

第11赛段: 苏米约西

2024年10月5-6日

该问题集应包含 15 个问题(A 至 O),共 24 页。

问题 A. 欢迎来到人大亚太中心

时间限制

4 秒 内存限制

1024 兆字节

在长度为 N 的由大写和小写英文字母组成的字符串中,求同时包含 "NPCAPC "和 "npcapc "作为子序列(不一定连续)的字符串数,模数为 998244353。

您需要解决 T 个测试案例。

制约因素

- $1 \le T \le 5000$
- $1 \le N \le 10^9$

输入

从标准输入端输入的数据格式如下

T

⋾案

 \mathbf{M}_2

个案 $_T$

这里,案例,表示第i个测试案例。每个测试用例的格式如下:

N

输出

输出 T 行。在第 i 行,输出 $\hat{\mathbf{x}}$ i 个测试用例的答案。

实例

标准输入	标准输出
4	924
12	0
6	966252995
5839	432934749
123456	
3	333574957
123456789	124462731
987654321	163251704
99999999	

第 11 阶段: 住友西, 2024 年 10 月 5-

备注

6日

第一个样本案例:

在第一个测试案例中,有 924 个字符串满足条件,如 "npcapcNPCAPC "和 "NPCnpcAapPCc"。

6日

问题 B. 子集的某些总和

时间限制

2 秒 内存限制

1024 兆字节

给你一个长度为 N 的正整数序列 $A = (A_1, A_2, ..., A_N)$ 。对于 k = 0, 1, .., N ,求解以下问题。

求满足以下条件的 $\{1, 2, ..., N\}$ 的子集 S 的个数。

• 存在一个 S 的子集 T,使得 |T| = |S| - k 和 $A^{\sum_{i \in T}} \ge M$ 。

制约因素

- $1 \le N \le 3000$
- $1 \le M \le 3000$
- $1 \le A_i \le 3000$

输入

从标准输入端输入的数据格式如下

NM

 $A_1 A_2 ... A_N$

输出

输出 N+1 行。在第i 行($1 \le i \le N+1$),输出 k=i-1 的答案。

实例

标准输入	标准输出
4 7	6
3 1 5 2	4
	1
	0
	0
15	1
7	0
9 18	346
195627148	309
	230
	126
	46
	10
	1
	0
	0
	0

第 11 阶段: 住友西, 2024 年 10 月 5-

备注

6日

第一个样本案例:

举例说明 k=1 时的情况。

第 11 阶段: 住友西, 2024 年 10 月 5-

• 对于 $S = \{1, 3, 4\}$,如果我们让 $T = \{3, 4\}$,那Z | T | = |S| - 1 和 A $_{i \in T} _i \geq 7$,所以它满足条件。

其他满足条件的子集有 $S = \{1, 2, 3\}$, $\{2, 3, 4\}$, $\{1, 2, 3, 4\}$, 共计 3 个子集。因此,当 k = 1 时,答案为 4。

问题 c. 与朋友一起解决

6日

时间限制

2 秒 内存限制

1024 兆字节

Namuka 和 Napuka 决定解决所有 N \uparrow 问题,即问题 1、问题 2、.问题 N .

初始时,两人的疲劳度都为 0,但解决一个问题会使解决问题的人的疲劳度增加 1。当解决 \hat{g} i \hat{f} 问题时,当前的疲劳度为 \hat{g} ,Namuka-kun 需要 $A_i + C_j$ 分钟,Napuka-kun 需要 $B_i + D_j$ 分钟。两人不能同时解决问题。

求 Namuka 和 Napuka 解决所有 N 个问题所需的最短总时间。

制约因素

- $1 \le N \le 2 \times 10^5$
- $1 \le a_i$, b_i , c_i , $d_i \le 10^9$

输入

从标准输入端输入的数据格式如下

N

 $A_1 A_2 . . A_N$

 $B_1 B_2 ... B_N C_0$

 $C_1 \dots C_{N-1} D_0$

 $D_1 \dots D_{N-1}$

输出

输出答案。

实例

标准输入	标准输出
3	10
1 3 5	
6 4 2	
1 2 3	
1 2 3	
5	28
24312	
92538	
1 2 8 3 2	
5 4 3 2 1	
8	621

