

รายวิชา 568 351 สถิติและการประยุกต์ทางเภสัชศาสตร์ สหสัมพันธ์เชิงเส้น

(LINEAR CORRELATION)

รศ.ดร.ลาวัลย์ ศรัทธาพุทธ

ภาควิชาสารสนเทศศาสตร์ทางสุขภาพ คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

References

- รศ.ศศิธร สุวิรัชวิทยกิจ สถิติสำหรับวิทยาศาสตร์และนักวิทยาศาสตร์ ประยุกต์ เล่ม 1, เล่ม 2 มหาวิทยาลัยศิลปากร
- Elementary Statistics: A Step by Step Approach, 8th edition, Allan G. Bluman ,McGraw-Hill, 2009.
- ผศ. ดร.ลาวัลย์ ศรัทธาพุทธ คู่มือการใช้ซอฟต์แวร์เสรีทางสถิติ PSPP สำหรับผู้เริ่มต้น, โรงพิมพ์มหาวิทยาลัยศิลปากร, 2012.

ตัวแปร (Variable)

- ตัวแปร คือ คุณลักษณะ (characteristics) ใดๆ ของสิ่งที่สนใจศึกษา
- สิ่งที่สนใจศึกษา = หน่วยตัวอย่าง
- เมื่อทำการวัดข้อมูลหน่วยตัวอย่างแต่ละหน่วยที่สนใจศึกษาซึ่งมี คุณลักษณะต่างๆกันไป ข้อมูลที่วัดได้จากหน่วยตัวอย่างเรียกว่า "ค่าตัวแปร"
- ตัวแปรถูกแบ่งตามลักษณะของค่าของตัวแปรเป็น 2 ประเภท คือ
 - ตัวแปรเชิงคุณลักษณะ (Qualitative Variable) คือ ตัวแปรที่บอกคุณลักษณะ ของการแบ่งกลุ่ม หรือของการจัดอันดับ - มีมาตรวัดเป็นชนิดนามบัญญัติ (nominal) หรือเป็นชนิดอันดับ (ordinal)
 - ตัวแปรเชิงปริมาณ (Quantitative Variable) คือ ตัวแปรที่มีค่าเป็นปริมาณซึ่ง สามารถวัดได้เป็นตัวเลข (ที่สามารถนำไปคำนวณได้) – มีมาตรวัดเป็นชนิด อันตรภาค (interval) หรือเป็นชนิดอัตราส่วน (ratio)

ความสัมพันธ์เชิงเส้น(ตรง)

- ความสัมพันธ์เชิงเส้น (Linear Correlation) หมายถึง ความสัมพันธ์ของตัวแปรเป็นแบบเชิง<u>เส้นตรง</u>
- สัมประสิทธิ์สหสัมพันธ์เชิงเส้น (Linear Correlation Coefficient) หมายถึง ค่าที่ใช้วัดความสัมพันธ์เชิงเส้น
- หมายเหตุ: ความสัมพันธ์ของตัวแปรยังมีแบบอื่นๆอีก เช่น พาราโบลา เอ็กส์โปเนนท์เชียล

สัมประสิทธิ์สหสัมพันธ์เชิงเส้น

- สัมประสิทธิ์สหสัมพันธ์เชิงเส้น (Linear Correlation Coefficient) เป็นค่าที่ใช้วัด**องศาแห่งความสัมพันธ์**เชิงเส้น (degree of linear relationship) ระหว่างตัวแปร 2 ตัว
- ullet ใช้สัญลักษณ์ สำหรับประชากร $ho_{_{\!\scriptscriptstyle {xy}}}$
- ullet ใช้สัญลักษณ์ สำหรับตัวอย่างสุ่ม $oldsymbol{r}_{_{\!\scriptscriptstyle X\!\!\!\!\! y}}$
- สูตรที่ใช้หาสัมประสิทธิ์สหสัมพันธ์เชิงเส้นที่นิยมมากที่สุด คือ สูตร ของ Pearson ที่เรียกว่า สหสัมพันธ์ของเพียร์สัน (Pearson's correlation, Pearson's product-moment coefficient)

แนวคิดของ Pearson's Correlation

- Pearson (1930): แนวคิดของ Pearson's Correlation คือถ้าตัวแปร X มีความสัมพันธ์กับตัวแปร Y แล้วค่าของ X จะต้องเปลี่ยนไปตามค่า Y ซึ่ง อาจเป็นไปในทิศทางเดียวกันหรือตรงข้ามกันก็ได้ โดยใช้ค่าเฉลี่ยเป็นจุด เปรียบเทียบการเปลี่ยนไปของค่าตัวแปร
- ความสัมพันธ์เชิงเส้นระหว่างการเปลี่ยนแปลงของค่า X และ Y แทนด้วย $(X_i \bar{X})(Y_i \bar{Y})$
- ทิศทางของความสัมพันธ์เชิงเส้นแสดงด้วยเครื่องหมายของ $(X_i \bar{X})(Y_i \bar{Y})$

