

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES828 - Laboratório de Controle de Sistemas

Pré Relatório - Experimento 6 Controle por realimentação de saída de uma planta eletrônica

 $egin{array}{lll} \emph{Nome:} & RA \\ \emph{Daniel Dello Russo Oliveira} & 101918 \\ \emph{Marcelli Tiemi Kian} & 117892 \\ \end{array}$

1 Objetivos

O objetivo desse experimento é projetar via realização em espaço de estado um controlador e um observador de estado para a planta eletrônica identificada no experimento 2[?].

2 Projeto do Controlador

Consideramos a planta cuja função de transferência representada pela equação $\ref{eq:constraint}$ que foi obtida usando as medidas realizadas durante o experimento 2[?] para o projeto do controlador em espaço de estado conforme a figura $\ref{eq:constraint}$. A representação da planta em espaço de estado é mostrada em $\ref{eq:constraint}$? e $\ref{eq:constraint}$?, com as matrizes $\ref{eq:constraint}$ $\ref{eq:constraint}$ C indicadas em $\ref{eq:constraint}$?? e $\ref{eq:constraint}$??

Tabela 1: Parâmetros numéricos da função de transferência

Parâmetro	Valor
κ_1	-0.1005
κ_2	-2.1508
κ_3	-4.6448
κ_4	-5.6307
$ au_2$	0.0210
$ au_3$	0.0244

$$G(s) = \frac{\kappa_1 \kappa_2 \kappa_3 \kappa_4}{(s\tau_2 + 1)(s\tau_3 + 1)s} \tag{1}$$

$$\dot{x} = Ax + Bu \tag{2}$$

$$y = Cx (3)$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{1}{\tau_2 \tau_3} & -\frac{\tau_2 + \tau_3}{\tau_2 \tau_3} \end{bmatrix}$$
 (4)

$$B = \begin{bmatrix} 0\\0\\\frac{\kappa_1 \kappa_2 \kappa_3 \kappa_4}{\tau_2 \tau_3} \end{bmatrix} \tag{5}$$

$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \tag{6}$$

Figura 1: Diagrama de blocos do sistema

2.1 Requisitos do Sistema e Projeto

Seguindo o proposto no roteiro [?] as especificações do sistema são:

- Tempo de estabilização de aproximadamente 0.5 [s].
- Fator de amortecimento igual a $\sqrt{2}/2$.
- Polo em s = -30.
- Erro em regime permanente nulo a uma entrada rampa.
- Amplitude do sinal de controle não pode ultrapassar ± 10 [Volts].

Utilizando a metodologia indicada no roteiro[?], iniciamos o cumprimento dos três primeiros requisitos considerando as raízes obtidas como sendo:

$$s_1 = -30 \tag{7}$$

$$s_2 = -7.8240 + 7.8240i \tag{8}$$

$$s_3 = -7.8240 - 7.8240i \tag{9}$$

Chegamos então a:

$$K = \begin{bmatrix} 0.3329 & -0.1232 & -0.0039 \end{bmatrix} \tag{10}$$

Posteriormente, para os requisitos de margem de fase e sobrelevação (ambos ligados ao fator de amortecimento do sistema), calculamos a margem de fase de $\kappa G(s)$ dada por $M_f=17.4123$, menor que margem de fase mínima de 45^o . Como margem de segurança, adotaremos as margens de fase desejadas de $M_{d1}=45^o$, $M_{d2}=50^o$ e $M_{d3}=55^o$ que também garantem sobrelevação menor que 20%. Projetamos três controladores de maneira a ter opções caso a implementação real do sistema não corresponda às simulações. Idealmente gostaríamos de adotar uma margem de fase mais elevada, porém, após comparar a sua resposta com a resposta do sistema com margem de 45^o , decidimos implementar mais opções.

A partir destas margens de fase encontramos os parâmetros α_v dos controladores utilizando as equações ?? e ??. Com o conhecimento de α_v e da frequência ω_g na qual mod $\kappa G(j\omega_g) = \sqrt{\alpha_v}$, encontramos τ_v pela equação ??. Os parâmetros α_t e τ_t são calculados pelas equações ?? e ??

$$\phi = M_d - M_f \tag{11}$$

$$\alpha_v = \frac{1 + \sin \phi}{1 - \sin \phi} \tag{12}$$

$$\tau_v = \frac{1}{\omega_g \sqrt{\alpha_v}} \tag{13}$$

$$\alpha_t = \frac{1}{\alpha_v} \tag{14}$$

$$\tau_t = 10 \frac{\alpha_v \tau_v}{\alpha_t} \tag{15}$$

Logo, a função de transferência dos controladores são dadas pela equação ?? e seus parâmetros pela tabela ??.

$$C(s) = \kappa \frac{\alpha_v \tau_v s + 1}{\tau_v s + 1} \frac{\alpha_t \tau_t s + 1}{\tau_t s + 1}$$
(16)

Tabela 2: Parâmetros numéricos da função de transferência dos controladores Avanço-Atraso

Parâmetro	Controlador 1 $(M_d = 45^o)$	Controlador 2 $(M_d = 50^o)$	Controlador 3 $(M_d = 55^o)$
κ	8.8445	8.8445	8.8445
α_v	2.7251	3.3345	4.1279
$ au_v$	0.0257	0.0250	0.0243
α_t	0.3670	0.2999	0.2423
$ au_t$	1.9108	2.7768	4.1334

2.2 Simulação e Comparação

Com o auxílio do Simulink simulamos as respostas dos 3 controladores à uma onda quadrada de amplitude 1V e frequência de 0,25Hz, que podem ser vistas nas figuras ??, ?? e ??, e os seus esforços de controle, mostrados nas figuras ??, ?? e ??.

Figura 2: Resposta à onda quadrada do controlador projetado para margem de fase de 45^o

Figura 3: Esforço de controle para onda quadrada do controlador projetado para margem de fase de 45^o

Figura 4: Resposta à onda quadrada do controlador projetado para margem de fase de 50^o

Figura 5: Esforço de controle para onda quadrada do controlador projetado para margem de fase de 50^{o}

Figura 6: Resposta à onda quadrada do controlador projetado para margem de fase de 55^o

Figura 7: Esforço de controle para onda quadrada do controlador projetado para margem de fase de 55^o

Simulamos também as respostas destes controladores à uma rampa, estas são mostradas nas figuras ??,?? e ??. Como podemos ver, o erro estacionário para essa entrada é próxima de 2% para todos os controladores, conforme desejado.

Figura 8: Resposta à rampa do controlador projetado para margem de fase de 45^o

Figura 9: Resposta à rampa do controlador projetado para margem de fase de 50^o

Figura 10: Resposta à rampa do controlador projetado para margem de fase de 55^o

O controlador com margem de fase de 45^o é o que apresenta o menor tempo de estabilização e erro estacionário. Porém os outros controladores não apresentam a sobrelevação relativamente elevada que o primeiro controlador apresenta. A tabela \ref{table} apresenta as características das respostas desses controladores, obtida com o auxílio da função stepinfo do Matlab.

Tabela 3: Características da resposta dos controladores Avanço-Atraso

Característica	Controlador 1 $(M_d = 45^o)$	Controlador 2 $(M_d = 50^o)$	Controlador 3 ($M_d =$
Sobrelevação	12.3698%	4.0867%	3.4618%
Tempo de estabilização	0.7454s	1.0142s	1.3472s
Tempo de subida	0.0503s	0.0553s	0.0628s
Erro estacionário (degrau)	0.3%	0.6%	1%
Erro estacionário (rampa)	2%	2.5%	3%

Comparamos esse controlador com os controladores projetados no experimento $\,$

Figura 11: Resposta (y(t)) à onda quadrada do sistema com controlador projetado com o auxílio do SISOTool discretizado

Figura 12: Esforço de controle (y(t)) em resposta a uma onda quadrada do sistema com controlador projetado com o auxílio do SISOTool discretizado

Figura 13: Resposta (y(t)) à uma rampa do sistema com controlador projetado com o auxílio do SISOTool discretizado

Figura 14: Esforço de controle (y(t)) em resposta à uma rampa do sistema com controlador projetado com o auxílio do SISOTool discretizado

3 Referências

- [1] Roteiro do experimento disponibilizado para os alunos
- [2] KIAN, Marcelli; OLIVEIRA, Daniel. *Relatório Experimento 2:* Identificação de plantas eletrônicas.