Nonlinear Systems

Lyapunov Stability and some Morse Theory

Aykut C. Satici

March 30, 2021

Boise State University Mechanical and Biomedical Engineering Electrical and Computer Engineering

Outline

Introduction

Notations and Definitions

Lyapunov Stability Analysis on Euclidean Spaces

The Invariance Principle

Control-Lyapunov Functions

Lyapunov Stability – Introduction

- ► Introduced by Alexandr Mikhailovich Lyapunov.
- ▶ The general problem of the stability of motion, 1892.
- ▶ Doctoral thesis in Kharkov Mathematical Society.
- ► The most general theory for analyzing stability of (at least) ordinary differential equations.

Lyapunov Stability - Introduction

- ► Different notions of stability: input-output stability, periodic orbit stability, etc.
- ► Stability of equilibrium points usually characterized in the sense of Lyapunov.
 - ► An equilibrium point is STABLE if all solutions starting at nearby points stay nearby.
 - ► It is ASYMPTOTICALLY STABLE if all solutions starting at nearby points not only stay nearby, but also tend to the equilibrium point as time approaches infinity.
- For a linear system $\dot{x} = Ax$, the stability of x = 0 can be completely characterized by the eigenvalues of A.
- ► Stability of a nonlinear system sometimes can be characterized by the same method (through linearization).
- Lyapunov stability theorems give sufficient conditions for stability.

Manifolds and Vector Fields

- \blacktriangleright \mathcal{M} (state-space) denotes a manifold of finite dimension n.
- ▶ $f \in \mathfrak{X}(M)$ is a continuous vector field on \mathcal{M} .
- ► We assume that there exists a unique right maximally defined integral curve of *f* starting at *x*.
- lacktriangle We also assume that this integral curve is defined on $[0,\infty]$.

$$\varphi: [0,\infty] \times \mathcal{M} \to \mathcal{M}$$

with

$$\varphi(0,x) = x,$$

$$\varphi(t_1, \varphi(t_2, x)) = \varphi(t_1 + t_2, x).$$

▶ The semiflow φ is the evolution function.

Invariant and Stable Sets

Definition

 $\Omega\subseteq\mathcal{M}$ is called an invariant set if for all $x\in\Omega$ and $t\in\mathbb{R}_{\geq0}$, $\varphi(t,x)\in\Omega$. If $\Omega=\{p\}$ is a singleton, then Ω is called and EQUILIBRIUM POINT of the dynamical system (\mathcal{M},φ) .

Definition

 $\Omega \subseteq \mathcal{M}$ is STABLE if for every open neighborhood $\mathcal{U} \subseteq \mathcal{M}$ of Ω , there exists a neighborhood $\mathcal{V} \subseteq \mathcal{M}$ of Ω such that $\varphi(t, \mathcal{V}) \subseteq \mathcal{U}$ for all $t \geq 0$.

An invariant set Ω is asymptotically stable if

- $ightharpoonup \Omega$ is stable,
- ▶ Ω is attractive, i.e., for all $x \in \Omega$, there exists an open neighborhood $\mathcal{N} \subseteq \mathcal{M}$ of Ω such that for all $x \in \mathcal{N}$, $\varphi(t,x) \xrightarrow{t \to \infty} \Omega$.

Domain (Region) of Attraction

The domain of attraction is denoted by

$$\mathcal{A} = \{ x \in \mathcal{M} : \varphi(t, x) \to \Omega \text{ as } t \to \infty \}.$$

 Ω is said to be GLOBALLY asymptotically stable if $\mathcal{N}=\mathcal{M}.$

Definition (Lie derivative)

The Lie derivative of $V:\mathcal{M}\to\mathbb{R}$ along $f\in\mathfrak{X}(\mathcal{M})$ is defined by

$$\mathcal{L}_f V : \mathcal{M} \to \mathbb{R},$$

$$p \mapsto dV_p(f(p)).$$

Lyapunov Function

Definition

Let K be an invariant set of the dynamical system (\mathcal{M}, φ) . A continuous function $V: \mathcal{A} \to \mathbb{R}_{\geq 0}$ is a LYAPUNOV FUNCTION if

