20 Pregrado en Ingeniería años Física

My first advanced project...

By: Thomas Martinod

Tutor: Nicolás Guarín

Sound-Based Imaging:

Regularization Approaches in Near-field Acoustic Holography (NAH)

Near-field acoustic holography (NAH) is a method for solving the **inverse problem**: Based on the hologram measurements, how does the plane source look? i.e. **Where are the sources?**

It is important the measurements are close to the source (so that we don't miss anything).

Propagating waves

2. Why to use regularization?

The NAH problem is an ill-posed problem, in the Hadamard sense. Small changes in the measurements yield big changes in the source field.

Regularization \Longrightarrow well-posedness

6. What you should take home

Not only can we see with our eyes, we can also **see** sound. NAH is an **inverse**, **ill-posed** problem that requires **regularization** which tries to find sound sources based on forward measurements.

Also, you just saw some really cool pixelated figures.

5. The results

4. The algorithm

3. The Regularization Methods

Tikhonov: $\hat{\mathbf{w}} = \min_{\mathbf{w}} \|\mathbf{p} - \mathbf{H}\hat{\mathbf{w}}\|_2^2 + \lambda \|\mathbf{L}\hat{\mathbf{w}}\|_2^2$

Sparcity: $\mathbf{x} = \sum_{j \in J} \alpha_j \mathbf{d_j} \ , \quad |J| \ll M$

ML: Finding λ for maximizing contrast

Green's $\delta E=0$ Functions: