目录

第1章	解析函数	1
1.1	基本概念	 1
1.2	极限和连续	 2
1.3	可微和解析	 5
1.4	CR方程	 7

第1章 解析函数

1.1 基本概念

定义 1.1

设 $E\subset\mathbb{C}$ 。

- 1. 若对于任意的 $z \in E$,存在唯一的 $w \in \mathbb{C}$ 与之对应,则称在 E上确定了一个(单值)单复变函数/映照/映射 $f: E \to \mathbb{C}$ 。
- 2. 若对于任意的 $z \in E$, 存在若干 $w \in \mathbb{C}$ (有限或无限)与之对应,且存在 $z \in E$, 使得与之对应的 w指数有两个(包含无穷),则称在 E上确定了一个多只函数(不是函数)。

Remark

1. 若非明确指出,"函数"皆指单值函数。

定义 1.2

 $\overline{\mathfrak{g}}$ $E, A \subseteq \mathbb{C}$, $f: E \to A$ 是函数。

- 1. 若对于任意的 $x_1 \neq x_2$,都有 $f(x_1) \neq f(x_2)$,则称 f是一个单射。
- 2. 若对于任意的 $y \in A$, 都存在 $x \in E$, 使得 f(x) = y, 则称 f是满射。
- 3. 若 f是既单又满的,则称 f是一个双射。

Remark

- 1. 若 f为双射,则存在反函数 $f^{-1}: A \to E$ 。
- 2. 若 $E = \mathbb{Z}_{\geq 0}$,则称函数 $f : E \to \mathbb{C}$ 唯一个(复数)数列/序列。

Example 1.1

$$w = f(z) = \operatorname{Re} f(z) + i \operatorname{Im} f(z) = u(x, y) + iv(x, y)$$

复变函数无非是一对二元实函数。

Example 1.2

- 考虑函数 $w = \bar{z}$, 它是关于 x轴的镜像。
- 考虑 $w := f(z) := z^2$, 它是对模长取平方, 辐角翻倍的映射。
 - 例如对于 $A = \left\{ 2e^{i\theta} : 0 \le \theta \le \frac{\pi}{2} \right\}, \quad f(A) = \left\{ 4e^{i\varphi} : 0 \le \varphi \le \pi \right\}$ 。
 - 设 B为倾角为 $\frac{\pi}{3}$ 的直线, $B = \{z : \arg z = \frac{\pi}{3}\} \cup \{z : \arg z = \frac{4\pi}{3}\} \cup \{0\}$ 则 $f(B) = \{z : \arg z = \frac{2\pi}{3}\} \cup \{0\}$,它把一个直线变成了一个射线;
 - 考虑双曲线 $C := x^2 y^2 = 4$,令 $w = f(z) = (x + iy)^2 = x^2 y^2 + 2ixy$

练习 1.1 当
$$\{2xy: x, y \in \mathbb{R}, x^2 - y^2 = 4\} = \mathbb{R}$$
。
故 $f(C) = \{w: \text{Re } w = 4\}$

• 考虑
$$(x,y) \to (x^2, x+y)$$
 , 则

$$w = x^{2} + i (x + y)$$

$$= \left(\frac{z + \bar{z}}{2}\right)^{2} + i \left(\frac{z + \bar{z}}{2} + \frac{z - \bar{z}}{2i}\right)$$

$$= \frac{z^{2}}{4} + \frac{z\bar{z}}{2} + \frac{\bar{z}^{2}}{4} + \left(\frac{1}{2} + \frac{i}{2}\right)z + \left(-\frac{1}{2} + \frac{i}{2}\right)z$$

