Corrigé

Exercice 1 5 points

Commun à tous les candidats

Partie A

Un concurrent participe à un concours de tir à l'arc, sur une cible circulaire. À chaque tir, la probabilité qu'il atteigne la cible est égale à 0,8.

1. Le concurrent tire quatre flèches. On considère que les tirs sont indépendants.

Soit *X* la variable aléatoire donnant le nombre de flèches atteignant la cible.

Pour un tir, la probabilité du succès est p = 0.8.

On répète 4 fois de façon indépendante le tir, donc la variable aléatoire X suit la loi binomiale de paramètres n=4 et p=0,8.

Pour une loi binomiale $\mathscr{B}(n,p)$, on a : $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$. On cherche ici :

$$P(X \ge 3) = P(x = 3) + P(X = 4) = {4 \choose 3} \times 0.8^3 \times 0.2^1 + {4 \choose 4} \times 0.8^4 \times 0.2^0 = 0.4096 + 0.4096 = 0.8192$$

 $P(X \ge 3) \approx 0.819$

2. La concurrent tire n flèches de façon indépendante; donc la variable aléatoire X qui donne le nombre de succès suit la loi binomiale de paramètres n et p = 0, 8.

Pour atteindre en moyenne 12 fois la cible, il faut que l'espérance mathématique de la variable X soit égale à 12. Une variable aléatoire X suivant une loi binomiale $\mathcal{B}(n,p)$ a pour espérance mathématique E(X) = np.

On doit donc chercher *n* pour que $n \times 0.8 = 12 \iff n = \frac{12}{0.8} \iff n = 15$.

Il faut donc que le concurrent prévoie 15 flèches pour atteindre en moyenne la cible 12 fois.

Partie B

On suppose que la variable aléatoire X suit une loi normale d'espérance 0 et d'écart-type 10.

1. Pour que la flèche soit hors de la bande grisée, il faut que (X < -10) ou (X > 10).

On cherche donc $P(X < -10) \cup (X > 10)$ qui est égale à $1 - P(-10 \le X \le 10)$.

X suit la loi normale de moyenne $\mu=0$ et d'écart type $\sigma=10$, et on sait que pour toute loi normale, $P(\mu-\sigma\leqslant X\leqslant \mu+\sigma)\approx 0,683$ donc $P(-10\leqslant X\leqslant 10)\approx 0,683$.

On peut donc dire que la probabilité que la flèche soit hors de la bande grisée est approximativement de 1-0,683=0,317.

On peut également trouver ce résultat en utilisant la calculatrice.

2. On cherche un nombre positif t tel que $P(-t \le X \le t) = 0,6$. Cela correspond au schéma suivant, en tenant compte des propriétés de symétrie de la fonction de densité de la loi normale :

$$P(-t \leqslant X \leqslant t) = 0,6 \iff P(X \leqslant t) - P(X \leqslant -t) = 0,6$$

$$\iff P(X \leqslant t) - P(X \geqslant t) = 0,6$$

$$\iff P(X \leqslant t) - (1 - P(X \leqslant t)) = 0,6$$

$$\iff 2P(X \leqslant t) - 1 = 0,6$$

$$\iff 2P(X \leqslant t) = 1,6$$

$$\iff P(X \leqslant t) = 0,8$$

À la calculatrice, on trouve $t \approx 8,416$.

Les deux droites verticales délimitant la bande grise ont pour équations x = -8, 4 et x = 8, 4; alors la probabilité d'atteindre cette bande grisée est approximativement de 0,6.

Partie C

La durée de vie (exprimée en heures) du panneau électrique affichant le score des concurrents est une variable aléatoire T qui suit la loi exponentielle de paramètre $\lambda = 10^{-4}$ (exprimé en h⁻¹).

D'après le cours, on peut dire que
$$P(T \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = 1 - e^{-\lambda t}$$
 et que $P(T \ge t) = 1 - P(T \le t) = 1 - \left(1 - e^{-\lambda t} \right) = e^{-\lambda t}$.

