UNIVERSITY OF SANTIAGO DE COMPOSTELA

ESCOLA TÉCNICA SUPERIOR DE ENXEÑARÍA

Improvements in IDS: adding functionality to Wazuh

Autor:

Andrés Santiago Gómez Vidal

Directores:

Purificación Cariñena Amigo Andrés Tarascó Acuña

Computer Engineering Degree

February 2019

Final degree project presented at the Escola Técnica Superior de Enxeñaría of the University of Santiago de Compostela to obtain the Degree in Computer Engineering

Ms. Purificación Cariñena Amigo, Professor Computing Science and Artificial Intelligence at the University of Santiago de Compostela and Mr. Andrés Tarascó Acuña, Managing Director at Tarlogic Security S.L.

STATE:

That the present report entitled *Improvements in IDS: adding functionality to Wazuh* written by **Andrés Santiago Gómez Vidal** in order to obtain the ECTS corresponding to the final degree project of the Computer Engineering degree was conducted under our direction in the department of Computer Science and Artificial Intelligence of the University of Santiago de Compostela.

For the purpose to be duly recorded, this document was signed in Santiago de Compostela on February TODO, 2019:

The director, The student,

(Purificación Cariñena Amigo) (Andrés Tarascó Acuña) (Andrés Santiago Gómez Vidal)

Index

1	Intr	oducti	on	1
	1.1	Motiva	ation	1
	1.2	Object	zives	6
	1.3	Struct	ure of this document	7
2	OSS	SEC an	nd Wazuh	9
	2.1	Introd	$\operatorname{uction} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	9
	2.2	Wazuh	architecture	1
	2.3	Rules	and decoders	4
3	Rec	quireme	ents 1'	7
	3.1	Use ca	ses	7
		3.1.1	Use cases actors	8
		3.1.2	Use cases list	8
	3.2	Requir	rements analysis	8
		3.2.1	Non functional requirements	8
		3.2.2	Functional requirements	8
		3.2.3	Domain requirements	8
4	Pro	ject m	anagement 19	9
	4.1	Scope	management	9
		4.1.1	Metodology	0
	4.2	Risk n	nanagement	0
		4.2.1	Risk metrics	0
		4.2.2	Risk types	1
		4.2.3	Risk identification	1
		4.2.4	Risk analysis and planning	2
		4.2.5	Risk supervision	1
	4.3	Time i	management	1
		4.3.1	Initial WBS	1
		4.3.2	Initial planning	4
		4.3.3	Real planning	5

5	${ m Tec}$	hnologies and tools	47
	5.1	Development technologies and tools	47
	5.2	Pentesting technologies and tools	47
	5.3	Documentation technologies and tools	47
	5.4	Other technologies and tools	47
	.1	Bibliography	49

List of Figures

1.1	Comparison by attributes of the most important ICSs[5]	5
2.1	The different parts of Wazuh[8]	9
2.2	Singlehost architecture	12
2.3	Distributed architecture	12
2.4	Communications and data flow	13
2.5	Filename structure of a log directory	14
2.6	Portion of the ruleset used by Wazuh[17]	15
2.7	Example of output for ossec-logtest	16
4.1	Planning simplification	35
4.2	"Beginning of the project" planning	36
4.3	"Increment 1: Common attacks in Windows Server" planning	37
4.4	"Increment 2: Use of data from Sysmon" planning	38
4.5	"Increment 3: Detection/action against ransomware" planning	39
4.6	"Increment 4: Adapt Wazuh configuration to typical requirements	
	from enterprises" planning	40
4.7	"Increment 5: Explore solutions in problems with GPDR" planning	41
4.8	"Increment 6: Additional detection for GNU/Linux" planning	42
4.9	"Increment 7: VirusTotal integration" planning	43
4.10	"Closing of the project" planning	44
4.11	Planning simplification	45
4.12	"Beginning of the project" planning	46

List of Tables

1.1	Simplification of the data flow	2
4.1	Probability classification of risks	20
4.2	Impact classification of risks	20
4.3	Method of calculation of exposition based on probability and impact	20
4.4	List of the risks of the project	21

Chapter 1

Introduction

This project was made in collaboration with the cybersecurity company Tarlogic SL, even though I am not a member of Tarlogic and have never worked with them in the past. It is key to note my lack of experience in cybersecurity (on a professional level) because is the reason for the bad planning estimations and the limit of the scope. Furthermore in this project there are no absolute constraints or objectives, as it was suggested as a case between investigation (with some coding) and cybersecurity auditing, so the scope can be reduced if the time remaining is too short.

1.1 Motivation

Cybersecurity nowadays is very complex and there are many sub-fields and expert tools and it could be argued that is impossible to guarantee that any system is totally safe. In this project to decide the technologies and tools to use we put ourselves in the shoes of an administrator of an enterprise system that wants to improve the security by detecting intrusions for the servers he works on.

Cybersecurity measures can be applied in multiple layers of the system, each with different tools, objectives, advantages and cost. In general the security of a system has the next parts:

- 1. **Firewall**: Control the inbound/outbound connections, on the **network layer**. In our case its objective is to reduce the amount of inbound connections, reducing the chance of intrusion.
- 2. **IPS**: Intrusion Prevention System to minimize the chance of intrusions, on the **network and host layers**. Provide active protection by actions.
- 3. **IDS**: Intrusion Detection System to mitigate the damage of intrusions, on the **network and host layers**. Provide passive protection by alerts.

The next table shows a **simplified** flow on how the information is processed by the security layers and methods. For example an IDS can monitor the network connections, scanning the whole packet (header and payload) and filing a report if needed, but has worse performance than a firewall because they only scan the header of the packet and just opt to reject them[1].

Table 1.1: Simplification of the data flow

Layer	Network	Network	and Host
Method	Firewall	IPS	IDS
Measures	Prevent	Prevent	Mitigate

Direction of the data flow

We focus on IDS because we are more interested about host detection. Also IDS is less explored than IPS or Firewall and due to the advance in gathering and processing of data in the last years IDS has become much more viable and reliable.

