优化模型与 LINDO / LINGO 软件

谢金星 清华大学数学科学系

Tel: 010-62787812

Email:jxie@math.tsinghua.edu.cn http://faculty.math.tsinghua.edu.cn/~jxie

提要

• LINDO公司的主要软件产品及功能简介

• LINDO软件的使用简介

• LINGO软件的使用简介

• 建模与求解实例

优化模型

实际问题中的优化模型

x~决策变量

f(x)~目标函数

 $g_i(x) \leq 0$ ~约束条件

数学规划

线性规划(LP)

二次规划(QP)

非线性规划(NLP)

连续规划

0-1整数规划

一般整数规划

纯整数规划(PIP)

混合整数规划(MIP)

整数规划(IP)

LINDO 公司软件产品简要介绍

美国芝加哥(Chicago)大学的Linus Schrage教授于1980年前后开发,后来成立LINDO系统公司(LINDO Systems Inc.), 网址: http://www.lindo.com

LINDO: Linear INteractive and Discrete Optimizer (V6.1)

LINGO: Linear INteractive General Optimizer (V8.0)

LINDO API: LINDO Application Programming Interface (V2.0)

What's Best!: (SpreadSheet e.g. EXCEL) (V7.0)

演示(试用)版、学生版、高级版、超级版、工业版、 扩展版... (求解问题规模和选件不同)

LINDO和LINGO软件能求解的优化模型

LINDO/LINGO软件的求解过程

1、确定常数

LINDO/LINGO预处理程序

2、识别类型

LP/QP NLP

IP 全局优化(选)

分枝定界管理程序

ILP IQP **INLP**

线性优化求解程序

非线性优化求解程序

- 1、顺序线性规划法(Sequential Linear Programming, SLP)
- 2、广义既约梯度法(Generalized

Reduced Gradient, GRG) (选

3、多点搜索(Multistart)(选)

- 1、单纯形算法
- 2、内点算法(选)

建模时需要注意的几个基本问题

- 1、尽量使用实数优化模型,减少整数约束和整数变量的个数
- 2、尽量使用光滑优化模型,减少非光滑约束的个数

如:尽量少地使用绝对值函数(|x|)、符号函数(当变量x为正数时取1,为0时取0,为-1时取-1)、多个变量求最大(或最小)值、四舍五入函数、取整函数等

- 3、尽量使用线性优化模型,减少非线性约束和非线性变量的个数 (如x/y < 5 改为x < 5y)
- 4、合理设定变量的上下界,尽可能给出变量的初始值
- 5、模型中使用的单位的数量级要适当 (如小于103)

需要掌握的几个重要方面

1, LINDO:

正确阅读求解报告(尤其要掌握敏感性分析)

2. LINGO:

掌握集合(SETS)的应用;

正确阅读求解报告;

正确理解求解状态窗口;

学会设置基本的求解选项(OPTIONS);

掌握与外部文件的基本接口方法

例1 加工奶制品的生产计划

每天: 50桶牛奶 时间480小时 至多加工100公斤A₁

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- A₁的获利增加到 30元/公斤,应否改变生产计划?

每天 50桶牛奶 时间480小时 至多加工100公斤A₁

决策变量

 x_1 桶牛奶生产 A_1 x_2 桶牛奶生产 A_2

目标函数

获利 $24 \times 3x_1$ 获利 $16 \times 4x_2$

每天获利 $Max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_1 + x_2 \le 50$$

$$12x_1 + 8x_2 \le 480$$

$$3x_1 \le 100$$

$$x_1, x_2 \ge 0$$

线性 规划 模型 (LP)

LINDO 6.1

软件实现

模型求解

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 48.000000
- 3) 0.000000 2.000000
- 4) 40.000000 0.000000
- NO. ITERATIONS= 2

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

DO RANGE
(SENSITIVITY)
ANALYSIS? No

20桶牛奶生产A₁,30桶生产A₂,利润3360元。

模型求解

reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)

也可理解为:

