## In the Claims:

Please amend the claims as follows:

1. (Currently Amended) A compound of the Formula I or II

$$R^4$$
 $NH_2$ 
 $N$ 

in which

- $R^1$  is hydrogen, or branched and unbranched  $C_1$ - $C_6$ -alkyl, it also being possible for one C atom of the alkyl radical to carry  $OR^{11}$  or a group  $R^5$ , where  $R^{11}$  is hydrogen or  $C_1$ - $C_4$ -alkyl, and
- is hydrogen, chlorine, bromine, iodine, fluorine, CF3 CF3, nitro, NHCOR<sup>21</sup>, NR<sup>22</sup>R<sup>23</sup>, OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, O-C<sub>1</sub>-C<sub>4</sub>-alkylphenyl, NH<sub>2</sub>, CN, a straight or branched C<sub>1</sub>-C<sub>6</sub>-alkyl, OR<sup>21</sup> or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R<sup>24</sup>, and R<sup>21</sup> and R<sup>22</sup>, independently of one another, are hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, and R<sup>23</sup> is hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl or phenyl, and R<sup>24</sup> is OH, C<sub>1</sub>, C<sub>6</sub>-alkyl C<sub>1</sub>-C<sub>6</sub>-alkyl, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, chlorine, bromine, iodine, fluorine, CF<sub>3</sub>, nitro or NH<sub>2</sub>, and
- x may be 0, 1 or 2 and
- R<sup>3</sup> is  $-D (F^1)_p (E)_q (F^2)_r$ ,  $G -D (F^1)_p (E)_q (F^2)_r G$ , where p, q and r may not simultaneously be 0, or is  $-E (D)_u (F^2)_s (G)_v E (D)_u (F^2)_s (G)_v$ , it also being

possible for the radical E to be substituted by one or two radicals A, and if v = 0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrrolidine or piperidine, or  $R^3$  is  $\underline{-O-(CH_2)_o-(CHR^{31})_m-(CH_2)_n-G}$ ,

$$-N$$
 $R^{32}$ ,  $-N$ 
 $R^{32}$ ,  $-N$ 
 $R^{52}$ 

or R<sup>3</sup> is B, and

R<sup>31</sup> is hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, OH or O-C<sub>1</sub>-C<sub>4</sub>-alkyl and

 $R^{32}$  is hydrogen,  $-(CH_2)_0-(CHR^{31})_m-(CH_2)_n-G$  or  $-(CH_2)_p-G$ ,

m and o independently of each other are 0, 1, or 2 and

## n may be 1, 2, 3 or 4 and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, OH, nitro, CF<sub>3</sub>, CN, NR<sup>41</sup>R<sup>42</sup>, NH-CO-R<sup>43</sup> or O-C<sub>1</sub>-C<sub>4</sub>-alkyl, where R<sup>41</sup> and R<sup>42</sup>, independently of one another, are hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl and

 $R^{43}$  is hydrogen,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkylphenyl or phenyl, and

- D is S or  $\Theta$  O, and
- E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine or trihydroazepine, and
- F<sup>1</sup> is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C<sub>1</sub>-C<sub>4</sub>-alkyl group, and
- F<sup>2</sup> is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C<sub>1</sub>-C<sub>4</sub>-alkyl group, and
- p may be 0 or 1,

- q may be 0 or 1,
- r may be 0 or 1,
- s may be 0 or 1,
- u may be 0 or  $\frac{1}{2}$ ,
- v may be 0 or 1, and
- G may be  $NR^{51}R^{52}$  or

$$R^{52}$$
 $R^{52}$ 
 $R^{52}$ 

and

R<sup>51</sup> is hydrogen or branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl or (CH<sub>2</sub>)<sub>t</sub>-K, and

