

Module 11: IPv4 Adreslemesi

Module Objectives

Module Title: IPv4 Addressing

Module Objective: Calculate an IPv4 subnetting scheme to efficiently segment your network.

Topic Title	Topic Objective
IPv4 Address Structure	Describe the structure of an IPv4 address including the network portion, the host portion, and the subnet mask.
IPv4 Unicast, Broadcast, and Multicast	Compare the characteristics and uses of the unicast, broadcast and multicast IPv4 addresses.
Types of IPv4 Addresses	Explain public, private, and reserved IPv4 addresses.
Network Segmentation	Explain how subnetting segments a network to enable better communication.
Subnet an IPv4 Network	Calculate IPv4 subnets for a /24 prefix.

IPv4 Adresleri IP Başlığı

IPv4 Paket Başlığı (20 Byte)

Version	Length	DS Field	Packet Length	
	Identifica	ation	Flags	Fragment Offset
Time t	o Live	Protocol	Header Checksum	
	31	Source	e IP Address	

IPv4 Paket Başlığı (20 Byte)

```
⊕ Frame 7: 106 bytes on wire

Ethernet II, Src: c2:00:19:cc:00:01, Dst: 00:50:79:66:68:03
□ Internet Protocol Version 4, Src: 11.11.11.10, Dst: 22.22.22.40
  Version: 4
   Header Length: 20 bytes

    □ Differentiated Services Field:QoS Alanı (önceliklendirme alanı)

   Total Length: 92
   Identification: 0x6596 (26006)
  Fragment offset: 0
   Time to live: 63
   Protocol: ICMP (1)
                              Protocol: 6 TCP, 17 UDP
 Header checksum: 0x93b8 [validation disabled]
   Source: 11.11.11.10 (11.11.11.10)
   Destination: 22.22.22.40 (22.22.22.40)
Internet Control Message Protocol
```

IPv4 Paket Başlığı

IPv4 Adresleri

IPv4 (Internet Protocol) Adresleri

noktalı onluk gösterim: (dotted decimal notation)

IPv4 address in dotted-decimal notation

IPv4 Adres Yapısı

İkilikten Ondalığa Çevirme

(0-255). (0-255).(0-255).

128	64	32	16	8	4	2	1		
0	0	0	0	0	0	0	0	=	0
0	0	0	0	0	0	1	1	=	?
0	1	0	1	1	0	0	1	=	89
1	1	1	0	0	0	0	0	=	?
0	0	0	1	1	1	1	1	=	?
1	1	1	1	1	1	1	1	=	255

Binary Number System IPv4 Addresses

 Routers and computers only understand binary, while humans work in decimal. It is important for you to gain a thorough understanding of these two numbering systems and how they are used in networking.

11.1 IPv4 Adres Yapısı

IPv4 Address Structure Network Kısmı ve Host Kısmı

- An IPv4 address is a 32-bit hierarchical address that is made up of a network portion and a host portion.
- When determining the network portion versus the host portion, you must look at the 32-bit stream.
- A subnet mask is used to determine the network and host portions.

IPv4 Address Structure The Subnet Mask

Subnet Mask (Alt Ağ Maskesi): (32 bit)

IP Adresinin Network Kısmı/ Host kısmı ayrımını belirler.

Network Kısmı bitleri: 1111 ... 1111

Host Kısmı bitleri:

0000 ... 000 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

The Prefix Length (Ön Ek Uzunluğu)

Subnet Mask ≅ Prefix Length (Subnet Maskesindeki bit sayısı)
Alt Ağ Maskesi ≅ Önek Uzunluğu olarak da ifade edilir.

