Complex Linear Independence: Decomplexification

- When given a complex system of equations, it is necessary to **decomplexify** it.
 - **Decomplexify**: To model a complex system of equations with a strictly real system for the purpose of applying the tenets of real linear algebra to it.
 - Consider the following complex system of equations.

$$(2+i)x_1 + (1+i)x_2 = 3+6i$$
$$(3-i)x_1 + (2-2i)x_2 = 7-i$$

- The solutions will be complex numbers: $x_1 = a_1 + ib_1$ and $x_2 = a_2 + ib_2$, where $a_1, a_2, b_1, b_2 \in \mathbb{R}$.
- Transform it into a matrix system of equations. Separate the real and complex parts, and factor out all instances of the imaginary number i so that it is a coefficient to any complex matrix.

$$\begin{bmatrix} 2+i & 1+i \\ 3-i & 2-2i \end{bmatrix} \begin{bmatrix} a_1+ib_1 \\ a_2+ib_2 \end{bmatrix} = \begin{bmatrix} 3+6i \\ 7-i \end{bmatrix}$$

$$\left(\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} i & i \\ -i & -2i \end{bmatrix} \right) \left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} ib_1 \\ ib_2 \end{bmatrix} \right) = \left(\begin{bmatrix} 3 \\ 7 \end{bmatrix} + \begin{bmatrix} 6i \\ -i \end{bmatrix} \right)$$

$$\underbrace{\left(\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} + i \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \right)}_{A} \underbrace{\left(\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + i \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \right)}_{x} = \underbrace{\left(\begin{bmatrix} 3 \\ 7 \end{bmatrix} + i \begin{bmatrix} 6 \\ -1 \end{bmatrix} \right)}_{b}$$

• Foil the left side of the above equation^[1].

$$\begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + i \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} + i \begin{bmatrix} 6 \\ -1 \end{bmatrix}$$

• Split the above system of equations into a real system of equations and a complex system of equations by setting equal to each other the real components of each side and the imaginary components of each side.

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$$

• Multiply out the matrices above to yield a system of four equations.

$$2a_1 + a_2 - b_1 - b_2 = 3$$
$$3a_1 + 2a_2 + b_1 + 2b_2 = 7$$
$$a_1 + a_2 + 2b_1 + b_2 = 6$$
$$-a_1 - 2a_2 + 3b_1 + 2b_2 = -1$$

• Condense the above system of equations into a single matrix system of equations.

$$\begin{bmatrix} 2 & 1 & -1 & -1 \\ 3 & 2 & 1 & 2 \\ 1 & 1 & 2 & 1 \\ -1 & -2 & 3 & 2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 6 \\ -1 \end{bmatrix}$$

¹Note that the minus sign appears in the real component because, when multiplying the two "last" parts, $i^2 = -1$.

• Solve for a_1 , a_2 , b_1 , and b_2 using an augmented matrix and Gauss-Jordan elimination.

$$\begin{bmatrix} 2 & 1 & -1 & -1 & 3 \\ 3 & 2 & 1 & 2 & 7 \\ 1 & 1 & 2 & 1 & 6 \\ -1 & -2 & 3 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}$$

• From these four values, the original solutions $x_1 = a_1 + ib_1$ and $x_2 = a_2 + ib_2$ can be found.

$$x_1 = 1 + 2i$$
$$x_2 = 2 - i$$

Hermitian, Unitary, and Normal Matrices

- 4/13: What necessitates different categorizations of complex vectors and matrices?
 - Consider a vector v.

$$v = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

• If you want to find ||v||, you typically evaluate $\sqrt{v^{\mathrm{T}}v}$. However, this equals to 0 (see the following), which is clearly not the magnitude of v.

$$\begin{bmatrix} 1 & i \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = 1 - 1 = 0$$

- Note that ||v|| must be an element of \mathbb{R} because it measures a distance.
- With complex vectors, it is necessary to evaluate $\sqrt{\overline{v}^{\mathrm{T}}v}$ to find ||v||.

$$\begin{bmatrix} 1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = 1 + 1 = 2$$

$$||v|| = \sqrt{2}$$

- This makes sense because $\begin{bmatrix} 1 \\ i \end{bmatrix}$ extends one unit into \mathbb{R}^1 and one unit into \mathbb{C}^2 .
- If $z\bar{z} = |z|^2$ and $\bar{v}^T v = v \cdot \bar{v}$, it stands to reason that $\bar{v}^T v = ||v||^2$. Essentially, the dot product multiplies every element of v by its complex conjugate and sums them.
- Instead of writing $\bar{v}^{T[2]}$ every time, mathematicians shorthand to $v^{H[3]}$.
 - $-v^{\rm H}$ works for all vectors, but it is necessary for complex ones.
- Hermitian (matrix): A matrix A such that $A = A^{H}$.
 - Typically defined for $A \in \mathbb{C}^n$, but holds for $A \in \mathbb{R}^n$, too.
 - Parallel to how if $A \in \mathbb{R}^n$ and $A = A^T$, A is symmetrical.
 - Also note that if $A^{H}A = A^{2} = AA^{H}$, A is Hermitian.

