

RAAGHAV VEL P CH.SC.U4CSE24155 OBJECT ORIENTED PROGRAMMING (23CSE111) LAB RECORD

AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF COMPUTING, CHENNAI

BONAFIDE CERTIFICATE

This is to certify that the Lab Record work for 23CSE111- Object Oriented Programming Subject submitted by *CH.SC.U4CSE24155 – RAAGHAV VEL P* in "Computer Science and Engineering" is a Bonafide record of the work carried out under my guidance and supervision at Amrita School of Computing, Chennai.

This Lab examination held on

Internal Examiner 1

Internal Examiner 2

INDEX

S.NO	TITLE	PAGE.NO
	UML DIAGRAM	
1.	LIBRARY MANAGEMENT	
	1.a) Use Case Diagram	4
	1.b) Class Diagram	5
	1.c) Sequence Diagram	5
	1.d) Statechart Diagram	6
	1.e) Activity Diagram	7
2.	Hospital Management Application	
	2.a) Use Case Diagram	8
	2.b) Class Diagram	8
	2.c) Object Diagram	9
	2.d) State Diagram	9
	2.e) Sequence Diagram	10
3.	Basic Java Programs	
	3.a) Even Or Odd	11
	3.b) Count Number Of Digits	12
	3.c) Factorial	13
	3.d) Fibonacci Series	14
	3.e) Largest Number Calculator	15
	3.f) Multiplication Table	16
	3.g) Prime Check	17
	3.h) Reverse Number	18
	3.i) Sum of N Natural Numbers	19
	3.j) Sum of Digits	20

UML DIAGRAMS

1. LIBRARY MANAGEMENT

1.a) Use Case Diagram:

1.b) Class Diagram:

1.c) Sequence Diagram:

1.d) Statechart diagram:

1.e) Activity Diagram:

2. Hospital Management

2.a) Use Case Diagram:

2.b) Class Diagram:

2c) Object Diagram:

2d)State Diagram:

2e)Sequence Diagram:

Basic Java Questions

3a) Even Or Odd with Scanner:

```
Code:
```

```
import java.util.Scanner;
public class even{
    public void find(int a){
        if(a>=0){
            if (a%2==0){
                System.out.println("It is even!");
            }
            else{
                System.out.println("It is odd!");
            }}
        else{
            System.out.println("Enter a number greater than or equalt to
0!!");
        }
    public static void main(String[]args){
        Scanner ip = new Scanner(System.in);
        even ob1=new even();
        System.out.print("Enter no to check: ");
        int a=ip.nextInt();
        ob1.find(a);
    }}
```

```
C:\2nd sem\oop>java Even.java
Enter no to check: 23
It is odd!
```

3b) Count Number Of Digits:

Code:

```
import java.util.Scanner;

public class CountDigits {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();

        int count = 0;
        while (num != 0) {
            num /= 10;
            count++;
        }

        System.out.println("Number of digits: " + count);
        scanner.close();
    }
}
```

```
C:\2nd sem\oop>java CountDigits.java
Enter a number: 1234
Number of digits: 4
```

3c) Factorial:

```
Code:
```

```
import java.util.Scanner;

public class FactorialLoop {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();

        int factorial = 1;
        for (int i = 1; i <= num; i++) {
            factorial *= i;
        }

        System.out.println("Factorial of " + num + " is " + factorial);
        scanner.close();
    }
}</pre>
```

```
C:\2nd sem\oop>java FactorialLoop.java
Enter a number: 5
Factorial of 5 is 120
```

3d) Fibonacci Series:

Code:

Code:

```
import java.util.Scanner;

public class FibonacciSeries{
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();

        int factorial = 1;
        for (int i = 1; i <= num; i++) {
            factorial *= i;
        }

        System.out.println("Factorial of " + num + " is " + factorial);
        scanner.close();
    }
}</pre>
```

```
Enter a number: 10
Fibonacci Series for 10 terms:
0,1,1,2,3,5,8,13,21,34,55
```

3e) Largest Number Calculator:

Code:

```
import java.util.Scanner;
public class Largest{
    int a,b,c;
        void lar(int a,int b, int c){
            if(a>b && a>c){
                System.out.println(a + "Is the largest among 3");
            else if(b>a && b>c){
                System.out.println(b + "Is the largest among 3");
            else if(c>a && c>b){
                System.out.println(c + "Is the largest among 3");
            }
            else{
                System.out.println("All are equal no larger number");
            }
        }
    }
class call{
    public static void main(String[]args){
        Largest 11= new Largest();
        Scanner ip=new Scanner(System.in);
        System.out.println("Enter Number 1: ");
        int a=ip.nextInt();
        System.out.println("Enter Number 2: ");
        int b=ip.nextInt();
        System.out.println("Enter Number 3: ");
        int c=ip.nextInt();
        11.lar(a,b,c);
    }
}
```

```
C:\2nd sem\oop>java Call.java
Enter Number 1:
5
Enter Number 2:
4
Enter Number 3:
8
8Is the largest among 3
```

3f) Multiplication Table:

Code:

```
import java.util.Scanner;

public class MultiplicationTable {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();

        for (int i = 1; i <= 10; i++) {
            System.out.println(num + " x " + i + " = " + (num * i));
        }

        scanner.close();
    }
}</pre>
```

```
C:\2nd sem\oop>java MultiplicationTable.java
Enter a number: 6
6 x 1 = 6
6 x 2 = 12
6 x 3 = 18
6 x 4 = 24
6 x 5 = 30
6 x 6 = 36
6 x 7 = 42
6 x 8 = 48
6 x 9 = 54
6 x 10 = 60
```

3g) Prime Check:

```
Code:
import java.util.Scanner;
public class PrimeCheck {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();
        boolean isPrime = true;
        if (num <= 1) {
            isPrime = false;
        } else {
            for (int i = 2; i <= num / 2; i++) {
                if (num % i == 0) {
                    isPrime = false;
                    break;
                }
            }
        }
        if (isPrime)
            System.out.println(num + " is a prime number.");
        else
            System.out.println(num + " is not a prime number.");
        scanner.close();
}
```

```
C:\2nd sem\oop>java PrimeCheck.java
Enter a number: 6
6 is not a prime number.
```

3h) Reverse Number:

```
Code:
```

```
import java.util.Scanner;
public class ReverseNumber {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();
        int reversed = 0;
        while (num != 0) {
            int digit = num % 10;
            reversed = reversed * 10 + digit;
            num /= 10;
        }
        System.out.println("Reversed Number: " + reversed);
        scanner.close();
    }
}
```

Output:

C:\2nd sem\oop>java ReverseNumber.java Enter a number: 12456 Reversed Number: 65421

3i) Sum Of N Natural Numbers:

Code:

```
import java.util.Scanner;
public class SumNaturalNumbers {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int n = scanner.nextInt();
        int sum = 0, i = 1;
        while (i <= n) {
            sum += i;
            i++;
        }
        System.out.println("Sum of first " + n + " natural numbers is " +
sum);
        scanner.close();
    }
}
```

```
C:\2nd sem\oop>java SumNaturalNumbers.java
Enter a number: 6
Sum of first 6 natural numbers is 21
```

3j) Sum of Digits:

Code:

```
import java.util.Scanner;

public class SumOfDigits {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a number: ");
        int num = scanner.nextInt();

        int sum = 0;
        while (num != 0) {
            sum += num % 10;
            num /= 10;
        }

        System.out.println("Sum of digits: " + sum);
        scanner.close();
    }
}
```

```
C:\2nd sem\oop>java SumOfDigits.java
Enter a number: 12203
Sum of digits: 8
```