```
In [1]: import pandas as pd
import numpy as np
import scipy.stats as stats

df=pd.read_csv('./Metadata-E2.csv')
df
```

Out[1]:

	Name	Mean	SD	Chart- Category	Chart-type	Domain	Source	Topic	Sentiment
0	5	3.06	2.045362	Area	Proportional	News	Wall Street Journal	Sports	3
1	6	-3.15	2.585400	Мар	Plotted	Government	Los Angeles Planning Comission	Traffic	3
2	7	5.86	2.234405	Diagram	Isotype	Media	FiveThirtyEight	Politics	2
3	13	-5.69	2.435075	Мар	Plotted	Infographics	Tableau Public	Demographics	3
4	14	-6.03	2.190402	Line	Line	Media	Envisioning Information	Economics	3
•••	•••								
95	469	-5.17	2.050670	Diagram	Illustration	Blog	Nightingale	Geography	2
96	479	-3.19	2.062251	Network	Graph	Blog	Nightingale	Politics	3
97	481	1.03	2.071272	Area + Bar + Diagram	Stacked + Bar + Isotype	Infographics	Information is Beautiful	Lifestyle	2
98	485	-5.65	2.035646	Diagram	Illustration	Blog	Nightingale	Geology	2
99	487	5.38	2.015602	Circle	Sector	Blog	Nightingale	Health	2

100 rows × 42 columns

from math import sqrt

```
In [2]: # Regression Results for Ratings Scores in Expt 1
        import scipy.stats as stats
        import csv
        from matplotlib import pyplot as plt
        import numpy as np
        import statistics
        import pandas as pd
        import sklearn
        from sklearn.model selection import train test split
        from sklearn.linear model import LinearRegression
        import statsmodels.api as sm
        from statsmodels.sandbox.regression.predstd import wls prediction std
        from sklearn.decomposition import FactorAnalysis, PCA
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import KFold
        from sklearn.linear model import BayesianRidge
        from numpy import mean
        from numpy import var
```

```
def cohend(d1, d2):
    n1, n2 = len(d1), len(d2)
    s1, s2 = var(d1, ddof=1), var(d2, ddof=1)
    s = sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2))
    u1, u2 = mean(d1), mean(d2)
    return (u1 - u2) / s
```

```
In [3]: # Chart-type
       # Isotype, Chernoff, Illustrations
       y val=[]
       for i in range(len(df)):
           if('Isotype' in df.iloc[i]['Chart-type'] or 'Chernoff' in df.iloc[i]['Chart-type'] o
              y val.append(1)
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Isotype, Chernoff, Illustration : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2 : %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
       # Area
       y_val=[]
       for i in range(len(df)):
           if('Area' in df.iloc[i]['Chart-Category']):
              y val.append(1)
           else:
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Area : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2: %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
       # Мар
       y val=[]
       for i in range(len(df)):
           if('Map' in df.iloc[i]['Chart-Category']):
              y val.append(1)
           else:
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Map : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2 : %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
```

```
# Map with low annotation
y val=[]
for i in range(len(df)):
   if('Map' in df.iloc[i]['Chart-Category'] and df.iloc[i]['Text-Vol']==1):
       y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Map, Low Annotation : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Radial Charts (chord diagrams, donut charts, timelines, radial bar charts, etc.)
y val=[]
for i in range(len(df)):
   if('Circle' in df.iloc[i]['Chart-Category'] or 'Radial' in df.iloc[i]['Chart-type'])
       y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Radial Charts : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Bar
y val=[]
for i in range(len(df)):
   if('Bar' in df.iloc[i]['Chart-Category']):
       y_val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Bar : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("***************
                          # Point
y val=[]
for i in range(len(df)):
   if('Point' in df.iloc[i]['Chart-Category']):
       y val.append(1)
       y_val.append(0)
```

```
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Point : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Line
y val=[]
for i in range(len(df)):
   if('Line' in df.iloc[i]['Chart-Category']):
      y val.append(1)
   else:
      y_val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Line : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Distribution
y val=[]
for i in range(len(df)):
   if('Distribution' in df.iloc[i]['Chart-Category']):
      y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Distribution : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Grid
y_val=[]
for i in range(len(df)):
   if('Grid' in df.iloc[i]['Chart-Category']):
      y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Grid : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
```

```
print("Cohen's d : %.2f"%d)
print("*******
                              ****************
# Network
y val=[]
for i in range(len(df)):
   if('Network' in df.iloc[i]['Chart-Category']):
       y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Network : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("*****************
                          ************
# Table
y val=[]
for i in range(len(df)):
   if('Table' in df.iloc[i]['Chart-Category']):
      y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Table : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("*****************
                            *************
# Tree
y val=[]
for i in range(len(df)):
   if('Tree' in df.iloc[i]['Chart-Category']):
      y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Tree : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
Isotype, Chernoff, Illustration:
```

```
Area :
p-value : 0.00
R2 : 0.79
Cohen's d : 0.80
******************************
*****
Map:
p-value : 0.00
R2 : 0.76
Cohen's d : 0.77
******
Map, Low Annotation:
p-value : 0.00
R2: 0.80
Cohen's d : 0.81
*************************
******
Radial Charts:
p-value : 0.00
R2 : 0.72
Cohen's d : 0.65
******************
*****
Bar :
p-value : 0.00
R2 : 0.64
Cohen's d : 0.66
*******************
******
Point :
p-value : 0.00
R2 : 0.71
Cohen's d : 0.65
*************************
*****
Line :
p-value : 0.00
R2 : 0.60
Cohen's d : 0.57
******************
*****
Distribution :
p-value : 0.00
R2: 0.63
Cohen's d : 0.48
****************************
*****
Grid:
p-value : 0.00
R2 : 0.68
Cohen's d : 0.69
******************************
*****
Network :
p-value : 0.00
R2 : 0.72
Cohen's d : 0.63
*******************
*****
Table :
p-value : 0.00
R2 : 0.43
Cohen's d : 0.37
******************
```

```
p-value : 0.00
       R2 : 0.54
       Cohen's d : 0.46
       ******************************
       *****
In [4]: # Photorealistic
       y val=[]
       for i in range(len(df)):
           if('y' in df.iloc[i]['Photorealistic']):
              y val.append(1)
           else:
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Photorealistic : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2: %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
       print("*****************
                                     # Human Recognizable Objects
       y_val=[]
       for i in range(len(df)):
           if('y' in df.iloc[i]['HRO']):
              y val.append(1)
           else:
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Human Recognizable Objects : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2 : %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
       print("******
                                      ****************
       # Human Depiction
       y val=[]
       for i in range(len(df)):
           if('y' in df.iloc[i]['HD']):
              y val.append(1)
           else:
              y val.append(0)
       X=df['Mean']
       Y=y val
       d=cohend(Y,X)
       X=sm.add constant(X)
       model = sm.OLS(Y, X)
       results = model.fit()
       print('Human Depiction : ')
       print("p-value : %.2f"%results.pvalues[0])
       print("R2 : %.2f"%results.rsquared)
       print("Cohen's d : %.2f"%d)
```

