Selecting Time Predictors

Preselecting Time Predictors

- How does one preselect the time predictors
 - Theoretical justification (most defensible)
 - Statistical selection
 - Graphing (see Unit 4)
 - Random error can make visual detection difficult
 - Scaling, aspect ratio, etc. can distort features of change curves (e.g., nonlinear aspects may be exaggerated/understated depending on axes limits)
 - Statistical analysis
 - Descriptive or inferential
 - Group- or subject-level (inference for group-level analysis only)

Selection of Time Transformations

- Two primary uses of time transformations
 - Anchor intercept at particular point
 - Model nonlinear trends
- Most common method to model nonlinear trends is to use polynomials
 - Polynomials are power transformations of original time predictor

```
power transformation = base^{exponent}
```

base = time predictor; exponent = non-negative integer

For the MPLS data

- The order (degree) of the polynomial is the value of its largest exponent
 - Oth-order polynomial = intercept-only model
 - First-order polynomial = linear model
 - Second-order polynomial = quadratic model

- Polynomials used in LMER to account for nonlinear change
- Assume no static predictors, then expected value is

$$E(y_{ij}) = \beta_0(\mathtt{grade}_{ij}^0) + \beta_1(\mathtt{grade}_{ij}^1) + \beta_2(\mathtt{grade}_{ij}^2) + \ldots + \beta_k(\mathtt{grade}_{ij}^k)$$

- Number of polynomials is k + 1 (same as number of fixed effects)
- Convention is when higher order polynomials are included in the model,
 all lower order polynomials are also included
 - ullet For example, if \mathtt{grade}_{ij}^2 is in the model, so is \mathtt{grade}_{ij}^1
 - This is regardless of statistical results of the lower order terms

- Desirable to avoid saturated models (no summarization of the data)
- Saturated models have same number of fixed effects (including intercept) as total number of time points
- Only consider models up to order two less than number of time points
 - In MPLS data $max(n_i) = 4$
 - At most, a quadratic (order = 2) model would be considered
- Order of the polynomial determines number of random effects (also the number of static predictor interaction terms)

 Consider linear and quadratic models where grade is the time predictor and there is one static predictor, ethW

$$y_{ij} = (eta_0 + b_{0i}) + (eta_1 + b_{1i})(\mathtt{grade}_{ij}) + \ eta_2(\mathtt{ethW}_i) + eta_4(\mathtt{grade}_{ij} \cdot \mathtt{ethW}_i) + \epsilon_{ij}$$

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\mathtt{grade}_{ij}) + (\beta_2 + b_{02})(\mathtt{grade}_{ij}^2) + \\ \beta_3(\mathtt{ethW}_i) + \beta_4(\mathtt{grade}_{ij} \cdot \mathtt{ethW}_i) + \beta_5(\mathtt{grade}_{ij}^2 \cdot \mathtt{ethW}_i) + \epsilon_{ij}$$

- Linear model = 2 random effects and I interaction term
- quadratic model = 3 random effects and 2 interaction terms

- Linear model has 3 variance components associated with random effects
- Quadratic model has 6 variance components associated with random effects
 - Addition of second-order polynomial term adds 3 VC!
- Time transformations are considered in initial steps of any analysis
 - Also important to consider role of static predictors and random effects
 - As per the previous units, when considering time transformations, number of static predictors and random effects will be held constant among models
 - Only difference in models is number of polynomial terms

- Number of random effects held constant by including one greater than the lowest order polynomial in every model
 - For example, considering linear $(k_1=1)$ and quadratic $(k_2=2)$ and cubic $(k_3=3)$ models all three would include only 2 random effects $(b_{0i}$ and $b_{1i})$
 - Addition/removal of random effects occurs in later parts of the analysis (e.g., after static predictors have been chosen)
- Consideration of static predictors also is important
 - Subgroups may have different change curves
 - Graph your data first!!!
 - In exploratory analyses, consider not including static predictors—especially in nascent areas of research

Group-Level Selection of Time Transformations

- Focus is on selection of appropriate polynomial in fixed effects structure of LMER model
 - At group-level methods such as AIC and LRT can be used
- Confirmatory analysis
 - Linear model hypothesized
 - Both first- and second-order models estimated and the latter used to confirm linear model (quadratic term not needed?)
- Exploratory analysis
 - Selection of polynomials may be focus of analysis

