7. Let (A, v, Λ) be an algebraic system where Vand 1 are binary operations satisfying the Commutative, associative and absorption laws. (a) Define a binary operation < on A as follows: for all a, b eA, a \le b if and only if anb=a. Show that \le is a partial ordering relation. (b) show that aub is least upper bound of a and b in (A, \leq) greatest lower bound (c) Show that alb is and a and b in $(A \leq)$. that if Vand1 Soln (a) From Q NO Q, we know vand 1 satisfier abroxption law, than sourisfres identatent law. By idempotent law, we have $a \wedge a = a \implies a \leq a \implies ' \leq '$ is reflexive. To prove antisymmetry, If a < b and if b < a, a 1 b = a and 5/a=b. $a \wedge b = a$ (i) wehaue by commutativity, an 6 = 6 (iii) from (i) + (iii) => q=b => Antisymmetric

To prove Transitive law, if a < b and	then
anb = a and $bnc = b$	
$a = a \wedge b = a \wedge (b \wedge c) = (a \wedge b) \wedge c = As a \wedge c = a \implies a \leq c = a$	ansitive:
=> '<' is partial ordering	relation
(b) To prove aub is lub of a (we will show first aub is	and b. an ub of a andb
From absorption law and aub) =	G .
a < aub - (
Similarly b/(avb) = b	
b < aub (2).	(1) f@=) anb is
an ub of a and b. Suppose 'd' is any other ub of a $b \le d$, then to prove $avb \le d$	andb i.e. a $\leq d$, d.
airen, and=a, brd=b. To pr	
$(avb) \wedge d = avb$	
$\frac{1}{avb} = (avb) \wedge (avb) v d$) — obsorption
	$-)b-b\wedge d$
$= (aub) \wedge ((au(b \wedge d)) \vee d)$ $= (aub) \wedge (av(b \wedge d) \vee d)$	Association
	Absorption.
$\frac{1}{2}$ (and) $\sqrt{(and)}$	$a \wedge d = a$
= (aub) \ d	given .

Universal Lower Bound:

An element a in a lattice (A, \leq) is called a universal hower bound if for every element $b \in A$, $a \leq b$.

universablower bound = a

7 universal lower bound=

Note: From the definition of hattice, it is clear that if a hattice has a universal hower bound, then it is unique.

For if we assume there are a universal lower bounds a and b, then $a \le b$ and $b \le a$. $\Rightarrow a = b$.

Universal Upper bound

An element a' in a Lattice (A, \leq) is called a universal upper bound if for every element $b \in A$, $b \leq a$.

Note: If a Lattice has a universal upper bound, then it is unique.

we use 0 to denote the universal lower bound and 1 to denote the universal upper bound of a Lattice (if such bound exist)

Example: In a Lattice (P(A), C), the empty sel is the universal loser bound and set A is the universal upper bound.

Theorem: Let (A, \leq) be a hattice with universal upper and lower bounds I and O. For any element a in A, _ (i) C VI=1 — (it) $\alpha \Lambda l = \alpha$ _ (iii) Q 10 = 0 _ (iv) avo = a Proof: (1) Le know $|\leq \alpha \vee |$ -(0)universal upper bound, we have Since 1 is the $avi \leq 1$ -(2) = 1(ii) from theiren $\hat{0}$, and eq = 3. a \le a and a \le 1 \rightarrow from Theorem @ $q \wedge q \leq q \wedge 1$ $a \leq a \wedge 1$ $(3)(4) \rightarrow (4) = 9$ we know. $910 \leq 0 = 5$ is universal 1.5 we Mare, $0 \leq a \wedge 0 - 6$ $Q \wedge Q = 0$

Note: The element O is an identity element of join operation and 1 is an identity element of meet oferation. i.e., and = a

an identity element of an identity element element of an identity element elemen

Complemented Lattice

Let (A, \leq) be a lattice with universal lower and upper bounds o and 1.

For an element a EA, an element b es sould to be a complement of a if Cub-1 & anb=0.

Note: Because of commutativity, if a is a complement of b, then b is also a complement of a.

dv(e)=a, dr(e)=g' dvb=a drb=9

(·.a=1, 9=0)

complement of d = C, bcomplement of g = CLcomplement of C = Not there $f \cdot b = a \quad f \cdot b = g$

Note: An element may have more than one complement.

Note: 0 is the unique complement of 1 and 1 is the unique complement of 0.

In a hattice, there may exist an element without a complement.

Definition: A Lattice is said to be a Complemented Lattice if every eliment in the lattice has a complement.

Clearly, a complemented hattice must have universal lower and upper bound.

Examples

Lattice.

 $\frac{QVC = 1}{aVC} = 0$

complement of a is C complement of b is C complement of 0 is 1 complement of cis 9, b.

Theorem: In a distributive lattice, if an element has a complement, then this complement is unique.

Proof: Suppose that an eliment a has a complements say b and c, thin a v b = 1, a \(\) b = 6

av c = 1, a \(\) c = 0

 $b = b \wedge \underline{1}$ $= b \wedge (a \vee c)$ $= (b \wedge a) \vee (b \wedge c)$ $= 0 \vee (b \wedge c)$ $= (a \wedge c) \vee (b \wedge c)$ $= (a \wedge c) \vee (b \wedge c)$ $= (a \vee b) \wedge c$ $b = 1 \wedge c = c$

Boolean Lattice and Boolean Algebra

Boolean hattice: A hattice is said to be a boolean lattice, if it is distributive and complemented lattice.

Example: (P(A), S) is a Boolean hattiq.

Let (A, \leq) be a boolean lattice. Every $a \in A$, has a unique complement denoted by \overline{a} . (since in a distributive lattice if an element has a complement, then the complement is unique)

Thus, we have a unary operation known as complementation '-'.

.. a boolean hattice (A, \leq) dufine an algebraic system $(A, V, \Lambda, -)$ where V, Λ and - are join, meet and complementation operation, respectively, which is known as Boolean Algebra.

Example: het S be a finite set, and $(P(s), \subseteq)$ is a Boolean lattice. In this universal upper bound is $\frac{S}{and}$ and universal lower bound is $\frac{S}{and}$ and the

complement of any set T is $\frac{S-T}{}$.

complement of {a} is {ac}

complement of {b} is {ac}

complement of {c} is {a,b}

complement of {q} is {abc}

```
De Morgans law:
                               a and b in a boolean
Theorem: For any
algebra (A,V, M, -),
      (i) avb = a 16
       (ii) anb = avb
Proof: (i) Toprove

(avb)v(a\Lambda b) = 1

(avb)\Lambda(a\Lambda b) = 0
  (avb)v(avb)va (avb)va
          = ((ava) vb) N(av(bvb))
           = (1 \lor b) \land (a \lor 1)
            = | | \wedge | = |
   (avb)\Lambda(\overline{a}\Lambda\overline{b}) = [a\Lambda(\overline{a}\Lambda\overline{b})]v[b\Lambda(\overline{a}\Lambda\overline{b})]
    = ((\alpha \wedge \overline{\alpha}) \wedge \overline{b}) \vee ((b \wedge \overline{b}) \wedge \overline{a})
     = (0 \wedge \overline{b}) \vee (0 \wedge \overline{a})
     = 0
  Thus and is the complement of
  1.e., avb = a 16.
 From principle of duality, and = avb.
```