Fase Conceptual

Diagramas Entidad Relación DERe "Ingeniería. Donde los nobles trabajadores semicalificados ejecutan la visión de aquellos que piensan y sueñan. ¡Hola Oompah Loompahs de la ciencia!"

Modelación Conceptual OBJETIVOS

- Describir las características de la modelación conceptual y su relación con el diseño de bases de datos.
- Interpretar un Diagrama Entidad-Relación (DER) para poder describir el fenómeno que representa.
- Modelar conceptualmente un fenómeno de la realidad objetiva, desde el punto de vista de la información, mediante el diagrama entidad-relación (DER)

Bibliografía

- Aguilera, S. (2015). Diagrama Entidad Relación.
- Administracionelectronica.gob.es. (2017). *PAe Métrica v.3*. [online] Available at:
 - https://administracionelectronica.gob.es/pae_Home/pae_Documen tacion/pae_Metodolog/pae_Metrica_v3.html#.Wc4Th9HtaUk [Accessed 29 Sep. 2017].
- Connoly, Thomas & Begg, Carolyn (2015) Pearson Education Limited, England.
- Mato García, R.M. (2005) Editorial Pueblo y Educación, La Habana, Cuba.
- Silberschatz Δ Korth H F Sudarshan S (2014) MacGraw-Hill

En el parcial.... INTERSECT

```
SELECT course id FROM section c WHERE c.semester='Spring' AND c.year=2018
INTERSECT SELECT s.course id FROM section s WHERE s.semester = 'Fall'
AND s.year=2017;
```

Mostrando filas 0 - 0 (total de 1, La consulta tardó 0,0006 segundos.)

course_id

CS-101

SELECT * FROM instructor WHERE
dept_name='History' INTERSECT SELECT *
FROM instructor WHERE salary<79000.00;</pre>

(total de 2, La consulta tardó 0,0005 segundos.)

ID	name	dept_name	salary
32343	El Said	History	72930.38
58583	Califieri	History	75361.39

SELECT * FROM instructor WHERE dept name='History' AND salary <79000.00;

ID	name	dept_name	salary
32343	El Said	History	72930.38
58583	Califieri	History	75361.39

(total de 2, La consulta tardó 0,0004 segundos.)

En el parcial.... REUNIÓN NATURAL

Crear una vista "instructor_semester" con todos los instructores con los semestres de las asignaturas que enseñan.

name semester Srinivasan Fall Srinivasan Spring El Said Spring Katz Spring Brandt Spring Kim Spring

SELECT DISTINCT i.name, e.semester FROM teaches as e NATURAL JOIN instructor as i;

(total de 6, La consulta tardó 0,0006 segundos.)

NO está Califiery

SÍ está Califiery

SELECT DISTINCT i.name, e.semester FROM teaches as e JOIN instructor as i;

name	semester
Kim	Fall
Brandt	Fall
Califieri	Fall
Katz	Fall
El Said	Fall
Srinivasan	Fall
Kim	Spring
Brandt	Spring
Califieri	Spring
Katz	Spring
El Said	Spring
Srinivasan	Spring

SELECT DISTINCT i.name, e.semester FROM teaches as e JOIN instructor as i ON i.ID = e.ID;

La consulta tardó 0,0009 segundos.

name	semester
Srinivasan	Fall
Srinivasan	Spring
El Said	Spring
Katz	Spring
Brandt	Spring
Kim	Spring

NO está Califiery

(total de 18, La consulta tardó 0,0007 segundos.)

En el parcial.... REUNIÓN EXTERNA

(Crear una vista instructor_semester_ii con todos los profesores y semestres registrados.)

name	semester
Kim	Fall
Brandt	Fall
Califieri	Fall
Katz	Fall
El Said	Fall
Srinivasan	Fall
Kim	Spring
Brandt	Spring
Califieri	Spring
Katz	Spring
El Said	Spring
Srinivasan	Spring
Kim	Summer
Brandt	Summer
Califieri	Summer
Katz	Summer
El Said	Summer
Srinivasan	Summer

