

FCC Test Report

(PART 90S)

Report No.: RF170106C02-5

FCC ID: ZMOL850GL

Test Model: L850-GL

Received Date: Jan. 06, 2017

Test Date: Jan. 11, 2017 ~ Feb. 02, 2017

Issued Date: Feb. 21, 2017

Applicant: Fibocom Wireless Inc.

Address: 5/F, Tower A, Technology Building II, 1057 Nanhai Blvd, Nanshan,

Shenzhen, China

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencie

Table of Contents

Re	leas	e Control Record	. 3			
1	Cert	tificate of Conformity	. 4			
2	Sun	nmary of Test Results	. 5			
	2.1	Measurement Uncertainty	. 5			
		Test Site and Instruments				
3	Gen	eral Information	. 8			
	2 1	General Description of FLIT	Ω			
	0.2					
	3.3					
		General Description of Applied Standards				
4	Test	t Types and Results	11			
	11	Output Power Measurement	11			
	7.1					
		· ·				
	4.2					
		4.2.3 Test Setup				
		4.2.4 Test Results				
	4.3					
		4.3.1 Test Procedure	21			
		4.3.2 Test Setup				
	4.4					
	4 =					
	4.5					
		!				
	46					
	4.0					
		Measurement Uncertainty				
5	Pict					
		_				
, ,h	P311					

Release Control Record

Issue No.	Description	Date Issued
RF170106C02-5	Original Release	Feb. 21, 2017

1 Certificate of Conformity

Product: LTE module

Brand: Fibocom

Test Model: L850-GL

Sample Status: Identical Prototype

Applicant: Fibocom Wireless Inc.

Test Date: Jan. 11, 2017 ~ Feb. 02, 2017

Standards: FCC Part 90, Subpart S

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , Date: Feb. 21, 2017

Gina Liu / Specialist

Approved by : , **Date:** Feb. 21, 2017

David Huang / Project Engineer

2 Summary of Test Results

	Applied Standard: FCC Part 90 & Part 2									
FCC Clause	Test Item	Result	Remarks							
2.1046 90.635 (b)	Effective Radiated Power	Pass	Meet the requirement of limit.							
2.1055 90.213	Frequency Stability	Pass	Meet the requirement of limit.							
2.1049 90.209	Occupied Bandwidth (*)	Pass	Meet the requirement of limit.							
2.1051 90.209	Emission Masks		Meet the requirement of limit.							
2.1051 90.691	Conducted Spurious Emissions		Meet the requirement of limit.							
2.1053 90.691	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -33.41 dB at 223.03 MHz.							

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Redicted Emissions up to 1 CUz	30 MHz ~ 200 MHz	2.93 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Dedicted Emissions shows 1 CHz	1 GHz ~ 18 GHz	2.26 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Test Site and Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Jun. 21, 2016	Jun. 20, 2017
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 16, 2016	Dec. 15, 2017
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 13, 2016	Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 26, 2016	Dec. 27, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Dec. 12, 2016	Dec. 13, 2017
Double Ridge Guide Horn Antenna EMCO	3115	5619	Dec. 26, 2016	Dec. 27, 2017
BILOG Antenna SCHWARZBECK	VULB 9168	9168-153	Dec. 12, 2016	Dec. 13, 2017
Agilent Communications Tester-Wireless	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Preamplifier EMCI	EMC 012645	980115	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 184045	980116	Oct. 21, 2016	Oct. 20, 2017
Preamplifier EMCI	EMC 330H	980112	Oct. 21, 2016	Oct. 20, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2016	Sep. 07, 2017
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2016	Sep. 07, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 21, 2016	Oct. 20, 2017
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 21, 2016	Oct. 20, 2017
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 21, 2016	Oct. 20, 2017
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Radio Communication Analyzer	MT8820C	6201300640	Aug. 10, 2015	Aug. 09, 2017
Temperature & Humidity Chamber	GTH-120-40-CP-A R	MAA1306-019	Sep. 02, 2016	Sep. 01, 2017
DC Power Supply Topward	33010D	807748	Oct. 25, 2016	Oct. 24, 2018
Digital Multimeter Fluke	87-III	70360742	Jul. 01, 2016	Jun. 30, 2017

- Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HwaYa Chamber 10.
 - 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
 - 4. The FCC Site Registration No. is 690701.
 - 5. The IC Site Registration No. is IC7450F-10.

