Базис, размерност, координати.

Определение 5.1. Непразно подмножество B на ненулево линейно пространство $V \neq \{\overrightarrow{\mathcal{O}}\}$ е базис, ако:

- (і) В е линейно независима система вектори и
- (ii) линейната обвивка l(B) = V на B съвпада с цялото пространство V .

ПРИМЕР 5.2. Векторите

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in F^n, \quad 1 \le i \le n$$

c единствена ненулева компонента 1 в i-та позиция образуват базис на пространството F^n на наредените n-торки c елементи от поле F.

За да докажем това да забележим, че за произволни $x_1, \ldots, x_n \in F$ е в сила

$$x_1e_1 + \ldots + x_ie_i + \ldots + x_ne_n = (x_1, \ldots, x_i, \ldots, x_n).$$

Затова от $x_1e_1+\ldots+x_ne_n=(x_1,\ldots,x_n)=(0,\ldots,0)$ следва $x_1=\ldots=x_n=0$ и векторите e_1,\ldots,e_n са линейно независими. Произволна наредена n-торка $x=(x_1,\ldots,x_n)\in F^n$ е линейна комбинация $x=x_1e_1+\ldots+x_ne_n$ на $e_1,\ldots,e_n\in F^n$ с коефициенти $x_1,\ldots,x_n\in F$, така че $l(e_1,\ldots,e_n)=F^n$ и по определение, e_1,\ldots,e_n е базис на F^n .

Пример 5.3. Мономите $1, x, \dots, x^{n-1}$ образуват базис на линейното пространство

$$F[x]^{(\leq n-1)} = \left\{ \sum_{i=0}^{n-1} a_i x^i \, \middle| \, a_i \in F \right\}$$

на полиномите на x от степен $\leq n-1$ с коефициенти от поле F.

Наистина, всеки полином от $F[x]^{(\leq n-1)}$ е линейна комбинация на $1,x,\ldots,x^{n-1}$ с коефициенти от F. По определение, полиномът $\sum\limits_{i=0}^{n-1}a_ix^i\equiv 0$ е тъждествено нулев точно когато всичките му коефициенти $a_i=0$ се анулират. Това доказва, че $1,x,\ldots,x^{n-1}$ са линейно независими, а оттам и базис на $F[x]^{(\leq n-1)}$.

ПРИМЕР 5.4. Множеството $\{x^m \mid m \in \mathbb{Z}^{\geq 0}\}$ на всички мономи е базис на пространството F[x] на всички полиноми на x с коефициенти от F. Пространството F[x] няма краен базис.

Ясно е, че всеки полином $f(x) \in F[x]$ е линейна комбинация на краен брой мономи на x с коефициенти от F. Ако допуснем, че $\{x^m \mid m \in \mathbb{Z}^{\geq 0}\}$ е линейно зависима система вектори от линейното пространство F[x] над F, то съществува крайна линейно зависима подсистема $\{x^{i_1},\ldots,x^{i_k}\}, 0 \leq i_1 < \ldots < i_k$ от мономи. Съгласно $\{x^{i_1},\ldots,x^{i_k}\}\subseteq \{1,x,\ldots,x^{i_k}\}\subset F[x]^{(\leq i_k)}$ и линейната независимост на базиса $1,x,\ldots,x^{i_k}$ на $F[x]^{(\leq i_k)}$, мономите x^{i_1},\ldots,x^{i_k} са линейно независими. Това противоречи на предположението и доказва, че $\{x^m \mid m \in \mathbb{Z}^{\geq 0}\}$ е линейно независима система, а оттам и базис на F[x].

