

Centro Universitário de Brasília

Faculdade de Tecnologia e Ciências Sociais Aplicadas - FATECS

Curso Bacharel em Ciência da Computação

SISTEMATIZAÇÃO 01 – EXPERIMENTO PHET

Lei de Ohm e Resistores em Série e Paralelo: Análise de Corrente e Tensão em um Circuito Virtual

[Daniel Nogueira]

[Gabriel Costa]

[Henrique Bittencourt]

Brasília – DF

[2025]

Sumário

Objetivo:	3
CONHECIMENTO RELEVANTE	3
VARIAVEIS	3
Associação de Resistores:	3
Procedimento Experimental	3
Circuito 1	4
Circuito 2:	4
Circuito 3:	6

Objetivo: Verificar a validade da Lei de Ohm (V=RxI) em circuitos virtuais, comparar o

comportamento da corrente e tensão em associações de resistores em série e paralelo e

determinar a resistência equivalente em diferentes configurações.

Hipótese: Se a tensão em um resistor aumentar, a corrente elétrica também aumentará. Os

resistores em paralelo terão menor resistência equivalente do que os em série.

Conhecimento relevante

Lei de Ohm: Relaciona tensão (VV), corrente (II) e resistência (RR) em um circuito.

Variáveis

Corrente elétrica (II)

Tensão da fonte (V), valores dos resistores (Q), tipo de associação (série/paralelo).

Associação de Resistores:

Série:

Req=R1+R2+...+RnR eq=R 1 +R 2 +...+R n.

Paralelo:

1Req=1R1+1R2+...+1RnR eq 1 = R1 1 + R 2 1 +...+R n 1.

Procedimento Experimental

Acesse a simulação: Circuit Construction Kit: DC - PHET.

Monte os circuitos:

3

Circuito 1- 1 resistor com 10Ω e uma fonte de 5 V

Tabela de dados

Lei de Ohm (Circuito 1) simples					
Tensão (V)	Resistência (Ω)	Corrente (A)			
5	10	0.5			

Imagem - 5 V e 10Ω

Circuito 2: Dois resistores em série 10Ω e 20Ω e uma fonte de 5 V

Tabela de dados

Lei de Ohm (Circuito 2) em série						
Tensão (V)	Resistência 1 (Ω)	Resistência 2 (Ω)	Corrente (A)			
5	10	20	0.17			

obs: houve uma variação de tensão de 5V para 3.33V entre as Resistências 1 e 2

Imagem - 5 V e 10 e 20 Ω em série

Circuito 3: Dois resistores em paralelo 10Ω e 20Ω e uma fonte de 5 V

Tabela de dados

Lei de Ohm (Circuito 3) em Paralelo						
Tensão	Resistência 1 (Ω	Resistência 2 (Ω	Corrente 1	Corrente 2	Corrente 3	
(V))		(A)	(A)	(A)	
5	10	20	0.75	0.50	0.25	

obs: Não houve uma variação de tensão entre as resistências.

Imagem - 5 V e 10 e 20 Ω em Paralelo

Conclusão:

Após realização dos circuitos conseguimos concluir que,no circuito em série tivemos uma variação na tensão de 3.33 v entre os dois resistores, um de $10~\Omega$ e o outro de $20~\Omega$, porém não houve variação na corrente. Já no circuito em paralelo, não houve variação de tensão, porém, houve 3 variações distintas de corrente, uma de $0.50~\mathrm{A}$ no resistor de $10~\Omega$, outra de $0.25~\mathrm{A}$ no resistor de $20~\Omega$ e a última de $0.75~\mathrm{A}$