### Task 1 Open Log and Read in Data

- Use the rm function to remove all active objects in the memory (global environment) and the setwd function to create a working directory and
- Use the sink function to divert the codes and results to a log file and use the read.dta function to load the external Stata data file gsscum7212Teach.dta into R.
- > rm(list=ls(all = TRUE))
- > setwd("/Users/burrisfaculty/Desktop/DSCode/SOC686")
- > library(foreign)
- > mygss <- read.dta("gsscum7212teach.dta")</pre>

## Task 2 Explore Data

- Keep six variables, include mental health (mntlhlth), age (age), sex (sex), race (race), education (educ), and income (inclk)
- · Explore each of the six variables using the table and the summary function.

```
> usevar <- c("mntlhlth", 'age', 'sex', 'race', 'educ', 'inc1k')</pre>
```

> useddta <- mygss[usevar]</pre>

## Table and summary for mntlhlth

> table(useddta\$mntlhlth, useNA = c("ifany"))

```
0 1 2 3 4 5 6 7 8 10 12 14 15 16 18 20 21 25
401 34 62 37 29 39 6 19 2 35 3 4 22 1 2 21 2 9 7 30 <NA> 1 23 4954
```

> summary(useddta\$mntlhlth)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.00 0.00 0.00 3.98 5.00 30.00 4954
```

## Table and summary for age

> table(useddta\$age, useNA = c("ifany"))

```
18
       19
            20
                  21
                       22
                            23
                                  24
                                       25
                                             26
                                                   27
                                                        28
                                                              29
                                                                   30
                                                                         31
                                                                              32
                                                                                    33
                                                                                               35
                                                                                          34
  27
       92
            91
                  93
                        80
                           119
                                 111
                                       123
                                            114
                                                  125
                                                       151
                                                             124
                                                                   118
                                                                        117
                                                                             143
                                                                                   126
                                                                                         136
                                                                                              114
 36
       37
            38
                  39
                       40
                            41
                                  42
                                       43
                                             44
                                                  45
                                                        46
                                                              47
                                                                   48
                                                                        49
                                                                              50
                                                                                    51
                                                                                          52
                                                                                               53
 131 107
           121
                  91
                      102
                            111
                                  95
                                       123
                                            115
                                                   83
                                                       112
                                                              89
                                                                   99
                                                                        117
                                                                              99
                                                                                    91
                                                                                          98
                                                                                               76
  54
       55
            56
                  57
                       58
                             59
                                  60
                                        61
                                             62
                                                   63
                                                        64
                                                              65
                                                                    66
                                                                         67
                                                                               68
                                                                                    69
                                                                                          70
                                                                                               71
  80
       80
            73
                  72
                       74
                             69
                                  81
                                        70
                                              77
                                                   78
                                                         71
                                                              74
                                                                   58
                                                                         72
                                                                               67
                                                                                    71
                                                                                          62
                                                                                               49
  72
       73
            74
                  75
                       76
                                  78
                                        79
                                                   81
                                                         82
                                                                   84
                                                                              86
  58
       49
            54
                  37
                       37
                             4.3
                                  46
                                        2.5
                                              2.1
                                                              2.3
                                                                   2.2
                                                                         2.1
                                                                              16
                                                                                    14
                                                                                          10
                                                                                               35
<NA>
```

> summary(useddta\$age)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 18.00 31.00 43.00 45.57 59.00 89.00 18
```

## Table and summary for sex

```
> table(useddta$sex, useNA = c("ifany"))
 male female
  2480 3226
> summary(useddta$sex)
 male female
  2480 3226
Table and summary for race
> table(useddta$race, useNA = c("ifany"))
  iap white black other
    0 4644 770
> summary(useddta$race)
  iap white black other
    0 4644
              770 292
Table and summary for educ
> table(useddta$educ, useNA = c("ifany"))
                        6
                            7
                                8
                                   9 10 11 12 13 14 15 16 17
     7 15 25 33 30 85 90 251 213 216 350 1817 479 580 249 679 167
 20
    19
 1.8
        20 <NA>
    91 102
> summary(useddta$educ)
                          Mean 3rd Qu.
                                                     NA's
   Min. 1st Qu. Median
                                              Max.
    0.0 12.0
                    12.0
                                              20.0
                                                       18
Table and summary for inc1k
> table(useddta$inc1k, useNA = c("ifany"))
0.312849968671799 0.345000028610229 0.363000065088272 0.382000058889389 0.444000065326691
0.962999880313873 0.980000197887421 1.03600001335144 1.07099986076355 1.1120001077652
1.13700008392334 \quad 1.20760011672974 \quad 1.23399996757507 \quad 1.25139987468719 \quad 1.31000018119812
1.32999980449677 1.37799978256226 1.45000004768372 1.52800023555756 1.57200014591217
1.67099976539612 \qquad 1.7150000333786 \quad 1.81299960613251 \quad 1.92999982833862 \quad 1.98974978923798
2.00000023841858 2.11100053787231 2.11329984664917 2.18995046615601 2.20100021362305
```

