Cheat Sheet: Mecánica Cuántica y Álgebra Lineal (Notación Bra-Ket Pura: Operadores actúan externamente)

Concepto Cuántico	Representación Álgebra Lineal	Definiciones y Propiedades Clave	
Espacios, Estados y Notación Bra-Ket			
Espacio de Hilbert (\mathcal{H})	Espacio vectorial complejo con producto interno $\langle \cdot \cdot \rangle$.	Finito-dimensional (e.g., \mathbb{C}^d). Base ortonormal $\{ i\rangle\}_{i=1}^d$. $\langle i j\rangle = \delta_{ij}$.	
$\boxed{ \text{Ket } \psi\rangle}$	$\text{Vector columna} \in \mathcal{H}.$	Representa un estado cuántico. $ \psi\rangle = \sum_i c_i i\rangle \Leftrightarrow \begin{pmatrix} c_1 \\ \vdots \\ c_d \end{pmatrix}$.	
Bra $\langle \psi $	Vector fila, adjunto del ket: $\langle \psi = (\psi\rangle)^{\dagger}$.	Pertenece al espacio dual \mathcal{H}^* . $\langle \psi \Leftrightarrow (c_1^*, \dots, c_d^*)$. †: conjugación hermítica (transpuesta conjugada).	
Producto Interno $\langle \phi \psi \rangle$	Producto escalar: $\langle \phi \psi \rangle$.	$\langle \phi \psi \rangle = \sum_{i} d_{i}^{*} c_{i}$. Propiedades: $\langle \phi \psi \rangle = \langle \psi \phi \rangle^{*}$. Lineal en el ket: $\langle \phi a \psi_{1} + b \psi_{2} \rangle = a \langle \phi \psi_{1} \rangle + b \langle \phi \psi_{2} \rangle$. Anti-lineal en el bra: $\langle a \phi_{1} + b \phi_{2} = a^{*} \langle \phi_{1} + b^{*} \langle \phi_{2} $.	
Norma y Normalización	Norma al cuadrado: $ \psi \rangle ^2 = \langle \psi \psi \rangle$.	Estado físico puro $ \psi\rangle$ normalizado: $\langle\psi \psi\rangle=1$.	
Producto Externo $ \psi\rangle\langle\phi $	Matriz / Operador de Rango 1.	$A = \psi\rangle\langle\phi $. Actúa sobre kets: $A \chi\rangle = \psi\rangle\langle\langle\phi \chi\rangle\rangle$. El término $(\langle\phi \chi\rangle)$ es un escalar complejo. Si $\langle\psi \psi\rangle = 1$, $P_{\psi} = \psi\rangle\langle\psi $ es proyector sobre $ \psi\rangle$.	
Qubit (1)	$\mathcal{H} = \mathbb{C}^2$. Base: $ 0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $ 1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.	Estado: $ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$, $ \alpha ^2 + \beta ^2 = 1$. Bra: $\langle \psi = \alpha^* \langle 0 + \beta^* \langle 1 $.	
N Qubits	$\mathcal{H} = (\mathbb{C}^2)^{\otimes N} \cong \mathbb{C}^{2^N}$. Base: $ i_1 \dots i_N\rangle = i_1\rangle \otimes \dots \otimes i_N\rangle$.	Dimensión 2^N . Estado: $ \psi\rangle = \sum_i c_{i_1i_N} i_1i_N\rangle$.	
Estado Mezclado (Matriz Densidad ρ)	Operador Hermitiano $(\rho = \rho^{\dagger})$, Positivo semi-definido $(\rho \geq 0)$, Traza unitaria $(\text{Tr}(\rho) = 1)$.	Dimensión 2^N . Estado: $ \psi\rangle = \sum c_{i_1i_N} i_1i_N\rangle$. $\rho = \sum_i p_i \psi_i\rangle \langle \psi_i \ (p_i \geq 0, \sum p_i = 1)$. Estado puro $ \psi\rangle$ es $\rho = \psi\rangle \langle \psi $. $\text{Tr}(\rho^2) \leq 1$ (= ssi puro).	
Operadores, Conjugación Hermítica y Evolución			
Operador Lineal A	Transformación lineal $A: \mathcal{H} \to \mathcal{H}$. Matriz cuadrada.	Actúa sobre kets por la izquierda: $ \phi\rangle = A \psi\rangle$. Actúa sobre bras por la derecha (como A^{\dagger} sobre el ket): $\langle \chi A$ significa $(\langle \chi A) \psi \rangle = \langle \chi (A \psi \rangle)$.	
Operador Adjunto (Hermítico Conjugado) A^{\dagger}	Definido por $\langle \phi (A\psi) \rangle = \langle (A^{\dagger}\phi) \psi \rangle$ para todo $ \psi \rangle, \phi \rangle$.	Matriz $(A^{\dagger})_{ij} = (A_{ji})^*$. $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. $(A^{\dagger})^{\dagger} = A$.	
Elementos de Matriz de A	$A_{ij} = \langle i A j \rangle.$	Es el producto interno de $ i\rangle$ con el resultado de aplicar A a $ j\rangle$: $A_{ij} = \langle i (A j\rangle)\rangle$.	
Operador Hermitiano	$A = A^{\dagger}$.	Matriz hermitiana $(A_{ij} = A_{ji}^*)$. Eigenvalores reales. Eigenvectores	
(Auto-adjunto)		ortogonales para λ distintas. Base ortonormal de eigenvectores. Representan Observables .	
Operador Unitario U	$U^{\dagger}U = UU^{\dagger} = \mathbb{I}. \ (U^{-1} = U^{\dagger}).$	Matriz unitaria. Preserva producto interno: $\langle (U\phi) (U\psi)\rangle = \langle \phi \psi\rangle$. Preserva normas: $ U \psi\rangle = \psi\rangle $. Representa evolución cerrada, cambios de base.	
Evolución Unitaria (Sistema Cerrado)	$ \psi(t)\rangle = U(t) \psi(0)\rangle. \ \rho(t) = U(t)\rho(0)U(t)^{\dagger}.$	$U(t) = e^{-iHt/\hbar}$ (si H cte). H Hamiltoniano (Hermitiano). $U(t)$ Unitario. La ecuación de Schrödinger es $i\hbar \frac{d}{dt} \psi(t)\rangle = H \psi(t)\rangle$.	

