\vdash

Physics

$Honor\ General\ Physics\ I$

Module 1: Mechanics basics

Module 2: Energy and Oscillations

Potential Energy and Conservation of Energy

Potential Energy

- · Conservative Force
 - Conservative Force are forces for which W1=-W2 is always ture
 - Examples:gravitational force, spring force
 - Otherwise we could not speak of their potential energies
- Gravatational Potential Energy

$$U(y) = mgy$$

Elastic Potential Energy

$$U(x)=rac{1}{2}kx^2$$

Conservation of Mechanical Energy

Reading a Potential Energy Curve

Work Done on ta System by an External Force

Power

$$P_{avg} = rac{\Delta E}{\Delta t}$$

$$P = \frac{dE}{dt}$$

Conservation of Energy

Equilibrium

- · Static equilibrium
 - $F_{net} = 0$
 - $ilde{ au}_{net}=0$

Elasticity

- $Stress = modulus \times strian$
- Young's mudules, E, used for tension/compression (拉力/压力):

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

- Shear mudules, G, used for shearing (剪切力):
 - Δx is along a different axis than L

$$\frac{F}{A} = G \frac{\Delta x}{L}$$

- Bulk mudules, **B**, used for hydraulic compression (液压压力):
 - Relates pressure to volume change

$$p\,=\,B\,\frac{\Delta V}{V}$$

Gravitation

Newton's Law of Gravitation

• Gravitation and the principle of Superposition

$$F\,=\,G\,rac{m_1m_2}{r^2}$$

· hell's theorem

· Gravitation Near Earth's surface

$$\circ$$
 Combine $F=rac{GMm}{r^2}$ and $F=ma_g$ $a_g=rac{GM}{r^2}$ $F_N-ma_g=m(-\omega^2R)$ $g=a_g-\omega^2R$

$$a_gpprox 9.8m/s^2 \ \omegapprox 7.3 imes 10^{-5} rad/s \ Rpprox 6357 km$$

· Gravitation Inside Earth

$$F=rac{GmM_{ins}}{r^2}$$
 $ho=rac{M_{ins}}{rac{4}{3}\pi r^3}=rac{M}{rac{4}{3}\pi R^3}$ $F=rac{GMm}{R^3}r$

Gravitational Potential Energy

$$U=-rac{GMm}{r}$$
 $K+U=rac{1}{2}mv^2+(-rac{GMm}{R})=0$ $v=\sqrt{rac{2GM}{R}}$

Satellites: Orbits and Energy

• Escape Speed

$$mrac{v^2}{r}=rac{GMm}{r^2}$$

$$K=rac{1}{2}mv^2=rac{GMm}{2r}$$
 $K=-rac{U}{2}\left(circular\,orbit
ight)$ $E=K+U=-rac{GMm}{2r}\left(circular\,orbit
ight)$ $T^2=rac{4\pi^2}{GM}r^3$

Oscillations

Simple Harmonic Motion

- Frequency
- Period

$$T=rac{1}{f}$$
 $x(t)=x_{m}cos(\omega t+\phi)$ $\omega=rac{2\pi}{T}=2\pi f$ $v(t)=rac{dx}{dt}=-\omega x_{m}sin(\omega t+\phi)$ $a(t)=rac{dv}{dt}=rac{d^{2}x}{dt^{2}}=-\omega^{2}x_{m}cos(\omega t+\phi)=-\omega^{2}x(t)$ $F=ma=-m\omega^{2}x$ $\omega=\sqrt{rac{k}{m}}$ (Linear simple harmonic oscillation)

Energy in Simple Harmonic Motion\

$$U(t)=rac{1}{2}kx^2=rac{1}{2}kx_m^2cos^2(\omega t+\phi)$$

$$K(t)=rac{1}{2}mv^2=rac{1}{2}kx_m^2sin^2(\omega t+\phi)$$
 $E=U+K=rac{1}{2}kx_m^2$

An Angular Simple Harmonic Oscillator

$$au = -\kappa \theta$$

$$T=2\pi\sqrt{rac{I}{\kappa}}$$

Pendulums, Circular motion

$$au=-L(F_g sin heta)$$
 $lpha=-rac{mgL}{I} heta$ $\omega=\sqrt{rac{mgL}{I}}$ $T=2\pi\sqrt{rac{F}{g}}=2\pi\sqrt{rac{I}{mgh}}$

Damped Simple Harmonic Motion

$$egin{aligned} F_d &= -bv \ mrac{d^2x}{dt^2} + brac{dx}{dt} + kx = 0 \ x(t) &= x_m e^{rac{-bt}{2m}}cos(\omega't + \phi) \ \omega' &= \sqrt{rac{k}{m} - rac{b^2}{4m^2}} \ E(t) &pprox rac{1}{2}Kx_m^2 e^{rac{-bt}{m}} \end{aligned}$$

