The Ame 2016 atomic mass evaluation

(I). Evaluation of input data; and adjustment procedures

W.J. Huang (黄文嘉)¹ G. Audi (欧乔治)¹ Meng Wang (王猛)^{2,3;1)} F.G. Kondev⁴ S. Naimi⁵ Xing Xu (徐星)²

¹ CSNSM, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

Abstract This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the AME are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous AME2012 evaluation are discussed and specific information is presented for several cases that may be of interest to AME users. The second AME2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the AME2016 and the Nubase2016 evaluations (the first paper in this issue).

AMDC: http://amdc.impcas.ac.cn/

Keywords: AME, trends from the mass surface (TMS), atomic-mass tables, least-squares adjustment

PACS: 21.10.D-r **DOI:** 10.1088/1674-1137/41/3/030002

1 Introduction

The mass of an atom equals the sum of the masses of its constituents (protons, neutrons and electrons) minus the binding energy, which includes both the atomic and nuclear binding energies. In general, the binding energy of the electrons outside the nucleus is well known. Therefore, the atomic mass reflects the net consequence of all interactions that hold the nucleons together in the nucleus. Since the strong, weak and electromagnetic interactions act among the nucleons, which on the one hand makes the theoretical description of nuclei very complex, on the other hand it gives us natural laboratories to study these fundamental interactions.

As a fundamental property of nuclei, atomic masses are widely used in many domains of science and engineering. A reliable atomic mass table derived from the experimental data, where the atomic masses and the relevant experimental information can be found conveniently, is in high demand by the research community. To meet the demands, the Atomic Mass Evaluation (AME) was created in 1950's and now serves the research community by providing the most reliable and comprehensive information related to the atomic masses [1].

The last complete evaluation of experimental atomic mass data AME2012 [2, 3] was published in 2012. Since then the experimental knowledge of atomic masses has continuously expanded and a large amount of data relevant to atomic masses has been published in the scientific literature. In this article, general aspects of the development of AME2016 are presented and discussed. In doing this, several local analyses will be given as illustrative examples.

The main AME2016 evaluation table (Table I) is presented in Part I. All accepted and rejected experimental data are given and compared with the adjusted values deduced using a least-squares fit analysis.

As in the previous AME versions, all uncertainties are

² Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

 $^{^3}$ Joint Department for Nuclear Physics, Institute of Modern Physics, CAS and Lanzhou University, Lanzhou 730000, China

Argonne National Laboratory, Argonne, IL 60439, USA
 RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

Received 10 March 2017

 $[\]ast$ This work has been undertaken with the endorsement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).

¹⁾ E-mail: wangm@impcas.ac.cn

^{©2017} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

one-standard deviation (1σ) .

There is no strict literature cut-off date for the data used in the present AME2016 evaluation: all data, available to the authors until the end of October 2016 were included. Results which were not included for particular reasons, such as the need for a heavy revision of the evaluation at too late a stage, were added in remarks to the relevant data. The final mass-adjustment calculations were performed on February 28, 2017.

The present publication includes updated information presented in the previous AME including the data that were not used in the final adjustment due to specific reasons, e.g. data that have too large uncertainties.

Remark: in the following text, several data of general interest will be discussed. Mention of references that can be found in Table I will be avoided. When it is necessary to provide a specific reference, those will be given using the NSR key-numbers [4], listed at the end of Part II, under "References used in the AME2016 and the NUBASE2016 evaluations" (p. 030003-5) (e.g. [2016De15]).

1.1 Isomers in the AME and the emergence of Nubase

In the early AME work, a computer data file (called Mfile) that contained the approximate mass values for nuclides in their ground and selected excited isomeric states was maintained. It was used as an approximate input to the adjustment program, which essentially uses the differences between the input and these approximate values in order to improve the precision of the calculations. The other reason for the existence of this file was for isomers, where one has to be careful to identify which state is involved in the reported experimental data, including decay/reaction energies or mass-spectrometric results. Therefore, it was judged necessary to make the Mfile as complete as possible. Thus, the Nubase evaluation was developed to contain values of the main nuclear properties, such as masses, excitation energies of isomers, half-lives, spin and parities, and decay modes and their intensities, for all known nuclides in their ground and excited isomeric states. The Nubase evaluation was published independently from AME for the first time in 1997 [5], and was greeted with interest from many colleagues working in the areas of nuclear structure physics, nuclear astrophysics and applied nuclear physics. In 2003 and 2012, the Nubase and Ame were published jointly, which is the case again with the present Nubase2016 evaluation published in the first part of this issue (41-030001).

Isomers may be involved in mass-measurement experiments. This became even more important for new mass-spectrometric methods that were developed to measure masses of exotic nuclides far from the valley of β -stability,

which have, in general, relatively short lifetimes. The resolving power of mass spectrometers has been improved significantly in recent years and many isomers can be clearly separated. But quite often only an isomeric mixture could be measured and an average mass value for a particular isomeric pair can be obtained. Since the mass of the ground state is the primary aim of the present evaluation, it can be derived only in cases where information on the excitation energies and production rates of the isomers is available. When the excitation energy of a particular isomer is not experimentally known, it is estimated from smooth trends in neighboring nuclides (TNN), as explained in Nubase2016 (p. 030001-4). Two examples are given in Section 6.2.9 (p. 030002-27) and Section 6.8 (p. 030002-32).

1.2 Highlights

The backbone Nowadays, the highest precision values measured for the atomic masses are obtained by two different experimental techniques: direct mass-spectrometric measurements using Penning traps, and γ -ray energy measurements following neutron capture reactions.

In the present work, results obtained by both methods are combined consistently (with very few exceptions) to improve considerably the precision of the atomic masses for nuclides along the line of stability in a diagram of the atomic number Z versus neutron number N [6], thus resulting in a reliable 'backbone'.

The highest relative mass precision $\delta m/m$ of 7×10^{-12} has been achieved by a Penning trap spectrometer [2004Ra33]. The masses of some stable alkali-metal nuclides and noble-gas nuclides [2010Mo30] have been determined with relative precision of 10^{-10} or even better, providing reliable reference standards for other mass measurements. While most stable nuclides, and some long-lived ones, could have their mass accuracy improved using Penning traps, the priority has been given by experimentalists to cases where there is a strong motivation from the physics point of view. For example, the $Q_{\beta\beta}$ values for nuclides relevant to neutrino properties have been determined with very high precision [2011Go23], strengthening at the same time the backbone.

Meanwhile, (n,γ) reactions ([2006De21], [1984Ke15] and [1998Wh01]) determined the binding energies with a relative uncertainty of 10^{-7} , providing mass determination with precisions at the level of 10^{-10} .

Exotic species The domain of nuclides with experimentally known masses has extended impressively over the last few years, thanks to the developments of radioactive nuclear beam facilities and novel mass spectrometers. In the past, masses of short-lived nuclides were mainly known from Q_{β} end-point measurements, while

in the present evaluation, mass spectrometry dominates. Classical time-of-flight mass spectrometry stays at the frontier, exploring the light neutron-rich mass region, albeit with larger uncertainties. Penning traps and storage rings keep on playing an important role in mass measurements for short-lived nuclides. Meanwhile, Multi-

Reflection Time-of-Flight spectrometers (MR-ToF) begin to take the stage. It can be concluded that the shape of the atomic mass surface, and hence understanding of nuclear interactions, has been changed significantly over the last 10-20 years.

Table A. Constants used in this work or resulting from the present evaluation.

1 u	=	$M(^{12}{\rm C})/12$	=		atomic m	ass unit		
1 u	=	$1\ 660\ 539.040$	\pm	0.020	$\times 10^{-33} \text{ kg}$	12	ppb	a
1 u	=	$931\ 494.0954$	\pm	0.0057	keV	6.2	ppb	a
1 u	=	$931\ 494.0038$	\pm	0.0004	keV_{90}	0.45	ppb	b
1 eV_{90}	=	$1\ 000\ 000.0983$	\pm	0.0061	$\mu \mathrm{eV}$	6.1	ppb	a
$1~{ m MeV}$	=	$1\ 073\ 544.1105$	\pm	0.0066	nu	6.2	ppb	a
$1~{\rm MeV_{90}}$	=	$1\ 073\ 544.2160$	\pm	0.0004	nu	0.45	ppb	b
M_e	=	$548\ 579.909070$	\pm	0.000016	nu	0.03	ppb	a
	=	$510\ 998.9461$	\pm	0.0031	eV	6.2	ppb	a
	=	$510\ 998.89651$	\pm	0.0023	eV_{90}	0.45	ppb	b
M_p	=	$1\ 007\ 276\ 466.93$	\pm	0.09	nu	0.09	ppb	c
M_{lpha}	=	$4\ 001\ 506\ 179.127$	\pm	0.06	nu	0.015	ppb	c
$M_n - M_H$	=	839 883.59	\pm	0.51	nu	610	ppb	d
	=	$782\ 346.52$	\pm	0.48	eV_{90}	610	ppb	d

- a) derived from the work of Mohr and Taylor [7].
- b) for the definition of V_{90} , see text.
- c) derived from this work combined with M_e and total ionization energies for ¹H and ⁴He from [7].
- d) this work.

2 Units and recalibrations of α - and γ ray energies

Atomic mass determination for a particular nuclide can be generally performed by establishing an energy relation between the mass we want to deduce and that for a well known nuclide. This energy relation is then expressed in electron-volts (eV). Mass values can also be obtained as an inertial mass from the movement of an ionized atom in an electro-magnetic field. The mass is then derived from a ratio of masses and it is then expressed in 'unified atomic mass unit' (u). Those two units are used in the present work.

Since 1960, the mass unit is defined as one twelfth of the mass of one free atom of carbon-12 in its atomic and nuclear ground states, $1 = M(^{12}C)/12$. Before 1960, two mass units were used: the physics one, defined as $^{16}O/16$, and the chemical one which considered one sixteenth of the average mass of a standard mixture of the three stable oxygen isotopes. This difference was considered as being not at all negligible, when taking into

account the commercial value of all concerned chemical substances. Physicists could not convince the chemists to drop their unit. "The change would mean millions of dollars in the sale of all chemical substances", said the chemists, which was indeed true! Kohman, Mattauch and Wapstra [8] then calculated that, if $^{12}\mathrm{C}/12$ was chosen, the change would be ten times smaller for chemists, and in the opposite direction ... This led to an unification; 'u' stands therefore, officially, for 'unified mass unit'. It is worth mentioning that the chemical mass-spectrometry community (e.g. bio-chemistry, polymer chemistry) widely use the dalton unit (symbol Da, named after John Dalton [9]). It allows to express the number of nucleons in a molecule, at least as it is presently used in these domains. It is thus not strictly the same as 'u'.

The unit for energy is the electron-volt. The choice of the volt for the energy unit is not unambiguous. For example, one may use the *international* volt V, or the volt V_{90} as *maintained* in national metrology laboratories and defined by adopting an exact value for the

constant (2e/h) in the relation between frequency and voltage from the Josephson effect. Since 1990, by definition 2e/h = 483597.9 (exact) GHz/V₉₀ (see Table B). Already in 1983, an analysis by Cohen and Wapstra [10] showed that all precision measurements of reaction and decay energies were calibrated in such a way that they can be more accurately expressed in maintained volts. In fact, the gamma-ray energies determined in wavelength measurements can be expressed in eV₉₀ without loss in precision, since the conversion coefficient is an exact quantity. Here we take the measurement of the reaction energy for 1 H(n, γ) 2 H as an example. In the experiment, the wavelength of the emitted γ ray is determined by using the Institut Laue-Langevin (ILL) silicon crystal spectrometer. In AME2003, the recom-

mended value was 2224.5660(4) keV₉₀, based on the work of Kessler et al [1999Ke05]. This result had the highest precision for energy measurement in the input data, with a relative uncertainty of 180 ppb. In the later work from the same group [2006De21], the value was corrected to be 2224.55610(44) keV with new evaluation on the lattice spacing of the crystal. The value of the crystal lattice spacing is used as an adjusted parameter in the CODATA evaluation of Mohr et al., but not expressed explicitly. Using the same value of the wave length in [2006De21], and the length-energy conversion coefficient, we derive 2224.55600(44) keV₉₀ as an input to our evaluation. During this period, the conversion coefficient with respect to the international volt has been changed by 5.5×10^{-8} , which is about one third of the measurement uncertainty.

Table B. Definition of Volt unit, and resulting mass-energy conversion constants.

		2e/h			u	
1983	483594.21	(1.34)	$\mathrm{GHz/V}$	931501.2	(2.6)	keV
1983	483594	(exact)	$\mathrm{GHz/V_{86}}$	931501.6	(0.3)	${ m keV_{86}}$
1986	483597.67	(0.14)	$\mathrm{GHz/V}$	931494.32	(0.28)	keV
1990	483597.9	(exact)	$\mathrm{GHz/V_{90}}$	931493.86	(0.07)	keV_{90}
1999	483597.9	(exact)	$\mathrm{GHz/V_{90}}$	931494.009	(0.007)	keV_{90}
2010	483597.9	(exact)	$\mathrm{GHz/V_{90}}$	931494.0023	(0.0007)	keV_{90}
2012	483597.9	(exact)	$\mathrm{GHz/V_{90}}$	931494.0038	(0.0004)	keV_{90}

The precision of the conversion factor between mass units and maintained volt (V_{90}) is higher than that between the former and international volt as seen in Table A. Until the end of the last century, the relative precision of M-A expressed in keV was for several nuclides worse than the same quantity expressed in mass units. Due to the increase of precision of fundamental constants, now the relative precision of M-A expressed in keV_{90} is as good as the same quantity expressed in mass units, whereas the uncertainties expressed in international volts are larger than in V_{90} . For example, the mass excess of ${}^{4}\text{He}$ is $2\,603\,254.130\pm0.063\,\text{nu}$ in mass units, $2424915.609\pm0.059\,\mathrm{eV_{90}}$ in maintained volt units and $2424915.851\pm0.061\,\mathrm{eV}$ in *international* volt units. Therefore, as already adopted in our previous mass evaluations, the V_{90} (maintained volt) unit is used in the present work.

In the most recent CODATA evaluation by Mohr *et al.* [7], the relation between *maintained* and *international* volts is given as $V_{90}=[1+9.83(0.61)\times10^{-8}]V$, which can be expressed as a difference of 98(6) ppb.

In Table A, the relations between maintained and international volts, and several constants of interest, obtained from the evaluation of Mohr et al. [7] are presented. The ratio of mass units to electronvolts for the two Volt units, and the ratio of the two Volts are also given. In addition, values for the masses of the proton, neutron and α particle, as derived from the present evaluation, are also given, together with the mass difference between the neutron and the light hydrogen atom.

In the earlier mass tables (e.g. AME1993), we used to give values for the binding energies, ZM_H+NM_n-M . The main reason for this was that the uncertainty of this quantity (in keV₉₀) was larger than that of the mass excess, M-A. However, due to the increased precision of the neutron mass, this is no longer important. Similarly to AME2003 and AME2012, we now give instead the binding energy per nucleon for educational reasons, connected to the Aston Curve and the maximum stability around the 'iron-peak' which is of importance in astrophysics. (See also the note in Part II, Section 2, p. 030003-3)

The defining values and the resulting mass-energy conversion factors are given in Table B. Since 2003, the definition has not been modified. Therefore, no recalibration has been necessary in the present AME2016.

Some more historical points are worth mentioning.

In 1986, Taylor and Cohen [11] showed that the empirical ratio between the two types of volts, which had of course been selected to be nearly equal to 1, had changed by as much as 7 ppm. For this reason, in 1990 a new value was chosen [12] to define the maintained volt V_{90} . In their 1998 evaluation, Mohr and Taylor [13] revised the conversion constant to international eV. The result was a slightly higher (and 10 times more precise) value for V_{90} .

Since older high-precision, reaction-energy measurements were essentially expressed in keV_{86} , we had to take into account the difference in voltage definition that causes a systematic error of 8 ppm. It was therefore necessary, for the AME2003 tables, to adjust the older precise data to the new keV_{90} standard. For α -particle energies, Rytz [14] has taken this change into account, when updating his earlier evaluation of α -particle energies. We have used his values in the present input data table (Table I) and indicated this by adding in the reference field the symbol "Z".

A considerable number of (n,γ) and (p,γ) reactions have precisions not worse than 8 ppm. In 1990, A.H. Wapstra [15] discussed the need for recalibration for several γ rays that are often used as calibration standards. This work has been updated in Ame 2003 (in a special file dedicated to this study, available on the AMDC website [16]) to evaluate the influence of new calibrators, as well as of the new Mohr and Taylor fundamental constants for γ -ray and particle energies used in (n,γ) , (p,γ) and (p,n) reactions. In doing this, the calibration work of Helmer and van der Leun [17], based on the fundamental constant values at that time, was used. For each of the data concerned, the changes were relatively minor. However, it was necessary to make such recalibrations in AME2003, since otherwise they added up to systematic uncertainties that were non-negligible. The calibration for proton energies has also been undertaken in AME2003. As in the case of Rytz' recalibrations for α -decay energies, such data are marked by "Z" behind the reference key-number. However, there were cases where it was not possible to do so, for example when this position was used to indicate that a remark was added, the same "Z" symbol was added to the uncertainty value mentioned in the remark.

The list of input values (Table I) for our calculations includes many excitation energies derived from γ -ray measurements that are evaluated and published in Nuclear Data Sheets (NDS) [18]. Only in exceptional cases it made sense to change them to recalibrated results.

3 Input data and their representation - connection diagram

As mentioned above, there are two methods that are used in measurements of atomic masses: the mass-spectrometric one (often called a "direct method"), where the inertial mass is determined from the trajectory of the ion in a magnetic field, or from its time-of-flight; and the so-called "indirect method" where the reaction energy, i.e. the difference between several masses, is determined using a specific nuclear reaction or a decay process. In the present work all available experimental data related to atomic masses (both energy and mass-spectrometric data) are considered. The input data are extracted from the available literature, compiled in an appropriate format and then carefully evaluated.

In the AME data treatment, we try our best to enter the true primary experimental information. In this way, the masses can be recalibrated automatically for any future changes, and the original correlation information can be properly preserved.

One example that illustrates our policy of data treatment is the following. In [1986Ma40], the Q value of the ¹⁴⁸Gd(p,t)¹⁴⁶Gd reaction was measured relative to that of the ⁶⁵Cu(p,t)⁶³Cu reference reaction. In AME2003, the corresponding equation was $^{148}Gd(p,t)^{146}Gd =$ $-7843 \pm 4 \,\mathrm{keV}$. However, in the present work, it is presented and used as a differential reaction equation: 148 Gd(p,t) 146 Gd- 65 Cu(p,t) 63 Cu = 1500 ± 4 keV. Strictly speaking, those equations are not exact either. What is measured in the experiment is the energy spectra of the ejected particles. Since there are differences between the masses of the measured nuclides and the reference, the response of the ejected particles to the Q values are different for the measured nuclides and the reference, depending also on the angle where the spectra are obtained. While the exact equations are quite complex, we believe that the treatment by differential reaction equation represents the original data more reliably and that most of the primary information is preserved.

Nuclear reaction A(a,b)B and decay A(b)B energy measurements connect the initial (A) and final (B) nuclides with one or two reaction or decay particles. With the exception of some reactions between very light nuclides, the precision with which the masses of reaction particles a and b are known is much higher than that of the measured reaction and decay energies. Thus, these reactions and decays can each be represented as a link between two nuclides A and B. Differential reaction energies A(a,b)B-C(a,b)D are in principle represented by a combination of four masses.

Direct mass-spectrometric measurements, again with exception of a few cases between very light nuclides, can be separated in a class of connections between two or

Figure 1. (a)-(j). Diagram of connections for input data.

For *primary data* (those checked by other data):

absolute mass-doublet nuclide (i.e. connected to 12 C, 35 Cl or 37 Cl);(or nuclide connected by a unique secondary relative mass-doublet to a remote reference nuclide);

other primary nuclide;

primary nuclide with relevant isomer;

mass-spectrometric connection;

other primary reaction connection.

Primary connections are drawn with two different thicknesses. Thicker lines represent the highest precision data in the given mass region

(limits: 1 keV for A < 36,

 $2 \,\mathrm{keV}$ for A = 36 to 165 and

3 keV for A > 165).

For secondary data (cases where masses are known from one type of data and are therefore not checked by a different connection):

■ secondary experimental nuclide determined from mass spectrometry;

secondary experimental nuclide determined by a reaction or a decay;

nuclide for which mass is estimated from trends from the Mass Surface (TMS);

connection to a secondary nuclide. Note that an experimental connection may exist between two estimated TMS nuclides when neither of them is connected to the network of primaries.

Figure 1 (b). Diagram of connections for input data — continued.

three nuclides, and a class that essentially determines the absolute mass value (see Section 5). Penning trap measurements almost always give a ratio of masses between two nuclides (inversely proportional to their cyclotron frequencies in the trap). Sometimes these two nuclides can be very far apart. Thus, those measurements are in most cases best represented as a combination of two masses. Other types of direct experimental methods, such as 'Smith-type', 'Schottky', 'Isochronous', 'Time-of-flight' and some 'Multi-reflection Time-of-flight' mass spectrometers, are calibrated in a more complex way, and are thus published by their authors as absolute mass values. They are then presented in Table I as a difference: ^AEl–u.

For completeness, we mention that early mass-spectrometric "triplet" measurements on unstable nuclides (cf. Section 6.2.2, p. 030002-24) can best be represented as linear combinations of masses of three isotopes, with non-integer coefficients [19].

This situation allows us to represent the input data graphically in a diagram of (N-Z) versus (N+Z) as shown in Fig. 1. This is straightforward for absolute mass-doublets and for two-nuclide difference cases; but not for spectrometer triplets and differential reaction energies (see Section 3, p. 030002-5). In general, the differential reactions are more important for one of the two reaction energies. Therefore, we present only the more important one in the graphs. For computational reasons, these data are treated as primaries (see below) even though the diagrams show only one connection.

In the present work, all input data are evaluated, i.e. calibrations are checked if necessary, and the data are compared with other results and with the trends from the mass surface (TMS, see next Section) in the region. As a consequence, several input data are corrected or even rejected (see below). All input data, including the rejected ones (not presented in Fig. 1), are given in Table I. As can be seen from Fig. 1, the accepted data may

Figure 1 (c). Diagram of connections for input data — continued

allow determination of the mass of a particular nuclide using several different routes; such a nuclide is called primary. Their mass values in the table are then derived by least squares methods. In the other cases, the mass of a nuclide can be derived from only one connection to another nuclide; it is called a secondary nuclide. This classification is of importance for our calculation procedure (see Section 5.3, p. 030002-19).

The diagrams in Fig. 1 also show many cases where the relation between two atomic masses is accurately known, but not the actual mass values. Since our policy is to include all available experimental results, we have produced in such cases estimated mass values that are based on TMS in the neighborhood. Also, in this data representation, vacancies occur, which are filled with the estimated values using the same TMS procedure. Estimates of unknown masses are further discussed in the

next section

Some care should be taken in the interpretation of Fig. 1, since excited isomeric states and data relations involving such isomers are not completely represented on these drawings. This is not considered as a serious defect; readers who want to update such values can conveniently consult Table I, where all relevant information is given.

4 Regularity of the mass surface and the use of TMS

When atomic masses are displayed as a function of N and Z, one obtains a surface in a 3-dimensional space. However, due to the pairing energy, this surface is divided into four *sheets*. The even-even sheet lies lowest, the odd-odd highest, the other two nearly halfway in-

Figure 1 (d). Diagram of connections for input data — continued.

between, as shown in Fig. 2. The vertical distances from the even-even sheet to the odd-even and even-odd ones are the proton and neutron pairing energies, Δ_{pp} and Δ_{nn} , respectively, which are nearly equal. The distances of the last two sheets to the odd-odd sheet are equal to $\Delta_{nn}-\Delta_{np}$ and $\Delta_{pp}-\Delta_{np}$, where Δ_{np} is the proton-neutron pairing energy due to the interaction between the two odd nucleons, which are generally not in the same shell. These energies are represented in Fig. 2, where a hypothetical zero energy represents a nuclide with no pairing among the last nucleons.

Experimentally, it has been observed that the four sheets run nearly parallel in all directions, which means that the quantities Δ_{nn} , Δ_{pp} and Δ_{np} vary smoothly and slowly with N and Z. In addition, each of the mass sheets also varies smoothly, but rapidly with N and Z [20]. The smoothness is also observed for first or-

der derivatives (slopes, e.g. the graphs given in Part II, p. 030003-4) and all second-order derivatives (curvatures of the mass surface). They are only interrupted in places by cusps or bumps associated with important changes in nuclear structure: shell or sub-shell closures, shape transitions (spherical-deformed, prolate-oblate), and the so-called 'Wigner' cusp along the N=Z line.

This observed regularity of the mass sheets in all places, where there is no change in the underlying physics, can be considered as one of the BASIC PROPERTIES of the mass surface. Thus, dependable estimates of unknown, poorly known or questionable masses can be obtained by extrapolation from the well-known mass values on the same sheet. In the evaluation of masses the property of regularity and the possibility to make estimates are used for several purposes:

Figure 1 (e). Diagram of connections for input data — continued.

- 1. Any coherent deviation from the regularity, in a region (N,Z) of some extent, could be considered as an indication that some new physics property is being discovered. However, if only one single mass violates the trends from the mass surface (TMS) defined by the neighboring nuclides, then one may seriously question the correctness of the related datum. In such a case, there might be some undetected systematic [21] contribution to the reported experimental results for this mass. We then reexamine with extra care the available experimental information in the literature for possible errors and often consult with the corresponding authors for additional information. Such a process often leads to corrections.
- 2. There are cases where several experimental data

- disagree, but no particular reason can be found for rejecting one, or some of them. In such cases, the measure of agreement with the regularity can be used by the evaluators for selecting which of the conflicting data will be accepted and used in the evaluation, thus following the same policy that was used in our earlier work.
- 3. There are cases where masses determined from ONLY ONE experiment (or from the same experiments) deviate severely from the smooth surface. Such cases are carefully examined (Section 4.2).
- 4. Finally, drawings of the mass surface allow to derive estimates for the still unknown masses, either from interpolations or from short extrapolations (see below, Section 4.3).

Figure 1 (f). Diagram of connections for input data — continued.

4.1 Scrutinizing and manipulating the surface of masses

Direct representation of the mass surface is not convenient, since the binding energy varies very rapidly with N and Z. Splitting it in four sheets, as mentioned above, complicates even more such a representation. There are two ways that allow to observe the surface of masses with some precision: one of them uses the *derivatives* of this surface, the other is obtained by *subtracting a simple function* of N and Z from the masses.

The derivatives of the mass surface By derivative of the mass surface we mean a specified difference between the masses of two nearby nuclides. These functions are also smooth and have the advantage of displaying much smaller variations. For a derivative defined in

such a way that differences are between nuclides in the same mass sheet, their near parallelism can lead to an (almost) unified surface for the derivative, thus allowing a single display. Therefore, in order to visualize the trends from the mass surface, we found that the derivatives such as α -decay energies and separation energies of two protons and two neutrons are the best tools to derive such estimates. These three derivatives are plotted against N, or Z in Part II, Figs. 1–26, p. 030003-74.

However, from the way these derivatives are created, they give information only within one of the four sheets of the mass surface (e-e, e-o, o-e or o-o; e-o standing for even-N and odd-Z). When examining the mass surface, an increased or decreased spacing of the sheets cannot be observed. Also, when estimating unknown masses, divergences of the four sheets could be unduly created,

Figure 1 (g). Diagram of connections for input data — continued.

which is unacceptable.

Fortunately, other representations are also possible (e.g. separately for odd and even nuclides: one-neutron separation energies versus N, one-proton separation energy versus Z, β -decay energy versus A, ...). We have prepared a number of such graphs that can be obtained from the AMDC website [22].

The method of 'derivatives' suffers from the involvement of two masses for each point to be drawn, which means that if one point deviates from regularity, it could be due to either the mass of the nuclide it represents or that of the related nuclide, rendering the analysis rather complex. Also, reversely, if one mass is moved, then the two related points are changed in opposite directions, causing confusion in the drawing. Subtracting a simple function Since the mass surface is smooth, one can try to define a function of N and Z as simple as possible and not too far from the real surface of masses. The difference between the mass surface and this function, while displaying reliably the structure of the former, will vary less rapidly, thus improving its observation.

A first and simple approach is the semi-empirical liquid drop formula of Bethe and Weizsäcker [23] with the addition of a pairing term in order to fuse more or less the four sheets of the mass surface. Another possibility, that we prefer [20], is to use the results of one of the modern models. However, we can use only those models that provide masses specifically for the spherical part, forcing the nucleus to be not deformed. The reason is that the models generally describe quite well the shell and sub-

Figure 1 (h). Diagram of connections for input data — continued.

shell closures, and to some extent the pairing energies, but not the locations of deformation. If the theoretical deformations were included and not located at exactly the same position as given by the experimental masses, the mass difference surface would show two dislocations for each shape transition. Interpretation of the resulting surface would then be difficult. In the present work, we make use of such differences with models. The plots that we have prepared can also be retrieved from the AMDC website [22].

Manipulating the mass surface In order to make estimates of unknown masses or to test changes on measured ones, an interactive graphical program was developed [20, 24] that allows a simultaneous observation of four graphs, either from the 'derivatives' type or from the 'differences' type, as a function of any of the variables N, Z, A, N-Z or N-2Z, while drawing iso-lines

(lines connecting nuclides having same value for a parameter) of any of these quantities. The mass of a nuclide can be modified or created in any view and we can determine how much freedom is left in setting a value for this mass. At the same time, interdependence through secondary connections (Fig. 1) are taken into account. In cases where two tendencies may alternate, following the parity of the proton or the neutron numbers, one of the parities may be deselected.

The replaced values for data yielding the 'irregular masses' as well as the 'estimated unknown masses' (see below) are thus derived by observing the continuous property in several views of the mass surface, with all the consequences due to connections to masses in the same chain. Comparisons with the predictions of 16 nuclear mass-models are presently available in this program.

With this graphical tool, the results of 'replacement' analyses are felt to be most robust; and also the estima-

Figure 1 (i). Diagram of connections for input data — continued.

Figure 1 (j). Diagram of connections for input data — continued.

Figure 2. The surface of masses is split into four sheets. This scheme represents the pairing energies responsible for this splitting. The zero energy surface is purely hypothetical with no pairing at all among the outer nucleons.

tion of unknown masses is more reliable.

All mass values dependent on interpolation procedures and indeed all values not derived from experimental data alone have been clearly marked with the sharp '#' symbol in all tables, and elsewhere in the text.

Since publication of AME1983 [25], estimates are also given for the precision of data derived from TMS. These uncertainties are not based on a formalized procedure, but rather on previous experience with such estimates.

In the case of extrapolation, however, the uncertainty of the estimated mass will increase with the distance of extrapolation. These uncertainties are obtained by considering several graphs of TMS with a guess on how much the estimated mass may change without causing the extrapolated surface to look too distorted. This recipe is unavoidably subjective, but has proven to be efficient through the agreement of these estimates with newly measured masses in a large majority of cases [26].

4.2 Irregular mass values

When a single mass deviates significantly from regularity with no similar pattern for nuclides with same N or with same Z values, then the correctness of the data determining this mass may be questioned.

Our policy, redefined in AME1995 [27], for those locally *irregular* masses, and only when they are derived from a unique mass relation (i.e., not confirmed by a different experimental method), is to replace them by values derived from trends from the mass surface (TMS). Table C lists 31 such cases in the present evaluation that were removed, to avoid strongly oscillating plots (to be compared to 27 cases in AME2012, 27 in AME2003, 59 in AME1995 and 67 in AME1993). Although these numbers reflects a more strict use of this procedure, the user of our tables should not assume that the remaining 31

items are the same ones carried on from generation to generation. The opposite, however, is true: most of the old ones have been replaced by new data, thus showing that we were correct in our choice. Generally, only one experimental result is reported for such unique mass relation . But sometimes there are two measurements (2 cases) or three (in previous evaluations) that we still treat the same way, since use of the same method and the same type of relation may well lead to the same systematic uncertainty (for example a mis-assignment or ignorance of a final level). Taking into account the connecting chains for secondaries (Figs. 1a–1j) has the consequence that several more ground state masses are affected (and twice as many values in each type of plot of derivatives as given in Part II). It should be stressed that only the most striking cases have been treated in this way, those necessary to avoid, as much as possible, confusions in the graphs in Part II. In particular, the plots of α -decay energies of light nuclides (Fig. 18 and 19 in Part II, p. 030003-252 and 253) exhibit many overlaps and crossings that obscure the drawings; no attempt was made to locate possible origins of such irregularities.

Replacing these few irregular experimental values by the ones we recommend, in all tables and graphs in AME2016, means also that, as explained already in AME1995, we discontinued an older policy that was introduced in AME1993, where original irregular experimental values were given in all main tables, and 'recommended' ones given separately in secondary tables. This policy led to confusion for many users of our tables. Since AME1995, we only give what we consider the "best recommended values", using, when we felt necessary and as explained above, 'values derived from TMS'. Data which are not used following this policy are given in Table C and they can be easily located in Table I, where they are flagged 'D' and always accompanied by a comment

explaining in which direction the value has been changed and by what amount.

Such data, as well as other local irregularities that can be observed in the figures in Part II, could be considered

as incentive for remeasurements, preferably by a different method, in order to remove any doubt and possibly point out true irregularities due to physical properties.

Table C. Experimental data that we recommend replacing by values derived from TMS in Ame 2016.

Item Re	foron coa)	T			
		Experime		Recommend	ted value
	07 Ju 03	21653	676	22170#	430 #
	07 Ju 03	16275	623	17680#	540#
	07 Ju 03	10070	966	11220#	540 #
47 Cl $-u$ 20	07 Ju 03	-9576	1074	-10500#	430#
49 Ar-u 20	15 Me01	-19110	1180	-18450#	430#
$^{67}Mn-u$ 20	15Me.A	-36600	670	-35920#	320#
69 Fe-u 20	15Me.A	-42240	640	-41900#	430#
70 Co-u 20	11Es06	-50370	320	-50060#	320#
74 Ni $-u$ 20	11Es06	-52830	1060	-52020#	210#
77 Cu-u 20	06 Ha 62	-51850	540	-52200#	160#
79 Cu-u 20	06Ha62	-46700	540	-44810#	320 #
80 Zr-u 19	98 Is 06	-59600	1600	-58360 #	320 #
$^{94}Br-u$ 20	16Kn03	-50242	429	-50890 #	320 #
$^{94}\text{Ag}^{n}(\beta^{+})^{94}\text{Pd}$ 20	04Mu30	17700	500	20180#	300#
$^{101}\text{Rb}(\beta^-)^{101}\text{Sr}$ 19	92Ba28	11810	110	12480#	200#
113 Mo-u 20	16Kn03	-57317	337	-56350 #	320 #
$^{116}\mathrm{Cs}(\varepsilon\alpha)^{112}\mathrm{Te}$ 19	77Bo28	12300	400	13100#	100 #
19	76Jo.A	12400	900	13100#	100 #
118 Ru-u 20	16Kn03	-61879	196	-61470 #	220#
$^{118} \mathrm{In}^m (\beta^-)^{118} \mathrm{Sn}$ 19	64 Ka10	4270	100	4530 #	50#
$^{120} \mathrm{In}^m (\beta^-)^{120} \mathrm{Sn}$ 19	64 Ka10	5280	200	5420 #	50#
19	78Al18	5340	170	5420 #	50#
$^{124}Pd-u$ 20	16Kn03	-64617	399	-62680 #	320 #
126 Ag $-$ u 20	16Kn03	-65926	329	-65140 #	220#
$^{129}\mathrm{Nd}(\varepsilon\mathrm{p})^{128}\mathrm{Ce}$ 19	78Bo.A	5300	300	5930 #	200#
$^{135} \text{Pm}^m (\beta^+)^{135} \text{Nd} $ 19	95 Ve 08	6040	150	6390 #	50#
142 Dy $(\beta^+)^{142}$ Tb 19	91Fi03	7100	200	6440 #	200#
$^{143}I-u$ 20	16Kn03	-53849	495	-54350 #	220#
150 Ba $-$ u 20	16Kn03	-55309	371	-53570 #	320 #
154 Ce-u 20	16Kn03	-56404	619	-56060 #	220#
220 Pa $(\alpha)^{216}$ Ac 19	87Fa.A	9829	50	9650 #	50#
$^{270}{ m Db}(\alpha)^{266}{ m Lr}$ 20	14Kh04	8019	30	8260#	200#
$^{281} { m Rg}(\alpha)^{277} { m Mt}$ 20	13Og04	9454	40	9900#	400#

a) References are listed in Part II in this issue, Section 6, p. 030003-5.

The present authors insist that only the most striking irregularities have been replaced by estimates. Here we give the mass of $^{84}{\rm Nb}$ as an example. The Q_{β} value was measured in [1996Sh27] with an uncertainty claimed to be 300 keV. However, trends from mass surface strongly suggested that $^{84}{\rm Nb}$ should be 3200 keV less bound. Therefore the experimental value was labeled with "D" in AME2012 and replaced by an estimate. Recently the mass of $^{84}{\rm Nb}$ was measured by mass spectrometry [2016Xi.A], and the value is very close (200 keV) to our estimate, which was given with a precision of 300# keV.

4.3 Estimates for unknown masses

Estimates for unknown masses also are made with the use of trends from the mass surface, as explained above, by demanding that all graphs should be as smooth as possible, except where they are expected to be affected by shell closures or nuclear deformation effects. Therefore, we warn the user of our tables that the present extrapolations will be wrong if new regions of deformation or (semi-) magic numbers appear.

In addition to the rather severe constraints imposed by the requirement of simultaneous REGULARITY of all graphs, many further constraints result from knowledge of reaction or decay energies in the regions where these estimates are made. These regions and these constraints are shown in Figs. 1a–1j. Two kinds of constraints are present. In some cases the masses of (Z,A) and (Z,A+4) are known but not the mass of (Z,A+2). Then, the values of $S_{2n}(A+2)$ and $S_{2n}(A+4)$ cannot both be chosen freely from the graphs; their sum is known. In other cases, the mass differences between several nuclides (A+4n,Z+2n) are known from α -decays and also those of (A-2+4n,Z+2n). Then, the differences between several successive $S_{2n}(A+4n,Z+2n)$ are known. Similar situations exist for two or three successive S_{2p} or Q_{α} values.

Knowledge of stability or instability against particle emission, or limits on proton or α emission, yields upper or lower limits on the separation energies.

For proton-rich nuclides with N < Z, mass estimates can be obtained from the charge symmetry. This feature gives a relation between masses of isobars around the N = Z line. In several cases, we made a correction by including the Thomas-Ehrman effect [28], which makes proton-unstable nuclides more bound than what follows from the above estimate. For very light nuclides, we can use the estimates of this effect as proposed by Comay *et al.* [29].

Another often good estimate can be obtained from the observation that masses of nuclear states belonging to an isobaric multiplet are represented quite accurately by a quadratic equation of the charge number Z (or of the third components of the isospin, $T_z = \frac{1}{2}(N-Z)$): the Isobaric Multiplet Mass Equation (IMME) [30]. The use of this relation is attractive, since it uses experimental information such as the excitation energies of the isobaric analog states (IAS). New mass measurements regularly question the validity of the IMME, followed soon by other work showing that another member of the same multiplet needs to be questioned. For example, [2012Zh34] found, by measuring the mass of ⁵³Ni, a breakdown of the quadratic form of IMME for the A = 53 quartet, from which a non-zero coefficient d was derived to be 39(11) keV. In a later experiment, the lowest T=3/2state in ⁵³Co was established via the measurement of the β -delayed γ deexcitation of ⁵³Ni [2016Su10], which questioned the isobaric-analog state (IAS) assignment in a previous $\beta-p$ decay experiment [2007Do17]. The validity of the IMME in the quadratic form was thus restored for A = 53.

Up to AME1983, we indeed used the IMME for deriving mass values for nuclides for which no, or little information was available. This policy was questioned with respect to the correctness in stating as 'experimental' a quantity that was derived by combination with a calculation. Since Ame 1993, it was decided not to present any IMME-derived mass values in our evaluation, but rather use the IMME as a guideline when estimating masses of unknown nuclides. We continue this policy here, and do not replace experimental values by an estimated one from IMME, even if orders of magnitude more precise. Typical examples are ²⁸S and ⁴⁰Ti, for which IMME predicts masses with precisions of 24 keV and 22 keV, respectively, whereas the experimental masses are known for both from double-charge-exchange reactions with 160 keV precision.

The extension of the IMME to higher energy isobaric analog states has been studied by Wapstra [31]. The validity of the method, however, is made uncertain by possible effects spoiling the relation. In the first place, the strength of some IASs at high excitation energies is known to be distributed over several levels with the same spin and parity. Even in cases where this interference effect has not been observed, it remains a possibility, and as such, introduces an uncertainty in the energy level to be attributed to the IAS. In the second place, as argued by Thomas and Ehrman [28], particle-unstable levels must be expected to be shifted somewhat.

It also happens that information on excitation energies of $T_z = -T + 1$ IASs is available from measurements on proton emission following β decays of their $T_z = -T$ parents. The authors, in some cases, derived a mass value from their results for the parent nuclide, using a formula, derived by Antony et al. [32], from a study of known energy differences between IAS. We observe, however, that one obtains somewhat different mass values by combining Antony differences with the

mass of the mirror nuclide of the mother. Also, earlier considerations did not take into account the difference between proton-pairing and neutron-pairing energies, which A.H. Wapstra noticed have a non-negligible influence on the IMME constants.

Another possibility is to use a relation proposed by Jänecke [33], as done for example by Axelsson et al. [34] in the case of ³¹Ar. In several cases we have compared the results of different ways for extrapolating, in order to find a best estimate for the desired mass value.

Enough values have been estimated to ensure that every nuclide for which there is any experimental Q-value is connected to the main group of primary nuclides. In addition, the evaluators want to achieve continuity of the mass surface. Therefore, an estimated value is included for any nuclide if it is between two experimentally studied nuclides on a line defined by either Z = constant(isotopes), N = constant (isotopes), N - Z = constant(isodiaspheres), or, in a few cases N+Z= constant (isobars). It would have been desirable to also give estimates for all unknown nuclides that are within reach of the present accelerators and mass separator technologies. Unfortunately, such an ensemble is not easy to define. Instead, we estimate mass values for all nuclides for which at least one piece of experimental information is available (e.g. identification or half-life measurement or proof of instability towards proton or neutron emission). Then, the ensemble of experimental and estimated masses has the same contour as in the Nubase2016 evaluation.

5 Calculation Procedures

The atomic mass evaluation is unique when compared to the other evaluations of data [20], in a sense that almost all mass determinations are relative measurements, not absolute ones. Even those called 'absolute mass doublets' are relative to ¹²C, ³⁵Cl or ³⁷Cl. Each experimental datum sets a relation in mass or in energy among two (in a few cases three or more) nuclides. It can be therefore represented by one link among these two nuclides. The ensemble of these links generates a highly entangled network. Figs. 1a-1j, in Section 3 above, show a schematic representation of such a network.

The masses of a large number of nuclides are multiply determined, entering the entangled area of the canvas, mainly along the backbone. Correlations do not allow determining their masses in a straightforward manner.

To take into account these correlations we use a leastsquares method weighed according to the precision with which each piece of data is known. This method allows to determine a set of adjusted masses.

5.1 Least-squares method

Each piece of data has a value $q_i \pm dq_i$ with the accuracy dq_i (one standard deviation) and makes a relation between two, three or four masses with unknown values m_{μ} . An overdetermined system of Q data to M masses (Q > M) can be represented by a system of Q linear equations with M parameters:

$$\sum_{\mu=1}^{M} k_i^{\mu} m_{\mu} = q_i \pm dq_i \,, \tag{1}$$

e.g. for a nuclear reaction A(a,b)B requiring an energy q_i to occur, the energy balance is written:

$$m_{\rm A} + m_{\rm a} - m_{\rm b} - m_{\rm B} = q_i \pm dq_i$$
. (2)

Thus, $k_i^{\text{A}} = +1$, $k_i^{\text{a}} = +1$, $k_i^{\text{b}} = -1$ and $k_i^{\text{B}} = -1$. In matrix notation, **K** being the (Q, M) matrix of coefficients, Eq. 1 is written: $\mathbf{K}|m\rangle = |q\rangle$. Elements of matrix **K** are almost all null: e.g. for A(a,b)B, Eq. 2 yields a line of K with only four non-zero elements.

We define the diagonal weight matrix \mathbf{W} by its elements $w_i^i = 1/(dq_i dq_i)$. The solution of the least-squares method leads to a very simple construction:

$${}^{\mathbf{t}}\mathbf{K}\mathbf{W}\mathbf{K}|m\rangle = {}^{\mathbf{t}}\mathbf{K}\mathbf{W}|q\rangle.$$
 (3)

The NORMAL matrix $\mathbf{A} = {}^{\mathbf{t}}\mathbf{K}\mathbf{W}\mathbf{K}$ is a square matrix of order M, positive-definite, symmetric and regular and hence invertible [35]. Thus the vector $|\overline{m}\rangle$ for the adjusted masses is:

$$|\overline{m}\rangle = \mathbf{A}^{-1} {}^{\mathbf{t}} \mathbf{K} \mathbf{W} |q\rangle \quad \text{or} \quad |\overline{m}\rangle = \mathbf{R} |q\rangle. \quad (4)$$

The rectangular (M,Q) matrix **R** is called the RESPONSE matrix.

The diagonal elements of A^{-1} are the squared errors on the adjusted masses, and the non-diagonal ones $(a^{-1})^{\nu}_{\mu}$ are the coefficients for the correlations between masses m_{μ} and m_{ν} . Values for correlation coefficients for the most precise nuclides are given in Table B of Part II (p. 030003-3). Following the advice of B.N. Taylor, we now give on the website of the AMDC [22] the full list of correlation coefficients, allowing any user to perform exact calculation of any combination of masses.

One of the most powerful tools in the least-squares calculation described above is the flow-of-information matrix, discovered in 1984 by one of us [36]. This matrix allows to trace back the contribution of each individual piece of data to each of the parameters (here the atomic masses). The AME uses this method since 1993.

The flow-of-information matrix F is defined as follows: **K**, the matrix of coefficients, is a rectangular (Q, M) matrix. The transpose of the response matrix ${}^{\mathbf{t}}\mathbf{R}$ is also a (Q, M) rectangular one. The (i, μ) element of **F** is defined as the product of the corresponding elements of ^tR and of K. In Ref. [36], it is demonstrated that such an element represents the "influence" of datum ion parameter (mass) m_{μ} . A column of **F** thus represents all the contributions brought by all data to a given mass m_{μ} , and a line of **F** represents all the influences given by a single piece of data. The sum of influences along a line is the "significance" of that datum. It has also been proven [36] that the influences and significances have all the expected properties, namely that the sum of all the influences on a given mass (along a column) is unity, that the significance of a datum is always less than unity and that it always decreases when new data are added. The significance defined in this way is exactly the quantity obtained by squaring the ratio of the uncertainty on the adjusted value over that of the input one, which was the recipe used before the discovery of the F matrix to calculate the relative importance of data.

A simple interpretation of influences and significances can be obtained in calculating, from the adjusted masses and Eq. 1, the adjusted data:

$$|\overline{q}\rangle = \mathbf{K}\mathbf{R}|q\rangle.$$
 (5)

The i^{th} diagonal element of \mathbf{KR} represents then the contribution of datum i to the determination of $\overline{q_i}$ (same datum): this quantity is exactly what is called above the *significance* of datum i. This i^{th} diagonal element of \mathbf{KR} is the sum of the products of line i of \mathbf{K} and column i of \mathbf{R} . The individual terms in this sum are precisely the *influences* defined above.

The flow-of-information matrix \mathbf{F} , provides thus insight on how the information from datum i flows into each of the masses m_{μ} .

The flow-of-information matrix cannot be given in full in a printed table. It can be observed along lines, displaying for each datum, the nuclides influenced by this datum and the values of these *influences*. It can be observed also along columns to display for each primary mass all contributing data with their *influence* on that mass.

The first display is partly given in the table of input data (Table I) in column 'Signf.' for the *significance* of primary data and 'Main infl.' for the largest *influence*. Since in the large majority of cases only two nuclides are concerned in each piece of data, the second largest *influence* could easily be deduced. It is therefore not felt necessary to give a table of all *influences* for each primary datum.

The second display is given in Part II, Table II (p. 030003-3) for the up to three most important data with their *influence* in the determination of each primary mass.

5.2 Consistency of data

The system of equations being largely overdetermined (Q >> M) offers the evaluator several interesting possibilities to examine and judge the data. One might for example examine all data for which the adjusted values deviate significantly from the input ones. This helps to locate erroneous pieces of information. One could also examine a group of data in one experiment and check if the uncertainties assigned to them in the experimental paper were not underestimated.

If the precisions dq_i assigned to the data q_i were indeed all accurate, the normalized deviations v_i between adjusted \overline{q}_i (Eq. 5) and input q_i data, $v_i = (\overline{q}_i - q_i)/dq_i$, would be distributed as a Gaussian function of standard deviation $\sigma = 1$, and would make χ^2 :

$$\chi^2 = \sum_{i=1}^{Q} \left(\frac{\overline{q}_i - q_i}{dq_i} \right)^2 \quad \text{or} \quad \chi^2 = \sum_{i=1}^{Q} v_i^2 \quad (6)$$

equal to Q-M, the number of degrees of freedom, with a standard deviation of $\sqrt{2(Q-M)}$.

One can define as above the NORMALIZED CHI, χ_n (or 'consistency factor' or 'Birge ratio'): $\chi_n = \sqrt{\chi^2/(Q-M)}$ for which the expected value is $1\pm 1/\sqrt{2(Q-M)}$.

