Package 'genscore'

December 16, 2023

Type Package
Title Generalized Score Matching Estimators
Version 1.0.2.2
Author Shiqing Yu, Lina Lin, Wally Gilks
Maintainer Shiqing Yu <syu.phd@gmail.com></syu.phd@gmail.com>
Description Implementation of the Generalized Score Matching estimator in Yu et al. (2019) https://jmlr.org/papers/v20/18-278.html for nonnegative graphical models (truncated Gaussian, exponential square-root, gamma, a-b models) and univariate truncated Gaussian distributions. Also includes the original estimator for untruncated Gaussian graphical models from Lin et al. (2016) doi:10.1214/16-EJS1126 , with the addition of a diagonal multiplier.
License GPL-3
Encoding UTF-8
Suggests Matrix, igraph, zoo, knitr, rmarkdown, cubature
Imports Rdpack, mvtnorm, tmvtnorm, stringr
<pre>URL https://github.com/sqyu/genscore</pre>
BugReports https://github.com/sqyu/genscore/issues
RdMacros Rdpack
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-12-16 10:40:02 UTC
R topics documented:
AUC

binarySearch_bin	 . 6
calc_crit	 . 7
check_endpoints	 . 9
compare_two_results	 . 10
compare_two_sub_results	 . 11
cov_cons	 . 11
crbound_mu	
crbound_sigma	
diff_lists	
domain_for_C	
eBIC	
estimate	
find_max_ind	
frac_pow	
gcd	
gen	
get_crit_nopenalty	
get_dist	
get_elts	
get_elts_ab	
get_elts_exp	
get_elts_gamma	
get_elts_gauss	
get_elts_loglog	
get_elts_loglog_simplex	
get_elts_trun_gauss	
get_ens_trun_gauss	
get_g0_ada	
get_go_ada	
get_n_np	
get_n_np_adaptive	
get_n_np_vector	
get_results	
get_results	
get_trun	
h_of_dist	
interval_intersection	
interval_union	
in_bound	
lambda_max	
makecoprime	
make_domain	
make_folds	
mu_sigmasqhat	
naiveSearch_bin	
parse_ab	
parse_ineq	 . 82

AUC	Calculates the AUC of an ROC curve.
Index	105
	varhat
	update_finite_infinity_for_uniform
	tp_fp
	test_lambda_bounds2
	test_lambda_bounds
	s_output
	s_at
	search_bin
	rlaplace truncated centered
	rlaplace truncated
	rexp truncated
	refit
	read_one_term 90 read_uniform_term 91
	read_exponential
	read_exponent
	ran_mat
	random_init_uniform
	random_init_simplex
	random_init_polynomial

Description

Calculates the area under an ROC curve (AUC).

Usage

AUC(tpfp)

Arguments

tpfp A matrix with two columns, the true positive and the false positive rates.

Value

A number between 0 and 1, the area under the curve (AUC).

4 avgrocs

Examples

```
n <- 40
p <- 50
mu \leftarrow rep(0, p)
tol <- 1e-8
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
set.seed(1)
domain <- make_domain("R+", p=p)</pre>
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
est <- estimate(x, setting="gaussian", elts=NULL, domain=domain, centered=TRUE,
         symmetric="symmetric", lambda_length=100, mode="min_pow",
         param1=1, param2=3, diagonal_multiplier=dm)
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))</pre>
old.par <- par(mfrow=c(1,1), mar=c(5,5,5,5))
auc <- AUC(TP_FP)
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
  main=paste("ROC curve, AUC", round(auc,4)), xlab="False Positives",
  ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "1", lty = 2)
par(old.par)
```

avgrocs

Takes the vertical average of ROC curves.

Description

Takes the vertical average of ROC curves using algorithm 3 from Fawcett (2006). The resulting ROC curve preserves the average AUC.

Usage

```
avgrocs(rocs, num_true_edges, p)
```

Arguments

rocs A list of ROC curves, each of which is a matrix with two columns corresponding to the true positive and false positive rates, respectively.

num_true_edges A positive integer, the number of true edges

p A positive integer, the dimension

Value

The averaged ROC curve, a matrix with 2 columns and (p^2-p-num_true_edges+1) rows.

beautify_rule 5

References

Fawcett T (2006). "An introduction to ROC analysis." Pattern Recognition Letters, 27(8), 861–874.

Examples

```
n <- 40
p < -50
mu \leftarrow rep(0, p)
tol <- 1e-8
domain <- make_domain("R+", p=p)</pre>
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
ROCs <- list()
old.par <- par(mfrow=c(2,2), mar=c(5,5,5,5))
for (i in 1:3){
  set.seed(i)
  x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
         lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
         burn.in.samples = 100, thinning = 10)
  est <- estimate(x, setting="gaussian", elts=NULL, domain=domain, centered=TRUE,</pre>
           symmetric="symmetric", lambda_length=100, mode="min_pow",
           param1=1, param2=3, diag=dm)
  # Apply tp_fp to each estimated edges set for each lambda
  TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))</pre>
  ROCs[[i]] <- TP_FP</pre>
  plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
    main=paste("ROC, trial ",i,", AUC ",round(AUC(TP_FP),4),sep=""),
    xlab="False Positives", ylab="True Positives")
  points(TP_FP[,2], TP_FP[,1], type="l")
  points(c(0,1), c(0,1), type = "1", lty = 2)
average_ROC <- avgrocs(ROCs, length(true_edges), p)</pre>
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
  main=paste("Average ROC, AUC", round(AUC(average_ROC), 4)),
  xlab="False Positives", ylab="True Positives")
points(average_ROC[,2], average_ROC[,1], type="1")
points(c(0,1), c(0,1), type = "1", lty = 2)
par(old.par)
```

beautify_rule

Replaces consecutive "&"s and "\"s in a string to a single & and \.

Description

Replaces consecutive "&"s and "|"s in a string to a single "&" and "|".

Usage

```
beautify_rule(rule)
```

6 binarySearch_bin

Arguments

rule

A string containing positive integers, parentheses, and "%" and "|" only.

Details

Applied to domain\$rule if domain\$type == "polynomial".

Value

A string with extra "%"s and "|"s removed.

Examples

```
beautify_rule("(1 & 2 && 3 && 4) | 5 || 6 ||| 7")
```

binarySearch_bin

Finds the index of the bin a number belongs to using binary search.

Description

Finds the index of the bin a number belongs to using binary search.

Usage

```
binarySearch_bin(arr, 1, r, x)
```

Arguments

arr	A vector of size at least 2.
1	An integer between 1 and length(arr). Must be smaller than 1.
r	An integer between 1 and length(arr). Must be larger than 1.
Х	A number. Must be within the range of [arr[1], arr[r]].

Details

Finds the smallest index i such that $arr[i] \le x \le arr[i+1]$.

Value

The index i such that $arr[i] \le x \le arr[i+1]$.

```
binarySearch_bin(1:10, 1, 10, seq(1, 10, by=0.5))
binarySearch_bin(1:10, 5, 8, seq(5, 8, by=0.5))
```

calc_crit 7

Calculates penalized or unpenalized loss in K and eta given arbitrary data

Description

Calculates penalized or unpenalized loss in K and eta given arbitrary data

Usage

```
calc_crit(elts, res, penalty)
```

Arguments

elts	An element list returned from get_elts(). Need not be the same as the elements used to estimate res, but they must be both centered or both non-centered, and their dimension p must match. elts cannot be profiled as this is supposed to be elements for a new data unseen by res, in which case the loss must be explicitly written in K and eta with Gamma and g from a new dataset x.
res	A result list returned from get_results(). Must be centered if elts is centered, and must be non-centered otherwise. Can be profiled. res\$p must be equal to elts\$p.
penalty	A boolean, indicates whether the loss should be penalized (using elts\$diagonals_with_multiplier, res\$lambda1 and res\$lambda2).

Details

This function calculates the loss in some estimated K and eta given an elts generated using get_elts() with a new dataset x. This is helpful for cross-validation.

Value

A number, the loss.

```
# In the following examples, all printed numbers should be close to 0. # In practice, \code{res} need not be estimates fit to \code{elts}, # but in the examples we use \code{res <- get_results(elts)} just to # demonstrate that the loss this function returns matches that returned # by the C code during estimation using \code{get_results}.  n <- 6   p <- 3   eta <- rep(0, p)   K <- diag(p)   dm <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
```

8 calc_crit

```
domains <- list(make_domain("R", p=p),</pre>
                make_domain("R+", p=p),
                make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3)),
                make_domain("polynomial", p=p,
             ineqs=list(list("expression"="sum(x^2)<=1", nonnegative=FALSE, abs=FALSE))))</pre>
domains <- c(domains,</pre>
             list(make_domain("polynomial", p=p,
              ineqs=list(list("expression"="sum(x^2)<=1", nonnegative=TRUE, abs=FALSE))),</pre>
                   make_domain("polynomial", p=p,
                     ineqs=list(list("expression"=paste(paste(sapply(1:p,
                       function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                       abs=FALSE, nonnegative=TRUE))),
                   make_domain("simplex", p=p)))
for (domain in domains) {
 if (domain$type == "R" ||
       (domain$type == "uniform" && any(domain$lefts < 0)) ||</pre>
       (domain$type == "polynomial" && !domain$ineqs[[1]]$nonnegative))
    settings <- c("gaussian")</pre>
 else if (domain$type == "simplex")
    settings <- c("log_log", "log_log_sum0")</pre>
 else
    settings <- c("gaussian", "exp", "gamma", "log_log", "ab_3/4_2/3")</pre>
 if (domain$type == "simplex")
    symms <- c("symmetric")</pre>
    symms <- c("symmetric", "and", "or")</pre>
 for (setting in settings) {
    x <- gen(n, setting=setting, abs=FALSE, eta=eta, K=K, domain=domain,
         finite_infinity=100, xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)
    h_{p} \leftarrow get_{h}("min_{pow}", 1, 3)
    for (symm in symms) {
       # Centered, penalized loss
       elts <- get_elts(h_hp, x, setting, domain, centered=TRUE, scale="", diag=dm)
       res <- get_results(elts, symm, 0.1)</pre>
       print(calc_crit(elts, res, penalty=TRUE) - res$crit) # Close to 0
       # Non-centered, unpenalized loss
       elts_nopen <- get_elts(h_hp, x, setting, domain, centered=TRUE, scale="", diag=1)</pre>
       res_nopen <- get_results(elts_nopen, symm, 0)</pre>
     print(calc_crit(elts_nopen, res_nopen, penalty=FALSE) - res_nopen$crit) # Close to 0
       # Non-centered, non-profiled, penalized loss
       elts_nc_np <- get_elts(h_hp, x, setting, domain, centered=FALSE,</pre>
         profiled_if_noncenter=FALSE, scale="", diag=dm)
       res_nc_np <- get_results(elts_nc_np, symm, lambda1=0.1, lambda2=0.05)</pre>
      print(calc_crit(elts_nc_np, res_nc_np, penalty=TRUE) - res_nc_np$crit) # Close to 0
```

check_endpoints 9

```
# Non-centered, non-profiled, unpenalized loss
       elts_nc_np_nopen <- get_elts(h_hp, x, setting, domain, centered=FALSE,</pre>
         profiled_if_noncenter=FALSE, scale="", diag=1)
       res_nc_np_nopen <- get_results(elts_nc_np_nopen, symm, lambda1=0, lambda2=0)</pre>
       print(calc_crit(elts_nc_np_nopen, res_nc_np_nopen, penalty=FALSE) -
         res_nc_np_nopen$crit) # Close to 0
       if (domain$type != "simplex") {
         # Non-centered, profiled, penalized loss
         elts_nc_p <- get_elts(h_hp, x, setting, domain, centered=FALSE,</pre>
           profiled_if_noncenter=TRUE, scale="", diag=dm)
         res_nc_p <- get_results(elts_nc_p, symm, lambda1=0.1)</pre>
         if (elts_nc_np$setting != setting || elts_nc_np$domain_type != "R")
       res_nc_p$crit <- res_nc_p$crit - sum(elts_nc_np$g_eta ^ 2 / elts_nc_np$Gamma_eta) / 2</pre>
       \label{eq:print}  \text{print(calc\_crit(elts\_nc\_np, res\_nc\_p, penalty=TRUE) - res\_nc\_p\$crit)} \ \ \# \ \text{Close to 0} 
         # Note that the elts argument cannot be profiled, so
         # calc_crit(elts_nc_p, res_nc_p, penalty=TRUE) is not allowed
         # Non-centered, profiled, unpenalized loss
         elts_nc_p_nopen <- get_elts(h_hp, x, setting, domain, centered=FALSE,</pre>
           profiled_if_noncenter=TRUE, scale="", diag=1)
         res_nc_p_nopen <- get_results(elts_nc_p_nopen, symm, lambda1=0)</pre>
         if (elts_nc_np_nopen$setting != setting || elts_nc_np_nopen$domain_type != "R")
           res_nc_p_nopen$crit <- (res_nc_p_nopen$crit -</pre>
              sum(elts_nc_np_nopen$g_eta ^ 2 / elts_nc_np_nopen$Gamma_eta) / 2)
         print(calc_crit(elts_nc_np_nopen, res_nc_p_nopen, penalty=TRUE) -
           res_nc_p_nopen$crit) # Close to 0
          # Again, calc_crit(elts_nc_p_nopen, res_nc_p, penalty=TRUE) is not allowed
       } # if domain$type != "simplex"
    } # for symm in symms
 } # for setting in settings
} # for domain in domains
```

check_endpoints

Checks if two equally sized numeric vectors satisfy the requirements for being left and right endpoints of a domain defined as a union of intervals.

Description

Checks if two equally sized numeric vectors satisfy the requirements for being left and right endpoints of a domain defined as a union of intervals.

Usage

```
check_endpoints(lefts, rights)
```

10 compare_two_results

Arguments

lefts A non-empty vector of numbers (may contain -Inf), the left endpoints of a

domain defined as a union of intervals.

rights A non-empty vector of numbers (may contain Inf), the right endpoints of a

domain defined as a union of intervals. Must have the same size as lefts.

Details

Both lefts and rights must be non-empty and should have the same length. Suppose lefts and rights both have length l, [lefts[1], rights[1]], ..., [lefts[1], rights[1]] must be an increasing and non-overlapping set of valid intervals, meaning lefts[i] <= rights[i] <= lefts[j] for any i < j (singletons and overlapping at the boundary points are allowed). Inf is not allowed in lefts and -Inf is not allowed in rights.

Value

NULL. Program stops if lefts and rights do not define valid left and right endpoints.

Examples

```
## [-4,-3], [-2,-1], [0,1], [2,3], [4,5]
check_endpoints(lefts=c(-4,-2,0,2,4), rights=c(-3,-1,1,3,5))
## Not run:
check_endpoints(lefts=c(), rights=c()) # Cannot be empty
check_endpoints(lefts=c(-4,-2,0,2,4), rights=c(-3,-1,1,3)) # Unequal length
check_endpoints(lefts=c(Inf), rights=c(Inf)) # No Inf in lefts, otherwise invalid interval
check_endpoints(lefts=c(-Inf), rights=c(-Inf)) # No -Inf in rights, otherwise invalid interval
check_endpoints(lefts=c(0, 1), rights=c(2, 3)) # [0,2] and [1,3] overlap, not allowed
check_endpoints(lefts=c(2, 0), rights=c(3, 1)) # [2,3], [0,1] not increasing, not allowed
## End(Not run)
## Singletons and overlapping at the boundary points allowed
check_endpoints(lefts=c(0, 1, 2), rights=c(0, 2, 3))
```

compare_two_results

Compares two lists returned from estimate().

Description

Compares two lists returned from estimate().

Usage

```
compare_two_results(res, res2)
```

Arguments

res A res list returned from estimate().
res2 A res list returned from estimate().

Value

A list of numbers all of which should be close to 0 if res and res2 are expected to be the same.

```
compare_two_sub_results
```

Compares two lists returned from get_results().

Description

Compares two lists returned from get_results().

Usage

```
compare_two_sub_results(res, res2)
```

Arguments

res A res list returned from get_results().
res2 A res list returned from get_results().

Value

A list of numbers all of which should be close to 0 if res and res2 are expected to be the same.

cov_cons

Random generator of inverse covariance matrices.

Description

Random generator of inverse covariance matrices.

Usage

```
cov_cons(mode, p, seed = NULL, spars = 1, eig = 0.1, subgraphs = 1)
```

Arguments

mode	A string, see details.
р	A positive integer >= 2, the dimension.
seed	A number, the seed for the generator. Ignored if NULL or mode == "band" or mode == "chain".
spars	A number, see details. Ignored if mode == "chain". Default to 1.
eig	A positive number, the minimum eigenvalue of the returned matrix. Default to 0.1.
subgraphs	A positive integer, the number of subgraphs for the "sub" mode. Note that p

must be divisible by subgraphs.

12 crbound_mu

Details

The function generates an inverse covariance matrix according to the mode argument as follows. The diagonal entries of the matrix are set to the same value such that the minimum eigenvalue of the returned matrix is equal to eig.

Takes the Q matrix from the QR decomposition of a p by p random matrix with independent Normal(0,1) entries, and calculates Q'diag(ev)Q. Randomly zeros out its upper triangular entries using independent uniform Bernoulli(spars) variables, and then symmetrizes the matrix using the upper triangular part.

- "randóistib" Constructs a block diagonal matrix with subgraphs disconnected subgraphs with equal number of nodes. In each subgraph, takes each entry independently from Uniform(0.5,1), and randomly zeros out its upper triangular entries using independent uniform Bernoulli(spars) variables, and finally symmetrizes the matrix using the upper triangular part. The construction from Section 4.2 of Lin et al. (2016).
- "er" Constructs an Erd\H $\{o\}$ s-R\'enyi game with probability spars, and sets the edges to independent Uniform(0.5,1) variables, and finally symmetrizes the matrix using the lower triangular entries
- "band" Constructs a banded matrix so that the (i,j)-th matrix is nonzero if and only if $|i-j| \le spars$, and is equal to 1 |i-j|/(spars + 1) if i! = j.
- "chain" A chain graph, where the (i,j)-th matrix is nonzero if and only if |i-j| <= 1, and is equal to 0.5 if |i-j| == 1. A special case of the "band" construction with spars equal to 1.

Value

A p by p inverse covariance matrix. See details.

References

Lin L, Drton M, Shojaie A (2016). "Estimation of high-dimensional graphical models using regularized score matching." *Electron. J. Stat.*, **10**(1), 806–854.

Examples

```
p <- 100
K1 <- cov_cons("random", p, seed = 1, spars = 0.05, eig = 0.1)
K2 <- cov_cons("sub", p, seed = 2, spars = 0.5, eig = 0.1, subgraphs=10)
K3 <- cov_cons("er", p, seed = 3, spars = 0.05, eig = 0.1)
K4 <- cov_cons("band", p, spars = 2, eig = 0.1)
K5 <- cov_cons("chain", p, eig = 0.1)</pre>
```

crbound_mu

The Cram\'er-Rao lower bound (times n) for estimating the mean parameter from a univariate truncated normal sample with known variance parameter.

crbound_sigma 13

Description

The Cram\'er-Rao lower bound (times n) on the variance for estimating the mean parameter mu from a univariate truncated normal sample, assuming the true variance parameter sigmasq is known.

Usage

```
crbound_mu(mu, sigmasq)
```

Arguments

mu The mean parameter. sigmasq The variance parameter.

Details

The Cram\'er-Rao lower bound in this case is defined as $\sigma^4/var(X-\mu)$.

Value

A number, the Cram\'er-Rao lower bound.

The Cram\'er-Rao lower bound (times n) for estimating the variance parameter from a univariate truncated normal sample with known mean parameter.

Description

The Cram\'er-Rao lower bound (times n) on the variance for estimating the variance parameter sigmasq from a univariate truncated normal sample, assuming the true mean parameter mu is known.

Usage

```
crbound_sigma(mu, sigmasq)
```

Arguments

mu The mean parameter. sigmasq The variance parameter.

Details

The Cram\'er-Rao lower bound in this case is defined as $4\sigma^8/var((X-\mu)^2)$.

Value

A number, the Cram\'er-Rao lower bound .

14 diff_vecs

di	ff	Ιi	S	۲s

Computes the sum of absolute differences between two lists.

Description

Computes the sum of absolute differences between two lists using diff_vecs().

Usage

```
diff_lists(11, 12, name = NULL)
```

Arguments

11 A list.12 A list.

name A string, default to NULL. If not NULL, computes the differences in the l1[[name]]

and 12[[name]].

Value

Returns the sum of absolute differences between 11 and 12 if name is NULL, or that between 11[[name]] and 12[[name]] otherwise. If name is not NULL and if name is in exactly one of 11 and 12, returns Inf; if name is in neither, returns NA. Exception: Returns a positive integer if the two elements compared hold NA, NULL or Inf values in different places.

diff_vecs	Computes the sum of absolute differences in the finite non-NA/NULL
	elements between two vectors.

Description

Computes the sum of absolute differences in the finite non-NA/NULL elements between two vectors.

Usage

```
diff_vecs(l1, l2, relative = FALSE)
```

Arguments

11	A vector.
12	A vector.

relative A boolean, default to FALSE. If TRUE, returns the relative difference (sum of

absolute differences divided by the elementwise minimum between 11 and 12).

domain_for_C

Value

The sum of (relative) absolute differences in 11 and 12, or a positive integer if two vectors differ in length or hold NA, NULL or Inf values in different places.

domain_for_C

Returns a list to be passed to C that represents the domain.

Description

Returns a list to be passed to C that represents the domain.

Usage

```
domain_for_C(domain)
```

Arguments

domain

A list returned from make_domain() that represents the domain.

Details

Construct a list to be read by C code that represents the domain.

Value

A list of the following elements.

```
num_char_params
```

An integer, length of char_params.

char_params A vector of string (char * or char **) parameters.

num_int_params An integer, length of int_params.

int_params A vector of integer (int) parameters.

num_double_params

An integer, length of double_params.

double_params A vector of double (double) parameters.

```
p <- 30
# The 30-dimensional real space R^30
domain <- make_domain("R", p=p)
domain_for_C(domain)
# The non-negative orthant of the 30-dimensional real space, R+^30
domain <- make_domain("R+", p=p)
domain_for_C(domain)</pre>
```

16 eBIC

```
# x such that sum(x^2) > 10 && sum(x^(1/3)) > 10 with x allowed to be negative
domain <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list("expression"="sum(x^2)>10", abs=FALSE, nonnegative=FALSE),
                     list("expression"="sum(x^(1/3))>10", abs=FALSE, nonnegative=FALSE)))
domain_for_C(domain)
# ([0, 1] v [2,3]) ^ p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
domain_for_C(domain)
# x such that \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                       list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                       list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
domain_for_C(domain)
# x in R_+^p such that \{sum(log(x))<2 \mid | (x1^(2/3)-1.3x2^(-3)<1 & exp(x1)+2.3*x2>2)\}
domain <- make_domain("polynomial", p=p, rule="1 || (2 && 3)",</pre>
       ineqs=list(list("expression"="sum(log(x))<2", abs=FALSE, nonnegative=TRUE),</pre>
                 list("expression"="x1^(2/3)-1.3x2^(-3)<1", abs=FALSE, nonnegative=TRUE),
                   list("expression"="exp(x1)+2.3*x2^2>2", abs=FALSE, nonnegative=TRUE)))
domain_for_C(domain)
# x in R_+^p such that {x in R_+^p: sum_j j * xj <= 1}</pre>
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                      abs=FALSE, nonnegative=TRUE)))
domain_for_C(domain)
# The (p-1)-simplex
domain <- make_domain("simplex", p=p)</pre>
domain_for_C(domain)
# The l-1 ball \{sum(|x|) < 1\}
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"="sum(x)<1", abs=TRUE, nonnegative=FALSE)))</pre>
domain_for_C(domain)
```

eBIC

eBIC score with or without refitting.

Description

Calculates the eBIC score both with and without refitting an unpenalized model restricted to the estimated support.

Usage

```
eBIC(res, elts, BIC_refit = TRUE, gammas = c(0, 0.5, 1))
```

Arguments

res	A list of results returned by get_results().
elts	A list, elements necessary for calculations returned by get_elts().
BIC_refit	A boolean, whether to get the BIC scores by refitting an unpenalized model restricted to the estimated edges, with lambda1=0, lambda2=0 and diagonal_multiplier=1. Default to TRUE.
gammas	Optional. A number of a vector of numbers. The γ parameter in eBIC. Default to $c(0,0.5,1)$.

Value

A vector of length 2*length(gammas). The first length(gammas) numbers are the eBIC scores without refitting for each gamma value, and the rest are those with refitting if BIC_refit == TRUE, or Inf if BIC_refit == FALSE.

Examples

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()},
# as the way to call this function (\code{eBIC()}) is exactly the same in those cases.
n <- 50
p <- 30
domain <- make_domain("R+", p=p)</pre>
h_hp <- get_h_hp("min_pow", 1, 3)
mu <- rep(0, p)
K <- diag(p)</pre>
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_gauss_np, symmetric="symmetric",</pre>
               lambda1=0.35, lambda2=2, previous_res=NULL,
               is_refit=FALSE)
eBIC(res_nc_np, elts_gauss_np, BIC_refit=TRUE, gammas=c(0,0.5,1))
```

estimate

The main function for the generalized score-matching estimator for graphical models.

Description

The main function for the generalized score-matching estimator for graphical models.

Usage

```
estimate(
  setting,
 domain,
  elts = NULL,
  centered = TRUE,
  symmetric = "symmetric",
  scale = "",
  lambda1s = NULL,
  lambda_length = NULL,
  lambda_ratio = Inf,
 mode = NULL,
  param1 = NULL,
  param2 = NULL,
  h_h = NULL
  unif_dist = NULL,
  verbose = TRUE,
  verbosetext = "",
  tol = 1e-06,
 maxit = 1000,
 BIC_refit = TRUE,
 warmstart = TRUE,
  diagonal_multiplier = NULL,
  eBIC_gammas = c(0, 0.5, 1),
  cv_fold = NULL,
  cv_fold_seed = NULL,
  return_raw = FALSE,
  return_elts = FALSE
)
```

Arguments

setting

x An n by p matrix, the data matrix, where n is the sample size and p the dimension.

A string that indicates the distribution type, must be one of "exp", "gamma", "gaussian", "log_log", "log_log_sum0", or of the form "ab_NUM1_NUM2", where NUM1 is the a value and NUM2 is the b value, and NUM1 and NUM2 must be integers or two integers separated by "/", e.g. "ab_2_2", "ab_2_5/4" or

"ab 2/3 1/2".

domain A list returned from make_domain() that represents the domain.

elts A list (optional), elements necessary for calculations returned by get_elts().

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

symmetric A string. If equals "symmetric", estimates the minimizer **K** over all symmetric

matrices; if "and" or "or", use the "and"/"or" rule to get the support. Default to

"symmetric".

scale A string indicating the scaling method. If contains "sd", columns are scaled by

standard deviation; if contains "norm", columns are scaled by 12 norm; if contains "center" and setting == "gaussian" && domain\$type == "R", columns

are centered to have mean zero. Default to "norm".

lambda1s A vector of lambdas, the penalty parameter for K.

lambda_length An integer >= 2, the number of lambda1s. Ignored if lambda1s is provided,

otherwise a grid of lambdas is automatically chosen so that the results range from an empty graph to a complete graph. Default to 10 if neither lambda1s nor

lambda_length is provided.

lambda_ratio A positive number, the fixed ratio between $\lambda_{\mathbf{K}}$ and λ_{n} , if $\lambda_{n} \neq 0$ (non-profiled)

in the non-centered setting.

mode A string, the class of the h function. Ignored if elts, or h and hp are provided,

or if setting == "gaussian" && domain\$type == "R".

param1 A number, the first parameter to the h function. Ignored if elts, or h and hp are

provided, or if setting == "gaussian" && domain\$type == "R".

param2 A number, the second parameter (may be optional depending on mode) to the h

function. Ignored if elts, or h and hp are provided, or if setting == "gaussian"

&& domain\$type == "R".

 h_h A function that returns a list containing $h_x=h(x)$ (element-wise) and $h_x=h(x)$

(element-wise derivative of h) when applied to a vector or a matrix x, both of

which has the same shape as x.

unif_dist Optional, defaults to NULL. If not NULL, h_hp must be NULL and unif_dist(x)

must return a list containing "g0" of length nrow(x) and "g0d" of dimension dim(x), representing the 12 distance and the gradient of the 12 distance to the boundary: the true 12 distance function to the boundary is used for all coordinates in place of h_of_dist; see "Estimating Density Models with Complex Truncation Boundaries" by Liu et al, 2019. That is, $(h_j \circ \phi_j)(x_i)$ in the scorematching loss is replaced by $g_0(x_i)$, the 12 distance of xi to the boundary of the

domain.

verbose Optional. A boolean, whether to output intermediate results.

verbosetext Optional. A string, text to be added to the end of each printout if verbose ==

TRUE.

tol Optional. A number, the tolerance parameter. Default to 1e-6.

maxit Optional. A positive integer, the maximum number of iterations for each fit.

Default to 1000.

BIC_refit A boolean, whether to get the BIC scores by refitting an unpenalized model re-

stricted to the estimated edges, with lambda1=lambda2=0 and diagonal_multiplier=1.

Default to TRUE.

warmstart Optional. A boolean, whether to use the results from a previous (larger) lambda

as a warm start for each new lambda. Default to TRUE.

diagonal_multiplier

A number >= 1, the diagonal multiplier. Optional and ignored if elts is provided. If ncol(x) > ncol(n), a value strictly larger than 1 is recommended. Default to

$$1 + \left(1 - \left(1 + 4e \max\left(6\log p/n, \sqrt{6\log p/n}\right)\right)^{-1}\right).$$

eBIC_gammas Optional. A number of a vector of numbers. The γ parameter in eBIC. Default

to c(0,0.5,1).

cv_fold Optional. An integer larger than 1 if provided. The number of folds used for

cross validation. If provided, losses will be calculated on each fold with model fitted on the other folds, and a lambda_length x cv_fold matrix cv_losses

will be returned.

cv_fold_seed Optional. Seed for generating folds for cross validation.

return_raw A boolean, whether to return the raw estimates of K. Default to FALSE.

return_elts A boolean, whether to return the elts used for estimation. Default to FALSE.

Value

edgess A list of vectors of integers: indices of the non-zero edges.

BICs A lambda_length by length(eBIC_gammas) matrix of raw eBIC scores (with-

out refitting). If return_raw == FALSE, may contain Infs for rows after the first

lambda that gives the complete graph.

lambda1s A vector of numbers of length lambda_length: the grid of lambda1s over which

the estimates are obtained.

converged A vector of booleans of length lambda_length: indicators of convergence for

each fit. If return_raw == FALSE, may contain 0s for all lambdas after the first

lambda that gives the complete graph.

iters A vector of integers of length lambda_length: the number of iterations run for

each fit. If return_raw == FALSE, may contain 0s for all lambdas after the first

lambda that gives the complete graph.

In addition, if centered == FALSE,

etas A lambda_length*p matrix of eta estimates with the *i*-th row corresponding

to the *i*-th lambda1. If return_raw == FALSE, may contain NAs after the first

lambda that gives the complete graph.

if centered == FALSE and non-profiled,

lambda2s A vector of numbers of length lambda_length: the grid of lambda2s over which

the estimates are obtained.

if return_raw == TRUE,

raw_estimate A list that contains lambda_length estimates for K of size ncol(x)*ncol(x).

if BIC_refit == TRUE,

BIC_refits A lambda_length by length(eBIC_gammas) matrix of refitted eBIC scores,

obtained by refitting unpenalized models restricted to the estimated edges. May contain Infs for rows after the first lambda that gives the graph restricted to which an unpenalized model does not have a solution (loss unbounded from

below).

if cv_fold is not NULL,

cv_losses

A lambda_length x cv_fold matrix of cross validation losses. If return_raw == FALSE, may contain Infs for all lambdas after the first lambda that gives the complete graph.

if return_elts == TRUE,

elts A list of elements returned from get_elts().

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()},
# as the way to call this function (\code{estimate()}) is exactly the same in those cases.
n <- 30
p <- 20
domain <- make_domain("R+", p=p)</pre>
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
lambda1s <- c(0.01, 0.1, 0.2, 0.3, 0.4, 0.5)
dm < 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
## Centered estimates, no elts or h provided, mode and params provided
est1 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=TRUE,
          symmetric="symmetric", lambda1s=lambda1s, mode="min_pow",
          param1=1, param2=3, diag=dm, return_raw=TRUE, verbose=FALSE)
h_{p} \leftarrow get_{h}("min_{pow}", 1, 3)
## Centered estimates, no elts provided, h provided; equivalent to est1
est2 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=TRUE,
          symmetric="symmetric", lambda1s=lambda1s, h_hp=h_hp, diag=dm,
          return_raw=TRUE, verbose=FALSE)
compare_two_results(est1, est2) ## Should be almost all 0
elts_gauss_c <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
            centered=TRUE, diag=dm)
## Centered estimates, elts provided; equivalent to est1 and est2
## Here diagonal_multiplier will be set to the default value, equal to dm above
est3 <- estimate(x, "gaussian", domain=domain, elts=elts_gauss_c,
          symmetric="symmetric", lambda1s=lambda1s, diag=NULL,
          return_raw=TRUE, verbose=FALSE)
compare_two_results(est1, est3) ## Should be almost all 0
## Non-centered estimates with Inf penalty on eta; equivalent to est1~3
est4 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=FALSE,
          lambda_ratio=0, symmetric="symmetric", lambda1s=lambda1s,
          h=h_hp, diag=dm, return_raw=TRUE, verbose=FALSE)
sum(abs(est4$etas)) ## Should be 0 since non-centered with lambda ratio 0 is equivalent to centered
est4$etas <- NULL ## But different from est1 in that the zero etas are returned in est4
compare_two_results(est1, est4) ## Should be almost all 0
```

22 find_max_ind

```
## Profiled estimates, no elts or h provided, mode and params provided
est5 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=FALSE,</pre>
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s, mode="min_pow",
          param1=1, param2=3, diag=dm, return_raw=TRUE, verbose=FALSE)
## Profiled estimates, no elts provided, h provided; equivalent to est5
est6 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=FALSE,
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s,
          h_hp=h_hp, diag=dm, return_raw=TRUE, verbose=FALSE)
compare_two_results(est5, est6) ## Should be almost all 0
elts_gauss_p <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=TRUE, diag=dm)
## Profiled estimates, elts provided; equivalent to est5~6
est7 <- estimate(x, "gaussian", domain=domain, elts=elts_gauss_p, centered=FALSE,
          lambda_ratio=Inf, symmetric="or", lambda1s=lambda1s,
          diagonal_multiplier=NULL, return_raw=TRUE, verbose=FALSE)
compare_two_results(est5, est7) ## Should be almost all 0
## Non-centered estimates, no elts or h provided, mode and params provided
## Using 5-fold cross validation and no BIC refit
est8 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=FALSE,
          lambda_ratio=2, symmetric="and", lambda_length=100,
          mode="min_pow", param1=1, param2=3, diag=dm, return_raw=TRUE,
          BIC_refit=FALSE, cv_fold=5, cv_fold_seed=2, verbose=FALSE)
## Non-centered estimates, no elts provided, h provided; equivalent to est5
## Using 5-fold cross validation and no BIC refit
est9 <- estimate(x, "gaussian", domain=domain, elts=NULL, centered=FALSE,
          lambda_ratio=2, symmetric="and", lambda_length=100, h_hp=h_hp, diag=dm,
          return_raw=TRUE, BIC_refit=FALSE, cv_fold=5, cv_fold_seed=2, verbose=FALSE)
compare_two_results(est8, est9) ## Should be almost all 0
elts_{gauss_np} \leftarrow get_{elts(h_hp, x, setting="gaussian", domain=domain, centered=FALSE,
                profiled=FALSE, diag=dm)
## Non-centered estimates, elts provided; equivalent to est8~9
## Using 5-fold cross validation and no BIC refit
est10 <- estimate(x, "gaussian", domain, elts=elts_gauss_np, centered=FALSE,</pre>
           lambda_ratio=2, symmetric="and", lambda_length=100, diag=NULL,
           return_raw=TRUE, BIC_refit=FALSE, cv_fold=5, cv_fold_seed=2, verbose=FALSE)
compare_two_results(est8, est10) ## Should be almost all 0
```

find_max_ind

Finds the max index in a vector that does not exceed a target number.

Description

Finds the max index in a vector that does not exceed a target number.

frac_pow 23

Usage

```
find_max_ind(vals, target, start = 1)
```

Arguments

vals A vector of numbers.

target A number. Must not be smaller than vals[start].

start A number, the starting index; default to 1. Must be such that vals[start] <=

target.

Value

The max index i such that $vals[i] \le target$ and $i \ge start$.

Examples

```
for (i in 1:100) {
  vals <- 1:i
  for (start in 1:i)
    for (target in seq(start, i+0.5, by=0.5))
        if (find_max_ind(vals, target, start) != floor(target))
            stop()
}</pre>
```

frac_pow

Evaluate $x^{(a/b)}$ and $|x|^{(a/b)}$ with integer a and b with extension to conventional operations.

Description

Evaluate $x^{(a/b)}$ and $|x|^{(a/b)}$ with integer a and b with extension to conventional operations (listed under details) that would otherwise result in NaN.

Usage

```
frac_pow(x, a, b, abs)
```

Arguments

A number or a vector of numbers.

a An integer.b An integer.

abs TRUE or FALSE.

24 gcd

Details

Replace x by abs(x) below if abs == TRUE. If a == 0 && b == 0, returns log(x). If a != 0 && b == 0, returns exp(a*x). Otherwise, for b != 0, evaluates $x^(a/b)$ with the following extensions. 0^0 evaluates to 1. If x < 0, returns (-1)^a * $|x|^(a/b)$ if b is odd, or NaN otherwise. If x == 0 && a < 0, returns NaN.

Value

A vector of numbers of the same size as x. See details.

Examples

gcd

Finds the greatest (positive) common divisor of two integers.

Description

Finds the greatest (positive) common divisor of two integers; if one of them is 0, returns the absolute value of the other number.

Usage

```
gcd(a, b)
```

Arguments

- a An integer.
- b An integer.

Value

The greatest (positive) common divisor of two integers; if one of them is 0, returns the absolute value of the other number.

gen 25

Examples

```
gcd(1, 2)
gcd(1, -2)
gcd(12, -18)
gcd(-12, 18)
gcd(15, 0)
gcd(0, -15)
gcd(0, 0)
```

gen

Random data generator from general a-b distributions with general domain types, assuming a and b are rational numbers.

Description

Random data generator from general a-b graphs with general domain types using adaptive rejection metropolis sampling (ARMS). $x^{(0)}$ treated as $\log(x)$ and $x^{(n)}$ as $\exp(x)$ for n non-zero. Density only guaranteed to be a proper density when 2*a > b >= 0 or when a = b = 0.

Usage

```
gen(
    n,
    setting,
    abs,
    eta,
    K,
    domain,
    finite_infinity = NULL,
    xinit = NULL,
    seed = NULL,
    burn_in = 1000,
    thinning = 100,
    verbose = TRUE,
    remove_outofbound = TRUE
)
```

Arguments

n An integer, number of observations.

setting A string that indicates the distribution type, must be one of "exp", "gamma",

"gaussian", "log_log", "log_log_sum0", or of the form "ab_NUM1_NUM2", where NUM1 is the a value and NUM2 is the b value, and NUM1 and NUM2 must be integers or two integers separated by "/", e.g. "ab_2_2", "ab_2_5/4" or

"ab_2/3_1/2".

abs A boolean. If TRUE, density is rewritten as f(|x|), i.e. with $|x|^{\alpha}$ and $|x|^{\alpha}$

and |x|^(b_numer/b_denom)

26 gen

A vector, the linear part in the distribution. eta

A square matrix, the interaction matrix. There should exist some C > 0 such that Κ

$$\boldsymbol{x}^{a^{\top}} \mathbf{K} \boldsymbol{x}^{a} / (\boldsymbol{x}^{a^{\top}} \boldsymbol{x}^{a}) > = C$$

for all x in the domain (i.e. K is positive definite if domaintype = "R" and K is co-positive if domain\$type == "R+".). If a_numer == a_denom == b_numer == b_denom == 0 && domain\$type == "simplex", K can also have all row and column sums equal to 0 but have all but one eigenvalues (0) positive.

domain A list returned from make_domain() that represents the domain.

finite_infinity

A finite positive number. Inf in actual generation will be truncated to finite_infinity if applicable. Although the code will adaptively increase finite_infinity, the user should set it to a large number initially so that abs(x) > finite_infinity with very small probability.

Optional. A p-vector, an initial point in the domain. If the domain is defined by more than one ineq or by one ineq containing negative coefficients, this must be provided. In the unlikely case where the function fails to automatically generate an initial point this should also be provided.

seed Optional. A number, the seed for the random generator.

Optional. A positive integer, the number of burn-in samples in ARMS to be discarded, meaning that samples from the first burn_in x thinning iterations will be discarded.

> Optional. A positive integer, thinning factor in ARMS. Samples are taken at iteration steps (burn_in + 1) \times thinning, ..., (burn_in + n) \times thinning. Default

> Optional. A boolean. If TRUE, prints a progress bar showing the progress. Defaults to TRUE.

remove_outofbound

Optional. A logical, defaults to TRUE. If TRUE, a test whether each sample lies inside the domain will be done, which may take a while for larger sample sizes, and rows that do not lie in the domain will be removed (may happen for domain\$type == "polynomial" with more than 1 ineq and an OR ("|") in domain\$rule.).

Details

NOTE: For polynomial domains with many ineqs and a rule containing "OR" ("I"), not all samples generated are guaranteed to be inside the domain. It is thus recommended to set remove_outofbound to TRUE and rerun the function with new initial points until the desired number of in-bound samples have been generated.

Randomly generates n samples from the p-variate a-b distributions with parameters η and K, where p is the length of η or the dimension of the square matrix **K**.

Letting a=a_numer/a_denom and b=b_numer/b_denom, the a-b distribution is proportional to

$$\exp\left(-rac{1}{2a}oldsymbol{x}^{a op}\mathbf{K}oldsymbol{x}^a+oldsymbol{\eta}^{ op}rac{oldsymbol{x}^b-\mathbf{1}_p}{b}
ight)$$

xinit

burn_in

verbose

thinning

gen 27

. Note that $x^{0/0}$ is understood as $\log(x)$, and $x^{n/0}$ with nonzero n is $\exp(n*x)$, and in both cases the a and b in the denominators in the density are treated as 1.

Value

An $n \times p$ matrix of samples, where p is the length of eta.

```
n <- 20
p < -10
eta \leftarrow rep(0, p)
K \leftarrow diag(p)
dm < 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
# Gaussian on sum(x^2) > 10 && sum(x^4(1/3)) > 10 with x allowed to be negative
domain <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list("expression"="sum(x^2)>10", abs=FALSE, nonnegative=FALSE),
                     list("expression"="sum(x^(1/3))>10", abs=FALSE, nonnegative=FALSE)))
xinit < - rep(sqrt(20/p), p)
x <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=500, thinning=100, verbose=FALSE)
# exp on ([0, 1] v [2,3])^p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, xinit=NULL,
       seed=2, burn_in=500, thinning=100, verbose=TRUE)
# gamma on \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                       list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                       list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
set.seed(1)
xinit <- c(1.5, 0.5, abs(stats::rnorm(p-2))+log(1.3))
x <- gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=500, thinning=100, verbose=FALSE)
# a0.6_b0.7 on \{x \text{ in R}_+^p: sum(\log(x)) < 2 \mid (x1^(2/3)-1.3x2^(-3)<1 \& exp(x1)+2.3*x2>2)\}
domain <- make_domain("polynomial", p=p, rule="1 || (2 && 3)",</pre>
       ineqs=list(list("expression"="sum(log(x))<2", abs=FALSE, nonnegative=TRUE),</pre>
                 list("expression"="x1^(2/3)-1.3x2^(-3)<1", abs=FALSE, nonnegative=TRUE),
                   list("expression"="exp(x1)+2.3*x2^2>2", abs=FALSE, nonnegative=TRUE)))
xinit <- rep(1, p)
x <- gen(n, setting="ab_3/5_7/10", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=1e4,
       xinit=xinit, seed=2, burn_in=500, thinning=100, verbose=FALSE)
\# \log_{\log M} = 10 - \log(x) \% \% K \% \% \log(x)/2 + eta \% \log(x)  on x in R_+^p: sum_j j * xj <= 1
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                      abs=FALSE, nonnegative=TRUE)))
x <- gen(n, setting="log_log", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
```

28 get_crit_nopenalty

get_crit_nopenalty

Minimized loss for unpenalized restricted asymmetric models.

