Université Mohamed Seddik Ben Yahia - Jijel -

Faculté des Sciences Exactes et Informatique

Année Universitaire 2022/2023

Département d'Informatique

Série 1 (Espaces vectoriels)

Exercice 1:

Soit $E=\mathbb{R}\times\mathbb{R}_+^*$ munie des lois (\oplus) et (.) définies par:

$$(x,y),(x',y') \in E:(x,y) \oplus (x',y') = (x+x',yy')$$

$$\lambda \in \mathbb{R}, (x,y) \in E: \lambda. (x,y) = (\lambda x, y^{\lambda})$$

Montrer que $(E, \oplus, .)$ est un \mathbb{R} -espace vectoriel.

Exercice 2 : Soit $E=\mathbb{R}^2$ munie des lois (\oplus) et (.) définies par:

$$(x,y), (x',y') \in E: (x,y) \oplus (x',y') = (x+x',y+y')$$

 $\lambda \in \mathbb{R}, (x,y) \in E: \lambda. (x,y) = (\lambda x, \frac{y}{\lambda}), \text{ si } \lambda \neq 0 \text{ et } 0. (x,y) = (0,0).$

Comparer $(\lambda + \mu)$. (x, y) et λ . $(x, y) + \mu$. (x, y) et déduire que $(E, \oplus, .)$ n'est pas un \mathbb{R} -espace vectoriel.

Exercice 3: On a appelle **polynôme** d'indéterminé X sur le corps \mathbb{R} , toute expression P(X) donnée par : $P(X) = \sum_{i=0}^{i=n} a_i X^i$ tel que les $a_i \in \mathbb{R}$ dits les **coefficients** de P(X) avec $a_n \neq 0$ appelé **coefficient dominant** et n le **degré** de P(X) noté d°(P(X)). Si tous les coefficients de P(X) sont nuls, le polynôme est appelé **polynôme nul** noté O(X) ou O(X) et son degré par convention est O(X) et son de

On note E= $\mathbb{R}[X]$ ={ $P(X)=\sum_{i=0}^{i=n}a_iX^i / a_i \in \mathbb{R}$, $n \in \mathbb{N}$ }, qu'on munie des lois (+) et (.) :

$$P(X) = \sum_{i=0}^{i=n} a_i X^i, \ Q(X) = \sum_{i=0}^{i=m} b_i X^i \ \in \ \mathbb{R}[X]: \ P(X) + Q(X) = \sum_{i=0}^{i=r} (a_i + b_i) \ X^i, \ r \le \max(n,m)$$

$$\lambda \in \mathbb{R}, \, \mathrm{P}(\mathrm{X}) = \sum_{i=0}^{i=n} a_i \mathrm{X}^i \in \mathbb{R}[\mathrm{X}] \colon \ \lambda. \, \mathrm{P}(\mathrm{X}) = \sum_{i=0}^{i=n} \lambda \, a_i \mathrm{X}^i.$$

- 1- Montrer que ($\mathbb{R}[X]$, +, .) est un \mathbb{R} -espace vectoriel.
- 2- On note $\mathbb{R}_2[X] = \{ P(X) \in \mathbb{R}[X] : d^{\circ}(P(X)) \le 2 \} = \{ P(X) \in \mathbb{R}[X] : P(X) = a_0 + a_1X + a_2X^2 \}$ Montrer que $\mathbb{R}_2[X]$ est un sous espace vectoriel de $\mathbb{R}[X]$.

Exercice 4: Vérifier si F est un sous espaces vectoriel de E.

- 1- $F=\{(x, y, z) \in \mathbb{R}^3 : x-y+3z=0\}, E=\mathbb{R}^3.$
- 2- $F=\{(x, y, z, t) \in \mathbb{R}^4 : x-y+3t+1=0\}, E=\mathbb{R}^4.$
- 3- $F=\{(x,y,z)\in\mathbb{R}^3: x-yz=0\}, E=\mathbb{R}^3.$
- 4- $F={P(X) \in \mathbb{R}_2[X]: p(-X)=P(X)}, E=\mathbb{R}_2[X].$

Exercice 5:

- 1- Vérifier si le vecteur v=(1,2,3) est une combinaison linéaire des vecteurs : $v_1=(1,-1,1)$, $v_2=(1,1,1)$. Même question pour w=(-1,3,-1).
- 2- Etudier si la famille A des vecteurs du \mathbb{R} -e.v E est libre ou non ? A={ v_1 =1,2,3), v_2 =(2,3,1). v_3 =(3,1,2)}, E= \mathbb{R}^3 . A={ P_1 =1+X+X², P_2 =1-X+2X², P_3 =-1+3X-3X²}, E= \mathbb{R}^3 .

Responsable du module : M. Chelgham