Another quantity of interest for the evaluator is the PARTIAL CONSISTENCY FACTOR, χ_n^p , defined for a (homogeneous) group of p data as:

$$\chi_n^p = \sqrt{\frac{Q}{Q - M} \frac{1}{p} \sum_{i=1}^p v_i^2}.$$
(7)

Of course the definition is such that χ_n^p reduces to χ_n if the sum is taken over all the input data. One can consider for example the two main classes of data: the reaction and decay energy measurements and the massspectrometric data (see Section 5.5). One can also consider groups of data related to a given laboratory and with a given method of measurement and examine the χ_n^p of each of them. There are presently 278 groups of data in Table I (among which 185 have at least one measurement used in determining the masses), identified in column 'Lab'. A high value of χ_n^p might be a warning on the validity of the considered group of data within the reported uncertainties. We used such analyses in order to be able to locate questionable groups of data. In bad cases they are treated in such a way that, in the final adjustment, no really serious conflicts occur. Remarks in Table I report where such corrections have been made.

5.3 Separating secondary data

In Section 3, while examining the diagrams of connections (Fig. 1), we noticed that, whereas the masses of secondary nuclides can be determined uniquely from the

chain of secondary connections going down to a *primary* nuclide, only the latter see the complex entanglement that necessitated the use of the least-squares method.

In terms of equations and parameters, we consider that if, in a collection of equations to be treated with the least-squares method, a parameter occurs in only one equation, removing this equation and this parameter will not affect the result of the fit for all other data. Thus, we can redefine more precisely what was called *secondary* in Section 3: the parameter above is a *secondary* parameter (or mass) and its related equation is a *secondary* equation. After the reduced set has been solved, then the *secondary* equation can be used to determine the final value and uncertainty for that particular *secondary* parameter. The equations and parameters remaining after taking out all secondaries are called *primary*.

Therefore, only the system of primary data is overdetermined, and thus will be improved in the adjustment, so that each primary nuclide will benefit from all the available information. Secondary data will remain unchanged; they do not contribute to χ^2 .

The diagrams in Fig. 1 show, that many secondary data exist. Thus, taking them out simplifies considerably the system. More importantly, if a better value is found for a secondary datum, the mass of the secondary nuclide can easily be improved (one has only to be careful since the replacement can change other secondary masses down the chain, see Fig. 1). The procedure is more complicated for new primary data.

We define DEGREES for secondary nuclides and secondary data. They reflect their distances along the chains connecting them to the network of primaries. The first secondary nuclide connected to a primary one will be a nuclide of degree 2; and the connecting datum will be a datum of degree 2 as well. Degree 1 is for primary nuclides and data. Degrees for secondary nuclides and data range from 2 to 18. It is the heaviest nuclide 295 Ei that has the highest degree number 18. Its mass is determined through a long α chain, albeit many of them are just estimates. In Table I, the degree of data is indicated in column 'Dg'. In the table of atomic masses (Part II, Table I, p. 030003-6), each secondary nuclide is marked with a label in column 'Orig.' indicating from which other nuclide its mass value is determined.

To summarize, separating secondary nuclides and secondary data from primaries allow to significantly reduce the size of the system that will be treated by the least-squares method described above. After treatment of the primary data alone, the adjusted masses for primary nuclides can be easily combined with the secondary data to yield masses of secondary nuclides.

In the next Section we will show methods for reducing further this system, but without loss of any information. Methods that reduce the system of primaries for the benefit of the secondaries not only decrease computational time (which nowadays is not so important), but allows an easier insight into the relations between data and masses, since no correlation is involved.

Remark: the word primary used for these nuclides and for the data connecting them does not mean that they are more important than the others, but only that they are subject to the least-squares treatment above. The labels primary and secondary are not intrinsic properties of data or nuclides. They may change from primary to secondary or vice versa when other information becomes available.

5.4 Compacting the set of data

5.4.1 Pre-averaging

Two or more measurements of the same physical quantities can be replaced without loss of information by their average value and precision, reducing thus the system of equations to be treated. By extending this procedure, we consider *parallel* data: reaction data occur that give essentially values for the mass-difference between the same two nuclides, except in rare cases where the precision is comparable to that in the masses of the reaction particles. Example: $^{14}\text{C}(^7\text{Li},^7\text{Be})^{14}\text{B}$ and $^{14}\text{C}(^{14}\text{C},^{14}\text{N})^{14}\text{B}$; or $^{22}\text{Ne}(t,^3\text{He})^{22}\text{F}$ and $^{22}\text{Ne}(^7\text{Li},^7\text{Be})^{22}\text{F}$.

Such data are represented together, in the main leastsquares fit calculations, by one of them carrying their average value. If the Q data to be pre-averaged are strongly conflicting, i.e. if the consistency factor (or Birge ratio) $\chi_n = \sqrt{\chi^2/(Q-1)}$ resulting in the calculation of the preaverage is greater than 2.5, the (internal) precision σ_i in the average is multiplied by the Birge ratio $(\sigma_e = \sigma_i \times \chi_n)$. There are no cases where $\chi_n > 2.5$, see Table D (there were 2 cases in AME2012, and 6 in AME2003). The quantity σ_e is often called the 'external error'. However, this treatment is not used in the rare cases where the precisions of the input values differ too much, since the assigned uncertainties lose any significance. If such a case occurs, considering policies from the Particle Data Group [37] and some statistical-treatment methods reviewed by Rajput and MacMahon [38], we adopt an arithmetic average and the dispersion of values as an uncertainty, which is equivalent to assigning to each of these conflicting data the same uncertainty.

In the present evaluation, we have replaced 2977 data by 1186 averages. As can be seen from Fig. 3, as much as 23% of which have values of χ_n (Birge ratio) beyond unity, 1.6% beyond two and none beyond 3, giving an overall very satisfactory distribution for our treatment.

As a matter of fact, in a complex system like the one here, many values of χ_n beyond 1 or 2 are expected to exist, and if the uncertainties were multiplied by χ_n in all these cases, the χ^2 -test on the total adjustment would have been invalidated.

Item	n	χ_n	σ_e	Item	n	χ_n	σ_e
$^{186}{ m W}({ m n},\gamma)^{187}{ m W}$	2	2.44	0.11	$^{177}\mathrm{Pt}(\alpha)^{173}\mathrm{Os}$	2	2.06	6.06
$^{144}\mathrm{Ce}(\beta^{-})^{144}\mathrm{Pr}$	2	2.44	2.18	$^{244}\mathrm{Cf}(\alpha)^{240}\mathrm{Cm}$	2	2.03	3.97
$^{220}\mathrm{Fr}(\alpha)^{216}\mathrm{At}$	2	2.34	4.66	$^{15}{ m N}({ m p,n})^{15}{ m O}$	2	2.03	1.28
$^{75}\mathrm{As}(\mathrm{n},\gamma)^{76}\mathrm{As}$	2	2.32	0.17	$^{58} \text{Fe}(t,p)^{60} \text{Fe}$	4	2.03	7.38
$^{110} In(\beta^+)^{110} Cd$	3	2.29	28.4	$^{204}\text{Tl}(\beta^{-})^{204}\text{Pb}$	2	2.03	0.39
146 Ba $(\beta^{-})^{146}$ La	2	2.24	107.4	$^{278}\mathrm{Mt}(\alpha)^{274}\mathrm{Bh}$	3	1.98	43.6
$^{40}{\rm Cl}(\beta^{-})^{40}{\rm Ar}$	2	2.21	76.1	$^{167}\mathrm{Os}(\alpha)^{163}\mathrm{W}$	4	1.98	3.50
$^{219}{\rm U}(\alpha)^{215}{\rm Th}$	2	2.18	38.5	$^{106}\mathrm{Ag}(\varepsilon)^{106}\mathrm{Pd}$	2	1.98	6.63
$^{153} {\rm Gd}({\rm n},\gamma)^{154} {\rm Gd}$	2	2.16	0.39	$^{78}\mathrm{Se}(\mathrm{n},\gamma)^{79}\mathrm{Se}$	3	1.96	0.28
$^{36}S(^{11}B,^{13}N)^{34}Si$	3	2.14	32.4	$^{46}\mathrm{Ca}(\mathrm{n},\gamma)^{47}\mathrm{Ca}$	2	1.94	0.56
$^{113}Cs(p)^{112}Xe$	3	2.10	5.03	$^{181}{ m Pb}(\alpha)^{177}{ m Hg}$	3	1.93	15.2
$^{223}{\rm Pa}(\alpha)^{219}{\rm Ac}$	2	2.09	10.0	$^{145}\mathrm{Sm}(\varepsilon)^{145}\mathrm{Pm}$	2	1.92	7.92
$^{27}P^{i}(2p)^{25}Al$	2	2.08	74.7	$^{234}{\rm Th}(\beta^-)^{234}{\rm Pa}^m$	3	1.90	2.10
204 Rn $^{-208}$ Pb _{0.981}	2	2.06	18.2	v			

Table D. Worst pre-averagings. n is the number of data in the pre-average.

This explains the choice we made here of a rather high threshold ($\chi_n^0 = 2.5$), compared e.g. to $\chi_n^0 = 2$ recommended by Woods and Munster [39] or $\chi_n^0 = 1$ used in a different context by the Particle Data Group [37], for departing from the rule of 'internal error' of the weighted average.

Figure 3. Birge Ratios of all the pre-averaged data.

Besides the computer-automated pre-averaging, we found it convenient, in some β^+ -decay cases, to combine results stemming from various capture ratios in an average. These cases are $^{109}\mathrm{Cd}(\varepsilon)^{109}\mathrm{Ag}$ (average of 3 data), $^{139}\mathrm{Ce}(\varepsilon)^{139}\mathrm{La}$ (average of 10) and $^{195}\mathrm{Au}(\varepsilon)^{195}\mathrm{Pt}$ (5 results), and they are detailed in Table I. Four more cases ($^{147}\mathrm{Tb}$, $^{152}\mathrm{Ho}$, $^{166}\mathrm{Yb}$ and $^{207}\mathrm{Bi}$) occur in our list, but they carry no weight and are labeled with 'U' in Table I.

5.4.2 Used policies in treating parallel data

In averaging β - (α -) decay energies derived from branches observed in the same experiment, to or from different levels in the decay of a given nuclide, the uncertainty we use for further evaluation is not the one resulting from the weighted average adjustment, but instead we use the smallest experimental one. In this way, we avoid decreasing artificially the part of the uncertainty that is not due to statistics. In some cases, however, when it is obvious that the uncertainty is dominated by weak statistics, we do not follow the above rule (e.g. 23 Alⁱ(p) 22 Mg of [1997Bl04]).

Some quantities have been reported more than once by the same group. If the results are obtained by the same method in different experiments and are published in regular refereed journals, only the most recent one is used in the calculation, unless explicitly mentioned otherwise. There are two reasons for this policy. The first is that one might expect that the authors, who believe their two results are of the same quality, would have averaged them in their latest publication. The second is that if we accept and average the two results, we would have no control on the part of the uncertainty that is not due to statistics. Our policy is different if the newer result is published in a secondary reference (not refereed abstract, preprint, private communication, conference, thesis or annual report). In such cases, the older result is used in the calculations, except when the newer one is an update of the previous value. In the latter case, the original reference in our list mentions the unreferred paper.

5.4.3 Replacement procedure

Large contributions to χ^2 have been known to be caused by a nuclide G connected to two other ones H and K by reaction links with large uncertainties compared to those deduced from the mass difference between H and K, in cases where the two disagreed. Evidently, contributions to χ^2 of such local discrepancies suggest an unrealistically high value of the overall consistency parameter. This is avoided by a replacement procedure: one of the two links is replaced by an equivalent value for the other. The pre-averaging procedure gives the most reasonable mass value for G and do not cause undesirably large contributions to χ^2 .

5.4.4 Insignificant data

Another feature to increase the meaning of the final χ^2 is to not use, in the least-squares procedure, data with weights at least a factor 10 smaller than other data, or combinations of all other data giving the same result. Such data were labeled with 'U' in the list of input data; comparison with the output values allows to check our judgment. Earlier, data were labeled 'U' if their weight was 10 times smaller than that of a *simple* combination of other data. This concept has been extended, since AME1993, to data that weigh 10 times less than the combination of all other accepted data. Until the Ame 2003 evaluation, our policy was not to print data labeled 'U' if they already appeared in one of our previous tables, reducing thus the size of the table of data to be printed. This policy has been changed since AME2012, and we try as much as possible to give all relevant data, also including insignificant ones. The reason for this is that conflicts might appear amongst recent results, and access to older ones might shed some light on our judgement, when evaluating the new data.

5.5 Used policies – treatment of undependable data

The important interdependence of most data, as illustrated by the connection diagrams (Figs. 1a–1j), allows local and general consistency tests. These can indicate that something may be wrong with the input values. We follow the policy of checking all significant data that differ by more than two (sometimes 1.5) standard deviations from the adjusted values. Fairly often, examination of the experimental results shows that a correction is necessary. Possible reasons could be that a particular decay has been assigned to a wrong final level or that a reported decay energy belongs to an isomer, rather than to a ground state, or even that the mass number assigned to a decay was incorrect. In such cases, the values are corrected and remarks are added below the corresponding A-group of data in Table I, in order to explain the reasons for the corrections.

It also happens that a careful examination of a particular paper would lead to serious doubts about the validity of the results within the reported precision, but could not permit making a specific correction. Doubts can also be expressed by the authors themselves. The results are given in Table I and compared with the adjusted values. They are labeled 'F', and not used in the final adjustment, but always followed by a comment to explain the reason for this label. The reader may observe that in several cases the difference between the experimental and adjusted values is small compared to the experimental uncertainty: this does not disprove the correctness of the label 'F' assignment.

It happens quite often that two (or more) pieces of data are discrepant, leading to important contribution to the χ^2 . A detailed examination of the papers may not allow correction or rejection, indicating that at least the results in one of them could not be trusted within the given uncertainties. Then, based on past experience, we use in the calculations the value that seems to be the most reliable, while the other is labeled 'B', if published in a regular refereed journal, or 'C' otherwise.

Data with labels 'F', 'B' or 'C' are not used in the calculations. We do not assign such labels if, as a result, no experimental value published in a regular refereed journal could be given for one or more resulting masses. When necessary, the policy defined for 'irregular masses' with 'D'-label assignment may apply (see Section 4.2).

In some cases, detailed analysis of strongly conflicting data could not lead to reasons to assume that one of them is more dependable than the others or could not lead to a rejection of a particular data entry. Also, bad agreement with other data is not the only reason to doubt the correctness of the reported data. As in previous AME, and as explained above (see Section 4), we made use of the property of regularity of the surface of masses in making a choice, as well as in further checks on the other data.

We do not accept experimental results if information on other quantities (e.g. half-lives), derived in the same experiment and for the same nuclide, were in strong contradiction with well established values.

5.6 The Ame computer program

Our computer program in four phases has to perform the following tasks: i) decode and check the data file; ii) build up a representation of the connections between masses, allowing thus to separate primary masses and data from secondary ones, to pre-average same and parallel data, and thus to reduce drastically the size of the system of equations to be solved (see Section 5.3 and 5.4), without any loss of information; iii) perform the least-squares matrix calculations (see above); and iv) deduce

the atomic masses (Part II, Table I), the nuclear reaction and separation energies (Part II, Table III), the adjusted values for the input data (Table I), the *influences* of data on the primary nuclides (Table I), the *influences* received by each primary nuclide (Part II, Table II), and display information on the inversion errors, the correlations coefficients (Part II, Table B), the values of the χ^2 s, the distribution of the v_i (see below), among others.

5.7 Results of the calculation

In this evaluation, we have 13035 experimental data of which 5663 are labeled 'U' (see above), 844 are labeled 'O' (old result from same group) and 853 are not accepted and labeled 'B', 'C', 'D' or 'F' (respectively 502, 157, 33 and 161 items). In the calculation we have thus 5675 valid input data, compressed to 3884 in the pre-averaging procedure. Separating secondary data, leaves a system of 2023 primary data, representing 1094 primary reactions and decays, and 929 primary mass-spectrometric measurements. To these are added 835 data estimated from TMS trends (see Section 4), p. 030002-9), some of which are essential for linking unconnected experimental data to the network of experimentally known masses (see Figs. 1a–1j).

In the atomic mass table (Part II, Table I) there is a total of 3923 masses (including ¹²C) of which 3435 are ground state masses (2497 experimental masses and 938 estimated ones), and 488 are excited isomers (369 experimental and 119 estimated). Among the 2497 experimental ground state masses, 111 nuclides have a precision better than 0.1 keV, 378 better than 1 keV and 1477 better than 10 keV (respectively 87, 315 and 1438 in AME2012). There are 153 nuclides known with uncertainties larger than 100 keV (123 in AME2012). Separating secondary masses in the ensemble of 3923, leaves 1207 primary masses (¹²C not included).

Thus, we have to solve a system of 2023 equations with 1207 parameters. Theoretically, the expectation value for χ^2 should be 816±20 (and the theoretical $\chi_n = 1 \pm 0.025$).

The total χ^2 of the adjustment is actually 825 ($\chi_n = 1.005$), thus showing that the ensemble of evaluated data was of excellent quality, and that the adopted criteria of selection and rejection were adequate. In the past this was not always the case and in AME2003 we could observe that on average the uncertainties in the input values were underestimated by 23%. The distribution of the v_i 's (the individual contributions to χ^2 , as defined in Eq. 6, and given in Table I) is also acceptable. If we consider all the 11511 data that are used in the adjustment plus the 'obsolete' ones (label 'O') and the unweighed ones (label 'U'), the distribution of v_i 's yields 20% of the cases beyond unity, 3.3% beyond two, and no items beyond 3.

Considering separately the two main classes of data, the partial consistency factors χ_n^p are respectively 1.021 and 0.987 for energy measurements and for mass-spectrometric data, showing that both types of selective input data are of excellent quality.

As in our previous works [2, 40, 41], we have estimated the average accuracy for 185 groups of data used in the evaluation that were related to a given laboratory and a specific method of measurement, by calculating their partial consistency factors χ_n^p (see Section 5.2). As much as 98 groups have χ_n^p larger than unity, and 2 groups larger than 2.

6 Discussion of the input data

In most cases, values given by authors in the original publication are accepted, but there are also exceptions. One example is the performed recalibration due to change in the definition of volt, as discussed in Section 2. For somewhat less simple cases, a remark is added in Table I at the end of the concerned A-group. A curious example of combinations of data that cannot be accepted without change follows from the measurements of the Edinburgh-Argonne group [1997Da07]. They reported a series of α -decay energies, where the ancestors were isomers between which the excitation energy was accurately known from the difference of their proton-decay energies. These authors gave values for the excitation energies between isomeric daughter pairs with considerably smaller uncertainties than those derived from the uncertainties quoted for the measured α -decay energies. The reason is that the decay energies of two parallel α -decay chains are correlated; this means that the uncertainties in their differences are relatively small. Unfortunately, the presented data do not allow an exact calculation of both the masses and the isomeric excitation energies. This would have required that, in addition to the two E_{α} values of an isomeric pair, the uncertainty of the α -energy difference should also have been given. Instead, entering all their Q_p and E_1 (isomeric excitation energies) values in our adjustment would yield outputs with too small uncertainties, while accepting any partial collection makes some uncertainties too large. Therefore, in this case we do enter a selection of the input values, which are slightly changed, but chosen in such a way that our adjusted Q_{α} and E_1 values and corresponding uncertainties differ as little as possible from those given by the authors. A further complication could occur if some of the Q_{α} values are also measured by other groups. But until now, we found no serious deviations in such cases.

A change in uncertainties, not values, is caused by the fact that, in several cases, we do not necessarily accept the reported α -energy values as belonging to transitions between ground states. This also causes uncertainties in

the derived proton-decay energies to deviate from those reported by the authors (e.g. in the α -decay chain of 170 Au), see also Section 7.9.

6.1 Improvements along the backbone

Since AME2012, all new mass-spectrometric data constituting the backbone were obtained from precision measurements of cyclotron frequencies of ions in Penning traps. Like to the classical measurements, where ratios of voltages or resistances were used, we found that the Penning trap results can be converted to a linear combination of masses of electrically neutral atoms (in μu), without any loss of accuracy. A special mention is needed for the MIT-FSU group [2005Ra34] which reports their original results as linear equations, including corrections for electron and molecular binding energies. Other groups give their results as ratio of cyclotron frequencies (see also next paragraph), which we convert to linear equations as described in Appendix C, (p. 030002-43) and finally we add corrections for electron and molecular binding energies. In such cases, we added a remark to the equation used in the input data table (Table I), to describe the original data and our treatment. Some authors publish their results directly as masses, but this is not a recommended practice for high-precision mass measurements.

6.1.1 Calculation of molecular binding energies for very precise mass measurements

The most precise mass-spectrometric measurements use Penning trap spectrometers, which measure the cyclotron frequency of a reference ion and an ion of interest in a uniform magnetic field B. Not only the electronic binding energy (single or multiple ionization), but also the molecular binding energy (dissociation energy) can be involved in the measured frequency ratios, as described for example in Ref. [1995Di08]. For most molecules used in the experiments, the binding energy represents typically a correction of a few parts in 10^{10} and its uncertainty only limits the accuracy of the neutral atomic mass to a few parts in 10^{12} , for example in Ref. [2004Ra33]. For measurements with precisions not better than $10^{-9}(100\,\text{eV}/100\,\text{u})$, the molecule binding energy could be neglected without loss of accuracy. In cases where the precision is better than $10^{-10}(10\,\text{eV}/100\,\text{u})$, e.g. at MIT [1995Di08] and FSU [2015My03], it is necessary to take into account the molecular binding energy.

6.2 Mass spectrometry away from β -stability

The reader interested in the history of mass-spectrometric measurements, the resolving powers, resolutions and the discoveries they rendered possible in nuclear physics and cosmology, can refer to the publication by one of us (G.A.) [1].

6.2.1 Penning trap spectrometers

Nowadays, seven Penning traps are being operated at the major accelerator facilities around the ISOLTRAP-Cern, CPT-Argonne, JYFLTRAP-Jyväskylä, Lebit-East-Lansing, Shiptrap-Darmstadt, TITAN-Vancouver, and TRIGA-TRAP-Mainz. They measure the atomic masses for nuclides farther from the valley of β -stability, using the cyclotron frequencies of charged ions captured in the trap. Such a frequency is always compared to that of a (well) known reference nuclide in order to determine the ratio of two masses, which is converted, without loss of accuracy, to a linear relation between the two masses (see also Section 6.1 above and Appendix C, p. 030002-43). Experimental methods that utilize measurements of cyclotron frequency have an advantage compared to volt or magnetic field measurements in a sense that the observable needed in the former, namely the frequency, is the physical quantity that can be measured with the highest precision. In fact, very high resolving power (10⁶) and accuracies (up to 10^{-8}) are routinely achieved for nuclides located quite far from the line of β -stability. Such high resolving power made it possible in 1991 [42], for the first time in the history of mass spectrometry, to resolve nuclear isomers from their ground state (84Rbm) and to determine their excitation energies. Another beautiful demonstration of complementarity between mass spectrometry and nuclear spectroscopy was given in [2004Va07] for 70 Cu, 70 Cu^m and 70 Cuⁿ, where in the same work the masses of the three isomers were determined directly by mass spectrometry, while the excitation energies were measured by $\beta \gamma$ spectroscopy. Typically, the precision can reach 100 eV or better (60 eV for the difference between ⁶He and ⁷Li at TITAN-Vancouver [2012Br03]). Even the most exotic nuclides, such as ¹¹Li (8.75 ms) or ⁷⁴Rb (64.78 ms), were measured with precisions of 600 eV and 4 keV with the TITAN-Vancouver [2008Sm03] and ISOLTRAP-Cern [2007Ke09] facilities, respectively.

In earlier evaluations, we found it necessary to multiply uncertainties from some groups of mass-spectrometric data [43] with discrete factors (F=1.5, 2.5 or 4.0) following the partial consistency factors χ_n^p we found for these groups (see Section 5.2). Such a treatment is not necessary for most of the Penning trap results, which almost all have F=1.

6.2.2 Double-focussing mass spectrometry

Classical double-focussing mass spectrometry was performed on-line at ISOLDE-CERN to measure masses of nuclides far away from the valley of stability. In these experiments, a relationship between three masses was established. These mass-triplet measurements, in which undetectable systematic effects could build-up in large

deviations when the procedure is iterated [1986Au02], could be recalibrated with the help of the Penning trap measurements. Recalibration was automatically obtained in the evaluation, since each mass-triplet was originally converted to a linear mass relation among the three nuclides, allowing both easy application of least-squares procedures, and automatic recalibration. In the present adjustment of data, most of the 181 original data, performed in the 80's, are now outweighed, except for the most exotic (and thus the most interesting) ones. There are still five of them that contribute to the present adjustment, essentially for some very exotic nuclides: 91Rb for 12% of the determination of its mass, ⁹⁵Rb (49%), ¹⁴⁴Cs (20%). In Table I, the relevant equations are normalized to make the coefficient of the middle isotope unity, so that they read e.g.

97
Rb $- (0.490 \times ^{99}$ Rb $+ 0.511 \times ^{95}$ Rb) $= 350 \pm 60 \text{ keV},$

145
Cs $-(0.392 \times ^{148}$ Cs $+0.608 \times ^{143}$ Cs) $=-370 \pm 90$ keV.

(the 148 Cs symbol represents the mass excess of nuclide 148 Cs in keV). The other two coefficients are three-digit approximations of

$$\frac{A_2}{A_3 - A_1} \times \frac{A_2 - A_1}{A_3}$$
 and $\frac{A_2}{A_3 - A_1} \times \frac{A_3 - A_2}{A_1}$.

We took A instead of M in order to arrive at coefficients that do not change if the M-values change slightly. The difference is, however, unimportant.

6.2.3 Radio-frequency mass spectrometry

The Orsay Smith-type mass-spectrometer MISTRAL, which was also connected to ISOLDE, had performed quite precise measurements of very short-lived light nuclides, before the Penning traps could cover all the possibilities that were offered by a transmission mass spectrometer. There are eight of the measurements performed with MISTRAL that are still used in this evaluation for the determination of the masses of ²⁶Ne, ^{26,27,28,29}Na and ²⁹Mg.

6.2.4 Classical time-of-flight

Mass measurements by the time-of-flight mass-spectrometry technique, firstly at SPEG (GANIL) and TOFI (Los Alamos), later at Michigan State University (Msu), also apply to very short-lived nuclides, due to instant measurements, but the precisions are much lower than those obtained with MISTRAL. Masses of almost undecelerated fragment products, coming from thin targets bombarded with heavy ions [44] or high energy protons [45], are determined from a combination of magnetic deflection and time-of-flight measurements. Nuclides in an extended region in A/Z and Z are analyzed simultaneously. Each individual ion, even if very short-lived

 $(1 \mu s)$, is identified and has its mass measured. In this way, mass values with precisions of $(3 \times 10^{-6} \text{ to } 5 \times 10^{-5})$ can be obtained for a large number of neutron-rich nuclides of light elements, up to A = 70. One difficulty in such experiments is that the obtained value can apply to an isomeric mixture where all isomers with half-lives of the order of, or longer than the time of flight (about 1 μ s) may contribute. The limited resolving power, around 10⁴, and cross-contaminations can cause significant shifts in masses. The most critical part in these experiments is the calibration, since it is frequently from an empirically determined function, which, in several cases, had to be extrapolated rather far from the calibrating masses. It is possible that, in the future, a few mass-measurements far from stability may provide better calibration points, thus allowing a re-analysis of the concerned data. Such recalibrations require analysis of the raw data and cannot be done by the evaluators. With new data available from other methods, which allow detailed comparisons to be made, we observed strong discrepancies for these groups, and had to increase the associated partial consistency factor to F = 1.5.

6.2.5 Cyclotron time-of-flight

Cyclotrons offer very long time-of-flight basis, yielding high resolving power for ions living longer than $50\mu s$. The accelerator radio-frequency is taken as reference to ensure a precise time determination, but this method implies that the number of turns that an ion has to make inside the cyclotron, should be known exactly. This was achieved successfully at SARA-Grenoble in the mass measurement of ⁸⁰Y. Experiments performed at GANIL with the Css2 cyclotron, could not determine the exact number of turns. In the first experiment around $^{100}\mathrm{Sn}\,[1996\mathrm{Ch}32]$, a careful simulation was done instead. In the second experiment on ⁶⁸Se, ⁷⁶Sr, ⁸⁰Sr and ⁸⁰Y [2001La31], a mean value of the number of turns was experimentally determined for the most abundant species only, which mainly involved the cal-Penning traps measurements at the CPT-Argonne, Jyfltrap-Jyväskylä and Isoltrap revealed that this method suffered from serious systematic errors. Later, improved measurements at GANIL with the Css2 cyclotron [2008Go23] were in better agreement with the Penning trap data.

6.2.6 Multi-Reflection Time-of-Flight Mass Spectrometor

A new type of instrument, called Multi-Reflection Time-of-Flight mass spectrometer (MR-ToF), has seen the light recently at major nuclear physics facilities. Three MR-TOF's, operated at ISOLDE-CERN, RIBF-RIKEN and at the GSI facility, begin to produce interesting results, which are included in the present evaluation.

Several other MR-Tof's are under construction at other facilities such as TRIUMF, Argonne and SPIRAL2. The MR-Tof mass measurement is based on time-of-flight. Like storage rings, it aims at extending the flight path by reflecting ions back and forth in a static electric field. With this method, a relative mass precision of 10^{-7} is routinely achieved in typically 10 milliseconds. Remarkable results have been achieved recently at ISOLTRAP using the MR-Tof: it was possible to reach the most exotic nuclei in the light mass region, 52,53,54 Ca [2013Wi06] and 52,53 K [2015Ro10], as well as in the heavy mass region, 131 Cd [2015At03]. A precision of 10 keV has been obtain for the less exotic nuclide (52 Ca), and a precision of 110 keV for the most exotic one (53 K) with half-life of 30 ms.

For mass determination with MR-ToF, the general relation between mass-to-charge ratio (m/q) and time-of-flight t is [2013Wi06]:

$$t = \alpha \sqrt{m/q} + \beta, \tag{8}$$

where α and β are constants related to the experimental set-up and are the same for the ion of interest and for the reference ions.

At RIKEN and GSI, the β parameter can be determined independently, thus only one reference nuclide is needed for mass calibration. In this way, the ratio of time-of-flight between the ion of interest and the reference ion is used to extract the linear equation, as it is the case for Penning trap measurement (see Appendix C p. 030002-43). Results from RIKEN ([2013It01], [2016Sc.A]) and GSI ([2015Di03]) are presented in this way in the present evaluation.

However, at ISOLDE-CERN, two reference masses are used to determine the mass of interest, and the so-called C_{tof} method is used. When using this method, we express the linear equation in term of absolute mass.

At first, the two constants (α, β) are extracted from the two reference equations:

$$t_1 = \alpha \sqrt{(m/q)_1} + \beta$$

$$t_2 = \alpha \sqrt{(m/q)_2} + \beta,$$

where $(m/q)_1$ and $(m/q)_2$ are the mass-to-charge ratios of reference 1 and reference 2, while t_1 and t_2 are their time-of-flights. We thus obtain:

$$\alpha = \frac{t_1 - t_2}{\sqrt{(m/q)_1} - \sqrt{(m/q)_2}}$$

$$\beta = t_1 - \frac{t_1 - t_2}{\sqrt{(m/q)_1} - \sqrt{(m/q)_2}} \sqrt{(m/q)_1} \ .$$

To extract the mass of interest, α and β are replaced in Eq. (8) and the mass can be written:

$$m/q = C_{tof}\Delta_{ref} + \frac{1}{2}\Sigma_{ref}, \qquad (9)$$

where C_{tof} , Δ_{ref} and Σ_{ref} are defined by:

$$\begin{split} C_{tof} &= \frac{2t - t_1 - t_2}{2(t_1 - t_2)} \ , \\ \Delta_{ref} &= \sqrt{(m/q)_1} - \sqrt{(m/q)_2} \ , \\ \Sigma_{ref} &= \sqrt{(m/q)_1} + \sqrt{(m/q)_2} \ . \end{split}$$

The mass uncertainty is calculated from the uncertainty σ_c of coefficient C_{tof} and the reference mass uncertainties σ_1 and σ_2 :

$$\begin{split} \sigma^2 = (m/q) \Big\{ (C_{tof} - \frac{1}{2})^2 \frac{\sigma_1^2}{(m/q)_1} + (C_{tof} + \frac{1}{2})^2 \frac{\sigma_2^2}{(m/q)_2} + \\ 4 (\sqrt{(m/q)_2} - \sqrt{(m/q)_2})^2 \sigma_c^2 \Big\} \,. \end{split}$$

6.2.7 Storage-ring time of flight

Similarly, a long flight path can be obtained in a storage ring, which is operated in the mode of isochronous mass spectrometry (IMS). The first set-up of this type was operated at GSI-ESR at Darmstadt. The precision of the measurements could be as good as 90 keV even for nuclides quite far from stability. Recently, [2016Kn03] reanalyzed some data from two earlier experiments and reported some new masses at GSI-ESR. For some of the newly reported nuclides, only two events were recorded. The results show the potential of the IMS method. However the systematic uncertainty is rather large and eight results from that work appear in Table C. The Cooler Storage Ring for experiment (CSRe) at the IMP-LANZHOU is the second spectrometer for IMS mass measurements. Precision better than 10 keV has been achieved. The isomer of ⁵²Co has been resolved from the ground state, demonstrating the excellent resolving power [2016Xu10].

6.2.8 Cooled beam cyclotron frequency

Storage rings could also be used with cooled beams to measure the cyclotron frequency as has been demonstrated since 1997 at the GSI-ESR storage ring, with precisions sometimes as good as 12 keV. Many of the measured nuclides belong to known α -decay chains. Thus, the available information on masses for proton-rich nuclides is considerably extended.

It must be mentioned that in the first group of mass values as given by GSI authors [2000Ra23], several data could not be accepted without changes. The reason was that in the determination of the mass values they had to combine α -decay energies between two or more of the occurring nuclides. Evidently, these energies could not be included without corrections in our calculations, where they would be again combined with these Q_{α} values. Remarks are added to the data in Table I in order to warn for such cases. Fortunately, this group of data is only of historical interest since they were superseded by more recent high-precision results [2005Li24] using the same

instruments. A wealth of high-quality data were published recently using this technique, see e.g. [2012Ch19] and references therein.

6.2.9 Isomeric mixtures

As stated above, many mass-spectrometric results yield an average mass value M_{exp} for a mixture of isomers. Here, we use a special treatment for the possible mixture of isomers (see Appendix B p. 030002-39) and information about these changes are duly explicited in remarks accompanying these data.

The mass M_0 of ground state can be calculated if both the excitation energy E_1 of the upper isomer and the relative production rates of the isomers are known. But often this is not the case. If E_1 is known but not the production ratio, one must assume equal probabilities for all possible relative intensities. In the case of one excited isomer, the estimated mass for M_0 becomes $M_{exp}-E_1/2$, and the part of the error due to this uncertainty is $0.29E_1$ (see Appendix B, Section B.4, p. 030002-42). This policy was defined and tested first for the GsI-Esr cooled beam cyclotron frequency data and was discussed with the authors of the measurements. In 15 cases, more than two excited isomers contribute to the measured line.

A further complication arises if E_1 is not known. In such a case, we have to make the best possible estimate for E_1 . As always this estimated value is flagged with '#' This, in addition to questions related to α -decay chains involving isomers, was a reason for us to consider the matter of isomers with even more attention. Part of the results of our estimates are incorporated in the Nubase evaluation. In estimating the E_1 values, we first look at experimental data possibly giving lower limits: e.g. if it is known that one of two isomers decays to the other; or if γ rays of known energy occur in such decays. If not, we try to interpolate between E_1 values for neighboring nuclides that can be expected to have the same spin and configuration assignments (for odd A: isotones if Z is even, or isotopes if Z is odd). If such a comparison does not yield useful results, indications from theory were sometimes accepted, including upper limits for transition energies following from the measured half-lives. Values estimated this way were provided with somewhat generous errors, dutifully taken into account in deriving final results.

In several of these measurements, an isomer can only contribute if its lifetime is relatively long (hundreds of milliseconds or longer). However, half-life values given in NUBASE are those for neutral atoms. For bare nuclides, where all electrons are fully stripped from the atom, the lifetimes of such isomers can be considerably longer, since the decay by conversion electrons is switched off. The reported mass measurements [2005Li24] of the 580 ms $^{151}{\rm Er}^m$ isomer at $E_1{=}2586.0\,{\rm keV}$ excitation energy and

and the $103\,\mathrm{ms}$ $^{117}\mathrm{Te}^m$ isomer at $E_1{=}296.1\,\mathrm{keV}$ are two examples.

Considering the isomeric mixtures and combining experimental data from decay spectroscopy and from mass spectrometry can provide valuable information for the atomic masses. This can be demonstrated in the following example. Masses of the nuclides along the α decay chain 206 Ac- 202 Fr- 198 At- 194 Bi- 190 Tl were deemed unknown in AME2012, while they were considered to be known in AME2003. For these nuclides, two longlived states exist with high and low spin, respectively, and two α -decay chains are established in parallel. The excitation energies of the isomeric states are unknown. In AME2003, their masses were determined by storage ring mass spectrometry [2003Li.A], [2005Li24], where the mixture of two states were assumed and the corrections implemented. Later the mass of ¹⁹⁰Tl in its high-spin state was measured with unambiguous assignment of the state from decay spectroscopy. The result was included in AME2012 as private communication [2012Bo.A] (published later as [2014Bo26]). This state was assumed to be the excited isomer, but the excitation energy was unknown. The excitation energy of ¹⁹⁰Tl was estimated from TNN to be 90#(50#) keV in AME2012, and then the masses of these five nuclides in their ground state were deemed unknown. By using resonance ionization laser ion source technique, a specific state can be selected, and it can be identified through decay spectroscopy. In this way, the ground state mass of ¹⁹⁸At was unambiguously measured by ISOLTRAP [2013St25]. The excitation energy of $^{190}\mathrm{Tl}^m$ was determined to be 89(12) keV for the first time, which agrees with the estimated value. In AME2016, the masses of all five nuclides connected via α decays are now being experimentally known.

6.3 Masses of unbound nuclides

Presently, many nuclides beyond the driplines can be accessed in the light mass region. They can decay via direct proton or neutron emission. The half-lives of these unbound nuclides are too short for them to acquire their outer electrons (which takes around 10^{-14} s), and to form atoms. However, we still convert their masses to "atomic masses" so we can treat them consistently with other nuclides. It is experimentally challenging to study these unbound nuclides far from stability: only very few events can be observed. Frequently, theoretical calculations are required to extract their properties from the experimental data.

On the proton rich side, resonant states could be formed due to the Coulomb barrier. There are different approaches to study these states: transfer reaction with missing mass spectrum, proton scattering, and complete kinematic measurement with invariance mass spec-

trum. For a broad resonant state, the definition of the resonance energy and width is not unique. For example, $^{15}\mathrm{F}$ was studied in resonant elastic scattering using a thick CH₄ gas target in inverse kinematics with a $^{14}\mathrm{O}$ beam [2004Go15]. The proton-decay energy of $^{15}\mathrm{F}$ was obtained to be $1.29^{+0.08}_{-0.06}\,\mathrm{MeV}$ from the energy at which the magnitude of the internal wave function is a maximum, or $1.45^{+0.16}_{-0.10}\,\mathrm{MeV}$ where the elastic scattering cross section is maximum, corresponding to a phase shift of $\delta=\pi/2$. Since the latter value is consistent with those obtained in transfer reaction studies, it is adopted in our evaluation.

Some single-proton resonant states can be accessed and studied in two-proton decay experiments. For example, the 1p-decay energies of 1560(130) and 2850(40) keV for the ground and first excited states in ¹⁵F [2004Le12] are well reproduced in the angular-correlation studies of two-proton decays of ¹⁶Ne [2008Mu13].

On the neutron-rich side of the nuclear chart, the mass of unbound nuclides can be determined by means of the missing-mass method using transfer reactions (e.g. [2015Ma54]), or with the invariant-mass method using radioactive-ion beams (e.g. [2012Ko43]). Recently, various such beams and improved detection techniques have been impressively developed, which allows new masses of unbound nuclides to be determined.

In the case of neutron-induced reaction, only the centrifugal barrier plays a role in the formation of a given resonant state. Since no barrier exists at all for a swave neutron, the observation of asymmetric peak near the threshold is a general feature of spectra obtained in invariant-mass experiments (e.g. [2010Jo06]). This state is usually referred to as a virtual state, which has no definite lifetime and thus differs significantly from a real resonance state. The virtual state can be characterized by the s-wave neutron-nucleus scattering length; its eigen energy is approximately $\hbar^2/2\mu a_s^2$, where μ is the reduced mass and a_s is the scattering length.

6.4 Isobaric Analog states (IAS)

The concept of isospin was introduced by Heisenberg [46] and developed by Wigner [47] to describe the charge independence of nuclear forces. This concept is widely used in particle and nuclear physics. Within the isospin formalism, a nucleus composed of Z protons and N neutrons has a fixed isospin projection of $T_z = (N-Z)/2$, while all states in the nucleus can have different total isospins $T \geq |T_z|$. In other words, states of a given T can occur in a set of isobaric nuclei with $T_z = T, T-1, ..., -T$. These states with the same T and J^{π} are called Isobaric Analog States (IAS). A set of IASs with fixed A and T are believed to have very similar nuclear structure properties and to be energetically degenerate in the framework of isospin symmetry. Their rela-

tive masses can be used to explore the charge symmetry and charge independence of the nuclear interaction via the Isobaric Mass Multiplet Equation (IMME) [48], and with calculations of the Coulomb Displacement Energy (CDE) (see for example [32], and references therein).

As in AME2012, IASs that are determined via external relations were evaluated. In some cases, one IAS can be involved in a local network thus influencing other masses. Such an IAS was included in the present evaluation, although its excitation energy may be determined mainly through an internal relation. An example is ⁴⁸Mnⁱ, which is connected to ⁴⁷Cr through proton decay, thus building a loop when its internal transition is included.

6.5 Proton and α decays

In some cases, proton-decay energies can be estimated from proton-decay half-lives. Estimates for the following nuclides can thus be obtained as:

Nuclide

$$T_{1/2}$$
 S_p (keV)
 Adopted S_p
 64 As
 $40\pm30 \,\mathrm{ms}$
 >-100
 $-100\# \pm 200\#$
 68 Br
 $<1.5 \,\mu\mathrm{s}$
 <-500
 $-500\# \pm 250\#$
 73 Rb
 $<30 \,\mathrm{ns}$
 <-570
 $-570\# \pm 200\#$
 81 Nb
 $<44 \,\mathrm{ns}$
 <-600
 $-710\# \pm 500\#$

These limits were used as a guide to obtain estimates for the masses of those nuclides.

These results are important for two main reasons. Firstly, knowledge of proton separation energies just beyond the proton drip line is quite valuable in estimating the mass values for nuclides for which no experimental data are available. Secondly, there are several cases where proton-decay energies from both members of an isomeric pair were measured, so one can determine the excitation energy of a particular isomer. In addition, the lifetime of a proton-emitting nuclide is sensitive to the orbital angular momentum value l carried by the proton and this can be used in turn to obtain reliable information about the spins and parities of the parent and daughter states. This feature is even more valuable, when α decays of both members are observed. Combination of long α -decay chains with proton decays offers a view of extended regions of the chart in the neighborhood of the proton drip-line. These studies showed that several decays that were earlier assigned to ground states actually belong to excited isomers. Also, these measurements are found to yield good values for the excitation energies of the isomers among the descendants. We usually followed the judgment of the authors, including their recommendations about the final levels fed in those α decays.

Often in α -decay studies of odd-N(Z) and odd-odd nuclides, the level fed directly by the α particle is not known. A comprehensive investigation that we per-

formed some time ago suggested that, in most cases, when the decay does not go directly to the ground state, the final level is relatively close to the ground state. In such cases, we adopted the policy of accepting the measured E_{α} as feeding the ground state, but assigning a special label to indicate that a close-lying excited level may also be fed. This label, which is not given in Table I, will indicate to our computer program that the uncertainty, after possible pre-averaging of data of the same kind (also given in Table I), is to be increased to $50 \, \mathrm{keV}$.

The existence of proton-decay branches, as mentioned above, provided sufficient arguments to omit the mentioned label in several cases. One has also to be careful with the use of this label if mass-spectrometric results with a precision of about $50\,\mathrm{keV}$ or better are known for the parent and daughter nuclides. Comparison with theoretical models may also suggest dropping the mentioned above label; or conversely to not accept a reported α -decay energy.

In some cases, TMS estimates and theoretical predictions of α -decay energies indicate that the excitation energy E_1 of the final level may be much higher. Then, an estimate for the excited level energy (provided with a generous error) is added as an input value.

In regions where the Nilsson model for deformed nuclides applies, it is expected that the most intense α transition connects parent and daughter levels that have the same quantum numbers and configurations. In such a case, adding an estimate for E_1 is attractive. Frequently, the energy difference between the excited and ground states can be estimated by comparisons with the energy differences between the corresponding Nilsson levels in nearby nuclides.

For nuclei with A>190, as well as for proton-rich nuclei far from the line of stability, α decay is the main decay mode providing information about atomic masses. Most measurements involve position-sensitive silicon detectors, which require careful energy calibration. Such calibrations usually use the recommended E_{α} values evaluated by Rytz [1991Ry01]. The recent development in mass spectrometry allowed independent mass measurements in this region of the nuclear chart using Penning Traps. Such measurements have already been carried out for several No and Lr nuclides [2010Mi.A] and their results were already included in AME2012.

6.5.1 Particle energy vs. decay energy

Unfortunately, some authors misuse the meaning of particle and decay energies. Energy values are referred to by some authors as the particle energy E, while others quote it as decay energy Q. Actually, the decay energy is the sum of kinetic energies of the emitted particle and the recoiling daughter nuclide. In general, the α particle car-

ries about 97-98% of its Q value and the recoiling nuclide accounts for about 2-3%. In the literature one can find too many cases of confusion, especially in proton-decay experiments where Q_p and E_p are numerically closer to each other. Sometimes, the confusion could be resolved through a meticulous inspection of the paper and a discussion with the authors. However, ambiguities still remain in many cases.

6.5.2 Recalibration of alpha- and proton-decay energies in implantation experiments

In experiments where the α -emitting nuclei are implanted in a silicon detector, both the α particle and the recoiling daughter nuclide deposit energies in the detector. Often authors make the simple assumption that only the α -particle energy is measured in the detector. While in similar cases of proton decays, it is often considered that both the proton and the heavy recoil are detected at the same time. Neither of these statements is correct: α particles and protons with energies of a few MeV have almost 100% detection efficiency, which is not the case for the heavy recoiling nuclides, where only part of the recoiling energy contributes to the signal.

This effect has been discussed in Ref. [2012Ho12], where approximately 28% of the recoil energy contributes to the signal. In that experiment, the recoil energy of the 11.65 MeV α -particle line of $^{212}\text{Po}^m$, which was used for calibration, is 224 keV, whereas the recoil energy of a superheavy nucleus with mass number 292 is only 162 keV for the same α energy. Thus the difference of the recoil energies which contribute to the signals is 17 keV, which is larger than the 10 keV energy uncertainty. For this reason, the partial recoil energy of the daughter nuclide has been taken into account in the energy calibration [2012Ho12].

However, not all the experimentalists notice this effect and we need to make our own corrections of the published results. We have developed a procedure [49] to calculate the detection efficiency for heavy nuclides in Si detectors based on Lindhard's integral theory [50], which has been experimentally proven to be reliable [51, 52].

The correction has been done for some of the experimental results included in the present tables. After discussions with the authors of the original publication, the α -decay energy of $^{255} \mathrm{Lr}^m$ Ref. [2008Ha31] has been corrected and the difference turns out to be 7(10) keV. The corrected value is used in the current evaluation with a remark given to the relevant data in Table I. Another example is from Ref. [2014De41], where the proton-decay of $^{69}\mathrm{Br}$ was measured by using β -delayed protons from $^{20}\mathrm{Mg}$ and $^{23}\mathrm{Si}$ for the energy calibration. The authors assumed (erroneously) that the recoil energy would be fully recorded at the same time. From our calculations the detection efficiency for the recoil nuclide ($^{68}\mathrm{Se}$) is

about 30% and its neighboring nuclides show similar behavior. Applying the correction, the β -delayed proton-decay energy of $^{69}{\rm Kr}$ changed from 2939 keV to 2916 keV. The difference is 23 keV, comparable with the 22 keV uncertainty. The same correction procedure was also applied to the ground-state proton-decay energy of $^{69}{\rm Br}$ in the same work [2014De41], which changed its proton-decay energy from 641 keV to 631 keV, with uncertainty of 42 keV.

The correction should, in principle, be applied to all implantation α - and proton-decay experiments of some precision if the recoil effect was not taken into account. This work is not yet complete in the present version of the AME

Some authors derive a value which they call Q_{α} from the measured α -particle energy by not only correcting for the recoil energy, but also for screening by atomic electrons (see Appendix A p. 030002-38). In our calculations, the latter corrections have been removed.

Finally, some measured α -particle energies are affected by the coincidence summing between the α particle that feeds an excited level of the daughter nuclide and the conversion electrons that follow the decay of this level. This is sometimes apparent from the reported α spectra, since the width of the observed line is larger than that of other ones. In some cases, spurious α peaks can be observed. When deriving the corresponding Q_{α} values, appropriate (small) corrections are made for the escaping X-rays. Those are mentioned in a remark added to such a case.

6.6 Decay energies from capture ratios and relative positron feedings

For allowed transitions, the ratio of electron capture in different shells is proportional to the ratio of the squares of the energies of the emitted neutrinos, with a proportionality constant being dependent on Z [53]. For (non-unique) first forbidden transitions, the ratio is similar, but with a few exceptions. The neutrino energy is determined as the difference of the transition energy Q and the electron binding energy in the pertinent shell. Especially if the transition energy is not too much larger than the binding energy in, say, the K shell, it can then be determined rather well from a measurement of the ratio of capture in the K and L shells.

The non-linear character of the relation between Q and the capture ratio introduces two problems. In the first place, a symmetrical error for the ratio is generally transformed in an asymmetrical one for the transition energy. Since our least-squares fit program cannot handle them, we have symmetrized the probability distribution by considering the first and second momenta of the real probability distribution (see Nubase2016, Appendix A, p. 030001-16). The other problem is related to averaging

of several values that are reported for the same ratio. Since AME1993, our policy is to average the capture ratios, and calculate the decay energy from that average. An example is $^{139}\mathrm{Ce}(\varepsilon)^{139}\mathrm{La}$ (see p. 030002-211), where 10 results were averaged and the individual values given in the associated remarks. In this procedure we used the best values [53] of the proportionality constant. We also recalculated the older decay energies using the new value for this constant.

The ratio of positron emission and electron capture in the transition to the same final level also depends on the transition energy. It is well known for allowed and not much delayed first forbidden transitions. Thus, the transition energy can be derived from the measured positron intensity to a given level, rather than from the positron spectrum end-point (e.g. $^{109}\text{Cd}(\varepsilon)^{109}\text{Ag}$, p. 030002-170). In the case of positron decay, one must remember that it can only occur when the transition energy exceeds $2m_ec^2 = 1022 \,\mathrm{keV}$. However, in many cases the level fed by positrons is also fed by γ -rays coming from higher levels that are fed by electron capture. Determination of the intensity of this side feeding is often difficult. Cases exist where such feeding occurs by a large number of weak γ -rays that can be easily overlooked (the pandemonium effect [54]). Then, the reported decay energy may be much lower than the real value. In judging the validity of experimental data, we kept this possibility under consideration.

Total Absorption Spectrometry (TAS) has been applied to overcome the *pandemonium* effect [54]. In some cases the ratio of positron emission and electron capture is measured using TAS, e.g. ¹⁰³Sn [2005Ka34]. For this case we adopted the value reported by the authors.

6.7 Q_{β} far from β -stability

Presently, the mass surface for nuclides far away from the valley of β -stability is observed to be located much higher than was previously believed. This is largely due to the underestimation of the Q_{β} decay energies, which were measured in the past using the end-point energy method. See the discussion in AME2012, p. 1317.

The deduced higher values of atomic masses for exotic nuclides in the present work will have important consequences for nuclear astrophysics and nuclear energy applications, as discussed in Ref. [55].

To conclude, for nuclei very far from the valley of stability, Q_{β} results from end-point measurements should be treated with caution. In such cases, data available from Penning traps and/or storage rings facilities should always be given priority.

6.8 Superheavy nuclides

The search for superheavy elements (SHE) and elucidation of their properties is one of the prominent areas

of modern nuclear physics research. In the last several years, the nuclear chart was extended impressively in the heaviest mass region up to the element with atomic number Z=118. However, the mass surface built with the available data is still rough (see Part II, Fig. 9 and also Fig. 26, p. 030003-243 and 030003-260).

Names and symbols At the completion of AME2016, SHE up to Z = 118 were officially named by The Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry (IUPAC) [56]:

113 Nihonium (Nh), 115 Moscovium (Mc),

117 Tennessine (Ts), and

118 Oganesson (Og).

We were not able to include the new names in AME and NUBASE, but instead we used the provisional symbols Ed, Ef, Eh, and Ei for elements 113, 115, 117, and 118, respectively.

Experimental methods Since α decay is the dominant decay mode in the region of superheavy nuclides, knowledge of masses of She is most often obtained from the measured α -decay energies within a chain that reaches a nuclide with known mass. Position and timecorrelated α -decay and Spontaneous Fission (SF) spectroscopy measurements of She continue to provide precious information about their properties. However, it often happens that α chains end up with a nuclide decaying only by spontaneous fission, offering no link to known masses. For example, the SF decay of ²⁶⁶Sg does not allow to determine the mass of the doubly magic nuclide ²⁷⁰Hs. In order to support the discovery of new elements, an indirect method can be applied, where different nuclear reactions are used to produce the daughter nuclide. This was the case in the discovery of the new elements ²⁹³Eh(Ts) and ²⁸⁹Ef(Mc), see Ref. [57] and references therein. However, the new analysis of all available data in Ref. [2016Fo16] provided evidence against the proposed cross-reaction link [57] between the α -decay chains associated with those two nuclides. New studies would be needed to resolve the discrepancies.

A very important development in this mass region was the first direct mass measurements [2010Dw01] of several isotopes of No (Z=102) and Lr (Z=103) by the Shiptrap facility at GSI. Those results provided anchor points for atomic masses in this remote region of the nuclear chart. In general, the newly measured masses agree reasonably well with those deduced from known Q_{α} values of long α chains, thus giving confidence not only about the reliability of masses for She reported in [2010Dw01], but also the treatment and policies used in

our work. In AME2016 we included new results from such direct mass measurements for the lighter 241,243 Am, 244 Pu and 249 Cf nuclides [2014Ei01]. However, we have to mention here the disagreement in the 249 Cf - 241 Am mass difference between the Penning trap data and the value deduced using the decay Q_{α} values, as discussed in Section 7.10 (p. 030002-36).

Alpha decay of superheavy nuclides For eveneven nuclides, the strongest (favored) decays connect the parent and daughter ground states. They are directly related to the Q_{α} values. As a result, masses determined this way are quite reliable. Unfortunately, some of the nuclides are prone to spontaneous fission decay, thus limiting the number of reliable cases.

For many odd-A nuclides, especially for odd-odd ones, the assignments are frequently complicated. In the region of deformed nuclides, α decays preferentially connect levels with the same J^{π} and configurations, and as a consequence the daughter nuclei are often produced in excited states with unknown excitation energies E_1 . Thus, in order to find the corresponding mass difference, we have to estimate these E_1 values. For somewhat lighter nuclides, one may estimate them from known differences in excitation energies for levels with the same Nilsson assignments in neighboring nuclides. But such information is lacking in the She region under consideration. Instead, one might consider using values obtained theoretically [58]. We have not done so. However, we have used such theoretical values as a guide, choosing values in such a way that diagrams of α energies and the mass surface looked smooth. Helpful for this purpose were the experimental α -decay energies for Z = 112, 114 and 116, especially for the even-even nuclides among them. This is especially true near sub-shell closures, since the favored alpha decay occurs between states that have the same quantum numbers and configurations.

The presence of excited, long-lived isomers can also lead to severe complications. While many dedicated $\alpha-\gamma$ coincidence studies have been performed for nuclides in the light actinide region, such spectroscopy needs to be extended to the heavier nuclides. In the last several years new results were published in the Z=102-104 region, which resolved some of the ambiguities. However, high quality data are still in demand and such studies would be very beneficial to future mass determination of She.

A weak α -decay branch was observed in the decay of $^{262}\mathrm{Sg}$ [2010Ac.A], which allowed experimental determination of the mass of $^{270}_{108}\mathrm{Ds}$, the heaviest nuclide that has an experimental mass value in AME2016. The new data allowed to establish unambiguously the existence of a significantly deformed sub-shell gap at N=162 and Z=108. This gap appears to be much larger than the

one at N = 152 and Z = 100.

Our policy in this high-A region, where the α -decay energies often spread too much, is to adopt the highest α -decay group as gs-gs transition. The reason is that, even if this group is formed due to α -electron summing, it is still the closest one to the real gs-gs Q value.

An interesting case is the determination of the mass of $^{265}_{106}$ Sg. This mass was considered as experimentally known in the AME2003 mass table (and was then the heaviest nuclide with known mass), derived from the highest α -decay group $E_{\alpha} = 8940 \pm 30 \,\mathrm{keV}$ of [1998Tu01] and adopted as gs-gs transition. With more events [2012Ha05], the status of ²⁶⁵Sg has been changed and the former α -decay group assigned to the neighboring isotope $^{266}\mathrm{Sg}$ was reassigned to the $^{265}\mathrm{Sg}^m$ state. In the present evaluation we use the strongest group, which may be the unhindered transition, assuming this transition goes to one excited state in the daughter nuclide ²⁶¹Rf with unknown energy. This energy is estimated from the trends in the neighboring nuclides (TNN). So, the mass of $^{265}\mathrm{Sg}$ is now estimated rather than experimental as in AME2003, although the mass value doesn't change much.

With exception of the nuclide $^{278}_{113}\text{Ed}(\text{Nh})$, nuclides with atomic number from 113 to 118 are produced by the "hot fusion" method, decaying by α emission to fissile nuclides whose masses are unknown experimentally, thus forming a floating island with none of the nuclides having known mass.

7 Special cases

Special cases have been discussed in the AME series to highlight the issues raised in the evaluation and to call for more efforts to solve them. Some of the special cases discussed in AME2012 have been solved so we removed them from the current list. Meanwhile some new cases have been added.

7.1 ³H-³He atomic mass difference

The β -decay energy of ${}^3{\rm H}(\beta^-){}^3{\rm He}$, which can be deduced from the difference between the ${}^3{\rm H}$ and ${}^3{\rm He}$ atomic masses, is very important for neutrino-mass experiments that analyze the shape of the tritium β -decay spectrum near its end-point energy. Because of the significance in the determination of the neutrino mass, the Q_β of ${}^3{\rm H}$ has been measured by many groups using different methods. About thirty years ago, one of us (G.A.) and colleagues evaluated all of the significant experimental results available at that time on the ${}^3{\rm H}{}^{-3}{\rm He}$ mass difference [1985Au07]. In that evaluation, the methods fell into three categories: mass doublet measurements, tritium β -decay measurements in magnetic spectrometers and in implanted detectors. It was found that the data

within each group are consistent with each other, but there were notable discrepancies among the groups.

In the last three decades, Penning trap mass spectrometers have been developed intensively and now dominate mass measurements with the highest precision. Before AME2012, the β -decay measurements always played the most important role in determining the Q_{β} of ³H. In AME2012, the Penning trap results contributed almost as much as the β -decay measurements in this case, thanks to the high-precision results from the SMILETRAP group [2006Na49]. These results were in strong conflict with earlier results from the UW(University of Washington) Penning trap (Seattle group) [1993Va04]. The latter reported that the masses of ³He and ³H were determined with uncertainties of 1 nu and 1.5 nu, respectively. Thus the Q_{β} of ³H was deduced with a precision of 1.7 eV by this method. The results from [1993Va04] were used in the AME1993 with the originally published values. Later, some serious systematic errors in this measurements were discovered. After discussion with the authors, the result for ³H was temporarily discarded. The value for ³He was corrected by 3 nu, i.e. 3 sigma away from the original value, and used in Ame 2003 and AME2012. The results from [2006Na49] supports the correction.

Recently, the $^3\mathrm{H}$ and $^3\mathrm{He}$ atomic masses were measured by the Florida State University (Fsu) group with precisions of 0.19 nu, as reported in [2015My03]. Because the identical procedures and the same reference ion were used in the mass measurements for these two nuclides, it was concluded that all of the important systematic uncertainties should be cancel. The resulting uncertainty of 0.07 eV is thus much smaller than that for the individual masses.

However, the Seattle group analyzed the results collected in earlier experiments and published the ³He mass with an uncertainty of 0.043 nu [2015Za13]. This result still disagrees by 3.3 times the sum of their final uncertainty with the Fsu result [2015My03]. In the Seattle experiment, carbon ions were used as reference, whose mass is quite different from the measured nuclide. Thus, their result might be vulnerable to undiscovered systematic errors so is provisionally not used in the present evaluation. In the Fsu measurement, the HD⁺ ion was used as the reference, which has similar mass with the measured nuclide. The ³H-³He mass difference is usually more robust than the absolute mass values, since both nuclides are exposed to the same experimental conditions. This robustness was proven in the work [1993Va04], where although the absolute mass value for ³He has been corrected by 3 nu, the mass difference in the original value agrees with the adopted values in series of Ame evaluations.

In AME2016, the results from [2015My03] are used

to determine the masses of $^3\mathrm{H}$ and $^3\mathrm{He}$. Due to the high precision, all of the other results lost their significance. The recommended values for the Q_β decay energy of $^3\mathrm{H}$ from AME1983 to AME2016 are:

Ame evaluation	Q_{β} (eV)	Uncertainty (eV)
Ame1983	18594	8
Ame1993	18591	1
Ame2003	18591.3	1.1
Ame2012	18590.6	0.8
Аме2016	18592.01	0.07

It should be noted that in AME1983, the definition of the maintained Volt differed from later evaluations, as explained in Section 2. But its impact on the Q-value is just 0.15 eV, much smaller than the quoted uncertainty. Because of its importance, the precise determination of the ³H–³He mass difference will continue to attract interest. The former Seattle trap is now operational at the Max-Plank Institute in Heidelberg and will be dedicated to such measurements in the future [2016Ho.A].

7.2 9 He and 10 He

The knockout reaction on ¹¹Be has been used to produce ⁹He [2001Ch31] and its lowest state has been assigned l = 0. An upper limit of the s-wave scattering length $a_s = -10 \,\mathrm{fm}$ has been obtained, corresponding to an energy for the virtual state below 0.2 MeV. In [2007Go24], the spectrum of ⁹He was studied by means of the ²H(⁸He,p)⁹He reaction. The lowest resonant state of $^9\mathrm{He}$ was found at $2.0\pm0.2\,\mathrm{MeV}$ with a width of $2\,\mathrm{MeV}$ and has been identified as a $1/2^-$ state. For the virtual $1/2^+$ state, a lower limit $a_s > -20$ fm has been obtained, which is consistent with the result in [2001Ch31]. This assignment has been questioned in [2010Jo06], where ⁹He was studied by using knockout reaction from ¹¹Li. The ⁸He+n relative-energy spectrum is dominated by a strong peak-like structure at low energy, which may be interpreted within the effective-range approximation as the result of an s-wave interaction with a neutron scattering length $a_s = -3.17 \pm 0.66$ fm, thus conflicting with [2001Ch31]. It is argued that the s-state might not be the g.s. of ⁹He.

This argument is supported by the structure of 10 He, which should be similar to the structure of 9 He. If a virtual state in 9 He [2001Ch31] really existed, a narrow near-threshold 0^{+} state in 10 He with a [s1/2] 2 structure would exist in addition to the [p1/2] 2 state [59, 60], in contradiction to the available experimental data on 10 He.

Based on these experimental results, we adopt the $1/2^-$ as the ground state of $^9{\rm He}$. In earlier work [1987Se05], [1988Bo20], and [1991Bo.B], transfer reactions were used, yielding values of E_r (res-

onance energy) of this state around 1.1 MeV. More recently, [1999Bo26] and [2010Jo06] determined $E_r \sim 1.3\,\mathrm{MeV}$. In [2007Go24], the $1/2^-$ state of ⁹He was found at $E_r = 2.0 \pm 0.2\,\mathrm{MeV}$ with a width $\sim 2\,\mathrm{MeV}$ in this work, significantly higher than in the other reports. The energy resolution in this experiment was $0.8\,\mathrm{MeV}$ (FWHM), which is quite large compared to the energy difference of $\sim 1.1\,\mathrm{MeV}$ between the $1/2^-$ and $3/2^-$ states [1988Bo20], [1999Bo26], [2010Jo06]. Therefore, we suspect this state to be a mixture due to the poor energy resolution in this experiment.

The case related to ¹⁰He was discussed in AME2012. At that time four experimental results were known concerning the mass of ¹⁰He, and two new results were published since. The six experimental results are:

Reference	$Q_{2n}(\text{in keV})$	Method of production
1994Os04	1070 ± 70	$^{10}\mathrm{Be}(^{14}\mathrm{C},^{14}\mathrm{O})^{10}\mathrm{He}$
$1994 \mathrm{Ko} 16$	1200 ± 300	$C(^{11}Li,^{10}He)$
$2010 \mathrm{Jo}06$	1420 ± 100	$^{1}{ m H}(^{11}{ m Li},^{10}{ m He})$
$2012 \mathrm{Si}{07}$	2100 ± 200	$^{3}{\rm H}(^{8}{\rm He,p})^{10}{\rm He}$
2012Ko 43	1600 ± 250	$C(^{14}Be,^{10}He)$
$2015 \mathrm{Ma}54$	1400 ± 300	$^{11}{ m Li}({ m d}, {}^{3}{ m He}){}^{10}{ m He}$

The mass of ¹⁰He from [1994Os04] is significantly lower than the others, with poor statistic compared to the high background. The values obtained in previous invariant-mass measurements [1994Ko16, 2010Jo06] agree with each other, both using 11Li to produce ¹⁰He. In [2012Si07] the value is higher than the others, while the authors stated that "the results reported in Refs. [1994Ko16] and [2010Jo06] do not contradict the g.s. energy of ¹⁰He obtained in the present work", based on the calculations of Ref. [60]. They argued that due to the strong initial state effect, the observable g.s. peak position in [1994Ko16] and [2010Jo06] is shifted towards lower energy because of the abnormal size of ¹¹Li, which exhibits one of the most extended known neutron halos. Based on the ⁹He spectrum from [2007Go24], the 10 He g.s. with structure $[p1/2]^2$ is predicted to have a $2.0-2.3\,\mathrm{MeV}$ two-neutron separation energy. However, the result of ⁹He from [2007Go24] is not adopted, as discussed earlier. The model has problems in interpreting all of the experimental data, indicating the states may have a more complex structure. In the Ame 2012 evaluation, we adopted the result from [2010Jo06] provisionally and called for more experiments to clarify this case.

Two experimental results were published after AME2012. In [2012Ko43], a group from Msu has studied $^{10}\mathrm{He}$ using the fragmentation of $^{14}\mathrm{Be}$. In [2015Ma54], the missing mass spectrum of $^{10}\mathrm{He}$ was measured at RIKEN using the $^{11}\mathrm{Li}(\mathrm{d},^{3}\mathrm{He})$ reaction at 50A MeV. Their results support the choice in AME2012. The discrepancy with

the result in [2012Si07] could not be explained simply by the exotic structure of ¹¹Li, which was the argument used in [2012Si07], since in the later experiments different reaction channels are explored.

The discrepancy among the results for the mass of ¹⁰He has attracted wide attention. To reconcile this case it has been proposed recently that all the experiments were measuring two overlapping 0⁺ states that were populated with different ratios in different experiments. Thus the lowest state reported up to now was adopted as the ground state in [61]. However, there are too many assumptions in this argument. Four experimental results published up to now are consistent with each other. We use the two most precise ones among them ([2010Jo06] and [2012Ko43]) to determine the mass of ¹⁰He. Meanwhile, we call for more experiments to further clarify this case.

7.3 The mass of ³²Si

In AME2012, we discussed in details the difficulties we met in the determination of the mass of $^{32}\mathrm{Si}$. We then decided not to use the (n,γ) data. No new experimental result relevant to this case appeared since then. In the PTB (Physikalisch-Technische Bundesanstalt) experiment [2001Pa52], the nuclide $^{32}\mathrm{Si}$ is produced by neutron capture on $^{31}\mathrm{Si}$, which is radioactive and it is also produced in neutron capture reaction. It seems reasonable to question whether the measurement of the γ rays from $^{32}\mathrm{Si}$ could involve a substantial background. In the present evaluation, we keep using the Penning trap values, as we did in AME2012.

7.4 The Q-value for 99 Rh $(\beta^+)^{99}$ Ru

The Q-value for $^{99}\text{Rh}(\beta^+)^{99}\text{Ru}$ was adjusted to be 2043(7) and 2044(7) keV in AME2003 and AME2012, respectively. In both evaluations, Q_{β^+} was mainly determined from the two β -decay results in Ref. [1952Sc11] and [1959To25]. A higher Q-value of 2170(30) keVwas reported in the later work [1974An23], but was not used in Ame due to its large uncertainty. However, it was found that the Q-value should be larger than 2059.34 keV because this state was populated in betadecay experiments. In [1959To25], the authors reported that the highest end-point energy of the β^+ spectrum was $1030 \,\mathrm{keV}$ and no γ ray was observed in coincidence. While [1974An23] reported that the highest energy component of the β^+ spectrum was largely connected with the transition to the 89.76 keV level, and the authors suggested that in [1959To25] the β^+ spectrum should also be associated with that γ transition. If we accept this explanation, then the deduced Q_{β^+} would be in strong conflict with the result from [1952Sc11], where the β^+ spectrum was measured from the excited isomer, whose excitation energy has been well established from the γ -ray spectroscopy.

Both 99 Rh and 99 Ru are primary nuclides (cf. Section 5.3) in our evaluation. The mass of 99 Ru is mainly determined by (n,γ) reaction to 100 Ru, which in turn is determined from Penning trap measurement. The uncertainty of the adjusted 99 Rh mass is 6.7 keV. The mass of 99 Rh can also be determined through the Q_{β^+} value of 99 Pd, which in turn is measured with a Penning trap with an uncertainty of 5.4 keV. Consequently, even if we don't use any of the experimental results from the beta-spectrum measurements of 99 Rh, we can still determine the Q-value of 99 Rh(β^+) 99 Ru to be 2032(21) keV. If we increase the Q-value of 99 Rh(β^+) 99 Ru, then strong tension will be built around this region.

Confronting all of the difficulties, in this evaluation we follow the same treatment used in AME2012. Meanwhile, direct mass measurements of ⁹⁹Rh with high accuracy are needed, in order to solve this issue.

7.5 The mass of 100 Sn

The determination of the mass of 100 Sn was the subject of a detailed discussion in AME2003 and again in AME2012. This result is particularly interesting due to the doubly magic character of 100 Sn which is, moreover, the heaviest known nuclide with N=Z. No new results have been reported since then for 100 Sn. We therefore still recommend using the Q_{β^+} value from GSI [2012Hi07], which is also the most precise, for the determination of its mass, and are in demand of more experimental results.

7.6 The ¹⁰²Pd double-electron capture energy

In the AME2012 evaluation, we described the discrepancies we found between data coming from combinations of the very precise (n,γ) reactions with β^+ , β^- and ε decay energies versus direct Penning trap data [2011Go23]. Having found no reason to distrust any of the measurements involved then, and having on one side one result obtained with a very reliable method, on the other side derived from a combination of several quite trustable measurements, we finally decided at that time to provisionally not use the new Penning trap result and called for more measurements in order to clarify this issue.

Recently, we were aware of the experimental results for $^{102}{\rm Pd}$ and $^{103}{\rm Pd}$ from the ESR mass measurements through a private communication [2014Ya.A]. Their results support the Shiptrap datum, although with relatively large uncertainties. We therefore decided to discard two pieces of data: $^{102}{\rm Rh}(\beta^-)^{102}{\rm Pd}$ and $^{103}{\rm Pd}(\varepsilon)^{103}{\rm Rh}$, and to use the Shiptrap result. The local consistency is then restored.

Figure 4. Loops created by three alpha-decay chains interconnected by proton decays and one IT. Each square box represents an individual nuclide. Its mass precision (keV) is given in the lower right corner, its degree in the upper right corner. Along each connection between two nuclides is the type of relation and its precision. 'm' stands for the excited isomer of the nuclide below it.

7.7 The mass of 105 Sb

The matter of the determination of the mass of $^{105}{\rm Sb}$ was discussed at length in AME2012. No new data were published since then. Therefore, the Q_{α} measurement in [2007Ma35] is again provisionally adopted in the present evaluation, and determines the mass of $^{105}{\rm Sb}$. We still appeal for direct proton-decay studies of $^{105}{\rm Sb}$ in order to clarify this case.

7.8 The $^{163}\mathrm{Ta}(\alpha)^{159}\mathrm{Lu}(\alpha)^{155}\mathrm{Tm}$ decay chain

This α -decay chain was discussed in the previous AME2003 and AME2012 publications.

To summarize, by combining all available information, and by discarding only one piece of data, we were able to build up a scenario for the double (ground states and excited isomers) 147 Tb- 179 Tl decay chain. However, most of the adopted values for excitation energies, and also for the 167 Re ground state are still labeled with the '#' flag, due to the estimated excitation energy of 179 Tl^m. Experimental determination of any of the excitation energy in 159 Lu, 163 Ta, 167 Re, 171 Ir, 175 Au, or 179 Tl will allow to access all other ones. Future measurements would be beneficial not only in order to firmly establish these excitation energies, but even more importantly, to provide also useful parent-daughter correlations on α decays that feed the 159 Lu ground state and decays out of the excited isomer.

7.9 The 170 Au(α) and 169 Pt(α) decay chains

It has been previously mentioned that some protonrich nuclides can decay by both α and proton emission. In some cases, a loop of interconnected nuclides can be formed. Two long α -decay chains illustrate this case:

$$^{170} Au \ - \ ^{166} Ir \ - \ ^{162} Re \ - \ ^{158} Ta \ - \ ^{154} Lu \quad and \quad ^{169} Pt \ - \ ^{165} Os \ - \ ^{161} W \ - \ ^{157} Hf \ - \ ^{153} Yb.$$

These two chains are connected by $^{170}\mathrm{Au}(p)^{169}\mathrm{Pt}$ and $^{166}\mathrm{Ir}(p)^{165}\mathrm{Os},$ thus forming a loop as shown in Fig. 4.

However, all the masses shown in Fig. 4 are unknown. If the mass of at least one nuclide is measured in the future, then all of the masses along the above two decay chains will be determined. The specific difficulty here, is that if all of the experimental information is used in the evaluation, then a closed loop would be formed, and all nuclides involved would become primaries. The consequence is that two estimated (non-experimental) data would then automatically become primary data (the ones with the "#" flag in Fig. 5).

To avoid this undesirable side-effect, the $^{170}\mathrm{Au}(\alpha)^{166}\mathrm{Ir}$ value is not used in the mass adjustment, despite its good precision. A local evaluation is carried out in this region, involving all the corresponding nuclides, using least-squares method. The input and adjusted values are listed in Table E, as well as the adjusted values listed in Table I.

Item	Output Ame	Input LSM	Adjusted LSM
$^{-166}$ Ir(p) 165 Os	1152(8)	1152(8)	1154(6)
$^{166}{ m Ir}^m ({ m IT})^{166}{ m Ir}$	171.5(6.1)	171.5(6.1)	172(6)
$^{169}\mathrm{Pt}(\alpha)^{165}\mathrm{Os}$	6857.6(5.1)	6857.6(5.1)	6856(5)
170 Au(p) 169 Pt	1471.7(12.0)	1471.7(12.0)	1470(9)
170 Au m (p) 169 Pt	1751.4(5.1)	1751.4(5.1)	1751(5)
$^{170}\mathrm{Au}(lpha)^{166}\mathrm{Ir}$	7177(15)	7170(12)	7172(9)
$^{170}\mathrm{Au}^m(\alpha)^{166}\mathrm{Ir}^m$	7285(12)	7278.5(9.0)	7280(7)

Table E. Input data and adjusted values from a Least-Squares Method (LSM) adjustment around ¹⁷⁰Au.

7.10 A mass difference between ²⁴⁹Cf and ²⁴¹Am

Recent results from Triga-Trap for ²⁴¹Am, ²⁴³Am, [2014Ei01] 244 Pu $^{249}\mathrm{Cf}$ and $^{249}\mathrm{Cf}$ difference mass between and $\Delta_{TT} = M(^{249}\text{Cf}) - M(^{241}\text{Am}) = 16781.2(2.2) \text{ keV}$. This difference can also be independently obtained from combining the Q_{α} values of ²⁴⁹Cf and ²⁴⁵Cm, with the Q_{β} value of ²⁴¹Am: $\Delta_Q = Q_{\alpha}(^{249}\text{Cf}) + Q_{\alpha}(^{245}\text{Cm}) + Q_{\beta}(^{241}\text{Pu})$ $+ 2 \times M(^{4}\text{He})$, where $M(^{4}\text{He})$ is the mass of ^{4}He atom. Using the recommended Q_{α} values in AME2012, one obtains $\Delta_{2012} = 16789.7(1.2)$ keV, which is 8.5(2.5) keV larger (more than 3σ) than the value deduced from the TRIGA-TRAP data [2014Ei01] alone. It should be pointed out that the Q_{α} (249Cf) and Q_{α} (245Cm) values in AME2012 were heavily weighed by the results of Baranov et al. [1971Bb10], [1975Ba65]. Both ²⁴⁹Cf and ²⁴⁵Cm are odd-mass nuclides and their α spectra are complex, involving a number of strong α lines to excited states in the daughter ²⁴⁵Cm and ²⁴¹Pu nuclides. We note also a number of inconsistencies in the α -decay energies reported in Refs. [1971Bb10] and [1975Ba65]. For example, in the case of the ²⁴⁵Cm α decay we obtain $Q_{\alpha}(^{245}\text{Cm}) =$ 5621.2(0.5) keV from the ground-state to ground-state α -decay energy $E_{\alpha} = 5529.2(0.5) \text{ keV } [1975\text{Ba}65], \text{ while}$ from the favored α -decay energy of $E_{\alpha} = 5362.0(1.2) \text{ keV}$ [1975Ba65] to the excited 175.04 keV level, one gets $Q_{\alpha}(^{245}\text{Cm}) = 5626.2(1.2) \text{ keV}$, differing by as much as $5.0 \,\mathrm{keV}$.

Recently, precise α -decay energy measurements were carried out at ANL for 249 Cf [2015Ah03] and 245 Cm [2016Ko.A] using mass-separated sources that were calibrated using the absolute measured E_{α} values of 244 Cm, 248 Cm and 250 Cf, as recommended by Rytz [1991Ry01]. As a result, the AME2016 adjusted $Q_{\alpha}(^{249}$ Cf)=6293.3(0.5) keV and $Q_{\alpha}(^{245}$ Cm)=5624.5(0.5) keV yield $\Delta_{2016}=16788.4(0.7)$ keV, which is still 7.2(2.3) keV larger than the mass-difference from the TRIGA-TRAP

data [2014Ei01]. Nonetheless, all of the relevant data are used in the mass adjustment in AME2016, while strong tensions have been built in this region, especially for $^{249}\mathrm{Cf}$. Future precise mass measurements in this region are necessary in order to understand the discrepancy observed between Penning Trap and $\alpha\text{-decay}$ spectroscopy data.

7.11 Comparison with the $Q_{\rm EC}$ evaluation of J.C. Hardy and I.S. Towner

Studies of $0^+ \to 0^+$ super-allowed β -decay transitions between isospin analog states can be used to test the validity of the conserved vector current hypothesis that postulates the existence of a universal $\mathcal{F}t$ value for all such decays. This universal value can be used to determine the V_{ud} element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which can in turn be used to test its unitarity.

Figure 5. $Q_{\rm EC}$ difference between the two evaluations. The error bars represent the uncertainties from Ref. [62], while the shaded areas display the uncertainties from AME2016.

The evaluation of super-allowed β -decay properties, such as their transition energies, $Q_{\rm EC}$, and half-lives, $T_{1/2}$, has been carried out since a long time by Hardy and Towner and regularly updated. Recently, experimental data for 20 super-allowed β -decay transitions have been evaluated and published [62]. Their evaluation is independent of AME. Although they aim at different goals and use slightly different criteria of evaluation, both are deemed valid and reliable, as can be seen from the comparison of their results for $Q_{\rm EC}$ and for half-lives.

In the first paper of this volume, we presented a comparison (cf. 41-030001-8) between the $T_{1/2}$ values recommended in Nubase2016 and those given by Hardy and Towner [62]. Below, we report on such a comparison for the $Q_{\rm EC}$ values.

The $Q_{\rm EC}$ values for all ground-state to ground-state transitions are listed in the atomic mass table (Part II, Table I, p. 030003-6 of this issue). The values for transitions involving excited isomeric states are not included in that table, but they can be easily determined with the information provided in Nubase2016 and Ame2016. When calculating the $Q_{\rm EC}$ values from the AME mass tables, the covariances of the mother-daughter mass values must be considered, in order to obtain the correct uncertainties. The importance of the correlation is proven by the examples of the $Q_{\rm EC}$ values of $^{42}{
m Ti}$ and $^{26}{
m Al}$, where the uncertainties of their $Q_{\rm EC}$ are smaller than the individual masses. Figure 5 shows the differences between the $Q_{\rm EC}$ values determined in AME2016 and Ref. [62] for 19 super-allowed β -decay transitions (the one that is missing in the figure is $^{70}\mathrm{Br},$ and it will be discussed below). Most of the $Q_{\rm EC}$ data are consistent and the absolute differences are in most cases below 0.1 keV. In general, the observed differences can be attributed to two main sources, namely the selection of different input data and the implementation of distinct evaluation policies in AME2016 and in Ref. [62].

As mentioned in Section 5.4.4 (Insignificant data, p. 030002-22), data with weights that are a factor of 10 smaller than the other results will not be used in AME and these are labeled with the letter 'U' in the Ame 2016 evaluation. There is no such a threshold defined in the Hardy and Towner's evaluation [62] and, as a consequence, all experimental data are used, unless rejected for other reasons. For example, the discrepancy for ¹⁸Ne is due to the different masses used in the two evaluations for the daughter ¹⁸F nuclide. There are five experimental results concerning this mass, as reported in [1964Bo13], [1964Ho28], [1967Pr04], [1973Se03] and [1975Ro05], with uncertainties of 0.73, 2.2, 2.8, 3.0 and 0.60 keV, respectively. All of them were used in the Hardy and Towner's evaluation, while only the two most precise ones were used in Ame 2016.

The policies for data averaging used in the two evaluations are similar to the one employed by the Particle Data Group [37], where a parameter χ_n is used to check for the consistency of data. If χ_n is larger than a threshold value of χ_n^0 , all uncertainties in this data set will be multiplied with a scale factor, assuming that all experimental errors were underestimated by the same factor. In AME, χ_n^0 is set to be 2.5, as explained in Section 5.4.1 (Pre-averaging, p. 030002-20) while a value of $\chi_n^0=1$ has been adopted by Hardy and Towner [62].

The masses of the long-lived isomer 70m Br and its β -decay daughter 70 Se were measured using Penning-trap spectrometry [2009Sa12]. By adopting the evaluated excitation energy from ENSDF, the $Q_{\rm EC}$ value of 70 Br can be determined. However, this value was found to deviate significantly from the systematic behavior of the $Q_{\rm EC}$ values in the region and it was rejected in Ref. [62]. Furthermore, Hardy and Towner concluded that "It is likely in this case that the trap actually measured an isomeric state in 70 Br rather its ground state." In AME2016, the result of Ref. [2009Sa12] was used following the interpretation in the original paper as in AME2012. Additional experimental data are needed to shed more light on this

Differences in the selection of the input data also contribute to the observed deviations between the $Q_{\rm EC}$ values recommended in the AME2016 and the Hardy and Towner [62] evaluations. For example, some of the experimental results that were used in AME2016 were published after the work of Ref. [62] was completed and therefore they were not included in the latter. One example is the recent result for ¹⁴O from Ref. [2015Va08]. Another one is the case of ³⁰S, where the level energy of the daughter nuclide that was used in Ref. [62] is outdated, while we implemented an updated value from ENSDF that is listed in the Nubase2016 table (p. 030001-27 of this issue).

In AME, all experimental information related to atomic masses are collected. Fig. 6 displays connections related to the $^{42}\mathrm{Ti} \rightarrow ^{42}\mathrm{Sc}$ and $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$ super-allowed transitions. In Ref. [62], only results from Penning-trap mass measurements [2009Ku19] were considered and, as a consequence, the excitation energy of $^{42}\mathrm{Sc}^m$ was determined as 617.12±0.39 keV. In AME2016, we have used the more precise value of 616.28±0.06 keV that was obtained from γ -ray spectroscopy measurements [1989Ki11] and recommended in the latest ENSDF evaluation. Thus, the adoption of different internal transition energies for $^{42}\mathrm{Sc}^m$ can explain the variance in the Q_{EC} values of the $^{42}\mathrm{Ti} \rightarrow ^{42}\mathrm{Sc}$ and $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$ super-allowed β decay transitions in the two evaluations. The same situation occurs in the $^{26}\mathrm{Si} - ^{26}\mathrm{Al}^m - ^{26}\mathrm{Al} - ^{26}\mathrm{Mg}$ connections.

Another peculiar case involves the $^{74}\mathrm{Rb}$ nuclide. In AME2016, one input datum is the Q_{EC} value of $^{74}\mathrm{Rb}$

from [2003Pi08]. However, only the intensities of the decay branches were directly measured in this work. The $Q_{\rm EC}$ value was deduced from the measured half-life, branching ratios and the average $\overline{\mathcal{F}t}$ value obtained from the analysis of other super-allowed transitions. Therefore, the recommended $Q_{\rm EC}$ value is based on the assumption that $\mathcal{F}t$ is universal and constant for all super-allowed β decays. This result was used in AME since AME2003 and the original values reported in Ref. [2003Pi08] would be recalculated when new experimental results for the input data were available. We believe, however, that while the deduced $Q_{\rm EC}$ value in this way is valuable for mass determination, it should not be considered in Ref. [62], where the primary aim is to recommend a single $\overline{\mathcal{F}t}$ value.

Figure 6. Schematic diagram of connections involving two super-allowed transitions $^{42}{\rm Ti} \rightarrow ^{42}{\rm Sc}$ and $^{42}{\rm Sc} \rightarrow ^{42}{\rm Ca}$. The double-headed arrows represent connections from Penning-Trap mass measurements while the single-headed arrow for the γ transition measurement.

8 General information and acknowledgments

The full content of the present issue is accessible on-line at the AMDC website [22]. In addition, several graphs representing the mass surface, beyond the main ones given in Part II, are available on the AMDC website.

Tables of masses (Part II, Table I) and nuclear reaction and separation energies (Part II, Table III) are available in AscII format to simplify their input to computer programs by the end users. The headers of these files give information on the formats. The first file, named **mass.mas16**, contains the table of masses. The next two files correspond to the table of reaction and separation energies, in two parts of 6 entries each, as in Part II, Table III: **rct1.mas16** for S_{2n} , S_{2p} , Q_{α} , $Q_{2\beta}$, $Q_{\varepsilon p}$ and $Q_{\beta n}$ (odd pages in this issue); and **rct2.mas16** for S_n , S_p , $Q_{4\beta}$, $Q_{d,\alpha}$, $Q_{p,\alpha}$ and $Q_{n,\alpha}$ (facing even pages). As explained in Section 4.2, p. 030002-15, since Ame1995, we no longer produce special tables.

We wish to thank our many colleagues who provided answers to our questions regarding specific experimental data, as well as those who sent us preprints of their work prior to publication. Continuing interest, discussions, suggestions and encouragements from D. Lunney, A. Lopez-Martens, Yuhu Zhang and Furong Xu are highly appreciated.

This work is supported in part by the National Key Program for S&T Research and Development (Contract No. 2016YFA0400504) and the Major State Basic Research Development Program of China (Contract No. 2013CB834401). The work at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. W.J. Huang acknowledges the support from the China Scholarship Council, grant No. 201404910496. S. Naimi acknowledges the support of "RIKEN Pioneering Project Funding" from the Riken project. X. Xu acknowledges the support of "Light of West China Program" of the Chinese Academy of Sciences.

Appendix A The meaning of decay energies

Conventionally, the α -decay energy, Q_{α} , is defined as the difference in the atomic masses of the mother and daughter nuclides:

$$Q_{\alpha} = M_{\text{mother}} - M_{\text{daughter}} - M_{^{4}\text{He}}. \tag{10}$$

This value equals the sum of the observed energy of the α particle and that of the recoiling nuclide (with only a minor correction for the fact that the cortège of atomic electrons in the latter may be in an excited state). Unfortunately, some authors in the literature quote Q_{α} as a value 'corrected for screening', which essentially means that they take for the values M in the above equation the masses of bare nuclides.

A similar bad habit has been observed for some published proton-decay energies. We very strongly object to this custom; at the very least, the symbol Q should not be used for the difference in nuclear masses.

High precision α -decay energies

The most precise α -decay energies are those measured absolutely using magnetic spectrographs, as summarized in Ref. [1991Ry01] and references therein. All α -energy standards are determined using this method. The relation between the α -particle energy E_{α} and the decay energy, Q_{α} is:

$$Q_{\alpha} = (M - m_{\alpha}) - \sqrt{(M - m_{\alpha})^2 - 2 \times M \times E_{\alpha}} + 78.6 \text{ eV}.$$

where M is the mass of the parent nuclide, m_{α} is the mass of the doubly ionized α particle and 78.6 eV is the bind-

ing energy energy of two electrons in helium. This formula had been discussed in AME1977 and has been used since then. Unfortunately, the electron binding energy of helium was not taken into account up to now in AME, which caused a significant deviation for the most precise α -energy values that have uncertainty of tens of eV. This error is corrected in the present mass table.

Appendix B Mixtures of isomers or of isobars in mass spectrometry

In cases where two or more unresolved lines may combine into a single one in an observed spectrum, while one cannot decide which ones are present and in which proportion, a special procedure has to be used.

The first goal is to determine what is the most probable value M_{exp} that will be observed in the measurement, and what is the uncertainty σ of this prediction. We assume that all the lines may contribute and that all contributions have equal probabilities. The measured mass reflects the mixing. We call M_0 the mass of the lowest line, and M_1, M_2, M_3, \ldots the masses of the other lines. For a given composition of the mixture, the resulting mass m is given by

$$m = (1 - \sum_{i=1}^{n} x_i) M_0 + \sum_{i=1}^{n} x_i M_i, \quad \text{with } \begin{cases} 0 \le x_i \le 1 \\ \sum_{i=1}^{n} x_i \le 1 \end{cases}$$
(12)

in which the relative unknown contributions x_1, x_2, x_3, \dots have each a uniform distribution of probability within the allowed range.

If P(m) is the normalized probability of measuring the value m, then :

$$\overline{M} = \int P(m) m \, dm \tag{13}$$

and
$$\sigma^2 = \int P(m) (m - \overline{M})^2 dm$$
. (14)

It is thus assumed that the experimentally measured mass will be $M_{exp}=\overline{M}$, and that σ , which reflects the uncertainty on the composition of the mixture, will have to be quadratically added to the experimental uncertainties.

The difficult point is to derive the function P(m).

B.1 Case of 2 spectral lines

In the case of two lines, one simply gets

$$m = (1 - x_1)M_0 + x_1M_1$$
 with $0 \le x_1 \le 1$. (15)

The relation between m and x_1 is biunivocal so that

$$P(m) = \begin{cases} 1/(M_1 - M_0) & \text{if } M_0 \le m \le M_1, \\ 0 & \text{elsewhere} \end{cases}$$
 (16)

i.e. a rectangular distribution (see Fig. 7a), and one obtains:

$$M_{exp} = \frac{1}{2}(M_0 + M_1),$$
 (17)
 $\sigma = \frac{\sqrt{3}}{6}(M_1 - M_0) = 0.290 (M_1 - M_0).$

Figure 7. Examples of probabilities to measure m according to an exact calculation in cases of the mixture of two (a) and three (b) spectral lines.

Figure 8. Graphic representation of relations 18 and 19. The length of the segments (full thick lines) inside the triangle are proportional to the probability P(m). Three cases are shown corresponding respectively to $m < M_1$, $m = M_1$, and to $m > M_1$. The maximum of probability is obtained when $m = M_1$.

B.2 Case of 3 spectral lines

In the case of three spectral lines, we derive from Eq. 12:

$$m = (1 - x_1 - x_2)M_0 + x_1M_1 + x_2M_2, (18)$$

with
$$\begin{cases} 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \\ 0 \le x_1 + x_2 \le 1. \end{cases}$$
 (19)

The relations (18) and (19) may be represented on a x_2 vs x_1 plot (Fig. 8). The conditions (19) define a triangular authorized domain in which the density of probability is uniform. The relation (18) is represented by a straight line. The part of this line contained inside the triangle defines a segment which represents the values of x_1 and x_2 satisfying all relations (19). Since the density of probability is constant along this segment, the probability P(m) is proportional to its length. After normalization, one gets (Fig. 7b):

$$P(m) = \frac{2k}{M_2 - M_0} \,, \tag{20}$$

with
$$\begin{cases} k = (m - M_0)/(M_1 - M_0) & \text{if } M_0 \le m \le M_1 \\ k = (M_2 - m)/(M_2 - M_1) & \text{if } M_1 \le m \le M_2 \end{cases}$$
(21)

and finally:

$$M_{exp} = \frac{1}{3}(M_0 + M_1 + M_2) \tag{22}$$

$$\sigma = \frac{\sqrt{2}}{6} \sqrt{M_0^2 + M_1^2 + M_2^2 - M_0 M_1 - M_1 M_2 - M_2 M_0}.$$

B.3 Case of more than 3 spectral lines

For more than 3 lines, one may easily infer $M_{exp} = \sum_{i=0}^{n} M_i/(n+1)$, but the determination of σ requires the knowledge of P(m). As the exact calculation of P(m) becomes rather difficult, it is more simple to do simulations.

However, care must be taken that the values of the x_i 's are explored with an exact equality of chance to occur. For each set of x_i 's, m is calculated, and the histogram $N_j(m_j)$ of its distribution is built (Fig. 9). Calling nbin the number of bins of the histogram, one gets:

$$P(m_j) = \frac{N_j}{\sum_{i=1}^{nbin} N_j},$$
 (23)

and

$$M_{exp} = \sum_{j=1}^{nbin} P(m_j) m_j,$$

$$\sigma^2 = \sum_{j=1}^{nbin} P(m_j) (m_j - M_{exp})^2.$$

Figure 9. Examples of Monte-Carlo simulations of the probabilities to measure m in cases of two (a), three (b) and four (c) spectral lines.

A first possibility is to explore the x_i 's step-by-step: x_1 varies from 0 to 1, and for each x_1 value, x_2 varies from 0 to $(1-x_1)$, and for each x_2 value, x_3 varies from 0 to $(1-x_1-x_2)$, ... using the same step value for all.

A second possibility is to choose x_1, x_2, x_3, \ldots randomly in the range [0,1] in an independent way, and to keep only the sets of values which satisfy the relation $\sum_{i=1}^n x_i \leq 1$. An example of a Fortran program

based on the CERN library is given below for the cases of two, three and four lines. The results are presented in Fig. 9.

Both methods give results in excellent agreement with each other, and as well with the exact calculation in the cases of two lines (see Fig. 7a and 9a) and three lines (see Fig. 7b and 9b).

The Fortran program used to produce the histograms in Fig. 9.

```
common/pawc/hmemor(nwpawc)
      parameter (ndim=500000)
      dimension xm(3,ndim)
      data e0,e1,e31,e41,e42/100.,1100.,400.,200.,400./
      call hlimit(nwpawc)
c histograms 2, 3, 4 levels
      call hbook1(200,'',120,0.,1200.,0.)
      call hbook1(300,'',120,0.,1200.,0.)
      call hbook1(400,'',120,0.,1200.,0.)
      call hmaxim(200,6500.)
      call hmaxim(300,6500.)
      call hmaxim(400,2500.)
      w=1.
c random numbers [0,1]
     ntot=3*ndim
      iseq=1
      call ranecq(iseed1,iseed2,iseq,' ')
      call ranecu(xm, ntot, iseq)
      do i=1,ndim
c 2 levels :
         t=1-xm(1,i)
         e = t*e0 + xm(1,i)*e1
         call hfill(200,e,0.,w)
c 3 levels :
         if ((xm(1,i)+xm(2,i)).le.1.) then
           t=1.-xm(1,i)-xm(2,i)
           e = t*e0 + xm(1,i)*e31 + xm(2,i)*e1
           call hfill(300,e,0.,w)
         end if
c 4 levels
         if ((xm(1,i)+xm(2,i)+xm(3,i)).le.1.) then
           t=1.-xm(1,i)-xm(2,i)-xm(3,i)
           e = t*e0 + xm(1,i)*e41 + xm(2,i)*e42 + xm(3,i)*e1
           call hfill(400,e,0.,w)
         end if
      end do
      call hrput(0, 'isomers.histo', 'N')
```

B.4 Example of application for one, two or three excited isomers

We consider the case of a mixture implying isomeric states. We want to determine the ground state mass $M_0 \pm \sigma_0$ from the measured mass $M_{exp} \pm \sigma_{exp}$ and the knowledge of the excitation energies $E_1 \pm \sigma_1$, $E_2 \pm \sigma_2$, ...

With the above notation, we have

$$M_1 = M_0 + E_1,$$

 $M_2 = M_0 + E_2, \dots$

For a single excited isomer, Eq. 17 can be written:

$$M_0 = M_{exp} - \frac{1}{2}E_1$$
,

$$\sigma^2 = \frac{1}{12}E_1^2$$
 or $\sigma = 0.29 E_1$,

$$\sigma_0^2 \ = \ \sigma_{exp}^2 + (\frac{1}{2}\sigma_1)^2 + \sigma^2 \, .$$

For two excited isomers, Equ. (22) lead to:

$$\begin{split} M_0 &= M_{exp} - \frac{1}{3}(E_1 + E_2) \,, \\ \sigma^2 &= \frac{1}{18}(E_1^2 + E_2^2 - E_1 E_2) \\ &\quad \text{or} \quad \sigma = 0.236 \, \sqrt{E_1^2 + E_2^2 - E_1 E_2} \,, \\ \sigma_0^2 &= \sigma_{exp}^2 + (\frac{1}{3}\sigma_1)^2 + (\frac{1}{3}\sigma_2)^2 + \sigma^2 \,. \end{split}$$

If the levels are regularly spaced, i.e. $E_2 = 2E_1$,

$$\sigma = \frac{\sqrt{6}}{12} E_2 = 0.204 E_2 \,,$$

while for a value of E_1 very near 0 or E_2 ,

$$\sigma = \frac{\sqrt{2}}{6} E_2 = 0.236 E_2$$
.

For three excited isomers , the example shown in Fig. 9c leads to:

$$\begin{array}{lcl} M_0 & = & M_{exp} - \frac{1}{4}(E_1 + E_2 + E_3) = 450 \,, \\ \\ \sigma & = & 175 \,, \\ \\ \sigma_0^2 & = & \sigma_{exp}^2 + (\frac{1}{4}\sigma_1)^2 + (\frac{1}{4}\sigma_2)^2 + (\frac{1}{4}\sigma_3)^2 + \sigma^2 \,. \end{array}$$

Appendix C Converting frequency ratios to linear equations

In the following, quantities with the subscript r describe the characteristics of the reference ion in the Penning Trap. Equivalent quantities, with no subscript, describe characteristics of the ion being measured.

