AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A STAT 6 activation inhibitor which comprises a diaminopyrimidinecarboxamide derivative represented by a formula (I) or a salt thereof and a pharmaceutically acceptable carrier,

(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

 A^2 : CR^6 or N,

R⁶: -H or -halogen,

R³: -R⁰, -lower alkyl substituted with halogen, -halogen,

-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,

-lower alkylene-OH, -hetero ring, -O-hetero ring, -N(\mathbb{R}^0)-hetero ring, -lower alkylene-hetero ring, -O-lower alkylene-hetero ring, -SO-lower alkylene-hetero ring, -SO₂-lower alkylene-hetero ring, -N(\mathbb{R}^0)-lower alkylene-hetero ring, -lower alkylene-CO-

hetero ring, -lower alkylene- $N(R^0)_2$, -SO₂- $N(R^0)$ -lower alkylene-lower alkylene- $N(R^0)$ -CO₂-lower alkylene-phenyl,

R⁰: the same or different from one another, and each is H or a lower alkyl, n: 0 or 2,

 R^4 : (i) when n=2, $-R^0$, -lower alkyl substituted with halogen, $-OR^0$, $-N(R^0)$ -CHO, $-N(R^0)$ -CO-lower alkyl or $-N(R^0)$ -SO₂-lower alkyl,

(ii) when n = 0, -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with halogen-OH, -lower alkylene-NH₂, -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkyl, -lower alkylene-CN, or -CH(lower alkylene-OH)₂, or a group represented by a formula - X^a - R^{4a} ,

 X^a : single bond, -O-, -CO-, -S-, -SO₂-, -N(R⁰)-, -N(R⁰)CO-, -N(R⁰)SO₂-, -lower alkylene-O-, -lower alkylene-N(R⁰)-, -lower alkylene-N(R⁰)CO-, -lower alkylene-N(R⁰)SO₂-, -lower alkylene-N(R⁰)CO₂-, -N(CO-R⁰)-, -N(SO₂-lower alkyl)-, -CON(R⁰)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CO-, -lower alkenylene-CO₂-, -O-(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R⁰)-(CH₂)_k-cycloalkylene-(CH₂)_m-,

k and m, the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, hetero ring, cycloalkyl, lower alkylene-phenyl, lower alkylene-hetero ring, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-hetero ring,

wherein the hetero rings in R³ and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, -OR⁰, -S-lower alkyl, -S(O)-lower alkyl, -SO₂-lower alkyl, lower alkylene-OR⁰, - $N(R^{0})_{2}$, -CO₂ R^{0} , -CON(R^{0})₂, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)-SO_2$ -lower alkyl, $-N(R^0)-CO-N(R^0)_2$, $-N(R^0)-CO_2$ -lower alkyl, $-N(R^0)-CO_2$ cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)-NH₂, -O-phenyl, -CO-phenyl, $-N(R^0)$ -CO-lower alkyl, $-N(R^0)$ -CO-lower alkylene- $N(R^0)_2$, -lower alkylene-N(R⁰)-CO-lower alkylene-N(R⁰)₂, -CO-N(R⁰)-lower alkylene-N(R⁰)₂, -COlower alkylene-N(R⁰)₂, -CO-lower alkylene-CO₂R⁰, -lower alkylene-N(R⁰)₂, -lower alkylene-CO₂R⁰, -lower alkylene-CO-N(R⁰)₂, -lower alkylene-N(R⁰)-CO-lower alkyl, -lower alkylene-N(R⁰)-CO₂-lower alkyl, -lower alkylene-N(R⁰)-SO₂-lower alkyl,-lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O-R⁰ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or $N(R^0)_2$, and wherein the lower alkylene in R³, R⁴, R^{4a} and X^a may be substituted with 1 to 5 of -OR⁰, -CO₂R⁰, -CON(R⁰)₂, -N(R⁰)₂, -N(R⁰)COR⁰ or hetero ring, or R^3 and R^4 may together form *-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-, *-CH₂-N(R^7)-CH₂-, *-N(R^7)- $(CH_2)_3$ -, *- $(CH_2)_3$ - $N(R^7)$ -, *- CH_2 - $N(R^7)$ - $(CH_2)_2$ -, *- $(CH_2)_2$ - $N(R^7)$ - CH_2 -, *-C(O)- $N(R^7)$ - $(CH_2)_2$ -,

*- $(CH_2)_2$ - $N(R^7)$ -C(O)-, *- $N(R^7)$ -CH=CH-, *-CH=CH- $N(R^7)$ -,

*-N=CH-CH=CH-, *-CH=N-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-CH=N-, *-N=CH-CH=N-, *-CH=N-N=CH-, *-N(\mathbb{R}^7)-, *-O-CH₂-O-, *-O-(CH₂)₂-O-, *-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(\mathbb{R}^7)-, *-(CH₂)₂-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF₃)-NH-,

wherein * indicates bonding to the position shown by R³,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: H, lower alkenyl, lower alkynyl, lower alkyl substituted with halogen, CN, S-lower alkyl, aryl which may have a substituent(s), cycloalkyl which may have a substituent(s) or hetero ring which may have a substituent(s),

