Multiple testing in latent variable models

Brice Ozenne^{1,2}, Esben Budtz-Jørgensen², Sebastian Elgaard Fhert¹

ISCB40 - July 16th 2019

¹ Neurobiology Reasearch Unit, Rigshospitalet, Copenhagen, Denmark. ² University of Copenhagen, Section of Biostatistics, Copenhagen, Denmark.

Typical neuroimaging study (Ebert et al., 2019)

Association study:

 After a mild traumatic brain injury, is there a neuroinflammatory response in the brain?

Many measurements, few subjects:

- SPECT scan: TSPO measurements over the whole brain
- 22 healthy controls and 14 patients

Often, some complications:

genetic factors can influence the TSPO measurements

Processed data "averaged" over individuals

Dimension reduction: 9 ROIs

Corpus Callosum (white), thalamus (grey), and pons (black).

Latent variable models (LVM)

We have:

- measurements in 9 brain regions $\mathbf{Y} = (Y_1, \dots, Y_9)$
- 2 covariates $\mathbf{X} = (X_1 = group, X_2 = gene)$
- 1 latent variables η modeling the individual TSPO level

Latent variable models (LVM)

We have:

- measurements in 9 brain regions $\mathbf{Y} = (Y_1, \dots, Y_9)$
- 2 covariates $\mathbf{X} = (X_1 = group, X_2 = gene)$
- 1 latent variables η modeling the individual TSPO level

We define our LVM using

a measurement model:

$$\forall r \in \{1, \dots, 9\}, \qquad Y_{ir} = \nu_r + \eta_i \lambda_r + \boldsymbol{X}_i K_r + \varepsilon_{ir}$$
 where $(\varepsilon_{i1}, \dots, \varepsilon_{i9}) \sim \mathcal{N} \begin{pmatrix} 0, \begin{bmatrix} \sigma_{\varepsilon_1}^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_{\varepsilon_9}^2 \end{bmatrix} \end{pmatrix}$

a structural model:

$$\eta_i = \alpha + \zeta_i$$
, where $\zeta_i \sim \mathcal{N}\left(0, \sigma_{\zeta}^2\right)$

Latent variable models (LVM)

We have:

- measurements in 9 brain regions $\mathbf{Y} = (Y_1, \dots, Y_9)$
- 2 covariates $\mathbf{X} = (X_1 = group, X_2 = gene)$
- 1 latent variables η modeling the individual TSPO level

We define our LVM using

a measurement model:

$$orall r \in \{1, \dots, 9\}, \qquad Y_{ir} = \nu_r + \eta_i \lambda_r + \boldsymbol{X}_i K_r + \varepsilon_{ir}$$
 where $(\varepsilon_{i1}, \dots, \varepsilon_{i9}) \sim \mathcal{N} \left(0, \begin{bmatrix} \sigma_{\varepsilon_1}^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix} \right)$

a structural model:

$$\eta_i = \alpha + \zeta_i$$
, where $\zeta_i \sim \mathcal{N}\left(0, \sigma_\zeta^2\right)$

• identifiability constrains, e.g. $\nu_1 = 0$, $\lambda_1 = 1$.

Path diagram

Clinical hypotheses

Is there any effect at all of concussion?

$$(\mathcal{H}_0^a): k_1 = k_2 = \ldots = k_9 = 0$$

In which region is there an effect of concussion?

$$(\mathcal{H}_0^{b1}): k_1 = 0$$

$$(\mathcal{H}_0^{b9}): k_9 = 0$$

Easy. Estimate the LVM by maximum likelihood (ML):

- $\hat{\Theta}$: ML estimate of the model parameters
- $\hat{\Sigma}_{\hat{\triangle}}$: Estimate of the variance-covariance of the model parameters
- C: Contrast matrix

Wald test:

