1.

Преди да дефинираме понятието граница на функция, да припомним някой понятия.

Дефиниция 1.1 (редица от реални числа)

Казваме, че е зададена редица от $\mathbb R$ ако на всяко естествено $n \in \mathbb N$ е съпоставено реално $a_n \in \mathbb R$.

Дефиниция 1.2 (граница на редица)

Казваме, че редицата $\{a_n\}_{n=1}^\infty$ от реални числа е сходяща и клони към числото а $\epsilon \mathbb{R}$ ако за всяко $\epsilon > 0$ съществува такова $\nu \epsilon \mathbb{N}$, че за всяко $n > \nu$ да е изпълнено $|a_n - a| < \epsilon$. Записано иначе,

$$\forall \epsilon > 0 \ \exists \nu \in \mathbb{N} : n > \nu \rightarrow |a_n - a| < \epsilon$$

Дефиниция 1.3 (точка на сгъстяване за множество $\mathbf{M} \subset \mathbb{R}$)

Казваме, че x_0 е точка на сгъстяване за множеството M ако във всяка околност на x_0 има поне един елемент от M, различен от x_0 .

<u>Дефиниция 1.4</u> (дефиниция на <u>Хайне</u> за граница на функция)

Казваме, че реалнозначната функция f(x) клони към числото а при x клонящо към x_0 (тук x_0 е точка на сгъстяване за дефиниционното множество D_f на f), ако за всяка редица $x_n \to x_0$ имаме $f(x_n) \to a$, в смисъл на дефиниция 1.2. $x_n \neq x_0$, $x_n \in D_f$

<u>Дефиниция 1.5</u> (дефиниция на *Коши* за граница на функция)

Казваме, че реалнозначната функция f(x) клони към числото а при x клонящо към x_0 (тук x_0 е точка на сгъстяване за дефиниционното множество D_f на f) ако за всяко $\epsilon > 0$ може да се намери $\delta > 0$,

че
$$x \in D_f \& |x - x_0| < \delta \rightarrow |f(x) - a| < \epsilon$$

Теорема 1.1.

Дефинициите на Хайне и Коши за граница на функция са еквивалентни.

Доказателство:

(=>) Нека f(x)-> а спрямо дефиницията на Хайне. Допускаме, че не е вярно, че f(x)-> а спрямо дефиницята на Коши. Тогава съществува

$$\epsilon_0 > 0 \colon \forall \delta > 0 \; \exists \; x_\delta \epsilon(x_0 - \delta, x_0 + \delta) \& x_\delta \neq x_0 \& |f(x_\delta) - \alpha| \geq \epsilon_0$$

Нека последователно взимаме $\delta = \frac{1}{n}$ и да означим $x_{\delta} = x_{\frac{1}{n}} c x_n$. Получихме редица

 $\{x_n\}_{n=1}^{\infty}$, такава, че $x_n \neq x_0 \ll |x_n-x_0| < \delta \ll |f(x_n) - a| \ge \epsilon_0$. Но тази редица е сходяща към x_0 и следователно е нарушена дефиницията на Хайне.

(<=) Нека f(x)-> а спрямо дефиницията на Коши. Нека $x_n \to x_0$. Искаме да докажем, че $x_n \ne x_0$, $x_n \in D_f$

редицата $f(x_n) \to a$. Нека $\epsilon > 0$. От дефиницията на Коши избираме $\delta > 0$, че $x \in D_f \& |x - x_0| < \delta$ и $|f(x) - a| < \epsilon$. Но от това, че $x_n \to x_0$ имаме, че има такова $v \in \mathbb{N}$, $x_n \neq x_0$, $x_n \in D_f$

че за всяко n > ν да е изпълнено $|x_n - x_0| < \delta$. Така доказахме, че от $x_n \to x_0$ следва $f(x_n) \to a$.

<u>Дефиниция 1.6</u> (непрекъснатост на функция в точка по Хайне)

Казваме, че f(x) е непрекъсната в точката си на сгъстяване x_0 ако за всяка редица $x_n \to x_0$ редицата $\{f(x_n)\}_{n=1}^\infty$ е сходяща и границата и е $f(x_0)$.