² "v conjugate transpose"

 $^{^3}$ "v Hermitian" after French mathematician Charles Hermite.

- A Hermitian matrix has to have real values on the principal diagonal. When A is transposed and conjugated, the diagonal entries are the only values that don't move. Thus, their conjugates must equal themselves, so they must be real^[4].
- Unitary (matrix): A matrix A such that $A^{-1} = A^{H}$.
 - Typically defined for $A \in \mathbb{C}^n$, but holds for $A \in \mathbb{R}^n$, too.
 - Parallel to how if $A \in \mathbb{R}^n$ and $A^{-1} = A^T$, A is orthonormal.
 - Also note that if $A^{H}A = I = AA^{H}$, A is unitary.
- Normal (matrix): A matrix that is unitarily diagonalizable.
 - Typically defined for $A \in \mathbb{C}^n$, but holds for $A \in \mathbb{R}^n$, too.
 - Parallel to matrices $A \in \mathbb{R}^n$ such that A is orthonormally diagonalizable.
- Note that not every complex matrix has to be one of these three types.
- When $A^{\mathrm{H}}A = AA^{\mathrm{H}}$, $A = U\Lambda U^{\mathrm{H}}$.

$$AA^{H} = (U\Lambda U^{H}) (U\Lambda U^{H})^{H}$$

$$= U\Lambda U^{H}U\Lambda^{H}U^{H}$$

$$= U\Lambda\Lambda^{H}U^{H}$$

$$= U\Lambda^{H}\Lambda U^{H}_{[5]}$$

$$= U\Lambda^{H}U^{H}U\Lambda U^{H}$$

$$= (U\Lambda U^{H})^{H} (U\Lambda U^{H})$$

$$= A^{H}A$$

• When $A = A^{H}$, all eigenvalues are elements of \mathbb{R} (similar to spectral theorem).

$$v^{\mathrm{H}}Av = \left(v^{\mathrm{H}}Av\right)^{\mathrm{H}} = v^{\mathrm{H}}Av$$

– The above proves that $v^{\mathrm{H}}Av \in \mathbb{R}$ because it's its own conjugate??.

$$Av = \lambda v$$
$$v^{\mathsf{H}} A v = \lambda v^{\mathsf{H}} v$$

$$-\lambda = \frac{v^{\mathrm{H}} A v}{v^{\mathrm{H}} v} \to \frac{\mathbb{R}}{\mathbb{R}} = \mathbb{R}^{[6]}.$$

- When $A = A^{H}$ and $Ax = \lambda x$, all x's can be chosen orthonormally (also similar to spectral theorem).
 - Normality is implied because any eigenvector can be scaled to any version (including a normal version) and still be an eigenvector.

$$x_i = \begin{bmatrix} x_{i_1} \\ x_{i_2} \\ \vdots \\ x_i \end{bmatrix}$$

$$x_i^{\mathrm{H}} = \begin{bmatrix} \bar{x}_{i_1} & \bar{x}_{i_2} & \cdots & \bar{x}_{i_n} \end{bmatrix}$$

⁴Recall that only real quantities can be their own conjugates because a + 0i = a - 0i.

⁵Since $\Lambda = \Lambda^{H}$.

⁶Note that the denominator is real because it's how one finds ||v||, and ||v|| must be real, as discussed above.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad A^{H} = \begin{bmatrix} a_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ \bar{a}_{12} & a_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & a_{nn} \end{bmatrix}$$

– Define an arbitrary vector x_i and matrix A, along with their conjugate transposes (or Hermitian versions). Note that the diagonal entries of $A^{\rm H}$ aren't shown as conjugated because their conjugates equal themselves.

$$Ax_{1} = \lambda_{1}x_{1}$$

$$x_{2}^{H}Ax_{1} = \lambda_{1}x_{2}^{H}x_{1}$$

$$Ax_{2} = \lambda_{2}x_{2}$$

$$(Ax_{2})^{H} = (\lambda_{2}x_{2})^{H}$$

$$x_{2}^{H}A^{H} = \lambda_{2}x_{2}^{H}$$

$$x_{2}^{H}Ax_{1} = \lambda_{2}x_{2}^{H}x_{1}$$

- $\lambda_1 x_2^H x_1 = \lambda_2 x_2^H x_1$ implies that, since $\lambda_1 \neq \lambda_2$, $x_2^H x_1$ must equal 0, proving orthogonality.