Final Review

Materials

- The final exam is **comprehensive**
- Focus on the materials after midterm

Time and Location

CS4321 R01 Tuesday 3pm Fisher 139

Topics before midterm

Topics	Reading				
Introduction	1				
Induction and loop invariants	2.1				
Asymptotic Notation	3.1-3.2				
Algorithm Analysis - Analyzing control structures - Worst-case and Average-case - Amortized analysis	2.2 5.1-5.3 17.1-17.3				
Solving Recurrences	4.1-4.3				
Heap and Heap Sort	6				
Binomial Heaps	19				
In-class mid term					

Topics and Exams

Topics	Reading
Splay Trees	Notes, handouts
Disjoint Set	21.1-21.3
Greedy Algorithms - Greedy Strategy; Knapsack; Activity Selection - Minimum Spanning Tree - Dijkstra's algorithm	16.1-16.2 23 24.3
Divide-and-Conquer - Mergesort and Quicksort - Median	2.3 7.1-7.4 9

Topics and Exams

Topics	Reading	
Dynamic Programming	15.1-15.4	
 - 0-1 Knapsack - Matrix chain - Longest common subsequence - Floyd's algorithm 	25.1-25.2	
Exploring Graphs - Graph Search - Topological sorting	22.1-22.4	
Network Flow and Matching	26.1-26.3	
P and NP Problems	34-35	
Final		

Study Guide

- Study the reviews for Midterm
- Study the questions on quizzes and homework assignments
- Understand how the covered algorithms work

Splay Tree

- A splay tree is a special binary search tree
- Know how to insert, search, and delete a node
- Know how to splay

Splay Trees

- Apply *splaying* after every access to keep the search tree balanced in an amortized sense
- Splaying
 - Splay x by moving x to the root through a sequence of restructurings
 - One specific operation depends on the relative positions of x, its parent y, and its grandparent z
 - Zig-Zig
 - Zig-Zag
 - Zig

Splay x: zig-zig

The node x and its parent y are both left or right children

Splay x: zig-zag

One of x and y is a left child and the other is a right child.

Splay x: zig

The node x does not have a grandparent (or the grandparent is not of our concern)

Disjoint set structures

- Definition
 - A collection of disjoint dynamic sets
 - Each set is identified by a representative which is some member of the set
- Three functions
 - MakeSet(x) create a new set whose only member is x
 - FindSet(x) find the set that contains x; return the representative
 - Union(x, y) unites the corresponding sets that contains x and y respectively and choose a representative for the combined set
- Know the linked-list implementation
 - Know how to do weighted-union
- Know the disjoint-forest implementation
 - Know path compression and union by rank

Linked List Representation

- Represent each set as a link list
 - The first object is the representative
 - A pointer, *head*, pointing to the representative
 - A pointer, tail, pointing to the last object of the list
 - · For easy union
 - Each object has two pointers
 - next: points to the next object in the list
 - rep: points to the representative

Weighted-Union for Linked-list

```
WeightedUnion(x, y)
{
   if (x.length > y.length) {
     Union(y, x); // append y to x
     x.length += y.length;
   } else {
     Union(x, y); // append x to y
     y.length += x.length
   }
}
```

Disjoint-set forest

- Represent each set as a rooted tree
 - Each member points only to its parent
 - The root is the representative
 - The root's parent is itself

Implementation: disjoint-set forest

```
Union(x, y)
FindSet(x)
 r = x;
                                      Link(FindSet(x), FindSet(y));
 while (r.parent != r)
   r = r.parent;
 return r;
                                    \Theta(n) in worst case
\Theta(n) in worst case
                                   Link(x, y)
MakeSet(x)
                                      x.parent = y;
  x.parent = x;
                                   \Theta(1)
\Theta(1)
      \Theta(n^2) in worst case for m operations
      when m \in \Theta(n)
```

