InClass-A3 Sample Analysis

Contents

```
auto.arima() analysis
                                                                  2
                                                                  3
Preliminary Analysis
  5
Difference only (d=1 D=0) model
                                                                  7
Seasonal Diff only (d=0 D=1) model
                                                                 10
Revisit (d=1 D=1) model
                                                                 11
Linear Trend Model
                                                                 13
  20
Here is the code to load the data from the web.
 source('https://nmimoto.github.io/R/TS-00.txt')
 D <- read.csv("https://nmimoto.github.io/datasets/wine.csv")
     <- ts(D, start=c(1980,1), freq=12)
 plot(D1, type='o')
```


Now your "D1" in R contains monthly wine sales in Australia.

We will talke log of the data

auto.arima() analysis

```
Fit01 <- auto.arima(D1, d=1, lambda=0, stepwise=FALSE, approximation=FALSE)
Fit01

## Series: D1

## ARIMA(0,1,1)(0,1,1)[12]

## Box Cox transformation: lambda= 0

##

## Coefficients:

## ma1 sma1

## -0.7786 -0.7403

## s.e. 0.0646 0.0915
```

Randomness.tests(Fit01\$residuals)

AICc=-180.6

sigma^2 estimated as 0.01289: log likelihood=93.4

BIC=-172.22

##

AIC=-180.8


```
## B-L test HO: the series is uncorrelated
## M-L test HO: the square of the series is uncorrelated
## J-B test HO: the series came from Normal distribution
## SD : Standard Deviation of the series
## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.615 0.845 0.938 0.417 0.51 0.102 0.108
```

```
## ARIMA(0,1,1)x(0,1,1)[12] is suggested.
## Residual analysis shows adequacy by both L-B test and M-L test.
##
## Errors (after the log) seems to be nomally distributed, and
## J-B test confirms that. (p-value > .05)
##
## We must investigate the choice of d=1, and D=1.
```

Preliminary Analysis

```
plot( log(D1), type='o')
```



```
plot( diff(log(D1)), type='o') # d=1
```


plot(diff(log(D1), 12), type='o') # D=1

plot(diff(diff(log(D1), 12)), type='o') # d=1 and D=1

Do we really need to take d=1 and D=1?

Stationarity Check

```
## Warning in adf.test(A): p-value smaller than printed p-value
## Warning in pp.test(A): p-value smaller than printed p-value
## Warning in kpss.test(A): p-value greater than printed p-value
## KPSS ADF PP
## p-val: 0.1 0.01 0.01

Stationarity.tests( diff(log(D1, 12)))

## Warning in adf.test(A): p-value smaller than printed p-value
## Warning in pp.test(A): p-value smaller than printed p-value
## Warning in kpss.test(A): p-value greater than printed p-value
## Warning in kpss.test(A): p-value greater than printed p-value
## KPSS ADF PP
## p-val: 0.1 0.01 0.01
```

```
## Warning in adf.test(A): p-value smaller than printed p-value
## Warning in pp.test(A): p-value smaller than printed p-value
## Warning in kpss.test(A): p-value greater than printed p-value
## KPSS ADF PP
## p-val: 0.1 0.01 0.01
## d=1 alone makes it stationary
## D=1 alone makes it stationary
## d=1 D=1 together may make it over-differenced.
```

Stationarity.tests(diff(diff(log(D1), 12)))

Difference only (d=1 D=0) model

```
Fit21 <- auto.arima(D1, d=1, D=0, lambda=0, stepwise=FALSE, approximation=FALSE)
 Fit21
## Series: D1
## ARIMA(1,1,1)(1,0,0)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
            ar1
                     ma1
                            sar1
##
         0.3604 -0.9522 0.8555
## s.e. 0.0876
                  0.0272 0.0395
##
## sigma^2 estimated as 0.01807: log likelihood=76.3
## AIC=-144.6
                AICc=-144.31
                               BIC=-132.81
```