In Ref. [2], linear equations deduced from frequency ratios are only valid for atoms. When molecules are involved, an extra term about the molecular binding energy should be included. In this case, Eq. 21 in Ref. [2] should be rewritten as:

$$R = \frac{f_r}{f} = \frac{\mathcal{M} - D - m_e \ q + B}{\mathcal{M}_r - D_r - m_e \ q_r + B_r} \frac{q_r}{q}, \qquad (24)$$

where q is the charged state of the given ion, D is the molecular binding energy (dissociation energy), B is the electron binding energy, m_e is the mass of the electron and \mathcal{M} the total atomic mass. All masses and energies are in atomic mass units (u) and so, u=1. This expression can be written in terms of the mass excess M and atomic mass number A:

$$A + M - D - m_e q + B = R \frac{q}{q_r} (A_r + M_r - D_r - m_e q_r + B_r) \ \ (25)$$

or, alternatively:

$$\begin{split} M-R\frac{q}{q_r}M_r &= m_eq(1-R) &+ A_r(\frac{q}{q_r}R-\frac{A}{A_r}) \\ &+ R\frac{q}{q_r}(B_r-Dr)-(B-D)\,. \end{split}$$

The general aim is to establish some quantity y and its associated precision dy. We define C to be a truncated, three-digit decimal approximation of the ratio A to A_r , and then we can write:

$$y = M - C M_r \tag{26}$$

and so

$$y = y_1 + y_2 + y_3 + y_4, (27)$$

where

$$y_1 = M_r \left(R \frac{q}{q_r} - C \right), \tag{28}$$

$$y_2 = m_e \ q(1-R),$$
 (29)

$$y_3 = A_r \left(\frac{q}{q_r} R - \frac{A}{A_r} \right), \tag{30}$$

and

$$y_4 = R \frac{q}{q_r} (B_r - D_r) - (B - D). \tag{31}$$

To fix relative orders of magnitude, M_r is generally smaller than 0.1 u, R-C is a few 10^{-4} , (1-R) is usually smaller than unity (and typically 0.2 for a 20% mass change), $R-\frac{A}{A_r}$ varies from 1 to 100×10^{-6} , (B_r-D_r) is generally smaller than 0.1 μ u, and A_r is typically 100 u for atomic mass A=100. The four terms y_1, y_2, y_3 , and y_4 take values of the order of 10 μ u, 100 μ u, 10 to 10000 μ u, and 0.1 μ u, respectively.

The associated precision dy is written:

$$dy = dy_1 + dy_2 + dy_3 + dy_4, (32)$$

where

$$dy_1 = \frac{q}{q_r} M_r dR + \left(R \frac{q}{q_r} - C \right) dM_r \simeq dR \times 10^5 \ \mu \text{u},$$
(33)

$$dy_2 = m_e q dR \simeq dR \times 10^3 \mu u, \qquad (34)$$

$$dy_3 = \frac{q}{q_r} A_r dR \simeq dR \times 10^8 \mu u,$$
 (35)

and

$$dy_4 = \frac{q}{q_r} (B_r - D_r) dR + R \frac{q}{q_r} (dB_r - dD_r) - (dB - dD) \simeq dR \times 10^{-1} \ \mu \text{u}.$$
 (36)

Consequently, only the 3rd term contributes significantly to the precision of the measurement, and so we write: $dy = dy_3$

If the two frequencies are measured with a typical precision of 10^{-7} for ions at A = 100, then the precision on the frequency ratio R is 1.4×10^{-7} and the precision on the mass is approximatively 14 μ u.

Next we will illustrate how to calculate the molecular binding energy for the most precise Penning Trap experiment.

C.1 Bond Dissociation Energy

The bond dissociation energy D is a quantity which signifies the strength of a chemical bond. The bond dissociation energy for a bond A–B, which is broken through reaction:

$$AB \rightarrow A + B$$

is defined as the standard enthalpy change at a specified temperature Ref. [63]:

$$D^{o}(AB) = \Delta H f_{0}^{o}(A) + \Delta H f_{0}^{o}(B) - \Delta H f_{0}^{o}(AB),$$
 (37)

where $\Delta H f_0^o$ is the standard heat of formation and its value is available for a large number of atoms and compounds on NIST Chemistry Webbook [64]. All D^o values refer to the gaseous state at temperature either 0 K or 298 K. When data on the standard heat of formation is absent at 0 K, $D^o(AB)$ will be converted to $D^o_{298}(AB)$ by the approximation:

$$D_{298}^{o}(AB) \approx D^{o}(AB) + 3.72 \text{ kJ/mol.}$$
 (38)

Unlike diatomic molecules which involve only one bond, polyatomic molecules have several bonds and their *D*'s are the sum of all the single bonds. For example, if one wants to know the dissociation energy of CH₄, one needs to calculate the dissociation energy of the four bonds CH3–H, CH2–H, CH–H, and C–H, respectively:

$$\begin{split} D^{o}(\mathrm{CH_{3}-H}) &= \Delta H f_{0}^{o}(\mathrm{CH_{3}}) + \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{CH_{4}})\,, \\ D^{o}(\mathrm{CH_{2}-H}) &= \Delta H f_{0}^{o}(\mathrm{CH_{2}}) + \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{CH_{3}})\,, \\ D^{o}(\mathrm{CH-H}) &= \Delta H f_{0}^{o}(\mathrm{CH}) + \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{CH_{2}})\,, \\ D^{o}(\mathrm{C-H}) &= \Delta H f_{0}^{o}(\mathrm{C}) + \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{CH})\,. \end{split} \tag{39}$$

Summing over all four bonds above, we can obtain:

$$\begin{split} D^{o}(\mathrm{CH_{4}}) &= D(\mathrm{CH_{3}} - \mathrm{H}) + D(\mathrm{CH_{2}} - \mathrm{H}) \\ &+ D(\mathrm{CH} - \mathrm{H}) + D(\mathrm{C} - \mathrm{H}) \\ &= \Delta H f_{0}^{o}(\mathrm{C}) + 4 \times \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{CH_{4}}) \,. \end{split}$$

The dissociation energy can be generalized for a polyatomic molecule which has the form $A_nB_kC_i$:

$$D^{o}(\mathbf{A}_{n}\mathbf{B}_{k}\mathbf{C}_{i}) = n\Delta H f_{0}^{o}(\mathbf{A}) + k\Delta H f_{0}^{o}(\mathbf{B}) + i\Delta H f_{0}^{o}(\mathbf{C})$$
$$-\Delta H f_{0}^{o}(\mathbf{A}_{n}\mathbf{B}_{k}\mathbf{C}_{i}). \tag{40}$$

The ionization energies for molecules are available on NIST Atomic Spectra Database [65]. We now illustrate this treatment through two examples.

C.1.1 $^{13}C_2H_2^+$ and $^{14}N_2^+$ mass doublet

In the work of [2004Ra33], a cyclotron frequency ratio R = 0.999421460888(7) of relative precision 7×10^{-12} has been obtained for ions $^{13}\mathrm{C}_2\mathrm{H}_2^+$ and $^{14}\mathrm{N}_2^+$. We first calculate $D^o(\mathrm{C}_2\mathrm{H}_2)$ by applying Eq. 40:

$$\begin{split} D^{o}(\mathrm{C}_{2}\mathrm{H}_{2}) &= 2 \times \Delta H f_{0}^{o}(\mathrm{C}) + 2 \times \Delta H f_{0}^{o}(\mathrm{H}) - \Delta H f_{0}^{o}(\mathrm{C}_{2}\mathrm{H}_{2}) & \text{spo} \\ &= 2 \times 716.68 + 2 \times 218.998 - 227.40 & \text{site} \\ &= 1641.956 \text{ kJ/mol} \\ &= 17.018 \text{ eV} \,. & 030002-444 \end{split}$$

 $D^{o}(N_{2}) = 944.9 \text{ kJ/mol} = 9.793 \text{ eV}$ is obtained from Ref. [66], since $\Delta H f_{0}^{o}(N_{2})$ is not on the list of [64]. Combining the ionization energy $B(C_{2}H_{2}) = 11.4 \text{ eV}$ and $B(N_{2}) = 15.6 \text{ eV}$, we obtain the mass difference:

$$^{13}\mathrm{C} + \mathrm{H} - ^{14}\mathrm{N} = 8105.862995(98)~\mu\mathrm{u}$$
.

In the original paper [2004Ra33], this equation is given as:

$$^{13}\text{C} + \text{H} - ^{14}\text{N} = 8105.86288(10) \ \mu\text{u}$$

which differs by 12(10) nu from our calculation. The difference is because we used the updated molecular binding energy from Ref. [64, 66]. In this case, the molecular binding energy is 170 times larger than the uncertainty, and even the updates of the molecular energies have significant impact on the deduced values.

C.1.2 Atomic Masses of Tritium and Helium-3

By measuring the cyclotron frequency ratios of ${}^{3}\mathrm{He^{+}}$ and $\mathrm{T^{+}}$ to $\mathrm{HD^{+}}$, using $\mathrm{HD^{+}}$ as a mass reference, atomic masses for ${}^{3}\mathrm{He}$ and T were obtained Ref. [2015My03]. The essential part here is to calculate the molecule binding energy $D^{o}(\mathrm{HD})$. Instead of applying Eq. 37 to calculate the molecule binding energy of HD, we used the most recent datum $D^{o}(\mathrm{HD}) = 36406.78366~\mathrm{cm^{-1}} = 4.5137~\mathrm{eV}$ from [67].

Combining the ionization energies of $B(\mathrm{HD})=15.4445$ eV, $B(^{3}\mathrm{He})=24.5874\,\mathrm{eV}$ and $B(\mathrm{T})=13.5984\,\mathrm{eV}$, the mass differences and their uncertainties can be derived:

3
He – H – D = $-5897.487710(144) \mu u$

and

$$T-H-D=-5877.528366(144) \mu u$$
.

The correction of the molecule binding energy $D^o(\mathrm{HD}) = 4.5\,\mathrm{eV}$ is 30 times larger than the $\sim 0.14\,\mathrm{eV}$ uncertainty. We have created a file called "ionization", which includes all the information that is needed to calculate the linear equation.

C.2 Program for frequency conversion

Primary data from Penning Trap measurement are typically given in the form of an experimental frequency ratio. An example is given here for a series of nuclides with respect to a various reference nuclides and various charge states. Below is the Fortran frequency conversion program, followed by sample input files and the corresponding output file, all available on the AMDC website [22].

The frequency conversion program

```
PTrap17j
                                           G.Audi WJ.Huang
                                                                v 27 jan 2017
С
  Conversion of Frequency Ratios to Linear Equations
С
  including electron and molecular binding energies
      real*8 xzero,mel,mref,smref,mrefk,rap,srap,coef
      \verb|real*8| prov, \verb|membre|, \verb|sigmem|, \verb|m118|, \verb|sm118|, \verb|meb|, eref|, e118|, \verb|y4||
      integer*4 q118,qref,znum,val,nbion,i,qel
      character txref*4,tx118*4,rev*2,ael*4
      character txiref*4,txi118*4
      character*30 filea,fileb,filec
      {\tt dimension\ znum(450),ael(450),qel(450),meb(450)}
С
         mel : electron mass in micro-u
С
С
         mref,smref,m118,sm118: Masses and uncert. for reference (ref) and mesured (118)
      filea='ptkl.equat
                                                                 ! output file
      fileb='ptkl.freq
                                                                 ! input file
      filec='ionization.data
                                                                 ! electron+mol. file
      open(unit=1,file=filea,form='formatted',status='new')
      open(unit=3,file=fileb,form='formatted',status='old')
      open(unit=10,file=filec,form='formatted',status='old')
      mel = 548.57990907d0
                                                                 ! mass of electron in micro-u
      xzero = 9.314940038d-1
                                                                 ! conversion factor micro-u to keV
      do i=1.450
                                                                 ! read electron+mol. file
       read(10,*,iostat=val) znum(i),ael(i),qel(i),meb(i)
        meb(i) = (meb(i)*1.d-3)/xzero
                                                                 ! in micro-u
        if(val.lt.0) then
         nbion = i - 1
                                                                 ! nbion: number of lines in elec+mol file
          exit
        end if
      end do
      close(10)
   12 read(3,1001,err=99) iaref,txref,qref,mref,rev,smref
                                                                 ! read ref.name, mass(micro-u) and charge
 1001 format(i4,a4,i4,f19.8,a2,f13.8)
      mrefk = mref * xzero
                                                                 ! ref. mass in keV
   15 read(3,1001,end=90,err=99) ia118,tx118,q118,rap,rev,srap ! read frequency ratio
      if(tx118.eq.'NEW ') go to 12
                                                                 ! reset reference
      if(rev.eq.' ') then
                                                                 ! if reversed freq. ratio: rev=-1
       rap = rap / 1.d+6
        srap = srap / 1.d+6
      else
       rap = 1.d+6 / rap
        srap = rap*rap * srap/1.d+6
      endif
      coef = 1000.*ia118/iaref
                                                                 ! calculate 3-digit coefficient
      coef = anint(coef) / 1000.
С
      prov = (ia118*1.d+0)/iaref - rap*q118/qref
                                                                 ! start calculating the equation value
      membre = mref*(rap*q118/qref-coef) + mel*q118*(1-rap)
              - iaref*1.d+6*prov
                                                                 ! value (in micro-u) for the equation
      sigmem = srap * iaref * 1.d+6 * q118/qref
                                                                 ! its uncertainty
        Correct for electron and molecular binding energies
С
С
      eref = 0.
      e118 = 0.
      do i=1,nbion
                                                                 ! loop over the nbion lines in elec+mol file
         txiref=txref
         if(txiref(3:3).eq.'m'.or.\ txiref(3:3).eq.'n'.or.\ txiref(3:3).eq.'x')\ then
           txiref(3:4)=txiref(4:4)//', ',
                                                                 ! isomers m n or x : treated as gs
           if(txiref(2:2).eq.'x') txiref(2:3)=txiref(3:3)//'
         endif
```

```
txi118=tx118
         if(txi118(3:3).eq.'m' .or. txi118(3:3).eq.'n' .or. txi118(3:3).eq.'x') then
           txi118(3:4)=txi118(4:4)//', '
           if(txi118(2:2).eq.'x') txi118(2:3)=txi118(3:3)//' '
         endif
         if(trim(txiref)==trim(ael(i)).and.qref==qel(i)) eref = meb(i)
         if(trim(txi118) == trim(ael(i)).and.q118 == qel(i)) e118 = meb(i)
      end do
      if(eref.ne.0. .and. e118.ne.0.) then
                                                                ! calculate electronic and molecular correction
       y4 = eref*rap*q118/qref - e118
       y4 = 0.
       write (1,*) "WARNING : el.+mol. binding en. not found"
     membre = membre + y4
     write (1,1020) ia118,tx118,iaref,txref,coef,membre,sigmem
1020 format(5x,i6,a4,'-',i4,a4,'*',f6.3,' =', f15.5,' (',f9.5,')')
     m118 = membre + coef*mref
     sm118 = sqrt(sigmem**2 + (coef*smref)**2)
     write (1,1030) ia118,tx118,m118,sm118
1030 format(13x,i4,a4,' =',f15.6,' +/-',f11.6,' micro-u')
     m118 = m118 * xzero
     sm118 = sm118 * xzero
     write (1,1032) m118,sm118
1032 format(13x,8x,' =',f15.6,' +/-',f11.6,' keV',/)
     go to 15
  90 write (1,1990)
1990 format(1HO,'Normal End of Freq.Ratios to Equations Conversion')
  99 write(1,1999)
1999 format(1H0,'Error in File Reading')
     end
A typical frequency ratio input file
  6Li
                 15122.885
                               .. 0.029
          +1
                                                1st line : reference nuclide (in micro-u)
  4He
         +1
                665392.8420
                                    0.0077
                                                following lines : frequency ratios
  7Li
         +1
               1166409.2053
                                    0.0131
                                                NEW: new set with new ref. follows
               1333749.8620
                                    0.0180
  81.i
         +1
   NEW
                                                column 1 : nuclidic name
                16003.42560
                                    0.00455
  7Li
          +1
                                                column 2 : ionic charge
                700635.628
                               -1 0.009
                                                column 3 : mass excess for ref. (micro-u)
 10Be
         +1
                636546.859
 11Be
          +1
                               -1 0.036
                                                       or frequency ratio *10^6
   NEW
                                                column 5 : -1 for inverse ratio
                               . .
 39K
          +4
                -36293.410
                                    0.085
                                                column 4 : uncertainty
 44K
          +4
                886306.8169
                               -1
                                    0.0444
   NEW
 85Rb
          +9
                -88210.26200
                                    0.00535
                               . .
 74Rb
          +8
                979689.6094
                                    0.0858
              1006067.4141
                                    0.0223
 76Rb
         +8
   NEW
 85Rb
         +13
                -88210.26200
                                    0.00535
 99Sr
         +15
               1009776.3077
                                    0.0451
   NEW
  3HD
                21926.81033
                                    0.00015
          +1
  ЗНе
         +1
                998048.085153
                                    0.000048
                998054.687288
                                    0.000048
  ЗН
          +1
```

The ionization input file

+1

13.598434005136

Н

```
1
    HD
         +1
              10.9305
    Не
         +1
             24.587387936
              5.391714761
3
    Li
         +1
4
    Ве
         +1
               9.322699
         +4 142.6857635
19
    K
37
    Rb
         +8 505.689068
37
    Rb
         +9
             656.319068
37
         +13 2002.533668
    Rb
38
    Sr
         +15 2882.468673
```

Corresponding output file

```
4He - 6Li * 0.667 = -7483.71665 ( 0.04620)
         4He = 2603.247650 +/- 0.050086 micro-u
= 2424.909576 +/- 0.046655 keV
7Li - 6Li * 1.167 = -1644.99050 ( 0.07860)

7Li = 16003.416291 +/- 0.085576 micro-u

= 14907.086316 +/- 0.079714 keV
 8Li - 6Li * 1.333 =
                                      2327.42554 ( 0.10800)
         8Li = 22486.231245 +/- 0.114710 micro-u
= 20945.789572 +/- 0.106852 keV
      - 7Li * 1.429 = -9334.15799 ( 0.12834)

10Be = 13534.737197 +/- 0.128503 micro-u

= 12607.526542 +/- 0.119700 keV
10Be
11Be - 7Li * 1.571 = -3479.82956 ( 0.62193)
        11Be = 21661.552062 +/- 0.621969 micro-u
= 20177.605859 +/- 0.579360 keV
       - 39K * 1.128 = 2529.22538 ( 2.20434)
44K = -38409.741096 +/- 2.206428 micro-u
= -35778.443518 +/- 2.055275 keV
44K
74Rb - 85Rb * 0.871 =
                                      21096.45221 ( 6.48267)
        74Rb = -55734.685988 +/- 6.482668 micro-u
= -51916.525801 +/- 6.038567 keV
76Rb - 85Rb * 0.894 =
                                   13930.97003 ( 1.68489)
        76Rb = -64929.004193 +/- 1.684896 micro-u
= -60480.978079 +/- 1.569470 keV
99Sr - 85Rb * 1.165 =
                                      35661.05986 ( 4.42327)
        99Sr = -67103.895368 +/- 4.423274 micro-u
= -62506.876167 +/- 4.120253 keV
      - 3HD * 1.000 =
                                     -5897.48771 ( 0.00014)
         3He = 16029.322619 +/- 0.000208 micro-u
= 14931.217905 +/- 0.000194 keV
      - 3HD * 1.000 = -5877.52837 ( 0.00014)
         3H = 16049.281964 +/- 0.000208 micro-u
= 14949.809914 +/- 0.000194 keV
```

ONormal End of Freq.Ratios to Equations Conversion

References

References in the text such as [2014Ya.A] or [2016Xu10] are listed under "References used in the AME2016 and the NUBASE2016 evaluations", p. 030003-261.

- 1 G. Audi, Int. J. Mass Spectr. 251: 85 (2006) http://dx.doi.org/10.1016/j.ijms.2006.01.048
- 2 G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu and B. Pfeiffer, Chin. Phys. C, 36: 1287 (2012)
- 3 M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu and B. Pfeiffer Chin. Phys. C, 36: 1603 (2012)
- 4 B. Pritychenko, E. Běták, M.A. Kellett, B. Singh and J. Totans, Nucl. Instrum. Methods Phys. Res. A, 640: 213 (2011)
 - http://www.nndc.bnl.gov/nsr/
- 5 G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Nucl. Phys. A, 624: 1 (1997) http://amdc.impcas.ac.cn/nubase/nubase97.pdf
- 6 A.H. Wapstra and K. Bos, At. Data Nucl. Data Tables, 20: 1 (1977)
- 7 P.J. Mohr, D.B. Newell and B.N. Taylor, Rev. Mod. Phys. 88: 035009 (2016)
- 8 T.P. Kohman, J.H.E. Mattauch and A.H. Wapstra, J. de Chimie Physique **55**: 393 (1958)
- 9 John Dalton, 1766-1844, who first speculated that elements combine in proportions following simple laws, and was the first to create a table of (very approximate) atomic weights.
- 10 E.R. Cohen and A.H. Wapstra, Nucl. Instrum. Methods 211: 153 (1983)
- E.R. Cohen and B.N. Taylor, CODATA Bull. 63: (1986)
 Rev. Mod. Phys. 59: 1121 (1987)
- T.J. Quinn, Metrologia 26: 69 (1989)
 B.N. Taylor and T.J. Witt, Metrologia 26: 47 (1989)
- 13 P.J. Mohr and B.N. Taylor, J. Phys. Chem. Ref. Data 28: 1713 (1999)
- 14 A. Rytz, At. Data Nucl. Data Tables **47**: 205 (1991)
- A.H. Wapstra, Nucl. Instrum. Methods A, 292: 671 (1990)
- 16 http://amdc.impcas.ac.cn/masstables/Ame2003/recalib
- 17 R.G. Helmer and C. van der Leun, Nucl. Instrum. Methods 422: 525 (1999)
- 18 Nuclear Data Sheets, http://www.nndc.bnl.gov/nds/
- 19 G. Audi, M. Epherre, C. Thibault, A.H. Wapstra and K. Bos, Nucl. Phys. A, **378**: 443 (1982)
- 20 G. Audi, Hyperfine Interactions 132: 7 (2001) École Internationale Joliot-Curie 2000, Spa, p.103; http://amdc.impcas.ac.cn/masstables/hal.pdf
- 21 Systematic errors are those due to instrumental drifts or instrumental fluctuations, that are beyond control and are not accounted for in the error budget. They might show up in the calibration process, or when the measurement is repeated under different experimental conditions. The experimentalist adds then quadratically a systematic error to the statistical and the calibration ones, in such a way as to have consistency of his data. If not completely

- accounted for or not seen in that experiment, they can still be observed by the mass evaluators when considering the mass adjustment as a whole.
- 22 The AME2016 files in the electronic distribution and complementary documents can be retrieved from the Atomic Mass Data Center (AMDC) through the Web: http://amdc.impcas.ac.cn/; and mirror site https://www-nds.iaea.org/amdc/
- C.F. von Weizsäcker, Z. Phys. 96: 431 (1935)
 H.A. Bethe and R.F. Bacher, Rev. Mod. Phys. 8: 82
- 24 C. Borcea and G. Audi, Rev. Roum. Phys. 38: 455 (1993) CSNSM Report 92-38, Orsay 1992: http://amdc.impcas.ac.cn/extrapolations/bernex.pdf
- A.H. Wapstra, G. Audi and R. Hoekstra, Nucl. Phys. A,
 432: 185 (1985)
- D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75: 1021 (2003)
 D. Lunney, Proc. Conf. Advances in Radioactive Isotope
 - Science (ARIS2014), JPS Conf. Proc. 6 010018 (2015).
- 27 G. Audi and A.H. Wapstra, Nucl. Phys. A, 595: 409 (1995); http://amdc.impcas.ac.cn/masstables/Ame1995/
- R.G. Thomas, Phys. Rev. 80: 136 (1950), 88: 1109 (1952)
 J.B. Ehrman, Phys. Rev. 81: 412 (1951)
- 29 E. Comay, I. Kelson and A. Zidon, Phys. Lett. B, 210: 31 (1988)
- 30 M. MacCormick and G.Audi, Nucl. Phys. A, **925**: 61 (2014)
- 31 A.H. Wapstra, Proc. Conf. Nucl. Far From Stability/AMCO9, Bernkastel-Kues 1992, Inst. Phys. Conf. Series, 132: 125 (1993)
- 32 M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Data Nucl. Data Tables 33: 447 (1985) M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34: 279 (1985) A. Pape and M.S. Antony, At. Data Nucl. Data Tables 39: 201 (1988)
 - M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables **40**: 9 (1988)
- 33 J. Jänecke, in D.H. Wilkinson, 'Isospin in Nuclear Physics', North Holland Publ. Cy. (1969) eq. 8.97; J. Jänecke, Nucl. Phys. **61**: 326 (1965)
- 34 L. Axelsson, J. Aystö, U.C. Bergmann, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshøj, A. Jonkinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad and ISOLDE, Nucl. Phys. A, 628: 345 (1998)
- 35 Y.V. Linnik, Method of Least Squares (Pergamon, New York, 1961); Méthode des Moindres Carrés (Dunod, Paris, 1963).
- 36 G. Audi, W.G. Davies and G.E. Lee-Whiting, Nucl. Instrum. Methods A, **249**: 443 (1986)
- 37 C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C, **40(10)**: 100001 (2016)
- 38 M.U. Rajput and T.D. Mac Mahon, Nucl. Instrum. Methods A, 312: 289 (1992)
- 39 M.J. Woods and A.S. Munster, NPL Report RS(EXT)95 (1988)
- 40 A.H. Wapstra, G. Audi and C. Thibault, Nucl. Phys. A,

- **729**: 129 (2003)
- http://amdc.impcas.ac.cn/masstables/Ame2003/Ame2003a.pdf
- 41 G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A, 565: 193 (1993)
- 42 G. Bollen, H.-J. Kluge, M. König, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau and G. Audi Phys. Rev. C, 46: R2140 (1992)
- 43 Each group of mass-spectrometric data is assigned a factor F according to its partial consistency factor χ_n^p , due to the fact that its statistical uncertainties and its internal systematic error alone do not reflect the real experimental situation. From comparison to all other data and more specially to combination of reaction and decay energy measurements, we have assigned factors F of 1.5, 2.5 or 4.0 to the different labs. Only Penning trap data have almost all been assigned a factor F=1.0. Example: the group of data H25 has been assigned F=2.5, this means that the total uncertainty assigned to ^{155}Gd $^{35}\text{Cl}-^{153}\text{Eu}$ ^{37}Cl is $2.4\mu\text{u}\times2.5$. The weight of this piece of data is then very low, compared to $0.79\mu\text{u}$ derived from all other data. This is why it is labeled "U".
- 44 A. Gillibert, L. Bianchi, A. Cunsolo, A. Foti, J. Gastebois, Ch. Grégoire, W. Mittig, A. Peghaire, Y. Schutz and C. Stéphan, Phys. Lett. B, 176: 317 (1986)
- 45 D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57: 3253 (1986)
- 46 W. Heisenberg, Z. Phys. 77: 1 (1932)
- 47 E. P. Wigner, Phys. Rev. **51**: 106 (1937)
- 48 E.P. Wigner, in Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, edited by W.0. Milligan (Houston: Welch Foundation, 1958), Vol. 1, p. 88.
- 49 W.J. Huang and G. Audi, ND 2016 International Conference on Nuclear Data for Science and Technology; ArXiv, http://arxiv.org/abs/1702.01639
- 50 J. Lindhard, V. Nielsen, M. Schar, and P.V. Thomsen, Mat. Fys. Medd. Vid. Selsk, 33: 10 (1963)
- 51 A. Ratkowski, Nuclear Instruments and Methods,

- **130(2)**: 533 (1975)
- 52 S. Hofmann, G. Munzenberg, K. Valli, F. Hessberger, J.R.H. Schneider, P. Armbruster, B. Thuma, and Y. Eyal, GSI-Report, page 241, 1982.
- 53 W. Bambynek, H. Behrens, M.H. Chen, B. Crasemann, M.L. Fitzpatrick, K.W.D. Ledingham, H. Genz, M. Mutterrer and R.L. Intemann, Rev. Mod. Phys. 49: 77 (1977)
- 54 J.C. Hardy, L.C. Carraz, B. Jonson and P.G. Hansen, Phys. Lett. B, 71: 307 (1977)
- 55 G. Audi, M. Wang, A.H. Wapstra, B. Pfeiffer and F.G. Kondev, J. Korean Phys. Soc. 59: 1318 (2011)
- 56 L. Ohrström and J. Reedijk, Pure Appl. Chem. 88(12): 1225 (2016)
- 57 P.J. Karol, R.C. Barber, B.M. Sherrill, E. Vardaci and T. Yamazaki, Pure Appl. Chem. 88(12): 139 (2016)
- S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A, 573: 356 (1994)
 S. Cwiok, W. Nazarewicz and P.H. Heenen, Phys. Rev. Lett. 63: 1108 (1999)
- 59 S. Aoyama, Phys. Rev. Lett. 89: 052501 (2002)
- 60 L.V. Grigorenko and M.V. Zhukov, Phys. Rev. C, 77: 034611 (2008)
- 61 H.T. Fortune, Chinese Physics Lett. 33: 092101 (2016)
- 62 J.C. Hardy and I.S. Towner, Physical Review C 91: 025501 (2015).
- 63 B.D. Darwent, NSRDS-NBS **31**: 48 (1970)
- 64 P.J. Linstrom and W.G. Mallard, NIST Chemistry Web-Book, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, 2016.
- 65 A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2015). NIST Atomic Spectra Database (version 5.3), [Online]. Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.
- 66 Y.R. Luo and J.A. Kerr, Bond dissociation energies. CRC Handbook of Chemistry and Physics. 89, 2012.
- 67 D. Sprecher, J. Liu, C. Jungen, W. Ubachs and F. Merkt, J. Chem. Phys. 133: 111102 (2010)

Table I. Input data compared with adjusted values

EXPLANATION OF TABLE

The ordering is in groups according to highest occurring relevant mass number.

Item K^m , Cs^m , Cs^n , In nuclear reactions: In mass-doublet equation: In mass-triplet equation: In^p , Tl^q : ε = electron capture, $H = {}^{1}H$, $N = {}^{14}N$. Rb^x, Rb^y: different $D = {}^{2}H$, $O = {}^{16}O$. mixtures of isomers higher isomers, $C = {}^{12}C$ or contaminants. see NUBASE.

u = absolute mass-doublet.

Input value Mass doublet: value and its standard precision in μ u.

Triplet: value and its standard precision in keV. Reaction: value and its standard precision in keV.

The value is the combination of mass excesses $\Delta(M-A)$ given under 'item'. It is the author's experimental result and the author's stated uncertainty, except in a few cases for which comments are given and for some α -reactions: if the α -decay does not clearly feed the ground state, then the precision is increased to 50 keV. If more than one group report such energies, an average is calculated first (mentioned in the Table) and the 50 keV is added to the averaged precision in the adjustment (see Section 6.3).

Adjusted value

Output of calculation. For secondary data (Dg = 2-20) the adjusted value is the same as the input value and is not repeated. Also, the adjusted value is only given once for a group of results for the same reaction or doublet. Values and precisions were rounded off, but not to more than tens of keV.

- # Value and precision derived not from purely experimental data, but at least partly from trends of the mass surface (TMS).
- * No mass value has been calculated for one of the masses involved.

Normalized deviation between input and adjusted value, given as their difference divided by the input precision (see Section 5.2).

1 Primary data (see Section 3).

2–13 Secondary data of different degrees.

B Well-documented data, or data from regular reviewed journals, which disagree with other well-documented values.

C Data from incomplete reports, at variance with other data.

o Data included in or superseded by later work of same group.

D Data not checked by another method and at large variance with TMS, replaced by an estimated value (see Section 4, p. 030002-15).

F Study of paper raises doubts about validity of data within the reported precision.

R Item replaced for computational reasons by an equivalent one giving same result.

U Data with much less weight than that of a combination of other data.

Data that will be averaged.

Significance ($\times 100$) of primary data only (see Section 5.1); the significance of secondary data is always 100%.

Largest *influence* (\times 100) and nucleus to which the data contributes the most (see Section 5.1).

Identifies the group which measured the corresponding item. Example of Lab key: MA8 Penning Trap data of Mainz-Isolde group. The numbers refer to different experimental conditions.

Multiplying factor for mass spectrometric data (see Section 6.1). The standard precision given in the 'Input value' column has been multiplied by this factor before being used in the least-squares adjustment.

030002-50

 v_i

Dg

Signf.

Main infl.

Lab

F

Reference

Reference keys:

(in order to reduce the width of the Table, the two digits for the centuries are omitted; at the end of this volume however, the full reference key-number is given: 2003Ba49 and not 03Ba49).

12Na15 Results derived from regular journal. These keys are copied from Nuclear Data Sheets. Where not yet available, the style 12Re.1 has been used.

12Zh.A Result from abstract, preprint, private communication, conference, thesis or annual report.

Ens169 References to energies of excited states, when of interest, are mentioned in remarks in the Qfile. Their reference-keys refer to the "Evaluated Nuclear Structure Data Files" (ENSDF) (the electronic version of the Nuclear Data Sheets NDS), the reference-keys are indicated Ens169 in which '16' indicates the year (here 2016) and '9' the month (Oct, Nov, Dec indicated a b c) of the released ENSDF file.

Nub169 When the excited energy is derived or estimated in NUBASE2016, it is indicated with 'Nubase' (see previous item).

Average of data from the following lines.

AHW (or FGK, GAU, HWJ, MMC, WGM): comment written by one of the evaluators.

* A remark on the corresponding item is given below the block of data corresponding to the same (highest) A.

Y recalibrations of 65Ry01 for charged particle recalibrations, and recalculated triplets for isomeric mixtures.

Z recalibrations of 91Ry01 for α particles, 90Wa22 for γ in (n,γ) and (p,γ) reactions and 91Wa.A for protons and γ in (p,γ) reactions (see Section 2).

Remarks. For data indicated with a star in the reference column, remarks have been added. They are collected in groups at the end of each block of data in which the highest occurring relevant mass number is the same. They give:

- i) Information explaining how the values in column 'Input value' have been derived for papers not mentioning e.g. the mass differences as derived from measured ratios of voltages or frequencies, or the reaction energies, or values for transitions to excited states in the final nuclei (for which better values of the excitation energies are now known).
- ii) Reasons for changing values (e.g. recalibrations) or precisions as given by the authors or for rejecting them (i.e. for labelling them B, C or F).
- iii) Value suggested by TMS and recommended in this evaluation as the best estimate (see Section 4, p. 030002-9).
- iv) Separate values for capture ratios (see Section 6.4).

Special notation in remarks:

```
\beta^- endpoint energy, \beta^- decay energy
E_{\beta^-}, Q_{\beta^-}
                              \beta^+ endpoint energy, \beta^+ decay energy
E_{\beta^+}, Q_{\beta^+}
E_p, Q_p
                              proton energy in the laboratory, proton decay energy
                              scattering length
a_s
Т
                              threshold for given reaction
                              electron capture; \beta^+ = \varepsilon + e^+ (see NUBASE2016, p. 030001-20)
p<sup>+</sup>, pK, pL
                              fraction \beta^+, \varepsilon(K) or \varepsilon(L) in transition to mentioned states
L/K, L/M
                              \varepsilon(L)/\varepsilon(K), \varepsilon(L)/\varepsilon(M)
                              internal bremsstrahlung endpoint
IBE
M-A, D_M
                              mass excess (in keV), mass difference (in \mu u)
TMS
                              Trends from Mass Surface
',Z' (after uncertainty)
                              recalibrated (see above, under 'Reference')
```

Table I. Comparison of input data and adjusted values (Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
_+	140001 10	0.25	140001 2	0.4	0.0	1	100	100 π^{+}			0(D-DC
π^+	140081.18	0.35	140081.2	0.4	0.0	1	100				06PaDG *
$\pi^{+}(2\beta^{+})\pi^{-} * \pi^{+}$	1021.998	0.001	1021.9980	0.0010	0.0	1	100	$100 \ \pi^-$			88CoTa
***************************************	By convention! This is	WI=139370.1	8(0.33) KeV + III	(e)							GAu **
$H_{12}-C$	93902.7	0.4	93900.3869	0.0011	-2.3	U			M17	2.5	66Be10
	93900.66	0.48			-0.2	U			A2	2.5	70St25
	93900.32	0.12			0.4	U			B07	1.5	71Sm01
	93900.391	0.012			-0.3	U			WA1	1.0	95Va38
	93900.3804	0.0084			0.8	U			MI1	1.0	95Di08
	93900.3865	0.0017			0.2	1	44	44 ¹ H	WA1	1.0	01Va33
	93900.3860	0.0042			0.2	U			ST2	1.0	02Be64
$n(\beta^-)^1H$	782	13	782.3465	0.0005	0.0	U					51Ro50
D_6-C	84610.56	0.12	84610.6687	0.0007	0.4	U			A2	2.5	70St25
	84610.62	0.09			0.4	U			B07	1.5	71Sm01
	84611.60	0.34			-1.1	U			J5	2.5	72Ka57 *
	84611.47	0.40			-0.8	U			J6	2.5	76Ka50
	84610.644	0.005			4.9	C			WA1	1.0	92Va.A
	84610.584	0.078			0.4	U			OH1	2.5	93Ma.A
	84610.662	0.007			1.0	O			WA1	1.0	93Va.C
	84610.6616	0.0067			1.1	O			WA1	1.0	95Va38
	84610.6710	0.0054			-0.4	_			MI1	1.0	95Di08
	84610.6656 84610.66897	0.0036 0.00086			$0.9 \\ -0.3$	_			MI1 WA1	1.0 1.0	95Di08 06Va22
	84610.66834	0.00024			-0.3 1.4	– F			WA1	1.0	15Za13 *
	ave. 84610.6688	0.00024			-0.2	1	78	$78^{-2}H$	WAI	1.0	average
H_2-D	1547.77	0.0008	1548.28637	0.00020	0.7	U	70	70 11	C1	2.5	64Mo.A
112 D	1548.22	0.05	1540.20057	0.00020	0.5	0			M19	2.5	67Jo18
	1548.08	0.08			1.0	o			J2	2.5	69Na21
	1548.286	0.004			0.1	0			B07	1.5	71Sm01
	1548.222	0.063			0.4	o			J5	2.5	72Ka57
	1548.176	0.133			0.3	o			J5	2.5	72Ka57
	1548.298	0.008			-1.0	U			B08	1.5	75Sm02
	1548.301	0.005			-2.0	U			B08	1.5	75Sm02
	1548.190	0.023			1.7	U			J6	2.5	76Ka50
	1548.28	0.05			0.1	U			M25	2.5	78Ha14
	1548.302	0.012			-0.5	U			OH1	2.5	93Go37
	1548.2836	0.0018			1.5	U		1	MI1	1.0	95Di08
1	1548.28649	0.00035			-0.3	1	32	24 ¹ H	ST2	1.0	08So20
$^{1}\mathrm{H}(\mathrm{n},\gamma)^{2}\mathrm{H}$	2224.564	0.017	2224.5660	0.0004	0.1	U			BNL		80Gr02
	2224.5	0.12			0.5	U			MMn		80Is02
	2224.561	0.009			0.6	U			Utr		82Va13 Z 82Vy10 Z
	2224.549 2224.560	0.009			1.9	U					•
	2224.560 2224.5756	0.009 0.008			0.7 - 1.2	U U			NBS		83Ad05 Z 86Gr01 *
	2224.5727	0.0500			-1.2 -0.1	U			PTc		97Ro26 *
	2224.5660	0.0004			0.0	0			NBS		97K020 * 99Ke05 *
	2224.58	0.05			-0.3	U			Bdn		06Fi.A *
	2224.56600	0.00044			0.0	1	100	100 1 n	NBS		06De21 *
*D ₆ -C	For all 72Ka57 doublets		erence		5.0	•	100	100 1 11			72Og03 **
$*D_6-C$	F: the other result from			hin error ba	ar						GAu **
$*^{1}H(n,\gamma)^{2}H$	Original 2224.5890(0.0					ator					90Wa22 **
$*^{1}H(n,\gamma)^{2}H$	Original error 0.0005 in				•						GAu **
$*^{1}H(n,\gamma)^{2}H$	More precisely, H+n-D			ted to 2388	3169.95(0).42) nu					99Ke05 **
* II(II, /) II											
* $^{1}H(n,\gamma)^{2}H$ * $^{1}H(n,\gamma)^{2}H$	All errors in reference in	ncreased by 2	20 ppm for calibr	ation							06Fi.A **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	ible 1. Comparison o										D. C.	_
Item	Input va	llue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	<u>e</u> _
$^{3}H_{4}-C$	64197.0690	0.0062	64197.1279	0.0009	9.5	В			WA1	1.0	93Va04	*
114-C	64197.1136	0.0002	04197.1279	0.0009	1.2				ST2	1.0	02Bf02	•
						0						
311 0	64197.1148	0.0100	(4117.2006	0.0000	1.3	U			ST2	1.0	06Na49	
3 He ₄ $-$ C	64117.2399	0.0039	64117.2906	0.0009	13.0	В			WA1	1.0	93Va04	
	64117.252	0.030			1.3	U			WA1	1.0	93Va04	*
	64117.294	0.011			-0.3	O			ST2	1.0	01Fr18	
	64117.2868	0.0100			0.4	О			ST2	1.0	06Na49	*
	64117.28668	0.00017			22.9	В			WA1	1.0	15Za13	
H_3-^3He	7445.858	0.012	7445.77408	0.00024	-2.8	U			MZ1	2.5	91Ha31	*
D_2-H^3H	4329.257	0.003	4329.24200	0.00025	-3.3	В			B08	1.5	75Sm02	
$^{3}H-HD$	-5877.2	0.7	-5877.52837	0.00016	-0.2	U			C1	2.5	64Mo.A	
	-5877.52837	0.00014			0.0	o			FS1	1.0	15My03	*
3 He $-$ H D	-5896.84	0.42	-5897.48771	0.00014	-0.6	U			C1	2.5	64Mo.A	
	-5897.512	0.005			3.2	В			B08	1.5	75Sm02	
	-5897.495	0.006			0.8	U			B09	1.5	81Sm02	
	-5897.48771	0.00014			0.0	1	100	100 ³ He	FS1	1.0	15My03	
$^3H-^3He$	19.83	0.18	19.95934	0.00007	0.3	Ü	100	100 110	C1	2.5	64Mo.A	
11- 110	19.951	0.004	17.73734	0.00007	0.8	0			CI	2.5	84Ni16	*
	19.967	0.004								2.5	84Li24	*
					-1.0	0						
	19.967	0.002			-1.5	U				2.5	85Li02	
	19.948	0.003			1.5	U			C/TPO	2.5	85Ta.A	
	19.9570	0.0013			1.8	U	100	400 377	ST2	1.0	06Na49	
2	19.95934	0.00007			0.0	1	100	$100^{-3}H$	FS1	1.0	15My03	
2 H $(n,\gamma)^{3}$ H	6257.6	0.3	6257.2290	0.0005	-1.2	U					69Pr06	
2 2	6256.96	0.25			1.1	U			ILn		79Br25	Z
$^{2}H(d,p)^{3}H$	4029	12	4032.66296	0.00024	0.3	U			CIT		49To23	Y
	4034	6			-0.2	U			MIT		64Sp12	
	4033.7	1.7			-0.6	U			NDm		67Od01	
2 H(d,n) 3 He	3260	9	3268.9084	0.0005	1.0	U			CIT		49To23	Y
	3269	11			0.0	U			Wis			Y
3 H(β^{-}) 3 He	18.645	0.016	18.59201	0.00007	-3.3	В					72Be11	*
	18.619	0.040			-0.7	U					73Pi01	*
	18.607	0.013			-1.2	o					76Tr07	
	18.614	0.013			-1.7	U					81Lu07	*
	18.562	0.020			1.5	U					83De47	*
	18.590	0.008			0.3	U					85Si07	*
	18.604	0.006			-2.0	o					85Bo34	
	18.603	0.010			-1.1	o					86Fr09	*
	18.600	0.004			-2.0	U					87Bo07	
	18.598	0.015			-0.4	o					87Bu.A	
	18.603	0.004			-2.7	В					88Ka32	
	18.589	0.003			1.0	o					89St05	
	18.595	0.006			-0.5	0					91Bu12	
	18.592	0.003			0.0	U					91Ka41	*
	18.591	0.002			0.5	Ü					91Ro07	*
	18.595	0.006			-0.5	Ü					92Bu13	*
	18.589	0.003			1.0	0					92Ot.A	
	18.593	0.003			-0.3	Ü					92Ho09	*
	18.591	0.003			0.3	U					93We03	•
	18.597	0.003			-0.4	U					95We05	
	18.5895	0.0025			1.0	U					95St26	
3 H(p,n) 3 He			7(2 7545	0.0005					7			
H(p,n)He	-764.08	0.15	-763.7545	0.0005	2.1	0			Zur		61Ry05	
	-764.39	0.37			1.7	U			NRL		64Bo10	
3	-763.82	0.08			0.8	U			Zur		64Sa12	
$*^{3}H_{4}-C$	Item preliminarily dis										AHW	**
$*^{3}\text{He}_{4}\text{-C}$	Original changed afte										AHW	**
$*^3$ He ₄ -C	Use instead the most	precise diffe	rence between ³ 1	H and ³ He (see belov	v)					GAu	**
$*H_3-^3He$	From ${}^{3}\text{He}^{+}/\text{H}_{2}^{+} = 1.4$										AHW	**
$*^3H-HD$	We use already the ³ H					ndent					GAu	**
$*^3H-^3He$	Atom mass difference			+ 0.011 ke	V						AHW	**
*	required correction of	cannot be es	timated								85Au07	**
$*^3$ H(β^-) 3 He	For corrections to 721	Be11 see ref	erence								82Di01	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Tem	Reterence
	Reference
	85Au07 **
	85Au07 **
	89Re04 **
	89Re04 **
	88Ka32 **
**H(β -)*He	89St05 **
**H(β)^3He	91Bu12 **
4He3-C 7809.706 0.009 7809.76239 0.00019 6.3 B WAI 1.0 7809.7493 0.0030 4.4 B WAI 1.0 7809.7620 0.0003 -2.1 U ST2 1.0 7809.7620 0.00019 -0.4 o WAI 1.0 7809.76239 0.00019 -0.0 1 100 100 4He 1.0 4He-H4 -28696.8747 0.0026 -28696.8748 0.0004 -0.1 o ST2 1.0 24He-H4 -28696.8750 0.0026 -28696.8748 0.0004 -0.1 o ST2 1.0 D2-4He 25600.315 0.014 25600.30210 0.0025 -0.6 U B08 1.5 25600.328 0.005 -2.1 U MZI 2.5 25600.328 0.005 -0.3 U B08 1.5 4H(y.o.)3H 520 170 1600 100 -2.6 U	88Ka32 **
7809.7493	
7809.7493	021/2 4
T809.7704	92Va.A 95Va38
T809.7620	01Fr18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01Va.A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 va.A 01Br27
	04Va14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06Va22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06Na49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06Na13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75Sm02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90Ge12 *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92Ke06 *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01He36
$ ^4H(\gamma,n)^3H \\ 2900 & 500 \\ 8000 & 3000 \\ 2700 & 600 \\ 2700 & 600 \\ 2700 & 600 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 200 \\ 2600 & 400 \\ 2600 & 200 \\ 2600 & 400 \\ 2600 & 400 \\ 2700 & 38 & B \\ 2600 & 400 \\ 2600 & 200 \\ 3800 & 300 \\ 200 & -7.5 & U \\ 3800 & 300 & -7.3 & B \\ 3100 & 300 & -7.3 & B \\ 2300 & 300 & -7.3 & B \\ 2300 & 300 & -7.3 & B \\ 2600 & 310 & -5.0 & B \\ 2300 & 300 & -2.3 & U \\ 2670 & 310 & -2.3 & U \\ 2670 & 310 & -2.3 & U \\ 2670 & 310 & -2.5 & B \\ 1600 & 100 & -3.5 & B \\ 18382 & 15 & -1.9 & U & Mex \\ 18382 & 15 & -1.9 & U & Mex \\ 18382 & 15 & -1.9 & U & Mex \\ 18350.1 & 3.9 & 0.8 & U & NDm \\ ^4Li(p)^3He & 3300 & 300 & 3100 & 210 & -0.7 & 2 \\ *D_2-^4He & Error has to be confirmed \\ *^4H(\gamma,n)^3H & From ^7Li(\pi^-,t)^4H reaction \\ *^4H(\gamma,n)^3H & From ^7Li(\pi^+,t)^4H reaction \\ *^4H(\gamma,n)^3H & From ^7Li(3^+He,^3He)^3He reaction \\ *^4H(\gamma,n)^3H & From ^7Li(3^+He,^3He)^4H reaction \\ *^4H(\gamma,n)^3H & From ^7Li(3^+He,^3He)^3He reaction \\ *^4H(\gamma,n)^3H & From ^7Li(3^+He,^3H$	75Sm02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62Ar05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69Mi10 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79Me13 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81Se11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85Fr01 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	86Be35 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86Mi14 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87Go25 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	90Am04 *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	91Bl05 *
$^{3}\text{He}(d,p)^{4}\text{He} \begin{array}{c} 1600 & 100 \\ 18380 & 10 & 18353.05346 & 0.00027 & -2.7 & U \\ 18382 & 15 & & -1.9 & U \\ 18350.1 & 3.9 & & 0.8 & U \\ *\text{Li}(p)^{3}\text{He} & 3300 & 300 & 3100 & 210 & -0.7 & 2 \\ *\text{D}_{2}^{-4}\text{He} & \text{Error has to be confirmed} \\ *^{4}\text{H}(\gamma,n)^{3}\text{H} & \text{From }^{7}\text{Li}(\pi^{-},t)^{4}\text{H reaction} \\ *^{4}\text{H}(\gamma,n)^{3}\text{H} & \text{From }^{7}\text{Li}(^{3}\text{He},^{3}\text$	95Al31 *
$^{3}\text{He}(d,p)^{4}\text{He} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	03Me11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09Gu17 *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64Ma.B
$ ^{4}\text{Li}(p)^{3}\text{He} \qquad 3300 \qquad 300 \qquad 3100 \qquad 210 \qquad -0.7 \qquad 2 $ $ *D_{2}-^{4}\text{He} \qquad \text{Error has to be confirmed} $ $ *^{4}\text{H}(\gamma,n)^{3}\text{H} \qquad \text{From } ^{7}\text{Li}(\pi^{-},t)^{4}\text{H reaction} $ $ *^{4}\text{H}(\gamma,n)^{3}\text{H} \qquad \text{From } ^{7}\text{Li}(^{3}\text{He},^{3}\text{He }^{3}\text{He})^{4}\text{H reaction} $ $ *^{4}\text{H}(\gamma,n)^{3}\text{H} \qquad \text{From } ^{9}\text{E}(^{11}\text{B},^{16}\text{O})^{4}\text{H reaction} $ $ *^{4}\text{H}(\gamma,n)^{3}\text{H} \qquad \text{From } ^{7}\text{Li}(n,\alpha)^{4}\text{H reaction} $ $ *^{4}\text{H}(\gamma,n)^{3}\text{H} \qquad \text{From } ^{7}\text{Li}(n,\alpha)^{4}\text{H reaction} $	64Ma.B
* D_2 — 4 He Error has to be confirmed * 4 H(γ ,n) 3 H From 7 Li(π^- ,t) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(4 H,reaction * 4 H(γ ,n) 3 H From 7 Li(3 He, 3 He, 3 He, 4 H reaction * 4 H(γ ,n) 3 H From 9 Be(11 B, 16 O) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	67Od01
* 4 H(γ ,n) 3 H From 7 Li(π^- ,t) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(π^- ,t) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(3 He, 3 He, 3 He, 4 H reaction * 4 H(γ ,n) 3 H From 9 Be(11 B, 16 O) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	87Br.B
* 4 H(γ ,n) 3 H From 7 Li(π^- ,t) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(3 He, 3 He, 3 He, 4 H reaction * 4 H(γ ,n) 3 H From 9 Be(11 B, 16 O) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	GAu **
* 4 H(γ ,n) 3 H From 7 Li(3 He, 3 He 3 He) 4 H reaction * 4 H(γ ,n) 3 H From 9 Be(11 B, 16 O) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	69Mi10 **
* 4 H(γ ,n) 3 H From 9 Be(11 B, 16 O) 4 H reaction * 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	AHW **
* 4 H(γ ,n) 3 H From 7 Li(n, α) 4 H reaction	85Fr01 **
	86Be35 **
$A_{II}(-)^{3}II = 0$ $C = 10^{4}II = 1$	86Mi14 **
* 4 H(γ ,n) 3 H From 9 Be(π^- ,dt) 4 H, same data in reference	91Go19 **
* 4 H $(\gamma,n)^3$ H From 7 Li $(\pi^-,t)^4$ H	90Am04 **
$*^4$ H $(\gamma,n)^3$ H From 2 D $(t,n)^4$ H	91Bl05 **
* 4 H $(\gamma,n)^3$ H From 6 Li $(^6$ Li $,^8$ B)	95Al31 **
* 4 H(γ ,n) 3 H Fit with 3 resonances 1.6(0.1), 3.4(0.1), 6.0(0.1) MeV	09Gu17 **
$^{5}\text{H}(\gamma,2\text{n})^{3}\text{H}$ 1800 800 1800 90 0.0 U	68Yo06
11000 1500 —6.1 F	81Se.A *
7400 700 -8.0 F	87Go25 *
5200 400 -8.5 F	95Al31 *
1700 300 0.3 U	01Ko52 *
1800 100 0.0 3	03Go11 *
1800 200 0.0 3	04St18

