Data Science UW Methods for Data Analysis

Introduction and Data Exploration Lecture 1 Nick McClure

Course Purpose

- > This course isn't designed to make you an expert
- > This course is designed to point you in the right direction
- > Course Objectives:
 - Statistical tools for data exploration
 - The use of R to apply these tools to real data
 - Using inferential statistics to interrogate data
 - Testing and experimental design
 - Bayesian and classical statistics
- > See syllabus for more information:
 - http://nfmcclure.github.io/DataScience350/

Course Requirements and Grading

This course will be graded by attendance, homework, and an individual project.

- > Attendance: You MUST attend at least 8 out of 10 classes. This is non-negotiable, a UW requirement.
- > Homework must be completed by the start of the next class. (Assigned weeks 1-8).
 - Returned as a 0,1, or 2.
 - > 0 = Not done or a major part wrong/missing.
 - > 1 = Completed, but missing or got wrong 1 or 2 parts.
 - > 2 = Completed with at most minor issues. Demonstrates full understanding of subject.
- > Individual Project: Due at the start of the last class.
 - Counts as 8 points.

Course Requirements and Grading

There is a total of 24 possible points. (16 pts for hmk + 8 project)

- > Must get 18 total points to pass.
- > 4 homework assignments must be made in a production level script (every other one = 2,3,5,7).
- > 4 homework assignments are regular script writing (every other one = 1,4,6,8).
- > The individual project must be production level code.

Office Hours and Contact Information

- > List of ways to contact me:
 - nickmc@uw.edu
- > When I'm usually available:
 - Off/on for simple things during work. (M-F 8am-5pm PST)
 - Mon-Wed 7pm-10pm.
 - Sunday various afternoon/evening times.

Emergency contact: 402-980-3192

Review

PYTHON

C++ UNIX SHELL

ASSEMBLY

LATEX

R Review

- > R resources:
 - R page:
 - > http://www.r-project.org/other-docs.html
 - Stackoverflow:
 - > http://www.stackoverflow.com
 - 'Little' R intro:
 - > http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
 - Quick R:
 - > http://statmethods.net/
 - There are many tutorials available online, e.g.,
 - > http://cyclismo.org/tutorial/R/
 - Notes from a two day course at UW:
 - > http://faculty.washington.edu/tlumley/Rcourse/
 - Google's Style Guide:
 - http://google-styleguide.googlecode.com/svn/trunk/google-i style.html

Statistics Review

- > Familiar Concepts:
 - Discrete vs. Continuous Distributions
 - Probability
 - y = mx + b vs $\bar{Y} = \mathbf{M} \cdot \bar{X} + \mathbf{B}$
- > This area is the emphasis of the course.

SQL Review

- > SQL (to know):
 - Create tables
 - Drop tables
 - Joins (Inner, outer, right, left)
 - Temp tables
 - Coalesce, Cast, Case

Counting Review

- > Factorials
 - Count # ways to order N things = N!
- > Permutations
 - Count # of ways to order R things from N things = N!/(N-R)!
 - Ordering matters
 - -P(N,R)
- > Combinations
 - Count # of ways to group R things from N things = N!/(R!(N-R!))
 - Ordering doesn't matter
 - C(N,R) or $\binom{N}{R}$
- > We will talk about this in depth next class.

- > Discrete Distribution Properties
 - Sum of all events must equal 1.
 - Probability of event equal to value of distribution at point.
 - No Negative values or values greater than 1.

> Bernoulli (1 event, e.g.: coin flip)

$$P(x) = \begin{cases} p & \text{if } x = 1\\ (1-p) & \text{if } x = 0 \end{cases}$$

$$P(x) = p^{x}(1-p)^{(1-x)} \quad x \in \{0,1\}$$

- Mean = p
- Variance = p(1-p)

- > Binomial (Multiple Bernoulli's Events)
 - Multiple Independent events = Product of Bernoulli Probabilities

$$P(x|N,p) = {N \choose x} p^x (1-p)^{(N-x)}$$

- Mean = np
- Variance = np(1-p)

Note: for larger n, we approximate this by a normal distribution.

> Poisson (Count of number of events in a time span)

$$P(x|\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$$

- Mean = λ
- Variance = λ

Interpret as the rate of occurrence of an event is equal to lambda in a finite period of time.

