演習一結報

1. 牛頓擺

(1). 實驗原理

A.動量守恆

a和b兩物體碰撞時,若沒有外力作用在a、b上,它們在碰撞前的總動量相等於碰撞後的總動量

$$m_a v_{ai} + m_b v_{bi} = m_a v_{af} + m_b v_{bf}$$
 ------1

B.力學能守恆,因在同一水平面上撞擊,只考慮動能守恆

$$\frac{1}{2}m_a v_{ai}^2 + \frac{1}{2}m_b v_{bi}^2 = \frac{1}{2}m_a v_{af}^2 + \frac{1}{2}m_b v_{bf}^2 - \dots 2$$

由1式、2式可推得碰撞速度公式

$$v_{af} = \frac{m_a - m_b}{m_a + m_b} v_{ai} + \frac{2m_b}{m_a + m_b} v_{bi}$$
$$v_{bf} = \frac{2m_a}{m_a + m_b} v_{ai} + \frac{m_b - m_a}{m_a + m_b} v_{bi}$$

由於五顆球彼此之間質量相等,兩兩碰撞後,速度交換。

(2). 實驗操作

觀察珠子拉起一顆、兩顆、三顆或四顆後放下,最後分別會有一顆、 兩顆、三顆、四顆彈起,且其餘珠子不動。

(3). 五個理想牛頓擺條件

- A. 每一擺體(錘)必須是剛體
- B. 每一擺體質量都要相等
- C. 每一擺體的重心必須位在同一水平的連線上
- D. 每一擺體靜止不動時的間距剛好彼此間沒有受力地緊鄰著
- E. 擺體間的撞擊點需剛好在重心的連線上

(4). 心得

這是我們這組的實驗,因為原理很明顯是碰撞,因此討論很快,之後 就開始想實際上應用,或許能當個計時器,但這還得有人顧著看總共 碰撞幾次,沒什麼利用價值,頂多看著紓壓而已。

2. 珠鍊噴泉

(1). 實驗原理

該實驗輕輕拉一下珠鍊,就讓 杯子中的一大串珠鍊持續的掉 出來,且鍊珠呈現噴泉狀。讓 珠鍊呈噴泉狀的力來自於杯子 內的珠鍊被重力往上拉時,除 了「往上運動」,也伴隨著「旋 轉運動」,如圖六,珠鍊被往上

拉的力為 F1 (珠鍊右側),由於旋轉運動 (以珠鍊中心為旋轉軸),珠鍊的的左側為往下運動,必然撞擊其它珠鍊 (或杯底),此撞擊產生的反作用力 F2 就是使珠鍊往上的彈跳而產生噴泉現象的力。如果 F1 越大,F2 也會越大,噴泉效應的高度也將會增加。而 F1 來自於重力,因此掉落的距離越高,釋放的重力位能越大,使得 h1 高度增加。

(2). 實驗操作

觀察不同角度、不同高度釋放鍊珠的情況。發現鍊珠都會大致垂直杯口噴出,且從越高的地方釋放鍊珠噴的也越高

(3). 心得

這實驗應該是所有實驗最有趣的,它的噴泉狀鍊珠,由於看似違反重力,更吸引人的目光。操作起來簡單,背後的原理卻相對難想。雖然 好玩,但有一個缺點就是收拾麻煩。

3. 羅馬拱橋

(1). 實驗原理

如圖八,當拱橋承受物體重力時,重力會因為拱橋的特殊結構(楔形石),可以成功地把重力(W),由 F1、F2 抵銷,力量一步一步傳遞至地面,由地面給予支撐力使垂直方向的力可以達到平衡,水平力的部分由左右兩邊的石塊作支撐,使水平力可以達到平衡,因而拱橋達到靜力平衡,所以不會晃動或倒塌。

(2). 實驗操作

觀察哪些木塊可以拿起且不造成拱橋倒塌。越靠近上方兩側的木塊被移除越不會造成拱橋不穩,因為下方木塊得用來支撐上方物體重力。

(3). 心得

小小的實驗器材,竟能撐起一個人的重量,利用這個構造所建的橋應該十分堅固,但這得耗費大量資源,它需要許多塊體組合且須與地面接觸,兩側還要有支撐。

4. 雙錐體

(1). 實驗原理

雙錐體並沒有違反重力往下(地心)的原則,而是由於構造造成的錯覺。雙錐體兩側半徑較短,因此接觸點越靠近兩側雙錐體質心會較低,反之越靠近中央,質心較高。當雙錐體放在低處時,與木棍的接觸點較為靠近中央,在高處時由於木棍開口較大,雙錐體與木棍的接觸點接近兩側。因此雖然木棍高度增加,但是雙錐體的質心是由高至低。

(2). 實驗操作

觀察水管和雙錐體在木棍上的運動情形。

(3). 心得

這實驗蠻吸引目光,因為雙錐體看似向上滾動違反常理,這也使人想要了結其背後原理,理解過後才發現原來是如此基本的問題。

參考資料:

http://scigame.ntcu.edu.tw/power/power-037.html

http://scigame.ntcu.edu.tw/power/power-017.html

http://www.phys.nthu.edu.tw/~gplab/exp004.html

https://www.youtube.com/watch?v=v-6NGuOV9IU