$^{137}_{55}$ Cs $_{82}$

1 Decay Scheme

Cs-137 disintegrates by beta minus emission to the ground state of Ba-137 (5,6%) and via the 661 keV isomeric level of Ba-137 (94,4%) which has a half-life of 2,55 min.

Le césium 137 se désintégre par émission bêta moins vers le niveau fondamental de barium 137 (5,6 %) ainsi que vers le niveau isomère de 661 keV (94,4 %) et de 2,55 min de période.

2 Nuclear Data

 $T_{1/2}(^{137}\text{Cs})$: 30,05 (8) a $Q^{-}(^{137}\text{Cs})$: 1175,63 (17) keV

2.1 β^- Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-}$	513,97 (17)	94,36 (28)	Unique 1st Forbidden	9,63
	892,1 (2)	0,00061 (8)	Unique 2nd Forbidden	15,64
	1175,63 (17)	5,64 (28)	2nd Forbidden	12,06

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$
$\gamma_{1,0}(\mathrm{Ba})$ $\gamma_{2,0}(\mathrm{Ba})$	283,5 (1)	0,00061 (8)	[M1,E2]	0,046 (3)	0,0073 (10)	0,0015 (2)	0,0557 (13)
	661,659 (3)	94,36 (20)	M4	0,0896 (15)	0,0165 (5)	0,00352 (7)	0,1102 (19)

3 Atomic Data

3.1 Ba

3.1.1 X Radiations

		Energy keV		Relative probability
$ m X_{K}$				
	$K\alpha_2$	31,8174		54,28
	$K\alpha_1$	32,1939		100
	$K\beta_3$	36,3045	}	
	$K\beta_1$	$36,\!3786$	}	
	$\mathrm{K}eta_5^{\prime\prime}$	36,654	}	29,4
	$\mathrm{K}eta_2$	37,258	}	
	$K\beta_4$	37,312	}	7,42
	$KO_{2,3}$	$37,\!425$	}	,
$ m X_L$				
	$\mathrm{L}\ell$	3,954		
	${ m L}\gamma$	$-5,\!809$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	$25,314 - 26,786 \ 30,095 - 32,179 \ 34,86 - 37,41 \ 2,6 - 5,8$	100 47,7 5,7

4 Electron Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.
(Ba)	2,6 - 5,8	7,28 (12)
(Ba) KLL KLX KXY	25,314 - 26,786 30,095 - 32,179 34,86 - 37,41	0,76 (4) } } }
(Ba) (Ba)	624,218 (3) 655,670 - 656,412	9,37 (14) 7,62 (13) 1,40 (4) 0,299 (6)
0	, , ,	94,36 (28)
avg:	300,57 (8)	0,00061 (8) 5,64 (28)
	(Ba) KLL KLX KXY (Ba) (Ba) (Ba) (Ba) max: avg: max: avg:	keV (Ba) 2,6 - 5,8 (Ba) KLL KLL 25,314 - 26,786 KLX 30,095 - 32,179 KXY 34,86 - 37,41 (Ba) 624,218 - 661,644 (Ba) 624,218 (3) (Ba) 655,670 - 656,412 (Ba) 660,366 - 660,878 max: 513,97 (17) avg: 174,32 (6) max: 892,1 (2) avg: 300,57 (8) max: 1175,63 (17)

5 Photon Emissions

5.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Photons per 100 disint.	
XL $XK\alpha_2$ $XK\alpha_1$	(Ba) (Ba) (Ba)	3,954 - 5,809 $31,8174$ $32,1939$		0,90 (5) 1,95 (4) 3,59 (7)	} Κα }
$XK\beta_3$ $XK\beta_1$ $XK\beta_5''$	(Ba) (Ba) (Ba)	36,3045 36,3786 36,654	} } }	1,055 (22)	$ ext{K}'eta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Ba) (Ba) (Ba)	37,258 37,312 37,425	<pre>} } </pre>	0,266 (8)	${\rm K}'\beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.		
$\gamma_{1,0}(\mathrm{Ba})$ $\gamma_{2,0}(\mathrm{Ba})$	283,5 (1) 661,657 (3)	0,00058 (8) 84,99 (20)		

6 Main Production Modes

Fission product.