Description

Analytic solution of the minimized loss for an unpenalized asymmetric model restricted to a given support. Does not work if symmetric == "symmetric".

Usage

```
get_crit_nopenalty(
  elts,
  exclude = NULL,
  exclude_eta = NULL,
  previous_res = NULL)
```

Arguments

elts A list, elements necessary for calculations returned by get_elts().

exclude Optional. A p*p binary matrix or a p^2 binary vector, where 1 indicates the

entry in K was estimated to 0 in the previous estimate. Default to NULL.

exclude_eta Optional. A p-binary vector, similar to exclude. Default to NULL.

previous_res Optional. A list, the returned list by get_results() run previously with another

lambda value. Default to NULL.

Details

If previous_res is provided, exclude and exclude_eta must be NULL or be consistent with the estimated support in previous_res. If previous_res and exclude are both NULL, assume all edges are present. The same applies to the non-profiled non-centered case when previous_res and exclude_eta are both NULL.

get_dist 29

Value

A number, the refitted loss.

Examples

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
    on other types of domains, please refer to \code{gen()} or \code{get_elts()}, as the
# way to call this function (\code{get_crit_nopenalty()}) is exactly the same in those cases.
n <- 50
p <- 30
domain <- make_domain("R+", p=p)</pre>
h_{p} \leftarrow get_{h}("min_{pow}", 1, 3)
mu \leftarrow rep(0, p)
K \leftarrow diag(p)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
\verb|elts_gauss_np| <- \texttt{get_elts}(h_hp, \ x, \ \texttt{setting="gaussian"}, \ \texttt{domain=domain},
                  centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_gauss_np, symmetric="symmetric", lambda1=0.35,</pre>
                lambda2=2, previous_res=NULL, is_refit=FALSE)
get_crit_nopenalty(elts_gauss_np, previous_res=res_nc_np)
```

get_dist

Finds the distance of each element in a matrix x to the its boundary of the domain while fixing the others in the same row.

Description

Finds the distance of each element in a matrix x to its boundary of the domain while fixing the others in the same row.

Usage

```
get_dist(x, domain)
```

Arguments

x An n by p matrix, the data matrix, where n is the sample size and p the dimension.

domain A list returned from make_domain() that represents the domain.

30 get_dist

Details

Returned matrix dx has its i, j-th component the distance of $x_{i,j}$ to the boundary of domain, assuming $x_{i,-j}$ are fixed. The matrix has the same size of x (n by p), or if domain\$type == "simplex" and x has full dimension p, it has p-1 columns. Returned matrix dpx contains the component-wise derivatives of dx in its components. That is, its i, j-th component is 0 if $x_{i,j}$ is unbounded or is bounded from both below and above or is at the boundary, or -1 if $x_{i,j}$ is closer to its lower boundary (or if its bounded from below but unbounded from above), or 1 otherwise.

Value

A list that contains h(dist(x, domain)) and h'(dist(x, domain)).

dx Coordinate-wise distance to the boundary.

dpx Coordinate-wise derivative of dx.

```
n <- 20
p < -10
eta \leftarrow rep(0, p)
K \leftarrow diag(p)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
# Gaussian on R^p:
domain <- make_domain("R", p=p)</pre>
x <- mvtnorm::rmvnorm(n, mean=solve(K, eta), sigma=solve(K))</pre>
# Equivalently:
x2 <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
        xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# dx is all Inf and dpx is all 0 since each coordinate is unbounded with domain R
c(all(is.infinite(dist$dx)), all(dist$dpx==0))
# exp on R_+^p:
domain <- make_domain("R+", p=p)</pre>
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
\# dx is x and dpx is 1; with domain R+, the distance of x to the boundary is just x itself
c(max(abs(dist$dx - x))<.Machine$double.eps^0.5, all(dist$dpx == 1))
# Gaussian on sum(x^2) > p with x allowed to be negative
domain <- make_domain("polynomial", p=p,</pre>
     ineqs=list(list("expression"=paste("sum(x^2)>", p), abs=FALSE, nonnegative=FALSE)))
x < -gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
quota \leftarrow p - (rowSums(x^2) - x^2) # How much should xij^2 at least be so that sum(xi^2) > p?
# How far is xij from +/-sqrt(quota), if quota >= 0?
```

get_dist 31

```
dist_{to} = abs(x[quota >= 0]) - abs(sqrt(quota[quota >= 0]))
max(abs(dist$dx[is.finite(dist$dx)] - dist_to_bound)) # Should be equal to our own calculations
\# dist'(x) should be the same as the sign of x
all(dist$dpx[is.finite(dist$dx)] == sign(x[quota >= 0]))
# quota is negative <-> sum of x_{i,-j}^2 already > p <-> xij unbounded
# given others <-> distance to boundary is Inf
all(quota[is.infinite(dist$dx)] < 0)</pre>
# gamma on ([0, 1] v [2,3])^p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
x <- gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# If 0 \le xij \le 1, distance to boundary is min(x-0, 1-x)
\max(abs(dist*dx - pmin(x, 1-x))[x \ge 0 \& x \le 1])
# If 0 \le xij \le 1, dist'(xij) is 1 if it is closer to 0, or -1 if it is closer 1,
# assuming xij %in% c(0, 0.5, 1) with probability 0
all((dist dpx == 2 * (1-x > x) - 1)[x >= 0 & x <= 1])
# If 2 \le xij \le 3, distance to boundary is min(x-2, 3-x)
\max(abs(dist\$dx - pmin(x-2, 3-x))[x >= 2 \& x <= 3])
# If 2 \le xij \le 3, dist'(xij) is 1 if it is closer to 2, or -1 if it is closer 3,
   assuming xij %in% c(2, 2.5, 3) with probability 0
all((dist$dpx == 2 * (3-x > x-2) - 1)[x >= 2 & x <= 3])
# a0.6_b0.7 on \{x1 > 1 \&\& 0 < x2 < 1 \&\& x3 > 0 \&\& ... \&\& xp > 0\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                      list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                      list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
set.seed(1)
xinit <- c(1.5, 0.5, abs(stats::rnorm(p-2)) + log(1.3))
x <- gen(n, setting="ab_3/5_7/10", abs=FALSE, eta=eta, K=K, domain=domain,
       finite_infinity=100, xinit=xinit, seed=2, burn_in=1000, thinning=100,
       verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# x_{i,j} has uniform bound [1, +Inf), so its distance to its boundary is x_{i,j} - 1
\max(abs(dist*dx[,1] - (x[,1] - 1)))
\# x_{i,j} has uniform bound [log(1.3), 1], so its distance to its boundary
# is min(x_{i2} - log(1.3), 1 - x_{i2})
\max(abs(dist dx[,2] - pmin(x[,2] - log(1.3), 1 - x[,2])))
\# x_{ij}  for i \ge 3 has uniform bound [log(1.3), +Inf), so its distance to its boundary
# is simply x_{ij} - \log(1.3)
\max(abs(dist$dx[,3:p] - (x[,3:p] - log(1.3))))
# dist\'(xi2) is 1 if it is closer to log(1.3), or -1 if it is closer 1,
    assuming x_{i,2} %in% c(log(1.3), (1+log(1.3))/2, 1) with probability 0
all((dist\frac{1}{2} = 2 * (1 - x[,2] > x[,2] - \log(1.3)) - 1))
# x_{ij} for j != 2 is bounded from below but unbounded from above, so dist\'(xij) is always 1
all(dist$dpx[,-2] == 1)
# log_log model on \{x \text{ in } R_+^p: sum_j j * xj <= 1\}
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j)\{paste(j, \ "x", \ j, \ sep="")\}), \ collapse="+"), \ "<1"),
```

```
abs=FALSE, nonnegative=TRUE)))
x <- gen(n, setting="log_log", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
      xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# Upper bound for j * xij so that sum_j j * xij <= 1
quota <- 1 - (rowSums(t(t(x) * 1:p)) - t(t(x) * 1:p))
# Distance of xij to its boundary is min(xij - 0, quota_{i,j} / j - xij)
max(abs(dist$dx - pmin((t(t(quota) / 1:p) - x), x)))
domain <- make_domain("simplex", p=p)</pre>
K <- -cov_cons("band", p=p, spars=3, eig=1)</pre>
diag(K) \leftarrow diag(K) - rowSums(K) # So that rowSums(K) == colSums(K) == 0
eigen(K)$val[(p-1):p] # Make sure K has one 0 and p-1 positive eigenvalues
x <- gen(n, setting="log_log_sum0", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
# Note that dist$dx and dist$dpx only has p-1 columns -- excluding the last coordinate in x
dist <- get_dist(x, domain)</pre>
# Upper bound for x_{i,j} so that x_{i,1} + ... + x_{i,p-1} <= 1
quota \leftarrow 1 - (rowSums(x[,-p]) - x[,-p])
# Distance of x_{i,j} to its boundary is min(xij - 0, quota_{i,j} - xij)
\max(abs(dist*dx - pmin(quota - x[,-p], x[,-p])))
```

get_elts

The function wrapper to get the elements necessary for calculations for all settings.

Description

The function wrapper to get the elements necessary for calculations for all settings.

Usage

```
get_elts(
   h_hp,
   x,
   setting,
   domain,
   centered = TRUE,
   profiled_if_noncenter = TRUE,
   scale = "",
   diagonal_multiplier = 1,
   use_C = TRUE,
   tol = .Machine$double.eps^0.5,
   unif_dist = NULL
)
```

Arguments

 h_h A function that returns a list containing hx=h(x) (element-wise) and hpx=hp(x)

(element-wise derivative of h) when applied to a vector or a matrix \mathbf{x} , both of

which has the same shape as x.

x An n by p matrix, the data matrix, where n is the sample size and p the dimen-

sion.

setting A string that indicates the distribution type, must be one of "exp", "gamma",

"gaussian", "log_log", "log_log_sum0", or of the form "ab_NUM1_NUM2", where NUM1 is the a value and NUM2 is the b value, and NUM1 and NUM2 must be integers or two integers separated by "/", e.g. "ab_2_2", "ab_2_5/4" or "ab_2/3_1/2". If domain\$type == "simplex", only "log_log" and "log_log_sum0" are supported, and on the other hand "log_log_sum0" is supported for domain\$type

== "simplex" only.

domain A list returned from make_domain() that represents the domain.

centered A boolean, whether in the centered setting(assume $\mu = \eta = 0$) or not. Default

io mol.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta}=0)$ if non-centered. Parameter ignored if centered=TRUE. Default to TRUE. Can only be FALSE if setting ==

"log_log_sum0" && centered == FALSE.

A string indicating the scaling method. If contains "sd", columns are scaled by standard deviation; if contains "norm", columns are scaled by 12 norm; if con-

tains "center" and setting == "gaussian" && domain\$type == "R", columns

are centered to have mean zero. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

use_C Optional. A boolean, use C (TRUE) or R (FALSE) functions for computation.

Default to TRUE. Ignored if setting == "gaussian" && domain\$type == "R".

Optional. A positive number. If setting != "gaussian" || domain\$type !=

"R", function stops if any entry if smaller than -tol, and all entries between -tol and 0 are set to tol, for numerical stability and to avoid violating the assumption

that $h(\mathbf{x}) > 0$ almost surely.

 $unif_dist \qquad \quad Optional, defaults \ to \ NULL. \ If \ not \ NULL, \ h_hp \ must \ be \ NULL \ and \ unif_dist(x)$

must return a list containing "g0" of length nrow(x) and "g0d" of dimension $\dim(x)$, representing the 12 distance and the gradient of the 12 distance to the boundary: the true 12 distance function to the boundary is used for all coordinates in place of h_of_dist; see "Estimating Density Models with Complex Truncation Boundaries" by Liu et al, 2019. That is, $(h_j \circ \phi_j)(x_i)$ in the scorematching loss is replaced by $g_0(x_i)$, the 12 distance of xi to the boundary of the

domain.

Details

Computes the Γ matrix and the g vector for generalized score matching.

Here, Γ is block-diagonal, and in the non-profiled non-centered setting, the j-th block is composed of $\Gamma_{\mathbf{KK},j}$, $\Gamma_{\mathbf{K}\eta,j}$ and its transpose, and finally $\Gamma_{\eta\eta,j}$. In the centered case, only $\Gamma_{\mathbf{KK},j}$ is computed. In the profiled non-centered case,

$$\Gamma_j \equiv \Gamma_{\mathbf{K}\mathbf{K},j} - \Gamma_{\mathbf{K}oldsymbol{\eta},j}\Gamma_{oldsymbol{\eta}oldsymbol{\eta},i}^{-1}\Gamma_{\mathbf{K}oldsymbol{\eta}}^{ op}$$

Similarly, in the non-profiled non-centered setting, g can be partitioned p parts, each with a p-vector $g_{\mathbf{K},j}$ and a scalar $g_{\eta,j}$. In the centered setting, only $g_{\mathbf{K},j}$ is needed. In the profiled non-centered case.

$$g_j \equiv g_{\mathbf{K},j} - \Gamma_{\mathbf{K}\boldsymbol{\eta},j} \Gamma_{\boldsymbol{\eta}\boldsymbol{\eta},j}^{-1} g_{\boldsymbol{\eta},j}.$$

The formulae for the pieces above are

$$\begin{split} \boldsymbol{\Gamma}_{\mathbf{K}\mathbf{K},j} &\equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{X}^{(i)^{a}} \boldsymbol{X}^{(i)^{a}\top}, \\ \boldsymbol{\Gamma}_{\mathbf{K}\boldsymbol{\eta},j} &\equiv -\frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a+b-2}} \boldsymbol{X}^{(i)^{a}}, \\ \boldsymbol{\Gamma}_{\boldsymbol{\eta}\boldsymbol{\eta},j} &\equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2b-2}}, \\ \boldsymbol{g}_{\mathbf{K},j} &\equiv \frac{1}{n} \sum_{i=1}^{n} \left(h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-1}} + (a-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-2}}\right) \boldsymbol{X}^{(i)^{a}} + ah\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{e}_{j,p}, \\ \boldsymbol{g}_{\boldsymbol{\eta},j} &\equiv \frac{1}{n} \sum_{i=1}^{n} -h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-1}} - (b-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-2}}, \end{split}$$

where $e_{j,p}$ is the p-vector with 1 at the j-th position and 0 elsewhere.

In the profiled non-centered setting, the function also returns t_1 and t_2 defined as

$$oldsymbol{t}_1 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{g}_{oldsymbol{\eta}}, \quad oldsymbol{t}_2 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{\Gamma}_{oldsymbol{K}oldsymbol{\eta}}^{\top},$$

so that $\hat{\boldsymbol{\eta}} = \boldsymbol{t}_1 - \boldsymbol{t}_2 \text{vec}(\hat{\mathbf{K}})$.

Value

A list that contains the elements necessary for estimation.

n The sample size.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

domain_type The domain type. Same as domain\$type in the input.

setting	The setting. Same as input.	
g_K	The ${m g}$ vector. In the non-profiled non-centered setting, this is the ${m g}$ sub-vector corresponding to ${f K}$. A p^2 -vector. Not returned if setting == "gaussian" && domain\$type == "R" since it is just $diag(p)$.	
Gamma_K	The Γ matrix with no diagonal multiplier. In the non-profiled non-centered setting, this is the Γ sub-matrix corresponding to K . A vector of length p^2 if setting == "gaussian" && domain\$type == "R" or p^3 otherwise.	
g_eta	Returned in the non-profiled non-centered setting. The g sub-vector corresponding to η . A p -vector. Not returned if setting == "gaussian" && domain\$type == "R" since it is just $numeric(p)$.	
Gamma_K_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between $\mathbf K$ and $\boldsymbol \eta$. If setting == "gaussian" && domain\$type == "R", returns a vector of length p , or p^2 otherwise.	
Gamma_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η . A p -vector. Not returned if setting == "gaussian" && domain\$type == "R" since it is just rep(1,p).	
t1,t2	Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1-t_2\hat{\mathbf{K}}$ after appropriate resizing.	
<pre>If domain\$type == "simplex", the following are also returned.</pre>		
Gamma_K_jp	A matrix of size p by p(p-1). The (j-1)*p+1 through j*p columns represent the interaction matrix between the j-th column and the m-th column of K.	
Gamma_Kj_etap	Non-centered only. A matrix of size p by p(p-1). The j-th column represents the interaction between the j-th column of K and eta[p].	
Gamma_Kp_etaj	Non-centered only. A matrix of size p by p(p-1). The j-th column represents the interaction between the p-th column of K and eta[j]. Note that it is equal to Gamma_Kj_etap if setting does not contain substring "sum0".	
Gamma_eta_jp	Non-centered only. A vector of size p-1. The j-th component represents the interaction between eta[j] and eta[p].	

```
elts <- get_elts(NULL, x, "gaussian", domain, FALSE, profiled=FALSE, scale="sd", diag=dm)
# Gaussian on R_+^p:
domain <- make_domain("R+", p=p)</pre>
x <- tmvtnorm::rtmvnorm(n, mean = solve(K, eta), sigma = solve(K),
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
# Equivalently:
x2 <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain,
       finite_infinity=100, xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 1, 3)
elts <- get_elts(h_hp, x, "gaussian", domain, centered=TRUE, scale="norm", diag=dm)
# Gaussian on sum(x^2) > 1 \& sum(x^(1/3)) > 1 with x allowed to be negative
domain <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list("expression"="sum(x^2)>1", abs=FALSE, nonnegative=FALSE),
                      list("expression"="sum(x^(1/3))>1", abs=FALSE, nonnegative=FALSE)))
xinit <- rep(sqrt(2/p), p)</pre>
x <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_{p} \leftarrow get_{p}("min_{pow}", 1, 3)
elts <- get_elts(h_hp, x, "gaussian", domain, centered=FALSE,</pre>
       profiled_if_noncenter=TRUE, scale="", diag=dm)
# exp on ([0, 1] v [2,3])^p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 1.5, 3)
elts <- get_elts(h_hp, x, "exp", domain, centered=TRUE, scale="", diag=dm)
elts <- get_elts(h_hp, x, "exp", domain, centered=FALSE,</pre>
       profiled_if_noncenter=FALSE, scale="", diag=dm)
# gamma on \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                       list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                       list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=TRUE)))
set.seed(1)
xinit <- c(1.5, 0.5, abs(stats::rnorm(p-2))+log(1.3))
x \leftarrow gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_{p} \leftarrow get_{h}("min_{pow}", 1.5, 3)
elts <- get_elts(h_hp, x, "gamma", domain, centered=TRUE, scale="", diag=dm)
elts <- get_elts(h_hp, x, "gamma", domain, centered=FALSE,
       profiled_if_noncenter=FALSE, scale="", diag=dm)
# a0.6_b0.7 on {x in R_+^p: sum(log(x))<2 \mid \mid (x1^(2/3)-1.3x2^(-3)<1 & exp(x1)+2.3*x2>2)}
domain <- make_domain("polynomial", p=p, rule="1 || (2 && 3)"</pre>
       ineqs=list(list("expression"="sum(log(x))<2", abs=FALSE, nonnegative=TRUE),
                 list("expression"="x1^(2/3)-1.3x2^(-3)<1", abs=FALSE, nonnegative=TRUE),
```

get_elts 37

```
list("expression"="exp(x1)+2.3*x2^2>2", abs=FALSE, nonnegative=TRUE)))
xinit < -rep(1, p)
x <- gen(n, setting="ab_3/5_7/10", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_{p} \leftarrow get_{p}("min_{pow}", 1.4, 3)
elts <- get_elts(h_hp, x, "ab_3/5_7/10", domain, centered=TRUE, scale="", diag=dm)
elts <- get_elts(h_hp, x, "ab_3/5_7/10", domain, centered=FALSE,
       profiled_if_noncenter=TRUE, scale="", diag=dm)
# log_log model on {x in R_+^p: sum_j j * xj <= 1}</pre>
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                      abs=FALSE, nonnegative=TRUE)))
x \leftarrow gen(n, setting="log_log", abs=FALSE, eta=eta, K=K, domain=domain,
       finite_infinity=100, xinit=NULL, seed=2, burn_in=1000, thinning=100,
       verbose=FALSE)
h_hp <- get_h_hp("min_pow", 2, 3)
elts <- get_elts(h_hp, x, "log_log", domain, centered=TRUE, scale="", diag=dm)
elts <- get_elts(h_hp, x, "log_log", domain, centered=FALSE,
       profiled_if_noncenter=FALSE, scale="", diag=dm)
# Example of using the uniform distance function to boundary as in Liu (2019)
g0 <- function(x) {
       row_min <- apply(x, 1, min)</pre>
       row_which_min <- apply(x, 1, which.min)</pre>
       dist_to_sum_boundary <- apply(x, 1, function(xx){</pre>
                    (1 - sum(1:p * xx)) / sqrt(p*(p+1)*(2*p+1)/6))
       grad\_sum\_boundary <- -(1:p) / sqrt(p*(p+1)*(2*p+1)/6)
       g0 <- pmin(row_min, dist_to_sum_boundary)</pre>
       g0d <- t(sapply(1:nrow(x), function(i){</pre>
          if (row_min[i] < dist_to_sum_boundary[i]){</pre>
             tmp <- numeric(ncol(x)); tmp[row_which_min[i]] <- 1</pre>
          } else {tmp <- grad_sum_boundary}</pre>
          tmp
       }))
       list("g0"=g0, "g0d"=g0d)
elts <- get_elts(NULL, x, "exp", domain, centered=TRUE, profiled_if_noncenter=FALSE,</pre>
       scale="", diag=dm, unif_dist=g0)
# log_log_sum0 model on the simplex with K having row and column sums 0 (Aitchison model)
domain <- make_domain("simplex", p=p)</pre>
K <- -cov_cons("band", p=p, spars=3, eig=1)</pre>
diag(K) \leftarrow diag(K) - rowSums(K) # So that rowSums(K) == colSums(K) == 0
eigen(K)$val[(p-1):p] # Make sure K has one 0 and p-1 positive eigenvalues
x <- gen(n, setting="log_log_sum0", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 2, 3)
h_p_dx \leftarrow h_of_dist(h_p, x, domain) \# h and h' applied to distance from x to boundary
# Does not assume K has 0 row and column sums
elts_simplex_0 <- get_elts(h_hp, x, "log_log", domain, centered=TRUE, profiled=FALSE,
       scale="", diag=1.5)
```

38 get_elts_ab

get_elts_ab

The R implementation to get the elements necessary for calculations for general a and b.

Description

The R implementation to get the elements necessary for calculations for general a and b.

Usage

