### ME4252 Nanomaterials for Energy Engineering

# Size Effect on Transport and Thermodynamics

Palani Balaya mpepb@nus.edu.sg 6516 7644

© Palani Balaya, NUS

## **Recall- Schottky barrier**

Schottky barrier is formed between a metal and a n - or p - semiconductor when are brought into contact, such that

$$\Phi_m > \Phi_s$$



Energy band diagram of the metal and the semiconductor in isolation

© Palani Balaya, NUS

2

### Recall - Schottky barrier (in dark)



Energy band diagram of a metal-semiconductor contact in thermal equilibrium, in the dark

© Palani Balaya, NUS

3

#### **Concentration profile at Schottky barrier**

Concentration profile

$$\begin{array}{l} n = N_c e^{-(E_c - E_F)/k_B T} \\ p = N_v e^{-(E_F - E_v)/k_B T} \end{array}$$

metal electron concentration

Depletion region or Space charge region

semiconductor

hole concentration

By joining metal and semiconductor we set up an electric field in a layer close to interface

Electric field will drive electrons and holes in opposite direction – separation

Contacts presents a lower resistance path for holes than electrons – from semiconductor to metals – this type of junction is an example for Schottky barrier

© Palani Balaya, NUS

# Schematic representation of bi-crystal



© Palani Balaya, NUS

5

# Grain boundary core – space charge model (Mott-Schokky)



© Palani Balaya, NUS

6

#### Grain boundary core – space charge model



## Impedance measurement on bi-crystal





(+) YBCO/SrTiO<sub>3</sub>/YBCO (-)

Resistance due to depletion region or space charge region or Schottky battery at the contact of SrTiO<sub>3</sub>/Au



Journal of The Electrochemical Society, **148** (9) J50-J53, 2001

© Palani Balaya, NUS

### **Size Effect on Transport Phenomena**

- Accumulation of space charges (TiO<sub>2</sub>)
- Depletion of space charges (nanocrystalline SrTiO<sub>2</sub>)

© Palani Balaya, NUS

# Electrical conduction in bi-crystal with a single interface – role of interfaces and boundaries Fe doped SrTiO<sub>3</sub>- bicrystal



#### Size effect on grain boundary resistance



Complex impedance spectra obtained for (a) single crystal and microcrystalline YSZ bulk specimens (*H.L. Tuller, Solid State Ionics 131 (2000) 143-157*).

# Size effect on conductivity of TiO<sub>2</sub>

$$\mathrm{Ti_{Ti}^x} + 2\mathrm{O_O^x} \leftrightarrow \mathrm{Ti_i^{...}} + 4\mathrm{e'} + \mathrm{O_2}(g)$$



Defect profiles in structures with dimension, d. The build defect concentration is not reached when d << 4L, where L, is the Debye length

C D. Terwilliger and Y.-M. Chiang *J, Am. Caam. Sac.*, 78, 2045-55 (1995)

17

#### Nanocrystalline SrTiO<sub>3</sub>



TEM image of SrTiO<sub>3</sub> nanopowder

Co-precipitation method

Calcination at 1275 K for 1 hr

Average grain size:  $(30 \pm 5 \text{ nm})$ 

XRD - confirmed single phase formation

Sr/Ti = 1.004

Total amount of electrochemically active impurities present (ICP):

~ 100 ppm (iron)

© Palani Balaya, NUS

18

#### Nanoceramic SrTiO<sub>3</sub>



FESEM image - fractured surface,
Density: 93 %, Average grain size: 80 nm



Edge-on view of grain boundary - HRTEM No amorphous phase - during sintering

© Palani Balaya, NUS

#### Impedance spectra of nanocrystalline SrTiO<sub>3</sub>



#### Mesoscopic (depletion) situation



P. Balaya, J. Jamnik, J. Fleig & J. Maier, *Appl. Phys. Lett.*, <u>86</u> (2006) 062109; P. Balaya, J. Jamnik, J. Fleig & J. Maier J. Electrochem. Soc. <u>154</u> (2007) P69

# Thermodynamics at Nanosize

© Palani Balaya, NUS

# Relationship between melting temperature and particle diameter of gold nanoparticles



C. Yang et al., J. Mater. Chem. C, 1 (2013) 4052



### **Energetics of nanocrystalline titania**



### **Energetics of nanocrystalline titania**