3 General Information

3.1 General Description of EUT

Product	LTE module					
Brand	Fibocom					
Test Model	L850-GL					
Status of EUT	Identical Prototype					
Power Supply Rating	3.3 Vdc (from Host Equipment)					
Modulation Type	LTE QPSK, 16QAM					
	LTE Band 26 (Channel Bandwidth: 1.4 MHz)	814.7 ~ 823.3 MHz				
Eregueney Benge	LTE Band 26 (Channel Bandwidth: 3 MHz)	815.5 ~ 822.5 MHz				
Frequency Range	LTE Band 26 (Channel Bandwidth: 5 MHz)	816.5 ~ 821.5 MHz				
	LTE Band 26 (Channel Bandwidth: 10 MHz)	819 MHz				
	LTE Band 26 (Channel Bandwidth: 1.4 MHz)	1M09W7D				
Emission Designator	LTE Band 26 (Channel Bandwidth: 3 MHz)	2M70G7D				
Emission Designator	LTE Band 26 (Channel Bandwidth: 5 MHz)	4M50W7D				
	LTE Band 26 (Channel Bandwidth: 10 MHz)	9M00G7D				
	LTE Band 26 (Channel Bandwidth: 1.4 MHz)	81.47 mW				
Max. ERP Power	LTE Band 26 (Channel Bandwidth: 3 MHz)	86.70 mW				
wax. ERP Power	LTE Band 26 (Channel Bandwidth: 5 MHz)	94.84 mW				
	LTE Band 26 (Channel Bandwidth: 10 MHz)	98.63 mW				
Antenna Type	External Antenna					
Accessory Device	Refer to Note as below					
Data Cable Supplied	Refer to Note as below					

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	ERP	Radiated Emission		
LTE Band 26	X-plane	Z-axis		

LTE Band 26

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
		26697 to 26783	26697, 26740, 26783	1.4 MHz	QPSK, 16QAM	1 RB / 2 RB Offset
	ERP	26705 to 26775	26705, 26740, 26775	3 MHz	QPSK, 16QAM	1 RB / 7 RB Offset
-	ERP	26715 to 26765	26715, 26740, 26765	5 MHz	QPSK, 16QAM	1 RB / 12 RB Offset
		26740	26740	10 MHz	QPSK, 16QAM	1 RB / 49 RB Offset
		26697 to 26783	26697, 26783	1.4 MHz	QPSK	1 RB / 2 RB Offset
	Frequency	26705 to 26775	26705, 26775	3 MHz	QPSK	1 RB / 7 RB Offset
=	Stability	26715 to 26765	26715, 26765	5 MHz	QPSK	1 RB / 12 RB Offset
		26740	26740	10 MHz	QPSK	1 RB / 49 RB Offset
		26697 to 26783	26697, 26740, 26783	1.4 MHz	QPSK, 16QAM	6 RB / 0 RB Offset
	Occupied	26705 to 26775	26705, 26740, 26775	3 MHz	QPSK, 16QAM	15 RB / 0 RB Offset
_	Bandwidth	26715 to 26765	26715, 26740, 26765	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
		26740	26740	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset

EUT Configure Mode	Test Item	Test Item Available Channel Tested Channel Bandwidth		Modulation	Mode	
		26697 to 26783	26697, 26740, 26783	1.4 MHz	QPSK, 16QAM	6 RB / 0 RB Offset
	Emission Mask	26705 to 26775	26705, 26740, 26775	3 MHz	QPSK, 16QAM	15 RB / 0 RB Offset
-		26715 to 26765	26715, 26740, 26765	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
		26740	26740	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset
		26697 to 26783	26697, 26740, 26783	1.4 MHz	QPSK	1 RB / 0 RB Offset
	Conducted	26705 to 26775	26705, 26740, 26775	3 MHz	QPSK	1 RB / 0 RB Offset
-	Emission	26715 to 26765	26715, 26740, 26765	5 MHz	QPSK	1 RB / 0 RB Offset
		26740	26740	10 MHz	QPSK	1 RB / 0 RB Offset
-	Radiated Emission	26740	26740	10 MHz	QPSK	1 RB / 49 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP	25 deg. C, 65 % RH	3.3 Vdc	Getaz Yang
Frequency Stability	25 deg. C, 65 % RH	3.3 Vdc	Carlos Chen
Occupied Bandwidth	25 deg. C, 65 % RH	3.3 Vdc	Carlos Chen
Band Edge	25 deg. C, 65 % RH	3.3 Vdc	Carlos Chen
Peak to Average Ratio	25 deg. C, 65 % RH	3.3 Vdc	Carlos Chen
Condcudeted Emission	25 deg. C, 65 % RH	3.3 Vdc	Carlos Chen
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 90 ANSI/TIA/EIA-603-D 2010

Note: All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Mobile / Portable station are limited to 100 watts e.r.p.

4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 5 MHz for CDMA and 10 MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Conducted Power Measurement:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 Test Setup

EIRP / ERP Measurement:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

				QPSK				16QAM		
Band /	RB	RB	Low Ch 26697	Mid Ch 26740	High Ch 26783	3GPP MPR	Low Ch 26697	Mid Ch 26740	High Ch 26783	3GPP MPR
BW	Size	Offset	814.7	819.0	823.3	(dB)	814.7	819.0	823.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.39	22.21	22.01	0	21.36	21.14	20.99	1
	1	2	22.26	22.10	21.88	0	21.25	21.04	20.85	1
	1	5	22.15	21.92	21.66	0	21.04	20.88	20.55	1
26 / 1.4M	3	0	22.35	22.17	21.98	0	21.32	21.14	20.94	1
	3	1	22.17	21.97	21.87	0	21.17	20.99	20.70	1
	3	3	22.13	21.94	21.62	0	21.01	20.80	20.53	1
	6	0	21.22	21.17	20.93	1	20.12	19.93	19.75	2

			QPSK			16QAM				
Band /	RB	RB	Low Ch 26705	Mid CH 26740	High CH 26775	3GPP MPR	Low Ch 26705	Mid CH 26740	High CH 26775	3GPP MPR
BW	Size	Offset	815.5	819.0	822.5	(dB)	815.5	819.0	822.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	22.45	22.30	22.13	0	21.36	21.28	21.04	1
	1	7	22.32	22.18	21.98	0	21.24	21.06	20.99	1
	1	14	22.16	22.02	21.82	0	21.12	21.00	20.79	1
26 / 3M	8	0	21.41	21.24	21.04	1	20.21	20.15	19.96	2
	8	3	21.26	21.04	20.84	1	20.23	20.00	19.79	2
	8	7	21.14	21.01	20.79	1	20.02	19.91	19.66	2
	15	0	21.44	21.14	20.91	1	20.26	20.09	19.98	2

		RB Official		QPSK				16QAM		
Band /	RB		Low Ch 26715	Mid Ch 26740	High Ch 26765	3GPP MPR	Low Ch 26715	Mid Ch 26740	High Ch 26765	3GPP MPR
DVV	Size	Offset	816.5 MHz	819.0 MHz	821.5 MHz	(dB)	816.5 MHz	819.0 MHz	821.5 MHz	(dB)
	4	_								4
	1	0	22.59	22.43	22.25	0	21.58	21.34	21.21	1
	1	12	22.49	22.29	22.15	0	21.48	21.30	21.06	1
	1	24	22.33	22.16	21.97	0	21.20	21.07	20.88	1
26 / 5M	12	0	21.51	21.42	21.22	1	20.35	20.31	20.05	2
	12	6	21.36	21.30	21.13	1	20.29	20.27	20.03	2
	12	13	21.22	21.08	20.85	1	20.11	20.09	19.92	2
	25	0	21.43	21.34	21.21	1	20.47	20.34	20.15	2

