第 12 章

線形同型

線形写像 $f: V \rightarrow U$ が全単射であるとき、f を同型写像 (isomorphism) という。

★ def 12.1 - 線形同型写像

V,W を線形空間とし、線形写像 $f\colon V\to W$ が全単射であるとき、f は<mark>線形同型写像</mark>あるいは単に線形同型であるという。

このとき、同型を表す記号 2 を用いて、次のように表す。

$$f \colon V \xrightarrow{\cong} W$$

全単射性から、V のベクトル全体と W のベクトル全体の間に一対一の対応がつく。 また、線形性より、和・スカラー倍といった基本的な演算も対応がつく。

これより、W は V を f という精巧なレンズで観測した像であり、実体は同じものだとも考えられる。

★ def 12.2 - 部分空間の線形同型

V と W の間に線形同型写像が存在するとき、V と W は線形同型であるといい、次のように表す。

$V \cong W$

同型写像はふたつのベクトル空間を写しあう精巧なレンズである。

たとえば、同型写像 $f\colon V\to W$ があるとき、f を通して、V の性質を W の性質として「観測」することができる。

W が未知の線型空間でも、既知の線型空間 V と同型なら、W のことも V と同じようによくわかることになる。

特に、既知の線型空間として、数ベクトル空間 K^n を考えることが多い。

線形同型の性質

ここでは、線形同型写像の恒等写像、逆写像、合成写像との関係を述べる

線形同型と恒等写像

♣ theorem - 恒等写像の線形同型性

恒等写像は線形同型写像である

恒等写像は明らかに全単射であり、線形写像でもあるため、線形同型写像である

この事実は、部分空間の線形同型に関して次のように言い換えられる

♣ theorem - 部分空間の自己同型性

部分空間 V は V 自身と線形同型であるすなわち、

 $V \cong V$

線形同型と逆写像

🕹 theorem - 線形同型写像の逆写像

線形同型写像の逆写像は線形同型写像である

証明

「Todo 1: book: 図で整理!例題で納得!線形空間入門 p93~94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

st theorem - 線形同型性の対称性

部分空間 V が部分空間 W と線形同型なら、W は V と線形同型であるすなわち、

 $V \cong W \Longrightarrow W \cong V$

線形同型と合成写像

♣ theorem - 線形同型写像の合成

線形同型写像の合成は線形同型写像である

証明

「Todo 2: book: 図で整理!例題で納得!線形空間入門 p94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

♣ theorem - 線形同型性の推移性

部分空間 V が部分空間 W と線形同型で、W が部分空間 U と線形同型ならば、V は U と線形同型である すなわち、

 $V \cong W \land W \cong U \Longrightarrow V \cong U$

ここまでで登場した、部分空間の線形同型に関する性質をまとめると、

- ♣ theorem 線形同型の同値関係としての性質
 - i. $V \cong V$
 - ii. $V \cong W \Longrightarrow W \cong V$
 - iii. $V \cong W \land W \cong U \Longrightarrow V \cong U$

となり、これらは、

同型 ≅ が等号 = と同じ性質をもつ

ことを意味している

線形同型写像と基底

♣ theorem - 線形同型写像による基底の保存

線形同型写像 f によって、部分空間の基底は基底に写る

証明 証明

theorem 5.3「単射な線型写像は線型独立性を保つ」ことから、f の単射性によ

り、基底の線型独立性が保たれる

また、f の全射性により、基底の生成性も保たれる

よって、*f* によって基底は基底に写る ■

座標写像

[Placeholder 1: 再編予定 (book: 線形代数の世界 p42~43)]

★ def 12.3 - 座標写像

V を線形空間とし、 $\mathcal{V} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \}$ を V の基底とするこのとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}} \colon K^n \to V$ を

$$\Phi_{\mathcal{V}}(\boldsymbol{x}) = \sum_{i=1}^n x_i \boldsymbol{v}_i \quad (\boldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

を **ン** で定まる**座標写像**と呼ぶ

このように定めた線形写像が<mark>座標写像</mark>と呼ばれる背景は、この座標写像が線形同型であることを示し、それがどんな意味を持つのかを考えることでわかる

♣ theorem - 線形空間の基底によって定まる線形同型写像

V を線形空間とし、 $\mathcal{V} = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \}$ を V の基底とする このとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}} \colon K^n \to V$ を

$$\Phi_{\mathcal{V}}(oldsymbol{x}) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (oldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

と定めると、これは線形同型写像である

証明

線形写像 Φν が全単射であることを示す

単射であること

基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ の線型独立性は、

$$\sum_{i=1}^n x_i \boldsymbol{v}_i = \mathbf{0}$$

で表される線形結合が、 $x_i=0$ を満たすことを意味する $\Phi_{\mathcal{V}}$ の定義をふまえると、この条件は、

$$\text{Ker}(\Phi_{\mathcal{V}}) = \{ \boldsymbol{0} \}$$

と書ける

よって、theorem~5.2「線形写像の単射性と核の関係」より、 $\Phi_{\mathcal{V}}$ は単射である

全射であること

基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ が V を生成することは、

$$oldsymbol{u} \in V \Longleftrightarrow oldsymbol{u} \in \langle oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n
angle$$
 $\iff \exists (x_i)_{i=1}^n \in \mathcal{K}^n \ s.t. \ oldsymbol{u} = \sum_{i=1}^n x_i oldsymbol{v}_i$
 $\iff \exists oldsymbol{x} \in \mathcal{K}^n \ s.t. \ \Phi_{\mathcal{V}}(oldsymbol{x}) = oldsymbol{u}$
 $\iff oldsymbol{u} \in \operatorname{Im}(\Phi_{\mathcal{V}})$

