Football Analytics Blitz Case

Villanova Sports Analytics Club

Harry Lazerwitz, Joshua Mould, Kevin O'Donnell, Noah Swan

Overview

Context

- Our approach
- Success rates
- First play of drives

Main Findings

- Leaguewide ratios
- Team analysis
 - Play Action

Other Notes

- Play sequencing
- Close range play calling

Our Approach

- Analysis in R
- Combined provided data with nflfastR
 - Change scrambling to pass play
- Some graphing in Tableau

Leaguewide Success by Area of Field

First Play of Drives

- Convention is to establish the run
- Passing is much more successful
 - Expectation of defense

Expected Points Added by play type based on Win Probability 0.10 -Expected Points Added 0.05 -Play Type pass -0.10 x = .175-0.15 **-**0.25 0.00 0.75 0.50 1.00 Win Probability Passing Percentage by Win Probability y = .680.7 -Passing Percentage 0.4 x = .1750.3 -0.25 0.75 0.50 0.00 1.00 Win Probability

Optimal Ratios

- Took the approach of David
 Schmerfeld: https://davidschmerfeld.github.io/nfl-optimum-pass-run-ratio/
- Based our models on graphs of WP and EPA in order to cross reference with passing percentages
- Smoothed very noisy data
- Separated by part of field

By Part of Field

- Split up by part of field
- Built models for each play type in each zone
- Smoothed
- Parameters:
 - Win Probability
 - Down
 - Distance
 - Facet Grades
 - Previous play (pass/rush)

Finding Optimal WP

- Rounded WP of predictions
- \circ Grouped according to WP
- Averaged predicted EPAs
- Loess models to predict EPA
- Predicted for each WP
- Found minimum difference between pass and run EPA
 - WP at that point is optimal

Optimal Passing %

- Loess models for Pass % for each part of the field
- Predicted OptimalPass % forOptimal WP

Part of Field	Breakeven WP	Pass Percentage
0-24	0%	80.4%
25-59	0%	82.1%
60-79	8%	79.3%
80-89	14%	75.5%
90-99	69%	49.0%

Titans 2020

- Much lower than the averageOptimal Pass %
- Heavy Rushing offense

Part of Field	Breakeven WP	Passing Percentage
0-24	11%	52.6%
25-59	4%	63.7%
60-79	10%	65.6%
80-89	45%	41.5%
90-99	78%	39.7%

Steelers 2020

- Very high optimalPass %
- Heavy PassingOffense

Part of Field	Breakeven WP	Passing Percentage
0-24	0%	79.1%
25-59	0%	87.7%
60-79	78%	78.9%
80-89	30%	90.6%
90-99	83%	47.7%

Situational Applications

- Model is not exclusively big picture
- o 2020 Steelers against the 2020 Titans
 - Steelers have the ball in the 25-59 yard range on 1st and 10
- Results in Optimal WP of 0, Optimal Pass % of 87.7%

Optimal Play Action

- Same method to find Optimal Play Action %
- Loess model for Play Action % and predicted from Optimal WP

Part of Field	Breakeven WP	Play Action Percentage
0-24	0%	12.8%
25-59	0%	10.7%
60-79	8%	12.6%
80-89	14%	11.2%
90-99	69%	28.4%

TEN 2020 Optimal PA

 Might expect more runs, so Play Actions would be more successful

Part of Field	Breakeven WP	Play Action Percentage
0-24	11%	11.3%
25-59	4%	30.3%
60-79	10%	19.3%
80-89	45%	22.9%
90-99	78%	31.9%

PIT 2020 Optimal PA

 More likely to pass, faking run won't fool anyone

Part of Field	Breakeven WP	Play Action Percentage
0-24	0%	16.3%
25-59	0%	2.0%
60-79	78%	12.5%
80-89	30%	10.9%
90-99	83%	17.1%