Band / BW	RB Size	RB Offset	QPSK Mid Ch 26740 819.0 MHz	3GPP MPR (dB)	16QAM Mid Ch 26740 819.0 MHz	3GPP MPR (dB)
	1	0	22.73	0	21.72	1
	1	24	22.61	0	21.59	1
	1	49	22.46	0	21.34	1
26 / 10M	25	0	21.60	1	20.51	2
	25	12	21.51	1	20.49	2
	25	25	21.22	1	20.23	2
	50	0	21.68	1	20.55	2

ERP Power (dBm)

				LTE Band 26			
		(Channel Bai	ndwidth: 1.4 MHz	z / QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)
	26697	814.7	-10.99	32.01	18.87	77.09	
	26740	819.0	-10.85	32.11	19.11	81.47	Н
V	26783	823.3	-11.35	32.32	18.82	76.21	
Х	26697	814.7	-18.98	32.54	11.41	13.84	
	26740	819.0	-18.85	32.51	11.51	14.16	V
	26783	823.3	-19.03	32.51	11.33	13.58	
		C	hannel Ban	dwidth: 1.4 MHz	/ 16QAM		
	26697	814.7	-11.88	32.01	17.98	62.81	
	26740	819.0	-11.78	32.11	18.18	65.77	Н
V	26783	823.3	-12.48	32.32	17.69	58.75	
Х	26697	814.7	-20.02	32.54	10.37	10.89	
	26740	819.0	-19.94	32.51	10.42	11.02	V
	26783	823.3	-20.18	32.51	10.18	10.42	

				LTE Band 26			
			Channel Ba	ndwidth: 3 MHz	/ QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)
	26705	815.5	-10.68	32.02	19.19	82.99	
	26740	819	-10.58	32.11	19.38	86.70	Н
l x	26775	822.5	-10.99	32.18	19.04	80.17	
^	26705	815.5	-18.78	32.5	11.57	14.35	
	26740	819	-18.68	32.51	11.68	14.72	V
	26775	822.5	-18.84	32.47	11.48	14.06	
		(Channel Ba	ndwidth: 3 MHz	/ 16QAM		
	26705	815.5	-11.79	32.02	18.08	64.27	
	26740	819.0	-11.65	32.11	18.31	67.76	Н
X	26775	822.5	-12.05	32.18	17.98	62.81	
^	26705	815.5	-19.89	32.5	10.46	11.12	
	26740	819.0	-19.75	32.51	10.61	11.51	V
	26775	822.5	-19.94	32.47	10.38	10.91	

	LTE Band 26									
	Channel Bandwidth: 5 MHz / QPSK									
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)			
	26715	816.5	-10.35	32.04	19.54	89.95				
	26740	819.0	-10.19	32.11	19.77	94.84	Н			
X	26765	821.5	-10.69	31.79	18.95	78.52				
_ ^	26715	816.5	-18.47	32.52	11.90	15.49				
	26740	819.0	-18.24	32.51	12.12	16.29	V			
	26765	821.5	-18.55	32.17	11.47	14.03				
			Channel Ba	ndwidth: 5 MHz	/ 16QAM					
	26715	816.5	-11.49	32.04	18.40	69.18				
	26740	819.0	-11.33	32.11	18.63	72.95	Н			
X	26765	821.5	-11.82	31.79	17.82	60.53				
^	26715	816.5	-19.56	32.52	10.81	12.05				
	26740	819.0	-19.48	32.51	10.88	12.25	V			
	26765	821.5	-19.62	32.17	10.40	10.96				

	LTE Band 26								
	Channel Bandwidth: 10 MHz / QPSK								
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)		
X	26740	819.0	-10.02	32.11	19.94	98.63	Н		
^	26740	819.0	-17.85	32.51	12.51	17.82	V		
		(Channel Bar	ndwidth: 10 MHz	/ 16QAM				
	26740	819.0	-11.26	32.11	18.70	74.13	Н		
Х	26740	819.0	-18.93	32.51	11.43	13.90	V		

4.2 Frequency Stability Measurement

- 4.2.1 Limits of Frequency Stability Measurement
- 1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station.

4.2.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 Test Setup

4.2.4 Test Results

Frequency Error vs. Voltage

Voltage (Volts)					
	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.3	815.500001	0.002	822.500002	0.002	2.5
3.14	815.500001	0.002	822.500002	0.002	2.5
4.4	815.500004	0.004	822.500004	0.005	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.14 Vdc to 4.4 Vdc.