Randomness.tests(Fit21\$resid)


```
## B-L test H0: the series is uncorrelated
## M-L test H0: the square of the series is uncorrelated
## J-B test H0: the series came from Normal distribution
## SD : Standard Deviation of the series

## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.026 0.054 0.084 0.064 0.037 0.265 0.132

## Arima(1,1,1)x(1,0,0)[12] suggested
## Residual does not show adequate fit. Large ACF at lag 12.
##
```

```
# Fit21b \leftarrow Arima(D1, lambda=0, order=c(1,1,1), seasonal=c(2,0,0))
# Fit21b
  Randomness.tests(Fit21b$resid)
## Estimation problem
 Fit21c \leftarrow Arima(D1, lambda=0, order=c(1,1,1), seasonal=c(1,0,1))
 Fit21c
## Series: D1
## ARIMA(1,1,1)(1,0,1)[12]
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
            ar1
                     ma1
##
         0.1699
                -0.8586 0.9924
                                  -0.7314
                                    0.0999
## s.e. 0.1157
                  0.0683
                          0.0066
##
## sigma^2 estimated as 0.01296: log likelihood=93.67
## AIC=-177.34
                 AICc=-176.9 BIC=-162.6
```

Randomness.tests(Fit21c\$resid)


```
## B-L test HO: the series is uncorrelated
## M-L test HO: the square of the series is uncorrelated
## J-B test HO: the series came from Normal distribution
## SD : Standard Deviation of the series
## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.601 0.715 0.744 0.574 0.655 0.617 0.112
```

```
\textit{## Residual shows adequate fit.}
  Fit21d \leftarrow Arima(D1, lambda=0, order=c(1,1,1), seasonal=c(1,0,1),
                                   include.drift=TRUE, method="CSS")
 Fit21d
## Series: D1
## ARIMA(1,1,1)(1,0,1)[12] with drift
## Box Cox transformation: lambda= 0
## Coefficients:
##
             ar1
                     ma1
                             sar1
                                      sma1
                                              drift
##
        -0.0006 -0.7195 0.9755 -0.6522 -0.0391
## s.e. 0.1046 0.0689 0.0170 0.0803 0.0593
##
## sigma^2 estimated as 0.01345: part log likelihood=99.44
\#\# If method="CSS-MLE" (default) then gives error.
## with CSS, drift not significant.
```

Seasonal Diff only (d=0 D=1) model

```
Fit31 <- auto.arima(D1, d=0, D=1, lambda=0, stepwise=FALSE, approximation=FALSE)
Fit31
```

```
## Series: D1
## ARIMA(1,0,1)(0,1,1)[12] with drift
## Box Cox transformation: lambda= 0
##
   Coefficients:
##
##
            ar1
                                     drift
                     ma1
                              sma1
##
         0.8930
                 -0.6841
                           -0.7372
                                    0.0062
         0.0785
                  0.1249
                            0.0951
                                    0.0008
##
## sigma^2 estimated as 0.0125: log likelihood=97.74
## AIC=-185.48
                 AICc=-185
                              BIC=-171.14
```

Randomness.tests(Fit31\$resid)


```
## B-L test H0: the series is uncorrelated
## M-L test H0: the square of the series is uncorrelated
## J-B test H0: the series came from Normal distribution
## SD : Standard Deviation of the series

## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.573 0.832 0.933 0.705 0.789 0.182 0.106

## Arima(1,0,1)x(0,1,1)[12] w drift suggested
## Residuals show adequate fit.
##
```

Revisit (d=1 D=1) model

```
# what was suggested by auto.arima()
  Fit41 \leftarrow Arima(D1, lambda=0, order=c(0,1,1), seasonal=c(0,1,1))
 Fit41
## Series: D1
## ARIMA(0,1,1)(0,1,1)[12]
## Box Cox transformation: lambda= 0
##
##
  Coefficients:
##
                      sma1
             ma1
                  -0.7403
         -0.7786
##
## s.e.
          0.0646
                    0.0915
##
## sigma^2 estimated as 0.01289: log likelihood=93.4
## AIC=-180.8
                AICc=-180.6
                               BIC=-172.22
```

