Applications

i) In combinatories and graph theory.

Let S be a set of elements and Ti, Tz, ..., Tm & S S. E. "Hypergraph" ITil=l + i ∈ [1:m]

Cardinality

Q. Can me 2-colons S s.t no Ti is monochromatic i.e., each Ti should have both the colones?

(Coloneing func C: S -> { Black. White }).

$$m=3$$
 $2^{l-1}=2$ Here $m>2^{l-1}$

» Not 2 colonable.

If we find one possible colouring s.t each Ti has 2 colours, then S is 2 - colonable.

. Then there exists a 2-colouring such that

no T_i is monocheromatric $T_1, T_2, T_3, ..., T_m \subseteq S$ and $|T_i| = l \int_{C_i(u, w)} C_i(u, w)$ (Implicit assumption: l > 1?)

Peroof idea: Given (s, F, P).

If P(A) > 0, then wEA (i.e., A is NOT)

Peroof:
$$S = \{x_1, x_2, \dots, x_n\}$$

B W W B

Assign colones randomly and independently with

each colon's probability 1.

$$\Sigma = \{w, B\}^n$$
 $A = \{w \in \Sigma : no T_i \text{ is monochrometries}\}$

$$P(\{w\}) = \frac{1}{2^n}$$

-Now if we show

Note "Strictly greater than sign".

WE SE I'VE. This w EA: each Ti is not monochrom

Let Ei = & Ti is monocheronatics.

Given a colouring, look at each Ti, if any of the Ti's is monochronaties then include that w in courseponding Ei.

Eg:
$$n_1$$
 n_2 , \dots n_n n_n n_n

B B B B B \dots n_n n_n

W W W \dots n_n n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n_n
 n

=)
$$P(E_i) = \frac{2^{n-l}}{2^n} + \frac{2^{n-l}}{2^n} = \frac{1}{2^{l-1}}$$

$$P(\bigcup_{i=1}^{m} E_i) \leq \sum_{i=1}^{m} P(E_i) = \frac{m}{2^{l-1}}$$

So if
$$m < 2^{l-1} \Rightarrow \bigotimes_{i=1}^{m} P(E_i) < 1$$

2) Estimation

Given RV \times and PMF P_X and a conditional distri $P_{Y|X}$. We are interested in estimating \times knowing P_{XY} and Y.

"Mean squered erwer"

Estimate X.

Mean squared euror: $E\left[(x-\hat{x})^2\right]$

So, we want to find an estimate fund f which minimises the mean squared error.

·Theorem: The function f(Y) = E[X|Y=y] minimises

$$E[(x-f(y))^2]$$

Perof:
$$E[(x-f(y))^2]$$

$$= E \left[E \left[(x - f(y))^2 \mid y \right] \right]$$

=
$$\sum_{y} P_{y}(y) E \left[\left(x - f(y) \right)^{2} \right] Y = y$$

Exercise: Quadratic in terms of f(y).

So find minima of that expression.