TRIGONOMETRY

Chapter 01

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

EL NÚMERO Π

Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería.- El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e.

¡ QUE BELLEZA!

 \mathbf{Z} Sabes cuándo es el día del número π ?.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

TRIÁNGULO RECTÁNGULO

Donde:

- a, b: medidas de los catetos
- c: medida de la hipotenusa
- α, β: medida de los ángulos agudos.

Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

¿ QUÉ ES UNA RAZÓN TRIGONOMÉTRICA?

Es el cociente que se obtiene al dividir las medidas de dos lados de un triángulo rectángulo con respecto a uno de sus ángulos agudos.

DEFINICIÓN DE LAS RT DE UN ÁNGULO AGUDO

seno

$$\operatorname{sen} \alpha = \frac{CO}{H}$$

coseno

$$\cos \alpha = \frac{CA}{H}$$

tangente

$$\tan \alpha = \frac{CO}{CA}$$

cosecante

$$\csc \alpha = \frac{H}{CO}$$

secante

$$\sec \alpha = \frac{H}{CA}$$

cotangente

$$\cot \alpha = \frac{CA}{CO}$$

TRIÁNGULOS RECTÁNGULOS NOTABLES

TRIGONOMETRÍA SACO OLIVEROS

Luego aplicamos las definiciones de las razones trigonométricas del ángulo agudo.

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

csc60° =
$$\frac{2k}{k\sqrt{3}}$$
 = $\frac{2\sqrt{3}}{3}$

αRT	sen	cos	tan	cot	sec	CSC
30 °	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	3 5	4 5	3 4	4 3	5 4	5 3
53 °	4 5	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	5 4

Si un ángulo agudo α cumple que tan α = 0, 333...., calcule $E = \sqrt{10}$ sec $\alpha + \frac{2}{3}$

RESOLUCIÓN

Dato:

$$\tan \alpha = 0.3333... = \frac{3}{9} = \frac{1}{\frac{3}{3}} = \frac{\text{CO}}{\frac{\text{CA}}{3}}$$

Calculamos E:

$$E = \sqrt{10} \left(\frac{\sqrt{10}}{3} \right) + \frac{2}{3}$$

$$E = \frac{10}{3} + \frac{2}{3}$$

José adquiere como herencia un terreno en forma de triángulo rectángulo; se sabe que el perímetro de dicho terreno mide 180 m y el seno de uno de sus ángulos agudos es 0,6.- Calcule el área de dicho terreno.

RESOLUCIÓN

Dato:
$$3k + 4k + 5k = 180 \text{ m}$$

 $12k = 180 \text{ m}$ $k = 15 \text{ m}$

Calculamos el área:

$$S = \frac{(4K)(3K)}{2} = 6(15m)(15m)$$

$$\therefore$$
 S = 1350 m²

En un triángulo rectángulo ABC, recto en B; sobre el cateto \overline{AB} , se toma un punto D tal que BD = 3 AD.

Si además m \angle CAD = m \angle BCD = θ ; calcule tan θ .

RESOLUCIÓN

Graficamos según datos:

$$\triangle$$
 ABC: $\tan\theta = \frac{a}{4k}$

$$\triangle$$
 CBD: $tan\theta = \frac{3K}{a}$

$$\Rightarrow \tan^2\theta = \frac{a}{4k} \cdot \frac{3k}{a}$$

$$\tan^2\theta = \frac{3}{4}$$

$$\therefore \tan\theta = \frac{\sqrt{3}}{2}$$

En la casa del señor Carlos se realizó la medida de la escalera y se obtuvo que 3(a + b) = 4c . Siendo α el ángulo de inclinación de la escalera, ¿cuál es el valor de E = sen α . cos α ?

RESOLUCIÓN

Teorema de Pitágoras : $c^2 = a^2 + b^2$

Dato:
$$[3(a+b)=4c]^2$$

$$9(a^2 + b^2 + 2ab) = 16 c^2$$

$$9c^2 + 18ab = 16c^2$$

$$18ab = 7c^2$$

Calculamos E:

$$E = sen\alpha . cos\alpha = \frac{b}{c} . \frac{a}{c} = \frac{ab}{c^2}$$

$$\therefore E = \frac{7}{18}$$

Del gráfico, calcule la longitud del lado \overline{BD} .

RESOLUCIÓN

Prolongamos \overline{AB} y \overline{CD} , los cuales se cortan en P

Dos barras metálicas se encuentran apoyadas en su parte superior, tal como se muestra en la figura.- Si el ángulo que forman las barras en su punto de apoyo es de 143° , ¿cuál es el valor de $E = 13 \cot ?$

RESOLUCIÓN

En el ABHC: Notable de 37° y 53°

$$BC = 5k = 65 \text{ cm} \implies k = 13 \text{ cm}$$

Luego:

$$HC = 3k = 3(13 \text{ cm}) = 39 \text{ cm}$$

$$HB = 4k = 4(13 \text{ cm}) = 52 \text{ cm}$$

Calculamos E:
$$E = 13 \left(\frac{90 \text{ cm}}{39 \text{ cm}} \right)$$

$$\therefore E = 30$$

En un triángulo rectángulo ABC, recto en C, se cumple que $3(cscA + 1) = 4cot(\frac{B}{2})$. Calcule E = 25 senA. senB.

Dato:
$$3(\csc A + 1) = 4 \cot(\frac{B}{2})$$

 $3(\frac{C}{a} + 1) = 4(\frac{C + a}{b})$
 $3(\frac{C + a}{a}) = 4(\frac{C + a}{b})$ $\frac{b}{a} = \frac{4}{3}$

Calculamos E:

$$\mathsf{E} = 25 \left(\frac{3}{5}\right) \left(\frac{4}{5}\right)$$

