Simulation Result 1: $C\sim Exp(0.2)$

Yi 2023-02-14

Table 1: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median~(Q1,~Q3)	CR	Median (Q1, Q3)	CR	Median~(Q1,~Q3)	CR
50-150	20	HZ_P	0.00 (73.37, 76.47)	99.7	0.00 (73.43, 75.96)	99.7	0.00 (73.70, 75.66)	96.7
		HZ_O	1.23 (73.98, 77.95)	99.7	1.71 (74.42, 78.49)	99.7	$2.29\ (74.98,\ 79.11)$	96.7
		Prop	$0.61\ (73.32,\ 77.73)$	99.7	-0.11 (72.30, 77.24)	99.7	-0.91 (71.15, 76.27)	96.7
	30	HZ_P	$0.00\ (73.57,\ 75.96)$	99.7	$0.00\ (73.54,\ 75.58)$	99.8	$0.00\ (73.76,\ 75.31)$	98.3
		HZ_O	$1.01\ (74.21,\ 77.38)$	99.7	1.59 (74.46, 77.82)	99.8	$2.42\ (75.26,\ 78.54)$	98.3
		Prop	$0.48 \ (73.61, 77.12)$	99.7	$-0.20 \ (72.43, 76.44)$	99.8	-0.79 (71.65, 76.11)	98.3
	50	HZ_P	0.00 (73.78, 75.58)	100.0	$0.00\ (73.73,\ 75.38)$	100.0	$0.00\ (73.86,\ 75.12)$	99.7
		HZ_O	1.08 (74.64, 76.92)	100.0	$1.66\ (75.03,\ 77.29)$	100.0	2.26 (75.57, 78.06)	99.7
		Prop	$0.47 \ (73.59, 76.57)$	100.0	-0.12 (73.00, 75.91)	100.0	-0.74 (71.92, 75.79)	99.7
	100	HZ_P	0.00 (73.87, 75.17)	100.0	$0.00\ (73.96,\ 75.05)$	100.0	$0.00\ (73.93,\ 74.82)$	99.8
		HZ_O	$0.99\ (74.75,\ 76.31)$	100.0	$1.59\ (75.32,\ 76.94)$	100.0	$2.37\ (75.93,\ 77.53)$	99.8
		Prop	$0.29 \ (73.81, 76.07)$	100.0	$0.03 \ (73.37, 76.02)$	100.0	-0.37 (72.61, 75.44)	99.8
50-300	20	HZ_P	$0.00\ (74.36,\ 76.98)$	99.5	$0.00\ (74.38,\ 76.70)$	98.4	$0.00\ (74.88,\ 76.46)$	69.0
		HZ_O	$0.48 \ (74.27, 77.90)$	99.5	$0.94\ (74.12,\ 78.36)$	98.4	$1.19\ (73.45,\ 78.80)$	69.0
		Prop	$0.20 \ (73.60, 77.90)$	99.5	-0.08 (72.88, 77.78)	98.4	-1.74 (70.31, 76.39)	69.0
	30	HZ_P	$0.00\ (74.51,\ 76.76)$	99.8	$0.00\ (74.63,\ 76.40)$	99.4	$0.00\ (75.01,\ 76.32)$	70.4
		HZ_O	$0.59\ (74.81,\ 77.68)$	99.8	$0.95\ (74.76,\ 77.95)$	99.4	$1.37\ (74.96,\ 78.57)$	70.4
		Prop	$0.26 \ (74.28,\ 77.54)$	99.8	$0.01\ (73.64,\ 77.53)$	99.4	-1.17 (71.75, 76.57)	70.4
	50	HZ_P	$0.00\ (74.80,\ 76.45)$	100.0	$0.00\ (74.97,\ 76.19)$	99.8	$0.00\ (75.05,\ 76.07)$	76.1
		HZ_O	$0.55 \ (75.05, 77.21)$	100.0	$0.93\ (75.50,\ 77.50)$	99.8	$1.40\ (75.60,\ 78.06)$	76.1
		Prop	$0.20 \ (74.75, 77.25)$	100.0	-0.05 (74.30, 76.86)	99.8	-0.87 (72.80, 76.31)	76.1
	100	HZ_P	$0.00\ (75.00,\ 76.08)$	100.0	$0.00\ (75.09,\ 75.98)$	99.9	$0.00\ (75.14,\ 75.83)$	84.8
		HZ_O	$0.62\ (75.49,\ 76.86)$	100.0	$0.91\ (75.75,\ 77.19)$	99.9	$1.45 \ (76.15, 77.61)$	84.8
		Prop	$0.31\ (75.12,\ 76.74)$	100.0	$0.08 \ (74.80, 76.49)$	99.9	-0.47 (74.00, 75.99)	84.8

