Redes de Computadores

Nível de Transporte

Aula 22

Nível de transporte

Redes de Computadores

Introdução

- Motivação
 - Complexidade das redes (diversidade e quantidade de dispositivos)
 - Heterogeneidade dispositivos, enlaces e tecnologias
- Objetivo:
 - Tornar complexidade transparente aos processos de aplicação
 - Esconder detalhes e fornecer uma visão simplificada
 - Fornecer comunicação lógica entre processos de aplicação
 - Camada de rede oferece comunicação lógica entre hospedeiros
- Visão:

Contexto do protocolo de transporte

Redes de Computadores 3 Redes de

2

- Quais serviços são implantados pela camada de transporte?
- Serviços da entidade de transporte são
 - executados nos sistemas finais
 - disponibilizados às camadas superiores através de primitivas
 - Ex.: no TCP/IP corresponde a interface de sockets
- Construídos sobre recursos abstratos (virtuais)
 - Entidade de transporte (TSAP)
 - Ex.: identificador 6 para o TCP e 17 para o UDP
 - Conexão

Redes de Computadores

5

Principais Serviços

- Encapsulamento e desencapsulamento
- Multiplexação e demultiplexação
- Controle de fluxo
- Controle de erro
- Orientados a conexão e não orientados a conexão (próxima aula)
- Controle de congestionamento
- Segurança

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

Qualidade de serviço

Redes de Computadores

Encapsulamento e desencapsulamento

- Inserção/retirada de informações de controle da camada de transporte
 - Ex.: número de sequência, controle de fluxo e de erro
- Considera fragmentação e remontagem

TCP/IP: formato do segmento TCP

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

Redes de Computadores

TCP/IP: Formato do datagrama UDP

TCP/IP: Modelo de T-PDUs

Orientado a mensagem

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

- Os dados são delimitados em T-PDUs independentes
- Modelo usado na camada de transporte da Internet (UDP)
 - T-PDU é denominada de datagrama

Rede

Nro send = nro recv

- Sequência contínua (byte stream)
 - Não há delimitação de T-PDUs
 - T-PDUs são interrelacionadas
 - Modelo empregado na camada de transporte da Internet (TCP)
 - T-PDU é denominada de segmento

Redes de Computadores

10

Multiplexação e demultiplexação

- Multiplexação
 - Uma única entidade recebe dados de várias origens (muitos para um)
- Demultiplexação
 - Uma entidade encaminha dados mais de um destino (um para muitos)

■ No "mundo TCP/IP" a multiplexação/demultiplexação é feita com base no canal lógico (isso é, porta e endereço IP)

TCP/IP: O conceito de porta

- É um número de 16 bits utilizado como identificador
- Existem dois tipos de portas
 - Bem conhecidas (well know ports): 1 a 1023
 - Efêmeras (ephemeral ports)
 - Registered ports: 1024 a 49151
 - Dynamics and/or private ports: 49152 a 65535
 - http://www.iana.org/assignments/port-numbers
- Portas TCP s\u00e3o independentes de Portas UDP
- - Porta 100 (TCP) ≠ Porta 100 (UDP), mas se convenciona "alocar" as duas simultaneamente para um mesmo protocolo

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

12 Redes de Computadores 11 Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi 4-nov-13

- Objetivo é evitar a perda de dados do lado consumidor (destino)
- Comunicação é uma relação produtor-consumidor
 - Emissor produz dados que são consumidos pelo destino
 - Problema: taxa de produção maior que a taxa de consumo
- Formas de entrega:

Redes de Computadores 13

Controle de erro

- Responsável por
 - Detectar e descartar T-PDUs com erro
 - Identificar T-PDUs faltantes e solicitar seu reenvio (ou reenvio por timeout)
 - Reconhecer T-PDUs duplicadas e descartá-las
 - Armazenar T-PDUs de forma a garantir a entrega na ordem, sem erros, sem duplicação para o destino final (processo de aplicação)
- Na interação aplicação-transporte-transporte-aplicação
 - Controle de fluxo é feito entre a camada de aplicação e transporte
 - Controle de erro é feito apenas na camada de transporte

Na prática....

Números de sequência

Redes de Computadores

- O controle de erro necessita saber
 - Quais T-PDUs devem ser reenviadas (erro ou perda)
 - Quais T-PDUs estão duplicadas
 - Qual é a ordem correta das T-PDUs
- Solução: identificar T-PDUs com números de sequência
 - TPDU-s são numerados sequencialmente na sua origem
 - Possibilidade de identificador "lacunas" nos números de sequência devido a perdas e chegada fora de ordem
 - Possibilidade de detectar duplicação ao receber duas T-PDUs com o mesmo número

Questão associada: quantos bits se usa para o número de sequência? Evitar confusão entre um "novo zero" e a retransmissão de um "velho zero"

15

Redes de Computadores

Controle de erros é feito através de confirmações

- Positivas: guando uma T-PDU foi recebida corretamente
- Negativas: quando uma T-PDU não foi recebida corretamente
- Confirmações são associadas aos números de sequência
- Ações sobre T-PDUs
 - Recebidas sem erros: se tudo OK, confirma sua recepção correta
 - Se duplicada: descarta e confirma sua recepção
 - Se fora de ordem: ordena e confirma a recepção das T-PDUs ordenadas
 - Se faltando: armazena e espera chegar a que falta
 - Recebidas com erro: são descartadas no destino e reenviadas por pedidos explícitos ou por timeout

Redes de Computadores

Controle de fluxo e congestionamento

- Evitar, de forma automática, que uma origem sobrecarregue um destino com o envio de dados
 - Mecanismo básico é janela deslizante
 - Sobrecarga pode levar a perdas de dados (overflow)
- Estratégia: destino indica a capacidade de recepção informando o número de bytes extras que pode receber
 - Envio de zero bytes suspende a transmissão
 - Risco de deadlock → time-out de janela
- Congestionamento

Redes de Computadores

- Perda é consequência de erro de transmissão
- Suposição: congestionamento ocasionou a perda
 - Retransmissão não deve ocorrer imediatamente

Combinação de controle de fluxo e controle de erro

- Relação produtor-consumidor baseado em buffers de transmissão e recepção
 - Buffers: unidades de tamanho fixo (bytes ou quadros) ou variável (quadros)
 - Controle de capacidade do buffer e da recepção (go-back N, selective repeat, stop-and-wait)

Redes de Computadores

18

Segurança

17

19

TCP oferece controle de fluxo e congestionamento.

