SOLUZIONE DI FINE SEMESTRE DEL 6/6/07

- 1. Si calcoli il gruppo di Galois del polinomio $x^4 + 10x^2 4x + 2 \in \mathbf{Q}[x]$.
- **RISPOSTA:** Il polinomio è 2-Eisenstein e quindi è irriducibile. La risolvente cubica è $x^3 10x^2 8x + 64 + il$ cui discriminante è pari a $2^8 \times 31^2$ pertanto il gruppo di Galois del polinomio di partenza è il gruppo alterno A_4 .
 - 2. Determinare tutti i sottocampi del campo $\mathbf{Q}(\zeta_{17})$.
- **RISPOSTA:** Si applica il Teorema di corrispondenza di Galois all'estensione $\mathbf{Q}(\zeta_{17})/\mathbf{Q}$ il cui gruppo di Galois è ciclico con 16 elementi. I sottogruppi del gruppo di Galois corrispondono ai divisori di 16. Al divisore 1 corrisponde $\mathbf{Q}(\zeta_{17})$, al divisore 2 corrisponde $\mathbf{Q}(\cos 2\pi/17)$ al divisore 4 corrisponde $\mathbf{Q}(\eta)$ (dove $\eta = \zeta_{17} + \zeta_{17}^4 + \zeta_{17}^{13} + \zeta_{17}^{13}$ è un periodo di Gauss che soddisfa il polinomio $x^4 + x^3 6x^2 x + 1$) al divisore 8 corrisponde $\mathbf{Q}(\sqrt{17})$ e al divisore 16 corrisponde \mathbf{Q} .
 - 3. Descrivere la chiusura algebrica di \mathbf{F}_7 giustificando la risposta.
- RISPOSTA: Vedi note Milne. Proposizione 4.23 a pagina 42.
 - 4. Dopo aver dimostrato che $\cos(\pi/8)$ è costruibile, se ne determini esplicitamente una costruzione.
- RISPOSTA: Siccome $\mathbf{Q}(\cos(\pi/8))$ è un estensione reale e di Galois dei razionali e siccome $[\mathbf{Q}(\cos(\pi/8):\mathbf{Q})]=4$ è una potenza di 2, per una nota caratterizzazione dei numeri costruibili, si ha che $\cos(\pi/8)$ è costruibile. Inoltre siccome $\cos(\pi/8) = \sqrt{(1+\cos(\pi/4))/2} = \sqrt{(1+1/\sqrt{2})/2}$, si ha che $\mathbf{Q} \subset \mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\cos(\pi/8))$ è una costruzione.
 - 5. Determinare almeno due valori distinti di M tali che $\mathbf{Q}(\zeta_M)$ contiene un sottocampo con gruppo di Galois su \mathbf{Q} isomorfo a $C_6 \times C_{12}$.
- RISPOSTA: Basta osservare che Gal $(\mathbf{Q}(\zeta_7)/\mathbf{Q})$ e che Gal $(\mathbf{Q}(\zeta_{13})/\mathbf{Q})$ $\cong C_{12}$. Quindi sia $M_1 = 7 \times 13$ e $M_2 = 3 \times 7 \times 13$. Si ha che Gal $(\mathbf{Q}(\zeta_{M_1})/\mathbf{Q})$ $\cong C_6 \times C_{12}$ e che $(\mathbf{Q}(\zeta_{M_2})/\mathbf{Q})$ $\cong C_2 \times C_6 \times C_{12}$ e per entrambi il valori M_1 e M_2 si ha la proprietà richiesta.
 - 6. Dimostrare giustificando la risposta che se p è primo allora $(x^{p^5} x)/(x^p x) \in \mathbf{F}_p[x]$ è il prodotto di tutti i polinomi irriducibili su \mathbf{F}_p di grado 5.
- **RISPOSTA:** Vedi note Milne. Corollario 4.20 a pagina 42 e si osservi che $(x^{p^5} x)/(x^p x)$ non ha fattori lineari.
 - 7. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.
- RISPOSTA: Vedi note Milne. Teorema 3.16 a pagina 29.
 - 8. Dimostrare che se f è un polinomio a coefficienti razionali senza fattori multipli di grado n, allora $G_f \subset A_n$ se e solo se il discriminante di f è un quadrato perfetto.
- RISPOSTA: Vedi note Milne. Proposizione 4.1 e Corollario 4.2 a pagina 36.
 - 9. Calcolare il numero di elementi del campo di spezzamento del polinomio $(x^{2^8} x)(x^8 + x^4 + 1)(x^{12} + x^4 + 1)(x^5 + x) \in \mathbf{F}_2[x]$.
- RISPOSTA: Notare che
 - a. $(x^{2^8} x)(x^8 + x^4 + 1)(x^12 + x^4 + 1)(x^5 + x) = (x^{2^8} x)(x^2 + x + 1)^2(x^3 + x + 1)^4x(x + 1)^4$.
 - b. Un campo di spezzamento su \mathbf{F}_2 di $x^{2^8} x$ ha 2^8 elementi e contiene le radici di $x^2 + x + 1$.
 - c. Un campo di spezzamento su \mathbf{F}_2 di $x^3 + x + 1$ ha 2^3 elementi.
 - Quindi il campo di spezzamento del polinomio ha $2^{\text{mcm}(8,3)} = 2^{24}$ elementi.