Table 2: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O Prop	0.00 (56.65, 58.68) 1.80 (58.40, 60.65) 1.27 (57.56, 60.16)	98.7 98.7 98.7	0.00 (56.91, 58.64) 2.95 (59.43, 61.89) 1.78 (57.63, 61.13)	99.1 99.1 99.1	0.00 (57.06, 58.42) 4.28 (60.71, 63.20) 2.38 (57.01, 62.10)	98.3 98.3 98.3
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (56.95, 58.56) 1.85 (58.67, 60.63) 1.33 (57.76, 60.19)	99.6 99.6 99.6	0.00 (57.03, 58.42) 2.87 (59.74, 61.60) 1.85 (57.61, 61.07)	99.7 99.7 99.7	0.00 (57.23, 58.27) 4.11 (60.92, 62.90) 2.62 (56.93, 62.04)	97.6 97.6 97.6
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.09, 58.33) 1.85 (58.88, 60.38) 1.40 (58.21, 60.02)	99.9 99.9 99.9	0.00 (57.16, 58.24) 2.94 (59.98, 61.41) 1.98 (57.55, 60.92)	99.6 99.6 99.6	0.00 (57.32, 58.15) 4.27 (61.22, 62.73) 3.13 (56.98, 62.14)	95.8 95.8 95.8
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.31, 58.19) 1.92 (59.13, 60.14) 1.74 (58.71, 60.03)	100.0 100.0 100.0	0.00 (57.36, 58.10) 2.96 (60.14, 61.21) 1.87 (57.27, 60.72)	99.6 99.6 99.6	0.00 (57.44, 58.02) 4.26 (61.44, 62.53) 3.46 (57.19, 62.11)	95.9 95.9 95.9
50-300	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.08, 58.64) 1.36 (58.29, 60.06) 0.57 (57.38, 59.45)	97.9 97.9 97.9	0.00 (57.31, 58.54) 2.18 (59.24, 60.90) 1.03 (57.46, 60.10)	98.3 98.3 98.3	0.00 (57.50, 58.38) 3.13 (60.11, 61.98) 1.59 (57.19, 61.26)	94.8 94.8 94.8
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.24, 58.59) 1.38 (58.57, 60.05) 0.47 (57.62, 59.26)	97.5 97.5 97.5	0.00 (57.37, 58.37) 2.21 (59.43, 60.81) 0.84 (57.41, 60.03)	97.7 97.7 97.7	0.00 (57.52, 58.33) 3.15 (60.28, 61.81) 1.98 (57.26, 61.33)	95.3 95.3 95.3
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.47, 58.41) 1.39 (58.82, 59.91) 0.36 (57.62, 59.03)	98.9 98.9 98.9	0.00 (57.51, 58.35) 2.16 (59.55, 60.68) 0.55 (57.46, 59.76)	98.4 98.4 98.4	0.00 (57.60, 58.23) 3.17 (60.50, 61.64) 2.20 (57.51, 61.22)	95.5 95.5 95.5
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.56, 58.21) 1.38 (58.92, 59.64) 0.12 (57.53, 58.50)	98.9 98.9 98.9	0.00 (57.61, 58.18) 2.20 (59.71, 60.53) 0.12 (57.29, 59.57)	99.6 99.6 99.6	0.00 (57.68, 58.15) 3.11 (60.66, 61.49) 2.56 (57.42, 61.18)	94.0 94.0 94.0

Table 3: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (73.48, 76.43) 1.17 (73.95, 78.07) 1.43 (74.01, 78.84)	99.8 99.8 99.8	0.00 (73.73, 76.04) 1.77 (74.56, 78.61) 0.44 (72.79, 77.89)	99.4 99.4 99.4	0.00 (74.04, 75.88) 2.43 (75.36, 79.45) -1.19 (71.53, 76.53)	95.8 95.8 95.8
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (73.87, 76.18) 1.16 (74.70, 77.56) 1.18 (74.35, 78.33)	99.9 99.9 99.9	0.00 (73.98, 75.91) 1.78 (75.20, 78.12) 0.41 (73.20, 77.57)	99.5 99.5 99.5	0.00 (74.06, 75.67) 2.30 (75.59, 78.78) -1.25 (71.52, 76.02)	98.0 98.0 98.0
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (73.91, 75.77) 0.99 (74.76, 77.00) 0.93 (74.36, 77.53)	100.0 100.0 100.0	0.00 (74.04, 75.59) 1.41 (74.92, 77.35) 0.10 (73.09, 76.49)	99.8 99.8 99.8	0.00 (74.21, 75.36) 2.10 (75.75, 78.01) -1.40 (71.86, 75.28)	98.8 98.8 98.8
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (74.14, 75.41) 1.00 (74.98, 76.59) 0.74 (74.46, 76.75)	100.0 100.0 100.0	0.00 (74.27, 75.28) 1.55 (75.54, 77.10) 0.10 (73.65, 76.24)	99.9 99.9 99.9	0.00 (74.30, 75.19) 2.24 (76.15, 77.74) -1.11 (72.34, 75.00)	99.1 99.1 99.1
50-300	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (74.67, 77.08) 0.68 (74.75, 78.17) 1.27 (74.28, 80.10)	99.7 99.7 99.7	0.00 (74.78, 76.91) 0.83 (73.77, 78.49) 0.83 (73.65, 79.29)	90.7 90.7 90.7	0.00 (74.92, 76.53) 1.31 (72.90, 79.02) -0.44 (71.43, 77.41)	66.1 66.1
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (74.65, 76.79) 0.74 (74.80, 77.96) 0.83 (74.56, 79.18)	99.7 99.7 99.7	0.00 (74.88, 76.55) 0.91 (74.39, 78.15) 0.65 (73.67, 78.89)	94.8 94.8 94.8	0.00 (75.11, 76.29) 1.29 (74.54, 78.77) -0.55 (72.17, 77.09)	67.5 67.5 67.5
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (74.90, 76.48) 0.59 (75.19, 77.37) 0.70 (74.95, 78.27)	99.9 99.9 99.9	0.00 (75.17, 76.43) 0.97 (75.39, 77.95) 0.26 (74.14, 77.85)	96.1 96.1 96.1	0.00 (75.32, 76.24) 1.13 (75.30, 78.26) -1.19 (72.44, 76.55)	64.8 64.8
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (75.23, 76.31) 0.52 (75.51, 76.99) 0.41 (75.25, 77.34)	100.0 100.0 100.0	0.00 (75.31, 76.17) 0.81 (75.76, 77.31) -0.11 (74.50, 76.74)	98.2 98.2 98.2	0.00 (75.40, 76.05) 1.37 (76.23, 77.90) -1.52 (72.87, 75.58)	64.8 64.8 64.8

