VİTMO

НИУ ИТМО

Отчет по лабораторной работе №1

"Фурри ряды"

Выполнил:

Александр Иванов, R3238, ЧМ 1.2

Преподаватель:

Перегудин А. А.

Санкт-Петербург, 2024

Содержание

1.	Раз	ложен	ие в ряд Фурье	3
2.	Веш	цестве	нные функции	3
	2.1.	Квадр	ратная волна	3
		2.1.1.	Вычисление коэффициентов Фурье	4
		2.1.2.	Вычисление коэффициентов Фурье с помощью программы	6
		2.1.3.	Построение графиков частичных сумм ряда Фурье	7
		2.1.4.	Проверка равенства Парсеваля	8
	2.2.	Четна	я функция	9
		2.2.1.	Вычисление коэффициентов Фурье	9
		2.2.2.	Вычисление коэффициентов Фурье с помощью программы	10
		2.2.3.	Построение графиков частичных сумм ряда Фурье	11
		2.2.4.	Проверка равенства Парсеваля	14
	2.3.	Нечет	тая функция	14
		2.3.1.	Вычисление коэффициентов Фурье	14
		2.3.2.	Вычисление коэффициентов Фурье с помощью программы	15
		2.3.3.	Построение графиков частичных сумм ряда Фурье	15
		2.3.4.	Проверка равенства Парсеваля	17
	2.4.	Ни не	четная, ни четная функция	18
		2.4.1.	Вычисление коэффициентов Фурье	18
		2.4.2.	Вычисление коэффициентов Фурье с помощью программы	19
		2.4.3.	Построение графиков частичных сумм ряда Фурье	20
		2.4.4.	Проверка равенства Парсеваля	21
	2.5.	Анали	из результатов	22

3.	3. Комплексная функция		22	
	3.1.	Компл	пексный квадрат	22
		3.1.1.	Вычисление коэффициентов Фурье	22
		3.1.2.	Вычисление коэффициентов Фурье с помощью программы	23
		3.1.3.	Построение графиков частичных сумм ряда Фурье	24
		3.1.4.	Проверка равенства Парсеваля	25
	3.2.	Графи	ики вещественной и комплексной части отдельно	26
4.	Доп	юлнит	ельное задание	28
	4.1.	Разло	жение рисунка	28
	4.2.	Враща	аем векторы	29
	4.3.	Отрис	овка графики	30
\mathbf{A}	Исх	одный	і код	32
В	Исх	одный	і код для дополнительного задания	38

1. Разложение в ряд Фурье

В общем случае частичная сумма ряда Фурье выглядит следующим образом:

$$F_N(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(\omega_n t) + b_n \sin(\omega_n t) \right)$$
(1)

$$a_n = \frac{2}{T} \int_{h}^{h+T} f(t) \cos(\omega_n t) dt \qquad b_n = \frac{2}{T} \int_{h}^{h+T} f(t) \sin(\omega_n t) dt$$
 (2)

где $\omega_n = 2\pi n/T,\ h$ – начало промежутка, на котором проводится разложение, T – период функции.

Или, для комплексного случая:

$$G_N(t) = \sum_{n=-N}^{N} c_n e^{i\omega_n t} \tag{3}$$

$$c_n = \frac{1}{T} \int_{h}^{h+T} f(t)e^{-i\omega_i t} dt \tag{4}$$

где $\omega_n = 2\pi n/T$, h – начало промежутка, на котором проводится разложение, T – период функции.

2. Вещественные функции

2.1. Квадратная волна

Рассмотрим периодическую функцию с периодом T=3:

$$f_1(t) = \begin{cases} 1, & t \in [1, 2) \\ 2, & t \in [2, 4) \end{cases}$$
 (5)

График этой функции приведен на рис. 1.

Рис. 1: График функции $f_1(t)$

2.1.1. Вычисление коэффициентов Фурье

Найдем частичные суммы ряда Фурье для этой функции:

Вычислим коэффициенты a_n , b_n и c_n для n=0,1,2 в соответствии с формулами (2) и (4):

$$a_n = \frac{2}{3} \int_1^4 f_1(t) \cos\left(\frac{2\pi n}{3}t\right) dt = \frac{2}{3} \left(\int_1^2 \cos\left(\frac{2\pi n}{3}t\right) dt + \int_2^4 2\cos\left(\frac{2\pi n}{3}t\right) dt\right)$$

$$\int \cos\left(\frac{2\pi n}{3}t\right) dt = \int \frac{3\cos(u)}{2\pi n} du = \frac{3}{2\pi n}\sin(u) = \frac{3}{2\pi n}\sin\left(\frac{2\pi n}{3}t\right)$$
(6)

$$a_{n} = \frac{2}{3} \left(\frac{3}{2\pi n} \sin\left(\frac{2\pi n}{3}t\right) \Big|_{1}^{2} + \frac{3}{\pi n} \sin\left(\frac{2\pi n}{3}t\right) \Big|_{2}^{4} \right) =$$

$$\frac{2}{\pi n} \left(\frac{1}{2} \left(\sin\left(\frac{4\pi n}{3}\right) - \sin\left(\frac{2\pi n}{3}\right) \right) + \left(\sin\left(\frac{8\pi n}{3}\right) - \sin\left(\frac{4\pi n}{3}\right) \right) \right) =$$

$$\frac{1}{\pi n} \left(-\sin\left(\frac{4\pi n}{3}\right) - \sin\left(\frac{2\pi n}{3}\right) + 2\sin\left(\frac{8\pi n}{3}\right) \right)$$
(7)

$$b_n = \frac{2}{3} \int_{1}^{4} f_1(t) \sin\left(\frac{2\pi n}{3}t\right) dt = \frac{2}{3} \left(\int_{1}^{2} \sin\left(\frac{2\pi n}{3}t\right) dt + \int_{2}^{4} 2\sin\left(\frac{2\pi n}{3}t\right) dt\right)$$

$$\int \sin\left(\frac{2\pi n}{3}t\right) dt = \int \frac{3\sin(u)}{2\pi n} du = \frac{-3}{2\pi n} \cos(u) = \frac{-3}{2\pi n} \cos\left(\frac{2\pi n}{3}t\right)$$
(8)

