Advanced Topics in Computational Complexity

Exercise Session 4

Due 9.11.2015.

Exercise 1

Proof Proposition 6 in the lecture notes for existential quantifier.

Exercise 2

Let K = (W, R, V) be a Kripke model such that $W = \{1, 2, 3, 4, 5\}$, $R = \{(i, j) \in W^2 \mid i + j \le 5\}$, $V(p) = \{1, 2, 4\}$, and $V(q) = \{4, 5, 6\}$. Which of the following claims hold?

- 1. $K, 3 \models (\neg p \land \Diamond \Box q)$
- 2. $K, 2 \models \Diamond \Diamond (\Diamond p \wedge \Box q)$
- $3. K, 5 \models \Box p$

Which of the points in K satisfy the formula $\Box \Diamond p$?

Exercise 3

Write the standard translation ST_x of the formula $\Diamond(\Box p \lor q)$ and ST_y of the formula $((p \land \Box q) \lor \Box \Box q)$.

Exercise 4

Write a formula of modal logic that is true in a pointed model K, w if and only if there exists a dead end within the distance of 4 from w (that is, for some $n \leq 4$ is there exists points in $a_0, \ldots, a_n \in W$ such that $a_0 = w$, $(a_i, a_{i+1}) \in R$, for each i < n, and for all $b \in W$ it holds that $(a_n, b) \notin R$.