6 Perturbation theory

Definition 6.1. Model Hamiltonian. The electronic Hamiltonian¹ can be expressed as the sum of a zeroth order or "model" Hamiltonian H_0 and a perturbation V_c , known as the fluctuation potential. For well-behaved electronic systems, a common choice for the model Hamiltonian is the diagonal part of the Fock operator.

$$H_0 \equiv f_p^p \tilde{a}_p^p \qquad V_c \equiv f_p^q (1 - \delta_p^q) \tilde{a}_q^p + \frac{1}{4} \overline{g}_{pq}^{rs} \tilde{a}_{rs}^{pq}$$

$$\tag{6.1}$$

This choice of H_0 brings the advantage that its eigenbasis is the standard basis of determinants.

$$H_0 \Phi = 0 \Phi \qquad H_0 \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} = \mathcal{E}_{i_1 \cdots i_k}^{a_1 \cdots a_k} \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} \qquad \mathcal{E}_{q_1 \cdots q_k}^{p_1 \cdots p_k} \equiv \sum_{r=1}^k f_{p_r}^{p_r} - \sum_{r=1}^k f_{q_r}^{q_r}$$
(6.2)

In general the model Hamiltonian is chosen to make the matrix representation of H_c in the model eigenbasis diagonally dominant.² Our choice of H_0 is appropriate for weakly correlated systems, where the reference determinant can be chosen to satisfy $\langle \Phi | \Psi \rangle \gg \langle \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} | \Psi \rangle$ for all substituted determinants. In this context it is convenient to employ intermediate normalization for the wavefunction, which will be assumed from here on out.

Definition 6.2. Perturbation theory. Perturbation theory analyzes the polynomial order with which the wavefunction and its observables depend on the fluctuation potential. For this purpose, we define a continuous series of Hamiltonians $H(\lambda) \equiv H_0 + \lambda V_c$ parametrized by a strength parameter λ that smoothly toggles between the model Hamiltonian at $\lambda = 0$ to the exact one at $\lambda = 1$. The m^{th} -order contribution to a quantity X is then defined as the m^{th} coefficient in its Taylor series about $\lambda = 0$, denoted $X^{(m)}$. In particular, the wavefunction and correlation energy can be expanded as follows.

$$\Psi = \sum_{m=0}^{\infty} \Psi^{(m)} \quad E_{c} = \sum_{m=0}^{\infty} E_{c}^{(m)} \quad \Psi^{(m)} \equiv \frac{1}{m!} \left. \frac{\partial^{m} \Psi(\lambda)}{\partial \lambda^{m}} \right|_{\lambda=0} \quad E_{c}^{(m)} \equiv \frac{1}{m!} \left. \frac{\partial^{m} E(\lambda)}{\partial \lambda^{m}} \right|_{\lambda=0} \quad H(\lambda) \Psi(\lambda) = E(\lambda) \Psi(\lambda) \quad (6.3)$$

The order(s) at which a term contributes to the wavefunction or energy provides one measure of its relative importance.

Remark 6.1. Projecting the Schrödinger equation by Φ and using eq 6.2, along with intermediate normalization, implies

$$E_{c} = \langle \Phi | V_{c} | \Psi \rangle \qquad \Longrightarrow \qquad E_{c}^{(m+1)} = \langle \Phi | V_{c} | \Psi^{(m)} \rangle$$
 (6.4)

where the equation on the right follows from generalizing the energy expression to $E(\lambda) = \langle \Phi | \lambda V_c | \Psi(\lambda) \rangle$. In words, this says that the m^{th} -order wavefunction contribution determines the $(m+1)^{\text{th}}$ -order energy contribution. This immediately identifies the first-order energy as $E_c^{(1)} = \langle \Phi | V_c | \Phi \rangle = 0$, since V_c consists of Φ -normal-ordered operators.

Definition 6.3. Model space projection operator. The projection onto the reference determinant, $P = |\Phi\rangle\langle\Phi|$, is termed the model space projection operator. Its complement is the orthogonal space projection operator.³

$$Q \equiv 1_n - P = \sum_{k} \left(\frac{1}{k!}\right)^2 \sum_{\substack{a_1 \cdots a_k \\ i_1 \cdots i_k}} |\Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}\rangle \langle \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}|$$

$$\tag{6.5}$$

Note that P and Q satisfy the following relationships, which are characteristic of complementary projection operators.

$$P + Q = 1_n$$
 $P^2 = P$ $Q^2 = Q$ $PQ = QP = 0$ (6.6)

Due to intermediate normalization, we also have that $P\Psi = \Phi$ and $Q\Psi = \Psi - \Phi$.

