

# FCC PART 15C TEST REPORT No. I17N00067-BLE

for

Power Idea Technology (Shenzhen) Co., Ltd

**TD-LTE** digital mobile phone

Model Name: RG730

With

Hardware Version: 1.04

Software Version: RG730\_US\_25\_V1.01\_V02W\_20161205

FCC ID: ZLE-RG730

IC: 11113A-RG730

Issued Date: 2017-03-08

**Test Laboratory:** 

FCC 2.948 Listed: No.342690 IC O.A.T.S Listed: No. 21856-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

#### **Test Laboratory:**

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: <a href="mailto:cttl">cttl</a> terminals@catr.cn, website: <a href="mailto:www.chinattl.com">www.chinattl.com</a>



# **REPORT HISTORY**

| Report Number | Revision | Description | Issue Date |
|---------------|----------|-------------|------------|
| I17N00067-BLE | Rev.0    | 1st edition | 2017-03-08 |
| I17N00067-BLE | Rev.1    | 2st edition | 2017-04-07 |



# **CONTENTS**

| 1. T  | TEST LABORATORY                                         | 5  |
|-------|---------------------------------------------------------|----|
| 1.1.  | TESTING LOCATION                                        | 5  |
| 1.2.  |                                                         |    |
| 1.3.  | Project data                                            | 5  |
| 1.4.  | SIGNATURE                                               | 5  |
| 2. C  | CLIENT INFORMATION                                      | 6  |
| 2.1.  | APPLICANT INFORMATION                                   | 6  |
| 2.2.  |                                                         |    |
| 3. E  | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) |    |
| 3.1.  |                                                         |    |
| 3.1.  |                                                         |    |
| 3.2.  |                                                         |    |
|       |                                                         |    |
| 4. R  | REFERENCE DOCUMENTS                                     | 8  |
| 4.1.  | DOCUMENTS SUPPLIED BY APPLICANT                         | 8  |
| 4.2.  | REFERENCE DOCUMENTS FOR TESTING                         | 8  |
| 5. T  | TEST RESULTS                                            | 9  |
| 5.1.  | SUMMARY OF TEST RESULTS                                 | 9  |
| 5.2.  | STATEMENTS                                              | 9  |
| 5.3.  | TERMS USED IN THE RESULT TABLE                          | 9  |
| 5.4.  | LABORATORY ENVIRONMENT                                  | 10 |
| 6. T  | EST FACILITIES UTILIZED                                 | 11 |
| ANNE  | EX A: MEASUREMENT RESULTS FOR RECEIVER                  | 12 |
| A.0   | ANTENNA REQUIREMENT                                     | 12 |
| A.1   | MAXIMUM AVERAGE OUTPUT POWER                            | 13 |
| A.2   | PEAK POWER SPECTRAL DENSITY                             | 13 |
|       | OCCUPIED 6DB BANDWIDTH                                  |    |
| A.4   | BAND EDGES COMPLIANCE                                   | 14 |
| A.5   | TRANSMITTER SPURIOUS EMISSION - CONDUCTED               | 15 |
|       | Transmitter Spurious Emission - Radiated                |    |
| A.7   | OCCUPIED BANDWIDTH                                      | 20 |
| A.8   | AC Powerline Conducted Emission                         | 21 |
| ANNE  | EX B: TEST FIGURE LIST                                  | 23 |
| FIG.  | 1 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 0)                 | 23 |
| FIG.  | 2 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 19)                | 23 |
| Fig.: | 3 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 39)                | 24 |
| FIG.4 | 4 POWER SPECTRAL DENSITY (CH 0)                         | 24 |
| Fig.: | 5 POWER SPECTRAL DENSITY (CH 19)                        | 25 |



| FIG.6  | POWER SPECTRAL DENSITY (CH 39)                            | 25 |
|--------|-----------------------------------------------------------|----|
| Fig.7  | OCCUPIED 6DB BANDWIDTH (CH 0)                             | 26 |
| FIG.8  | OCCUPIED 6DB BANDWIDTH (CH 19)                            | 26 |
| Fig.9  | OCCUPIED 6DB BANDWIDTH (CH 39)                            | 27 |
| FIG.10 | BAND EDGES (CH 0)                                         | 27 |
| FIG.11 | BAND EDGES (CH 39)                                        | 28 |
| FIG.12 | CONDUCTED SPURIOUS EMISSION (CH0, CENTER FREQUENCY)       | 28 |
| Fig.13 | CONDUCTED SPURIOUS EMISSION (CH0, 30 MHz-3 GHz)           | 29 |
| FIG.14 | CONDUCTED SPURIOUS EMISSION (CH0, 3 GHz-18 GHz)           | 29 |
| FIG.15 | CONDUCTED SPURIOUS EMISSION (CH19, CENTER FREQUENCY)      | 30 |
| Fig.16 | CONDUCTED SPURIOUS EMISSION (CH19, 30 MHz-3 GHz)          | 30 |
| Fig.17 | CONDUCTED SPURIOUS EMISSION (CH19, 3 GHz-18 GHz)          | 31 |
| FIG.18 | CONDUCTED SPURIOUS EMISSION (CH39, CENTER FREQUENCY)      | 31 |
| FIG.19 | CONDUCTED SPURIOUS EMISSION (CH39, 30 MHz-3 GHz)          | 32 |
| FIG.20 | CONDUCTED SPURIOUS EMISSION (CH39, 3 GHz-18 GHz)          | 32 |
| Fig.21 | CONDUCTED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz-26 GHz) | 33 |
| FIG.22 | RADIATED SPURIOUS EMISSION (GFSK, CH0, 1 GHz ~18 GHz)     | 33 |
| FIG.23 | RADIATED SPURIOUS EMISSION (CH19, 9 KHz-30 MHz)           | 34 |
| Fig.24 | RADIATED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)           | 34 |
| FIG.25 | RADIATED SPURIOUS EMISSION (CH19, 1 GHz- 18 GHz)          | 35 |
| Fig.26 | RADIATED SPURIOUS EMISSION (CH19, 18 GHz-26.5 GHz)        | 35 |
| Fig.27 | RADIATED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)           | 36 |
| FIG.28 | RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)      | 36 |
| FIG.29 | RADIATED EMISSION POWER (GFSK, CH39, 2450GHz~2500GHz)     | 37 |
| Fig.30 | OCCUPIED BANDWIDTH: GFSK, CHANNEL 0                       | 37 |
| FIG.31 | OCCUPIED BANDWIDTH: GFSK, CHANNEL 19                      | 38 |
| FIG.32 | OCCUPIED BANDWIDTH: GFSK, CHANNEL 39                      | 38 |
| FIG.33 | AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)            | 39 |
| Fig.34 | AC POWER LINE CONDUCTED EMISSION (IDLE, AE1)              | 40 |
| FIG.35 | AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)            | 41 |
| FIG.36 | AC Power Line Conducted Emission (Idle, AE1)              | 42 |
| NNEV C | · DEDSONS INVOLVED IN THIS TESTING                        | 13 |



