

COMP9444: Neural Networks and Deep Learning

Week 2c. PyTorch

Alan Blair

School of Computer Science and Engineering September 21, 2023

Defining a Network Structure

```
class MyNetwork(torch.nn.Module):
    def __init__(self):
        super(MyNetwork, self).__init__()
        # define structure of the network here
    def forward(self, input):
        # apply network and return output
```

Typical Structure of a PyTorch Program

```
# create neural network
net = MyNetwork().to(device) # CPU or GPU
# prepare to load the training and test data
train_loader = torch.utils.data.DataLoader(...)
test_loader = torch.utils.data.DataLoader(...)
# choose between SGD, Adam or other optimizer
optimizer = torch.optim.SGD(net.parameters,...)
for epoch in range(1, epochs): # training loop
    train(args, net, device, train_loader, optimizer)
    # periodically evaluate network on test data
    if epoch % 10 == 0:
        test( args, net, device, test_loader)
```


Defining a Custom Model

Building a Net from Individual Components

```
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.in_to_hid = torch.nn.Linear(2,2)
        self.hid_to_out = torch.nn.Linear(2,1)

def forward(self, input):
    hid_sum = self.in_to_hid(input)
    hidden = torch.tanh(hid_sum)
    out_sum = self.hid_to_out(hidden)
    output = torch.sigmoid(out_sum)
    return output
```

Defining a Sequential Network

UNSW

Sequential Components

Network layers:

- → nn.Linear()
- → nn.Conv2d() (Week 4)

Intermediate Operators:

- → nn.Dropout()
- → nn.BatchNorm() (Week 4)

Activation Functions:

- → nn.Sigmoid()
- → nn.Tanh()
- → nn.ReLU() (Week 3)

Declaring Data Explicitly

```
import torch.utils.data

# input and target values for the XOR task
input = torch.Tensor([[0,0],[0,1],[1,0],[1,1]])
target = torch.Tensor([[0],[1],[1],[0]])

xdata = torch.utils.data.TensorDataset(input,target)
train_loader = torch.utils.data.DataLoader(xdata,batch_size=4)
```


Loading Data from a .csv File

```
import pandas as pd

df = pd.read_csv("sonar.all-data.csv")

df = df.replace('R',0)

df = df.replace('M',1)

data = torch.tensor(df.values,dtype=torch.float32)

num_input = data.shape[1] - 1

input = data[:,0:num_input]

target = data[:,num_input:num_input+1]

dataset = torch.utils.data.TensorDataset(input,target)
```

UNSW

Custom Datasets

```
from data import ImageFolder
    # load images from a specified directory
    dataset = ImageFolder(folder, transform)

import torchvision.datasets as dsets
    # download popular image datasets remotely
    mnistset = dsets.MNIST(...)
    cifarset = dsets.CIFAR10(...)
    celebset = dsets.CelebA(...)
```

10

III LINKW

Choosing an Optimizer

Training

```
def train(args, net, device, train_loader, optimizer):
   for batch_idx, (data,target) in enumerate(train_loader):
      optimizer.zero_grad()  # zero the gradients
      output = net(data)  # apply network
      loss = ...  # compute loss function
      loss.backward()  # compute gradients
      optimizer.step()  # update weights
```


Loss Functions

```
loss = torch.sum((output-target)*(output-target))
loss = F.nll_loss(output,target)
                                              # (Week 3)
loss = F.binary_cross_entropy(output, target) # (Week 3)
loss = F.softmax(output,dim=1)
                                              # (Week 3)
loss = F.log_softmax(output,dim=1)
                                              # (Week 3)
```

UNSW

Testing

```
def test(args, net, device, test_loader):
    with torch.no_grad(): # suppress updating of gradients
       net.eval() # toggle batch norm, dropout
            for data, target in test_loader:
                output = model(data)
                test_loss = ...
                print(test_loss)
       net.train() # toggle batch norm, dropout back again
```

UNSW

Computational Graphs

PyTorch automatically builds a computational graph, enabling it to backpropagate derivatives.

Every parameter includes .data and .grad components, for example:

A.data

A.grad

optimizer.zero_grad() sets all .grad components to zero.

loss.backward() updates the .grad component of all Parameters by backpropagating gradients through the computational graph.

optimizer.step() updates the .data components.

Controlling the Computational Graph

If we need to stop the gradients from being backpropagated through a certain variable (or expression) A, we can exclude it from the computational graph by using:

A.detach()

By default, loss.backward() discards the computational graph after computing the gradients.

If needed, we can force it to keep the computational graph by calling it this way:

loss.backward(retain_graph=True)

UNSW

UNSW