- ▶ V(x) > 0 for all $x \in A \setminus K$,
- $ightharpoonup V(x) = 0 ext{ for all } x \in \mathcal{K},$
- ▶ *V* is proper, i.e., $V^{-1}(B)$ is compact for all compact subsets $B \subseteq \mathbb{R}_{\geq 0}$,
- ightharpoonup V is strictly decreasing along orbits of φ , i.e.,

$$V \circ \varphi(t,x) < V(x),$$

for all t > 0 and $x \in A \setminus K$. If V is differentiable, this condition may be replaced by

$$\mathcal{L}_f V(x) < 0.$$

(Nondegenerate) Critical Points

Definition

Let $V: \mathcal{M} \to \mathbb{R}$ be a smooth function. A CRITICAL POINT, $p \in \mathcal{M}$, of V is a point where the differential

$$dV_p: T_p\mathcal{M} \to \mathbb{R}$$

has rank zero, i.e., in any local coordinate system $\{x_i\}_{1}^{n}$, one has $\frac{\partial V}{\partial x_i}(p) = 0$ for all i = 1, ..., n.

Definition

A critical point p is NONDEGENERATE if the Hessian $H_p(V)$ is a nondegenerate bilinear form, i.e., if any coordinate system, the Hessian matrix

$$\left(\frac{\partial^2 V}{\partial x_i \partial x_j}\right)_{1 \le i, j \le n}$$

is nondegenerate.

Nondegenerate Critical Points

Definition

The dimension of the subspace of $T_p\mathcal{M}$ on which $H_p(V)$ is negative definite is called the MORSE INDEX of V at p, denoted by $\operatorname{ind}(V,p)$.

Definition

A C^2 function $V: \mathcal{M} \to \mathbb{R}$ is a MORSE FUNCTION if all its critical points are nondegenerate.

Definition

The (SUB)-LEVEL SETS of a function $V:\mathcal{M}\to\mathbb{R}$ are

$$\mathcal{M}_a = V^{-1}((-\infty, a]),$$

 $\mathcal{M}_{a,b} = V^{-1}([a, b]).$

Topological Definitions

- ▶ A top. space is an n-cell if it is homeomorphic to \mathbb{R}^n .
- ► A top. space *X* is CONTRACTIBLE if it is *homotopy equivalent* to the one-point space.
- ▶ A subspace A of X is called a DEFORMATION RETRACT of X if there exists a continuous function $h: [0,1] \times X \to X$ such that for all $X \in X$, $a \in A$,

$$h(0,x) = x,$$

 $h(1,x) \in A,$
 $h(1,a) = a.$

- ► The k^{th} BETTI NUMBER of \mathcal{M} , denoted by b_k is the rank of the k^{th} homology group $H^k(\mathcal{M})$.
- ightharpoonup The Euler characteristic of \mathcal{M} is defined by

$$\chi(\mathcal{M}) = \sum_{k=1}^{k} (-1)^k b_k.$$

Lyapunov Stability Analysis on Euclidean

Spaces

Autonomous Systems

Consider the autonomous system

$$\dot{x} = f(x) \tag{1}$$

where $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a locally Lipschitz map, with an equilibrium point at x = 0.

Definition

The equilibrium point x = 0 of the system (1) is

• stable if, $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ such that

$$||x(0)|| < \delta \implies ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

- ▶ unstable if it is not stable.
- ightharpoonup asymptotically stable if it is stable and δ can be chosen s.t.

$$||x(0)|| < \delta \implies \lim_{t \to \infty} x(t) = 0.$$

Example – Pendulum

The pendulum equation

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a \sin x_1 - b x_2$$

has two equilibrium points at $(x_1 = 0, x_2 = 0)$ and $(x_1 = \pi, x_2 = 0)$.

- ▶ If b = 0, trajectories in the nbhd. of the first equilibrium are closed orbits.
- ► By starting sufficiently close to the eq. point, trajectories are guaranteed to stay within any specified ball.
- ► The point is not asymptotically stable since trajectories don't tend to the eq. point.
- If b > 0, the origin becomes asymptotically stable.
- ▶ The second eq. point is a saddle point: the $\varepsilon \delta$ requirement cannot be satisfied (for every $\varepsilon > 0$ there exists a trajectory that will leave the ball B_{ε} even if x(0) is arbitrarily close to $(\pi,0)$).

Theorem

Let $x=0\in D$ be an equilibrium point for (1). Let $V:D\to \mathbb{R}$ be a continuously differentiable function such that

$$V(0) = 0$$
 and $V(x) > 0$ in $D - \{0\}$,
 $\dot{V}(x) \le 0$ in D .