# 1. Test Laboratory

### 1.1. Testing Location

Location:

CTTL(South Branch)

Address:

TCL International E city, No. 1001, Zhongshanyuan Road, Nanshan

District, Shenzhen, Guangdong, China 518000

### 1.2. Testing Environment

Normal Temperature:

15-35℃

Relative Humidity:

20-75%

### 1.3. Project data

Testing Start Date:

2017-01-19

Testing End Date:

2017-03-03

# 1.4. Signature

MIKE

(Prepared this test report)

**Tang Weisheng** 

(Reviewed this test report)

Zhang Bojun

(Approved this test report)



# 2. Client Information

#### 2.1. Applicant Information

Company Name: Power Idea Technology (Shenzhen) Co., Ltd.

4th Floor, A Section, Languang Science & technology Building, No.7

Address: Xinxi RD , Hi-Tech Industrial Park North , Nanshan District ,

Shenzhen, P.R.C.

City: Shenzhen

Postal Code: /

Country: China

Telephone: 0755-86220211

Fax: /

#### 2.2. Manufacturer Information

Company Name: Power Idea Technology (Shenzhen) Co., Ltd.

4th Floor, A Section , Languang Science & technology Building , No.7

Address: Xinxi RD , Hi-Tech Industrial Park North , Nanshan District

Shenzhen, P.R.C.

City: Shenzhen

Postal Code: /

Country: China

Telephone: 0755-86220211

Fax: /



# 3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

#### 3.1. About EUT

Description TD-LTE digital mobile phone

Model Name RG730

Market Name /

Frequency Band 2402MHz~2480MHz

Type of Modulation GFSK Number of Channels 40

Antenna Integrated

Power Supply 3.7V DC by Battery

FCC ID ZLE-RG730 IC Number 11113A-RG730

#### 3.2. Internal Identification of EUT

 EUT ID\*
 IMEI
 HW Version
 SW Version
 Receive Date

 EUT1
 867453021949733
 1.04
 RG730\_US\_25\_V1.01
 2017-01-19

 \_V02W\_20161205
 \_V02W\_20161205
 \_V02W\_20161205

\*EUT ID: is used to identify the test sample in the lab internally.

#### 3.3. Internal Identification of AE

AE ID\* Description SN
AE1 Power Supply /

AE1

Model HKC0055010-2D

Manufacturer SHENZHEN HUNTKEY ELECTRIC CO., LTD

<sup>\*</sup>AE ID: is used to identify the test sample in the lab internally.



# 4. Reference Documents

# 4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

# 4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

| Reference   | Title                                                  | Version  |
|-------------|--------------------------------------------------------|----------|
| FCC Part15  | FCC CFR 47, Part 15, Subpart C:                        | Nov,2015 |
|             | 15.205 Restricted bands of operation;                  |          |
|             | 15.209 Radiated emission limits, general requirements; |          |
|             | 15.247 Operation within the bands 902–928MHz,          |          |
|             | 2400-2483.5 MHz, and 5725-5850 MHz                     |          |
| ANSI C63.10 | American National Standard for Testing Unlicensed      | Jun,2013 |
|             | Wireless Devices                                       |          |
| RSS-Gen     | Spectrum Management and Telecommunications Radio       | Issue 4  |
|             | Standards Specification                                | Nov,2014 |
|             | General Requirements for Compliance of Radio Apparatus |          |
| RSS-247     | Digital Transmission Systems (DTSs), Frequency Hopping | Issue 1  |
|             | Systems (FHSs) and License-Exempt Local Area Network   | May,2015 |
|             | (LE-LAN) Devices                                       |          |



