

### Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ)

# Σύγχρονη Μηχανή

Σταύρος Αθ. Παπαθανασίου Καθ. ΕΜΠ



## Σύγχρονη Μηχανή





## Σύγχρονη Μηχανή

- Στάτης με 3Φ τύλιγμα ΕΡ συχνότητας  $\omega_e$   $\rightarrow$  Πεδίο στρεφόμενο με τη σύγχρονη ταχύτητα  $\omega_s = \frac{\omega_e}{P/2}$
- Δρομέας κυλινδρικός ή έκτυπων πόλων. Διαθέτει τύλιγμα με διέγερση ΣΡ.
- Δρομέας στρέφεται με  $\omega_m$ =  $\omega_s$
- Πεδία στάτη και δρομέα στρέφονται στο διάκενο με την ίδια ταχύτητα  $\omega_s$ 
  - → Αλληλεπίδραση πεδίων και ανάπτυξη ροπής



## Εξίσωση τάσεων-ρευμάτων τυμπάνου

Από παράδειγμα διφασικής μηχανής, τάση στη φάση α:

$$U_a = r_s \sqrt{2} I cos\omega t - \omega L_s \sqrt{2} I sin\omega t - \omega M I_f sin(\omega t - \delta)$$

Mε phazors:

$$\tilde{V}_a = r_s \tilde{I}_a + j X_s \tilde{I}_a + \tilde{E}_f$$

Ι<sub>α</sub>: ρεύμα τυμπάνου (σύμβαση κινητήρα)

 $r_s$ : αντίσταση τυλίγματος τυμπάνου

$$X_s = \omega L_s = \omega (L_a + L_l) = X_a + X_l$$
: σύγχρονη αντίδραση

Χ<sub>a</sub>: αντίδραση μαγνητίσεως τυμπάνου

 $X_l$ : αντίδραση σκεδάσεως τυμπάνου

 $E_f$ : τάση/ΗΕΔ διεγέρσεως που επάγεται στο τύμπανο από στρεφόμενο πεδίο του δρομέα (ανάλογη διέγερσης και ταχύτητας περιστροφής)

AC τάση 
$$E_f = \frac{\omega M}{\sqrt{2}} I_f$$
 DC ρεύμα



## Ισοδύναμο κύκλωμα τριφασικής σύγχρονης μηχανής



**Σύμβαση γεννήτριας**: ρεύμα  $\tilde{I}_a$ εξερχόμενο των ακροδεκτών

$$\tilde{V}_t = \tilde{E}_f - (r_a + jX_s)\tilde{I}_a$$

**Σύμβαση κινητήρα**: ρεύμα  $\tilde{I}_a$ εισερχόμενο στους ακροδέκτες

$$\tilde{V}_t = \tilde{E}_f + (r_a + jX_S)\tilde{I}_a$$



#### Εναλλακτική μορφή ισοδυνάμου

**Τάση διακένου**  $\widetilde{E}_r = \widetilde{E}_f + \widetilde{E}_a$  : τάση που επάγεται στο τύμπανο από το συνιστάμενο πεδίο στο διάκενο

**ΗΕΔ αντιδράσεως τυμπάνου**  $E_a = X_a I_a$ : τάση που επάγεται στο τύμπανο από το στρεφόμενο πεδίο στάτη, το οποίο δημιουργούν τα ρεύματα τυμπάνου



| Σύμβολο                                                                 | Τυπική τιμή                    |
|-------------------------------------------------------------------------|--------------------------------|
| $oldsymbol{r_a}$ : αντίσταση τυμπάνου (ή $r_{\!\scriptscriptstyle S}$ ) | $\sim$ 0,01 $\alpha\mu$        |
| $X_s = X_a + X_l$ : σύγχρονη αντίδραση                                  | $\sim$ 1,0 $-$ 2,0 $\alpha\mu$ |
| $oldsymbol{X_l}$ : αντίδραση σκεδάσεως                                  | $\sim$ 0,1 $\alpha\mu$         |

