Package 'riskscores'

April 24, 2024

```
Title Optimized Integer Risk Score Models
```

Date/Publication 2024-04-24 19:20:02 UTC

Version 1.1.1

Description Implements an optimized approach to learning risk score models, where sparsity and integer constraints are integrated into the model-fitting process.

```
URL https://github.com/hjeglinton/riskscores
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports dplyr, foreach, ggplot2, magrittr, stats
Suggests knitr, kableExtra, rmarkdown, doParallel
VignetteBuilder knitr, kableExtra
Depends R (>= 2.10)
LazyData true
NeedsCompilation no
Author Hannah Eglinton [aut, cre],
     Alice Paul [aut, cph],
     Oscar Yan [aut],
     R Core Team [ctb, cph] (Copyright holder of Rinternals.h, R.h, lm.c,
       Applic.h, statsR.h, glm package),
     Robert Gentleman [ctb, cph] (Author and copyright holder of
      Rinternals.h),
     Ross Ihaka [ctb, cph] (Author and copyright holder of Rinternals.h),
     Simon Davies [ctb] (Author of glm.fit function (modified in
      cv_risk_mod.R)),
     Thomas Lumley [ctb] (Author of glm.fit function (modified in
      cv_risk_mod.R))
Maintainer Hannah Eglinton <eglintonh@gmail.com>
Repository CRAN
```

2 breastcancer

R topics documented:

	breastcancer	2
	clip_exp_vals	3
	coef.risk_mod	3
	cv_risk_mod	4
	cv_risk_mod_random_start	5
	get_metrics	7
	get_metrics_internal	8
	get_risk	9
	get_score	9
	plot.cv_risk_mod	
	plot.risk_mod	10
	predict.risk_mod	11
	risk_mod	12
	risk_mod_random_start	14
	stratify_folds	15
	summary.risk_mod	16
Index		17
hreas	st cancer Breast tissue highsy data	

Description

The Breast Cancer Wisconsin dataset from the UCI machine learning repository records the measurements from breast tissue biopsies. The outcome of interest is whether the sample was benign or malignant.

Usage

breastcancer

Format

breastcancer:

A data frame with 683 rows and 10 columns:

Benign 1 for malignant, 0 for benign

ClumpThickness Clump thickness on an integer scale from 1 to 10

UniformityOfCellSize Uniformity of cell size on an integer scale from 1 to 10

Uniformity of CellShape Uniformity of cell shape on an integer scale from 1 to 10

Marginal Adhesion Marginal adhesion on an integer scale from 1 to 10

SingleEpithelialCellSize Single epithelial cell size on an integer scale from 1 to 10

BareNuclei Bare nuclei on an integer scale from 1 to 10

BlandChromatin Bland chromatin on an integer scale from 1 to 10

NormalNucleoli Normal nucleoli on an integer scale from 1 to 10

Mitosis Mitosis on an integer scale from 1 to 10

clip_exp_vals 3

Source

https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original

clip_exp_vals

Clip Values

Description

Clip values prior to exponentiation to avoid numeric errors.

Usage

```
clip_exp_vals(x)
```

Arguments

Х

Numeric vector.

Value

Input vector x with all values between -709.78 and 709.78.

Examples

```
clip_exp_vals(710)
```

coef.risk_mod

Extract Model Coefficients

Description

Extracts a vector of model coefficients (both nonzero and zero) from a "risk_mod" object. Equivalent to accessing the beta attribute of a "risk_mod" object.

Usage

```
## S3 method for class 'risk_mod'
coef(object, ...)
```

Arguments

object An object of class "risk_mod", usually a result of a call to risk_mod().
... Additional arguments.

4 cv_risk_mod

Value

Numeric vector with coefficients.

