Linearkombinationer og spænd, Afsnit 1.3–1.5

13. februar 2025

Lineær Algebra

Forår 2025

Del I Repetition

Quiz

Gå til hjemmesiden

https://poll.math.aau.dk/wjahjgtr

Pivotsøjler

Lad A være en matrix, og lad R være dens reducerede trappeform.

De søjler i A, hvor R har pivotindgange, kaldes pivotsøjler

For et konsistent ligningssystem $[A|\mathbf{b}]$, hvor \mathbf{a}_i er i'te søjle i A, kaldes den tilhørende variabel x_i for...

▶ basisvariabel▶ fi variabel

hvis ai er en pivotsøjle

hvis a; ikke er en pivotsøjle

Antal løsninger

Fra trappeformen kan vi også afgøre, om ligningssystemet har nogen løsninger

Sætning

Lad $[R|\mathbf{c}]$ være trappeformen af totalmatricen $[A|\mathbf{b}]$ for et ligningssystem. Da gælder

- ▶ Hvis $[R|\mathbf{c}]$ har pivot i sidste søjle, er systemet inkonsistent.
- ► Hvis [R|c] ikke har pivot i sidste søjle, er systemet konsistent. Systemet har da uendeligt mange løsninger, hvis der er mindst én fri variabel. Ellers har det en entydig løsning.

Nulrækker er OK

Nulrækker kan ikke bruges til at afgøre, om systemet har løsninger eller ej

$$\begin{bmatrix}
1 & 0 & 7 & 0 & 3 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 7 & 0 & | & 3 \\
0 & 1 & 2 & 0 & | & -1 \\
0 & 0 & 0 & 1 & | & 2 \\
0 & 0 & 0 & 0 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 7 & 0 & | & 3 \\
0 & 1 & 2 & 0 & | & -1 \\
0 & 0 & 0 & 0 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{bmatrix}$$
Konsistent

Særlige matricer

Definition

En $n \times 1$ -matrix kaldes en *søjlevektor*, og en $1 \times n$ -matrix kaldes en rækkevektor.

Ofte undlades 'søjle' og 'række', så vi bare kalder dem vektorer

Rohherchlore: [032], [12], [0]

Vektorer i mange dimensioner

I kender måske allerede vektorer i...

- ► planet (2 dimensioner)
- ► rummet (3 dimensioner)

Vi kan sagtens arbejde i n dimensioner, hvor n > 3.

Rum af vektorer

Mængden af alle $m \times 1$ -vektorer med reelle indgange betegnes \mathbb{R}^m

Det vil sige, at

▶
$$\mathbb{R}^2$$
 er planet

▶ \mathbb{R}^3 er runnet

Et eksempel på en vektor i \mathbb{R}^7 er

Vektoraddition

Vektorer kan lægges sammen og ganges med skalarer (reelle tal)

► Summen **u** + **v** udregnes elementvist

For en skalar c er cu den vektor, hvor hvert element i u er gand med c

Linearkombinationer

Definition

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ være vektorer i \mathbb{R}^n og c_1, c_2, \dots, c_k skalarer i \mathbb{R} . Da siges

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$$

at være en *linearkombination* af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ med koefficienter (el. vægte) c_1, c_2, \dots, c_k .

Eksempel

Lad $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ og $v_2 = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$. En linearkombination af v_1 og v_2 er

$$5v_1 + (-1)v_2 = \begin{bmatrix} 5 \\ 10 \end{bmatrix} - \begin{bmatrix} 6 \\ 7 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Vektorspænd

Definition

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ være vektorer i \mathbb{R}^n . Mængden af alle linearkombinationer af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ kaldes *spændet* af vektorerne og betegnes $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

Eksempel

Lad $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ og $v_2 = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$ som før. Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ består af alle vektorer på formen...

extorer pa formen...

$$C_1 \left[\frac{1}{2} \right] + C_2 \left[\frac{6}{7} \right] = \left[\frac{1}{2} c_1 + b c_2 \right]$$

kas valges frit

Geometrisk fortolkning

Spændet af vektorer har en naturlig geometrisk fortolkning i \mathbb{R}^2 og \mathbb{R}^3

Ligger en vektor i spændet?

