Konzentrationsmaße

Messung der absoluten Konzentration

- **≻**Konzentrationsrate
- >Herfindahl-Index

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

1

Bibliografie:

- Prof. Dr. Kück:
 - Universität Rostock

Statistik, Vorlesungsskript, Abschnitt 6.2

- ➤ Bleymüller / Gehlert / Gülicher;
 - Verlag Vahlen;

Statistik für Wirtschaftswissenschaftler.

- ➤ Hartung;
 - Oldenburg Verlag;
 - Statistik.
- http://www.wiwi.uni-rostock.de/~stat/download.htm

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Sie bedeutet soviel wie Verdichtung, Schwerpunktbildung, Ballung oder Ungleichverteilung.

Der Nachweis einer Konzentration ist nur sinnvoll bei der Untersuchung nichtnegativer extensiver Merkmale.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

3

Extensive Merkmale

Extensive Merkmale werden dadurch charakterisiert, dass eine Summenbildung der Merkmalsausprägungen ein interpretierbares, real vorstellbares Aggregat bildet.

Beispiele:

- > Landwirtschaftliche Fläche
- **Einkommen**
- Umsatz

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Konzentration - Klassifikation

- > Statische Konzentration
- > Dynamische Konzentration
- **➤** Absolute Konzentration
- Relative Konzentration

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

5

Statische und Dynamische Konzentration

>Statische Konzentration:

Konzentration **im Sinne eines Zustandes**, in einem bestimmten Zeitpunkt, etwa in dem Satz: "Die Textilindustrie des Bundeslandes A ist stark konzentriert."

> Dynamische Konzentration:

Konzentration **im Sinne eines Prozesses**, in einem bestimmten Zeitraum, so etwa in dem Satz: "Zwischen 1960 und 1980 war die Textilindustrie des Bundeslandes A einer starken Konzentration unterworfen."

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

Absolute Konzentration

Die Merkmalssumme ist auf eine kleine bzw. kleiner werdende **Zahl** von Merkmalsträger verteilt, ohne dass notwendigerweise Ungleichheit unter ihnen besteht. In etwas unschärferer Form spricht man von absoluter Konzentration auch dann, wenn ein großer Anteil der Merkmalssumme auf eine kleine **Zahl** von Merkmalsträger fällt.

Beispiel:

Die drei größten deutschen Häfen sind Hamburg, Wilhelmshaven und Bremen (Stand 1999). Sie hatten einen Jahresumschlag von 91 Mio. Tonnen, das sind etwa zwei Drittel des Umschlages aller deutschen Häfen.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

7

Relative Konzentration

Zuordnung eines großen bzw. eines größer werdenden Anteils einer Merkmalssumme zu einem kleinen bzw. kleiner werdenden **Anteil** der Merkmalsträger.

Beispiel:

In der BRD sind im Jahr 1999 80 % der gesamten Einkommenssteuer von 20 % der Steuerpflichtigen erbracht worden.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Hohe Unternehmenskonzentration im Intrahandel. Statistisches Bundesamt, 2002

Beispiel:

Ein Großteil der Umsätze im innergemeinschaftlichen Warenverkehr (Intrahandel) wird von einer vergleichsweise geringen Zahl von Unternehmen erwirtschaftet. So wurden in der Versendung knapp 82 % der Umsätze durch rund 2 % der Unternehmen erzielt. Beim Wareneingang aus anderen EU-Staaten entfielen 78 % des Wertes auf 1 % der einführenden Unternehmen in Deutschland.

http://www.destatis.de/presse/deutsch/pm2002/p1380181.htm:

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

c

Messung der absoluten Konzentration

- > Konzentrationsrate
- > Herfindahl-Index

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Verteilungen des Gesamtumsatzes eines Industriezweiges - Beispiel

Unter- nehmen	De	enkbar	e Verte	eilunge	n des G	esamtı	umsatz	es
потынен	A	В	C	D	E	F	G	Н
U1	1000	360	200	500	1000	180	100	199
U2	0	300	200	140	280	180	100	199
U3	0	200	200	130	260	150	100	199
U4	0	80	200	120	240	150	100	199
U5	0	60	200	110	220	100	100	199
U6						100	100	1
U7						40	100	1
U8						40	100	1
U9						30	100	1
U10						30	100	1
Merkmals-	1000	1000	1000	1000	2000	1000	1000	1000
summe								

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

11

Konzentrationsrate (concentration ratio)

- ➤ Die Konzentrationsrate ist das Verhältnis der Teilsumme der **m** größten Merkmalswerte zur gesamten Merkmalssumme. Es wird gemessen, wie sich eine gegebene Summe von Merkmalsausprägungen auf die Merkmalsträger verteilt.
- ➤ Häufige Werte von **m** sind 2, 3, 5, 10. Man gibt z. B. die Aussage über die Konzentrationsrate der 2, 3, 5, 10 größten Firmen und ihren Umsatzanteil am Branchentotal an.