IDSs are different from antivirus or antimalware because the first are systems **specialized** in detection and the latter usually focus on prevention, however prevention and detection are often meshed together because both are deeply related. There are some cases where a system specialized in detection offers some kind of mitigation functionality or a steam specialized in prevention offers some kind of detection functionality.

It is important to note that in cybersecurity the trend is for the attack to be created first and later some kind of measures, not necessarily by the same teams as they usually are specialized in each role. This means that defensive security that requires manual intervention always lags behind.

Nowadays there are lots of different attacks, so many that their detection could be almost impossible one by one, but most of them can be detected because they share patterns. If we can determine the patterns of an attack and code a way to detect them we can detect the threat. Due to all this some times is easier to detect the attack and take measures after the intrusion has taken place.

This raises another question: What if the intrusion disables the security of the system?

This is always a risk and is more or less the same problem that cybersecurity has

1.1. MOTIVATION

in any scenario and there is no way to guarantee that it will not happen. In this case the attacker would have to somehow not be detected or cut the IDS before it sends the alert but in a way that is not suspicious (for example shutting it down completely would be obvious for a central manager). So our approach is to trust the IDS and work on improving the detection of known attacks instead of the worst case scenario. If there was enough time we could have considered finding a solution for this problem.

3

IDS work by analysing the key information available (programs, logs, network, etc) to determine if there has been an intrusion in the system. The details of the process vary with each IDS but in general they work like an expert system:

- The source of the data is the system.
- The alerts are set by certain rules when they match.
- Rules do not need to throw an alert and there can be dependencies, allowing a stateful approach and complex analysis without false positives (the main annoyance of IDSs).

There are two types of IDS depending of the detection mechanism:

- Signature based: The IDS looks for specific data (signature), for example a string. This is often an efficient solution to known attacks, but is fundamentally useless against unknown attacks (attacks without a signature in the IDS database).
- Behaviour analysis: After a training period the IDS can detect when an event is rare (by probability) and correlate these suspicious occurrences to an intrusion.

In our case we take interest in the signature approach because is much more used and behavior analysis is more fit for network than host. Still is a shame there is no enough time to explore IDS based on behavior analysis, because their protection against much zero-day attacks.

OSSEC is an HIDS (Host-based IDS) solution with detection based on rules and decoders. Both rules and decoders can be defined with numerous options and support dependencies and regular expressions.

- The decoders format the data for the rules.
- The rules determine there is a threat if the conditions are met.

OSSEC stands for **O**pen **S**ource HIDS **SEC**urity and is interesting for this project because the next qualities[2][3]:

- Widely Used: OSSEC is a growing project, with more than 5,000 down-loads per month on average. It is being used by ISPs, universities, governments and even large corporate data centers as their main HIDS solution. In addition to being deployed as an HIDS, it is commonly used strictly as a log analysis tool, monitoring and analyzing firewalls, IDSs, web servers and authentication logs.
- Scalable: Because it is an HIDS and it uses agents.
- Multi-platform: GNU/Linux, Windows, Mac OS and Solaris. This is important because most professional services are on GNU/Linux or Windows, but it is important to note that rules can only work in one operating system.
- Free: OSSEC is a free software and will remain so in the future; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the FSF Free Software Foundation.
- Open source: The code is open, so you can read and debug it all you want.
- Rootkits detection: This type of malware usually replaces or changes existing operating system components in order to alter the behavior of the system. Rootkits can hide other processes, files or network connections like itself.
- File integrity monitoring: To detect access or changes to sensitive data.
- Agents: Each monitored host can either install the agent or use an agentless agent[4] (but still needs to install OSSEC, so it is a bit pointless to have agentless agents).

There are lots of alternatives to OSSEC for the scenario of a system administrator that wants to reinforce the security of the systems he is responsible for. There are free of charge and paid solutions and they do not need to be pure IDS as often they come in a full approach. For example the next table shows a comparison of the most important ICSs (Industrial Control Systems):

Figure 1.1: Comparison by attributes of the most important ICSs[5]

One of the problems of a comparison in a table like this is that it fails to show how much a tool excels or lacks in the features it shares with others, how easy it is to use and other factors that can decide the right tool. The most relevant alternative technologies to OSSEC for this project are [6]:

- Bro: Is an open source Network Intrusion Detection System (NIDS), so it does not have any other functionality and supports only Linux, FreeBSD, and Mac OS.
- Snort: Is the most popular open source IDS/IPS, but it is only for network

and suffers from overload of signatures to scan, so monitoring can be very expensive in processing power.

- Suricata: Another open source network security monitor with IDS and IPS capabilities and it provides hardware acceleration and multi-threading to improve the scanning speed at the cost of resources.
- Sagan: An open source HIDS, but only supports *nix operating systems (Linux, FreeBSD, OpenBSD, etc) and it lacks in features compared to OS-SEC.
- YARA: Is not an IDS or IPS, it is just a tool that does pattern/string/signature matching, but it excels at it in performance, results and easiness to write the rules. YARA is being used widely in cybersecurity, for example by Avast, Kaspersky Lab, VirusTotal and McAfee Advanced Threat Defense[7]. We could build a system to use YARA to scan files but always combined with at least another tool, but we prefer to stick to a tested IDS.

In our case most of the attributes in the previous comparison do not matter and we chose OSSEC because the problems found on the alternatives and that OSSEC offers a reliable way to use an already done and thoroughly tested IDS and enhance it to our needs without much work. To even ease more this we will use Wazuh, a fork of OSSEC.

1.2 Objectives

The main objective is to improve intrusion detection in IDS. This can be accomplished in several ways:

• Adding or changing functionality of an already existing technology.

Coding on core or additions.

Configuration or input of the program.

• Develop a new technology or tools that result in a different detection system.

As mentioned before in this project we will use OSSEC through Wazuh to code rules and decoders, without the need to change any code of the program itself, which means this project can focus directly on detection without the need to create a detection system. Of course if in later stages of the project it would to be found that is convenient to modify the detection system itself it could be considered depending on the importance, the progress and the remaining time of the project.

