CVEN30008 ENGINEERING RISK ANALYSIS

Quantitative Risk Analysis Estimation of Sample Size and Power

COORDINATOR:
Dr Lihai Zhang
Infrastructure Engineering
Iihzhang@unimelb.edu.au

Estimation of Sample Size and Power

Limitations of Hypothesis Testing

Hypothesis testing involving a significance level α , has two types of errors:

- Type I error: H_0 is rejected when it is True.
- Type II error: H_0 is not rejected when it is False.

Estimation of sample size and power

In order to minimise the probability of Type I error:

Select a small significance level, α (e.g. α ≤ 0.05)

$$H_0: \mu \geq \mu_0$$

$$H_0: \mu \leq \mu_0$$

The **Power** is the probability of **avoiding Type II error**:

Power =
$$1 - P(Type II error)$$

Power ≥ 0.8 is generally considered to be acceptable

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

The **Power** is the probability of **avoiding Type II error**:

Power =
$$1 - P(Type\ II\ error)$$

To calculate the power:

- Step 1: Determine H₀ and H₁
- Step 2: Select α and obtain Z
- Step 3: Approximate σ (through a preliminary sample or a sample of a similar population), and sample size, n

Note: While conducting the test, the sample is not yet drawn, and therefore σ needs to be assumed.

Step 4: Identify the critical point:

$$Critical\ Point = \mu_0 + Z \frac{\sigma}{\sqrt{n}}$$

• Step 5: Assume an alternative mean, μ_A (usually close to μ_0) for the alternative distribution

• Step 6: Using the critical point identified in Step 4, define Z_A for the alternative distribution

$$Z_A = \frac{(\text{Critical Point} - \mu_A)\sqrt{n}}{\sigma}$$

Step 7: Calculate P(Type II error) using Z_A:

Left Tail

$$H_0: \mu \geq \mu_0$$

Right Tail

$$H_0: \mu \leq \mu_0$$

Power=Area to the left of Z_A

Power=Area to the right of Z_A

Note: Power ≥ 0.8 is generally considered to be acceptable

Example 1: Calculation of Power (Risk of Concrete Failure)

A decision needs to be made concerning the production of high strength concrete. Find the power: with a significance level, α of 5%, and the hypothesis testing consists of H_0 : $\mu \le 80$ MPa and H_1 : $\mu > 80$ MPa; the alternative mean, μ_A , is 82 MPa, and assuming that the sample size, n = 50 and the standard deviation, $\sigma = 5$ MPa. The production will commence if Power ≥ 0.8 in order to reduce Type II error.

Solution

Left Tail

$$H_0: \mu \geq \mu_0$$

Critical Point =
$$\mu_0 + Z \frac{\sigma}{\sqrt{n}}$$

Critical Point =
$$\mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

Right Tail

$$H_0: \mu \leq \mu_0$$

Critical Point =
$$\mu_0 + Z \frac{\sigma}{\sqrt{n}}$$
 Critical Point = $\mu_A + Z_A \frac{\sigma}{\sqrt{n}}$

Critical Point =
$$\mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

Estimation of sample size and power

In order to determine the required sample size, *n*:

- Step 1: Determine H₀ and H₁
- Step 2: Select α and obtain Z
- Step 3: Approximate σ
- Step 4: Obtain the expression of the critical point
- Step 5: Define μ_A
- Step 6: Select an acceptable Power, P(Type II error)= 1-Power
- Step 7: Determine \mathbb{Z}_{A} by using P(Type II error)
- Step 8: Use the following equation and solve it for sample size, n

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

Example 2: Calculation of Sample Size (Risk of Concrete Failure)

Find the sample size of the production of high strength concrete, with a significance level, α , of 5%, and the hypothesis testing consists of H_0 : $\mu \le 80$ MPa and H_1 : $\mu > 80$ MPa; the alternative mean, μ_A , is 81 MPa, and assuming that the standard deviation, σ , is 7 MPa and the Power is 0.9.

Solution