# **Predictive Maintenance Using Machine Learning**

Adithya Harsha | DePaul University | Chicago, IL, USA

#### **X** Overview

This project predicts potential machine failures in industrial and manufacturing sectors using **machine learning techniques**. By analyzing sensor and operational data, it enables:

- Proactive maintenance scheduling
- Reduced downtime
- Minimized operational costs

### Dataset Description

• Source: Kaggle Predictive Maintenance Dataset

• Records: 10,000 data points with 14 features

- Failure Types:
  - Tool Wear Failure
  - Heat Dissipation Failure
  - Power Failure
  - o Overstrain Failure
  - Random Failures

## **©** Objective

Develop a **predictive model** to identify impending machine failures, improving:

- Maintenance scheduling
- Reduction of unexpected downtimes



#### 1. Data Preprocessing

- **No Missing Values:** The dataset contains complete data.
- Outlier Handling:
  - o Identified using Interquartile Range (IQR).
  - Applied **log transformation** for extreme values.
- Scaling:

# **Predictive Maintenance Using Machine Learning**

Adithya Harsha | DePaul University | Chicago, IL, USA

o Standardized numerical features (e.g., air temperature, rotational speed).

#### Encoding:

o Categorical features transformed using **One-Hot Encoding**.

### 2. Exploratory Data Analysis (EDA)

- Key Patterns:
  - Temperature Correlation: Strong positive relationship between air and process temperatures.
  - o Rotational Speed vs Torque: Inverse correlation observed.

#### 3. Feature Engineering

- Mechanical Power: Product of rotational speed and torque.
- **Temperature Difference:** Difference between process and air temperatures.
- Applied log transformation to engineered features for stability.

#### 4. Model Training

- Models Evaluated:
  - o Random Forest
  - Gradient Boosting
  - XGBoost
  - AdaBoost
  - o Logistic Regression
- Best Model:
  - XGBoost achieved 97.8% accuracy.



#### **XGBoost Performance**

Accuracy: 97.8%

• Precision: 0.64

• Recall: 0.72

• F1 Score: 0.68

#### **Key Insights**

- **Proactive Maintenance:** Effectively identifies failures before escalation.
- Resource Optimization: Enables efficient scheduling and cost reduction.

# **Predictive Maintenance Using Machine Learning**

Adithya Harsha | DePaul University | Chicago, IL, USA

### Key Takeaways

- Proactive Maintenance:
  - o Identify machine failures early to prevent costly downtimes.
- Resource Optimization:
  - o Efficient scheduling reduces unnecessary maintenance costs.

#### Future Work

- Real-time Data Integration: Enable dynamic analysis.
- IoT Deployment: Use sensor data for continuous monitoring.
- Adaptive Model Retraining: Improve predictions over time.

#### Acknowledgments

- **Dataset:** Provided by Kaggle.
- **Libraries:** Utilized open-source tools for development.