Principles and Practices of Data Science Lecture 7

Lecture 7: Bayes' Theorem and Applications

Sections

- 1. Probability of Events
- 2. Probability of Negation of Events
- 3. Probability of Intersection of Events
- 4. Probability of Union of Events
- 5. Independent Events
- 6. Independence and Probability
- 7. Introduction to Conditional Probabilities
- 8. Bayes' Theorem
- 9. Real-World Applications

1. Probability of Events

Brief Definition

• the extent to which an event is likely to occur, measured by the ratio of the favorable cases to the whole number of cases possible.

$$Probability of an event = \frac{Number of avorable cases}{Number of possible cases}$$

2. Probability of Negation of Events

Consider a sample space with an event A.

• the probability of any event in S to be a member of the sample space S is always 1.

$$P(S) = 1$$

- the negation of A, denoted \overline{A} , consists of all the cases in S that are not included in A.
- the probability of \overline{A} is the complement of the probability of A.

$$P(\bar{A}) + P(A) = 1$$

i.e.,

$$P(\bar{A}) = 1 - P(A)$$

3. Probability of Intersection of Events

Consider a sample space with events A and B.

- the shaded section of the Venn diagram below is the outcomes shared by events A and B.
- it is called intersection of events A and B.
- notation: A∩B.
- note that $A \cap B$ is equivalent to $B \cap A$.
- for independent events: $P(A \cap B) = P(A) P(B)$
- for dependent events: use the Bayes theorem

4. Probability of Union of Events

Consider a sample space with events A and B.

number of outcomes in a union of events?

$$P(AUB) \ge P(A) + P(B)$$

- outcomes in event A + outcomes in event B → double counting
- how to count?
 - count the number of outcomes in each event separately
 - subtract the number of outcomes shared by both events
- generalizing to probability:

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

5. Independent Events

Disjoint Events

Experiment: Rolling a single die

Event A: Get an odd number

Event B: Get an even number

$$P(A \cap B) = \emptyset$$
 (independent)

Overlapping Events

Experiment: Rolling a single die

Event A: Get a number over 3

Event B: Get an even number

$$(A \cap B) \neq \emptyset$$
 (dependent)

Definition:

Two events are independent \rightarrow occurrence of one event does not affect the chances of the occurrence of the other event. $P(A \cap B) = P(A)P(B)$

Independent Events (Cont.)

When are two events or random variables (statistically) independent?

- when the occurrence of one event (or random variable) does not affect the chances of the occurrence of the other event (or random variable)
- if knowing the value of one of them does not change the probabilities for the other one.

Mathematical Formulation:

```
If
P(A and B) = P(A)P(B)),
then A and B are independent.
```

Using conditional probability notation:

```
P(B=b \mid A=a) = P(B=b)

P(A=a \mid B=b) = P(A=a)

for all a,b
```

6. Independence and Probability

Independence and Probability

Conditional Probability:

- a probability where additional information is known.
- probabilities below are different:
 - P(team scoring better when coach randomly hired)
 - P(team scoring better when coach former olympian)
- the additional information (coach being a former olympian) changes the probability.
- if the additional information does not ultimately change the probability, then the two events are independent.

Probability of Winning a Match

Example of Dependent and Independent Events

← events A and B are independent.

← events A and B are dependent.

Can you guess why?

7. Introduction to Conditional Probabilities

Suppose we have 500 students in the building taking classes now.

probability of a student to be in our class now.

P(not this class) probability of a student not to be in our class now.

P(F | this class) probability of a student to be female given that the student is in our class now.

P(M | this class) probability of a student to be male given that the student is in our class now.

P(this class | F): probability of a student to be in our class now given that the student is female.

P(this class | M) probability of a student to be in our class now given that the student is male.

Suppose of all these students, 300 are females and 200 are males. Suppose we have 3 females and 10 males in class now. Let P(F)probability of a student to be female. P(M)probability of a student to be male. P(this class)

then:

P(F) = (297 + 3) / 500 = 0.6

P(M) = (190 + 10) / 500 = 0.4

P(this class) = (3 + 10) / 500 = 0.026

P(not this class) = (297 + 190) / 500 = 0.974

We can find:

 $P(F \mid this class) = ?$

P(M | this class) = ?

