Oscillatory Processes Generated by Unitary Bijective Time Changes of Stationary Gaussian Processes

BY STEPHEN CROWLEY

Email: stephencrowley2140gmail.com

August 1, 2025

Abstract

This article establishes that Gaussian processes obtained via unitary, measurepreserving bijective time transformations of stationary processes are a subclass of oscillatory processes in the sense of Priestley. The central object is the unitary composition operator M_{θ} (and its inverse), which implements the time change at the Hilbert-space level and conjugates covariance and spectral structures. Comprehensive theorems and proofs are provided for all main statements, including the oscillatory spectral representation, L^2 -isometry, evolutionary spectrum, and expected zero formula.

Table of contents

1	Scaling Functions and Oscillatory Processes	1
2	Unitary Time-Change Operator and its Inverse	2
	Oscillatory Representation of Unitary Time-Changed Stationary Process	
	L^2 -Norm Preservation by Unitary Time-Change	
5	Expected Zero Formula	
6	Conclusion	
\mathbf{B}^{i}	ibliography	
1	Scaling Functions and Oscillatory Processes	

- **Definition 1.** [Scaling Functions] Let \mathcal{F} denote the set of functions $\theta: \mathbb{R} \to \mathbb{R}$ such that:
 - 1. θ is continuously differentiable and $\theta'(t) > 0$ for all t
 - 2. θ is strictly increasing and bijective

Remark 2. From the inverse function theorem, any $\theta \in \mathcal{F}$ has an everywhere differentiable inverse with $(\theta^{-1})'(s) = 1/\theta'(\theta^{-1}(s))$ for all s in the range of θ .

Definition 3. [Oscillatory Process] A complex-valued, second-order stochastic process $\{X_t\}_{t\in\mathbb{R}}$ is called oscillatory if there exists

- 1. a family of functions $\{\phi_t(\omega)\}\$ with $\phi_t(\omega) = A_t(\omega) e^{i\omega t}$ where $A_t(\cdot) \in L^2(\mu)$
- 2. a complex orthogonal-increment process $Z(\omega)$ with $E |d Z(\omega)|^2 = d \mu(\omega)$

such that

$$X_t = \int_{-\infty}^{\infty} \phi_t(\omega) \ dZ(\omega) \tag{1}$$

2 Unitary Time-Change Operator and its Inverse

Definition 4. [Unitary Time-Change Operator] Let $\theta \in \mathcal{F}$. Define the operator M_{θ} : $L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$ by

$$(M_{\theta} f)(t) := \sqrt{\theta'(t)} \ f(\theta(t)) \tag{2}$$

Lemma 5. [Unitarity of M_{θ}] The operator M_{θ} is unitary; that is, for all $f \in L^2(\mathbb{R})$,

$$\int_{-\infty}^{\infty} |(M_{\theta} f)(t)|^2 dt = \int_{-\infty}^{\infty} |f(s)|^2 ds \tag{3}$$

Proof. Substitute $s = \theta(t)$, and $ds = \theta'(t) dt$, then:

$$\int_{\mathbb{R}} |(M_{\theta} f)(t)|^{2} dt = \int_{\mathbb{R}} |\sqrt{\theta'(t)} f(\theta(t))|^{2} dt
= \int_{\mathbb{R}} \theta'(t) |f(\theta(t))|^{2} dt
= \int_{\mathbb{R}} |f(s)|^{2} ds$$

Because θ is bijective and smooth, this covers all of \mathbb{R} .

Definition 6. [Inverse Operator] The inverse of M_{θ} is given by

$$(M_{\theta}^{-1}g)(s) := \frac{g(\theta^{-1}(s))}{\sqrt{\theta'(\theta^{-1}(s))}} \tag{4}$$

Lemma 7. [Verification of Inverse] For any $f \in L^2(\mathbb{R})$, $M_{\theta}^{-1} M_{\theta} f = f$ and $M_{\theta} M_{\theta}^{-1} g = g$ for all $g \in L^2(\mathbb{R})$.

Proof. For f:

$$(M_{\theta}^{-1} M_{\theta} f)(s) = \frac{M_{\theta} f(\theta^{-1}(s))}{\sqrt{\theta'(\theta^{-1}(s))}} = \frac{\sqrt{\theta'(\theta^{-1}(s))} f(\theta(\theta^{-1}(s)))}{\sqrt{\theta'(\theta^{-1}(s))}} = f(s)$$

For g:

$$(M_{\theta} M_{\theta}^{-1} g)(t) = \sqrt{\theta'(t)} \cdot \frac{g(\theta(\theta^{-1}(\theta(t))))}{\sqrt{\theta'(\theta^{-1}(\theta(t)))}} = g(\theta(t))$$

But under the substitution $s = \theta(t)$, so $g(\theta(t))$ traverses all of L^2 as t traverses \mathbb{R} , confirming mutual inverseness.

