Bryan Shalloway

Data Scientist, NetAPP

2021-02-17

@brshallo

bryanshalloway.com

Feature Engineering With Sliding Windows and Lagged Inputs

Time changes everything except something within us that is always surprised by change.

Thomas Hardy

Agenda

- Splitting Data
- Building Features
- Putting it Together

For complete examples go:

Feature Engineering with Sliding Windows and Lagged Inputs 2020-10-12

The new rsample::sliding_*() functions bring the windowing approaches used in slider to the sampling procedures used in the tidymodels framework1. These functions make evaluation of models with ...

bryanshalloway.com

Data Splits

Types of Training – Testing Splits

Most common (or stratified by target)

e.g. regions or environments, customer transactions

e.g. forecasting

Time-based Split

- Relationships in data often not independent across time
- Mirrors production

Drawbacks

- More thought and effort
- Model selection may not change
- Sacrifice data in some cross validation splits

Cross Validation

- Split data k (e.g. 5) times, each split has different obs in "test"
- Build models each

 Measure performance each (or in aggregate)
- "Training"; "Testing" AKA "Analysis"; "Assessment"

Time Series CV:

- SAME PROCESS, but splits are time based
- (Note data loss)

Why / When it's used

- Allows for evaluation without touching "test"
- (Sometimes) used in place of separate test data
- May provide better estimate of performance
- Sense of variability

Downsides:

 Extra step, extra time (build many models)

Data: Wake County Food Inspections

HSISID	RESTAURANTOPENDATE	SCORE	INSPECTOR	date
<chr></chr>	<date></date>	<db 7=""></db>	<chr></chr>	<date></date>
04092017542	2017-03-01	94.5	Anne-Kathrin Bartoli	2017-04-07
04092017542	2017-03-01	92	Laura McNeill	2017-11-08
04092017542	2017-03-01	95	Laura McNeill	2018-03-23
04092017542	2017-03-01	93.5	Laura McNeill	2018-09-07
04092017542	2017-03-01	93	Joanne Rutkofske	2019-04-04
04092017542	2017-03-01	93.5	Naterra McQueen	2019-10-07
04092017542	2017-03-01	92.5	Naterra McQueen	2020-05-19
04092017542	2017-03-01	94	Nicole Bailey	2020-10-09
04092015321	2009-01-12	96	Jennifer Edwards	2013-07-31
04092015321	2009-01-12	96	Jennifer Edwards	2014-01-17
with 25,	537 more rows			

- HSISID: restaurant ID
- SCORE: inspection score
- INSPECTOR: Name of person who performed inspection
- date: date of inspection

Target: SCORE

Examples

Setting-up splits

```
library(tidyverse)
library(rsample)
data time feats <-
arrange (data time feats, date)
set.seed (1234)
initial split <-
initial time split(data time feats,
                    prop = .8)
train <- training(initial split)</pre>
test <- testing(initial split)</pre>
```

```
library(tidyverse)
library(rsample)
data time feats <-
arrange (data time feats, date)
set.seed (1234)
initial split <-
initial time split (data time feats,
                    prop = .8)
train <- training(initial split)</pre>
test <- testing(initial split)</pre>
```

<Analysis/Assess/Total> <17678/4420/22098>

```
library(tidyverse)
library(rsample)
data time feats <-
arrange (data time feats, date)
set.seed (1234)
initial split <-
initial time split(data time feats,
                    prop = .8)
train <- training(initial split)</pre>
test <- testing(initial split)</pre>
```

rsample::rolling_origin()

