TFY4115 Fysikk (MTELSYS/MTTK/MTNANO) Løsningsforslag for øving 12

Oppgave 1.

Varmetransporten i gran og glassvatt følger Fouriers varmeledningslikning (dT/dx < 0): $i = -\kappa dT/dx$.

For ei plate med tykkelse b og temperaturforskjell ΔT mellom platas to sider (alle størrelser positive):

$$j = \frac{\kappa}{b} \Delta T.$$

Varmetransport ved overgangen luft/panel følger

$$i = \alpha \Delta T$$
.

Disse likninger er helt analoge Ohms lov for likestrøm, med ΔT i rollen som elektrisk spenning, j som elektrisk strøm, og henholdsvis b/κ og $1/\alpha$ i rollen som elektrisk motstand. En lagdelt vegg er helt analog en seriekopling av elektriske motstander.

a. Varmestrømtettheten må være den samme for alle lag (ellers ville interne temperaturer endres over tid). For å beskrive varmetransporten over alle lag trenger vi i tillegg til temperaturene T_i, T_2, T_3 og T_y , også temperaturen på overflate av innerpanel og ytterpanel, som vi naturlig kaller T_1 og T_4 (se figur). De inngår i likn. (1) og (5) nedenfor.

b.

$$j = \alpha_{\text{inne}} \cdot (T_{i} - T_{1}) \tag{1}$$

$$j = \kappa_{\rm g}/b_1 \cdot (T_1 - T_2) \tag{2}$$

$$j = \kappa_{\rm s}/b_2 \cdot (T_2 - T_3) \tag{3}$$

$$j = \kappa_{g}/b_{3} \cdot (T_{3} - T_{4}) \tag{4}$$

$$j = \alpha_{\text{ute}} \cdot (T_4 - T_{\text{v}}) \tag{5}$$

Alle disse varmestrømmer j er like. Divisjon i hver likning med koeffisienten foran ΔT på høyre side og deretter sum av alle likninger gir følgende uttrykk med innsetting av tallverdier:

$$j = \frac{T_{\rm i} - T_{\rm y}}{1/\alpha_{\rm inne} + b_1/\kappa_{\rm g} + b_2/\kappa_{\rm s} + b_3/\kappa_{\rm g} + 1/\alpha_{\rm ute}}$$

$$(6)$$

$$= \frac{22-5}{1/7.5+0.02/0.14+0.10/0.047+0.025/0.14+1/25} \frac{W}{m^2}$$
 (7)

$$= \frac{22 - 5}{1/7, 5 + 0,02/0,14 + 0,10/0,047 + 0,025/0,14 + 1/25} \frac{W}{m^2}$$

$$= \frac{17}{0,133 + 0,142 + 0,179 + 2,128 + 0,040} \frac{W}{m^2} = \frac{17}{2,622} \frac{W}{m^2} = \underline{6,48} \frac{W}{m^2}.$$
(8)

c. Temperaturen T_1 på innerside av innerpanelet finner vi fra (1) og $T_2 - T_1$ og dermed temp. T_2 på yttersiden av innerpanelet finner vi fra (2):

$$T_1 = T_i - j/\alpha_{inne} = (22 - 6, 48/7, 5) \,^{\circ}C = (22 - 0, 86) \,^{\circ}C = 21, 136 \,^{\circ}C$$

$$T_2 = T_1 - j \cdot b_1/\kappa_g = (21, 136 - 6, 48 \cdot 0, 142) \,^{\circ}C = (21, 136 - 0, 920) \,^{\circ}C = \underline{20, 2 \,^{\circ}C}.$$

d. Med 10 cm steinull blir det årlige varmetapet ut gjennom 100 m² veggflate, under de gitte forutsetninger

$$\dot{E}(10\text{cm}) = 6.48 \cdot 10^{-3} \text{kW/m}^2 \cdot 100 \text{ m}^2 \cdot 24 (\text{h/døgn}) \cdot 200 (\text{døgn/år}) = 3110 \text{ kWh/år}.$$

Ekstra e.

