Partiel 1 – janvier 2009

Partiel 1

Durée: trois heures

Documents et calculatrices non autorisés

Exercice 1 (3,5 points)

1. Déterminer $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$

2. Soit $\alpha \in \mathbb{R}$. En utilisant obligatoirement la règle de d'Alembert, déterminer en fonction de α la nature de la série de terme général $\frac{n^n}{\sqrt{(n!)^{\alpha}}}$

Exercice 2 (4 points)

Soient
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & -3 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$?

(Vous devez justifier riquireusement votre réponse en déterminant **OBLIGATOIREMENT** avec précision les sous-espaces propres).

Si oui, exhiber une base de vecteurs propres i.e. déterminer D et P.

Exercice 3 (4,5 points)

Soient
$$a \in \mathbb{R}$$
 et $A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & a & 0 \\ 0 & 0 & 2+2a \end{pmatrix}$.

Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de a.

N.B.: la diagonalisation dans les cas favorables n'est pas demandée.

Exercice 4 (4 points)

Soit (u_n) une suite réelle vérifiant $u_0 = 0$, $u_1 = u_2 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+3} = u_{n+2} + 2u_{n+1}$.

Notons pour tout
$$n \in \mathbb{N}, X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$$
.

1. Soit $n \in \mathbb{N}$. Déterminer $A \in \mathcal{M}_3(\mathbb{R})$ telle que $X_{n+1} = AX_n$.

N.B.: A est de la forme $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{pmatrix}$ où a, b et c sont des réels à déterminer.

- 2. Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et la diagonaliser (on explicitera la matrice diagonale et P).
- 3. En déduire u_n en fonction de n pour tout $n \in \mathbb{N}$.

Exercice 5 (4 points)

Soit $n \in \mathbb{N}$ tel que n > 1.

1. Soit $(a_1, ..., a_{n-1}) \in \mathbb{R}^{n-1}$. Déterminer le déterminant (sous forme factorisée) de la matrice A suivante :

$$A = \begin{pmatrix} -a_1 & a_1 & 0 & \dots & 0 \\ 0 & -a_2 & a_2 & \ddots & & \vdots \\ \vdots & \ddots & -a_3 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & -a_{n-1} & a_{n-1} \\ 1 & 1 & \dots & \dots & 1 \end{pmatrix}$$

2. Soient $(a_1, ..., a_{n-1}) \in \mathbb{R}^{n-1}$ et $(b_1, ..., b_{n-1}) \in \mathbb{R}^{n-1}$. Déterminer le déterminant (sous forme factorisée) de la matrice B suivante :

$$B = \begin{pmatrix} 1 & 1 & 1 & \dots & \dots & 1 \\ b_1 & a_1 & a_1 & \dots & \dots & a_1 \\ b_1 & b_2 & a_2 & \dots & \dots & a_2 \\ \vdots & \vdots & \ddots & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ b_1 & b_2 & \dots & \dots & b_{n-1} & a_{n-1} \end{pmatrix}$$