Lecture 3 Interpolation and Numerical Differentiation

Ying-Jer Kao

Department of Physics National Taiwan University

September 12, 2024

Outline

- Interpolation
 - Polynomial Interpolation
 - Rational Function Interpolation
 - Cubic Spline Interpolation
- Numerical Differentiation
 - Finite Difference Approximations
 - Richardson's Extrapolation

Introduction

- Interpolation is a method to estimate the value of a function between two known values.
- Curve fitting is a method to estimate the value of a function outside the range of known values.

Interpolation

Discrete data sets of the form

are commonly involved in technical calculations.

- Is it possible to find a simple and convenient formula that reproduces the given points exactly?
- If the data set contains errors, is it possible to find a formula to represent the data approximately and, filters out the errors?
- If the computation of a function f is very expensive to evaluate, is it possible to find another function g which is simpler to evaluate and gives a reasonable approximation of f?

Polynomial Interpolation

Given discrete data sets of the form

where x_i 's form a set of n + 1 distinct points.

- Find a polynomial that is defined for all x, and takes on the corresponding values of y_i for each of the n + 1 distinct x_i 's.
- A polynomial p for which $p(x_i) = y_i$ when $0 \le i \le n$ is said to interpolate the table. The points x_i are called nodes.

Lagrange's Method

- It is always possible to construct a unique polynomial of degree n that passes through n + 1 distinct data points.
- The polynomial can be written as

$$P_n(x) = \sum_{i=0}^n l_i(x) y_i$$

where the cardinal functions $l_i(x)$ are

$$l_{i}(x) = \frac{x - x_{0}}{x_{i} - x_{0}} \cdot \frac{x - x_{1}}{x_{i} - x_{1}} \cdots \frac{x - x_{i-1}}{x_{i} - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \cdots \frac{x - x_{n}}{x_{i} - x_{n}}$$
$$= \prod_{i=0; i \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

• The cardinal functions are n degree polynomials and have the property $l_i(x_j) = \delta_{ij}$.

Example: Cardinal Functions

• Cardinal functions for a three point interpolation (n = 2) with $x_0 = 0, x_1 = 2$ and $x_2 = 3$.

Newton's Method

- Lagrange's method is conceptually simple, but it can not be computed efficiently.
- A better computational method is the Newton's method, and the resulting polynomial is said to have the Newton form.

$$P_n(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + \cdots + (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_{n-1})a_n.$$

- The Newton and Lagrange forms are just two different derivations for precisely the same polynomial.
- The Newton form has the advantage of easy extensibility to accommodate additional data points.

Newton's Method

• Consider there are four data points (n = 3), and the interpolating polynomial is

$$P_n(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + (x - x_0)(x - x_1)(x - x_2)a_3 = a_0 + (x - x_0)\{a_1 + (x - x_1)[a_2 + (x - x_2)a_3]\}$$

 The polynomial can be evaluated backwards with the recurrence relation:

$$P_0(x) = a_3$$

$$P_1(x) = a_2 + (x - x_2)P_0(x)$$

$$P_2(x) = a_1 + (x - x_1)P_1(x)$$

$$P_3(x) = a_0 + (x - x_0)P_2(x)$$

Newton's Method

• For arbitrary *n*,

$$P_0(x) = a_n P_k(x) = a_{n-k} + (x - x_{n-k})P_{k-1}(x), \quad k = 1, 2, \dots, n$$

• The coefficients of P_n are determined by the condition $y_i = P_n(x_i), i = 0, 1, \dots, n$. This yields the coupled equations

$$y_0 = a_0$$

$$y_1 = a_0 + (x_1 - x_0)a_1$$

$$y_2 = a_0 + (x_2 - x_0)a_1 + (x_2 - x_0)(x_2 - x_1)a_2$$

$$\vdots$$

$$y_n = a_0 + (x_n - x_0)a_1 + \dots + (x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})a_n$$

