A/B testing
with rail image
difference
for cooking website

Yunjeong (Celine) Chang, DA25

Scenario

Α

E

Why we do A/B Testing?

A

- Perfect
 - We don't have clear metrics to target with this change yet
 - Other options: Customer survey /
 Interview -> More times & money

B

A/B Test Design

Purpose: Improving the product page

Variable to test: rail image of product (vertical / horizontal)

Goal: Not specified

(Alternative) Hypothesis: Vertical rail image will increase the number of page views / clicks on media / time on page / GMV.

Steps of A/B test

Specify the goal & design

Randomly assign users

Log user actions and compute metrics

Test for differences

Make a conclusion

Checking the data

Sanity check

```
    Sanity check

Checking the number of users in both group and see if sample ratio mismatch(SRM) is happened
     control perc = control users / total users
     exposed_perc = exposed_users / total_users
     chi = chisquare(observed, f exp=expected)
```

Sanity check: a basic test to quickly evaluate whether a claim or the result of a calculation can possibly be true (Wikipedia)

Basic assumption of A/B test: Random sampling, Independence, Normality

Finding the right metrics

Finding the right metrics

Primary metric

- Number of page views
- Number of add to cart
- Clicks on media
- Time on Page (sec)

Secondary metric

- GMV
- Conversion Rate

Ways to find difference:

- Basic statistical informations (count, median, mean, std, min and max)
- Two sample t-test & proportion z-test

Analyzing difference_ 1. Number of page views

Analyzing difference_ 1. Number of page views

```
control_group = data[data['Variant'] == 'A']
treatment_group = data[data['Variant'] == 'B']
mean_pv_control = control_group['Number of page views'].mean()
mean_pv_treatment = treatment_group[ Number of page views ].mean()
mean_pv_difference = mean_pv_treatment - mean_pv_control
# Perform a two-sample t-test
t_stat, p_value = ttest_ind(control_group['Number of page views'], treatment_group['Number of page views'], equal_var=False, nan_policy='omit')
alpha = 0.05
print(f"Mean of the number of page views (Control): {mean_pv_control}")
print(f"Mean of the number of page views (Treatment): {mean_pv_treatment}")
print(f"Difference in Mean of the number of page views: {mean_pv_difference}")
if p_value < alpha:
    print("Null hypothesis rejected. There is a statistically significant difference between groups.")
    print("Null hypothesis not rejected. There is no statistically significant difference between groups.")
Mean of the number of page views (Control): 4.985
Mean of the number of page views (Treatment): 5.317
Difference in Mean of the number of page views: 0.3319999999999995
Null hypothesis rejected. There is a statistically significant difference between groups.
```

Analyzing difference_ 1. Number of page views

Analyzing difference 2. Number of add to cart

Analyzing difference 2. Number of add to cart

```
control_group = data[data['Variant'] == 'A']
treatment_group = data[data['Variant'] == 'B']
# Calculate the mean of the number of add to cart for both groups
mean_ac_control = control_group['Number of add to cart'].mean()
mean_ac_treatment = treatment_group['Number of add to cart'].mean()
# Calculate the difference in mean of the number of add to cart between treatment and control groups
mean_ac_difference = mean_ac_treatment - mean_ac_control
# Perform a two-sample t-test
t_stat, p_value = ttest_ind(control_group['Number of add to cart'], treatment_group['Number of add to cart'], equal_var=False, nan_policy='omit')
alpha = 0.05
print(f"Mean of the number of add to cart (Control): {mean_ac_control}")
print(f"Mean of the number of add to cart (Treatment): {mean_ac_treatment}")
print(f"Difference in Mean of the number of add to cart: {mean_ac_difference}")
if p_value < alpha:
    print("Null hypothesis rejected. There is a statistically significant difference between groups.")
   print("Null hypothesis not rejected. There is no statistically significant difference between groups.")
Mean of the number of add to cart (Control): 1.884
Mean of the number of add to cart (Treatment): 2,469
Difference in Mean of the number of add to cart: 0.585
P-value: 3.668898697938531e-18
Null hypothesis rejected. There is a statistically significant difference between groups.
```

Analyzing difference_ 2. Number of add to cart

Analyzing difference_ 3. Clicks on media

Analyzing difference_ 3. Clicks on media

```
control_group = data[data['Variant'] == 'A']
    treatment_group = data[data['Variant'] == 'B']
    # Calculate the mean of clicks on media for both groups
    mean_clicks_control = control_group['Clicks on media'].mean()
    mean_clicks_treatment = treatment_group['Clicks on media'].mean()
    mean_clicks_difference = mean_clicks_treatment - mean_clicks_control
    t_stat, p_value = ttest_ind(control_group['Clicks on media'], treatment_group['Clicks on media'], equal_var=False, nan_policy='omit')
    alpha = 0.05
    print(f"Mean of clicks on media (Control): {mean_clicks_control}")
    print(f"Mean of clicks on media (Treatment): {mean_clicks_treatment}")
    print(f"Difference in Mean of clicks on media: {mean_clicks_difference}")
    print(f"P-value: {p_value}")
    if p_value < alpha:
       print("Null hypothesis rejected. There is a statistically significant difference between groups.")
Mean of clicks on media (Control): 1.495
    Mean of clicks on media (Treatment): 1.324
    Null hypothesis rejected. There is a statistically significant difference between groups.
```

Analyzing difference_ 3. Clicks on media

Analyzing difference_ 4. Time on Page (sec)