Subnet Mask	32-bit Address	Prefix Length
255.0.0.0	11111111.00000000.00000000.00000000	/8
255.255.0.0	11111111.11111111.00000000.00000000	/16
255.255.255.0	11111111.111111111.11111111.00000000	/24 (ilk 24 bit network kısmı)
255.255.255.128	11111111.111111111.11111111.10000000	/25
255.255.255.192	11111111.111111111.11111111.11000000	/26
255.255.255.224	11111111.11111111.11111111.11100000	/27
255.255.255.240	11111111.11111111.11111111.11110000	/28 (ilk 28 bit network kısmı)
255.255.255.248	11111111.11111111.11111111.11111000	/29
255.255.255.252	11111111.11111111.11111111.11111100	/30 °

The Prefix Length (Ön Ek Uzunluğu)

Binary Mask				Prefix Length	Subnet Mask
11111111	00000000	00000000	00000000	/8	255.0.0.0
11111111	10000000	00000000	00000000	/9	255.128.0.0
11111111	11000000	00000000	00000000	/10	255.192.0.0
11111111	11100000	00000000	00000000	/11	255.224.0.0
11111111	11110000	00000000	00000000	/12	255.240.0.0
11111111	11111000	00000000	00000000	/13	255.248.0.0
11111111	11111100	00000000	00000000	/14	255.252.0.0
11111111	11111110	00000000	00000000	/15	255.254.0.0
11111111	11111111	00000000	00000000	/16	255.255.0.0
11111111	11111111	10000000	00000000	/17	255.255.128.0
11111111	11111111	11000000	0000000	/18	255.255.192.0
11111111	11111111	11100000	00000000	/19	255.255.224.0
11111111	11111111	11110000	00000000	/20	255.255.240.0
11111111	11111111	11111000	00000000	/21	255.255.248.0
11111111	11111111	11111100	00000000	/22	255.255.252.0
11111111	11111111	11111110	00000000	/23	255.255.254.0
11111111	11111111	11111111	00000000	/24	255.255.255.0
11111111	11111111	11111111	10000000	/25	255.255.255.128
11111111	11111111	11111111	11000000	/26	255.255.255.192
11111111	11111111	11111111	11100000	/27	255.255.255.224
11111111	11111111	11111111	11110000	/28	255.255.255.240
11111111	11111111	11111111	11111000	/29	255.255.255.248
11111111	11111111	11111111	11111100	/30	255.255.255.252 ates. All rights reserved. Cisco Conf

Network, Host and Broadcast Addresses

Network Address:

(Network Adresi) Networkteki ilk adrestir. Host bitleri: «0» lardan oluşur

Yönlendirme tablolarında kullanılır

Örnek: 192.168.1.0/24

192.168.1. 0000 0000 192.168.1.0

Broadcast Address:

(Genel Yayın Adresi) Networkteki son adrestir. Host bitleri «1» lerden oluşur Tüm ağ kullanıcılarına paket iletimi için kullanılır 192.168.1. 1111 1111 192.168.1.255

Host IP Aralığı: Network Adresi ile Broadcast adresi arasındaki adreslerdir. Son cihazlara IP adresi vermek için kullanılır.

192.168.1. 0000 0001 -192.168.1. 1111 1110

(192.168.1.1 - 254)

Network, Host and Broadcast Addresses

- 191.168.1.0/24 is directly connected, FastEthernet0/1
- 191.168.2.0/24 is directly connected, FastEthernet0/2
- 85.1.1.1/30 is directly connected, Serial 0/1
- 0.0.0.0/0 is via Serial 0/1

Determining the Network: Logical AND (Bit düzeyinde AND'leme)

- A logical AND Boolean operation is used in determining the network address.
- To identify the network address, the host IPv4 address is logically ANDed, bit by bit, with the subnet mask to identify the network address.

11.2 IPv4 Unicast, Broadcast, and Multicast

IPv4 Unicast, Broadcast, and Multicast Unicast (Tekil Yayın)

- Tekil yayın iletimi, bir hedef IP adresine bir paket gönderiyor.
- Örneğin, 172.16.4.1 IP Adresli bilgisayar, 172.16.4.253 IP adresli yazıcıya tekil yayın paketi gönderir.

