

Analyse statistique Bivariée

- Pour tester l'existence d'un lien entre les modalités de deux variable qualitatives:
 - ➤ On utilise de test de CHI-2.
 - ➤ Une représentation graphique.

• Pour étudier la relation entre deux variables qualitatives, on construit d'abord un tableau appelé table de contingence ou tableau croisé.

				Varia	ble Y		
		<i>y</i> ₁	y 2		Уj	 y _m	Total
Variable X	<i>x</i> ₁	n ₁₁	<i>n</i> ₁₂		n_{1j}	 n_{1m}	n _{1.}
	X2	n ₂₁	n_{22}		n_{2j}	 n_{2m}	n _{2.}
	:	:	:		:	 :	:
	Xi	n _{i1}	n_{i2}		n _{ij}	 n _{im}	n _i .
	:	:	:		:	 :	:
	X _I	<i>n</i> /1	n_{l2}		n_{lj}	 n_{lm}	n _{I.}
	Total	n.1	n.2		n _{.j}	 n _{.m}	n

Tableau de contingence

 n_{ij} : effectif joint de la modalité x_i et de la modalité y_i

 n_i : effectif marginal de la modalité x_i n_i : effectif marginal de la modalité y_i

n : taille de l'échantillon

• L'effectif corrigé se calcul ainsi:

$$n_{ij}^* = \frac{n_i n_j}{n}$$

	Variable Y						
		<i>y</i> ₁	y 2		y j	 y _m	Total
Variable X	<i>x</i> ₁	n ₁₁ *				n_{1m}^*	n _{1.}
	X2	n ₂₁ *	n ₂₂ *		n_{2j} *	 n _{2m} *	n _{2.}
	:	:	:		:	 :	:
	Xi	n _{i1} *	n _{i2} *		n _{ij} *	 n _{im} *	n _i .
	:	:	:		:	 :	:
	X _I	n _{l1} *	n_{l2}^{*}		n _{lj} *	 n _I *	n _{I.}
	Total	n.1	n.2		n _{.j}	 n _{.m}	n

Tableau d'effectifs corrigés

Test de Khi-deux

Hypothèses du test:

 H_0 :Les variables X et Y sont indépendantes.

 H_1 :Il existe une liaison entre Les variables X et Y

Statistique du test:

Sous
$$H_0$$
: $\chi^2 = \sum_{i=1}^l \sum_{j=1}^m \frac{(n_{ij} - n_{ij}^*)^2}{n_{ij}^*} \sim \chi^2_{(l-1)(m-1)}$

Règle de décision:

Si la valeur de la statistique de test χ^2 est **inférieure** à la valeur seuil $\chi^2_{(l-1)(m-1)}$ alors on accepte l'hypothèse nulle.

Si la valeur de la statistique de test χ^2 est supérieure à la valeur seuil $\chi^2_{(l-1)(m-1)}$ alors on rejette l'hypothèse nulle.

Exemple:

	Etat du s		
Exposition	$\overline{I^-}$	I^+	Total
Exposé	135	120	255
Non exposé	150	195	345
Total	285	315	600

	Etat du sy		
Exposition	$\overline{I^-}$	I^+	Total
Exposé	121.1	133.9	255
Non exposé	163.9	181.1	345
Total	285	315	600

Croisement entre l'exposition au produit chimique et l'état du système immunitaire

Tableau de contingence th'eorique

Sous
$$H_0$$
: $\chi^2 = \sum_{i=1}^l \sum_{j=1}^m \frac{(n_{ij} - n_{ij}^*)^2}{n_{ij}^*} \sim \chi^2_{(2-1)(2-1)}$

Pour un risque α = 0.05, la région critique conduisant au rejet de H_0 pour une loi du χ_1^2 est définit par : [3,841,+ ∞ [

Application numérique:

$$\chi^2 = \frac{(135 - 121.1)^2}{121.1} + \frac{(120 - 133.9)^2}{133.9} + \frac{(150 - 63.9)^2}{163.9} + \frac{(195 - 181.1)^2}{181.1} = 5.36$$

Au risque $\alpha=0.05$, la valeur 5,36 appartient à la zone critique. On rejette alors H_0

• Graphiquement, nous pouvons aussi déduire l'existence de relation entre deux variables qualitatives en utilisant:

le diagramme en barre regroupé

Diagramme en mosaïque

