lab5-Chen

Weixuan Chen

3/1/2023

data preparation

```
d1 <- read.csv("http://faraway.neu.edu/biostats/lab5_dataset1.csv")
d2 <- read.csv("http://faraway.neu.edu/biostats/lab5_dataset2.csv")</pre>
```

d1

```
##
       treatment mortality
## 1
         control 1.4528777
## 2
                  3.2662526
         control
## 3
         control 1.1786520
## 4
         control 13.4003497
         control 3.7791827
## 5
## 6
         control
                  1.1966567
## 7
                  4.4257026
         control
## 8
         control
                  5.6878067
## 9
                  4.8345176
         control
## 10
         control
                  2.0029310
## 11
         control 12.3268667
## 12
         control 4.0142207
                  1.4604716
## 13
         control
## 14
         control
                  0.2967991
## 15
         control 8.3723191
## 16
         control 2.5988431
## 17
         control 2.6746265
## 18
         control 6.9854975
## 19
         control 6.1794001
## 20
         control
                  4.9229174
## 21
                  6.8139867
         control
## 22
         control 5.9425379
## 23
         control 2.9287186
## 24
                  0.3718177
         control
## 25
         control
                  5.0522099
## 26
         control 2.5699110
## 27
         control 2.3261266
## 28
                  0.6245322
         control
## 29
         control
                  1.6851422
## 30
         control 4.1286132
## 31
              t1 14.2774240
## 32
              t1 3.3108742
```

```
t1 5.4068767
## 34
              t1 3.4770873
## 35
              t1
                  0.9258347
                  2.4229976
## 36
              t1
## 37
              t1
                  2.4736877
## 38
                 3.4579869
              t1
## 39
              t1 11.0234561
                 7.8709262
## 40
              t1
## 41
              t1
                  3.1126561
## 42
              t1
                 2.8480607
## 43
              t1
                 7.3666523
## 44
                 6.4023378
              t1
## 45
              t1
                 1.8427229
                 1.8085128
## 46
              t1
## 47
                 5.2834641
              t1
## 48
              t1
                  7.9132053
## 49
                 3.2793781
              t1
## 50
              t1 8.8561110
## 51
              t1 5.4635889
## 52
              t1
                  1.9896796
## 53
              t1 5.1609449
## 54
              t1
                 1.1860600
              t1 15.3793193
## 55
## 56
              t1 26.5864024
## 57
              t1 2.5415612
## 58
              t1 1.2915788
## 59
                  6.4864775
              t1
## 60
              t1 3.2057478
## 61
              t2 81.5827433
## 62
              t2 7.1047246
## 63
              t2 14.7278368
## 64
              t2 7.5988898
## 65
              t2 3.5139009
## 66
              t2 8.9244286
## 67
              t2 1.2153613
## 68
              t2 31.9942072
## 69
              t2 8.6128333
## 70
              t2 64.8846884
## 71
              t2 11.8877627
## 72
              t2 3.6329812
## 73
              t2 13.6089322
## 74
              t2 2.9034578
## 75
              t2 2.1093221
## 76
              t2 9.8892295
## 77
              t2 4.7431816
              t2 7.3972281
## 78
              t2 7.9593021
## 79
              t2 4.0979181
## 80
## 81
              t2 4.1842659
## 82
              t2 6.4547829
## 83
              t2 24.0007960
## 84
              t2 1.6103205
## 85
              t2 13.3824773
## 86
              t2 10.3083101
```

```
## 87
              t2 21.3937717
## 88
              t2 5.4510927
## 89
              t2 10.6975935
## 90
              t2 9.6513595
## 91
              t3
                  1.5800871
## 92
              t3 9.0963006
## 93
              t3
                 8.6746295
## 94
              t3 5.4751170
## 95
              t3 13.2876290
## 96
              t3
                 4.7516239
## 97
              t3 0.7583637
## 98
              t3
                  1.5322459
## 99
              t3
                  0.7988256
## 100
              t3
                  1.6931647
## 101
              t3
                  1.4617485
## 102
              t3
                  2.8352096
## 103
              t3
                  1.0931663
## 104
              t3 3.1836514
## 105
              t3 1.4125765
## 106
              t3 15.9154012
## 107
              t3 5.5661715
## 108
              t3
                  6.7542655
## 109
                  3.9915729
              t3
## 110
              t3 14.6168662
## 111
              t3
                 1.4394535
## 112
              t3
                 1.7131868
## 113
              t3 11.3848354
                 1.4180797
## 114
              t3
## 115
              t3
                 2.2091753
## 116
              t3
                 1.8352708
## 117
              t3
                  1.9738918
## 118
              t3
                 2.0562557
## 119
              t3
                 4.4557185
## 120
              t3 2.2765691
## 121
              t4
                  7.3451669
## 122
              t4 46.6670723
## 123
              t4 9.8298197
## 124
              t4 10.1801879
## 125
              t4 11.0210740
## 126
              t4 24.8452430
## 127
              t4 11.3184665
## 128
              t4 11.7325359
                  6.1616187
## 129
              t4
## 130
              t4 8.8086107
              t4 12.9378929
## 131
## 132
              t4 6.7605586
## 133
              t4 20.7282228
## 134
              t4 2.6687386
## 135
              t4 16.5528429
## 136
              t4
                 2.6209849
## 137
                 9.0162082
              t4
## 138
                 7.1830214
## 139
              t4 6.3465110
## 140
              t4 11.5086994
```

```
## 141
             t4 1.7961412
## 142
             t4 39.5111659
## 143
            t4 2.3048776
## 144
             t4 7.6635061
             t4 3.9911519
## 145
             t4 5.7498916
## 146
## 147
             t4 98.2157457
             t4 12.3962700
## 148
## 149
             t4 3.3659137
## 150
             t4 2.3617302
```