Improvements: two heuristics

- Union by rank
 - Rank: for each node, its rank is an upper bound on its height
 - Union: the root with smaller rank is made pointed to the root with larger rank
- Path compression
 - Make each node on the *find path* directly point to the root
 - find path: the path FindSet goes through

Union by rank

```
Link(x,y) {
    if (x.rank > y.rank) {
        y.parent = x;
    } else {
        x.parent = y;
        if (x.rank == y.rank)
            y.rank++;
    }
}
```

 $\Theta(1)$

Path compression

- Squash the path when doing FindSet(), so the next FindSet() will be likely quicker (path compression).
 - first pass to find the root
 - second pass change the pointers along the path to the root and make them all point to the root

```
FindSet(x) {
    r = x;
    while (r.parent <> r)
    r = r.parent;

i = x;
    while (i <> r) {
    j = i.parent;
    i.parent = r;
    i = j;
    }
    return r;
```

An example

Greedy algorithms

- Know the paradigm
 - Be able to design and analyze a greedy algorithm
 - Be able to argue the optimality of a greedy algorithm using "cut&paste".
- Understand the following algorithms
 - Knapsack
 - Activity Selection
 - MST (Prim's algorithm and Kruscal's algorithm)
 - Dijkstra's algorithm (single source shortest path)

Formal description: Fractional Knapsack

- Given W; w_i , v_i
- Find an array x_i , 1 <= i <= n, $0 <= x_i <= 1$, to
 - Maximize $\sum_{i=1}^{n} x_i v_i$
 - And be subject to $\sum_{i=1}^{n} x_i w_i \leq W$

The knapsack problem

- Given
 - n objects numbered from 1 to n. Object i has a positive weight w_i and a positive value v_i
 - a knapsack that can carry a weight not exceeding W
- Problem
 - Fill the knapsack in a way that maximize the value of the included objects, while respecting the capacity constraints
 - Fractional Knapsack Problem
 - the objects can be broken into small pieces
 - 0-1Knapsack Problem:
 - An object cannot be broken into pieces
 - · Either choose it or not

A greedy algorithm

```
Knapsack(w[], v[], W)
  for (i=1; i<=n; i++)
    x[i] = 0;
  weight = 0;
                                                    The key is
                                                    which object
   while (weight < W) {
                                                    to select
     i = select the best remaining object; *
     if (weight + w[i] < W)
       x[i] = 1;
                                                fill the largest
     else
                                                portion possible
       x[i] = (W-weight)/w[i];
   return x:
```

Scheduling: an activity selection problem

- A set $S = \{a_1, a_2, ..., a_n\}$ activities wish to use a resource
 - The resource can be used by one activity at a time
 - Each activity has a start time s_i and a finish time f_i with $0 \le s_i \le f_i$
 - If selected, activity take place at an half-open interval $[s_i, f_i)$.
 - Activities a_i , a_j are compatible if their intervals do not overlap: $s_i \ge f_i / |s_i| \le f_i$
- The activity selection problem
 - Select a maximum-size subset of mutually compatible activities

The algorithm

Summary: Greedy strategy

- Typical Steps
 - Cast the problem as one in which we make a choice and are left with one subproblem to solve
 - Proof of optimality if applicable:
 - Prove that there is always an optimal solution to the original problem, so that the greedy choice is always safe
 - Typically use "cut and paste"
 - Demonstrate that: an optimal solution to the subproblem combined with the greedy choice we have made is an optimal solution to the original problem

Kruskal's algorithm: cost Kruskal(Graph G) // G=<V, E> sort E by increasing weight; $O(E \log E)$ $A = \phi$; make n initial sets, each contains a node in V; called makeSet V times for all sorted edges { $e = \langle u, v \rangle$; // shortest edge not yet considered called at most E→ uComponent = find(u); times each vComponent = find(v); if (uComponent != vComponent) { called V-1 times_ → Union(uComponent, vComponent); $A = A \cup \{e\};$ Total: $O(ElogE + E\alpha(V))$ return A; =O(ElogV)