Divided Differences

Define the divided-difference notation

$$\nabla y_{i} = \frac{y_{i} - y_{0}}{x_{i} - x_{0}}, \ i = 1, 2, \dots, n$$

$$\nabla^{2} y_{i} = \frac{\nabla y_{i} - \nabla y_{1}}{x_{i} - x_{1}}, \ i = 2, 3, \dots, n$$

$$\nabla^{3} y_{i} = \frac{\nabla^{2} y_{i} - \nabla^{2} y_{2}}{x_{i} - x_{2}}, \ i = 3, 4, \dots, n$$

$$\vdots$$

$$\nabla^{n} y_{n} = \frac{\nabla^{n-1} y_{i} - \nabla^{n-1} y_{n-1}}{x_{n} - x_{n-1}}.$$

The solution for the coefficients is

$$a_0 = y_0, \ a_1 = \nabla y_1, \ a_2 = \nabla^2 y_2, \ \cdots \ a_n = \nabla^n y_n$$

Dvivided Difference Table

 It is convenient to organize the divided differences in a table.

x_0	у0				
x_1	<i>y</i> ₁	∇y_1			
x_2	<i>y</i> ₂	∇y_2	$\nabla^2 y_2$		
x_3	у3	∇y_3	$\nabla^2 y_3$	$\nabla^3 y_3$	
<i>x</i> ₄	<i>y</i> ₄	∇y_4	$\nabla^2 y_4$	$\nabla^3 y_4$	$\nabla^4 y_4$

Errors in Polynomial Interpolation

- When a function f is approximated on an interval [a, b] by an interpolating polynomial p, the discrepancy between f and p will (theoretically) be zero at each node of interpolation.
- A natural expectation is that the function f will be well approximated at all intermediate points and that as the number of nodes increases, this agreement will become better and better.
- If the function f is well-behaved, it is dangerous to assume that the differences |f(x) p(x)| will be small when the number of interpolating nodes is large, even for functions that possess continuous derivatives of all orders on the interval.

Errors in Polynomial Interpolation

• Five data points: (0, 8), (1, 12), (3, 2), (4, 6), (8, 0).

- With more points added, the situation became worse instead of better!
- The reason is that a polynomial of degree n has n zeros. If all of these zero points are real, then the curve crosses the x-axis n times, resulting in wild oscillations.

Errors in Polynomial Interpolation

• It can be shown that the error in polynomial interpolation is

$$f(x) - P_n(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi),$$

where ξ lies in the interval (x_0, x_n) .

Warning

- An interpolating polynomial intersecting more than six points must be viewed with suspicion.
- The data points that are far from the point of interest do not contribute to the accuracy of the interpolating polynomial.
- If extrapolation using the interpolating polynomial is necessary, one should be careful.
- Plot the data and visually verify that the extrapolated value makes sense.
- Use a low-order polynomial based on nearest-neighbor data points.
- Work with a plot of $\log x$ vs. $\log y$, which is usually much smoother than the x-y curve, and thus safer to extrapolate.

- Some data are better interpolated by rational functions rather than polynomials.
- A rational function R(x) is a ratio of two polynomials:

$$R(x) = \frac{P_m(x)}{Q_n(x)} = \frac{a_1 x^m + a_2 x^{m-1} + \dots + a_m x + a_{m+1}}{b_1 x^n + b_2 x^{n-1} + \dots + b_n x + b_{n+1}}$$

Cubic Spline Interpolation

- A spline function is a function that consists of polynomial pieces joined together with certain smoothness conditions.
- A cubic spline is a piecewise cubic polynomial that is continuous in the first and second derivatives.

Numerical Differentiation: Introduction

- Numerical differentiation deals with the following problem: given the function y = f(x), obtain its derivatives at the point $x = x_k$.
- The function is usually given as a set of discrete data points (x_i, y_i) , i = 0, 1, ..., n, which can be the output of some computation or measurement.
- One method to obtain numerical differentiation is through interpolation. Approximate the function locally by a polynomial and then differentiate it.
- Another method is using finite difference method based on the Taylor series.

Warning

- Numerical differentiation is not a particularly accurate process.
- It suffers from a conflict between roundoff errors (due to limited machine precision) and errors inherent in interpolation.
- A derivative of a function can never be computed with the same precision as the function itself.

