## **Co-ordinate circle Example**

Created by Mr. Francis Hung on 20110904 Last updated: 2021-08-30

## **Reference Chung Tai Educational Press**

## **New Trend Senior Secondary Mathematics**

Essential Drills S.5 Chapter 9 Q23

In the figure, circle  $C_1$  touches  $L_1$  at R.

- (a) Find the coordinates of R.
- (b) It is given that  $C_2$  is another circle touching the x-axis, the y-axis and  $L_1$ . Find the equation of  $C_2$ .



(a) Let k be the radius of  $C_1$ , if the centre of the circle lies in the fourth quadrant, then the coordinates of the centre of  $C_1$  are (k, -k).

The equation of 
$$C_1$$
 is

$$(x - k)^{2} + [y - (-k)]^{2} = k^{2}$$
  
$$x^{2} + y^{2} - 2kx + 2ky + k^{2} = 0 \cdot \dots (1)$$

The equation of 
$$L_1$$
 is:  $\frac{x}{4} + \frac{y}{-3} = 1$ 

$$\Rightarrow y = \frac{3}{4}x - 3 \quad \dots \quad (2)$$

Substitute (2) into (1),

$$x^{2} + \left(\frac{3}{4}x - 3\right)^{2} - 2kx + 2k\left(\frac{3}{4}x - 3\right) + k^{2} = 0$$

$$x^{2} + \frac{9}{16}x^{2} - \frac{9}{2}x + 9 - 2kx + \frac{3}{2}kx - 6k + k^{2} = 0$$

$$\therefore \frac{25}{16}x^2 - \frac{k+9}{2}x + k^2 - 6k + 9 = 0 \dots (3)$$

:  $C_1$  touches  $L_1$  at one point.

$$\left(-\frac{k+9}{2}\right)^2 - 4 \times \frac{25}{16} \left(k^2 - 6k + 9\right) = 0$$

$$\frac{(k+9)^2}{4} - \frac{25}{4}(k^2 - 6k + 9) = 0$$

$$k^2 + 18k + 81 - 25k^2 + 150k - 225 = 0$$

$$24k^2 - 168k + 144 = 0$$

$$k^2 - 7k + 6 = 0$$

$$(k-1)(k-6) = 0$$

$$\therefore k = 1 \text{ or } k = 6 \text{ (rejected)}$$

Substitute 
$$k = 1$$
 into (3),

$$\frac{25}{16}x^2 - 5x + 4 = 0$$

$$25x^2 - 80x + 64 = 0$$

$$(5x-8)^2=0$$

$$x = \frac{8}{5}$$

Substitute 
$$x = \frac{8}{5}$$
 into (2),

$$y = \frac{3}{4}(\frac{8}{5}) - 3 = -\frac{9}{5}$$
 : The coordinates of R are  $(\frac{8}{5}, -\frac{9}{5})$ .

## (b) When k = 6, (1) is the equation of $C_2$ .

 $\therefore$  The equation of  $C_2$  is

$$x^2 + y^2 - 2(6)x + 2(6)y + 6^2 = 0$$

$$x^2 + y^2 - 12x + 12y + 36 = 0$$

If the centre of the circle lies in the first quadrant, centre = (k, k).

$$(x-k)^2 + (y-k)^2 = k^2$$

$$C_2$$
:  $x^2 + y^2 - 2kx - 2ky + k^2 = 0 \cdot \cdot \cdot \cdot (4)$ 

Sub. (2) into (4): 
$$x^2 + \left(\frac{3}{4}x - 3\right)^2 - 2kx - 2k\left(\frac{3}{4}x - 3\right) + k^2 = 0$$

$$16x^2 + (9x^2 - 72x + 144) - 32kx - 8k(3x - 12) + 16k^2 = 0$$

$$25x^2 - (72 + 56k)x + (16k^2 + 96k + 144) = 0$$

For tangency,  $\Delta = 0$ 

$$(72 + 56k)^2 - 4(25)(16k^2 + 96k + 144) = 0$$

$$(9+7k)^2 - 25(k^2+6k+9) = 0$$

$$81 + 126k + 49k^2 - 25k^2 - 150k - 225 = 0$$

$$24k^2 - 24k - 144 = 0$$

$$k^2 - k - 6 = 0 \Rightarrow (k+2)(k-3) = 0$$

$$k = -2 \text{ or } k = 3$$

When k = -2,  $C_2$ :  $x^2 + y^2 + 4x + 4y + 4 = 0$  (rejected, centre not in 1<sup>st</sup> quad.)

When 
$$k = 3$$
,  $C_2$ :  $x^2 + y^2 - 6x - 6y + 9 = 0$ 

If the centre of the circle lies in the third quadrant, centre = (-k, -k).

$$(x + k)^2 + (y + k)^2 = k^2$$

$$C_2$$
:  $x^2 + y^2 + 2kx + 2ky + k^2 = 0 \cdot \cdot \cdot \cdot (5)$ 

Sub. (2) into (5): 
$$x^2 + \left(\frac{3}{4}x - 3\right)^2 + 2kx + 2k\left(\frac{3}{4}x - 3\right) + k^2 = 0$$

$$16x^{2} + (9x^{2} - 72x + 144) + 32kx + 8k(3x - 12) + 16k^{2} = 0$$

$$25x^2 - (72 - 56k)x + (16k^2 - 96k + 144) = 0$$

For tangency,  $\Delta = 0$ 

$$(72 - 56k)^2 - 4(25)(16k^2 - 96k + 144) = 0$$

$$(9-7k)^2 - 25(k^2 - 6k + 9) = 0$$

$$81 - 126k + 49k^2 - 25k^2 + 150k - 225 = 0$$

$$24k^2 + 24k - 144 = 0$$

$$k^2 + k - 6 = 0 \Rightarrow (k+3)(k-2) = 0$$

$$k = -3 \text{ or } k = 2$$

When k = -3,  $C_2$ :  $x^2 + y^2 - 6x - 6y + 9 = 0$  (rejected, centre not in 3<sup>rd</sup> quad.)

When 
$$k = 2$$
,  $C_2$ :  $x^2 + y^2 + 4x + 4y + 4 = 0$ 

If the centre of the circle lies in the second quadrant, centre = (-k, k).

$$(x + k)^2 + (y - k)^2 = k^2$$

$$C_2$$
:  $x^2 + y^2 + 2kx - 2ky + k^2 = 0 \cdot \cdot \cdot \cdot (6)$ 

Sub. (2) into (6): 
$$x^2 + \left(\frac{3}{4}x - 3\right)^2 + 2kx - 2k\left(\frac{3}{4}x - 3\right) + k^2 = 0$$

$$16x^2 + (9x^2 - 72x + 144) + 32kx - 8k(3x - 12) + 16k^2 = 0$$

$$25x^2 - (72 - 8k)x + (16k^2 + 96k + 144) = 0$$

For tangency,  $\Delta = 0$ 

$$(72 - 8k)^2 - 4(25)(16k^2 + 96k + 144) = 0$$

$$(9-k)^2 - 25(k^2 + 6k + 9) = 0$$

$$81 - 18k + k^2 - 25k^2 - 150k - 225 = 0$$

$$24k^2 + 168k + 144 = 0$$

$$k^2 + 7k + 6 = 0 \Rightarrow (k+6)(k+1) = 0$$

$$k = -6 \text{ or } k = -1$$

When k = -6, centre = (6, -6), not in  $2^{nd}$  quad, rejected.

When k = -1, centre = (1, -1), not in  $2^{nd}$  quad, rejected.

A sketch of four possible circles touching the x-axis, the y-axis and  $L_1$  is drawn below:

