

DEPARTMENT OF OCEAN ENGINEERING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

MEASUREMENT OF FORCES AND MOMENTS ON, AND VELOCITY ABOUT A BODY OF REVOLUTION WITH AN ATTACHED FIN AT ANGLES OF ATTACK

Jeffrey S. Reed

XIII-A

DISTRIBUTION STATEMENT A Approved for public releases

Distribution Unlimited

JUNE, 1987

AD-A187 796

87 11 16 0 77

MEASUREMENT OF FORCES AND MOMENTS ON, AND VELOCITY ABOUT A BODY OF REVOLUTION WITH AN ATTACHED FIN AT ANGLES OF ATTACK

ЬУ

Jeffrey S. Reed

SELECTE DEC 0 2 1987

B.S., United States Naval Academy (1980)

SUBMITTED TO THE DEPARTMENT OF OCEAN ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

NAVAL ENGINEER

and

MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1987

© Massachusetts Institute of Technology 1987

NOO 228-85-6-3262

The author hereby grants to the United States Government and its agencies permission to reproduce and to distribute copies of this thesis document in whole or in part.

Signature of Au	thor: My !. Departm	ent'of Ocean E	Engineering une 1, 1987		
	1	516.	:	islon For	
Certified by:	full	<u> - 10 - 10 - 1</u>		GRAAI	
	() Pr	ofessor Justin Thesis	n E. Kerwin Supervisor	becauc	
Assessment by	12/1)	fleation	
Accepted by:	Tr. 4 mg/as	A. Douglas	Carmichael	12-12-1 on !	
Chairman,	Ocean Engineerin		Committee	lbutlon/	odes
				Avail and/	OF

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

MEASUREMENT OF FORCES AND MOMENTS ON, AND VELOCITY ABOUT A BODY OF REVOLUTION WITH AN ATTACHED FIN AT ANGLES OF ATTACK

by Jeffrey S. Reed

Submitted to the Department of Ocean Engineering on May 8, 1987 in partial fulfillment of the requirements for the degrees of Naval Engineer and Master of Science in Naval Architecture and Marine Engineering.

ABSTRACT

The body of revolution had a length to diameter ratio of 9.5 and was tested with a square tipped and a round tipped fin. A two component strain gage balance was used to measure the force and moment on the fins. Laser doppler velocimetry techniques were used to measure velocity contours about the body and fin.

Strain gage data was plotted for various angles of attack and Reynolds numbers ranging up to 5 million based on the chord length of the fin. These curves were combined to obtain lift versus angle of attack data for the two fins. From the laser velocity data, velocity plots were generated to verify location of vorticies. Numerical integration of the laser velocity data yielded circulation values for the velocity contours. Circulation, forces and theory are compared.

Coefficient of lift versus angle of attack for the two fins, circulation values at various radii from the body, circulation values at various spans on the fin, and comparisons between the methods are presented.

Thesis Supervisor: Justin E. Kerwin

Title: Professor of Naval Architector

ACKNOWLEDGMENTS

The author wishes to thank Professor Kerwin for his guidance throughout this project, Lori Fretz for her many hours of collecting data, and S. Dean Lewis for his invaluable assistance, especially during the design, construction, and installation of the model.

Many thanks go to my two contacts from Electric Boat, the project's sponsor: Jerry Fridsma and Chuck Henry. They provided moral, financial, and technical support.

A special thanks goes to my wife, Debbi for her tireless support, patience and understanding throughout the project. The last thanks, because it should be, goes to the other two Amigos who helped me keep a sense of humor and perspective throughout the project.

Table of Contents

Abstract	2
Acknowledgments	3
Table of Contents	4
List of Figures	5
1. INTRODUCTION	6
2. EXPERIMENTAL APPARATUS	8
3. DATA ACQUISITION	0
4. DATA ANALYSIS	3
5. RESULTS	5
6. DISCUSSION	20
References	22
Figures	23
Appendix 1	43
Appendix 2	44
Appendix 3	18
Appendix 4	50
Appendix 5	58
Appendix 6	59
Appendix 7	50
Appendix 8	72
Appendix 9	78
Appendix 10	34

A SON MANUAL MESSAGRAM MES

LIST OF FIGURES

- Figure 1. Flow Visualization Model.
- Figure 2. Balance Installation.
- Figure 3. Side View Rotation=0°.
- Figure 4. Side View Rotation=90°.
- Figure 5. Body Velocity Contours.
- Figure 6. Fin Velocity Contour.
- Figure 7. 4 Degrees Yaw & Square Tipped Fin.
- Figure 8. 9 Degrees Yaw & Square Tipped Fin.
- Figure 9. 15 Degrees Yaw & Square Tipped Fin.
- Figure 10. 4 Degrees Yaw & Round Tipped Fin.
- Figure 11. 9 Degrees Yaw & Round Tipped Fin.
- Figure 12. 15 Degrees Yaw & Round Tipped Fin.
- Figure 13. Round Tipped Fin.
- Figure 14. Lift vs Angle of Yaw (Round Tip).
- Figure 15. Tangential Velocity vs Body Rotation (0.35")
- Figure 16. Tangential Velocity vs Body Rotation (1.00*)
- Figure 17. Tangential Velocity vs Body Rotation (2.20")
- Figure 18. Tangential Velocity vs Body Rotation.
- Figure 19. Tangential Velocity vs Body Rotation.
- Figure 20. Vortex Locations.

CHAPTER 1

INTRODUCTION

Several types of ocean vehicles that operate fully submerged can be modelled as a body of revolution with an attached fin. Placing the model at an angle of attack to a free stream simulates the flow about the ocean vehicle in a turn. At an angle to the free stream, an unappended body of revolution will develop two symmetric body vortices on the lee side, similar to those developed by a cylinder in a crossflow. When a fin is appended to the body, a third vortex, shed from the tip of the fin, is introduced into the flow. Figure 1 depicts the vortex pattern about the appended model. This third vortex destroys the symmetry of the unappended body, and greatly affects the maneuvering characteristics of the vehicle. The motions of undersea vehicles are generally controlled by lifting surfaces placed near the stern. generated by these surfaces are greatly affected by their incident flow. To accurately predict the maneuvers of a submerged vehicle, the strength of the vortex system must be known.

Direct measurements yielded the strength of the forces and moments on the fin. Integrating the velocity data taken on various contours gave circulation values. The circulation values provided the forces on the body

using the Kutta-Joukowski thereom. These forces must be counter-acted by the aforementioned control surfaces. This data will aid in improving and validating computer models which predict flow patterns about a submerged vehicle as it maneuvers and aid the designers of underseavehicles.

CHAPTER 2 EXPERIMENTAL APPARATUS

This experiment was conducted at the Massachusetts Institute of Technology using the Marine Hydrodynamics Laboratory's variable pressure water tunnel and two component Laser Doppler Velocimetry (LDV). A complete description of the test facility LDV techniques can be found in Min, Kobayashi, Sayre, or Coney [1-4].

The LDV system is basically the same as described by Kaplan [5] except the laser and optics were arranged for two components. The 488.0 nano-meter wavelength blue beam measured the horizontal component of velocity. The 514.5 nano-meter wavelength green beam was used to measure the vertical component of velocity. Due to the increased complexity of the optics, the laser could no longer be rotated. The laser and optics were mounted on a computer controlled traverse table system.

To obtain the forces and moments on the fin, an instrumented balance was installed in the model. The lower flange of the balance was counter-sunk into the body. The hollowed fins were bolted to the top flange of the balance. The balance's strain gage wires were run out the stern of the body, through the sting and out cableways which were bored in the support device to the signal conditioner. The sting allowed four discrete

angles of yaw: 4 degrees, 9 degrees, 14 degrees, and 20 degrees. Hereafter, the 14 degree angle will be referred to as 15 degrees to be consistent with Kaplan [5]. The support device allows laser velocity measurements to be taken on contours which go completely around the model. The support device is similar to that described by Kaplan [5] except the diameter of the sting was increased from 0.688 inches to 1.25 inches. This increase was to reduce the vibrations experienced by Kaplan at high test speeds. Vibrations were also reduced by decreasing the mass of the body by boring a 1" diameter cableway. The benefits of the stiffer model and sting were threefold: 1) more reliable sampling close to the body, 2) no stalling of the fin at reasonable Reynolds Numbers and angles of attack, and 3) no change in angle of attack due to water velocity. Figure 2 shows a shear plan of the balance beam installation.

HOLDS HOLDS HENDER SERVICE OF SERVICE BOX SERVICES SERVIC

The sting mounted model was a body of revolution with a length to diameter ratio of 9.5. The maximum diameter of the model was 2.695 inches. Both fins were NACA 0022 sections with a chord length of 2.053 inches and a planform area of 3.42 square inches. The leading edge was 6.092 inches from the bow. The round tipped fin had a maximum span of 1.719 inches. The square tipped fin had a span of 1.666 inches. Appendix 1 contains a detailed description of the model and fins.

CHAPTER 3 DATA ACQUISITION

The force, moments and free stream velocity were measured using sampling routines contained in the program in Appendix 2. The data was sampled over a period of 30 seconds. The forces and moments were measured on the fin over a range of Reynolds numbers from 1.0 x 10⁴ to 4.5 x 10⁵ based on the fin's chord length. Data runs were made both increasing and decreasing water velocity. Data runs were made at three angles of yaw: 4 degrees, 9 degrees, and 15 degrees. Data runs were not made at 20 degrees of yaw because flow visualization revealed the fin was stalled at all Reynolds numbers at this angle of yaw. All data runs were done with both the square tipped fin and the round tipped fin.

To perform the body velocity measurement contours, two coordinate systems and a body rotation system, as defined in Figures 3 and 4, were used. The model coordinate system (X_M,Y_M,Z_M) was fixed with the rotating model, while the laser coordinate system (X_L,Y_L,Z_L) was fixed in space. The origin for both coordinate systems was the point about which the model rotated in the tunnel. This origin provided a convenient reference for conducting coordinate transformations. The model rotation was defined to be zero when Y_M and Z_L coincided.

The origin was established using the focal point of the laser, the computer driven digital traverse, and the known geometry of the model. A procedure similar to Kaplan's [5], except for the different laser coordinates, The laser coordinates and fluid velocity of was used. each point on the contour were calculated using a coordinate transformation and a sampling routine. The program, contained in Appendix 3, required the radius of the contour, the degree increment of rotation, and the distance from the bow to be input. The program would then compute the laser coordinates. The traverse was positioned using an IBM PC/XT. The vertical component of velocity and freestream velocity were sampled averaged over 20 seconds. The vertical component of velocity gave the tangential component of velocity on the circular body contour. The program then recorded body coordinates, body notation, laser velocity, freestream velocity, and velocity ratio. This procedure repeated for each body velocity contour. Body velocity contours were taken 0.35 inches, 1.0 inches, and 2.2 inches from the body. All body velocity contours were taken 12.92 inches from the bow; the same X_M location as both coordinate systems' origins. This station location was chosen to reduce any errors which would be caused by mode 1 installation misalignments and body rotation eccentricities.

The fin velocity contours were taken using two coordinate systems: a fin coordinate system (X_{E},Y_{E},Z_{E}) , and a laser coordinate system (X_{E},Y_{E},Z_{E}) . Both systems were fixed in space, since the body was at a constant 90. degree rotation. The origin of both systems was at the leading edge of the tip of the fin. Rectangular contours as shown in Figure 6 were taken with the following insets from the tip: 0.2 inches, 0.45 inches, 0.7 inches, and 1.2 inches. The programs for each of the legs are in Appendix 4.

All velocity contours were taken with a water velocity of approximately 25 feet/second. This velocity equates to a Reynolds number of 5.5 × 106 based on the length of the model, or a Reynolds number of 4.4 × 105 based on the chord length of the fin. To insure that a turbulent boundary layer was present, a trip was placed around the nose. Relationships presented by Tani [6], were used to determine the location and character of the trip necessary to cause turbulent flow at the trip. A strip of electric tape 0.125 inches wide and 0.007 inches thick was placed 0.77 inches aft of the bow. A trip was not placed on the fin, since flow visualization revealed flow would stay attached through a broader range of Reynolds numbers without the trip.

CHAPTER 4

DATA ANALYSIS

When force, moment, and velocity measurements were completed. the fin lift coefficients non-dimensionalized on freestream velocity and planform area. The moment coefficient non-dimensionalized on an additional chord length and had an origin 0.19 inches above the intersection of the fin and the body. The force and moment data were used to determine the center of pressure on the fin. The force data was plotted on a Tektronix 4662 plotter. The fortran code for the general purpose plotting routine is in Appendix 5.

The body velocity contours were plotted on the same plotter using the source code in Appendix 6. Simpson's rule was used to integrate the body velocity contours to get circulation. The circulation was non-dimensionalized on the body's maximum diameter and freestream velocity.

The fin velocity legs, at each inset, were integrated using trapezoidal integration. The values of the four legs at each inset were added to get the circulation value for the contour. To compare circulation measurements to the force and moment measurements, a circulation value of 0.0 was assigned to the tip; linear extrapolation was used to get a

circulation value at the root. This extrapolated circulation distribution was integrated using trapezoidal integration. Once again the circulation was non-dimensionalized using the body's maximum diameter and the freestream velocity.

SAMON SPECIAL PROPERTY OF SPECIAL PROPERTY OF

CHAPTER 5

RESULTS

The force, moment, and freestream velocity data are contained in Appendix 7. The three angles of yaw were 4 degrees, 9 degrees, and 15 degrees. visualization revealed the fin was stalled at 20 degrees of yaw, no measurements were taken at 20 degrees. Comparable runs were made for both the square tipped and round tipped fin. Figures 7-9 contain the plots of lift coefficient versus Reynolds number for the square tipped fin at the three angles of attack. Figures 10-12 contain the analogous plots for the round tipped fin. The square tipped fin's lift coefficient has an apparent Reynolds number dependency throughout the range tested. Figure 7 shows the hysteresis of stall in the loop between Reynolds numbers of 0.5 \times 105 and 2.0 \times 105. The round tipped fin does not have Reynolds number dependency above a Reynolds number of 2.0 \times 10^{5} . This trend was true for all three angles of yaw. The force and moment data were used to calculate the center of pressure for the round tipped fin for the three angles of yaw. The center of pressure results were non-dimensionalized on the chord length of the fin and are presented in Table 1. center of pressure was not calculated for the square its lift Reynolds tipped fin because of

dependency. The data for the round tipped fin was combined in Figures 13 and 14 to yield lift versus angle of attack data. The slope of the curve in Figure 14 is 0.043 over the linear range.

The body velocity contours were taken 12.92 inches aft of the bow. This station coincides with the origins of the laser and model coordinate systems. This station choice minimized any errors due to body positioning or eccentricity of body rotation. The round tipped fin was used for all body velocity contours, since it's coefficient of lift was independent of Reynolds number at the test speed of 25 feet/second. Appendix 8 contains the body velocity contour data. The contours were taken at the following stand-offs from the body: 0.35 inches, 1.0 inches, and 2.2 inches.

The tangential velocities are plotted against body rotation in Figures 15-17. A rotation of 0, degrees is on the port beam; a rotation of 90, degrees is top dead center, or aft of the fin. Figure 15 shows the strong keel vortex described by Kaplan [5]. This vortex causes a high velocity region between 270, and 330, degrees of body rotation. Figure 16 shows the velocity peak due to the fin's tip vortex at a rotation of 70, degrees. This plot agrees with flow visualizations which revealed that this vortex was convected downstream and slightly towards

The influence of the keel considerably weaker as the contours move farther away from the body, as shown in Figure 19. The fin's tip vortex was still evident in Figure 17. However the sign of the velocity had changed, which indicated the contour had moved to the opposite side of the vortex, the two contours are combined in Figure 18. This sign change provides a quick and easy method of locating vortices. The weaker deck vortex described by Kaplan [5] is not clearly evident in any of the body velocity contours. . However, a close comparison with Kaplan's [5] vector plots, revealed that a very weak deck vortex may have been at a rotation of 70. degrees in Figure 15. Figure 20 shows the location of the three vortices based on both the body velocity contours and the vector plots. The cross indicates the center of the vortices and the arrow their direction. The strength of the deck vortex was much less than the keel and tip vontices.

The tangential velocity was integrated using Simpson's rule to get circulation. The values are presented in Table 1. The contour with 2.2 inches stand-off verified Kelvin's thereom to within 3.8 percent of the maximum values measured. The 0.35 inch stand-off and 1.0 inch stand-off contours are amazingly close and indicated that no major vortices are between these two contours.

The data for the fin velocity contours are presented in Appendix 9. The rectangular contours were taken at four insets from the tip: 0.2 inches, 0.45 inches, 0.7 inches, and 1.2 inches. Velocity contours were attempted closer to the body, but velocity measurements were inconsistent even after being averaged over 20 seconds. Using trapezoidal integration, the velocity contours at each inset were integrated to get circulation. The circulation values are also presented in Table 1. Heavier loading was apparent near the root while tip was more lightly loaded.

Using potential theory [7], lifting line theory, as presented by Kerwin [8], and Wald's [9,10] methods, the three dimensional lift coefficient can be calculated to theoretical lift coefficient 0.758. These calculations are presented in Appendix 10. coefficient from the force and moment measurements for this configuration was 0.538. Using timear extrapolation at the root and assigning a zero circulation walue at the tip, yielded a circulation distribution for the fin and a lift coefficient of 0.552. This calculation revealed a 2.6 percent difference between the direct force and moment measurements and the integration of the fin The velocity contour measurements. three coefficients are presented in Table 1. Stall, as seen in Figure 14 at high angles of attack, may be the reason the measured coefficients are lower than the theoretical value.

