© Copyright Microsoft Corporation. All rights reserved.

FOR USE <u>ONLY</u> AS PART OF MICROSOFT VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE <u>NOT</u> AUTHORIZED FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Dia de treinamento virtual sobre os conceitos básicos dos dados do Microsoft Azure

Sobre este curso

Objetivos do curso:

- · Descrever os principais conceitos de dados
- · Identificar serviços para dados relacionais
- · Identificar serviços para dados não relacionais
- · Identificar serviços para análise de dados

Este curso é complementado pelo treinamento online em https://aka.ms/AzureLearn_DataFundamentals-ptb

Agenda do Curso

Módulo 1: Explorar conceitos básicos sobre dados

- · Principais conceitos de dados
- Funções e serviços de dados

Módulo 2: Explorar os conceitos básicos de dados relacionais no Azure

- · Explorar conceitos de dados relacionais
- · Explorar os serviços do Azure para obter dados relacionais

Módulo 3: Explorar os conceitos básicos de dados não relacionais no Azure

- Conceitos básicos do Armazenamento do Azure
- Conceitos básicos do Azure Cosmos DB

Módulo 4: Explorar os conceitos básicos do armazenamento de dados em grande escala

· Data warehousing em grande escala

Módulo 5 – Explorar os conceitos básicos da análise em tempo real

· Streaming e análise em tempo real

Módulo 6: Explorar os conceitos básicos da visualização de dados

Visualização de dados

Demonstrações

 As demonstrações neste curso são baseadas em exercícios no Microsoft Learn

Módulo 1:

Explorar os conceitos básicos dos dados

- Lição 1: Principais conceitos de dados
- Lição 2: Funções e serviços de dados

O que são dados?

Valores usados para registrar informações, geralmente representando *entidades* que têm um ou mais *atributos*

Estruturados

Cli	Cliente					
ID	FirstName	LastName	Email	Endereço		
1	Joe	Jones	joe@litware.c om	1 Main St.		
2	Samir	Nadoy	samir@north wind.com	123 Elm Pl.		

Produto			
Nome	Preço		
Martelo	2,99		
Screwdriver	3.49		
Chave inglesa	4.25		
	Nome Martelo Screwdriver		

Semiestruturados

```
"firstName": "Joe",
    "lastName": "Jones",
    "address":
        "streetAddress": "1 Main
                                        "firstName": "Samir",
St.",
                                        "lastName": "Nadoy",
        "city": "New York",
                                        "address":
        "state": "NY",
        "postalCode": "10099"
                                            "streetAddress": "123 Elm
    "contact":
                                            "unit": "500",
                                            "city": "Seattle",
                                            "state": "WA",
          "type": "home",
                                            "postalCode": "98999"
          "number": "555 123-1234
                                        "contact":
          "type": "email",
          "address":
                                              "type": "email",
"joe@litware.com"
                                              "address":
                                    "samir@northwind.com"
```


Como os dados são armazenados?

Arquivos

Texto delimitado

```
FirstName, LastName, Email
Joe, Jones, joe@litware.com
Samir, Nadoy, samir@northwind.com
```

JSON (JavaScript Object Notation)

```
"customers":
[
    { "firstName": "Joe", "lastName": "Jones"},
    { "firstName": "Samir", "lastName": "Nadoy"}
]
```

{1>linguagem XML<1}

<Customer firstName="Joe" lastName="Jones"/>

BLOB (objeto binário grande)

10110101101010110010...

Formatos otimizados:

• Avro, ORC, Parquet

Bancos de dados

2

Não relacional

Cargas de trabalho de dados transacionais

Os dados são armazenados em um banco de dados otimizado para *OLTP* (processamento de transações online) com suporte para aplicativos

Uma combinação de atividade de *leitura* e *gravação*

Por exemplo:

- Ler a tabela Produto para exibir um catálogo
- Gravar na tabela Pedido para registrar uma compra

Os dados são armazenados usando transações

As transações são baseadas em "ACID":

- Atomicidade cada transação é tratada como uma unidade de trabalho, que é totalmente bem-sucedida ou que falha completamente
- Consistência as transações só podem conduzir os dados do banco de dados de um estado válido para outro estado válido
- **Isolamento** transações simultâneas não podem interferir umas com as outras
- Durabilidade quando uma transação tiver sido bem-sucedida, as alterações de dados serão mantidas no banco de dados

Cargas de trabalho de dados analíticos

- 1. Os arquivos de dados podem ser armazenados em um data lake central para análise
- 2. Um processo de ETL (extração, transformação e carregamento) copia dados de arquivos e bancos de dados OLTP para um *data warehouse* otimizado para atividade de *leitura*
- Os dados no data warehouse podem ser agregados e carregados em um modelo OLAP (processamento analítico online) ou cubo
- 4. Os dados no data lake, no data warehouse e no modelo analítico podem ser consultados para produzir relatórios e painéis.

