US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12395492

August 19, 2025

Poetter; Jared et al.

Network model utilizing property sets

Abstract

A network model includes nodes, node property sets, authorization groups and authorization servers. The node property sets define how the nodes operate and authenticate. The nodes are member of the node property sets. The authorization groups are associated with the node property set. And, authorization servers are member of the authorization groups. In addition, a network model in a secure network environment has at least one community of interest. The network model includes at least one node being a member of a node property set that defines how the node operates and authenticates.

Inventors: Poetter; Jared (Blue Bell, PA), Leap; Michael C (Blue Bell, PA), Schaefer; Diane

E (Blue Bell, PA), Johnson; Robert A (Collegeville, PA), Saunders; Michael (Blue Bell, PA), Buckwalter; Robert R (Blue Bell, PA), Inforzato; Sarah K (Blue Bell,

PA), Gretter; Eugene J (Blue Bell, PA), Karian; George (Blue Bell, PA)

Applicant: Unisys Corporation (Blue Bell, PA)

Family ID: 1000008764115

Assignee: Unisys Corporation (Blue Bell, PA)

Appl. No.: 17/386052

Filed: July 27, 2021

Prior Publication Data

Document IdentifierUS 20220029996 A1

Publication Date
Jan. 27, 2022

Related U.S. Application Data

us-provisional-application US 63056992 20200727

Publication Classification

Int. Cl.: H04L29/06 (20060101); H04L9/40 (20220101); H04L41/0803 (20220101);

H04L41/0894 (20220101); H04L41/12 (20220101); H04L41/16 (20220101); G06F9/455

(20180101)

U.S. Cl.:

CPC **H04L63/104** (20130101); **H04L41/0803** (20130101); **H04L41/0894** (20220501);

H04L41/12 (20130101); **H04L41/16** (20130101); **H04L63/0263** (20130101); **H04L63/0892** (20130101); **H04L63/105** (20130101); **H04L63/20** (20130101);

G06F9/45558 (20130101); G06F2009/45595 (20130101)

Field of Classification Search

CPC: H04L (63/0823); H04L (9/3263); H04L (63/105); H04L (63/089)

References Cited

U.S. PATENT DOCUMENTS

Old ITHERT BOCCHERTS									
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC					
6078960	12/1999	Ballard	709/239	H04L 67/1019					
11606690	12/2022	Robinson et al.	N/A	N/A					
2006/0282519	12/2005	Trevathan et al.	N/A	N/A					
2009/0100261	12/2008	Aoshima	709/229	H04L 63/20					
2011/0154045	12/2010	Lee et al.	N/A	N/A					
2012/0239431	12/2011	Hayashi	N/A	N/A					
2012/0278866	12/2011	Huang	N/A	N/A					
2014/0129835	12/2013	Suryavanshi et al.	N/A	N/A					
2017/0118087	12/2016	Bergman	N/A	G06F 11/3051					
2017/0171208	12/2016	Purushothaman	N/A	H04L 63/20					
2017/0374109	12/2016	Atarius	N/A	H04L 65/1104					
2018/0191730	12/2017	Deters	N/A	H04L 63/105					
2019/0020656	12/2018	Arjun	N/A	H04L 69/40					
2020/0177703	12/2019	Panda	N/A	H04L 41/12					
2020/0319946	12/2019	Matsuura	N/A	G06F 9/5083					
2021/0234705	12/2020	Wesby	N/A	H04L 9/321					
2022/0029996	12/2021	Poetter	N/A	H04L 41/0843					

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
2016-503532	12/2015	JP	N/A
2017/200037	12/2016	WO	N/A

OTHER PUBLICATIONS

Final Office Action received for U.S. Appl. No. 17/386,055, mailed on Jan. 3, 2024, 9 pages. cited by applicant

Non-Final Office Action received for U.S. Appl. No. 17/386,055, mailed on May 21, 2024, 10 pages. cited by applicant

Non-Final Office Action received for U.S. Appl. No. 17/386,056, mailed on Jan. 3, 2024, 4 pages. cited by applicant

Primary Examiner: Ho; Dao Q

Attorney, Agent or Firm: Shook, Hardy & Bacon

Background/Summary

FIELD OF THE DISCLOSURE

(1) The present application relates generally to creating secure endpoints on a network. The present application also relates to property sets for endpoints and generic endpoint packages. BACKGROUND