第 11 阶段: 住友西, 2024年 10 月 5-

21 85 72 22 81 20 88 28 75 22 78 92 55 56 73 44 39 14 64 27 73 42 16 84 27 7 91 85 69 95 70 27

6日

备注

第一个样本案例:

第 11 阶段: 住友西, 2024年 10 月 5-

当 Namuka 依次解决第 1 和第 2 个问题,Napuka 解决第 3 个问题时,所花费的总时间可以计算如下

- Namuka 解决了问题 1。Namuka 当前的疲劳度为 0,因此需要 $A_1+C_0=1+1=2$ 分钟。 Namuka 的疲劳度增加了 1。
- Namuka 解决了问题 2。Namuka 当前的疲劳度为 1,因此需要 $A_2 + C_1 = 3 + 2 = 5$ 分钟。 Namuka 的疲劳度增加了 1。
- 纳普卡解决了问题 3。纳普卡当前的疲劳度为 0,因此需要 $B_2 + D_0 = 2 + 1 = 3$ 分钟。纳普卡的疲劳度增加 1。

因此,总时间为2+5+3=10分钟,这是最少的时间。

问题 D. 两个盒子

6日

时间限制

6秒 内存限制

1024 兆字节

给你一个长度为 N 的非负整数序列 $A = (A_1, A_2, ..., A_N)$ 和 Q 个查询。其中 i-该查询的描述如下

• A_{x_i} 更改为 y_i ,然后根据更新后的序列 A 计算下面问题的答案。

有两个盒子,一白一黑,M 个球,编号从 1 到 M。一开始,所有球都在白色盒子里。 执行以下操作 N 次:

• 选择一个满足 $1 \le x \le M$ 的整数 x。将小球 x 从当前方格移动到另一个方格。

在 \hat{g} i $\hat{\chi}$ 操作之后,黑盒中所有小球上的数字必须小于或等于 A_i 。 计算满足这一条件的可能操作序列的数目,模数为 998244353。

按顺序处理查询。

制约因素

- $1 \le n$, $q \le 3 \times 10^4$
- $1 \le M \le 15$
- $1 \le x_i \le N$
- $1 \le A_i$, $y_i \le M$

输入

从标准输入端输入的数据格式如下

NMQ

 $A_1 A_2 . . A_N$

 $x_1 y_1$

 $x_2 y_2$

:

 $x_Q y_Q$

输出

输出Q行。在第i行,输出 \hat{g} i \hat{f} 查询的答案。

第 11 阶段: 住友西, 2024年 10 月 5-

实例

6日

3 14
14
2100
2741280
3007680
1503840
1916160
1972800
728640
821600
521440
27 80 15 19 18

备注

第一个样本案例:

对于第一个查询,A = (1, 3, 2)。在这种情况下,可能的操作序列包括:

- 选择 x = 1。将小球 1 从白箱移到黑箱。现在黑盒子里有小球 1。
- 选择 x = 3。将 3 号球从白箱移到黑箱。黑盒子里现在有球
 1 和 3。
- 选择 x = 3。将小球 1 从黑盒移回白盒。现在黑盒子里有 1 号球。

x 的其他可能序列是 (1, 1, 1)、(1, 1, 2)、(1, 2, 1) 和 (1, 2, 2),总共有 4 种额外的可能性。因此,有 5 种可能的运算序列。

问题 E. 志存高远

6日

时间限制

2秒 内存限制

1024 兆字节

你们将在二维平面上玩一个游戏。最初,在每个网格点 (x, y),其中 $-100 \le x \le 100$ 且 $-100 \le y \le 0$,则放置一个棋子。

您可以执行零次或多次以下操作:

• 选择两点 (a, b) 和 (c, d),其中 |a-c| + |b-d| = 1。将棋子绕 (c, d) 顺时针或逆时针旋转 90 度,移动 (a, b) 中的一个棋子,并从 (c, d) 中移走一个棋子。

