

(12) United States Design Patent (10) Patent No.: US D1,089,012 S

Gifford et al.

(45) **Date of Patent:** ** Aug. 19, 2025

(54)	VEHICLE	E FENDER
(71)	Applicant:	GM GLOBAL TECHNOLOGY OPERATIONS LLC, Detroit, MI (US)
(72)	Inventors:	Daniel C. Gifford, Shelby Township, MI (US); Chad T. Pancurak, Troy, MI (US)
(73)	Assignee:	GM GLOBAL TECHNOLOGY OPERATIONS LLC, Detroit, MI (US)
(**)	Term:	15 Years
(21)	Appl. No.:	29/902,349
(22)	Filed:	Sep. 12, 2023
(51)	LOC (15)	Cl 12-16
(52)	U.S. Cl. USPC	D12/184
(58)	Field of C	lassification Search
` ′	USPC	D12/82, 85, 86, 88, 89, 90, 91, 92, 93,
		D12/96, 97, 98, 99, 164, 167, 169, 170,
		D12/171, 173, 181, 184, 185, 190, 196;
	an a	D21/533, 548, 552, 562
	CPC	B62D 25/02; B62D 25/12; B62D 25/16;
		B62D 25/18; B62D 25/161; B62D 65/02

(56)**References Cited**

U.S. PATENT DOCUMENTS

See application file for complete search history.

D287,844	S	afe.	1/1987	Matsumoto D12/18
D287,845	\mathbf{S}	*	1/1987	Matsumoto D12/18
D586,712	S	*	2/2009	Opfer D12/18
D615,455	S	*	5/2010	Bauer D12/8
D659,052	S		5/2012	Ware et al.
D659,053	S		5/2012	Ware et al.
D669,405	S		10/2012	Gifford
D679,231	\mathbf{S}		4/2013	Karras et al.
D679,642	S		4/2013	Schmeckpeper
D685,705	S		7/2013	Munson et al.

D686,118	\mathbf{S}		7/2013	Thurber	
D686,125	S		7/2013	McCabe et al.	
D693,748	S		11/2013	Mackay	
D695,172	\mathbf{S}		12/2013	Kavaja	
D711,798	S		8/2014	O'Donnell et al.	
D716,709	S		11/2014	Thole et al.	
D717,696	\mathbf{S}	*	11/2014	Thole D12/91	
D718,688	\mathbf{S}		12/2014	Thole et al.	
D749,026	S		2/2016	Smith et al.	
D749,027	\mathbf{S}		2/2016	McMahan et al.	
D750,001	\mathbf{S}		2/2016	Thole et al.	
D755,679	\mathbf{S}	*	5/2016	Sato D12/98	
D756,869	\mathbf{S}		5/2016	McMahan et al.	
D764,362	S		8/2016	Pevovar et al.	
D766,149	\mathbf{S}		9/2016	Kim et al.	
D767,458	\mathbf{S}		9/2016	Kim	
D767,460	S		9/2016	Kozub et al.	
D773,361	S		12/2016	Kim	
D780,081	\mathbf{S}		2/2017	Lee	
(Continued)					

Primary Examiner — Susan E Krakower Assistant Examiner — Beena Patel

CLAIM

The ornamental design for a vehicle fender, as shown and described.

DESCRIPTION

FIG. 1 is a front and left side perspective view of a vehicle fender showing our new design; the mirror image of the vehicle fender is claimed, but not shown;

FIG. 2 is a front elevation view of the vehicle fender of FIG.

FIG. 3 is a left side elevation view thereof;

FIG. 4 is a right side elevation view thereof;

FIG. 5 is a back elevation view thereof;

FIG. 6 is a top plan view thereof; and,

FIG. 7 is a bottom plan view thereof.

The broken lines in the drawings depict portions of the vehicle fender that form no part of the claimed design.

1 Claim, 7 Drawing Sheets

US D1,089,012 S Page 2

(56)		Referen	ces Cited	D859,246 S			Thurber et al.
	U.S.	D859,248 S D864,065 S D873,740 S		10/2019	Wilkins et al. Pinazzo et al. Zipfel		
D78 D79 D79 D79 D80 D80 D80 D80 D80 D81 D81 D81	1,192 S 5,521 S 7,623 S 7,624 S 7,625 S 3,740 S 5,013 S 5,014 S 5,956 S * 8,313 S 7,816 S * 8,406 S 3,741 S 7,527 S	5/2017 9/2017 9/2017 9/2017 1/2017 12/2017 12/2017 1/2018 5/2018 7/2018 9/2018	Kim Nakamura Perkins Im Whitla et al. Zipfel et al. Galante	D883,155 S D890,658 S D890,659 S D902,801 S D919,521 S D925,419 S D925,420 S D925,422 S D930,533 S D950,438 S D950,448 S D965,492 S D965,493 S D966,161 S		7/2020 11/2020 5/2021 7/2021 7/2021 7/2021 5/2022 5/2022 5/2022 10/2022 10/2022	Izard Ninov
D82 D83 D84 D84 D85 D85 D85	8,255 S 8,256 S 2,752 S 0,302 S 1,542 S 0,341 S 4,471 S 4,988 S 5,518 S 5,520 S	2/2019 6/2019 7/2019 7/2019 8/2019	Zipfel Lee O'Donnell et al. Koo et al. Riggs et al. Lee	D969,695 S D985,447 S D993,856 S D1,009,733 S D1,012,804 S D1,031,554 S D1,031,555 S D1,050,988 S D1,054,350 S	* * * * *	5/2023 8/2023 1/2024 1/2024 6/2024 6/2024 11/2024 12/2024	Pena D12/181 Choi et al. D12/184 Huang D12/184

FIG. 2

Aug. 19, 2025

n U

FIG. 6

FIG. 7