

Introduction To Machine Learning

Adapting scientific data, picking the right approach, and testing it well

Logan Ward

Data Science and Learning Division, Argonne National Laboratory

You've already done machine learning

... and already have the main ideas

Is it different than conventional modeling? Somewhat

Many Similarities

Difference is in Scale

Bottom Line

"Semi-Empirical" Models

- Compose equations
- Fit unknown terms to data
- Evaluate to solve problem

Tersoff Potential
12 parameters

Understand model by understanding *physics*

Machine Learning

- Compose model forms
- Fit unknown terms to data
- Evaluate to solve problem

Gaussian Approximation Potential
300 parameters

Understand model by understanding *algorithms*

Is it different than conventional empiricism? Mostly

$$M_d 30 = 497 - 462(x_C + x_N) - 8.1x_{Mn}$$

Engineering is rife with empirical models, fit to data, used to understand physics

Modern AI techniques delegate more creativity to the algorithm, but more interpretation to the human

Ouyang et al. PRM. (2018), 083802

Ok, why do we have an "Al4Sci" tutorial series?

(And 2 hours on "machine learning")

Key reason: Al requires different skills

- 1. Understanding algorithms is key for success
- 2. Complex models must be used with care
- 3. We still do not understand all uses of Al
- 4. Tools are not commonly taught or used elsewhere

Figure: Goodfellow et al. ICLR (2015)

Today's Goal: Introduce "machine learning"

- 1. What are the key algorithms?
- 2. How do I use them for "science?"

Anatomy of a machine learning algorithms

All have roughly the same parts

- Entry/Data Point/Instance
 Individual piece of data
- <u>Labels</u>
 measured about a record

- Objective Function
 What marks "better"?
- Optimization Routine
 How do I make it better?

- Architecture

 What form does the model take?
- Weights
 Values of adjustable parameters

Let's go through a few key examples

Anatomy of a machine learning algorithms

Training Data

Learning Function

Model/"Software"

Supervised Learning

Entries: X Labels: y Find f where $y \approx f(X)$

Linear models Lookup tables Decision Trees

Clustering

Entries: X

Discover similar subsets with X

k Means Agglomerative Clustering

Dimensionality Reduction

Entries: X

Learn h where $X \approx h(X)$

Principle Component Analysis
Autoencoders

There are many types "learning" you can do. This list is not complete!

Supervised Learning: The ML you've done before

Classification: Outputs are discrete

https://apps.apple.com/us/app/not-hotdog/id1212457521

Google Maps

Regression: Outputs are continuous

http://phdcomics.com/comics/archive.php?comicid=1078

An old friend: Simple Linear Regression

... but let's make it sound modern

Model Architecture

$$f(x;m,b)=mx+b$$

Training Data: Inputs (x_i) and outputs (y_i)

Goal: Determine m and b that minimize

Loss Function

Optimizer

$$\sum_{i} (f(x_i; m, b) - y_i)^2$$

by computing

$$m = \text{Cov}[x, y]/Var[x]$$

 $b = \overline{y} - m\overline{x}$

Simple Logistic Regression

A version of Linear Regression suitable for classification

Model Architecture

$$f(x; m, b) = \frac{1}{1 + e^{-(mx+b)}}$$

Training Data: Inputs (x_i) and outputs (y_i)

Goal: Determine *m* and *b* that minimize

Loss Function

$$L(m,b)\sum_{i} y_{i} \ln(f(x_{i})) + (1-y_{i})\ln(1-f(x_{i}))$$

by computing

$$x_0 = (1,0)$$

 $x_{n+1} = x_n + \gamma \nabla L(m,b)$ "log loss"*

Optimizer

Architecture + Loss + Optimizer = ML Algorithm For Regression and Classification

"gradient decent"*

Linear Models Are Not Sufficient

Otherwise, this would be a very short lecture

Why Not? Model complexity is limited

Key Questions for Supervised ML:

- 1. How to add more complexity?
- 2. How to know when "overfit"?

