Math 69: Logic Abelian Groups

Amittai Siavava 02/26/2023

Abstract

This paper explores what the theory of abelian groups can tell us about completeness.

Contents

1.	Preliminary Questions	3
1.1.	Axiomatizing Abelian Groups	3
1.2.	Existence of \mathbb{Q} -vector space structures	4
1.3.	Axiomatizing Abelian Groups Wherein Each Element Other Than the Identity Has Order 2	4

1. Preliminary Questions

For this problem, we will start with the following definitions. An element g of a group G has order n if n is the smallest positive natural number such that

$$ng = \underbrace{g + \ldots + g}_{n \text{ times}} = 0.$$

For example, g has order 2 if $g \neq 0$ and g + g = 0.

An element is said to be *torsion free* if it does not have order n for any $n \in \mathbb{N}$ with n > 0. A group is said to be *torsion free* if each of its elements, other than the identity, is torsion free.

Lastly, we say that a group G is divisible if for each $g \in G$ and $n \in \mathbb{N}$ with n > 0, there exists $h \in G$ such that

$$nh = \underbrace{h + \ldots + h}_{n \text{ times}} = g.$$

1.1. Axiomatizing Abelian Groups.

Define a language \mathcal{L} and a set of axioms Σ such that any model that satisfies Σ is an abelian group. Next, define a set of axioms T such that any model which satisfies $\Sigma \cup T$ is a divisible torsion free abelian group.

Using additive notation for groups, we define \mathcal{L} to specify group operation (+) and the group identity, 0. We also define element equality in the group as a two-place predicate. Precisely, two elements g and h in the group are considered equal if and only if g + x = h + x for every other element x in the group.

Thus, if $\mathfrak A$ is a model for $\mathcal L$, then

$$(=^{\mathfrak{A}}) = \{(g,h) \mid \forall x(g+x=h+x)\}.$$

For convenience, we also define the two-place predicate symbol "#" to be an abbreviation such that:

$$(x \neq y) = \neg(x = y).$$

We define \mathcal{L} to contain the following symbols:

$$\mathcal{L} = \langle 0, +, = \rangle \tag{1.1}$$

We define Σ to contain the following axioms:

$$\forall g((g+0)=g) \tag{1.2}$$

$$\forall g \,\forall h \,((g+h) = (h+g)) \tag{commutativity}$$

$$\forall g \,\forall h \,\forall i \,((g+(h+i))=((g+h)+i)) \tag{associativity}$$

$$\forall g \,\exists h \,((g+h)=0) \tag{existence of inverses}$$

We define T to contain the following axioms, which my must be satisfied *in addition to* the axioms in Σ for any model to be a divisible torsion-free abelian group:

$$\forall g \,\forall n \,((g \neq 0) \land (0 < n) \rightarrow (ng \neq 0)) \tag{torsion-free}$$

$$\forall g \ \forall n \ \exists h, ((n \neq 0) \rightarrow (g = nh))$$
 (divisibility) (1.7)

1.2. Existence of \mathbb{Q} -vector space structures.

Show that any divisible torsion free abelian group has a Q-vector space structure.

Hint: Show that if G is such a group, $n \in \mathbb{N}$ with n > 0 and $g \in G$ then there is a unique $h \in G$ such that nh = g. Note that to show there is a \mathbb{Q} -vector space structure, you must define scalar multiplication (and prove it is well-defined).

1.2.1. Definition of Scalar Multiplication.

For any group element $h \in G$ and a scalar $n \in \mathbb{N}$, we define the scalar multiplication of h by n to be the unique element $g \in G$ such that

$$g = \underbrace{h + \ldots + h}_{n \text{ times}}$$

1.3. Axiomatizing Abelian Groups Wherein Each Element Other Than the Identity Has Order 2.

Define a set of axioms S such that any model that satisfies $\sigma \cup S$ is an abelian group in which each element other than the identity has order two. Can we give a model for $\Sigma \cup S$ a vector space structure? Hint: Be creative in your choice of the scalar field.