- Static predictors
 - Change curve is expected to be similar for subgroups, static predictor can be ignored in selection of time transformation
 - If not, static predictor interactions need to be included (aggregate curve distorted)

Multimodal Inference

- When static predictors are not included, set of models can be evaluated using AIC and AICc
 - In this situation models only differ by number of polynomial terms
- When static predictors are included this approach is not recommended

Analysis Without Static Predictors

- Recall these are referred to as unconditional models
- Number of random effects forced to be the same across models
- Consider exploratory analysis for MPLS data set
 - Model I: Intercept-only model (flat line)
 - Model L: Linear model with single predictor, grade5
 - Model Q Quadratic model with two predictors, grade5 and grade52
- Cubic model not considered (saturated model)
- Number of random effects will be one (b_{0i})

```
## Fit models
> model.i <- lmer(read \sim 1 + (1 | subid), data = mpls.l,
               REML = FALSE)
> model.1 <- lmer(read ~ 1 + grade5 + (1 | subid),</pre>
               data = mpls.1, REML = FALSE)
> model.q <- lmer(read \sim 1 + grade5 + I(grade5 ^{\circ} 2) +
                (1 | subid), data = mpls.1, REML = FALSE)
## AICc results
> myaicc <- as.data.frame(aictab(</pre>
    cand.set = list(model.i, model.l, model.q),
    modnames = c("I", "L", "Q"),
    sort = FALSE) )
## Evidence ratio
> myaicc$eratio <- max(myaicc$AICcWt) / myaicc$AICcWt</pre>
## Print results
> myaicc
```

Intercept model is implausible—low weight of evidence and extremely large evidence ratio

	Modnames	K	AICc	Delta_AICc		AIC	cWt	\downarrow	era	atio	
1	I	3	632.8	44.999	0	0.0000000001	179	5906	5380283.	. 244	
2	L	4	587.8	0.000	0	.6965765431	840		1.	.000	
3	Q	5	589.5	1.662	0	.3034234566	980		2.	296	

Quadratic model has weight of evidence I/2 size of linear model. Its evidence ratio is not too large indicating it is a plausible model as well

Linear model is most plausible model

- How plausible is the quadratic model?
 - Examine coefficients

> summary(model.q)@coefs

indicates concavity with respect to grade axis...slowing down or deceleration for later grades

t-ratios should not be used to examine lower order effects

- How plausible is the linear model?
 - Examine coefficients

> summary(model.1)@coefs

```
Estimate Std. Error t value (Intercept) 205.677 4.022 51.140 grade5 4.985 0.582 8.564
```

t-value is relatively large

Multimodal analysis suggests that best approximating change curve is linear. This should be tempered by small sample size (N=22) and small grade range (5-8).

Analysis with Static Predictors

- Approach with static predictors is not clear cut
- Possible to use multimodal approach
 - Results are vulnerable to misinterpretation
- To illustrate, consider the following models

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\operatorname{grade}_{ij}) + \beta_2(\operatorname{dadv}_i) + \epsilon_{ij}$$

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\mathtt{grade}_{ij}) + \beta_2(\mathtt{dadv}_i) + \beta_3(\mathtt{ethW}_i) + \epsilon_{ij}$$

Suppose goal is to choose time transformations and there is suspicion that quadratic term is necessary

Models are

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\mathtt{grade}_{ij}) + \beta_2(\mathtt{grade}_{ij}^2) + \beta_3(\mathtt{dadv}_i) + \epsilon_{ij}$$

and

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\mathtt{grade}_{ij}) + \beta_2(\mathtt{grade}_{ij}^2) + \beta_3(\mathtt{dadv}_i) + \beta_4(\mathtt{ethW}_i) + \epsilon_{ij}$$

The second model has one additional quadratic term.

```
      Modnames
      K
      AICc
      Delta_AICc
      AICcWt
      eratio

      1
      1L
      7
      579.5
      3.8907
      0.07594
      6.996

      2
      1Q
      8
      580.3
      4.7414
      0.04963
      10.705

      3
      2L
      8
      575.6
      0.0000
      0.53131
      1.000

      4
      2Q
      9
      576.4
      0.8746
      0.34311
      1.549
```

