Листок 1: λ -исчисление как формальная система

Упражнение 1. Расставить скобки и нарисовать дерево для термов:

(1) xyz(yx)

(6) $(\lambda xyz . xz(yz))uvw$

(2) $\lambda x \cdot uxy$

(7) xx(xxx)x

(3) $\lambda u \cdot u(\lambda x \cdot y)$

(8) $vw(\lambda xy \cdot vx)$

(4) $(\lambda u \cdot vuu)zy$

(9) $(\lambda xy \cdot x)uv$

(5) $ux(yz)(\lambda v \cdot vy)$

(10) $w(\lambda xyz \cdot xz(yz))uv$

Упражнение 2. Вычислить подстановку:

(1) $[(uv)/x](\lambda y \cdot x(\lambda w \cdot vwx))$

(5) $[vw/x](x(\lambda y.yx))$

(2) $[(\lambda y \cdot xy)/x](\lambda y \cdot x(\lambda x \cdot x))$

(6) $[vw/x](x(\lambda x \cdot yx))$

(3) $[(\lambda y \cdot vy)/x](y(\lambda v \cdot xv))$

(7) $[ux/x](x(\lambda y.yx))$

(4) $[(uv)/x](\lambda x \cdot zy)$

(8) $[uy/x](x(\lambda y.yx))$

Упражнение 3. Выполнить редукцию к нормальной форме:

(1) $(\lambda x . xy)(\lambda u . vuu)$

(6) $(\lambda xyz \cdot xz(yz))((\lambda xy \cdot yx)u)$ $((\lambda xy \cdot yx)v)w$

(2) $(\lambda xy . yx)uv$

(7) $(\lambda xy . xyy)uv$

(3) $(\lambda x \cdot x(x(yz))x)(\lambda u \cdot uv)$

(8) $(\lambda xy.yx)(uv)zw$

(4) $(\lambda x . xxy)(\lambda y . yz)$

 $(9) (\lambda x . xx)(\lambda x . xx)$

(5) $(\lambda xy \cdot xyy)(\lambda u \cdot uyx)$

(10) $(\lambda xyz \cdot xz(yz))(\lambda uv \cdot u)$

Упражнение 4. Продемонстрировать три стратегии редукции для термов:

(1) $(\lambda x \cdot x(x(yz))x)(\lambda u \cdot uv)$

(2) $(\lambda xyz \cdot xz(yz))((\lambda xy \cdot yx)u)((\lambda xy \cdot yx)v)w$

(3) $(\lambda x \cdot y)((\lambda y \cdot yy)(\lambda y \cdot yy))$

(4) $(\lambda y \cdot (\lambda x \cdot x)y)((\lambda u \cdot u)(\lambda v \cdot v))$

(5) $(\lambda xy.(\lambda pq.p)yx)((\lambda z.zz)(\lambda z.zz))s$

(6) $(\lambda xy \cdot x)t((\lambda x \cdot xx)(\lambda x \cdot xx))$

Основные определения

Определение 1. Пусть задано счётное множество имён переменных $\mathcal{V} =$ $\{x, y, z, ...\}$. Множество λ -термов — это наименьшее множество, удовлетворяющее следующим условиям:

- 1. Все переменные V являются λ -термами.
- 2. Если M и $N-\lambda$ -термы, то (MN) есть λ -терм, называемый npuменeнием (application).
- 3. Если x переменная, а $M \lambda$ -терм, то $(\lambda x . M)$ есть λ -терм, называемый абстракцией (abstraction).

Определение 2. *Множеством свободных переменных* λ *-терма* M называется множество, обозначаемое FV(M) и определяемое так:

$$\begin{array}{rcl} \mathrm{FV}(x) & = & \{x\}, \\ \mathrm{FV}(MN) & = & \mathrm{FV}(M) \cup \mathrm{FV}(N), \\ \mathrm{FV}(\lambda x \, . \, M) & = & \mathrm{FV}(M) \setminus \{x\}. \end{array}$$

Определение 3. Операцией подстановки терма N в терм Р вместо пеpеменной x, обозначаемой как [N/x]P, называется операция преобразования терма, выполняемая по правилам:

- (1) [N/x]x
- $\begin{array}{llll} (2) & [N/x]y & = & y, & \text{если } x \neq y, \\ (3) & [N/x](PQ) & = & ([N/x]P)([N/x]Q), \end{array}$
- $(4) \quad [N/x](\lambda x \cdot P) \quad = \quad \lambda x \cdot P,$
- $(5) [N/x](\lambda y \cdot P) = \lambda y \cdot P,$ $(6) [N/x](\lambda y \cdot P) = \lambda y \cdot ([N/x]P),$ $(7) \text{ если } x \notin \text{FV}(P),$ $(8) \text{ если } x \in \text{FV}(P) \text{ и } y \notin \text{FV}(N),$
- $(7) \quad [N/x](\lambda y \,.\, P) \quad = \quad \lambda z \,.\, ([N/x]([z/y]P)), \quad \text{если} \ x \in \mathrm{FV}(P) \ \text{и} \ y \in \mathrm{FV}(N),$ причем $z \notin FV(NP)$.

Определение 4. β -редукцией называется отношение, которое ставит в соответствие редексу $(\lambda x . M)N$ терм [N/x]M. Терм вида $(\lambda x . M)N$ называется $pede\kappa com$ (от reducible expression — редуцируемое выражение). λ -терм, не содержащий редексов в качестве подтермов, называется термом в нормальной форме.

Стратегии редукции

- (1) нормальный порядок: самый внешний, самый левый редекс.
- (2) вызов по имени: самый левый, самый внешний редекс, причём редукция внутри абстракций не производится.
- (3) вызов по значению: только самые внешние редексы, причём аргументы каждого такого редекса вычисляются раньше самого редекса.