Gépelemek mechatronikai mérnököknek

Gyakorlati jegyzet

Réda Vince

Gép- és terméktervezés tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. október 29.

1. Igénybevételek típusai (befogott rúdra)

- $R_{\rm eh}$ folyáshatár
- $\sigma_{\rm N} = \frac{F}{A} \le \sigma {\rm meg} = \frac{R_{\rm eh}}{n}$
- húzó-nyomó

$$-\Delta L = \frac{FL}{\Delta E}$$

$$-\epsilon = \frac{\Delta L}{L}$$

-
$$\epsilon_{\text{kereszt}} = \nu \epsilon_{\text{hossz}}$$

– Hooke törvény:
$$\sigma = E\epsilon$$

nyírás

$$- au_{
m V} = rac{4}{3} rac{SF}{I_{
m V} s} pprox rac{F}{A}$$

hajlítás

-
$$\sigma_{\rm H} = \frac{M_{\rm H}}{I} e$$

– lehajlás:
$$f = \frac{FL^3}{3IE}$$

– téglalap alapú hasábra
$$I_{xy} = \frac{ab^3}{12}$$

– kör alapú hasábra
$$I_{\mathrm{xy}}=rac{d^4\pi}{64}$$

csavarás

–
$$au_{\mathrm{t}} = rac{M_{\mathrm{t}}}{I_{\mathrm{p}}}e$$

– elcsavarodás:
$$\varphi = \frac{M_{\rm t}L}{I_{\rm p}G}$$

– kör alapú hasábra
$$I_{\mathrm{p}}=I_{\mathrm{x}}+I_{\mathrm{y}}=\frac{d^{4}\pi}{32}$$

• felületi nyomás

$$-p = \frac{F}{A_{\perp}} \le p_{\text{meg}}$$

• összetett igénybevétel

– HMH:
$$\sigma_{\text{egy}} = \sqrt{\sigma^2 + 3\tau^2} \le \sigma_{\text{meg}}$$

– Mohr
$$\sigma_{\rm egy} = \sqrt{\sigma^2 + 4\tau^2} \le \sigma_{\rm meg}$$

– húzás vagy hajlítás esetén
$$\sigma = \sigma_{\rm N} + \sigma_{\rm H}$$

- nyírás vagy csavarás esetén csak a domináns igénybevétellel számolunk

1.1. Tartályok feszültségei

•
$$\sigma_{\rm t} = \frac{dp}{2s}$$

•
$$\sigma_{\rm ax} = \frac{dp}{4s}$$

•
$$\sigma_{\rm r} = p$$

2. Csavarkötések

2.1. Előfeszítő erő meghatározása

adatok

- M10, metrikus anyát nyomatékkulcsal húzunk meg
- előírt meghúzási nyomaték 35 Nm
- nyomatékkulcs hibája $\pm 5\%$
- a súrlódási tényező $\mu \in [0.08, 0.12]$
- a menet magátmérője 7.19 mm, közepes átmérője
 9.03 mm, menetemelkedése 1.5 mm
- az anya laptávolsága 16 mm
- az átmenő furat átmérője 11 mm
- Mekkora az előfeszítő erő minimális és maximális értéke?

1. ábra. Klein-diagram

• megoldás

$$- M_{\rm t} = M_{\rm v} + M_{\rm a}$$

- meneteken ébredő súrlódásból eredő nyomaték: $M_{
 m v}=F_{
 m k} {d_2\over 2}=F_{
 m v} \tan{(\alpha+\rho')}\,{d_2\over 2}$
- homlokfelületen fellépő súrlódásból eredő nyomaték: $M_{\rm a} = F_{\rm v} \frac{d_{\rm a}}{2} \mu_{\rm a}$
- menetemelkedési szög: $\alpha = \arctan \frac{P}{d_2\pi}$
- látszólagos súrlódási félkúpszög: $\rho'=\arctan\frac{\mu}{\frac{\cos\beta}{2}}$

$$- \ \beta = \begin{cases} 60^\circ - \text{metrikus menet} \\ 55^\circ - \text{Whitworth/csőmenet} \\ 30^\circ - \text{trapézmenet} \end{cases}$$

