Math 297 Discussion 5 Notes

Annie Xu

Feburary 5, 2019

Exercises

- 1. **Topological closure.** Suppose (X, \mathcal{T}) is a topological space an $A \subset X$. The topological closure of A, denoted \bar{A} , is defined to be the intersection of all closed subsets of X that contains A.
- (a) Show that \bar{A} is the smallest closed subset of X that contains A.
- $A \subset \bar{A}$ is trivial. To show \bar{A} is closed, use De Morgan's law to show its complement is open. To show it is the smallest such set, suppose $C \subset X$ is closed with $A \subset C$, and prove that $\bar{A} \subset C$.
- (b) Show that if $A \subset B \subset X$, then $\bar{A} \subset \bar{B}$.
- $A \subset \bar{B}$, \bar{B} is closed $\Longrightarrow \bar{A} \subset \bar{B}$, by (a).
- (c) Show that $x \in \bar{A}$ if and only if for all $U \in \mathcal{T}$ that contain x we have $U \cap A \neq \emptyset$.
- 2. The interior of a set. Let (X, \mathcal{T}) be a topological space, and let $A \subset X$. The interior of A, denoted $\int (A)$, is defined to be the union of all open sets (open in X) contained in A. Show that $\int (A)$ is the largest open subset of X contained in A.
- (a) Consider \mathbb{R} with the Euclidean topology. What is the topological closure of A = (0, 1]? What is its interior? Closure: [0, 1]; interior: (0, 1). Can you prove it?
- 3. Finite complement topology. Consider the collection $\mathcal{T} := \{U \subset \mathbb{R} | (\mathbb{R} \setminus U) \text{ is finite} \} \cup \{\emptyset\}$. Show this is a topology on \mathbb{R} . Now consider the sequence $n \mapsto 1/n$ in this topological space. Does this sequence converge? If so, what does it converge to?

This sequence converges to every point in \mathbb{R} .

4. Let X be a Hausdorff space and $x_n \in X$ a convergent sequence. Then the limit $\lim_{n\to\infty} x_n$ is unique.

Proof. Suppose that there are two (or more) limits, say a and b. Since X is Hausdorff, we can find disjoint open sets U_a and U_b with $a \in U_a$ and $b \in U_b$. Let $n_a \in \mathbb{N}$ be such that $x_n \in U_a$ for all $n \geq n_a$ and $n_b \in \mathbb{N}$ have the property that $x_n \in U_b$ for all $n \geq n_b$. Then for all $n \geq \max\{n_a, n_b\}$ we have that $x_n \in U_a \cap U_b$ which is a contradiction since $U_a \cap U_b = \emptyset$.

The converse is not generally true.

Non-example Double origin real line

We take two distinct symbols $0_1, 0_2 \notin \mathbb{R}$, and let $X = (\mathbb{R} \setminus \{0\}) \cup \{0_1, 0_2\}$. As a basis of open sets, we take the intervals $(a, b) \subset \mathbb{R} \setminus \{0\}$, and the sets of the form $(-\epsilon, 0) \cup \{0_k\} \cup (0, \epsilon)$ for $\epsilon > 0$ and k = 1, 2. The open sets are then unions of such sets. The space is not Hausdorff, because every neighbourhood of 0_1 intersects every neighbourhood of 0_2 - the intersection contains a set of the form $(-\delta, 0) \cup (0, \delta)$ for a $\delta > 0$, and the sequence $(2^{-n})_{n \in \mathbb{N}}$ for example converges to both 0_1 and 0_2 . The line with the doubled origin serves as an example of a space that is locally homeomorphic to \mathbb{R} - every point has an open neighbourhood that is homeomorphic to \mathbb{R} - but not Hausdorff.

5. If we identify $Mat_{n\times n}\mathbb{R}$ with \mathbb{R}^{n^2} $(n\geq 2)$, which of the following sets are open? Which are closed? $GL_n\mathbb{R}$, O_n , the set of matrices with rank 1.

 $GL_n\mathbb{R}$ is open but not closed; O_n is closed but not open; the set of matrices with rank 1 is neither open nor close. Need continuous functions.

- 6. Suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces. Suppose that $f: X \to Y$ is continuous.
- (a) Suppose that A is a subset of X. Show that $\operatorname{res}_A f$, the restriction of f to A, is continuous. (The restriction of f to A is the function from A to Y that sends $a \in A$ to f(a).)
- (b) Note that, with respect to the subspace topology on \mathbb{Q} , the function $g:\mathbb{Q}\to\mathbb{Q}$ that maps q to q^2-2 is continuous.
- (c) Show that the function $f: X \to f(X)$ is continuous.

Note: This is a good exercise to practice familiarity with the definition.