$$b_{n} = \frac{2}{3} \left(\frac{-3}{2\pi n} \cos\left(\frac{2\pi n}{3}t\right) \Big|_{1}^{2} + \frac{-3}{\pi n} \cos\left(\frac{2\pi n}{3}t\right) \Big|_{2}^{4} \right) =$$

$$\frac{-2}{\pi n} \left(\frac{1}{2} \left(\cos\left(\frac{4\pi n}{3}\right) - \cos\left(\frac{2\pi n}{3}\right) \right) + \left(\cos\left(\frac{8\pi n}{3}\right) - \cos\left(\frac{4\pi n}{3}\right) \right) \right) =$$

$$\frac{1}{\pi n} \left(\cos\left(\frac{4\pi n}{3}\right) + \cos\left(\frac{2\pi n}{3}\right) - 2\cos\left(\frac{8\pi n}{3}\right) \right)$$
(9)

$$c_n = \frac{1}{3} \int_{1}^{4} f_1(t) e^{\frac{-i2\pi nt}{3}} dt = \frac{1}{3} \left(\int_{1}^{2} e^{\frac{-i2\pi nt}{3}} dt + \int_{2}^{4} 2e^{\frac{-i2\pi nt}{3}} dt \right)$$
 (10)

Так как коэффициенты a_n , b_n и c_n связаны между собой, а c_i и c_{-i} равны для вещественной функции, нет необходимости вычислять c_n отдельно. (Мне просто лень).

$$c_n = \frac{a_n - ib_n}{2} \tag{11}$$

После подстановки получаем следующие значения:

$$a_0 = \frac{2}{3} \int_{1}^{4} f_1(t)dt = \frac{2}{3} \left(\int_{1}^{2} dt + \int_{2}^{4} 2dt \right) = \frac{2}{3} \left(t \Big|_{1}^{2} + 2t \Big|_{2}^{4} \right) = \frac{2}{3} (1+4) = \frac{10}{3} \approx 3.33333$$
 (12)

$$a_1 = \frac{1}{\pi} \left(-\sin\left(\frac{4\pi}{3}\right) - \sin\left(\frac{2\pi}{3}\right) + 2\sin\left(\frac{8\pi}{3}\right) \right) = \frac{\sqrt{3}}{3} \approx 0.55133 \tag{13}$$

$$a_2 = \frac{1}{2\pi} \left(-\sin\left(\frac{8\pi}{3}\right) - \sin\left(\frac{4\pi}{3}\right) + 2\sin\left(\frac{16\pi}{3}\right) \right) = \frac{-\sqrt{3}}{2\pi} \approx -0.27567$$
 (14)

$$b_1 = \frac{1}{\pi} \left(\cos \left(\frac{4\pi}{3} \right) + \cos \left(\frac{2\pi}{3} \right) - 2\cos \left(\frac{8\pi}{3} \right) \right) = 0 \tag{15}$$

$$b_2 = \frac{1}{2\pi} \left(\cos\left(\frac{8\pi}{3}\right) + \cos\left(\frac{4\pi}{3}\right) - 2\cos\left(\frac{16\pi}{3}\right) \right) = 0 \tag{16}$$

$$c_0 = \frac{a_0}{2} = \frac{10}{6} \approx 1.66667 \tag{17}$$

$$c_{-1} = c_1 = \frac{a_1 - b_1}{2} = \frac{\sqrt{3}}{6} \approx 0.28868 \tag{18}$$

$$c_{-2} = c_2 = \frac{a_2 - b_2}{2} = \frac{-\sqrt{3}}{4\pi} \approx -0.13784 \tag{19}$$

2.1.2. Вычисление коэффициентов Фурье с помощью программы

Воспользуемся программой для вычисления коэффициентов Фурье. Исходный код всех функций приведен в дополнении А.

```
func = np.vectorize(lambda x: 1 if 0 <= (x - 1) % 3 < 1 else 2)
a, b = fourier(func, 0, 2 * np.pi, 3)
print_fourier_coefficients(a, b)
c = fourier_exp(func, 1, 3, 3)
print_fourier_exp_coefficients(c)</pre>
```

Листинг 1: Вычисление коэффициентов Фурье

В результате выполнения программы (1) получим следующие значения (см. таблицу 1 и 2).

n	a_n	b_n
0	3.33335	0.0
1	0.55123	0.0
2	-0.2757	0.0
3	0.00020	0.0

Таблица 1: Коэффициенты Фурье для функции $f_1(t)$

n	c_n
-3	0.00010
-2	-0.13788
-1	0.27561
0	1.66677
1	0.27561
2	-0.13788
3	0.00010

Таблица 2: Коэффициенты Фурье для функции $f_1(t)$ (комплексный случай)

Полученные коэффициенты совпадают с вычисленными вручную значениями.

2.1.3. Построение графиков частичных сумм ряда Фурье

В качество значений N выберем N=1,2,5,15,30. Для каждого значения N вычислим частичную сумму ряда Фурье и построим график (см. рис. 2 и 3).

```
func = np.vectorize(lambda x: 1 if 0 <= (x - 1) % 3 < 1 else 2)
calc_and_plot(func, 1, 3, [1, 2, 5, 15, 30], './media/plots/func_1')
calc_and_plot_exp(func, 1, 3, [1, 2, 5, 15, 30], './media/plots/func_1_exp')</pre>
```

Листинг 2: Построение графиков частичных сумм ряда Фурье

Рис. 2: График частичных сумм ряда Фурье для функции $f_1(t)$

Видим, что при увеличении N график частичной суммы ряда Фурье приближается к исходной функции. При N=5 график частичной суммы ряда Фурье уже довольно хорошо приближает исходную функцию.

Рис. 3: График частичных сумм ряда Фурье для функции $f_1(t)$ (комплексный случай)

На графиках заметны *выбросы* в точках разрыва. Это связано с тем, что ряд Фурье сходится к функции по норме, но не обязательно в каждой точке.

