1. Introdução

- 1.1. Sobre o Trabalho.
- 1.2. Notação.
- 1.3. Matrizes. Explicar o que são matrizes online e offline.
- 1.4. **Implementações.** Explicar os padrôes que estou usando pra implementar os programas. Por exemplo: Funções como argumentos, 0-index (em contraste com o 1-index do pseudo-código) e wrappers.

2. Monotonicidade, convexidade e matrizes Monge

Aqui serão apresentados e explorados os conceitos de monotonicidade, convexidade e matrizes Monge, além disso, alguns resultados referentes a estes conceitos serão demonstrados. Estes conceitos são fundamentais para o desenvolvimento do restante do trabalho.

Definição 2.1 (Vetor monótono). Seja $a \in \mathbb{Q}^n$ um vetor, a é dito monótono quando vale uma das propriedades abaixo.

- Se para todo $i, j \in [n], i < j \Rightarrow a_i \leq a_j, a \text{ \'e dito mon\'otono crescente}$ (ou s\'o crescente).
- Se para todo $i, j \in [n], i < j \Rightarrow a_i \geq a_j, a \text{ \'e dito mon\'otono decrescente (ou s\'o decrescente).}$

Sabemos que a monotonicidade de vetores pode ser aproveitada para agilizar alguns algoritmos importantes, por exemplo, a busca binária pode ser interpretada como uma otimização da busca linear para vetores monótonos.

Definição 2.2 (Vetor convexo). Seja $a \in \mathbb{Q}^n$ um vetor,

- se para todo $i, j, k \in [n], i < j < k \Rightarrow a_j \leq \frac{(j-k)a_i + (i-j)a_k}{i-k}, a \notin dito$ convexo e
- se para todo $i, j, k \in [n], i < j < k \Rightarrow a_j \ge \frac{(j-k)a_i + (i-j)a_k}{i-k}, a \notin dito$ côncavo.

Vale notar que a definição dada acima é específica para vetores porém é compatível com a definição usual de funções convexas, isto é, a é convexa se e somente se existe uma função f convexa tal que para todo $i \in [n]$, $a_i = f(i)$. A afirmação análoga para a concavidade também é verdadeira.

Assim como a monotonicidade, a convexidade também é usualmente explorada para agilizar algoritmos, por exemplo, se um vetor é estritamente convexo (basta substituir \leq por < na definição) podemos encontrar o mínimo (que é único) com uma busca ternária ao invés de percorrer todo o vetor.

Definição 2.3. Seja $A \in \mathbb{Q}^{n \times m}$, definimos quatro vetores a sequir.

- O vetor de índices de máximos das linhas de A guarda na posição i o número $\min\{j \in [m] \mid A[i][j] \geq A[i][j'] \text{ para todo } j' \in [m]\}.$
- $j_A \in \mathbb{Q}^n : i \mapsto \min\{j \in [m] \mid A[i][j] \le A[i][j'] \text{ para todo } j' \in [m]\}, \text{ o vetor de indices de minimos das linhas de } A,$
- $\hat{i_A} \in \mathbb{Q}^m : j \mapsto \min\{i \in [n] \mid A[i][j] \geq A[i'][j] \text{ para todo } i' \in [n]\}, \text{ o vetor de indices de máximos das colunas de } A \text{ e}$
- vetor de índices de máximos das colunas de A e

 $i_A \in \mathbb{Q}^m : j \mapsto \min\{i \in [n] \mid A[i][j] \leq A[i'][j] \text{ para todo } i' \in [n]\}, o$ vetor de índices de mínimos das colunas de A.

Calcular estes vetores para dadas matrizes é um problema interessante. Algumas propriedades das matrizes podem ser exploradas a fim de agilizar este cálculo. A monotonicidade, convexidade ou concavidade de matrizes

Talvez essa definição vá para a introdução. Prometo não usar essa notação estranha sem aviso.

indicam propriedades interessantes sobre estes problemas, portanto, vamos explorar estas definições.

Definição 2.4 (Matriz monótona). Seja $A \in \mathbb{Q}^{n \times m}$ uma matriz. Se A tiver o vetor de índices de máximos das linhas monótono, A é dita monótona nos máximos das linhas.

