$\begin{array}{c} 12 \\ \text{Vecteurs (1): approche géométrique} \end{array}$

Table 12.1 – Objectifs. À fin de ce chapitre 12...

	Pour m'entraîner 🚣		
Je dois connaître / savoir faire	6	•	Ö
Approche géométrique			
Représenter un vecteur	12.1		
Identifier graphiquement les vecteurs égaux, colinéaires, opposés	12.2, 12.3, 12.4		
Opérations simples			
Tracer une addition ou soustraction de vec- teurs	12.5, 12.6, 12.7		
Utiliser la relation de Chasles pour simplifier une expression vectorielle	12.8, 12.9, 12.10	12.13, 12.14	
Multiplier un vecteur par un réel	12.15, 12.16	12.18, 12.19	12.17
Décomposer un vecteur	12.11, 12.12	12.20, 12.21	12.22

12.1 Vecteurs liés

Définition 12.1 — vecteur lié. Soit A et B deux points du plan.

Le vecteur lié \overrightarrow{AB} est le segment orienté, du point A vers le point B :

- $-\overrightarrow{AB}$ est le vecteur d'origine A et d'extrémité B
- $-\overrightarrow{AB}$ est le *vecteur position* de B par rapport à A

La *norme* du vecteur \overrightarrow{AB} est la longueur du segment AB, elle se note $\|\overrightarrow{AB}\| = AB$

■ Exemple 12.1

Le vecteur ci-contre peut être noté \vec{a} où \overrightarrow{OA} .

Sa norme peut être notée $\|\vec{a}\|$ où $\|\overrightarrow{OA}\|$ où OA.

Le vecteur représente la position de A par rapport à l'origine $\mathcal{O}.$

On n'écrira pas ni l'origine est toujours à gauche et la flèche pointe vers la droite.

Définition 12.2 — vecteur nul.

Le vecteur est nul si le même point est origine et extrémité : \overrightarrow{AA} .

La norme d'un vecteur nul est nulle : $\|\overrightarrow{AA}\| = 0$.

On utilise des vecteurs pour représenter des *quantités vectorielles* possèdant une direction et une grandeur ¹ : vecteur déplacement, vecteur vitesse, vecteur accélération, vecteur force (associé au poids, aux frottements), vecteur moment (associé à une torsion) etc.

¹par opposition aux quantités scalaires (température, masse, distance, énergie ...) possédant qu'une grandeur

12.2 Précisions sur le vocabulaire de collège

Les subtilités suivantes peuvent avoir échapées à certain(e)s. Nous les rappellerons.

Définition 12.3 Dans le plan :

- Deux droites sont *strictement parallèles* si elles sont sans points communs.
- Deux droites sont *parallèles* si elles sont soit strictement parallèles soit confondues.

■ Exemple 12.3 — conséquence. A B C DUne droite est parallèle à elle même : (AB)//(CD) Figure 12.1

Définition 12.4 — parallélogramme.

Un parallélogramme est un quadrilatère dont les diagonales se coupent en leur milieu.

Il peut être:

- parallélogramme strict : côtés opposés strictement parallèles.
- parallélogramme plat : une paire de côtés opposés sur une même droite.
- parallélogramme réduit à un point.

	■ Exemple 12.4 — conséquence.		
	Affirmation fausse	Si les côtés opposés d'un quadrilatère sont parallèles, alors c'est un	
		parallélogramme (voir le quadrilatère $ABCD$ de la figure 12.1)	
Affin	Affirmation vraie	Si les côtés opposés d'un quadrilatère sont strictement parallèles,	
	7mm madon vraic	alors c'est un parallélogramme (strict).	

12.3 Vecteurs égaux, opposés et colinéaires

Définition 12.5 — vecteurs égaux.

Les vecteurs (liés) \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont égaux s'ils ont :

- une même direction parallèle à la droite (AB)//(XY).
- un même sens selon la flèche, de A vers B, de X vers Y.
- une même norme $\|\overrightarrow{AB}\| = \|\overrightarrow{XY}\|$ ou encore AB = XY.

Figure 12.2 – « $\overrightarrow{AB} = \overrightarrow{XY}$ »

Alternativement, on peut dire :

$$\overrightarrow{AB} = \overrightarrow{XY} \iff ABYX \text{ est un parallélogramme}$$

■ Exemple 12.5

- 1. Si FUNK est un parallélogramme alors $\begin{cases} \overrightarrow{FU} = \dots \\ \overrightarrow{KF} = \dots \end{cases}$
- 2. Inversement, si $\overrightarrow{RA} = \overrightarrow{GE}$ alors est un parallélogramme.