Допускаме, че линейното пространство F[x] има краен базис $f_1(x),\ldots,f_s(x)\in F[x]$. Линейната независимост изисква полиномите $f_i(x)\not\equiv 0$ да не се анулират тъждествено за всички $1\leq i\leq s$. Следователно $\deg f_i(x)=d_i\in\mathbb{Z}^{\geq 0}$ за всички $1\leq i\leq s$ и можем да разгледаме максималната степен $d:=\max(d_1,\ldots,d_s)$ на полином от този базис. Линейната обвивка $l(f_1(x),\ldots,f_s(x))$ се състои от полиноми $\lambda_1 f_1(x)+\ldots+\lambda_s f_s(x),\,\lambda_i\in F$ от степен $\leq d$. Но по определението за базис, линейната обвивка $l(f_1(x),\ldots,f_s(x))=F[x]$ съвпада с пространството F[x] и мономът $x^{d+1}\in F[x]=l(f_1(x),\ldots,f_s(x))\subseteq F[x]^{(\leq d)}$ се оказва полином от степен $\leq d$. Това е противоречие, което доказва, че линейното пространство F[x] над F няма краен базис.

Да забележим, че нулевото пространство $\{\overrightarrow{\mathcal{O}}\}$ няма базис, защото не съдържа линейно независима система вектори.

Определение 5.5. Линейно пространство V над поле F е крайномерно, ако $V = \{\overrightarrow{\mathcal{O}}\}$ е нулевото пространство или V има краен базис b_1, \ldots, b_n .

Пространството F^n на наредените n-торки с елементи от поле F е крайномерно, защото има краен базис

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in F^n, \quad 1 \le i \le n.$$

Пространството $F[x]^{(\leq n-1)}$ на полиномите на x от степен $\leq n-1$ с коефициенти от F е крайномерно, защото има краен базис $1,x,\ldots,x^{n-1}$.

Пространството F[x] на полиномите на x с коефициенти от F не е крайномерно, защото няма краен базис.

Твърдение 5.6. Линейно пространство V над поле F е крайномерно тогава и само тогава, когато $V = l(a_1, \ldots, a_n)$ е линейна обвивка на краен брой вектори. В такъв случай, ако $V \neq \{\overrightarrow{\mathcal{O}}\}$, то можем да изберем базис на V, съставен от подмножество на $\{a_1, \ldots, a_n\}$.

ДОКАЗАТЕЛСТВО. Ако $V = \{ \overrightarrow{\mathcal{O}} \}$ е нулевото пространство, то $V = l(\overrightarrow{\mathcal{O}})$ е линейна обвивка на един вектор. Ако V има краен базис b_1, \ldots, b_k , то отново $V = l(b_1, \ldots, b_k)$ е линейна обвивка на краен брой вектори.

Нека $V = l(a_1, \ldots, a_n)$ е линейна обвивка на краен брой вектори. Ако $a_i = \overrightarrow{\mathcal{O}}$ за всички $1 \leq i \leq n$, то $V = \{\overrightarrow{\mathcal{O}}\}$ е нулевото пространство.

Ако съществува $a_i \neq \overrightarrow{\mathcal{O}}$, то след преномерация можем да считаме, че $a_1 \neq \overrightarrow{\mathcal{O}}$. Тогава a_1 е линейно независим и $l(a_1) \subseteq V$. При $l(a_1) = V$ получаваме, че a_1 е базис на V и V е крайномерно пространство. В случая $l(a_1) \subsetneq V = l(a_1, a_2, \ldots, a_n)$ съществува вектор $a_i \not\in l(a_1)$ за някое естествено $2 \leq i \leq n$. В противен случай от $a_2, \ldots, a_n \in l(a_1)$ следва $l(a_1, a_2, \ldots, a_n) \subseteq l(a_1)$, защото

 $l(a_1)$ е подпространство на V. Вземайки предвид $l(a_1) \subseteq l(a_1, \ldots, a_n)$, получаваме $l(a_1) = l(a_1, \ldots, a_n) = V$, противно на предположението. След преномериране на a_2, \ldots, a_n можем да считаме, че $a_2 \notin l(a_1)$. По Лемата за линейна независимост (Лема 3.4) системата a_1, a_2 е линейно независима.

Ясно е, че $l(a_1,a_2)\subseteq l(a_1,\ldots,a_n)=V$. Ако $l(a_1,a_2)=V$, то a_1,a_2 е базис на V. При $l(a_1,a_2)\subsetneq l(a_1,\ldots,a_n)=V$ съществува $3\leq i\leq n$ с $a_i\not\in l(a_1,a_2)$. След преномериране на a_3,\ldots,a_n имаме $a_3\not\in l(a_1,a_2)$, така че a_1,a_2,a_3 са линейно независими по Лема 3.4 за линейна независимост.

Продължавайки по същия начин, да предположим, че a_1,\dots,a_m за някое m < n са линейно независими вектори. Ако $l(a_1,\dots,a_m) = V$, то a_1,\dots,a_m е базис на V. В противен случай, $l(a_1,\dots,a_m) \subsetneq V = l(a_1,\dots a_n)$ и съществува $a_i \not\in l(a_1,\dots,a_m)$ за някое $m+1 \le i \le n$. След преномерация на a_{m+1},\dots,a_n можем да считаме, че $a_{m+1} \not\in l(a_1,\dots,a_m)$. По Лема 3.4 за линейна независимост a_1,\dots,a_m,a_{m+1} са линейно независими вектори.

Векторите a_1, \ldots, a_n са краен брой, така че след краен брой стъпки ще намерим линейно независими вектори $a_1, \ldots, a_k, \ k \le n$ с $l(a_1, \ldots, a_k) = V$. Тогава a_1, \ldots, a_k е базис на V.

Твърдение 5.7. Всеки два базиса на ненулево крайномерно пространство V над поле F имат един и същи брой вектори.

ДОКАЗАТЕЛСТВО. Нека a_1, \ldots, a_n и b_1, \ldots, b_m са базиси на линейно пространство V над поле F. Линейната независимост на

$$b_1,\ldots,b_m\in V=l(a_1,\ldots,a_n)$$

изисква $m \leq n$ съгласно Лема 3.3 за линейна зависимост, която се нарича и Основна лема на линейната алгебра. Аналогично, от линейната независимост на

$$a_1, \ldots, a_n \in V = l(b_1, \ldots, b_m)$$

получаваме $n \leq m$ чрез прилагане на Основната лема на линейната алгебра - Лема 3.3. Следователно m=n и всеки два базиса на ненулево крайномерно пространство V имат един и същи брой вектори.

Определение 5.8. Броят на векторите в един, а оттам и всеки един базис на ненулево крайномерно пространство V се нарича размерност на V и се бележи c $\dim V$.

Размерността на нулевото пространство $\{\overrightarrow{\mathcal{O}}\}\ e\ \dim\{\overrightarrow{\mathcal{O}}\}=0$. Ненулевите линейни пространства V, които не са крайномерни имат размерност $\dim V=\infty$.

ПРИМЕР 5.9. Пространството F^n на наредените n-торки c елементи от F е c размерност $\dim F^n = n$, защото има базис e_1, \ldots, e_n , съставен от n вектора.

Пространството $F[x]^{(\leq n-1)}$ на полиномите на x от степен $\leq n-1$ с коефициенти от F е c размерност n, защото има базис $1, x, \ldots, x^{n-1}$, съставен от n елемента.

Пространството F[x] на всички полиноми на x с коефициенти от F е безкрайномерно, $\dim F[x] = \infty$, защото е ненулево пространство без краен базис.

Твърдение 5.10. Следните свойства са еквивалентни за вектори e_1, \ldots, e_n от линейно пространство V над поле F:

(i) $e_1, \ldots, e_n \in V$ е базис на V;

(ii) всеки вектор $v \in V$ има единствено представяне

$$v = x_1 e_1 + \ldots + x_n e_n$$

като линейна комбинация на e_1, \ldots, e_n с коефициенти $x_1, \ldots, x_n \in F$. Наредената n-торка (x_1, \ldots, x_n) на коефициентите от представянето $v = x_1e_1 + \ldots + x_ne_n$ се състои от координатите на v спрямо базиса e_1, \ldots, e_n .

ДОКАЗАТЕЛСТВО. $(i)\Rightarrow (ii)$ Ако e_1,\ldots,e_n е базис на V, то $V=l(e_1,\ldots,e_n)$ и произволен вектор $v\in V$ има представяне $v=x_1e_1+\ldots+x_ne_n$ като линейна комбинация на e_1,\ldots,e_n с коефициенти $x_1,\ldots,x_n\in F$. Ако

$$x_1e_1 + \ldots + x_ne_n = v = y_1e_1 + \ldots + y_ne_n$$
 c $x_i, y_i \in F$

са две представяния на v като линейни комбинации на e_1, \ldots, e_n , то

$$(x_1 - y_1)e_1 + \ldots + (x_n - y_n)e_n = \overrightarrow{\mathcal{O}}.$$

Съгласно линейната независимост на $e_1,\dots,e_n,$ оттук следва $x_i-y_i=0$ за всички $1\leq i\leq n$ и представянето $v=x_1e_1+\dots+x_ne_n$ е единствено.

 $(ii)\Rightarrow (i)$ Ако всеки вектор $v\in V$ има представяне $v=x_1e_1+\ldots+x_ne_n$ като линейна комбинация на e_1,\ldots,e_n , то $l(e_1,\ldots,e_n)=V$. Съгласно единствеността на представянето на нулевия вектор като линейна комбинация на $e_1\ldots,e_n\in V$, от

$$x_1e_1 + \ldots + x_ne_n = \overrightarrow{\mathcal{O}} = 0e_1 + \ldots + 0e_n$$

следва анулирането на всички коефициенти $x_1 = \ldots = x_n = 0$. Това доказва, че e_1, \ldots, e_n са линейно независими, а оттам и базис на V.

Твърдение 5.11. Нека V е ненулево линейно пространство над поле F. B такъв случай:

(i) $\dim V = n$ тогава и само тогава, когато съществуват n линейно независими вектора $a_1,\dots,a_n\in V$ и произволни n+1 вектора $b_1,\dots,b_{n+1}\in V$ са линейно зависими;

 $(ii) \dim V = \infty$ тогава и само тогава, когато за всяко естествено число n съществуват n линейно независими вектора $a_1, \ldots, a_n \in V$.

Доказателство. (i) Нека $\dim V=n$ и a_1,\dots,a_n е базис на V. Тогава $a_1,\dots,a_n\in V$ са линейно независими и произволни n+1 вектора

$$b_1, \ldots, b_{n+1} \in V = l(a_1, \ldots, a_n)$$

са линейно зависими съгласно Основната лема на линейната алгебра - Лема 3.3 за линейна зависимост.

Обратно, нека $a_1,\ldots,a_n\in V$ са линейно независими и произволни n+1 вектора $b_1,\ldots,b_{n+1}\in V$ са линейно зависими. Достатъчно е да докажем, че $l(a_1,\ldots,a_n)=V$, за да твърдим, че a_1,\ldots,a_n е базис на V и $\dim V=n$. Линейната обвивка $l(a_1,\ldots,a_n)$ на произволни вектори a_1,\ldots,a_n от линейно пространство V се съдържа във V. Затова допускането $l(a_1,\ldots,a_n)\neq V$ е еквивалентно на $l(a_1,\ldots,a_n)\subsetneq V$. Тогава съществува вектор $a_{n+1}\in V\setminus l(a_1,\ldots,a_n)$ и $a_1,\ldots,a_n,a_{n+1}\in V$ са линейно независими, съгласно Лема 3.4 за линейна независимост. Това противоречи на предположението за линейна зависимост на произволни n+1 вектора от V и доказва $l(a_1,\ldots,a_n)=V$.

(ii) От $V \neq \{\overrightarrow{\mathcal{O}}\}$ следва съществуването на ненулев вектор $a \in V \setminus \{\overrightarrow{\mathcal{O}}\}$, който е линейно независим съгласно Твърдение 3.2 (i).

С допускане на противното, нека $\dim V = \infty$ и съществува естествено число n, така че произволни n вектора $b_1,\ldots,b_n\in V$ са линейно зависими. Тогава $n\geq 2$ и ако n е минималното естествено с това свойство, то съществуват n-1 линейно независими вектора $a_1,\ldots,a_{n-1}\in V$. Съгласно (i), оттук следва $\dim V=n-1$. Противоречието доказва, че ако $\dim V=\infty$, то за произволно естествено число n съществуват n линейно независими вектора от V.

Да предположим, че за всяко естествено число m съществуват m линейно независими вектора от V и $\dim V \neq \infty$. Съгласно предположението $V \neq \{\overrightarrow{\mathcal{O}}\}$ имаме $\dim V = n$ за някое естествено число n. Тогава (i) изисква произволни n+1 вектора от V да са линейно зависими. Противоречието доказва, че $\dim V = \infty$, ако за произволно естествено число $m \in \mathbb{N}$ съществуват m линейно независими вектора от V.

Твърдение 5.12. Следните условия са еквивалентни за n вектора a_1, \ldots, a_n от n-мерно линейно пространство V над поле F:

(i) a_1,\ldots,a_n са линейно независими;

(ii) $l(a_1,\ldots,a_n)=V$;

(iii) a_1,\ldots,a_n е базис на V.

Доказателство. По определението за базис, от (iii) следват (i) и (ii).

(i) \Rightarrow (ii) и (iii) Твърдим, че ако a_1,\dots,a_n са n линейно независими вектора от n-мерно линейно пространство V, то $l(a_1,\dots,a_n)=V$ и a_1,\dots,a_n е базис на V. В противен случай, $l(a_1,\dots,a_n)\neq V$ е еквивалентно на $l(a_1,\dots,a_n)\subsetneq V$ и води до съществуването на вектор $a_{n+1}\in V\setminus l(a_1,\dots,a_n)$. По Лема 3.4 за линейна независимост, векторите $a_1,\dots,a_n,a_{n+1}\in V$ са линейно независими. Това противоречи на Твърдение 5.11 (i), съгласно което произволни n+1 вектора в n-мерно пространство V са линейно зависими. Противоречието доказва, че ако a_1,\dots,a_n са линейно независими, то $l(a_1,\dots,a_n)=V$.

(ii) \Rightarrow (i) и (iii) Твърдим, че ако $l(a_1, \ldots, a_n) = V$ за n-мерно линейно пространство V, то a_1, \ldots, a_n са линейно независими, а оттам и базис на V. В противен случай, от линейната зависимост на a_1, \ldots, a_n следва съществуването на индекс $1 \leq i \leq n$ с $a_i \in l(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$. Тогава

$$l(a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_n) \subseteq l(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$$

и комбинирайки с включването

$$l(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n) \subseteq l(a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_n),$$

получаваме

$$V = l(a_1, \ldots, a_n) = l(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n).$$

Съгласно доказателството на Твърдение 5.6, съществува базис на V, който се съдържа в множеството $\{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n\}$ и размерността на V е $\dim V \leq n-1$. Това противоречи на предположението $\dim V = n$ и доказва, че ако $l(a_1,\ldots,a_n) = V$, то a_1,\ldots,a_n са линейно независими, а оттам и базис на V

Следствие 5.13. Нека V е n-мерно линейно пространство над поле F, а W е подпространство на V. Тогава $\dim W \leq \dim V = n$ с равенство $\dim W = \dim V = n$ тогава и само тогава, когато W = V съвпадат.

Доказателство. Да допуснем, че подпространството W на линейното пространство V има $\dim(W)>\dim(V)=n$. Тогава $\dim(W)\in\mathbb{N}\cup\{\infty\}$ изпълнява неравенството $\dim(W)\geq n+1$. Ако $\dim(W)=m\in\mathbb{N}$, то съгласно Твърдение 5.11 (i) съществуват m линейно независими вектора $w_1,\ldots,w_m\in W,\,m\geq n+1$. В случая $\dim(W)=\infty$, по Твърдение 5.11 (ii) съществуват m линейно независими вектора $w_1,\ldots,w_m\in W$ за всяко $m\in\mathbb{N}$. Независимо от това дали W е крайномерно или безкрайномерно, имаме n+1 линейно независими вектора $w_1,\ldots,w_n,w_{n+1}\in W\subseteq V$. Възоснова на Твърдение 5.11 (i), това противоречи на $\dim(V)=n$ и доказва $\dim(W)\leq \dim(V)$.

Ако $\dim(W) = \dim(V) = n$, то произволни n линейно независими вектора

$$e_1, \ldots, e_n \in W \subseteq V$$

образуват базис на W и базис на V, възоснова на Твърдение 5.12. Следователно

$$W = l(e_1, \ldots, e_n) = V.$$

ТВЪРДЕНИЕ 5.14. Нека b_1, \ldots, b_k са линейно независими вектори от пмерно линейно пространство V над поле F. Тогава $k \leq n$ и векторите b_1, \ldots, b_k могат да се допълнят до базис $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ на V.

Доказателство. Нека e_1,\dots,e_n е базис на V. Линейната независимост на

$$b_1,\ldots,b_k\in V=l(e_1,\ldots,e_n)$$

изисква $k \leq n$ съгласно Основната лема на линейната алгебра - Лема 3.3 за линейна зависимост. Същото следва от Твърдение 5.11 (1) , съгласно което произволни n+1 вектора в n-мерно пространство V са линейно зависими, така че ако b_1,\ldots,b_k са линейно независими, то $k\leq n$.

Ако k = n, то линейно независимите вектори b_1, \ldots, b_n в n-мерно линейно пространство V образуват базис на V по Твърдение 5.12.

За k < n е в сила строго включване $l(b_1,\ldots,b_k) \subsetneq V$, защото от $l(b_1,\ldots,b_k) = V$ за линейно независими вектори b_1,\ldots,b_k следва, че b_1,\ldots,b_k е базис на V и $\dim(V)=k < n$. Избираме вектор $b_{k+1} \in V \setminus l(b_1,\ldots,b_k)$. Тогава b_1,\ldots,b_k,b_{k+1} са линейно независими по Лема 3.4 за линейна независимост. Ако k+1=n, то $l(b_1,\ldots,b_k,b_{k+1})=V$. В случая k+1 < n имаме $l(b_1,\ldots,b_k,b_{k+1}) \subsetneq V$ и съществува $b_{k+2} \in V \setminus l(b_1,\ldots,b_k,b_{k+1})$. Тогава векторите $b_1,\ldots,b_k,b_{k+1},b_{k+2}$ са линейно независими по Лема 3.4 за линейна независимост. Продължавайки по същия начин, след краен брой стъпки получаваме n линейно независими вектора

 $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ от n-мерното пространство V така, че $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ е базис на V съгласно Твърдение 5.12.

Задача 5.15. В пространството

$$\mathbb{R}[x]^{(\leq 4)} = \{ f(x) \in \mathbb{R}[x] \mid \deg(f) \leq 4 \}$$

на полиномите на x с реални коефициенти и степен ≤ 4 е дадено подмножеството

$$U = \{ f(x) \in \mathbb{R}[x]^{(\leq 4)} \mid f(1) = f'(1) \},\$$

където f'(1) е стойността на производната f'(x) на f(x) в точката x=1.

- (i) Да се докаже, че U е подпространство на $\mathbb{R}[x]^{(\leq 4)}$.
- (ii) Да се намери базис B на U.
- (iii) Да се допълни B до базис на $\mathbb{R}[x]^{(\leq 4)}$.

Решение: (i) Съгласно Твърдение 2.7, достатъчно е да проверим, че за произволни $f(x), g(x) \in U$ и $r \in \mathbb{R}$ е в сила $f(x) + g(x) \in U$, $rf(x) \in U$, за да твърдим, че U е подпространство на $\mathbb{R}[x]^{(\leq 4)}$. Наистина, от (f+g)' = f' + g', f(1) = f'(1) и g(1) = g'(1) следва

$$(f+g)(1) = f(1) + g(1) = f'(1) + g'(1) = (f+g)'(1),$$

така че $f(x)+g(x)\in U.$ Аналогично, (rf)'=rf' и f(1)=f'(1) са достатъчни за

$$(rf)(1) = rf(1) = rf'(1) = (rf)'(1),$$

откъдето $rf(x) \in U$. Това доказва, че U е подпространство на $\mathbb{R}[x]^{(\leq 4)}$.

(ii) Произволен полином $f(x)=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4\in\mathbb{R}[x]^{(\leq 4)}$ има производна $f'(x)=a_1+2a_2x+3a_3x^2+4a_4x^3$. Следователно

$$a_0 + a_1 + a_2 + a_3 + a_4 = f(1) = f'(1) = a_1 + 2a_2 + 3a_3 + 4a_4$$

тогава и само тогава, когато

$$a_0 = a_2 + 2a_3 + 3a_4 \tag{5.1}$$

за произволни $a_1,a_2,a_3,a_4\in\mathbb{R}$. За да получим полиноми от U полагаме първо $a_1=1,\,a_2=a_3=a_4=0$ в (5.1) и получаваме $a_0=0$. Следователно полиномът $f_1(x):=x\in U$ принадлежи на U. Аналогично, ако $a_2=1,\,a_1=a_3=a_4=0$, то $a_0=1$ и $f_2(x):=x^2+1\in U$. За $a_3=1,\,a_1=a_2=a_4=0$ имаме $a_0=2$ и $f_3(x):=x^3+2\in U$. Накрая, при $a_4=1,\,a_1=a_2=a_3=0$ получаваме $a_0=3$ от (5.1), така че $f_4(x):=x^4+3\in U$.

За произволни $\lambda_1,\lambda_2,\lambda_3,\lambda_4\in\mathbb{R}$ полиномът

$$0 \equiv \lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) + \lambda_4 f_4(x) =$$

$$= \lambda_1(x) + \lambda_2(x^2 + 1) + \lambda_3(x^3 + 2) + \lambda_4(x^4 + 3) =$$

$$= \lambda_4 x^4 + \lambda_3 x^3 + \lambda_2 x^2 + \lambda_1 x + (\lambda_2 + 2\lambda_3 + 3\lambda_4)$$

е тъждествено нулев точно когато $0 = \lambda_4 = \lambda_3 = \lambda_2 = \lambda_1$. Това доказва линейната независимост на $f_1(x), f_2(x), f_3(x), f_4(x) \in U$.

Произволен полином $f(x) \in U$ може да се представи като линейна комбинация

$$f(x) = \sum_{i=0}^{4} a_i x^i = (a_2 + 2a_3 + 3a_4) + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 =$$

$$= a_1 x + a_2 (x^2 + 1) + a_3 (x^3 + 2) + a_4 (x^4 + 3) =$$

$$= a_1 f_1(x) + a_2 f_2(x) + a_3 f_3(x) + a_4 f_4(x)$$

на $f_1(x), f_2(x), f_3(x), f_4(x)$ с реални коефициенти $a_1, a_2, a_3, a_4 \in \mathbb{R}$. Следователно линейната обвивка $l(f_1(x), f_2(x), f_3(x), f_4(x)) = U$ на построените полиноми съвпада с U и $f_1(x), f_2(x), f_3(x), f_4(x)$ е базис на U.

(iii) В 5-мерното пространство $\mathbb{R}[x]^{(\leq 4)}$ произволни пет линейно независими полинома образуват базис, съгласно Твърдение 5.12. По Лемата за линейна независимост - Лема 3.4, произволен полином

$$f_5(x) \in \mathbb{R}[x]^{(\leq 4)} \setminus l(f_1(x), f_2(x), f_3(x), f_4(x)) = \mathbb{R}[x]^{(\leq 4)} \setminus U$$

задава линейно независима система вектори $f_1(x), f_2(x), f_3(x), f_4(x), f_5(x) \in \mathbb{R}[x]^{(\leq 4)}$. Константният полином $f_5(x) := 1$ има тъждествено нулева производна $f_5'(x) \equiv 0$ и $f_5(1) = 1 \neq 0 = f_5'(1)$. Следователно $f_5(x) = 1 \in \mathbb{R}[x]^{(\leq 4)} \setminus U$ и $f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)$ са линейно независими вектори от $\mathbb{R}[x]^{(\leq 4)}$. Съгласно $\dim(\mathbb{R}[x]^{(\leq 4)} = 5$, полиномите $f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)$ образуват базис на $\mathbb{R}[x]^{(\leq 4)}$.