–
$$d_{\rm a}=\frac{D+s}{2}=13.5~{\rm mm}$$
 (s az anya laptávolsága)

$$- \alpha = 3.027^{\circ}$$

–
$$\rho'_{\rm min}=5.28^\circ$$

– csavarkötés akkor önzáró, ha $\rho' > \alpha$

$$-F_{v \min} = 19783 \text{ N}$$

$$- F_{v \text{ max}} = 30649 \text{ N}$$

2.2. Anya magasság számítása

adatok

- M20-as csavarkötés

$$- F_{\rm v} = 60000 \, {
m N}$$

– a megengedhető felületi nyomás $p_{\rm meg}=80~{\rm MPa}$

– a maximális csúsztatófeszültség $\tau_{\rm meg}=190~{\rm MPa}$

– $\,d_2=18.376$ mm, $d_3=16.933$ mm, P=2.5 mm

- Mekkora legyen az anya magassága?

• megoldás

$$\begin{array}{l} \textbf{-} \ p = \frac{F}{A_{\rm p}} \leq p_{\rm meg} \\ \\ \textbf{-} \ A_{\rm p} = \left(\frac{d^2\pi}{4} - \frac{d_3^2\pi}{4}\right)i = 750 \ {\rm mm}^2 \end{array}$$

$$-i_p=8.4$$
 menet

-
$$A_{\tau} = d\pi pi$$

–
$$\tau_{\rm meg}=\frac{F}{A_{ au}}$$
 \rightarrow $A_{ au}=315.8~{\rm mm}^2$

-
$$i_{\tau}=2$$
 menet

-
$$\operatorname{ceil}[\max(i_{\mathbf{p}}, i_{\tau})] = 9$$
 menet

2. ábra. Nyomott és nyírt terület

2.3. Csavar méretezése megnyúlásra

• adatok

- M16-os magragyengített csavar
- L hosszon a csavarszár átmérője d_5 -re csökken
- Mekkora nyomatékkal kell meghúzni hogy a megnyú- lás $\Delta L = 0.075$ mm-es legyen?
- Mekkora a csavar minimális szakítószilárdsága?

• megoldás

-
$$\Delta L = \frac{F_{\rm v}L}{AE} \rightarrow F_{\rm v} = AE\frac{\Delta L}{L}$$

-
$$A = \frac{d_5^2 \pi}{4} = 113.1 \text{ mm}^2$$

$$-F_{\rm v} = 18176 \, {\rm N}$$

– A 2.1-es alszakasz alapján $M_t=38844~\mathrm{Nmm}$

$$\sigma = \frac{F}{A} = 160.7 \text{ MPa}$$

- $au = \frac{M_{ au}}{I_{ extsf{p}}} e = \frac{M_{ extsf{t}}}{\frac{d_{5}}{32}} \frac{d_{5}}{2} = 114.5 \text{ MPa}$
- itt vagy a tömör (d_3) , vagy a névleges (d_2) átmérővel számolunk
- $\sigma_{\mathrm{HMH}}=255.3~\mathrm{MPa}$

2.4. Külső lazítás

• megoldás

- a csavar megnyúlása (menet + szár) $\lambda_{\rm cs}=\frac{F_{\rm v}l_1}{A_1E_1}+\frac{F_{\rm v}l_2}{A_2E_2}$
- a csavar rugómerevsége $s_{\mathrm{cs}} = \frac{F_{\mathrm{cs}}}{\lambda_{\mathrm{cs}}}$
- a közrefogott elemek rugómerevsége (kúp közelítés) $\lambda_{\bf k}=\frac{E_2}{h}\frac{(D^2-d^2)\pi}{4}$