Introduction

$$\left(C\hat{\Theta}\right)^{\mathsf{T}}\left(C\hat{\Sigma}_{\hat{\Theta}}C^{\mathsf{T}}\right)^{-1}\left(C\hat{\Theta}\right)\xrightarrow[n\to\infty]{}\chi_r^2$$

data: chisq = 24.193, df = 9, p-value = 0.004006

Introduction 000

Test several clinical hypotheses

Introduction 000

Test several clinical hypotheses

Introduction 000

Test several clinical hypotheses

Notations

We consider the contrast matrix C such that we want to test:

$$C\Theta = \mathbf{0}$$
 = (k_1, \ldots, k_9)

and denote the vector of Wald statistics by:

$$\mathbf{T} = diag(C\Sigma_{\hat{\Theta}}C^{\mathsf{T}})^{-\frac{1}{2}}C\Theta \qquad \qquad = \left(\frac{k_1}{\sigma_{k_1}}, \dots, \frac{k_9}{\sigma_{k_9}}\right)$$

From maximum likelihood theory, we know that:

$$\sqrt{n}\left(\hat{\Theta} - \Theta\right) \overset{d}{\sim} \mathcal{N}\left(0, \mathcal{I}_1(\Theta)^{-1}\right)$$

where $(n\mathcal{I}_1(\Theta))^{-1} = \Sigma_{\hat{\Theta}}$ in correctly specified models.

The vector of Wald statistics is asymptotically normally distributed:

$$\sqrt{n} \; \boldsymbol{\mathsf{T}} \; \mathop{\sim}\limits_{\mathcal{H}_0}^d \mathcal{N} \left(\boldsymbol{0}, \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{T}}} \right)$$

with
$$\Sigma_{\mathbf{T}} = f(C, \mathcal{I}_1(\Theta))$$

Max test procedure (Hothorn et al., 2008)

The vector of Wald statistics is asymptotically normally distributed:

$$\sqrt{n} \; \mathbf{T} \overset{d}{\underset{\mathcal{H}_0}{\sim}} \mathcal{N} \left(0, \Sigma_{\mathbf{T}} \right)$$

with
$$\Sigma_T = f(C, \mathcal{I}_1(\Theta))$$

We define

- the max statistic: $|T|_{max} = max(\mathbf{T})$
- the observed max statistic: $|t|_{max}$ (e.g. t_1)

We obtain an adjusted p-value for the largest observed T-statistic by computing (under the null):

$$1 - \mathbb{P}\left[|T|_{max} < |t|_{max}\right]$$

Computation of $\mathbb{P}\left[|T|_{ extit{max}} < |t|_{ extit{max}} ight]$ using <code>mvtnorm</code>

Black thick line: $|t|_{max}$

Simulation study

Simulation study

Handling small sample size

Back to univariate linear regression

For the Wald test, asymptotically:

$$rac{\hat{ heta}}{\hat{\sigma}_{\hat{ heta}}} = rac{\hat{ heta}}{\sqrt{(X^\intercal X)^{-1}\hat{\sigma}^2}} \underset{\mathcal{H}_0}{\sim} \mathcal{N}\left(0,1
ight)$$

where ^ stands for the maximum likelihood estimate (MLE).

Back to univariate linear regression

For the Wald test, asymptotically:

$$rac{\hat{ heta}}{\hat{\sigma}_{\hat{ heta}}} = rac{\hat{ heta}}{\sqrt{(X^{\intercal}X)^{-1}\hat{\sigma}^2}} \underset{\mathcal{H}_0}{\sim} \mathcal{N}\left(0,1
ight)$$

where ^ stands for the maximum likelihood estimate (MLE).

Standard corrections:

(A) correct finite sample bias of MLE:

$$\hat{\sigma}^{2,c} = \frac{n}{n-p} \hat{\sigma}^2$$

- (B) use a t-distribution.
- (C) correct the degrees of freedom: n p instead of n.

