Espaços compactamente gerados

Lucas H. R. de Souza

5 de dezembro de 2022

1 Definição e exemplos

Proposição 1.1. Seja X um espaço Hausdorff localmente compacto. Um conjunto $A \subseteq X$ é aberto em X se e somente se para todo compacto $C \subseteq X$, $A \cap C$ é aberto em C.

Demonstração. Seja $A \subseteq X$ tal que para todo compacto $C \subseteq X$, $A \cap C$ é aberto em C. Seja $a \in A$. Como X é localmente compacto, existe V vizinhança aberta de a tal que Cl(V) é compacto. Temos então que $A \cap Cl(V)$ é aberto em Cl(V), o que implica que $A \cap V$ é aberto em V. Como V é aberto em X, segue que $A \cap V$ é aberto em X. Portanto $A \cap V$ é uma vizinhança aberta de A contida em A, o que implica que A é aberto em X.

Definição 1.2. Um espaço Hausdorff X é um k-espaço se todo subconjunto $A \subseteq X$ é aberto em X se para todo compacto $C \subseteq X$, $A \cap C$ é aberto em C.

É imediato que espaços Hausdorff localmente compactos são k-espaços.

Proposição 1.3. Seja X espaço Hausdorff. são equivalentes:

- 1. X é k-espaço.
- 2. Para todo $A \subseteq X$, A é fechado se para todo compacto $C \subseteq X$, $A \cap C$ é fechado em C.
- 3. X é quociente de um coproduto de espaços Hausdorff compactos.
- 4. X é quociente de um espaço Hausdorff localmente compacto.

Demonstração. $(1 \Rightarrow 2)$ Seja $A \subseteq X$ tal que para todo compacto $C \subseteq X$, $A \cap C$ é fechado em C. O subconjunto X - A é tal que se C é um compacto, então $(X - A) \cap C = C - (A \cap C)$ é aberto. Como X é k-espaço, segue que X - A é aberto e portanto A é fechado.

- $(2 \Rightarrow 1)$ É análogo à demonstração acima.
- $(1\Rightarrow 3)$ Seja $G=\bigcup\{C\subseteq X: C\text{ \'e compacto}\}$ com a topologia de coproduto. Tome $f:G\to X$ induzida pelos mapas de inclusão dos compactos em X. Portanto f é contínua. Seja $A\subseteq X$ tal que $f^{-1}(A)$ é aberto em G. Portanto $f^{-1}(A)\cap C$ é aberto em G (visto como subespaço de G), para todo G compacto em G0. Compacto em G1. Como G2 é k-espaço, segue que G3 é aberto em G4. Portanto G4 é uma aplicação quociente.
 - $(3 \Rightarrow 4)$ Coproduto de compactos é localmente compacto.
- $(4\Rightarrow 1)$ Sejam Y espaço Hausdorff localmente compacto e $f:Y\to X$ aplicação quociente. Seja $A\subseteq X$ tal que para todo $C\subseteq X$ compacto, $A\cap C$ é aberto em X. Seja $V\subseteq Y$ aberto tal que Cl(V) é compacto. Temos que $A\cap f(Cl(V))$ é aberto em f(Cl(V)). Portanto $A\cap f(Cl(V))=U\cap f(Cl(V))$ para algum aberto U de X. Segue então que $f^{-1}(A)\cap f^{-1}(f(Cl(V)))=f^{-1}(U)\cap f^{-1}(f(Cl(V)))$ Tomando interseção com V dos dois lados, temos que $f^{-1}(A)\cap V=f^{-1}(U)\cap V$. Mas $f^{-1}(U)\cap V$ é aberto em Y, o que implica que $f^{-1}(A)\cap V$ é aberto em Y. Tome $Y=\bigcup_{\alpha}V_{\alpha}$ com V_{α} aberto com fecho compacto. Temos que $f^{-1}(A)=\bigcup_{\alpha}f^{-1}(A)\cap V_{\alpha}$, o que implica que $f^{-1}(A)$ é aberto em Y. Como f é quociente, segue que A é aberto em X. Portanto X é K-espaço.

Corolário 1.4. Sejam X e Y espaços Hausdorff e $\pi: X \to Y$ um mapa quociente. Se X é k-espaço, então Y é k-espaço.

Corolário 1.5. Complexos celulares e complexos simpliciais são k-espaços.

Proposição 1.6. Se X é Hausdorff e 1-enumerável, então X é k-espaço.

Observação. Dizemos que X é 1-enumerável se para todo $x \in X$, existe um conjunto enumerável \mathcal{B} de vizinhanças abertas de x, tal que para toda vizinhança U de x, existe $B \in \mathcal{B}$ tal que $B \subseteq U$.

Demonstração. Seja $A \subseteq X$ tal que para todo compacto $C \subseteq X$, $A \cap C$ é fechado em X. Seja $x \in Cl(A)$. Existe $\{a_n\}_{n \in \mathbb{N}}$ sequência que converge para x. Temos que o conjunto $C = \{a_n : n \in \mathbb{N}\} \cup \{x\}$ é compacto, o que implica que $A \cap C$ é fechado em C. Mas $\{a_n : n \in \mathbb{N}\} \subseteq A \cap C$, o que implica que $x \in A \cap C \subseteq A$. Portanto A é fechado.

Logo X é um k-espaço. \square

Em particular, espaços metrizáveis são k-espaços.

Proposição 1.7. Seja X um k-espaço tal que todo subespaço compacto é finito. Então X é discreto.

Demonstração. Seja $x \in X$. Se $K \subseteq X$ é um compacto, então K é finito. Como X é Hausdorff (e portanto K também é), segue que todo ponto de K é aberto em K. Temos então que $\{x\} \cap K = \emptyset$ ou $\{x\}$ e ambos são abertos em K. Como X é k-espaço, segue que $\{x\}$ é aberto em X. Logo X é discreto.

Exemplo. ¹ Sejam $p \in \beta \mathbb{N} - \mathbb{N}$ e $X = \mathbb{N} \cup \{p\}$ com a topologia de subespaço. Repare que p é um ponto de acumulação de X, mas nenhuma sequência de pontos em \mathbb{N} converge para p, pois não converge em $\beta \mathbb{N}$. Seja K um subespaço compacto de X. Se $K \subseteq \mathbb{N}$, então K é finito, pois \mathbb{N} é discreto. Se $p \in K$, então X é finito ou é a compactificação de um ponto de $X - \{p\}$. Mas se X fosse a compactificação de um ponto de $X - \{p\}$, então X seria homeomorfo à compactificação de um ponto de \mathbb{N} , que é metrizável, e portanto existiria uma sequência de pontos convergindo para p. Portanto K é finito. Pela proposição anterior, segue que X não pode ser um k-espaço pois não é discreto (já que p é um ponto de acumulação). Observe que esse é um exemplo de espaço que não é k-espaço mas é um subespaço do k-espaço $\beta \mathbb{N}$ (que é compacto).

2 Funtorialidade

Sejam T_2Top a categoria de espaços topológicos Hausdorff e kTop a subcategoria plena de k-espaços. Mostraremos que o funtor de inclusão $\mathcal{I}: kTop \to T_2Top$ possui um adjunto à direita.

Definimos $K: T_2Top \to kTop$, em objetos, da seguinte forma: se X é um espaço topológico, então K(X) é um espaço topológico cujo conjunto subjacente é X e a topologia é dada por $\tau = \{U \subseteq X : U \cap K \text{ é aberto em } K, \forall K \text{ compacto em } X\}.$

Proposição 2.1. τ é uma topologia para K(X).