-
$$F_1 = \frac{s_{\rm cs}}{s_{\rm cs} + s_{\rm k}} F_{\ddot{\rm u}}$$

-
$$F_2 = \frac{s_k}{s_{cs} + s_k} F_{\ddot{\mathfrak{u}}}$$

-
$$F_{
m krit} = rac{s_{
m cs} + s_{
m k}}{s_{
m k}} F_{
m v}$$

– $F_{\rm krit}$ növelhető keményebb csavarral, vagy lágyabb közrefogott elemekkel

3. ábra. Külső lazítás

külső lazítás

belső lazítás

közbülső lazítás

4. ábra. Lazítás konstrukciós példák

3. Alakkal záró kötések

3.1. Előfeszítési háromszög

• adatok

- $-F_{\text{max}} = 6000 \text{ N}$
- $-\mu = 0.14$
- a közrefogott elemeket egy csőnek tekintjük, $d_{\rm cs}=18$ mm,

 $D_{\rm cs} = 45~{\rm mm~m\acute{e}retekkel}$

- $d_2 = 14.701 \ \mathrm{mm}$
- a kritikus lazító erő az üzemi erő kétszerese
- Mekkora a beállított előfeszítő erő?
- Mekkora lesz a csavarban ébredő legnagyobb erő?

• megoldás

- $-F_{\ddot{u}} = \frac{2F}{n} = 3000 \text{ N (egy csavarra)}$
- $-F_{\rm krit} = 2F_{\rm \ddot{u}} = 6000 \ {
 m N}$
- $-F_1 = \frac{s_{\rm cs}}{s_{\rm cs} + s_{\rm k}} F_{\ddot{\rm u}}$
- $F_2 = \frac{s_k}{s_{cs} + s_k} F_{\ddot{\mathfrak{u}}}$
- $-s_{cs}$ és s_k a csavar és a közrefogott elemek rugómerevsége
- csavar rugómerevsége

*
$$s_{\rm cs} = \frac{F_{\rm v}}{\lambda_{\rm cs}} = \frac{E}{\sum \frac{l_i}{A_i}}$$

* menetes rész

$$A_{\rm m} = \frac{d_2^2 \pi}{2} = 169.74 \ {\rm mm}^2$$

$$\cdot l_{\rm m} = 14~{\rm mm}$$

* menet nélküli rész

$$\cdot \ A_{\rm nm} = {d^2\pi \over 2} = 201.06 \ {
m mm}^2$$

$$\cdot l_{\rm nm} = 24 \ {\rm mm}$$

*
$$s_{\rm cs} = 1.02 \cdot 10^6 \, \frac{\rm N}{\rm mm}$$

- közrefogott elemek rugómerevsége

*
$$s_{\mathbf{k}} = \frac{A_{\mathbf{k}}E}{l_{\mathbf{k}}}$$

$$*~A_{\rm k}=1336~{\rm mm^2}$$

$$* s_k = 8.77 \cdot 10^6 \frac{N}{mm}$$

$$- F_{\rm v} = 5375 \, {\rm N}$$

$$- F_1 = 312 \text{ N}$$

(a) Csavarkötés

- (b) Előfeszítési háromszög
- 5. ábra. Csavarkötés méretezése
 - adatok

$${\mathord{\hspace{1pt}\text{--}}}\,$$
a lemez vastagsága $v=20~\mathrm{mm}$

–
$$d_{\rm szegecs}=5~{\rm mm}$$

–
$$\tau_{\rm max}=70~{\rm MPa}$$

$$- p_{\text{max}} = 140 \text{ MPa}$$

–
$$\sigma_{\rm max}=190~{
m MPa}$$

- a lemez szélessége $l=60~\mathrm{mm}$
- Mekkora a maximális húzóerő?

