ANÁLISIS FUNCIONAL, GRADO EN MATEMÁTICAS

Cuarto curso, 19/01/2015

- 1. Dual de un espacio de Hilbert (Teorema de representación de Riesz-Fréchet).
- 2. (a) Enúnciese el Lema de Baire y las equivalencias que se recuerden.
 - (b) Sea E un espacio de Banach infinito dimensional. Demuéstrese que ningún subconjunto de E numerable puede ser base (algebraica) de E.
 - (c) Sea el espacio normado c_{00} con la norma usual. Si para cada $n \in \mathbb{N}$, c_n es la sucesión de números reales dada por $c_n^p = \delta_{np}$, $\forall p \in \mathbb{N}$, ¿Es el conjunto $\{c_n, n \in \mathbb{N}\}$ base algebraica de c_{00} ?
 - (d) Teniendo en cuenta los apartados anteriores, ¿qué conclusión obtienes?
- 3. (a) Enuncia el Teorema de la gráfica cerrada.
 - (b) Sean $E = \{u \in C^2[0,1] : u(0) = u'(0) = 0\}$ y F = C[0,1], ambos con la norma uniforme. Demuéstrese que el operador $L : E \to F$ dado por L(u) = u'', $\forall u \in E$, es cerrado pero no continuo. ¿Qué hipótesis del Teorema de la gráfica cerrada no se cumple en este caso?