Numerik MA0008: Zusammenfassung

Jonas Treplin

February 15, 2023

1 Grundlagen

Theorem 1 (Satz von Gerschgorin) Sei $(a_{ij}) = A \in \mathbb{R}^{n \times n}$ dann sind die Eigenwerte von A enthalten in $\bigcup_{i=1}^n S_i \subset \mathbb{C}$, dabei sind die $S_i := K(a_{ii}, \sum_{j=1, i \neq j}^n)$. Wobei mindestens ein Eigenwert jeder Zusammenhangskomponente zugeordnet ist.

2 Matrixfaktorisierung

Theorem 2 Die Permutationsmatrizen, die unitären Matrizen, die invertierbaren Matrizen und die unteren/oberen Dreiecksmatrizen bilden jeweils unter Matrixmultiplikation eine Gruppe. Insbesondere sind ihre Inverse von der selben Klasse von Matrizen.

Gleichungssysteme für die unitären Matrizen (und damit auch Permutationsmatrizen) lassen sich einfach durch adjungieren lösen. Für untere und obere Dreiecksmatrizen existieren Vorwärts- und Rückwärtssubsitution. Diese sind aus dem Endschritt des Lösens von Gleichungssystemen mit dem Gauß-Algorithmus bekannt. Glücklicherweise kann jede invertierbare Matrix (fast eindeutig)

Algorithm 1 Vorwärtssubsitution (Lösen einer unteren Dreiecksmatrix)

```
Require: (l_{ij}) = L \in \mathbb{R}^{n \times n} Untere Dreiecksmatrix, b \in \mathbb{R}^n.

for i \in 1 : n do
x_i \leftarrow \frac{1}{l_{ii}}(b_i - \sum_{j=1}^{i-1} l_{ij} * x_j)
end for
```

Algorithm 2 Rückwärtsssubsitution (Lösen einer oberen Dreiecksmatrix)

```
Require: (u_{ij}) = U \in \mathbb{R}^{n \times n} Obere Dreiecksmatrix, b \in \mathbb{R}^n.

for i \in n : 1 do
x_i \leftarrow \frac{1}{u_{ii}} (b_i - \sum_{j=i+1}^n u_{ij} * x_j)
end for
```

in solche Matrizen zerlegt werden. Dies geschieht Wahlweise durch eine LU-Zerlegung oder eine QR-Zerlegung. Mit Pivots erreicht man, dass jede invertierbare Matrix $A \in GL(n)$ zerlegt werden kann, sodass PA = LU. Dazu wählt man in jedem Schritt i die Zeile $j = \arg\max_{j \geq i} |a^i_{ji}|$ und vertauscht diese mit der i-ten Zeile.

Algorithm 3 LU-Zerlegung ohne Pivots

```
Require: (a_{ij}) = A \in GL(n)

for i \in 1: n do

l_{ii} \leftarrow 1

for j \in i+1: n do

l_{ji} \leftarrow -\frac{a_{ji}}{a_{ii}}

for k \in i: n do

u_{jk} \leftarrow u_{jk} - a_{ji}a_{ji}

end for
end for
```

Theorem 3 (LU-ZErlegung mit Pivots) Sei $A \in GL(n)$. Dann existieren eine eindeutige Permutationsmatrix P, sowie untere (obere) Dreiecksmatrix L (U, sodass PA = LU. Dabei ist L normiert also $l_{ii} = 1$.

Theorem 4 (Cholesky-Zerlegung) Sei A symmetrisch positiv definit dann lässt sich eine nicht normierte untere Dreiecksmatrix \tilde{L} finden, sodass $A = \tilde{L}\tilde{L}^T$.