Definition 6.4. Resolvent. The resolvent, $R_0 \equiv (-H_0)^{-1}Q$, is the negative inverse of H_0 in the orthogonal space.⁵

$$R_0 \Phi = 0 \Phi \qquad \qquad R_0 \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} = (\mathcal{E}_{a_1 \cdots a_k}^{i_1 \cdots i_k})^{-1} \Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k} \qquad \qquad R_0 = \sum_k \left(\frac{1}{k!}\right)^2 \sum_{\substack{a_1 \cdots a_k \\ e_1 \cdots e_k}} \frac{|\Phi_{i_1 \cdots i_k}^{a_1 \cdots a_k}|}{\mathcal{E}_{a_1 \cdots a_k}^{i_1 \cdots i_k}} \qquad (6.7)$$

The equation on the right is the spectral decomposition of the resolvent.⁶ Restriction to the orthogonal space is necessary because H_0 is singular in the model space, which means that H_0^{-1} does not exist there.

¹For the sake of brevity I will here refer to H_c as "the electronic Hamiltonian". We could also use $H_e = E_0 + H_c$, which will simply shift some of the equations by a constant.

²See https://en.wikipedia.org/wiki/Diagonally_dominant_matrix.

 $^{^31}_n \equiv 1|_{\mathcal{F}_n}$ is the identity on \mathcal{F}_n , which is equivalent to a projection onto this subspace. For our purposes, this is the identity.

⁴The annoying sign factor is required for consistency with $R(\zeta) \equiv (\zeta - H_0)^{-1}Q$, which is a more general definition of the resolvent.

⁵Note that this implies $R_0P = 0$ and $R_0Q = R_0$.

⁶This follows from the eigenvalue equations, but you can derive it explicitly by substituting equation 6.5 into $R_0 = (-H_0)^{-1}Q$.

Remark 6.2. A recursive solution to the Schrödinger equation. Operating R_0 on $H(\lambda)\Psi(\lambda) = E(\lambda)\Psi(\lambda)$ gives⁷

$$\Psi(\lambda) = \Phi + R_0(\lambda V_c - E(\lambda))\Psi(\lambda) \tag{6.8}$$

which provides a recursive equation for $\Psi(\lambda)$ that can be used to solve for wavefunction contributions order by order.

Example 6.1. The first two derivatives of equation 6.8 are given by

$$\begin{split} \frac{\partial \Psi(\lambda)}{\partial \lambda} = & R_0 \left(V_{\rm c} - \frac{\partial E(\lambda)}{\partial \lambda} \right) \Psi(\lambda) + R_0 (\lambda V_{\rm c} - E(\lambda)) \frac{\partial \Psi(\lambda)}{\partial \lambda} \\ \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} = & - R_0 \frac{\partial^2 E(\lambda)}{\partial \lambda^2} \Psi(\lambda) + 2R_0 \left(V_{\rm c} - \frac{\partial E(\lambda)}{\partial \lambda} \right) \frac{\partial \Psi(\lambda)}{\partial \lambda} + R_0 (\lambda V_{\rm c} - E(\lambda)) \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} \end{split}$$

which can be used to determine the first- and second-order wavefunction contributions.

$$\Psi^{(1)} = \left. \frac{\partial \Psi(\lambda)}{\partial \lambda} \right|_{\lambda=0} = R_0 V_c \Phi \qquad \qquad \Psi^{(2)} = \left. \frac{1}{2} \frac{\partial^2 \Psi(\lambda)}{\partial \lambda^2} \right|_{\lambda=0} = R_0 V_c \Psi^{(1)} = R_0 V_c R_0 V_c \Phi \qquad (6.9)$$

Here we have used $E_{\rm c}^{(0)}=E_{\rm c}^{(1)}=0$ and $R_0\Phi=0$ to simplify the result.

