```
In [2]: # !pip install seaborn
 In [4]: import seaborn as sns
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
 In [ ]:
 In [9]: iris = sns.load dataset('iris')
          iris.shape
 Out[9]: (150, 5)
In [10]: iris.head()
Out[10]:
             sepal_length sepal_width petal_length petal_width species
                                                    0.2
           0
                     5.1
                               3.5
                                          1.4
                                                         setosa
                     4.9
                               3.0
                                          1.4
                                                    0.2
                                                         setosa
                     4.7
                               3.2
                                         1.3
                                                    0.2
           2
                                                         setosa
                     4.6
                               3.1
                                          1.5
                                                    0.2
           3
                                                         setosa
                     5.0
                               3.6
                                          1.4
                                                    0.2
                                                         setosa
In [12]: iris['species'].unique()
Out[12]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
 In [ ]:
```

```
In [13]: iris['petal_length']
Out[13]: 0
                 1.4
         1
                1.4
         2
                1.3
                1.5
         3
                1.4
                . . .
         145
                 5.2
         146
                 5.0
         147
                 5.2
         148
                 5.4
         149
                 5.1
         Name: petal_length, Length: 150, dtype: float64
```

In [18]: sns.histplot(data=iris, x = 'petal_length', bins=20) plt.show()


```
In [20]: sns.histplot(iris['petal_length'].values, bins=20)
plt.show()
```


In [24]: sns.kdeplot(data=iris, x='petal_length', color='red')
plt.show()


```
In [25]: iris.head()
```

Out[25]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [27]: sns.scatterplot(data=iris, x='petal_length', y ='petal_width')
plt.show()


```
In [ ]:
```

```
In [28]: sns.scatterplot(data=iris, x='petal_length', y ='petal_width', hue = 'species')
plt.show()
```


In [30]: iris['species'].value_counts()

Out[30]: virginica 50 versicolor 50 setosa 50

Name: species, dtype: int64

```
In [34]: sns.histplot(data=iris, x = 'petal_length', bins=20, hue='species', stat='density')
plt.show()
```


In [35]: sns.kdeplot(data=iris, x='petal_length', hue='species')
plt.show()


```
In [ ]:
```

JointPlot

```
In [38]: sns.jointplot(data=iris, x='petal_length', y='petal_width')
plt.show()
```



```
In [41]: sns.jointplot(data=iris, x='sepal_length', y='sepal_width', kind='reg')
plt.show()
```


Hexabin Plotting

```
In [45]: sns.jointplot(data=iris, x='sepal_length', y='sepal_width', kind='hex')
plt.show()
```



```
In [ ]:
In [43]: # plt.hexbin()
In [ ]:
```

Pairplot

```
In [47]: sns.pairplot(data= iris)
    plt.show()
```


In []:		
---------	--	--

```
In [48]: sns.pairplot(data= iris, hue='species')
plt.show()
```



```
In []:
In [51]: sns.countplot(data=iris, x='species')
plt.show()
```

```
In [53]: iris['species'].value_counts()
Out[53]: virginica 50
```

virginica

versicolor 50 setosa 50

setosa

versicolor

species

Name: species, dtype: int64

Boxplot

In []:

```
In [66]: sns.boxplot(data=iris, y='sepal_width')
plt.show()
```


In [62]: sns.boxplot(data=iris, y='sepal_width', x='species')
plt.show()


```
In [ ]:
```

```
In [67]: sns.violinplot(data=iris, x='species', y = 'sepal_width')
   plt.show()
```


In []:

Correlations

```
In [76]: corr = iris.corr()
corr
```

Out[76]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

```
In [73]: sns.scatterplot(data=iris, x='petal_length', y='petal_width')
plt.show()
```



```
In [75]: sns.jointplot(data=iris, x='petal_length', y='petal_width', kind='hex', gridsize=15)
plt.show()
```



```
In [ ]:
```


Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn_, 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens_r', 'Greens_r', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr_r', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdYlBu_r', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds_r', 'Set1_r', 'Set1_r', 'Set2_r', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu_r', 'YlGnBu_r', 'YlOrBr', 'YlOrBr_r', 'YlOrBr_r', 'YlOrRd_r', 'atmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool,', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'crest_r', 'cubehelix_r', 'flag', 'flag_r', 'flare', 'flare_r', 'gist_earth,' 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern_r', 'gist_stern_r', 'gist_yarg_r', 'gnuplot2', 'gnuplot2_r', 'gnuplot2_r', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma_r', 'mako', 'mako_r', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma_r', 'plasma_r', 'prism_r', 'rainbow', 'rainbow_r', 'rab20c_r', 'tab20c_r', 'terrain_r', 'terrain_r', 'turbo', 'turbo_r', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'vlag_r', 'vlag_r', 'wlag_r', 'winter', 'winter_r'

```
In [ ]:

In [ ]:
```

Challenge

1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In [89]: sns.countplot(data=tips, x='sex')
```

Out[89]: <AxesSubplot:xlabel='sex', ylabel='count'>


```
In [90]: sns.barplot(data=tips, x='sex', y='tip')
Out[90]: <AxesSubplot:xlabel='sex', ylabel='tip'>
             3.0 -
             2.5
             2.0 -
             1.5
             1.0
             0.5 -
             0.0
                          Male
                                                Female
                                      sex
 In [ ]:
In [91]: tips.head()
Out[91]:
              total_bill tip
                              sex smoker day
                                               time size
                16.99 1.01 Female
                                      No Sun Dinner
                                                       2
                10.34 1.66
                                      No Sun Dinner
                             Male
                                                       3
                21.01 3.50
                                      No Sun Dinner
                             Male
                23.68 3.31
                             Male
                                      No Sun Dinner
                24.59 3.61 Female
                                      No Sun Dinner
 In [ ]:
```

In []:

In []:	
In [1:	
In []:	
In []:	