P(this class | F) = ?

P(this class | M) = ?

A Conditional Probability Example (Fever-Covid)

Suppose we have 14 patients in a clinic at a given day and time, such that:

- 6 patients are diagnosed with covid.
- 7 patients have fever.
- only 2 patients with covid have fever.
- 3 patients have neither covid nor fever.

		covid		
		Yes	No	row total
	Yes	2	5	2+5=7
fever		p=2/14	p=5/14	p=7/14
fe	No	4	3	4+3=7
		p =4/14	p=3/14	p=7/14
col total		2+4=6	5+3=8	
		p=6/14	p=8/14	

Probabilities:

P(fever & covid) = 2/14

P(fever & no covid) = 5/14

P(no fever & covid) = 4/14

P(no fever & no covid) = 3/14

More probabilities:

$$P(fever) = (2+5)/14$$

P(no fever) = (4+3)/14

$$P(covid) = (2+4)/14$$

P(no covid) = (5+3)/14

A Conditional Probability Example (Fever-Covid)(Cont.)

Let's calculate the conditional probability that a patient might not have covid but has fever,

given that we already know that the patient has fever.

P(no covid & fever | fever) = ?

		CO		
		Yes	No	row total
	Yes	2	5	2+5=7
fever		p=2/14	p=5/14	p=7/14
fe\	No	4	3	4+3=7
		p =4/14	p=3/14	p=7/14
col total		2+4=6	5+3=8	-
		p=6/14	p=8/14	

Solution:

• divide the 5 patients who have fever but do not have covid by the 7 people who have fever (i.e., scaling by fever)

P(no covid & fever | fever) =
$$5/(2+5) = 5/7 = 0.7143$$

Just for fun: divide both the numerator and the denominator by the total number of patients:

P(no covid & fever | fever) =
$$\frac{5}{2+5} = \frac{\frac{5}{14}}{\frac{2+5}{14}} = \frac{P(\text{no covid & fever})}{P(\text{fever})}$$

Eliminate redundancy:

$$P(\text{no covid} \mid \text{fever}) = \frac{P(\text{no covid \& fever})}{P(\text{fever})}$$

A Conditional Probability Example (Fever-Covid)(Cont.)

		CO		
		Yes	No	row total
fever	Yes	2	5	2+5=7
		p=2/14	p=5/14	p=7/14
	No	4	3	4+3=7
		p =4/14	p=3/14	p=7/14
col total		2+4=6	5+3=8	
		p=6/14	p=8/14	

P(no covid & fever | $\frac{\text{fever}}{\text{fever}}$) = ? \rightarrow scale by $\frac{\text{fever}}{\text{fever}}$

P(no covid & fever | fever) =
$$\frac{\text{N(no covid & fever)}}{\text{N(fever)}} = \frac{5}{7}$$

Let's divide both numerator and denominator by the total number of patients (14):

$$P(\text{no covid \& fever} \mid \text{fever}) = \frac{\frac{\text{N(no covid \& fever})}{14}}{\frac{\text{N(fever})}{14}} = \frac{\frac{5}{14}}{\frac{7}{14}} = \frac{P(\text{no covid \& fever})}{P(\text{fever})} = \frac{5}{7}$$

Eliminating redundancy:

P(no covid & fever | fever) = P(no covid | fever)

P(no covid | fever) =
$$\frac{P(\text{no covid \& fever})}{P(\text{fever})} = \frac{5}{7}$$

P(no covid & fever | no covid) = ? → scale by no covid

P(no covid & fever | no covid) =
$$\frac{\text{N(no covid & fever)}}{\text{N(no covid)}} = \frac{5}{8}$$

Let's divide both numerator and denominator by the total number of patients (14):

$$P(\text{no covid \& fever} \mid \text{no covid}) = \frac{\frac{N(\text{no covid \& fever})}{14}}{\frac{N(\text{no covid})}{14}} = \frac{\frac{5}{14}}{\frac{8}{14}} = \frac{P(\text{no covid \& fever})}{P(\text{no covid})} = \frac{5}{8}$$

Eliminating redundancy:

P(no covid & fever | no covid) = P(fever | no covid)

P(fever | no covid) =
$$\frac{P(\text{no covid \& fever})}{P(\text{no covid})} = \frac{5}{8}$$

P(no covid | fever) - P(fever) = P(fever | no covid) - P(no covid)

$$\frac{5}{7} \cdot \frac{7}{14} = \frac{5}{8} \cdot \frac{8}{14}$$

8. Bayes' Theorem

What Is Bayes' Theorem?

