

ATLAS Note

EXOT-2018-XX

October 23, 2018

EXOT group text snippets for INT notes

ATLAS EXOT Group

- This note contains text snippets and tables that should be included in supporting notes from
- 5 the EXOT group.
- The templates are in American English. Some adaption to British English is therefore required.
- This document was generated using version 05-08-00 of the ATLAS LATEX package.
- 8 2018-10-23: This file is a work in progress (WIP) and will probably be updated. Backwards
- 9 incompatible changes may be made as the examples develop.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

11 Contents

12	1 Executive Summary			
13		1.1	Target	
14		1.2	Context	
15		1.3	Milestones	3
16	2	Obje	ect selection	
17		2.1	Electron selection	(
18		2.2	Photon selection	,
19		2.3	Muon selection	3
20		2.4	Tau selection	(
21		2.5	Small- <i>R</i> jet selection	10
22		2.6	Large- <i>R</i> jet selection	1
23		2.7	$E_{\mathrm{T}}^{\mathrm{miss}}$ selection	1
24		2.8	Jet flavor tagging selection	13
25		2.9	Track selection	14
26		2.10	Overlap removal	1:
27	3	Event selection		10
28		3.1	Event cleaning	1

29 1 Executive Summary

- This section, ideally 2-pages (max), should be placed at the beginning of the internal note. It should give a high-level overview of the analysis including (but not limited to):
- physics target and the general characteristics of the signal;
- analysis strategy;
- general characteristics of the control, validation, and signal regions;
- background estimation strategy overview;
- highlight major or most important points of the analysis;
- team overview task list;
- list of all critical tasks, who is responsible for each, and what else they are working on outside of this analysis.
- split as in the subsections below.

41 **1.1 Target**

O(1 paragraph) Is this a new analysis? If not, what are the main improvements expected with respect to the previous version? What is the target publication date / conference?

1.2 Context

- Motivate this analysis in 1 paragraph: why is this signature interesting? Which kind of models are you probing?
- 47 How is the analysis done is 1 paragraph: what are the main BG processes and how do you estimate them
- 48 (are they MC- or data-driven, what is the general idea of the control regions, ...), general characteristics of
- the PL fit (which distribution, binned?, ...)

50 1.3 Milestones

- Table giving a factual list of who is working on what and what else they do; the idea is to show how the team can / does progress.
- 53 The following table summarizes the tasks to be worked on by analysis team. This is not a complete analysis
- outline but only an overview of the further steps to be taken as of the time of writing. Details are not
- provided here but in the dedicated sections throughout this note. Tasks which are based on established
- techniques and straightforward to achieve are marked green in the table. Tasks which require new work are
- marked red. Concerning the involved people, the responsible student supervisors and analysis coordinators
- are already mentioned in the list of contributions above, which shall not be repeated here. A fair overview of
- all single tasks including past work and of all relevant team members is only given in the list of contributions
- above! It is also worth noting that some of the tasks listed below are being worked on in parallel.

Table 1: Milestones in the analysis.

Task	Analyzer	Role	Other responsibilities
Describe a first milestone.			
A straightforward task	Name	PhD student, PostDoc/Prof/	thesis writing / teaching / name some CP work
A more involved task			
Describe a second milestone			
First task			

Object selection

- The supporting notes should now include the following standardized tables of properties: each analysis
- should simply fill them in by writing / replacing the value with the appropriate number or by choosing the
- appropriate option. The idea of these tables is to harmonize some sections of the supporting notes as to
- make review and analysis comparisons simpler.
- If you use non-standard selections which do not fit in these tables, this should of course be noted and
- 67 discussed in more detail in the text.

2.1 Electron selection

Table 2: Electron selection criteria.

Feature	Criterion
Pseudorapidity range	$ \eta < X$
Energy calibration	es2017_R21_PRE (ESModel)
Energy	E > XX GeV
Transverse energy	$E_{\rm T} > {\rm XXGeV}$
Transverse momentum	$p_{\rm T} > { m XXGeV}$
Object quality	Not from a bad calorimeter cluster (BADCLUSELECTRON) Remove clusters from regions with EMEC bad HV (2016 data only)
Track to vertex association	$\begin{aligned} d_0^{\rm BL}(\sigma) &< X \\ \Delta z_0^{\rm BL} \sin \theta &< X \text{mm} \end{aligned}$
Identification Isolation	<pre>(Loose/Medium/Tight) LooseTrackOnly / Loose / Tight / Gradient /</pre>

69 Notes:

70

71

72

73

74

76

78

80

81

82

- Pseudorapidity: when the calorimeter crack is not excluded, the range can be indicated simply as " $|\eta| < 2.47$ ", when the crack is excluded: " $(|\eta| < 1.37)$ || $(1.52 < |\eta| < 2.47)$ ".
 - Usually only one among "Energy", "Transverse energy" and "Transverse momentum" criteria is applied the 30 GeV value is just an example. In special cases energy (i.e. calorimeter-based measurement) and momentum (i.e. tracking-based measurement) criteria can be required in order to constraint different aspects of the reconstruction.
 - Electron ID: 3 working points (Loose/Medium/Tight) are evaluated using the Likelihood-based (LH) method, by the ElectronPhotonSelectorTools.
 - Energy calibration of electrons is implemented in the ElectronPhotonFourMomentumCorrection tool.
- Scale Factors for efficiencies for electrons are implemented in the ElectronEfficiencyCorrection tool.
- Updated configurations for the EGamma CP tools can be found on this TWiki page.

