Homework 2 for Math 1540

Zhen Yao

Problem 20. Let $A = (a_{ij})_{m \times n}$ be the matrix of a linear mapping $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Prove that the norm

$$||A|| = \sup_{||x||=1} ||Ax||$$

satisfies the inequality

$$||A|| \le \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2\right)^{1/2}.$$

Hint: You may use the following argument: Write the components of the vector Ax as scalar products of rows on A and x. Then use the Schwarz inequality to estimate the length of the vector Ax.

Proof. For $\forall x \in \mathbb{R}^n$, we have

$$||Ax||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j\right)^2$$

$$\leq \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}^2\right) \left(\sum_{j=1}^n x_j^2\right)$$

$$= \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right) ||x||.$$

Also, we can have

$$||A|| = \sup_{||x||=1} ||Ax|| \le \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}}.$$

Problem 21. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by F(x,y) = f(xy). Prove that

$$x\frac{\partial F}{\partial x} = y\frac{\partial F}{\partial y}.$$

Proof. We have $\frac{\partial F}{\partial x} = f'(xy)y$ and $\frac{\partial F}{\partial y} = f'(xy)x$. Thus, we have

$$x\frac{\partial F}{\partial x} = y\frac{\partial F}{\partial y} = xyf'(xy).$$

Problem 22. We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree m if $f(tx) = t^m f(x)$ for all $x \in \mathbb{R}^n$ and all t > 0. Prove that if f is differentiable on \mathbb{R}^n and homogeneous of degree m, then

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x) = mf(x) \quad \text{for all } x \in \mathbb{R}^n.$$

Proof. Differentiating both sides of the equation $f(tx) = t^m f(x)$ with respect to t and we have

$$x \cdot \nabla f(tx) = mt^{m-1}f(x).$$

Choosing t = 1 and we have

$$x \cdot \nabla f(x) = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x) = mf(x).$$

Problem 23. We know that a function f(x,y) is differentiable at (0,0). We also know the directional derivatives

$$D_u f(0,0) = 1$$
 where $u = [1/\sqrt{5}, 2/\sqrt{5}],$
 $D_v f(0,0) = 1$ where $v = [1/\sqrt{2}, 1/\sqrt{2}].$

Find the gradient $\nabla f(0,0)$.

Proof. We have

$$\begin{cases} \frac{1}{\sqrt{5}} \frac{\partial f}{\partial x}(0,0) + \frac{2}{\sqrt{5}} \frac{\partial f}{\partial y}(0,0) = 1\\ \frac{1}{\sqrt{2}} \frac{\partial f}{\partial x}(0,0) + \frac{1}{\sqrt{2}} \frac{\partial f}{\partial y}(0,0) = 1 \end{cases}$$

Then we have $\nabla f(0,0) = \left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) = \left(2\sqrt{2} - \sqrt{5}, \sqrt{5} - \sqrt{2}\right).$

Problem 24. Let $f \in C^1(\mathbb{R}^2)$ be such that f(1,1) = 1 and $\nabla f(1,1) = (a,b)$. Let $\varphi(x) = f(x, f(x, f(x, x)))$. Find $\varphi(1)$ and $\varphi'(1)$.

Proof. First, we have $\varphi(1) = f(1, f(1, f(1, 1))) = f(1, f(1, 1)) = f(1, 1) = 1$. Second, set $\varphi(x) = f(x, h(x))$, where h(x) = f(x, f(x, x)) = f(x, g(x)). Then we have

$$\varphi'(x) = \partial_1 f(x, h(x)) + \partial_2 f(x, h(x))h'(x),$$

where

$$h'(x) = \partial_1 f(x, g(x)) + \partial_2 f(x, g(x))g'(x)$$

$$g'(x) = \partial_1 f(x, x) + \partial_2 f(x, x).$$

Then g'(1) = a + b, g(1) = 1 and $h'(1) = \partial_1 f(1,1) + \partial_2 f(1,1)(a+b) = a + b(a+b)$. Thus, $\varphi'(1) = a + b(a+b(a+b))$.

Problem 25. A function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Find the derivative of the function

$$F(t) = (f(t, t^2, \dots, t^n))^2, \quad t \in \mathbb{R}$$

of one variable.