2.1.4. Проверка равенства Парсеваля

Проверим равенство Парсеваля для функции $f_1(t)$:

$$||f_1||^2 = 2\pi \sum_{n=-\infty}^{\infty} |c_n|^2 \tag{20}$$

$$||f_1||^2 = \pi \left(\frac{a_0^2}{2} + \sum_{n=0}^{\infty} (a_n^2 + b_n^2)\right)$$
 (21)

Для этого воспользуемся функцией perseval_check (см. листинг 28). Мною была рассмотрена сумма трехсот коэффициентов. Этого оказалось достаточно для равенства квадрата нормы и суммы до 3 знака.

$$\begin{array}{|c|c|c|c|c|} \hline ||f_1||^2 & 2\pi \sum_{n=-\infty}^{300} |c_n|^2 & \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{300} (a_n^2 + b_n^2)\right) \\ \hline ||19.13296| & 19.13141 & 19.13141 \\ \hline \end{array}$$

Таблица 3: Проверка равенства Персеваля для функции $f_1(t)$

2.2. Четная функция

Рассмотрим четную периодическую функцию с периодом $T=2\pi$:

$$f_2(t) = \sin\left(\frac{5}{2}\cos(t)\right) \tag{22}$$

График этой функции приведен на рис. 4.

2.2.1. Вычисление коэффициентов Фурье

Найдем коэффициенты ряда Фурье для этой функции:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin\left(\frac{5}{2}\cos(t)\right) \cos(nt) dt$$
 (23)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin\left(\frac{5}{2}\cos(t)\right) \sin(nt) dt$$
 (24)

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin\left(\frac{5}{2}\cos(t)\right) e^{-int} dt \tag{25}$$

Рис. 4: График функции $f_2(t)$

Уууупс, неберущийся интеграл... Ну а кому его брать то надо? Мне не надо, я поплакался в чате :)

2.2.2. Вычисление коэффициентов Фурье с помощью программы

```
func = np.vectorize(lambda x: np.sin(5/2 * np.cos(x)))
a, b = fourier(func, -np.pi, 2*np.pi, 3)
print_fourier_coefficients(a, b)
c = fourier_exp(func, -np.pi, 2*np.pi, 3)
print_fourier_exp_coefficients(c)
```

Листинг 3: Вычисление коэффициентов Фурье

В результате выполнения программы (3) получим следующие значения (см. таблицу 4 и 5) .

n	a_n	b_n
0	0.00012	0.0
1	0.99431	0.0
2	0.00012	0.0
3	-0.43308	0.0

Таблица 4: Коэффициенты Фурье для функции $f_2(t)$

n	c_n
-3	-0.21654
-2	-0.00006
-1	0.49715
0	0.00006
1	0.49715
2	0.00006
3	-0.21654

Таблица 5: Коэффициенты Фурье для функции $f_2(t)$ (комплексный случай)

2.2.3. Построение графиков частичных сумм ряда Фурье

В качество значений N выберем N=1,2,3,4,5. Для каждого значения N вычислим частичную сумму ряда Фурье и построим график (см. рис. 5 и 6).

```
func = np.vectorize(lambda x: np.sin(5/2 * np.cos(x)))
calc_and_plot(func, -np.pi, 2 * np.pi, [1, 2, 3, 4, 5],
    './media/plots/func_2')
calc_and_plot_exp(func, -np.pi, 2 * np.pi, [1, 2, 3, 4, 5],
    './media/plots/func_2_exp')
```

Листинг 4: Построение графиков частичных сумм ряда Фурье

Видим, что при увеличении N график частичной суммы ряда Фурье приближается к исходной функции. При N=5 график частичной суммы ряда Фурье уже неотличим от исходной функции.

Рис. 5: График частичных сумм ряда Фурье для функции $f_2(t)$

Рис. 6: График частичных сумм ряда Фурье для функции $f_2(t)$ (комплексный случай)

2.2.4. Проверка равенства Парсеваля

Проверим равенство Парсеваля для функции $f_2(t)$:

Для этого воспользуемся функцией perseval_check (см. листинг 28). Мною была рассмотрена сумма трехсот коэффициентов. Этого оказалось достаточно для равенства квадрата нормы и суммы до 4 знака.

$$\begin{array}{|c|c|c|c|c|} \hline ||f_2||^2 & 2\pi \sum_{n=-\infty}^{300} |c_n|^2 & \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{300} (a_n^2 + b_n^2)\right) \\ \hline 3.69975 & 3.69999 & 3.69999 \\ \hline \end{array}$$

Таблица 6: Проверка равенства Персеваля для функции $f_2(t)$

2.3. Нечетная функция

Рассмотрим нечетную периодическую функцию с периодом $T=\pi$:

$$f_3(t) = |\cos(2t) \cdot \sin(t)| \tag{26}$$

График этой функции приведен на рис. 7.

2.3.1. Вычисление коэффициентов Фурье

Найдем коэффициенты ряда Фурье для этой функции:

$$a_n = \frac{2}{\pi} \int_0^{\pi} |\cos(2t) \cdot \sin(t)| \cos(2nt) dt$$
 (27)

$$b_n = \frac{2}{\pi} \int_0^{\pi} |\cos(2t) \cdot \sin(t)| \sin(2nt) dt$$
 (28)

$$c_n = \frac{1}{\pi} \int_0^{\pi} |\cos(2t) \cdot \sin(t)| e^{-2int} dt$$
(29)

Рис. 7: График функции $f_3(t)$

2.3.2. Вычисление коэффициентов Фурье с помощью программы

```
func = np.vectorize(lambda x: abs(np.cos(2 * x) * np.sin(x)))
a, b = fourier(func, 0, np.pi, 3)
print_fourier_coefficients(a, b)
c = fourier_exp(func, 0, np.pi, 3)
print_fourier_exp_coefficients(c)
```

Листинг 5: Вычисление коэффициентов Фурье

В результате выполнения программы (5) получим следующие значения (см. таблицу 7 и 8).

n	a_n	b_n
0	0.77601	0.0
1	-0.36616	0.0
2	0.21548	0.0
3	-0.09828	0.0

Таблица 7: Коэффициенты Фурье для функции $f_3(t)$

2.3.3. Построение графиков частичных сумм ряда Фурье

В качество значений N выберем N=1,2,3,4,5. Для каждого значения N вычислим частичную сумму ряда Фурье и построим график (см. рис. 8 и 9).

n	c_n
-3	-0.04914
-2	0.10774
-1	-0.18308
0	0.38800
1	-0.18308
2	0.10774
3	-0.04914

Таблица 8: Коэффициенты Фурье для функции $f_3(t)$ (комплексный случай)

```
func = np.vectorize(lambda x: abs(np.cos(2 * x) * np.sin(x)))
calc_and_plot(func, 0, np.pi, [1, 2, 3, 4, 5], './media/plots/func_3')
calc_and_plot_exp(func, 0, np.pi, [1, 2, 3, 4, 5],
    './media/plots/func_3_exp')
```

Листинг 6: Построение графиков частичных сумм ряда Фурье

Рис. 8: График частичных сумм ряда Фурье для функции $f_3(t)$

Рис. 9: График частичных сумм ряда Фурье для функции $f_3(t)$

Видим, что при увеличении N график частичной суммы ряда Фурье приближается к исходной функции, но, в отличие от четной функции, не становится неотличимым от исходной функции при N=5.