- **1.** La probabilité que le panneau fonctionne au moins 2 000 heures est $P(T \ge 2000)$.
- $P(T \ge 2000) = e^{-10^{-4} \times 2000} \approx 0.819$ 2. Restitution organisée des connaissances
- Dans cette question, λ désigne un réel strictement positif. On rappelle que l'espérance mathématique de la variable aléatoire T suivant une loi exponentielle de paramètre λ , est définie par : $E(T) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt$.
 - **a.** On considère la fonction *F*, définie pour tout réel *t* par : $F(t) = \left(-t \frac{1}{\lambda}\right) e^{-\lambda t}$. La fonction F est dérivable sur $\mathbb R$ et :

$$F'(x) = -1 \times e^{-\lambda t} + \left(-t - \frac{1}{\lambda}\right) \times (-\lambda) e^{-\lambda t} = -e^{-\lambda t} + \lambda t e^{-\lambda t} + e^{-\lambda t} = \lambda t e^{-\lambda t} = f(t)$$

Donc F est une primitive de la fonction f sur \mathbb{R} .

b. L'espérance mathématique de la variable aléatoire *T* est :

$$\begin{split} E(T) &= \lim_{x \to +\infty} \int_0^x \lambda t \, \mathrm{e}^{-\lambda t} \, \mathrm{d}t = \lim_{x \to +\infty} \int_0^x f(t) \, \mathrm{d}t = \lim_{x \to +\infty} \left(F(x) - F(0) \right) \\ &= \lim_{x \to +\infty} \left(\left[\left(-x - \frac{1}{\lambda} \right) \mathrm{e}^{-\lambda x} \right] - \left[-\frac{1}{\lambda} \times 1 \right] \right) = \lim_{x \to +\infty} \left(-x \mathrm{e}^{-\lambda x} - \frac{1}{\lambda} \mathrm{e}^{-\lambda x} + \frac{1}{\lambda} \right) \\ \lim_{x \to +\infty} -x \mathrm{e}^{-\lambda x} &= \lim_{x \to +\infty} -\frac{1}{\lambda} \frac{\lambda x}{\mathrm{e}^{\lambda x}} \, \mathrm{donc} \, E(T) = \lim_{x \to +\infty} \left(-\frac{1}{\lambda} \frac{\lambda x}{\mathrm{e}^{\lambda x}} - \frac{1}{\lambda} \mathrm{e}^{-\lambda x} + \frac{1}{\lambda} \right) \end{split}$$

$$\begin{array}{l} \bullet \quad \lambda > 0 \Longrightarrow \lim_{x \to +\infty} \lambda x = +\infty \\ \text{On pose } X = \lambda x \\ \text{On sait que } \lim_{X \to +\infty} \frac{\mathrm{e}^{X}}{X} = +\infty \end{array} \right\} \Longrightarrow \lim_{x \to +\infty} \frac{\mathrm{e}^{\lambda x}}{\lambda x} = +\infty \Longrightarrow \lim_{x \to +\infty} -\frac{1}{\lambda} \frac{\lambda x}{\mathrm{e}^{\lambda x}} = 0 \\ \bullet \quad \lambda > 0 \Longrightarrow \lim_{x \to +\infty} \lambda x = +\infty \\ \text{On pose } X = \lambda x \\ \text{On sait que } \lim_{X \to +\infty} \mathrm{e}^{-X} = 0 \end{array} \right\} \Longrightarrow \lim_{x \to +\infty} \mathrm{e}^{-\lambda x} = 0 \Longrightarrow \lim_{x \to +\infty} -\frac{1}{\lambda} \mathrm{e}^{-\lambda x} = 0$$

•
$$\lambda > 0 \Longrightarrow \lim_{x \to +\infty} \lambda x = +\infty$$

On pose $X = \lambda x$
On sait que $\lim_{X \to +\infty} e^{-X} = 0$

$$\implies \lim_{x \to +\infty} e^{-\lambda x} = 0 \Longrightarrow \lim_{x \to +\infty} -\frac{1}{\lambda} e^{-\lambda x} = 0$$

• Par somme,
$$\lim_{x \to +\infty} \left(-x e^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} + \frac{1}{\lambda} \right) = \frac{1}{\lambda}$$
 et donc $E(T) = \frac{1}{\lambda}$.

L'espérance de durée de vie du panneau électrique affichant le score des concurrents est $\frac{1}{4}$ $\frac{1}{10^{-4}} = 10^4$ soit 10 000 heures.

Exercice 2 4 points

Commun à tous les candidats

Dans les questions 1 et 2, on munit l'espace d'un repère orthonormé, et on considère les plans \mathscr{P}_1 et \mathscr{P}_2 d'équations respectives x + y + z - 5 = 0 et 7x - 2y + z - 2 = 0.