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	79007.91	CS-347	1	Fall	2017
10101	Srinivasan	Comp. Sci.	79007.91	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	79007.91	CS-101	1	Fall	2017
32343	El Said	History	72930.38	HIS-351	1	Spring	2018
45565	Katz	Comp. Sci.	78750.00	CS-319	1	Spring	2018
45565	Katz	Comp. Sci.	78750.00	CS-101	1	Spring	2018
58583	Califieri	History	75361.39	NULL	NULL	NULL	NULL
83821	Brandt	Comp. Sci.	96600.00	CS-319	2	Spring	2018
83821	Brandt	Comp. Sci.	96600.00	CS-190	2	Spring	2017
83821	Brandt	Comp. Sci.	96600.00	CS-190	1	Spring	2017
98345	Kim	Elec. Eng.	84000.00	EE-181	1	Spring	2017

SELECT DISTINCT i.name, e.semester FROM teaches as e JOIN instructor as i;

(total de 18, La consulta tardó 0,0009 segundos.)

(total de 11, La consulta tardó 0,0006 segundos.)

SELECT * FROM instructor NATURAL LEFT OUTER JOIN teaches;

Definiciones de trabajo

Definición MER (Modelo Entidad Relación): El Modelo entidad relación se desarrolló para facilitar el diseño de Bases de Datos permitiendo la especificación de un esquema de empresa que representa la estructura lógico global de la BD. El MER se levanta sobre tres conceptos básicos: conjuntos de entidades, conjuntos de relaciones y conjuntos de atributos.

Definición DER (Diagrama Entidad Relación): El diagrama entidad relación constituye la expresión gráfica del MER. Comprende conceptos adicionales como generalización_especialización, asociación, entidades débiles y otros que se derivan de situaciones especiales de los conceptos trabajados en el MER.

DER Spotify

Diagrama Entidad Relación. DERe

Conceptos y Definiciones

Diagrama Entidad Relación

Las dos representaciones básicas en el DER.

Notación	CHEN	CROWŚ
Significado		
Atributo de entidad débil	Attribute	
Atributo multivaluado		
	Attribute	
Atributo derivado		
	Attribute	

Entidades

Ejemplares y Esquemas

Esquema: Diseño general de las relaciones en la base de datos.

Ejemplar de la base de datos: La colección de información almacenada en la base de datos en un momento dado.

10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00

Conjuntos de entidades

Conjunto de Entidades: Agrupación de entidades del mismo tipo que comparten propiedades o atributos. Ejemplo: El conjunto de todas las personas que son profesores en la universidad se pueden definir como el conjunto entidad "Profesor". Al conjunto real de profesores se le denomina "extensión".

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00

Entidades en UML

Definiciones:

- Un grupo de objetos que tienen las mismas propiedades o atributos.
- Ocurrencia: Un objeto identificable dentro de una entidad.

Profesor

Representación Gráfica de la Entidad Profesor

Ocurrencias

Entidad Profesor

ID	nombre	nombre grado	sueldo	fechaNacimiento
10101	Srividasan	Informatica	65000	1976-12-03
12121	Wu	Finanzas	65000	1978-11-02
15151	Mozart	Musica	65000	1980-02-23
22222	Einsten	Física	65000	1987-07-24
32343	El Said /	Historia	65000	1965-02-25
33456	Gold	Física	65000	1969-03-21
45465	Katz	Informática	65000	1985-10-27
585 83	Califieri	Historia	65000	1978-04-26
76543	Singh	Finanzas	65000	1969-04-24
76766	Crick	Biología	65000	1983-11-09
83821	Brandt	Informática	65000	1977-05-05
98345	Kim	Electrónica	65000	1990-06-18

Diagrama Entidad Relación (Básicos)

Entidades Débiles

Entidades débiles

¿Qué son?

- Entidad fuerte: Un tipo de entidad que no guarda ninguna dependencia de alguna otra entidad.
- Entidad débil: Una entidad que guarda algún tipo de dependencia de otra entidad.