Demonstração. É imediato que $\emptyset, X \in \tau$. Sejam $U_1, ..., U_n \in \tau$ e $K \subseteq X$ um compacto. Então $\forall i \in \{1, ..., n\}, U_i \cap K$ é aberto em K, o que implica que $U_1 \cap ... \cap U_n \cap K$ é aberto em K. Portanto $U_1 \cap ... \cap U_n \in \tau$. Sejam $\{U_i\}_{i \in \Gamma} \subseteq \tau$ e $K \subseteq X$ um compacto. Então $\forall i \in \Gamma, U_i \cap K$ é aberto em K, o que implica que $(\bigcup_{i \in \Gamma} U_i) \cap K = \bigcup_{i \in \Gamma} (U_i \cap K)$ é aberto em K. Portanto $\bigcup_{i \in \Gamma} U_i \in \tau$. Logo τ é uma topologia.

Temos que todos os abertos de X são abertos de $\mathcal{K}(X)$, o que implica que $\mathcal{K}(X)$ é Hausdorff. Além disso, segue da definição da topologia de $\mathcal{K}(X)$ que $\mathcal{K}(X)$ é um k-espaço.

¹Thanks to Tyrone, who showed me this example and **Proposition 1.7**

Se $f: X \to Y$ é uma função contínua entre espaços Hausdorff, definimos $\mathcal{K}(f): \mathcal{K}(X) \to \mathcal{K}(Y)$ como a própria função f (do ponto de vista de conjuntos, ambas têm os mesmos domínio e contradomínio, mas atuam em espaços topológicos diferentes).

Proposição 2.2. Se f é contínua, então K(f) é contínua.

Demonstração. Sejam U aberto de $\mathcal{K}(Y)$ e K um compacto de X. Então f(K) é compacto em Y, o que implica que $U \cap f(K)$ é aberto em f(K). Como f é contínua, temos que $f^{-1}(U \cap f(K)) = f^{-1}(U) \cap f^{-1}(f(K))$ é aberto em $f^{-1}(f(K))$, o que implica que $f^{-1}(U) \cap K$ é aberto em K. Como K(X) é K-espaço, segue que $f^{-1}(U)$ é aberto de K(X), o que implica que K(f) é contínua.

Segue que K é um funtor covariante.

Proposição 2.3. \mathcal{K} é adjunto à direita de \mathcal{I} .

Demonstração. Para $X \in T_2Top$, tome $k_X : \mathcal{K}(X) \to X$ a aplicação identidade (pela definição de $\mathcal{K}(X)$, segue que k_X é contínua).

Seja $f:X\to Y$ uma aplicação contínua entre espaços Hausdorff. É imediato que o seguinte diagrama comuta:

$$\begin{array}{ccc}
\mathcal{K}(X) \xrightarrow{k_X} X \\
\mathcal{K}(f) \downarrow & & \downarrow f \\
\mathcal{K}(Y) \xrightarrow{k_Y} Y
\end{array}$$

Portanto $k = \{k_X : X \in T_2 Top\}$ é uma transformação natural $\mathcal{I} \circ \mathcal{K} \Rightarrow id_{T_2 Top}$.

Se X é um espaço Hausdorff, então o par $(\mathcal{K}(X), k_X)$ é uma correflexão de X pelo funtor \mathcal{I} . De fato, se X é um k-espaço, Y um espaço Hausdorff e $f: X \to Y$ é uma aplicação contínua, então $\mathcal{K}(f)$ é a única aplicação contínua que comuta o diagrama:

$$\mathcal{K}(X) = X$$

$$\mathcal{K}(f) \downarrow \qquad \qquad f$$

$$\mathcal{K}(Y) \xrightarrow{k_Y} Y$$

Mas isso implica que \mathcal{K} é adjunto à direita de \mathcal{I} (Teorema 3.1.5 de [1]) \square

3 Definição via funções

Definição 3.1. Sejam X e Y espaços topológicos. Uma aplicação $f: X \to Y$ é k-contínua se para todo espaço Hausdorff compacto C e aplicação contínua $t: C \to X$, a composição $f \circ t: C \to Y$ é contínua.

Proposição 3.2. Seja X espaço Hausdorff. São equivalentes:

- 1. X é k-espaço
- 2. $\mathcal{K}(X) = X$
- 3. Para todo espaço Y, uma função $f:X\to Y$ é contínua se é k-contínua.
- 4. Para todo $A \subseteq X$, A é aberto em X se para todo C Hausdorff compacto e $t: C \to X$ contínua, $t^{-1}(A)$ é aberto em C.