O UDP, não.

- Mecanismos de segurança
 - Autenticação
 - Controle de acesso (autorização)
 - Confidencialidade
- Os serviços/protocolos são classificados em seguros e inseguros
 - Na Internet, os protocolos TCP e UDP são inseguros

Instituto de Informática - UFRGS A. Carissimi 4-nov-13

Redes de Computadores 20

Serviços que permitem a definição de parâmetros para funcionamento

- Vazão, latência, variação do atraso (jitter), taxa de perda etc
- Normalmente são parâmetros das camadas inferiores que são mapeados na camada de transporte
 - Se não são ofertados pela camada N-1, não há como uma camada N fazer garantias para uma camada superior N+1
- Na Internet, nem o TCP, nem o UDP oferecem mecanismos de QoS

Redes de Computadores 21

TCP: Controle de fluxo

- Baseado em um esquema de crédito (genérico)
 - Variação de janela deslizante onde os buffers de transmissão e recepção são de tamanho variável (blocos múltiplos de bytes = segmentos TCP)
 - Emissor tem crédito para enviar até *n* bytes ao destino
 - Segmento ao ser aceito (processado), o destino renova a quantidade de créditos por um valor c (0 < c ≤ n)
 - Créditos podem ser renegociados
 - Tamanho da janela é negociado no estabelecimento da conexão (Maximum Segment Size – MSS). (valor default é 536 bytes para Ethernet)
 - Confirmações (ACKs) servem renovar os créditos

Estudo de casos: protocolos Internet

- Protocolo UDP
 - Não possui controle de fluxo
 - Não faz controle de erro
 - Há apenas detecção de erro em um datagrama individual
- Protocolo TCP

Instituto de Informática - UFRGS A. Carissimi-4-nov-13

- Realiza controle de fluxo (esquema de créditos)
- Realiza controle de erro
 - Confirmações positivas
 - Retransmissões por time-out
- Mecanismos baseados em números de sequência

Redes de Computadores 22

TCP: Controle de fluxo

- Sistema de créditos
 - Capacidade de buffer no receptor
 - Janelas de transmissão e recepção

Redes de Computadores 23 Redes de Computadores 24

TCP: Confirmação positiva (ACK)

- Baseado no valor no campo acknowledge number (ACK)
 - Indica o número de sequência dos bytes já processados pela aplicação
- Informa ao transmissor o próximo byte a ser recebido

TCP: Controle de sequência

- Garante a recepção dos dados na ordem da emissão e sem duplicação
- Cada byte enviado possui um número de sequência associado
- O segmento TCP é identificado pelo número de seguência do seu primeiro byte

Redes de Computadores

TCP: Retransmissão

Redes de Computadores

- O protocolo TCP emprega timeout por segmentos
 - Processo origem dispara um timeout para cada segmento enviado
 - Segmento é retransmitido quando a origem não recebe a confirmação antes da expiração do temporizador
- Tratamento da duplicação é feito pelo sequence number
 - Destino espera segmento com número x, qualquer segmento com número inferior é considerado duplicado e é descartado

TCP: Controle de erros

- Objetivo:garantir o recebimento correto dos segmentos
 - Sem erros, na ordem, sem duplicação
- Baseado em:
 - Confirmação positiva (ACK)
 - Similar ao go-back N
 - Confirmação seletiva (SACK)
 - RFC 2018, permite o reconhecimento seletivo (similar ao selective repeat)
 - Retransmissão por time-out

Instituto de Informática - UFRGS A. Carissimi 4-nov.-13

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

27

28

26

TCP: Ações em caso de erros

- Segmentos recebidos com erro
 - Descarte
- Segmento perdido
 - Retransmissão por time-out (não confirmado)
- Segmentos fora de ordem
 - Armazena no buffer, espera chegar, e ordena posteriormente
- Segmento duplicado (já recebeu aquele SN)
 - Descarte

Redes de Computadores

Leituras complementares

- Stallings, W. *Data and Computer Communications* (6th edition), Prentice Hall 1999.
 - Capítulo 15, seção 15.3, 15.4
- Tanenbaum, A. *Redes de Computadores* (4ª edição), Campus, 2000.
 - Capítulo 6, seção 6.1, 6.2 e 6.3
- Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>. Série Livros Didáticos. Bookman 2009.
 - Capítulo 6, seções 6.1 a 6.3

Leituras complementares

- Stallings, W. *Data and Computer Communications* (6th edition), Prentice Hall 1999.
 - Capítulo 15, seção 15.3, 15.4
- Tanenbaum, A. Redes de Computadores (4ª edição), Campus, 2000.
 - Capítulo 6, seção 6.1, 6.2 e 6.3
- Carissimi, A.; Rochol, J; Granville, L.Z; Redes de Computadores. Série Livros Didáticos. Bookman 2009.

30

Capítulo 6, seções 6.1 a 6.3

Instituto de Informática - UFRGS A. Carissimi -4-nov-13

Redes de Computadores

29