Data Analytics in Healthcare

Arun R 163190013

IE615: Data Analytics for Operations Research

November 23, 2017

Outline

- Introduction
- 2 Breast Cancer Diagnosis: Problem Statement
- Open the state of the state
- Feature Extraction and SVM Model
- 6 Results
 - Linear Kernel
 - Sigmoid Kernel
- 6 Paper Summary

Introduction

- The amount of data produced by healthcare industries grows exponentially.
- Bulk of the data comes from electronic health care, pharmacy, insurance claim, human tracking system and diagnostic instruments.
- The data can be leveraged using data analytics to provide better treatment to patients and reduce the operations cost.
- Healthcare data analytics can be used to,
 - Diagnose disease
 - Plan for disaster
 - Understand patient flow
 - Effectively manage resources and cost
 - Reduce fraud

Summary of Papers

Prediction	Feature Selection	ML Algorithm	
Breast Cancer	F1-Score	SVM	
Diabetes		Decision Trees,	
	Information Gain	Logistic Regression,	
	and SMOTE	Naive Bayes and	
		Random Forest	
Hamital Danduriasian	Oversampling	Particle Swarm	
Hospital Readmission		Optimization based SVM	
Breast Cancer	K-Means	SVM	

Problem Statement

• To diagnose breast cancer using machine learning techniques.

Need a prediction model which is accurate and quick to build.

Extract features from a given dataset using K-means clustering.

Build a SVM-based prediction model on the extracted features.

Dataset: Instances

- Name: Wisconsin Diagnostic Breast Cancer (WDBC) dataset
- Date: November, 1965
- Number of instances: 569

- Number of instances in benign tumor class: 357
- Number of instances in malignant tumor class: 212

Dataset: Features

- Number of features: 30
- The features can be categorized as,
 - Radius
 - Texture
 - Perimeter
 - Area
 - Smoothness
 - Compactness
 - Concavity
 - Concave points
 - Symmetry
 - Fractal Dimension
- Mean, standard error and largest value are reported for each category.

Notation and Definition

K-means clustering is used to extract new features from the dataset. Notations used in this work are,

Notation	Definition
K	Number of clusters
F	Number of features in original dataset
N	Number of instances
S_c/S_k	Set of points in c^{th}/k^{th} cluster
	i th input in dataset
$X^i_j \ X^{\mu_k} \ X^{\mu_k}$	j^{th} feature in i^{th} input
X^{μ_k}	Center of k^{th} cluster
$X_j^{\mu_k}$	j^{th} feature of center of k^{th} cluster

Feature Extraction

- K-means clustering is used to find hidden patterns in each class.
- Cluster centers are used to extract new features.
- Validity ratio is used to fix the number of clusters in each class.

Validity Ratio =
$$\frac{d_{avg}}{d_{min}}$$

where,

$$\begin{aligned} d_{avg} &= \frac{\sum_{k=1}^{K} \sum_{i \in S_k} \sqrt{\sum_{j=1}^{F} \left(X_j^i - X_j^{\mu_k}\right)}}{N} \\ d_{min} &= \min \left[\sum_{i=1}^{F} \sqrt{\left(X_j^{\mu_{k_2}} - X_j^{\mu_{k_2}}\right)^2} \right] \forall k_1 \neq k_2 \end{aligned}$$

Original Results

Figure: Variation of validity ratio with number of clusters

Optimal number of clusters is three for both the classes.

New Results (Benign): Full Normalization

Instances of both the classes are normalized together.

- ullet Minimum value is achieved when K=5. Results are not matching.
- Validity ratio is not same in both the results. Could be due to random initialization of cluster center in K-means.

New Results (Malignant): Full Normalization

Instances of both the classes are normalized together.

- Minimum value is achieved when K = 3.
- Validity ratio is not same in both the results. Could be due to random initialization of cluster center in K-means.

New Results (Benign): Separate Normalization

Instances of both the classes are normalized separately.

- Minimum value is achieved when K = 3.
- Validity ratio is not same in both the results. Could be due to random initialization of cluster center in K-means.

New Results (Malignant): Separate Normalization

Instances of both the classes are normalized separately.

- Minimum value is achieved when K = 3.
- All the other results are obtained from separate normalization.

New Results: Silhouette Value

- For both the classes maximum value is achieved when K=2.
- Different from results obtained using validity ration

Feature Extraction and SVM model

- The six cluster centers give symbolic representation of the clusters.
- Six features are extracted using these six cluster centers.

$$\begin{split} f_c(X^i_j) &= \begin{cases} 1 - \frac{|X^{\mu_c}_j - X^i_j|}{\max|X^{\mu_c}_j - X^n_j|}, & \text{if } \min(X^n_j) \leq X^i_j \leq \max(X^n_j), \ \forall n \in S_c \\ 0, & \text{otherwise} \end{cases} \\ p_c &= \frac{1}{F} \sum_{j=1}^F f_c(X^i_j), \ 1 \leq c \leq K^m + K^b \end{split}$$

SVM model is built using the extracted features to diagnose breast cancer.

Experimental Setup

Parameter	Value
SVM penalty (C)	0.1, 1, 10, 20,, 100
Kernels	Linear and Sigmoid
Cross Vaidation	10-fold cross validation
Performance metrics	Test accuracy, sensitivity, specificity and time
Programming Language	Python (Scikit)
Processor	Intel Core i7 with 2.5 GHz processor

Linear Kernel: Accuracy, Sensitivity and Specificity

Y axis range is different in the figures

- Highest accuracy for SVM is 0.96 at C = 70.
- Highest accuracy for KSVM is 0.81 at C = 80.

Linear Kernel: Confusion Matrix

Linear Kernel: Computation Time

	SVM Time	KSVM Time	С	SVM Time	KSVM Time
C	(in sec)) (in sec)		(in sec)	(in sec)
0.1	2.8	0.03	50	94.5	0.05
1	11.3	0.04	60	67.8	0.06
10	47.9	0.04	70	71.8	0.05
20	49.1	0.05	80	71.34	0.06
30	64.3	0.04	90	74.9	0.06
40	79.2	0.05	100	75.91	0.07

As expected, less computation time is required in KSVM than SVM.

Sigmoid Kernel: Accuracy, Sensitivity and Specificity

- Highest accuracy for SVM is 0.63 at all C and gamma value.
- ullet Highest accuracy for KSVM is 0.79 at C = 80 and gamma = 0.167.
- Accuracy for KSVM reported in paper is 0.97 (C value and gamma value are not mentioned).

Sigmoid Kernel: Confusion Matrix

Paper Summary

Prediction	Feature Selection	ML Algorithm	
Breast Cancer	F1-Score	SVM	
Diabetes		Decision Trees,	
	Information Gain	Logistic Regression,	
	and SMOTE	Naive Bayes and	
		Random Forest	
Hospital Readmission	Oversampling	Particle Swarm	
		Optimization based SVM	
Breast Cancer	K-Means	SVM	

References I

- Mehmet Fatih Akay. "Support vector machines combined with feature selection for breast cancer diagnosis". In: Expert systems with applications 36.2 (2009), pp. 3240–3247.
- Manal Alghamdi et al. "Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford Exercise Testing (FIT) project". In: PLoS One 12.7 (2017), e0179805.
- Bichen Zheng, Sang Won Yoon, and Sarah S Lam. "Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms". In: Expert Systems with Applications 41.4 (2014), pp. 1476–1482.
- Bichen Zheng et al. "Predictive modeling of hospital readmissions using metaheuristics and data mining". In: Expert Systems with Applications 42.20 (2015), pp. 7110–7120.