

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 10

MAT1106 — Introducción al Cálculo Fecha: 2020-10-01

Problema 1:

Sea $A \subset \mathbb{R}$ un conjunto finito no vacío, demuestre que existen $m, M \in A$ tales que para todo $a \in A$ se tiene $m \leq a \leq M$. m y M se denotarán como el mínimo de A^1 y el máximo de A^2 , respectivamente.

Solución problema 1: Se hace Inducción sobre el tamaño de A, si |A| = 1, se tiene que $A = \{a\}$, por lo que m = M = a cumple lo pedido. Para el paso inductivo, se tiene que |A| = n, como es finito podemos escoger un $a' \in A$ y reescribimos $A = \{a'\} \cup (A \setminus \{a'\})$, ahora $|A \setminus \{a\}| = n - 1$, por lo que por hipótesis inductiva tenemos que $\exists m', M' \in A \setminus \{a\} \quad \forall a \in A \setminus \{a'\} \quad m' \leq a \leq M'$, ahora se nota que $m = \min(a', m') \leq a \leq M = \max(a', M')$ para todo $a \in A$, por lo que se tiene lo pedido.

Problema 2:

- 1) Sea x_n una sucesión acotada, demuestre que toda subsucesión es acotada.
- 2) Sea x_n una sucesión monótona no acotada, demuestre que toda subsucesión es no acotada.
- 3) Encuentre una sucesión no acotada x_n , tal que tiene al menos una subsucesión acotada. ¿Existe alguna que tenga infinitas subsucesiones acotadas?

Solución problema 2:

 $^{^{1}}m = \min A$

 $^{^{2}}M = \max A$

- 1) Sea x_{n_k} subsucesión de x_n , por definición se tiene que existe un $M \in \mathbb{R}$ tal que $\forall n \in \mathbb{N} |x_n| < M$, como $\{n_k : k \in \mathbb{N}\} \subset \mathbb{N}$ se tiene que $\forall k \in \mathbb{N} |x_{n_k}| \leq M$.
- 2) Sea x_{n_k} subsucesión de x_n , se tiene que x_{n_k} "hereda" la monotonía de x_n , ahora s.p.d.g. x_n es creciente por lo que es acotada inferiormente, por lo que no es acotada superiormente³. Dicho eso, sea $M \in \mathbb{R}$, por lo anterior se tiene que existe un $n_0 \in \mathbb{N}$ tal que $x_{n_0} > M$, sea $S_{n_0} = k \in \mathbb{N} : n_k \ge n_0$, se ve que S_{n_0} es un subconjunto no vacío de \mathbb{N} , por lo que tiene un mínimo, que se denotara k_0 , luego se tiene que $n_{k_0} \ge n_0$ por lo que $x_{n_{k_0}} \ge x_{n_0} > M$, por lo que x_{n_k} no es acotada.
- 3) Se ve la siguiente sucesión $x_{2n} = n$, $x_{2n+1} = 0$, para infinitas considere $x_{2n} = n$, $x_{2n+1} = \frac{1}{n}$.

Problema 3:

Sea x_n una sucesión de números enteros, demuestre que x_n siempre cumple al menos una de las siguientes propiedades:

- (a) Tiene una cantidad finita de términos distintos, en otras palabras el conjunto $S = \{x_n : n \in \mathbb{N}\}$ es finito.
- (b) Es no acotada.

Solución problema 3: Sea $S = \{|x_n| : n \in \mathbb{N}\} \subset \mathbb{N}$, se ve que si x_n es acotada existe un $M \in \mathbb{R}$ tal que $\forall a \in Sa < M$, ahora, por propiedad arquimediana existe un $n \in \mathbb{N}$ tal que n > M, por lo que se tiene que $S \subseteq \{0, 1, \ldots, n\}$, por lo que $|S| \le n + 1$, por lo que S tiene finitos elementos. Ahora si, x_n no tiene finitos términos se tiene que $|S| = \infty$, pero si x_n es acotado se tiene que S es finito, por lo que S no es acotada.

 3 Si lo fuera x_n sería una sucesión acotada