Then, x = 0 is stable. Moreover, if

$$\dot{V}(x) < 0 \text{ in } D - \{0\}$$

then x = 0 is asymptotically stable.

Proof of stability. Given $\varepsilon > 0$, choose $0 < r \le \varepsilon$ such that $B_r \subseteq D$. Let $\alpha = \min_{\|x\| = r} V(x)$. Then, $\alpha > 0$. Take $0 < \beta < \alpha$ and consider $\mathcal{M}_{\beta} = V^{-1}((0,\beta])$.

<u>Claim</u>: $\mathcal{M}_{\beta} \subseteq \mathring{B}_{r}$. Argue ad absurdum. Suppose $\mathcal{M}_{\beta} \cap \mathring{B}_{r} \neq \mathcal{M}_{\beta}$. Then $\exists p \in \mathcal{M}_{\beta} \cap \partial B_{r}$. Note, $V(p) \geq \alpha > \beta$, but $V(\mathcal{M}_{\beta}) \subseteq [0, \beta]$.

The set \mathcal{M}_{β} is invariant since

$$\dot{V}(x(t)) \le 0 \Rightarrow V(x(t)) \le V(x(0)) \le \beta, \ \forall t \ge 0.$$

Because \mathcal{M}_{β} is compact (closed and bounded), we conclude that the ODE (1) has a unique solution $\forall t \geq 0$ whenever $x(0) \in \mathcal{M}_{\beta}$. Since V is continuous and V(0) = 0, $\exists \delta > 0$ such that

$$||x|| \le \delta \implies V(x) < \beta.$$

Proof of stability (cont'd). Then,

$$B_{\delta} \subseteq \mathcal{M}_{\beta} \subseteq B_{r}$$

and

$$x(0) \in B_{\delta} \Rightarrow x(0) \in \mathcal{M}_{\beta} \Rightarrow x(t) \in \mathcal{M}_{\beta} \Rightarrow x(t) \in B_{r},$$

proving stability.

Figure: Geometric representation of Lyapunov stability.

Proof of asymptotic stability. Now assume $\dot{V}(x) < 0$ in $D - \{0\}$. We want to show that $x(t) \xrightarrow{t \to \infty} 0$; i.e., $\forall a > 0$, $\exists T > 0$, s.t. $\|x(t)\| < a, \forall t > T$.

We know that $\forall a > 0$, we can choose b > 0 s.t. $\mathcal{M}_b \subseteq B_a$. Therefore, it is sufficient to show that $V(x(t)) \xrightarrow{t \to \infty} 0$. Since V is monotonically decreasing and bounded from below by zero,

$$V(x(t)) \xrightarrow{t\to\infty} c \geq 0.$$

<u>Claim</u>: c=0. Argue ad absurdum. Suppose c>0. By continuity of V, $\exists d>0$ s.t. $B_d\subseteq \mathcal{M}_c$. The limit $V(x(t))\to c>0$ implies that $x(t)\notin B_d, \forall t\geq 0$. Define $\max_{d\leq \|x\|\leq r}\dot{V}(x)=:-\gamma<0$. It follows that

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) d\tau \le V(x(0)) - \gamma t.$$

The RHS will eventually become negative: contradiction (c > 0).

Lyapunov Stability: Intuition

- ► A continuously differentiable function *V*, satisfying the theorem's conditions is called a LYAPUNOV FUNCTION.
- ▶ When \dot{V} < 0, the trajectory moves from level set $\mathcal{M}_{c_3} = V^{-1}(c_3)$ to an inner level set $\mathcal{M}_{c_2} = V^{-1}(c_2)$ with a smaller c.
- ► $V^{-1}(c) \xrightarrow{c\downarrow 0} 0$. Hence the trajectory approaches the origin.
- ▶ If we only knew that $\dot{V} \leq 0$, we cannot be sure that the trajectory $x(t) \xrightarrow{t \to \infty} 0$, 1but we can conclude that the origin is stable.

¹See, however, Krasovskii-LaSalle's theorem.

Example: Undamped pendulum

$$\begin{aligned} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= -a \sin x_1. \end{aligned}$$

Lyapunov function candidate
$$V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2.$$

Analysis

Clearly, V(0) = 0 and V(x) > 0 if $x \neq (2k\pi, 0)$. Compute the Lie derivative of V along f:

$$\dot{V}(x) = \mathcal{L}_f V(x) = ax_2 \sin x_1 - ax_2 \sin x_1 = 0.$$

Thus, the origin is stable. Since $\dot{V}(x) \equiv 0$, we conclude that the origin is not asymptotically stable as solutions starting on the level set \mathcal{M}_c remain in that set.

