- A1. Ekspanzija 200 kg/h plina odvija se od 9 bar i 400°C do 1 bar. Kolika je konačna temperatura (K), volumen (m^3 /h), dobivena snaga (kW) i izmijenjena toplina (kJ/h) u slijedeća dva slučaja: a) proces je izotermni, i b) proces je politropski s n = 1,2 (c_p = 1005 J/kgK i c_v = 718 J/kgK).
- A2. U Jouleovom procesu, između tlakova 10⁵ N/m² i 2,5·10⁵ N/m², sudjeluje 200 kg/h zraka. Temperatura na ulazu u komresioni cilindar je 290 K, a temperatura ispušnih plinova 480 K. Izračunajte: maksimalnu temperaturu u procesu (K), toplinsku snagu koja se dovodi u komori izgaranja (kJ/h), dobivenu snagu (kW) i termodinamički stupanj iskorištenja (%). Računajte s R = 287 J/kgK, c_p = 1000 J/kgK i κ = 1,4.
- A3. Kolika je promjena eksergije 1 kg zraka, koji se u izmjenjivaču topline zagrijava od 120 °C do 750 °C? Ulazni tlak je 8 bara, a izlazni 7,4 bara. Stanje okolice je p_0 =1 bar i t_0 =17 °C. Promjena entropije je $s_2-s_0=0.676$ kJ/kgK, a $s_1-s_0=-0.303$ kJ/kgK. Specifična toplina zraka je konstantna i iznosi $c_p=1.00$ kJ/kgK.
- A4. Izvor rijeke nalazi se na 800 m n.v. s protokom od 400 m³/s. Protok se povećava do nadmorske visine 100 m po zakonu: $H[m] = -\frac{3}{2} *Qsr \left[\frac{m^3}{s}\right] + 1400$. Odredite:
 - a) odredite brutto energiju vodotoka;
 - b) snagu pribranske hidroelektrane s pregradom na 400 m n.v. i visine 100 m;
 - c) snagu derivacijske hidroelektrane sa zahvatom na 400 m n.v., postrojenjem na 200 m n.v. i branom visine 100 m.
- A5. Dnevni dijagram opterećenja nekog elektroenergetskog sustava određen je izrazom $P(t)[MW] = 800 200 \sin(\frac{\pi * t[h]}{12})$. Potrebno je:
 - a) nacrtati i analitičkim izrazom definirati oblik dnevne krivulje trajanja opterećenja;
 - b) odrediti dnevno potrošenu energiju;
 - c) izvršiti smještaj termoelektrana i protočnih hidroelektrana u dnevnoj krivulji trajanja opterećenja ako su o njima poznati sljedeći podaci:
 - TE1: $P_{TE1n} = 200 \text{ MW}$; $P_{TE1min} = 50 \text{ MW}$; $e_{TE1} = 50 \text{ lp/kWh}$
 - TE2: $P_{TE2n} = 300 \text{ MW}$; $P_{TE2min} = 60 \text{ MW}$; $e_{TE2} = 40 \text{ lp/kWh}$
 - TE3: P_{TE3n}= 600 MW; P_{TE3min}=100 MW; c_{TE3}= 80 lp/kWh
 - HE1: PHE1n=115 MW
 - HE2: PHE2n= 200 MW
 - HE3: PHE3n= 100 MW