Propriétés 12.1 L'égalité de vecteur vérifie trois propriétés clefs :

- (i) réflexive $\overrightarrow{AB} = \overrightarrow{AB}$ (un vecteur est égal à lui même)
- (ii) symétrique $\overrightarrow{AB} = \overrightarrow{XY}$ alors $\overrightarrow{XY} = \overrightarrow{AB}$.
- (iii) transitivité $\overrightarrow{AB} = \overrightarrow{XY}$ et $\overrightarrow{XY} = \overrightarrow{CD}$ alors $\overrightarrow{AB} = \overrightarrow{CD}$

explications. (i) et (ii) sont évidents, notez que par soucis de cohérence avec la définition :

- la droite (AB) doit être parallèle à (AB).
- le "quadrilatère" *ABBA* doit être considéré comme un parallélogramme (plat).

En géométrie classique, le point (iii) s'appelle le théorème de transitivité des parallélogrammes :

Figure 12.3 – « Si ABYX et XYDC sont deux parallélogrammes, alors ABDC est un parallélogramme. »

Utiliser l'égalité de vecteurs est une manière d'admettre ce théorème dont la démonstration est laborieuse avec la géométrie de collège (disjonctions de cas et critères d'égalité des triangles).

Définition 12.6 — vecteurs opposés.

Les vecteurs (liés) \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont opposés s'ils ont :

- une même direction parallèle à la droite (AB)//(XY).
- des sens contraires.
- une même norme $\|\overrightarrow{AB}\| = \|\overrightarrow{XY}\|$ ou encore AB = XY.

Figure 12.4 – « $\overrightarrow{AB} = -\overrightarrow{XY}$ »

■ Exemple 12.6

1.
$$\overrightarrow{AB} = -\overrightarrow{BA}$$
 et $\overrightarrow{BA} = -\overrightarrow{AB}$.

- 2. Si ABCD est un parallélogramme alors $\overrightarrow{AB} = -\overrightarrow{CD}$.
- 3. Si M est le milieu de [AB] alors $-\overrightarrow{MA} = \dots$

Définition 12.7 — vecteurs colinéaires.

Les vecteurs \overrightarrow{AB} et \overrightarrow{XY} (non nuls) sont colinéaires s'ils ont une même direction :

$$\overrightarrow{AB} \propto \overrightarrow{XY} \iff (AB)//(XY)$$

On ne dit pas que deux vecteurs ou leurs directions sont parallèles.

12.4 Vecteurs libres et vecteur nul

Les vecteurs liés égaux ci-contre sont les représentant d'un même vecteur libre \vec{u} .

Le vecteur lié \overrightarrow{AB} est un représentant du vecteur \overrightarrow{u} .

Le vecteur \overrightarrow{AB} est remplaçable un autre représentant.

Définition 12.8 — vecteur libre non nul.

Le vecteur (libre) $\overrightarrow{u} = \overrightarrow{AB}$ désigne l'ensemble de tous les vecteurs \overrightarrow{XY} tels que $\overrightarrow{XY} = \overrightarrow{AB}$.

On dira que : \overrightarrow{AB} est un *représentant* de \overrightarrow{u} d'origine A.

 \overrightarrow{XY} est un *représentant* de \overrightarrow{AB} d'origine X.

La norme d'un vecteur (libre) est la norme d'un de ses représentants : $\|\vec{u}\| = AB = XY$.

Définition 12.9 — vecteur nul.

Le vecteur nul a une infinité de représentants : $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \dots$

La norme du vecteur nul est nulle : $\|\vec{0}\| = \|\overrightarrow{AA}\| = \|\overrightarrow{BB}\| = \dots = 0$.

Le vecteur nul n'a ni direction ni sens. On considère qu'il est colinéaire à tous les vecteurs.

12.5 Addition de vecteurs libres

Définition 12.10 — relation de Chasles. Pour tous points A, B et C on a: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Figure 12.5 – Illustrations de la relation de Chasles $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$

Définition 12.11 — somme de vecteurs.

La somme de deux vecteurs libres \vec{u} et \vec{v} est un vecteur libre noté $\vec{u} + \vec{v}$.

Pour tracer un représentant du vecteur $\vec{u} + \vec{v}$ il faut :

- 1. tracer un représentant de \vec{u}
- 2. en partant de l'extrémité du vecteur obtenu, tracer le représentant de \vec{v}
- 3. utiliser la relation de Chasles pour obtenir un représentant de $\vec{u} + \vec{v}$.