- (2) Robust enterprise security software is complex. The complexity of enterprise security software increases with the level of security required. For example, in enterprise networks in which data must be secured during intra-network storage and/or transmission, detailed definitions regarding a level of security for each user, types of encryption, permissions, and other policies must be set. Because there are often a large number of computing systems within such an enterprise network, provisioning each system can become so complex as to be time- and cost-prohibitive to install such enterprise security software, or at the very least to exploit its full capabilities. Network visualization products enable an administrator, or user, to more easily configure and deploy network security policies in order to protect a network. A user can easily discover endpoints and communications on the network using a live discovery or existing packet capture files to automatically develop network models. Alternatively, a user can create network models from scratch utilizing network visualization products to design new segments or entire networks.

 (3) The administrator of a secure network has to describe authorization parameters and the associated authorization servers. Information to guide the endpoint during the period prior to
- associated authorization servers. Information to guide the endpoint during the period prior to authorization was also described. The packages, which contain both configuration information and software, are manually maintained and mapped to individual servers in the secure network. This results in an administrative burden of manually tracking which server needed which version and ensuring endpoints were running the desired levels of software and configuration. Another drawback to the current implementation is that there are many different packages adding to the administrative burden. Therefore, improvements in the area of change management and deployment are desirable.

SUMMARY

- (4) In a first aspect, a network model includes nodes, node property sets, authorization groups and authorization servers. The node property sets define how the nodes operate and authenticate. The nodes are member of the node property sets. The authorization groups are associated with the node property set. And, authorization servers are member of the authorization groups.
- (5) In a second aspect, a network model in a secure network environment has at least one community of interest. The network model includes at least one node being a member of a node property set that defines how the node operates and authenticates.
- (6) The foregoing has outlined rather broadly the features, technical advantages, and process of the present invention in an order that the detailed description of this invention may be better understood. Additional features and advantages of the invention described hereinafter form the subject of the claims for the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes and intentions of the present

invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features that are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures are provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.

Description

BRIEF DESCRIPTION OF THE FIGURES

- (1) For a more complete understanding of the disclosed system and methods, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.
- (2) FIG. **1** is a block diagram illustrating an encrypted enclave of virtual machines organized into communities-of-interest, according to one embodiment of the present invention;
- (3) FIG. **2** is a is a block diagram illustrating a network implementing communities-of-interest, according to one embodiment of the present invention;
- (4) FIG. **3** is a block diagram illustrating an enclave included in the network of FIG. **2**;
- (5) FIG. **4** is an illustration of a property set, according to one example embodiment of the present invention;
- (6) FIG. **5** is an illustration of registration and authorization, according to one example embodiment of the present invention.
- (7) FIG. **6** is an illustration of generic endpoint packages, according to one example embodiment of the present invention;
- (8) FIG. 7 is an illustration of an endpoint property set configuration information, according to one example embodiment of the present invention;
- (9) FIG. **8** is a flow diagram of a method, according to one example embodiment of the present invention.
- (10) FIG. **9** is a block diagram illustrating a computer network, according to one example embodiment of the present invention;
- (11) FIG. **10** is a block diagram illustrating a computer system, according to one example embodiment of the present invention;
- (12) FIG. **11**A is a block diagram illustrating a server hosting an emulated software environment for virtualization, according to one example embodiment of the present invention; and
- (13) FIG. **11**B is a block diagram illustrating a server hosting an emulated hardware environment, according to one example embodiment of the present invention.

DETAILED DESCRIPTION

- (14) Stealth enterprise security solution from Unisys Corporation of Blue Bell, Pennsylvania can be used to implement features of the present disclosure. Unisys's Stealth Suite includes both Stealth(core) ("Stealth") and Stealth(aware). Stealth reduces attack surfaces in a network environment by creating dynamic, identity-driven microsegments called communities-of-interest. Micro segmentation is a security strategy that segments a network into smaller elements and manages them with IT security policies. By establishing secure community-of-interest, Stealth separates trusted devices, users and data from unknown or untrusted devices. It can further reduce attack surfaces by encrypting all communication between Stealth protected devices and cloaking the devices from unauthorized or unknown users. Micro segmentation divides a physical network into multiple logical micro-segments. Only the resources within the micro segment can see and communicate with one another.
- (15) For example, virtual or physical machines executing on one or more servers may each be

assigned to one or more communities-of-interest. The communities-of-interest may allow an administrator to create logical organizations of virtual machines. A community-of-interest may be defined by a role performed by the virtual machines in the application stack.

- (16) Messages or communications within a community-of-interest are encrypted with a key corresponding to the community-of-interest. In this fashion, messages or communications are cryptographically isolated. FIG. 1 is a block diagram illustrating an encrypted enclave of virtual machines organized into communities-of-interest according to one example embodiment of the present disclosure. A network 100 may include a network bus 130 serving an enclave 104. The bus 130 may couple virtual machines 108a-e within the enclave 104. Each of the virtual machines 108a-e may communicate through encrypted communications carried on the bus 130. A virtual gateway 106 may be coupled to the bus 130 to provide communications from the enclave 104 to external devices, such as a client 110 and/or other public networks, such as the Internet. The client 110 may be a remote device, such as a personal computer or mobile device. The client 110 may be connected to the virtual gateway 106 through a secured tunnel, such that the communications between the client 110 and the virtual gateway 106 are encrypted similar to the encrypted communications on the bus 130.
- (17) The virtual machines **108***a-e* may be assigned to one or more communities-of-interest. For example, the virtual machines **108***a*, **108***c*, and **108***e* may be assigned to community-of-interest **124**. Virtual machines **108***d* and **108***e* may be assigned to community-of-interest **114**. And, virtual machine **108***b* may be assigned to community-of-interest **122**. And, the virtual machine **108***a* and the client **110** may be assigned community-of-interest **116**.
- (18) A virtual machine **108***e* may be instructed to transmit a message, or data, to the virtual machine **108***a*. For example, software executing on the virtual machine **108***e* may request data from a database server hosted on the virtual machine **108***d*. When the virtual machine **108***e* receives the message destined for the virtual machine **108***a*, the virtual machine **108***e* may identify a community-of-interest in common between virtual machine **108***e* and virtual machine **108***a*. The community-of-interest **124** may be identified and a key associated with community-of-interest **124** may be used to encrypt the message.
- (19) The community-of-interest organization of virtual machines may be implemented in a computer network to provide cryptographic isolation of virtual machines. FIGS. **2** and **3** are block diagrams illustrating a network implementing communities-of-interest according to one embodiment of the disclosure. A network **200** may include an enclave **210**. According to one embodiment, the enclave **210** may belong to a single tenant of the network **200**. In other embodiments, the enclave **210** may be shared between tenants.
- (20) Communities-of-interest may be configured for a web tier **214**, an application tier **216**, and a database tier **218**. The web tier **214** may include a number of web servers **214***a-b*, the application tier **216** may include a number of application servers **216***a-c*, and the database tier **218** may include a number of database servers **218***a-b*. Each of the servers **214***a-b*, **216***a-c*, and **218***a-b* may be a virtual server executing within a virtual machine. Additional communities-of-interest may be defined for infrastructure functions, such as administrative, proxy, application tier management, database tier management, or a jumpbox management. The enclave **210** may also include a jumpbox **230**, a transfer machine **228**, a virtual gateway **226**, a relay **224**, a proxy **222**, and a configuration device **220**, which may also be executing in virtual machines.
- (21) Membership of the virtual machines in individual communities-of-interest are shown as numbered circles **213**, **215**, **217**. For example, a community-of-interest **213** may include the servers **214***a-b*, the jumpbox **230** and virtual gateway **226**. According to one embodiment, only virtual machines that share a common community-of-interest may communicate. When the first virtual machine initiates communication with the second virtual machine, the first virtual machine may search for a common community-of-interest between the first and the second virtual machine. If found, a cryptographic session key may be created that is encrypted with a key associated to the

