RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

Universal Forgery Attack against GCM-RUP

Yanbin Li¹, Gaëtan Leurent², Meiqin Wang¹, Wei Wang¹, Guoyan Zhang¹, Yu Liu¹

¹ Shandong University, China

² Inria, France

Presented by Ferdinand Sibleyras

Ph.D. Student Inria, France

Universal Forgery Attack against GCM-RUP

Yanbin Li, Gaëtan Leurent, Meiqin Wang, Wei Wang, Guoyan Zhang, Yu Liu

Outline

- About GCM-RUP
- Motivation and Contributions
- Brief Description of GCM-RUP
- Partial Authentication Key Recovery for GCM-RUP
- Universal Forgery Attack of GCM-RUP
- Variant of GCM-RUP

About GCM-RUP

About GCM-RUP

GCM (Galois/Counter Mode)

- Authenticated Encryption scheme following the Encrypt-then-MAC paradigm, proposed by Dworkin
- Not robust against implementation errors or misuse
- Lose its security if a device releases the plaintext corresponding to invalid ciphertext before verifying the tag

GCM-RUP

- Instantiation of the variant construction of GCM, proposed by Ashur et al.
- Secure even in the releasing unverified plaintext (RUP) setting
- Designers prove that GCM-RUP is secure up to the birthday bound in the noncerespecting model

Motivation and Contributions

Motivation and Contributions

Motivation

- No attacks are known so far against the authentication part of GCM-RUP
- Is the security proof of GCM-RUP tight?
- What kind of security degradation to expect after the birthday bound

Contributions

- Partial key recovery by utilizing collision on inner states, leading to universal forgeries
- Birthday-bound universal forgery attack against GCM-RUP, matching the security proof
- Minor modification to GCM-RUP to avoid our attack

Brief Description of GCM-RUP

Generic Construction with RUP Security

- (Enc, Dec): encryption scheme (without authentication)
 - $-\mathcal{K}$: key space; \mathcal{N} : nonce space; \mathcal{M} : message space; \mathcal{C} : ciphertext space.
- (*E*, *D*): TBC
 - key space \mathcal{L} , tweak space $\mathcal{T} = \mathcal{C}$, domain $\mathcal{X} = \mathcal{N}$.

GCM-RUP

M Enc_K XTX construction E_L with GHASH (a) Encryption

CTR for encryption

GCM-RUP

- CTR for encryption
- XTX construction with **GHASH for TBC**

Universal Hash Function GHASH

- $GHASH_{K_2}(A,C)$ is defined by $GHASHcore_{K_2}(A \parallel C \parallel |A| \parallel |C|)$
- Key K_2 and inputs A and C.
- Polynomial evaluation:

$$GHASHcore_{K_2}(x) = \bigoplus_{i=0}^{|x|_n-1} x[i] \cdot K_2^{|x|_n-1}$$

where x is a full-block string and the symbol "·" represents multiplication in $GF(2^n)$.

Partial Authentication Key Recovery for GCM-RUP

Properties of GHASH

• Focus on the component $GHASH_{K_2}$ with inputs the associated data A and the ciphertext C.

```
G = GHASH_{K_2}(A, C)
= GHASHcore_{K_2}(A \parallel C \parallel |A| \parallel |C|)
```

- G is linearly independent on the A and C for a fixed K_2 .
- Hence, we consider the difference ΔG in the output of $GHASH_{K_2}$ for a pair of inputs.

Properties of GHASH

Property 1.

If GCM-RUP is used to process a fixed associated data A and message M under two distinct nonces N_1 and N_2 , the output difference of function $GHASH_{K_2}$ is only dependent on the nonces N_1 and N_2 , but independent on A and M. This also holds for the input difference of E_{K_3} .

• So let $C_1 = M \oplus E_{K_1}(N_1)$ and $C_2 = M \oplus E_{K_1}(N_2)$:

$$\Delta G = GHASH_{K_2}(A, C_1) \oplus GHASH_{K_2}(A, C_2)$$

$$= GHASH_{K_2}(0, C_1 \oplus C_2)$$

$$= GHASH_{K_2}(0, E_{K_1}(N_1) \oplus E_{K_1}(N_2))$$

Recovering K_2 from Inner Collisions

Based on Property 1, we can retrieve the authentication key K_2 with the following two steps.

• For a fixed associated data A and M, search for a pair of nonces (N_1,N_2) which produce a collision for the input of E_{K_3} (i.e. inner collision) using a birthday attack.

• With a known $\Delta G = N_1 \oplus N_2$, a polynomial equation in K_2 is derived from the $GHASH_{K_2}$ definition. Then K_2 can be retrieved by solving

this equation.

Find Inner Collisions

Find Inner Collisions

Number of nonces needed q is related to the probability of success p.

$$q \approx \sqrt{2 \times 2^{128} \times \ln(\frac{1}{1-p})}$$

Number of nonces to identify inner of	collision Probability of finding inner collision
2^{63}	11%
2^{64}	39%
2^{65}	86%
2^{66}	99.9%

Universal Forgery Attack of GCM-RUP

Almost Universal Forgery Attack

Let $G = GHASH_{K_2}(A, C)$ and the key-stream used to XOR message is $E_{K_1}(N) = C \oplus M$.

- Query (N, A, M) and receive the ciphertext (S, C)
- Compute $C^* = M^* \oplus E_{K_1}(N)$
- Construct A' such that $GHASH_{K_2}(A',C^*) = GHASH_{K_2}(A,C)$, where A,C,C^* and K_2 are known

Universal Forgery Attack

- Make $2^{n/2}$ queries (N_i, A, M) for fixed A and M with $|M| = |M^*|$, and receive the ciphertexts (S_i, C_i)
- Compute $G_i = GHASH(A, C_i)$ and receive inputs and outputs to E_{K_3} : $E_{K_3}(N_i \oplus G_i) = S_i \oplus G_i$
- For each N_i , build the corresponding C'_i from M^* and C_i as above
- Check whether $N_i \oplus GHASH(A^*, C_i')$ is in the set of known inputs to E_{K_3}
- If so, find $N_i = N_j$ satisfying $N_i \oplus GHASH(A^*, C_i') = N_j \oplus G_j$, and then we deduce a forgery using $S' = S_j \oplus G_j \oplus GHASH(A^*, C_i')$

Variant of GCM-RUP

A Variant of GCM-RUP to Avoid Our Attack

 GH_L inc_{32} inc_{32} E_{K_l} E_{K_I} E_{K_l} $E_{K_{I}}$ Avoid key leakage from known difference. $\mathsf{msb}_{\ \tau + |M|}$ E_{K_3} E_{K_4}

0 τ

M

Conclusion

- Birthday-bound attack against authentication part of GCM-RUP.
- Bound is tight but drastic break at security bound, unlike GCM.
- Minor modification can avoid this attack.

If you have any question please contact Professor Meiqin Wang at mqwang@sdu.edu.cn