Αναφορά

Πίνακας Περιεχομένων

Προσωπικά Στοιχεία, Στοιχεία για την Εκπόνηση της Άσκησης	Σελίδα 1
Απαντήσεις για το Ερώτημα 2	Σελίδα 2
Απαντήσεις για το Ερώτημα 3	Σελίδα 3
Απαντήσεις νια το Ερώτημα 4	Σελίδα 4

Προσωπικά Στοιχεία και Στοιχεία για την Εκπόνηση της Άσκησης

Στοιχεία Φοιτητή

Ονοματεπώνυμο: Δημήτριος Κωστορρίζος Έτος Φοίτησης: Δ΄ ΑΜ:1054419

Στοιχεία για την Εκπόνηση της Άσκησης

Στις 10/ 12/ 2019, ξεκίνησα την ενασχόληση με την εργαστηριακή άσκηση αυτή. Στις 02/ 01/ 2020 ολοκλήρωσα την εργαστηριακή άσκηση. Για την εκπόνηση της άσκησης χρησιμοποιήθηκε το Laptop, με τα χαρακτηριστικά που περιγράφονται παρακάτω.

Η έκδοση matlab που χρησιμοποιήθηκε για την εκπόνηση της άσκησης ήταν η R2019a update 6 (9.6.0.1214997).

Τα παρακάτω στοιχεία υπολογίστηκαν, χρησιμοποιώντας το πρόγραμμα cpu-z και τον τύπο:

Memory Bandwidth = Base Ram Frequency * Number of data transfers per clock * Memory bus width * Ram Channel.

Στοιχεία προσωπικού υπολογιστή

Χαρακτηριστικό	Απάντηση
Έναρξη/λήξη εργασίας	10/ 12/ 2019 - 02/ 01/ 2020
model	Lenovo ideapad 300-15ISK
O/S	Windows 10 Home
processor name	Intel Core i7 6500U
processor speed	2.50 GHz(base)
number of processors	1
total # cores	2
total # threads	4
FMA instruction	yes

L1 cache	(per core) 32 KB Instruction, 32 KB Data
L2 cache	(per core) 256 KB
L3 cache	(shared) 4 MB
Gflops/s	11.35
Memory	8GB
Memory Bandwidth	25.6 GB/s
MATLAB version	R2019a update 6 (9.6.0.1214997).

Πίνακας Αποτελεσμάτων της εντολής Bench

Computer Type	LU	FFT	ODE	Sparse	2-D	3-D
Mac, OS X 10.13.3, Intel Core i7 @ 4 GHz	0.0873	0.0847	0.0111	0.0805	0.7959	0.4491
Linux 18.04, Intel Xeon CPU E5-2665 0 @ 2.40 GHz	0.1108	0.0925	0.0322	0.1270	0.5864	0.4978
Windows 10, Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz	0.1185	0.1282	0.0296	0.1484	0.4108	0.4211
Windows 10, AMD Ryzen 7 1700 @ 3.00 GHz	0.1852	0.1453	0.0156	0.2015	0.3245	0.3281
This machine	0.2278	0.1536	0.0274	0.1289	0.6315	0.4329
Windows 7, Intel Xeon(R) CPU X5650 @ 2.67 GHz	0.2240	0.1150	0.0298	0.1584	0.5941	1.6248
Surface Pro 3, Windows 8.1, Intel Core i5-4300U @ 1.9 GHz	0.2300	0.2040	0.0256	0.1525	1.2245	0.7240
MacBook Pro, OS X 10.12.5, Intel Core i5 @ 2.6 GHz	0.1834	0.1802	0.0185	0.1288	1.9668	1.3753