# 5. Test Results

### 5.1. Summary of Test Results

| <u> </u> | 5.1. Outlinary of Test Nesalts            |                          |                                    |         |  |  |
|----------|-------------------------------------------|--------------------------|------------------------------------|---------|--|--|
| No       | Test cases                                | Sub-clause of<br>Part15C | Sub-clause of IC                   | Verdict |  |  |
| 0        | Antenna Requirement                       | 15.203                   | /                                  | Р       |  |  |
| 1        | Maximum Peak Output Power                 | 15.247 (b)               | RSS-247 Issue1 5.4                 | Р       |  |  |
| 2        | Peak Power Spectral Density               | 15.247 (e)               | RSS-247 Issue1 5.2                 | Р       |  |  |
| 3        | Occupied 6dB Bandwidth                    | 15.247 (a)               | RSS-247 Issue1 5.2                 | Р       |  |  |
| 4        | Band Edges Compliance                     | 15.247 (d)               | RSS-247 Issue1 5.5                 | Р       |  |  |
| 5        | Transmitter Spurious Emission - Conducted | 15.247 (d)               | RSS-247 Issue1<br>5.5/RSS-Gen 6.13 | Р       |  |  |
| 6        | Transmitter Spurious Emission - Radiated  | 15.247, 15.205, 15.209   | 8SS-247 Issue1<br>5.5/RSS-Gen 6.13 | Р       |  |  |
| 7        | Occupied Bandwidth                        | /                        | RSS-Gen Issue4 6.6                 | Р       |  |  |
| 8        | AC Powerline Conducted Emission           | 15.107, 15.207           | RSS-Gen Issue4 8.8                 | Р       |  |  |

Use the EUT inside MTK Engineering mode to control the transmitting signal.

See ANNEX B and ANNEX C for details.

### 5.2. Statements

CTTL has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

# 5.3. Terms used in the result table

Terms used in Verdict column

| Р  | Pass          |
|----|---------------|
| NA | Not Available |
| F  | Fail          |

#### Abbreviations

| AC       | Alternating Current                             |
|----------|-------------------------------------------------|
| AFH      | Adaptive Frequency Hopping                      |
| BW       | Band Width                                      |
| E.I.R.P. | equivalent isotropic radiated power             |
| ISM      | Industrial, Scientific and Medical              |
| R&TTE    | Radio and Telecommunications Terminal Equipment |
| RF       | Radio Frequency                                 |
| Tx       | Transmitter                                     |



# 5.4. Laboratory Environment

#### Semi-anechoic chamber did not exceed following limits along the EMC testing

| Temperature                       | Min. = 15 °C, Max. = 30 °C                           |
|-----------------------------------|------------------------------------------------------|
| Relative humidity                 | Min. = 35 %, Max. = 60 %                             |
| Shielding effectiveness           | 0.014MHz - 1MHz, >60dB;                              |
|                                   | 1MHz - 1000MHz, >90dB.                               |
| Electrical insulation             | > 2 MΩ                                               |
| Ground system resistance          | < 4Ω                                                 |
| Normalised site attenuation (NSA) | $<$ $\pm 4$ dB, 3m/10m distance, from 30 to 1000 MHz |
| Uniformity of field strength      | Between 0 and 6 dB, from 80 to 3000 MHz              |

#### **Shielded room** did not exceed following limits along the EMC testing

| Temperature              | Min. = 15 °C, Max. = 30 °C |
|--------------------------|----------------------------|
| Relative humidity        | Min. = 35 %, Max. = 60 %   |
| Shielding effectiveness  | 0.014MHz - 1MHz, >60dB;    |
|                          | 1MHz - 1000MHz, >90dB.     |
| Electrical insulation    | > 2 MΩ                     |
| Ground system resistance | < 4 Ω                      |

### Fully-anechoic chamber did not exceed following limits along the EMC testing

|                             | 0 0                                |
|-----------------------------|------------------------------------|
| Temperature                 | Min. = 15 °C, Max. = 30 °C         |
| Relative humidity           | Min. = 35 %, Max. = 60 %           |
| Shielding effectiveness     | 0.014MHz - 1MHz, >60dB;            |
|                             | 1MHz - 1000MHz, >90dB.             |
| Electrical insulation       | > 2 MΩ                             |
| Ground system resistance    | < 4Ω                               |
| Voltage Standing Wave Ratio | ≤6dB, from 1 to 18 GHz,3m distance |
| (VSWR)                      |                                    |



# 6. Test Facilities Utilized

### **Conducted test system**

| No. | Equipment                 | Model | Serial<br>Number | Manufacturer       | Calibration Due date | Calibration<br>Period |
|-----|---------------------------|-------|------------------|--------------------|----------------------|-----------------------|
| 1   | Vector Signal<br>Analyzer | FSV40 | 100903           | Rohde &<br>Schwarz | 2017-03-21           | 1 year                |

Radiated emission test system

|               | Natiated emission test system |           |                     |              |             |             |
|---------------|-------------------------------|-----------|---------------------|--------------|-------------|-------------|
| No. Equipment | Equipment                     | Model     | Serial              | Manufacturer | Calibration | Calibration |
| NO.           | Equipment                     | Wiodei    | Number              |              | Due date    | Period      |
| 1             | LISN                          | ESH2-Z5   | 100196              | R&S          | 2018-01-05  | 1 year      |
| 2             | Test Receiver                 | ESCI      | 100701              | R&S          | 2017-08-09  | 1 year      |
| 3             | Loop Antenna                  | HLA6120   | 35779               | TESEQ        | 2019-05-02  | 3 years     |
| 4             | BiLog Antenna                 | VULB9163  | 9163 330            | Schwarzbeck  | 2017-04-22  | 3 years     |
| 5             | Horn Antenna                  | 3117      | 00066585            | ETS-Lindgren | 2019-03-05  | 3 years     |
| 6             | Test Receiver                 | ESR7      | 101675              | R&S          | 2017-07-21  | 1 year      |
| 7             | Spectrum Analyzer             | FSP 40    | 100378              | R&S          | 2017-12-15  | 1 year      |
| 8             | Chamber                       | FACT5-2.0 | 4166                | ETS-Lindgren | 2018-05-13  | 3 years     |
| 9             | Antenna                       | 3160-09   | LM4214/0011<br>8383 | ETS-Lindgren | 2018.07.14  | 3 years     |

