

| * Conservative forces vs. non-conservative forces                                                                   |
|---------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     |
| work Wast only depends on the unitial and final                                                                     |
| work Wnet only depends on the unitial and final state (position, extension of spring)                               |
|                                                                                                                     |
| there exists a PE                                                                                                   |
|                                                                                                                     |
| Non-conservative forces: depend on the path taken  Remark = Wc + Wmc = KEf-KE;                                      |
| I example: friction                                                                                                 |
| Work = W + Wmc = KEq-KE;                                                                                            |
| 11                                                                                                                  |
| -(PE <sub>f</sub> -PE <sub>i</sub> )                                                                                |
|                                                                                                                     |
| => 14 KE; = - (PEp-PE;) + Wmc                                                                                       |
|                                                                                                                     |
| or KEf + PEf = KE; + PE; + Wmc general energy conservation                                                          |
| general energy conservation                                                                                         |
| 20 Vowving Vall                                                                                                     |
| * Example: friction: In object starts sliding with  vi=1 m/s m=1 d a speed of 1 m/s. How far  does it slide? us=0.1 |
| viely a speed of 1 m/s. How far                                                                                     |
| Vi=1 m/s m= d a speed of 1 %. How far  leg / ms=0.1                                                                 |
| I M3=0.1                                                                                                            |
| KEP + PEP = KE; + PE; + Wnc                                                                                         |
| $\mu + \mu +$                                                       |
| $0$ , $0$ , $1mv^2$ , $0$ , $-fd$                                                                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                              |
| 0.57                                                                                                                |
|                                                                                                                     |

or 
$$d = 0.5J - fd$$

or  $d = 0.5J$ 
 $f = \mu_k N = \mu_k mg = (0.1)(m/g)(10\%g)$ 
 $\Rightarrow d = 0.5 m$ 

\* Broaking distance of a car:

Whice = -fd

For a car with initial speed  $v_i = 40\%$ , (2.20 mph)

and rubber tires skidding on the road ( $\mu_s = 0.8$ )

$$\frac{1}{2}mv_{i}^{2} - fd = 0$$

$$\frac{1}{2}mv_{i}^{2} - \mu k mg d = 0$$

$$d = \frac{v_i^2}{2\mu kg} = \frac{(40 \text{ m/s})^2}{2(0.8)(10 \text{ m/s})} = \frac{1600 \text{ m/s}^2}{1600 \text{ m/s}^2}$$

= 100 m





\* Power: rate at which work is done: lifting a 1 kg mass slowly versus quilly: same amount of nork, but over a different time interval Power P = W unit: 1 Walt = 1 3 Example: energy in a cereal lowl = 1200 kJ work done by a hiker to raise a 60 kg man to a height of 2000 m (perfect efficiency) if this takes half a day, 6 hours  $C_{5}$  P =  $\frac{1200 \text{ kJ}}{(6 \text{ hrs})(3600 \frac{\text{s}}{\text{hr}})} = 55.6 \text{ W}$ Example: push - ups: Wnet = - (PEup - DEdown) What = -mgh =  $(80 \text{ kg})(10 \text{ m/z})(\frac{1}{4}\text{ m})$ = 2001 punk-up per second ( $\Delta t = 1_s$ )  $P = \frac{2000}{10} = 200 W$ 

