I Appoint (partuelle) de
$$\pi \in \mathcal{E}'$$
 we pot

$$\begin{array}{c}
\downarrow & \downarrow \\
\uparrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow$$

ainer
$$\mathbb{E}_{p(x)}[x] \approx \frac{1}{2} \mathbb{E}_{p(x)}[x] = \mathbb{E}_{p$$

* Désormans, l'ensemble { z(i)} est aléatoire ("particles") => méthodes de Monte CasCo · z(1) ... z(N) rid q(x) loi d'importance et les w. " " seront déterminées de telle sorte que p(x) constitue un osturé "cohérent" de p(x) En fait, IE p(x)[\$(x)] constitue un estimé de Ep(x)[\$(x)], su legrel on raisonne en termes statistiques

* Echenhllonnage idéal

$$P(x) \approx \hat{P}(x) = \sum_{i=1}^{N} w^{(i)} \delta(x-x^{(i)})$$
où $2^{(i)} - x^{(i)}$ juid $P(x)$

$$w^{(i)} - w^{(i)} = 1$$

Echant llomage d'importance · On suppose qu'on me pert/vont pas échantillemes On introduit une pdf q(2)

— qu'on soit échantillonnes - dont le support courre le support de p(x) $\forall x, (p(x) \neq 0) \Longrightarrow (q(x) \neq 0)$ (càd. que p(x1)0 et q(x)=0 et impasible)

$$P(x) \approx P(x) = \sum_{i=1}^{N} w^{(i)} \delta(x-x^{(i)})$$
on $x^{(n)} - x^{(n)}$ and $q(x)$

$$w^{(i)} d = P(x^{(i)})$$

$$Q(x^{(i)}) = P(x^{(i)})$$
on ste chalse on marmalise are already of the chalse of the challength of the chalse of the cha

Dans ce cas on montre que l'estimateur $= \underbrace{\mathbb{E}}_{\mathcal{N}}(0) + (\alpha l)$ de $\mathbb{I}(+) := \mathbb{E}_{\mathcal{N}}[\Phi(\alpha)]$ ASSIPT non toraisé (po ur N-20) des les que l'anrage! vos I (p) lors que N-20, le support de que N-20, le support de que N-20 de que l'anrage d'impe d'acros sonte de q(x) Ower N

· Nota: en est capables d'estimes p(2) on moyen de PN(2) même so p(a) n'est comme qu'à sa constante de normalisation près. · Nota? le calcul des poids pout être couteurs, instable numériquement, etc.

Exercice:
$$p(x) \propto \mathcal{N}(x; m, \sigma^2) \cdot \frac{1}{m} (\infty)$$

$$[m + \frac{\pi}{2}, m + \frac{\pi}{2}]$$

approx nc de Définissons trois $P(x) = \frac{1}{C_2} \mathcal{N}(x; m, \sigma^2) \qquad \boxed{m-\bar{z}; m+\bar{z}}$ A. Supposous qu'on diogose d'un moyen d'échanhllonner schan p(2) $x^{(n)} - x^{(n)}$, and y(x) $W^{(n)} = W$ Q = 1 $P(x^{(n)}) = 1$ c.àd. $W^{(n)} = \dots = W^{(n)} = \frac{1}{N}$

en z(c) 9(x)= N(x/m, 52) 02(1) - 2(N) ind M(x, M, T2) $\frac{1}{C_0} \mathcal{N}\left(2^{\frac{1}{2}}; m, \sigma^2\right) \qquad \left[m - \frac{1}{2}, m + \frac{1}{2}\right]$ puis $\forall i$, $w^{(i)} \propto w^{*(i)} := \frac{p(x^{(i)})}{q(x^{(i)})} =$ $= \left\{ \begin{array}{c} 1 & \text{for } \chi(i) \in \left[m - \frac{1}{2} \right] \\ 0 & \text{$ = "acceptaton - rejet" # particules [m-7/mot 2]

1 (2) (2) (2) (2) [m-\frac{1}{2}] (2) d UP(x, m, σ²) 11 (2) [m-\(\frac{1}{2}\), m+\(\frac{1}{2}\)] 7 (2) = 1 (2) [m-]=, m+]=) m-1 m-5 m m+5 m+12 de p(x) cas To)T (m-10) m+ 10 9(all)

P(x(1)) = 1 (x(1), m, 02)

Nota: on me sair per

(all)

Par une eval numérique

par une eval numérique

III Application au filtage Boujernen II. 1. Les équations récursives eractis * On montre que P(XO:R/3 1:R-1)
loi Lointe de prédiction à l'inthe R Doi JOINTE de filtrage à R-1 Sont liées par P(x0.8/3/1.8.1) = p(x6/x6-1) p(x0.8-1) (3/1.6-1)

* D'andre post, P (20. k 131. k-1), 3 k et p (20. k 131. k) a. k
løi de sigres a. k soul unico par P(3h/ah) P(20.k (31.k-1) P(20:h |31:h) = PBL 131:18-1 = (munerater drage = constitute de mondrate.