- common community-of-interest. Thus, only a virtual machine that shares the community-of-interest key may decrypt the session key. All communication between the two virtual machines may be encrypted and decrypted with the session key. Messages within the enclave **210** may be isolated from the rest of the network **200**, because the messages are encrypted with keys that are not available to the rest of the network **200**.
- (22) For example, a web server virtual machine **214***a* may be able to communicate with another web server virtual machine **214***b*, because the virtual machines **214***a*-*b* have the community-of-interest **213** in common. They cannot communicate with the DB tier since the machines **218***a*-*b* do not have a community-of-interest in common with the virtual machines **214***a*-*b*.
- (23) Each of the devices within the enclave **210** may be coupled to a bus **212**. When a device within the enclave **210** communicates with devices outside the enclave **210**, then messages may be handled by the virtual gateway **226**, which may be coupled to an unencrypted network **232**. According to one embodiment, the virtual gateway **226**, such as a Stealth Gateway, may encrypt and/or decrypt messages between the enclave **210** and the unencrypted network **232**. The network **232** may couple the enclave **210** to other network appliances **234**, such as network address translation (NAT) devices, dynamic host control protocol (DHCP) devices, domain name service (DNS) devices, and the like. The other network appliances **234** may also be executing in virtual machines.
- (24) Access to the enclave **210** may be controlled by the virtual gateway **226**. Messages passing through the gateway **226** from the unencrypted, or clear-text, network **232** to the enclave **210** may be encrypted and messages in the other direction may be decrypted by the gateway **226**. According to one embodiment, messages within the enclave **210** may only be transmitted to a virtual machine that has a community-of-interest in common with the gateway **226**. Furthermore, the gateway **226** may be configured to filter messages for a community-of-interest. The filter may allow an administrator to restrict access based on a message's source and/or destination address and/or port. The enclave **210** may also be isolated from other enclaves (not shown) in the network **200**, because only a virtual machine having a common community-of-interest with the gateway **226** may communicate outside of the enclave **210**.
- (25) For example, the web servers **214***a-b* may be able to communicate through the gateway **226**, because the web servers **214***a-b* share the community-of-interest **213** with the gateway **226**. In another example, the application servers **216***a-c* and the database servers **218***a-b* may have restricted access through the gateway **226**, because the gateway **226** may filter messages transmitted in the application community-of-interest and the database community-of-interest to only provide access from management devices **244**.
- (26) Productivity and innovation require access to IT services on-premises and in the cloud, from any device, in any location globally. Traditional security perimeters are dissolving, increasing the network complexity and making it difficult to keep track of all the activity, especially in regards to security. Stealth(aware) is a network visualization product that enables a user to easily configure and deploy network security policies in order to protect the network. Stealth(aware) allows a user to visually discover endpoints and traffic on the network, as well as communications, using live discovery or existing packet capture files. Additionally, Stealth(aware) enables a user to create new network models from scratch to visualize new environments.
- (27) To simplify network complexity, Stealth(aware) automatically groups devices, or Nodes, into Profiles that have similar traffic patterns. Granularity levels are adjusted to balance simplicity and details. With a single click, a network model can be transformed into a model of micro segmentation policies. Stealth(aware) keeps the network view current by refreshing network model to identify policy violations or unwanted and suspicious communications between Nodes. It then allows the network administrator to quickly create and update network security polices to isolate the Node or block the suspicious communication.
- (28) In Stealth(aware), when a Project is initially created, a set of predefined Solutions, Profiles,

