*

* results

*

01. plot the input data (data1) from the file [assignment_09_data1.txt] in blue for class 0 and in red for class 1

02. plot the input data (data2) from the file [assignment_09_data2.txt] in blue for class 0 and in red for class 1

<u>-</u>2

In []: plot_data(data2)

<u>-</u>4

03. plot the values of the model parameters θ as curves over the gradient descent iterations using different colors for data1

In []: plot_model_parameter(theta1_iteration)

04. plot the values of the model parameters θ as curves over the gradient descent iterations using different colors for data2

05. plot the loss values in red curve over the gradient descent iterations for data1

06. plot the loss values in red curve over the gradient descent iterations for data2

In []: plot_loss_curve(loss2_iteration)

loss

07. plot the classifier with the given data points superimposed for data1

In []: plot_classifier1(data1, theta1_optimal)

08. plot the classifier with the given data points superimposed for data2

```
In [ ]: plot_classifier2(data2, theta2_optimal)
```


09. print out the accuracy of the obtained classifier1 for data1

```
In []: print(accuracy_classifier1)

0.999
```

10. print out the accuracy of the obtained classifier2 for data1

```
In []: print(accuracy_classifier2)

0.99

In []:
```