

Department of Mechanical Engineering Indian Institute of Technology Tirupati

B. Tech Final Year Project Presentation

DESIGN AND FABRICATION OF EXPERIMENT FOR DYNAMIC ANALYSIS OF MECHANISMS

- 1. Aakash (ME16B001)
- 2. A. Akhil (ME16B003)

Supervised by

1. Dr. Sriram Sundar, Assistant Prof of ME

Date: 11-Mar-2020

Objectives and Motivation

Dept. of Mechanical **Engineering**

B. Tech Final **Year Project** Presentation

Introduction - Design and fabrication of experimental setup for static, kinematic and dynamic analysis of mechanisms with retrofitted parts.

Motivation - The experiment will supplement and reinforce the theoretical understanding of the undergraduate students taking the ME2206 (KDM)

course.

Six bar mechanism

Four bar mechanism

Slider crank mechanism

Experiment plan

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Aim:

- 1. To find the slider velocity and acceleration for six bar mechanism and slider crank mechanism
- 2. To find angular velocity and angular acceleration of all links in double crank mechanism.

Methodology and Results:

- This experimental setup will store the data of all parameters for each angular position.
- Students can select the angular position in the experimental setup to get the stored data display.
- Students need to solve theoretically for any particular angular position of mechanism.
- Students can compare theoretical results with practical results.

Manufacturing plan

Dept. of Mechanical Engineering

Updated CAD Design

Dept. of Mechanical Engineering

CAD: Motion Study

CAD: Top view

Raw materials

Aluminium flat

Bearings

Extruded aluminium frame

Testing of Rotary Encoder

- 600 PPR Rotary encoder was selected and purchased
- In-house Arduino program was used to test the encoder for measuring rotation angles.

Actuator selection

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

DC 12V 10 rpm high torque quad encoder motor

DC servo driver

Fabrication

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Assembled base

Links and L-joint

9

- Full fledged CAD model of the mechanism was created considering all the manufacturing challenges (Design for manufacturing).
- All the required raw material were procured
- Rotary encoders were tested for angle measurement using Arduino.
- The base frame has been assembled while manufacturing and assembly of the links is in process.

Future Work

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Fabrication (31st March)

Testing (10th April)

Documentation

- Fabrication and assembly of links.
- Integration of encoders and other electronics

- Experimentation, testing and validation.
- Design changes if required

 Creation of experiment manual and documentation.

References

- 1. A. Ghosh and A. K. Mallik, Theory of mechanisms and machines. Affiliated East-West Press Private Limited, 2002.
- 2. R. L. Norton, Kinematics and dynamics of machinery. McGraw-Hill Higher Education, 2011.
- 3. J. J. Uicker, G. R. Pennock, J. E. Shigley, et al., Theory of machines and mechanisms, volume 1. Oxford University Press New York, NY, 2011.

END

Mathematical Formulation

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Kinematics analysis

Finding angular velocity (AB) and slider velocity

$$\vec{V}_{B/A} = \vec{V}_B - \vec{V}_A$$

$$\vec{V}_{B/A} = \vec{\omega}_{BA} imes \vec{r}_{B/A}$$

$$\vec{V}_{A/O} = \vec{\omega}_{AO} \times \vec{r}_{A/O} = \vec{V}_A$$

$$ec{\omega}_{BA} imes ec{r}_{B/A} = ec{V}_B - ec{V}_A$$

$$\vec{V}_{A/O} = \vec{V}_A - \vec{V}_O = \vec{V}_A$$

Finding angular acceleration (AB) and slider acceleration

$$\vec{a}_{A/O} = \vec{a}_A = \vec{a}_A^t + \vec{a}_A^n$$

$$\vec{a}_{B/A} = \vec{a}_{B/A}^t + \vec{a}_{B/A}^n = \vec{a}_B - \vec{a}_A$$

$$\vec{a}_A^t = \vec{\alpha_{A/O}} \times \vec{r_{A/O}}$$

$$\vec{a}_A^n = \vec{\omega_{AO}} \times \vec{\omega_{AO}} \times \vec{r_{A/O}}$$

Mathematical Formulation

B. Tech Final Year Project Presentation

Dynamic analysis

Force and torque balance for link OA

$$F_{OX} + F_{AX} = 0$$

$$F_{OY} + F_{AY} = m_1 g$$

$$I_{AO}\vec{\alpha}_{AO} = \vec{r}_{C_1O} \times m_1g(-\hat{j}) + \vec{r}_{A/O} \times \vec{F}_A$$

Force and torque balance for link AB

$$F_{AX} = F_{BX}$$

$$F_{BY} = F_{AY} + m_2 g$$

$$I_{BA}\vec{\alpha}_{B/A} = \vec{r}_{C_2/A} \times m_2 g(-\hat{j}) + \vec{r}_{B/A} \times \vec{F}_B$$

Force balance for slider

$$F_{BY} + m_3 g = N$$

$$m_3a_B=F_{BX}$$

Kinematic Analysis

Dept. of Mechanical Engineering

- By using Geogebra, we obtained preliminary link lengths and slider velocity profile.
- Analysed the velocity profile by changing link lengths.