Figure 12.6 – Commencer par des représentants différents de \vec{u} donnera des représentants égaux de $\vec{u} + \vec{v}$

Définition 12.12 Le vecteur différence $\vec{u} - \vec{v}$ est défini par $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

■ Exemple 12.8 — soustraction.

, alors $\vec{a} - \vec{b}$ est

■ Exemple 12.9 — soustraction.

Tracer les vecteurs $\vec{r} - \vec{s}$ et $\vec{s} - \vec{t} - \vec{r}$

solution.

Propriétés 12.2 — de l'addition.

- 1. (élément nul) Pour tout vecteur \vec{u} , $\vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}$.
- $2. \ \textit{(commutativit\'e)} \ La \ somme \ de \ 2 \ vecteurs \ est \ indépendante \ de \ l'ordre.$

Pour tous vecteurs \vec{u} et \vec{v} $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

3. (associativité) La somme de plusieurs vecteurs quelconques \vec{u} , \vec{v} et \vec{w} est indépendante de l'ordre : Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} $\vec{u} + \vec{v} + \vec{w} = (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Figure 12.7 – Illustration de la commutativité et l'associativité de l'addition de vecteurs

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$

$$\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=(\overrightarrow{u}+\overrightarrow{v})+\overrightarrow{w}=\overrightarrow{u}+(\overrightarrow{v}+\overrightarrow{w})$$

12.6 Multiplication d'un vecteur libre par un réel

Définition 12.13 $\vec{u} \neq \vec{0}$.

Le produit d'un réel k par un vecteur \vec{u} est le vecteur noté $k\vec{u}$ le vecteur colinéaire à \vec{u} de norme $||k\vec{u}|| = |k| \times ||\vec{u}||$ tel que

- Si k > 0 alors $k \vec{u}$ et \vec{u} ont le même sens.
- Si k < 0 alors $k\vec{u}$ et \vec{u} sont de sens contraires
- Si k = 0 alors $0\vec{u} = \vec{0}$

Figure 12.8 – Les vecteurs \vec{a} , $2\vec{a}$ et $3\vec{a}$ sont colinéaires de même sens. $-3\vec{a}$ et $-\frac{1}{2}\vec{a}$ sont colinéaires à \vec{a} mais de sens contraire à \vec{a} .

Propriétés 12.3 — de la multiplication par un réel.

- 1. Pour tout vecteurs \vec{u} , et réel a et b, $a(b\vec{u}) = (ab)\vec{u}$.
- 2. Pour tout a et $b \in \mathbb{R}$ et vecteur \overrightarrow{u} on a: $a\overrightarrow{u} + b\overrightarrow{u} = (a+b)\overrightarrow{u}$
- 3. Pour tout vecteurs \vec{u} , \vec{v} et réel k, $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.

Figure 12.9 – illustrations pour k>0 et k<0 de l'identité vectorielle $k(\overrightarrow{u}+\overrightarrow{v})=k\overrightarrow{u}+k\overrightarrow{v}$

R L'identité vectorielle $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ repose et remplace désormais le théorème de Thalès.

12.7 Exercices 9

12.7 Exercices

Exercice 12.1

Représenter les quantités vectorielles suivantes à l'échelle 1 cm pour 10 unités :

- 1. force de 30 N vers le Sud-Est.
- 2. force de 30 N vers le Nord-Ouest.
- 3. vitesse de 25 m/s vers le Nord.
- 4. déplacement de 35 m dans la direction Nord-(70°)-Est.
- 5. vitesse de décollage de 50 m/s avec un angle de 10° de l'horizontale.
- 6. déplacement de 25 km dans la direction Sud-(30°)-Est.

■ Exemple 12.10

Dans le parallélogramme PQRS, $\overrightarrow{PQ} = \overrightarrow{a}$ et $\overrightarrow{QR} = \overrightarrow{b}$.

Exprimer en fonction de \vec{a} et \vec{b} les vecteurs suivants :

2. \overrightarrow{RO}

3. \overrightarrow{SR}

4. \overrightarrow{SP}

solution.