Example 6.2. Plugging in the spectral decomposition for R_0 allows us to expand $\Psi^{(1)}$ in the determinant basis.

$$\Psi^{(1)} = R_0 V_c \Phi = \sum_{\substack{a \\ i}} \Phi_i^a \frac{\langle \Phi_i^a | V_c | \Phi \rangle}{\mathcal{E}_a^i} + (\frac{1}{2!})^2 \sum_{\substack{ab \\ ij}} \Phi_{ij}^{ab} \frac{\langle \Phi_{ij}^{ab} | V_c | \Phi \rangle}{\mathcal{E}_{ab}^{ij}}$$

$$(6.10)$$

The expansion truncates at double excitations because the maximum excitation level of V_c is +2.

Example 6.3. The numerators in example 6.2 are easily evaluated using Slater's rules, which leads to the following.

$$\Psi^{(1)} = \sum_{\substack{a \\ i}} \Phi_i^a \frac{f_a^i}{\mathcal{E}_a^i} + (\frac{1}{2!})^2 \sum_{\substack{ab \\ ij}} \Phi_{ij}^{ab} \frac{\overline{g}_{ab}^{ij}}{\mathcal{E}_{ab}^{ij}} \quad \Longrightarrow \quad E_{\mathbf{c}}^{(2)} = \langle \Phi | V_{\mathbf{c}} | \Psi^{(1)} \rangle = \sum_{\substack{a \\ i}} \frac{f_a^a f_a^i}{\mathcal{E}_a^i} + (\frac{1}{2!})^2 \sum_{\substack{ab \\ ij}} \frac{\overline{g}_{ab}^{ab}}{\mathcal{E}_{ab}^{ij}} \frac{\overline{g}_{ab}^{ij}}{\mathcal{E}_{ab}^{ij}}$$

Note that the singles contribution vanishes for canonical Hartree-Fock references, since $f_a^i = 0$. These extra terms are required for non-canonical orbitals, such as those obtained from restricted open-shell Hartree-Fock (ROHF) theory.

Definition 6.5. Resolvent line. We can generalize our previous definition of the resolvent line as follows

$$Y = \sum_{k} \left(\frac{1}{k!}\right)^{2} \sum_{\substack{a_{1} \cdots a_{k} \\ i \cdots i}} \frac{y_{a_{1} \cdots a_{k}}^{i_{1} \cdots i_{k}}}{\mathcal{E}_{a_{1} \cdots a_{k}}^{i_{1} \cdots i_{k}}} \tilde{a}_{i_{1} \cdots i_{k}}^{a_{1} \cdots a_{k}} \qquad Y = Y_{n \to n} + Y_{n \neq n} \qquad Y_{n \to n} = y_{0} + \sum_{k} \left(\frac{1}{k!}\right)^{2} \sum_{\substack{p_{1} \cdots p_{k} \\ q_{1} \cdots q_{k}}} y_{p_{1} \cdots p_{k}}^{q_{1} \cdots q_{k}} \tilde{a}_{q_{1} \cdots q_{k}}^{q_{1} \cdots q_{k}} \qquad (6.11)$$

where Y is an arbitrary operator. The last equation is the Wick expansion of $Y_{n\to n}$, which denotes the purely particlenumber-conserving part⁸ of Y. This definition immediately implies $|\Psi\rangle = R_0|\Psi\rangle$ for all Ψ .⁹ Other expressions are defined by giving resolvent lines priority in the order of operations, with maximum priority given to the rightmost resolvent.

$$Y_1 | Y_2 \cdots | Y_n \equiv Y_1 \left(| Y_2 \left(\cdots \left(| Y_n \right) \cdots \right) \right)$$

$$\vdots \overline{Y_1 | Y_2 \cdots | Y_n} \vdots \equiv \vdots \overline{Y_1 \left(| Y_2 \left(\cdots \left(| Y_n \right) \cdots \right) \right)} \vdots$$

$$(6.12)$$

This definition also specifies the interpretation rule for a graphs with resolvent lines, which are formally defined below.

$$\textbf{Corollary 6.1. Wick's theorem for perturbation theory.} \quad YR_0Y_1\cdots R_0Y_m|\Phi\rangle = \left(:Y|Y_1\cdots |Y_m: + :\overline{Y|Y_1\cdots |Y_m:}\right)|\Phi\rangle$$

Proof: This follows directly from Wick's theorem and definition 6.5.

