

Universidade Tecnológica Federal do Paraná - UTFPR

Centro de Pesquisa em Reologia e Fluidos Não Newtonianos - CERNN

ENGENHARIA DE COMPUTAÇÃO

Otimização da implementação sequencial do LBM

Aluno:

Waine B. de Oliveira Junior

RELATÓRIO

Orientador: Dr. Admilson Teixeira Franco Coorientador: MSc. Alan Lugarini de Souza

27 de Março de 2019

Conteúdo

1	Introdução	2
2	Resultados 2.1 Testes 2.2 Análise	
3	Conclusão	6

1 Introdução

Tendo em vista o alto custo computacional para a simulações utilizando LBM (*Lattice Boltzmann Method*), é comum que simulações demorem horas ou até dias para terminarem. Logo, é de grande interesse a otimização computacional do código, visando diminuir o tempo de simulação e tornar viável a utilização de malhas mais refinadas.

O objetivo desse relatório é quantificar, principalmente quantitativamente, o impacto de alterações na implementação do LBM D2Q9 no número de MLUPS (Million Lattice updates per second).

2 Resultados

A otimização do LBM está relacionada tanto ao processamento, como evitar redundância de contas e "abrir" loops (loop unrolling), quanto à memória, melhorando a localidade espacial e temporal do programa. Tomando isso como base, foram definidos alguns pontos de otimização para alteração, visando quantificar o quanto cada modificação impacta no número de MLUPS do código. As mudanças feitas foram:

- Propagação e colisão em uma única função ou em funções separadas
- Função de equilíbrio genérica ou específica
- Cálculo de macroscópicos explícita ou em loop
- População zero junta ou separada das outras
- Condições de contorno específicas ou genéricas

2.1 Testes

Inicialmente foram feitos testes para referência, com quatro números de nós distintos. As condições utilizadas são apresentadas na tabela 1.

Col. e prop.	Função de eq.	Macr.	Pop. 0	Cond. de contorno
Separadas	Específica	Explícita	Separada	Específica

Tabela 1: Condições dos testes de referência

Os números de nós e o MLUPS para cada são apresentados na tabela 2.

Número de nós	32	128	512	2048
MLUPS	16,84	17,55	16,64	16,00

Tabela 2: Resultados dos testes de referência

A partir de então, foram feitos testes mudando uma condição com relação a referência e mantendo as outras constantes. Para tal foram utilizados apenas dois diferentes números de nós, visando observar o impacto em malhas pequenas, quando as condições de contorno são mais influentes no MLUPS e menos memória é utilizada, e em grandes malhas, nas quais ocorre o oposto.

Os valores de MLUPS obtidos partir da junção da colisão e propagação em uma função são apresentados na tabela 3.

Número de nós	32	512
MLUPS	20,78	24,25

Tabela 3: Resultados dos testes com propagação e colisão em uma única função

Os valores de MLUPS obtidos partir da utilização de uma função de equilíbrio genérica são apresentados na tabela 4.

Número de nós	32	512
MLUPS	10,27	10,61

Tabela 4: Resultados dos testes com função de equilíbrio genérica

Os valores de MLUPS obtidos partir do cálculo de macroscópicos em um *loop* são apresentados na tabela 7.

Número de nós	32	512
MLUPS	16,95	16,90

Tabela 5: Resultados dos testes com cálculo de macroscópicos em loop

Os valores de MLUPS obtidos partir da junção da população zero com as demais populações são apresentados na tabela 7.

Número de nós	32	512
MLUPS	16,70	16,20

Tabela 6: Resultados dos testes com população zero em conjunto com as demais populações

Os valores de MLUPS obtidos partir da propagação genérica são apresentados na tabela 7.

Número de nós	32	512
MLUPS	15,70	16,53

Tabela 7: Resultados dos testes com propagação genérica

Os valores de MLUPS obtidos partir da generalização das condições de contorno são apresentados na tabela 8.

Número de nós	32	512
MLUPS	16,21	16,54

Tabela 8: Resultados dos testes com condições de contorno genéricas

A figura 1 apresenta o gráfico com o valor de MLUPS em função do número de nós de cada teste.

Figura 1: MLUPS em função do número de nós de cada teste

2.2 Análise

Os testes de referência não demonstraram grande variação do MLUPS em função do número de nós, o que permite afirmar que para tais condições memória e condições de contorno não têm grande impacto.

O mesmo não ocorreu no teste com a junção da colisão e propagação, em que a diferença foi de cerca de 4 MLUPS a mais para a malha grande com relação à pequena. Isso se deve provavelmente a questão de *pipeline* na propagação, já que essa sofre mais "casos especiais" (em que a propagação não é feita) em malhas pequenas e também às condições de contorno que têm relativamente mais peso. Também o número de MLUPS apresentou um ganho considerável com relação a referência, de 23,40% para 32 nós e 45,73% para 512 nós, evidenciando o grande impacto que a combinação da colisão e propagação em uma função tem no desempenho do LBM e como percorrer a malha toma um tempo considerável, já que essa é o único ponto que a mudança afeta.

A utilização de uma função genérica para função de equilíbrio apresentou um grande decréscimo no número de MLUPS, 39,01% para 32 nós e 36,24% para 512 nós. Isso permite concluir que os cálculos feitos durante a colisão possuem grande

impacto no desempenho, logo esses devem ser um foco durante a otimização do código.

O cálculo dos macroscópicos em um loop não apresentou influência considerável no valor de MLUPS, logo podem ser mantidos genéricos para o velocity set D2Q9 (não é possível afirmar que o mesmo ocorreria para esquemas com maior número de velocidades).

A junção da população zero com as demais, que diminui a localidade espacial para a propagação, não apresentou grande variação no desempenho com relação à referência. Logo, se cômodo, não é necessário fazer tal separação. A propagação genérica também não demonstrou grande impacto no número de MLUPS, portanto é possível deixá-la genérica, evitando assim erros de implementação.

Por fim, a generalização das condições de contorno não demonstrou impacto considerável no número de MLUPS, então é possível mantê-la genérica, evitando assim erros de implementação.

3 Conclusão

A quantificação do impacto de alterações no código em seu desempenho foi feita com sucesso, permitindo assim que seja possível tomar um norte com relação ao que deve ser valorizado e o que é secundário na otimização sequencial do LBM.