7

1.3 Structure of this document

This document has TODO chapters:

- In chapter 1
- In chapter 2
- \bullet In chapter 3
- In chapter 4
- In chapter 5
- In chapter 6
- In chapter 7

Chapter 2

OSSEC and Wazuh

2.1 Introduction

Wazuh is different than base OSSEC in that it adds capabilities (a RESTFul API and rules and decoders) and is easier to install (it uses the ELK stack to gather and preprocess data, while OSSEC leaves that choice to the user).

Figure 2.1: The different parts of Wazuh[8]

The most interesting qualities of Wazuh for this project are [9][10]:

- Rootkits detection: Rootkits are commonly used after an attack has succeeded to use the computer of the victim leaving no traces.
- File integrity monitoring: It can provide detection of intrusions by identifying changes in content, permissions, ownership, and attributes on the monitored files. It can be used to comply with GDPR (General Data Protection Regulation).

- Scalability and multi-platform: This means that the work on this project could really be used in real work environments.
- Configuration management: The configuration is managed by the Wazuh server (Wazuh manager) and the agents can be grouped, allowing custom, grupal or global gathering and detection for each agent.
- Multiple sources of data: The scanned data can be from logs, output of commands or databases.
- Active response: An automated remediation to security violations and threats, to mitigate more the possible damage. For example to stop the Internet connection to isolate a compromised system.
- Improved ruleset: This reduces the workload of this project, as it can serve as guidance and complement some of the rules and decoders that this project intends to create or modify.
- Open source, free and easy to contribute to: This is optional but nice, as it offers a chance to an unexperienced student to contribute in a real and useful project. The project is hosted on Github and Google Groups. In this project the contribution would be to the ruleset[11] and not to the core of Wazuh[12] or the documentation[13].

The RESTFul API interacts using OSSEC commands and would be interesting if this project were related to a tool issuing queries to Wazuh, but this is not the case. Anyway it is still something valuable to have as these kind of tools are very common nowadays.

Wazuh provides support and integration with multiple important tools and technologies:

- Docker container for OSSEC: An ossec-server image with the ability to separate the ossec configuration/data from the container.
- Puppet and Ansible: For massive deployment. This can be very helpful to setup a big environment mostly because even being no need to put configuration files in the agents for Wazuh often is necessary to configure other things and the process of registering agents can be tedious manually.
- Network IDS integration: Gives the option to use OwlH and integrate Suricata and Bro to generate alerts in Wazuh.
- VirusTotal: A free virus, malware and URL online scanning service that combines more than 40 antivirus solutions.

• OSQuery: Osquery can be used to expose an operating system as a high-performance relational database. This allows you to write SQL-based queries to explore operating system data.

The use of these depends on the scenario and the only one we take interest in is VirusTotal, because it can work as a secondary detection method for the most critical or complicated cases.

2.2 Wazuh architecture

A basic Wazuh setup has the next components[14]:

- Wazuh server: Runs the Wazuh manager, API and Filebeat (Filebeat is only necessary in distributed architecture). It collects and analyzes data from deployed agents.
- ELK stack: It reads, parses, indexes, and stores alert data generated by the Wazuh server. The ELK stack is flexible, highly configurable and very used in big data.
- Wazuh agent: Runs on the monitored host, collecting system log and configuration data and detecting intrusions and anomalies. It talks with the Wazuh server to which it forwards collected data for further analysis.

The main difference with the architecture of OSSEC is the ELK stack, because OSSEC leaves the choice of tools to the user. ELK stands for the combination of:

- Elasticsearch: Gets the data and allows search queries and analysis.
- Logstash: Transforms the data to the desired format. This step can make alike data from different log and output formats, trivializing the decoders work.
- Kibana: Shows the data in a web browser, with graphs and options like grouping and time interval. This is often easier than to write commands to scan the OSSEC log in the Wazuh server, as the data of interest tends to stay the same.

There are two possible architectures for this setup: having the ELK stack in the same machine that the Wazuh server (singlehost) or in a separated one (distributed). Each has advantages and disadvantages and in this project we will use the singlehost because in our case there are no constraints and is easier to set up and is more efficient.

Figure 2.2: Singlehost architecture

Figure 2.3: Distributed architecture

To understand better the communications and data flow in Wazuh we will now get into more detail on the process[15].

Wazuh agents use the OSSEC message protocol to send collected events to the Wazuh server over port 1514 (UDP or TCP). The Wazuh server then decodes and rule-checks the received events with the analysis engine. Events that trip a rule are augmented with alert data such as rule id and rule name. The Wazuh message protocol uses a 192-bit Blowfish encryption with a full 16-round implementation, or AES encryption with 128 bits per block and 256-bit keys.

Logstash formats the incoming data and optionally enriches it with GeoIP information before sending it to Elasticsearch (port 9200/TCP). Once the data is indexed into Elasticsearch, Kibana (port 5601/TCP) is used to mine and visualize the information.

The Wazuh App runs inside Kibana constantly querying the RESTful API (port 55000/TCP on the Wazuh manager) in order to display configuration and status related information of the server and agents, as well to restart agents when desired. This communication is encrypted with TLS and authenticated with username and password.

Figure 2.4: Communications and data flow

Both alerts and non-alert events are stored in files on the Wazuh server in addition to being sent to Elasticsearch. These files can be written in JSON format and/or in plain text format (.log, with no decoded fields but more compact). These files are daily compressed and signed using MD5 and SHA1 checksums. The directory and filename structure is as follows:

```
root@wazuh-server:/var/ossec/logs/archives/2017/Jan# ls -1
total 176
-rw-r----- 1 ossec ossec 234350 Jan 2 00:00 ossec-archive-01.json.gz
-rw-r---- 1 ossec ossec 350 Jan 2 00:00 ossec-archive-01.json.sum
-rw-r---- 1 ossec ossec 176221 Jan 2 00:00 ossec-archive-01.log.gz
-rw-r---- 1 ossec ossec 346 Jan 2 00:00 ossec-archive-01.log.sum
-rw-r---- 1 ossec ossec 224320 Jan 2 00:00 ossec-archive-02.json.gz
-rw-r---- 1 ossec ossec 350 Jan 2 00:00 ossec-archive-02.json.sum
-rw-r---- 1 ossec ossec 151642 Jan 2 00:00 ossec-archive-02.log.gz
-rw-r---- 1 ossec ossec 346 Jan 2 00:00 ossec-archive-02.log.sum
-rw-r---- 1 ossec ossec 315251 Jan 2 00:00 ossec-archive-03.json.gz
-rw-r---- 1 ossec ossec 350 Jan 2 00:00 ossec-archive-03.json.sum
-rw-r---- 1 ossec ossec 350 Jan 2 00:00 ossec-archive-03.json.sum
-rw-r---- 1 ossec ossec 350 Jan 2 00:00 ossec-archive-03.log.gz
```

