Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems Electrical Engineering Brief

Content

- Basic terms of electrostatics
- Passive components in electronic circuits
- Semiconductors

Electric Charge

- ▶ **Q** [As] or [Coulomb]
- ▶ Multiple of elementary charge $Q = z \cdot e_0, z \in \mathbb{Z}, e_0 = 1.6 \cdot 10^{-19} As$

$$F \propto rac{Q_1 Q_2}{r^2}$$

Electric Field

▶ Force per Charge

$$E = \frac{F_C}{q}, \left[\frac{V}{m}\right]$$

- Vectoral field quantity
- Visualized by field lines
 - Positive to negative
 - Orthogonal to surface
 - ▶ Density

 intensity

Electric Potential

Specific energy required to move the test charge into electric field

$$\varphi = \frac{W}{Q}, [V]$$

- Scalar field quantity
- Visualized by lines of equal potential

Electric Voltage

▶ Specific energy required to move the test charge *inside* the electric field

$$U = \triangle \varphi, [V]$$

Difference in potentials

Electric Capacity

$$C = \frac{Q}{U}, \left\lceil \frac{As}{V} \right\rceil, [F]$$

Parallel-plate capacitor

$$C \propto rac{A}{d}$$

Parallel circuit

$$C=C_1+C_2$$

Series circuit

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \Leftrightarrow C = \frac{C_1 C_2}{C_1 + C_2}$$

Plate separation d

Electric Current

► Flow of electric charge through a region

$$I = \frac{\triangle Q}{\triangle t}, [A]$$

- Current flow: + → −
- ▶ Electron movement: → +

Electrical Resistance

Ohm's law

$$R = \frac{U}{I}$$

- Conductor type
 - ▶ Metallic $B \propto \sigma I A^{-1}$
 - ▶ Isolator $R \to \infty$
 - Semiconductor non-linear
- Series circuit

$$R = R_1 + R_2$$

Parallel circuit

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \Leftrightarrow R = \frac{R_1 R_2}{R_1 + R_2}$$

Electrical Power

▶ Work done per unit time

$$P = \frac{UQ}{t} = UI$$

For resistive loads

$$P = I^2 R = \frac{U^2}{R}$$

Kirchhoff's circuit laws

Junction rule (charge conservation)

$$\sum_{k} I_{k} = 0$$

Kirchhoff's circuit laws

Junction rule (charge conservation)

Mesh rule (potential conservation)

$$\sum_{k} I_{k} = 0$$

$$\sum_{k} U_{k} = 0$$

- Mesh 1: $U_0 = U_{R1} + U_{R2}$
- Mesh 2: $U_{R1} = U_{R2}$
- Mesh 3: $U_0 = U_{R2} + U_{R3}$

Voltage divider

- ▶ Junction rule $I = I_{R_1} = I_{R_2}$
- ► Ohm's Law $U_{R_x} = R_x \cdot I_{R_x}$
- Series circuit $U = (R_1 + R_2) \cdot I$
- Mesh rule $U = U_{R_1} + U_{R_2}$

Divider relation

$$U_{R_x} = U \frac{R_x}{R_1 + R_2}$$

Electrical sources

- Voltage source
 - Constant voltage, independent of current
- Current source
 - Constant current, independent of voltage
- Real world
 - Linear power supply (due to internal resistance)
 - Switched-mode power supply
- Bench power supply
 - Set voltage, limit current to avoid damage

Charging a Capacitor

- Mesh rule
- Capacitor
- Ohm's law
- Current flow
- Substitute
- Differential equation
- Charge voltage
- Charge current

$$U_0 = U_B(t) + U_C(t)$$

$$U_C(t) = \frac{1}{C}Q(t)$$

$$U_R(t) = RI(t)$$

$$I(t) = \frac{\triangle Q(t)}{\triangle t}$$

$$\frac{U_0}{R} = \frac{\triangle Q(t)}{\triangle t} + \frac{Q(t)}{RC}$$

$$U_C(t) = U_0 \left(1 - e^{-\frac{t}{RC}}\right)$$

$$I_C(t) = \tfrac{U_0}{R} e^{-\frac{t}{RC}}$$

Impedance

Complex quantity

$$Z = R + jX$$

- ▶ Angular frequency $\omega = 2\pi f$
- Capacitor

$$Z_C = \frac{1}{j\omega C}$$

Inductor

$$Z_L = j\omega L$$

Filter

Example: First order low-pass

Filter

Example: First order low-pass

Complex voltage divider

$$U_o = U_i \left| \frac{\frac{1}{j\omega C}}{\frac{1}{j\omega C} + R} \right| = U_i \left| \frac{1}{1 + j\omega CR} \right| = U_i \frac{1}{\sqrt{1 + (\omega CR)^2}}$$

Semiconductor

- Silicon, Germanium, ...
- Strong covalent bonding
 - No free movable charge for current flow
- Electric conductivity increases with
 - Temperature
 - n-type doping with donator
 - p-type doping with acceptor

Diode

▶ PN junction

LED

► MULTICOMP 703-0090

► Forward voltage 1.8 V

Operating current 20 mA

► Reverse voltage —4 V

Required series resistor for U = 5 V

$$R = \frac{U_R}{I_D} = \frac{U - U_D}{I_D} = 160 \,\Omega$$

Bipolar-Junction-Transistor

MOSFET

Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems {heinz,hofmann}@esa.tu-darmstadt.de

