8. Fraktali – Mandelbrotov i Julijev fraktalni skup

8.1 Kompleksna ravnina i ravnina prikaza

Funkcija kompleksne varijable $f(z_n)$ promatra se u kompleksnoj ravnini čije su osi (u, v). Ravnina prikaza (x, y) je ravnina u kojoj prikazujemo promatranu kompleksnu funkciju. Prevođenje iz sustava $(O \ u \ v)$ u sustav $(O' \ x \ y)$ ovisi o promatranom području u pojedinim sustavima. Neka je promatrano područje kompleksne funkcije zadano s u_{max} , u_{min} , v_{max} i v_{min} . Područje sustava prikaza neka je zadano s rez_x i rez_y (Slika 8.1).

Slika 8.1. Ravnina kompleksne funkcije i ravnina prikaza.

Sustav prikaza je zaslon, pa su vrijednosti na x i y osi diskretne. Koordinate točke u_0 i v_0 u kompleksnoj ravnini koje odgovaraju vrijednostima x_0 i y_0 su:

$$u_0 = \frac{u_{\text{max}} - u_{\text{min}}}{x_{\text{max}}} x_0 + u_{\text{min}}, \ v_0 = \frac{v_{\text{max}} - v_{\text{min}}}{y_{\text{max}}} \ y_0 + v_{\text{min}}$$
 (1)

Navedenim izrazima definirano je prevođenje iz jednog u drugi sustav.

8.2 Skupovi Mandelbrota i Julije

Neka je zadano iterativno preslikavanje:

$$z_{n+1} = f(z_n), \tag{2}$$

gdje je $f(z_n)$ na primjer $z_{n+1} = f(z_n) = z_n^2 + c$, $z,c \in C$, a c je odabrana točka kompleksne ravnine za koju ispitujemo konvergenciju generiranog niza. Za ovako definirano iterativno preslikavanje možemo promatrati da li niz koji generiramo (z_0 , z_1 , z_2 , ...) konvergira ili ne. Uvjet zaustavljanja u programskoj implementaciji može biti različit. Jedan primjer kriterija kojim ustanovljavamo da li niz konvergira je ocjena apsolutne vrijednosti:

$$|z_n| = \sqrt{u^2 + v^2}, |z_n| < \varepsilon, \quad n > n_0$$

Ako iterativno preslikavanje $z_{n+1} = f(z_n)$ nakon n iteracija ne zadovolji uvjet $|z| > \varepsilon$ reći ćemo da niz konvergira, a inače da divergira. Definirat ćemo "brzinu divergencije" brojem iteracija koje su potrebne da uvjet $|z| > \varepsilon$ bude zadovoljen. Postupak se provodi tako da se za svaki slikovni element ravnine prikaza (x_0, y_0) odredi pripadna točka kompleksne ravnine, te za nju ispita konvergencija pripadnog niza. Područje kompleksne ravnine unutar kojega iterativno preslikavanje generira konvergentne nizove naziva se Mandelbrot-ov skup.

Za Julijev skup potrebno je odabrati $c \in C$ (točku kompleksne ravnine), a z_0 je točka kompleksne ravnine za koju ispitujemo konvergenciju niza. Ako se za $c \in C$ odabere točka unutar Mandelbrot-ovog skupa Julijev skup će biti povezan, a inače nepovezan.

8.3 Radni zadatak

8.3.1 Postupak za Mandelbrotov skup:

- 1. Učitati prag epsilon *eps* i maksimalan broj iteracija *m*.
- 2. Učitati područje kompleksne ravnine koja se promatra (u_{min} , u_{max}), (v_{min} , v_{max}).
 - 3. Pročitati razlučivost zaslona x _{max}, y_{max}.
 - 4. Za svaku točku zaslona x₀, y₀:
 - a) odrediti u_0 , v_0 (prema formuli 1).
 - a) Postaviti: k = -1, $c_{real} = u_0$, $c_{imag} = v_0$, $z_0 = 0$.
 - b) Činiti:

$$k = k + 1$$
,
 $z_{n+1} = z_n^2 + c$
 $r = \sqrt{z_{real}^2 + z_{imag}^2}$

dok je ispunjen uvjet r < eps i k < m:

5. Na mjestu x₀, y₀ iscrtati slikovni element u boji k .

Primjer: eps=100, m=16, $(u_{min}, u_{max}) = (-1.5, 0.5)$, $(v_{min}, v_{max}) = (-1, 1)$

8.3.2 Postupak za Julijev skup:

Postupak je sličan prethodnom, a promjene su:

- 1. Dodatno učitati i kompleksnu konstantu $c \in C$.
 - a) Postaviti: k = -1, $z_{real} = u_0$, $z_{imag} = v_0$.

Primjer: eps=100, m=16, $(u_{min} \ u_{max})=(-1 \ 1)$, $(v_{min} \ v_{max})=(-1.2 \ 1.2)$, $(c_{real} \ c_{imag})=(0.32 \ 0.043)$.

Slika 8.2: Mandelbrotov i Julijev fraktalni skup.