



# Hooray, significance! So what? Learning more about your data using Bayesian data analysis

#### Thomas Kluth

Language & Cognition Group, CITEC, Universität Bielefeld

July 6, 2017, data science meetup Münster



This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).



difference in acceptability?



thin rectangle thick rectangle square tall rectangle

- lacksquare difference in acceptability?  $\longrightarrow$  empirical study
- 4 rectangles × 2 prepositions



- difference in acceptability? — empirical study
- 4 rectangles × 2 prepositions × 28 locations



- difference in acceptability? — empirical study
- 4 rectangles  $\times$  2 prepositions  $\times$  28 locations  $\times$  34 subjects  $\longrightarrow$  7616 ratings (1–9 rating scale)



- difference in acceptability? — empirical study
- 4 rectangles × 2 prepositions × 28 locations × 34 subjects → 7616 ratings (1–9 rating scale)
- prediction<sup>1</sup>: lower ratings for taller rectangles

<sup>&</sup>lt;sup>1</sup>Kluth, Burigo, Schultheis, and Knoeferle (submitted); Regier (1996); Regier and Carlson (2001)





- prediction: difference in ratings across rectangles
- NHST → null hypothesis: **no** difference



- prediction: difference in ratings across rectangles
- NHST → null hypothesis: **no** difference
- 5% significant difference: < 5% probability that data from different rectangles come from the same ("no-difference") distribution



- prediction: difference in ratings across rectangles
- NHST → null hypothesis: **no** difference
- 5% significant difference: < 5% probability that data from different rectangles come from the same ("no-difference") distribution
  - *false* statement: ≥ 95% probability that prediction is true



- prediction: difference in ratings across rectangles
- NHST → null hypothesis: **no** difference
- 5% significant difference: < 5% probability that data from different rectangles come from the same ("no-difference") distribution
  - false statement: > 95% probability that prediction is true



- prediction: difference in ratings across rectangles
- NHST → null hypothesis: **no** difference
- 5% significant difference: < 5% probability that data from different rectangles come from the same ("no-difference") distribution
  - *false* statement: ≥ 95% probability that prediction is true
- paired t-test





#### paired t-test // prediction confirmed?







#### paired t-test // prediction confirmed!





#### Look at your data! // normality assumption violated









#### Look at your data! // normality assumption violated!





#### Bayesian regression model // using brms

predict rating by rectangle (thin, thick, square, tall)



#### Bayesian regression model // using brms

predict rating by rectangle (thin, thick, square, tall)

```
R code
regressionModel = brm(
          rating ~ rectangle + (1 | subject),
          family = cumulative(), # ordinal regression
          data = ratingDataFrame)
```

```
necessary R packages: brms, rstan
(Bürkner, in press; Stan Development Team, 2016)
```





no regression slope is credibly different from zero  $\longrightarrow$  no credible difference in ratings  $\longrightarrow$  prediction not confirmed



no regression slope is credibly different from zero  $\longrightarrow$  no credible difference in ratings  $\longrightarrow$  prediction not confirmed





#### Learn from your data! // beyond binary answers ...

- factors hypothesized to affect rating:
  - center-of-mass orientation
  - proximal orientation
  - relative distance



#### Learn from your data! // beyond binary answers ...

- factors hypothesized to affect rating:
  - center-of-mass orientation
  - proximal orientation
  - relative distance

#### R code





regression more powerful than standard tests, but why *Bayesian* regression?



regression more powerful than standard tests, but why *Bayesian* regression?

 Bayesian parameter estimation allows to interpret the whole probability distribution of regression parameters





regression more powerful than standard tests, but why *Bayesian* regression?

- Bayesian parameter estimation allows to interpret the whole probability distribution of regression parameters
- Bayesian statistics allows to **intuitively discuss** the results
  - valid<sup>2</sup> statement:  $\geq 95\%$  probability that prediction is true

<sup>&</sup>lt;sup>2</sup>depends on the results





regression more powerful than standard tests, but why *Bayesian* regression?

- Bayesian parameter estimation allows to interpret the whole probability distribution of regression parameters
- Bayesian statistics allows to **intuitively discuss** the results
  - ullet valid<sup>2</sup> statement:  $\geq 95\%$  probability that prediction is true
- including prior information from previous studies directly into the regression analysis is part of the Bayesian framework

<sup>&</sup>lt;sup>2</sup>depends on the results





#### Thank you!

#### list of useful resources follows on the next slides

#### References

- Kluth, T., Burigo, M., Schultheis, H., & Knoeferle, P. (submitted). Does direction matter? Linguistic asymmetries reflected in visual attention. Cognition.
- Bürkner, P.-C. (in press). brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical* Software.
- Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B. (in press). How to become a Bayesian in eight easy steps: An annotated reading list. *Psychonomic Bulletin & Review*.
- Kluth, T. (2017). A C++ implementation of cognitive models of spatial language understanding as well as pertinent empirical data and analyses. to-be-published on pub.uni-bielefeld.de.
- Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2), 573.
- Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.). Academic Press
- McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press. Regier, T. (1996). The human semantic potential: Spatial language and constrained connectionism. Cambridge,
- Mass.: MIT Press.
  Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. *Journal of Experimental Psychology: General*, 130(2), 273–298. doi: 10.1037//0096-3445.130.2.273
- Stan Development Team. (2016). RStan: the R interface to Stan. (R package version 2.14.1)





#### Useful resources // selected R packages

- rstan (R interface for STAN),
  https://cran.r-project.org/package=rstan, STAN is a programming
  language itself, for more information including interfaces to other
  languages see mc-stan.org
- brms (Bayesian regression modeling using STAN), well documented, very responsive package author, https://cran.r-project.org/package=brms, Bürkner (in press)
- rstanarm, similar to brms; faster but less flexible, https://cran.r-project.org/package=rstanarm
- bayesplot, provides great visualizations, compatible with brms and rstanarm, https://cran.r-project.org/package=bayesplot
- BEST (Bayesian estimation supersedes the t-test), https://cran.r-project.org/package=BEST
- Bayesian First Aid, http://sumsar.net/blog/2014/01/bayesian-first-aid/





#### Useful resources // selected tutorials & literature

- tutorial: https://mvuorre.github.io/post/2017/
  how-to-compare-two-groups-with-robust-bayesian
  -estimation-using-r-stan-and-brms/, based on
  Kruschke (2013)
- full data set including working and commented R scripts: Kluth (2017); accompanying the article Kluth et al. (submitted); not available yet, but stay tuned, should be online in a few months (check https://www.techfak.de/~tkluth)
- books: Kruschke (2015); McElreath (2016)
- annotated reading list: Etz, Gronau, Dablander, Edelsbrunner, and Baribault (in press)