Valem também as definições análogas para mínimos ou colunas e pode-se especificar monotonicidade crescente ou decrescente.

Definição 2.5 (Matriz totalmente monótona). Seja $A \in \mathbb{Q}^{n \times m}$ uma matriz.

- Se A[i'][j'] < A[i'][j] implica A[i][j'] < A[i][j] para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona$ convexa nas linhas.
- Se vale $A[i'][j'] > A[i'][j] \Rightarrow A[i][j'] > A[i][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona\ concava\ nas\ linhas$.
- Se vale $A[i'][j'] < A[i][j'] \Rightarrow A[i'][j] < A[i][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona \ convexa \ nas \ linhas$.
- Se vale $A[i'][j'] > A[i][j'] \Rightarrow A[i'][j] > A[i][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$, $A \notin monotona\ concava\ nas\ linhas$.

O motivo do uso dos termos "convexa" e "côncava" neste contexto são justificados pelo Teorema ??. O seguinte lema caracteriza uma propriedade importante sobre matrizes totalmente monótonas.

Lema 2.6. Seja $A \in \mathbb{Q}^{n \times m}$. As sequintes afirmações são equivalentes.

- (1) Toda submatriz de A é monótona crescente no máximo das linhas.
- (2) Toda submatriz 2×2 de A é monótona crescente no máximo das linhas. Isto é, vale $A[i'][j'] < A[i'][j] \Rightarrow A[i][j'] < A[i][j]$ para todo $1 \le i < i' \le n$ e $1 \le j < j' \le m$.
- (3) $Vale\ A[i+1][j+1] < A[i+1][j] \Rightarrow A[i][j+1] < a[i][j].$

Vale notar que o lema é análogo em termos de colunas, mínimos e índices decrescentes.

Demonstração. Trivialmente, (1) implica em (2) que, por sua vez, implica em (3). Queremos provar que (3) implica em (1).

eu acho que tem que falar algo como "monótona convexa por linhas". Eu quero dizer que o rowmaxima tem índice crescente no índice da linha. Quando estiver

escrevedo a se-

melhor sobre

isso.

ção 2 vou pensar

3. Divisão e Conquista

Aqui será apresentada uma técnica que pode ser usada para encontrar máximos ou mínimos de linhas em matrizes monótonas convexasou côncavas em tempo $O((m+n)\lg(n))$, onde m é a quantidade de colunas e n a quantidade de linhas da matriz. Ao final, apresentamos exemplos de aplicações desta ideia em programação dinâmica.

3.1. **Técnica.** Dada uma matriz $A \in \mathbb{Q}^{n \times m}$ monótona convexa, queremos encontrar, para toda linha i da matriz, o menor índice j tal que A[i][j] é o valor máximo da linha i. Formalmente, queremos encontrar o vetor $R \in \mathbb{N}^n$ onde, para todo $i \in [n]$,

$$R[i] = \min\{j \mid A[i][j] \ge A[i][j'] \text{ para todo } j' \in [n]\}.$$

Se, para alguma linha i, encontrarmos o valor R[i], sabemos, já que A é monótona convexa, que para todo i' < i, $R[i'] \le R[i]$ e, para todo i' > i, $R[i'] \ge R[i]$, isto é, sabemos que os máximos de menor índice das outras linhas se encontram nas submatrizes A[1..i-1][1..R[i]] e A[i+1..n][R[i]..m]. Basta, agora, resolver o mesmo problema para estas submatrizes e conseguimos resolver o problema original.