Figure 2.5: Filename structure of a log directory

2.3 Rules and decoders

They constitute the main part of this project and they can be used to detect application or system errors, misconfigurations, attempted and/or successful malicious activities, policy violations and a variety of other security and operational issues[9]. Wazuh is quite helpful with the features and documentation of the ruleset and in this project the already existing rules and decoders were a great help as examples.

Rules can be added in /var/ossec/etc/rules/ and decoders in /var/ossec/etc/de-coders/ without any issue, but to change the already existing ones in /var/ossec/rule-set/rules/ or /var/ossec/ruleset/decoders/ is a bad idea because the next changes in those files from updates would overwrite them. The solution is to copy the code (actually only the id is needed) of the existing item to the folder where we can add new ones, make the desired changes add overwrite="yes"[16].

As mentioned before Wazuh adds its own ruleset over the one provided by the OSSEC project. The next table shows about 20% of the combined ruleset that Wazuh uses, where "Out of the box" means that the source was the OSSEC project.

	OSSEC Ruleset	
Rule	Description	Source
amazon_rules	Amazon main rules.	Created by Wazuh
amazon-ec2_rules	Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated section of the Amazon Web Services (AWS) Cloud where you can launch AWS resources in a virtual network that you define.	Created by Wazuh
amazon-iam_rules	AWS Identity and Access Management (IAM) is a web service that helps you securely control access to AWS resources for your users. You use IAM to control who can use your AWS resources (authentication) and what resources they can use and in what ways (authorization).	Created by Wazuh
apache_rules	Apache is the world's most used web server software.	Out of the box
apparmor_rules	AppArmor is a Linux kernel security module that allows the system administrator to restrict programs's capabilities with per-program profiles.	Out of the box
arpwatch_rules	ARPWatch is a computer software tool for monitoring Address Resolution Protocol traffic on a computer network.	Out of the box
asterisk_rules	Asterisk is a software implementation of a telephone private branch exchange (PBX).	Out of the box
attack_rules	Signatures of different attacks detected by OSSEC	Created by Wazuh
auditd_rules	The Linux Audit system provides a way to track security-relevant information on your system. Based on pre-configured rules, Audit generates log entries to record as much information about the events that are happening on your system as possible.	Created by Wazuh
cimserver_rules	Compaq Insight Manager Server	Out of the box
cisco-estreamer_rules	The FireSIGHT System Event Streamer (eStreamer) uses a message-oriented protocol to stream events and host profile information to the client application.	Created by Wazuh
cisco-ios_rules	Cisco IOS is a software used on most Cisco Systems routers and current Cisco network switches.	Out of the box
clam_av_rules	Clam AntiVirus (ClamAV) is a free and open-source, cross-platform antivirus software tool-kit able to detect many types of malicious software.	Out of the box
courier_rules	IMAP/POP3 server	Out of the box
docker_rules	Docker is an open-source project that automates the deployment of applications inside software containers.	Created by Wazuh
dovecot_rules	Dovecot is an open-source IMAP and POP3 server for Linux/UNIX-like systems, written primarily with security in mind.	Out of the box
dropbear_rules	Dropbear is a software package that provides a Secure Shell-compatible server and client. It is designed as a replacement for standard OpenSSH for environments with low memory and processor resources, such as embedded systems.	Out of the box
firewall_rules	FirewallD provides a dynamically managed firewall with support for network/firewall zones to define the trust level of network connections or interfaces. Default firewall management tool RHEL and Fedora.	Out of the box
firewalld_rules	Firewall events detected by OSSEC	Out of the box

Figure 2.6: Portion of the ruleset used by Wazuh[17]

Wazuh provides a way to manually test how an event is decoded and if an alert is generated with the tool /var/ossec/bin/ossec-logtest[18], which is very useful for debugging. To use it you only need to introduce the data as it would be in the wild (in the logfile or command output). This command provides the option "-v" that shows which rules are tried and which trigger an alert.

For example for this input:

```
Mar 8 22:39:13 ip-10-0-0-10 sshd[2742]: Accepted publickey for root from 73.189.131.56 port 57516
```

We get the next output:

```
$ /var/ossec/bin/ossec-logtest

Mar 8 22:39:13 ip-10-0-0-10 sshd[2742]: Accepted publickey for root from 73.189.131.56 port 57516

**Phase 1: Completed pre-decoding.
    full event: 'Mar 8 22:39:13 ip-10-0-0-10 sshd[2742]: Accepted publickey for root from 73.189.131.56 port 57516'
    hostname: 'ip-10-0-0-10'
    program_name: 'sshd'
    log: 'Accepted publickey for root from 73.189.131.56 port 57516'

**Phase 2: Completed decoding.
    decoder: 'sshd'
    dstuser: 'root'
    srcip: '73.189.131.56'

**Phase 3: Completed filtering (rules).
    Rule id: '5715'
    Level: '3'
    Description: 'sshd: authentication success.'

**Alert to be generated.
```

Figure 2.7: Example of output for ossec-logtest

After version 3.0.0 (we are currently in 3.7) Wazuh incorporates an integrated decoder for JSON logs enabling the extraction of data from any source in this format. This can be very useful in many situations, for example trivializing the generation of alerts for Suricata (without the need for a decoder just for Suricata)[19].

Another interesting feature is to check if a field extracted during the decoding phase is in a CDB list (constant database). The main use case of this feature is to create a white/black list of users, IPs or domain names.[20].

