Department of Mathematics

Bennett University

EMAT102L: Ordinary Differential Equations Tutorial Sheet-1

1) Classify each of the following differential equation as linear or nonlinear. Also find the order and degree of differential equation:

(a)
$$x^2 dy + y^2 dx = 0$$
; (b) $\frac{d^2 y}{dx^2} + x \sin y = 0$; (c) $\frac{d^6 y}{dx^6} + \frac{d^4 y}{d^4 x} \frac{d^3 y}{d^3 x} + y = x$;

$$(d) \quad \left(\frac{dy}{dx}\right)^3 = \sqrt{\frac{d^2y}{d^2x} + 1}.$$

2) Verify that y is a solution of the ODE. Determine from y the particular solution of the IVP.

(a)
$$\frac{dy}{dx} = y - y^2$$
; $y = \frac{1}{1 + ce^{-x}}$, $y(0) = \frac{1}{4}$,

(b)
$$\frac{dy}{dx} = y + e^x$$
; $y = (x+c)e^x$, $y(0) = \frac{1}{2}$.

Hint: (a)
$$y_p = \frac{1}{1+3e^{-x}}$$
, (b) $y_p = (x + \frac{1}{2})e^x$.

- 3) Consider the differential equation $\frac{dy}{dx} = y^2 + 4$.
 - (a) Show that there exist no constant solutions of the DE.
 - (b) Can a solution curve have any relative extrema?
- 4) Solve the following ODEs:

(a)
$$\frac{dy}{dx} = (x+1)e^{-x}y^2;$$
 (b) $\frac{dy}{dx} = \sec^2 y;$

(c)
$$2xy\frac{dy}{dx} = y^2 - x^2$$
; (d) $x\frac{dy}{dx} = y + 3x^4\cos^2(y/x)$; $y(1) = 0$.

Hint: (a)
$$y = \frac{1}{(x+2)e^{-x}-c}$$
, (c) $x^2 + y^2 = cx$, (d) $y = x \tan^{-1}(x^3 - 1)$.

5) Solve the following ODEs:

(a)
$$(x \tan(y/x) + y)dx - xdy = 0$$
; (b) $(5x + 2y + 1)dx + (2x + y + 1)dy = 0$.

Hint: (a)
$$\sin(y/x) = cx$$
, (b) $5x^2 + 4xy + y^2 + 2x + 2y = c$.