Definition 6.6. Resolvent graph. A resolvent graph represents a normal-ordered product of operators and resolvents. Graphs with disconnected parts that don't share any resolvent lines are considered products of separate resolvent graphs. Vertical spaces between resolvent lines in a resolvent graph are termed levels, which are numbered from top to bottom with zero indexing. Therefore, an operator lies in the k^{th} level if there are k resolvent lines above it. Formally, then, an m-resolvent graph $G(\rho, m) \equiv (G, \rho, m)$ associates each operator o in G with a specific level $\rho(o) = \rho_o$ in $\{0, 1, \ldots, m\}$ through the level map ρ . Therefore, each line l in G crosses resolvents $\min(\rho_{h(l)}, \rho_{t(l)}) + 1$ through $\max(\rho_{h(l)}, \rho_{t(l)})$.

⁷This follows from $R_0H_0\Psi = -Q\Psi = -\Psi + \Phi$.

⁸The component that maps $\mathcal{F}_n \to \mathcal{F}_n$ for all n, which can always be written as a linear combination of excitation operators.

⁹Since any $|\Psi\rangle$ can be written as $Y|\Phi\rangle$, this follows from applying eq 6.7 to each term in the Wick expansion of Y in $R_0Y|\Phi\rangle$.

Example 6.4. In diagram notation, $\Psi^{(1)}$ and $E_c^{(2)}$ can be expressed as follows.

$$\Psi^{(1)} = \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{\bullet \bullet} + \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{\bullet} + \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{\bullet \bullet} + \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{\bullet \bullet$$

Example 6.5. The expansion for $\Psi^{(2)}$ can be evaluated using corollary 6.1. Assuming Brillouin's theorem for simplicity,

$$\Psi^{(2)} = R_0 V_c R_0 V_c |\Phi\rangle = \underbrace{\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} + \underbrace{\begin{array}{c} \end{array}{c$$

where the operators in the final diagram do not form an equivalent pair because they pass through different resolvent lines. The third-order contribution to the correlation energy can be evaluated as the complete contractions of $V_c R_0 V_c R_0 V_c$

$$E_{c}^{(3)} = \underbrace{\frac{1}{2^{3}} \sum_{abcd} \frac{\overline{g}_{ij}^{ab} \overline{g}_{ab}^{cd} \overline{g}_{cd}^{ij}}{\mathcal{E}_{ab}^{ij} \mathcal{E}_{cd}^{kl}} + \frac{1}{2^{3}} \sum_{ab} \underbrace{\frac{\overline{g}_{ab}^{ab} \overline{g}_{ij}^{ij} \overline{g}_{kl}^{kl}}{\mathcal{E}_{ab}^{ij} \mathcal{E}_{ab}^{kl}} + \sum_{\substack{abc \\ ijk}} \underbrace{\overline{g}_{ij}^{ab} \overline{g}_{ac}^{ij} \overline{g}_{ab}^{kl}}_{\mathcal{E}_{ab}^{ij} \mathcal{E}_{ab}^{kl}}$$

$$(6.16)$$

which is equivalent to contracting the doubles contributions to $\Psi^{(2)}$ with $\frac{1}{4}\overline{g}_{ij}^{ab}\tilde{a}_{ab}^{ij}$. Note that $E_c^{(m+1)}$ always only depends on the doubles contribution to $\Psi^{(m)}$, but that the doubles coefficients themselves may involve triples, quadruples and higher contributions from wavefunction components of order less than m.

Example 6.6. Using ${}^{(m)}c^{ij\cdots}_{ab\cdots} = \langle \Phi^{ab\cdots}_{ij\cdots} | \Psi^{(m)} \rangle$, the second order CI coefficients can be determined from eq 6.14 by contracting a bare excitation operator with the top of each diagram. Interpreting these graphs gives the following.

Note that the second order quadruples coefficient is disconnected. Prop. 6.1 shows that the second-order quadruples operator is actually a simple product of first-order doubles operators. This fact was an early motivation for coupled-pair many-electron theory, ¹⁰ since it justifies approximating $\Psi_{\text{CIDQ}} = (1 + C_2 + C_4)\Phi$ by $\Psi_{\text{CPMET}} = (1 + C_2 + \frac{1}{2}C_2^2)\Phi$.