Play Action

Gray bars are league average

Play Action

Zone play action rates compared to overall rates for each team

Play Action

Green bars are optimal play action rate for each team and zone

Tennessee Titans Three-Play

Pittsburgh Steelers Three-Play

Average EPA over a Sequence

Average EPA over a Sequence

Sequence Efficiency

Baltimore Ravens Three-Play Combinations

Average EPA over a Sequence

One More Consideration

Average EPA at the Start of Drives

Frequency of Three-Play Combinations at the Start of Drives

Applicability

Close Range Success

Close Range EPA

Potential Pitfalls

- Sample size is too small, especially for selected teams
 - Win probability may not be optimal
- Models are big picture
- Context is needed for play sequences
 - Hard to isolate the efficiency without game situation

Conclusion and Next Steps

- Model to find the optimal passing/play action percentages for each team
- Do what the defense won't expect
 - Equilibrium in each situation will hide what you're going to do
- Add game situation context to provide a more applicable analysis of sequence efficiency

Appendix

- Logistic Win Probability
 Model made on nflfastR
 data to apply to play action
 data
- AUC of 0.841
- Methodology from Stephen Hill
 - https://medium.com/@tec hnocat79/building-a-basicin-game-win-probabilitymodel-for-the-nfl-54600e57fe1c

```
Call:
glm(formula = poswins ~ qtr + down + ydstogo + game_seconds_remaining +
   yardline_100 + score_differential, family = "binomial", data = wprob_data)
Deviance Residuals:
    Min
                     Median
                                           Max
-2.97542 -0.81215 0.08008 0.84599 2.99813
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                      1.049e+00 5.738e-02 18.273 < 2e-16 ***
qtr2
                      -1.934e-02 2.069e-02 -0.934 0.35010
                      -4.962e-02 3.426e-02 -1.448 0.14758
atr3
qtr4
                     -1.168e-01 4.979e-02 -2.345 0.01903 *
down2
                     -7.995e-02 1.155e-02 -6.920 4.53e-12 ***
down3
                      -1.894e-01 1.346e-02 -14.074 < 2e-16
                      -3.820e-01 1.677e-02 -22.778 < 2e-16 ***
down4
                      -9.155e-03 1.231e-03 -7.439 1.01e-13 ***
ydstogo
game_seconds_remaining -4.776e-05 1.736e-05 -2.751 0.00595 **
yardline_100
                     -8.979e-03 1.994e-04 -45.039 < 2e-16 ***
score_differential 1.808e-01 7.538e-04 239.811 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 386238 on 278638 degrees of freedom
Residual deviance: 272120 on 278628 degrees of freedom
AIC: 272142
Number of Fisher Scoring iterations: 5
```

```
lm(formula = epa \sim wp2 + down + ydstoqo + pass.y + prsh.y + cov.y,
   data = all_pass_80_89
Residuals:
   Min
           1Q Median
                               Max
-12.3202 -0.7792 -0.3878 0.8982 4.9830
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.262468 0.198377 1.323 0.185839
wp2
          down
         -0.012597 0.005199 -2.423 0.015405 *
vdstoao
pass.y
          prsh.y
         -0.003040 0.001006 -3.020 0.002531 **
cov.y
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1.641 on 10478 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.009711, Adjusted R-squared: 0.009144
F-statistic: 17.12 on 6 and 10478 DF, p-value: < 2.2e-16
```

```
lm(formula = epa \sim wp + ydstogo + run.x + rblk.x + def.y + as.factor(prevplay),
    data = all_rush_0_24
Residuals:
            1Q Median
 -8.1977 -0.4015 -0.1213 0.3323 7.8718
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -0.2634907 0.1023943 -2.573 0.010083 *
                   -0.0674471   0.0252292   -2.673   0.007517 **
vdstogo
                   run.x
                   0.0045861 0.0007382 6.213 5.34e-10 ***
rblk.x
                   0.0024324 0.0007455 3.263 0.001105 **
def.y
                   as.factor(prevplay)p -0.0172134  0.0179789  -0.957  0.338368
as.factor(prevplay)r 0.0455878 0.0182035 2.504 0.012278 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.8855 on 15814 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.007334, Adjusted R-squared: 0.006895
F-statistic: 16.69 on 7 and 15814 DF, p-value: < 2.2e-16
```

APPENDIX

Sample output from EPA models