DATA ANALYSIS PYTHON PROJECT-EVERYDAY ANALYSIS

IMPORT LIBRARIES

In [18]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

IMPORT RAW DATA

In [19]: df = pd.read_excel("C:/Users/ACER/Downloads/everyday Grocery Data.xlsx")

SAMPLE DATA

In [22]: df.head(20)

Out[22]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Tyr
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermark Type
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermark Type
2	Regular	FDR28	Frozen Foods	2016	OUT046	Tier 1	Small	Supermark Typ:
3	Regular	FDL50	Canned	2014	OUT013	Tier 3	High	Supermark Type
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermark Type
5	low fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Small	Supermark Type
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Small	Groce Sto
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Small	Supermark Type
8	Low Fat	FDW20	Fruits and Vegetables	2014	OUT013	Tier 3	High	Supermark Type
9	Low Fat	FDX25	Canned	2018	OUT027	Tier 3	Medium	Supermark Type
10	LF	FDX21	Snack Foods	2018	OUT027	Tier 3	Medium	Supermark Type
11	Low Fat	NCU41	Health and Hygiene	2017	OUT035	Tier 2	Small	Supermark Type
12	Low Fat	FDL20	Fruits and Vegetables	2022	OUT018	Tier 3	Medium	Supermark Type
13	Low Fat	NCR54	Household	2014	OUT013	Tier 3	High	Supermark Type
14	Low Fat	FDH19	Meat	2018	OUT027	Tier 3	Medium	Supermark Type
15	Regular	FDB57	Fruits and Vegetables	2017	OUT035	Tier 2	Small	Supermark Type
16	Low Fat	FDO23	Breads	2022	OUT018	Tier 3	Medium	Supermark Type

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Typ
17	Low Fat	NCB07	Household	2012	OUT049	Tier 1	Medium	Supermark Type
18	Low Fat	FDJ56	Fruits and Vegetables	2018	OUT027	Tier 3	Medium	Supermark Type
19	Low Fat	DRN47	Hard Drinks	2022	OUT018	Tier 3	Medium	Supermark Type

In [23]: df.tail(10)

Out[23]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet 1
8513	Regular	DRY23	Soft Drinks	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8514	low fat	FDA11	Baking Goods	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8515	low fat	FDK38	Canned	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8516	low fat	FDO38	Canned	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8517	low fat	FDG32	Fruits and Vegetables	2018	OUT027	Tier 3	Medium	Superma T <u>·</u>
8518	low fat	NCT53	Health and Hygiene	2018	OUT027	Tier 3	Medium	Superma T <u>·</u>
8519	low fat	FDN09	Snack Foods	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8520	low fat	DRE13	Soft Drinks	2018	OUT027	Tier 3	Medium	Superma T
8521	reg	FDT50	Dairy	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
8522	reg	FDM58	Snack Foods	2018	OUT027	Tier 3	Medium	Superma T <u>'</u>
4								•

SIZE OF DATA

In [5]: print("size of data: ",df.shape)

```
size of data: (8523, 12)
```

FIELD INFORMATION

DATA TYPES

```
df.dtypes
In [25]:
Out[25]: Item Fat Content
                                        object
         Item Identifier
                                        object
         Item Type
                                        object
          Outlet Establishment Year
                                        int64
          Outlet Identifier
                                        object
         Outlet Location Type
                                        object
         Outlet Size
                                        object
         Outlet Type
                                        object
          Item Visibility
                                       float64
          Item Weight
                                       float64
         Sales
                                       float64
         Rating
                                       float64
         dtype: object
```

