Graph-NN Homework

Installation Instructions (with Anaconda)

CPU Version:

- 1. conda create -n graphnn env python=3.8 anaconda -y
- 2. conda activate graphnn env
- 3. conda install -c pytorch pytorch-cpu -y
- 4. conda install -c dglteam dgl -y

GPU Version: Replace lines 3 and 4 with (here for cuda 10 but you may have to change it):

- 3. conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y
- 4. conda install -c dglteam dgl-cuda10.2 -y

Your job as a Deep Learning Engineer ...

We will use the Protein-Protein Interaction (PPI) network dataset which includes :

- 20 graphs for training
- 2 graphs for testing

One graph of the PPI dataset has on average 2372 nodes.

Each node has:

- 50 features: positional gene sets / motif gene / immunological signatures ...
- 121 *labels*: gene ontology sets (way to classify gene products like proteins).

Node (multi-label) classification task (supervised learning):

For a given PPI graph, being able to predict the correct node's labels.

Graph-NN

Homework tasks (grade: /20)

1. Improve the given model i.e the code provided in the course materials (8/20)

(Hint : modify the architecture and use a Graph Attention Network)

- 2. Produce a short report including: (12/20)
 - A diagram of the architecture you're using (with shape information!) (6/12)
 - A small paragraph in which you interpret your results (6/12) :
 - What kind of architectures did you try?
 - What your result means (f1-score ? plot of f1-score wrt epochs and comparison with original provided model) ?
 - Why would Attention Network perform better than GraphConv?

Homework tasks

To summarize, what you have to return:

- The modified code (*train_ppi_baseline.py*)
- The weights of the model (model_state.pth)
- The report in PDF format.

1 Do not change the signature of the **train()** and **test()** functions (or otherwise you'll get 0/8 at the first task)!

Before submitting make sure the following runs correctly in your conda environment :

python3 train_ppi_baseline.py --mode test

Examples of diagram (perfectible)

Ideas of diagram; good legend + shape information needed

Useful links

Graph Attention Network : https://arxiv.org/abs/1710.10903

The DGL library : https://github.com/dmlc/dgl

You can take inspiration (but don't use it directly) from pytorch geometric:
https://pytorch-geometric.readthedocs.io/en/latest/