

# TEORIA DOS GRAFOS

Prof<sup>a</sup> Laura Pacifico

2025 | SETEMBRO

# Agenda da Aula





Definições, exemplos e observações iniciais

### **TSP**

**Problema do Caixeiro Viajante** 

#### **Teoremas**

Condições necessárias, Teoremas de Dirac e Ore

### **Digrafos**

Circuitos hamiltonianos em grafos orientados

# Motivação: Euler x Hamilton



#### **Trajeto Euleriano**

Percorrer todas as arestas de um grafo exatamente uma vez

Os vértices podem se repetir durante o trajeto

#### **Circuito Hamiltoniano**

Visitar todos os vértices de um grafo exatamente uma vez

Retornar ao vértice inicial, formando um circuito

# **Definições**



### Definição

Um circuito hamiltoniano em um grafo conexo é um circuito que contém todos os vértices do grafo.

Um grafo é chamado de **grafo hamiltoniano** se possui um circuito hamiltoniano.

Um grafo não-hamiltoniano é **semi-hamiltoniano** se possui um caminho que contém todos os seus vértices.

# **Definições**



O problema de determinar se um grafo é hamiltoniano foi formulado pelo matemático Sir William Hamilton em 1859.





O nome se refere a um jogo desenvolvido onde um jogador deverá especificar um caminho que passa por todas as cidades especificadas. Nome do jogo: "The traveller's dodecahedron" ou "A voyage round the word".



# **Exemplos**

#### **Grafo Hamiltoniano**



Possui um circuito que visita todos os vértices exatamente uma vez

#### **Grafo Não-Hamiltoniano**



Não é possível formar um circuito que visite todos os vértices exatamente uma vez



# **Observações Iniciais**

### Arestas paralelas e laços

Não podem pertencer a um circuito hamiltoniano

### Subcircuitos próprios

Não podem ser formados durante a construção do circuito hamiltoniano

### Vértices de grau 2

As arestas a ele incidentes devem pertencer ao circuito hamiltoniano

### Vértices já incluídos

Arestas incidentes não utilizadas podem ser desconsideradas

# Heurísticas de Construção



#### Inicie em qualquer vértice

Escolha um vértice de partida e marque-o como visitado

#### **Evite subciclos prematuros**

Não feche o ciclo antes de visitar todos os vértices

#### Construa um caminho

Adicione vértices adjacentes não visitados ao caminho

### Verifique o fechamento

O último vértice deve ser adjacente ao primeiro para formar o circuito



### Teorema de Ore (1960)

### Teorema

Se G(V, A) é um grafo simples com  $n \ge 3$  vértices, e se

$$d(v) + d(w) \ge n$$

para cada par de vértices não-adjacentes v e w, então G é hamiltoniano.

Este teorema fornece uma condição suficiente para que um grafo seja hamiltoniano, baseada na soma dos graus de vértices não-adjacentes.

# Ore - Checklist de Aplicação



- 1 Verifique se o grafo é simples Sem arestas paralelas ou laços
- Confirme que n ≥ 3O teorema só se aplica a grafos com pelo menos 3 vértices
- Identifique todos os pares de vértices não-adjacentes
  Pares de vértices que não possuem uma aresta entre eles
- 4 Calcule a soma dos graus para cada par d(v) + d(w) para cada par não-adjacente v,w
- Verifique se todas as somas são ≥ n
  Se sim, o grafo é hamiltoniano pelo Teorema de Ore

### Teorema de Dirac (1952)



### Teorema

Se G é um grafo simples com  $n \ge 3$  vértices, e se

 $d(v) \ge n/2$ 

para cada vértice v, então G é hamiltoniano.

Este teorema é um caso especial do Teorema de Ore, mais fácil de verificar na prática.

# **Exemplos**

#### **Satisfaz Dirac**



Todos os vértices têm grau ≥ n/2 Logo, o grafo é hamiltoniano



Alguns vértices têm grau < n/2 Não podemos concluir pelo Teorema de Dirac



# **Grafos Completos Kn**

### ① Definição

Um grafo completo é um grafo simples tal que existe uma aresta entre cada par de vértices. Um grafo completo com n vértices é denotado por Kn.