7 References

- M.A.WAGGONER. Phys. Rev. 82 (1951) 906 (K ICC)
- R.L.Heath. Phys. Rev. 87 (1952) 1132 (K ICC)
- V.M.Dolishnyuk, G.M.Drabkin, V.I.Orlov, L.I.Rusinov. Doklady Akad.Nauk SSSR 92 (1953) 1141 (К ICC)
- T.Azuma. J. Phys. Soc. Jap. 9 (1954) 1 (K ICC)
- J.Verhaeghe, J.Demuynck. Compt. Rend. 239 (1954) 1374 (K/L)
- F.Brown, G.R.Hall, A.J.Walter. J. Inorg. Nucl. Chem. 1 (1955) 241 (Half-life)
- D.M.WILES, R.H.TOMLINSON. Phys. Rev. 99 (1955) 188 (Half-life)
- F.K.McGowan, P.H.Stelson. Phys. Rev. 107 (1957) 1674 (K ICC)
- R.A.RICCI. Physica 23 (1957) 693 (ICC, Beta emission probabilities)
- A.J.Moses, H.D.Cook. Report TID-7568 part 2 (1958) 192 (Half-life)
- Y.Yoshizawa. Nucl. Phys. 5 (1958) 122 (K ICC, Beta emission probabilities)
- A.H.Wapstra, G.J.Nijgh, N.Salomons-Grobben, L.T.M.Ornstein. Nucl. Phys. 9 (1959) 538 (K ICC)
- S.Hultberg, R.Stockendal. Ark. Fysik 14 (1959) 565 (K ICC)
- C.DE VRIES, E.J.BLEEKER, N.SALOMONS-GROBBEN. Nucl. Phys. 18 (1960) 454 (K ICC)
- W.Beusch. Helv. Phys. Acta 33 (1960) 363 (Double particle emission)
- H.Farrar, A.K.Dasgupta, R.H.Tomlinson. Can. J. Chem. 39 (1961) 681 (Half-life)
- M.P.Glazunov, A.I.Grivkova, B.A.Zaitsev, V.A.Kiselev. Atomic Energy 10 (1961) 622 (Half-life)
- S.Hultberg, D.J.Horen, J.M.Hollander. Nucl. Phys. 28 (1961) 471 (K ICC)
- J.S.Geiger, R.L.Graham, F.Brown. Can. J. Phys. 40 (1962) 1258 (K/L)

