

	1ª Avaliação Tipo A			
Nota	Visto do Professor			

Curso:	Bacharelado em Ciências da Computação	Data:	17 / 05 / 2017	
Disciplina:	Processamento Digital de Imagens			
Professora:	ra: Emília Alves Nogueira			
Aluno(a):	o(a): Matrícula:			
 A interpretação das questões faz parte da avaliação 				
 Não serão permitidas consultas aos colegas ou a qualquer tipo de material 				

1) **(1,0)** Execute os seguinte comandos e interprete seus resultados e explique cada um, com um comentário após o comando:

Para o Exercício considere A = [1 2; 3 4] e B = [5 6; 7 8]

- a) E = [1 2;3 4;5 6;7 8]
- b) A + 5
- c) A/2
- d) A + B
- e) C = A + B
- f) [m,n] = size(B)
- g) A * B
- h) A.* B
- i) $y = 2^3$
- i) A/B
- k) A./B
- I) C = [A B; B A]
- m) C(2,2)=0
- 2) (1,0) Dada a matriz A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16], crie uma função .m que:
 - a) Crie a matriz B como uma cópia de A, sem a última linha e coluna
 - b) Crie uma função que: some +1 em todos os elementos pares de A (função para pegar o resto da divisão: rem)
 - c) Remova a primeira coluna de A
- 3) (1,0) Crie uma função .m que abra o arquivo de imagem 'lena_cor.bmp' e execute as seguinte tarefas:
 - a) Exiba a imagem
 - b) Exiba apenas o segundo canal da imagem
 - c) Exiba o tamanho da imagem
 - d) Remova 50 pixels do lado direito da imagem e a exiba.
- 4) **(1,0)** Abra o arquivo de imagem *'lena_cor.bmp'*. Crie uma imagem em tons de cinza com base na média dos 3 canais e exiba essa imagem
- 5) (1,0) Implemente uma função .m que calcule a distância entre dois pontos, utilizando a função:
 - Euclidiana: $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$
- 6) **(1,0)** Faça uma função OCTAVE para gerar uma imagem na forma de xadrez, isto é, o pixel tem valor 0, se a soma das coordenas do pixel for par, caso contrário, tem valor 1.
- 7) **(2,0)** Crie uma função para converter o pixel de coordenada (x,y) para índice de coordenada simples (de uma dimensão somente).