Randomness.tests(Fit41\$resid)


```
## B-L test HO: the series is uncorrelated
## M-L test HO: the square of the series is uncorrelated
## J-B test HO: the series came from Normal distribution
## SD : Standard Deviation of the series

## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.615 0.845 0.938 0.417 0.51 0.102 0.108

## Arima(1,0,1)x(0,1,1)[12] w drift suggested
## Residuals show adequate fit.
##
```

```
Arima(D1, lambda=0, order=c(0,1,1), seasonal=c(0,1,0))
## Series: D1
## ARIMA(0,1,1)(0,1,0)[12]
## Box Cox transformation: lambda= 0
## Coefficients:
##
            ma1
         -0.7468
##
## s.e. 0.0743
##
## sigma^2 estimated as 0.02014: log likelihood=68.94
## AIC=-133.88 AICc=-133.79 BIC=-128.16
Arima(D1, lambda=0, order=c(0,1,0), seasonal=c(0,1,1))
## Series: D1
## ARIMA(0,1,0)(0,1,1)[12]
## Box Cox transformation: lambda= 0
## Coefficients:
##
            sma1
         -0.6748
## s.e. 0.1067
## sigma^2 estimated as 0.01983: log likelihood=66.71
```

AIC=-129.41 AICc=-129.32 BIC=-123.7

Linear Trend Model

From A3

```
<- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,15))
 Fit
## Series: D1
## Regression with ARIMA(15,0,15) errors
## Box Cox transformation: lambda= 0
##
##
   Coefficients:
##
             ar1
                      ar2
                               ar3
                                       ar4
                                                 ar5
                                                           ar6
                                                                    ar7
                                                      -0.0503
                                                                -0.0142
##
         -0.4723
                   0.7913
                           0.5113
                                    0.0027
                                             -0.0318
##
          0.3530
                   0.0957
                           0.2695
                                    0.0191
                                              0.0199
                                                       0.0178
                                                                 0.0280
  s.e.
##
                                ar10
             ar8
                       ar9
                                        ar11
                                                 ar12
                                                         ar13
                                                                   ar14
##
         -0.0407
                   -0.0407
                             -0.0241
                                      0.0006
                                              0.9731
                                                       0.4417
                                                                -0.8183
## s.e.
                    0.0200
                             0.0232
                                      0.0189
                                               0.0151
                                                       0.3394
                                                                 0.1029
          0.0204
##
            ar15
                      ma1
                                ma2
                                         ma3
                                                   ma4
                                                           ma5
                                                                    ma6
##
         -0.5307
                   0.5832
                           -0.6181
                                     -0.4634
                                               -0.1164
                                                        0.0422
                                                                 0.0239
          0.2802
                   0.3259
                            0.1441
                                      0.2274
                                                0.1003
                                                        0.1085
                                                                 0.1560
##
  s.e.
##
             ma7
                      ma8
                              ma9
                                      ma10
                                                ma11
                                                         ma12
                                                                   ma13
##
         -0.1091
                   0.0861
                           0.0428 0.1037
                                            -0.0420
                                                      -0.9408
                                                                -0.5722
                   0.1174
                           0.1072 0.1052
                                             0.0945
                                                       0.1757
                                                                 0.2920
##
          0.1015
##
           ma14
                    ma15
                          intercept
                                        xreg
         0.5252
                          -154.8316
                                      0.0816
##
                  0.4557
         0.1807
                 0.2074
                             5.2452
                                      0.0026
##
  s.e.
## sigma^2 estimated as 0.01176: log likelihood=113.56
                                  BIC=-63.57
## AIC=-161.11
                  AICc=-140.34
```

Randomness.tests(Fit\$resid)


```
## B-L test H0: the series is uncorrelated
## M-L test H0: the square of the series is uncorrelated
## J-B test H0: the series came from Normal distribution
## SD : Standard Deviation of the series
## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.987 0.998 1 0.682 0.755 0.192 0.096
```

