Systèmes dynamiques ÊFeuille d'exercices 11

Exercice 1. Décroissance surexponentielle des corrélations pour les applications dilatantes du cercle

Pour tout $m \in \mathbb{N}_{\geq 2}$ on note E_m la multiplication par m sur \mathbb{R}/\mathbb{Z} .

- 1. Montrer que E_m est fortement mélangeante pour la mesure de Haar μ sur \mathbf{R}/\mathbf{Z} .
- 2. Soient $\varphi, \psi \in \mathcal{C}^{\infty}(\mathbf{R}/\mathbf{Z})$.
 - (a) Montrer que pour tout N > 0, il existe C > 0 telle que

$$\left| \int_{\mathbf{R}/\mathbf{Z}} \psi(\theta) e^{-2i\pi k\theta} d\mu(\theta) \right| \le \frac{C}{|k|^N}, \quad k \in \mathbf{Z} \setminus \{0\}.$$

(b) En déduire que pour tout r > 0, il existe C > 0 telle que

$$\left| \int_{\mathbf{R}/\mathbf{Z}} \varphi \left(\psi \circ E_m^j \right) d\mu - \int_{\mathbf{R}/\mathbf{Z}} \varphi d\mu \int_{\mathbf{R}/\mathbf{Z}} \psi d\mu \right| \le C e^{-rj}, \quad j \in \mathbf{N}.$$

Exercice 2. Presque tous les nombres réels sont normaux

On dit qu'un nombre $x \in [0,1)$ est normal si pour tout $m \ge 2$, son développement en base m

$$x=0, a_1a_2\ldots,$$

(qui est unique si on demande que pour tout k, il existe $k' \geq k$ tel que $a_{k'} \neq m-1$) satisfait

$$\frac{1}{n}\#\left\{k\in\{1,\ldots,n\},\ a_k=j\right\}\underset{n\to+\infty}{\longrightarrow}\frac{1}{m},\quad j=0,\ldots,m-1.$$

Montrer que presque tout $x \in [0,1)$ est normal pour la mesure de Lebesgue.

Exercice 3. Équidistribution des rotations irrationnelles du cercle

Soit $\alpha \in \mathbf{T}^d = \mathbf{R}^d/\mathbf{Z}^d$ et $R_\alpha : \mathbf{T}^d \to \mathbf{T}^d$ donnée par $R_\alpha(x) = x + \alpha$. On suppose que la famille $(1, \alpha_1, \dots, \alpha_d)$ est linéairement indépendante sur \mathbf{Q} , où $\alpha = (\alpha_1, \dots, \alpha_d)$.

- 1. Montrer que R_{α} est ergodique pour la mesure de Haar sur \mathbf{T}^d . Est-elle mélangeante ?
- 2. Soit $C \subset \mathbf{T}^d$ un produit d'intervalles. Montrer que pour μ presque tout $x \in \mathbf{T}^d$,

$$\frac{1}{n} \# \left\{ k \in \{1, \dots, n\}, \ x + k\alpha \in C \right\} \underset{n \to +\infty}{\longrightarrow} \mu(C). \tag{1}$$

- 3. Montrer que pour toute fonction $\varphi \in \mathcal{C}(\mathbf{T}^d, \mathbf{C})$, la suite de fonctions $S_n \varphi = \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ R_\alpha^k$ converge uniformément vers $\int_{\mathbf{T}^d} \varphi \, \mathrm{d}\mu$.
- 4. Montrer que la convergence (??) a lieu pour tout $x \in \mathbf{T}^d$.
- 5. On considère la suite des premiers chiffres des puissances de 2 : 1, 2, 4, 8, 1 . . . Montrer que la fréquence d'apparition du chiffre 7 dans cette suite est à peu près 5.8%.

Exercice 4. Mélange pour une famille dense de L^2

Soit (X, μ) un espace de probabilités et $f: X \to X$ une transformation mesurable. On suppose qu'il existe une base $(e_k)_{k \in \mathbb{Z}}$ de $L^2(X, \mu)$ telle que

$$\lim_n \int_X e_k \left(e_\ell \circ f^n \right) \mathrm{d}\mu = \int_X e_k \mathrm{d}\mu \int_X e_\ell \mathrm{d}\mu, \quad k,\ell \in \mathbf{Z}.$$

Montrer que f est fortement mélangeante.

Exercice 5. Automorphismes ergodiques du tore

Soit $A \in GL(d, \mathbf{Z})$ et $f_A : \mathbf{T}^d \to \mathbf{T}^d$ l'automorphisme de \mathbf{T}^d associé. Montrer que les conditions suivantes sont équivalentes.

- (i) La transformation f_A est ergodique pour la mesure de Haar.
- (ii) La transformation f_A est mélangeante pour la mesure de Haar.
- (iii) Aucune valeur propre de A n'est racine de l'unité.

Exercice 6. Moyenne temporelle des temps de retour

Soit (X, μ) un espace de probabilités et $f: X \to X$ une transformation ergodique pour μ . Soit $A \subset X$ un ensemble mesurable de mesure non nulle, $\tau: A \to \mathbf{N}_{\geq 1} \cup \{+\infty\}$ le temps de premier retour dans A, et $g: x \mapsto f^{\tau(x)}(x)$ l'application de premier retour associée (définie presque partout sur A).

- 1. Montrer que $\int_A \tau d\mu = 1$.
- 2. En déduire que pour μ presque tout x de A,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \tau\left(g^k(x)\right) = \frac{1}{\mu(A)}.$$

Exercice 7. Un critère pour le mélange faible

On dira qu'un ensemble $E \subset \mathbf{N}$ est de densité nulle si

$$\lim_{n} \frac{1}{n} \# \Big(\{1, \dots, n\} \cap E \Big) = 0.$$

On dira qu'une suite strictement croissante d'entiers (n_j) est de densité 1 si $\mathbb{C}\{n_j, j \in \mathbb{N}\}$ est de densité nulle.

1. Soit (a_n) une suite de nombre complexes bornés. Montrer que $\lim_n \frac{1}{n} \sum_{k=0}^{n-1} |a_n| = 0$ si et seulement si, il existe un ensemble de densité nulle E tel que $\lim_{\substack{n \to +\infty \\ n \notin E}} a_n = 0$.

Soit f une transformation mesurable d'un espace probabilisé (X, \mathcal{A}, μ) . On suppose que (\mathcal{A}, μ) admet une base dénombrable. On dit que f est faiblement mélangeante si pour tous $A, B \in \mathcal{A}$, on a

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} \left| \mu(f^{-n}(A) \cap B) - \mu(A)\mu(B) \right| = 0.$$

2. Montrer que f est faiblement mélangeante si et seulement si il existe une suite d'entiers (n_j) de densité 1 telle que

$$\lim_{j} \mu \big(f^{-n_j}(A) \cap B \big) = \mu(A)\mu(B), \quad A, B \in \mathscr{A},$$

ou encore si et seulement si

$$\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} \left(\mu(f^{-k}(A) \cap B) - \mu(A)\mu(B) \right)^{2} = 0, \quad A, B \in \mathscr{A}.$$