

K2 Base Report

Leeds, AI Compute + Solar

Customer EcoYield

Project address Stanningley, Pudsey LS28 6QA, UK

Planned date of 10/08/2025

installation

Company JLM Energy

Address Victoria Road Salts Mill, BD18 3LA, Saltaire

Tel. +447876808289

Website https://www.jlmenergy.co.uk/

E-Mail info@jlmenergy.co.uk

Planner Kye Barwell Issue date 08/11/2025

Version K2 Base Version 3.2.49.0

Contents

Project overview	5
Area 1	9
Assembly plan	11
Results	13
Structural analysis report	16
Bill of material	21
Area 2	23
Assembly plan	25
Results	27
Structural analysis report	30
Bill of material	35
Area 3	37
Assembly plan	39
Results	42
Structural analysis report	45
Bill of material	50
Area 4	52
Assembly plan	54
Results	57
Structural analysis report	60
Bill of material	65
Area 5	67
Assembly plan	69
Results	72
Structural analysis report	75
Bill of material	80
Area 6	82
Assembly plan	84
Results	87
Structural analysis report	90
Bill of material	95
Area 7	97
Assembly plan	99

Contents

Results	102
Structural analysis report	105
Bill of material	110
Area 8	112
Assembly plan	114
Results	116
Structural analysis report	119
Bill of material	124
Area 9	126
Assembly plan	128
Results	130
Structural analysis report	133
Bill of material	138
Area 10	140
Assembly plan	142
Results	144
Structural analysis report	147
Bill of material	152
Bill of material	153

About us

K2 Systems. Innovative mounting system from a strong team.

Since 2004 we have been developing pioneering and highly functional mounting system solutions for photovoltaic installations around the world. Our systems are designed in our own product development department where we continually optimize and adapt mounting systems to the ever-changing market

A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

10 locations and worldwide sales network

In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

Quality management and certificates

K2 Systems stands for Connecting Strength, the highest quality, and precision-crafted and customized components. Our customers and business partners deeply appreciate all of these factors. Three independent authorities have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measures all ensure the outstanding quality standards that exemplify products from K2 Systems, and which we maintain through largely exclusive "Made in Germany" or "Made in Europe" practices.

Product guarantee

K2 Systems offers a 12-year product warranty on all products in its integrated range. The use of high quality materials and a three-level quality inspection ensure these standards.

In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.

The static report is not including module and building verification.

Project overview

Roofs

Roof	System	Module	Height	Quantity	Total power
Area 1 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp
Area 2 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp
Area 3 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp
Area 4 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp
Area 5 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp
Area 6 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp
Area 7 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	30	13.5 kWp
Area 8 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp
Area 9 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp
Area 10 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp
Total				334	150.30 kWp

Project information

Address Stanningley, Pudsey LS28 6QA, UK

Planned date of installation 10/08/2025
Customer EcoYield
Author Kye Barwell

Project overview

Load settings

Design method

Failure consequence class

CC2

Design working life

25 years

Terrain category

Town terrain

Wind speed

23.0 m/s

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Snow load zone 4

Snow load on ground level 0.68 kN/m²

Material values

For material information refer to the product catalogue:

K2 Catalogue (k2-systems.com)

THE PROJECT IS VERIFIED.

The selected mounting system can be installed as planned. Thank you for choosing a K2 mounting system.

EcoYield Pilot Project

Project information

Address Stanningley, Pudsey LS28 6QA, UK

Planned date of installation 10/08/2025

Customer **EcoYield**

Author Kye Barwell

Area 1

Area 1

Roof	System	Module	Height	Quantity	Total power
Area 1 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp

Area 1 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting					
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest			
2*A	15.388 m	4*3.65 m	3.650	0.788 from 3.650	2.852			
1*B	15.388 m	4*3.65 m	<u>2.852</u>	0.788 from 2.852	2.054			
1*C	15.388 m	4*3.65 m	<u>2.054</u>	0.788 from 2.054	<u>1.256</u>			
1*D	15.388 m	4*3.65 m	<u>1.256</u>	0.788 from 1.256	0.458			

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			Rail cutting				
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
18*A	5.850 m	1*3.65 m	3.650	2.200 from 3.650	1.440		

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	15.94	5.75	9	5

Area 1 | Module array 1

Roof (1) Module array 1

Mounting System

Module

Row spacing

SolidRail

45(20.25 kWp) x JAM54D40-450/LB

1.77 m

Area 1 | Module array 1 | Module block 1

Roof	System	Module	Height	Quantity	Total power
Area 1		JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	L	ıltimate st	ate [Pa]			erviceabil	ity [Pa]	
Module Array	7111 ay	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5

Base Rails - Utilization result

		load-be	load-bearing capacity		Usab.	Dista	inces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	2.4	76.3	1.5	0.300	1.500	0.300	0.393

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distar	nces	maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	70.0	2.1		65.3	1.500		0.471	1.669
1	ridge	70.0	5.4		65.3	1.500		0.471	1.669
1	gableboard	73.0	5.5		65.7	1.500		0.470	1.666

Pr	Profile	$\text{Fst } D_{\text{max}}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m

Roof type Gable roof

Roof pitch 30°
Roof covering Tile
min. roof edge distance 0.00 m
Rafter spacing 0.300 m
Rafter width 40.0 mm
Set rafter to left edge No

Rafter spacing left 120.0 mm

Set rafter to right edge No

Rafter spacing right 120.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030

Snow load

Snow load zone 4
Snow guard No

Snow load on ground level $s_k = 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 1.200$ Factor for roof pitch $d_i = 0.866$

Snow load on roof, 50 year $s_{i,50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 22.0 \text{ kg}$ Weight of mounting system per module = 5.1 kgModule area $A_M = 2.00 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per m² $= 2.55 \text{ kg/m}^2$ Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable perr	nanent load		$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable perma	nent load		$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising per	manent load		$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising perma	anent load		$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads			Ϋ́o	= 1.50
Combination coefficient with regards	to wind		$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards	to Snow		$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent			$\mathbf{K}_{Fl,G}$	= 1.00
Importance factor variable			$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight			\mathbf{G}_{k}	
Characteristic snow load on the roof			$S_{i,n}$	
Characteristic wind load			\mathbf{W}_{k}	
Load case combination 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	S _{i,n}
Load case combination 02	LCC 02_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	W _{k,Pressure}
Load case combination 03	LCC 03_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	$(W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	LCC 04_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	$(S_{i,n} + \psi_{0,W} * W_{k,Pressure})$

LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Load case combination 06

Combination coefficient with regards	$ \psi_{0,} = 0.60 $		
Combination coefficient with regards	$\psi_{0,s} = 0.50$		
Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$	
Load case combination 02	LCC 02_sls	$= G_k + W_{k,Pressure}$	
Load case combination 03	LCC 03_sls	= $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$	
Load case combination 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$	
Load case combination 06	LCC 06_sls	= G _k + W _{k.Suction}	

Maximum load on modules (Mounting system dimensioning)

No.	Array	Arrav A-TrA -	ultimate state [kN/m²]				serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067	0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067	0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067	0.908	0.395	-0.915	0.067

Max. load on fastener

No.	Array	A-TrA	ultimate state [kN]				serviceability [kN]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031

Resistance Values of Components

Base Rails

Base Rails	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	W _z [cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W_y [cm 3]	W_z [cm 3]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-be	earing ca	apacity	Usab.	Dista	inces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	2.4	76.3	1.5	0.300	1.500	0.300	0.393

Upper Rail - Utilization result

		load-be	aring ca	pacity	Usab.	Distar	ices	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	2.1		65.3	1.500		0.471	1.669
1	ridge	70.0	5.4		65.3	1.500		0.471	1.669
1	gableboard	73.0	5.5		65.7	1.500		0.470	1.666

Pr	Profile	$\text{Fst } D_{\text{max}}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Area 1 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	520	14.0 kg
2	2004244	SolidHook Vario 2	260	215.0 kg
3	1000041	T-Bolt 28/15 M10×30	260	6.1 kg
4	1000042	Hexagon flange nut M10	260	2.9 kg
5	1004767	SingleRail 36 End Cap	36	0.3 kg
6	2003523	BlackCover SingleRail 36	36	0.9 kg
7	2002870	K2 Solar Cable Manager	45	0.1 kg
8	2004264	SolidRail UltraLight; 3.65 m	22	56.5 kg
9	1004107	SolidRail UtraLight+Light RailConnector Set	20	4.5 kg
10	2003145	SingleRail Climber Set 36/50	90	6.0 kg
11	2003072	OneMid Black Set 30-42	72	5.7 kg
12	2004545	K2 Clamp EC 25-40 Black	36	2.6 kg
13	2004258	SingleRail 36; 3.65 m	36	101.2 kg
14	2001976	SingleRail 36 RailConnector Set	18	6.8 kg
Total				422.5 kg

Area 2

Area 2

Roof	System	Module	Height	Quantity	Total power
Area 2 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp

Area 2 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting				
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
2*A	15.388 m	4*3.65 m	3.650	0.788 from 3.650	2.852		
1*B	15.388 m	4*3.65 m	<u>2.852</u>	0.788 from 2.852	2.054		
1*C	15.388 m	4*3.65 m	<u>2.054</u>	0.788 from 2.054	<u>1.256</u>		
1*D	15.388 m	4*3.65 m	<u>1.256</u>	0.788 from 1.256	0.458		

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

	Whole	Rails	Rail cutting			
Type	Total Rail Length Quantity 3.65 m		Part of Rail / Rest	Length	Rest	
18*A	5.850 m	1*3.65 m	3.650	2.200 from 3.650	1.440	