Seasonal ARMA

```
Fit51 <- auto.arima(D1, d=0, D=0, lambda=0, xreg=time(D1),
                             stepwise=FALSE, approximation=FALSE)
 Fit51
## Series: D1
## Regression with ARIMA(1,0,0)(1,0,0)[12] errors
## Box Cox transformation: lambda= 0
## Coefficients:
##
           ar1
                  sar1 intercept
                                     xreg
        0.3660 0.8393 -134.4431 0.0713
##
## s.e. 0.0784 0.0410
                          25.8403 0.0130
##
## sigma^2 estimated as 0.01749: log likelihood=80.41
## AIC=-150.82 AICc=-150.38 BIC=-136.05
Randomness.tests(Fit51$resid)
##
    B-L test HO: the series is uncorrelated
    M-L test HO: the square of the series is uncorrelated
##
##
    J-B test HO: the series came from Normal distribution
##
               : Standard Deviation of the series
       BL15 BL20 BL25 ML15 ML20
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(1,0,0), seasonal=c(1,0,1))
Fit52
## Series: D1
## Regression with ARIMA(1,0,0)(1,0,1)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
           ar1
                  sar1
                           sma1 intercept
                                              xreg
        0.3549 0.9881 -0.7033 -140.8826 0.0746
##
## s.e. 0.0786 0.0108
                        0.1202
                                   12.0115 0.0060
## sigma^2 estimated as 0.01342: log likelihood=94.77
## AIC=-177.54 AICc=-176.92 BIC=-159.81
```

Randomness.tests()


```
## B-L test H0: the series is uncorrelated
## M-L test H0: the square of the series is uncorrelated
## J-B test H0: the series came from Normal distribution
## SD : Standard Deviation of the series
## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
```

```
Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(1,0,0), seasonal=c(2,0,2))
Fit52
```

```
## Series: D1
## Regression with ARIMA(1,0,0)(2,0,2)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
                   sar1
                           sar2
                                   sma1
                                            sma2
                                                  intercept
                                                               xreg
         0.3498 0.1027 0.8803
                                                  -142.2997
##
                                0.2497
                                         -0.7501
                                                             0.0753
## s.e. 0.0789 0.0815 0.0763
                                0.2168
                                          0.1810
                                                    11.1703
##
## sigma^2 estimated as 0.01276: log likelihood=95.72
## AIC=-175.45
                AICc=-174.36
                                BIC=-151.8
```