Økning av tykkelse for steinull gir nye tall for b_2 i likn. (7) med henholdsvis 0,15 og 0,20, og resultatet blir

$$j(15 \,\mathrm{cm}) = 4.61 \,\mathrm{W/m^2} \Rightarrow \dot{E}(15 \,\mathrm{cm}) = 2213 \,\mathrm{kWh/ar}$$
, besparelse 897 kWh,

$$j(20\,\mathrm{cm}) = 3,58\,\mathrm{W/m^2} \Rightarrow \dot{E}(20\,\mathrm{cm}) = 1717\,\mathrm{kWh/\mathring{a}r}, \text{ ytterligere besparelse 496 kWh.}$$

Den gjennomsnittlige utetemperatur som er valgt i oppgaven er ikke urimelig i Stavanger, men i Kautokeino er den åpenbart for høy. Dersom en for eksempel velger -3 $^{\circ}$ i stedet for $+5^{\circ}$, må energitallene ovenfor multipliseres med faktoren 25/17.

Moral: Ved å gå opp fra 10 cm til 15 cm eller 20 cm isolasjon, kan en spare opp mot 1000 kWh per år. (Under de gitte forutsetninger!) Ved nybygg vil god veggisolasjon høyst sannsynlig være en fornuftig investering, mens det fra et reint økonomisk synspunkt er mer tvilsomt om etterisolering lønner seg. Det er i alle fall grunn til å sjekke om en ikke får mer kostnadseffektive energibesparelser ved å skifte ut vinduene!

Oppgave 2.

a. Som oppgitt er for prosessen $\Delta U = 0$, og vi finner fra oppgitt uttrykk for U for vdW-gassen:

$$U_1 = U_2 \quad \Rightarrow \quad nC_V T_1 - \frac{an^2}{V_1} = nC_V T_2 - \frac{an^2}{V_2} \quad \Rightarrow \quad T_2 - T_1 = -\frac{an^2}{nC_V} \left(\frac{1}{V_1} - \frac{1}{V_2}\right) .$$

For å finne V_2 kunne vi bruke adiabatlikningen for vdW-gass for T og V, men vi approksimerer for ikke å regne for mye: Trykket før ekspansjonen anslås fra ideal-gasslov til $p_1 = nRT_1/V_1 = 20, 3 \text{ MPa} = 201 \text{ atm} \gg 1 \text{ atm og}$ dermed $V_1 \ll V_2$ (= $V_1 \cdot \frac{p_1}{p_2}$ = 24 m³ hvis ideell gass). Bruk av vdW-likningen ville gi litt høyere p_1 , men uansett $V_2 \gg V_1$. Approksimerer derfor i uttrykket for temp.fallet:

$$T_2 - T_1 \approx -\frac{an}{1,506\,R} \cdot \frac{1}{V_1} = -\frac{3,44 \cdot 10^{-3}\,\mathrm{J\,m^3\,mol^{-2} \cdot 1000\,mol}}{1,506 \cdot 8,31\,\mathrm{JK^{-1}mol^{-1} \cdot 0,12\,m^3}} = \underline{-2,3\,\mathrm{K}}.$$

Selv for He-gass, som er den mest ideelle man kan finne, blir det altså et markant temp.fall.

b. For 1000 mol luft med $a = 137 \cdot 10^{-3} \,\mathrm{J\,m^3\,mol^{-2}}$ og $C_V = 2,5\,R$ ville vi finne $\Delta T = -55$ K! Men så er også den angitte prosessen en ekstrem ekspansjon.

Oppgave 3.

3 = fast stoff, 1 = væske, 2 = gass, 4 = trippelpunkt, 5 = kritisk punkt <u>a.</u> B.

<u>b.</u> B. Ved adiabatisk kompresjon er pV^{γ} konstant slik at $p_1 = p_0 (V_0/V_1)^{\gamma} = p_0 \cdot 3^{\gamma}$. Gassene er ideelle og ved 0 °C har enatomige He $\gamma = C_p/C_V = 5/3$ mens toatomige O₂ har $\gamma = C_p/C_V = 7/5 < 5/3$. Størst γ gir størst trykk, altså He størst trykk. Fra ideell gasslov pV = nRT vil ved sluttilstanden gassen med høyest p også ha høyest T når sluttvolumene er de samme.

