## 1 Profiles & Layout

1.1

1.2

1.3

### 2 Process Procedures

2.1

2.2

2.3

### 3 Calculations

a) Film Thickness

| Layer          | Theoretical calculation (nm) | Experimental (nm) | % Error | Linewidths (photoresist) (nm) | Linewidths (after PR Strip) (nm) | % Overetch |
|----------------|------------------------------|-------------------|---------|-------------------------------|----------------------------------|------------|
| Field Oxide    | 505.8                        | 477.2             | 5.65    | ?                             | 3000                             | ?          |
| Polysilicon    | ?                            | ?                 | ?       | ?                             | ?                                | ?          |
| Gate Oxide     | 80.1                         | 86.5              | 7.40    | 3628                          | 4000                             | ?          |
| Intermed Oxide | 386.3                        | 320               | 17.2    | ?                             | ?                                | ?          |
| Aluminum       | ?                            | ?                 | ?       | 2088                          | 2520                             | ?          |

b) Sheet Resistance

1) Theoretical and experimental thicknesses of field oxide, gate and intermediate oxides (Include orientation dependence of oxidation rate but not impurity dependence) (9 points)

For details on the theoretical oxide thickness calculations see Appendix 5.1.

| Layer          | Theoretical (nm) | Experimental (nm) | % Error |
|----------------|------------------|-------------------|---------|
| Field Oxide    | 505.8            | 477.2             | 5.65    |
| Gate Oxide     | 80.1             | 86.5              | 7.40    |
| Intermed Oxide | 386.3            | 320               | 17.2    |

2) Junction depths after pre-diffusion and drive-in (theoretical, assume only phosphorous doping with surface concentration limited by solid solubility). You must consider the effect of the initial ion implantation. For pre-deposition you may use the box approximation, but for drive-in you must use the half-gaussian calculation. Why is this? (10 points)

For details on the junction depth calculations see Appendix 5.2. Also the reason we use a box approximation for the pre-diffusion is because we have a constant source profile. However, for drive-in we now have source-limited diffusion.

| Step          | Junction Depth (nm) |
|---------------|---------------------|
| Pre-diffusion | 365                 |
| Drive-in      | 1000                |

3) test

test

4) Plot or sketch the change of dopant profile from the silicon surface through the source-drain after each thermal step. Quantitatively label significant points such as Peak concentration, Peak Width, Junction Depth. Show movement of the Silicon-Silicon Dioxide interface and qualitatively show non-ideal effects

c) Overetch

#### such as dopant redistribution during oxidation. (11 points)

The profiles were all created in Tsuprem-4 using the EE143 process flow.

• Field Oxidation



Figure 1: Dopant profile with only field oxide. The Si-SiO<sub>2</sub> interface occurs at  $0.2104\mu m$ . There was about 500 nm of field oxide deposited here. The peak concentration is roughly  $10^{16.74}$ .

5) test test

6) List an estimate of the Young's modulus, Poisson ratio, and coefficient of thermalexpansion for SiO<sub>2</sub>, poly-Si, and Al films as deposited. (You can find these in a table in many physics/ME textbooks, or in a web-based search.) (2 points)

See table below

coeff. of Young's modulus Poisson's ratio Material thermal expansion (GPa) (a.u.)  $(K^{-1})$  $5.6 \cdot 10^{-}$  $SiO_2$  [3] 57(dry)-70(wet)0.17  $4.6 \cdot 10^{-6}$ poly-Si [2  $169 \pm 6.15$  $0.22 \pm .011$  $22.2 \cdot 10^{-6}$ 0.33 Aluminum [4] 70

Figure 2: Values were found from various journals/articles found online ([2],[3], and[4]) and many of these values are calculated for thin films of the material.

## 4 Questions

1. The lab uses positive photoresist. The lithography machine uses a light that has g line wavelength. The I and G lines refer to the wavelength of the light coming off the light bulb that reacts with photoresist. G line is roughly xx wavelength and I line is xx wavelength.