1.2 极限和连续

定义 1.3

设 $f: E \to \mathbb{C}$ 是函数, z_0 是 E的一个聚点。若对于任意的 $\varepsilon > 0$,存在 $\delta = \delta\left(\varepsilon, f, z_0\right) > 0$,使得对于任意的 $z \in E$, $0 < |z - z_0| < \delta$ 时,都有 $|f(z) - \alpha| < \varepsilon$ 。则称 z趋于 z_0 时, f(z)趋于(极限为) α 。记作 $\lim_{z \to z_0, z \in E} f(z) = \alpha$,或者简记 $\lim_{z \to z_0} f(z) = \alpha$,也称 $f(z) \to \alpha$ 当 $z \to z_0$ 。

Remark

1. z_0 是 E的聚点未必有 $z_0 \in E$;

命题 1.1

若将 $f:E\to\mathbb{C}$ 写作 $f(z)=u\left(x,y\right)+iv\left(x,y\right),z_{0}=x_{0}+iy_{0}$, $\alpha=a+ib$, $a,b,x_{0},y_{0}\in\mathbb{R},u,v:\mathbb{R}^{2}\to\mathbb{R}$ 。则

$$\lim_{z \to z_0} f(z) = \alpha \iff \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = a \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = b \end{cases}$$

Example 1.3

 $\exists L_1 := \lim_{x \to x_0} \lim_{y \to y_0} u(x, y), \ L_2 = \lim_{y \to y_0} \lim_{x \to x_0} u(x, y), \ L_3 = \lim_{(x, y) \to (x_0, y_0)} u(x, y)$

1. 考虑

$$u(x,y) = \begin{cases} x + y \sin \frac{1}{x}, & x \neq 0 \\ 0 & x = 0 \end{cases}$$

 $(x_0, y_0) = (0, 0)$,则 $L_1 = 0$, L_2 不存在,但是 L_3 存在。

2. 考虑

$$u(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

 \Diamond

 $(x_0, y_0) = (0, 0)$ 。则 $L_1 = 1$, $L_2 = -1$,但是 L_3 不存在。

3. 考虑

$$u(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

此时 $L_1 = L_2$,但是 L_3 不存在。

命题 1.2

考虑 $E = \mathbb{Z}_{\geq 0}$,设 N为北极点, A'_k 为 $k \in \mathbb{Z}_{\geq 0} \subseteq \mathbb{C}$ 在Riemann球面上对应的点,则 N为 $\{A'_1, A'_2, \dots\}$ 的一个聚点; ∞ 为 $\{1, 2, \dots\}$ 的一个聚点。

定义 1.4

考虑 $E\subseteq\mathbb{C}$, $f:E\to\mathbb{C}$ 是函数, $z_0\in\mathbb{C}_\infty=\mathbb{C}\cup\{\infty\}$ 为 E的聚点。对于 $\alpha\in\mathbb{C}_\infty$,称 $\lim_{z\to z_0}f(z)=\alpha$,若对于任意的 α 的开邻域 $V\subseteq\mathbb{C}_\infty$,都存在 z_0 的开邻域 $U\subseteq\mathbb{C}_\infty$,使得对于任意的 $z\in(E\cap U)\setminus\{z_0\}$,都有 $f(z)\in V$ 。

练习 1.2 翻译 $\lim_{z\to z_0} f(z) = \infty$, $\lim_{z\to\infty} f(z) = \alpha$,其中 $z_0, \alpha \in \mathbb{C}$ (用 $\varepsilon - \delta$ 语言)。

定义 1.5 (连续)

设 $f: E \to \mathbb{C}$ 是函数, $E \subseteq \mathbb{C}$ 。 $z_0 \in E$ 是 E的聚点。若 $\lim_{z \to z_0} f(z) = f(z_0)$,则称 f在 z_0 处连续。

Remark

1. 若 f(z) = u(x,y) + iv(x,y),则 f在 $z_0 = x_0 + iy_0$ 处连续,当且仅当 u,v均在 (x_0,y_0) 处连续。

定义 1.6 (一致连续)

