Homework 4

Ryan Coyne

February 25, 2024

Question 1

a) Prove the following theorem

Theorem 1 Let (G, \circ) be a group, and $H_1, H_2 \subseteq G$ two subgroups of G. Then $H_1 \cap H_2$ is a subgroup of G.

Proof We begin by showing that $H_1 \cap H_2$ is non-empty. Since H_1 is a subgroup of G, $e \in H_1$ and because H_2 is also a subgroup of G, $e \in H_2$. It then follows that $e \in H_1 \cap H_2$.

Next we show that $h_1 \circ h_2^{-1} \in H_1 \cap H_2$ for all $h_1, h_2 \in H_1 \cap H_2$. Let $h_1, h_2 \in H_1 \cap H_2$. Now, $h_1, h_2 \in H_1$ and $h_1, h_2 \in H_2$. Because, H_1 and H_2 are subgroups of G, we have that $h_1 \circ h_2^{-1} \in H_1$ and $h_1 \circ h_2^{-1} \in H_2$ and so $h_1 \circ h_2^{-1} \in H_1 \cap H_2$. Therefore $H_1 \cap H_2$ is a subgroup of G.

b) Give an example of a group (G, \circ) , and two subgroups $H_1, H_2 \subseteq G$ such that $H_1 \cup H_2$ is **not** as subgroup of G.

One such group is S_3 , with the subgroups $H_1 = \{(), (12)\}$ and $H_2 = \{(), (23)\}$. Now, $H_1 \cup H_2 = \{(), (12), (23)\}$ is not a subgroup because $(12) \circ (23) = (13) \notin H_1 \cup H_2$.

Question 2

Let $N \in \mathbb{N}_{\geq 1}$, and consider the group GL(N),. We define

$$O(N) := \left\{ M \in GL(N) | M^T \cdot M = I_N \right\}$$

where M^T denotes the matrix transpose of M. Show that O(N) is a subgroup of GL(N).

Proof We begin by showing that the identity element, I_N , is in O(N). The identity matrix is always its own transpose, that is to say, $I_N = I_N^T$. Thus,

$$I_N^T \cdot I_N = I_N \cdot I_N$$
$$= I_N.$$

The identity element is therefore in O(N).

Next, we show that for all $M \in O(N)$ there exists $M^{-1} \in O(N)$. Let $M \in O(N)$, and thus, $M^T \cdot M = I_N$. It follows that $M^T = M^{-1}$. Now,

$$(M^T)^T \cdot M^T = M \cdot M^T$$
$$= M \cdot M^{-1}$$
$$= I_N.$$

Thus, $M^T \in O(N)$. Since $M^T = M^{-1}$, we have that $M^{-1} \in O(N)$ for all $M \in O(N)$.

Lastly, we show that $M_1 \cdot M_2 \in O(N)$ for all $M_1, M_2 \in O(N)$. Let $M_1, M_2 \in O(N)$. Now, because $M_1^T = M_1^{-1}$ and $M_2^T = M_2^{-1}$, M_1 and M_2 are orthonormal matrices, and all orthonomal matrices in GL(N) are in O(N) and so $M_1 \cdot M_2$ is also orthonormal. Now, $(M_1 \cdot M_2)^T \cdot (M_1 \cdot M_2) = I_N$, and thus $M_1 \cdot M_2 \in O(N)$.

Therefore, O(N) satisfies all of the conditions for being a subgroup of GL(N).