Tree :

```
# Skeuomorphism
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Skeumorphic']):
      y_val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y_val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Skeuomorphism : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Title
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Title']):
     y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Title : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Axis
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Axes']):
      y val.append(1)
   else:
      y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Axis : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Axis with Tick Labels
y val=[]
for i in range(len(df)):
```

```
if('y' in df.iloc[i]['Axes'] and df.iloc[i]['Mean']>3):
       y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Axis with Tick Labels : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Key
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Key']):
      y val.append(1)
   else:
       y_val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Key : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("***********
                     ******************
# Title and Key
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Title'] and 'y' in df.iloc[i]['Key']):
       y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Title and Key : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
                              print("***********
# Text Volume
X=df['Mean']
Y=df['Text-Vol']
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Text Volume : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
```

```
print("Cohen's d : %.2f"%d)
print("********
                           # Data Labels
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Labels']):
      y_val.append(1)
   else:
     y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Data Labels : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Data Ink Ratio
X=df['Mean']
Y=df['DIR']
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Data Ink Ratio : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Visual Density
X=df['Mean']
Y=df['Density']
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Visual Density : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Data Scale
X=df['Mean']
Y=df['Data-Vol']
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Data Scale : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Message Redundancy
```

```
y val=[]
for i in range(len(df)):
    if('y' in df.iloc[i]['Msg-Red']):
       y val.append(1)
        y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Message Redundancy : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("*******
# Data Redundancy
y val=[]
for i in range(len(df)):
    if('y' in df.iloc[i]['Data-Red']):
       y val.append(1)
    else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Data Redundancy : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("***********
                                *****************
# Highlights
y val=[]
for i in range(len(df)):
    if('y' in df.iloc[i]['Highlights']):
        y_val.append(1)
    else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Highlights : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("**********
# Arrows
y val=[]
for i in range(len(df)):
    if('y' in df.iloc[i]['Arrows']):
       y val.append(1)
    else:
```

```
y_val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Arrows : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
                             ************
print("******************
# Color 7+
y val=[]
for i in range(len(df)):
   if('low' in df.iloc[i]['Color'] or 'medium' in df.iloc[i]['Color']):
      y val.append(0)
   else:
      y val.append(1)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Color 7+ : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Color 2-6
y val=[]
for i in range(len(df)):
   if('low' in df.iloc[i]['Color'] or 'high' in df.iloc[i]['Color']):
      y val.append(0)
   else:
      y val.append(1)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Color 2-6 : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Color 1 (black/white)
y val=[]
for i in range(len(df)):
   if('n' in df.iloc[i]['BW']):
      y val.append(0)
   else:
      y val.append(1)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
```

```
results = model.fit()
print('Color 1, black and white : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Background Color
X=df['Mean']
Y=df['BGC']
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Background Color : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# 3D
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['3D']):