<u>Дефиниция 1.7</u> (непрекъснатост на функция в точка по Хайне)

Казваме, че f(x) е непрекъсната в точката си на сгъстяване x_0 ако за всяко $\epsilon > 0$ може да се намери $\delta > 0$, че $x \in D_f$ & $|x - x_0| < \delta \to |f(x) - f(x_0)| < \epsilon$

Да отбележим, че може да имаме само "лява" или само "дясна" непрекъснатост. Това е послаб случай, когато разглеждаме клонящи редици от x към x_0 съответно само от ляво или само от дясно

($x < x_0 / x > x_0$). От тази гледна точка можем да дефинираме непрекъснатост в точка по нов начин: една функция е непрекъсната в точка x_0 ако е непрекъсната в точката от ляво и от дясно.

<u>2.</u>

Дефиниция 2.1 (производна)

Казваме, че функцията f(x) има npouзводна в точка x_0 – точка на сгъстяване за D_f , ако $\partial u \varphi e p e h$ ч ното $\frac{f(x) - f(x_n)}{x - x_n}$ има граница при $x - x_0$. Когато тази граница съществува, ще я наричаме npousoвдна на f в x_0 . Бележим по няколко начина : $f'(x_0)$, $\frac{d}{dx} f|_{x=x_0}$

<u>Физичен смисъл на производната</u>: Нека разгледаме някоя физична величина f, зависеща от времето(най- често се взима изминато разтояние от материална точка – път). *Средна скорост на изменение* на f в интервала $[t_0, t_1]$ се нарича $\frac{f(t_1)-f(t_0)}{t_1-t_0}$. *Моментна скорост* на величината f в момента t_0 наричаме стойността на средната скорост за t_1 произволно близко до t_0 . Оказва се, че именно това е производната на f в точката x_0 . В случая на f=S(t) – изминат път, S'(t)=V(t) е скоростта на движение. V'(t)=A(t) пък е ускорението.

Геометричн смисъл на производната:

Нека разгледаме функция, дефинирана в [a, b] и нека $a \le x_0 < x_1 \le b$. Да разгледаме точките

 $(x_0,f(x_0))$ и $(x_1,f(x_1))$ от графиката на функцията и през тях прекараме права. Тя има уравнение

$$y = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Частното $\frac{f(x_1)-f(x_0)}{x_1-x_0}$ е равно на тангенса на ъгъла, който правата сключва с Ox^+ . Оставяйки x_1 да клони към x_0 получаваме, че този коефициент клони към производната на функцията в точка x_0 , а геометрично правата, която построихме "клони" към допирателната към графиката на функцията в точката $(x_0, f(x_0))$.

<u>3.</u>

Теорема 3.1.

Нека f, g са диференцируеми в отворен интервал, съдържащ т. x₀. Тогава

$$3.1.2 (f.g)'(x_0)=f'(x_0).g(x_0)+f(x_0).g'(x_0)$$

3.1.3 Ако g(x)
$$\neq 0$$
 близо до x_0 . $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

$$3.1.4 (f(g))'(x_0)=f'(g(x_0)).g'(x_0)$$

Доказателство:

3.1.1

$$\lim_{x \to x_0} \frac{(f \pm g)(x) - (f \pm g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \pm \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0) \pm g'(x_0)$$

3.1.2:

$$\lim_{x \to x_0} \frac{(f \cdot g)(x) - (f \cdot g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{[(f \cdot g)(x) - f(x_0) \cdot g(x)] + [f(x_0)g(x) - (f \cdot g)(x_0)]}{x - x_0} =$$

$$= \lim_{x \to x_0} g(x) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

2 1 2

$$\lim_{x \to x_0} \frac{\frac{f}{g}(x) - \frac{f}{g}(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)}}{x - x_0} = \frac{[f(x)g(x_0) - f(x_0)g(x_0)] + [f(x_0)g(x_0) - f(x_0)g(x)]}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x - x_0}{g(x)g(x_0)}}{g(x)g(x_0)} = \frac{g(x_0)\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f(x_0)\lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}}{\lim_{x \to x_0} g(x)g(x_0)} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

3.1.4:

$$\lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} =$$

$$= \lim_{\substack{y = g(x): y_0 = g(x_0) \\ y \to y_0}} \frac{f(y) - f(y_0)}{y - y_0} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(g(x_0))g'(x_0)$$

(Тук използваме непрекъснатостта на g(x), която е следствие от диференцируемостта и. Забележка: Навсякъде в доказателствата използвахме свойствата на границите, а именно, че граница от сума/разлика/произведение/частно е сума/разлика/произведение/частно от граници.

