EXP 3 – SHIFT RESISTER

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity shiftreg is
    Port (
                      si:in STD_LOGIC;
             clk: in STD_LOGIC;
             so:out STD_LOGIC;
             pin: in STD_LOGIC_VECTOR (3 downto 0);
             po : out STD_LOGIC_VECTOR (3 downto 0);
             sel: in STD_LOGIC_VECTOR (1 downto 0));
end shiftreg;
architecture Behavioral of shiftreg is
signal temp:STD_LOGIC_VECTOR( 3 downto 0);
begin
process(clk)
begin
if(clk'event and clk='1')then
case sel is
when"00"=> temp<= si&temp(3 downto 1);
```

```
so <=temp(3);
when"01"=> temp<= si&temp(3 downto 1);
po<=temp;
when others=>null;
end case;
end if;
end process;
end Behavioral;
```



```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY shifttest IS
END shifttest;
ARCHITECTURE behavior OF shifttest IS
     -- Component Declaration for the Unit Under Test (UUT)
     COMPONENT shiftreg
     PORT(
           si: IN std_logic;
           clk: IN std_logic;
           so:OUT std_logic;
           pin : IN std_logic_vector(3 downto 0);
           po : OUT std_logic_vector(3 downto 0);
           sel : IN std_logic_vector(1 downto 0)
          );
     END COMPONENT;
        --Inputs
   signal si : std_logic := '0';
   signal clk : std_logic := '0';
   signal pin : std_logic_vector(3 downto 0) := (others => '0');
   signal sel : std_logic_vector(1 downto 0) := (others => '0');
        --Outputs
   signal so : std_logic;
   signal po : std_logic_vector(3 downto 0);
```

```
-- Clock period definitions
   constant clk_period : time := 10 ns;
BEGIN
        -- Instantiate the Unit Under Test (UUT)
   uut: shiftreg PORT MAP (
             si => si,
             clk => clk,
             so => so,
             pin => pin,
             po => po,
             sel => sel
          );
   -- Clock process definitions
   clk_process :process
    begin
               clk <= '0';
                wait for clk_period/2;
                clk <= '1';
                wait for clk_period/2;
   end process;
     -- Stimulus process
   stim_proc: process
   begin
  sel<="00";
  si<='1';
       -- hold reset state for 100 ns.
       wait for 100 ns;
                sel<="01";
                si<='1';
```