IPv4 Unicast, Broadcast, and Multicast Broadcast (Genel Yayın)

- Genel Yayın iletimi diğer tüm hedef IP adreslerine bir paket gönderiyor.
- Örneğin, 172.16.4.1 IP'li bilgisayar tüm IPv4 cihazlarına bir genel yayın paketi gönderir.

IPv4 Unicast, Broadcast, and Multicast Multicast (Çoklu Yayın)

- Çoklu yayın iletimi, çoklu yayın adres grubuna bir paket gönderiyor.
- Örneğin, 172.16.4.1 IP'li PC, çoklu yayın grubu adresine (224.10.10.5) çoklu yayın paketi gönderir.

11.3 Types of IPv4 Addresses (IPv4 Adres Türleri)

IPv4 Adresi Türleri

IPv4 Adresi Türleri

IP Adresleri Atama

Bölgesel İnternet Kayıtları (RIR'ler) Başlıca kayıt otoriteleri şunlardır:

Legacy Classful Addressing

IPv4 Adres Sınıfları (Sınıfsal Adresleme)

Legacy Classful Addressing

IPv4 Adresleri iLK OCTET

Legacy Classful Addressing

IPv4 Adres Sınıfları (Sınıfsal Adresleme)

Address Class	1st Octet (Decimal)	1st Octet bits (red bits don't change)	Network (N) and Host (H) Portion	Default Subnet Mask
A	1-127	00000000 - 0111111	N.H.H.H	255.0.0.0
В	128 - 191	10000000 - 10111111	N.N.H.H	255.255.0.0
С	192 - 223	11000000 - 11011111	N.N.N.H	255.255.255.0
D	224 - 239	11100000 - 11101111	N/A (multicast)	
Ε	240 - 255	11110000 - 11111111	N/A (experimental)	

Legacy Classful Addressing

IPv4 Adres Sınıfları (Sınıfsal Adresleme)

Network Class: A

Network Address: 10.0.0.0 /8

Broadcast Address: 10.255.255.255

Network Class: B

Network Address: 172.16.0.0 /16

Broadcast Address: 172.16.255.255

Network Class: C

Network Address:192.168.16.0 /24

Broadcast Address: 192.168.16.255

Legacy Classful Addressing

Classful Addressing (Örnekler)

```
İTÜ: (B Sınıfı) /16
Network Adresi 160.75. 0. 0
Subnet Maskesi 255.255. 0. 0
Broadcast Addresi 160. 75.255.255
IP Aralığı 160.75.0.1-160.75.255.254
ODTÜ:(B Sınıfı) /16
Network Adresi 144.122. 0. 0
Subnet Maskesi 255.255. 0. 0
Broadcast Addresi 144.122.255.255
IP Aralığı 144.122.0.1 - 144.122.255.254
```

ıı|ııı|ıı CISCO Subnet Maskesi 255.255.255. 0 Broadcast Addresi **193.140.143**.255

Network Adresi 193.140.143. 0

Marmara Üniv. (C Sınıfı) /24

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

IP Ağını İnceleme

ıı|ıı|ıı CISCO

Ağ Adresi Hesaplayıcı

Network Adresi

PC0 192.168. 10 . 0000 1011 255.255.255. 0000 0000 [Network Kısmı]

PC1 192.168. 11 . 0101 0111 255.255.255. 0000 0000 [Network Kısmı]

IPv4 Adres Yapısı Network Adresi

ROUTING TABLE

192.168.10.0 /24 FastEthernet0 192.168.11.0/24 FastEthernet1

192.168.11.77 255.255.255.0 192.168.11.1

Classful Addressing (IPv4 Adres Sınıfları)

ADRES SINIFILARI	IP Bloğu	IP Bloğunu Alan Kurum
A Sınıfı: 16 milyon adres	<u>3</u> .0.0.0/8	General Electric
B Sınıfı: 65,534 Adres	<u>160.75</u> .0.0/16	İTÜ
C Sınıfı: 254 Adres	<u>194.27.32</u> .0/24	Muğla Üniv.

