13.1 Show from first principles that $P(a \mid b \land a) = 1$.

A fully specified **probability model** associates a numerical probability $P(\omega)$ with each possible world. The basic axioms of probability theory say that every possible world has a probability between 0 and 1 and that the total probability of the set of possible worlds is 1:

Being Ω the sample space (conformed by all the possible worlds):

$$0 \le P(\omega) \le 1$$
 for every ω and $\sum_{\omega \in \Omega} P(\omega) = 1$

For any proposition φ :

$$P(\varphi) = \sum_{\omega \in \varphi} P(\omega)$$

Conditional Probabilities:

$$P(a|b) = \frac{P(a \land b)}{P(b)}$$

Proof

Using the conditional probability definition:

$$P(a \mid b \land a) = \frac{P(a \land b \land a)}{P(b \land a)}$$

By commutative law of intersection $(a \land b = b \land a)$

$$\frac{P(a \land b \land a)}{P(b \land a)} = \frac{P(a \land a \land b)}{P(a \land b)}$$

By associative law of intersection $(a \land a \land b = (a \land a) \land b = a \land (a \land b))$

$$\frac{P(a \land a \land b)}{P(a \land b)} = \frac{P((a \land a) \land b)}{P(a \land b)} =$$

By indempotent law of intersection $(a \land a = a)$

$$\frac{P((a \land a) \land b)}{P(a \land b)} = \frac{P(a \land b)}{P(a \land b)} = 1$$

So, we can say that:

$$P(a \mid b \land a) = 1$$

 $P(b \land a)$ is required to be not zero and this is given by hypothesis

Q.E.D.