Entidades fuertes y entidades débiles

La existencia de una entidad fuerte no depende de la existencia de ningún otro tipo de entidad. La existencia de una entidad débil depende de la existencia de otro tipo de entidad.

	course_id	title	dept_name	credits	course_id	sec_id	semester	year	building	room_number	time_slot_id
	BIO-101	Intro. to Biology	Biology	4	BIO-101	1	Summer	2017	Packard	101	Α
					BIO-301	1	Summer	2018	Painter	514	Α
	BIO-301	Genetics	Biology	4	CS-190	1	Spring	2017	Taylor	3128	Α
	BIO-399	Computational Biology	Biology	3	CS-347	1	Fall	2017	Taylor	3128	A
	CS-101	Intro. to Computer Science	Comp. Sci.	4	PHY-101	1	Fall	2017	Watson	100	А
	CS-190	Game Design	Comp. Sci.	4	BIO-101	1	Summer	2017	Painter	514	В
	CS-315	Robotics	Comp. Sci.	3	CS-319	1	Spring	2018	Watson	100	В
	CS-319	Image Processing	Comp. Sci.	3	FIN-201	1	Spring	2018	Packard	101	В
	03-319	illiage Flocessing	Comp. Sci.	3	CS-319	2	Spring	2018	Taylor	3128	С
	CS-347	Database System Concepts	Comp. Sci.	3	EE-181	1	Spring	2017	Taylor	3128	С
	EE-181	Intro. to Digital Systems	Elec. Eng.	3	HIS-351	1	Spring	2018	Painter	514	С
	FIN-201	Investment Banking	Finance	3	CS-315	1	Spring	2018	Watson	120	D
	HIS-351	World History	History	3	MU-199	1	Spring	2018	Packard	101	D
	MU-199	Music Video Production	Music	3	CS-190	2	Spring	2017	Taylor	3128	Е
	PHY-101	Physical Principles	Physics	4	CS-101	1	Spring	2018	Packard	101	F
3	F111-101	Enysical Enticiples	FIIYSICS	4	CS-101	1	Fall	2017	Packard	101	Н

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

Entidades fuertes y relaciones débiles (Análisis)

dept_name	building	budget	building 🔑	building	room_number	capacity
Biology	Watson	90000.00	room_number 🔑	Packard	101	500
Comp. Sci.	Taylor	100000.00		Table Make	101	
Elec. Eng.	Taylor	85000.00		Painter	514	10
Finance	Painter	120000.00		Taylor	3128	70
History	Painter	50000.00		Motoon	100	20
Music	Packard	80000.00		Watson	100	30
Physics	Watson	70000.00		Watson	120	50

Entidades fuertes y relaciones débiles (Análisis)

83821 Brandt

98345 Kim

Comp. Sci.

Elec. Eng.

92000.00

80000.00

15151 MU-199

22222 PHY-101

ID

ID	name	dept_name	salary	וט	course_iu	sec_iu	Semester	year	course_iu	uue	dept_name	Credits
10101	Srinivasan	Comp. Sci.	65000.00	76766	BIO-101	1	Summer	2017	BIO-101	Intro. to Biology	Biology	4
				76766	BIO-301	1	Summer	2018	BIO-301	Genetics	Biology	4
12121	Wu	Finance	90000.00	10101	CS-101	1	Fall	2017	BIO-399	Computational Biology	Biology	3
15151	Mozart	Music	40000.00	45565	CS-101	1	Spring	2018		12.0000000000		J
22222	Einstein	Physics	95000.00	83821	CS-190	1	Spring	2017	CS-101	Intro. to Computer Science	Comp. Sci.	4
22242	El Caid	Hiotoni	60000 00	83821	CS-190	2	Spring	2017	CS-190	Game Design	Comp. Sci.	4
32343	El Said	History	60000.00	10101	CS-315	1	Spring	2018	CS-315	Robotics	Comp. Sci.	3
33456	Gold	Physics	87000.00	45565	CS-319	1	Spring	2018	CS-319	Image Processing	Comp. Sci.	3
45565	Katz	Comp. Sci.	75000.00	83821	CS-319	2	Spring	2018			111	830
50500	Califieri	Lictory.	62000.00		CS-347	4	Table 170		CS-347	Database System Concepts	Comp. Sci.	3
30303	Callilett	History	02000.00			1	Fall	2017	EE-181	Intro. to Digital Systems	Elec. Eng.	3
76543	Singh	Finance	80000.00	98345	EE-181	1	Spring	2017	FIN-201	Investment Banking	Finance	3
76766	Crick	Biology	72000.00	12121	FIN-201	1	Spring	2018				
70700	Official	Diology	12000.00	32343	HIS-351	1	Spring	2018	HIS-351	World History	History	3

course id sec id

course id title

MU-199

PHY-101

2018

2017

Spring

Fall

Music Video Production

Physical Principles

Music

Physics

semester vear

dept name credits

Entidades fuertes y relaciones débiles (Análisis)

Entidades fuertes y débiles (II)

- La entidad fuerte siempre tiene una clave principal. Mientras que la entidad débil tiene una clave discriminadora parcial.
- La entidad fuerte no depende de ninguna otra entidad. La entidad débil depende de la entidad fuerte.
- En la notación CHEN, la entidad fuerte está representada por un solo rectángulo. La entidad débil está representada por un rectángulo doble.
- La relación de dos entidades fuertes está representada por un solo diamante. Mientras que la relación entre una entidad fuerte y una débil está representada por un doble diamante.
- La entidad fuerte tiene participación total o no.