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	le I. Comparison of Input value	-	Adjusted	`	$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
- Item	mput va	aruc	Aujusteu	varue	v ₁	Dg	Sigiii.	wiam mm.	Lao		Reference
4 He(n, γ) 5 He	-890	50	-735	20	3.1	В					66La04 *
	-735	20				3					09Ak03
4 He(p, γ) 5 Li	-1965	50				3					65Ma32 *
$*^{5}H(\gamma,2n)^{3}H$	From ${}^{6}\text{Li}(\pi^{-},p){}^{5}\text{H}$.	F : private c	ommunication by	author							AHW **
$*^{5}H(\gamma,2n)^{3}H$	From ${}^{9}\text{Be}(\pi^{-},\text{pt}){}^{5}\text{H}$		in reference								91Go19 **
$*^{5}H(\gamma,2n)^{3}H$	F: probably higher s	state									01Ko52 **
$*^{5}H(\gamma,2n)^{3}H$	From ⁷ Li(⁶ Li, ⁸ B)	etata									95Al31 ** 01Ko52 **
$*^{5}H(\gamma,2n)^{3}H$ $*^{5}H(\gamma,2n)^{3}H$	F: probably higher s From p(⁶ He, ² He)	state									01K052 ** 01Ko52 **
* $H(\gamma,2n)$ H * $^{5}H(\gamma,2n)^{3}H$	From t(t,p)										03Go11 **
$*^{4}$ He(n, γ) ⁵ He	Average of many rea	actions leadi	ng to ⁵ He								AHW **
* 4 He(p, γ) 5 Li	Average of many rea										AHW **
* 11c(p, // Li	riverage or many rec	ictions icual	ng to Li								11111
⁶ Li ₂ -C	30246.152	0.119	30245.775	0.003	-0.8	F			BL1	4.0	98He.B *
Li ₂ -C	30245.575	0.119	30243.773	0.003	-0.8 1.5	U			BL1	4.0	96He.b *
	30245.7748	0.0031			0.0	1	100	100 ⁶ Li	FS1	1.0	10Mo30
6 Li $-$ H $_6$	-31827.302	0.040	-31827.3060	0.0016	-0.1	Ü	100	100 21	ST2	1.0	06Na13
$^{6}\text{Li}-\text{D}_{3}$	-27182.500	0.040	-27182.4469	0.0016	0.3	Ü			BL1	4.0	01He36
⁴ He- ⁶ Li _{.667}	-7483.694	0.046	-7483.7117	0.0010	-0.4	Ü			TT1	1.0	09Br10
6 He $-^{7}$ Li _{.857}	5170.947	0.057	5170.95	0.06	0.0	1	100	100 ⁶ He	TT1	1.0	12Br03
$^{6}\text{H}(\gamma,3\text{n})^{3}\text{H}$	2700	400	2710	250	0.0	3					84A108 *
	2600	500			0.2	3					86Be35 *
	2800	500			-0.2	3					92Al.A *
	2850	900			-0.2	3					08Ca22 *
$^{6}\text{Li}(n,\alpha)^{3}\text{H}$	4794	6	4783.4705	0.0015	-1.8	U			Win		67De15
6 Li(p, α) 3 He	4017	12	4019.7160	0.0015	0.2	U			CIT		49To16 Y
	4021	5			-0.3	U			Wis		51Wi26 Y
	4023	2			-1.6	U			Bir		53Co02 Y
	4025 4018.2	6 1.1			-0.9 1.4	o U			MIT MIT		64Sp12 81Ro02
6 Li(d, α) 4 He	22396	1.1	22372.7695	0.0015	-1.4	U			Bir		53Co02 Y
Li(u,a) Tie	22376	14	22312.1093	0.0013	-0.2	U			Ric		53Ph28 Y
	22403	12			-2.5	U			Mex		64Ma.B
⁶ Li(p,t) ⁴ Li	-18700	300	-18900	210	-0.7	R			Brk		65Ce02
$^{6}\text{He}(\beta^{-})^{6}\text{Li}$	3509.8	3.8	3505.22	0.05	-1.2	U					63Jo04
⁶ Li(p,n) ⁶ Be	-5074	13	-5071	5	0.3	2			CIT		67Ho01
⁶ Li(³ He,t) ⁶ Be	-4306	6	-4307	5	-0.1	2			CIT		66Wh01
$*^6Li_2-C$	F: leak during the n	neasurement									98He.B **
$*^6$ H(γ ,3n) 3 H	From ⁷ Li(⁷ Li, ⁸ B) ⁶ H										84A108 **
$*^6$ H(γ ,3n) 3 H	From ⁹ Be(¹¹ B, ¹⁴ O) ⁶										86Be35 **
*	⁶ H not observed in)								87Se.A **
$*^{6}H(\gamma,3n)^{3}H$	From ⁷ Li(⁷ Li, ⁸ B) ⁶ H										92Al.A **
$*^6$ H $(\gamma,3$ n $)^3$ H	Symmetrized from 2	2910(+850–9	950) keV								08Ca22 **
7	00		2000-1-01				400	100 7	a		001:-
$^{7}\text{Li-H}_{7}$	-38771.7889	0.0045	-38771.789	0.004	0.0	1	100	100 ⁷ Li	ST2	1.0	06Na13 *
⁷ B-u ⁷ Li- ⁶ Li _{1.167}	29712	27	1644.074	0.005	0.2	2			1.0	1.0	11Ch32 *
⁷ L1- ⁸ L1 _{1.167} ⁶ Li- ⁷ Li _{.857}	-1644.991	0.079	-1644.974	0.005	0.2	0			TT1	1.0	09Br10
$^{6}\text{L}_{1}-^{7}\text{L}_{1.857}$ $^{3}\text{He}(\alpha,\gamma)^{7}\text{Be}$	1407.954 1586.3	0.013 0.6	1407.942	0.004 0.07	-0.9	U			TT1	1.0	09Br.A 82Kr05
⁷ Li(p, α) ⁴ He	17364	0.6 11	1587.13 17346.245	0.07	$\frac{1.4}{-1.6}$	U U			CIT		51Wh05 Y
$E_{I}(p,\alpha)$ He	17352	9	1/3+0.243	0.004	-0.6	U			Bir		53Co02 Y
	17345	13			0.1	U			Ric		53Fa18 Y
	17373	6			-4.5	Č			Mex		64Ma.B
	17357	14			-0.8	U			MIT		64Sp12

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{7}\text{H}(\gamma,2\text{n})^{5}\text{H}$	-1100	340	100#	1000#	3.5	F					08Ca22 *
7 He(γ ,n) 6 He	450	20	410	8	-2.0	3			MSU		01Ch31
$\Pi(\gamma,n)$	430	20	410	O	-1.0	3			MISC		02Me07
	360	50			1.0	Ü					06Sk03
	400	10			1.0	3					08De29
	388	20			1.1	3					09Ak03
	380	28			1.1	Ü					16Re14
7 Li(t, α) 6 He	9788	30	9839.90	0.05	1.7	Ü			ChR		54Al35 Y
$^{7}\text{Li}(d,^{3}\text{He})^{6}\text{He} - ^{19}\text{F}()^{18}\text{O}$	-1981.09	0.42	-1980.36	0.05	1.7	Ü			MSU		78Ro01 *
$^{6}\text{Li}(n,\gamma)^{7}\text{Li}$	7250.0	0.5	7251.091	0.005	2.2	Ü			Utr		68Sp01
21(11,7) 21	7250.3	0.9	7231.071	0.005	0.9	Ü			Cu		72Op01
	7250.98	0.09			1.2	Ü			Ptn		85Ko47 *
	7249.94	0.15			7.7	Č			Bdn		06Fi.A
⁶ Li(d,p) ⁷ Li	5028	2	5026.525	0.004		Ü			Bir		53Co02 Y
21(4,p) 21	5035	5	5020.525	0.00.	-1.7	Ü			Mex		61Ja23
	5024	7			0.4	Ü			MIT		64Sp12
⁶ Li(t,d) ⁷ Li	986	7	993.862	0.004	1.1	Ü			ChR		54Al35
$^{7}\text{Li}(^{3}\text{He},\alpha)^{6}\text{Li}$	13322	10	13326.529	0.004	0.5	Ü			Mex		64Ma.B
$^{6}\text{Li}(n,\gamma)^{7}\text{Li}^{i}$	-3947	50	-4000	30	-1.0	1	39	39 ⁷ Li ⁱ	1,10,1		69Pr04 *
⁶ Li(³ He,d) ⁷ Be	136	3	113.38	0.07	−7.5	C	37	37 Et	Mex		64Ma.B
7 Li(t, 3 He) 7 He	-11184	30	-11147	8	1.2	U			LAI		69St02
$^{7}\mathrm{Be}(\varepsilon)^{7}\mathrm{Li}$	866	7	861.89	0.07	-0.6	U			12711		72Pe05
$^{7}\text{Li}(p,n)^{7}\text{Be}$	-1644.04	0.22	-1644.24	0.07	-0.9	U			Zur		61Ry05 Z
Li(p,ii) Be	-1643.68	0.26	-1044.24	0.07	-2.2	U			Wis		63Ga09 Y
	-1644.30	0.10			0.6	_			Mar		70Ro07 *
	-1644.18	0.10			-0.6	_			Auc		85Wh03 *
	ave. -1644.24	0.07			0.0	1	100	100 ⁷ Be	. 140		average
$^{7}\text{Li}(\pi^{+},\pi^{-})^{7}\text{B}$	-11870	100	-11747	25	1.2	Ü	100	100 20			81Se.A
$^{7}\mathrm{Be}^{i}(\mathrm{IT})^{7}\mathrm{Be}$	11000	50	10980	30	-0.4	3					67Ha08
26 (11) 26	10970	40	10,00	20	0.3	3					67Mc14
$*^7$ Li $-$ H $_7$	D_M =7016003.4256(4		07825.03207(1	()) using A							06Na13 **
$*^7B-u$	Represents $^{7}B \rightarrow 3p$										GAu **
$*^{7}H(\gamma,2n)^{5}H$	From $^{7}H(\gamma,4n)^{3}H =$										08Ca22 **
$*^7 H(\gamma,2n)^5 H$	F: not confirmed in										10Ni10 **
$*^{7}\text{Li}(d, {}^{3}\text{He})^{6}\text{He} - {}^{19}\text{F}()^{18}\text{O}$	Q-Q = 0.98(0.41) to										Ens967 **
$*^6$ Li $(n,\gamma)^7$ Li	Original 7251.02 rec										82Kr12 **
$*^6 \text{Li}(n, \gamma)^7 \text{Li}$	Typo 7250.02 in Am					8 Ame2	003				GAu **
$*^6 \text{Li}(\mathbf{n}, \gamma)^7 \text{Li}^i$	IT=11200(50); Q reb				, , =						MMC128**
$*^7 \text{Li}(p,n)^7 \text{Be}$	T=1880.64(0.09,Z);										AHW **
$*^7 \text{Li}(p,n)^7 \text{Be}$	T=1880.43(0.02,Z);	~									AHW **
, <u> </u>	1 1000.15(0.02,2),	error in g	moreusea								
⁸ Li–u	22488.2	4.0	22486.25	0.05	-0.5	U			RI1	1.0	13It01
⁸ C-u	22488.2 37606	32	37643	20	-0.5 1.2		37	37 ⁸ C		1.0	446100
⁸ He- ⁶ Li _{1.333}	13776.88	0.72	13775.58	0.10	-1.8	1	31	31		1.0	11Ch32 * 08Ry03
пе- пе-			13773.36	0.10		0	25	25 ⁸ He			
⁸ Li- ⁶ Li _{1.333}	13775.50	0.19	2227.44	0.05	0.4	1	25	25 He		1.0	08Br.D
$^{\circ}\text{L1} - ^{\circ}\text{L1}_{1.333}$	2327.426	0.034	2327.44	0.05	0.4	О				1.0	08Sm.A
	2327.42	0.11			0.2	0	21	21 81 :		1.0	08Sm03
811. 71:	2327.42	0.11	15640 46	0.10	0.2	1	21	21 ⁸ Li		1.0	09Br10
⁸ He ⁻⁷ Li _{1.143}	15642.49	0.11	15642.46	0.10	-0.3	1	75	75 ⁸ He		1.0	12Br03
⁴ He(¹⁸ O, ¹⁴ O) ⁸ He	-37967	25	-37975.36	0.09	-0.3	U			MIT		75Ja10
$^{4}\text{He}(^{26}\text{Mg},^{22}\text{Mg})^{8}\text{He}$	-44962	30	-44999.4	0.3	-1.2	U			Brk		74Ce05
⁴ He(⁶⁴ Ni, ⁶⁰ Ni) ⁸ He	-31818	15	-31810.6	0.4	0.5	U			Pri		75Ko18
8 4	-31796	8			-1.8	U			Tex		77Tr07
$^{8}\mathrm{Be}(\alpha)^{4}\mathrm{He}$	91.88	0.05	91.84	0.04	-0.8	3			Zur		68Be02 *
	91.80	0.05			0.8	3					92Wu09 *
	92.2	0.4			-0.9	U					16Re14

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	1. Compa	arison of inpi		•					- '			
Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁶ Li(t,p) ⁸ Li		790	11	801.91	0.05	1.1	U			ChR		54A135
⁶ Li(³ He,p) ⁸ Be		16824	12	16787.46	0.03	-3.0	C			Mex		64Ma.B
$^{6}\text{Li}(d,\gamma)^{8}\text{Be}^{j}$		-5216.5	3.0	-5213.4	2.0	-3.0 1.0		43	43^{8}Be^{j}	IVICX		
							1		100 ⁸ B	NT 1		
⁶ Li(³ He,n) ⁸ B		-1974.8	1.0	-1974.8	1.0	0.0	1	100	100 gB	Nvl		58Du78 Y
7 Li $(n,\gamma)^{8}$ Li		2032.78	0.15	2032.62	0.05	-1.1	_					74Ju.A *
		2032.77	0.18			-0.8	_			ORn		91Ly01 Z
7 0		2032.57	0.06			0.8	_			Bdn		06Fi.A
⁷ Li(d,p) ⁸ Li		-192	1	-191.95	0.05	0.1	U			Wis		51Wi26 Y
		-188	7			-0.6	U		_	MIT		64Sp12
7 Li $(n,\gamma)^{8}$ Li	ave.	2032.61	0.05	2032.62	0.05	0.1	1	79	79 ⁸ Li			average
⁷ Li(³ He,d) ⁸ Be		11795	13	11760.93	0.04	-2.6	U			Mex		64Ma.B
$*^8C-u$	Represe	ents $^8C \rightarrow 4p +$	⁴ He, yieldi	ng M - A = 350	030(30) ke	eV						GAu **
$*^{8}$ Be(α) ⁴ He		nic binding ene										67St30 **
$*^6 \text{Li}(d,\gamma)^8 \text{Be}^j$	$E_d = 696$	2.8(3.0) keV										76No07 **
$*^7 \text{Li}(n,\gamma)^8 \text{Li}$		to reference										74Aj01 **
												-
⁹ Li- ⁶ Li _{1.500}		4105.867	0.092	4105.86	0.20	-0.1	o			TT1 1	1.0	08Sm.A
		4105.86	0.20				2			TT1 1	1.0	08Sm03
$^{9}\text{Be}-^{7}\text{Li}_{1.286}$		-8397.39	0.10	-8397.35	0.08	0.4	1	67	67 ⁹ Be	TT1 1	1.0	09Ri03
9 Be(p, α) 6 Li		2117	7	2125.63	0.08	1.2	U			CIT		49To16 Y
20(p,w) 21		2130	10	2120.00	0.00	-0.4	Ü			Chi		51Ca37 Y
		2125	4			0.2	Ü			Wis		51Wi26 Y
		2126	2			-0.2	U			Bir		53Co02 Y
		2144	6			-3.1	В			MIT		64Sp12
		2125.4	1.8			0.1	U			NDm		67Od01
6 Li(α ,p) 9 Be		-2125.4 -2125.6	1.3	-2125.63	0.00	0.0	U			NDm		65Br28
					0.08							
$^{6}\text{Li}(\alpha,n)^{9}\text{B}$		-3974 2207	12	-3976.0	0.9	-0.2	U			Tal		63Me08
7 Li(t,p) 9 Li		-2397	20	-2386.96	0.19	0.5	U					64Mi04
07		-2385.7	3.0			-0.4	U			MSU		75Ka18
9 Be(d, α) 7 Li		7162	10	7152.15	0.08	-1.0	U			CIT		51Wh05 Y
		7153	3			-0.3	U			Bir		53Co02 Y
		7162	4			-2.5	U			Mex		64Ma.B
		7157	8			-0.6	U			MIT		64Sp12
7 Li(3 He,p) 9 Be		11215	15	11200.90	0.08	-0.9	U			Mex		64Ma.B
9 Be(p, 3 He) 7 Li i		-22499	50	-22450	30	1.0	O			Brk		65De08
		-22479	40			0.8	1	61	61 ⁷ Li ⁱ	Brk		67Mc14
7 Be(3 He,n) 9 C		-6287	5	-6282.1	2.1	1.0	3			CIT		67Ba.A Z
		-6275.2	3.5			-2.0	3			CIT		71Mo01 Z
9 He(γ ,n) 8 He		100	60	1250	50	19.2	В			MSU		01Ch31 *
.,,		1270	100			-0.2	_			Ber		99Bo26
		2000	200			-3.7	В					07Go24
		1330	80			-0.9	_					10Jo06 *
	ave.	1310	60			-0.8	1	56	56 ⁹ He			average
9 Be(γ ,n) 8 Be		-1665	1	-1664.54	0.08	0.5	Ü	20	20 110	Wis		50Mo56 Y
9 Be(p,d) 8 Be		557	3	560.03	0.08	1.0	U			CIT		49To16 Y
De(p,u) De		558		300.03	0.08	0.4	U			Chi		51Ca37 Y
			5									
		557.5 560	1.			2.5	U			Wis		51Wi26 Y
		560	2			0.0	U			Bir		53Co02 Y
		562	4			-0.5	U			MIT		64Sp12
		559.0	1.1			0.9	U			Zur		66Re02
0- 44 9-		559.6	0.6			0.7	U			NDm		67Od01 Z
⁹ Be(d,t) ⁸ Be		4602	13	4592.69	0.08	-0.7	U			MIT		64Sp12
0 0 0		4591.7	3.1			0.3	U			NDm		67Od01
$^{9}\mathrm{Be}(^{3}\mathrm{He},\alpha)^{8}\mathrm{Be}$		18931	13	18913.08	0.08	-1.4	U			Mex		64Ma.B
$^{9}{\rm Be}(\pi^{-},\pi^{+})^{9}{\rm He}$		-30472	100	-30610	50	-1.4	_					87Se05

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	- ompar	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab F	Reference
		put W	. ~=	2 / 40104		٠ ،	- 5			*	
$^{9}\text{Be}(^{13}\text{C},^{13}\text{O})^{9}\text{He}$		-50200	600	-49580	50	1.0	o			Ber	88Bo20
		-49470	80			-1.3	o			Ber	91Bo.B
9 Be(14 C, 14 O) 9 He		-34580	100	-34580	50	0.0	_			Ber	95Bo.B
$^{9}\text{Be}(\pi^{-},\pi^{+})^{9}\text{He}$	ave.	-30540	70	-30610	50	-0.9	1	44	44 ⁹ He		average
9 Be(p,n) 9 B		-1850.4	1.0				2			Wis	50Ri59 Z
4 / /		-1852	3	-1850.4	0.9	0.5	U			Ric	55Ma84 Z
$*^9$ He(γ ,n) 8 He	From so	cattering length	$a_{\rm s} = -10 {\rm f}$	m; questioned i		ce					10Jo06 **
$*^9$ He(γ ,n) ⁸ He		$a_s = a_s$									10Jo06 **
			` '								
10- 27 25											
¹⁰ B ³⁷ Cl-C ³⁵ Cl		9987.21	0.56	9986.75	0.07	-0.3	U		10-	H38 2.5	84El05
10 Be $-^{7}$ Li _{1.429}		-9334.16	0.13	-9334.22	0.09	-0.4	1	44	44 ¹⁰ Be	TT1 1.0	09Ri03
$^{10}B-u$		12936.862	0.016	12936.862	0.016	0.0	1	100	$100^{-10}B$	MS1 1.0	16Gu02
$^{10}C^{-10}B$		3916.413	0.090	3916.36	0.07	-0.6	1	67	67^{-10} C	JY1 1.0	11Er02
$^{7}\mathrm{Li}(t,\gamma)^{10}\mathrm{Be}^{i}$		-3929.8	21.0				2				73Ab10
10 B $(n,\alpha)^7$ Li		2801	4	2789.906	0.016	-2.8	U				67De15
7 Li(α ,n) 10 B		-2787	4	-2789.906	0.016	-0.7	U			Ric	57Bi84 Y
$^{10}\mathrm{B}(\mathrm{p},\alpha)^{7}\mathrm{Be}$		1147	5	1145.67	0.07	-0.3	U			CIT	49Ch35 Y
		1146	6			-0.1	U			CIT	51Br10 Y
		1146	2			-0.2	U			Wis	52Cr30 Y
		1153	4			-1.8	U			MIT	64Sp12
10 B(3 He, 6 He) 7 B		-18550	100	-18287	25	2.6	U			Brk	67Mc14
$^{10}{\rm He}(\gamma,2{\rm n})^{8}{\rm He}$		1200	300	1440	90	0.8	U				94Ko16
,		1420	100			0.2	2				10Jo06
		2100	200			-3.3	В				12Si07
		1600	250			-0.6	2				12Ko43
		1400	300			0.1	U				15Ma54
10 Be(p, 3 He) 8 Li i		-26802.3	5.4				2			MSU	75Ro01 *
10 Be(p,t) 8 Be ^{j}		-27487.0	2.6	-27489.3	2.0	-0.9	1	57	57 ${}^{8}\text{Be}^{j}$	MSU	75Ro01 *
$^{10}\mathrm{B}(\mathrm{d},\alpha)^8\mathrm{Be}$		17829	10	17819.74	0.04	-0.9	Ü			Bir	54El10 Y
<i>D</i> (a, or) <i>D</i> c		17830	6	1,01,1,1	0.0.	-1.7	Ü			Mex	64Ma.B
		17818.6	4.1			0.3	Ü			NDm	67Od01
10 B(p, 3 He) 8 Be		-535.5	2.5	-533.31	0.04	0.9	Ü			Wis	52Cr30 Y
$^{10}\text{Li}(\gamma,n)^{9}\text{Li}$		150	150	26	13	-0.8	U			***15	90Am05 *
Li(/,ii) Li		25	15	20	13	0.1	3				95Zi03 *
		30	24			-0.1	3				08Ak03 *
$^{10}\text{Li}^m(\gamma,n)^9\text{Li}$		240	60	220	40	-0.1 -0.3	3				97Bo10 *
LI (Y,II) LI		210	50	220	40	-0.3 0.2	3				97B010 * 97Zi04 *
${}^{9}\text{Be}({}^{9}\text{Be}, {}^{8}\text{B}){}^{10}\text{Li}^{n}$		-33770	260	-33750	40	0.2	U			Brk	
$^{9}\text{Be}(^{13}\text{C}, ^{12}\text{N})^{10}\text{Li}^{n}$		-36370	50		40						
¹⁰ Be(d, ³ He) ⁹ Li				-36390		-0.4	2			Ber	93Bo03 *
		-14142.8	2.5	-14142.91	0.20	0.0	U			MSU	75Ka18
9 Be(n, γ) 10 Be		6812.33	0.06	6812.28	0.05	-0.8	_			MMn	86Ke14 Z
9p (1)10p		6812.10	0.14	4505.50	0.05	1.3	_			Bdn	06Fi.A
9 Be(d,p) 10 Be		4583	8	4587.72	0.05	0.6	U			Ric	51Kl55 Y
		4595	4			-1.8	U			Mex	64Ma.B
0- 10-		4590	8			-0.3	U		10-	MIT	64Sp12
${}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}$	ave.	6812.29	0.06	6812.28	0.05	-0.2	1	88	56 ¹⁰ Be		average
${}^{9}\text{Be}({}^{3}\text{He,d}){}^{10}\text{B}$		1123	5	1093.34	0.08	-5.9	C			Mex	64Ma.B
${}^{10}B(d,t)^{9}B$		-2189	10	-2180.0	0.9	0.9	U			MIT	64Sp12
$^{10}\mathrm{B}(^{3}\mathrm{He},\alpha)^{9}\mathrm{B}$		12130	15	12140.4	0.9	0.7	U			Ric	60Sp08
40 44		12171	15			-2.0	U			Mex	64Ma.B
10 Be(14 C, 14 O) 10 He		-41190	70	-41580	90	-5.5	В			Ber	94Os04
$^{10}{\rm Be}(\beta^-)^{10}{\rm B}$		560	5	556.88	0.08	-0.6	U				50Hu27
		555	5			0.4	U				52Fe16
$^{10}\text{C}(\beta^+)^{10}\text{B}$		3604	16	3648.06	0.07	2.8	U				63Ba52
$^{10}B(p,n)^{10}C$		-4433.7	1.5	-4430.41	0.07	2.2	U			Har	75Fr.A
* :		-4430.17	0.34			-0.7	o			Auc	84Ba12 *
		-4430.17	0.09			-2.7	o			Auc	89Ba28 *
		-4430.30	0.12			-0.9	1	33	33 ¹⁰ C	Auc	98Ba83 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	¥ · · ·	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
								- 6	-			
$^{10}B(^{3}He,t)^{10}C$		-3667	10	-3666.65	0.07	0.0	U			Brk		68Br23
$^{10}B(^{14}N,^{14}B)^{10}N$		-47550	400				2					02Le16
$*^{10}$ Be(p, 3 He) 8 Li ⁱ		l value –26804										AHW *
$*^{10}$ Be(p,t) 8 Be ^j		1 –27487.6(2.6)) recalibrat	ed								GAu *
$*^{10}$ Li $(\gamma,n)^9$ Li		$B(\pi^-,p)^{10}Li$										GAu *
$*^{10}$ Li $(\gamma,n)^9$ Li		nce less than 50										95Zi03 *
*		also be final sta					er					97Bo10 *
$*^{10}$ Li $(\gamma,n)^9$ Li		d from s-state s			2.4(4.8) f	m						08Ak03 *
$*^{10}$ Li ^m $(\gamma,n)^9$ Li		$Be(^{12}C,^{12}N)^{10}$										GAu *
$*^{10}$ Li ^{m} $(\gamma,n)^{9}$ Li		ical work: 1 ⁺ 1		-								02Ga12 *
$*^{9}$ Be(9 Be, 8 B) 10 Li n	~	$060(250)$ to 2^{+}		` /								93Bo03 *
*		l with Breit-V										97Bo10 *
$*^{9}$ Be(13 C, 12 N) 10 Li ⁿ		with Breit-W			oly 2 ⁺ lev	el)						97Bo10 *
$*^{10}B(p,n)^{10}C$.90(0.37); with										89Ba28 *
$*^{10}B(p,n)^{10}C$.88(0.10,Z); or			keV							MMC126*
$*^{10}B(p,n)^{10}C$	Average	of two dataset	ts; withdrav	wn by author								98Ba83 *
$*^{10}B(p,n)^{10}C$	T=4877	.03(0.13); this	is the seco	nd 89Ba28 da	taset, rec	alibrated b	y author					98Ba83 *
¹¹ B ³⁷ Cl- ¹³ C ³⁵ Cl		2998.15	1.30	3000.22	0.07	0.6	U			H38	2.5	84El05
$^{11}Li-^{6}Li_{1.833}$		16003.5	1.2	16003.3	0.7	-0.1	o			TT1	1.0	08Sm.A
		16003.33	0.66				2			TT1	1.0	08Sm03
$^{11}\text{Be}-^{6}\text{Li}_{1.833}$		-6059.27	0.28	-6059.17	0.26	0.4	1	83	83 ¹¹ Be	TT1	1.0	08Br.C
$^{11}\text{Be}-^{7}\text{Li}_{1.571}$		-3479.83	0.62	-3480.32	0.26	-0.8	1	17	17 ¹¹ Be	TT1	1.0	09Ri03
$^{11}C-^{14}N_{.786}$		9016.430	0.064	9016.43	0.06	0.0	1	100	100 ¹¹ C	MS1	1.0	16Gu02
¹¹ Li-u		43780	130	43723.6	0.7	-0.3	U			TO2	1.5	88Wo09
		43805	28			-2.9	U			P40	1.0	03Ba.A
		43715.4	5.0			1.6	o			P40	1.0	04Ba.A
		43714.5	5.1			1.8	U			P40	1.0	09Ga24
¹¹ Be-u		21654.0	3.6	21661.08	0.26	2.0	o			P40	1.0	04Ba.A
		21653.5	3.5			2.2	U			P40	1.0	09Ga24
		21658.5	3.8			0.7	U			P40	1.0	09Ga24
$^{11}B-u$		9305.167	0.013	9305.167	0.013	0.0	1	100	$100^{-11}B$	MS1	1.0	16Gu02
⁹ Li- ¹¹ Li _{.491} ⁶ Li _{.600}		-3949	175	-3494.8	0.4	1.0	U			P12	2.5	75Th08
⁹ Li- ¹¹ Li _{.409} ⁷ Li _{.643}		-1250	86	-1288.2	0.3	-0.3	U			P11	1.5	75Th08
		-1223	195			-0.3	U			P13	1.0	75Th08
⁹ Li- ¹¹ Li _{.273} ⁸ Li _{.750}		-1928	31	-1873.26	0.25	0.7	U			P12	2.5	75Th08
		-1923	31			1.6	U			P13	1.0	75Th08
$^{7}\text{Li}(\alpha,\gamma)^{11}\text{B}^{i}$		-3885.6	20.0	-3896	9	-0.5	1	21	$21^{-11}B^{i}$			66Cu02
$^{11}\mathrm{B}(\mathrm{p},\alpha)^{8}\mathrm{Be}$		8583	15	8590.09	0.04	0.5	U			CIT		51Li26
		8589	4			0.3	U			Bir		53Co02
		8597	6			-1.2	U			Mex		61Ja23
		8575	11			1.4	U			MIT		64Sp12
$^{11}B(^{3}He,^{6}He)^{8}B^{i}$		-27539	8				2			MSU		75Ro01
$^{11}\mathrm{Be}^{i}(\gamma,\mathrm{d})^{9}\mathrm{Li}$		3245	20				3					97Te07
9 Be(t,p) 11 Be		-1164	15	-1167.87	0.25	-0.3	U			Ald		62Pu01
$^{11}B^{j}(2p)^{9}Li$		2700	80				3					12Ch40
$^{11}\mathrm{B}(\mathrm{d},\alpha)^{9}\mathrm{Be}$		8029	4	8030.06	0.08	0.3	U			Bir		54El10
		8035	9			-0.5	U			Mex		64Ma.B
		8024	7			0.9	U			MIT		64Sp12
		8029.7	2.8			0.1	U			NDm		67Od01
9 Be(3 He,p) 11 B		10344	13	10322.99	0.08	-1.6	U			Mex		64Ma.B
**		10322.1	2.3			0.4	U			NDm		67Od01
11 B(p, 3 He) 9 Be i		-24713.3	1.7				2			MSU		74Ka15
$^{9}\text{Be}(^{3}\text{He,p})^{11}\text{B}^{i}$		-2240	12	-2237	9	0.2	_					63Gr.A
· • • • • • • • • • • • • • • • • • • •		-2240.6	20.	-		0.2	_			MSU		82Zw02
	ave.	-2240	10			0.3	1	79	$79^{-11}B^{i}$			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{11}B(p,t)^9B^i$	-26064.1	2.3				2		** *	MSU		74Ka15
${}^{9}\text{Be}({}^{3}\text{He,n}){}^{11}\text{C}^{i}$	-4612	50	-4600	40	0.2	1	50	$50^{-11}C^{i}$			71Wa21
¹⁰ Be(d,p) ¹¹ Be	-1721	7	-1722.93	0.25	-0.3	U			CIT		70Go11
¹¹ B(⁷ Li, ⁸ B) ¹⁰ Li	-32431	80	-32399	13	0.4	U			MSU		94Yo01
$^{11}B(^{7}Li,^{8}B)^{10}Li^{n}$	-32908	62	-32870	40	0.5	R			MSU		94Yo01
10 Be(p, γ) 11 B ⁱ	-1322	30	-1332	9	-0.3	U					70Go04
10 B $(n,\gamma)^{11}$ B	11454.1	0.2	11454.219	0.019	0.6	U			Ptn		86Ko19
	11454.15	0.27			0.3	U			Bdn		06Fi.A 54El10
$^{10}B(d,p)^{11}B$	9227	5	9229.653	0.019	0.5	U			Bir		54El10
	9234	6			-0.7	U			Mex		64Ma.B
	9244	11			-1.3	U			MIT		64Sp12
	9232.9	2.			-1.6	U			NDm		66Br18
11 B(3 He, α) 10 B	9101	20	9123.400	0.019	1.1	U			Man		60Ta12
$^{10}B(^{3}He,d)^{11}C$	3174	15	3196.71	0.06	1.5	U			Man		60Fo01
	3226	10			-2.9	C			Mex		64Ma.B
$^{11}N(p)^{10}C$	1973	180	1320	50	-3.7	В			MSU		74Be20
	1300	40			0.4	o			Lis		96Ax01
	1450	400			-0.3	U			MSU		98Az01
	1630	50			-6.3	В			Spe		00Ol01
	1350	120			-0.3	2			Lis		00Ma62
	1310	50			0.1	2			INS		03Gu06
	1540	20			-11.2	В					06Ca05
${}^{1}\mathrm{B}(\pi^{-},\pi^{+}){}^{11}\mathrm{Li}$	-33120	50	-33082.5	0.6	0.7	U					91Ko.B
¹ B(¹⁴ C, ¹⁴ O) ¹¹ Li	-37120	35	-37048.4	0.6	2.0	U			MSU		93Yo07
$^{1}B^{i}(IT)^{11}B$	12510	50	12560	9	1.0	U					71Wa21
${}^{1}C(\beta^{+}){}^{11}B$	1982.8	2.6	1981.69	0.06	-0.4	U					75Be28
${}^{1}B(p,n){}^{11}C$	-2759.7	3.	-2764.04	0.06	-1.4	U			Wis		50Ri59
-	-2763.2	1.4			-0.6	U			Ric		61Be13
$^{1}B(^{3}He,t)^{11}C$	-2002.1	1.2	-2000.28	0.06	1.5	U			Str		65Go05
${}^{1}\mathrm{B}({}^{3}\mathrm{He,t}){}^{11}\mathrm{C}^{i}$	-14151	50	-14160	40	-0.2	1	50	$50^{-11}C^{i}$			71Wa21
¹ Be-u	Result from the "	'cooling"	experiment								09Ga24
Li- ¹¹ Li _{.409} ⁷ Li _{.643}	Symmetric doubl	le-double	t 6-9 8-11 inclu	ıded							GAu
$\text{Li}(\alpha, \gamma)^{11} \text{B}^i$	IT=12550(30); Q	rebuilt v	vith Ame1964								GAu
${}^{1}\mathrm{B}({}^{3}\mathrm{He}, {}^{6}\mathrm{He}){}^{8}\mathrm{B}^{i}$	IT=10619(9); reb	ouilt $Q =$	-27538.9(8.2) ke	V							GAu
, , ,	IT=10614(20) k										14Br15
1 Be $^{i}(\gamma,d)^{9}$ Li	Q(d)=Q(p+n)+22	224.5660	(0.0004) Q(p+n)=	:1020(20) ke'	V						MMC16
${}^{1}\mathrm{B}(\mathrm{p}, {}^{3}\mathrm{He}){}^{9}\mathrm{Be}^{i}$	IT=14392.2(1.8):	rebuilt (Q = -24715.2(1.7)	; recalibrated	1+1.87 ke	V					MMC12
$Be(^{3}He,p)^{11}B^{i}$	IT=12565(12); Q										MMC12
$Be(^{3}He,p)^{11}B^{i}$	IT=12563(20), Q										MMC12
$^{1}\mathrm{B}(\mathrm{p,t})^{9}\mathrm{B}^{i}$	IT=14655.4(2.5):			alibrated +0.	16 keV						MMC12
$Be(^{3}He,n)^{11}C^{i}$	IT=12170(40); Q										MMC12
$^{1}B(^{7}Li,^{8}B)^{10}Li$	Original (>-324'			,-							GAu
2(21, 2) 21			t completely certa	ain							94Yo01
0 Be(p, γ) 11 B ^{i}	IT=12550(30); Q										MMC12
$^{1}N(p)^{10}C$	From ¹⁴ N(³ He, ⁶ I			o 250(150) le	evel						90Aj01
${}^{1}N(p){}^{10}C$	From ⁹ Be(¹² N, ¹⁰		23010(100) 1	0 230(130) 1							98Az01
${}^{1}N(p){}^{10}C$	From ¹⁰ B(¹⁴ N, ¹³										000101
${}^{1}N(p){}^{10}C$	From scattering ¹		precisely 12700	±180_50) ke	V						00Ma62
${}^{1}B^{i}(IT)^{11}B$	From ¹¹ B(³ He, ³ H		, precisely, 1270(1 100–30 <i>)</i> KC	•						AHW
$^{11}B(^{3}He,t)^{11}C^{i}$	IT=12150(50); Q		nossihly not ny	T-3/2							MMC12
ы пс,і) С	11=12130(30); Q	revuiit;	possibly not pure	1=3/2							IVIIVIC12
² Be-u	26911.3	14.2	26922.1	2.0	0.8	U			P40	1.0	09Ga24
¹² Be–C	26922.4	2.3		•	-0.1	1	79	79 ¹² Be	TT1	1.0	10Et01
$C_{14}^{-12}C_{12}$	1.2	4.9	0.00000	0.00013	-0.1 -0.2	U	"	,, Bc	TG1	1.5	09Ke.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

