

목차

- [1] 격자란 무엇인가?
- [2] 격자 기반 문제
- [3] 격자 기반 공개키 암호
- [4] 대수적 격자소개
- [5] 대수적 격자 기반 공개키 암호
- [6] 격자 기반 디지털 사인

Encryption scheme overview

Cited from 'Lattice Cryptography in the NIST Standardization Process', Vadim Lyubashevsky

격자기반 암호 CRHF

Collision - Resistant Hash Functions (CRHF)

```
Input: \{0,1\}^{m}
```

Output: \mathbb{Z}_q^n

Hard to find collisions; $x \neq y$, f(x) = f(y)

▶ 격자 기반 CRHF

$$f(x) = A \mod q$$

대수적 격자기반 암호 CRHF

Collision - Resistant Hash Functions (CRHF)

```
Input: \{0,1\}^m
```

Output: R_q

Hard to find collisions; $x \neq y$, f(x) = f(y)

▶ 격자 기반 CRHF

$$f(x) = \begin{cases} x & y & z & w \\ b & b \\ c & d \end{cases} \mod$$

대수적 격자/ 격자기반 CRHF 비교

	격자	아이디얼 격자
Storage	$\tilde{O}(n^2)$	$ ilde{O}(n)$
Computing Time	$\tilde{O}(n^2)$	$ ilde{O}(n)$
Hardness Assumption	SIVP	SVP
Break Known attack time	$2^{\Omega(n)}$	$2^{\Omega(n)}$

NTRU 기반 PKE

Given
$$h$$
 and $h = \frac{g}{f} \mod q$

$$\operatorname{Enc}(m) = 2 \operatorname{h} \operatorname{r} + \operatorname{m} \operatorname{mod} q = \operatorname{c}$$

$$m \in \{0, 1\}^n$$

$$Dec(c) = \frac{\boxed{c \text{ f } mod q}}{\boxed{f}} mod 2$$

NTRU 기반 PKE

Given
$$h$$
 and $h \equiv \frac{g}{f} \mod q$

$$\operatorname{Enc}(m) = 2 \operatorname{h} \operatorname{r} + \operatorname{m} \operatorname{mod} q \equiv \operatorname{c}$$

$$=2\frac{g}{f}+m \mod q$$

$$= \frac{2 \operatorname{gr} + \operatorname{mf}}{\operatorname{f}} \mod$$

NTRU 기반 PKE

Given
$$h$$
 and $h = \frac{g}{f} \mod q$

$$Dec(c) = \frac{\begin{array}{c} c & f & mod q \\ \hline f & mod 2 \end{array}}{ \mod 2} = \left[\begin{array}{c} c & f & mod q \end{array}\right] / \begin{array}{c} f & mod 2 \end{array}$$
$$= \left[\begin{array}{c} 2 & g & r + m & f \end{array}\right] / \begin{array}{c} f & mod 2 \end{array}$$
$$= \left[\begin{array}{c} m & f \end{array}\right] / \left[\begin{array}{c} f & mod 2 \end{array}\right] = \left[\begin{array}{c} m & f \end{array}\right] / \left[\begin{array}{c} f & mod 2 \end{array}\right]$$

RLWE 기반 PKE

Pk A t = A s + e mod q

Sk s Enc(m)= r A t

+
e'

$$m \in \{0,1\}^n$$
 $m^* = \frac{q-1}{2} \cdot m$
 $m \in \{0,1\}^n$
 $m^* = \frac{q-1}{2} \cdot m$

RLWE 기반 PKE

$$\begin{aligned} & = (m_1, \dots, m_n) \quad m_i = \begin{cases} 0 & \text{if } m_i^* \approx 0 \\ 1 & \text{if } m_i^* \approx \frac{q-1}{2} \end{cases} \\ & = \text{r} \quad \text{t} \quad + \text{e}' + \text{m}^* \\ & = \text{r} \quad \text{As} \quad + \text{e} \right) + \text{e}' + \text{m}^* \\ & = \text{us} \quad + \text{m}^* \end{aligned}$$

Algebraic LWE 기반 PKE

Algebraic LWE 기반 PKE

Enc(m)=

A t

Dec(c)= V - U

A t

$$m \in \{0,1\}^n$$
 $m^* = \frac{q-1}{2} \cdot m$
 $m_i = \begin{cases} 0 & \text{if } m_i^* \approx 0 \\ 1 & \text{if } m_i^* \approx \frac{q-1}{2} \end{cases}$

대수적 격자/ 격자기반 PKE 비교

	격자	아이디얼 격자
Storage	$\tilde{O}(n^2)$	$ ilde{O}(n)$
Computing Time	$\tilde{O}(n^2)$	$ ilde{O}(n)$
Hardness Assumption	LWE	RLWE/ NTRU
Break Known attack time	$2^{\Omega(n)}$	$2^{\Omega(n)}$

Algebraic LWE 기반 PKE

고속화 설계 - (1)

고속화 설계 - (1)

고속화 설계 - (1)

$$= \left(\begin{array}{c|c} & & \\ & &$$

e.x
$$[8 \times \frac{2}{3}] = [7 \times \frac{2}{3}] = 5$$

고속화 설계 - (2)

Question: Security?

Digital Signature Overview

$$Sign(m) = \mathbf{C} \mathbf{Z}$$

$$\mathbf{C} = Hash \left(\mathbf{MSB} \right) \mathbf{A} \mathbf{Y} \mathbf{MSB}$$

$$\mathbf{Z} = \mathbf{Y} + \mathbf{C} \mathbf{S}$$

$$\mathbf{C} = \operatorname{Hash} \left(\operatorname{MSB} \left(\begin{array}{c|c} \mathbf{A} & \mathbf{Z} & \mathbf{C} & \mathbf{t} \\ \end{array} \right) \right)$$

= Hash

$$\mathbf{C} = \operatorname{Hash}\left(\operatorname{MSB}\left(\mathbf{A}\right) \mid \mathbf{Z} - \mathbf{C} \mid \mathbf{t}\right)$$

$$\begin{array}{c|cccc}
2) & & & & \\
\hline
\mathbf{A} & \times & & \\
\hline
\mathbf{S} & & & \\
\end{array} = \operatorname{Hash}\left[\begin{array}{c} m \end{array}\right]$$

$$= \operatorname{Hash}\left[m\right] \qquad = \operatorname{CVP}\left[\begin{array}{c} \\ \\ \\ \end{array}\right]$$

NTRU 문제

$$q \in \mathbb{Z}, R_q := R/qR = \mathbb{Z}_q[X]/\langle X^n + 1 \rangle$$

Given
$$h$$
 and $h = \frac{g}{f} \mod q$

Recover g and f

g f
$$\leftarrow \{-1, 0, 1\}^n$$

$$h = \frac{g}{f}$$

$$1 = \frac{f}{f}$$

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

F g + G f =
$$q \Leftarrow \text{Ring} \div$$

$$\Leftrightarrow \mathsf{F} \stackrel{\mathsf{g}}{=} + \mathsf{G} \stackrel{\mathsf{f}}{=} = \mathsf{O} \mod q$$

$$F = 0 \mod q$$

$$\Leftrightarrow$$
 1 h \times F = 0 mod q

