Chapter 33 – Forensics, Auditing, Logging

Wajih
University of Illinois
ECE 422/CS 461 – Fall 2019

Whoami

- 5th year Ph.D. student working with Prof. Bates
- Research Interests:
 - Threat Detection
 - Forensic Investigation

Digital Forensics

- Forensics –the use of science or technology to discover evidence for a court of law
- Digital forensics forensics relating to digital devices
- Usually trying to recreate a chain of events
- Used in both criminal and civil law

Daubert Standard

- Rules for scientific evidence
 - Admissibility of expert witness testimony.
- Judge is the ultimate "gatekeeper"
- Evidence must be relevant and reliable
 - Is the method subject to testing?
 - Are there established error rates?
 - Is it generally accepted by the community?
 - Has the technique been peer reviewed?

Collection/Acquisition

Preservation

Analysis

Presentation

Operating system: event logs, registry data

File system: access times, modification times

Disk: deleted files, hidden partitions

Internet: browser history, email

Media: photos, videos, audio

Documents: Office, PDFs, RTF, XML

Databases: MySQL, Oracle

Application data: instant messaging

Preservation Decision - Live Analysis

- When system is running, additional information can be collected
 - active connections
 - active processes
 - loaded kernel modules
 - open files
- Problems
 - analysis modifies state of system –
 - rootkits (or other modifications) can tamper with results

Preservation Decision - Live Analysis

- Physical (volatile) memory is also more persistent than one thinks
 - RAM taken out of computer and scanned for sensitive content

Lest We Remember: Cold Boot Attacks on Encryption Keys Usenix Security 2008

Preservation Decision – Dead Analysis

- Dead analysis image drives
 - bit-for-bit forensic duplicate using a write blocker
 - analysis can be conducted later
 - identify hidden or deleted files

FILE SYSTEM FORENSICS

Common File Systems

UFS: Unix File System

Ext[2,3,4]:
Extended file
system

FAT[12,16,32]: File Allocation Table

NTFS: New Technology File System

ReFS: Resilient File System

HFS[+]: Hierarchical File System

Common File Systems

UFS: Unix File System

Ext[2,3,4]:
Extended file
system

FAT[12,16,32]: File Allocation Table

NTFS: New Technology File System

ReFS: Resilient File System

HFS[+]: Hierarchical File System

NTFS Forensics

- To extract forensically relevant information such as
 - Deleted files
 - Event logs
- NTFS Basics:
 - Everything is a file, even the core file system internals
 - The internal files are always hidden from user view

Hidden Internal Files

Filename	Description
\$MFT	Master File Table
\$MFTMirr	Backup of first 4 records of MFT
\$LogFile	Transaction log file
\$Volume	Volume related information, usually empty
\$AttrDef	\$AttrDef Table listing MFT attribute names and numbers
	Root folder on NTFS
\$Bitmap	Map showing which clusters on volume are in use
\$Boot	Boot code used during bootstrap
\$BadClus	Map of bad clusters
\$Secure	Security descriptors and ACLs are listed here
\$Upcase	Keeps all lowercase to uppercase character mappings
\$Extend	Optional extensions listed here (This is a folder)

Physical Layout of NTFS Volume

Master Boot Record (MBR)

- Data structure stored on the first sector of the drive.
- Cross-platform industry standard for locating and booting disk partitions
- Used by BIOS/UEFI to boot (start) the OS
- Contains:
 - The partition table describing each partition
 - Boot loader code to fetch and execute a partition

Boot Sector

- Jump instruction to bootstrap code
- Data structures describing partition
 - Magic number (for NTFS)
 - Bytes per sector
 - Sectors per cluster
 - Sectors per track
 - Location of master file table (\$MFT) and mirror
 - Serial number, checksum
- Bootstrap code (loads operating system)

NTFS: Master File Table

- File/folder records are stored in \$MFT
- Records are 1 kb
- Records contain attributes that define the characteristics of a file, including the data itself

MFT File Record Attributes

- Attributes define the characteristics of a file, including the data
- Resident Attributes vs Non-resident Attributes

File Attributes

- Files in NTFS typically have the following attributes:
 - \$STANDARD_INFORMATION: Contains MAC times, security ID, Owners ID, permissions in DOS format, and quota data.
 - \$FILE_NAME: Contains the file name in UNICODE, as well as additional MAC times, and the MFT entry of the parent directory.
 - SOBJECT_ID: Identifiers regarding the files original Object ID, its birth Volume ID, and Domain ID.
 - \$DATA: The raw content data of the file.