Lição 2: Funções e serviços de dados

Funções dos profissionais de dados

Provisionamento, configuração e gerenciamento de banco de dados

Segurança do banco de dados e acesso do usuário

Backups e resiliência de banco de dados

Monitoramento e otimização de desempenho do banco de dados

Pipelines de integração de dados e processos de ETL

Limpeza de dados e transformação

Esquemas de armazenamento de dados analíticos e cargas de dados

Modelagem analítica

Relatório e resumo de dados

Visualização de dados

Serviços de nuvem da Microsoft para dados

Armazenamentos de dados

SQL do Azure

 Família de serviços de banco de dados relacionais baseados no SQL Server

Banco de Dados do Azure para código aberto

Maria DB, MySQL, PostgreSQL

Azure Cosmos DB

 Sistema de banco de dados não relacional altamente escalonável

Armazenamento do Azure

- Armazenamento de arquivos, blobs e tabelas
- Namespace hierárquico para armazenamento de data lake

Engenharia e análise de dados

Fábrica de dados do Azure

Pipelines de dados

Azure Synapse Analytics

- Análise integrada de ponta a ponta
- Pipelines, SQL, Apache Spark, Data Explorer...

Azure Databricks

 Análise e processamento de dados do Apache Spark

Azure HDInsight

 Plataforma de código aberto Apache

Stream Analytics do Azure

 Processamento de dados em tempo real para soluções de IoT

Azure Data Explorer

 Análise de dados em tempo real para logs e telemetria

Microsoft Purview

- Governança de dados corporativos
- Mapeamento e descoberta de dados

Microsoft Power BI

- Modelagem de dados analíticos
- Visualização de dados interativa

Módulo 2:

Explorar os conceitos básicos dos dados relacionais no Azure

- Lição 1: Explorar conceitos de dados relacionais
- Lição 2: Explorar os serviços do Azure para obter dados relacionais

Tabelas relacionais

- · Os dados são armazenados em tabelas
- As tabelas são compostas por linhas e colunas
- · Todas as linhas têm as mesmas colunas
- É atribuído um tipo de dados a cada coluna

Clie	Cliente						
ID	FirstName	MiddleName	LastName	Email	Endereço	City	
1	Joe	Davi	Jones	joe@litware.co m	1 Main St.	Seattle	
2	Samir		Nadoy	samir@northwi nd.com	123 Elm Pl.	Nova Iorque	

Produto			
ID	Nome	Preço	
123	Martelo	2,99	
162	Screwdriver	3.49	
201	Chave inglesa	4.25	

Order				
OrderNo	OrderDate	Cliente		
1000	01/01/2022	1		
1001	01/01/2022	2		

LineItem				
OrderNo	ItemNo	ProductID	Quantidade	
1000	1	123	1	
1000	2	201	2	
1001	1	123	2	

Normalização

Dados de Vendas OrderNo OrderDate Cliente **Produto** Quantidade 1000 01/01/2022 Joe Jones, 1 Main St, Seattle Martelo (USD 2,99) 1 Chave de fenda 2 1000 01/01/2022 Joe Jones- 1 Main St, Seattle (USD 3,49) 1001 01/01/2022 Samir Nadoy, 123 Elm Pl, Nova York Martelo (USD 2,99) 2

- · Separar cada entidade na própria tabela
- · Separar cada atributo discreto na própria coluna
- · Identificar exclusivamente cada instância de entidade (linha) usando uma chave primária
- Usar colunas de *chave estrangeira* para vincular entidades relacionadas

LineItem				
OrderNo	ItemNo	ProductID	Quantidade	
1000	1	123	1	
1000	2	201	2	
1001	1	123	2	

Produto			
ID	Nome	Preço	
123	Martelo	2,99	
162	Screwdriver	3.49	
201	Chave inglesa	4.25	

SQL (Structured Query Language)

- · O SQL é uma linguagem padrão usada com bancos de dados relacionais.
- · Os padrões são mantidos pela ANSI e pela ISO
- · A maioria dos sistemas RDBMS dá suporte a extensões proprietárias de SQL padrão