Beispiel:

Die drei größten Automobilkonzerne haben einen Umsatzanteil von 80 % des Umsatzes des gesamten Automobilmarktes.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Konzentrationsrate - Beispiel

Unter- nehmen	Verteilungen					
	A	В	C	D	E	
U1	1000	360	200	500	1000	
U2	0	300	200	140	280	
U3	0	200	200	130	260	
U4	0	80	200	120	240	
U5	0	60	200	110	220	
Merkmals-	1000	1000	1000	1000	2000	
summe						
m=1	1	0,36	0,20	0,50	0,50	
m=2	1	0,66	0,40	0,64	0,64	
m=3	1	0,86	0,60	0,77	0,77	
		,	,	,		

 $C_{m} = \frac{\sum_{i=1}^{m} a_{[i]}}{\sum_{i=1}^{N} a_{[i]}} = \sum_{i=1}^{m} p_{[i]}$

absteigend geordnete Reihe der Merkmalswerte

Interpretation von \mathbb{C}_3 bei der Verteilung B:

86 % des Gesamtumsatzes wurde von drei Unternehmen erwirtschaftet.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

15

Konzentrationsrate - Vorteile und Nachteile -

Vorteil:

- > rechnerisch sehr einfach
- leichte Interpretation

Nachteile:

- > Subjektivität bei der Wahl von **m**.
- ➤ Durch die Beschränkung auf ein einziges, vorgegebenes **m** bleibt die gesamte sonstige in der Verteilung enthaltene Information unausgeschöpft.
- ➤ Wechsel der Identitäten der **m** größten Unternehmen im Laufe der Zeit.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Herfindahl-Index - Einzelwerte

Der **Herfindahl-Index**, oft auch **Hirschman-Index** genannt, ist für einzelne Merkmalswerte bzw. Merkmalsanteile durch folgende Formel definiert:

$$H = \sum_{i=1}^{N} p_i^2 = \frac{\sum_{i=1}^{N} a_i^2}{\left(\sum_{i=1}^{N} a_i\right)^2}$$

mit

Anteil an Merkmalssumme

Das positive Charakteristikum dieser Kennzahl gegenüber der Konzentrationsrate

$$C_{_m} = \sum_{_{i=1}}^m p_{[i]}$$

ist, dass alle Merkmalsträger in die Berechnung einbezogen werden.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

17

Herfindahl-Index - Spezialfälle

bei maximaler Konzentration

$$(\mathbf{p_1} = \mathbf{p_2} = ... = \mathbf{p_{N-1}} = \mathbf{0}, \ \mathbf{p_N} = \mathbf{1})$$

$$p_{[N]} = \frac{a_{[N]}}{\sum_{i=1}^{N} a_{[i]}} = \frac{a_{[N]}}{a_{[N]}} = 1$$

$$H = \sum_{i=1}^{N} p_i^2 = 0 + 0 + ... + 0 + 1 = 1$$

bei minimaler Konzentration; Gleichverteilung

$$(\mathbf{p_1} = \mathbf{p_2} = ... = \mathbf{p_N} = 1 / N)$$

$$p_{[i]} = \frac{a_{[i]}}{\sum_{i=1}^{N} a_{[i]}} = \frac{\sum_{i=1}^{N} a_{[i]}}{\sum_{i=1}^{N} a_{[i]}} = \frac{1}{N}$$

 $H = \sum_{i=1}^{N} p_i^2 = \sum_{i=1}^{N} (\frac{1}{N})^2$ $= \sum_{i=1}^{N} \frac{1}{N^2} = \frac{1}{N^2} \cdot N = \frac{1}{N}$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

Herfindahl-Index - Verteilung A Verteilung Unter $p^2_{\ [i]}$ nehmen $p_{[i]}$ A 1000 1,0000 U1 1,00 0,0000 U2 0,00 0 U3 0 0,00 0,0000 U4 0,00 0,0000 U₅ 0,00 0,0000 1000 Merkmals-Herfindahl-1,0000 Index summe Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Herfindahl-Index - Verteilung C	'erteilung C
---------------------------------	--------------