Table 1. [15 Degrees Yaw Angle]

CENTER OF PRESSURE ROUND TIPPED FIN

Yaw	Center of Pressure
(Degrees)	(non-dimensional)1
4.0	0.355
9.0	0.372
15.0	0.391

BODY CIRCULATION VALUES

Stand-off	Circulation
(inches)	(non-dimensional)2
0.35	0.262
1.00	0.261
2.20	-0.010

FIN CIRCULATION VALUES

Stand-off	Circulation
(inches)	(non-dimensional)2
0.00	0.0003
0.20	0.098
0.45	0.238
0.70	0.276
1.20	0.282
1.72	0.2883

LIFT COEFFICIENTS

	Method	Ել4
	Theoretical	0.758
Direct	Force Measurement	0.538
	Circulation	0.552

- Non-dimensionalized on chord length, origin at fin's root.
- Non-dimensionalized on maximum diameter and freestream velocity.
- Extrapolated value.
- Non-dimensionalized on fin planform area and freestream velocity.

CHAFTER &

The new design sting and quadrant allowed higher test speeds, reduced vibrations, eliminated the fin's stalling at 15 degrees yaw, and precluded measurable angle of attack changes due to deflections caused by water velocity. Using an instrumented balance in the fin, provided direct and reproducible force and moment The method of taking body velocity measurements . contours eliminated the problems described by Coney [4] and Kaplan [5]. Repeated body velocity contours can be used to reliably locate vortices so that the exact path the contour relative to the vortices can determined. The velocity contours can be integrated to get accurate circulation measurements; Kelvin's Thereon was verified to within experimental error at the outer contour. The fin velocity contours were integrated to provide circulation accurately. The fin circulation values checked within experimental accuracy with the direct force measurements, and theoretical calculations which used lifting line and potential flow theory.

The force and moment measurements revealed a difference in Reynolds number dependency for lift between the two fin geometries. The difference could be attributed to two factors, either the difference in fin

geometries or the square tipped fin's larger gap between the root and the body. To determine the exact cause, the square tipped fin should be re-machined so the two gaps are the same.

The body velocity contour method provides a more direct, and quicker method of finding vortices and measuring circulation than previous methods. To measure closer to the body and inside the deck and keel vortices, the backscatter or flare off the body must be reduced. Painting the body a fluorescent color, might prevent this backscatter from passing through the filters.

The integration of the fin velocity contours provided accurate verifiable circulations. Future measurements need to be taken closer to the tip and root to verify the extrapolations used to determine the fin's circulation distribution. Another viable hypothesis, which would support the horseshoe vortex theory [5], would be to extrapolate the root circulation to the body circulation value obtained with the body contours.

Had all of the data analysis methodology been fully developed and refined at the time testing, more revealing measurements could have been conducted. Specifically, better body and keel vortex mapping, so contours could verify the vortices' strength and check the horseshoe vortex theory presented by Kaplan [5]. The methodologies developed provide the means to relatively quickly resolve

PERSONAL PROPERTY OF THE PERSONAL PROPERTY OF

and verify successively more detailed aspects of the flow around a body of revolution with an attached fin at angles of yaw.

REFERENCES

- 1. Kobayashi, S. "An Experimental and Theoretical Study of Marine Propeller Boundary Layer Characteristics." PhD thesis, M.I.T., Department of Ocean Engineering, 1981.
- 2. Min, K.S. "Numerical and Experimental Methods for the Prediction of Field Point Velocities around Propeller Blades." PhD thesis, M.I.T., Department of Ocean Engineering, 1978.
- 3. Sayre, C.H. "Laser Doppler Anemometry and the Measurement of Loading Characteristics of Lifting Sections." MS thesis, M.I.T., Department of Ocean Engineering, 1980.
- 4. Coney, W.B. "Circulation Measurements About a Body of Revolution with an Attached Fin." MS thesis, M.I.T., Department of Ocean Engineering, 1985.
- 5. Kaplan, J.F. "Velocity Measurements About a Body of Revolution with and without a Fin at Angles of Attack." MS thesis, Department of Ocean Engineering, 1986.
- 6. Tani, I. "Boundary-layer Transition." Annual Review of Fluid Mechanics, 1969, Vol. 1. p. 186.
- 7. Newman, J.N. Marine Hydrodynamics. The MIT Press, Cambridge, MA USA 1977.
- 8. Kerwin, J.E. "Hydrodynamic Theory for Propeller Design and Analysis." M.I.T. course 13.04 Lecture Notes. Spring 1986.
- 9. Wald, Q. "The Hydrodynamic Forces on Fin-Body Combinations." Electric Boat Division of General Dynamics, Report No. P-411-67-077, Proprietary. December 1967.
- 10. Wald, Q. "Practical Formulas for the Stabilizing and Control Forces due to Fins on Bodies of Circular Section." Electric Boat Division of General Dynamics, Report No. TR-sc-84/22, Proprietary. November 1984.

Flow Visualization Model

Figure 1.

Balance Installation

Floure 2.

CONTRACTOR (CONTRACTOR) PROTECTION (CONTRACTOR)

hume 3

S Kooda estekkyä kokkooda esekeeda alemminja enninna kohninsääkenninnä kohning esekeedä aneeaseksä koosa

Floure

Body Velocity Contours

Fin Velocity Contour

4 Degrees Yaw & Square Tipped Fin

Figure 7.

9 Degrees Yaw & Square Tipped Fin

Figure 8.

15 Degrees Yaw & Square Tipped Fin

Figure 9.

4 Degrees Yaw & Round Tipped Fin

Figure 10.

9 Degrees Yaw & Round Tipped Fin

Figure 11.

15 Degrees Yaw & Round Tipped Fin

Figure 12.

Round Tipped Fin

Figure 13.

Lift vs Angle of Yaw (Round Tip)

Figure 14.

Tangential Velocity vs Body Rotation 0.35" Stand-off

Figure 15.

Tangential Velocity vs Body Rotation 1.0" Stand-off

Figure 16.

Tangential Velocity vs Body Rotation 2.2" Stand-off

FOR COOK SECTION OF THE SECTION OF T

Figure 17.

Tangential Velocity vs Body Rotation

Figure 18.

Tangential Velocity vs Body Rotation

Figure 19.

looking aft

Vortex Locations

Figure 20.

MODEL CHARACTERISTICS

L/D	9.5
LOA	25.602 INCHES
DIAMETER (D)	2.695 INCHES
NOSE LENGTH (Ln)	4.851 INCHES
TAIL LENGTH (L+)	11.319 INCHES
PARALLEL MIDBODY	9.432 INCHES

NOSE GEOMETRY

 $r=D/2*(1-(x/L_n)^2)^0.5$

TAIL GEOMETRY

 $r=D/2*(1-0.631*(x/L_{+})^2-.369*(x/L_{+})^4$

where:

r=radius at station x
x=distance from parallel midbody

FIN CHARACTERISTICS

NACA 0022
ROUND TIPPED SPAN 1.719 INCHES
SQUARE TIPPED SPAN 1.666 INCHES
CHORD 2.053 INCHES
NOSE TO L.E. 6.902 INCHES

where: square and round tipped planform areas are both 3.420 square inches

```
PROGRAM FMVI
        FORCE AND MOMENT DEVELOPMENTAL PROGRAM
C
C
        TAKES INFUT FROM BALANCE BEAM IN MINC CHANNELS O (FORCE)
        & 1 (MOMENT) LASER HORIZONTAL COMPONENT, AND D/P CELL.
AVERAGES VALUES, PRINTS TO SCREEN, AND WRITES TO A FILE.
         INCLUDES CALIBRATION FACTORS FROM STEVENS INSTITUTE
C
C
        SUBROUTINES: MHLLIB, DFCAL, BELL
C
        START DATE: 06-NOV-86
        RELEASE DATE: 07-JAN-87
C
C
        DIMENSION DAY (3) , IDENT (35)
        COMMON /CM4/ZFOR+ZMOM
        COMMON /CM2/VFOR+VMOM+VLASER+VFREE
        COMMON /CH3/RHTHP, TNTHP, USCTY
        COMMON /CM5/ZERO+FULL
        COMMON /VCONS/RHO, CONLAS
        DOUBLE PRECISION FTITLE
        CREATING OUTPUT FILE
        TYPE 100
        FORMAT (//' NAME OF OUTPUT FILE? (NO EXT.):',2X,6)
ACCEPT 101,FTITLE
100
101
        FORMAT (A10)
        TYPE 102
        FORMAT(//// ENTER DESCRIPTIVE DATA ( 70 CHAR.) ///)
102
        ACCEPT 103, (IDENT(N),N=1,35)
103
        FORMAT (35A2)
        CALL DATE (DAY)
        CALL ASSIGN(2,FTITLE,0,,,)
WRITE(2,104) FTITLE,(DAY(M),H=1,3)
        FORMAT (2x, '++DATA FILE: '+A10+' ++DATE: '+3A4)
104
         WRITE (2,105) (IDENT(N),N=1,35)
        FORMAT (1X,35A2)
105
        WRITE (2:106)
        FORMAT (T4, 'VFREE', T14, 'VLASER', T24, 'REYNLD', T35, 'REOF , T45, 'CF35
106
     "T55, 'RMOM', T65, 'CMOM')
        WRITE (2:107)
107
        FORMAT (T3+'(FT/SEC)'+T13+'(FT/SEC)'+T35+'(LB)'+T54+'(INLB)')
        INPUTTING CONSTANTS AND CALCULATING PARAMETERS
        CALL INPUT
        DATA SFAREA/0.02451/
        DATA CHORD/0.1711/
         DATA SIAREA/3.529/
         DATA CICHOR/2.053/
        RHO=1.9574-0.00028#TNTMF
210
C
        PAUSE 'TYPE RETURN TO SAMPLE ZERO VALLES
C
        ZEROS REAS . MING ZERO VOLTAGES
        CALL ZERUS
        TYPE 300+ZFOR+ZMOM
        FORMAT (212+12ERO VALUES ARE: 124+F. 3.7+T34+F1 -.7+
300
```

```
TYPE 310
                   FORMAT ('ARE THESE VALUES ACCEPTABLE? (YES:1 NO.0) )
310
                   ACCEPT #, IYORN
FORMAT (A2)
320
                   IF (IYORN.EQ.O) GO TO 210
                    TYPE 321
                   FORMAT (//' THERE SHOULD BE NO FLUID SPEED FOR UP CELL CAL. 1/)
321
                   PAUSE 'TYPE RETURN TO SAMPLE DP CELL'
C
                   CALL DPCAL
C
                   BEAM CROSSING ANGLE AND REFRACTIVE CORRECTION
Č
                   XKAPA=.0857
                   SNELL=1.3298
                   XLAMBDA=.488
                   VMULT=2.0
                   CONLAS=(3.28084/VMULT)*(XLAMBDA/(2.0*SIN(XKAFA)))
322
                   TYPE 323
323
                   FORMAT (//+'
                                                     DO YOU WANT TO EXIT(0) OR SAMPLE (1)?'/)
                   ACCEPT *, IGO
                   IF (IGO.EQ.0) GO TO 425
325
                   PAUSE 'TYPE A CARRIAGE RETURN TO START SAMPLING'
                                                                                                                                    AVEREAGES

AVEACAGE

Chum

Chu
                   TYPE 330
330
                   FORMAT (//'
                                                 SAMPLING...'//)
C
                   MEASURE READS BALANCE & VELOCITY VOLTAGES AND AVEREAGES
C
                   CALL MEASURE
                   RFOR=0.
                   RMOM=0.
                   RFOR=(VFOR-ZFOR)*4.7415422
                   RHOM=(VHOM-ZHOM)*4.73785
                    TYPE 400+RFOR+RMOM
400
                   FORMAT(/T2+'FORCE='+T10+F6+2+T25+'MOMENT='+T34+F6+2)
С
C
                   CALCULATE COEFFICIENTS
                   CODEF - . SYPHOYSFAREA#UFREE#UFREE
C
                         --- CHASH FRUUFING --
                   IF (CCOEF.LE.O) GJ TO 401
                   60 10 414
401
                    TYPE 402
                   FORMATO// ATTEMPT TO DIVIDE BY O. MORE VEL. >
402
                   60 10 325
403
404
                   REYNLE: VEREE # CHORD / VSCTY
                    CLIFT=RFOR/CCUEF
                    CHOM=RMCM/(CCOEF *CHORI)
                    TYPE 106
TYPE 406, UFREE, VLASER, REYNLD, RFOR, CLIFT, RMOM, CMUM
                    TYPE 405
405
                   FORMAT (///
                                                   RECORD DATA? (YES=1 NO=0)')
                    ACCEPT * IR
                    IF (IR.EQ.O) GO TO 409
                    WESTER 2:406) UFFER FULASER FREYNLD FROF HOLD FROM HER HOME - H
                    FORMAT - 4.67. . . 11146 . 24123 . 77.147244 5.147 1446 . . .
406
               153.69.3
409
                    TYPE 410
                   r ORMAT
                                     .. WOLLD TOU LIFE MARRIED FINITY CYEL 1 . "
 1:0
                    ACCEPT #+1:UN
420
                   FORMAT (A2)
```

CONTRACTOR DESCRIPTION IN THE PROPERTY OF THE

```
1F (1YON.EG.1) GO TO 325
425
        TYPE 426
                     ARE YOU SURE YOU WANT TO GUIT? (YES=0 NO=1) '/)
        FORMAT (///
426
        ACCEPT * ION
        IF (ION.EQ.1) GO TO 325
        STOP=999.99
        WRITE (2,406) STOP.STOP.STOP.STOP.STOP.STOP
        WRITE (2,406) STOP, STOP, STOP, STOP, STOP, STOP
        TYPE 501, FTITLE
        FORMAT (///' DATA FILE: ', A10, ' GENERATED SUCCESSFULLY')
501
        FND
C
        SUBROUTINE ZEROS
        COMMON/CH4/ZFOR+ZMOM
        DIMENSION IDVAL(401) DVAL(401)
        ZFOR=0.0
        ZMOM=0.0
        CALL ADFAST(0,1,200.,1,IDVAL,DVAL,200,IER)
        IF (IER.EQ.1) GO TO 200
        IND=0
        DO 10 I=1.399.2
         ZFOR=ZFOR+DVAL(I)
         ZMOM=ZMOM+DVAL(I+1)
          IND=IND+1
        CONTINUE
10
        ZFOR=ZFOR/200.
        ZMOM=ZMOM/200.
        GO TO 250
        TYPE 210
200
        FORMAT(//'MINC CAN NOT KEEP UP W/ADFAST')
210
250
        RETURN
        END
C
        SUBROUTINE INFUT
        COMMON/CH3/RMTMP, TNTMP, VSCTY
        TYPE 2 FORMAT(/'INPUT ROOM TEMP (F)'/)
         ACCEPT * RHTHF
         TYPE 4
         FORMAT(/'INPUT TUNNEL TEMP (F)'/)
         ACCEPT * THIMP
         TYPE 6
         FORMAT (/'INFUT VISCOCITY (FT12/SEC)'/)
         ACCEPT #, USCTY
         RETURN
         END
C
         SUBROUTINE MEASURE
         COMMON /CM5/ZERO.FULL
         COMMON /VCONS/RHO, CONLAS
         COMMON/CH2/VFOR, VMOM, VLASER, VFREE
         DIMENSION IDVAL(2401) DVAL(2401)
         UFOR = 0.0
         UMOM=0.0
         DEVLT 0.0
         916A5=0.0
         CALL ADFAST(0+11+400.+1+IDVAL+DVAL+1....
         IF (IER.EQ.1) GO TO 200
         DO 10 I=1+2389+12
          VEOR- VEOR+TIVAL (I)
```

```
VMOM: VMOM+IPPAL (I+1)
           DEVLT-DEVLT-DVAL(I+10)
           VTLAS=VTLAS+TIVAL (I+11)
         CONTINUE
10
         VTLAS=VTLAS/200.+2.
         DEVLT=DEVLT/200.
DERAT=(DEVLT-ZERO)/(FULL-ZERO)
         VFREE=45.2589/RHO#DFRAT##.4985
         VLASER=VTLAS*CONLAS
VFOR=VFOR/200.
         VMCM-VMOM/200.
         GO TO 215
TYPE 210
200
         FORMAT(//'MINC CAN NOT NEEP UP WITH ADEAST')
210
215
         RETURN
          END
```

PARAGEST NO PROPERTY OF THE PR

Por complete sono discrete escentistica de la constanta de la

```
PROGRAM CIRC2
 ¢
          FROGRAM USES BODIROT TO DETERMINE POINTS ON A CIRCULAR CICULATION PATH AROUND BODY W/ FIN
 00000
          LASSUB GETS VERTICAL VELOCITY FROM LASER AND CHANNEL D
0000000
          SUBROUTINES: MHLLIB, DFCAL, BELL, BDRT, LASSUB, INVM
          AUTHOR: JEFF REED
          RELEASED: 2/4/87
          DIMENSION DAY(3), IDENT(35), TVLAS(128)
          COMMON IDVAL(1025).DVAL(1025).ZERO.FULL
COMMON /VCONS/RHO.CONLAS
          DOUBLE FRECISION FTITLE
          TYPE 900
          FORMAT(// ***CIRCULAR PATH LASER VELOCITY FROGRAM***//
900
         ENTER NAME OF OUTFUT FILE (+2X+$)
         ACCEPT 901, FTITLE FORMAT (A10)
901
          TYPE 902
902
         FORMAT (//'INPUT ID HEADER (up to 70 characters)') ACCEPT 903. (IDENT(N).N=1.35)
         FORMAT (35A2)
903
         CALL DATE(DAY)
CALL ASSIGN(2.FTITLE.0,,,)
         WRITE (2,904) FTITLE, (DAY(H), H=1,3)
         FORMAT (2x, 'DATA FILE: ', A10, ' DATE: ', 3A4)
WRITE (2,905) (IDENT(N), N=1,35)
904
905
         FORMAT (1X,35A2)
         TYPE 906
         FORMAT (//' INPUT WATER TEMPERATURE: '+2x+$)
906
         ACCEPT *.TTUN
         RH0-1.9574-0.00028#TTUN
         CALL DECAL
         XNAFA=0.0857
         SNELL=1,3298
         VMULT=2.0
         LAMBA=0.5145
         CONLAS=4.92681
         TYPE 800
         ACCEPT #,QA
         TYPE 801
         ACCEPT *, XMI
         XM=XMI-12.92
         TYPE 802
         ACCEPT *, DEG
         TYPE 803
         ACCEPT * FRM
800
         FORMAT ('
                     INPUT YAW ANGLE OF MODEL (DEG): ',2X,$)
801
         FORMAT (1
                     INPUT XM OF MODEL (FROM BOW): ', 2X, 5)
         FORMAT (' INPUT DEGREE INCREMENTS IN WHICH MODEL WILL BE
802
        ROTATED: (+2X+4)
803
                     INFUT RADIUS AT WHICH MEASUREMENTS WILL BE MADE
         FORMAT ('
      7:/+2X+$)
         IN:360./DEG
         WRITE (2,804) QA,XMI
B04
         FORMAT (' YAW ANGLE='+F4.1++3X+'XM FROM BOW-'+F5.2)
```

<u>ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ</u>

```
WRITE (2+805)
         FORMAT (//3X+'XM'+10X+'YM'+7X+'ZM'+'
805
                                                      RUTATION VLASER
           VFREE
                     RATIO
                                FERCENT')
         DO 500 JR=0.IN
                  RA=JR*DEG
                  CALL BORT (XM, YM, ZM, XL, YL, ZL, QA, RA, RM)
450
                  CALL LASSUB(VLASER, VFREE)
                  URATIO=ULASER/UFREE
      TYPE 700; ULASER; UFREE; URATIO
FORMAT (' VERTICAL VELOCITY=';F7:3;2X; 'VFREE=';
CF7:3;2X; 'VRATIO=';F7:4)
700
                  TYPE 701
FORMAT (' RECORD THIS DATAP(N=0+Y=1) '+$)
701
                  ACCEPT * IRCD
                  IF (IRCD.EQ.O) GO TO 450
                  WRITE (2,702) XMI, YM, ZM, RA, ULASER, UFREE, URATIO
                  FORMAT (3(F8.4+2X)+F6.1+2X+2(F7.3+2X)+F8.4)
702
                  TYPE *,'TYPE 7 IF YOU WANT TO QUIT, D TO CONTINUE' ACCEPT *, IQ
                  IF (IQ.EQ.7) 60 TO 501
                  FAUSE ' TYPE RETURN TO GENERATE & SAMPLE NEXT POINT'
500
         CONTINUE
501
         STOP
         END
```

```
PROGRAM HEINE
С
00000000000
         DETERMINES FOINTS ON A POSITIVE HORIZONTAL
         CIRCULATION LEG AROUND FIN
         LASSUB GETS VERTICAL VELOCITY FROM LASER AND CHANNEL D
         SUBROUTINES: MHLLIB, DFCAL, BELL, LASSUB
        AUTHOR: JEFF REED
        RELEASED:
        DIMENSION DAY(3), IDENT(35), TVLAS(128)
         COMMON IDVAL(1025), DVAL(1025), ZERO, FULL
         COMMON /VCONS/RHO, CONLAS
        DOUBLE PRECISION FTITLE
         TYPE 900
        FORMAT(/' ***FIN CONTOUR LASER VELOCITY PROGRAM***'//
900
        ENTER NAME OF OUTPUT FILE (+2X+$)
        ACCEPT 901, FTITLE
FORMAT (A10)
901
         TYPE 902
        FORMAT (//'INPUT ID HEADER (up to 70 characters)')
ACCEPT 903, (IDENT(N),N=1,35)
902
         FORMAT (35A2)
903
         CALL DATE (DAY)
         CALL ASSIGN(2,FTITLE,0,,,)
         WRITE (2,904) FTITLE, (DAY(M), M=1,3)
904
         FORMAT (2X, 'DATA FILE: ', A10, ' DATE: ', 3A4)
         WRITE (2,905) (IDENT(N),N=1,35)
905
        FORMAT (1X+35A2)
        TYPE 906
FORMAT (//' INPUT WATER TEMPERATURE:',2X,$)
906
         ACCEPT *+TTUN
         RHO=1.9574-0.00028*TTUN
         CALL DPCAL
         CONLAS#4.676229
        WRITE (2,805)
FORMAT (//3x,'XS',10X,'YS',7X,'ZS','
805
                                                         VLASER
           VFREE
                     RATIO')
         TYPE*, 'ZERO LASER ON LEADING EDGE OF SAIL'
        TYPE*, 'INPUT DISTANCE TOWARD ROOT FROM TIP WHERE CONTOUR'
         TYPE ** WILL BE MADE IN INCHES (SPAN=1.719")
         ACCEPT *,ZS
         ZSL=2S*-25.4
         YS=.65
         YSL=YS#25.4
         DO 500 JR=0,24
                 XS=JR#.1-.2
                 XSL=XS*25.4
                 TYPE 400,XS,YS,ZS
400
                 FORMAT (' XS: '+F6.2+2X+'YS='+F6.2+2X+'ZS='+F6.2)
                 XL:-1*ZSL/1.3298
                 YL =- 1 * XSL
                 ZL=YSL
                 TYPE 401.XL.YL.ZL
                 FORMAT (' XL='+F6.2+2X+'YL='+F6.2+2X+'ZL='+F6.2)
401
450
                 CALL LASSUR(VLASER+VFREE)
                 URATIO=ULASER/UFREE
```

```
TYPE 700, VLASER, VFREE, VRATIO

FORMAT (' VERTICAL VELOCITY=',F7.3,2X,'VFREE=',

"F7.3,2X,'VRATIO=',F7.4)

TYPE 701

701

FORMAT (' RECORD THIS DATA?(N=0,Y=1) ',$)

ACCEPT *,IRCD

IF (IRCD.EQ.O) GO TO 450

WRITE (2,702) XS,YS,ZS,VLASER, VFREE, VRATIO

FORMAT (3(F8.4,2X),2X,2(F7.3,2X),F8.4)

TYPE *,'TYPE 7 IF YOU WANT TO QUIT, O TO CONTINUE'

ACCEPT *,IQ

IF (IQ.EQ.7) GO TO 501

FAUSE ' TYPE RETURN TO GENERATE & SAMPLE NEXT POINT'

500

CONTINUE

501

STOP
END
```

```
PROGRAM HEINM
¢
        DETERMINES POINTS ON A NEGATIVE HORIZONTAL CIRCULATION LEG AROUND FIN
C
C
        LASSUB GETS VERTICAL VELOCITY FROM LASER AND CHANNEL D
CCC
        SUBROUTINES: MHLLIB, DFCAL, BELL, LASSUB
CCC
        AUTHOR: JEFF REED
C
        RELEASED:
C
        DIMENSION DAY(3), IDENT(35), TVLAS(128)
        COMMON IDVAL(1025), DVAL(1025), ZERO, FULL
        COMMON /VCONS/RHO, CONLAS
        DOUBLE PRECISION FTITLE
        TYPE 900
        FORMAT(/' ***FIN CONTOUR LASER VELOCITY PROGRAM***'//
900
        ENTER NAME OF OUTPUT FILE (+2X+6)
        ACCEPT 901, FTITLE
FORMAT (A10)
901
        TYPE 902
902
        FORMAT (//'INFUT ID HEADER (up to 70 characters)')
        ACCEPT 903, (IDENT(N),N=1,35)
FORMAT (35A2)
903
        CALL DATE (DAY)
        CALL ASSIGN(2,FTITLE,0,,,)
        WRITE (2,904) FTITLE, (DAY(M), M=1,3)
904
        FORMAT (2X) 'DATA FILE: ', A10, ' DATE: ', 3A4)
        WRITE (2,905) (IDENT(N),N=1,35)
905
        FORMAT (1X,35A2)
        TYPE 906
906
        FORMAT (//' INPUT WATER TEMPERATURE: ',2X,$)
        ACCEPT *+TTUN
        RHO=1.9574-0.00028*TTUN
        CALL DPCAL
        CONLAS=4.676229
        WRITE (2+805)
        FORMAT (//3X, 'XS', 10X, 'Y3', 7X, 'ZS', '
805
                                                         VLASER
                     RATIO')
        TYPE*, ZERO LASER ON LEADING EDGE OF SAIL'
TYPE*, INPUT DISTANCE TOWARD ROOT FROM TIP WHERE CONTOUR'
        TYPE ** WILL BE MADE IN INCHES (SPAN=1.719")
        ACCEPT *,ZS
        ZSL=ZS*-25.4
        YS=-.45
        YSL=YS*25.4
        BO 500 JR=0,24
                 XS=2.2-.1*UR
                 XSL=XS*25.4
                 TYPE 400, X5, Y5, Z5
                 FORMAT (' XS:'+F6.2+2X+'YS='+F6.2+2X+'ZS='+F6.2)
400
                 XL=-1*ZSL/1.3298
                  YL=-1*XSL
                 ZL :: YSL
                  TYPE 401,XL,YL,ZL
401
                 FORMAT (' XL='+F6.2+2X+'YL='+F6.2+2X+'ZL='+F6.2)
                 CALL LASSUB(VLASER, VFREE)
450
                 URATIO=ULASER/UFREE
```

```
TYPE 700, VLASER, VFREE, VRATIO
700
                    FORMAT (' VERTICAL VELOCITY='+F7.3+2X+'VFREE='+
      "F7.3,2X, 'VRATIO=',F7.4)
                    TYPE 701
                    FORMAT (' RECORD THIS DATA?(N=0,Y=1) ',$)
ACCEFT *,IRCD
701
                    IF (IRCD.ER.O) GD TO 450
                    WRITE (2,702) XS,YS,ZS, VLASER, VFREE, VRATIO
                    FORMAT (3(F8.4,2X),2X,2(F7.3,2X),F8.4)
TYPE *,'TYPE 7 IF YOU WANT TO QUIT, 0 TO CONTINUE'
702
                    ACCEPT *+IQ
                    IF (ID.ED.7) GO TO 501
PAUSE ' TYPE RETURN TO GENERATE & SAMPLE NEXT POINT'
          CONTINUE
500
          STOP
END
501
```

```
PROGRAM VFINE
C
C
        DETERMINES FOINTS ON A FOSITIVE HORIZONTAL
        CIRCULATION LEG AROUND FIN
C
        LASSUB GETS VERTICAL VELOCITY FROM LASER AND CHANNEL D
0000
        SUBROUTINES: MHLLIB, DFCAL, RELL, LASSUB
Ċ
        AUTHOR: JEFF REED
C
        RELEASED:
C
        DIMENSION DAY(3), IDENT(35), TVLAS(128)
        COMMON IDVAL(1025), DVAL(1025), ZERD, FULL
        COMMON /VCONS/RHO/CONLAS
        DOUBLE PRECISION FTITLE
        TYPE 900
900
        FORMAT(//
                   ***FIN CONTOUR LASER VELOCITY PROGRAM***'//
        ENTER NAME OF OUTFUT FILE (+2X+$)
        ACCEPT 901, FTITLE
901
        FORMAT (A10)
        TYPE 902
        FORMAT (//'INPUT ID HEADER (up to 70 characters)')
902
        ACCEPT 903, (IDENT(N),N=1,35)
903
        FORMAT (35A2)
        CALL DATE (DAY)
        CALL ASSIGN(2,FTITLE,0,,,)
        WRITE (2,904) FTITLE, (DAY(M), M=1,3)
        FORMAT (2X, 'DATA FILE: ', A10, ' DATE: ', 3A4)
904
        WRITE (2,905) (IDENT(N),N=1,35)
905
        FORMAT (1X,35A2)
        TYPE 906
        FORMAT (//' INPUT WATER TEMPERATURE: ',2X,$)
904
        ACCEPT * TTUN
        RHO=1.9574-0.00028*TTUN
        CALL DECAL
        CONLAS=4.92681
        WRITE (2,805)
FORMAT (//3x,'XS',10X,'YS',7X,'ZS','
805
                                                      VLASER:
                   RATION
          VFREE
        TYPE** 'ZERO LASER ON LEADING EDGE OF SAIL'
        TYPE*, 'INPUT DISTANCE TOWARD ROOT FROM TIP WHERE CONTOUR'
        TYPE *,' WILL BE MADE IN INCHES (SFAN:1.719*)'
        ACCEPT #.ZS
        ZSL=ZS*-25.4
        XS=-.2
        XSL=XS#25.4
        DO 500 JR=0,11
                 YS=JR*.1-.45
                 YSL=YS#25.4
                 TYPE 400.XS, Y3, ZS
                 FORMAT ( XS (+F6.2+2x+(YS=(+F6.2+2X+(ZS=(+F6.2)
400
                 XL=-1*ZSL/1.3298
                 YL -- 1 *XSL
                 ZL=YSL
                 TYPE 401.XL,YL,ZL
401
                 FORMAT (' XL='+F6.2+2X+'YL='+F6.2+2X+'ZL='+F6.2)
                 CALL LASSUR(VLASER, VFREE)
450
                 URATIO=ULASER/UFREE
```

```
TYPE 700. VLASER. VFREE. VRATIO
      FORMAT (' VERTICAL VELOCITY=',F7.3,2x,'VFREE "', F7.3,2x,'VRATIO=',F7.4)
700
                     TYPE 701
                     FORMAT (' RECORD THIS DATA?(N=0,Y=1) ',$)
ACCEPT #, IRCD
701
                     IF (IRCD.EQ.O) GO TO 450
WRITE (2.702) XS.YS.ZS.VLASER.VFREE.VRATIO
                     FORMAT (3(F8.4.2X),2X,2(F7.3,2X),F8.4)

TYPE *,'TYPE 7 IF YOU WANT TO QUIT, O TO CONTINUE!
702
                     ACCEPT *,IQ
                     IF (IQ.EQ.7) GO TO 501
FAUSE ' TYPE RETURN TO GENERATE & SAMPLE NEXT POINT'
500
          CONTINUE
501
          STOP
          END
```

```
PROGRAM VFINM
C
         DETERMINES POINTS ON A POSITIVE HORIZONTAL
         CIRCULATION LEG AROUND FIN
         LASSUB GETS VERTICAL VELOCITY FROM LASER AND CHANNEL D
CCC
C
         SUBROUTINES: MHLLIB, DPCAL, BELL, LASSUB
C
         AUTHOR: JEFF REED
C
         RELEASED:
         DIMENSION DAY(3), IDENT(35), TVLAS(128)
         COMMON IDVAL(1025), DVAL(1025), ZERO, FULL
         COMMON /VCONS/RHO+CONLAS
         DOUBLE FRECISION FTITLE
         TYPE 900
         FORMAT(/' ***FIN CONTOUR LASER VELOCITY PROGRAM***'//
900
     " ENTER NAME OF OUTPUT FILE "2X+$)
         ACCEPT 901, FTITLE FORMAT (A10)
901
         TYPE 902
         FORMAT (//'INPUT ID HEADER (up to 70 characters)') ACCEPT 903, (IDENT(N),N=1,35)
902
903
         FORMAT (35A2)
        CALL DATE(DAY)
CALL ASSIGN(2,FTITLE,0,,,)
         WRITE (2,904) FTITLE, (DAY(M), M=1,3)
904
         FORMAT (2X, 'DATA FILE: ', A10, ' DATE: ', 3A4)
         WRITE (2,905) (IDENT(N),N=1,35)
905
         FORMAT (1X,35A2)
         TYPE 906
         FORMAT (//' INFUT WATER TEMPERATURE: '+2X+$)
906
         ACCEPT *,TTUN
         RHO=1.9574-0.00028*TTUN
         CALL DECAL
         CONLAS-4,92681
         WRITE (2,805)
805
         FORMAT (//3X+'X$'+10X+'Y$'+7X+'Z$'+'
                                                          ULASER
           VFREE
                     RATIO')
         TYPE*, ZERO LASER ON LEADING EDGE OF SAIL'
TYPE*, INPUT DISTANCE TOWARD ROOT FROM FIF WHERE CONTOUR'
         TYPE #+" WILL BE MADE IN INCHES (SPAN=1.719")"
         ACCEPT #,ZS
         ZSL=ZS*-25.4
         XS=2.2
         XSL=XS*25.4
         DO 500 JR=0,11
                  YS=.65-JR*.1
                  YSL=YS*25.4
                  TYPE 400,X5,Y5,Z5
400
                  FORMAT (1 XS=1+P6.2+2X+ YS=1+F6.2+2X+1ZS=1+F6.2)
                  XL=-1*ZSL/1.3298
                  YL -1*XSL
                  ZL "YSL
                  TYPE 401,XL,YL,ZL
FORMAT (' XL=',F6,2,2X,'YL=',F6,2,2X,'ZL= ,F6,2)
401
                  CALL LASSUB(VLASER, VFREE)
450
                  URATIO VLASER/VFREE
```

```
TYPE 700, ULASER, UFREE, URATIO
FORMAT (' VERTICAL VELOCITY=', F7.3, 2X, 'VFREE=',

'F7.3, 2X, 'VRATIO=', F7.4)
TYPE 701

701
FORMAT (' RECORD THIS DATA?(N=0, Y=1) ',$)
ACCEPT *, IRCD
IF (IRCD, EQ.0) GO TO 450
WRITE (2,702) XS, YS, ZS, VLASER, UFREE, URATIO
FORMAT (3(F8.4, 2X), 2X, 2(F7.3, 2X), F8.4)
TYPE *, 'TYPE 7 IF YOU WANT TO QUIT, O TO CONTINUE'
ACCEPT *, IQ
IF (IQ.EQ.7) GO TO 501
PAUSE ' TYPE RETURN TO GENERATE & SAMPLE NEXT POINT'

500
CONTINUE
501
STOP
END
```

```
PROUROM LETORA
C
        Graphs Z coundinate and Velocity Ratio from LASVEL
C
        Reads everything so changes would be simple DIMENSION VFREE(200).VLASER(200).REYNLD(200).RFOR(200).
                   CLIFT(200)+RMBM(200)+CMBM(200)
        DOUBLE PRECISION FTITLE
        TYPE 100
        FORMAT(//' INFUT NAME OF FILE TO BE PLOTTED'+2X+$)
100
        ACCEPT 110+FT1TLE
110
        FORMAT (ALO)
        CALL ASSIGN(2+FTITLE+0+0LD++)
        READ(2:160)
160
        FURMAT(////)
        DO 2, I=1,200
        READ(2**) UFREE(I)*ULASER(I)*REYNLD(I)*
                   REOR(I)+CL1FT(I)+RMOM(I)+CMOM(I)
        FORMATCT3,F5.2,T13,F5.2,F22,F9.1,T34,F5.2,T42,F9.3,T54,F5.2,
120
                T62,F9.3)
        NF = I - 1
        REYNLU(I) = REYNLU(I)/100000.0
        CLIFT(I) =CLIFT(I) #-1.0
        TYPE #, VFKEE(I), REYNLD(I), CLIFT(I)
        IF(VFREE(1).EQ.999.99) GO TO 3
3
        CONTINUE
         TYPE 130
         TYPE # , NF
        FORMAT(//' PLOT ON TOP OF PREVIOUS GRAFH? Y=1+N=0'+$)
130
         ACCEPT * INEW
         IF(INEW.EQ.1) GO TO 4
        NEW#0
        NEW-NEW+1
         TYPE 140
        FORMAT(//' MODE=?'+$)
140
         ACCEPT * MODE
        CALL GRAFHA (REYNLD, CLIFT, NF, NEW, MODE)
        CALL CLOSE(2)
TYPE 150
        FORMAT(//' ANOTHER FILE? Y=1+N=0'+$)
150
         ACCEFT *, IGO
         IF(IGO.EQ.0) GO TO 5
        GO TO 1
5
        STOP
        END
```