Waves

Sinusoidal Waves

• Transverse Waves

$$y(x,t)=y_m sin(kx-\omega t)$$
 $k=rac{2\pi}{\lambda} ext{ (angular wave number)}$ $\omega=rac{2\pi}{T} ext{ (angular frequency)}$ $f=rac{1}{T}=rac{\omega}{2\pi} ext{ (frequency)}$

Longitudinal Waves
 Sound Waves

$$B=-rac{\Delta p}{\Delta V/V}=
ho v^2$$
 $v=\sqrt{rac{B}{
ho}}$ $I=rac{P_s}{4\pi r^2} ext{(Intensity)}$

Wave Speed

$$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f \text{ (wave speed)}$$

· Wave Speed on a Stretched String

$$\mu = \frac{m}{l} \, (\text{linear density})$$

$$v = \sqrt{\frac{\tau}{\mu}}$$
(speed) (τ is tension in N)

Energy and Power of a Wave Travelling along a String

$$dK = rac{1}{2}dmu^2$$
 $rac{dK}{dt} = rac{1}{2}rac{dm}{dt}u^2 = rac{1}{2}\mu v\omega^2 y_m^2 cos^2(kx - \omega t)$ $(rac{dK}{dt})_{avg} = rac{1}{4}\mu v\omega^2 y_m^2 = (rac{dU}{dt})_{avg}$ $P_{avg} = rac{d(K+U)}{dt} = 2(rac{dK}{dt})_{avg} = rac{1}{2}\mu v\omega^2 y_m^2$ $a_y = rac{d^2y}{dt^2}$ $rac{d^2y}{dx^2} = rac{\mu}{\tau}rac{d^2y}{dt^2}$ (wave equation)

Interference of Waves

$$y'(x,t)=y_1(x,t)+y_2(x,t)$$
 $If:$ $y_1(x,t)=y_msin(kx-\omega t)$ $y_2(x,t)=y_msin(kx-\omega t+\phi)$ $s.t.$ $y'(x,t)=[2y_mcosrac{1}{2}\phi]sin(kx-\omega t+rac{1}{2}\phi)$

· Sound Interference

$$\phi = rac{\Delta L}{\lambda} 2\pi$$

Phasors

Standing Waves

$$If:$$
 $y_1(x,t)=y_m sin(kx-\omega t)$ $y_2(x,t)=y_m sin(kx+\omega t)$ $s.t.$ $y'(x,t)=[2y_m sinkx]cos\omega t$

- Resonance
- · A pipe open at both ends

$$sin(kL)=0
ightarrow KL=rac{2\pi}{\lambda}L=n\pi$$
 $f=rac{v}{\lambda}=rac{nv}{2L}\,,\,n=1,2,3,\ldots$

· A pipe closed at one end and open at the other

$$f=rac{v}{\lambda}=rac{nv}{4L}\,,\,n=1,3,5,\ldots$$

Doppler's Effect

$$f' = f rac{v \pm v_D}{v \pm v_S}$$
 $sin heta = rac{v}{v_S}$

Fluids

Fluids basics

Pascal's Principle

Archimedes' Principle

Ideal Fuilds

Bernoulli's Equation

Module 3: Thermodynamics

The First Law of Thermodynamics

Temperature

· Kelvins is an SI base quantity

$$T=(273.16\, ext{K})\left(\lim_{ ext{gas} o 0}rac{p}{p_3}
ight)$$
 $T_C=T-273.15$ $T_F=rac{9}{5}T_C+32\degree$

${\bf Zeroth\ law\ of\ thermodynamics}$

• if A and B are each in thermal equilibrium with T , then A and B are in thermal equilibrium with each other.

Absorption of Heat

Heat capacity - C specific heat - c heat of transformation - L

$$Q = C\Delta T = C(T_f - T_i)$$

$$Q = cm\Delta T = cm(T_f - T_i)$$

$$Q = Lm$$

Substance	State	Specific Heat (Cal/g·K)	Specific Heat (J/kg·K)	Molar Specific Heat (J/mol·K)
Lead	Solid	0.0305	128	26.5
Tungsten	Solid	0.0321	134	24.8
Silver	Solid	0.0564	236	25.5
Copper	Solid	0.0923	386	24.5
Aluminum	Solid	0.215	900	24.4
Brass	Solid	0.092	380	-
Granite	Solid	0.19	790	-
Glass	Solid	0.20	840	-
lce (-10°C)	Solid	0.530	2220	-
Mercury	Liquid	0.033	140	-
Ethyl alcohol	Liquid	0.58	2430	-
Seawater	Liquid	0.93	3900	-
Water	Liquid	1.00	4187	-