- Model 2L is best fitting; model 2Q second best
- Because of this you might say that the best approximating model may include a quadratic change curve
 - 2Q is fitting well because it shares static predictors with 2L not because of the quadratic term
 - Comparing IQ to IL it is seen that the quadratic also fits worse
- With respect to the change curve, model IL fits better then 2Q

- When change curves of static predictor subgroups are not parallel then the order of polynomial should be selected with the interactions in the model
- Suppose intention is to evaluate models that differ in ethnicity and risk effects
 - Three polynomial models are examined (I, L, and Q)
 - Two static predictors as single effects and all possible interactions

Intercept-only model

$$y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\mathtt{grade5}_{ij}) +$$

 $\beta_2(\mathtt{dadv}_i) + \beta_3(\mathtt{ethW}_i) + \epsilon_{ij}$

Linear model

$$y_{ij} = (eta_0 + b_{0i}) + (eta_1 + b_{1i})(\mathtt{grade5}_{ij}) + \ eta_2(\mathtt{dadv}_i) + eta_3(\mathtt{ethW}_i) + \ eta_4(\mathtt{grade5}_{ij} \cdot \mathtt{dadv}_i) + \ eta_5(\mathtt{grade5}_{ij} \cdot \mathtt{ethW}_i) + \epsilon_{ij}$$

Quadratic model

$$\begin{aligned} y_{ij} &= (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})(\texttt{grade5}_{ij}) + \beta_2(\texttt{grade5}_{ij}^2) + \\ \beta_3(\texttt{dadv}_i) + \beta_4(\texttt{ethW}_i) + \\ \beta_5(\texttt{grade5}_{ij} \cdot \texttt{dadv}_i) + \\ \beta_6(\texttt{grade5}_{ij} \cdot \texttt{ethW}_i) + \\ \beta_7(\texttt{grade5}_{ij}^2 \cdot \texttt{dadv}_i) + \\ \beta_8(\texttt{grade5}_{ij}^2 \cdot \texttt{ethW}_i) + \epsilon_{ij} \end{aligned}$$

```
## Estimate models
> model.i <- lmer(read ~ dadv + ethW + (1 | subid), mpls.l,</pre>
    REML = FALSE
> model.l <- lmer(read ~ grade5 * dadv + grade5 * ethW + (1 | subid),</pre>
    data = mpls.1, REML = FALSE)
> model.q <- lmer(read ~ grade5 * dadv + grade5 * ethW +</pre>
    I(grade5 ^ 2) * dadv + I(grade5 ^ 2) * ethW + (1 | subid),
    data = mpls.1, REML = FALSE)
## Compute AIC
> myaicc <- as.data.frame(aictab(</pre>
    cand.set = list(model.i, model.l, model.q),
    modnames = c("I", "L", "Q"), sort = FALSE))[, -c(5,7)]
## Compute evidence ratio
> myaicc$eratio <- max(myaicc$AICcWt) / myaicc$AICcWt</pre>
> myaicc
```

```
        Modnames
        K
        AICc Delta_AICc
        AICcWt
        eratio

        1
        I
        5
        622.5
        42.011
        0.00000000007294
        1325838559.08

        2
        L
        8
        580.5
        0.000
        0.9670361058595
        1.00

        3
        Q
        11
        587.2
        6.758
        0.0329638934111
        29.34
```

Linear model has large weight of evidence

Likelihood Ratio Test: Analysis Without Static Predictors

- Analysis with polynomial terms can be performed in a step-up or top-down approach
 - Step-up approach compares initial (simpler) model to a more complex model that adds polynomial terms
 - Top-down approach compares initial (more complex) model to a simpler model that removes polynomial terms
- Recall that both approaches compare nested models (reduced model has fewer parameters)
- Emphasis when selecting polynomial terms is on accept/reject decision making
 - Testing typically terminates with the first non-significant result
 - Sometimes a rule of two consecutive non-significant results is used

 Again consider the 3 models with no static predictors fitted earlier (I, L, and Q)

- Step-up approach
 - Begin with model.i compared to model.l (linear term is needed)
 - Model.I compared to model.q (quadratic term does not add anything...it is not needed)
- Top-down approach begin with model.q compared to model.l (nonsignificance suggests more parsimonious model is accepted)

LRT with Static Predictors

- Use same modeling techniques as with AICc
- All polynomials should be fitted with interaction terms included in the model