rsample::sliding_window() → by position

rsample::sliding_index() → by index

rsample::sliding_period() \rightarrow by index + split points by period

Examples

Setting-up splits, CV


```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date,
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
library(tidyverse)
library(rsample)
resamples <- sliding period(
  data = train,
  index = date
  period = "month",
  lookback = 36,
  assess stop = 3,
  step = 3
```

```
devtools::source_gist("https://gist.github.com/brshallo/
7d180bde932628a151a4d935ffa586a5")
```

```
resamples %>%
  extract_dates_rset() %>%
  plot_dates_rset()
```

```
# Sliding period resampling
# A tibble: 12 x 2
  splits
                       id
  <1ist>
                      <chr>
1 <split [6.4K/671]> Slice01
 2 <split [6.7K/914]> Slice02
 3 <split [7.2K/818]> Slice03
 4 <split [7.5K/876]>
                     Slice04
                     Slice05
 5 <split [7.9K/954]>
 6 <split [8.3K/874]> Slice06
 7 <split [8.6K/1K]> Slice07
 8 <split [9K/999]>
                     Slice08
 9 <split [9.5K/1.1K]> Slice09
10 <split [10K/942]> Slice10
11 <split [10.4K/1K]> Slice11
12 <split [10.8K/1.1K]> Slice12
```

```
devtools::source_gist("https://gist.github.com/brshallo/
7d180bde932628a151a4d935ffa586a5")
```

```
resamples %>%
   extract_dates_rset() %>%
   plot dates rset()
```

```
splits
                                analysis_min analysis_max assessment_min assessment_max
                        id
   <1ist>
                        <chr>
                                <date>
                                             <date>
                                                          <date>
                                                                         <date>
1 <split [6.4K/671]>
                        Slice01 2014-01-15
                                             2017-01-31
                                                          2017-02-01
                                                                         2017-04-28
2 <split [6.7K/914]>
                                                          2017-05-01
                        Slice02 2014-04-01
                                             2017-04-28
                                                                         2017-07-31
3 <split [7.2K/818]>
                        Slice03 2014-07-01
                                             2017-07-31
                                                          2017-08-01
                                                                         2017-10-31
4 <split [7.5K/876]>
                        Slice04 2014-10-01
                                             2017-10-31
                                                          2017-11-01
                                                                         2018-01-31
5 <split [7.9K/954]>
                        Slice05 2015-01-02
                                             2018-01-31
                                                          2018-02-01
                                                                         2018-04-30
6 <split [8.3K/874]>
                        Slice06 2015-04-01
                                             2018-04-30
                                                          2018-05-01
                                                                         2018-07-31
7 <split [8.6K/1K]>
                        Slice07 2015-07-01
                                             2018-07-31
                                                          2018-08-01
                                                                         2018-10-31
8 <split [9K/999]>
                        Slice08 2015-10-01
                                             2018-10-31
                                                          2018-11-01
                                                                         2019-01-31
9 <split [9.5K/1.1K]> Slice09 2016-01-04
                                             2019-01-31
                                                          2019-02-01
                                                                         2019-04-30
10 <split [10K/942]>
                       Slice10 2016-04-01
                                             2019-04-30
                                                          2019-05-01
                                                                         2019-07-31
11 <split [10.4K/1K]>
                        Slice11 2016-07-01
                                             2019-07-31
                                                          2019-08-01
                                                                         2019-10-31
12 <split [10.8K/1.1K]> Slice12 2016-10-03
                                             2019-10-31
                                                          2019-11-01
                                                                         2020-01-31
```

@brshallo

devtools::source_gist("https://gist.github.com/brshallo/ 7d180bde932628a151a4d935ffa586a5")

resamples %>%
 extract_dates_rset() %>%
 plot_dates_rset()

Feature Engineering

Creating Features

- Careful of data leakage
- Two stages of feature engineering
 - 1. Time / lag-based features (prior to initial split)
 - 2. Other features and derivitives of raw data (after splitting, as part of a recipe)