First law of thermodynamics

$$W = \int dW = \int_{v_i}^{v_f} p \, dV$$
 $\Delta E_{int} = E_{int,f} - E_{int,i} = Q - W$ $dE_{int} = dQ - dW$

Process	Restriction	Consequence
Adiabatic	Q = 0	$arDelta E_{int} = -W$
Constant volume	W = 0	$arDelta E_{int} = Q$
Closed cycle	$\Delta E_{int}=0$	Q = W
Free expansion	Q = W = 0	$arDelta E_{int} = 0$

Heat Transfer Mechanisms

• Thermal Conduction rate - P_{cond}

$$P_{cond} = rac{Q}{t} = kArac{T_H - T_C}{L}$$

- Convection
- Thermal Radiation (Stefan-Boltzmann law) $\sigma = 5.6704 \times 10^{-8} W/m^2 \!\cdot\! K^4$

$$P_{rad} = \sigma \varepsilon A T^4$$

$$P_{abs} = \sigma \varepsilon A T_{env}^4$$

Kinetic Theory of Gases

Avogadro's Number

$$N_A = 6.02 imes 10^{23} mol^{-1}$$

$$n=rac{M_{sam}}{M}=rac{M_{sam}}{mN_A}=rac{N}{N_A}$$

Ideal Gas

R is a constant = $8.31 J/mol \cdot K$ k is the Boltzmann constant = $1.380649~\times~10^{-23} J/K$

$$pV = nRT$$

$$pV = NkT$$

$$W=nRT\,lnrac{V_f}{V_i}$$

Pressure, Temperature, and rms Speed

$$p=rac{nMv_{rms}^2}{3V}$$

$$v_{rms} = \sqrt{rac{3RT}{M}}$$

Gas	Molar Mass (g/mol)	$v_{ m rms}$ (m/s)
Hydrogen (H₂)	2.02	1920
Helium (He)	4.00	1370
Water vapor (H₂O)	18.0	645
Nitrogen (N₂)	28.0	517
Oxygen (O ₂)	32.0	483
Carbon dioxide (CO ₂)	44.0	412
Sulfur dioxide (SO ₂)	64.1	342

Translational Kinetic Energy

$$K_{avg} = rac{1}{2} m(v^2)_{avg} = rac{1}{2} m v_{rms}^2 = rac{1}{2} m rac{3RT}{2N_A} = rac{3}{2} kT$$

Mean Free Path

$$\lambda = rac{1}{\sqrt{2}\pi d^2rac{N}{V}}$$

· Proof:

$$\lambda = rac{ ext{length of path}}{ ext{number of collisions}} = rac{v_{ave} \Delta t}{\pi d^2 v_{rel} \Delta t rac{N}{V}}$$

The Distribution of Molecular Speed

$$P(v)=4\pi(rac{M}{2\pi RT})^{rac{3}{2}}v^2e^{rac{-Mv^2}{2RT}}$$
 $\int_0^\infty P(v)dv=1$ $frac=\int_{v1}^{v2}P(v)dv$ $v_{avg}=\int_0^\infty vP(v)dv=\sqrt{rac{8RT}{\pi M}} ext{(average speed)}$ $v_{rms}=\sqrt{\int_0^\infty v^2P(v)dv}=\sqrt{rac{3RT}{M}} ext{(rms speed)}$ $v_p=\sqrt{rac{2RT}{M}} ext{(most probable speed)}$

The Molar Specific Heats of An Ideal Gas

· Molar Specific Heat at Constant Volume

$$E_{int}=rac{3}{2}nRT$$
 $Q=nC_V \Delta T (ext{constant volume})$ $\Delta E_{int}=Q-W$ $W=p\Delta V=0$ $C_V=rac{3}{2}R=12.5J/mol\cdot K (ext{monatomic gas})$

· Molar Specific Heat at Constant Pressure

$$C_p = rac{Q}{n \Delta T}$$
 $\Delta E_{int} = Q - W$ $W = p \Delta V = n R \Delta T$ $C_p = C_V + R = rac{5}{2} R ext{(monatomic)}$

Degree of Freedom and Molar Specific Heats

$$C_V = (rac{f}{2})R = 4.16 f\, J/mol \cdot K$$

Molecule Type	Example	Translational	Rotational	Total f	C_V (Equation 19-51)	$C_P = C_V + R$
Monatomic	Не	3	0	3	$\frac{3}{2}R$	$\frac{5}{2}R$
Diatomic	O ₂	3	2	5	$rac{5}{2}R$	$\frac{7}{2}R$
Polyatomic	CH ₄	3	3	6	3R	4R