R<sup>52</sup> is hydrogen, branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, <u>COCH</u><sub>3</sub>, <u>COCF</u><sub>3</sub>, phenyl,

in which

R<sup>53</sup> may be branched or unbranched O-C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl or branched or unbranched C<sub>1</sub>-C<sub>4</sub>-alkylphenyl, where in the case of R<sup>52</sup> and R<sup>53</sup>, independently of one another, one hydrogen of the C<sub>1</sub>-C<sub>6</sub>-alkyl radical may be substituted by one of the following radicals: OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for

the carbocycles of the radicals  $R^{52}$  and  $R^{53}$ , independently of one another, to carry one or two of the following radicals: branched or unbranched  $C_1$ - $C_6$ -alkyl, branched or unbranched O- $C_1$ - $C_4$ -alkyl, OH, F, Cl, Br,  $\frac{1}{L}$ , CF<sub>3</sub>,  $\frac{1}{N}$ 0, NH<sub>2</sub>, CN, COOH, COOC<sub>1</sub>- $\frac{1}{C_4}$ -alkyl,  $\frac{1}{C_4}$ -alkylarnino  $\frac{1}{C_1}$ - $\frac{1}{C_4}$ -alkylarnino, CCl<sub>3</sub>,  $\frac{1}{C_4}$ -dialkylarnino  $\frac{1}{C_1}$ - $\frac{1}{C_4}$ -alkylarnino, SO<sub>2</sub>- $\frac{1}{C_4}$ -alkyl, SO<sub>2</sub>phenyl, CONH<sub>2</sub>, CONH- $\frac{1}{C_4}$ -alkyl, CONHphenyl, CONH- $\frac{1}{C_4}$ -alkylphenyl, NHSO<sub>2</sub>- $\frac{1}{C_4}$ -alkyl, NHSO<sub>2</sub>phenyl, S- $\frac{1}{C_4}$ -alkyl,

$$C_1$$
- $C_4$ -alkyl,  $C_0$ - $C_4$ -alkylphenyl,

CHO,  $CH_2$ -O- $C_1$ - $C_4$ -alkyl,  $-CH_2$ O- $C_1$ - $C_4$ -alkylphenyl,  $-CH_2$ OH, -SO- $C_1$ - $C_4$ -alkylphenyl,  $-SO_2$ NH- $C_1$ - $C_4$ -alkyl, or two radicals form a bridge -O- $(CH_2)_{1,2}$ -O-,

## B may be

and

- A may be hydrogen, chlorine, bromine, iodine, fluorine, CF<sub>3</sub>, nitro, OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, O-C<sub>1</sub>-C<sub>4</sub>-alkylphenyl, NH<sub>2</sub>, branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, CN or NH-CO-R<sup>33</sup>, where R<sup>33</sup> is hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl or phenyl, and
- t is 0, 1, 2, 3, or 4 and
- is phenyl, which may carry at most two radicals, is  $NR^{k1}R^{k2}$  where  $R^{k1}$  and  $R^{k2}$  are as defined for  $R^{41}$  and  $R^{42}$  respectively,  $NH-C_1-C_4$ -alkylphenyl, pyrrolidine, piperidine, 1,2,5,6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical  $C_1-C_6$ -alkyl or homopiperazine, which may also be substituted by an alkyl radical  $C_1-C_6$ -alkyl, and
- R<sup>5</sup> may be hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, NR<sup>7</sup>R<sup>9</sup> and



