3050571 Practical Clin Data Sci

Session 7: Dimensionality reduction

February 13, 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Two primary branches of unsupervised learning

Dimensionality reduction

https://www.sc-best-practices.org/preprocessing_visualization/dimensionality_reduction.html

- Reduce dimension (number of features) while maintaining information
- Patient with <u>similar symptoms</u> also exhibit <u>similar lab tests</u> or have <u>similar</u> <u>demographics</u> or <u>similar medical history</u>

Digit datasets

UMAP captures every group in 2D

https://twitter.com/lkmklsmn/status/1436357177887895555

Both data source and digit identity can be distinguished

Fashion MNIST

https://github.com/zalandoresearch/fashion-mnist

https://pair-code.github.io/understanding-umap/

2D visualization for cell images

Principal component analysis (PCA)

Variance is information

https://shapeofdata.wordpress.com/2013/04/16/visualization-and-projection/

 High variances = more power to distinguish groups of data points

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d

PCA prioritizes directions with high variances

Source: the paleontological association

Interpretation of PCA result

https://twitter.com/lkmklsmn/status/1436357177887895555

- PC1 captures the variance between data sources
- PC2 somewhat captures the variance between digit identity

Interpreting loadings on individual PC

Exploring PCA results

- Color by feature values to understand how PCA group data points
- Color by potential confounding factors

PCA for dimensionality reduction

- By default, PCA retains the number of dimensions
- We can select only the first *k* PC for downstream analyses

Pros and cons of PCA

- Each PC can be interpreted from the loadings
- Highly correlated features tend to be grouped into the same PC
- PCA is a good initial dimensionality reduction step
- PCA strictly preserves Euclidean distance
 - But some datasets require different distance metric!

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Multidimensional Scaling (MDS)

Distances

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Pairwise distance matrix

	Α	В	С	D	E	F	G
Α							
В	19.00						
С	27.00	31.00					
D	8.00	18.00	26.00				
E	33.00	36.00	41.00	31.00			
F	18.00	1.00	32.00	17.00	35.00		
G	13.00	13.00	29.00	14.00	28.00	12.00	

http://www.slimsuite.unsw.edu.au/teaching/upgma/

Metric properties

- D(i, j) = distance between sample iand sample i
- D(i, i) = 0
- D(i, j) = 0 iff i = j
- D(i, j) = D(j, i)- $D(i, j) + D(j, k) \ge D(i, k)$

Non-metric

- Any user-defined dissimilarity
- D(i, j) != D(j, i)

Principal Coordinate Analysis (PCoA)

How to optimize a function?

- Find $(x_1, x_2, ..., x_n)$ that minimize $f(x_1, x_2, ..., x_n)$
- At minimum, the slope is zero in all directions
- Take derivative of each variable and set to zero

$$- \frac{\delta f}{\delta x_1} = 0$$

$$- \frac{\delta f}{\delta x_2} = 0$$

- *n* equations with *n* variables

https://es.mathworks.com/help/optim/ug/optimization-toolbox-tutorial.html

Gradient descent

- Slope tells us if the function is increasing or decreasing if we increase x_i
 - So, we can update x_i accordingly

Limitation of PCA and MDS

- A single definition of distance is used throughout the data space
- What if some data groups are noisier than the others?
 - Difference in data density

t-distributed stochastic neighbor embedding (*t*-SNE)

Measuring data density

- Distance to the k-th nearest neighbor reflects data density
 - Small distance in dense area
 - Large distance in sparse area

Probability of being a neighbor

score(o | o) = probability that o would pick o as neighbor under a **normal distribution** center at o

o = other data points

Same distance d normalized against density σ and distances to other nearby data points o

Finding the optimal projection for t-SNE

Probability of being a neighbor (Normal) (σ depend on density)

Probability of being a neighbor (t-distribution) $(\sigma = 1)$

Why *t*-distribution for the projection?

Impact of *t*-distribution

Maaten, L. and Hinton, G. J of Machine Learning Research 9:2579-2605 (2008)

Perplexity

- How many nearest neighbors to consider to normalize data density?
 - Perplexity parameters

Impact of perplexity

- Too small perplexity = a lot of scatted data groups
- Try varying the perplexity and identify patterns that consistently appear

Source: blog.paperspace.com/dimension-reduction-with-t-sne/

Pros and cons of *t*-SNE

- Capture neighbor relationship
- Normalize data density
- Recompute every time new data is added
- Lose long-range relationship
- Axes of the resulting projection have no meaning
 - Don't use t-SNE coordinates for clustering or interpretation

Uniform manifold approximation and projection (UMAP)

Two key assumptions

Chung, S. et al. "Classification and Geometry of General Perceptual Manifolds"

Ali, A. et al. IEEE Access PP(99):1 (2021)

- Data came from multiple manifolds
- Data points were sampled uniformly

Uniform sampling = similar distance to k-th neighbor

Adding uncertainty between faraway data points

Network representation of neighbor relationship

UMAP can capture long-range relationship

McInnes, L., Healy, J. and Melville, J. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction"

UMAP can transform new data points

UMAP presentation by Dr. McInnes

Pros and cons of UMAP

- Can capture long-range relationship
- Can be applied to new data points without recomputing
- Require strong assumptions

Customizing UMAP outputs

- Number of neighbors
 (n_neighbors) is perplexity
- Minimum distant for placing similar data point (min_dist) is for adjusting the scale of visualization

Source: https://pair-code.github.io/understanding-umap/

Any questions?

See you on February 15th