D17 – Análise de dados Vetoriais. - Aula 8

Agenda

- Predicados e funções entre geometrias.
- Obter as informações das imagens.
- Preparando dados para a análise.
- Fazer a análise.

Predicados e funções entre geometrias

- Dimensão de uma geometria
 - Indica a extensão espacial

Geometria	Dimensão	Pode ser medido em	
-1	Vazio	Nenhum elemento	
Ponto	0	Localização (sem extensão)	
Linha	1	Comprimento	
Polígono	2	Área e perímetro	
Sólido	3	Volume	

- Relações espaciais entre Geometrias:
 - Cada geometria pode ser decomposta em três subconjuntos:
 - Interior: Porção interna, excluindo a borda.
 - Borda: Limite entre o interior e o exterior.
 - Exterior: Tudo que está fora da geometria.

Data type	Dim.	Whole shape	Interior	Boundary	Exterior
Point	0	•	•		•
LineString	1	•	<u>\</u>	•	~
LinearRing	1				
Polygon	2			\bigcirc	

- Todos os tipos de geometria possui "Exterior" e "Interior"?
- A dimensão da borda pode ser igual ou maior que a dimensão da Geometria?

Matriz de 9 Interseções (9IM - Nine Intersection Model)

- Descreve as relações topológicas entre Duas geometrias
 - Subconjuntos: Interior, Borda, Exterior.
 - Geom A (3 subconjuntos) X Geom B (3 subconjuntos) = 9 interseções.
- Interseção (∩):
 - É a parte do espaço (I, B ou E) que as geometrias (A e B) compartilham.

$$A \cap B = \{ x \in R^n \mid x \in A \in x \in B \}$$

- Resultado (entre os subconjuntos):
 - Vazio (dim = -1).
 - Ponto (dim = 0).
 - Linha (dim = 1).
 - Polígono (dim 2).

Matrix de 9 Interseções (9IM - Nine Intersection Model)

- Interseções dos 3 subconjuntos (I, B e E) de duas geometrias.
 - O resultado é a dimensão (dim) das interseções:
 - -1 (vazio), 0 (ponto), 1 (linha) e 2 (polígono)

- Exemplo de 2 polígonos (a e b).
- Qual é a dimensão da interseção(∩) do Interior de a com o Interior de b ?
 Dim[I(a) ∩ I(b)] = 2
- O Resultado de cada interseção pode ser representado apenas como:
 Verdadeiro ou Falso (predicados espaciais).
 *9IM simplificado

- Predicado:
 - É uma expressão que retorna Verdadeiro ou Falso.
- Predicado espacial
 - A relação espacial entre dois objetos.
 - É o resultado (V ou F) das interseções (9IM) dos subconjuntos (I, B e E)

Predicado (função em SIG)	Significado	
intersects	A e B compartilham pelo menos um ponto	
disjoint	A e B não compartilham nenhum ponto	
contains	A contém completamente B	
within	A está completamente dentro de B	
touches	A e B compartilham apenas a fronteira	
equals	A e B têm exatamente a mesma geometria	
overlaps	A e B se sobrepõem parcialmente	

Qual é o Predicado?

Predicado (função em SIG)	Significado	
intersects	A e B compartilham pelo menos um ponto	
disjoint	A e B não compartilham nenhum ponto	
contains	A contém completamente B	
within	A está completamente dentro de B	
touches	A e B compartilham apenas a fronteira	
equals	A e B têm exatamente a mesma geometria	
overlaps	A e B se sobrepõem parcialmente	

- Qual é o Predicado espacial da Figura (tabela acima)?
- 1. Dim[I(a) ∩ I(b)] = ? (Figura)
- O item (1) já é suficiente para definir o predicado ?

	Interior (B)	Fronteira (B)	Exterior (B)
Interior (A)	Т	F	F
Fronteira (A)	Т	F	F
Exterior (A)	Т	Т	Т

Como seria a 9IM se o predicado fosse "Equal"?

Funções geométricas:

- Aplica-se no campo Geométrico.
 - f (geom)
 - f (geom, geom)
 - f(geom, número)
- Podem retornar:
 - Verdadeiro ou Falso:
 - st_intersects(geom, geom)
 - st_isvalid(geom)
 - Número:
 - st_area(geom)
 - st_distance(geom, geom)
 - Geometria:
 - st_intersection(geom, geom)
 - st_buffer(geom, número)

Obter as informações dos vetores

- Bases Cartograficas Continuas :
 - Bc100: 1:100.000
 - UF: GO/DF
 - Versão 2022
 - Formato Geopackage
 https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc100/go_df/versao2022/geopackage/bc100_godf_2022-11-14_gpkg.zip
- Camadas para análise:
 - Rodovia (trechos):
 - rod_trecho_rodoviario_l (rodovias)
 - Hidrografia (drenagem/trecho):
 - hid_trecho_drenagem_l (rios)

Preparando dados para a análise

- Verificar as Camadas:
 - Rodovias
 - Rios
- Qual é Sistema de Referencia de Coordenadas?
- Qual é o tipo de geometria?
- Escalas?

Fazer a análise

Identificar os locais nas rodovias federais que estão a 200 metros das nascentes dos rios.

- Etapas:
 - Obter as nascentes (pontos) a partir da camada de Rios.
 - Selecionar as rodovias federais.
 - "jurisdicao" = 'Federal'
 - Gerar as coordenada dentro das rodovias que estejam mais próximo das nascentes com uma distância de 200m.