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	15.94	5.75	9	5

Area 2 | Module array 1

Roof (2) Module array 1

Mounting System

Module

Row spacing

SolidRail

45(20.25 kWp) x JAM54D40-450/LB

1.77 m

Area 2 | Module array 1 | Module block 1

Roof	System	Module	Height	Quantity	Total power
Area 2 Tile		JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	45	20.25 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	ultimate state [Pa]				serviceability [Pa]				
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5	
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5	
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5	

Base Rails - Utilization result

		load-be	load-bearing capacity		Usab.	Distances		maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	39.2	76.3	1.5	0.300	1.500	0.300	0.393

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Usab. Distances		maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	70.0	5.0		65.3	1.500		0.471	1.669
1	ridge	70.0	2.4		65.3	1.500		0.471	1.669
1	gableboard	73.0	5.1		65.7	1.500		0.470	1.666

Pr	Profile	$\text{Fst } D_{\text{max}}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately. , in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m

Roof type Gable roof

Roof pitch 30°
Roof covering Tile
min. roof edge distance 0.00 m
Rafter spacing 0.300 m
Rafter width 40.0 mm
Set rafter to left edge No

Rafter spacing left 120.0 mm

Set rafter to right edge No

Rafter spacing right 120.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030

Snow load

Snow load zone 4 Snow guard No

 $= 0.680 \text{ kN/m}^2$ Snow load on ground level

Shape Coefficient for Snow = 1.200 μ_{i} Factor for roof pitch = 0.866

 $s_{i,50} = 0.706 \text{ kN/m}^2$ Snow load on roof, 50 year

Adjustment factor for service life = 1.000

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_{M} = 22.0 \text{ kg}$ Weight of mounting system per = 5.1 kgmodule $A_{M} = 2.00 \text{ m}^{2}$ Module area Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ $= 2.55 \text{ kg/m}^2$

Dead weight of mounting system per m^2

Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable pern	nanent load	Ye	G,sup	= 1.35
Partial safety factor favorable perma	nent load	Ye	G,inf	= 1.00
Partial safety factor destabilising per	manent load	Ye	G,dst	= 1.10
Partial safety factor stabilising perma	anent load	Ye	G,stb	= 0.90
Partial safety factor variable loads		Yo	Q	= 1.50
Combination coefficient with regards	to wind	ψ	J _{0,W}	= 0.60
Combination coefficient with regards	to Snow	ψ	J _{0,S}	= 0.50
Importance factor permanent		K _F	Fl,G	= 1.00
Importance factor variable		K _F	Fl,Q	= 1.00
Characteristic dead weight		G	k	
Characteristic snow load on the roof		S_{i}	i,n	
Characteristic wind load		W	V _k	
Load case combination 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl}$,, * 5	S _{i,n}
Load case combination 02	LCC 02_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl}$	_{l,Q} * \	N _{k,Pressure}
Load case combination 03	LCC 03_uls	= $\gamma_{G,sup}$ * $\kappa_{Fl,G}$ * G_k + γ_Q * κ_{Fl}	ι,Q * ($(W_{k,Pressure} + \psi_{0,S} * S_{i,n})$

LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$

LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Load case combination 04

Load case combination 06

Combination coefficient with regards to wind				= 0.60
Combination coefficient with regards	$\psi_{0,S}$	= 0.50		
Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$		
Load case combination 02	LCC 02_sls	$= G_k + W_{k,Pressure}$		
Load case combination 03	LCC 03_sls	= $G_k + W_{k,Pressure} + \psi_{0,S} *$	$S_{i,n}$	
Load case combination 04	LCC 04_sls	$= G_k + S_{i,n} + \psi_{0,W} * W_{k,Pres}$	ssure	
Load case combination 06	LCC 06_sls	= G _k + W _{k,Suction}		

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]			ser	rviceability	/[kN/m²]	
Module Array	ule		Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067	0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067	0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067	0.908	0.395	-0.915	0.067

Max. load on fastener

No.	Array	A-TrA	ultimate state [kN]					serviceability [kN]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031	
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031	
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031	

Resistance Values of Components

Base Rails

Base Rails	А	l _y	I_z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W_{y} [cm 3]	W_z [cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	39.2	76.3	1.5	0.300	1.500	0.300	0.393

Upper Rail - Utilization result

		load-be	aring ca	pacity	Usab.	Distar	nces	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	5.0		65.3	1.500		0.471	1.669
1	ridge	70.0	2.4		65.3	1.500		0.471	1.669
1	gableboard	73.0	5.1		65.7	1.500		0.470	1.666

Pr	Profile	$\text{Fst } D_{\text{max}}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Total

418.0 kg

Area 2 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	510	13.8 kg
2	2004244	SolidHook Vario 2	255	210.9 kg
3	1000041	T-Bolt 28/15 M10×30	255	6.0 kg
4	1000042	Hexagon flange nut M10	255	2.8 kg
5	1004767	SingleRail 36 End Cap	36	0.3 kg
6	2003523	BlackCover SingleRail 36	36	0.9 kg
7	2002870	K2 Solar Cable Manager	45	0.1 kg
8	2004264	SolidRail UltraLight; 3.65 m	22	56.5 kg
9	1004107	SolidRail UtraLight+Light RailConnector Set	20	4.5 kg
10	2003145	SingleRail Climber Set 36/50	90	6.0 kg
11	2003072	OneMid Black Set 30-42	72	5.7 kg
12	2004545	K2 Clamp EC 25-40 Black	36	2.6 kg
13	2004258	SingleRail 36; 3.65 m	36	101.2 kg
14	2001976	SingleRail 36 RailConnector Set	18	6.8 kg

Area 3

Area 3

Roof	System	Module	Height	Quantity	Total power
Area 3 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp

Area 3 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting				
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
5*A	10.072 m	2*3.65 m	3.650	2.772 from 3.650	0.868		
2*B	8.300 m	2*3.65 m	3.650	1.000 from 3.650	<u>2.640</u>		
2*C	8.300 m	2*3.65 m	<u>2.640</u>	1.000 from 2.640	<u>1.630</u>		
1*D	8.300 m	2*3.65 m	1.630	1.000 from 1.630	0.620		

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			Rail cutting		
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest
22*A	5.850 m	1*3.65 m	3.650	2.200 from 3.650	1.440

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393
1	corner region (eave)	0.30 m	0.300	0.326
1	eaves	0.30 m	0.300	0.374

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	19.67	5.75	11	5

Area 3 | Module array 1

Roof (3) Module array 1

Mounting System Module

Row spacing

SolidRail

55(24.75 kWp) x JAM54D40-450/LB

1.77 m

Area 3 | Module array 1 | Module block 1

Area 3 | Module array 1 | Module block 2

Roof	System	Module	Height	Quantity	Total power
Area 3 Tile		JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	L	ıltimate st	tate [Pa]			serviceability [Pa]			
Module Array	Array	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II	
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5	
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5	
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5	
1	corner region (eave)	2.00	1,705.4	582.0	-1,570.2	66.5	1,148.4	394.7	-1,008.4	66.5	
1	eaves	2.00	1,429.4	582.0	-727.5	66.5	964.5	394.7	-446.6	66.5	

Base Rails - Utilization result

			ad-bearir capacity	~	Usab.	Dista	inces	maxim	um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	40.1	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	26.9	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	48.8	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	35.5	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

			d-bearir apacity	-	Usab.	Distan	ces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	3.0		65.3	1.500		0.471	1.669
1	gableboard	73.0	3.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	5.3		82.5	1.500		0.441	1.574
1	eaves	74.3	4.5		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m

Roof type Gable roof

Roof pitch 30°
Roof covering Tile
min. roof edge distance 0.00 m
Rafter spacing 0.300 m
Rafter width 40.0 mm
Set rafter to left edge No

Rafter spacing left 120.0 mm

Set rafter to right edge No

Rafter spacing right 120.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030
1	corner region (eave)	10.00	0.800	-1.200	0.749	-1.124
1	eaves	10.00	0.500	-0.600	0.468	-0.562

Snow load

Snow load zone 4 Snow guard No

Snow load on ground level $= 0.680 \text{ kN/m}^2$ S_k

Shape Coefficient for Snow = 1.200 Factor for roof pitch = 0.866

Snow load on roof, 50 year $s_{i.50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life = 1.000

 $s_{i,25} = 0.656 \text{ kN/m}^2$ Snow load on roof, 25 years

Dead Load

Weight of module $G_{M} = 22.0 \text{ kg}$ Weight of mounting system per = 5.1 kgmodule

 $A_{M} = 2.00 \text{ m}^{2}$ Module area Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable permanent load	$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1.00
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight	G_k	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	

Load case combination 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_i)$
Load case combination 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressu})$
Load case combination 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Combination coefficient with regards to wind	$\Psi_{o,}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.s}$	= 0.50

Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$
Load case combination 02	LCC 02_sls	$= G_k + W_{k,Pressure}$
Load case combination 03	LCC 03_sls	= G_k + $W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$
Load case combination 04	LCC 04_sls	= G_k + $S_{i,n}$ + $\psi_{0,W}$ * $W_{k,Pressure}$
Load case combination 06	LCC 06_sls	$= G_k + W_{k \text{ Suction}}$

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]					ser	viceability	y [kN/m²	·]
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pr	ressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067		0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067		0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067		0.908	0.395	-0.915	0.067
1	corner region (eave)	10.00	1.705	0.582	-1.570	0.067		1.148	0.395	-1.008	0.067
1	eaves	10.00	1.429	0.582	-0.727	0.067		0.964	0.395	-0.447	0.067

Max. load on fastener

No.	Array	A-TrA	U	ıltimate st	ate [kN]			serviceabi	lity [kN]	
Module Array	Milay	[m ²]	Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031
1	corner region (eave)	10.00	0.806	0.275	-0.742	0.031	0.543	0.186	-0.476	0.031
1	eaves	10.00	0.675	0.275	-0.344	0.031	0.456	0.186	-0.211	0.031

Resistance Values of Components

Base Rails

Base Rails	Α	l _y	l _z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W _y [cm³]	W_z [cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	R _{D,Uplift,Perpendicular} [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

			load-bearing capacity		Usab.	Dista	ınces	maxim	um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	40.1	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	26.9	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	48.8	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	35.5	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

			d-bearir apacity	-	Usab.	Distan	ices	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	3.0		65.3	1.500		0.471	1.669
1	gableboard	73.0	3.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	5.3		82.5	1.500		0.441	1.574
1	eaves	74.3	4.5		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Area 3 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	600	16.2 kg
2	2004244	SolidHook Vario 2	300	248.1 kg
3	1000041	T-Bolt 28/15 M10×30	300	7.0 kg
4	1000042	Hexagon flange nut M10	300	3.3 kg
5	1004767	SingleRail 36 End Cap	44	0.3 kg
6	2002870	K2 Solar Cable Manager	55	0.2 kg
7	2004264	SolidRail UltraLight; 3.65 m	27	69.3 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	20	4.5 kg
9	2003145	SingleRail Climber Set 36/50	110	7.4 kg
10	2003072	OneMid Black Set 30-42	88	7.0 kg
11	2004545	K2 Clamp EC 25-40 Black	44	3.2 kg
12	2004258	SingleRail 36; 3.65 m	44	123.6 kg
13	2001976	SingleRail 36 RailConnector Set	22	8.3 kg
Total				498.3 kg

Area 4

Area 4

Roof	System	Module	Height	Quantity	Total power
Area 4 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp

Area 4 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting					
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest			
5*A	10.072 m	2*3.65 m	3.650	2.772 from 3.650	0.868			
2*B	8.300 m	2*3.65 m	3.650	1.000 from 3.650	2.640			
2*C	8.300 m	2*3.65 m	<u>2.640</u>	1.000 from 2.640	<u>1.630</u>			
1*D	8.300 m	2*3.65 m	<u>1.630</u>	1.000 from 1.630	0.620			

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			Rail cutting			
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest	
22*A	5.850 m	1*3.65 m	3.650	2.200 from 3.650	1.440	

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393
1	corner region (eave)	0.30 m	0.300	0.326
1	eaves	0.30 m	0.300	0.374

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	19.67	5.75	11	5

Area 4 | Module array 1

Roof (4) Module array 1

Mounting System

Module

SolidRail

55(24.75 kWp) x JAM54D40-450/LB

Row spacing 1.77 m

Area 4 | Module array 1 | Module block 1

Area 4 | Module array 1 | Module block 2

Roof	System	Module	Height	Quantity	Total power
Area 4		JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	55	24.75 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	L	ultimate state [Pa] serviceabili					lity [Pa]		
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressi 1	ure	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908	3.3	394.7	-446.6	66.5
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908	3.3	394.7	-727.5	66.5
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908	3.3	394.7	-914.8	66.5
1	corner region (eave)	2.00	1,705.4	582.0	-1,570.2	66.5	1,148	3.4	394.7	-1,008.4	66.5
1	eaves	2.00	1,429.4	582.0	-727.5	66.5	964	₊.5	394.7	-446.6	66.5

Base Rails - Utilization result

			ad-bearir capacity	O	Usab.	Dista	inces	maxim	um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	35.7	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	41.4	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	50.3	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	37.5	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

			d-bearir apacity	-	Usab.	Distan	ces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	2.1		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	6.9		82.5	1.500		0.441	1.574
1	eaves	74.3	5.9		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m

Roof type Gable roof

Roof pitch

Roof covering

min. roof edge distance

Rafter spacing

Rafter width

Set rafter to left edge

Cashe roo

30°

Tile

0.00 m

40.0 mm

Rafter spacing left 165.0 mm

Set rafter to right edge No

Rafter spacing right 165.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$ Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030
1	corner region (eave)	10.00	0.800	-1.200	0.749	-1.124
1	eaves	10.00	0.500	-0.600	0.468	-0.562

Snow load

Snow load zone 4 Snow guard No

Snow load on ground level $= 0.680 \text{ kN/m}^2$ S_k

Shape Coefficient for Snow = 1.200 Factor for roof pitch = 0.866

Snow load on roof, 50 year $s_{i.50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life = 1.000

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_{M} = 22.0 \text{ kg}$ Weight of mounting system per = 5.1 kgmodule

 $A_{M} = 2.00 \text{ m}^{2}$ Module area Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable permanent load	$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1.00
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight	G_k	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	

Load case combination 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_i)$
Load case combination 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressu})$
Load case combination 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Combination coefficient with regards to wind	$\psi_{o,}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{o.s}$	= 0.50

Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$
Load case combination 02	LCC 02_sls	= G _k + W _{k,Pressure}
Load case combination 03	LCC 03_sls	= $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,w} * W_{k,Pressure}$
Load case combination 06	LCC 06_sls	$= G_k + W_{k \text{ Suction}}$

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ulti	mate stat	e [kN/m²	2]		ser	viceability	y [kN/m²	·]
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pr	ressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067		0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067		0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067		0.908	0.395	-0.915	0.067
1	corner region (eave)	10.00	1.705	0.582	-1.570	0.067		1.148	0.395	-1.008	0.067
1	eaves	10.00	1.429	0.582	-0.727	0.067		0.964	0.395	-0.447	0.067

Max. load on fastener

No.	Array	A-TrA	U	ıltimate st	ate [kN]			serviceabi	lity [kN]	
Module Array	Milay	[m ²]	Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031
1	corner region (eave)	10.00	0.806	0.275	-0.742	0.031	0.543	0.186	-0.476	0.031
1	eaves	10.00	0.675	0.275	-0.344	0.031	0.456	0.186	-0.211	0.031

Resistance Values of Components

Base Rails

Base Rails	Α	l _y	l _z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W_y [cm 3]	W_z [cm 3]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	R _{D,Uplift,Perpendicular} [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-bearing capacity		Usab.	Dista	inces	maxim	um values	
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	35.7	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	41.4	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	50.3	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	37.5	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distan	ices	maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	2.1		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	6.9		82.5	1.500		0.441	1.574
1	eaves	74.3	5.9		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Area 4 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	600	16.2 kg
2	2004244	SolidHook Vario 2	300	248.1 kg
3	1000041	T-Bolt 28/15 M10×30	300	7.0 kg
4	1000042	Hexagon flange nut M10	300	3.3 kg
5	1004767	SingleRail 36 End Cap	44	0.3 kg
6	2002870	K2 Solar Cable Manager	55	0.2 kg
7	2004264	SolidRail UltraLight; 3.65 m	27	69.3 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	20	4.5 kg
9	2003145	SingleRail Climber Set 36/50	110	7.4 kg
10	2003072	OneMid Black Set 30-42	88	7.0 kg
11	2004545	K2 Clamp EC 25-40 Black	44	3.2 kg
12	2004258	SingleRail 36; 3.65 m	44	123.6 kg
13	2001976	SingleRail 36 RailConnector Set	22	8.3 kg
Total				498.3 kg

Area 5

Area 5

Roof	System	Module	Height	Quantity	Total power
Area 5 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp

Area 5 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting				
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
2*A	11.844 m	3*3.65 m	3.650	0.894 from 3.650	2.746		
2*B	11.844 m	3*3.65 m	<u>2.746</u>	0.894 from 2.746	<u>1.842</u>		
1*C	11.844 m	3*3.65 m	<u>1.842</u>	0.894 from 1.842	0.938		
1*D	11.844 m	3*3.65 m	0.938	0.894 from 0.938	0.034		

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

	WI	nole Rails	Rail cutting				
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
28* A	2.388	m	3.650	2.388 from 3.650	1.252		

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393
1	corner region (eave)	0.30 m	0.300	0.326
1	eaves	0.30 m	0.300	0.374

Module arrays

Area 5 | Module array 1

Roof (5) Module array 1

Mounting System

Module

SolidRail

28(12.6 kWp) x JAM54D40-450/LB

Row spacing 1.77 m

Area 5 | Module array 1 | Module block 1

Area 5 | Module array 1 | Module block 2

Roof	System	Module	Height	Quantity	Total power
Area 5 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA [m²]	ultimate state [Pa]				serviceability [Pa]			
Module Array			Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5
1	corner region (eave)	2.00	1,705.4	582.0	-1,570.2	66.5	1,148.4	394.7	-1,008.4	66.5
1	eaves	2.00	1,429.4	582.0	-727.5	66.5	964.5	394.7	-446.6	66.5

Base Rails - Utilization result

		load-bearing capacity		Usab. Distance		ınces	maximum values		
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	6.1	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	6.6	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	6.4	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distances		maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	4.1		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	3.3		82.5	1.500		0.441	1.574
1	eaves	74.3	2.8		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m Gable roof Roof type 30° Roof pitch Tile Roof covering min. roof edge distance 0.00 m Rafter spacing 0.300 m Rafter width 40.0 mm Set rafter to left edge No

Rafter spacing left 240.0 mm

Set rafter to right edge No

Rafter spacing right 240.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \; kN/m^2$ Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030
1	corner region (eave)	10.00	0.800	-1.200	0.749	-1.124
1	eaves	10.00	0.500	-0.600	0.468	-0.562

Snow load

Snow load zone 4 Snow guard No

Snow load on ground level $= 0.680 \text{ kN/m}^2$ S_k

Shape Coefficient for Snow = 1.200 Factor for roof pitch = 0.866

Snow load on roof, 50 year $s_{i.50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life = 1.000

 $s_{i,25} = 0.656 \text{ kN/m}^2$ Snow load on roof, 25 years

Dead Load

Weight of module $G_{M} = 22.0 \text{ kg}$ Weight of mounting system per = 5.1 kgmodule

 $A_{M} = 2.00 \text{ m}^{2}$ Module area Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable permanent load	$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1.00
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight	G_k	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	

Load case combination 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Combination coefficient with regards to wind	$\Psi_{o,}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$
Load case combination 02	LCC 02_sls	= G _k + W _{k,Pressure}
Load case combination 03	LCC 03_sls	= G_k + $W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$
Load case combination 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	LCC 06 sls	= G _k + W _{k Supring}

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]					serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pr	ressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067		0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067		0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067		0.908	0.395	-0.915	0.067
1	corner region (eave)	10.00	1.705	0.582	-1.570	0.067		1.148	0.395	-1.008	0.067
1	eaves	10.00	1.429	0.582	-0.727	0.067		0.964	0.395	-0.447	0.067

Max. load on fastener

No.	Array	A-TrA	u	ıltimate st	ate [kN]			serviceability [kN]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031	
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031	
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031	
1	corner region (eave)	10.00	0.806	0.275	-0.742	0.031	0.543	0.186	-0.476	0.031	
1	eaves	10.00	0.675	0.275	-0.344	0.031	0.456	0.186	-0.211	0.031	

Resistance Values of Components

Base Rails

Base Rails	Α	I_y	l _z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W_y [cm 3]	W_z [cm 3]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	R _{D,Uplift,Perpendicular} [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

			load-bearing capacity		Usab.	Dista	Distances		maximum values	
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]	
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393	
1	ridge	8.7	6.1	76.3	1.5	0.300	1.500	0.300	0.393	
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393	
1	corner region (eave)	10.5	6.6	92.0	1.9	0.300	1.500	0.300	0.326	
1	eaves	9.1	6.4	80.2	1.6	0.300	1.500	0.300	0.374	

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distan	ices	maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	4.1		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	3.3		82.5	1.500		0.441	1.574
1	eaves	74.3	2.8		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever
CL/L _{max}	maximum cantilever length [m]		

Area 5 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	480	13.0 kg
2	2004244	SolidHook Vario 2	240	198.5 kg
3	1000041	T-Bolt 28/15 M10×30	240	5.6 kg
4	1000042	Hexagon flange nut M10	240	2.6 kg
5	1004767	SingleRail 36 End Cap	56	0.4 kg
6	2003523	BlackCover SingleRail 36	56	1.5 kg
7	2002870	K2 Solar Cable Manager	28	0.1 kg
8	2004264	SolidRail UltraLight; 3.65 m	20	51.4 kg
9	1004107	SolidRail UtraLight+Light RailConnector Set	18	4.1 kg
10	2003145	SingleRail Climber Set 36/50	84	5.6 kg
11	2003072	OneMid Black Set 30-42	28	2.2 kg
12	2004545	K2 Clamp EC 25-40 Black	56	4.0 kg
13	2004258	SingleRail 36; 3.65 m	28	78.7 kg
Total				367.6 kg

Area 6

Area 6

Roof	System	Module	Height	Quantity	Total power
Area 6 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp

Area 6 | Assembly plan

Base Rails

	Whol	e Rails	F	Rail cutting	
Туре	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest
3*A	10.072 m	2*3.65 m	3.650	2.772 from 3.650	0.868
3*B	13.616 m	3*3.65 m	3.650	2.666 from 3.650	0.974

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			F	Rail cutting			
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
28* A	2.388	m	3.650	2.388 from 3.650	1.252		

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393
1	corner region (eave)	0.30 m	0.300	0.326
1	eaves	0.30 m	0.300	0.374

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	24.99	2.29	14	2

Area 6 | Module array 1

Roof (6) Module array 1

Mounting System Module

Row spacing

SolidRail

28(12.6 kWp) x JAM54D40-450/LB

1.77 m

Area 6 | Module array 1 | Module block 1

Area 6 | Module array 1 | Module block 2

Roof	System	Module	Height	Quantity	Total power
Area 6 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	28	12.6 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	L	ıltimate st	tate [Pa]			serviceabi	ility [Pa]	
Module Array	Array	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5
1	corner region (eave)	2.00	1,705.4	582.0	-1,570.2	66.5	1,148.4	394.7	-1,008.4	66.5
1	eaves	2.00	1,429.4	582.0	-727.5	66.5	964.5	394.7	-446.6	66.5

Base Rails - Utilization result

		load-bearing capacity		Usab.	Usab. Dista		maxim	um values	
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	31.8	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	38.7	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	27.9	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distances		maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	0.5		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	1.4		82.5	1.500		0.441	1.574
1	eaves	74.3	1.2		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height

Roof type

Gable roof

Roof pitch

Roof covering

Tile

min. roof edge distance

Rafter spacing

Rafter width

11.00 m

Gable roof

0.00 m

11.00 m

40.0 mm

Set rafter to left edge No
Rafter spacing left 200.0 mm

Set rafter to right edge No

Rafter spacing right 200.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$ Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030
1	corner region (eave)	10.00	0.800	-1.200	0.749	-1.124
1	eaves	10.00	0.500	-0.600	0.468	-0.562

Snow load

Snow load zone 4
Snow guard No

Snow load on ground level $s_k = 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 1.200$ Factor for roof pitch $d_i = 0.866$

Snow load on roof, 50 year $s_{i,50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 22.0 \text{ kg}$ Weight of mounting system per module = 5.1 kg

Module area $A_M = 2.00 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per = 0.13 kN/m²

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable permanent load	$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1.00
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight	G_k	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	

Load case combination 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Combination coefficient with regards to wind	ψ _{ο,}	= 0.60
Combination coefficient with regards to Snow	Ψ _{ns}	= 0.50

Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$
Load case combination 02	LCC 02_sls	= G _k + W _{k,Pressure}
Load case combination 03	LCC 03_sls	= G_k + $W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$
Load case combination 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	LCC 06 sls	= G _k + W _{k Supring}

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]					serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pr	ressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067		0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067		0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067		0.908	0.395	-0.915	0.067
1	corner region (eave)	10.00	1.705	0.582	-1.570	0.067		1.148	0.395	-1.008	0.067
1	eaves	10.00	1.429	0.582	-0.727	0.067		0.964	0.395	-0.447	0.067

Max. load on fastener

No.	Array	A-TrA -	ultimate state [kN]					serviceability [kN]			
Module Array	Array	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pres	ssure L	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	0.636	0.275	-0.344	0.031	0.	.429	0.186	-0.211	0.031
1	ridge	10.00	0.636	0.275	-0.543	0.031	0	.429	0.186	-0.344	0.031
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0	.429	0.186	-0.432	0.031
1	corner region (eave)	10.00	0.806	0.275	-0.742	0.031	0.	543	0.186	-0.476	0.031
1	eaves	10.00	0.675	0.275	-0.344	0.031	0.	456	0.186	-0.211	0.031

Resistance Values of Components

Base Rails

Base Rails	Α	l _y	I_z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	Α	I_y	Iz	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maximum values		
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	31.8	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	38.7	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	27.9	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distar	Distances		maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	0.5		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	1.4		82.5	1.500		0.441	1.574
1	eaves	74.3	1.2		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever
CL/L _{max}	maximum cantilever length [m]		

Area 6 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	468	12.6 kg
2	2004244	SolidHook Vario 2	234	193.5 kg
3	1000041	T-Bolt 28/15 M10×30	234	5.5 kg
4	1000042	Hexagon flange nut M10	234	2.6 kg
5	1004767	SingleRail 36 End Cap	56	0.4 kg
6	2002870	K2 Solar Cable Manager	28	0.1 kg
7	2004264	SolidRail UltraLight; 3.65 m	21	53.9 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	15	3.4 kg
9	2003145	SingleRail Climber Set 36/50	84	5.6 kg
10	2003072	OneMid Black Set 30-42	28	2.2 kg
11	2004545	K2 Clamp EC 25-40 Black	56	4.0 kg
12	2004258	SingleRail 36; 3.65 m	28	78.7 kg
Total				362.5 kg

Area 7

Area 7

Roof	System	Module	Height	Quantity	Total power
Area 7 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	30	13.5 kWp

Area 7 | Assembly plan

Base Rails

	Whol	e Rails	Rail cutting			
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest	
3*A	13.616 m	3*3.65 m	3.650	2.666 from 3.650	<u>0.974</u>	
3*B	11.844 m	3*3.65 m	0.974	0.894 from 0.974	0.070	

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			F	Rail cutting			
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
30* A	2.388	m	3.650	2.388 from 3.650	1.252		

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.393
1	ridge	0.30 m	0.300	0.393
1	gableboard	0.30 m	0.300	0.393
1	corner region (eave)	0.30 m	0.300	0.326
1	eaves	0.30 m	0.300	0.374

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	26.76	2.29	15	2

Area 7 | Module array 1

Roof (7) Module array 1

Mounting System

Module

SolidRail

30(13.5 kWp) x JAM54D40-450/LB

Row spacing 1.77 m

Area 7 | Module array 1 | Module block 1

Area 7 | Module array 1 | Module block 2

Roof	System	Module	Height	Quantity	Total power
Area 7		JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	11.00 m	30	13.5 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	L	ıltimate si	tate [Pa]			serviceabi	ility [Pa]	
Module Array	Array	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,345.1	582.0	-727.5	66.5	908.3	394.7	-446.6	66.5
1	ridge	2.00	1,345.1	582.0	-1,148.8	66.5	908.3	394.7	-727.5	66.5
1	gableboard	2.00	1,345.1	582.0	-1,429.7	66.5	908.3	394.7	-914.8	66.5
1	corner region (eave)	2.00	1,705.4	582.0	-1,570.2	66.5	1,148.4	394.7	-1,008.4	66.5
1	eaves	2.00	1,429.4	582.0	-727.5	66.5	964.5	394.7	-446.6	66.5

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maxim	maximum values		
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]	
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393	
1	ridge	8.7	25.1	76.3	1.5	0.300	1.500	0.300	0.393	
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393	
1	corner region (eave)	10.5	0.0	92.0	1.9	0.300	1.500	0.300	0.326	
1	eaves	9.1	0.0	80.2	1.6	0.300	1.500	0.300	0.374	

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distan	Distances		um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	3.0		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	4.5		82.5	1.500		0.441	1.574
1	eaves	74.3	3.8		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 11.00 m

Roof type Gable roof

Roof pitch 30°
Roof covering Tile
min. roof edge distance 0.00 m
Rafter spacing 0.300 m
Rafter width 40.0 mm
Set rafter to left edge No

Rafter spacing left 165.0 mm

Set rafter to right edge No

Rafter spacing right 165.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 1.017 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.936 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.375	-0.562
1	ridge	10.00	0.400	-0.900	0.375	-0.843
1	gableboard	10.00	0.400	-1.100	0.375	-1.030
1	corner region (eave)	10.00	0.800	-1.200	0.749	-1.124
1	eaves	10.00	0.500	-0.600	0.468	-0.562

Snow load

Snow load zone 4
Snow guard No

Snow load on ground level $s_k = 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 1.200$ Factor for roof pitch $d_i = 0.866$

Snow load on roof, 50 year $s_{i,50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 22.0 \text{ kg}$ Weight of mounting system per module = 5.1 kg

Module area $A_M = 2.00 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per = 0.13 kN/m²

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable permanent load	$\gamma_{G, sup}$	= 1.35
Partial safety factor favorable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{Fl,G}$	= 1.00
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight	\mathbf{G}_{k}	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	

Load case combination 01	LCC 01_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	LCC 02_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	LCC 03_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,I})$
Load case combination 04	LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressur})$
Load case combination 06	LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Suction}$

Usability

Combination coefficient with regards to wind	$\Psi_{o,}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$
Load case combination 02	LCC 02_sls	$= G_k + W_{k,Pressure}$
Load case combination 03	LCC 03_sls	= G_k + $W_{k,Pressure}$ + $\psi_{0,S}$ * $S_{i,n}$
Load case combination 04	LCC 04_sls	= G_k + $S_{i,n}$ + $\psi_{0,W}$ * $W_{k,Pressure}$
Load case combination 06	LCC 06_sls	$= G_k + W_{k \text{ Suction}}$

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ulti	mate stat	e [kN/m²	2]		serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pr	ressure 1	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	1.345	0.582	-0.727	0.067		0.908	0.395	-0.447	0.067
1	ridge	10.00	1.345	0.582	-1.149	0.067		0.908	0.395	-0.727	0.067
1	gableboard	10.00	1.345	0.582	-1.430	0.067		0.908	0.395	-0.915	0.067
1	corner region (eave)	10.00	1.705	0.582	-1.570	0.067		1.148	0.395	-1.008	0.067
1	eaves	10.00	1.429	0.582	-0.727	0.067		0.964	0.395	-0.447	0.067

Max. load on fastener

No.	Array	A-TrA	U	ıltimate st	ate [kN]		serviceability [kN]			
Module Array	Milay	[m ²]	Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	10.00	0.636	0.275	-0.344	0.031	0.429	0.186	-0.211	0.031
1	ridge	10.00	0.636	0.275	-0.543	0.031	0.429	0.186	-0.344	0.031
1	gableboard	10.00	0.636	0.275	-0.676	0.031	0.429	0.186	-0.432	0.031
1	corner region (eave)	10.00	0.806	0.275	-0.742	0.031	0.543	0.186	-0.476	0.031
1	eaves	10.00	0.675	0.275	-0.344	0.031	0.456	0.186	-0.211	0.031

Resistance Values of Components

Base Rails

Base Rails	Α	l _y	l _z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A	l _y	l _z	W _y	W _z
	[cm²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	R _{D,Uplift,Perpendicular} [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maximum values		
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	ridge	8.7	25.1	76.3	1.5	0.300	1.500	0.300	0.393
1	gableboard	8.7	0.0	76.3	1.5	0.300	1.500	0.300	0.393
1	corner region (eave)	10.5	0.0	92.0	1.9	0.300	1.500	0.300	0.326
1	eaves	9.1	0.0	80.2	1.6	0.300	1.500	0.300	0.374

Upper Rail - Utilization result

		load-bearing capacity		Usab.	Distances		maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	70.0	0.0		65.3	1.500		0.471	1.669
1	ridge	70.0	3.0		65.3	1.500		0.471	1.669
1	gableboard	73.0	0.0		65.7	1.500		0.470	1.666
1	corner region (eave)	88.4	4.5		82.5	1.500		0.441	1.574
1	eaves	74.3	3.8		69.3	1.500		0.463	1.644

Pr	Profile	$Fst\;D_{max}$	maximum fastener spacing [m]
Fst	Fastener	BR	base rail
σ	Stress	UR	Upper rail
f	deflection	Usab.	usability
F	Force	CL	Cantilever

 CL/L_{max} maximum cantilever length [m]

Area 7 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	504	13.6 kg
2	2004244	SolidHook Vario 2	252	208.4 kg
3	1000041	T-Bolt 28/15 M10×30	252	5.9 kg
4	1000042	Hexagon flange nut M10	252	2.8 kg
5	1004767	SingleRail 36 End Cap	60	0.4 kg
6	2002870	K2 Solar Cable Manager	30	0.1 kg
7	2004264	SolidRail UltraLight; 3.65 m	21	53.9 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	18	4.1 kg
9	2003145	SingleRail Climber Set 36/50	90	6.0 kg
10	2003072	OneMid Black Set 30-42	30	2.4 kg
11	2004545	K2 Clamp EC 25-40 Black	60	4.3 kg
12	2004258	SingleRail 36; 3.65 m	30	84.3 kg
Total				386.2 kg

Area 8

Area 8

Roof	System	Module	Height	Quantity	Total power
Area 8 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Area 8 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting				
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest		
3*A	13.616 m	3*3.65 m	3.650	2.666 from 3.650	0.974		

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			F	Rail cutting				
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest			
16*A	2.388	m	3.650	2.388 from 3.650	1.252			

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.397
1	ridge	0.30 m	0.300	0.397
1	corner region (eave)	0.30 m	0.300	0.331
1	eaves	0.30 m	0.300	0.379

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	14.17	2.29	8	2

Area 8 | Module array 1

Roof (8) Module array 1

Mounting System

Module

Row spacing

SolidRail

16(7.2 kWp) x JAM54D40-450/LB

1.77 m

Area 8 | Module array 1 | Module block 1

Roof	System	Module	Height	Quantity	Total power
Area 8 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	ultimate state [Pa]				S	serviceability [Pa]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	2.00	1,328.7	582.0	-686.4	66.5	897.3	394.7	-419.2	66.5	
1	ridge	2.00	1,328.7	582.0	-1,087.2	66.5	897.3	394.7	-686.4	66.5	
1	corner region (eave)	2.00	1,650.5	582.0	-1,488.0	66.5	1,111.9	394.7	-953.6	66.5	
1	eaves	2.00	1,408.8	582.0	-686.4	66.5	950.7	394.7	-419.2	66.5	

Base Rails - Utilization result

			ad-bearir capacity	•	Usab.	Distances maximum va			um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.6	0.0	75.5	1.5	0.300	1.500	0.300	0.397
1	ridge	8.6	36.2	75.5	1.5	0.300	1.500	0.300	0.397
1	corner region (eave)	10.3	43.3	90.5	1.9	0.300	1.500	0.300	0.331
1	eaves	9.0	0.0	79.3	1.6	0.300	1.500	0.300	0.379

Upper Rail - Utilization result

 CL/L_{max} maximum cantilever length [m]

			load-bearing capacity		pacity	Usab. Distances		ices	maximum values	
I	No.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array			σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1		field area	69.2	0.0		64.5	1.500		0.473	1.674
1		ridge	69.2	4.9		64.5	1.500		0.473	1.674
1		corner region (eave)	85.6	2.4		79.9	1.500		0.445	1.587
1		eaves	73.3	2.1		68.3	1.500		0.465	1.650
Pr	Profile				Fst D _{max}	D _{max} maximum fastener spacing [m]				
Fst	Fasten	er			BR	base rail				
σ	Stress				UR	Upper rail				
f	deflect	ion			Usab.	usability				
F	Force				CL	Cantileve	r			

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 9.00 m
Roof type Gable roof

