Résolution de l'inégalité :

Soit l'inégalité :

$$-2(1-2x)(x-3)^2 \ge 0$$

Étapes de la résolution :

1. Trouver les racines et les points où l'expression est nulle :

$$1 - 2x = 0 \quad \Rightarrow \quad x = \frac{1}{2}$$

$$(x-3)^2 = 0 \quad \Rightarrow \quad x = 3$$

Les racines de l'expression sont donc $x=\frac{1}{2}$ et x=3. 2. Analyser le signe de l'expression $-2(1-2x)(x-3)^2$ sur les intervalles définis par ces racines.

Les trois intervalles sont :

$$(-\infty, \frac{1}{2}), \quad (\frac{1}{2}, 3), \quad (3, +\infty)$$

3. Construire le tableau de signes :

x	$-\infty$	$\frac{1}{2}$	3	$+\infty$
-2	_	_	_	_
(1-2x)	+	_	_	+
$(x-3)^2$	+	+	0	+
Produit	_	+	0	_

Explication : - Le facteur -2 est toujours négatif. - Le facteur (1-2x) est positif lorsque $x < \frac{1}{2}$ et négatif pour $x > \frac{1}{2}$. - Le facteur $(x-3)^2$ est toujours positif ou nul (il est nul uniquement pour x=3).

L'expression $-2(1-2x)(x-3)^2$ est positive sur l'intervalle $\left(\frac{1}{2},3\right)$ et égale à

0 en x = 3.

4. Conclusion : L'inégalité $-2(1-2x)(x-3)^2 \geq 0$ est vraie pour $\frac{1}{2} \leq x \leq 3$.