你的目标是进行操作,使得在所有操作之后,至少有一个棋子位于 y 坐标至少为 N 的点上。判断是否可能实现目标,如果可能,请构建一个操作序列。

给你 T 个测试用例。请据此解决每个测试用例。

制约因素

- $1 \le T \le 6$
- $1 \le N \le 6$

输入

从标准输入端输入的数据格式如下

T

1案

 M_2

个案 $_T$

这里,案例,表示第i 个测试案例。每个测试用例的格式如下:

N

输出

对于每个 T 测试用例,按给定顺序输出结果,以换行符分隔。

对于每个测试用例,如果不可能实现目标,则输出"-1"。否则,首先输出操作次数 K,然后输出描述操作的 K 行。在 \hat{g} i \hat{z} 操作中,将棋子从 (a_i,b_i) 绕 (c_i,d_i) 旋转 90 度移至 (e_i,f_i) 时,输出如下

:

第 11 阶段: 住友西,2024年 10 月 5-6 日

K

ABCDEFAB

 $CDEF_{1\ 1\ 1\ 1\ 1}$

1 2 2 2 2 2 2

.

 $ABCDEF_{KKKKKKK}$

示例

标准输入	标准输出
1	1
1	1 0 0 0 0 1

第 11 阶段: 住友西, 2024 年 10 月 5-

备注

6日

在第一个操作中,位于(1 $_{0}$)的棋子绕(0 $_{0}$)顺时针旋转 90 度,然后放置在(0 $_{0}$ 1)处。通过这一操作,可以在 $_{0}$ 2 $_{0}$ 4 $_{0}$ 5 $_{0}$ 7 的点(0 $_{0}$ 1)上放置棋子,从而实现目标。

问题 F. 火车座位

6日

时间限制

3 秒 内存限制

1024 兆字节

有 N 个人,从 1 到 N 依次坐在排成一排的 M 把椅子上。从左边起 \hat{g}_i 把椅子叫做 \hat{g}_i 把椅子。 \hat{g}_i 个人坐在椅子 A \hat{g}_i

当一个人坐下来时,让 L 和 R 分别是该人左边和右边最靠近的椅子的数字(如果左边没有这样的椅子,则 L=0;如果右边没有这样的椅子,则 R=M+1)。该人的得分计算公式为 R-L。

N 人有 N 种可能的排序方式。求所有 N 人得分的最大可能总和。

制约因素

- $1 \le N \le 2 \times 10^5$
- $N \le M \le 10^9$
- $1 \le A_i \le M$
- 如果 $i \models j$,那么 $A_i \models A_i$

输入

从标准输入端输入的数据格式如下

NM

 $A_1 A_2 . . A_N$

输出

输出答案。

实例

标准输入	标准输出
3 10	28
3 7 10	
5 20	73
3 10 11 14 17	
10 1000000000	7649951260
136909656 243332691 <> 182482400	
(在附件中下载)	

备注

第一个样本案例:

第 11 阶段: 住友西, 2024年 10 月 5-

例如,如果按照第3人、第1人和第2人的顺序排列,得分情况如下:

- 当第 3 人坐下时,L=0,R=11,因此他们的得分是 11-0=11。
- 当 1 号选手坐下时,L=0,R=10,因此他们的得分是 10-0=10。
- 当 2 号选手坐下时,L=3,R=10,因此他们的得分是 10-3=7。

因此,得分总和为11+10+7=28,这是最大值。

问题 G. 许多常见的分段问题 ^日

时间限制 8秒内存限制

: 1024 兆字节

PCT 带来了以下问题。

共同部分

给您 N 个片段 $[L_1, R_1]$, $[L_2, R_2]$, ..., $[L_N, R_N]$ 。这里,[L, R] 表示从 L 到 R (含 R)的所有整数的集合。

有 2^N - 1 种方法可以选择一个或多个线段,在这些方法中,求所有选择的线段的交集都不为空的方法的个数。输出结果,模数为 998244353。

PCT 意外丢失了测试用例中的一些 L_i 和 R_i 值。为了帮助他,请解决以下问题。

许多通用段测试用例

为您提供了 Common Segment 的测试用例。但是,缺失的 L_i , R_i 值被替换为"-1"。

已知原始测试用例满足 $1 \le L_i \le R_i \le M$ ($1 \le i \le N$)。对于所有可能的原始测试用例,求解 "**公共段**",并找出所有答案的总和,模为 998244353。