| 2.7171003818512           | 2.75099968910217       | 2.81564974784851       | 2.84899997711182       | 2.92499923706055       |
|---------------------------|------------------------|------------------------|------------------------|------------------------|
| 3<br>2.9452497959137<br>2 | 2.99200034141541       | 3.02099895477295       | 3.09999847412109       | 3.10499882698059       |
| 3.12675023078918          | 3.24699878692627       | 3.26300096511841       | 3.31584334373474       | 3.32883048057556       |
| 3.36700057983398          | 3.37264037132263       | 3.37800002098083       | 3.43799901008606       | 3.44135165214539       |
| 3.48074817657471          | 3.50000143051147       | 3.5369987487793        | 3.56700110435486       | 3.61899828910828       |
| 3.65699911117554          | 3.67500066757202       | 3.69500041007996       | 3.69525074958801       | 3.74912452697754       |
| 3.75999879837036          | 3.78900098800659       | 3.85199952125549       | 3.88499999046326       | 3.92470073699951       |
| 3.96213483810425          | 3.9760000705719        | 3.98800015449524       | 4.01625156402588       | 4.06704807281494       |
| 4.0740008354187           | 4.11047840118408       | 4.17499876022339       | 4.20200109481812       | 4.21999979019165       |
| 4.2637505531311           | 4.32199907302856       | 4.32300090789795       | 4.34300088882446       | 4.34620380401611       |
| 4.41000080108643          | 4.44700145721436       | 4.47800064086914       | 4.50000047683716       | 4.5285005569458        |
| 4.57300615310669          | 4.58700037002563       | 4.59599924087524       | 4.66200017929077       | 4.69275188446045       |
| 4.71300172805786          | 4.74999809265137       | 4.81950187683105       | 4.87900114059448       | 4.93499755859375       |
| 4.95199823379517          | 4.96600151062012       | 4.9870023727417        | 5.10199928283691       | 5.10900163650513       |
| 5.11199855804443          | 5.11650037765503       | 5.16700172424316       | 5.24200248718262       | 5.2870020866394        |
| 5.30799865722656          | 5.42499923706055       | 5.43199872970581       | 5.43420076370239       | 5.43800067901611       |
| 5.49999809265137          | 5.51250123977661       | 5.60599994659424       | 5.63130235671997       | 5.7300009727478        |
| 5.76599931716919          | 5.80599880218506       | 5.8274998664856        | 5.89500093460083       | 5.89644050598145       |
| 5.98500204086304          | 6.02437734603882       | 6.02999925613403       | 6.0529990196228        | 6.05927133560181       |
| 6.15190982818604          | 6.20099973678589       | 6.23559617996216       | 6.24800157546997       | 6.26700258255005       |
| 6.27299976348877          | 6.30417394638062       | 6.33300161361694       | 6.39562606811523       | 6.45313119888306       |
| 6.49999856948853          | 6.52499723434448       | 6.62500190734863       | 6.63100051879883       | 6.65299940109253       |
| 6.73749876022339          | 6.74100160598755<br>10 | 6.74680233001709       | 6.7927508354187<br>3   | 6.79427337646484<br>1  |
| 6.7979998588562<br>4      | 6.86100101470947<br>3  | 6.87600088119507<br>6  | 6.9580020904541        | 7.03912782669067       |
| 7.03949069976807          | 7.04162549972534       | 7.0740008354187        | 7.11407232284546       | 7.11829328536987<br>1  |
| 7.12249708175659<br>6     | 7.13000011444092<br>10 | 7.15299940109253       | 7.23799991607666<br>4  | 7.36312437057495<br>6  |
| 7.38400220870972          | 7.48100280761719<br>14 | 7.49999761581421       | 7.52099800109863       | 7.64399862289429       |
| 7.65081071853638<br>1     | 7.71156692504883       | 7.75099802017212       | 7.78200244903564<br>11 | 7.81687259674072<br>17 |
| 7.83600234985352<br>7     | 7.83913421630859<br>1  | 7.86015462875366<br>1  | 7.88833808898926<br>1  | 7.91699934005737       |
| 7.96249914169312          | 7.9840030670166<br>7   | 8.12199974060059<br>12 | 8.14200115203857<br>7  | 8.15599727630615<br>13 |
| 8.25400257110596          | 8.2664966583252<br>1   | 8.29364585876465       | 8.30224704742432       | 8.30799674987793       |
| 8.31664657592773          | 8.34899711608887<br>5  | 8.41749668121338       | 8.43902206420898       | 8.5200023651123        |
| 8.59500217437744<br>15    | 8.60337543487549       | 8.63600063323975<br>7  | 8.66699886322021<br>4  | 8.68500423431396<br>5  |
| 8.69449234008789          | 8.70187473297119<br>5  | 8.70726299285889       | 8.84299945831299       | 8.87659358978271<br>1  |
| 8.99999713897705<br>6     | 9.04199695587158       | 9.06238746643066       | 9.07034301757812       | 9.14223098754883       |
| 9.14299869537354          | 9.16699981689453       | 9.17300033569336<br>17 | 9.18749809265137       | 9.23812294006348       |
| 9.24072170257568          | 9.3040189743042        | 9.40099716186523       | 9.47300434112549       | 9.5                    |
| 9.5033073425293           | 9.62625789642334       | 9.64777278900146       | 9.71249580383301       | 9.75203418731689<br>1  |
|                           |                        |                        |                        |                        |

