- humanoid locomotion with perceptive internal model. arXiv preprint arXiv:2411.14386, 2024.
- [51] Junfeng Long, Zirui Wang, Quanyi Li, Liu Cao, Jiawei Gao, and Jiangmiao Pang. Hybrid internal model: Learning agile legged locomotion with simulated robot response. In The Twelfth International Conference on Learning Representations, 2024.
- [52] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A skinned multi-person linear model. In <u>Seminal Graphics</u> <u>Papers: Pushing the Boundaries, Volume 2</u>, pages 851– 866. 2023.
- [53] Chenhao Lu, Xuxin Cheng, Jialong Li, Shiqi Yang, Mazeyu Ji, Chengjing Yuan, Ge Yang, Sha Yi, and Xiaolong Wang. Mobile-television: Predictive motion priors for humanoid whole-body control. <u>arXiv preprint</u> arXiv:2412.07773, 2024.
- [54] Shixin Luo, Songbo Li, Ruiqi Yu, Zhicheng Wang, Jun Wu, and Qiuguo Zhu. Pie: Parkour with implicit-explicit learning framework for legged robots. <u>IEEE Robotics</u> and Automation Letters, 2024.
- [55] Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. Perpetual humanoid control for real-time simulated avatars. In <u>Proceedings of the IEEE/CVF International Conference on Computer Vision</u>, pages 10895–10904, 2023.
- [56] Zhengyi Luo, Jiashun Wang, Kangni Liu, Haotian Zhang, Chen Tessler, Jingbo Wang, Ye Yuan, Jinkun Cao, Zihui Lin, Fengyi Wang, et al. Smplolympics: Sports environments for physically simulated humanoids. arXiv preprint arXiv:2407.00187, 2024.
- [57] Shangke Lyu, Xin Lang, Han Zhao, Hongyin Zhang, Pengxiang Ding, and Donglin Wang. Rl2ac: Reinforcement learning-based rapid online adaptive control for legged robot robust locomotion. In <u>Proceedings of the</u> Robotics: Science and Systems, 2024.
- [58] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu based physics simulation for robot learning. In <u>Thirty-fifth Conference</u> on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
- [59] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via reinforcement learning. <u>arXiv preprint arXiv:2205.02824</u>, 2022.
- [60] Gabriel B Margolis, Xiang Fu, Yandong Ji, and Pulkit Agrawal. Learning to see physical properties with active sensing motor policies. <u>arXiv preprint</u> arXiv:2311.01405, 2023.
- [61] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via reinforcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.
- [62] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz

- Wellhausen, Vladlen Koltun, and Marco Hutter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science robotics, 7(62):eabk2822, 2022.
- [63] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot learning environments. <u>IEEE Robotics and Automation Letters</u>, 8(6):3740– 3747, 2023. doi: 10.1109/LRA.2023.3270034.
- [64] Fabio Muratore, Christian Eilers, Michael Gienger, and Jan Peters. Data-efficient domain randomization with bayesian optimization. <u>IEEE Robotics and Automation</u> Letters, 6(2):911–918, 2021.
- [65] I Made Aswin Nahrendra, Byeongho Yu, and Hyun Myung. Dreamwaq: Learning robust quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 5078–5084. IEEE, 2023.
- [66] Michael O'Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. <u>Science Robotics</u>, 7(66): eabm6597, 2022.
- [67] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG), 37(4): 1–14, 2018.
- [68] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of robotic control with dynamics randomization. In 2018 IEEE international conference on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.
- [69] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv: Reinforcement learning of physical skills from videos. <u>ACM Transactions</u> On Graphics (TOG), 37(6):1–14, 2018.
- [70] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learning agile robotic locomotion skills by imitating animals. <u>arXiv</u> preprint arXiv:2004.00784, 2020.
- [71] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters. ACM Transactions On Graphics (TOG), 41 (4):1–17, 2022.
- [72] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation via rapid motor adaptation. In <u>Conference on Robot Learning</u>, pages 1722–1732. PMLR, 2023.
- [73] I Radosavovic, B Zhang, B Shi, J Rajasegaran, S Kamat, T Darrell, K Sreenath, and J Malik. Humanoid locomotion as next token prediction. arxiv. 2024. arXiv