Report Nmap

1-Scansione -sT

Come prima richiesta vado ad effettuare una scansione nmap sull'ip di metasploitable con -sT . Come risultato avrò una lista delle porte TCP aperte

```
(kali@ kali)-[~]
$ sudo nmap 192.168.50.101 -sT
Starting Nmap 7.93 ( https://nmap.org ) at 2022-11-10 08:17 EST
Nmap scan report for 192.168.50.101
Host is up (0.00051s latency).
Not shown: 977 closed tcp ports (conn-refused)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open stp
53/tcp open stp
53/tcp open http
11/tcp open http
111/tcp open http
111/tcp open microsoft-ds
512/tcp open microsoft-ds
512/tcp open shell
1099/tcp open shell
1099/tcp open nfs
2121/tcp open nfs
2121/tcp open msc
2049/tcp open nfs
2121/tcp open shell
606/tcp open mysql
5432/tcp open mysql
5432/tcp open postgresql
5900/tcp open irc
8000/tcp open unknown
MAC Address: 08:00:27:F0:63:36 (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 13.25 seconds
```

2-Scansione -sS

Come seconda richiesta faccio la scansione nmap sempre sull'ip di meta con -sS.

3-Scansione -A

Come terza richiesta faccio la stessa scansione ma con -A che abilita il rilevamento del sistema operativo, il rilevamento della versione, la scansione degli script e il traceroute

```
| Second color | Seco
```

```
TRACEROUTE
HOP RTT ADDRESS
1 0.39 ms 192.168.50.101

OS and Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 142.85 seconds
```

4-Evidenziare differenza tra TCP(-sT) e SYN(-sS)

Ho effettuando la scansione con Wireshark e andando a filtrare una porta specifica vado a vedere le differenze.

No.	Time	Source	Destination	Protocol	Length	Info		
	27 13.100747177	192.168.50.100	192.168.50	TCP	60	33716 → 53	[SYN]	Seq=0 Wi
	35 13.100883526	192.168.50.101	192.168.50	TCP	62	53 → 33716	[SYN,	ACK] Seq
L	37 13.100905986	192.168.50.100	192.168.50	TCP	56	33716 → 53	[RST]	Seq=1 Wi

In questa prima foto la scansione SYN e vediamo come una volta ricevuto il pacchetto SYN/ACK capisce che la porta è aperta chiude la comunicazione con un RST(reset).

No.	Time	Source	Destination	Protocol	Length Info
	62 0.001510898	192.168.50.100	192.168.50.101	TCP	76 35196 → 53 [SYN] Seq=0 Win=642
	74 0.001708095	192.168.50.101	192.168.50.100	TCP	76 53 → 35196 [SYN, ACK] Seq=0 Ac
	76 0.001717092	192.168.50.100	192.168.50.101	TCP	68 35196 → 53 [ACK] Seq=1 Ack=1 W
	85 0.001872079	192.168.50.100	192.168.50.101	TCP	68 35196 → 53 [RST, ACK] Seq=1 Ac

In questa seconda foto invece con la scansione TCP(-sT), vediamo come a differenza della scansione SYN ,nmap completa il 3-way-handshake creando così il canale.

5-Tabella con i risultati delle scan

Fonte dello scan	Destinazione	Tipo di scan	Risultati
Linux 192.168.50.100	Meta 192.168.50.101	-sT	12 servizi attivi per le
			porte well know
Linux 192.168.50.100	Meta 192.168.50.101	-sS	12 servizi attivi per le
			porte well know
Linux 192.168.50.100	Meta 192.168.50.101	-A	12 servizi attivi per le
			porte well know