

Applied Mathematics: an introduction to Scientific Computing by Numerical Analysis

Lecture 11 - L2 projection and polynomial integration

Luca Heltai < luca.heltai@sissa.it>

International School for Advanced Studies (www.sissa.it)
Mathematical Analysis, Modeling, and Applications (math.sissa.it)
Theoretical and Scientific Data Science (datascience.sissa.it)
SISSA mathLab (mathlab.sissa.it)

Polyhoural Tukepolation
Berantein Agonomination
L² projection

V: Vector space + hour (we concentrate on Hilbert Space): V is Hilbert if $\| \| \|_{V} := \sqrt{(u,u)}$ $f_{\mathcal{U}} \in V$

a a subspace of V, we coll pE & the best approximation

in Q of a function $\mu \in V$ iif:

1) $\|p-\mu\|^2 \le \|q-\mu\|^2 + q \in Q$ for Hilbert spacer 1 (1) (2)

(2) $(P,q) = (\mu,q)$ $\forall q \in Q$ $(P-\mu,q) = 0$ $\forall q \in Q$

finite divensional of dimension 19+1 Assume that Q = Span { Vi gi=0 then $f \in G$ $\exists ! \{ p \}_{j=0}^{j}$ s.t. $p(x) = \underbrace{\xi}_{i=0} p^{J} V_{j}(x)$ Asking 2 means: 4q€Q ⇒ 3! {q'∫i=0 Et. q(e)= = q'vi(e) $d \Rightarrow [M][P] - [u] = 0 \qquad [P] = [M]^{-1}[u]$ $[M]_{ij} := (V_j, v_i) \qquad [M]_i = (M, v_i)$ pi = Misms = Sik Example: $(u,v) := \int_{0}^{b} u v dx$ L² scalar product $\|\mu\|_{:=} \sqrt{(\mu,\mu)} = \left(\int_{q}^{b} \mu^{2} dx\right)^{\frac{1}{2}}$ $Q := P^h([a,b])$ polynomials of order NManumials: $Q = Span \{v_i\}_{i=0}^n = Span \{v_i\}_{i=0}^n$ $M_{ij} := \begin{cases} b & n^i \neq 0 \\ 0 & n^i \end{cases} \text{ for a some } a = 0, b = 1$ $M_{ij} := \begin{cases} b & n^i \neq 0 \\ 0 & n^i \end{cases} \text{ for a some } a = 0, b = 1$ $\frac{x^{(i+J+1)}}{x^{(i+J+1)}}\Big|_{Q} = \frac{1}{x^{(i+J+1)}} \Rightarrow \text{Hilbert matrix}$

Legendre basis functions: ([a,b] = [0,17) $V_6 = 1$ $(V_i, V_T) = SiJ \qquad \forall i, T$ viePi hem Schmidt procedure: $V_0 = I$ $V_k := x V_{k-1} - \frac{S}{J_{=0}}(x V_{k-1}, V_J) V_J$ $V_k := \frac{V_k}{\|V_k\|}$ $V_k := \frac{V_k}{\|V_k\|}$ $V_k := \frac{V_k}{\|V_k\|}$ $V_k := \frac{V_k}{\|V_k\|}$ $V_j := \frac{V_k}{J_{=0}}(x V_{k-1}, V_j) V_j$ $V_k := \frac{V_k}{J_{=0}}(x V_{k-1}, V_j) V_j$ hudrem Schmidt procedure: $= (2 V_{u-1} V_{u}) - (2 V_{u-1} V_{u}) = 0$ Hi, (p, vi) = 0 + pEP with kei -(u-p,q)=0 $||u-p|| \leq ||u-q|| + q \in Q$ 1/4" p is b.a. => (M-P,9) =0 +9 EQ $\|\mathbf{u} - \mathbf{p}\|^2 \le \|\mathbf{u} - \mathbf{p} + \mathbf{t}\mathbf{q}\|^2$ $\forall t \in \mathbb{R}, \forall \mathbf{q} \in \mathbb{Q}$ $\|u-p\|^2 \le (u-p+tq, u-p+tq) = \|u-p\|^2 + 2(u-p,tq) + t^2\|q\|^2$ $0 \leq 2t(n-p,q) + t^2||q||^2$