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y, lambda0 = 0.01)
coef(mod)</pre>
```

cv_risk_mod

Run Cross-Validation to Tune Lambda0

Description

Runs k-fold cross-validation on a grid of λ_0 values. Records class accuracy and deviance for each λ_0 . Returns an object of class "cv_risk_mod".

Usage

```
cv_risk_mod(
 Χ,
 у,
 weights = NULL,
 beta = NULL,
 a = -10,
 b = 10,
 max_iters = 100,
  tol = 1e-05,
 nlambda = 25,
  lambda_min_ratio = ifelse(nrow(X) < ncol(X), 0.01, 1e-04),</pre>
  lambda0 = NULL,
 nfolds = 10,
  foldids = NULL,
 parallel = FALSE,
  shuffle = TRUE,
  seed = NULL
)
```

Arguments

X Input covariate matrix with dimension $n \times p$; every row is an observation.

y Numeric vector for the (binomial) response variable.

weights Numeric vector of length n with weights for each observation. Unless otherwise specified, default will give equal weight to each observation.

beta Starting numeric vector with p coefficients. Def	fault starting coefficients are
---	---------------------------------

rounded coefficients from a logistic regression model.

a Integer lower bound for coefficients (default: -10).
b Integer upper bound for coefficients (default: 10).

max_iters Maximum number of iterations (default: 100).

tol Tolerance for convergence (default: 1e-5).

Number of lambda values to try (default: 25).

lambda_min_ratio

Smallest value for lambda, as a fraction of lambda_max (the smallest value for which all coefficients are zero). The default depends on the sample size (n) relative to the number of variables (p). If n > p, the default is 0.0001, close to

zero. If n < p, the default is 0.01.

lambda0 Optional sequence of lambda values. By default, the function will derive the

lambda0 sequence based on the data (see lambda_min_ratio).

nfolds Number of folds, implied if foldids provided (default: 10).

foldids Optional vector of values between 1 and nfolds.

parallel If TRUE, parallel processing (using foreach) is implemented during cross-validation

to increase efficiency (default: FALSE). User must first register parallel backend

with a function such as doParallel::registerDoParallel.

shuffle Whether order of coefficients is shuffled during coordinate descent (default:

TRUE).

seed An integer that is used as argument by set.seed() for offsetting the random

number generator. Default is to not set a particular randomization seed.

Value

An object of class "cv_risk_mod" with the following attributes:

results Dataframe containing a summary of deviance and accuracy for each value of

lambda0 (mean and SD). Also includes the number of nonzero coefficients that

are produced by each lambda0 when fit on the full data.

lambda_min Numeric value indicating the lambda0 that resulted in the lowest mean deviance.

lambda_1se Numeric value indicating the largest lamdba0 that had a mean deviance within

one standard error of lambda_min.

cv_risk_mod_random_start

Run Cross-Validation to Tune Lambda0 with Random Start

Description

Runs k-fold cross-validation on a grid of λ_0 values using random warm starts (see risk_mod_random_start. Records class accuracy and deviance for each λ_0 . Returns an object of class "cv_risk_mod".

Usage

```
cv_risk_mod_random_start(
 Χ,
 у,
 weights = NULL,
  a = -10,
 b = 10,
 max_iters = 100,
  tol = 1e-05,
  nlambda = 25,
  lambda_min_ratio = ifelse(nrow(X) < ncol(X), 0.01, 1e-04),</pre>
  lambda0 = NULL,
  nfolds = 10,
  foldids = NULL,
  parallel = FALSE,
  seed = NULL,
  nstart = 5
)
```

Arguments

X Input covariate matrix with dimension $n \times p$; every row is an observation.

y Numeric vector for the (binomial) response variable.

weights Numeric vector of length n with weights for each observation. Unless otherwise

specified, default will give equal weight to each observation.

a Integer lower bound for coefficients (default: -10).
b Integer upper bound for coefficients (default: 10).
max_iters Maximum number of iterations (default: 100).
tol Tolerance for convergence (default: 1e-5).
nlambda Number of lambda values to try (default: 25).

lambda_min_ratio

Smallest value for lambda, as a fraction of lambda_max (the smallest value for which all coefficients are zero). The default depends on the sample size (n) relative to the number of variables (p). If n>p, the default is 0.0001, close to

zero. If n < p, the default is 0.01.

lambda0 Optional sequence of lambda values. By default, the function will derive the

lambda0 sequence based on the data (see lambda_min_ratio).

nfolds Number of folds, implied if foldids provided (default: 10).

foldids Optional vector of values between 1 and nfolds.

parallel If TRUE, parallel processing (using foreach) is implemented during cross-validation

to increase efficiency (default: FALSE). User must first register parallel backend

with a function such as doParallel::registerDoParallel.

seed An integer that is used as argument by set.seed() for offsetting the random

number generator. Default is to not set a particular randomization seed.

nstart Number of different random starts to try (default: 5).

get_metrics 7

get_metrics

Get Model Metrics

Description

Calculates a risk model's accuracy, sensitivity, and specificity given a set of data.

Usage