2.3.4. Проверка равенства Парсеваля

Проверим равенство Парсеваля для функции $f_3(t)$:

Для этого воспользуемся функцией perseval_check (см. листинг 28). Мною была рассмотрена сумма трехсот коэффициентов. Этого оказалось достаточно для равенства

квадрата нормы и суммы до 6 знака.

$ f_3 ^2$	$2\pi \sum_{n=-\infty}^{300} c_n ^2$	$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{300} (a_n^2 + b_n^2) \right)$
1.57080	1.57080	1.57080

Таблица 9: Проверка равенства Персеваля для функции $f_3(t)$

2.4. Ни нечетная, ни четная функция

Рассмотрим периодическую функцию с периодом $T=2\pi$:

$$f_4(t) = \sin(t)^3 - \cos(t) \tag{30}$$

График этой функции приведен на рис. 10.

Рис. 10: График функции $f_4(t)$

2.4.1. Вычисление коэффициентов Фурье

Найдем коэффициенты ряда Фурье для этой функции:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(t)^3 - \cos(t)) \cos(nt) dt$$
 (31)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\sin(t)^3 - \cos(t)) \cos(nt) dt$$
 (32)

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\sin(t)^3 - \cos(t))e^{-int}dt$$
 (33)

2.4.2. Вычисление коэффициентов Фурье с помощью программы

```
func = np.vectorize(lambda x: np.sin(x) ** 3 - np.cos(x))
a, b = fourier(func, 0, 2 * np.pi, 3)
print_fourier_coefficients(a, b)
c = fourier_exp(func, 0, 2 * np.pi, 3)
print_fourier_exp_coefficients(c)
```

Листинг 7: Вычисление коэффициентов Фурье

В результате выполнения программы (7) получим следующие значения (см. таблицу 10 и 11).

$\mid n \mid$	a_n	b_n
0	-0.00020	0.00000
1	-1.00020	0.75000
2	-0.00020	0.00000
3	-0.00020	-0.25000

Таблица 10: Коэффициенты Фурье для функции $f_4(t)$

n	c_n
-3	-0.00010-0.12500i
-2	-0.00010-0.00000i
-1	-0.50010 + 0.37500i
0	-0.00010+0.00000i
1	-0.50010-0.37500i
2	-0.00010+0.00000i
3	-0.00010 + 0.12500i

Таблица 11: Коэффициенты Фурье для функции $f_4(t)$ (комплексный случай)

2.4.3. Построение графиков частичных сумм ряда Фурье

В качество значений N выберем N=1,2,3,4,5. Для каждого значения N вычислим частичную сумму ряда Фурье и построим график (см. рис. 11 и 12).

```
func = np.vectorize(lambda x: np.sin(x) ** 3 - np.cos(x))
calc_and_plot(func, 0, 2 * np.pi, [1, 2, 3, 4, 5], './media/plots/func_4')
calc_and_plot_exp(func, 0, 2 * np.pi, [1, 2, 3, 4, 5],
    './media/plots/func_4_exp')
```

Листинг 8: Построение графиков частичных сумм ряда Фурье

Рис. 11: График частичных сумм ряда Фурье для функции $f_4(t)$

Видим, что при увеличении N график частичной суммы ряда Фурье приближается к исходной функции, и уже при N=3 график частичной суммы ряда Фурье неотличим от исходной функции.

Рис. 12: График частичных сумм ряда Фурье для функции $f_4(t)$

2.4.4. Проверка равенства Парсеваля

Проверим равенство Парсеваля для функции $f_4(t)$:

Для этого воспользуемся функцией perseval_check (см. листинг 28). Мною была рассмотрена сумма трехсот коэффициентов. Этого оказалось достаточно для равенства квадрата нормы и суммы до 6 знака.

$ f_4 ^2$	$2\pi \sum_{n=-\infty}^{300} c_n ^2$	$\pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{300} (a_n^2 + b_n^2) \right)$
5.10572	5.10638	$5.10\overline{638}$

Таблица 12: Проверка равенства Персеваля для функции $f_4(t)$

2.5. Анализ результатов

Как и ожидалось, с увеличением количества коэффициентов график частичной суммы ряда Фурье (см. формулы 1 и 3) все точнее приближают исходную функцию. При этом, у функции, которая терпит разрывы первого рода в точках, наблюдаются выбросы в этих точках. Это связано с тем, что частичная сумма ряда Фурье не сходится к функции равномерно, а сходится по норме.

Во всех случаях удалось убедиться в выполнении равенства Парсеваля. Квадрат нормы функции равен сумме квадратов модулей коэффициентов ряда Фурье с точностью, как минимум, до 3 знаков после запятой.

Графики частичных сумм ряда Фурье для вещественного и комплексного случая не отличаются.

3. Комплексная функция

3.1. Комплексный квадрат

Рассмотрим комплексную функцию $f_5(t)$:

$$Ref_{5}(t) = \begin{cases} 3, & t \in [-\frac{1}{2}, \frac{1}{2}) \\ 6 - 6t, & t \in [\frac{1}{2}, \frac{3}{2}) \\ -3, & t \in [\frac{3}{2}, \frac{5}{2}) \\ -18 + 6t, & t \in [\frac{5}{2}, \frac{7}{2}) \end{cases} Imf_{5}(t) = \begin{cases} 6t, & t \in [-\frac{1}{2}, \frac{1}{2}) \\ 3, & t \in [\frac{1}{2}, \frac{3}{2}) \\ 12 - 6t, & t \in [\frac{3}{2}, \frac{5}{2}) \\ -3, & t \in [\frac{5}{2}, \frac{7}{2}) \end{cases}$$
(34)

График этой функции представлен на рисунке 13.

3.1.1. Вычисление коэффициентов Фурье

Найдем коэффициенты ряда Фурье для этой функции в соответствии с формулой 4.