İTÜ	
Network Adresi	160.75.0.0
Subnet Mask	255.255.0.0
İlk IP Adresi	160.75.0.1
Son IP Adresi	160.75.255.254
Broadcast Adresi	160.75.255.255
IP Sayısı	2^16-2 = 65,534 IP Adresi

Classless Addressing (Sınıfsız Adresleme)

Sınıfsız Adresleme (Classless Addressing)

- Resmi adı Sınıfsız Etki Alanları Arası Yönlendirme'dir (CIDR, "cider" olarak telaffuz edilir)
- Servis sağlayıcılarının sadece A, B veya C sınıfı adresleri yerine herhangi bir adres bit sınırında (önek uzunluğu) IPv4 adresleri atamalarını sağlayan yeni standartlar oluşturulmuştur

IPv4 Adresleri

Classless Addressing (Örnekler)

A Sınıfı, B Sınıfı, C Sınıfı yok.

Türk Telekom – ADSL (Classless)

Network Adresi **85.105.** 0. 0 /16

Subnet Maskesi 255.255. 0. 0

Broadcast Addresi **85.105.**255.255

IP Aralığı 85.105.0.1 - 85.105.255.254

IP Sayısı ?????

Turkcell - 3G (Classless)

Network Adresi 212. 252. 168. 0 /21

Subnet Maskesi 255.255. 248. 0

Broadcast Addresi 212.252. ???.???

IP Aralığı 212. 252. 168.1 - 212.252. ??? ???

IP Sayısı ?????

IPv4 Adresleri

Classless Addressing (Sınıfsız Adresleme)

Classless Addressing: A Sınıfı, B Sınıfı, C Sınıfı yok.

CIDR: Classless Interdomain Routing

# of Host Addresse	s
4 hosts -2	
8 hosts -2)
16 hosts -2	2

4,096 hosts -2	-
8,192 hosts -2	-
16,384 hosts -2)
32,768 hosts -2)
65,536 hosts -2)
131,072 hosts -2	
	16 hosts -2 4,096 hosts -2 8,192 hosts -2 16,384 hosts -2 32,768 hosts -2 65,536 hosts -2

IPv4 Adresleri

Classless Addressing (Sınıfsız Adresleme)

Hosta Statik IPv4 Adresi Atama

LAN Arayüzü Özellikleri

Statik IPv4 Adresini Yapılandırma

Hosta Dinamik IPv4 Adresi Atama

Doğrulama

DHCP - büyük ağlarda tercih edilen hostlara IPv4 adresleri 'kiralama' yöntemi, ağ destek personelinin üzerindeki yükü azaltır ve giriş hatalarını neredeyse tamamen ortadan kaldırır

Types of IPv4 Addresses Private IPv4 Addresses

- Genel (Public) IPv4 adresleri küresel olarak internet servis sağlayıcısı (ISP) yönlendiricileri arasında yönlendirilir.
- Özel (Private) IPv4 adresleri RFC1918'de tanımlanmıştır. Çoğu kuruluş tarafından iç networkteki bilgisayarlara IPv4 adresleri atamak için kullanılan yaygın adres bloklarıdır.
- Özel IPv4 adresleri benzersiz değildir ve herhangi bir iç ağda kullanılabilir.
- Ancak, özel adresler global olarak yönlendirilemezler.

Network Address and Prefix	RFC 1918 Private Address Range
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

IPv4 Adresi Türleri

Private IPv4 Adresleri

Özel adres blokları aşağıdakilerdir:

- 10.0.0.0 to 10.255.255.255 (**10.0.0.0/8**)
- 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)

```
172.16.0.0/16
172.17.0.0/16
```

172.31.0.0/16

• 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

```
192.168.0.0/24
192.168.1.0/24
```

...

192.168.255.0/24

Types of IPv4 Addresses Routing to the Internet

 Network Address Translation (NAT) translates private IPv4 addresses to public IPv4 addresses.

- NAT is typically enabled on the edge router connecting to the internet.
- It translates the internal private address to a public global IP address.