```
get_elts_ab(
  hdx,
  hpdx,
  x,
  a,
  b,
  setting,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)
```

Arguments

hdx	A matrix, $h(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.
hpdx	A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.
x	An n by p matrix, the data matrix, where n is the sample size and p the dimension.
а	A number, must be strictly larger than $b/2$.
b	A number, must be ≥ 0 .
setting	A string that indicates the distribution type. Returned without being checked or used in the function body.

get_elts_ab 39

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default to TRUF

profiled_if_noncenter

A boolean, whether in the profiled setting ($\lambda_{\eta}=0$) if non-centered. Parameter ignored if centered=TRUE. Default to TRUE.

A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

Computes the Γ matrix and the g vector for generalized score matching.

Here, Γ is block-diagonal, and in the non-profiled non-centered setting, the j-th block is composed of $\Gamma_{\mathbf{KK},j}$, $\Gamma_{\mathbf{K}\eta,j}$ and its transpose, and finally $\Gamma_{\eta\eta,j}$. In the centered case, only $\Gamma_{\mathbf{KK},j}$ is computed. In the profiled non-centered case,

$$\mathbf{\Gamma}_{j} \equiv \mathbf{\Gamma}_{\mathbf{K}\mathbf{K},j} - \mathbf{\Gamma}_{\mathbf{K}\boldsymbol{\eta},j} \mathbf{\Gamma}_{\boldsymbol{\eta}\boldsymbol{\eta},j}^{-1} \mathbf{\Gamma}_{\mathbf{K}\boldsymbol{\eta}}^{\top}$$

Similarly, in the non-profiled non-centered setting, g can be partitioned p parts, each with a p-vector $g_{\mathbf{K},j}$ and a scalar $g_{\eta,j}$. In the centered setting, only $g_{\mathbf{K},j}$ is needed. In the profiled non-centered case.

$$oldsymbol{g}_j \equiv oldsymbol{g}_{\mathbf{K},j} - oldsymbol{\Gamma}_{\mathbf{K}oldsymbol{\eta},j} oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta},j}^{-1} g_{oldsymbol{\eta},j}.$$

The formulae for the pieces above are

$$\mathbf{\Gamma}_{\mathbf{K}\mathbf{K},j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \mathbf{X}^{(i)^{a}} \mathbf{X}^{(i)^{a}\top},$$

$$\boldsymbol{\Gamma}_{\mathbf{K}\boldsymbol{\eta},j} \equiv -\frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)a+b-2} \boldsymbol{X}^{(i)a},$$

$$\Gamma_{\eta\eta,j} \equiv \frac{1}{n} \sum_{i=1}^{n} h\left(X_{j}^{(i)}\right) X_{j}^{(i)2b-2},$$

$$\boldsymbol{g}_{\mathbf{K},j} \equiv \frac{1}{n} \sum_{i=1}^{n} \left(h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-1}} + (a-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{a-2}} \right) \boldsymbol{X}^{(i)^{a}} + ah\left(X_{j}^{(i)}\right) X_{j}^{(i)^{2a-2}} \boldsymbol{e}_{j,p},$$

$$\boldsymbol{g}_{\eta,j} \equiv \frac{1}{n} \sum_{i=1}^{n} -h'\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-1}} - (b-1)h\left(X_{j}^{(i)}\right) X_{j}^{(i)^{b-2}},$$

where $e_{j,p}$ is the p-vector with 1 at the j-th position and 0 elsewhere.

In the profiled non-centered setting, the function also returns t_1 and t_2 defined as

$$oldsymbol{t}_1 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{g}_{oldsymbol{\eta}}, \quad oldsymbol{t}_2 \equiv oldsymbol{\Gamma}_{oldsymbol{\eta}oldsymbol{\eta}}^{-1} oldsymbol{\Gamma}_{oldsymbol{K}oldsymbol{\eta}}^{\top},$$

so that $\hat{\boldsymbol{\eta}} = \boldsymbol{t}_1 - \boldsymbol{t}_2 \text{vec}(\hat{\mathbf{K}})$.

40 get_elts_ab

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting. Same as input.

 g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to K.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

 g_{e} ta Returned in the non-profiled non-centered setting. The g sub-vector correspond-

ing to η .

Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to interaction between **K** and η .

Gamma_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to η .

t1, t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1-t_2\hat{\mathbf{K}}$ after appropriate resizing.

get_elts_exp 41

<pre>get_elts_exp</pre>	The R implementation to get the elements necessary for calculations
	for the exponential square-root setting ($a=0.5$, $b=0.5$).

Description

The R implementation to get the elements necessary for calculations for the exponential square-root setting (a=0.5, b=0.5).

Usage

```
get_elts_exp(
  hdx,
  hpdx,
  x,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)
```

Arguments

hdx	A matrix, $h(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.	
hpdx	A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.	
x	An n by p matrix, the data matrix, where n is the sample size and p the dimension.	
centered	A boolean, whether in the centered setting (assume $\mu=\eta=0$) or not. Default to TRUE.	
profiled_if_noncenter		
	A boolean, whether in the profiled setting ($\lambda_{\eta}=0$) if non-centered. Parameter ignored if centered=TRUE. Default to TRUE.	
scale	A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".	
diagonal_multiplier		
	A number >= 1, the diagonal multiplier.	

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

42 get_elts_exp

Value

p

A list that contains the elements necessary for estimation.

The sample size. n The dimension.

centered The centered setting or not. Same as input.

The scaling method. Same as input. scale

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "exp".

g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to K.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

Returned in the non-profiled non-centered setting. The g sub-vector correspondg_eta

ing to η .

Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-Gamma_K_eta

sponding to interaction between **K** and η .

Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-Gamma_eta

sponding to η .

t1,t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

```
n <- 50
p <- 30
eta <- rep(0, p)
K <- diag(p)</pre>
domain <- make_domain("R+", p=p)</pre>
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 1, 3)
h_p_dx \leftarrow h_of_dist(h_p, x, domain) \# h and h' applied to distance from x to boundary
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=TRUE, scale="norm", diag=1.5)
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=TRUE,
      scale="norm", diag=1.7)
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=FALSE,
      scale="norm", diag=1.7)
```

get_elts_gamma 43

get_elts_gamma	The R implementation to get the elements necessary for calculations
	for the gamma setting $(a=0.5, b=0)$.

Description

The R implementation to get the elements necessary for calculations for the gamma setting (a=0.5, b=0).

Usage

```
get_elts_gamma(
  hdx,
  hpdx,
  x,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)
```

Arguments

hdx	A matrix, $h(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.	
hpdx	A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain, should be of the same dimension as x.	
x	An n by p matrix, the data matrix, where n is the sample size and p the dimension.	
centered	A boolean, whether in the centered setting (assume $\mu=\eta=0$) or not. Default to TRUE.	
<pre>profiled_if_noncenter</pre>		
	A boolean, whether in the profiled setting ($\lambda_{\eta}=0$) if non-centered. Parameter ignored if centered=TRUE. Default to TRUE.	
scale	A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".	
diagonal_multiplier		
	A number >= 1, the diagonal multiplier.	

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

44 get_elts_gamma

Value

p

A list that contains the elements necessary for estimation.

The sample size. n The dimension.

centered The centered setting or not. Same as input.

The scaling method. Same as input. scale

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "gamma".

g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to K.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

Returned in the non-profiled non-centered setting. The g sub-vector correspondg_eta

ing to η .

scale="norm", diag=1.9)

Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-Gamma_K_eta

sponding to interaction between **K** and η .

Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-Gamma_eta

sponding to η .

t1,t2 Returned in the profiled non-centered setting, where the η estimate can be re-

trieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

```
n <- 50
p <- 30
eta <- rep(0, p)
K <- diag(p)</pre>
domain <- make_domain("R+", p=p)</pre>
 x <- gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
                            xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 1.5, 3)
h_p_dx \leftarrow h_of_dist(h_p, x, domain) \# h and h' applied to distance from x to boundary
elts <- get_elts_gamma(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=TRUE, scale="norm", diag=1.5)
\verb|elts <- get_elts_gamma(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=TRUE, and the second of the secon
                            scale="norm", diag=1.7)
 elts <- get_elts_gamma(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=FALSE,
```

get_elts_gauss 45

get_elts_gauss	The R implementation to get the elements necessary for calculations
	for the gaussian setting on R^p.

Description

The R implementation to get the elements necessary for calculations for the gaussian setting on R^{h} p.

Usage

```
get_elts_gauss(
    x,
    centered = TRUE,
    profiled_if_noncenter = TRUE,
    scale = "",
    diagonal_multiplier = 1
)
```

Arguments

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

46 get_elts_loglog

```
diagonal_multiplier
                    The diagonal multiplier. Same as input.
diagonals_with_multiplier
                    A vector that contains the diagonal entries of \Gamma after applying the multiplier.
                   The setting "gaussian".
setting
Gamma_K
                    The \Gamma matrix with no diagonal multiplier. In the non-profiled non-centered
                    setting, this is the \Gamma sub-matrix corresponding to K. Except for the profiled
                    setting, this is \mathbf{x}\mathbf{x}^{\top}/n.
                    Returned in the non-profiled non-centered setting. The \Gamma sub-matrix corre-
Gamma_K_eta
                    sponding to interaction between K and \eta. The minus column means of x.
                    Returned in the profiled non-centered setting, where the \eta estimate can be re-
t1,t2
                    trieved from t_1 - t_2 \mathbf{K} after appropriate resizing.
```

Examples

get_elts_loglog

The R implementation to get the elements necessary for calculations for the log-log setting (a=0, b=0).

Description

The R implementation to get the elements necessary for calculations for the log-log setting (a=0, b=0).

Usage

```
get_elts_loglog(
  hdx,
  hpdx,
  x,
  setting,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)
```

get_elts_loglog 47

Arguments

hdx A matrix, $h(\mathbf{x})$ applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

hpdx A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

x An n by p matrix, the data matrix, where n is the sample size and p the dimen-

sion.

setting A string, log_log.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta} = 0)$ if non-centered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The same setting as in the function argument.

 g_K The q vector. In the non-profiled non-centered setting, this is the q sub-vector

corresponding to K.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

g_eta Returned in the non-profiled non-centered setting. The g sub-vector correspond-

ing to η .

Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corre-

sponding to interaction between K and η .

Gamma_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η . Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1-t_2\hat{\mathbf{K}}$ after appropriate resizing.

Examples

```
get_elts_loglog_simplex
```

The R implementation to get the elements necessary for calculations for the log-log setting (a=0, b=0) on the p-simplex.

Description

The R implementation to get the elements necessary for calculations for the log-log setting (a=0, b=0) on the p-simplex.

Usage

```
get_elts_loglog_simplex(
  hdx,
  hpdx,
  x,
  setting,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)
```

Arguments

hdx A matrix, h(x) applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

hpdx A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

x An n by p matrix, the data matrix, where n is the sample size and p the dimen-

sion.

setting A string, log_log or log_log_sum0. If log_log_sum0, assumes that the true

K has row and column sums 0 (see the A^d model), so only the off-diagonal entries will be estimated; the diagonal entries will be profiled out in the loss), so elements corresponding to the diagonals of K will be set to 0, and the loss will

be rewritten in the off-diagonal entries only.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting $(\lambda_{\eta} = 0)$ if non-centered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number ≥ 1 , the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The same setting as in the function argument.

 g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to K.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

 g_{e} ta Returned in the non-profiled non-centered setting. The g sub-vector correspond-

ing to η .

50 get_elts_trun_gauss

Gamma_K_eta Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between K and η .

Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η .

Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1 - t_2\hat{K}$ after appropriate resizing.

Examples

```
n <- 50
p < -30
eta <- rep(0, p)
K <- -cov_cons("band", p=p, spars=3, eig=1)</pre>
diag(K) \leftarrow diag(K) - rowSums(K) # So that <math>rowSums(K) == colSums(K) == 0
eigen(K)$val[(p-1):p] # Make sure K has one 0 and p-1 positive eigenvalues
domain <- make_domain("simplex", p=p)</pre>
x <- gen(n, setting="log_log_sum0", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 2, 3)
h_p_x < -h_of_dist(h_p, x, domain) # h and h' applied to distance from x to boundary
elts_simplex_0 <- get_elts_loglog_simplex(h_hp_dx$hdx, h_hp_dx$hpdx, x,
       setting="log_log", centered=FALSE, profiled=FALSE, scale="", diag=1.5)
# If want K to have row sums and column sums equal to 0; estimate off-diagonals only
elts_simplex_1 <- get_elts_loglog_simplex(h_hp_dx$hdx, h_hp_dx$hpdx, x,
       setting="log_log_sum0", centered=FALSE, profiled=FALSE, scale="", diag=1.5)
# All entries corresponding to the diagonals of K should be 0:
max(abs(sapply(1:p, function(j){c(elts_simplex_1$Gamma_K[j, (j-1)*p+1:p],
       elts_simplex_1Gamma_K[, (j-1)*p+j]))))
max(abs(diag(elts_simplex_1$Gamma_K_eta)))
max(abs(diag(matrix(elts_simplex_1$g_K, nrow=p))))
```

get_elts_trun_gauss

The R implementation to get the elements necessary for calculations for the gaussian setting (a=1, b=1) on domains other than R^p .

Description

The R implementation to get the elements necessary for calculations for the gaussian setting (a=1, b=1) on domains other than R^p .

Usage

```
get_elts_trun_gauss(
  hdx,
  hpdx,
  x,
```

get_elts_trun_gauss 51

```
centered = TRUE,
profiled_if_noncenter = TRUE,
scale = "",
diagonal_multiplier = 1
)
```

Arguments

hdx A matrix, h(x) applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

hpdx A matrix, $h'(\mathbf{x})$ applied to the distance of x from the boundary of the domain,

should be of the same dimension as x.

x An n by p matrix, the data matrix, where n is the sample size and p the dimen-

sion.

centered A boolean, whether in the centered setting (assume $\mu = \eta = 0$) or not. Default

to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting ($\lambda_{\eta} = 0$) if non-centered. Parameter

ignored if centered=TRUE. Default to TRUE.

scale A string indicating the scaling method. Returned without being checked or used

in the function body. Default to "norm".

diagonal_multiplier

A number ≥ 1 , the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n The sample size.
p The dimension.

p The dimension.

centered The centered setting or not. Same as input.

scale The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting The setting "gaussian".

 g_K The g vector. In the non-profiled non-centered setting, this is the g sub-vector

corresponding to **K**.

Gamma_K The Γ matrix with no diagonal multiplier. In the non-profiled non-centered

setting, this is the Γ sub-matrix corresponding to K.

52 get_g0

g_eta	Returned in the non-profiled non-centered setting. The g sub-vector corresponding to η .
Gamma_K_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between K and η .
Gamma_eta	Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to η .
t1,t2	Returned in the profiled non-centered setting, where the η estimate can be retrieved from $t_1 - t_2 \hat{\mathbf{K}}$ after appropriate resizing.

Examples

get_g0	Calculates the 12 distance to the boundary of the domain and its gra-
	dient for some domains.

Description

Calculates the 12 distance to the boundary of the domain and its gradient for some domains.

Usage

```
get_g0(domain, C)
```

Arguments

domain A list returned from make_domain() that represents the domain.
C A positive number, cannot be Inf if domain\$type == "R". If not Inf, the 12 distance will be truncated to C, i.e. the function returns pmin(g0(x), C) and its gradient.

 get_g0 53

Details

Calculates the 12 distance to the boundary of the domain, with the distance truncated above by a constant C. Matches the g0 function and its gradient from Liu (2019) if C = Inf and domain is bounded. Currently only R, R+, simplex, uniform and polynomial-type domains of the form $sum(x^2) \le d$ or $sum(x^2) > d$ or $sum(abs(x)) \le d$ are implemented.

Value

A function that takes x and returns a list of a vector g0 and a matrix g0d.

```
n <- 15
p <- 5
K \leftarrow diag(p)
eta <- numeric(p)</pre>
domain <- make_domain("R", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("R+", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("uniform", p=p, lefts=c(-Inf,-3,3), rights=c(-5,1,Inf))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("simplex", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
\max(abs(get_g0(domain, 1)(x)\$g0 - get_g0(domain, 1)(x[,-p])\$g0))
\max(abs(get_g0(domain, 1)(x)\$g0d - get_g0(domain, 1)(x[,-p])\$g0d))
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)>1.3", "nonnegative"=FALSE, "abs"=FALSE)))
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)>1.3", "nonnegative"=TRUE, "abs"=FALSE)))
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)<1.3", "nonnegative"=FALSE, "abs"=FALSE)))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0(domain, 1)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)<1.3", "nonnegative"=TRUE, "abs"=FALSE)))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
```

 get_g0_ada

get_g0_ada

Adaptively truncates the l2 distance to the boundary of the domain and its gradient for some domains.

Description

Adaptively truncates the 12 distance to the boundary of the domain and its gradient for some domains.

Usage

```
get_g0_ada(domain, percentile)
```

Arguments

domain

A list returned from make_domain() that represents the domain.

percentile

A number between 0 and 1, the percentile. The returned 12 distance will be truncated to its percentile-th quantile, i.e. the function returns pmin(g0(x), stats::quantile(g0(x), percentile)) and its gradient. The quantile is calculated using finite values only, and if no finite values exist the quantile is set to 1.

Details

Calculates the 12 distance to the boundary of the domain, with the distance truncated above at a specified quantile. Matches the g0 function and its gradient from Liu (2019) if percentile == 1 and domain is bounded. Currently only R, R+, simplex, uniform and polynomial-type domains of the form $sum(x^2) \le d$ or $sum(x^2) \le d$ or $sum(abs(x)) \le d$ are implemented.

Value

A function that takes x and returns a list of a vector g0 and a matrix g0d.

 get_g0_ada 55

```
n <- 15
p <- 5
K <- diag(p)</pre>
eta <- numeric(p)</pre>
domain <- make_domain("R", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.3)(x)
domain <- make_domain("R+", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.3)(x)
domain <- make_domain("uniform", p=p, lefts=c(-Inf,-3,3), rights=c(-5,1,Inf))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.6)(x)
domain <- make_domain("simplex", p=p)</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
\label{eq:max_abs} $$\max(abs(get_g0_ada(domain, 0.4)(x)$g0 - get_g0_ada(domain, 0.4)(x[,-p])$g0))$
\max(abs(get_g0_ada(domain, 0.4)(x))g0d - get_g0_ada(domain, 0.4)(x[,-p])g0d))
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)>1.3", "nonnegative"=FALSE, "abs"=FALSE)))
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.5)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)>1.3", "nonnegative"=TRUE, "abs"=FALSE)))
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.7)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)<1.3", "nonnegative"=FALSE, "abs"=FALSE)))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.6)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x^2)<1.3", "nonnegative"=TRUE, "abs"=FALSE)))
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.25)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x)<1.3", "nonnegative"=FALSE, "abs"=TRUE)))</pre>
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.37)(x)
domain <- make_domain("polynomial", p=p, ineqs=</pre>
     list(list("expression"="sum(x)<1.3", "nonnegative"=TRUE, "abs"=TRUE)))\\
x <- gen(n, "gaussian", FALSE, eta, K, domain, 100)
get_g0_ada(domain, 0.45)(x)
```

56 get_h_hp

get_	h	hp

Generator of h and hp (derivative of h) functions.

Description

Generator of h and hp (derivative of h) functions.

Usage

```
get_h_hp(mode, para = NULL, para2 = NULL)
```

Arguments

mode A string, see details.

para May be optional. A number, the first parameter. Default to NULL.

para2 May be optional. A number, the second parameter. If mode is one of the adaptive

mode below, this specifies the percentile (see details). Default to NULL.

Details

The mode parameter can be chosen from the options listed below along with the corresponding definitions of h under appropriate choices of para and para2 parameters. Unless otherwise noted, para and para2, must both be strictly positive if provided, and are set to 1 if not provided. Functions h and hp should only be applied to non-negative values x and this is not enforced or checked by the functions. Internally calls get_h_hp_vector.

- asinh An asinh function $h(x) = \operatorname{asinh}(\operatorname{para} \cdot x) = \log \left(\operatorname{para} \cdot x + \sqrt{(\operatorname{para} \cdot x)^2 + 1}\right)$. Unbounded and takes one parameter. Equivalent to min_asinh(x, para, Inf).
- cosh A shifted cosh function $h(x) = \cosh(\operatorname{para} \cdot x) 1$. Unbounded and takes one parameter. Equivalent to min_cosh(x, para, Inf).
- exp A shifted exponential function $h(x) = \exp(\operatorname{para} \cdot x) 1$. Unbounded and takes one parameter. Equivalent to min_exp(x, para, Inf).
- identity The identity function h(x) = x. Unbounded and does not take any parameter. Equivalent to pow(x, 1) or $min_pow(x, 1, Inf)$.
- log_pow A power function on a log scale $h(x) = \log(1+x)^{\text{para}}$. Unbounded and takes one parameter. Equivalent to min_log_pow(x, para, Inf).
- mcp Treating λ =para, γ =para2, the step-wise MCP function applied element-wise: $\lambda x x^2/(2\gamma)$ if $x \leq \lambda \gamma$, or $\gamma \lambda^2/2$ otherwise. Bounded and takes two parameters.
- min_asinh A truncated asinh function applied element-wise: $\min(\operatorname{asinh}(\operatorname{para} \cdot \boldsymbol{x}), \operatorname{para}_2)$. Bounded and takes two parameters.
- min_asinh_ada Adaptive version of min_asinh.

get_h_hp 57

min_cosh A truncated shifted cosh function applied element-wise: $\min(\cosh(\operatorname{para} \cdot \boldsymbol{x}) - 1, \operatorname{para}_2)$. Bounded and takes two parameters.

- min_cosh_ada Adaptive version of min_cosh.
- min_exp A truncated shifted exponential function applied element-wise: $h(x) = \min(\exp(\operatorname{para} \cdot x) 1, \operatorname{para}_2)$. Bounded and takes two parameters.
- min_exp_ada Adaptive version of min_exp.
- min_log_pow A truncated power on a log scale applied element-wise: $h(x) = \min(\log(1 + x), \operatorname{para}_2)^{\operatorname{para}}$. Bounded and takes two parameters.
- min_log_pow_ada Adaptive version of min_log_pow.
- min_pow A truncated power function applied element-wise: $h(x) = \min(x, \text{para}_2)^{\text{para}}$. Bounded and takes two parameters.
- min_pow_ada Adaptive version of min_pow.
- min_sinh A truncated sinh function applied element-wise: $\min(\sinh(\operatorname{para} \cdot \boldsymbol{x}), \operatorname{para}_2)$. Bounded and takes two parameters.
- min_sinh_ada Adaptive version of min_sinh.
- min_softplus A truncated shifted softplus function applied element-wise: $\min(\log(1+\exp(\operatorname{para}\cdot \boldsymbol{x})) \log(2), \operatorname{para}_2)$. Bounded and takes two parameters.
- min_softplus_ada Adaptive version of min_softplus.
- pow A power function $h(x) = x^{\mathrm{para}}$. Unbounded and takes two parameter. Equivalent to min_pow(x, para, Inf).
- scad Treating λ =para, γ =para2, the step-wise SCAD function applied element-wise: λx if $x \leq \lambda$, or $(2\gamma\lambda x x^2 \lambda^2)/(2(\gamma-1))$ if $\lambda < x < \gamma\lambda$, or $\lambda^2(\gamma+1)/2$ otherwise. Bounded and takes two parameters, where para2 must be larger than 1, and will be set to 2 by default if not provided.
- sinh A sinh function $h(x) = \sinh(\operatorname{para} \cdot x)$. Unbounded and takes one parameter. Equivalent to $\min_x \sinh(x, \operatorname{para}, \operatorname{Inf})$.
- softplus A shifted softplus function $h(x) = \log(1 + \exp(\operatorname{para} \cdot x)) \log(2)$. Unbounded and takes one parameter. Equivalent to min_softplus(x, para, Inf).
- $tanh A tanh function h(x) = tanh(para \cdot x)$. Bounded and takes one parameter.
- truncated_sin A truncated sin function applied element-wise: $\sin(\operatorname{para} \cdot x)$ if $\operatorname{para} \cdot x \leq \pi/2$, or 1 otherwise. Bounded and takes one parameter.
- truncated_tan A truncated tan function applied element-wise: $\tan(\operatorname{para} \cdot x)$ if $\operatorname{para} \cdot x \leq \pi/4$, or 1 otherwise. Bounded and takes one parameter.

For the adaptive modes (names ending with "_ada"), h and hp are first applied to x without truncation. Then inside each column, values that are larger than the para2-th quantile will be truncated. The quantile is calculated using finite values only, and if no finite values exist the quantile is set to 1. For example, if mode == "min_pow_ada", para == 2, para2 == 0.4, the j-th column of the returned hx will be pmin(x[,j]^2, stats::quantile(x[,j]^2, 0.4)), and the j-th column of hpx will be $2*x[,j]*(x[,j] \le stats::quantile(x[,j]^2, 0.4))$.

Value

A function that returns a list containing hx=h(x) (element-wise) and hpx=hp(x) (element-wise derivative of h) when applied to a vector (for mode names not ending with "_ada" only) or a matrix x, with both of the results having the same shape as x.

58 get_h_hp_adaptive

Examples

