Exploratory Data Analysis Lecture 9

Corina Besliu

Technical University of Moldova

September 28, 2021

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H_0 : H_0 : The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H_0 : H_0 : The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H_0 : H_0 : The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A:
 H_A: The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H_0 :
 - H_0 : The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H₀:
 H₀: The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H₀:
 H₀: The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

To understand hypothesis testing let us start with nonstatistical applications of it, the best known of which is a criminal trial.

When a person is accused of a crime, he or she faces a trial. The prosecution presents its case, and a jury must make a decision on the basis of the evidence presented.

- The first is called the null hypothesis and is represented by H₀:
 H₀: The defendant is innocent.
- The second is called the alternative hypothesis and is denoted H_A : H_A : The defendant is guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

Notice that we do not say that we accept the null hypothesis!

This would be equal to saying that the defendant is innocent, and this is not a decision that the justice system is allowed to make.

There are only two possible decisions:

- Convicting the defendant \rightarrow rejecting the null hypothesis (H_0) in favor of the alternative H_A .
 - There was enough evidence to conclude that the defendant was guilty.
- Acquitting the defendant \rightarrow not rejecting the null hypothesis (H_0) in favor of the alternative H_A
 - There was not enough evidence to conclude that the defendant was guilty.

Notice that we do not say that we accept the null hypothesis!

This would be equal to saying that the defendant is innocent, and this is not a decision that the justice system is allowed to make.

There are two possible errors:

- Type I error \rightarrow reject a true H_0
 - An innocent person is wrongly convicted
 - ullet The probability of a Type I error = lpha (also called the *significance level*)
- ullet Type II error o not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - ullet The probability of a Type II error =eta

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted
 - ullet The probability of a Type I error = lpha (also called the *significance level*)
- ullet Type II error o not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - ullet The probability of a Type II error =eta

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted
 - ullet The probability of a Type I error = lpha (also called the *significance level*)
- ullet Type II error o not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - ullet The probability of a Type II error =eta

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the *significance level*)
- ullet Type II error o not rejecting a false H_0
 - A guilty defendant is acquitted
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the *significance level*)
- ullet Type II error o not rejecting a false $H_0.$
 - A guilty defendant is acquitted
 - ullet The probability of a Type II error =eta

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

In 'humane' justice systems Type I errors are regarded as more serious.

Interestingly in statistics it is also the case (most of the times).

There are two possible errors:

- Type I error \rightarrow reject a true H_0 .
 - An innocent person is wrongly convicted.
 - ullet The probability of a Type I error = lpha (also called the $\emph{significance level}$)
- Type II error \rightarrow not rejecting a false H_0 .
 - A guilty defendant is acquitted.
 - The probability of a Type II error $= \beta$

The error probabilities α and β are inversely related \rightarrow any attempt to reduce one will increase the other.

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true
- The goal of the process is to determine whether there is enough evidence to infer that H₀ is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H₀
- Two possible errors can be made in any test:
 - Type I error ightarrow reject a true H_0 (P(Type I error) = lpha)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true
- \odot The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H₀
- Two possible errors can be made in any test:
 - Type I error ightarrow reject a true H_0 (P(Type I error) = lpha)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true
- ① The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H₀
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- ① The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **3** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **③** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H₀
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **③** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **3** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - ullet Conclude that there is enough evidence to reject H_0
 - ullet Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$)

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **③** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - ullet Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α)
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **3** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α).
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- ② The testing procedure begins with the assumption that the H_0 is true.
- **③** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α).
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

- There are two hypotheses:
 - the null hypothesis (H_0) .
 - the alternative hypothesis (H_A) .
- $oldsymbol{0}$ The testing procedure begins with the assumption that the H_0 is true.
- **3** The goal of the process is to determine whether there is enough evidence to infer that H_0 is not true.
- There are two possible decisions:
 - Conclude that there is enough evidence to reject H_0
 - ullet Conclude that there is not enough evidence to reject H_0
- Two possible errors can be made in any test:
 - Type I error \rightarrow reject a true H_0 (P(Type I error) = α).
 - Type II error \rightarrow don't reject a false H_0 (P(Type I error) $=\beta$).

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a <u>statistically significant</u> coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support H_A → reject H₀ →
 there is a correlation between X and y and β is a
 statistically significant coefficient → X is an important predictor of y
 and we should include X into our model
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \text{cannot}$ reject $H_0 \to \text{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \text{cannot}$ reject $H_0 \to \text{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and β is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is enough evidence to support $H_A \to \text{reject } H_0 \to \text{there is a correlation between } X \text{ and } y \text{ and } \hat{\beta} \text{ is a}$ **statistically significant coefficient $\to X$ is an important predictor of y and we should include X into our model.
- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a statistically significant coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

The most often testsed hypothesis in regression analysis is:

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

- Conclude that there is not enough evidence to support $H_A \to \mathbf{cannot}$ reject $H_0 \to \mathsf{no}$ correlation between X and y could be identified and $\hat{\beta}$ is not a <u>statistically significant</u> coefficient $\to X$ is not an important predictor of y and we should not include X into our model.