Todo grafo completo Kn com  $n \ge 3$  é hamiltoniano, pois satisfaz trivialmente o Teorema de Dirac:  $d(v) = n-1 \ge n/2 \text{ para todo vértice } v \text{ (quando } n \ge 2\text{)}.$ 



### Circuito em Kn

#### Como obter um circuito hamiltoniano?

Numere os vértices do grafo de 1 a n.

Como existe uma aresta entre cada par de vértices, a sequência 1, 2, ..., n, 1 é um circuito hamiltoniano.



Os circuitos {a, b, c, d, a} e {a, d, c, b, a} são diferentes ou iguais?



# Contagem de Circuitos em Kn

### Teorema

Em um grafo completo Kn com  $n \ge 3$  vértices, o número de circuitos hamiltonianos distintos é:

$$(n-1)!/2$$



# Ciclos Aresta-Disjuntos em Kn

#### (i) Teorema

Em um grafo completo com n vértices, existem (n-1)/2 circuitos hamiltonianos aresta-disjuntos, se  $n \ge 3$  é ímpar.

Intuição: As (n(n-1))/2 arestas de Kn podem ser particionadas em (n-1)/2 conjuntos, cada um formando um circuito hamiltoniano com n arestas.



# O Problema do Caixeiro Viajante

### Formulação do Problema

Um viajante necessita visitar um certo número de cidades durante uma viagem e retornar ao lugar de origem de tal maneira que:

- Cada cidade é visitada exatamente uma vez
- A distância total percorrida seja a menor possível

Dada a distância entre as cidades, que rota ele deve escolher?



# Modelagem em Grafo Valorado

#### **Vértices**

Representam as cidades a serem visitadas

#### **Pesos**

Representam as distâncias entre as cidades

#### **Arestas**

Representam as estradas entre as cidades

### **Objetivo**

Encontrar o circuito hamiltoniano de menor custo total

# **Exemplo com 5 Cidades**





Rota 1: {A, B, C, D, E, A}

Distância: 5 + 2 + 4 + 3 + 4 = 18km



# **Explosão Combinatória**

19!

0,36s 3.800 anos

10 cidades

20 cidades

Tempo para 10 cidades Tempo para 20 cidades

362.880 rotas possíveis

 $1,22 \times 10^{17}$  rotas possíveis

Processando 1 milhão de rotas/segundo

Mesmo processando 1 milhão de rotas/segundo



# **Digrafos Hamiltonianos**

### ① Definição

Um digrafo D é dito ser hamiltoniano se possuir um circuito orientado que inclua todos os seus vértices.

Um digrafo não-hamiltoniano é dito ser semi-hamiltoniano se possuir um caminho orientado que inclua todos os seus vértices.

Pouco se sabe sobre digrafos hamiltonianos. Muitos teoremas para grafos hamiltonianos não são generalizados facilmente para digrafos.



# **Dirac para Digrafos**

(i) Teorema

Seja D um digrafo simples com n vértices. Se

 $ds(v) \ge n/2 e de(v) \ge n/2$ 

para todo vértice v de D, então D é hamiltoniano.

Grau de saída (ds)

Grau de entrada (de)

Número de arestas que saem do vértice

Número de arestas que entram no vértice



# Ore para Digrafos

#### Teorema

Seja D um digrafo simples com n vértices. Se

$$ds(v) + de(w) \ge n$$

para todo par de vértices não-adjacentes v e w de D, então D é hamiltoniano.

Observe a analogia com o Teorema de Ore para grafos não-orientados.



### **Observações**

#### **Conhecimento Limitado**

"Sabe-se pouco em geral" sobre digrafos hamiltonianos

### Condições Mais Restritivas

As condições para digrafos são mais exigentes que para grafos não-orientados

### Generalização Difícil

Teoremas para grafos não-orientados não se generalizam facilmente

### **Aplicações Práticas**

Modelam problemas com restrições de direção (ruas de mão única, fluxos, etc.)

### **Dúvidas?**



Laura Alves Pacifico
<a href="mailto:laps@cesar.school">laps@cesar.school</a>
Slack: Laura Pacifico