(A) bias correction in LVM (1/2)

Denoting the observed residuals:

$$\xi_i(\hat{\Theta}) = \mathbf{Y}_i - \mu(\hat{\Theta})$$

their variance is smaller than the (true) conditional variance of Y:

$$\mathbb{E}\left[\xi_i(\hat{\Theta})^\mathsf{T}\xi_i(\hat{\Theta})\right] = \Omega(\Theta) - \Psi_i + o_p(n^{-1})$$

where Ψ_i is the first order bias:

$$\Psi_i = \frac{\partial \mu(\Theta)}{\partial \Theta}^\mathsf{T} \Sigma_{\hat{\Theta}} \frac{\partial \mu(\Theta)}{\partial \Theta}$$

and
$$\mu(\Theta) = \mathbb{E}[\mathbf{Y}|\mathbf{X}], \ \Omega(\Theta) = \mathbb{V}ar[\mathbf{Y}|\mathbf{X}].$$

(A) bias correction in LVM (1/2)

Denoting the observed residuals:

$$\xi_i(\hat{\Theta}) = \mathbf{Y}_i - \mu(\hat{\Theta})$$

their variance is smaller than the (true) conditional variance of Y:

$$\mathbb{E}\left[\xi_i(\hat{\Theta})^\mathsf{T}\xi_i(\hat{\Theta})\right] = \Omega(\Theta) - \Psi_i + o_p(n^{-1})$$

where Ψ_i is the first order bias:

$$\Psi_{i} = \frac{\partial \mu(\Theta)}{\partial \Theta}^{\mathsf{T}} \Sigma_{\hat{\Theta}} \frac{\partial \mu(\Theta)}{\partial \Theta}$$

and
$$\mu(\Theta) = \mathbb{E}\left[\mathbf{Y}|\mathbf{X}\right]$$
, $\Omega(\Theta) = \mathbb{V}$ ar $\left[\mathbf{Y}|\mathbf{X}\right]$.

Example:
$$Y_i = \beta X_i + \varepsilon_i$$
, with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\hat{\Psi}_i = \hat{\sigma}^2 \frac{p}{n}$$

(A) bias correction in LVM (2/2)

Handling small sample size

Assuming that $\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}(\hat{\Theta})^{\mathsf{T}}\xi_{i}(\hat{\Theta})\right|$ and $\Omega(\Theta)$ are subject to the same type of bias

• we can use $\hat{\Psi} = \frac{1}{n} \sum_{i=1}^{n} \hat{\Psi}_{i}$ to correct $\hat{\Omega}(\Theta)$

(A) bias correction in LVM (2/2)

Assuming that $\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}(\hat{\Theta})^{\mathsf{T}}\xi_{i}(\hat{\Theta})\right|$ and $\Omega(\Theta)$ are subject to the same type of bias

- we can use $\hat{\Psi} = \frac{1}{n} \sum_{i=1}^{n} \hat{\Psi}_{i}$ to correct $\hat{\Omega}(\Theta)$
- and the new Ω(Θ) to better estimate Σ_Â and Ψ

$$\Psi_{i}(\Omega(\Theta)) = \frac{\partial \mu(\Theta)}{\partial \Theta}^{\mathsf{T}} \Sigma_{\hat{\Theta}}(\Omega(\Theta)) \frac{\partial \mu(\Theta)}{\partial \Theta}$$

(A) bias correction in LVM (2/2)

Assuming that $\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\xi_{i}(\hat{\Theta})^{\mathsf{T}}\xi_{i}(\hat{\Theta})\right]$ and $\Omega(\Theta)$ are subject to the same type of bias

- we can use $\hat{\Psi} = \frac{1}{n} \sum_{i=1}^{n} \hat{\Psi}_{i}$ to correct $\hat{\Omega}(\Theta)$
- and the new $\hat{\Omega}(\Theta)$ to better estimate $\Sigma_{\hat{\Theta}}$ and Ψ

