SCALING GEOMETRIC MONITORING OVER DISTRIBUTED STREAMS

by

Alexandros D. Keros

A thesis submitted in partial fulfillment of the requirements for the degree

of

UNDERGRADUATE

in

Electronic and Computer Engineering

Approved:	
Dr. Vasilis Samoladas	first reader
Major Professor	Committee Member
second reader	dean
Committee Member	

Technical University of Crete Chania, Crete, Greece

2015

Copyright © Alexandros D. Keros 2015

All Rights Reserved

Scaling Geometric Monitoring over Distributed Streams

by

Alexandros D. Keros, Undergraduate ${\it Technical\ University\ of\ Crete,\ 2015}$

Abstract

BLAH BLAH

Thesis Supervisor: Dr. Vasilis Samoladas

Department: Electronic and Computer Engineering

(30 pages)

Public Abstract

BLAH BLAH

Acknowledgments

my mum

Contents

	F	Page
Al	bstract	iii
Pι	ıblic Abstract	iv
Ac	cknowledgments	v
Lis	st of Tables	viii
Lis	st of Figures	ix
Ι	INTRODUCTION AND PRELIMINARIES	1
1	Introduction	
2	Theoretical Background	5
3	Related Work	7
II	PROBLEM DEFINITION AND IMPLEMENTATION	8
4	Problem Statement	9
5	Implementation 5.1 Geometric Monitoring Implementation 5.2 Distance Based Node Matching 5.3 Heuristic Balancing 5.4 Implementation Challenges	10 12 14
II	I RESULTS AND CONCLUSIONS	15
6	Experimental Results	16 16 16

	6.3	Heuristic Balancing	16
	6.4	Overall Results	16
7		clusions and Future Work	
	7.1	Conclusions	18
	7.2	Future Work	18
Re	eferen	ces	19
Aı	ppend	lix	20
	Cha	pter A Geometric Monitoring Python Implementation	21
	A.1	Python	21
	A.2	Numpy and Scipy	21
	A.3	Openopt	21
	A.4	NetworkX	21
	A.5	Putting It All Together	21

List of Tables

Table Page

List of Figures

Figure]	Page
5.1	Hierarchical pairing scheme example for node set $\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}$.		14

Part I

INTRODUCTION AND PRELIMINARIES

Introduction

- 1.1 Overview
- 1.2 Motivation
- 1.3 Contributions
- 1.4 Thesis Outline

Theoretical Background

The present chapter contains the necessary background knowledge used throughout the length of this thesis. Section 2.1 describes the "Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams" in detail, as formulated by I.Sharfman, A.Shuster, D.Keren [?]. Section 2.2 presents multi-objective optimization and dives into the algorithms used in our implementation. Section 2.4 discusses graph maximum weight matching used for node pairing and, finally, in Section 2.3 we explain the Savitzky-Golay filtering used for smoothing, velocity and acceleration approximation.

2.1 Geometric Monitoring of Distributed Streams

The Continuous Distributed Monitoring Model, a.k.a. Data Stream System (definition)

idea: having a real-time overview over the system differing from tradition DBMS: push paradigm vs pull paradigm, continuous queries

application examples: ISP network traffic, distributed sensors etc

complexity: monitoring value or threshold monitoring over the whole set of observations, in real time monitoring an arbitrary function (non linear function example), arbitrary number of features

goal: minimize communication while retaining the highest accuracy possible possible solutions:

1.centralize

- suffers from network overload, storage overload

2.poll

- not real time, update frequency-accuracy trade-off

3.GM monitoring

-apply convex opt theory in order to reduce communication while retaining accuracy bounds details of geometric monitoring model

2.1.1 System Architecture

```
fully distributed node topology

.no coordinator-center node

.communication between nodes

*image

coordinator based node topology

.coordinator-center node

.nodes communicate only with coordinator

*image
```

2.1.2 Computational Model

```
stream and node notation
weights
statistics vectors
global statistics vector
```

threshold

estimate vector

monitored function

drift vector

general operation of distributed algorithm

drift vector definition

general operation of coordinator based algorithm

*balancing process

slack vector

drift vector definition

2.1.3 Geometric Interpretation

node local constraints make sure global violation is accurately monitored how?

convexity property of drift vectors

theorem of bounded convex hull by local constraints (balls)

monochromaticity of balls

balls monochromatic means threshold upheld

2.1.4 Protocol

```
decentralized algorithm (in short, for completeness) centralized algorithm (in detail)
```

*we will focus on that

2.2 Multiobjective Optimization

what is mop

use examples

kinds:

a.numerical

b.evolutionary

2.2.1 Sohr's algorithm a.k.a. ralg

algorithm description

2.3 Savitzky-Golay Filtering

filtering generals

examples of uses of filters

filters:

Kalman

- +,- Moving Average
- +,- Savitzky-Golay a.k.a. ???? +,- algorithm description

2.4 Maximum Weight Matching in Graphs

general graph theory (introductory) what is max weight matching algorithm description

Related Work

```
cite papers working on the original metioned above
function specific stuff
bounding ellipsoids
reference vector change (estimate vector)
safe zones
prediction
matching
```

^{*}no work on slack vector distribution during balancing, we do!

