Tracking the Dynamics of the Tear Film Lipid Layer

Tejasvi Kothapalli, Charlie Shou, Peter Wang, Tatyana Svitova, Andrew D. Graham, Stella Yu, Meng Lin

My Amazing Collaborators

Charlie Shou

Peter Wang

Tatyana Svitova

Andrew D. Graham

Prof. Stella Yu

Prof. Meng Lin

Background

Tear Film Lipid Layer Visualized

Tear Film Lipid Layer Visualized (cont.)

Tear Film Diagram

Conjunctival Goblet Cells

Prior Work in Lipid Layer Motion Tracking

[1] Norihiko Yokoi et al. "Rheology of tear film lipid layer spread in normal and aqueous tear— deficient dry eyes"

Prior Work Conclusions

In all cases, the time-dependent changes in TFLL spread could be described by the expression $H(t) - H(0) = \rho[1 - \exp(t/\lambda)]$, where H(t) is the averaged height in millimeters at time t, H(0) is the averaged height at t 0, is a constant, t is time in seconds, and is the characteristic time in seconds. [1]

- **spreading time is longer in aqueous-deficient dry eyes** than in aqueous-sufficient normal eyes. [2]

- spreading is affected by aqueous tear volume [2]
- [2] Goto E, Tseng SC. Kinetic analysis of tear interference images in aqueous tear deficiency dry eye before and after punctal occlusion.

Our Proposal

This work proposes a novel paradigm in using computer vision techniques to numerically analyze the tear film lipid layer spread

Methodology

Data Collection

EasyTear View

Three Interblink
Periods Collected
in One Video

Methodology Pipeline

Preprocessing

Blink Detection

Inter-Blink Frame

Blink Detection (cont.)

Video Stabilization with Pupil Tracking [2]

Video Stabilization with Pupil Tracking (cont.)

Iris Segmentation

Lipid Layer Visual Enhancement

Tracking with Optical Flow

Optical Flow Assumptions

Optical flow works on several assumptions:

- 1. The pixel intensities of an object do not change between consecutive frames.
- 2. Neighbouring pixels have similar motion.

Optical Flow Equation

$$I(x,y,t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

$$I(x+\Delta x,y+\Delta y,t+\Delta t)=I(x,y,t)+rac{\partial I}{\partial x}\,\Delta x+rac{\partial I}{\partial y}\,\Delta y+rac{\partial I}{\partial t}\,\Delta t+ ext{higher-order terms}$$

$$rac{\partial I}{\partial x}V_x+rac{\partial I}{\partial y}V_y+rac{\partial I}{\partial t}=0$$

Lucas-Kanade Method

$$u = \frac{dx}{dt} \; ; \; v = \frac{dy}{dt}$$

Lucas-Kanade method takes a 3x3 patch around the point. So all the 9 points have the same motion. This yields 9 equations and two unknowns.

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_{i} f_{x_{i}}^{2} & \sum_{i} f_{x_{i}} f_{y_{i}} \\ \sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{y_{i}}^{2} \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$

Tracking Demonstration

Tracking Demonstration

Tracking Demonstration (cont.)

Tracking Demonstration (cont.)

Tracking Demonstration (cont.)

Tracking Demonstration (cont.)

Tracking Demonstration (cont.)

Tracking Demonstration (without stabilization)

Dense Optical Flow (Farneback's Algorithm)

Y-Displacement vs Time

displacement = $105.2194947755335 * e^{(-0.671622542657137 * time)} + -116.95488456474348$ characteristic time: 1.4889315597473916

Results

Annotations

Annotation Visualization

Annotation Visualization

Annotations Compared to Tracking Method

Annotations Compared to Tracking Method

Validating the Tracking Method

Table 1: Computed Characteristic Times versus Annotation Characteristic Times

Computed y displacement λ	Annotation y displacement λ	Computed x displacement λ	Annotation x displacement λ
0.59 2.58	0.46 1.78	0.66 7.57	0.8 8.94
2.52	1.91	2.47	3.16
0.79	0.53	28.98	3.12
1.39	6.58	2.32	1.62

Relation to OSDI and TLL Thinning

Figure 2

What's Next?

Tear Film Lipid Layer Thickness

Calculating Thickness from Image [3]

[3] Hyeonha Hwang et al. *Image-based quantitative analysis of tear film lipid layer thickness for meibomian gland evaluation*

$$Red(d) = \sum_{\lambda} I_{INT}(\lambda, d) \cdot R_{STDOBS}(\lambda), \tag{12}$$

$$Green(d) = \sum_{\lambda} I_{INT}(\lambda, d) \cdot G_{STDOBS}(\lambda), \tag{13}$$

Blue(d) =
$$\sum_{\lambda} I_{\text{INT}}(\lambda, d) \cdot B_{\text{STDOBS}}(\lambda)$$
. (14)

Calculating Thickness from Image (cont.)

Neural Networks?

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

RAFT Baseline for Lipid Layer Tracking

RAFT Baseline for Lipid Layer Tracking (cont.)

RAFT Baseline for Lipid Layer Tracking (cont.)

RAFT Baseline for Lipid Layer Tracking (cont.)

displacement = $209.3089132660783 * e^{-1.2501360041699203 * time} + -230.6861017507681$ characteristic time: 0.7999129668007534

Our Website (under construction)

Upload video to start tear film analysis

UPLOAD

OS4-427_3221-OD2-TLL-06222022.avi

This is a sample description

https://easytear-dev.github.io/

Questions?