Example: $Y_i = \beta X_i + \varepsilon_i$, with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\hat{\Psi}_i = \hat{\sigma}^2 \frac{p}{n}$$
 and $\tilde{\sigma}^2 = \hat{\sigma}^2 + \hat{\Psi} = \left(1 + \frac{p}{n}\right)\hat{\sigma}^2$

Iterating the procedure gives:

$$\tilde{\sigma}^{\infty} = \sum_{k=0}^{\infty} \left(\frac{p}{n}\right)^k \hat{\sigma}^2 = \frac{n}{n-p} \hat{\sigma}^2$$

Simulation study

Application

	no correction	permutations ¹	small sample correction
(\mathcal{H}_0^a) : p-value	0.004	0.0166	0.011

		p-value (with small sample correction)		
region	effect (%)	unadjusted	Bonferroni	max-test
thalamus	12.75	0.23	1.00	0.53
pallidostriatum	12.03	0.18	1.00	0.43
neocortex	4.38	0.60	1.00	0.97
midbrain	10.40	0.22	1.00	0.51
pons	1.56	0.86	1.00	1.00
cingulate gyrus	17.28	0.03	0.30	0.11
hippocampus	12.64	0.14	1.00	0.36
supramarginal gyrus	5.22	0.55	1.00	0.94
corpus callosum	19.02	0.03	0.23	0.09

 $^{^1}$ $\,$ $\,$ 10 000 samples, false cv 0.13%, CPU time \approx 1h

LVM are a flexible framework to analyze regional imaging data:

R package lava

We propose inference tools in the R package lavaSearch2:

- inference in small samples (not perfect but better than lava)
- adjustment for multiple comparisons (via mvtnorm)

Extention

Investigate model misspecification using score tests

- adjustment for multiple comparisons
- max-test procedure for score statistics

Extention

Investigate model misspecification using score tests

- adjustment for multiple comparisons
- max-test procedure for score statistics

Extention

Investigate model misspecification using score tests

- adjustment for multiple comparisons
- max-test procedure for score statistics

Reference I

- Ebert, S. E., Jensen, P., Ozenne, B., Armand, S., Svarer, C., Stenbaek, D. S., Moeller, K., Dyssegaard, A., Thomsen, G., Steinmetz, J., Forchhammer, B. H., Knudsen, G. M., and Pinborg, L. H. (2019). Molecular imaging of neuroinflammation in patients after mild traumatic brain injury; a longitudinal 123i-clinde spect study. *European Journal of Neurology*.
- Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical journal*, 50(3):346–363.
- Wei, B.-C., Hu, Y.-Q., and Fung, W.-K. (1998). Generalized leverage and its applications. *Scandinavian Journal of statistics*, 25(1):25–37.

Generic LVM

a measurement model:

$$m{Y}_i = m{
u} + m{\eta}_i \Lambda + m{X}_i K + m{arepsilon}_i$$
, where $m{arepsilon}_i \sim \mathcal{N}\left(0, \Sigma_{arepsilon}
ight)$

a structural model:

$$oldsymbol{\eta}_{i} = oldsymbol{lpha} + oldsymbol{\eta}_{i} \mathcal{B} + oldsymbol{X}_{i} \Gamma + oldsymbol{\zeta}_{i}, ext{ where } oldsymbol{\zeta}_{i} \sim \mathcal{N}\left(0, \Sigma_{\zeta}
ight)$$

• identifiability constrains, e.g. $\nu_1=0$, $\lambda_1=1$, $diag(B)=\mathbf{0}$

Generic LVM - illustration

IVM as a Gaussian model

$$\boldsymbol{Y}_{i}|\boldsymbol{X}_{i} \sim \mathcal{N}\left(\mu(\Theta, \boldsymbol{X}_{i}), \Omega(\Theta)\right)$$

with a specific structure for the conditional mean:

$$\mu(\Theta, \mathbf{X}_i) = \nu + \alpha(1 - B)^{-1}\Lambda + \mathbf{X}_i\Gamma(1 - B)^{-1}\Lambda + \mathbf{X}_iK$$

and the conditional variance:

$$\Omega(\Theta) = \Lambda^{\mathsf{T}} (1 - B)^{-\mathsf{T}} \Sigma_{\zeta} (1 - B)^{-1} \Lambda + \Sigma_{\varepsilon}$$