- H.Daniel, H.Schmitt. Z. Phys. 168 (1962) 292 (ICC, Beta emission probabilities)
- D.G.Fleishman, I.V.Burovina, V.P.Nesterov. Atomic Energy 13 (1962) 1225 (Half-life)
- H.E.Bosch, T.Urstein. Nucl. Instrum. Methods 24 (1963) 109 (ICC)
- B.F.Rider, J.P.Peterson, Jr, C.P.Ruiz. Nucl. Sci. Eng. 15 (1963) 284 (Half-life)
- S.G.Gorbics, W.E.Kunz, A.E.Nash. Nucleonics 21,1 (1963) 63 (Half-life)
- H.D.Cook, C.J.Rettger, W.J.Sewalk. Report WAPD-BT-30 (1964) (Half-life)
- H.U.Gersch, E.Hentschel, P.Gippner, W.Rudolph. Nucl. Instrum. Methods 25 (1964) 314 (K/L)
- Y.Y.Chu, M.L.Perlman. Phys. Rev. 135 (1964) B319 (K/L)
- M.R.RAO, S.JNANANANDA. Nucl. Instrum. Methods 36 (1965) 261 (ICC)
- K.F.Flynn, L.E.Glendenin, A.L.Harkness, E.P.Steinberg. J. Inorg. Nucl. Chem. 27 (1965) 21 (Half-life)
- R.E.LEWIS, R.E.MCHENRY, T.A.BUTLER. Trans. Amer. Nucl. Soc. 8 (1965) 79 (Half-life)
- J.MERRITT, J.G.V.TAYLOR. Anal. Chem. 37 (1965) 351 (ICC, Gamma emission probabilities, Beta emission probabilities)
- D.Parsignault. Thesis, Univ. Paris and Report CEA-R-2631 (1965) (Total and K ICC)
- S.A.Reynolds. ORNL-3889 (1966) 57 (Half-life)
- M.R.RAO, S.JNANANANDA. Phys. Abstr. 69 (1966) 666 (ICC)
- S.T.HSUE, L.M.LANGER, E.H.SPEJEWSKI, S.M.TANG. Nucl. Phys. 80 (1966) 657 (K ICC)
- S.Hultberg, A.A.Bartlett, J.H.Hamilton. Ed. Academic Press, Inc, New York (1966) 141 (K ICC, Beta shape)
- S.T.HSUE, L.M.LANGER, S.M.TANG. Nucl. Phys. 86 (1966) 47 (Beta emission probabilities)
- E.Baldinger, E.Haller. Helv. Phys. Acta 40 (1967) 800 (K ICC)
- H.H.HANSEN, M.DELABAYE. CONF-661012 (1967) 361 (K ICC)
- J.L.Wolfson, A.J.Collier. Nucl. Phys. A112 (1968) 156 (Beta emission energies)
- S.A.REYNOLDS, J.F.EMERY, E.I.WYATT. Nucl. Sci. Eng. 322 (1968) 46 (Half-life)
- A.Ljubicic, B.Hrastnik, K.Ilakovac, V.Knapp, B.Vojnovic. Phys. Rev. 187 (1969) 1512 (Double particle emission)
- H.H.HANSEN, G.LOWENTHAL, A.SPERNOL, W.VAN DER EIJK, R.VANINBROUKX. Z. Phys. 218 (1969) 25 (ICC, Gamma and beta emission probabilities)
- H.Schneuwly, L.Schellenberg, O.Huber, W.Lindt. Helv. Phys. Acta 42 (1969) 743 (Beta minus shape)
- G.HARBOTTLE. Radiochim. Acta 13 (1970) 132 (Half-life)
- K.F.Walz, H.M.Weiss. Z. Naturforsch. 25a (1970) 921 (Half-life)
- J.P.Brethon. Report CEA-R-4196 (1971) (K ICC)
- J.L.Campbell, H.J.Smith, I.K.Mackenzie. Nucl. Instrum. Methods 92 (1971) 237 (X-ray emission probabilities)
- A.Ljubicic, B.Hrastnik, K.Ilakovac, M.Jurcevic, I.Basar. Phys. Rev. C3 (1971) 824 (Double particle emission)