- 1	or vs. remperature	LTE B	and 26		
		Channel Band	width: 1.4 MHz		
Temp. (℃)	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-20	816.500002	0.002	821.500003	0.003	2.5
-10	816.500002	0.003	821.500001	0.001	2.5
0	816.500001	0.002	821.500002	0.003	2.5
10	816.500004	0.005	821.500004	0.005	2.5
20	816.499997	-0.004	821.499997	-0.004	2.5
30	816.499998	-0.003	821.499997	-0.004	2.5
40	816.499997	-0.004	821.499997	-0.004	2.5
50	816.499997	-0.004	821.499997	-0.003	2.5
55	816.499996	-0.005	821.499997	-0.004	2.5

Frequency Error vs. Voltage

Voltage (Volts)					
	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.3	815.500001	0.002	822.500002	0.002	2.5
3.14	815.500001	0.002	822.500002	0.002	2.5
4.4	815.500004	0.004	822.500004	0.005	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.14 Vdc to 4.4 Vdc.

	or vs. remperature	LTE B	and 26		
		Channel Band	dwidth: 3 MHz		
Temp. (℃)	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-20	815.500001	0.002	822.500004	0.004	2.5
-10	815.500003	0.004	822.500004	0.004	2.5
0	815.500002	0.003	822.500003	0.003	2.5
10	815.500003	0.004	822.500004	0.005	2.5
20	815.499999	-0.002	822.499996	-0.005	2.5
30	815.499999	-0.002	822.499997	-0.003	2.5
40	815.499997	-0.004	822.499997	-0.004	2.5
50	815.499999	-0.002	822.499998	-0.003	2.5
55	815.499996	-0.005	822.499998	-0.003	2.5

Frequency Error vs. Voltage

Voltage (Volts)					
	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.3	816.500001	0.001	821.500003	0.004	2.5
3.14	816.500002	0.002	821.500001	0.001	2.5
4.4	816.500001	0.002	821.500002	0.003	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.14 Vdc to 4.4 Vdc.

- 11-1-17	or vs. remperature	LTE B	and 26		
		Channel Band	dwidth: 5 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-20	816.500002	0.002	821.500003	0.003	2.5
-10	816.500002	0.003	821.500001	0.001	2.5
0	816.500001	0.002	821.500002	0.003	2.5
10	816.500004	0.005	821.500004	0.005	2.5
20	816.499997	-0.004	821.499997	-0.004	2.5
30	816.499998	-0.003	821.499997	-0.004	2.5
40	816.499997	-0.004	821.499997	-0.004	2.5
50	816.499997	-0.004	821.499997	-0.003	2.5
55	816.499996	-0.005	821.499997	-0.004	2.5

Frequency Error vs. Voltage

	LTE Ba		
Voltage (Volts)	Channel Band	Limit (ppm)	
	Low C		
	Frequency (MHz)	Frequency Error (ppm)	
3.3	819.000004	0.004	2.5
3.14	819.000002	0.003	2.5
4.4	819.000004	0.004	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.14 Vdc to 4.4 Vdc.

	LTE B		
Temp. (°C)	Channel Band	Limit (ppm)	
	Low C		
	Frequency (MHz)	Frequency Error (ppm)	
-20	819.000004	0.005	2.5
-10	819.000004	0.005	2.5
0	819.000003	0.004	2.5
10	819.000004	0.004	2.5
20	818.999997	-0.003	2.5
30	818.99998	-0.002	2.5
40	818.999997	-0.004	2.5
50	818.999999	-0.001	2.5
55	818.99998	-0.003	2.5

4.3 Occupied Bandwidth Measurement

4.3.1 Test Procedure

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.2 Test Setup

4.3.3 Test Result

LTE Band 26							
Channel Bandwidth: 1.4 MHz				Channel Bandwidth: 3 MHz			
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)	
		QPSK	16QAM		(MHz)	QPSK	16QAM
26697	814.7	1.09	1.10	26705	815.5	2.70	2.70
26740	819.0	1.09	1.09	26740	819.0	2.70	2.70
26783	823.3	1.09	1.09	26775	822.5	2.70	2.70