- ① The range of possible values of $\hat{\beta}$ is divided into two regions, an "acceptance" region and a rejection region
- ② To define these regions, we must determine the critical values of $\hat{\beta}$ that divide the "acceptance" region from the rejection region.
- **(a)** We will reject H_0 in favor of H_A if the estimated $\hat{\beta}$ falls into the rejection region. Else we will say that we cannot reject H_0 .

- The range of possible values of $\hat{\beta}$ is divided into two regions, an "acceptance" region and a rejection region
- ② To define these regions, we must determine the critical values of $\hat{\beta}$ that divide the "acceptance" region from the rejection region.
- **3** We will reject H_0 in favor of H_A if the estimated $\hat{\beta}$ falls into the rejection region. Else we will say that we cannot reject H_0 .

- The range of possible values of $\hat{\beta}$ is divided into two regions, an "acceptance" region and a rejection region
- ② To define these regions, we must determine the critical values of $\hat{\beta}$ that divide the "acceptance" region from the rejection region.
- ① We will reject H_0 in favor of H_A if the estimated $\hat{\beta}$ falls into the rejection region. Else we will say that we cannot reject H_0 .

- The range of possible values of $\hat{\beta}$ is divided into two regions, an "acceptance" region and a rejection region
- ② To define these regions, we must determine the critical values of $\hat{\beta}$ that divide the "acceptance" region from the rejection region.
- **3** We will reject H_0 in favor of H_A if the estimated $\hat{\beta}$ falls into the rejection region. Else we will say that we cannot reject H_0 .

Rejection versus Acceptance Regions

$$\begin{array}{l} H_0:\beta=0 \\ H_A:\beta\neq0 \end{array}$$

The problem with this approach is that because each X_k has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_k$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

The problem with this approach is that because each X_k has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_k$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

The problem with this approach is that because each X_K has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_K$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

For each coefficient in the regression we can compute a t-statistic

The problem with this approach is that because each X_K has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_K$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

For each coefficient in the regression above we can compute a t-test

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

The advantage is that because *t*-statistic is a standardized statistic, we will not need to find a critical value for each $\hat{\beta}_k$.

Instead we will use a predifined table to find the appropriate critical value of t_k denoted by t_c .

The problem with this approach is that because each X_K has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_K$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

For each coefficient in the regression above we can compute a t-test

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

The advantage is that because *t*-statistic is a standardized statistic, we will not need to find a critical value for each $\hat{\beta}_k$.

Instead we will use a predifined table to find the appropriate critical value of t_k denoted by t_c .

The problem with this approach is that because each X_K has a different measurement scale we will have to define a different critical value for each $\hat{\beta}_K$.

Instead we can use the $\underline{t\text{-statistic}}$ and the $\underline{t\text{-test}}$ for hypothesis testing

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

For each coefficient in the regression above we can compute a t-test

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

The advantage is that because *t*-statistic is a standardized statistic, we will not need to find a critical value for each $\hat{\beta}_k$.

Instead we will use a predifined table to find the appropriate critical value of $t_{\it k}$ denoted by $t_{\it c}$.

$$\begin{split} \hat{Y}_i &= 102, 192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} \hat{Y}_i &= 102, 192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

Question: Is P_i an important predictor?

In other words is β_P significantly different from zero? or just is β_P statistically significant?

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} \hat{Y}_i &= 102, 192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} \hat{Y}_i &= 102,192 - 9075N_i + 0.3547P_i + 1.288I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} \hat{Y}_i &= 102,\!192 - 9075N_i + 0.3547P_i + 1.288I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$H_0: \beta_P = 0$$

 $H_A: \beta_P \neq 0$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} t_k &= \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k=1,2,\ldots,K) \\ t_k &= \frac{(\hat{\beta}_k - 0)}{SE(\hat{\beta}_k)} \qquad (k=1,2,\ldots,K) \end{split}$$

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

$$\begin{split} t_k &= \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \\ t_k &= \frac{(\hat{\beta}_k - 0)}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \end{split}$$

Step 1 Hypothesis Testing: find the t-statistic

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

Find the *t*-statistic for *P*:

$$\begin{split} t_k &= \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \\ t_k &= \frac{(\hat{\beta}_k - 0)}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \end{split}$$

$$\begin{split} \hat{Y}_i = 102, &192 - 9075N_i + 0.3547P_i + 1.288I_i \\ &(2053) \quad (0.0727) \quad (0.543) \end{split}$$

Step 1 Hypothesis Testing: find the t-statistic

$$H_0: \beta_P = 0$$

$$H_A: \beta_P \neq 0$$

Find the *t*-statistic for *P*:

$$\begin{split} t_k &= \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \\ t_k &= \frac{(\hat{\beta}_k - 0)}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K) \\ \hat{Y}_i &= 102,192 - 9075N_i + 0.3547P_i + 1.288I_i \\ (2053) \qquad (0.0727) \qquad (0.543) \\ t_P &= \frac{\hat{\beta}_P}{SE(\hat{\beta}_P)} = \frac{0.3547}{0.0727} = 4.88 \end{split}$$

Decide whether to reject or not to reject H_0 based on the critical t-value which distinguishes the acceptance region from the rejection region.

