

3 Zusammenfassung: Quadratische Matrizen

Definitionen

Eine Matrix A heisst quadratisch, wenn sie gleich viele Zeilen wie Spalten hat (d.h. m = n). Die Elemente $a_{11}, a_{22}, ..., a_{nn}$ bilden dann die sogenannte Hauptdiagonale von A.

Eine Matrix D heisst Diagonal matrix, wenn alle Elemente ausserhalb der Hauptdiagonalen = 0 sind.

Eine Einheitsmatrix E ist eine Diagonalmatrix, bei der alle Diagonalelemente = 1 sind.

3.1 Inverse Matrizen

Definitionen

Die *Inverse* einer quadratischen Matrix A ist eine Matrix A^{-1} , für die gilt: $A \cdot A^{-1} = A^{-1} \cdot A = E$. Eine quadratische Matrix heisst *invertierbar / regulär*, wenn sie eine Inverse hat. Andernfalls heisst sie *singulär*.

Inverse einer 2x2-Matrix:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Um die Inverse einer grösseren Matrix A zu berechnen, wenden wir das Gauss-Jordan-Verfahren auf die Matrix $(A \mid E)$ an. Wenn A invertierbar ist, führt dieses auf die Matrix $(E \mid A^{-1})$.

3.2 Determinanten

Die Formeln für Determinanten von 2×2 - und 3×3 -Matrizen merkt man sich am besten so:

Die Elemente auf einer Diagonalen werden miteinander multipliziert. Dann werden die verschiedenen Produkte addiert bzw. subtrahiert, je nach Vorzeichen.

Berechnung der Determinante einer $n \times n$ -Matrix nach Laplace

Um die Determinante einer $n \times n$ -Matrix A zu berechnen, wählen wir

Dann ,entwickeln' wir die Determinante gemäss der folgenden Formel:

Entwicklung nach der i-ten Zeile: $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$ Entwicklung nach der j-ten Spalte: $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$

Bezeichnungen:

 a_{ij} ist das Element der Matrix A in der i-ten Zeile und der j-ten Spalte.

 A_{ij} ist die Matrix, die man erhält, wenn man bei A die i-te Zeile und die j-te Spalte weglässt.

School of Engineering

Geometrische Interpretation der Determinante

Der Betrag der Determinante einer 2×2-Matrix ist gleich dem Flächeninhalt des Parallelogramms, das von den Spalten der Matrix (aufgefasst als Vektoren) aufgespannt wird.

Der Betrag der Determinante einer 3×3-Matrix ist gleich dem Volumeninhalt des Spats, das von den Spalten der Matrix (aufgefasst als Vektoren) aufgespannt wird.

Wichtige Eigenschaften der Determinante

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für eine $n \times n$ -Dreiecksmatrix U gilt: $det(U) = u_{11} \cdot u_{22} \cdot \dots \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $det(A \cdot B) = det(A) \cdot det(B)$
- (5) Für jede invertierbare Matrix A gilt: $det(A^{-1}) = \frac{1}{det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

Definition

Wir betrachten Vektoren $\vec{a}_1, \vec{a}_2, ..., \vec{a}_k$ mit *n* Komponenten.

Diese Vektoren heissen *linear unabhängig*, wenn gilt: $0 \cdot \vec{a}_1 + 0 \cdot \vec{a}_2 + ... + 0 \cdot \vec{a}_k$ ist die einzige Linearkombination von $\vec{a}_1, \vec{a}_2, ..., \vec{a}_k$, die $\vec{0}$ ergibt. Andernfalls heissen sie *linear abhängig*.

Koeffizientenmatrix, Determinante, Lösbarkeit des Gleichungssystems

Für eine quadratische $n \times n$ -Matrix A sind die folgenden Aussagen äquivalent:

- (1) $det(A) \neq 0$
- (2) Die Spalten von A sind linear unabhängig.
- (3) Die Zeilen von A sind linear unabhängig.
- (4) rg(A) = n
- (5) A ist invertierbar.
- (6) Das lineare Gleichungssystem $A \cdot \vec{x} = \vec{c}$ hat eine eindeutige Lösung.