מבוא לחבורות תרגיל מס׳ 13

- יהי $A\subseteq G$ יהי הוכיחו כי $C_G(N) \lhd G$ הוכיחו כי $N \lhd G$ יהי .1 $C_G(N) = \{g \in G \mid ga = ag \ \forall a \in A\}$
- עבור $G \models p^n$ אסם p אסם p עבור G נקראת חבורת- p אסם p עבור p איז שהו p הוכיחו כי המרכז של חבורת- p לא טריוויאלי p המחלקות]
 - : תהי G חבורה מסדר 15. הוכיחו כי G ציקלית לפי השלבים הבאים 3
- א. לפי משפט איבר y מסדר 3 מסדר x מסדר y מסדר y מסדר 3 איבר y מסדר y מסדר y נרשום גרשום y הוכיחו כי y הוכיחו כי y פועלת על הקוסטים השמאליים של y בכפל משמאל (הצגת Cayley). הראו כי גרעין הפעולה הוא בהכרח y.
 - ב. מחלק א, G פועלת על N ע"י הצמדה, ובהתאם יש הומומורפיזם ב. $N\subseteq Z(G)$ ולכן $f(G)=\{1\}$ הראו כי $f:G\to AutN$
 - $[.xy = yx 1 \ G]$ יוצרים את [x,y] אבלית. [x,y]
 - . הראו כי G ציקלית
- ה. הכלילו את התרגיל לחבורה מסדר p,q, ראשוניים כך ש-q אינו מחלק את q-1.
 - S_{5} א. חישבו את הסדרים של כל מחלקות הצמידות ב-4
 - ב. מצאו נציג σ לכל מחלקת צמידות ב- $S_{\scriptscriptstyle 5}$ ולכל נציג מצא את ב. $C_{\scriptscriptstyle S_{\scriptscriptstyle 5}}$ שלו ב- $C_{\scriptscriptstyle S_{\scriptscriptstyle 5}}$
- .5 חשבו את הסדרים של כל מחלקות הצמידות ב- A_5 . [היעזרו בחלק ב. של . $\sigma\in A_5$ עבור $C_{A_5}(\sigma)=C_{S_5}(\sigma)\cap A_5$ עבור שימו לב של התרגיל הקודם, שני איברים של A_5 שצמודים ב- A_5 לאו דווקא צמודים ב- A_5 !
- הוכיחו כי $A_{\scriptscriptstyle 5}$ חבורה פשוטה. [כל תת-חבורה נורמלית של $A_{\scriptscriptstyle 5}$ היא איחוד של מחלקות צמידות של $A_{\scriptscriptstyle 5}$.]
 - $Aut(V_4)$ את מצאו .7
 - .8 אבלית חיבורית כך שקיים מספר ראשוני p כך ש- אבלית חיבורית פארים מספר אבלית pv=0 , $pV=\{0\}$
 - $.\,F_{_p}\coloneqq \mathbb{Z}/\,p\mathbb{Z}$ א. הוכיחו כי V מרחב וקטורי מעל השדה V
 - $.\,n=\dim_{F_n}V$ ו. ו- $|V|=p^n$ ב. הסיקו שאם V סופית, אז

- ג. הוכיחו כי כל אוטומורפיזם של V כחבורה הוא אופרטור ליניארי הפיך על V כמרחב וקטורי.
 - $Aut(V) \simeq GL_n(F_p)$ אז , $|V| = p^n$ ד. הסיקו שאם.
 - ה. השוו עם תרגיל מסי 7.