```
wait for 100 ns;
sel<="10";
pin<="1100";
wait for 100 ns;
sel<="11";
pin<="1100";
--=wait for clk_period*10;
-- insert stimulus here
wait;
end process;</pre>
```


UCF FILE (SHIFT REGISTER)

NET clk LO	C = P183;	
NET Reset	LOC = P102;	
NET md(0)	LOC = P101;	
NET md(1)	LOC = P100;	
NET si LOC	= P97;	
NET so LOC	C = P156;	
NET pi(0) L	OC = P87;	
NET pi(1) L	OC = P86;	
NET pi(2) L	OC = P85;	
NET pi(3) L	OC = P81;	
NET po(0) I	LOC = P162;	
NET po(1) I	LOC = P165;	
NET po(2) I	LOC = P166;	
NET po(3) I	LOC = P167;	
		Final Report
Final Re	sults	Final Report
	sults Level Output File Name	Final Report : shiftreg.ngr
RTL Top		·
RTL Top	Level Output File Name el Output File Name	: shiftreg.ngr
RTL Top Top Lev Output	Level Output File Name el Output File Name	: shiftreg.ngr : shiftreg
RTL Top Top Lev Output	Level Output File Name el Output File Name Format ation Goal	: shiftreg.ngr : shiftreg : NGC
RTL Top Top Lev Output Optimiz Keep Hi	Level Output File Name el Output File Name Format ation Goal	: shiftreg.ngr : shiftreg : NGC : Speed
RTL Top Top Lev Output Optimiz Keep Hi	Level Output File Name el Output File Name Format ation Goal erarchy	: shiftreg.ngr : shiftreg : NGC : Speed
RTL Top Top Lev Output Optimiz Keep Hi Design S	Level Output File Name el Output File Name Format eation Goal erarchy Statistics	: shiftreg.ngr : shiftreg : NGC : Speed : No
RTL Top Top Lev Output Optimiz Keep Hi Design S	Level Output File Name el Output File Name Format eation Goal erarchy Statistics	: shiftreg.ngr : shiftreg : NGC : Speed : No
RTL Top Top Lev Output Optimiz Keep Hi Design S # IOs Cell Usa	Level Output File Name el Output File Name Format eation Goal erarchy Statistics	: shiftreg.ngr : shiftreg : NGC : Speed : No

# Flip	Flops/Latches	: 9
#	FD	: 4
#	FDE	: 5
# Clo	ck Buffers	:1
#	BUFGP	:1
# IO I	Buffers	: 8
#	IBUF	: 3
#	OBUF	: 5
	e utilization summary:	:======================================
	rted Device : 3s400pq208-	-5
Nur	nber of Slices:	5 out of 3584 0%
Nur	nber of Slice Flip Flops:	9 out of 7168 0%
Nur	nber of 4 input LUTs:	6 out of 7168 0%
Nur	nber of IOs:	13
Nur	nber of bonded IOBs:	9 out of 141 6%
	nber of GCLKs:	1 out of 8 12%
Parti	tion Resource Summary:	
	Partitions were found in	this design.
TIMII	NG REPORT	
NOTE	E: THESE TIMING NUMBER	RS ARE ONLY A SYNTHESIS ESTIMATE.
	FOR ACCURATE TIMING	G INFORMATION PLEASE REFER TO THE TRACE REPORT
	GENERATED AFTER PLA	ACE-and-ROUTE.
Clock	Information:	
Clock	· Signal	+ Clock buffer(FF name) Load

+	+		
clk	BUFGP	9	1
+	+		
Asynchronous Control Signals In	formation:		
No asynchronous control signals Timing Summary:	found in this design		
Speed Grade: -5			
Minimum period: 2.230ns (N	Maximum Frequency: 448.340MI	Hz)	
Minimum input arrival time	before clock: 3.538ns		
Maximum output required ti	ime after clock: 6.216ns		
Maximum combinational path delay: No path found			
Timing Detail:			
All values displayed in nanoseco	nds (ns)		

EXP 4 – MOD –N COUNTER

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity mod5ex is
     Port ( clk : in STD_LOGIC;
              clr : in STD_LOGIC;
              q:inout STD_LOGIC_VECTOR (2 downto 0));
end mod5ex;
architecture Behavioral of mod5ex is
signal count: std_logic_vector(2 downto 0);
begin
process(clk)
begin
if (clr='1') then count <= "000";
elsif (rising_edge (clk)) then
if (count="100")
then count <= "000";
else
```

```
count<=count+ 1;
end if;
end if;
end process;
q<=count;
end Behavioral;</pre>
```



```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY mod5test IS
END mod5test;
ARCHITECTURE behavior OF mod5test IS
     -- Component Declaration for the Unit Under Test (UUT)
     COMPONENT mod5ex
     PORT(
           clk: IN std_logic;
           clr : IN std_logic;
           q:INOUT std_logic_vector(2 downto 0)
         );
     END COMPONENT;
   --Inputs
   signal clk : std_logic := '0';
   signal clr : std_logic := '0';
       --BiDirs
   signal q : std_logic_vector(2 downto 0);
   -- Clock period definitions
   constant clk_period : time := 10 ns;
BEGIN
        -- Instantiate the Unit Under Test (UUT)
   uut: mod5ex PORT MAP (
```

```
clk => clk,
         clr => clr,
         q => q
      );
-- Clock process definitions
clk_process :process
begin
            clk <= '0';
            wait for 10 ns;
            clk <= '1';
            wait for 10 ns;
end process;
-- Stimulus process
stim_proc: process
begin
    clr<='1';
    -- hold reset state for 100 ns.
    wait for 20 ns;
            clr<='0';
    -- hold reset state for 100 ns.
    wait for 20 ns;
    -- hold reset state for 100 ns.
     wait for 100 ns;
     wait for clk_period*10
    -- insert stimulus here
    wait;
end process;
```


Final Report

=======================================		
*	Final Report	
=======================================		
Final Results		

RTL Top Level Output File Name : mod5ex.ngr

Top Level Output File Name : mod5ex

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 5

Cell Usage:

# BELS		: 3	3
#	LUT2	:	1
#	LUT3	:	2
# FlipFlo	ps/Latches	: 3	
#	FDC	:	3
# Clock I	Buffers	: 1	
#	BUFGP	:	:1
# IO Buf	fers	: 4	
#	IBUF	::	1
#	OBUF	:	:3
Number Number Number Number	d Device: 3s400pq208-5 er of Slices: er of Slice Flip Flops: er of 4 input LUTs: er of IOs: er of bonded IOBs:	:	2 out of 3584 0% 3 out of 7168 0% 5 out of 141 3% 1 out of 8 12%
	n Resource Summary:		1 out of 8 12%
No Pa	artitions were found in this desi	gn.	