- Channels and Flows are automatically created for the user to help with the initial set up of a Stealth Environment. As part of creating these pre-defined objects, a Stealth recommended configuration is provided for the user in order to have a functioning Stealth environment as quickly as possible. Secure endpoint or nodes must also be created.
- (29) Stealth(aware) has Property Sets, which is an object associated with nodes that defines who the node authenticates to and how that node operates. Referring to FIG. 4, the concept of Property Sets 400 is illustrated. Property Sets 400 includes nodes 402 (also referred to as endpoints), node property sets 404, authorization groups 406 and authorization servers 408. Nodes 402 are members of a node property set 404; node property sets 404 are associated with one or more authorization groups 406; and authorization groups 406 contain one or more standalone authorization servers 408. An authorization group 406 can be associated with one or more node property sets 404, and authorization servers 408 can be members of one or more authorization groups 406.
- (30) Referring to FIG. **5**, a node **402** must perform registration **502** before authorization **504**. The node **402** applies a random selection algorithm to choose which authorization server **408** to register to. Once registered, the node **402** receives an endpoint property set ID **506** to get authorized. The endpoint property set ID **506** allows the node **402** to look up its authorization details in a setting file such that it can authorize **504**.
- (31) A user can set the Property Set **400** at a Project level (automatically done when the Project is created), at a Solution level (where are member nodes of that Solution are associated with the selected Property Set), at a Profile level (where all member Nodes of that Profile are associated with the selected Property Set) and at a Node level. Property Sets can includes a registration server, Stealth Management Server, Standalone Authorization Server or Default IWA Property Set. Property Set membership uses an inheritance/hierarchy concept. The Project level value is set to a default IWA Property Set. Solutions inherit from the Project level; Profiles inherit from the Solution level; and Nodes inherit from the Profile level. A user can then change the parameters of any given Property Set **400**.
- (32) Property Sets **400** abstract the actual Authorization Servers from the network administrator. This enables the Property Sets **400** to be created based on a functional, location or other basis as determined by the network administrator. The user can create, edit, display and delete node property sets **404** and their related fields. The user also creates node property sets **404** for both registration **502** and authorization **504**.
- (33) Previously, a user would describe the authorization parameters and the associated authorization servers. Information to guide the node during the authorization was also described. The packages, which contain both configuration information and software were manually maintained and mapped to individual servers.
- (34) In this disclosure, the configuration information is consolidated into a single standard configuration, referred to as generic node configuration, which can be used by all nodes **402**. Regardless of Operating System type, the configuration is the same and automatically managed by the software. This greatly reduces the burden of management and distribution of endpoint packages. Referring to FIG. **6**, a generic endpoint package **600** is illustrated. This generic endpoint package **600** is a consolidation of configuration information into a single standard configuration, which can be used by all endpoints. The configuration is applied to each supported software, such as Linux, Windows 32 bit systems and Windows 64 bit systems. Regardless of the OS type, the configuration is the same and automatically managed by the Stealth software. The node configuration is divided into three main sections: node property sets **402**, common-information and registration. The node property sets **402** contain all the authorization information that is used by a particular node **402**. The administrator may define one or more property sets depending on network complexity and needs of the enterprise.
- (35) A random hunting algorithm is used such that various nodes **402** start the attempt to authorize at a different place in the list. This provides load balancing of the authorization of nodes **402**

- between multiple authorization servers **408** without having to define multiple ordered lists to accomplish this. The randomization of this list makes the consolidation of the node package even more generic. A mapping table is maintained by the software where each node is mapped to a node property set **404** as defined by the user.
- (36) The common-info section contains the rules to apply to nodes **402** while in service mode and prior to authorization. These rules govern the communication to other Stealth enabled nodes. The registration section includes information to direct the node **402** to pre-defined registration servers as defined by the user. In order for a node to successfully authorize and join the secure network, it must first contact the registration server where its identity is mapped to a property set. Once the property set is known by the node, it can attempt authorization as defined by the generic endpoint configuration.
- (37) Updates are sent by node property sets **404** to the nodes **402** that are mapped to them automatically. As the user makes changes, a new version of the node package is generated and distributed as directed by the user. This greatly reduces the burden of managing and creating node packages by the user.
- (38) FIG. **7** illustrates a node property set's information **700**. Referring to FIG. **8**, a method **800** of creating secure endpoint on a network is illustrated. The method begins at **802**. At **804**, a node registers using a random selection algorithm to choose which server to register to. At **806**, the node receives a property set ID. At **808**, the node authorizes using the property set ID to look up it authorization information. The method ends at **810**.
- (39) FIG. **9** illustrates one embodiment of a system **900** for an information system, which may host virtual machines. The system **900** may include a server **902**, a data storage device **906**, a network 908, and a user interface device 910. The server 902 may be a dedicated server or one server in a cloud computing system. The server **902** may also be a hypervisor-based system executing one or more guest partitions. The user interface device **910** may be, for example, a mobile device operated by a tenant administrator. In a further embodiment, the system **900** may include a storage controller **904**, or storage server configured to manage data communications between the data storage device 906 and the server 902 or other components in communication with the network 908. In an alternative embodiment, the storage controller **904** may be coupled to the network **908**. (40) In one embodiment, the user interface device **910** is referred to broadly and is intended to encompass a suitable processor-based device such as a desktop computer, a laptop computer, a personal digital assistant (PDA) or tablet computer, a smartphone or other a mobile communication device having access to the network **908**. The user interface device **910** may be used to access a web service executing on the server **902**. When the device **910** is a mobile device, sensors (not shown), such as a camera or accelerometer, may be embedded in the device **910**. When the device **910** is a desktop computer the sensors may be embedded in an attachment (not shown) to the device **910**. In a further embodiment, the user interface device **910** may access the Internet or other wide area or local area network to access a web application or web service hosted by the server **902** and provide a user interface for enabling a user to enter or receive information.
- (41) The network **908** may facilitate communications of data, such as dynamic license request messages, between the server **902** and the user interface device **910**. The network **908** may include any type of communications network including, but not limited to, a direct PC-to-PC connection, a local area network (LAN), a wide area network (WAN), a modem-to-modem connection, the Internet, a combination of the above, or any other communications network now known or later developed within the networking arts which permits two or more computers to communicate. (42) In one embodiment, the user interface device **910** accesses the server **902** through an intermediate sever (not shown). For example, in a cloud application the user interface device **910** may access an application server. The application server may fulfill requests from the user interface device **910** by accessing a database management system (DBMS). In this embodiment, the user interface device **910** may be a computer or phone executing a Java application making requests to a