制约因素

- $1 \le N, M \le 10^5$
- $L_i = -1$ 或 $1 \le L_i \le M$
- $R_i = -1$ 或 $1 \le R_i \le M$
- 如果 L_i , $R_i \ge 1$, 则 $L_i \le R_i$

输入

从标准输入端输入的数据格式如下

NM

 $L_1 R_1$

 $L_2 R_2$

:

 $L_N R_N$

输出

第 11 阶段: 住友西, 2024 年 10 月 5-

输出答案。

6日

第 11 阶段: 住友西, 2024 年 10 月 5-

实例

6日

标准输入	标准输出
3 3	18
1 -1	
2 2	
2 3	
5 8	15
1 7	
2 3	
4 8	
6 8	
1 5	
10 13	841024210
4 -1	
-1 -1	
7 11	
-1 -1	
-1 -1	
-1 -1	
11 -1	
3 8	
-1 9	
-1 -1	

备注

第一个样本案例:

通用段的所有可能测试用例及其相应答案如下:

- 当 (L_i, R_i) = (1, 1), (2, 2), (2, 3) 时, 答案为 4。
- 当 (L_i, R_i) = (1, 2), (2, 2), (2, 3) 时, 答案为 7。
- 当 (L_i, R_i) = (1, 3), (2, 2), (2, 3) 时, 答案为 7。

因此, 总答案是 4+7+7=18。

第 11 阶段: 住友西, 2024年 10 月 5-

问题 H. 音乐游戏

6日

时间限制 2秒内存限制

1024 兆字节

有 N 个从 1 到 N 的开关。目前,所有开关都处于关闭状态。您可以按任意顺序逐个按下开关,但每个开关都是断开的。具体来说,按下开关 i 需要 T_i 秒,动作如下:

- 概率4i ,它就会打开。
- 概率为 1 -4 , N 个 开关全部关闭。

每次按下开关时,开关是否打开都是独立决定的。此外,在按下一个开关的同时,不能按下另一个 开关。

您的目标是尽快打开所有开关。在适当按下开关后,求打开所有开关所需的预期秒数,取模为 998244353。

制约因素

- $1 \le N \le 2 \times 10^5$
- $1 \le T_i \le 10^6$
- $1 \le a_i \le b_i \le 10^6$

输入

从标准输入端输入的数据格式如下

 \mathcal{N}

 $T_1 a_1 b_1$

 $T_2 a_2 b_2$

.

 $T_N A_N B_N$

输出

可以证明,期望值总是一个有理数。此外,在这个问题的约束条件下,还可以证明当这个值表示为一个化简分数 P 时, $Q \models 0 \pmod{998244353}$ 。因此,存在一个唯一的整数 $\stackrel{O}{R}$,满足 $R \times Q = P \pmod{998244353}$,且 $0 \le R < 998244353$ 。输出这个 R。

第 11 阶段: 住友西, 2024年 10 月 5-

实例

6日

标准输入	标准输出
2	831870305
3 3 5	
247	
5	914017655
259	
647	
1 9 14	
17 8 13	
10 4 11	
8	923892723
628	
3 1 8	
5 30 71	
7 9 58	
647	
6 9 25	
2 8 67	
6 6 55	

备注

第一个样本案例:

下面是操作顺序的一个例子(这个顺序不一定代表最佳操作):

- 按下开关13秒钟。开关1接通。
- 按 2 号开关 2 秒钟。所有开关关闭。
- 按下开关22秒钟。开关2接通。
- 按下开关 1 3 秒钟。开关 1 接通。

在这个序列中,所用时间为 10 秒,按此方式进行操作的概率为 $\frac{3}{2}$ $x^{\frac{3}{2}}$ $x^{\frac{3}{2}}$

此外,在这种情况下,当适当按下开关时,打开所有开关所需的预期秒数为题秒。

6

问题 I. 左等于右

6日

时间限制

2秒 内存限制

1024 兆字节

求满足以下条件的 (1, ..., N) 的排列 $(P_1, ..., P_N)$ 的个数,并求模 998244353.

