Problem 1

Huang Daoji

(1)

For each datapoint y_i , we introduce a latent variable z_i , which indicates the normal distribution y_i is from, i.e. $z_i = 0 \iff y_i$ is from $N(\mu_1, \sigma_1^2)$ and vice versa. The EM algorithm is derived below.

In E-step, we first derive $p(z_n = k | x_n, \theta)$ using Bayesian formula where θ denotes μ_i, σ_i^2, w .

$$p(z_n = k|y_n, \theta) = \frac{p(z_n = k, y_i|\theta)}{\sum_k p(z_n = k, y_i|\theta)}$$

$$= \frac{w_k N(y_i|\mu_k, \sigma_k^2)}{\sum_k w_k N(y_i|\mu_k, \sigma_k^2)}$$

$$= \gamma_{n,k}$$
(1)

where $\gamma_{n,k}$ can be seen as a soft label of latent variable z_n . The log likelihood function is then

$$l(\theta) = \sum_{n} \sum_{k} p(z_{k}|x_{n}, \theta) \log p(z_{k}, x_{n}|\theta)$$

$$= \sum_{n} \sum_{k} \gamma_{n,k} (\log w_{k} - \frac{1}{2}2\pi - \frac{1}{2}\log \sigma_{k}^{2}) - \frac{(y_{n} - \mu_{k})^{2}}{2\sigma_{k}^{2}}$$
(2)

In M-step, we take the derivative of $l(\theta)$, and set it to zero w.r.t. w_k, μ_k and σ_k .

a) max $l(\theta)$ w.r.t. w_k , using Lagrange multiplier since $\sum w_k = 1$

$$\sum_{n} \sum_{k} \gamma_{n,k} \frac{1}{w_{k}} - \lambda = 0, \quad \forall k$$

$$w_{k} \propto \sum_{n} \gamma_{n,k}$$

$$w_{k} = \frac{\sum_{n} \gamma_{n,k}}{\sum_{k} \sum_{n} \gamma_{n,k}}$$
(3)

b) max $l(\theta)$ w.r.t. μ_k

$$\sum_{n} \gamma_{n,k} \frac{(y_n - \mu_k)}{\sigma_k^2} = 0$$

$$\mu_k = \frac{\sum_{n} \gamma_{n,k} y_n}{\sum_{n} \gamma_{n,k}}$$
(4)

c) max $l(\theta)$ w.r.t. σ_k^2

$$\sum_{n} \gamma_{n,k} \left(-\frac{1}{2\sigma_k^2} + \frac{(y_n - \mu_k)^2}{2(\sigma_k^2)^2} \right) = 0$$

$$\sigma_k^2 = \frac{\sum_{n} \gamma_{n,k} (y_n - \mu_k)^2}{\sum_{m} \gamma_{n,k}}$$
(5)

The EM algorithm is shown below

Algorithm 1: EM for GMM

```
Result: \mu, \sigma^2, w
begin
    initialize \mu, \sigma^2, w
    while not converge do
         calculate \gamma_{n,k}
         update \mu, \sigma^2, w
    end
end
```

(2)

EM algorithm does not always converge on this dataset. In my implementation, four modes are found.

Figure 1: results of μ

Figure 2: results of σ^2

Problem 2

(1)

The likelihood function for θ is

$$L(\theta) = \prod_{n} e^{-(x_n \theta + r_n)} \frac{(x_n \theta + r_n)^{y_n}}{y_n!}$$
(6)

(2)

Similar to the E-step in Problem 1, we first calculate $E(z_{j1}|x_j,\theta)$. Notice that $z_{j1}|y_j \sim Binominal(y_j,\frac{x_j\theta}{x_j\theta+r_j})$. No need to calculate $E(z_{j2}|x_j,\theta)$ since it's irrelevant to θ in log likelihood function.

