Diffusion model

Stéphane Nguyen

University of Geneva stephane.nguyen@etu.unige.ch

December 19, 2023

Overview

- Introduction
 - Generative modelling
 - Diffusion models
- 2 Theory
 - Forward & reverse process
 - Probability Flow ODE
 - Neural network preconditioning
- Models
 - U-Net
 - Our models
- Results
 - Results
- 6 Appendix

Data from noise?

Diffusion models

Figure: Iterative denoising process

Diffusion models

Figure: Pushing data towards high-density regions¹

Forward & reverse process

• Forward process: noise from data where p_{data} is unknown

$$x_i = y + \sigma_i \cdot z \sim p(x_i; \sigma_i), \quad y \sim p_{\mathsf{data}}, z \sim \mathcal{N}(0, \mathsf{Id})$$

Noise increases as time goes forward but i decreases.

Forward & reverse process

• Forward process: noise from data where p_{data} is unknown

$$x_i = y + \sigma_i \cdot z \sim p(x_i; \sigma_i), \quad y \sim p_{\mathsf{data}}, z \sim \mathcal{N}(0, \mathsf{Id})$$

Noise increases as time goes forward but *i* decreases.

 Reverse process: pushing data towards high-density regions using estimated noise level-dependent score functions

$$\nabla_x \log p(x; \sigma(t)), \quad \sigma(t_i) = \sigma_i$$

Noise decreases as time goes backward but *i* increases.

• Forward and reverse processes can be derived from continuous-time (stochastic) processes, solutions to forward and reverse-time (Stochastic) Differential Equations.

- Forward and reverse processes can be derived from continuous-time (stochastic) processes, solutions to forward and reverse-time (Stochastic)
 Differential Equations.
- We will only focus on the Probability Flow ODE [1, 2]

$$dx = -\dot{\sigma}(t)\sigma(t)\nabla_x \log p(x; \sigma(t))dt$$

where the schedule is set to $\sigma(t) = t$ to make "flow lines" more straight.

- Forward and reverse processes can be derived from continuous-time (stochastic) processes, solutions to forward and reverse-time (Stochastic)
 Differential Equations.
- We will only focus on the Probability Flow ODE [1, 2]

$$dx = -\dot{\sigma}(t)\sigma(t)\nabla_x \log p(x; \sigma(t))dt$$

where the schedule is set to $\sigma(t) = t$ to make "flow lines" more straight.

- Deterministic and stochastic samplers of the EDM paper [1].
 - ▶ Numerical ODE solvers (+ explicit Langevin-like correction [1, 2])

- Forward and reverse processes can be derived from continuous-time (stochastic) processes, solutions to forward and reverse-time (Stochastic) Differential Equations.
- We will only focus on the Probability Flow ODE [1, 2]

$$dx = -\dot{\sigma}(t)\sigma(t)\nabla_x \log p(x; \sigma(t))dt$$

where the schedule is set to $\sigma(t)=t$ to make "flow lines" more straight.

- Deterministic and stochastic samplers of the EDM paper [1].
 - ▶ Numerical ODE solvers (+ explicit Langevin-like correction [1, 2])
- Deterministic samplers generate different images for different initial conditions/noises.

Euler, Heun (actually RGK2)

Figure: Euler and Heun (actually RGK2) on an toy example. Heun uses the average of two slopes: current and next.

• Don't directly train for $\nabla_x \log p(x; \sigma(t))$ or a denoiser $D_\theta(x; \sigma)$.

- Don't directly train for $\nabla_x \log p(x; \sigma(t))$ or a denoiser $D_\theta(x; \sigma)$.
- Neural network F_{θ} trained to predict the scaled [negative] noise or scaled original image from a noisy image.