LTE Band 26							
Channel Bandwidth: 5 MHz				Channel Bandwidth: 10 MHz			
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)	
		QPSK	16QAM		(MHz)	QPSK	16QAM
26715	816.5	4.50	4.50	26740			
26740	819.0	4.50	4.50		819.0	9.01	9.00
26765	821.5	4.50	4.50				

4.4 Emission Mask Measurement

4.4.1 Limits of Band Edge Measurement

According to FCC part 90.691 shall be tested the emission mask. For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50+10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

4.4.2 Test Setup

4.4.3 Test Procedures

- a. The measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Record the test plot.

4.4.4 Test Results

4.5 Conducted Spurious Emissions

4.5.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.

4.5.2 Test Setup

4.5.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30 MHz to 9 GHz. 10 dB attenuation pad is connected with spectrum. RBW=1 MHz and VBW=3 MHz are used for conducted emission measurement.

4.5.4 Test Results

4.6 Radiated Emission Measurement

4.6.1 Limits of Radiated Emission Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.

4.6.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.3 Deviation from Test Standard

No deviation.

4.6.4 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.5 Test Results

LTE Band 26

Channel Bandwidth: 10 MHz / QPSK

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 Chamber 5

Condition: PART 90 HORIZONTAL

Remak : LTE Band 26 QPSK_10M_L-CH Link

Tested by: Getaz Yang

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 1633.00 -54.74 -39.95 -13.00 -41.74 -14.79 Peak

Report Format Version: 6.1.1

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 Chamber 5 Condition: PART 90 VERTICAL

Remak : LTE Band 26 QPSK_10M_L-CH Link

Tested by: Getaz Yang

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 1633.00 -48.06 -33.27 -13.00 -35.06 -14.79 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Frequency (MHz)

Site : 966 Chamber 5 Condition: PART 90 HORIZONTAL

Remak : LTE Band 26 QPSK_10M_M-CH Link

Tested by: Getaz Yang

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 1638.00 -56.32 -41.53 -13.00 -43.32 -14.79 Peak

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 Chamber 5 Condition: PART 90 VERTICAL

Remak : LTE Band 26 QPSK_10M_M-CH Link

Tested by: Getaz Yang

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 1638.00 -49.45 -34.66 -13.00 -36.45 -14.79 Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 Chamber 5 Condition: PART 90 HORIZONTAL

Remak : LTE Band 26 QPSK_10M_H-CH Link

Tested by: Getaz Yang

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 41.64 -59.18 -58.77 -13.00 -46.18 -0.41 Peak 2 pp 223.03 -46.41 -39.33 -13.00 -33.41 -7.08 Peak 3 265.71 -52.46 -46.15 -13.00 -39.46 -6.31 Peak 4 353.01 -61.25 -55.03 -13.00 -48.25 -6.22 Peak 5 451.95 -63.31 -57.80 -13.00 -50.31 -5.51 Peak 6 576.11 -62.82 -61.06 -13.00 -49.82 -1.76 Peak 7 1643.00 -58.18 -43.45 -13.00 -45.18 -14.73 Peak

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 Chamber 5 Condition: PART 90 VERTICAL

Remak : LTE Band 26 QPSK_10M_H-CH Link

Tested by: Getaz Yang

Read Limit Over Line Limit Factor Remark Freq Level Level MHz dBm dBm dBm dB dB -0.41 Peak 1 pp 41.64 -49.53 -49.12 -13.00 -36.53 204.60 -51.75 -43.92 -13.00 -38.75 -7.83 Peak 3 251.16 -59.31 -53.30 -13.00 -46.31 -6.01 Peak

4 395.69 -58.65 -52.68 -13.00 -45.65 -5.97 Peak 5 454.86 -58.98 -53.52 -13.00 -45.98 -5.46 Peak 6 546.04 -60.42 -57.43 -13.00 -47.42 -2.99 Peak 7 1643.00 -50.46 -35.73 -13.00 -37.46 -14.73 Peak

5 Pictures of Test Arrangements						
Please refer to the attached file (Test Setup Photo).						

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---