#### **Software**

| No. | Equipment        | Version  |
|-----|------------------|----------|
| 1   | TechMgr Software | 1.9.1    |
| 2   | EMC32            | 8.53.0   |
| 3   | EMC32            | 10.01.00 |

### **Anechoic chamber**

Fully anechoic chamber by ETS-Lindgren



# **ANNEX A: MEASUREMENT RESULTS FOR RECEIVER**

# A.0 Antenna requirement

#### **Measurement Limit:**

| Standard     | Requirement                                                                          |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------|--|--|--|--|
|              | An intentional radiator shall be designed to ensure that no antenna other than that  |  |  |  |  |
|              | furnished by the responsible party shall be used with the device. The use of a       |  |  |  |  |
|              | permanently attached antenna or of an antenna that uses a unique coupling to the     |  |  |  |  |
|              | intentional radiator shall be considered sufficient to comply with the provisions of |  |  |  |  |
|              | this section. The manufacturer may design the unit so that a broken antenna can      |  |  |  |  |
|              | be replaced by the user, but the use of a standard antenna jack or electrical        |  |  |  |  |
| FCC CRF Part | connector is prohibited. This requirement does not apply to carrier current devices  |  |  |  |  |
| 15.203       | or to devices operated under the provisions of §15.211, §15.213, §15.217,            |  |  |  |  |
|              | §15.219, or §15.221. Further, this requirement does not apply to intentional         |  |  |  |  |
|              | radiators that must be professionally installed, such as perimeter protection        |  |  |  |  |
|              | systems and some field disturbance sensors, or to other intentional radiators        |  |  |  |  |
|              | which, in accordance with §15.31(d), must be measured at the installation site.      |  |  |  |  |
|              | However, the installer shall be responsible for ensuring that the proper antenna is  |  |  |  |  |
|              | employed so that the limits in this part are not exceeded.                           |  |  |  |  |

Conclusion: The Directional gains of antenna used for transmitting is 0.32dBi.

The RF transmitter uses an integrate antenna without connector.



# A.1 Maximum Peak Output Power

#### **Measurement Limit:**

| Standard                    | Limit (dBm) |
|-----------------------------|-------------|
| FCC CRF Part 15.247(b)(1) & | . 20        |
| RSS-247 Issue1 5.4          | < 30        |

#### **Measurement Results:**

| Mode | Channel | Maximum Peak Output Power (dBm) |       | Conclusion |
|------|---------|---------------------------------|-------|------------|
|      | 0       | Fig.1                           | -1.51 | Р          |
| GFSK | 19      | Fig.2                           | -0.49 | Р          |
|      | 39      | Fig.3                           | -2.06 | Р          |

**See ANNEX B for test graphs.** 

**Conclusion: Pass** 

# A.2 Peak Power Spectral Density

#### **Measurement Limit:**

| Standard                 | Limit           |
|--------------------------|-----------------|
| FCC CRF Part 15.247(d) & | < 8 dBm/3 kHz   |
| RSS-247 Issue1 5.4       | < 8 UBIII/3 KHZ |

#### **Measurement Results:**

| Mode | Channel | Peak Power Spectral Density (dBm) |        | Conclusion |
|------|---------|-----------------------------------|--------|------------|
| GFSK | 0       | Fig.4                             | -17.00 | Р          |
|      | 19      | Fig.5                             | -15.61 | Р          |
|      | 39      | Fig.6                             | -17.45 | Р          |

See ANNEX B for test graphs.

**Conclusion: PASS** 



# A.3 Occupied 6dB Bandwidth

#### **Measurement Limit:**

| Standard                     | Limit (kHz) |
|------------------------------|-------------|
| FCC 47 CFR Part 15.247 (a) & | ≥ 500       |
| RSS-247 Issue1 5.2           | ≥ 500       |

#### **Measurement Result:**

| Mode | Channel | Test Results ( kHz) |       | conclusion |
|------|---------|---------------------|-------|------------|
|      | 0       | Fig.7               | 688.0 | Р          |
| GFSK | 19      | Fig.8               | 688.5 | Р          |
|      | 39      | Fig.9               | 691.0 | Р          |

See ANNEX B for test graphs.

**Conclusion: PASS** 

# A.4 Band Edges Compliance

#### **Measurement Limit:**

| Standard                     | Limit (dBc) |
|------------------------------|-------------|
| FCC 47 CFR Part 15.247 (d) & | . 20        |
| RSS-247 Issue1 5.5           | > 20        |

#### **Measurement Result:**

| Mode | Channel | Test Results | Conclusion |
|------|---------|--------------|------------|
| GFSK | 0       | Fig.10       | Р          |
|      | 39      | Fig.11       | Р          |

See ANNEX B for test graphs.