| Σύμβολο                                                                                                                                | Περιγραφή                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\widetilde{m{E}}_{m{r}} = \widetilde{E}_f + \widetilde{E}_a = \widetilde{V}_t + (r_a + jX_s)\widetilde{I}_a$ (για σύμβαση γεννήτριας) | <b>Τάση διακένου</b> (επάγεται από συνιστάμενο πεδίο $\Phi_{sr}$ στο τύμπανο) $E_r \sim \omega \Phi_{sr}$ |
| $\tilde{I}_a$                                                                                                                          | <b>Ρεύμα τυμπάνου</b> (φορά κινητήρα-γεννήτριας)                                                          |
| $\widetilde{m{V}}_{m{t}}$                                                                                                              | Τάση ακροδεκτών                                                                                           |
| $\boldsymbol{E}_f = \frac{\omega M}{\sqrt{2}} I_f$                                                                                     | <b>Τάση διέγερσης</b> : εξάρτηση από $I_f$ και $\omega$                                                   |

Σημ.: Αλλαγή ταχύτητας περιστροφής ightarrow αλλαγή συχνότητας ightarrow μεταβολή των  $X=\omega L$ 



## Γεννήτρια σε υπερδιέγερση

(απλουστευμένο διάγραμμα)

$$\tilde{E}_f = \tilde{V}_t + jX_s\tilde{I}_a$$

Σύμβαση γεννήτριας για  $\tilde{I}_a$ 



Σύμβαση μέτρησης γωνίας  $\delta$ : από  $\tilde{V}_t \to \tilde{E}_f$  (θετική όταν  $\tilde{E}_f$  προηγείται της  $\tilde{V}_t$ )

- Λειτουργία γεννήτριας:  $E_f$  προπορεύεται της  $V_t$  ( $\delta > 0$ )
- $\tilde{I}_a$  μεταπορεύεται τάσης  $\tilde{V}_t$  Παραγωγή αέργου ισχύος (τροφοδότηση επαγωγικού φορτίου)
- Υπερδιέγερση Υψηλή τάση διέγερσης  $(E_f cos \delta > V_t)$



# Διανυσματικό διάγραμμα: Γεννήτρια σε υπερδιέγερση





Γωνία διανυσμάτων  $\tilde{V}_t$  και  $\tilde{E}_f$  περίπου ίση με γωνία διανυσμάτων ΜΕΔ  $\tilde{F}_{sr}$  και  $\tilde{F}_r$ , αν αγνοηθεί η σκέδαση τυμπάνου. Άρα γωνία ροπής  $\delta \to$  γωνία  $\tilde{V}_t$  και  $\tilde{E}_f$ 

- Λειτουργία γεννήτριας:  $E_f$  προπορεύεται της  $V_t$   $(\delta > 0)$
- $\tilde{I}_a$  μεταπορεύεται τάσης  $\tilde{V}_t$   $jX_s\tilde{I}_a$  Παραγωγή αέργου ισχύος (τροφοδότηση επαγωγικού φορτίου)
  - Υπερδιέγερση Υψηλή τάση διέγερσης  $(E_f cos \delta > V_t)$



## Γεννήτρια σε υποδιέγερση



$$\tilde{E}_f = \tilde{V}_t + (r_a + jX_s)\tilde{I}_a$$

Σύμβαση γεννήτριας για  $\tilde{I}_a$ 

- Λειτουργία γεννήτριας:  $\pmb{E_f}$  προπορεύεται της  $\pmb{V_t}$   $(\delta{>}0)$
- $\tilde{I}_a$  προπορεύεται τάσης  $\tilde{V}_t$  Κατανάλωση αέργου ισχύος (τροφοδότηση χωρητικού φορτίου)
- Υποδιέγερση: Χαμηλή τάση διέγερσης  $(E_f cos \delta < V_t)$