Task1

1

H0: There is no difference in means among all groups H1: Not H0 (there is difference)

$\mathbf{2}$

```
control_mort <- subset(d1, treatment == 'control')
t1_mort <- subset(d1, treatment == 't1')
t2_mort <- subset(d1, treatment == 't2')
t3_mort <- subset(d1, treatment == 't3')
t4_mort <- subset(d1, treatment == 't4')
hist(control_mort$mortality)</pre>
```

Histogram of control_mort\$mortality

hist(t1_mort\$mortality)

Histogram of t1_mort\$mortality

hist(t2_mort\$mortality)

Histogram of t2_mort\$mortality

hist(t3_mort\$mortality)

Histogram of t3_mort\$mortality

hist(t4_mort\$mortality)

Histogram of t4_mort\$mortality

No, they do not seem normally distributed.

3

```
t1_mort_trans <- log10(t1_mort$mortality)
t2_mort_trans <- log10(t2_mort$mortality)

par(mfrow=c(2,2))
hist(t1_mort_trans)
hist(t2_mort_trans)</pre>
```

Histogram of t1_mort_trans

Histogram of t2_mort_trans

Now they seem to be normally distributed. The transformation is necessary. I would use transformed data.

4

```
d1['mortality_transformed'] <- log10(d1$mortality)</pre>
mod.aov.mort <- aov(mortality ~ treatment, data = d1)</pre>
summary(mod.aov.mort)
##
                 Df Sum Sq Mean Sq F value
                                              Pr(>F)
## treatment
                      2959
                             739.8
                                      5.069 0.000749 ***
## Residuals
                     21162
                             145.9
               145
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

5

From te table, we can see the p-value are significant. We can reject the null hypothesis. There is difference between means among groups.

6

Because Tukey's HSD controls the family-wise error while t-tests don't.

```
thsd <- TukeyHSD(mod.aov.mort)
thsd</pre>
```

```
##
     Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = mortality ~ treatment, data = d1)
## $treatment
##
                   diff
                                lwr
                                          upr
                                                  p adj
## t1-control 1.6383709 -6.9782430 10.2549847 0.9846614
## t2-control 9.4007737
                         0.7841599 18.0173876 0.0249811
## t3-control 0.3913522 -8.2252617 9.0079661 0.9999435
## t4-control 9.9363128 1.3196989 18.5529266 0.0150140
## t2-t1
              7.7624029 -0.8542110 16.3790168 0.0988879
## t3-t1
           -1.2470187 -9.8636325 7.3695952 0.9945629
            8.2979419 -0.3186720 16.9145558 0.0650864
## t4-t1
             -9.0094215 -17.6260354 -0.3928077 0.0355977
## t3-t2
              0.5355390 -8.0810749 9.1521529 0.9998032
## t4-t2
              9.5449606 0.9283467 18.1615744 0.0218409
## t4-t3
```

8

plot(thsd)

95% family-wise confidence level

Differences in mean levels of treatment

t3-t2, and t4-t3 are different from the mean

9