DATA CLEANING

BUSINESS REQUIREMENTS

KPI'S REQUIREMENTS

```
In [29]: #TOTAL SALES
  total_sales=df['Sales'].sum()
  #AVERAGE SALES
  avg_sales=df['Sales'].mean()
  #number of items sold
  number_of_items_sold=df['Sales'].count()
  #average ratings
```

```
avg_ratings=df['Rating'].mean()
#display
print(f"Total sales:${total_sales:,.0f}")
print(f"Average sales:${avg_sales:,.0f}")
print(f"Number of items sold:{number_of_items_sold:,.0f}")
print(f"Average rating:{avg_ratings:,.0f}")
```

Total sales:\$1,201,681 Average sales:\$141 Number of items sold:8,523 Average rating:4

CHARTS REQUIREMENTS

TOTAL SALES BY FAT CONTENT

Sales by fat content

TOTAL SALES BY ITEM TYPE

```
In [30]: # Calculate total sales for each item type, sorted descending
sales_by_type = df.groupby('Item Type')['Sales'].sum().sort_values(ascending=False)
# Plot the bar chart
```

```
plt.figure(figsize=(10, 6))
bars = plt.bar(sales_by_type.index, sales_by_type.values)
# Rotate x-axis labels for better visibility
plt.xticks(rotation=-90)
plt.xlabel('Item Type')
plt.ylabel('Total Sales')
plt.title('Total Sales by Item Type')
# Annotate each bar with its sales value
for bar in bars:
   plt.text(
        bar.get_x() + bar.get_width() / 2,
        bar.get_height(),
        f'{bar.get height():,.0f}',
        ha='center',
        va='bottom',
        fontsize=8
   )
plt.tight layout()
plt.show()
```


FAT CONTENT BY OUTLET FOR TOTAL SALES

```
In [31]: # Group and aggregate sales by Outlet Location Type and Item Fat Content
grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum().u

# Select only 'Regular' and 'Low Fat' for the fat content categories
grouped = grouped[['Regular', 'Low Fat']]

# Plot the grouped data as a bar chart
ax = grouped.plot(kind='bar', figsize=(8, 5), title='Outlet Tier by Item Fat Conten
plt.xlabel('Outlet Location Tier')
```

```
plt.ylabel('Total Sales')
plt.legend(title='Item Fat Content')
plt.tight_layout()
plt.show()
```


TOTAL SALES BY OUTLET ESTABLISHMENT

```
In [15]: # Aggregate total sales by year of outlet establishment, sorted by year
    sales_by_year = df.groupby('Outlet Establishment Year')['Sales'].sum().sort_index()

# Create the line plot
    plt.figure(figsize=(9, 5))
    plt.plot(sales_by_year.index, sales_by_year.values, marker='o', linestyle='-')

plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')
    plt.title('Outlet Establishment')

# Annotate each point with its sales value
    for x, y in zip(sales_by_year.index, sales_by_year.values):
        plt.text(x, y, f'{y:.0f}', ha='center', va='bottom', fontsize=8)

plt.tight_layout()
    plt.show()
```


SALES BY OUTLET SIZE

```
In [16]: # Aggregate total sales by outlet size
    sales_by_size = df.groupby('Outlet Size')['Sales'].sum()

# Create the pie chart with custom formatting
    plt.figure(figsize=(4, 4))
    plt.pie(
        sales_by_size,
        labels=sales_by_size.index,
        autopct='%1.1f%%',
        startangle=90
    )

    plt.title('Outlet Size')
    plt.tight_layout()
    plt.show()
```

Outlet Size

SALES BY OUTLET LOCATION

```
In [17]: # Aggregate total sales by outlet Location type and reset index for plotting
    sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_index()

# Sort Locations by sales in descending order
    sales_by_location = sales_by_location.sort_values('Sales', ascending=False)

plt.figure(figsize=(8, 3)) # Smaller height, enough width
    ax = sns.barplot(x='Sales', y='Outlet Location Type', data=sales_by_location)

plt.title('Total Sales by Outlet Location Type')

plt.xlabel('Total Sales')
    plt.ylabel('Outlet Location Type')

plt.tight_layout() # Ensures Layout fits without scroll
    plt.show()
```


In []: