Math 1080 Class notes Fall 2020

Peter Westerbaan

Last updated: February 21, 2021

m 1 1	Ω C	
Table	()T	Contents

5.5: Substitution Rule	1
------------------------	---

5.5: Substitution Rule

Theorem 5.6: Substitution Rule for Indefinite Integrals

Let u = g(x), where g is differentiable on an interval, and let f be continuous on the corresponding range of g. On that interval,

$$\int f(g(x))g'(x) dx = \int f(u) du$$

Example. We know

$$\frac{d}{dx} \left[\frac{(2x+1)^4}{4} \right] = 2(2x+1)^3$$

Thus, if $f(x) = x^3$ and g(x) = 2x + 1 then g'(x) = 2, so we let u = 2x + 1, then

$$\int 2(2x+1)^3 dx = \int f(g(x))g'(x) dx$$
$$= \int u^3 du$$
$$= \frac{u^4}{4} + C$$
$$= \frac{(2x+1)^4}{4} + C$$

Procedure: Substitution Rule (Change of Variables)

- 1. Given an indefinite integral involving a composite function f(g(x)), identify an inner function u = g(x) such that a constant multiple of g'(x) appears in the integrand.
- 2. Substitute u = g(x) and du = g'(x) dx in the integral.
- 3. Evaluate the new indefinite integral with respect to u.
- 4. Write the result in terms of x using u = g(x).

a)
$$\int 2x(x^2+3)^4 dx$$

b)
$$\int (2x+1)^3 dx$$

c)
$$\int x^2 \sqrt{x^3 + 1} \, dx$$

d)
$$\int \theta \sqrt[4]{1-\theta^2} d\theta$$

e)
$$\int \sqrt{4-t} \, dt$$

f)
$$\int (2-x)^6 dx$$

a)
$$\int \sec(2\theta) \tan(2\theta) d\theta$$

b)
$$\int \csc^2\left(\frac{t}{3}\right) dt$$

c)
$$\int \frac{\sin(x)}{1 + \cos^2(x)} \, dx$$

$$d) \int \frac{\tan^{-1}(x)}{1+x^2} dx$$

The acceleration of a particle moving back and forth on a line is $a(t) = \frac{d^2s}{dt^2} = \pi^2 \cos(\pi t) \ m/s^2$ for all t. If s=0 and v=8 m/s when t=0, find the value of s when t=1 sec.

a)
$$\int (6x^2 + 2)\sin(x^3 + x + 1) dx$$

b)
$$\int \frac{\sin(\theta)}{\cos^5(\theta)} d\theta$$

c)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$d) \int \frac{2^t}{2^t + 3} dt$$

$$e) \int 6x^2 4^{x^3} dx$$

$$f) \int \frac{dx}{\sqrt{36 - 4x^2}}$$

g)
$$\int \sin(t) \sec^2(\cos(t)) dt$$

$$h) \int \frac{1}{\sqrt{x}(1+\sqrt{x})^2} \, dx$$

i)
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx$$

$$j) \int 5\cos(7x+5) \, dx$$

$$k) \int \frac{3}{\sqrt{1 - 25x^2}} \, dx$$

$$l) \int \frac{dx}{\sqrt{1 - 9x^2}}$$

Example. Evaluate the following integrals using the recommended substitution:

a)
$$\int \sec^2(x) \tan(x) dx$$

where $u = \tan(x)$.

b)
$$\int \sec^2(x) \tan(x) dx$$

where $u = \sec(x)$.

Example. Solve the initial value problem: $\frac{dy}{dx} = 4x(x^2 + 8)^{-1/3}, y(0) = 0.$

a)
$$\int xe^{-x^2} dx$$

$$b) \int \frac{e^{1/x}}{x^2} dx$$

c)
$$\int \frac{dt}{8-3t}$$

d)
$$\int 5^t \sin(5^t) dt$$

$$e) \int \frac{e^w}{36 + e^{2w}} \, dw$$

Theorem 5.7: Substitution Rule for Definite Integrals

Let u = g(x), where g' is continuous on [a, b], and let f be continuous on the range of g. Then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

a)
$$\int_0^1 \frac{x^3}{\sqrt{x^4 + 9}} \, dx$$

b)
$$\int_{1}^{3} \frac{dt}{(t-4)^2}$$

c)
$$\int_0^3 \frac{v^2 + 1}{\sqrt{v^3 + 3v + 4}} \, dv$$

d)
$$\int_0^1 2x(4-x^2) dx$$

e)
$$\int_{2}^{3} \frac{x}{\sqrt[3]{x^2 - 1}} dx$$

f)
$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{1 + \cos(x)} dx$$

$$g) \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos^2(x)} \, dx$$

h)
$$\int_{-\frac{\pi}{12}}^{\frac{\pi}{8}} \sec^2(2y) \, dy$$

i)
$$\int_0^1 (1 - 2x^9) dx$$

j)
$$\int_0^1 (1-2x)^9 dx$$

$$k) \int_0^{\frac{1}{2}} \frac{1}{1 + 4x^2} \, dx$$

$$1) \int_0^4 \frac{x}{x^2 + 1} \, dx$$

$$\mathrm{m} \int_0^{\pi} 3\cos^2(x)\sin(x)\,dx$$

n)
$$\int_0^{\frac{\pi}{8}} \sec(2\theta) \tan(2\theta) d\theta$$

o)
$$\int_0^1 (3t-1)^{50} dt$$

$$p) \int_0^3 \frac{1}{5x+1} \, dx$$

$$q) \int_0^1 x e^{-x^2} dx$$

$$r) \int_{e}^{e^4} \frac{1}{x\sqrt{\ln(x)}} \, dx$$

s)
$$\int_0^{\frac{1}{2}} \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} \, dx$$