设 $E\subseteq\mathbb{C}$, $f:E\to\mathbb{C}$ 是函数。若对于任意的 $\varepsilon>0$,存在 $\delta=\delta\left(\varepsilon,f\right)>0$,使得对于任意的 $z',z''\in E$,只要 $|z'-z''|<\delta$,就有 $|f\left(z'\right)-f\left(z''\right)|<\varepsilon$ 。

定理 1.1

设 $E \subseteq \mathbb{C}$ 是一个紧集。若 $f: E \to \mathbb{C}$ 是连续的,则称f在E上一致连续。

Remark

• 例如 E是一个 Jordan曲线、有界闭区域。

Proof 任取 $\varepsilon > 0$ 。由连续性,对于任意的 $a \in E$,都存在一个 $r_a > 0$,使得对于任意的

 $z \in U(a, r_a) \cap E$, 都有 $|f(z) - f(a)| < \frac{\varepsilon}{2}$ 。则 $E \subseteq \bigcup_{a \in E} U(a, \frac{r_a}{2})$ 。由于 E是紧的,

$$E \subseteq U\left(a_1, \frac{r_1}{2}\right) \cup \dots \cup U\left(a_m, \frac{r_m}{2}\right)$$

对于某些以上开邻域成立。

取 $\delta = \min\left\{\frac{r_1}{2}, \dots, \frac{r_m}{2}\right\}$,此时任取 $z', z'' \in E$,使得 $|z', z''| < \delta$ 。设 $z' \in U\left(a_k, \frac{r_k}{2}\right)$,则 $|a_k - z''| \le |a_k - z'| + |z' - z''| < \frac{r_k}{2} + \delta < r_k$ 。故 $z', z'' \in U\left(a_k, r_k\right)$,

$$\left| f\left(z'\right) - f\left(z''\right) \right| \le \left| f\left(z'\right) - f\left(a_k\right) \right| + \left| f\left(z''\right) - f\left(a_k\right) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这表明 f是一致连续的。

定理 1.2

设 $E \subseteq \mathbb{C}$ 是一个紧集, $f: E \to \mathbb{C}$ 连续, 则

- 1. f在 E上有界,即 $|f(z)| = \sqrt{(u(x,y))^2 + (v(x,y))^2}$ 有界。
- 2. $f(E) \subseteq \mathbb{C}$ 是一个紧集(由于Hausdorff性)。
- 3. |f(z)|在 E能够达到最大值和最小值。

 \Diamond

Proof

1. 取 $\varepsilon = 1$,则对于任意的 $a \in E$,存在 $r_a > 0$,使得对于任意的 $z \in E \cap U(a, r_a)$,都有 |f(z) - f(a)| < 1。则 $E \subseteq \bigcup_{a \in E} U(a, r_a)$,存在有限的子覆盖,使得 $E \subseteq \bigcup_{k=1}^m U(a_k, r_k)$ 。任取 $b \in E$,设 $b \in U(a_k, r_k)$,则 $|f(b)| \le |f(b) - f(a_k)| + |f(a_k)| < 1 + |f(a_k)|$ 。故

$$|f(b)| \le 1 + \max_{1 \le k \le m} |f(a_k)| < \infty, \quad \forall b \in E$$

2. 任取 f(E)的一个开覆盖, $f(E)\subseteq\bigcup_{i\in I}V_i$,则由 f的连续性, $f^{-1}(V_i)$ 是开集,我们有

$$E \subseteq \bigcup_{i \in I} (U_i \cap E) = \left(\bigcup_{i \in I} U_i\right) \cap E$$

由于E是紧的,存

阅读17-20, 预习21-25, 作业书38 1,2

1.3 可微和解析

定义 1.7

设 $D \subseteq \mathbb{C}$ 是区域, $f: D \to \mathbb{C}$ 是函数, $z_0 \in D$, 若极限

$$\lim_{z \to z_0, z \in D} \frac{f(z) - f(z_0)}{z - z_0}$$

存在, 且等于 α , 则称 f在 z_0 处可导, 导数为 α , 记作

$$\begin{cases} f'(z_0) = \alpha \\ \frac{\mathrm{d}f}{\mathrm{d}z}(z_0) = \alpha \\ \frac{\mathrm{d}f}{\mathrm{d}z} \Big|_{z=z_0} = \alpha \end{cases}$$