2.2 Photon selection

Table 3: Photon selection criteria.

Feature	Criterion
Pseudorapidity range Energy calibration Energy Transverse energy	$ \eta < X$ es2017_R21_PRE (ESModel) E > XX GeV $E_T > XX \text{ GeV}$
Object quality	Not from a bad calorimeter cluster (BADCLUSELECTRON) Remove clusters from regions with EMEC bad HV (2016 data only)
Photon cleaning Fudging	passOQquality Applied for Full sim / not for AtlFastII
Identification Isolation	<pre>(Loose/Tight) FixedCutTightCaloOnly / FixedCutTight / FixedCutLoose</pre>

84 Notes:

85

86

89

90

91

92

93

94

95

96

- Pseudorapidity: please note that the maximum value for $|\eta|$ for photon candidates (2.37) is smaller than for electron candidates (2.47). If crack excluded: " $(|\eta| < 1.37)$ || $(1.52 < |\eta| < 2.37)$ ".
- Usually only one between "Energy" and "Transverse energy" criteria is applied the 30 GeV value is just an example.
 - Photon cleaning: a new Photon helper is available to apply the photon cleaning cut (from the ElectronPhotonSelectorTools, tag ≥ 00 -02-92-21, release $\geq 2.4.30$).
 - Photon ID: 2 working points (Loose/Tight) are evaluated using a cut-based method, by the ElectronPhotonSelectorTools.
 - Energy calibration of photons is implemented in the ElectronPhotonFourMomentumCorrection tool.
 - Scale Factors for efficiencies for photons are implemented in the ElectronEfficiencyCorrection tool.
 - Updated configurations for the EGamma CP tools can be found on this TWiki page.

8 2.3 Muon selection

Table 4: Muon selection criteria.

Feature	Criterion
Selection working point Isolation working point Momentum calibration p_T Cut $ \eta $ cut d_0 significance cut z_0 cut	Loose/Medium/Tight /High-pT LooseTrackOnly/Loose/Tight/Gradient/ Sagitta correction [used/not used] X GeV < X X X mm

⁹⁹ The selection criteria are implemented in the MuonSelectorTools-XX-XX-XX

with MuonMomentumCorrections-XX-XX-XX, isolation in IsolationSelection-XX-XX-XX and d_0

and z_0 cuts in xAODTracking-XX-XX. The muon recommendations can be found in MCPAnalysis-

¹⁰² GuidelinesMC16.

103 **2.4 Tau selection**

Table 5: Tau selection criteria.

Feature	Criterion
Pseudorapidity range	$ \eta < X$
Track selection	1 or 3 tracks
Charge	Q = 1
Tau energy scale	MVA TES
Transverse momentum	$p_{\rm T} > { m XXGeV}$
Jet rejection	BDT-based (Loose/Medium/Tight)
Electron rejection	BDT-based
Muon rejection	Via overlap removal in $\Delta R < 0.2$ and $p_T > 2$ GeV. Muons must not be Calo-tagged

¹⁰⁴ If the crack is excluded: $(|\eta| < 1.37)||(1.52 < |\eta| < 2.5)$

The selection criteria are all implemented in the TauSelectionTool as part of the TauAnalysisTools.

Documentation can be found in the README-TauSelectionTool.rst.

2.5 Small-R jet selection

 $_{108}$ If you want to use variables such as \fcut you need to add the option jetetmiss to atlaspackage.

Table 6: Jet reconstruction criteria.

Feature	Criterion	
Algorithm	Anti- k_t	
<i>R</i> -parameter	0.4	
Input constituent	ЕМТоро	
Analysis release number	21.2.10	
CalibArea tag	00-04-81	
Calibration configuration	<pre>JES_data2017_2016_2015_Recommendation_Feb2018_rel21.config</pre>	
Calibration sequence (Data)	<pre>JetArea_Residual_EtaJES_GSC_Insitu</pre>	
Calibration sequence (MC)	<pre>JetArea_Residual_EtaJES_GSC</pre>	
Selection requirements		
Observable	Requirement	
Jet cleaning	LooseBad	
BatMan cleaning	No	
$p_{ m T}$	> XX GeV	
$ \eta $	< X	
JVT	(Update if needed) > 0.59 for $p_T < 60 \text{GeV}$, $ \eta < 0.4$	

2.6 Large-R jet selection

Table 7: Large-R jet reconstruction criteria.

