

Data rep(resentation and) floating point (numeric)

Data rep - principle decimal fix-point und floating point

- Dezimalzahl mit festen Komma (fix-point)
 - $\blacksquare d_m d_{m-1} \cdots d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-n}$
 - Berechnung des Werts: $d = \sum_{i=-n}^{m} 10^{i} * d_{i}$
 - Beispiel: 123,45
- Dezimalzahl mit Gleitkomma (floating point)

$$\bullet d_m d_{m-1} \cdots d_1 d_0 old_{-1} d_{-2} \cdots d_{-n}$$

Normalisierung

lässt sich immer konvertieren in

$$d_m d_{m-1} \cdots d_1 d_0 d_{-1} d_{-2} \cdots d_{-n} \times 10^m$$

 Anwendung: Darstellung von sehr großen oder sehr kleinen Zahlen

2

Data rep - principle binary fix-point

- Binärzahl mit festem Komma (fix point)
 - $\bullet b_m b_{m-1} \cdots b_1 b_0 b_{-1} b_{-2} \cdots b_{-n}$
 - ■Bestimmung des Werts bzw. Umrechnung bin->dec:

$$d = \sum_{i=-n}^{m} 2^i * b_i$$

- Beispiel:
 - ■0b0.1 -> 0.5
 - ■0b11.01 -> 3.25

Data rep - principle binary fix-point - dec -> bin 1/3

- Umrechnung dec -> bin
 - Vorab wichtige Punkte:
 - Für jede ganze Zahl sind Dezimaldarstellung und Binärdarstellung (Hexadezimal, ...) ineinander überführbar
 - Für gebrochene Zahlen gilt dies prinzipiell nicht
 - Bsp:

$$x = 1/10 = 0.1$$

 $x = 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + \cdots$
 $x = 0.000110011001100110011001100110011\cdots$

- benötigt in Binärdarstellung ∞ viele Stellen!
- (Darstellung eines Binärbruchs ist allerdings immer mit endlich vielen Dezimalstellen möglich!)
 (Wenn der Nenner aus 2er-Potenzen besteht)

Data rep - principle binary fix-point - dec -> bin 2/3

- Umrechnung dec -> bin
 - 1. Vorkomma mit
 Quotientenmethode (siehe
 Umwandlung von
 Ganzzahlen (int) im letzten
 Kapitel
 - 2. Nachkomma mit Produktmethode (siehe nächste Folie)

- Beispiel: 17,625 -> bin?
 - 1.: Vorkomma 17 -> bin

d	d div 2	d mod2
17	8	1
8	4	0
4	2	0
2	1	0
1	0	1

- -> Dec2bin(17) = 0b10001
- 2.: Nachkomma 0,625
 - ->Dec2bin(0,625) =0b101 (siehe nächste Folie)
 - ->0b10001.101

Data rep - principle binary fix-point - dec -> bin 3/3

- Algorithmus dec2bin(d):
 - Produktmethode (für Nachkommateil von Kommazahlen)
 - Multipliziere d und Produktnachkomma fortlaufend mal 2 und notiere Vorkomma bis Produkt 1,0 ergibt (oder maximal gewünschte Stellen erreicht)
 - Vorkomma von oben nach unten gelesen ergibt das Ergebnis

Beispiel: dec2bin(0,625)

d*2	prod	Nach komma	Vorko mma
0,625 *2	1,25	0,25	1
0,25 *2	0,5	0,5	0
0,5 *2	1,0	0	1 ,

->Dec2bin(0,625) =0b101

Data rep - principle binary fix-point - dec -> bin - Übung

- Umrechnung dec -> bin
 - 1. Vorkomma mit Quotientenmethode
 - 2. Nachkomma mit Produktmethode
 - Multipliziere d und Produktnachkomma fortlaufend mal 2 und notiere Vorkomma bis Produkt 1,0 ergibt (oder maximal gewünschte Stellen erreicht)
 - Vorkomma von oben nach unten gelesen ergibt das Ergebnis

- Übung: 18,75 -> bin?
 - 1.: Vorkomma 18 -> bin

d	d div 2	d mod2
18	9	0
9	4	1
4	2	0
2	1	0
1	0	1

- -> Dec2bin(18) = 0b10010
- 2.: Nachkomma 0,75 ->bin

d*2	prod	Nach komma	Vorko mma

->Dec2bin(0,75) =

Data rep - principle binary floating point

- Binärzahl mit festem Komma (fix point)
 - $\bullet b_m \ b_{m-1} \cdots b_1 \ b_0 \bigcirc b_{-1} \ b_{-2} \cdots b_{-n}$
- Binärzahl mit Gleitkomma (floating point)

$$\bullet b_m \cdot b_{m-1} \cdots b_1 b_0 \cdot b_{-1} b_{-2} \cdots b_{-n} \times \mathbf{2}^m$$

Normalisierung

Data rep - floating point - IEEE 754

- Beschreibt allgemeine Zahl: V = (-1)^s * M * 2^E
- Sign bit (1 Bit):
 - s=1 -> negativ, s=0 -> positiv
- Exp field (k Bits):
 - Codiert Exponent E
- Fraction field (n Bits):
 - Codiert Signifikant M