There is a **ZOO** of ML Algorithms

Variations of Bayes' Theorem

Linear regression, etc.

k-Nearest neighbors

Many kinds of decision trees

Trees vary in...

- whether to process inputs
- ways picking splits
- what are on the "leaves"
- how to prune after training

There is no "algorithm to rule them all"

http://www.site.uottawa.ca/~stan/csi7163/weka_workshop_slides.pdf

y = 2

Linear Models are quite important

Key Concept: "Penalized" regression methods

$$||y - \alpha X||_2 + \lambda ||\alpha||_p$$
 <- "Regularizer"

Subtlety: More than one type of "regularization" loss

where
$$\|\alpha\|_p$$
 is the " L^p norm": $\|\alpha\|_p = (|\alpha_0|^p + \cdots + |\alpha_n|^p)^{\frac{1}{p}}$

Advantages:

- 1. Fast to train! L_2 has an analytic solution
- 2. Interpretable, especially for L_1

Disadvantage: Limited complexity

 L^1 -norm: "sparse linear regression"

- Moderate penalties for small parameters
- Sparse models (many $\alpha = 0$)

 L^2 -norm: "ridge regression"

- Small penalties for small parameters
- Many parameters (No $\alpha = 0$)

Key algorithm: Decision Trees

Model form: Series of rules

Learning objective: Find rules that maximize performance

Learning algorithm: Recursive rule selection

(Many variations of these components!)

Why might I choose decision trees:

- Fast to train $(O(N\log N))$
- Mostly interpretable by humans

Check convergence: Split needed? (If so, done!)

Learning Step: Determine split location

Divide data, then recurse!

MODEL SELECTION: THE KEY TASK IN SUPERVISED ML

A Reprise: Overfitting and Complexity

Training accuracy vs "generalizability"

How do We Adjust COMPLEXITY?

We'll just talk linear models for now, but these are general ideas

LIMIT COMPLEXITY

Reduce degrees of freedom

$$f(x) = a_0 + a_1 x + a_2 x^2 + [\dots]$$

PENALIZE COMPLEXITY

Add "complexity" to loss function

$$\sum_{i} (f(x_i) - y_i)^2 + \lambda a a^T$$

Larger coefficients = bigger penalty

Two <u>MAJOR</u> Concepts

Don't leave this room without them!

CROSS VALIDATION

Given available data, test whether model is predictive

Basic Techniques:

- Shuffle Split
 - 1. Pick 10% as test set
 - 2. Train on remaining 90%
 - 3. Test model on test set
- Leave-one-out
 - 1. Pick one entry
 - 2. Train on remaining entries
 - 3. Test model on held-out entry
 - 4. Repeat using each entry

HYPERPARAMETER OPTIMIZATION

Summary for Part 1

What is machine learning?

Algorithms that generate software from desired outcomes

What makes kinds of learning different?

Desired inputs and outputs, learning algorithms

Example: "Supervised Learning" finds y = f(x)

Why are there so many learning algorithms?

Each have their own advantages and drawbacks

Example: Kernel methods train time is $O(N^3)$

Why must I optimize hyperparameters?

Adjust been "under" and "over" fitting

Example: Number of polynomial terms

PRACTICAL EXERCISE 1: **BUILDING MODELS WITH SKLEARN!**

PART 2: USING IT FOR SCIENCE (MOSTLY MATERIALS SCIENCE, BECAUSE I'M A MATERIALS ENGINEER)

Not all data are vectors

And that's OK!

Not all data are vectors

And that's OK!

What do NaCl crystals look like?

How to translate chemistry/physics/... to a computer?

Representation: Set of quantitative attributes that describe a material, molecule, ...

Why do we need them?

- Machine learning tools take tensors

What makes a good one?

- Easy to learn generalizable rules

What makes a good representation?

