Minimum Message Length and Kolmogorov Complexity

C. S. Wallace and D. L. Dowe

Overview

Kolmogorov complexity

Quantify complexity of binary strings via Turing Machines (early '60s)

A. Kolmogorov

G. Chaitin

P. Martin-Löf

Define algorithmic probability via Turing Machines and use it for induction (early '60s)

R. Solomonoff

MML/MDL

Infer a hypothesis about the data via two-part coding (late '60s and '70s)

C. Wallace

J. Rissanen

Minimum Message/Description Length

Data string

 \overline{x}

Encode $\,x\,$ using a $\it two-\it part\,$ scheme

$$h_3$$
 p_3 p_3

Pick the hypothesis that results in the minimum encoding length

$$l(p_i) = l(h_i) + l(r_i) = -\log_2(p_H(h_i)) - \log_2(p_X(x \mid h_i))$$

Prefix TM

$$T(p) = x$$
 if

- lacksquare T reads all of the input p
- lacktriangledown T writes x to the output
- lacktriangledown T halts without reading/writing anything else

T is a decoder of a prefix code (why prefix?)

Universal (prefix) TM = TM that can emulate any other (prefix) TM, e.g. $T(\langle i,p \rangle) = T_i(p)$

(Prefix) Kolmogorov complexity of x = The length of the shortest input string required to produce x

$$K_T(x) = \min\{l(p) \mid T(p) = x\}$$

Definition dependent on T! Does this make any sense?

- Invariance theorem: Choose a *universal* prefix TM (among a special class) —— as good as any TM (up to a constant)
- Intuition: You can do (almost) as good as any TM by writing a "compiler" for it
- Caveat 1: Kolmogorov complexity is not computable (approximate, e.g. via compressor)
- Caveat 2: Constants can be large (more on this later)

Can define a "probability" measure from Kolmogorov complexity

(hereafter: "probability" ← → semimeasure)

$$P_T(x) = 2^{-K_T(x)}$$
 with $\sum_x P_T(x) \leq 1$ (why?)

Data & Hypotheses

Data string x is a representation of observational data from a real world phenomenon

$$L = \{00, 100, 010, 011\}$$

- "Sentences" $x_i \in L$, where L is a prefix-free set (data "language")
- Distinct sentences represent distinct real-world facts
- Sentences are conditionally independent given full knowledge of the phenomenon
- Strings are invariant to sentence permutation

Data & Hypotheses

Hypothesis $\,Q\,$ is a (computable) probability distribution over $\,L\,$

Conditional independence of sentences implies

$$x = x_1 \dots x_n \Rightarrow Q(x) = Q(x_1) \times \dots \times Q(x_n)$$

 $L = \{00, 100, 010, 011\}$

How do we acquire a hypothesis-based encoding of data in the Algorithmic Complexity framework?

Idea

Use conditional Kolmogorov complexity

$$K_T(x \mid y) = \min\{l(p) \mid T(\langle y, p \rangle) = x\}$$

and interpret y as hypothesis and x as data

Corresponding conditional algorithmic probability

$$P_T(x \mid y) = 2^{-K_T(x|y)}$$

Problem

Probability can never be 0, i.e. Popper-falsification not possible, because

$$K(x \mid y) < K(x) + O(1) \Rightarrow P_K(x \mid y) > P_K(x) + O(1)$$

Why? Hypothesis y acts as "extra info", instead of assertively

Proposal

- lacktriangle Have hypothesis be a prefix of input string p
- Force intended two-part encoding by imposing conditions on p

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

2)
$$l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

5)
$$T_q(rs) = xT_q(s)$$

6)
$$l(r) < K_T(x)$$

7)
$$x = x_1 \dots x_n \Rightarrow \begin{cases} r = r_1 \dots r_n \\ T_q(r_i) = x_i, i = 1 \dots n \end{cases}$$

8)
$$x' = x^{(1)}x^{(2)}$$
 $\Rightarrow T_q(j^{(1)}) = x^{(1)}, \ j^{(1)} < K_T(x^{(1)})$ $T_q(j^{(2)}) = x^{(2)}, \ j^{(2)} < K_T(x^{(2)})$

9) No prefix of q satisfies all the above conditions

$$p$$
 encodes x

some compression is achieved

two-part encoding

hypothesis q is does not determine data

reading r does not alter the state of $\,T\,$

hypothesis q is "significant"

conditionally independent sentences

hypothesis q is "general"

all of q is required

$$p \longrightarrow p$$
 $p \longrightarrow r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4 \longrightarrow r_5 \longrightarrow r_5$

000000000000000000

- lacktriangle The division of p into q and r is unique
- In what way exactly does hypothesis string q affect T?

Remember
$$T \xrightarrow{q} T_q$$

 T_q is a decoder of "second parts"

$$T_q:S\to W$$

Code words

$$S = \{r_i \in \{0, 1\}^* \mid T_q(r_i) \in L\}$$

Subset of $\,L\,$ that is coded

$$W = \{x_i \in L \mid \exists r_i \in S : T_q(r_i) = x_i\}$$

In fact, $\,T_q\,$ decodes a prefix code (why?)

• What is the hypothesis (probability distribution) Q implied by hypothesis string q?

$$Q(x_i) = \left\{ \begin{array}{l} 2^{-l(p)} \ \ \text{, \ if } \ p \ \text{is a shortest codeword for sentence} \ x_i \in L \\ 0 \ \ \ \text{, \ if there is no codeword for sentence} \ x_i \in L \end{array} \right.$$

Because of prefix code

$$\sum_{x_i \in L} Q(x_i) = \sum_{x_i \in W} 2^{-l(p)} \stackrel{\mathsf{Kraft}}{\leq} 1$$

• In this setting, hypotheses are falsifiable:

2)
$$l(p) < l(x) \Rightarrow l(r) < l(x)$$

If $\,Q\,$ assigns low probability (eq. high codeword length) to a sentence x_i , then adding enough such sentences to the data string will violate the above condition and falsify the hypothesis

Can $\,Q\,$ assign lower codeword length to every sentence? (L is a complete prefix code for "data facts")

What do we "pay" for enforcing a two-part encoding scheme?

Shortest acceptable MML input string: $M_T(x)$ with $M_T(x)$? $K_T(x)$

$$M_T(x) - K_T(x) = l(q) + l(r) - K_T(x)$$

$$= K_T(Q) - \log_2(Q(x)) - K_T(x)$$

$$= -\log_2\left(\frac{P_T(Q)Q(x)}{P_T(x)}\right)$$

$$\approx -\log_2(\Pr(Q \mid x))$$

Finding the shortest MML string is like MAP, where $P_T(Q)$ plays the role of the prior

The log posterior odds ratio of two hypotheses is

$$\log_2\left(\frac{\Pr(Q_1\mid x)}{\Pr(Q_2\mid x)}\right) = l(p_1) - l(p_2)$$

where p_1 and p_2 are shortest input strings for their respective hypotheses