<u>תרגול 4</u>

:תרגיל

 $L\in A$ יהא a_n אזי a_n מתכנסת לגבול $\{a_n\}_{n=1}^\infty$ סדרה שלו. תהא שלו. (A,τ') מתכנסת לגבול (X,τ) מרחב טופולוגי, ויהי (A,τ') גם ב- (X,τ) אם ורק אם היא מתכנסת לגבול A גם ב- (X,τ)

הוכחה:

ב- U ב- ווא על קבוצה פתוחה ב- (A, τ') , בה פתוחה ב- (X, τ) , בה פתוחה ב- (X, τ) , בה ב- (X, τ) ב- ב- (X, τ) ב- על פי הגדרת תת מרחב טופולוגי).

אך (X,τ) -ם $a_n \overset{n\to\infty}{\longrightarrow} L$ כי U-ם נמצאים ב-U- נמצאים ב-U- נמעט" כל איברי הסדרה $\{a_n\}_{n=1}^\infty$ נמצאים ב-U- נמצאים ב-U- נמעט" כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, U- ב- U- ב- U- נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, U- ב- U- ב- U- נמעט" כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, U- ב- U- ב- U- נמעט" כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, U- ב- U- נמעט" כי גם איברי הסדרה נמצאים ב-U- ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ומכאן שמתקיים, על פי הגדרה, ולכן נסיק כי גם איברי הסדרה נמצאים ב-U- ולכן נסיק כי גם איברי החים ב- U- ולכן נסיק כי גם ב- U- ולכן נסיק כי גם ב- U- ולכן נסיק כי גם ב- U- ולכן נסיק ב- U- ולכן נסיק ב- U- ולכן נסיק ב- ב- U- ולכן נסיק ב- U

V=נניח כי ב(X, au') ב-(A, au') ותהא U קבוצה פתוחה כלשהי ב(X, au')- המכילה את ב-(A, au') ותהא U קבוצה פתוחה כל איברי הסדרה נמצאים ב-(A, au')-, אך מיחסי הכלה, $U\cap A$ קרי, משום ש-U- u- u- ג קבל כי כמעט כל איברי הסדרה נמצאים ב-u- ולכן מתקיים u- ב-u- ולכן כמעט כל איברי הסדרה נמצאים ב-u- ולכן מתקיים u- ולכן מתחים u- ולכן מ

<u>תרגיל:</u>

יהא $Y\subseteq A$ מתקיים $Y\subseteq A$ מתקיים כי לכל קבוצה $Y\subseteq A$ מרחב שלו. הוכיחו, כי לכל קבוצה $Y\subseteq A$ מתקיים $Y=B\cap A$ סגורה ב- $Y=B\cap A$ אם ורק אם קיימת קבוצה סגורה $Y=B\cap A$ כך ש

<u>הוכחה:</u>

נניח כי קיימת קבוצה $X \supset B$ סגורה ב- (X, τ) כך ש- $X \cap A$. נראה כי $Y \cap A$ סגורה ב- (X, τ) - כלומר נראה ((x, τ)) כי (x, τ) פתוחה ב- (x, τ) . נשים לב כי:

$$A \setminus Y = A \setminus (B \cap A) = A \setminus B = (X \setminus B) \cap A$$

 (A, τ') אך $A \setminus Y$ פתוחה ב- (X, τ) . לכן, בפרט $A \setminus Y$ פתוחה ב- (X, τ) ולכן $Y \setminus B$ סגורה ב- (X, τ) .

נניח כי Y סגורה ב- (A, τ') . אזי מתקיים $A\setminus Y$ פתוחה ב- (A, τ') . לכן קיימת קבוצה פתוחה $A\setminus Y$ ב- (A, τ') . כך שמתקיים $A\setminus Y=U\cap A$. כמו כן, נשים לב כי מתקיים:

$$Y = A \setminus (A \setminus Y) = A \setminus (U \cap A) = A \setminus U = (A \setminus U) \cap A = (X \setminus U) \cap A$$

אר הנדרש. $B=X\setminus U$ אר לכן נסמן $B=X\setminus U$ ולכן פתוחה ב- (X,τ) . ולכן שלכן את הנדרש וקיבלנו את הנדרש.

:תרגיל

. הוא מרחב מטרי ספרביליי המרחב המטרי (\mathbb{R}^n, d_{max}) הוא מרחב מטרי

<u>הוכחה:</u>

נתבונן בקבוצה \mathbb{R}^n . יהא $x_0\in\mathbb{R}^n$, היא כמובן קבוצה בת מניה. נראה כי קבוצה זו צפופה ב- \mathbb{R}^n . יהא \mathbb{R}^n ויהא $q\in\mathbb{Q}^n\cap B(x_0,r)$ עם המרכז ב- x_0 כלשהו ב- \mathbb{R}^n . נוכיח כי בהכרח קיים $x_0\in\mathbb{R}^n$ על ידי כך שנזכור, כי הראינו בשיעור הקודם כי מתקיים:

$$B(x_0, r) = \left\{ x \in \mathbb{R}^n \middle| \forall 1 \le i \le n \quad \middle| x_i - x_{0_i} \middle| < r \right\} = \left\{ x \in \mathbb{R}^n \middle| \begin{matrix} \forall 1 \le i \le n \\ x_{0_i} - r < x_i < x_{0_i} + r \end{matrix} \right\}$$

 $1 \leq 1$ אך ארן משאלה בתרגיל בית 2, נסיק כי בכל קטע פתוח שקצותיו ממשיים שונים קיים מספר רציונלי, לכן לכל

$$q\in\mathbb{Q}^n\cap B(x_0,r)$$
 ונקבל כי $q=\begin{pmatrix}q_1\\q_2\\\vdots\\q_n\end{pmatrix}$ ונקבל $q_i\in\left(x_{0_i}-r,x_{0_i}+r
ight)$ ונקבל כי $i\leq n$

. והיא בת מניה, ולכן מרחב זה אכן ספרבילי כנדרש. (\mathbb{R}^n, d_{max}) , והיא בת מניה, ולכן \mathbb{Q}^n

<u>תרגיל:</u>

תנו דוגמה למרחב מטרי $B[x_0,r]$ כך שבו סגור של כדור פתוח $B(x_0,r)$ הוא אינו כדור סגור $B[x_0,r]$ וכך שפנים של כדור סגור \mathbb{R}^n , אינו כדור פתוח $B(x_0,r)$. (זו תכונה שלא מתאפשרת ב- \mathbb{R}^n עם המטריקה האוקלידית).

פתרון:

נתבונן במרחב המטרי הבא:

$$d(a,b) = 3$$

 $X = \{a,b,c\}$ $d(b,c) = 4$
 $d(a,c) = 5$

נבחר כדור פתוח עם המרכז ב-a וברדיוס B(a,3) נסמנו B(a,3) ונקבל כי:

$$B(a,3) = \{a\} \rightarrow \overline{B(a,3)} = \{a\}$$

היות וכל יחידון הוא קבוצה סגורה, נשים לב כי היות ו- $B[a,3]=\{a,b\}$ כי בהכרח $B[a,3]=\{a,b\}$ כלומר זהו אכן כדור פתוח כנדרש.

כמו כן, B[a,3] הוא קבוצה פתוחה ב-(X,d) (כי המשלים שלה קבוצה סגורה ב-(X,d)), ולכן הפנים של קבוצה זו הא הכדור הסגור B[a,3] שהוא אינו כדור פתוח.