XỬ LÝ ẢNH

Nguyễn Linh Giang Bộ môn Truyền thông và Mạng máy tính

Nội dung

- Nhập môn
- Hệ thống xử lý tín hiệu hai chiều
- □ Cảm nhân ảnh
- ☐ Số hóa ảnh
- Các phép biến đổi ảnh
- Cải thiện chất lượng ảnh
- Phục hồi ảnh
- □ Phân tích ảnh
- Nén ảnh

Chương III Cảm nhận ảnh

III. Cảm nhận ảnh

- 3.1. Sóng điện từ, anh sáng và các dạng ảnh
- □ 3.2. Hệ thống thị giác
- □ 3.3. Một số hiệu ứng thị giác
- □ 3.4. Cảm nhân và biểu diễn màu sắc

- Các dạng ảnh
 - Ánh hồng ngoại
 - Ånh cưc tím
 - Ånh sóng vô tuyến
 - Ánh sáng nhìn thấy
 - Sóng rada
 - Ánh Rơn-ghen
 - Ánh sóng âm
 - Ånh điên tử
 - Ánh quét positron
 - Ánh cộng hưởng từ
 - **....**

Dải phổ sóng điện từ

- □ Ví dụ về các loại ảnh
 - Anh theo độ chói (cường độ sáng)
 - Ånh màu
 - Ånh thiên văn

Biểu diễn ánh sáng qua phổ phân bố năng lượng theo bước sóng I(λ)

- Tầm quan trọng nghiên cứu về hệ thống thị giác
 - Trong mã hóa ảnh: những thông tin không cảm nhận được sẽ không cần thiết lưu trữ
- Cấu tạo sơ lược
 - Cầu mắt
 - Giác mac
 - Thủy tinh thể
 - Dich kính
 - Võng mạc
 - □ Tế bào que
 - □ Tế bào nón
 - □ Điểm vàng
 - □ Điểm mù
 - Cơ chế điều chỉnh thị giác

- ☐ Tế bào que
 - Có từ 75-150 triệu
 - Rất nhạy cảm với ảnh sáng
 - Cảm nhận trên dải rộng
 - Ánh sáng ban ngày và đêm
 - Cung cấp khả năng nhìn đêm
 - Cảm nhận độ chói (cường độ sáng)
 - Độ phân giải cao

- □ Tế bào nón
 - Có từ 6-7 triệu
 - Tập trung chủ yếu tại điểm vàng tại trung tâm võng mạc
 - Cảm nhận trên dải hẹp
 - Độ phân giải thấp
 - Có 3 loạitế bào nón cảm nhận các tần số: cảm nhận màu sắc
 - 460 nm (xanh lam), 575 nm (xanh lục), 625 nm (đỏ)
 - Khả năng nhìn ban ngày

Phân bố các tế bào que và tế bào nón trong võng mạc

- Độ nhạy sáng của tế bào que và tế bào nón
- Hệ thống thị giác cho phép cảm nhận 10 bậc chênh lệch về cường độ trong dải chiếu sáng

☐ Các vạch Mach – cảm nhận độ sáng

☐ Các điểm kì dị - cảm nhận độ tương phản

- Các thuộc tính ánh sáng
 - ■Độ chói(Radiance watt)
 - □Tổng năng lượng của chùm tia từ nguồn
 - ■Độ rọi (Luminance lumens, lm)
 - □Độ đo năng lượng ánh sáng thu nhận được từ nguồn sáng.
 - □Biến thiên theo khoảng cách từ nguồn sáng, bước sóng, ...
 - □Không phụ thuộc vào môi trường;

$$L(x, y) = \int_{0}^{\infty} I(x, y, \lambda) V(\lambda) d\lambda$$

- $I(x, y, \lambda)$ phân bố ánh sáng trong không gian
- V(λ) hàm hiệu suất cảm độ rọi tương đối của hệ thống thị giác (hàm dạng chuông)

- Độ sáng (Brightness)
 - Là thuộc tính chủ quan, đặc trưng cho khả năng cảm nhận độ rọi
 - Phụ thuộc vào độ rọi của môi trường xung quanh
- Độ tương phản tức thời
 - Cảm nhận của hệ thống thị giác nhạy cảm hơn với độ tương phản độ rọi hơn là độ rọi tuyệt đối;
 - $|L_s L_0|/L_0 = const$
 - □ Đối với độ rọi tương đối nhận biết được ∆L
 - ΔL / L ~ d(logL) ~ 0.02 (const)
 - □ Các mô hình độ rọi độ tương phản
 - Giả thiết: $L \in [1..100]$, $c \in [1..100]$
 - $C = 50 \log_{10} L$
 - $C = 21.9 L^{1/3}$