Carnotvarmepumpa har effektfaktor $\eta = \left| \frac{Q_{\rm H}}{W} \right| = \frac{T_{\rm H}}{T_{\rm H} - T_{\rm L}} = \frac{308}{40} = 7,70$. Arbeid $W = \frac{Q_{\rm H}}{7,70} = 0,195 \, \rm kJ$.

 $\underline{\mathbf{d}}$. C. Parallellkopling av varmemotstander er som parallellkopling av elektriske motstander, $\frac{1}{R} = \sum \frac{1}{R_i}$ eller $R = \frac{R_1 R_2}{R_1 + R_2}$. Utregnet: I hver stav: $\dot{Q}_i = \frac{\kappa_i A_i}{\ell} \Delta T = \frac{\Delta T}{R_i}$ (formelsamling). Temperaturfallet $\Delta T = T_{\rm H} - T_{\rm L}$ er det samme i begge stavene. Total varmestrøm $\dot{Q} = \dot{Q}_1 + \dot{Q}_2$ gir derfor $\frac{\Delta T}{R} = \frac{\Delta T}{R_1} + \frac{\Delta T}{R_2}$, altså $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.

Ved stasjonære forhold er varmestrøm inn mot og ut fra midtplata like store:

$$\sigma(T_1^4 + T_3^4) = 2\sigma T_2^4 \quad \Rightarrow \quad T_2 = ((T_1^4 + T_3^4)/2)^{1/4} = 334 \; \mathrm{K}$$

EKSTRAOPPGAVE

Oppgave 4.

Volum før: $V_0 = 250 \,\mathrm{cm}^3 = 250 \cdot 10^{-6} \,\mathrm{m}^3$. Volum etter: $V_1 = 1 \,\mathrm{cm} \cdot \pi \cdot (0, 5 \,\mathrm{mm})^2 = 7, 85 \cdot 10^{-3} \,\mathrm{cm}^3 = 7, 85 \cdot 10^{-9} \,\mathrm{m}^3$.

Ideell gass, isoterm: $p_0V_0 = p_1V_1 \Rightarrow p_1 = p_0\frac{V_0}{V_1} = 0$, $20 \,\mathrm{Pa} \cdot \frac{250}{7.85 \cdot 10^{-3}} = 6369 \,\mathrm{Pa} = 63.7 \,\mathrm{hPa}$

Når trykket når 23,3 hPa vil vanndamp kondenseres og trykket holde seg konstant, dvs. $p_1 = 23,3$ hPa.

Vanndamp som kondenseres finnes enklest ved å beregne vanndampmengde i starttilstanden og vanndampmengde i sluttilstanden:

 $\begin{array}{ll} \text{Start:} & n_0 = \frac{p_0 V_0}{RT} = \frac{0,20 \, \text{N/m}^2 \cdot 250 \cdot 10^{-6} \, \text{m}^3}{8,31 \cdot 293 \, \text{J/mol}} = 20,54 \cdot 10^{-9} \, \text{mol} = 20,54 \, \text{nmol}. \\ \text{Slutt:} & n_0 = \frac{p_1 V_1}{RT} = \frac{2330 \, \text{N/m}^2 \cdot 7,85 \cdot 10^{-9} \, \text{m}^3}{8,31 \cdot 293 \, \text{J/mol}} = 7,51 \, \text{nmol}. \\ \end{array}$

Kondensert vann: $\Delta n = 13,03 \,\text{nmol}$, dvs. $\Delta m = 13,03 \,\text{nmol} \cdot 18 \,\text{g/mol} = 0,23 \,\mu\text{g}$.

d. Forutsetninger gjort:

1) Sett bort fra volum i øvre kapillar ved beregning av V_0 ($V_1 = 78, 5 \cdot 10^{-3} \,\mathrm{cm}^3 \ll V_0$).

2) Regner vanndamp som ideell, selv i likevekt med væske. Dvs. dampen følger pV = nRT. Men merk at n ikke er

3) Vi har i **b.** sett bort fra volumet av kondensert vann som for $0.23~\mu g$ er $0.23 \cdot 10^{-6}~cm^3 \ll V_1$.