



# M³Real-Time-Systems SS 2017

Prof. Dr. rer. nat. Karsten Weronek Faculty 2
Computer Science and Engineering

**RT-Reference Model 2** 

## **Phase**





The phase does not effect the hypercycle and does not influence the schedulability considerations!

## **Real-Time Reference Model 2**



Latency: (e.g.) a preemption of a running job will by another one will lead to a context switch. This leads to some latencies.

Example: RT-Ref-Model 1: t<sub>Req</sub>: request time may be sequenced by:

- the arrival time of a signal of the physical system (trigger)
   (e.g. interrupt handling, IR-service routine)
- the request time to run a job
   (schedule the job to a runnable state)
- the release time (context switch)
- job ready to start

Latency reduces the feasible interval.

## **Jitter**



Define 
$$\Delta t_{jitter} = max [ | t_{asis} - t_{tobe} | ]$$

example on white board for  $\Delta t_{period}$ 

Jitter reduces the the  $\Delta t_{period}$  by  $2 \cdot \Delta t_{jitter}$  and leads to a reduction of the feasible interval and to earlier deadlines accordingly.

There are different kinds and different definitions in the literature for jitter!

# Single Jobs in a periodic model?



How to model a Single Job in a periodic model?

# Single Jobs in a periodic model!



How to model a Single Job in a periodic model?

just set the period for a periodic task to infinite

→ the second and all other Job will be at the end of time...

$$T^{i} = (t_{0}^{i}, \Delta t_{\text{exec}}^{i}, \Delta t_{\text{per}}^{i})$$

$$\Rightarrow T^{i} = (t_{0}^{i}, \Delta t_{\text{exec}}^{i}, \infty)$$

$$\rightarrow J_0^i = (t_0^i, \Delta t_{\text{exec}}^i)$$

$$\rightarrow J_1^i = (\infty, \Delta t_{\text{exec}}^i)$$

$$\rightarrow J_2^i = (\infty, \Delta t_{\text{exec}}^i)$$

. . .

## **Good news**



except the phase:

The RT-Reference Model 2 is not necessary for the examination!