# 5 Appendix

### 5.1 Oxide Thickness calculations

Film thickness calculation for oxides:

$$X_{ox} = \frac{0.5B}{B/A} \left[ \sqrt{1 + \frac{4}{B} (\frac{B}{A})^2 (t+\tau)} - 1 \right]$$
 (1)

$$\tau = \frac{X_i^2}{B} + \frac{X_i}{B/A} \tag{2}$$

where

$$B/A = D_o e^{\frac{-E_a}{kT}}$$
 (Use table 3.1 [1] to find  $E_a$  and  $D_o$ )
$$B = D_o e^{\frac{-E_a}{kT}}$$
 (Use table 3.1 [1] to find  $E_a$  and  $D_o$ )
$$t = \text{Time of oxide growth}$$

$$\tau = \text{Time of initial oxide growth already present}$$

$$X_i = \text{length of initial oxide growth}$$

Example: Calculated oxide thickness of Intermed Oxide:

Given: 5 min dry oxidation at  $1050^{\circ}$ C and 12 + 25 min wet oxidation annealing at  $1050^{\circ}$ C, calculate oxide growth.

First we consider the 5 min dry oxidation. Using table 3.1 [1] for a < 100 > Silicon, and using dry oxidation, we see that for the linear rate constant (B/A),  $E_A = 2.00$  eV and  $D_o = 3.71 \times 10^6 \,\mu\text{m/hr}$ . For the parabolic rate constant (B),  $E_A = 1.23$  eV and  $D_o = 772 \,\mu\text{m/hr}$ .

Using an arrhenius equation where k = Boltzmann's constant, and T = temperature.

$$B/A = D_o e^{\frac{-E_A}{kT}} = 3.71 \times 10^6 e^{\frac{-2.00*1.602 \times 10^{-19}}{1.38 \times 10^{-23} (1050^{\circ} C + 273)}} = 0.0887 \mu m/hr$$

$$B = D_o e^{\frac{-E_A}{kT}} = 772 e^{\frac{-1.23*1.602 \times 10^{-19}}{1.38 \times 10^{-23} (1050^{\circ} C + 273)}} = 0.0159 \,\mu m^2/hr$$

Since there is no initial oxide here,  $\tau = 0$ ,

$$X_{ox} = \frac{0.5B}{B/A} \left[ \sqrt{1 + \frac{4}{B} (\frac{B}{A})^2 (t+\tau)} - 1 \right] = \frac{0.5(0.0159)}{0.0887} \left[ \sqrt{1 + \frac{4}{0.0159} (0.0887)^2 (\frac{5\min}{60\min/hr} + 0)} - 1 \right] \approx 7.11 \text{ nm}$$

Now after this dry oxidation, we have a 37 minute wet oxidation at 1050°C. Using table 3.1 [1] again, but this time using the constants that apply for wet oxidation,

$$B/A_{\text{wet}} = D_o e^{\frac{-E_A}{kT}} = 9.70 \times 10^7 e^{\frac{-2.05*1.602 \times 10^{-19}}{1.38 \times 10^{-23} (1050^{\circ} \text{C} + 273)}} = 1.50 \mu \text{m/hr}$$

$$B_{\text{wet}} = D_o e^{\frac{-E_A}{kT}} = 386 e^{\frac{-0.78*1.602 \times 10^{-19}}{1.38 \times 10^{-23} (1050^{\circ} \text{C} + 273)}} = 0.411 \,\mu \text{m}^2/\text{hr}$$

This time we do have an initial oxidation time  $\tau$  because of the dry oxidation we did in the previous step. Here  $X_i$  is the oxide length we calculated for the dry oxidation growth,

$$\tau = \frac{{X_i}^2}{B_{\text{wet}}} + \frac{X_i}{B/A_{\text{wet}}} = \frac{0.00711^2}{0.411} + \frac{0.00711}{1.50} \approx 0.00488 \text{hrs}$$

And finally our oxide growth is,

$$X_{ox} = \frac{0.5B}{B/A} \left[ \sqrt{1 + \frac{4}{B} (\frac{B}{A})^2 (t+\tau)} - 1 \right] = \frac{0.5(0.411)}{1.50} \left[ \sqrt{1 + \frac{4}{0.411} (1.50)^2 (\frac{(12+25)\min}{60\min/hr} + 0.00488hrs)} - 1 \right] \approx 386.3 \text{ nm}$$

### 5.2 Junction Depth Calculations

Junction depth calculation for box approximation (limited-source diffusion):

$$x_i = 2\sqrt{Dt\ln\left(N_o/N_B\right)}\tag{3}$$

and for a half gaussian (constant-source diffusion):

$$x_j = 2\sqrt{Dt}\operatorname{erfc}^{-1}(N_B/N_o) \tag{4}$$

where,

$$D = D_o e \frac{-E_A}{kT} \text{ (Diffusion coefficient)}$$

t = time of diffusion

 $N_B = \text{Background impurity concentration}$ 

 $N_o = \text{Surface concentration limited by solid solubility}$ 

Example: Calculate the junction depth after pre-diffusion and drive in.

