GÉO 1 - COURBES PLANES

Dans ce chapitre on munit le plan \mathscr{P} d'un repère orthonormé $\mathscr{R} = (O, \vec{\imath}, \vec{\jmath}); k \in \mathbb{N}^*$.

1 Courbes paramétrées

1.1 Définitions

Définition 1

- On appelle arc paramétré ou courbe paramétrée de classe C^k un couple (I, φ) où I est une réunion d'intervalles de \mathbb{R} , et $\varphi: I \to \mathbb{R}^2$ est une fonction de classe C^k .
 - Par abus de notation, on parle souvent de l'arc φ au lieu de $(I,\varphi).$
- L'ensemble $\Gamma = \varphi(I) = \{\varphi(t) | t \in I\}$ est appelé support de l'arc paramétré.

Définition 2

Soit Γ un sous-ensemble de \mathbb{R}^2 . On dit que Γ est un arc géométrique ou une courbe géométrique s'il existe un arc paramétré (I, φ) dont Γ est le support.

Remarque 1

• Un arc paramétré peut représenter le mouvement d'un point mobile du plan dans un repère. On note alors : $\forall t \in I, M(t) = \varphi(t)$, et le support de φ est appelé trajectoire du mouvement décrit par $\varphi : t \mapsto M(t)$.

Si $k \geq 2$, on appelle :

- vecteur vitesse du mouvement (à l'instant t) le vecteur $\varphi'(t) = \frac{\mathrm{d}M}{\mathrm{d}t}(t)$;
- vecteur accélération du mouvement (à l'instant t) le vecteur $\varphi''(t) = \frac{\mathrm{d}^2 M}{\mathrm{d}t^2}(t)$.
- Par abus de notation, on confondra souvent l'arc géométrique Γ avec l'arc paramétré (I, φ) , et un point géométrique $M \in \Gamma$ avec un point M(t), venant avec son paramètre, appelé point de paramètre t de φ .

Dans la suite du chapitre, Γ désigne un arc géométrique paramétré par $\varphi:I\to\mathbb{R}^2$ de classe C^k .

Définition 3

- On dit que M(t) est un point de multiplicité n si $\operatorname{card}(\varphi^{-1}(M)) = n$. Si n = 1, on dit que le point est simple;
 - Si n = 2, on dit que le point est double; etc...
- Si tous les points de l'arc paramétré sont simples (c'est-à-dire si φ est injective), on dit que l'arc paramétré est simple.

Définition 4

- On dit que M(t) est un point stationnaire ou singulier si $\varphi'(t) = 0$.
- On dit que M(t) est un point régulier si $\varphi'(t) \neq 0$.
- Si tous les points de l'arc paramétré sont réguliers, on dit que l'arc paramétré est régulier.

Définition 5

Soient $t_0 \in I$ et $M_0 = M(t_0)$.

S'il existe un vecteur directeur de la droite $(M_0M(t))$ qui admet un vecteur limite $\overrightarrow{V_0}$ non nul quand t tend vers t_0 , la droite passant par M_0 dirigée par $\overrightarrow{V_0}$ est appelée tangente à Γ en M_0 :

$$T_{t_0} = M_0 + \operatorname{Vect}\left(\overrightarrow{V_0}\right)$$

Remarque 2

• Si on a seulement une limite à droite ou à gauche, on parlera de demi-tangente.

Théorème 1

Soient $t_0 \in I$ et $M_0 = M(t_0)$.

 \hookrightarrow Si $\varphi'(t_0) \neq 0$, alors $\varphi'(t_0)$ est un vecteur directeur de la tangente à Γ en M_0 .

La tangente a pour équation
$$\begin{vmatrix} x - x_0 & x'(t_0) \\ y - y_0 & y'(t_0) \end{vmatrix} = 0.$$

 \hookrightarrow Si $\varphi'(t_0) = 0$, et s'il existe $n \in [1, k]$ tel que $\varphi^{(n)}(t_0) \neq 0$, alors un vecteur directeur de la tangente à Γ en M_0 est $\varphi^{(p)}(t_0)$ où $p = \inf\{n \in \mathbb{N}^*/\varphi^{(n)}(t) \neq 0\}$.

