

Quantenkosmologie - Existiert die Zeit?

Big Questions

Jan Leo Löwe

14. Januar 2021

Inhaltsverzeichnis

- 1. Motivation der Quantenkosmologie
- 2. Quantengravitation
 - Diskussion des Zeitbegriffes
- 3. Wheeler-DeWitt Gleichung
- 4. Lösung des Zeitproblems
- 5. Alternative Theorien
- 6. Zusammenfassung

Kiefer, Quantengravitation

J.L. Löwe | 14. Januar 2021 2 / 32

Was ist Quantenkosmologie?

- Anwendung Quantentheorie auf Universum als Ganzes
- Quantenmechanische Beschreibung aller Freiheitsgrade im Universum
- Klärung offener Fragen:
 - Quantengravitation
 - Planck-Ära
 - Singularitäten
 - Irreversibilitäten

J.L. Löwe | 14. Januar 2021 3 / 32

Warum Quantenkosmologie?, H.D. Zeh, Institut für Theoretische Physik, Universität Heidelberg

Notwendigkeit der Quantenkosmologie

- Universelle Gültigkeit der Quantentheorie
- Quantensysteme können nicht isoliert betrachtet werden
 - → Wechselwirkung mit anderen Quantensystemen ("Umgebung")

■ Universum einzig abgeschlossenes System

J.L. Löwe | 14. Januar 2021 4 / 32

Quantenkosmologie

- Untersysteme nur näherungsweise Wellenfunktionen
- lacktriangle Universum mit hochgradig verschränkte Wellenfunktion ($\Psi_{Universum}$) beschreiben
- Universum auf großen Skalen von Gravitation dominiert

⇒ Universum wird zum Quantenkosmos

J.L. Löwe | 14. Januar 2021 5 / 32

Quantengravitation

J.L. Löwe | 14. Januar 2021 6 / 32

■ Zeit ist etwas Alltägliches → Grundlegend einer der schwierigsten Begriffe

J.L. Löwe | 14. Januar 2021 7 / 32

■ Zeit ist etwas Alltägliches → Grundlegend einer der schwierigsten Begriffe

1. Vor Newton

- Zeit mit periodischen Bewegungen assoziiert → "abzählbare" Zeit
- keine Vorstellung von Kontinuum
- "willkürlicher" Zeitparameter

J.L. Löwe | 14. Januar 2021 7 / 32

■ Zeit ist etwas Alltägliches → Grundlegend einer der schwierigsten Begriffe

1. Vor Newton

- Zeit mit periodischen Bewegungen assoziiert → "abzählbare" Zeit
- keine Vorstellung von Kontinuum
- "willkürlicher" Zeitparameter

2. Newton's Definition

"Die absolute, wahre und mathematische Zeit verfließt an sich und vermöge ihrer Natur gleichförmig und ohne Beziehung auf irgendeinen äußeren Gegenstand"

- Raum und Zeit sind absolut → Starre Rahmen der Welt
- Kritik: Unbeobachtbarkeit, Keine Zeitrichtung

DOES TIME EXIST IN QUANTUM GRAVITY?, C. Kiefer, 2009

J.L. Löwe | 14. Januar 2021 7 / 32

3. Ernst Mach's Kritik

- Zweifel an Newtons Interpretation
- absolute Zeit keinen praktischen und wissenschaftlichen Wert
- lokale Bewegungsabläufe erst durch globale Bewegung bestimmt

J.L. Löwe | 14. Januar 2021 8 / 32

3. Ernst Mach's Kritik

- Zweifel an Newtons Interpretation
- absolute Zeit keinen praktischen und wissenschaftlichen Wert
- lokale Bewegungsabläufe erst durch globale Bewegung bestimmt

4. Einstein's Definition

- Spezielle und generelle Relativitätstheorie
- Zeit verbunden mit Raum: 4D Raumzeit → "Minkowski-Raumzeit"
- Erkenntnis: Gravitation ist Manifestation der Geometrie der Raumzeit
- Raumzeit nicht mehr absolut sondern dynamisch
- Reactio aller Materie und Felder auf Raumzeit

J.L. Löwe | 14. Januar 2021 8 / 32

Problem der Zeit

Relativitätstheorie

$$R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- Zeit und Raum gekoppelt
- Zeit ist dynamisch

Quantentheorie

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$

- Zeit wird separiert behandelt
- Zeit ist absolut
- → Newtons-Zeit übernommen

J.L. Löwe | 14. Januar 2021 9 / 32

DOES TIME EXIST IN QUANTUM GRAVITY? C. Kiefer 2009

Problem der Zeit

Relativitätstheorie

$$R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- Zeit und Raum gekoppelt
- Zeit ist dynamisch

Quantentheorie

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$

- Zeit wird separiert behandelt
- Zeit ist absolut
- → Newtons-Zeit übernommen

Problem der Zeit: Zeit kann nicht absolut und gleichzeitig nicht-absolut sein

Warum Quantengravitation?