という言い換えにより、

$$V = \operatorname{Im}(\Phi_{\mathcal{V}})$$

を意味する

よって、全射となるときの像[第5章]により、Φν は全射である

この定理を部分空間の線形同型に関して言い換えると、次のような主張になる

♣ theorem 12.1 - 有限次元部分空間と数ベクトル空間の線形同型性

任意の部分空間は次元の等しい数ベクトル空間と線形同型である

つまり、

和とスカラー倍だけに着目すれば、

どんな部分空間も数ベクトル空間と「同じ」

ということを意味する

この同型により、部分空間に座標を与えることができる そしてその座標によって、ベクトルの成分表示が得られる

♣ theorem 12.2 - 線形代数における鳩の巣原理の抽象版

 $V,\ W$ を同じ次元の線形空間とするとき、線形写像 $f\colon V \to W$ に関して、次はすべて同値である

- i. f は単射
- ii. f は全射
- iii. *f* は線形同型

iv. rank(f) = dim V = dim W

証明

V, W をそれぞれ V, W の基底として、線形写像の合成

$$g: \mathbb{R}^n \xrightarrow{\Phi_{\mathcal{V}}} V \xrightarrow{f} W \xrightarrow{\Phi_{\mathcal{W}}^{-1}} \mathbb{R}^n$$

を考える

このとき、g は \mathbb{R}^n の線形変換である

f が単射(全射)であると仮定すると、座標写像は全単射であるので、f との合成写像 g も単射(全射)となる

逆に、g が単射(全射)であると仮定した場合について考える f は g を用いて次のように表現でき、

$$f = \Phi_{\mathcal{W}} \circ g \circ \Phi_{\mathcal{V}}^{-1}$$

座標写像は全単射であるので、gとの合成写像 fも単射(全射)となる

以上より、f が単射(全射)であることと、g が単射(全射)であることは同値である

線形変換 g に対して、theorem 11.3「線形代数における鳩の巣原理」より、

$$q$$
 が単射 $\iff q$ が全射 $\iff q$ が全単射

が成り立つが、g の単射性・全射性は f についても成り立つことがわかったので、

$$f$$
 が単射 \iff f が全射 \iff f が線形同型

がいえる

最後に、階数に関する条件を示す

全射となるときの像 [第5章] により、f が全射であることは、 $\mathrm{Im}(f)=W$ と同値であるから、

$$\dim \operatorname{Im}(f) = \dim W$$

より、

$$rank(f) = dim W = dim V$$

次元による部分空間の比較

次の事実は、数の一致で空間の一致が結論できる有用な結果である

♣ theorem 12.3 - 次元の一致による部分空間の一致判定

2 つの線型空間について、 $V \subset W$ ならば、

$$\dim V = \dim W \Longrightarrow V = W$$

証明

 $m{v} \in V$ をそのまま W の元と考えることで得られる写像を $\iota: V \to W$ とする(包含写像)

この包含写像は、V の元 \boldsymbol{v} を W の中にそのまま「埋め込む」操作を表しているため、 $\iota(\boldsymbol{v})$ は \boldsymbol{v} 自身である

$$\iota(\boldsymbol{v}) = \boldsymbol{v}$$

特に、 $\iota(\boldsymbol{v}) = \mathbf{0}$ は $\boldsymbol{v} = \mathbf{0}$ そのものを意味する

$$\iota(\boldsymbol{v}) = \mathbf{0} \Longleftrightarrow \boldsymbol{v} = \mathbf{0}$$

したがって、theorem~5.1「零ベクトルへの写像による単射性の判定」より、 ι は単射である

また、 ι が単射であることと、仮定 $\dim V = \dim W$ を合わせると、theorem **12.2** 「線形代数における鳩の巣原理の抽象版」より、 ι は全射であることがわかる

よって、全射の定義より、すべての $\boldsymbol{w} \in W$ に対して $\iota(\boldsymbol{v}) = \boldsymbol{w}$ となる \boldsymbol{v} が存在する

すなわち、W の元はすべて V の元であり、 $V \subset W$ もふまえると、これは V = W を意味する

🕏 theorem - 次元による部分空間の比較

 K^n の部分空間 V, W について、 $V \subset W$ ならば、

 $\dim V \leq \dim W$

が成り立つ

等号が成立するのは、V=W のときに限る

証明

 $V \subseteq W$ であることから、 $theorem\ 10.6$ 「基底の延長」により、V の基底を延長して W の基底にできるので、

 $\dim V \leq \dim W$

が成り立つ

等号が成立する場合については、前述の theorem 12.3 「次元の一致による部分

空間の一致判定」を参照

核空間・像空間の次元

🕹 theorem - 線形写像の単射性と核の次元

線形写像 $f: V \rightarrow W$ について、

f が単射 \iff dim Ker(f) = 0

証明

theorem 5.2 「線形写像の単射性と核の関係」より、f が単射であることは次と同値である

$$Ker(f) = \{\mathbf{0}\}$$

def 10.3「次元」 より、{0} の次元は 0 であるので、

$$\dim \operatorname{Ker}(f) = 0$$

が成り立つ

♣ theorem - 線形写像の全射性と像の次元

線形写像 $f: V \rightarrow W$ について、

$$f$$
 が全射 \iff $\dim \operatorname{Im}(f) = \dim W$

証明

theorem 12.2「線形代数における鳩の巣原理の抽象版」の主張そのものである

Zebra Notes

Туре	Number
todo	2
placeholder	1