$$E(z_{j1}|x_j,\theta) = y_j \frac{x_j \theta}{x_j \theta + r_j} \tag{7}$$

In M-step, we derive its log likelihood function first

$$l(\theta) = \sum_{j} -x_k + z_{j1} \log x_j \theta - \log z_{j1}! - r_j + z_{j2} \log r_j - \log z_{j2}!$$

$$\frac{dl(\theta)}{d\theta} = \sum_{j} -x_j + z_{j1} \frac{1}{\theta}$$
(8)

Substitute z_{j1} by $E(z_{j1}|x_j,\theta)$ (since θ is irrelevant to z_{j1}) and set the derivative to zero, we have

$$\theta' = \frac{\theta}{\sum_{j} x_{j}} \sum_{i} \frac{y_{j} x_{j}}{x_{j} \theta + r_{j}} \tag{9}$$

which can be seen as a fix point iteration of true likelihood function.

Algorithm 2: EM for sum of Poission

```
\begin{array}{c|c} \textbf{Result: } \theta \\ \textbf{begin} \\ & \text{ initialize } \theta \\ & \textbf{while } not \ converge \ \textbf{do} \\ & \text{ calculate } E(z_{j1}|x_j,\theta) \\ & \text{ update } \theta \\ & \textbf{end} \\ \end{array}
```

(3)

The MLE is 5.606063396561341, which yields 1.78e-15 in true likelihood function.

(4)

By taking second derivative of log likelihood function in (1), we have

$$-\frac{\partial^2 l(\theta)}{\partial \theta^2} = \sum_n y_n \frac{x_n^2}{(x_n \theta + r_n)^2}$$

$$= 2.423$$
(10)

, and the complete information being

$$-\frac{\partial^2 q(\theta)}{\partial \theta^2} = \sum_n y_n \frac{x_n}{(x_n \theta + r_n)\theta}$$

$$= 2.588$$
(11)

, so the fraction of missing information is 0.064

Problem 3

(1)

$$l(\pi) = 100 \log \pi_{11} + 50 \log \pi_{12} + 75 \log \pi_{21} + 75 \log \pi_{22} + 28 \log(\pi_{11} + \pi_{12}) + 60 \log(\pi_{21} + \pi_{22}) + 30 \log(\pi_{11} + \pi_{21}) + 60 \log(\pi_{12} + \pi_{22})$$

$$(12)$$

The assumption under such a log likelihood includes

• outcomes of Y_1, Y_2 and that whether one of the outcomes is missing are independent, *i.e.* the fact that one of the outcomes is missing does not effect the prob. of that outcome

(2)

We derive the likelihood funtion for all data first

$$L(\pi) = \prod_{n=1}^{\infty} \pi_{11}^{y_{n1}=1, y_{n2}=1} \pi_{12}^{y_{n1}=1, y_{n2}=2} \pi_{21}^{y_{n1}=2, y_{n2}=1} \pi_{22}^{y_{n1}=2, y_{n2}=2}$$
(13)

E-step: For the observed 300 cases, all y_{n1}, y_{n2} are observed thus fixed, while for missing data, one of them need to be estimated, e.g. for the 28 datapoints with Y_1 missing, the estimation is simply from Bayesian formula

$$p(y_{n1} = 1, y_{n2} = 1) = \frac{\pi_{11}}{\pi_{11} + \pi_{12}}, \ p(y_{n1} = 1, y_{n2} = 2) = \frac{\pi_{12}}{\pi_{11} + \pi_{12}}$$
(14)

We do this for all missing data.

In M-step, we take the derivative of log likelihood function and set it to zero w.r.t. π_{ij}

$$\sum_{n} p(y_{n1} = i, y_{n2} = j) / \pi_{ij} - \lambda = 0$$

$$\pi_{ij} \propto \sum_{n} p(y_{n1} = i, y_{n2} = j)$$

$$\pi_{ij} = \sum_{n} p(y_{n1} = i, y_{n2} = j) / \sum_{i,j} \sum_{n} p(y_{n1} = i, y_{n2} = j)$$
(15)

(3)

The MLE of π from EM algorithm is [0.27912927 0.17190756 0.24112718 0.30783599]

(4)

The odds ratio from complete data is 100 * 75 / (75 * 50) = 2.0, while that from MLE is 2.07, not equal.