Types of IPv4 Addresses Special Use IPv4 Addresses

Loopback addresses

- **127.0.0.0 /8 (**127.0.0.1 to 127.255.255.254)
- Commonly identified as only 127.0.0.1
- Used on a host to test if TCP/IP is operational.

C:\Users\NetAcad> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Link-Local addresses

- **169.254.0.0 /16** (169.254.0.1 to 169.254.255.254)
- Genellikle Automatic Private IP Addressing (APIPA) adresleri veya kendinden atanan adresler olarak bilinir.
- Windows DHCP istemcileri tarafından, kullanılabilir DHCP sunucusu olmadığında kendi kendini yapılandırmak için kullanılır.

11.4 Network Segmentation (Subnetting İhtiyacı)

Hatırlatma Slide'ı

Network, Host and Broadcast Addresses

Network Address:

(Network Adresi) Networkteki ilk adrestir. Host bitleri: «0» lardan oluşur Yönlendirme tablolarında kullanılır

Örnek: 192.168.1.0/24

192.168.1. 0000 0000 192.168.1.0

Broadcast Address:

(Genel Yayın Adresi) Networkteki son adrestir. Host bitleri «1» lerden oluşur Tüm ağ kullanıcılarına paket iletimi için kullanılır 192.168.1. 1111 1111 192.168.1.255

Host IP Aralığı: Network Adresi ile Broadcast adresi arasındaki adreslerdir. Son cihazlara IP adresi vermek için kullanılır.

192.168.1. 0000 0001 -192.168.1. 1111 1110

(192.168.1.1 - 254)

Hatırlatma Slide'ı

Network, Host and Broadcast Addresses

R1# show ip route

- 191.168.1.0/24 is directly connected, FastEthernet0/1
- 191.168.2.0/24 is directly connected, FastEthernet0/2
- 85.1.1.1/30 is directly connected, Serial 0/1
- 0.0.0.0/0 is via Serial 0/1

Network Segmentation Broadcast Domains and Segmentation

- Many protocols use broadcasts or multicasts (e.g., ARP use broadcasts to locate other devices, hosts send DHCP discover broadcasts to locate a DHCP server.)
- Switches propagate broadcasts out all interfaces except the interface on which it was received.

The only device that stops broadcasts is a router.

- Routers do not propagate broadcasts.
- Each router interface connects to a broadcast domain and broadcasts are only propagated within that specific broadcast domain.

Network Segmentation

Problems with Large Broadcast Domains

- A problem with a large broadcast domain is that these hosts can generate excessive broadcasts and negatively affect the network.
- The solution is to reduce the size of the network to create smaller broadcast domains in a process called subnetting.
- Dividing the network address 172.16.0.0 /16 into two subnets of 200 users each: 172.16.0.0 /24 and 172.16.1.0 /24.
- Broadcasts are only propagated within the smaller broadcast domains.

Network Segmentation Broadcast Domains and Segmentation

Network Segmentation Reasons for Segmenting Networks

- Subnetting reduces overall network traffic and improves network performance.
- It can be used to implement security policies between subnets.
- Subnetting reduces the number of devices affected by abnormal broadcast traffic.
- Subnets are used for a variety of reasons including by:

1. Kat IP Bloğu

2. Kat IP Bloğu

alialia

Insan Kaynakları IP Bloğu Finans Departm. IP Bloğu

Sunucular IP Bloğu s affiliates. All rights reserved. Cisco Confidential 55 Yazıcılar IP Bloğu