Рис. 13: График комплексной функции $f_5(t)$

$$c_{n} = \frac{1}{4} \int_{-0.5}^{3.5} f_{5}(t)e^{-i\frac{\pi nt}{2}}dt = \frac{1}{4} \left(\int_{-0.5}^{0.5} (3+6ti)e^{-i\frac{\pi nt}{2}}dt + \int_{0.5}^{1.5} (6-6t+3i)e^{-i\frac{\pi nt}{2}}dt \right)$$

$$+ \int_{1.5}^{2.5} (-3+(12-6t)i)e^{-i\frac{\pi nt}{2}}dt + \int_{2.5}^{3.5} (-18+6t-3i)e^{-i\frac{\pi nt}{2}}dt$$
(35)

3.1.2. Вычисление коэффициентов Фурье с помощью программы

```
R = 3
T = 4

def func(t):
    real = -1
    if -T/8 <= t < T/8:
        real = R
    if T/8 <= t < 3 * T / 8:
        real = 2 * R - 8 * R * t / T
    if 3 * T / 8 <= t < 5 * T / 8:
        real = -R
    if 5 * T / 8 <= t <= 7 * T / 8:
        real = -6 * R + 8 * R * t / T</pre>
```

```
imag = -1
if -T/8 <= t < T/8:
    imag = 8 * R * t / T
if T/8 <= t < 3 * T / 8:
    imag = R
if 3 * T / 8 <= t < 5 * T / 8:
    imag = 4 * R - 8 * R * t / T
if 5 * T / 8 <= t <= 7 * T / 8:
    imag = -R

return real + 1j * imag

func = np.vectorize(func)
c = fourier_exp(func, -T/8, T, 3)
print_fourier_exp_coefficients(c)</pre>
```

Листинг 9: Вычисление коэффициентов Фурье

В результате выполнения программы (9) получим следующие значения (см. таблицу 13).

n	c_n
-3	-0.38253+0.00000i
-2	-0.00030-0.00030i
-1	-0.00000-0.00042i
0	0.00030-0.00030i
1	3.43938 + 0.00000i
2	$0.00030{+}0.00030i$
3	-0.00000+0.00042i

Таблица 13: Коэффициенты Фурье для функции $f_5(t)$

3.1.3. Построение графиков частичных сумм ряда Фурье

В качество значений N выберем N=1,2,3,5,10. Для каждого значения N вычислим частичную сумму ряда Фурье и построим график (см. рис. 14).

```
calc_and_plot_parametric(func, -T/8, T, [1, 2, 3, 5, 10],
'./media/plots/func_5')
```

Листинг 10: Построение графиков частичных сумм ряда Фурье

Видим, что как и в случае вещественных функций, при увеличении значения N график частичной суммы ряда Фурье все точнее приближает исходную функцию. При значениях N=1,2 график частичной суммы ряда Фурье представляет из себя эллипс, при N=3 – уже похож на исходную функцию. При значениях N=10 график частичной суммы ряда Фурье довольно точно повторяет исходную функцию.

Рис. 14: Параметрический график частичных сумм ряда Фурье для функции $f_5(t)$

3.1.4. Проверка равенства Парсеваля

Проверим равенство Парсеваля для функции $f_5(t)$:

Для этого воспользуемся функцией perseval_check (см. листинг 28). Мною была рассмотрена сумма трехсот коэффициентов. Этого оказалось достаточно для равенства квадрата нормы и суммы до 1 знака после запятой.

$ f_5 ^2$	$2\pi \sum_{n=-\infty}^{300} c_n ^2$
74.62291	74.57936

Таблица 14: Проверка равенства Персеваля для функции $f_5(t)$

3.2. Графики вещественной и комплексной части отдельно

Рассмотрим графики $Re\ f_5(t)$ и $Im\ f_5(t)$ (см. рис. 15) и графики $Re\ G_n(t)$ и $Im\ G_n(t)$ для функции $f_5(t)$ (см. рис. 16 - 20).

Рис. 15: График $f_5(t)$ (действительная и мнимая часть)

Рис. 16: График частичных сумм ряда Фурье для функции $f_5(t)$ (N=1) (действительная и мнимая часть)

Рис. 17: График частичных сумм ряда Фурье для функции $f_5(t)$ (N=2) (действительная и мнимая часть)

Тут так же заметно, что с увеличением значения N график частичной суммы ряда Фурье все точнее приближает исходную функцию на выбранном промежутке.

Рис. 18: График частичных сумм ряда Фурье для функции $f_5(t)$ (N=3) (действительная и мнимая часть)

Рис. 19: График частичных сумм ряда Фурье для функции $f_5(t)$ (N=5) (действительная и мнимая часть)

Рис. 20: График частичных сумм ряда Фурье для функции $f_5(t)$ (N=10) (действительная и мнимая часть)

4. Дополнительное задание

4.1. Разложение рисунка

По аналогии с разложением комплексной параметрической функции, можно найти разложение в ряд Фурье для функции, график которой представляет из себя интересующий нас рисунок.

Нам подойдет рисунок в векторном формате, который состоит из одной замкнутой линии. Она не должна иметь толщины. В редакторе CoralDraw для этого существует параметр сверхтонкий абрис.

Рис. 21: Рисунок, который будет раскладывать

Возьмем рисунок с котиком. Для того, чтобы *достать* параметрический график из svg файла можно использовать библиотеку svg.path и ее функцию parse_path.

```
path = svg.path.parse_path(spline)
path_func = np.vectorize(lambda t: path.point(t) * scale)
```

Листинг 11: Получение параметрической функции рисунка

В результате работы кода (см. листинг 11) получаем параметрическую функцию $path\ func(t)$, где $t\in[0,1]$, которая будет возвращать точку на комплексной плоскости.

Теперь данную функцию можно разложить в ряд Фурье на отрезке [0,1] с помощью функции fourier_exp (см. листинг 31). В результате работы этой функции получим набор коэффициентов c_n , которые являются коэффициентами искомого разложения рисунка.

Для проверки полученного результата можно построить $\it графики$ полученных функций (количество коэффициентов N=20) (см рис. 22). Видим, что оба графика крайне похожи друг на друга. Это значит, что разложение Фурье корректно применилось для нашего рисунка.

Рис. 22: Исходный рисунок и рисунок после разложения Фурье (N=20)

4.2. Вращаем векторы

Теперь разберемся с тем, как можно представить полученные коэффициенты разложения с виде движущихся с целой частотой относительно друг друга векторов.