à
$$\Gamma$$
 en M_0 est $\varphi^{(p)}(t_0)$ où $p = \inf\{n \in \mathbb{N}^*/\varphi^{(n)}(t) \neq 0\}.$
La tangente a pour équation $\begin{vmatrix} x - x_0 & x^{(p)}(t_0) \\ y - y_0 & y^{(p)}(t_0) \end{vmatrix} = 0.$

- \hookrightarrow Si x' ne s'annule pas au voisinage de t_0 :
 - * Si $\lim_{t_0} \frac{y'}{x'} = l \in \mathbb{R}$, alors l est le coefficient directeur de la tangente à la courbe au point M_0 .
 - * Si $\lim_{t_0} \frac{y'}{x'} = \pm \infty$, alors \vec{j} est un vecteur directeur de la tangente à la courbe au point M_0 .

Définition 6

Soient $t_0 \in I$ et $M_0 = M(t_0)$. Si φ est de classe \mathcal{C}^2 , on dit que le point M_0 est birégulier si la famille $(\varphi'(t_0), \varphi''(t_0))$ est libre, c'est-à-dire $\det(\varphi'(t_0), \varphi''(t_0)) \neq 0$.

La courbe paramétrée est dite birégulière si tous ses points sont biréguliers.

1.2 Etude locale des courbes paramétrées

1.2.1 Classification des points

Soient $t_0 \in I$ et $M_0 = \varphi(t_0)$.

On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $\varphi^{(n)}(t_0) \neq 0$, et on note p le plus petit des entiers n vérifiant cette propriété; on note : $V_1 = \varphi^{(p)}(t_0)$.

On suppose qu'il existe $m \in \mathbb{N}^*$ tel que $(\varphi^{(p)}(t_0), \varphi^{(m)}(t_0))$ soit une famille libre, et on note q le plus petit des entiers m vérifiant cette propriété; on note : $\overrightarrow{V_2} = \varphi^{(q)}(t_0)$.

p impair	p pair
v ₁	rebroussement de 2 sue espèce
v ₁ v ₁ point d'inflexion	v ₁ rebroussement de 1 ess e spèce
	$\overrightarrow{v_1}$ $\overrightarrow{v_1}$ $\overrightarrow{v_1}$ $\overrightarrow{v_1}$ $\overrightarrow{v_1}$

1.2.2 Branches infinies

Définition 7

Soit $t_0 \in \overline{I}$ une borne de I.

On dit que Γ présente une branche infinie en t_0 si : $\lim_{t\to t_0} \|\overrightarrow{OM(t)}\| = +\infty$.

Remarque 3

• Cela revient à dire qu'une au moins des coordonnées de M(t) tend vers l'infini quand $t \to t_0$.

Proposition 1

On note $\varphi = (x, y)$, et on considère $t_0 \in \overline{I}$ une borne de I.

• Si
$$\begin{cases} \lim_{t_0} x = \pm \infty \\ \lim_{t_0} y = y_0 \in \mathbb{R} \end{cases}$$
 la droite d'équation $y = y_0$ est asymptote à Γ .
• Si
$$\begin{cases} \lim_{t_0} x = x_0 \in \mathbb{R} \\ \lim_{t_0} y = \pm \infty \end{cases}$$
 la droite d'équation $x = x_0$ est asymptote à Γ .
• Si
$$\begin{cases} \lim_{t_0} x = \pm \infty \\ \lim_{t_0} y = \pm \infty \end{cases}$$
 on étudie alors la direction asymptotique :

• Si
$$\begin{cases} \lim_{t_0} x = x_0 \in \mathbb{R} \\ \lim_{t_0} y = \pm \infty \end{cases}$$
 la droite d'équation $x = x_0$ est asymptote à Γ .

• Si
$$\begin{cases} \lim_{t_0} x = \pm \infty \\ \lim_{t_0} y = \pm \infty \end{cases}$$
 on étudie alors la direction asymptotique

Pour cela, on étudie la limite de $\frac{y}{x}$ en t_0 .

$$\hookrightarrow$$
 Si $\lim_{t_0} \frac{y}{x} = 0$, alors Γ admet $(O, \vec{\imath})$ pour direction asymptotique, et présente une branche parabolique de direction (Ox) .

$$\hookrightarrow$$
 Si $\lim_{t_0} \left| \frac{y}{x} \right| = +\infty$, alors Γ admet $(O, \vec{\jmath})$ pour direction asymptotique, et présente une branche parabolique de direction (Oy) .

$$\hookrightarrow$$
 Si $\lim_{t_0} \frac{y}{x} = a \in \mathbb{R}^*$, alors Γ admet une direction asymptotique de coefficient directeur a et : \Longrightarrow Si $\lim_{t_0} (y - ax) = \pm \infty$, Γ admet une branche parabolique dans la direction de $\Delta : y = ax$;

$$\rightarrow$$
 Si $\lim_{t \to \infty} (y - ax) = \pm \infty$, Γ admet une branche parabolique dans la direction de $\Delta : y = ax$;

$$\rightarrow$$
 Si $\lim_{t_0} (y - ax) = b \in \mathbb{R}$, Γ admet la droite d'équation $y = ax + b$ pour asymptote.

Remarque 4

 \bullet On précise la position de la Γ par rapport à une éventuelle asymptote en étudiant le signe de y(t) - ax(t) - b, à l'aide de développements limités ou de développements asymptotiques au voisinage de t_0 la plupart du temps.

Enveloppe d'une famille de droites 1.3

Définition 8

Soient I un intervalle de \mathbb{R} et $(D_t)_{t\in I}$ une famille de droites. On appelle enveloppe de la famille de droites $(D_t)_{t\in I}$, un arc paramétré (I,φ) tel que pour tout $t\in I$ la droite D_t soit tangente à l'arc paramétré en M(t).

Théorème 2

Soit une famille $(D_t)_{t\in I}$ de droites d'équation : a(t)x + b(t)y + c(t) = 0où $t \in I$, avec a, b et c des fonctions de classe C^1 sur I vérifiant :

$$\forall t \in I, \left| \begin{array}{cc} a(t) & b(t) \\ a'(t) & b'(t) \end{array} \right| \neq 0$$

Alors cette famille de droites admet une enveloppe paramétrée par (x=x(t),y=y(t)) où (x(t),y(t))est la solution du système :

$$\begin{cases} a(t)x + b(t)y + c(t) = 0\\ a'(t)x + b'(t)y + c'(t) = 0 \end{cases}$$

2 Propriétés métriques d'une courbe plane

Dans la suite du chapitre, on considère un arc paramétré (I, φ) de classe C^k , de support Γ , **régulier**, orienté dans le sens de t croissant. On choisit un point de Γ comme origine : $M_0 = M(t_0)$.

On notera $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^2 , c'est-à-dire $\forall (x,y) \in \mathbb{R}^2$, $\|(x,y)\| = \sqrt{x^2 + y^2}$.

2.1 Longueur d'un arc

Définition 9

Soit $(a,b) \in I^2$. La longueur de l'arc entre les points de paramètres a et b (avec a < b) est :

$$l_{a,b}(\varphi) = \int_a^b \|\varphi'(t)\| dt = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$$

2.2 Abscisse curviligne

Définition 10

On appelle abscisse curviligne de M(t) d'origine M_0 la longueur de l'arc $M_0M(t)$.

On la note s(t), et on a :

$$\forall t \in I, \qquad s(t) = \int_{t_0}^t \|\varphi'(u)\| \mathrm{d}u$$

On notera $ds = \|\varphi'(t)\| dt$.

Définition 11

On appelle paramétrage normal de Γ tout paramétrage (I,φ) tel qu'en tout point M(t) on ait :

$$\|\varphi'(t)\| = 1$$

Remarque 5

• Un paramétrage normal correspond à un parcours de Γ à une vitesse constante égale à 1.