Ref: Faber et al. Int. J. Quantum Chem. (2015)

Representations standards are not clear cut

Seko et al. used DFT-computed properties as inputs to an ML model

Ok for 10² compounds. Not OK for 10⁵ compounds

Key Concept: There is not and will not be a "one representation for all uses."

Types of representations: Discriminative vs Descriptive

Discriminative

Descriptive

Make features that capture intuition

Concept

Make features that distinguish examples

Element properties ($|\Delta X|$) Interocular distances

Examples

Atomic fractions (x_{Na}) Pixel values in images

Learn from little data (potentially) Interpretable models

Advantages

Maximum expressivity

Baking basis into the model

Challenges

Requires more data (learn features *and* model)

Typical for "conventional" ML Typical for "deep learning"

Molecular Descriptors

Discriminative

Line-notations for structure:

• SMILES (ex: "CC=O")

InChl (ex: InChl=1S/C2H4O/c1-2-3/h2H,1H3)

Fingerprints:

Descriptive

Extremely Well-Studied

Handbook of Molecular Descriptors

Author(s): Prof. Dr. Roberto Todeschini, Dr. Viviana Consonni

First published: 22 September 2000

Print ISBN: 9783527299133 | Online ISBN: 9783527613106 | DOI: 10.1002/9783527613106

Copyright © 2000 WILEY-VCH Verlag GmbH

Book Series: Methods and Principles in Medicinal Chemistry

☐ Free Access

Bibliography (Pages: 524-667)

First Page | PDF | References | Request permissions

Many types of descriptors:

Constitutional (ex: "how many Ns?")

Good Ref: T. Le et al. Chem. Rev. (2012), 2889

- 2. Structural (ex: Solvent-Accessible Surface Area)
- 3. Quantum-chemical (ex: partial charges)

Conclusion: How to translate science to ML?

Key concept: Express your data in a way that captures knowledge

Many ways to achieve "Guiding Principles:"

Complete: Separate different entries

Compact: Minimal complexity

Descriptive: Maximum relevance

Simple: Fast to gather

Work here can yield <u>significant benefits</u>, and is a great way to engage <u>domain experts</u>

PART 2B: VALIDATE LIKE A PRO

General approach to testing: "cross validation"

My advice: Think carefully about how to mimic your application

Image: pyimagesearch

A standard approach: k-fold cross validation

Step 1: Split dataset randomly into *k* equally-sized chunks

1 2 3 4

Step 2: Hold out 1 chunk as test data, use remainder as train and validation data

1 2 3 4

Step 3: Measure performance on remaining chunk

Step 4: Repeat from Step 2 with a different choice from the *k* chunks, until all chunks used

 1
 2
 3
 4

 1
 2
 3
 4

 1
 2
 3
 4

 1
 2
 3
 4

Step 5: Report performance as average over all iterations

A wrinkle: Data has hidden structure

Common case: Some data are more alike than others

Question: How would the model perform on new types of data?

Simulate predicting outside of groups.

Alternative: Use "hidden" groups as training and test sets

1 2 3 4 5

Aside: I avoid using the term "extrapolation." Ask me later...

Many examples of "data with hidden structure"

Time Series

X Predicting past and future

Split 1:	Test set	Training set							
Split 2:	Training set	Test set	Test set Training set						
Split 3:	Traini	ng set	ng set <u>Test set</u> Training						
Split 4:		Training set	Test set	Training set					
Split 5:		Training set							
	Time 1	Time 2	Time 3	Time 4	Time 5				

✓ Predict only the future

Split 1:	Training set	Test set			
Split 2:		Training set	Test set		
Split 3:			Training set	Test set	
Split 4:				Training set	Test set
	Time 1	Time 2	Time 3	Time 4	Time 5

Split 1:	Training set	Test set			
Split 2:	Traini	ng set	Test set		
Split 3:		Training set		Test set	
Split 4:		Traini	ng set		Test set
	Time 1	Time 2	Time 3	Time 4	Time 5

Combinatorial Chemistry

Metallic Alloys

✓ Excluding an alloy system

Ref: Zahrt et al. ACS Combi. (2020)

Ref: Ward et al. npj Comp Mat. (2016)

There are many ways to measure performance

Is "No missed diagnoses" your goal?