Prim's algorithm: an implementation

```
 \begin{aligned} & \text{Prim}(G, w, r) \\ & \{ & \text{for each node } u \in V \text{ } \\ & \text{key}[u] = \infty; \\ & \pi[u] = \text{null}; \\ & \} \\ & \text{key}[r] = 0; \\ & \text{Q.build}(V); \text{ } / \text{Q is a priority queue use key}[] \text{ as keys} \end{aligned}  while (!Q.empty()) $\{ & u = Q.extractMin(); & for each v adjacent to u $\{ & if (v \in Q \&\& w(u,v) < \text{key}(v)) \} & \{ & Q.updateKey(v, w(u,v)); & \pi[v] = u; & \} & \} \\ & \} & \} \\ & \} \\ & \} \\ & \} \end{aligned}
```

Dijkstra's algorithm

```
S: partial solution set d[v]: length of the shortest special path for v. π[v]: the previous node of v along its shortest (special) path.
```

```
\label{eq:definition} \begin{array}{l} Dijkstra(G,w,s) \\ \{ \\ /* \ initialization */ \\ \ for \ each \ node \ v \\ \ d[v] = \infty; \\ \ \pi[v] = null; \\ \} \\ d[s] = 0; \\ S = \varnothing; \\ Q.build(V); // \ a \ priority \ Q \ use \ d[] \ as \ keys \\ \ while \ (!Q.empty()) \\ \ u = Q. extractMin(); \\ S = S \cup \{u\}; \\ \ for \ each \ v \ adjacent \ to \ u \ \{ \\ \ if \ (v \in Q \&\& \ d[u] + w(u,v) < d(v)) \ \{ \\ \ d[v] = d[u] + w(u,v); \\ \ Q. \ decrease \ Key(v, \ d(v)); \\ \ \pi[v] = u; \\ \ \} \\ \} \\ \} \\ \} \end{array}
```

Example

Step	u	S	1	2	$\frac{d}{3}$	4	5	1	2	3^{π}	4	5
Init	-	Ø	0	∞	∞	∞	∞	-	-	-	-	-
1	1	{1}	0	50	30	100	10	-	1	1	1	1
2	5	{1, 5}	0	50	30	20	<u>10</u>	-	1	1	5	1
3	4	{1,5,4}	0	40	30	<u>20</u>	<u>10</u>	-	4	1	5	1
4	3	{1,5,4,3}	0	35	<u>30</u>	<u>20</u>	<u>10</u>	-	3	1	5	1
5	2	{1,5,4,3,2}	<u>0</u>	<u>35</u>	<u>30</u>	<u>20</u>	<u>10</u>	-	3	1	5	1

Divide and Conquer

- Given a problem, know how to design a D&C algorithm
- Know how to analyze a D&C algorithm
 - You need to remember the simple version of the Master Theorem.
- Know the following algorithms
 - Merge sort
 - Quick sort
 - Selection and Find median

A general template

- Three conditions to be considered
 - When to use the basic sub-algorithm
 - Efficient decomposition and recombination
 - The sub-instances must be roughly the same size

Running-time analysis

- Assume that the *l* sub-instances have roughly the same size n/b for some constant b
- Let g(n) be the time required by DC for dividing and combining on instances of size n,
 - g(n) is the total time excluding the times need for the recursive calls.
 - We have $t(n) = l \cdot t(n/b) + g(n)$
- If $g(n) \in \Theta(n^k)$ for an integer k, we have

$$t(n) \in \begin{cases} \Theta(n^k) & \text{if } \log_b l < k \\ \Theta(n^k \log n) & \text{if } \log_b l = k \\ \Theta(n^{\log_b l}) & \text{if } \log_b l > k \end{cases}$$