The Adiabatic Expansion of an Ideal Gas

$$egin{aligned} nC_V\,dT &= dE_{int} = dQ - \,dW = -p\,dV \ pV &= nRT
ightarrow dp\,V + p\,dV = nR\,dT \ C_P &= C_V + R
ightarrow V\,dp + p\,dV \cdot rac{C_P}{C_V} = 0 \ lnp + lnV \cdot rac{C_P}{C_V} = constant \ &
ightarrow pV^\gamma = constant \end{aligned}$$

Entropy and the Second Law of Thermodynamics

Entropy

let $\Delta E_{int} = 0$ as temperature keeps the same

$$W = \int P dV = Q$$

$$\Delta S = S_f - S_i = \int_i^f rac{dQ_{rev}}{T} ext{ (define the entropy change)}$$

For ideal gas, we have:

$$dE_{int} = dQ - dW$$

$$dW = pdV$$

$$dE_{int} = nC_V dT$$

$$dQ = pdV + nC_V dT$$

$$rac{dQ}{T} = nRrac{dV}{V} + nC_Vrac{dT}{T}$$

$$\Delta S = \int_i^f rac{dQ}{T} = nR \int_i^f rac{dV}{V} + nC_V \int_i^f rac{dT}{T} = nR \ln rac{V_f}{V_i} + nC_V \ln rac{T_f}{T_i}$$

 $\Delta S \geq 0$ (second law of thermodynamics)

Entropy in the Real World:Engines

• Carnot Engine

Schematic of a Carnot engine

$$\eta = rac{ ext{energy we get}}{ ext{energy we pay for}} = rac{|W|}{|Q_H|}$$

$$\eta_C = 1 - rac{T_L}{T_H} ext{ (Efficiency of Carnot Engine)}$$

$$W=nR(T_H-T_L)\ln(rac{V_b}{V_a})$$

$$Q_H = nRT_H \ln(rac{V_b}{V_a})$$

$$\eta = rac{W}{Q} < \eta_C ext{ (For Stirling Efficiency)}$$

$$arepsilon_A \leq 1 - rac{T_L}{T_H} = arepsilon_C ext{ (For Arbitrary Engine Efficiency)}$$

Refrigerators and Real Engines

$$K = rac{ ext{what we want}}{ ext{what we pay for}} = rac{|Q_H|}{|W|} ext{ (any refrigerator)}$$
 $W = nR(T_L - T_H) \ln(rac{V_b}{V_a})$ $Q_H = -nRT_H \ln(rac{V_b}{V_a})$ $K_C = rac{T_H}{T_L - T_H} ext{ (Carnot refrigerator)}$

A Statistical View of Entropy

$$W = C_N^{n1} = \frac{N!}{n! \cdot n!}$$
 (multiplicity of configuration)

Label	n_1	n_2	Multiplicity ${\it W}$	Calculation of ${\cal W}$	Entropy $(10^{-23}\mathrm{J/K})$
I	6	0	1	$\frac{6!}{6!0!} = 1$	0.00
Ш	5	1	6	$\frac{6!}{5!1!} = 6$	2.47
III	4	2	15	$\frac{6!}{4!2!} = 15$	3.74
IV	3	3	20	$\frac{6!}{3!3!} = 20$	4.13
V	2	4	15	$\frac{6!}{2!4!} = 15$	3.74
VI	1	5	6	$\frac{6!}{1!5!} = 6$	2.47
VII	0	6	1	$\frac{6!}{0!6!} = 1$	0.00

$$\sum W = 64$$

 $S = k \ln W$ (Boltzmann's entropy equation)

$$k = 1.38 \times 10^{-23} J/K$$

When N is very large:

 $\ln N! \approx N(\ln N) - N$ (Stirling's approximation)

Free expansion problem

Initially, all molecules are in left chamber:

$$W_i = \frac{N!}{N! \ 0!} = 1$$
 $S_i = k \ln W_i = k \ln 1 = 0$

• Finally, half of molecules are in either side:

(a) Initial state i

$$W_f = \frac{N!}{(N/2)! (N/2)!} \qquad \ln N! \approx N(\ln N) - N$$

 $S_f = k \ln W_f = k \ln(N!) - 2k \ln[(N/2)!]$

$$\ln N! \approx N (\ln N) - N$$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

Words

• Monatomic: 单原子

• diatomic: 双原子

• adiabatic: 绝热

 $= Nk \ln 2 = nR \ln 2$

• isothermal: 等温

• isentropic: 等熵