CITY DIGITAL -

BUILDING DATA SERVICES

Professor: Dr. Shlomo Argamon

Students: Feixiang Xi, Sachet Misra, Yufei Yu

OBJECTIVES

- What can we do with the data?
- What data do we need?
- How can we use Machine Learning Algorithms?
- To find the right database structure for each of the dataset
- To find the errors in data

DATASETS

- Energy Dataset:
 - 8940 files extracted from an SQL database using an access database as an interface.
 - Update rate is every 15 minutes and involves 5 years of data
 - Three categories steam, water, electricity
 - 175,200 rows

ENERGY DATA - PLOTTING

DATASETS

- Work Order Data:
 - This is a file extracted from an SQL database
 - involves all the work orders for the past one year
 - Has about 10 columns and 28,510 rows

DATASETS

- Siemens Data
 - Involves 5111 text files, stored from reports of Siemens
 - Targets machines like AHU(Air-Handling Unit), RTU (Roof Top Unit), CHW (Chilled water Units), 20th floor KWH(Kilo-Watt Hour), Exhaust Fans
 - Update rate once per day
 - Each file has about 15 columns and 250,000 rows per dataset
 - <a total of about $250,000 \times 22 = 5,500,000 \text{ rows}$

CLEANING

- When converting files,
 - Had about 1000 random entries per column out of 250,000 (rest were empty)
 - Used techniques like forward fill and backward fill
- Divided columns into three categories
 - Values, temperature, (not value or temp)
 - Box plots to identify outliers
 - Found relationships between values and temperature

ERROR CHECKING

- Used box plots to check for outliers in every variable in the dataset
- AHU02 data after column categorisation

RELATIONSHIPS

- Dependencies found in every dataset using bivariate analysis
- Shows CWH data

CHW DATASET VISUALISATION

PRELIMINARY ANALYSIS

 To choose the right dataset we work on some preliminary analysis using PowerBl

Work order data – Most variety and Most data – categorised in terms of

buildings

PRELIMINARY ANALYSIS

• Work order data – categorised based on different kinds of work

PRELIMINARY ANALYSIS

• Energy dataset – dendograms

DATA INTEGRATION

- Objective:
 - To be able to predict a work-order
 - Hence need to find a some trend with the various variables in the dataset
- Textual analysis to find the most ordered work order
- Here we have considered information from the 18th floor, AHU-18

WORK ORDER DATA

- TEXT analysis to do a frequency analysis on work order description column
- Some words were provided by Accenture to help us understand the important ones
- Found 40 such keywords (left column from analysis; right column from companies)

ROOM	548	FILTER	32
COLD	129	FAN	32
REPAIR	369	COIL	16
BASEMENT	64	TOO HOT	85
SUPPLY	30	TOO COLD	125

WORK ORDER DATA

Heat map

• Took the phrase "TOO COLD" from the dataset to do some temporal analysis

6647	WO128240	ROOM IS TOO COLD	TJABCZYN	IT	18.0	18E4-1	HVAC	2015-05- 18 10:24:11	2015-05-29 14:55:14	0.50	2015- 05-29	14:55:14
9372	WO130987	ROOM IS TOO COLD	TJABCZYN	IT	18.0	18E4-1	HVAC	2015-07- 13 13:18:27	2015-07-14 14:45:19	1.50	2015- 07-14	14:45:19
14011	WO135624	ROOM IS TOO COLD	TJABCZYN	IT	18.0	18E4-1	HVAC EQUIP	2015-10- 05 09:50:52	2015-10-08 15:03:05	1.00	2015- 10-08	15:03:05
								2016-01-				
19516	WO141158	ROOM IS TOO COLD	TARIANOU	IT	18.0	18D3-1	HVAC EQUIP	21 15:08:25	2016-01-22 16:06:45	1.00	2016- 01-22	16:06:45
19516 20548	WO141158 WO142182		TARIANOU	IT IT	18.0	18D3-1 18D3-2		21		1.00		16:06:45 14:57:32

Cold deck temperature

• Supply static pressure

- Q efficiency of AHU
- Probable spike in efficiency before the call Conclusion

POST MORTEM

Database suggestions (AHU)

R	1	MAT	16
SAF/S	14	MND	4
CCO/CCV	18	PHT	13
		PHV/PH1V	15
CDAT	1	P1101	
CDT	6	PH2V	1
DAT	10	PVM	1
DSP_S17	1	RAT	12
		RH1T/R1T_S10	8
DX1_S17	1	RH1V_S3/RHV_S6/R1V_ S10	14
DX2_S17	1		
EFCAWA/E	12	RH2T/R2T_S10	8
EFGEN	2	S15RAT	1
EFNEC	1	HVO/HV	2
FBD_S17	1	р	1
		KH_S17	1
FBO	1	VI C47	4
HCO	1	KL_S17	1
HDT	6	MAD	16
HDV	1		

RH2V_S3/R2V_S10	8
RVD	1
SAF	3
SDT	1
SFVFD:RUN.STOP_S15	1
SFVFD:SPEED/SVD/SFS PD	9
SSP_18	1
TMD	1
E13RVD_S14	1
S15E15	1

POST MORTEM

- Database suggestions
 - Work Order:
 - Work order number
 - Description
 - Building
 - Floor
 - Room
 - Craft
 - Enter Date
 - Close Date
 - Hours SUM
 - Requestor

WHAT MORE CAN WE DO?

- Performance comparison between various (similar) devices (AHU1 and AHU2)
 - Need of common set of column names according to a naming scheme required
- Pattern recognition of work to predict which might need repair
 - Need of data to be in more detail
 - when the work-order was finished
 - What was repaired
 - AHU,CHW, etc. data needs to be in sync with the work order data
- An overall model to regulate temperature and other factors more efficiently

INTERESTING FACTS OF THE PROJECT

- 6 weeks spent in data collection and cleaning
 - Includes preliminary analysis
- 130 graphs drawn
- 6 million unique records across various datasets
- 3 database sources
- 3 students
- 5 guides for the project
- 4 programming languages used

SOFTWARES USED

- R (ggplot2, RODBC,)
- PowerBI for graphs
- Python (matplotlib, pandas, numpy, collections, nltk, string, itertools)
- Microsoft (Excel (VB-Macros, graphs), Microsoft SQL Server Management System, Azure, Access DB)
- Google (Drive, Documents)
- Basecamp2
- SQL

DATA IS NOT INFORMATION, INFORMATION IS NOT KNOWLEDGE, KNOWLEDGE IS NOT UNDERSTANDING, UNDERSTANDING IS NOT WISDOM.

- CLIFFORD STOLL

Thank You