Merge two sorted arrays

```
 \begin{aligned} & \text{Merge}(U[m], V[n], T[m+n]) \\ & / / \text{merge sorted arrays } U \text{ and } V \text{ into } T \\ & \{ & u = 0; \quad / / \text{cursor for } U \\ & v = 0; \quad / / \text{cursor for } V \\ & U[m] = V[n] = +\infty; \ / / \text{sentinels} \\ & \text{for } (t=0; t < m+n; t++) \ \{ \ / / \text{t is cursor for } T \\ & \text{if } (U[u] < V[v]) \ \{ \\ & T[t] = U[u]; \\ & u++; \\ & \} \text{ else } \{ \\ & T[t] = V[v]; \\ & v++; \\ & \} \\ & \} \end{aligned}
```

What to do if we do not use the two sentinels?

Merge sort

Cost

- Storage
- Execution time

$$t(n) = t(\lfloor n/2 \rfloor) + t(\lceil n/2 \rceil) + \Theta(n)$$

Quick Sort

- Choose an element from the array to be sorted as a pivot
- Partition the array on either side of the pivot such that those no smaller than the pivot are to its right and those no greater are to its left
- Recursive calls on both sides

The algorithm

```
quickSort(A, p, r)
{
    if (p < r) {
        q = partition(A, p, r);
        quickSort(A, p, q-1);
        quickSort(A, q+1, r);
    }
}</pre>
```

Partition

Analysis

- Worst case: the array is sorted, $\Omega(n^2)$
- Best case
 - $T(n) = 2T(n/2) + \Theta(n), T(n) \in \Theta(n \log n)$
- Average case (not required)

Selection using pseudomedian

```
select(A[p..r], i) {
    if (p==r) return A[p];

x = pseudomedian(A[p..r]);
    q = partition'(A[p..r], x);
    k = q-p+1;

if (i==k)
    return A[q];
    if (i<k)
    return select(A[p..q-1], i);
    if (i>k)
    return select(A[q+1..r], i-k);
}
```

```
\label{eq:pseudomedian} pseudomedian(T[1..n]) $$ \{$ if (n <= 5)$ return adhocmedian(A); $$ z = \lceil n/5 \rceil; $$ for (i=1; i<=z; i++)$ $$ Z[i] = adhocmedian(A[5i-4..min(5i,n)]); $$ return select (Z[1..z], <math>\lfloor (z+1)/2 \rfloor); $$$ $$ $$
```

We assume the elements are distinct.

Dynamic Programming

- Given a problem, know how to design a dynamic programming algorithm
- Know how to analyze a DP algorithm
- Know the following algorithms
 - Calculating Binomial Coefficient
 - 0-1 Knapsack
 - Floyd's algorithm
 - Longest Common Sequence
 - Matrix chain

Example: Binomial Coefficient

• We want to calculate $\binom{n}{k}$ which can be defined as follows.

$$\binom{n}{k} = \begin{cases} 1 & \text{if} & k = 0, n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{if} & 0 < k < n \\ 0 & \text{otherwise} \end{cases}$$

A solution using dynamic programming

• We instead calculate bottom-up by filling the following table

n k	0	1	2	 k-1	k
0	1				
1	1	1			
2	1	2	1		
n-1				C(n-1,k-1)	C(n-1,k)
n				*	C(n.k)

Cost: time $\Theta(nk)$ and space $\Theta(k)$

0-1 Knapsack

- n objects 1, 2, ..., n. Object i has weight w_i and value v_i
- The knapsack can carry a weight not exceeding W.
- Cannot split an object
- Maximize the total value
 - Maximize $\sum_{i=1}^{n} x_i v_i$ subject to $\sum_{i=1}^{n} x_i w_i \le W$,

where v_i , $w_i > 0$ and $x_i \in \{0,1\}$ for $1 \le i \le n$

Dynamic programming

- Set up a table C[0..n, 0..W] with one row for each available object and one column for each weight from 0 to W. Specifically, C[0, j] = 0 for all j.
- C[i,j] is the maximum value if the weight limit is j and only objects 1 to i are available
 - $-C[i,j] = max(C[i-1,j], C[i-1,j-w_i]+v_i);$
- C[n,W] will be the solution