Outros objetos de banco de dados comuns

Exibições

Consultas SQL predefinidas que se comportam como tabelas virtuais

Procedimentos armazenados

Instruções SQL predefinidas que podem incluir parâmetros

Produto			
ID	Nome	Preço	
201	Wrench Spanner	4.25	

Índices

Estruturas baseadas em árvore que aprimoram o desempenho da consulta

CREATE INDEX idx_ProductName
ON Product(Name);

SQL do Azure

Família de serviços de banco de dados de nuvem baseados no SQL Server

SQL Server em VMs do Azure

- Compatibilidade garantida com o SQL Server local
- O cliente gerencia tudo: upgrades de sistema operacional, upgrades de software, backups, replicação
- Pague pelos custos de execução da VM de servidor e pelo licenciamento de software, não por banco de dados
- Excelente para a nuvem híbrida ou para a migração de configurações complexas de bancos de dados locais

Instância Gerenciada do Azure SQL

- Quase 100% de compatibilidade com o SQL Server local
- Backups automáticos, aplicação de patch de software, monitoramento de banco de dados e outras tarefas de manutenção
- Use uma só instância com vários bancos de dados ou várias instâncias em um pool com recursos compartilhados
- Excelente para migrar a maioria dos bancos de dados locais para a nuvem

Banco de Dados SQL do Azure

- Compatibilidade da funcionalidade principal do banco de dados com o SQL Server
- Backups automáticos, aplicação de patch de software, monitoramento de banco de dados e outras tarefas de manutenção
- Banco de dados individual ou pool elástico para compartilhar dinamicamente recursos em vários bancos de dados
- Excelente para aplicativos novos baseados em nuvem

laaS

PaaS

Serviços de Banco de Dados do Azure para código aberto

Soluções gerenciadas do Azure para RDBMSs de código aberto comuns

Banco de Dados do Azure para MySQL

- Implementação de PaaS do MySQL na nuvem do Azure baseada no MySQL Community Edition
- Costuma ser usada em arquiteturas de aplicativos Linux, Apache, MySQL, PHP (LAMP)

Banco de Dados do Azure para MariaDB

- Uma implementação do sistema de gerenciamento de banco de dados MariaDB Community Edition adaptado para execução no Azure
- Compatibilidade com o Oracle Database

Banco de Dados do Azure para PostgreSQL

- Serviço de banco de dados na nuvem da Microsoft baseado no mecanismo de banco de dados PostgreSQL Community Edition
- Armazenamento relacional e de objetos híbrido

Demonstração

Provisionar serviços de banco de dados relacional do Azure

Módulo 3:

Explorar os conceitos básicos dos dados não relacionais no Azure

- Lição 1: Conceitos básicos do Armazenamento do Azure
- Lição 2: Conceitos básicos do Azure Cosmos DB

Armazenamento de Blobs do Azure

Armazenamento para dados como BLOBs (objetos binários grandes)

- Blobs de bloco
 - Objetos binários grandes, discretos que mudam com pouca frequência
 - o Os blobs podem ter até 4,7 TB, compostos por blocos de até 100 MB
 - Um blob pode conter até 50 mil blocos
- Blobs de páginas
 - o Usado como armazenamento em disco virtual para VMs
 - Os blobs podem ter até 8 TB, compostos por páginas de tamanho fixo de 512 bytes
- Blobs de acréscimo
 - o Blobs de blocos usados para otimizar operações de acréscimo
 - Tamanho máximo de pouco mais de 195 GB cada bloco pode ter até 4 MB

Camadas de armazenamento por blob

- · Frequente Maior custo, menor latência
- · Esporádico Menor custo, latência alta
- · Arquivo Menor custo, maior latência

Os blobs podem ser organizados em diretórios virtuais, mas cada caminho é considerado um blob em um namespace simples – não há suporte para operações de nível de pasta

Azure Data Lake Storage Gen 2

Sistema de arquivos distribuído criado no Armazenamento de Blobs

- Combina o Azure Data Lake Store Gen 1 com
 o Armazenamento de Blobs do Azure para
 armazenamento e análise de arquivos em grande escala
- Habilita o controle e o gerenciamento de acesso no nível do arquivo e do diretório
- Compatível com sistemas analíticos comuns em grande escala

Habilitado em uma conta de Armazenamento do Azure por meio da opção de *Namespace Hierárquico*

- Definido durante a criação da conta
- Upgrade de uma conta de armazenamento existente
 - Processo de atualização unidirecional

O sistema de arquivos inclui diretórios e arquivos e é compatível com sistemas de análise de dados em grande escala, como Hadoop, Databricks e Azure Synapse Analytics

Arquivos do Azure

Compartilhamentos de arquivos na nuvem que podem ser acessados de qualquer lugar com uma conexão com a Internet

