- 1 平面图
 - 平面图的定义
 - Euler公式
 - 对偶图
 - Kuratowski定理
 - 例子

平面图— Example (1/2)

平面图— Example (2/2)

平面图

Definition

- 无向图G能图示在一个平面上,并且边与边仅在结点处相交的图称为平面图(Planar graph);
- 在平面图中由边所围成的一个连通的区域称为面(Region).

Example

两个面:一个是无限面(unbounded Region)

面与基本回路的关系

Propostion

- 每个面的边界一定是一个基本回路;
- 平面图的面数不会因为保持平面图的同构变换而改变,是一个几何常量.

Euler公式

Theorem (Euler公式)

设G是连通平面图, k是G的面数, 则:

$$n-m+k=2$$

Euler公式的相关推论

Corollary

设G是平面图, k是G的面数, 设G的围长为p, 则:

$$m \leqslant \frac{pk \leqslant 2m}{p} (n-2)$$

若 G是简单图,则每个基本回路的长度≥3,这样:

$$m \leq 3n - 6$$

Example

K_{3.3}不是平面图:

$$p = 4, m = 9, n = 6, \frac{p}{p-2}(n-2) = 8 < m = 9;$$

₭5不是平面图、

$$p = 3, m = 10, n = 5, 3n - 6 = 9 < m = 10;$$

对偶图

Definition

设图G是平面图,则G的对偶图 G^* 是以G的面为结点,且若 $e \in E(G)$ 且e的两边分别对应面x和y,则x和y在 G^* 中有边相连.

不同的对偶

若G是平面图,则由于G有不同的平面作图法,可导致G有不同的对偶.

设G是平面图, G*是其对偶. 则

- ① G*也是平面图,且G*是连通图;
- ② 若G连通,则G*的每个面包含且仅包含G唯一一个结点;
- ③ G连通当且仅当 $G^{**} \cong G$.

Proo

设G是平面图、G*是其对偶. 则

- G*也是平面图、且G*是连通图;
- ② 若G连通,则G*的每个面包含且仅包含G唯一一个结点:
- ⑤ G连通当且仅当G** ≅ G.

Proof

- G*的边仅需跨越一条原图G的边、因此是平面图;设u, v是G*的 点,则它们是原图G的面,则在原图上有条不经过G的结点由 面u到v的曲线,该曲线在G*中即是(u,v)路径.
- 设 $u \in G$,考虑按逆时针方向u引出的所有的边,在其对偶图中应 是逆时针围住 u 的回路, 即 G^* 的面, 且 u 在其中. 若 G 连通, 设 $v \in G$ 的另一点,则有 (u,v) 路径,该路径在 G^* 正好是跨越面的 曲线. 因此 G^* 的每个面最多 G 的一个点. 而 G 和 G^* 均是连通平 面图、都满足Euler公式, 由于 G^* 的结点数与 G 的面数相同、且两 者边数相同,故 G^* 的面数与G的结点数一致. 这样每个 G^* 的面 一定含且仅包含 6 唯一一个结点.

Example (contd)

设G是平面图, G*是其对偶. 则

- ① G*也是平面图,且G*是连通图;
- ② 若G连通,则G*的每个面包含且仅包含G唯一一个结点;
- ③ G连通当且仅当 $G^{**} \cong G$.

Proof

- 充分性: 设 $G^{**} \cong G$. 即 $G \not = G^*$ 的对偶图. 由 $1 \not = G^{**}$ 连通.
- 必要性:设u'是 G^* 的一个面,也是 G^{**} 的一结点,则u'含且仅含唯一的G的结点 u. 由(2), G^{**} 和G的结点——对应. 设 uv 是 G 的一边. 则根据对偶图的定义 G^* 有且仅有一条边 e^* 跨越 uv. 在图 G^* 中该边把 u 和 v 分离在两个不同的面中,且其面对应的 G^{**} 的点分别是 u' 和 v'. 这样 u'v' 是图 G^{**} 中唯一的跨越 e^* 的边. 即 u'v' 与 uv 一一对应. 故 G 与 G^{**} 同构.

两度结点同构

Definition

图G和图G'称为两度结点同构, iff, 对G和G'增加或删除两度结点之后所得到的图是同构图.

平面图的充要条件

Theorem (Kuratowski)

G是平面图, iff, G中不含有与 $K_{3,3}$ 和 K_5 两度结点同构的子图.

Example

小于30条边的简单平面图中一定有一个结点的度数≤4.

Proof(反证法).

设所有的结点的度数均 $\geq 5(\delta > 5)$; 则:

$$5n \leqslant 2m < 60$$

即:

又:

$$m \leq 3n - 6$$

$$5n \leq 2m \leq 6n - 12$$

即:

$$n \geqslant 12$$

矛盾.

- 1 平面图
 - 平面图的定义
 - Euler公式
 - 对偶图
 - Kuratowski定理
 - 例子