类别	描述	pmf $oxdot pdf$	期望	方差	特点					
	一维									
离散型	0-1 分布	$P(X = k) = \begin{cases} k \in A \\ k \notin A \end{cases}$								
	均匀分布	$P(X=k) = \frac{1}{n}$								
	超几何分布(M,N,n)	$P(X = m) = \frac{\binom{M}{m} \binom{N - M}{n - m}}{\binom{N}{n}}$	$n\frac{M}{N}$							
	二项分布B(n,p)	$P(X = k) = b(n, p, k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$	np	np(1-p)	$n \to \infty, np \to \lambda, X \sim P(\lambda)$, 一般 $n \ge 30$,, $np \le 5$ 即可; 当 np 很大时,用正态分布逼近					
	负二项分布NB(r,p)	$P(X = k) = nb(r, p, k) = {\binom{k-1}{r-1}} p^{r} (1-p)^{k-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	几何分布具有无记忆性; $r \to \infty, r(1-p) \to \lambda, X = K - R \sim P(\lambda)$					
	r=1,几何分布 $Ge(p)$									
	泊松分布P(λ)	$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	可加性					
连续型	均匀分布U(a,b)	$f(x) = \frac{1}{b-a} I_{(a,b)}(x)$								
	指数分布 $Exp(\lambda), \lambda > 0$	$f(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$	$\frac{1}{\lambda}$	$rac{1}{\lambda^2}$	无记忆性;独立的指数分布变量和 $Z = \sum X_i \sim \Gamma(n,\lambda)$, $f_Z(z) = \frac{\lambda^n}{n!} z^{n-1} exp(-\lambda z) I_{(0,\infty)}(z)$, Γ 分布					
					对 n 有再生性;独立的指数分布变量差 $Z=X-Y$ 服从拉普拉斯分布, $f_Z(z)=rac{\lambda}{z}exp(-\lambda z)$					

	正态分布 N(μ, σ²)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$F(x)=\Phi(rac{x-\mu}{\sigma});\;N$ 对 μ,σ^2 具有再生性;独立的正态分布变量商 $Z=X/Y$ 服从柯西分布, $f_Z(z)=rac{1}{\pi(1+z^2)}$
多维					
离散型	多项分布 $M(N; p_1,, p_n)$	$P(\cap x_i = k_i) = \frac{N!}{k_1! \cdots k_n!} p_1^{k_1} \cdots p_n^{k_n}$			
连续	n 元正态分布 $N(\mu_1, \cdots, \mu_n; \sigma_1^2, \cdots, \sigma_n^2; ho_{ij})$	$f(\mathbf{x}) = (2\pi)^{-n/2} \mathbf{A} ^{-1/2} exp(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{A}^{-1}(\mathbf{x} - \boldsymbol{\mu}))$ $A_{ij} = \rho_{ij} \sigma_i \sigma_j$			$ ho_{ij}=0$,表示 $oldsymbol{x}_ioldsymbol{x}_j$ 独立; m 元边缘分布是 m 元正态分布(独立条件);
型	均匀分布	$f(\mathbf{x}) = \frac{1}{ G } I_G(\mathbf{x})$			