为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

3) 0.000000 2.000000

4) 40.000000 0.000000

NO. ITERATIONS= 2

结果解释

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

三种资源

原料无剩余 时间无剩余 加工能力剩余40 **OBJECTIVE FUNCTION VALUE**

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

3) 0.000000 2.000000

4) 40.000000 0.000000

NO. ITERATIONS= 2

"资源"剩余为零的约束为紧约束(有效约束)

OBJECTIVE FUNCTION VALUE

3360.000

1)

结果解释

 VARIABLE
 VALUE
 REDUCED COST
 最优解下"资源"增加1

 X1
 20.000000
 0.000000
 单位时"效益"的增量

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

影子价格

2) 0.000000 48.000000 原料增加1单位,利润增长48

3) 0.000000 2.000000

时间增加1单位,利润增长2

4) 40.000000 0.000000

加工能力增长不影响利润

NO. ITERATIONS= 2

• 35元可买到1桶牛奶, 要买吗?

35 < 48, 应该买!

• 聘用临时工人付出的工资最多每小时几元? 2元!

DO RANGE(SENSITIVITY) ANALYSIS?

最优解不变时目标函

RANGES IN WHICH THE BASIS IS UNCHANGED:

数系数允许变化范围

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

(约束条件不变)

INCREASE DECREASE COEF

x₁系数范围(64,96) **X1** 72.000000 24.000000 8.000000

x,系数范围(48,72) **X2** 64.000000 8.000000 16,000000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

> **DECREASE** RHS **INCREASE**

2 50.000000 10.000000 6.666667

3 480.000000 53.333332 80.000000

100.000000 4 **INFINITY** 40.000000 x1系数由24×3=72 增加为30×3=90, 在允许范围内

• A₁获利增加到 30元/千克,应否改变生产计划

数学模型

结果解释 影子价格有意义时约束右端的允许变化范围

RANGES IN WHICH THE BASIS IS UNCHANGED: (目标函数不变)

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1 72.000000 24.000000 8.000000

X2 64.000000 8.000000 16.000000

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE

2 50.000000 10.000000 6.666667 原料最多增加10

3 480.000000 53.333332 80.000000 时间最多增加53

4 100.000000 INFINITY 40.000000

• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶?

LINDO的一些注意事项(1)

- 1. ">"(或"<")号与">="(或"<=")功能相同
- 2. 变量与系数间可有空格(甚至回车),但无运算符
- 3. 变量名以字母开头,不能超过8个字符
- 4. 变量名不区分大小写(包括LINDO中的关键字)
- 5. 目标函数所在行是第一行,第二行起为约束条件
- 6. 行号(行名)自动产生或人为定义。行名以")"结束
- 7. 行中注有"!"符号的后面部分为注释。如:
 - ! It's Comment.
- 8. 在模型的任何地方都可以用"TITLE"对模型命名 (最多72个字符),如:
 - TITLE This Model is only an Example

LINDO的一些注意事项(2)

- 9. 变量不能出现在一个约束条件的右端
- 10. 表达式中不接受括号"()"和逗号";"等任何符号,例: 400(X1+X2)需写为400X1+400X2
- 11. 表达式应化简,如2X1+3X2-4X1应写成 -2X1+3X2
- 12. 缺省假定所有变量非负;可在模型的"END"语句后用"FREE name"将变量name的非负假定取消
- 13. 可在 "END" 后用"SUB" 或"SLB" 设定变量上下界例如: "sub x1 10"的作用等价于"x1<=10" 但用"SUB"和"SLB"表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。
- 14. "END" 后对0-1变量说明: INT n 或 INT name
- 15. "END"后对整数变量说明: GIN n 或 GIN name

二次规划(QP)问题

- LINDO可求解二次规划(QP)问题,但输入方式较复杂,因为在LINDO中不许出现非线性表达式
- 需要为每一个实际约束增加一个对偶变量 (LAGRANGE乘子),在实际约束前增加有关 变量的一阶最优条件,转化为互补问题
- "END"后面使用QCP命令指明实际约束开始的行 号,然后才能求解
- 建议总是用LINGO解QP