- Don't directly train for $\nabla_x \log p(x; \sigma(t))$ or a denoiser $D_\theta(x; \sigma)$.
- Neural network F_{θ} trained to predict the scaled [negative] noise or scaled original image from a noisy image.
- Denoiser:

$$D_{\theta}(x; \sigma) = c_{\mathsf{skip}}(\sigma)x + c_{\mathsf{out}}(\sigma)F_{\theta}(c_{\mathsf{in}}(\sigma)x; c_{\mathsf{noise}}(\sigma))$$

- If $c_{\text{skip}} = 0$, F_{θ} has to predict the scaled original image.
- If $c_{\mathsf{skip}} = 1$, F_{θ} has to predict the scaled [negative] noise.

$$c_{\mathsf{skip}}(\sigma) = \frac{\sigma_{\mathsf{data}}^2}{\sigma_{\mathsf{data}}^2 + \sigma^2}$$

- Don't directly train for $\nabla_x \log p(x; \sigma(t))$ or a denoiser $D_\theta(x; \sigma)$.
- Neural network F_{θ} trained to predict the scaled [negative] noise or scaled original image from a noisy image.
- Denoiser:

$$D_{\theta}(x; \sigma) = c_{\mathsf{skip}}(\sigma)x + c_{\mathsf{out}}(\sigma)F_{\theta}(c_{\mathsf{in}}(\sigma)x; c_{\mathsf{noise}}(\sigma))$$

- If $c_{\text{skip}} = 0$, F_{θ} has to predict the scaled original image.
- If $c_{\sf skip} = 1$, F_{θ} has to predict the scaled [negative] noise.

$$c_{\mathsf{skip}}(\sigma) = \frac{\sigma_{\mathsf{data}}^2}{\sigma_{\mathsf{data}}^2 + \sigma^2}$$

• Don't want the identity function for noise-level extremes.

Since

$$\nabla_x \log p(x; \sigma(t)) = \frac{D(x; \sigma) - x}{\sigma^2}$$

where $D(x; \sigma)$ is the optimal denoiser [1], we can go from F_{θ} to D_{θ} to the estimated $\nabla_x \log p(x; \sigma(t))$.

Since

$$\nabla_x \log p(x; \sigma(t)) = \frac{D(x; \sigma) - x}{\sigma^2}$$

where $D(x; \sigma)$ is the optimal denoiser [1], we can go from F_{θ} to D_{θ} to the estimated $\nabla_x \log p(x; \sigma(t))$.

Can get the slope to use in Euler or Heun methods!

$$\frac{dx}{dt} = -t\nabla_{x}\log p(x; \sigma(t))$$

$$slope = -\frac{D_{\theta}(x; \sigma) - x}{\sigma}$$
(1)

Since

$$\nabla_x \log p(x; \sigma(t)) = \frac{D(x; \sigma) - x}{\sigma^2}$$

where $D(x; \sigma)$ is the optimal denoiser [1], we can go from F_{θ} to D_{θ} to the estimated $\nabla_x \log p(x; \sigma(t))$.

Can get the slope to use in Euler or Heun methods!

$$\frac{dx}{dt} = -t\nabla_x \log p(x; \sigma(t))$$

$$slope = -\frac{D_{\theta}(x; \sigma) - x}{\sigma}$$
(1)

Need for dense prediction ⇒ U-Net architecture

Original U-Net for dense prediction [3]

Figure: Original U-Net architecture taken from their paper [3]

Except if otherwise mentionned, our models are U-Net's with self-attention mechanisms (mostly in low resolution layers) and conditional batch-norm. Down: avg pool, Up: nearest-interp. & 3×3 conv.

- Unconditional generation:
 - ► FashionMNIST, CIFAR-10: 1 model each
 - CelebA: 4 models: tiny no self attention, tiny, small, big

- Unconditional generation:
 - ► FashionMNIST, CIFAR-10: 1 model each
 - ► CelebA: 4 models: tiny no self attention, tiny, small, big
- Conditional generation with Classifier-Free Guidance (CFG)
 - FashionMNIST, CIFAR-10: 2 models each: one with and the other without self-attention

- Unconditional generation:
 - ► FashionMNIST, CIFAR-10: 1 model each
 - CelebA: 4 models: tiny no self attention, tiny, small, big
- Conditional generation with Classifier-Free Guidance (CFG)
 - FashionMNIST, CIFAR-10: 2 models each: one with and the other without self-attention
- Class-conditional models are sometimes trained with a special id to learn the unconditional score function.

