What is claimed is:

1	 An analysis device for analyzing an object having a
2	first side and a second side comprising:
3	an excitation source positioned on a first side of said object,
4	said excitation source generating an excitation beam through said object;
5	said excitation beam forming a imaging beam on the second side of said
6	object,
7	an optical assembly positioned on the second side of the
8	object receiving the imaging beam; and
9	a detector disposed adjacent to said optical assembly on said
10	second side of said object receiving said imaging beam and forming an
11	image of said object therein.
1	2. An analysis device for a plate having a first side and a
2	second side comprising:
3	a plate holder holding the plate;
4	a excitation source positioned on a first side of said plate
5	under said plate holder, said excitation source generating an excitation
6	beam through said plate; said excitation beam forming an imaging beam on
7	the second side of said plate,
8	an optical assembly positioned on the second side of the
9	plate receiving the imaging beam; and
10	a detector disposed adjacent to said optical assembly on
11	said second side of said plate receiving said imaging beam and forming an
12	image of said plate therein.
1	3. An analysis device as recited in claim 2 wherein said
2	optical assembly comprises a separation filter disposed on a second side of
3	said plate holder receiving the imaging beam;
4	an imaging lens positioned adjacent to said long pass filter on
5	said second side of said plate;

6	said imaging beam directed through said separation filter,
7	said imaging lens and said band pass filter.
1	4. An analysis device as recited in claim 3 wherein said
2	optical assembly comprises a band pass filter disposed adjacent to said
3	imaging lens on said second side of said plate;
4	said imaging beam directed through said separation filter,
5	said imaging lens and said band pass filter.
1	5. An analysis device as recited in claim 3 wherein said
2	long pass filter has a surface parallel to said plate.
1	6. An analysis device as recited in claim 3 further
2	comprising an opaque mask interposed between said separation filter and
3	said imaging lens.
1	7. An analysis device as recited in claim 3 wherein said
2	opaque mask has a diameter sized to prevent said excitation beam from
3	reaching said detector.
1	8. An analysis device as recited in claim 3 wherein said
2	long-pass filter comprises a filter having deep-attenuation in a stop-band
3	and sharp transition from the stop-band to a pass-band.
1	9. An analysis device as recited in claim 8 wherein said
2	separation filter comprises a Raman filter.
1	10. An analysis device as recited in claim 4 wherein said
2	laser source has an optical axis positioned orthogonal to said plate, said
3	detector, long pass filter, said imaging lens, and said band pass filter
4	coupled disposed along said axis.

1	11. An analysis device as recited in claim 2 wherein said
2	detector comprises a charge coupled device having a two-dimensional
3	array of detectors.
1	12. An analysis device as recited in claim 2 wherein said
2	excitation light source comprises fluorescent light source.
1	13. An analysis device as recited in claim 2 wherein said
2	excitation light source comprises a laser source.
-	
1	14. An analysis device as recited in claim 2 wherein said
2	laser source has an optical axis positioned at an angle relative to said
3	plate.
1	15. An analysis device as recited in claim 2 said detector
2	positioned off said optical axis.
1	16. An analysis device as recited in claim 2 wherein said
2	plate holder is coupled to an X-Y stage.
2	
1	 An analysis device as recited in claim 2 wherein said
2	plate holder comprises a plurality of wells defined by a mask, said mask
3	blocking said excitation light outside said wells.
1	18. An analysis device as recited in claim 2 wherein said
2	plate has a light absorbing well former thereon having openings
3	therethrough, said excitation source generating an excitation beam through
4	said openings and plate.
_	19. An analysis device for a plate having a first side an
5	
6	second side comprising: a plate holder holding the plate;
7	a plate holder holding the plate, an excitation light source positioned on a first side of side
8	an excitation light source positioned on a most order of source generating an excitation
9	plate under said plate holder, said laser source generating an excitation

10	beam through said plate; said excitation beam forming an imaging beam at
11	said plate, said excitation light source has an optical axis positioned
12	orthogonal to said plate;
13	an optical assembly disposed on said optical axis on the
14	second side;
15	a detector disposed adjacent to said optical assembly;
16	said imaging beam directed through said long-pass filter, said
17	imaging lens and said band pass filter.
1	20. An analysis device as recited in claim 19 wherein said
2	optical assembly comprises a long-pass filter and an imaging lens filter.
1	21. An analysis device as recited in claim 19 wherein said
2	long-pass filter is disposed on a second side of said plate holder along the
3	optical axis receiving the imaging beam.
1	22. An analysis device as recited in claim 19 wherein said
2	imaging lens positioned adjacent to said long pass filter holder along the
3	optical axis on said second side of said plate.
1	23. An analysis device as recited in claim 19 wherein said
2	band pass filter disposed adjacent to said imaging lens holder along the
3	optical axis on said second side of said plate.
1	24. An analysis device as recited in claim 19 wherein said
2	plate has a light absorbing well former thereon.
3	25. A method for analyzing a plate comprising:
4	disposing a plate having an array thereon between an
5	excitation source and a detection source;
6	directing a imaging beam to said detection source through an
7	optical assembly; and
8	forming an image of said array at said detection source.

1

2

1

2

3

1	26. A method as recited in claim 23 wherein said chip plate
2	comprises a plurality of wells defined by a mask and further comprising
3	blocking said excitation light outside said wells with the mask.
1	27. A method as recited in claim 23 further comprising the
2	step of filtering said imaging beam.
1	28. A method as recited in claim 23 wherein said step of
2	filtering comprises long pass filtering said imaging beam.

- 1 29. A method as recited in claim 23 wherein said step of filtering comprises band pass filtering said imaging beam.
 - 30. A method as recited in claim 23 wherein directing an imaging beam to said detection source through an imaging lens.
 - 31. A method as recited in claim 23 further comprising reflecting a portion of said excitation beam from the optical assembly to said plate.