Atributos de Entidades

Formando una tabla

Un atributo A₁ se le asigna un dominio D₁, un atributo A2 se le asigna un dominio D2 y así sucesivamente formando el conjunto {A1:D1,A2:D2...} los cuales mapeados producen:

A1, A2, A3 1, 5, 8 3, 7, 11 5, 6, 15 Dominio

Atributos

Dominio o conjunto de valores del atributo: El conjunto de valores permitidos.

Cada entidad se puede describir por un par de atributo-valor. Por ejemplo, para la entidad profesor:

- 1) (ID, 12121), (name,Wu), (dept_name,History).
- 2) (ID, 15151), (name, Mozart), (dept_name, Music).

Atributos de las entidades.

- Atributo: Una propiedad de una entidad.
- Dominio de Atributo: El conjunto de valores permitidos para uno o más atributos.

Atributos simples y compuestos

Atributos simples: Un atributo compuesto por un componente con existencia independiente.

Atributos compuestos: Un atributo compuesto por múltiples componentes, cada uno con una existencia independiente.

Atributos multivaluados y derivados

Atributos de un valor: Un atributo que presenta un solo valor posible para cada ocurrencia de una entidad.

Atributos multivaluados: Un atributo que presenta múltiples valores para una ocurrencia de una entidad.

Atributos derivados: Un atributo que representa un valor que es derivable de los valores presentados por un set de atributos, no

Restricciones (Llaves)

Sea R un conjunto de relaciones que implica a los conjuntos de entidades E1, E2,En. El atributo <i>clave-primaria</i> (Ei) indica el conjunto de atributos que forman la clave primaria de la entidad Ei Si el conjunto de relaciones R no tiene atributos asociados,
entonces el conjunto de atributos:
clave-primaria (E1) U clave-primaria (E2) U U
clave-primaria (En)
describe una relación individual en el conjunto R.
Si el conjunto de relaciones R tiene los atributós asociados a1,
a2,am entonces el conjunto de atributos:
clave-primaria (E1) U clave-primaria (E2) U U
clave-primaria (En) U

describe una relación individual en el conjunto R. En ambos casos el conjunto de atributos:

{ a1,a2....,am}

Atributos llaves

Llaves.

Llave candidata: El mínimo set de atributos que identifica cada ocurrencia de una entidad.

Llave primaria: La llave candidata que es seleccionada para identificar únicamente cada ocurrencia de una entidad.

Llave compuesta: Una llave candidata que consiste en uno o más atributos.

Relaciones

Conjunto de Relaciones: Se recordará que una relación es una asociación entre varias entidades. Un conjunto de relaciones es un conjunto de vínculos de un mismo tipo.

Formalmente: Dado un n≥2 de conjunto de entidades. Si E1,E2....,En son conjuntos de entidades entonces un conjunto de relaciones R es un subconjunto de: {(e1, e2,, en) | e1 € E1, e2 € E2,.....,en € En } donde {(e1, e2,, en) es una relación. conjunto de relaciones no binarias

Relaciones Básicas

Binarias

Terciarias.

Cuaternarias

Relaciones ternarias y cuaternarias

INSTRUCTOR

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

¿Dónde?

STUDENT

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110

¿Qué enseño?

STUDENT

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110

¿Qué enseño?

teaches

ID	course_id	sec_id	semester	year
76766	BIO-101	1	Summer	2017
76766	BIO-301	1	Summer	2018
10101	CS-101	1	Fall	2017
45565	CS-101	1	Spring	2018
83821	CS-190	1	Spring	2017
83821	CS-190	2	Spring	2017
10101	CS-315	1	Spring	2018
45565	CS-319	1	Spring	2018
83821	CS-319	2	Spring	2018
10101	CS-347	1	Fall	2017
98345	EE-181	1	Spring	2017
12121	FIN-201	1	Spring	2018
32343	HIS-351	1	Spring	2018
15151	MU-199	1	Spring	2018
22222	PHY-101	1	Fall	2017

INSTRUCTOR

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

¿Dónde estudio?