สหสัมพันธ์ของเพียร์สัน

สหสัมพันธ์ของเพียร์สัน (Pearson's correlation coefficient, Pearson's product-moment correlation coefficient) คือการนำค่าความแปรปรวนร่วมระหว่างตัว แปรสุ่มทั้งสองมาหารด้วยค่าส่วนเบี่ยงเบนมาตรฐานของ ตัวแปรทั้งสอง

นิยามของ Pearson's Correlation

 Pearson's correlation coefficient (Pearson's productmoment correlation coefficient) is the covariance of the two variables divided by the product of their standard deviations. (....Wikipedia)

$$corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

ข้อตกลงการใช้สูตร Pearson's Correlation

- 1. ตัวแปรหรือข้อมูลทั้ง 2 ชุดอยู่ในมาตรวัดชนิดอันตรภาค หรืออัตราส่วน
- 2. ข้อมูลทั้ง 2 ชุด มีการแจกแจงแบบปกติและมีความสัมพันธ์ เชิงเส้นตรง
- 3. ข้อมูลในแต่ละชุดจะต้องมีความเป็นอิสระต่อกัน

การแปรปรวนร่วม (Covariation)

Blalock (1972): ได้ให้นิยามขององศาแห่งความสัมพันธ์เชิงเส้น
 (degree of linear relation) ของข้อมูลจาก ต.ย.ขนาด n ด้วยค่าของ
 การแปรปรวนร่วม (Covariation) ดังนี้

$$Covariation = \sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y}) = S_{XY}$$
เอสใหญ่

• จากหนังสือ Social statistics, 2nd ed. ของ Blalock (1972)

Standard Deviation =
$$s_x = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n-1}}$$

Variance =
$$s_x^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

Sum of Square of
$$X = S_X^2$$
 (big) = $\sum (X_i - \bar{X})^2$

$$S_X(big) = \sqrt{\sum (X_i - \bar{X})^2}$$

$$Covariation = Sum \ of \ SquareXY = \textbf{S}_{XY} \ (big) = \sum (X_i - \bar{X})(Y_i - \bar{Y})$$

$$Covariance = Cov(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$

$$Correlation = r_{XY} = \frac{Cov(X,Y)}{s_x s_y}$$

ความแปรปรวนร่วม (Covariance)

- ค่าความแปรปรวนร่วม (Covariance) คือค่าเฉลี่ยของ Covariation ก็คือ องศาแห่งความสัมพันธ์เชิงเส้นเฉลี่ย
- ความแปรปรวนร่วมเป็นการวัดปริมาณการเปลี่ยนแปลงของสองตัวแปรว่า จะมีการเปลี่ยนแปลงตามกันมากน้อยเท่าใด
- สูตร Covariance

$$Cov(X,Y) = \frac{Covariation}{n-1} = \frac{S_{XY}}{n-1} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$

วิธีแก้ปัญหาความแปรปรวนร่วม

• เพื่อขจัดปัญหาของการวัดองศาแห่งความสัมพันธ์เชิงเส้นระหว่างที่ขึ้นอยู่กับ หน่วยและขนาดของข้อมูล จึงต้องทำการแปลงข้อมูลให้เป็นข้อมูล มาตรฐานซึ่งมีค่าเฉลี่ยเป็น 0 และค่าความแปรปรวนเป็น 1 ดังนี้

$$Z_{X_i}=rac{X_i-ar{X}}{s_\chi}$$
 โดยที่ $s_\chi=\sqrt{rac{\sum(X_i-ar{X})^2}{n-1}}$ $Z_{Y_i}=rac{Y_i-ar{Y}}{s_\gamma}$ โดยที่ $s_y=\sqrt{rac{\sum(Y_i-ar{Y})^2}{n-1}}$

- s_x และ s_y (เอสเล็ก) = standard deviation
- ข้อมูลมาตรฐาน Zx และ Zy ไม่ขึ้นกับหน่วยและขนาดของข้อมูลเดิม

ปัญหาของความแปรปรวนร่วม

- การวัดองศาแห่งความสัมพันธ์เชิงเส้นระหว่าง X และ Y โดยใช้ค่า
 Cov(X,Y) มีข้อเสียคือค่าความแปรปรวนร่วมที่คำนวณได้ขึ้นกับ "หน่วย" และ "ขนาด" ของข้อมูลทำให้ไม่สะดวกในการตีความ การขึ้นกับขนาด ของข้อมูลอาจจะทำให้เข้าใจได้ยากว่าตัวแปร X และตัวแปร Y มีองศา แห่งความสัมพันธ์เชิงเส้นในระดับไหน เช่น
 - ถ้า X_1 และ Y_1 เป็นเลขจำนวนเต็มหลายหลัก ค่าของ $Cov(X_1,Y_1)$ ก็จะเป็น หลายหลักด้วย
 - ถ้า X_2 และ Y_2 เป็นเลขทศนิยม ค่าของ $\mathrm{Cov}(X_2,Y_2)$ ก็จะเป็นทศนิยมด้วย
 - ทั้งๆ ที่ X_1 และ Y_1 อาจมีองศาแห่งความสัมพันธ์เชิงเส้นใกล้เคียงกับ X_2 และ Y_2 แต่ค่าของ $Cov(X_2,Y_2)$ ดูต่างจากค่าของ $Cov(X_1,Y_1)$ มาก

ความแปรปรวนร่วมของข้อมูลมาตรฐาน

การวัดองศาแห่งความสัมพันธ์เชิงเส้นตรงของข้อมูลมาตรฐาน ดังนี้

$$Cov(Z_X, Z_Y) = \frac{\sum Z_X Z_Y}{n-1} = \frac{\sum (\frac{X_i - \bar{X}}{s_x})(\frac{Y_i - \bar{Y}}{s_y})}{n-1} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)s_x s_y}$$

$$Cov(Z_X, Z_Y) = \frac{Cov(X, Y)}{s_x s_y} = corr(X, Y) = corr(Z_X, Z_Y)$$

• นิยมเรียก "ความแปรปรวนร่วมของข้อมูลมาตรฐาน" ว่า "สัมประสิทธิ์ สหสัมพันธ์"

สัมประสิทธิ์สหสัมพันธ์เชิงเส้น

• สัมประสิทธิ์สหสัมพันธ์เชิงเส้น (Correlation coefficient)

$$corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

• Population Correlation Coefficient (rho)

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$$

Sample Correlation Coefficient

$$r_{XY} = \frac{Cov(X,Y)}{s_x s_y}$$

สัมประสิทธิ์สหสัมพันธ์ของตัวอย่างสุ่ม

• สัมประสิทธิ์สหสัมพันธ์ของตัวอย่างสุ่ม (Sample Correlation Coefficient) หาได้จากสูตร

$$r_{XY} = rac{Cov(X,Y)}{s_X s_y} = rac{\sum (X_i - ar{X})(Y_i - ar{Y})/(n-1)}{s_X s_y}$$
 เอสเล็ก
$$r_{XY} = rac{\sum (X_i - ar{X})(Y_i - ar{Y})/(n-1)}{\sqrt{\sum (X_i - ar{X})^2} \sqrt{\sum (Y_i - ar{Y})^2}} \sum_{n=1}^{\infty} \frac{\sum (Y_i - ar{Y})^2}{n-1}$$

• ปรับสูตรใหม่โดยตัดค่า (n-1) ของเศษและส่วนออกจะได้เป็น

$$r_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}} = \frac{S_{XY}}{S_X S_Y}$$

เอสใหญ่

ส้มประสิทธิ์สหสัมพันธ์ของตัวอย่างสุ่ม

- ullet ปัญหาการใช้สูตร r_{XY}
 - ถ้าใช้สูตรนี้กรณี \overline{X} และ \overline{Y} ที่เป็น**เลขหารลงตัว** (จำนวนเต็มหรือจุดทศนิยมรู้ จบ) จะ**ไม่มีความคลาดเคลื่อน**อันเนื่องมาจากการปัดจุดทศนิยม

สัมประสิทธิ์สหสัมพันธ์ของตัวอย่างสุ่ม

ullet สูตรที่เหมาะสมในกรณี $ar{X}$ และ $ar{Y}$ หารลงตัวและหารไม่ลงตัว

$$r_{XY} = \frac{n\sum_{i=1}^{n} X_i Y_i - (\sum_{i=1}^{n} X_i)(\sum_{i=1}^{n} Y_i)}{\sqrt{n\sum_{i=1}^{n} X_i^2 - (\sum_{i=1}^{n} X_i)^2} \sqrt{n\sum_{i=1}^{n} Y_i^2 - (\sum_{i=1}^{n} Y_i)^2}}$$

ullet สูตรที่เหมาะสมในกรณี $ar{X}$ และ $ar{Y}$ หารลงตัว (สูตรจะง่ายลง)

$$r_{XY} = \frac{\sum_{i=1}^{n} X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum_{i=1}^{n} X_i^2 - n\bar{X}^2} \sqrt{\sum_{i=1}^{n} Y_i^2 - n\bar{Y}^2}}$$

