Applicant: Jaap Herman Van't Hoff Attorney's Docket No.: 17042-004001

Serial No. : 10/657,250 Filed : September 9, 2003

Page : 2 of 13

Amendments to the Specification:

Please replace the paragraph beginning at page 5, line 18 with the following amended paragraph:

The pressure control device comprises a first chamber 4 and a second chamber 6. The second chamber 6 is located outside the first chamber. In other words, the second chamber 6 is located outside a space enclosed by the first chamber. The device further comprises a closing member 8, movable relative to the second chamber 6, which forms a part of a valve to be further discussed hereinafter. The second chamber 6 comprises a cylinder 10 which is closed at a first end 12. The cylinder 10 extends at least substantially in the inner space 2 of the container. In this example, the first chamber comprises a vessel 14 which is provided with a first opening 16. Further, the plunger extends into a second opening 18 of the second chamber 6. In fact, the second opening 18 is formed by the open end of the cylinder 10. The first opening 16 is provided with a scaling ring 20. The scaling ring 20 extends in a circumferential recess 22 of a stem 24 of the plunger 8. Circumferential recess 22 has a trapezoidal cross-sectional shape in which two opposite sides (e.g., the two shortest sides) are not parallel. Further, on its outer side, the plunger 8 is provided with a sealing ring 26 which constitutes a gas seal between an outer side of the plunger 8 on one side and an inner side of cylinder 10 on the other. The plunger 8 can be reciprocated relative to the second chamber 6 in axial direction between extreme positions which are defined by the width of the recess 22. When in the drawing the plunger has moved to its extreme left position, the plunger 8 will close the first opening 16. Further, in a sidewall of the cylinder 10 an opening 28 is provided at a position located outside the second chamber 6.

Please replace the paragraph beginning at page 6, line 19 with the following amended paragraph:

When the pressure in the container starts to decrease as a result of a user drawing fluid from the container, this has as a consequence that the pressure in the inner space 2 of the container will decrease. Via the opening 28, the pressure in the space 30 will then likewise decrease. The pressure in the second chamber 6 will then be higher than the pressure in the space 30. The result is that the plunger in FIG. 1 will move to the right under the influence of the

Applicant: Jaap Herman Van't Hoff Attorney's Docket No.: 17042-004001

Serial No.: 10/657,250 Filed: September 9, 2003

Page : 3 of 13

prevailing pressure in the second chamber 6 and the prevailing pressure in the inner space 2 of the container. As a result, the opening 16 is released. When the opening 16 is released, this entails the release of a fluid connection between the first chamber 4 and the inner space 2 of the container. This fluid connection extends through the opening 16 and through the opening 28. Because the pressure in the first chamber 4 is higher than the pressure in the inner space 2 of the container, gas will start to flow from the first chamber 4 to the inner space 2 of the container. As a result, the pressure in the inner space 2 of the container will start to rise again. At a certain moment, the pressure in the inner space 2, and hence also the pressure in the space 30, has risen to the extent where the plunger 8 will be moved to the left again and eventually close the opening 16 again. In this way, again a state of equilibrium is achieved, with the pressure in the inner space 2 of the container back at the original level. In this example, the volume of the first chamber is much greater than the volume of the second chamber. As a result, on the one hand sufficient gas can be received in the first chamber 4 to restore the pressure in the container a large number of times. On the other hand, the small second chamber 6 is advantageous in that it enables a compact design of the device. In this example, the volume of the second chamber 6 is dependent on the position of the closing member relative to the second chamber. Also, in this example, a sidewall 32 of the first chamber is provided with the opening 16 through which the fluid connection extends. Further, a sidewall of the second chamber is provided with the opening 18. In fact, the opening 18 is formed by the open end of the cylinder 10. Further, the closing member extends from the first chamber 4 via the openings 16 and 18 to the second chamber 6. A first subsurface 34 of the closing member is situated in the first chamber, while a second subsurface 36 of the closing member is situated in the second chamber 6. The second subsurface forms a cavity in the plunger of the closing member. As further shown in FIG. 1, extending from the second subsurface are leg members to guide the plunger along the walls of the second chamber. Because the surface of the first subsurface 34 is much smaller than the surface of the second subsurface 36, the force which is exerted on the closing member as a result of the pressure of the gas will be determined to a relatively slight extent by the pressure in the first chamber 4. The prevailing pressure in the second chamber 6, as well as the pressure in the inner space 30, yield comparatively much greater forces that are exerted on the closing member 8. Accordingly, the form of the first and second subsurface is such that a certain gas pressure

Applicant: Jaap Herman Van't Hoff: Attorney's Docket No.: 17042-004001

Serial No.: 10/657,250 Filed: September 9, 2003

Page : 4 of 13

exerted on the first subsurface results in a force in a direction of movement of the closing member that is smaller than the force in the direction of movement of the closing member which results when this gas pressure is exerted on the second subsurface. The state of equilibrium in which the fluid connection, i.e. the opening 16, is closed is therefore substantially determined by the pressure prevailing in the second chamber 6 and is at least substantially independent of the pressure prevailing in the first chamber 4.