

Multimodal Teacher Forcing for Reconstructing Nonlinear Dynamical Systems

Manuel Brenner¹², Georgia Koppe^{*14}, Daniel Durstewitz^{*123}

*Equal contribution

¹Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany,

²Faculty of Physics and Astronomy, Heidelberg University, Germany,

³Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany

⁴Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Heidelberg University, Germany

When Machine Learning meets Dynamical Systems: Theory and Application

Dynamical Systems Reconstructions (DSR)

Unknown DS

$$\dot{x}_1 = s(x_2 - x_1)
\dot{x}_2 = rx_1 - x_2 - x_1x_3
\dot{x}_3 = x_1x_2 - bx_3$$

Inference

Generic reconstruction model

$$\mathbf{z}_t = \mathbf{F}_{\boldsymbol{\theta}}(\mathbf{z}_{t-1}, \mathbf{s}_t)$$
$$\mathbf{x}_t = g(\mathbf{z}_t)$$

Dynamical Systems Reconstructions (DSR)

Unknown DS

$$\dot{x}_1 = s(x_2 - x_1)
\dot{x}_2 = rx_1 - x_2 - x_1x_3
\dot{x}_3 = x_1x_2 - bx_3$$

Inference

Universal approximator

Generic reconstruction model

$$\mathbf{z}_t = \mathbf{F}_{\boldsymbol{\theta}}(\mathbf{z}_{t-1}, \mathbf{s}_t)$$
$$\mathbf{x}_t = g(\mathbf{z}_t)$$

Observed trajectory

Time

Agreement in geometrical and temporal structure

Simulated trajectory

DSR from Multimodal Time Series

Measurements (psychology, neuroscience, climate science etc.)

continuous

discrete

Inference

DSR from Multimodal Time Series

Measurements (psychology, neuroscience, climate science etc.)

continuous

discrete

dendPLRNN (Brenner, Hess et al., ICML 2022)

Math. tractability

Inference

$$\mathbf{z}_{t} = A\mathbf{z}_{t-1} + W\phi(\mathbf{z}_{t-1}) + \mathbf{h}$$

$$\phi(\mathbf{z}_{t-1}) = \sum_{b=1}^{B} \alpha_{b} \max(0, \mathbf{z}_{t-1} - \mathbf{h}_{b})$$

Different distributional assumptions

Gaussian Obs.

$$x_t | z_t \sim \mathcal{N}(Bz_t, \Gamma)$$

Ordinal Obs.

$$o_t | z_t \sim \text{Ordinal}(\beta z_t, \epsilon)$$

Poisson Obs.

 $p_t | z_t \sim Poisson(\lambda(z_t))$

Challenges of DSR

Challenge

Divergent loss gradients (Mikhaeil, Monfared&Durstewitz, NeurIPS 2022)

Theorem 2. Suppose that an RNN $F_{\theta} \in \mathcal{R}$ (parameterized by θ) has a chaotic attractor Γ^* with \mathcal{B}_{Γ^*} as its basin of attraction. Then, for almost every orbit with $z_1 \in \mathcal{B}_{\Gamma^*}$, (i) the Jacobians connecting temporally distal states z_T and z_t ($T \gg t$), $\frac{\partial z_T}{\partial z_t}$, will exponentially explode for $T \to \infty$, and (ii) the tangent vector $\frac{\partial z_T}{\partial \theta}$ and so the gradients of the loss function, $\frac{\partial \mathcal{L}_T}{\partial \theta}$, will diverge as $T \to \infty$.

Challenges of DSR

Challenge

Divergent loss gradients (Mikhaeil, Monfared&Durstewitz, NeurIPS 2022)

Theorem 2. Suppose that an RNN $F_{\theta} \in \mathcal{R}$ (parameterized by θ) has a chaotic attractor Γ^* with \mathcal{B}_{Γ^*} as its basin of attraction. Then, for almost every orbit with $z_1 \in \mathcal{B}_{\Gamma^*}$, (i) the Jacobians connecting temporally distal states z_T and z_t ($T \gg t$), $\frac{\partial z_T}{\partial z_t}$, will exponentially explode for $T \to \infty$, and (ii) the tangent vector $\frac{\partial z_T}{\partial \theta}$ and so the gradients of the loss function, $\frac{\partial \mathcal{L}_T}{\partial \theta}$, will diverge as $T \to \infty$.