100 X X X X

Secretary and the second of th

```
FROGRAM VELCON
C
         Graphs Z coordinate and Velocity Rutio from LASVEL
         Reads everything so changes would be simple DIMENSION XMI(200)+YM(200)+ZM(200)+RA(200)+
                    VLASER(200) + VFREE (200) + VRATIO(200)
         DOUBLE PRECISION FTITLE
         TYPE 100
         FORMAT(//' INPUT NAME OF FILE TO BE PLOTTED'+2X+6)
100
         ACCEPT 110, FTITLE
         FORMAT (A10)
110
         CALL ASSIGN(2,FTITLE,0,0LD,,)
         READ(2,160)
         FORMAT(///)
160
         DO 2. I=1.200
         READ(2,*) XMI(I),YM(I),ZM(I),
                    RA(I) + VLASER(I) + VFREE(I) + VFATIG(I)
         FORMAT(3(F8.4.2X),F6.1,2X,2(F7.3,2X),F8.4)
120
         NF = I - 1
         VRATIO(I)=VRATIO(I)*100.
         TYPE *, RA(I), VRATIO(I)
         IF(XMI(I).EQ.999.99) GO TO 3
2
3
         CONTINUE
         TYPE 130
TYPE * NP
         FORMAT(//" PLOT ON TOP OF FREVIOUS GRAPH" Y=1.N=0".4)
130
         ACCEPT # INEW
         IF(INEW.EQ.1) GO TO 4
         NEW=0
         NEW-NEW+1
         TYPE 140
140
         FORMAT(//' MODE=7'+$)
         ACCEPT * . MODE
         CALL GRAPHA (RA. VRATIO: NP . NEW . MO15)
         CALL CLOSE(2)
TYPE 150
150
         FORMAT(/// ANOTHER FILE? Y#1+N 0 +8)
         ACCEPT #:160
         IF(160.E0.0) GO TO 5
         GO TO 1
         STOF
         END
```

++DATE:22-JAN-87

++DATA FILE: 4UF1

TTUMIN F			CATUMNTO,	,		
		ES WITH SOUR		CEOF	EMOM	CHOM
VFREE	VLASER	REYNLD	REOK	CFOR	RMOM (INL#)	CMOM
(FT/SEC)	(FT/SEC)	2205 7	(LB)	3.620	0.00	5.688
0.13	0.21	2295.3	0.00			
1.26	1.34	21534.4	-0.01	-0.187	-0.00	-0.083
2.05	2.29	35113.4	-0.02	-0.165	-0.01	-0.580
3.7 9	4.04	64957.0	-0.04	-0.131	-0.02	-0.407
4.62	4.98	79170.2	-0.07	-0.135	-0.04	-0.457
5.78	5.92	99030.9	-0.11	-0.136	-0.07	-0.514
6.27	6.53	107374.9	-0.13	-0.139	-0.09	-0.540
7.30	7.57	125074.4	-0.18	-0.141	-0.12	-0.560
7.74	7.99	132642.1	-0.20	-0.141	-0.14	-0.567
8.25	8.58	141355.4	-0.23	-0.143	-0.16	-0.590
8.83	9.21	151319.1	-0.25	-0.143	-0.19	-0.596
9.25	9.59	158576.1	-0.29	-0.143	-0.21	-0.596
	10.24	170920.7	-0.34	-0.144	-0.25	-0.608
9.97		177983.5	-0.34	-0.143	-0.26	-0.600
10.39	10.74					-0.625
11.81	12.13	202399.6	-0.47	-0.143	~0.35	
12.60	13.06	215869.7	-0.53	-0.141	-0.41	-0.630
13.26	13.69	227190.7	-0.59	-0.142	-0.46	-0.643
13.78	14.13	236213.4	-0.63	-0.139	-0.49	-0.634
14.81	15,28	253857.5	-0.71	-0.137	-0.57	-0.634
15.84	16.32	271464.3	-0.80	-0.135	-0.65	-0.639
16.94	17.35	290356.7	-0,91	-0.134	-0.75	-0.643
17.52	18.08	300269.5	-0.98	-0.134	-0.81	-0.648
19.82	20.44	339729.8	-1.27	-0.136	-1.04	-0.651
20.97	21.24	359372.3	-1.43	-0.137	~1.17	-0.654
22.36	23.10	383164.4	-1.58	-0.133	-1.30	-0.643
25.98		445265.2	-2.18	-0.136	-1.82	-0.664
	26.68 27.55	459150.5	-2.27	-0.133	-1.88	-0.644
26.79					0.01	4.524
0.65	0.90	11221.6	0.06	6.278		999.99
999 .99	999.9	999.99	99 .99	999.99	99.99	777.77
99.99						
++DATA F			55-7VM-B.			
FIRST RUN	DOWN AT 4	DGREES WITH	SQUARE	SAIL		
VFREE	VLASER	REYNLD	RFOR	CFOR	RHOM	CHOM
(FT/SEC)	(FT/SEC)		(LB)		(INLB)	
0.07	0.30	1133.0	0.00	36.543	0.00	26.684
26.93	27.64	461517.0	-2.35	-0.137	-1.92	-0.652
24.90	25.61	426730.8	-1.98	-0.135	-1.64	-0.653
23.68	24.23	405847.4	-1.80	-0.135	-1.49	-0.655
23.03	23.39	394718.3	-1.65	-0.131	-1.38	-0.639
		383374.6	-1.58	-0.133	-1.31	-0.644
22.37	22.88		-1.39	-0.130	~1.15	-0.632
21 . 22	21.70	363613.7				
20.12	26.82	344887.1	-1.28	-0.133	-1.06	-0.642
19.58	20.55	335633.6	-1.21	-0.133	-1.00	~0.643
19.03	19.98	326059.2	-1.15	-0.134	-0.95	-0.644
17.44	17.75	298856.3	-0.98	-0.136	-0.80	-0.649
16.85	17.07	288889.8	-0.93	-0.178	~0.7ა	~0.655
15.27	15.75	261612.2	-0.77	-0.139	-0.61	~0.644
13.81	14.15	235652.6	-0.65	-0.144	-0.50	-0.651
13.36	13.71	229029.7	-0.61	-0.143	-0.46	-0.640
12.44	12.67	213264.7	-0.54	-0.147	-0.41	-0.649
44177	12.07	21020417		• • • • • •	- · · · ·	

	9.36 8.50 8.01	9.61 8.96 6.10	160488.5 145622.0 137330.1	-0.32 -0.26 -0.23	-0.155 -0.150 -0.149	-0.23 -0.18 -0.16	-0.636 -0.625 -0.628	
(6.96	7.21	119217.5	-0.16	-0.140	-0.12	-0.587	
;	4.97 2.33	5.17 2.39	85140.1 39912.6	-0.08 -0.01	-0.129 -0.112	-0.06 -0.01	-0.584 -0.643	
•	0.44	3.62	7466.9	0.02	4.748	0.00	3.610	
		LE: 9UF1		2-JAN-87				
VF	REE	UF AT 9 DE	REYNLD	RFOR	CFOR	RHOM	CMOM	
	/SEC) .19	(FT/SEC) 1.72	3289.9	(LB) 0.00	5.017	(INLR) -0.00	-2.772	
3	.53	-5.17 3.98	60508.2 73453.5	-0.11 -0.16	-0.366 -0.375	-0.0B -0.11	-1.506 -1.541	
	.99	4.02	102581.4	-0.31	-0.368	-0.23	-1.558	
	.03	3.94	120560.8 139936.3	-0.41 -0.54	-0.352 -0.343	-0.31 -0.43	-1.554 -1.576	
	.17	3.97 3.88	150914.7	-0.63	-0.343	-0.51	-1.604	
10	.40	10.39	178228.2	-0.83	-0.32 3	~0.71 ~0.87	-1.615 -1.599	
	.60	11.75 12.78	198722.4 216614.3	-1.00 -1.19	-0.312 -0.313	-0.87 -1.04	-1.607	
14	.21	14.47	243608.1	-1.53	-0.320	-1.33	-1.621	
	. 26	15.53 16.61	261496.1 279650.2	-1.77 -2.03	-0.320 -0.320	-1.52 -1.72	-1.604 -1.594	
	.34	17.66	297230.0	-2.34	-0.328	-1.95	-1.596	
18	.47	18.78	316597.0	-2.73 -3.10	-0.337 -0.339	-2.21 -2.47	-1.597 -1.578	
	.63	19.94 21.09	336398.7 356917.5	-3.10 -3.58	-0.348	-2.79	-1.586	
21	.54	21.92	369116.6	-3.86	-0.350	-2.99 -1.75	-1.585 -1.556	
	.01	23.31 24.60	394348.2 417405.4	-4.34 -5.06	-0.346 -0.359	~3.35 ~3.82	-1.556 -1.584	
25	.06	25.37	429425.7	-5.38	-0.361	-4.02	-1.57 5	
	.98 .98	26.29 26.27	445202.4 445152.0	-5.69 -5.71	-0.355 -0.356	-4.24 -4.27	-1.546 -1.557	
	.82	27.11	459557.1	-6.17	-0.361	-4.58	-1.568	
0	.44	-5.39	760 4.6 99 9.99	0. 08 99.99	17 .75 5 999 .9 9	-0.00 99.99	-3.703 999.99	
	9.99 MATA FI	999.0 [LE: 9]N1		77.77 22-JAN-87			• • • • •	
FIRS	T RUN	DOWN AT 9	DEGREES FZER	10-2.0 Zm	0-1.0	r. MAN	CMOH	
	REE (/SEC)	VLASER (FT/SEC)	REYNLD	RFOR (LB)	CFOR	RMOM (INLP)	CMOM	
0	.29	-3.24	4996.3	0.00	0.264	-0.00	-1.373	
25	.97	26.43 24.35	445072.4 411482.6	-5.58 -4.70	-0.349 -0.343	-4.22 -3.62	-1.541 -1.545	
	2.65	22.97	388133.3	-4.14	-0.340	-3.23	-1.551	
20	.86	21.21	357438.3	-3.43 -2.87	-0.332 -0.325	-2.75 -2.35	-1.554 -1.558	
	7.28 7.63	19.65 17.84	330466.3 302060.5	-2.87 -2.33	-0.325 -0.315	-1.98	-1.570	
15	5.96	16.21	273512.1	-i.85	-0.306	-1.63	-1.577 -1.591	
	1.86	15.14 13.56	254612.7 229023.3	-1.61 -1.29	-0.306 -0.304	-1.43 -1.16	-1.591 -1.596	
	3.36 2.05	12.13	206471.9	-1.06	-0.307	-0.95	-1.613	
10	0.86	10.98	186138.1	-0.89 -0.64	-0.314 -0.325	-0.78 -0.54	-1.628 -1.622	
	7.07 7.12	9.31 7.17	155410.2 122031.0	-0.43	-0.355	-0.33	-1.599	
3	3.97	3.92	67984.5	-0.16	-0.433 -0.453	-0.10 -0.03	-1.560 -1.791	
	2.34	2.26 99.99	40151.5 999.99	-0.05 00.49	-0.453 999.99	-0.03 99.99	-17: 	
99.								

++DATA FI	LE: SIS15	++DATE:20-JAN-87				
FIRSY						
VFREE	VLASER	REYNLI	RFOR	CFOR	RMOH	CMOM
(FT/SEC)	(FT/SEC)		(LB)		(INLB)	4 455
4.15	4.31	71049.2	-0.12	-0.292	-0.08	-1.155
6.01	5.93	102985.0	-0.25	-0.293	-0.18	-1.206
7.49	7.71	128431.1	-0.41	-0.304	-0.29	-1.298 -1.393
9.38	9.55	160675.3	-0.68	-0.325	-0.50	
12.33	12.55	211278.0	-1.80	-0.500	-1.50	-2.432 -2.495
14.83	15.01	254109.6	-2.51	-0.481	-2.23	-2.511
17.02	17.19	291645.5	-3.21	-0.467	-2.95	-2.493
19.84	20.02	339940.2	-4.38	-0.469	-3.98	-2.495
21.65	21.93	371056.1	-5.41	-0.486	-4.75	
23.87	23.92	409114.5	-6.70	-0.495	-5.74	-2.478
26.13	26.21	447815.4	-8.17	-0.504	-6.82	-2.461
27.02	27.25	462980.5	-8.89	-0.513	-7.33	-2.472
26.90	27.01	460947.8	-8.75	-0.510	-7.23	-2.460
26.90	27.04	460981.6	-8.79	-0.512	-7.25	-2.469
26 .89	27.12	460830.3	-8.78	-0.511	-7.24	-2.464
26.88	27.15	460623.0	-8.73	-0.509	-7.19	-2.449
25.43	25.64	435856.4	-7.74	-0.504	-6.50	-2.473
23.65	23.85	405327.5	-6.53	-0.492	-5.62	-2.474 -2.497
22.35	22.65	383094.6	-5.79	-0.488	-5.07 -4.50	-2.506
21.04	21.28	360499.9	-5.04	-0.480	-3.89	-2.508
19.54	19.82	334808.8	-4.23	-0.467	-3.24	-2.540
17.73	17.94	303831.4	-3.42	-0.459	-2.68	-2.525
16.17	16.20	277185.0	-2.84	-0.457 -0.466	-2.12	-2.500
14.46	14.53	247770.5	-2.31		-1.68	-2.490
12.91	13.11	221173.6	-1.90	-0.481	-1.24	-2.468
11.14	11.27	190968.7	-1.50	-0.508 -0.529	-0.92	-2.398
9.74	9.80	166865.0	-1.19	-0.557	-0.60	-2.342
7.91	8.07	135578.5	-0 .83 -0.57	-0.583	-0.38	-2.306
6.41	6.51	109789.1 78785.0	-0.34	-0.670	-0.19	-2,256
4.60	4.84	45785.3	-0.12	-0.676	-0.02	-0.825
2.67	2.85	82206.7	-0.12	-0.413	-0.11	-1.169
4.80	5.01 6. 65	110790.0	-0.36	-0.367	-0.22	-1.274
6.46 8.33	8.51	142721.7	-0.93	-0.5 63	-0.65	-2.319
9.83	9.93	168399.3	-1.23	-0.535	-0.93	-2.363
11.48	11.62	196660.2	-1.57	-0.503	-1.28	-2.402
12.96	13.13	222049.1	-1.97	-0.493	-1.69	-2.485
14.47	14.68	248060.4	-2.39	-0.479	-2.12	-2.496
16.03	16.27	274769.1	-2.88	-0.471	-2.63	-2.520
17.70	17.92	303296.9	-3.44	-0.463	-3.20	-2.516
19.45	19.67	333266.7	-4.26	-0.474	-3.85	-2.505
20.80	20.78	356390.3	-4.96	-0.484	-4.38	-2.497
22.61	22.29	387404.3	-5,96	-0.492	-5.14	-2.477
24.04	24.18	411911.2	-6.79	-0.495	-5.79	-2.470
26.20	26.39	448927.8	-8.23	-0.5 05	-6.86	-2.462
27.01	27.15	462944.7	-8.89	-0.513	-7.30	-2.464
27.02	27.32	462980.5	-8.90	-0.514	-7.31	-2.465
27.01	27.26	462947.7	-8.92	-0.515	-7.31	-2,465
999.99	999.99	959.99	999.99	999 .99	999.99	599.59
999.99						