Example

Weight limit	0	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{w}_1 = 1$ $\mathbf{v}_1 = 1$	0	1	1	1	1	1	1	1	1	1	1	1
$w_2 = 2$ $v_2 = 6$	0	1	6	7	7	7	7	7	7	7	7	7
$w_3 = 5$ $v_3 = 18$	0	1	6	7	7	18	19	24	25	25	25	25
$w_4 = 6$ $v_4 = 22$	0	1	6	7	7	18	22	24	28	29	29	40
$w_5 = 7$ $v_5 = 28$	0	1	6	7	7	18	22	28	29	34	25	40

Algorithm

```
 \begin{array}{l} Knapsack0\text{-}1(v,w,n,W) \\ \{ \\ for (w=0;w<=W;w++) \ \{ \\ c[0,w]=0; \\ \} \\ for (i=1;i<=n;i++) \ \{ \\ c[i,0]=0 \\ for (w=1;w<=W;w++) \ \{ \\ if (w[i]<w) \ \{ \\ if (c[i-1,w-w[i]]+v[i]>c[i-1,w]) \\ c[i,w]=c[i-1,w-w[i]]+v[i]; \\ else \ c[i,w]=c[i-1,w] \\ \} \ \# \ for \ i \\ \} \end{array}
```

The run time performance of this algorithm is $\Theta(nW)$

The Matrix Chain Multiplication Problem

• Given a chain of $\langle M_1, M_2, ..., M_n \rangle$ of matrices, where for i = 1, 2, ..., n, matrix M_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product in a way that $M_1 M_2 ... M_n$ minimizes the number of scalar multiplications

Finding the objects

```
i=n;
k=W;
while (i>0 && k>0) {
    if (C[i,k] <> C[i-1,k]) {
        mark the i-th object as in knapsack;
        i = i-1;
        k = k-w[i];
    } else
    i = i-1;
}
```

Cost: O(n+W)

A recursive equation (optimal substructure)

- Let m[i,j] be the minimum number of scalar multiplications needed to compute M_{i..j}
 - The cost for is $M_{1..n}$ is m[1,n]
- Assume that the optimal parenthesization splits the product $M_i M_{i+1} ... M_i$ between M_k and M_{k+1}
 - Based on the principle of the optimality $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
 - We obtain the following recurrence

$$m[i, j] = \begin{cases} 0, & i = j \\ \min_{i \le k < j} (m[i, k] + m[k+1, j] + p_{i-1} p_k p_j), & i < j \end{cases}$$

An implementation using dynamic programming

```
Cost:

n + \sum_{l=2}^{n} \sum_{i=1}^{n-l+1} (l-1)
= n + \sum_{l=2}^{n} (n-l+1)(l-1)
= n + \sum_{j=1}^{n-l} (n-j)j
= n + n \sum_{j=1}^{n-l} j - \sum_{l=1}^{n-l} j^{2}
= n + \frac{n^{2}(n-1)}{2} - \frac{n(n-1)(2n-1)}{6}
= (n^{3} + 5n)/6
\in \Theta(n^{3})
```

Example

M1	13×5
M2	5×89
M3	89×3
M4	3×34

$$\label{eq:mean_mean_mean_mean_mean_mean_mean} \begin{split} &m[1][3] = min(m[1][1] + m[2][3] + 13*5*3, \\ &m[2][4] = min(m[2][2] + m[3][4] + 5*89*34, \\ &m[2][3] + m[4][4] + 5*3*34) = min(24208,1845) = 1845 \end{split}$$

```
\begin{array}{lll} \min[1][4] = \min(m[1][1] + m[2][4] + 13*5*34, & k=1 \\ m[1][2] + m[2][4] + 13*89*34, & k=2 \\ m[1][3] + m[4][4] + 13*3*34) & k=3 \\ = \min(4055, 54201, 2856) = 2856 & & k=3 \end{array}
```