1. Affirmation 1 : les plans \mathcal{P}_1 et \mathcal{P}_2 sont perpendiculaires.

Le plan \mathscr{P}_1 a pour vecteur normal $\overrightarrow{n_1}$: (1;1;1) et le plan \mathscr{P}_2 a pour vecteur normal $\overrightarrow{n_2}$:

 $\overrightarrow{n_1}$. $\overrightarrow{n_2} = 7 - 2 + 1 = 6 \neq 0$ donc ces deux vecteurs ne sont pas orthogonaux et donc les plans \mathscr{P}_1 et \mathcal{P}_2 ne sont pas perpendiculaires.

Affirmation 1: FAUSSE

2. Affirmation **2**: les plans \mathcal{P}_1 et \mathcal{P}_2 se coupent suivant la droite de représentation paramétrique :

$$\begin{cases} x = t \\ y = 2t+1 \\ z = -3t+4 \end{cases}, t \in \mathbb{R}.$$

On a vu dans la question précédente que les plans \mathcal{P}_1 et \mathcal{P}_2 avaient respectivement pour vecteurs normaux $\overline{n_1}$: (1; 1; 1) et $\overline{n_2}$: (7; -2; 1); ces deux vecteurs ne sont pas colinéaires, donc les plans ne sont pas parallèles. Les plans \mathcal{P}_1 et \mathcal{P}_2 sont donc sécants.

Soit d la droite de représentation paramétrique $\left\{ \begin{array}{ll} x=&t\\ y=&2t+1\\ z=-3t+4 \end{array} \right.$

Pour voir si cette droite est l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 , il suffit de déterminer deux points de cette droite et de vérifier s'ils appartiennent aux deux plans.

- En remplaçant t par 0 dans la représentation paramétrique de la droite d, on obtient le point A(0; 1; 4). Or $x_A + y_A + z_A - 5 = 0 + 1 + 4 - 5 = 0$ donc $A \in \mathcal{P}_1$, et $7x_A - 2y_A + z_A - 2 = 0 - 2 + 4 - 2 = 0$ donc $A \in \mathcal{P}_2$. On peut dire que $A \in \mathcal{P}_1 \cap \mathcal{P}_2$.
- En remplaçant t par 1 dans la représentation paramétrique de la droite d, on obtient le point B(1;3;1). Or $x_B + y_B + z_B - 5 = 1 + 3 + 1 - 5 = 0$ donc $B \in \mathcal{P}_1$, et $7x_B - 2y_B + z_B - 2 = 7 - 6 + 1 - 2 = 0$ donc $B \in \mathcal{P}_2$. On peut dire que $B \in \mathcal{P}_1 \cap \mathcal{P}_2$.

L'intersection des deux plans \mathcal{P}_1 et \mathcal{P}_2 est la droite (AB) de représentation paramétrique

$$\begin{cases} x = t \\ y = 2t+1 \\ z = -3t+4 \end{cases}, t \in \mathbb{R}.$$

Affirmation 2: VRAIE

3. Affirmation 3 : au niveau de confiance de 95 %, la proportion de parties gagnées doit appartenir à l'intervalle [0,658; 0,771].

Le joueur gagne avec une fréquence de $f=\frac{223}{312}\approx 0,7147$. L'échantillon est de taille n=312>30; $n\times f=223>5$ et $n\times (1-f)=89>5$.

Donc on peut déterminer l'intervalle de confiance au seuil 95 %:

$$I = \left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}} \right] = \left[\frac{223}{312} - \frac{1}{\sqrt{312}}; \frac{223}{312} + \frac{1}{\sqrt{312}} \right] \approx [0,658; 0,771]$$

Affirmation 3: VRAIE

Remarque du correcteur – En fait, les deux bornes de l'intervalle ont pour valeurs approchées à 10⁻⁴ les nombres 0,6581 et 0,7714; la règle veut que l'on arrondisse par défaut la borne inférieure, et par excès la borne supérieure, pour que l'intervalle obtenu contienne l'intervalle donné par la formule; l'intervalle obtenu serait alors [0,658;0,772] ce qui rendrait l'affirmation fausse. Mais était-ce vraiment l'intention du concepteur du sujet de « jouer » sur la troisième décimale ? Il faudrait, pour en être sûr, avoir les consignes de correction.

