NOIP2018 Simulation

Hometown

October 22, 2018

题目名称	sequence	bomb	queue
可执行文件名	sequence	bomb	queue
输入文件名	sequence.in	bomb.in	queue.in
输出文件名	sequence.out	bomb.out	queue.out
每个测试点时限	1s	1s	1s
内存限制	512MB	512MB	512MB
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是
编译命令	-02	-02	-02

- 考试时间 3.5h。
- 如果样例复制不出来,麻烦大家去文件夹里头复制。
- 题目实在有点水,出题人害怕被A穿所以还是别IOI了吧。
- 题目难度与顺序无关(正经脸)

1 Sequence

1.1 Description

小 F 是一位 Hack 国的居民,他生活在一条长度为 n 的街道上,这个街道上总共有 n 个商店。每个商店里售卖着不同的 Hack 技能包,每个商店本身也会有个便利值。初始时,每个商店的便利值均为 0。每一天,街道上都会有一些商店优化改造。

具体来说,对于每一天,优化改造的商店都是一个连续的区间 $l\sim r$,每次优化改造也会有一个优化参数 k。对于所有 $l\leq i\leq r$,第 i 个商店的便利值会增加 $\binom{i+k-l}{k}$ 。

小 F 想知道,m 天之后,每个商店的便利值分别是多少。由于小 F 并不喜欢高精度,因此你只需要输出便利值对 10^9+7 取模的结果。

1.2 Input

从文件sequence.in中读入数据。

第 1 行,两个整数 n, m 表示街道的长度与天数。

接下来的 m 行,每行三个整数 l,r,k,表示第 i 天优化改造的商店区间和优化参数。

1.3 Output

输出到文件sequence.out中, 共n行。

每行 1 个整数,表示第 i 个商店的便利值对 $10^9 + 7$ 取模的结果。

1.4 Sample 1

1.4.1 Sample Input 1

5 3

1 4 3

2 5 0

3 4 2

1.4.2 Sample Output 1

1

5

12

24

1

1.4.3 Explanation

第1次操作之后,每个商店的便利值分别为1,4,10,20,0。

第 2 次操作之后,每个商店的便利值分别为 1,5,11,21,1。

第 3 次操作之后,每个商店的便利值分别为 1,5,12,24,1。

1.5 Sample 2

见选手目录下的sequence/sequence2.in与sequence/sequence2.ans。该组样例的数据范围同第 1 个测试点。

1.6 Constraints

对于 100% 的数据,满足 $1 \le n, m \le 5 \times 10^5, 0 \le k \le 20$ 。除此之外,对于每个数据点,还满足以下限制。

测试点编号	n, m	k
1		
2	$\leq 10^3$	≤ 10
3		10
4		
5		= 1
6	$\leq 10^5$	≤ 10
7		
8		
9	$ \le 5 \times 10^5 $	≤ 20
10		

2 Bomb

2.1 Description

常数国与 Hack 国近年来战火纷飞。

常数国共有n个城市,每两个城市之间均有一条交通线联通。如今常数国遭到 Hack 国的重创,岌岌可危。Hack 国国王小 K 决定轰炸常数国的交通线,对常数国发起最后的攻击。

面对危难之时,常数国国王决定更换首都。在 Hack 国的轰炸结束之后,常数国的领土将会分成若干个联通块。常数国的首都,将会从联通块大小最大的联通块中,随机选择一个城市,作为首都。

小 K 得知了常数国的应对方案之后,他想知道,Hack 国有多少种不同的轰炸方案,使得常数首都所在的联通块大小恰好为 k。两种轰炸方案是不同的,当且仅当一条交通线在一种方案中存在,在另一种方案中被轰炸。由于方案数可能很大,你需要输出方案数对 998,244,353 取模的结果。