Example: Damped pendulum

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -a \sin x_1 - bx_2.$

Lyapunov function candidate

$$V(x) = a(1 - \cos x_1) + \frac{1}{2}x^{\top}Px,$$

 $P = P^{\top} > 0.$

The Lie derivative $\dot{V}(x)$ is given by

$$\dot{V}(x) = a(1 - p_{22})x_2 \sin x_1 - ap_{12}x_1 \sin x_1 + (p_{11} - p_{12}b)x_1x_2 + (p_{12} - p_{22}b)x_2^2.$$

- ► Take $p_{22} = 1$ and $p_{11} = bp_{12}$.
- ▶ We must choose $0 < p_{12} < b$ for V to be positive definite.

$$\dot{V}(x) = -\frac{1}{2}abx_1\sin x_1 - \frac{1}{2}bx_2^2.$$

This is negative definite for any $0 < |x_1| < \pi$.

Definition (Region of Attraction)

The REGION OF ATTRACTION is defined as the set of all points x such that $\phi(t;x)$ is defined for all $t \geq 0$ and $\lim_{t \to \infty} \phi(t;x) = 0$.

- ► Finding the exact RoA is usually difficult.
- ► Lyapunov fcns. can be used to estimate (inner approx.) the RoA.
- From the proof of the Lyapunov stability theorem, if there is a Lyapunov fcn. that satisfies asymptotic stability and if \mathcal{M}_c is bounded and contained in D, then \mathcal{M}_c is (positively) invariant.
- ▶ The estimate \mathcal{M}_c of the RoA may be conservative (inner approximation).
- ► QUESTION: Under what conditions is the RoA the whole space?
 - ► If so, the origin is said to be *globally asymptotically stable*.
 - The conditions of the Lyapunov theorem must clearly hold for $D = \mathbb{R}^n$. But is this sufficient?

Figure: Level sets of $V(x) = \frac{x_1^2}{1+x_2^2} + x_2^2$.

For \mathcal{M}_c to be bounded ($\mathcal{M}_c \subseteq \mathring{B}_r$, for some $r \ge 0$), $c < \inf_{\|x\| \ge r} V(x)$. If

$$l = \lim_{r \to \infty} \inf_{\|x\| > r} V(x) < \infty$$

then \mathcal{M}_c will be bounded only if c < l. Consider (see figure)

$$V(x) = \frac{x_1^2}{1 + x_2^2} + x_2^2.$$

In this example,

$$l = \lim_{r \to \infty} \min_{\|x\| = r} V(x) = 1.$$

For \mathcal{M}_c to be bounded ($\mathcal{M}_c \subseteq \check{B}_r$, for some $r \ge 0$), $c < \inf_{\|x\| \ge r} V(x)$. If

$$l = \lim_{r \to \infty} \inf_{\|x\| > r} V(x) < \infty$$

then \mathcal{M}_c will be bounded only if c < l. Consider (see figure)

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2.$$

In this example,

$$l = \lim_{r \to \infty} \min_{\|x\| = r} V(x) = 1.$$

An extra condition that ensures that \mathcal{M}_c is bounded for all c>0 is

$$V(x) \to \infty$$
 as $||x|| \to \infty$.

Homework

Show that a continuously differentiable map $V: \mathbb{R}^n \to \mathbb{R}$ is radially unbounded if and only if it is proper (inverse images of compact sets under V are compact).

Theorem (Global Asymptotic Stability)

Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function and the conditions of the Lyapunov stability theorem hold (asymptotic). If, in addition,

$$||x|| \to \infty \Rightarrow V(x) \to \infty$$

then x = 0 is globally asymptotically stable.

Remark

For x = 0 to be GAS, it must be the unique equilibrium point of the system (why?).

Chetaev's Instability Theorem

Theorem

Let $V:D\to\mathbb{R}$ be a continuously differentiable function such that V(0)=0 and $V(x_0)>0$ for some x_0 with arbitrarily small $\|x_0\|$. Let

$$U := \{ x \in B_r : V(x) > 0 \}$$

and suppose that $\dot{V}(U) > 0$. Then, x = 0 is unstable.