- Bayes' Theorem, named after 18th-century British mathematician Thomas Bayes, is a mathematical formula for determining conditional probability.
- describes the probability of an event, based on prior knowledge of conditions that might be related to the event
- conditional probability is the likelihood of an outcome occurring, based on a previous outcome having occurred in similar circumstances.
- Bayes' theorem provides a way to revise existing predictions or theories (update probabilities) given new or additional evidence.

Thomas Bayes (1701–1761)

Bayes' Theorem:

a mathematical formula for determining conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

where:

P(A) = probability of A occurring

P(B) = probability of B occurring

P(A|B) = probability of A given B

P(B|A) = probability of B given A

 $P(A \cap B)$ = probability of both A and B occurring

Example 1: Dangerous Fire and Smoke

We have the following statistics:

- dangerous fires are rare (1%)
- smoke is fairly common (10%) due to barbecues
- 90% of dangerous fires make smoke

What is the probability of a dangerous fire when there is smoke?

Solution:

We have:

```
P(S|DF) = 0.9 probability to find smoke given that we see a dangerous fire P(S) = 0.1 probability to find smoke P(DF) = 0.01 probability to find a dangerous fire P(DF|S) = ?
```

Using the Bayes' theorem, we have: P(DF|S) P(S) = P(S|DF) P(DF)

then: $P(DF|S) = P(S|DF) \frac{P(DF)}{P(S)} = 0.9 \frac{(0.01)}{0.1}$

= 0.09

Example 2: Picnic, Clouds and Rain

You are planning a picnic today, but the morning is cloudy.

We also know that:

- 50% of all rainy days start off cloudy!
- cloudy mornings are common (about 40% of days start cloudy)
- this is usually a dry month (only 3 of 30 days tend to be rainy, or 10%)

What is the chance of rain during the day?

Solution:

We have:

```
P(C|R) = 0.5 probability to have clouds given that it rains during the day P(C) = 0.4 probability to have a cloudy day P(R) = 0.1 probability to have a rainy day P(R|C) = ? probability to have a rainy day given that we see clouds
```

Using the Bayes' theorem, we have: P(R|C) P(C) = P(C|R) P(R)

```
then:
```

```
P(R|C) = P(C|R) P(R) / P(C)
= 0.5 (0.1) / 0.4
= 0.125
```

Example 3: The Cookie Problem

- suppose there are two bowls of cookies:
 - bowl 1: 30 vanilla cookies and 10 chocolate cookies.
 - bowl 2: 20 of each.
- you choose one of the bowls at random and select a cookie at random:
 - suppose the cookie is vanilla.
- question:
 - what is the probability that it came from bowl 1?
- this is a conditional probability.
- we want P(bowl 1 | vanilla), but it is not obvious how to compute it.
- a different question would be the probability of a vanilla cookie given Bowl 1
 - that would be easy: P(vanilla | bowl 1) = 30/40
- P(A|B) is not the same as P(B|A)
- there is a way to get from one to the other: Bayes' theorem.

Solution to the cookie problem:

data:

bowl 1: 30 vanilla cookies and 10 chocolate cookies.

bowl 2: 20 of each.

vanilla cookie chosen.

question:

what is the probability that it came from bowl 1? ← hypothesis

Bayes' theorem:

$$P(bowl \ 1 \mid vanilla) = \frac{P(bowl \ 1) P(vanilla \mid bowl \ 1)}{P(vanilla)}$$

P(bowl 1) = probability that we chose bowl 1, unconditioned by what kind of cookie we got. <math>P(bowl 1) = 1/2.

P(vanilla | bowl 1): probability of getting a vanilla cookie from bowl 1, which is 30/40 = 3/4.

