Exam 4C Chem 1142 Spring 2015

Name: KET

MULTIPLE CHOICE. [3 pts ea.] Choose the best response on the scantron sheet. [66 pts total.]

- Q1. The second law of thermodynamics states:
 - a) The entropy of the universe is always decreasing
 - b) The energy of the universe is a constant
 - c) The entropy of a perfect crystalline substance at absolute zero is 0
 - d) The entropy of the universe is always increasing
 - e) The free energy change for a spontaneous process is positive
- Q2. The following substance is likely to have the *lowest* entropy at 25 °C:
 - a) H₂O(1)
- b) $H_2(g)$
- c) $F_2(g)$
- d) $C_6H_{12}O_6(s)$

e) Na(s) small, uncomplicated socials.

- Q3. Which of the following processes is likely to have $\Delta S > 0$?
 - a) $H_2O(1) \rightarrow H_2O(s)$

- (b) $N_2H_4(1) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$
- c) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ d) $H_2O(g) \rightarrow H_2O(s)$
- e) $Na(1) \rightarrow Na(s)$

Q4. A reaction gives off 1500 J of heat at a temperature of 25 °C. What is ΔS_{surr} ?

a) +60. J/°C

- b) -60. J/°C
- (c)+5.0 J/K
- d) -5.0 J/K

= +5.0³/K

Q5. For the Gibbs free energy vs. extent of reaction plot below, points A and B correspond to:

Extent of reaction

- (a)A = spontaneous forwards reaction, B = equilibrium
- \overrightarrow{b} A = non-spontaneous forward reaction, B = equilibrium
- c) A = spontaneous reverse reaction, B = spontaneous forwards reaction

 d) A = spontaneous reverse reaction, B = spontaneous reverse reaction e) A = non-spontaneous forward reaction, B = spontaneous reverse reaction 	
 Q6. Not only does ΔG tell us whether a reaction is spontaneous or not, it is tells us: a) the maximum amount of heat released b) the maximum amount of useful work c) the maximum amount of temperature produced d) the maximum amount of entropy produced e) the maximum value of the equilibrium constant 	
Q7. For which of the following reactions would $\Delta G^{\circ} = \Delta G_{f^{\circ}}(NH_{3}(g))$? a) $N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$ b) $2NH_{3}(g) + 3O_{2}(g) \rightarrow N_{2}(g) + 6H_{2}O(l)$ c) $N(g) + 3H(g) \rightarrow NH_{3}(g)$ d) $\frac{1}{2}N_{2}H_{6}(g) \rightarrow NH_{3}(g)$ e) $\frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g) \rightarrow NH_{3}(g)$ form 1 element.	
Q8. Which reaction conditions below correspond to a reaction that is spontaneous at low temperature:	
Conditions ΔH ΔS 1. +ve +ve 2ve -ve 3. +ve -ve 4ve +ve a) 1 only b) 2 only c) 4 only d) 2 and 4 c) 1 and 3	
a) 1 only b) 2 only c) 4 only d) 2 and 4 e) 1 and 3	
Q9. At what temperature will a reaction with $\Delta H^{\circ} = +3.4 \text{ kJ/mol}$ and $\Delta S^{\circ} = +23 \text{ J/mol} \cdot \text{K}$ become spontaneous? a) It is always spontaneous b) It is always non-spontaneous c) 0.15 K e) 6.8 K e) 6.8 K O10. A reaction has $\Delta G^{\circ} = -5.0 \text{ kJ/mol}$ at a temperature of 25 °C. The equilibrium constant at this temperature is:	50 3/m
Q11. A reaction has $\Delta G^{\circ} = -5.0 \text{kJ/mol}$ at a temperature of 25 °C. If the reaction is at equilibrium $(Q = K)$, then ΔG is equal to: a) $+5.0 \text{kJ/mol}$ b) -5.0kJ/mol c) 0kJ/mol d) $\Delta H/T$ e) $-\Delta H/T$	
Q12. A chemical reaction has an equilibrium constant of 12.9 at a temperature of 25 °C. ΔG° for this reaction is: (a) -6.34 kJ/mol b) +1.9 kJ/mol c) -63 J/mol d) -5.3 J/mol e) +23 J/K ΔG° = - RT/m K = -634 kJ/mol	103 5
Q13. Which combination of chemical equations below would give rise to an overall equation with a <i>large</i> equilibrium constant?	MO
i) $A + B \rightarrow C$ $\Delta G^{\circ} = +3.0 \text{ kJ/mol}$ ii) $D \rightarrow E + F$ $\Delta G^{\circ} = +12.0 \text{ kJ/mol}$ iii) $G + H \rightarrow I + J$ $\Delta G^{\circ} = -9.0 \text{ kJ/mol}$	
a) ii and iii b) i and ii ci and iii d) i, ii, and iii e) no combinations of i, ii, and iii will give rise to an overall equation with a large equilibrium constant	
Q14. What's the oxidation number of S in $S_2O_6^{2-}$? a) +2 b) +3 c) +4 d) +5 e) +6	
Q15. In a galvanic cell, electrons flow from: (a) anode to cathode (b) electrode to solution (c) solution to salt-bridge (d) cathode to salt-bridge (e) cathode to anode	
and ox, los of e gain of e, red, catrook	

b) to conduct ele c) to keep the sol d) to couple with	ctrons from one so ectrons from the el	olution to the oth ectrodes to the so neutral to make them sp	lutions			
Q17. Predict the cell v	oltage produced i	n the following ga	alvanic cell:	.0		12\/
$Pb(s) \mid Pb^{2+}(aq)$	1, 1M) Ag+(aq, 1	M) Ag(s)	cell=EAS/AS-	$E pb^{24}/Pb = +C$	+0.93	17
a) 0.67 V	b) -0.67 V	(c)0.93 V	d) +1.47 V	e) +1.73 V		
Q18. Using the table of equations will be spont: i) 2Ag + Cu ²⁺ → ii) Zn + Cu ²⁺ → iii) 2Au + 3Cu ²⁺	aneous under stan Cu + 2Ag ⁺ ×	dard conditions:	Au ²⁺ + 3c ⁻ - Cu ²⁺ + 2c ⁻ - Zu ²⁺ + 2c ⁻ -	AN E	Company Comp	more likely-
a) i only	(b) ii only	c) iii only	d) i and ii only	e) ii and iii only		
b) a positive valu c) a positive valu d) a negative valu c) a negative valu	e of $E_{ m cell}^\circ$ as well as e of $E_{ m cell}^\circ$ as well as te of $E_{ m cell}^\circ$ as well as the of $E_{ m cell}^\circ$ as well a the of $E_{ m cell}^\circ$ as well a	a negative equilib a small equilibriu s a large equilibriu is a negative equil s a small equilibri	orium constant om constant om constant ibrium constant om constant	e-nFEau 1, 06°=-RTh		
Q20. The cell Zn Zn ²⁻ of Ag ⁺ ions is red a) larger	t(aq) Agt(aq) Ag luced to 0.010 M, (b) maller	(s) has a cell volta the cell voltage w c) opposite in s	ge under standard (ill become: E= sign d) no cl	conditions of E_{cell}° . $E^{\circ} - \underbrace{\ell T}_{cell} \cdot \underbrace{k Q}_{cell}$ nange e) impose	If the concents	ration
Q21. An electrochemic reaction is known a) Electrolytic ce			rgy in order to driv d) Fuel cell		-spontaneous	
Q22. How many mole a)1.1 mol	es of electrons flow b) 1800 mol	wwhen a current of c) 0.019 mol	of 30. Amps flows for d) 3.1 × 10 ⁻⁴ mo		ol	
Q=I-t						
= 30 C x 1.0h x 3600	= 108,000			7n > 2n+2e		
mole?			2 (e+ A	g* >A5)		
(08,000 Imale	= (-lime)			6+ -> Zn2		
, !		E=E°-RT	lu Q	= [2,2+) [A5+)2	if [Q1. luQ1	8:JL

Short Response.

Show ALL work to receive credit.

Q23. [9 pts.] Calculate ΔG° , ΔH° , ΔS° , and K for the following reaction at a temperature of -35 °C:

$$2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$$

Substance	ΔH° _f (kJ/mol)	So (J/mol·K)
N ₂ (g)	0	191.5
O ₂ (g)	0	205.0
N ₂ O(g)	81.6	220.0

$$\Delta H^{\circ} = \sum_{i} \Delta H_{i}^{\circ} (P_{D}d_{D}) - (P_{C}eacb)$$

$$= \left[2 \times 81.6 \, \frac{1}{2} \, \frac{1}{100} \right] - \left[2 \times 0.4 \, \frac{1}{100} \right] = +163.2 \, \frac{1}{100} \, \frac$$

Q24. [8 pts.] Balance the following redox equation using the half-reaction method:

Se + Cr(OH)₃
$$\rightarrow$$
 Cr + SeO₃²⁻ (BASIC conditions)

$$(3e^{-} + 3H^{+} + Cr(0H)_{3} \longrightarrow Cr + 3H_{2}0) \times 4$$

$$(3H_{2}0 + Se) \longrightarrow SeO_{3}^{2-} + 6H^{+} + 4e^{-}) \times 3$$

$$+2$$

$$(3H_{2}0 + Se) \longrightarrow SeO_{3}^{2-} + 6H^{+} + 4e^{-}) \times 3$$

12H+ 4Cr(0H)3+9H2OBSe 12e- 4Cr+12F120+35r03+18H+

-

balances /

[9 pts.] Calculate E°_{cell} , E_{cell} , and K for the following cell at 25 °C. Q25.

 $Ni(s)|Ni^{2+}(aq, 0.10 M)||Cr^{3+}(aq, 0.0050 M)|Cr(s)$

Hint: be sure to write out the balanced chemical equation before you calculate E_{cell} !

$$|| (N_1 - N_1)^{2+} + 2e^{-}) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 2|) \times 3|$$

$$| (3e^{-} + (r^{3+} - Cr) \times 3|$$

$$| (3e^{-} + (r^{3+}$$

formed.
$$2 \text{ Fe}_2 \text{ O}_3 \longrightarrow 4 \text{ Fe} + 30_2$$
 $12e^- + 4 \text{ Fe}^{3+} \longrightarrow 4 \text{ Fe}$ or $3e^- + \text{ Fe}^{3+} \longrightarrow \text{ Fe}$ 2

 $Q = \text{If} = 1200 \frac{C}{5} \times 24 \text{ hy} \frac{60 \text{ min}}{100 \text{ lmin}} \frac{60 \text{ s}}{100 \text{ lmin}} = 1.03 \times 108 \text{ C}$ 2

 $100 \text{ mole} = 1.03 \times 108 \text{ c} = 1.07 \times 10^3 \text{ mole} = 2$
 $100 \text{ mole} = 1.07 \times 10^3 \text{ mole} = 2$
 $100 \text{ mole} = 1.07 \times 10^3 \text{ mole} = 2$
 $100 \text{ mole} = 1.07 \times 10^3 \text{ mole} = 2$
 $100 \text{ mole} = 1.07 \times 10^3 \text{ mole} = 2$
 $100 \text{ mole} = 1.07 \times 10^3 \text{ mole} = 2.0 \times 10^4 \text{ g} =$

Useful Information

T 18 T)	¥40./=
Half-Reaction	E°(\
$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.8
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.0
$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$	+1.8
$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.7
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.7
$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.6
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.5
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.5
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.3
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O$	+1.3
$MnO2(s) + 4H+(aq) + 2e- \longrightarrow Mn2+(aq) + 2H2O$	+1.2
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O$	+1.2
$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.0
$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.9
$2Hg^{2+}(aq) + 2e^{-} \longrightarrow Hg_{2}^{2+}(aq)$	+0,9
$Hg_2^{2^+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.8
$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.8
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.7
$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.6
$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.5
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.5
$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.4
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.3
$AgCl(s) + e^- \longrightarrow Ag(s) + Cl^-(aq)$	+0.2
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.2
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$	+0.1
$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.1
$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	0.0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.1
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.1
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$ $\operatorname{Ni}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Ni}(s)$	-0.2
$\operatorname{Co}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Co}(s)$	-0.2
$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.3
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.4
$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$	-0.4
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.3
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.7
$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.8
$Mn^{2+}(aq) + 2e^- \longrightarrow Mn(s)$	-1.1
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.6
$Be^{2+}(aq) + 2e^{-} \longrightarrow Be(s)$	-1.8
$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.3
$Na^{+}(aa) + e^{-} \longrightarrow Na(s)$	-2.7
$\operatorname{Ca}^{2+}(aq) + 2e^- \longrightarrow \operatorname{Ca}(s)$	-2.8
$\operatorname{Sr}^{2+}(ag) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$	-2.8
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.9
$K^{+}(aq) + e^{-} \longrightarrow K(s)$	-2.9
$\operatorname{Li}^+(aq) + e^- \longrightarrow \operatorname{Li}(s)$	-3.0

Useful Information

 $N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$

Given:
$$ax^2 + bx + c$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \times 10^{-14} {\rm at} \ 25 {\rm ^{\circ}C}.$$

$$pH = -log[H_3O^+]$$

$$K_{\rm a}K_{\rm b}=K_{\rm w}$$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L-atm/mol} \cdot \text{K}$$

$$pH = pK_a + \log \frac{[Base]}{[Acid]}$$

$$M_1V_1=M_2V_2$$

$$\Delta G = -nFE_{\text{cell}}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cel}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$
 $E^{\circ}_{cell} = \frac{RT}{nF} \ln K$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q$$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{carhode}} - E^{\circ}_{\text{anode}}$$
 $F = 96,500 \text{ C/mol e}^{-}$

$$1 V = 1 J/C$$

$$R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$Q(\text{charge}) = I \cdot t$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S_{\rm surr} = q_{\rm surr}/T$$

$$Q ext{ (charge)} = I \cdot t$$
 $\Delta G = \Delta H - T \Delta S$
 $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$

$$\Delta G^{\circ} = -RT \ln K$$

Periodic Table of the Elements

IA	IIA			/dio 1								IIIA	IVA	VA	VIA	VIIA	VIIIA
																	18
1																	2
H																	He
1,01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
LI	Be											В	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14,01	16,00	19,00	20.18
- 11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	AΓ
22 99	24.31	3	.14	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35,45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54,94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	L	Xe
B5.47	87.62	88.91	91.22	92.91	95,94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	7.5	76	77	78	79	80	81	82	83	84	65	B6
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195,08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[269]		[293]

1	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er ²²	Tm	Yb
- 1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
- 1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Į	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]