Finite Difference Approximation

- Finite difference approximation is based on Taylor series expansion. It has the advantage of providing us with information about the error involved in the approximation.
- The derivation of the finite difference approximations for the derivatives of f(x) is based on forward and backward Taylor series expansions of f(x) about x.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) - \cdots$$

Taylor Series

The sums and differences of the series are given by

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{h^4}{12} f^{(4)}(x) + \cdots$$

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3} f'''(x) + \cdots$$

$$f(x+2h) + f(x-2h) = 2f(x) + 4h^2 f''(x) + \frac{4h^4}{3} f^{(4)}(x) + \cdots$$

$$f(x+2h) - f(x-2h) = 4hf'(x) + \frac{8h^3}{3} f'''(x) + \cdots$$

- The sums contain only even derivatives, whereas the differences retain just the odd derivatives.
- These can be viewed as simultaneous equations that can be solved for various derivatives of f(x).

First-Derivative Formulas

• The derivative for the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

• The obvious method to approximate $f'(x_0)$ is

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

for small values of h.

Error

• To estimate the error in the finite difference approximation, we keep the order h^2 term in the Taylor expansion,

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{1}{2}f''(\xi)h^2,$$

where ξ is in the interval between x_0 and $x_0 + h$.

Rearranging, we have

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{1}{2}f''(\xi)h$$

- The truncation error of our approximation is $-\frac{1}{2}f''(\xi)h \sim O(h)$. This error will be present even if the calculations are performed with infinite precision.
- Additional round-off errors will be present when performing the calculation on a finite-precision machine.

First Non-Central Difference Formulas

• For positive h, we have the forward-difference formula

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

and the backward-difference formula

$$f'(x) = \frac{f(x) - f(x - h)}{h} + O(h)$$

• The truncation error is of order O(h).

Higher Derivatives

- Approximations for higher derivatives can be derived in the same manner.
- The second derivative of f(x) in the forward difference approximation is

$$f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h).$$

- The truncation error is of order O(h).
- Higher order derivatives can be obtained in the same way.

Higher Derivatives:O(h)

• Forward finite difference approximations of O(h)

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
hf'(x)	-1	1			
$h^2f''(x)$	1	-2	1		
$h^3f'''(x)$	-1	3	-3	1	
$h^4 f^{(4)}(x)$	1	-4	6	-4	1

Backward finite difference approximations of O(h)

	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)
hf'(x)				-1	1
$h^2f''(x)$			1	-2	1
$h^3f'''(x)$		-1	3	-3	1
$h^4 f^{(4)}(x)$	1	-4	6	-4	1

First Central Difference Formulas

 To improve the accuracy, one could combine the following two Taylor series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$

• Subtracting them, we obtain the first central difference approximation for f'(x):

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

- The truncation error is of order $O(h^2)$.
- This formula for numerical differentiation is very useful in the numerical solution of certain differential equations.

Higher Derivatives: $O(h^2)$

Second derivative is

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

- The truncation error is of order $O(h^2)$.
- Central finite difference approximations of $O(h^2)$:

	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)
2hf'(x)		-1	0	1	
$h^2f''(x)$		1	-2	1	
$2h^3f'''(x)$	-1	2	0	-2	1
$h^4 f^{(4)}(x)$	1	-4	6	-4	1

Second Non-Central Difference Formulas

- For the forward or backward difference approximations, it is also preferable to use formulas with error of order $O(h^2)$.
- For example, to obtain f'(x), we use

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$
$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4h^3}{3}f'''(x) + \frac{2h^4}{3}f^{(4)}(x) + \cdots$$

• Eliminate f''(x), we obtain the second forward difference formula,

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h^2)$$

• The truncation error is of order $O(h^2)$.