Algorithm 4 Berechnung der Cholesky Zerlegung

```
Require: A s.p.d.

L, U \leftarrow \text{LU\_Zerlegung}(A)

D = (u_{ii}) Diagonalmatrix.

\tilde{L} = \sqrt{D}L.
```

Eine weitere Möglichkeit ist die der QR Zerlegung.

```
Definition 1 (Givensrotation) Für ein a \in \mathbb{R}^2 sei Q = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}. Wobei c = \frac{1}{\sqrt{1+\tau^2}} und s = c\tau mit \tau = \frac{v_2}{v_1} wenn |v_1| \ge |v_2| und s = \frac{1}{\sqrt{1+\tau^2}} und c = s\tau mit \tau = \frac{v_1}{v_2} wenn |v_1| < |v_2|.
```

Diese Fallunterscheidung ist so gewählt, dass $||Q|| \leq 1,$ damit sich Rundungsfehler nicht akkumulieren.

Theorem 5 (Givens-Rotation) Es gilt $Qa = \xi e_1$.

Algorithm 5 QR-Zerlegung mit Givens-Rotationen

Definition 2 (Householder Spiegelung) Die Householder Spiegelung für einen Vektor $a \in \mathbb{R}^n$ ist:

$$Q := Id - \frac{2}{v^T v} v v^T$$

Wobei $v := a + sign(a_1)||a||e_1$ Sie erfüllt ebenfalls $Qa = \alpha e_1$

Algorithm 6 QR-Zerlegung mit Householder Rotationen

 $\begin{tabular}{l} \hline \textbf{Require:} \\ \textbf{Require:} & A \in \mathbb{R}^{n \times m} \\ & Q \leftarrow I_n \\ & \textbf{for } i \in [n] \textbf{ do} \\ & H \leftarrow \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & Householder((a_i,...,a_n)) \end{bmatrix} \\ & Q \leftarrow HQ \\ & A \leftarrow HA \\ & \textbf{end for} \\ & Q \leftarrow Q* \\ \end{tabular}$

Die QR-Zerlegung ist der LU-Zerlegung hinsichtlich numerischer Stabilität überlegen, besonders bei Betrachtung der Wilkinson-Matrix:

Definition 3 (Wilkinson-Matrix) Die Wilinson-Matrix ist definiert als:

$$W_n := \begin{bmatrix} 1 & 0 & \dots & 0 & 1 \\ -1 & \ddots & \dots & \vdots & \vdots \\ \vdots & & & \ddots & \vdots \\ -1 & \dots & \dots & \dots & 1 \end{bmatrix}$$

Figure 1: Fehler beim Lösen von $W_n x = b_n$

Ein besonders instabiler Lösungsvektor ist
$$b_n = \begin{bmatrix} 0\\ \frac{1}{n}\\ \vdots\\ \frac{n-2}{n}\\ 1 \end{bmatrix}$$

3 Fehlerrechnung

Definition 4 (Fehlermaße) Wir definieren für eine Tupel $T = (A_1, A_2, ..., A_n)$ mit Störung $\tilde{T} = (A_+E_1, ..., A_n + E_n)$:

• das absolute Fehlermaß:

$$[[E]]_{abs} := \max ||E_i||$$

• das relative Fehlermaß:

$$[[E]]_{rel} := \max \frac{||E_i||}{||A_i||}$$

Definition 5 (Maschinenepsilon) Das Maschinen- ϵ is der relative Fehler, der bei Addition und Multiplikation von SKalaren auftritt. Er liegt für IEEE double-precision bei ca. 10^{-16}

Definition 6 (Kondition) Die Kondition einer Abbildung f im Punkt x ist definiert als:

$$\kappa(f,x) = \limsup_{y \to x} \frac{[[f(y) - f(x)]]}{||y - x||}$$

Man unterscheidet zwischen:

- gut konditionierten Problemen: $\kappa(f,x)$ O(1)
- schlecht konditionierten Problemen: $\kappa(f,x) >> 1$
- schlecht gestellten Problemen: $\kappa(f, x) = \infty$

Theorem 6 Die Kondition einer linearen Gleichung Ax = b hängt nur von A ab und ist:

$$\kappa(A) = ||A||||A^{-1}||$$

4 Ausgleichsrechnung

Definition 7 (Lineares Ausgleichsproblem) Sei $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ mit $m \leq n$. Gesucht ist $x \in \mathbb{R}^m$. Sodass

$$||Ax - b||_2$$

minimiert wird. Es wird im Generellen angenommen, dass Rang(A) = m.

Definition 8 (Normalengleichung) Gegeben ein Ausgleichsproblem A, b, nennt man:

$$A^T A x = A^T b$$

die Normalengleichung.

Theorem 7 (Lösung des Linearen Ausgleichproblems mittels Normalengleichung) Die Lösung der Normalengleichung ist das eindeutige gesuchte Minimum des Ausgleichsproblems.

Algorithm 7 Lösen des Ausgleichproblems mittels Normalengleichung

Require: Ausgleichsproblem $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$

 $L \leftarrow \text{Cholesky}(A^T A)$

Löse $LL^Tx=A^Tb$ durch Vorwärts und Rückwärtsssubsitution.

Die Stabilität des Algorithmus hängt von der Stabilität der Matrixmultiplikation A^TA ab. Falls $\kappa(A^TA)$ groß ist und ||Ax-b|| klein treten hier Stabilitätsprobleme auf. Um diesen entgegen zu wirken, kann man die Orthogonalisierungsmethode verwenden.

Theorem 8 (Aufwand der Lösungsmethoden) Der Aufwand beträgt:

- 1. Normalengleichung: $nm^2 + \frac{m^3}{3}$.
- 2. QR-Methode: $2nm^2 2\frac{m^3}{3}$

Algorithm 8 Lösen des Ausgleichproblems mittels QR-Methode

Require: Ausgleichsproblem $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$

Zerlege $A=Q\hat{R}$ mit $\hat{R}=\begin{bmatrix}R\\0\end{bmatrix}$ wobei $R\in\mathbb{R}^{m\times m}$ obere Dreiecksmatrix sei.

Löse $Rx = (Q^Tb)_1$ wobei $(.)_1$ die ersten m Elemente seien.

 $F\ddot{u}r\ n >> m$ ist also die QR-Methode doppelt so teuer wie der Ansatz der Normalengleichung.

Theorem 9 (Kondition der Normalengleichung) Sei $A \in \mathbb{R}^{n \times m}$ und R wie in der Zerlegung für die QR-Methode. Es gilt:

$$\kappa(A^T A) = \kappa(R)^2$$

5 Eigenvertapproximation

Eine Einfache Idee um einen einzelnen Eigenwert mit Eigenwert einer Matrix $A \in \mathbb{R}^{n \times n}$ zu bestimmen, ist die Vektoriteration. Diese beruht darauf, dass Eigenräume hoffentlich anziehende Fixpunkte sind.

Algorithm 9 Vektoriteration

Require: $A \in \mathbb{R}^{n \times n}$ und Startvektor $x^{(0)} \in \mathbb{R}^n$.

for $i = 1, 2, 3, \dots$ do $y^{(i)} \leftarrow Ax^{(i-1)}$ $\lambda^{(i-1)} \leftarrow (x^{(i-1)})^T y^{(i)}$ $x^{(i)} \leftarrow \frac{y^{(i)}}{||y^{(i)}||}$ end for

Theorem 10 (Konvergenz der Vektoriteration) Sei $A \in \mathbb{R}^{n \times n}$ mit $EW |\lambda_n| \leq ... \leq |\lambda_2| < |\lambda_1|$ und $EV(v_i)_{i \in [n]}$. Dann gilt:

$$|\lambda^{(i)} - \lambda_1| \le C_1(x^{(0)}) |\frac{\lambda_2}{\lambda_1}|^{2i}$$

$$||sign(\lambda_1)^i x^{(i)} - sign(\beta_1) v_1||_2 \le C_2(x^{(0)}) |\frac{\lambda_2}{\lambda_1}|^i$$

Wobei $\beta_1 := v_1^T x^{(0)}$ und C_1, C_2 Konstanten sind die vom Startwertabhängen

Durch diese Methode lässt sich nur ein einzelner Eigenvektor und auch nur der zum Betragsmäßig größten Eigenwert bestimmen. Um andere Eigenvektor zu berechnen, nutzen wir, dass der Betragsmäßig größte Eignewert von $(A-\mu I)^{-1}$ der Kerwehrt des nächsten Egenwerts an μ ist.

