Klausur "Robot Vision"

Name	Matrikel-Nummer

Hinweise:

- 1.) Tragen Sie in obige Felder Ihren Namen und Ihre Matrikelnummer ein.
- 2.) Zusätzliche Lösungsblätter versehen Sie bitte mit Namen und Matrikelnummer.

Nehmen Sie zur Bearbeitung einer Aufgabe jeweils ein neues Blatt.

- 3.) Vermerken Sie in den vorgesehenen Lösungsfeldern der Aufgabenblätter, falls ein Zusatzblatt existiert.
- 4.) Zur Bearbeitung stehen 120 Minuten zur Verfügung.
- 5.) Erlaubte Hilfsmittel:

Bücher, Vorlesungsskript und eigene Aufzeichnungen, Taschenrechner, Lineal, Geodreieck.

Sonst keine weiteren Hilfsmittel (keine Notebooks, Handy's,).

Aufgabe	(Punkte	Übersicht zur Bewertung der Aufgaben.
Aurgabe	rulikle	
01	10	
02	12	
03	10	
04	6	
05	12	
06	6	
07	6	
08	6	
09	12	
Punk	te ≅ 80	

a) Geben Sie für die 2 hellen Felder das Ergebnis des 3x3-Median-Filters an.

1	1	2	2
1	2	1	7
3	2	3	8
4	5	9	9

Quellbild

Zielbild

b) Geben Sie für das helle Feld den Gradienten G und die Kantenrichtung (in °) mit Hilfe des angegebenen 3x3-Sobel-Operators an (ohne Normierung).

Quellbild

Gradient $G \in R$

Richtung $G \in [0^{\circ}...360^{\circ})$

-2

0

Faltungsmasken:

	_	-
<u>-1</u>	0	1
-2	0	2
-1	0	1
	_	

1 [

c) Gegeben sind 2 gleichgroße Bilder A(x,y) und B(x,y). Die Zahlen geben den Grauwert in den jeweiligen Bildkacheln an.

Bild A	
0	255
128	192

Bild B	
131	131
131	131

Geben Sie die Ergbnisbilder nach Anwendung der folgenden Bildpunktoperationen an:

A(x,y)	AND	B(x,y)	\rightarrow

$$A(x,y)$$
 OR $B(x,y)$ \rightarrow

$$A(x,y)$$
 XOR $B(x,y)$ \rightarrow

<u>Aufgabe 2</u> (Bildtransformationen)

[12 Punkte]

Die folgende Transformation (source-to-target) beschreibt die Rotation eines Bildes um einen beliebigen Drehpunkt (x_0, y_0) .

$$\begin{pmatrix} x_z \\ y_z \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x_q - x_0 \\ y_q - y_0 \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

- a) Geben Sie die Parameter a₀,a₁,a₂ und b₀, b₁, b₂ der affinen Transformation an.
- b) Geben Sie die Parameter A_0, A_1, A_2 und B_0, B_1, B_2 der inversen (target-to-source) Transformation an.

$$\underline{\text{Vereinfachender Hinweis:}} \quad \text{Für die Matrix} \quad \underline{\underline{A}} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \quad \text{gilt} \quad \underline{\underline{A}}^{-1} = \underline{\underline{A}}^T \quad .$$

da es sich um eine sog. orthonormale Matrix handelt.

Der Ort einer Kante soll subpixelgenau bestimmt werden. Hierzu wird das Bild senkrecht zur Kante geschnitten. Auf der Schnittgeraden werden vier Grauwerte $(g_1 \dots g_4)$ in den Punkten $u_1, \dots u_4$ durch Interpolation bestimmt.

Durch die Grauwerte soll ein Polynom $g = au^3 + bu^2 + cu + d$ gelegt werden. Der Ort des Wendepunktes u_w soll der subpixelgenaue Kantenort sein.

Folgende Werte werden gemessen: bei $u_1=0$, $u_2=1$, $u_3=2$, $u_4=3$

$$g_1(u_1)=2,\quad g_2(u_2)=3,\ g_3(u_3)=6,\ g_4(u_4)=8$$

- a) Welchen Wert hat der Parameter d?
- b) Stellen Sie das Gleichungssystem zur Bestimmung der Parameter *a,b,c* auf (in Matrixform). (Anm.: **nicht** ausrechnen)
- c) Angenommen die Parameter der Parabel sind a = -0.5, b = 2.5, c = -1, d = 0. Wo liegt der subpixelgenaue Kantenort u_w ?

<u>Aufgabe 4</u> (Geraden, Bildmesstechnik)

[6 Punkte]

Gegeben ist eine Kante in Geradenbeschreibung: y = 1.6x - 10

- a) Geben Sie die Hessesche Normalform der Gerade an (r, θ) .
- b) Angenommen die Parameter der Hesseschen Normalform sind $(r, \theta) = (5, -30^{\circ})$. In welcher Höhe v = y-Koordinate) liegt der Punkt (u=10, v), der rechts von der Gerade einen senkrechten Abstand von genau d=2 hat.

[12 Punkte]

Gegeben ist die folgende Bildtransformation $(x,y) \rightarrow (u,v)$:

$$u = \frac{ax + 4y - 5}{x + by + 1} \tag{1}$$

$$v = \frac{2x + cy + 4}{3x + dy + 1}$$
 (2) Anm.: nicht benötigt

(2)
$$\frac{\text{Anm.: nicht}}{\text{benötigt}}$$

Die folgenden korrespondierenden Bildkoordinatenpaare sind gegeben:

X	у	u	V
1	1	2	0
2	1	1	1
1	2	1	4

Bestimmen Sie die Parameter a und b mit Hilfe der Ausgleichsrechnung. Verwenden Sie zur Lösung des Gleichungssystems die Deteminantenmethode. Ein Wegegraph wird durch folgende Liste beschrieben:

Vorgänger- knoten-Nr.	Nachfolger-knoten-Nr.	Wege- gewicht
1	2	1
1	3	2
2	3	2
2	4	2
3	4	2
3	5	2
3	6	2
4	5	2
4	6	4
4	7	2
5	6	1
5	7	2
6	7	2

Skizzieren Sie den Wegegraphen und bestimmen Sie mit Hilfe der dynamischen Programmierung den Weg mit der **minimalen** Wegesumme.

Zeichnen Sie in den Hypothesengraphen ein:

- die maximale Gewichtssumme der Einzelknoten
- die Richtung des Rückwegs pro Knoten
- den optimalen Gesamtweg (dick zeichnen).

a) Berechnen Sie den Schwerpunkt des Bildobjektes mit der Momentenmethode.

b) Berechnen Sie das normalisierte Zentralmoment $\eta_{20}\, des$ Bildobjektes.

<u>Aufgabe 8</u> (Connected components labeling)

[6 Punkte]

Ein Bild wurde initial gelabelt. Dabei haben sich folgende Äquivalenzen gezeigt:

Lab 1 = Lab 8

Lab 2 = Lab 3

Lab 3 = Lab 7

Lab 4 = Lab 6

Lab 4 = Lab 8

- a) Tragen Sie die Label-Äquivalenzen in die Matrix ein (mit ,X' markieren).
- b) Wenden Sie jetzt den Floyd-Warshall-Algorithmus an und markieren Sie die dadurch gesetzten Felder mit ,oʻ.

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

In einem Bild sollen kollineare (auf einer Gerade liegende) Punkte gefunden werden. Die Steigung der gesuchten Geraden liegt im Bereich **m**=+/-**1**.

Es soll <u>eine Variante</u> der Houghtransformation verwendet werden, die <u>nicht auf der Hesseschen</u> Normalform basiert (also den Parametern r und θ), sondern auf der Geradengleichung y=mx+b (also den Parametern m und b).

Das zu untersuchende Bild hat die Größe (100, 100).

- a) In welchem Bereich kann der Parameter b liegen?
- b) Skizzieren Sie die Spuren, die durch die markierte Bildpunkte (0, 50) und (50, 50) im Parameterraum erzeugt werden.
- c) Geben Sie den Hough-Algorithmus dieser Variante an.