EXP 5 – FIFO

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric std.all;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity fifo_vhdl is
    Port (clk,rst:in STD LOGIC;
             enr: in STD_LOGIC; --enable read, should be '0' when not in use.
             enw:in STD_LOGIC;
                                        --enable write, should be '0' when not in use.
             dataout : out STD_LOGIC_VECTOR (3 downto 0);
                                                                --output data
             datain: in STD_LOGIC_VECTOR (3 downto 0);
                                                                 --input data
             FF_empty,clk_div: out STD_LOGIC; --set as '1' when the queue is empty
             FF full: out STD LOGIC); ---set as '1' when the queue is full
end fifo_vhdl;
architecture Behavioral of fifo_vhdl is
type memory_type is array (0 to 7) of std_logic_vector(3 downto 0);
signal memory: memory_type :=(others=>'0'));
signal readptr,writeptr: std_logic_vector(2 downto 0) :="000";
signal count : std_logic_vector(2 downto 0):="000";
```

```
signal newclk : std_logic;
signal count1 : std_logic_vector(25 downto 0);
begin
clk_div1: process(clk,rst)
begin
if rst='1' then
count1<=(others =>'0');
elsif clk'event and clk='1' then
count1<=count1+'1';
end if;
end process;
newclk<=count1(25);</pre>
clk_div<=count1(25);
-----
fifo_emty_full: process(readptr,writeptr,count)
begin
if(count="000") then
FF_empty<='1';
FF_full<='0';
elsif(count="111")then
FF_empty<='0';
FF_full<='1';
end if;
end process;
count1_reptr_wdptr: process(newclk,rst,enr,enw,readptr,writeptr)
```

```
begin
if rst='1' then
count<="000";
readptr<=(others=>'0');
writeptr<=(others=>'0');
 else if newclk'event and newclk='1' then
 if enw='1' and enr='0' then
 count<=count+'1';
 if count="111" then
 count<=count;</pre>
 end if;
 readptr<=readptr;
 writeptr<=writeptr+1;
 elsif enw='0' and enr='1' then
 count<=count-'1';
 if count="000" then
 count<=count;</pre>
 end if;
 readptr<=readptr+1;
 writeptr<=writeptr;
 else
 null;
 end if;
 end if;
 end if;
 end process;
```

mem_read_write:process(newclk,count,enw,enr)

```
begin

if(newclk'event and newclk='1') then

if enw='1' and enr='0' then

if count /="111" then

memory(conv_integer(writeptr))<=datain;

end if;

elsif enw='0' and enr='1' then

if count /="000" then

dataout<=memory(conv_integer(readptr));

end if;

end if;

end if;

end process;
```



```
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY fifo test IS
END fifo_test;
ARCHITECTURE behavior OF fifo_test IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT fifo_vhdl
    PORT(
          clk: IN std_logic;
          rst: IN std_logic;
          enr: IN std_logic;
          enw: IN std_logic;
          dataout : OUT std_logic_vector(3 downto 0);
          datain : IN std_logic_vector(3 downto 0);
          FF_empty : OUT std_logic;
          clk_div: OUT std_logic;
          FF_full: OUT std_logic
         );
    END COMPONENT;
```

```
--Inputs
   signal clk : std_logic := '0';
   signal rst : std logic := '0';
   signal enr : std_logic := '0';
   signal enw : std_logic := '0';
   signal datain: std logic vector(3 downto 0):= (others => '0');
       --Outputs
   signal dataout : std_logic_vector(3 downto 0);
   signal FF_empty : std_logic;
   signal clk_div : std_logic;
   signal FF_full : std_logic;
   -- Clock period definitions
   constant clk period : time := 10 ns;
   constant clk div period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
   uut: fifo_vhdl PORT MAP (
             clk => clk,
             rst => rst,
             enr => enr,
             enw => enw,
             dataout => dataout,
             datain => datain,
             FF_empty => FF_empty,
```

```
clk_div => clk_div,
           FF_full => FF_full
        );
  -- Clock process definitions
  clk_process :process
  begin
             clk <= '0';
             wait for clk_period/2;
             clk <= '1';
             wait for clk_period/2;
  end process;
  clk_div_process :process
  begin
             clk div <= '0';
             wait for clk_div_period/2;
             clk_div <= '1';
             wait for clk_div_period/2;
  end process;
-- Stimulus process
  stim_proc: process
  begin
      -- hold reset state for 100 ns.
             rst<='1';
             enr<='0';
             enw<='1';
             dataout<="0110";
```

