

planetmath.org

Math for the people, by the people.

mode

Canonical name Mode

Date of creation 2013-03-22 14:23:33 Last modified on 2013-03-22 14:23:33

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771) Entry type Definition Classification msc 60A99 Given a probability distribution (density) function $f_X(x)$ with random variable X and $x \in \mathbb{R}$, a mode of $f_X(x)$ is a real number α such that:

- 1. $f_X(\alpha) \neq \min(f_X(x)),$
- 2. $f_X(\alpha) \ge f_X(z)$ for all $z \in \mathbb{R}$.

The mode of f_X is the set of all modes of f_X (It is also customary to say denote the mode of f_X to be elements within the mode of f_X). If the mode contains one element, then we say that f_X is unimodal. If it has two elements, then f_X is called bimodal. When f_X has more than two modes, it is called multimodal.

- if $\Omega = \{0, 1, 2, 2, 3, 4, 4, 4, 5, 5, 6, 7, 8\}$ is the sample space for the random variable X, then the mode of the distribution function f_X is 4.
- if $\Omega = \{0, 2, 4, 5, 6, 6, 7, 9, 11, 11, 14, 18\}$ is the sample space for X, then the modes of f_X are 6 and 11 and f_X is bimodal.
- For a binomial distribution with mean np and variance np(1-p), the mode is

$$\{\alpha \mid p(n+1) - 1 \le \alpha \le p(n+1)\}.$$

- For a Poisson distribution with integral sample space and mean λ , if λ is non-integral, then the mode is the largest integer less than or equal to λ ; if λ is an integer, then both λ and $\lambda 1$ are modes.
- For a normal distribution with mean μ and standard deviation σ , the mode is μ .
- For a gamma distribution with the shape parameter γ , location parameter μ , and scale parameter β , the mode is $\gamma 1$ if $\gamma > 1$.
- Both the Pareto and the exponential distributions have mode = 0.