4. On considère l'algorithme suivant :

VARIABLES	a, b sont deux nombres réels tels que $a < b$ x est un nombre réel f est une fonction définie sur l'intervalle $[a; b]$
	Lire a et b
	Tant que $b-a>0,3$
TRAITEMENT	x prend la valeur $\frac{a+b}{2}$ Si $f(x)f(a) > 0$, alors a prend la valeur x
	sinon b prend la valeur x
	Fin Si
	Fin Tant que
	Afficher $\frac{a+b}{2}$

Affirmation 4 : si l'on entre a = 1, b = 2 et $f(x) = x^2 - 3$, alors l'algorithme affiche en sortie le nombre 1,6875.

On fait tourner l'algorithme avec les valeurs de a, de b et l'expression de f données dans le texte, et on va décrire ce qui se passe à chaque étape en affichant l'état des variables a, b et x:

	а	b	х
<i>a</i> reçoit la valeur 1			
<i>b</i> reçoit la valeur 2		2	
b-a=1>0,3 donc on entre dans la boucle		2	
x prend la valeur $\frac{a+b}{2} = 1,5$		2	1,5
$f(a) = 1^2 - 3 = -2$		2	1,5
$f(x) = 1,5^2 - 3 = -0,75$		2	1,5
$f(x) \times f(a) > 0$ donc a prend la valeur $x = 1,5$		2	1,5
fin du tant que		2	1,5
b-a=0,5>0,3 donc on entre dans la boucle		2	1,5
x prend la valeur $\frac{a+b}{2} = 1,75$	1,5	2	1,75
$f(a) = 1,5^2 - 3 = -0,75$		2	1,75
$f(x) = 1,75^2 - 3 = 0,0625$		2	1,75
$f(x) \times f(a) < 0$ donc b prend la valeur $x = 1,75$		1,75	1,75
fin du tant que		1,75	1,75
$b-a=0,25\leqslant 0,3$ donc on n'entre pas dans la boucle		1,75	1,75
On affiche $\frac{a+b}{2} = \frac{1,5+1,75}{2} = 1,625$		1,75	1,75

Affirmation 4: FAUSSE

Il s'agit de l'algorithme de recherche par dichotomie de la solution positive de l'équation $x^2 - 3 = 0$.

Exercice 3 6 points

Commun à tous les candidats

Pour tout n de \mathbb{N} , on définit la fonction f_n pour tout réel x de l'intervalle [0;1] par : $f_n(x) = x + e^{n(x-1)}$.

Partie A: généralités sur les fonctions f_n

- 1. On sait que, pour tout X, $e^X > 0$ donc $e^{n(x-1)} > 0$ pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$. Sur [0;1], $x \ge 0$, donc $x + e^{n(x-1)} > 0 \iff f_n(x) > 0$ pour tout $n \in \mathbb{N}$.
 - f_n est dérivable sur ℝ et f'_n(x) = 1 + ne^{n(x-1)}.
 Pour pour tout n∈ ℕ et tout x∈ ℝ, ne^{n(x-1)} > 0 donc f'_n(x) > 0 donc la fonction f_n est strictement croissante sur [0; 1].
- 2. $f_n(1) = 1 + e^0 = 2$ donc toutes les courbes \mathcal{C}_n passent par le point A de coordonnées (1; 2).
- 3. À l'aide des représentations graphiques, on peut conjecturer que le coefficient directeur de la tangente en A à la courbe \mathscr{C}_n tend vers $+\infty$ quand n tend vers $+\infty$. Le coefficient directeur de la tangente en A à la courbe \mathscr{C}_n est égal à $f_n'(x_A) = f_n'(1) = 1 + n$.

$$\lim_{n \to +\infty} 1 + n = +\infty \iff \lim_{n \to +\infty} f'_n(1) = +\infty$$

Partie B : évolution de $f_n(x)$ lorsque x est fixé

Soit x un réel fixé de l'intervalle [0;1]. Pour tout entier naturel n, on pose $u_n=f_n(x)$.