```
wait for 100 ns;
rst<='0';
enr<='0';
enw<='1';
dataout<="1100";
wait for 100 ns;
rst<='0';
enr<='1';
enw<='0';
dataout<="1100";
wait for 100 ns;
wait for 100 ns;
enr<='1';
enw<='0';
dataout<="1100";
wait for 100 ns;</pre>
```


=======================================				
*		Final Report		
Final Results				
RTL To	o Level Output File Name	: fifo_vhdl.ngr		
Top Lev	vel Output File Name	: fifo_vhdl		
Output	Format	: NGC		
Optimi	zation Goal	: Speed		
Кеер Н	ierarchy	: No		
Design	Statistics			
# IOs		: 15		
Cell Us	age:			
# BELS		: 96		
#	GND	: 1		
#	INV	: 4		
#	LUT1	: 25		
#	LUT2	: 4		
#	LUT3	: 6		
#	LUT4	: 4		
 #	MUXCY	: 25		
#	VCC	:1		
#	XORCY	: 26		

: 41

: 26

: 9

FlipFlops/Latches

FDC

FDCE

#

#

#	FUE	: 4
#	LD	: 2
# RAM	S	: 4
#	RAM16X1D	: 4
# Clock	k Buffers	:1
#	BUFGP	:1
# IO Bu	uffers	: 14
#	IBUF	:7
#	OBUF	: 7
Device	utilization summary:	
Selecte	ed Device : 3s400pq208-5	
Numbe	er of Slices:	25 out of 3584 0%
Numbe	er of Slice Flip Flops:	39 out of 7168 0%
Numbe	er of 4 input LUTs:	51 out of 7168 0%
Numbe	er used as logic:	43
Numbe	er used as RAMs:	8
Numbe	er of IOs:	15
Numbe	er of bonded IOBs:	15 out of 141 10%
IOB Fli	p Flops:	2
Numbe	er of GCLKs:	1 out of 8 12%
	on Resource Summary:	
No Par	titions were found in this design	i.

EXP 6 - LCD

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity LCD_SIMPLE_Practice is
    Port ( rst,clk : in STD_LOGIC;
         lcd_RS : out STD_LOGIC;
         -- din : in std_logic_vector(7 downto 0);
         --LED : OUT std_logic_vector(7 downto 0);
          lcd_EN : out STD_LOGIC;
          data_out : out STD_LOGIC_VECTOR (7 downto 0));
          end LCD_SIMPLE_Practice;
architecture Behavioral of LCD_SIMPLE_Practice is
signal div_count : std_logic_vector(20 downto 0);
signal clk_new: std_logic;
type state is(reset,fuction,mode,cur,clear,d0,d1,d2,fuction1,mode1,cur1,clear1,d01,d11,d21);
signal pss,nx : state;
begin
--LED<=din;
clk_DIV: process(clk,rst)
```

```
begin
if rst= '1' then
div_count<= (others=>'0');
elsif clk'event and clk='1' then
div_count<= div_count + '1';
end process;
_____
clk_new<= div_count(20);</pre>
p_state_transactin: process (clk_new,rst)
begin
if rst='1' then
pss<=reset;
elsif clk_new'event and clk_new= '1' then
pss<= nx;
end if;
end process;
LCD_working: process(pss)
begin
case pss is
when reset =>
lcd_RS<='0';</pre>
lcd_EN<='1';</pre>
nx<= fuction;</pre>
data_out<="00111100"; --3Ch
```

```
when fuction =>
lcd_RS<='0';</pre>
lcd_EN<='1';</pre>
data_out<="00111100";
                             --3Ch
nx<= fuction
when fuction1 =>
lcd_RS<='0';</pre>
lcd_EN<='0';</pre>
data_out<="00111100";
                              --3Ch
nx<= mode;
when mode =>
lcd_RS<='0';</pre>
lcd_EN<='1';</pre>
data_out<="00000110";
                             --06h
nx<= mode1;
when mode1 =>
lcd_RS<='0';</pre>
lcd_EN<='0';</pre>
data_out<="00000110";
                             --06h
nx<= cur;
when cur =>
lcd_RS<='0';</pre>
lcd_EN<='1';</pre>
data_out<="00001100";
                             --0Ch
```

```
when cur1 =>
lcd_RS<='0';</pre>
lcd_EN<='0';</pre>
data_out<="00001100";
                            --0Ch
nx<= clear;
when clear =>
lcd_RS<='0';</pre>
lcd_EN<='1';</pre>
data_out<="00000001";
                            --01h
nx<= clear1;
when clear1 =>
lcd_RS<='0';</pre>
lcd_EN<='0';</pre>
data_out<="00000001";
                            --01h
nx<= d0;
when d0 =>
lcd_RS<='1';</pre>
lcd_EN<='1';</pre>
data_out<="01010011"; -----din; --S
nx<= d01;
when d01 =>
```