 $\overrightarrow{QP} = -\overrightarrow{a}$ (vecteur opposé à \overrightarrow{PQ}); $\overrightarrow{SR} = \overrightarrow{a}$ (mêmes direction, sens et norme)

 $\overrightarrow{RQ} = -\overrightarrow{b}$ (vecteur opposé à \overrightarrow{QR}); $\overrightarrow{SP} = -\overrightarrow{b}$ (mêmes direction et norme, sens contraires)

Exercice 12.2

Déterminer parmi les vecteurs ci-contre les vecteurs :

- 1. de même norme
- 2. colinéaires et de même sens

3. colinéaires

4. opposés

Exercice 12.3

En utilisant les points de la figure, donner

- 2. les vecteurs opposés à \overrightarrow{FE} :
- 3. un vecteur égal à \overrightarrow{DE} = :
- 4. 3 vecteurs colinéaires à \overrightarrow{AF} :
- 5. 3 vecteurs d'origine C et colinéaires à \overrightarrow{EF} :
- 6. 2 vecteurs d'origine B colinéaires et de sens contraire à \overrightarrow{EF} :
- 7. 2 vecteurs de même norme et non colinéaires à \overrightarrow{AF} :

Exercice 12.4

1. Les triangles AEB et BDC sont égaux et équilatéraux, et les points A, B et C sont alignés.

On pose $\overrightarrow{AB} = \overrightarrow{p}$ et $\overrightarrow{AE} = \overrightarrow{q}$ et $\overrightarrow{DC} = \overrightarrow{r}$.

Entourez les bonnes réponses : Entourez les bonnes reponses : (A) $\overrightarrow{EB} = \overrightarrow{r}$ (B) $\|\overrightarrow{p}\| = \|\overrightarrow{q}\|$ (C) $\overrightarrow{BC} = \overrightarrow{r}$ (D) $\overrightarrow{DB} = \overrightarrow{q}$

(E) $\overrightarrow{ED} = \overrightarrow{p}$ (F) $\overrightarrow{p} = \overrightarrow{q}$

(B)
$$\|\vec{p}\| = \|\vec{q}\|$$

(C)
$$\overrightarrow{BC} = \overrightarrow{r}$$

(D)
$$\overrightarrow{DB} = \overrightarrow{q}$$

2. JOLI est un parallélogramme. Entourez les bonnes réponses :

(A)
$$\overrightarrow{JO} = \overrightarrow{LI}$$

(B)
$$\overrightarrow{JO} = -\overrightarrow{L}\overrightarrow{D}$$

(C)
$$\overrightarrow{OJ} = \overrightarrow{LI}$$

(A)
$$\overrightarrow{JO} = \overrightarrow{LI}$$
 (B) $\overrightarrow{JO} = -\overrightarrow{LI}$ (C) $\overrightarrow{OJ} = \overrightarrow{LI}$ (D) $\overrightarrow{JL} = -\overrightarrow{OI}$ (E) $\overrightarrow{OL} = \overrightarrow{JI}$

(E)
$$\overrightarrow{OL} = \overrightarrow{JL}$$

- (F) $\overrightarrow{IL} = -\overrightarrow{OJ}$
- 3. I est l'intersection des diagonales du parallélogramme ECHO.

Entourez les bonnes réponses :

4. M est le milieu du segment [AB]. Entourez les bonnes réponses :

(A)
$$\overrightarrow{MA} = \overrightarrow{MB}$$

(B)
$$MA = MB$$

(A)
$$\overrightarrow{MA} = \overrightarrow{MB}$$
 (B) $MA = MB$ (C) $\left\| \overrightarrow{MA} \right\| = \left\| \overrightarrow{BM} \right\|$ (D) $\overrightarrow{AM} = \overrightarrow{MB}$

(D)
$$\overrightarrow{AM} = \overrightarrow{MB}$$

- 5. Vrai ou faux? « Si Q est l'image de P par la translation \overrightarrow{AB} alors $\overrightarrow{AP} = \overrightarrow{BQ}$ » (faire une figure)
- 6. Vrai ou faux? « Si M est le milieu de [AB] alors $\overrightarrow{AM} = \overrightarrow{MB}$ » (faire une figure)
- 7. Tracer un contre-exemple de l'affirmation « Si AM = MB alors M est le milieu de [AB] ».
- 8. Vrai ou faux? « Si $\overrightarrow{AM} = \overrightarrow{MB}$ alors M est le milieu de [AB] »
- 9. Tracer un contre-exemple de l'affirmation « Si AB=CD alors $\overrightarrow{AB}=\overrightarrow{DC}$ ».
- 10. Vrai ou faux? « Si $\overrightarrow{AB} = \overrightarrow{DC}$ alors $\overrightarrow{BC} = \overrightarrow{AD}$ » (faire une figure et justifier)

12.7.1 Exercices : additions de vecteurs

Exercice 12.5 Recopier les vecteurs \vec{a} et \vec{b} puis tracer un représentant de $\vec{a} + \vec{b}$:

Exercice 12.6 Recopier les vecteurs \vec{a} et \vec{b} puis tracer un représentant de $\vec{a} - \vec{b}$:

Exercice 12.7

Tracer les vecteurs:

1.
$$\overrightarrow{p} + \overrightarrow{q} - \overrightarrow{r}$$

$$2. \vec{p} - \vec{q} - \vec{r}$$

1.
$$\vec{p} + \vec{q} - \vec{r}$$
 2. $\vec{p} - \vec{q} - \vec{r}$ 3. $\vec{r} - \vec{q} - \vec{p}$

- Exemple 12.11 utiliser les relations de Chasles.
- 1. $\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}$ (comme sur la figure)

2.
$$\overrightarrow{BA} + \overrightarrow{AE} + \overrightarrow{EC} = \overrightarrow{BC}$$

3.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

4.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$$

Exercice 12.8

Simplifier les expressions suivantes à l'aide de la relation de Chasles :

1.
$$\overrightarrow{AB} + \overrightarrow{BC}$$

2.
$$\overrightarrow{BC} + \overrightarrow{CD}$$

3.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

4.
$$\overrightarrow{DA} + \overrightarrow{BD}$$

5.
$$\overrightarrow{BD} + \overrightarrow{DB}$$

6.
$$\overrightarrow{BD} + \overrightarrow{AA}$$

7.
$$\overrightarrow{DD} + \overrightarrow{AC}$$

8.
$$\overrightarrow{DB} + \overrightarrow{AD} + \overrightarrow{BA}$$

9.
$$\overrightarrow{KT} + \overrightarrow{TD} + \overrightarrow{DK}$$

■ Exemple 12.12 — utiliser les relations de Chasles.

$$\overrightarrow{AB} - \overrightarrow{CB}$$

$$= \overrightarrow{AB} + \overrightarrow{BC}$$

$$= \overrightarrow{AC}$$

$$A$$

$$C$$

$$\overrightarrow{AC} - \overrightarrow{BC} - \overrightarrow{DB}$$

$$= \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD}$$

$$= \overrightarrow{AD}$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow D$$

Exercice 12.9

Simplifier les expressions suivantes à l'aide de la relation de Chasles :

1.
$$\overrightarrow{AC} + \overrightarrow{CB}$$

4.
$$\overrightarrow{BD} - \overrightarrow{BA}$$

$$| 7. \overrightarrow{BA} - \overrightarrow{CA} + \overrightarrow{CB} |$$

2.
$$\overrightarrow{AD} - \overrightarrow{BD}$$

5.
$$\overrightarrow{MB} - \overrightarrow{MD}$$

8.
$$\overrightarrow{AB} - \overrightarrow{CB} - \overrightarrow{DC}$$

3.
$$\overrightarrow{AC} + \overrightarrow{CA}$$

6.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

9.
$$\overrightarrow{BQ} - \overrightarrow{BA} + \overrightarrow{QA} - \overrightarrow{QB}$$

Exercice 12.10

Compléter les identités vectorielles suivantes à l'aide de la relation de Chasles :

1.
$$\overrightarrow{FE} = \overrightarrow{F_{-}} + \overrightarrow{U_{-}}$$

3.
$$\overrightarrow{HG} + \overrightarrow{\underline{}} = \overrightarrow{HF}$$

$$\int \mathbf{5.} \ \overrightarrow{DC} - \underline{} = \overrightarrow{AC}$$

2.
$$\overrightarrow{XY} = \overrightarrow{M} + \overrightarrow{N} + \overrightarrow{M} + \overrightarrow{M$$

4.
$$\overrightarrow{RT} = \overrightarrow{I} - \overrightarrow{I}$$

6.
$$\overrightarrow{DC} - \overrightarrow{DE} = \overrightarrow{DE}$$

■ Exemple 12.13

Écrire une équation reliant les vecteurs tracés.

Exercice 12.11

Écrire une équation reliant les vecteurs tracés.