Из разложения (см. формулу 3) мы имеем слагаемые вида:

$$c_i \cdot e^{i\omega_i t}$$

Каждый из коэффициентов c_i имеет комплексное значение, при этом i определяет частоту вращения вектора (об/сек, если i < 0, то вращение в другую сторону).

Для определения радиуса круга с номером (и частотой вращения) i можно воспользоваться следующей формулой:

$$r = \sqrt{Re(c_i)^2 + Im(c_i)^2} \tag{36}$$

Это будет радиус окружности, внутри которой вращается вектор.

Начальное положение вектора будем задавать как часть дуги (от 0 до 1), на которую

должен $y \kappa a s u \epsilon a m b$ вектор. Обозначим это значение ϕ Найти его можно следующим образом:

$$\phi = \begin{cases} \frac{atan2(-Im(c_i), Re(c_i))}{2\pi} & atan2(Im(c_i), Re(c_i)) > 0\\ \frac{atan2(-Im(c_i), Re(c_i)) + 2\pi}{2\pi} & atan2(Im(c_i), Re(c_i)) < = 0 \end{cases}$$
(37)

После мнимой части стоит минус для того, чтобы рисунок не был перевернутым.

Теперь, когда у нас есть все нужные значения (частоты вращения векторов, длины векторов, начальные положения), мы можем перейти к отрисовке.

4.3. Отрисовка графики

Основной единицей в программе являются объект класса RotatingCircle (см. листинг 35), который наследован от класса Circle – вращающаяся окружность. В нем добавлены поля, хранящие окружность, по орбите которой она вращается, частота вращения и позиции точки на этой окружности.

Кроме того, добавлены классы VectorInCircle и DotOnCircle, наследованные от классов Arrow и Dot соответственно. Они нужны лишь для визуализации соответствующих элементов.

Все *действие* основано на обновлении точек на окружностях, и, соответственно, центов окружностей, которые привязных к этим точках.

Функция rotating_circle_updater изменяет положение точки на окружности, dot_on_circle_updater – перемещает точку по окружности, vector_in_circle_updater – перемещает начало вектора в центр окружности, в которой он расположен и конец вектора к точке на этой же окружности.

Таким образом, изменение положения центра окружности и положения точки на ней ведет к изменений положения всех элементов.

В основном методе рассчитываются коэффициенты c_i и создаются вложенные окружности (родителем каждой следующей окружности является предыдущая), центр которых привязывается к точке на родительской окружности. Таким образом создается зависимость положения дочерних окружностей от родительских.

В результате получаем анимацию с отрисовкой исходного рисунка (ссылка):

Так же можно посмотреть на анимации при различных значениях N (ссылка).

Исходный код находится в приложении В.

Рис. 23: Стоп-кадр из анимации

Полученный рисунок полностью совпадает с тем, что был получен из частичной сумму ряда Фурье (см. рис. 22).

А Исходный код

Исходный код можно найти по ссылке: GitHub

```
def dot_product(f, g, a, b):
    x = np.linspace(a, b, 10000)
    dx = x[1] - x[0]
    return np.dot(f(x), g(x)) * dx
```

Листинг 12: Функция для вычисления скалярного произведения функций

Аргументы функции dot_product: f и g – функции, для которых вычисляется скалярное произведение, a и b – границы интегрирования.

```
def get_sincosmt(T):
    sinmt = lambda x: np.sin(2 * np.pi * x[0] / T * x[1])
    cosmt = lambda x: np.cos(2 * np.pi * x[0] / T * x[1])
    return sinmt, cosmt
```

Листинг 13: Функция для получения вспомогательных функций

Аргументы функции get_sincosmt: T – период функции.

```
def get_expmt(T):
    return lambda x: np.e ** (1j * 2 * np.pi * x[0] / T * x[1])
```

Листинг 14: Функция для получения вспомогательных функций

Аргументы функции get_expmt: T – период функции.

```
def fourier(func, t0, T, N):
    sinmt, cosmt = get_sincosmt(T)
    a = []
    b = []
    for i in range(N + 1):
        sin = lambda x: sinmt([i, x])
        cos = lambda x: cosmt([i, x])

        a.append(dot_product(func, cos, t0, t0 + T) * 2 / T)
        b.append(dot_product(func, sin, t0, t0 + T) * 2 / T)
    return a, b
```

Листинг 15: Функция для вычисления коэффициентов Фурье

Аргументы функции fourier: func – функция, для которой вычисляются коэффициенты, to – начало промежутка, на котором проводится разложение, T – период функции, N –

количество коэффициентов.

```
def fourier_exp(func, t0, T, N):
    expmt = get_expmt(T)
    c = []
    for i in range(-N, N + 1):
        exp = lambda x: expmt([-i, x])
        c.append(dot_product(func, exp, t0, t0 + T) / T)
    return c
```

Листинг 16: Функция для вычисления коэффициентов Фурье

Аргументы функции fourier_exp: func – функция, для которой вычисляются коэффициенты, t0 – начало промежутка, на котором проводится разложение, T – период функции, N – количество коэффициентов.

```
def fourier_func(a, b, T, N):
    sinmt, cosmt = get_sincosmt(T)
    return lambda x: a[0] / 2 + sum([a[i] * cosmt([i, x]) + b[i] *
    sinmt([i, x]) for i in range(1, N + 1)])
```

Листинг 17: Получение функции частичной суммы рядя Фурье до N

Аргументы функции fourier_func: a и b — коэффициенты Фурье, T — период функции, N — количество коэффициентов.

```
def fourier_exp_func(c, T, N):
    expmt = get_expmt(T)
    return lambda x: sum([c[i + len(c) // 2] * expmt([i, x]) for i in
    range(-N, N + 1)])
```

Листинг 18: Получение функции частичной суммы рядя Фурье до N

Аргументы функции fourier_exp_func: c — коэффициенты Фурье, T — период функции, N — количество коэффициентов.

```
def fourierise(func, t0, T, N):
    a, b = fourier(func, t0, T, N)
    return fourier_func(a, b, T, N)
```

Листинг 19: Функция для получения разложения Фурье функции

Аргументы функции fourierise: func – функция, для которой проводится разложение, t0 – начало промежутка, на котором проводится разложение, T – период функции, N –

```
def fourierise_exp(func, t0, T, N):
    c = fourier_exp(func, t0, T, N)
    return fourier_exp_func(c, T, N)
```