Unter- nehmen	Verteil C	ung	$p_{[i]}$	$p^2_{[i]}$
U1		200	0,20	0,04
U2		200	0,20	0,04
U3		200	0,20	0,04
U4		200	0,20	0,04
U5		200	0,20	0,04
Merkma	als- 1	000 He	rfindahl-	0,20
summe			Index	0,20

 $p_{[i]} = \frac{\sum_{i=1}^{N} a_{[i]}}{\sum_{i=1}^{N} a_{[i]}} = \frac{1}{N}$ $H = \sum_{i=1}^{N} p_i^2$ $= \sum_{i=1}^{N} \left(\frac{1}{N}\right)^2$ $= \frac{1}{N^2} \cdot N$ $= \frac{1}{N^2} = \frac{1}{N^2} = 0.20$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

21

Herfindahl-Index - Verteilung B

Unter- nehmen	Verteilung B	$\mathbf{p_{[i]}}$	$p^2_{[i]}$
U1	360	0,36	0,1296
U2	300	0,30	0,0900
U3	200	0,20	0,0400
U4	80	0,08	0,0064
U5	60	0,06	0,0036
Merkmals-	1000	Herfindahl-	0,2696
summe		Index	0,2000

 $p_{\,[i]} \, = \, \frac{a_{\,[i]}}{\displaystyle \sum_{i=1}^{N} \, a_{\,[i]}}$

 $H = \sum_{i=1}^{N} p_i^2$

 $0,20 \le H \le 1$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

Herfind	lahl-Ind	dex - V	erteilun	g D
	iaiii iiiv	uch v	citchan	5 ~

Unter- nehmen	Verteilung D	$p_{[i]}$	$p^2_{[i]}$
U1	500	0,50	0,2500
U2	140	0,14	0,0196
U3	130	0,13	0,0169
U4	120	0,12	0,0144
U5	110	0,11	0,0121
Merkmals-	1000	Herfindahl-	0,3130
summe		Index	0,3130

$$p_{[i]} = \frac{a_{[i]}}{\sum_{i=1}^{N} a_{[i]}}$$

$$H = \sum_{i=1}^{N} p_i^2$$

 $0,20 \le H \le 1$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

23

Herfindahl-Index - Verteilung E

Unter- nehmen	Verteilung E	$\mathbf{p_{[i]}}$	$p^2_{[i]}$
U1	1000	0,50	0,2500
U2	280	0,14	0,0196
U3	260	0,13	0,0169
U4	240	0,12	0,0144
U5	220	0,11	0,0121
Merkmals-	2000	Herfindahl-	0,3130
summe		Index	0,3130

$$p_{[i]} = \frac{a_{[i]}}{\sum_{i=1}^{N} a_{[i]}}$$

$$H = \sum_{i=1}^{N} p_i^2$$

 $0,20 \le H \le 1$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

Unter-	Verteilung		2	
nehmen	G	$\mathbf{p_{[i]}}$	$p^2_{[i]}$	
U1	100	0,10	0,0100	
U2	100	0,10	0,0100	$n = \frac{a_{[i]}}{}$
U3	100	0,10	0,0100	$p_{[i]} = \frac{1}{\sum_{i=1}^{N} a_{[i]}}$
U4	100	0,10	0,0100	i=1 u [i]
U5	100	0,10	0,0100	
U6	100	0,10	0,0100	
U7	100	0,10	0,0100	
U8	100	0,10	0,0100	
U9	100	0,10	0,0100	
U10	100	0,10	0,0100	N
Merkmals-	1000	Herfindahl-	0.1000	$H = \sum p_i^2$
summe		Index	0,1000	i=1

Hei	rfindahl-1	Index - Ve	rteilun	ıg F
Unter- nehmen	Verteilung F	p _[i]	p ² [i]	
U1	180	0,18	0,0324	
U2	180	0,18	0,0324	$p_{[i]} = \frac{a_{[i]}}{N}$
U3	150	0,15	0,0225	$\sum_{i=1}^{N} a_{ii}$
U4	150	0,15	0,0225	i=1
U 5	100	0,10	0,0100	
U6	100	0,10	0,0100	
U7	40	0,04	0,0016	
U8	40	0,04	0,0016	
U9	30	0,03	0,0009	
U10	30	0,03	0,0009	N
Merkmals- summe	1000	Herfindahl- Index	0,1348	$H = \sum_{i=1}^{n} p_i^2$
Dr. Ricabal Delga Lehrstuhl für Stat		Absolute Konzentration	0,10 ≤ H	I ≤ 1 ₂₆