and

- $R^7$  is hydrogen,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_4$ -alkylphenyl or phenyl, it also being possible for the rings to be substituted by up to two radicals  $R^{71}$ , and
- R<sup>71</sup> is OH, C<sub>1</sub>-C<sub>6</sub>-alkyl, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, chlorine, bromine, iodine, fluorine, CF<sub>3</sub>, nitro or NH<sub>2</sub>, and
- R<sup>8</sup> is hydrogen,  $C_1$ - $C_6$ -alkyl, phenyl or  $C_1$ - $C_4$ -alkylphenyl  $C_1$ - $C_4$ -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R<sup>81</sup>, and
- R<sup>81</sup> is OH, C<sub>1</sub>-C<sub>6</sub>-alkyl, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, chlorine, bromine, iodine, fluorine, CF<sub>3</sub>, nitro, or NH<sub>2</sub>, and
- is hydrogen, COCH<sub>3</sub>, CO-O-C<sub>1</sub>-C<sub>4</sub>-alkyl, COCF<sub>3</sub>, branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, it being possible for one or two hydrogens of the C<sub>1</sub>-C<sub>6</sub>-alkyl radical to be substituted in each case by one of the following radicals: OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl or phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched or unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, nitro, amino, C<sub>1</sub>-C<sub>4</sub>-alkylamino, C<sub>1</sub>-C<sub>4</sub>-dialkylamino, OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, CN, CF<sub>3</sub> or SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 2. (Currently Amended) A compound of the formula I or II as claimed in claim 1 in which
  - $R^1$  is hydrogen, branched and unbranched  $C1 C_6$ -alkyl  $C_1$ - $C_6$ -alkyl, it also being possible for one C atom of the alkyl radical to carry  $OR^{11}$  or a group  $R^5$ , where
  - R<sup>11</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, and
  - $R^2$  is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched  $C_1$ - $C_6$ alkyl, nitro,  $CF_3$ , CN,  $NR^{22}R^{23}$ , NH-CO- $R^{21}$ , or  $OR^{21}$ , where
  - $R^{21}$  and  $R^{22}$  are, independently of one another, is hydrogen or  $C_1$ - $C_4$ -alkyl, and

R23 is hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl or phenyl, and

 $R^3$  is  $-O-(CH_2)_o-(CHR^{31})_m-(CH_2)_n-G$ , where

 $R^{31}$  is hydrogen,  $C_1$ - $C_4$ -alkyl, OH and or O- $C_1$ - $C_4$ -alkyl,

m and o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4, and

 $R^4$  is hydrogen, branched and unbranched  $C_1$ - $C_6$ -alkyl, chlorine, bromine, fluorine, nitro, cyano,  $NR^{41}R^{42}$ , NH-CO- $R^{43}$ , or  $OR^{41}$ , where

 $R^{41}$  and  $R^{42}$  are, independently of one another, hydrogen or  $C_1\text{-}C_4\text{-alkyl}$ , and

 $R^{43}$  is  $C^{\frac{1}{2}}$ - $C_4$ -alkyl  $C_1$ - $C_4$ -alkyl or phenyl, and

G is NR<sup>51</sup>R<sup>52</sup> or one of the following radicals

$$R^{52}$$
  $N - R^{52}$   $R^{52}$   $R^{52}$   $R^{52}$ 

where

R<sup>51</sup> is hydrogen and branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, and

R<sup>52</sup> hydrogen, branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl,

$$\mathbb{R}^{53}$$
, or  $SO_2R^{53}$ 

in which

is branched or unbranched O-C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl, branched or unbranched C<sub>1</sub>-C<sub>4</sub>-alkyl-phenyl, where one hydrogen in the C<sub>1</sub>-C<sub>6</sub>-alkyl radical in R<sup>52</sup> and R<sup>53</sup> can, independently of one another, be substituted by one of the following radicals: OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, where the carbocycles of the R<sup>52</sup> and R<sup>53</sup> radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, branched or unbranched O-C<sub>1</sub>-C<sub>4</sub>-alkyl, OH, F, G<sub>1</sub> Cl, Br, ‡ I, CF<sub>3</sub>, NO<sub>2</sub> NO<sub>2</sub>, NH<sub>2</sub>, CN, COOH, COOC<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkylamino, CCl<sub>3</sub>, C<sub>1</sub>-C<sub>4</sub>-dialkylamino, SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl, SO<sub>2</sub>phenyl, CONH<sub>2</sub>, CONH-C<sub>1</sub>-C<sub>4</sub>-alkyl, CONHphenyl, CONH-C<sub>1</sub>-C<sub>4</sub>-alkyl-phenyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl, NHSO<sub>2</sub>phenyl, S-C<sub>1</sub>-C<sub>4</sub>-alkyl,