Proof. $x_0 \in \mathring{U}$ and $V(x_0) = a > 0$. The trajectory x(t) starting at $x(0) = x_0$ must leave U. Indeed, as long as $x(t) \in U$, $V(x(t)) \ge a$, since $\dot{V}(U) > 0$. Let $\min\{\dot{V}(x) : x \in U \text{ and } V(x) \ge a\} := \gamma > 0$. Then,

$$V(x(t)) = V(x_0) + \int_0^t \dot{V}(x(s)) \, \mathrm{d}s \ge a + \int_0^t \gamma \, \mathrm{d}s = a + \gamma t.$$

Hence, x(t) will leave U because V(x) is bounded on U. Now, x(t) cannot leave U through V(x) = 0 since $V(x(t)) \ge a$. Hence it must leave U through the sphere \mathbb{S}_r . Note: $||x_0||$ was arbitrarily small.

The Invariance Principle

Intuition: Damped Pendulum

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -a \sin x_1 - b x_2^2.$

<u>Lyapunov function candidate</u> $V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2.$

$$\dot{V}(x) = -bx_2^2 \le 0.$$

- \blacktriangleright $\dot{V}(x) < 0$ if and only if $x_2 \neq 0$.
- For the system to maintain $\dot{V}(x) = 0$, it has to stay on $x_2 = 0$.
- ▶ Unless $x_1 = 0$, this is impossible:

$$x_2(t) \equiv 0 \Rightarrow \dot{x}_2 \equiv 0 \Rightarrow \sin x_1(t) \equiv 0.$$

- ► Hence, on the segment $-\pi < x_1 < \pi$ of the $x_2 = 0$ line, the system can maintain $\dot{V}(x) = 0$ only at the origin x = 0.
- ► Therefore, V(x(t)) must decrease towards 0 and, consequently, $x(t) \xrightarrow{t \to \infty} 0$.

Limit and Invariant Sets

Definition (Limit points and limit sets)

A point p is said to be a positive limit point of x(t) if there is a sequence $\{t_n\}$, with $t_n \to \infty$ as $n \to \infty$, such that $x(t_n) \to p$ as $n \to \infty$.

The set of all positive limit points of x(t) is called the *positive limit* set of x(t).

Definition (Positively Invariant Set)

A set M is said to be an invariant set w.r.t. (1) if

$$x(0) \in M \Rightarrow x(t) \in M, \ \forall t \in \mathbb{R}.$$

That is, if a solution belongs to M at some time instant, then it belongs to M for all future and past time.

A set M is said to be a positively invariant set if

$$x(0) \in M \Rightarrow x(t) \in M, \forall t \geq 0.$$

Distance to an (Invariant) Set

Definition (Distance and Convergence to a Set)

We say that x(t) approaches a set M as $t \to \infty$, if for each $\varepsilon > 0$, $\exists T > 0$ such that

$$\inf_{x \in M} ||p - x|| =: \operatorname{dist}(x(t), M) < \varepsilon, \ \forall t > T.$$

- ► An asymptotically stable equilibrium point is the positive limit set of every solution starting sufficiently near the equilibrium point.
- ► A stable limit cycle is the positive limit set of every solution starting sufficiently near the limit cycle.
- ▶ The solution approaches the limit cycle as $t \to \infty$. Notice: the solution does not approach any specific point on the limit cycle.
- ▶ The statement x(t) approaches M as $t \to \infty$ does not imply that $\lim_{t\to\infty} x(t)$ exists.
- ► The set $\mathcal{M}_c = \{x \in \mathbb{R}^n : V(x) \le c\}$ with $\dot{V}(x) \le 0$ for all $x \in \mathcal{M}_c$ is a positively invariant set.

Limit Sets and Krasovskii-LaSalle Theorem

Lemma

If a solution x(t) is bounded and belongs to D for $t \ge 0$, then its positive limit set L^+ is a nonempty, compact, invariant set. Moreover, x(t) approaches L^+ as $t \to \infty$.

Theorem (Krasovskii-LaSalle Theorem)

Let $\Omega \subseteq D$ be a compact set that is positively invariant w.r.t. (1). Let $V:D \to \mathbb{R}$ be a continuously differentiable function such that $\dot{V}(x) \leq 0$ in Ω . Let E be the set of all points in Ω where $\dot{V}(x) = 0$. Let E be the largest invariant set in E. Then every solution starting in Ω approaches E0 as E1.