Subject-Level Selection of Time Predictors

- Goal is to use individual change curves to suggest polynomial effects to be included in model
- Goodness-of-fit index computed for each subject to quantify adequacy of model
 - These indices are then summarized in plots or pooled to create a single descriptive measure
- When subgroups differ in curve shape, highest order polynomial should be fitted for all subjects
 - For subgroups with simpler curve, parameter estimates of higher order terms will be close to zero
- Disadvantage to subject-level selection is that it is only descriptive
 - Statistical theory cannot be used to judge sample effects
- Missing data may not allow the same model to be fitted to all subjects

Level I Polynomial Model

- Change curves are either connected observed values or connected fitted values
- Observed change curves are not model based
- Fitted change curves use the subject-specific Level I model
- Consider the following Level I model

$$y_{ij} = eta_{0i}^* + eta_{1i}^*(\mathtt{grade5}_{ij}) \ + eta_{2i}^*(\mathtt{grade5}_{ij}^2) + \ldots + eta_{ki}(\mathtt{grade5}_{ij}^k) + \epsilon_{ij}$$

where each β^* is a subject-specific regression weight

- Since i = 1, ..., N, there are N Level 1 equations
- There are no static predictors (those are level 2 predictors)
- For subject-level analysis, the correlation among repeated measures is ignored and OLS estimation is used. This is justified since the concern is only with description.

Missing Data

- The requirement that the number of time points > k + 1 limits the polynomial for subjects with missing data
- Useful to create a new variable that indexes the number of missing points
- This can be used to exclude some subjects from the analysis

The ddply() function from the plyr library evaluates an expression/function a given number of times and then stores the result in a data frame.

```
## load plyr library
> library( plyr )
## Create a vector of 0/1 that indicates missingness of read
## for each row
> mpls.l$miss <- as.numeric(is.na(mpls.l$read))</pre>
## Compute the number of missing values for each subject
> mysel <- ddply(.data = data.frame(mpls.l$miss),</pre>
    .variables = .(mpls.l$subid), .fun = sum)
```

```
## Change variable names
 > colnames(mysel) <- c("subid", "totmiss")</pre>
## Merge the number of missing values with the original data
## frame
> mpls.12 <- merge(mpls.1, mysel, by = "subid")</pre>
> head(mpls.12)
 subid risk gen eth ell sped att grade read grade5 dadv ethW miss totmiss
             F Afr
       HHM
                       N 0.94
                                  5 172
                                            0 DADV
                                                    NW
                                                          0
2
            F Afr 0 N 0.94
       HHM
                                  6 185
                                            1 DADV
                                                    NW
                                                          0
3
            F Afr 0 N 0.94 7 179
     1 HHM
                                            2 DADV
                                                    NW
                                                          0
            F Afr 0 N 0.94 8 194
   1 HHM
                                            3 DADV
                                                    NW
                                                          0
5
     2 HHM
            F Afr 0 N 0.91 5 200
                                            0 DADV
                                                          0
                                                    NW
     2 HHM
             F Afr 0
                                  6 210
                       N 0.91
                                            1 DADV
                                                    NW
```

Subject-Level Fits

- Examine the subject-specific fitted curves
 - For small n, graphing works well
 - For large n graphs are generally cumbersome and it works better to examine summary measure(s) from the fitted model (e.g., R²)
- 1) Fit a linear model to each subject using the lm() function
- 2) Extract the summary measures of interest from each fitted model (e.g., coefficients, R², etc.)
- 3) Plot or summarize (e.g., through a mean) the summary measures that were extracted

```
## Function to fit lm
> fit.linear <- function(x) {</pre>
    lm(read \sim grade5, data = x)
    }
## Fit lm to each subject's data
> mylm.1 <- dlply(.data = mpls.1,</pre>
     .variables = .(mpls.l$subid), .fun = fit.linear)
> mylm.1
$11
                                              The dlply() function fits the
                                              fit.linear() function to
Call:
                                              each subject's data and
lm(formula = read \sim grade5, data = x)
                                              outputs the results in a list
Coefficients:
(Intercept)
                   grade5
         174
```

Function to obtain coefficients

```
> get.coef <- function(x) {
    x$coefficients
}</pre>
```