Construct the optimal parenthesization

- In our algorithm, the matrix s tracks the split point
 - Can you use the matrix to construct the optimal parenthesization?

```
PrintOptimalParens(s, i, j) \begin{cases} \\ if (i == j) \\ print ("M"_i) \end{cases} \\ else \{ \\ print("("); \\ PrintOptimalParens(s, i, s[i][j]); \\ PrintOptimalParens(s, s[i][j]+1, j); \\ Print(")") \\ \} \\ \} \end{cases}
```

Characterizing an LCS

- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS X_{m-1} and Y_{n-1}
 - 2. If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS X_{m-1} and Y
 - 3. If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS X and Y_{n-1}

The optimal substructure of LCS

• Let c[i,j] be the length of an LCS of the sequences X_i and Y_j , we obtain the following recurrence

$$c[i,j] = \begin{cases} 0 & if & i = 0 \parallel j = 0 \\ c[i-1,j-1]+1 & if & i,j > 0 & & x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & if & i,j > 0 & & x_i \neq y_j \end{cases}$$

An implementation using dynamic programming

```
LCS(X, Y) {
    for (i=1; i<=m; i++) c[i][0]=0;
    for (j=1; j<=n; j++) c[0][j]=0;

    for (i=1; i<m; i++)
    for (j=1; j<n; j++) {
        if (x[i] == y[j]) {
            c[i][j] = c[i-1][j-1]+1;
            b[i][j] = c[i-1][j] > else if (c[i-1][j]) > c[i][j]=c[i-1][j];
            b[i][j] = c[i-1][j];
            else {
            c[i][j] = c[i][j-1];
            b[i][j] = c[i][j-1];
            b[i][j] = c[i][j-1];
            b[i][j] = c[i][j-1];
            b[i][j] = c[i][j-1];
```

Example

```
2
                           3
                                 4
                                        5
                                              6
             В
                    D
                           C
                                 A
                                        В
                                              Α
             0
                    0
                          0
                                 0
                                        0
                                              0
0 x
       0
              ↑ 0
                    ↑ 0
                           ↑ 0
                                 × 1
                                        ← 1
                                              × 1
1 A
              × 1
                                        √ 2
                                               - 2
2 B
       0
                    ← 1
                           ← 1
                                 1 1
       0
              1 1
                           × 2
                                 - 2
                                        1 2
                                               1 2
                    † 1
                                               - 3
4 B
              < 1
                    † 1
                           1 2
                                 1 2
                                        × 3
5 D
              1
                    × 2
                           1 2
                                 1 2
                                        1 3
                                               † 3
                           1 2
                                 × 3
6 A
       0
              1
                    1 2
                                        ↑ 3
                                               < 4
              < 1
                     1 2
                           1 2
                                 † 3
                                        < 4
                                               <sup>1</sup> 4
7 B
```

Construct an LCS

• In our algorithm, the direction array *b* tracks the construction

```
PrintLCS(b, X, i, j) 

{
    if (i==0 || j==0)
        return;
    switch (b[i][j]) {
        case `\`:
        PrintLCS(b, X, i-1, j-1)
        print x[i];
        break;
        case `\`:
        PrintLCS(b, X, i-1, j)
        break;
        case `\-`:
        PrintLCS(b, X, i, j-1)
        break;
}
```

Floyd's algorithm

Find the shortest path

Find the shortest path between nodes 1 and 3 for the example.