Теорема 3.2. В сила са следните равенства

$$3.2.1(\ln x)' = \frac{1}{x}, x > 0$$

$$3.2.2(\log_a x)' = \frac{1}{x \ln a}, x > 0$$

$$3.2.3 (e^x)' = e^x$$

$$3.2.4 (\sin x)' = \cos x$$

$$3.2.5 (\cos x)' = -\sin x$$

Доказателство:

3.2.1.

$$\ln'(x_0) = \lim_{x \to x_0} \frac{\ln(x) - \ln(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\ln(1 + \frac{x}{x_0} - 1)}{x - x_0} = \lim_{x \to x_0} \frac{\ln(1 + \frac{x - x_0}{x_0})}{\frac{x - x_0}{x_0} x_0} = \frac{1}{x_0}$$

3.2.2.

$$(\log_{a}(x_{0}))' = \lim_{x \to x_{0}} \frac{\log_{a}(x) - \log_{a}(x_{0})}{x - x_{0}} = \lim_{x \to x_{0}} \frac{\log_{a}(\frac{x}{x_{0}})}{x - x_{0}} = \lim_{x \to x_{0}} \frac{\frac{\ln(\frac{x}{x_{0}})}{\ln a}}{x - x_{0}} = \frac{1}{x - x_{0}} \lim_{x \to x_{0}} \frac{\ln(x) - \ln(x_{0})}{x - x_{0}} \stackrel{3.2.1}{=} \frac{1}{x_{0} \ln a}$$

3.2.3 Използваме правилото за диференциране на сложна функция.

$$x = \ln e^x \mid \frac{d}{dx} \leftrightarrow 1 = \frac{1}{e^x} \cdot (e^x)' \leftrightarrow (e^x)' = e^x$$

3.2.4

$$\sin'(x_0) = \lim_{x \to x_0} \frac{\sin(x) - \sin(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{2\sin\frac{(x - x_0)}{2}\cos\frac{(x + x_0)}{2}}{x - x_0}$$
$$= \lim_{x \to x_0} \cos\frac{(x + x_0)}{2} \lim_{x \to x_0} \frac{\sin\frac{(x - x_0)}{2}}{\frac{x - x_0}{2}} = \cos(x_0)$$

3.2.5
$$\cos'(x_0) = \sin'(\frac{\pi}{2} - x_0)$$
 = $\cos(\frac{\pi}{2} - x_0)(-1) = -\sin(x_0)$

<u>Теорема 3.3</u>. Нека y=f(x) е непрекъснато- диференцируема в околност на x_0 . Нека обратната и в тази околност е $x=f^1(y)$ и $y_0=f(x_0)$. Тогава за производната на обратната функция на у имаме

$$(f^{-1}(y_0))' = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$$

Доказателство:

От обратимостта имаме, че $x = f(f^{-1}(x))$. Диференцираме това равенство в т. x_0 , прилагайки правилото за диференциране на обратна функция. Следствие (Пример):

$$x \in (-1,1) \rightarrow (\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$

Наистина, sin(arcsin(x)) = x. По теорема 3.3

$$(\arcsin(x))' = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - (\sin(\arcsin(x)))^2}} = \frac{1}{\sqrt{1 - x^2}}$$

4.

<u>Дефиниция 4.1</u> Нека $f: \Delta \to \mathbb{R}$. Казваме, че функцията $F: \Delta \to \mathbb{R}$ е примитивна на f , ако F'(x) = f(x).

Теорема 4.1. Нека $f: \Delta \to \mathbb{R}$. Нека $F: \Delta \to \mathbb{R}$ е примитивна на f, тогава

4.1.1 Функцията F+C също е примитивна за f (С е произволна реална константа).

<u>4.1.2</u> Обратното, ако ϕ е някаква примитивна за f , то съществува константа C, че ϕ =F+C. Доказателство:

4.1.1 Нека С е константа. Понеже производна от константа е 0, то (F+C)'=F'+0=f.

4.1.2 Да разгледаме $\Psi = \Phi - F \rightarrow \Psi' = \Phi' - F' = f - f = 0$. Но тогава $\Psi = C$.

Дефиниция 4.2 Изразът F(x)+C, където F е примитивна на f в Δ , ще наричаме неопределен интеграл на f в Δ и ще бележим с нотацията

$$\int f(x) \, dx = F(x) + C$$

Забележка: В темата е доказана първо формулата за производна на логаритъм, а после експонента, не както в анотацията.

Литература:

- [1] Математически анализ, Дойчинов
- [2] Диференциално и интегрално смятане. Функции на една променлива
- [3] Записки от лекциите по ДИС1, спец. ПМ, на Людмила Николова

Темата е разработена от Велико Дончев, уч. 2011/2012 г.