Algorithm 10 Inverse Vektoriteration

```
Require: A \in \mathbb{R}^{n \times n} und Startvektor x^{(0)} \in \mathbb{R}^n, sowie shift \mu \in \mathbb{R}.

for i = 1, 2, ... do
 (A - \mu I)\omega^{(i)} = x^{(i-1)}
 \eta \leftarrow \|\omega^{(i)}\|_2
 x^{(i)} \leftarrow \omega^{(i)}/\eta
 \rho \leftarrow x^{(i)} x^{(i-1)}/\eta
 \lambda^{(i)} \leftarrow \mu + \rho
end for
```

Der Aufwand hängt hier davon ab, wie oft der Shiftparameter μ neu berechnet wird, dann ist jedes Mal eine LU-Zerlegung mit $O(n^3)$ Schritten nötig. Ansonsten kostet jeder Schritt $O(n^2)$ Operation hauptsächlich für Vorwärts und Rückwärtsssubsitution.

Um alle Eigenwerte gleichzeitig zu bestimmen kann iterativ eine Schur-Zerlegung berechnet werden. Dies geschieht mit der QR-Iteration.

Algorithm 11 QR-Iteration ohne Shift

```
Require: A \in \mathbb{R}^{n \times n}

A_0 \leftarrow Q_0^T A Q_0 \text{ mit } Q \in U(n).

for i = 1, 2, 3, ... do

Bestimme Q_i R_i = A_{i-1}

A_i \leftarrow R_i Q_i

end for
```

Der Algorithmus beruht auf der Tatsache, dass $RQ \sim A$ also die gleichen EW wie A hat.

Theorem 11 (Konvergenz der QR-Iteration) Sei $A \in \mathbb{R}^n$ symmetrisch und mit $EW |\lambda_1| > |\lambda_2| > ... > |\lambda_m| > 0$. Sei $A = V\Lambda V^T$ diagonalisiert mit V orthogonal. Besitzt $(Q_0^T V)^{-1}$ eine normierte LU-Zerlegung, dann gilt:

```
1. \lim_{k\to\infty} |(Q_k)_{ij}| = \delta_{ij}

2. \lim_{k\to\infty} |(R_k)_{ij}| = \delta_{ij}|\lambda_i|

3. \lim_{k\to\infty} (A_k)_{ij} = \delta_{ij}\lambda_i
```

Der Beweis kann auf schwächere Bedingungen ausgweitet werden zum Beispiel sind mehrfache Eigenwerte auch erlaubt. Häufig kann die QR-Iteration auch auf nicht-symmetrische Matrizen angewendet werden, wenn sie in diesem Fall konvergiert dann allerdings nicht mehr gegen eine Diagonal-, sondern obere Dreiecksmatrix.

Der erste Schritt die Transformation mit Q_0 transformiert die Matrix in eine obere Hessenberg Matrix. Für eine Obere Hessenberg-Matrix ist die QR-Zerlegung in $O(n^2)$ berechenbar. Da auch ein einzelner Iterationschritt die Hessenberg Form erhält beschleunigt dies das Verfahren enorm.

Algorithm 12 Berechnung von Q_0

Weiterhin kann ein Shiftparameter eingeführt werden um das Verfahren zu beschleunigen idealerweise liegt dieser Shiftparameter möglichst nah an einem Eigenwert der Matrix A.

Algorithm 13 QR-Iteration mit Shift

```
Require: A \in \overline{\mathbb{R}^{n \times n}}
   A_0 \leftarrow Q_0^T A Q_0 \text{ mit } Q \in U(n).
   for i = 1, 2, 3, ... do
        \mu_i \leftarrow \text{Shift}(A_i)
        Bestimme Q_i R_i = A_{i-1} - \mu_i I
         A_i \leftarrow R_i Q_i + \mu_i I
   end for
```

Dabei können verschiedene Shiftstrategien angewandt werden:

- 1. Rayleighquotienten-Shift: $\mu_i := (A_i)_{n,n}$
- 2. Wilikinson-Shift: Bestimme die Eigenwerte $\hat{\lambda}_1, \hat{\lambda}_2$ von $\begin{bmatrix} (A_i)_{n-1,n-1} & (A_i)_{n-1,n} \\ (A_i)_{n,n-1} & (A_i)_{n,n} \end{bmatrix}$. Wähle $\mu_i = \arg\max_{\mu \in \{\hat{\lambda}_1, \hat{\lambda}_2\}} \|\mu - (A_i)_{n,n}\|$
- 3. Random-Shift: Wählre zufällig einen Shift aus.

Der Rayleighshift produziert bei $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ als shift 0 und landet somit in einem Deadend. Ähnlich schlägt der WIlkinson-Shift bei $A=\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}$ fehl.

In diesen Situationen kommt der Random-Shift zum Einsatz.

Weiterhin kann das Verfahren beschleunigt werden, indem man, sobald $|(A_i)_{n,n-1}| \leq$ TOL nur noch mit $(A_i)_{1:m-1,1:m-1}$ weiterrechnet. Diese Strategie heißt **Defla-**

Um aus den berechneten Eigenwerten Eigenvektoren zu erhalten, kann man für

wenige Eigenwerte die Inverse Vektoriteration mit Shift verwenden. Alternativ lassen sich die aus der QR-Zerlegung berechneten Q_i verwenden.

Theorem 12 (Eigenvektoren einer oberen Dreiecksmatrix) $Sei R \in \mathbb{R}^n$ obere Dreiecksmatrix. Definiere:

$$R^{(i)} := (R)_{1:i-1,1:i-1}$$

$$\omega := (R)_{1:i-1,i}$$

Dann hat der i-te Eigenvektor von R die Form:

$$v_i = \begin{pmatrix} (R^{(i)})^{-1}\omega \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Theorem 13 (Eigenvektoren der QR-Zerlegung) Seien $(Q_i)_{i \in [k]}$ die berechneten Q_i einer QR-Iteration auf Amit Q_0 der Umformungsmatrix für die Hessenberg-Form. Dann ist

$$A_k = Q_k^T ... Q_1^T Q_0^T A Q_0 Q_1 ... Q_k$$

Wir definieren $\hat{Q}_k := Q_0Q_1...Q_k$. Bei genügend hohem k sollte A_k fast gleich einer oberen Dreiecksmatrix \hat{R}_k sein. Deren Eigenvektoren lassen sich berechnen nach dem obigen Satz. Dann sind die $\hat{Q}_k v_i$ die Eigenvektoren von A.

Theorem 14 (Kondition des Eigenwertproblems für beliebige Matrizen) Sei $A \in \mathbb{R}^{n \times n}$. Dann exisitiert eine Konstante C_A sodass für jede Störung ΔA :

$$\forall \mu \in \sigma(A + \Delta A) \exists \lambda_{\mu} \in \sigma(A) : |\mu - \lambda_{\mu}| \le C_A \max\{\|\Delta A\|_2, \|\Delta A\|_2^{\frac{1}{n}}\}$$

Theorem 15 (Bauer-Fike, Kondition des Eigenwertproblems für diagonalisierbare Matrizen) Sei $A \in \mathbb{R}^{n \times n}$ reell diagonalisierbar durch $T^{-1}DT$, dann existiert für jede Störung ΔA und jedes $\mu \in \sigma(A + \Delta A)$ ein $\lambda_{\mu} \in \sigma(A)$ mit

$$|\mu - \lambda_m u| \le ||T||_p ||T^{-1}||_p ||\Delta A||_p$$

Für alle $p \in [0, \infty]$.

