Weight Exsercise Prediction

Emmanuel Okyere Darko

4/5/2021

Executive Summary

In this project, the goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants to predict the manner in which an exercise is done.

In particular, we will:

Get and clean the data set:

- Train data is from here (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv)
- Test data is found at here (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv)

Perform Exploratory data analysis to identify patterns

Pre-process data to split and validate, reduce dimentionality with PCA and remoe zero covariates

Fit models on different predictors

Assess model metrics

Summary

Getting and Cleaning Data

Data

[1] 19622 160

Data Cleaning

Checking for NAs, it looks like some columns have NAs of more than 50% the size of the dataset, therefore columns with NAs more than 20% of the size of the data will be droped, which then reduce the number of columns. Also we will remove timestamp columns since we don't need them as prediction

```
size <- nrow(df.train)
perc <- 20
Na_thresh <- floor(size/100 * perc)

## Drop columns with more than 20% na
dropped_cols <- which(colSums(is.na(df.train) | df.train == "") > Na_thresh)

train_val_set <- df.train[, -c(1, dropped_cols)]

test_set <- df.test[, -c(1, dropped_cols)]

## Drop all columns having timestamp
dropped_time_cols <- grep('timestamp', names(train_val_set))
train_val_set <- train_val_set[, -dropped_time_cols]

test_set <- test_set[, -dropped_time_cols]

## Make classe a factor
train_val_set$classe <- factor(train_val_set$classe)
train_val_set$user_name <- factor(train_val_set$user_name)
test_set$user_name <- factor(test_set$user_name)</pre>
```

Split training set to train and validation

3/4 for training and 1/4 for validation

```
partition <- createDataPartition(y = train_val_set$classe, p = 3/4, list = F)

train_data <- train_val_set[partition, ]
validation_data <- train_val_set[-partition, ]

response <- which(names(train_data) == c("classe"))</pre>
```

Exploratory Analysis

Removing zero covariates

zero or near zero covariates predictors will be removed

```
nsv <- nearZeroVar(train_data, saveMetrics=TRUE)

train_data = train_data[, !nsv$nzv]
validation_data = validation_data[, !nsv$nzv]
test_set = test_set[, !nsv$nzv]

nsv</pre>
```

##	freqRatio	percentUnique	zeroVar	nzv
## user_name	1.104766	0.04076641	FALSE	FALSE
## new_window	47.255738	0.01358880	FALSE	TRUE
## num_window	1.034483	5.82280201	FALSE	FALSE
## roll_belt	1.110429	7.91547765	FALSE	FALSE
## pitch_belt	1.013514	11.80866966	FALSE	FALSE
## yaw_belt	1.060686	12.55605381	FALSE	FALSE
## total_accel_belt	1.064262	0.19024324	FALSE	FALSE
## gyros_belt_x	1.026188	0.90365539	FALSE	FALSE
## gyros_belt_y	1.146927	0.44163609	FALSE	FALSE
## gyros_belt_z	1.057678	1.11428183	FALSE	FALSE
## accel_belt_x	1.119171	1.10748743	FALSE	FALSE
## accel_belt_y	1.155203	0.95121620	FALSE	FALSE
## accel_belt_z	1.098935	1.94319880	FALSE	FALSE
## magnet_belt_x	1.130112	2.08588123	FALSE	FALSE
## magnet_belt_y	1.168421	1.95678761	FALSE	FALSE
## magnet_belt_z	1.020000	3.00312542	FALSE	FALSE
## roll_arm	46.163636			FALSE
## pitch_arm	79.375000	19.35724963	FALSE	FALSE
## yaw_arm	32.974026			FALSE
## total_accel_arm	1.022422			FALSE
## gyros_arm_x	1.114441	4.27367849	FALSE	FALSE
## gyros_arm_y	1.496021			FALSE
## gyros_arm_z	1.121588			FALSE
## accel_arm_x	1.088000			FALSE
## accel arm y	1.200000	3.60782715		FALSE
## accel arm z	1.144330			FALSE
## magnet_arm_x	1.000000			FALSE
## magnet arm y	1.074627			FALSE
## magnet arm z	1.000000			FALSE
## roll dumbbell	1.000000			FALSE
## pitch_dumbbell	2.382353	83.93124066		FALSE
## yaw_dumbbell	1.120879	85.58907460	FALSE	FALSE
## total_accel_dumbbell		0.29215926		FALSE
## gyros dumbbell x	1.015217			FALSE
## gyros dumbbell y	1.287671			FALSE
## gyros dumbbell z	1.055679		FALSE	FALSE
## accel dumbbell x	1.044355		FALSE	FALSE
## accel dumbbell y	1.081967		FALSE	FALSE
## accel dumbbell z	1.171271		FALSE	FALSE
## magnet dumbbell x	1.058824	7.33795353	FALSE	FALSE
## magnet dumbbell y	1.192593	5.60538117	FALSE	FALSE
## magnet dumbbell z	1.027972	4.52507134	FALSE	FALSE
## roll forearm	11.641434		FALSE	FALSE
## pitch_forearm	64.911111	18.21579019	FALSE	FALSE
## yaw forearm	15.455026	12.22312814	FALSE	FALSE
## total_accel_forearm				FALSE
## gyros forearm x	1.062189			FALSE
## gyros_forearm_y	1.062718			FALSE
## gyros_forearm_z	1.092643			FALSE
## accel forearm x	1.169231			FALSE
## accel forearm y	1.040000			FALSE
## accel_forearm_z	1.008403			FALSE
			-	

```
## magnet_forearm_x
                                     10.00815328
                          1.064516
                                                    FALSE FALSE
## magnet_forearm_y
                          1.206349
                                     12.44734339
                                                    FALSE FALSE
## magnet forearm z
                          1.106383
                                     11.02731349
                                                    FALSE FALSE
## classe
                          1.469452
                                      0.03397201
                                                    FALSE FALSE
```