Analyzing difference_ 4. Time on Page (sec)

```
control_group = data[data['Variant'] == 'A']
    treatment_group = data[data['Variant'] == 'B']
    mean_tp_control = control_group['Time on Page (sec)'].mean()
    mean_tp_treatment = treatment_group['Time on Page (sec)'].mean()
    mean_tp_difference = mean_tp_treatment - mean_tp_control
    # Perform a two-sample t-test
    t_stat, p_value = ttest_ind(control_group['Time on Page (sec)'], treatment_group['Time on Page (sec)'], equal_var=False, nan_policy='omit')
    alpha = 0.05
    # Print results
    print(f"Mean of the time on page (Control): {mean_tp_control}")
    print(f"Mean of the time on page (Treatment): {mean_tp_treatment}")
    print(f"Difference in Mean of the time on page: {mean_tp_difference}")
    if p_value < alpha:
        print("Null hypothesis rejected. There is a statistically significant difference between groups.")
        print("Null hypothesis not rejected. There is no statistically significant difference between groups.")
🤝 Mean of the time on page (Control): 20.543
    Mean of the time on page (Treatment): 20.047
    Difference in Mean of the time on page: -0.49599999999999866
    P-value: 0.5786630478332149
    Null hypothesis not rejected. There is no statistically significant difference between groups.
```

Analyzing difference_ 4. Time on Page (sec)

Analyzing difference_ 5. GMV (in \$)

Analyzing difference_ 5. GMV (in \$)

```
# Assuming 'Variant' column contains control and treatment groups
    control_group = data[data['Variant'] == 'A']
    treatment_group = data[data['Variant'] == 'B']
    # Calculate the mean GMV for both groups
    mean_gmv_control = control_group['GMV (in $)'].mean()
    mean_gmv_treatment = treatment_group['GMV (in $)'].mean()
    # Calculate the difference in mean GMV between treatment and control groups
    mean_gmv_difference = mean_gmv_treatment - mean_gmv_control
    t_stat, p_value = ttest_ind(control_group['GMV (in $)'], treatment_group['GMV (ih $)'], equal_var=False, nan_policy='omit')
    alpha = 0.05
    print(f"Mean GMV (Control): {mean_gmv_control}")
    print(f"Mean GMV (Treatment): {mean_gmv_treatment}")
    print(f"Difference in Mean GMV: {mean_gmv_difference}")
    print(f"P-value: {p_value}")
    if p_value < alpha:
        print("Null hypothesis rejected. There is a statistically significant difference between groups,")
→ Mean GMV (Control): 7.68998<u>9999999999</u>
    Mean GMV (Treatment): 9.28953
    Difference in Mean GMV: 1.59954<u>0000000000</u>
```

Analyzing difference_ 5. GMV (in \$)

Analyzing difference_ 6. Conversion Rate

6. Conversion Rate control_group = data[data['Variant'] == 'A'] treatment_group = data[data['Variant'] == 'B'] def conversion_rate(data): return data['Number of add to cart'].sum() / data['Number of page views'].sum() conversion_rate_control = conversion_rate(control_group) conversion_rate_treatment = conversion_rate(treatment_group) t_stat, p_value = ttest_ind(control_group['Number of add to cart'], treatment_group['Number of add to cart']) alpha = 0.05print(f"Conversion Rate (Control): {conversion_rate_control}") if p_value < alpha: print("Null hypothesis rejected. There is a statistically significant difference between groups.") print("Null hypothesis not rejected. There is no statistically significant difference between groups.") Conversion Rate (Control): 0.3779338014042126 Conversion Rate (Treatment): 0.4643596012789167 Null hypothesis rejected. There is a statistically significant difference between groups.

Analyzing difference_ 6. Conversion Rate

```
control_group = data[data['Variant'] == 'A']
treatment_group = data[data['Variant'] == 'B']
# Define the conversion rate
def conversion_rate(data):
    return data['GMV (in $)'].sum() / data['Number of page views'].sum()
conversion_rate_control = conversion_rate(control_group)
conversion_rate_treatment = conversion_rate(treatment_group)
# Perform a two-sample t-test
t_stat, p_value = ttest_ind(control_group['GMV (in $)'], treatment_group['GMV (in $)'])
alpha = 0.05
# Print results
print(f"Conversion Rate (Control): {conversion_rate_control}")
print(f"Conversion Rate (Treatment): {conversion_rate_treatment}")
print(f"T-statistic: {t_stat}")
print(f"P-value: {p_value}")
if p_value < alpha:
    print("Null hypothesis rejected. There is a statistically significant difference between groups.")
   print("Null hypothesis not rejected. There is no statistically significant difference between groups.")
Conversion Rate (Control): 1.5426258776328985
Conversion Rate (Treatment): 1.7471374835433513
Null hypothesis not rejected. There is no statistically significant difference between groups.
```

Conclusion

	Number of page views	Number of add to cart	Clicks on media	Time on Page	GMV	Conversion Rate	
						Add to cart / Page views	GMV / Page view
p-value	0.0015	< 0.0001	0.0015	0.5787	0.1993	< 0.0001	0.1993
Significant difference	Null hypothesis rejected	Null hypothesis rejected	Null hypothesis rejected	Null hypothesis is not rejected	Null hypothesis is not rejected	Null hypothesis rejected	Null hypothesis is not rejected

Conclusion

Full codes

https://github.com/zlal12/A-B-Testing_coming.soon/tree/main_

Thank you for listening **