

Modelling and Solving the Multi-Skill Project Scheduling Problem

Kenneth Young 23 February 2017

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

Activites

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

Activity constraint: Precedence relations between activities

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills
- Worker constraint: Workers each have a variety of skills

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	\checkmark

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	\checkmark

Figure : Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	\checkmark

Table : Skill Requirement

A_1	A_2	A_3	A_4
-	1	2	1
1	-	-	1
1	1	-	-
	- 1 1	$\begin{array}{c cc} A_1 & A_2 \\ \hline - & 1 \\ 1 & - \\ 1 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	\checkmark
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	\checkmark

Table: Skill Requirement

	A_1	A_2	A_3	A_4
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure : Precedence Graph

Figure : Schedule

Intro: Constraint Programming

Domain propagation

- Variables have domains of possible values
- Constraints reduce the size of these domains

Intro: Constraint Programming

Domain propagation

- Variables have domains of possible values
- Constraints reduce the size of these domains

Nogood learning

- Learn from failures
- Record these failures as constraints
- Use these constraints to make inferences

Intro: The Literature

- Portuguese research group
 - Principal researchers: Almeida, Saldanha-da-Gama, Correia
 - Constructive heuristics
 - Randomised search heuristics

Intro: The Literature

- Portuguese research group
 - Principal researchers: Almeida, Saldanha-da-Gama, Correia
 - Constructive heuristics
 - Randomised search heuristics
- French research group
 - Principal researchers: Belleguez-Morineau, Néron, Montoya
 - Exact branch and bound methods
 - Lower bounds

Intro: The Literature

- Portuguese research group
 - Principal researchers: Almeida, Saldanha-da-Gama, Correia
 - Constructive heuristics
 - Randomised search heuristics
- French research group
 - Principal researchers: Belleguez-Morineau, Néron, Montoya
 - Exact branch and bound methods
 - Lower bounds
- Polish research group
 - Principal researchers: Myzskowski, Skowronski
 - Randomised search heuristics

Objective

- Objective
 - Minimise the total project duration

- Objective
 - Minimise the total project duration
- Two main decisions

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times
 - 2. Assignment decisions
 - Workers to activities
 - Skill contribution of workers

• Precedence relations are respected

- Precedence relations are respected
- Workers perform only one activity at a time

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ► A worker for each skill must be present to perform the activity
- Redundant constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Unary Resource Constraint

Each worker only performs one activity at a time

Three equivalent ways of modelling

Unary Resource Constraint

• Each worker only performs one activity at a time

Three equivalent ways of modelling

1. Boolean satisfiability constraint using extra decision variable

Unary Resource Constraint

Each worker only performs one activity at a time

Three equivalent ways of modelling

- 1. Boolean satisfiability constraint using extra decision variable
- 2. Disjunctive global constraint

Model: Choice of Constraints

Unary Resource Constraint

Each worker only performs one activity at a time

Three equivalent ways of modelling

- 1. Boolean satisfiability constraint using extra decision variable
- 2. Disjunctive global constraint
- 3. Cumulative global constraint

- Generated our own data
 - equivalent to the Portuguese group's data

- Generated our own data
 - equivalent to the Portuguese group's data
- Small dataset: 216 unique instances
 - 20 activities
 - ▶ 10-30 workers

- Generated our own data
 - equivalent to the Portuguese group's data
- Small dataset: 216 unique instances
 - 20 activities
 - ▶ 10-30 workers
 - ► 13 unsolved

- Generated our own data
 - equivalent to the Portuguese group's data
- Small dataset: 216 unique instances
 - 20 activities
 - ▶ 10-30 workers
 - 13 unsolved
- Large dataset: 216 unique instances
 - ▶ 40 activities
 - 20-60 workers

- Generated our own data
 - equivalent to the Portuguese group's data
- Small dataset: 216 unique instances
 - 20 activities
 - ▶ 10-30 workers
 - 13 unsolved
- Large dataset: 216 unique instances
 - ▶ 40 activities
 - 20-60 workers
 - 211 unsolved

Data: Complexity Measures

- 1. Skill Factor
 - varied over 4 values

Data: Complexity Measures

- Skill Factor
 - varied over 4 values
- 2. Network Complexity
 - varied over 3 values

Data: Complexity Measures

- Skill Factor
 - varied over 4 values
- 2. Network Complexity
 - varied over 3 values
- 3. Modified Resource Strength
 - varied over 3 values

Experiments: Constraint Choice

Sample of 72 small instances

Experiments: Constraint Choice

Sample of 72 small instances

Start time variables.

- Start time variables
- Start time variables, then contribution of each worker

- Start time variables
- Start time variables, then contribution of each worker
- Activity-based

Experiments: Results

- Tested on all 216 small instances
- Time limit of 5 minutes

Experiments: Results

- Tested on all 216 small instances
- Time limit of 5 minutes

search strategy	#no soln	#sub-opt	%gap	#optimal	%optimal	avg. runtime
default	0	0	0.00	216	100.00	3.25s
start	0	1	2.50	215	99.54	1.26s
start then worker	0	0	0.00	216	100.00	2.89s
start then skill	0	0	0.00	216	100.00	1.63s
activity-based	0	1	2.50	215	99.54	0.82s

• Applied the constraint programming solver chuffed to the **MSPSP**

- Applied the constraint programming solver chuffed to the **MSPSP**
- Generated a set of benchmark instances

- Applied the constraint programming solver chuffed to the **MSPSP**
- Generated a set of benchmark instances
- Found an effective model formulation

- Applied the constraint programming solver chuffed to the **MSPSP**
- Generated a set of benchmark instances
- Found an effective model formulation
- Solved all small instances

Future Work

Apply activity-based search to the large dataset

Future Work

- Apply activity-based search to the large dataset
- Create a more structured search procedure in the chuffed

Acknowledgements

- Dr. Andreas Schutt
- Dr. Thibaut Feydy
- Adrian Goldwaser

Thanks for listening!

Questions?