Problem introduction

Using the monthly sales data (in millions of dollars) of a manufacturing company over last eight years to predict sales data each month in 2022, and find the best Exponential Smoothing model to predict.

Problem 1

Use first two years of data to estimate initial (time 0) Level (L0), Trend (T0), and the additive seasonal factors for each month of the year.

 $L_0 = 101.311595$

 $T_0 = 1.5863627$

Additive seasonal factors:

Dec	Nov	Oct	Sep	Aug	Jul	Jun	May	Apr	Mar	Feb	Jan
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
-14.981	-19.176	25.34098	11.28012	36.7052	26.05441	20.05031	1.37636	-9.68444	-27.1614	-22.6714	-27.1332

Problem 2

Using smoothing constants α =0.2, β =0.1, and γ =0.1 apply additive trend-seasonal model to your data and compute Mean % Error, Mean Absolute % Error, RMSE (Root Mean Square Error), and other indicators. Discuss what information these indicators provide. Use your model to forecast next 12 months.

<1> Additive trend-seasonal model

Level component = L_t

Slope = T_t

Season = S_t

<2>Time series

The sales data observed between 2014 and 2022 in the manufacturing company, is shown in this picture.

<3> The Indicators of additive trend-seasonal model

<4>What are Mean % Error, Mean Absolute % Error and RMSE?

MPE: The **mean percentage error (MPE)** is the computed average of percentage errors by which forecasts of a model differ from actual Sales value of the quantity being forecast, which shows our forecast on average is off 0.8857627%.

MAPE: Mean Absolute Percentage Error (MAPE) is the mean of all absolute percentage errors between the predicted sales and actual sales values, which shows our forecast on average is off 8.203792%.

MASE: It is the mean absolute error of the forecast sales values, divided by the mean absolute error of the in-sample one-step naive forecast, which is equal to 0.7922201.

RMSE: It is difference between prediction sales and truth sales each month, which is related to the best model we will choose.

<5> Forecast of Sales data in 2022 for additive trend-seasonal model

> forecas	st(hw2_	forecast	level=0.9	95, h=12)
	Point	Forecast	Lo 95	Hi 95
Jan 2022		184.8032	152.00773	217.5986
Feb 2022		179.7021	145.46265	213.9415
Mar 2022		218.9038	182.23742	255.5702
Apr 2022		231.5653	191.39929	271.7314
May 2022		241.7543	197.02726	286.4813
Jun 2022		240.2469	189.97246	290.5214
Jul 2022		218.8701	162.16145	275.5787
Aug 2022		182.4644	118.53435	246.3945
Sep 2022		168.0413	96.19011	239.8925
Oct 2022		142.5685	62.16954	222.9675
Nov 2022		150.5748	61.06072	240.0889
Dec 2022		126.2701	27.12150	225.4186

Problem 3

Repeat Problem (1) and problem (2) for a multiplicative trend-seasonal model. Compare this model to the additive trend-seasonal model obtained in problem (2). Use your model to forecast next 12 months.

<1> estimate initial (time 0) Level (L0), Trend (T0), and the multiplicative seasonal factors

 $L_0 = 101.311595$

 $T_0 = 1.5863627$

multiplicative seasonal factors

Dec	Nov	Oct	Sep	Aug	Jul	Jun	May	Apr	Mar	Feb	Jan
0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
0.860069	0.81569	1.223991	1.095571	1.318348	1.211609	1.157615	1.002281	0.922847	0.783218	0.822838	0.785924

<2> multiplicative trend-seasonal model

<3> The Indicators of multiplicative trend-seasonal model

<4> What are Mean % Error, Mean Absolute % Error and RMSE?

MPE: The mean percentage error (MPE) is the computed average of percentage errors

by which forecasts of a model differ from actual Sales value of the quantity being forecast, which shows our forecast on average is off 0.8662507%.

MAPE: Mean Absolute Percentage Error (MAPE) is the mean of all absolute percentage errors between the predicted sales and actual sales values, which shows our forecast on average is off 6.530475%.

MASE: It is the mean absolute error of the forecast sales values, divided by the mean absolute error of the in-sample one-step naive forecast, which is equal to 0.64777.

RMSE: It is difference between prediction sales and truth sales each month, which is related to the best model we will choose.

<5> Forecast of Sales data in 2022 for multiplicative trend-seasonal model

> forecast(hw	2_forecast1	l, level=0	.95, h=12)
Poin	t Forecast	Lo 95	Hi 95
Jan 2022	176.1066	144.49244	207.7207
Feb 2022	171.8844	139.64854	204.1203
Mar 2022	232.1978	185.49664	278.8990
Apr 2022	247.1218	192.54938	301.6943
May 2022	265.5627	200.06035	331.0651
Jun 2022	266.0651	192.03970	340.0905
Jul 2022	243.7999	166.99864	320.6011
Aug 2022	202.7430	130.46093	275.0250
Sep 2022	189.4457	113.23558	265.6558
Oct 2022	160.3592	87.88890	232.8295
Nov 2022	170.2344	84.23792	256.2309
Dec 2022	145.5619	63.78907	227.3347

<6> Compare multiplicative trend-seasonal model to the additive trend-seasonal model

Problem 4

Use R to find the best additive trend-seasonal model as well as best multiplicative trend-seasonal model (restrict all smoothing constants to be between 0.1 and 0.5). Compare accuracy measures (RMSE, etc.) of these models to one obtained in part (b) and part (c). What is your forecast for next 12 months based on this model?

<1> The best additive trend-seasonal model

```
\alpha=0.4999, \beta=0.1001, and \gamma=0.1008
```

```
ETS(A,A,A)
Call:
 ets(y = timeseries, model = "AAA", damped = F, lower = c(0.1,
 Call:
     0.1, 0.1, 0.8), upper = c(0.5, 0.5, 0.5, 0.9))
  Smoothing parameters:
   alpha = 0.4999
   beta = 0.1001
   gamma = 0.1008
  Initial states:
   1 = 99.3771
   b = 0.6808
   s = -42.4718 - 24.1736 - 33.129 - 10.8566 - 0.5956 28.4514
           47.5136 43.7002 30.9561 13.8411 -26.557 -26.6788
  sigma: 15.5915
     AIC
               AICc
                          BTC
982.0465 989.8926 1025.6404
```



```
\label{eq:level_component} \begin{subarray}{ll} Level component = $L_t$ \\ \\ Slope = $T_t$ \\ \\ Season = $S_t$ \\ \\ \end{subarray}
```

RMSE = 14.23307

Forecast of Sales data in 2022 with best additive trend-seasonal model

```
> fcast1
         Point Forecast
                           Lo 95
                                    Hi 95
Jan 2022
              164.4524 133.89348 195.0112
Feb 2022
               156.4580 120.82127 192.0947
Mar 2022
              195.7624 154.19767 237.3272
Apr 2022
               209.1885 160.96484 257.4122
May 2022
              216.5917 161.07262 272.1108
Jun 2022
               217.1515 153.77261 280.5304
Jul 2022
              195.3125 123.56441 267.0605
Aug 2022
              160.0820 79.49805 240.6660
Sep 2022
              147.7970 57.94385 237.6502
Oct 2022
              123.1420 23.61350 222.6705
Nov 2022
               130.0194 20.43151 239.6073
Dec 2022
              104.7004 -15.31222 224.7131
```

<2> The best multiplicative trend-seasonal model

```
\alpha=0.1571, \beta=0.1, and \gamma=0.1
Call:
 ets(y = timeseries, model = "MAM", damped = F, lower = c(0.1,
     0.1, 0.1, 0.8, upper = c(0.5, 0.5, 0.5, 0.9)
  Smoothing parameters:
    alpha = 0.1571
    beta = 0.1
    gamma = 0.1
  Initial states:
    l = 100.8498
    b = 2.7606
    s = 0.7403 0.844 0.7732 0.9181 0.9863 1.1927
           1.2799 1.2822 1.1774 1.1452 0.8212 0.8396
  sigma: 0.0926
      AIC
               AICc
 966.4976 974.3438 1010.0916
```

• • • Quartz 2 [*]

Decomposition by ETS(M,A,M) method

RMSE = 13.21017

> accuracy(hw2_forecast2) ### RMSE = 13.21017

ME RMSE MAE MPE MAPE MASE ACF1
Training set -0.4470279 13.21017 9.967699 -0.8027637 6.469812 0.6425947 0.06873661

Forecast of Sales data in 2022 with best multiplicative trend-seasonal model

> fcast

		Point	Forecast	Lo 95	Hi 95
Jan	2022		177.1754	145.02676	209.3240
Feb	2022		171.8146	139.60648	204.0228
Mar	2022		232.8046	186.55976	279.0495
Apr	2022		246.0147	192.90458	299.1249
May	2022		264.1462	200.90027	327.3921
Jun	2022		264.8728	193.60010	336.1454
Jul	2022		244.1723	169.85631	318.4882
Aug	2022		201.9925	132.35801	271.6269
Sep	2022		188.1115	114.79761	261.4253
0ct	2022		158.6430	89.00680	228.2792
Nov	2022		170.0390	86.37064	253.7073
Dec	2022		145.1784	65.50448	224.8523

<3> Compare the best additive trend-seasonal model and best multiplicative trend-seasonal model in Time Series

<4> Find the best model

According to the lowest RMSE (13.21017), MPE and MAPE, we choose the multiplicative trend-seasonal model with α =0.1571, β =0.1, and γ =0.1 as the best model to predict the Sales.

Summary

The forecasts generated by the method with the additive seasonality display larger and increasing seasonal variation as the level of the forecasts increases compared to the forecasts generated by the method with multiplicative seasonality. The multiplicative seasonal component sums to approximately m = 12, The smoothing parameters and initial estimates for the components have been estimated by minimizing RMSE. With the additive method, the seasonal component is expressed in absolute terms in the scale of the observed series, and in the level equation the series is seasonally adjusted by subtracting the seasonal component. Within each year, the seasonal component will add up to approximately zero. With the multiplicative method, the seasonal component is expressed in relative terms (percentages), and the series is seasonally adjusted by dividing through by the seasonal component. Within each year, the seasonal component will sum up to approximately m. We apply Holt-Winters' method with both additive and multiplicative seasonality to forecast monthly sales in a manufacturing company.