```
get_metrics(
  mod,
  X = NULL,
  y = NULL,
  weights = NULL,
  threshold = NULL,
  threshold_type = c("response", "score")
)
```

Arguments

mod	An object of class risk_mod, usually a result of a call to risk_mod().
Χ	Input covariate matrix with dimension $n \times p$; every row is an observation.
у	Numeric vector for the (binomial) response variable.
weights	Numeric vector of length \boldsymbol{n} with weights for each observation. Unless otherwise specified, default will give equal weight to each observation.
threshold	Numeric vector of classification threshold values used to calculate the accuracy, sensitivity, and specificity of the model. Defaults to a range of risk probability thresholds from 0.1 to 0.9 by 0.1 .
threshold_type	Defines whether the threshold vector contains risk probability values ("response") or threshold values expressed as scores from the risk score model ("score"). Default: "response".

Value

Data frame with accuracy, sensitivity, and specificity for each threshold.

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y)
get_metrics(mod, X, y)
get_metrics(mod, X, y, threshold = c(150, 175, 200), threshold_type = "score")</pre>
```

8 get_metrics_internal

```
{\tt get\_metrics\_internal} \quad \textit{Get Model Metrics for a Single Threshold}
```

Description

Calculates a risk model's deviance, accuracy, sensitivity, and specificity given a set of data and a threshold value.

Usage

```
get_metrics_internal(
  mod,
  X = NULL,
  y = NULL,
  weights = NULL,
  threshold = 0.5,
  threshold_type = c("response", "score")
)
```

Arguments

mod	An object of class risk_mod, usually a result of a call to risk_mod().
X	Input covariate matrix with dimension $n \times p$; every row is an observation.
у	Numeric vector for the (binomial) response variable.
weights	Numeric vector of length \boldsymbol{n} with weights for each observation. Unless otherwise specified, default will give equal weight to each observation.
threshold	Numeric vector of classification threshold values used to calculate the accuracy, sensitivity, and specificity of the model. Defaults to a range of risk probability thresholds from 0.1 to 0.9 by 0.1.
threshold_type	Defines whether the threshold vector contains risk probability values ("response") or threshold values expressed as scores from the risk score model ("score"). Default: "response".

Value

List with deviance (dev), accuracy (acc), sensitivity (sens), and specificity (spec).

get_risk 9

get_risk

Calculate Risk Probability from Score

Description

Returns the risk probabilities for the provided score value(s).

Usage

```
get_risk(object, score)
```

Arguments

object An object of class "risk_mod", usually a result of a call to risk_mod().

score Numeric vector with score value(s).

Value

Numeric vector with the same length as score.

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y)
get_risk(mod, score = c(1, 10, 20))</pre>
```

get_score

Calculate Score from Risk Probability

Description

Returns the score(s) for the provided risk probabilities.

Usage

```
get_score(object, risk)
```

Arguments

object An object of class "risk_mod", usually a result of a call to risk_mod().

risk Numeric vector with probability value(s).

10 plot.risk_mod

Value

Numeric vector with the same length as risk.

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y)
get_score(mod, risk = c(0.25, 0.50, 0.75))</pre>
```

plot.cv_risk_mod

Plot Risk Score Cross-Validation Results

Description

Plots the mean deviance for each $lambda_0$ tested during cross-validation.