				A directed					Main infl.		F	Dafaranaa
Item		Input v	arue	Adjusted	value	v_i	Dg	Signf.	Main iiii.	Lab	Г	Reference
$C_{15}-^{12}C_{14}$		-4.0	4.7			0.6	U			TG1	1.5	11Ke03
013 014		-0.5	6.2			0.1	Ü			TG1	1.5	11Ke03
$C_{15}-^{12}C_{16}$		-1.6	2.1			0.5	Ü			TG1	1.5	10Ke09
015 010		4.7	4.2			-0.7	Ü			TG1	1.5	11Ke03
		3.7	4.1			-0.6	Ü			TG1	1.5	11Ke03
$C_{16} - {}^{12}C_{12}$		-0.3	6.1			0.0	U			TG1	1.5	09Ke.A
- 10 - 12		2.6	5.0			-0.3	U			TG1	1.5	09Ke.A
$C_{16} - {}^{12}C_{15}$		-1.3	3.9			0.2	U			TG1	1.5	11Ke03
10 15		-0.7	1.3			0.4	U			TG1	1.5	12Sm07
$C_{21}-^{12}C_{22}$		1.6	1.3			-0.8	U			TG1	1.5	14Ei01
$C_{23}^{-12}C_{22}$		1.2	1.7			-0.5	U			TG1	1.5	14Ei01
$C_{23}^{-12}C_{21}^{-12}$		2.2	1.8			-0.8	U			TG1	1.5	14Ei01
$^{7}\text{Li}(^{7}\text{Li},2\text{p})^{12}\text{Be}$		-9710	100	-9841.5	1.9	-1.3	U			LAl		71Ho26
$^{12}C(\alpha, {}^{8}He){}^{8}C$		-64520	200	-64249	18	1.4	U					74Ro17
		-64278	26			1.1	_			Tex		76Tr01
	ave.	-64270	23			0.9	1	63	63 ⁸ C			average
$^{9}\mathrm{Be}(^{7}\mathrm{Li},\alpha)^{12}\mathrm{B}^{i}$		-2308.4	50.	-2258	19	1.0	1	14	$14^{-12}B^{i}$	Phi		75Aj03 *
$^{12}\text{C}(^{3}\text{He}, ^{6}\text{He})^{9}\text{C}$		-31578	8	-31571.8	2.1	0.8	U			MSU		71Tr03
		-31575.6	3.2			1.2	R			MSU		79Ka.A
10 Be(t,p) 12 Be		-4809	15	-4809.4	1.9	0.0	U			Brk		78A129
		-4808.3	4.2			-0.3	1	21	21 ¹² Be	Phi		94Fo08
$^{10}B(t,p)^{12}B$		6346	6	6342.1	1.3	-0.7	U			Man		60Ja17
10 B(α ,d) 12 C		1340.3	0.8	1339.803	0.015	-0.6	U			Wis		56Do41 Z
		1340.6	1.5			-0.5	U			NDm		65Br28
$^{12}C(d,\alpha)^{10}B$		-1340.1	1.2	-1339.803	0.015	0.2	U			NDm		65Br28
$^{10}B(^{3}He,p)^{12}C$		19694.5	3.6	19692.857	0.015	-0.5	U			NDm		67Od01
		19692.86	0.44			0.0	U			Mun		83Ch08 *
$^{10}B(^{3}He,p)^{12}C^{i}$		4585	6	4585	3	-0.1	1	31	$31^{-12}C^{i}$			62Br10
$^{10}B(^{3}He,n)^{12}N$		1570	25	1572.4	1.0	0.1	U			CIT		64Fi02
		1561	9			1.3	U			CIT		64Ka08
		1568	20			0.2	U			LAl		66Za01
40 40		1574	7			-0.2	U			Har		68Ad03
$^{12}N^{i}(2p)^{10}B$		2905	29				2					12Ja11 *
$^{12}O(2p)^{10}C$		1770	20	1638	24	-6.6	В					95Kr03
12 11		1638	24				2					12Ja11
$^{12}\text{Li}(\gamma,n)^{11}\text{Li}$		120	15	210	30	6.0	В					08Ak03 *
1112-		210	30				3		12-			13Ko03
$^{11}B(d,p)^{12}B$		1141	4	1145.1	1.3	1.0	1	11	$11^{-12}B$	Mex		61Ja23
11 n 2 rr 112 a		1137	5	10162 202	0.012	1.6	U			MIT		64Sp12
$^{11}B(^{3}He,d)^{12}C$		10436	17	10463.203	0.012	1.6	U			Man		60Fo01
11n (1) 12 ai		10469.7	5.7	4056		-1.1	U		co 12 gi	NDm		67Od01
11 B(d,n) 12 C ⁱ		-1376.2	4.0	-1376	3	0.0	1	69	$69^{-12}C^{i}$			55Ma76 *
$^{12}N(\beta^+)^{12}C$		17406	15	17338.1	1.0	-4.5	В					63Gl04
$^{12}C(p,n)^{12}N$		-18119.9	4.4	-18120.4	1.0	-0.1	U			Yal		69Ov01 Z
$^{12}\mathrm{C}(\pi^+,\pi^-)^{12}\mathrm{O}$		-31037	48	-30893	24	3.0	В					80Bu15
9p /7r : 12pi	TEL 1075	-31014	24	C(1 C)1 37		5.1	В					92Iv.A
$*^9$ Be(7 Li, α) 12 B ⁱ		70(50) using <i>Q</i>			TAC							75Aj03 **
* $*^{10}B(^{3}He,p)^{12}C$				nts for T=1, not		5(21) 1	x 7					08Ch28 **
*B(-He,p)C				ised by authors t	0 15253.9	5(31) ke	V					83Vo.A **
* $*^{12}N^{i}(2p)^{10}B$		evel at 4438.9										Ens006 **
$*^{12}N^{1}(2p)^{10}B$ $*^{12}Li(\gamma,n)^{11}Li$		$65(29)$ to 10 B ⁱ			. 12.5	7(1.6) £						Nub16b **
* 12 Li(γ ,n) 11 Li * 11 B(d,n) 12 C i				cattering length								10Ha04 **
* D(u,II) -C	$E_{res}=16.$	21(4) Q = -13	/0(4); rec	alibrated $Q = -1$	3/0.10(4.	oo) ke v						MMC121**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Pu	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference	<u> </u>
G 11 12 G		4500	2.5	4450 40500	0.00025	0.6				D 00		605 10	_
$C H-^{13}C$		4500	36	4470.19703	0.00027		U			R08	1.5	69De19	
		4470.185	0.008			1.0	U			B08	1.5	75Sm02	
12		4470.10	0.05			0.8	U			M25	2.5	78Ha14	
$C D - {}^{13}C H$		2921.923	0.008	2921.91066	0.00025	-1.0	U			B08	1.5	75Sm02	
		2921.87	0.05			0.3	U			M25	2.5	78Ha14	
		2921.9086	0.0012			1.7	U			MI1	1.0	95Di08	
12		2921.9074	0.0015			2.2	U			MI1	1.0	95Di08	
¹³ C-u		3354.8404	0.0041	3354.83521	0.00023	-1.3	U			WA1	1.0	95Va38	
9 Be $(\alpha,\gamma)^{13}$ C ⁱ		-4458.4	2.0	-4460.4	1.1	-1.0	2					73Ad02	
		-4461.4	1.4			0.7	2					78Hi06	
10 B(α ,p) 13 C		4068	12	4061.546	0.015	-0.5	U			MIT		64Sp12	
		4063.4	2.4			-0.8	U			NDm		67Od01	
$^{13}\text{Li}(\gamma,2n)^{11}\text{Li}$		1470	310	110	70	-4.4	В					08Ak03	*
		1470	350			-3.9	В					10Jo07	*
		110	70				3					13Ko03	*
$^{11}B(t,p)^{13}B$		-233	4	-233.4	1.0	-0.1	U			Man		60Mu07	
		-233.4	1.0				2			Str		83An15	
13 C(d, α) 11 B		5169	6	5168.108	0.012	-0.1	U			CIT		51Li29	Y
- (-,,		5166	5			0.4	U			Ric		53Ph28	Y
		5165	10			0.3	U			MIT		64Sp12	
		5166.6	2.5			0.6	Ü			NDm		70Br23	
$^{11}B(^{3}He,p)^{13}C$		13221	10	13184.946	0.012	-3.6	C			Mex		64Ma.B	
D(110,p) C		13185.4	4.0	1510	0.012	-0.1	Ü			NDm		67Od01	
$^{11}B(^{3}He,n)^{13}N$		10183	11	10182.13	0.27	-0.1	U			NDIII		71Hs03	
$^{13}\text{Be}(\gamma, n)^{12}\text{Be}$		100	70	510	10	5.9	В					01Th01	*
De(7,11) De		60	10	310	10	45.0	В					08Ch07	*
		510	10			43.0	2					10Ko17	*
		400	30			3.7	B					14Ra07	
$^{12}C(n,\gamma)^{13}C$		4946.47	0.17	4946.3083	0.0005	-1.0	U					67Pr10	
$C(n,\gamma)$		4946.03	0.17	4940.3063	0.0003	1.9	U			Utr		68Sp01	
			0.13			-0.7				ILn		79Br25	7
		4946.51	0.024			-0.7 -0.5	U			ILII		80Wa24	Z
		4946.321 4946.337	0.024			-0.5 -0.9	U U			Utr		81 Va.B	*
												06Fi.A	*
$^{12}C(d,p)^{13}C$		4946.31	0.10	2721 74226	0.00023	0.0	U			Bdn			v
C(a,p)C		2727	6	2721.74226	0.00023	-0.9	0			Ric		51Kl55	Y
		2722	4			-0.1	U			Ric		53Fa18	Y
		2720	2			0.9	U			Bir		54El10	Y
		2725 2722	5 4			-0.7	U			Mex		61Ja23	
						-0.1	U			MIT		64Sp12	
		2722.3	0.6 0.8			-0.9	0			NDm		67Od01	
		2721.9				-0.2	U U			NDm		74Jo14	
13 C(p,d) 12 C		2721.80	0.50	2721 74226	0.00022	-0.1				Rez		90Pi05	*
13 C(d,t) 12 C		-2722	7	-2721.74226	0.00023	0.0	0			MIT		64Sp12	37
13C(a,t)12C		1311	3	1310.92070	0.00029	0.0	U			CIT			Y
		1311	6			0.0	U			Mex		64Ma.B	
		1311	6			0.0	U			MIT		64Sp12	
12 12		1310.9	0.7			0.0	U			NDm		67Od01	_
12 C(p, γ) 13 N		1943.24	0.32	1943.49	0.27	0.8	_					77Fr20	Z
12 12		1944.1	0.5			-1.2	_						Z
12 C(d,n) 13 N		-280.5	3.	-281.08	0.27	-0.2	U		10	Ric		49Bo67	Y
$^{12}C(p,\gamma)^{13}N$	ave.	1943.49	0.27	1943.49	0.27	0.0	1	100	$100^{-13}N$			average	
12 C(p, γ) 13 N i		-13121.62	0.18				2					73Hu07	
$^{13}\text{C}(^{14}\text{C},^{14}\text{O})^{13}\text{Be}^{p}$		-37020	50				2			Ber		92Os04	
$^{13}N(\beta^{+})^{13}C$		2222.3	3.8	2220.47	0.27	-0.5	U					54Ki23	
$^{13}C(p,n)^{13}N$		-3002.3	1.0	-3002.82	0.27	-0.5	o			Ric		61Be13	Z
		-3004.1	1.5			0.9	U			NRL		64Bo10	Z
		-3002.4	1.0			-0.4	U			Ric		66Bo20	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	•	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	•										
$^{13}O(\beta^+)^{13}N$	17500	200	17770	10	1.3	U					65Mc09
$*^{13}$ Li $(\gamma,2n)^{11}$ Li	Corresponds to exc										13Ko03 **
$*^{13}$ Li(γ ,2n) ¹¹ Li	Symmetrized from										GAu **
$*^{13}$ Be $(\gamma,n)^{12}$ Be	From scattering len										10Ko17 **
$*^{13}$ Be $(\gamma,n)^{12}$ Be	From scattering len										10Ko17 **
*	$a_s = -3.4(0.6)$ fm i				4						07Si24 **
$*^{12}C(n,\gamma)^{13}C$	$Q(\gamma)=1261.844(0.0)$										81Va.B **
$*^{12}C(n,\gamma)^{13}C$	$Q(\gamma)=1261.844(0.0)$										81Va.B **
$*^{12}C(d,p)^{13}C$	Estimated systemat	ic error 0.5 a	dded to statistical	l error 0.038	keV						AHW **
¹⁴ Be-u	42660	150	42890	140	1.0	2			TO2	1.5	88Wo09
$C D_2 - {}^{14}C H_2$	9311.498	0.006	9311.503	0.004	0.6	1	20	20 ¹⁴ C	B08	1.5	75Sm02
$C H_2 - V H_2$ $C H_2 - N$	12576.22	0.000	12576.06002	0.0004	-0.6	Ü	20	20 C	J2	2.5	69Na21
C 112-11	12576.086	0.10	12370.00002	0.00020	-0.0	U			B07	1.5	71Sm01
	12576.0598	0.0008			0.3	U			MI1	1.0	95Di08
C D-N	11027.815	0.000	11027.77365	0.00024		0			B07	1.5	71Sm01
C D-IV	11027.773	0.013	11027.77303	0.00024	0.1	U			B08	1.5	75Sm02
CH_4-ND	14124.17	0.007	14124.3464	0.0004	0.1	U			J6	2.5	76Ka50
C D ₂ -N H ₂	9479.68	0.13	9479.4873	0.0004	-0.6	U			J6	2.5	76Ka50
¹⁴ N-u	3074.014	0.13	3074.00446	0.0003	-0.0	U			OH1	2.5	93Ma.A
rv—u	3074.014	0.019	3074.00440	0.00021	-0.2	U			WA1	1.0	95Va38
$^{13}C H-^{14}N$	8105.86299	0.0018	8105.86299	0.00010	0.0	1	97	79 ¹³ C	MI3	1.0	04Ra33 *
$^{14}C H_2 - N D$	1716.269	0.00010	1716.270	0.00010	0.3	1	80	80 ¹⁴ C	B08	1.5	75Sm02
$^{14}O^{-14}N$	5522.702	0.003	5522.702	0.004	0.0	1	100	100 ¹⁴ O	MS1	1.0	15Va08
0- N ¹⁴ N(³ He, ⁹ Li) ⁸ C	-42214	50	-42225	18	-0.0	R	100	100 0	MSU	1.0	76Ro04
$^{11}B(\alpha,p)^{14}C$	-42214 789	30 17	-42223 783.759	0.013	-0.2 -0.3	U			MIT		
$^{14}\text{B}^{i}(\gamma,\text{d})^{12}\text{Be}$			165.139	0.013	-0.3				IVIII		64Sp12
$^{14}\text{C}(^{18}\text{O},^{20}\text{Ne})^{12}\text{Be}$	2515	20	15700.0	1.0	0.6	2			Cl-D		01Ta23 *
$^{14}\text{C}(d,\alpha)^{12}\text{Be}$	-15770	50	-15798.8	1.9	-0.6	U	89	89 ¹² B	ChR		74Ba15
\	361.8	1.4	361.3	1.3	-0.4	1		86 ¹² B ⁱ	Wis		56Do41 Z
$^{14}\text{C}(p,^{3}\text{He})^{12}\text{B}^{i}$	-30702.73	19.96	-30711	19	-0.4	1	86	90B.	MOLL		71Ne.A *
$^{14}\text{C}(p,t)^{12}\text{C}^{j}$	-32235.9	2.4	12574 22207	0.00024	0.0	2			MSU		78Ro08 *
14 N(d, α) 12 C	13579	6	13574.22287	0.00024	-0.8	U			Mex		64Ma.B
120/311 1421	13588	6	4550 02050	0.00026	-2.3	U			MIT		64Sp12
$^{12}C(^{3}He,p)^{14}N$	4779.0	1.4	4778.83059	0.00026	-0.1	U			CIT		62Ba26 Y
	4806	9			-3.0	C			Mex		64Ma.B
14377 1237	4776.3	1.5	22125.5	1.0	1.7	U	100	100 1237	NDm		67Od01
$^{14}N(p,t)^{12}N$	-22135.5	1.0	-22135.5	1.0	0.0	1	100	$100^{-12}N$	MSU		75No.A
$^{12}C(^{3}He,n)^{14}O$	-1146.86	0.72	-1147.880	0.025	-1.4	U			Nvl		61Bu04 *
	-1148.61	0.56			1.3	U			CIT		62Ba26 *
14 c / T + 8 p \ 13 p	-1149.01	0.48	20674	10	2.4	U			Mar		70Ro07 *
¹⁴ C(⁷ Li, ⁸ B) ¹³ Be	-39990	500	-38654	10	2.7	U			Dbn		83A120
$^{14}\text{C}(^{11}\text{B},^{12}\text{N})^{13}\text{Be}$	-39600	90	-39310	10	3.2	В			Dbn		98Be28
13 C(n, γ) 14 C	8177	2	8176.433	0.004	-0.3	U					67Th05
12 14	8176.61	0.24			-0.7	U			Bdn		06Fi.A
$^{13}C(d,p)^{14}C$	5946	4	5951.867	0.004	1.5	U			CIT		51Li29 Y
	5952	10			0.0	U			Nob		54Ah47 Y
	5951	10			0.1	U			Mex		64Ma.B
	5951	8			0.1	U			MIT		64Sp12
12 , 14	5951.85	0.54			0.0	U			Rez		90Pi05 *
13 C(p, γ) 14 N	7551.0	0.8	7550.56277	0.00009	-0.5	U					56Ma87 Z
12 2 14	7551.1	0.5			-1.1	U					63Bo07 *
$^{13}\text{C}(^{3}\text{He,d})^{14}\text{N}$	2048	14	2057.08833	0.00016	0.6	U			MIT		64Sp12
$^{14}N(^{3}He,\alpha)^{13}N$	10015	10	10024.24	0.27	0.9	U			Ric		59Yo25
14 F(p) 13 O	1560	40				3					10Go16
$^{14}\text{C}(\pi^-,\pi^+)^{14}\text{Be}$	-38100	170	-37960	130	0.8	R					84Gi09 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted v	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{14}\text{C}(^{14}\text{C}, ^{14}\text{O})^{14}\text{Be}^{p}$	-43440	60				2			Ber		95Bo10
¹⁴ C(⁷ Li, ⁷ Be) ¹⁴ B	-21499	30	-21506	21	-0.2	_			ChR		73Ba34
¹⁴ C(¹⁴ C, ¹⁴ N) ¹⁴ B	-21499 -20494	30	-21300 -20487	21	0.2						
						-	100	100 14D	Ors		81Na.A
¹⁴ C(⁷ Li, ⁷ Be) ¹⁴ B	ave. -21506	21	-21506	21	0.0	1	100	$100^{-14}B$			average
$^{14}C(\beta^{-})^{14}N$	155.2	0.5	156.476	0.004	2.6	U					54Ki23
	155.74	0.08			9.2	F					91Su09
	155.95	0.22			2.4	U					95Wi20
	156.27	0.14			1.5	U					00Ku25
$^{14}C(p,n)^{14}N$	-626.15	0.3	-625.870	0.004	0.9	U			Wis		56Sa06
	-625.88	0.09			0.1	U			Zur		73Hi.A
$^{14}N(p,n)^{14}O$	-5930.7	2.8	-5926.710	0.025	1.4	U			Ric		65Ku02
4 , ,	-5927.6	1.5			0.6	U			Har		73C112
	-5925.6	0.4			-2.8	F			Auc		77Wh01
	-5925.41	0.08			-16.3	F			Auc		81Wh03
	-5925.41	0.11			-11.8	F			Auc		98Ba83
	-5926.68	0.17			-0.2	U			Auc		03To03
¹⁴ N(³ He,t) ¹⁴ O			5162.056	0.025	-0.2 -2.1	F					
	-5161.3	0.8	-5162.956	0.025					Mun		77Vo02
¹³ C H ⁻¹⁴ N	Original 8105.86288(1				onization						HWJ153
$^{14}B^{i}(\gamma,d)^{12}Be$	Q(d)=Q(p+n)+2224.50)) keV							MMC162
$^{14}\text{C}(p,^{3}\text{He})^{12}\text{B}^{i}$	IT=12710(20); Q rebu										MMC129
•	energy and resolution	arguments	for T=1, not an	IAS							08Ch28
$^{14}C(p,t)^{12}C^{j}$	IT=27595.0(2.4); Q re	built									MMC121
$^{12}\text{C}(^{3}\text{He,n})^{14}\text{O}$	Originals T=1436.2(0.		5(0.7,Ba) 1437.	9(0.6,Ro) 1	espective	ly, recal	ibrated				MMC126
$^{13}C(d,p)^{14}C$	Estimated systematic				1	,,					AHW
$^{13}C(p,\gamma)^{14}N$	$E_p = 1747.06(0.53)$ to 2			01101 0.20							Ens01a
$^{14}\text{C}(\pi^-,\pi^+)^{14}\text{Be}$	Original error 160 inci			acertointy							GAu
$^{14}C(\beta^-)^{14}N$	C			iccitainty							91No07
	F: find 17 keV neutrin		reference								
¹⁴ N(p,n) ¹⁴ O	F: withdrawn by auth										81Wh03
¹⁴ N(p,n) ¹⁴ O	Authors recalibrated 7		atomic effects								81Wh03
$^{14}N(p,n)^{14}O$	F · withdrawn by outh	or.									000.02
	F: withdrawn by auth										
$^{14}N(p,n)^{14}O$	Original T=6353.08(0		ated to T=6352.	99(0.12) b	y author						
$^{14}N(p,n)^{14}O$.07) recalibr	ated to T=6352.	99(0.12) b	y author						98Ba83
$^{14}N(p,n)^{14}O$	Original T=6353.08(0	.07) recalibr		99(0.12) b	y author						98Ba83
$^{14}N(p,n)^{14}O$ $^{14}N(^{3}He,t)^{14}O$	Original T=6353.08(0 F: withdrawn by authF: rejected in reference	.07) recalibr or ee of same gr	roup			1	61	61 ¹⁵ N	MII	1.0	98Ba83 03To03 09Fa15
$e^{14}N(p,n)^{14}O$ $e^{14}N(^3He,t)^{14}O$ $e^{14}N(^3He,t)^{14}O$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119	.07) recalibror ee of same gr	roup 21817.9114	0.0006	-0.6	1 1	61 14	61 ¹⁵ N 13 ¹⁵ N	MI1	1.0	98Ba83 03To03 09Fa15
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H $_{3}$ $^{-15}$ N	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979	0.0008 0.00017	21817.9114 23366.1978	0.0006 0.0006	-0.6 -0.1	1	61 14	61 ¹⁵ N 13 ¹⁵ N	MI1 MI1	1.0	98Ba83 03To03 09Fa15 95Di08 95Di08
¹⁴ N(p,n) ¹⁴ O ¹⁴ N(³ He,t) ¹⁴ O C D H- ¹⁵ N C H ₃ - ¹⁵ N ¹⁵ F-u	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477	.07) recalibror ee of same gr 0.0008 0.0017	21817.9114 23366.1978 17785	0.0006 0.0006 15	-0.6 -0.1 1.4	1 F			MI1	1.0 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A
¹⁴ N(p,n) ¹⁴ O ¹⁴ N(³ He,t) ¹⁴ O C D H- ¹⁵ N C H ₃ - ¹⁵ N ¹⁵ F-u	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29	0.007) recalibror or oe of same gr 0.0008 0.0017 86 0.11	21817.9114 23366.1978	0.0006 0.0006	-0.6 -0.1 1.4 -1.6	1 F U			MI1 C5	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01
$^{14}N(p,n)^{14}O$ $^{14}N(^3He,t)^{14}O$ $C D H^{-15}N$ $C H_3^{-15}N$ $^{15}F^{-}u$ $^{14}N D^{-15}N H$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780	0.000 recalibror e of same gr 0.0008 0.0017 86 0.11 0.008	21817.9114 23366.1978 17785 9241.8514	0.0006 0.0006 15 0.0007	-0.6 -0.1 1.4 -1.6 5.9	1 F U B			MI1 C5 B08	1.0 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02
$^{14}N(p,n)^{14}O$ $^{14}N(^3He,t)^{14}O$ $C D H^{-15}N$ $C H_3^{-15}N$ $^{15}F^{-}u$ $^{14}N D^{-15}N H$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966	0.000 recalibror e of same group of 0.0008 0.0017 86 0.11 0.008 6	21817.9114 23366.1978 17785	0.0006 0.0006 15	-0.6 -0.1 1.4 -1.6 5.9 -0.1	1 F U B U			MI1 C5 B08 CIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26
$^{14}N(p,n)^{14}O$ $^{14}N(^3He,t)^{14}O$ $C D H^{-15}N$ $C H_3^{-15}N$ $^{15}F^{-}u$ $^{14}N D^{-15}N H$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962	0.0008 0.0008 0.0017 86 0.11 0.008 6 4	21817.9114 23366.1978 17785 9241.8514	0.0006 0.0006 15 0.0007	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9	1 F U B U			MI1 C5 B08 CIT Bir	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02
$^{14}N(p,n)^{14}O$ $^{14}N(^3He,t)^{14}O$ $C D H^{-15}N$ $C H_3^{-15}N$ $^{15}F^{-}u$ $^{14}N D^{-15}N H$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954	0.000 recalibror e of same group of 0.0008 0.0017 86 0.11 0.008 6	21817.9114 23366.1978 17785 9241.8514	0.0006 0.0006 15 0.0007	-0.6 -0.1 1.4 -1.6 5.9 -0.1	1 F U B U			MI1 C5 B08 CIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H $_{3}$ $^{-15}$ N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954	0.0008 0.0008 0.0017 86 0.11 0.008 6 4	21817.9114 23366.1978 17785 9241.8514	0.0006 0.0006 15 0.0007	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9	1 F U B U			MI1 C5 B08 CIT Bir	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H $_{3}$ $^{-15}$ N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962	0.0008 0.0008 0.0017 86 0.11 0.008 6 4	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4	1 F U B U U U			MI1 C5 B08 CIT Bir Mex	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H $_{3}$ $^{-15}$ N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1	1 F U B U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H $_{3}$ $^{-15}$ N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675	0.0008 0.0008 0.00017 86 0.11 0.008 6 4 8 7	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4	1 F U B U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F – u 14 N D – 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1	1 F U B U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C 12 C(α ,n) 15 O 15 N(d, α) 13 C 15 Ne(2p) 13 O	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4	1 F U B U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 N 15 P 11 H 15 N(p, α) 12 C 12 C(α ,n) 15 O 15 N(d, α) 13 C 15 Ne(2p) 13 O 15 Be(γ ,n) 14 Be	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66 100	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4	1 F U B U U U U U U U U U 3 3 3			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C 12 C(α ,n) 15 O 15 N(d, α) 13 C 15 Ne(2p) 13 O 15 Be(γ ,n) 14 Be 14 C(d,p) 15 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66 100 0.8	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F - u 14 N D - 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C 15 Ne(2p) 13 O 15 Be(γ,n) 14 Be 14 C(d,p) 15 C 14 C(p,γ) 15 N ^{i}	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66 100 0.8 3.5	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 0.1 1.4 -0.3	1 F U B U U U U U U U U U 2 3 3 2 2 2 2 2			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99
$^{14}N(p,n)^{14}O$ $^{14}N(^3He,t)^{14}O$ $^{14}N(^3He,t)^{14}O$ $^{14}N(^3He,t)^{14}O$ $^{15}N(^{15}P-u)^{15}N$ $^{15}F-u$ $^{14}ND^{-15}NH$ $^{15}N(p,\alpha)^{12}C$ $^{12}C(\alpha,n)^{15}O$ $^{15}N(d,\alpha)^{13}C$ $^{15}Ne(2p)^{13}O$ $^{15}Be(\gamma,n)^{14}Be$ $^{14}C(d,p)^{15}C$ $^{14}C(p,\gamma)^{15}N^{i}$	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8 10833.2	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66 100 0.8	21817.9114 23366.1978 17785 9241.8514 4965.4937	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 0.1 1.4 -0.3	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99 68Gr14
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F - u 14 N D - 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C 15 Ne(2p) 13 O 15 Be(γ,n) 14 Be 14 C(d,p) 15 C 14 C(p,γ) 15 N ^{i}	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8	0.0008 0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 66 100 0.8 3.5	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 0.1 1.4 -0.3	1 F U B U U U U U U U U U 2 3 3 2 2 2 2 2			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99
14 N(p,n) 14 O 14 N(3 He,t) 14 O C D H $^{-15}$ N C H 3 $^{-15}$ N 15 F $^{-1}$ u 14 N D $^{-15}$ N H 15 N(p, α) 12 C	Original T=6353.08(0 F: withdrawn by auth F: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8 10833.2	0.0008 0.0017 86 0.11 0.008 6 4 8 7 12 9 6 666 100 0.8 3.5 0.6	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 0.1 1.4 -0.3	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99 68Gr14
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F - u 14 N D - 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C 15 Ne(2p) 13 O 15 Be(γ,n) 14 Be 14 C(d,p) 15 C 14 C(p,γ) 15 Ni	Original T=6353.08(0 F: withdrawn by authors: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8 10833.2 10833.1 10833.5	0.007) recalibror or ee of same groups of the of same groups of the office of same groups of the office of same groups of the office of the of	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4 -0.3	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT Wis	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 63Ne05 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99 68Gr14 74Sp04 80Is02
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F - u 14 N D - 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C 15 Ne(2p) 13 O 15 Be(γ,n) 14 Be 14 C(d,p) 15 C 14 C(p,γ) 15 Ni	Original T=6353.08(0 F: withdrawn by authors: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8 10833.2 10833.1 10833.5 10833.314	0.007) recalibror or ee of same groups of the of same groups of the office of same groups of the office of same groups of the office of the of	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 -0.3 0.1 1.4 -0.3	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT Wis	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99 68Gr14 74Sp04 80Is02 97Ju02
14 N(p,n) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 14 N(3 He,t) 14 O 15 N 15 F - u 14 N D - 15 N H 15 N(p,α) 12 C 12 C(α,n) 15 O 15 N(d,α) 13 C 15 Ne(2p) 13 O 15 Be(γ,n) 14 Be 14 C(d,p) 15 C 14 C(p,γ) 15 N ^{i}	Original T=6353.08(0 F: withdrawn by authors: rejected in reference 21817.9119 23366.1979 17477 9242.29 9241.780 4966 4962 4954 4965 -8503 7675 7689 2522 1800 -1006.5 -1407.8 10833.2 10833.1 10833.5	0.007) recalibror or ee of same groups of the of same groups of the office of same groups of the office of same groups of the office of the of	21817.9114 23366.1978 17785 9241.8514 4965.4937 -8502.0 7687.2360	0.0006 0.0006 15 0.0007 0.0006	-0.6 -0.1 1.4 -1.6 5.9 -0.1 0.9 1.4 0.1 1.4 -0.3	1 F U B U U U U U U U U U U U U U U U U U			MI1 C5 B08 CIT Bir Mex MIT Tal Mex MIT Wis	1.0 2.5 2.5	98Ba83 03To03 09Fa15 95Di08 95Di08 01Ze.A 71Ke01 75Sm02 51Li26 53Co02 64Ma.B 64Sp12 14Wa09 13Sn02 56Do41 59Fe99 68Gr14 74Sp04 80Is02

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{14}N(d,p)^{15}N$	8629	11	8608.7292	0.0006	-1.8	U			CIT		52Mi54
14(u,p) 14	8614	6	0000.7292	0.0000	-0.9	U			Mex		64Ma.B
	8623	3			-0.9 -4.8	В			MIT		64Sp12
	8608.83	0.50			-0.2	U			Rez		90Pi05
$N(p,\gamma)^{15}O$		0.30	7296.8	0.5			30	30 ¹⁵ O	CIT		72Ne05
N(p,γ) ~ U	7297.1				-0.4	1	30	30 **0			
$N(^3He,d)^{15}O$	1803	10	1803.3	0.5	0.0	U			Ric		59Yo25
	1802	15			0.1	U			Man		60Fo01
$^{5}F(p)^{14}O$	1410	150	1270	14	-0.9	O					03Le26
	1510	110			-2.2	U					03Pe23
	1490	130			-1.7	U					04Go15
	1560	130			-2.2	U					04Le12
	1230	50			0.8	U					05Gu25
	1270	14				3					16De15
$^{5}C(\beta^{-})^{15}N$	9810	30	9771.7	0.8	-1.3	U					59A106
$^{5}O(\beta^{+})^{15}N$	2745	5	2754.2	0.5	1.8	U					57Ki22
$^{5}N(p,n)^{15}O$	-3541.7	0.9	-3536.5	0.5	5.8	В					58Jo28
(F)=-/	-3535.1	1.0			-1.4	_			CIT		72Je02
	-3537.6	0.8			1.4	_			Ç11		72Sh08
	ave. -3536.6	0.6			0.2	1	70	70 ¹⁵ O			average
F—u	F : results distrusted (se		nd 19Ma)		0.2	1	70	70 0			·
	F : results distrusted (se	e aiso ina a	ilid (Vig)								
4 C(p, γ) 15 N i	From a parametrized fit										MMC122×
${}^{4}N(n,\gamma)^{15}N$	Original error 0.0005 in										GAu ×
$^{4}N(d,p)^{15}N$	Estimated systematic er			or 0.061 ke	V						AHW ×
5 F(p) 14 O	Symmetrized from 1450)(+160–100)	keV								04Go15 *
C H ₂ D–O	34837.406	0.033	34837.22300	0.00028	2.7	В			B07	1.5	71Sm01
112 D-0			34637.22300	0.00028							
7.D. O	34837.202	0.020	22200 02662	0.00020	0.7	U			B08	1.5	75Sm02
$^{\rm C}$ $^{\rm D}_2$ $^{\rm -O}$	33289.129	0.033	33288.93663	0.00029		В			B07	1.5	71Sm01
	33289.061	0.038			-2.2	U			B07	1.5	71Sm01
	33288.940	0.019			-0.1	U			B08	1.5	75Sm02
$C_4 - O_3$	15256.131	0.018	15256.1412	0.0005	0.6	O			WA1	1.0	92Va.A
	15256.086	0.081			0.3	U			OH1	2.5	93Ma.A
	15256.121	0.009			2.2	O			WA1	1.0	95Va38
	15256.1425	0.0008			-1.6	o			WA1	1.0	01Va33
	15256.1415	0.0005			-0.6	o			WA1	1.0	03Va.A
	15256.14129	0.00054									UJ va.A
					-0.2	1	93	93 ¹⁶ O	WA1	1.0	06Va22
H_4-O	36387.55	0.8	36385.5094	0.0004			93	93 ¹⁶ O	WA1	1.0	06Va22
C H ₄ −O	36387.55 36386.01	0.8 0.24	36385.5094	0.0004	-1.0	U	93	93 ¹⁶ O	WA1 J1	1.0 2.5	06Va22 68Ma45
C H ₄ -O	36386.01	0.24	36385.5094	0.0004	$-1.0 \\ -0.8$	U U	93	93 ¹⁶ O	WA1 J1 J2	1.0 2.5 2.5	06Va22 68Ma45 69Na21
C H ₄ -O	36386.01 36385.644	0.24 0.036	36385.5094	0.0004	-1.0 -0.8 -2.5	U U U	93	93 ¹⁶ O	WA1 J1 J2 B07	1.0 2.5 2.5 1.5	06Va22 68Ma45 69Na21 71Sm01
C H ₄ -O	36385.644 36385.5062	0.24 0.036 0.0013	36385.5094	0.0004	-1.0 -0.8 -2.5 2.4	U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1	1.0 2.5 2.5 1.5 1.0	06Va22 68Ma45 69Na21 71Sm01 95Di08
CH ₄ -O	36385.644 36385.5062 36385.5073	0.24 0.036 0.0013 0.0019	36385.5094	0.0004	-1.0 -0.8 -2.5 2.4 1.1	U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1	1.0 2.5 2.5 1.5 1.0 1.0	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08
	36386.01 36385.644 36385.5062 36385.5073 36385.5060	0.24 0.036 0.0013 0.0019 0.0022			-1.0 -0.8 -2.5 2.4 1.1 1.5	U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1	1.0 2.5 2.5 1.5 1.0 1.0	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08
	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362	0.24 0.036 0.0013 0.0019 0.0022 0.027	36385.5094 -5085.38040	0.0004	-1.0 -0.8 -2.5 2.4 1.1 1.5 -0.3	U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1	1.0 2.5 2.5 1.5 1.0 1.0 1.0 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A
6O-u	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011	-5085.38040	0.00017	-1.0 -0.8 -2.5 2.4 1.1 1.5 -0.3 -0.2	U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A
⁶ O−u ⁴ C H ₂ −O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014	-5085.38040 23977.433	0.00017 0.004	-1.0 -0.8 -2.5 2.4 1.1 1.5 -0.3 -0.2 1.0	U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02
⁶ O-u ⁴ C H ₂ -O I D-O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	-1.0 -0.8 -2.5 2.4 1.1 1.5 -0.3 -0.2 1.0 0.2	U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02
⁶ O−u ⁴ C H ₂ −O J D−O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20	-5085.38040 23977.433	0.00017 0.004	-1.0 -0.8 -2.5 2.4 1.1 1.5 -0.3 -0.2 1.0 0.2 -0.4	U U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21
⁶ O-u ⁴ C H ₂ -O I D-O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \end{array}$	U U U U U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5 1.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21 71Sm01
⁶ O-u ⁴ C H ₂ -O I D-O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11233.43	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \end{array}$	U U U U U U U U U U U U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 M11 M11 OH1 B08 B08 J2 B07 J6	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5 2.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21 71Sm01 76Ka50
⁶ O-u ⁴ C H ₂ -O I D-O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \\ -0.4 \end{array}$	U U U U U U U U U U U U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07 J6 CR1	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5 1.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21 71Sm01 76Ka50 89Sh10
⁵ O-u ¹ C H ₂ -O I D-O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11233.43	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \end{array}$	U U U U U U U U B B U	93		WA1 J1 J2 B07 M11 M11 OH1 B08 B08 J2 B07 J6	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 1.5 2.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21 71Sm01 76Ka50
⁶ O−u ⁴ C H ₂ −O J D−O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11259	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21	-5085.38040 23977.433 22261.16298	0.00017 0.004 0.00024	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \\ -0.4 \end{array}$	U U U U U U U U U U U U U U U U U U U	93	93 ¹⁶ O	WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07 J6 CR1	1.0 2.5 2.5 1.5 1.0 1.0 2.5 2.5 1.5 2.5 1.5 2.5 2.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 69Na21 71Sm01 76Ka50 89Sh10
⁶ O−u ⁴ C H ₂ −O N D−O N ₂ −C O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11233.43 11259 11233.3909 11233.38932	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21 27 0.0022 0.0022	-5085.38040 23977.433 22261.16298 11233.3893	0.00017 0.004 0.00024 0.0004	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \\ -0.4 \\ -0.7 \\ 0.0 \end{array}$	U U U U U U U U U U U U U U U U U U U			WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07 J6 CR1 MI1 MI1	1.0 2.5 2.5 1.5 1.0 1.0 1.0 2.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 69Na21 71Sm01 76Ka50 89Sh10 95Di08
6 O-u 4 C H ₂ -O N D-O N ₂ -C O	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11259 11233.3909 11233.38932 -66020	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21 27 0.0022 0.00042	-5085.38040 23977.433 22261.16298 11233.3893	0.00017 0.004 0.00024 0.0004	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \\ -0.4 \\ -0.7 \\ 0.0 \\ 1.5 \end{array}$	U U U U U U U U U U U U U U U U U U U			WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07 J6 CR1 MI1 MI1 Brk	1.0 2.5 2.5 1.5 1.0 1.0 1.0 2.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 75Sm02 69Na21 71Sm01 76Ka50 89Sh10 95Di08 04Th17 78Ke06
	36386.01 36385.644 36385.5062 36385.5073 36385.5060 -5085.362 -5085.3798 23977.413 22261.160 11233.57 11233.543 11233.43 11259 11233.3909 11233.38932	0.24 0.036 0.0013 0.0019 0.0022 0.027 0.0011 0.014 0.013 0.20 0.025 0.21 27 0.0022 0.0022	-5085.38040 23977.433 22261.16298 11233.3893	0.00017 0.004 0.00024 0.0004	$\begin{array}{c} -1.0 \\ -0.8 \\ -2.5 \\ 2.4 \\ 1.1 \\ 1.5 \\ -0.3 \\ -0.2 \\ 1.0 \\ 0.2 \\ -0.4 \\ -4.1 \\ -0.1 \\ -0.4 \\ -0.7 \\ 0.0 \end{array}$	U U U U U U U U U U U U U U U U U U U			WA1 J1 J2 B07 MI1 MI1 OH1 B08 B08 J2 B07 J6 CR1 MI1 MI1	1.0 2.5 2.5 1.5 1.0 1.0 1.0 2.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5	06Va22 68Ma45 69Na21 71Sm01 95Di08 95Di08 95Di08 93Ma.A 16Ho.A 75Sm02 69Na21 71Sm01 76Ka50 89Sh10 95Di08 04Th17

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	Ţ		. .								
16 Be(γ ,2n) 14 Be	1350	100				3					12Sp02
$^{14}C(^{14}C,^{12}N)^{16}B$	-48380	60	-48411	25	-0.5	O		16	Ber		95Bo10
	-48378	60			-0.5	1	17	$17^{-16}B$	Ber		00Ka21
$^{14}C(t,p)^{16}C$	-3015	8	-3013	4	0.2	2			MSU		77Fo09
14 2 16	-3013	4			-0.1	2			LAl		78Se04
$^{14}\text{C}(^{3}\text{He,p})^{16}\text{N}$	4983	4	4978.2	2.3	-1.2	R			BNL		66Ga08
$^{14}\text{C}(^{3}\text{He,p})^{16}\text{N}^{i}$	-4951	7				2					68He03 *
$^{14}N(t,p)^{16}N$	4853	10	4840.3	2.3	-1.3	U		16 .	Ald		66He10
$^{14}\text{C}(^{3}\text{He,n})^{16}\text{O}^{j}$	-8100	8	-8104	4	-0.5	1	23	23 $^{16}O^{j}$			70Ad01 *
$^{16}O(d,\alpha)^{14}N$	3110.	3.5	3110.38807	0.00024	0.1	U			Wis		52Cr30 Y
	3119	5			-1.7	U			Ric		53Fa18 Y
	3110	6			0.1	U			Mex		64Ma.B
	3113	6			-0.4	U			MIT		64Sp12
$^{14}\text{N}(^{3}\text{He,p})^{16}\text{O}^{i}$	2444	6	2447	4	0.5	1	54	54 ¹⁶ O ⁱ			64Br08 *
14 N(d, γ) 16 O ^{j}	-1986.3	4.4	-1985	4	0.3	1	77	77 $^{16}O^{j}$			72Ne10
$^{14}N(^{3}He,n)^{16}F$	-963	40	-957	8	0.2	U			LAl		65Za01
	-970	15			0.9	R			Har		68Ad03
16 Ne(2p) 14 O	1350	80	1401	20	0.6	U					08Mu13
$^{16}B(\gamma,n)^{15}B$	85	15	83	15	-0.1	1	95	$83^{-16}B$			09Le02
$^{15}N(d,p)^{16}N$	286	12	264.3	2.3	-1.8	U			CIT		55Pa50 Y
	269	10			-0.5	U			Pit		57Wa01 Y
	259	6			0.9	2			Mex		64Ma.B
	267	8			-0.3	2			MIT		64Sp12
	270	10			-0.6	U			Pen		66He10
15 N(p, γ) 16 O ⁱ	-665.3	6.6	-669	4	-0.5	1	46	$46^{-16}O^{i}$			57Ha99
$^{16}{\rm O}(^{3}{\rm He},\alpha)^{15}{\rm O}$	4920	10	4913.7	0.5	-0.6	U			Ald		59Hi68 Y
	4907	7			1.0	U			Ric		59Yo25 Y
$^{16}N(\beta^{-})^{16}O$	10400	20	10420.9	2.3	1.0	U					59Al06
$^{16}O(^{3}He,t)^{16}F$	-15430	10	-15436	8	-0.6	2			KVI		80Ja.A
$^{16}\text{O}(\pi^+,\pi^-)^{16}\text{Ne}$	-27766	45	-27702	20	1.4	2					80Bu15
$*^{16}O(^{3}He, ^{6}He)^{13}O$	M-A increased by	7 for more	recent calibrator	$M - A(^{9}C) = 2$	28913(2)						AHW **
$*^{16}O(^{3}He, ^{6}He)^{13}O$	Recalibrated using										AHW **
$*^{14}C(^{3}He,p)^{16}N^{i}$	IT=9928(7), Q rebu										MMC121**
$*^{14}C(^{3}He,n)^{16}O^{j}$	IT=22717(8), Q rel	ouilt with A	me1964								MMC121**
$*^{14}N(^{3}He,p)^{16}O^{i}$	IT=12798(6), Q rel	ouilt									MMC121**
¹⁷ O ₂ - ²⁸ Si D ₃	20060 2557	0.0014	20060 2560	0.0012	0.2	1	84	82 ¹⁷ O	E01	1.0	1034.20
$^{17}B-u$	-20968.3557 45970	0.0014	-20968.3560	0.0013	-0.2	1	84	82 10	FS1	1.0	10Mo29
- B−u	46830	860	46930	220	0.7	U			GA1 TO2	1.5	87Gi05 88Wo09
		180			0.4	2				1.5	
¹⁷ Ne- ²² Ne _{.773}	47127	250	24373.3	0.4	-0.5 0.0	2 1	100	100 ¹⁷ Ne	GA3	1.5 1.0	91Or01 08Ge07
¹⁷ Na-u	24373.27 37760	0.38 430	24373.3	0.4	0.0	2	100	100 "Ne	MA8	2.5	S-u148
¹⁷ O- ¹⁶ O H			2607.9052	0.0007	0.6		10	18 ¹⁷ O	EC1		
170/ -14C	-3607.8961	0.0016		0.0007	0.6	1	19	18 170	FS1	1.0	10Mo29
$^{17}O(n,\alpha)^{14}C$	1817.2	3.5	1817.745	0.004	0.2	U			****		01Wa50
$^{14}C(\alpha,n)^{17}O$	-1819.07	2.0	-1817.745	0.004	0.7	U			Wis		56Sa06 Y
$^{17}O(p,\alpha)^{14}N$	1200	17	1191.8748	0.0007	-0.5	U			MIT		64Sp12
$^{17}O(d,\alpha)^{15}N$	9818	12	9800.6040	0.0009	-1.4	U			Nob		54Pa39 Y
$^{16}\mathrm{O}(\mathrm{n},\gamma)^{17}\mathrm{O}$	4143.24	0.23	4143.0793	0.0008	-0.7	U			D.		77Mc05 Z
160(4.)170	4143.06	0.13	1010 5122	0.0007	0.1	U			Bdn		06Fi.A
$^{16}O(d,p)^{17}O$	1915	8	1918.5133	0.0006	0.4	U			Ric		51Kl55 Y
	1918	4			0.1	U			MIT		57Br82
	1918	3			0.2	U			Mex		61Ja23
	1920	3			-0.5	U			MIT		64Sp12
$^{16}\mathrm{O}(\mathrm{n},\gamma)^{17}\mathrm{O}^i$	1918.74 -6935.70	0.5			-0.5	U			Rez		90Pi05 *
¹⁶ O(π,γ) ¹⁷ E		0.17	(00.27	0.25	0.2	2			CIT		81Hi01 *
$^{16}\mathrm{O}(\mathrm{p},\gamma)^{17}\mathrm{F}$	600.35	0.28	600.27	0.25	-0.3	_			CIT		75Ro05