Proposition 6.1. $^{(2)}C_4 = \frac{1}{2}{}^{(1)}C_2^2$

Proof: This follows from rearranging the resolvent denominator.

$$\frac{1}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{ab}^{ij}} + \frac{1}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{\mathcal{E}_{cd}^{kl} + \mathcal{E}_{ab}^{ij}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{1}{\mathcal{E}_{abc}^{ijkl}\mathcal{E}_{cd}^{kl}} \Longrightarrow {}^{(2)}C_4 = \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{ajkl}^{abcd} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kj}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kj}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{ab}^{ij}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{abcd}^{ijkl}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}\mathcal{E}_{cd}^{kl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{abcd}^{ijkl}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{abcd} \frac{\overline{g}_{abcd}^{ijkl}\overline{g}_{cd}^{kl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}_{abcd}^{ijkl} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}_{abcd}^{ijkl} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}_{abcd}^{ijkl} \frac{\overline{g}_{abcd}^{ijkl}}{\mathcal{E}_{abcd}^{ijkl}} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}_{abcd}^{ijkl} = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^4 \sum_{\substack{abcd \\ ijkl}}} \tilde{a}$$

 $^{^{10}\}mathrm{This}$ is the original name for coupled-cluster doubles.

Lemma 6.1. The Energy Substitution Lemma. $\Psi^{(m)}$ equals the sum of a "principal term" $(R_0V_c)^m\Phi$ plus all possible substitutions of adjacent factors $(R_0V_c)^{r_i}$ in the principal term by $R_0E_c^{(r_i)}$. Each term in the sum is weighted by a sign factor $(-)^k$, where k is the number of substitutions.

Proof: See appendix A.

Example 6.7. Lemma 6.1 is consistent with equation 6.9 because substitution of the rightmost factors in the principal term leaves a resolvent acting on the reference determinant and because the first-order energy contribution equals zero. The first non-trivial examples of the energy substitution lemma begin at third order.

$$\Psi^{(3)} = R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 E_c^{(2)} R_0 V_c \Phi \tag{6.17}$$

$$\Psi^{(4)} = R_0 V_c R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 E_c^{(2)} R_0 V_c \Phi - R_0 V_c R_0 E_c^{(2)} R_0 V_c \Phi - R_0 E_c^{(3)} R_0 V_c \Phi$$

$$(6.18)$$

$$\Psi^{(5)} = R_0 V_c R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 E_c^{(2)} R_0 V_c R_0 V_c \Phi - R_0 V_c R_0 E_c^{(2)} R_0 V_c R_0 V_c \Phi
- R_0 V_c R_0 E_c^{(2)} R_0 V_c \Phi + R_0 E_c^{(2)} R_0 E_c^{(2)} R_0 V_c \Phi - R_0 E_c^{(3)} R_0 V_c R_0 V_c \Phi
- R_0 V_c R_0 E_c^{(3)} R_0 V_c \Phi - R_0 E_c^{(4)} R_0 V_c \Phi$$
(6.19)

Theorem 6.1. The Bracketing Theorem. $\Psi^{(m)}$ equals the principal term plus all possible insertions of nested brackets into the principal term. Each term in the sum is weighted by $(-)^k$ where k is the total number of brackets. 11 Proof: See appendix A.

Example 6.8. Equations 6.17 and 6.18 are clearly consistent with thm 6.1, since $E_{\rm c}^{(2)} = \langle V_{\rm c} R_0 V_{\rm c} \rangle$ and $E_{\rm c}^{(3)} = \langle V_{\rm c} R_0 V_{\rm c} R_0 V_{\rm c} \rangle$.

