Feuille d'exercices n° 11 : continuité

Exercice 1. Calculer les limites suivantes :

1.
$$\lim_{x \to 2} \frac{2x^3 - 4x^2 - 3x + 6}{x^2 - 4}$$
 4. $\lim_{x \to +\infty} \frac{\sinh(x)}{e^x}$

$$4. \lim_{x \to +\infty} \frac{\sinh(x)}{e^x}$$

8.
$$\lim_{x \to +\infty} \frac{x^{\ln x}}{(\ln x)^x}$$

2.
$$\lim_{x \to +\infty} \sqrt{x^2 + x - 1} - x\sqrt{x}$$
5.
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - \frac{1}{x^2 + x}$$
6.
$$\lim_{x \to +\infty} e^x \sin(e^{-x})$$

$$5. \lim_{x \to +\infty} \sqrt{x^2 + x} - x$$

9.
$$\lim_{x \to +\infty} x^{1/x}$$

3.
$$\lim_{x \to 0^+} \frac{x - \lfloor x \rfloor}{\sqrt{x}}$$

7.
$$\lim_{x \to +\infty} \frac{\cos(x^2 + x - 1)}{x}$$

10.
$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right)^{\frac{1}{x}}$$

Exercice 2. Étudier la continuité des fonctions suivantes sur leur domaine de définition.

1.
$$f(x) = \begin{cases} (1+x)e^{1/x} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$
 2. $f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0 \\ 1 & \text{sinon} \end{cases}$ 3. $f(x) = \begin{cases} \frac{x - 1}{x^2 - 1} & \text{si } |x| \neq 1 \\ \frac{1}{2} & \text{sinon} \end{cases}$

2.
$$f(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0 \\ 1 & \text{sinon} \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{si } |x| \neq 1 \\ \frac{1}{2} & \text{sinon} \end{cases}$$

Exercice 3. Déterminer le domaine de définition de ces fonctions et déterminer si on peut les prolonger par continuité aux bornes du domaine.

$$1. \ f(x) = x^x$$

$$2. f(x) = \frac{x^2 \ln(x)}{\sin(x)}$$

3.
$$f(x) = \frac{x \ln x}{x^2 - 1}$$

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0, vérifiant : $\forall x \in \mathbb{R}, f(x) = f(2x)$.

- 1. Soit x_0 fixé. Montrer que la suite $\left(f\left(\frac{x_0}{2^n}\right)\right)_n$ est constante.
- 2. Montrer que pour tout $x_0 \in \mathbb{R}$, $f(x_0) = f(0)$.
- 3. En déduire que f est une fonction constante.

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{Z}$. Montrer que si f est continue, alors f est constante.

Exercice 6. Soient f et g deux fonctions continues sur [0,1] qui vérifient :

$$f(1) = g(0) = 1$$
 et $g(1) = f(0) = 0$.

Montrer que : $\exists a \in [0, 1], \quad f(a) = 2023g(a).$

Exercice 7. Soit u la suite définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n^2 + \frac{1}{4}$.

- 1. Montrer que u est positive.
- 2. Montrer que u est monotone.
- 3. En déduire que u converge et calculer sa limite.

Exercice 8. Soit a > 0. On considère la suite définie par :

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Montrer que u_n existe pour tout $n \in \mathbb{N}$.
- 2. Étudier la fonction : $f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$.
- 3. Montrer que : $\forall n \ge 1, u_n \ge \sqrt{a}$.
- 4. Montrer que u est monotone à partir de n = 1.
- 5. Montrer que u converge et calculer sa limite.

Exercice 9. On considère, pour tout entier naturel n, la fonction f_n définie par $f_n(x) = x^5 + nx - 1$.

- 1. Étudier les variations de f_n .
- 2. Montrer que, $\forall n \geq 0$, il existe un unique réel u_n tel que $f_n(u_n) = 0$.
- 3. Montrer que $\forall n \ge 1$, $0 \le u_n \le \frac{1}{n}$ et en déduire la convergence de la suite (u_n) .
- 4. Montrer que : $\lim_{n \to +\infty} nu_n = 1$.

Exercice 10. On définit pour tout $n \in \mathbb{N}^*$ la fonction $f_n : f_n(x) = x^n + 9x^2 - 4$.

Pour $n \in \mathbb{N}^*$, on définit la suite u dont le terme général u_n est la solution strictement positive à l'équation $f_n(x) = 0$.

- 1. Calculer u_1 et u_2 .
- 2. Montrer que u est bien définie.
- 3. Montrer que : $\forall n \in \mathbb{N}^*, \quad u_n \in]0, \frac{2}{3}[.$
- 4. Montrer que : $\forall x \in]0,1[, f_{n+1}(x) < f_n(x).$
- 5. En déduire que u est monotone.
- 6. Montrer que u converge.
- 7. Déterminer la limite $\lim_{n\to+\infty}u_n^n$ et en déduire la valeur de la limite de u.