Chapter 3

Requirements

The requirement specification is a full description of the software the project is to develop.

PMBOK[21] states that requirements are conditions or capabilities that a product must meet to satisfy the contract. The requirements expose the needs of the client, which have to be accomplished to finish the project successfully. In this project the requirements will be fullfilled in multiple stages along the project. Note that the client in this case is Tarlogic even if the product is a contribution to an open source project.

This specification contains:

- Use cases: Functionalities that the software will provide.
- Requirements: Depending of their type they can describe features, data, relations, properties or any details necessary to explain the system without ambiguity, in a way it can be easily understood.

In this project the functional requirements are not included because they can be considered a redundant version of the use cases, because both describe the same functionalities. Uses cases were chosen over functional requirements because they were considered to be easier to understand and have greater detail. If this project had the need of a very complex requirement specification it would be interesting to have both, as each could help to understand the other better, but in this project the specification should be quite simple.

3.1 Use cases

A use case is a description of all the ways an end-user wants to "use" a system. These "uses" are like requests of the system, and use cases describe what that system does in response to such requests. In other words, use cases describe the conversation between a system and its user(s), known as actors. Although the system is usually automated (such as an Order system), use cases also apply to equipment, devices, or business processes.[22]

3.1.1 Use cases actors

The actors are entities external to the system that interact with it. They can be other systems, persons or even time.

3.1.2 Use cases list

3.2 Requirements analysis

3.2.1 Non functional requirements

3.2.2 Functional requirements

As mentioned before these are omited because of the redundancy with use cases.

3.2.3 Domain requirements

Chapter 4

Project management

4.1 Scope management

We had to leave behind some ideas because the kind of project this is.

Another interesting way to to take advantage from IDS is to set up a honeypot (a false server just to be compromised) and learn from the intrusions suffered, improving the defenses (firewall, IPS and IDS) for the real servers. There are some honeypot implementations that automate (for example with machine learning) the generation of rules for certain IDSs, but is not yet a trend because there are problems:

- Experienced attackers have learned to avoid honeypots, because they are easy to identify due to the low security they have.
- Is not trivial to automate correctly the defense based on the information of the system, because its state can be very complex (for example due to more than one attack at the same time).

This automation would be a great solution to the need to update manually the rules and depending of the case could even protect against day-zero vulnerabilities. Despite being interesting this was not even included as a possible increment because the complexity of the task and if not it would probably not ended well because it is something that even experts in cybersecurity have some trouble with at the moment.

4.1.1 Metodology

4.2 Risk management

4.2.1 Risk metrics

Chances of the risk happening	Probability
≥80%	High
Between 30% and 80%	Medium
≤30%	Low

Table 4.1: Probability classification of risks

Resource in Place / Effort / Cost	Impact
≥20%	High
Between 10% and 20%	Medium
≤10%	Low

Table 4.2: Impact classification of risks

Exposition		Probability		
		High	Medium	Low
	High	High	High	Medium
Impact	Medium	High	Medium	Low
	Low	Medium	Low	Low

Table 4.3: Method of calculation of exposition based on probability and impact

4.2.2 Risk types

4.2.3 Risk identification

Identifier	Name
R-01	Optimist planning, "best case" (instead of a realistic "expected
	case")
R-02	Bad requirement specification
R-03	Design errors
R-04	Lack of key information from sources
R-05	Lack of feedback or support from the security consultants of Tar-
	logic
R-06	The learning curve of some technologies is larger than expected
R-07	The unexplained parts of the project take more time than expected
R-08	Can not access source material
R-09	Unexpected changes to any of the software used in the project
R-10	Loss of work
R-11	Wrong management of the project's configuration
R-12	A delay in one task leads to cascading delays in the dependent tasks
R-13	The student can not find a way to code the detection of a certain
	occurrence
R-14	The quality of the product is not enough
R-15	Sickness or overwork
R-16	Performance issues
R-17	Unnecessary work
R-18	Optional requirements delay the project

Table 4.4: List of the risks of the project

4.2.4 Risk analysis and planning

Identifier	R-001
Name	Optimist planning, "best case" (instead of a realistic "expected
	case")
Description	An optimistic planning at the start of the project does not take
	into account problems or delays, and so it does not allocate time
	for them.
Negative	Could mean the failure of the project if the objectives can not
effects	be accomplished in the time left.
	Cascading delays, because the work done would not fit the plan-
	ning.
Probability	Medium
Impact	High
Exposition	High
Indicator	There are 3 consecutive delays, after the beginning of the project.
Prevention:	Allocate a bit more time than initially expected for each task, in
Avoid	case something goes wrong.
Correction:	Redo the planning.
Mitigate	Reduce the scope of the project, leaving out initially planned
	optional increments.

Identifier	R-002
Name	Bad requirement specification
Description	The requirements specified at the beginning of the project are
	not specific enough, are not needed or there are new requirements
	after the beginning of the project.
Negative	Possible failure of the project if the objectives can not be accom-
effects	plished in the time left.
	Wasted time, due to lack of comunication in the requirement
	specification.
Probability	High
Impact	High
Exposition	High
Indicator	There are 3 changes in the requirements specification.
Prevention:	Confirm that all the requirements have been identified at the be-
Mitigate	ginning of the project.
	Assure that there is no ambiguity in the requirement specifica-
	tion.
Correction:	Redo the requirement specification.
Mitigate	Rework of related requirements and work based on them, includ-
	ing the need to test the results.
	Redo the planning.
	Reduce the scope of the project.

Identifier	R-003
Name	Design errors
Description	A design is not enough or is incorrect.
	This can be found in later stages, when it is clear that the im-
	plementation based on the design would not satisfy the require-
	ments.
Negative	Having to redesign and maybe redo the work based on the de-
effects	sign.
	Minor delays.
Probability	Low
Impact	Medium
Exposition	Low
Indicator	There are 3 designs that need rework.
Prevention:	Use design patterns if needed (this project should have very sim-
Mitigate	ple designs, so it is possible that there is no need to use them).
	Make the design as simple and modular as possible.
Correction:	Redesign and probably change and test the work based on the
Mitigate	design.