$$\Psi^{(3)} = R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi \tag{6.20}$$

$$\Psi^{(4)} = R_0 V_c R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi - R_0 V_c R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi - R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi - R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi$$

$$(6.21)$$

The first non-vanishing terms with nested brackets appear at fifth-order

$$\Psi^{(5)} = R_0 V_c R_0 V_c R_0 V_c R_0 V_c \Phi - R_0 \langle V_c R_0 V_c \rangle R_0 V_c R_0 V_c \Phi - R_0 V_c R_0 \langle V_c R_0 V_c \rangle R_0 V_c R_0 V_c \Phi
- R_0 V_c R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi + R_0 \langle V_c R_0 V_c \rangle R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi - R_0 \langle V_c R_0 V_c R_0 V_c \rangle R_0 V_c R_0 V_c \Phi
- R_0 V_c R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi - R_0 \langle V_c R_0 V_c R_0 V_c \rangle R_0 V_c \Phi + R_0 \langle V_c R_0 \langle V_c R_0 V_c \rangle R_0 V_c \rangle R_0 V_c \Phi$$
(6.22)

which follows from substituting equation 6.20 into $E^{(4)} = \langle \Phi | V_c | \Psi^{(3)} \rangle$ in the energy substitution expansion of $\Psi^{(5)}$.

Definition 6.7.
$$GG' = (L \cup L', O \cup O', h \oplus h', t \oplus t')$$
 where $(h \oplus h')(l) \equiv \begin{cases} h(l) & l \in L \\ h'(l) & l \in L' \end{cases}$

The combination graphs of $G(\rho, m)$ and $G'(\rho', m')$ have the form $GG'(\rho_{\pi}, m + m')$

$$\rho_{\pi}(o) = \begin{cases} \pi(\rho(o)) & o \in O \\ \pi(\rho'(o) + m) & o \in O' \end{cases} \qquad \pi \in S_{(m+1,m'+1)}(\mathbb{Z}_{m+m'+2}) \qquad \mathbb{Z}_{m+m'+2} = \{0, \dots, m+m'+2\}$$

where $S_{(p,q)}(\mathbb{S})$ denotes the set of (p,q)-shuffles ("riffle" shuffles) of a set \mathbb{S} with p+q elements.¹²

Definition 6.8. Insertion graph.

Example 6.9. Assuming Brillouin's theorem, the simplest non-vanishing term with an inserted bracket appears in $\Psi^{(3)}$.

$$R_0 \langle V_c R_0 V_c \rangle R_0 V_c \Phi = \frac{\text{level of the insertion}}{\text{insertion}} \underbrace{\frac{0^{\text{th level}}}{1^{\text{st level}}}}_{\text{remainder insertion}} \underbrace{\frac{0^{\text{th level}}}{1^{\text{st level}}}}_{\text{remainder}}$$

¹¹The "brackets" here are reference expectation values: $\langle W \rangle \equiv \langle \Phi | W | \Phi \rangle$.

 $^{^{12} \}verb|https://en.wikipedia.org/wiki/Riffle_shuffle_permutation|$

\mathbf{A} Proof of the Linked-Diagram Theorem

Notation A.1. Let "Y" choose Z^k ", denoted ${}^mC_k(Y:Z)$, refer to a sum over the m choose k permutations of $Y^{m-k}Z^k$, 13 where Y and Z are operators that may or may not commute. 14 This defines a generalization of the binomial theorem.

$$(Y+Z)^m = \sum_{k=0}^m {}^mC_k(Y:Z)$$
(A.1)

Furthermore, let ${}^mC(Y:Z_1,\ldots,Z_k)$ be a sum over permutations of $Y^{m-k}Z_1\cdots Z_k$ that preserve the ordering of the Z_i 's. ¹⁵ When all of the Z_i 's equal Z, we can write ${}^mC(Y:Z_1,\ldots,Z_k)={}^mC_k(Y:Z)$.

Proposition A.1.
$$\Psi(\lambda) = \sum_{m=0}^{\infty} (R_0(\lambda V_c - E(\lambda)))^m \Phi$$

Proof: This follows by infinite recursion of equation 6.8 with the assumption $\lim_{t \to \infty} (R_0(\lambda V_c - E(\lambda)))^m \Psi(\lambda) = 0$.

Definition A.1. Integer compositions. The compositions of an integer m are the ways of writing m as a sum of positive integers. The full set of integer compositions of m is given by $\mathcal{C}(m) = \mathcal{C}_1(m) \cup \mathcal{C}_2(m) \cup \cdots \cup \mathcal{C}_m(m)$ where $\mathcal{C}_k(m) = \{(r_1, \dots, r_k) \in \mathbb{N}_0^k \mid r_1 + \dots + r_k = m\}$ are the integer compositions of m into k parts.