Y: single bond; or lower alkylene which may be substituted with 1 to 5 groups selected from halogen, OH, O-lower alkyl, -NH₂, -NH-lower alkyl and $-N(lower alkyl)_2$, and R^1 and R^2 : the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

- 2. (original): The STAT 6 activation inhibitor described in claim 1, which is a Th2 cell differentiation inhibitor.
- 3. (original): A diaminopyrimidinecarboxamide derivative represented by a formula (Ia) or a salt thereof,

$$R^4$$
 R^3
 R^4
 R^4

(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

R³: -R⁰, -lower alkyl substituted with halogen, -halogen,

-OR⁰, -S-lower alkyl, -CO-lower alkyl, -CO₂-lower alkyl,

-lower alkylene-OH, -saturated hetero ring, $-X^b$ -heteroaryl, $-X^b$ -saturated hetero ring, $-X^b$ -heteroaryl, -lower alkylene-N(R^0)₂, -SO₂-N(R^0)-lower alkylene-lower alkylene-N(R^0)-CO₂-lower alkylene-phenyl,

 X^b : -lower alkylene-, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -SO₂-lower alkylene-,

-N(R⁰)-lower alkylene- or -lower alkylene-CO-,

 R^0 : the same or different from one another, and each represents H or a lower alkyl, R^4 : - X^a -saturated hetero ring, -lower alkylene-saturated hetero ring or -lower alkenylene-saturated hetero ring,

 X^{a} : single bond, -O-, -CO-, -S-, -SO₂-, -N(\mathbb{R}^{0})-,

 $-N(R^0)CO$ -, $-N(R^0)SO_2$ -, -lower alkylene-O-, -lower alkylene- $N(R^0)$ -, -lower alkylene- $N(R^0)CO$ - or -lower alkylene- $N(R^0)SO_2$ -, -lower alkylene- $N(R^0)CO_2$ -, - $N(CO-R^0)$ -, - $N(SO_2$ -lower alkylene- $CON(R^0)$ -, -lower alkylene-CO-, -lower alkenylene-CO-, -lower alkenylene-CO-, -lower alkenylene-CO-, - $CON(R^0)$ -, -

k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4, wherein the saturated hetero rings in R³ and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, -OR⁰,

- -S-lower alkyl, -S(O)-lower alkyl, -SO₂-lower alkyl, lower alkylene-OR⁰, -N(R⁰)₂, -CO₂R⁰, -CON(R⁰)₂, -CN, -CHO,
- -SO₂N(R⁰)₂, -N(R⁰)-SO₂-lower alkyl, -N(R⁰)-CO-N(R⁰)₂, -N(R⁰)-CO₂-lower alkyl, -N(R⁰)-CO₂-cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, saturated hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), heteroaryl, -lower alkylene-NH-C(=NN)-NH₂,
- -O-phenyl, -CO-phenyl, -N(R^0)-CO-lower alkyl, -N(R^0)-CO-lower alkylene-N(R^0)₂, -lower alkylene-N(R^0)-CO-lower alkylene-N(R^0)₂, -CO-lower alkylene-N(R^0)₂, -CO-lower alkylene-CO₂ R^0 ,
- -lower alkylene- $N(R^0)_2$, -lower alkylene- CO_2R^0 , -lower alkylene- $CO-N(R^0)_2$, -lower alkylene- $N(R^0)$ -CO-lower alkyl,
- -lower alkylene-N(R⁰)-CO₂-lower alkyl, -lower alkylene-N(R⁰)-SO₂-lower alkyl, -lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH),
- -lower alkylene-O-lower alkylene-phenyl, \equiv N-O-R⁰ or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or N(R⁰)₂, and

wherein the lower alkylene in R^3 , R^4 and X^a may be substituted with 1 to 5 of $-OR^0$, $-CO_2R^0$, $-CO_1(R^0)_2$, $-N(R^0)_2$, $-N(R^0)_2$, $-N(R^0)_2$, or hetero ring, or

- R^3 and R^4 may together form *-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-, *-CH₂-N(R^7)-CH₂-, *-N(R^7)-(CH₂)₃-,
- *- $(CH_2)_3$ - $N(R^7)$ -, *- CH_2 - $N(R^7)$ - $(CH_2)_2$ -, *- $(CH_2)_2$ - $N(R^7)$ - CH_2 -,
- *-C(O)-N(R⁷)-(CH₂)₂-, *-(CH₂)₂-N(R⁷)-C(O)-, *-N(R⁷)-CH=CH-, *-CH=CH-N(R⁷)-, *-N=CH-CH=CH-, *-CH=N-CH=CH-,

