$(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach Space

Owen Drummond

Rutgers University

November 11, 2024

Definition of H^p Spaces

Definition [H^p Space]

 H^p , or **Hardy spaces**, are classes of complex-analytic functions. Here, we will work solely with the (open) unit disc:

$$\mathbb{D} := \{ z \in \mathbb{C} \mid |z| < 1 \}.$$

Let $F : \mathbb{D} \to \mathbb{C}$. For 0 < r < 1, define $F_r : [0, 2\pi] \to \mathbb{C}$ by

$$F_r(\theta) = F\left(re^{i\theta}\right).$$

Definition of H^p Spaces (Continued)

Definition $[H^p \text{ Space (Continued)}]$

• For $1 \le p < \infty$, define the *p*-norm:

$$\|F\|_{H^p(\mathbb{D})} = \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| F\left(re^{i\theta}\right) \right|^p d\theta \right)^{1/p}.$$

• For $p = \infty$, define:

$$||F||_{H^{\infty}(\mathbb{D})} = \sup_{z \in \mathbb{D}} |F(z)|.$$

The Hardy space $H^p(\mathbb{D})$ is then defined as:

$$H^p(\mathbb{D}) = \{F : \mathbb{D} \to \mathbb{C} \mid ||F||_{H^p} < \infty\}.$$

Some Interesting Results about H^p Spaces

- $(H^p, \|\cdot\|_{H^p})$ is a **Banach space** for all $1 \le p \le \infty$.
- H^p spaces are nested; that is, for $p \leq q$:

$$H^{\infty} \subset H^q \subset H^p \subset H^1$$
.

- **Fatou's Theorem:** Every function in H^p has radial limits almost everywhere on the unit circle.
- Poisson Representation: Let $f \in H^1(\mathbb{D})$ with boundary function $f(e^{i\theta}) = \phi(\theta) \in L^1([0, 2\pi])$. Then for $z = re^{i\theta}$:

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2} \,\phi(t) \,dt.$$

This formula expresses f(z) explicitly in terms of its boundary values $\phi(t)$.

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

It is rather straightforward to show $(H^p, \|\cdot\|_{H^p})$ is a normed vector space as is L^p . Next, we must show that every Cauchy Sequence converges in H^p . For ease of notation, we will define from the outset

$$N_p(r,F) = \left(\frac{1}{2\pi} \int_0^{2\pi} |F(re^{i\theta})|^p d\theta\right)^{1/p}$$

Let $\{F_n\}_{n\in\mathbb{N}}$ be a Cauchy Sequence in H^p . Then for any $\varepsilon>0$, $\exists N_\varepsilon$ such that $\forall n,m\geq N_\varepsilon$, we have

$$||F_n - F_m||_{H^p} = \sup_{0 \le r < 1} N_p(r, F_n - F_m) < \varepsilon$$

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

Claim: For any fixed $z \in \mathbb{D}$ and $n \in \mathbb{N}$, the sequence $F_n(z)$ is Cauchy in \mathbb{C} and thus $F_n(z) \to F(z)$ in \mathbb{C} .

Proof of Claim: Since F_n is analytic in \mathbb{D} , then by Cauchy's Integral formula we can write

$$F_n(z) = \frac{1}{2\pi i} \int_{C_r} \frac{F_n(\omega)}{\omega - z} d\omega$$

where $C_r := \{ |\omega| = r \}$ with |z| < r < 1.

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

What follows is the series of calculations after parametrization $\omega = re^{i\theta} \implies d\omega = ire^{i\theta}d\theta$:

$$|F_n(z)| \le \left| \frac{1}{2\pi} \int_0^{2\pi} \frac{F_n(re^{i\theta})}{re^{i\theta} - z} re^{i\theta} d\theta \right|$$

$$\le \frac{1}{2\pi} \int_0^{2\pi} \frac{|F_n(re^{i\theta})|}{|re^{i\theta} - z|} r d\theta$$

$$\le \frac{r}{r - |z|} \frac{1}{2\pi} \int_0^{2\pi} |F_n(re^{i\theta})| d\theta$$

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

Observe now that by Holder's Inequality with $p\geq 1$ and p' such that $\frac{1}{p}+\frac{1}{p'}=1$ we have that

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} |F_{n}(re^{i\theta})| d\theta &\leq \frac{1}{2\pi} \left(\int_{0}^{2\pi} |F_{n}(re^{i\theta})|^{p} d\theta \right)^{1/p} \left(\int_{0}^{2\pi} |1|^{p'} d\theta \right)^{1/p'} \\ &= \frac{1}{2\pi} N_{p}(r, F_{n}) (2\pi)^{1/p'} \\ &= (2\pi)^{\frac{1}{p'} - 1} N_{p}(r, F_{n}) \\ &\leq N_{p}(r, F_{n}) \end{split}$$