3 Oscillatory Representation of Unitary Time-Changed Stationary Processes

Let $\{S_t\}$ be a stationary Gaussian process with continuous spectral representation

$$S_t = \int_{-\infty}^{\infty} e^{i\omega t} dZ(\omega)$$
 (5)

For $\theta \in \mathcal{F}$, define the transformed process

$$X_t := \sqrt{\theta'(t)} \ S_{\theta(t)} \tag{6}$$

Theorem 8. [Oscillatory Spectral Representation] The process defined by (6) has the oscillatory representation

$$X_t = \int_{-\infty}^{\infty} \sqrt{\theta'(t)} \, e^{i\omega\theta(t)} \, dZ(\omega) \tag{7}$$

i.e., with $\phi_t(\omega) = \sqrt{\theta'(t)} e^{i\omega\theta(t)}$. Moreover, $\phi_t(\omega)$ can be written in the standard form:

$$\phi_t(\omega) = A_t(\omega) e^{i\omega t}, \qquad A_t(\omega) = \sqrt{\theta'(t)} e^{i\omega(\theta(t) - t)}$$
 (8)

Proof. Substituting (5) into (6):

$$X_t = \sqrt{\theta'(t)} S_{\theta(t)} = \sqrt{\theta'(t)} \int_{-\infty}^{\infty} e^{i\omega\theta(t)} dZ(\omega) = \int_{-\infty}^{\infty} \sqrt{\theta'(t)} e^{i\omega\theta(t)} dZ(\omega).$$

To write in oscillatory standard form:

$$\sqrt{\theta'(t)} e^{i\omega\theta(t)} = \sqrt{\theta'(t)} e^{i\omega(\theta(t)-t)} e^{i\omega t} = A_t(\omega) e^{i\omega t}$$
(9)

The square-integrability in ω follows because μ is finite and θ' is everywhere positive and finite.

Theorem 9. [Evolutionary Spectrum] For the above process, the evolutionary power spectrum at time t is

$$dF_t(\omega) = |A_t(\omega)|^2 d\mu(\omega) = \theta'(t) d\mu(\omega)$$
(10)

Proof. By definition, $dF_t(\omega) = |A_t(\omega)|^2 d\mu(\omega)$. Since

$$|A_t(\omega)|^2 = |\sqrt{\theta'(t)}|^2 \cdot |e^{i\omega(\theta(t)-t)}|^2 = \theta'(t)$$

the result follows.

4 L^2 -Norm Preservation by Unitary Time-Change

Theorem 10. [L²-Norm Preservation] The unitary time-change preserves the L²-norms of the stochastic processes: for any measurable $I \subseteq \mathbb{R}$,

$$\int_{I} \mathbb{E}[|X_{t}|^{2}] dt = \int_{\theta(I)} \mathbb{E}[|S_{s}|^{2}] ds$$
(11)

Proof. Using $X_t = \sqrt{\theta'(t)} S_{\theta(t)}$ and stationarity of S:

$$\mathbb{E}[|X_t|^2] = \theta'(t) \ \mathbb{E}[|S_{\theta(t)}|^2]$$

$$= \theta'(t) \ \mathbb{E}[|S_0|^2]$$

$$= \theta'(t) \ \sigma^2 \quad \text{(where } \sigma^2 \text{ is constant)}$$

Thus,

$$\int_{I} \mathbb{E}[|X_{t}|^{2}] dt = \sigma^{2} \int_{I} \theta'(t) dt = \sigma^{2} \int_{\theta(I)} ds = \int_{\theta(I)} \mathbb{E}[|S_{s}|^{2}] ds$$

5 Expected Zero Formula

Theorem 11. [Expected Zero Count] Let $K(\tau)$ be the covariance function of S_t (assumed twice differentiable at 0), and $\theta \in \mathcal{F}$. The expected number of real zeros of X_t on [a,b] is

$$\mathbb{E}[N_{[a,b]}] = \sqrt{-\ddot{K}(0)} \left(\theta(b) - \theta(a)\right) \tag{12}$$

Proof. By the Kac-Rice formula:

$$\mathbb{E}[N_{[a,b]}] = \int_{a}^{b} \sqrt{-\lim_{s \to t} \frac{\partial^{2}}{\partial s \, \partial t}} \text{cov}(X_{s}, X_{t}) \, dt$$
(13)

For $X_t = \sqrt{\theta'(t)} S_{\theta(t)}$,

$$cov(X_s, X_t) = \sqrt{\theta'(s) \theta'(t)} K(\theta(t) - \theta(s))$$

The relevant limit is:

$$\lim_{s \to t} \frac{\partial^2}{\partial s \, \partial t} \left[\sqrt{\theta'(s) \, \theta'(t)} \, K \left(\theta(t) - \theta(s) \right) \right] = \theta'(t)^2 K''(0)$$

since the cross derivatives act on $K(\theta(t) - \theta(s))$, and $\theta'(t)$ multiplies through. Therefore,

$$\mathbb{E}[N_{[a,b]}] = \int_{a}^{b} \sqrt{-K''(0) \ \theta'(t)^{2}} \, dt = \sqrt{-K''(0)} \int_{a}^{b} \theta'(t) \, dt$$
$$= \sqrt{-K''(0)} \left(\theta(b) - \theta(a)\right)$$

6 Conclusion

The class of processes $X_t := \sqrt{\theta'(t)} S_{\theta(t)}$ forms a subclass of oscillatory processes corresponding to measure-preserving, unitary time changes of stationary Gaussian processes. The unitary composition operator M_{θ} implements this transformation at the Hilbert space level, preserving all L^2 inner products and yields oscillatory spectral representations with evolving spectra. The zero set and energy properties of the process are determined by the geometry of θ and the spectrum of the underlying stationary process, as proved above.

Bibliography

[priestley1965] M.B. Priestley, Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. Ser. B 27 (1965), 204–237.

[cramer1967] H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes. Wiley, 1967.

[kac1943] M. Kac. On the average number of real roots of a random algebraic equation. Bulletin of the American Mathematical Society, 49(4):314–320, 1943.

[rice1945] S. O. Rice, Mathematical analysis of random noise. Bell Syst. Tech. J., 24 (1945), 46–156.