DNA Sequence Classification using Hybrid CNN + HMM + SVM Model

This notebook contains:

- 1. Dataset Generation
- 2. Hybrid Model Implementation (CNN + HMM + SVM)
- 3. Visualizations

```
import numpy as np
import pandas as pd
def generate_synthetic_dna_data(num_samples=100, seq_length=100):
   nucleotides = ['A', 'C', 'G', 'T']
    regions = ['Mumbai', 'Pune', 'Delhi', 'Bangalore', 'Chennai', 'Hyderabad']
    diseases = ['Breast Cancer', 'Cystic Fibrosis', 'Huntingtons Disease', 'Sick
    data = []
    for _ in range(num_samples):
        sequence = ''.join(np.random.choice(nucleotides, seq_length))
        data.append(sequence)
    labels = np.random.choice(diseases, num samples)
    regions_assigned = np.random.choice(regions, num_samples)
    mutation_status = np.random.choice([0, 1], num_samples)
    df = pd.DataFrame({
        'Region': regions_assigned,
        'Gene': ['BRCA1'] * num samples,
        'DNA Sequence': data,
        'Mutation Present': mutation status,
        'Disease Predicted': labels
    })
    return df
df = generate_synthetic_dna_data()
df.to_csv('/content/synthetic_dna_dataset.csv', index=False)
df.head()
\overline{\Rightarrow}
          Region
                   Gene
                                                                     DNA Sequence
     0
            Delhi BRCA1 TGGCACCACATCAATTAGGGTGCTCGTCTCATGTTCCAATCACTCC...
     1
          Mumbai BRCA1 CAAATGAATCTCTCCGACAAGTGTGAACGGGTGCAGAGCAAATGTA...
     2 Hyderabad BRCA1 GATATGTCTAGTCATGTGCGCATACCACTTATGGCGAGGGGGTA...
 Next steps: (
           Generate code with df
                               View recommended plots
                                                           New interactive sheet
```

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
```

```
from sklearn.svm import SVC
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Input
from hmmlearn.hmm import MultinomialHMM
import matplotlib.pyplot as plt
import seaborn as sns
# Load dataset
df = pd.read_csv('/content/synthetic_dna_dataset.csv')
# Encode labels
label_encoder = LabelEncoder()
df['Disease Predicted'] = label_encoder.fit_transform(df['Disease Predicted'])
# Nucleotide to integer mapping
nuc_mapping = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
# Convert sequence to numerical array for SVM & CNN
def encode_sequences_numeric(sequences):
    return np.array([[nuc_mapping[nuc] for nuc in seq] for seq in sequences])
# Prepare HMM data separately
def prepare_hmm_data(sequences):
    return np.array([[nuc_mapping[nuc] for nuc in seq] for seq in sequences])
# Build CNN model
def build_cnn_model(input_shape):
    model = Sequential()
    model.add(Input(shape=input_shape))
    model.add(Conv1D(64, 3, activation='relu'))
    model.add(MaxPooling1D(2))
    model.add(Flatten())
    model.add(Dense(64, activation='relu'))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='adam', loss='sparse categorical crossentropy', met
    return model
# Train & Evaluate Hybrid Model
def train_and_evaluate_hybrid_model(X_seq, y):
    # Encode sequences
    X_numeric = encode_sequences_numeric(X_seq)
    # Train/test split
    X_train, X_test, y_train, y_test = train_test_split(X_numeric, y, test_size
    # --- SVM ----
    svm = SVC(kernel='linear', random_state=42)
    svm.fit(X_train, y_train)
    svm_preds = svm.predict(X_test)
```