[注意]对QP和IP: 敏感性分析意义不大

状态窗口(LINDO Solver Status)

- 当前状态:已经达到最优解
- 迭代次数: 18次
- 约束不满足的量(不是"个 数"): **0**
- 当前的目标值: 94
- 最好的整数解: 94
- 整数规划的界: 93.5
- 分枝数: 1
- 所用时间: **0.00**秒(太快了, 还不到**0.005**秒)
- 刷新本界面的时间间隔:1(秒)

选项设置

Options . . .

Nonzero Limit:

非零系数的个数上限;

Iteration Limit:

最大迭代步数;

Initial Contraint Tol:

约束的初始误差上限;

Final Contraint Tol:

约束的最后误差上限;

Entering Var Tol:

进基变量的REDUCED

COST的误差限;

Pivot Size Tol:

旋转元的误差限

- Preprocess: 预处理(生成割平面);
- Preferred Branch: 优先的分枝方式:

"Default"(缺省方式)、

"Up"(向上取整优先)、

"Down"(向下取整优先);

- IP Optimality Tol: IP最优值允许的误差上限(一个百分数,如5%即0.05);
- IP Objective Hurdle: IP目标函数的篱笆值,即只寻找比这个值更优最优解(如当知道当前模型的某个整数可行解时,就可以设置这个值);
- IP Var Fixing Tol: 固定一个整数变量取值所依据的一个上限(如果一个整数变量的判别数(REDUCED COST)的值很大,超过该上限,则以后求解中把该整数变量固定下来)。

Report/Statistics

```
ROWS= 5 \text{ VARS}= 4 \text{ INTEGER VARS}= 2(0=0/1) \text{ QCP}= 4 \text{ NONZEROS}= 19 \text{ CONSTRAINT NONZ}= 12(6=+-1) \text{ DENSITY}=0.760 \text{ SMALLEST AND LARGEST ELEMENTS IN ABSOLUTE VALUE}= 0.300000 \text{ } 277.000 \text{ OBJ}=MIN, NO. <,=,>: 2 \text{ } 0 \text{ } 2, GUBS <= 1 \text{ VUBS} >= 0 \text{ SINGLE COLS}= 0 \text{ REDUNDANT COLS}= 0 \text{ } 0
```

- 第一行:模型有5行(约束4行),4个变量,两个整数变量(没有0-1变量),从第4行开始是二次规划的实际约束。
- 第二行:非零系数19个,约束中非零系数12个(其中6个为1或-1),模型密度为0.760(密度=非零系数/[行数*(变量数+1)])。
- 第三行的意思:按绝对值看,系数最小、最大分别为0.3和277。
- 第四行的意思:模型目标为极小化;小于等于、等于、大于等于约束分别有2、0、2个;广义上界约束(GUBS)不超过1个;变量上界约束(VUBS)不少于0个。所谓GUBS,是指一组不含有相同变量的约束;所谓VUBS,是指一个蕴涵变量上界的约束,如从约束X1+X2-X3=0可以看出,若X3=0,则X1=0,X2=0(因为有非负限制),因此X1+X2-X3=0是一个VUBS约束。
- 第五行的意思:只含1个变量的约束个数=0个;冗余的列数=0个

LINDO行命令、命令脚本文件

WINDOWS环境下行命令的意义不大

批处理: 可以采用命令脚本(行命令序列)

Example 演示

LINGO模型 — 例:选址问题

某公司有6个建筑工地,位置坐标为 (a_i, b_i) (单位:公里),水泥日用量 d_i (单位:吨)

i	1	2	3	4	5	6
a	1.25	8.75	0.5	5.75 5 7	3	7.25
b	1.25	0.75	4.75	5	6.5	7.75
d	3	5	4	7	6	11