STUDENT

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110

¿Qué estudio?

INSTRUCTOR

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

¿Dónde estudio?

STUDENT

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110

¿Qué estudio?

tipos de relaciones

Diagrama instructor-student

Básico

Diagrama instructor student

con atributo asociado al conjunto de relaciones

Restricciones (Correspondencias de cardinalidades)

Para un conjunto de relaciones binarias R entre los conjuntos A y B:

Uno a Uno: Cada entidad de A se asocia , a lo sumo, con una entidad de B, y cada entidad de B se asocia a lo sumo, con una entidad de A.

Diagrama instructor student

relaciones uno a uno

Restricciones (Correspondencias de cardinalidades)

Para un conjunto de relaciones binarias R entre los conjuntos A y B:

Uno a Varios: Cada entidad de A se asocia , a lo sumo, con una entidad de B, y cada entidad de B se asocia a lo sumo, con una entidad de A.

Diagrama instructor student

relaciones uno a varios

Restricciones (Correspondencias de cardinalidades)

Para un conjunto de relaciones binarias R entre los conjuntos A y B:

Varios a Uno: Cada entidad de A se asocia, a lo sumo, con una entidad de B. Cada entidad B, sin embargo, se asocia con cualquier número (cero o más), de entidades de A.

Diagrama instructor student

relaciones uno a varios

Restricciones (Correspondencias de cardinalidades)

Para un conjunto de relaciones binarias R entre los conjuntos A y B:

Varios a Varios: Cada entidad de A se asocia con cualquier número de entidades de B y cada entidad de B se asocia con cualquier número de entidades de A.

Diagrama instructor student

relaciones varios a varios

roles

Roles

(Relaciones especiales)

Puntos importantes:

- Toda asociación tiene un rol, y por tanto se debe nombrar.
- Las asociaciones sin flechas significan navegabilidad en ambos sentidos (por ejemplo, relación 1:1)
- Las asociaciones con flechas significan navegabilidad en el sentido de las saetas (por ejemplo: 1 universidad tiene muchos profesores, note que no se cumple el inverso)
- En las asociaciones recursivas con una misma entidad, hay dos roles. Se debe colocar un rol antes de la saeta y el otro después de esta.
- En las asociaciones de dos roles

restricciones de cardinalidad

Restricción de cardinalidad

Básico

Significados

WARNING!!!

Resulta fácil malinterpretar el 0...* de la parte izquierda y pensar que la relación tutor es de varios a 1 desde instructor a estudiante, que es exactamente la interpretación contraria a la correcta.

Es decir, la relación tutor es de uno a varios de instructor a estudiante

El límite mínimo y máximo de cardinalidad es 1

Significa: Todos los estudiantes tienen que tener exactamente un tutor

El límite mínimo de cardinalidad es 0 y el máximo es 1

Significa: Todos los profesores pueden tener 0 o más estudiantes

Restricciones de cardinalidad y participación

Participación: Cuanto de las entidades hay en una relación.

Por ejemplo: La participación de estudiantes en la relación tutor es completa.

Relaciones Extendidas

Diagrama entidad relación extendido

Constituyen diagramas adicionales al modelo entidad relación clásico. Estos diagramas adicionales son:

- 1. Especialización/Generalización.
- 2. Asociación.

Diagrama Entidad Relación (Generalización / Especialización)

Con especializaciones: La llave de una especialización es la llave de la generalización

relación: Generalización/Especialización

Generalización especialización

Relaciones IsA (Generalización / Especialización)

 Relaciones IsA (es un): Es otra forma de nombrar la Generalización /Especialización.

Relaciones ISA o Generalización /Especialización

- Relaciones IsA
 Solapadas: Cuando la
 generalización forma
 parte de todas sus
 especializaciones .
- Por ejemplo: Un
 Estudiante puede ser
 Becario y Alumno
 ayudante.

Solapada

Los estudiantes pueden ser Becarios y Ayudantes indistintamente

Relaciones ISA o Generalización /Especialización

Relaciones IsA
 Exclusiva o Disjuntas:
 Cuando la
 generalización no
 forma parte de todas
 sus especializaciones

.