Or is it "No false convictions"?

Table from Wikipedia

These only scratch the service for classification

	•	Predicted co	ondition	Sources: [15][16][17][18][19][20][21][22] view · talk · e				
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = √TPR×FPR - FPR TPR - FPR			
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN P = 1 - TPR			
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$			
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR			
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value $(NPV) = \frac{TN}{PN} = 1 - FOR$	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$			
	Balanced accuracy $(BA) = \frac{TPR + TNR}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV - √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$			

You should think about what success for your model looks like!

Better regression validation: An example

Great Example: Predicting Density of States (phDOS) of materials (Kong et al., 2021)

Best model for predicting C_v (a derived property)...

ML model	Setting		phDOS prediction			Calculated C_{ν}		Calculated $\bar{\omega}$		
	Scaling	Loss	\mathbb{R}^2	MAE	MSE	WD	MAE	MSE	MAE	MSE
Mat2Spec	SumNorm	WD	0.57	0.085	0.026	21	1.32	10	10.6	348
E3NN	SumNorm	KL	0.48	0.105	0.036	50	4.88	77	41.1	3718
GATGNN	SumNorm	KL	-1.05	0.177	0.057	215	22.4	756	205	51609
Mat2Spec	SumNorm	KL	0.62	0.078	0.023	24	1.96	11	17.1	625

... is not the one that predicts phDOS the best.

Choices of which performance metric to use will affect your model choice

Study your problem, it will give you better models

Ingredient 1: Cross-validation that simulates how you want to use the model

X Predicting past and future

Training set							
ng set							
gset							
et							
5							
5							

Predict only the future

Split 1:	Training set	Test set			
Split 2:		Training set	Test set		
Split 3:			Training set	Test set	
Split 4:				Training set	Test set
	Time 1	Time 2	Time 3	Time 4	Time 5

Source: CrossValidated

Ingredient 2: Evaluate the model how you actually measure performance

ML model	Setting		phDOS prediction			Calculated C_v		Calculated $\bar{\omega}$		
	Scaling	Loss	\mathbb{R}^2	MAE	MSE	WD	MAE	MSE	MAE	MSE
Mat2Spec	SumNorm	WD	0.57	0.085	0.026	21	1.32	10	10.6	348
E3NN	SumNorm	KL	0.48	0.105	0.036	50	4.88	77	41.1	3718
GATGNN	SumNorm	KL	-1.05	0.177	0.057	215	22.4	756	205	51609
Mat2Spec	SumNorm	KL	0.62	0.078	0.023	24	1.96	11	17.1	625

Source: Kong et al., 2021

My advice: Think carefully about how to mimic your application

WRAP UP: WHAT DID YOU LEARN?

Ok, why do we have an "Al4Sci" tutorial series?

(And 2 hours on "machine learning")

Key reason: Al requires different skills

- 1. Understanding algorithms is key for success
- 2. Complex models must be used with care
- 3. We still do not understand all uses of Al
- 4. Tools are not commonly taught or used elsewhere

Figure: Goodfellow et al. ICLR (2015)

Today's Goal: Introduce "machine learning"

- 1. What are the key algorithms?
- 2. How do I use them for "science?"

Key takeaways!

1. A view into the depths of how many ML algorithms there are, and knowledge of how to use a few *classic* ones

2. Understanding that data representation is one key to success

... and that knowing how to validate is the other!

Where to next? I like reading books...

I learned with a previous version of this book, and liked the level of mathematics vs application.

- It teaches Weka, which is Java based

Recommended by Bethany Lusch (ALCF). Similar focus on application, but teaches scikit-learn

Deeper dive into the mathematics, very thorough coverage of key algorithms

