CLAIMS

1. A composition comprising a compound according to the formula

$$J_{6}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

wherein at least one of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ is independently selected from the group consisting of

$$-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$$

wherein each A is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

each B is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

and with the proviso that each -B-A-B- unit contain at least one carbon atom;

la-664112

5

15

wherein G is independently selected from the group consisting of -N(P)-, -(C=O)-N(P)-, -N(P)-(C=O)-, and a nonentity;

x is independently 0 or 1;

m is independently 0 or 1;

5

10

25

n is independently an integer from 0 to 20;

each P is independently selected from the group consisting of H and C_1 - C_{12} alkyl;

each K is independently selected from the group consisting of H, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} cycloalkyl, C_3 - C_8 cycloaryl, C_3 - C_{12} cycloalkenyl, C_3 - C_{12} cycloalkynyl, C_1 - C_{12} alkanol, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl, and O_3 :

where each Q is independently selected from the group consisting of

where each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl, each D is selected from the group consisting of H and C₁-C₃₂ alkyl, y is an integer from 1 to 8, and z is an integer from 0 to 5, and where the Q moiety is attached to the remainder of the molecule at any C or N atom in the Q moiety (including C atoms in the D or P moieties) by removing a hydrogen atom, a P substituent, or a D substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule;

and where the remaining members or member of J_1 , J_2 , J_3 , J_4 , J_5 , J_6 , J_7 and J_8 are each independently selected from the group consisting of H, -B-A-B, -COOH, -SO₃H, -B-A-B-COOH, or -B-A-B-SO₃H, where each A and each B are independently selected as defined above and with the proviso that each -B-A-B-unit has at least one carbon atom.

la-664112 47

2. A composition comprising a compound according to the formula

$$J_{6}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

wherein at least one of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ is independently M, where each M is independently selected from the group consisting of

$$-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$$

5

15

wherein each A is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

each B is independently selected from the group consisting of: a nonentity, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} cycloalkyl, C_3 - C_8 cycloaryl, C_3 - C_{12} cycloalkenyl, C_3 - C_{12} cycloalkynyl, C_1 - C_{12} alkanol, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl;

and with the proviso that each -B-A-B- unit contain at least one carbon atom;

wherein G is independently selected from the group consisting of -N(P)-, 20 -(C=O)-N(P)-, -N(P)-(C=O)-, and a nonentity;

la-664112 48

x is independently 0 or 1;

m is independently 0 or 1;

n is independently an integer from 0 to 20;

each P is independently selected from the group consisting of H and

5 C_1 - C_{12} alkyl;

10

15

each K is independently selected from the group consisting of H, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} cycloalkyl, C_3 - C_8 cycloaryl, C_3 - C_{12} cycloalkenyl, C_3 - C_{12} cycloalkynyl, C_1 - C_{12} alkanol, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl, and Q;

where each Q is independently selected from the group consisting of

where each P is independently selected from the group consisting of H and C_1 - C_{12} alkyl, each D is selected from the group consisting of H and C_1 - C_{32} alkyl, y is an integer from 1 to 8, and z is an integer from 0 to 5, and where the Q moiety is attached to the remainder of the molecule at any C or N atom in the Q moiety (including C atoms in the D or P moieties) by removing a hydrogen atom, a P substituent, or a D substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule;

and where the remaining members or member of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ are each independently selected from the group consisting of H, -B-A-B, -COOH, -SO₃H, -B-A-B-COOH, or -B-A-B-SO₃H, where each A and each B are independently selected as defined above and with the proviso that each -B-A-B-unit has at least one carbon atom;

with the proviso that M excludes moieties of the form

$$-K_1-G_5-L_5-(N(P_5)-A_5)_n-K_2$$

where K_1 is independently selected from the group consisting of C_1 - C_8 alkyl and where the valence to the left of K_1 attaches to the porphyrin ring;

 G_5 is -O-, -(C=O)-, -C(=O)-O-, -O-(C=O)-, -O-(C=O)-O-, -O-(C=O)-N-, -N-(C=O)-O-, or a nonentity;

