

Master in **Computer Vision**

Barcelona

Module: M1

Project: Traffic Sign Detection/Recognition

Coordinator: Ramon Morros, Verónica Vilaplana

General comments:

- Slides file name: TX-WY
- Add slide numbers!
- Always show results
- Explain approaches briefly
- Explain how parameters are obtained (and provide values)
- Add conclusions

Task 1:

- It is useful to collect min, max, mean & stddev for all measures. This will allow to filter out non signal detections
- Reflect the obtained values on slides (some teams did, some did not)

Figure source: Team 1

Task 2:

• Most teams balanced train/validation independently on each signal type.

• Team 5 claims to have used also signal size inside each type, but the approach was not clear

Figure source: Team 3

Task 3 lessons:

- HSV / YCbCr are clear winners among the different teams
- RBG is problematic as illumination will have strong influence on color representation
- Several teams used histograms
- Optimization for F1 may not be the best solution but will do for now. High recall will be more important for next blocks
- Black & white regions detection presents problems. Masks with 'holes'

Task 4:

• Provide all metrics on the validation set

Task 5:

- Using HSV / Lab or normRGB already gives a good degree of illumination invariance.
- Some groups show images but not numerical results!

- **Team1**: T1: Statistical analysis great © but only provided for shape.
 - T3: Need explanation of threshold selection
- **Team2**: T1: No numerical results provided!
 - T2: Used ff+shape for the split, but not explained!
 - T3: Need explanation of threshold selection
 - T5: Approach not explained. No results!
- Team3: T1: Noticed that ff/fr are discriminative for signal type ©
 - T2: Good visualization ©
 - T3: Combination of blue and red masks in HSV+YCbCr color spaces Filtering & Hole filling (Week 2!!)
 - Provide segmentation examples ©
- Team4: T2: comments too low level or implementation based (strings in matlab?)
 - T3: RGB thresholding. Threshold selection not explained
 - T4: Results not too good.
 - T5: No results to prove if compensation is useful or not

- **Team5**: T1: "Filling ratio sensitive to the light". Explain
 - T2: Several ranges computed, not clear if/how used for the splitting
 - T3: Segmentation using K-Means/MS/etc not clear. Explain!
 - T4: Recall & F1 not provided
- **Team6**: T1: Size, max, min, avg, stddev not computed!
 - T3: HSV, no info on thresholds
 - T4: Recall & F1 not provided
 - T5: No results nor conclussions
- **Team7**: T1: No results on slides!
 - T3: Pixel-based criterion, needs better explanation. T1, T2, T3??
 - T4: No comments! No conclusions.
- **Team8**: T1:Unnecessary detail in comments (implementation)
 - No numerical results (statistics)
 - T2: Problems with images with more than one signal type not solved
 - T3: RGB, gaussian model. Needs more explanation (threshold selection)
 - T4: Low recall.

M1 – Block 1: Results

Task 4: Results on the test set

	Precision	Recall	F 1	time/frame (s)	
Team 1	0.03	0.60	0.05		
Team 2	0.03	0.62	0.06		
Team 3	0.56	0.69	0.62		
Team 4	Training set!				
Team 5	0.11	0.49	0.18		
Team 6	0.33	0.48	0.39		
Team 7	0.25	0.16	0.19		
Team 8	0.15	0.41	0.22		

M1 – Block 1: Results

Task 4: Results on the validation set

	Precision	Recall F1		time/frame (s)	
Team 1	0.04	0.52	0.07	??	
Team 2	0.03	0.56	0.45	0.45	
Team 3	0.42	0.61	0.45	2.93	
Team 4	0.0033	0.21		??	
Team 5	0.25	??	??	0.50	
Team 6	0.31	??	??	??	
Team 7	0.29	0.33	0.30	??	
Team 8	0.59	0.17	0.27	1.10	

Goal: Understand and apply morphological operators in Image Processing

Task 1: Implement morphological operators Erosion/Dilation. Compose new operators from Dilation/Erosion: Opening, Closing, TopHat and TopHat dual

Task 2: Measure the computational efficiency of your programed operators Erosion/Dilation

Task 3: Use operators to improve results in sign detection

Task 4: Apply histogram back-projection to perform color segmentation

Task 1: implement morphological operators

Looking for inspiration for the specification of the implementation of my "dilate" matlab function:

```
> help imdilate
imdilate Dilate image.
   IM2 = imdilate(IM,SE) dilates the grayscale, binary, or
   packed binary image IM, returning the dilated image, IM2.
   SE is a structuring element object, or array of
   structuring element objects, returned by the STREL
   function.
```

Example:

```
se = strel('square', 5); % 5 points SE
Y = imdilate(Signal, se);
plot(x, Signal, 'b', x, y, 'r'); grid;
```


Task 1: Implement morphological operators

```
Native Matlab Example:
   se = strel('square', 5); % 5 points SE definition
      = imdilate(Signal, se);
```


Task 1: Implement morphological operators

```
Example with mydilate function:
   se = [1,1,1,1,1]; % 5 points structuring element
      = mydilate(Signal, se);
```


Task 2: Measure the computational efficiency of your programed operators

https://www.math.ust.hk/~masyleung/Teaching/CAS/MATLAB/image/target2.html

Task 2: Measure the computational efficiency of your programed operators

```
tic
I2 = imdilate(I,se);
Total_Time = toc;
```

Comparing computational efficiency	Total Time
Imdilate	8.760 ms
mydilate	19.04 ms
Efficiency % (100*my/im)	217%
imerode	7.760 ms
myerode	13.855 ms
Efficiency % (100*my/im)	178.55%

Task 3: Use morphological operators to improve results on color segmentation

Tips: Noise filtering, hole filling [matlab: imfill()], object separation, etc.

Task 4: Segmentation using histogram back-projection¹

- Divide the signals into groups according to color
- For each group, compute a histogram using all signals of this group
- For all the pixels in the target image, use this histogram as a look-up table to decide the degree of similarity between the pixel's color and the signal's color.

¹Indexing via color histograms", Swain, Michael J., Third international conference on computer vision, 1990.

Task 4: Segmentation using histogram back-projection

- Divide the signals into groups according to color:
 - G1: A,B,C (Red, White, Black)

- G2: D, F (Blue, White, black)

- G3: E (Red, Blue)

Task 4: Segmentation using histogram back-projection

- Compute color histogram for each group
 - Prefer color histograms instead of single channel histograms (2D or 3D histograms)
 - Using 2 channels from perceptual color spaces helps with luminance invariance
 - Number of bins is crucial to avoid histogram sparsity
 - 3D histograms are problematic as the number of bins grows exponentially → sparsity

Task 4: Segmentation using histogram back-projection

- Histogram back-projection:
 - For each pixel in target image, use it's color to look-up at the normalized histogram to estimate the probability of the pixel belonging to this signal type.
 - Use a threshold on the probabilities to generate a mask.
- Perform the previous operation for all the 3 groups and combine masks
- Try also the back-projection algorithm in (normalization using image histogram & smoothing)

¹Indexing via color histograms", Swain, Michael J., Third international conference on computer vision, 1990.

M1 – Project: Homework Block 2

Evaluation

	Precision	Accuracy	Recall	F1-mesure	ТР	FP	FN	Time per frame
Method 1								
Method 2								
Method 3								

Note: Deliver masks to:

/home/ihcv0X/m1-results/week1/test/method1/*.png

/home/ihcv0X/m1-results/week1/test/**method2**/*.png

Submit progress slides + code + masks

Deadline: 15/10/2017 20:00