- JBOSS server executing on a Linux server, which fulfills the requests by accessing a relational database management system (RDMS) on a mainframe server.
- (43) FIG. **10** illustrates a computer system **1000** adapted according to certain embodiments of the server **902** and/or the user interface device **910**. The central processing unit ("CPU") **1002** is coupled to the system bus **1004**. The CPU **1002** may be a general purpose CPU or microprocessor, graphics processing unit ("GPU"), and/or microcontroller. The present embodiments are not restricted by the architecture of the CPU **1002** so long as the CPU **1002**, whether directly or indirectly, supports the operations as described herein. The CPU **1002** may execute the various logical instructions according to the present embodiments.
- (44) The computer system **1000** also may include random access memory (RAM) **1008**, which may be synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous dynamic RAM (SDRAM), or the like. The computer system **1000** may utilize RAM **1008** to store the various data structures used by a software application. The computer system **1000** may also include read only memory (ROM) **1006** which may be PROM, EPROM, EPROM, optical storage, or the like. The ROM may store configuration information for booting the computer system **1000**. The RAM **1008** and the ROM **1006** hold user and system data, and both the RAM **1008** and the ROM **1006** may be randomly accessed.
- (45) The computer system **1000** may also include an input/output (I/O) adapter **1010**, a communications adapter **1014**, a user interface adapter **1016**, and a display adapter **1022**. The I/O adapter **1010** and/or the user interface adapter **1016** may, in certain embodiments, enable a user to interact with the computer system **1000**. In a further embodiment, the display adapter **1022** may display a graphical user interface (GUI) associated with a software or web-based application on a display device **1024**, such as a monitor or touch screen.
- (46) The I/O adapter **1010** may couple one or more storage devices **1012**, such as one or more of a hard drive, a solid state storage device, a flash drive, a compact disc (CD) drive, a floppy disk drive, and a tape drive, to the computer system **1000**. According to one embodiment, the data storage **1012** may be a separate server coupled to the computer system **1000** through a network connection to the I/O adapter **1010**. The communications adapter **1014** may be adapted to couple the computer system **1000** to the network **908**, which may be one or more of a LAN, WAN, and/or the Internet. The communications adapter **1014** may also be adapted to couple the computer system **1000** to other networks such as a global positioning system (GPS) or a Bluetooth network. The user interface adapter 1016 couples user input devices, such as a keyboard 1020, a pointing device 1018, and/or a touch screen (not shown) to the computer system **1000**. The keyboard **1020** may be an onscreen keyboard displayed on a touch panel. Additional devices (not shown) such as a camera, microphone, video camera, accelerometer, compass, and or gyroscope may be coupled to the user interface adapter 1016. The display adapter 1022 may be driven by the CPU 1002 to control the display on the display device **1024**. Any of the devices **1002-1022** may be physical and/or logical. (47) The applications of the present disclosure are not limited to the architecture of computer system **1000**. Rather the computer system **1000** is provided as an example of one type of computing device that may be adapted to perform the functions of a server 902 and/or the user interface device **910**. For example, any suitable processor-based device may be utilized including, without limitation, personal data assistants (PDAs), tablet computers, smartphones, computer game consoles, and multi-processor servers. Moreover, the systems and methods of the present disclosure may be implemented on application specific integrated circuits (ASIC), very large scale integrated (VLSI) circuits, or other circuitry. In fact, persons of ordinary skill in the art may utilize any number of suitable structures capable of executing logical operations according to the described embodiments. For example, the computer system **1000** may be virtualized for access by multiple users and/or applications.
- (48) FIG. **11**A is a block diagram illustrating a server hosting an emulated software environment for virtualization according to one embodiment of the disclosure. An operating system **1102**

executing on a server includes drivers for accessing hardware components, such as a networking layer **1104** for accessing the communications adapter **1014**. The operating system **1102** may be, for example, Linux. An emulated environment **1108** in the operating system **1102** executes a program **1110**, such as CPCommOS. The program **1110** accesses the networking layer **1104** of the operating system **1102** through a non-emulated interface **1106**, such as XNIOP. The non-emulated interface **1106** translates requests from the program **1110** executing in the emulated environment **1108** for the networking layer **1104** of the operating system **1102**.

