## Numerical Algorithms (MU4IN910)

#### Lecture 5: Nonlinear equations

Stef Graillat

Sorbonne Université



#### Summary of the previous lecture

Algorithms for optimization in dimension  $n \ge 2$ 

- Direct search methods (pattern search and Nelder-Meade)
- Steepest descent algorithm
- Newton algorithm
- Quasi-Newton algorithms
- Nonlinear conjugate gradient algorithm
- Nonlinear least squares algorithm

#### Goals

- Newton method in dimension  $n \ge 1$
- Homotopy continuation methods

### Bibliography

- Scientific Computing, An Introductory Survey, Michael .T. Heath, Revised Second Edition, SIAM, 2018 (the lecture is mainly based on this book and on the associated slides)
- Scientific Computing with Case Studies, Dianne P. O'Leary, SIAM, 2009 (Part of the lecture is based on this book and on the associated slides)
- Numerical Methods, D. Faires and R. Burden, 3rd edition, Brooks/Cole, 2002

# Newton method

#### Nonlinear equations

• Given a function f, we seek value x such that

$$f(x) = 0$$

• A solution x is called a root of the equation or a zero of the function f.

## Nonlinear equations (cont'd)

#### Two important cases:

- Single nonlinear equation in one unknown, where  $f : \mathbb{R} \to \mathbb{R}$ A solution is a scalar x satisfying f(x) = 0
- System of *n* nonlinear equations in *n* unknowns, where  $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$ A solution is a vector *x* for which  $\mathbf{f}(x) = 0$

### Examples of nonlinear equations

• Examples of nonlinear equations in dimension 1

$$x^2 - 4\sin(x) = 0$$

for which x = 1.9 is an approximate solution

• Examples of a system of nonlinear equations in dimension 2

$$x_1^2 - x_2 + 0.25 = 0$$
  
 $-x_1 + x_2^2 + 0.25 = 0$ 

for which  $x = [0.5; 0.5]^T$  is a solution

#### Existence and uniqueness of some solutions

- Existence and uniqueness of solutions are more complicated for nonlinear equations than for linear equations
- If  $f : \mathbb{R} \to \mathbb{R}$  is continuous and  $\operatorname{sign}(f(a)) \neq \operatorname{sign}(f(b))$  then the Intermediate Value Theorem implies that there exists  $x^* \in [a, b]$  such that  $f(x^*) = 0$
- There is no simple analog for dimensions n > 1.

#### Examples in dimension 1

Nonlinear equations can have any number of solutions:

- $e^x + 1 = 0$  has no solution
- $e^{-x} x = 0$  has one solution
- $x^2 4\sin(x) = 0$  has 2 solutions
- $x^3 + 6x^2 + 11 6 = 0$  a 3 solutions
- sin(x) = 0 has infinitely many solutions

## Example in dimension 2

$$x_1^2 - x_2 + y = 0$$
  
-x<sub>1</sub> + x<sub>2</sub><sup>2</sup> + y = 0









## Multiplicity

• If  $f(x^*) = f'(x^*) = f''(x^*) = \dots = f^{(m-1)}(x^*) = 0$  but  $f^{(m)}(x^*) \neq 0$ , then we say that the root  $x^*$  has multiplicity m





• If m = 1, we say that  $x^*$  is a simple root

## Sensitivity and conditioning

- The conditioning of root finding problem is opposite to that for evaluating function
- The absolute condition number of root finding problem for root  $x^*$  of  $f: \mathbb{R} \to \mathbb{R}$  is  $1/|f'(x^*)|$
- A root is ill-conditioned if its tangent line is nearly horizontal
- In particular, a multiple root is ill-conditioned
- Absolute condition number of root finding problem for root  $x^*$  of  $f: \mathbb{R}^n \to \mathbb{R}^n$  is  $||J_f^{-1}(x^*)||$  where  $J_f$  is the Jacobian of f,

$$J_f(x) = \{\partial f_i(x)/\partial x_j\}$$

• A root is ill-conditioned if the Jacobian matrix is nearly singular

## Sensitivity and conditioning (cont'd)



## Sensitivity and conditioning (cont'd)

• What do we mean by approximate solution  $\widehat{x}$  to nonlinear system?

$$||f(\widehat{x})|| \approx 0$$
 or  $||\widehat{x} - x^*|| \approx 0$ ?

- The first corresponds to "small residual", the second measures the closeness to the true solution
- A small residual implies an accurate solution only if the problem is well-conditioned

#### Convergence rate

• For a general iterative method, we define the error at iteration *k* by

$$e_k = x_k - x^*$$

where  $x_k$  is an approximation of the solution and  $x^*$  is the solution

• The sequence  $(x_k)$  is said to converge with a rate r if

$$\lim_{k\to+\infty}\frac{\|e_{k+1}\|}{\|e_k\|^r}=C$$

for a constant  $C \ge 0$ 

## Convergence rate (cont'd)

#### Some interesting special cases

- r = 1: linear
- r > 1: superlinear
- r = 2: quadratic

| Convergence rate | Gain in digits per iteration |
|------------------|------------------------------|
| linear           | constant                     |
| superlinear      | increasing                   |
| quadratic        | double                       |

#### Bisection method

The principle of the bisection method is to start from an interval which contains a solution and then divide its length by two until we have isolated the solution with a sufficient accuracy

```
while (b-a) > tol do

m = a + (b-a)/2

if sign(f(a)) = sign(f(m)) then

a = m

else

b = m

end
```



#### Bisection method (cont'd)

- The bisection algorithm converges all the time but slowly
- The rate of convergence is r = 1 and C = 0.5
- We gain 1 bit of precision at each iteration

#### Newton's method

Taylor series of order 1

$$f(x+h) \approx f(x) + hf'(x)$$

This is a linear function in h approximating f in the neighborhood of x

- We replace the nonlinear function f by this linear function whose root is h = -f(x)/f'(x)
- The zeros of the function *f* and the zeros of the linear approximation are in general not identical so we iterate the process

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

#### Newton's method (cont'd)

Newton's method approximates a nonlinear function f near  $x_k$  by its tangent line at  $f(x_k)$ .



## Convergence of Newton's method

- If the root  $x^*$  is simple then the convergence is quadratic (r = 2)
- But the iteration must start close enough to the root for convergence

#### Zeros of univariate polynomials

- Given a polynomial p(x) of degree n, we want to find its n zeros.
- Several approaches exist
  - Use Newton's method to find a zero then deflate and continue
  - Form the companion matrix and compute its eigenvalues
  - Use specific methods to calculate all the roots of a polynomial of a polynomial (Jenkins-Traub, Durand-Kerner, Ehrlich-Aberth, etc.)

#### Simultaneous methods

- Until the 1960's all known methods for solving polynomials involved finding one root at a time, say  $z_i$ , and deflating (i.e. dividing out the factor  $z z_i$ ). This can lead to problems with increased rounding errors.
- Durand-Kerner method

$$z_{n+1,i} = z_{n,i} - \frac{p(z_{n,i})}{\prod_{j=1,j\neq i}^{m} (z_{n,i} - z_{n,j})}$$

- → quadratic convergence for simple zero (linear convergence for multiple zero) in practice for nearly all starting points
- → compute all the zeros simultaneously
- The Ehrlich-Aberth method combines Newton's method with an implicit deflation strategy. Apply Newton's method to  $R_i(z) = \frac{p(z)}{\prod_{j \neq i} (z z_j)}$  which leads to

$$z_{n+1,i} = z_{n,i} - \frac{1}{\frac{p'(z_{n,i})}{p(z_{n,i})} - \sum_{j=1, j \neq i}^{m} \frac{1}{z_{n,i} - z_{n,j}}}$$