$$C_{1}$$
- $C_{4}$ -alkyl ,  $C_{0}$ - $C_{4}$ -alkylphenyl ,

CHO,  $CH_2$ -O- $C_1$ - $C_4$ -alkyl, - $CH_2$ O- $C_1$ - $C_4$ -alkyl-phenyl, - $CH_2$ OH, -SO- $C_1$ - $C_4$ -alkyl-phenyl, SO<sub>2</sub>NH<sub>2</sub>, or -SO<sub>2</sub>NH- $C_1$ - $C_4$ -alkyl

and two radicals form a bridge -O-(CH<sub>2</sub>)<sub>1,2</sub>-O-,

or the tautomeric form, possible enantiomeric and diastereomeric forms thereof, the prodrugs thereof, and pharmacologically physiologically tolerated salts thereof.

- 3. (Currently Amended) A compound of the formula I or II as claimed in claim 1 in which
  - $R^1$  is hydrogen, branched and unbranched  $C_1$ - $C_6$ -alkyl, it also being possible for one C atom of the alkyl radical to carry  $OR^{11}$  or a group  $R^5$ , where
  - R<sup>11</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, and

 $R^2$  is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched  $C_1$ - $C_6$ -alkyl, nitro,  $CF_3$ , CN,  $NR^{22}R^{23}$ , NH-CO- $R^{21}$ ,  $OR^{21}$ , where

 $R^{21}$  and  $R^{22}$ -independently of one another are is hydrogen or  $C_1$ - $C_4$ -alkyl and

R<sup>23</sup>— is hydrogen, C1 C4 alkyl or phenyl

 $R^3$  is

$$-N$$
 $R^{32}$ ,  $-N$ 
 $R^{32}$ ,  $-N$ 
 $R^{52}$ 

and

 $R^{32}$  is hydrogen and or -(CH<sub>2</sub>)<sub>o</sub>-(CHR<sup>31</sup>)<sub>m</sub>-(CH<sub>2</sub>)<sub>n</sub>-G, where  $R^{31}$  is hydrogen, C<sub>1</sub>-C<sub>4</sub>-alkyl, OH and or O-C<sub>1</sub>-C<sub>4</sub>-alkyl,

 $m_7$  and o independently of one another are  $m_1$  0, 1 or 2 and

n is 1, 2, 3 or 4, and

 $R^4$  is hydrogen, branched and unbranched  $C_1$ - $C_6$ -alkyl, chlorine, bromine, fluorine, nitro, cyano,  $NR^{41}R^{42}$ , NH-CO- $R^{43}$ , or  $OR^{41}$ , where

 $R^{41}$  and  $R^{42}$  independently of one another are hydrogen or  $C_1$ - $C_4$ -alkyl and

 $R^{43}$  is  $C_1$ - $C_4$ -alkyl or phenyl, and

G is NR<sup>51</sup>R<sup>52</sup> or one of the radicals below

where

R<sup>51</sup> is hydrogen and or branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl and

is hydrogen, COCH<sub>3</sub>, CO-O-C<sub>1</sub>-C<sub>4</sub>-alkyl, COCF<sub>3</sub>, or branched and unbranched C<sub>1</sub>-C<sub>6</sub>-alkyl, it being possible for one hydrogen of the C<sub>1</sub>-C<sub>6</sub>-alkyl radical to be substituted by one of the following radicals: OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C<sub>1</sub>-C<sub>4</sub>-alkyl, nitro, amino, C<sub>1</sub>-C<sub>4</sub>-alkylamino, OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, and CN, SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl,

and the tautomeric forms, a possible enantiomeric and diastereomeric forms thereof, a the prodrugs thereof, or and pharmacologically physiologically tolerated salts thereof.

- 4. (Previously Presented) A compound as claimed in claim 1, where  $R^2$  is in position 3 and  $R^3$  is in position 4 or  $R^2$  is in position 4 and  $R^3$  is in position 3 relative to the benzimidazole ring.
- 5. (Previously Presented) A compound as claimed in claim 1, where  $R^1$  and  $R^4$  are hydrogen.