| 9.75462055206299       | 9.81174850463867<br>6  | 9.81900215148926<br>7  | 9.85030937194824       | 9.86153221130371<br>1  |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| 9.90500164031982       | 9.95200347900391       | 9.96899795532227       | 9.97226810455322       | 9.98000431060791<br>7  |
| 10.0050001144409       | 10.0112991333008       | 10.040623664856        | 10.0774421691895       | 10.1676263809204       |
| 10.1768712997437       | 10.2203073501587       | 10.2229976654053       | 10.2312297821045       | 10.2455148696899       |
| 10.3233404159546       | 10.387354850769        | 10.3965711593628       | 10.4124975204468       | 10.4359979629517       |
| 10.4838199615479       | 10.504997253418        | 10.5187711715698       | 10.5940046310425       | 10.6593713760376<br>13 |
| 10.7324876785278       | 10.7467136383057       | 10.8060026168823       | 10.8069925308228       | 10.8080015182495       |
| 10.816065788269        | 10.8183240890503       | 10.8472929000854       | 10.8500032424927       | 10.8570003509521       |
| 1 10.86243724823       | 1 10.892219543457      | 10.9157829284668       | 7 10.9222602844238     | 11<br>10.9857225418091 |
| 11.0075044631958       | 11.0141201019287       | 11.0360431671143       | 11.0463190078735       | 1 11.0499439239502     |
| 6 11.0514621734619     | 1 11.1030035018921     | 1<br>11.111011505127   | 1 11.1368961334229     | 1<br>11.1959991455078  |
| 11.2050037384033       | 1 11.2282056808472     | 11.2499961853027       | 11.3173589706421       | 4<br>11.3212461471558  |
| 7 11.3290014266968     | 1 11.3793725967407     | 12<br>11.3844528198242 | 1 11.4659976959229     | 7 11.4900035858154     |
| 4<br>11.5382747650146  | 9 11.6375017166138     | 11.6599760055542       | 9 11.6940622329712     | 9 11.7184782028198     |
| 1 11.7318754196167     | 6<br>11.744647026062   | 1 11.7609996795654     | 11.7724018096924       | 1 11.7810049057007     |
| 10<br>11.793999671936  | 11.8189172744751       | 9 11.8489255905151     | 1<br>11.875997543335   | 6<br>11.9353685379028  |
| 4<br>12.063362121582   | 1<br>12.0806198120117  | 1<br>12.1227216720581  | 8<br>12.1687984466553  | 1<br>12.174464225769   |
| 1 12.1969966888428     | 14<br>12.22900390625   | 1<br>12.3024988174438  | 1<br>12.3177843093872  | 1<br>12.3274793624878  |
| 4<br>12.3418779373169  | 5<br>12.3565406799316  | 9 12.3810052871704     | 1<br>12.4090557098389  | 1<br>12.4149980545044  |
| 1<br>12.467999458313   | 1<br>12.5199966430664  | 5<br>12.5951814651489  | 1<br>12.71812915802    | 13<br>12.718165397644  |
| 9<br>12.7560033798218  | 5<br>12.7729969024658  | 1<br>12.7790040969849  | 4<br>12.8147125244141  | 1<br>12.8245306015015  |
| 6<br>12.8307447433472  | 9<br>12.8385782241821  | 10<br>12.8903274536133 | 1<br>12.9051609039307  | 1<br>12.9180040359497  |
| 12<br>12.9335851669312 | 1<br>13.008113861084   | 1<br>13.0627012252808  | 1<br>13.123610496521   | 7<br>13.1279163360596  |
| 1<br>13.2236642837524  | 1<br>13.2319650650024  | 1<br>13.242000579834   | 1<br>13.2690029144287  | 1<br>13.296124458313   |
| 1<br>13.3172149658203  | 1<br>13.3764915466309  | 6<br>13.4021701812744  | 8<br>13.475004196167   | 10<br>13.4937143325806 |
| 1<br>13.5018749237061  | 1<br>13.5369958877563  | 1<br>13.5569696426392  | 11<br>13.5629959106445 | 1<br>13.5699949264526  |
| 13<br>13.5790061950684 | 19<br>13.5939970016479 | 1<br>13.5949954986572  | 13<br>13.6877126693726 | 14<br>13.7353763580322 |
| 12<br>13.7500028610229 | 12                     | 9                      | 1<br>13.8759098052979  | 1<br>13.8913879394531  |
| 7<br>13.9312152862549  | 1<br>13.9367027282715  | 1<br>13.942193031311   | 1<br>13.9433364868164  | 1<br>13.9802465438843  |
| 1<br>14.0149936676025  | 1<br>14.1064586639404  | 1                      | 1                      | 1<br>14.1678438186646  |
| 12<br>14.2201480865479 | 1                      | 1<br>14.3226051330566  | 9                      | 1<br>14.3402500152588  |
| 1                      | 8                      | 1<br>14.4520053863525  | 6                      | 7<br>14.5150051116943  |
| 11<br>14.5333576202393 | 4<br>14.5497217178345  | 8<br>14.5613956451416  | 1<br>14.6274385452271  | 11<br>14.6361169815063 |
| 1<br>14.6410036087036  | 1                      | 1<br>14.7325210571289  | 1                      | 1<br>14.7919321060181  |
| 9 14.8256988525391     | 10                     | 1                      | 3<br>14.8783044815063  | 1                      |
| 2 14.9133644104004     | 2                      | 8<br>14.9434328079224  | 1                      | 1<br>14.9568204879761  |
| 1                      | 1 14.9670658111572     | 1                      | 1                      | 1                      |
| 1 15.0733232498169     | 1                      | 1 15.1320009231567     | 1                      | 1 15.1513795852661     |
| 1                      | 9                      | 9                      | 1                      | 1                      |
|                        |                        |                        |                        |                        |