++DATA FI	LE: 25151	5 ++DATE:	21-JAN-87			
SECOND RUN		ING TO FIND	HYSTERISI	S LOOF		
VFREE	VLASER	REYNLD	REOR	CFOR	RMOM	CMOM
(FT/SEC)	(FT/SEC)		(LB)		(INLB)	
3.55	3.43	60862.0	-0.07	-0.247	-0.05	-1.013
3.61	3.61	61891.3	-0.08	-0.259	-0.06	-1.068
4.32	4.34	74081.2	-0.11	-0.259	-0.08	-1.096
4.93	4.96	84511.0	-0.16	-0.273	-0.11	-1.161
5.70	5.67	97671.1	-0.40	-0.525	-0.30	-2.247
6.26	6.32	107229.9	-0.49	-0.529	-0.36	-2.273
6.95	7.04	119023.2	-0.61	-0.530	-0.45	-2.289
7.55	7.73	129374.5	-0.72	-0.530	-0.53	-2.307
8.21	8.51	140637.2	-0.84	-0.526	-0.63	-2.313
8.81	9.14	150936.5	-0.96	-0.522	-0.74	-2.342
9.67	9.63	165710.0	-1.15	-0.517	-0.90	-2.372
11.45	11.57	196220.2	-1.56	-0.503	-1.30	-2.444
12.87	13.03	220569.0	-1.93	-0.491	-1.67	-2.479
15.10	15.23	258716.6	-2.56	-0.474	-2.32	-2.510
17.29	17.53	296274.1	-3.28	-0.462	-3.09	-2.542
19.54	19.82	334786.4	-4.30	-0.475	-3.93	-2.534
21.75	21.96	372718.9	-5.49	-0.489	-4.80	-2.500
21.73	21.96	372461.9	-5.49	-0.490	-4.80	-2.500
23.62	23.91	404868.7	-6.74	-0.509	-5.64	-2.490
26.53	26.80	454682.2	-8.76	-0.524	-7.07	-2.473
24.76	25.01	424250.2	-7.52	-0.517	-6.18	~2.482
22.03	22.32	377594.4	-5.72	-0.496	-4.89	-2.480
20.46	20.70	350647.3	-4.B4	-0.487	-4.23	-2.487
18.82	19.00	322458.2	-4.00	-0.476	-3.60	~2.505
16.70	16.88	286133.6	-3.05	-0.460	-2.85	-2.517
14.61	14.82	250382.0	-2.34	-0.463	-2.17	-2.498
12.77	12.98	218882.5	-1.84	-0.475	-1.62	-2.449
12.21	12.30	209214.2	-1.69	-0.479	-1.47	-2.431
11.46	11.56	196468.5	-1.52	-0.489	-1.28	~2.399
10.93	11.03	187254.4	-1.41	-0.496	-1.15	-2.382
10.37	10.38	177639.5	-1.28	-0.504	-1.04	-2.373
9.58	9.63	164257.0	-1.10	-0.704	-(1	-2.316
9.09	9.28	155703.5	-0.98	-0.501	-0.76	-2.277
8.39	8.71	143858.1	-0.87	-0.517	-0.65	-2.269
7.75	7.88	132881.6	-0.77	-0.536	-0.54	-2.214
7.17	7.26	122926.6	-0.67	-0.546	-0.45	~2.143
6.44	5.48	110399.5	-0.55	-0.563	-0.35	-2.052
5.69	5.71	97445.6	-0.45	-0.588	-0.26	~1.957
5.22	5.29	89416.2	-0.40	-0.614	-0.21	-1.893
4.44	4.43	76026.8	-0.31	-0.674	-0.14	~1.707
3.80	3.82	65070.2	-0.25	-0.732	-0.08	~1.383
3.38	3.39	57929.3	-0.21	-0.787	-0.05	-1.133
2.73	2.74	46773.6	-0.16	-0.928	-0.01	-0.491
999.99	999.99	999.9	999.99	999.99	999.99	999.99
99.99						

++DATA FIL	.E: 351515	++DATE:2	1 - IAN-R	7		
STARTING AT				ZERO SHIFTS		
VFREE	VLASER	REYNLD	REOR	CFOR	RMOM	CMOM
(FT/SEC)	(FT/SEC)		(LE)		(INLB)	
12.86	13.00	220469.4	-1.80	-0.457	-1.67	-2.486
12.21	12.41	209292.2	-1.64	-0.464	-1.52	-2.504
11.48	11.64	196586.1	-1.46	-0.466	-1.32	-2.476
10.89	10.94	186622.7	-1.34	-0.475	-1.20	-2.492
10.25	10.31	175674.7	-1.19	-0.475	-1.06	-2,475
9.59	9.58	164307.3	-1.03	-0.473	-0.91	-2.439
9.01	9.24	154337.0	~0.90	-0.467	-0.90	-2.421
8.43	8.79	144422.8	-0.80	-0.476	-0.70	-2.415
7.61	7.78	130478.5	~0.68	-0.491	-0.56	-2.363
7.06	7.16	120758.5	-0.59	-0.5 03	-0.47	-2.341
6.40	6.49	109556 .9	-0.50	-0.512	-0.39	-2.319
5.74	5.79	98396.8	-0.41	-0.523	-0.30	-2,278
5.23	5.26	89639.3	-0.34	-0.52 3	-0.25	-2.228
4.38	4.34	75132.7	-0.25	-0.540	-0.17	-2.162
3.71	3.71	63564.8	-0.17	-0.533	-0.11	-2.047
3.33	3.33	57010.2	-0.14	-0.549	-0.09	-1.998
2.62	2.64	44861.8	-0.09	-0.550	~0.05	-1.715
1.70	1.65	29157.4	~0.03	-0.495	-0.00	-0.106
1.48	1.41	25362.9	-0.03	-0.493	0.00	0.193
0.63	0.26	10714.4	-0.01	-1.584	0.01	3.619
1.10	0.84	18840.4	-0.02	-0.562	0.00	0.760
2.04	2.05	35007.0	-0.03	-0.315	-0.01	-0.524
2.44	2.53	41774.1	-0.04	-0.263	-0.02	-0.646
2.87	2.95	49248.6	-0.05	-0.264	-0.02	-0.740
2.87	2.90	49212.9	-0.05	-0.273	-0.03	-0.776
3.55	3.64	60877.3	-0.08	-0.269	-0.05	-0.923
3.81	3.92	65272.3	-0.09	-0.275	-0.06	-0.996
4.45	4.58	76184.1	-0.12	-0.266	~0.08	-1.006
5.19	5.32	88984.2	-0.19	-0.290	-0.13	-1.156
5.80	5.90	99364.9	-0.25	-0.308	-0.17	-1.262
6.58	6.67	111843.7	-0.53	-0.51 9	-0.10	-2.264
7.23	7.38	1.3941.2	-0.63	506	-0.49	
7.69	7.87	131831.2	-0.70	-0 .49 7	-0.56	-2.325
8.37	8.64	143463.9	-0.80	-0.481	-0.67	-2.365
9.05	9.29	155140.4	-0.93	-0.480	-0.80	-2.409
9.51	9.58	162943.7	-1.02	-0.474	-0.88	-2.408
10.47	10.58	179478.8	-1.22	-0.468	-1.08	-2.419
10.89	11.04	186671.2	-1.33	-0.471	-1.18	-2.441
11.72	11.91	200849.9	-1.52	-0.467	-1.38	-2.469
12.31	12.42	210932.5	-1.68	-0.467	-1.54	-2.502
12.97	13.15	222325.7	-1.84	-0.460	-1.71	-2.495
12.34	12.55	211472.4	-1.65	-0.456	-1.52	-2.466
11.43	11.62	195929.3	-1.44	-0.465	-1.32	-2.477
10.90	11.08	186853.0	-1.32	-0.468	-1.19	-2.460
10.23	10.32	175308.0	-1.17	-0.471	-1.03	-2.421
9.59	9.63	164295.7	-1.03	-C.473	-0.89	-2.393
8.94	9.18	153232.8	-0.91	-0.478	-0.77	-2.387
8.15	8.30	139725.2	-0.76	-0.482	-0.54	-2.359
7.58	7.71	129829.9	-0.66	-0.481	-0.53	-2.288
7.06	7.15	120978.1	-0.58	-0.489	-0.46	-2.274
6.33	6.43	108540.0	-0.48	-0.509	-0.37	-2.252
5.86 5.17	5.97 5.20	100472.3 88529.5	-0.42 -0.34	-0.518 -0.543	-0.31 -0.23	-2.212 -2.147
7417	~~ · · · · · · · · · · · · · · · · · ·			~	-0.23	~2+19/

ANNA HANNING EXCHANGE OF THE PROPERTY OF THE P

3.23	3.25	55290.4	-0.14	-0.585	-0.07	-1.660
2.56	2.58	43948.9	-0.10	-0.617	-0.03	-1.257
2.54	2.55	43597.5	-0.10	-0.630	-0.03	-1.287
2.54	2.58	43520.4	-0.09	-0.607	-0.03	-1.273
2.52	2.56	43217.6	-0.09	-0.598	-0.03	-1.296
0.29	0.88	4996.5	-0.02	-11.898	0.02	48.725
999.99	999.9	999.99	999.99	999.99	999.99	999.99

TOTAL MELICICAL METALLOCAL PROPERTY PLANTS SOFT PROCESSOR ASSESSOR PROFESSOR PROFESSOR PROFESSOR PROFESSOR PROPERTY PROFESSOR PROFESSOR

++DATA FI			22-JAN-87			
	AT 4 DEGREE			0500	5.MOM	CHOH
VFREE	VLASER	REYNLD	RFOR	CFOR	RMOM	CMOM
(FT/SEC)	(FT/SEC)	4004	(LB)	A 550	(INLE)	4 004
0.40	0.36	6881.4	0.00	0.558	0.00	1.086
3.06	3.17	52367.7	-0.03	-0.134	-0.02	-0.448
4.49	4.73	76952.7	-0.07	-0.145	-0.04	-0.436
5.97	6.37	102307.5	-0.13	-0.150	-0.06	-0.445
7.82	8.13	133936.8	-0.22	-0.150	-0.11	-0.448
8.65	9.05	148286.8	-0.28	-0.155	-0.15	-0.477
9.09	9.38	155 856. 9	-0.31	-0.158	-0.16	-0.485
10.48	10.78	179545.5	-0.41	-0.159	-0.22	-0.492
10.94	11.28	187511.8	-0.44	-0.156	-0.24	-0.488
11.93	12.31	204421.8	-0.54	-0.161	-0.29	-0.503
12.69	13.07	217470.3	-0.63	-0.164	-0.34	-0.516
13.32	13.70	228274.8	~0.67	-0.159	-0.36	-0.499
13.80	14.20	236513.7	-0.73	-0.160	-0.39	-0.506
14.79	15.24	253517.1	-0.85	-0.163	-0.46	-0.516
15.36	15.87	263219.3	-0.91	-0.162	-0.49	-0.514
15.89	16.43	2/2311.2	-0.96	-0.160	-0.52	-0.507
17.01	17.52	291459.2	-1.12	-0.163	-0.61	-0.516
17.52	18.28	300207.3	-1.19	-0.163	-0.64	-0.514
18.10	19.07	310272.3	-1.26	-0.162	-0.68	-0.511
19.24	19.88	329750.4	-1.46	-0.166	-0.79	-0.522
19.84	20.46	340067.2	-1.59	-0.170	-0.86	-0.535
22.50	22.65	385579.3	-1.98	-0.165	-1.06	-0.514
23.22	23.43	397849.9	-2.06	-0.161	-1.10	-0.504
23.88	24.56	409263.3	-2.22	-0.164	-1.19	-0.515
25.28	25.92	433205.1	-2.50	-0.165	-1.34	-0.518
26.07	26.52	446696.8	-2.68	-0.166	-1.44	-0.523
26.95	27.70	461938.3	-2.85	-0.165	-1.53	-0.519
26.65	27.24	456635.7	-2.77	-0.164	-1.50	-0.521
24.51	25.18	420112.6	-2.33	-0.163	-1.27	-0.522
0.75	-0.41	12917.4	0.06	4.430	-0.01	-2.619
999,99	9.9	9.9	9.9	a. 430	9. 9	4.¢
99.99	7.7	7 4 7	7 • 7	~ • 7	7 • 7	* • #

++DATA FI	ILE: 4DN1F	t+DATE:2	2-JAN-87			
FIRST RUN	DOWN AT 4	DEGREES WITH	ROUNDED	SAIL		
VFREE	VLASER	REYNLD	REOR	CF OR	RMOM	CMOM
(FT/SEC)	(FT/SEC)		(LB)		(INLB)	
0.23	0.27	3933.6	0.00	0.996	0.00	5.814
26.27	27.14	450125.4	-2.74	-0.167	-1.45	-0.517
24.72	25.53	423711.3	-2.41	-0.166	-1.28	-0.514
23.63	24.33	404952.2	-2.13	-0.161	-1.13	-0.499
21.79	22.42	373410.0	-1.84	-0.163	-0.98	-0.510
20.64	21.17	353683.7	-1.65	-0.163	-0.88	-0.511
19.58	20.95	335535.1	-1.49	-0.163	-0.BO	-0.513
18.42	19.28	315709.9	-1.31	-0.163	-0.71	-0.512
17.37	17.81	297621.9	-1.13	-0.158	-0.61	-0.496
16.39	16.80	280842.8	-1.04	-0.164	-0.56	-0.518
15.89	15.90	272278.3	-0.96	-0.161	-0.52	-0.510
15.34	15.54	262892.6	-0.90	-0.161	-0.49	-0.510
14.91	15.26	255549.0	-0.84	-0.160	-0.46	-0.506
14.42	14.77	247199.6	-0.78	-0.159	-0.43	-0.505
13.39	13.64	229481.5	-0.67	-0.157	-0.37	-0.503
12.49	12.90	214096.6	-0.59	-0.160	-0.33	-0.513
11.80	12.17	202291.1	-0.53	-0.160	-0.29	-0.514
11.23	11.54	192387.7	-0.47	-0.158	-0.26	-0.510
9.84	10.04	168592.5	-0.37	-0.160	-0.20	-0.518
9.18	9.61	157279.0	-0.31	-0.156	-0.17	-0.510
8.55	9.21	146576.5	-0.26	-0.150	-0.15	-0.498
7.89	7.93	135154.8	-0.22	-0.148	-0.12	-0.488
7.02	7.15	120244.5	-0.17	-0.148	-0.10	-0.495
5.87	6.01	100586.8	-0.12	-0.143	-0.07	-0.495
5.71	5.93	97854.5	-0.10	-0.135	-0.06	-0.469
4.97	5.19	85136.6	-0.07	-0.119	-0.05	-0.464
3.55	3.57	60807.6	-0.02	-0.072	-0.02	-0.329
2.32	2.39	39774.1	0.00	0.003	-0.01	-0.322
0.66	0. '	11244.9	0.03	2.674	0.00	2.439
999.94	9.9	9.9	9.9	9.9	9.9	9.9
နှင့် (ခဲ မှ	· · ·					

++DATA FI	LE: 9UP1R	++DATE:	22-JAN-8	37		
FIRST RUN	UP AT 9 TIE	GREES WITH	ROUNDED	SAIL		
VFREE	VLASER	REYNLD	REOR	CFOR	RMOM	CMOM
(FT/SEC)	(FT/SEC)		(LE)		(INLB)	
0.29	0.29	5029.9	0.00	0.667	0.00	2.032
2.18	2.32	37385.0	-0.02	-0.179	-0.01	-0.533
4.41	4.73	75498.7	-0.15	-0.315	-0.08	-1.060
5.40	5.62	92468.2	-0.27	-0.386	-0.15	-1.273
5.44	5.71	93162.4	-0.28	-0.397	-0.16	-1.327
6.93	7.19	118760.0	-0.44	-0.389	-0.25	-1.296
7.38	7.68	126438.9	-0.50	-0.384	-0.28	-1.279
7.96	8.28	135439.0	-0.58	-0.387	-0.33	-1.291
8.73	9.08	149646.1	-0.70	-0.387	-0.40	-1.287
9.36	9.63	160421.6	-0.79	-0.382	-0.45	-1.273
10.07	10.38	172613.9	-0.93	-0.386	-0.53	-1.288
11.00	11.35	188453.9	-1.09	-0.380	-0.62	-1.271
12.05	12.43	2064/3.0	-1.33	-0.385	-0.76	-1.282
12.92	13.35	221338.3	-1.51	-0.382	-0.86	-1.270
13.96	14.37	239217.9	-1.77	-0.382	-1.00	-1.268
15.05	15.46	257861.6	-2.07	-0.385	-1.18	-1.283
16.06	16.46	275224.4	-2.35	-0.385	-1.34	-1.280
17.15	17.61	293901.3	-2.70	-0.386	-1.54	-1.285
18.90	19.20	323828.3	-3.27	-0.385	-1.86	-1.283
19.41	19.95	332558.6	-3.44	-0.385	-1.96	-1.283
20.61	21.09	353272.3	-3.90	-0.397	-2.22	-1.288
21.86	22.35	374549.2	-4.39	-0.387	-2.50	-1.289
23.25	19.62	398511.9	-4.99	-0.388	-2.84	-1.294
24.60	19.52	421637.1	-5.59	-0.389	-3.18	-1.295
26.14	7.78	448020.9	-6.33	-0.390	-3.60	-1.298
26.42	27.20	452767.3	-6.34	-0.383	-3.63	-1.280
25.01	25.54	428577.9	-5.66	-0.381	-3.24	-1.277
0.78	1.11	13443.6	0.04	2.812	-0.01	-4.479
999.99	9.9	9.9	9.9	9.9	9.9	9.9
99.99						