Deleting a File

 When a file is deleted the IN_USE flag is cleared from the MFT entry, but the attribute contents still exist.

Can be used to recover path of deleted file.

Recovery with File Record

- File record intact.
- File contents intact.

Directories

- Directories in NTFS are indexed to make finding a specific entry in them faster
- They are stored in a B-Tree sorted in alphabetical order
- Some Attributes:
 - \$INDEX_ROOT: root of the B-Tree.
 - \$INDEX_ALLOCATION: sub-nodes of the B-Tree.
 - \$BITMAP: describes which structures in the B-Tree are being used.

FILE CARVING

File Carving

- Modern file systems tend to overwrite metadata for deleted files
- Recovery of files without file system metadata
- Can be done without any metadata
- Can carve many different kinds of media

Recovery vs. Carving

- Recovery: file system metadata are intact; use them to find file ("undelete")
- Carving: pulls the raw bytes from the media

Basic File Carving Techniques

- Header-footer carving
- File-structure-based carving
- Content-based carving

Header-Footer Carving

- Many file types have standard headers and footers stored inside
- Example: A JPEG starts with "Start of image" header 0xFFD8 and ends with "End of image" footer 0xFFD9
- Carve out everything between JPEG header and footer → image file

Carving a JPEG

Header-Footer Carving Problems

- Header or footer might be a common string.
 - E.g., the header of an MP3 is "mp"
 - Produces false positives
- The beginning of the file might be missing
 - If file was deleted, might get squashed by a newer file
- The footer might be missing
 - Big output!
- The disk could be fragmented

File Structure Carving

- Use internal layout of file if available
- Find cluster size
- Read entire cluster and hunt for internal signatures (in addition to header/footer)
- Example: Foremost, PhotoRec

Content-Based Carvers

- Look for statistical signatures indicating language or file content
- Machine-learning/statistic-based
- Semantic carvers

Slack Space

re-allocated cluster

- *Slack space*: leftover space after file contents in a cluster.
- Old file's data may remain in slack space.

WINDOWS REGISTRY FORENSICS

Registry: A Wealth of Information

Information that can be recovered include:

- System Configuration
- Devices on the System
- User Names
- Personal Settings and Browser Preferences
- Web Browsing Activity
- Files Opened
- Programs Executed

Registry Keys and Values

- Windows Registry is a binary key-value store that also supports subkeys
- A hierarchical database that maintains configuration settings for applications
- Typically there are five top-level entries, or "hives," in the registry

Hives

- HKEY_USERS: all actively loaded user profiles for the system
- HKEY_CURRENT_USER: actively loaded profile for logged-on user
- HKEY_LOCAL_MACHINE: "vast array" of configuration information for the system (hardware and software)
- HKEY_CURRENT_CONFIG: hardware profile used at startup
- HKEY_CLASSES_ROOT: configuration information related to which applications open which files

Registry Editor

Traces of User Log On/Off

- Last user to log in:
 - HKLM\SOFTWARE\Microsoft\Windows\Curren tVersion\Authentication\LogonUI\LastLoggedO nUser
- Last time the computer was shut down:
 - HKEY_LOCAL_MACHINE\SYSTEM\CurrentContr olSet\Control\Windows\ShutdownTime
- Last write time on the ntuser.dat file indicates last logout time.

Connection of USB Devices

- Recently connected USB devices are shown in HKLM\SYSTEM\CurrentControlSet\Enum\ USBSTOR
- Contains two levels of subkeys:
 - The device type (e.g., Cruzer micro 1 GB flash storage)
 - The instance ID (usually a serial number, but will be pseudorandom if no serial number is found)

WINDOWS EVENT LOGS

Event Logs

- Event Tracing for Windows (ETW)
 - Designed for performance debugging
 - But can be used for forensics
- Tracks events logged by applications and the system in separate log files in C:\Windows\system32\winevt\logs
- Contains information about some of the same events as the Registry

Attack Reconstruction using Logs

- Data Provenance
- Investigate suspicious file = malware.exe

Explorer, Spawns Chrome Chrome, Receives connection from xyz.com Chrome, Writes File malware.exe

Approaches to deal with encryption

Time stamp modification

Secure file systems

Hardware-based security solutions

Thank You