- Suporte para protocolos comuns de compartilhamento de arquivos:
 - Protocolo SMB
 - Sistema de Arquivos de Rede (NFS) requer a camada Premium
- Os dados são replicados para redundância e criptografados em repouso

Armazenamento de Tabelas do Azure

Armazenamento de *chave-valor* para dados do aplicativo

- As tabelas consistem em colunas de chave e valor
 - Chaves de partição e linha
 - Colunas de propriedade personalizadas para valores de dados
 - Uma coluna de carimbo de data/horaéadicionada automaticamente para registrar alterações de dados
- As linhas são agrupadas em partições para aprimorar o desempenho
- As colunas de propriedades recebem um tipo de dados e podem conter qualquer valor desse tipo
- As linhas não precisam incluir as mesmas colunas de propriedades

Demonstração

Explorar o Armazenamento do Azure

O que é o Azure Cosmos DB?

Um sistema de gerenciamento de banco de dados *NoSQL* com vários modelos e escala global

- Suporte para várias APIs de armazenamento
- Acesso em tempo real com desempenho rápido de leitura e gravação
- Habilitar gravações de várias regiões para replicar dados globalmente, permitindo que usuários em regiões especificadas trabalhem com uma réplica local

APIs do Azure Cosmos DB

Azure Cosmos DB para NoSQL

API nativa para o Cosmos DB

SELECIONAR *
FROM customers c
WHERE c.id = "joe@litware.com"

```
{
    "id": "joe@litware.com",
    "name": "Joe Jones",
    "address": {
        "street": "1 Main St.",
        "city": "Seattle"
    }
}
```

Azure Cosmos DB para MongoDB

Compatibilidade com MongoDB

db.products.find({ id: 123})

```
{
    "id": 123,
    "name": "Hammer",
    "price": 2.99}
}
```

Azure Cosmos DB para PostgreSQL

Compatibilidade com PostgreSQL

id	name	dept	manager
1	Suzana Silva	Hardware	Joe Jones
2	João Neves	Hardware	Suzana Silva

Azure Cosmos DB para Tabela

- API de armazenamento de chave-valor
- Compatível com o Armazenamento da Tabelas do Azure

PartitionKey	RowKey	Nome
1	123	Joe Jones
1	124	Samir Nadoy

Azure Cosmos DB para Apache Cassandra

 Compatibilidade com o Apache Cassandra

id	name	dept	manager
1	Suzana Silva	Hardware	
2	João Neves	Hardware	Suzana Silva

Azure Cosmos DB para Apache Gremlin

• Usado para trabalhar com dados de *grafo*

 As vértices estão conectadas por meio de relações (bordas)

trabalha em
(h) Ferramentas

Demonstração

Explorar o Azure Cosmos DB

Módulo 4:

Explorar os conceitos básicos do armazenamento de dados em grande escala

• Lição 1: Data warehousing em grande escala

Lição 1: Data warehousing em grande escala

O que é data warehousing em grande escala?

- Orquestração de ETL (extração, transformação e carregamento) e ELT (extração, carregamento e transformação)
- Processamento distribuído para limpar e reestruturar dados em escala
- Processamento de dados em lote e em tempo real

- Armazenamento de dados relacionais desnormalizado em um data warehouse
- Armazenamento de arquivos semiestruturados em um data lake

- Modelos semânticos para entidades analíticas
- Geralmente na forma de cubos agregados que resumem valores numéricos em uma ou mais dimensões

- Relatórios
- Gráficos
- Painéis

Pipelines de processamento e ingestão de dados

Armazenamentos de dados analíticos

data warehouse

- Armazenamento de banco de dados relacional e mecanismo de consulta em grande escala
- Os dados são desnormalizados para otimização de consulta
 - Normalmente, em um esquema floco de neve ou estrela de fatos numéricos que podem ser agregados por dimensões

Data Lake

- Os arquivos de dados são armazenados em um sistema de arquivos distribuído
- As camadas de armazenamento tabular podem ser usadas para abstrair arquivos e fornecer uma interface relacional.
 - Use tabelas externas do *PolyBase* ou crie um *banco* de dados lake no Azure Synapse Analytics
 - Use tabelas de banco de dados e pontos de extremidade SQL no Azure Databricks
 - Use o Spark Delta Lake para adicionar semântica de armazenamento relacional e criar um data lakehouse no Azure Synapse Analytics, no Azure Databricks e no Azure HDInsight