Reported September Septemb

++DATA FI	LE: 9DN1F	++DATE:2	2-JAN-87			
FIRST RUN	DOWN AT 9	DEGREES WITH	ROUNDED	SAIL		
VFREE	VLASER	REYNLD	REOR	CFOR	RHOM	CMOM
(FT/SEC)	(FT/SEC)		(LB)		(INLB)	
0.15	0.15	2574.3	0.00	3.652	0.00	9.049
26.32	27.03	450976.4	-6.39	-0.389	-3.61	-1.285
25.09	25.70	429894.4	-5.77	-0.386	-3.27	-1.280
23.85	24.39	408715.3	-5.19	-0.384	-2.95	-1,277
22.51	23.13	385727.5	-4.63	-0.385	-2.64	-1.281
21.33	20.68	365626.7	-4.17	-0.386	-2.38	-1.286
20.17	20.39	345629.8	-3.73	-0.387	-2.13	-1.292
19.07	19.71	326787.1	-3.32	-0.385	-1.90	-1.286
17.27	17.68	295935.6	-2.71	-0.383	-1.55	-1.282
16.39	16.78	280939.9	-2.44	-0.383	-1.40	-1.282
15.36	15.60	263187.2	-2.13	-0.381	-1.22	-1.278
13.92	14.21	238475.9	-1.25	-0.383	-1.01	-1.286
12.53	12.79	214681.1	-1.40	-0.375	-0.81	-1.266
11.22	11.53	192228.1	-1.14	-0.381	-0.66	-1.291
9.85	10.07	168846.2	-0.87	-0.376	-0.50	-1.279
8.54	8.77	146437.8	-0.65	-0.373	-0.38	-1.286
7.50	7.73	128572.9	-0.21	-0.380	-0.30	-1.308
4.08	6.25	104142.4	-0.33	-0.372	-0.20	-1.317
4.99	5.13	85455.8	-0.21	-0.351	-0.13	-1.320
0.72	0.92	12350.4	0.02	1.250	0.00	0.421
999.99	9.9	9.9	9.9	9 .9	9 . 9 .	9.9
00 00						

ALTIATA ET	LE: 15UP1	e aanate:	3-360-87			
TTURIN FL	LE AT 15 TH	EGREES WITH				
VFREE	VLASER	REYNLD	REDR	CFOR	RMOM	CMOM
(FT/SEC)	(FT/SEC)		(LB)		(INLE)	
0.13	1.22	2258.8	0.01	13.663	0.00	11.751
3.72	-1.14	63831.8	-0.08	-0.247	~0.05	-0.815
6.14	~2.85	105287.5	-0.25	-0.281	~0.15	-1.037
7.13	0.96	122109.5	0.34	-0.185	-0.22	-1.062
7.20	7.18	123317.4	-0.38	-0.307	-0.24	-1.158
9.00	9.26	154252.5	-1.02	-0.532	-0.63	-1.914
10.12	9.80	173443.4	-1.30	-0.535	-0.80	-1.923
11.23	11.01	192450.4	-1.50	-0.536	-0.99	-1.933
12.47	12.61	213637.2	-1.99	-0.539	-1.23	-1.942
13.49	13.65	231198.3	-2.32	-0.537	-1.43	-1.935
15.08	15.24	253461.8	-2.93	-0.543	-1.80	-1.950
16.11	16.27	275126.3	-3.32	-0.539	-2.04	-1.938
17.23	17.46	295222.8	-3.77	-0.539	-2.33	-1.931
18.36	18.54	314647.2	-4.31	-0.538	-2.64	-1.931
19.40	19.62	332544.5	-4.82	-0.540	-2.96	-1.934
20.59	20.62	352879.8	-5.41	-0.537	-3.32	-1.928
21.81	21.90	373597.4	-6.05	-0.536	-3.71	-1.923
22.51	22.62	385799.1	-6.49	-0.540	-3.99	-1.938
23.89	24.05	409390.3	-7.34	-0.542	-4.50	-1.941
24.59	24.70	421432.9	-7.1	-0.537	-4.73	-1.926
25.31	25.55	433674.7	-8.19	-0.539	-5.03	-1.934
26.15	26.13	448192.5	-8.72	-0.537	-5.35	-1.925
26.53	25.60	454592.9	-8.71	-0.534	-5.49	-1.921
0.93	-4.09	15971.7	0.02	1.130	-0.00	-1.058
999.99	9.9	9.9	9.9	9.9	9.9	9.9
99.99						

++DATA F	ILE: 150N11	R ++DATE:	23 - JAN-87			
FIRST RUN	DOWN AT 15	DEGREES WI	TH ROUNDED	SAIL		
VFREE	VLASER	REYNLD	REOR	CFOR	RMOM	CHOM
(FT/SEC)	(FT/SEC)		(LE)		(INLB)	
0.11	-2.62	1940.3	0.01	24.369	0.00	32.985
26.65	27.11	456762.9	-9.10	-0.540	-5.59	-1.936
26.15	26.48	448204.5	-8.82	-0.543	-5.42	-1.950
24.79	25.11	421598.5	-7.62	-0.536	-4.81	-1.927
23.62	23.90	404786.9	-2.08	-0.534	-4.36	-1.923
23.03	23.39	394589.2	-6.77	-0.538	-4.17	-1.936
22.38	22.69	383508.3	-6.39	-0.538	-3.94	-1.937
21.40	21.69	366751.8	-5.83	~0.536	-3.60	-1.938
20.80	21.01	358475.3	-5.50	-0.536	-3.40	-1.933
19.68	20.01	337297.8	-4,96	-0.539	-3.07	-1.951
18.69	18.98	320334.6	-4.47	-0.539	-2.77	-1.949
18.09	18.32	309954.7	-4.17	-0.537	-2.59	-1.948
17.57	17.89	301084.0	-3,92	-0.535	-2.43	-1.940
15.55	15.83	265543.1	-3.07	-0.534	-1.91	-1.948
14.52	14.77	249903.7	-2.67	-0.533	-1.66	-1.944
13.43	13.63	230079.1	-2.28	-0.532	-1.43	-1.952
12.15	12.28	208230.2	-1.84	-0.525	-1.16	-1.936
11.19	11.32	191829.1	-1.56	-0.525	-0.99	-1.945
10.30	10.47	176580.4	-1.31	-0.519	-0.83	-1.933
9.36	9.53	160462.6	-1.08	-0.517	-0.59	-1.934
8.54	8.69	146278.2	-0.88	-0.509	-0.57	-1.917
. 7.60	7.74	130255.9	-0.68	~0.495	-0.45	-1.897
6.51	6.63	111556.1	-0.39	-0.380	-0.27	-1.544
5.19	5.27	89028.0	-0.15	-0.22 8	-0.12	-1.055
4.45	1.49	76201.9	-0.10	~0.208	+0.09	-1.077
0.68 999.99	0.71	11568.0	0.04	3.756	0.00	1.១៩៩
999.99	9.9	9.9	9.9	9.9	9.9	9.9

APPENDIX 8

DATA FILE: SORF35 DATE:27-FEB-87
.35° STAND-OFF
YAW ANGLE=14.0 XM FROM BOW=12.92

XM	YM	ZM	ROTATION	VLASER	VFREE	RATIO	PERCENT
12.9200	0.0000	1.6975	0.0	0.982	25.043	0.0392	
12.9200	0.1332	1.6923	4.5	0.723	25.010	0.0289	
12.9200	0.2655	1.6766	9.0	0.652	25.020	0.0261	
12.9200	0.3963	1.6506	13.5	0.485	25.010	0.0194	
12.9200	0.5246	1.6144	18.0	0.439	25.004	0.0175	
12.9200	0.6496	1.5683	22.5	0.326	25.016	0.0130	
12,9200	0.7706	1.5125	27.0	0.173	25.017	0.0059	
12.9200	0.8869	1.4474	31.5	-0.114	25.02 <i>7</i>	-0.0046	
12.9200	0.9978	1.3733	36.0	0.044	25.024	0.0018	
12.9200	1.1024	1.2908	40.5	0.633	25.053	0.0253	
12.9200	1.2003	1.2003	45.0	1.199	25.055	0.0479	
12.9200	1.2908	1.1024	49.5	1.039	25.068	0.0414	
12.9200	1.3733	0.9978	54.0	1.264	25.070	0.0504	
12.9200	1.4474	0.8869	58.5	1.345	25.079	0.0536	
12.9200	1.5125	0.7706	63.0	0.727	25.102	0.0290	
12.9200	1.5683	0.6496	67.5	0.401	25.104	0.0160	
12.9200	1.6144	0.5246	72.0	0.273	25.118	0.0109	
12.9200	1.6506	0.3963	76.5	1.192	25.130	0.0474	
12.9200	1.6766	0.2655	81.0	0.546	25.149	0.0217	
12.9200	1.6923	0.1332	85.5	0.654	25.157	0.0260	
12.9200	1.6975	0.0000	90.0	0.459	25.173	0.0182	
12.9200	1.6923	-0.1332	94.5	0.224	25.189	0.0089	
12.9200	1.6766	-0.2655	99.0	-0.019	25.203	-0.0008	
12.9200	1.6506	-0.3963	103.5	-0.224	25.198	-0.0089	
12.9200	1.6144	-0.5246	108.0	-0.506	25.203	-0.0201	
12.9200	1.5683	-0.6496	112.5	-0.615	25.205	-0.0244	
12.9200	1.5125	-0.7706	117.0	-0.759	25.206	-0.0301	
12.9200	1.4474	-0.8859	121.5	-0.813	25.199	-0.0323	
12.9200	1.3733	-0.9978	126.0	-0.820	25.211	-0.0349	
12.9200	1.2908	-1.1024	130.5	-0.947	25.221	-0.0376	
12.9200	1.2003	-1.2003	135.0	-0.903	25.218	-0.0358	
12.9200	1.1024	-1.2908	139.5	-0.925	25.218	-0.0367	
12.9200	0.9978	-1.3733	144.0	-0.850	25.219	-0.0337	
12.9200	0.8869	-1.4474	148.5	-0.680	25.213	-0.0270	
12.9200	0.7706	-1.5125	153.0	-0.565	25.216	-0.0224	
12.9200	0.6496	-1.5683	157.5	-0.421	25.215	-0.0167	
12.9200	0.5246	-1.6144	162.0	-0.206	25.211	-0.0082	
12.9200	0.3963	-1.6506	166.5	-0.057	25.189	-0.0023	
12.9200	0.2655	-1.6766	171.0	0.239	25.188	0.0095	
12.9200	0.1332	-1.6923	175.5	0.445	25.193	0.0177	
12.9200	0.0000	-1.6975	180.0	0.795	25.182	0.0316	
12.9200	-0.1332	-1.6923	184.5	1.013	25.186	0.0402	
12.9200	-0.2655	-1.6766	189.0	1.259	25.192	0.0500	
12.9200	-0.3963	-1.6506	193.5	1.527	25.194	0.0८06	
12,9200	-0.5246	-1.6144	198.0	1.776	25.198	0.0713	
12.9200	-C.6496	-1.5683	202.5	2.042	25.202	0.0310	
12.9200	-0.7706	-1.5125	207.0	2.287	25.201	0.0908	
12.9200	-0.8869	-1.4474	211.5	2.503	25.204	0.0993	
12,9200	-0.9978	-1.3733	216.0	2.756	25.038	0.1101	
12.9200	-1.1024	-1.2908	220.5	2.977	25.037	0.1199	
12.9200	-1.2003	-1.2003	225.0	3.159	25.029	0.1262	
12.9200	-1.2908	-1.1024	229.5	3.323	25.038	0.1327	
12.9200	-1.3733	-0.9978	234.0	3.562	25.018	0.1424	

12.9200	-1.4474	-0.8869	238.5	3.664	25.025	0.1464
12.9200	-1.5125	-0.7706	243.0	3.784	25.030	0.1512
12.9200	-1.5683	-0.6496	247.5	3.848	25.029	0.1537
12.9200	-1.6144	-0.5246	252.0	3.919	25.027	0.1566
12.9200	-1.6506	-0.3963	256.5	3.996	25.031	0.1596
12.9200	-1.6766	-0.2655	261.0	4.073	25.032	0.1627
12.9200	-1.6923	-0.1332	265.5	4.064	25.027	0.1624
12.9200	-1.6975	-0.0000	270.0	4.070	25.027	0.1626
12.9200	-1.6923	0.1332	274.5	4.052	25.026	0.1519
12.9200	-1.6766	0.2655	279.0	3.963	25.034	0.1583
12.9200	-1.6506	0.3963	283.5	3.825	25.035	0.1528
12.9200	-1.6144	0.5246	288.0	3.730	25.039	0.1490
12.9200	-1.5683	0.6496	292.5	3.721	25.033	0.1487
12.9200	-1.5125	0.7706	297.0	3.648	25.051	0.1456
12.9200	-1.4474	0.8869	301.5	3.622	25.046	0.1446
12.9200	-1.3733	0.9978	306.0	3.58 5	25.049	0.1431
12.9200	-1.2908	1.1024	310.5	3.599	25.052	0.1437
12.9200	-1.2003	1.2003	315.0	3.708	25.044	0.1481
12.9200	-1.1024	1.2908	319.5	3.847	25.042	0.1536
12.9200	-0.9978	1.3733	324.0	4.163	25.037	0.1663
12.9200	-0.8869	1.4474	328.5	4.502	25.050	0.1797
12.9200	-0.7706	1.5125	333.0	4.137	25.042	0.1652
12.9200	-0.6496	1.5683	337.5	3.537	25.046	0.1412
12.9200	-0.5246	1.6144	342.0	2.785	25.049	0.1112
12.9200	-0.3963	1.6506	346.5	2.384	25.052	0.0952
12.9200	-0.2655	1.6766	351.0	1.816	25.056	0.0725
12.9200	-0.1332	1.6923	355.5	1.774	25.048	0.0708
12.9200	0.0000	1.6975	360.0	0.991	25.051	0.0396
999.99	99 9.99	999.99	999 .9	999.9	999.99	999.99

COCCUPANT PRESERVO N PROTOCON PROTOCON PORTOCON

SCOOL STORES OF STREET, STREET,

DATA FILE: SORIPB DATE:26-FEB-87
OUTSIDE BODY VORTICES, INSIDE TIP VORTEX
YAW ANGLE=14.0 XM FROM BOW=12.92

XM	YH	ZM	ROTATION	VLASER	VFREE	RATIO	PERCENT
12.9200	0.0000	2.3475	0.0	1.363	24.992	0.0545	
12.9200	0.1842	2.3403	4.5	1.048	25.004	0.0419	
12.9200	0.3672	2.3186	9.0	0.773	24.997	0.0309	
12.9200	0.5480	2.2826	13.5	0.579	25.003	0.0232	
12.9200	0.7254	2.2326	18.0	0.310	25.011	0.0124	
12.9200	0.8983	2.1688	22.5	0.128	25.018	0.0051	
12.9200	1.0657	2.0916	27.0	-0.012	25.051	-0.0005	
12.9200	1.2266	2.0016	31.5	0.032	25.087	0.0013	
12.9200	1.3798	1.8992	36.0	-0.051	25.116	-0.0020	
12,9200	1.5246	1.7851	40.5	0.038	25.134	0.0015	
12.9200 12.9200	1.6599	1.6599	45.0	0.168	25.173	0.0067	
	1.7851	1.5246	49.5	0.268	25.188	0.0106	
12.9200	1.8992	1.3798	54.0	0.754	25.198	0.0299	
12.9200 12.9200	2.0016	1.2266	58.5	1.379	25.207	0.0547	
12.9200	2.0916 2.1688	1.0657	63.0	2.828	25.210	0.1122	
12.9200	2,2326	0.8983	67.5	4.694	25.219	0.1861	
12.9200	2.2826	0.72 54 0.5480	72.0 76.5	5.756 4.357	25.229	0.2281	
12.9200	2.3186	0.3450	81.0	1.978	25.237	0.1726	
12.7200	2.3403	0.1842	85.5	0.817	25.261 25.275	0.0783 0.0323	
12.9200	2.3475	0.0000	90.0	0.105	25.274	0.0323	
12.9200	2.3403	-0.1842	94.5	-0.038	25.278	-0.0015	
12.9200	2.3186	-0.3672	99.0	-0.322	25.285	-0.0127	
12.9200	2.2826	-0.5480	103.5	-0.440	25.281	-0.0174	
12.9200	2.2326	-0.7254	108.0	-0.504	25.296	-0.0199	
12.9200	2.1688	-0.8983	112.5	-0.501	25.304	-0.0198	
12.9200	2.0916	-1.0657	117.0	-0.509	25.295	-0.0201	
12.9200	2.0016	-1.2266	121.5	-0.529	25.303	-0.0209	
12.9200	1.8992	-1.3798	126.0	-0.530	25.327	-0.0209	
12.9200	1.7851	-1.5246	130.5	-0.556	25.318	-0:0220	
12.9200	1.6599	-1.6599	135.0	-0.519	25.323	-0.0205	
12.9200	1.5246	-1.7851	139.5	-0.442	25.317	-0.0175	
12.9200	1.3798	-1.8992	144.0	-0.405	25.310	-0.0160	
12.9200	1.2266	-2.0016	148.5	-0.339	25.305	-0.0134	
12.9200	1.0657	-2.0916	153.0	-0.210	25.304	-0.0083	
12.9200	0.8983	-2.1688	157.5	-0.174	25.313	-0.0069	
12.9200	0.7254	-2.2326	162.0	-0.076	25.297	-0.0030	
12.9200	0.5480	-2.2824	166.5	0.082	25.284	0.0033	
12.9200	0.3672	-2.3186	171.0	0.234	25.283	0.0092	
12.9200 12.9200	0.1842	-2.3403	175.5	0.333	25.288	0.0132	
12.9200	0.0000	-2.3475	180.0	0.473	25.290	0.0187	
12.9200	-0.1842 -0.3672	-2.3403	184.5	0.505	25.123	0.0241	
		-2.3186	189.0	0.705	25.107	0.0281	
12.9200 12.9200	-0.5480 -0.7254	-2.2826 -2.2326	193.5 198.0	0.821	25.108	0.0327	
12.9200	-0.7254	-2.2326	202.5	1.000	25.100 25.101	0.0399	
12.9200	-1.0557	-2.0916	207.0	1.109	25.101	0.0442 0.0497	
12.9200	-1.2266	-2.0015	211.5	1.374	25.098	0.0497	
12.9200	-1.3798	-1.8992	216.0	1.474	25.097	0.0587	
12.9200	-1.5246	-1.7851	220.5	1.613	25.096	0.0543	
12.9200	-1.6599	-1.6599	225.0	1.620	25.089	0.0646	
12.9200	-1.7851	-1.5246	229.5	1.691	25.097	0.0574	
12.9200	-1.8992	-1.3798	234.0	1.863	25.079	0.0743	

