Manga Layout Analysis via Deep Learning

Nyx Audrey Angelo Iskandar Raffles Institution, Singapore

Introduction

Motivation

Japanese animators are overworked and underpaid

- Extremely low pay -- Singaporean animators earn 11 times more than them
- Outrageously long working hours (12-18 hours daily, 400-600 hours monthly) -- violate Japanese labour regulations
- Manually adapting manga into anime and other media is an extremely time-consuming and draining process -- one anime episode takes two years to create!

Aim

- Automate the preprocessing stage of adapting manga
- Innovate an integrated solution to manga-based document layout analysis research

Optical Character Recognition (M-OCR)

Name

IS[Mask R-CNN]-3 (Manga109)

M-OCR-ResNet-50

M-OCR-ResNet-101

 $mAP (IoU=0.5) \mid mAP (IoU=0.75)$

Methodology

Instance Segmentation

per month

Most existing research was done on Western comic books

Manga Layout Analysis -- either only one-class instance

Existing models only focus on particular components of

segmentation or only optical character recognition

IS[Mask R-CNN]-3 (Manga109)

A Mask R-CNN model performing instance segmentation on text, frames, and faces

Dataset: Manga109* Number of training rounds: 4

per month

analysis

Round	Learning Rate	Number of Epochs	Layers	Steps per epoch
1	0.001	10	heads	131
2	0.0001	40	all	131
3	0.001	1	all	1000
4	0.001	1	all	2524

Specifications:

- 1 CUDA-enabled GPU
- ResNet-101 backbone
- Backbone strides for each FPN Pyramid layer = [4, 8, 16, 32, 64]
- Batch size = 2
- Number of images per GPU = 2
- Learning momentum = 0.9

Weight decay = 0.0001

- Pool size = 7
- Loss weights (value = 1.0) = rpn_class_loss, rpn_bbox_loss, mrcnn_class_loss, mrcnn_bbox_loss, mrcnn_mask_loss
- Image shape = [1024, 1024, 3] (the minimum and maximum image dimensions are 800 and 1024 respectively)
- Mask shape = [28, 28]
- Number of classes = 4 (background + text + frame + face)
- Image meta size = 16

IS[Mask R-CNN]-2 (Manga109)

A Mask R-CNN model performing instance segmentation for text and frames Specifications:

- Number of classes = 3 (background + text + frame)
- Image meta size = 15

Other details are the same as those for IS[Mask R-CNN]-3 (Manga109)

IS[Mask R-CNN]-2 (manual)

A Mask R-CNN model performing instance segmentation for text and frames Dataset: Manual**

Other details are the same as those for IS[Mask R-CNN]-2 (Manga109)

IS[PointRend]-2 (manual)

A PointRend model performing instance segmentation for text and frames Dataset: Manual**

Number of training rounds: 1

- Specifications: 1 CUDA-enabled GPU
- ResNet-101 backbone
- Learning rate = 0.0005
- Learning momentum = 0.9 Maximum iteration count = 2500
- Number of workers = 2
 - Images per batch = 2

Weight decay = 0.0001

- Number of classes = 2 (text + frame)

*This dataset contains the original annotations of the Manga109 dataset whose format was modified slightly for training compatibility; originally, one XML file contained annotations for one book, but after modification, one XML file contains annotations for one image (two pages of one book) **This dataset is a COCO-like dataset containing Manga109 images which were manually annotated

Results

Instance Segmentation

IS[Mask R-CNN]-2 (Manga109) IS[Mask R-CNN]-3 (Manga109)

IS[Mask R-CNN]-2 (manual)

IS[PointRend]-2 (manual)

 IS[PointRend]-2 (manual) is the most accurate IS -- highest mAP scores

IS[Mask R-CNN]-3 (Manga109) is the most comprehensive IS -- able to segment three classes

Results for **English** manga are comparable to those for Japanese manga

Face-Text Association

- Successfully associates each segmented face and text
- Pairs each face with the text nearest to it where the face is in a frame with multiple faces and text

Text Order Determination

- Successfully orders text as per the reading order of manga (from top to bottom and from right to
- Able to distinguish between text in speech bubbles and onomatopoeia and text outside of frames -- only orders text within speech bubbles

Face-Text Association

Inputs: Output vertices of IS[Mask R-CNN]-3 (Manga109), image from manga Methodology:

- Draw a box around each region of interest (text, frame, face)
- Calculate centres of text and faces using the formula below
 - $x_{entre} = (x1 + x2) / 2$ $y_centre = (y1 + y2) / 2$
- Determine which text and faces lie inside each frame -- whether centres of text and faces lie within frame
- Find face-text pairs by associating each face to the text nearest to it in a frame
- Draw a line from the centre of each face to the centre of the associated text

Text Order Determination

Inputs: Output vertices of IS[Mask R-CNN]-3 (Manga109), image from manga Methodology:

- Draw box around each text
- Find centres of each text and frame
- Order frames -- topmost and rightmost frame is the first frame
- Order text
- Repeat
- Display text order visually by writing numbers in the speech bubbles of the text -- 1 represents the text to be read first, 2 for the next text, and so on and so forth

Learning Rate

0.005

Number of Epochs

100

Optical Character Recognition

Name	F1 Score (Accuracy)	F1 Score (Macro Average)	F1 Score (Weighted Average)
M-OCR-ResNet-50	0.87	0.79	0.89
M-OCR-ResNet-101	0.89	0.81	0.90

- M-OCR-ResNet-101 is the more accurate M-OCR -- higher F1 Score
- M-OCR-ResNet-50 is the faster M-OCR -- higher training and execution speeds

Optical Character Recognition

M-OCR-ResNet-50

A convolutional neural network-based optical character recognition model built on ResNet-50

M-OCR-ResNet-101

A convolutional neural network-based optical character recognition model built on ResNet-101

Datasets:

- Kuzushiji-49 (48 hiragana characters, 1 Hiragana iteration mark)
- A subset of Kuzushiji-Kanji (50 kanji characters) Number of training rounds: 5 Specifications:
- 1 GPU Batch size = 128
- Number of classes = 99 (hiragana + kanji) • Steps per epoch = 1839
- Image size = (32, 32, 1) Binarized image labels
- Image augmentation Rotation of range 10
- Zoom of range 0.05 Width-shift of range 0.1
- Height-shift of range 0.1 • Shearing of range 0.15

Conclusion

Manga Layout Analysis via Deep Learning has innovated an **integrated** system of instance segmentation, novel algorithms, and optical character recognition

- Comparable performance to state-of-the-art models
- More comprehensive than existing research/ solutions

Future Work

- Identify the name of the character whose face
- is segmented Identify the emotion conveyed through the shape of a speech bubble
- Develop an MLA mobile or web application

Acknowledgements

I would like to thank my research mentor, Dr Loke Yuan Ren, as well as my teacher-mentors, Mr Harapan Ong, Dr Tan Guoxian, and Dr Lee Zhiying, for their invaluable guidance and feedback through the course of this project

References

[8] R. Smith, "An overview of the tesseract OCR engine," Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007) Vol 2, 2007.