**Conclusion: Pass** 



# A.5 Transmitter Spurious Emission - Conducted

#### **Measurement Limit:**

| Standard                        | Limit                                   |
|---------------------------------|-----------------------------------------|
| FCC 47 CFR Part 15.247 (d) &    | 20dB below peak output power in 100 kHz |
| RSS-247 Issue1 5.5/RSS-Gen 6.13 | bandwidth                               |

#### **Measurement Results:**

| MODE | Channel      | Frequency Range | Test Results | Conclusion |
|------|--------------|-----------------|--------------|------------|
|      |              | 2.402 GHz       | Fig.12       | Р          |
|      | 0            | 30 MHz-3 GHz    | Fig.13       | Р          |
|      |              | 3GHz-18GHz      | Fig.14       | Р          |
|      | 19           | 2.440 GHz       | Fig.15       | Р          |
| GFSK |              | 30 MHz-3 GHz    | Fig.16       | Р          |
|      |              | 3GHz-18GHz      | Fig.17       | Р          |
|      | 39           | 2.480 GHz       | Fig.18       | Р          |
|      |              | 30 MHz-3 GHz    | Fig.19       | Р          |
|      |              | 3GHz-18GHz      | Fig.20       | Р          |
| /    | All channels | 18GHz-26GHz     | Fig.21       | Р          |

See ANNEX B for test graphs.

**Conclusion: Pass** 



### A.6 Transmitter Spurious Emission - Radiated

#### **Measurement Limit:**

| Standard                                 | Limit                        |
|------------------------------------------|------------------------------|
| FCC 47 CFR Part 15.247, 15.205, 15.209 & | 20dD below peak output newer |
| RSS-247 Issue1 5.5/RSS-Gen 6.13          | 20dB below peak output power |

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

#### Limit in restricted band:

| Frequency of emission (MHz) | Field strength(µV/m) | Measurement distance(meters) |
|-----------------------------|----------------------|------------------------------|
| 0.009-0.490                 | 2400/F(kHz)          | 300                          |
|                             | , ,                  |                              |
| 0.490-1.705                 | 24000/F(kHz)         | 30                           |
| 1.705-30.0                  | 30                   | 30                           |
| 30-88                       | 100                  | 3                            |
| 88-216                      | 150                  | 3                            |
| 216-960                     | 200                  | 3                            |
| Above 960                   | 500                  | 3                            |

#### **Test Condition:**

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

| Frequency of emission | RBW/VBW       | Sweep Time(s) |
|-----------------------|---------------|---------------|
| (MHz)                 |               |               |
| 30-1000               | 120kHz/300kHz | 5             |
| 1000-4000             | 1MHz/3MHz     | 15            |
| 4000-18000            | 1MHz/3MHz     | 40            |
| 18000-26500           | 1MHz/3MHz     | 20            |

**Note**: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.



#### **Measurement Results:**

|                       | 0           | 1 GHz ~18 GHz       | Fig.22 | Р |
|-----------------------|-------------|---------------------|--------|---|
|                       |             | 9 kHz ~30 MHz       | Fig.23 | Р |
|                       |             | 30 MHz ~1 GHz       | Fig.24 | Р |
| GFSK 19 39 Power(CH0) | 19          | 1 GHz ~18 GHz       | Fig.25 | Р |
|                       |             | 18 GHz~ 26.5 GHz    | Fig.26 | Р |
|                       | 39          | 1 GHz ~18 GHz       | Fig.27 | Р |
|                       | Power(CH0)  | 2.38 GHz ~ 2.45 GHz | Fig.28 | Р |
|                       | Power(CH39) | 2.45 GHz ~ 2.5 GHz  | Fig.29 | Р |



# GFSK CH0 (1-18GHz)

| Frequency<br>(MHz) | MaxPeak<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 13086.00000        | 52.44               | 74.00             | 21.56          | 11.1          | V   |
| 15147.00000        | 55.61               | 74.00             | 18.39          | 12.1          | V   |
| 15644.50000        | 57.59               | 74.00             | 16.41          | 12.6          | V   |
| 16226.00000        | 58.35               | 74.00             | 15.65          | 13.1          | V   |
| 16797.50000        | 58.32               | 74.00             | 15.68          | 13.9          | V   |
| 17442.50000        | 58.29               | 74.00             | 15.71          | 14.0          | Н   |

| Frequency<br>(MHz) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 13923.00000        | 42.54               | 54.00             | 11.46          | 10.8          | V   |
| 15156.50000        | 44.05               | 54.00             | 9.95           | 12.1          | Н   |
| 15688.00000        | 45.67               | 54.00             | 8.33           | 12.7          | Н   |
| 16199.00000        | 45.94               | 54.00             | 8.06           | 13.1          | V   |
| 16793.50000        | 46.58               | 54.00             | 7.42           | 13.9          | Н   |
| 17342.00000        | 46.16               | 54.00             | 7.84           | 14.0          | Н   |

# GFSK CH19 (1-18GHz)

| Frequency<br>(MHz) | MaxPeak<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 13764.50000        | 53.45               | 74.00             | 20.55          | 11.1          | V   |
| 15178.00000        | 56.00               | 74.00             | 18.00          | 12.2          | Н   |
| 15704.00000        | 57.54               | 74.00             | 16.46          | 12.7          | Н   |
| 16367.50000        | 57.58               | 74.00             | 16.42          | 13.5          | V   |
| 16840.00000        | 57.91               | 74.00             | 16.09          | 13.9          | V   |
| 17446.50000        | 57.39               | 74.00             | 16.61          | 14.0          | V   |

| Frequency<br>(MHz) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 14548.50000        | 43.42               | 54.00             | 10.58          | 11.9          | V   |
| 15154.50000        | 44.23               | 54.00             | 9.77           | 12.1          | V   |
| 15763.00000        | 45.46               | 54.00             | 8.54           | 12.8          | Н   |
| 16209.50000        | 45.66               | 54.00             | 8.34           | 13.1          | Н   |
| 16785.50000        | 46.10               | 54.00             | 7.90           | 13.9          | Н   |
| 17274.50000        | 45.71               | 54.00             | 8.29           | 13.9          | Н   |



