Propensities

April 22, 2020

1 Prerequisities

Input is a graph G_{multi} that allows more edges between nodes. Each edge is identified by its weight (intensity) $w_{i,i,t,s}$, type t and subtype s.

From this graph we create the graph G with single edges only, where edge aggregates information over sublayers. Edges in G have weights $w_{i,j}$.

The weights are computed as follows:

 $w_{i,j,t} = \sum_{s} w_{i,j,t,s}$ (sum over intensities of sublayers)

Final weight:

$$w_{i,j} = 1 - \prod_{t} (1 - l_t * w_{i,j,t})$$

- (weights on layers t are taking as probabilities of contact on that layer and are the final weight is probabily of contact on any layer)
- l_t is coefficient of layer t

2 Probabilities of state transitions

3 Probability of being infected

$$P_{infection} = p \frac{\beta N_I + q \beta_D N_{I_d}}{N} + (1 - p) \frac{\beta \sum_{j \in C_{G(i)}} w_{ij} \delta_{X_j = I} + \beta_{I_d} \sum_{j \in C_{G(i)}} w_{ij} \delta_{X_j = I_d}}{|C_{G(i)}|}$$

- N_I the total number of I-states, i.e. sum of $I_n,\,I_a,\,I_s$
- N_{I_d} number of nodes in I_d
- \bullet N current size of population
- $\delta_{X=I} = 1$ if and only if $X \in \{I_n, I_a, I_s\}$
- $\delta_{X=I_d} = 1$ if and only if $X = I_d$

•
$$|C_{G(i)}| = \sum_{j \in C_{G(i)}} w_{ij}$$

4 State S_s

buď se nakazím nebo zůstanu Skova, pokud zůstanu Skova tak buď odezni falešné příznaky a jdu do S, nebo zustavam, kde jsem

possible transitions:
$$S_s \to E, S_s \to S, S_s \to S_s$$

$$P[S_s \to E] = P_{infection}$$

$$P[S_s \to S] = (1 - P[S_s \to E]) * false_symptoms_recovery_rate$$

$$P[S_s \to S_s] = (1 - P[S_s \to E]) * (1 - false_symptoms_recovery_rate)$$

5 State S

buď se nakazím nebo zůstanu Skova, pokud zůstanu Skova tak buď prijde chripka (falesne priznaky) a jdu do S s, nebo zustavam, kde jsem

possible transitions: $S \to E, S \to S_s, S \to S$

$$P[S \to E] = P_{infection}$$

$$P[S \rightarrow S_s] = (1 - P[S \rightarrow E]) * false_symptoms_rate$$

$$P[S \rightarrow S] = (1 - P[S \rightarrow E]) * (1 - false_symptoms_rate)$$

6 State E

může se stát, že mě positivne otestují a přejdu do I_d, jinak čeká až začnu být infekční, pokud začnu být infekční, jdu buď do I_n nebo do I_a

possible transitions:
$$E \to I_d, E \to I_n, E \to I_a, E \to E$$

 $P[E \to I_d] = \theta_E * \psi_E$ (puvodne tam jeste maji clen, ktery zavisi na poctu Id kontaktu, ala contact traicing, to mame vypnuto)

$$P[E \rightarrow I_n] = (1 - P[E \rightarrow I_d]) * \sigma * asymptomatic_rate$$

$$P[E \to I_a] = (1 - P[E \to I_d]) * \sigma * (1 - asymptomatic_rate)$$

$$P[E \to E] = (1 - P[E \to Id]) * (1 - \sigma)$$

7 State I n

ve stavu I_n setrvavam, dokud se neuzdravim, mohu byt ale otestovana a prejit do I_d (tady je trosku zanedbano, ze pokud by v tom jednom dni doslo k memu otestovani i uzdraveni, tak bych sla do R_d)

posible transitions: $I_n \to I_d, I_n \to R_u, I_n \to I_n$ $P[I_n \to R_u] = \gamma_{i_n}$ $P[I_n \to I_d] = (1 - P[I_n \to R_u]) * \theta_{I_n} * \psi_{I_n}$ $P[I_n \to I_d] = 1 - P[I_n \to R_u] - P[I_n \to I_d]$

8 State I a

čekám na projevení symptomů, v mezičase mohu být testovaná posible transition: $I_a \to I_d, I_a \to I_s, I_a \to I_a$ $P[I_a \to I_d] = \theta_{I_a} * \psi_{I_a}$ $P[I_a \to I_s] = (1 - P[I_a \to I_d]) * symptom_manifest_rate$ $P[I_a \to I_a] = (1 - P[I_a \to I_d]) * (1 - symptom_manifest_rate)$

9 State I_s

posible transitions: $I_s \to R_u, I_s \to R_u, I_s \to Id, I_s \to Is$ $P[I_s \to R_u] = \gamma_{I_s}$ $P[I_s \to D_u] = \mu \quad \text{$(\text{predpokladam, ze gamma} + \text{mu} < 1)$}$ $P[I_s \to I_d] = (1 - P[I_s \to R_u] - P[I_s \to D_u]) * \theta_{I_s} * \psi_{I_s}$ $P[I_s \to I_s] = (1 - P[I_s \to R_u] - P[I_s \to D_u]) * (1 - \theta_{I_s} * \psi_{I_s})$

mohu se uzdravit, umřít nebo zůstat, kde sem. taky můžu být otestovaná

10 State I_d

$$\label{eq:mohujen_do_R_d_a_D_d} \begin{split} & mohu \ jen \ do \ R_d \ a \ D_d \\ & \text{posible transitions:} \ I_d - > R_d, I_d - > D_d, I_d - > I_d \\ & P[I_d - > R_d] = \gamma_{I_d} \\ & P[I_d - > D_d] = \mu \\ & P[I_d - > I_d] = 1 - P[I_d - > R_d] - P[I_d - > D_d] \end{split}$$

11 States R_u, R_d, D_u, D_d are final

(pro kazdy stav se radek secte na 1! to je to, co jsme opravovali dnes)

12 Parameters

Scalars: (but last four can be also made to be vectors)

parameter	desription
p	probability of interaction outside adjacent nodes
q	probability of detected individuals interaction outside adjacent nodes
false_symptoms_rate	$S \rightarrow S_s$
false_symptoms_recovery_rate	of $S_s -> S$
asymptomatic_rate	rate of going to I_n instead of I_a from E
$symptoms_manifest_rate$	$I_a \rightarrow I_s$

Vectors: (each node has its own value, if only a single float is given than all nodes share the same value)

parameter	desription
beta	rate of transmission (exposure)
$beta_D$	rate of transmission (exposure) for detected inds
sigma	rate of infection (upon exposure)
$gamma_In$	rate of recovery (upon infection)
$gamma_Is$	
$gamma_Id$	
mu	rate of infection-related death
$theta_E$	rate of testing for exposed individuals
$theta_Ia$	rate of testing for Ia individuals
$theta_Is$	rate of testing for Is individuals
$theta_In$	rate of testing for In individuals
psi_E	probability of positive test results for exposed individuals
psi_Ia	probability of positive test results for Ia individuals
psi_Is	probability of positive test results for Is individuals)
psi_Is	probability of positive test results for Is individuals)

(psi mame vsude jedna)

[]:	
[]:	