■ Exemple 12.14

Exprimer en fonction de \vec{r} , \vec{s} et \vec{t} les vecteurs suivants :

$$\overrightarrow{RS} = \overrightarrow{RO} + \overrightarrow{OS}$$

$$\overrightarrow{SR} = \overrightarrow{SO} + \overrightarrow{OR}$$

$$\overrightarrow{RS} = \overrightarrow{RO} + \overrightarrow{OS}$$
 $\overrightarrow{SR} = \overrightarrow{SO} + \overrightarrow{OR}$ $\overrightarrow{ST} = \overrightarrow{SO} + \overrightarrow{OT}$

$$=-\overrightarrow{OR}+\overrightarrow{OS}$$

$$=-\overrightarrow{OS}+\overrightarrow{OR}$$

$$= -\overrightarrow{OS} + \overrightarrow{OT}$$

$$=-\overrightarrow{r}+\overrightarrow{s}$$

$$=-\overrightarrow{r}+\overrightarrow{s}$$

$$=-\vec{s}+\vec{t}$$

Exercice 12.12

- 1. Exprimer en fonction de \vec{r} , \vec{s} et \vec{t} les vecteurs \overrightarrow{OA} , \overrightarrow{CA} et \overrightarrow{OC} .
- 2. Exprimer en fonction de \vec{p} , \vec{q} et \vec{r} les vecteurs \overrightarrow{AD} , \overrightarrow{BC} et \overrightarrow{AC} .

■ Exemple 12.15 — sommes de vecteurs libres.

ABCDEF est un hexagone régulier de centre O et rayon 1. Simplifier les sommes ci-dessous :

1.
$$\overrightarrow{OA} + \overrightarrow{AB} =$$

2.
$$OA + OB =$$

3.
$$\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{A} = \overrightarrow{O}$$

4.
$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{O} + \overrightarrow{OB} = \overrightarrow{B}$$

5.
$$\overrightarrow{DO} - \overrightarrow{AB} = \overrightarrow{DO} + \overrightarrow{\dots} = \overrightarrow{DO} + \overrightarrow{\square} = \overrightarrow{DO} + \overrightarrow{DO} + \overrightarrow{\square} = \overrightarrow{DO} + \overrightarrow{\square} = \overrightarrow{DO} + \overrightarrow{\square} = \overrightarrow{DO} + \overrightarrow{\square} = \overrightarrow{DO} +$$

Exercice 12.13

ABCDEF est un hexagone régulier de centre O et rayon 1.

1. Compléter les sommes ci-dessous.

a)
$$\overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AB} =$$

b)
$$\overrightarrow{OB} - \overrightarrow{OA} =$$

c)
$$OB - OA =$$

d)
$$\overrightarrow{OC} - \overrightarrow{EC} =$$

e)
$$\overrightarrow{EB} + \overrightarrow{AF} = \overrightarrow{EB} + \overrightarrow{B} =$$

f)
$$\overrightarrow{BC} + \overrightarrow{AF} = \overrightarrow{BC} + \cdots =$$

g)
$$\overrightarrow{AF} + \overrightarrow{DE} = \cdots + \overrightarrow{DE} =$$

h)
$$\overrightarrow{CD} + \overrightarrow{FA} = \overrightarrow{CD} + \cdots =$$

i)
$$\overrightarrow{OA} + \overrightarrow{DE} = \overrightarrow{O} + \overrightarrow{O} =$$

2. Simplifier les sommes ci-dessous. Plusieurs réponses sont possibles.

$$\overrightarrow{OB} + \overrightarrow{OE} =$$

$$\overrightarrow{DO} - \overrightarrow{AB} =$$

$$C$$

$$AB = B$$

$$\overrightarrow{DB} - \overrightarrow{EC} =$$

$$\overrightarrow{DF} - \overrightarrow{CB} =$$

$$\overrightarrow{CB} - \overrightarrow{FA} =$$

$$\overrightarrow{EA} - \overrightarrow{CB} =$$

$$OA + OE + OC =$$

$$\overrightarrow{OA} + \overrightarrow{OE} + \overrightarrow{OC} =$$

Exercice 12.14 — le hérisson.

Écrire les sommes demandées à l'aide de vecteurs entres points de la figure.

1. $\overrightarrow{GF} + \overrightarrow{CB} = \dots$

2.
$$\overrightarrow{BG} - \overrightarrow{HG} = \dots$$

3.
$$\overrightarrow{HF} + \overrightarrow{FH} + \overrightarrow{HF} = \dots$$

4.
$$\overrightarrow{IJ} + \overrightarrow{CF} + \overrightarrow{JC} + \overrightarrow{FE} = \dots$$

5.
$$\overrightarrow{HF} - \overrightarrow{BC} + \overrightarrow{CD} = \dots$$

6.
$$\overrightarrow{BD} + \overrightarrow{IH} - \overrightarrow{BH} - \overrightarrow{FD} = \dots$$

12.7.2 Exercices : produit par un réel

■ Exemple 12.16

Les vecteurs ci-dessous ont tous la même direction.