Листинг 20: Функция для получения разложения Фурье функции

Аргументы функции fourierise_exp: func – функция, для которой проводится разложение, t0 – начало промежутка, на котором проводится разложение, T – период функции, N – количество коэффициентов.

```
def plot_func(func, fourier_func, t0, T, caption = '', title = ''):
    # limits
    x_{min} = t0 - T * 0.5
    x max = t0 + 1.5 * T
    ymin = min(func(np.linspace(x_min, x_max, 100)))
    ymax = max(func(np.linspace(x_min, x_max, 100)))
    ymax = ymax + 0.1 * (ymax - ymin)
    ymin = ymin - 0.1 * (ymax - ymin)
    x = np.linspace(x_min, x_max, 1000)
    plt.figure(figsize=(8, 5))
    plt.ylim(ymin, ymax)
    plt.plot(x, func(x))
    if fourier func != func:
        plt.plot(x, fourier_func(x))
        plt.plot([t0, t0], [ymin, ymax], 'g--')
        plt.plot([t0 + T, t0 + T], [ymin, ymax], 'g--')
    # add labels
    plt.xlabel('t')
    plt.ylabel('f(t)')
    if fourier_func != func:
        plt.legend(['Source function', 'Fourier function'], loc='upper
   right')
    else:
        plt.legend(['Source function'], loc='upper right')
    # add caption
    plt.title(caption)
    plt.grid()
    plt.savefig(title + '.png')
```

Листинг 21: Функция для отрисовки графиков

Аргументы функции plot_func: func – исходная функция, fourier_func – функция частичной суммы ряда Фурье, t0 – начало промежутка, на котором проводится разложение, T – период функции, caption – подпись к графику, title – название файла для сохранения.

```
def plot_parametric_func(func, fourier_func, t0, T, caption = '', title =
   ''):
   t = np.linspace(t0, t0 + T, 1000)
   plt.figure(figsize=(8, 5))
   plt.plot(func(t).real, func(t).imag)
   if fourier_func != func:
        plt.plot(fourier func(t).real, fourier func(t).imag)
   # add labels
   plt.xlabel('Re')
   plt.ylabel('Im')
   if fourier_func != func:
        plt.legend(['Source function', 'Fourier function'], loc='upper
   right')
   else:
        plt.legend(['Source function'], loc='upper right')
   # add caption
   plt.title(caption)
   plt.grid()
   plt.savefig(title + '.png')
```

Листинг 22: Функция для отрисовки графиков (параметрическая функция)

Аргументы функции plot_parametric_func: func – исходная функция, fourier_func – функция частичной суммы ряда Фурье, t0 – начало промежутка, на котором проводится разложение, T – период функции, caption – подпись к графику, title – название файла для сохранения.

```
def calc_and_plot(func, t0, T, N, title):
    plot_func(func, func, t0, T, 'Source function', title)
    for n in N:
        right_caption = f'Fourier function, N = {n}'
        fourier_func = fourierise(func, t0, T, n)

        plot_func(func, fourier_func, t0, T, right_caption, title +
        f'_N_{n}')
```

Листинг 23: Функция для разложения в ряд Фурье с различными значениями N

Аргументы функции calc_and_plot: func – исходная функция, t0 – начало промежутка, на котором проводится разложение, T – период функции, N – количество коэффициентов N, title – название файла для сохранения.

```
def calc_and_plot_exp(func, t0, T, N, title):
    plot_func(func, func, t0, T, 'Source function', title)
    for n in N:
        right_caption = f'Fourier function (exp), N = {n}'
```

```
fourier_func = fourierise_exp(func, t0, T, n)

plot_func(func, fourier_func, t0, T, right_caption, title +
f'_N_{n}')
```

Листинг 24: Функция для разложения в ряд Фурье с различными значениями N

Аргументы функции calc_and_plot_exp: func — исходная функция, t0 — начало промежутка, на котором проводится разложение, T — период функции, N — количество коэффициентов N, title — название файла для сохранения.

```
def calc_and_plot_parametric(func, t0, T, N, title):
    plot_parametric_func(func, func, t0, T, 'Source function', title)
    for n in N:
        right_caption = f'Fourier function, N = {n}'
        fourier_func = fourierise_exp(func, t0, T, n)

        plot_parametric_func(func, fourier_func, t0, T, right_caption, title + f'_N_{n}')
```

Листинг 25: Функция для разложения в ряд Фурье с различными значениями N (параметрическая функция)

Аргументы функции calc_and_plot_parametric: func – исходная функция, t0 – начало промежутка, на котором проводится разложение, T – период функции, N – количество коэффициентов N, title – название файла для сохранения.

```
def print_fourier_coefficients(a, b):
    for i in range(len(a)):
        print(f'a_{i} = \t{a[i]:.5f}, \tb_{i} = \t{b[i]:.5f}')
```

Листинг 26: Функция для вывода коэффициентов

Аргументы функции print_fourier_coefficients: а и b — коэффициенты Фурье.

```
def print_fourier_exp_coefficients(c):
    for i in range(len(c)):
        print(f'c_{i - len(c) // 2} = \t{c[i]:.5f}')
```

Листинг 27: Функция для вывода коэффициентов

Аргументы функции print_fourier_coefficients_exp: c- коэффициенты Фурье.

```
def perseval_check(func, N):
    norm_squared = dot_product(func, func, -np.pi, np.pi)
    a, b = fourier(func, -np.pi, 2 * np.pi, N)
```

```
c = fourier_exp(func, -np.pi, 2 * np.pi, N)
c_sum = 2 * np.pi * sum(abs(c[i]) ** 2 for i in range(len(c)))
ab_sum = np.pi * (a[0] ** 2 / 2 + sum([a[i] ** 2 + b[i] ** 2 for i in
range(1, N + 1)]))
print(f'Norm squared: {norm_squared:.5f}, \tSum of |c_i|^2:
{c_sum:.5f}, \tSum of |a_i|^2 + |b_i|^2: {ab_sum:.5f}')
```

