Math 591 Lecure 28

Thomas Cohn

11/6/20

Recall: For G a Lie group, $\mathfrak{g} = T_e G$ is its Lie algebra. $\forall A \in \mathfrak{g}, A^{\sharp}$ is the left-invariant vector field on G determined by A, that is, $\forall g \in G$, $A_q^{\sharp} \stackrel{\text{def}}{=} (L_q)_{*,e}(A)$. In particular, $A_e^{\sharp} = A$.

Defn: $\forall A \in \mathfrak{g}, t \in \mathbb{R}$, $\exp t A$ is the integral curve of A^{\sharp} at e, at time t.

Defn: $\exp: \mathfrak{g} \to G$

 $A \mapsto \exp t A|_{t-1}$

Prop: exp is smooth.

Proof: Introduce the field $X \in \mathfrak{X}(G \times \mathfrak{g})$, defined by, $\forall (g, A) \in G \times \mathfrak{g}$,

$$X_{(g,A)} = (A_g^{\sharp}, 0) \in T_g G \times T_A \mathfrak{g} = T_{(g,A)}(G \times \mathfrak{g}) = T_g G \times \mathfrak{g}$$

X is smooth. Its flow, denoted F, is $F_t(g,A) = (F_t^A(g),A)$, where F^A is the flow of A^{\sharp} . Thus, the time-1 map is C^{∞} .

$$g \cong \{e\} \times \mathfrak{g} \xrightarrow{exp} G \times \mathfrak{g} \xrightarrow{F_1} G \times \mathfrak{g} \xrightarrow{\pi_G} G$$

Because $F_1(e, A) = (\underbrace{F_1^A(e)}_{\exp(A)}, A)$. We conclude that exp is smooth. \square

Prop: With the same notation $-A \in \mathfrak{g}$, F^A the flow of $A^{\sharp} - \forall g \in G$, $F_t^A(g) = g \cdot \exp t A$ (with \cdot group multiplication).

Proof: $\frac{d}{dt}(g \cdot \exp t A) = \frac{d}{dt}L_g(\exp t A) = (L_g)_{*,\exp(A)}(A_{\exp t A}^{\sharp}) = A_{g \cdot \exp t A}^{\sharp}$. This is precisely the ODE satisfied by $t \mapsto F_t^A(g)$. \square

Defn: If H,G are Lie groups, then a Lie group morphism from H to G is a smooth map $F:H\to G$ that is also a group homomorphism.

Prop: Let $F: H \to G$ be a Lie group homomorphism. Then

a) $\forall A \in \mathfrak{h} = T_e H, A^{\sharp} \in \mathfrak{X}(H)$ and $\underbrace{[F_{*,e}(A)]^{\sharp}}_{\in T_e G = \mathfrak{g}} \in \mathfrak{X}(G)$. These two fields are F-related. b) $\forall A \in \mathfrak{h}, F(\underbrace{\exp A}) = \underbrace{\exp (F_{*,e}(A))}_{\text{in } H}.$ c) $F_{*,e} : \mathfrak{h} \to \mathfrak{g}$ is a Lie algebra morphism. That is, $\forall A, B \in \mathfrak{h}, F_{*,e}([A, B]) = [F_{*,e}(A), F_{*,e}(B)]$ (with the appropriate Lie brackets).

Proof: (b) and (c) follow directly from (a).

Claim: $\forall h \in H$, the following diagram commutes:

$$\begin{array}{ccc} H & \stackrel{F}{\longrightarrow} & G \\ \downarrow^{L_h} & & \downarrow^{L_{F(h)}} \\ H & \stackrel{F}{\longrightarrow} & G \end{array}$$

Check: let $k \in H$. Then

$$(F \circ L_h)(k) = F(hk) = F(h)F(k) = L_{F(h)}(F(k))$$

because F is a group morphism. Thus, $\forall h, F_{*,h} \circ (L_h)_{*,e} = (L_{F(h)})_{*,F(h)} \circ F_{*,e}$ by the chain rule, and commutativity at the identity). We can apply this to any $A \in \mathfrak{h}$:

$$F_{*,h}(\underbrace{(L_h)_{*,e}(A)}_{=A_h^{\sharp}}) = (L_{F(h)})_{*,F(e)}(F_{*,e}(A)) = \underbrace{(L_{F(h)})_{*,e}(F_{*,e}(A))}_{=[F_{*,e}(A)]^{\sharp_{F(h)}}}$$

This is the fact that A^{\sharp} and $[F_{*,e}(A)]^{\sharp}$ are F-related. \square

Now, back to subgroups.

Defn: A regular (or embedded) Lie subgroup of G is a regular submanifold that is also a subgroup.

Cor: If $H \subseteq G$ is a regular subgroup, then

(a) $\mathfrak{h} \subset \mathfrak{g}$ as a subspace is closed under $[\,\cdot\,,\,\cdot\,]$ of \mathfrak{g} . (b) $\forall A \in \mathfrak{h}, \underbrace{\exp A} = \underbrace{\exp A}.$ Proof: Just apply the previous theorem to $F: H \hookrightarrow G$. \square

Observe: $\forall A, B \in \mathfrak{h}, \, [A, B]_{\mathfrak{h}} = [A, B]_{\mathfrak{g}}, \, \text{so} \, [\,\cdot\,,\,\cdot\,]_{\mathfrak{h}} = [\,\cdot\,,\,\cdot\,]_{\mathfrak{g}} \Big|_{\iota}.$

Defn: Given a Lie algebra \mathfrak{g} , a Lie-subalgebra is a subspace $\mathfrak{h} \subset \mathfrak{g}$ which is closed under $[\cdot,\cdot]$.

Cor: If $H \subset G$ is a regular Lie subgroup, then $\mathfrak{h} = T_e H$ is a Lie-subalgebra of \mathfrak{g} .

Is the converse true? I.e., given G a Lie group, if $\mathfrak{h} \subset T_eG = \mathfrak{g}$ is a Lie subalgebra of \mathfrak{g} , is there a Lie subgroup $H \subset G$ such that $T_e H = \mathfrak{h}$?

Answer: Yes, if we allow immersed submanifolds.

Thm: If $\mathfrak{h} \subset T_eG$ is a Lie subalgebra, then there is a Lie group H and an immersion $F: H \to G$ which is a group morphism and $F_{*,e}:T_eH\stackrel{\cong}{\to}\mathfrak{h}$.

Ex: An irrational line on the two-torus $S^1 \times S^1 = \mathbb{T}^2$,

$$F: \mathbb{R} \to \mathbb{T}^2$$
$$t \mapsto (e^{it}, e^{i\alpha t})$$

for α irrational, is a Lie group morphism and an immersion. $\operatorname{im}(F_{*,e})$ is a 1-dimensional subspace of $\mathfrak{t}^2 \cong \mathbb{R}^2$. This is always a subalgebra.

We're now done with Lie groups! Starting next week, we'll move on to differential forms.

Motivation: How do we integrate on manifolds and submanifolds?

(Think, for example, about surface integrals from calc 3.)