A Scalable, Commodity Data Center Architecture

Overview

- Structure and Properties of a Data Center
- Desired properties in a DC Architecture
- Fat tree based solution
- Monsoon: layer 2 flat routing

Anatomy of a Datacenter

- Servers (Physical machines)
- Storage
- Network devices (switch, router, cables)
- Power distribution systems
- Cooling systems
- ...

Electrical Power-1

- Condition circuits
 - Little power fluctuations
- UPS
 - On Line
 - o Power is conditioned by the unit
 - o Equipment draws power from UPS all the time
 - Off Line
 - o Equipment draws power from the UPS only when external source of electricity has been lost
- UPS have short power cycle
 - Back up with Generators
- Automatic Transfer Switch ATS
- Compute the Electrical Load
 - All Components, UPS charging

Electrical Power-2

- Overhead power distribution
- Racks with Power Distribution Units (PDU)
 - Keep it all within the rack
- Multiple power sources (circuits)

A DC-wide System

- Has software systems consisting of:
 - Distributed system, logical clocks, coordination and locks, remote procedural call...etc
 - Distributed file system
 - (We do not go deeper into above components)
 - Parallel computation: MapReduce, Hadoop
- Virtualized Infrastructure:
 - · Computing: Virtual Machine / Hypervisor
 - Storage: Virtualized / distributed storage
 - · Network: Network virtualization

Conventional Topology

- Three layers:
 - Access layer with Top of the Rack (ToR) switches
 - Aggregation layer
 - · Core layer

Common data center topology

Virtualized Data Center

Data center with some or all the hardware virtualized

- o Servers (Physical machines)
- oStorage
- o Network devices (switch, router)
- oPower distribution systems
- o Cooling systems

Virtual Data Center

Collection of virtual resources, e.g.

- o Virtual machine
- o Virtual switches
- o Virtual links

Virtual Data Center

----- Mapping of a virtual switch to a physical switch

Problem With common DC topology

- Single point of failure
- Over subscript of links higher up in the topology
 - · Trade off between cost and provisioning

Properties of solutions

- Backwards compatible with existing infrastructure
 - No changes in application
 - Support of layer 2 (Ethernet)
- Cost effective

13

15

- Low power consumption & heat emission
- Cheap infrastructure
- Allows host communication at line speed

14

Cost of maintaining switches

Need for Layer 2 In DC

- Certain monitoring apps require server with same role to be on the same vlan
- Using same ip on dual homed servers
- Allowing growth of server farms.

. . . .

Review of Layer 2 & Layer 3

- Layer 2
 - One spanning tree for entire network o Prevents looping
 - o Ignores alternate paths
- Layer 3
 - Shortest path routing between source and destination
 - · Best-effort delivery

FAT Tree based Solution

- Connect end-host together using a fat tree topology
 - Infrastructure consist of cheap devices o Each port supports same speed as endhost
 - All devices can transmit at line speed if packets are distributed along existing paths
 - A k-port fat tree can support k3/4 hosts

17

Fat-Tree Topology

Problems with a vanilla Fat-tree

- Layer 3 will only use one of the existing equal cost paths
- Packet re-ordering occurs if layer 3 blindly takes advantage of path diversity

20

FAT-tree Modified

- Enforce special addressing scheme in DC
 - Allows host attached to same switch to route only through switch
 - · Allows inter-pod traffic to stay within pod
 - unused.PodNumber.switchnumber.Endhost
- Use two level look-ups to distribute traffic and maintain packet ordering.

21

2 Level look-ups

- First level is prefix lookup
 - Used to route down the topology to endhost
- Second level is a suffix lookup
 - Used to route up towards core
 - · Diffuses and spreads out traffic
 - Maintains packet ordering by using the same ports for the same endhost

22

Diffusion Optimizations

- Flow classification
 - Eliminates local congestion
 - Assign to traffic to ports on a per-flow basis instead of a per-host basis
- Flow scheduling
 - · Eliminates global congestion
 - Prevent long lived flows from sharing the same links
 - · Assign long lived flows to different links

Results: Heat & Power Consumption

Draw Backs

- No inherent support for VLan traffic
- Data center is fixed in size
- Ignored connectivity to the internet
- Waste of address space
 - · Requires NAT at border

Monsoon approach

- Layer 2 based using future commodity switches
- Hierarchy has 2:
 - · access switches (top of rack)
 - · load balancing switches
- Eliminate spanning tree
 - Flat routing
 - · Allows network to take advantage of path diversity
- Prevent MAC address learning
 - 4D architecture to distribute data plane information
 - · TOR: Only need to learn address for the intermediate switches
 - Core: learn for TOR switches
- Support efficient grouping of hosts (VLAN replacement)

25

27

26

Monsoon

Monsoon Components

- Top-of-Rack switch:
 - Aggregate traffic from 20 end host in a rack
 - Performs ip to mac translation
- Intermediate Switch
 - Disperses traffic
 - · Balances traffic among switches
 - Used for valiant load balancing
- Decision Element
 - Places routes in switches
 - Maintain a directory services of IP to MAC
- Endhost
 - Performs ip to mac lookup

2

How routing works

- End-host checks flow cache for MAC of flow
 - If not found ask monsoon agent to resolve
 - Agent returns list of MACs for server and MACs for intermediate routers
- Send traffic to Top of Router
 - Traffic is triple encapsulated
- Traffic is sent to intermediate destination
- Traffic is sent to Top of rack switch of destination