

Optimization-Based Meta-Learning

ximingxing@gmail.com

Introduction

Deep learning models learn through backpropagation of gradients. However, the gradient-based optimization is neither designed to cope with a small number of training samples, nor to converge within a small number of optimization steps.

Is there a way to adjust the optimization algorithm so that the model can be good at learning with a few examples?

This is what optimization-based approach meta-learning algorithms intend for.

Background

"What if we directly optimized for an initial representation that can be effectively fine-tuned from a small number of examples?"

--- from author of MAML

This is exactly the idea behind our recently-proposed algorithm, model-agnostic meta-learning (MAML).

MAML: Model-Agnostic Meta-Learning

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$

9: end while

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

MAML: Model-Agnostic Meta-Learning

LEO: Latent Embedding Optimization

Figure 1: High-level intuition for LEO. While MAML operates directly in a high dimensional parameter space Θ , LEO performs meta-learning within a low-dimensional latent space \mathcal{Z} , from which the parameters are generated.

Figure 2: Overview of the architecture of LEO.

LEO: Latent Embedding Optimization

Algorithm 1 Latent Embedding Optimization

```
Require: Training meta-set S^{tr} \in T
Require: Learning rates \alpha, \eta
  1: Randomly initialize \phi_e, \phi_r, \phi_d
  2: Let \phi = \{\phi_e, \phi_r, \phi_d, \alpha\}
  3: while not converged do
            for number of tasks in batch do
                 Sample task instance \mathcal{T}_i \sim \mathcal{S}^{tr}
  5:
                Let (\mathcal{D}^{tr}, \mathcal{D}^{val}) = \mathcal{T}_i
  6:
                Encode \mathcal{D}^{tr} to \mathbf{z} using g_{\phi_e} and g_{\phi_r}
  8:
                 Decode z to initial params \theta_i using g_{\phi_d}
                 Initialize \mathbf{z}' = \mathbf{z}, \theta_i' = \theta_i
                for number of adaptation steps do
10:
11:
                     Compute training loss \mathcal{L}_{T_i}^{tr}(f_{\theta_i'})
12:
                     Perform gradient step w.r.t. z':
                     \mathbf{z}' \leftarrow \mathbf{z}' - \alpha \nabla_{\mathbf{z}'} \mathcal{L}_{\mathcal{T}_i}^{tr}(f_{\theta_i'})
                     Decode \mathbf{z}' to obtain \theta'_i using g_{\phi_i}
13:
14:
                end for
                Compute validation loss \mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta'_i})
15:
16:
            end for
17:
            Perform gradient step w.r.t \phi:
            \phi \leftarrow \phi - \eta \nabla_{\phi} \sum_{\mathcal{T}_i} \mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta_i'})
18: end while
```


Figure 2: Overview of the architecture of LEO.

Compare

Algorithm 1 Latent Embedding Optimization

```
Require: Training meta-set \mathcal{S}^{tr} \in \mathcal{T}
Require: Learning rates \alpha, \eta
  1: Randomly initialize \phi_e, \phi_r, \phi_d
  2: Let \phi = \{\phi_e, \phi_r, \phi_d, \alpha\}
  3: while not converged do
            for number of tasks in batch do
  5:
                 Sample task instance \mathcal{T}_i \sim \mathcal{S}^{tr}
                Let (\mathcal{D}^{tr}, \mathcal{D}^{val}) = \mathcal{T}_i
  6:
                Encode \mathcal{D}^{tr} to z using g_{\phi_e} and g_{\phi_r}
  8:
                Decode z to initial params \theta_i using g_{\phi_d}
                Initialize \mathbf{z}' = \mathbf{z}, \theta'_i = \theta_i
10:
                for number of adaptation steps do
                     Compute training loss \mathcal{L}_{T_i}^{tr}(f_{\theta_i'})
11:
12:
                     Perform gradient step w.r.t. z':
                     \mathbf{z}' \leftarrow \mathbf{z}' - \alpha \nabla_{\mathbf{z}'} \mathcal{L}_{\mathcal{T}_i}^{tr}(f_{\theta'_i})
                     Decode \mathbf{z}' to obtain \theta'_i using g_{\phi_d}
13:
14:
                end for
                Compute validation loss \mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta_i'})
15:
16:
            end for
17:
            Perform gradient step w.r.t \phi:
            \phi \leftarrow \phi - \eta \nabla_{\phi} \sum_{\mathcal{T}_i} \mathcal{L}_{\mathcal{T}_i}^{val}(f_{\theta_i'})
18: end while
```