11.5 Subnet an IPv4 Network

Network Segmentation Broadcast Domains and Segmentation

Subnet Mask	Prefix Lengt h	1. Octet	2.Octet	3.Octet	4 Octet	Adres Sayısı	Host Sayısı	2^h-2
255.255.252.0	/22	N.	N.	nnnn nn <mark>hh</mark> .	hhhh hhhh	1024	1024-2=	1022
255.255	/23	N.	N.	nnnn nnn <mark>h</mark> .	hhhh hhhh	512	512-2=	510
255.255.255.0	/24	N.	N.	nnnn nnnn.	hhhh hhhh	256	256-2=	254
255.255.255	/25	N.	N.	nnnn nnnn.	nhhh hhhh	128	128-2=	126
255.255.255	/26	N.	N.	nnnn nnnn.	nnhh hhhh	64	64-2=	62
255.255.255	/27	N.	N.	nnnn nnnn.	nnnh hhhh	32	32-2=	30
255.255.255	/28	N.	N.	nnnn nnnn.	nnnn <mark>hhhh</mark>	16	16-2=	14
255.255.255	/29	N.	N.	nnnn nnnn.	nnnn n <mark>hhh</mark>	8	8-2=	6
255.255.255	/30	N.	N.	nnnn nnnn.	nnnn nn <mark>hh</mark>	4	4-2=	2

Network Segmentation Broadcast Domains and Segmentation

Subnet Mask	Prefix Length	Network teki Host Bit Sayısı	Adres	Host Sayısı 2^h-2
255.255.252.0	/22	10	1024	1024-2=1022
255.255.254.0	/23	9	512	512-2=510
255.255.255.0	/24	8	256	256-2=254
255.255.255.128	/25	7	128	128-2=126
255.255.255.192	/26	6	64	64-2=62
255.255.255.224	/27	5	32	32-2=30
255.255.255.240	/28	4	16	16-2=14
255.255.255.248	/29	3	8	8-2=6
255.255.255.252	/30	2	4	4-2=2

IP'de Altağ Oluşturma Temel Bir Özelliktir

HOST KISMINDAN ÖDÜNÇ BİT ALINARAK GERÇEKLEŞTİRİLİR

/24 olan bir AĞ'DAN 1 BİT ÖDÜNÇ ALINIRSA

192.168.1. OHHH HHHHH ile başlayan ALTAĞ /25

192.168.1. 1 HHH HHHHH ile başlayan ALTAĞ /25

IP'de Altağ Oluşturma Temel Bir Özelliktir

192.168.1.0 255.255.255.0 192.168. 1. 0 N . N . N . H

192.168. 1. hhhh hhhh

Network Adresi :

Broadcast Adresi:

İlk IP: Son IP:

Toplam Adres Sayısı: 2^h

Toplam Host Sayısı: 2^h -2 =

192.168.1.shhh hhhh /25 1111 1111.1111 1111.1111 1111.1000 0000

255.255.255.128

 \times

192.168.1.0hhh hhhh /25

192.168.1.1hhh hhhh /25

Network Adresi : Broadcast Adresi :

İlk IP:

Son IP:

Toplam Adres Sayısı: 2^h Toplam Host Sayısı: 2^h -2 =

Host Gereksinimleri Temelinde Altağ Oluşturma

Altağlar planlanırken düşünülmesi gereken iki şey

bulunmaktadır:

Subnet2 256 adres 128 adres 128 adres

Subnet1 Subnet2 Subnet3 Subnet4 64 adres 64 adres 64 adres 64 adres

Gerekli Altağ sayısı

Her Altağdaki Kullanılabilir Host adresi sayısı

2s (s: ödünç alınan bit sayısı)

2h_2 (h: host kısmında kalan bit sayısı)

192.168.1.0 /24 ağından 2 bit ödünç alırsam;

192.168.1. ss hhhhhh /26

AltAğ Sayısı: $2^2 = 4$

Her Altağdaki Kullanılabilir Host Sayısı: 26-2= 62

Örnek1: (1 Bit Ödünç Alma)

192.168.1. SHHH HHHH /25

192.168.1. 0HHH HHHH /25 192.168.1. 1HHH HHHH /25

Örnek1: (1 Bit Ödünç Alma)

IP'de Altağ Oluşturma

NETWO	RKADRES	si: 192.168.1.0/24	
192.168.1. shhh hhhh /24		Ödünç Alınan Bit Sayısı	1
192.168.1.0 hhh hhhh /25	0.Subnet	Host Bit Sayısı	7
192.168.1.1 hhh hhhh /25	1.Subnet	Subnet Sayısı	2^1=2
		Her Subnetteki Adres Sayısı	2^7=128
		Her Subnetteki Host Sayısı	2^7-2=126

