Graf, algorytm DFS i BFS

Do testowania algorytmów DFS i BFS tworzony był graf o zadanej liczbie wierzchołków i losowo dobranych krawędziach, których liczba była dwa razy większa od ilości wierzchołków. Zwiększa to prawdopodobieństwo otrzymania spójnego grafu.

1. Algorytm DFS– pomiary

llość	Czas trwania
wierzchołków	algorytmu [s]
10	0,000011
100	0,000429
500	0,009397
1000	0,039798
2000	0,000001
3000	0,368700
4000	0,000001
5000	1,141527
6000	1,709901
7000	2,439119
8000	3,295493
9000	4,330873
10000	5,597267
15000	13,898825
20000	26,497415
25000	45,308646
30000	73,692023
35000	114,945038
40000	160,799323
45000	224,92432
50000	306,593896
55000	400,961795
60000	511,793848
65000	639,770832
70000	783,584306
75000	944,532371
80000	1123,196018
85000	1318,631345
90000	1532,329435
100000	2008,528097

2. Algorytm BFS – pomiary

Ilość wierzchołków	Czas trwania
	algorytmu [s]
10	0,000009
100	0,00021
500	0,004437
1000	0,018196
2000	0,077038
3000	0,177112
4000	0,324268
5000	0,520873
6000	0,76307
7000	1,058428
8000	1,428021
9000	1,802013
10000	2,290716
20000	10,12715
30000	23,888866
40000	46,48805
50000	84,717919
60000	132,898143
70000	196,494358
80000	266,714347
90000	360,775402
100000	463,845811

3. Wnioski

- Fatalne w skutkach złożoności obliczeniowej było podjęcie decyzji o implementacji grafu jako *listy sąsiedztwa* za pomocą listy list. Zdecydowanie efektywniejsza byłaby implementacja za pomocą tablicy list. Zaimplementowane algorytmy odwołują się często do danego wierzchołka. W moim przypadku nie wiąże się to tylko z jego znalezieniem na liście, ale z każdorazowym przejściem przez listę, ilekroć odwołujemy się do wierzchołka przez indeks. Przy zastosowaniu tablicy odwoływanie się do elementu gdy znany jest jego indeks miałoby złożoność O(1), co rzutowałoby na złożoność obliczeniową całego algorytmu.
- Błędem w implementacji algorytmu DFS było oparcie jego działania na *flagach* przechowywanych w każdym wierzchołku. W takim przypadku niemożliwe jest jego wielokrotne zastosowanie dla tego samego grafu. Błąd ten **nie** został powtórzony przy implementacji algorytmu BFS.
- Teoretyczna złożoność czasowa algorytmu DFS i BFS powinna wynosić O(|V| + |E|), gdzie |V| to liczba węzłów, a |E| to liczba krawędzi w grafie. Niestety przez błędy w sposobie implementacji grafu efektywność moich algorytmów spadła do złożoności $O(n^2)$.