Obtain coefficients from each subject's model

```
> ldply(.data = mylm.1, .fun = get.coef)
```

The ldply() function fits the get.coef() function to each model stored in the list and then outputs the results as a data frame.

	mpls.1\$subid	(Intercept)	grade5
1	1	173.5	6.0
2	2	201.8	4.5
3	3	190.6	7.6
4	4	199.3	-3.0
5	5	208.7	1.7
6	6	190.9	2.9
7	7	200.2	6.2
8	8	191.5	1.5
9	9	147.9	10.4
10	10	201.8	6.5
11	11	220.5	6.5
12	12	228.0	7.0
13	13	229.0	2.5
14	14	198.8	12.3
15	15	216.7	9.0
16	16	228.0	0.5
17	17	201.7	5.2
18	18	218.1	0.6
19	19	214.3	3.0
20	20	207.9	3.4
21	21	237.3	3.0
22	22	220.8	8.5

Subject 4 has a negative slope, but all the rest are positive

Repeat this Process for a Quadratic Model

```
## Function to fit quadratic
> fit.quad <- function(x) {</pre>
   lm(read \sim grade5 + I(grade5 ^ 2), data = x)
## Fit lm to each subject's data
> mylm.1 <- dlply(.data = mpls.1,</pre>
    .variables = .(mpls.l$subid), .fun = fit.linear)
## Obtain coefficients from each subject's model
> ldply(.data = mylm.1, .fun = get.coef)
```

	mpls.l\$subid	(Intercept)	grade5	I(grade5^2)	
1	1	174.0	4.50	0.50	
2	2	200.0	15.50	-5.50	Most subjects have a
3	3	191.6	4.60	1.00	negative effect for
4	4	200.0	-7.00	2.00	
5	5	207.4	5.45	-1.25	the quadratic term.
6	6	188.7	9.65	-2.25	
7	7	199.2	9.20	-1.00	
8	8	191.0	4.50	-1.50	The signs represent
9	9	147.4	11.90	-0.50	shape differences.
10	10	200.0	17.50	-5.50	
11	11	218.7	11.75	-1.75	
12	12	226.5	11.50	-1.50	A negative sign is
13	13	229.8	0.25	0.75	concave to the x-axis
14	14	198.5	13.05	-0.25	(∩).
15	15	218.0	1.00	4.00	
16	16	226.8	4.25	-1.25	
17	17	202.2	3.70	0.50	A positive sign is
18	18	218.6	-0.90	0.50	convex to the x-axis
19	19	215.0	-1.00	2.00	
20	20	203.9	15.40	-4.00	(∪).
21	21	237.0	5.00	-1.00	
22	22	219.0	19.50	-5.50	

```
## Function to extract R2
> get.R2 <- function(x) {</pre>
   summary(x)$r.squared
   }
## Extract R2 from each subject's model
> linear.r2 <- ldply(.data = mylm.1, .fun = get.R2)</pre>
## Change column names
> colnames(linear.r2) <- c("subid", "Rsq")</pre>
## Merge missingness and R2
> Rsq1 <- merge(mysel, linear.r2, by = "subid")</pre>
```

```
> Rsq1
   subid totmiss
                        Rsq
                  0.68966
2 3
        2
                   0.66758
        3
                   0.96267
4
        4
                   0.87097
5
        5
                   0.58384
6
        6
                   0.24342
7
                   0.97563
8
                   0.75000
        8
9
                   0.91197
        9
10
       10
                   0.80732
11
       11
                   0.89989
12
                   0.81940
       12
13
       13
                   0.32982
14
       14
                   0.99435
15
       15
                   0.93822
16
       16
                   0.03226
17
       17
                  0.81939
18
       18
                   0.18000
19
       19
                   0.87097
20
                   0.47377
       20
21
                   0.96429
      21
22
                  0.87753
      22
```

Repeat this Process for a Quadratic Model

```
> quad.r2 <- ldply(.data = mylm.2, .fun = get.R2)
> colnames(quad.r2) <- c("subid", "Rsq")
> Rsq2 <- merge(mysel, quad.r2, by = "subid")
> Rsq2
```

	subid	totmiss	Rsq
1	1	0	0.6935
2	2	1	1.0000
3	3	0	0.9760
4	4	1	1.0000
5	5	0	0.8364
6	6	0	0.3606
7	7	0	0.9959
8	8	1	1.0000
9	9	0	0.9137
10	10	1	1.0000
11	11	0	0.9521
12	12	0	0.8495
13	13	0	0.3536
14	14	0	0.9947
15	15	1	1.0000
16	16	0	0.1935
17	17	0	0.8255
18	18	0	0.2800
19	19	1	1.0000
20	20	0	0.9984
21	21	1	1.0000
22	22	1	1.0000

