HEXADECIMAL NUMBERS

Memory Test

30 Seconds

01011011011011011011011011011

Which is easier to remember?

01011011011011011011011011011011

or 5B5B5B

- Humans are not good at remembering long strings of numbers
- Binary numbers are often long and unwieldy

OBJECTIVES

- Know what a hexadecimal number is
- Understand how to convert Denary 0 255 to hexadecimal and vice versa
- Know how to convert Hexadecimal to Binary and Binary to Hexadecimal (up to 4 bits)
- Understand why we use hexadecimal

Binary Numbers

 Here are the first 16 binary numbers (using decimal equivalents.

What do you think the Hex equivalent might be?

Binary	Denary	Hex	Binary	Denary	Hex
0000	0		1000	8	
0001	1		1001	9	
0010	2		1010	10	
0011	3		1011	11	
0100	4		1100	12	
0101	5		1101	13	
0110	6		1110	14	
0111	7		1111	15	

Activity

 Complete the chart by writing the first numbers (beginning with 0) How many bits do you need to represent the first 16 hexadecimal numbers?

Binary	Denary	Hex	Binary	Denary	Hex
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	C
0101	5	5	1101	13	D
0110	6	6	1110	14	E
0111	7	7	1111	15	F

Number Systems

Denary	Hex	Denary	Hex
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	E
7	7	15	F

- We naturally understand denary numbers
- We know that $1089 = (1x10^3) + (0x10^2) + (8x10) + (9x1)$
- For hexadecimal it is the same but for base 16

Example

= 240 + 14 = **254**

A more difficult example

Convert thes denary – sho

EXTRA CHALLENGE – TRY THESE:

- FFF
- EF4

$$240 + 15$$

$$128 + 13$$

$$\cdot 42 (4 \times 16) + (2 \times 1)$$

Extension

•FFF
$$(15 \times 256) + (15 \times 16) + (15 \times 1)$$

 $(3,840) + (240) + (15) = 4,095$
•EF4 $(14 \times 256) + (15 \times 16) + (4 \times 1)$
 $(3,584) + (240) + (4) = 3,828$

Converting Hex to Decimal

Denary to Hexadecimal

Example: Convert 200 denary to hexadecimal:

enary to hexadecimal:				
4096s	256s	16s	1s	

- 1. Find the placeholder smaller > the number = 16
- 2. Divide 200 by 16 = 12 (lots of 16) = 192
- 3. Calculate the remainder = 200 190 = Remainder of 8 (units)
- 4. and 8 in Decimal is 8 in Hex
- 5. Answer is C8

Denary	Hex	Denary	Hex
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	E
7	7	15	F

Denary to Hexadecimal

Example: Convert 200 denary to hexadecimal:

4096s	256s	16s	1s	

1. Find the placeholder < the number (200) = 16

Divide 200 by 16 = 12

Convert number to Hex if needed

Calculate the remainder= 200 – 192 = Remainder of 8Convert number to Hex if needed

Hex

Hex

0

5

7

7

Denary

10

11 12

13 14

15

Denary	Hex	Denary	Hex
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	E
7	7	15	F

Difficult Example: Convert 8,000 denary to hexadecir......

1. Find the placeholder < the number (8,000) = 16

This is 4,096

Divide 8,000 by 4,096 = 1 = 1 in Hex

Calculate the remainder = Remainder of 3,904 = 8,000 - 4,096

Hex Denary Hex **Denary** A C D F

Find the placeholder < the remainder (3,904)

This is 256

Divide **3,904** by 256 = 15 = F in Hex

Calculate the remainder = 3904 – 3840 = Remainder of 64

Denary Hex **Denary** Hex A F

Find the placeholder < the remainder (64)

