Kaggle Seasons

Loan Approval Prediction

Playground Series - Season 4, Episode 10

The data (first 5 rows)

id	person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_grade
0	37	35000	RENT	0.0	EDUCATION	В
1	22	56000	OWN	6.0	MEDICAL	С
2	29	28800	OWN	8.0	PERSONAL	А
3	30	70000	RENT	14.0	VENTURE	В
4	22	60000	RENT	2.0	MEDICAL	А

loan_amnt	loan_int_rate	loan_percent_income	cb_person_default_on_file	cb_person_cred_hist_length	loan_status
6000	11.49	0.17	N	14	0
4000	13.35	0.07	N	2	0
6000	8.9	0.21	N	10	0
12000	11.11	0.17	N	5	0
6000	6.92	0.1	N	3	0

The task

The task

. . .

The task

Predict loan status from the first 12 columns (for individuals not present in the dataset)

General approaches

- Data cleaning (handle missing values and/or incorrect data)
- Data enhancement (find or construct similar datasets to increase data volume and/or help with data cleaning)
- *Encoding* (convert categorical variables into continuous variables so that they are parsable, or more well-interpretable, by our ML algorithm)
- Normalisation (standardise the scales of all of our variables so that arbitrary scale differences between variables don't bias the learning process)
- Model selection (select the appropriate ML algorithm(s))
- Hyperparameter tuning (choose the best values for the parameters of our algorithm(s))

General approaches (continued)

- Feature engineering (construct new variables, whether from the existing variables or from scratch, to feed into our ML algorithm(s))
- Ensemble learning (combine the knowledge gleaned by each of our ML algorithms)
- Exploratory data analysis (EDA) (understand the data intuitively with the help of statistics, tables, graphs, and other data visualisation techniques)
- Evaluation (determine how good our models are so we can track progress)
- Subject-matter research (gain information about the subject to contextualise our data)
- Technical research (research data science approaches relevant to our subject)

Specific approaches (examples)

- Data cleaning: Mean imputation, column dropping, row dropping, predictive modelling, duplicate removal, outlier removal
- Data enhancement: Data augmentation, synthetic data generation, oversampling
- *Encoding*: Label encoding, one-hot encoding, target encoding, binary encoding
- Normalisation: Z-score, L1, L2, min-max, robust (median-IQR) scaling
- Model selection: Logistic regression, Catboost, XGBoost, Random Forest
- Hyperparameter tuning: Manual search, grid search, random search, Optuna

General approaches (continued)

- Feature engineering: Principal component analysis (PCA), feature grouping
- Ensemble learning: Stacking, blending, hill climbing blending, bagging, voting ensemble
- Exploratory data analysis (EDA): Summary statistics, box plots, histograms, correlation heatmap, missing value heatmap
- Evaluation: Train-test split, cross-validation, evaluation metrics: accuracy, recall, precision, AUC, (note: evaluation metric will be provided by Kaggle)
- Subject-matter research: Wikipedia, ArXiv, expert consultation
- Technical research: Kaggle competition discussion, Kaggle public notebooks

My approach

- Data cleaning: Mean imputation replace missing values with the mean value of the corresponding variable
- Data enhancement: Append the original dataset, from which the competition dataset was synthesised, to the competition dataset
- Encoding: Label encoding simple one-to-one mapping to integers
- Normalisation: Z-score normalisation: assume each variable is normally distribution and rescale the distribution to standard normal
- Model selection: Catboost, XGBoost, LGBM were my top-performing models
- Hyperparameter tuning: Manual search with reference to Kaggle public notebooks

My approach

- Feature engineering: For CatBoost, use both the categorical and encoded versions of the categorical data
- *Ensemble learning*: Hill climbing blending: use simple linear regression with the hill climbing solver to combine predictions from my 3 models
- Exploratory data analysis (EDA): Correlation heatmap, summary statistics
- Evaluation: Train-test split, stratified 5-fold cross-validation, evaluation metrics: AUC (required by the competition)
- Subject-matter research: Consultation with friend who works in finance
- Technical research: Kaggle competition discussion, Kaggle public notebooks

Results

Results

Top 21%! Can you do better?

GOOD LUCK!

kaggle