- 1981: Page & Geilker
 - → Testen semiklassische Theorie

Kiefer, Quantengravitation

J.L. Löwe | 14. Januar 2021 10 / 32

Warum Quantengravitation?

- 1981: Page & Geilker
 - → Testen semiklassische Theorie

Kiefer, Quantengravitatio

- Gravitationsfeld hängt von allen Komponenten der Wellenfunktion ab
- Bildung Mittelwert
 - → Quelle radioaktiv zerfallen
 - → Ouelle nicht radioaktiv zerfallen
- Waage folgt Mittelwert der Massenverteilung
- Quantentheorie: Waage spricht auf Komponenten "zerfallen" oder "nicht zerfallen" an

J.L. Löwe | 14. Januar 2021 10 / 32

Warum Quantengravitation?

- Doppelspaltexperiment
- Glaube an Vereinheitlichung aller Wechselwirkungen
- Universalität Ouantentheorie
 - → Superpositionsprinzip muss auch für gravitative Felder gelten
- Universalität gravitativer Felder
 - → Koppelt an alle Energieformen
 - → Interagiert mit allen Quantenzuständen von Materie
- Unvollständigkeit der allgemeinen Relativitätstheorie
 - → Singularitäten: Zeit muss Ende haben

Kiefer, Quantengravitation

J.L. Löwe | 14. Januar 2021 11 / 32

Warum Quantengravitation noch nicht beobachtet?

Quantengravitation wichtig auf kleinen Skalen ("Planck-Skala")

$$l_{\text{Planck}} = \sqrt{\frac{\hbar G}{c^3}} \approx 1.62 \cdot 10^{-35} \text{m}$$

- Superpositionsprinzip: Formation gravitative Quantenzustände auf jeder Skala
- Dekohärenz verhindert Beobachtbarkeit
- Kaum experimentell nachprüfbar

Quantisierungsansätze

- 1. Direkte Quantisierung der allgemeinen Relativitätstheorie
- 2. Vereinheitlichte Quantentheorie aller Interaktionen

Quantisierungsansätze

- Suche Wellengleichung, die im klassischen Grenzfall die Einstein-Gleichungen ergibt
- Idee: Kanonische Quantisierung
 - **1.** Lagrangian → Hamiltonian
 - 2. Kanonische Quantisierung
 - 3. Zustand Ψ , $i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$
- Wahl dreidimensionale Metrik und ihren konjugierten Impuls
- Punktweise Definition
- Raumzeit aufbrechen

Kiefer, Quantengravitation

Foliation

- Raum und Zeit separieren
 - Raumartige Hyperflächen
 - Foliation: Ablauf der Zeit

Kiefer, Quantengravitation

- " Foliation " der Zeit entlang einer zeitartigen Richtung in raumartige Hyperfläche
 - ⇒ Ouantengeometrodynamik: Statische Gleichung, nur Geometrie des Raumes

J.L. Löwe | 14. Januar 2021 15 / 32

Wheeler-DeWitt Gleichung

$$\hat{H}_{\text{total}}\Psi_{\text{Universum}} = 0$$

- Nicht auf Längen- oder Energieskalen beschränkt
- $m{\hat{H}}_{\text{total}}$ ganzer Hamiltonian mit Gravitation und Materie
- Ψ_{Universum} ist auf Superraum definiert und hängt von 3D Metrik ab

"Die Wheeler-DeWitt Gleichung charakterisiert die physikalischen Zustände für die Wellenfunktion des Universums im Raum aller denkbaren Gravitations- und Materiekonfigurationen (" Superraum")"

J.L. Löwe | 14. Januar 2021 16 / 32

QUANTUM COSMOLOGY AND THE ARROW OF TIME, C. Kiefer, 2005

Wheeler-DeWitt Gleichung

$$\hat{H}_{\text{total}}\Psi_{\text{Universum}}$$
 = 0

- Nicht auf Längen- oder Energieskalen beschränkt
- $m{\hat{H}}_{\text{total}}$ ganzer Hamiltonian mit Gravitation und Materie
- lacksquare $\Psi_{\text{Universum}}$ ist auf Superraum definiert und hängt von 3D Metrik ab

"Die Wheeler-DeWitt Gleichung charakterisiert die physikalischen Zustände für die Wellenfunktion des Universums im Raum aller denkbaren Gravitations- und Materiekonfigurationen ("Superraum")"

⇒ Grundlegend zeitlose Gleichung!