Example

$$D_0 = W = \begin{pmatrix} 0 & 5 & \infty & \infty \\ 50 & 0 & 15 & 5 \\ 30 & \infty & 0 & 15 \\ 15 & \infty & 5 & 0 \end{pmatrix}$$

$$D_1 = \begin{pmatrix} 0 & 5 & \infty & \infty \\ 50 & 0 & 15 & 5 \\ 30 & \underline{35} & 0 & 15 \\ 15 & \underline{20} & 5 & 0 \end{pmatrix} \qquad D_2 = \begin{pmatrix} 0 & 5 & \underline{20} & \underline{10} \\ 50 & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{pmatrix} \qquad D_3 = \begin{pmatrix} 0 & 5 & \underline{20} & 10 \\ \underline{45} & 0 & 15 & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{pmatrix}$$

$$D_4 = \begin{pmatrix} 0 & 5 & \underline{15} & 10 \\ \underline{20} & 0 & \underline{10} & 5 \\ 30 & 35 & 0 & 15 \\ 15 & 20 & 5 & 0 \end{pmatrix} \qquad \pi = \begin{pmatrix} 0 & 0 & 4 & 2 \\ 4 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Graph Traversal

- Know the depth search, breadth search, and topological sort algorithms
- Know how to use graph search to solve problems
- Topics
 - Tree traversal
 - Preconditioning
 - · find ancestor in a tree
 - Graph search
 - · Breadth first
 - · Depth first
 - Articulation points (not required)
 - Topological sort

Graph search: some concepts

- To keep track of progress, graph search colors each node *white*, *gray*, *or black*
 - All nodes start with white
 - A node is *discovered* at the first time it is encountered during the search, at which time it becomes *non-white*
 - Different search distinguishes itself by a different way to blacken or gray nodes

Breadth-first search

- Given a graph *G*=<*N*, *E*>, and a source node, *s*, start breadth-first search from *s*.
- Expands the frontier between discovered and undiscovered nodes uniformly across the breadth of the frontier
 - Discovers all nodes at distance k from s before discovering any nodes at distance k+1.
- Coloring: if $(u,v) \in E$ and vertex u is black, then node v is either black or gray
 - Black node: discovered and the node itself is finished
 - Gray node: discovered but not finished

Breadth-first search algorithm

```
\begin{aligned} & BFS(G,s) \\ \{ & & \text{for each node } u \in N - \{s\} \ \{ \\ & & \text{color}[u] = WHITE; \\ & & d[u] = \infty; \\ & & \pi[u] = null; \\ \} \\ & & \text{color}[s] = GRAY; \\ & & d[s] = 0 \\ & & \text{enqueue}(Q,s); \end{aligned}
```

```
while (!empty(Q)) {
    u = dequeue(Q);
    for each v adjacent to u {
        if (color[v] == WHITE) {
            color[v] = GRAY;
            d[v] = d[u] + 1;
            \pi[v] = u;
            enqueue(Q, v);
        }
    }
    color[u] = BLACK;
}
```

d[]: tracks shortest distance, assuming each edge's weight is 1 π []: tracks the parent-child relationship in the breadth-first tree

Breadth-first Example O 1 2 2 5 2 7 8

Depth-first search

- Search deeper in the graph whenever possible
 - Edges are explored out of the most recently discovered node v that still has undiscovered edges leaving it
 - When all of v's edges have been explored, the search "backtracks" to explore edges leaving the vertex from which v was discovered
 - This process finishes until all nodes reachable from the original source are discovered
 - Select one undiscovered node as the new source and continue the process

Depth-first search coloring and time stamps

- Coloring
 - Each nodes is initially white
 - A node is *grayed* if it is discovered during the search and *blackened* if it is finished, that is, when its adjacency list has been examined completely
- Timestamps
 - Each node v has two timestamps
 - *d[v]* records when v is discovered (grayed)
 - f[v] records when v is finished (blackened)

Depth-first search algorithm

```
\label{eq:definition} \begin{cases} \mathsf{DFS}(G) \\ \{ & \mathsf{color}[u] = \mathsf{WHITE}; \\ & \pi[u] = \mathsf{null}; \\ \} \\ & \mathsf{time} = 0; \\ \\ & \mathsf{for} \ \mathsf{each} \ \mathsf{node} \ \mathsf{u} \in \mathsf{N} \ \{ \\ & \mathsf{if} \ (\mathsf{color}[u] = \mathsf{WHITE}) \\ & \mathsf{DFS-Visit}(\mathsf{u}); \\ \} \\ \} \end{cases}
```

