$$\iff$$
 $I_B \circ g(x) \prec_B I_B \circ g(y)$ (教材定理 3.6)
 \iff $(f \circ f^{-1}) \circ g(x) \prec_B (f \circ f^{-1}) \circ g(y)$ ($f \circ f^{-1} = I_B$)
 \iff $f(f^{-1} \circ g(x)) \prec_B f(f^{-1} \circ g(y))$ (教材定理 2.5、教材定理 3.3)
 \iff $f^{-1} \circ g(x) \prec_A f^{-1} \circ g(y)$ ($f \in \mathbb{R}$)

从而有 $\forall x, y, x \prec_A y \Rightarrow f^{-1} \circ g(x) \prec_A f^{-1} \circ g(y)$ 。由习题 6.5 的结论知,对任意 $x \in A$,有 $x \preccurlyeq_A f^{-1} \circ g(x)$,于是有 $f(x) \preccurlyeq_B f(f^{-1} \circ g(x)) = g(x)$ 。同理可证, $g(x) \preccurlyeq f(x), \forall x \in A$ 。这就证明了 $f(x) = g(x), \forall x \in A$,也即, f = g 是 $\langle A, \prec_A \rangle$ 到 $\langle B, \prec_B \rangle$ 上唯一的同构。

6.9^{1}

证明: 由定义知, F 是函数, 且为满射。

对任意 $a,b \in A$, 若 $a \neq b$, 分两种情况讨论:

情况一: 若 $a \prec b$ (或 $b \prec a$),则有 $a \in F(b)$ (或 $b \in F(a)$),但 $b \notin F(a)$ (或 $a \notin F(b)$),从而有 $F(a) \neq F(b)$ 。

情况二: 若既无 $a \prec b$ 也无 $b \prec a$,则 $a \in F(a)$ 但 $b \notin F(a)$,从而也有 $F(a) \neq F(b)$ 。

这就证明了F是单射,从而是双射。

同时,对任意 $a,b \in A$, 若 $a \prec b$, 则:

 $\forall x$,

$$x \in F(a) \iff x \prec a \lor x = a$$
 $(F(a) 定义)$ $\implies x \prec b$ $(a \prec b, 拟序关系传递性)$ $\implies x \in F(b)$ $(F(b) 定义)$

从而 $F(a) \subset F(b)$ 。注意到,由于 $b \in F(b) \land b \notin F(a)$,所以 $F(a) \subset F(b)$ 。

反之,若 $F(a) \subset F(b)$,则由于 $a \in F(a) \subset F(b)$,所以有 $a \leq b$ 。同时,由于 F 是单射,所以 $F(a) \subset F(b) \Rightarrow F(a) \neq F(b) \Rightarrow a \neq b$ 。这就证明了 $a \prec b$ 。

从而
$$a \prec b \Leftrightarrow F(a) \subset F(b)$$
。由同构定义知, $F \not\in \langle A, \prec \rangle$ 到 $\langle S, \subset \rangle$ 上的同构。

6.10

证明: 若不然, 由序数的三歧性就有 $\alpha \in \beta$ 。又由于序数是传递集, 所以有 $\alpha \subseteq \beta$ 。

记 $\langle A, \prec \rangle$ 到 $\langle \alpha, \in_{\alpha} \rangle$ 的同构为 $f: A \to \alpha$,记 $\langle B, \prec^{0} \rangle$ 到 $\langle \beta, \in_{\beta} \rangle$ 的同构为 $g: B \to \beta$ 。注意到,因为 $B \subseteq A$,所以有 $g^{-1}: \beta \to A$ 。同理,由于 $\alpha \subseteq \beta$,所以有 $f: A \to \beta$ 。从而有 $f \circ g^{-1}: \beta \to \beta$ 。容易证明 $f \circ g^{-1}$ 是保序的:

 $\forall x, y \in \beta$,

这就证明了 $f \circ g^{-1}$ 的保序性。

由习题 6.5 的结论应有 $x \in f \circ g^{-1}(x), \forall x \in \beta$ 。又由于 $\alpha \in \beta$,所以应有 $\alpha \in f \circ g^{-1}(\alpha)$ 。但由 g^{-1} 的定义知, $g^{-1}(\alpha) \in B \subseteq A$,由 f 的保序性知, $f \circ g^{-1}(\alpha) \in \alpha$ 。矛盾。

¹题目中 "证明 F 是 $\langle A, \prec \rangle$ 与 $\langle S, \subseteq \rangle$ 之间的同构"应为"证明 F 是 $\langle A, \prec \rangle$ 与 $\langle S, \subset \rangle$ 之间的同构"。否则一个是拟序,一个是偏序,不同构。