

Hierarchical Structure

- Method of hierarchical clustering
 - Agglomerative (bottom-up)
 - Divisive (top-down)

Distance Measures (between objects)

Distance

• p =
$$(p_1, p_2, ..., p_n)$$
 and q = $(q_1, q_2, ..., q_n)$

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$

Distance Measures (between objects) [cont.]

Each object has n binary attributes.

Similarity

$$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}.$$

M₁₁: # of attributes where A and B both have a value of 1

M₀₁: # of attributes where the value of A is 0 and the value of B is 1 M₁₀: # of attributes where the value of A is 1 and the value of B is 0

- For example, A = (1, 1, 0, 0) and B = (1, 1, 1, 0)
 - $M_{01} = 1$, $M_{10} = 0$ and $M_{11} = 2$
 - J(A, B) = 2/(1 + 0 + 2) = 2/3

Each object has n binary attributes.

Similarity

$$M(A,B) = \frac{M_{00} + M_{11}}{n}$$

M₀₀: # of attributes where A and B both have a value of 0 M₁₁: # of attributes where A and B both have a value of 1

For example, A = (1, 1, 0, 0), B = (1, 1, 1, 0)
M(A, B) = (1 + 2) /4 = 3/4

Single Linkage

- Also, known as the nearest neighbor technique
- Distance between groups is defined as that of the closest pair of data, where only pairs consisting of one record from each group are considered

Complete Linkage

 The distance between two clusters is given by the distance between their most distant members

Group Average Clustering

- The distance between two clusters is defined as the average of the distances between all pairs of records (one from each cluster).
- $d_{AB} = 1/6 (d_{13} + d_{14} + d_{15} + d_{23} + d_{24} + d_{25})$

Centroid Clustering

- The distance between two clusters is defined as the distance between the mean vectors of the two clusters.
- $d_{AB} = d_{ab}$
- where a is the mean vector of the cluster A and b is the mean vector of the cluster B.

Median Clustering

- Disadvantage of the Centroid Clustering: When a large cluster is merged with a small one, the centroid of the combined cluster would be closed to the large one, ie. The characteristic properties of the small one are lost
- After we have combined two groups, the mid-point of the original two cluster centres is used as the centre of the newly combined group

McQuitty's Method

- Dist(C_i, C_j) distance between cluster C_i and cluster C_j
- Suppose we have three clusters C_i, C_j and C_k
- Then, C_i and C_j are merged to form a larger cluster C_p i.e., C_p = C_i U C_j
- Dist(C_p , C_k) = (Dist(C_i , C_k) + Dist(C_j , C_k)) / 2

Ward's Method

- Distance between 2 clusters is defined to be the information loss of the final cluster merged from 2 clusters.
- Information loss: Error sum-of-squares (ESS).

E.g., 10 objects: {6, 5, 6, 2, 2, 2, 2, 0, 0, 0}.

Treating the objects as one group: Mean of the objects = 2.5 ESS _{one group} = $(6 - 2.5)^2 + (5 - 2.5)^2 + + (0 - 2.5)^2 = 50.5$

Treating the objects as four groups: $\{0,0,0\}$, $\{2,2,2,2\}$, $\{5\}$, $\{6,6\}$ ESS _{four groups} = ESS _{group1} + ESS _{group2} + ESS _{group3} + ESS _{group4} = 0

Divisive Methods

- In a divisive algorithm, we start with the assumption that all the data is part of one cluster.
- We then use a distance criterion to divide the cluster in two, and then subdivide the clusters until a stopping criterion is achieved.
 - ✓ Polythetic divide the data based on the values by all attributes
 - Monothetic divide the data on the basis of the possession of a single specified attribute

Polythetic Approach

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0

      2
      10
      0

      3
      7
      7
      0

      4
      30
      23
      21
      0

      5
      29
      25
      22
      7
      0

      6
      38
      34
      31
      10
      11
      0

      7
      42
      36
      36
      13
      17
      9
      0
```

D(4, A) = 24.7 D(4, B) = 10.0
$$\Delta_4$$
 = -14.7 D(5, A) = 25.3 D(5, B) = 11.7 Δ_5 = -13.6 D(6, A) = 34.3 D(6, B) = 10.0 Δ_6 = -24.3 D(7, A) = 38.0 D(7, B) = 13.0 Δ_7 = -25.0

$$A = \{1, 3, 2\}$$

$$B = \{4, 5, 6, 7\}$$

$$COMP1942$$

All differences are negative. The process would continue on each subgroup separately.

Monothetic

It is usually used when the data consists of **binary** variables.

	Α	В	C
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

ВА	1	0
1	a=3	b=1
0	c=0	d=1

Chi-Square Measure

$$\chi_{AB}^{2} = \frac{(ad - bc)^{2} N}{(a+b)(a+c)(b+d)(c+d)}$$
$$= \frac{(3-0)^{2} \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}$$
$$= 1.875$$

ВА	1	0	
1	a=3	b=1	L! L
0	c=0	d=1	etic

Chi-Square Measure

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

Attr.	AB	AC	ВС
a	3	1	2
b	1	2	1
С	0	2	2
d	1	0	0
N	5	5	5
χ^2	1.87	2.22	0.83

For attribute A,
$$\chi_{AB}^{2} + \chi_{AC}^{2} = 4.09$$

For attribute B,
$$\chi_{AB}^2 + \chi_{BC}^2 = 2.70$$

For attribute C,
$$\chi_{AC}^2 + \chi_{BC}^2 = 3.05$$

We choose attribute A for dividing the data into two groups. $\{2, 3, 4\},\$ and {1, 5}