Ερώτημα 2

- **2.1** Ο τρόπος αποθήκευσης του μητρώου A σε n x n x m x m Tensor, που θα χρησιμοποιήσω, καταλαμβάνει χώρο ίσο με n x n x m x m. Η δημιουργία του Tensor γίνεται ως εξής: Τα στοιχεία των block του αρχικού μητρώου αποθηκεύονται σε n x n slices, μεγέθους m x m, διατρέχοντας πρώτα ως προς γραμμές και έπειτα ως προς στήλες το αρχικό μητρώο. Το Tensor έχει διαστάσεις (BlockColumn, BlockRow, MatrixRow, MatrixColumn) όπου BlockColumn, BlockRow ε [1,m] και MatrixRow, MatrixColumn ε [1,n], με μορφή συντεταγμένων (m, m, n, n).
- **2.3** 1 n mode 1 ίνα: [54; -16; 1;0] και 1 mode 4 ίνα: [54; -12; 0]
- **2.5** Τα μπλοκ τρι-διαγώνια μητρώα περιέχουν μπλοκ με μη μηδενικά στην 1^{η} υπό-διαγώνιο, κύρια διαγώνιο, 1^{η} υπέρ-διαγώνιο και μπλοκ με μηδενικά στοιχεία στις υπόλοιπες θέσεις. Οπότε το μη μηδενικό περιεχόμενο του μητρώου, μπορεί να αποθηκευτεί σε

- (n-1) slices για την 1^η υπό-διαγώνιο, μεγέθους m x m η κάθε μία.
- (n-1) slices για την 1^{η} υπέρ-διαγώνιο, μεγέθους m x m η κάθε μία.
- n slices για την κύρια διαγώνιο, μεγέθους m x m η κάθε μία.

Με αυτό τον τρόπο αντί για $n \times n \times m \times m \times m$ χώρο, απαιτείται (3*n - 2) $\times m \times m \times m$ χώρος, δηλαδή περίπου $n \times m^2$ χώρος, για τα μη μηδενικά στοιχεία. Για το στοιχείο $A_{4,3}$, το οποίο είναι το 3° μπλοκ της 1° υπό-διαγώνιου που περιέχει μη μηδενικά στοιχεία, αναφερόμαστε στο 3×3 slice (10,:,:).

Ερώτημα 3

3.1 Πίνακας 2

Matrix	N	ΔΚ	συμμετρικό	ζώνης	αντιστρέψιμο	δ.κ κ ₁ (Α)
Toeplitz ([2, -1, zeros (1, 8)])	10	ναι	ναι	(1,1)	ναι	60
C1000	1000	όχι	ναι	(999,999)	ναι	41.2165
P (100, 10)	1000	όχι	ναι	(100,100)	ναι	139.9998
P (10, 100)	1000	όχι	ναι	(10,10)	ναι	135.6683
P (100, 100)	10000	όχι	ναι	(100,100)	ναι	7.0018e+03
bcsstm07	420	όχι	ναι	(47,47)	ναι	1.2404e+04
email	1133	όχι	ναι	(605,605)	όχι	65.535(inf)

Για την συμπλήρωση του πίνακα, εισήχθησαν τα μητρώα:

bcsstm07, email

και δημιουργήθηκαν τα μητρώα:

C1000, P (100, 10), P (10, 100), P (100, 100)

στο workspace της matlab και έπειτα εκτελέστηκαν οι εντολές:

[lower,upper] = bandwidth(A) για έλεγχο της ζώνης

condest(A,1) για την εύρεση του δείκτη κατάστασης ως προς την νόρμα 1

dd_check(A) για τον έλεγχο διαγώνιας κυριαρχίας

det(A) για τον έλεγχο αντιστρεψιμότητας

issymmetric(A) για τον έλεγχο συμμετρικότητας

Σας παραθέτω τις μετρήσεις για την συνάρτηση parallel-backslash, παρόλο που είμαι εισακτέος 2014-. Τα δεξιά μέλη, που χρησιμοποιήθηκαν για τον υπολογισμό των χρόνων, δημιουργήθηκαν με την χρήση της συνάρτησης polyvalm_MV.