→ cubic convergence for simple zero in practice for nearly all starting points

### System of nonlinear equations

The case of the systems of nonlinear equations is much more complex

- a wide variety of possible behavior (determining existence, the number of solutions or a good starting point is more complex)
- The computation time increases rapidly with the dimension of the problem

#### Newton's Method

• In dimension *n*, Newton's method is of the form

$$x_{k+1} = x_k - J(x_k)^{-1} f(x_k)$$

where J(x) is the Jacobian matrix of f

• In practice, we do not explicitly compute the inverse of  $J(x_k)$  but we solve the linear system

$$J(x_k)s_k = -f(x_k)$$

and we choose

$$x_{k+1} = x_k + s_k$$

## Convergence of Newton's method

- The convergence rate of Newton's method is quadratic, provided that the Jacobian matrix is invertible
- But we have to start the iterations close enough of the solution to converge

#### Cost of Newton's method

The cost per iteration of Newton's method for a dense problem in dimension n is important

- Computing the Jacobian matrix requires  $n^2$  evaluations of functions
- Solving a linear system requires  $\mathcal{O}(n^3)$  operations

### Newton type methods

• Finite difference method: if *J* is not available, we can estimate it by finite difference

$$J(x)_{ij} \approx \frac{f_j(x+te_i) - f_j(x)}{t}$$

for t small and  $e_i$  the i-th unit vector

- Inexact Newton method: instead of solving the linear system  $J(x_k)s_k = -f(x_k)$  exactly, we use an iterative method to obtain an approximate solution (for example the conjugate gradient method)
- Quasi-Newton method: we use an approximation of the Jacobian. For example, the Broyden method

$$B_{k+1} = B_k + \frac{(y - B_k s)s^T}{s^T s}$$

with  $y = f(x_{k+1}) - f(x_k)$  and  $s = x_{k+1} - x_k$ . Then we have  $B_{k+1}s = y$  (equation of the secant) and  $B_{k+1}v = B_kv$  for  $s^Tv = 0$ 

### Case of systems of polynomial equations

When one has to solve a system of polynomial equations, there are other very efficient methods

- methods based on the calculation of results
- methods based on the calculation of Gröbner bases

See the book : Mathématiques L3 - Mathématiques appliquées, Jacques-Arthur Weil, Alain Yger, Pearson Education, 2009

### Optimization methods

Suppose that the system f(x) = 0 is written in the form

$$\begin{cases} f_1(x_1,...,x_n) = 0, \\ f_2(x_1,...,x_n) = 0, \\ \vdots \\ f_n(x_1,...,x_n) = 0. \end{cases}$$

The system has a solution if and only if the function

$$g(x_1,...,x_n) := \sum_{i=1}^n f_i(x_1,...,x_n)^2$$

admits 0 as a minimum

 $\rightarrow$  one can thus use the optimization algorithms of the previous course to minimize *g*.

Homotopy continuation methods

### Homotopy Methods

- We want to solve f(x) = 0
- We know the solution of a simple problem  $f_a(x) = 0$  (we can take  $f_a(x) = f(x) f(a)$  for a constant vector a)
- We introduce the problem

$$\rho_a(\lambda, x) = \lambda f(x) + (1 - \lambda) f_a(x) = f(x) + (\lambda - 1) f(a)$$

where  $\lambda$  is a real number belonging to the interval [0;1]

• The solution of the equation  $\rho_a(0,x) = 0$  is known and the solution of the equation  $\rho_a(1,x) = 0$  is the solution of our initial problem

## Homotopy methods (continued)

#### Basic algorithm:

Initialize  $\lambda = 0$  and x = solution of the equation  $f_a(x) = 0$ .

while  $\lambda < 1$ 

- increase slightly  $\lambda$
- solve the equation  $\rho_a(\lambda, x) = 0$  using the previous solution as a starting point for solving the new problem

end

- We hope that there is a solution for each intermediate problem
- As we slightly modify  $\lambda$  at each step, we also hope that the solution  $x(\lambda)$  changes only slightly so that the new equation can be solved easily at each iteration

## Homotopy methods (cont'd)

#### Problems:



- Turning points
- Bifurcation points
- Stopping points (the solution no longer exists for a  $\lambda < 1$ )
- Divergence to infinity

- The difficulty of the method is to construct  $\rho_a$  such that we can follow the solution from  $\lambda = 0$  to  $\lambda = 1$  without losing it
- A function w is said to be transverse to 0 on an open U if for any point  $u \in U$  such that w(u) = 0, the Jacobian matrix of w in u is of full rank
- Parameterized Sard Theorem : Let  $U = \mathbb{R}^n \times [0,1[\times \mathbb{R}^n \text{ and } \rho: U \to \mathbb{R}^n \text{ of } \text{class } C^2 \text{ transverse to 0 on } U. \text{ Let } a \text{ a point of } \mathbb{R}^n \text{ and } \rho_a(\lambda,z) = \rho(a,\lambda,z).$  Then the function  $\rho_a$  is transverse to 0 on  $[0,1[\times \mathbb{R}^n \text{ for almost all } a]$

Theorem : If in addition to the previous hypotheses, the equation  $\rho_a(0, z) = 0$  has a unique solution  $z_0$ . Then for almost all  $a \in \mathbb{R}^n$ , there exists a curve solution of  $\rho_a(\lambda, z) = 0$  starting from  $(0, z_0)$  having the following properties following

- The Jacobian matrix of  $\rho_a$  has full rank
- The curve *γ* is smooth, does not intersect itself and does not intersect any of the other solution curves
- The curve has finite length on any compact  $[0,1]\times\mathbb{R}^n$
- Either the curve reaches the hyperplane  $\lambda = 1$  or it diverges to infinity

In summary, one can almost always follow the solution from  $\lambda = 0$  to  $\lambda = 1$ 

#### First method:

Given a function  $\rho_a$ , let  $\lambda = 0$  and  $\widehat{x} = a$ . Therefore  $\rho_a(\lambda, \widehat{x}) = 0$ .

Until  $\lambda = 1$  do

- Increase slightly  $\lambda$ .
- Solve the equation  $\rho_a(\lambda, x) = 0$  using an algorithm (for example Newton's method, etc.) taking  $\widehat{x}$  as a starting point
- Call this new solution  $\widehat{x}$ .

end

If the algorithm finishes, then we have calculated  $\widehat{x}$  verifying  $\rho_a(1,\widehat{x}) = 0$  and therefore  $f(\widehat{x}) = 0$ 

Problem: choice of the stepsize in  $\lambda$  and of the accuracy of the solution for the solver

Second method: via the resolution of differential equations

We have

$$\rho_a(\lambda, x) = \lambda f(x) + (1 - \lambda) f_a(x) = f(x) + (\lambda - 1) f(a)$$

- The solution x depends on  $\lambda$ . Therefore  $\rho_a(\lambda, x(\lambda)) = 0$ .
- By differentiating with respect to  $\lambda$ , we obtain

$$\frac{\partial \rho_a(\lambda, x(\lambda))}{\partial \lambda} + \frac{\partial \rho_a(\lambda, x(\lambda))}{\partial x} x'(\lambda) = 0$$

A calculation shows that

$$\frac{\partial \rho_a(\lambda, x(\lambda))}{\partial \lambda} = f(a) \quad \text{and} \quad \frac{\partial \rho_a(\lambda, x(\lambda))}{\partial x} = J_f(x(\lambda))$$

We thus obtain the system of differential equations

$$J_f(x(\lambda))x'(\lambda) = -f(a)$$
 with  $x(0) = a$ 

#### Conclusion

#### Newton's method

- Method for calculating the roots of nonlinear equations
- Use in numerical computation but also in computer algebra (will be seen in tutorial)

#### Homotopy continuation methods

Global method