1. Lag based features

HSISID	RESTAURANTOPENDATE	SCORE	INSPECTOR	date
<chr></chr>	<date></date>	<db7></db7>	<chr></chr>	<date></date>
04092017542	2017-03-01	94.5	Anne-Kathrin Bartoli	2017-04-07
04092017542	2017-03-01	92	Laura McNeill	2017-11-08
04092017542	2017-03-01	95	Laura McNeill	2018-03-23
04092017542	2017-03-01	93.5	Laura McNeill	2018-09-07
04092017542	2017-03-01	93	Joanne Rutkofske	2019-04-04
04092017542	2017-03-01	93.5	Naterra McQueen	2019-10-07
04092017542	2017-03-01	92.5	Naterra McQueen	2020-05-19
04092017542	2017-03-01	94	Nicole Bailey	2020-10-09
04092015321	2009-01-12	96	Jennifer Edwards	2013-07-31
04092015321	2009-01-12	96	Jennifer Edwards	2014-01-17
with 25,	337 more rows			

Consider which features may predict upcoming score?

- Most recent score
- How long ago the restaurant was opened
- How long since last inspection

- Average SCORE across HSISID's for last year
- Average SCORE for particular HSISID over last 3 years

slider::slide_window() → by position

slider::slide_index() \rightarrow by index

slider::slide_period() → by index + split points by period

Example

Creating lag-based features


```
library(tidyverse)
library(slider)
```

Average SCORE across HSISID's for last year

```
data time feats <- inspections restaurants %>%
  arrange (date) %>%
  mutate(
    SCORE yr overall = slider::slide index dbl(
      x = SCORE
      .i = date,
      .f = mean_{,}
      na.rm = TRUE,
      .before = lubridate::days(365),
      .after = -lubridate::days(1)
```

```
library(tidyverse)
library(slider)
data time feats <- inspections restaurants %>%
  arrange (date) %>%
 mutate (
    SCORE yr overall = slider::slide index dbl(
      .x = SCORE
      .i = date
      .f = mean_{,}
      na.rm = TRUE,
      .before = lubridate::days(365),
      .after = -lubridate::days(1)
```

```
library(tidyverse)
library(slider)
data time feats <- inspections restaurants %>%
  arrange (date) %>%
 mutate (
    SCORE yr overall = slider::slide index dbl(
      .x = SCORE
      .i = date,
      .f = mean,
      na.rm = TRUE,
      .before = lubridate::days(365),
      .after = -lubridate::days(1)
```

```
library(tidyverse)
library(slider)
```

Average SCORE for particular HSISID over last 3 years

```
data time feats <- inspections restaurants %>%
  group by (HSISID) %>%
 mutate (
    SCORE recent = slide index dbl(
      x = SCORE
      .i = date
      .f = mean,
      na.rm = TRUE,
      .before = lubridate::days(365 * 3),
      .after = -lubridate::days(1),
      .complete = FALSE
```

```
library(tidyverse)
library(slider)
data time feats <- inspections restaurants %>%
  group by (HSISID) %>%
 mutate (
    SCORE recent = slide index dbl(
      .x = SCORE
      .i = date
     .f = mean
      na.rm = TRUE,
      .before = lubridate::days(365 * 3),
      .after = -lubridate::days(1),
      .complete = FALSE
```

```
library(tidyverse)
library(slider)
data time feats <- inspections restaurants %>%
  group by (HSISID) %>%
 mutate(
    SCORE recent = slide index dbl(
      .x = SCORE,
      .i = date
      .f = mean
      na.rm = TRUE,
      .before = lubridate::days(365 * 3),
      .after = -lubridate::days(1),
      .complete = FALSE
```

New Data With Lag Based Features

HSISID [‡]	SCORE_yr_overall	SCORE_lag	SCORE_recent	days_since_open	days_since_last
04092015474	96.21098	98.5	98.50000	1574	362
04092014996	96.21098	97.5	97.25000	2274	145
04092011465	96.21098	95.0	95.00000	7239	167
04092011770	96.21098	98.0	96.16667	6644	114
04092014360	96.21098	97.0	98 00000	3089	258

Apply initial split, then CV splits (shown previously)

2. Other and derivative features

- Box-cox transform continuous predictors
- Inspector (collapse rare levels)
- Parts of date (e.g. month, day of week, etc.)