假设: 料场 和工地之间 有直线道路

1)现有 2 料场,位于 A (5, 1), B (2, 7),记(x_i,y_i),j=1,2,日储量 e_i 各有 20 吨。

目标: 制定每天的供应计划,即从 A, B 两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

决策变量: c_{ij} (料场**j**到工地**i**的运量) \sim 12维

线性规划模型

min
$$\sum_{j=1}^{2} \sum_{i=1}^{6} c_{ij} [(x_j - a_i)^2 + (y_j - b_i)^2]^{1/2}$$

s.t.
$$\sum_{i=1}^{2} c_{ij} = d_i, \quad i = 1,...,6$$

$$\sum_{i=1}^{6} c_{ij} \le e_j, \quad j = 1, 2$$

用例中数 据计算, 最优解为

i	1	2	3	4	5	6
-c _{i1} (料场 A)	3	5	0	7	0	1
c_{i2} (料场 \mathbf{B})	0	0	4	0	6	10

总吨公里数为136.2

选址问题: NLP

2) 改建两个新料场,需要确定新料场位置 (x_j, y_j) 和运量 c_{ii} ,在其它条件不变下使总吨公里数最小。

min
$$\sum_{j=1}^{2} \sum_{i=1}^{6} c_{ij} [(x_j - a_i)^2 + (y_j - b_i)^2]^{1/2}$$
s.t.
$$\sum_{j=1}^{2} c_{ij} = d_i, \quad i = 1,...,6$$

$$\sum_{j=1}^{6} c_{ij} \le e_j, \quad j = 1,2$$

决策变量:

 c_{ij} , $(x_j, y_j) \sim 16$ 维

非线性规划模型

LINGO Model - location

MODEL:

LINGO模型的构成: 4个段

```
Title Location Problem;
sets:
    demand/1..6/:a,b,d;
    supply/1..2/:x,y,e;
    link(demand,supply):c;
endsets
```

集合段 (SETS ENDSETS)

```
data:
```

```
!locations for the demand(需求点的位置);
a=1.25,8.75,0.5,5.75,3,7.25;
b=1.25,0.75,4.75,5,6.5,7.75;
!quantities of the demand and sunnly (供套量):
```

!quantities of the demand and supply(供需量); d=3,5,4,7,6,11; e=20,20;

d=3,5,4,7,6,11; e=20,20; enddata

init:

LP: 移到数据段

数据段(DATA ENDDATA)

初始段(INIT ENDINIT)

endinit

```
!Objective function (目标);
[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );
!demand constraints (需求约束);
@for(demand(i):[DEMAND_CON] @sum(supply(j):c(i,j)) =d(i););
!supply constraints (供应约束);
@for(supply(i):[SUPPLY_CON] @sum(demand(j):c(j,i)) <=e(i); );
@for(supply: @free(X); @free(Y); );
END
```

目标与

约束段

&2 #GT# &1: BENEFIT, MATCH;

集合的类型

ENDSETS

A1,B1 A1,B2 A2,B1 A3,B2/:D;

ENDSETS

集合元素的隐式列举

类型	隐式列举格式	示例	示例集合的元素
数字型	1n	15	1, 2, 3, 4, 5
字符-数字型	stringMstringN	Car101car208	Car101, car102,, car208
星期型	dayMdayN	MONFRI	MON, TUE, WED, THU, FRI
月份型	monthMmonthN	OCTJAN	OCT, NOV, DEC, JAN
年份-月份型	monthYearMmo nthYearN	OCT2001JAN 2002	OCT2001, NOV2001, DEC2001, JAN2002

运算符的优先级

三类运算符:

算术运算符

逻辑运算符

关系运算符

优先级	运算符
最高	#NOT# — (负号)
	^
	* /
	+ 一(减法)
	#EQ# #NE# #GT# #GE# #LT# #LE#
	#AND# #OR#
最低	<(=) = >(=)

集合循环函数

MINB=@MIN(PAIRS(I, J): BENEFIT(I, J));

四个集合循环函数: FOR、SUM、 MAX、MIN

```
@function( setname [ ( set_index_list)[ | condition]] : expression_list);
```

Example:

```
[objective] MAX = @SUM( PAIRS( I, J): BENEFIT( I, J) * MATCH( I, J));
@FOR(STUDENTS( I): [constraints]
    @SUM( PAIRS( J, K) | J #EQ# I #OR# K #EQ# I: MATCH( J, K)) =1);
@FOR(PAIRS( I, J): @BIN( MATCH( I, J)));
MAXB=@MAX(PAIRS( I, J): BENEFIT( I, J));
```


状态窗口

LINGO Solver Status [exam0202]

Solver Status-Model

T.P

State Global Optimum

)jective: 7.45455

asibility: (

erations: 0

Extended Solver Status

Solver

Best

Obj Bound:

Steps:

Active:

-Variables-

otal:

onlinear: 0

itegers:

Constraints —

otal:

onlinear:

Nonzeros -

otal: onlinear:

Generator Memory Used (K) -

4

Elapsed Runtime (hh:mm:ss)

00:00:00

<u>Update</u> 2

Interrupt Solver

<u>C</u>lose

Model Class:

LP, QP,
ILP, IQP,
PILP, PIQP,
NLP, INLP,
PINLP

State:

X

Π

6

- Global Optimum
- Local Optimum
- Feasible
- Infeasible
- Unbounded
- Interrupted
- Undetermined

Solver Type:

- B-and-B
- Global
- Multistart

7个选项卡(可设置80-90个控制参数)

使用外部数据文件

- Cut (or Copy) Paste 方法
- @FILE 函数输入数据、@TEXT函数输出数据(文本文件)
- @OLE函数与电子表格软件(如EXCEL)连接
- @ODBC函数与数据库连接

程序与数据分离

LINGO命令脚本文件

常用文件后缀

• LG4 (LONGO模型文件)

LNG(LONGO模型文件) 文

本 LTF(LONGO脚本文件)

文 LDT(LONGO数据文件)

件 LRP(LONGO报告文件)

@FILE和@TEXT: 文本文件输入输出

```
MODEL:
SETS:
 MYSET / @FILE('myfile.txt') / :
   @FILE('myfile.txt');
ENDSETS
MIN = @SUM(MYSET(I):
     SHIP(I) * COST(I));
 @FOR( MYSET( I):
     [CON1] SHIP( I) > NEED( I);
     [CON2] SHIP( I) < SUPPLY( I));
DATA:
 COST = @FILE('myfile.txt');
 NEED = @FILE('myfile.txt');
 SUPPLY = @FILE('myfile.txt');
 @TEXT('result.txt')=SHIP,
   @DUAL(SHIP), @DUAL(CON1);
ENDDATA
END
```

myfile.txt文件的内容、格式:

Seattle, Detroit, Chicago, Denver~ COST, NEED, SUPPLY, SHIP~ 12,28,15,20~ 1600,1800,1200,1000~ 1700,1900,1300,1100

@OLE: 与EXCEL连接

```
MODEL:
SETS:
MYSET / @OLE('mydata.xls', 'CITIES') / : @OLE('mydata.xls', 'ATTR');
ENDSETS
MIN = @SUM(MYSET(I): SHIP(I) * COST(I));
 @FOR( MYSET( I):
                                        mydata.xls文件中必须有
    [CON1] SHIP(I) > NEED(I);
                                           下列名称(及数据):
    [CON2] SHIP(I) < SUPPLY(I));
                                        CITIES, ATTR,
DATA:
                                        COST, NEED,
 COST, NEED, SUPPLY = @OLE('mydata.xls');
 @('mydata.xls','SOLUTION')=SHIP;
                                        SUPPLY, SOLUTION
ENDDATA
END
```

- · 在EXCEL中还可以通过"宏"自动调用LINGO
- 也可以将EXCEL表格嵌入到LINGO模型中

@ODBC: 与数据库连接

使用数据库之前,数据源需要在ODBC管理器注册 目前支持下列DBMS: (如为其他数据库,则需自行安装驱动) ACCESS, DBASE, EXCEL, FOXPRO, ORACLE, PARADOX, SQL SERVER, TEXE FILES

