1. Prove for all $n \in \mathbb{N}$, $n^2 \mod 4 = 0$ or $n^2 \mod 4 = 1$.

Cases: n is even, n is odd, (n is zero)

Requirements: Result (remainder) is always between 0 and k-1; The result is 0 when n is divided by k; n mod n = 0; n mod k = r if and only if n = qk + r and $0 \le r \le k-1$, by definition.

Case 1: n is even.

n = 2k for some integer k
 = (2k)² mod 4
 = 4k² mod 4
 By definition of even
 Substitute 2k for n value
 Divisible by 4

Since n^2 is divisible by 4, we can conclude the remainder or result is zero. This shows that n^2 mod 4 = 0 when n is even. QED

Case 2: n is odd

n = 2k +1 for some integer k	By definition of odd
• = $(2k+1)^2 \mod 4$	Substitute 2k +1 for n value
• = $4k^2 + 4k + 1 \mod 4$	Distribution
• = $4(k^2 + K) + 1$	Factoring
• = $4 \ell + 1$ where $\ell = k^2 + k = k (k + 1)$	Assigning ℓ value; Divisible by 4 with 1
	for remainder

We know n^2 divided by 4 leaves a remainder of zero. We can conclude that since we have (1) leftover, the conclusion is $n^2 \mod 4 = 1$ when n is odd. QED

(Case 3: n is zero)

•	n = 0k for some integer k	By definition of zero
•	$= 0^2 \text{mod } 4$	Substitute 0k for n value $(0 * k = 0)$
•	= 0 mod 4	Since 0 * 0 = 0

We didn't really need to check for $n \neq 0$, but to cover all bases I wanted to complete case 3. Dividing 0 by 4 equals 0 without any remainder. We can conclude $n^2 \mod 4 = 0$ when n is zero. QED

2. Prove for all $n \in \mathbb{N}$, if 3n + 2 is even, then n is even.

Proof by contradiction:

Supposing $\neg p$, then 3n+2 is odd:

- We are trying to prove 3n + 2 is even by showing the contradiction 3n + 2 is odd is false.
- Starting with 3n + 2, if we take away or subtract the 2, then 3n is still even if that is our assumption.
- To demonstrate \neg p, or that 3n is odd we can add 1 to 3n by the definition of odd.
- This can be written as $3n + 1 = 2\ell$ for some integer ℓ (2ℓ in this case to try and prove 3n + 2 is even)
- However, the statement does not hold true that 2ℓ is even since the other side of the equation was written as the definition of an odd number. Therefore, we can conclude $\neg p$, 3n + 2, is false.

Through proof by contradiction, we have shown through logical steps that when setting up 3n + 2 to be odd, this is false and therefore when 3n + 2 is even, then n is even. QED

Proof by contraposition:

Assuming the consequence is false, n is odd ($\neg q \Rightarrow \neg p$). So, n = 2k+1 for some integer k

• = 3(2k+1) + 2 Plugged in 2k + 1 for n value

• = 6k + 3 + 2 Distribution • = 2(3k + 2) + 1 Factoring

• = $2\ell + 1$ for some $\ell = 3k + 2$ Assign value for ℓ ; By definition of odd

Since we ended with a definition of an odd number, we can conclude through proof by contraposition that since when n is odd (2k + 1) we obtain an odd result $(2\ell + 1)$, then through proof by contraposition we can conclude that if 3n + 2 is even, then n is even. QED

3. Prove for all positive integers, A, B, if A is even and B is odd, A + B = C is odd.

There is d such that A = 2d
By definition of even
There is h such that B = 2h + 1
C = A + B
C = 2d + 2h + 1
Substitution
C = 2(d+h) + 1
Let k = d + h
Defining k for some integer k
C = 2k + 1

Since C = 2k + 1 for some integer k, we can conclude C is odd. QED

Prove for all positive integers, A, B, if A is odd and B is odd, A + B = C is even.

•	There is d such that A = 2 d + 1	By definition of odd
•	There is h such that B = 2 h + 1	By definition of odd
•	C = A + B	Premise
•	C = 2d + 1 + 2h + 1	Substitution
•	C = 2(d+h) + 2	Factoring
•	Let $k = d + h$	Defining k for some integer k
•	C = 2k + 2 (-2)	Subtracting 2, an even number
•	C = 2k	By definition of even

Since C = 2k for some integer k, we can conclude C is even. QED

4. Prove for all positive integers, A, B, if A and B are even, A * B = C is even.

•	There is d such that A = 2d	By definition of even
•	There is h such that B = 2h	By definition of even
•	C = A * B	Premise
•	C = 2d * 2h	Substitution
•	C = 2(dh)	Factoring
•	Let k = dh	Defining k for some integer k
•	C = 2k	By definition of even

Since C = 2k for some integer k, we can conclude C is even. QED

Prove for all positive integers, A, B, if A is even and B is odd, A * B = C is even.