This is 16

Divide **64** by
$$16 = 4 = 4$$
 in Hex

Calculate the remainder
$$= 64 - 64 = Remainder of 0$$

Convert these denary to hexadecimal

- a) 32 20
- b) 255 **FF**
- c) 59 3B
- d) 159 9F
- e) 230 E6
- f) 256 100

Converting Binary to Hex

Binary to Hexadecimal

- Hexadecimal groups binary bits into groups of 4 bits
- Each group of 4 Bits (nibble) is assigned a hex digit value.
 - Digits are the same as for decimal up to 9
 - Letters A through F are used for 10 15

Thus the 8-bit binary number
1011 0010
converted to hex is
B2

0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = A
0011 = 3	1011 = B
0100 = 4	1100 = C
0101 = 5	1101 = D
0110 = 6	1110 = E
0444 - 7	4444 - 6

Binary to Hexadecimal

0011110110001001

3 D 8 9

What would these Binary numbers be as Hexadecimal?

a) 11111111 FF

b) 00000101 05

c) 10101010 AA

d) 01011111 5F

e) 11110000 F0

f) 100111111 13F

g) 111101110 1EE

Extension – write the proof by converting each to denary

Binary to Hex

111111110111

Split into into groups of 4 bits (Nibbles)

1111 1111 0111

D F 7

1000 = 8

0000 = 0

111000011

Split into into groups of 4 bits (Nibbles)
1 1100 0011

1 **C** 3

1000 = 8

0000 = 0

1111100001

Split into into groups of 4 bits (Nibbles)
11 1110 0001

3 E 1

1000 = 8

0000 = 0

Hexadecimal to Binary

• Find the four bit code for each digit

0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = A
0011 = 3	1011 = B
0100 = 4	1100 = C
0101 = 5	1101 = D
0110 = 6	1110 = E
0111 = 7	1111 = F

010001011010

Another Example

Find the four bit code for each digit

1011111100001000

Convert the following into Binary

```
a) 6C 0110 1100
```

b) 59 0101 1001

c) AA 1010 1010

d) A01 1010 0000 0001

e) 40E 0100 0000 1110

f) BA6 1011 1010 0110

g) 9CC 1001 1100 1100

h) 40AA 0100 0000 1010 1010

Why hexadecimal?

- Hex numbers are shorter/more memorable than equivalent binary numbers..
- ... and can easily be converted to and from binary...
- ... as each hexadecimal digit corresponds to 4 binary digits

Challenge – Write an Algorithm for...

Six Groups

- Decimal to hex
- Hex to decimal
- Binary to hex
- Hex to binary
- Binary to decimal
- Decimal to binary

Three Groups

- Decimal to hex
- Hex to decimal
- Binary to hex
- Hex to binary
- Binary to decimal
- Decimal to binary

HEXADECIMAL BINGO

 Highlight the decimal equivalent of the hexadecimal number given

В	1	N	G	0
43	80	123	170	233
1	76	149	178	229
38	58	111	187	213
В	1	N	G	0
11	60	112	168	203
48	63	139	190	222
40	55	147	176	223
В	1	N	G	0
5	80	141	151	254
11	68	128	180	244
50	71	117	166	223

Copyright Notice

Copyright for all pictures, drawings and photos used in this lesson and its associated resources are either created by the author **or** are attributed as free to use (and source acknowledge below). Any use of copyrighted material used in these resources is unintentional and will be removed immediately (or attributed) if brought to the attention of the author (taylorteachingresources@gmail.com)

Copyright for text / pictures / photos that are not attributed belong to the author of this resource Any Trademarks used are used under a Fair use editorial exception which acknowledges that:

- Any products or services in Case Studies / Resources are not readily identifiable without the use of the trademark
- Only so much of the mark as is reasonably necessary to identify the product or service has been used
- Use of the any Trademarks does not suggest sponsorship or endorsement

Hex	Binary	Hex	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111
			IIOA

Donary	1102	Donary	1107
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	В
4	4	12	C
5	5	13	D
6	6	14	E
7	7	15	F

Denary	Hex	Denary	Hex
0	0	8	8
1	1	9	9
2	2	10	A
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	E
7	7	15	F

Hex	Binary	Hex	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111