L₅ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₁-C₈ alkoxy, C₁-C₈ alkyl-C₃-C₈ cycloalkyl, C₁-C₈ alkyl-C₃-C₈ cycloaryl, C₁-C₈ alkoxy-C₃-C₈

- 5 cycloaryl, C₃-C₈ cycloalkyl-C₃-C₈ cycloaryl, C₃-C₈ cycloalkyl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkoxy, C₃-C₈ cycloaryl-C₃-C₈ cycloalkyl, or a nonentity;
 - each A₅ is independently selected from the group consisting of C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkenyl,
- 10 and C₃-C₈ cycloalkynyl;

P₅ is selected from the group consisting of H and C₁-C₈ alkyl; n is an integer from 2 to 8;

and K₂ is independently selected from the group consisting of H, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₈

- cycloalkenyl, C₃-C₈ cycloalkynyl, C₁-C₈ alkanol, C₃-C₈ cycloalkanol, and C₃-C₈ hydroxyaryl.
 - 3. The composition of claim 2, where G is independently selected from -(C=O)-N(P)- and -N(P)-(C=O)-.

20

4. The composition of claim 2, where the Q moiety is attached to the remainder of the molecule at any N atom in the Q moiety by removing a P substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule.

25

- 5. The composition of claim 2, wherein each A and B substituent, if present, is selected from C_1 - C_{12} alkyl.
- 6. The composition of claim 2, wherein at least one A substituent comprises acyclopropane group.

7. The composition of claim 2 comprising a compound of the formula

$$J_{6}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

- where J₁ and J₂ are independently M and each M is independently selected from the group consisting of $-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$; 5 J_3 , J_4 , J_6 and J_8 are independently selected from methyl and ethyl; and J_5 and J_7 are independently selected from methyl, ethyl, and $-SO_3H$.
- 8. The composition of claim 7, where J_1 and J_2 are independently M and each M 10 is independently selected from the group consisting of $-(B-A-B)-G-(B-A-B)-(N(P)-B-A-B)_n-K.$
 - 9. The composition of claim 8, wherein at least one B-A-B unit comprises a cycloalkyl moiety.
 - 10. The composition of claim 9, wherein at least one B-A-B unit comprises a cyclopropyl moiety.
- 11. The composition of claim 7, where J₁ and J₂ are independently M and each M 20 is independently selected from the group consisting of

15

 $-C_1-C_{12}$ alkyl- $-G-C_1-C_{12}$ alkyl- $-(N(P)-B-A-B)_n-K$.

- 12. The composition of claim 7, where J_1 and J_2 are independently M and each M is independently selected from the group consisting of
- 5 $-C_1-C_{12}$ alkyl- $(C=O)-N(P)-C_1-C_{12}$ alkyl- $(N(P)-B-A-B)_n-K$.
 - 13. The composition of claim 7, where J_1 and J_2 are independently M and each M is independently selected from the group consisting of

- $(CH_2)_2C(=O)N(P_2)-C_1-C_4$ alkyl- $[NH(CH_2CH_2CH_2CH_2)]_fC_1-C_{12}$ alkyl, where P_2 is

- 10 H, methyl, or ethyl, and f is an integer from 1 to 10.
 - 14. The composition of claim 10, where J_1 and J_2 are identical.
 - 15. The composition of claim 11, where J_1 and J_2 are identical.

15

16. The composition of claim 1, wherein each –K is independently Q;

where each Q is independently selected from the group consisting of

20

wherein only one D moiety is selected from the group consisting of C₁-C₃₂ alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of –H and –CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y

25 is 2, 3, or 4 and z is 0, 1, or 2.

17. The composition of claim 2, wherein each -K is independently Q;

where each Q is independently selected from the group consisting of

wherein only one D moiety is selected from the group consisting of C₁-C₃₂ alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of –H and –CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y is 2, 3, or 4 and z is 0, 1, or 2.

18. The composition of claim 6, wherein each -K is independently Q;

where each Q is independently selected from the group consisting of

15

20

5

wherein only one D moiety is selected from the group consisting of C_1 - C_{32} alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of –H and –CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y is 2, 3, or 4 and z is 0, 1, or 2.

19. The composition of claim 1, wherein -K is

5 20. The composition of claim 2, wherein -K is