Higher Derivatives: $O(h^2)$

• Forward finite difference approximations of $O(h^2)$

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)
2hf'(x)	-3	4	-1			
$h^2f''(x)$	2	-5	4	-1		
$2h^3f'''(x)$	-5	18	-24	14	-3	
$h^4 f^{(4)}(x)$	3	-14	26	-24	11	-2

• Backward finite difference approximations of $O(h^2)$

	$\int f(x-5h)$	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)
2hf'(x)				1	-4	3
$h^2f''(x)$			-1	4	-5	2
$2h^3f'''(x)$		3	-14	24	-18	5
$h^4 f^{(4)}(x)$	-2	11	-24	26	-14	3

Errors in Finite Difference Approximations

- The effect on since in all finite difference expressions the sum of the coefficients is zero.
- If h is very small, the values of $f(x), f(x \pm h), f(x \pm 2h)$, etc. will be approximately equal. The roundoff error can be dominant and significant figures will be lost.
- If h is too big, the truncation errors can dominate.
- To minimize this problem, use double- or higher-precision arithmetics, and employ finite difference formulas of $O(h^2)$.

Derivatives by Interpolation

- If f(x) is given as a set of discrete data points, interpolation can be a very effective means of computing its derivatives.
- The derivative of f(x) is approximated by the derivative of the interpolant.
- This method is particularly useful if the data points are located at uneven intervals of x, when the finite difference approximations discussed previously are not applicable.

Polynomial Interpolant

We want to fit the data to the polynomial of degree n

$$P_{n-1}(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$$

through n + 1 data points and evaluate its derivative.

- The degree of the polynomial is limited to less than 6 in order to avoid spurious oscillations of the interpolant.
- These oscillations are magnified with each differentiation.
- The interpolation should be a local one, involving no more than a few nearest-neighbor data points.
- When the data is noisy, it is advisable to use the least-squares fit to find the best fitting polynomial.

First-Derivative Formulas via Interpolation Polynomial

• If p is the polynomial of degree ≤ 1 that interpolate f at two nodes x_1, x_2 ,

$$p_1(x) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) = f(x_1) + f[x_1, x_2](x - x_1)$$

The first derivative

$$f'(x) \approx p'_1(x) = f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Interpolation through 3 nodes x₁, x₂, x₃,

$$p_2(x) = f(x_1) + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

where $f[x_1, x_2, x_3] = (f[x_2, x_3] - f[x_1, x_2])/(x_3 - x_1)$.

The first derivative

$$f'(x) \approx p_2'(x) = f[x_1, x_2] + f[x_1, x_2, x_3](2x - x_1 - x_2).$$

Richardson's Extrapolation

- Richardson's extrapolation is a method to generate high-accuracy results using low-order formulas.
- For a given quantity G, if we can approximate it by g(h),
 which depends on h, with an error E(h) = ch^p, where c and p are constants, such that,

$$G = g(h) + E(h).$$

- For a given $h = h_1$, $G = g(h_1) + ch_1^p$, and for $h = h_2$, $G = g(h_2) + ch_2^2$.
- Eliminating c and solving for G, we obtain the Richardson extrapolation formula,

$$G = \frac{\left(\frac{h_1}{h_2}\right)^p g(h_2) - g(h_1)}{\left(\frac{h_1}{h_2}\right)^p - 1}.$$

Application to Differentiation

• It is common practice to choose $h_2 = h_1/2$, and

$$G = \frac{2^p g(h_1/2) - g(h_1)}{2^p - 1}.$$

Consider the central difference formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + a_2h^2 + a_4h^4 + a_6h^6 + \dots$$

= $\phi(h) + a_2h^2 + a_4h^4 + a_6h^6 + \dots$

• $\phi(h) = \frac{f(x+h)-f(x-h)}{2h}$ is an approximation to f'(x) with an error of order $O(h^2)$.

Central Difference Approximation

• Evaluate ϕ at h and h/2,

$$\phi(h) = f'(x) - a_2 h^2 - a_4 h^4 - a_6 h^6 - \dots$$

$$\phi\left(\frac{h}{2}\right) = f'(x) - a_2 \left(\frac{h}{2}\right)^2 - a_4 \left(\frac{h}{2}\right)^4 - a_6 \left(\frac{h}{2}\right)^6 - \dots$$

• Eliminate the dominant error term $O(h^2)$,

$$\phi\left(\frac{h}{2}\right) + \frac{1}{3}\left[\phi\left(\frac{h}{2}\right) - \phi(h)\right] = f'(x) + \frac{1}{4}a_4h^4 + \frac{5}{16}a_6h^6 + \cdots$$

• The precision is improved to $O(h^4)$ because the error series of the new combination begins with $\frac{1}{4}a_4h^4$.