## Κινητήρας σε υποδιέγερση



$$\tilde{V}_t = \tilde{E}_f + (r_a + jX_s)\tilde{I}_a$$

Σύμβαση κινητήρα για  $\tilde{I}_a$ 

- Λειτουργία κινητήρα:  $\pmb{E_f}$  μεταπορεύεται της  $\pmb{V_t}$   $(\delta {<} 0)$
- $\tilde{I}_a$  μεταπορεύεται της  $\tilde{V}_t$ : κατανάνωση αέργου ισχύος (φορτίο επαγωγικού Σ.Ι.)
- Υποδιέγερση: Χαμηλή τάση διέγερσης  $(E_f cos \delta < V_t)$



## Κινητήρας σε υπερδιέγερση



$$\tilde{V}_t = \tilde{E}_f + (r_a + jX_s)\tilde{I}_a$$

Σύμ $\beta$ αση κινητήρα για  $ilde{I}_a$ 

- Λειτουργία κινητήρα:  $\pmb{E_f}$  μεταπορεύεται της  $\pmb{V_t}$   $(\delta {<} 0)$
- $\tilde{I}_a$  προπορεύεται τάσης  $\tilde{V}_t$  Παραγωγή αέργου ισχύος (φορτίο χωρητικού Σ.Ι.)
- Υπερδιέγερση: Υψηλή τάση διέγερσης  $(E_f cos \delta > V_t)$



## Γενικές διαπιστώσεις

**ΛΕΙΤΟΥΡΓΙΑ ΓΕΝΝΗΤΡΙΑΣ**: Θετική γωνία ροπής  $\delta$  ( $E_f$  προπορεύεται της  $V_t$ ) **ΛΕΙΤΟΥΡΓΙΑ ΚΙΝΗΤΗΡΑ**: Αρνητική γωνία ροπής  $\delta$  ( $E_f$  μεταπορεύεται της  $V_t$ )

**Ροή ενεργού ισχύος** στη σύγχρονη μηχανή εξαρτάται από τη γωνία ροπής

ΥΠΕΡΔΙΕΓΕΡΜΕΝΗ σύγχρονη μηχανή: παράγει άεργο ισχύ ΥΠΟΔΙΕΓΕΡΜΕΝΗ σύγχρονη μηχανή: καταναλώνει άεργο ισχύ (ισχύει για γεννήτρια ή κινητήρα)

**Έλεγχος αέργου ισχύος** (ισοδύναμα του συντελεστή ισχύος) της σύγχρονης μηχανής γίνεται **μέσω της διέγερσης** 



# Διανυσματικά διαγράμματα γεννήτριας για διάφορους τύπους φορτίου





# Μεταβολή διεγέρσεως γεννήτριας συνδεδεμένης σε ζυγούς σταθερής τάσεως με σταθερή κινητήρια ροπή





## Απομονωμένη Λειτουργία Σύγχρονης Γεννήτριας







Χαρακτηριστικές ρυθμίσεως



# Σχέση ισχύος – γωνίας δ (γωνία ισχύος/ροπής), $P = P(\delta)$



- Όλα τα μεγέθη είναι σε α.μ.
- Σύμβαση γεννήτριας
- Αμελητέα αντίσταση τυμπάνου

$$\begin{split} \tilde{S}_t &= P_t + jQ_t = \tilde{V}_t \cdot \tilde{I}_a^* \\ \tilde{E}_f &= \tilde{V}_t + jX_s\tilde{I}_a \end{split}$$

$$\Rightarrow \tilde{S}_t = \tilde{V}_t \cdot \frac{\tilde{E}_f^* - \tilde{V}_t^*}{-jX_S}$$

Γωνία  $\delta$ : από  $\tilde{V}_t \to \tilde{E}_f$ 

(θετική για λειτουργία γεννήτριας  $ightarrow ilde{E}_f$  προηγείται της  $ilde{V}_t$ )