Data rep - floating point - IEEE 754 - float 1/4

4 Fälle

Single precision

31 30 23 22 00 s exp frac

1. Normalized

2. Denormalized

3a. Infinity

3b. NaN

Data rep - floating point - IEEE 754 - float 2/4

- Fall 1 wenn exp!=0 und !=255 (normalized)
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - Float single precision 32bit (4 Byte)
 - Normalized

s	≠ 0 & ≠ 255	f

- Sign bit (one Bit s): Bit 31
 - s=1 -> negativ, s=0 -> positiv
- Exp field (k Bits): 8 Bits (Bits 30 23)
 - Codiert exponent entspr: E=exp Bias
 - Bias=127 //-> E=...-126 to +127
- Frac(tion) field (n Bits): 23 Bits (Bits 22 0)
 - Codiert significand entspr: M=1.f22...f1f0 //->M=1...2
- Anwendung: normale Zahlendarstellung

Data rep - floating point - IEEE 754 - float 2/4 - Beispiel

- Fall 1 wenn exp!=0 und !=255 (normalized)
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - M=1.f22...f1f0
 - E=exp 127
- Beispiel

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- **■**S=1 -> -
- $exp=64+32+16+8+4+1=125 \rightarrow E=125-127=-2$
- •frac=0.5 -> M=1.5
- $V=-1*1.5*2^{-2}=-1*3/2*1/4=-3/8=-0.375$

Data rep - floating point - IEEE 754 - float 2/4 - Übung

- Fall 1 wenn exp!=0 und !=255 (normalized)
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - M=1.f22...f1f0
 - E=exp 127
- Übung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TODO: Wert in Dezimal berechnen

Data rep - floating point - IEEE 754 - float 3/4

- Fall 2 wenn exp==0 (denormalized)
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - Float single precision 32bit (4 Byte)

2. Denormalized

s 0 0 0 0 0 0 0 0

1

- Sign bit (one Bit s): Bit 31
 - s=1 -> negativ, s=0 -> positiv
- Exp field (k Bits): 8 Bits (Bits 30 23)
 - Codiert exponent E= 1 Bias
 - Bias=127 //-> E=-126
- Fraction field (n Bits): 23 Bits (Bits 22 0)
 - Codiert significand M=0.f22...f1f0 //->M=0...1
- Anwendung: 0 oder kleine Zahlen repräsentieren

Data rep - floating point - IEEE 754 - float 4/4

- Float single precision 32bit (4 Byte)
 - 3a Fall wenn exp==255 und frac==0 (special value, infinity)

3a. Infinity

- Sign bit (one Bit s): Bit 31
 - **s**=1 -> -**oo**, s=0 -> +**oo**
- 3b Fall wenn exp==255 und frac!=0 (special value, NaN)
 3b. NaN

NaN (not a number)

Data rep - floating point - IEEE 754 - double, extended double

- Gleitkommazahlen mit doppelter Genauigkeit (double)
 - ■1 Bit sign
 - ■11 Bits exponent (bias ist 1023)
 - 52 Bit signifcand
- Gleitkommazahlen mit erweiterter Genauigkeit (extended double)
 - ■1 Bit sign
 - $e \ge 15$ Bits exponent (bias entsprechend $2^{e-1} 1$)
 - ■≥63 Bit signifcand
- ansonsten gleiche Logik

Data rep - floating point - rounding

- nicht alle gebrochenen Zahlen innerhalb der Wertegrenzen sind mit floating point darstellbar
- Beispiel

darstellbar: 0.5

darstellbar: 12345

■ nicht darstellbar: 0.1

- Rounding = Bestimme eine geeignete darstellbare Zahl x^* für eine möglicherweise nicht darstellbare Zahl x.
 - x^* kann eine der beiden darstellbaren Zahlen x^+, x^- sein, für die gilt:

$$x^- \le x \le x^+$$

• verschiedene Rundungsregeln sind möglich

Data rep - floating point - conv dec to fp

- Formeln für Fall 1. normalisiert
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - M=1.f22...f1f0=1.m
 - E=exp 127 -> exp=E+127

Algorithmus

- 1. Vorzeichen bestimmen (neg >s=1, pos->s=0)
- 2. Umwandeln dec -> bin
 - 2a Vorkomma Teil
 - 2b Nachkomma Teil
- 3. Normalisieren
- 4. m bestimmen
- 5. exp bestimmen

- Beispiel 18,75 -> float
- 1.: pos -> s=0
 - 2a.: 18 -> 0b10010
 - 2b: 0.75 -> 0b0.11
- 3.: 10010.11 -> 1 001011*2^4
- 4.: M=1.001011
 - ->m=001011
- 5.: 4=exp-127 -> exp=131
 - ->exp=10000011

-> in hex: 0x41960000

Data rep - floating point - conv dec to fp - Übung

- Formeln für Fall 1. normalisiert
 - Allgemeine Zahl: V = (-1)^s * M * 2^E
 - M=1.f22...f1f0=1.m
 - E=exp 127 -> exp=E+127

- Übung 17,625 -> float
 - 1.: pos -> s=?
 - 2a.: 17 -> 0b10001
 - 2b: 0.625 -> 0b101

Algorithmus

- 1. Vorzeichen bestimmen (neg >s=1, pos->s=0)
- 2. Umwandeln dec -> bin
 - 2a Vorkomma Teil
 - 2b Nachkomma Teil
- 3. Normalisieren
- 4. m bestimmen
- 5. exp bestimmen

	_		, , , L	-		• • • •			• •																							
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_																																

-> in hex: 0x