电子技术实验报告

姓名: UNIkeEN 班级: 学号: 实验成绩:

同组姓名: 无 实验日期: 2022.11.8 指导老师:

运放应用之比例、加法、减法运算电路

实验目的

- 1. 了解集成运算放大器 uA741 各引脚的作用。
- 2. 学习集成运放的正确使用方法, 掌握其传输特性。
- 3. 熟悉比例运算器、加法器、减法器电路的基本原理和性能。
- 4. 能够基于对加减、比例运算电路的实验探究, 理解加减、比例运算电路在实际电子电路中的应用。

实验原理

一、集成运算放大器

首先对集成运算放大器使用方法做简单介绍。如图 1 所示,运放 uA741 共有 8 个管脚,其有二个输入端,一个为反相输入端"-"(2 引脚),另一个为同相输入端"+"(3 引脚),一个输出端 (6 引脚)。除此之外,运放 uA741 还有 OFFSET N1、OFFSET N2 引脚,用于偏移调节,即运放调零。 V_{CC+} 和 V_{CC-} 分别接正电源和负电源,NC 引脚通常是不接,悬空 (No Connection)。运放 uA741 工作在非线性区时的电压传输特性如图 2 所示。

 u_{O} U_{P} U_{P}

图 2 uA741 工作在非线性区时的电压传输特性

二、比例与加减法电路

在基本运算电路中,输出电压随着输入电压的变化,按照一定的数学规律反映输入电压某种运算的结果。运算电路在电子信息领域应用非常广泛,比如在自动化控制系统中,需要将物理参数(如温度、压力等)经传感器变为电信号后,再经一定的数学运算(如加减、比例、积分、微分),使用最终运算得到的电信号去驱动执行机构,才能得到系统的最佳控制。利用"虚短、虚断"原则,可以很方便地分析由运算放大器组成的加法器、减法器等基本电路。图 3 是反相比例加法器电路, R_p应满足:

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} + \frac{1}{R_f}$$

$$R_P = R_1 / R_2 / / \dots / R_f$$

即从运放的同相端和反向端分别往外看到的电阻值相等, $R_P=P_N$,输出 $v_o=-\sum_{k=1}^n\frac{R_f}{R_K}v_{in}$ 在 R_1 , R_2 ,…, R_n 相互不等时称为比例加法器;而 $R_1=R_2=\ldots=R_n$ 时,即为加法器运用,此时,有 $v_o=-\frac{R_f}{R}\sum_{i=1}^nv_{ik}$

图 3 反相比例加法器

若要求输入和输出同相,可采用图 4 所示的同相加法器,此时输出为:

$$v_o = (1 + \frac{R_f}{R_n}) \cdot R_{eq} \cdot \sum_{k=1}^{m} \frac{1}{R_{ik}} \cdot v_{ik}$$

式中 Rf 为反馈电阻, Req 是 Ril, Ri2, ..., Rim 并联后的等效电阻, 即

$$\frac{1}{R_{eq}} = \frac{1}{R_{i1}} + \frac{1}{R_{i2}} + \dots + \frac{1}{R_{im}}$$

$$R_{eq} = R_{i1} / / R_{i2} / / \dots / / R_{im}$$

当 $R_{i1}=R_{i2}=...=R_{im}$ 时, $R_{eq}=R_{i1}/m$,则

$$v_o = (1 + \frac{R_f}{R}) \cdot \frac{R_{i1}}{m} \cdot \frac{1}{R_{i1}} \sum_{k=1}^{m} v_{ik} = \frac{1}{m} (1 + \frac{R_f}{R}) \sum_{k=1}^{m} v_{iK}$$

图 4 同相比例加法器

基于上述两种加法器电路原理的论述,我们可以很容易得出减法器电路的构造方法,当输入信号分别从 uA741 的同相、反相输入端接入时,其输出信号即是与两个输入信号的差值有关的物理量。

实验电路与实验过程

一、加法器实验 1——单输入反相加法器

单输入反相加法器电路图见图 5, 其中 $Rf=10K\Omega$, $Rp=1K\Omega$ 。输入信号 Vi 用频率为 500Hz、有效值为 100mV 的正弦信号从反相输入端输入。改变 Ri,使放大倍数分别为 1、2、10,输出信号 Vo 用示波器监视,在不失真的情况下进行测量并记录。

图 5 单输入反相加法器实验电路

二、加法器实验 2——双输入反相加法器

电路设计见图 6。在反相加法器电路中,设 $Rf=10K\Omega$, $Rp=1K\Omega$,并使 R1=R2=10K Ω 。输入信号 Vi1、Vi2 分别用频率为 500Hz、有效值为 100mV、50mV 的正弦信号从反相输入端输入。输出信号 Vo 用示波器监视,在不失真的情况下进行测量并记录。

