Video Analytics: Template Matching (Week 6)

Video Analytics

- Video is a display of moving visual media, which can be seen as a sequence of still images.
 - In a general sense: Video is metadata i.e. data that provides information about other data.
- In video analytics, the metadata is processed in real-time and transformed into intelligent data. Examples include:
 - Generation of descriptions of what is happening in the video.
 - Detect and track objects.
- Potential applications are: Motion tracking, object tracking, license plate recognition, facial recognition, crowd detection, indoor people tracking, etc.

Template Matching: Motion/Object tracking

- Template matching (TM) method detects different types of objects with the help of a template.
 - The generated templates from detection module are passed on to the tracking module.
 - TM initiates the tracking process with a given input reference template.
- TM works without tedious training procedures.

Template Matching

Image template

Histogram template

HoG descriptor template

Template Matching: Appearance

- Given a template window S in video frame t_{-1} .
 - Extract the template appearance matrix of football.
- Use the appearance template, and find a matching template in frame t_0 using buffer region.

 How to reduce complexity for matching the template?

Frame t_{-1} Template Frame t_0

How wide the buffer region can be?

Template Matching: Appearance: DIY

- How wide the buffer region can be?
- Assume you want to develop a template matching algorithm for a company that wants to develop a low-cost portable solution, which uses a cheap high-speed camera for monitoring the lawbreakers. Find the quickest solution that can find a lawbreaker.
 - Assume a far-mounted 1MP (megapixel) camera captures 6000 fps.
 - Assume dimension as 1000 x 1000 pixels.
 - Assume a camera is calibrated to monitor 100 m distance horizontally.
 - Assume a lawbreaker drives a car at 180 km/hr.
- Distance covered in each consecutive frame by lawbreaker is 5 cm/frame
- 10cm horizontal distance is covered by each pixel.
- Hence 0.5 pixel of horizontal movement between consecutive frames signifies a lawbreaker.

Template Matching: Appearance

- For template matching, the appearance matrix can be used as it is, or the following matrices can be used:
 - Sum of Absolute Differences (SAD) Find set of pixels $(k, l) \in S$ with min/max difference.

$$SAD(k,l) = \sum_{(i,j)\in T} |I_1(i,j) - I_2(i+k,j+l)|$$

• Sum of Squared Difference (SSD)

Find set of pivols (k, l) = S with min/may diff

Find set of pixels $(k, l) \in S$ with min/max difference.

$$SSD(k,l) = \sum_{(i,j)\in T} |I_1(i,j) - I_2(i+k,j+l)|^2$$

To find a perfect match, SAD and SSD have to be Min or Max?

Template Matching: Appearance

• Normalised Cross Correlation (NCC) Find set of pixels $(k, l) \in S$ with min/max difference.

$$NCC(k,l) = \frac{\sum_{(i,j)\in T} I_1(i,j) \cdot I_2(i+k,j+l)}{\sqrt{\sum_{(i,j)\in T} I_1(i,j)^2 \cdot \sum_{(i,j)\in T} I_2(i+k,j+l)^2}}$$

To find a perfect match, NCC has to be Min or Max?

Template Matching: Appearance: DIY

Assume a 6x6 matrix, and 3x3 template.

• Form a group, and evaluate SAD, SSD, and NCC.

$$SAD(k,l) = \sum_{(i,j) \in T} |I_1(i,j) - I_2(i+k,j+l)|$$

$$SSD(k,l) = \sum_{(i,j) \in T} |I_1(i,j) - I_2(i+k,j+l)|^2$$

$$NCC(k,l) = \frac{\sum_{(i,j)\in T} I_1(i,j) \cdot I_2(i+k,j+l)}{\sqrt{\sum_{(i,j)\in T} I_1(i,j)^2 \cdot \sum_{(i,j)\in T} I_2(i+k,j+l)^2}}$$