Ερώτημα 3.2

Πίνακας Χρονομετρήσεων

Runtimes(sec)	C1000	P (10,100)	P (100,10)	P (100,100)	bcsstm07
explicit	3.4796e-01	3.3200e-01	3.3534e-01	1.8803e+02	1.2190e-01
serial + backslash	1.7720e-01	1.9265e-01	1.8543e-01	1.2496e+02	9.4530e-02
serial + Cholesky	Х	2.5752e-01	1.6155e-01	1.1720e+02	3.7486e-02
serial + PCG	Х	4.8104e-01	1.7492e-01	1.0543e+02	1.4480e-01
serial + PCG + pre(blockJ)	Х	2.4664e-01	2.6489e-01	9.9475e+01	7.1969e-02
parallel + backslash (προ-2014)	1.2617e-01	1.1550e-01	1.1149e-01	3.2271e+01	9.6419e-02

Πίνακας Σφαλμάτων

Errors (. ₂)	C1000	P (10,100)	P (100,10)	P (100,100)	bcsstm07
explicit	1.3232e+02	3.1451e+01	3.1521e+01	9.9931e+01	1.5052e+08
serial + backslash	1.2582e-13	3.1439e-10	2.4872e-10	2.0205e-09	8.9813e-06
serial + Cholesky	X	3.1551e+01	3.1549e+01	9.9289e+01	2.0474e+01
serial + PCG	X	3.1623e+01	3.1623e+01	1.0000e+02	2.0494e+01
serial + PCG + pre(blockJ)	X	3.1623e+01	3.1623e+01	1.0000e+02	2.0494e+01
parallel + backslash (προ-2014)	3.0794e+01	1.1752e+01	1.1311e+01	5.6714e+01	1.5656e+01

Ερώτημα 4

Τα παρακάτω αποτελέσματα ακολουθούν την μορφή: format short e.

Οι παρακάτω μετρήσεις έχουν υπολογιστεί χρησιμοποιώντας pcg, με ρυθμίσεις τις εξής:

tol = 1e-7, maxit = 50.

Για τις μετρήσεις, στις οποίες χρησιμοποιήθηκε η προρύθμιση με την συνάρτηση ichol, οι ρυθμίσεις της ήταν οι εξής:

I ILVUNUL IVICIDIJUCUV	Πίνακας	Μετρή	Ίσεων
------------------------	---------	-------	-------

I – alpha (1) * ema	il	runtime(sec)	Επαναλήψεις	b - Ax̂ 2	top-5 (hi to lo)
explicit	0.01	3.8055e-02	1	5.3780e+02	105, 333, 42, 16, 23
explicit	0.02	3.4858e-02	1	7.2477e+02	105, 16, 42, 333, 23
explicit	0.03	3.9998e-02	1	1.1149e+03	105, 16, 42, 333, 196
explicit	0.04	5.1153e-02	1	2.4501e+03	105, 16, 442, 196, 333
serial + PCG	0.01	1.8607e-02	7	5.3780e+02	105, 333, 42, 16, 23
serial + PCG	0.02	1.7477e-02	9	7.2477e+02	105, 16, 42, 333, 23
serial + PCG	0.03	1.8909e-02	12	1.1149e+03	105, 16, 42, 333, 196
serial + PCG	0.04	2.0609e-02	16	2.4501e+03	105, 16, 42, 196, 333
serial + PCG + prec	(ichol) 0.01	2.0372e-02	7	5.3780e+02	105, 333, 42, 16, 23
serial + PCG + prec	(ichol) 0.02	4.8115e-01	41	7.2477e+02	105, 16, 42, 333, 23
serial + PCG + prec	(ichol) 0.03	4.8883e-01	47	1.1149e+03	105, 16, 42, 333, 196
serial + PCG + prec	(ichol) 0.04	4.7664e-01	50	2.4501e+03	105, 16, 42, 196, 333

Γραφικές παραστάσεις σφαλμάτων ||b - $A\hat{x}$ ||2 για a = (0.01, 0.02, 0.03, 0.04)

