EAiIB	Pęcak Tomasz		Rok	Grupa	Zespół
Informatyka	Bielech Maciej		II	3a	II
Pracownia FIZYCZNA WFiIS AGH	Temat: Mostek Wheat	tstone'a			nr ćwiczenia: 32
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
11.11.2017	14.11.2017				

1 Wstęp

Celem ćwiczenia było wyznaczenie wartości oporu pięciu różnych oporników oraz połączeń szeregowych, równoległych i mieszanych tych oporników.

Aby określić wartości natężeń (I) prądów w obwodach elektrycznych używa się pierwszego prawa Kirchhoffa:

Dla węzła obwodu suma natężeń wpływających do tego węzła jest równa sumie natężeń wypływających z niego. Jeśli przyjmiemy, że wartość natężenia prądów wypływających jest ujemna prawo to można zapisać w następujący sposób:

$$\sum_{x=1,2,...} I_x = 0. (1)$$

Do wyliczenia wartości napięć (U) na odbiornikach prądu w obwodzie zamkniętym służy drugie prawo Kirchhoffa:

Suma napięć na wszystkich odbiornikach prądu jest równa sumie napięć na źródłach napięcia. Co można zapisać:

$$\sum_{i} U_{i} = \sum_{k} \varepsilon_{k}.$$
(2)

Drugie prawo Kirchhoffa możemy zastosować jedynie, gdy obwód, dla którego stosujemy to prawo nie jest umieszczony w zmiennym polu magnetycznym.

Do jednoznacznego znalezienia natężeń i napięć w obwodzie potrzebujemy współczynnika ich proporcjonalności. Tym współczynnikiem jest rezystancja (*R*). Tą proporcjonalność opisuje prawo Ohma:

$$U = RI \tag{3}$$

Mostek Wheatstone'a jest układem elektrycznym służącym do pomiaru rezystancji oporników. Schemat jego wykonania jest przedstawiony na rysunku (1).

Jest on utworzony poprzez połączenie czterech rezystorów (R_x - rezystancja nieznana, R2 - rezystancja opornicy dekadowej, R_a , R_b - rezystancja odpowiednich części listwy z drutem oporowym), mikroamperomierza G oraz źródła prądu E.

Rysunek 1: Schemat mostka Wheatstone'a

Stosując prawa Kirchhoffa (1 i 2) i prawo Ohma (3) dochodzimy do wzoru pozwalającego na wyznaczenie oporu nieznanego (R_x):

$$R_{x} = R_2 \frac{R_a}{R_b}. (4)$$

Korzystając z wzoru na opór właściwy, który jest wielkością charakteryzującą dany materiał (w tym przypadku drut o długości AC) i uwzględniając to, że drut jest drutem jednorodnym można wyznaczyć R_a i R_b :

$$R_a = \rho \frac{a}{S},\tag{5}$$

$$R_b = \rho \frac{b}{S},\tag{6}$$

gdzie ρ to opór właściwy materiału, z którego wykonany jest drut, a S to pole przekroju poprzecznego tego drutu. Uwzględniając te wzory w równaniu (4) otrzymujemy zależność:

$$R_{x} = R_{2} \frac{a}{b}. (7)$$

Wiedząc, że suma a+b jest równa długości całego drutu l otrzymujemy roboczy wzór do wyznaczania oporu nieznanego rezystora (R_x) :

$$R_x = R_2 \frac{a}{l-a}. (8)$$

2 Wykonanie ćwiczenia

Ćwiczenie wykonywaliśmy dla pięciu rezystorów, połączenia szeregowego pierwszego i drugiego rezystora, połączenia równoległego pierwszego i drugiego rezystora, połączenia mieszanego (w tym połączniu rezystor trzeci został połączony szeregowo z równoległym połączeniem pierwszego i drugiego rezystora). Dla każdego układu wykonano następujące kroki:

- W pierwszym kroku ustawiono kontakt ślizgowy listwy z drutem oporowym na środek (tak, aby a = b).
- Następnie, dostosowywano rezystancję opornicy dekadowej, tak aby wskazówka mikroamperomierza była wyzerowana.
- Kolejnym krokiem było zmienianie rezystancji opornicy dekadowej i przestawianie kontaktu ślizgowego, tak aby wskazówka mikroamperomierza wskazywała 0. Wykonano 10 takich zmian zapisując położenie kontaktu ślizgowego (a).
- Wyniki zapisano w tabelkach.