Randomness.tests(Fit51\$resid)

```
## B-L test HO: the series is uncorrelated
## M-L test HO: the square of the series is uncorrelated
## J-B test HO: the series came from Normal distribution
## SD : Standard Deviation of the series
```

```
BL15 BL20 BL25 ML15 ML20
## [1.] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
 Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(1,0,0), seasonal=c(3,0,3))
Fit52
## Series: D1
## Regression with ARIMA(1,0,0)(3,0,3)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
## Warning in sqrt(diag(x$var.coef)): NaNs produced
##
           ar1
                  sar1
                           sar2
                                   sar3
                                            sma1
                                                   sma2
                                                            sma3
        0.3567 1.1329 -0.1353 0.0007 -0.8441 0.0264 -0.0790
##
## s.e.
           NaN 0.1468 0.1624 0.0157
                                          0.0531 0.1667
##
        intercept
                     xreg
        -140.4321 0.0744
##
## s.e.
          10.9536 0.0055
##
## sigma^2 estimated as 0.01299: log likelihood=96.14
## AIC=-172.28 AICc=-170.6 BIC=-142.72
Randomness.tests(Fit51$resid)
    B-L test HO: the series is uncorrelated
##
##
    M-L test HO: the square of the series is uncorrelated
##
     J-B test HO: the series came from Normal distribution
               : Standard Deviation of the series
##
       BL15 BL20 BL25 ML15 ML20
##
                                       JB
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
 Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(5,0,4), seasonal=c(1,0,1))
Fit52
## Series: D1
## Regression with ARIMA(5,0,4)(1,0,1)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
           ar1
                    ar2
                             ar3
                                     ar4
                                             ar5
                                                    ma1
##
        0.0386 -0.5063 -0.2393 0.2270 0.2628 0.2256 0.8071
## s.e. 0.5987
                 0.2435
                          0.3111 0.4598 0.2308 0.6415 0.3719
##
                                   sma1 intercept
           ma3
                   ma4
                          sar1
        0.5866
                0.0294 0.9889 -0.6661
                                         -140.7492 0.0745
## s.e. 0.4659 0.5931 0.0093
                               0.1190
                                           16.3265 0.0082
## sigma^2 estimated as 0.01222: log likelihood=102.23
## AIC=-176.46 AICc=-173.15 BIC=-135.08
```

```
Randomness.tests(Fit51$resid)
```

```
B-L test HO: the series is uncorrelated
##
    M-L test HO: the square of the series is uncorrelated
##
##
     J-B test HO: the series came from Normal distribution
               : Standard Deviation of the series
##
       BL15 BL20 BL25 ML15 ML20
                                       JB
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(0,0,0), seasonal=c(0,0,0))
Fit52
## Series: D1
## Regression with ARIMA(0,0,0) errors
## Box Cox transformation: lambda= 0
## Coefficients:
##
        intercept
                     xreg
##
        -150.3167 0.0793
         13.0042 0.0065
## s.e.
## sigma^2 estimated as 0.07206: log likelihood=-13.74
## AIC=33.48 AICc=33.65 BIC=42.34
Randomness.tests(Fit51$resid)
    B-L test HO: the series is uncorrelated
    M-L test HO: the square of the series is uncorrelated
     J-B test HO: the series came from Normal distribution
##
               : Standard Deviation of the series
       BL15 BL20 BL25 ML15 ML20
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
 Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(1,0,0), seasonal=c(3,0,0))
Fit52
## Series: D1
## Regression with ARIMA(1,0,0)(3,0,0)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
           ar1
                sar1
                          sar2
                                  sar3 intercept
                                                     xreg
        0.3607   0.4517   0.2502   0.2198   -133.2316   0.0707
## s.e. 0.0782 0.0847 0.0951 0.0910
                                          17.9158 0.0090
## sigma^2 estimated as 0.01446: log likelihood=92.27
## AIC=-170.53 AICc=-169.7 BIC=-149.84
```

```
Randomness.tests(Fit51$resid)
```

```
B-L test HO: the series is uncorrelated
    M-L test HO: the square of the series is uncorrelated
##
    J-B test HO: the series came from Normal distribution
##
             : Standard Deviation of the series
##
       BL15 BL20 BL25 ML15 ML20
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
Fit52 <- Arima(D1, lambda=0, xreg=time(D1), order=c(1,0,1), seasonal=c(3,0,1))
Fit52
## Series: D1
## Regression with ARIMA(1,0,1)(3,0,1)[12] errors
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
          ar1
                  ma1
                         sar1
                                 sar2
                                         sar3
                                                 sma1
                                                      intercept
##
       0.7749 - 0.5039 \ 1.1739 - 0.0402 - 0.1341 - 0.9482 - 139.8386
## s.e. 0.1373 0.1935 0.1142 0.1423
                                      0.1098 0.1546
                                                        13.9300
##
         xreg
        0.0741
##
## s.e. 0.0070
## sigma^2 estimated as 0.01207: log likelihood=98.44
## AIC=-178.87 AICc=-177.51 BIC=-152.27
Randomness.tests(Fit51$resid)
##
    B-L test HO: the series is uncorrelated
    M-L test HO: the square of the series is uncorrelated
##
    J-B test HO: the series came from Normal distribution
##
             : Standard Deviation of the series
##
       BL15 BL20 BL25 ML15 ML20
                                    TR
## [1,] 0.1 0.179 0.282 0.305 0.249 0.378 0.131
 # Skip some parameters (Phis, Thetas, icpt, xreg)
 Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,15),
             NA,NA ) )
 Fit
 Randomness.tests(Fit$resid)
 # Skip some parameters (Phis, Thetas, icpt, xreg)
 Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,15), method=("CSS"),
             NA, NA, NA, NA, NA, NA, NA, NA, O, O, NA, NA, NA, NA,
```

```
NA,NA ) )
Fit
Randomness.tests(Fit$resid)
# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,14), method=("CSS"),
            fixed=c(NA,NA,NA,NA,NA, NA,NA,NA, O, O, O,NA,NA,NA,NA,
                    NA, O,NA, O,NA, NA,NA,NA, O, O, O,NA,NA,NA,
                    NA,NA))
Fit
Randomness.tests(Fit$resid)
# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,14), method=("CSS"),
            fixed=c(NA, O,NA,NA,NA, NA,NA, O, O, O, O,NA,NA,NA,NA,
                    NA, O,NA, O,NA, O,NA, O, O, O, O,NA,NA,NA,
                    NA,NA))
Fit
Randomness.tests(Fit$resid)
# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,13), method=("CSS"),
            fixed=c(NA, O,NA,NA,NA, NA,NA, O, O, O, O,NA,NA,NA,NA,
                    NA, O,NA, O,NA, O,NA, O, O, O, NA,NA,
                    NA,NA ) )
Fit
Randomness.tests(Fit$resid)
# Skip some parameters (Phis, Thetas, icpt, xreq)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,12), method=("CSS"),
            fixed=c(NA, O,NA,NA,NA, NA,NA, O, O, O, O,NA,NA,NA,NA,
                    NA, O,NA, O,NA, O,NA, O, O, O,
                                                      O,NA,
                    NA,NA ) )
Fit
Randomness.tests(Fit$resid)
# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,12),
            fixed=c(NA, O,NA,NA,NA, NA,NA, O, O, O, O,NA,NA,NA,NA,
                    NA, O,NA, O,NA, O,NA, O, O, O,
                                                      O,NA,
                    NA,NA))
Fit
Randomness.tests(Fit$resid)
```

```
# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(15,0,15))
Fit
Randomness.tests(Fit$resid)

# Skip some parameters (Phis, Thetas, icpt, xreg)
Fit <- Arima(D1, lambda=0, xreg=time(D1), order=c(14,0,14))
Fit
Randomness.tests(Fit$resid)</pre>
```