- > Continuous Distribution Properties
 - Area under the curve must be equal to 1.
 - Probability of event equal to AREA under curve.
 - No negative values.
 - Probability of a single, exact value is 0.

> Uniform (flat, bounded)

$$P(x) = \begin{cases} \frac{1}{(b-a)} & \text{if } a \le x \le b \\ 0 & \text{if } x < a \text{ or } x > b \end{cases}$$

- > Very useful for parameter priors. (future discussion)
 - Mean=(a+b)/2
 - Variance=(1/12)(b-a)^2

- > Normal (Gaussian) distribution
 - Most common and occurs naturally.
 - Defined by a mean and variance only. (standard = N(0,1))

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Has very nice properties.
- Tests for normality are very important.

- > Student's T (normal for small samples)
 - Important for hypothesis testing smaller sample sizes.
 - Used for:
 - > Testing of mean value when st. dev. is unknown.
 - > Testing difference between two distribution means.
 - Looks very similar to the normal distribution.

Data Exploration (Descriptive Statistics)

- > Purpose: To gain a clear understanding of your data.
 - How large is it?
 - What columns are of interest?
 - Missing data?
 - Outliers?

- > str(): structure of the data frame
- > summary(): summary of each of the columns
- > head() / tail(): top / bottom of data frame
- > table(): frequency table

> IQR(): inner quartile range (Q3 – Q1)

- > quantile(): quantiles of numerical vectors
 - Quantiles are inverse values of the CDF (cumulative distribution function).
 - Standard Normal: (shown in figure)
 - > Quantile(0.5) = 0, means at x=0, 50% of the distribution lies to the left. (This is also the median)
 - > Quantile(0.95) = 1.65

- > Relationships:
 - cov(): covariances

$$cov(x, y) = E((x - \mu_x)(y - \mu_y))$$

- Interpretation: Expected value of the differences between x and y and their corresponding mean.
- E.g. if x is above it's mean when y is also above it's mean, then they will have a high covariance.
- Highly interpretable, but not bounded.

> Relationships:

– cor(): correlations (pearsons)

$$cor(x,y) = \frac{E((x - \mu_x)(y - \mu_y))}{\sigma_x \sigma_y}$$

- Bounded between 0 and 1.
- Not as interpretable.

Histogram of rnorm(1000)

> Histograms:

Base: ggplot2:

hist() + geom_histogram()

> Boxplots:

Zestimate Error Distribution by Price Quantile

Base: boxplot()

ggplot2:
+ geom_boxplot()

> Densities/CDFs:

density.default(x = runif(100))

Base:
plot(density())
plot(ecdf())

ggplot2:

+ geom_density()

+ stat_ecdf()

> Scatterplots

Base: pairs()

ggplot2:
ggpairs()

Distribution Transformations

- > The purpose of transforming a variable is to make it easier to distinguish between values.
 - Most commonly we are looking to transform a distribution to be normal.
- > Common Transformations
 - Log-based:
 - > Log(x), log(x+1), log(x-min(x) + 1)
 - N-th Root based:
 - $> X^{(1/n)}$
 - Any combination you can think of (remembering math rules).
- > We will cover normality tests in a later class.

Simpsons Paradox

- > Slicing up data in different ways can create different results.
- > http://vudlab.com/simpsons/

Department	#male applicants	#female applicants	%male admit	%female admit
A	825	108	62	82
В	560	25	63	68
C	325	593	37	34
D	417	375	33	54

The explanation is that women applied in larger numbers to departments that had lower admission rates.

Production Level Scripts

- > Logging
- > Functionalize everything possible
- > interactive()
- > One Unit Test
- > R-example: Weather Scraping R script

Assignment

- > Go to:
 - Vote for extra topics (time permitting)
 - https://www.surveymonkey.com/r/SK6VX5T
- > Complete Homework 1:
 - Explore 'JitteredHeadCount.csv', a data set from Caesar's Entertainment that has falsified/jittered table headcounts.
 - Write <u>script level</u> R program that shows/illustrates 3 key takeaways of your choosing from exploring the data.
 - You should submit:
 - > ONE R-script.
 - > One word document with 3 key points. (example next page).

Example Takeaway

> The aggregate table headcounts on the weekends are X% higher than non-weekends (figure 1). In fact, the game that has the highest difference between average highs and average low days is Gamecode AA with a difference of x.xx heads/table.

