Cell – Structure and Functions

Cell as the Basic Unit of Life

- The cell is the basic structural and functional unit of all living organisms.
- It is the smallest part of the body of an organism, is capable of independent existence and is able to perform the essential functions of life.

Discovery of the Cell

- **Robert Hooke** observed cork cells under a simple microscope designed by him.
- He observed compartments resembling honeycombs and each compartment was separated by a wall.
- He termed each compartment as a 'cell'.
- It was the first indication that living organisms are made of cells.

Cell Theory

- In 1838, Matthias Schleiden and Theodor Schwann proposed the basic cell theory. In 1858, another scientist Virchow made an addition to the existing cell theory.
- The postulates of the modern cell theory are
 - 1. The cell is the smallest unit of structure of all living things.
 - 2. The cell is the unit of function of all living things.
 - All cells arise from pre-existing cells.

Variety in Cells

On the basis of the number of cells

Single-celled	Few-celled	Multi-celled
 Organisms made of a single cell. They are called unicellular 	Organisms made of a few hundred to few thousand	Organisms made of millions to billions of cells.
organisms.Examples: Bacteria,	cells. • Examples:	They are called multicellular
Yeast,	Spirogyra, Volvox	organisms.
Chlamydomonas, Amoeba,		 Examples: Man, cow, mango tree,
Paramoecium		crow

SCIENCE CELL – STRUCTURE AND FUNCTIONS

On the basis of size of cells

- Smallest cell: Examples: Bacteria (0.3–5.0 μm), red blood cells (7 μm)
- Longest cell: Example: Nerve cell in the neck of a giraffe (>3 mlong)
- Largest cell: Example: Ostrich egg (170 mm × 130 mm)

On the basis of shape of cells

- Columnar: Epithelial cellsSpherical: Human ovum
- Oval: Fat cells
- Spherical, biconcave: Red blood cells
- Rectangular: Spirogyra
- Spiral: Sperm cell
- Rod-shaped: Bacteria
- C-shaped: Cartilage cells
- Cylindrical: Striated muscle fibre cells
- Branched: Nerve cells
- Spindle-shaped: Smooth muscle cells
- Bean-shaped: Guard cell from a plant leaf
- Irregular: Amoeba

Amoeba is irregular in shape. It changes its shape continuously due to the presence of pseudopodia. The change in shape helps Amoeba in movement and in capturing food.

Structural Organisation of a Cell

CELL ORGANELLES				
NATURE AND OCCURRENCE	MAIN CHARACTERISTICS	MAIN FUNCTIONS		
 1. Plasma membrane/Cell membrane Forms the outermost covering in animal cells Lies next to the cell wall in plant cells Separates cellular material from its surroundings Acts as an effective barrier and regulates the entry of substances in and out of the cell 		Cell membrane		
2. Cell wall (in plant of Found in plant ceSituated just outs	• •	Cell wall		

- Situated just outside the plasma membrane
- Mainly composed of cellulose
- Provides protection
- Gives rigidity and shape to plant cells

3. Cytoplasm

- Transparent jelly-like material
- Centre of all metabolic activities
- Different organelles contained in it perform different functions

4. Nucleus

- Largest cell organelle
- Mostly spherical and dense
- Nuclear membrane with pores, which allow substances to enter and leave the nucleus
- Regulates cell functions
- Contains chromosomes, made of genes, which control hereditary characteristics

5. Nucleolus

- Embedded within the nucleus of the cell.
- One or more in number
- Produces ribosomes
- · Participates in protein synthesis by forming and storing RNA

6. Chromatin fibres

- · Network of thread-like structures made of DNA
- Chromosomes carry hereditary information or Genes

7. Vacuoles

- Fluid-filled membrane bound spaces
- · Larger and permanent in plant cells
- Small and temporary in animal cells
- Storage of water and other substances, food, pigments and waste products
- · Provides turgidity to the cells

8. Plastids

- Three kinds of plastids.
- Chromoplasts: Impart colour to flowers and fruits
- Chloroplasts: Trap solar energy for photosynthesis
- Leucoplasts: Store starch
- Chloroplasts are chromoplasts which are disc-shaped and are filled with green colour chlorophyll.

The gene is a unit of inheritance in every living organism. It is responsible for the transfer of hereditary characteristics from parents to offspring. However, the offspring may receive different characteristics due to a different combination of genes from parents.

Study of Plant and Animal Cells

Similarities between Plant and Animal Cells

Presence of cell membrane

Presence of cytoplasm

Presence of nucleus

Presence of nuclear membrane

Presence of mitochondria

SCIENCE CELL – STRUCTURE AND FUNCTIONS

Differences between Plant and Animal Cells

PLANT CELL	FEATURE	ANIMAL CELL		
Structural differences				
Presence of a definite cell wall	Cell wall	Absence of cell wall		
made of cellulose				
Present internal to the cell wall	Cell membrane	Forms the boundary of the cell		
Presence of one or more	Vacuoles	Presence of small and temporary		
prominent vacuoles		vacuoles		
Presence of plastids	Plastids	Absence of plastids		
Functional differences				
Usually larger with distinct	Size	Usually smaller with less distinct		
outlines		boundaries		
Not so dense	Cytoplasm	Denser and more granular		
Only a thin lining of cytoplasm,	Arrangement of	Cytoplasm fills up almost the entire		
which is mostly pushed to the	cytoplasm	cell		
periphery				
Other differences				
Rectangular	Shape	Spherical		
Starch	Storage material	Glycogen		

Prokaryotic and Eukaryotic Cells

PROKARYOTIC CELL FEATURE EUKARYOTIC CELL Absence of well-defined nucleus **Nucleus** Presence of well-defined nucleus with a nuclear membrane **Nucleolus** Present Absent Presence of a single length of only Genetic Presence of several lengths of DNA wound around certain DNA material proteins Presence of smaller ribosomes Ribosomes Presence of larger ribosomes Absence of other cell Presence of several other cell Cell organelles organelles organelles such as mitochondria, ER, chloroplasts etc. Cell division occurs by fission Cell division Cell division occurs by mitosis or budding but not by mitosis or meiosis Bacteria, blue green algae Examples Euglena, Amoeba, plants, animals