Proposition 2

La courbe paramétrée définie par la fonction vectorielle $\zeta = \varphi \circ s^{-1} : s(I) \to \mathbb{R}^2$ (où s est l'abscisse curviligne d'origine M_0 sur Γ) a également pour support Γ , et son paramétrage est normal.

2.3 Repère de Frenet

Définition 12

On appelle:

- vecteur tangent unitaire en M(t) le vecteur $\overrightarrow{T} = \frac{\varphi'(t)}{\|\overrightarrow{\varphi'(t)}\|}$;
- vecteur normal unitaire en M(t) le vecteur \overrightarrow{N} directement orthogonal à \overrightarrow{T} ;
- normale à Γ en M(t) la droite passant par M dirigée par \overrightarrow{N} .
- Repère de Frenet en M(t) le repère orthonormé $(M, \overrightarrow{T}, \overrightarrow{N})$.

Proposition 3

Si s est l'abscisse curviligne (d'origine M_0), alors :

$$\overrightarrow{T} = \frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}s}$$

Remarque 6

•
$$\overrightarrow{T} \begin{pmatrix} a \\ b \end{pmatrix} \Rightarrow \overrightarrow{N} \begin{pmatrix} -b \\ a \end{pmatrix}$$
.

•
$$\|\overrightarrow{T}\| = 1 \Rightarrow 2\overrightarrow{T} \cdot \frac{\overrightarrow{dT}}{ds} = 0 \Rightarrow \overrightarrow{N}$$
 colinéaire à $\frac{\overrightarrow{dT}}{ds}$.

Attention!

En général
$$\overrightarrow{N} \neq \frac{\varphi''(t)}{\|\varphi''(t)\|}$$
.

Courbure et rayon de courbure 2.4

Théorème 3 Théorème de relèvement

Si $k \geq 2$, alors il existe une fonction α de classe C^1 sur I telle que :

$$\forall t \in I, \qquad \overrightarrow{T(t)} = \cos(\alpha(t))\overrightarrow{i} + \sin(\alpha(t))\overrightarrow{j}$$

Remarque 7

• La fonction α est appelée *inclinaison* car elle représente l'angle $(\vec{\imath}, \vec{T})$.

Formules de Frenet

On suppose $k \geq 2$; on considère un paramétrage normal de Γ (de paramètre s qui coïncide avec l'abscisse curviligne), et on se place en un point M(s) birégulier. Alors :

$$\frac{\overrightarrow{\mathrm{d}T}}{\mathrm{d}s} = \frac{\mathrm{d}\alpha}{\mathrm{d}s}\overrightarrow{N} = \gamma\overrightarrow{N} \qquad \text{et} \qquad \frac{\overrightarrow{\mathrm{d}N}}{\mathrm{d}s} = -\frac{\mathrm{d}\alpha}{\mathrm{d}s}\overrightarrow{T} = -\gamma\overrightarrow{T}$$

Définition 13

Avec les notations du théorème précédent :

- Le réel $\gamma = \frac{d\alpha}{ds}$ est appelé courbure de Γ en M• Le réel $R = \frac{1}{\gamma}$ est appelé rayon de courbure en M.
- On appelle centre de courbure en M le point Ω tel que $\overrightarrow{M\Omega} = R\overrightarrow{N}$.
- On appelle cercle de courbure en M le cercle de centre Ω de rayon |R|.
- On appelle développée d'un arc paramétré l'ensemble des centres de courbures en tout point de l'arc.

Théorème 5

La développée d'un arc paramétré est l'enveloppe des normales à l'arc.

Proposition 4

On note $\varphi = (x, y)$, avec x et y de classe C^2 .

Le rayon de courbure est donné par :

$$R = \frac{(x'^2 + y'^2)^{\frac{3}{2}}}{x'y'' - x''y'}$$

Le centre de courbure est donné par :

$$\begin{cases} X = x - \frac{y'(x'^2 + y'^2)}{x'y'' - x''y'} \\ Y = y + \frac{x'(x'^2 + y'^2)}{x'y'' - x''y'} \end{cases}$$