- 1. Dans cette question, on suppose que x = 1. Pour tout $n \in \mathbb{N}$, $f_n(1) = 2$ donc la suite (u_n) est constante et chacun de ses termes est égal à 2; la suite (u_n) admet donc le nombre 2 comme limite.
- **2.** Dans cette question, on suppose que $0 \le x < 1$.

$$x \in [0; 1[\implies x-1 < 0]]$$
 $\lim_{n \to +\infty} n(x-1) = -\infty \Longrightarrow \lim_{n \to +\infty} \mathrm{e}^{n(x-1)} = 0$ (limite de fonctions composées) On en déduit que $\lim_{n \to +\infty} \left(x + \mathrm{e}^{n(x-1)}\right) = x$ et donc que $\lim_{n \to +\infty} u_n = x$.

Partie C: aire sous les courbes \mathcal{C}_n

Pour tout entier naturel n, on note A_n l'aire, exprimée en unité d'aire, du domaine situé entre l'axe des abscisses, la courbe \mathcal{C}_n et les droites d'équations respectives x = 0 et x = 1.

À partir des représentations graphiques et particulièrement en regardant l'aire sous la courbe \mathcal{C}_{100} , on peut conjecturer que la limite de la suite A_n est $\frac{1}{2}$.

Pour démontrer cette conjecture, on cherche une primitive de la fonction f_n : pour n > 0, la fonction F_n définie par $F_n(x) = \frac{x^2}{2} + \frac{e^{n(x-1)}}{n}$ est une primitive de f_n sur [0;1].

La fonction f_n est positive sur [0; 1] donc l'aire A_n est donnée par $\int_0^1 f_n(t) dt$.

Pour
$$n > 0$$
, $A_n = \int_0^1 f_n(t) dt = F_n(1) - F_n(0) = \left[\frac{1}{2} + \frac{1}{n}\right] - \left[0 + \frac{e^{-n}}{n}\right] = \frac{1}{2} + \frac{1}{n} - \frac{e^{-n}}{n}$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n} = 0$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} e^{-n} = 0$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{e^{-n}}{n} = 0 \implies \lim_{\substack{n \to +\infty \\ n \to +\infty}} \left(\frac{1}{2} + \frac{1}{n} - \frac{e^{-n}}{n}\right) = \frac{1}{2}; \text{ donc } \lim_{\substack{n \to +\infty \\ n \to +\infty}} A_n = \frac{1}{2}$$

Exercice 4 5 points

Candidats n'ayant pas choisi l'enseignement de spécialité

Le plan est muni du repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$

On donne le nombre complexe $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

Partie A: propriétés du nombre j

1. **a.** On résout l'équation : $z^2 + z + 1 = 0$; $\Delta = -3 < 0$ donc cette équation admet deux solutions complexes conjuguées : $z_1 = \frac{-1 + i\sqrt{3}}{2}$ et $z_2 = \frac{-1 - i\sqrt{3}}{2}$

b. $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \frac{-1 + i\sqrt{3}}{2} = z_1$ donc j est solution de l'équation $z^2 + z + 1 = 0$.

2. $|j|^2 = \left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \text{ donc } |j| = 1$

 $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$; on cherche θ tel que $\begin{cases} \cos\theta = -\frac{1}{2} \\ \sin\theta = \frac{\sqrt{3}}{2} \end{cases}$ Donc $\theta = \frac{2\pi}{3}$ [2 π]

La forme exponentielle de j est donc : $j = e^{i\frac{2\pi}{3}}$

3. a. $j^3 = \left(e^{i\frac{2\pi}{3}}\right)^3 = e^{i\frac{2\pi \times 3}{3}} = e^{i\times 2\pi} = 1$

b. j est solution de l'équation $z^2 + z + 1 = 0$ donc $j^2 + j + 1 = 0$ et donc $j^2 = -1 - j$.

4. On note P, Q, R les images respectives des nombres complexes 1, j et j^2 dans le plan.

P a pour affixe 1; Q a pour affixe $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et R pour affixe $j^2 = -1 - j = -1 + \frac{1}{2} - i\frac{\sqrt{3}}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$

$$-\frac{1}{2}-i\frac{\sqrt{3}}{2}$$

 $PQ^{2} = \left| -\frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 \right|^{2} = \left| -\frac{3}{2} + i\frac{\sqrt{3}}{2} \right|^{2} = \frac{9}{4} + \frac{3}{4} = 3 \Longrightarrow PQ = \sqrt{3}$

 $QR^{2} = \left| -\frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} - i\frac{\sqrt{3}}{2} \right| 2 = \left| -i\sqrt{3} \right|^{2} = 3 \Longrightarrow QR = \sqrt{3}$

 $RP^{2} = \left| 1 + \frac{1}{2} + i \frac{\sqrt{3}}{2} \right|^{2} = \left| \frac{3}{2} + i \frac{\sqrt{3}}{2} \right|^{2} = \frac{9}{4} + \frac{3}{4} = 3 \Longrightarrow RP = \sqrt{3}$

PQ = QR = RP donc le triangle PQR est équilatéral.