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	P***	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.		n infl.	Lab	<i>F</i>	Referenc	e
$^{16}O(d,n)^{17}F$		-1626	4	-1624.30	0.25	0.4	U				Ric		51Bo49	Y
16 17		-1624.6	0.5			0.6	_			17	Nvl		60Bo21	Z
$^{16}O(p,\gamma)^{17}F$	ave.	600.27	0.25	600.27	0.25	0.0	1	100	100	¹⁷ F			average	
$^{16}\mathrm{O}(\mathrm{p},\gamma)^{17}\mathrm{F}^i$		-10592.8	1.9				2						76Hi09	
$^{16}\text{O}(^{3}\text{He},2\text{n})^{17}\text{Ne}$		-22420	190	-22448.9	0.4	-0.2	U				BNL		67Es02	
$^{17}\text{F}(\beta^+)^{17}\text{O}$		2770	6	2760.47	0.25	-1.6	U						54Wo23	
$*^{16}O(d,p)^{17}O$		ated systematic e											AHW	**
$*^{16}\mathrm{O}(\mathrm{n},\gamma)^{17}\mathrm{O}^{i}$	Origin	Q = -6934.410	(0.17) does n	ot match origina	al T=7373.	31(0.18)							MMC12	9**
$C D_3 - {}^{18}O$		43145.72216	0.00088	43145.7215	0.0007	0.7					FS1	1.0	09Re15	.1.
$CD_3 - C$		43145.72116	0.00088	43143.7213	0.0007	0.3	_				FS1	1.0	09Re15	*
	ave.	43145.72110	0.00130			-0.5	1	87	84	¹⁸ O	1.91	1.0	average	*
$C_3 - {}^{18}O_2$	avc.	1680.7695	0.0038	1680.7743	0.0015	1.3	1	16	16	¹⁸ O	FS1	1.0	09Re15	
$^{18}F-u$		943	85	937.3	0.0013	0.0	U	10	10	O	151	2.5	92Ge08	
¹⁸ Na-u		25969	54	26880	100	6.7	F					2.5	01Ze.A	*
114 4		26882	183	20000	100	0.0	1	30	30	¹⁸ Na	1.0	1.0	04Ze05	*
18 Ne $-^{22}$ Ne $_{.818}$		12755.68	0.39	12755.7	0.4	0.0	1	100		¹⁸ Ne	MA8		04B120	
¹⁴ C(⁷ Li, ³ He) ¹⁸ N		-10170	60	-10117	19	0.9	Ü	100	100	110	Str	1.0	80Kr.A	
$^{18}O(^{48}Ca,^{51}V)^{15}B$		-21760	50	-21762	21	0.0	_				Hei		78Bh02	
O(Cu, 1) B		-21768	25	21702	21	0.2	_				Can		83Ho08	
	ave	-21766	22			0.2	1	88	88	^{15}B	Cun		average	
$^{18}O(p,\alpha)^{15}N$		3954	9	3979.8007	0.0009	2.9	Ü	00	00		Nob		54Mi60	Y
O(p,or) 1.		3964	10	2777.0007	0.000	1.6	Ü				Mex		64Ma.B	•
$^{18}O(d,\alpha)^{16}N$		4235	7	4244.1	2.3	1.3	R				CIT		55Pa50	Z
- (-,)		4219	20			1.3	U				Mex		64Ma.B	
		4249	15			-0.3	Ü				Phi		66He10	
		4244	4			0.0	R				MIT		67Sp09	Z
$^{16}O(^{3}He,p)^{18}F$		2033	5	2032.1	0.5	-0.2	U				Ric		59Yo25	
-		2055	5			-4.6	C				Mex		64Ma.B	
$^{16}O(^{3}He,n)^{18}Ne$		-3205	13	-3194.7	0.4	0.8	U				Nvl		61Du02	Y
		-3198	6			0.5	U				Ald		61To03	Y
		-3194.0	1.5			-0.5	U						94Ma14	
18 B $(\gamma,n)^{17}$ B		5	5				3						10Sp02	*
¹⁸ O(⁴⁸ Ca, ⁴⁹ Ti) ¹⁷ C		-17465	35	-17476	17	-0.3	2				Hei		77No08	
		-17479	20			0.2	2				Can		82Fi10	
¹⁸ O(²⁰⁷ Pb, ²⁰⁸ Po) ¹⁷ C		-26870	220	-26797	17	0.3	U				ChR		79Ba31	
$^{18}O(t,\alpha)^{17}N$		3872	15				2				LAl		60Ja13	
$^{17}O(n,\gamma)^{18}O$		8043.5	1.0	8045.3693	0.0010	1.9	U				Bdn		06Fi.A	
$^{17}O(d,p)^{18}O$		5820	10	5820.8033	0.0009	0.1	U				Nob		54Ah37	Y
17 19		5820	10			0.1	U				Man		65Mo16	
$^{17}\mathrm{O}(\mathrm{p},\gamma)^{18}\mathrm{F}$		5603	3	5607.1	0.5	1.4	U			10	Str		73Se03	
10 17		5606.2	0.6			1.5	1	60	60	^{18}F	CIT		75Ro05	Z
18 Na(p) 17 Ne		1270	170	1250	90	-0.1	_						04Ze05	
		1230	150			0.1	-			10			12Mu05	
10	ave.	1250	110			0.0	1	70	70	¹⁸ Na			average	
$^{18}O(\pi^{-},\pi^{+})^{18}C$		-26712	150	-26720	30	-0.1	U				_		78Se07	
¹⁸ O(⁴⁸ Ca, ⁴⁸ Ti) ¹⁸ C		-21434	30	24.420	20		2				Can		82Fi10	
19 19		-21331	300	-21430	30	-0.3	U				Ors		82Na04	
$^{18}N(\beta^{-})^{18}O$		13860	400	13896	19	0.1	U				ъ.		64Ch19	
$^{18}O(d,2p)^{18}N$		-15270	100	-15338	19	-0.7	U				Brk		78De.A	
$^{18}O(t,^{3}He)^{18}N$		-13917	60	-13877	19	0.7	U				LAl		69St07	*
¹⁸ O(⁷ Li, ⁷ Be) ¹⁸ N		-14761	20	-14758	19	0.2	2				Can		83Pu01	
$^{18}O(^{14}C,^{14}N)^{18}N$		-13720	50	-13740	19	-0.4	2				Ors		80Na14	
$^{18}\text{F}(\beta^+)^{18}\text{O}$		1657	2	1655.9	0.5	-0.5	U						64Ho28	
$^{18}O(p,n)^{18}F$		-2451	4	-2438.3	0.5	3.2	В			10	Wis		50Ri59	Y
		-2436.97	0.73			-1.8	1	40	40	¹⁸ F	Nvl		64Bo13	Z
		-2440.2	2.8			0.7	U						67Pr04	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referen	ce
18 Ne(β^{+}) 18 F	4438	9	4444.5	0.6	0.7	U					63Fr10	
$*C D_3 - {}^{18}O$	Respectively CD ₃ ⁺ /					_					GAu	**
* ¹⁸ Na-u	F: results distrusted			ea macpene							GAu	**
$*^{18}$ Na $-u$	Other interpretation			-2/190(16	n) keV						04Ze05	
* $^{18}B(\gamma,n)^{17}B$	Decay energy <101										10Sp02	
* $B(\gamma, II)$ B * $^{18}O(t, ^{3}He)^{18}N$	From $Q = 14038(30)$					koV						
* 'O(t, 'He) 'N	110III Q =14038(30), remicipiete	u as manny to (2) ievei ai	114.90	KC V					Elisyo7	**
²⁸ Si H ₃ -C ¹⁹ F	1998.4687	0.0022	1998.4688	0.0010	0.1	1	22	15 ¹⁹ F	FS1	1.0	09Re15	
¹⁹ B-u	64166	376	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0010	0.1	2		10 1	GA8	1.5	12Ga45	
¹⁹ C-u	34680	260	34800	110	0.3	0			TO1	1.5	86Vi09	
c u	35370	450	2.000	110	-0.8	Ü			GA1	1.5	87Gi05	
	35180	130			-2.0	0			TO2	1.5	88Wo09)
	35506	253			-1.9	Ü			GA3	1.5	91Or01	
$C D_4 - H^{19}F$	50178.88	0.05	50178.9173	0.0009	0.5	U			B08	1.5	75Sm02	,
¹⁹ Mg-u	35470	270	34170	50	-1.9	F			Воо	2.5	01Ze.A	
$^{13}CD_3-^{19}F$	47257.00669	0.00091	47257.0067	0.0008	0.0	1	87	85 ¹⁹ F	FS1	1.0	09Re15	
$^{19}\text{Ne}-^{22}\text{Ne}_{.864}$	9323.92	0.33	9324.17	0.0008	0.8	2	07	0.5	MA8	1.0	04B120	
1NC- 1NC.864	9323.92	0.33	754.17	0.17	-0.5	2			MA8		04B120 08Ge07	
19 F(p, α) 16 O			0112 6122	0.0000						1.0		
$\Gamma(p,\alpha)$	8115 8115	10 10	8113.6122	0.0009	$-0.1 \\ -0.1$	U U			CIT CIT		50Ch53 57Yo04	
	8122	9			-0.1 -0.9	U			MIT		64Sp12	
$^{17}O(t,p)^{19}O$	3524	7	3519.2	2.6	-0.9 -0.7						65Mo19	
						R			Man			
19 F(d, α) 17 O	10060	12	10032.1254	0.0010	-2.3	U			MIT		64Sp12	
19 Mg(2p) 17 Ne	750 530	50	500	00	0.4	2					07Mu15	
$^{18}\mathrm{C}(\mathrm{n},\gamma)^{19}\mathrm{C}$	530	120	580	90	0.4	3					99Na27	
19 0 (19 0 17 => 10 > 7	650	150	10051		-0.5	3					01Ma08	
$^{18}O(^{18}O,^{17}F)^{19}N$	-19374	50	-19374	16	0.0	2			Ors		81Na.A	
19 - 49 - 47 - 10	-19334	35			-1.1	2			Can		89Ca25	
¹⁸ O(⁴⁸ Ca, ⁴⁷ Sc) ¹⁹ N	-16540	20	-16527	17	0.6	2			Can		83Ho08	
¹⁸ O(²⁰⁸ Pb, ²⁰⁷ Bi) ¹⁹ N	-18440	150	-18333	17	0.7	U			ChR		79Ba31	
$^{18}O(d,p)^{19}O$	1727	8	1731.1	2.6	0.5	0			Nob		54Mi89	
	1732	8			-0.1	2			CIT		54Th30	
	1731	5			0.0	2			Nob		57Ah19	
	1733	6			-0.3	2			Mex		64Ma.B	
	1727	5			0.8	2			MIT		64Sp12	
10 2 10	1734	10			-0.3	U			Man		65Mo16	
19 F(3 He, α) 18 F	10166	15	10145.7	0.5	-1.4	U			Ald		59Hi67	Y
¹⁹ Na(p) ¹⁸ Ne	160	110	323	11	1.5	U		4.0			04Ze05	
	328	22			-0.2	1	23	23 ¹⁹ Na			10Mu12	1
$^{19}O(\beta^{-})^{19}F$	4800	12	4820.3	2.6	1.7	U					59Al06	
$^{19}\text{Ne}(\beta^+)^{19}\text{F}$	3262	10	3239.49	0.16	-2.3	U					60Wa04	
19 F(p,n) 19 Ne	-4021.3	4.7	-4021.84	0.16	-0.1	U			Ric		55Ma84	ŀ
	-4019.6	1.4			-1.6	U			Ric		61Be13	Z
	-4021.1	1.0			-0.7	U			Zur		61Ry04	Z
	-4020.7	0.8			-1.4	U					66Ma60	,
	-4019.6	0.7			-3.2	В					69Ov01	Z
$^{19}\text{F}(^{3}\text{He,t})^{19}\text{Ne}^{i}$	-10759	9				2					98Ut02	*
$*^{19}Mg-u$	F: results distrusted	l (see also ¹⁵ F	and ¹⁸ Na)								GAu	**
$*^{18}C(n,\gamma)^{19}C$	From Coulomb diss	ociation cross	sections and an	gular distril	oution						99Na27	**
$*^{18}C(n,\gamma)^{19}C$	From momentum di	stribution foll	owing one neuti	ron removal							01Ma08	
$*^{19}F(^{3}He,t)^{19}Ne^{i}$	rebuilt from $E_x = 75$					ed +1ke	V				MMC14	
20.0	200.10	1210	40262	250					<i>a</i>		07.610-	
$^{20}C-u$	39940	1210	40260	250	0.2	U			GA1		87Gi05	
	40360	240			-0.3	2			TO2	1.5	88Wo09	1
	40165	491			0.1	2			GA3		91Or01	
	40420	550			-0.2	2			GA5	1.5	99Sa.A	
	40108	290			0.4	2			GA8		12Ga45	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.		F	Reference
$^{20}N-u$	23230	280	23370	80	0.3	U			TO1 1	1.5	86Vi09
1 \- u	23210	150	23370	00	0.7	2				1.5	87Gi05
	23380	130			-0.1	2				1.5	88Wo09
		69			-0.1 -0.3	2				1.5	
$C D_4 - ^{20}Ne$	23397		62066 0262	0.0017			41	40 ²⁰ Ne			91Or01
20 Ne $-u$	63966.9329	0.0026	63966.9363	0.0017	1.3	1	41	40 - Ne		0.1	95Di08
Ne-u	-7559.309	0.090	-7559.8238	0.0017	-2.3	U				2.5	93Ma.A
O.D. 2021	-7559.814	0.014	20/77 000/	0.0017	-0.7	U				1.0	02Bf02
$O D_2 - {}^{20}Ne$	30677.497	0.067	30677.9996	0.0017	3.0	В				2.5	93Go38
20 Mg $^{-23}$ Na $_{.870}$	27663.8	2.0				2				0.1	14Ga20
²⁰ Ne ⁻²² Ne _{.909}	270.89	0.43	271.111	0.017	0.5	U				0.1	04B120
	271.16	0.20			-0.2	U			MA8	0.1	08Ge07
20 Ne(3 He, 8 Li) 15 F	-29960	200	-29623	14	1.7	U			MSU		78Be26
	-29730	180			0.6	U			Brk		78Ke06
$^{20}\mathrm{Ne}^{i}(\alpha)^{16}\mathrm{O}$	5548.8	6.3	5542.6	2.0	-1.0	U					73To08
20 Ne(α , 8 He) 16 Ne	-60150	80	-60213	20	-0.8	U			Brk		78Ke06
	-60197	23			-0.7	R			Tex		83Wo01
²⁰ Ne(³ He, ⁶ He) ¹⁷ Ne	-26188	50	-26203.3	0.4	-0.3	U			Brk		70Me11 *
, ,	-26158	32			-1.4	F					98Gu10 *
$^{18}O(^{48}Ca,^{46}Sc)^{20}N$	-25873	60	-25010	80	14.3	В			Can		89Or03 *
$^{18}O(t,p)^{20}O$	3086	15	3081.9	0.9	-0.3	U			LAl		60Ja13
S(4,p) S	3076	10	2001.9	0.7	0.6	Ü			Ald		62Hi06
	3082.4	1.9			-0.3	2			Str		82An12
	3081.7	1.0			0.2	2			Str		85An17
$^{18}O(^{3}He,p)^{20}F$	6875.2	1.5	6876.895	0.030	1.1	U			NDm		70Ro06
$^{18}\text{O}(^{3}\text{He,p})^{20}\text{F}^{i}$	356.0	3.0	0870.893	0.030	1.1	2			NDIII		
20 Ne(d, α) ¹⁸ F	2795		2705.0	0.5	0.1				Nob		
Ne(u,α) F		9	2795.8	0.5	0.1	U					
	2766	20			1.5	U			Mex		64Ma.B
1957 ->205	2790	10	((01.22(0.020	0.6	U			T.T.		75Bo59
19 F $(n,\gamma)^{20}$ F	6601.1	0.3	6601.336	0.030	0.8	U			Utr		68Sp01
	6601.29	0.14			0.3	2			ILn		83Hu12 Z
	6601.32	0.05			0.3	2			MMn		87Ke09 Z
	6601.35	0.04			-0.3	2			ORn		96Ra04
10	6601.34	0.13			0.0	2			Bdn		06Fi.A
$^{19}F(d,p)^{20}F$	4377	7	4376.770	0.030	0.0	U			MIT		64Sp12
10 20 :	4377.7	0.9			-1.0	U			NDm		70Ro06
19 F(p, γ) 20 Ne ^j	-3889.4	2.7				2					67B119
20 Ne(3 He, α) 19 Ne	3750	13	3712.32	0.16	-2.9	U			MIT		64Sp12
20 Na i (p) 19 Ne	4381	50	4308.0	1.2	-1.5	U			Brk		79Mo02
	4332	16			-1.5	U			MSU		92Go10
	4326	30			-0.6	U			Lis		95Pi03
20 F(β^{-}) 20 Ne	7053	13	7024.467	0.030	-2.2	U					54Wo23 *
•	7050	15			-1.7	U					59Al06 *
	7032	6			-1.3	U					76Ge08 *
	7026.9	1.8			-1.4	U					87Va20 *
	7019.8	1.7			2.7	U					89He11 *
20 Ne i (IT) 20 Ne	10274	3	10272.5	2.0	-0.5	2					76In06
3.2 (23) 3.2	10271.2	2.7			0.5	2					77Fi08
20 Na(β^{+}) 20 Ne	13906	40	13892.5	1.1	-0.3	Ū					67Su05
20 Ne(p,n) 20 Na	-14672.1	7.	-14674.9	1.1	-0.4	U					71Wi07 Z
20 Ne(3 He,t) 20 Na $-^{36}$ Ar() 36 K	-1078.06	1.06	-1078.1	1.1	0.0	1	100	100 ²⁰ Na	Mun		10Wr01
$^{20}\text{Na}^{i}(\text{IT})^{20}\text{Na}$	6498.4	0.5	-1076.1	1.1	0.0	2	100	100 110	IVIUII		15Gl03
* ²⁰ Ne(³ He, ⁶ He) ¹⁷ Ne	Original $M - A = 1$		ut revised calls	rator M/9/	7)_2901						
							i a a				AHW **
$*^{20}$ Ne(3 He, 6 He) 17 Ne	F : calibrated with			nence for	excitatio	on energ	ies				92Ku02 **
* 180,480, 460, 20	no details given.										GAu **
$*^{18}O(^{48}Ca,^{46}Sc)^{20}N$	Probably to excite										GAu **
$*^{18}O(^{3}\text{He,p})^{20}F^{i}$	IT=6519.4(3.0), (MMC122**
$*^{20}$ F(β^-) 20 Ne	E_{β} =5419(13) 54			3) 5386.1(1.7) resp	ectively	,				GAu **
*	to 2 ⁺ level at 16	33.674 keV									Ens992 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	_	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{21}N-u$		26580	200	27090	140	1.7	U			TO1	1.5	86Vi09
11 4		27060	190	27000	110	0.1	2			GA1	1.5	87Gi05
		26930	210			0.5	2			TO2	1.5	88Wo09
							2					
²¹ Na- ³⁹ K _{.538}		27162	131	17100 (1	0.11	-0.4				GA3	1.5	91Or01
Na-5 K _{.538}		17180.51	0.29	17180.61	0.11	0.4	0			MA8	1.0	04Mu26
10 21		17180.51	0.29			0.2	U			Ma8	1.5	08Mu05
$H_3^{18}O^{-21}Ne$		28787.76	0.25	28788.02	0.04	1.1	U			CP1	1.0	04Sa53
²¹ Na- ²³ Na _{.913}		6995.25	0.32	6995.35	0.11	0.3	O			MA8	1.0	04Mu26
		6995.25	0.32			0.2	U			Ma8	1.5	08Mu05
21 Mg $^{-23}$ Na $_{.913}$		21046.41	0.81				2			TT1	1.0	14Ga20
²¹ Ne ⁻²² Ne _{.955}		2073.82	0.40	2073.91	0.05	0.2	U			MA8	1.0	04B120
.,,,,		2074.04	0.26			-0.5	U			MA8	1.0	08Ge07
21 Na $^{-21}$ Ne		3808.017	0.097	3808.02	0.10	0.0	1	100	100 ²¹ Na	MS1	1.0	15Ei01
²¹ Na- ²⁰ Na		-9732	50	-9699.7	1.2	0.3	Ü	100	100 114	CR1	2.5	89Sh10
$^{18}O(^{18}O,^{15}O)^{21}O$		-12574	70	-12483	12	1.3	U			Ors	2.5	78Na02
0(0,0)0				-12463	12	0.8						
180/64xt: 61xt:\210		-12499	20	11700	10		2			Can		89Ca25
¹⁸ O(⁶⁴ Ni, ⁶¹ Ni) ²¹ O		-11713	15	-11722	12	-0.6	2			Dar		85Wo01
$^{18}O(^{208}Pb,^{205}Pb)^{21}O$		-6860	75	-6823	12	0.5	U			ChR		79Ba31
$^{19}F(t,p)^{21}F$		6221.0	1.8				2			Str		84An17
$^{19}F(^{3}He,p)^{21}Ne$		11911	15	11886.58	0.04	-1.6	U			Ald		59Hi75
20 Ne(n, γ) 21 Ne		6760.8	1.5	6761.16	0.04	0.2	U					70Se14
		6761.16	0.04			0.1	_			MMn		86Pr05
		6761.19	0.14			-0.2	_			Bdn		06Fi.A
20 Ne(d,p) 21 Ne		4531	9	4536.60	0.04	0.6	U			Nob		55Ah41
- · · (, F)		4532	6			0.8	Ü			Mex		64Ma.B
		4534	7			0.4	Ü			MIT		64Sp12
20 Ne(n, γ) 21 Ne	ave.	6761.16	0.04	6761.16	0.04	0.0	1	100	100 ²¹ Ne	14111		average
20 Ne(p, γ) 21 Na	ave.	2431.2				0.7	U	100	100 110			
20 Ne(p, γ)=1Na			0.7	2431.67	0.10							69Bl03
20 Ne(p, γ) 21 Na ⁱ		-6547.9	14.3	-6543	4	0.3	U					81Fe05
21 Na ⁱ (p) 20 Ne		6543	4				2					73Se08
$^{21}O(\beta^{-})^{21}F$		8150	175	8110	12	-0.2	U					81Al07
21 Na(β^{+}) 21 Ne		3522	30	3547.14	0.09	0.8	U					52Sc15
		3532	20			0.8	U					60Wa04
²¹ Na- ³⁹ K _{.538}	CF=1.5	for prelim. res	sults; not t	rusted within g	iven uncert	ainties						GAu *
$H_3^{18}O^{-21}Ne$				0.02 keV for m			tion					04Sa53 *
21 Na ⁱ (p) 20 Ne				state and 2 ⁺ le								Ens992 *
47	~_P		Z.									
²² C-u		57585	408	57550	250	-0.1	U			GA8	1.5	12Ga45
22N-u		32990	790	34100	220	0.9	U			GA1	1.5	87Gi05
N-u				34100	220							
		34340	250			-0.6	2			TO2	1.5	88Wo09
		34683	389			-1.0	2			GA3	1.5	91Or01
		34240	320			-0.3	2			GA5	1.5	99Sa.A
22		33398	279			1.7	2			GA8	1.5	12Ga45
²² O-u		9842	81	9970	60	1.0	R			GA3	1.5	91Or01
²² Ne-u		-8614.885	0.019	-8614.890	0.019	-0.3	1	99	99 ²² Ne	ST2	1.0	02Bf02
22 Na $^{-39}$ K $_{.564}$		14907.33	0.30	14906.96	0.18	-1.2	o			MA8	1.0	04Mu26
		14907.33	0.30			-0.8	1	17	17 ²² Na	Ma8	1.5	08Mu05
22 Mg $^{-39}$ K $_{.564}$		20040.33	0.35	20040.2	0.3	-0.4	o			MA8	1.0	04Mu26
o304		20040.33	0.35			-0.3	1	41	41 ²² Mg	Ma8	1.5	08Mu05
$O H^{-22} Ne_{.773}$		9398.87	0.33	9398.962	0.015	0.5	U	71	-1 IVIG	MA8	1.0	08Ge07
²² Na- ²⁴ Mg _{.917}												
INA IVIG.917		8153.64	0.31	8154.18	0.18	1.7	0	16	16 2237	MA8	1.0	04Mu26
22 22		8153.64	0.31		0	1.2	1	16	16 ²² Na	Ma8	1.5	08Mu05
²² Na- ²³ Na _{.957}		4228.11	0.29	4228.22	0.18	0.4	0		22	MA8	1.0	04Mu26
22 22		4228.11	0.29			0.2	1	18	18 ²² Na	Ma8	1.5	08Mu05
²² Na- ²² Ne		3052.75	0.33	3052.31	0.18	-1.3	1	31	31 ²² Na	CP1	1.0	04Sa53

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²² Mg- ²² Ne	8185.79	0.73	8185.5	0.3	-0.3	1	21	21 ²² Mg	CP1	1.0	04Sa53
²² Mg ⁻²² Ne ²² Mg ⁻²² Na							21	21 Mg			
ıvıg—ına	5132.99	0.34	5133.2	0.3	0.7	0	16	38 ²² Mg	MA8	1.0	04Mu26
²² Ne- ²⁰ Ne	5132.99	0.34	1055.066	0.010	0.5	1	46	38 ²² Mg	Ma8	1.5	08Mu05
¹⁸ O(¹⁸ O, ¹⁴ O) ²² O	-1056.415	0.290	-1055.066	0.019	1.9	U			OH1	2.5	93Go38
¹⁸ O(²⁰⁸ Pb, ²⁰⁴ Pb) ²² O	-19060	100	-18860	60	2.0	2			Can		76Hi10
	-6710	180	-6700	60	0.0	2			ChR		79Ba31
$^{22}\mathrm{Mg}^{i}(\alpha)^{18}\mathrm{Ne}$	5885	40	5902	6	0.4	U	60	60 223 s i	Bor		97B103
10	5904	8	1.550.010	0.010	-0.3	1	60	$60^{22} \mathrm{Mg}^i$	Bor		06Ac04
19 F(α ,p) 22 Ne	1674	11	1673.219	0.018	-0.1	U			MIT		64Sp12
$^{19}F(\alpha,n)^{22}Na$	-1958	10	-1952.33	0.17	0.6	U			Duk		60Wi07
22 C $(\gamma,2n)^{20}$ C	-200	120	-35	20	1.4	0					11Ya25
	-110	60			1.2	U					12Fo04
0 2 ,22	-35	20				3					13Mo12
20 Ne(3 He,n) 22 Mg	197	25	217.9	0.3	0.8	U			Har		68Ad03
22 11- 20	209	11			0.8	U		22 i	CIT		70Mc06
$^{22}\text{Mg}^{i}(2p)^{20}\text{Ne}$	6098	13	6108	6	0.8	1	23	$23^{22} \mathrm{Mg}^i$			06Ac04
22 Ne(t, α) 21 F	4545	10	4547.8	1.8	0.3	U			LAI		61Si03
21 Ne(n, γ) 22 Ne	10364.4	0.3	10364.26	0.04	-0.5	U			MMn		86Pr05
21	10363.9	0.5			0.7	U			Bdn		06Fi.A
21 Ne(d,p) 22 Ne	8152	11	8139.69	0.04	-1.1	U			CIT		52Mi54
21 Ne(p, γ) 22 Na	6739.0	0.7	6738.71	0.18	-0.4	U		22 :			70An06
$^{22}{\rm Mg}^{i}({\rm p})^{21}{\rm Na}$	8547	15	8540	6	-0.5	1	17	$17^{22} Mg^{i}$	Brk		82Ca16
22 F(β^{-}) 22 Ne	11000	150	10818	12	-1.2	U					73Gu05
22 2 22	10950	120			-1.1	U			ANB		74Da02
22 Ne(t, 3 He) 22 F	-10788	33	-10799	12	-0.3	2					69St07
22 7 7 22	-10794	18			-0.3	2			Dar		88C104
22 Ne(7 Li, 7 Be) 22 F	-11691	20	-11680	12	0.6	2		22	Can		89Or04
22 Na(β^+) 22 Ne	2842.2	0.5	2843.21	0.17	2.0	1	12	12 ²² Na			68Be35
	2840.4	1.5			1.9	U					68We02
22	2841.5	1.0			1.7	U					72Gi17
²² Na- ²² Ne	D_M =3052.79(0.33)	•	=-5181.06(0.31) keV; cor	rected -0	.04 keV	for				04Sa53
22	ion-ion interaction										04Sa53
22 Mg $^{-22}$ Ne	D_M =8185.84(0.73)	•	=-399.65(0.68)	keV; corre	ected -0.0)5 keV f	or				04Sa53
22	ion-ion interaction										04Sa53
$^{22}{\rm Mg}^{i}(\alpha)^{18}{\rm Ne}$	E_{α} =3270(40) to 2 ⁺										Ens967
$^{22}{\rm Mg}^{i}(\alpha)^{18}{\rm Ne}$	Q_{α} =4017(8) to 2 ⁺		37.3 keV								Ens967
$^{22}C(\gamma,2n)^{20}C$	From upper limit S										GAu
$^{22}C(\gamma,2n)^{20}C$	From upper limit S										GAu
$^{22}C(\gamma,2n)^{20}C$	The two items are		erived from the	experiment	tal result	of refere	ence				10Ta04
$^{22}C(\gamma,2n)^{20}C$	From upper limit S										GAu
$^{22}\text{Mg}^{i}(2p)^{20}\text{Ne}$	Original Q_{2p} =4464										06Ac04
22 Mg ⁱ (2p) 20 Ne	Estimated systemat			ed							16Ma.A
21 Ne(p, γ) 22 Na	$T=701.8(0.5)$ to 1^+		` /								Ens157
21 Ne(p, γ) 22 Na	Reanalysis using E										90En08
$^{22}{\rm Mg}^{i}({\rm p})^{21}{\rm Na}$	E_p =8149(21), 7839				at 331.90) keV					Ens04c
2 Ne(t, 3 He) 22 F	Original value –10										GAu
	(2 ⁺) level at 709.	1, 1 ⁺ at 162	$27.1 \text{ and } 1^+ \text{ at } 2$	571.7 keV							Ens157
2 Ne(t, 3 He) 22 F	Original value -10										GAu
22 Ne(7 Li, 7 Be) 22 F	Q = -12400(20) to										Ens157
22 Na(β^+) 22 Ne	E_{β^+} =545.7(0.5) 54	13.9(1.5) 54	5(1) respectivel	y, to 2 ⁺ lev	vel at 127	4.537 kg	eV				Ens157
22	0=	2006	20.45 *	450	0.0				a		009
$^{23}N-u$	37110	2000	39420	450	0.8	0			GA5	1.5	99Sa.A
	39378	923			0.0	U			GA7	1.5	07Ju03
	39421	301			_	2			GA8	1.5	12Ga45
12 -		320	15700	130	0.0	O			TO1	1.5	86Vi09
²³ O-u	15700				_						
²³ O-u	15860	320			-0.3	0			GA1	1.5	87Gi05
²³ O-u	15860 15700	320 150			0.0	2			TO2	1.5	88Wo09
²³ O-u	15860	320									

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted values		v_i	Dg	Signf.		n infl.	Lab	F	Reference
²³ F-u		3530	210	3530	40	0.0	U				TO1	1.5	86Vi09
r—u		3553	43	3330	40	-0.4	_				GT1	1.5	04Ma.A
		3503	48			0.5	_				LZ1	1.0	15Xu14
	ave.	3520	40			0.3	1	86	86	^{23}F	LLI	1.0	
²³ Na-u	avc.	-10230.721	0.0037	-10230.7180	0.0019	0.8	_	80	80	1.	MI2	1.0	average 99Br47
Na-u		-10230.721 -10230.716	0.0037	-10230.7180	0.0019	-0.4					MI2	1.0	99Br47
		-10230.710 -10230.7172	0.0048			-0.4 -0.3	_				FS1	1.0	10Mo30
	0710						1	100	100) ²³ Na	1.91	1.0	
23 Ne $-^{22}$ Ne $_{1.045}$	ave.	-10230.7181	0.0019 0.37	3469.46	0.11	$0.0 \\ -0.3$	U	100	100) Na	MAG	1.0	average
23 Mg $^{-23}$ Na		3469.59									MA8	1.0	04B120
25Mg—25Na		4354.80	0.83	4354.66	0.17	-0.2	U				JY1	1.0	09Sa38
$^{23}Al - ^{23}Na$		4354.66	0.17				2				TT1	1.0	14Sc09
		17475.07	0.37	2276 1221	0.0024	0.2	2				JY1	1.0	09Sa38
23 Na(p, α) 20 Ne		2377	3	2376.1331	0.0024		U				Wis		53Do04 Y
2357 (1)2157		2373	8	(010.72	0.04	0.4	U				MIT		64Sp12
23 Na(d, α) 21 Ne		6911	9	6912.73	0.04	0.2	U				Mex		64Ma.B
2227 48 0 17 - 23 -		6909	10	11010	20	0.4	U			23-	MIT		64Sp12
22 Ne(18 O, 17 F) 23 F		-14080	90	-14040	30	0.4	1	14	14	^{23}F	Can		89Or04
22 Ne(n, γ) 23 Ne		5200.2	2.0	5200.65	0.10	0.2	U						70Se14
		5200.65	0.12			0.0	2				MMn		86Pr05 Z
22		5200.64	0.20			0.0	2				Bdn		06Fi.A
22 Ne(d,p) 23 Ne		2967	8	2976.08	0.10	1.1	U				Nob		54Ah20 Y
		2971	9			0.6	O				MIT		60Fr04
		2974	6			0.3	U				Mex		64Ma.B
22 22		2968	7			1.2	U				MIT		64Sp12
22 Ne(p, γ) 23 Na		8794.0	1.5	8794.105	0.018	0.1	U						71Pi08 Z
22 22 :		8794.26	0.17			-0.9	U						89Ba42 Z
22 Ne(p, γ) 23 Na ^{j}		-10796.3	2.0				2						85Ev01 *
$^{23}\text{Al}^i(p)^{22}\text{Mg}$		11644	57				2				Bor		97Bl04 *
23 F(β^{-}) 23 Ne		8510	170	8440	30	-0.4	U						74Go17
23 Ne(β^{-}) 23 Na		4383	8	4375.80	0.10	-0.9	U						63Ca06
$^{23}{\rm Mg}(\beta^+)^{23}{\rm Na}$		4121	12	4056.34	0.16	-5.4	В						63Fr10
23 Na(p,n) 23 Mg		-4832	10	-4838.69	0.16	-0.7	U				Oak		55Ki28 Z
		-4836.5	6.			-0.4	U				Ric		58Bi41 Y
		-4848.0	7.			1.3	U				ChR		58Go77 Y
		-4835.8	2.5			-1.2	U				Har		62Fr09 Z
		-4843.2	5.1			0.9	U				Tkm		63Ok01 Z
$*^{22}$ Ne(p, γ) ²³ Na ^j		al $E_{res} = -10793.6$											16Ma.A **
$*^{23}Al^{i}(p)^{22}Mg$	$Q_p = 11$	620(100), 10410	0(70) to grou	and state and 2^+ le	evel at 124	7.02 keV	V						Ens157 **
*	also (Q_{2p} =6180(100),	5860(100) to	ground state and	1 331.90 le	vel in ²¹	Na						97B104 **
24.0		20000	1070	10070	100	0.1					G + 1	1.7	076'65
²⁴ O-u		20080	1070	19860	180	-0.1	0				GA1	1.5	87Gi05
		20000	500			-0.2	U				TO2	1.5	88Wo09
		20659	442			-1.2	o				GA3	1.5	91Or01
		20460	340			-1.2	0				GA5	1.5	99Sa.A
24		19861	118				2				GA7	1.5	07Ju03
$^{24}F-u$		8070	170	8100	100	0.1	U				TO1	1.5	86Vi09
		8450	240			-1.0	U				GA1	1.5	87Gi05
		8135	86			-0.3	2				GA3	1.5	91Or01
24		8030	120			0.4	2			24	TO4	1.5	91Zh24
$^{24}Mg-H_{24}$		-202759.080	0.014	-202759.076	0.014	0.3	1	98	98	^{24}Mg	ST2	1.0	03Be02
$^{24}\text{Ne}-^{22}\text{Ne}_{1.091}$		3009.49	0.55				2				MA8	1.0	04B120
$^{24}\text{Mg}-^{23}\text{Na}_{1.043}$		-4287.23	0.32	-4287.664	0.014	-0.9	U				Ma8	1.5	08Mu05
$^{24}Al - ^{23}Na_{1.043}$		10618.18	0.25				2				TT1	1.0	15Ch58
24 Mg(p, 6 He) 19 Na		-37213	70	-37166	11	0.7	U				Brk		69Ce01
²⁴ Mg(³ He, ⁸ Li) ¹⁹ Na		-32876	12	-32878	11	-0.1	1	77	77	¹⁹ Na	MSU		75Be38

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{24}{ m Mg}(lpha, {}^{8}{ m He})^{20}{ m Mg}$	-60900	210	-60596.0	1.9	1.4	U					74Ro17
Mg(a, He) Mg	-60677	27	00370.0	1.7	3.0	В			Tex		76Tr03
24 Mg(3 He, 6 He) 21 Mg	-27488	40	-27498.3	0.8	-0.3	U			Brk		70Me11
wig(fie, fie) wig	-27512	18	27470.5	0.0	0.8	U			MSU		71Tr03
22 Ne(t,p) 24 Ne	5587	10	5587.8	0.5	0.1	U			LAI		61Si03
$^{24}\text{Mg}(d,\alpha)^{22}\text{Na}$	1955	12	1958.75	0.17	0.1	U			MIT		64Sp12
24 Mg(p,t) 22 Mg	-21194	3	-21194.5	0.17	-0.2	U			MSU		74Ha02
Mg(p,t) Mg	-21194 -21198.3	1.5	-21194.5	0.5	2.5	U			MSU		74No07
	-21193.9	1.0			-0.6	U			Yal		05Pa31
23 Na(n, γ) 24 Na	6959.50	0.12	6959.365	0.016		0			BNn		74Gr37
1 ν a(11, γ) 1 ν a	6959.42	0.12	0939.303	0.010	-0.8	2			BNn		80Gr12
	6959.67	0.07			-0.8 -2.2	U			ILn		83Hu11
	6959.38	0.14			-2.2 -0.2	U			Ptn		83Ti02
	6959.44	0.08			-0.2 -1.5	2			ORn		04To03
	6959.59	0.03			-1.5				Bdn		041003 06Fi.A
	6959.352	0.14			-1.0	o 2					14Fi01
²³ Na(d,p) ²⁴ Na			4734.799	0.016	0.7	U			Bdn CIT		52Mi54
Na(u,p) Na	4735 4736	7 5	4/34./99	0.016	-0.0	U					64Ma.B
		3 7			-0.2 -0.2	U			Mex		
23 Na(p, γ) 24 Mg	4736		11/02 (07	0.012					MIT		64Sp12
$^{-3}$ Na(p, γ) $^{-1}$ Mig	11692.95	0.17	11692.687	0.013		U			Wis		67Mo17
	11691.2	1.1			1.4	U					72Me09
243.5 (1)233.5	11692.43	0.31	1.4207.01	0.16	0.8	U			MOTI		85Uh01
24 Mg(p,d) 23 Mg	-14307.5	1.5	-14306.81	0.16	0.5	U			MSU		74No07
$^{24}\text{Mg}(^{3}\text{He},\alpha)^{23}\text{Mg}$	4051	15	4046.25	0.16	-0.3	U			Man		59Ba13
²⁴ Mg(⁷ Li, ⁸ He) ²³ Al	-37397	27	-37384.2	0.4	0.5	U					01Ca37
$^{24}\mathrm{Al}^{i}(\mathrm{p})^{23}\mathrm{Mg}$	4086	9	4085	3	-0.1	3			Brk		79Ay01
	4084.5	3.5			0.1	3			MSU		80Le18
24	4093	20			-0.4	U			Bor		98Cz01
$^{24}\text{Ne}(\beta^{-})^{24}\text{Na}$	2449	50	2466.3	0.5	0.3	U					56Dr11
24 Na(β ⁻) 24 Mg	5511.8	2.	5515.669	0.021	1.9	U					61De25
	5515.8	2.			-0.1	U					64Le09
	5516.8	2.			-0.6	U					65Be24
	5511.5	1.0			4.2	В					69Bo48
	5511.8	2.			1.9	U					72Gi17
	5512.5	1.2			2.6	U					76Ge06
24 Al(β^+) 24 Mg	13880	50	13884.70	0.23	0.1	U					68Ar03
24 Mg(p,n) 24 Al	-14659.0	2.8	-14667.05	0.23	-2.9	В			Yal		69Ov01
24 Mg(3 He,t) 24 Al	-13880	60	-13903.30	0.23	-0.4	U			Brk		66Ma18
24 Mg(3 He,t) 24 Al $-^{36}$ Ar() 36 K	-1071.48	1.05	-1070.2	0.4	1.2	U			Mun		10Wr01
24 Mg(π^+,π^-) 24 Si	-23594	52	-23657	19	-1.2	2					80Bu15
23 Na(n, γ) 24 Na	Original value (,2	Z) increase	d by 0.037 for	better reco	oil correc	ction					AHW *
e^{24} Na(β^{-}) ²⁴ Mg	E_{β} = 1389(2) 139	93(2) 1394	(2) 1388.7(1.0	1389(2)	1389.7(1	.2) respe	ectively,				GAu ×
:	to 4 ⁺ level at 41	22.889 ke	V								Ens07a ×
²⁵ F-u	12010	220	12170	100	0.5	o			TO1	1.5	86Vi09
	12010	290			0.4	O			GA1	1.5	87Gi05
	12210	150			-0.2	2			TO2	1.5	88Wo09
	12120	151			0.2	O			GA3	1.5	91Or01
	11990	130			0.9	2			TO4	1.5	91Zh24
	12249	97			-0.6	2			GA7	1.5	07Ju03
²⁵ Ne-u	-2293	32	-2190	30	3.4	F			P40	1.0	01Lu20
	-2166	41			-0.5	1	58	58 ²⁵ Ne	LZ1	1.0	15Xu14
$^{25}Al^{-25}Mg$	4591.342	0.048	4591.34	0.05	0.0	1	100	100 ²⁵ A1	JY1	1.0	16Ca22
25 Mg(p, α) 22 Na	-3151	8	-3147.22	0.18	0.5	U			MIT		59Br74

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

$^{25}{ m Mg}({ m d},lpha)^{23}{ m Na}$ $^{25}{ m O}(\gamma,{ m n})^{24}{ m O}$	7026 7048 776	13	7047.88									
-	7048		70/17 88		1 7	* *			3.417		(10 10	
$^{25}O(\gamma,n)^{24}O$			70-7.00	0.05	1.7	U			MIT		64Sp12	
$^{23}\mathrm{O}(\gamma,\mathrm{n})^{24}\mathrm{O}$	776	10			0.0	U					67Ha17	
		15	757	8	-1.2	3					08Ho03	*
	740	40			0.4	U						*
24	749	10			0.8	3					16Ko11	
24 Mg(n, γ) 25 Mg	7330.5	9.99	7330.53	0.05	0.0	U					69Ha.A	_
	7330.5	0.3			0.1	U			MMn			Z
	7330.78	0.14			-1.8	U			ILn		82Hu02	Z
	7330.4	0.2			0.7	U			MMn		85Ke.A	_
	7330.64	0.08			-1.4	_			MMn			Z
	7330.69	0.05			-3.2	В			ORn		92Wa06	
24 11 125	7330.53	0.15			0.0	_			Bdn		06Fi.A	
24 Mg(d,p) 25 Mg	5098	12	5105.96	0.05	0.7	U			Har			Y
	5112	12			-0.5	U			Mex		61Ja23	
24	5102	7			0.6	U		25	MIT		64Sp12	
24 Mg(n, γ) 25 Mg	ave. 7330.62	0.07	7330.53	0.05	-1.2	1	45	$43^{25} Mg$			average	
24 Mg(p, γ) 25 Al	2271.6	1.1	2271.38	0.07	-0.2	U						Z
	2271.7	0.7			-0.5	U						Z
	2271.4	0.8			0.0	U						Z
24 Mg(3 He,d) 25 Al	-3218.0	4.5	-3222.10	0.07	-0.9	U			NDm		73Br27	
24 Mg(p, γ) 25 Al ⁱ	-5629.3	5.8	-5629.7	1.8	-0.1	U					68Te01	*
25 Ne(β^{-}) 25 Na	7380	300	7322	29	-0.2	U					73Go11	
25 Na(β^{-}) 25 Mg	3650	250	3835.0	1.2	0.7	U					54Na18	
	4000	200			-0.8	U					55Ma63	
25 Al(β^{+}) 25 Mg	4292	30	4276.81	0.04	-0.5	U					60Wa04	
25 Mg(p,n) 25 Al	-5058	6	-5059.15	0.04	-0.2	U			Har		69Fr08	
$^{25}\text{Al}^{i}(\text{IT})^{25}\text{Al}$	7901	2	7901.1	1.8	0.1	1	85	$85^{25}Al^{i}$			77Ro03	
$*^{25}$ Ne $-u$	F: rejected by authors:	"unreliable	double peak"								06Ga04	**
	Symmetrized from 770		1								08Ho03	
25 24	Symmetrized from 725										13Ca18	
$*^{24}$ Mg(p, γ) ²⁵ Al ⁱ	IT=7916(6), <i>Q</i> rebuilt v	with Ame19	64, error estimat	ed by eval	uator						GAu	**
$^{26}F-u$	19800	1000	20020	120	0.1	o			TO1	1.5	86Vi09	
	20940	640			-1.0	o			GA1	1.5	87Gi05	
	19820	210			0.6	2			TO2	1.5	88Wo09	
	19544	300			1.1	o			GA3	1.5	91Or01	
	19490	210			1.7	U			TO4	1.5	91Zh24	
	20054	86			-0.3	2			GA7	1.5	07Ju03	
26 Ne $-u$	448	90	516	20	0.5	2			GA3	1.5	91Or01	
	461	33			1.7	o			P40	1.0	01Lu20	
	518	20			-0.1	2			P40	1.0	06Ga04	
26 Na $-u$	-7367	7	-7365	4	0.2	o			P40	1.0	01Lu17	
	-7365	4			-0.1	2			P40	1.0	06Ga04	*
	−7368	11			0.2	2			P40	1.0	06Ga04	
$^{26}{ m Mg}{ m -H}_{26}$	-220857.848	0.034	-220857.87	0.03	-0.5	1	89	$89^{-26}Mg$	ST2	1.0	03Be02	
$^{26}\text{Al}-^{23}\text{Na}_{1.130}$	-1547.46	0.24	-1547.43	0.07	0.1	Ú	0)	0) 1115	MA8	1.0	08Ge08	
$^{26}\text{Si}-^{23}\text{Na}_{1.13}$	3895.1	2.1	3894.52	0.12	-0.3	U			MS1	1.0	10Kw02	
$^{26}\text{Al}-^{25}\text{Mg}_{1.040}$	1621.46	0.48	1621.42	0.06	-0.3	U			JY1	1.0	06Er08	
4 11 1715 [.()4()	1867.09	0.48	1866.52	0.06	-0.1	U			JY1	1.0	06Er08	
$26 \text{A} \text{I}^m = 25 \text{Mg}_{1.040}$		0.33	4298.89	0.07	-1.1	1	16	15 ²⁶ Al	JY1	1.0	06Er08	
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$			4543.99	0.07	-0.6	1	16	16^{26}Al^m	JY1	1.0		
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$ $^{26}\text{Al} - ^{26}\text{Mg}$	4299.14 4544.00	0.17		1111/	$-\upsilon.\upsilon$	1	10	10 AI				
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$ $^{26}\text{Al} - ^{26}\text{Mg}$ $^{26}\text{Al}^m - ^{26}\text{Mg}$	4544.09	0.17				TΤ	10				06Er08	
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$ $^{26}\text{Al} - ^{26}\text{Mg}$	4544.09 245.09	0.17	245.096	0.014	0.0	U	10	10 11	JY1	1.0	06Er08	
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$ $^{26}\text{Al} - ^{26}\text{Mg}$ $^{26}\text{Al}^m - ^{26}\text{Mg}$	4544.09 245.09 244.91	0.17 0.14			0.0 1.3	U	10	10 11	JY1 JY1	1.0 1.0	06Er08 09Er02	
$^{26}\text{Al}^m - ^{25}\text{Mg}_{1.040}$ $^{26}\text{Al} - ^{26}\text{Mg}$ $^{26}\text{Al}^m - ^{26}\text{Mg}$ $^{26}\text{Al}^m - ^{26}\text{Mg}$	4544.09 245.09 244.91 245.114	0.17 0.14 0.049	245.096	0.014	0.0 1.3 -0.4	U U	10		JY1 JY1 JY1	1.0 1.0 1.0	06Er08 09Er02 09Er07	
²⁶ Al ^m - ²⁵ Mg _{1.040} ²⁶ Al- ²⁶ Mg ²⁶ Al ^m - ²⁶ Mg	4544.09 245.09 244.91	0.17 0.14			0.0 1.3	U	10		JY1 JY1	1.0 1.0	06Er08 09Er02	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input vala		Adjusted v		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
25 26 22	2004	22	2020 (• •	4.0				D10		
25 Na $^{-26}$ Na $_{.721}$ 22 Na $_{.284}$	$-2881 \\ -2921$	33	-2939.6	2.8	$-1.8 \\ -0.8$	U			P13 P13	1.0	75Th08
26 Al(n, α) 23 Na	-2921 2966.5	22 2.5	2966.10	0.07	-0.8 -0.2	U U			P15	1.0	75Th08 01Wa50
23 Na(α ,n) 26 Al	-2968	4	-2966.10	0.07	0.5	U			Duk		60Wi07 Y
$^{26}O(\gamma,2n)^{24}O$	-2908 90	110	18	5	-0.7	U			Duk		12Lu07 *
$O(\gamma,2\Pi)$	18	5	10	3	-0.7	3					12Eu07 *
24 Mg(t,p) 26 Mg	9940	12	9941.81	0.03	0.2	U			Har		61Hi11 Y
$^{24}\text{Mg}(^{3}\text{He,p})^{26}\text{Al}$	5932	15	5918.83	0.03	-0.2	U			Ald		59Hi66 Y
Mg(He,p) Th	5922	8	3710.03	0.07	-0.4	U			Phi		72Be51
24 Mg(3 He,n) 26 Si	85	18	67.35	0.11	-1.0	U			CIT		67Mi02
Mg(He,n) Bi	75	30	07.33	0.11	-0.3	Ü			CII		67Mc03
	95	15			-1.8	Ü			Har		68Ad03
	65	30			0.1	U			Ber		68Ha09
26 Mg(7 Li, 8 B) 25 Ne	-22050	100	-22194	29	-1.4	_			Brk		73Wi06
26 Mg(13 C, 14 O) 25 Ne	-19067	50	-19062	29	0.1	_			Can		85Wo04
26 Mg(7 Li, 8 B) 25 Ne	ave. -22170	40	-22194	29	-0.5	1	42	42 ²⁵ Ne			average
26 Mg(d, 3 He) 25 Na	-8653	10	-8652.2	1.2	0.1	U			MSU		73Be14
26 Mg(t, α) 25 Na	5664	12	5668.2	1.2	0.3	U			Ald		62Hi01
25 Mg(n, γ) 26 Mg	11092.9	0.3	11093.08	0.04	0.6	U			MMn		80Is02
	11091.84	0.44			2.8	U			ILn		82Hu02 Z
	11093.10	0.06			-0.4	1	55	$46^{25} \mathrm{Mg}$	MMn		90Pr02 Z
	11093.17	0.06			-1.6	o			ORn		91Ki04 Z
	11093.23	0.05			-3.1	В			ORn		92Wa06 Z
	11093.16	0.22			-0.4	U			Bdn		06Fi.A
$^{25}Mg(d,p)^{26}Mg$	8865	12	8868.51	0.04	0.3	U			Ald		61Hi11 Y
	8876	12			-0.6	U			Mex		61Ja23
25	8889	12			-1.7	U			MIT		64Sp12
25 Mg(p, γ) 26 Al	6305.0	1.2	6306.34	0.06	1.1	U					74De37
	6304.9	1.1			1.3	U					79El11
	6306.39	0.11			-0.5	-			T.T.		85Be17 Z
	6306.38	0.08			-0.5	-	75	CA 26 A 1	Utr		91Ki04 Z
260:1/ >25 41	ave. 6306.38	0.06	7552		-0.7	1	75	64 ²⁶ Al	D 1		average
26 Si ⁱ (p) 25 Al	7563	15	7553	11	-0.6	2			Brk		83Ca06
$^{26}{ m Mg}(\pi^-,\pi^+)^{26}{ m Ne}$	7544 -17676	15 72	-17718	18	0.6	2			Brk		83Ho23 * 80Na12
$^{26}\text{Na}(\beta^-)^{26}\text{Mg}$	9210	200	9354	4	$-0.6 \\ 0.7$	U U					73Al13
26 Mg(t, 3 He) 26 Na	-9292	200	-9335	4	-2.2	U			LAI		74Fl01
26 Mg(7 Li, 7 Be) 26 Na	-9292 -10182	40	-9333 -10216	4	-2.2 -0.8	U			ChR		72Ba35 *
$^{26}\text{Al}(\beta^+)^{26}\text{Mg}$	3991	8	4004.39	0.06	1.7	U			CIIX		58Fe16 *
26 Mg(p,n) 26 Al	-4786.7	10.	-4786.74	0.06	0.0	U			Oak		55Ki28 *
$\mathcal{M}_{\mathcal{S}}(p,n)$	-4787.04	0.48	4700.74	0.00	0.6	U			Utr		69De27
	-4786.1	1.6			-0.4	Ü			Har		69Fr08 *
	-4785.66	0.22			-4.9	C			Auc		84Ba.B *
	-4786.57	0.05			-3.4	C			Auc		92Ba.A *
	-4786.25	0.12			-4.1	В			Auc		94Br11 *
26 Mg(3 He,t) 26 Al	-4023.0	0.6	-4022.98	0.06	0.0	F			Mun		77Vo02 *
26 Mg(3 He,t) 26 Al $-^{27}$ Al() 27 Si	808.2	2.0	807.97	0.12	-0.1	U			ChR		74Ha35
26 Mg(3 He,t) 26 Al $-^{14}$ N() 14 O	1139.43	0.13	1139.97	0.07	4.2	В			ChR		87Ko34 *
$^{26}\text{Al}^{m}(\text{IT})^{26}\text{Al}$	228.305	0.013	228.306	0.013	0.0	1	99	$84^{26}Al^{m}$			Ens164
26 Si(β^{+}) 26 Al	5079	13	5069.14	0.08	-0.8	U					63Fr10
$*^{26}$ Na $-u$	Result from the "Th	nermo" exp	eriment. Nex	t item fr	om "Rili	s"					06Ga04 **
$*^{26}Si^{-26}Al$	D_M =5196.82(0.12)	μu for ²⁶ A	d ^m at 228.306(0.013);	M - A = -	7141.05	5(0.13) keV				Nub16b **
$*^{26}O(\gamma,2n)^{24}O$	Symmetrized from	150(+50-1	50) keV								12Lu07 **
$*^{26}O(\gamma,2n)^{24}O$	less than 40 keV										13Ca18 **
$*^{26}$ Si ⁱ (p) ²⁵ Al	E_p =3699(15) to 369	95.5 level;	different from j	preceedi	ng data						Ens098 **
$*^{26}$ Mg(7 Li, 7 Be) 26 Na	Q = -10222(30) con	rected for	contribution of	unresol	ved 82.2	level					Ens164 **
$*^{26}$ Al(β^+) 26 Mg	$E_{\beta^+}=1160(8)$ to 2^+	level at 18	308.74 level								Ens164 **
$*^{26}\mathrm{Mg}(p,n)^{26}\mathrm{Al}$	$T=5191(10,Z)$ to 26	Al^m at 228	.306 keV								Nub16b **
$*^{26}Mg(p,n)^{26}Al$	T=5209.3(1.6,Z) to	$^{26}Al^{m}$ at 2	28.306 keV								Nub16b **
$*^{26}Mg(p,n)^{26}Al$	T=5208.86(0.23) to										Nub16b **
$*^{26}Mg(p,n)^{26}Al$	T=5209.71(0.05) to										Nub16b **
$*^{26}$ Mg(p,n) ²⁶ Al	T=5209.46(0.12) to	$^{26}Al^{m}$ at 2	228.306 keV								Nub16b **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	I rison of input da Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
-					-							
$*^{26}$ Mg(3 He,t) 26 Al	Q = -4251.3(0.6, 0.6)			eV							Nub16b	
$*^{26}$ Mg(3 He,t) 26 Al $*^{26}$ Mg(3 He,t) 26 Al $-^{14}$ N() 14 O	F: rejected in ref			(0/0.10)							09Fa15	
*20Mg(3He,t)20Al-14N()14O	Q(to 1057.740(0.	023) level))-'*N()'*O=81	1.69(0.13))						82A119	**
²⁷ F-u	27500	700	27320	420	0.2	U			TO2	1.5	88Wo09	
r-u	26005	700 770	27320	420	-0.2 1.1	U			GA3	1.5 1.5	91Or01	
	27100	900			0.2	U			TO4	1.5	91Zh24	
	26900	580			0.5	0			GA5	1.5	99Sa.A	
	26441	204			2.9	В			GA7	1.5	07Ju03	
	27322	279				2			GA8	1.5	12Ga45	
27 Ne $-u$	6010	640	7570	100	1.6	F			TO1	1.5	86Vi09	*
	7470	300			0.2	U			GA1	1.5	87Gi05	
	7567	172			0.0	o			GA3	1.5	91Or01	
	7670	130			-0.5	2			TO4	1.5	91Zh24	
	7536	75			0.3	2			GA7	1.5	07Ju03	
27 Na $-u$	-5922	11	-5924	4	-0.1	o			P40	1.0	01Lu17	*
27 22	-5922	4			-0.4	O			P40	1.0	06Ga04	*
$^{27}Al - ^{23}Na_{1.174}$	-6450.79	0.25	-6450.73	0.05	0.2	U		27	MA8	1.0	08Ge08	
27 27	-6450.754	0.054			0.5	1	89	89 ²⁷ Al	TT1	1.0	16Kw.A	
27 Na $^{-27}$ Al	12538	4				2			P40	1.0	01Lu17	
24 Na $^{-27}$ Na $_{.356}$ 22 Na $_{.655}$	-3006	38	-3059.7	1.3	-0.9	U			P10	1.5	75Th08	
26 Na $^{-27}$ Na $_{.770}$ 22 Na $_{.236}$	-1437	86	-1389	5	0.6	U			P13	1.0	75Th08	
26 Na $^{-27}$ Na $_{.481}$ 25 Na $_{.520}$	676	66	659	4	-0.2	U			P10	1.5	75Th08	
2331 (>27.41	734	86	10001.02	0.05	-0.6	U			P11	1.5	75Th08	
23 Na(α , γ) 27 Al 27 Al(p, α) 24 Mg	10090.0	1.3	10091.92	0.05	1.5	U			Utr		78Ma23	
27 Al(p, α) 27 Mg	1601.7 1598.4	0.7 1.0	1600.76	0.05	-1.3 2.4	0			Zur NDm		63Ry04 65Br28	
	1601.3	0.5			-1.1	U U			Zur		67St30	Z
	1600.06	0.21			3.3	В			Utr		78Ma23	
24 Mg(α ,p) 27 Al	-1598.9	1.0	-1600.76	0.05	-1.9	U			NDm		65Br28	
25 Mg(t,p) 27 Mg	9055	11	9054.67	0.06	0.0	Ü			Tal		61Hi11	Y
27 Al(d, α) 25 Mg	6699	12	6706.73	0.07	0.6	Ü			Ald		61Hi11	Y
(,)8	6691	11			1.4	Ü			Tal		62Sh01	Y
	6700	10			0.7	U			MIT		64Sp12	
27 Al(p,t) 25 Al ⁱ	-23843.4	4.7	-23842.8	1.8	0.1	1	15	$15^{25} Al^i$	MSU		73Be14	*
$^{27}P^{i}(2p)^{25}Al$	6410	45	6350	30	-1.4	2			Lis		91Bo32	
	6270	50			1.5	2					01Ca60	*
26 Mg(18 O, 17 F) 27 Na	-13295	55	-13431	4	-2.5	F			Mun		78Pa12	*
	-13433	60			0.0	U			Can		85Fi08	
$^{26}\mathrm{Mg}(\mathrm{n},\gamma)^{27}\mathrm{Mg}$	6443.35	0.55	6443.39	0.04	0.1	U			ILn		82Hu02	
	6443.56	0.25			-0.7	O			MMn		85Ke.A	
	6443.26	0.08			1.6	2			MMn		90Pr02	Z
	6443.44	0.05			-1.1	2			ORn		92Wa06	Z
263.6 (1)273.6	6443.35	0.13	4210.02	0.04	0.3	2			Bdn		06Fi.A	3.7
26 Mg(d,p) 27 Mg	4214	12	4218.82	0.04	0.4	U			Ald			Y
	4215	10			0.4	U			Mex		61Ja23	
26 Mg(p, γ) 27 Al	4211 8270.8	6 0.5	8271.29	0.06	1.3 1.0	U U			MIT Utr		64Sp12 59An33	.1.
$\operatorname{Mig}(\mathfrak{p}, \mathfrak{p})$ Al	8270.8 8271.2	0.5	04/1.29	0.00	0.2	U			Otr		63Va24	$\overset{*}{Z}$
	8271.2 8271.3	0.5			0.2	U			Utr		78Ma24	
27 Al(t, α) 26 Mg	11541	12	11542.58	0.06	0.0	U			Ald		61Hi11	4
$^{27}\text{Al}(^3\text{He},\alpha)^{26}\text{Al}$	7523	15	7519.59	0.08	-0.2	U			Ald		59Hi66	
711(110,00) 711	7519	15	1317.37	0.00	0.0	U			Man		60Ta12	
26 Al(p, γ) ²⁷ Si	7464.9	0.9	7463.32	0.13	-1.8	U					84Bu09	Z
$^{27}\text{Na}(\beta^{-})^{27}\text{Mg}$	8930	150	9069	4	0.9	Ü					73Al13	
ria(p) ivig	0930	150	2009	+	0.9	U					13A113	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
273.5 (0-)27.41	2600		2610.25	0.07	0.0	**					5.4D 22
$^{27}\text{Mg}(\beta^{-})^{27}\text{Al}$	2600	11	2610.25	0.07	0.9	U					54Da22
$^{27}\text{Si}(\beta^{+})^{27}\text{Al}$	4872	20	4812.36	0.10	-3.0	В					60Wa04
27 Al(p,n) 27 Si	-5573	10	-5594.71	0.10	-2.2	U			Oak		55Ki28 Z
	-5597.5	6.0			0.5	U			Tkm		63Ok01
	-5593.6	4.3			-0.3	U			Ric		65Ku02
	-5585.1	2.3			-4.2	В			Ric		66Bo20 Z
	-5592.0	1.0			-2.7	U			Yal		69Ov01 Z
	-5594.1	3.2			-0.2	U			Har		76Fr13
	-5593.8	0.26			-3.5	F			Auc		77Na24 *
	-5594.27	0.11			-4.0	F			Auc		85Wh03 *
27	-5594.72	0.10				2			Auc		94Br37 Z
* ²⁷ Ne-u	F: contaminated by										91Zh24 **
* ²⁷ Na-u	Not independent of				ot use						01Lu17 **
$*^{27}$ Al(p,t) 25 Al ⁱ	IT=7904(5), rebuilt			+4.5keV							GAu **
$*^{27}P^{i}(2p)^{25}Al$	And E_{2p} =5315(60)										Ens098 **
$*^{26}Mg(^{18}O,^{17}F)^{27}Na$	F: shape of peak ra	ises doubt o	n centroid deter	mination							GAu **
$*^{26}$ Mg(p, γ) ²⁷ Al	E_p =338.65(0.12) to	8596.8(0.5)	level								78Ma24 **
$*^{26}$ Mg(p, γ) ²⁷ Al	E_p =338.21(0.30) to	8596.8(0.5)	level								78Ma24 **
$*^{26}$ Mg(p, γ) ²⁷ Al	E_p =809.90(0.05,Z)	to 9050.7(0.	.5,Z) level								78Ma24 **
$*^{27}$ Al(p,n) ²⁷ Si	F: rejected by same	e group "mea	asurement conta	ins error"							94Br37 **
28 Ne $-u$	11490	430	12130	140	1.0	o			TO1	1.5	86Vi09
	12270	560			-0.2	o			GA1	1.5	87Gi05
	11958	238			0.5	o			GA3	1.5	91Or01
	12160	140			-0.1	2			TO4	1.5	91Zh24
	12110	118			0.1	2			GA7	1.5	07Ju03
²⁸ Na-u	-1220	190	-1061	11	0.6	o			TO1	1.5	86Vi09
	-1097	96			0.3	U			GA3	1.5	91Or01
	-1062	14			0.1	o			P40	1.0	01Lu17
	-1061	11				2			P40	1.0	06Ga04
²⁸ Si-u	-23073.43	0.30	-23073.4650	0.0005	-0.1	U			ST1	1.0	93Je06
	-23073.4676	0.0020			1.3	U			MI1	1.0	95Di08
	-23073.00	0.27			-0.7	U			OH1	2.5	94Go.A
	-23073.466	0.008			0.1	U			ST2	1.0	02Be64 *
$C_2 D_2 - {}^{28}Si$	51277.0224	0.0024	51277.0212	0.0006	-0.5	U			MI1	1.0	95Di08
$^{15}N_2 - ^{28}Si H_2$	7641.2007	0.0024	7641.1984	0.0013	-1.0	1	29	$26^{-15}N$	MI1	1.0	95Di08
$C_2 H_4 - {}^{28}Si$	54373.59360	0.00079	54373.5940	0.0006	0.5	1	54	38 ²⁸ Si	FS1	1.0	08Re16
$^{13}C_2H_2-^{28}Si$	45433.19986	0.00071	45433.1999	0.0005	0.1	1	53	34 ²⁸ Si	FS1	1.0	08Re16
$^{28}\text{Si}_2$ $^{16}\text{O}-^{35}\text{Cl}$ ^{37}Cl	14013.07	0.70	14012.41	0.07	-0.6	U			H46	1.5	93Nx02
²⁵ Na- ²⁸ Na _{.446} ²² Na _{.568}	-5869	75	-5974	5	-0.9	Ü			P10	1.5	75Th08 *
²⁶ Na- ²⁸ Na _{.619} ²² Na _{.394}	-4229	613	-4207	7	0.0	U			P11	1.5	75Th08
114 114.619 114.394	-4205	128	4207	,	0.0	U			P12	2.5	75Th08
	-4203	87			-0.1	U			P13	1.0	75Th08
²⁸ Si(p, ⁶ He) ²³ Al	-38569	80	-38544.0	0.3	0.3	U			Brk	1.0	69Ce01
²⁸ Si(³ He, ⁸ Li) ²³ Al	-34274	25		0.3					MSU		75Be38
$^{28}\text{Si}(\alpha, ^{8}\text{He})^{24}\text{Si}$	-34274 -61433	25	-34255.5 -61423	0.3 19	0.7 0.5	U R			Tex		80Tr04
28 Si(p, α) 25 Al											
28 Si(9 He, 6 He) 25 Si	-7709.3	2.6	-7712.76	0.06	-1.3	U			NDm Dala		73Br27
51(" He," He)=51	-27976 27081	50	-27981	10	-0.1	U			Brk		70Me11
26 28		10		2.0	0.7	2			MSU Har		72Be12
	-27981	10	(165 1						Har		
26 Mg(t,p) 28 Mg	6474	12	6465.1	2.0	-0.7	U					61Hi11 Y
26 Mg(3 He,p) 28 Al	6474 8285	5	8278.35	0.08	-1.3	U			Phi		74Be07
26 Mg(3 He,p) 28 Al 28 Si(d, α) 26 Al	6474 8285 1429	5 4	8278.35 1428.16	0.08 0.07	$-1.3 \\ -0.2$	U U			Phi MIT		74Be07 64Sp12
26 Mg(3 He,p) 28 Al	6474 8285 1429 -22009	5 4 3	8278.35	0.08	-1.3 -0.2 -1.2	U U U			Phi MIT MSU		74Be07 64Sp12 74Ha02
26 Mg(3 He,p) 28 Al 28 Si(d, α) 26 Al	6474 8285 1429	5 4	8278.35 1428.16	0.08 0.07	$-1.3 \\ -0.2$	U U			Phi MIT		74Be07 64Sp12