图 6 双输入反相加法器实验电路

三、加法器实验3——双输入同相加法器

同相加法器的电路设计如图 7 所示。设 Rf=10KΩ,Rn=10KΩ,并使 R1=R2=10KΩ。输入信号 Vi1、Vi2 均为频率为 500Hz、有效值为 100mV 的正弦信号,从同相输入端输入。输出信号 Vo 用示波器监视,在不失真的情况下进行测量并记录,观察是否满足同相加法器输入输出的关系式 $V_0=\frac{1}{m}(\mathbf{1}+\frac{R_f}{R_n})\sum_{k=1}^m V_{ik}$ 。

图 7 双输入同相加法器实验电路

四、减法器实验

电路设计如图 8 所示,给定 Rf1=Rf2=10K Ω ,R1=R2=1K Ω 。输入信号 Vi1 为频率为 500Hz、有效值为 50mV 的正弦信号从反相输入端输入;输入信号 Vi2 为频率为 500Hz、有效值为 100mV 的正弦信号从同相输入端输入。输出信号 Vo 用示波器监视,在不失真的情况下进行测量并记录,观察是否满足公式 $V_0=\frac{R_f}{R}(V_{i2}-V_{i1})$ 。

图 8 减法器实验电路

实验数据记录与计算

一、加法器实验 1——单输入反相加法器

信号	Ri	输入 Vi	输出 Vo					
放大	阻值	实测值	万用表读数	理论值	相对	示波器读数	理论值	相对
倍数	阻阻	头侧阻	(Vrms)	连比但	误差	(Vpp)		误差
1倍	10kΩ	100.405mV	102.350mV	100.405mV	1.93%	340mV	294mV	16.70%
2 倍	5kΩ	99.896mV	0.19860V.	199.792mV	0.60%	672mV	565.1mV	18.92%
10 倍	1kΩ	97.793mV	0.97638V	977.93mV	0.16%	2.92V	2.77V	5.42%

放大倍数为1倍时示数照片(图 9-图 11):

放大倍数为 2 倍时示数照片 (图 12-图 14):

放大倍数为 10 倍时示数照片 (图 15-图 17):

二、加法器实验 2——双输入反相加法器

表格 2 双输入反相加法器数据记录表

	输 <i>)</i>	∖ Vi	输出 Vo		
	Vi1 实测值	Vi2 实测值	万用表读数(有效值	示波器读数(峰峰值	
			Vrms)	Vpp)	
测量值	量值 99.763mV 47.503mV 0.14703V		0.14703V	440mV	
理论值			147.266mV	416.53mV	
相对误差			0.16%	5.6%	

仪表示数照片 (图 18-图 21):

三、加法器实验 3——双输入同相加法器

表格 3 双输入同相加法器数据记录表

	输入 Vi	输出 Vo		
	Vi 实测值	万用表读数(有效值	示波器读数(峰峰值	
		Vrms)	Vpp)	
测量值	103.025mV	0.20572V	628mV	
理论值		206.05mV	582.80mV	
相对误差		0.16%	7.76%	

对输出电压万用表读数相对误差较小,示波器测量相对误差在可接受范围内,基本满足公式 $V_O = \frac{1}{m}(1+\frac{R_f}{R_n})\sum_{k=1}^m V_{ik}\text{, 实验比较成功}.$

仪表示数照片 (图 22-图 24):

四、减法器实验

表格 4 减法器数据记录表

	输入	∖ Vi	输出 Vo		
	Vi1 实测值	Vi2 实测值	万用表读数(有效值	示波器读数(峰峰值	
	VII头则阻		Vrms)	Vpp)	
测量值	100.754mV	64.090mV	0.36565V	1.08V	
理论值			366.64mV	1.037V	
相对误差			0.27%	4.14%	

对输出电压万用表读数相对误差较小,示波器测量相对误差在可接受范围内,基本满足公式 $V_0 = \frac{R_f}{R} (V_{i2} - V_{i1})$,实验比较成功。

仪表示数照片 (图 25-图 28):

误差分析

- 1. 测量时, 电路可能存在微小扰动, 示波器的示数不稳定, 存在测量误差。
- 2. 由于各种原因,运算放大器的工作状态非理想状态,导致放大倍数不完全精确。
- 3. 实验板、导线存在的电阻不容忽略,导致测量值与理论值之间产生误差。 本次实验,对输出电压万用表读数相对误差较小,示波器测量值受干扰影响大,相对误 差整体偏大,但基本在可接受范围内,总体实验完成度较高。

注意事项

- 1. 改接电路时务必关闭电源输出开关,否则有较大概率烧坏芯片。
- 2. 信号发生器使用通道的输出电阻需要设置为高阻状态。
- 3. 741 芯片使用前先测试芯片是否故障。