```
##install.packages("multcompView")
require(multcompView)
```

Loading required package: multcompView

10

```
mortality_lables <-multcompLetters(thsd$treatment [, "p adj"])$Letters

mortality_lables_order <- mortality_lables[order(names(mortality_lables))]

print (mortality_lables_order)

## control t1 t2 t3 t4

## "b" "ab" "a" "b" "a"</pre>
```

Mortality Rate for Treatments

12

t4 seems most effective in increasing pest mortality because it has the hightest mortality rate and highest reaching error bar

Task 2

1

```
mortality_anova2 = aov(log10(mortality) ~ treatment, d2)
summary(mortality_anova2)
##
               Df Sum Sq Mean Sq F value
                                          Pr(>F)
## treatment
                4 5.745 1.4362
                                  9.426 8.42e-07 ***
## Residuals
              145 22.093 0.1524
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
ANOVA table suggests that the mean mortality is different across the treatments
2
mortality_tukey2 = TukeyHSD(mortality_anova2)
print(mortality tukey2)
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = log10(mortality) ~ treatment, data = d2)
## $treatment
                    diff
                                                    p adj
                                lwr
                                            upr
## t1-control 0.23899938 -0.03941002 0.51740878 0.1291508
## t2-control 0.44637650 0.16796710 0.72478590 0.0001783
## t3-control 0.01340866 -0.26500074 0.29181806 0.9999286
## t4-control -0.09228160 -0.37069100 0.18612780 0.8905013
## t2-t1
              ## t3-t1
             -0.22559072 -0.50400012 0.05281868 0.1716297
## t4-t1
             -0.33128098 -0.60969038 -0.05287158 0.0109690
## t3-t2
             -0.43296783 -0.71137723 -0.15455843 0.0003031
## t4-t2
             -0.53865809 -0.81706749 -0.26024869 0.0000034
## t4-t3
             -0.10569026 -0.38409966 0.17271914 0.8321379
3
library(multcompView)
mortality_lables2 <-multcompLetters(mortality_tukey2$treatment [, "p adj"])$Letters
mortality_lables_order2 <- mortality_lables2[order(names(mortality_lables2))]</pre>
print (mortality_lables_order2)
```

```
"bc"
               "ab"
                        "a"
                               "bc"
##
mean.mortality2 <- aggregate(mortality ~ treatment, data = d2, FUN = mean)</pre>
stderr.mortality2 <- aggregate(mortality ~ treatment, FUN = function(x) sd(x)/sqrt(length(x)), data = d
ci.upp2 <- mean.mortality2$mortality + 1.96 * stderr.mortality2$mortality</pre>
ci.low2 <- mean.mortality2$mortality - 1.96 * stderr.mortality2$mortality</pre>
bp2 <- barplot(mean.mortality2$mortality, names = mean.mortality2$treatment,</pre>
              main = "Mortality Rate for Treatments",
              ylim = c(0, max(ci.upp2 + 1.9)), ylab = "Mortality")
arrows(y0 = ci.low2, y1 = ci.upp2, x0 = bp2, x1 = bp2, angle = 90,
       code = 3, length = 0.1)
text(x = bp2, y = mean.mortality2\$mortality + stderr.mortality2\$mortality,
     mortality_lables2, pos = 3)
```

t4

Mortality Rate for Treatments

4

control

t2

t1

t2-control, t4-t1,t3-t2, and t4-t2 are all different from the mean t4 has the lowest mortality rate for the enemy of the pest

t4 is the best treatment because it has the highest mortality rate for the pest, and lowest mortality rate for the enemy of the pest.