Classical Mechanics TFY4345 - Solution set 4

1. Mathematical pendulum in accelerating motion

2. Spherically symmetric potential

3. Earth's orbit

4/4 Earth's orbit, gravitation
$$F(r) = -\frac{k}{r^2}$$

Circular orbit $\Longrightarrow E = V_{min}$
 $E = 0 = \sqrt{1 + \frac{2E\ell^2}{\mu k^2}} \implies 1 + \frac{2E\ell^2}{\mu k^2} = 0 \implies E = -\frac{\mu k^2}{2\ell^2}$
reduced mass \circlearrowleft
(one can use m here as well) \circlearrowleft
On the other hand: $E = \frac{1}{2}\mu r^2 + \frac{1}{2}\frac{\ell^2}{\mu r^2} - \frac{k}{r}$
Mass of the sun $M_0 \implies \frac{1}{2}M_0 \implies k \implies \frac{k}{2}$ $(k=GMom)$
 $E \implies E' = \frac{1}{2}\mu r^2 + \frac{1}{2}\frac{\ell^2}{\mu r^2} - \frac{k}{2r} = V_{min} + \frac{k}{2r}$
 $= -\frac{\mu k^2}{2\ell^2} + \frac{k}{2\pi}$

$$\Gamma = \Gamma_{min}, \quad V(r) = -\frac{k}{r} + \frac{\ell^2}{2\mu r^2}$$

$$V'(r) = \frac{k}{r^2} - \frac{\ell^2}{\mu r^3} = 0 \implies \Gamma = \frac{\ell^2}{\mu k}$$

$$= \sum_{k=1}^{\infty} \frac{\ell^2}{2\ell^2} + \frac{k}{2} \frac{\mu k}{\ell^2} = 0$$

New eccentricity:
$$\xi = \sqrt{1+0} = 1$$

4. Einstein's correction (from previous years, på norsk!)

a) Det sentrale kraftfeltet er gitt ved:

$$f(r) = -\frac{k}{r^2} + \frac{\beta}{r^3} \qquad \Rightarrow \qquad V(r) = -\frac{k}{r} + \frac{\beta}{2r^2}$$
 Fra teorien er:
$$\theta = \int \frac{\frac{1}{r^2} dr}{\sqrt{\frac{2mE}{l^2} - \frac{2mV}{l^2} - \frac{1}{r^2}}} + konst.$$

Innsetting av V og innføring av $u = \frac{1}{r}$ gir når konstanten utelates

$$\theta = -\int \frac{du}{\sqrt{\frac{2mE}{l^2} - \frac{2mku}{l^2} - \gamma^2 u^2}}, \text{ hvor } \gamma^2 = 1 + \frac{\beta m}{l^2}$$

Benytter:
$$\int \frac{dx}{\sqrt{a+bx+cx^2}} = \frac{1}{\sqrt{-c}} \arccos\left(-\frac{b+2cx}{\sqrt{q}}\right)$$
, hvor $q=b^2-4ac$

Her velges
$$a=\frac{2mE}{l^2}$$
, $b=\frac{2mk}{l^2}$, $c=-\gamma^2 \Rightarrow q=\left(\frac{2mk}{l^2}\right)^2\left(1+\frac{2E\gamma^2l^2}{mk^2}\right)$,

$$-\frac{b+2cu}{\sqrt{q}} = \frac{\frac{\gamma^2 l^2 u}{mk} - 1}{\sqrt{1 + \frac{2E\gamma^2 l^2}{mk^2}}} \,. \quad \text{Definerer} \quad \varepsilon = \sqrt{1 + \frac{2E\gamma^2 l^2}{mk^2}} \,, \quad p = \frac{\gamma^2 l^2}{mk}$$

Da blir
$$\theta = -\frac{1}{\gamma} \arccos \frac{\frac{p}{r} - 1}{\varepsilon}$$
,

Baneligningen er

(1)
$$\frac{P}{r} = 1 + \varepsilon \cos(\gamma \theta)$$
, hvor $\gamma = \sqrt{1 + \frac{m\beta}{2l}} \approx 1 + \frac{m\beta}{2l^2}$

Antar E < 0. Da er ligning (1), ligningen for en ellipse med langsom presesjon.

store halvakse: $a = \frac{p}{1 - \varepsilon^2}$ (slik som når $\gamma = 1$) \Rightarrow

$$a = \frac{\frac{\gamma^2 l^2}{mk}}{1 - \left(1 + \frac{2E\gamma^2 l^2}{mk^2}\right)} = \frac{k}{2|E|}, \quad \text{som for } \gamma = 1.$$

Vanlig litenhetsparameter er $\eta = \frac{\beta}{ka}$, dvs. $\gamma = 1 + \frac{m\eta ka}{2I^2}$

Verdien $\eta = 1.42 \cdot 10^{-7}$ tilsvarer Merkurs perihelbevegelse, som er 43" per hundre år.