Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №1

«МНОГОКРАТНЫЕ ПРЯМЫЕ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН И ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ»

Выполнил студент:

Клименко Георгий Евгеньевич группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение				
	1.1	Цель работы	2		
		Решаемые задачи			
2	Осн	ювная часть	2		
	2.1	Теоретическая часть	2		
	2.2	Эксперимент			
		Обработка данных и обсуждение результатов			
		Исходный код			
		Таблицы	7		
		Графики	10		
3	Вы	воды	12		

1 Введение

В данной лабораторной работе проводится измерение сопротивления резисторов с помощью универсального моста Е7-4. Цель работы заключается в освоении методики использования измерительного прибора для многократного прямого измерения физической величины, а также в выполнении простейшей статистической обработки серии результатов наблюдений при прямых измерениях.

Измерение сопротивления является одной из базовых задач в физическом эксперименте, так как сопротивление является важной характеристикой электрических цепей и компонентов. Для точного измерения сопротивления используется мостовая схема, которая позволяет с высокой точностью определить значение сопротивления путем сравнения с известными эталонными значениями.

В ходе работы предстоит изучить принцип работы универсального моста Е7-4, освоить методику измерения сопротивления, а также провести многократные измерения для получения серии результатов. Полученные данные будут подвергнуты статистической обработке, включая построение гистограммы и графика распределения результатов, что позволит оценить случайные погрешности измерений и определить среднее значение сопротивления с учетом погрешности.

1.1 Цель работы

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить простейшую статистическую обработку серии вычислений.

1.2 Решаемые задачи

В лабораторной работе №1в решаются задачи по освоению методики использования универсального моста Е7-4 для измерения сопротивления резисторов. Проводится серия многократных измерений с использованием грубой и точной шкал прибора, результаты которых фиксируются для последующей статистической обработки.

2 Основная часть

2.1 Теоретическая часть

Формула относительной погрешности прибора δR :

$$\delta R = \pm \left(1 + \frac{6}{R}\right) \tag{1}$$

Где R - показания прибора. Формула для нахождения среднего арифметического \bar{R} :

$$\bar{R} = \frac{\sum_{i=1}^{n} R_i}{n} \tag{2}$$

Здесь n - количество результатов наблюдений, R_i - результат измерения отдельного наблюдения. Расчёт погрешности прибора ΔR вычисляется ледующим образом:

$$\Delta R = \frac{\delta R \cdot \bar{R}}{100\%} \tag{3}$$

Среднеквадратичное отклонение σ :

$$\sigma \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (R_i - \bar{R})^2}$$
 (4)

Средняя квадратичная погрешность среднего ΔR :

$$\Delta R = \sigma_{\bar{R}} \approx \frac{\sigma}{\sqrt{n}} \tag{5}$$

2.2 Эксперимент

Подготовка к эксперименту начинается с изучения описаний и правил пользования приборами, которые будут использоваться в работе, в частности, универсального моста E7-4. Перед началом измерений необходимо собрать установку по рекомендуемой блок-схеме (рис. 1), подключив измеряемое сопротивление R к зажимам «C—L—R» моста. Установка переключателя «C, L, R, =R» зависит от типа измеряемого тока (постоянный или переменный), а ручка переключателя «ЧАСТОТА Hz» устанавливается в положение «100» (для переменного тока) или «1000» (для постоянного тока). Чувствительность индикатора настраивается так, чтобы стрелка прибора находилась в пределах 2/3 шкалы, а с помощью ручки «МНОЖИТЕЛЬ» добиваются минимального показания прибора. После этого мост уравновешивается, регулируя чувствительность и используя ручки «ОТСЧЁТ», чтобы добиться наименьшего показания на индикаторе равновесия. Измеренное сопротивление рассчитывается как сумма отсчетов по шкалам переключателя и потенциометра «ОТСЧЁТ», умноженная на соответствующий множитель.

Выполнение эксперимента включает несколько этапов. Сначала измеряется заданное значение сопротивления несколько раз (10 измерений) на грубой шкале прибора, результаты записываются в таблицу для анализа проявления случайных погрешностей. Затем выбирается более чувствительная шкала, и проводятся 50 или более измерений для формирования выборки, подлежащей статистической обработке. Результаты этих измерений также фиксируются в таблице,

включая случайные отклонения от среднего значения и их квадраты. После завершения измерений прибор переключается на самую грубую шкалу, установка сдается лаборанту, и электрическая цепь разбирается.

Рис. 1. схема моста Е7-4

Рис. 2. Мост Е7-4

2.3 Обработка данных и обсуждение результатов

Описываются методы обработки данных, освещаются особенности реализованных алгоритмов.

Исходный код

Для написания программы, вычисляющей все требуемые данные, использу ется язык C++; среда разработки- VisualStudio. Код разбит на несколько файлов: main.cpp, DataProc.cpp, DataProc.h. В файле DataProc.h объявлены все используемые библиотеки и функции, которые реализует программа, в Файле DataProc.cpp находятся определения функций: функция нахождения среднего арифметического, функция нахождения всех случайных отклонений из данной выборки, функция нахождения стандартных отклонений и т.д. Файл main.cpp отвечает за вывод данных в файл .tex в формате таблицы. Ниже представлены реализации функций считывания данных из файла (см. Листинг 1), поиска среднего квадратичного отклонения σ и средней квадратичной погрешности среднего ΔR соответственно.