Roof pitch 30°
Roof covering Tile
min. roof edge distance 0.00 m
Rafter spacing 0.300 m
Rafter width 40.0 mm
Set rafter to left edge No

Rafter spacing left 165.0 mm

Set rafter to right edge No

Rafter spacing right 165.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 0.967 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.891 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.356	-0.534
1	ridge	10.00	0.400	-0.900	0.356	-0.802
1	corner region (eave)	10.00	0.800	-1.200	0.713	-1.069
1	eaves	10.00	0.500	-0.600	0.445	-0.534

Snow load

Snow load zone 4
Snow guard No

Snow load on ground level $s_k = 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 1.200$ Factor for roof pitch $d_i = 0.866$

Snow load on roof, 50 year $s_{i,50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

 m^2

Weight of module $G_M = 22.0 \text{ kg}$ Weight of mounting system per module = 5.1 kg Module area $A_M = 2.00 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per m² $= 2.55 \text{ kg/m}^2$ Total Dead Load (excl. ballast) per $= 0.13 \text{ kN/m}^2$

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable pern	nanent load		$\gamma_{G, sup}$	= 1.35		
Partial safety factor favorable perman	nent load		$\gamma_{G,inf}$	= 1.00		
Partial safety factor destabilising per	manent load		$\gamma_{G,dst}$	= 1.10		
Partial safety factor stabilising perma	anent load		$\gamma_{G,stb}$	= 0.90		
Partial safety factor variable loads			γ _Q	= 1.50		
Combination coefficient with regards	to wind		$\psi_{\text{o,w}}$	= 0.60		
Combination coefficient with regards	to Snow		$\psi_{\text{o,s}}$	= 0.50		
Importance factor permanent			$\mathbf{K}_{Fl,G}$	= 1.00		
Importance factor variable			$K_{Fl,Q}$	= 1.00		
Characteristic dead weight			G_k			
Characteristic snow load on the roof			$S_{i,n}$			
Characteristic wind load			W_k			
Load case combination 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \mu$	K _{Fl,Q} * \$	$S_{i,n}$		
Load case combination 02	LCC 02_uls	$s = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$				
Load case combination 03	LCC 03_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \mu$	K _{Fl,Q} * ($(W_{k,Pressure} + \psi_{0,S} * S_{i,n})$		

LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$

LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Load case combination 04

Load case combination 06

Combination coefficient with regards	ψ _{ο,}	= 0.60		
Combination coefficient with regards	ψ _{0,S}	= 0.50		
Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$		
Load case combination 02	LCC 02_sls	$= G_k + W_{k,Pressure}$		
Load case combination 03	LCC 03_sls	= $G_k + W_{k,Pressure} + \psi_{0,S} * S$	3 _{i,n}	
Load case combination 04	LCC 04_sls	$= G_k + S_{i,n} + \psi_{0,W} * W_{k,Pres}$	sure	
Load case combination 06	LCC 06_sls	$= G_k + W_{k,Suction}$		

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]				se	serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	1.329	0.582	-0.686	0.067	0.897	0.395	-0.419	0.067	
1	ridge	10.00	1.329	0.582	-1.087	0.067	0.897	0.395	-0.686	0.067	
1	corner region (eave)	10.00	1.651	0.582	-1.488	0.067	1.112	0.395	-0.954	0.067	
1	eaves	10.00	1.409	0.582	-0.686	0.067	0.951	0.395	-0.419	0.067	

Max. load on fastener

No.	Array	A-TrA	U	ltimate st	ate [kN]			serviceability [kN]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	0.628	0.275	-0.324	0.031	0.424	0.186	-0.198	0.031	
1	ridge	10.00	0.628	0.275	-0.514	0.031	0.424	0.186	-0.324	0.031	
1	corner region (eave)	10.00	0.780	0.275	-0.703	0.031	0.525	0.186	-0.451	0.031	
1	eaves	10.00	0.666	0.275	-0.324	0.031	0.449	0.186	-0.198	0.031	

Resistance Values of Components

Base Rails

Base Rails	A [cm ²]	[cm ⁴]	I _z [cm ⁴]	[cm³]	W _z [cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W_y [cm 3]	W_z [cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

	load-bearing capacity		Usab.	Distances		maximum values			
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst D _{max} [m]
1	field area	8.6	0.0	75.5	1.5	0.300	1.500	0.300	0.397
1	ridge	8.6	36.2	75.5	1.5	0.300	1.500	0.300	0.397
1	corner region (eave)	10.3	43.3	90.5	1.9	0.300	1.500	0.300	0.331
1	eaves	9.0	0.0	79.3	1.6	0.300	1.500	0.300	0.379

Upper Rail - Utilization result

			load-bearing capa		pacity	city Usab.		Distances		maximum values	
	10.	roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst	
Module	e Array		σ[%]	σ[%]	F[%]	f[%]	[m] 	[m]	L _{max} [m]	Fst D _{max} [m]	
1		field area	69.2	0.0		64.5	1.500		0.473	1.674	
1		ridge	69.2	4.9		64.5	1.500		0.473	1.674	
1	C	orner region (eave)	85.6	2.4		79.9	1.500		0.445	1.587	
1		eaves	73.3	2.1		68.3	1.500		0.465	1.650	
Pr	Profile				Fst D _{max}	maximum fastener spacing [m]					
Fst	Fastener				BR	base rail					

UR

 CL

Usab.

Upper rail

usability Cantilever

 CL/L_{max} maximum cantilever length [m]

Stress

Force

deflection

σ

f

Area 8 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	270	7.3 kg
2	2004244	SolidHook Vario 2	135	111.6 kg
3	1000041	T-Bolt 28/15 M10×30	135	3.2 kg
4	1000042	Hexagon flange nut M10	135	1.5 kg
5	1004767	SingleRail 36 End Cap	32	0.2 kg
6	2002870	K2 Solar Cable Manager	16	0.0 kg
7	2004264	SolidRail UltraLight; 3.65 m	12	30.8 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	9	2.0 kg
9	2003145	SingleRail Climber Set 36/50	48	3.2 kg
10	2003072	OneMid Black Set 30-42	16	1.3 kg
11	2004545	K2 Clamp EC 25-40 Black	32	2.3 kg
12	2004258	SingleRail 36; 3.65 m	16	45.0 kg
Total				208.4 kg

Area 9

Area 9

Roof	System	Module	Height	Quantity	Total power
Area 9 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Area 9 | Assembly plan

Base Rails

	Whole	e Rails	Rail cutting				
Type	Total Rail Length Quantity 3.65 m		Part of Rail / Rest	Length	Rest		
3*A	13.616 m	3*3.65 m	3.650	2.666 from 3.650	0.974		

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

Whole Rails			F	Rail cutting				
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Rail / Rest Length				
16*A	2.388	m	3.650	2.388 from 3.650	1.252			

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	field area	0.30 m	0.300	0.397
1	ridge	0.30 m	0.300	0.397
1	corner region (eave)	0.30 m	0.300	0.331
1	eaves	0.30 m	0.300	0.379

Module arrays

Module array	Width[m]	Length[m]	wiath in modules	Length in modules
1	14.17	2.29	8	2

Area 9 | Module array 1

Roof (9) Module array 1

Mounting System

Module

SolidRail

16(7.2 kWp) x JAM54D40-450/LB

Row spacing 1.77 m

Area 9 | Module array 1 | Module block 1

Roof	System	Module	Height	Quantity	Total power
Area 9 Tile	<u>SolidRail</u>	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	A-TrA	ultimate state [Pa]				serviceability [Pa]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
1	field area	2.00	1,328.7	582.0	-686.4	66.5	897.3	394.7	-419.2	66.5
1	ridge	2.00	1,328.7	582.0	-1,087.2	66.5	897.3	394.7	-686.4	66.5
1	corner region (eave)	2.00	1,650.5	582.0	-1,488.0	66.5	1,111.9	394.7	-953.6	66.5
1	eaves	2.00	1,408.8	582.0	-686.4	66.5	950.7	394.7	-419.2	66.5

Base Rails - Utilization result

			ad-bearing capacity		Usab.	Distances		maximi	um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst Fst D _{max} [m]
1	field area	8.6	0.0	75.5	1.5	0.300	1.500	0.300	0.397
1	ridge	8.6	2.8	75.5	1.5	0.300	1.500	0.300	0.397
1	corner region (eave)	10.3	3.4	90.5	1.9	0.300	1.500	0.300	0.331
1	eaves	9.0	0.0	79.3	1.6	0.300	1.500	0.300	0.379

Force

 CL/L_{max} maximum cantilever length [m]

Upper Rail - Utilization result

		load-be	aring ca	pacity	Usab.	Distances		maximum values	
N	o. roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	field area	69.2	0.0		64.5	1.500		0.473	1.674
1	ridge	69.2	5.6		64.5	1.500		0.473	1.674
1	corner region (eave)	85.6	1.9		79.9	1.500		0.445	1.587
1	eaves	73.3	1.6		68.3	1.500		0.465	1.650
Pr	Profile			Fst D _{max}	t D _{max} maximum fastener spacing [m]				
Fst	Fastener			BR	base rail				
σ	Stress			UR	Upper rail				
f	deflection			Usab.	usability				

CL

Cantilever

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 9.00 m
Roof type Gable roof

Roof pitch

Roof covering

min. roof edge distance

Rafter spacing

Rafter width

Set rafter to left edge

Solution Tile

0.00 m

40.0 mm

Rafter spacing left 195.0 mm

Set rafter to right edge No

Rafter spacing right 195.0 mm
Batten spacing 150.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 0.967 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure, 25 years $q_{0.25} = 0.891 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	field area	10.00	0.400	-0.600	0.356	-0.534
1	ridge	10.00	0.400	-0.900	0.356	-0.802
1	corner region (eave)	10.00	0.800	-1.200	0.713	-1.069
1	eaves	10.00	0.500	-0.600	0.445	-0.534

 $= 0.13 \text{ kN/m}^2$

Snow load

Snow load zone 4
Snow guard No

Snow load on ground level $s_k = 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 1.200$ Factor for roof pitch $d_i = 0.866$

Snow load on roof, 50 year $s_{i,50} = 0.706 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof, 25 years $s_{i,25} = 0.656 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 22.0 \text{ kg}$ Weight of mounting system per module = 5.1 kg = 5.1 kg Module area $A_M = 2.00 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per m² $= 2.55 \text{ kg/m}^2$

Total Dead Load (excl. ballast) per

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable pern	nanent load		$\gamma_{G,sup}$	= 1.35		
Partial safety factor favorable perman	nent load		$\gamma_{G,inf}$	= 1.00		
Partial safety factor destabilising per	manent load		$\gamma_{G,dst}$	= 1.10		
Partial safety factor stabilising perma	anent load		$\gamma_{G,stb}$	= 0.90		
Partial safety factor variable loads			γ _Q	= 1.50		
Combination coefficient with regards	to wind		$\psi_{\text{o,w}}$	= 0.60		
Combination coefficient with regards	to Snow		$\psi_{\text{o,s}}$	= 0.50		
Importance factor permanent			$\mathbf{K}_{Fl,G}$	= 1.00		
Importance factor variable			$\mathbf{K}_{Fl,Q}$	= 1.00		
Characteristic dead weight			G_k			
Characteristic snow load on the roof			$S_{i,n}$			
Characteristic wind load			W_k			
Load case combination 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \mu$	K _{Fl,Q} * \$	$S_{i,n}$		
Load case combination 02	LCC 02_uls	$S = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$				
Load case combination 03	LCC 03_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \mu$	K _{Fl,Q} * ($(W_{k,Pressure} + \psi_{0,S} * S_{i,n})$		

LCC 04_uls = $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$

LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Load case combination 04 Load case combination 06

Combination coefficient with regards to wind $\psi_{0,} = 0.60$ Combination coefficient with regards to Snow $\psi_{0,s} = 0.50$

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA	ultimate state [kN/m²]				se	serviceability [kN/m²]			
Module Array	Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	1.329	0.582	-0.686	0.067	0.897	0.395	-0.419	0.067	
1	ridge	10.00	1.329	0.582	-1.087	0.067	0.897	0.395	-0.686	0.067	
1	corner region (eave)	10.00	1.651	0.582	-1.488	0.067	1.112	0.395	-0.954	0.067	
1	eaves	10.00	1.409	0.582	-0.686	0.067	0.951	0.395	-0.419	0.067	

Max. load on fastener

No. Array A-Tr		A-TrA -	ultimate state [kN]					serviceability [kN]			
Module Array	Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	field area	10.00	0.628	0.275	-0.324	0.031	0.424	0.186	-0.198	0.031	
1	ridge	10.00	0.628	0.275	-0.514	0.031	0.424	0.186	-0.324	0.031	
1	corner region (eave)	10.00	0.780	0.275	-0.703	0.031	0.525	0.186	-0.451	0.031	
1	eaves	10.00	0.666	0.275	-0.324	0.031	0.449	0.186	-0.198	0.031	

Resistance Values of Components

Base Rails

Base Rails	Α	I_y	I_z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	A [cm²]	l _y [cm ⁴]	l _z [cm ⁴]	W _y [cm³]	W_z [cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

			ad-bearii capacity	•	Usab.	Dista	inces	maxim	um values
No. Module Array	roof areas	Pr σ[%]	CL σ[%]	Fst F[%]	Pr f[%]	Fst [m]	BR [m]	CL L _{max} [m]	Fst D _{max} [m]
1	field area	8.6	0.0	75.5	1.5	0.300	1.500	0.300	0.397
1	ridge	8.6	2.8	75.5	1.5	0.300	1.500	0.300	0.397
1	corner region (eave)	10.3	3.4	90.5	1.9	0.300	1.500	0.300	0.331
1	eaves	9.0	0.0	79.3	1.6	0.300	1.500	0.300	0.379

Upper Rail - Utilization result

F

Force

 CL/L_{max} maximum cantilever length [m]

			load-be	aring ca	pacity	Usab.	Distan	ices	maxim	um values
	No.	roof areas	Pr	CL -[0/]	Fst	Pr	Fst	UR	CL	Fst
Modu	ıle Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1		field area	69.2	0.0		64.5	1.500		0.473	1.674
1		ridge	69.2	5.6		64.5	1.500		0.473	1.674
1		corner region (eave)	85.6	1.9		79.9	1.500		0.445	1.587
1		eaves	73.3	1.6		68.3	1.500		0.465	1.650
Pr	Profile				Fst D _{max}	maximum	fastene	r spaci	ng [m]	
Fst	Fastene	r			BR	base rail				
σ	Stress				UR	Upper rail				
f	deflecti	on			Usab.	usabilitv				

CL

Cantilever

Area 9 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	276	7.5 kg
2	2004244	SolidHook Vario 2	138	114.1 kg
3	1000041	T-Bolt 28/15 M10×30	138	3.2 kg
4	1000042	Hexagon flange nut M10	138	1.5 kg
5	1004767	SingleRail 36 End Cap	32	0.2 kg
6	2002870	K2 Solar Cable Manager	16	0.0 kg
7	2004264	SolidRail UltraLight; 3.65 m	12	30.8 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	9	2.0 kg
9	2003145	SingleRail Climber Set 36/50	48	3.2 kg
10	2003072	OneMid Black Set 30-42	16	1.3 kg
11	2004545	K2 Clamp EC 25-40 Black	32	2.3 kg
12	2004258	SingleRail 36; 3.65 m	16	45.0 kg
Total				211.2 kg

Area 10

Area 10

Roof	System	Module	Height	Quantity	Total power
Area 10 Tile	SolidRail	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Area 10 | Assembly plan

Base Rails

	Whole	e Rails	F	Rail cutting	
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest
3*A	13.616 m	3*3.65 m	3.650	2.666 from 3.650	0.974

¹ cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Upper Rail

	W	nole Rails	F		
Type	Total Rail Length	Quantity 3.65 m	Part of Rail / Rest	Length	Rest
16*A	2.388	m	3.650	2.388 from 3.650	1.252

Fastener Spacing

Module	Array	Distance	maximum cantilever length [m]	maximum fastener spacing [m]
1	ridge	0.30 m	0.300	0.438
1	gableboard	0.30 m	0.300	0.438
1	eaves	0.30 m	0.300	0.417
1	corner region (eave)	0.30 m	0.300	0.366

Module arrays

4	14.17	2.29	0	2
Module array	Width[m]	Length[m]	Width in modules	Length in modules

Area 10 | Module array 1

Roof (10) Module array 11

Mounting System

Module

SolidRail

16(7.2 kWp) x JAM54D40-450/LB

Row spacing 1.77 m

Area 10 | Module array 1 | Module block 1

Roof	System	Module	Height	Quantity	Total power
Area 10 Tile	SolidRail	JAM54D40-450/LB 1,762×1,134×30 mm 450 Wp	9.00 m	16	7.2 kWp

Module

Name JAM54D40-450/LB

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 450 Wp

Dimensions 1,762×1,134×30 mm

Weight 22.0 kg

Components

Fastener SolidHook Vario 2

Base rails K2 SolidRail UltraLight 32

Upper Rail K2 SingleRail 36

Loads on modules (module dimensioning)

No.	Array	av A-TrA	ultimate state [Pa]					serviceability [Pa]			
Module Array	2.9	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
1	ridge	2.00	1,328.7	582.0	-953.6	66.5	897.3	394.7	-597.3	66.5	
1	gableboard	2.00	1,328.7	582.0	-1,621.6	66.5	897.3	394.7	-1,042.6	66.5	
1	eaves	2.00	1,408.8	582.0	-686.4	66.5	950.7	394.7	-419.2	66.5	
1	corner region (eave)	2.00	1,650.5	582.0	-1,621.6	66.5	1,111.9	394.7	-1,042.6	66.5	

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maxim	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	ridge	7.8	0.0	68.5	1.4	0.300	1.360	0.300	0.438
1	gableboard	7.8	5.7	68.5	1.6	0.300	1.360	0.300	0.438
1	eaves	8.2	0.0	71.9	1.5	0.300	1.360	0.300	0.417
1	corner region (eave)	9.3	6.7	82.1	1.7	0.300	1.360	0.300	0.366

Upper Rail - Utilization result

F

Force

 CL/L_{max} maximum cantilever length [m]

		load-be	aring ca	pacity	Usab.	Distar	ices	maxim	um values
1	No. roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Modu	le Array	σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	ridge	57.0	9.8		48.1	1.360		0.483	1.674
1	gableboard	68.1	11.6		55.8	1.360		0.463	1.612
1	eaves	60.3	1.6		50.9	1.360		0.475	1.650
1	corner region (eave)	70.5	1.8		59.5	1.360		0.455	1.587
Pr	Profile			Fst D _{max}	maximum	fastene	r spacin	g [m]	
Fst	Fastener			BR	base rail				
σ	Stress			UR	Upper rail				
f	deflection			Usab.	usabilitv				

