<u>Titre</u>: Réduction des endomorphismes normaux

Recasages: 151,153,154,155,158,160

Thème : Algèbre linéaire

Références : Gourdon - Algèbre (p. 260)

<u>Lemme</u> 1. Soient E un espace euclidien de dimension 2, et $u \in \mathcal{L}(E)$ un endomorphisme normal sans valeurs propres réelles. Dans toute base B de E, on a

$$Mat_B(u) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

avec $b \neq 0$.

Démonstration. Soit B une base de E, avec $Mat_B(u) = M := \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, on a $b \neq 0$ car u est sans valeur propre réelle (si b = 0, M est triangulaire supérieure et a, d sont des valeurs propres). La normalité s'écrit alors

$$\begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$$

En particulier, $c^2 = b^2$ et $b = \pm c$. Si b = c, alors $Mat_B(u)$ est symétrique et donc admet des valeurs propres réelles, donc b = -c. On en déduit d - a = a - d et a = d, d'où le résultat. \square

<u>Théorème</u> 2. Soit E un espace euclidien, $u \in \mathcal{L}(E)$ un endomorphisme normal, alors il existe B une base orthonormale de E telle que

$$Mat_B(u) = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & 0 \\ & & \lambda_r & & \\ & & & \tau_1 & \\ & 0 & & \ddots & \\ & & & \tau_s \end{pmatrix}$$

$$Avec \ \forall i \in [\![1,r]\!], \lambda_i \in \mathbb{R} \ et \ \forall j \in [\![1,s]\!], \tau_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix}, \ avec \ a_j, b_j \in \mathbb{R}.$$

On raisonne par récurrence sur $n = \dim E$. Le cas n = 1 est immédiat, supposons à présent le résultat obtenu pour les espaces de dimension au plus n - 1, et supposons E de dimension E. On distingue deux cas selon si E admet ou non une valeur propre réelle.

Si u admet $\lambda \in \mathbb{R}$ une valeur propre, dont on note E_{λ} l'espace propre associé. Son orthogonal $E_{\lambda}^{\perp} =: F$ est stable par u et par u^* par commutativité. Comme $u_{|F}$ et $u_{|F}^* = u_{|F}^*$ commutent et dim $F \leq n-1$, par hypothèse de récurrence, il existe B_1 une base orthonormée de F telle que $Mat_{B_1}(u_{|F})$ a la forme voulue. Si B_2 est une base orthonormée de E_{λ} , la base $B = B_1 \cup B_2$ donne le résultat voulu.

Si u est sans valeur propres réelles, on peut considérer $Q(X) = X^2 - 2\alpha X + \beta$ un facteur irréductible dans $\mathbb{R}[X]$ du polynôme caractéristique de u (on a en particulier $\alpha^2 < \beta$ et $\beta > 0$), on pose N = Ker Q(u).

Si M désigne la matrice de u dans une quelconque base, comme Q est irréductible dans $\mathbb{R}[X]$, on a $Q(X) = (X - \lambda)(X - \overline{\lambda})$ pour un $\lambda \in \mathbb{C}$, valeur propre de M. On a alors

$$\det(Q(u)) = \det(u - \lambda) \det(u - \overline{\lambda}) = \det(M - \lambda I_n) \det(M - \overline{\lambda} I_n) = 0$$

donc $N \neq \{0\}$. Comme $u \in \mathcal{C}(u^*)^1$, on a $\mathbb{R}[u] \subset \mathcal{C}(u^*)$ et en particulier, Q(u) et u^* commutent : comme N est u-stable, il est également u^* -stable.

Posons $v = u_{|N}$, on a $v^* = u_{|N}^*$, on a $v^*v = (u^*u)_{|N}$ est symétrique, donc admet $\mu \in \mathbb{R}$ une valeur propre, et $x \in N \setminus \{0\}$ avec $v^*v(x) = \mu x$.

Comme $x \in N$, on a $u^2(x) = 2\alpha u(x) - \beta x$ et u est sans valeurs propres réelles, on a $F = \text{Vect}(x, u(x)) = \text{Vect}(u(x), u^2(x))$ est de dimension 2 et u-stable. On a

$$u^*u(x) = v^*v(x) = \mu x \in F \text{ et } u^*u^2(x) = uu^*u(x) = u(\mu x) = \mu u(x) \in F$$

Donc F est également u^* -stable, et $u_{|F}^* = u_{|F}^*$. Ainsi, $u_{|F}$ est normal, par notre lemme, on peut considérer B_2 une base orthonormée de F avec $Mat_B(u) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

Comme F est u^* -stable et u-stable, F^{\perp} est $u^{**}=u$ -stable et u^* -stable, donc $u_{|F^{\perp}}=u_{|F^{\perp}}^*$, donc $u_{|F^{\perp}}$ est normal. Comme F^{\perp} est de dimension n-2 < n, par notre hypothèse de récurrence, on obtient une base orthonormée B_1 de F^{\perp} telle que $Mat_{B_1}(u_{|F^{\perp}})$ ait la forme voulue, la base $B_1 \cup B_2$ de E donne le résultat voulu.

^{1.} $C(u^*)$ est le commutant de u^* , l'ensemble des endomorphismes qui commutent à u^*