$$\overrightarrow{CD} = \frac{5}{3}\overrightarrow{AB}$$
 même sens

AB 3 $CD = \frac{2}{3}AB$ $\overrightarrow{CD} = -\frac{2}{3}\overrightarrow{AB}$ sens contraires

Exercice 12.15

Compléter les égalités vectorielles pour chaque figure :

a)
$$\overrightarrow{AC} = \dots \overrightarrow{BC}$$

c)
$$\overrightarrow{BC} = \dots \overrightarrow{BA}$$

e)
$$\overrightarrow{AB} = \dots \overrightarrow{BC}$$

b)
$$\overrightarrow{BC} = \dots \overrightarrow{AC}$$

d)
$$\overrightarrow{CA} = \dots \overrightarrow{BA}$$

f)
$$\overrightarrow{BA} = \dots \overrightarrow{BC}$$

$$2. \xrightarrow{A} \xrightarrow{B} \xrightarrow{C}$$

a)
$$\overrightarrow{AC} = \dots \overrightarrow{BC}$$

c)
$$\overrightarrow{CA} = \dots \overrightarrow{AB}$$

e)
$$\overrightarrow{BA} = \dots \overrightarrow{BC}$$

b)
$$\overrightarrow{BC} = \dots \overrightarrow{BA}$$

d)
$$\overrightarrow{BC} = \dots \overrightarrow{AC}$$

f)
$$\overrightarrow{BA} = \dots \overrightarrow{AB}$$

3. Le point B est le milieu de [AC] (faire une figure) :

a)
$$\overrightarrow{BA} = \dots \overrightarrow{AC}$$

b)
$$\overrightarrow{CB} = \dots \overrightarrow{AC}$$

c)
$$\overrightarrow{AC} = \dots \overrightarrow{AB}$$

Exercice 12.16

Placer les points M, N, P pour chacun des cas suivants :

a)
$$\overrightarrow{AM} = 2\overrightarrow{AB}$$
; $\overrightarrow{AN} = -3\overrightarrow{AB}$ et $\overrightarrow{OP} = 4\overrightarrow{AB}$

12.7 Exercices 15

b) $\overrightarrow{AM} = \frac{2}{5}\overrightarrow{AB}$; $\overrightarrow{BN} = -\frac{7}{5}\overrightarrow{AB}$ et $\overrightarrow{OP} = -\frac{1}{5}\overrightarrow{AB}$

c) $\overrightarrow{AM} = \frac{5}{3}\overrightarrow{AB}$; $\overrightarrow{BN} = -\frac{1}{6}\overrightarrow{AB}$ et $\overrightarrow{OP} = -\frac{4}{3}\overrightarrow{AB}$

d) $2\overrightarrow{AM} = -\overrightarrow{AB}$; $4\overrightarrow{BN} = 3\overrightarrow{AB}$ et $2\overrightarrow{OP} = -3\overrightarrow{AB}$

e) $3\overrightarrow{AM} = 2\overrightarrow{AB}$; $6\overrightarrow{BN} = 11\overrightarrow{BA}$ et $6\overrightarrow{OP} = -\overrightarrow{BA}$

■ Exemple 12.17 — Équation vectorielle sur une droite.

Soit les points A, B. Soit P et Q tel que $\overrightarrow{PA} + 3\overrightarrow{PB} = \overrightarrow{0}$ et $\overrightarrow{QA} - 3\overrightarrow{QB} = \overrightarrow{0}$. Placer P et Q.

solution.

$$\overrightarrow{PA} + 3\overrightarrow{PB} = \overrightarrow{0}$$

$$\overrightarrow{PA} + 3(\overrightarrow{PA} + \overrightarrow{AB}) = \overrightarrow{0}$$

$$\overrightarrow{PA} + 3\overrightarrow{PA} + 3\overrightarrow{AB} = \overrightarrow{0}$$

$$4\overrightarrow{PA} + 3\overrightarrow{AB} = \overrightarrow{0}$$

$$3\overrightarrow{AB} = -4\overrightarrow{PA}$$

$$3\overrightarrow{AB} = 4\overrightarrow{AP}$$
 $\therefore \frac{3}{4}\overrightarrow{AB} = \overrightarrow{AP}$

Exercice 12.17

Pour chaque cas, exprimer \overrightarrow{AP} en fonction de \overrightarrow{AB} , et placer le point P sur la figure.

- 1. P est tel que $2\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$.
- 2. Q est tel que $\overrightarrow{QA} + 2\overrightarrow{QB} = \overrightarrow{0}$.
- 3. R est tel que $\overrightarrow{RA} + 5\overrightarrow{RB} = \overrightarrow{0}$.