Feature	Criterion		
Algorithm	anti- k_t		
R-parameter	1.0		
Input constituent	LCTopo		
Grooming algorithm	Trimming		
$f_{ m cut}$	0.05		
$R_{ m trim}$	0.2		
Analysis release number	21.2.10		
CalibArea tag	00-04-81		
Calibration configuration	<pre>JES_MC16recommendation_FatJet_JMS_comb_19Jan2018.config</pre>		
Calibration sequence (Data)	EtaJES_JMS_Insitu		
Calibration sequence (MC)	EtaJES_JMS		
	Selection requirements		
Observable	Requirement		
p_{T}	> XX GeV		
$ \eta $	< X		
Mass	> XX GeV		
Boosted object tagger			
Object	Working point		
W / Z / top	50% / 80%		
$X \to bb$	single/double b-tagging with/without loose/tight mass		

110 2.7 $E_{\mathrm{T}}^{\mathrm{miss}}$ selection

Table 8: $E_{\rm T}^{\rm miss}$ reconstruction criteria.

Table 8. E _T Tecons	struction criteria.		
Parameter	Value		
Algorithm	Calo-based		
Soft term	Track-based (TST)		
MET operating point	Tight		
Analysis release	21.2.16		
Calibration tag	METUtilities-00-02-46		
Selection requirements			
Observable	Requirement		
$E_{ m T}^{ m miss}$	> XX GeV		
$\sum E_{ m T}/E_{ m T}^{ m miss}$	< <i>X</i>		
Object-based $E_{\rm T}^{\rm miss}$ significance	> <i>X</i>		

2.8 Jet flavor tagging selection

Table 9: *b*-tagging selection criteria.

Feature	Criterion
	EM Topo Jets / Track jets / VR jets
Jet collection Jet selection	AntiKt4EMTopo/AntiKt2PV0/AntiKtVR30Rmax4Rmin02 $p_{\rm T} > XX{\rm GeV}$ $ \eta < X$ JVT cut if applicable
Algorithm	MV2c10/MV2c10mu/MV2c10rnn/DL1/DL1mu/DL1rnn
Operating point	Hybrid / Fixed Eff = 60 / 70 / 77 / 85
CDI	2017-21-13TeV-MC16-CDI-2017-12-22_v1

2.9 Track selection

113 If you use tracks as particular objects on which you cut in your analysis.

 $Table\ 10: {\tt TrackParticle}\ object\ selection\ criteria.$

Tracking algorithm	Primary / Large Radius Tracking / Custom
Track quality selection (official)	Loose/Tight
p_{T}	> XX GeV
$ \eta $	< X
Track-vertex association criteria	Loose/Tight
Track-to-tet association method	Ghost Matched / ΔR

2.10 Overlap removal

- The reconstruction of the same energy deposits as multiple objects is resolved using the standard overlap removal tools, AssociationUtils, documented here
- The (Standard/Heavy-flavor/Boosted/Boosted+Heavy-flavor/lepton-favored) working point is used corresponding to:

Reject	Against	Criteria
Electron	Electron	shared track, $p_{T,1} < p_{T,2}$
Tau	Electron	$\Delta R < 0.2$
Tau	Muon	$\Delta R < 0.2$
Muon	Electron	is Calo-Muon and shared ID track
Electron	Muon	shared ID track
Photon	Electron	$\Delta R < 0.4$
Photon	Muon	$\Delta R < 0.4$
Jet	Electron	$[\Delta R < 0.2 / \text{Not a } b\text{-jet and } \Delta R < 0.2]$
Electron	Jet	$[\Delta R < 0.4 / \Delta R < \min(0.4, 0.04 + 10 \text{GeV}/p_{\text{T}}(e))/\text{None}]$
Jet	Muon	[NumTrack < 3 and (ghost-associated or $\Delta R < 0.2$) /
		not a <i>b</i> -jet and NumTrack < 3 and (ghost-associated or $\Delta R < 0.2$)]
Muon	Jet	$[\Delta R < 0.4 / \Delta R < \min(0.4, 0.04 + 10 \text{GeV}/p_T(\mu))/\text{None}]$
Jet	Tau	$\Delta R < 0.2$
Photon	Jet	$\Delta R < 0.4$
Fat-jet	Electron	$\Delta R < 1.0$
Jet	Fat-jet	$\Delta R < 1.0$

 $[\]Delta R$ is calculated using rapidity by default.

3 Event selection

The following items should also be filled in for the event selection.

22 3.1 Event cleaning

- Following the recommendations of the DataPrep group, the following event-level requirements are made.
- We use the official GRL:
- 125 FILL IN HERE
- The following event-level vetos are made to reject bad / corrupt events:
- LAr noise burst and data corruption (xAOD::EventInfo::LAr),
- Tile corrupted events (xAOD::EventInfo::Tile),
- events affected by the SCT recovery procedure for single event upsets (xAOD::EventInfo::SCT),
- incomplete events (xAOD::EventInfo::Core).
- Debug stream events [have/have not] been included.
- 132 Checks [have/have not] been done to remove duplicate events.
- Events are required to have a primary vertex with at least two associated tracks. The primary vertex is
- selected as the one with the largest $\Sigma p_{\rm T}^2$, where the sum is over all tracks with transverse momentum
- $p_{\rm T} > 0.4 \, {\rm GeV}$ that are associated with the vertex.