Fuel – Oxidizer reaction

RedOx reaction between Fuel and Oxidizer produces thermal energy \rightarrow converted in to electrical energy by rankine cycle (Thermal energy \rightarrow Mechanical energy \rightarrow Electrical energy)

Fuel Cell

Thermal Power Plants→ Fuel is oxidized to produce thermal energy and it is converted in to mechanical and electrical energy

Chemical Energy

Thermal Energy

Mechanical Energy Electrical Energy

Fuel cell→ Electrochemical redox reaction of Fuel and Oxidant, directly converts chemical energy in to electrical energy

Chemical Energy

Fuel Cell

Electrical Energy

Minimized Interconversion Loss → Efficient

Fuel Cell

- Electrochemical Cell having a separate fuel-oxidizer system that produces electrical energy by oxidation of Fuel at Anode and the reduction of Oxidizer at Cathode.
- Fuel and Oxidizer are stored outside the battery and supplied as needed.
- Supply of Fuel and Oxidizer → Production of electricity
- High efficiency and Pollution free
- By products are Water and Heat
- Used in NASA Apollo Space Crafts
- e.g. H₂-O₂ Fuel Cell, Solid Oxide Fuel Cell

Fuel Cell Components

- Fuel
- Oxidizer
- Electrodes

Fuel
Anode
Electrolyte
Cathode

Oxidizer

- Anode Catalyze the oxidation of fuel
- Cathode Catalyze the reduction of Oxygen
- Electrolyte
 - Only allows Ions to pass through and blocks electron flow

Fuel / Electrode // Electrolyte // Electrode / Oxidizer

H₂ – O₂ Fuel Cell

Electrolysis of water → Splitting of water produces H₂ and O₂.
 (Electrolytic cell)

Reverse reaction ??

Combining H₂ and O₂ to produce H₂O
 (Electrochemical Cell)

Gas Voltaic Battery

Sir William Grove (invented - 1839)

Fuel Cell Types

- Based on Electrolyte
 - Alkaline Fuel Cell KOH
 - Polymer Membrane Fuel Cell Polymer electrolyte Nafion
 - Solid Oxide Fuel cell Oxide electrolyte Y doped Thoria, Ceria Stabilize Zirconia

Type of Fuel Cell	Electrolyte type	Electrolyte Example	lons transported	Water formation in
Alkaline	Alkaline	КОН	OH-	Anode
Polymer Membrane	Proton conducting Polymer	Nafion	H ⁺	Cathode
Solid Oxide fuel cell	Metal oxide	Y-doped Thoria	O ²⁻	Anode

Alkaline Fuel cell (or) H₂ – O₂ Fuel Cell

- Fuel Hydrogen
- Oxidizer Oxygen
- Electrodes

```
Anode – Pt (or) Pd electrode
Cathode – Pt (or) Ag
```

ElectrolyteKOH

$H_2 - O_2$ Fuel Cell

H₂ – O₂ Fuel Cell Reactions

Anodic reaction

$$2H_2 + 4OH^- \rightarrow 2H_2O + 4e^-$$

Cathodic Reaction

$$O_2 + 4H_2O + 4e^- \rightarrow 4 OH^-$$

Net Reaction

$$O_2 + 2H_2 \rightarrow 2H_2O$$

Requirements for Good Fuel Cell

- Electrodes should catalyze the anodic and cathodic reactions
- Fuels should be Pure and Cheap Hydrogen!!
- Oxidizers used Oxygen or Air → Pure oxygen is preferred

Limitations of Fuel Cell

- Pure Hydrogen...
- Electrode and electrolyte contamination/degradation
- Cost of Catalyst Pt and Pd !!!
- Safety!!

High temperature → Improved kinetics, low risk of contamination

Materials stable at high temperature is needed

Solid Oxide Fuel Cell (SOFC)

Types of Fuel Cell

Based on the operational temperature

- Low Temperature Fuel Cell Fuel Pure Hydrogen (below 100 °C)
- Mid Temperature Fuel Cell Fuel Hydrogen or Reformed Hydrocarbons (100-300 °C)
- High Temperature Fuel Cell Fuel Hydrocarbons, Electrolytes –
 solid ceramics (~1000 °C)

Solid Oxide Fuel Cell

• H₂ – O₂ Fuel Cell

 $H_2 \rightarrow H^+$ diffuses through electrolyte to cathode

Solid Oxide Fuel Cell

 $O_2 \rightarrow 20^{2-}$ diffuses through electrolyte to anode

Electrolyte -> Good oxide ion conductor and poor electron conductor

- Operates at high temperature so diffusion rate is higher.
- Electrical insulating oxide with non-stoichiometry

e.g. Yttria Stabilized Zirconia (YSZ), Gadolinium Doped Ceria (GDC)

Solid Oxide Fuel Cell (SOFC)

- Fuel Hydrogen
- Oxidizer Oxygen
- Electrodes

Anode – Mixture of Ni and Yttria Stabilized Zirconia (YSZ)

Cathode – Sr-doped Lanthanum Manganite (La_{1-x}Sr_xMnO₃)

Electrolyte

Oxide ion conductors (YSZ, GDC)

Solid Oxide Fuel Cell

Solid Oxide Fuel Cells - Reactions

Anode reaction

$$2H_2 + 2O^{2-} \rightarrow 2H_2O + 4e^{-}$$

Cathode Reaction

$$O_2 + 4e^- \rightarrow 20^{2-}$$

Net reaction

$$2H_2 + O_2 \rightarrow 2H_2O$$

In $H_2 - O_2$ fuel cell water is formed on cathode side. In SOFC water is formed on anode side.

Advantages of Fuel Cell

- Low maintenance cost
- Silent operation
- Produces pure water as a product
- Heat generated during H₂O formation can also be used
- High energy conversion efficiency
- They can be used as auxiliary power units