Bacharelado em Ciência da Computação - UFU

Disciplina: Inteligência Computacional - 2015/2

Trabalho: Algoritmo Genético para Escalonamento de Tarefas

Aluno: Bruno Well Dantas Morais

O algoritmo desenvolvido segue estritamente uma abordagem de ordenação topológica do grafo para a representação dos indivíduos i.e. as tarefas sempre estão dispostas de acordo com sua ordem de precedência independente do processador em que cada tarefa foi alocada. Por simplificação, não foi feito um pós-processamento sobre a disposição das tarefas no indivíduo que garantisse uma bijeção entre indivíduo/representação, ou genótipo/fenótipo. Dessa forma, é possível que uma solução tenha mais de uma representação possível.

Após testes iniciais, verificou-se que tal característica da representação contribuía para uma falta de variedade genética que resultava em convergência prematura e baixa taxa de convergência. Para amenizar o problema, foram implementados dois métodos para garantia de variedade genética:

- Uma nova função de mutação baseada na mutação simples em palavras binárias, que troca o processador de uma tarefa. A etapa de *crossover* foi modificada para executar uma das duas funções de mutação (quando for o caso de haver mutação) com mesma probabilidade.
- Mutação forçada: todos os indivíduos filhos sofrem mutação (através de uma das duas funções de mutação) ao serem criados, de forma a reduzir a chance de haverem filhos idênticos aos pais. Assim, a taxa de mutação define a probabilidade de um indivíduo filho sofrer uma segunda mutação.

Após as mudanças descritas acima, observou-se um aumento de mais de 100% na convergência do algoritmo.

Convergência para o problema Gauss18, em que:

P: tamanho da população G: número de gerações T: tamanho do torneio

Configuração	Convergência (100 execuções)
P50G200T2	30
P50G200T3	27
P50G200T4	39
P50G300T2	36
P50G300T3	35
P50G300T4	36
P50G500T2	39
P50G500T3	37
P50G500T4	37
P100G200T2	55
P100G200T3	50
P100G200T4	43
P100G300T2	61
P100G300T3	52
P100G300T4	43
P100G500T2	62
P100G500T3	56
P100G500T4	44
P200G200T2	75
P200G200T3	60
P200G200T4	62
P200G300T2	77
P200G300T3	59
P200G300T4	68
P200G500T2	80
P200G500T3	60
P200G500T4	67

Pior tempo: 47

Tempo de execução: 0.261 s

Tempo de execução para a configuração P100G200T2: 0.052 s Testes realizados numa máquina Intel 2.00 GHz.

Experimentos utilizando a configuração P100G200T2:

Algoritmo	Grafo	Tótimo	Convergência (100 execuções)	Média (% T _{Ótimo})	Pior (% T _{Ótimo})
	P11A	40	100	40.0 (0.00%)	40 (0.00%)
	P11B	31	100	31.0 (0.00%)	31 (0.00%)
	P11C	32	100	32.0 (0.00%)	32 (0.00%)
	P11D	38	100	38.0 (0.00%)	38 (0.00%)
	P11E	40	100	40.0 (0.00%)	40 (0.00%)
AG	P11F	28	40	28.6 (2.20%)	30 (6.67%)
	P11G	37	100	37.0 (0.00%)	37 (0.00%)
	P11H	33	97	33.0 (0.09%)	34 (2.94%)
	P11I	32	55	32.5 (1.39%)	33 (3.03%)
	P11J	30	100	30.0 (0.00%)	30 (0.00%)
			(20 execuções)		
Literatura	P11A	40	20	40,0 (0%)	40 (0%)
	P11B	31	18	31,4 (1,29%)	33 (6,45%)
	P11C	32	17	32,5 (1,56%)	34 (6,25%)
	P11D	38	19	38,1 (0,26%)	39 (2,63%)
	P11E	40	18	40,6 (1,5%)	44 (10%)
	P11F	28	3	29,1 (3,9%)	30 (7,14%)
	P11G	37	17	37,5 (1,35%)	39 (5,40%)
	P11H	33	14	33,8 (2,42%)	35 (6,06%)
	P11I	32	4	32,8 (2,5%)	33 (3,25%)
	P11J	30	20	30,0 (0%)	30 (0%)

Experimentos utilizando a configuração P200G500T2:

Algoritmo	Grafo	Tótimo	Convergência (100 execuções)	Média (% T _{Ótimo})	Pior (% Totimo)
AG	P11A	40	100	40.0 (0.00%)	40 (0.00%)
	P11B	31	100	31.0 (0.00%)	31 (0.00%)
	P11C	32	100	32.0 (0.00%)	32 (0.00%)
	P11D	38	100	38.0 (0.00%)	38 (0.00%)
	P11E	40	100	40.0 (0.00%)	40 (0.00%)
	P11F	28	64	28.4 (1.30%)	30 (6.67%)
	P11G	37	100	37.0 (0.00%)	37 (0.00%)
	P11H	33	100	33.0 (0.00%)	33 (0.00%)
	P11I	32	83	32.2 (0.53%)	33 (3.03%)
	P11J	30	100	30.0 (0.00%)	30 (0.00%)