Let's inspect the t-table

$$\begin{split} \hat{Y}_i &= 102,192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$df = N - K - 1 = 33 - 3 - 1 = 29$$

Decide whether to reject or not to reject H_0 based on the critical t-value which distinguishes the acceptance region from the rejection region.

Let's inspect the t-table

$$\begin{split} \hat{Y}_i &= 102, 192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$df = N - K - 1 = 33 - 3 - 1 = 29$$

Decide whether to reject or not to reject H_0 based on the critical t-value which distinguishes the acceptance region from the rejection region.

Let's inspect the t-table

$$\begin{split} \hat{Y}_i &= 102,192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$df = N - K - 1 = 33 - 3 - 1 = 29$$

Decide whether to reject or not to reject H_0 based on the critical t-value which distinguishes the acceptance region from the rejection region.

Let's inspect the t-table

$$\begin{split} \hat{Y}_i &= 102,192 - 9075 N_i + 0.3547 P_i + 1.288 I_i \\ & (2053) \quad (0.0727) \quad (0.543) \\ t &= -4.42 \quad 4.88 \quad 2.37 \\ N &= 33 \quad \overline{R}^2 = .579 \end{split}$$

$$df = N - K - 1 = 33 - 3 - 1 = 29$$

2) Decide on the **Significance Level** - α

The significance level measures the amount of Type I Error implied by a particular t-critical.

For example: If the level of significance is 10%, and we reject H_0 at 10% significance level \rightarrow 10% percent of the time H_0 was correct, but we rejected it.

Think of it as a margin of error that you accept

2) Decide on the **Significance Level** - α

The significance level measures the amount of Type I Error implied by a particular t-critical.

For example: If the level of significance is 10%, and we reject H_0 at 10% significance level \rightarrow 10% percent of the time H_0 was correct, but we rejected it.

Think of it as a margin of error that you accept

2) Decide on the **Significance Level** - α

The significance level measures the amount of Type I Error implied by a particular t-critical.

For example: If the level of significance is 10%, and we reject H_0 at 10% significance level \rightarrow 10% percent of the time H_0 was correct, but we rejected it.

Think of it as a margin of error that you accept.

2) Decide on the **Significance Level** - α

The significance level measures the amount of Type I Error implied by a particular t-critical.

For example: If the level of significance is 10%, and we reject H_0 at 10% significance level \to 10% percent of the time H_0 was correct, but we rejected it.

Think of it as a margin of error that you accept.

2) Decide on the **Significance Level** - α

The significance level measures the amount of Type I Error implied by a particular t-critical.

For example: If the level of significance is 10%, and we reject H_0 at 10% significance level \to 10% percent of the time H_0 was correct, but we rejected it.

Think of it as a margin of error that you accept.

So let's say we selected the significance level lpha=10%=0.1

Remember that df = 29

Inspect the table to find t-critical

$$t_c = 1.699$$

So let's say we selected the significance level lpha=10%=0.1

Remember that df = 29

Inspect the table to find *t*-critical

 $t_c = 1.699$

So let's say we selected the significance level $\alpha=10\%=0.1$

Remember that df = 29

Inspect the table to find *t*-critical

$$t_c = 1.699$$

So let's say we selected the significance level $\alpha=10\%=0.1$

Remember that df = 29

Inspect the table to find t-critical

$$t_c=1.699$$

Decision Rule:

Reject H_0 if $-1.699 < t_p > 1.699$ else do not reject. $4.88 > 1.699 \rightarrow \text{Reject } H_0: \beta_P = 0$ in favor of $H_A: \beta_P \neq 0$

Conclussion: β_P is statistically significant and P is an importan predictor of γ

Decision Rule:

Reject H_0 if $-1.699 < t_p > 1.699$ else do not reject.

 $t_p = 4.88 > 1.699 \rightarrow \text{Reject } H_0: \beta_P = 0 \text{ in tavor of } H_A: \beta_P \neq 0$ Conclussion: β_P is statistically significant and P is an importan predictor of Y

Decision Rule:

Reject H_0 if $-1.699 < t_p > 1.699$ else do not reject.

 $t_P=4.88>1.699
ightarrow ext{Reject } H_0: eta_P=0 ext{ in favor of } H_A:eta_P
eq 0$

Conclussion: β_P is statistically significant and P is an importan predictor of $\mathfrak I$

Decision Rule:

Reject H_0 if $-1.699 < t_p > 1.699$ else do not reject.

 $t_P=4.88>1.699
ightarrow {\sf Reject}\ H_0: eta_P=0 \ {\sf in}\ {\sf favor}\ {\sf of}\ H_A:eta_P
eq 0$

Conclussion: β_P is statistically significant and P is an importan predictor of Y

Let's get Started!

Access Google Colaboratory through your Gmail account