#### **GFSK CH39 (1-18GHz)**

| Frequency<br>(MHz) | MaxPeak<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 14074.50000        | 54.62               | 74.00             | 19.38          | 11.0          | Н   |
| 15171.00000        | 56.29               | 74.00             | 17.71          | 12.1          | Н   |
| 15738.00000        | 58.19               | 74.00             | 15.81          | 12.8          | V   |
| 16232.00000        | 57.97               | 74.00             | 16.03          | 13.1          | Н   |
| 16843.00000        | 58.15               | 74.00             | 15.85          | 13.9          | Н   |
| 17447.00000        | 58.44               | 74.00             | 15.56          | 14.0          | V   |

| Frequency<br>(MHz) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Corr.<br>(dB) | Pol |
|--------------------|---------------------|-------------------|----------------|---------------|-----|
| 14534.00000        | 43.05               | 54.00             | 10.95          | 11.9          | Н   |
| 15151.50000        | 44.06               | 54.00             | 9.94           | 12.1          | Н   |
| 15693.50000        | 45.60               | 54.00             | 8.40           | 12.7          | Н   |
| 16209.00000        | 46.02               | 54.00             | 7.98           | 13.1          | Н   |
| 16747.00000        | 46.68               | 54.00             | 7.32           | 13.9          | Н   |
| 17301.50000        | 46.09               | 54.00             | 7.91           | 13.9          | V   |

#### See ANNEX B for test graphs.

**Conclusion: Pass** 

**Note:** A "reference path loss" is established and the  $A_{Rpl}$  is the attenuation of "reference path loss", and including the Antenna Factor, the gain of the preamplifier, the cable loss.

 $P_{\text{Mea}}$  is the field strength recorded from the instrument. The measurement results are obtained as described below: Result =  $P_{\text{Mea}}$  +  $A_{\text{Rpl}}$  =  $P_{\text{Mea}}$  + Cable Loss + Antenna Factor - Gain of the preamplifier



# A.7 Occupied Bandwidth

#### **Measurement Limit:**

| Standard           | Limit |
|--------------------|-------|
| RSS-Gen Issue4 6.6 | /     |

#### **Measurement Results:**

#### For GFSK

| Channel No. | Frequency (MHz) | 6dB Band | Conclusion |   |
|-------------|-----------------|----------|------------|---|
| 0           | 2402            | Fig.30   | 1017.0     | Р |
| 19          | 2440            | Fig.31   | 1006.0     | Р |
| 39          | 2480            | Fig.32   | 1016.0     | Р |

**See ANNEX B for test graphs.** 

**Conclusion: PASS** 



#### A.8 AC Powerline Conducted Emission

#### **Test Condition:**

| Voltage (V) | Frequency (Hz) |  |
|-------------|----------------|--|
| 120         | 60             |  |

#### Measurement Result and limit:

BLE (Quasi-peak Limit)-AE1

| Frequency range | Quasi-peak   | Result (dBμV) | Canalysian |
|-----------------|--------------|---------------|------------|
| (MHz)           | Limit (dBμV) | Traffic       | Conclusion |
| 0.15 to 0.5     | 66 to 56     |               |            |
| 0.5 to 5        | 56           | Fig.33        | Р          |
| 5 to 30         | 60           |               |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15 \, \text{MHz}$  to  $0.5 \, \text{MHz}$ .

#### BLE (Average Limit)-AE1

| Frequency range (MHz) | Average-peak<br>Limit (dB <sub>µ</sub> V) | Result (dBμV)<br>Traffic | Conclusion |
|-----------------------|-------------------------------------------|--------------------------|------------|
| 0.15 to 0.5           | 56 to 46                                  |                          |            |
| 0.5 to 5              | 46                                        | Fig.33                   | Р          |
| 5 to 30               | 50                                        |                          |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15\,\mathrm{MHz}$  to  $0.5\,\mathrm{MHz}$ .

#### BLE (Quasi-peak Limit)-AE1

| Frequency range | Quasi-peak                | Result (dBμV) | Conclusion |
|-----------------|---------------------------|---------------|------------|
| (MHz)           | Limit (dB <sub>µ</sub> V) | Idle          |            |
| 0.15 to 0.5     | 66 to 56                  |               |            |
| 0.5 to 5        | 56                        | Fig.34        | Р          |
| 5 to 30         | 60                        |               |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

#### BLE (Average Limit)-AE1

| Frequency range | Average-peak | Result (dBμV) | Canalysian |
|-----------------|--------------|---------------|------------|
| (MHz)           | Limit (dBμV) | Idle          | Conclusion |
| 0.15 to 0.5     | 56 to 46     |               |            |
| 0.5 to 5        | 46           | Fig.34        | Р          |
| 5 to 30         | 50           |               |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.



#### **Test Condition:**

| Voltage (V) | Frequency (Hz) |  |
|-------------|----------------|--|
| 240         | 60             |  |

#### **Measurement Result and limit:**

BLE (Quasi-peak Limit)-AE1

| Frequency range (MHz) | Quasi-peak<br>Limit (dB <sub>µ</sub> V) | Result (dBμV)<br>Traffic | Conclusion |
|-----------------------|-----------------------------------------|--------------------------|------------|
| 0.15 to 0.5           | 66 to 56                                |                          |            |
| 0.5 to 5              | 56                                      | Fig.35                   | Р          |
| 5 to 30               | 60                                      |                          |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15 \, \text{MHz}$  to  $0.5 \, \text{MHz}$ .