| 15.1577243804932      | 15.2433109283447       | 15.2789974212646           | 15.3102397918701       | 15.371994972229<br>2        |
|-----------------------|------------------------|----------------------------|------------------------|-----------------------------|
| 15.3933115005493      | 15.3972463607788       | 6<br>15.4001235961914      | 15.4060001373291       | 15.4105110168457            |
| 15.4288196563721      | 15.4327783584595       | 15.4431867599487           | 15.5047388076782       | 15.5148258209229            |
| 15.5412015914917      | 1 15.562557220459      | 1 15.5770502090454         | 1 15.6028003692627     | 1<br>15.6165409088135       |
| 1 15.6189994812012    | 1 15.6337518692017     | 15.6464157104492           | 1 15.6680068969727     | 1<br>15.681999206543        |
| 8 15.6861429214478    | 18<br>15.6934299468994 | 1 15.7363815307617         | 1 15.7455244064331     | 2<br>15.7537403106689       |
| 1 15.788649559021     | 1 15.7930011749268     | 1 15.7959833145142         | 1 15.8189430236816     | 1<br>15.8254156112671       |
| 1 15.8873558044434    | 12<br>15.8884925842285 | 1 15.9195852279663         | 1 15.9250059127808     | 1<br>15.9518337249756       |
| 1 15.9700231552124    | 15.9774570465088       | 16.0170631408691           | 10<br>16.0348987579346 | 16.0380020141602            |
| 16.0444889068604      | 16.0513916015625       | 16.0901050567627           | 16.1358375549316       | 8<br>16.16943359375         |
| 1 16.2212677001953    | 1 16.2288188934326     | 1 16.2349948883057         | 1 16.2500057220459     | 1 16.2839946746826          |
| 16.3238620758057      | 16.3466529846191       | 13<br>16.3629989624023     | 2 16.3729095458984     | 10<br>16.5113830566406      |
| 1 16.5267601013184    | 1 16.5409660339355     | 5 16.5630016326904         | 1 16.5729560852051     | 1<br>16.5770034790039       |
| 1<br>16.5806713104248 | 1<br>16.6045017242432  | 5<br>16.6329975128174<br>6 | 1<br>16.6653881072998  | 13<br>16.6734981536865<br>1 |
| 16.6759948730469      | 16.6890239715576       | 16.6940364837646           | 16.6967926025391       | 16.7022552490234            |
| 16.7030048370361      | 16.7045650482178       | 16.7278881072998           | 16.7489585876465       | 16.7590560913086            |
| 16.7656421661377      | 16.7711448669434       | 16.8059043884277           | 16.8350028991699       | 16.8415222167969            |
| 16.8420677185059      | 16.8458442687988       | 16.8572044372559           | 16.8624782562256       | 16.8728866577148            |
| 16.9031181335449      | 16.9279270172119       | 16.9358081817627           | 16.9552974700928       | 16.9650993347168            |
| 16.9738864898682      | 16.991231918335        | 16.9940032958984           | 17.022876739502        | 17.0359973907471            |
| 17.0379981994629      | 17.0463676452637       | 17.0941314697266           | 17.098518371582        | 17.1064758300781            |
| 17.1100482940674      | 17.1155815124512       | 17.1539993286133           | 17.1830291748047       | 17.2067584991455<br>13      |
| 17.2102546691895      | 17.2744312286377       | 17.3249340057373           | 17.334997177124        | 17.345516204834             |
| 17.3792285919189      | 17.3800563812256       | 17.3940010070801           | 17.3962249755859       | 17.4037418365479<br>13      |
| 17.4903964996338      | 17.4913806915283       | 17.5031795501709           | 17.5193099975586       | 17.5435199737549            |
| 17.5569438934326      | 17.5692863464355       | 17.5719528198242           | 17.5846424102783       | 17.6128883361816            |
| 17.7022228240967      | 17.7065296173096       | 17.7372379302979           | 17.7570056915283       | 17.764289855957             |
| 17.8056564331055      | 17.8290901184082       | 17.8494205474854           | 17.8696022033691       | 17.8839912414551            |
| 17.8909854888916      | 17.8934593200684       | 17.898868560791            | 17.9243221282959       | 17.9540042877197<br>15      |
| 18.0366535186768      | 18.0735893249512       | 18.0808982849121           | 18.0843296051025       | 18.0940074920654            |
| 18.1110496520996      | 18.170129776001        | 18.1758117675781           | 18.1794357299805       | 18.1984996795654<br>1       |
| 18.2695350646973      | 18.2870025634766<br>15 | 18.3176174163818           | 18.3214435577393       | 18.3350067138672<br>10      |
| 18.3517475128174      | 18.3606414794922       | 18.371955871582            | 18.3750038146973       | 18.416145324707<br>1        |
| 18.4482765197754      | 18.4589939117432<br>14 |                            | 18.4762535095215       | 18.4860553741455<br>1       |
| 18.4974632263184      | 18.504997253418        |                            | 18.5601940155029       |                             |
| 18.5899906158447      | 18.5986423492432       | 18.6467380523682           | 18.6473770141602       | 18.6654376983643            |
| 18.6657409667969      | 18.6704044342041       | 18.6958293914795           | 18.6988620758057<br>1  | 18.7081718444824<br>1       |
| 18.721076965332       | 18.7217178344727       | 18.7288970947266           | 18.7500038146973       | 18.759859085083<br>1        |
| -                     | -                      | -                          | · ·                    | _                           |

