				Sı	ıbje	et Co	de:]	BAS	103
Roll No:									

BTECH (SEM I) THEORY EXAMINATION 2024-25 ENGINEERING MATHEMATICS-I

TIME: 3 HRS M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 07 = 14$

Printed Page: 1 of 2

Q no.	Question	CO	Leve
			1
a.	Find the eigen values of the matrix $\begin{bmatrix} cos\theta & -sin\theta \\ -sin\theta & -cos\theta \end{bmatrix}$.	1	K2
b.	If $u = \frac{x^2 + y^2}{x + y}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2	K3
c.	What is the difference between total derivatives and partial derivatives?	2	K1
d.	What are the applications of Jacobians	3	K4
e.	Write the statement of Liouville's Theorem.	4	K2
f.	Evaluate $\int_{1}^{2} \int_{1}^{3} x^{2}y^{2} dx dy$.	4	K3
g.	Prove that $\operatorname{curl} \vec{r} = 0$.	5	K2

SECTION B

2. Attempt any *three* of the following:

 $07 \times 3 = 07$

Q no.	Question	CO	Leve 1
a.	Find two non-singular matrices P and Q such that PAQ is in normal	1	K2
	form,		
	Where $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$		
	$\begin{bmatrix} \text{Where } N = \begin{bmatrix} 1 & 4 & 3 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$		
b.	Find the n^{th} derivative of $tan^{-1}\left(\frac{x}{a}\right)$	2	K3
c.	Find the volume of the largest rectangular parallelepiped that can be	3	K4
	inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.		
d.	Apply Dirichlet's theorem to evaluate $\iiint xyzdxdxdz$ taken throughout	4	K3
	the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$		
e.	Show that the vector $f(r)\vec{r}$ is irrotational. Where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	5	K5

SECTION C

3. Attempt any *one* part of the following:

 $07 \times 1 = 07$

Q no.	Question	CO	Level
a.	Find the eigen values and eigen vectors of the following matrices: $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.	1	K4
b.	Discuss for all values of K for the system of equations	1	K2

BTECH (SEM I) THEORY EXAMINATION 2024-25 **ENGINEERING MATHEMATICS-I**

TIME: 3 HRS **M.MARKS: 70**

x + y + 4z = 6, $x + 2y - 2z = 6$, $Kx + y + z = 6$	as	regards	
existence and nature of solution.			

4. Attempt any one part of the following:

Q no.	Question		CO	Level
a.	Trace the curve $y^2(a+x) = x^2(3a-x)$.		2	K1
b.	If $u = f(r)$, where $r^2 = x^2 + y^2$, prove that $\frac{1}{r}f'(r)$.	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) +$	2	K1

5. Attempt any one part of the following:

07	X	1	= ()7

Printed Page: 2 of 2

Q no.	Question	CO	Level	
a.	If $u = xyz$, $v = x^2 + y^2 + z^2$ and	3	К3	
	$w = x + y + z$. Find the jacobian $\frac{\partial(x, y, z)}{(u, v, w)}$			3
b.	Find the maxima and minima of the function $sinx + siny + sin(x + y)$.	3	K3	
	V			NV.
6.	Attempt any one part of the following:	07 x	1 = 07	
Q no.	Question	CO	Level	
a.	Find the area inside the circle $r = 2a\cos\theta$ and outside the circle $r = a$	4	K4	
		The state of the s	1	1

Attempt any one part of the following: 6.

$$07 \times 1 = 07$$

Q no.	Question	CO	Level
a.	Find the area inside the circle $r = 2a\cos\theta$ and outside the circle $r = a$	4	K4
b.	Change the order of integration and then evaluate $\int_{0}^{2a} \int_{\frac{x^{4}}{4a}}^{3a-x} (x^{2} + y^{2}) dy dx$	4	K2

7. Attempt any *one* part of the following:

$07 \times 1 = 07$

Q no.	Question	CO	Leve
			1
a.	Show that div (grad r^n) = $n(n+1)r^{n-2}$. Where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	5	K4
b.	Verify Stokes theorem for $\vec{F} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$ taken round the rectangle bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = b$.	5	K5