Tabela 1: Pomiary oporu pierwszego rezystora

Opór wzorcowy	12,6	15	17	19	21	11	9	7	5	3
<i>a</i> [mm]	500	456	424	399	373	532	580	642	715	809
$R_{x}[\Omega]$	12,6	12,57353	12,51389	12,61398	12,49282	12,50427	12,42857	12,55307	12,54386	12,70681

Tabela 2: Pomiary oporu drugiego rezystora

Opór wzo	orcowy	35	40	45	50	55	30	25	20	15	10
<i>a</i> [m	ım]	500	463	430	403	382	534	577	630	698	779
R _x [[Ω]	35	34,4879	33,94737	33,75209	33,99676	34,37768	34,10165	34,05405	34,66887	35,24887

Tabela 3: Pomiary oporu trzeciego rezystora

Opór wzorcowy	70	80	90	100	110	60	50	40	30	20
a [mm]	500	467	437	412	388	541	585	638	704	785
$R_{x}[\Omega]$	70	70,09381	69,8579	70,06803	69,73856	70,71895	70,48193	70,49724	71,35135	73,02326

Tabela 4: Pomiary oporu czwartego rezystora

Opór wzorcowy	41	46	51	56	61	66	36	31	26	21
a [mm]	500	458	429	401	386	362	512	550	594	645
$R_{\times}[\Omega]$	41	38,87085	38,31699	37,48915	38,34853	37,44828	37,77049	37,88889	38,03941	38,15493

Tabela 5: Pomiary oporu piątego rezystora

Opór wzorcowy	105	120	135	150	165	90	75	60	45	30
a [mm]	500	465	435	409	386	537	583	636	701	783
$R_{x}[\Omega]$	105	104,2991	103,9381	103,8071	103,7296	104,3844	104,8561	104,8352	105,5017	108,2488

Tabela 6: Pomiary oporu szeregowo podłączonych rezystorów 1 i 2

Opór wzorcowy	47	52	57	62	67	42	37	32	27	22
<i>a</i> [mm]	500	472	449	428	409	528	557	595	641	696
$R_{x}[\Omega]$	47	46,48485	46,44828	46,39161	46,36717	46,98305	46,52144	47,01235	48,20891	50,36842

Tabela 7: Pomiary oporu równolegle podłączonych rezystorów 1 i 2

Opór wzorcowy	9,5	11,5	13,5	15,5	17,5	19,5	7,5	5,5	3,5	1,5
<i>a</i> [mm]	500	454	416	381	356	332	557	632	731	866
$R_{x}[\Omega]$	9,5	9,562271	9,616438	9,540388	9,673913	9,691617	9,430023	9,445652	9,511152	9,69403

Tabela 8: Pomiary oporu mieszanego połączenia rezystorów 1, 2 i 3

Opór wzorcowy	80	90	100	110	120	70	60	50	40	30
a [mm]	500	469	441	416	397	535	574	616	668	731
$R_{x}[\Omega]$	80	79,49153	78,89088	78,35616	79,00498	80,53763	80,84507	80,20833	80,48193	81,52416

3 Opracowanie danych pomiarowych

3.1 Pomiary i ich niepewności.

Wszystkie pomiary wykonywaliśmy 10 razy dlatego przyjmujemy niepewność pomiaru typu A:

1. Wyznaczone wartości rezystancji oporników i ich niepewności:

•
$$R_1 = 12,553$$
; $u(R_1) = 0,024$

•
$$R_2 = 34,36$$
; $u(R_2) = 0,15$

•
$$R_3 = 70,31$$
; $u(R_3) = 0,15$

- $R_4 = 38,04$; $u(R_4) = 0,13$
- $R_5 = 104,48$; $u(R_5) = 0,18$
- $R_{z_1} = 46,82$; $u(R_{z_1}) = 0,17$
- $R_{z_2} = 9,567$; $u(R_{z_2}) = 0,031$
- $R_{z_3} = 79,93$; $u(R_{z_3}) = 0,31$

3.2 Opracowanie danych.

a) Analiza błędów.