| 18.7699337005615       | 18.7825946807861      | 18.799259185791        | 18.826530456543        | 18.8509998321533       |
|------------------------|-----------------------|------------------------|------------------------|------------------------|
| 1<br>18.8752136230469  | 1<br>18.9088344573975 | 1<br>18.9326515197754  | 1<br>18.9469928741455  | 6<br>18.9510040283203  |
| 2<br>18.9881820678711  | 1<br>19.0156002044678 | 1 19.0461444854736     | 21<br>19.0488700866699 | 10<br>19.1110095977783 |
| 1<br>19.1276187896729  | 1<br>19.1623458862305 | 1<br>19.1666049957275  | 1<br>19.1779594421387  | 11<br>19.1947383880615 |
| 1<br>19.2011280059814  | 1<br>19.2078876495361 | 1<br>19.2405395507812  | 1<br>19.2615776062012  | 1<br>19.2746257781982  |
| 1<br>19.3010196685791  | 1<br>19.3048496246338 | 1<br>19.313024520874   | 1<br>19.3374462127686  | 1<br>19.3604011535645  |
| 1<br>19.4052257537842  | 1<br>19.4235572814941 | 1<br>19.4249992370605  | 1<br>19.4325981140137  | 1<br>19.4656314849854  |
| 1<br>19.4692344665527  | 1<br>19.508264541626  | 7<br>19.5323162078857  | 1<br>19.5475959777832  | 1<br>19.5869140625     |
| 1<br>19.5910053253174  | 1<br>19.6072673797607 | 1<br>19.6235046386719  | 1<br>19.6569938659668  | 1<br>19.6599578857422  |
| 13<br>19.6777782440186 | 1<br>19.6904468536377 | 23<br>19.7129936218262 | 9<br>19.7131080627441  | 1<br>19.746826171875   |
| 1<br>19.7629699707031  | 1<br>19.7801475524902 | 5<br>19.7810726165771  | 1<br>19.7929992675781  | 1<br>19.8027038574219  |
| 19.8089942932129       | 19.8459987640381      | 19.8551425933838       | 3<br>19.8573760986328  | 19.8640823364258       |
| 19.869176864624        | 6<br>19.8758678436279 | 19.9179916381836       | 19.9380054473877       | 19.9494915008545       |
| 19.9900016784668       | 20.0086154937744      | 20.0110015869141       | 13<br>20.0221118927002 | 20.0458030700684       |
| 20.0623645782471       | 20.0726623535156      | 12<br>20.0812568664551 | 20.0863914489746       | 20.0925807952881       |
| 1<br>20.1206321716309  | 20.1423473358154      | 8<br>20.1862678527832  | 20.2226295471191       | 20.2424068450928       |
| 20.3110332489014       | 20.335241317749       | 20.345308303833        | 20.3549938201904       | 20.3640403747559       |
| 20.3736763000488       | 20.378963470459       | 20.3900241851807       | 20.4072208404541       | 20.4086799621582       |
| 20.411678314209        | 20.4129428863525      | 20.4193305969238       | 20.4847869873047       | 20.4877948760986       |
| 20.502592086792        | 20.5069923400879      | 20.5407752990723       | 20.6013946533203       | 20.609058380127        |
| 20.6349983215332       | 20.6762866973877      | 20.6899375915527       | 20.7425098419189       | 20.7700042724609       |
| 20.7741451263428       | 20.8232555389404      | 20.8870410919189       | 20.9181365966797       | 20.9325866699219       |
| 20.9417304992676       | 20.9775505065918      | 20.9807510375977       | 20.9912986755371       | 21.0100040435791       |
| 21.0206069946289       | 21.0679893493652      | 21.0906867980957       | 21.0908889770508       | 21.1080303192139       |
| 21.1693572998047       | 21.2163276672363      | 21.2500019073486       | 21.298999786377        | 21.3061504364014       |
| 21.3187522888184       | 21.3319721221924      | 21.4025592803955       | 21.4383697509766       | 21.4469184875488       |
| 21.4923725128174       | 21.6119937896729      | 21.6126136779785       | 21.6150035858154       | 21.6427898406982       |
| 21.6589984893799       | 21.6689968109131      | 21.6776580810547       | 21.6932926177979       | 21.7069702148438       |
| 21.7339191436768       | 21.7655124664307      | 21.7931346893311       | 21.8101863861084       | 21.8915176391602       |
| 21.9368877410889       | 21.9657573699951      | 22.011157989502        | 22.0304164886475       | 22.0319900512695       |
| 22.0394725799561       | 22.0476722717285      | 22.0500049591064       | 22.0742645263672       | 22.1800479888916       |
| 22.1951160430908       | 22.1958332061768      | 22.205997467041<br>15  | 22.2578792572021       | 22.2925891876221       |
| 22.3486385345459       | 22.3920097351074 24   | 22.4174137115479       | 22.431999206543        | 22.4395523071289       |
| 22.5441856384277       | 22.5933647155762      | 22.6050033569336       | 22.6249103546143       | 22.6264209747314       |
| 22.6425018310547       | 22.7713718414307      | 22.777214050293        | 22.8018836975098       | 22.9189987182617       |
| 22.9658203125          | 22.9799957275391      | 23.035924911499        | 23.0743370056152       | 23.0836486816406       |
| 23.3099994659424       | 23.3379821777344      | 23.3859958648682<br>11 | 23.4032211303711       | 23.4637603759766       |
| 23.563009262085        | 23.5880107879639      | 23.6295051574707       | 23.6875820159912       | 23.7377853393555       |