```
get_h_hp("mcp", 2, 4)(0:10)
get_h_hp("min_log_pow", 1, log(1+3))(matrix(0:11, nrow=3))
get_h_hp("min_pow", 1.5, 3)(seq(0, 5, by=0.5))
get_h_hp("min_softplus")(matrix(seq(0, 2, by=0.1), nrow=7))

get_h_hp("min_log_pow_ada", 1, 0.4)(matrix(0:49, nrow=10))
get_h_hp("min_pow_ada", 2, 0.3)(matrix(0:49, nrow=10))
get_h_hp("min_softplus_ada", 2, 0.6)(matrix(seq(0, 0.49, by=0.01), nrow=10))
```

get_h_hp_adaptive

Generator of adaptive h and hp (derivative of h) functions.

Description

Generator of adaptive h and hp (derivative of h) functions.

Usage

```
get_h_hp_adaptive(mode, para, percentile)
```

Arguments

mode A string, the corresponding mode (with the suffix "_ada" removed from the

input to get_h_hp()). Must be one of the modes starting with "min_" supported

by get_h_hp_vector().

para Must be provided, but can be NULL. A number, the first parameter; see get_h_hp()

or get_h_hp_vector().

percentile A number, the percentile for column-wise truncation on hx and hpx.

Details

Helper function of get_h_hp(). Please refer to get_hs_hp().

Value

A function that returns a list containing hx=h(x) (element-wise) and hpx=hp(x) (element-wise derivative of h) when applied to a matrix x, with both of the results having the same shape as x.

```
get_h_hp_adaptive("min_log_pow", 1, 0.4)(matrix(0:49, nrow=10))
get_h_hp_adaptive("min_pow", 2, 0.3)(matrix(0:49, nrow=10))
get_h_hp_adaptive("min_softplus", 2, 0.6)(matrix(seq(0, 0.49, by=0.01), nrow=10))
hx_hpx <- get_h_hp_adaptive("min_log_pow", 1, 0.4)(matrix(0:49, nrow=10))
hx_hpx2 <- get_h_hp("min_log_pow_ada", 1, 0.4)(matrix(0:49, nrow=10))
c(max(abs(hx_hpx$hx - hx_hpx2$hx)), max(abs(hx_hpx$hpx - hx_hpx2$hpx)))</pre>
```

get_h_hp_vector 59

get	h	hp	_vector	
5 C C_	_''-	_' 'P-	_ v c c c c c i	

Generator of h and hp (derivative of h) functions.

Description

Generator of h and hp (derivative of h) functions.

Usage

```
get_h_hp_vector(mode, para = NULL, para2 = NULL)
```

Arguments

mode A string, see details.

para May be optional. A number, the first parameter. Default to NULL.

para2 May be optional. A number, the second parameter. Default to NULL.

Details

Helper function of get_h_hp(). Please refer to get_hs_hp().

Value

A function that returns a matrix with hx=h(x) (element-wise) and hpx=hp(x) (element-wise derivative of h) cbinded when applied to a vector or a matrix x, where if x is a vector, the returned value will have two columns and number of rows equal to length(x), otherwise it will have the same number of rows as x and number of columns doubled.

Examples

```
get_h_hp_vector("mcp", 2, 4)
get_h_hp_vector("min_log_pow", 1, log(1+3))
get_h_hp_vector("min_pow", 1, 3)
get_h_hp_vector("min_softplus")
```

get_postfix_rule

Changes a logical expression in infix notation to postfix notation using the shunting-yard algorithm.

Description

Changes a logical expression in infix notation to postfix notation using the shunting-yard algorithm.

Usage

```
get_postfix_rule(rule, num_eqs)
```

get_results

Arguments

rule A string containing positive integers, parentheses, and "%" and "|" only. "%%"

and "&" are not differentiated, and similarly for "||" and "|". Chained operations are only allowed for the same operation ("&" or "|"), so instead of "1 && 2 || 3" one should write either "(1 && 2) || 3" or "1 && (2 || 3)" to avoid

ambiguity.

num_eqs An integer, must be larger than or equal to the largest integer appearing in rule.

Details

Applied to domain\$rule if domain\$type == "polynomial", and internally calls beautify_rule().

Value

rule in postfix notation.

Examples

```
get_postfix_rule("1 & 2 && 3", 3)
get_postfix_rule("1 & (2 || 3)", 3)
get_postfix_rule("(1 & 2) || 3 | (4 & (5 || 6) && 7) | 8 | (9 && (10 || 11 || 12) & 13)", 13)
## Not run:
get_postfix_rule("1 && 2 & 3 && 4", 3) # Error, ineq number 4 appearing in \code{rule}.
## End(Not run)
## Not run:
# Error, ambigious rule. Change to either \code{"1 & (2 | 3)"} or \code{"(1 & 2) | 3"}.
get_postfix_rule("1 & 2 | 3", 3)
## End(Not run)
```

get_results

Estimate **K** and η using elts from get_elts() given one λ _**K** (and λ _ η if non-profiled non-centered) and applying warm-start with strong screening rules.

Description

Estimate **K** and η using elts from get_elts() given one $\lambda_{\mathbf{K}}$ (and λ_{η} if non-profiled non-centered) and applying warm-start with strong screening rules.

Usage

```
get_results(
  elts,
  symmetric,
  lambda1,
  lambda2 = 0,
```

get_results 61

```
tol = 1e-06,
maxit = 10000,
previous_res = NULL,
is_refit = FALSE
)
```

Arguments

elts A list, elements necessary for calculations returned by get_elts().

symmetric A string. If equals "symmetric", estimates the minimizer **K** over all symmetric

matrices; if "and" or "or", use the "and"/"or" rule to get the support.

lambda1 A number, the penalty parameter for K.

lambda2 A number, the penalty parameter for η . Default to 0. Cannot be Inf if non-

profiled non-centered.

tol Optional. A number, the tolerance parameter.

maxit Optional. A positive integer, the maximum number of iterations.

previous_res Optional. A list or NULL, the returned list by this function run previously with

another lambda value.

is_refit A boolean, in the refit mode for BIC estimation if TRUE. If TRUE, lambda1,

previous_lambda1 and lambda2 are all set to 0, and estimation is restricted

to entries in exclude that are 0.

Details

If elts\$domain_type == "simplex", symmetric != "symmetric" or elts\$centered == FALSE && elts\$profiled_if_noncenter are currently not supported. If elts\$domain_type == "simplex" and elts\$setting contains substring "sum0", it is assumed that the column and row sums of K are all 0 and estimation will be done by profiling out the diagonal entries.

Value

converged A boolean indicating convergence.

crit A number, the final penalized loss.

edges A vector of the indices of entries in the K estimate that are non-zero.

eta A p-vector, the eta estimate. Returned only if elts\$centered == FALSE.

eta_support A vector of the indices of entries in the eta estimate that are non-zero. Returned

only if elts\$centered == FALSE && elts\$profiled_if_noncenter == TRUE.

iters An integer, number of iterations run.

K A p*p matrix, the K estimate.

n An integer, the number of samples.

p An integer, the dimension.

is_refit,lambda1,maxit,previous_lambda1,symmetric,tol

Same as in the input.

lambda2 Same as in the input, and returned only if elts\$centered == FALSE and

elts\$profiled_if_noncenter == FALSE.

62 get_safe_log_h_hp

Examples

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()}, as the
# way to call this function (\code{get_results()}) is exactly the same in those cases.
n <- 50
p <- 30
domain <- make_domain("R+", p=p)</pre>
mu \leftarrow rep(0, p)
K <- diag(p)
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
h_{p} \leftarrow get_{p}("min_{pow}", 1, 3)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=FALSE, scale="norm", diag=dm)
test_nc_np <- get_results(elts_gauss_np, symmetric="symmetric", lambda1=0.35,</pre>
                lambda2=2, previous_res=NULL, is_refit=FALSE)
test_nc_np2 <- get_results(elts_gauss_np, symmetric="and", lambda1=0.25,</pre>
                  lambda2=2, previous_res=test_nc_np, is_refit=FALSE)
elts_gauss_p <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=TRUE, scale="norm", diag=dm)
test_nc_p <- get_results(elts_gauss_p, symmetric="symmetric",</pre>
               lambda1=0.35, lambda2=NULL, previous_res=NULL, is_refit=FALSE)
elts_gauss_c <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
               centered=TRUE, scale="norm", diag=dm)
test_c <- get_results(elts_gauss_c, symmetric="or", lambda1=0.35,</pre>
               lambda2=NULL, previous_res=NULL, is_refit=FALSE)
```

get_safe_log_h_hp

Asymptotic log of h and hp functions for large x for modes with an unbounded h.

Description

Asymptotic log of h and hp functions for large x for modes with an unbounded h.

Usage

```
get_safe_log_h_hp(mode, para)
```

Arguments

mode	A string, the class of the h function. Must be one of "asinh", "cosh", "exp",
	"identity", "log_pow", "pow", "sinh", "softplus", and "tanh".
para	A number, the first parameter to the h function.

get_trun 63

Value

A list of two vectorized functions, logh and loghp.

Examples

get_trun

The truncation point for h for h that is truncated (bounded but not naturally bounded).

Description

The truncation point for h for h that is truncated (bounded but not naturally bounded).

Usage

```
get_trun(mode, param1, param2)
```

Arguments

mode	A string, the class of the h function. Must be one of "mcp", "scad", "min_asinh",
	<pre>"min_cosh", "min_exp", "min_log_pow", "min_pow", "min_sinh", "min_softplus",</pre>
	"truncated_sin", and "truncated_tan".
param1	A number, the first parameter to the h function.
param2	A number, the second parameter (may be optional depending on mode) to the h function.

Value

Returns the truncation point (the point x0 such that h becomes constant and hp becomes 0 for $x \ge x0$) for some selected modes.

```
param1 <- 1.3; param2 <- 2.3
for (mode in c("mcp", "scad", "min_asinh", "min_cosh", "min_exp", "min_log_pow",
        "min_pow", "min_sinh", "min_softplus", "truncated_tan")) {
    # Valgrind complains about "truncated_sin" for unknown reason; omitted
    print(mode)
    trun <- get_trun(mode, param1, param2)</pre>
```

```
x <- trun + -3:3 / 1e5
hx_hpx <- get_h_hp(mode, param1, param2)(x)
print(round(x, 6))
print(paste("hx:", paste(hx_hpx$hx, collapse=" ")))
print(paste("hpx:", paste(hx_hpx$hpx, collapse=" ")))
}</pre>
```

h_of_dist

Finds the distance of each element in a matrix x to the its boundary of the domain while fixing the others in the same row (dist(x, domain)), and calculates element-wise h(dist(x, domain)) and h'(dist(x, domain)) (w.r.t. each element in x).

Description

Finds the distance of each element in a matrix x to its boundary of the domain while fixing the others in the same row (dist(x, domain)), and calculates element-wise h(dist(x, domain)) and h\'(dist(x, domain)) (w.r.t. each element in x).

Usage

```
h_of_dist(h_hp, x, domain, log = FALSE)
```

Arguments

h_hp	A function, the h and hp (the derivative of h) functions. h_hp(x) should return a list of elements hx (h(x)) and hpx (hp(x)), both of which have the same size as x.
х	An n by p matrix, the data matrix, where n is the sample size and p the dimension.
domain	A list returned from make_domain() that represents the domain.
log	A logical, defaults to FALSE. If TRUE, assumes that h_{p} contains in fact the log of h and hp, and this function will return the log of $h(dist(x, domain))$ and $abs(h'(dist(x, domain)))$ along with the sign of $h'(dist(x, domain))$.

Details

Define dist(x, domain) as the matrix whose i, j-th component is the distance of $x_{i,j}$ to the boundary of domain, assuming $x_{i,-j}$ are fixed. The matrix has the same size of x (n by p), or if domain $x_{i,-j}$ and x has full dimension p, it has p-1 columns.

Define dist\'(x, domain) as the component-wise derivative of dist(x, domain) in its components. That is, its i, j-th component is 0 if $x_{i,j}$ is unbounded or is bounded from both below and above or is at the boundary, or -1 if $x_{i,j}$ is closer to its lower boundary (or if its bounded from below but unbounded from above), or 1 otherwise.

 $h_{of_{dist}(h_{p}, x, domain)} = h_{hp(dist(x, domain))}$ and $h_{hp(dist(x, domain))}$ w.r.t. x).

Value

```
If \log == FALSE, a list that contains h(dist(x, domain)) and h'(dist(x, domain)).
    hdx
                      h(dist(x, domain)).
                      hp(dist(x, domain)).
    hpdx
    If log == TRUE, a list that contains the log of h(dist(x, domain)) and abs(h'(dist(x, domain)))
    as well as the sign of h'(dist(x, domain)).
    log_hdx
                      log(h(dist(x, domain))).
    log_hpdx
                     log(abs(hp(dist(x, domain)))).
    sign_hpdx
                      sign(hp(dist(x, domain))).
Examples
    n <- 20
    p <- 10
    eta \leftarrow rep(0, p)
    K < - diag(p)
    dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
    # Gaussian on R^p:
    domain <- make_domain("R", p=p)</pre>
    x <- mvtnorm::rmvnorm(n, mean=solve(K, eta), sigma=solve(K))</pre>
    # Equivalently:
    x2 <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain,
           finite_infinity=100, xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)
    h_hp <- get_h_hp("pow", 2) # For demonstration only
    hd <- h_of_dist(h_hp, x, domain)
    # hdx is all Inf and hpdx is all 0 since each coordinate is unbounded with domain R
    c(all(is.infinite(hd$hdx)), all(hd$hpdx==0))
    # exp on R_+^p:
    domain <- make_domain("R+", p=p)</pre>
    x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
           xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
    h_hp <- get_h_hp("pow", 2) # For demonstration only</pre>
    hd <- h_of_dist(h_hp, x, domain)</pre>
    # hdx is x^2 and hpdx is 2*x; with domain R+, the distance of x to the boundary is just x itself
    c(max(abs(hd$hdx - x^2)), max(abs(hd$hpdx - 2*x)))
    # Gaussian on sum(x^2) > p with x allowed to be negative
```

ineqs=list(list("expression"=paste("sum(x^2)>", p), abs=FALSE, nonnegative=FALSE))) x <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,

xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)

domain <- make_domain("polynomial", p=p,</pre>

dist <- get_dist(x, domain)</pre>

```
quota <-p - (rowSums(x^2) - x^2) # How much should xij^2 at least be so that <math>sum(xi^2) > p?
# How far is xij from +/-sqrt(quota), if quota >= 0?
dist_{to} = 0) - abs(x[quota >= 0]) - abs(sqrt(quota[quota >= 0]))
# Should be equal to our own calculations
max(abs(dist$dx[is.finite(dist$dx)] - dist_to_bound))
\# dist'(x) should be the same as the sign of x
all(dist$dpx[is.finite(dist$dx)] == sign(x[quota >= 0]))
# quota is negative <-> sum of x_{i,-j}^2 already > p <-> xij unbounded given others
       <-> distance to boundary is Inf
all(quota[is.infinite(dist$dx)] < 0)</pre>
h_hp <- get_h_hp("pow", 2) # For demonstration only
# Now confirm that h_of_dist indeed applies h and hp to dists
hd <- h_of_dist(h_hp, x, domain)</pre>
# hdx = dist ^ 2
print(max(abs(hd$hdx[is.finite(dist$dx)] - dist$dx[is.finite(dist$dx)]^2)))
# hdx = Inf if dist = Inf
print(all(is.infinite(hd$hdx[is.infinite(dist$dx)])))
# hpdx = 2 * dist' * dist
print(max(abs(hd$hpdx[is.finite(dist$dx)] - 2*(dist$dpx*dist$dx)[is.finite(dist$dx)])))
print(all(hd$hpdx[is.infinite(dist$dx)] == 0)) # hpdx = 0 if dist = Inf
# gamma on ([0, 1] v [2,3])^p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
x <- gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# If 0 \le xij \le 1, distance to boundary is min(x-0, 1-x)
\max(abs(dist*dx - pmin(x, 1-x))[x \ge 0 \& x \le 1])
# If 0 \le xij \le 1, dist'(xij) is 1 if it is closer to 0, or -1 if it is closer 1,
# assuming xij %in% c(0, 0.5, 1) with probability 0
all((dist$dpx == 2 * (1-x > x) - 1)[x >= 0 & x <= 1])
# If 2 \le xij \le 3, distance to boundary is min(x-2, 3-x)
\max(abs(dist\$dx - pmin(x-2, 3-x))[x >= 2 \& x <= 3])
# If 2 \le xij \le 3, dist'(xij) is 1 if it is closer to 2, or -1 if it is closer 3,
# assuming xij %in% c(2, 2.5, 3) with probability 0
all((dist dpx == 2 * (3-x > x-2) - 1)[x >= 2 & x <= 3])
h_hp <- get_h_hp("pow", 2) # For demonstration only</pre>
# Now confirm that h_of_dist indeed applies h and hp to dists
hd <- h_of_dist(h_hp, x, domain)</pre>
# hdx = dist ^ 2
print(max(abs(hd$hdx - dist$dx^2)))
# hpdx = 2 * dist' * dist
print(max(abs(hd$hpdx - 2*dist$dpx*dist$dx)))
# a0.6_b0.7 on \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                      list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                      list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
set.seed(1)
```

```
xinit <- c(1.5, 0.5, abs(stats::rnorm(p-2)) + log(1.3))
x <- gen(n, setting="ab_3/5_7/10", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=xinit, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# x_{i1} has uniform bound [1, +Inf), so its distance to its boundary is x_{i1} - 1
\max(abs(dist*dx[,1] - (x[,1] - 1)))
# x_{i2} has uniform bound [log(1.3), 1], so its distance to its boundary
     is min(x_{i2} - log(1.3), 1 - x_{i2})
\max(abs(dist*dx[,2] - pmin(x[,2] - log(1.3), 1 - x[,2])))
\# x_{ij}  for i \ge 3 has uniform bound [log(1.3), +Inf), so its distance to its boundary is
     simply x_{ij} - \log(1.3)
\max(abs(dist*dx[,3:p] - (x[,3:p] - log(1.3))))
# dist'(xi2) is 1 if it is closer to log(1.3), or -1 if it is closer 1,
     assuming x_{i2} %in% c(log(1.3), (1+log(1.3))/2, 1) with probability 0
all((dist dpx[,2] == 2 * (1 - x[,2] > x[,2] - log(1.3)) - 1))
all(dist dpx[,-2] == 1) \# x_{ij}  for j != 2  is bounded from below but unbounded from above,
     so dist'(xij) is always 1
h_{p} \leftarrow get_{pow}, 2) # For demonstration only
# Now confirm that h_of_dist indeed applies h and hp to dists
hd <- h_of_dist(h_hp, x, domain)</pre>
# hdx = dist ^ 2
print(max(abs(hd$hdx - dist$dx^2)))
# hpdx = 2 * dist' * dist
print(max(abs(hd$hpdx - 2*dist$dpx*dist$dx)))
# log_log model on {x in R_+^p: sum_j j * xj <= 1}</pre>
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                      abs=FALSE, nonnegative=TRUE)))
x < -gen(n, setting="log_log", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)</pre>
# Upper bound for j * xij so that sum_j j * xij <= 1
quota <-1 - (rowSums(t(t(x) * 1:p)) - t(t(x) * 1:p))
# Distance of xij to its boundary is min(xij - 0, quota_{i,j} / j - xij)
\max(abs(dist\$dx - pmin((t(t(quota) / 1:p) - x), x)))
h_hp <- get_h_hp("pow", 2) # For demonstration only</pre>
# Now confirm that h_of_dist indeed applies h and hp to dists
hd <- h_of_dist(h_hp, x, domain)</pre>
# hdx = dist ^ 2
print(max(abs(hd$hdx - dist$dx^2)))
# hpdx = 2 * dist' * dist
print(max(abs(hd$hpdx - 2*dist$dpx*dist$dx)))
# log_log_sum0 model on the simplex with K having row and column sums 0 (Aitchison model)
domain <- make_domain("simplex", p=p)</pre>
K <- -cov_cons("band", p=p, spars=3, eig=1)</pre>
diag(K) \leftarrow diag(K) - rowSums(K) # So that rowSums(K) == colSums(K) == 0
eigen(K)$val[(p-1):p] # Make sure K has one 0 and p-1 positive eigenvalues
x <- gen(n, setting="log_log_sum0", abs=FALSE, eta=eta, K=K, domain=domain,
```

68 interval_intersection

```
 \begin{array}{l} \text{xinit=NULL, seed=2, burn\_in=1000, thinning=100, verbose=FALSE)} \\ \text{\# Note that dist$dx and dist$dpx only has p-1 columns -- excluding the last coordinate in x dist <- get_dist(x, domain)} \\ \text{\# Upper bound for x$_{i,j}$ so that x$_{i,1}$ + ... + x$_{i,p-1}$ <= 1 \\ \text{quota <- 1 - (rowSums(x[,-p]) - x[,-p])} \\ \text{\# Distance of x$_{i,j}$ to its boundary is min(xij - 0, quota$_{i,j}$ - xij)} \\ \text{max(abs(dist$dx - pmin(quota - x[,-p], x[,-p])))} \\ \text{h$_{h}p$ <- get$_{h$_{h}p("pow", 2)}$ \# For demonstration only} \\ \text{\# Now confirm that h$_{o}f$_{dist}$ indeed applies h and hp to dists} \\ \text{hd} <- h$_{o}f$_{dist}(h$_{h}p$, x, domain)} \\ \text{\# hdx = dist ^ 2} \\ \text{print(max(abs(hd$hdx - dist$dx^2)))} \\ \text{\# hpdx = 2 * dist' * dist} \\ \text{print(max(abs(hd$hpdx - 2*dist$dpx*dist$dx)))} \\ \end{aligned}
```

interval_intersection Finds the intersection between two unions of intervals.