Algorithm 2 MAML for Few-Shot Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
 2: while not done do
            Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
 3:
 4:
            for all \mathcal{T}_i do
                 Sample K datapoints \mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i
                 Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_i} in Equation (2)
 6:
                 or (3)
                 Compute adapted parameters with gradient descent:
                 \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                 Sample datapoints \mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i for the
 8:
                 meta-update
 9:
            end for
            Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) using each \mathcal{D}_i'
10:
```

and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

Experiments

Model	miniImageNet	t test accuracy 5-shot
Matching networks (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$
Meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$
MAML (Finn et al., 2017)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$
LLAMA (Grant et al., 2018)	$49.40 \pm 1.83\%$	- CF 00 0 F007
REPTILE (Nichol & Schulman, 2018)	$49.97 \pm 0.32\%$	$65.99 \pm 0.58\%$
PLATIPUS (Finn et al., 2018)	$50.13 \pm 1.86\%$	-
Meta-SGD (our features)	$54.24 \pm 0.03\%$	$70.86 \pm 0.04\%$
SNAIL (Mishra et al., 2018)	$55.71 \pm 0.99\%$	$68.88 \pm 0.92\%$
(Gidaris & Komodakis, 2018)	$56.20 \pm 0.86\%$	$73.00 \pm 0.64\%$
(Bauer et al., 2017)	$56.30 \pm 0.40\%$	$73.90 \pm 0.30\%$
(Munkhdalai et al., 2017)	$57.10 \pm 0.70\%$	$70.04 \pm 0.63\%$
DEML+Meta-SGD (Zhou et al., 2018) 4	$58.49 \pm 0.91\%$	$71.28 \pm 0.69\%$
TADAM (Oreshkin et al., 2018)	$58.50 \pm 0.30\%$	$76.70 \pm 0.30\%$
(Qiao et al., 2017)	$59.60 \pm 0.41\%$	$73.74 \pm 0.19\%$
LEO (ours)	$61.76 \pm 0.08\%$	$77.59 \pm 0.12\%$
Model	tieredImageNet test accuracy	
	1-shot	5-shot
MAML (deeper net, evaluated in Liu et al. (2018))	$51.67 \pm 1.81\%$	$70.30 \pm 0.08\%$
Prototypical Nets (Ren et al., 2018)	$53.31 \pm 0.89\%$	$72.69 \pm 0.74\%$
Relation Net (evaluated in Liu et al. (2018))	$54.48 \pm 0.93\%$	$71.32 \pm 0.78\%$
Transductive Prop. Nets (Liu et al., 2018)	$57.41 \pm 0.94\%$	$71.55 \pm 0.74\%$
Meta-SGD (our features)	$62.95 \pm 0.03\%$	$79.34 \pm 0.06\%$
LEO (ours)	$66.33 \pm 0.05\%$	$81.44 \pm 0.09\%$

Conclusion

We have introduced Latent Embedding Optimization (LEO), a meta-learning technique which uses a parameter generative model to capture the diverse range of parameters useful for a distribution over tasks, and demonstrated a new state-of-the-art result on the challenging 5-way 1- and 5-shot miniImageNet and tieredImageNet classification problems.

LEO achieves this by learning a low-dimensional data-dependent latent embedding, and performing gradient-based adaptation in this space, which means that it allows for a task-specific parameter initialization and can perform adaptation more effectively.

Code

- https://github.com/deepmind/leo
- https://github.com/cbfinn/maml
- https://github.com/dragen1860/MAML-Pytorch