Листинг 28: Функция для проверки равенства Персеваля

Аргументы функции perseval_check: func — функция, для которой проверяется равенство Персеваля, N — количество коэффициентов N.

```
func = np.vectorize(lambda x: 1 if 0 <= (x - 1) % 3 < 1 else 2)
print("Func 1")
a, b = fourier(func, 1, 3, 3)
print_fourier_coefficients(a, b)
c = fourier_exp(func, 1, 3, 3)
print_fourier_exp_coefficients(c)

calc_and_plot(func, 1, 3, [1, 2, 5, 15, 30], './media/plots/func_1')
calc_and_plot_exp(func, 1, 3, [1, 2, 5, 15, 30], './media/plots/func_1_exp')</pre>
```

Листинг 29: Пример работы с функциями

В данном примере функция func (согласно уравнению (5)) – функция с периодом T=3. a, b, c – коэффициенты Фурье для N=3

В Исходный код для дополнительного задания

Исходный код для дополнительного задания можно найти по ссылке: GitHub

```
def dot_product(f, g, number_of_points):
    x = np.linspace(0, 1, number_of_points)
    dx = x[1] - x[0]
    return np.dot(f(x), g(x)) * dx
```

Листинг 30: Скалярное произведение на интервале [1, 0]

Аргументы функции dot_product: f и g – функции, для которых вычисляется скалярное произведение, number_of_points – количество точек, на которое разбивается кривая из картинки.

```
def fourier_exp(func, number_of_points, N):
    c = []
    for i in range(-N, N + 1):
        exp = lambda x: np.e ** (-1j * 2 * np.pi * i * x)
        c.append((dot_product(func, exp, number_of_points), i))
    return c
```

Листинг 31: Вычисление коэффициентов Фурье

Аргументы функции fourier_exp: func — функция, для которой вычисляются коэффициенты, number_of_points — количество точек, на которое разбивается кривая из картинки, N — количество коэффициентов.

```
def spline_decomposition(spline, scale, number_of_points,
   number_of_components):
   path = svg.path.parse_path(spline)
   path_func = np.vectorize(lambda t: path.point(t) * scale)

   c = fourier_exp(path_func, number_of_points, number_of_components)
   return c
```

Листинг 32: Разложение линии по Фурье

Аргументы функции spline_decomposition: spline – кривая, для которой проводится разложение, scale – масштаб, number_of_points – количество точек, на которое разбивается кривая из картинки, number_of_components – количество коэффициентов.

```
def get_length_and_start_proportion(c):
   length = np.sqrt(c.real ** 2 + c.imag ** 2)
```

```
prop = math.atan2(-c.imag, c.real)
if prop < 0: prop += 2 * math.pi
prop /= 2 * math.pi
return length, prop</pre>
```

Листинг 33: Получение радиуса и начального положения

Аргументы функции get_length_and_start_proportion: c — коэффициент ряда Фурье.

```
def fourier_exp_func(c, N):
    return lambda x: sum([c[i + len(c) // 2][0] * np.e ** (1j * 2 * np.pi *
    i * x) for i in range(-N, N + 1)])

def fourierise_exp(func, number_of_points, N):
    c = fourier_exp(func, number_of_points, N)
    return fourier_exp_func(c, N)
```

Листинг 34: Получение частичной суммы ряда Фурье

Аргументы функции fourierise_exp: func — функция, для которой проводится разложение, number_of_points — количество точек, на которое разбивается кривая из картинки, N — количество коэффициентов.

```
class RotatingCircle(Circle):
    def __init__(self, radius, frequency, initial_dot_position, parent,
    **kwargs):
        super().__init__(radius=radius, **kwargs)
        self.parent = parent
        self.frequency = frequency
        self.dot_position = initial_dot_position

        if parent is not None:
            self.move_to(parent.point_from_proportion(parent.dot_position %
        1))
```

Листинг 35: Исходный код класса окружности

```
class DotOnCircle(Dot):
    def __init__(self, inner_circle, **kwargs):
        super().__init__(**kwargs)
        self.inner_circle = inner_circle

    if inner_circle is not None:

    self.move_to(inner_circle.point_from_proportion(inner_circle.dot_position % 1))
```

Листинг 36: Исходный код класса точки на окружности

```
class VectorInCircle(Arrow):
```

```
def __init__(self, inner_circle, **kwargs):
        super().__init__(start=inner_circle.get_center(),
    end=inner_circle.point_from_proportion(inner_circle.dot_position % 1))
        self.inner_circle = inner_circle
```

Листинг 37: Исходный код класса вектора внутри окружности

```
class Drawing(ZoomedScene):
   def construct(self):
        self.camera.frame.set(width=15 * frame_scale)
        def rotating_circle_updater(circle, dt):
            circle.dot_position += (dt * circle.frequency) # change on
   circle dot position
            if circle.parent is not None:
   circle.move_to(circle.parent.point_from_proportion(circle.parent.dot_
                position % 1)) # move center to parent circle dot position
        def dot_on_circle_updater(dot, dt):
            if dot.inner_circle is not None:
                dot.move_to(dot.inner_circle.point_from_
                proportion(dot.inner_circle.dot_position % 1))
        def vector_in_circle_updater(vector, dt):
            vector.put_start_and_end_on(vector.inner_circle.get_center(),
   vector.inner_circle.point_from_proportion(vector.inner_circle.dot_position
   % 1))
        coefficients = spline_decomposition(spline, scale,
   number_of_points, number_of_components)
        coefficients.sort(key=lambda x: np.sqrt(x[0].real ** 2 + x[0].imag
   ** 2), reverse=True) # sort by length
        # coefficients.sort(key=lambda x: x[1]) # sort by frequency
        components = []
        for coefficient in coefficients:
            r, a = get_length_and_start_proportion(coefficient[0])
            n = coefficient[1] / time_scale
            if n == 0: continue
            c = RotatingCircle(r, n, a, components[-1][0] if
   len(components) > 0 else None, color=WHITE, stroke_width=0.5)
            # d = DotOnCircle(c, color=BLUE)
            v = VectorInCircle(c, color=WHITE)
            c.add_updater(rotating_circle_updater)
            # d.add_updater(dot_on_circle_updater)
            v.add_updater(vector_in_circle_updater)
            components.append([c, v])
```

```
for i in range(len(components)):
    self.add(components[i][0], components[i][1])

    trace = TracedPath(components[-1][1].get_end, stroke_color=BLUE,
    stroke_width=5, dissipating_time=4.8)
    self.add(trace)

self.wait(10)
```

Листинг 38: Исходрый код основного класса анимации