สัมประสิทธิ์สหสัมพันธ์ของประชากร

ullet สูตรที่เหมาะสมในกรณี μ_{x} และ μ_{y} <mark>หารลงตัวและหารไม่ลงตัว</mark>

$$\rho_{XY} = \frac{N \sum_{i=1}^{N} X_i Y_i - (\sum_{i=1}^{N} X_i) (\sum_{i=1}^{N} Y_i)}{\sqrt{N \sum_{i=1}^{N} X_i^2 - (\sum_{i=1}^{N} X_i)^2}} \sqrt{N \sum_{i=1}^{N} Y_i^2 - (\sum_{i=1}^{N} Y_i)^2}$$

ullet สูตรที่เหมาะสมในกรณี $\mu_{oldsymbol{\mathcal{X}}}$ และ $\mu_{oldsymbol{\mathcal{V}}}$ หารลงตัว

$$\rho_{XY} = \frac{\sum_{i=1}^{N} X_i Y_i - N\mu_x \mu_y}{\sqrt{\sum_{i=1}^{N} X_i^2 - N\mu_x^2} \sqrt{\sum_{i=1}^{N} Y_i^2 - N\mu_y^2}}$$

การสรุปผลค่า r_{xy}

- ถ้าค่า r_{xv} =+1
 - สรุปได้ว่าตัวแปร 2 ตัว (X, Y) มีความ**สัมพันธ์กัน**เชิงเส้นตรงอย่าง สมบูรณ์**ทางบวก** และสามารถเขียนอยู่ในรูป Y_i = aX_i + b ได้
- ถ้าค่า **r**_{xv} =-1
 - สรุปได้ว่าตัวแปร 2 ตัว (X, Y) มีความ**สัมพันธ์กัน**เชิงเส้นตรงอย่าง สมบูรณ์**ทางลบ** และสามารถเขียนอยู่ในรูป Y_i = aX_i + b ได้
- ถ้าค่า r_{xv} = 0
 - สรุปได้ว่าตัวแปร 2 ตัว (X, Y) ไม่มีความสัมพันธ์เชิงเส้นตรงต่อกัน (แต่ตัวแปรทั้งสองอาจจะมีความสัมพันธ์กันในลักษณะอื่น)

ตัวอย่าง 1

• จงหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลดังนี้

Х	-2	-1	0	1	2
Y		-1	4	3	5

$$r_{XY} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum X_i^2 - n\bar{X}^2} \sqrt{\sum Y_i^2 - n\bar{Y}^2}}$$
$$r_{XY} = \frac{20}{\sqrt{10}\sqrt{40}} = 1$$

• สรุปว่าตัวแปรทั้งสองตัวมีความสัมพันธ์เชิงเส้นอย่างสมบูรณ์ทางบวก

ตัวอย่าง 2

• จงหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลดังนี้

х	0	-2	-4	2	4
Y	-1	0	1	-2	-3

$$r_{XY} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum X_i^2 - n\bar{X}^2} \sqrt{\sum Y_i^2 - n\bar{Y}^2}}$$
$$r_{XY} = \frac{-20}{\sqrt{40}\sqrt{10}} = -1$$

• สรุปว่าตัวแปรทั้งสองตัวมีความสัมพันธ์เชิงเส้นอย่างสมบูรณ์ทางลบ

• จงหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลดังนี้

х	5	6	9	9	10
Υ		11	0	15	1

$$r_{XY} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum X_i^2 - n\bar{X}^2} \sqrt{\sum Y_i^2 - n\bar{Y}^2}}$$
$$r_{XY} = \frac{-24.8}{\sqrt{18.8}\sqrt{168.8}} = -0.44$$

• สรุปว่าตัวแปรทั้งสองตัวมีความสัมพันธ์เชิงเส้นไม่สมบูรณ์ทางลบ

ตัวอย่าง 4

• จงหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลดังนี้

х	1	2	3	4	5	6
			7	7	4	****************

$$r_{XY} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum X_i^2 - n\bar{X}^2} \sqrt{\sum Y_i^2 - n\bar{Y}^2}}$$
$$r_{XY} = \frac{0}{\sqrt{17.5}\sqrt{36}} = 0$$

• สรุปว่าตัวแปรทั้งสองตัว<mark>ไม่มีความสัมพันธ์เชิงเส้น</mark>

ตัวอย่าง 5

• จงหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลดังนี้

X	0	-2	-4	2
Y	-3	0	1	2

$$r_{XY} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\sum X_i^2 - n\bar{X}^2} \sqrt{\sum Y_i^2 - n\bar{Y}^2}}$$
$$r_{XY} = \frac{0}{\sqrt{20}\sqrt{14}} = 0$$

สรุปว่าตัวแปรทั้งสองตัวไม่มีความสัมพันธ์เชิงเส้น

ข้อสังเกต (การแปลงเชิงเส้น)

- ค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลที่ผ่านการแปลงโดยการเอาค่าคงที่มาบวก
 หรือลบออกจากข้อมูลดิบจะมีค่าเท่าเดิม เนื่องจากเป็นการย้ายเส้นตรงเท่านั้น:
 r_{x'v'} = r_{xv}
- ค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลที่ผ่านการแปลงโดยการเ<mark>อาค่าคงที่มาคูณ ข้อมูลดิบจะมีค่าเท่าเดิม เนื่อ</mark>งจากเป็นการขยายเส้นตรงเท่านั้น:

$$\mathbf{r}_{x'y'} = \mathbf{r}_{xy}$$

- ค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูลที่ผ่านการแปลงเป็นข้อมูลมาตรฐาน จะได้ค่า
 เท่าเดิมและเท่ากับค่าความแปรปรวนร่วมของข้อมูลมาตรฐานนั้น: r_{zxzy} = r_{xy}
- **การแปลงเชิงเส้น**นี้มีประโยชน์สำหรับปรับสเกลขนาดของข้อมูลเพื่อให้สะดวกใน การคำนาณ

• ให้เอา 2 บวกทุกค่าของ X และเอา 3 บวกทุกค่าของ Y แล้วหาค่า สัมประสิทธิ์สหสัมพันธ์ของข้อมูล

		•			
х	-2	-1	0	1	2
Υ	-3	-1	1		

$$r_{XY} = \frac{20}{\sqrt{10}\sqrt{40}} = 1$$

X'	0	1	2	3	4
Ϋ́	0	2	4	6	8

$$r_{X'Y'} = \frac{20}{\sqrt{10}\sqrt{40}} = 1$$

ตัวอย่าง 7

• ให้เอา 2 คูณแล้วบวก 1 ทุกค่าของ X และเอา 10 คูณแล้วลบ 4 ทุกค่า ของ Y แล้วหาค่าสัมประสิทธิ์สหสัมพันธ์ของข้อมูล

Х	-2	-1	0	1	2
Υ	-3	-1		3	

$$r_{XY} = \frac{20}{\sqrt{10}\sqrt{40}} = 1$$

X'	-3	-1	1	3	5
Υ'	-34	-14	6	26	46

$$r_{X'Y'} = \frac{400}{\sqrt{40}\sqrt{4000}} = 1$$

ตัวอย่าง 8

• ให้แปลงค่าของ X และ Y เป็นค่ามาตรฐาน Z แล้วหาค่าสัมประสิทธิ์ สหสัมพันธ์ของข้อมูล

х	-2	-1	0	1	2
		-1	1	3	5

$$r_{XY} = \frac{20}{\sqrt{10}\sqrt{40}} = 1$$

Zx	-1.265	-0.632	0	0.632	1.265
Zy	-1.265	-0.632	0	0.632	1.265

$$r_{ZxZy} = \frac{4}{\sqrt{4}\sqrt{4}} = 1$$

สรุปคุณสมบัติของสัมประสิทธิ์สหสัมพันธ์ <u>จากตัวอย่างสุ่ม</u>

- r_{xy} เป็นตัวเลขที่ไม่มีหน่วยและที่ไม่ขึ้นกับขนาดของข้อมูล
- r_{xy} อยู่ในช่วงปิด [-1 1]
- ullet การแปลงเชิงเส้นของข้อมูลดิบไม่ทำให้ค่า ${f r_{xy}}$ เปลี่ยนไป
- Note: Cov(X,Y) ไม่มีขอบเขตจำกัด, บอก direction ได้ ไม่นิยมใช้บอก ขนาดความสัมพันธ์ (strength) เนื่องจากขึ้นกับขนาดและหน่วยของ ข้อมูล

ข้อควรระวังในการตีความหมายของค่า r

- ค่าสัมประสิทธิ์สหสัมพันธ์บอกแต่เพียงองศาแห่งความสัมพันธ์ เชิงเส้นเท่านั้น แต่**ไม่ได้บอกถึงความสัมพันธ์เชิงเหตุและผล** ระหว่างตัวแปรทั้งสอง
- ดังนั้นการพิจารณา r อย่างเดียวจะไม่สามารถสรุปความเป็นเหตุ และผลของความสัมพันธ์เชิงเส้นได้
- การที่จะสรุปความเป็นเหตุและผลของความสัมพันธ์เชิงเส้น ระหว่างตัวแปรทั้งสองจะต้องศึกษาจากทฤษฎีที่เกี่ยวข้องกับตัว แปรนั้นมาอธิบาย

ข้อควรระวังในการตีความหมายของค่า r

- การนำค่าสัมประสิทธิ์สหสัมพันธ์ หรือความสัมพันธ์เชิงเส้นมาเกี่ยวพัน กับความเป็นเหตุและผลมีข้อควรระวังดังนี้
- 1. **ถ้ามีการศึกษาทฤษฏี**ที่เกี่ยวข้องกับตัวแปรอย่างละเอียด จะ สามารถสรุปได้ว่า X เป็นสาเหตุของตัวแปร Y และตัวแปร Y เป็นผลจาก ตัวแปร X นอกจากนี้ ตัวแปร X จะมีความสัมพันธ์เชิงเส้นกับตัวแปร Y ด้วย **แต่หากไม่มีการศึกษาทฤษฏีที่เกี่ยวข้องกับตัวแปรอย่างละเอียด** จะสรุปได้เพียงความสัมพันธ์เชิงเส้นของ 2 ตัวแปรเท่านั้น

ข้อควรระวังในการตีความหมายของค่า r

2. ในกรณีค่า r_{xy} สูง แต่เมื่อศึกษาทฤษฏีที่เกี่ยวข้องกับตัวแปร X และ ตัวแปร Y แล้วปรากฏว่า มีตัวแปรสอดแทรก ที่ทำให้พบความสัมพันธ์ระหว่าง ตัวแปร X และ Y (intervening relationship) กรณีนี้ตัวแปร X ไม่ใช่สาเหตุโดยตรงของตัวแปร Y แต่ส่งผ่านตัวแปรอื่นคือตัวแปรสอดแทรก กล่าวคือถ้า ไม่มีตัวแปร A แล้วตัวแปร X และ Y จะไม่มีความสัมพันธ์เชิงเส้นต่อกันเลย

ข้อควรระวังในการตีความหมายของค่า r

3. ใน**กรณีค่า r_{xy} สูง** แต่เมื่อศึกษาทฤษฎีที่เกี่ยวข้องกับตัวแปร X และตัวแปร Y แล้วปรากฏว่า **ตัวแปร X ไม่ใช่สาเหตุของตัวแปร Y** กรณีนี้ เรียกว่า **ความสัมพันธ์ลวง (spurious relationship) กล่าวคือจริงๆแล้ว** ตัวแปรทั้งสองไม่มีความสัมพันธ์เชิงเส้นต่อกัน

การทดสอบสมมติฐานค่าสัมประสิทธิ์สหสัมพันธ**์**

 ค่าสัมประสิทธิ์สหสัมพันธ์ใช้วัดองศาแห่งความสัมพันธ์เชิงเส้น การสรุปว่าตัว แปร 2 ตัวมีความสัมพันธ์เชิงเส้นกันหรือไม่ จะต้องผ่านการทดสอบ สมมติฐาน

 $H_0: \mathbf{\rho} = \mathbf{0}$ (ไม่มีความสัมพันธ์เชิงเส้น) $H_1: \mathbf{\rho} \neq \mathbf{0}$ (มีความสัมพันธ์เชิงเส้น)

- ค่าสถิติที่ใช้ทดสอบสมมติฐานมี 3 ตัวคือ
 - ค่าสถิติ r
 - ค่าสถิติ t

ค่าสถิติ z

Hypothesized Population Correlation (ρ_0)

• ค่าสถิติ r และ t ใช้ทดสอบสมมติฐานกรณี $H_0: \mathbf{p} = 0$ เท่านั้นหาก กรณี \mathbf{p} $\neq 0$ เช่น $H_0: \mathbf{p} = 0.5$ ต้องใช้สถิติ z

การทดสอบสมมติฐานค่าสัมประสิทธิ์สหสัมพันธ์

• ค่าสถิติ r

$$r_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}} = \frac{S_{XY}}{S_X S_Y}$$
 df = n-2

- ullet ปฏิเสธ $oldsymbol{\mathsf{H}}_{_0}$ ที่ระดับนัยสำคัญ $oldsymbol{lpha}$ % ก็ต่อเมื่อ $|\ r\ | \geq r_{[oldsymbol{lpha},\ \mathsf{n-2}]}$
 - โดยที่ α คือระดับนัยสำคัญ
 n คือขนาดตัวอย่างส่ม

เนื่องจากในตำราให้ มาเป็นตาราง 2-tail

การทดสอบสมมติฐานค่าสัมประสิทธิ์สหสัมพันธ์

ค่าสถิติ t

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
 df = n-2

- โดยที่ r คือค่า สปส.สหสัมพันธ์จากตัวอย่างสุ่ม n คือขนาดตัวอย่างสุ่ม
- ullet ปฏิเสธ $oldsymbol{\mathsf{H}}_{_0}$ ที่ระดับนัยสำคัญ $oldsymbol{lpha}$ % ก็ต่อเมื่อ $|\mathsf{t}| \geq \mathsf{t}_{[oldsymbol{lpha}/2.\;\mathrm{n-2l}]}$