Part II

PROBLEM DEFINITION AND IMPLEMENTATION

Problem Statement

```
papers in chapter 3 do not scale well why? where exactly?
```

we try our luck at it, how? (one liner)

Implementation

This chapter provides a detailed description of the implemented system. In Section 5.1, the Geometric Monitoring method implementation is described, along with the necessary simplyfing assumptions to aid experimentation. Following that, in Section 5.2 an algorithm for node matching is proposed, inspired by the violation recovery method found in [1]. In Section 5.3, the heuristic based balancing method for local violation resolution is presented, along with the necessary data stream tracking scheme. Finally, the main implementation challenges are discussed.

5.1 Geometric Monitoring Implementation

The initial Geometric Monitoring method [2], which is described in detail in Section 2.1, provides two algorithms for threshold monitoring of distributed data streams. These algorithms operate on different network structures and implement a somewhat different handling of threshold violations.

The decentralized algorithm operates on a coordinator-less environment, where nodes are allowed to communicate with each other, whereas the coordinator-based algorithm has a Star network topology, where the coordinator node is the central node (the *hub*) and the Monitoring nodes recide on the edges of the network. The algorithm operating on the decentralized setting does not provide a balancing process for local violation resolution. On the other hand, the coordinator based algorithm implements a violation resolution operation every time a local violation occurs, which aims to minimize the communication overhead induced by false violation reports.

Our focus is centered towards a simplified **coordinator-based algorithm** (Algorithm ??), described in Section 2.1, as it provides a framework for the heuristic balancing process, as well as the node matching operation presented in detail in Sections 5.3 and 5.2 respectively.

To aid method formulation and experimentation, the following simplifying assumptions have been made regarding the coordinator-based algorithm:

- Communication between nodes is considered instantaneous. There is no delay when passing messages through the network. The problem of message handling in a real-world Geometric Monitoring method implementation, where message delays are induced by the underlying network, has been studied in detail in [3].
- Communication between nodes is considered loss-less and reliable. In case network reliability can not be guaranteed appropriate methods should be considered.
- The system operates in an iterative fashion, as described in Algorithm 1. This simplification of the real-time distributed monitoring process to an iterative process provides a more manageable setting for experimentation without distorting the results of the proposed methods, which can be applied directly to the original real-time distributed setting.
- The system pauses at each violation, until the violation is resolved. During violation resolution Monitoring nodes do not receive updates from their respective data streams.
- The Coordinator node does not participate in the monitoring operation. The Coordinator node does not receive updates from a data stream, it only receives messages from the Monitoring nodes in case of threshold violation.

Algorithm 1: Iterative network operation

```
1 begin
      initialization;
 \mathbf{2}
       repeat
 3
          forall Monitoring_Nodes do
 4
              node.data_update();
              node.compute_drift_vector();
 6
          end
 7
          forall Monitoring_Nodes do
              node.check_for_violation();
             if Local_Violation then
10
                 node.report();
11
                 coordinator.balance();
12
              end
13
          end
14
       until Global_Violation;
15
16 end
```

5.2 Distance Based Node Matching

The balancing method of the coordinator-based algorithm, as described in Section 2.1 [2,4], aims at resolving local violations that do not result in a global violation (false alarms) by balancing the violating node's drift vector with the respective vectors of randomly chosen nodes. Consider the violating node n_i with weight $w_i = 1$, so that the bounding ball $B(\vec{e}(t), \vec{u_i}(t))$ is not monochromatic, and the randomly requested node n_j with weight $w_j = 1$, so that the newly formed bounding ball is $B(\vec{e}(t), \frac{\vec{u_i}(t) + \vec{u_j}(t)}{2})$, where $\vec{e}(t)$ the estimate vector at time t and $\vec{u_i}(t)$, $\vec{u_j}(t)$ the drift vectors of nodes n_i , n_j at time t, respectively. If the resulting bounding ball is monochromatic the violation is resolved, otherwise another node is randomly requested for balancing.

As observed in [1], the original balancing method's node choosing scheme can be inefficient, so a more efficient and deterministic approach should be adopted. Optimal pairing of nodes and the construction of a hierarchical structure (Figure 5.1) reduces the communication overhead of false alarms, with the vast majority of violation resolutions requiring only the assigned node pair to be successful. The criterion by which nodes are paired attempts to maximize the probability

of a successful balance by maximizing "the percentage of pairs of data vectors from both nodes whose sum is in the Minkowski sum of the nodes' safe-zones" [1], or, in this case, whose resulting bounding ball is monochromatic.