Algoritmo 3.1 Máximo de linhas com divisão e conquista

```
1: função DIVCONQ(A)
         n \leftarrow quantidade de linhas de A
 2:
 3:
         m \leftarrow quantidade de colunas de A
         i \leftarrow \lceil n/2 \rceil
 4:
         R[i] \leftarrow \min\{j \mid A[i][j] \ge A[i][j'] \text{ para todo } j' \in [n]\}
 5:
         se i > 1 então
 6:
             R[1..i-1] \leftarrow \text{DIVCong}(A[1..i-1][1..R[i]])
 7:
 8:
         se i < n então
             R[i+1..n] \leftarrow R[i] + \text{DIVConQ}(A[i+1..n][R[i]..m])
 9:
         devolve R
10:
```

3.2. **Análise.** Será feita uma análise do tempo de execução do algoritmo acima assumindo que as atribuições feitas nas linhas 7 e 9 custam tempo constante, futuramente, em 3.3, iremos apresentar uma implementação em C++ que está de acordo com a análise realizada.

Se $A \in \mathbb{Q}^{n \times m}$, o tempo gasto por FindRowMax_DivConQ(A) pode ser expresso pela seguinte recorrência:

$$T(n,m) = \begin{cases} m & \text{, se } n = 1, \\ m + T(1,r) \text{ para algum } r \in [m] & \text{, se } n = 2, \\ m & + T(\lceil n/2 \rceil - 1, m - r + 1) \\ + T(\lfloor n/2 \rfloor, r) \text{ para algum } r \in [m] & \text{, caso contrário.} \end{cases}$$

Proposição 3.2. Para todo $n, m \ge 1$, $T(n, m) \le (m+n)\lg(2n)$ e, portanto, a técnica da divisão e conquista consegue encontrar o máximo de todas as linhas em tempo $O((m+n)\lg(n))$

Demonstração. Vamos usar indução em n para provar a tese. Se n=1 e $m\geq 1,\ T(1,m)=m\leq (m+1)\lg(2).$ Se n=2 e $m\geq 1,$ existe $r\in [m]$ tal que $T(2,m)=m+r\leq 2m\leq (m+2)\lg(4).$ Agora, se n>2 e $m\geq 1,$ existe um $r\in [m]$ tal que

$$T(n,m) = m + T(\lceil n/2 \rceil - 1, r) + T(\lceil n/2 \rceil, m - r + 1)$$

assumimos que com $1 \le n' < n$ e $m' \ge 1$ vale a tese para T(n', m'). Com isso, já que $1 \le \lceil n/2 \rceil - 1 \le n, 1 \le \lfloor n/2 \rfloor \le n, r \ge 1$ e $m - r + 1 \ge 1$, temos, com a equação acima e o fato de que $\lceil n/2 \rceil - 1 \le \lfloor n/2 \rfloor \le n/2$,

$$T(n,m) \le m + (r + \lceil n/2 \rceil - 1 + m - r + 1 + \lfloor n/2 \rfloor) \lg(n)$$

 $\le m + (m+n) \lg(n) \le (m+n) (\lg(n) + 1) = (m+n) \lg(2n).$

3.3. **Implementação.** Aqui serão discutidos os detalhes de implementação do algoritmo 3.1.

Primeiramente a matriz A deve ser facilmente manipulada, não podemos gerar novas matrizes para alimentar as chamadas recursivas da função DIVCONQ. Além disso, como explicado em 1.4, o parâmetro a ser passado será uma função e não uma matriz. Note que a matriz nas chamadas recursivas é sempre formada por um intervalo das linhas e um intervalo das colunas da matriz A original, portanto, podemos guardar 4 inteiros, ℓs , ℓt , ℓs e ℓt , rempresentando, respectivamente, a primeira linha, a última linha, a primeira coluna e a última coluna acessíveis na chamada atual da recursão.

Agora, devemos tomar cuidado com as atribuições feitas nas linhas 7 e 9. A forma como elas foram apresentadas sugere que os vetores R recebidos pelas funções sejam recebidos e copiados para o vetor R. Ao invés de fazer isso, iremos passar o endereço do vetor R recursivamente e garantir que cada chamada só complete o subvetor $R[\ell s..\ell t]$, referente a seu subproblema. Além disso, a linha 9 possui uma adição, o que sugere que o valor R[i] seja adicionado elemento-a-elemento, o que não será feito, os vetor R já será preenchido com o índice correto da coluna na matriz original A da primeira vez que for acessado.

Referências

[1] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In *Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing*, STOC '80, pages 429–435, New York, NY, USA, 1980. ACM.