Quadratic polynomial fits perfectly for subjects with missing data (saturated model)

Plot the R² values Conditional on Missingness

```
## Get number of rows
> N <- nrow(Rsq1)
## Combine the two data frames into a new data frame
> plotdata <- data.frame(rbind(Rsq1, Rsq2), c(rep(1, N),</pre>
    rep(2, N)))
## Change 4th column name to poly
> colnames(plotdata)[4] <- "poly"</pre>
## Add variable to indicate polynomial term
> plotdata$poly.f <- factor(plotdata$poly,</pre>
    labels = c("Linear", "Quadratic"))
## Add variable to indicate degree of missingness
> plotdata$missing.f <- factor(plotdata$totmiss,</pre>
    labels = c("Complete", "Missing"))
```

```
subid totmiss
                       Rsq poly poly.f missing.f
                                          Complete
                  0.68966
                                 Linear
2
                                           Missing
       2
                  0.66758
                                 Linear
3
                               1 Linear
                                          Complete
       3
                  0.96267
4
                                           Missing
       4
                  0.87097
                                 Linear
5
       5
                                          Complete
                  0.58384
                                 Linear
6
                                          Complete
       6
                  0.24342
                               1 Linear
7
                                          Complete
                  0.97563
                                 Linear
                                           Missing
8
       8
                  0.75000
                                 Linear
9
       9
                                          Complete
                  0.91197
                               1 Linear
10
      10
                  0.80732
                                 Linear
                                           Missing
                                          Complete
11
      11
                  0.89989
                               1 Linear
                                          Complete
12
      12
                  0.81940
                                 Linear
                                          Complete
13
      13
                  0.32982
                                 Linear
                                          Complete
14
      14
                  0.99435
                               1 Linear
                                           Missing
15
      15
                  0.93822
                                 Linear
                                          Complete
16
      16
                  0.03226
                                 Linear
                                          Complete
17
      17
                  0.81939
                               1 Linear
18
                                          Complete
      18
                  0.18000
                                 Linear
                                           Missing
19
      19
                  0.87097
                               1 Linear
                                          Complete
20
      20
                  0.47377
                                 Linear
                                           Missing
21
      21
                  0.96429
                                 Linear
                                           Missing
22
      22
                  0.87753
                               1 Linear
```

Plot the R2 values

```
> ggplot(data = plotdata, aes(x = poly.f, y = Rsq)) +
    geom_boxplot(fill = "grey80") +
    geom_point(position = "jitter") +
    facet_grid(. ~ missing.f) +
    theme_bw() +
    xlab("Polynomial") +
    ylab(expression(R ^ 2))
```

Obtain median values

> tapply(plotdata\$Rsq, list(plotdata\$missing.f, plotdata\$poly.f),
 median)

```
Linear Quadratic Complete 0.7545 0.8429 Missing 0.8710 1.0000
```


Adjusted R²

- Drawback of R^2 is that it increases as more predictors are add into the model (even if they are worthless)
- Alternative is to use the penalized measure, adj. R²

$$\bar{R}_i^2 = 1 - (1 - R_i^2) \left(\frac{n_i - 1}{n_i - k - 1} \right)$$

where k is the number of polynomial terms bigger than degree 0 (number of predictors)

 $ar{R}_i^2$ is not defined for saturated models

 $ar{R}_i^2$ can be extracted from the summary() object using \$adj.r.squared

```
> mysub <- subset(mpls.12, totmiss == 0)</pre>
> mylm.1 <- dlply(.data = mysub,</pre>
    .variables = .(mysub$subid), .fun = fit.linear)
> mylm.2 <- dlply(.data = mysub,</pre>
    .variables = .(mysub$subid), .fun = fit.quad)
## Get adjusted R2
> get.adj.R2 <- function(x){</pre>
   summary(x)$adj.r.squared
   }
> adjRsq1 <- ldply(.data = mylm.1, .fun = get.adj.R2)</pre>
> colnames(adjRsq1) <- c("subid", "adjRsq")</pre>
> adjRsq2 <- ldply(.data = mylm.2, .fun = get.adj.R2)</pre>
> colnames(adjRsq2) <- c("subid", "adjRsq")</pre>
```

