

Neural Input Method Engine

CSE 481 NLP - Team Very Natural : Jingchen Hu, Jianyang Zhang, Qingda Wen

Background & Objectives

- An **Input method engine** facilitates the input of non-english characters into digital devices.
- A Chinese Pinyin IME "translates" from Pinyin tokens (pronunciation symbols) to Chinese characters.
- Traditional Input Method Engine:
- n-gram models, no long-term memory.
- Our Goal: more contextual information, more accurate predictions, less keystrokes, faster typing.

Methodology

- Push the fuzzy match logic to the dataset.
- Use **encoder-decoder** with beam search to generate the ranked list of predictions per input length.
- Merge the results of different lengths as the final suggestions list.
- Query the same model when the user makes new selections.
- Use Google's Seq2Seq library on top of Tensorflow.

Datasets

Extract tuples from corpora and add noise to emulate user input.
 Use sliding window on word boundary.

Chrome Extension

- Allows users to input on any webpage.
- Detects keystrokes, buffers the current pinyin input, and queries the backend as the user types.

Seq2Seq with Attention

- Input: concatenation of Chinese characters (previous context) and pinyin tokens (current user input)
- Output: predicted Chinese characters based on previous context and pinyin tokens

Model Variants

Multi-encoder

Uses two separate encoders and map the output of encoders to decoder using a bridging layer.

Separate Attention

Separate softmax on attention scores, parameterized / direct concatenation:

 $h = \tanh(W[h_c; h_p] + b)$

 $[k * softmax(att_{context}); (1 - k) * softmax(att_{pinyin})]$ $[softmax(att_{context}); softmax(att_{pinyin})]$

Joint attention

• Dual attention (direct concat):

Pooling encoder

Averages the embeddings of k consecutive words.

Source embedding = word embedding + position embedding

Deep CNN encoder

Two stacked convolutional networks for encoding:

- Encoder output used for attention
- Conditional input used by decoder

Beam Search Result Scoring

Rank the predictions using a scoring function - the weighted sum of bigram score of each token and its log-probability.

Experiments

Prediction accuracy for different input lengths

*Exact match: correct prediction ranked first in the returned list.

*Top Ten: correct prediction appeared in top ten of the returned list.

Dataset noise level comparison

Effectiveness of context

Conclusion

- All of our encoder-decoder models achieve similar accuracies.
- Significantly better than the baseline bigram model.
- The default attentional RNN Seq2Seq model performs the best.
- The models learn Pinyin-to-character mapping pretty well.
- Context does help, but not as much as we expected.

Work Cited:

- "Multi-Source Neural Translation", Zoph, Barret, and Kevin Knight. (2016).
- "A Convolutional Encoder Model for Neural Machine Translation", Gehring, Jonas, et al.(2016)
- "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", Wu, Yonghui, et al.(2016).
- D. Britz, A. Goldie, T. Luong, and Q. Le. Massive Exploration of Neural Machine Translation Architectures. ArXiv e-prints, March 2017.