Chapter 3 Notes

Overview

3.1. Open sets and closed sets

Definition for open sets and closed sets

Formal properties of open sets

Closed sets by the convergence of sequences

3.2. Topology

Convergence/Continuity in topological terms

3.3. Equivalent distances

Equivalence for two distances

3.4. Homeomorphisms

Chapter 3 Notes

Overview

Open and closed subset of a metric space Formal properties of open subsets Closed sets by convergence of sequences Convergence/Continuity using open sets Equivalence for two distances Homeomorphism

3.1. Open sets and closed sets

Definition for open sets and closed sets

Definition 3.1.1.

Let (X, d) be a metric space, and let $A \subseteq X$.

Open: we say that A is open in (X, d) if $\forall p \in A, \exists \epsilon > 0$, s.t. $B_{\epsilon}(p) \subseteq A$.

Closed: If $B \subseteq X$ then we say that B is closed in (X, d) if $X \setminus B$ is open.

一般的开集证明思路: 证明所证集内的任一元素的任一开球内的元素都在所证集中. i.e. 所证集内任一元素的任一开球是所证集的子集.

Formal properties of open sets

Lemma 3.1.4 — Open sets properties

Let (X, d_X) be a metric space.

- 1. The subsets \emptyset and X are open
- 2. An arbitrary union of open sets is open (任意并)
- 3. A finite intersection of open sets is open (有限交)

About closed sets:

- 1. The subsets \emptyset and X are closed
- 2. The arbitrary intersection of closed sets is closed (任意交)
- 3. A finite union of closed sets is closed (有限并)

Closed sets by the convergence of sequences

Lemma 3.1.8.

Let (X, d) be a metric space, and let $A \subseteq X$. Then,

The subset A is closed $\iff \forall (x_n) \text{ of } A$, if (x_n) converges to $l \in X$ then $l \in A$.

3.2. Topology

Definition 3.2.1.

A topology \mathcal{U} on X is a collection of subsets \mathcal{U}_i of X, called the <u>open subsets</u> of X (开子集族), that satisfies the following properties.

 (T_1) The subsets \emptyset , $X \in \mathcal{U}$

 (T_2) If $\mathcal{U}_i \in \mathcal{U}$ for all $i \in I \implies \bigcup_{i \in I} \mathcal{U}_i \in \mathcal{U}$ (任意并)

$$(T_3)$$
 If $\mathcal{U}_1,\ldots,\mathcal{U}_N\in\mathcal{U}\implies\bigcap_{i=1}^N\mathcal{U}_i\in\mathcal{U}$ (有限交)

Remark 3.2.5.

$$\begin{cases} Discrete \ topology \ \mathscr{P}(X) \\ Trivial \ topology \ \mathscr{U} = \{\emptyset, X\} \end{cases}$$

Convergence/Continuity in topological terms

Theorem 3.2.8. — Convergence

Let (X,d) be a metric space, (x_n) a sequence of X, and let $l \in X$. Then the following are equivalent:

- 1. (x_n) converges to l
- 2. \forall open subset $\mathcal{U}\subseteq X$ with $l\in\mathcal{U}$, $\exists N\in\mathbb{N}$ s.t. $(x_n)\in\mathcal{U}$ $\forall n>N$

Tips: 当收敛时 (x_n) 只有有限多的项在 \mathcal{U} 外面

Theorem 3.2.9. — Continuity

Let (X,d_X) and (Y,d_Y) be metric spaces, and let $f\colon X\to Y$. Then the following are equivalent.

- 1. f is continuous.
- 2. \forall open set $\mathcal{U} \subseteq Y$, the *inverse image* $f^{-1}(\mathcal{U})$ is open in X.

Remark 3.2.10.

 \forall open subset $\mathcal{U}\subseteq Y$, $f^{-1}(\mathcal{U})$ is open \iff \forall closed set $C\subseteq Y$, $f^{-1}(C)$ is closed.

Tips: 上述的闭集用开集表示即可.

3.3. Equivalent distances

Equivalence for two distances

Two distances are equivalent if the notions of convergence and continuity defined using one are the same as those defined using the other. (上面使用了<u>开集</u>来定义度量空间内收敛性与连续性)

Definition 3.3.1.

Let X be a set. Let d,d' be two different distances on X. Then we say that d and d' are equivalent whenever the <u>open sets</u> of (X,d) <u>coincide</u> with those of (X,d'). We write $d \sim d'$ to denote that two distances are equivalent.

Tips: 即开集表示一致.

Corollary 3.3.2. — Convergence

Let (X,d) and (X,d') be metric spaces with $d \sim d'$, and let (x_n) be sequence of X and $l \in X$. Then we have

$$(x_n)\stackrel{d}{
ightarrow} l\iff (x_n)\stackrel{d'}{
ightarrow} l$$

Corollary 3.3.3. — Continuity

Let (X,d_X) , (X,d_X') and (Y,d_Y) , (Y,d_Y') be metric spaces where $d_X\sim d_X'$ and $d_Y\sim d_Y'$. Then

$$\underbrace{f: (X, d_X) o (Y, d_Y)}_{is \ continuous} \iff \underbrace{f: (X, d_X') o (Y, d_Y')}_{is \ continuous}$$

Lemma 3.3.5.

Let (X,d), (X,d') be metric spaces on the same underlying set. Suppose $\forall x,y,\exists C>0$, s.t.

$$d(x,y) \leq C \cdot d'(x,y)$$

Then,

$$\mathcal{U} \subseteq (X, d) \ open \implies \mathcal{U} \subseteq (X, d') \ open$$

Corollary 3.3.6. — Give an easy sufficient condition for two distances to be equivalent

According to the lemma above, if $\forall x,y \in X$, $\exists C,C'>0$, s.t.

$$d(x,y) \leq C \cdot d'(x,y)$$
 and $d'(x,y) \leq C' \cdot d(x,y)$

Then according to definition 3.3.1., d is equivalent to d'.

From Chapter 1, if $p \neq q$, then (\mathbb{R}^n, d_p) and (\mathbb{R}, d_q) are not isometric.

Corollary 3.3.7. — equivalence for d_p and d_q

On \mathbb{R}^n , the distances d_p and d_q are equivalent $\forall p,q \geq 1$ including $p,q = \infty$.

The case of the space of functions C[0,1] and two distances d_{L^1} and d_{L^∞} :

Lemma 3.3.8.

The inequality $d_{L^1}(f,g) \leq d_{L^\infty}(f,g)$ holds $\forall f,g \in C[0,1]$.

Remark 3.3.9.

The distance d_{L^1} and d_{L^∞} are not equivalent.

Remark 3.3.12.

For $p \geq 1$, the space of sequences l^p can be endowed with distances d_q and $d_{q'} \ \forall p \leq q < q'$. These two distances are <u>not equivalent</u>.

3.4. Homeomorphisms

Definition 3.4.1. — 集到集的双连续映射

Let (X,d_X) , (Y,d_Y) be metric spaces. We say that $f\colon\thinspace X o Y$ is a homeomorphism when

- 1. f is bijective
- 2. Both f and f^{-1} are continuous

We say that the two metric spaces are homeomorphic when there exists such a f.

f 可以将 (X, d_X) 中的开集通过映射:

$$\mathcal{U}
ightarrow f(\mathcal{U}), \quad \mathcal{V}
ightarrow f^{-1}(\mathcal{V})$$

来得到 (Y, d_Y) 中的开集.

Example 3.4.2.

Let $f: (X,d_X)
ightarrow (Y,d_Y)$ be an isometry, then f is a homeomorphism.