Experimental design for long read sequencing

If you have data, or will have data soon, please go to "Experimental design" in the wiki and fill out the spreadsheet there. We will take a look later.

The trade-off

Genome size Heterozygosity Repeat content Material availability

Genome size

Genome = Sequencing

(for same coverage)

http://www.genomesize.com/

Remember coverage is anything but uniform

Retrieving true haplotypes requires adequate sequencing depth for BOTH haplotypes!

Repeat content

a Repeat class	Repeat type	Number (hg19)	Cvg	Length (bp)
Minisatellite, microsatellite or satellite	Tandem	426,918	3%	2-100
SINE	Interspersed	1,797,575	15%	100-300
DNA transposon	Interspersed	463,776	3%	200-2,000
LTR retrotransposon	Interspersed	718,125	9%	200-5,000
LINE	Interspersed	1,506,845	21%	500-8,000
rDNA (16S, 18S, 5.8S and 28S)	Tandem	698	0.01%	2,000-43,000
Segmental duplications and other classes	Tandem or interspersed	2,270	0.20%	1,000-100,000

Treangen & Salzberg (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet.

Tandem repeats

Possible (wrong) assembly - collapse repeats, split unique sequence into different contigs.

Interspersed repeats

Possible (wrong) assembly - collapse repeats, split unique sequence into different contigs.

Possible (wrong) assembly - Chimeric contigs

Long reads to the rescue

The longer your reads, the better chance of resolving these regions

a Repeat class	Repeat type	Number (hg19)	Cvg	Length (bp)
Minisatellite, microsatellite or satellite	Tandem	426,918	3%	2-100
SINE	Interspersed	1,797,575	15%	100-300
DNA transposon	Interspersed	463,776	3%	200-2,000
LTR retrotransposon	Interspersed	718,125	9%	200-5,000
LINE	Interspersed	1,506,845	21%	500-8,000
rDNA (16S, 18S, 5.8S and 28S)	Tandem	698	0.01%	2,000-43,000
Segmental duplications and other classes	Tandem or interspersed	2,270	0.20%	1,000–100,000

Material availability

Lots of high molecular weight DNA required!

13.9 kb mean subread length

12 kb mean subread length

Data production time . . .

Computational constraints

UNIL has 6000 cores, 6 petabytes of storage

Yet my 4.5 Gb genome with x50 coverage would have taken >4 months to assemble

So I paid some people lots of money to do it