Vi så, at Span
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\} = c_1 \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 \begin{bmatrix} 6\\7 \end{bmatrix}$$

Kan vi afgøre, om $\mathbf{b} = \begin{bmatrix} 9\\8 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}$?

$$c_1 \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 \begin{bmatrix} 6\\7 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

$$c_1 + c_2 \begin{bmatrix} 6\\7 \end{bmatrix} = \begin{bmatrix} 9\\8 \end{bmatrix}$$

Ligner det noget, vi kender?

Vektorligninger

Sætning

Lad A være en $m \times n$ -matrix med søjler $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (i \mathbb{R}^m), og lad \mathbf{b} være en vektor i \mathbb{R}^m . Vektorligningen

$$x_1$$
a₁ + x_2 **a**₂ + · · · + x_n **a**_n = **b**

har samme løsningsmængde som det lineære ligningssystem med totalmatrix $[A|\mathbf{b}]$.

Hvilke vektorer ligger i spændet?

Vi kunne også undersøge: Ligger alle vektorer **b** i Span $\{v_1, v_2, \dots, v_m\}$?

Hvis nej, hvilke gør så/gør så ikke?

Hvilke vektorer ligger i spændet?

Eksempel

Lad
$$v_1 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2 \\ 8 \\ 6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$. Hvad er Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

$$=\begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 4 & 8 & 3 & | & b_2 \\ 3 & 6 & 1 & | & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 & | & b_1 \\ 0 & 0 & -5 & | & b_2 & -4b_1 \\ 0 & 0 & -5 & | & b_3 & -3b_1 \end{bmatrix}$$

vokbra b ligger
i spoudt his of
kun his
by-b2+b3=0

Matrix-vektor-produkt

I lineær algebra tænker vi ofte på et ligningssystem som et produkt mellem en matrix og en vektor

Definition

Lad A være en $m \times n$ -matrix med søjler $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (i \mathbb{R}^m), og lad \mathbf{v} være en vektor i \mathbb{R}^n Vi definerer da *matrix-vektor-produktet* mellem A og \mathbf{v} til at være

$$A\mathbf{v}=v_1\mathbf{a}_1+v_2\mathbf{a}_2+\cdots+v_n\mathbf{a}_n.$$

Bemærk, at størrelserne skal passe sammen: \mathbf{v} skal have ligeså mange rækker som A har søjler.

Matrix-vektor-produkt

Eksempel

$$\begin{bmatrix} 4 & 1 & -1 & 0 \\ 7 & 0 & 3 & 2 \\ 6 & -2 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 4 \\ 7 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + 6 \begin{bmatrix} -1 \\ 3 \\ -3 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

$$3 \times 4 \qquad 4 \times 1 = \begin{bmatrix} 6 \\ 5 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ -1 \\ 6 \end{bmatrix}$$

Matrix-vektor-produkt Nogle produkter er lette

Troope UNIVERSAL

Eksempel

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} + C \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$I_3 \quad identitets matrices$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} \alpha_{11} \\ \alpha_{21} \\ \alpha_{31} \end{bmatrix} + 1 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{32} \end{bmatrix} + 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{21} \\ \alpha_{32} \end{bmatrix} + 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{32} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{32} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{22} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{12} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{23} \\ \alpha_{33} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \end{bmatrix} = 0 \begin{bmatrix} \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{13} \\ \alpha_{$$

Observation

Det i'te element i Av er givet ved i'te element i

$$v_1$$
a₁ + v_2 **a**₂ + ··· + v_n **a**_n.

Dette element er

$$v_1 a_{i1} + v_2 a_{i2} + \cdots + v_n a_{in} = [a_{i1} a_{i2} \cdots a_{in}] \cdot \mathbf{v}$$

Altså: Det i'te element i Av er givet ved...

Egenskaber

Sætning

Lad A være en $m \times n$ -matrix, \mathbf{u} og \mathbf{v} være vektorer i \mathbb{R}^n og \mathbf{c} være et reelt tal. Da gælder

- $\blacktriangleright \ A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
- \blacktriangleright $A(c\mathbf{u}) = c(A\mathbf{u}) = (cA)\mathbf{v}$
- $ightharpoonup Ae_i = a_i$, hvor e_i har 1 i indgang i og 0 i alle andre
- ► O_n **v** = **0**, hvor O_n er $n \times n$ -matricen med 0 i alle indgange
- ► I_n **v** = **v**, hvor I_n er $n \times n$ -matricen med indgang (i,j) lig 1, hvis i = j, og 0 ellers

Egenskaber

Vi kan særligt bemærke, at de første to punkter giver

Korollar

Lad $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ være vektorer i \mathbb{R}^n , og lad c_1, c_2, \dots, c_s være reelle tal. Da gælder

$$A(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_s\mathbf{v}_s)=c_1A\mathbf{v}_1+c_2A\mathbf{v}_2+\cdots+c_sA\mathbf{v}_s$$

Med andre ord: Matrix-vektorproduktet mellem A og en linearkombination af $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ giver linearkombinationen af $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_s$ med samme koefficienter.

Matrixligninger

Hvis
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$$
 og $\mathbf{x} \in \mathbb{R}^n$, har vi
$$A\mathbf{x} = \chi_1 \widetilde{\alpha}_1 + \chi_2 \widetilde{\alpha}_2 + \ldots + \chi_n \widetilde{\alpha}_n$$

Det vil sige, at matrixligningen $A\mathbf{x} = \mathbf{b}$, har samme løsninger som...

Tre ækvivalente repræsentationer

Sætning

Lad $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ være en $m \times n$ -matrix, og lad **b** være en vektor i \mathbb{R}^m . Løsningsmængderne for følgende systemer er ens.

- (i) Matrixligningen $A\mathbf{x} = \mathbf{b}$
- (ii) Vektorligningen $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$
- (iii) Det lineære ligningssystem med totalmatrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ | \ \mathbf{b}]$

[4/A]

Tre ækvivalente repræsentationer Eksempel

Eksempel

Oversæt matrixligningen $\begin{bmatrix} 0 & 4 & 2 & -1 \\ 2 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$ til en

vektorligning og til totalmatricen for et lineært ligningssystem.

Konsistens og spænd

Ækvivalensen mellem matrixligninger og vektorligninger giver derfor:

Ligningen $A\mathbf{x} = \mathbf{b}$ har en løsning, hvis og kun hvis \mathbf{b} er en linearkombination af \mathbf{b}

Med andre ord: Ligningen er konsistent, hvis og kun hvis

Homogene ligningssystemer

En matrixligning på formen $A\mathbf{x} = \mathbf{0}$ kaldes *homogen*

Har denne altid en løsning?

Je, for du her altid X=0 Som

Kaldes de trivielle losning

Parametrisk form

Sidste gang så vi, at systemet med totalmatrix $\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & -3 & 0 \end{bmatrix}$ har løsningerne givet ved

$$\begin{cases} x_1 = -2x_2 + x_4 \\ x_2 \text{ er fri} \\ x_3 = 3x_4 \\ x_4 \text{ er fri} \end{cases}$$

Dette kan også skrives på formen

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 5 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

$$(x_2 = 5, x_1 = 0) \qquad (x_2 = 0, x_4 = 1)$$

Parametrisk form

Betragter vi i stedet totalmatricen $\left[\begin{array}{ccc|c}1&2&0&-1&4\\0&0&1&-3&5\end{array}\right]$ bliver løsningerne i stedet

$$\begin{cases} x_1 = 4 - 2x_2 + x_4 \\ x_2 \text{ er fri} & x_2 = 5 \\ x_3 = 5 + 3x_4 \\ x_4 \text{ er fri} & x_4 = 5 \end{cases}$$

På parametrisk form er dette

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 5 \\ 0 \end{bmatrix} \rightarrow 5 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow 4 \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$$

$$(\chi_1 \Rightarrow \chi_4 = 0) \qquad \text{if} (\chi_2 = 5, \chi_4 = 0) \qquad \text{if} (\chi_2 = 0, \chi_4 = 1)$$

Inhomogene systemer

Dette leder til følgende karakterisering af den *inhomogene* ligning $A\mathbf{x} = \mathbf{b}$, hvor $\mathbf{b} \neq \mathbf{0}$.

Sætning

Lad $A\mathbf{x} = \mathbf{b}$ være et konsistent ligningssystem, hvor $\mathbf{b} \neq \mathbf{0}$, og lad \mathbf{p} være en (hvilken som helst) løsning.

Løsningsmængden for $A\mathbf{x} = \mathbf{b}$ er da alle vektorer \mathbf{w} på formen

$$\mathbf{w} = \mathbf{p} + \mathbf{v}_h,$$

hvor \mathbf{v}_h er en løsning til det homogene system $A\mathbf{x} = \mathbf{0}$.

Geometrisk fortolkning

Vi kan tænke på løsningerne til det inhomogene system som en parallelforskydning af løsningerne til det homogene.