Her	findahl-I	ndex - Ve	rteilun	g H
Unter- nehmen	Verteilung H	$\mathbf{p}_{[i]}$	p ² [i]	
U1	199	0,199	0,0396	
U2	199	0,199	0,0396	
U3	199	0,199	0,0396	$p_{[i]} = \frac{a_{[i]}}{N}$
U4	199	0,199	0,0396	$\sum_{i=1}^{N} a_{ii}$
U5	199	0,199	0,0396	i=1
U6	1	0,001	0,0000	
U7	1	0,001	0,0000	
U8	1	0,001	0,0000	
U9	1	0,001	0,0000	
U10	1	0,001	0,0000	N
Merkmals- summe	1000	Herfindahl- Index	0,1980	$H = \sum_{i=1}^{N} p_i^2$
Dr. Ricabal Delgado Lehrstuhl für Statis		bsolute Konzentration	0,10 ≤ H	I ≤ 1 ₂₇

Unter- nehmen U1	A	D		Verteilungen				
U1		В	C	D	E	F	G	Н
	1000	360	200	500	1000	180	100	199
U2	0	300	200	140	280	180	100	199
U3	0	200	200	130	260	150	100	199
U4	0	80	200	120	240	150	100	199
U5	0	60	200	110	220	100	100	199
U6						100	100	1
U7						40	100	1
U8						40	100	1
U9						30	100	1
U10						30	100	1
Summe	1000	1000	1000	1000	2000	1000	1000	1000
Herfindahl- Index	0000	0,2696	0,2000	0,3130	0,3130	0,1348	0,1000	0,1980

Zusammenhang zwischen Streuung und Konzentration

$$H = \frac{1}{N} ((VC)^2 + 1) = \frac{1}{N} (\frac{\sigma^2}{\mu^2} + 1)$$

VC: Variationskoeffizient

$$VC = \frac{\sigma}{\mu}$$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

29

Zusammenhang zwischen Streuung und Konzentration - Beispiel

Verteilung B

H = 0.2696

$$\mu = 1000/5 = 200$$

$$\sigma^{2} = \frac{1}{5} \cdot ((360 - 200)^{2} + (300 - 200)^{2} + (200 - 200)^{2} + (80 - 200)^{2} + (60 - 200)^{2}) = 13920$$

$$H = \frac{1}{N} ((VC)^2 + 1) = \frac{1}{N} (\frac{\sigma^2}{\mu^2} + 1)$$

$$H = \frac{1}{5} \cdot \left(\frac{13920}{200^2} + 1 \right) = 0,2696$$

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Herfindahl-Index für klassierte bzw. gehäufte Werte

 $\label{eq:continuous} \mbox{Der } \textbf{Herfindahl-Index} \mbox{ ist f\"{u}r } \textbf{geh\"{a}ufte} \mbox{ Merkmalswerte bzw.}$ Merkmalsanteile durch folgende Formel zu berechnen:

x ₁	h ₁	$\mathbf{x_1} \cdot \mathbf{h_1}$	p_1
\mathbf{x}_2	h ₂	$\mathbf{x}_2 \cdot \mathbf{h}_2$	\mathbf{p}_{2}
$\mathbf{x}_{\mathbf{k}}$	h _k	$\mathbf{x}_{\mathbf{k}} \cdot \mathbf{h}_{\mathbf{k}}$	p_k
Summe	N	Gesamtsumme	

$$H = \sum_{j=1}^{k} p_{j}^{2} h_{j} = \frac{\sum_{j=1}^{k} x_{j}^{2} \cdot h_{j}}{\left(\sum_{j=1}^{k} x_{j} \cdot h_{j}\right)^{2}}$$

$$\sum_{j=1}^k x_j \!\cdot h_j$$

Dr. Ricabal Delgado / Prof. Kück Absolute Konzentration Lehrstuhl für Statistik

Herleitung der Formel des Herfindahl-Index für klassierte bzw. gehäufte Werte

x ₁	h ₁	$\mathbf{x}_1 \cdot \mathbf{h}_1$	p ₁
\mathbf{x}_2	h ₂	$\mathbf{x_2} \cdot \mathbf{h_2}$	\mathbf{p}_2
X _k	h _k	$\mathbf{x_k} \cdot \mathbf{h_k}$	p_k
Summe	N	Gesamtsumme	

$$p_{j} = \frac{x_{j}}{\sum_{j=1}^{k} x_{j} \cdot h_{j}}$$

Einzelwerte

Gehäufte oder klassierte Werte

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Herfindahl-Index für klassierte Werte -Beispiel-

Beispiel:

Es soll die absolute Konzentration für die Bauhauptbetriebe in MV nach ihrem Umsatz analysiert werden, (Stand 1999).