输入基本集合元素:

setname/@ODBC(['datasource' [, 'tablename' [, 'columnname']]])/ 输入派生集合元素:

setname/@ODBC(['source'[,'table' [, 'column1'[, 'column2'...]]]])/

输入数据:

Attr_list=@ODBC(['source'[,'table' [, 'column1'[, 'column2'...]]]]) 输出数据:

@ODBC(['source'[,'table' [, 'column1'[, 'column2'...]]]])= Attr_list

建模例子 (CUMCM-2003B)

露天矿生产的车辆安排

露天矿里铲位已分成矿石和岩石:平均铁含量不低于 25%的为矿石,否则为岩石。每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。 每个铲位至多安置一台电铲,电铲平均装车时间5分钟 矿石卸点需要的铁含量要求都为29.5%±1%(品位限制),搭配量在一个班次(8小时)内满足品位限制即可。卸点在一个班次内不变。卡车载重量为154吨,平

卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。

均时速28km,平均卸车时间为3分钟。

问题:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次?

平面示意图

问题数据

距离	铲位1	铲位2	铲位3	铲位4	铲位5	铲位6	铲位7	铲位8	铲位9	铲位10
矿石漏	5.26	5.19	4.21	4.00	2.95	2.74	2.46	1.90	0.64	1.27
倒装 I	1.90	0.99	1.90	1.13	1.27	2.25	1.48	2.04	3.09	3.51
岩场	5.89	5.61	5.61	4.56	3.51	3.65	2.46	2.46	1.06	0.57
岩石漏	0.64	1.76	1.27	1.83	2.74	2.60	4.21	3.72	5.05	6.10
倒装II	4.42	3.86	3.72	3.16	2.25	2.81	0.78	1.62	1.27	0.50
	铲位1	铲位2	铲位3	铲位4	铲位5	铲位6	铲位7	铲位8	铲位9	铲位10
矿石量	0. 95	1. 05	1. 00	1. 05	1. 10	1. 25	1. 05	1. 30	1. 35	1. 25
岩石量	1. 25	1. 10	1. 35	1. 05	1. 15	1. 35	1. 05	1. 15	1. 35	1. 25
铁含量	30%	28%	29%	32%	31%	33%	32%	31%	33%	31%

问题分析

与典型的运输问题明显有以下不同:

- 1. 这是运输矿石与岩石两种物资的问题;
- 2. 属于产量大于销量的不平衡运输问题;
- 3. 为了完成品位约束,矿石要搭配运输;
- 4. 产地、销地均有单位时间的流量限制;
- 5. 运输车辆只有一种,每次满载运输,154吨/车次;
- 6. 铲位数多于铲车数意味着要最优的选择不多于7个 产地作为最后结果中的产地;
- 7. 最后求出各条路线上的派出车辆数及安排。

近似处理:

- 先求出产位、卸点每条线路上的运输量(MIP模型)
- 然后求出各条路线上的派出车辆数及安排

模型假设

- 卡车在一个班次中不应发生等待或熄火后再启动的情况;
- 在铲位或卸点处由两条路线以上造成的冲突问题 面前,我们认为只要平均时间能完成任务,就认 为不冲突。我们不排时地进行讨论;
- · 空载与重载的速度都是28km/h, 耗油相差很大;
- 卡车可提前退出系统,等等。

如理解为严格不等待, 难以用数学规划模型来解

个别参数队找到了可行解 (略)

符号

• x_{ii} : 从i铲位到j号卸点的石料运量(车)

单位: 吨;

• c_{ii} : 从i号铲位到j号卸点的距离

公里;

• T_{ij} :从i号铲位到号j卸点路线上运行一个周期平均时间 分;

辆:

• Aii: 从号铲位到号卸点最多能同时运行的卡车数

• B_{ij} : 从号铲位到号卸点路线上一辆车最多可运行的次数 次;