#### BLE (Average Limit)-AE1

| Frequency range (MHz) | Average-peak<br>Limit (dB <sub>µ</sub> V) | Result (dBμV)<br>Traffic | Conclusion |
|-----------------------|-------------------------------------------|--------------------------|------------|
| 0.15 to 0.5           | 56 to 46                                  |                          |            |
| 0.5 to 5              | 46                                        | Fig.35                   | Р          |
| 5 to 30               | 50                                        |                          |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

#### BLE (Quasi-peak Limit)-AE1

| Frequency range | Quasi-peak   | Result (dBμV) | Conclusion |
|-----------------|--------------|---------------|------------|
| (MHz)           | Limit (dBμV) | Idle          | Conclusion |
| 0.15 to 0.5     | 66 to 56     |               |            |
| 0.5 to 5        | 56           | Fig.36        | Р          |
| 5 to 30         | 60           |               |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15\,\mathrm{MHz}$  to  $0.5\,\mathrm{MHz}$ .

#### BLE (Average Limit)-AE1

| Frequency range (MHz) | Average-peak<br>Limit (dB <sub>µ</sub> V) | Result (dBμV)<br>Idle | Conclusion |
|-----------------------|-------------------------------------------|-----------------------|------------|
| 0.15 to 0.5           | 56 to 46                                  |                       |            |
| 0.5 to 5              | 46                                        | Fig.36                | Р          |
| 5 to 30               | 50                                        |                       |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15\,\mathrm{MHz}$  to  $0.5\,\mathrm{MHz}$ .

Note: The measurement results include the L1 and N measurements.

See ANNEX B for test graphs.

**Conclusion: Pass** 



# **ANNEX B: TEST FIGURE LIST**



Fig.1 Maximum Peak Output Power(GFSK, Ch 0)



Fig.2 Maximum Peak Output Power(GFSK, Ch 19)





Date: 21.FEB.2017 10:42:23

Fig.3 Maximum Peak Output Power(GFSK, Ch 39)



Fig.4 Power Spectral Density (Ch 0)





Fig.5 Power Spectral Density (Ch 19)



Fig.6 Power Spectral Density (Ch 39)





Fig.7 Occupied 6dB Bandwidth (Ch 0)



Fig.8 Occupied 6dB Bandwidth (Ch 19)





Fig.9 Occupied 6dB Bandwidth (Ch 39)



Fig.10 Band Edges (Ch 0)





Fig.11 Band Edges (Ch 39)



Fig.12 Conducted Spurious Emission (Ch0, Center Frequency)





Date: 23.FEB.2017 23:09:38

Fig.13 Conducted Spurious Emission (Ch0, 30 MHz-3 GHz)



Fig.14 Conducted Spurious Emission (Ch0, 3 GHz-18 GHz)





Fig.15 Conducted Spurious Emission (Ch19, Center Frequency)



Fig.16 Conducted Spurious Emission (Ch19, 30 MHz-3 GHz)





Fig.17 Conducted Spurious Emission (Ch19, 3 GHz-18 GHz)



Fig.18 Conducted Spurious Emission (Ch39, Center Frequency)





Fig.19 Conducted Spurious Emission (Ch39, 30 MHz-3 GHz)



Fig.20 Conducted Spurious Emission (Ch39, 3 GHz-18 GHz)





Fig.21 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)



Fig.22 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz)





Fig.23 Radiated Spurious Emission (Ch19, 9 kHz-30 MHz)



Fig.24 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz)





Fig.25 Radiated Spurious Emission (Ch19, 1 GHz- 18 GHz)



Fig.26 Radiated Spurious Emission (Ch19, 18 GHz-26.5 GHz)





Fig.27 Radiated Spurious Emission (Ch39, 1 GHz-18 GHz)



Fig.28 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)





Fig.29 Radiated Emission Power (GFSK, Ch39, 2450GHz~2500GHz)



Fig.30 Occupied Bandwidth: GFSK, Channel 0





Fig.31 Occupied Bandwidth: GFSK, Channel 19



Fig.32 Occupied Bandwidth: GFSK, Channel 39

20M 30M





Fig.33 AC Powerline Conducted Emission (Traffic, AE1)

Frequency in Hz

3M 4M5M6

8 10M

8001M

300 40 05 0 0

#### MEASUREMENT RESULT: " QuasiPeak "

150k

| ,         | market in the second se |     |      |       |        |        |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|--------|--------|--|
| Frequency | QuasiPeak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PE  | Line | Corr. | Margin | Limit  |  |
| (MHz)     | (dBµV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      | (dB)  | (dB)   | (dBµV) |  |
| 1.086000  | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.6   | 16.5   | 56.0   |  |
| 1.106000  | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.6   | 17.5   | 56.0   |  |
| 1.338000  | 38.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.6   | 17.3   | 56.0   |  |
| 1.418000  | 38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.5   | 17.9   | 56.0   |  |
| 5.394000  | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.7   | 18.6   | 60.0   |  |
| 5.734000  | 40.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND | N    | 9.7   | 19.1   | 60.0   |  |

| Frequency | Average | PE  | Line | Corr. | Margin | Limit  |
|-----------|---------|-----|------|-------|--------|--------|
| (MHz)     | (dBµV)  |     |      | (dB)  | (dB)   | (dBµV) |
| 0.442000  | 27.7    | GND | N    | 9.7   | 19.3   | 47.0   |
| 0.642000  | 25.2    | GND | N    | 9.6   | 20.8   | 46.0   |
| 1.346000  | 29.5    | GND | N    | 9.6   | 16.5   | 46.0   |
| 2.702000  | 22.7    | GND | N    | 9.6   | 23.3   | 46.0   |
| 4.982000  | 29.7    | GND | N    | 9.6   | 16.3   | 46.0   |
| 5.458000  | 32.8    | GND | N    | 9.7   | 17.2   | 50.0   |