Partie B

Soit a, b, c trois nombres complexes vérifiant l'égalité $a+jb+j^2c=0$. On note A, B, C les images respectives des nombres a, b, c dans le plan.

1. On sait que $a + bj + cj^2 = 0$ donc $a = -jb - j^2c$.

Or, d'après la question **A. 3. b.**, $j^2 = -1 - j$ donc : $a = -jb - j^2c = -jb - (-1 - j)c = -jb + c + jc \iff a - c = j(c - b)$

2. $a-c=j(c-b) \Longrightarrow |a-c|=|j(c-b)| \Longleftrightarrow |a-c|=|j|\times |c-b|$

On a vu précédemment que |j| = 1; de plus |a - c| = AC et |c - b| = BC.

On a donc démontré que AC = BC.

3. On sait que $a = -jb - j^2c$. On sait aussi que $j^2 = -1 - j$ donc $j = -1 - j^2$. On a donc $a = -(-1 - j^2)b - j^2c = b + j^2b - j^2c$ ce qui équivaut à $a - b = j^2(b - c)$.

4. On sait que |j| = 1 donc $|j^2| = |j|^2 = 1$. De plus |a - b| = AB et |b - c| = CB. On a vu dans la question précédente que $a - b = j^2(b - c)$ ce qui entraîne $|a - b| = |j^2(b - c)|$ ou encore $|a - b| = |j^2| \times |b - c|$. Cette dernière égalité équivaut à AB = CB. Comme AC = BC et AB = CB, on a démontré que le triangle ABC était équilatéral.

Exercice 4 5 points

Candidats ayant choisi l'enseignement de spécialité

On dit qu'un entier naturel non nul N est un nombre triangulaire s'il existe un entier naturel n tel que : N = 1 + 2 + ... + n.

Partie A: nombres triangulaires et carrés d'entiers

- 1. $36 = \frac{72}{2} = \frac{8 \times 9}{2} = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8$ donc 36 est un nombre triangulaire. De plus, $36 = 6^2$.
- 2. **a.** $1+2+...+n=p^2 \iff \frac{n(n+1)}{2}=p^2 \iff n(n+1)=2p^2 \iff n^2+n-2p^2=0.$ Donc le nombre 1+2+...+n est le carré d'un entier si et seulement s'il existe un entier naturel p tel que : $n^2+n-2p^2=0$.
 - **b.** $n^2 + n 2p^2 = 0 \iff 4n^2 + 4n 8p^2 = 0 \iff 4n^2 + 4n + 1 8p^2 = 1 \iff (2n+1)^2 8p^2 = 1$ Donc le nombre 1 + 2 + ... + n est le carré d'un entier si et seulement s'il existe un entier naturel p tel que : $(2n+1)^2 - 8p^2 = 1$.

Partie B: étude de l'équation diophantienne associée

On considère (E) l'équation diophantienne $x^2 - 8y^2 = 1$, où $x \in \mathbb{N}$ et $y \in \mathbb{N}$.

- 1. Deux couples solution sont, par exemple, (3; 1) et (1; 0).
- 2. Soit (x; y) un couple d'entiers relatifs non nuls (x; y) solution de (E).
 Soit d un diviseur commun à x et y.
 Alors d divise x², y², 8y² et donc d divise x² 8y² donc d divise 1.
 On en déduit que d = 1 ou d = -1 ce qui veut dire que x et y sont premiers entre eux.

Partie C: lien avec le calcul matriciel

Soit *x* et *y* deux entiers relatifs. On considère la matrice $A = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix}$.