Classification of graph edges

- After depth-first search of a directed graph, we can classify the graph edges into four categories
 - Tree edge
 - An edge in the search tree
 - Back edge
 - An edge (u,v) not in search tree and v is an ancestor of u
 - · Indicates a loop
 - Forward edge
 - An edge (u, v) not in search tree and u is an ancestor of v
 - Cross edge
 - An edge (u,v) not in search tree and v is neither an ancestor nor a descendant of u

Topological Sort

- Given an acyclic directed graph, topological sort finds a topological ordering of the nodes such that if there exists an edge (*u*,*v*), then node *u* precedes node *v* in the ordering list.
- The finished time numbering gives us a reverse topological ordering
 - A node is finished after all the nodes it reaches have finished

Maximum Flow Problem

- Given a weighted directed graph
 - Each edge is a pipe whose weight denotes its capacity: the maximum amount it can transport
 - Use c(e) for the capacity of edge e
 - Given a source, s, and a sink, t, find the maximum amount (flow) can transfer from s to t

Concepts

- You need to know the follow concepts
 - Flow of a network
 - Capacity and flow of an edge
 - Cut
 - · Capacity of a cut
 - · Flow of cut
 - Residual capacity of an edge and a path
 - Augmenting Path
 - · Residual capacity

Example of the Ford-Fulkerson Algorithm

Example of the Ford-Fulkerson Algorithm

The Ford-Fulkerson Algorithm

```
\begin{split} & maxFlowFordFulkerson(N) \\ & / / N = (G, c, s, t) \\ & \{ & \text{for each edge e in N do } \{ & \text{f(e)} = 0; \\ & \text{stop} = \text{false;} \} \} \\ & \text{while (!stop) } \{ & \text{traverse G starting at s to find an augmenting path for f;} \\ & \text{if an augmenting $\pi$ path exists } \{ & \Delta = \min \min \Delta_f(e) \text{ along $\pi$;} \\ & \text{for each edge e in $\pi$} \{ & \text{if (e is an forward edge) f(e)} += \Delta; \text{ else f(e)} -= \Delta; \\ & \} & \text{else} \\ & \text{stop} = \text{true;} \\ & \} \\ & \} \end{split}
```

The Edmonds-Karp Algorithm

- Try to find a "good" augmenting path each time
 - Choose an augmenting path with the smallest number of edges
 - Can be implemented using BFS traversal

Maximum Bipartite Matching

- Bipartite graph
 - a graph with vertices partitioned into two sets X and Y, such that every edge has one endpoint in X and the other in Y
- Matching in a bipartite graph
 - A set of edges that has no end points in common
- Maximum bipartite matching
 - The matching with the greatest number of edges

Reduction to the Maximum Flow Problem

- Let G be a partite graph whose vertices are partitioned into sets X and Y. Create a flow network H as follows
 - Add each vertex of G into H plus a source vertex s and a sink vertex t.
 - Add edges of G into H and make each edge orient from an endpoint in X to an endpoint in Y
 - Insert a directed edge from s to each vertex in X
 - Insert a directed edge from each vertex in Y to t
 - Assign each edge in H a capacity of 1

An example of reduction G H X Y All edges with capacity 1

Reduction to the Maximum Flow Problem

- Given the maximum flow f of H, define M as a set of edges such that e in M iff f(e) =1
 - M is a matching
 - M is a maximum matching
- Reverse transformation: given a matching M in H, define a flow f
 - For each edge e of H that is also in G, f(e) = 1 if $e \in M$ and f(e) = 0 otherwise.
 - For each edge of H incident to s or t and v be the other end point, f(e) = 1 if v is is an endpoint of some edge of M and f(e) = 0 otherwise

Good Luck

Take it easy

Merry Christmas