${\bf Question: Relational\,Algebra}$

Suppose the relations of a database for the <code>Olympics -2016</code> as shown in Table 1. These relations record the athletes, events, and results of the Olympic games.

athlete_id	country	name	age
A1	U.S.A.	Michael Phelps	31
A2	U.S.A.	Justin Gatlin	34
A3	U.S.A.	Ryan Lochte	32
A4	Canada	Andre De Grasse	21
A5	Jamaica	Usain Bolt	30
A6	France	Christophe Lemaitre	26
A7	Japan	Masato Sakai	24
A8	Japan	Naito Ehara	60
A9	GBR	Duncan Scott	35
A10	GBR	James Guy	32

(a) Athletes Table

$event_id$	name			
E1	100m Sprint			
E2	200m Sprint			
E3	200m Butterfly			
E4	4x200 Freestyle Relay			
(1)				

(b) Events Table

event_id	athlete_id	result
E1	A5	Gold
E1	A2	Silver
E1	A4	Bronze
E2	A5	Gold
E2	A4	Silver
E3	A1	Gold
E3	A7	Silver
E3	A9	Bronze
E4	A1	Gold
E4	A3	Gold
E4	A7	Silver
E4	A8	Silver
E4	A9	Bronze
E4	A10	Bronze

(c) Event_Results Table: the outcome of every event

Table 1: Relations of the Olympic database.

We have the following tables:

- Athletes: For every athlete, we record a unique athlete_id, the country they represent, their name, and their age.
- Events: This table lists all the events that are part of the 2016 Olympic games. Every event has a unique integer event_id and a name.
- Event_Results: Lists the outcomes of all events. Every outcome records the event_id of the event, the athlete_id of the athlete that won a medal in the event, (or was part of the team that won), and the standing of the athlete (i.e., gold, silver or bronze).

Given this database instance, answer the following questions:

(a) [2 points] Which of the following is the meaning of the expression:

```
\sigma_{	extsf{age} \geq 25}(\texttt{Athletes})
```

- 1. It lists the athlete_id and name of all athletes that are at least 25 years old.
- 2. It lists all attributes of all athletes whose age is greater than or equal to 25.
- 3. It lists all athlete ages that are greater than or equal to 25.
- 4. None of the above. The real answer is
- (b) [5 points] We want to list the names of the athletes that have won at-least one gold medal (eliminating duplicate names). Which, if any, of the following expressions achieve that? Mark all valid expressions.
 - 1. $\pi_{\mathtt{name}}(\sigma_{\mathtt{result}='Gold'}(\mathtt{Athletes} \bowtie \mathtt{Event_Results}))$
 - 2. $\pi_{\mathtt{name}}(\mathtt{Athletes} \bowtie \sigma_{\mathtt{result}='Gold'}(\mathtt{Event_Results}))$
 - 3. $\pi_{\mathtt{name}}(\sigma_{\mathtt{result}='Gold'}(\mathtt{Athletes} \bowtie \pi_{\mathtt{athlete_id},\mathtt{result}}(\mathtt{Event_Results})))$
 - 4. $\pi_{\mathtt{name}}(\mathtt{Athletes}) \bowtie \sigma_{\mathtt{result}='Gold'}(\mathtt{Event_Results})$
 - $5. \ \pi_{\texttt{name}}\big(\texttt{Athletes}\big) \pi_{\texttt{name}}\big(\texttt{Athletes} \bowtie \sigma_{\texttt{result} \neq' Gold'}\big(\texttt{Event_Results}\big)\big)$
- (c) For the following expression:

$$\sigma_{\texttt{age} < 25}(\texttt{Athletes} \bowtie \texttt{Event_Results})$$

- i. [O points] Optional: describe in English what the expression does
- ii. [1 point] How many, and which are the columns (= attributes) in the answer?
- iii. [3 points] How many tuples are in the answer?
- iv. [3 points] List all the tuples in the answer, as a table.
- (d) For the following expression:

$$\pi_{\texttt{athlete_id}, \texttt{event_id}}(\texttt{Event_Results}) \; \div \; \pi_{\texttt{event_id}}(\sigma_{\texttt{athlete_id}='A5'}(\texttt{Event_Results}))$$

- i. [O points] Optional: describe in English what the expression does
- ii. [2 points] How many, and which are the columns (= attributes) in the answer?

- iii. [3 points] How many tuples are in the answer?
- iv. [3 points] List all the tuples in the answer, as a table.
- (e) For the following expression:

```
\pi_{\texttt{A.athlete\_id}}\big(\rho_A(\texttt{Athletes})\big) - \pi_{\texttt{ER1.athlete\_id}}\big(\\ \rho_{ER1}(\texttt{Event\_Results}) \bowtie_{ER1.\texttt{athlete\_id} = ER2.\texttt{athlete\_id} \land ER1.\texttt{result} \neq ER2.\texttt{result}} \rho_{ER2}(\texttt{Event\_Results})\big)
```

- i. [O points] Optional: describe in English what the expression does
- ii. [2 points] How many, and which are the columns (= attributes) in the answer?
- iii. [3 points] How many tuples are in the answer?
- iv. [3 points] List all the tuples in the answer, as a table.