According to the process flow [5], our silicon wafer has a resistivity of about 14-16 ohm-cm. From the same process flow we know that we had a phosphorus doped, solid solubility limited constant diffusion at 1050°C. Using figure 4.6 [1] we see that at a temperature of 1050°C our phosphorus surface concentration  $N_o \approx 10^{21}/\mathrm{cm}^3$ . Now using the Resistivity of our wafer and figure 4.8 [1], we see that we have an impurity concentration  $N_B \approx 8 \times 10^{14}/\mathrm{cm}^3$ .

Using table 4.1 [1], we can calculate our diffusion coefficient. Note that pre-diffusion was done at 1050°C for 5 minutes.

$$D = D_o e^{\frac{-E_A}{kT}} = 10.5 \,\text{cm}^2/\text{sec } \exp\left(\frac{-3.69 * 1.602 \times 10^{-19}}{1.38 \times 10^{-23} (1050 + 273)}\right) = 9.11 \times 10^{-14} \,\text{cm}^2/\text{sec}$$

Now we can plug everything into our solid solubility limited box approximation equation:

$$x_j = 2\sqrt{Dt} \operatorname{erfc}^{-1}(N_B/N_o) = 2\sqrt{(9.11 \times 10^{-14})(300 \operatorname{sec})} \operatorname{erfc}^{-1}(8 \times 10^{14}/10^{21}) \approx 365 \operatorname{nm}$$

Now for drive-in we kept the temperature the same, 1050°C, but kept the wafer inside the furnace for 37 minutes (2220 seconds). Also we can no longer assume a simple box approximation, we must use a half gaussian; this means that our surface concentration is going to change with drive-in.

We will use the following equation,

$$N_B = (Q/\sqrt{\pi D_2 t_2}) \exp\left(-\left(\frac{x_j}{2\sqrt{D_2 t_2}}\right)^2\right)$$
 (5)

where Q is the does rate,

$$Q = 2N_o \sqrt{D_1 t_1/\pi} \tag{6}$$

Combining the two equations and noting that  $D_1 = D_2$  because we are using the same temperature, 1050°C, for both pre-diffusion and drive-in ( $t_1$  is the pre-diffusion time and  $t_2$  is the drive in time),

$$N_B = (2N_o/\pi)\sqrt{\frac{t_1}{t_2}}\exp\left(-(\frac{x_j}{2\sqrt{D_2t_2}})^2\right)$$

Solving this for  $x_i$  yields,

$$x_j = 2\sqrt{D_2 t_2 \ln \left( (2N_o/\pi N_B)(\sqrt{t_1/t_2}) \right)} = 2\sqrt{(9.11 \times 10^{-14})(2220) \ln \left( (2(10^{21})/\pi (8 \times 10^{14}))(\sqrt{300/2220}) \right)} \approx 1000 \, nm$$

### 6 References

- 1. Jaeger, Richard. Introduction to microelectronic fabrication. New Jersey: Prentice Hall, 2002. Print.
- 2. Sharpe, William N., Bin Yuan, and Ranji Vaidyanathan. Measurements of Young's Modulus, Poisson's ratio, and Tensile Strength of Polysilicon. Publication no. 1. Nagoya: IEEE, 1997. Web.
- 3. Kim, Min. "Influence of Substrates on the Elastic Reaction of Films for the Microindentation Tests." Thin Solid Films 283 (1996): 15. Web.
- 4. Chinmulgund, M. "Effect of Ar Gas Pressure on Growth, Structure, and Mechanical Properties of Sputtered Ti, Al, TiAl, and Ti3Al Films." Thin Solid Films 270.1-2 (1995): 260-63. Web.