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

By definition, $||F_n(re^{i\theta})||_{H^p} = \sup_{0 \le r < 1} N_p(r, F_n)$, and hence

$$|F_n(z)| \leq \frac{r}{r-|z|} N_p(r,F_n) \leq \frac{r}{r-|z|} \|F_n\|_{H^p(\mathbb{D})}$$

Now since z is fixed, we can set $r = \frac{1+|z|}{2}$ and so

$$|F_n(z)| \leq \frac{1+|z|}{1-|z|} \leq \frac{2}{1-|z|} ||F_n||_{H^p(\mathbb{D})}$$

Now we can set $\alpha_z = \frac{2}{1-|z|}$

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

Thus, for $n, m \geq N_{\varepsilon}$, we have that

$$|F_n(z) - F_m(z)| \le \alpha_z ||F_n - F_m||_{H^p} < \alpha_z \varepsilon$$

Also so $\{F_n(z)\}$ is Cauchy in $\mathbb C$, completing the proof of the claim. $\mathbb C$ is complete, and thus

$$\exists F(z) \text{ s.t. } F_n(z) \to F(z) \in \mathbb{C}$$

ensuring pointwise convergence of F_n to F in \mathbb{C} .

Theorem

 $(H^p(\mathbb{D}), \|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1 \leq p \leq \infty$

Proof.

To demonstrate that $||F(z) - F_n(z)||_{H^p(\mathbb{D})} \to 0$ as $n \to \infty$, we will appeal to the Dominated Convergence Theorem.

- $F_n(re^{i\theta}) \to F(re^{i\theta})$ for each $\theta \in [0, 2\pi]$ and $r \in (0, 1)$
- 2 Uniform domination: we need an integrable function $D(\theta)$ such that $|F_n(re^{i\theta}) - F(re^{i\theta})| < D(\theta)$ for all $n \in \mathbb{N}$

Since $||F_n||_{H^p} < M$, we have that

$$|F_n(re^{i\theta})|, |F(re^{i\theta})| \leq \frac{M}{(1-r)^{1/p}}$$

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

$$\implies |F_n(r\mathrm{e}^{i\theta}) - F(r\mathrm{e}^{i\theta})| \leq \frac{2M}{(1-r)^{1/p}} = D(\theta)$$
. Indeed

$$\int_0^{2\pi} D(\theta) d\theta = \frac{4M\pi}{(1-r)^{1/p}} \le \infty$$

since r < 1. Thus, by DCT

$$\lim_{n\to\infty}\int_0^{2\pi}|F_n(re^{i\theta})-F(re^{i\theta})|d\theta=\int_0^{2\pi}\lim_{n\to\infty}|F_n(re^{i\theta})-F(re^{i\theta})|d\theta=0$$

which establishes that $N_p(r, F_n - F) \to 0$ as $n \to \infty$ for each r.

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

For any $r_0 < 1$, the convergence $N_p(r, F_n - F) \to 0$ as $n \to \infty$ is uniform for $r \in [0, r_0]$, so we conclude that

$$||F_n - F||_{H^p} = \sup_{0 \le r < 1} N_p(r, F_n - F) \to 0$$

as $n \to \infty$. Lastly, we must establish the analyticity of the limit function F. Now recal the **Weierstrass Convergence Theorem** from complex analysis, which states that if a sequence of functions $\{f_n\}$ is analytic on an open set U and converges uniformly on every compact subset of U to a function f, then f is also analytic on U.

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

Consider a family of compact sets $K_r = \overline{B(0,r)}$, for r < 1. For all z such that |z| < r, since $1 - |z| \ge 1 - r > 0$

$$\implies |F_n(z) - F(z)| \le \frac{2}{1-r} ||F_n - F||_{H^p(\mathbb{D})} \to 0$$

and so $F_n \to F$ uniformly on every set K_r , and thus F is analytic on \mathbb{D} .

Theorem

 $(H^p(\mathbb{D}),\|\cdot\|_{H^p(\mathbb{D})})$ is a Banach space for all $1\leq p\leq \infty$

Proof.

Altogether, we have that

- $||F_n F||_{H^p} \to 0 \text{ as } n \to \infty.$
- **3** F is indeed analytic in \mathbb{D} .

and so $F \in H^p(\mathbb{D})$, so $H^p(\mathbb{D})$ is complete.

The case $p=\infty$ follows this proof closely and is left as an exercise to the viewer (Hint: Use that $H^{\infty}(\mathbb{D}) \subset BC(\mathbb{D})$ and Montel's Theorem).