- Mô hình cảm nhận đơn sắc
 - Hàm truyền đạt điều biến (MTF)
 - Được xác định qua thực nghiệm với những hàm đánh giá hình sin với độ tương phản khác nhau
 - Tương tự bộ lọc thông dải
 - Nhạy cảm với những tần số trung bình
 - Kém nhạy với những tần số cao
 - Phụ thuộc vào hướng đánh giá
 - Nhạy cảm hơn với hướng nằm ngang và thẳng đứng
 - Nhìn chung về cảm nhận đơn sắc
 - Thể hiện khả năng ánh sáng được mắt chuyển đối thành những thông tin về độ sáng

- ☐ Tiêu chuẩn đánh giá độ trung thực ảnh
 - Các độ đo chủ quan (định tính)
 - ☐ Đánh giá theo cảm nhận của thị giác:
 - Thang tốt-xấu: tuyệt vời, tốt, khá tốt, kém, không đáp ứng
 - Các độ đo đối sánh
 - Đối sánh với những ảnh khác, nhóm ảnh khác
 - Các độ đo khách quan (định lượng)
 - ☐ Sai số trung bình bình phương và các biến thể
 - ☐ Ưu điểm
 - Đơn giản, phông phụ thuộc vào chủ quan
 - Đơn giản về mặt tính toán toán học
 - Nhược điểm
 - Không phải lúc nào cũng phản ảnh được cảm nhận thị giác

- ☐ Tiêu chuẩn trung bình bình phương
 - Trung bình (hoặc tổng) của bình phương sai phân độ rọi của điểm sáng giữa hai ảnh

$$\varepsilon_1 = E(|l-l'|^2)$$
 – mean square error

$$\varepsilon_2 = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} |l(m,n) - l'(m,n)|^2 - \text{average square error}$$

$$\varepsilon_3 = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} E(|l(m,n) - l'(m,n)|^2) - \text{ average mean square error}$$

■ Tỷ lệ tín hiệu – và nhiễu (SNR)

$$SNR = 10\log_{10}\left(\sigma_s^2/\sigma_e^2\right) \text{ (Db)}$$

$$PSNR = 10\log_{10}\left(A^2/\sigma_e^2\right)$$

- A đặc trưng cho giá trị đỉnh- đỉnh (peak to
 peak value)
- PSNR thường cao hơn SNR khoảng 12 15 Db

□ Màu sắc

- Cảm nhận màu sắc phụ thuộc vào phổ của ánh sáng
- Màu của phổ: ánh sáng nhìn thấy với dải phổ rất hẹp
- Ánh sáng với tất cả các thành phần phổ nhìn thấy có năng lượng bằng nhau sẽ được cảm nhận là ánh sáng trắng

- Các thuộc tính mô tả màu sắc
 - Các màu được phân biệt dựa theo các thuộc tính: độ sáng, sắc độ, và độ bão hòa màu
 - Độ sáng: đặc trưng cho độ rọi cảm nhận
 - Đặc trưng màu (Chrominance)
 - ☐ Sắc độ (Hue)
 - Là thuộc tính liên quan tới bước sóng chủ yếu trong hôn hợp các bước sóng ánh sáng.
 - Đặc trưng cho màu sắc chủ đạo được người quan sát cảm nhận
 - □ Độ bão hòa (Saturation)
 - Đặc trưng cho độ thuần khiết tương đối
 - Phụ thuộc vào độ rộng của phổ ánh sáng
 - Thẻ hiện lượng màu trắng được trộn với sắc độ
 - ☐ Hue và độ bão hòa gọi là đặc trưng màu(chromaticity)

- ☐ Biểu diễn màu bằng 3 màu cơ bản
 - Một màu bất kỳ có thể được tạo nên bằng cách trộn 3 màu cơ bản
 - 3 dạng tế bào nón cảm nhận màu sắc
 - □ Đỏ, Lục, Lam
 - \square Cảm nhận màu được mô tả bằng đáp ứng phổ $\alpha_i(C)$
 - ☐ Các màu đượccảm nhận như nhau nếu $\alpha_i(C_1) = \alpha_i(C_2)$

- Các màu cơ bản: các tế bào nón hấp thụ các phổ S_i(λ) có đỉnh tại các bước sóng
 - Màu đỏ (700 nm)
 - □ 65% tế bào nốn nhạy cảm với ánh sáng đỏ (650nm)
 - Xanh lục (550nm)
 - □ 33% tế bào nón nhạy cảm với ánh sáng lục
 - Xanh lam (450nm)
 - 2% tế bào nón nhạy cảm với ánh sáng lam
- Pha trộn các màu R,G,B không thể biểu diễn tất cả các màu