| 23.7499904632568       | 23.8359203338623       | 23.9472007751465       | 24.001501083374<br>1        | 24.0383148193359            |
|------------------------|------------------------|------------------------|-----------------------------|-----------------------------|
| 24.0975093841553       | 24.1210765838623       | 24.1390037536621       | 24.207010269165             | 24.2512836456299            |
| 20 24.3062725067139    | 24.3659896850586       | 24.3773555755615       | 24.3907032012939            | 24.3950061798096            |
| 1 24.4603748321533     | 18<br>24.5429992675781 | 1 24.5470027923584     | 1 24.5626449584961          | 8<br>24.5973148345947       |
| 1 24.6775550842285     | 10<br>24.6803550720215 | 5 24.6838855743408     | 1<br>24.719762802124        | 1<br>24.7441749572754       |
| 1 24.7658004760742     | 1 24.7895259857178     | 1 24.8300075531006     | 1 24.8619499206543          | 1<br>24.8790016174316       |
| 24.9012680053711       | 1 24.9026679992676     | 20 24.9076557159424    | 1 24.9192523956299          | 13<br>24.9370098114014      |
| 1 24.9987525939941     | 1 25.1022186279297     | 1 25.1756286621094     | 1<br>25.2174873352051       | 18<br>25.3855247497559      |
| 1 25.4090423583984     | 1 25.4429664611816     | 1 25.4617042541504     | 1<br>25.4650077819824       | 25.5109958648682            |
| 1<br>25.514087677002   | 1<br>25.5450077056885  | 1<br>25.5631866455078  | 37<br>25.5825042724609      | 21<br>25.5869922637939<br>7 |
| 25.6107940673828       | 25.6173667907715       | 25.6190032958984       | 34<br>25.6412220001221      | 25.6426639556885            |
| 25.6489753723145       | 25.6531581878662       | 25.7967758178711       | 25.8370056152344            | 25.8568477630615            |
| 25.8781127929688       | 1<br>26.0223693847656  | 26.0379333496094       | 22<br>26.1136817932129      | 1<br>26.1331634521484       |
| 1<br>26.1382732391357  | 26.1417388916016       | 1<br>26.202615737915   | 1<br>26.2186870574951       | 26.2270164489746            |
| 26.3845119476318       | 26.4109954833984       | 26.4839897155762       | 26.5379943847656            | 26.726526260376             |
| 26.7638416290283       | 26.8955631256104<br>1  | 26.9499950408936<br>8  | 12<br>27.0180358886719      | 1<br>27.0659008026123       |
| 1<br>27.1469917297363  | 27.1579971313477       | 27.1710033416748<br>23 | 1<br>27.1880073547363<br>23 | 27.3516654968262            |
| 27.4999923706055       | 27.5047912597656       | 27.5781517028809       | 27.6257171630859            | 27.7155456542969            |
| 27.7910308837891       | 27.7929916381836       | 27.8078117370605       | 27.9018249511719            | 28.0290107727051            |
| 28.0300025939941       | 28.1565113067627<br>23 | 28.3015365600586       | 28.3230018615723            | 28.4899883270264<br>17      |
| 28.6500053405762       | 28.7432460784912       | 28.8299980163574       | 28.9983959197998            | 29.0328750610352            |
| 29.2208156585693       | 29.3102951049805       | 29.377233505249        | 29.4020118713379            | 29.4524974822998            |
| 29.4750061035156       | 29.6023635864258       | 29.6143360137939       | 29.7988510131836            | 29.8067512512207            |
| 29.925012588501        | 29.9440536499023       | 30.149995803833        | 30.1614971160889            | 30.2814235687256            |
| 30.3802051544189       | 30.4580097198486       | 30.6559371948242       | 30.6709403991699            | 30.6760005950928            |
| 30.8410015106201       | 30.8632469177246       | 30.9091663360596       | 31.004997253418             | 31.0110607147217            |
| 31.1343631744385       | 31.1781902313232       | 31.2674903869629       | 31.2989940643311            | 31.3360004425049            |
| 31.364013671875        | 31.4041194915771       | 31.6605682373047       | 31.6679973602295            | 31.7129077911377            |
| 31.7424392700195       | 31.9319610595703       | 31.9431991577148       | 31.9510612487793            | 31.9796257019043            |
| 32.0175857543945       | 32.0702095031738       | 32.1000137329102       | 32.1555938720703            | 32.3958358764648            |
| 32.4999923706055       | 32.506160736084        | 32.5317802429199       | 32.5364303588867            | 32.6249847412109            |
| 32.6574211120605       | 32.7101936340332       | 32.760986328125        | 32.9048614501953            | 33.0160102844238            |
| 33.0244522094727       | 33.075008392334        | 33.1250114440918       | 33.1252632141113            | 33.2089881896973            |
| 33.2660102844238       | 33.4096870422363       | 33.4123954772949       | 33.7737693786621            | 33.8190498352051            |
| 33.8344421386719       | 33.9260063171387       | 34.0171089172363       | 34.0779914855957            | 34.2394065856934            |
| 34.3800086975098       | 34.413501739502<br>27  | 34.5543823242188       | 34.7036552429199            | 34.7879867553711            |
| 34.9650001525879<br>12 | 35.1210021972656<br>10 | 35.3273620605469       | 35.3700065612793<br>11      | 35.6509895324707<br>16      |
| 36.1140174865723<br>10 | 36.1462669372559<br>25 | 36.1669883728027       | 36.1889991760254<br>8       | 36.2548408508301            |
| 10                     | 23                     | 22                     | O                           | ±                           |

```
[ reached getOption("max.print") -- omitted 135 entries ]
> summary(useddta$inc1k)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   0.245 12.481 22.605 30.279 37.226 162.607
```

