Programing Assignment #7

CSCE 625 - Artificial Intelligence

Spring 2015

Name: Xiaoshu Zhang

Email: kallen5208@gmail.com

1. 1. Run and compile the code

1.1.

The file I turned in are "DPLL.java", "KBGenerator.java", "KBSeed.txt", "KB.txt", "abstractBooleanProblem.txt".

12

Compile with command "javac DPLL.java", then run with command "java DPLL".

Choose DPLL mode, 1 or 2 or 3 or 4. Then enter the file name of knowledge base, "abstractBooleanProblem.txt", shown in Figure 1. It will generate a transcript named "transcript abstractBooleanProblem.txt 4.txt".

```
C: Users 001 Desktop AI_hw? javac DPLL.java

C: Users 001 Desktop AI_hw? java DPLL
Choose DPLL mode.

1 backtracking alone
2 backtracking with Unit Clause heuristic
3 backtracking with Pure heuristic
4 backtracking with Unit and Pure heuristics

Enter the file name of knowledge base abstractBooleanProblem.txt

node searched=16
solution:
a
b
c
d
k
1
n
o
```

Figure 1

1.3.

Compile with command "javac KBGenerator.java", then run with command "java KBGenerator". It will use "KBSeed.txt" to generate "KB.txt", the knowledge base for Farmer-Fox-Chicken-Grain problem.

Run with command "java DPLL". Choose DPLL mode, 1 or 2 or 3 or 4. Then enter the file name of knowledge base, "KB.txt", shown in Figure 2. It will generate a transcript named "transcript_KB.txt_4.txt".

```
C:\Users\001\Desktop\AI_hw7>javac KBGenerator.java
 C: Wsers 1001 Desktop AI_hw7 java KBGenerator
C: Wsers VOI Desktop AI_hw7 java DPLL Choose DPLL mode.
 1 backtracking alone
 2 backtracking with Unit Clause heuristic
3 backtracking with Pure heuristic
4 backtracking with Unit and Pure heuristics
4
Enter the file name of knowledge base KB.txt node searched=253
 solution:
 TØ_ChL
TØ_FaL
 TØ_F×L
TØ_GrL
TØ_mv_Ch_LR
T1_ChR
 T1_FaR
T1_FxL
 T1_GrL
T1_mv_No_RL
 T2_ChR
T2_FaL
 T2_F×L
T2_GrL
T2_mv_Fx_LR
T3_ChR
 T3_FaR
T3_FxR
 T3_GrL
T3_mv_Ch_RL
T4_ChL
T4_FaL
T4_FxR
T4_GrL
 T4_mv_Gr_LR
T5_ChL
 T5_FaR
T5_FxR
T5_GrR
 T5_mv_No_RL
 T6_ChL
T6_FaL
 T6_FxR
T6_GrR
 T6_mv_Ch_LR
T7_ChR
 T7_FaR
T7_FxR
 T7_GrR
```

Figure 2

2. Performance

Table 1 Performance

DPLL mode	Abstract Bool	lean Farmer-Fox-Chicken-
	Problem	Grain problem
backtracking alone	56	1826
backtracking with Unit Clause heuristic	34	249
backtracking with Pure heuristic	16	1532
backtracking with Unit and Pure heuristics	16	253

In Abstract Boolean Problem, when used separately, both Unit and Pure heuristic can increase the search efficiency, and Pure heuristic is more effective.

In Farmer-Fox-Chicken-Grain problem, when used separately, both Unit and Pure heuristic

can increase the search efficiency, and Unit heuristic is more effective.
To sum up, in general cases both Unit and Pure heuristic can increase the search efficiency
However, their impacts may be different, depending on the characteristic of the knowledge base
used.

There are appendixes in the next pages. ------

Appendix A: Knowledge base for Farmer-Fox-Chicken-Grain

1.1. States. Each object should have a unique location in a given time point.

$$T0_FaL \Longleftrightarrow -T0_FaR$$
 $T0_FxL \Longleftrightarrow -T0_FxR$
 $T0_ChL \Longleftrightarrow -T0_ChR$
 $T0_GrL \Longleftrightarrow -T0_GrR$

- 1.2. Actions.
- (1). Effect axioms

$$T0_mv_Fx_LR \Rightarrow T0_FaL \land T0_FxL \land T1_FaR \land T1_FxR$$
 $T0_mv_Fx_RL \Rightarrow T0_FaR \land T0_FxR \land T1_FaL \land T1_FxL$
 $T0_mv_Ch_LR \Rightarrow T0_FaL \land T0_ChL \land T1_FaR \land T1_ChR$
 $T0_mv_Ch_RL \Rightarrow T0_FaR \land T0_ChR \land T1_FaL \land T1_ChL$
 $T0_mv_Gr_LR \Rightarrow T0_FaL \land T0_GrL \land T1_FaR \land T1_GrR$
 $T0_mv_Gr_RL \Rightarrow T0_FaR \land T0_GrR \land T1_FaL \land T1_GrL$
 $T0_mv_No_LR \Rightarrow T0_FaL \land T1_FaR$
 $T0_mv_No_LR \Rightarrow T0_FaL \land T1_FaR$
 $T0_mv_No_LR \Rightarrow T0_FaL \land T1_FaL$

(2). At time *i*, there should be at least one action:

$$T0_mv_Fx_LR \lor T0_mv_Fx_RL \lor T0_mv_Ch_LR \lor T0_mv_Ch_RL$$
 $\lor T0_mv_Gr_LR \lor T0_mv_Gr_RL \lor T0_mv_No_LR \lor T0_mv_No_RL$

(3). At time *i*, there should be at most one action

There are too many clauses to write here.

(4). Successor-state axioms

$$\begin{split} T1_FxL &<=> T0_mv_Fx_RL \lor (T0_FxL \land -T0_mv_Fx_LR) \\ T1_FxR &<=> T0_mv_Fx_LR \lor (T0_FxR \land -T0_mv_Fx_RL) \\ T1_ChL &<=> T0_mv_Ch_RL \lor (T0_ChL \land -T0_mv_Ch_LR) \\ T1_ChR &<=> T0_mv_Ch_LR \lor (T0_ChR \land -T0_mv_Ch_RL) \\ T1_GrL &<=> T0_mv_Gr_RL \lor (T0_GrL \land -T0_mv_Gr_LR) \\ T1_GrR &<=> T0_mv_Gr_LR \lor (T0_GrR \land -T0_mv_Gr_RL) \\ T0_FaL &<=> -T1_FaL \end{split}$$

1.3. Eat relations. If the fox and the chicken stay together, they should be with the farmer. The same with the chicken and the grain.

$$T0_FxL \wedge T0_ChL \Longrightarrow T0_FaL$$

 $T0_FxR \wedge T0_ChR \Longrightarrow T0_FaR$
 $T0_GrL \wedge T0_ChL \Longrightarrow T0_FaL$
 $T0_GrR \wedge T0_ChR \Longrightarrow T0_FaR$

1.4 Facts.

 $T0_ChL$

TO_GrL

1.5. Goal.

T7_FaR

T7_FxR

T7_ChR

T7_GrR