Check for correlation between predictors and response variable

The table below shows all variables have less correlation with the response varible

```
## Remove non numeric columns before calculating correlation
df <- train_data %>% select(-c("user_name", "classe"))

corr <- cor(df, as.numeric(train_data$classe))

## Convert to dataframe and arrange in decreasing order
coor_df = data.frame(name= row.names(corr) ,pos_cor = abs(corr))
coor_df[coor_df$pos_cor >0.3,]
```

We can now visualize this for a better pespertive

Plot with points overlayed

This plot shows the number of data-points in each category of user-name, it can be inferred that each person is well represented in the dataset

Check for correlation between predictors

This plot is not very informational as we have several variable but we can infer that some variables are strongly correlated with others

Now is a better tim to eliminate highly correlated columns

```
high_cor = findCorrelation(cor(df), cutoff = 0.8)
exclude_cols = c(response, high_cor)
```

Pre-processing for training

To reduce overfitting and also dimentionality, we will use PCA with a thresh of 0.9

```
## USe pca to reduce highly correlated variables
pca.all <- preProcess(train_data[, -response], method = 'pca', thresh = 0.9)
train_data.pca.all <- predict(pca.all, train_data[, -response])
validation_data.pca.all <- predict(pca.all, validation_data[, -response])
test_set.pca.all <- predict(pca.all, test_set[, -response])

## remove highly correlated columns and fit pca
pca.excluded <- preProcess(train_data[, -exclude_cols], method = 'pca', thresh = 0.9)
train_data.pca.excluded <- predict(pca.excluded, train_data[, -exclude_cols])
validation_data.pca.excluded <- predict(pca.excluded, validation_data[, -exclude_cols])
#test_set.pca.excluded <- predict(pca.excluded, test_set[, -exclude_cols])</pre>
```

Model

- Before pca model The next model will be fit on predictors after removing highly correlated variables.
- The train function takes a almost 10x time to train relative to the specific randomForest function but highly efficient.

user system elapsed 3955.071 67.123 4067.016

```
rf.all <- randomForest::randomForest(x = train data[, -response], y = train data$classe,
                                 ntree = 100,
                                  ytest =validation data$classe, xtest = validation data
        [, -response])
rf.excluded <- randomForest::randomForest(x = train_data[, -exclude_cols], y = train_dat
        a$classe,
                                 ntree = 100,
                                  ytest =validation data$classe, xtest = validation data
        [, -exclude cols])
rf.pca <- randomForest::randomForest(x = train_data.pca.all, y = train_data$classe,
                                 ntree = 200,
                                 xtest =validation data.pca.all, ytest =validation data$
        classe )
rf.pca.excluded <- randomForest::randomForest(x = train data.pca.excluded, y = train dat
        a$classe,
                                 ntree = 200, ytest =validation data$classe ,
                                 xtest = validation data.pca.excluded)
```

Metrics

Train Accuracy

```
## [1] "All Predictors acc: 1 Predictors with no high cor acc: 1 PCA acc: 1 PCA with h
igh corr removed acc: 1"
```

Validation Accuracy

```
## [1] "All Predictors acc: 1 Predictors with no high cor acc: 0.999 PCA acc: 1 PCA wi th high corr removed acc: 1"
```

Summary

- PCA reduces computational time and also gives a good parsimonious model
- Train function is over 10x slower than specific function randomForest
- Removing highly correlated predictors before PCA does not change model performance significantly as PCA takes care of the same thing
- An Accuracy of 99.7% and 87% was achieved on validation set using all predictors and PCA respectively