Calculus I, Tutorial Problem Sheet, Week 5

Differentiable functions

- Q1. Use the limit definition of the derivative to calculate the derivative of $f(x) = \sqrt{x}$.
- Q2. Show that if g(x) is continuous at x=0 then $g(x)\tan x$ is differentiable at x=0.
- Q3. Use L'Hopital's rule to calculate the limit as $x \to 0$ of the following (a) $\frac{1-\cos 2x}{x}$, (b) $\frac{x^2}{1-\cos 2x}$.
- Q4. Assuming that y is a differentiable function of x and satisfies $xy+y^2-3x-3=0$, Calculate $\frac{dy}{dx}$ at the point (-1,1).

Extreme values

- Q5. Find the global extreme values of $f(x) = \frac{1}{3}x^3 3x + |x^2 4|$ in [-2, 4].
- Q6. Either find the global maximum or justify that it does not exist for each of the following

(a)
$$f(x) = 1 - |1 - x^2|$$
 in $[0, \sqrt{2}]$, (b) $f(x) = x/(x^2 + 1)$ in $x \ge 0$,

(b)
$$f(x) = x/(x^2 + 1)$$
 in $x > 0$

(c)
$$f(x) = x \cos(\frac{1}{x})/(x+1)$$
 in $x \ge 1$.

Partial derivatives

- Q7. Given the function $f(x,y) = \log(1+xy)$ calculate $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$.
- Q8. Show that, for any constants A and B, the function $f(x,y) = A\cos x \sinh y +$ $B\sin x\cosh y$ satisfies the equation $f_{xx}+f_{yy}=0.$