*-CH=CH-N=CH-, *-CH=CH-CH=N-, *-N=CH-CH=N-, *-CH=N-N=CH-, *-N(R⁷)-N=CH-, *-CH=N-N(R⁷)-, *-O-CH₂-O-, *-O-(CH₂)₂-O-,

*-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(R⁷)-, *-(CH₂)₂-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF₃)-NH-, wherein * indicates bonding to the position shown by \mathbb{R}^3 ,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which may have a substituent(s), and R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

4. (original): A diaminopyrimidinecarboxamide derivative represented by a formula (Ib) or a salt thereof,

(symbols in the formula have the following meanings:

 A^1 : CR^5 or N,

R⁵: -H, -lower alkyl, -O-lower alkyl or -halogen,

R³: -saturated hetero ring or -X^b-saturated hetero ring,

 X^b : -lower alkylene-, -O-, $-N(R^0)$ -, -O-lower alkylene-, -S-lower alkylene-, -SO-lower alkylene-, -N(R^0)-lower alkylene- or -lower alkylene-CO-,

R⁰: the same or different from one another, and each represents H or a lower alkyl,

 R^4 : -H, -lower alkyl substituted with halogen, -OH, -NH-CHO, -CON(R^0)₂, -lower alkylene substituted with

halogen-OH, -lower alkylene-NH2, -lower alkylene-NHCONH2,

- -lower alkylene-CO₂H, -lower alkylene-CO₂-lower alkyl,
- -lower alkylene-CN, -CH(lower alkylene-OH)₂ or -X^a-R^{4a},

 X^{a} : single bond, -O-, -CO-, -S-, -SO₂-, -N(R^{0})-,

 $-N(R^0)CO-, -N(R^0)SO_2-, -lower alkylene-O-, -lower alkylene-N(R^0)-, -lower alkylene-N(R^0)CO- or -lower alkylene-N(R^0)SO_2-, -lower alkylene-N(R^0)CO_2-, -N(CO-R^0)-, -N(SO_2-lower alkyl)-, -CON(R^0)-, -lower alkylene-O-CO-, -lower alkenylene-CO-, -lower alkenylene-CON(R^0)-, -lower alkenylene-CO₂-, -O-(CH₂)_k-cycloalkylene-(CH₂)_m-, -N(R^0)-(CH₂)_k-cycloalkylene-(CH₂)_m-, -CON(R^0)-(CH₂)_k-cycloalkylene-(CH₂)_m- or -N(R^0)CO-(CH₂)_k-cycloalkylene-(CH₂)_m-,$

k and m: the same or different from each other, and each is 0, 1, 2, 3 or 4,

R^{4a}: lower alkyl, phenyl, heteroaryl, cycloalkyl, lower alkylene-phenyl, lower alkylene-heteroaryl, lower alkylene-OH, lower alkenyl, lower alkenylene-phenyl or lower alkenylene-heteroaryl,

wherein the saturated hetero ring and heteroaryl in R^3 and R^{4a} may be substituted with 1 to 5 of lower alkyl, halogen, $-OR^0$, -S-lower alkyl, -S(O)-lower alkyl, $-SO_2$ -lower alkyl, lower alkylene- OR^0 , $-N(R^0)_2$, $-CO_2R^0$, $-CON(R^0)_2$, -CN, -CHO, $-SO_2N(R^0)_2$, $-N(R^0)$ - SO_2 -lower alkyl, $-N(R^0)$ -CO- $N(R^0)_2$, $-N(R^0)$ - CO_2 -lower alkyl, $-N(R^0)$ - CO_2 -cycloalkyl, -NH-C(=NH)-NH-lower alkyl, -NH-C(=N-CN)-NH-lower alkyl, hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-NH-C(=NN)- NH_2 , -O-phenyl,

-CO-phenyl, -N(R^0)-CO-lower alkyl, -N(R^0)-CO-lower alkylene-N(R^0)₂, -lower alkylene-N(R^0)-CO-lower alkylene-N(R^0)₂, -CO-lower alkylene-N(R^0)₂, -CO-lower alkylene-N(R^0)₂, -CO-lower alkylene-CO₂ R^0 , -lower alkylene-N(R^0)₂, -lower alkylene-N(R^0)₂, -lower alkylene-N(R^0)-CO-lower alkylene-N(R^0)-CO-lower alkylene-N(R^0)-CO₂-lower alkylene-N(R^0)-SO₂-lower alkylene-hetero ring (said hetero ring may be substituted with 1 to 5 substituents selected from lower alkyl, OH and lower alkylene-OH), -lower alkylene-O-lower alkylene-phenyl, =N-O- R^0 or oxo, and phenyl and cycloalkyl may be substituted with 1 to 5 of lower alkyl, OH, O-lower alkyl or N(R^0)₂, or the lower alkylene in R^3 , R^4 , R^{4a} and X^a may be substituted with 1 to 5 of -OR 0 , -CO₂ R^0 , -CON(R^0)₂, -N(R^0)₂, -N(R^0)-COR 0 or hetero ring, or R^3 and R^4 may together form *-N(R^7)-(CH₂)₂-, *-(CH₂)₂-N(R^7)-, *-CH₂-N(R^7)-CH₂-, *-N(R^7)-(CH₂)₃-,

