MatFast

IN-MEMORY DISTRIBUTED MATRIX COMPUTATION PROCESSING AND OPTIMIZATION BASED ON SPARK SQL

Mingjie Tang Yanbo Liang

Oct, 2017

About Authors

- Yongyang Yu
 - Machine learning, Database system, Computation Algebra
 - PhD students at Purdue University
- Mingjie Tang
 - Spark SQL, Spark ML, Database, Machine Learning
 - Software Engineer at Hortonworks
- Yanbo Liang
 - Apache Spark committer, Spark MLlib
 - Staff Software Engineer at Hortonworks
- ... All Other Contributors

Agenda

Motivation

Overview of MatFast

Implementation and optimization

Use cases

- Many applications rely on efficient processing of queries over big matrix data:
 - Recommender systems
 - Social network analysis
 - Predict traffic data flow
 - Anti-fraud and spam detection
 - Bioinformatics

Recommender Systems

Netflix's user-movie rating table (sample)

movies	STAR TREK	Jagoba Aller WoodstelyD	Silverd	DEAD POOL	
Alice	4	?	3	5	4
Bob	?	5	4	?	?
Cindy	3	?	?	?	2

Problem: Predict the missing entries in the table

<u>Input</u>: User-movie rating table with missing entries

Output: Complete user-movie rating table with predictions

For Netflix, #users = 80 million, #movies = 2 million

Gaussian Non-negative Matrix Factorization (GNMF)

Matrix operation for GNMF Algorithm

User-Movie Rating Prediction with GNMF

```
val p = 200 // number of topics
val V = loadMatrix("in/V") // read matrix
val max_niter = 10 // max number of iteration
W = RandomMatrix(V.nrows, p)
H = RandomMatrix(p, V.ncols)
for (i <- 0 until max_niter) {
    H = H * (W.t %*% V) / (W.t %*% W %*% H)
    W = W * (V %*% H.t) / (W %*% H %*% H.t)
}
(H %*% W).saveToHive()</pre>
```


State of the art solution in Spark ecosystem

- Alternative Least Square approach in Spark (ALS)
 - Experiment on Spotify data
 - 50+ million users x 30+ million songs
 - 50 billion ratings For rank 10 with 10 iterations
 - ~1 hour running time
- How to extend ALS to other matrix computation?
 - SVD
 - PCA
 - QR

Observation

Matrix computation evaluation pipeline

Observation

Matrix computation evaluation pipeline

Observation

Overview of MatFast

Matrix operators

- Unary operator
 - Transpose: $\mathbf{B} = \mathbf{A}^{\mathsf{T}}$
- Binary operators
 - $\mathbf{B} = \mathbf{A} + \beta$; $\mathbf{B} = \mathbf{A} * \beta$;
 - $C = A \bigstar B, \bigstar \in \{+, *, /\};$
 - $C = A \times B (A \% * \% B)$

matrix-matrix multiplication

- Others
 - return a matrix: abs(A), pow(A, p)
 - return a vector: rowSum(A), colSum(A)
 - return a scalar: max(A), min(A)

Optimization targets

- MATFAST generates a computation- and communicationefficient execution plan:
 - Optimize a single matrix operator in an expression ✓
 - Optimize multiple operators in an expression
 - Exploit data dependency between different expressions

Comparison with other systems

	Single	Distributed w. multiple nodes				
	R	ScaLAPACK	SciDB	SystemML	MLlib	DMac
huge volume.		~	~	~	~	V
sparse comp.	~		~	~	~	~
multiple operators	~	~	~	~	~	•
partition w. dependency						~
opt. exec. plan				V		
interface	R script	C/Fortran	SQL-like	R-like	Java/Scala	Scala
fault tolerance			✓	✓	✓	~
open source	~	~	~	~	~	

Compare with Spark SQL

	Matrix operators	SQL relational query	
Data type	matrix	relational table	
Operators	transpose, mat-mat, mat-scalar, mat-elem	join, select, group by, aggregate	
Execution scheme	iterative	acyclic	

System framework

Applications: Image processing, Text processing, Collaborative filtering, Spatial computation, etc.

ML algorithms: SVD, PCA, NMF, PageRank, QR, etc

Spark SQL

MATFAST

Spark RDD

System framework

MatFast within Spark Catalyst

Extend Spark Catalyst

Implementation and optimization

Optimization 1: a Single Operator - Cost Based Optimization

- Distribute matrix data over a set of workers
- How to determine the data partitioning scheme for a matrix such that minimum shuffle cost is introduced for the entire pipeline?
- Partitioning schemes
 - Row scheme ("r")
 - Column scheme ("c")
 - Block-Cyclic scheme ("b-c")
 - Broadcast scheme ("b")

 How to determine the data partitioning scheme for a matrix such that minimum shuffle cost is introduced for the entire pipeline?

Hash-based partition, (i + j) % N

 How to determine the data partitioning scheme for a matrix such that minimum shuffle cost is introduced for the entire pipeline?

- We need an optimized plan to determine an optimized data partitioning scheme for each matrix such that minimum shuffle overhead is introduced for the entire pipeline.
- For example, with hash-based data partitioning, the computation pipeline involves multiple shuffles for aligning the data blocks.

- MatFast determines the partitioning scheme for an input matrix with min shuffle cost according to the cost model.
- Greedily optimizes each operator

$$s_{i1(i2)} \leftarrow \underset{s_{i1(i2)}}{\operatorname{argmin}} C_{comm}(op, s_{i1}[, s_{i2}], s_o)$$

 Physical execution plan with optimized data partitioning

Case studies

Experiments

- Dataset APIs
 - Code examples link
- Compare with state-of-the-art systems
 - Spark MLlib (provided matrix operation)
 - SystemML (Spark)
 - ScaLAPACK
 - SciDB
- Netflix data
 - 100,480,507 ratings
 - 17,770 movies from 480,189 customers
- Social network data

Graph	#nodes	#edges
soc-pokec	1,632,803	30,622,564
cit-Patents	3,774,768	16,518,978
LiveJournal	4,847,571	68,993,773
Twitter2010	41,652,230	1,468,365,182

TABLE V: Statistics of the social network datasets

PageRank on different datasets

GNMF on the Netflix dataset

Future plan

- More user friend APIs
- Advanced plan optimizer
- Python and R interface
- Vertical applications

Conclusion

- Proposed and realized Matfast, an in-memory distributed platform that optimizes query pipelines of matrix operations
- Take advantage of dynamic cost-based analysis and rule-based heuristics to generate a query execution plan
- Communication-efficient data partitioning scheme assignment

Reference

Yongyang Yu, MingJie Tang, Walid G. Aref, Qutaibah M. Malluhi, Mostafa M. Abbas, Mourad Ouzzani:
 In-Memory Distributed Matrix Computation Processing and Optimization. ICDE 2017: 1047-1058

Thanks

Q & A

mtang@hortonworks.com