Continúa en la siguiente página...

Concepto Cuántico	Representación Álgebra Lineal	Definiciones y Propiedades Clave	
Canal Cuántico (CPTP Map) Φ	Mapa lineal $\Phi(\cdot)$ sobre matrices densidad. $\rho' = \Phi(\rho)$.	Preserva Traza: $\text{Tr}(\Phi(\rho)) = \text{Tr}(\rho)$. Completamente Positivo. Kraus:	
		$\Phi(\rho) = \sum_k E_k \rho E_k^{\dagger}$, con $\sum_k E_k^{\dagger} E_k = \mathbb{I}$ (TP). Evolución abierta.	
Mediciones			
Observable	Operador Hermitiano $A = A^{\dagger}$.	Descomposición espectral: $A = \sum_{i} \lambda_{i} P_{i}$. λ_{i} eigenvalores (resultados),	
		P_i proyectores sobre eigenespacios.	
Valor Esperado de A	$\langle A \rangle = \langle \psi A \psi \rangle$ (puro) ó $\langle A \rangle = \text{Tr}(A\rho)$ (mixto).	$\langle \psi A \psi \rangle = \langle \psi (A \psi \rangle)$. Es el promedio de los resultados λ_i ponderado	
		por sus probabilidades $p(i)$.	
Medición Proyectiva	Conjunto de proyectores ortogonales $\{P_i\}$ $(P_i = P_i^{\dagger}, P_i P_j = \delta_{ij} P_i,$	Asociada a un observable A .	
	$\sum_{i} P_i = \mathbb{I}$).	■ Probabilidad (resultado λ_i): $p(i) = \langle \psi P_i \psi \rangle = P_i \psi \rangle ^2$ (pu-	
		ro) ó $p(i) = \text{Tr}(P_i \rho)$ (mixto).	
		■ Estado post-medición (λ_i) : $ \psi'\rangle = \frac{P_i \psi\rangle}{\sqrt{p(i)}}$ (puro) ó $\rho' = \frac{P_i\rho P_i}{\text{Tr}(P_i\rho)}$	
		(mixto).	
POVM	Conjunto de operadores $\{M_k\}$ $(M_k \ge 0, \sum_k M_k = \mathbb{I}).$	Medición generalizada. k indexa resultados.	
		■ Probabilidad (resultado k): $p(k) = \text{Tr}(M_k \rho)$. Si $\rho = \psi\rangle\langle\psi $,	
		$p(k) = \langle \psi M_k \psi \rangle.$	
		■ Estado post-medición: No único. Si $M_k = F_k^{\dagger} F_k$, posible estado	
		$ ho_k = rac{F_k ho F_k^\dagger}{p(k)}.$	
Ejemplos Importantes para 1 Qubit (\mathbb{C}^2)			
Matrices de Pauli $(\sigma_x, \sigma_y, \sigma_z)$	Hermitianas y Unitarias. $\sigma_i^2 = \mathbb{I}$. $\sigma_x = 0\rangle \langle 1 + 1\rangle \langle 0 $,	Base para operadores 2×2 (junto con \mathbb{I}).	
	$\sigma_y = -i 0\rangle \langle 1 + i 1\rangle \langle 0 , \sigma_z = 0\rangle \langle 0 - 1\rangle \langle 1 $		
Esfera de Bloch	Visualización de estados de 1 qubit.	$\rho = \frac{1}{2}(\mathbb{I} + \vec{r} \cdot \vec{\sigma}), \ \vec{r} = (\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle). \ \langle \sigma_i \rangle = \text{Tr}(\rho \sigma_i). \ \vec{r} \le 1.$	
		$ \vec{r} = 1$ (puros, superficie), $ \vec{r} < 1$ (mixtos, interior).	