

First third Second third Last third 1138 1698 1204 13/3 1802 1624 1624 1883

Interfractile range: Median is 0.5 fractile.

If we divide data in??????? deciles ,

Interquartile range: Q3-Q1

Measures of Variation: The Variance

Average (approximately) of squared deviations of values from the mean

Where

$$\overline{X}$$
 = arithmetic mean

n = sample size

 $X_i = i^{th}$ value of the variable X

Measures of Variation: The Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- · Is the square root of the variance
- · Has the same units as the original data

- Sample standard deviation: S =

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Measures of Variation: The Standard Deviation

Steps for Computing Standard Deviation

- Compute the **difference between each value** and the **mean**. = \times Square each difference.
- Square each difference.
- Add the squared differences.
- Divide this total by n-1 to get the sample variance.
- Take the square root of the sample variance to get the sample standard deviation.

Measures of Variation: Sample Standard Deviation

Example

Sample Data (X_i): 10 12 14 15 17 18 18 24 $Mean = \overline{X} = 16$

ungrouped

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \dots + (24 - \overline{X})^2}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{130}{7}} = 4.3095$$

Sample variance

Standard Deviation (Sample) for Grouped Data

EX: Frequency Distribution of Return on Investment of Mutual Funds

Return on Investment	Number of Mutual Funds		
5-10	10		
10-15	12		

EX:

Frequency Distribution of Return on Investment of Mutual Funds

Return on	Number of			
Investment	Mutual Funds			
5-10	10			
10-15	12			
15-20	16			
20-25	14			
25-30	- 8			
Total	60			

Solution for the Example $= \frac{1}{2} (x - \overline{x})^2$

MidPoint

7.50

12.50

17.50

22.50

27.50

No of

Sample Standard Deviation =

Funds +× X f fx $\left[\left(X-\overline{X}\right)^{2}\right]\left[f(X-\overline{X})^{2}\right]$ 75 966.94 96.69 10 12 150 23.36 280.33 280 0.03 0.44 26.69 14 315 373.72 220 103.36 826.89 €3^{2448.33} Zz 60 1040 41.50 Sample Variance =

5,2.5

Class	Frequency			
700-799	4			
800-899	7			
900	8			
1000	10			
1100	12			
1200	17			
1300	13			
1400	10			
1500	9			
1600	7			
1700	2			
1800-1899	1			

Return on Investment

Lower limit Upper Limit

5 10

10 15

15 20

20 25

25 30

9 10

11

12

class

N-1 > N.

Find population's standard deviation S.D.

Class	Midpoint x (1)	frequency f (2)	$f \times x$ $(3) = (2) \times (1)$	Mean μ (4)	x - μ (1) - (4)	$(x - \mu)^2$ [(1) - (4)] ²	$f(x - \mu)^{2}$ (2) × [(1) - (4)] ²
700- 799	750	4	3,000	1,250	-500	250,000	1,000,000
800- 899	850	7	5,950	1,250	-400	160,000	1,120,000
900- 999	950	8	7,600	1,250	-300	90,000	720,000
1,000-1,099	1,050	10	10,500	1,250	-200	40,000	400,000
1,100-1,199	1,150	12	13,800	1,250	-100	10,000	120,000
1,200-1,299	1,250	17	21,250	1,250	- 0	0	0
1,300-1,399	1,350	13	17,550	1,250	100	10,000	130,000
1,400-1,499	1,450	10	14,500	1,250	200	40,000	400,000
1,500-1,599	1,550	9	13,950	1,250	300	90,000	810,000
1,600-1,699	1,650	7	11,550	1,250	400	160,000	1,120,000
1,700-1,799	1,750	2	3,500	1,250	500		500,000
1,800-1,899	1,850	Z= 100	5 = 1,850 125,000	1,250	600	360,000	360,000
		= 1	$\bar{x} = \frac{\sum (f \times x)}{n}$	1 1	e e e	2 2 (3-3)	月图图图 四四日
			= 125,000	12			

= 1,250 (thousands of dollars) ← Mean

Measures of Variation: Comparing Standard Deviations

The **coefficient of variation** (CV) is a measure of relative **variability**.

It is the ratio of the **standard deviation to the mean** (average).

<u>SD</u>

Always in percentage (%)

Shows variation relative to mean

Can be used to compare the variability of two or more sets of data measured in **different** units

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

Measures of Variation: Comparing Standard Deviations

Which curve has higher SD?

Measures of Variation: Comparing Standard Deviations

The coefficient of variation (CV) is a measure of relative variability. It is the ratio of the standard deviation to the mean (average).

Measures of Variation: Comparing Coefficients of Variation

- Stock A:
 - Average price last year = $\$50 \times$
 - Standard deviation = \$5 ≤

$$CV_A = \left(\frac{S}{X}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

- - Average price last year = \$100
 - Standard deviation = \$5

$$CV_B = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its

price

Terminologies =) Population

Sample

1) Meeur

Uz & N

 $\overline{\mathcal{H}} = \sum_{i=1}^{n} \underline{\mathcal{X}}_{i}^{*}$

2) Valiance

 $6^{2} \leq \frac{5}{5} (x_{1}^{2} + u)^{2}$

 $g^{2} = \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$ $S = \sqrt{S^{2}}$

3) Standard

6=\62