定义 1.8 (可微)

设 $D\subseteq\mathbb{C}$ 是区域, $f:D\to\mathbb{C}$ 是函数, $z_0\in D$ 。称 f在 z_0 可微,若存在 \mathbb{C} -线性函数 $L:\mathbb{C}\to\mathbb{C}$,使得

$$f(z) - f(z_0) = L(z - z_0) + o((z - z_0)), \quad z \to z_0$$

命题 1.3

设 $D\subseteq\mathbb{C}$ 是区域, $f:D\to\mathbb{C}$ 是函数, $z_0\in D$ 。则 f在 z_0 处可导当且仅当它在 z_0 处可微。

定义 1.9 (解析)

设 $D \subseteq \mathbb{C}$ 是区域, $f: D \to \mathbb{C}$ 是函数。

- 1. 如果 f在 D上的每一点均可导,则称 f在 D内解析。
- 2. 设 $z_0 \in D$, 若 f在 z_0 的一个邻域内解析,则称 f在 z_0 处解析。
- 3. 称 f在闭区域 \bar{D} 上解析,若存在区域 $G \subseteq \mathbb{C}$,使得 $\bar{D} \subseteq G$,且 f在 G内解析。
- 4. 设 $D' \subseteq D$ 是一个子集, 若 f在 D'的每个点上都解析, 在 $D \setminus D'$ 上的每个点都不解析, 则称 $D \setminus D'$ 上的点为 f的奇点。

命题 1.4

设 $f, g: D \to \mathbb{C}$ 是解析的,则

- 1. $(f \pm g)'(z) = f'(z) \pm g'(z)$
- 2. (fg)'(z) = f'(z)g(z) + f(z)g'(z)
- 3. 若 $g(z) \neq 0$, $\forall z \in D$, $\left(\frac{f}{g}\right)' = \frac{f'(z)g(z) f(z)g'(z)}{(g(z))^2}$
- 4. 设 $f:D_1\to D_2$ 和 $g:D_2\to D_3$ 是函数, 其中 $D_i\subseteq\mathbb{C}$ 是区域。设 $z_0\in D_1$, $\zeta_0=f(z_0)$ 。若 f在 z_0 处可微, F在 ζ_0 处可微,则 $F\circ f:D_1\to D_3$ 在 z_0 处可微,并

且

$$(F \circ f)'(z_0) = F'(\zeta_0) f'(z_0)$$

5. 设 $f: D \to \mathbb{C}$ 是单的解析函数,且 $f'(z) \neq 0$ 。则 $f(D) \subseteq \mathbb{C}$ 也是区域, $f^{-1}: f(D) \to D$ 也是解析的,并且若 $w_0 = f(z_0)$,则

$$(f^{-1})'(w_0) = \frac{1}{f'(z_0)}$$

"事实对于单的解析函数, f'(z) ≠自动成立

△ 练习1.3 叙述复变函数的反函数定理。

Example 1.4 处处连续单处处不可导的复函数 以下函数在 C上处处连续但是处处不可导。

1. $f(z) = \bar{z}$

Proof 显然连续, 但是

$$\frac{f(z_0 + \Delta z) - f(z_0)}{(z_0 + \Delta z) - z_0} = \frac{\overline{\Delta z}}{\Delta z}$$

当 $\Delta z \rightarrow 0$ 时极限不存在

2. f(z) = Re z

3. $f(z) = \operatorname{Im} z$

4. f(z) = |z|

Example 1.5 在一点可导但不解析的函数 考虑 $f(z) = (\text{Re } z)^2$,

1.