Καθ. Σταύρος Αθ. Παπαθανασίου



Αναφορά η  $\tilde{V}_t$ :  $\tilde{V}_t = V_t \angle 0^\circ$ . Τότε  $\tilde{E}_f = E_f(cos\delta + jsin\delta)$  και:

$$\tilde{S}_{t} = j \cdot \frac{V_{t}E_{f}(\cos\delta - j\sin\delta) - V_{t}^{2}}{X_{s}} \Rightarrow$$

$$\tilde{S}_{t} = \frac{V_{t}E_{f}(j\cos\delta + \sin\delta) - jV_{t}^{2}}{X_{s}} \Rightarrow$$

$$\tilde{S}_{t} = \frac{V_{t}E_{f}}{X_{s}}\sin\delta + j \frac{V_{t}E_{f}\cos\delta - V_{t}^{2}}{X_{s}} = P + jQ$$

$$P = \frac{V_t E_f}{X_S} sin\delta$$

$$Q = \frac{V_t E_f}{X_S} \cos \delta - \frac{V_t^2}{X_S}$$

Σχέσεις για ανά μονάδα τιμές και σύμβαση γεννήτριας



Σε απόλυτα μεγέθη (και σύμβαση γεννήτριας):

$$P = \frac{3V_t^{\varphi} E_f^{\varphi}}{X_s} sin\delta = \frac{V_t^{\pi} E_f^{\pi}}{X_s} sin\delta$$

φ: φασικά μεγέθη

π: πολικά μεγέθη

 $\delta < 0$ 

$$Q = \frac{3V_t^{\varphi} E_f^{\varphi}}{X_S} \cos \delta - \frac{3V_t^{\varphi^2}}{X_S} = \frac{V_t^{\pi} E_f^{\pi}}{X_S} \cos \delta - \frac{V_t^{\pi^2}}{X_S}$$

### Λειτουργία κινητήρα (απορρόφηση ενεργού ισχύος)

Σχέσεις  $P(\delta)$  εφαρμόζονται κανονικά με  ${m P}<{m 0}$  και  ${m \delta}<{m 0}$   $(\tilde V_t$  προπορεύεται της  $\tilde E_f)$ 

#### Απορρόφηση αέργου ισχύος (υποδιέγερση)

Σχέσεις  $Q(\delta)$  εφαρμόζονται με  ${m Q}<{m 0}$ 



# Χαρακτηριστική ισχύος – γωνίας ισχύος, $P=P(\delta)$ ΣΜ σε άπειρο ζυγό ( $V_t=\sigma \tau \alpha \theta$ )



$$P = \frac{V_t E_f}{X_S} sin\delta$$

δ: γωνία ισχύος/ροπής της μηχανής

Γεννήτρια:  $\delta>0 \iff \tilde{E}_f$  προηγείται της  $\tilde{V}_t$ 

Κινητήρας:  $\delta < 0 \iff \tilde{E}_f$  έπεται της  $\tilde{V}_t$ 

**Ισχύς αποσυγχρονισμού** (για σταθερή  $V_t$  και δεδομένη  $E_f$ )

Μαχ ισχύς (όριο στατικής ευστάθειας):  $P_{max} = \frac{V_t E_f}{X_s}$  για  $\delta = \pm 90^\circ$ 

Για δ > 90°: αποσυγχρονισμός (ταχύτητα δρομέα ≠ σύγχρονης)

Συνήθως  $P_{max} \sim 2 - 2.5 \ \alpha. \mu. \rightarrow \Sigma \epsilon$  κανονική λειτουργία  $\delta$  χαμηλή (π.χ. $\sim 30^\circ$ )