$$t) \int_0^1 \frac{e^z + 1}{e^z + z} dz$$

$$\mathrm{u}) \int_{1}^{4} \frac{dy}{2\sqrt{y} \left(1 + \sqrt{y}\right)^{2}}$$

$$v) \int_{\ln\left(\frac{\pi}{4}\right)}^{\ln\left(\frac{\pi}{2}\right)} e^w \cos(e^w) \, dw$$

$$(w) \int_0^{\frac{1}{8}} \frac{x}{\sqrt{1 - 16x^2}} dx$$

$$x) \int_{1}^{e^2} \frac{\ln(p)}{p} \, dp$$

y)
$$\int_0^{\frac{\pi}{4}} e^{\sin^2(x)} \sin(2x) dx$$
 z) $\int_{-\pi}^{\pi} x^2 \sin(7x^3) dx$

Example. Average velocity: An object moves in one dimension with a velocity in m/s given by $v(t) = 8\sin(\pi t) + 2t$. Find its average velocity over the time interval from t = 0 to t = 10, where t is measured in seconds.

Example. Prove $\int \tan(x) dx = \ln|\sec(x)| + C$.

$$a) \int \frac{x}{(x-2)^3} \, dx$$

b)
$$\int x\sqrt{x-1}\,dx$$

c)
$$\int x^3 (1+x^2)^{\frac{3}{2}} dx$$

$$d) \int \frac{y^2}{(y+1)^4} \, dy$$

e)
$$\int (z+1)\sqrt{3z+2}\,dz$$

$$f) \int_0^1 \frac{x}{(x+2)^3} \, dx$$

Half-Angle Formulas

$$\cos^{2}(\theta) = \frac{1 + \cos(2\theta)}{2}$$
$$\sin^{2}(\theta) = \frac{1 - \cos(2\theta)}{2}$$

a)
$$\int \cos^2(x) dx$$

$$b) \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

c)
$$\int \frac{1}{x^2} \cos^2 \left(\frac{1}{x}\right) dx$$

$$d) \int x \sin^2(x^2) \, dx$$

e)
$$\int \sin^2\left(\theta + \frac{\pi}{6}\right) d\theta$$

f)
$$\int_0^{\frac{\pi}{4}} \cos^2(8\theta) \, d\theta$$

Example. If f is continuous and $\int_0^4 f(x) dx = 10$, find $\int_0^2 f(2x) dx$.

Example. If f is continuous and $\int_0^9 f(x) dx = 4$, find $\int_0^3 x f(x^2) dx$.

Example. Suppose f is an even function with $\int_0^8 f(x) dx = 9$. Evaluate the following:

a)
$$\int_{-1}^{1} x f(x^2) dx$$
.

b)
$$\int_{-2}^{2} x^2 f(x^3) dx$$
.

a)
$$\int \sec^2(10x) \, dx$$

b)
$$\int \tan^{10}(4x)\sec^2(4x) dx$$

$$c) \int \left(x^{\frac{3}{2}} + 8\right)^5 \sqrt{x} \, dx$$

$$d) \int \frac{2x}{\sqrt{3x+2}} \, dx$$

$$e) \int \frac{7x^2 + 2x}{x} \, dx$$

$$f) \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

g)
$$\int_0^{\sqrt{3}} \frac{3}{9+x^2} \, dx$$

$$h) \int_0^{\frac{\pi}{6}} \frac{\sin(2y)}{\sin^2(y) + 2} \, dy$$

i)
$$\int \frac{\sec(z)\tan(z)}{\sqrt{\sec(z)}} \, dz$$

$$j) \int \frac{1}{\sin^{-1}(x)\sqrt{1-x^2}} \, dx$$

$$k) \int \frac{x}{\sqrt{4 - 9x^2}} \, dx$$

$$1) \int \frac{x}{1+x^4} \, dx$$

$$m) \int \frac{\cos \sqrt{\theta}}{\sqrt{\theta} \sin^2 \sqrt{\theta}} \, d\theta$$

$$n) \int x^2 \sqrt{2+x} \, dx$$

o)
$$\int \left(\sin^5(x) + 3\sin^3(x) - \sin(x)\right) \cos(x) dx$$

p)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 + x^4 \tan(x)) dx$$

q)
$$\int_0^{\frac{\pi}{2}} \cos(x) \sin(\sin(x)) dx$$

$$r) \int \frac{1+x}{1+x^2} \, dx$$

Example. Evaluate these more challenging integrals:

a)
$$\int \frac{dx}{\sqrt{1+\sqrt{1+x}}}$$

b)
$$\int x \sin^4(x^2) \cos(x^2) dx$$