Tutorial 1

1. Consider the following two qubit state:

$$\frac{|1\rangle + |2\rangle + |3\rangle}{\sqrt{3}i}$$

- (a) What is the probability of obtaining the state $|2\rangle$ or $|3\rangle$ upon measurement in the Z basis?
- (b) Calculate the probability of obtaining $|0\rangle$ in the Hadamard basis.
- (c) Calculate $\langle X \otimes H \rangle$ for the above 2 qubit state.
- 2. For the Pauli- X matrix:
 - (a) Find the eigenvalues and the normalized eigenvectors. Do you recognize these eigenvectors (think of the Bloch Sphere)?
 - (b) Write the Pauli- X matrix in its diagonal representation.

Note: Diagonal representation of an operator A on a vector space V is a representation $A = \sum_i \lambda_i |i\rangle \langle i|$ where the vectors $|i\rangle$ forms an orthonormal set of eigenvectors of A with corresponding eigenvalues λ_i .

- 3. Start with the two qubit state $|10\rangle$:
 - (a) Perform the following operation (leftmost operations acts last) and find the resulting state: $HXHX \otimes HZHZ$
 - (b) Simulate these operations on a quantum circuit using qiskit and plot the histogram of measurement results. Which state has the highest probability of showing up when measurement is done?
 - (c) Using qiskit's unitary simulator, find the single 4 x 4 matrix that does the above operation.