Description

Finds the intersection between two unions of intervals.

Usage

```
interval_intersection(A, B)
```

Arguments

A	A list of vectors of size 2, each representing an interval. $A[[i]][1] \le A[[i]][2] \le A[[j]][1]$ for any $i \le j$.	It is required that
В	A list of vectors of size 2, each representing an interval. $A[[i]][1] \le A[[i]][2] \le A[[i]][1]$ for any $i \le j$.	It is required that

Details

Finds the intersection between the union of all intervals in A and the union of all intervals in B.

Value

A list of vectors of size 2, whose union represents the intersection between A and B.

```
 \begin{array}{lll} interval\_intersection(list(c(1.2,1.5),\ c(2.3,2.7)), \\ list(c(0.6,1.4),\ c(2.5,3.6),\ c(6.3,6.9))) \\ interval\_intersection(list(c(-0.3,0.55),\ c(2.35,2.8)), \\ list(c(0.54,0.62),\ c(2.5,2.9))) \\ interval\_intersection(list(c(0,1)),\ list(c(1,2))) \\ interval\_intersection(list(c(0,1+1e-8)),\ list(c(1,2))) \\ \end{array}
```

interval_union 69

interval_union

Finds the union between two unions of intervals.

Description

Finds the union between two unions of intervals.

Usage

```
interval_union(A, B)
```

Arguments

A	A list of vectors of size 2, each representing an interval.	It is required that
	$A[[i]][1] \le A[[i]][2] \le A[[j]][1]$ for any $i \le j$.	
В	A list of vectors of size 2, each representing an interval.	It is required that

A list of vectors of size 2, each representing an interval. It is required that $A[[i]][1] \le A[[i]][2] \le A[[j]][1]$ for any i < j.

Details

Finds the union between the union of all intervals in A and the union of all intervals in B.

Value

A list of vectors of size 2, whose union represents the union between A and B.

```
 interval\_union(list(c(1.2,1.5), c(2.3,2.7)), \\ list(c(0.6,1.4), c(2.5,3.6), c(6.3,6.9))) \\ interval\_union(list(c(-0.3,0.55), c(2.35,2.8)), \\ list(c(0.54,0.62), c(2.5,2.9))) \\ interval\_union(list(c(0,1)), list(c(1,2))) \\ interval\_union(list(c(0,1-1e-8)), list(c(1,2))) \\ interval\_union(list(c(0,1), c(2,3)), \\ list(c(1,2))) \\ interval\_union(list(c(0,1-1e-8), c(2+1e-8,3)), \\ list(c(1,2))) \\ interval\_union(list(c(0,1)), list()) \\
```

70 in_bound

in_bound

Returns whether a vector or each row of a matrix falls inside a domain.

Description

Returns whether a vector or each row of a matrix falls inside a domain.

Usage

```
in_bound(x, domain)
```

Arguments

x A vector of length or a matrix of number of columns equal to domain\$p if domain\$type != "simplex", or either domain\$p or domain\$p-1 otherwise.

domain A list returned from make_domain() that represents the domain.

Details

Returns whether a vector or each row of a matrix falls inside a domain. If domaintype = "simplex", if the length/number of columns is domain $p, returns all(x > 0) && abs(sum(x) - 1) < domain<math>simplex_tol;$ if the dimension is domainp-1, returns all(x > 0) && sum(x) < 1.

Value

A logical vector of length equal to the number of rows in x (1 if x is a vector).

```
p <- 30
n <- 10
# The 30-dimensional real space R^30, assuming probability of
domain <- make_domain("R", p=p)</pre>
in_bound(1:p, domain)
in_bound(matrix(1:(p*n), ncol=p), domain)
# The non-negative orthant of the 30-dimensional real space, R+^30
domain <- make_domain("R+", p=p)</pre>
in_bound(matrix(1:(p*n), ncol=p), domain)
in_bound(matrix(1:(p*n) * (2*rbinom(p*n, 1, 0.98)-1), ncol=p), domain)
# x such that sum(x^2) > 10 && sum(x^(1/3)) > 10 with x allowed to be negative
domain <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list("expression"="sum(x^2)>10", abs=FALSE, nonnegative=FALSE),
                    list("expression"="sum(x^(1/3))>10", abs=FALSE, nonnegative=FALSE)))
in_bound(rep((5/p)^3, p), domain)
in_bound(rep((10/p)^3, p), domain)
in\_bound(rep((15/p)^3, p), domain)
```

in_bound 71

```
in\_bound(rep((5/p)^(1/2), p), domain)
in\_bound(rep((10/p)^(1/2), p), domain)
in_bound(rep((15/p)^(1/2), p), domain)
# ([0, 1] v [2,3]) ^ p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))</pre>
in\_bound(c(0.5, 2.5)[rbinom(p, 1, 0.5)+1], domain)
in\_bound(c(rep(0.5, p/2), rep(2.5, p/2)), domain)
in_bound(c(rep(0.5, p/2), rep(2.5, p/2-1), 4), domain)
# x such that \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                       list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                       list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
in_bound(c(1.5, (log(1.3)+1)/2, rep(log(1.3)*2, p-2)), domain)
in_bound(c(0.5, (log(1.3)+1)/2, rep(log(1.3)*2, p-2)), domain)
in_bound(c(1.5, log(1.3)/2, rep(log(1.3)*2, p-2)), domain)
in_bound(c(1.5, (log(1.3)+1)/2, rep(log(1.3)/2, p-2)), domain)
# x in R_+^p such that \{sum(log(x))<2 \mid | (x1^{(2/3)}-1.3x2^{(-3)}<1 \& exp(x1)+2.3*x2>2)\}
domain <- make_domain("polynomial", p=p, rule="1 || (2 && 3)",</pre>
       ineqs=list(list("expression"="sum(log(x))<2", abs=FALSE, nonnegative=TRUE),
                 list("expression"="x1^(2/3)-1.3x2^(-3)<1", abs=FALSE, nonnegative=TRUE),
                  list("expression"="exp(x1)+2.3*x2^2>2", abs=FALSE, nonnegative=TRUE)))
in_bound(rep(exp(1/p), p), domain)
in_bound(c(1, 1, rep(1e5, p-2)), domain)
# x in R_+^p such that {x in R_+^p: sum_j j * xj <= 1}</pre>
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),</pre>
                      abs=FALSE, nonnegative=TRUE)))
in_bound(0.5/p/1:p, domain)
in_bound(2/p/1:p, domain)
in_bound(rep(1/p, p), domain)
in_bound(rep(1/p^2, p), domain)
# The (p-1)-simplex
domain <- make_domain("simplex", p=p)</pre>
x <- abs(matrix(rnorm(p*n), ncol=p))</pre>
x <- x / rowSums(x)
in_bound(x, domain) # TRUE
in_bound(x[,1:(p-1)], domain) # TRUE
x2 <- x
x2[,1] \leftarrow -x2[,1]
in_bound(x2, domain) # FALSE since the first component is now negative
in_bound(x2[,1:(p-1)], domain) # FALSE since the first component is now negative
x3 <- x
x3[,1] \leftarrow x3[,1] + domain$simplex_tol * 10
in_bound(x3, domain) # FALSE since the rows do not sum to 1
in_bound(x3[,1:(p-1)], domain) # TRUE since the first (p-1) elts in each row still sum to < 1
x3[,1] \leftarrow x3[,1] + x3[,p]
```

72 lambda_max

lambda_max

Analytic solution for the minimum $\lambda_{\mathbf{K}}$ that gives the empty graph.

Description

Analytic solution for the minimum $\lambda_{\mathbf{K}}$ that gives the empty graph. In the non-centered setting the bound is not tight, as it is such that both \mathbf{K} and $\boldsymbol{\eta}$ are empty. The bound is also not tight if symmetric == "and".

Usage

```
lambda_max(elts, symmetric, lambda_ratio = Inf)
```

Arguments

elts A list, elements necessary for calculations returned by get_elts(). symmetric A string. If equals "symmetric", estimates the minimizer ${\bf K}$ over all symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support. lambda_ratio A positive number (or Inf), the fixed ratio $\lambda_{\bf K}$ and λ_{η} , if $\lambda_{\eta} \neq 0$ (non-profiled)

in the non-centered setting

in the non-centered setting.

Value

A number, the smallest lambda that produces the empty graph in the centered case, or that gives zero solutions for K and η in the non-centered case. If symmetric == "and", it is not a tight bound for the empty graph.

makecoprime 73

```
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
h_hp <- get_h_hp("min_pow", 1, 3)
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
# Exact analytic solution for the smallest lambda such that K and eta are both zero,
# but not a tight bound for K ONLY
lambda_max(elts_gauss_np, "symmetric", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_gauss_np, "symmetric", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_gauss_np, "symmetric", 2))
# Exact analytic solution for the smallest lambda such that K and eta are both zero,
# but not a tight bound for K ONLY
lambda_max(elts_gauss_np, "or", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_gauss_np, "or", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_gauss_np, "or", 2))
# An upper bound, not tight.
lambda_max(elts_gauss_np, "and", 2)
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_gauss_np, "and", lambda_ratio=2, lower = FALSE,
     lambda_start = lambda_max(elts_gauss_np, "and", 2))
elts_gauss_p <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
             centered=FALSE, profiled=TRUE, diag=dm)
# Exact analytic solution
lambda_max(elts_gauss_p, "symmetric")
# Numerical solution, should be close to the analytic solution
test_lambda_bounds2(elts_gauss_p, "symmetric", lambda_ratio=Inf, lower = FALSE,
     lambda_start = NULL)
# Exact analytic solution
lambda_max(elts_gauss_p, "or")
# Numerical solution, should be close to the analytic solution
test_lambda_bounds2(elts_gauss_p, "or", lambda_ratio=Inf, lower = FALSE,
     lambda_start = NULL)
# An upper bound, not tight
lambda_max(elts_gauss_p, "and")
# Use the upper bound as a starting point for numerical search
test_lambda_bounds2(elts_gauss_p, "and", lambda_ratio=Inf, lower = FALSE,
     lambda_start = lambda_max(elts_gauss_p, "and"))
```

Description

Divides both integers by their greatest common divisor, switching their signs if the second integer is negative. If either integer is 0, returns without modification.

Usage

```
makecoprime(a, b)
```

Arguments

- a An integer.
- b An integer.

Value

The greatest (positive) common divisor of two integers; if one of them is 0, returns the absolute value of the other number.

Examples

```
makecoprime(1, 2)
makecoprime(1, -2)
makecoprime(12, -18)
makecoprime(-12, 18)
makecoprime(15, 0)
makecoprime(0, -15)
makecoprime(0, 0)
```

make_domain

Creates a list of elements that defines the domain for a multivariate distribution.

Description

Creates a list of elements that define the domain for a multivariate distribution.

Usage

```
make_domain(type, p, lefts = NULL, rights = NULL, ineqs = NULL, rule = NULL)
```

Arguments

```
type A string, the domain type. Currently support "R", "R+", "uniform", "polynomial", "simplex". See details.
```

p An integer, the dimension of the domain.

Optional, required if type == "uniform" and must have the same length as rights. A non-empty vector of numbers (may contain -Inf), the left endpoints of a domain defined as a union of intervals. It is required that lefts[i] <= rights[i] <= lefts[j] for any i < j.

Optional, required if type == "uniform" and must have the same length as lefts. A non-empty vector of numbers (may contain Inf), the right endpoints of a domain defined as a union of intervals. It is required that lefts[i] <= rights[i] <= lefts[j] for any i < j.

Optional, required if type == "polynomial". A list of lists, each sublist representing an inequality that defines the domain. Each sublist must contain fields abs (logical) and nonnegative (logical), and in addition either a single expression (string), or all of the following: uniform (logical), larger (logical), power_numers (1 or p integers), power_denoms (1 or p integers), const (a number), coeffs (1 or p numbers).

Optional, required if type == "polynomial" && length(ineqs) > 1. A string containing inequality numbers, spaces, parentheses, '&' and 'l' only. Used to indicate the logic operation on how to combine the domains defined by each inequality, i.e. " $(1 \& 2 \&\& 3) \parallel 4 \mid 5$ ". Chained operations not separated by parentheses are only allowed for the same type of operation ('&'/'l'), i.e. "1 & 2 \ 3" is not allowed; it should be either " $(1 \& 2) \mid 3$ " or "1 & $(2 \mid 3)$ ".

Details

rights

inegs

rule

The following types of domains are supported:

- "R" The entire p-dimensional real space. Equivalent to "uniform" type with lefts=-Inf and rights=Inf.
- "R+" The non-negative orthant of the p-dimensional real space. Equivalent to "uniform" type with lefts=0 and rights=Inf.
- "uniform" A union of finitely many disjoint intervals as a uniform domain for all components. The left endpoints should be specified through lefts and the right endpoints through rights. The intervals must be disjoint and strictly increasing, i.e. lefts[i] <= rights[i] <= lefts[j] for any i < j. E.g. lefts=c(0, 10) and rights=c(5, Inf) represents the domain ([0,5]v[10,+Inf])^p.
- "simplex" The standard p-1-simplex with all components positive and sum to 1, i.e. sum(x) == 1 and x > 0.
- "polynomial" A finite intersection/union of domains defined by comparing a constant to a polynomial with at most one term in each component and no interaction terms (e.g. x1^3+x1^2>1 or x1*x2>1 not supported). The following is supported: {x1^2 + 2*x2^(3/2) > 1} && ({3.14*x1 0.7*x3^3 < 1} || {-exp(3*x2) + 3.7*log(x3) + 2.4*x4^(-3/2)}). To specify a polynomial-type domain, one should define the ineqs, and in case of more than one inequality, the logical rule to combine the domains defined by each inequality.
- rule A logical rule in infix notation, e.g. "(1 && 2 && 3) || (4 && 5) || 6", where the numbers represent the inequality numbers starting from 1. "&&" and "&" are not differentiated, and similarly for "||" and "|". Chained operations are only allowed for the same operation ("&" or "|"), so instead of "1 && 2 || 3" one should write either "(1 && 2) || 3" or "1 && (2 || 3)" to avoid ambiguity.

ineqs A list of lists, each sublist represents one inequality, and must contain the following fields:

- abs A logical, indicates whether one should evaluate the polynomial in abs(x) instead of x (e.g. "sum(x) > 1" with abs == TRUE is interpreted as sum(abs(x)) > 1).
- nonnegative A logical, indicates whether the domain of this inequality should be restricted to the non-negative orthant.

In addition, one must in addition specify either a single string "expression" (highly recommended, detailed below), or all of the following fields (discouraged usage):

- uniform A logical, indicates whether the inequality should be uniformly applied to all components (e.g. "x>1" -> "x1>1 && ... && xp>1").
- larger A logical, indicates whether the polynomial should be larger or smaller than the constant (e.g. TRUE for x1 + ... + xp > C, and FALSE for x1 + ... + xp < C).
- const A number, the constant the polynomial should be compared to (e.g. 2.3 for x1 + ... + xp > 2.3).
- power_numers A single integer or a vector of p integers. x[i] will be raised to the power of power_numers[i] / power_denoms[i] (or without subscript if a singer integer). Note that x^(0/0) is interpreted as log(x), and x^(n/0) as exp(n*x) for n non-zero. For a negative x, x^(a/b) is defined as (-1)^a*|x|^(a/b) if b is odd, or NaN otherwise. (Example: c(2,3,5,0,-2) for x1^2+2*x2^(3/2)+3*x3^(5/3)+4*log(x4)+5*exp(-2*x)>1).
- power_denoms A single integer or a vector of p integers. (Example: c(1,2,3,0,0) for $x1^2+2*x2^3+3*x3^5+3+4*\log(x4)+5*\exp(-2*x)>1$).
- coeffs Required if uniform == FALSE. A vector of p doubles, where coeffs[i] is the coefficient on x[i] in the inequality.

The user is recommended to use a single expression for ease and to avoid potential errors. The user may safely skip the explanations and directly look at the examples to get a better understanding.

The expression should have the form "POLYNOMIAL SIGN CONST", where "SIGN" is one of "<", "<=", ">", ">=", and "CONST" is a single number (scientific notation allowed).

"POLYNOMIAL" must be (1) a single term (see below) in "x" with no coefficient (e.g. " $x^{(2/3)}$ ", "exp(3x)"), or (2) such a term surrounded by "sum()" (e.g. " $sum(x^{(2/3)})$ ", "sum(exp(3x))"), or (3) a sum of such terms in "x1" through "xp" (one term max for each component) with or without coefficients, separated by the plus or the minus sign (e.g. " $2.3x1^{(2/3)}-3.4exp(x2)+x3^{(-3/5)}$ ").

For (1) and (2), the term must be in one of the following forms: "x", "x^2", "x^(-2)", "x^(2/3)", "x^(-2/3)", "log(x)", "exp(x)", "exp(2x)", "exp(2*x)", "exp(-3x)", where the 2 and 3 can be changed to any other non-zero integers.

For (3), each term should be as above but in "x1", ..., "xp" instead of "x", following an optional double number and optionally a "*" sign.

Examples: For p=10,

- (1) " $x^2 > 2$ " defines the domain abs(x1) > sqrt(2) && ... && abs(x10) > sqrt(2).
- (2) "sum(x^2) > 2" defines the domain $x1^2 + ... + x10^2 > 2$.
- (3) "2.3x3^(2/3)-3.4x4+x5^(-3/5)+3.7*x6^(-4)-1.9*log(x7)+1.3e5*exp(-3x8)}\cr\\code{-2*exp(x9)+0.5exp(2*x10)} <= 2" defines a domain using a polynomial in x3 through

x10, and x1 and x2 are thus allowed to vary freely.

Note that ">" and ">=" are not differentiated, and so are "<" and "<=".

Value

A list containing the elements that define the domain. For all types of domains, the following are returned.

type A string, same as the input.p An integer, same as the input.

p_deemed An integer, equal to p-1 if type == "simplex" or p otherwise.

checked A logical, TRUE. Used in other functions to test whether a list is returned by this

function.

In addition,

- For type == "simplex", returns in addition simplex_tol Tolerance used for simplex domains. Defaults to 1e-10.
- For type == "uniform", returns in addition

lefts A non-empty vector of numbers, same as the input.

rights A non-empty vector of numbers, same as the input.

left_inf A logical, indicates whether lefts[1] is -Inf.

right_inf A logical, indicates whether rights[length(rights)] is Inf.