- Unconditional generation:
 - ► FashionMNIST, CIFAR-10: 1 model each
 - CelebA: 4 models: tiny no self attention, tiny, small, big
- Conditional generation with Classifier-Free Guidance (CFG)
 - FashionMNIST, CIFAR-10: 2 models each: one with and the other without self-attention
- Class-conditional models are sometimes trained with a special id to learn the unconditional score function.
- CFG sampling is done by using a weighted sum of the unconditional and conditional score functions.

Results

Fréchet Inception Distance (FID). FashionMNIST

Class-conditional FID, cfg.scale 1					
	Train*	Val*	Test		
w/ self-attention	9.1676	10.5069	10.2580		
w/o self-attention	13.9130	15.0970	14.7425		
Unconditional FID					
	Train*	Val*	Test		
w/ self-attention	19.1392	20.1931	19.5964		

Fréchet Inception Distance (FID). CIFAR-10

Class-conditional FID, cfg.scale 2.5					
	Train*	Val*	Test		
w/ self-attention	20.4102	22.4736	22.5495		
w/o self-attention	22.7896	24.7956	24.3233		
Unconditional FID					
	Train*	Val*	Test		
w/ self-attention	28.5462	30.6864	30.6589		

Fréchet Inception Distance (FID). CelebA

Unconditional "tiny" model (30-35M params.)					
	Train*	Val*	Test		
w/ self-attention	22.0655	23.1863	21.8915		
w/o self-attention	26.6725	27.6983	26.3588		
Unconditional "small" model (80M params.)					
	Train*	Val*	Test		
w/ self-attention	17.8853	18.9739	18.2885		

Notes:

- w/ self-attention: not at each resolution level like FashionMNIST and CIFAR-10.
- Unconditional FID of the "big" model (81 M parameters) is not reported here.

Results with self-attention

Figure: FashionMNIST cfg.scale=1, 100 epochs, 50 Euler method steps

Results with self-attention

Figure: CIFAR-10 cfg.scale=2.5, 200 epochs, 50 Euler method steps

Results CelebA tiny

Figure: CelebA 35M parameters, 125 epochs, 50 stochastic Heun method steps

Other results

- https://github.com/Zenchiyu/diffusion
- https://github.com/Zenchiyu/diffusion/results

Demo

The End

A few design choices from the EDM paper [1]

Sampling

- ▶ Schedule $\sigma(t) = t$ and scaling s(t) = 1 to make "flow lines" more straight.
- ► More (time-)steps² when less noise, i.e. regions where Euler method would suffer

$$\left(\sigma_{\max}^{1/\rho} + \frac{i}{\mathit{N}-1} \left(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho}\right)\right)^{\rho}$$

Training

- Specific noise distribution (log-normal) to focus training effort on some noise levels.
- Network preconditioning
 - ▶ Ensure that the network is never asked to perform a trivial task
 - Control the magnitude that would immensely vary depending on noise level
 - Predict the noise or predict the image?
 - Re-scaling the input?

Output of the denoiser

• Slope directly points to the output of the denoiser for $\sigma(t) = t$, s(t) = 1.

$$\frac{dx}{dt} = -t\nabla_x \log p(x; \sigma(t))$$

$$slope = -\frac{D_\theta(x; \sigma) - x}{t}$$

$$D_\theta(x; \sigma) = x - t \cdot slope$$
(2)

References

Figures without references come from author of the slides.

[1] Karras, T., Aittala, M., Aila, T., and Laine, S. (2022)

Elucidating the Design Space of Diffusion-Based Generative Models. arxiv:2206.00364 [cs, stat]

[2] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021)

Score-Based Generative Modeling through Stochastic Differential Equations. arXiv:2011.13456 [cs, stat]

[2] Ronneberger, O., Fischer, P., and Brox, T. (2015)

U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs]