

Ensemble

Hendrik Santoso Sugiarto

IBDA2032 – Artificial Intelligence

Capaian Pembelajaran

- Ensemble Learning
- Bagging
- Boosting
- Stacking

Ensemble

Ensemble

- Paradigma machine learning yang menggunakan perspektif kerja sama banyak model
- Dapat digunakan untuk regresi, klasifikasi, clustering
- Dapat dijadikan probabilistik

Ensemble Learning

- Ide: daripada melatih 1 jenis model, latih beberapa model dan gabungkan
- Biasanya meningkatkan performa dengan sangat banyak

Intuisi

0,65

- Misalkan terdapat 25 classifier biasa
- Masing-masing memiliki tingkat kesalahan sekitar, $\varepsilon=0.35$
- Asumsikan setiap classifier independent terhadap yang lain
- Maka peluang dari mayoritas classifier (13 dari 25) membuat prediksi yang salah adalah:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

$$\sum_{i=13}^{27} {25 \choose i} 0.35^{i} (1-0.35)^{25-i} = 0.06$$

$$\sum_{i=13}^{27} {25 \choose i} 0.35^{i} (1-0.35)^{25-i} = 0.06$$

Jenis Ensemble

Bagging

- Boosting
- Stacking
- ECOC
- DII

Bagging

Bootstrap Sampling

- Bagging = bootstrap aggregating
- Boostrap sampling: jika terdapat himpunan D berisi m data latih
 - Buat D^i dengan mengambil \underline{m} data secara random dengan replacement dari himpunan D
 - D^i akan membuang sekitar $\left(1 \frac{1}{m}\right)^m \approx 0.37$ data dari D
- Bagging (sampling dengan replacement) vs pasting (sampling tanpa replacement)

Bagging

Sampling dengan replacement

Data Asal	1	2	3	4	5	6	7	8	9	10
Bagging 1	8	7	8	2	10	10	5	6	5	7
Bagging 2	2	9	4	1	1	3	3	7	2	5
Bagging 3	5	1	8	10	5	5	6	9	7	3

- Buat classifier untuk setiap bootstrap sample
- Setiap sample memiliki peluang $\left(1-\frac{1}{m}\right)^m$ untuk tidak terpilih (mendekati 0.37 untuk m besar)
- Setiap sample memiliki peluang $1 \left(1 \frac{1}{m}\right)^m$ untuk terpilih (mendekati 0.63 untuk m besar)

Algoritma bagging

- Buat K boostrap samples $D^1, D^2, ..., D^K$
- Latih classifier berbeda h_k untuk setiap D^k
- Klasifikasikan data baru dengan voting

$$c^*(x) = \arg\max_{c} \sum_{k=1}^{n} p(c|h_k, x)$$

$$P(c|h_1) = \operatorname{Selamat}$$

$$P(c|h_2) = \operatorname{Idah Selamat}$$

$$P(c|h_3) = \operatorname{Idah Selamat}$$

Hard Voting vs Soft Voting

- Hard voting: melakukan prediksi dengan vote mayoritas dari semua prediksi modelmodel yang dilatih
- Soft voting: melakukan prediksi dengan rata-rata peluang prediksi dari semua prediksi model-model yang dilatih

Uji Pemahaman

 Suatu klasifikasi biner (kelas A dan B) memakai pemodelan bagging yang menggunakan 5 base learner dengan peluang prediksi kelas A, sebagai berikut:

- Learner 1: 60% A
 Learner 2: 15% A
 Learner 3: 55% A
 Learner 4: 65% A
 Learner 5: 10% A
- Apakah prediksi akhir jika menggunakan hard voting?
- Apakah prediksi akhir jika menggunakan soft voting?

$$P(A) = 0.6 + 0.15 + 0.55 + 0.65 + 0.1 = \frac{2.05}{5} = 0.41$$

Random Forest

• Voting mayoritas dari banyak decision tree \rightarrow prediksi random forest

Ilustrasi RF

RF yang terdiri dari5 pohon

Hasil per pohon (no. 0 – 4)

Hasil agregat RF

Performa Bagging

- Bagging decision trees
- Bootstrap 50 samples berbeda dari data asli
- Latih decision tree untuk setiap bootstrap
- Prediksi label kelas untuk data uji dengan voting
- Bagging decision tree mengalahkan 1 tree
- Bagging decision tree → random forest

		C4.5	
			Boosting
Dataset	Standard	Bagging	Ada
breast-cancer-w	5.0	─> 3.3	3.1
credit-a	14.9	一 フ 12.1	12.6
credit-g	29.6	22.8	22.9
diabetes	28.3	21.9	22.3
glass	30.9	-28.4	30.5
heart-cleveland	24.3		17.4
hepatitis	21.6	16.5	13.8
house-votes-84	3.5	3.6	4.4
hypo	0.5	 9.4	0.4
ionosphere	8.1	- 6.0	6.0
iris	6.0	-2.6	5.6
kr-vs-kp	0.6	0.5	0.3
labor	15.1	13.3	13.2
letter	14.0	10.6	6.7
promoters-936	12.8	9.5	6.3
ribosome-bind	11.2	9.3	9.1
satellite	13.8	10.8	10.4
segmentation	3.7	2.8	2.3
sick	1.3	1.0	0.9
sonar	29.0	21.6	19.7
soybean	8.0	8.0	7.9
splice	5.9	5.7	6.3
vehicle	29.4	26.1	24.8

Kelemahan Bagging

- Inefficient bootstrap sampling:
 - Setiap data punya peluang yang sama untuk tersampel
 - Tidak ada pembedaan antara data yang mudah dan data yang sulit
- Inefficient model combination:
 - Bobot yang sama untuk setiap classifier
 - Tidak ada pembedaan antara classifier akurat dan tidak

Memperbaiki Efisiensi Bagging

- Strategi sampling yang lebih baik
 - Fokus pada data yang sulit diprediksi
- Strategi pengkombinasian model yang lebih baik
 - Model yang akurat harus diberi bobot yang lebih besar

Boosting

Boosting

• Boost = memperkuat \rightarrow perkuat model yang bagus melalui data yang sulit

Contoh

- Data yang terklasifikasi salah akan dinaikan bobotnya
- Data yang terklasifikasi benar akan dikurangi bobotnya
- Contoh: data 10 susah diklasifikasi > bobotnya dinaikan sehingga peluang tersampel lagi lebih besar pada round berikutnya

Data Asal	1	2	3	4	5	6	7	8	9	10
Boosting 1	8	7	8	2	10	10	5	6	5	7
Boosting 2	2	9	4	10	10	3	10	7	2	5
Boosting 3	5	10	8	10	10	10	6	9	7	3

Varian Algoritma Boosting

- Adaboost (adaptive boosting)
- Gradient boosting
- XGboost (extreme gradient boosting)
- LightGB

Performa Boosting

- AdaBoosting decision tree
- Hasilkan 50 decision trees dengan adaboosting
- Kombinasi linear dengan bobot adaboosting
- Secara umum:
 - Adaboost ≈ bagging > C4.5
 - Adaboost butuh lebih sedikit classifier dibanding bagging

		C4.5	
			Boosting
Dataset	Standard	Bagging	Ada
breast-cancer-w	5.0	3.3	3.1
credit-a	14.9	12.1	12.6
credit-g	29.6	22.8	22.9
diabetes	28.3	21.9	22.3
glass	30.9	28.4	30.5
heart-cleveland	24.3	18.1	17.4
hepatitis	21.6	16.5	13.8
house-votes-84	3.5	3.6	4.4
hypo	0.5	0.4	0.4
ionosphere	8.1	6.0	6.0
iris	6.0	4.6	5.6
kr-vs-kp	0.6	0.5	0.3
labor	15.1	13.3	13.2
letter	14.0	10.6	6.7
promoters-936	12.8	9.5	6.3
ribosome-bind	11.2	9.3	9.1
satellite	13.8	10.8	10.4
segmentation	3.7	2.8	2.3
sick	1.3	1.0	0.9
sonar	29.0	21.6	19.7
soybean	8.0	8.0	7.9
splice	5.9	5.7	6.3
yehicle	29.4	26.1	24.8

Stacking

Stacking

- Gunakan bebagai jenis model yang berbeda (misalnya decision tree, naïve bayes, regresi logistik)
- Meta-learner: inputs = prediksi dari tiap model
- Proses pelatihan menggunakan cross-validation

Superlearner

- Superlearner adalah generalisasi stacking dengan menggunakan out-of-fold selama proses k-fold validation
- https://machinelearningmastery.com/super-learner-ensemble-in-python/

Tuhan Memberkati

