6/6/24, 9:23 PM about:blank

Hands-on Lab: Advanced Relational Model Concepts

Estimated time needed: 15 minutes

Introduction

In this module, you have learned about advanced relational concepts such as functional dependencies, multi-valued dependencies, and candidate keys.

Review your knowledge:

- Functional dependency (FD): This refers to a relationship between attributes where the value of one attribute uniquely determines the value of another.
- Multi-valued dependency (MVD): This describes a relationship between attributes where one attribute determines a set of possible values for another.
- Candidate key: This denotes a minimal set of attributes that uniquely identifies each row in a relation.

Now, in this lab, let's apply the concepts learned in this module to a real-world example of a database.

Objectives

After completing this lab, you will be able to evaluate your knowledge of Advanced relational model concepts.

Here you are going to:

- Apply advanced relational concepts like functional dependencies, multi-valued dependencies, and candidate keys to the "Car Dealership" database schema.
- Identify constraints within the schema based on these concepts.
- Understand the impact of these concepts on data integrity and manipulation.

Exercise

In this exercise, we will work on a relational database schema called Car Dealership, designed to keep track of automobile sales in a car dealership.

Schema diagram for the Car Dealership relational database:

Relational instance of SALE:

Salesperson_id	Serial_no	Date	Sale_price	
10001	1we4ds87	12/03/2020	\$	10,000.00
10005	d63jw3ty	12/03/2020	\$	5,000.00
10009	sy63bjd1	13/03/2020	\$	25,000.00
10001	k2k4edr8	13/03/2020	\$	49,000.00
10051	w3r334ac	13/03/2020	\$	8,000.00

about:blank 1/2

6/6/24, 9:23 PM about:blank

Now, let's go through some questions based on the above database schema of Car Dealership and the relational instance of SALE:

- 1. Identify FDs in the Car Dealership schema:
- A. Analyze each pair of attributes in each relation (Car, Sale, Salesperson, Customer).
- B. For each pair, consider if the value of one attribute always determines the value of the other.
- C. List all identified FDs for each relation.
- ► Answer
- 2. Explore MVDs:
 - A. Consider if any attribute in the schema determines a set of possible values for another.
 - B. For example, does "Car Model" determine a set of possible values for "Sale Price"?
 - C. List any identified MVDs for the schema.
 - Answer
- 3. Determine candidate keys:
 - A. Analyze each relation and identify any subset of attributes that uniquely identifies each row.
 - B. Remember, a candidate key must not contain any redundant attributes.
 - C. List all identified candidate keys for each relation.
 - ► Answer
- 4. Discuss the implications:
 - A. How do the identified FDs and MVDs impact data integrity and manipulation in the schema?
 - B. Could any data inconsistencies arise due to violating these constraints?
 - C. How do candidate keys affect query optimization and data retrieval?
 - ► Answer

Congratulations! You have completed this lab and are ready for the next topic.

Author: Shubhra Das

about:blank 2/2