Table 4: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (56.83, 58.67) 2.06 (58.64, 60.88) 1.02 (57.30, 60.27)	99.2 99.2 99.2	0.00 (56.95, 58.65) 3.29 (59.90, 62.16) 1.63 (57.15, 61.32)	99.8 99.8 99.8	0.00 (57.16, 58.39) 4.68 (61.29, 63.67) 2.44 (56.69, 62.73)	99.3 99.3 99.3
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (56.99, 58.41) 2.07 (58.95, 60.71) 1.08 (57.54, 60.01)	99.1 99.1 99.1	0.00 (57.13, 58.40) 3.29 (60.17, 61.93) 1.48 (57.10, 61.18)	99.7 99.7 99.7	0.00 (57.29, 58.32) 4.70 (61.65, 63.44) 3.38 (56.81, 62.87)	99.1 99.1 99.1
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.27, 58.43) 2.06 (59.30, 60.62) 0.95 (57.69, 60.10)	99.9 99.9 99.9	0.00 (57.34, 58.29) 3.26 (60.49, 61.76) 1.24 (57.26, 61.16)	99.6 99.6 99.6	0.00 (57.38, 58.16) 4.64 (61.72, 63.12) 3.88 (57.00, 62.82)	98.3 98.3 98.3
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.37, 58.21) 2.04 (59.38, 60.32) 0.87 (57.57, 59.89)	99.5 99.5 99.5	0.00 (57.47, 58.17) 3.32 (60.64, 61.59) 1.12 (57.23, 61.14)	99.6 99.6 99.6	0.00 (57.54, 58.08) 4.64 (61.98, 62.94) 4.38 (57.18, 62.83)	99.6 99.6 99.6
50-300	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.28, 58.75) 1.49 (58.66, 60.37) 0.57 (57.52, 59.78)	98.0 98.0 98.0	0.00 (57.33, 58.50) 2.42 (59.48, 61.10) 0.66 (57.36, 59.97)	98.1 98.1 98.1	0.00 (57.50, 58.45) 3.39 (60.50, 62.26) 1.59 (57.22, 61.52)	96.6 96.6 96.6
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.36, 58.56) 1.52 (58.84, 60.14) 0.39 (57.50, 59.34)	98.1 98.1 98.1	0.00 (57.43, 58.41) 2.46 (59.66, 61.00) 0.39 (57.33, 59.76)	97.3 97.3 97.3	0.00 (57.58, 58.30) 3.42 (60.65, 61.98) 2.11 (57.22, 61.48)	98.9 98.9 98.9
	50	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.50, 58.43) 1.53 (58.96, 59.99) 0.29 (57.54, 58.99)	98.1 98.1 98.1	0.00 (57.51, 58.30) 2.42 (59.83, 60.86) 0.24 (57.32, 59.35)	98.7 98.7 98.7	0.00 (57.66, 58.22) 3.42 (60.79, 61.83) 0.98 (56.96, 61.42)	99.3 99.3 99.3
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop} \end{aligned}$	0.00 (57.63, 58.24) 1.54 (59.11, 59.83) 0.15 (57.65, 58.58)	99.6 99.6 99.6	0.00 (57.68, 58.18) 2.41 (59.99, 60.72) 0.02 (57.37, 58.63)	99.6 99.6 99.6	0.00 (57.73, 58.13) 3.47 (61.02, 61.75) 2.89 (57.20, 61.58)	99.9 99.9 99.9