Design for constant velocity

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Iteration over preliminary length ratios obtained from GeoGebra

Obtained length ratios for minimal velocity

variation

OA	AB	CD	AC
26	79	18	22

Dynamic Analysis

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

 Dynamic and kinematic analysis helps in designing mechanism which is suitable for taking measurements.

Results

Dept. of Mechanical Engineering

3D Model

Dept. of Mechanical Engineering

Part number	Part Name	
1	Ground	
2	Link OA	
3	Link AB	
4	Slider	
5	Link CD	
6	Link AC	

Sensor selection

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Based on the results obtained from kinematic and dynamic analysis using MathWorks Simscape, we selected the required sensors.

 2-Phase Incremental Optical Rotary Encoder to detect angular velocity and angular acceleration of links

Source: robu.in

 3-Axis Accelerometer is to detect linear acceleration and linear velocity of slider.

Cost Analysis

Dept. of Mechanical Engineering

No	Name	Unit cost in INR	Quantity	Cost in INR
1	Bearing	50	20	1000
2	Shoulder screw	20	6	120
3	Aluminum (for links and slider)	200 per kg	15kg	3000
4	Extruded Aluminum	400 per m	5	2000
5	Actuator	-	-	-
6	Rotary Encoder	2000	3	6000
7	Linear Accelerometer (8kHz)	200	1	200
8	Display	1000	1	1000
9	Other Electronics and miscellaneous			5000
10	Slotted weights, pulley	2000	1	2000
	Grand Total			20,320/-

- The complete analysis of the mechanism(s) was performed using applicable method and software.
- 3D CAD model of the mechanism was created to facilitate better visualisation.
- Various design considerations were addressed and manufacturing workflow and plan were accomplished as a prerequisite to manufacturing.
- BoM was prepared and materials acquisition from the vendor is in process.

Future Work

Dept. of
Mechanical
Engineering

B. Tech Final Year Project Presentation

Actuator selection

Final Design

Fabrication

 Need to find the best actuator with its control system. Final prototype
 model consisting
 of links, bearings,
 motors, sensors,
 etc.

- Fabrication and assembling of links.
- Experimentation, testing and validation.

- 1. MATLAB version 9.3.0.713579 (R2017b). The Mathworks, Inc., Natick, Massachusetts, 2017.
- 2. A. Ghosh and A. K. Mallik, Theory of mechanisms and machines. Affiliated East-West Press Private Limited, 2002.
- M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, A. Delobelle, C. Denizet, J. Éliás, A. Fekete, L. Gál, Z. Konecný, Z. Kovács, S. Lizelfelner, B. Parisse, and G. Sturr (2013). GeoGebra 4.4. http://www.geogebra.org.
- 4. R. L. Norton, Kinematics and dynamics of machinery. McGraw-Hill Higher Education, 2011.
- 5. Python Core Team (2018). Python: A dynamic, open source programming language. Python Software Foundation. URL https://www.python.org/.
- 6. J. J. Uicker, G. R. Pennock, J. E. Shigley, et al., Theory of machines and mechanisms, volume 1. Oxford University Press New York, NY, 2011.

Acknowledgements

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

Thanks to all those who helped us during the course of our B.Tech. project at IIT Tirupati. We are thankful to and fortunate enough to get constant encouragement, support and guidance from Dr. Sriram Sundar of Mechanical Engineering Department which helped us in successfully completing first phase of our project work. We would also like to extend our sincere esteems to all staff in laboratory for their timely support.

To our families, thank you for encouraging us in all of our pursuits and inspiring us to follow our dreams. We are especially grateful to our parents, who supported us emotionally and financially.

END

Supplementary material

Updates

Dept. of Mechanical Engineering

Introduction and Objectives

Dept. of Mechanical Engineering

B. Tech Final Year Project Presentation

- To design and fabricate an experimental setup for static, kinematic and dynamic analysis of mechanism.
- The setup will have retrofitted parts in order to let the student carry out multiple experiments in the same setup.
- The experiment will supplement and reinforce the theoretical understanding of the undergraduate students taking the ME2206(KDM) by providing them the opportunity to match the analytical results with the actual experimental results.

source: sun labtech

B. Tech Final Year Project Presentation

Estimated budget: INR 25,000.00 - 30,000.00

Probable sensors for instrumentation: Rotary encoders, Ultrasonic range sensors, linear accelerometers, strain gauges

- Kinematics and Dynamics of Machinery, Robert L. Norton
- Theory of Mechanisms and Machines, Ghosh and Mallik
- Theory of Machines and Mechanisms, Uicker, Pennock and Shigley

Mechanism

Dept. of Mechanical Engineering