• 存在一个整数 i ($1 \le i < N$),使得 A_{P_1} +---+ A_{P_i} = $A_{P_{i+1}}$ +---+ A_{o} P_N

制约因素

- $2 \le N \le 100$
- $1 \le A_i \le 100$

输入

从标准输入端输入的数据格式如下

N

 $A_1 A_2 . . A_N$

输出

输出答案。

实例

标准输入	标准输出
3	4
49 5	
2	2
100 100	
8	11520
3 2 6 3 1 2 4 5	

备注

第一个样本案例:

1,2,3) 有 3! (=6) 种排列组合,其中 4 种满足条件:

- (1, 3, 2)
- (2, 1, 3)
- (2, 3, 1)

第 11 阶段: 住友西, 2024 年 10 月 5-

• (3, 1, 2)

6日

例如,对于 (1, 3, 2),选择 i = 2,我们有 $A_1 + A_3 = A_2 = 9$,满足条件。

问题」. 再次置换问题

6日

时间限制 5秒内存限制

1024 兆字节

给你 $M \uparrow (1, 2, ..., N)$ 的排列。 \hat{g} i \uparrow 排列为 $P_i = (P_{i,1}, P_{i,2}, ..., P_{i,N})$ 。 你有一个序列 Q = (1, 2, ..., N)。 你可以执行下面的操作 0 次或更多次:

• 选择一个满足 $1 \le i \le M$ 的整数 i ,并将 Q 更新为 $(Q_{P_{i,1}}, Q_{P_{i,2}}, \ldots, Q_{P_{i,N}})$ 。

求所有可能的序列 Q 在进行任意次数的运算后的反转数之和。输出结果,模数为 998244353。

制约因素

- $1 \le N \le 30$
- $1 \le M \le 30$
- $P_i = (P_{i,1}, P_{i,2}, \dots, P_{i,N}) \neq (1, 2, \dots, N)$ 的排列组合。

输入

输入内容按以下格式从标准输入端输入:

NM

P1,1 P1,2 ··· P1,N

P2,1 P2,2 ··· P2,N

PM,1 *PM*,2 ⋅*PM*,*N*

输出

输出答案。

实例

标准输入	标准输出
3 2	4
1 2 3	
2 3 1	
5 2	50
3 4 5 1 2	
1 5 4 3 2	

第 11 阶段: 住友西, 2024年 10 月 5-30 12 1 2 9 4 5 6 <...> 26 3 28 29 30 (在附件中下载)

备注

第一个样本案例:

有三个可能的序列 Q: (1,2,3) 、 (2,3,1) 和 (3,1,2) 。它们的反转数分别是 0、2 和 2 ,所以答案是 0+2+2=4。

问题 K. 和平与魔法

6日

时间限制 2秒内存限制

1024 兆字节

NPCA 国家由直线排列的 N 个方格组成,从左到右编号为 1 到 N。假设 第 i 个方格的高度为 H_i 。最初, $H_1=H_2=---=H_N=0$ 。

对于每个 $1 \le i \le N$ - 1,如果 H_i 和 H_{i+1} 之间的绝对差小于 D_i ,则第 i 个方格和第 i + 1 个方格之间会发生冲突。Napuka-kun 是 NPCA 国家爱好和平的国王,他的目标是消除每一对相邻方格之间的所有冲突。为了实现这一目标,Napuka-kun 可以施展以下任意次数(包括零次)的魔法:

• 选择整数 i 和 j,使得 $1 \le i \le j \le N$ 且 $H_i = H_{i+1} = - - = H_j$,然后在每个中加 1。 H_i , H_{i+1} , . . . , H_{-j}

确定 Napuka-kun 要达到目标所需的最少魔法次数。

制约因素

- $2 \le N \le 100$
- $0 \le D_i \le 1000$

输入

从标准输入端输入的数据格式如下

N $D_1 D_2 ... D_{N-1}$

输出

输出答案。

实例

标准输入	标准输出
4	4
2 3 1	
3	0
0 0	
10	22
19 5 6 2 7 1 4 8	

备注

第一个样本案例:

第 11 阶段: 住友西, 2024 年 10 月 5-

最初, $(H_1, H_2, H_3, H_4) = (0, 0, 0, 0)$ 。例如,可以按如下方式施展魔法:

- 选择 $(i, j) = (1, 3)_{\circ}$ 则 $(H_1, H_2, H_3, H_4) = (1, 1, 1, 0).$
- 选择 (*i*, *j*) = (1, 2)。则 (*H*₁, *H*₂, *H*₃, *H*₄) = (2, 2, 1, 0).
- 选择 (i, j) = (2, 2)。则 $(H_1, H_2, H_3, H_4) = (2, 3, 1, 0)$.
- 选择 (i, j) = (2, 2)。则 $(H_1, H_2, H_3, H_4) = (2, 4, 1, 0)$.