Identifier	R-004
Name	Lack of key information from sources
Description	Not having key information from articles, documentation or man-
	uals.
Negative	Minor delays.
effects	Loss of quality.
	Added difficulty, even if the work is done in time.
	Maybe rework and test the functionality, even completely, to
	follow the desired procedure.
Probability	Medium
Impact	Medium
Exposition	Medium
Indicator	The duration of the study of the attack and the related tools
	takes 50% than expected.
Correction:	Ask the security consultants of Tarlogic for specific information.
Mitigate	Possibly the need to rework completely some functionality.

Identifier	R-005
Name	Lack of feedback or support from the security consultants of Tar-
	logic
Description	Because I do not know enough of some technical aspects of ciber-
	security to solve all the problems in this by myself in time, Tar-
	logic has promised to help (in a tutoring way) if a problem arises.
	This help could be critical to solve or get around some of the most
	complex problems, which probably happen to be critical points,
	needing to be dealt with to continue working on that stage.
Negative	Cascading delays.
effects	
Probability	Medium
Impact	Medium
Exposition	Medium
Indicator	A simple technical question takes more than 2 working days to
	be answered or a complex question takes more than 7 working
	days.
Prevention:	Ask in a clear way and with as many details as possible.
Mitigate	Ask during work hours, to ensure they are available.
Correction:	Redo planning and possibly change the scope.
Mitigate	

25

Identifier	R-006
Name	The learning curve of some technologies is larger than expected
Description	This is a critical need because not having enough knowledge can
	result in an inefficient approach to accomplishing the objectives.
Negative	Loss of quality.
effects	The work is more complicated.
Probability	Medium
Impact	Medium
Exposition	Medium
Indicator	The duration of the study of the technologies takes 50% than
	expected.
Correction:	Redo planning and possibly change the scope.
Mitigate	Ask the security consultants of Tarlogic for specific help.
	Maybe the need to rework completely some functionality.

Identifier	R-007
Name	The unexplained parts of the project take more time than ex-
	pected
Description	There is not enough specification on what a tasks implies or not
	enough planning.
	This means that a part of the project is not understood as it
	should, and the work done is not what was expected or is not
	enough, needing more time to finish.
Negative	Wasted time that should have been easy to avoid.
effects	Loss of quality.
	Could mean the failure of the project if the objectives can not
	be accomplished in the time left.
Probability	Low
Impact	High
Exposition	Medium
Indicator	A task takes 25% more time than expected and when the causes
	are investigated it is revealed that there were ambiguous descrip-
	tions or planning.
Prevention:	Try to detail every part enough, having no obvious ambiguity.
Avoid	
Correction:	Possible need to redo the specifications.
Mitigate	Redo planning and possibly change the scope.
	Maybe having to redo related work.

Identifier	R-008
Name	Can not access source material
Description	All or part of the source material can not be accessed, probably
	because the only host of the resource is down.
Negative	In some cases this could mean a delay in a critical task, delaying
effects	the whole project for an unknown period of time.
Probability	Low
Impact	Medium
Exposition	Low
Indicator	There have been at least 10 failed attempts to download the
	source material, at least 5 with a computer A in a network X
	and at least 5 with a computer B in a network Y.
Prevention:	When possible choose the source with the best uptime.
Avoid	
Correction:	Redo planning and possibly change the scope.
Mitigate	Possible need to cut out the part of the project that depends on
	this source.
	Maybe find another source or wait to the original source to be
	accessible again.

Identifier	R-009
Name	Unexpected changes to any of the software used in the project
Description	Changes to base software could affect this project directly or
	indirectly: programs could fail or not work as expected.
	This could mean any software changes, from simple syntax to
	API changes.
	In a project that does not work in a bleeding edge environment,
	like this, this occurrence should be very rare and even if it were
	to happen it would have to interfere with the part of the software
	this project uses, which (as this is not bleeding edge) normally
	would be backwards compatible.
Negative	Minor delays.
effects	
Probability	Low
Impact	Low
Exposition	Low
Indicator	The software is not working as expected due to a change in an-
	other software version.
Prevention:	When possible use software that follow good design guidelines
Mitigate	and try to be backwards compatible.
Correction:	Need to adapt the software to work as expected or remove the
Mitigate	related functionalities.

Identifier	R-010
Name	Loss of work
Description	Due to a bad configuration management or something else, there
	is a loss of work related to this project.
Negative	Need to do again the work already done but lost.
effects	Depending of the time needed to recover the work, there could
	be minor or very big delays, planning, changes to the scope of
	the project and even its failure.
Probability	Low
Impact	High
Exposition	Medium
Indicator	The need to replicate already done work is greater than 30 min-
	utes.
Prevention:	Take snapshots of key status for each virtual machine.
Mitigate	Automate backing up the data and store the copies both in a
	cloud storage service and in a local disk.
Correction:	Recover the last backup available of the work.
Mitigate	If needed work even outside schedule and in holidays.

Identifier	R-011
Name	Wrong management of the project's configuration
Description	The project's configuration is inefficient or lacks work.
	For example due to unclear changes or taking too long to commit
	changes.
Negative	Maybe the failure of the project if the objectives can not be
effects	accomplished in the time left.
	Possibly wrong baselines or identification of the configuration
	elements.
	It could be that it takes more time than expected to manage the
	project.
	The project suffer delays because the need to redo management
	work and/or planned tasks.
Probability	Medium
Impact	High
Exposition	High
Indicator	There are 3 delays because of the configuration of the project.
Prevention:	The configuration of the project should be just complex enough
Avoid	(whithout ambiguity, to ensure a proper management), but not
	too much complex (which would be hard to follow).
	Use of familiar and standard tools, like Git.
	Optionally use an easier to manage lifecycle.
	Study of the configuration management done in previous final
	degree projects, to get a proper idea of its scope and details.