#### Task 3 Clean Data

- Create a dummy variable for sex using male as the reference category (hint: For example, for the
  dummy variable of sex, we can create a new binary variable named female, with females coded as one
  and males coded as zero), and then create a dummy variable for race using blacks as the reference
  category (hint: For example, for the dummy variable of black, we can create a new binary variable
  named nonblack, with nonblacks recoded as one and other as zero).
- Drop missing cases and draw pairwise bivariate scatter plots of all variables.

```
#Make Dummy Variables
> useddta$female <- as.numeric(useddta$sex == "female")</pre>
> table(useddta$sex, useddta$female, useNA = c("ifany"))
            0
  male
         2480
            0 3226
  female
> useddta$nonblack <- as.numeric(useddta$race != 'black')</pre>
> table(useddta$race, useddta$nonblack, useNA = c("ifany"))
           0
                 1
           0
                 0
  iap
  white
           0 4644
 black
        770
                 0
           0 292
  other
> #Drop Missing Data
> nmdta <- useddta[complete.cases(useddta),]</pre>
> #Make Pairwise Scatterplots
>
> scatterplotMatrix(~ mntlhlth + age + sex + race +
                       educ + inc1k,
+
                     smooth = list(span = 0.7), data = useddta)
```



## Task 4 Run OLS Regression

- Run an OLS regression of mental health on age, sex (male as the reference category), race (nonblack as the reference category), education, and income.
- Provide interpretations for the set of coefficients of race and for the coefficient of education. ols.model <- lm(formula = mntlhlth ~ age + female + nonblack + educ + inc1k, data = nmdta ) > (summary(ols.model)) Call: lm(formula = mntlhlth ~ age + female + nonblack + educ + inc1k, data = nmdta) Residuals: 1Q Median 3Q Min -6.5285 -4.0983 -2.8307 0.5829 27.6992 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.888469 1.735513 2.817 0.00498 age -0.010493 0.020006 -0.525 0.60008 2.817 0.00498 \*\* age female 1.016221 0.527771 1.925 0.05455 0.784366 2.772 0.00571 \*\* 0.102653 -1.874 0.06132. nonblack 2.174152 educ -0.192373 -0.004288 0.007949 -0.539 0.58974 inc1k Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 '' 1 Residual standard error: 7.102 on 744 degrees of freedom Multiple R-squared: 0.01996, Adjusted R-squared: 0.01337

# **Interpretation of slope for female:**

F-statistic: 3.03 on 5 and 744 DF, p-value: 0.01024

Holding all other variables constant, we would expect females to have 1.01622 more poor mental health days on average than men.

## **Interpretation of slope for nonblack:**

Holding all other variables constant, we would expect people who are nonblack to have 2.174152 more poor mental health days on average than people who are black.