Demonstração. $(1 \Leftrightarrow 2)$ Imediato.

- $(1\Rightarrow 3)$ Sejam F um fechado de $Y, C\subseteq X$ um compacto e $\iota:C\to X$ a aplicação de inclusão. Como f é k-contínua, temos que $f\circ\iota$ é contínua, portanto $(f\circ\iota)^{-1}(F)=f^{-1}(F)\cap C$ é fechado em C. Como X é k-espaço, segue que $f^{-1}(F)$ é fechado. Portanto f é contínua.
- $(3 \Rightarrow 2)$ Considere $I: X \to \mathcal{K}(X)$ a aplicação identidade e $t: K \to X$ alguma aplicação contínua, com K um espaço Hausdorff compacto. Temos que t(K) é compacto em X, o que implica que $I|_{t(K)}$ é contínua (de fato, se U é aberto de $\mathcal{K}(X)$, então $I|_{t(K)}^{-1}(U) = U \cap t(K)$ é aberto em t(K)), e portanto $I \circ t$ é contínua. Logo I é k-contínua, o que implica que I é contínua. Mas já vimos que $I^{-1} = k_X$ é sempre contínua, o que implica que $\mathcal{K}(X) = X$.
- $(1\Rightarrow 4)$ Seja $A\subseteq X$ tal que para todo C Hausdorff compacto e $t:C\to X$ contínua, $t^{-1}(A)$ é aberto em C. Tomando $C\subseteq X$ e t o mapa de inclusão, temos que para todo compacto $C\subseteq X$, $A\cap C$ é aberto em C. Como X é k-espaço, segue que A é aberto em X.
- $(4\Rightarrow 1)$ Seja $A\subseteq X$ tal que para todo compacto $C\subseteq X,\,A\cap C$ é aberto em C. Sejam K um espaço Hausdorff compacto e $t:K\to X$ uma aplicação contínua. Como t(K) é compacto, temos que $A\cap t(K)$ é aberto em t(K), o que implica que $t^{-1}(A)=t^{-1}(A\cap t(K))$ é aberto em K. Portanto K0 é aberto em K1. Logo K2 é k-espaço.

4 Alterando as restrições sobre separabilidade e cardinalidade

Definição 4.1. Seja X um espaço topológico. Dizemos que X é compactamente gerado se para todo espaço Y e toda função $f: X \to Y$, f é contínua

se e somente se é k-contínua.

Observação. Temos que a definição de espaço compactamente gerado generaliza a definição de k-espaço para espaços não Hausdorff. Várias das definições equivalentes ainda são válidas aqui, fazendo as alterações necessárias. O funtor $\mathcal K$ pode ser estendido a espaços não Hausdorff, e continua adjunto ao funtor de inclusão apropriado.

Definição 4.2. Sejam X um espaço topológico e κ uma cardinalidade. Dizemos que X é κ -compactamente gerado se para todo $A \subseteq X$, A é aberto em X se para todo C Hausdorff compacto com $\#C < \kappa$ e $t: C \to X$ contínua, temos que $t^{-1}(A)$ é aberto em C.

Observação. Observe que as outras definições equivalentes de espaços compactamente gerados possuem seus respectivos análogos para espaços κ - compactamente gerados, inclusive um funtor que leva um espaço qualquer em um espaço κ -compactamente gerado.

Observe também que se $\kappa \geqslant \#X$, então os conceitos de espaço compactamente gerado e κ -compactamente gerado coincidem.

Referências

- [1] F. Borceux, Handbook of Categorical Algebra 1 Basic Category Theory. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Great Britain, 1994. Zbl 1143.18001 MR 1291599
- [2] F. Borceux, *Handbook of Categorical Algebra 2 Categories and Structures*. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Great Britain, 1994.
- [3] J. Dugundji, *Topology*. Allyn and Bacon, Inc., Boston, 1966.