6 Interpolation

Definition 9 (Interpolation) Gegeben Stützpunkte $(x_1, f_1), ..., (x_n, f_n)$ finde f in einer bestimmten Klasse von Funktionen, sodass $f(x_i) = f_i \ \forall i$

Die bekanntesten Formen von Interpolation sind:

- 1. Polynominterpolation: $f \in \mathbb{P}^n$
- 2. Spline-Interpolation: f ist stückweise polynomiell und gesamt C^l .
- 3. Rationale Interpolation: $f \in R_{k,l} \{ \frac{\sum_{i=0}^{k} a_i x^i}{\sum_{i=0}^{l} b_i x^i} a_i, b_j \in \mathbb{R} \}$

4. Trigonometrische Interpolation: $f \in T_n := \{b_0 + \sum_{k=1}^n a_k \sin(2\pi kx) + \sum_{k=1}^n b_k \sin(2\pi kx)\}$

Definition 10 (Lagrange-Polynom) Zu den n+1 verschiedenen Stützstellen $x_0, ..., x_n$ sind die Lagrange-Polynome von Grad n definiert als:

$$L_i(x) := \prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k}$$

Theorem 16 (Polynominterpolation) Das Interpolationspolynom π_n zu den Stützstellen $x_0, ..., x_n$ ist eindeutig definiert als:

$$\pi_n(x) = \sum_{i=0}^n f_i L_i(x)$$

Theorem 17 Die Lagrange Polynome erfüllen die Partition der 1:

$$\sum_{i=0}^{n} L_i(x) = 1$$

Definition 11 (Vandermonde-Matrix) Die Matrix $V_n \in \mathbb{R}^{n+1 \times n+1}$ mit Einträgen:

$$(V_n)_{i,j} = x_{i-1}^{j-1}$$

Heißt Vandermonde-Matrix zu den Stützstellen $x_0,...,x_n$.

Theorem 18 Es gilt:

$$\det V_n = \prod_{0 \le i < j \le n} (x_j - x_i)$$

Theorem 19 Das Interpolationspolynom ist auch durch $\sum_{k=0}^{n} a_k x^k$ gegeben wobei $\begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} =: a = V_n \begin{pmatrix} f_0 \\ \vdots \\ f \end{pmatrix}$

Definition 12 (Knotenpolynom) Zu den n+1 Stützstellen $x_0, ..., x_n$ definiert man das Knotenpolynom

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$

Theorem 20 Falls der Interpoland f aus C^{n+1} kommt ist der Interpolationsfehler beschränkt durch:

$$||f - \pi_n|| \le \frac{||\omega_{n+1}||}{(n+1)!} ||f^{(n+1)}||$$

Theorem 21 Es gilt für jede beliebige Wahl von Punkten:

$$\|\omega\| > 2^{-n}$$

Figure 2: Interpolations Fehler für π_n

Bei äquidistanten Stützstellen treten beim Interpolieren von $f(x) = \frac{1}{1+25x^2}$ große Fehler in den Randbereichen auf. Generell lässt sich keine generell optimale Knotenfolge finden. Allerdings kann $\|\omega_n\|$ minimiert werden. Dies geschieht durch die Chebychev-Punkte:

Definition 13 Die Chebychev-Polynome sind definiert als:

$$T_n(X) := \cos(n \arccos x)$$

Sie sind orthogonal bezüglich der Gewichtsfunktion $\frac{1}{\sqrt{1-x^2}}$. Sie besitzen die Nullstellen:

$$x_i^{(n+1)} = \cos(\frac{2i+1}{2n+2}\pi)$$

Diese werden auch als Chebychev-Punkte bezeichnet.