Fig.34 AC Power line Conducted Emission (Idle, AE1)

### MEASUREMENT RESULT: " QuasiPeak "

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 1.086000           | 40.5                | GND | N    | 9.6           | 15.5           | 56.0            |
| 1.146000           | 40.2                | GND | N    | 9.6           | 15.8           | 56.0            |
| 1.278000           | 40.9                | GND | N    | 9.6           | 15.1           | 56.0            |
| 1.406000           | 39.3                | GND | N    | 9.5           | 16.7           | 56.0            |
| 1.534000           | 38.0                | GND | N    | 9.6           | 18.0           | 56.0            |
| 5.222000           | 40.6                | GND | N    | 9.6           | 19.4           | 60.0            |

| Frequency | Average | PE  | Line | Corr. | Margin | Limit  |
|-----------|---------|-----|------|-------|--------|--------|
| (MHz)     | (dBµV)  |     |      | (dB)  | (dB)   | (dBµV) |
| 0.446000  | 29.3    | GND | N    | 9.7   | 17.7   | 46.9   |
| 1.086000  | 31.1    | GND | N    | 9.6   | 14.9   | 46.0   |
| 1.278000  | 31.6    | GND | N    | 9.6   | 14.4   | 46.0   |
| 1.530000  | 28.4    | GND | N    | 9.6   | 17.6   | 46.0   |
| 4.982000  | 30.1    | GND | N    | 9.6   | 15.9   | 46.0   |
| 5.394000  | 32.2    | GND | N    | 9.7   | 17.8   | 50.0   |





Fig.35 AC Powerline Conducted Emission (Traffic, AE1)

### MEASUREMENT RESULT: " QuasiPeak "

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 1.074000           | 38.0                | GND | N    | 9.6           | 18.0           | 56.0            |
| 1.158000           | 38.0                | GND | N    | 9.5           | 18.0           | 56.0            |
| 1.182000           | 37.7                | GND | N    | 9.5           | 18.3           | 56.0            |
| 1.310000           | 37.3                | GND | N    | 9.6           | 18.7           | 56.0            |
| 4.974000           | 39.2                | GND | N    | 9.6           | 16.8           | 56.0            |
| 4.986000           | 39.0                | GND | N    | 9.6           | 17.0           | 56.0            |

| Frequency | Average | PE  | Line | Corr. | Margin | Limit  |
|-----------|---------|-----|------|-------|--------|--------|
| (MHz)     | (dBµV)  |     |      | (dB)  | (dB)   | (dBµV) |
| 0.310000  | 23.3    | GND | N    | 9.6   | 26.7   | 50.0   |
| 0.446000  | 27.8    | GND | N    | 9.7   | 19.2   | 46.9   |
| 1.266000  | 27.4    | GND | N    | 9.6   | 18.6   | 46.0   |
| 2.710000  | 21.2    | GND | N    | 9.6   | 24.8   | 46.0   |
| 4.994000  | 29.3    | GND | N    | 9.6   | 16.7   | 46.0   |
| 5.314000  | 32.0    | GND | N    | 9.6   | 18.0   | 50.0   |





Fig.36 AC Power line Conducted Emission (Idle, AE1)

### MEASUREMENT RESULT: " QuasiPeak "

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 1.086000           | 40.4                | GND | N    | 9.6           | 15.6           | 56.0            |
| 1.154000           | 39.9                | GND | N    | 9.5           | 16.1           | 56.0            |
| 1.214000           | 40.5                | GND | N    | 9.5           | 15.5           | 56.0            |
| 1.414000           | 37.7                | GND | N    | 9.5           | 18.3           | 56.0            |
| 4.982000           | 38.4                | GND | N    | 9.6           | 17.6           | 56.0            |
| 5.438000           | 40.4                | GND | N    | 9.7           | 19.6           | 60.0            |

| Frequency | Average | PE  | Line | Corr. | Margin | Limit  |
|-----------|---------|-----|------|-------|--------|--------|
| (MHz)     | (dBµV)  |     |      | (dB)  | (dB)   | (dBµV) |
| 0.442000  | 29.1    | GND | N    | 9.7   | 17.9   | 47.0   |
| 0.574000  | 27.4    | GND | N    | 9.7   | 18.6   | 46.0   |
| 1.086000  | 31.1    | GND | N    | 9.6   | 14.9   | 46.0   |
| 1.278000  | 31.2    | GND | N    | 9.6   | 14.8   | 46.0   |
| 4.982000  | 30.2    | GND | N    | 9.6   | 15.8   | 46.0   |
| 5.562000  | 32.3    | GND | N    | 9.7   | 17.7   | 50.0   |



# **ANNEX C: Persons involved in this testing**

| Test Name                                 | Tester                     |
|-------------------------------------------|----------------------------|
| Maximum Peak Output Power                 | Lin Kanfeng, Tang Weisheng |
| Peak Power Spectral Density               | Lin Kanfeng, Tang Weisheng |
| Occupied 6dB Bandwidth                    | Lin Kanfeng, Tang Weisheng |
| Band Edges Compliance                     | Lin Kanfeng, Tang Weisheng |
| Transmitter Spurious Emission - Conducted | Lin Kanfeng, Tang Weisheng |
| Transmitter Spurious Emission - Radiated  | Lin Kanfeng, Tang Weisheng |
| Occupied Bandwidth                        | Lin Kanfeng, Tang Weisheng |
| AC Powerline Conducted Emission           | Lin Kanfeng, Tang Weisheng |

<sup>\*\*\*</sup>END OF REPORT\*\*\*