- 4. S est tel que $-3\overrightarrow{SA} + \overrightarrow{SB} = \overrightarrow{0}$.
- 5. T est tel que $-\overrightarrow{TA} + 3\overrightarrow{TB} = \overrightarrow{0}$.
- 6. M est tel que $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

16

■ Exemple 12.18

Si \vec{p} est

et $-\frac{2}{3}\vec{p}$ est

■ Exemple 12.19

Si \vec{a} est

et \vec{b} est

et $\vec{a} - 3\vec{b}$ est

Exercice 12.18

Étant donné les vecteurs \vec{a} et \vec{b} ci-contre, représenter sur votre cahier les vecteurs suivants :

$$1. -\overrightarrow{a}$$

3.
$$\frac{1}{2}\vec{a}$$

$$\mathbf{2}$$
. $2\overrightarrow{b}$

$$\begin{vmatrix} 2 \\ 4 & -\frac{3}{2} \overrightarrow{b} \end{vmatrix}$$

6.
$$2\vec{a} + 3\vec{b}$$

$$7. \ \ \frac{1}{2}\overrightarrow{a} + 2\overrightarrow{b}$$

8.
$$\frac{1}{2}(\vec{a} + 3\vec{b})$$

Exercice 12.19

1. Recopier la figure et placer les points X, Y et Z tel que :

a)
$$\overrightarrow{MX} = \overrightarrow{MN} + \overrightarrow{MP}$$

b)
$$\overrightarrow{MY} = \overrightarrow{MN} - \overrightarrow{MP}$$

c)
$$\overrightarrow{PZ} = 2\overrightarrow{PM}$$

2. Quelle est la nature du quadrilatère MNYZ?

Exercice 12.20

PQRSTU est un hexagone régulier de centre X.

Exprimer en fonction de $\vec{a} = \overrightarrow{PQ}$ et $\vec{b} = \overrightarrow{QR}$ les vecteurs suivants :

2.
$$\overrightarrow{PS} = \dots \overrightarrow{a} + \dots \overrightarrow{b}$$

3.
$$\overrightarrow{QX} = \dots \overrightarrow{a} + \dots \overrightarrow{b}$$

4.
$$\overrightarrow{RS} = \dots \overrightarrow{a} + \dots \overrightarrow{b}$$

5.
$$\overrightarrow{QT} = \dots \overrightarrow{a} + \dots \overrightarrow{b}$$

■ Exemple 12.20 — décomposer un vecteur en fonction de deux autres.

La figure ci-dessous est formée de triangles équilatéraux. On pose $\overrightarrow{OC} = \overrightarrow{\imath}$ et $\overrightarrow{OD} = \overrightarrow{\jmath}$.

Décomposer les vecteurs suivants sous la forme $a\vec{i} + b\vec{j}$.

Exercice 12.21

La figure ci-dessous est formée de triangles équilatéraux. On pose $\overrightarrow{OC} = \overrightarrow{\imath}$ et $\overrightarrow{OD} = \overrightarrow{\jmath}$. Décomposer les vecteurs suivants sous la forme $a\overrightarrow{i} + b\overrightarrow{j}$.

1.
$$\overrightarrow{IH} =$$

4.
$$\overrightarrow{GC} =$$

7.
$$\overrightarrow{AF} =$$

2.
$$\overrightarrow{EB} =$$

5.
$$\overrightarrow{HE} =$$

8.
$$\overrightarrow{BD} =$$

3.
$$\overrightarrow{OG} =$$

6.
$$\overrightarrow{AE} =$$

9.
$$\overrightarrow{FB} =$$

Exercice 12.22

La figure ci-dessous est formée de deux hexagones réguliers de centre O. I, J, K, L, M et N sont les milieux respectifs des segements [OA], [OB], [OC], [OD], [OE] et [OF].

Décomposer chacun des vecteurs suivants selon les vecteurs donnés.

1.
$$\overrightarrow{BF} = \dots \overrightarrow{OI} + \dots \overrightarrow{OJ}$$

2.
$$\overrightarrow{JD} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$

3.
$$\overrightarrow{CO} = \dots \overrightarrow{OI} + \dots \overrightarrow{OJ}$$

4.
$$\overrightarrow{EA} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$

5.
$$\overrightarrow{JF} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$

6.
$$\overrightarrow{EK} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$

7.
$$\overrightarrow{CI} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$

8.
$$\overrightarrow{JD} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$