```
# --- CNN ---
    cnn_model = build_cnn_model((X_train.shape[1], 1))
    cnn model.fit(X train.reshape((-1, X train.shape[1], 1)), y train, epochs=1
    cnn_preds = cnn_model.predict(X_test.reshape((-1, X_test.shape[1], 1))).arg
    # --- HMM ---
    hmm = MultinomialHMM(n_components=4, n_iter=100, random_state=42)
    X_hmm = np.concatenate(prepare_hmm_data(X_seq)) # concatenate for hmm
    lengths = [len(seq) for seq in X_seq]
    hmm.fit(X_hmm.reshape(-1, 1), lengths=[100]*len(X_seq))
    hmm preds = []
    for seq in X_test:
        hmm_preds.append(hmm.predict(seq.reshape(-1, 1)).mean().astype(int) % 1
    # --- Hybrid Voting ---
    final preds = []
    for i in range(len(svm_preds)):
        preds = [svm_preds[i], cnn_preds[i], hmm_preds[i]]
        final_preds.append(np.bincount(preds).argmax())
    # --- Evaluation ---
    print("Classification Report:\n", classification_report(y_test, final_preds
    cm = confusion_matrix(y_test, final_preds)
    plt.figure(figsize=(10, 7))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=label_encode
    plt.title("Confusion Matrix")
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
# Prepare data
X_seg = df['DNA Sequence'].values
y = df['Disease Predicted'].values
# Train & evaluate the hybrid model
train_and_evaluate_hybrid_model(X_seq, y)
→ 1/1 -
                            os 267ms/step
    WARNING: hmmlearn.hmm: Multinomial HMM has undergone major changes. The previo
    https://github.com/hmmlearn/hmmlearn/issues/335
    https://github.com/hmmlearn/hmmlearn/issues/340
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py:
      warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py:
      _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
    /usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py:
       _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
    Classification Report:
                                  precision
                                               recall f1-score
```

0.00

0.00

0.00

1

Alzheimers Disease

Breast Cancer Cystic Fibrosis Duchenne Muscular Dystrophy Hemophilia Huntingtons Disease Leukemia Parkinsons Disease Sickle Cell Anemia Thalassemia accuracy macro avg weighted avg				0.17 0.50 0.00 0.00 0.00 0.50 0.00			1.00 0.50 0.00 0.00 0.00 0.00 0.25 0.00		0.29 0.50 0.00 0.00 0.00 0.00 0.33 0.00 0.00		2 2 4 1 3 1 4 1 1			
				0.17			0.20		0.15		20			
	Confusion Matrix													
	Alzheimers Disease –	0	1	0	0	0	0	0	0	0	0		- 3.0	
	Breast Cancer -	0	2	0	0	0	0	0	0	0	0		- 2.5	
	Cystic Fibrosis -	0	0	1	0	0	1	0	0	0	0			
Duch	henne Muscular Dystrophy -	0	3	0	0	0	1	0	0	0	0		- 2.0	
le	Hemophilia –	0	0	0	0	0	0	0	1	0	0		- 1.5	
Actual	Huntingtons Disease -	0	2	0	0	0	0	1	0	0	0		- 1.5	
	Leukemia -	0	1	0	0	0	0	0	0	0	0		- 1.0	
	Parkinsons Disease -	0	2	0	0	0	0	1	1	0	0			
	Sickle Cell Anemia -	0	1	0	0	0	0	0	0	0	0		- 0.5	
	Thalassemia –	0	0	1	0	0	0	0	0	0	0			
		Alzheimers Disease -	Breast Cancer -	Cystic Fibrosis -	Duchenne Muscular Dystrophy -	Hemophilia -	e Auntingtons Disease -	Leukemia -	Parkinsons Disease -	Sickle Cell Anemia -	Thalassemia -		- 0.0	

Predicted

!pip install hmmlearn

Collecting hmmlearn

Installing collected packages: hmmlearn
Successfully installed hmmlearn-0.3.3

```
plt.figure(figsize=(10, 5))
sns.countplot(x='Region', hue='Disease Predicted', data=df)
plt.title("Disease Distribution by Region")
plt.xticks(rotation=45)
plt.show()
```