Proposed Solution

Sparse teacher forcing (TF)

SOTA performance for DSR on unimodal normal data (Brenner, Hess et al., ICML 2022)

Multimodal Variational Autoencoders

Observations

Encoder (CNN)

Approximate posterior

$$q_{\phi}(\tilde{Z}|Y) = \mathcal{N}(\mu_{\phi}(Y), \Sigma_{\phi}(Y))$$

$\mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}; \boldsymbol{Y}) = -\mathbb{E}_{q_{\boldsymbol{\phi}}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{Y}|\tilde{\boldsymbol{Z}}) + \log p_{\boldsymbol{\theta}}(\tilde{\boldsymbol{Z}})]$ $- \, \mathbb{H}_{q_{m{\phi}}}(ilde{m{Z}} \mid m{Y})$

Decoder

Observation Models

$$oldsymbol{x}_t \mid ilde{oldsymbol{z}}_t \sim \mathcal{N}\left(oldsymbol{B} ilde{oldsymbol{z}}_t, oldsymbol{\Gamma}
ight)$$

$$o_t \mid \tilde{z}_t \sim \text{Ordinal}(\beta \tilde{z}_t, \epsilon)$$

$$c_t \mid \tilde{z}_t \sim \text{Poisson}(\lambda(\tilde{z}_t))$$

Data Likelihoods

ELBO Loss

$$\log p_{\boldsymbol{\theta}}(\boldsymbol{Y}|\tilde{\boldsymbol{Z}}) =$$

$$\sum_{t=1}^{T} (\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_t | \tilde{\boldsymbol{z}}_t) + \log p_{\boldsymbol{\theta}}(\boldsymbol{o}_t | \tilde{\boldsymbol{z}}_t) + \log p_{\boldsymbol{\theta}}(\boldsymbol{c}_t | \tilde{\boldsymbol{z}}_t))$$

Multimodal Teacher Forcing (MVAE-TF)

$$\mathcal{L} = \mathcal{L}_{MVAE} + \mathcal{L}_{con} + \mathcal{L}_{PLRNN}$$

MVAE Loss

$$\mathcal{L}_{MVAE} = -\mathbb{E}_{q_{\boldsymbol{\phi}}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{Y}|\tilde{\boldsymbol{Z}}) - \mathbb{H}_{q_{\boldsymbol{\phi}}}(\tilde{\boldsymbol{Z}} \mid \boldsymbol{Y})]$$

Consistency Loss between MVAE and PLRNN

$$\mathcal{L}_{con} = rac{1}{2} \sum_{t=2}^T igl(\log |\mathbf{\Sigma}| + (ilde{oldsymbol{z}}_t - oldsymbol{z}_{1:K,t})^ op \mathbf{\Sigma}^{-1} (ilde{oldsymbol{z}}_t - oldsymbol{z}_{1:K,t}) igr)$$

Data likelihoods from PLRNN

$$\mathcal{L}_{\text{PLRNN}} = -\sum_{t=1}^{T} (\log p_{\theta}(x_t|z_{1:K,t}) + \log p_{\theta}(o_t|z_{1:K,t}) + \log p_{\theta}(c_t|z_{1:K,t}))$$
 Multimodal Observations

Multimodal Reconstructions

Randomly initialized obs. models

 $x_t | z_t \sim \mathcal{N}(z_t, \Gamma)$

Underlying DS

 $o_t | z_t \sim \text{Ordinal}(\beta z_t, \epsilon)$

 \boldsymbol{z}_t

 $p_t | z_t \sim Poisson(\lambda(z_t))$

Multimodal Reconstructions

Randomly initialized obs. models

Noisy Gaussian Obs.

 $|\mathbf{x}_t||\mathbf{z}_t \sim \mathcal{N}(\mathbf{z}_t, \mathbf{\Gamma})$

Underlying DS

 $o_t | z_t \sim \text{Ordinal}(\beta z_t, \epsilon)$

 \boldsymbol{z}_t

 $p_t | z_t \sim \text{Poisson}(\lambda(z_t))$

Geometric Agreement

Temporal Agreement

$$H(F(\omega), G(\omega)) = \sqrt{1 - \int_{-\infty}^{\infty} \sqrt{F(\omega)G(\omega)} d\omega} \in [0, 1]$$