Theorem 22 (Dreiterm-Rekursion der Chebychev-Polynome) $T_0=1, T_1(x), T_n(x)=2xT_{n-1}(x)-T_{n-2}(x)$

Theorem 23 Für das Knotenpolynom $\omega_{n+1,cheb}$ zu den Chebychevpunkten gilt:

$$\|\omega_{n+1,cheb}\| = 2^{-n}$$

Die theoretischen Überlegungen zur Bestimmung des Interpolationspolynom sind numerisch nicht stabil.

Algorithm 14 Auswertungschema von Aitken-Neville

```
Require: n+1 Stützstellen (x_0, f_0), ..., (x_n, f_n), Auswertungsstelle y.

Setze P_i(y) \leftarrow f_i für i=0,...,n

for i=1,...,n do

for j=0,...,n-i do

P_{j...j+i}(y) \leftarrow \frac{(y-x_j)P_{j+1...j+i}(y)-(y-x_{j+i})P_{j...j+i-1}(y)}{x_{j+i}-x_j}
end for

end for
```

Figure 3: Darstellung des Aitken-Neville-Schema Aitken-Neville-Schema für n=2, n=3, n=4 und n=5:

	k = 0	1	2	3	4	5
x_0	$f_0 = P_0(x)$	$P_{\alpha_1}(x)$				
x_1	$f_1 = P_1(x)$	$P_{-}(x)$	$P_{012}(x)$	D = (m)		
x_2	$f_2 = P_2(x)$	$P_{12}(x)$	$P_{123}(x)$	$P_{0123}(x)$	$P_{01234}(x)$	D ()
x_3	$f_3 = P_3(x)$	$P_{23}(x)$	$P_{234}(x)$	$P_{1234}(x)$	$P_{12345}(x)$	$P_{012345}(x)$
x_4	$f_4 = P_4(x)$	$P_{34}(x)$	$P_{345}(x)$	$P_{2345}(x)$		
x_5	$f_0 = P_0(x)$ $f_1 = P_1(x)$ $f_2 = P_2(x)$ $f_3 = P_3(x)$ $f_4 = P_4(x)$ $f_5 = P_5(x)$	$P_{45}(x)$				

Theorem 24 (Aufwand des Aitken-Neville-Verfahren) Für l verschiedene Funktionen, m Auswertungsstellen und n + 1 Stützstellen beträgt der Aufwand für das Aitken-Neville-Schema $O(lmn^2)$.

Das Aitken-Neville Schema ist stabil aber langsam, wenn mehrere Stellen ausgwertet werden sollen. Um dies zu beschleunigen kann das

Definition 14 (Newton-Darstellung eines Polynoms) Die Darstellung eines Polynoms in der Form:

$$\pi_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0)\dots(x - x_{n-1})$$

Algorithm 15 Newton'sche Dividierte Differenzen

```
Require: n+1 Stützstellen (x_0, f_0), ..., (x_n, f_n)

Setze f[x_i] := f_i für i = 0, ..., n

for i = 1, ..., n do

for j = 0, ..., n-i do

f[x_j...x_{j+i}] \leftarrow \frac{f[x_{j+1}...x_{n-i}] - f[x_j...x_{n-i-1}]}{x_{j+i} - x_j}
end for

end for

c_i \leftarrow f[x_0...f_i]
```

Algorithm 16 Horner-Schema

Require: Polynom in Newton-Darstellung mit Koeffizienten $c_0, ..., c_n$, Auswertungsstelle y.

$$\begin{aligned} p \leftarrow c_n \\ \mathbf{for} \ k = n-1, ..., 0 \ \mathbf{do} \\ p \leftarrow p(y-x_k) + c_k \\ \mathbf{end} \ \mathbf{for} \end{aligned}$$

Theorem 25 (Aufwand des Horner Schema) Für l verschiedene Funktionen, m Auswertungsstellen und n+1 Stützstellen beträgt der Aufwand für das Aitken-Neville-Schema $O(l(mn+n^2))$.

Allerdings ist das Horner-Schema **nicht stabil** für große n.