 $\Psi^{(m)}$ equals the sum of a "principal term" $(R_0V_c)^m\Phi$ plus all Lemma A.1. The Energy Substitution Lemma. possible substitutions of adjacent factors $(R_0V_c)^{r_i}$ in the principal term by $R_0E_c^{(r_i)}$. Each term in the sum is weighted by a sign factor $(-)^k$, where k is the number of substitutions.

Proof: Using equation A.1 and a double sum identity in the infinite recursion formula for $\Psi(\lambda)$ gives the following.

$$\Psi(\lambda) = \sum_{m=0}^{\infty} (R_0(\lambda V_c - E(\lambda)))^m \Phi = \sum_{m=0}^{\infty} \sum_{k=0}^m \lambda^{m-k} (-)^{k-m} C_k (R_0 V_c : R_0 E(\lambda)) \Phi = \sum_{k'=0}^{\infty} \sum_{k=0}^{\infty} \lambda^{k'} (-)^{k-k'+k} C_k (R_0 V_c : R_0 E(\lambda)) \Phi$$

The k'=0 term has no operators separating Φ from the resolvent and vanishes. Taylor expansion of the energies gives

$$\Psi(\lambda) = \sum_{k=0}^{\infty} \sum_{k'=1}^{\infty} \sum_{p_1=1}^{\infty} \cdots \sum_{p_k=1}^{\infty} \lambda^{k'+p_1+\cdots+p_k} (-)^{k \ k'+k} C(R_0 V_c : R_0 E_c^{(p_1)}, \dots, R_0 E_c^{(p_k)}) \Phi$$

$$= \sum_{m=1}^{\infty} \sum_{k=0}^{m-1} \sum_{(r_1, \dots, r_{k+1})}^{C_{k+1}(m)} \lambda^m (-)^{k \ k+r_1} C(R_0 V_c : R_0 E_c^{(r_2)}, \dots, R_0 E_c^{(r_{k+1})}) \Phi$$

where we have grouped powers of λ using a multi-sum reduction. Writing the inner sums as a sum over $\mathcal{C}(m)$ we find

$$\Psi^{(m)} = \frac{1}{m!} \frac{\partial^m \Psi(\lambda)}{\partial \lambda^m} \bigg|_{\lambda=0} = \sum_{(r_1, \dots, r_{k+1})}^{C(m)} (-)^{k} {}^{k+r_1} C(R_0 V_c : R_0 E_c^{(r_2)}, \dots, R_0 E_c^{(r_{k+1})}) \Phi$$
(A.2)

which, given notation A.1 and definition A.1, is an algebraic statement of the proposition, completing the proof.

Theorem A.1. The Bracketing Theorem. $\Psi^{(m)}$ equals the principal term plus all possible insertions of nested brackets into the principal term. Each term in the sum is weighted by $(-)^k$ where k is the total number of brackets.

Proof: The proposition holds for m=1 because $\Psi^{(1)}=R_0V_c\Phi$ and there are no possible bracketings. Assume it holds for m-1. Then by the energy substitution lemma it also holds for m because $E_c^{(r_i)}$ equals $\langle \Phi | V_c | \Psi^{(r_i)} \rangle$ which, by our inductive assumption, equals $\langle V_c(R_0V_c)^{r_i}\rangle$ plus all nested bracketings weighted by appropriate sign factors.

¹³For example, ${}^4C_2(Y:Z) = Y^2Z^2 + YZYZ + YZ^2Y + ZY^2Z + ZYZY + Z^2Y^2$.
¹⁴If they do commute, then ${}^mC_k(Y:Z) = \binom{n}{k}Y^{m-k}Z^k$.
¹⁵For example, ${}^4C(Y:Z_1,Z_2) = Y^2Z_1Z_2 + YZ_1YZ_2 + YZ_1Z_2Y + Z_1Y^2Z_2 + Z_1YZ_2Y + Z_1Z_2Y^2$.

¹⁶Reverse double-sum reduction: $\sum_{k=0}^{\infty} \sum_{k=0}^{m} t_{m-k,k} = \sum_{k'=0}^{\infty} \sum_{k=0}^{\infty} t_{k',k}.$ See http://functions.wolfram.com/GeneralIdentities/12/.