

Use of Neural Networks for Approximation of Response Functions

Igor Grešovnik

June 2011

Thes presentation shows use of neural networks in solution of optimization problems.

Optimization Problems – Formulation

 $f(\mathbf{x}),$ $\mathbf{x} \in \mathbb{R}^n$ minimise

 $c_i(\mathbf{x}) \le 0, i \in I$ subject to

 $c_j(\mathbf{x}) = 0, \ j \in E$ and

 $l_k \le x_k \le u_k, \ k = 1, 2, ..., n$ where

Optimization Problems – Solution Scheme

Optimization Problems – Solution Scheme

- 1. Take current optimization parameters
- 2. Prepare numerical model according to parameters
- 3. Run numerical simulation of the process
- 4. Extract the relevant quantities from simulation results
- 5. From measured data
 - Read result file
 - Extract relevant data
- 6. Calculate the response functions and eventually their gradients (in our case the discrepancy function *f*)
- 7. Store the response functions in output arguments and return

Integrated Optimization Platform

Solution environment (task execution)				
	of the lel	Model 2 Model 1		
I Initialization parameters (initial I guess & step size) Tolerances	Choice of the model	Numerical analysis software f, c_i		
Control parameters		Design functions functions f, c _i		
Control & optimization software (sensitivity or optimization)				
Results:				
Optimum, response sensitivities, local response models				

File Format for Data Exchange

```
Analysis input file:
{ { p1, p2, ... }, { requalcobj, requalconstr, requalcgradobj,
      regcalcgradconstr }, cd }
 Analysis output file:
   p1, p2 ... },
    calcobi, obi,
    calcconstr, { constr1, constr2, ... },
    calcgradobj, { dobjdp1, dobjdp2, ... },
    calcgradconstr,
      { dconstrldp1, dconstrldp2, ... },
      \hat{\{} dconstr2dp1, dconstr2dp2, ... \},
    errorcode
   reqcalcobj, reqcalcconstr, reqcalcgradobj, reqcalcgradconstr }
  < , { ind1, ind2, ... }, { coef1, coef2, ... }, defdata >
```


Neural Networks: Response Approximation

• Provides approximate relation between process parameters and outcomes

Neural Networks: Training

Trained neural network

(known layout and known weights w_i)

Neural Networks: Direct Analysis Surrogate

Neural Networks: Direct Analysis Surrogate

Conversion definition file

Corresponding Default П: active flag: opt. parameter: value::

0 0	I . I	
yes	1	3.56
no	0	1.2e7
no	0	109.3
yes	2	24.5
•••		•••
		
yes	10	1.53e-3
	yes no no yes	yes 1 no 0 no 0 yes 2