$$0 \leq 2(\mu - \rho_{1}q) + t \|q\|^{2}$$

$$0 \geq 2(\mu - \rho_{1}q) + t \|q\|^{2}$$

$$-|t|||q||^{2} \leq 2(\mu - \rho_{1}q) \leq |tt|||q||^{2}$$

$$t \leq 0$$

$$-|t|||q||^{2} \leq 2(\mu - \rho_{1}q) \leq |tt|||q||^{2}$$

$$(\mu - \rho_{1}q) = 0$$

$$|\mu - \rho_{1}q|^{2} = |\mu - \rho_{1}|^{2} = |\mu - \rho_{1}|^{2} + |\mu - \rho_{1}|^{2} + 2(\mu \rho_{1}\rho_{1}q)$$

$$|\mu - \rho_{1}|^{2} = |\mu - \rho_{1}|^{2} + |\mu - \rho_{1}|^{2} \Rightarrow |\mu - \rho_{1}| \leq |\mu - \rho_{1}| + |\mu - \rho_{1}|^{2} \Rightarrow |\mu - \rho_{1}| \leq |\mu - \rho_{1}| + |\mu - \rho_{1}|^{2} \Rightarrow |\mu - \rho_{1}| \leq |\mu - \rho_{1}| + |\mu - \rho_{1}|^{2} \Rightarrow |\mu - \rho_{1}| \leq |\mu - \rho_{1}| + |\mu - \rho_{1}| +$$

Hip:= (vr, vi) $ui := (u, vi) := \int_{q}^{b} uvi$ we need a way to compute $\int_{q}^{b} f dx$ with f = uviWe use "Interpolatory quadrature pules".

Criven $\{q_i\}_{i=0}^{b}$ by quadrature points

· Countract $I^{(b)}$: polynomial hyperpolation

· Turtegrate I'm justead of m We say that a quadrature found is exact of order k if it integrales exactly polynomials of order k. $Tut(n) := \begin{cases} b & \forall n \in C(la,b) \\ A & \forall n \in C(la,b) \end{cases}$ $Tut(n) := \begin{cases} b & \forall n \in C(la,b) \\ A & \forall n \in C(la,b) \end{cases}$ $Tut(n) := \begin{cases} b & \forall n \in C(la,b) \\ A & \forall n \in C(la,b) \end{cases}$ $Tut(n) := \begin{cases} b & \forall n \in C(la,b) \\ A & \forall n \in C(la,b) \end{cases}$ $Tut(n) := \begin{cases} b & \forall n \in C(la,b) \\ A & \forall n \in C(la,b) \end{cases}$ = \(\text{\superior} \text{\tint{\text{\tint{\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex . li are the Lagrange basis for ¿qisizo · {qi/i=0 are the quadrature points" Examples: n=1, $q_0:=\{a,b,\frac{a+b}{2}\}$ $W_0=(b-a)$ 1): $\frac{q_{0}=b}{q_{0}=a}$ · Forward Euler: 90=a $C_0 = 1$. Buch word Euler: 90 = 6 . Mid point 90 = 945

$$P = 2$$

$$Q_0 = Q \quad , \quad Q_1 = b \quad \text{Traperoidae}$$

$$P_0 := \frac{(x-a)}{(b-a)} \quad W_0 := \int_a^b b \, dx = \frac{1}{2}(b-a)$$

$$P_1 := \frac{(x-b)}{(a-b)} \quad W_1 := \int_a^b l_1 \, dx = \frac{1}{2}(b-a)$$

$$P_2 := \frac{(x-b)}{(a-b)} \quad W_3 := \int_a^b l_1 \, dx = \frac{1}{2}(b-a)$$

$$P_3 := \int_a^b l_1(x) \, dx$$

$$P_4 := \int_a^b l_1(x) \, dx$$

$$P_5 := \int_a^b l_1(x) \, dx$$

$$P_6 := \int_a^b l_1(x) \, dx$$

$$P_7 := \int_a^b l_1(x) \, d$$

The order of accuracy of a quadrature rule with non points is at least [n]. an < 2(n+1)