Por ejemplo: Un
 Estudiante no puede
 ser Becario y Alumno
 ayudante a la vez.

Exclusiva o disjunta

Los estudiantes son Becarios o Ayudantes

Relaciones ISA o Generalización /Especialización

- Relaciones IsA
 Totales: Cuando la
 generalización
 representa a todo el
 conjunto.
- Por ejemplo: Todos los estudiantes son Becarios o Alumnos Ayudantes.

Total

Todos los becarios y ayudantes son estudiantes

Relaciones ISA o Generalización /Especialización

- Relaciones IsA
 Parciales: Cuando la
 generalización no
 representa a todo el
 conjunto.
- Por ejemplo: Algunos estudiantes son Becarios o Alumnos Ayudantes.

Parcial

Algunos becarios o ayudantes son estudiantes

Diagrama Entidad Relación (Generalización Especialización)

Con especializaciones. La relación Becario_Equipo se define sólo para la especialización Becario, no para la de Ayudante ni para la de alumno

Diagrama Entidad Relación (Generalización Especialización)

Especializaciones Totales y Disjuntas:

Total: La generalización integra el conjunto completo de especializaciones .

Disjunta: Las especializaciones mantienen relaciones disyuntivas entre sí.

Total: Todos los Becarios y los Ayudantes son alumnos.

Disjunta: Si es becario no puede ser

ayudante

Especializaciones Parciales y Solapadas:

- Parcial: La generalización no integra el conjunto completo de especializaciones.
- Solapada: Las especializaciones se solapan

Parcial: Algunos Ayudantes son trabajadores y otros Alumnos. Solapada: Si es becario puede ser también ayudante

Diagrama Entidad Relación (Agregación)

Los profesores en el aula imparten (tutorizan) clases a los alumnos en un aula.

CASO 1: La llave de la entidad agregada está conformada por las llaves de las entidades que la conforman.

Diagrama Entidad Relación (Agregación)

Los profesores en el aula imparten (tutorizan) clases a los alumnos en un aula.

CASO 2: La llave de la entidad agregada también puede estar conformada por la llave de la entidad agregada más las llaves de las entidades que la conforman.

Diagrama Entidad Relación (Restricciones de Integridad)

Generalización/especialización:

- Una entidad existente en un nivel dado, tiene que existir en todos los niveles superiores.
- De forma inversa, si una entidad se elimina de un conjunto en un nivel dado, debe ser eliminada también en los niveles más bajos.

Agregación:

- Por definición constituye una entidad agregada sobre la base de una relación, por tanto se comporta igual que se comporta la relación.
- Si existe una ocurrencia de la relación, existe una ocurrencia de todas las entidades que conforman la relación.
- Si existe una ocurrencia de una de las entidades, no tiene porqué cumplirse que exista una ocurrencia de la agregación.

Relaciones con Entidades Débiles

Entidades débiles Situación 1

- Sintaxis a reconocer: "el estudiante con ID número n aporta el documento d".
- Significado: Se puede acceder a la entidad débil sólo mediante las llaves del estudiante y un atributo (título) de la entidad Documento unidas.
- Note que varios
 estudiantes puede
 aportar documentos con
 el mismo título, por eso
 título no puede por sí
 solo ser llave.

Entidades débiles Situación 2 (Generalización /Especialización)

- Sintaxis a reconocer:"el Expedientenúmero e delEstudiante con ID c".
- Significado: Se puede acceder a la entidad débil especializada sólo mediante las llaves del estudiante y el documento unido

Entidades débiles Situación 3

¿Se puede acceder a una especialización? SI!!!!!!

Noten la asociación se establece con la especialización y no con la entidad débil

Relaciones

Ejemplos:

Un profesor tiene muchos estudiantes y un estudiante tiene muchos profesores. A la asociación entre ambos la denominaremos tutor y será navegable para ambos extremos, por lo cual no es necesario colocar saeta.

