

planetmath.org

Math for the people, by the people.

product of automata

Canonical name ProductOfAutomata
Date of creation 2013-03-22 18:03:06
Last modified on 2013-03-22 18:03:06

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Definition
Classification msc 03D05
Classification msc 68Q45

One way to manufacture an automaton out of existing automata is by taking products.

Products of Two Automata

Let $A_1 = (S_1, \Sigma_1, \delta_1, I_1, F_1)$ and $A_2 = (S_2, \Sigma_2, \delta_2, I_2, F_2)$ be two automata. We define the product A of A_1 and A_2 , written $A_1 \times A_2$, as the quituple

$$(S, \Sigma, \delta, I, F) := (S_1 \times S_2, \Sigma_1 \times \Sigma_2, \delta_1 \times \delta_2, I_1 \times I_2, F_1 \times F_2),$$

where δ is a function from $S \times \Sigma$ to $P(S_1) \times P(S_2) \subseteq P(S)$, given by

$$\delta((s_1, s_2), (\alpha_1, \alpha_2)) := \delta_1(s_1, \alpha_1) \times \delta_2(s_2, \alpha_2).$$

Since S, Σ, I, F are non-empty, A is an automaton. The automaton A can be thought of as a machine that runs automata A_1 and A_2 simultaneously. A pair (α_1, α_2) of symbols being fed into A at start state $(q_1, q_2) \in I$ is the same as A_1 reading α_1 at state q_1 and A_2 reading α_2 at state q_2 . The set of all possible next states for the configuration $((s_1, s_2), (\alpha_1, \alpha_2))$ in A is the same as the set of all possible combinations (t_1, t_2) , where t_1 is a next state for the configuration (s_1, α_2) in A_2 .

If A_1 and A_2 are FSA, so is A. In addition, if both A_1 and A_2 are deterministic, so is A, because

$$\delta((s_1, s_2), (\alpha_1, \alpha_2)) = (\delta_1(s_1, \alpha_1), \delta_2(s_2, \alpha_2)),$$

and I is a singleton.

As usual, δ can be extended to read words over Σ , and it is easy to see that

$$\delta((s_1, s_2), (a_1, a_2)) = \delta_1(s_1, a_1) \times \delta_2(s_2, a_2),$$

where a_1 and a_2 are words over Σ_1 and Σ_2 respectively. A word (a_1, a_2) is accepted by A iff a_1 is accepted by A_1 and a_2 is accepted by A_2 .

Intersection of Two Automata

Again, we assume A_1 and A_2 are automata specified above. Now, suppose $\Sigma_1 = \Sigma_2 = \Delta$. Then Δ can be identified as the diagonal in $\Sigma = \Sigma_1 \times \Sigma_2 = \Delta^2$. We are then led to an automaton

$$A_1 \cap A_2 := (S, \Delta, \delta, I, F),$$

where S, I, and F are defined previously, and δ is given by

$$\delta((s_1, s_2), \alpha) = \delta_1(s_1, \alpha) \times \delta_2(s_2, \alpha).$$

Suppose in addition that Δ is finite. From the discussion in the previous section, it is evident that the language accepted by $A_1 \cap A_2$ is the same as the intersection of the language accepted by A_1 and the language accepted by A_2 :

$$L(A_1 \cap A_2) = L(A_1) \cap L(A_2).$$