# Χαρακτηριστική Ενεργού Ισχύος – Γωνίας Ροπής Σύγχρονων Μηχανών Έκτυπου Δρομέα





## Εφαρμογή σε πιο σύνθετες περιπτώσεις

#### 1. Σ/Γ συνδέεται σε άπειρο σύστημα μέσω Μ/Σ και γραμμής μεταφοράς





#### Διακινούμενη ενεργός ισχύς:

$$P = \frac{E_f V_k}{X_k} \sin \delta_k$$

όπου k οποιοσδήποτε ζυγός από τους 1, 2 ή 3, αρκεί να χρησιμοποιηθεί:

- Η αντίστοιχη γωνία  $\delta_k$  μεταξύ τάσης  $V_k$  και της  $E_f$
- Η αντίδραση  $X_k$  που παρεμβάλλεται μεταξύ της ΗΕΔ  $E_f$  και του ζυγού k

#### Παράδειγμα:

$$P = \frac{E_f V_1}{X_S} sin \delta_G = \frac{V_1 V_2}{X_M} sin \delta_M = \frac{V_1 V_3}{X_M + X_\Gamma} sin(\delta_M + \delta_\Gamma) = \frac{E_f V_3}{X_S + X_M + X_\Gamma} sin(\delta_G + \delta_M + \delta_\Gamma)$$

#### Μέγιστη ισχύς (αποσυγχρονισμού της γεννήτριας):

$$P_{max} = \frac{E_f V_{\Sigma}}{X_S + X_M + X_{\Gamma}}$$

 Χρησιμοποιούνται οι σταθερές τάσεις στα άκρα του συστήματος, οι οποίες δεν εξαρτώνται από τη διακινούμενη ισχύ



#### 2. Σύγχρονη γεννήτρια τροφοδοτεί σύγχρονο κινητήρα







## Σύγχρονη μηχανή σε άπειρο ζυγό

- Έλεγχος αέργου ισχύος  $(Q) \leftrightarrow \text{Μεταβολή ρεύματος διέγερσης}$ 
  - Υπερδιέγερση: παραγωγή αέργου ισχύος
  - Υποδιέγερση: κατανάλωση ή απορρόφηση αέργου ισχύος
- Έλεγχος **ενεργού ισχύος** (P) ↔ Μεταβολή μηχανικής ισχύος στον άξονα
  - → Γωνία ισχύος δ <u>δεν</u> είναι μεταβλητή ελέγχου

## Σύγχρονη γεννήτρια σε απομονωμένη λειτουργία

- Μεταβολή **ρεύματος διέγερσης** → Ρύθμιση **τάσης** ακροδεκτών
  - → Συντελεστής ισχύος επιβάλλεται από εξωτερικό φορτίο
- Μεταβολή μηχανικής ισχύος → Ρύθμιση συχνότητας
  - → Ρυθμιστές τάσεως και στροφών/συχνότητας απαραίτητοι



## Ισχύς και Ροπή



$$r_a \approx 0 \rightarrow P_{em} = P_t = \frac{V_t E_f}{X_S} sin\delta$$

Ηλεκτρομαγνητική ισχύς και ροπή (εσωτερική ισχύς ή ισχύς διακένου)

$$P_{em}=Re\{\tilde{E}_f\cdot \tilde{I}_a^*\}=\mathrm{T}_{em}\omega_{s}$$
 $\omega_{s}=rac{\omega_{e}}{P/2}$ : Σύγχρονη ταχύτητα

#### Μηχανική ισχύς και ροπή:

$$P_m = T_m \cdot \omega_s$$

#### Μηχανικές απώλειες:

$$P_m = P_{em} \pm P_{\alpha\pi,m}$$
 και  $T_m = T_{em} \pm T_{\alpha\pi,m}$  [Κινητήρας: (-), Γεννήτρια: (+)]



## Απώλειες σύγχρονης γεννήτριας



**BA:** 
$$\eta = \frac{P_{\epsilon\xi}}{P_{\epsilon i\sigma}} = \frac{P_{\epsilon\xi}}{P_{\epsilon\xi} + P_{\alpha\pi.\sigma\tau\alpha\theta.} + P_{\alpha\pi.\mu\epsilon\tau.}}$$