- A.Ljubicic, M.Jurcevic, K.Ilakovac, B.Hrastnik. Phys. Rev. C3 (1971) 831 (Double particle emission)
- F.T.Porter, M.S.Freedman, F.Wagner, Jr. Phys. Rev. C3 (1971) 2246 (Double particle emission)
- J.F.EMERY, S.A.REYNOLS, E.I.WYATT, G.I.GLEASON. Nucl. Sci. Eng. 48 (1972) 319 (Half-life)
- L.A.DIETZ, C.F.PACHUCKL. J. Inorg. Nucl. Chem. 35 (1973) 1769 (Half-life)
- J.A.CORBETT. Nucl. Eng. Int. 18 (1973) 715 (Half-life)
- J.B.Willett, G.T.Emery. Ann. Phys. New York 78 (1973) 496 (K ICC)
- J.Legrand, J.P.Brethon, F.Lagoutine. Report CEA R-4428 (1973) (ICC Half-life, Gamma emission probabilities, Beta emission probabilities)
- I.W.GOODIER, J.L.MAKEPEACE, L.E.STUART. Int. J. Appl. Radiat. Isotop. 26 (1975) 490 (ICC, Gamma and beta emission probabilities)
- G.L.Borchert. Z. Naturforsch 31a (1976) 387 (Gamma-ray energies)
- F.RÖSEL, H.M.FRIES, K.ALDER, H.C.PAULI. At. Data. Nucl. Data Tables 21 (1978) 91 and 292 (ICC)
- P.Christmas, P.Cross. Metrologia 14 (1978) 157 (ICC)
- W.H.GRIES, J.STEYN. Nucl. Instrum. Methods 152 (1978) 459 (Half-life, Beta emission probabilities)
- K.Y.Gromov, T.Kretsu, V.V.Kuznetsov, G.Makarie. Izv. Akad. Nauk SSSR. Ser. Fiz. 42 (1978) 790 (ICC, Half-life, Gamma emission probabilities, Beta emission probabilities)
- K.Y.Gromov, T.Kretsu, V.V.Kuznetsov, G.Makarie. Bull. Ac. Sci. USSR. Phys. Ser. 42,4 (1978) 85 (ICC, Half-life, Gamma emission probabilities, Beta emission probabilities)
- J.S.MERRITT, F.H.GIBSON. Report AECL-6203 (1978) (Gamma emission probabilities)
- A.R.Rutledge, L.V.Smith, J.S.Merritt. AECL-6692 (1980) (Half-life)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- A.R.Rutledge, J.S.Merritt, L.V.Smith. AECL-6788 (1980) 45 (Half-life)
- D.D.Hoppes, J.M.R.Hutchinson, F.J.Schima, M.P.Unterweger. NBS-SP-626 (1982) 85 (Half-life)
- A.R.Rutledge, L.V.Smith, J.S.Merritt. NBS-SP-626 (1982) 5 (Half-life)
- K.F.Walz, K.Debertin, H.Schrader. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- H.Behrens, P.Christmas. Nucl. Phys. 399 (1983) 131 (ICC, Gamma emission probabilities)
- H.H.HANSEN. European App.Res.Rept.Nucl.Sci.Technol. 6,4 (1985) 777 (ICC)
- D.Mehta, S.Singh, H.R.Verma, N.Singh, P.N.Trehan. Nucl. Instrum. Methods Phys. Res. A254 (1987) 578 (X-Ray emission probabilities)
- R.H.Martin, J.G.V.Taylor. Nucl. Instrum. Methods Phys. Res. A286 (1990) 507 (Half-life)
- M.J.Woods. Nucl. Instrum. Methods Phys. Res. A286 (1990) 576 (Half-life)
- Zs.Nemeth, A.Veres. Nucl. Instrum. Methods Phys. Res. A286 (1990) 601 (K ICC, T ICC)
- W.Bambynek, T.Barta, R.Jedlovszky, P.Christmas, N.Coursol, K.Debertin, R.G.Helmer, A.L.Nichols, F.J.Schima, Y.Yoshizawa. IAEA-TECDOC-619 (1991) (Half-life analysis)
- M.U.RAJPUT, T.D.MACMAHON. Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Half-life analysis)

- V.K.Basenko, A.N.Berlizov, G. A.Prokopets. Bull. Russian Acad. Sci. 56,1 (1992) 94 (Gamma emission probabilities)
- M.P.Unterweger, D.D.Hoppes, F.J.Schima. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- J.-J.GOSTELY. Int. J. Appl. Radiat. Isotop. 43 (1992) 949 (Half-life)
- I.M.BAND, M.B.TRZHASKOVSKAYA. At. Data. Nucl. Data Tables 55 (1993) 43 (Conv. Elec. emission probabilities)
- V.K.Basenko, A.N.Berlizov, G.A.Prokopets. Bull. Russian Acad. Sci. 57 (1993) 55 (Gamma emission probabilities)
- S.I.Kafala, T.D.MacMahon, P.W.Gray. Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Half-life analysis)
- I.Bikit, I.Anicin, J.Slivka, M.Krmar, J.Puzovic, Lj.Conkic. Phys. Rev. C54 (1996) 3270 (Gamma emission probabilities)
- Schönfeld, H.Janssen. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- J.K.Tuli. Nucl. Data Sheets 81 (1997) 579 (Spin, level half-life)
- B.K.Wagner, P.E.Garrett, M.Yeh, S.W.Yates. Private Communication (1997) (Gamma emission probabilities)
- M.-M.Bé, E.Browne, V.Chechev, R.Helmer, E.Schönfeld. Table de Radionucléides, CEA-ISBN 2 7272 0200 8, and Comments CEA-ISBN 2 7272 0211 3 (1999) (Cs-137 decay data evaluation)
- R.G.Helmer, C.van der Leun. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma ray energies)
- O.Helene, V.R.Vanin. Nucl. Instrum. Methods Phys. Res. A481 (2002) 626 (Half-life analysis)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 337 (O)
- H.Schrader. Appl. Rad. Isotopes 60 (2004) 317 (Half-life analysis)
- M.J.WOODS, S.M.COLLINS. Appl. Rad. Isotopes 60 (2004) 257 (Half-life analysis)