2.2 Input

从文件bomb.in中读入数据。

共一行,两个整数 n,k ,表示常数国城市的个数与首都所在联通块大小。

2.3 Output

输出到文件bomb.out中。

共一行,表示 Hack 国的轰炸方案数对 998,244,353 取模后的结果。

2.4 Sample 1

2.4.1 Sample Input 1

3 2

2.4.2 Sample Output 1

3

2.4.3 Explanation

3 种方案分别为,仅保留 1 号城市与 2 号城市的交通线,仅保留 2 号城市与 3 号城市的交通线,仅保留 1 号城市与 3 号城市的交通线。

2.5 Sample 2

2.5.1 Sample Input 2

5 3

2.5.2 Sample Output 2

80

2.6 Sample 3

见选手目录下的bomb/bomb3.in与bomb/bomb3.ans。该组样例的数据范围同第8个测试点。

2.7 Constraints

对于 100% 的数据,满足 $1 \le k \le n \le 2 \times 10^3$ 。除此之外,对于每个数据点,还满足以下限制。

测试点编号	n	k
1		
2	≤ 5	≤ 5
3		
4	< 200	≤ 200
5	<u> </u>	
6		= 1
7		= n
8	$\leq 2 \times 10^3$	
9		$\leq 2 \times 10^3$
10		

3 Queue

3.1 Description

Hack 国的居民人人都是 OI 大师, Hometown 得知便赶紧来到 Hack 国学习。可想要进入 Hack 国并不是件容易的事情,首先就必须通过 Hack 国海关小 B 的考验。小 B 觉得 Hometown 比较菜,于是就扔了一道小水题给 Hometown。

给定一个长度为 n 的数列 a_i ,接下来会对这个序列进行 m 次操作。操作类型分为以下两种:

- 1 1 r,表示将区间 [l,r] 轮转一次,具体来说, $a_l, a_{l+1}, a_{l+2}, \cdots, a_{r-1}, a_r$ 经过一次轮转之后,会变为 $a_r, a_l, a_{l+1}, \cdots, a_{r-1}$;
- 2 1 r k, 询问区间 [l, r] 内 $a_i = k$ 的个数。

可惜 Hometown 还是不会做,他只能期待你能解决这个问题了。

3.2 Input

从文件queue.in中读入数据。

第一行两个整数 n, m,表示序列的长度与操作的次数。

第二行 n 个整数 a_i ,表示这个序列。

接下来的 m 行,每行先是一个整数 opt 表示操作的类型。对于 opt = 1 的操作,接下来两个整数 l,r 表示将区间 [l,r] 轮转;对于 opt = 2 的操作,接下来三个整数 l,r,k 表示求区间 [l,r] 内等于 k 的值的个数。

3.3 Output

输出到文件queue.out中。

对于每个2操作,一行一个整数,表示这次询问的答案。

3.4 Sample 1

3.4.1 Sample Input 1

7 6

1 2 2 3 2 1 3

- 2 3 6 2
- 1 1 6
- 2 2 4 1
- 1 3 6
- 2 6 7 3
- 2 3 5 2

3.4.2 Sample Output 1

- 2
- 1
- 2
- 3

3.4.3 Explanation

对于第一次询问,区间 [3,6] 中一共出现了 2 次 2。随后进行修改,修改之后序列变为 1,1,2,2,3,2,3。对于第二次询问,区间 [2,4] 中一共出现了 1 次 1。随后再次修改,修改之后序列变为 1,1,2,2,2,3,3。对于第三次询问,区间 [6,7] 中一共出现了 2 次 3。对于第四次询问,区间 [3,5] 中一共出现了 3 次 2。

3.5 Sample 2

见选手目录下的queue/queue2.in与queue/queue2.ans。该组样例的数据范围同第2个测试点。

3.6 Sample 3

见选手目录下的queue/queue3.in与queue/queue3.ans。该组样例的数据范围同第 13 个测试点。

3.7 Constraints

对于 100% 的数据,满足 $0 \le n, m \le 10^5, 1 \le a_i \le n, 1 \le l_i \le r_i \le n$ 。除此之外,对于每个数据点,还满足以下限制。

测试点编号	n, m	特殊性质
1	= 0	
2	≤ 2000	无
3		
4		
5		
6		
7	$\leq 6 \times 10^4$	当 $opt_i = 1, l_i = 1, r_i = n$
8		$= opt_i - 1, t_i - 1, t_i - t$
9		保证 a_i 互不相同
10		
11		
12		
13		
14		
15	$ \leq 10^{5} $	
16		 无
17		, vu
18		
19		
20		