Subnet ID	Mask	Host Sayısı	Broadcast Add.	Host Aralığı
192.168.1.0	255.255.255.128	126	192.168.1.127	192.168.1.1-192.168.1.126
192.168.1.128	255.255.255.128	126	192.168.1.255	192.168.1.129-192.168.1.254

Örnek2: (2 Bit Ödünç Alma)

Örnek2: (2 Bit Ödünç Alma)

Subnet ID	Mask	Host Sayısı	Broadcast Add.	Host Aralığı
192.168.1.0	255.255.255.192	62	192.168.1.63	192.168.1.1-192.168.1.62
192.168.1.64	255.255.255.192	62	192.168.1.127	192.168.1.65-192.168.1.126
192.168.1.128	255.255.255.192	62	192.168.1.191	192.168.1.129-192.168.1.190
192.168.1.192	255.255.255.192	62	192.168.1.255	192.168.1.193-192.168.1.254

Örnek3: (3 Bit Ödünç Alma)

SubnetID	Mask	Host Sayısı	Broadcast Add.	Host Aralığı
192.168.1.0	255.255.255.224	30	192.168.1.31	192.168.1.1-192.168.1.30
192.168.1.32	255.255.255.224	30	192.168.1.63	192.168.1.33-192.168.1.62
192.168.1.64	255.255.255.224	30	192.168.1.95	192.168.1.65-192.168.1.94
192.168.1.96	255.255.255.224	30	192.168.1.127	192.168.1.97-192.168.1.126
192.168.1.128	255.255.255.224	30	192.168.1.159	192.168.1.129-192.168.1.160
192.168.1.160	255.255.255.224	30	192.168.1.191	192.168.1.161-192.168.1.190
192.168.1.192	255.255.255.224	30	192.168.1.223	192.168.1.193-192.168.1.222
192.168.1.224	255.255.255.224	30	192.168.1.255	192.168.1.225-192.168.1.254

IPv4 Ağında Altağ Oluşturma

IP'de Altağ Oluşturma

Network: 204 .15 .5 .0 /24

Subnetting Çözümü

Soru1: Kaç AltAğa ihtiyacım var?

Soru2: Host kısmından kaç bit ödünç almam gerekiyor?

Soru3: Bu durumda Host kısmında kaç bit kalıyor.

Soru4: Bu tasarım ihtiyacımı karşılıyor mu?

Her altağda; kaç Host IP'sine sahibiz? kaç AltAğ var?

11.8 VLSM (Variable Length Subnet Masks)

Değişken Uzunlukta Altağ Maskelemenin Avantajları

Geleneksel Altağ Oluşturma Adresleri Boşa Harcar

- Geleneksel altağ oluşturma: her bir altağ için aynı sayıda adres atanır.
- Daha az adres gerektiren altağlar kullanılmayan (boşa harcanan) adresler bulundurur. Örneğin, WAN bağlantıları sadece 2 adrese gereksinim duyar.
- Değişken Uzunlukta Alt Ağ Maskeleri (VLSM) veya altağda altağ oluşturmak daha etkili adres kullanımı sağlar.

Temel VLSM Örnek1-(172.16.0.0/16) /24 --- /26

```
-172.16.0.0/24
                              - 256-2 Host
•172.16.1.0/24
                 ----- 256-2 Host
-172.16.2.0/24
                 ----- 256-2 Host
• 172.16.3.0/24
      172.16.3.0/25
                                   128-2 Host
      172.16.3.128/25
                        ----- 128-2 Host
•172.1 6.4.0/24
      172.16.4.0/26
                                    64-2 Host
      172.16.4.64/26
                                    64-2 Host
      172.16.4.128/26
                                    64-2 Host
                                    64-2 Host
      172.16.4.192/26
```


Değişken Uzunlukta Altağ Maskelemenin Avantajları

Değişken Uzunlukta Altağ Maskeleri (VLSM)

 VLSM, ağ alanının eşit olmayan parçalara bölünmesine olanak tanır.

