

Amendments to the Specification

Please replace the paragraph numbered [0236] beginning at page 66, line 14, with the following rewritten paragraph:

— [0236] The following procedure can be used to compute the worst-case response time of each A-h-k-a process:

i:= 0;

failure:= false;

while i number-of-A-h-k-a-processes and not (failure) do

begin

 if a_i A-h-k-a

 then

 begin

 RE_{newi}:= c_{ai};

 responsetimefound:= false;

 while not(responsetimefound) and not(failure) do

 begin

 RE_{previousi}:= RE_{newi};

 RE_{newi}:= c_{ai} + DelayA(a_i , RE_{previousi}) + DelayP((a_i , RE_{previousi})

 + B(a_i) + GT(a_i , RE_{previousi});

 if RE_{previousi} = RE_{newi}

 then

 begin

 RE_{ai}:= RE_{newi}

 responsetimefound:= true;

 end

 if (RE_{newi} > L_{ai})

 then failure:= true;

 end;

 end;

(Signature)
i := i + 1;
end.

Please replace the paragraph numbered [0372] beginning at page 122, line 14, with the following rewritten paragraph:

— [0374] The following procedure can be used to compute the worst-case response time of each A-s-k process:

i := 0;
(Signature)
failure := false;

while i < number-of-A-s-k-processes and not (failure) do
begin

if a_i is A-s-k

then

begin

$RE_{newi} := c_{ai};$

responsetimefound := false;

while not(responsetimefound) and not(failure) do

begin

$RE_{previousi} := RE_{newi};$

$RE_{newi} := c_{ai} + DelayA(a_i, RE_{previousi}) + DelayP((a_i, RE_{previousi}))$
+ $B(a_i);$

if $RE_{previousi} = RE_{newi}$

then

begin

$RE_{ai} := RE_{newi};$

responsetimefound := true;

end

if ($RE_{newi} > responsetimelimit$)

then failure := true;

end;

~~N.B.~~

end;

i := i + 1;

end.—

A hand-drawn wavy line graph is plotted on a horizontal baseline. The graph consists of several oscillations above the baseline, with each peak and trough being roughly the same height. The line starts at a low point on the left, rises to a peak, falls to a trough, rises to another peak, and so on, creating a series of repeating waves across the page.