การทดสอบสมมติฐานค่าสัมประสิทธิ์สหสัมพันธ์

• ค่าสถิติ z

$$Z = \frac{Z_r - Z_\rho}{\sigma_{z_r}}$$

• โดยที่

$$Z_r=rac{1}{2}\left[\ln(1+r)-\ln(1-r)
ight]$$
 $Z_{
ho}=rac{1}{2}\left[\ln(1+
ho)-\ln(1-
ho)
ight]$ $ightarrow$ ค่า $Z_{
ho}=0$ กรณี $ho_0=0$ $\sigma_{Z_r}=rac{1}{\sqrt{n-3}}$

ullet ปฏิเสธ $oldsymbol{\mathsf{H}}_{_0}$ ที่ระดับนัยสำคัญ $oldsymbol{lpha}$ % ก็ต่อเมื่อ | z | \geq $\mathsf{z}_{[oldsymbol{lpha}/2]}$

• จากข้อมูลดังนี้ ได้ค่า r =-0.44 จงทดสอบสมมติฐานว่าตัวแปร X และตัว แปร Y มีความสัมพันธ์เชิงเส้นหรือไม่ ที่ระดับนัยสำคัญ 0.05 (5%)

х	5	6	9	9	10
Y	9	11	0	15	

 $H_0 : \mathbf{p} = 0$

 $H_1 : \rho \neq 0$

การเปิดตารางหาค่า r

• $r_{0.025,3}(1-tail) = r_{0.05,3}(2-tail)$

Critical '	Values for F	Pearson's Co	rrelation Co	efficient		
	Proportion in ONE Tail					
	.25	.10	.05	.025	.01	.005
	Proportion in TWO Tails					
DF	.50	.20	.10	.05	.02	.01
1	.7071	.9511	.9877	.9969	.9995	.9999
2	.5000	.8000	.9000	.9500	.9800	.9900
(3)	.4040	.6870	.8054	.8783	.9343	.9587
4	.3473	.6084	.7293	.8114	.8822	.9172
5	.3091	.5509	.6694	.7545	.8329	.8745
6	.2811	.5067	.6215	.7067	.7887	.8343
7	.2596	.4716	.5822	.6664	.7498	.7977
8	.2423	.4428	.5494	.6319	.7155	.7646
9	.2281	.4187	.5214	.6021	.6851	.7348
10	.2161	.3981	.4973	.5760	.6581	.7079

ตัวอย่าง 9

• กรณีใช้ค่าสถิติ r ทดสอบ

$$r = \frac{S_{XY}}{S_X S_Y} = -0.44$$

- จากตารางสถิติ $r_{[0.05,3]} = 0.878$ (ตาราง 2-tail) = $r_{[0.025,3]}$ (1-tail)
- พบว่า | r | < r_[0.05,3]
- สรุปว่า ไม่ปฏิเสธ H_0 ที่ α=0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า ตัวแปรทั้งสองตัวไม่ มีความสัมพันธ์เชิงเส้น

ตัวอย่าง 9

กรณีใช้ค่าสถิติ t ทดสอบ

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{-0.44\sqrt{5-2}}{\sqrt{1-(-0.44)^2}} = -0.849$$

- จากตารางสถิติ t_[0.025,3] = -3.182
- พบว่า | t | < t_[0.025,3]
- สรุปว่า ไม่ปฏิเสธ H_0 ที่ α =0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า ตัวแปรทั้งสองตัวไม่ มีความสัมพันธ์เชิงเส้น

• กรณีใช้ค่าสถิติ z ทดสอบ: $Z_{\rho}=0$, $\sigma_{z_r}=\frac{1}{\sqrt{n-3}}=\frac{1}{\sqrt{5-3}}=0.7071$

$$Z_r = \frac{1}{2} \left[\ln(1+r) - \ln(1-r) \right] = \frac{1}{2} \left[\ln(1-0.44) - \ln(1+0.44) \right] = -0.472$$

$$Z = \frac{Z_r - Z_\rho}{\sigma_{Z_r}} = \frac{-0.472 - 0}{0.7071} = -0.6675$$

- จากตารางสถิติ z_[0.025] = -1.96
- พบว่า | z | < z_[0.025]
- สรุปว่า ไม่ปฏิเสธ $H_{_0}$ ที่ lpha=0.05
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 5 อนุมานได้ว่า ตัวแปรทั้งสองตัวไม่
 มีความสัมพันธ์เชิงเส้น