Here, the same node pairing scheme is followed, but with a different, distance based, criterion for grouping nodes into disjoint pairs and creating the hierarchical structure depicted in Figure 5.1. The method proceeds as follows:

- 1. Monitoring nodes are visualized as the nodes of a complete graph G = (V, E), where $V = \{n_1, n_2, ..., n_k\}$ vertex set consists of the initial Monitoring nodes ("Type-1 nodes") and $E = \{(n_i, n_j) \ \forall i, j \in \{1, ..., k\}, i \neq j\}$ edge set contains an edge for every pair of vertices.
- 2. Weights are assigned to all edges E. The weight of each edge is defined as the cumulative distance of the value of the monitoring function on the mean of each pair of data vectors from the value of the monitoring function on the global mean of all Monitoring nodes' data vectors, plus the cumulative distance of each pair of data vectors:

$$w_{i,j} = \sum_{t=0}^{t_{end}} \left[\left(f(\vec{v}_{global}(t)) - f(\frac{\vec{v}_i(t) + \vec{v}_j(t)}{2}) \right) + \left(|\vec{v}_i(t) - \vec{v}_j(t)| \right) \right]$$
(5.1)

, where $v_i(t)$ the data update of node n_i at time t, $\vec{v}_{global}(t)$ the global mean of all Monitoring nodes at time t and $f(\cdot)$ the monitoring function.

- 3. Maximum weighted matching is performed on the resulting graph, so that nodes are partitioned into disjoined sets M_i , $|M_i| = 2 \ \forall i \in \{1, ..., \frac{k}{2}\}.$
- 4. Each set $M_i, i \in \{1, ..., \frac{k}{2}\}$ is considered a single node, so that a new complete graph G' = (V', E') is created, where $V' = \{M_1, ..., M_{\frac{k}{2}}\}$ ("Type-2 nodes") the new vertex set and $E' = \{(M_i, M_j) \ \forall i, j \in \{1, ..., \frac{k}{2}\}\}$ the new edge set. Weights are assigned to the new edges and the process repeats until the resulting graph contains only a single vertex ("Type-k node"), which incorporates all the initial Monitoring nodes.

our method:

describe in detail, mentioning that its the same process as in deligiannakis

^{*}image of disjoint pairs

Figure 5.1: Hierarchical pairing scheme example for node set $\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}$.

mention our criterion for matching

*image of matching results on classic balancing method

emphasize global statistics vector following, emphasize matching of nodes on the extremes (i.e.

higher velocity one with lower velocity one)

algorithm

5.3 Heuristic Balancing

balancing process geometric interpretation

*image

balancing process algorithm

5.3.1 Smoothing, Velocity and Acceleration Estimation via Savitzky-Golay

S-G implementation

5.4 Implementation Challenges

training data

complexity of optimization (i.e. optimal point location)

complexity of optimization (i.e. node matching)

^{*}image

Part III RESULTS AND CONCLUSIONS

Experimental Results

experimental result showcase

6.1 Experimental Setting

dataset used

reference appendix for tools, mention in short

6.2 Distance Based Node Matching

comparison with random matching

comparison with distribution node matching deligiannakis

!use same balancing, both classic and heuristic! (i.e. 1st all with classic, then all with heuristic) explain

6.3 Heuristic Balancing

comparison with classic balancing

!random matching!

explain

how S-G affects results

6.4 Overall Results

summarise results

compare classic random and classic distribution optpair with heuristic distance optpair

observe how S-G affects results again

 ${\rm explain}$

Conclusions and Future Work

 ${\rm conclusions}$

7.1 Conclusions

problem statement in short what has been done in short our contributions short explanation of contributions

7.2 Future Work

References

- [1] D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and A. Deligiannakis, "Geometric monitoring of heterogeneous streams." *IEEE Trans. Knowl. Data Eng.*, vol. 26, no. 8, pp. 1890–1903, 2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/tkde/tkde26.html#KerenSABSSD14
- [2] I. Sharfman, A. Schuster, and D. Keren, "A geometric approach to monitoring threshold functions over distributed data streams," in *Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data*, ser. SIGMOD '06. New York, NY, USA: ACM, 2006, pp. 301–312. [Online]. Available: http://doi.acm.org/10.1145/1142473.1142508
- [3] B. Babalis, "A simulator for monitoring data streams," Master's thesis, Technical University of Crete, Chania, Greece, 2013.
- [4] I. Sharfman, A. Schuster, and D. Keren, "Shape sensitive geometric monitoring," in Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ser. PODS '08. New York, NY, USA: ACM, 2008, pp. 301–310. [Online]. Available: http://doi.acm.org/10.1145/1376916.1376958

Appendix

Chapter A

Geometric Monitoring Python Implementation

A.1 Python

what is python

why python

A.2 Numpy and Scipy

what are they

why use them and how

A.3 Openopt

what is it

details about framework

A.4 NetworkX

what is it

details about framework

A.5 Putting It All Together

code description

UML

how to run