- 6. (Previously Presented) A compound as claimed in claim 1, where  $R^2$  is hydrogen, branched or unbranched  $C_1$ - $C_6$ -alkyl, nitro, CN, NH<sub>2</sub>, or O- $C_1$ - $C_4$ -alkyl.
- 7. (Currently Amended) A compound as claimed in claim 1 where (i) for  $\mathbb{R}^3$  being

 $\mathbb{R}^{34} \mathbb{R}^{32}$  is hydrogen or  $-(CH_2)_w - G - (CH_2)_p - G$ , where

wp is 1 or 2 and

(ii) for R<sup>3</sup> being

 $\mathbb{R}^{31} \mathbb{R}^{32}$  is hydrogen or -(CH<sub>2</sub>)<sub>p</sub>-G, where

p is 1 or 2 and

and (iii) for R<sup>3</sup> being

$$--N$$
  $(CH_2)_{1,2}$   $N--R^{52}$ 

where

 $R^{52}$  is hydrogen, branched and unbranched  $C_1$ - $C_6$ -alkyl, where one hydrogen of the  $C_1$ - $C_6$ -alkyl radical may be substituted by one of the following radicals: OH, O- $C_1$ - $C_4$ -alkyl and phenyl, and where the phenyl ring may also carry one or two of

the following radicals: chlorine, bromine, fluorine, branched and unbranched C<sub>1</sub>-C<sub>4</sub>-alkyl, nitro, amino, C<sub>1</sub>-C<sub>4</sub>-alkylamino, C<sub>1</sub>-C<sub>4</sub>-dialkylamino, OH, O-C<sub>1</sub>-C<sub>4</sub>-alkyl, CN, and SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl.

- 8. (Currently Amended) A compound as claimed in claim 1, where  $R^3$  is  $-D-(F^1)_p-(E)_q-(F^2)_r-G$  where D is O, F1  $F^1$  is a  $C_1-C_4$  carbon chain, p is 1, q is 0 and r is 0.
- 9. (Previously Presented) A compound as claimed in claim 1, where R<sup>5</sup> is a 6-membered ring and R<sup>52</sup> is an optionally substituted phenyl ring.
- 10. (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.
- 11. (Previously Presented) A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder.
- 12. (Currently Amended) The use of compounds of the formula I The method as claimed in claim 11 wherein the disorder is a neurodegenerative disease or involves neuronal damage.
- 13. (Previously Presented) The method as claimed in claim 12, wherein the neurodegenerative disease or neuronal damage is induced by ischemia, trauma or massive

bleeding.

- 14. (Previously Presented) The method as claimed in claim 11 wherein the disorder is stroke or craniocerebral trauma.
- 15. (Currently Amended) The method as claimed in claim 11 wherein the disorder is Alzheimer's disease and or Huntington's disease.

- 16. (Previously Presented) The method as claimed in claim 11 wherein the disorder is damage due to ischemia.
- 17. (Previously Presented) The method as claimed in claim 11 wherein the disorder is epilepsy.
- 18. (Previously Presented) The method as claimed in claim 11 wherein the disorder is damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Previously Presented) The method as claimed in claim 11 wherein the disorder is damage to the heart after cardiac ischemia.

- 20. (Currently Amended) The method as claimed in claim 11 wherein the disorder is a microinfarcts microinfarct.
- 21. (Previously Presented) The method as claimed in claim 11 wherein the disorder is under vascularization of critically narrowed coronary arteries.
- 22. (Currently Amended) The method as claimed in claim 11 wherein the disorder is an acute myocardial infarct and or damage during an after medical or mechanical lysis thereof.
- 23. (Previously Presented) The method as claimed in claim 11 wherein the disorder is a tumor or metastasis thereof.
- 24. (Previously Presented) The method as claimed in claim 11 wherein the disorder is sepsis of multi-organ failure.
- 25. (Previously Presented) The method as claimed in claim 11 wherein the disorder is an immunological disease.
- 26. (Previously Presented) The method as claimed in claim 11 wherein the disorder is diabetes mellitus.