School of **Information Sciences**

SIMULATING USER SELECTIONS OF QUERY SUGGESTIONS

Jiepu Jiang, Daqing He

School of Information Sciences, University of Pittsburgh

MOTIVATION

- Lots of works on query suggestion/recommendation
- The performance of a query suggestion list depends on
 - Whether or not the user will take one suggestion
 - Which query suggestion is taken
- Some facts (Wu et al. SIGIR'12; Hauff et al. CIKM'10)
 - User judgments of query quality can be different from those evaluated by metrics (e.g. nDCG@10)
 - Absence of search results
 - User judge criteria
 - Users may not be able to identify and adopt the best query suggestion

RELATED WORKS

- Measuring the quality of a query suggestion
 - Search performance of the results
 - User ratings, user clicks on query suggestions
- Measuring the quality of a list of query suggestions (at least two dimension of modeling the problem)
 - Position or rank related
 e.g. discounting lower ranked query suggestions
 - User judgments and selections (our focus)

SOME EXISTING METHODS

- Evaluate a list of query suggestions by
 - The performance of the "best" query (Wang & Zhai CIKM'08; Dang & Croft WSDM'10)

Assumption:

Users can make perfect judgments and always identify and adopt the best query suggestion.

 The average performance of the queries (Sheldon et al. WSDM'11)

Assumption:

Users will randomly adopt a query suggestion.

IS IT IMPORTANT?

EXAMPLE 1: HOW MANY SUGGESTIONS SHOULD BE DISPLAYED?

EXAMPLE 2: WHEN SHOULD WE DISPLAY QUERY SUGGESTIONS?

- Is there a chance that query suggestion could lead to decline of search performance?
- Probably yes, e.g. the user may take query suggestions that underperform the queries could be reformulated by the user him/herself
- A possible proof (Kelly et al. SIGIR'09)
 - "query suggestions seem to have an advantage when subjects face a cold-start problem and when they exhaust their own ideas for searches"

A SIMULATION PROCESS

 $P_{\text{judge}}(q_1, q_2)$: the probability that user can make a correct pairwise judgment on the quality of q_1 and q_2 .

•
$$P_{iudge}(q_1, q_2) = 1$$

- $0.5 < P_{iudge} < 1$
- $0 < P_{iudge} < 0.5$

- perfect judgments
- positively correlated
- $P_{judge}(q_1, q_2) = 0.5$ random selection
 - negatively correlated
- A query selection "tournament"
 - q_a vs. q_b : the better query has the probably $P_{iudge}(q_a, q_b)$ to win and get 1 point
 - Iteratively compare each pair of queries to come out the "winner" query
 - Run the tournament many times to estimate the probability of selecting each query.

A SIMULATION PROCESS

- The probability of selecting a query depends on
 - The performance of the query compared with others
 - The user's judge ability, as characterized by P_{judge}
- Some effects of the model
 - The better the user's judging ability is, the more likely that the user can select the best query in C.
 - The better a query's quality is, the more likely that the user will select the query.
- And (at this point), independent of its rank in the list
 - But we can model the rank by other approaches (see details in the workshop paper)

THE PROBABILITY OF SELECTING THE ITH BEST QUERY (FIXED P_{JUDGE})

SOME EFFECTS

- The better the user's judging ability is, the more likely that the user can select the best query from the list.
- The better a query's quality is, the more likely that the user will select the query (if the user's selection is positively correlated with ground truth).

ON-GOING WORK

 User experiments involving user judgments & use of query suggestions in a search session

Aiming for studying

- What are good measures for evaluating a single query suggestion's quality
- Predictive factors for user judgments and selections of queries

THANK YOU!