Note:

$$\mathcal{I}_{1}(\theta, \theta') = \frac{1}{2} tr \left(\Omega(\Theta)^{-1} \frac{\partial \Omega(\Theta)}{\partial \theta} \Omega(\Theta)^{-1} \frac{\partial \Omega(\Theta)}{\partial \theta'} \right) + \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \mu(\Theta)}{\partial \theta} \Omega(\Theta)^{-1} \frac{\partial \mu(\Theta)}{\partial \theta'}^{\mathsf{T}}$$

(B) Satterthwaite approximation

We model the distribution of the variance of our estimator:

$$k\hat{\sigma}_{\hat{\theta}}^2 \sim \chi^2(df)$$

We identify k and df using the method of moments:

$$\mathbb{E}\left[k\hat{\sigma}_{\hat{\theta}}^{2}\right] = \mathbb{E}\left[\chi^{2}(df)\right] = df$$

$$\mathbb{V}ar\left[k\hat{\sigma}_{\hat{\theta}}^{2}\right] = \mathbb{V}ar\left[\chi^{2}(df)\right] = 2df$$

i.e.

$$df = 2rac{\mathbb{E}\left[\hat{\sigma}_{\hat{ heta}}^2
ight]^2}{\mathbb{V}\textit{ar}\left[\hat{\sigma}_{\hat{ heta}}^2
ight]}$$

We can relate the estimated variance of our estimator to the model parameters:

$$\hat{\sigma}_{\hat{\theta}} = f(\hat{\Theta})$$

We can relate the estimated variance of our estimator to the model parameters:

$$\hat{\sigma}_{\hat{\theta}} = f(\hat{\Theta})$$

Estimates from maximum likelihood estimator satisfies:

$$\textit{n}^{1/2}(\hat{\Theta} - \Theta) \sim \mathcal{N}\left(0, \mathcal{I}_1(\Theta)^{-1}\right)$$

We can relate the estimated variance of our estimator to the model parameters:

$$\hat{\sigma}_{\hat{\theta}} = f(\hat{\Theta})$$

Estimates from maximum likelihood estimator satisfies:

$$\textit{n}^{1/2}(\hat{\Theta} - \Theta) \sim \mathcal{N}\left(0, \mathcal{I}_1(\Theta)^{-1}\right)$$

Then, the delta method gives:

$$\textit{n}^{1/2}(\hat{\sigma}_{\hat{\Theta}} - \sigma_{\hat{\Theta}}) \sim \mathcal{N}\left(0, \nabla_{\Theta} \textit{f}(\Theta) \mathcal{I}_{1}(\Theta)^{-1} \nabla_{\Theta} \textit{f}(\Theta)\right)$$

(C) Effective sample size

$$\mathbf{n}^{c} = \sum_{i=1}^{n} \frac{\partial \xi_{i}(\hat{\Theta})}{\partial \mathbf{Y}_{i}} = n - \sum_{i=1}^{n} \frac{\partial \mu(\hat{\Theta}, \mathbf{X}_{i})}{\partial \mathbf{Y}_{i}}$$

where $\frac{\partial \mu(\Theta, \mathbf{X}_i)}{\partial \mathbf{Y}_i}$ are the generalized leverage defined by (Wei et al., 1998).

Example: univariate linear regression

$$\hat{n}^c = n - \sum_{i=1}^n \boldsymbol{X}_i \frac{\partial \beta}{\partial Y_i} = n - \sum_{i=1}^n \boldsymbol{X}_i (\boldsymbol{X}^\mathsf{T} \boldsymbol{X})^{-1} \boldsymbol{X}_i^\mathsf{T} = n - p$$