ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГООБРАЗОВАНИЯ

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

Теория информации

Практическая работа №1-2 «Вычисление энтропии Шеннона»

Выполнил: студент гр. ИП-911 Мироненко К.А.

Проверила: доцент кафедры ПМиК Мачикина Е.П.

Результат работы первой лабораторной

	Оценка	Теоретическое	Оценка	Теоретическое
	энтропии	значение	энтропии	значение
	(частоты	энтропии	(частоты пар	энтропии (для
	отдельных	(отдельные	символов)	пар символов)
	символов)	символы)		
Равномерное	≈ 1.584917	≈1.584962	≈1.584962	≈1.584743
P(0,1; 0,3; 0,6)	≈1.291241	≈1.295462	≈1.295461	≈1.291105

Практические значения были получены в результате работы программы.

Расчет теоретических значений:

- 1) Теоретическое значение энтропии (отдельные символы):
- 1.1) Для файла, где все цифры генерируются последовательно и независимо с равными вероятностями:

Вероятность выпадения каждого символа равна 1/3;

```
-p*log(p) = 0.5283208335737187, где p = 1/3
```

 $H_1(0,33;0,33;0,33) \approx 1.584962$

1.2) Для файла, где все цифры последовательности генерируются с заданными вероятностями:

```
a - 0.1

b - 0.3

c - 0.6

H_1(0.1; 0.3; 0.6) \approx 1.295462
```

- 2) Теоретическое значение энтропии (для пар символов):
- 2.1) Для файла F1:

$$H_2(0.1111; 0.1111; 0.1111; 0.1111; 0.1111; 0.1111; 0.1111; 0.1111; 0.1111; 0.1111)$$

= $(0.3522138890491458 * 9) / 2 \approx 1.584743$

2.2) Для файла F2:

$$aa - 0.1 * 0.1 = 0.01$$

 $ab - 0.1 * 0.3 = 0.03$
 $ac - 0.1 * 0.6 = 0.06$
 $ba - 0.3 * 0.1 = 0.03$
 $bb - 0.3 * 0.3 = 0.09$
 $bc - 0.3 * 0.6 = 0.18$
 $ca - 0.6 * 0.1 = 0.06$
 $cb - 0.6 * 0.3 = 0.18$
 $cc - 0.6 * 0.6 = 0.36$

```
H_2(0,01; 0,03; 0,06; 0,03; 0,09; 0,18; 0,06; 0,18; 0,36) = 2.5909236884766433/2 \approx 1.291105
```

Вывод:

Сравнив теоретические и практические значения энтропии, можно сказать, что они очень близки. Из этого можно сделать вывод, что программа работает верно.

Результат работы второй лабораторной

Размер	Максимальное	Оценка	Оценка
алфавита	возможное	энтропии	энтропии
	значение	(одиночные	(частоты пар
	энтропии	символы)	символов)
43	≈5.4262647	≈4.383726	≈3.99468
	алфавита	алфавита возможное значение энтропии	алфавита возможное энтропии (одиночные энтропии символы)

Расчет максимального возможного значения энтропии:

H = log(m), где m - количество символов в алфавите

Для данного алфавита количество символов равно 43 (32 символов алфавита + 10 цифр + пробел).

H = log(43) = 5.426264754702098

Вывод:

В отличии от первой лабораторной — во второй энтропия для одиночных символов и пар сильно отличается, т.к. в художественном тексте у символов больший разброс по их частоте появления, из-за чего неопределённость появления для некоторых букв меньше, чем для других, а некоторые сочетания букв встречаются еще реже, поэтому неопределённость уменьшается еще сильнее.