Stwierdzono wystąpienie błędów grubych, które wyraźnie odstają od średniej. Zaznaczono je w tabelkach kolorem czerwonym.

b) Obliczenie wartości rezystancji połączeń szeregowego, równoległego i mieszanego korzystając z wyników pomiarów R_1 , R_2 i R_3 .

Do policzenia wartości tych rezystancji wykorzystano następujące wzory:

$$R_{z_1} = R_1 + R_2, (9)$$

$$R_{z_2} = \frac{R_1 R_2}{R_1 + R_2},\tag{10}$$

$$R_{z_3} = R_3 + \frac{R_1 R_2}{R_1 + R_2}. (11)$$

Niepewności wyliczenia rezystancji zastępczych obliczone zostały z wykorzystaniem prawa przenoszenia niepewności za pomocą następujących wzorów:

$$u_c(R_{z_1}) = \sqrt{[u(R_1)]^2 + [u(R_2)]^2},$$
 (12)

$$u_c(R_{z_2}) = \sqrt{\left[\frac{R_2(2R_1 + R_2)}{(R_1 + R_2)^2}u(R_1)\right]^2 + \left[\frac{R_1(2R_2 + R_1)}{(R_1 + R_2)^2}u(R_2)\right]^2},$$
(13)

$$u_c(R_{z_3}) = \sqrt{\left[u(R_3)\right]^2 + \left[\frac{R_2(2R_1 + R_2)}{(R_1 + R_2)^2}u(R_1)\right]^2 + \left[\frac{R_1(2R_2 + R_1)}{(R_1 + R_2)^2}u(R_2)\right]^2},$$
(14)

Otrzymujemy następujące wyniki:

Opis wielkości	Opór wyznaczony $[\Omega]$	Opór obliczony $[\Omega]$	$u(R_x) [\Omega]$	$u_c(R_x) [\Omega]$
R_{z_1}	46,82	46,92	0,17	0,16
R_{z_2}	9,567	9,194	0,031	0,075
R_{z_3}	79,93	79,51	0,31	0,17

4 Podsumowanie

Opis wielkości	Opór wyznaczony $[\Omega]$	$u(R_x) [\Omega]$	$\frac{u(E)}{E}$ [%]
R_1	12,553	0,024	0,19
R_2	34,36	0,15	0,45
R_3	70,31	0,15	0,21
R_4	38,04	0,13	0,35
R_5	104,48	0,18	0,17
R_{z_1}	46,82	0,17	0,37
R_{z_2}	9,567	0,031	0,33
R_{z_3}	79,93	0,31	0,39

- Określenie poprawności wyników naszych doświadczeń jest trudne, ponieważ nie da się jednoznacznie określić wartości tabelarycznej dla danego metalu. Wynika to z nieznajomości dokładnego składu metalu (stopu), a także ze zużycia drutu. W naszych badaniach przyjmujemy rozrzut rzędu ±10% dla wartości odczytanych z tabel fizycznych.
- Zarówno dla pierwszych jak i drugich pomiarów dla mosiądzu obliczona wartość modułu wykracza poza przedział $(E_0 U(E), E_0 + U(E))$. Po uwzględnieniu dziesięcioprocentowego rozrzutu drugą serię pomiarów możemy uznać za poprawną w zakresie wyznaczonej niepewności. Pierwsza seria pomiarów nadal daje wynik niepoprawny, co potwierdza nasze obawy co do błędu systematycznego.
- Podobnie jak w przypadku drugiej serii pomiarów dla mosiądzu wartość modułu Younga dla stali wykracza poza $E_0 \pm U(E)$, lecz po uwzględnieniu dziesięcioprocentowego rozrzutu od wartości tablicowej możemy uznać obliczoną wartość za poprawną w zakresie wyznaczonej niepewności.