Usage

```
## S3 method for class 'cv_risk_mod'
plot(x, ...)
```

Arguments

x An object of class "cv_risk_mod", usually a result of a call to cv_risk_mod().. . . Additional arguments affecting the plot produced

Value

Object of class "ggplot".

plot.risk_mod

Plot Risk Score Model Curve

Description

Plots the linear regression equation associated with the integer risk score model. Plots the scores on the x-axis and risk on the y-axis.

Usage

```
## S3 method for class 'risk_mod'
plot(x, score_min = NULL, score_max = NULL, ...)
```

predict.risk_mod 11

Arguments

X	An object of class "risk_mod", usually a result of a call to risk_mod().
score_min	The minimum score displayed on the x-axis. The default is the minimum score predicted from model's training data.
score_max	The maximum score displayed on the x-axis. The default is the maximum score predicted from model's training data.
• • •	Additional arguments affecting the plot produced

Value

Object of class "ggplot".

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y, lambda0 = 0.01)
plot(mod)</pre>
```

predict.risk_mod

Predict Method for Risk Model Fits

Description

Obtains predictions from risk score models.

Usage

```
## S3 method for class 'risk_mod'
predict(object, newx = NULL, type = c("link", "response", "score"), ...)
```

Arguments

object	An object of class "risk_mod", usually a result of a call to risk_mod().
newx	Optional matrix of new values for X for which predictions are to be made. If ommited, the fitted values are used.
type	The type of prediction required. The default ("link") is on the scale of the predictors (i.e. log-odds); the "response" type is on the scale of the response variable (i.e. risk probabilities); the "score" type returns the risk score calculated from the integer model.
	Additional arguments.

Value

Numeric vector of predicted values.

12 risk_mod

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y, lambda0 = 0.01)
predict(mod, type = "link")[1]
predict(mod, type = "response")[1]
predict(mod, type = "score")[1]</pre>
```

risk_mod

Fit an Integer Risk Score Model

Description

Fits an optimized integer risk score model using a cyclical coordinate descent algorithm. Returns an object of class "risk_mod".

Usage

```
risk_mod(
   X,
   y,
   gamma = NULL,
   beta = NULL,
   weights = NULL,
   lambda0 = 0,
   a = -10,
   b = 10,
   max_iters = 100,
   tol = 1e-05,
   shuffle = TRUE,
   seed = NULL
)
```

Arguments

Χ	Input covariate matrix with dimension $n \times p$; every row is an observation.
У	Numeric vector for the (binomial) response variable.
gamma	Starting value to rescale coefficients for prediction (optional).
beta	Starting numeric vector with \boldsymbol{p} coefficients. Default starting coefficients are rounded coefficients from a logistic regression model.
weights	Numeric vector of length \boldsymbol{n} with weights for each observation. Unless otherwise specified, default will give equal weight to each observation.
lambda0	Penalty coefficient for L0 term (default: 0). See $cv_risk_mod()$ for lambda0 tuning.
а	Integer lower bound for coefficients (default: -10).

risk_mod 13

b Integer upper bound for coefficients (default: 10).

max_iters Maximum number of iterations (default: 100).

tol Tolerance for convergence (default: 1e-5).

shuffle Whether order of coefficients is shuffled during coordinate descent (default:

TRUE).

seed An integer that is used as argument by set.seed() for offsetting the random

number generator. Default is to not set a particular randomization seed.

Details

This function uses a cyclical coordinate descent algorithm to solve the following optimization problem.

$$\min_{\alpha,\beta} \quad \frac{1}{n} \sum_{i=1}^{n} (\gamma y_i x_i^T \beta - \log(1 + \exp(\gamma x_i^T \beta))) + \lambda_0 \sum_{j=1}^{p} 1(\beta_j \neq 0)$$

$$l \leq \beta_j \leq u \quad \forall j = 1, 2, ..., p$$

$$\beta_j \in \mathbb{Z} \quad \forall j = 1, 2, ..., p$$

$$\beta_0, \gamma \in \mathbb{R}$$

These constraints ensure that the model will be sparse and include only integer coefficients.