Proof. We have

$$F'(t) = 2f(t, t^2, \dots, t^n)(1 + 2t + \dots + nt^{n-1})\frac{\partial f}{\partial t}.$$

Problem 26. Verify by a direct computation that the vector field $F(x) = x|x|^{-n}$ defined on $\mathbb{R}^n \setminus \{0\}$ is divergence free, i.e.

$$\operatorname{div} F(x) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{x_i}{|x|^n} \right) = 0 \quad \text{for all } x \neq 0.$$

Proof.

$$\operatorname{div} F(x) = \sum_{i=1}^{n} (|x|^{-n} - n|x|^{-n-1}x_i^2)$$
$$= n|x|^{-n} - n|x|^{-n-2}|x|^2 = 0.$$

Problem 27. Prove that for $\alpha > 0$ the function $\Phi : \mathbb{R}^n \to \mathbb{R}^n$,

$$\Phi(x) = x|x|^{\alpha}$$

is of class C^1 . Find $D\Phi(x)$.

Proof. We need to prove the continuity of $\partial \Phi_i/\partial x_j$, and we have

$$\Phi_i(x) = x_j |x|^{\alpha} \in C^{\infty} (\mathbb{R}^n \setminus \{0\}).$$

For $x \neq 0$, we have

$$\frac{\partial \Phi_i(x)}{\partial x_j} = \frac{\partial x_i}{\partial x_j} |x|^{\alpha} + x_i \frac{\partial |x|^{\alpha}}{\partial x_j}$$
$$= \delta_{ij} |x|^{\alpha} + \alpha x_i x_j |x|^{\alpha - 2}$$
$$= |x|^{\alpha} \left(\delta_{ij} + \alpha \frac{x_i}{|x|} \frac{x_j}{|x|} \right).$$

Some notation are defined as below

$$a = [a_1, \dots, a_n]$$

$$b = [b_1, \dots, b_n]$$

$$a \otimes b = \begin{pmatrix} a_1b_1 & \dots & a_1b_n \\ \vdots & \ddots & \vdots \\ a_nb_1 & \dots & a_nb_n \end{pmatrix}$$

then fr $x \neq 0$, we have

$$D\Phi(x) = |x|^{\alpha} \left(\delta_{ij} + \alpha \frac{x}{|x|} \otimes \frac{x}{|x|} \right),$$

and $D\Phi(x) \to 0$ as $x \to 0$. It remains to show that $D\Phi(0) = 0$. We prove it directly by definition and we have

$$\frac{\Phi(x) - \Phi(0) - 0 \cdot x}{|x|} = \frac{x|x|^{\alpha}}{|x|} = \underbrace{\frac{x}{|x|}}_{|x|} \cdot |x|^{\alpha} \xrightarrow{x \to 0} 0.$$

Thus, the derivative of $\Phi(x)$ is

$$D\Phi(x) = \begin{cases} |x|^{\alpha} \left(\delta_{ij} + \alpha \frac{x}{|x|} \otimes \frac{x}{|x|} \right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Problem 28. Find all the points $(x,y) \in \mathbb{R}^2$ where the function

$$f(x,y) = |e^x - e^y| \cdot (x + y - 2)$$

is differentiable.

Proof.

(1) f is C^{∞} at $\{(x,y) \in \mathbb{R}^2 | x \neq y\}$. Indeed,

$$f(x,y) = \begin{cases} (e^x - e^y)(x + y - 2), & x > y, \\ (e^y - e^x)(x + y - 2), & x < y, \end{cases}$$

is C^{∞} .

(2) It remains to show the differentiability at point (x, x). We prove it by the definition and we have

$$\frac{\partial^{+} f}{\partial x}(x, x) = \lim_{h \to 0^{+}} \frac{f(x + h, x) - f(x, x)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{\left(e^{x + h} - e^{x}\right)(2x + h - 2)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{e^{x + h} - e^{x}}{h}(2x + h - 2)$$

$$= e^{x}(2x - 2),$$

$$\frac{\partial^{-} f}{\partial x}(x, x) = \lim_{h \to 0^{-}} \frac{f(x, x + h) - f(x, x)}{h}$$

$$= -e^{x}(2x - 2).$$

Then, when $x \neq 1$,

$$\frac{\partial^+ f}{\partial x}(x, x) \neq \frac{\partial^- f}{\partial x}(x, x),$$

hence, f is not differentiable at $\{(x,x)\}\setminus\{(1,1)\}$.