#### Task 5 Produce Prediction

Make within-sample predictions of the response variable.

table(useddta\$race, useNA = c("ifany"))

 Make the hypothetical prediction for a 35-year old black female with 20 years of education and 60k of annual income, and provide interpretation for the results.

```
> #Predicted Outcomes for Full Estimation Sample
> nmdta$mntlhlthpr <- predict(ols.model, type = "response")</pre>
> summary(nmdta$mntlhlthpr)
  Min. 1st Qu. Median Mean 3rd Qu.
-0.2233 3.3093 4.0865 3.9907 4.7694 6.7267
> #Hypothetical Prediction for 35-year old white female with 20 years of educ
> hyp.data <- data.frame( age = 35, nonblack = 1, female = 1,educ = 20, inc1k = 60)
> pr = predict(ols.model, hyp.data, interval = "confidence")
     Close Out

    Close out the log file

> save(useddta, file = "Assignment 02.rdata")
> sink()
R Script
#source("/Users/burrisfaculty/Desktop/DSCode/SOC686/Shepherd Lab
02 SOC686.R", echo = TRUE, max.deparse.length = 1000)
#Task 1
sink("assign 02 shepherd.log")
rm(list=ls(all = TRUE))
setwd("/Users/burrisfaculty/Desktop/DSCode/SOC686")
library(foreign)
library(carData)
library(car)
mygss <- read.dta("gsscum7212teach.dta")</pre>
#Task 2
usevar <- c("mntlhlth", 'age', 'sex', 'race', 'educ', 'inc1k')</pre>
useddta <- mygss[usevar]</pre>
table(useddta$mntlhlth, useNA = c("ifany"))
summary(useddta$mntlhlth)
table(useddta$age, useNA = c("ifany"))
summary(useddta$age)
table(useddta$sex, useNA = c("ifany"))
summary(useddta$sex)
```

```
summary(useddta$race)
table(useddta$educ, useNA = c("ifany"))
summary(useddta$educ)
table(useddta$inc1k, useNA = c("ifany"))
summary(useddta$inc1k)
#TASK 3
#Make Dummy Variables
useddta$female <- as.numeric(useddta$sex == "female")</pre>
table(useddta$sex, useddta$female, useNA = c("ifany"))
useddta$nonblack <- as.numeric(useddta$race != 'black')</pre>
table (useddta$race, useddta$nonblack, useNA = c("ifany"))
#Drop Missing Data
nmdta <- useddta[complete.cases(useddta),]</pre>
#Make Pairwise Scatterplots
scatterplotMatrix(~ mntlhlth + age + sex + race +
                    educ + inc1k,
                  smooth = list(span = 0.7), data = useddta)
#TASK 4
#Run OLS
#usevar <- c("mntlhlth",'age','sex','race','educ','inc1k')</pre>
ols.model <- lm(formula = mntlhlth ~ age + female + nonblack +
educ + inc1k, data = nmdta )
(summary(ols.model))
#Interpret coefficients of female and nonblack in document
#Task 5
#Predicted Outcomes for Full Estimation Sample
nmdta$mntlhlthpr <- predict(ols.model, type = "response")</pre>
summary(nmdta$mntlhlthpr)
#Hypothetical Prediction for 35-year old white female with 20
years of educ
hyp.data <- data.frame( age = 35, nonblack = 1, female = 1,educ
= 20, inc1k = 60)
pr = predict(ols.model, hyp.data, interval = "confidence")
#Close Out
save(useddta, file = "Assignment 02.rdata")
sink()
```