On définit les entiers relatifs x' et y' par l'égalité : $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$.

$$\mathbf{1.} \ \, \begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3x + 8y \\ x + 3y \end{pmatrix} \iff \left\{ \begin{array}{cc} x' & = & 3x + 8y \\ y' & = & x + 3y \end{array} \right.$$

2. La matrice A a un déterminant égal à 1, donc non nul, donc elle admet une matrice inverse A^{-1} . Pour déterminer A^{-1} on peut chercher la matrice carrée $A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et résoudre le système de 4 équations à 4 inconnues $A \times A' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; enfin il faut vérifier que $A' \times A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

On peut également déterminer A^{-1} à la calculatrice et on trouve : $A^{-1} = \begin{pmatrix} 3 & -8 \\ -1 & 3 \end{pmatrix}$.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \iff A^{-1} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} 3 & -8 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} 3x' - 8y' \\ -x' + 3y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\iff \begin{cases} x = 3x' - 8y' \\ y = -x' + 3y' \end{cases}$$

- 3. (x; y) est solution de (E) $\iff x^2 8y^2 = 1$ $\iff (3x' - 8y')^2 - 8(-x' + 3y')^2 = 1$ $\iff 9x'^2 - 48x'y' + 64y'^2 - 8(x'^2 - 6x'y' + 9y'^2) = 1$ $\iff 9x'^2 - 48x'y' + 64y'^2 - 8x'^2 + 48x'y' - 72y'^2 = 1$ $\iff x'^2 - 8y'^2 = 1$ $\iff (x'; y')$ est solution de (E)
- **4.** On considère les suites (x_n) et (y_n) définies par $x_0 = 3$, $y_0 = 1$ et, pour tout entier naturel n, $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

Soit \mathcal{P}_n la propriété : $(x_n; y_n)$ est solution de (E).

• *Initialisation* Pour n = 0: $x_0 = 3$ et $y_0 = 1$ donc $x_0^2 - 8y_0^2 = 9 - 8 = 1$ donc $(x_0; y_0)$ est solution de (E).

La propriété est vraie au rang 0.

• *Hérédité* On suppose que la propriété est vraie à un rang p quelconque ($p \ge 0$) c'est-à-dire que (x_p ; y_p) est solution de (E); c'est l'hypothèse de récurrence.

On veut démontrer que $(x_{p+1}; y_{p+1})$ est solution de (E).

On a vu dans la question précédente que si (x; y) était solution de (E), alors (x'; y') défini par $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$ est aussi solution de (E).

Comme $(x_n; y_n)$ est solution de (E), on peut dire que $(x_{n+1}; y_{n+1})$ est solution de (E) puisque $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$. Donc la propriété est vraie au rang p+1.

• La propriété est vraie au rang 0 ; elle est héréditaire. D'après le principe de récurrence, elle est vraie pour tout $n \in \mathbb{N}$.

Pour tout entier naturel n, le couple $(x_n; y_n)$ est solution de (E).

Partie D: retour au problème initial

On cherche un nombre triangulaire supérieur à 2015 qui est le carré d'un entier.

• On cherche *n* entier naturel tel que : $1+2+3+...+n \ge 2015$.

Ce qui équivaut à
$$\frac{n(n+1)}{2} \ge 2015 \iff n^2 + n - 4030 \ge 0.$$

L'équation
$$x^2 + x - 4030 = 0$$
 a pour solutions $\frac{-1 - 2\sqrt{329}}{2} \approx -63,98$ et $\frac{-1 + 2\sqrt{329}}{2} \approx 62,98$.

Pour que le nombre triangulaire soit supérieur à 2015, il faut que $n \ge 63$.

- Dans la partie **A** on a vu qu'un nombre triangulaire 1 + 2 + ... + n était un carré si et seulement s'il existait un entier p tel que $(2n+1)^2 8p^2 = 1$.
- Dans la partie **C** on a déterminé une suite de couples $(x_n; y_n)$ qui étaient tous solutions de l'équation $x^2 8y^2 = 1$.
- On va donc chercher $n \ge 63$ tel que $(2n+1)^2 8p^2 = 1$; si $n \ge 63$, alors $2n+1 \ge 127$. Ce qui revient à chercher les couples $(x_n; y_n)$ solutions de (E) avec $x_n \ge 127$.
- En partant de $\binom{3}{1}$ et en multipliant successivement par la matrice A, on trouve comme solutions $\binom{17}{6}$, $\binom{99}{35}$, $\binom{577}{204}$...

• $577 = 2 \times 288 + 1$ donc un nombre triangulaire supérieur à 2015 est $1 + 2 + 3 + ... + 288 = \frac{288 \times 289}{2} = 41616$.

• On peut vérifier que $41616 = 204^2$ (résultat en conformité avec la question **A. 2. a.**).