For the point (1,1), we have

$$\frac{f(1+s,1+t)-f(1,1)-0\cdot(s,t)}{\sqrt{s^2+t^2}} = \left|e^{1+s}-e^{1+t}\right| \underbrace{\frac{\left(s+t\right)}{\sqrt{s^2+t^2}}}_{\text{bounded}} \xrightarrow{(s,t)\to(0,0)} 0.$$

Thus, f is differentiable at point (1,1).

Problem 29. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ given by

$$g(x,y) = x^{2/3}y^{2/3}$$
, for all $(x,y) \in \mathbb{R}^2$.

Prove that g is differentiable at (0,0).

Proof. We have $\frac{\partial g}{\partial x}(0,0) = 0$ and $\frac{\partial g}{\partial y}(0,0) = 0$. Also, we have

$$\lim_{h \to 0} \frac{h^{2/3} h^{2/3}}{h} = 0 = f(0, 0).$$

Thus, f is continuous at (0,0), hence differentiable at (0,0).

Problem 30. Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ that is differentiable at each point, but whose partial derivatives are not continuous at (0,0).

Proof. Take

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

Then we have

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin(1/|h|) = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin(1/|h|) = 0$$

Also, we have

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)}{\sqrt{x^2 + y^2}}$$
$$\frac{\partial f}{\partial y}(x,y) = 2y \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{y \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)}{\sqrt{x^2 + y^2}}$$

which oscillate rapidly near the origin. Thus, the partial derivatives are not continuous at (0,0).

Problem 31. Prove that the partial derivatives (of first order) of a function $f: \mathbb{R}^n \to \mathbb{R}$ exist everywhere and they are bounded, then the function f is continuous.

Proof. Let $x_0 = (x_{01}, \dots, x_{0n}) \in \mathbb{R}^n$ be arbitray, and define $f_i = \frac{\partial f}{\partial x_i}$. Since partial derivatives exist everywhere and bounded, then we define $M = \sum_{i=1}^n \sup |f_i(x)|, x \in \mathbb{R}^n$. Then, for $x = (x_1, \dots, x_n)$, we have

$$|f(x_{0}) - f(x)| \leq |f(x_{01}, \dots, x_{0n}) - f(x_{1}, x_{02}, \dots, x_{0n})| + |f(x_{1}, x_{02}, \dots, x_{0n}) - f(x_{1}, x_{2}, x_{03}, \dots, x_{0n})| + \dots + |f(x_{1}, \dots, x_{n-1}, x_{0n}) - f(x_{1}, \dots, x_{n})| \leq M|(x_{01}, \dots, x_{0n}) - (x_{1}, x_{02}, \dots, x_{0n})| + M|(x_{1}, x_{02}, \dots, x_{0n}) - (x_{1}, x_{2}, x_{03}, \dots, x_{0n})| + \dots + M|(x_{1}, \dots, x_{n-1}, x_{0n}) - (x_{1}, \dots, x_{n})|,$$

where in the last step we used Mean Value theorem. Thus, we can know that for any $x \in \mathbb{R}^n$, f(x) is bounded.

Problem 32. Prove that if $f, g \in C^k(\Omega)$, $\Omega \subset \mathbb{R}^n$, then for any multiindex α with $|\alpha| \leq k$ we have

$$D^{\alpha}(fg) = \sum_{\beta \le \alpha} {\alpha \choose \beta} D^{\beta} f D^{\alpha - \beta} g,$$

where $\beta \leq \alpha$ means that $\beta_i \leq \alpha_i$ for $i = 1, 2, ..., n, \alpha - \beta = (\alpha_1 - \beta_1, ..., \alpha_n - \beta_n)$ and

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta! (\alpha - \beta)!}.$$

Proof. We have

$$D^{1}(fg) = D^{1}fg + fD^{1}g$$

$$D^{2}(fg) = D^{2}fg + D^{1}fD^{1}g + D^{1}fD^{1}g + fD^{2}g$$

...

$$D^{\alpha}(fg) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} f D^{\alpha - \beta} g,$$

where it is like the Binomial theorem.