Anzahl der Beschäftigten	Anzahl der Betriebe	Umsatz 1000 DM	
1 bis 9	383	23559	
10 bis 19	438	65564	
20 bis 49	362	148123	
50 bis 99	135	121159	
100 bis 199	69	109989	
200 und mehr	29	128300	
Summe	1416	596694	

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik

Absolute Konzentration

33

Herfindahl-Index für klassierte Werte -Beispiel

Anzahl der	Anzahl der	Umsatz			
Beschäftigten	Betriebe (h _j)	$(x_j.h_j)$	$\mathbf{x}_{\mathbf{j}}$	$\mathbf{x_{j}^{2}}$	$\mathbf{h_{j}.x}^{2}_{j}$
1 bis 9	383	23559	61,512	3783,695	1449155,3
10 bis 19	438	65564	149,689	22406,946	9814242,2
20 bis 49	362	148123	409,180	167427,911	60608904
50 bis 99	135	121159	897,474	805459,714	108737061
100 bis 199	69	109989	1594,043	2540974,611	175327248
200 und mehr	29	128300	4424,138	19572996,433	567616897
Summe	1416	596694			923553507
Herfindahl-Index				0,0025939	

$$H = \frac{\sum_{j=1}^{k} h_j \cdot x_j^2}{\left(\sum_{j=1}^{k} h_j \cdot x_j\right)^2}$$

 $oldsymbol{x_j}$: durchschnittlicher Umsatz eines Betriebes der Gruppe i $oldsymbol{x_i}$: Umsatz der Gruppe/ Zahl der Betriebe je Gruppe

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

1. Aufgabe - Klausur Februar 2005

Über Investitionen, Betriebe und Beschäftigte im verarbeitenden Gewerbe liegen Ihnen für kreisfreie Städte folgende Angaben eines Jahres vor:

Kreisfreie Stadt	Bruttoanlageinvestitionen in Mill. Euro	Betriebe Anzahl	Beschäftigte Anzahl
Greifswald	14	25	1.700
Neubrandenburg	22	30	2.500
Rostock	34	80	6.500
Schwerin	16	40	3.800
Stralsund	12	15	1.900
Wismar	102	30	3.600

- 1. Berechnen Sie die Konzentrationsrate C_3 für die Bruttoanlageinvestitionen.
- 2. Ermitteln Sie an Hand der Maßzahl nach Herfindahl die Konzentration bei Bruttoanlageinvestitionen sowie bei der Beschäftigtenzahl.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

35

Lösung 1.1- Klausur 02. 2005

Berechnung der Konzentrationsrate \mathbf{C}_3 für die Bruttoanlageinvestitionen.

Kreisfreie Stadt	Bruttoanlageinvestitionen in Mill. Euro	Betriebe Anzahl	Beschäftigte Anzahl
Greifswald	14	25	1.700
Neubrandenburg	22	30	2.500
Rostock	34	80	6.500
Schwerin	16	40	3.800
Stralsund	12	15	1.900
Wismar	102	30	3.600
Summe	200		

 $\mathbf{C_3} = (102 + 34 + 22) / (14 + 22 + 34 + 16 + 12 + 102) = 158 / 200 = 0,79$

Interpretation: 3 Städte verfügen über 158 Mill. Euro Bruttoanlageinvestition (ca. 79 % des Totales).

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

Lösung 1.2- Klausur 02. 2005

Ermittlung Sie des Herfindahl-Index bei Bruttoanlageinvestitionen sowie bei der Beschäftigtenzahl.

Kreisfreie Stadt	Bruttoanlage- investitionen in Mill. Euro	(p _i) ²	Beschäftigte Anzahl	(p _i) ²
Greifswald	14	0,0049	1.700	0,007225
Neubrandenburg	22	0,0121	2.500	0,015625
Rostock	34	0,0289	6.500	0,105625
Schwerin	16	0,0064	3.800	0,036100
Stralsund	12	0,0036	1.900	0,009025
Wismar	102	0,2601	3.600	0,032400
Summe	200	0,3160	20.000	0,206000

Interpretation: Bei der Beschäftigtenzahl wird mit dem Herfindahl –Index kaum Konzentration gemessen (0,206 gegenüber 0,2), bei Bruttoanlageinvestitionen ist schwache Konzentration feststellbar.

Dr. Ricabal Delgado / Prof. Kück Lehrstuhl für Statistik Absolute Konzentration

