NANENG 430

Formula Sheet

TABLE 1.1 Summary of Results for Plane Wave Propagation in Various Media

	Type of Medium		
Quantity	Lossless $(\epsilon'' = \sigma = 0)$	General Lossy	Good Conductor $(\epsilon'' \gg \epsilon' \text{ or } \sigma \gg \omega \epsilon')$
Complex propagation constant	$\gamma = j\omega\sqrt{\mu\epsilon}$	$\gamma = j\omega\sqrt{\mu\epsilon}$ $= j\omega\sqrt{\mu\epsilon'}\sqrt{1 - j\frac{\sigma}{\omega\epsilon'}}$	$\gamma = (1+j)\sqrt{\omega\mu\sigma/2}$
Phase constant (wave number)	$\beta=k=\omega\sqrt{\mu\epsilon}$	$\beta = \operatorname{Im}\{\gamma\}$	$\beta = \operatorname{Im}\{\gamma\} = \sqrt{\omega\mu\sigma/2}$
Attenuation constant	$\alpha = 0$	$\alpha = \text{Re}\{\gamma\}$	$\alpha = \text{Re}\{\gamma\} = \sqrt{\omega\mu\sigma/2}$
Impedance	$\eta = \sqrt{\mu/\epsilon} = \omega \mu/k$	$\eta = j\omega\mu/\gamma$	$\eta = (1+j)\sqrt{\omega\mu/2\sigma}$
Skin depth	$\delta_{\mathtt{S}}=\infty$	$\delta_{ extsf{S}} = 1/lpha$	$\delta_{\rm S} = \sqrt{2/\omega\mu\sigma}$
Wavelength	$\lambda = 2\pi/\beta$	$\lambda = 2\pi/\beta$	$\lambda = 2\pi/\beta$
Phase velocity	$v_p = \omega/\beta$	$v_{p} = \omega/\beta$	$v_p = \omega/\beta$

$$\Gamma = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i},$$

$$T = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}.$$

TE/TM modes

Wave Propagation in Dielectric Medium	Wave Propagation in a Waveguide	
$\beta' = \omega / u' = \omega \sqrt{\mu \varepsilon}$	$\beta = \beta' \sqrt{1 - \left[\frac{f_c}{f}\right]^2}$	
$\eta' = \sqrt{\mu/\varepsilon}$	$\eta_{TE} = \frac{\eta'}{\sqrt{1 - \left[\frac{f_c}{f}\right]^2}}, \eta_{TM} = \eta' \sqrt{1 - \left[\frac{f_c}{f}\right]^2}$	
$u' = \omega / \beta' = f\lambda = 1/\sqrt{\mu\varepsilon}$	$u_p = \frac{\omega}{\beta' \sqrt{1 - \left[\frac{f_c}{f}\right]^2}} = \omega/\beta$	
$\lambda' = u' / f$	$\lambda = \frac{\lambda'}{\sqrt{1 - \left[\frac{f_c}{f}\right]^2}}$	

		$n = 0, 1, 2, 3, \dots$	$n = 1, 2, 3, \dots$
Quantity	TEM Mode	TM_n Mode	TE_n Mode
k	$\omega\sqrt{\mu\epsilon}$	$\omega\sqrt{\mu\epsilon}$	$\omega\sqrt{\mu\epsilon}$
k_c	0	$n\pi/d$	$n\pi/d$
β	$k = \omega \sqrt{\mu \epsilon}$	$\sqrt{k^2 - k_c^2}$	$\sqrt{k^2 - k_c^2}$
λ_c	∞	$2\pi/k_C = 2d/n$	$2\pi/k_C = 2d/n$
λ_g	$2\pi/k$	$2\pi/\beta$	$2\pi/\beta$
v_p	$\omega/k = 1/\sqrt{\mu\epsilon}$	ω/eta	ω/β
α_d	$(k \tan \delta)/2$	$(k^2 \tan \delta)/2\beta$	$(k^2 \tan \delta)/2\beta$
α_{c}	$R_s/\eta d$	$2kR_s/\beta\eta d$	$2k_c^2 R_s / k\beta \eta d$
E_z	0	$A\sin(n\pi y/d)e^{-j\beta z}$	0
H_z	0	0	$B\cos(n\pi y/d)e^{-j\beta z}$
E_X	0	0	$(j\omega\mu/k_c)B\sin(n\pi y/d)e^{-j\beta z}$
E_y	$(-V_o/d)e^{-j\beta z}$	$(-j\beta/k_c)A\cos(n\pi y/d)e^{-j\beta z}$	0
H_X	$(V_o/\eta d)e^{-j\beta z}$	$(j\omega\epsilon/k_c)A\cos(n\pi y/d)e^{-j\beta z}$	0
H_y	0	0	$(j\beta/k_c)B_n\sin(n\pi y/d)e^{-j\beta z}$
Z	$Z_{\rm TEM} = \eta d/W$	$Z_{\rm TM} = \beta \eta / k$	$Z_{\rm TE} = k\eta/\beta$