Challenging Data Settings

Discrete Observations&Experimental Data

Discrete Observations&Experimental Data

Competitive Performance

Dataset	Method	$D_{stsp}\downarrow$	$D_H\downarrow$	PE↓	OPE↓	SCC ↓	OACF ↓	CACF ↓
Lorenz	MVAE-TF	3.4 ± 0.35	0.30 ± 0.06	$1.3e-2 \pm 2e-4$	0.12 ± 0.03	0.07 ± 0.01	0.07 ± 0.01	$6.6\mathrm{e}{-5}\pm8.1\mathrm{e}{-6}$
	SVAE	11.1 ± 0.6	0.82 ± 0.05	$6.3e{-1} \pm 5.1e{-2}$	0.68 ± 0.03	0.14 ± 0.01	0.18 ± 0.02	$8.5e{-5} \pm 1.6e{-5}$
	GVAE-TF	4.3 ± 0.3	0.47 ± 0.07	$3.6e{-1} \pm 1.5e{-3}$	X	X	X	X
	BPTT-TF	8.8 ± 1.9	0.86 ± 0.05	$4.4e{-1} \pm 2.2e{-2}$	X	X	X	X
	MS	4.5 ± 1.5	0.61 ± 0.08	X	X	0.14 ± 0.04	0.11 ± 0.02	$6.5\mathrm{e}{-5}\pm3.8\mathrm{e}{-6}$
Rössler	MVAE-TF	1.45 ± 0.71	0.32 ± 0.03	$1.9\mathrm{e}{-3}\pm7.1\mathrm{e}{-5}$	0.08 ± 0.02	0.04 ± 0.004	0.017 ± 0.003	$6.5e{-5}\pm1.2e{-5}$
	SVAE	10.7 ± 1.5	0.66 ± 0.05	$1.5e{-1} \pm 3.1e{-2}$	0.24 ± 0.02	0.17 ± 0.03	0.13 ± 0.02	$1.1e{-4} \pm 1.4e{-5}$
	GVAE-TF	12.1 ± 0.5	0.55 ± 0.04	$4.9e-2 \pm 3.4e-3$	X	X	X	X
	BPTT-TF	8.9 ± 1.4	0.64 ± 0.07	$2.8e{-1} \pm 1.8e{-3}$	X	X	X	X
	MS	3.99 ± 1.1	0.59 ± 0.04	X	X	0.08 ± 0.04	0.09 ± 0.02	$1.6e-4 \pm 5.9e-5$
Lewis-Glass	MVAE-TF	$\textbf{0.27} \pm \textbf{0.07}$	$\boldsymbol{0.33 \pm 0.02}$	$2.1\mathrm{e}{-3}\pm7\mathrm{e}{-5}$	0.11 ± 0.01	0.12 ± 0.03	0.05 ± 0.02	$2.3e-4 \pm 2.0e-5$
	SVAE	2.6 ± 0.5	0.52 ± 0.03	$8.0e-2 \pm 4e-3$	0.26 ± 0.01	0.4 ± 0.05	0.18 ± 0.03	$7.5e - 3 \pm 4.7e - 3$
	GVAE-TF	0.28 ± 0.08	0.44 ± 0.02	$4.6e - 3 \pm 4e - 4$	X	X	X	X
	BPTT-TF	2.51 ± 0.71	0.43 ± 0.03	$2.6e-2 \pm 3e-3$	X	X	X	X
	MS	0.33 ± 0.06	0.35 ± 0.01	X	X	0.08 ± 0.01	0.04 ± 0.002	$1.9e-4 \pm 7.5e-6$

Neurophysiological Data

Dataset	Method	$D_{stsp} \downarrow$	$D_H\downarrow$	PE↓
	MVAE-TF	0.55 ± 0.04	0.301 ± 0.007	1.21 ± 0.08
	SVAE	1.9 ± 0.22	0.441 ± 0.019	2.34 ± 0.12
fMRI	GVAE-TF	0.67 ± 0.06	0.335 ± 0.011	1.64 ± 0.07
	BPTT-TF	0.63 ± 0.03	0.312 ± 0.006	1.39 ± 0.05
	MS	1.06 ± 0.14	0.373 ± 0.012	X

Conclusions

Flexible training framework for DSR from multimodal time series combining sparse TF with MVAEs

True Underlying DS

Multimodal Data

Approximate Posterior

Approximate Posterior

Recognition
Network

Sample

Encoded Sample

Guisslan Data

Count Data

Count Data

Recognition
Network

Sample

Encoded Sample

Multimodal Observation
Models

Multimodal Observations

This work was funded by the European Union's Horizon 2020 research and innovation Programme under grant agreement 945263 (IMMERSE), by the German Research Foundation (DFG) within the collaborative research center TRR-265 (project A06), and by a living lab grant by the Federal Ministry of Science, Education and Culture (MWK) of the state of Baden-Württemberg, Germany (grant number 31-7547.223-7/3/2), to DD and GK.