12.9200	-2.0016	-1.2266	238.5	1.909	25.092	0.0761
12.9200	-2.0916	-1.0657	243.0	1.908	25.095	0.0760
12.9200	-2.1688	-0.8983	247.5	2.025	25.089	0.0807
12.9200	-2.2326	-0.7254	252.0	2.106	25.099	0.0839
12.9200	-2.2826	-0.5480	256.5	2.078	25.085	0.0828
12.9200	-2.3186	-0.3672	261.0	2.087	25.091	0.0832
12.9200	-2.3403	-0.1942	265.5	2.117	25.092	0.0844
12.9200	-2.3475	-0.0000	270.0	2.042	25.073	0.0814
12.9200	-2.3403	0.1842	274.5	2.127	25.076	0.0848
12.9200	-2.3186	0.3672	279.0	2.163	25.082	0.0862
12.9200	-2.2826	0.5480	283.5	2.189	25.089	0.0872
12.9200	-2.2326	0.7254	288.0	2.146	25.093	0.0855
12.9200	-2.1688	0.8983	292.5	2.145	25.086	0.0855
12.9200	-2.0916	1.0657	297.0	2.102	25.090	0.0838
12.9200	-2.0016	1.2266	301.5	2.073	25.085	0.0826
12.9200	-1.8992	1.3798	306.0	2.113	25.099	0.0842
12.9200	-1.7851	1.5345	310.5	2.203	25.113	0.0877
12.9200	-1.6599	1.6599	315.0	2.299	25.111	0.0915
12.9200	-1.5246	1.7851	319.5	2.401	25.109	0.0956
12.9200	-1.3798	1.8992	324.0	2.395	25.119	0.0953
12.9200	-1.2266	2.0016	328.5	2.547	25.116	0.1014
12.9200	-1.0657	2.0916	333.0	2.546	25.126	0.1013
12.9200	-0.8984	2.1688	337.5	2.463	25.121	0.0980
12.9200	-0.7254	2.2326	342.0	2.345	25.125	0.0933
12.9200	-0.5480	2.2826	346.5	2.237	25.133	0.0890
12.9200	-0.3672	2.3186	351.0	1.922	25.128	0.0765
12.9200	-0.1842	2.3403	355.5	1.578	25.112	0.0628
12.9200	0.0000	2.3475	360.0	1.391	25.121	0.0554
999.99	999.99	999.90	999.9	000 0	000.00	000 00

DATA FILE: SOUTB DATE:25-FER-87
TO RECHECK ZERO
YAW ANGLE=14.0 XM FROM BOW=12.92

хм	YM	ZH	ROTATION	VLASER	VFREE	RATIO	PERCENT
12.9200	0.0000	3.5665	0.0	0.392	25.051	0.0157	
12.9200	0.2798	3.5555	4.5	0.320	25.034	0.0128	
12.9200	0.5579	3.5226	9.0	0.219	25.009	0.0088	
	0.8326	3.4680	13.5	0.132	24.981	0.0053	
12.9200	1.1021	3.3919	18.0	0.071	25.004	0.0028	
12.9200		3.2950	22.5	-0.063	25.009	-0.0025	
12.9200	1.3648		27.0	-0.236	25.009	-0.0094	
12.9200	1.6192	3.1778	31.5	-0.335	25.021	-0.0134	
12.9200	1.8635	3.0409	36.0	-0.353	25.036	-0.0191	
12.9200	2.0963	2.8854				-0.0262	
12.9200	2.3163	2.7120	40.5	-0.657	25.042		
12.9200	2.5219	2.5219	45.0	-0.814	25.042	-0.0325	
12.9200	2.7120	2.3143	49.5	-0.996	25.044	-0.0398	
12.9200	2.8854	2.0963	54.0	-1.435	25.047	-0.0573	
12.9200	3.0409	1.8635	58.5	-1.894	25.059	-0.0756	
12.9200	3.1778	1.6192	63.0	-2.628	25.053	-0.1049	
12.9200	3.2950	1.3648	67.5	-3.276	25.058	-0.1307	
12.9200	3.3919	1.1021	72.0	-3.451	25.057	-0.1377	
12.9200	3.4680	0.8326	76.5	-3.088	25.051	-0.1233	
12.9200	3.5226	0.5579	81.0	-2.581	25.063	-0.1030	
12.9200	3.5555	0.2798	85.5	-2.127	25.075	-0.0848	
12.9200	3.5665	0.0000	90.0	-1.709	25.071	-0.0682	
12.9200	3.5555	-0.2798	94.5	-1.402	25.083	-0.0559	
12.9200	3.5226	-0.5579	99.0	-1.168	25.089	-0.0466	
12.9200	3.4680	-0.8326	103.5	-0.931	25.095	-0.0371	
12.9200	3.3919	-1.1021	108.0	-0.786	25.105	-0.0313	
12.9200	3.2950	-1.3648	112.5	-0.697	25.102	-0.0278	
12.9200	3.1778	-1.6192	117.0	-0.674	25.115	-0.0268	
12.9200	3.0409	-1.8635	121.5	-0.570	25.115	-0.0227	
12.9200	2.8854	-2.0963	126.0	-0.490	25.125	-0.0195	
12.9200	2.7120	-2.3163	130.5	-0.479	25.140	-0.0190	
12.9200	2.5219	-2.5219	135.0	-0.435	25.147	-0.0173	
12.9200	2.3163	-2.7120	139.5	-0.356	25.154	-0.0141	
12.9200	2.0963	-2.8854	144.0	-0.252	25.137	-0.0100	
12.9200	1.8635	-3.0409	148.5	-0.259	25.147	-0.0103	
12.9200	1.6192	-3.1778	153.0	-0.131	25.154	-0.0052	
12.9200	1.3548	-3.2950	157.5	-0.153	25.156	-0.0061	
12,9200	1.1021	-3.3919	162.0	-0.037	25.155	-0.0015	
12.9200	0.8326	-3.4680	166.5	0.028	25.142	0.0011	
12.9200	0.5579	-3.5226	171.0	0.052	25.155	0.0024	
12.9200	0.2798	-3.5555	175.5	0.115	25.156	0.0047	
12,9200	0.0000	-3.5665	180.0	0.186	25.162	0.0074	
12.9200	-0.2798	-3.5555	184.5	0.212	25.170	0.0084	
12.9200	-0.5579	-3.5226	189.0	0.298	25.166	0.0118	
12.9200	-0.8326	-3.4680	193.5	0.346	25.172	0.0137	
12.9200	-1.1021	-3.3919	198.0	0.427	25.160	0.0170	
12.9200	-1.3649	-3.2950	202.5	0.479	25.164	0.0190	
12.9300	-1.6192	-3.1778	207.0	0.577	25.176	0.0229	
12.9200	-1.8:35	-3.0409		0.592	25.168	0.0235	
12.9200	-2.0963	-2.8854		0.656	25.170	0.0261	
12.9200	-2.3163	-2.7120		0.682	25.182	0.0271	
12.9200	-2.5219	-2.5219		0.731	25.087	0.0291	
12.9200	-2.7120	-2.3163		0.750	25.076	0.0299	
12.9200	-2.8854	-2.0963		0.760	25.086	0.0303	

12,9200	~3.0409	-1.8835	238.5	0.806	25.687	0.0321
12.9200	-3.1778	-1.6192	243.0	0.804	25.087	0.0320
12.9200	-3.2950	-1.3648	247.5	0.871	25.088	0.0347
12.9200	-3.3919	-1.1021	252.0	0.912	25.098	0.0363
12.9200	-3.4680	-0.8326	256.5	0.966	25.096	0.0385
12.9200	~3.5226	-0.5579	261.0	0.922	25.095	0.0367
12.9200	-3.5555	-0.2798	265.5	0.934	25.096	0.0372
12.9200	-3.5665	-0.0000	270.0	0.939	25.091	0.0374
12.9200	-3.5555	0.2798	274.5	0.935	25.108	0.0372
12.9200	~3.5226	0.5579	279.0	0.992	25.110	0.0395
12.9200	-3.4680	0.8326	283.5	1.019	25.116	0.0406
12.9200	-3.3919	1.1021	288.0	0.980	25.115	0.0390
12.9200	-3.2950	1.3648	292.5	0.883	25.109	0.0352
12.9200	-3.1778	1.6192	297.0	0.949	25.114	0.0378
12.9200	-3.0409	1.8635	301.5	1.011	25.129	0.0402
12.9200	-2.8854	2.0963	306.0	1.017	25.114	0.0405
12.9200	-2.7120	2.3163	310.5	1.070	25.132	0.0426
12.9200	-2.5219	2.5219	315.0	1.034	25.125	0.0412
12.9200	-2.3163	2.7120	319.5	1.034	25.127	0.0411
12.9200	-2.0963	2.8854	324.0	0.933	25.133	0.0371
12.9200	-1.8635	3.0409	328.5	0.922	25.125	0.0367
12.9200	-1.6192	3.1778	333.0	0.870	25.129	0.0346
12.9200	-1.3648	3.2950	337.5	0.850	25.143	0.0338
12.9200	-1.1021	3.3919	342.0	0.808	25.144	0.0321
12.9200	-0.8326	3.4680	346.5	0.674	25.148	0.0268
12.9200	-0.5579	3.5226	351.0	0.596	25.152	0.0237
12.9200	-0.2798	3.5555	355 .5	0.476	25.159	0.0189
12.9200	0.0000	3.5665	360.0	0.410	25.155	0.0163
999.99	999.99	999.99	999.9	999.99	999.99	999.99

XS	YS	zs	VLASER	VFREE	RATIO
-0.2000	-0.4500	0.2000	~4.025	25.054	-0.1606
-0.2000	-0.3500	0.2000	-4.703	24.993	-0.1882
-0.2000	-0.2500	0.2000	-5.388	24.959	-0.2159
-0.2000	-0.1500	0.2000	~5.691	24.909	-0.2285
-0.2000	-0.0500	0.2000	-4.914	24.895	-0.1974
-0.2000	0.0500	0.2000	-3.147	24.883	-0.1265
-0.2000	0.1500	0.2000	-1.513	24.852	-0.0609
-0.2000	0.2500	0.2000	-0.599	24.866	-0.0241
-0.2000	0.3500	0.2000	-0.097	24.865	-0.0039
-0.2000	0.4500	0.2000	0.106	24.851	0.0043
-0.2000	0.5500	0.2000	0.155	24.859	0.0063
-0.2000	0.4500	0.2000	0.716	24.856	0.0087
999.99	999.99	999.99	999.99	999.99	999.99

		Α	PPENDIX	9				
DATA FIL .2° FROM	E: VFF2 TIFFOS1T	DATE:25- IVE VERTICA	FEB-87 L LEG					*****
XS -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000	YS -0.4500 -0.3500 -0.2500 -0.1500 -0.0500 0.1500 0.2500 0.3500 0.4500 0.5500 0.5500	ZS 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	VLASER -4.025 -4.703 -5.388 -5.691 -4.914 -3.147 -1.513 -0.599 -0.097 0.106 0.155 0.216 999.99	VFREE 25.093 24.959 24.959 24.885 24.866 24.865 24.885 24.885 24.885 24.885 24.885 24.899	RATIO -0.1606 -0.1882 -0.2159 -0.2285 -0.1974 -0.1265 -0.0609 -0.0241 -0.0039 0.0043 0.0063 0.0087 999.99			S. S
DATA FIL .2° FROM	E: UMP2 TIPNEGAT	DATE:25- TIVE VERTICA						COCCOSCS.
XS 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000	YS 0.6500 0.5500 0.4500 0.3500 0.2500 0.0500 -0.0500 -0.1500 -0.2500 -0.3500 -0.3500 -0.4500 999.99	ZS 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000	VLASER -2.589 -3.750 -9.967 -8.243 5.911 1.369 1.228 1.150 1.207 1.079 1.101 1.047	VFREE 24.929 24.909 24.883 24.8816 24.814 24.811 24.807 24.811 24.807 24.815 999	RATIO -0.1039 -0.1505 -0.4006 -0.3320 0.2382 0.0552 0.0495 0.0463 0.0487 0.0487 0.0435 0.0444 0.0422 999.99			
			78					
		0.500U00000	Paris contra	<u> </u>	**************************************	<u>~~~~~~~</u>	0 40404040	NEW YORK ON THE

DATA FILE: HPF2 DATE:27-FER-87 .2° FROM TIP--POSITIVE VERTICAL LEG

XS	YS	ZS	VLASER	VFREE	RATIO
-0.2000	0.6500	0.2000	23.901	25.116	0.9516
-0.1000	0.6500	0.2000	23.894	25.108	0.9516
0.0000	0.6500	0.2000	24.039	25.079	0.9586
0.1000	0.6500	0.2000	24.271	25.055	0.9687
0.2000	0.6500	0.2000	24.519	25.063	0.9783
0.3000	0.6500	0.2000	24.960	25.044	0.9966
0.4000	0.6500	0.2000	25.328	25.055	1.0109
0.5000	0.6500	0.2000	25.672	25.039	1.0253
0.6000	0.6500	0.2000	25.937	25.028	1.0363
0.7000	0.6500	0.2000	26.329	25.035	1.0517
0.8000	0.6500	0.2000	26.491	25.031	1.0583
0.9000	0.6500	0.2000	26.685	25.009	1.0670
1.0000	0.6500	0.2000	26.777	25.010	1.0706
1.1000	0.6500	0.2000	26.856	25.005	1.0740
1.2000	0.6500	0.2000	26.766	25.002	1.0705
1.3000	0.6500	0.2000	26.743	24.996	1.0699
1.4000	0.6500	0.2000	26.693	24.984	1.0684
1.5000	0.6500	0.2000	26.785	24.979	1.0723
1.6000	0.6500	0.2000	26.554	24.977	1.0632
1.7000	0.6500	0.2000	26.239	24.985	1.0502
1.8000	0.6500	0.2000	26.030	24.979	1.0421
1.9000	0.6500	0.2000	25.736	24.961	1.0310
2.0000	0.6500	0.2000	25.543	24.973	1.0229
2.1000	0.6500	0.2000	25.301	24.979	1.0129
2.2000	0.6500	0.2000	25.223	24.975	1.0099
99 9.99	999.99	999.99	999.99	999.99	999.99

DATA FILE: HMF2 DATE:27-FEB-87 .2° FROM TIF--NEGATIVE HORIZONTAL LEG

XS	YS	ZS	VLASER	VEREE	RATIO
2.2000	-0.4500	0.2000	25.853	25.118	1.0293
2.1000	-0.4500	0.2000	25.923	25.065	1.0342
2.0000	-0.4500	0.2000	26.000	25.070	1.0371
1.9000	-0.4500	0.2000	26.089	25.055	1.0413
1.8000	-0.4500	0.2000	26,222	25.026	1.0478
1.7000	-0.4500	0.2000	26.285	25.001	1.0514
1.6000	-0.4500	0.2000	26.421	25.002	1.0567
1.5000	-0.4500	0.2000	26.618	24.987	1.0653
1.4000	-0.4500	0.2000	26.812	24.980	1.0733
1.3000	-0.4500	0.2000	27.153	24.982	1.0869
1.2000	-0.4500	0.2000	27.358	24.971	1.0956
1.1000	-0.4500	0.2000	27.557	24.959	1.1041
1.0000	-0.4500	0.2000	27.883	24.964	1.1170
0.9000	-0.4500	0.2000	28.763	24.958	1.1324
0.8000	-0.4500	0.2000	29.691	24.953	1.1498
0.7000	-0.4500	0.2000	29.143	24.952	1.1680
0.6000	-0.4500	0.2000	29.590	24.955	1.1857
0.5000	-0.4500	0.2000	29.997	24.947	1.2024
0.4000	-0.4500	0.2000	30.199	24.950	1.2103
0.3000	-0.4500	0.2000	30.156	24.940	1.2091
0.2000	-0.4500	0.2000	29.731	24.947	1.1918
0.1000	-0.4500	0.2000	28.924	24.943	1.1596
0.0000	-0.4500	0.2000	27.903	24.940	1.1188
-0.1000	-0.4500	0.2000	26.961	24.942	1.0910
-0.2000	-0.4500	0.2000	26.297	24.937	1.0545
999.99	999.99	999.99	999,99	999.99	999.99

DATA FILE: VPF45 DATE:25-FEB-87.45° FROM TIP--FOSITIVE VERTICAL LEG

XS	YS	ZS	VLASER	VFREE	RATIO
-0.2000	-0.4500	0.4500	-4.882	25.091	-0.1946
-0.2000	~0.3500	0.4500	-5.882	25.028	-0.2350
-0.2000	-0.2500	0.4500	-6.919	24.974	-0.2771
-0.2000	-0.1500	0.4500	-7.288	24.951	-0.2921
-0.2000	-0.0500	0.4500	-6.230	24.931	-0.2499
-0.2000	0.0500	0.4500	-3.810	24.914	-0.1529
-0.2000	0.1500	0.4500	-1.611	24.905	-0.0647
-0.2000	0.2500	0.4500	-0.271	24.898	-0.0109
-0.2000	0.3500	0.4500	0.312	24.886	0.0125
-0.2000	0.4500	0.4500	0.513	24.884	0.0206
-0.2000	0.5500	0.4500	0.584	24.879	0.0235
-0.2000	0.6500	0.4500	0.643	24.862	0.0258
999.99	999.99	999.99	999.99	999.99	999.99

DATA FILE: UMF45 DATE:25-FEB-87 .45° FROM TIF--NEGATIVE VERTICAL LEG

xs	YS	zs	VLASER	VFREE	RATIO
2.2000	0.6500	0.4500	1.612	25.086	0.0643
2.2000	0.5500	0.4500	3.652	25.032	0.1459
2.2000	0.4500	0.4500	7.659	25.015	0.3062
2.2000	0.3500	0.4500	9.501	24.998	0.3801
2.2000	0.2500	0.4500	8.676	24.978	0.3473
2.2000	0.1500	0.4500	6.955	24.947	0.2788
2.2000	0.0500	0.4500	5.381	24.936	0.2158
2.2000	-0.0500	0.4500	4.221	24.934	0.1693
2.2000	-0.1500	0.4500	3.536	24.930	0.1418
2.2000	-0.2500	0.4500	2.861	24.913	0.1149
2.2000	-0.3500	0.4500	2.539	24.914	0.1019
2.2000	-0.4500	0.4500	2.221	24.922	0.0891
000.00	999,99	499.99	999.99	999.99	999.99

CONTACTOR SOCIETY SECRECAL SECRETARION SECRETARIAN SECRETARIA SECR

DATA FILE: HPP45 DATE:27-FEB-87
.45° FROM TIP--POSITIVE HORIZONTAL LEG

XS	YS	ZS	VLASER	VFREE	RATIO
-0.2000	0.6500	0.4500	23.101	25.058	0.9219
-0.1000	0.6500	0.4500	23.174	25.053	0.9250
0.0000	0.6500	0.4500	23.358	25.052	0.9324
0.1000	0.6500	0.4500	23.722	25.062	0.9465
0.2000	0.6500	0.4500	23.979	25.071	0.9554
0.3000	0.6500	0.4500	24.455	25.066	0.9756
0.4000	0.6500	0.4500	24.855	25.075	0.9912
0.5000	0.6500	0.4500	25.341	25.075	1.0106
0.6000	0.6500	0.4500	25.634	25.074	1.0223
0.7000	0.6500	0.4500	25.894	25.057	1.0334
0.8000	0.6500	0.4500	26.227	25.084	1.0456
0.9000	0.6500	0.4500	26.496	25.074	1.0567
1.0000	0.6500	0.4500	26.612	25.080	1.0611
1.1000	0.6500	0.4500	26.643	25.086	1.0621
1.2000	0.6500	0.4500	26.679	25.079	1.0638
1.3000	0.6500	0.4500	26.516	25.081	1.0572
1.4000	0.6500	0.4500	26.510	25.078	1.0571
1.5000	0.6500	0.4500	26.431	25.085	1.0537
1.6000	0.6500	0.4500	26.370	25.082	1.0514
1.7000	0.6500	0.4500	26.068	25.070	1.0398
1.8000	0.6500	0.4500	25.674	25.065	1.0243
1.9000	0.6500	0.4500	25.310	25.048	1.0096
2.0000	0.6500	0.4500	24.787	25.063	0.9890
2.1000	0.6500	0.4500	24.575	25.066	0.9804
2.2000	0.6500	0.4500	24.556	25.073	0.9794
999.99	999 .99	999.99	99 9.99	999.99	999.99

DATA FILE: HMP45 DATE:27-FER-87 .45° FROM TIF--NEGATIVE HORIZONTAL LEG

XS	YS	zs	VLASER	VFREE	RATIO
2.2000	-0.4500	0.4500	25.866	25.103	1.0304
2.1000	-0.4500	0.4500	25.979	25.080	1.0358
2.0000	-0.4500	0.4500	26.124	25.082	1.0415
1.9000	-0.4500	0.4500	26.161	25.079	1.0431
1.8000	-0.4500	0.4500	26.330	25.065	1.0505
1.7000	-0.4500	0.4500	25.412	25.014	1.0542
1.6000	-0.4500	0.4500	26.604	25.049	1.0621
1.5000	-0.4500	0.4500	26.810	25.048	1.0703
1.4000	-0.4500	0.4500	27.030	25.026	1.0801
1.3000	-0. 4500	0.4500	27,283	25.031	1.0900
1.2000	-6.4500	0.4500	27.631	15.032	1.1038
1.1000	-0.4500	0.4500	27.988	25.021	1.1186
1.0000	-0.4500	0.4500	28.341	25.020	1.1327
0.9000	-0.4500	0.4500	28.795	25.021	1.1508
0.8000	-0.4500	0.4500	29.309	25.010	1.1719
0.7000	-0.4500	0.4500	29.900	25.001	1.1960
0.6000	-0.4500	0.4500	30.446	25.008	1.2175
0.5000	-0.4500	0.4500	31.060	25.008	1.2420
0.4000	-0.4500	0.4500	31.434	25.010	1.2569
0.3000	-0.4500	0.4500	31.486	25.008	1.2591
0.2000	-0.4500	0.4500	31.053	25.001	1.2421
0.1000	-0.4500	0.4500	30.010	24.991	1.2008
0.0000	-0.450c	0.4500	28.578	24.997	1,1472
-0.1000	-0.4500	0.4500	27.430	24.990	1.0977
-0.2000	-0.4500	0.4500	26.522	24.994	1.0611
999.99	990.39	999.00	000 00	999.99	000.00

DATA FILE: UPP7 DATE:25-FEB-87.7° FROM TIP--POSITIVE VERTICAL LEG

XS	YS	zs	VLASER	VFREE	RATIO
-0.2000	-0.4500	0.7000	-5.579	25.106	-0.2222
-0.2000	-0.3500	0.7000	-6.685	25.057	-0.2668
-0.2000	-0.2500	0.7000	-7.758	24.991	-0.3104
-0.2000	-0.1500	0.7000	-8.296	24.962	-0.3323
-0.2000	-0.0500	0.7000	-7.060	24.931	-0.2832
-0.2000	0.0500	0.7000	-4.442	24.921	-0.1782
-0.2000	0.1500	0.7000	-1.998	24.902	-0.0802
-0.2000	0.2500	0.7000	-0.492	24.894	-0.0198
-0.2000	0.3500	0.7000	0.286	24.890	0.0115
-0.2000	0.4500	0.7000	0.588	24.870	0.0236
-0.2000	0.5500	0.7000	0.720	24.859	0.0290
-0.2000	0.6500	0.7000	0.840	24.877	0.0346
999 .99	999.99	999.99	999.99	999.99	999.99

DATA FILE: UMP7 DATE:25-FEB-87 .7° FROM TIP--NEGATIVE VERTICAL LEG

xs	YS	zs	VLASER	VEREE	RATIO
2.2000	0.6500	0.7000	1.679	24.996	0.0672
2.2000	0.5500	0.7000	2.336	24.960	0.0936
2.2000	0.4500	0.7000	3.326	24.970	0.1332
2.2000	0.3500	0.7000	6.393	24.954	0.2562
2.2000	0.2500	0.7000	6.713	24.947	0.2691
2,2000	0.1500	0.7000	6.403	24.937	0.2568
2.2000	0.0500	0.7000	5.810	24.922	0.2331
2.2000	-0.0500	0.7000	5.087	24.904	0.2043
2.2000	-0.1500	0.7000	4.443	24.899	0.1785
2.2000	-0.2500	0.7000	3.814	24.894	0.1532
2.2000	-0.3500	0.7000	3.329	24.899	0.1337
2.2000	-0.4500	0.7000	2.963	24.888	0.1191
999.99	999.99	999.99	999,99	599.99	999.99

2.2000	-0.1000
4500 0.7000 9.99 999.99 HMF7 IMTE:2 NEGATIVE HUR1200 YS ZS 4500 0.7000	YS ZS 6500 0.7000
24.324 999.99 7-FER-87	
25.007 999.99 25.063 25.063 25.042 25.042 25.041 25.011	
RATIO 1.0358 1.0358 1.0547 1.0635 1.0641 1.0780 1.0963 1.1181 1.1306 1.1474 1.1618 1.1378 1.21.1 1.2383 1.2618 1.2618 1.2678 1.2678 1.2678 1.2678 1.2678 1.2678 1.2678 1.2678	

1.2° FROM TIP--FOSITIVE HORIZONTAL LEG

XS	· YS	ZS	VLASER	VFREE	RATIO
-0.2000	0.6500	1.2000	22.494	25.067	0.8974
-0.1000	0.6500	1.2000	22,652	25.086	0.9030
0.0000	0.6500	1.2000	22.498	25.089	0.8967
0.1000	0.6500	1.2000	22.844	25.099	0.9102
0.2000	0.6500	1.2000	23.271	25.105	0.9269
0.3000	0.6500	1.2000	23.724	25.119	0.9445
0.4000	0.6500	1.2000	22.863	25.116	0.9103
0.5000	0.6500	1.2000	17.973	25.126	0.7153
0.6000	0.6500	1.2000	25.219	25.143	1.0030
0.7000	0.6500	1.2000	25.445	25.103	1.0136
0.8000	0.6500	1.2000	25.793	25.107	1.0273
0.9000	0.6500	1.2000	26.054	25.120	1.0372
1.0000	0.6500	1.2000	26,255	25.140	1.0444
1.1000	0.6500	1.2000	26.283	25.130	1.0459
1.2000	0.6500	1.2000	26.501	25.147	1.0538
1.3000	0.6500	1.2000	26.448	25.149	1.0516
1.4000	0.6500	1.2000	26.604	25.152	1.0577
1.5000	0.6500	1.2000	26.451	25.152	1.0516
1.6000	0.6500	1.2000	26.406	25.160	1.0495
1.7000	0.6500	1.2000	26.255	25.156	1.0437
1.8000	0.6500	1.2000	26.135	25.160	1.0388
1.9000	0.6500	1.2000	26.013	25.173	1.0334
2.0000	0.6500	1.2000	25.651	25.166	1.0193
2.1000	0.6500	1.2000	25.407	25.179	1.0090
2.2000	0.6500	1.2000	24.958	25.171	0.9916
999.99	999.99	999.99	999.99	999 .99	999.99

DATA FILE: HM1F2 DATE:27-FER-97
1.2' FROM TIP-- NEGATIVE HORIZONTAL LEG

xs	YS	ZS	VLASER	VFREE	RATIO
2.2000	-0.4500	1.2000	26.018	25.055	1.0384
2.1000	-0.4500	1.2000	26.321	25.042	1.0511
2.0000	-0.4500	1.2000	26.674	25.041	1.0652
1.9000	-0.4500	1.2000	27,125	25.050	1.0828
1.9000	-0.4500	1.2000	27,547	25.021	1.1010
1.7000	-0.4500	1.2000	27.967	25.016	1.1180
1.6000	-0.4500	1.2000	28,368	25.020	1.1338
1.5000	-0.4500	1.2000	28.864	25.004	1.1544
1.4000	-0.4500	1.2000	29,268	24.996	1.1709
1.3000	-0.4500	1.2000	29.377	25.000	1.1751
1.2000	-0.4500	1.2000	29.565	24.988	1.1832
1.1000	-0.4500	1.2000	29.562	24.987	1.1831
1.0000	-0.4500	1.2000	29,554	24.975	1.1834
0.9000	-0.4500	1.2000	29.594	24.975	1.1849
0.8000	-0.4500	1.2000	29.580	. 1.759	1.1986
0.7000	-0.4500	1.2000	.15 . 9 75	24.973	1.2003
0.6000	-0.4500	1.2000	30.460	24.966	1.2201
0.5000	-0.4500	1.2000	30.932	24.972	1.2387
0.4000	-0.4500	1.2000	31.433	24.966	1.2590
0.3000	-0.4500	1.2000	31.651	24.966	1.2678
0.2000	-0.4500	1.2000	31.385	24.966	1.2571
0.1000	-0.4500	1.2000	30.330	24.959	1.2172
0.0000	-0.4500	1.2000	29.033	24.962	1.1631
-0.1000	-0.4500	1.2000	27.691	24.951	1.1094
-0.2000	-0.4500	1.2000	26.636	24.943	1.0679
994,99	999.99	999.99	999.99	499. 99	999 .99

DATA FILE: UF1P2 DATE:25-FER-87 1.2° FROM TIP--POSITIVE VERTICAL LEG

XS	YS	ZS	VLASER	VFREE	RATIO
-0.2000	-0.4500	1.2000	-6.991	25.079	-0.2788
-0.2000	-0.3500	1.2000	-8.158	25.001	-0.3263
-0.2000	-0.2500	1.2000	-9.343	24.970	-0.3742
-0.2000	-0.1500	1.2000	-9. 779	24.899	-0.3927
-0.2000	-0.0500	1.2000	-8.550	24.879	-0.3437
-0.2000	0.0500	1.2000	-5.763	24.870	-0.2317
-0.2000	0.1500	1.2000	-3.002	24.853	-0.1208
-0.2000	0.2500	1.2000	-1.217	24.850	-0.0490
-0.2000	0.3500	1.2000	-0.268	24.840	-0.0108
-0.2000	0.4500	1.2000	0.208	24.844	0.0084
-0.2000	0.5500	1.2000	0.498	24.848	0.0200
-0.2000	0.6500	1.2000	0.725	24.844	0.0292
999 .99	999.99	999.99	999.99	999.99	999.99

DATA FILE: VM1P2 DATE:25-FEB-87 1.2' FROM TIP--NEGATIVE VERTICAL LEG

XS	YS	zs	VLASER	VFREE	RATIO
2.2000	0.6500	1.2000	-0.034	25.026	-0.0013
2.2000	0.5500	1.2000	-0.632	25.021	-0.0252
2.2000	0.4500	1.2000	0.118	24.955	0.0047
2.2000	0.3500	1.2000	0.893	24.935	0.0358
2.2000	0.2500	1.2000	4.407	24.930	0.1768
2.2000	0.1500	1.2000	3.826	24.909	0.1536
2.2000	0.0500	1.2000	5.424	24.931	0.2176
2.2000	-0.0500	1.2000	5.449	24.946	0.2185
2.2000	-0.1500	1.2000	4.875	24.951	0.1954
2.2000	-0.2500	1.2000	4.521	24.952	0.1812
2.2000	-0.3500	1.2000	4,233	24.956	0.1695
2,2000	-0.4500	1.2000	3.781	24.964	0.1515
999.99	999.99	999.99	999.99	999.99	999.99

APPENDIX 10

THEORETICAL CALCULATIONS (15 Degrees Yaw Angle)

From Wald [9,10]:

$$\frac{dC_{L}}{d\alpha} = .0505$$

$$\frac{dC_{L}}{d\alpha} (\alpha) = .7575$$

$$\rho U \overline{\Gamma} = C_{L} (\frac{1}{2} \rho U^{2} S)$$

$$\overline{\Gamma} = C_{L} (\frac{1}{2} U S)$$

To non-dimensionalize consistently throughout:

$$\Gamma = \frac{\overline{\Gamma}}{\overline{U}ds} = 294$$

Where:

CL: Coefficient of lift nondimensionalized as shown in third equation.

 $\underline{\underline{S}}$: Planform area of fin. $\underline{\underline{\Gamma}}$: Spanwise integration of circulation across fin.

 Γ : Circulation non-dimensionalized on freestream velocity and maximum body diameter.

s: Span of fin.

L N D DATE FILMED FEB.