Value

An object of class "risk_mod" with the following attributes:

gamma Final scalar value.

beta Vector of integer coefficients.

glm_mod Logistic regression object of class "glm" (see stats::glm).

X Input covariate matrix.y Input response vector.

weights Input weights.

lambda0 Imput lambda0 value.

model_card Dataframe displaying the nonzero integer coefficients (i.e. "points") of the risk

score model.

score_map Dataframe containing a column of possible scores and a column with each

score's associated risk probability.

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod1 <- risk_mod(X, y)
mod1$model_card

mod2 <- risk_mod(X, y, lambda0 = 0.01)
mod2$model_card

mod3 <- risk_mod(X, y, lambda0 = 0.01, a = -5, b = 5)
mod3$model_card</pre>
```

 $risk_mod_random_start$ Run risk model with random start

Description

Runs nstart iterations of risk_mod(), each with a different warm start, and selects the best model. Each coefficient start is randomly selected as -1, 0, or 1.

Usage

```
risk_mod_random_start(
    X,
    y,
    weights = NULL,
    lambda0 = 0,
    a = -10,
    b = 10,
    max_iters = 100,
    tol = 1e-05,
    seed = NULL,
    nstart = 5
)
```

Arguments

Х	Input covariate matrix with dimension $n \times p$; every row is an observation.
У	Numeric vector for the (binomial) response variable.
weights	Numeric vector of length \boldsymbol{n} with weights for each observation. Unless otherwise specified, default will give equal weight to each observation.
lambda0	Penalty coefficient for L0 term (default: 0). See cv_risk_mod() for lambda0 tuning.
а	Integer lower bound for coefficients (default: -10).
b	Integer upper bound for coefficients (default: 10).

stratify_folds 15

max_iters Maximum number of iterations (default: 100).

tol Tolerance for convergence (default: 1e-5).

seed An integer that is used as argument by set.seed() for offsetting the random number generator. Default is to not set a particular randomization seed.

Number of different random starts to try (default: 5).

stratify_folds Generate Stratified Fold IDs

Description

Returns a vector of fold IDs that preserves class proportions.

Usage

```
stratify_folds(y, nfolds = 10, seed = NULL)
```

Arguments

y Numeric vector for the (binomial) response variable.

nfolds Number of folds (default: 10).

seed An integer that is used as argument by set.seed() for offsetting the random

number generator. Default is to not set a particular randomization seed.

Value

Numeric vector with the same length as y.

Examples

```
y <- rbinom(100, 1, 0.3)
foldids <- stratify_folds(y, nfolds = 5)
table(y, foldids)</pre>
```

16 summary.risk_mod

summary.risk_mod

Summarize Risk Model Fit

Description

Prints text that summarizes "risk_mod" objects.

Usage

```
## S3 method for class 'risk_mod'
summary(object, ...)
```

Arguments

```
object An object of class "risk_mod", usually a result of a call to risk_mod().
... Additional arguments affecting the summary produced.
```

Value

Printed text with intercept, nonzero coefficients, gamma, lambda, and deviance

Examples

```
y <- breastcancer[[1]]
X <- as.matrix(breastcancer[,2:ncol(breastcancer)])
mod <- risk_mod(X, y, lambda0 = 0.01)
summary(mod)</pre>
```

Index

```
* datasets
    breastcancer, 2
breastcancer, 2
clip_exp_vals, 3
\texttt{coef.risk\_mod}, 3
cv_risk_mod, 4
cv_risk_mod(), 10, 12, 14
cv_risk_mod_random_start, 5
doParallel::registerDoParallel, 5, 6
foreach, 5, 6
get_metrics, 7
get_metrics_internal, 8
get_risk, 9
get_score, 9
\verb"plot.cv_risk_mod, 10"
plot.risk_mod, 10
predict.risk_mod, 11
risk_mod, 12
risk_mod(), 3, 7-9, 11, 16
risk_mod_random_start, 5, 14
stats::glm, 13
stratify_folds, 15
\texttt{summary.risk\_mod}, \\ 16
```