connexe par arcs d'un élément a de A, est donc l'ensemble des $b \in A$ que l'on peut atteindre à partir de a par un chemin qui ne sort pas de A.

V. Séries dans un espace de dimension finie

Dans toute cette partie, E est un espace de dimension finie.

V.1. Convergence

Définition. Soit (u_n) une suite de vecteurs de E; pour tout $n \in \mathbb{N}$, posons $S_n = \sum_{k=0}^n u_k$. On dit que la série $\sum u_n$ converge si la suite (S_n) converge. Dans ce cas, le vecteur S limite de la suite (S_n) est appelé la somme de la série, et noté $\sum_{k=0}^{+\infty} u_k$; et, pour tout n, le vecteur $R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k$ est appelé **reste** de rang n de la série.

Proposition V.1. Si la série $\sum u_n$ converge, alors la suite (u_n) a pour limite 0_E .

Proposition V.2. La suite de vecteurs (u_n) converge, si et seulement si la série $\sum (u_{n+1} - u_n)$ converge. Dans ce cas, en notant ℓ la limite de la suite, on a pour tout n: $\ell - u_n = \sum_{k=n}^{+\infty} (u_{k+1} - u_k)$.

V.2. Convergence absolue

Définition. Soit (u_n) une suite de vecteurs de E. On dit que la série $\sum u_n$ converge **absolument** si la série à **termes réels** $\sum ||u_n||$ converge.

Théorème V.3. Soit (u_n) une suite de vecteurs de E. Si la série $\sum u_n$ converge absolument, alors elle converge; et dans ce cas $\left\|\sum_{k=0}^{+\infty} u_k\right\| \leqslant \sum_{k=0}^{+\infty} \|u_k\|$.

V.3. Série géométrique dans $\mathcal{M}_n(\mathbb{K})$

Définition. On dit qu'une norme $\| \|$ sur $\mathcal{M}_n(\mathbb{K})$ est une **norme d'algèbre** si $\|AB\| \leq \|A\| \|B\|$ pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

Théorème V.4. Soient $\| \|$ une norme d'algèbre sur $\mathcal{M}_n(\mathbb{K})$ et $A \in \mathcal{M}_n(\mathbb{K})$. Si $\|A\| < 1$, alors $I_n - A$ est inversible, la série $\sum A^k$ converge absolument, et $\sum_{k=0}^{+\infty} A^k = (I_n - A)^{-1}$.

V.4. Série exponentielle

V.4.1. Dans \mathbb{C}

Proposition V.5. Pour tout $z \in \mathbb{C}$, la série $\sum \frac{z^k}{k!}$ converge absolument.

Définition. Pour tout $z \in \mathbb{C}$, on pose $\exp(z) = e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}$.

Proposition V.6. Pour tout $(a,b) \in \mathbb{C}^2$, $e^{a+b} = e^a e^b$.

V.4.2. Dans $\mathcal{M}_n(\mathbb{K})$

Théorème V.7. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, la série $\sum \frac{A^k}{k!}$ converge absolument.

Définition. Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, on pose $\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$.

Proposition V.8. Si $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, alors $\exp(A) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$.

Proposition V.9. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$. Alors $\exp(P^{-1}AP) = P^{-1}\exp(A)P$.