P(vanilla): This is the probability of drawing a vanilla cookie from either bowl. P(vanilla) = 50/80 = 5/8.

$$P(bowl\ 1 \mid vanilla) = \frac{P(bowl\ 1)\ P(vanilla \mid bowl\ 1)}{P(vanilla)} = \frac{(1/2)*(30/40)}{50/80} = \frac{3}{5}$$

vanilla cookie is evidence in favor of the hypothesis that we chose bowl 1, because vanilla cookies are more likely to come from bowl 1.

Example 4: Medical Tests

Given the following confusion matrix obtained from a medical test:

		Test Result		
		Neg	Pos	totals
Actual	Neg	5	2	7
	Pos	1	2	3
	totals	6	4	

		Test Result		
		Neg	Pos	totals
Actual	Neg	TN	FP	7
	Pos	FN	TP	3
	totals	6	4	

```
N_{actualneg} = 7
N_{actualpos} = 3
N_{testneg} = 6
N_{testpos} = 4

P(TestNeg) = 6/10
P(TestPos) = 4/10
```

1. Compute:

P(ActualNeg | TestNeg)
P(ActualNeg | TestPos)

Solution:

P(ActualNeg | TestNeg) = N(ActualNeg & TestNeg) / N(TestNeg)
= P(ActualNeg & TestNeg) / P(TestNeg)
= 5 / 6

P(ActualNeg | TestPos) = N(ActualNeg & TestPos) / N(TestPos)
= P(ActualNeg & TestPos) / P(TestPos)
= 2 / 4

2. Compute P(ActualNeg):

Solution:

```
P(ActualNeg) = P(ActualNeg | TestNeg) P(TestNeg) +
P(ActualNeg | TestPos) P(TestPos)
= (5/6) (6/10) + (2/4) (4/10)
= 7/10
```

But a faster way would have been:

```
P(ActualNeg) = N_{actualneg} / N_{totalpatients} = 7/10
```

Exercises:

- What is the equation for P(ActualPos | TestNeg) ?
- 2. What is the equation for P(ActualPos | TestPos) ?
- 3. What is the equation for P(ActualPos)?

Bayes' Theorem and Artificial Neural Networks

Bayesian Networks:

- Bayes' theorem can also be applied to Artificial Neural Networks.
- called Bayes networks, Bayes nets, belief networks, or decision networks.
- each node corresponds to a random variable.
- each edge represents the conditional probability for the corresponding random variables.
- Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor.

Example:

- a Bayesian network could represent the probabilistic relationships between diseases and symptoms.
- given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Naive Bayesian Networks:

- a restricted/constrained form of a general Bayesian network.
- enforce the constraint that the class node should have no parents and that the nodes corresponding to the attribute variables should have no edges between them.

9. Real-World Applications

Test Accuracy

Example:

A certain test for allergy is said to be 90% accurate.

What does this have to do with conditional probability?

Consider four groups of people:

- people with the allergy who test positive for the allergy (true positive).
- people with the allergy who test negative for the allergy (false negative).
- people without the allergy who test positive for the allergy (false positive).
- people without the allergy who test negative for the allergy (true negative).

If a test is 90% accurate, it implies that:

• if a person has the allergy, 90% of the time they will receive a positive test result.

P(positive | allergy) = 90%

• if a person does not have the allergy, 90% of the time they will receive a negative test result.

P(negative | no allergy) = 90%

Accuracy Test for Allergy

Real-World Applications (Cont.)

Spam Emails

Example:

- 10% of the emails that a person receives are spam emails.
- spam filter catches spam 95% of the time.
- spam filter misidentifies non-spam as spam 2% of the time.

Let:

A: event that an email is spam.

B: event that the spam filter identifies the email as spam.

P(A) is the probability that a random email is spam.

P(A|B) is the probability that a spam email gets identified as spam.

P(B'|A') is the probability that a non-spam email does not get identified as spam.

Find P(A): P(A) = 10%

Find P(B|A): P(B|A) = 95%

Find P(B'|A'): P(B'|A') = 98%

Accuracy of Spam Filter

End of Lecture