December 1992

File Number

3335

CMOS Hex Buffer

CD4503BMS is a hex noninverting buffer with 3 state outputs having high sink and source current capability. Two disable controls are provided, one of which controls four buffers and the other controls the remaining two buffers.

The CD4503BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4T
Frit Seal DIP H1E
Ceramic Flatpack H6W

Features

- High Voltage Type (20V Rating)
- 3 State Non-Inverting Type
- 1 TTL Load Output Drive Capability
- 2 Output Disable Controls
- 3 State Outputs
- Pin Compatible with Industry Types MM80C97, MC14503, and 340097
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- 3 State Hex Buffer for Interfacing ICs with Data Buses
- . COS/MOS to TTL Hex Buffer

Pinout

CD4503BMS TOP VIEW

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)0.5V to +20V (Voltage Referenced to VSS Terminals)
Input Voltage Range, All Inputs0.5V to VDD +0.5V
DC Input Current, Any One Input±10mA
Operating Temperature Range55°C to +125°C
Package Types D, F, K, H
Storage Temperature Range (TSTG)65°C to +150°C
Lead Temperature (During Soldering) +265°C
At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for
10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PI	D) at +125 ⁰ C	;
For TA = -55°C to +100°C (Package Ty	/pe D, F, K) .	500mW
For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package	Type D, F, K)	Derate
Linea	rity at 12mW	OC to 200mW
Device Dissipation per Output Transistor.		100mW
For TA = Full Package Temperature Ra	inge (All Pacl	kage Types)
Junction Temperature		+175 ⁰ C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND		1	+25 ⁰ C	-	2	μΑ
				2	+125 ^o C	-	200	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55 ⁰ C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25 ⁰ C	-100	-	nA
Imput Leakage Guirent				2	+125 ^o C	-1000	-	nA
			VDD = 18V	3	-55 ⁰ C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25 ⁰ C	-	100	nA
				2	+125 ^o C	-	1000	nA
			VDD = 18V	3	-55 ⁰ C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load ((Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	4V	1	+25 ⁰ C	2.1	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25 ⁰ C	5.5	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25 ⁰ C	16.1	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.0	6V	1	+25 ⁰ C	-	-1.02	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25 ⁰ C	-	-4.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25 ⁰ C	-	-2.6	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25 ⁰ C	-	-6.8	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25 ⁰ C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	١	1	+25 ^o C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25 ⁰ C	VOH >	VOL <	V
		VDD = 20V, VIN = VDD or GND VDD = 18V, VIN = VDD or GND		7	+25 ⁰ C	VDD/2	VDD/2	
				8A	+125 ^o C	1		
		VDD = 3V, VIN = VDD or GND		8B	-55 ⁰ C	1		
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25 ⁰ C	-0.4	-	μΑ
Leakage		VOUT = 0V		2	+125 ^o C	-12	-	μА
			VDD = 18V	3	-55 ⁰ C	-0.4	-	μА
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25 ⁰ C	-	0.4	μА
Leakage		VOUT = VDD		2	+125 ^o C	-	12	μА
			VDD = 18V	3	-55 ⁰ C	-	0.4	μA

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is plemented.

2. Go/No Go test with limits applied to inputs.

^{0.050}V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	110	ns
		(Note 1, 2)	10, 11	+125°C, -55°C	-	149	ns
Propagation Delay	TPLH	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	150	ns
		(Note 1, 2)	10, 11	+125°C, -55°C	-	203	ns
Propagation Delay3 State	TPHZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	140	ns
TPZ		(Note 2, 3)	10, 11	+125 ^o C, -55 ^o C	-	189	ns
Propagation Delay3 State	TPZL	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	180	ns
	TPLZ	(Note 2, 3)	10, 11	+125°C, -55°C	-	243	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	70	ns
		(Note 1, 2)	10, 11	+125°C, -55°C	-	95	ns
Transition Time TTLF		VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	90	ns
		(Note 1, 2)	10, 11	+125 ⁰ C, -55 ⁰ C	-	122	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55° C and $+125^{\circ}$ C limits guaranteed, 100% testing being implemented.
- 3. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125 ⁰ C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125 ^o C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125 ^o C	1.3	-	mA
,				-55 ^o C	2.6	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125 ⁰ C	3.8	-	mA
				-55 ^o C	6.5	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	11.2	-	mA
				-55 ⁰ C	19.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125 ⁰ C	-	-0.7	mA
				-55 ^o C	-	-1.2	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125 ^o C	-	-3.0	mA
				-55 ⁰ C	-	-5.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-1.8	mA
				-55 ⁰ C	-	-3.1	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125 ^o C	-	-4.8	mA
				-55°C	-	-8.2	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	+7	-	V
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	50	ns
		VDD = 15V	1, 2, 3	+25°C	-	35	ns
Propagation Delay	TPLH	TPLH VDD = 10V		+25°C	-	70	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Propagation Delay	TPHZ	VDD = 10V	1, 2, 4	+25°C	-	60	ns
TPZ		VDD = 15V	1, 2, 4	+25°C	-	50	ns
Propagation Delay	TPZL	VDD = 10V	1, 2, 4	+25°C	-	80	ns
TPL		VDD = 15V	1, 2, 4	+25 ⁰ C	-	70	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	40	ns
		VDD = 15V	1, 2, 3	+25°C	-	25	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	45	ns
		VDD = 15V	1, 2, 3	+25°C	-	35	ns
Input Capacitance	CIN	Any Inputs	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

			LIMITS		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25 ⁰ C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25 ^o C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25 ⁰ C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25 ^o C	VOH > VDD/2	VOL < VDD/2	V
		VDD = 3V, VIN = VDD or GND			V D D / L	V D D / L	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25 ^o C	ı	1.35 x +25 ^o C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	PARAMETER SYMBOL	
Supply Current - MSI-1	IDD	± 0.2μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre	Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Interim Test 3 (Post Burn-In)		1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	up B Subgroup B-5 Sample 5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas		Subgroups 1, 2, 3, 9, 10, 11	
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST PRE-IRRAD POST-IRRAD		READ AND	RECORD
CONFORMANCE GROUPS	METHOD			PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	3, 5, 7, 9, 11, 13	1, 2, 4, 6, 8,10, 12, 14, 15	16			
Static Burn-In 2 (Note 1)	3, 5, 7, 9, 11, 13	8	1, 2, 4, 6, 10, 12, 14-16			
Dynamic Burn- In (Note 1)	-	1, 8, 15	16	3, 5, 7, 9, 11, 13	2, 4, 6, 10, 12, 14	
Irradiation (Note 2)	3, 5, 7, 9, 11, 13	8	1, 2, 4, 6, 10, 12, 14-16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

TRUTH TABLE DN DIS A (B) Qn 0 0 0 1 0 1 X 1 High Z

X = Don't Care

FIGURE 1. LOGIC DIAGRAM OF 1 TO 6 IDENTICAL BUFFERS

Typical Performance Characteristics

FIGURE 2. TYPICAL N-CHANNEL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 7. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 8. TYPICAL POWER DISSIPATION AS A FUNCTION OF FREQUENCY

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724 7000

TEL: (321) 724-7000 FAX: (321) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.2111

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029