纳普卡君施放 4 次魔法就能达到目标,这是最少的施放次数。请注意,您可以选择 i=j。

问题 L.城镇建设

6日

时间限制

2 秒 内存限制

1024 兆字节

给你一个长度为 N - 1 的正整数非递减序列 $X=(X_1\,,X_2\,,\dots\,,X_{N-1}\,)$ 。 定义有 N 个顶点和 M 条边 的简单连通无向图 G 的代价为

 $\sum_{i=1}^{N} \sum_{j=i+1}^{N} X_{d(i,j)}$ 。这里,d(i,j) 被定义为移动所需的最小边数。从 G 中的顶点 i 到顶点 j。

构建一个有N个顶点和M条边的简单连通无向图G,使成本最小。

制约因素

- $2 \le N \le 100$
- $N-1 \le M \le \frac{N(N-1)}{2}$
- $1 \le x_1 \le x_2 \le --- \le x_{N-1} \le 10^9$

输入

从标准输入端输入的数据格式如下

NM

 $X_1 X_2 . . X_{N-1}$

输出

当图中 $\hat{\mathbf{g}}$ i条边连接顶点 A_i 和顶点 B_i 时,输出M行如下:

 $A_1 B_1$

 $A_2 B_2$

 $A_M B_M$

实例

标准输入	标准输出
3 2	1 2
45	1 3
4 6	1 2
12 34 56	1 3
	1 4
	2 3
	2 4
	3 4

第 11 阶段: 住友西, 2024 年 10 月 5-

6日

备注

第一个样本案例:

在此输出中,成本为 $X_{d(1,2)} + X_{d(1,3)} + X_{d(2,3)} = X_1 + X_1 + X_2 = 13$ 。

由于不存在成本为 12 或更低的 3 个顶点和 2 条边的无向图,因此该输出是正确的。

问题 M. 敬佩的人

6日

时间限制

2 秒 内存限制

1024 兆字节

Namuka 有一个长度为 N 的整数序列 $A=(A_1\,,A_2\,,\dots\,,A_N)$,Namuka 的理想人物有一个长度为 M 的序列 $B=(B_1\,,B_2\,,\dots\,,B_M)$ 。

为了更接近他们理想中的人,Namuka 从 A 中选择 M 个不同的元素,按任意顺序排列,形成长度为 M 的序列 $C=(C_1\,,\,C_2\,,\,\dots\,,\,C_M\,)$ 。

找出 $\sum_{M} |B_i - C_i|$ 的最小可能值。 $_{i=1}$

制约因素

- $1 \le m \le n \le 5000$
- $1 \le a_i$, $b_i \le 10^9$

输入

从标准输入端输入的数据格式如下

NM

 $A_1 A_2 . . A_N$

 $B_1 B_2 ... B_M$

输出

输出答案。

实例

标准输入	标准输出
5 3	4
2 6 5 1 1	
6 3 8	
3 2	0
1 1 9	
1 1	
11 7	32
13 21 9 5 16 32 15 29 20 40 4	
24 34 43 39 18 30 11	

备注

第一个样本案例:

第 11 阶段: 住友西, 2024 年 10 月 5-

例如,选择 C = (6, 2, 5),可以得到最小值 |6 - 6/6 + 3 - 2| + |8 - 5| = 4。

第11阶段: 住友西, 2024年10月5-

问题 N. 产品矩阵

6日

时间限制

3 秒 内存限制

1024 兆字节

这个问题的时限可能很紧。

给你一个 $N \times N$ 平方矩阵 P(x),其中每个元素都是一级多项式。P(x) 的第 (i,j) 个元素是 $a_{i,j}$ x + $b_{o_{i,j}}$