Листинг 1. Пример листинга исходного кода

```
#include < iostream >

void DataProcessor :: readData() {
    std :: ifstream inputFile(inputFileName);
    if (!inputFile.is_open()) {
        throw std :: runtime_error("Не удалось открыть файл");
    }
    double value;
    while (inputFile >> value) {
        data.push_back(value);
    }
    inputFile.close();
}
```

Поиск среднего квадратичного отклонения σ :

```
void DataProcessor::calculateStandardDeviation() { double sumSquaredDeviations = 0.0; for (double squaredDev: squaredDeviations) { sumSquaredDeviations += squaredDev; } standardDeviation = std::sqrt(sumSquaredDeviations / data.size()); } Поиск средней квадратичной погрешности среднего \Delta R: void DataProcessor::calculateMeanError() { meanError = standardDeviation / std::sqrt(data.size()); }
```

Таблицы

Таблица 1. Результаты грубых измерений

№ П.П.	Диапазон показаний использованной шка- лы прибора	Результаты отдельных наблюдений (R_i)	Погрешность прибора на данной шкале $(\Delta R_{\text{приб}})$
	Ом	Ом	Ом
1	0-10	6	0.12
2	0-10	6	0.12
3	0-10	6	0.12
4	0-10	6	0.12
5	0-10	6	0.12
6	0-10	6	0.12
7	0-10	6	0.12
8	0-10	6	0.12
9	0-10	6	0.12
10	0-10	6	0.12

Таблица 2. Измерения на точной шкале

№	Диапазон показа-	Результаты отдельных	Погрешность прибо-
	ний использованной	наблюдений (R_i)	ра на данной шкале
П.П.	шкалы прибора	наолюдении (n_i)	$(\Delta R_{ m приб})$
	Ом	Ом	Ом
1	5,93	-0.0104	0.000108
2	5,95	0.0096	9.216e-05
3	5,95	0.0096	9.216e-05
4	5,94	-0.0004	1.6e-07
5	5,93	-0.0104	0.000108
6	5,94	-0.0004	1.6e-07
7	5,94	-0.0004	1.6e-07
8	5,95	0.0096	9.216e-05
9	5,95	0.0096	9.216e-05
10	5,93	-0.0104	0.000108
11	5,94	-0.0004	1.6e-07
12	5,95	0.0096	9.216e-05
13	5,94	-0.0004	1.6e-07
14	5,93	-0.0104	0.000108
15	5,95	0.0096	9.216e-05
16	5,95	0.0096	9.216e-05

17	5,94	-0.0004	1.6e-07
18	5,95	0.0096	9.216e-05
19	5,93	-0.0104	0.000108
20	5,94	-0.0004	1.6e-07
21	5,95	0.0096	9.216e-05
22	5,94	-0.0004	1.6e-07
23	5,95	0.0096	9.216e-05
24	5,95	0.0096	9.216e-05
25	5,93	-0.0104	0.000108
26	5,93	-0.0104	0.000108
27	5,95	0.0096	9.216e-05
28	5,95	0.0096	9.216e-05
29	5,94	-0.0004	1.6e-07
30	5,93	-0.0104	0.000108
31	5,94	-0.0004	1.6e-07
32	5,93	-0.0104	0.000108
33	5,94	-0.0004	1.6e-07
34	5,95	0.0096	9.216e-05
35	5,93	-0.0104	0.000108
36	5,94	-0.0004	1.6e-07
37	5,93	-0.0104	0.000108
38	5,95	0.0096	9.216e-05
39	5,94	-0.0004	1.6e-07
40	5,94	-0.0004	1.6e-07
41	5,94	-0.0004	1.6e-07
42	5,93	-0.0104	0.000108
43	5,94	-0.0004	1.6e-07
44	5,95	0.0096	9.216e-05
45	5,93	-0.0104	0.000108
46	5,94	-0.0004	1.6e-07
47	5,93	-0.0104	0.000108
48	5,94	-0.0004	1.6e-07
49	5,94	-0.0004	1.6e-07
50	5,94	-0.0004	1.6e-07

Таблица 3. Распределение результатов измерений

№ п.п.	Границы интервалов (ширина интервала 0.01 Ом)	Число случаев (Δn) , когда результат наблюдения попадает в данный интервал	Доля полного числа результатов, попадающих в данный интервал $(\delta n = \frac{\Delta n}{n})$
1	5.90	0	0.00
2	5.91	0	0.00
3	5.92	0	0.00
4	5.93	14	0.28
5	5.94	20	0.4
6	5.95	16	0.32
7	5.96	0	0.00
8	5.97	0	0.00
9	5.98	0	0.00
10	5.99	0	0.00
11	6.0	0	0.00

Графики

Рис. 3. Зависимость результатов измерения от времени

Рис. 4. Значения измерений на числовой оси

Рис. 5. Гистограмма распределения

Рис. 6. График распределения

3 Выводы

В ходе выполнения лабораторной работы была освоена методика многократного прямого измерения сопротивления с использованием универсального моста Е7-4. Работа позволила не только понять принципы работы с измерительным прибором, но и научиться проводить статистическую обработку полученных данных для оценки случайных погрешностей. Также, были освоены базовые навыки работы с такими программами как GNUplot и inkscape. В дальнейшем все эти навыки могут быть полезны для более сложных физических экспериментов в ходе научной работы.

Список литературы

[1] https://github.com/st115592/23.C02-labwork-1-