$$\frac{f(z) - f(0)}{z - 0} = \frac{\operatorname{Re} z}{z} \cdot z$$

其中 $\frac{\operatorname{Re} z}{z}$ 有界, $z \to 0$,故 f'(0) = 0,这表明 f在 0处可导。

2. 对于一点 $z_0 \neq 0$,

$$\lim_{\delta \to 0} \frac{f(z_0 + \Delta x) - f(z_0)}{\Delta x} = \lim_{\Delta \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x_0 \Delta + (\Delta x)^2}{\Delta x} = 2x_0 \neq 0$$
但是
$$f(z_0 + \Delta y) - f(z_0)$$

$$x_0^2 - x_0^2$$

$$\lim_{\Delta y \to 0} \frac{f(z_0 + \Delta y) - f(z_0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{x_0^2 - x_0^2}{i\Delta y} = 0$$

故 $f'(z_0)$ 不存在,故 f不解析。

f在 0处可导, 但不解析。

Example 1.6 微分中值定理未必成立 考虑 $f(z) = e^z$,则 $f'(z) = e^z$ 。令 $z_1 = 0$, $z_2 = 2\pi i$,若

中值定理成立,则

$$f(z_2) - f(z_1) = f'(\lambda 2\pi i)(z_2 - z_1) = 0 = 1 - 1 = e^{\lambda 2\pi i}$$

其中 $\lambda \in (0,1)$,但这是不可能的,因此中值定理对于复函数不成立。

1.4 CR方程

定理 1.3 (CR方程)

设 $f: D \to \mathbb{C}$ 是函数, 其中 $D \subseteq \mathbb{C}$ 是区域。设 f(z) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0 \in D$ 。若 f是解析函数,则有以下Cauchy-Riemann方程对于任意的 $(x_0,y_0) \in D$ 成立:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

 \Diamond

Proof 一方面

$$f'(z_{0}) = \lim_{\Delta X \to 0} \frac{f(z_{0} + \Delta x) - f(z_{0})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(u(x_{0} + \Delta x, y_{0}) + iv(x_{0} + \Delta x, y_{0})) - (u(x_{0}, y_{0}) + iv(x_{0}, y_{0}))}{x}$$

$$= \lim_{\Delta x \to 0} \left[\frac{u(x_{0} + \Delta x, y_{0}) - u(x_{0}, y_{0})}{\Delta x} + i \frac{v(x_{0} + \Delta x, y_{0}) - v(x_{0}, y_{0})}{\Delta x} \right]$$

$$= \frac{\partial u}{\partial x}(x_{0}, y_{0}) + i \frac{\partial v}{\partial x}(x_{0}, y_{0})$$

另一方面

$$f'(z_{0}) = \lim_{\delta y \to 0} \frac{f(z_{0} + i\Delta y) - f(z_{0})}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{(u(x_{0}, y_{0} + \Delta y) + iv(x_{0}, y_{0} + \Delta y)) - (u(x_{0}, y_{0}) + iv(x_{0}, y_{0}))}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \left(\frac{v(x_{0}, y_{0} + \Delta y) - v(x_{0}, y_{0})}{\Delta y} - i \frac{u(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0})}{\Delta x} \right)$$

$$= \frac{\partial v}{\partial y}(x_{0}, y_{0}) - i \frac{\partial u}{\partial y}(x_{0}, y_{0})$$

两式分别对比实部和虚部,得到 x_0 处的CR方程成立。

Example 1.7 点CR ≠⇒ 点可导 考虑

$$f(z) = \sqrt{|xy|} = \sqrt{|\text{Re } z \cdot \text{Im } z|}$$

在 (0,0)处的行为。设 $u=\sqrt{|xy|}, v=0$ 。

1.