Create data frame > N <- nrow(adjRsq1)</pre> > plotdata <- data.frame(rbind(adjRsq1, adjRsq2),</pre> c(rep(1, N), rep(2, N))> colnames(plotdata)[3] <- "poly"</pre> > plotdata\$poly.f <- factor(plotdata\$poly,</pre> labels = c("Linear", "Quadratic")) ## Plot adjusted R2 > ggplot(data = plotdata, aes(x = poly.f, y = adjRsq)) + geom_boxplot(fill = "grey80") + geom_point(position = "jitter") + theme_bw() + xlab("") +

ylab(expression(bar(R)^2))

Pooled Measures of Fit

- Another alternative is to pool information from all subjects into a single statistic
- We will combine the subject-level sums of squares (foundation for R²)

$$R_i^2 = 1 - \left(\frac{SSR_i}{SST_i}\right)$$

where SSR is the sum of squares residuals and SST is the sum of squares total. A pooled version can be created by replacing each of the sum of squares by the sum among all subjects

$$R_{meta}^{2} = 1 - \left(\frac{\sum_{i=1}^{N} SSR_{i}}{\sum_{i=1}^{N} SST_{i}}\right)$$

- The meta-R² will always increase as predictors are added (just like R²)
- Better to use penalized fit index
 - Meta-RSE (residual standard error)
 - Meta-R² adjusted

Subject-level RSE

$$RSE_i = \sqrt{\frac{SSR_i}{n_i - k_i - 1}}$$

Pooled meta-RSE

$$RSE_{meta} = \begin{cases} \sum_{i=1}^{N} SSR_i \\ \frac{\sum_{i=1}^{N} (n_i - k_i - 1)}{N} \end{cases}$$

Compute Meta-RSE

Estimate coefficients > my1 <- dlply(.data = mpls.1,</pre> .variables = .(mpls.l\$subid), .fun = fit.linear) > my2 <- dlply(.data = mpls.1,</pre> .variables = .(mpls.l\$subid), .fun = fit.quad) ## Sum of squares residuals > ssResid <- function(x){</pre> $sum(resid(x) ^ 2)$ > sse1 <- sum(ldply(.data = my1, .fun = ssResid)[,2]) > sse2 <- sum(ldply(.data = my2, .fun = ssResid)[,2])</pre>

Residual df

```
> dfResid <- function(x){
    x$df.residual
    }
> df1 <- sum(ldply(.data = my1, .fun = dfResid)[, 2])
> df2 <- sum(ldply(.data = my2, .fun = dfResid)[, 2])</pre>
```

Compute RSE meta

- > RSEmeta.1 <- sqrt(sse1/df1)</pre>
- > RSEmeta.2 <- sqrt(sse2/df2)</pre>

> RSEmeta.1

[1] 4.262

> RSEmeta.2

[1] 5.623

Since the meta-RSE value is smaller for the linear model, it is evidence that the linear model is sufficient

Meta-R² Adjusted

- Obtained by dividing meta- R^2 numerator and denominator by df
- We will combine the subject-level sums of squares (foundation for R²)

$$R_{meta}^{2} = 1 - \left(\frac{\sum_{i=1}^{N} SSR_{i}}{\sum_{i=1}^{N} (n_{i} - k_{i} - 1)} \right)$$

$$\frac{\sum_{i=1}^{N} SST_{i}}{\sum_{i=1}^{N} (n_{i} - k_{i} - 1)} \right)$$

```
## Use function in script file
## Only change the first 3 lines (if need be)
```

> Rsq.meta

```
lm.objects Rsqmeta
1    mylm.1  0.8298
2    mylm.2  0.8848
```

> adjRsq.meta

```
lm.objects adjRsqmeta
1    mylm.1    0.6432
2    mylm.2    0.2962
```

These values are closer together than the medians computed before.

Although the quadratic model has a higher meta-R², the increase is not amazing.

After penalization, the linear model has a meta-R² that is more than twice that of the quadratic model.