• For type == "polynomial", returns in addition

rule A string, same as the input if provided and valid; if not provided and length(ineqs) == 1, set to "1" by default.

postfix_rule A string, rule in postfix notation (reverse Polish notation) containing numbers, "", "&" and "|" only.

ineqs A list of lists, each sublist representing one inequality containing the following fields: uniform A logical, indicates whether the inequality should be uniformly applied to all components (e.g. "x>1" -> "x1>1 && ... && xp>1").

larger A logical, indicates whether the polynomial should be larger or smaller than the constant (e.g. TRUE for x1 + ... + xp > C, and FALSE for x1 + ... + xp < C).

const A number, the constant the polynomial should be compared to (e.g. 2.3 for x1 + ... + xp > 2.3).

abs A logical, indicates whether one should evaluate the polynomial in abs(x) instead of x.

nonnegative A logical, indicates whether the domain of this inequality should be restricted to the non-negative orthant.

power_numers A single integer or a vector of p integers. x[i] will be raised to the power of power_numers[i] / power_denoms[i] (or without subscript if a singer integer). Note that x^(0/0) is interpreted as log(x), and x^(n/0) as exp(n*x) for n non-zero. For a negative x, x^(a/b) is defined as (-1)^a*|x|^(a/b) if b is odd, or NaN otherwise.

power_denoms A single integer or a vector of p integers.
coeffs NULL if uniform == TRUE. A vector of p doubles, where coeffs[i] is the coefficient on x[i] in the inequality

```
p < -30
# The 30-dimensional real space R^30
domain <- make_domain("R", p=p)</pre>
# The non-negative orthant of the 30-dimensional real space, R+^30
domain <- make_domain("R+", p=p)</pre>
# x such that sum(x^2) > 10 \& sum(x^(1/3)) > 10 with x allowed to be negative
domain <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list("expression"="sum(x^2)>10", abs=FALSE, nonnegative=FALSE),
                     list("expression"="sum(x^(1/3))>10", abs=FALSE, nonnegative=FALSE)))
# Alternatively
domain2 <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
      ineqs=list(list(uniform=FALSE, power_numers=2, power_denoms=1, const=10, coeffs=1,
                 larger=1, abs=FALSE, nonnegative=FALSE),
                 list(uniform=FALSE, power_numers=1, power_denoms=3, const=10, coeffs=1,
                 larger=1, abs=FALSE, nonnegative=FALSE)))
# ([0, 1] v [2,3]) ^ p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))
# x such that \{x1 > 1 \& \log(1.3) < x2 < 1 \& x3 > \log(1.3) \& ... \& xp > \log(1.3)\}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",</pre>
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                       list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),</pre>
                       list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
# Alternatively
domain2 <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list(uniform=FALSE, power_numers=1, power_denoms=1, const=1,
                 coeffs = c(1, rep(0, p-1)), \ larger = 1, \ abs = FALSE, \ nonnegative = TRUE),
                 list(uniform=FALSE, power_numers=1, power_denoms=1, const=1,
                 coeffs = c(0,1,rep(0,p-2)), \ larger = 0, \ abs = FALSE, \ nonnegative = TRUE),
                 list(uniform=TRUE, power_numers=1, power_denoms=0, const=1.3,
                 larger=1, abs=FALSE, nonnegative=FALSE)))
# x in R_+^p such that \{sum(log(x))<2 \mid | (x1^(2/3)-1.3x2^(-3)<1 & exp(x1)+2.3*x2>2)\}
domain <- make_domain("polynomial", p=p, rule="1 || (2 && 3)",</pre>
       ineqs=list(list("expression"="sum(log(x)) < 2", \ abs=FALSE, \ nonnegative=TRUE),\\
                 list("expression"="x1^(2/3)-1.3x2^(-3)<1", abs=FALSE, nonnegative=TRUE),
                   list("expression"="exp(x1)+2.3*x2^2>2", abs=FALSE, nonnegative=TRUE)))
# Alternatively
domain2 <- make_domain("polynomial", p=p, rule="1 && 2",</pre>
       ineqs=list(list(uniform=FALSE, power_numers=0, power_denoms=0, const=2,
                 coeffs=1, larger=0, abs=FALSE, nonnegative=TRUE),
            list(uniform=FALSE, power_numers=c(2,-3,rep(1,p-2)), power_denoms=c(3,rep(1,p-1)),
```

make_folds 79

```
const=1, coeffs=c(1.0,-1.3,rep(0,p-2)), larger=0, abs=FALSE, nonnegative=TRUE),
            list(uniform=FALSE, power_numers=c(1,2,rep(1,p-2)), power_denoms=c(0,rep(1,p-1)),
            const=2, coeffs=c(1,2.3,rep(\emptyset,p-2)), larger=1, abs=FALSE, nonnegative=TRUE)))
# x in R_+^p such that {x in R_+^p: sum_j j * xj <= 1}</pre>
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                            function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),
                      abs=FALSE, nonnegative=TRUE)))
# Alternatively
domain2 <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list(uniform=FALSE, power_numers=1, power_denoms=1, const=1,
                  coeffs=1:p, larger=0, abs=FALSE, nonnegative=TRUE)))
# The (p-1)-simplex
domain <- make_domain("simplex", p=p)</pre>
# The l-1 ball \{sum(|x|) < 1\}
domain <- make_domain("polynomial", p=p,</pre>
       ineqs=list(list("expression"="sum(x)<1", abs=TRUE, nonnegative=FALSE)))
```

make_folds

Helper function for making fold IDs for cross validation.

Description

Helper function for making fold IDs for cross validation.

Usage

```
make_folds(nsamp, nfold, cv_fold_seed)
```

Arguments

nsamp Number of samples.

nfold Number of cross validation folds.

cv_fold_seed Seed for random shuffling.

Value

A list of nsamp vectors, numbers 1 to nsamp shuffled and grouped into vectors of length floor(nsamp/nfold) followed by vectors of length floor(nsamp/nfold)+1.

```
make_folds(37, 5, NULL)
make_folds(100, 5, 2)
make_folds(100, 10, 3)
```

80 mu_sigmasqhat

mu_sigmasqhat	Estimates the mu and sigma squared parameters from a univariate
	truncated normal sample.

Description

Estimates the mu and sigma squared parameters from a univariate truncated normal sample.

Usage

```
mu_sigmasqhat(x, mode, param1, param2, mu = NULL, sigmasq = NULL)
```

Arguments

A vector, the data. Х A string, the class of the h function. mode param1 A number, the first parameter to the h function. A number, the second parameter (may be optional depending on mode) to the h param2 function. A number, may be NULL. If NULL, an estimate will be given; otherwise, the value mu will be treated as the known true mu parameter and is used to calculate an estimate for sigmasq, if sigmasq is NULL. sigmasq A number, may be NULL. If NULL, an estimate will be given; otherwise, the value will be treated as the known true sigmasq parameter and is used to calculate an estimate for mu, if mu is NULL.

Details

If both mu and sigmasq are provided, they are returned immediately. If neither is provided, the estimates are given as

$$[1/\sigma^2, \mu/\sigma^2] = \left\{ \sum_{i=1}^n h(X_i)[X_i, -1][X_i, -1]^\top \right\}^{-1} \left\{ \sum_{i=1}^n \left[h(X_i) + h'(X_i)X_i, -h'(X_i) \right] \right\}.$$

If only sigmasq is provided, the estimate for mu is given as

$$\sum_{i=1}^{n} [h(X_i)X_i - \sigma^2 h'(X_i)] / \sum_{i=1}^{n} h(X_i).$$

If only mu is given, the estimate for sigmasq is given as

$$\sum_{i=1}^{n} h(X_i)(X_i - \mu)^2 / \sum_{i=1}^{n} [h(X_i) + h'(X_i)(X_i - \mu)].$$

Value

A vector that contains the mu and the sigmasq estimates.

naiveSearch_bin 81

naiveSearch_bin

Finds the index of the bin a number belongs to using naive search.

Description

Finds the index of the bin a number belongs to using naive search.

Usage

```
naiveSearch_bin(arr, x)
```

Arguments

arr A vector of size at least 2.

x A number. Must be within the range of [arr[1], arr[length(arr)]].

Details

Finds the smallest index i such that $arr[i] \le x \le arr[i+1]$.

Value

The index i such that $arr[i] \le x \le arr[i+1]$.

Examples

```
naiveSearch_bin(1:10, seq(1, 10, by=0.5))
```

parse_ab

Parses an ab setting into rational numbers a and b.

Description

Parses an ab setting into rational numbers a and b.

Usage

```
parse_ab(s)
```

Arguments

s

A string starting with "ab_", followed by rational numbers a and b separated by "_". a and b must be integers or rational numbers of the form "int/int". See examples.

82 parse_ineq

Value

A list of the following elements:

a_numer The numerator of a.
a_denom The denominator of a.
b_numer The numerator of b.
b_denom The denominator of b.

Examples

```
parse_ab("ab_1_1") # gaussian: a = 1, b = 1

parse_ab("ab_2_5/4") # a = 2, b = 5/4

parse_ab("ab_5/4_3/2") # a = 5/4, b = 3/2

parse_ab("ab_3/2_0/0") # a = 3/2, b = 0/0 (log)

parse_ab("ab_1/2_0/0") # exp: a = 1/2, b = 0/0 (log)
```

parse_ineq

Parses an ineq expression into a list of elements that represents the ineq.

Description

Parses an ineq expression into a list of elements that represents the ineq.

Usage

```
parse_ineq(s, p)
```

Arguments

s A string, an ineq expression. Please refer make_domain().

p An integer, the dimension.

Details

Please refer make_domain() for the syntax of the expression.

Value

A list containing the following elements:

uniform A logical, indicates whether the ineq is a uniform expression that applies to each

component independently (e.g. $x^2>1$, exp(3*|x|)<3.4).

const A number, the constant side of the ineq that the variable side should compare to

(e.g. 1.3 in x1^2+2*x2^3>1.3).

larger A logical, indicates whether the variable side of the expression should be larger

or smaller than const.

A single number or a vector of length p. The numerators of the powers in the ineq for each component (e.g. c(2,3,5,0,-2) for x1^2+2*x2^(3/2)+3*x3^(5/3)+4*log(x4)+5*exp(-2*x)>1).

Dower_denoms

A single number or a vector of length p. The denominators of the powers in the ineq for each component (e.g. c(1,2,3,0,0) for x1^2+2*x2^(3/2)+3*x3^(5/3)+4*log(x4)+5*exp(-2*x)>1).

A vector of length p that represents the coefficients in the ineq associated with

each component. Returned only if uniform == FALSE.

Examples

```
p <- 30
parse_ineq("sum(x^2)>10", p)
parse_ineq("sum(x^{(1/3)})>10", p)
parse_ineq("x1>1", p)
parse_ineq("x2<1", p)</pre>
parse_ineq("exp(x)>1.3", p)
parse_ineq("sum(log(x)) < 2", p)
parse_ineq("x1^(2/3)-1.3x2^(-3)<1", p)
parse_ineq("exp(x1)+2.3*x2^2 > 2", p)
parse_ineq(paste(paste(sapply(1:p,
                         function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"), p)
parse_ineq("0.5*x1^{-2/3}-x3^3 + 2\log(x2) - 1.3e4exp(-25*x6)+x8 - .3x5^{-3/-4} >= 2", 8)
parse_ineq("0.5*x1^{-2/3})-x2^{4/-6}+2e3x3^{-6/9} < 3.5e5", 3)
parse_ineq("x^{-2/3})<=3e3", 5)
parse_ineq("sum(x^{-2/3})<=3e3", 5)
parse_ineq("x<=3e3", 5)</pre>
parse_ineq("sum(x) \le 3e3", 5)
parse_ineq("exp(-23x)<=3e3", 5)
parse_ineq("sum(exp(-23x)) \le 3e3", 5)
```

random_init_polynomial

Randomly generate an initial point in the domain defined by a single polynomial with no negative coefficient.

Description

Randomly generate an initial point in the domain defined by a single polynomial with no negative coefficient.

Usage

```
random_init_polynomial(domain)
```

Arguments

domain

A list returned from make_domain() that represents the domain. Currently only supports domain\$type == "polynomial" && length(domain\$ineqs) == 1. If domain\$ineqs[[1]]\$uniform == FALSE, domain\$ineqs[[1]]\$coeffs must not contain negative numbers.

Details

If inequality is uniform, find the uniform bound for each component and generate each coordinate using random_init_uniform(). Otherwise, first randomly generate centered laplace variables for components with coefficient 0 (free variables). Then assign a quota of eq\$const / length(nonzero_coefficient) to each coordinate (so that each

 $frac_pow(x[i], eq$power_numers[i], eq$power_denoms[i], eq$abs) * eq$coeffs[i] is compared to quota). Deal with components with exp() term first, and generate each coordinate while fulfilling quota if possible; if not, randomly generate from$

[-0.01,0.01]/abs(eq\$power_numers[i]). Then recalculate the new quota which subtracts the exp() terms from eq\$const, and this time divided by the number of remaining components. If quota becomes negative and eq\$larger == FALSE, each component, after frac_pow() is assumed to give a negative number. This is not possible if the term has the form x^{even_number/even_number}, or if the term is not log() in the case where eq\$nonnegative == TRUE | | eq\$abs == TRUE. Change quota to a positive smaller in absolute value for these bad terms and generate. Finally, recalculate quota as before and generate the rest of the "good" components.

In some extreme domains the function may fail to generate a point within the domain. Also, it is not guaranteed that the function returns a point in an area with a high probability density.

Value

A p vector inside the domain defined by domain.

```
p <- 30
polv_d <- function(ex, abs, nng){</pre>
   return (make_domain("polynomial", p=p,
                        ineqs=list(list(expression=ex, abs=abs, nonnegative=nng))))
}
random_init_polynomial(poly_d(paste("sum(exp(x))<=", p*1.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("sum(exp(x))<=", p*1.01), abs=FALSE, nng=FALSE))</pre>
random_init_polynomial(poly_d(paste("sum(exp(x))>", p*1.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("sum(exp(x))>", p*1.01), abs=TRUE, nng=FALSE))
random_init_polynomial(poly_d(paste("sum(log(x))<=", 0.01), abs=TRUE, nng=TRUE))</pre>
random_init_polynomial(poly_d(paste("sum(log(x))>", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("sum(x^2) <= ", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("sum(x^2)>", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("exp(x)<=", 1.01), abs=TRUE, nng=TRUE))</pre>
random_init_polynomial(poly_d(paste("exp(x)<=", 1.01), abs=FALSE, nng=FALSE))</pre>
random_init_polynomial(poly_d(paste("exp(x)>", 1.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("exp(x)>", 1.01), abs=TRUE, nng=FALSE))
```

random_init_simplex 85

```
random\_init\_polynomial(poly\_d(paste("log(x) <=", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("log(x)>", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(paste("x^2<=", 0.01), abs=TRUE, nng=TRUE))</pre>
random_init_polynomial(poly_d(paste("x^2>", 0.01), abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d("x1^2+x2^2+log(x3)<-2", abs=TRUE, nng=TRUE))</pre>
random_init_polynomial(poly_d("x1^2+x2^2+log(x3)>-2", abs=FALSE, nng=FALSE))
random_init_polynomial(poly_d("x1^(3/5)+x2^2+x3^(1/3)<-2", abs=FALSE, nng=FALSE))</pre>
random_init_polynomial(poly_d("x1^(3/5)+x2^2+x3^(1/3)>-2", abs=FALSE, nng=FALSE))
random_init_polynomial(poly_d("x1^(3/5)+1.2*exp(2*x2)+2.3*exp(-3*x3)<-2", abs=FALSE, nng=FALSE))
random\_init\_polynomial(poly\_d("x1^(3/5)+1.2*exp(2*x2)+2.3*exp(-3*x3)<2", abs=TRUE, nng=FALSE))
random\_init\_polynomial(poly\_d("x1^(3/5)+1.2*exp(2*x2)+2.3*exp(-3*x3)>-2", abs=TRUE, nng=FALSE))
random_init_polynomial(poly_d("x1^(3/5)+2.3*log(x4)+1.3*exp(2*x2)+0.7*exp(-3*x3)<-2",
                       abs=TRUE, nng=FALSE))
random_init_polynomial(poly_d("x1^(3/5)+2.3*log(x4)+1.3*exp(2*x2)+0.7*exp(-3*x3)>-2",
                       abs=FALSE, nng=FALSE))
random_init_polynomial(poly_d(
  "x1^(3/5)+0.9*x2^(2/3)+2.7*x3^(-3/2)+1.1*x4^(-5)+1.1*exp(2x5)+1.3*exp(-3x6)+0.7*log(x7)<-2",
                       abs=TRUE, nng=FALSE))
random_init_polynomial(poly_d(
  "x1^(3/5)+0.9*x2^(2/3)+2.7*x3^(-3/2)+1.1*x4^(-5)+1.1*exp(2x5)+1.3*exp(-3x6)+0.7*log(x7)<-2",
                       abs=FALSE, nng=TRUE))
random_init_polynomial(poly_d(
  "x1^(3/5)+0.9*x2^(2/3)+2.7*x3^(-3/2)+1.1*x4^(-5)+1.1*exp(2x5)+1.3*exp(-3x6)+0.7*log(x7)>-2",
                       abs=TRUE, nng=FALSE))
random_init_polynomial(poly_d(
  "x1^(3/5)+0.9*x2^(2/3)+2.7*x3^(-3/2)+1.1*x4^(-5)+1.1*exp(2x5)+1.3*exp(-3x6)+0.7*log(x7)>2",
                       abs=TRUE, nng=TRUE))
random_init_polynomial(poly_d(
  "x1^(3/5)+0.9*x2^(2/3)+2.7*x3^(-3/2)+1.1*x4^(-5)+1.1*exp(2x5)+1.3*exp(-3x6)+0.7*log(x7)>2",
                       abs=FALSE, nng=FALSE))
```

random_init_simplex Generates a random point in the (p-1)-simplex.

Description

Generates a random point in the (p-1)-simplex.

Usage

```
random_init_simplex(p, rdist = stats::rnorm, tol = 1e-10, maxtimes = 100)
```

Arguments

p An integer, the dimension.

rdist A function that generates a random number when called using rdist(1). Must return a non-zero number with a large enough probability.

86 random_init_uniform

tol A small positive number. Samples are regenerated until each of the p compo-

nents are at least of size tol.

maxtimes An integer, maximum number of attempts.

Details

p numbers are generated from rdist and their absolute values are normalized to sum to 1. This will be repeated up to maxtimes times until all p components are larger than or equal to tol.

Value

A random point (p-vector) in the (p-1)-simplex, i.e. sum(x) == 1 && x > 0.

Examples

```
random_init_simplex(100, stats::rnorm, 1e-10, 100)
```

random_init_uniform

Generates random numbers from a finite union of intervals.

Description

Generates random numbers from a finite union of intervals.

Usage

```
random_init_uniform(n, lefts, rights)
```

Arguments

n An integer, the number of samples to return.

lefts A vector of numbers, must have the same length as rights. A non-empty vector

of numbers (may contain -Inf), the left endpoints of a domain defined as a union of intervals. It is required that $lefts[i] \le rights[i] \le lefts[j]$ for any i

< j.

rights A vector of numbers, must have the same length as lefts. A non-empty vector

of numbers (may contain Inf), the right endpoints of a domain defined as a union of intervals. It is required that lefts[i] <= rights[i] <= lefts[j] for

any i < j.

Details

For each sample, a random bin i is uniformly chosen from 1 through length(lefts); if the lefts[i] and rights[i] define a finite interval, a random uniform variable is drawn from the interval; if the interval is infinite, a truncated laplace variable with location 0 and scale 1 is drawn. Used for randomly generating initial points for generators of truncated multivariate distributions.

ran_mat 87

Value

n random numbers from the union of intervals.

Examples

```
\label{eq:hist} \begin{array}{lll} hist(random\_init\_uniform(1e4, -Inf, Inf), breaks=200) \\ hist(random\_init\_uniform(1e4, c(0, 5), c(2, Inf)), breaks=200) \\ hist(random\_init\_uniform(1e4, c(-Inf, 0, 3), c(-3, 1, 12)), breaks=200) \\ hist(random\_init\_uniform(1e4, c(-5, 0), c(-2, 2)), breaks=200) \\ hist(random\_init\_uniform(1e4, c(-10, 1), c(-7, 10)), breaks=200) \\ hist(random\_init\_uniform(1e4, c(-Inf, 100), c(-100, Inf)), breaks=200) \\ hist(random\_init\_uniform(1e4, c(-100, -90), c(-95, -85)), breaks=200) \\ \end{array}
```

ran_mat

Random generator of matrices with given eigenvalues.

Description

Random generator of matrices with given eigenvalues.

Usage

```
ran_mat(p, ev = stats::runif(p, 0, 10), seed = NULL)
```

Arguments

p A positive integer >= 2, the dimension.
 ev A vector of length p, the eigenvalues of the output matrix.
 seed A number, the seed for the generator. Ignored if NULL.

Details

The function randomly fills a p by p matrix with independent Normal(0,1) entries, takes the Q matrix from its QR decomposition, and returns Q'diag(ev)Q.

Value

A p by p matrix whose eigenvalues equal to ev.

```
p <- 30
eigen_values <- (0.1*p-1+1:p)/p
K <- ran_mat(p, ev=eigen_values, seed=1)
sort(eigen(K)$val)-eigen_values</pre>
```

88 read_exponent

read_exponent Parses the exponent part into power_numer and power_denom.
--

Description

Parses the exponent part into power_numer and power_denom.

Usage

```
read_exponent(s)
```

Arguments

s A string. Must be of the form "" (empty string), "^2", "^(-5/3)" followed by other terms (starting with "+" or "-").

Details

Parses the exponential part of the first term into power_numer and power_denom and returns the rest of the terms. Please refer to the examples. s must be of the form "", "^2", "^(-5/3)" followed by other terms, e.g. "+x2^2", "^2+x2^2", "^(-5/3)+x2^2". Assuming these come from "x1+x2^2", "x1^2+x2^2" and "x1^(-5/3)+x2^2", respectively, these will parsed into power_numer=1, power_denom=1, power_numer=2, power_denom=1, and power_numer=-5, power_denom=3, respectively.

Value

A list containing the following elements:

power_numer An integer, the numerator of the power.

power_denom An integer, the denominator of the power.

A string, the rest of the unparsed string.

If parsing is unsuccessful, NULL is returned.

```
read_exponent("")
read_exponent("^(-2*4)") # Unsuccessful parsing, returns \code{\text{NULL}}.
read_exponent("+x2^(2/3)+x3^(-3/4)") # Comes from "x1+x2^(2/3)+x3^(-3/4)"
read_exponent("^2+x2^(2/3)+x3^(-3/4)") # Comes from "x1^2+x2^(2/3)+x3^(-3/4)"
read_exponent("^(2/3)+x2^(2/3)+x3^(-3/4)") # Comes from "x1^(2/3)+x2^(2/3)+x3^(-3/4)"
read_exponent("^(-2)+x2^(2/3)+x3^(-3/4)") # Comes from "x1^(-2)+x2^(2/3)+x3^(-3/4)"
read_exponent("^(-2/3)+x2^(2/3)+x3^(-3/4)") # Comes from "x1^(-2/3)+x2^(2/3)+x3^(-3/4)"
```

read_exponential 89

read_exponential	Parses the integer coefficient in an exponential term.

Description

Parses the integer coefficient in an exponential term.

Usage

```
read_exponential(s, has_index)
```

Arguments

A string that starts with one of the following forms: exp(x), exp(-x), exp(2x), exp(-2x), exp(12*x), exp(-123*x), followed by other terms. If has_index == TRUE, the first term should be rewritten in x with an index (e.g. exp(x1), exp(-2*x2)).

A logical, indicates whether the term is written in a component (e.g. x1, x2) as

opposed to a uniform term (i.e. x).

Details

Parses the coefficient in the first exponential term and returns the rest of the terms.

Value

A list containing the following elements:

power_numer An integer, the integer coefficient inside the first exponential term.

An integer, the index of the term matched (e.g. 3 for exp(2*x3)). NULL if has_index == FALSE.

s A string, the rest of the unparsed string.

If parsing is unsuccessful, NULL is returned.

```
# Unsuccessful parsing, not starting with exponential, returns \code{NULL}.
read_exponential("x", FALSE)
# Unsuccessful parsing, not starting with exponential, returns \code{NULL}.
read_exponential("x1^2+exp(2x2)", TRUE)
read_exponential("exp(x)", FALSE)
read_exponential("exp(x1)", TRUE)
read_exponential("exp(-x)", FALSE)
read_exponential("exp(-x1)+x2^2", TRUE)
read_exponential("exp(2x)", FALSE)
read_exponential("exp(2x1)+x2^(-2/3)", TRUE)
read_exponential("exp(-2x)", FALSE)
```

90 read_one_term

```
read_exponential("exp(-2x1)+exp(x3)", TRUE)
read_exponential("exp(12x)", FALSE)
read_exponential("exp(12x2)+x3^(-3)+x4^2", TRUE)
read_exponential("exp(-12x)", FALSE)
read_exponential("exp(-12x3)+x1^(2/5)+log(x2)", TRUE)
read_exponential("exp(123*x)", FALSE)
read_exponential("exp(123*x1)+x2^4", TRUE)
read_exponential("exp(-123*x1)", FALSE)
read_exponential("exp(-123*x4)+exp(2*x3)", TRUE)
```

read_one_term

Parses the first term of a non-uniform expression.

Description

Parses the first term of a non-uniform expression.

Usage

```
read_one_term(s)
```

Arguments

S

A string, the variable side of a non-uniform inequality expression (i.e. terms must be rewritten in e.g. x1, x2 as opposed to x).

Details

Parses the first term in a non-uniform expression and returns the rest of the terms.

Value

A list containing the following elements:

idx An integer, the index of the first term (e.g. 3 for 1.3*x3^(-2/5))).

power_numer An integer, the power_numer of the first term.

An integer, the power_denom of the first term.

coef A number, the coefficient on the first term (e.g. 1.3 for 1.3*x3^(-2/5)).

s A string, the rest of the unparsed string.

```
read_one_term("0.5*x1+x2^2")
read_one_term("2e3x1^(2/3)-1.3x2^(-3)")
read_one_term("2exp(3x1)+2.3*x2^2")
read_one_term(paste(sapply(1:10, function(j){paste(j, "x", j, "^", (11-j), sep="")}), collapse="+"))
read_one_term("0.5*x1^(-2/3)-x3^3 + 2log(x2)- 1.3e4exp(-25*x6)+x8-.3x5^(-3/-4)")
read_one_term("-1e-4x1^(-2/3)-x2^(4/-6)+2e3x3^(-6/9) < 3.5e5")</pre>
```

read_uniform_term 91

read_uniform_term	Attempts to parse a single term in x into power_numer and
	power_denom.

Description

Attempts to parse a single term in x into power_numer and power_denom.

Usage

```
read_uniform_term(s)
```

Arguments

S

A string, the variable side of an inequality expression. Please refer to make_domain().

Details

Returns NULL if s is not a single uniform term in x (e.g. x^2 is uniform, while $x1^2+x2^2$ is not uniform).

Value

```
power_numers The uniform numerator in the power (e.g. -2 for x^{(-2/3)}).
power_denoms The uniform denominator in the power (e.g. 3 for x^{(-2/3)}).
```

Examples

```
p <- 30
read_uniform_term("x^2")
read_uniform_term("x^(1/3)")
read_uniform_term("exp(x)")
read_uniform_term("log(x)")
read_uniform_term("x^(-2/3)")
read_uniform_term("x")
read_uniform_term("exp(-23x)")</pre>
```

refit

Loss for a refitted (restricted) unpenalized model

Description

Refits an unpenalized model restricted to the estimated edges, with lambda1=0, lambda2=0 and diagonal_multiplier=1. Returns Inf if no unique solution exists (when the loss is unbounded from below or has infinitely many minimizers).

92 refit

Usage

```
refit(res, elts)
```

Arguments

res A list of results returned by get_results().
elts A list, elements necessary for calculations returned by get_elts().

Details

Currently the function only returns Inf when the maximum node degree is >= the sample size, which is a sufficient and necessary condition for nonexistence of a unique solution with probability 1 if symmetric!= "symmetric". In practice it is also a sufficient and necessary condition for most cases and symmetric == "symmetric".

Value

A number, the loss of the refitted model.

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()},
# as the way to call this function (\code{refit()}) is exactly the same in those cases.
n <- 50
p < -30
domain <- make_domain("R+", p=p)</pre>
h_hp <- get_h_hp("min_pow", 1, 3)
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
dm \leftarrow 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                 centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_gauss_np, symmetric="symmetric",</pre>
               lambda1=0.35, lambda2=2, previous_res=NULL, is_refit=FALSE)
refit(res_nc_np, elts_gauss_np)
elts_gauss_p <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=TRUE, diag=dm)
res_nc_p <- get_results(elts_gauss_p, symmetric="symmetric",</pre>
              lambda1=0.35, lambda2=NULL, previous_res=NULL, is_refit=FALSE)
refit(res_nc_p, elts_gauss_p)
elts_gauss_c <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
            centered=TRUE, diag=dm)
res_c <- get_results(elts_gauss_c, symmetric="or", lambda1=0.35,</pre>
           lambda2=NULL, previous_res=NULL, is_refit=FALSE)
```

rexp_truncated 93

```
refit(res_c, elts_gauss_c)
```

rexp_truncated

Generates translated and truncated exponential variables.

Description

Generates translated and truncated exponential variables.

Usage

```
rexp_truncated(n, lo, hi)
```

Arguments

n An integer, the number of samples to return.

10 A double, the lower limit of the distribution, cannot be -Inf.

hi A double, the upper limit of the distribution.

Details

Returns n random variables from the translated truncated exponential distribution with density $\exp(-(x-lo))/(1-\exp(lo-hi))$ on [lo,hi].

Value

n random variables from the translated truncated exponential distribution.

```
hist(rexp_truncated(1e4, 0, Inf), breaks=200)
hist(rexp_truncated(1e4, 10, 12), breaks=200)
hist(rexp_truncated(1e4, -2, 2), breaks=200)
hist(rexp_truncated(1e4, -10, 0), breaks=200)
hist(rexp_truncated(1e4, -100, Inf), breaks=200)
hist(rexp_truncated(1e4, -100, -95), breaks=200)
```

94 rlaplace_truncated

rlaplace_truncated

Generates laplace variables truncated to a finite union of intervals.

Description

Generates laplace variables truncated to a finite union of intervals.

Usage

```
rlaplace_truncated(n, lefts, rights, m = 0, s = 1)
```

Arguments

n	An integer, the number of samples to return.
lefts	A vector of numbers, must have the same length as rights. A non-empty vector of numbers (may contain -Inf), the left endpoints of a domain defined as a union of intervals. It is required that lefts[i] <= rights[i] <= lefts[j] for any i < j.
rights	A vector of numbers, must have the same length as lefts. A non-empty vector of numbers (may contain Inf), the right endpoints of a domain defined as a union of intervals. It is required that $lefts[i] \le rights[i] \le lefts[j]$ for any $i \le j$.
m	A number, the location parameter of the laplace distribution.
S	A number, the scale/dispersion parameter of the laplace distribution.

Details

Returns n random variables from the truncated laplace distribution with density proportional to $\exp(-|x-m|/s)$ truncated to the domain defined by the union of [lefts[i], rights[i]].

Value

n random variables from the truncated laplace distribution.

```
hist(rlaplace_truncated(1e4, -Inf, Inf), breaks=200) hist(rlaplace_truncated(1e4, c(0, 5), c(2, Inf), m=2, s=3), breaks=200) hist(rlaplace_truncated(1e4, c(-Inf, 0, 3), c(-3, 1, 12), m=8, s=4), breaks=200) hist(rlaplace_truncated(1e4, c(-5, 0), c(-2, 2), s=0.8), breaks=200) hist(rlaplace_truncated(1e4, c(-10, 1), c(-7, 10), m=-4), breaks=200) hist(rlaplace_truncated(1e4, c(-Inf, 100), c(-100, Inf), m=100), breaks=200) hist(rlaplace_truncated(1e4, c(-Inf, 100), c(-100, Inf), m=-100), breaks=200) hist(rlaplace_truncated(1e4, c(-100, -90), c(-95, -85), s=2), breaks=200)
```

```
rlaplace_truncated_centered
```

Generates centered laplace variables with scale 1.

Description

Generates centered laplace variables with scale 1.

Usage

```
rlaplace_truncated_centered(n, lo, hi)
```

Arguments

n	An integer,	the number	of samples	to return.
---	-------------	------------	------------	------------

10 A double, the lower limit of the distribution.

hi A double, the upper limit of the distribution.

Details

Returns n random variables from the truncated laplace distribution with density proportional to $\exp(-|x|)$ on [lo,hi].

Value

n random variables from the truncated laplace distribution.

```
hist(rlaplace_truncated_centered(1e4, -Inf, Inf), breaks=200)
hist(rlaplace_truncated_centered(1e4, 0, Inf), breaks=200)
hist(rlaplace_truncated_centered(1e4, 10, 12), breaks=200)
hist(rlaplace_truncated_centered(1e4, -2, 2), breaks=200)
hist(rlaplace_truncated_centered(1e4, -10, 0), breaks=200)
hist(rlaplace_truncated_centered(1e4, -100, Inf), breaks=200)
hist(rlaplace_truncated_centered(1e4, -100, -95), breaks=200)
```

96 s_at

search_bin

Finds the index of the bin a number belongs to.

Description

Finds the index of the bin a number belongs to.

Usage

```
search_bin(arr, x)
```

Arguments

arr A vector of size at least 2.

x A number. Must be within the range of [arr[1], arr[length(arr)]].

Details

Finds the smallest index i such that $arr[i] \le x \le arr[i+1]$. Calls binarySearch_bin() if length(arr) > 8 and calls naiveSearch_bin() otherwise.

Value

The index i such that $arr[i] \le x \le arr[i+1]$.

Examples

```
search_bin(1:10, seq(1, 10, by=0.5))
```

s_at

Returns the character at a position of a string.

Description

Returns the character at a position of a string.

Usage

```
s_at(string, position)
```

Arguments

string A string.

position A positive number.

s_output 97

Details

```
Calls substr(string, position, position).
```

Value

A character

Examples

```
s_at("123", 1)
s_at("123", 2)
s_at("123", 3)
s_at("123", 4)
s_at("123", 0)
```

 s_output

Helper function for outputting if verbose.

Description

Helper function for outputting if verbose.

Usage

```
s_output(out, verbose, verbosetext)
```

Arguments

out Text string.
verbose Boolean.
verbosetext Text string.

Value

If verbose == TRUE, outputs a string that concatenates verbosetext and out.

98 test_lambda_bounds

test_lambda_bounds	Searches for a tight bound for $\lambda_{-}K$ that gives the empty or complete
	graph starting from a given lambda with a given step size

Description

Searches for the smallest lambda that gives the empty graph (if lower == FALSE) or the largest that gives the complete graph (if lower == TRUE) starting from the given lambda, each time updating by multiplying or dividing by step depending on the search direction.

Usage

```
test_lambda_bounds(
  elts,
  symmetric,
  lambda = 1,
  lambda_ratio = 1,
  step = 2,
  lower = TRUE,
  verbose = TRUE,
  tol = 1e-06,
  maxit = 10000,
  cur_res = NULL
)
```

Arguments

elts	A list, elements necessary for calculations returned by get_elts().
symmetric	A string. If equals "symmetric", estimates the minimizer ${\bf K}$ over all symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support
lambda	A number, the initial searching point for $\lambda_{\mathbf{K}}$.
lambda_ratio	A positive number (or Inf), the fixed ratio $\lambda_{\bf K}$ and λ_{η} , if $\lambda_{\eta} \neq 0$ (non-profiled) in the non-centered setting.
step	A number, the multiplicative constant applied to lambda at each iteration. Must be strictly larger than 1.
lower	A boolean. If TRUE, finds the largest possible lambda that gives the complete graph (a $lower$ bound). If FALSE, finds the smallest possible lambda that gives the empty graph (an $upper$ bound).
verbose	Optional. A boolean. If TRUE, prints out the lambda value at each iteration.
tol	Optional. A number, the tolerance parameter.
maxit	Optional. A positive integer, the maximum number of iterations in model fitting for each lambda.
cur_res	Optional. A list, current results returned from a previous lambda. If provided, used as a warm start. Default to NULL.

test_lambda_bounds2 99

Value

1 ambda A number, the best 1 ambda that produces the desired number of edges. 1e-10 or 1e15 is returned if out of bound.

cur_res A list, results for this lambda. May be NULL if lambda is out of bound.

Examples

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
   on other types of domains, please refer to \code{gen()} or \code{get_elts()}, as the
# way to call this function (\code{test_lambda_bounds()}) is exactly the same in those cases.
n <- 50
p < -30
domain <- make_domain("R+", p=p)</pre>
mu \leftarrow rep(0, p)
K <- diag(p)</pre>
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
h_hp <- get_h_hp("min_pow", 1, 3)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,
                 centered=FALSE, profiled=FALSE, diag=dm)
lambda_cur_res <- test_lambda_bounds(elts_gauss_np, "symmetric", lambda=1,</pre>
                  lambda_ratio=1, step=1.5, lower=TRUE, cur_res=NULL)
lambda_cur_res2 <- test_lambda_bounds(elts_gauss_np, "symmetric", lambda=1,</pre>
                  lambda_ratio=1, step=1.5, lower=FALSE, cur_res=lambda_cur_res$cur_res)
```

test_lambda_bounds2

Searches for a tight bound for λ _K that gives the empty or complete graph starting from a given lambda

Description

Searches for the smallest lambda that gives the empty graph (if lower == FALSE) or the largest that gives the complete graph (if lower == TRUE) starting from the given lambda.

Usage

```
test_lambda_bounds2(
  elts,
  symmetric,
  lambda_ratio = Inf,
  lower = TRUE,
  verbose = TRUE,
  tol = 1e-06,
  maxit = 10000,
  lambda_start = NULL
)
```

Arguments

elts	A list, elements necessary for calculations returned by get_elts().
symmetric	A string. If equals "symmetric", estimates the minimizer ${\bf K}$ over all symmetric matrices; if "and" or "or", use the "and"/"or" rule to get the support
lambda_ratio	A positive number (or Inf), the fixed ratio $\lambda_{\bf K}$ and λ_{η} , if $\lambda_{\eta} \neq 0$ (non-profiled) in the non-centered setting.
lower	A boolean. If TRUE, finds the largest possible lambda that gives the complete graph (a $lower$ bound). If FALSE, finds the smallest possible lambda that gives the empty graph (an $upper$ bound).
verbose	Optional. A boolean. If TRUE, prints out the lambda value at each iteration.
tol	Optional. A number, the tolerance parameter.
maxit	Optional. A positive integer, the maximum number of iterations in model fitting for each lambda.
lambda_start	Optional. A number, the starting point for searching. If NULL, set to 1e-4 if lower == TRUE, or 1 if lower == FALSE.

Details

This function calls test_lambda_bounds three times with step set to 10, $10^{(1/4)}$, $10^{(1/16)}$, respectively.

Value

A number, the best lambda that produces the desired number of edges. 1e-10 or 1e15 is returned if out of bound.

```
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()}, as the
# way to call this function (\code{test_lambda_bounds2()}) is exactly the same in those cases.
n <- 50
p < -30
domain <- make_domain("R+", p=p)</pre>
mu \leftarrow rep(0, p)
K \leftarrow diag(p)
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
h_hp <- get_h_hp("min_pow", 1, 3)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,</pre>
                centered=FALSE, profiled=FALSE, diag=dm)
test_lambda_bounds2(elts_gauss_np, "symmetric", lambda_ratio=2,
     lower=TRUE, verbose=TRUE, lambda_start=NULL)
test_lambda_bounds2(elts_gauss_np, "symmetric", lambda_ratio=2,
     lower=FALSE, verbose=TRUE, lambda_start=1.0)
```

tp_fp

tp_fp	Calculates the true and false positive rates given the estimated and true edges.
	rac cages.

Description

Calculates the true and false positive rates given the estimated and true edges.

Usage

```
tp_fp(edges, true_edges, p)
```

Arguments

edges A vector of indices corresponding to the estimated edges. Should not contain the diagonals.

true_edges A vector of indices corresponding to the true edges.

p A positive integer, the dimension.

Value

A vector containing the true positive rate and the false positive rate.

```
n <- 40
p <- 50
mu <- rep(0, p)
tol <- 1e-8
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)</pre>
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm < -1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
set.seed(1)
domain <- make_domain("R+", p=p)</pre>
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),</pre>
       lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
       burn.in.samples = 100, thinning = 10)
est <- estimate(x, setting="gaussian", elts=NULL, domain=domain, centered=TRUE,</pre>
         symmetric="symmetric", lambda_length=100, mode="min_pow",
         param1=1, param2=3, diagonal_multiplier=dm, verbose=FALSE)
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))</pre>
old.par <- par(mfrow=c(1,1), mar=c(5,5,5,5))
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1, main = "ROC curve",
  xlab="False Positives", ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "1", lty = 2)
par(old.par)
```

```
update_finite_infinity_for_uniform
```

Maximum between finite_infinity and 10 times the max abs value of finite elements in lefts and rights.

Description

Maximum between finite_infinity and 10 times the max abs value of finite elements in lefts and rights.

Usage

```
update_finite_infinity_for_uniform(lefts, rights, finite_infinity)
```

Arguments

lefts A non-empty vector of numbers (may contain -Inf), the left endpoints of a

domain defined as a union of intervals. Must pass check_endpoints(lefts,

rights).

rights A non-empty vector of numbers (may contain Inf), the right endpoints of a

domain defined as a union of intervals. Must pass check_endpoints(lefts,

rights).

finite_infinity

A finite positive number. Inf will be truncated to finite_infinity if applica-

ble. See details.

Details

Since we assume that lefts[i] <= rights[i] <= lefts[j] for any i < j, the function takes the maximum between finite_infinity and 10 times the absolute values of lefts[1], lefts[length(lefts)], rights[1], and rights[length(rights)], if they are finite.

Value

A double, larger than or equal to finite_infinity.

```
# Does not change since 1000 > 12 * 10 update_finite_infinity_for_uniform(c(-10,-5,0,5,9), c(-8,-3,2,7,12), 1000) # Changed to 12 * 10 update_finite_infinity_for_uniform(c(-10,-5,0,5,9), c(-8,-3,2,7,12), 10) # Changed to 12 * 10 update_finite_infinity_for_uniform(c(-Inf,-5,0,5,9), c(-8,-3,2,7,12), 10) # Changed to 9 * 10 update_finite_infinity_for_uniform(c(-Inf,-5,0,5,9), c(-8,-3,2,7,Inf), 10)
```

varhat 103

eter is known.		varhat	Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate normal on a general domain assuming the other parameter is known.
----------------	--	--------	---

Description

Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate normal on a general domain assuming the other parameter is known.

Usage

```
varhat(mu, sigmasq, mode, param1, param2, est_mu, domain, tol = 1e-10)
```

Arguments

mu	A number, the true mu parameter.
sigmasq	A number, the true sigmasq parameter.
mode	A string, the class of the h function.
param1	A number, the first parameter to the h function.
param2	A number, the second parameter (may be optional depending on mode) to the h function.
est_mu	A boolean. If TRUE, returns the asymptotic variance of muhat assuming sigmasq is known; if FALSE, returns the asymptotic variance of sigmasqhat assuming mu is known.
domain	A list returned from make_domain() that represents the domain.
tol	A positive number, tolerance for numerical integration. Defaults to 1e-10.

Details

The estimates may be off from the empirical variance, or may even be Inf or NaN if "mode" is one of "cosh", "exp", and "sinh") as the functions grow too fast. If est_mu == TRUE, the function numerically calculates

$$E\left[\sigma^{2}h^{2}(X) + \sigma^{4}{h'}^{2}(X)\right]/E^{2}[h(X)],$$

and if est_mu == FALSE, the function numerically calculates

$$E\left[\left(2\sigma^6h^2(X)+\sigma^8{h'}^2(X)\right)(X-\mu)^2\right]/E^2\left[h(X)(X-\mu)^2\right],$$

where E is the expectation over the true distribution $TN(\mu, \sigma)$ of X.

Value

A number, the asymptotic variance.

104 varhat

```
varhat(0, 1, "min_log_pow", 1, 1, TRUE, make_domain("R+", 1))
varhat(0.5, 4, "min_pow", 1, 1, TRUE, make_domain("R+", 1))
```

Index

AUC, 3	<pre>get_postfix_rule, 59</pre>
avgrocs, 4	get_results, 60
	get_safe_log_h_hp, 62
beautify_rule, 5	get_trun, 63
binarySearch_bin, 6	
	h_of_dist,64
calc_crit,7	
check_endpoints, 9	in_bound, 70
compare_two_results, 10	interval_intersection, 68
compare_two_sub_results, 11	interval_union, 69
cov_cons, 11	
crbound_mu, 12	lambda_max, 72
crbound_sigma, 13	
1:00 1:-4- 14	make_domain, 74
diff_lists, 14	make_folds, 79
diff_vecs, 14	makecoprime, 73
domain_for_C, 15	${\sf mu_sigmasqhat}, 80$
eBIC, 16	naiveSearch_bin,81
estimate, 17	naivesear ch_bin, 61
	parse_ab, 81
find_max_ind, 22	parse_ineq, 82
frac_pow, 23	F
	ran_mat, 87
gcd, 24	<pre>random_init_polynomial, 83</pre>
gen, 25	<pre>random_init_simplex, 85</pre>
<pre>get_crit_nopenalty, 28</pre>	random_init_uniform, 86
get_dist, 29	read_exponent, 88
get_elts, 32	read_exponential, 89
get_elts_ab, 38	read_one_term, 90
<pre>get_elts_exp, 41</pre>	read_uniform_term, 91
get_elts_gamma, 43	refit, 91
get_elts_gauss, 45	rexp_truncated, 93
get_elts_loglog, 46	rlaplace_truncated, 94
<pre>get_elts_loglog_simplex, 48</pre>	rlaplace_truncated_centered, 95
${\tt get_elts_trun_gauss}, {\tt 50}$	•
get_g0, 52	s_at, 96
get_g0_ada, 54	s_output, 97
get_h_hp, 56	search_bin, 96
<pre>get_h_hp_adaptive, 58</pre>	
get_h_hp_vector, 59	$test_1ambda_bounds, 98$

106 INDEX

```
\begin{tabular}{ll} test\_lambda\_bounds2, 99 \\ tp\_fp, 101 \\ update\_finite\_infinity\_for\_uniform, \\ 102 \\ varhat, 103 \\ \end{tabular}
```