ตัวอย่าง 10

• จากข้อมูลตัวอย่างสุ่มขนาด 103 มีค่า r =-0.67 จงทดสอบสมมติฐานว่า ตัวแปร X และตัวแปร Y มีความสัมพันธ์เชิงเส้นในทางลบหรือไม่ ที่ระดับ นัยสำคัญ 0.01 (1%)

$$H_0 : \rho = 0$$

$$H_1 : \rho < 0$$

ตัวอย่าง 10

กรณีใช้ค่าสถิติ r ทดสอบ

$$r = \frac{S_{XY}}{S_X S_Y} = -0.67$$

- จากตารางสถิติ r_[0.02,101] = 0.230 (ตาราง 2-tail) = r_[0.01,101] (1-tail)
- พบว่า | r | ≥ r_[0.02,101]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 103 อนุมานได้ว่า ตัวแปรทั้งสองตัว
 มีความสัมพันธ์เชิงเส้นในทางลบ

ตัวอย่าง 10

• กรณีใช้ค่าสถิติ t ทดสอบ

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{-0.67\sqrt{103-2}}{\sqrt{1-(-0.67)^2}} = -9.070$$

- จากตารางสถิติ $t_{[0.01,101]} = -2.3638$ (ตาราง 1-tail) = $t_{[0.02,101]}$ (2-tail)
- พบว่า | t | ≥ t_[0.01,101]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 103 อนุมานได้ว่า ตัวแปรทั้งสองตัว มีความสัมพันธ์เชิงเส้นในทางลบ

- กรณีใช้ค่าสถิติ z ทดสอบ: $Z_{
 ho}=0$, $\sigma_{z_r}=\frac{1}{\sqrt{n-3}}=\frac{1}{\sqrt{103-3}}=0.1$ $Z_r=\frac{1}{2}\left[\ln(1+r)-\ln(1-r)\right]=\frac{1}{2}\left[\ln(1-0.67)-\ln(1+0.67)\right]=-0.811$ $Z=\frac{Z_r-Z_\rho}{\sigma_{z_r}}=\frac{-0.811-0}{0.1}=-8.11$
- จากตารางสถิติ z_[0.01] = -2.326
- พบว่า | z | ≥ z_[0.01]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 103 อนุมานได้ว่า ตัวแปรทั้งสองตัว มีความสัมพันธ์เชิงเส้นในทางลบ

ตัวอย่าง 11

• จากข้อมูลตัวอย่างสุ่มขนาด 50 มีค่า r = 0.889 จงทดสอบสมมติฐานว่า ตัวแปร X และตัวแปร Y มีความสัมพันธ์เชิงเส้นในทางบวกหรือไม่ ที่ระดับ นัยสำคัญ 0.01 (1%)

$$H_0 : \rho = 0$$

$$H_1 : \rho > 0$$

ตัวอย่าง 11

• กรณีใช้ค่าสถิติ r ทดสอบ

$$r = \frac{S_{XY}}{S_X S_Y} = 0.889$$

- จากตารางสถิติ r_[0.02,48] = 0.328 (ตาราง 2-tail)
- พบว่า | r | ≥ r_[0.02,101]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 50 อนุมานได้ว่า ตัวแปรทั้งสองตัว มีความสัมพันธ์เชิงเส้นในทางบวก

ตัวอย่าง 11

กรณีใช้ค่าสถิติ t ทดสอบ

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.889\sqrt{50-2}}{\sqrt{1-(0.889)^2}} = 13.45$$

- จากตารางสถิติ t_[0.01,48] = 2.4066 (ตาราง 1-tail)
- พบว่า | t | ≥ t_[0.01,48]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 50 อนุมานได้ว่า ตัวแปรทั้งสองตัว มีความสัมพันธ์เชิงเส้นในทางบวก

• กรณีใช้ค่าสถิติ z ทดสอบ: $Z_{
ho} = 0$, $\sigma_{z_r} = \frac{1}{\sqrt{n-3}} = \frac{1}{\sqrt{50-3}} = 0.1459$

$$Z_r = \frac{1}{2} \left[\ln(1+r) - \ln(1-r) \right] = \frac{1}{2} \left[\ln(1+0.889) - \ln(1-0.889) \right] = 1.417$$

$$Z = \frac{Z_r - Z_\rho}{\sigma_{Z_r}} = \frac{1.417 - 0}{0.1459} = 9.712$$

- จากตารางสถิติ z_[0.01] = 2.326
- พบว่า | z | ≥ z_[0.01]
- สรุปว่า ปฏิเสธ H_0 ที่ α =0.01
- แปลว่า จากข้อมูลที่ได้จาก ต.ย.ขนาด 50 อนุมานได้ว่า ตัวแปรทั้งสองตัว มีความสัมพันธ์เชิงเส้นในทางบวก

คำถาม

54