nyíró igénybevétel

*
$$au = \frac{T_{\tau}}{A_{\tau}}$$

*
$$A_{\tau} = \frac{d^2\pi}{4}z = 78.5 \text{ mm}^2$$

*
$$F_{ au}^{ ext{max}} = au_{ ext{meg}} A_{ au} = 5495 \text{ N}$$

- felületi nyomás

*
$$p = \frac{F_p}{A_p}$$

$$*~A_{\mathrm{p}}=dvz=400~\mathrm{mm^2}$$

*
$$F_{\rm p}^{\rm max} = p_{\rm meg} A_{\rm p} = 56000~{
m N}$$

- különlegességek: szállítófeszültség

6. ábra. Hevederes szegecskötés

$$*\,$$
lemez felület: $A_{\sigma}=v(l-zd)=1800~{\rm mm}^2$

*
$$F_{\sigma} = \sigma_{\text{meg}} A_{\sigma} = 152000 \text{ N}$$

-
$$F_{\text{meg}} = \min(F_i) = F_{\tau} = 5495 \text{ N}$$

- megoldás (hevederes szegecskötés)
 - átlapoló lemezek vastagsága $v_2=6~\mathrm{mm}$
 - nyíró igénybevétel

$$*~A_\tau=157~\rm mm^2$$

*
$$F_{\tau}^{\text{max}} = 10990 \text{ N}$$

- felületi nyomás

$$*~A_{\rm p1}=dvz=400~\rm mm^2$$

$$* \ A_{\rm p2} = 2 dv_2 z = 240 \ {\rm mm}^2$$

*
$$F_\mathrm{p}^\mathrm{max} = p_\mathrm{meg} A_\mathrm{p}^\mathrm{min} = 31600~\mathrm{N}$$

- különlegességek: szállítófeszültség

* lemez felület:
$$A_{\sigma 1} = v(l - zd) = 800 \text{ mm}^2$$

$$*\,$$
lemez felület az átlapolásban: $A_{\sigma 2} = 2 v_2 (l-zd) = 480 \ \mathrm{mm}^2$

*
$$F_{\sigma 1} = 342000 \text{ N}$$

*
$$F_{\sigma 2} = 91200 \text{ N}$$

$$- F_{\text{meg}} = \min(F_i) = F_{\tau} = 10990 \text{ N}$$

3.3. Reteszkötés

adatok

$$\mathbf{-}\ d=60\ \mathrm{mm}$$

$$- l = 140 \text{ mm}$$

$$\mathbf{-}\ b=18\ \mathrm{mm}$$

–
$$h=11~\mathrm{mm}$$

$$-t=6~\mathrm{mm}$$

$$- f = 0.6 \text{ mm}$$

- átvitt nyomaték: $T=1400~\mathrm{Nm}$
- Mekkorák a kötés igénybevételei?

7. ábra. Reteszkötés méretei

- megoldás
 - felületi nyomás

$$* \ F = \frac{2T}{d} = 46667 \text{ N}$$

$$* \ A_{\rm p} = (h - t - f)(l - h) = 537 \text{ mm}^2$$

$$* \ p = \frac{F}{A_{\rm p}} = 86.9 \text{ MPa}$$

- nyírás
 - $*~A_\tau = bl = 2520~\mathrm{mm}^2$
 - * $\tau = \frac{F}{A_{ au}} = 18.5 \text{ MPa}$
- különlegességek elemzése
 - $*\,$ a tengelyben ébredő feszültség: $\tau = \frac{T}{I_{\rm p}}\frac{d}{2} = 33~{\rm MPa}$
 - $*~I_{\rm p}=\frac{d^4\pi}{32}=1272.345~{\rm mm^2}$ (bevágás elhanyagolva)

