Python Programming and Machine Learning for Economists - Exercises

Michael E. Rose, PhD Course at ifo Institute, Jan/Feb 2022

Work only in the GitHub repo that you shared with me!

For each of the mandatory exercises below, create *one script* (no jupyter Notebook) that contains both code and answers (as comments) to the open questions in appropriate order.

Save the script in the main folder, properly named in correspondence to the name of the exercise. Avoid colons, dots and blanks in the filename. All scripts <u>need</u> to adhere to PEP8 and <u>must</u> be readable to someone that knows Python. Above all, they must execute without error on my machine.

Apart from the script, there should be one folder named "output" to store output such as figures and tables.

1 Optional Exercises for Pandas and Plotting

Sketch for today: French Taunting

1. Tips

- (a) Load seaborn's tips dataset using seaborn.load_dataset("tips") into a DataFrame.
- (b) Convert the short weekday names to their long version (e.g., "Thursday" instead of "Thur") using .replace().
- (c) Create a scatterplot of "tip" vs. "total_bill" colored by "day" and facets (either by row or by column) by variable "sex". Label the axis so that the unit becomes apparent. Save the figure as ./output/tips.pdf

2. Occupations

- (a) Import the pipe-separated dataset from https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user into a DataFrame. The data is on occupations and demographic information.
- (b) Print the last 10 entries and then the first 25 entries.
- (c) What is the type of each column?
- (d) Count how often each occupation is present! Store the information in a new object.
- (e) How many different occupations are there in the dataset? What is the most frequent occupation? (C Try to use a programmatic solution for these questions using the new object!)
- (f) Sort the new object by index. Then create a figure and an axis. Plot a histogram for occupations on that axis (D) Do not use .hist().). Add an appropriate label to the x-axis. How does the figure look like if you don't sort by index beforehand? Save the figure as ./output/occupations.pdf!

3. Iris

- (a) Read the Iris dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
 data as DataFrame. The data is on measures of flowers and the values are on "sepal_length (in cm)",
 "sepal_width (in cm)", "petal_length (in cm)", "petal_width (in cm)" and "class". Since the data doesn't
 provide the column names, add the column names after reading in, or alternatively provide while reading
 in
- (b) Set the values of the rows 10 to 29 of the column 'petal_length (in cm)' to missing.
- (c) Replace missing values with 1.0.
- (d) Save the data as comma-separated file named ./output/iris.csv without index.
- (e) Visualize the distribution of all of the continuous variables by "class" with a catplot of your choice. Optionally, try to tilt/rotate the labels using .set_xticklabels(), which accepts a rotation parameter). Save the figure as ./output/iris.pdf.

4. Memory

(a) Load the comma-separated data from https://query.data.world/s/wsjbxdqhw6z6izgdxijv5p2lfqh7gx into a DataFrame (large file!).

- (b) Inspect the DataFrame using .info() and with .info(memory_usage="deep"). What is the difference between the two calls? How much space does the DataFrame require in memory?
- (c) Create a copy of the object with only columns of type object by using .select_dtypes(include=['object']).
- (d) Look at the summary of this object new (using .describe()). Which columns have very few unique values compared to the number of observations?
- (e) Does it make sense to convert a column of type object to type category if more than 50% of the observations contain unique values? Why/Why not?
- (f) Convert all columns of type object of the original dataset to type category where you deem this appropriate.
- (q) What is the final size in memory?
- (h) Could above routine have sped up somewhere? (Look at the documentation for .read_csv()).
- (i) Subset the DataFrame to all all the numeric columns only. then store the file twice in folder ./output/, namely as CSV file using .to_csv() and secondly as feather file using .to_feather() (Do not attempt to check in & push these files, as this they would be blocked by GitHub!). By how much do the file sizes differ approximately, and why is that? (C) Check out the corresponding documentation)