• p_i : i号铲位的矿石铁含量 p=(30,28,29,32,31,33,32,31,33,31) %

• q_i : j号卸点任务需求,q=(1.2,1.3,1.3,1.9,1.3)*10000

퍠

• ck_i : i号铲位的铁矿石储量

万吨

• cy_i : i号铲位的岩石储量

万吨

• f_i :描述第i号铲位是否使用的0-1变量,取1为使用;0为关闭。

$$T_{ij} = \frac{i \text{到j距离} \times 2}{\text{平均速度}} + 3 + 5 \quad A_{ij} = \left\lfloor \frac{T_{ij}}{5} \right\rfloor \quad B_{ij} = \left\lfloor \frac{8 \times 60 - (A_{ij} - 1) \times 5}{T_{ij}} \right\rfloor$$
(近似)

$$\min \sum_{i=1}^{10} \sum_{j=1}^{5} \boldsymbol{\chi}_{ij} \times \boldsymbol{C}_{ij}$$

优化模型

$$\chi_{ij} \leq A_{ij} \times B_{ij}$$
, $i = 1, \dots, 10, j = 1, \dots, 5$

$$\sum_{i=1}^{5} \chi_{ij} \le f_{i} \times 8 \times 60/5, i = 1, \dots, 10$$

$$\sum_{i=1}^{10} \chi_{ij} \le 8 \times 20, j = 1, \dots, 5$$

$$\chi_{i1} + \chi_{i2} + \chi_{i5} \le c k_i \times 10000/154$$
, $i = 1, \dots, 10$

$$\sum_{i=1}^{10} \chi_{ij} \ge q_j / 154, j = 1, \dots, 5$$

$$\left. \sum_{i=1}^{10} \chi_{ij} \times (p_i - 30.5) \le 0 \right\}, j = 1, 2, 5$$

$$\left. \sum_{i=1}^{10} \chi_{ij} \times (p_i - 28.5) \ge 0 \right\}$$

$$\sum_{i=1}^{10} f_i \le 7$$
 x_{ij} 为非负整数 f_i 为0-1整数

- (1) 道路能力(卡车数)约束
- (2) 电铲能力约束
- (3) 卸点能力约束
- ,_{i=1,...,10}(4) 铲位储量约束
 - (5) 产量任务约束
 - (6) 铁含量约束
 - (7) 电铲数量约束
 - (8) 整数约束

计算结果 (LINGO软件)

	铲位1	铲位2	铲位3	铲位4	铲位5	铲位6	铲位7	铲位8	铲位9	铲位10
矿漏		13						54		11
倒 I		42		43						
岩场									70	15
岩漏	81		43							
倒II		13	2							70

	铲位1	铲位2	铲位3	铲位4	铲位5	铲位6	铲位7	铲位8	铲位9	铲位10
矿石漏		0.867						1.862		0.314
倒场 I		1.077		1.162						
岩场									1.892	0.326
岩石漏	1.841		1.229							
倒场II		0.684	0.1							1.489

计算结果 (派车)

	铲位1	铲位2	铲位3	铲位4	铲位5	铲位6	铲位7	铲位8	铲位9	铲位10
矿石漏								1 (29)		
倒场 I		1 (39)		1 (37)						
岩场									1 (37)	
岩石漏	1(44)		1 (35)							
倒场II										1 (47)

此外: 6辆联合派车(方案略)

结论:

铲位1、2、3、4、8、9、10处各放置一台电铲。一共使用了13辆卡车;总运量为85628.62吨公里;岩石产量为32186吨;矿石产量为38192吨。

最大化产量

目标函数变化

此外:车辆数量(20辆)限制(其实上面的模型也 应该有)

结论: (略)

其他优化赛题

飞行管理问题

西气东送问题

等等

Thank you for your attendance!

最后, 祝大家 在数学建模活动中 不断提高综合素质, 在数学建模竞赛中 取得更码的成绩!

That's all.
Any Questions?