Escolha um serviço de armazenamento de dados analítico

Azure Synapse Analytics

- Solução unificada para data warehouse relacional e análise de data lake
- Processamento e consulta escalonável por meio de vários runtimes de análise
 - SQL do Synapse
 - Apache Spark
 - Synapse Data Explorer
- Experiência interativa no Azure Synapse Studio
- Integração de pipeline interna para ingestão e processamento de dados

Use para uma solução analítica unificada de grande escala no Azure

Azure Databricks

- Implementação baseada no Azure da plataforma de análise de nuvem Databricks
- Consulta escalonável de Spark e SQL para análise de data lake
- Experiência interativa no workspace do Azure Databricks
- Use o Azure Data Factory para implementar pipelines de processamento e ingestão de dados

Use para aproveitar habilidades do Databricks e para portabilidade na nuvem

Azure HDInsight

- Implementação baseada no Azure de estruturas comuns de "Big Data" do Apache criadas em um data lake
 - Hadoop Consultar arquivos de data lake usando tabelas do Hive
 - Spark Usar APIs do Spark para consultar dados e abstrair o armazenamento de arquivos subjacente como tabelas
 - Kafka Processamento de eventos em tempo real
 - Storm Processamento de fluxo
 - HBase Armazenamento de dados NoSQL

Use quando precisar dar suporte a várias plataformas de código aberto

Demonstração

Explorar o Azure Synapse Analytics

Módulo 5:

Explorar os conceitos básicos da análise em tempo real

• Lição 1: Streaming e análise em tempo real

Lição 1: Streaming e análise em tempo real

Processamento em lotes e de fluxo

Processamento em lotes

Os dados são coletados e processados em intervalos regulares

Processamento de fluxo

Os dados são processados (quase) em tempo real à medida que chegam

Processamento de dados em tempo real com o Azure Stream Analytics

- Crie um trabalho individual ou um cluster do Azure Stream Analytics
- Faça a ingestão de dados de uma entrada, como:
 - Hubs de eventos do Azure
 - Hub IoT do Azure
 - Armazenamento de Blobs do Azure
 - 0 ...
- Processar dados com uma consulta perpétua
- Enviar resultados para uma *saída*, como:
 - Armazenamento do Blobs do Azure
 - Banco de Dados SQL do Azure
 - Azure Synapse Analytics
 - Azure Function
 - Hubs de eventos do Azure
 - Power BI
 - 0 ..

Análise de log e telemetria em tempo real com o Azure Data Explorer

- Alta taxa de transferência, serviço escalonável para dados em lotes e de streaming
 - Serviço dedicado do Azure Data Explorer
 - Runtime do **Data Explorer do Azure Synapse** no Azure Synapse Analytics
- Os dados são ingeridos de fontes de streaming e em lotes em tabelas em um banco de dados
- As tabelas podem ser consultadas usando KQL (Linguagem de Consulta Kusto):
 - Sintaxe intuitiva para consultas somente leitura
 - Otimizado para dados brutos de telemetria e série temporal

Demonstração

Explorar o Azure Stream Analytics

Módulo 6:

Explorar os conceitos básicos da visualização de dados

Lição 1: Visualização de dados

Introdução à visualização de dados com o Power BI

- Começar com o Power BI Desktop
 - Importar dados de uma ou mais fontes
 - Definir um modelo de dados
 - Criar visualizações em um relatório
- Publicar no serviço do Power BI
 - Agendar atualização de dados
 - Criar dashboards e aplicativos
 - Compartilhar com outros usuários
- Interagir com relatórios publicados
 - Navegador da Web
 - Aplicativo de telefone do Power BI

Modelagem de dados analíticos

Visualizações de dados comuns em relatórios

Tabelas e texto

Product Sales

INdille	Quantity
Bolts	2
Hammer	2
Nails	1
Screwdriver	2
Screws	2
Wrench	۷
Total	15

\$302.91

Revenue

Gráfico de barras ou de colunas

Revenue by City and Category

Gráfico de Linhas

Revenue by Month and Category

Gráfico de pizza

Quantity by Category

Gráfico de dispersão

Marketing Spend vs Revenue

Mapeamento

Revenue by City

Demonstração

Visualizar os dados com o Power BI

Mais aprendizado

Para revisar o que você aprendeu e fazer laboratórios adicionais, examine os módulos do Microsoft Learn para este curso:

- Explorar os principais conceitos de dados https://aka.ms/ExploreDataConcepts-ptb
- Explorar dados relacionais no Azure https://aka.ms/ExploreRelationalData-ptb
- Explorar dados não relacionais no Azure https://aka.ms/ExploreNonRelationalData-ptb
- · Explorar a análise de dados no Azure https://aka.ms/ExploreDataAnalytics-ptb

Obrigado