计算每个系数 c_0 , c_1 , ..., c_M 的 (1, 1) 元素 f(x) $\stackrel{\text{M-O}}{\cap} P(2^i x) = P(x)P(2x) \dots P(2^{M-1} x)$, modulo $(10^9 + 7)$ 。 $=\sum_{i=0}^{M} c x_i^i$ 的乘积

制约因素

- $1 \le N \le 6$
- $1 \le M \le 5 \times 10^5$
- $0 \le a_{i,j}$, $b_{i,j} < 10^9 + 7$

输入

从标准输入端输入的数据格式如下

NM

a1,1 a1,2 ··· a1,N

a2,1 a2,2 ··· a2,N

.

 $aN_{,1} aN_{,2} aN_{,N}$

b1,1 b1,2 ··· b1,N

b2,1 b2,2 ··· b2,*N*

.

 $bN_{.1} bN_{.2} ... bN_{.N}$

输出

输出系数 c_0 , c_1 , ..., c_M modulo $(10^9 + 7)$,每个系数按此顺序各占一行。

实例

标准输入	标准输出
2 2	4
1 2	8
3 4	14
2 0	
1 2	

	- 第 11 阶段:住友西,2024 年 10 月 5
(在附件中下载)	(在附件中下载)
`	`6 ⊟
(在附件中下载)	(在附件中下载)

备注

第一个样本案例:

因为

第 11 阶段: 住友西,2024 年 10 月 5-

$$P(x)P(2x) = \begin{pmatrix} x+2 & 2x \\ 3x+1 & 4x+2 \end{pmatrix} \begin{pmatrix} 2x+2 & 6 \\ 6x+1 & 8x+2 \end{pmatrix} = \begin{pmatrix} 14x^2+8x+4 & 20x^2+12x \\ 30x^2+24x+4 & 44x^2+28x+4 \end{pmatrix},$$

答案是
$$f(x) = 14x^2 + 8x + 4$$
。

第 11 阶段: 住友西, 2024 年 10 月 5-

问题 O. 新学期

6日

时间限制

3 秒 内存限制

1024 兆字节

人大附中有 2N 名学生,每个学生都有一个从 1 到 2N 的唯一编号。Napuka-kun 是人大附中的一名教师,他需要把学生分成**两个班级,每个班级有** N **名学生**。

阶级划分的不满意度定义如下:

• 对于每个整数 i $(1 \le i \le M)$,如果学生 A_i 和学生 B_i 在同一个班级,则在总不满意度 上加上 2^i 。

构建一种阶级划分方式,以尽量减少 Napuka-kun 的不满。

制约因素

- $1 \le N \le 5000$
- $0 \le M \le 10^6$
- $1 \le a_i \le b_i \le 2n$
- 如果 $i \neq j$,那么 $(A_i, B_i) \models (A_i, B)_i$
- 所有输入值均为整数

输入

输入内容按以下格式从标准输入端输入:

NM

 $A_1 B_1$

 $A_2 B_2$

:

 $A_M B_M$

输出

输出格式如下

 $S S_{12} ... S_{2N}$

这里, S_i 为 "0 "或 "1",表示学生 i 属于哪个班级。

如果有多个有效的班级划分,您可以输出其中任何一个。

第 11 阶段: 住友西, 2024 年 10 月 5-

实例

6日

标准输入	标准输出
2 4	0101
1 3	
2 4	
1 4	
1 2	
3 7	001101
2 5	
1 3	
4 6	
2 6	
4 5	
2 4	
5 6	

备注

第一个样本案例:

将1号和3号学生分成一个班,将2号和3号学生分成另一个班。

4. 不满意度的计算方法如下:

- i = 1 时,学生 1 和 3 在同一个班级。
- i=2时,学生2和学生4在同一个班级。
- i = 3 时,学生 1 和学生 4 分在不同的班级。
- i = 4 时,学生 1 和学生 2 分在不同的班级。

因此,该除法的总不满意度为 $2^1 + 2^2 = 6$,这是最小值。您可以输出 "1010"。

如果划分为 "0111",则不满意度为 4,但每个班级的学生人数不正好为 N,因此不满足条件。