Exercice 11. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^x + x$.

- 1. Montrer que f réalise une bijection sur des intervalles à déterminer.
- 2. Déterminer le tableau de variations de f^{-1} .
- 3. Pour $n \in \mathbb{N}$, montrer que l'équation f(x) = n admet une unique solution, qu'on notera u_n .
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \quad u_n \geqslant 0.$
- 5. Étudier la monotonie de u et calculer sa limite.
- 6. Montrer que : $\forall n \ge 1$, $\ln(n \ln n) \le u_n \le \ln n$.
- 7. Retrouver la limite de u puis déterminer la limite de : $\frac{u_n}{\ln n}$.

Pour s'entrainer

Exercice 12. L'objectif est de déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues qui vérifient :

$$\forall x \in \mathbb{R}, \quad f\left(\frac{x+1}{3}\right) = f(x).$$

- 1. On considère la suite (u_n) définie par son premier terme et la relation de récurrence $u_{n+1} = \frac{u_n+1}{3}$. Expliciter $(u_n)_{n\in\mathbb{N}}$ en fonction de n. Montrer que (u_n) converge et déterminer sa limite.
- 2. Soit f solution du problème. Montrer que $f(u_0) = f(1/2)$. Que peut-on en conclure pour f?

Exercice 13.

- 1. Si $n \in \mathbb{N}$, avec $n \geqslant 2$, montrer que l'équation $x+1=\frac{e^x}{n}$ a une unique solution x_n strictement négative.
- 2. Étudier la monotonie de la suite (x_n) , puis l'existence d'une limite.
- 3. Calcular $\lim_{n \to +\infty} n(x_n + 1)$.

Exercice 14. On considère la suite u définie par : $\begin{cases} u_0 \ge 1, \\ \forall n \in \mathbb{N}, \quad u_{n+1} = 1 + \ln(u_n). \end{cases}$

- 1. Étudier la fonction $g: x \mapsto 1 + \ln(x) x$.
- 2. Montrer que u existe sur \mathbb{N} .
- 3. Montrer que u est monotone.
- 4. Montrer que u converge et calculer sa limite.

Exercice 15. On définit $f_n : \mathbb{R}_+^* \to \mathbb{R}$ par $f_n(x) = \sum_{k=0}^n x^k$.

- 1. Montrer que $f_n(x) = 2$ admet une unique solution, notée u_n .
- 2. Montrer que : $\forall n \geq 2, \quad u_n \in]0, 1[$.
- 3. Étudier la monotonie de u et en déduire la convergence de u.
- 4. Démontrer que u_n^n tend vers 0. En déduire la limite de la suite u.

Exercice 16. Soit f définie sur un intervalle I vérifiant : $\forall (x,y) \in I^2$, $|f(x) - f(y)| \leq |x - y|$. Montrer que f est continue sur I.

Exercice 17. Soit $f: x \mapsto \sin\left(\frac{1}{x}\right)$ définie sur \mathbb{R}^* . Montrer en utilisant des suites de limite nulle que f n'a pas de limite en 0.

Exercice 18. Soit $f: [0,1] \to \mathbb{R}$ continue telle que f(0) = f(1). Montrer qu'il existe $x \in [0,1/2]$ tel que $f\left(x + \frac{1}{2}\right) = f(x)$.

Exercice 19. Déterminer toutes les fonctions vérifiant les conditions suivantes :

- 1. f est continue en 0 et en 1 et : $\forall x \in \mathbb{R}$, $f(x) = f(x^2)$
- 2. f est continue sur \mathbb{R} et : $\forall x \in \mathbb{R}$, $f\left(\frac{x+1}{2}\right) = f(x)$

3. f est continue sur \mathbb{R} avec f(0) = 1 et : $\forall x \in \mathbb{R}$, $f(2x) = f(x)\cos(x)$

4.
$$f$$
 est continue sur \mathbb{R} et : $\forall (x,y) \in \mathbb{R}^2$, $f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y))$

Exercice 20. Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant la propriété $(P): \forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$

1. Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$, on a :

$$f(0) = 0$$
 $f(nx) = nf(x)$ $f(-nx) = -nf(x)$ $f\left(\frac{x}{n}\right) = \frac{f(x)}{n}$

Exercice 21. Montrer que chacune des équations suivante admet une solution sur l'intervalle I donné :

1.
$$x^{2014} - x^{2015} = 1$$
 sur $I = [-1, 1]$

3.
$$3x = 1 + \ln(2 + x^2)$$
 sur $I = [0, 1]$

2.
$$\ln x = \frac{x^2 - 5}{x + 2}$$
 sur $I = [1, 10]$

4.
$$e^x = 2 + x$$
 sur $I = [\ln 2, 2 \ln 2]$