Modelando Datos temporales

- Los datos temporales tienen un intervalo de tiempo de asociación durante el cual los datos son válidos.
- Una instantánea es el valor de los datos en un momento determinado.
- Varias propuestas para extender el modelo ER agregando tiempo válido para:
 - o atributos, por ejemplo, dirección de un instructor en diferentes momentos
 - o entidades, por ejemplo, duración de tiempo cuando existe una entidad de estudiante
 - relaciones, por ejemplo, tiempo durante el cual un instructor estuvo asociado con un estudiante como asesor.
- Pero no hay un estándar aceptado

Relaciones (Práctica)

Visual Paradigm click derecho encima de la relación "Tutor" mucho a mucho entre las entidades de estudiantes y profesores.

Caso de Estudio: Spotify

Bases de Datos Spotify

Modele un diagrama entidad relación posible para la Base de Datos de Spotify teniendo en cuenta los siguientes elementos:

- Existen dos tipos de usuarios: usuario free y usuario premium.
- De cada usuario guardamos un id único, email, password, nombre de usuario, fecha de nacimiento, sexo, país, código postal.
- Para los usuarios premium habrá que guardar los datos necesarios para la suscripción que son: una fecha de renovación del servicio y una forma de pago, que puede ser mediante tarjeta de crédito o PayPal.
- De las tarjetas de crédito guardamos el número de tarjeta, mes y año de caducidad y el código de seguridad. De los usuarios que pagan con PayPal guardamos el nombre de usuario de PayPal.
- Nos interesa llevar un registro de todos los pagos que un usuario premium ha ido realizando. De cada pago se guarda la fecha, un número de orden (que es único) y un

Bases de Datos Spotify

- Un usuario puede tener muchas playlists. De cada playlist guardamos un título, el número de canciones que contiene, un identificador único y una fecha de creación.
- Cuando un usuario borra una playlist no se borra del sistema, sino que se marca como que ha sido eliminada. De este modo el usuario puede volver a recuperar sus playlists en caso de que las haya eliminado por error. Es necesario almacenar la fecha en la que una playlist ha sido marcada como eliminada.
- Podemos decir que existen dos tipos de playlists: activas y borradas.
- Una playlist que está activa puede ser compartida con otros usuarios, esto quiere decir que otros usuarios pueden añadir canciones en ella. En una lista compartida nos interesa saber qué usuario ha sido el que ha añadido cada canción y en qué fecha lo hizo.
- Una canción sólo puede pertenecer a un único álbum. Un álbum puede contener muchas canciones. Un álbum ha sido publicado por un único artista. Un artista puede haber publicado muchos álbumes.

Bases de Datos Spotify

- De cada canción guardamos un id único, un título, una duración y el número de veces que ha sido reproducida por los usuarios de Spotify.
- De cada álbum guardamos un id único, título, año de publicación y una imagen con la portada.
- De cada artista guardamos un id único, nombre y una imagen del artista.
- Un usuario puede seguir a muchos artistas.
- Un artista puede estar relacionado con otros artistas que hagan música parecida.
 De modo que Spotify pueda mostrarnos un listado de artistas relacionados con los artistas que nos gustan.
- También nos interesa guardar cuáles son los álbumes y las canciones favoritas de un usuario. Un usuario puede seleccionar muchos álbumes y muchas canciones como favoritas.

Diagrama Entidad Relación. DERe

Ejercicios explicados

Diagrama Entidad Relación (Ejercicios Resueltos 1)

En un organismo se reciben productos que son importados de diferentes países, de modo que un producto puede importarse de varios países y de un país se pueden importar distintos productos. Un producto se importa de un país en cierta cantidad.

Es necesario controlar las cantidades que se importan de cada país y el valor de las importaciones. Las propiedades de los productos son: número que lo identifica, nombre, unidad de medida, peso y precio unitario. Las propiedades de los países son: número, que lo identifica, nombre, zona geográfica y tipo de moneda.

Ejercicios Resueltos

En el enunciado se describen dos entidades: PAÍS y PRODUCTO y la relación importación de m:m entre ambas entidades, que tiene como atributo la cantidad en que se importa un producto de un país. Aunque se menciona que se desea controlar el valor de las importaciones, no se representa ningún atributo valor en la relación porque es calculable (cantimp · precio) y en el DER se modela lógicamente el fenómeno, es decir, se modela lo que imprescindiblemente tiene que considerarse para representar el fenómeno desde el punto de vista de la información.