 CL

Cantilever

Note

- The dimensioning of the timber construction screws is not part of this structual analysis. This must be done on site. If the rafters are made of solid wood, glued laminated timber, cross laminated timber and laminated veneer lumber, assembly with 2 timber construction screws is usually sufficient. The edge distances must be uphold in accordance with the manufacturer's specifications.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminium structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding service life period, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding service life period, fS, is according to DIN EN 1991-1-3/ annex D. table 4
- The structural design complies with BS EN 1990 Basis of Structural Design.
- The snow loads are determined according to the national appendix BS NA EN 1991-1-3 (2018) snow loads
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- The person responsible for the execution of the work must check the load assumptions made with the conditions on site. If deviations are found, the person who prepared the static calculation must be consulted immediately., in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name EcoYield Pilot Project

Mounting System SolidRail
Author Kye Barwell

Location information

Address Stanningley, Pudsey LS28 6QA, UK

Ground level 141.89 m

Roof information

Building height 9.00 m Hip roof Roof type 30° Roof pitch Roof covering Tile min. roof edge distance 0.00 m Rafter spacing 0.300 m Rafter width 40.0 mm Set rafter to left edge No

Rafter spacing left 225.0 mm

Set rafter to right edge No

Rafter spacing right 225.0 mm
Batten spacing 340.0 mm

Loads

Design method

Failure consequence class

CC2

Design working life

Z5 years

Terrain category

Town terrain

Distance to shoreline

65.70 km

Distance inside town terrain

0.14 km

Wind load

Velocity pressure, 50 years $q_{p,50} = 0.967 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 0.921$

Velocity pressure, 25 years $q_{0.25} = 0.891 \text{ kN/m}^2$

Roof areas

No. Module Array	Array	load impact area [m²]	maxCpe	minCpe	wind pressure [kN/m²]	wind uplift [kN/m²]
1	ridge	10.00	0.400	-0.800	0.356	-0.713
1	gableboard	10.00	0.400	-1.300	0.356	-1.158
1	eaves	10.00	0.500	-0.600	0.445	-0.534
1	corner region (eave)	10.00	0.800	-1.300	0.713	-1.158

Snow load

Snow load zone 4 Snow guard No

Snow load on ground level $= 0.680 \text{ kN/m}^2$

Shape Coefficient for Snow = 1.200 Factor for roof pitch d_i = 0.866

 $s_{i,50} = 0.706 \text{ kN/m}^2$ Snow load on roof, 50 year

Adjustment factor for service life = 0.929

 $s_{i,25} = 0.656 \text{ kN/m}^2$ Snow load on roof, 25 years

Dead Load

Weight of module $G_{M} = 22.0 \text{ kg}$ Weight of mounting system per = 5.1 kg module $A_{M} = 2.00 \text{ m}^{2}$ Module area Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ $= 2.55 \text{ kg/m}^2$

Dead weight of mounting system per

Total Dead Load (excl. ballast) per

 m^2

Load Combinations

Load-bearing capacity

Partial safety factor unfavorable perr	nanent load		$\gamma_{G,sup}$	= 1.35
Partial safety factor favorable perma	nent load		$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising per	manent load		$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising perma	anent load		$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor variable loads			Ϋ́o	= 1.50
Combination coefficient with regards	to wind		$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards	to Snow		$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent			$\mathbf{K}_{Fl,G}$	= 1.00
Importance factor variable			$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1.00
Characteristic dead weight			\mathbf{G}_{k}	
Characteristic snow load on the roof			$S_{i,n}$	
Characteristic wind load			\mathbf{W}_{k}	
Load case combination 01	LCC 01_uls	$= \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	S _{i,n}
Load case combination 02	LCC 02_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	W _{k,Pressure}
Load case combination 03	LCC 03_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	$(W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	LCC 04_uls	= $\gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q *$	K _{Fl,Q} *	$(S_{i,n} + \psi_{0,W} * W_{k,Pressure})$

LCC 06_uls = $\gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Suction}$

Usability

Load case combination 06

Combination coefficient with regards	ψ _{ο,} =	0.60	
Combination coefficient with regards	$\psi_{0,S}$ =	0.50	
Load case combination 01	LCC 01_sls	$= G_k + S_{i,n}$	
Load case combination 02	LCC 02_sls	= G _k + W _{k,Pressure}	
Load case combination 03	LCC 03_sls	= $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$	
Load case combination 04	LCC 04_sls	= $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$	
Load case combination 06	LCC 06_sls	= G _k + W _{k,Suction}	

Maximum load on modules (Mounting system dimensioning)

No.	Array	A-TrA [m²]	ultimate state [kN/m²]				se	serviceability [kN/m²]			
Module Array			Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II	
1	ridge	10.00	1.329	0.582	-0.954	0.067	0.897	0.395	-0.597	0.067	
1	gableboard	10.00	1.329	0.582	-1.622	0.067	0.897	0.395	-1.043	0.067	
1	eaves	10.00	1.409	0.582	-0.686	0.067	0.951	0.395	-0.419	0.067	
1	corner region (eave)	10.00	1.651	0.582	-1.622	0.067	1.112	0.395	-1.043	0.067	

Max. load on fastener

No.	Array	A-TrA [m²]	ultimate state [kN]					serviceability [kN]			
Module Array			Pressure 	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II	
1	ridge	10.00	0.569	0.249	-0.409	0.028	0.384	0.169	-0.256	0.028	
1	gableboard	10.00	0.569	0.249	-0.695	0.028	0.384	0.169	-0.447	0.028	
1	eaves	10.00	0.604	0.249	-0.294	0.028	0.407	0.169	-0.180	0.028	
1	corner region (eave)	10.00	0.707	0.249	-0.695	0.028	0.476	0.169	-0.447	0.028	

Resistance Values of Components

Base Rails

Base Rails	А	I_y	l _z	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]
K2 SolidRail UltraLight 32	2.610	2.59	5.54	1.57	2.84

Upper rail

Upper rail	А	I_y	Iz	W_y	W_z
	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
SolidHook Vario 2	1.36	1.01	2.06

Base Rails - Utilization result

		load-bearing capacity		Usab.	Distances		maxim	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	ridge	7.8	0.0	68.5	1.4	0.300	1.360	0.300	0.438
1	gableboard	7.8	5.7	68.5	1.6	0.300	1.360	0.300	0.438
1	eaves	8.2	0.0	71.9	1.5	0.300	1.360	0.300	0.417
1	corner region (eave)	9.3	6.7	82.1	1.7	0.300	1.360	0.300	0.366

Upper Rail - Utilization result

 CL/L_{max} maximum cantilever length [m]

		load-be	aring ca	pacity	Usab. Distance		ices	maximum values	
	No. roof areas	Pr	CL	Fst	Pr	Fst	UR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	ridge	57.0	9.8		48.1	1.360		0.483	1.674
1	gableboard	68.1	11.6		55.8	1.360		0.463	1.612
1	eaves	60.3	1.6		50.9	1.360		0.475	1.650
1	corner region (eave)	70.5	1.8		59.5	1.360		0.455	1.587
Pr	Profile			$Fst\;D_{max}$	maximum	fastene	r spaci	ng [m]	
Fst	Fastener			BR	base rail				
σ	Stress			UR	Upper rail				
f	deflection			Usab.	usability				
F	Force			CL	Cantilever				

Area 10 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	276	7.5 kg
2	2004244	SolidHook Vario 2	138	114.1 kg
3	1000041	T-Bolt 28/15 M10×30	138	3.2 kg
4	1000042	Hexagon flange nut M10	138	1.5 kg
5	1004767	SingleRail 36 End Cap	32	0.2 kg
6	2002870	K2 Solar Cable Manager	16	0.0 kg
7	2004264	SolidRail UltraLight; 3.65 m	12	30.8 kg
8	1004107	SolidRail UtraLight+Light RailConnector Set	9	2.0 kg
9	2003145	SingleRail Climber Set 36/50	48	3.2 kg
10	2003072	OneMid Black Set 30-42	16	1.3 kg
11	2004545	K2 Clamp EC 25-40 Black	32	2.3 kg
12	2004258	SingleRail 36; 3.65 m	16	45.0 kg
Total				211.2 kg

3,584.1 kg

Bill of material

Total

Position	Item no.	Item description	Quantity	Weight
1	2004112	Wood screw 8×100	4,504	121.6 kg
2	2004244	SolidHook Vario 2	2,252	1,862.4 kg
3	1000041	T-Bolt 28/15 M10×30	2,252	52.7 kg
4	1000042	Hexagon flange nut M10	2,252	24.8 kg
5	1004767	SingleRail 36 End Cap	428	3.0 kg
6	2003523	BlackCover SingleRail 36	128	3.3 kg
7	2002870	K2 Solar Cable Manager	334	0.9 kg
8	2004264	SolidRail UltraLight; 3.65 m	196	503.3 kg
9	1004107	SolidRail UtraLight+Light RailConnector Set	158	35.5 kg
10	2003145	SingleRail Climber Set 36/50	802	53.7 kg
11	2003072	OneMid Black Set 30-42	454	35.9 kg
12	2004545	K2 Clamp EC 25-40 Black	428	30.7 kg
13	2004258	SingleRail 36; 3.65 m	294	826.1 kg
14	2001976	SingleRail 36 RailConnector Set	80	30.1 kg

Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Our General Terms of Business apply. Please refer to k2-systems.com

K2 Solar Mounting Solutions Ltd

Unit 46 Easter Park
Benyon Road
Aldermaston, RG7 2PQ
Great Britain
+44 1189 701280
info@k2-systems.uk.com
k2-systems.com/en