Krasovskii-LaSalle Theorem

Proof. Let x(t) be a solution of (1) starting in Ω . Since $\dot{V}(x) \leq 0$ in Ω , V(x(t)) is a decreasing function of t. Since V(x) is continuous on the compact set Ω , it is bounded from below on Ω . Therefore, V(x(t)) has a limit a as $t \to \infty$. Note that the positive limit set L^+ is in Ω because Ω is a closed set. For any $p \in L^+$, there is a sequence t_n with $t_n \to \infty$ and $x(t_n) \to p$ as $n \to \infty$. By the continuity of V(x), $V(p) = \lim_{n \to \infty} V(x(t_n)) = a$. Hence, V(x) = a on L^+ . Since L^+ is an invariant set, $\dot{V}(x) = 0$ on L^+ . Thus,

$$L^+\subseteq M\subseteq E\subseteq \Omega$$

Since x(t) is bounded, x(t) approaches L^+ as $t \to \infty$. Hence, x(t) approaches M as $t \to \infty$.

Krasovskii-LaSalle Theorem

- Notice that, this theorem does not require the function V(x) to be positive definite.
- The set Ω does not have to be tied in with the construction of the function V(x).
- ► However, in many applications, the construction of V(x) will itself guarantee the existence of a set Ω. In particular, if $\mathcal{M}_c = \{x \in \mathbb{R}^n : V(x) \le c\}$ is bounded and $\dot{V}(x) \le 0$ in \mathcal{M}_c , then we can take $\Omega = \mathcal{M}_c$.
- ▶ When V is positive definite, \mathcal{M}_c is bounded for sufficiently small c > 0. This is not necessarily true when V is not positive definite.
- ▶ If V is radially unbounded (or proper), the set \mathcal{M}_c is bounded for all values of c. This is true whether or not V is positive definite.

Corollaries of Krasovskii-LaSalle Theorem

Corollary

Let $V: D \to \mathbb{R}$ be a continuously differentiable positive definite function on a domain D containing the equilibrium point x=0, such that $\dot{V}(x) \leq 0$ in D. Let $S=\{x\in D:\dot{V}(x)=0\}$ and suppose that no solution can stay identically in S other than the trivial solution $x(t)\equiv 0$. Then, the origin is asymptotically stable.

Corollary

Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable, radially unbounded, positive defintie function such that $\dot{V}(x) \leq 0$ for all $x \in \mathbb{R}^n$. Let $S = \{x \in \mathbb{R}^n : \dot{V}(x) = 0\}$ and suppose that no solution can stay identically in S other than the trivial solution $x(t) \equiv 0$. Then, the origin is globally asymptotically stable.

Notice that when $\dot{V}(x)$ is negative definite, then $S = \{0\}$.

Remarks on Krasovskii-LaSalle Theorem

- ► The theorem relaxes the negative definiteness requirement of Lyapunov's theorem.
- ► It further extends Lyapunov's theorem in three different directions.
 - ▶ It gives an estimate of the RoA, which is not necessarily of the form $\mathcal{M}_c = \{x \in \mathbb{R}^n : V(x) \le c\}$. The set Ω of the theorem can be ANY compact positively invariant set.
 - ► The theorem can be used in cases where the system has an equilibrium set, rather than an isolated equilibrium point.
 - ► The function V does not have to be positive definite.

Control-Lyapunov Functions 1

Consider the control system with state $x \in \mathbb{R}^n$ and control $u \in \mathbb{R}^m$, $\forall t$:

$$\dot{x}(t) = f(x(t)) + u_1(t)g_1(x(t)) + \dots + u_m(t)g_m(x(t)), \quad f(0) = 0. \quad (2)$$

Definition (Control-Lyapunov Function (clf))

A clf is a smooth, proper, and positive definite function $V:\mathbb{R}^n\to\mathbb{R}$ so that

$$\inf_{u\in\mathbb{R}^m}\{\mathcal{L}_fV(x)+u_1\mathcal{L}_{g_1}V(x)+\cdots+u_m\mathcal{L}_mg_MV(x)\}<0,\ \forall x\neq 0.$$

- ▶ *V* is such that for each $x \neq 0$, one *can* diminish its value by applying *some* open-loop control.
- Existence of a clf implies that the system is asymp. controllable:

¹As discussed in Sontag, "A 'universal' construction of Artstein's theorem on nonlinear stabilization", 1989.