Rolling 1-step with D=1 model

```
Fit31 <- auto.arima(D1, d=0, D=1, lambda=0, stepwise=FALSE, approximation=FALSE)
 Fit31
## Series: D1
## ARIMA(1,0,1)(0,1,1)[12] with drift
## Box Cox transformation: lambda= 0
##
## Coefficients:
##
                     ma1
                             sma1
                                    drift
##
         0.8930 -0.6841
                          -0.7372 0.0062
## s.e. 0.0785
                  0.1249
                           0.0951 0.0008
##
## sigma^2 estimated as 0.0125: log likelihood=97.74
## AIC=-185.48
                 AICc=-185
                             BIC=-171.14
```

Randomness.tests(Fit31\$resid)


```
## B-L test H0: the series is uncorrelated
## M-L test H0: the square of the series is uncorrelated
## J-B test H0: the series came from Normal distribution
## SD : Standard Deviation of the series
## BL15 BL20 BL25 ML15 ML20 JB SD
## [1,] 0.573 0.832 0.933 0.705 0.789 0.182 0.106
```

Arima(1,0,1)x(0,1,1)[12] w drift suggested

```
#- Set options
Y <- D1
                            # Original data
window.size <- 100
                           # Window size for estimation
Arima.order \leftarrow c(1,0,1) \# Arima(p,d,q) \ order
pred.plot <- TRUE</pre>
                           # do you want plot at end?
#- set Arima() options:
include.mean = TRUE
include.drift = FALSE
lambda = 0
                           # NULL=no transformaton. O=Log
xreg
         = NULL
                           # NULL=no xreg. TRUE=Linear Trend is present
seasonal = c(0, 1, 1)
                           # seasonal component
#- then use the function
Rolling1step.forecast(Y, window.size, Arima.order, pred.plot,
                         include.mean, include.drift, lambda, xreg, seasonal)
```

##
Last 42 obs fit retrospectively
with Rolling 1-step prediction
Average prediction error: 217.5652
root Mean Squared Error: 467.2357


```
## mean pred error rMSE
## [1,] 217.5652 467.2357
```

 TS Class Webpage – R resource page