 Altağ maskesi belirli bir altağ için kaç adet bit ödünç alındığına bağlı olarak değişecektir.

- Ağda önce altağ oluşturulur ve ardından altağlarda yeniden altağ oluşturulur.
- •İşlem çeşitli boyutlarda alt ağlar oluşturmak için gereken kadar tekrarlanır.

IPv4 Address Conservation

Topoloji göz önüne alındığında, 7 alt ağ gereklidir (yani, dört LAN ve üç WAN bağlantısı) ve en fazla ana bilgisayar 28 ana bilgisayar ile Bina D'de bulunur.

Elimizdeki **192.168.20.0/24** ağını /27 maskesi ile Alt Ağlara böldüğümüzde, her biri **30 host IP adresine sahip 8 alt ağ** oluşturmuş oluruz. Bu topolojiye yeterli sayıda IP adresi sağlamış oluruz.

Temel VLSM Örnek1-(192.168.20.0/24) /27

32-2 Adre	192.168.20.0 /27
32-2 Adre	192.168.20.32 /27
32-2 Adre	192.168.20.64 /27
32-2 Adre	192.168.20.96 /27
32-2 Adres	- 192.168.20.128/27
32-2 Adres	- 192.168.20.160/27
32-2 Adres	- 192.168.20.192/27
32-2 Adres	- 192.168.20.224/27

IPv4 Address Conservation (Cont.)

aelistirilmiştir.

 Ancak, noktadan noktaya WAN bağlantıları yalnızca iki adres gerektirir ve bu nedenle her bir WAN bağlantısı için 28 adet adres boşuna tanımlanmış olur. Toplamda 28x3=84 adres boşuna tanımlanır. Host portion $2^5 - 2 = 30$ host IP addresses per subnet 30 - 2 = 28Each WAN subnet wastes 28 addresses $28 \times 3 = 84$ 84 addresses are unused

- Bu senaryoya geleneksel bir alt ağ yapısı uygulamak çok verimli değildir ve IP adresleri boşa gider.
- · VLSM, bir alt ağı tekrar alt ağlara ayırmamımızı sağlayarak adres israfını önlemek için

Temel VLSM Örnek1-(192.168.20.0/24) /27 --- /30

• 192.168.20.0/27 ----- 32-2 Adres **-192.168.20.32/27** ----- 32-2 Adres ----- 32-2 Adres **-192.168.20.64/27 -192.168.20.96/27** ----- 32-2 Adres ----- 32-2 Adres **-192.168.20.128/27 -192.168.20.160/27 32-2 Adres -192.168.20.192/27** ----- 32-2 Adres **-192.168.20.224/27** /27 -> /30 172.16.4.224/30 4-2 Adres 172.16.4.228/30 4-2 Adres 172.16.4.232/30 4-2 Adres 172.16.4.236/30 4-2 Adres 172.16.4.240/30 4-2 Adres 172.16.4.244/30 4-2 Adres 172.16.4.248/30 4-2 Adres

4-2 Adres

172.16.4.252/30 ------

VLSM VLSM

- Sol taraf geleneksel alt ağ şemasını (yani aynı alt ağ maskesi) görüntülerken, sağ taraf VLSM'nin son alt ağı (/27) -> (/30) olarak tekrar alt ağlara bölmek için nasıl kullanılabileceğini gösterir.
- VLSM kullanırken, her zaman en büyük alt ağın ana bilgisayar gereksinimlerini karşılayarak başlayın ve en küçük alt ağın ana bilgisayar gereksinimleri karşılanana kadar alt ağa devam edin.

VLSM VLSM Topology Address Assignment

 VLSM alt ağları kullanılarak, LAN ve yönlendiriciler-arası WAN ağlar aşağıdaki topoloji diyagramında gösterildiği gibi gereksiz israf olmadan ele alınabilir.