- □ Đối sánh và tái tạo màu sắc
 - Hỗn hợp của 3 thành phần: $C = Sum_k(\beta_k P_k(\lambda))$
 - Đối sánh với một màu cho trước C₁
 - \square Tăng β_k sao cho $\alpha_i(C_1) = \alpha_i(C)$, i = 1, 2, 3
 - \square Các giá trị ba kích thích: $T_k(C)$
 - $T_k(C) = \beta_k/W_k$
 - w_k định lượng của thành phần cơ bản thứ k để đối sánh với màu trắgn tham chiếu;
 - □ Độ màu (chromaticity)
 - $t_k = T_k/(T_1 + T_2 + T_3)$
 - $\mathbf{I}_1 + \mathbf{t}_2 + \mathbf{t}_3 = 1$
 - Biểu đồ biểu diễn t₁, t₂ gọi là biểu đồ màu (chromaticity diagram)
 - Những giá trị âm có thể có, nhưng không thể tạo được từ những màu cơ bản.

- □ Biểu đồ đặc trưng màu
 - Các hệ số 3 màu
 - X, Y, Z: các giá trị kích thích màu, biểu diễn lượng màu Đỏ, Luc, Lam cần thiết để tạo nên mộtmàu bất kỳ

$$x = \frac{X}{X+Y+Z}, y = \frac{Y}{X+Y+Z},$$
$$z = \frac{Z}{X+Y+Z}$$

- □ Ta có, x + y + z = 1, x và y sẽ tạo nên biểu đổ đặc trưng màu
- Biểu đồ đặc trưng màu CIE(Commision Internationale d'Eclairage)
 - □ x: Đỏ, y: Lục
 - Màu trên vùng biên được bão hòa hoàn toàn
 - □ Độ bão hòa tại những điểm có năng lượng bằng nhau bằng zero

- ☐ Gam màu (color gamut)
 - Bất kỳ 3 điểm trong biểu đồ thuộc tính màu có thể tạo ra tất cả các màu trong tam giác này
 - Dạng hình cong của biểu đồ cho thấy không có hỗn hợp của 3 màu nào có thể tạo nên tất cả các màu có thể

FIGURE 6.6 Typical color gamut of color monitors (triangle) and color printing devices (irregular region).

- Các hệ biểu diễn màu
 - Đỏ, Lục, Lam (RGB)
 - Lục lam, Đỏ tươi, Vàng (Cyan Magenta Yellow - CMY)
 - Sắc độ, Bão hòa, Cường độ(Hue Saturation Intensity - HSI): gần với HVS
 - Màu sắc = điểm giá trị màu trong không gian màu 3D

- ☐ RGB và CMY
 - RGB: màn hình, video
 - CMY: công nghệ in

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}.$$

- R, G, B tại 3 trục nhận giá trị [0 1]
- Thang mức xám dọc theo trục chính
- Nếu mỗi thành phần được lượng tử hóa 256 mức [0:255], số lượng màu: (28)3 = 224 = 16,777,216 màu
- RGB safe color:
 - ☐ Mỗi thành phần được lượng tử hóa thành 6 mức từ 0 đến 255

- Mô hình màu HSI
 - Sắc độ
 - ☐ Thuộc tính đặc trưng cho màu thuần [0,360]
 - Độ bão hòa
 - Mức độ của màu thuần được trộn với màu trắng [0,1]
 - Mô hình HSI
 - Sắc độ và độ bão hòa nằm trong mặt phẳng vuông góc với trục cường độ sáng [0,1]

- ☐ Chuyển đổi giữa các hê biểu diễn màu
 - RGB → CYM

$$\begin{bmatrix} C \\ Y \\ M \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\blacksquare \mathsf{HSI} \to \mathsf{RGB}$$

$$0 \le H \le 120^{\circ}$$

$$B = I(1 - S)$$

$$R = I \cdot \left[1 + \frac{S \cdot \cos H}{\cos(60^{\circ} - H)} \right]$$

$$G = 1 - (R + B)$$

■ RGB → HIS

- □ Cường độ = Độ rọi
- □ Độ bão hòa = Cường độ màu
- ☐ Sắc độ = Màu
- ☐ HS = các tọa độ cực

$$\theta = \cos^{-1} \left\{ \frac{\left[(R - G) + (R - B) \right] / 2}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right\}$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

$$S = 1 - \frac{3 \cdot \min(R, G, B)}{R + G + B}$$

$$I = (R + G + B)/3$$