Prova di Comunicazioni Numeriche

13 Gennaio 2020

Es. 1 - L'autocovarianza $C_{xx}(\tau)$ di un processo stocastico x(k;t) con densit'a di probabilit'a distribuita uniformemente tra 0 e 10 e' data da

 $C_{xx}(\tau) = A \exp(-\alpha |\tau|) \cos(2\pi f_0 \tau)$. Calcolare la densita' spettrale di potenza media di x(k;t).

Es. 2 - Sia lo schema in Fig. 1, la parte ricevente di un sistema di comunicazione numerico PAM in banda passante con segnale trasmesso $s(t) = \sum_k x[k] p(t-kT) \cdot cos\left(2\pi f_0 t - \frac{\pi}{3}\right)$, dove i simboli $x[k] \in A_s = \{-2,3\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore è $p(t) = 2Bsinc^2(2Bt) - Bsinc^2(Bt)$, $f_0 \gg B$, $T = \frac{1}{B}$. Il canale di propagazione è ideale, quindi $c(t) = \delta(t)$ e il rumore in ingresso al ricevitore e' Gaussiano e bianco in banda. Il filtro in ricezione $h_R(t)$ è un filtro passa basso ideale di banda 2B. La soglia di decisione è $\lambda = 0$. Calcolare quindi:

- 1) L'energia media per simbolo trasmesso, E_s
- 2) Calcolare la potenza di rumore in uscita al filtro in ricezione, P_{n_u}
- 3) Calcolare la probabilità di errore sul bit, $P_E(b)$, in funzione di ϑ
- 4) Determinare il valore di ϑ secondo il quale si ha la minima $P_E(b)$.

Fig. 1