•

Use recipes

- Identify feature parameters on training dataset
- Then Apply to test set
- (Works well with rest of tidymodels)

```
library(tidyverse)
library(recipes)
```

```
rec <- recipe(SCORE ~ ., data = train) %>%
  step_BoxCox(days_since_open, days_since_last) %>%
  step_other(INSPECTOR, TYPE, threshold = 50) %>%
  step_novel(TYPE, INSPECTOR) %>%
  step_date(date, features = c("dow", "month"))
```

```
library(tidyverse)
library (recipes)
rec <- recipe(SCORE ~ ., data = train) %>%
  step BoxCox(days since open, days since last) %>%
  step other (INSPECTOR, TYPE, threshold = 50) %>%
  step novel (TYPE, INSPECTOR) %>%
  step date(date, features = c("dow", "month"))
```

```
library (recipes)
rec <- recipe(SCORE ~ ., data = train) %>%
  step BoxCox(days since open, days since last) %>%
  step other (INSPECTOR, TYPE, threshold = 50) %>%
  step novel (TYPE, INSPECTOR) %>%
  step date(date, features = c("dow", "month"))
```

library(tidyverse)

Specifying Model, Putting parts together

```
library(tidyverse)
library(tidymodels)
lm mod <- parsnip::linear reg() %>%
  set engine("lm") %>%
  set mode("regression")
lm workflow rs <- workflows::workflow() %>%
  add model(lm mod) %>%
  add recipe (rec) %>%
  fit resamples (resamples,
                control = control resamples(save pred = T))
```

@brshallo

```
library(tidyverse)
library(tidymodels)
lm mod <- parsnip::linear reg() %>%
  set engine ("lm") %>%
  set mode("regression")
lm workflow rs <- workflows::workflow() %>%
 add model(lm mod) %>%
  add recipe (rec) %>%
  fit resamples (resamples,
                control = control resamples(save pred = T))
```

```
library(tidyverse)
library(tidymodels)
lm mod <- parsnip::linear reg() %>%
  set engine ("lm") %>%
  set mode("regression")
lm workflow rs <- workflows::workflow() %>%
  add model(lm mod) %>%
  add recipe (rec) %>%
  fit resamples (resamples,
                control = control resamples(save pred = T))
```

```
library(tidyverse)
library(tidymodels)
lm mod <- parsnip::linear reg() %>%
  set engine ("lm") %>%
  set mode("regression")
lm workflow rs <- workflows::workflow() %>%
  add model(lm mod) %>%
  add recipe (rec) %>%
  fit resamples (resamples,
                control = control resamples(save pred = T))
```

Specify other workflows (Random Forest and NULL)

Extract performance

Compare models

paired t-test to provide indicator of if difference is real

Vertical lines are average performance as captured by `tune::collect_metrics()`

@brshallo

Recap

- Be careful with how you set-up your data-splits, especially concerning time
- Build 'time-based features' in pre-processing
- Build 'other features' with a recipe
- Use cross-validation (if appropriate)
- Try multiple models
- Review performance across splits
- Use `tidyverse` and `tidymodels` suite of packages for intuitive, consistent style

Package Websites

- dplyr: https://dplyr.tidyverse.org/
- slider: https://davisvaughan.github.io/slider/
- rsample: https://rsample.tidymodels.org/
- recipes: https://recipes.tidymodels.org/
- parsnip: https://parsnip.tidymodels.org/
- workflows: https://workflows.tidymodels.org/
- yardstick: https://yardstick.tidymodels.org/
- ggplot2: https://ggplot2.tidyverse.org/

Other Resources

- https://www.bryanshalloway.com/2020/10/12/window-functions-for-resampling/
- https://github.com/brshallo/feat-eng-lags-presentation
- tmwr.org
- tidymodels.org
- feat.engineering
- business-science (timetk, modeltime, etc.)
- tidyverts (fable, tsibble, etc.)
- Davis Vaughan lightning talk on slider: https://www.youtube.com/watch?v=wb76gXropuw