Diagrama Entidad Relación (Ejercicios Resueltos 2)

Se desea diseñar una BD sobre el movimiento mercantil de un organismo en un año. En el organismo existen mercancías de las que se conoce su código, nombre y unidad de medida. Las mercancías proceden de diferentes países de los que se sabe nombre y tipo de moneda. Para la transportación de las mercancías existen diversas formas, cada una de las cuales se caracteriza por su tipo (barco, avión, tren, etc.) y tarifa.

Para cada mercancía de diferentes países existen diferentes formas de transportación; para cada país existen diferentes mercancías que son transportadas en diferentes formas de transportación; y una forma de transportación puede serlo de diferentes mercancías de diferentes países. Una mercancía procedente de un país, transportada de una forma dada constituye un embarque y para este se conoce su fecha de arribo y cantidad.

Un embarque se distribuye entre diferentes almacenes y en un almacén se tienen diferentes embarques, cada uno en cierta cantidad. De cada almacén se tiene su código y dirección. Un almacén distribuye los productos entre diferentes empresas y cada empresa recibe productos de diferentes almacenes. Una empresa se caracteriza por su número, nombre y rama económica; a su vez, las empresas establecen relaciones contractuales entre sí. Entre dos

Diagrama Entidad Relación (Ejercicios Resueltos 2)

Solución:

En la descripción del fenómeno se puede apreciar que aparecen varias entidades regulares: PAÍS, MERCANCÍA, FORMA DE TRANSPORTACIÓN, ALMACÉN y EMPRESA, para las cuales se describen sus atributos y se indican sus llaves.

Cuando se dice en el enunciado "para cada mercancía de diferentes países existen diferentes formas de transportación; para cada país existen diferentes mercancías que son transportadas en diferentes formas de transportación; y una forma de transportación puede serlo de diferentes mercancías de diferentes países" se está describiendo una relación de muchos a muchos por los tres extremos (PAÍS, MERCANCÍA, FORMA DE TRANSPORTACIÓN) y a continuación se dice que esta relación es un embarque, por lo que, hasta aquí, parece que se indica que a la relación debería nombrársele EMBARQUE. También se describen dos atributos de la relación: fecha de arribo (arribo) y cantidad (cantemb).

"Un embarque se distribuye entre diferentes almacenes y en un almacén se tienen diferentes embarques cada uno en cierta cantidad" describe una relación de mim

Diagrama Entidad Relación (Ejercicios Resueltos 2)

Solución (cont):

Pero EMBARQUE, hasta ahora, es una relación y no es posible establecer una relación (emb-alm) entre una relación (embarque) y una entidad (almacén), por lo que resulta necesario considerar la relación EMBARQUE como una entidad agregada y cantembalm como un atributo de la agregación.

Se describe también una relación de m:m entre ALMACÉN y EMPRESA (distribución) y se habla de las relaciones contractuales entre empresas. Una empresa puede establecer contratos con diferentes empresas, por lo que esta relación (contrato) es de la entidad empresa consigo misma y es de muchos a muchos. En el enunciado se dice que "entre dos empresas dadas solo se puede establecer un contrato anual", pero esto no contradice lo anterior, pues una empresa sí puede tener contratos con diferentes empresas aunque con una determinada solo pueda tener uno en el año.

En realidad esto lo que indica es que la relación contrato está bien identificada con los números de las dos empresas que participan en la relación, pues solo habrá una ocurrencia de esta relación con dicha llave en la base de datos (recordar que al inicio de la descripción del fenómeno se dice que la base de datos tiene validez por un año). No

Diagrama Entidad Relación (Ejercicios Resueltos 2)

GRACIAS

Eliminación de atributos redundantes

Dados los conjuntos de entidades "instructor" y "department":

- ☐ El conjunto de entidades "instructor" incluye los atributos ID, name, dept_name, salary siendo ID la clave primaria.
- El conjunto de entidades departamento incluye los atributos dept_name, building y budget, siendo dept_name la clave primaria.
- Si cada profesor tiene asociado un departamento, el atributo dept_name aparece en ambos conjuntos de entidades, y debe ser eliminado. Se originan dos escenarios:
- Si cada profesor tiene asociado como mucho, un departamento, la clave dpto_name se añade a la entidad "instructor".
- 2. Si cada profesor tiene asociado más de un departamento, y cada departamento tiene asociado más de un profesor la relación entre profesores y departamentos se registra en una entidad emergente relacionada de forma tal que asume las llaves de las dos entidades involucradas.