4. Hegesztés, szegkötés

4.1. Hegesztés

• adatok

$$- F = 75 \text{ kN}$$

–
$$\sigma_{\rm meg}=80~{\rm MPa}$$

–
$$b_1 = 200$$
 mm, $b_2 = 100$ mm

–
$$h_1 = 300$$
 mm, $h_2 = 200$ mm

–
$$v_1 = 15$$
 mm, $v_2 = 18$ mm

–
$$L=125~\mathrm{mm}$$

8. ábra. Sarokvarrat

• megoldás

- fő igénybevétel húzás
- varrat gyökmérete $a=\frac{\sqrt{2}}{2}v_2=12.73~\mathrm{mm}$
- varrat keresztmetszete $A = a(b_2 2a) =$ 949 mm²

– feszültség
$$\sigma = \frac{F}{A} = 79 \text{ MPa}$$

–
$$\sigma_{\perp}=\tau_{\perp}=55.9~\mathrm{MPa}$$

–
$$\sigma_{\ddot{o}}\sqrt{\sigma_{\perp}^2 + \sigma_{\parallel}^2 - \sigma_{\perp}\sigma_{\parallel} + 3\left(\tau_{\perp}^2 + \tau_{\parallel}^2\right)} = \sqrt{\sigma_{\perp}^2 + 3\tau_{\perp}^2} = 111.8 \text{ MPa}$$

- $\sigma < \sigma_{\rm meg} \Rightarrow$ nem felel meg
- anyagot, jóságtényezőt lehet változtatni

4.2. Szegkötés

• adatok

- -d = 8 mm
- $D_a = 60 \text{ mm}$
- $D_{\rm i}=30~{\rm mm}$
- szeg megengedett feszültségei
 - * $\tau_{\rm max} = 95~{\rm MPa}$
 - * $p_{\rm max}=190~{\rm MPa}$
- tengelyre megengedett csúsztatófeszültség
 360 MPa
- kibírja-e a kötés a 450 Nm-es csavaró nyomatékot?

9. ábra. Szegkötés

• megoldás

– nyírás

*
$$F_{ au} = \frac{M_{\mathrm{t}}}{\frac{D_{\mathrm{t}}}{2}} = 30 \,\mathrm{N}$$

$$* A_{\tau} = \frac{{}^{2}d^{2}\pi}{4} = 100.6 \text{ mm}^{2}$$

*
$$au_{
m v} = rac{F_{ au}}{A_{ au}} = 298 \ {
m MPa} > au_{
m meg}$$

- * nyírásra nem felel meg
- felületi nyomás 1

*
$$F_{\rm pl} = \frac{M_{\rm t}}{\frac{D_{\rm t}+D_{\rm a}}{d}} = 20~{\rm kN}$$

*
$$A_{\rm p1} = 2\frac{D_{\rm a} - D_{\rm i}}{4}d = 240~{\rm mm}^2$$

*
$$p_1 = \frac{F_{\rm pl}}{A_{\rm pl}} = 83.3~{
m MPa} < p_{
m meg}$$

- * megfelel
- felületi nyomás 2

*
$$F_{\rm p2} = \frac{M_{\rm t}}{\frac{D_{\rm t} + D_{\rm a}}{4}} = 60 \text{ kN}$$

*
$$A_{\rm p2} = 2\frac{D_{\rm a} - D_{\rm i}}{4}d = 240~{\rm mm}^2$$

*
$$p_2 = \frac{F_{\rm p2}}{A_{\rm p2}} = 250~{\rm MPa} > p_{\rm meg}$$

- * nem felel meg
- vagy méreteket kell növelni, vagy erősebb anyagot választani
- különlegességek
 - $*\,$ tengely poláris másodrendű nyomatéka $I_{\rm p}=\frac{D_{\rm i}^2\pi}{32}=7.95\cdot 10^{-8}~{\rm m}^4$

*
$$au = \frac{M_{\mathrm{t}}}{I_{\mathrm{p}}}e = 84.9 \ \mathrm{MPa} < au_{\mathrm{meg}}$$

 $\ast\,$ ha közel van a határértékhez, $I_{\rm p}$ -nél nem hanyagolhatjuk el a kivágást