       y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('3D : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("***********
# Gridlines
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Gridlines']):
       y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Gridlines : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d: %.2f"%d)
# Caption
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Caption']):
```

```
y val.append(1)
   else:
       y val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y,X)
results = model.fit()
print('Gridlines : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
print("***************
# Data Source
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Source.1']):
      y val.append(1)
   else:
       y_val.append(0)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Data Source : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Dimensionality
y val=[]
for i in range(len(df)):
   if('low' in df.iloc[i]['Dim']):
       y val.append(1)
   elif('medium' in df.iloc[i]['Dim']):
      y val.append(2)
   else:
       y val.append(3)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Dimensionality : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
# Pictorial Units
y val=[]
for i in range(len(df)):
   if('y' in df.iloc[i]['Pictorial-Units']):
      y val.append(1)
   else:
       y_val.append(0)
X=df['Mean']
Y=y_val
d=cohend(Y,X)
```

```
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Pictorial Units : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2: %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
                             *************
print("****************
# Domain
y val=[]
for i in range(len(df)):
   if('Infographics' in df.iloc[i]['Domain']):
       y val.append(1)
   elif('Blog' in df.iloc[i]['Domain']):
       y val.append(2)
   elif('Government' in df.iloc[i]['Domain']):
       y val.append(3)
   elif('News' in df.iloc[i]['Domain']):
       y val.append(4)
   elif('Media' in df.iloc[i]['Domain']):
       y val.append(5)
   elif('Scientific' in df.iloc[i]['Domain']):
       y val.append(6)
   else:
       y_val.append(7)
X=df['Mean']
Y=y val
d=cohend(Y,X)
X=sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print('Domain : ')
print("p-value : %.2f"%results.pvalues[0])
print("R2 : %.2f"%results.rsquared)
print("Cohen's d : %.2f"%d)
Photorealistic :
p-value : 0.00
R2: 0.82
Cohen's d : 0.83
Human Recognizable Objects:
p-value : 0.00
R2 : 0.87
Cohen's d : 0.82
*********************************
*****
Human Depiction :
p-value : 0.00
R2 : 0.81
Cohen's d : 0.79
Skeuomorphism:
p-value : 0.00
R2 : 0.71
Cohen's d : 0.72
*************************
*****
Title :
p-value : 0.00
R2 : 0.83
Cohen's d : 0.86
*******************
```

```
******
Axis :
p-value : 0.00
R2 : 0.87
Cohen's d : 0.89
*************************
Axis with Tick Labels:
p-value : 0.00
R2: 0.86
Cohen's d : 0.91
******************
*****
Key:
p-value : 0.00
R2 : 0.77
Cohen's d : 0.69
*******************
*****
Title and Key:
p-value : 0.00
R2 : 0.78
Cohen's d : 0.73
*************************
*****
Text Volume :
p-value : 0.00
R2 : 0.92
Cohen's d : 0.85
*****************
*****
Data Labels :
p-value : 0.00
R2 : 0.74
Cohen's d : 0.83
************************
******
Data Ink Ratio :
p-value : 0.00
R2 : 0.62
Cohen's d : 0.47
*************************
*****
Visual Density:
p-value : 0.00
R2 : 0.70
Cohen's d : 0.61
*******************
*****
Data Scale :
p-value : 0.00
R2 : 0.05
Cohen's d : 0.11
************************
*****
Message Redundancy:
p-value : 0.00
R2 : 0.79
Cohen's d : 0.86
*****************************
*****
Data Redundancy :
p-value : 0.00
R2 : 0.18
Cohen's d : 0.31
```

```
******
Highlights:
p-value : 0.00
R2 : 0.77
Cohen's d : 0.68
*************************
Arrows :
p-value : 0.00
R2 : 0.72
Cohen's d : 0.65
************************
*****
Color 7+ :
p-value : 0.00
R2 : 0.73
Cohen's d : 0.72
*******************
******
Color 2-6:
p-value : 0.00
R2 : 0.71
Cohen's d : 0.70
*************************
Color 1, black and white :
p-value : 0.00
R2: 0.65
Cohen's d : 0.68
*****************
Background Color :
p-value : 0.00
R2 : 0.83
Cohen's d : 0.79
*****************************
*****
3D :
p-value : 0.00
R2 : 0.56
Cohen's d : 0.33
*************************
*****
Gridlines :
p-value : 0.00
R2 : 0.44
Cohen's d : 0.29
*******************
*****
Caption :
p-value : 0.00
R2: 0.68
Cohen's d : 0.62
*************************
*****
Data Source :
p-value : 0.00
R2 : 0.07
Cohen's d : 0.18
******************************
*****
Dimensionality :
p-value : 0.00
R2: 0.06
Cohen's d : 0.14
```

	Pictorial Units:
	p-value : 0.00
	R2: 0.77
	Cohen's d : 0.82

	Domain:
	p-value : 0.00
	R2: 0.12
	Cohen's d: 0.15
In []:	
In []:	
T11 [] 1	