

# Clustering NYC: Mid-Term Project

By: Annie Stanley & Josh Ho

## Agenda

- 1. Objective
- 2. Project Workflow
- 3. Exploratory Data Analysis
- 4. Modeling Process
- 5. Results

# Objective

#### Objective

1

Provide relevant real estate information and insights to various stakeholders

Ultimately, provide a big picture aspect to help stakeholders make informed decisions when moving to New York City

#### **Stakeholders**

- Buyers
- Renters
- Investors
- Real Estate Brokers

## Project Workflow



Iterative Process

#### Sources of Data

| Source                                                   | Content                                                                                                |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| NYC JSON, GeoSpatial                                     | <ul> <li>Boroughs</li> <li>Neighbourhoods</li> <li>Zip Codes</li> <li>Geometry (Polygons)</li> </ul>   |
| Housing Prices                                           | <ul><li>Median Housing Prices 2021</li><li>Average Housing Prices 2020</li></ul>                       |
| API's                                                    | <ul><li>Yelp POI</li><li>Foursquare POI</li><li>Google Places POI</li></ul>                            |
| NYC OpenData  (Public Repo Operated by City of New York) | <ul> <li>Uber Rides</li> <li>Rat Reports</li> <li>Subway Lines</li> <li>Community Districts</li> </ul> |

# Exploratory Data Analysis (EDA)

## EDA

1. Places of Interest in NYC



## EDA

2. Rat Sightings vs Points of Interest in NYC



## EDA

3. Average Time It Takes
For a Rat Complaint To Be
Addressed



# Modeling Process

#### Modeling Process | PCA



9 Principal Components Explain 94.29% of the Variance

Version Displayed: Based on a Clustering of a Combination of All Features

## Modeling Process | Evaluation

#### Optimal Clusters for 9 Components by Metric







### Modeling Process | Clustering



## Results

#### Results (Clustered on Points of Interest)

#### • C0:

Studio: \$21241 Bed: \$2021

2 Bed: \$2831

• Restaurants: 75

o Schools: 26

o Parks: 18

• Transit Stations: 32

#### • C1:

o Studio: \$1751

o 1 Bed: \$1893

o 2 Bed: \$2158

o Restaurants: 31

o Schools: 5

• Parks:1

• Transit Stations: 7

#### • C2:

• Studio: \$2099

o 1 Bed: \$1988

o 2 Bed: \$2476

• Restaurants: 26

o Schools: 2

o Parks: 1

• Transit Stations: 1



#### Results (Clustered on Points of Interest)

- **C0**:
  - Studio: \$2124 0
  - 1 Bed: \$2021 0
  - 2 Bed: \$2831 0
  - Restaurants: 75 0
  - Schools: 26 0
  - Parks: 18 0
  - Transit Stations: 32 0
- C1:
  - Studio: \$1751 0
  - 1 Bed: \$1893 0
  - 2 Bed: \$2158 0
  - Restaurants: 31 0
  - Schools: 5 0
  - Parks:1
  - 0
  - Transit Stations: 7 0
- C2:
  - Studio: \$2099 0
  - 1 Bed: \$1988 0
  - 2 Bed: \$2476 0
  - Restaurants: 26 0
  - Schools: 2 0
  - Parks: 1 0
  - Transit Stations: 1 0



## Results (Clustered on Rat Sightings & Restaurants)



## Results (Clustered on Rat Sightings & Restaurants)



# Thank You!