Identifier	R-012
Name	A delay in one task leads to cascading delays in the dependent
	tasks
Description	A task gets delayed and one or more tasks depends on its com-
	pletion to start, so they get delayed too.
Negative	Cascading delays.
effects	
Probability	Medium
Impact	Medium
Exposition	Medium
Indicator	At least 2 tasks are delayed, due to only one of them needing
	more time.
Prevention:	When planning, avoid task dependencies whenever possible.
Avoid	Optionally use a lifecycle based on increments.
Correction:	Redo planning and possibly change the scope.
Mitigate	

Identifier	R-013
Name	The student can not find a way to code the detection of a certain
	occurrence
Description	It could be that the knowledge of the student is too limited or
	the problem has too much logical or mathematical difficulty.
	Another possibility is that the event is impossible to detect with
	the current technologies. If so, this impossibility could be hard
	to assure too, due to the complexity of nowadays technology.
Negative	High difficulty to estimate the time needed to detect the event.
effects	Cascading delays.
Probability	Low
Impact	Low
Exposition	Low
Indicator	Finding a way to detect the occurrence takes 30% more time
	than planned.
Prevention:	Have as much information on the problem as possible, the more
Mitigate	detailed the better.
Correction:	Ask the security consultants of Tarlogic for help.
Mitigate	Demonstrate that it is possible to detect it.

Identifier	R-014
Name	The quality of the product is not enough
Description	The final result is does not comply the quality standard set for
	this project.
Negative	The incorporation to the official repository gets rejected.
effects	Redo planning and possibly change the scope.
	Analysis of the changes needed to improve the quality.
Probability	Low
Impact	High
Exposition	Medium
Indicator	Getting 10 suggestions to rework functionality.
Prevention:	Follow design patterns.
Avoid	Follow the design guidelines of the official repository when pos-
	sible.
Correction:	Need to redo and test work.
Mitigate	Pass some kind of quality control.

Identifier	R-015
Name	Sickness or overwork
Description	The health of the student deteriorates to the point it affects the
	project.
Negative	Probably the quality of the project drops.
effects	Possibly delays, that could be hard to specify their limit.
	Analysis of the changes needed to improve the quality.
	In the worst case scenario the project can not continue and fails.
Probability	Medium
Impact	High
Exposition	Medium
Indicator	There is an unexpected delay because the functionality is not
	done but there has not been any important issues that could
	explain it but there is a clear deterioration of the student health.
Prevention:	Stay healthy by following a regular schedule for work and exer-
Avoid	cising, that includes multiple rest periods.
	Optionally maintain a diet.
Correction:	Go to the doctor and follow any instructions to improve the re-
Mitigate	covery.

Identifier	R-016
Name	Performance issues
Description	The program is too heavy for the environment and takes too
	much resources, because there are not good enough optimizations
	or the problems are poorly approached.
Negative	Minor delays.
effects	
Probability	Low
Impact	Low
Exposition	Low
Indicator	The program takes 30% more resources that at the beginning of
	the project.
Prevention:	If possible use efficient algorithms and check the efficiency after
Mitigate	the testing is done for each increment.
Correction:	Analysis of faster ways to solve the problem.
Mitigate	Code and test a faster solution.

Identifier	R-017
Name	Unnecessary work
Description	Resources are wasted in work that latter is not used.
	This could happen because multiple reasons, like wrong assump-
	tions or balancing of the remaining time of the project.
Negative	Minor delays.
effects	
Probability	Low
Impact	Low
Exposition	Low
Indicator	There is at least one functionality not necessary or useful for any
	requirement.
Prevention:	In the design stage make sure that everything is really needed.
Avoid	
Correction:	Evaluate again if the work planned is really needed.
Mitigate	

Identifier	R-018
Name	Optional requirements delay the project
Description	Optional requirements get too much time or are treated as vital.
Negative	The task related to these requirements get too much resources.
effects	Vital requirements get less resources, making the project loss
	value.
Probability	Low
Impact	Low
Exposition	Low
Indicator	There is at least one functionality from an optional requirement,
	when the project is behind schedule and there are vital require-
	ments not yet accomplished.
Prevention:	The optional requirements are planned as optional: they are only
Avoid	done if there is enough time left.
Correction:	Redo the planning.
Mitigate	

4.2.5 Risk supervision

4.3 Time management

4.3.1 Initial WBS

WBS dictionary:

1. Project management

a **Scope management**: Scope explanation, set the restrictions of the project and determine what is going to be turned in at the end of the project.

- b **Requirement management**: Analysis, requirement specification and probably a traceability matrix.
- c **Risk management**: Identification, analysis, classification, planning and supervision of risks.
- d **Time management**: Planning (initial and real), any planning changes and necessary measures.
- e **Configuration management**: Documentation on the management of changes and control version.
- f Cost management: Cost estimation (direct and indirect) of software, hardware and resources.

2. Beginning of the project

- a Study of Wazuh documentation and related tools and technologies: Is the base for multiple aspects of the project and if it is done correctly it can mean less hours in related work.
- b **Setup of the work environment**: Installation and basic configuration of the virtual machines of the project, like having a functional Wazuh environment.

3. Increment 1

a Rules and decoders: The objective is to be able to detect common attacks in Windows Server (specifically 2016 and 2019), but it should be backwards compatible and depending on the difficulty it could be worth to ensure support for Windows 10 Pro too. This rules are the final product of this increment, which probably will need more time than any other increment, because its heavy study and testing.

4. Increment 2

a **Rules and decoders**: It will need a preliminary study of Sysmon and the ways to use its data to improve detection in certain situations. It is possible that this increment will modify rules and decoders of the previous one.

5. Increment 3

a Rules and decoders: This increment tries to produce rules and decoders to detect ransomware and launch alerts and maybe actions against the attack, like rollback to a previous backup or try to stop the attack from repeating in a short period of time.

6. Increment 4

a **Configuration changes**: Adapt Wazuh to the typical requirements from enterprises. This means that an enterprise could choose from a set of templates, with different security profiles.

7. Increment 5

a **Rules and decoders**: Most should be focused on detecting changes on the protected files. Part of this increment should be the investigation on normal problems of these technologies and recent innovations and solutions.

8. Increment 6

a **Rules and decoders**: There would be preliminary study to do, but the increment should be about expanding the already done work in the field, probably focusing in services and security technologies like SELinux or AppArmor.