Improved Precision

Define

$$\Phi(h) = \phi\left(\frac{h}{2}\right) + \frac{1}{3}\left[\phi\left(\frac{h}{2}\right) - \phi(h)\right]$$

Repeat the process, we obtain

$$\Phi\left(\frac{h}{2}\right) + \frac{1}{15}\left[\Phi\left(\frac{h}{2}\right) - \Phi(h)\right] = f'(x) - \frac{1}{20}b_6h^6 + \cdots$$

- The precision is improved to $O(h^6)$.
- The same procedure can be repeated over and over again to kill higher and higher terms in the error.

 Let N(h) be a function which approximates an unknown M, such that

$$M = N(h) + \sum_{k=1}^{\infty} a_k h^k.$$

• Assumed that N(h) can be computed for any h > 0, so

$$M = N\left(\frac{h}{2}\right) + \sum_{k=1}^{\infty} a_k \left(\frac{h}{2}\right)^k.$$

• Eliminate the term involving a_1 ,

$$M = \left[2N_1\left(\frac{h}{2}\right) - N_1(h)\right] + a_2\left(\frac{h^2}{2} - h^2\right) + a_3\left(\frac{h^3}{4} - h^3\right) + \cdots,$$

where $N_1(h) \equiv N(h)$.

Define

$$N_2(h) = \left[2N_1\left(\frac{h}{2}\right) - N_1(h)\right] = N_1\left(\frac{h}{2}\right) + \left[N_1\left(\frac{h}{2}\right) - N_1(h)\right]$$

and we obtain the $O(h^2)$ approximation formula,

$$M = N_2(h) - \frac{a_2}{2}h^2 - \frac{3a_3}{4}h^3 - \cdots$$

• Repeat the process again, we obtain the $O(h^3)$ formula,

$$M = \left[N_2 \left(\frac{h}{2} \right) - \frac{N_2 \left(\frac{h}{2} \right) - N_2 (h)}{3} \right] + \frac{a_3}{8} h^3 + \cdots$$
$$= N_3 (h) + \frac{a_3}{8} h^3 + \cdots$$

• The process can be repeated to construct an $O(h^4)$ approximation,

$$N_4(h) = N_3\left(\frac{h}{2}\right) + \frac{N_3\left(\frac{h}{2}\right) - N_3(h)}{7},$$

and $O(h^5)$ approximation,

$$N_5(h) = N_4\left(\frac{h}{2}\right) + \frac{N_4\left(\frac{h}{2}\right) - N_4(h)}{15}.$$

• In general, if M can be written as

$$M = N(h) + \sum_{j=1}^{m-1} a_j h^j + O(h^m)$$

then for each $j = 2, 3, \dots m$, we have an $O(h^j)$ approximation of the form

$$N_j(h) = N_{j-1}\left(\frac{h}{2}\right) + \frac{N_{j-1}\left(\frac{h}{2}\right) - N_{j-1}(h)}{2^{j-1} - 1}.$$

 The approximations are generated by rows in the order indicated in the following table (N₁(h) ≡ N(h)):

O(h)	$O(h^2)$	$O(h^3)$	$O(h^4)$
1: $N_1(h)$			
2: $N_1(\frac{h}{2})$	3: $N_2(h)$		
4: $N_1 \left(\frac{\overline{h}}{4} \right)$	5: $N_2(\frac{h}{2})$	6: <i>N</i> ₃ (<i>h</i>)	
7: $N_1\left(\frac{h}{8}\right)$	8: $N_2\left(\frac{\overline{h}}{4}\right)$	9: $N_3(\frac{h}{2})$	$10:N_4(h)$