QUANTUM COSMOLOGI AND THE ARROW OF TIME, C. RIEIEI, 2003

J.L. Löwe | 14. Januar 2021 16 / 32

Wheeler-DeWitt Gleichung

$$\hat{H}_{\text{total}}\Psi_{\text{Universum}} = 0$$

- Gleichung ist nicht exakt lösbar
- Problem: Zu viele Freiheitsgrade
- Ausweg: Drastische Reduktion der Freiheitsgrade
 - ⇒ In Kosmologie: Nur gemittelte Größen

J.L. Löwe | 14. Januar 2021 17 / 32

OUANTUM COSMOLOGY AND THE ARROW OF TIME, C. Kiefer, 2005

Zurückgewinnung der Zeit

J.L. Löwe | 14. Januar 2021 18 / 32

- Annahme: Ψ_{Universum} hängt nur von Skalenfaktor und homogenen Freiheitsgraden ab
 - ⇒ 2 dimensionaler Konfigurationsraum

■ Betrachtung Friedmann Modell

Kiefer, Ouantengravitation

J.L. Löwe | 14. Januar 2021 19 / 32

Zurückgewinnung der Zeit

Klassische Entwicklung

- Anfangsbedingung legt zeitliche Entwicklung fest
- Ganze Entwicklung deterministisch bestimmbar
- Richtung beliebig

Kiefer, Quantengravitation

J.L. Löwe | 14. Januar 2021 20 / 32

Zurückgewinnung der Zeit

Quantenmechanische Entwicklung

- Keine klassische Bahn
- Verfügung: Wellenfunktion
- → Schlauch um klassische Bahn
 - Anfangsbedingung als Wellenfunktion formulieren

Kiefer, Quantengravitation

⇒ "innere" Zeit : Skalenfaktor!

J.L. Löwe | 14. Januar 2021 21 / 32

Richtung der Zeit

■ Grundlegend offenes Problem: Ursprung Irreversibilität im Universum

Master Pfeil

QUANTUM COSMOLOGY AND THE ARROW OF TIME C. Kiefer 2005.

J.L. Löwe | 14. Januar 2021 22 / 32

Wurzel der Zeit

- lacksquare Wheeler-DeWitt Gleichung asymetrisch im Bezug auf lpha
- "kleines" Universum \rightarrow kleiner Skalenfaktor $\alpha \rightarrow$ geringe Verschränkung
- lacktriang "großes" Universum ightarrow großer Skalenfaktor lpha ightarrow wachsende Verschränkung
 - ⇒ Richtung der Zeit durch zunehmende Verschränkung definiert
 - ⇒ Expansion des Universums: Tautologie

J.L. Löwe | 14. Januar 2021 23 / 32

Konsistenzproblem

- ★ Teetasse wird nicht heile
- ₹ Keine Information aus der Zukunft

J.L. Löwe | 14. Januar 2021 24 / 32

C. Kiefer, Quantum Gravity: General Introduction and Recent Developments

Konsistenzproblem

- Kein klassischer Durchgang im Quantenkosmos
- Lösung Wheeler-DeWitt Gleichung: Universum gelangt an Maximum in Quantenphase
 - → Viele Teilzweige interferieren
 - → Klassische Entwicklung am Ende
- Universum endet in Zeitlosigkeit
- Alle Beobachter sind Zeitpfeil unterworfen

J.L. Löwe | 14. Januar 2021 25 / 32

Alternative Modelle

J.L. Löwe | 14. Januar 2021 26 / 32

Schleifenquantengravitation

- Ortsvariable entlang einer Schleife definiert
- Verallgemeinerter Impuls: Verallgemeinerter elektrischer Fluss durch Fläche
- Raum kein Hintergrund mehr, sondern dynamisches Objekt

→Zweidimensionale Größe

J.L. Löwe | 14. Januar 2021 27 / 32

■ Wellenfunktion aus Spinnetzwerk aufbauen

C. Kiefer, Quantum Gravity: General Introduction and Recent Developments

- Netz selbst ist der Raum
- Fläche kommt nur in diskreten Werten vor
- Elementares Flächenquantum →alle Flächen Vielfaches davon
- Problem: Zeitparameter wiederfinden, Fehlen eines klassischen Limits, Unbeobachtbarkeit

J.L. Löwe | 14. Januar 2021 28 / 32

Darstellung des Spinnetzwerkes:

MPI für Gravitationsphysik (Albert-Einstein-Institut), MildeMarketing, Exozet

Idee des Big Bounce:

What Existed Before The Big Bang?, A. Peshin, 2019

J.L. Löwe | 14. Januar 2021 29 / 32

Stringtheorie

- Direkte Quantisierung aller Wechselwirkungen
- 11 dim Raumzeit
- Neuer freier Parameter: Stringlänge *l*

→Fundamentale Parameter: c, h, l

Kiefer, Quantengravitation

J.L. Löwe | 14. Januar 2021 30 / 32

- Alle Teilchen sind Anregung fundamentaler Strings
 - →Höhere Spannung →Höhere Energie zur Anregung benötigt
- Wechselwirkung in Raumzeit:

C. Kiefer, Quantum Gravity: General Introduction and Recent Developments

■ Problem: Dimensionen, Unbeobachtbarkeit

J.L. Löwe | 14. Januar 2021 31 / 32

Zusammenfassung

■ Wheeler-DeWitt Gleichung: Beschreibung des Quantenkosmos

Existiert die Zeit?

- Universelle Zeitlosigkeit
- Zeit in einer semiklassischen Beschreibung zurückgewonnen
- Irreversibilität kann erklärt werden
- Alternative Modelle kennengelernt

→ Mathematisch konsistent, aber Fehlen experimenteller Hinweise

J.L. Löwe | 14. Januar 2021 32 / 32