BASIC DEFINATION

Az = b

Ronge --> has solution?

Norms

Kernel ----> how mong?

<4v> = ≥4v, = Jv

SVD

11011 = \ \(\alpha \cdot \neq \rm >

(6; ≥0)

p-norms, 1-norm,

SVD of A is:

Hull = 2 10,1

A = U Z V T $\rho_{x} = v \leq v^{\tau}_{x}$

SPECIFAL / ETGEN - DECOMPOSITION

 $A = x \Lambda x^{-1}$

if A symmetric: $\theta = \kappa \Lambda x^T$

Ax = ACE CX, K > XD

= 2 Lx, v, > Avi

= & D; Cx, U; > V;

x fAx = E di Lz, vi>2 & E Amax Cz, u)2 & Amax E Lz, u3 = Amax IIxII2 $\sum \langle x, y_i \rangle^2 = ||x||^2$

APPROXIMATION

Taylor Appointaion:

f(x+E) = f(x) + LVf(x), E> + + ETD2f(x) E + OCHEN)

= $f(\alpha) + \langle \nabla f(\alpha), E \rangle + \frac{1}{2} E^{T} p^{2} f(\overline{\alpha}) E$

€ rordom

Q [[f(2+8)] = ?

Becode

E[f(x+E)] = E[f(x) + < Pf(x), E> + + ETO2(12) E]

= f(x) + E < O(x), 2> + 1 [[& 0 +(0)2]

= fax + L pfax, EE>+ 1 E[& 02/00)2]

= f(x) + 0 + 1 [[[& o 2 fa) &]

Assume that for all $y \in \mathbb{R}^n$, of two has the property that $\lambda \max \leq \overline{\lambda}$, $\underline{\lambda} \leq \lambda \min c_{\mathcal{O}}$

∠llen² ← € Offane ← Tilen²

 $f(x) \leq f(x) + \underline{\lambda} E[11\xi 1]^{2} \leq E[f(x + \xi)] \leq f(x) + \overline{\lambda} E[11\xi 1]^{2} \longrightarrow 2^{nd} \text{ moment } C = \text{vortance}$ $\underline{\lambda} \geqslant 0$

