Basic Electronics Components

Mar-2019

Rules of thumb, assumptions and mixed-quality analogies to come!

BAD ANALOGIES

JUST BECAUSE ONE ARGUMENT RESEMBLES ANOTHER, DOESN'T MEAN THAT CATS CAN FLY IN SPACE.

Plumbing Analogy

Powering a Light Bulb

Voltage is the pushing force
Pushes electrons through a circuit

Voltage

Powering a Complex Circuit

Voltage is applied <u>across</u> any circuit to power it

Measuring Voltage

Voltage is measured between two points:

- Common (reference, ground)
- Positive

Common Voltages

Volts DC 9V or 9VDC

110 volts AC 110V or 100V AC

12V DC or 12V

Current

Current is the flow of electrons
Similar to the flow of water

Current

Measured in amps $1A (1 \text{ amp}) = 6.25 \times 10^{18} \text{ electrons per second}$

Measuring Current

Current can be measured by passing it through a multimeter

"Voltage Across" – "Current Through"

Voltage

Current

Power

Power = Watts =
Amount of energy
used at a particular
point in time

Energy =
Power x Time = W x hr
Total energy used over
a period of time

Calculating Power

Power = Voltage x Current

 $120V \times 0.5A = 60W$

Resistors – A minute to learn, a lifetime to master

We use them every day

Resistors – Resist the flow of current

Resistance – measured in Ohms (Ω)

Conductors vs Insulators

Semi-conductors

Insulators

All Shapes and Sizes

Fixed Resistors — Construction

Variable Resistors – Construction

Resistors – Simple but useful!

Ohm's Law

$$V = I * R$$

Special Relationship between voltage, current, resistance

Ohm's Law

$$V = I * R$$

$$V = I * R$$
 $R = V / I$ $I = V / R$

$$I = V / R$$

Resistors in Series

Resistors in Parallel

$$R_{T} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}}$$

Diodes/LEDs

Diodes – Everyday Uses

Diodes – One-Way Gate

Current Flow

How to use a diode

$$V_S \ge V_{LED} + 1V$$
 $I_{LED} \sim 10-20 \text{mA}$
 $V_{LED} \sim 1.8-3.3V$

Practical Circuit

$$R = (5V - 2V) / 0.01A$$

= 3V / 0.01A
= 300 Ω

Switches

Switch Example

More Switch Types

Poles and Throws

Capacitors

Similar to Batteries

"Supply Bypass" Capacitors

Capacitors in Parallel

$$C_T = C_1 + C_2 + C_3$$

Capacitors in Series

Series Capacitances

$$C_{\text{total}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}}$$

Further Reading

Falstad Circuit Simulator — Runs in Browser
Kahn Academy — Introduction to EE
Mattermost Channel
YouTube Videos
All About Circuits

https://www.allaboutcircuits.com/education/
 Sparkfun – learn.sparkfun.com