*-(CH₂)₃-N(R⁷)-, *-CH₂-N(R⁷)-(CH₂)₂-, *-(CH₂)₂-N(R⁷)-CH₂-,

*-C(O)-N(R⁷)-(CH₂)₂-, *-(CH₂)₂-N(R⁷)-C(O)-, *-N(R⁷)-CH=CH-, *-CH=CH-N(R⁷)-, *-N=CH-CH=CH-, *-CH=N-CH=CH-, *-CH=CH-N=CH-, *-CH=CH-CH=N-, *-CH=CH-CH=N-, *-CH=N-N=CH-, *-N(R⁷)-N=CH-, *-CH=N-N(R⁷)-, *-O-CH₂-O-, *-O-(CH₂)₂-O-, *-O-(CH₂)₃-O-, *-O-(CH₂)₂-N(R⁷)-, *-(CH₂)₂-C(O)-, *-CH=CH-C(O)-O- or *-N=C(CF₃)-NH-, wherein * indicates bonding to the position shown by R³,

R⁷: -H, -lower alkyl or -CO-lower alkyl,

B: aryl which may have a substituent(s) or heteroaryl which may have a substituent(s), and R¹ and R²: the same or different from each other, and each represents H, lower alkyl or O-lower alkyl which may have a substituent(s)).

5. (original): A diaminopyrimidinecarboxamide derivative represented by a formula (Ic) or a salt thereof,

(symbols in the formula have the following meanings:

R⁵: -H or -halogen,

B: phenyl which may have 1 to 3 substituents selected from lower alkyl and halogen,

Y: single bond or -CH₂-, and

R¹ and R²: the same or different from each other, and each represents H or lower alkyl which may have a substituent(s)).

6. (currently amended): A diaminopyrimidinecarboxamide selected from the group consisting of 4-benzylamino-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 2-[(4-morpholin-4-ylphenyl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 4-[(2,6-difluorobenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2,65-difluorobenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-methoxybenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-[(2-fluoro-6-methoxybenzyl)amino]-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 2-({4-[(1-methylpiperidin-3-yl)oxy]phenyl}amino)-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(1-azabicyclo[2.2.2]oct-3-

yloxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-[(4-methyl-3,4-dihydro-2H-1,4-benzoxazin-7-yl)amino]-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-({4-[4-(2-amino-2-oxoethyl)piperazin-1-yl]phenyl}amino)-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(2-morpholin-4-ylethoxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 2-{[4-(β-D-glucopyranosyloxy)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide, 4-benzylamino-2-{[2-(3-chloro-4-hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 4-benzylamino-2-{[2-(3,5-dichloro-4-hydroxyphenyl)ethyl]amino}pyrimidine-5-carboxamide, 4-{[(3-chloro-2-thienyl)methyl]amino}-2-[(4-morpholin-4-ylphenyl)amino]pyrimidine-5-carboxamide, 4-{[(3-chloro-2-thienyl)methyl]amino}-2-[(4-morpholin-4-ylethyl)phenyl]amino}-4-[(2,3,6-trifluorobenzyl)amino]pyrimidine-5-carboxamide or salts thereof.

- 7. (original): A pharmaceutical composition which comprises the diaminopyrimidinecarboxamide derivative or a salt thereof described in claims 3 to 6 and a pharmaceutically acceptable carrier.
- 8. (original): The composition described in claim 7, which is a preventive or therapeutic agent for respiratory diseases.
- 9. (original): The composition described in claim 8, which is a preventive or therapeutic agent for asthma.

- 10. (original): The composition described in claim 8, which is a preventive or therapeutic agent for a chronic obstructive pulmonary disease.
- 11. (original): Use of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, for the manufacture of an STAT 6 activation inhibitor.
- 12. (original): Use of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, for the manufacture of a Th2 cell differentiation inhibitor.
- 13. (original): A method for inhibitory activity for STAT 6 activation, which comprises administering an effective amount of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, to a mammal.
- 14. (original): A method for inhibitory activity for Th2 cell differentiation, which comprises administering an effective amount of a diaminopyrimidinecarboxamide derivative represented by the general formula (I) described in claim 1, or a salt thereof, to a mammal.