Given: E/F_p , E/F_p E and E' are F_p -1 sogenous $f:E \to E'$ F preserves F_p outronal points

Prove: $|E(F_p)| = |E'(F_p)|$

Proof. Let ψ_p and ψ_p be the Frobenius maps (automorphisms). We then have $f \circ \psi_p = \psi_p' \circ f$, the conduction of $f \circ (\mathbf{1d} - \psi_p) = (\mathbf{1d} - \psi_p') \circ f$

For an elliptic curve E over F_p we have: $E = \frac{1}{2} |E(F_p)| = |\ker(Id - p)| = \deg(Id - p)$

with Id-y being separable. If For Isogenies between elliptic curves E, E', E'' and $d: E \rightarrow E'$, $\beta: E' \rightarrow E''$, we have $deg(\beta \circ d) = deg(\beta).deg(d)$

So, from II, it must be the case that $\deg(\mathrm{Id}-\psi_p)=\deg(\mathrm{Id}-\psi_p').$ From II), we can rewrite this as:

|E(Fp)| = |E(Fp)| 0

Given:
$$E/\mathbb{F}_p$$
, $E: y^2 = f(x)$

$$f(-x) = -f(x) - \text{odd function}$$

$$p = 3 \mod 4$$
Prove:

$$|E(F_p)| = p+1$$

Proof. Since
$$p \equiv 3 \mod 4$$
, $p-1$ is odd and therefore -1 is not a square mad p , we find that for $\forall n \in F$, either n or $-n$ is a square mod p .

We now consider the $\frac{p-1}{2}$ pairs [x, -x], $0 < x \le \frac{p-1}{2}$.

For each pair, we have sone of the three:

$$\int f(x) = f(-x) = 0$$

$$\int \frac{f(x)}{p} = 1$$

$$\iiint \frac{f(-x)}{P} = 1$$

In each of these cases, there are 2 points on E(Fp) associated with the pair [x,-x]:

II) $(x, \pm \sqrt{f(x)})$ So, there are $2 \cdot \frac{p-1}{2} = p-1$ points resulting from these pairs.

 $(\pm x, 0)$

Adding the point (0,0) and the point at infinity 0, we get p-1+2=p+1 points, so indeed

$$|E(\mathbb{F}_p)| = p+1$$
, $p \equiv 3 \mod 4$, $f(-x) = -f(x)$

Find: group structure of $E(F_{107}) - p = 107$ E: $y^2 = x^3 - x$, $E(F_{107}) \cong \mathbb{Z}/\alpha \mathbb{Z} \times \mathbb{Z}/\beta \mathbb{Z}$ $f(x) = X^3 - X \quad \text{is odd}:$ $(-X)^3 + X = -X^3 + X$ Theorem 12.15) 6 = kaand \$ 107 = 3 mod 4 - 50, from 6a), we know that the humber of elements on the curve: $|E(F_p)| = p+1$ $|E(F_{107})| = 107 + 1 = 108$ The roots of $x^3+x=x(x^2-1)=x(x^2+1)(x-1)$ are -1,0 and 1. Together with the point at infinity, there are 4 points, which form a subgroup of E(Q) which is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$. We know that p+1 and p-1 do not share a prime factor (with the exception of 2) and $(\mathbb{Z}/2\mathbb{Z})^2$ is a subgroup. Since $p-1=2 \mod 4 = (Z/4Z)^2$ is not a subgroup, it must be the case that $E(F_p) \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/\frac{|E(F_p)|}{2})$ In the case of p=107, we therefore have \$E(F107) = # Z/2Z x Z/54Z a=2, 6=54