9. Increment 7

a Improved integration with antivirus and website scanners: The idea is to improve the detection as much as possible with the help of VirusTotal malware scanners, which is updated consistently and so it would mean a consistently updated detection for a system with Wazuh without the need to write new rules and decoders. Obviously there is a difference in the scope and objectives of these technologies, which can be redundant, but this could be certainly interesting in some cases.

10. Closing of the project

- a Pull request to the official ruleset repository: There is a fundamental need to investigate the correct way to organize the the forked repository for a pull request to an official repository like this. In any case the status of the fork should be checked before and there should be a high amount of commits and use a different branch for each functionality, allowing an easier way to select what to admit or not in the official repository.
- b **Project documentation**: The memory and presentation of the project and whatever other documentation if necessary.

4.3.2 Initial planning

The tasks marked in red are essential to the project, meanwhile the ones marked in cyan are considered optional and only will be done if there is enough time

left. The tasks marked in yellow are normal, and they are used when there is no need to distinguish between essential and optional.

The next Gantt diagram shows the initial planning, from the draft proposal (31/10/2018) to the end of the project (TODO/02/2019).

Furthermore the last two weeks are marked with a grey overlay to mark that there are only about 17 weeks before the due date of this project (in February). This difference is because the estimation of the tasks was made by the student and so it is not reliable, which means that it could be optimistic or pessimist. Thus the need to either reduce tasks or have more that there were expected to fit.

Figure 4.1: Planning simplification

The rest of the Gantt diagrams are organized in days, for a more detailed planning.

It is important to note that these plannings could change during the project, either because controlled measures or any unexpected reason.

The order they are implemented could change too and that is the reason because these diagrams have not a set date for start and end, yet.

In other words, they could be described as the models for the final Gantt diagrams.

Figure 4.2: "Beginning of the project" planning

Figure 4.3: "Increment 1: Common attacks in Windows Server" planning

Figure 4.4: "Increment 2: Use of data from Sysmon" planning

Figure 4.5: "Increment 3: Detection/action against ransomware" planning

Figure 4.6: "Increment 4: Adapt Wazuh configuration to typical requirements from enterprises" planning

Figure 4.7: "Increment 5: Explore solutions in problems with GPDR" planning

Figure 4.8: "Increment 6: Additional detection for GNU/Linux" planning

Figure 4.9: "Increment 7: VirusTotal integration" planning

Figure 4.10: "Closing of the project" planning

4.3.3 Real planning

Figure 4.11: Planning simplification

Figure 4.12: "Beginning of the project" planning

Chapter 5

Technologies and tools

- 5.1 Development technologies and tools
- 5.2 Pentesting technologies and tools
- 5.3 Documentation technologies and tools
- 5.4 Other technologies and tools

.1 Bibliography

Books

[21] Guía de los Fundamentos para la Dirección de Proyectos (Guía del PM-BOK), 5 a edición. Project Management Institute, 2013. ISBN: 9781628250091.

Articles

- [5] Carl M. Hurd and Michael V. McCarty. "A Survey of Security Tools for the Industrial Control System Environment". In: (June 2017). DOI: 10. 2172/1376870.
- [22] R. (2004) Larson E. & Larson. "Use cases: what every project manager should know". In: Paper presented at PMI® Global Congress 2004—North America, Anaheim, CA. Newtown Square, PA: Project Management Institute ().

Online

- [1] Difference between IDS and IPS and Firewall. URL: https://security.stackexchange.com/questions/44931/difference-between-ids-and-ips-and-firewall (visited on 11/15/2018).
- [2] About OSSEC. URL: https://www.ossec.net/about.html (visited on 11/11/2018).
- [3] Wazuh documentation: OSSEC and Wazuh additional functionality. URL: https://documentation.wazuh.com/current/getting-started/use-cases.html (visited on 11/11/2018).
- [4] Agentless monitoring in OSSEC. URL: https://www.ossec.net/docs/manual/agent/agentless-monitoring.html (visited on 11/11/2018).
- [6] 10 Top Intrusion Detection Tools for 2018. URL: https://www.comparitech.com/net-admin/network-intrusion-detection-tools/ (visited on 11/15/2018).
- [7] Who is using YARA. URL: https://github.com/VirusTotal/yara (visited on 11/15/2018).
- [8] Technologies that form Wazuh. URL: https://wazuh.com/wp-content/uploads/2015/11/Jigsaw4.png (visited on 11/11/2018).
- [9] Wazuh documentation: Welcome to Wazuh. URL: https://documentation.wazuh.com/current/index.html (visited on 11/15/2018).

- [10] Wazuh documentation. URL: https://documentation.wazuh.com (visited on 11/11/2018).
- [11] Wazuh ruleset. URL: https://github.com/wazuh/wazuh-ruleset (visited on 11/11/2018).
- [12] Wazuh: Github. URL: https://github.com/wazuh/wazuh (visited on 11/11/2018).
- [13] Wazuh documentation. URL: https://github.com/wazuh/wazuh-documentation (visited on 11/11/2018).
- [14] Wazuh documentation: Installation guide. URL: https://documentation.wazuh.com/current/installation-guide/index.html (visited on 11/11/2018).
- [15] Wazuh documentation: Architecture. URL: https://documentation.wazuh.com/current/getting-started/architecture.html (visited on 11/15/2018).
- [16] Wazuh documentation: Custom rules and decoders. URL: https://documentation.wazuh.com/current/user-manual/ruleset/custom.html (visited on 11/15/2018).
- [17] OSSEC-Wazuh Ruleset list. URL: https://wazuh.com/resources/OSSEC_Ruleset.pdf (visited on 11/15/2018).
- [18] Wazuh documentation: Testing decoders and rules. URL: https://documentation.wazuh.com/current/user-manual/ruleset/testing.html (visited on 11/15/2018).
- [19] Wazuh documentation: JSON decoder. URL: https://documentation.wazuh.com/current/user-manual/ruleset/json-decoder.html (visited on 11/15/2018).
- [20] Wazuh documentation: CDB lists. URL: https://documentation.wazuh.com/current/user-manual/ruleset/cdb-list.html (visited on 11/15/2018).