Control-Lyapunov Functions: Single input

There exists a feedback law which is smooth on $\mathbb{R}^n_0 := \mathbb{R}^n - 0$

$$u=k(x), \quad k(0)=0,$$

and which globally stabilizes the system.

Assume *V* is a clf for the system

$$\dot{x} = f(x) + ug(x).$$

Denote

$$a(x) := \nabla V(x) \cdot f(x),$$

$$b(x) := \nabla V(x) \cdot g(x).$$

The condition that V is a clf is precisely the statement that

$$b(x) = 0 \implies a(x) < 0, \quad \forall x \neq 0.$$

On the other hand, V is a Lyapunov function if

$$\nabla V(x) \cdot (f(x) + k(x)g(x)) < 0,$$

that is

$$a(x) + k(x)b(x) < 0, \quad \forall x \neq 0.$$

Control-Lyapunov Functions: Single input

In this simple case where the family (a(x), b(x)), interpreted as a family of linear systems parametrized by x the following works:

$$k:=-\frac{1}{b}\left(a+\sqrt{a^2+b^2}\right).$$

Along trajectories of the closed-loop system, one has

$$\frac{dV}{dt} = -\sqrt{a^2 + b^2} < 0.$$

This feedback law may fail to be continuous, but with the slight modification

$$k:=-\frac{1}{b}\left(a+\sqrt{a^2+b^4}\right),$$

then it does become continuous.

Now, consider the system back in equation (2).

► A sufficient conditions for a given *k* to be smooth feedback stabilizer is that there exist a Lyapunov function *V* so that

$$\nabla V(x) \cdot [f(x) + k_1(x)g_1(x) + \dots + k_m(x)g_m(x)] < 0, \ \forall x \neq 0.$$

- ► Such a Lyapunov function is automatically a clf.
- ▶ If k happens to be continous at the origin, then the following property (small control property) holds (with u := k(x))

 For each $\varepsilon > 0$, there is $\delta > 0$ s.t., if $x \neq 0$ satisfies $||x|| < \delta$, then there is some u with $||u|| < \varepsilon$ s.t.

$$\nabla V(x) \cdot [f(x) + u_1 g_1(x) + \cdots + u_m g_m(x)] < 0.$$

Theorem

If \exists a smooth clf V then \exists a smooth feedback stabilizer k. If V satisfies the small control property, then k can be chosen to be also continuous at 0.

Proof. (Sketch). The proof involves constructing a fixed function ϕ of two variables, and then designing a feedback law in closed-form, from the evaluation of this function at a point determined by $\nabla V(x) \cdot f(x)$ and the $\nabla V(x) \cdot g_i(x)$'s.

Define the following function (and then show that it is analytic.)

$$\phi(a,0):=0, \quad \forall a<0$$

and

$$\phi(a,b) := \frac{1}{b} (a^2 + bq(b)), \quad q(0) = 0 \text{ and } bq(b) > 0.$$

For example, we can choose q(b) = b or $q(b) = b^3$, etc.

Proof. (Cont'd). Assume that V is a clf and let

$$a(x) := \nabla V(x) \cdot f(x),$$

$$b_i(x) := \nabla V(x) \cdot g_i(x), \quad i = 1, \dots, m.$$

Further, let

$$B(x) := (b_1(x), \dots, b_m(x)),$$

 $\beta(x) := ||B(x)||^2 = \sum_{i=1}^m b_i^2(x).$

The condition that V is a clf is equivalent to $\beta(x) = 0 \implies a(x) < 0$. Now, define the smooth feedback law $k = (k_1, \dots, k_m)$:

$$k_i(x) := -b_i(x)\phi(a(x), \beta(x)), \quad x \neq 0,$$

and k(0) := 0.

Proof. (Cont'd). At a nonzero x we have that

$$\nabla V(x) \cdot \left[f(x) + \sum_{i=1}^{m} k_i(x) g_i(x) \right] = a(x) - \phi \left(a(x), \beta(x) \right) \beta(x)$$
$$= -\sqrt{a(x)^2 + \beta(x) q \left(\beta(x) \right)} < 0.$$

so the original *V* decreases along trajectories of the closed-loop system.

We have still yet to show that V satisfies the small control property. The audience is invited to see the paper for the detailed proof of this.