•	There is d such that A = 2d	By definition of even
•	There is h such that B = 2h + 1	By definition of odd
•	C = A * B	Premise
•	C = 2d * (2h + 1)	Substitution
•	C = 4dh + 2d	Distribution
•	C = 2(dh + d)	Factoring
•	Let $k = dh + d$	Defining k for some integer k
•	C = 2k	Definition of even

Since C = 2k for some integer k, we can conclude C is even. QED

Prove for all positive integers, A, B, if A and B are odd, A * B = C is odd.

•	There is d such that $A = 2 d + 1$	By definition of odd
•	There is h such that B = 2 h + 1	By definition of odd
•	C = A * B	Premise
•	C = (2d + 1) * (2h + 1)	Substitution
•	C = 4dh + 2d + 2h + 1	Distribution
•	C = 2(2dh + d + h) + 1	Factoring
•	Let $k = 2dh + d + h$	Defining k for some integer k
•	C = 2k + 1	Definition of odd

Since C = 2k + 1 for some integer k, we can conclude C is odd. QED

5. Prove for all $n \in \mathbb{N}$, if 3n + 2 is even, then n is even (using direct approach from solved proofs). Assuming n is an even integer, then n = 2k for some integer k.

= 3 (2k) + 2 Plug 2k for n by definition of even
 = 6k + 2 Distribution
 = 2(3k + 1) Factoring
 = 2 ℓ where ℓ = 3k + 1 for some integer ℓ Assign value for ℓ

Since 2ℓ is an even integer, we can conclude 3n + 2 is even when n is even. QED

6. Prove or disprove for all $n \in \mathbb{N}$, if n^2 is even, then n is even. Assuming n is an even integer, then n = 2k for some integer k.

> • = $(2k)^2$ Plug 2k for n by definition of even • = $4k^2$ Distribution • = 2(2k2) Factoring • = 2ℓ where ℓ = 2k2 Assign value for ℓ

Since 2ℓ is an even integer, we can conclude n^2 is even when n is even. QED

7. Prove for any integers m, n, and k > 0, $(m+n) \mod k = ((m \mod k) + (n \mod k)) \mod k$.

*Rewritten as $(A1 + A2) \mod B = (A1 \mod B + A2 \mod B) \mod B$ # Had a difficult time understanding modular arithmetic and researched other tutorials. Switching variables from (m,n,k) to (A1,A2,B) was easier to manage.

REQUIREMENTS:

$$\frac{A}{R}$$
 = Q remainder R

A = B * Q + R where $0 \le R < B$ (quotient remainder theorem) \Rightarrow A mod B = R

A mod $B = (A + K * B) \mod B$ for any integer K; # "Increase A by a multiple of B won't change mod calculations"

- A1 = B * Q1 + R1 where $0 \le R1 < B$ and Q1 is some integer Q.
- A1 mod B = R1
- A2 = B * Q2 + R2 where $0 \le R2 < B$ and Q2 is some integer Q.
- A2 mod B = R2

From stated equation, divide by B and eliminate Q1 since does not affect mod calculations

(A1 + A2) mod B:	Solving for LHS (Left-hand side)
= ((B * Q1 + R1) + (B * Q2 + R2)) mod B	Plug values for A1 and A2 from above
= B * Q1 + B * Q2 + R1 + R2 mod B	Commutative Property
= B (Q1 + Q2) + R1 + R2 mod B	Factoring
= (R1 + R2) mod B	Multiplying B by Q1
	and/or Q2 does not affect mod calculations,
	therefore $B(Q1 + Q2) \mod B = 0$.

8. Prove that $\sqrt{2}$ is irrational.

Attempting to prove using proof by contradiction, we can show $\neg p \Rightarrow q$. $\neg p$ states $\sqrt{2}$ is rational. From the definition of rational numbers, we can write $\sqrt{2} = \frac{a}{b}$; b $\neq 0$

#When a rational number is in its lowest form $\frac{a}{b}$ and its denominator is a positive integer, the numerator and denominator have no common factor other than 1 by definition.