$$\frac{\partial u}{\partial x}\left(0,0\right) = \lim_{\Delta x \to 0} \frac{u\left(\Delta,0\right) - u\left(0,0\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{\left(\Delta x\right) \cdot 0} - \sqrt{0 \cdot 0}}{\Delta x} = 0 = \frac{\partial v}{\partial y}\left(0,0\right)$$

$$\frac{\partial u}{\partial y}\left(0,0\right) = \lim_{\Delta y \to 0} \frac{u\left(0,\Delta y\right) - u\left(0,0\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{\left(\Delta x\right) \cdot 0} - \sqrt{0 \cdot 0}}{\Delta y} = 0 = -\frac{\partial v}{\partial x}\left(0,0\right)$$

故 f在 (0,0)处成立**CR**方程。

2.

$$\frac{f\left(\Delta z\right)-f\left(0\right)}{\Delta z}=\frac{\sqrt{\left(\Delta x\right)\left(\Delta y\right)}}{\Delta x+i\Delta y}$$

当它沿斜率为 k的直线趋于零时, 我们有

$$\frac{f\left(\Delta z\right) - f\left(0\right)}{\Delta z} \to \frac{\sqrt{|k|}}{1 + ik}$$

这表明 f'(0)不存在。

定理 1.4

设 $D \subseteq \mathbb{C}$ 是区域, $f: D \to \mathbb{C}$, f(z) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0 \in D$ 。则 f在 z_0 处可导,当且仅当 u,v在 (x_0,y_0) 处可微,且 CR方程成立 a 。此时

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$
$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial u}{\partial x}$$

"也就是说,复可微当且仅当实可微且CR

 \mathbb{C}

Proof

1. 必要性: 设 $f'(z_0) = \alpha = a + ib$, $a, b \in \mathbb{R}$ 。则当 $z_0 + \Delta z \in D$ 时,

$$f(z_0 + \Delta z) - f(z_0) = \alpha \Delta z + o(\Delta z)$$
$$= (a + ib)(\Delta x + i\Delta y) + o(\Delta z)$$

比较上式两端的实、虚部,

$$u\left(x_0 + \Delta x, y_0 + \Delta y\right) - u\left(x_0, y_0\right) = a\Delta x - b\Delta y + o\left(\Delta z\right) \tag{*}$$

$$v\left(x_0 + \Delta x, y_0 + \Delta y\right) - v\left(x_0, y_0\right) = b\Delta x + a\Delta y + o\left(\Delta z\right) \tag{**}$$

故u,v均在 x_0 处可微,且

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) = a$$
$$-\frac{\partial u}{\partial y}(x_0, y_0) = \frac{\partial v}{\partial x}(x_0, y_0) = -b$$

故点 (x_0,y_0) 处的 CR方程成立。

2. 充分性: 设u,v在 (x_0,y_0) 处可微,且CR方程对于一对(a,b)成立,则(*)和(**)成立。

$$(*) + i(**) \implies f(z_0 + \Delta z) - f(z_0) = \alpha \cdot \Delta z + o(\Delta z)$$

这表明 f在 zo处可导。

推论 1.1

f = u(x,y) + iv(x,y)在 $z_0 \in D$ 可导的一个充分条件是以下两条成立

- 1. $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ 在 (x_0, y_0) 的一个邻域存在,且在 (x_0, y_0) 处连续。
- 2. f在 (x_0, y_0) 处成立CR方程。

 \Diamond

Example 1.8 考虑 $f(z) = x^2 - iy$,

$$\frac{\partial u}{\partial x} = 2x, \frac{\partial u}{\partial y} = 0, \frac{\partial v}{\partial x} = 0, \frac{\partial v}{\partial y} = -1, \quad 均在 \ \mathbb{R}^2 \bot 存在且连续$$

CR成立当且仅当 $x=-\frac{1}{2}$ 。 故 f仅在 $x=-\frac{1}{2}$ 处可导。而 \mathbb{C} 上任一点的任意邻域包含不在 $x=-\frac{1}{2}$ 上的点,因此 f处处不解析。

阅读21-25, 预习26-30, 作业是第二章的7, 8,9,10