

Introduction to NLP

Lexicalized parsing

Limitations of PCFGs

- The probabilities don't depend on the specific words
 - E.g., give someone something (2 arguments) vs. see something (1 argument)
- It is not possible to disambiguate sentences based on semantic information
 - E.g., eat pizza with pepperoni vs. eat pizza with fork
- Lexicalized grammars idea
 - Use the head of a phrase as an additional source of information
 - VP[ate] -> V[ate]

Lexicalization Example

Collins Parser (1999) 1/2

- Generative, lexicalized model
- Types of rules
 - $LHS \rightarrow L_n L_{n-1} \dots L_1 H R_1 \dots R_{m-1} R_m$
 - H gets generated first
 - L gets generated next
 - R gets generated last

Collins Parser (1999) 2/2

Maximum likelihood estimates

```
P<sub>ML</sub> (PPof-IN | VPthink-VB) =
Count (PPof-IN right of the head VPthink-VB) /
Count (symbols right of the head VPthink-VB)
```

Smoothing

```
smoothedP (PPof-IN | VPthink-VB) = \lambda_1 P (PPof-IN | VPthink-VB) + + \lambda_2 P (PPof-IN | VP-VB) + (1-\lambda_1-\lambda_2) P (PPof-IN | VP))
```


Issues With Lexicalized Grammars

- Sparseness of training data
 - Many probabilities are difficult to estimate from the Penn Treebank
- Combinatorial explosion
 - Need for parameterization

Discriminative Reranking

- A parser may return many parses of a sentence, with small differences in probabilities
- The top returned parse may not necessarily be the best because the PCFG may be deficient
- Other considerations may need to be taken into account
 - parse tree depth
 - left attachment vs. right attachment
 - discourse structure
- Can you think of others features that may affect the reranking?

Answer

- Considerations that may affect the reranking
 - parse tree depth
 - left attachment vs. right attachment
 - discourse structure
- Can you think of others?
 - consistency across sentences
 - or other stages of the NLU pipeline

Discriminative Reranking

n-best list

 Get the parser to produce a list of n-best parses (where n can be in the thousands)

reranking

 Train a discriminative classifier to rerank these parses based on external information such as a bigram probability score or the amount of right branching in the tree

Sample Performances

- F1 (sentences <= 40 words)
 - Charniak (2000) 90.1%
 - Charniak and Johnson (2005) 92% (discriminative reranking)