nx<= cur1;

```
lcd_RS<='1';</pre>
lcd_EN<='0';</pre>
\label{eq:data_out} \begin{split} & \mathsf{data\_out} <= "01010011"; \mathsf{----} \mathsf{din}; & & \mathsf{--S} \end{split}
nx<= d1;
when d1 =>
lcd_RS<='1';</pre>
lcd_EN<='1';</pre>
data_out<="01001011"; --K
nx<= d11;
when d11 =>
lcd_RS<='1';</pre>
lcd_EN<='0';</pre>
data_out<="01001011"; --K
nx<= d2;
when d2 =>
lcd_RS<='1';</pre>
lcd_EN<='1';</pre>
data_out<="01001110"; --N
nx<= d21;
when d21 =>
lcd_RS<='1';</pre>
lcd_EN<='0';</pre>
data_out<="01001110";
```

```
nx<= d21;
when others=>
null;
end case;
end process;
end Behavioral;
```



```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY LCDTEST IS
END LCDTEST;
ARCHITECTURE behavior OF LCDTEST IS
   -- Component Declaration for the Unit Under Test (UUT)
   COMPONENT LCD_SIMPLE_Practice
   PORT(
        rst : IN std_logic;
        clk: IN std_logic;
        lcd_RS : OUT std_logic;
        lcd_EN : OUT std_logic;
        data_out : OUT std_logic_vector(7 downto 0)
       );
   END COMPONENT;
  --Inputs
  signal rst : std_logic := '0';
  signal clk : std_logic := '0';
       --Outputs
  signal lcd_RS : std_logic;
  signal lcd_EN : std_logic;
  signal data_out : std_logic_vector(7 downto 0);
```

```
-- Clock period definitions
  constant clk_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
  uut: LCD_SIMPLE_Practice PORT MAP (
         rst => rst,
         clk => clk,
         lcd_RS => lcd_RS,
         lcd_EN => lcd_EN,
         data_out => data_out
       );
  -- Clock process definitions
  clk_process :process
  begin
              clk <= '0';
              wait for clk_period/2;
              clk <= '1';
              wait for clk_period/2;
  end process;
  -- Stimulus process
  stim_proc: process
  begin
       rst<='1';
     -- hold reset state for 100 ns.
     wait for 100 ns;
rst<='0';
--din<="00101010";
 wait for 100 ns;
```

```
rst<='1';
--din<="00101010";
-- hold reset state for 100 ns.
rst<='0';
--din<="00101010";
wait for 100 ns;
rst<='1';
--din<="00111111";
--hold reset state for 100 ns.
wait for 100 ns;
rst<='0';
wait for 100 ns;
-- insert stimulus here
wait;
end process;
```


UCF FILE (LCD)

NET data (0) LOC = P62;		
NET data(1) LOC = P63;		
NET data(2) LOC = P64;		
NET data(3) LOC = P65;		
NET data(4) LOC = P67;		
NET data(5) LOC = P68;		
NET data(6) LOC = P71;		
NET data(0) LOC = P72;		
NET clk LOC = P183;		
NET reset LOC = P102;		
*	Final Report	*
====		
Final Results		
RTL Top Level Output File Name	: LCD_SIMPLE_Practice.ngr	
Top Level Output File Name	: LCD_SIMPLE_Practice	
Output Format	: NGC	
Optimization Goal	: Speed	
Keep Hierarchy	: No	
Design Statistics		
# IOs	: 12	
Cell Usage:		

# BEL	S	: 83
#	GND	: 1
#	INV	: 1
#	LUT1	: 20
#	LUT2	: 2
#	LUT3	: 5
#	LUT4	: 11
#	MUXCY	: 20
#	MUXF5	: 1
#	VCC	: 1
#	XORCY	: 21
# Flip	Flops/Latches	: 36
#	FDC	: 34
#	FDCE	: 1
#	FDP	: 1
# Cloc	ek Buffers	:1
#	BUFGP	: 1
# IO E	Buffers	: 11
#	IBUF	:1
#	OBUF	: 10
=====		
Device utilization summary:		
Selecti	ed Device : 3s400pq208-5	

Number of Slices: 23 out of 3584 0%

Number of Slice Flip Flops:	36 out of 7168	0%
Number of 4 input LUTs:	39 out of 7168	0%
Number of IOs:	12	
Number of bonded IOBs:	12 out of 141	8%
Number of GCLKs:	1 out of 8	12%
Partition Resource Summary: No Partitions were found in this design		