Differential and Integral Calculus : Recitations

Aakash Jog

2014-15

Contents

1	Instructor Information	4
Ι	Sequences and Series	5
1	Sequences	5
	Recitation 1 – Exercise 1	5
	Recitation 1 – Solution 1	5
	Recitation 1 – Exercise 2	5
	Recitation 1 – Solution 2	6
	Recitation 1 – Exercise 3	6
	Recitation 1 – Solution 3	6
	Recitation 1 – Exercise 4	6
	Recitation 1 – Solution 4	7
	Recitation 1 – Exercise 5	7
	Recitation 1 – Solution 5	7
	1.1 Limit of a Function by Heine	8
	Recitation 2 – Exercise 1	8
	Recitation 2 – Solution 1	8

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

	1.2 Sub-sequences			8
	Recitation 2 – Exercise 2			9
	Recitation 2 – Solution 2	•	•	9
2	2 Series			10
	Recitation 2 – Exercise 3			10
	Recitation 2 – Solution 3			11
	Recitation 2 – Exercise 4			11
	Recitation 2 – Solution 4			11
	Recitation 2 – Exercise 5			11
	Recitation 2 – Solution 5			11
	2.1 Comparison Tests for Positive Series			12
	Recitation 3 – Exercise 1			12
	Recitation 3 – Solution 1			12
	Recitation 3 – Exercise 2			12
	Recitation 3 – Solution 2			13
	Recitation 3 – Exercise 3			13
	Recitation 3 – Solution 3			13
	Recitation 3 – Exercise 4			13
	Recitation 3 – Solution 4			13
	Recitation 3 – Exercise 5			14
	Recitation 3 – Solution 5			14
	2.2 d'Alembert Criteria (Ratio Test)			14
	Recitation 3 – Exercise 6			15
	Recitation 3 – Solution 6			15
	2.3 Cauchy Criteria (Cauchy Root Test)			16
	Recitation 3 – Exercise 7			16
	Recitation 3 – Solution 7			16
	2.4 Leibniz's Criteria			16
	Recitation 3 – Exercise 8			17
	Recitation 3 – Solution 8			17
	2.5 Integral Test			17
	Recitation 3 – Exercise 9			17
	Recitation 3 – Solution 9			17
	Recitation 4 – Exercise 1			18
	Recitation 4 – Solution 1			18
	Recitation 4 – Exercise 2			19
	Recitation 4 – Solution 2			19
	Recitation 4 – Exercise 3			19
	Recitation 4 – Solution 3			19
	2.6 Power Series			20

Recitation 4 – Exercise 4.												20
Recitation 4 – Solution 4.												21
Recitation 4 – Exercise 5.												22
Recitation 4 – Solution 5.												22

1 Instructor Information

Michael Bromberg

 $\hbox{E-mail: micbromberg@gmail.com}$

Part I

Sequences and Series

1 Sequences

Recitation 1 – Exercise 1.

Prove:

$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$$

Recitation 1 – Solution 1.

Let

$$\varepsilon > 0$$

$$\left| \frac{2n^2 + n + 1}{n^2 + 3} - 2 \right| = \left| \frac{2n^2 + n + 1 - 2n^2 - 6}{n^2 + 3} \right|$$

$$= \left| \frac{n - 5}{n^2 + 3} \right|$$

$$\leq \left| \frac{n - 5}{n^2} \right|$$

$$\leq \frac{1}{n}$$

$$< \varepsilon$$

Therefore, let $N = \left[\frac{1}{\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$.

Recitation 1 – Exercise 2.

Prove

$$\lim_{n \to \infty} \frac{n^3 + \sin n + n}{2n^4} = 0$$

Recitation 1 – Solution 2.

Let $\varepsilon > 0$

$$\left| \frac{n^3 + \sin n + n}{2n^4} \right| \le \left| \frac{n^3 + 1 + n}{2n^4} \right|$$
$$\le \left| \frac{3n^3}{2n^4} \right| = \frac{3}{2} \cdot \frac{1}{n} < \varepsilon$$

Therefore, let $N = \left[\frac{3}{2\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$.

Therefore, $\lim_{n\to\infty} \frac{n^3 + \sin n + n}{2n^4} = 0$

Recitation 1 – Exercise 3.

Calculate $\sqrt[3]{n^3 + 3n} - n$.

Recitation 1 – Solution 3.

$$a^{n} - b^{n} = (a - b) \cdot (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

Therefore, let

$$a = \sqrt[3]{n^3 + 3n}$$
$$b = \sqrt[3]{n^3}$$

$$a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$$

$$\therefore \sqrt[3]{n^3 + 3n} - n = \frac{n^3 + 3n - n^3}{(n^3 + 3n)^{2/3} + (n^3 + 3n)^{1/3}n + n^2}$$

$$= \frac{3}{\left(\frac{n^3 + 3n}{n^{3/2}}\right)^{2/3} + \left(\frac{n^3 + 3n}{n^3}\right)^{1/3n} + n}$$

Therefore, the limit is 0.

Recitation 1 – Exercise 4.

Prove

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Recitation 1 – Solution 4.

$$0 \le \frac{n!}{n^n} = \frac{1}{n} \frac{2}{n} \dots \frac{n}{n} \le \frac{1}{n}$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.

Recitation 1 – Exercise 5.

Let $a_1 = 3$, $a_{n+1} = 1 + \sqrt{6 + a_n}$. Prove that a_n converges and find its limit.

Recitation 1 – Solution 5.

If possible, let $\lim_{n\to\infty} a_n = l$.

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

Taking the limit on both sides,

$$l = 1 + \sqrt{6 + l}$$

$$\therefore l - 1 = \sqrt{6 + l}$$

$$\therefore l = \frac{3 \pm \sqrt{29}}{2}$$

As
$$a_n \ge 0$$
, $l = \frac{3 + \sqrt{29}}{2}$.

$$a_2 = 1 + \sqrt{6 + a_1}$$
$$= 1 + \sqrt{6 + 3}$$
$$= 4$$

$$a_1 > a_1 > a_1$$

If possible, let $a_n \ge a_{n-1}$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

 $\ge 1 + \sqrt{6 + a_{n+1}} = a_n$

Therefore by induction, $\{a_n\}$ is monotonically increasing.

$$a_1 = 3$$

$$\therefore a_1 \le 5$$

If possible, let $a_n \leq 5$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n} \le q + \sqrt{11} \le 5$$

Therefore by induction, $\{a_n\}$ is bounded from above by 5.

1.1 Limit of a Function by Heine

Definition 1.

$$\lim_{x \to x_0} f(x) = l$$

if for every sequence x_n , such that $\lim_{n\to\infty} x_n = x_0$,

$$\lim_{n \to \infty} f(x_n) = l$$

Theorem 1. If f is continuous at x_0 and $x_n \to x_0$, then

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f_{x_0}$$

Recitation 2 – Exercise 1.

Calculate $\lim_{n\to\infty} \sqrt[n]{n}$.

Recitation 2 – Solution 1.

Let

$$f(x) = x^{1/x}$$

Therefore,

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}}$$

$$= 1$$

1.2 Sub-sequences

Recitation 2 – Exercise 2.

Find all partial limits and $\overline{\lim}$ and $\underline{\lim}$ of

$$a_n = \left(\cos\frac{\pi n}{4}\right)^n$$

Recitation 2 - Solution 2.

Let $k, z \in \mathbb{Z}$

$$\cos \frac{\pi n}{4} = \cos \frac{\pi (n+k)}{4}$$

$$\therefore \frac{\pi n}{4} = \frac{\pi (n+k)}{4} + 2\pi z$$

$$\therefore \pi n = \pi (n+k) + 8\pi z$$

$$\therefore k = 8z$$

Therefore,

$$a_{8k} = \left(\cos\frac{\pi \cdot 8k}{4}\right)^{8k}$$

$$= (\cos(2\pi k))^{8k}$$

$$= 1$$

$$a_{8k+1} = \left(\cos\frac{\pi \cdot (8k+1)}{4}\right)^{8k+1}$$

$$= \left(\cos\frac{\pi}{4}\right)^{8k+1}$$

$$= \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$a_{8k+2} = \left(\cos\frac{\pi \cdot (8k+2)}{4}\right)^{8k+2}$$

$$= \left(\cos\frac{\pi}{2}\right)^{8k+2}$$

Therefore,

$$\lim_{k \to \infty} a_{8k} = 1$$

$$\lim_{k \to \infty} a_{8k+1} = \lim_{k \to \infty} \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$= 0$$

Similarly,

$$\lim_{k \to \infty} a_{8k+2} = 0$$

$$\lim_{k \to \infty} a_{8k+3} = 0$$

$$\lim_{k \to \infty} a_{8k+4} = \lim_{k \to \infty} (-1)^{8k+4}$$

$$= 1$$

$$\lim_{k \to \infty} a_{8k+5} = 0$$

$$\lim_{k \to \infty} a_{8k+6} = 0$$

$$\lim_{k \to \infty} a_{8k+7} = 0$$

Therefore, $\{a_n\}$ has two partial limits, 0 and 1.

$$\overline{\lim} a_n = 1$$

$$\underline{\lim} a_n = 0$$

2 Series

Definition 2 (Convergence of a series). Let $\{a_n\}$ be a sequence. Let S_n be a sequence of partial sums of a_n , s.t.

$$S_n = \sum_{k=1}^n a_k$$

The series $\sum_{k=1}^{\infty} a_k$ is said to converge to l if

$$\lim_{n \to \infty} S_n = l$$

that is,

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n$$

Recitation 2 - Exercise 3.

Does
$$\sum_{k=0}^{\infty} q^k$$
 where $-1 < q < 1$ converge?

Recitation 2 – Solution 3.

$$\sum_{k=0}^{\infty} q^k = \lim_{n \to \infty} \sum_{k=0}^n q^k$$
$$= \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q}$$
$$= \frac{1}{1 - q}$$

Therefore, the series converges.

Recitation 2 – Exercise 4.

Does
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 converge?

Recitation 2 – Solution 4.

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$

$$= 1$$

Recitation 2 – Exercise 5.

Does
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^k$$
 converge?

Recitation 2 – Solution 5.

$$\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e$$
$$\therefore \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k \neq 0$$

Therefore, the necessary condition is nt satisfied. Hence, the series does not converge.

2.1 Comparison Tests for Positive Series

Theorem 2 (First Comparison Test). If $a_n \ge 0$, $b_n \ge 0$, and $a_n \le b_n$, then

- 1. If $\sum b_n$ converges, then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Theorem 3 (Second Comparison Test). If $a_n \geq 0$, $b_n \geq 0$ and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l$$

where $0 < l < \infty$, then $\sum a_n$ and $\sum b_n$ converge or diverge simultaneously.

Recitation 3 – Exercise 1.

Suppose the sequence a_n satisfies the condition

$$a_{n+1} - a_n > \frac{1}{n}$$

 $\forall n \in \mathbb{N}.$

Prove that $\lim_{n\to\infty} a_n = \infty$.

Recitation 3 – Solution 1.

$$a_{n+1} = a_{n+1} - a_n + a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 + a_1$$

$$= \sum_{k=1}^{n} (a_{k+1} - a_k) + a_1$$

$$\geq \sum_{k=1}^{n} \frac{1}{k} + a_1$$

As the harmonic series diverges, $\sum_{k=1}^{n} \frac{1}{k} + a_1$ diverges.

Therefore, by the First Comparison Test, $\sum_{k=1}^{\infty} (a_{k+1} - a_k)$ diverges.

Recitation 3 – Exercise 2.

Check the convergence of $\sum_{n=2}^{\infty} \frac{n + \sin n}{n^3 + \cos \pi n}$.

Recitation 3 – Solution 2.

The series is non-negative. Therefore, the comparison tests are applicable.

$$\frac{n+\sin n}{n^3+\cos \pi n} \le \frac{n+1}{n^3-1}$$

$$\therefore \frac{n+\sin n}{n^3+\cos \pi n} \le \frac{2n}{n^3-\frac{n^3}{2}}$$

$$\le \frac{4}{n^2}$$

Therefore, by the First Comparison Test, as $\frac{4}{n^2}$ converges, $\sum_{n=2}^{\infty} \frac{n + \sin n}{n^3 + \cos \pi n}$ also converges.

Recitation 3 – Exercise 3.

Let $a_n \geq 0$ and suppose that $\sum a_n$ converges. Prove that $\sum a_n^2$ converges. Is it true without the assumption $a_n \ge 0$?

Recitation 3 – Solution 3.

As $\sum a_n$ converges, $\lim_{n\to\infty} a_n = 0$. Therefore, $\exists N \in \mathbb{N}$, such that $\forall n > N$, $a_n < 1$. Therefore, $\forall n > N$, $a_n^2 \le a_n$. Hence, as $\sum_{n=N+1}^{\infty} a_n$ converges, $\sum_{n=N+1}^{\infty} a_n^2$ also

converges. Hence, $\sum_{n=1}^{\infty} a_n$ also converges.

This is not true without the assumption $a_n \geq 0$, as the argument $a_n^2 \leq a_n$ does not hold.

Recitation 3 – Exercise 4.

For which α does $\sum (\sqrt{n+1} - \sqrt{n})^{\alpha/2}$ converge?

Recitation 3 – Solution 4.

$$\sum \left(\sqrt{n+1} - \sqrt{n}\right)^{\alpha/2} = \sum \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}\right)^{\alpha/2}$$
$$= \sum \left(\frac{1}{\sqrt{n+1} - \sqrt{n}}\right)^{\alpha/2}$$

The series is positive. Therefore, the comparison tests are applicable.

Comparing with
$$\left(\frac{1}{\sqrt{n}}\right)^{\alpha/2}$$
,

$$\frac{\left(\frac{1}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2}}{\left(\frac{1}{\sqrt{n}}\right)^{\alpha/2}} = \left(\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2}$$

$$\therefore \lim_{n\to\infty} \left(\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2} = \left(\frac{1}{2}\right)^{\alpha/2}$$

 $\sum \frac{1}{n^{\alpha/2}}$ converges if and only if $\frac{\alpha}{4} > 1$, i.e. if an inly if $\alpha > 4$.

By the Second Comparison Test, $\sum \frac{1}{n^{\alpha/4}}$ and the series converge or diverge simultaneously.

Therefore, the series converges for $\alpha > 4$.

Recitation 3 – Exercise 5.

Check the convergence of $\sum_{n=1}^{\infty} \sin \frac{1}{n}$.

Recitation 3 – Solution 5.

$$\forall n \in \mathbb{N}, \sin \frac{1}{n} \ge 0$$

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$$

Therefore, by Second Comparison Test, $\sum \frac{1}{n}$ and $\sum \sin \frac{1}{n}$ diverge simultaneously.

2.2 d'Alembert Criteria (Ratio Test)

Definition 3 (Absolute and conditional convergence). The series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. The series $\sum a_n$ is said to converge conditionally if it converges but $\sum |a_n|$ diverges.

Theorem 4. If the series $\sum a_n$ converges absolutely then it converges.

Theorem 5 (d'Alembert Criteria (Ratio Test)). 1. If

$$\lim_{n \to \infty} \left| \frac{a_{n-1}}{a_n} \right| = L < 1$$

then $\sum a_n$ converges absolutely.

2. If

$$\lim_{n \to \infty} \left| \frac{a_{n-1}}{a_n} \right| = L > 1$$

(including $L = \infty$), then $\sum a_n$ converges diverges.

3. If L = 1, the test does not apply.

Recitation 3 – Exercise 6.

Check the convergence of $\sum \frac{(-1)^n \cdot n^{1000}}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}$.

Recitation 3 – Solution 6.

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n \cdot n^{1000}}{1 \cdot \dots \cdot (2n-1)} \right| = \sum_{n=1}^{\infty} \frac{n^{1000}}{1 \cdot \dots \cdot (2n-1)}$$

Therefore, by the d'Alembert Criteria (Ratio Test),

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{1000}}{1 \cdot \dots \cdot (2n+1)}}{\frac{n^{1000}}{1 \cdot \dots \cdot (2n-1)}}$$

$$= \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1}$$

$$\therefore \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1} = 0$$

$$\therefore \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1} < 1$$

Therefore, by the d'Alembert Criteria (Ratio Test), the series converges absolutely, and hence converges.

2.3 Cauchy Criteria (Cauchy Root Test)

Theorem 6 (Cauchy Criteria (Cauchy Root Test)). 1. If

$$\overline{\lim} \sqrt[n]{|a_n|} = L < 1$$

then $\sum a_n$ converges absolutely.

2. If

$$\overline{\lim} \sqrt[n]{|a_n|} = L > 1$$

(including $L = \infty$), then $\sum a_n$ diverges.

3. If L = 1, the test does not apply.

Recitation 3 – Exercise 7.

Check the convergence of $\sum \left(1 - \frac{2}{n}\right)^{n^2}$.

Recitation 3 – Solution 7.

$$\sqrt[n]{\left(1 - \frac{2}{n}\right)^{n^2}} = \left(1 - \frac{2}{n}\right)^n$$

$$\therefore \lim_{n \to \infty} \left(1 - \frac{2}{n}\right)^n = e^{-2}$$

$$\therefore \lim_{n \to \infty} \left(1 - \frac{2}{n}\right)^n < 1$$

Therefore, by the Cauchy Criteria (Cauchy Root Test), $\sum \left(1 - \frac{2}{n}\right)^{n^2}$ converges.

2.4 Leibniz's Criteria

Definition 4 (Alternating series). The series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$, where all $a_n > 0$ or all $a_n < 0$ is called an alternating series.

Theorem 7 (Leibniz's Criteria for Convergence). If an alternating series $\sum (-1)^{n-1} a_n$ with $a_n > 0$ satisfies

1. $a_{n+1} \leq a_n$, i.e. $\{a_n\}$ is monotonically decreasing.

$$2. \lim_{n \to \infty} a_n = 0$$

then the series $(-1)^{n-1}a_n$ converges.

Recitation 3 – Exercise 8.

Prove or disprove: There exists $\{a_n\}$, such that $\sum a_n$ converges and $\sum (1 + a_n)a_n$ diverges.

Recitation 3 – Solution 8.

Let
$$a_n = \frac{(-1)^n}{\sqrt{n}}$$
.

Therefore, by Leibniz's Criteria for Convergence, $\sum \frac{(-1)^n}{\sqrt{n}}$ converges.

$$\sum (1+a_n)a_n = \sum \left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \frac{(-1)^n}{\sqrt{n}}$$
$$= \sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right)$$

Therefore, as $\sum \frac{1}{n}$ diverges, and $\sum \frac{(-1)^n}{\sqrt{n}}$ converges, $\sum \left(\frac{1}{n} + \frac{(-1)^n}{\sqrt{n}}\right)$ diverges.

2.5 Integral Test

Theorem 8 (Integral Test). If $f(x):[1,\infty)\to[0,\infty)$ is monotonically decreasing. Then, $\sum_{n=1}^{\infty}f(n)$ and $\int_{1}^{\infty}f(x)\,\mathrm{d}x$ converge or diverge simultaneously.

Recitation 3 – Exercise 9.

Check the convergence of $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Recitation 3 – Solution 9.

Let

$$f(x) = \frac{1}{x \ln x}$$

f(x) is monotonically decreasing. Therefore, the Integral Test is applicable. Therefore,

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\infty} \frac{1}{y} dy$$
$$= \ln y \Big|_{\ln 2}^{\infty}$$
$$= \infty$$

Therefore, by the integral test, $\sum \frac{1}{n \ln n}$ diverges.

Recitation 4 – Exercise 1.

Let $d_n \ge 0$ and suppose

$$\sum_{n=0}^{\infty} d_n = \infty$$

Prove that

$$\sum_{n=0}^{\infty} \frac{d_n}{1 + d_n} = \infty$$

Recitation 4 – Solution 1.

If possible, let d_n be a bounded sequence. Then there exists M, such that $d_n \leq M, \forall n \in \mathbb{N}$.

Therefore,

$$\frac{d_n}{1+d_n} \ge \frac{d_n}{1+M}$$

Therefore, by the Second Comparison Test, as $\sum d_n$ diverges, $\sum \frac{d_n}{1+d_n}$ also diverges.

If d_n is not bounded, then there is a subsequence d_{n_k} which diverges. Therefore,

$$\frac{d_{n_k}}{1+d_{n_k}} = \frac{1}{\frac{1}{d_{n_k}}+1}$$

$$\therefore \lim_{k\to\infty} \frac{d_{n_k}}{1+d_{n_k}} = 1$$

Therefore,

$$\lim_{n \to \infty} \frac{d_n}{1 + d_n} \neq 0$$

Therefore, the necessary condition for convergence is not fulfilled. Therefore, the series converges.

Recitation 4 – Exercise 2.

Let

$$d_n = \begin{cases} 1 & ; & n = k^2, k \in \mathbb{N} \\ 0 & ; & n \neq k^2, k \in \mathbb{N} \end{cases}$$

Does
$$\sum \frac{d_n}{1 + n \cdot d_n}$$
 diverge?

Recitation 4 – Solution 2.

$$d_{n} = \begin{cases} 1 & ; & n = k^{2}, k \in \mathbb{N} \\ 0 & ; & n \neq k^{2}, k \in \mathbb{N} \end{cases}$$
$$\therefore \frac{d_{n}}{1 + n \cdot d_{n}} = \begin{cases} \frac{1}{1 + k^{2}} & ; & n = k^{2}, k \in \mathbb{N} \\ 0 & ; & n \neq k^{2}, k \in \mathbb{N} \end{cases}$$

As $\frac{1}{1+k^2} \le \frac{1}{k^2}$ and as $\frac{1}{k^2}$ converges, $\sum \frac{1}{1+k^2}$ also converges.

Recitation 4 – Exercise 3.

Let a_n be a sequence such that $|a_{n+1} - a_n| \le b_{n+1}$ for all $n \in \mathbb{N}$ where $\sum b_k$ converges. Prove that $\{a_n\}$ converges.

Recitation 4 – Solution 3.

Let $\varepsilon > 0$.

$$|a_m - a_n| = |a_m - a_{m-1} + a_{m-1} + \dots - a_n|$$

$$\leq \sum_{k=n+1}^m |a_k - a_{k-1}|$$

$$\leq \sum_{k=n+1}^m b_k$$

Therefore, as $\sum b_n$ converges, the series satisfies the Cauchy Criteria (Cauchy Root Test). Therefore, there exists N, such that $\forall m > n > N$, $\left|\sum_{k=n+1}^{m} b_k\right| < \varepsilon$. Therefore, for m > n > N,

$$|a_m - a_n| \le \sum_{k=n+1}^m b_n < \varepsilon$$

2.6 Power Series

Definition 5 (Power series). A power series around x_0 is a function of the form

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

where $\{a_n\}$ is a sequence of real numbers.

Theorem 9 (Abel's Theorem). For every power series $\sum a_n(x-x_0)^n$, there exists $R \in [0,\infty]$, such that for all x satisfying $|x-x_0| < R$, the series converges and for all x satisfying $|x-x_0| > R$ the series diverges.

Theorem 10 (Cauchy's Formula for Radius of Convergence).

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

Theorem 11 (Hadamard's Formula for Radius of Convergence). If $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$ exists, then

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R$$

Recitation 4 – Exercise 4.

Find the domain of convergence of $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n}$.

Recitation 4 - Solution 4.

$$\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n} = \sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{n}$$

Therefore, by Cauchy's Formula for Radius of Convergence,

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

$$= \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n}}}$$

$$= \frac{1}{\lim_{n \to \infty} \frac{2}{\sqrt[n]{n}}}$$

$$= \frac{1}{2}$$

Therefore, the series converges for

$$|x-2| < \frac{1}{2}$$

and diverges for

$$|x-2| > \frac{1}{2}$$

If
$$x = \frac{5}{2}$$
,

$$\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{5}{2} - 2\right)^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{n}$$

Therefore, the series diverges.

If
$$x = \frac{3}{2}$$
,

$$\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{3}{2} - 2 \right)^n$$

$$= \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

Therefore, by Leibniz's Criteria for Convergence, the series converges.

Therefore, the domain of convergence is $\left[\frac{3}{2}, \frac{5}{2}\right)$.

Recitation 4 – Exercise 5.

Find the radius of convergence of $\sum_{n=0}^{\infty} n! x^{n!}$.

Recitation 4 – Solution 5.

$$\frac{1}{\sqrt[n]{a_n}} = x + x + 2x^2 + 6x^6 + 24x^{24} + \dots$$

Therefore,

$$a_n = \begin{cases} n & ; \quad n = k^2 \\ 0 & ; \quad n \neq k^2 \end{cases}$$

Therefore,

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{a_n}}$$
$$= \frac{1}{\lim_{k \to \infty} \sqrt[k!]{k!}}$$
$$= 1$$