

Problem Definition

Data & Model Description

- Technical Approach
- Data Manipulation
- ► K-means Cluster
- Descriptive Statistics

Summary & Insights

Recommendations

References & Citations

Customer Acquisition and Retention.

Analyze the customers' data from the Elo and understand the buying habits based on different clusters' customers.

Provide personalized strategies for Elo to improve the retention rate and acquire more customers

2.1 3 Technical Approach

2.2 Data Manipulation

The competition involves 5 datasets.

Historical before new merchants were recommended

__**New**____ after new merchants were recommended

The datasets are largely anonymized, and the meaning of the features are not elaborated.

Step 1

Aggregate data to one dataset, remove all missing value.

[New Features]

Date-based	 Purchase date, quarter, month, day, hour, week of year, weekday, weekend; Price (purchase amount / installments); Elapsed time: the difference between the date of a card's first active month and Feb 01, 2018.
Statistics	Count, sum, max, min, mean, std, difference between max and min, number of unique elements, etc.

Step 2

Drive the data (loyalty score distribution, correlation about features).

The plot of count of target for target (bin).

2.3 K-means Cluster

First build a XGBoost model (RMSE for test:3.7). Then generate a Feature importance rank.

Use standard scaler and PCA to process the data. Calculate the silhouette score to find the optimal k number.

```
# Loop through clusters
for n clusters in range n clusters:
    # TODO: Apply your clustering algorithm of choice to the reduced data
    clusterer = KMeans(n clusters=n clusters).fit(reduced data)
    # TODO: Predict the cluster for each data point
   preds = clusterer.predict(reduced data)
    # TODO: Find the cluster centers
   centers = clusterer.cluster_centers_
    # TODO: Predict the cluster for each transformed sample data point
    sample preds = clusterer.predict(pca samples)
    # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen
    score = silhouette_score(reduced_data, preds, metric='euclidean')
    print("For n_clusters = {}. The average silhouette_score is : {}".format(n_clusters, score))
For n clusters = 3. The average silhouette score is : 0.3575765101483685
For n_clusters = 4. The average silhouette_score is : 0.3861450509511866
For n clusters = 5. The average silhouette score is: 0.33938691788864134
For n_clusters = 6. The average silhouette_score is : 0.3512653104151818
```

Train the model (k = 4). Analyze the characteristic for the different cluster.

2.4 Descriptive Statistics

- hist_category_1_sum
 sum transactions of anonymized category 1
- the number of unique months in a year in which transaction occurs
- hist_subsector_id_nunique
 number of unique merchant category group

2.4 Descriptive Statistics

- hist_category_1_sum
 sum transactions of anonymized category 1
- the number of unique months in a year in which transaction occurs
- hist_subsector_id_nunique
 number of unique merchant category group

target

loyalty numerical score

new_hist_month_lag_mean

mean of the day before each customers' regular payment time of the installment (1 means the customer will pay the money for the installment before 1 day of the regular payment time)

new_hist_purchase_amount_var

variance of each customers' purchase amount for new merchants

new_hist_category_2_mean

mean of purchase amount of anonymized category 2 for new merchants(normalized)

target

loyalty numerical score

new_hist_month_lag_mean

mean of the day before each customers' regular payment time of the installment (1 means the customer will pay the money for the installment before 1 day of the regular payment time)

new_hist_purchase_amount_var

variance of each customers' purchase amount for new merchants

new_hist_category_2_mean

mean of purchase amount of anonymized category 2 for new merchants(normalized)

target

loyalty numerical score

new_hist_month_lag_mean

mean of the day before each customers' regular payment time of the installment (1 means the customer will pay the money for the installment before 1 day of the regular payment time)

new_hist_purchase_amount_var

variance of each customers' purchase amount for new merchants

new_hist_category_2_mean

mean of purchase amount of anonymized category 2 for new merchants(normalized)

the number of unique weeks in a year in which transaction occurs

hist month diff mean

the average of the difference between the date of a card's first active month and the month Elo made merchants' recommendation to this card

■ hist weekend sum

total transactions happened in weekend time for each card id

new_hist_purchase_date_diff

the number of unique weeks in a year in which transaction occurs

hist_month_diff_mean

the average of the difference between the date of a card's first active month and the month Elo made merchants' recommendation to this card

■ hist weekend sum

total transactions happened in weekend time for each card id

new_hist_purchase_date_diff

the number of unique weeks in a year in which transaction occurs

hist_month_diff_mean

the average of the difference between the date of a card's first active month and the month Elo made merchants' recommendation to this card

■ hist weekend sum

total transactions happened in weekend time for each card id

new_hist_purchase_date_diff

the number of unique weeks in a year in which transaction occurs

hist_month_diff_mean

the average of the difference between the date of a card's first active month and the month Elo made merchants' recommendation to this card

■ hist weekend sum

total transactions happened in weekend time for each card id

new_hist_purchase_date_diff

Customers of Elo can be divided into four clusters based on their data performance

(Combining with STP Strategy)

	[Cluster 2]	[Cluster 3]	[Cluster 1]	[Cluster 0]
Importance Ranking] st	2 nd	3 rd	Last
Features	 Have a strong preference for category 1 product; more categories Transactions happen in most weeks and months of year—high consumption frequency Be sensitive to Elo recommendation 	 Have a big variation of purchasing amount; Relatively low consumption frequency new merchants. largest time interval between activating the card and the first purchase. 	 Be sensitive to new merchants' recommendation; Have a special liking for several categories, dislike spending on weekend; Low consumption frequency 	Relatively high frequency consumption;Steady consumption.
Segmentation	Primary customers, high frequency, versatile purchase types and time, sensitive to ads.	High or low loyalty, big variance, but lowest consumption frequency.	Small variance, would like to try new merchants, but generally low consumption frequency.	Steady consumption, maintain the status quo.

5.2 Recommendations

Marketing plans can be made differently in various clusters

Cluster 2 - Important Development Customers

Recommendations

Expand the recommended categories

- Increase the advertising amount; Provide advertising with diverse categories and high quality
- Recommend complementary products or premium alternatives of category 1

Cluster 3 - Important Retaining Customers

Recommendations

Raise consumption frequency, prolong customer life cycle

- Increase mail advertise from Elo to recall customers;
- Give additional coupons to attract them.

Cluster 1 - Promising Customer

Recommendations

Encourage consumption when the company has sufficient resources

- Launch incentive programs, such as reward points system, give reward when the customer has the first purchase of each day, or reach a certain amount of credit;
- Introduce hierarchical system, encourage customers to unlock more concessions by reaching certain amount of credits, reset every year;
- If the average age of consumers is relatively low, consider building a younger brand line or sponsor campus activities

Cluster 0 - Steady Customer

Recommendations

If the company's resource is limited, this group can be paid less attention

Maintain the status

References & Citations

Analytics

https://github.com/ritchieng/machine-learningnanodegree/tree/master/unsupervised_learning/customer_segments

https://www.kaggle.com/c/elo-merchant-category-recommendation/overview

https://xgboost.readthedocs.io/en/latest/python/python_api.html

Research

https://towardsdatascience.com/clustering-algorithms-for-customer-segmentation-af637c6830ac