• $\sqrt{2} = \frac{a}{b}$

• $2 = \left(\frac{a}{b}\right)^2$

• $a^2 = 2b^2$

• a = 2k for some integer k

By definition of rational number

Square both sides

Distribution

Multiplying both sides by b², we determine a² or simply a is even by the definition of even. We can say

Assigning k value to denote a is even

• $2b^2 = (2k)^2$

• $2b^2 = 4k^2$

• $b^2 = 2k^2$

Plug 2k for a value

Distribution

Dividing both sides by 2, we determine b² or simply b

even due to definition of even.

Since we have concluded that both a and b are even, we have proved $\frac{a}{b}$ has a common factor other than 1, in this case 2. Through proof by contradiction we have shown that $\sqrt{2}$ is an irrational number. QED

9. Prove that $(a^5)^3 = a^{(5*3)} = a^{15}$

• $(a^5)^3 = a^5 * a^5 * a^5$

• $a^5 * a^5 * a^5 = aaaaa * aaaaa * aaaaa$

• =aaaaaaaaaaaaaa

• $= a^{15}$

• = $a^{(5*3)}$

By definition of exponent

By definition of exponent

Multiplication

By definition of exponent

By definition of multiplication (5 * 3 == 15)

Prove that $(ab)^5 = a^5 b^5$

• $(ab)^5 = (ab) * (ab) * (ab) * (ab) * (ab)$

• = a * a * a * a * a * b * b * b * b * b

aaaaa * bbbbb

• = $a^5 * b^5$

By definition of exponent

Commutative property of multiplication

Multiplication

By definition of exponent

Adding definitions of exponents are a consequence of the existing structure since proving $(a^5)^3 = a^{(5*3)}$ and $(ab)^5 = a^5 b^5$ demonstrated by breaking apart the stated exponents into their smaller equivalent counterparts, we could translate the logical equivalences using just algebraic principles. QED

10. Prove the Quadratic formula: $ax^2 + bx + c = 0$, $a \ne 0$

Divide by the coefficient (a) of x^2 ; $0 \div a = 0$

- Move the constant $(\frac{c}{a})$ to the other side
- $x^2 + \frac{b}{a} x + \frac{c}{a} = \frac{0}{a}$ $x^2 + \frac{b}{a} x = -\frac{c}{a}$ $x^2 + \frac{b}{a} x + (\frac{b}{2a})^2 = -\frac{c}{a} + (\frac{b}{2a})^2$

Take half the coefficient of x, square it and add it to both sides (from algebra notes)

LHS (Left-hand side)

$$x^{2} + \frac{b}{a} x + \frac{b}{2a}^{2}$$

$$= (x + \frac{b}{2a})^{2}$$

$$= x^{2} + \frac{b}{2a} x + \frac{b}{2a} x + (\frac{b}{2a})^{2}$$

$$= x^{2} + \frac{2b}{2a} x + (\frac{b}{2a})^{2}$$

$$= x^{2} + \frac{b}{a} x + \frac{b}{2a}^{2}$$

Distribution

Added fractions
$$\frac{b}{2a} + \frac{b}{2a} = \frac{2b}{2a}$$

Cancel out 2's from num./den. in coefficient x

$$= \left(x + \frac{b}{2a}\right)^2$$

Back to factored form

RHS (Right-hand side)

$$\begin{aligned}
&= -\frac{c}{a} + \frac{b}{2a}^{2} \\
&= -\frac{c}{a} + \frac{b^{2}}{4a^{2}} \\
&= \frac{b^{2}}{4a^{2}} - \frac{c}{a} \left(\frac{4a}{4a}\right) \\
&= \frac{b^{2}}{4a^{2}} - \frac{4ac}{4a^{2}} \\
&= \frac{b^{2}-4ac}{4a^{2}}
\end{aligned}$$

$$\frac{b}{2a}^2 = \frac{b^2}{4a^2}$$

Multiply by $(\frac{4a}{4a})$

Distribution

Common denominator

•
$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

•
$$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}$$

• $(x + \frac{b}{2a}) = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$
• $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$
• $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Square root property
$$(4a^2 \Rightarrow 2a)$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Subtracted
$$\frac{b}{2a}$$
 from both sides

•
$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We can conclude $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where the values of x can be plugged into the quadratic formula $ax^2 + bx + c$ with a result of 0. QED