- (49) In another example, hardware in a computer system may be virtualized through a hypervisor. FIG. 11B is a block diagram illustrating a server hosting an emulated hardware environment according to one embodiment of the disclosure. Users 1152, 1154, 1156 may access the hardware 1160 through a hypervisor 1158. The hypervisor 1158 may be integrated with the hardware 1160 to provide virtualization of the hardware 1160 without an operating system, such as in the configuration illustrated in FIG. 11A. The hypervisor 1158 may provide access to the hardware 1160, including the CPU 1002 and the communications adaptor 1014.
- (50) If implemented in firmware and/or software, the functions described above may be stored as one or more instructions or code on a computer-readable medium. Examples include non-transitory computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc includes compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy disks and blu-ray discs. Generally, disks reproduce data magnetically, and discs reproduce data optically. Combinations of the above should also be included within the scope of computer-readable media.
- (51) In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims.
- (52) Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present invention, disclosure, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims

1. A network model comprising: node property sets that include nodes and define how nodes operate and authenticate, wherein the node property sets contain a list of authorization servers and node properties; authorization groups that contain authentication servers associated with the node property sets; authorization servers that is a combination of hardware and software, which are

members of the authorization groups; nodes, which are devices including endpoints and are members of the node property sets, authorize as secure nodes in the network by registering to a registration server and receiving a node property set ID, performing a random selection algorithm based on a node configuration of the nodes to choose an authorization server from the list of authorization servers contained in the node property set that includes the nodes and define how the nodes operate and authenticate to provide-authorization of the node, using the node property set ID to access authorization information from the node property set associated with the node property set ID and authorize using the authorization information associated with the node property set ID, wherein the random selection algorithm causes each node to authorize at a randomly selected authorization server based on the random selection algorithm performed by the node.

- 2. The model according to claim 1, wherein updates are provided to the node property sets, which are mapped to the nodes automatically.
- 3. The model according to claim 1, wherein authorization groups can be associated with more than one property set.
- 4. The model according to claim 3, wherein authorization servers can be member of more than one authorization group.
- 5. The model according to claim 1, wherein a node's membership in a property set uses an inheritance or hierarchy concept.
- 6. The model according to claim 1, wherein the node properties include audit, type, tunnel priority, cert name and type.
- 7. The model according to claim 1, wherein the nodes are members of at least one community of interest in a secure network environment.
- 8. A network model in a secure network environment having at least one community of interest, the network model comprising: at least one node that is a device including an endpoint being a member of a node property set that includes nodes and defines how the at least one node operates and authenticates; and the node registering to a registration server and receiving a node property set ID, applying a random selection algorithm based on a node configuration of the nodes to choose which authentication server that is a combination of hardware and software from a list of authorization servers contained in the node property set that includes the nodes and define how the nodes operate and authenticate to provide authorization of the node, use the node property set ID to access authorization information from the node property set associated with the node property set ID, wherein the random selection algorithm causes each node to authorize at a randomly selected authorization server based on the random selection algorithm performed by the node, and wherein the node property sets contain the list of authorization servers and node properties.
- 9. The network model of claim 8, wherein the node inherits rules on how the node operates from the property set and instructions on how to authenticate.
- 10. The network model of claim 9, wherein updates to the property set automatically promulgate to the node.
- 11. The network model of claim 10, further comprising: at least one authorization group associated with the node property set; and at least one authorization server, which is a member of the authorization group.
- 12. The network model of claim 11, wherein the at least one authorization group can be associated with more than one property set.
- 13. The network model of claim 12, wherein the at least one authorization server can be associated with more than one authorization group.
- 14. The network model of claim 13, wherein the at least one node is a member of the at least one community of interest.
- 15. The network model of claim 14, wherein the at least one node is a member of more than one community of interest.