DCT Coefficients

DCT Compression

64 brightness values

→ 19 nonzero JPEG coefficients

DCT Characteristic Properties

$$P(X=1) > P(X=2) > P(X=3) > P(X=4)$$

 $P(X=1)-P(X=2) > P(X=2)-P(X=3) > P(X=3)-P(X=4)$

Model-Based Steganography

Generalized Cauchy model with probability density function (pdf)

Generalized Cauchy distribution (GCD):

$$P(x) = \frac{p-1}{2s} \left| \frac{|x|}{s} + 1 \right|^{-p}.$$

• p > 1, s > 0 are the two parameters.

Illustration of GCD

Two-Class Pattern Classification

Two components in a cover work (c_{inv}, c_{emb}) :

$$p_0 = P(c_{emb} = 0 | c_{inv} = MSB_7(2i))$$

$$= \frac{T_c[2i]}{T_c[2i] + T_c[2i+1]}$$

$$= 1 - P(c_{emb} = 1 | c_{inv} = MSB_7(2i)).$$

The probability of 2i in the bin (2i, 2i + 1).

Arithmetic Decompress and Compress

Map a uniformly distributed bitstream to a new bitstream with specific distribution.

Presentation: Arithmetic Coding

- http://en.wikipedia.org/wiki/
 Arithmetic_coding
- http://www.cs.cmu.edu/~aarti/Class/ 10704/Intro_Arith_coding.pdf

Reverse Compression

In embedding:

uniformly distributed bitstream

Decompress

GCD distributed bitstream

In detection:

GCD distributed bitstream

Compress

uniformly distributed bitstream

Embedding Efficiency

The average number of embedded bits per unit distortion.

- LSB: 2 = 1/0.5.
 - 1 bit: for a uniform distribution binary sequence.
 - Change: 50% of chance to change.
 - Efficiency:

$$\frac{1}{0.5}$$
.

Embedding Efficiency

The average number of embedded bits per unit distortion.

- LSB: 2 = 1/0.5.
- Model Based:
 - Information:

$$H(p_0) = -p_0 \log_2 p_0 - (1 - p_0) \log(1 - p_0).$$

Change:

$$p_0(1-p_0) + (1-p_0)p_0 = 2p_0(1-p_0).$$

• Efficiency:

$$\frac{-p_0 \log_2 p_0 - (1 - p_0) \log(1 - p_0)}{2p_0(1 - p_0)}.$$

Illustration

The Cost of Correction

Losing capacity.

• F3, F4, F5, ...

Jsteg

F3

F3 Algorithm

Embedding 01100.

What Is the Problem in F3?

In normal work

Decreasing

$$P(2i-1) > P(2i).$$

In Steganographic work

More on even.

$$P(2i-1) < P(2i).$$

Defects of F3

Reason

Repeated embedding after shrinkage.

- Happens for embedding 0 only.
- Equivalent to add more 0 into the message code.

F4

F4 Algorithm

- Steganographic interpretation
 - Positive coefficients: LSB
 - Negative coefficients: inverted LSB
- · Skip 0, adjust coefficients to message bit
 - Decrement positive coefficients
 - Increment negative coefficients
 - Repeat if shrinkage occurs

F4 Defects

Compare similar blocks or reverse fitting GCD.

Random Walk

More Payload?

Example: Embedding 1736 bits

- F4: 1157 changes.
- F5: 459 changes by matrix encoding.
 - Embedding efficiency: 3.8 bits per change.

Matrix Encoding

Embedding b_1, b_2 to x_1, x_2, x_3 with at most 1 change.

$$b_1 = LSB(x_1) \text{ XOR } LSB(x_2)$$

 $b_2 = LSB(x_2) \text{ XOR } LSB(x_3)$

- Four equal probability cases.
- Change x_i accordingly.

Example

$$b_1 = LSB(x_1) \text{ XOR } LSB(x_2)$$

 $b_2 = LSB(x_2) \text{ XOR } LSB(x_3)$

0,0	1,0	0,1	1,1
/	\bar{x}_1	\bar{x}_3	\bar{x}_2

Efficiency:

$$2/(3/4) = 8/3 > 2.$$

A Hamming Code

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Presentation: Matrix Embedding

- The idea of parity matrix.
- Efficiency.