4. Wykazać, że $\Gamma(1/2) = \sqrt{\pi}$. (Wsk.: W zadaniu 1.3 dokonać podstawienia $t = x^2/2$ i porównać z zadaniem

3. Funkcją I-Eulera nazywamy wartość całki:
$$\Gamma(p) = \int_{0}^{\infty} t^{p-1} e^{-t} dt, \ p > 0.$$

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt = \begin{vmatrix} 1 & \frac{\sqrt{2}}{2} \\ dt & \frac{2}{2} & -\frac{\sqrt{2}}{2} \end{vmatrix} = \int_{0}^{\infty} \sqrt{\frac{2}{2}} \cdot e^{-\frac{\sqrt{2}}{2}} e^{-\frac{$$

6. (2p.) Niech
$$I = \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2}{2}\right\} dx$$
. Mamy $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2+y^2}{2}\right\} dy dx$. Stosując podstawienie $x = r\cos\theta$, $y = r\sin\theta$, wykazać, że $I^2 = 2\pi$.

Show
$$|z|^2 = 2\pi$$
, to $|z| = \sqrt{2\pi}$, zetem $\int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx = \sqrt{2\pi}$.

Lowers the $e^{-\frac{z^2}{2}}$ and symptom $\int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx = e^{-\frac{z^2}{2}}$ and each other $\int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx = \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx$. Stady may be $\int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx$, where $\int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx = \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dx = \int_{-\infty}^$