

Universidad Nacional de Ingeniería

Facultad de Ciencias Escuela Profesional de Matemática

INTRODUCCION A ECUACIONES DIFERENCIALES ORDINARIAS CM-2G2A

EXAMEN PARCIAL -2021-1

Pregunta 1.- Determine las Isoclinas y represente gráficamente el campo direccional de la solución en $-\infty < x < \infty$, para la siguiente Ecuación

$$\frac{dy}{dx} = y - x^2 + 2x - 2, \quad -\infty < x < \infty.$$

Pregunta 2.-Sea el conjunto abierto $\Omega \subset \Re^2$

$$(PVI) \begin{cases} \frac{dy}{dx} = f(x, y), & (x, y) \in \Omega \subset \Re^2 \\ f(x, y) = \frac{2x - y}{x}, & (x_0, y_0) = (1, 2) \end{cases}$$

- a) Encuentre la función $\varphi(x)$ que converge a la solución del problema de Cauchy (PVI) en el intervalo $[x_0, x)$, donde $x_0 < x$, tales que satisface las condiciones de existencia y unicidad de solución del PVI.
- b) Grafique el comportamiento de la curva solución y de la convergencia de $\varphi(x)$ en el intervalo $I=[x_0,x),\ I\subset\Re$.

Pregunta 3.- Sea la siguiente ecuación

$$y''+p(x)y'+q(x)y=0$$
, (*)

Si $y_1(x) \neq 0$, continua en $I \subset \Re y$, es solución L..I de la ecuación (*).

- a) Encuentre h(x) tal que $y_2(x) = h(x)y_1(x)$, es solución L.I. de (*).
- b) Justificar Si $y(x) = c_1 y_1(x) + c_2 y_2(x)$ satisface a la ecuación dada.
- c) $W[y_1(x), y_2(x)] \neq 0$ será condición suficiente o necesaria para decir que, $\{y_1, y_2\}$ son linealment e independientes? justifique su respuesta con un ejemplo.

Pregunta 4.-Considere el siguiente PVI

$$(PVI) \begin{cases} x'(t) + y'(t) + y(t) = e^{-t} \\ 2x'(t) + y'(t) + 2y(t) = sent \\ C..I. x(0) = -2, \ y(0) = 1, \end{cases}$$

Encuentre la solución del PVI mediante Transformada de Laplace y otro método alternativo. Compare ambas alternativas.

Lima, 01 de junio del 2021

Los Profesores del curso