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab F	Reference
27 Al $(n,\gamma)^{28}$ Al	7725.02	0.20	7725.10	0.06	0.4	U			BNn	78St25 2
711(11,7) 711	7725.07	0.30	7723.10	0.00	0.1	U			ILn	79Br25 2
	7725.13	0.30			-0.1	U			MMn	80Is02
	7725.02	0.3			0.8	2			IVIIVIII	81Su.A 2
	7725.14	0.10			-0.4	2			ILn	82Sc14
	7725.17	0.09			-0.4 -0.5	2			Bdn	06Fi.A
27 Al(d,p) 28 Al		5	5500 52	0.06	-0.3 -2.1	U				61Ja23
Al(d,p) Al	5511 5503	10	5500.53	0.00	-2.1 -0.2	U			Mex MIT	
27 Al $(p,\gamma)^{28}$ Si		0.30	11594 00	0.05	0.0	U				64Sp12
$AI(p,\gamma)$ SI	11584.89		11584.90	0.05			11	11 ²⁷ Al	Utr	78Ma23 2
27.1.311 128.01	11585.09	0.14	6001 42	0.05	-1.3	1	11	11 - Al		28Sir-0
²⁷ Al(³ He,d) ²⁸ Si	6049	18	6091.43	0.05	2.4	U				60Fo01
27 Al(p, γ) 28 Si r	-956.15	0.03	-956.139	0.025	0.3	2			Utr	78Ma23
	-956.025	0.020			-5.7	В			Auc	94Br37
28 2 27	-956.13	0.05			-0.4	2				98Wa.A
$^{28}\text{Si}(^{3}\text{He},\alpha)^{27}\text{Si}$	3407	15	3398.01	0.11	-0.6	U		27:	Ald	59Hi68
$^{28}\text{Si}(^{3}\text{He},\alpha)^{27}\text{Si}^{i}$	-3225.5	2.6	-3227.0	2.3	-0.6	1	79	79 ²⁷ Si ⁱ		86Sc21
28 Si(7 Li, 8 He) 27 P	-37513	40	-37473	26	1.0	R				01Ca37
$^{28}P^{i}(p)^{27}Si$	3835	20				3			Lis	89Po10
28 Mg(β^-) 28 Al	1791	10	1831.8	2.0	4.1	В				53Ma23
	1831.8	2.0				3				540103
28 Al(β ⁻) 28 Si	4644	10	4642.15	0.08	-0.2	U				52Mo22
•	4657	14			-1.1	U				540103
28 Si r (IT) 28 Si	12541.23	0.14	12541.04	0.05	-1.3	R			Utr	90En02 2
$^{28}P(\beta^{+})^{28}Si$	14290	40	14345.1	1.2	1.4	U				68Ar03
$^{28}\text{Si}(p,n)^{28}\text{P}$	-15118.3	4.1	-15127.4	1.2	-2.2	U			Yal	69Ov01
(F,)	-15112.5	5.8			-2.6	Ü			BNL	71Go18
28 Si(3 He,t) 28 P	-14380	60	-14363.6	1.2	0.3	Ü			Brk	66Ma18
$^{28}\text{Si}(^{3}\text{He,t})^{28}\text{P}-^{36}\text{Ar}()^{36}\text{K}$	-1530.58	1.10	-1530.6	1.1	0.0	1	100	$100^{-28}P$	Mun	10Wr01
$^{28}\text{Si}(\pi^+,\pi^-)^{28}\text{S}$	-24544	160	-1330.0	1.1	0.0	2	100	100 1	Willi	82Mo12
$^{28}\text{Si}-\text{u}$	Unc. was erroneou		in Ama2012 was		A 200					. .
²⁵ Na- ²⁸ Na _{.446} ²² Na _{.568}	Symmetric double				AIIIC200	13				
				ided						GAu *
28 Si(3 He, α) 27 Si ⁱ	IT=6626(3), Q reb			. 1050 0151	**					GAu *
$^{28}\text{Mg}(\beta^{-})^{28}\text{Al}$	E_{β} = 418(10) 459									Ens13a *
$^{28}\text{Al}(\beta^-)^{28}\text{Si}$	E_{β} = 2865(10) 28	78(14) respe	ectively, to 2^+ lev	vel at 1779.0	30 keV					Ens13a *
$^{28}P(\beta^{+})^{28}Si$	$E_{\beta}^{'} = 11490(40)$ to	2 ⁺ level at	1779.030 keV							Ens13a *
$^{28}\text{Si}(\pi^+,\pi^-)^{28}\text{S}$	Original –24603(1	60) recalibr	ated to ${}^{16}\mathrm{O}(\pi^+,\pi)$	$(\tau^{-})^{16}$ Ne $Q =$	=–27704	4(20) ke	V			GAu *
²⁹ F-u	43103	376				2			GA8 1.5	12Ga45
²⁹ Ne-u	19433	551	19750	160	0.4	0			GA3 1.5	91Or01
· · · - ·	19300	400			0.8	Ü			TO4 1.5	91Zh24
	19400	410			0.6	0			GA5 1.5	00Sa21
	19753	107			2.0	2			GA7 1.5	07Ju03
²⁹ Na-u	2820	230	2877	8	0.2	U			TO1 1.5	
iva—u	2838	143	2077	o	0.2	U			GA3 1.5	91Or01
	2861	143			1.1				P40 1.0	01Lu17
						0	27	37 ²⁹ Na		
2951 3912	2866	13	20070	0	0.9	1	37		P40 1.0	06Ga04
29 Na $^{-39}$ K _{.744}	29885.9	9.9	29879	8	-0.6	1	63	63 ²⁹ Na	TT1 1.0	13Ch49
²⁹ Mg-u	-11375	19	-11383	12	-0.4	2			P40 1.0	06Ga04
20	-11388	16			0.3	2			P40 1.0	06Ga04
29 Al $-O_{1.812}$	-10328.8	1.0	-10332.1	0.4	-3.3	C			TT1 1.0	12Ch.A
20 40	-10333.5	1.7			0.8	U		**	TT1 1.0	16Kw.A
²⁹ P ⁴⁰ Ar-u	-55816.80	0.50	-55816.5	0.4	0.6	1	59	59 ²⁹ P	MS1 1.0	15Ei01
$^{29}\text{Al}-^{23}\text{Na}_{1.261}$	-6645.90	0.37				2			TT1 1.0	16Ga.1
²⁹ Si- ²⁸ Si H	-8256.90198	0.00024	-8256.90198	0.00024	0.0	1	100	100 ²⁹ Si	MI3 1.0	05Ra34
²⁶ Na- ²⁹ Na _{.512} ²² Na _{.506}	-5763	91	-5611	5	1.1	U			P10 1.5	75Th08
	-6379	293	*		1.7	Ü			P11 1.5	75Th08
	-5252	277			-0.5	Ü			P12 2.5	75Th08
	-5576	66			-0.5	U			P13 1.0	75Th08
	-3310	00			-0.5	U			115 1.0	7511100

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	llue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²⁷ Na- ²⁹ Na _{.466} ²⁵ Na _{.540}		-1708	124	-1713	5	0.0	U			P10	1.5	75Th08
$^{18}O(^{13}C,2p)^{29}Mg$		-1456	50	-1713 -1633	11	-3.5	В			110	1.5	81Pa17
$^{26}\text{Mg}(^{11}\text{B}, ^{8}\text{B})^{29}\text{Mg}$		-1430 -19720	50	-1033 -19866	11	-2.9	U			Brk		74Sc26
18 18 15 19					11		U					
Mg(O, O) Mg		-9207	55 45	-9250	11	-0.8				Mun		78Pa12
263.5 ()20.11		-9250 2000	45	2070.0	0.2	0.0	U			Can		85Fi08
26 Mg(α ,p) 29 Al		-2880	40	-2870.8	0.3	0.2	U			Yal		57Gr47
20 26		-2874	10			0.3	U			ANL		68Be13
29 Si(n, α) 26 Mg		-21	21	-34.135	0.030	-0.6	U			Ham		62An05
27 Al(t,p) 29 Al		8679.5	1.2	8671.7	0.3	-6.5	В			Str		84An17
29 Si(d, α) 27 Al		6000	11	6012.59	0.05	1.1	U			MIT		64Sp12
29 Si(p,t) 27 Si ⁱ		-23802	5	-23796.4	2.3	1.1	1	21	21^{-27}Si^{i}	MSU		77Be13
27 Al(3 He,n) 29 P		6616	30	6615.9	0.4	0.0	U			Oak		72Gr39
28 Si(n, γ) 29 Si		8473.6	0.3	8473.6012	0.0005	0.0	o			MMn		80Is02
2-(,7) 2-		8473.61	0.04			-0.2	Ü			MMn		90Is02
		8473.55	0.04			1.3	Ü			ORn		92Ra19
		8473.5509	0.0500			1.0	0			PTc		97Ro26
		8473.54	0.0300			0.4	U			Bdn		06Fi.A
		8473.551	0.17			1.7	U			РТс		00F1.A 01Pa52
/8a:/1 \29a:		8473.5957	0.0050	6240.02522	0.00020	1.1	U			NBS		06De21
28 Si(d,p) 29 Si		6252	10	6249.03522	0.00029		U			Mex		64Ma.B
		6252	10			-0.3	U			MIT		64Sp12
20		6249.35	0.5			-0.6	U			Rez		90Pi05
8 Si(p, γ) 29 P		2747.1	1.7	2749.0	0.4	1.1	-					73Ba35
		2748.8	0.6			0.4	-					74By01
8 Si(d,n) 29 P		560	30	524.5	0.4	-1.2	U			Ald		60Ma21
$^{8}\text{Si}(^{3}\text{He,d})^{29}\text{P}$		-2733	12	-2744.5	0.4	-1.0	U			Ald		60Hi03
8 Si(p, γ) 29 P	ave.	2748.6	0.6	2749.0	0.4	0.7	1	40	$40^{-29}P$			average
$^{28}\mathrm{Si}(\mathrm{p},\gamma)^{29}\mathrm{P}^{i}$		-5630	10	-5632.8	2.5	-0.3	U			ANL		66Yo01
(1,1)		-5631.9	5.0			-0.2	1	24	$24^{-29}P^{i}$			68Te01
$^{29}Cl(p)^{28}S$		1800	100			0.2	3	27	2-7 1			15Mu13
$^{29}\text{Mg}(\beta^{-})^{29}\text{Al}$		7624	400	7605	11	0.0						
					11	0.0	U					73Go34
$^{29}\text{Al}(\beta^-)^{29}\text{Si}$		3850	100	3687.3	0.3	-1.6	U					54Na14
$^{29}P(\beta^+)^{29}Si$		4967	20	4942.2	0.4	-1.2	U		20-:			55Ro05
$^{29}P^{i}(IT)^{29}P$		8382.1	2.8	8381.8	2.4	-0.1	1	76	$76^{29}P^{i}$			72Ba26
²⁹ Mg-u				ment. Next iter	n from "Rili	s"						06Ga04 >
8 Si(n, γ) 29 Si	-	al error 0.0005										GAu >
8 Si $(n,\gamma)^{29}$ Si		al error 0.005 i										GAu >
28 Si(d,p) 29 Si	Estima	ted systematic	error 0.5 ac	lded to statistica	l error 0.037	keV						AHW >
28 Si(p, γ) 29 P ⁱ				1964, error estin								GAu >
29 Al $(\beta^-)^{29}$ Si				2028.16 and 3/2								Ens125 >
³⁰ Ne-u		23872	884	24990	270	0.8	o			GA3	1.5	91Or01
**		25660	850			-0.5	0					00Sa21
		24734	301			0.6	_			GA7		07Ju03
		25024	301			-0.1	_			GA8		12Ga45
	91/4	24880	320			0.4	1	73	73 ³⁰ Ne	GAO	1.5	average
³⁰ Na-u	ave.			0006	5			13	13 - Ne	TO1	1 5	
· · Ina—u		7620	540	9098	5	1.8	F			TO1	1.5	86Vi09
		9200	370			-0.2	U				1.5	87Gi05
		9126	218			-0.1	U			GA3		91Or01
		9330	130			-1.2	U			TO4	1.5	91Zh24
		8976	27			4.5	В			P40	1.0	01Lu17
		8990	25			4.3	В			P40	1.0	06Ga04
³⁰ Na-O _{1.876}		18638.9	5.6	18638	5	-0.1	1	82	82 ³⁰ Na	TT1	1.0	13Ch49
30 Na 39 K.769		37004	12	37008	5	0.3	1	18	18 ³⁰ Na	TT1	1.0	13Ch49
$^{10}Mg - 0_{1.876}$			3.7	37000	5	0.5	2	10	10 144	TT1		
1v1g-U1.876		3.0	3.1				2			111	1.0	13Ch49

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
³⁰ Mg-u	-9700	230	-9537	4	0.5	o			TO1	1.5	86Vi09
	-9597	98	,	•	0.4	Ü			GA3	1.5	91Or01
	-9490	110			-0.3	Ü			TO4	1.5	91Zh24
	-9546	14			0.6	Ü			P40	1.0	06Ga04
60 Al $^{-39}$ K $_{.769}$	10878.1	3.1				2			TT1	1.0	16Kw.A
$^{30}P - ^{30}Si$	4543.353	0.066				3			JY1	1.0	16Ca22
$^{30}S^{-30}P$	6593.28	0.21				4			JY1	1.0	11So11
²⁶ Na- ³⁰ Na _{.433} ²² Na _{.591}	-7454	287	-7468	4	0.0	Ü			P10	1.5	75Th08
114 114.455 114.591	-8060	641	,	•	0.6	Ü			P11	1.5	75Th08
	-7045	225			-0.8	Ü			P12	2.5	75Th08
	-7515	117			0.4	Ü			P13	1.0	75Th08
²⁷ Na- ³⁰ Na _{.360} ²⁵ Na _{.648}	-2750	213	-2505	4	0.8	Ü			P10	1.5	75Th08
²⁶ Mg(¹⁸ O, ¹⁴ O) ³⁰ Mg	-16234	55	-16121	3	2.0	Ü			Mun	1.0	78Pa12
$^{30}\mathrm{Si}(\mathrm{n},\alpha)^{27}\mathrm{Mg}$	-4193	21	-4199.95	0.05	-0.3	Ü			Ham		62An05
30 Si(p, α) 27 Al	-2368	10	-2372.04	0.05	-0.4	Ü			MIT		64Sp12
$^{27}\text{Al}(\alpha,p)^{30}\text{Si}$	2375	8	2372.04	0.05	-0.4	Ü			Man		59Ba13
30 Si(d, α) 28 Al	3123	10	3128.49	0.03	0.5	U			MIT		64Sp12
¹⁸ Si(³ He,n) ³⁰ S	-573	15	-573.64	0.08	0.0	U			CIT		67Mi02
60 Ar(2p) ²⁸ S	2280	130	373.04	0.21	0.0	3			011		15Mu13
$^{19}\text{Si}(n,\gamma)^{30}\text{Si}$	10609.6	0.3	10609.199	0.022	-1.3	0			MMn		80Is02
51(11,7) 51	10609.21	0.04	10007.177	0.022	-0.3	2			MMn		90Is02
	10609.24	0.05			-0.8	2			ORn		92Ra19
	10609.1776	0.0500			0.4	0			PTc		97Ro26
	10609.1776	0.0300			0.7	2			PTc		01Pa52
	10609.23	0.21			-0.1	Ū			Bdn		06Fi.A
9 Si(d,p) 30 Si	8413	10	8384.633	0.022		Ü			Mex		61Ja23
51(d,p) 51	8396	13	000000	0.022	-0.9	Ü			MIT		64Sp12
	8384.92	0.53			-0.5	Ü			Rez		90Pi05
$^{29}\mathrm{Si}(\mathrm{p},\gamma)^{30}\mathrm{P}$	5594.5	0.4	5594.75	0.07	0.6	Ü			1102		85Re02
51(P,77) 1	5594.5	0.5	2072	0.07	0.5	Ü					96Wa33
30 Na(β^{-}) 30 Mg	17167	330	17358	6	0.6	Ü					83De04
$^{30}\mathrm{Mg}(\beta^-)^{30}\mathrm{Al}$	6690	240	6981	4	1.2	Ü					83De04
$^{30}\text{Al}(\beta^-)^{30}\text{Si}$	8550	250	8568.1	2.9	0.1	Ü					61Ro12
30 Si(t, 3 He) 30 Al	-8520	40	-8549.5	2.9	-0.7	Ü					69Aj03
SI(t, IIC) III	-8545	15	03 17.5	2.7	-0.3	Ü					87Pe06
$^{30}P(\beta^{+})^{30}Si$	4262	40	4232.11	0.06	-0.7	Ü					56Gr07
1 () 51	4267	25	1202111	0.00	-1.4	Ü					63Fr10
80 Si(p,n) 30 P	-5012.1	5.	-5014.45	0.06	-0.5	Ü			Har		75Fr.A
$^{30}S(\beta^{+})^{30}P$	6118	22	6141.60	0.20	1.1	Ü					63Fr10
³⁰ Na-u	F : contaminated by		01.1.00	0.20	1.1	Ü					91Zh24
²⁶ Mg(¹⁸ O, ¹⁴ O) ³⁰ Mg	Tentative, say author		nts only								AHW
$^{30}\text{Ar}(2p)^{28}\text{S}$	Symmetrized from		•								GAu
29 Si $(n,\gamma)^{30}$ Si	Original error 0.00			ı							GAu
$^{29}\mathrm{Si}(\mathrm{n},\gamma)^{30}\mathrm{Si}$	Original error 0.000										GAu
$^{29}\text{Si}(d,p)^{30}\text{Si}$	Estimated systemat			ical error (16 keV						AHW
$^{30}\text{Na}(\beta^{-})^{30}\text{Mg}$	Calculated from 3 v			icai ciroi c	7.10 KC V						GAu
$^{30}\mathrm{Mg}(\beta^-)^{30}\mathrm{Al}$	Calculated from va										GAu
$^{30}\text{Al}(\beta^-)^{30}\text{Si}$	E_{β} = 5050(250) to										Ens109
$^{30}S(\beta^{+})^{30}P$	$E_{\beta^{+}} = 4422(22)$ to 0	+ level at 67	7.01 keV								Ens109
³¹ Ne-u	33087	1739	33470	290	0.1	U			GA7	1.5	07Ju03
110—u	33752	333	JJ710	270	-0.6	1	33	33 ³¹ Ne	GA7	1.5	12Ga45
³¹ Na-u			13147	15			33	33 INC			87Gi05
ına—u	13440	1000 327	13147	15	$-0.2 \\ -0.8$	0 0			GA1 GA3	1.5 1.5	8/G105 91Or01
					-u x	Ω			1141		911 11111
	13559 13610	210			-1.5	Ü			TO4	1.5	91Zh24

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	nparison of input Input value		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
3134 0	6502.7	2.2	-						TPT 1	1.0	1201.40
31 Mg $-O_{1.938}$	6503.7	3.3	22.52			2			TT1	1.0	13Ch49
31 Mg $-u$	-3830	220	-3352	3	1.4	О			TO1	1.5	86Vi09
	-3520	180			0.6	0			GA1	1.5	87Gi05
	-3458	149			0.5	U			GA3	1.5	91Or01
	-3370	120			0.1	U			TO4	1.5	91Zh24
21	-3425	18			4.1	В		21-	P40	1.0	06Ga04
$O_2 - {}^{31}PH$	8242.20819	0.00086	8242.2083	0.0007	0.2	1	67	61 ³¹ P	FS1	1.0	08Re16
$^{31}\text{Na} - ^{39}\text{K}_{.795}$	42017	25	42000	15	-0.7	o			TT1	1.0	13Ch49
21 20	42000	15				2			TT1	1.0	16Ga.1
$^{31}Al - ^{39}K_{.795}$	12803.1	2.4				2			TT1	1.0	16Kw.A
$^{31}P-^{28}SiH_3$	-26639.6290	0.0056	-26639.6331	0.0007		U			FS1	1.0	06Re19
	-26639.63324	0.00089			0.2	1	64	39 ³¹ P	FS1	1.0	08Re16
$^{31}S - ^{31}P$	5794.98	0.25	5795.01	0.25	0.1	1	97	$97^{-31}S$	JY1	1.0	10Ka30
$^{31}\text{Cl}-^{31}\text{P}$	18686.1	3.7				2			JY1	1.0	16Ka15
$O_2 - {}^{31}P$	16067.228	0.096	16067.2406	0.0007	0.1	U			MS1	1.0	09Kw02 *
²⁶ Na- ³¹ Na _{.373} ²² Na _{.657}	-7457	286	-8024	6	-0.8	U			P12	2.5	75Th08
$^{18}O(^{15}N,2p)^{31}Al$	-170	90	-308.6	2.2	-1.5	U					81Pa11
27 Al $(\alpha,\gamma)^{31}$ P	9667.4	1.3	9668.60	0.05	0.9	U			Utr		78Ma23
$^{31}P(p,\alpha)^{28}Si$	1912	5	1916.3084	0.0007	0.9	U			Bar		56Va14 Y
A. 11	1919	4			-0.7	Ü			VUn		64Sm03
	1911	10			0.5	Ü			MIT		64Sp12
	1915.8	0.2			2.5	Ü			Zur		67St30
28 Si $(\alpha,n)^{31}$ S	-8135	44	-8096.67	0.23	0.9	Ü			Tal		63Ne05
$^{31}P(d,\alpha)^{29}Si$	8166	11	8165.3436	0.0007		U			MIT		64Sp12
$^{31}\text{Cl}^{i}(2p)^{29}\text{P}$	7700	100	7631	3	-0.7	U			14111		90Bo24 ×
C1 (2p) 1	7610	60	7031	3	0.3	U			Lis		91Bo32
	7643	50			-0.2	U			Lis		92Ba01 ×
	7627	15			0.3	0			LIS		98Ax02
	7631	3			0.5	2					00Fy01 ×
30 Ne(n, γ) 31 Ne	190	130	170	130	-0.2	1	95	67 ³¹ Ne			
$^{30}\text{Si}(^{18}\text{O},^{17}\text{F})^{31}\text{Al}$	-12200	25		2.2	-0.2 -0.7	U	93	07 Ne			14Na10 * 88Wo02
Si("O,"F)"Al			-12216.8	2.2	0.6	U			D		
30 Si $(n,\gamma)^{31}$ Si	-12237	35	(597.20	0.04					Ber		89Bo.A
$S1(n,\gamma)^{-1}S1$	6589.1	0.7	6587.39	0.04	-2.4	U					70Be48
	6587.5	0.8			-0.1	U					70Sp02
	6588.4	0.3			-3.4	В					72Dz13
	6587.32	0.20			0.4	U			MMn		90Is02 Z
	6587.39	0.05			0.1	3			ORn		92Ra19 Z
	6587.3970	0.0500			-0.1	O			PTc		97Ro26 *
	6587.39	0.14			0.0	U			Bdn		06Fi.A
20	6587.397	0.057			-0.1	3			PTc		01Pa52
30 Si(d,p) 31 Si	4368	7	4362.83	0.04	-0.7	U			MIT		64Sp12
	4364.18	0.55			-2.5	U			Rez		90Pi05 ×
30 Si(p, γ) 31 P	7297.4	1.2	7296.551	0.022	-0.7	U					68Wo01
$^{31}\text{Cl}^{i}(p)^{30}\text{S}$	12033	10	12026	3	-0.7	o					98Ax02 ×
	12033	14			-0.5	U					00Fy01 ×
$^{31}{\rm Mg}(\beta^{-})^{31}{\rm Al}$	10150	700	11829	4	2.4	U					83De04
31 Al(β^{-}) 31 Si	7940	100	7998.3	2.2	0.6	U					73Go22
$^{31}\text{Si}(\beta^{-})^{31}\text{P}$	1471	8	1491.50	0.04	2.6	U					52Mo12
•	1486	12			0.5	U					52Wa12
$^{31}S(\beta^+)^{31}P$	5412	30	5398.02	0.23	-0.5	U					60Wa04
$^{31}P(p,n)^{31}S$	-6212.3	20.	-6180.36	0.23	1.6	o			ChR		58Go77 Y
4, ,	-6250	20			3.5	В			ChR		59Br06 Y
$*O_2-^{31}P$	For original double		$D_{M}=-16382$.522(0.096)							GAu **
$*^{31}\text{Cl}^{i}(2p)^{29}\text{P}$	Large error in E_{cm}				, ,,						MMC122**
$*^{31}\text{Cl}^{i}(2p)^{29}\text{P}$	reference also finds										92Ba01 **
· (4P) 1											00Fy01 **
$*^{31}Cl^{i}(2n)^{29}P$	$(0_2 - 7620(5) 6245$, J443(J) NO V			2422.7					
$*^{31}Cl^{i}(2p)^{29}P$	Q_{2p} =7620(5), 6245		at 1383 55 5/0)+ at 1052 (U] 3/7⊤	7277	keV				Hnel'/>
*	to ground state an	d levels 3/2 ⁺		2 ⁺ at 1953,	91, 3/2 ⁺	2422.7	keV				Ens125 **
* $*^{30}$ Ne(n, γ) ³¹ Ne	to ground state an Symmetrized from	ad levels 3/2 ⁺ 150(+160–1	00) keV	2 ⁺ at 1953,	91, 3/2+	2422.7	keV				14Na10 **
* $*^{30}$ Ne(n, γ) ³¹ Ne $*^{30}$ Si(n, γ) ³¹ Si	to ground state an Symmetrized from Original error 0.00	150(+160–1 05 increased	00) keV for calibration			2422.7	keV				14Na10 ** GAu **
* $*^{30}$ Ne(n, γ) ³¹ Ne $*^{30}$ Si(n, γ) ³¹ Si $*^{30}$ Si(d, p) ³¹ Si	to ground state an Symmetrized from Original error 0.00 Estimated systema	150(+160–1 05 increased tic error 0.5	00) keV for calibration			2422.7	keV				14Na10 ** GAu ** AHW **
* $*^{30}$ Ne(n, γ) ³¹ Ne $*^{30}$ Si(n, γ) ³¹ Si	to ground state an Symmetrized from Original error 0.00	ad levels 3/2 ⁺ 150(+160–1 05 increased tic error 0.5 a	00) keV for calibration added to statistic	cal error 0.2		2422.7	keV				14Na10 ** GAu **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
³² Na-u	19720	636	20010	40	0.3	o			GA3	1.5	91Or01
rva—u	19900	1100	20010	40	0.3	U			TO4	1.5	91Zh24
	20980	500			-1.3	0			GA5	1.5	00Sa21
	20193	129			-0.9	U			GA3	1.5	07Ju03
32 Mg $-$ O $_2$	9280.9	3.5			-0.7	2			TT1	1.0	13Ch49
32 Mg $-$ u	-800	260	-890	4	-0.2	0			TO1	1.5	86Vi09
wig—u	-890 -890	270	-890	4	0.0	U			GA1	1.5	87Gi05
	-924	214			0.0	U			GA1	1.5	91Or01
	-820	130			-0.4	U			TO4	1.5	910101 91Zh24
	-820 -1142	113			-0.4 2.2				P40	1.0	01Lu20
	-1142 -966	38			2.0	o U			P40	1.0	06Ga04 *
	-983	22			4.2	В					06Ga04 *
$^{32}Al-O_2$			1745	0					P40	1.0	
$^{32}AI-O_2$	-1744	13	-1745	8	-0.1	0			TT1	1.0	12Ch.A
32 Al $-u$	-1744.9	7.7	11016	0	0.7	2			TT1	1.0	16Kw.A
³² Al-u	-12160	220	-11916	8	0.7	U			TO1	1.5	86Vi09
	-11870	200			-0.2	U			GA1	1.5	87Gi05
22	-11877	104			-0.2	U			GA3	1.5	91Or01
32 Si $O_2 - C_5 H_4$	-67319.35	0.32				2			MS1	1.0	09Kw02 *
$O_2 - {}^{32}S_{22}$	17754.2	1.0	17758.0648	0.0014	1.5	U			J1	2.5	68Ma45
$C_2 H_8 - ^{32}S$	90531.3	1.4	90529.0835	0.0016	-0.6	U			J1	2.5	68Ma45
$^{32}S-O_2$	-17758.0663	0.0020	-17758.0648	0.0014	0.8	1	50	$48^{-32}S$	FS1	1.0	05Sh38
$^{32}S-C_2D_4$	-84335.9367	0.0019	-84335.9380	0.0014	-0.7	1	55	52 ³² S	FS1	1.0	05Sh38
³² S-H C F	-34156.50	0.57	-34157.0207	0.0016	-0.9	U			MS1	1.0	09Kw02 *
32 Na $^{-39}$ K _{.821}	49808	40				2			TT1	1.0	16Ga.1
$^{32}Ar - ^{39}K_{.821}$	27434.8	1.9				2			MA8	1.0	03B117
$C F_3 - {}^{32}S O_2 H$	25483.43	0.34	25484.043	0.003	1.8	U			MS1	1.0	09Kw02 *
$C F_3 - {}^{32}S O_2$	33310.02	0.59	33309.075	0.003	-1.6	U			MS1	1.0	09Kw02 *
²⁶ Na- ³² Na _{.325} ²² Na _{.709}	-8569	354	-9245	13	-0.8	Ü			P12	2.5	75Th08
$^{32}S(^{3}He, ^{8}Li)^{27}P$	-31277	35	-31308	26	-0.9	2			MSU	2.0	77Be13
$^{32}S(p,\alpha)^{29}P$	-4171	20	-4198.6	0.4	-1.4	Ū			Tky		64Ej05
³² S(³ He, ⁶ He) ²⁹ S	-25520	50	4170.0	0.4	1.7	2			MSU		73Be09
$^{30}\text{Si}(t,p)^{32}\text{Si}$	7307	1	7305.56	0.30	-1.4	U			Str		80An.A
$^{32}S(d,\alpha)^{30}P$	4892	10				U					
$^{32}S(p,t)^{30}S$			4896.13	0.07	0.4				MIT		64Sp12
	-19614	3	-19617.12	0.21	-1.0	U			MSU		74Ha02
31 Si $(n,\gamma)^{32}$ Si	9203.2180	0.0500	9200.0	0.3	-65.0	В			PTc		97Ro26 *
21 n ()22 n	9203.22	0.76	5005.65	0.04	-4.3	В			PTc		01Pa52
$^{31}P(n,\gamma)^{32}P$	7935.73	0.16	7935.65	0.04	-0.5	U			MMn		85Ke11 Z
	7935.65	0.04				2			ILn		89Mi16 Z
21 22-	7935.60	0.16			0.3	U			Bdn		06Fi.A
$^{31}P(d,p)^{32}P$	5712	8	5711.08	0.04	-0.1	U			MIT		64Sp12
$^{31}P(p,\gamma)^{32}S$	8864.9	0.9	8863.9632	0.0015	-1.0	U					72Co13
	8862.7	3.			0.4	U					73Ve06 *
	8865.6	1.0			-1.6	U					73Ve08 Z
	8865.1	0.9			-1.3	U					74Vi02
$^{31}P(^{3}He,d)^{32}S$	3356	13	3370.4888	0.0015	1.1	U			MIT		68Gr17
$^{32}S(p,d)^{31}S$	-12817.8	1.5	-12819.76	0.23	-1.3	U			MSU		73Mo23
32 S(3 He, α) 31 S	5415	15	5533.29	0.23	7.9	В					66Gr26
	5515	15			1.2	U			MIT		67Sp09
	5486	20			2.4	U			Ors		67Ro17
	5538	6			-0.8	U			CIT		70Mo08
$^{32}Cl(p)^{31}S$	-1583.5	3.1	-1581.1	0.5	0.8	U					85Bj01 *
4,	-1581.9	2.1			0.4	Ü					93Sc16 *
	-1581.3	0.6			0.3	1	79	76 ³² Cl			08Ga.A *
32 Na(β^{-}) 32 Mg	18300	1400	19470	40	0.8	Ú					83De04
$^{32}\text{Si}(\beta^{-})^{32}\text{P}$	213	7	227.2	0.3	2.0	U					64Br09
52(P) I	221.4	1.2	221.2	0.5	4.8	В					84Po09
	441. 4	1.4			7.0	ь					071 007

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{32}P(\beta^{-})^{32}S$	1707.6	0.7	1710.66	0.04	4.4	В					61Ni02
1(4)	1710.1	0.7	1,10.00	0.0.	0.8	U					68Fi04
$^{32}\text{Cl}(\beta^+)^{32}\text{S}$	12720	30	12680.9	0.6	-1.3	Ü					68Ar03
$^{32}S(p,n)^{32}Cl$	-13470	14	-13463.2	0.6	0.5	Ü			Yal		69Ov01
2 (2,11)	-13470	9			0.8	Ü			BNL		71Go18
$^{32}S(^{3}He,t)^{32}C1$	-12699	15	-12699.5	0.6	0.0	U					89Je07
$^{32}S(^{3}He,t)^{32}Cl-^{36}Ar()^{36}K$	133.01	1.10	133.6	0.6	0.6	1	31	24 ³² C1	Mun		10Wr01
$^{32}S(\pi^+,\pi^-)^{32}Ar$	-22813	50	-22793.2	1.8	0.4	U					80Bu15
$*^{32}$ Mg $-u$	Result from the "P	lasma" experi		em from "R	Rilis"						06Ga04 =
* ³² Si O ₂ -C ₅ H ₄	For original double										GAu
* ³² S-H C F	For original double	et 32 S O ₂ H-	H ₂ C O ₂ F								GAu
*C F ₃ − ³² S O ₂ H	For original double			M = -25761.	27(0.34)	μu					GAu
$*C F_3 - {}^{32}S O_2$	For original double										GAu
$*^{31}$ Si $(n,\gamma)^{32}$ Si	Original error 0.00			`							GAu
$^{31}P(p,\gamma)^{32}S$	T=3289(3) Q = -3			(0.28) keV							Nub16b
$*^{32}Cl(p)^{31}S$	$E_p = 3353.5(3.0) Q_p$										Nub16b
$^{32}Cl(p)^{31}S$	$E_p = 3348.5(2.0) Q$	=3457.6(2.1)	from ³² Cl ⁱ 504	46.3(0.3) T	=2 level						Nub16b
*	corrected to 3464			(/ -							02Py02
32 Cl(p) ³¹ S	Q_p =3465.0(0.4) fr		5.3(0.3) T=2 lev	/el							Nub16b
k	this Q_p is quoted				aration)	,					08Bh08
$*^{32}$ Cl $(\beta^+)^{32}$ S	$E_{\beta^+} = 9470(30)$ to 2			` 1 1	ĺ						Ens119 *
³³ Na-u	27386	1601	25530	480	-0.8	o			GA3		91Or01
	26370	1160			-0.5	O			GA5		00Sa21
	25142	376			0.7	0			GA7		07Ju03
						2			GA8	1.5	12Ga45
22	25529	322									
33 Mg $-O_{2.062}$	15813.3	3.1				2			TT1	1.0	13Ch49
$^{33}Mg{-}O_{2.062} \\ ^{33}Mg{-}u$	15813.3 5460	3.1 900	5327	3	-0.1	2 0			TT1 GA1	1.0 1.5	13Ch49 87Gi05
33 Mg $-O_{2.062}$ 33 Mg $-u$	15813.3 5460 5203	3.1 900 318	5327	3	0.3	2 o U			TT1 GA1 GA3	1.0 1.5 1.5	13Ch49 87Gi05 91Or01
$^{33}Mg\!-\!O_{2.062} \\ ^{33}Mg\!-\!u$	15813.3 5460 5203 5710	3.1 900 318 180	5327	3	$0.3 \\ -1.4$	2 o U U			TT1 GA1 GA3 TO4	1.0 1.5 1.5 1.5	13Ch49 87Gi05 91Or01 91Zh24
³³ Mg-u	15813.3 5460 5203 5710 5311	3.1 900 318 180 24			$0.3 \\ -1.4 \\ 0.7$	2 o U U U			TT1 GA1 GA3 TO4 P40	1.0 1.5 1.5 1.5 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490	3.1 900 318 180 24 250	5327 -9122	3	0.3 -1.4 0.7 1.0	2 o U U U o			TT1 GA1 GA3 TO4 P40 TO1	1.0 1.5 1.5 1.5 1.0 1.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250	3.1 900 318 180 24 250 160			0.3 -1.4 0.7 1.0 0.5	2 o U U U o o			TT1 GA1 GA3 TO4 P40 TO1 GA1	1.0 1.5 1.5 1.5 1.0 1.5 1.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167	3.1 900 318 180 24 250 160 142			0.3 -1.4 0.7 1.0 0.5 0.2	2 0 U U 0 0 U			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3	1.0 1.5 1.5 1.5 1.0 1.5 1.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020	3.1 900 318 180 24 250 160 142 120			0.3 -1.4 0.7 1.0 0.5 0.2 -0.6	2 0 U U 0 0 U U			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4	1.0 1.5 1.5 1.5 1.0 1.5 1.5 1.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125	3.1 900 318 180 24 250 160 142 120 64			0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0	2 0 U U 0 0 U U 0			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957	3.1 900 318 180 24 250 160 142 120 64 100			$\begin{array}{c} 0.3 \\ -1.4 \\ 0.7 \\ 1.0 \\ 0.5 \\ 0.2 \\ -0.6 \\ 0.0 \\ -0.7 \end{array}$	2 0 U U 0 0 0 U U 0 0			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A
³³ Mg-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915	3.1 900 318 180 24 250 160 142 120 64 100 128			$\begin{array}{c} 0.3 \\ -1.4 \\ 0.7 \\ 1.0 \\ 0.5 \\ 0.2 \\ -0.6 \\ 0.0 \\ -0.7 \\ -0.6 \end{array}$	2 0 U U 0 0 0 U U 0 0 U U			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 2.5 2.5	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A
³³ Mg-u ³³ Al-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209	3.1 900 318 180 24 250 160 142 120 64 100 128 62			$\begin{array}{c} 0.3 \\ -1.4 \\ 0.7 \\ 1.0 \\ 0.5 \\ 0.2 \\ -0.6 \\ 0.0 \\ -0.7 \end{array}$	2			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 2.5 2.5 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14
33 Mg $-$ u 33 Al $-$ u 33 Si O $_2$ $-^{13}$ C C $_4$ H $_4$	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75	-9122	8	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4	2 0 U U 0 0 0 U U 0 0 U U 0 0 U U 0 0 0 U U 0 0 0 0 0 0 0 0 0 0 0 0 0			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 2.5 2.5 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02
33 Mg-u 33 Al-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5			$\begin{array}{c} 0.3 \\ -1.4 \\ 0.7 \\ 1.0 \\ 0.5 \\ 0.2 \\ -0.6 \\ 0.0 \\ -0.7 \\ -0.6 \end{array}$	2 0 U U 0 0 0 U 0 0 U U 0 0 U U 0 0 U U 0 0 U U 0 U U 0 U U U U U U U U U U U U U			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 2.5 2.5 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09
³³ Mg-u ³³ Al-u ³³ Si O ₂ - ¹³ C C ₄ H ₄ ³³ Cl-u ³³ Al- ³⁹ K ₈₄₆	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5	-9122	8	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4	2 0 U U 0 0 0 U 0 0 U U 0 0 U U 0 0 0 U U 0 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 0 0 0 0 0 0 0 0 0 0 0 0			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 2.5 2.5 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A
33Mg-u 33Al-u 33Si O ₂ -13C C ₄ H ₄ 33Cl-u 33Al-39K.846 33Ar-39K 846	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43	-9122 -22548.0	0.4	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4	2 0 U U 0 0 0 U 0 0 0 U U 0 0 0 U U 0 0 0 U U 0 0 U U 0 0 U 0 U 0 U 0 0 U 0 0 0 0 0 0 0 0 0 0 0 0 0			TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8	1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117
33 Mg-u 33 Al-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar 47	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5	-9122 -22548.0 19686.7	0.4	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5	2 0 U U 0 0 0 U 0 0 U U 2 U 2 U		100 332	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030	-9122 -22548.0 19686.7 -8437.2968	0.4 0.4 0.0003	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5	2 0 U U 0 0 0 U 0 0 U U 2 U 2 U 2	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3	1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar,917 33 S- 32 S H 30 Si(α ,p) 33 P	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10	-9122 -22548.0 19686.7 -8437.2968 -2959.7	0.4 0.4 0.0003 1.1	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5	2 0 U U 0 0 0 U 0 0 U U 2 U 2 U 1 U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar,917 33 S- 32 S H 30 Si(α ,p) 33 P	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5.	-9122 -22548.0 19686.7 -8437.2968	0.4 0.4 0.0003	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8	2 0 U U 0 0 0 U U 0 0 0 U U 2 U 2 U 2 U 1 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 39 K.946 33 Ar- 30 Ar 39 Si 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507	0.4 0.4 0.0003 1.1 0.022	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7	2 0 U U 0 0 0 U U 0 0 0 U U 2 U 2 U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607	0.4 0.4 0.0003 1.1 0.022 0.0015	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0	2 0 U U 0 0 0 U U 0 0 0 U U 2 U 2 U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04
33Mg-u 33Al-u 33Si O ₂ -13C C ₄ H ₄ 33Cl-u 33Al-39K.846 33Ar-39K 846	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507	0.4 0.4 0.0003 1.1 0.022	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5	2 0 U U 0 0 0 U U 0 0 0 U U 2 U 2 U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607	0.4 0.4 0.0003 1.1 0.022 0.0015	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U 2 U U U 0 0 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04
33 Mg-u 33 Si O ₂ - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82 8641.60	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10 0.03	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607	0.4 0.4 0.0003 1.1 0.022 0.0015	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8 1.3	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U 1 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL MMn ORn MMn	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04 85Ke08
33 Mg-u 33 Al-u 33 Si 02 - 13 C C ₄ H ₄ 33 Cl-u 33 Al- 39 K,846 33 Ar- 39 K,846 33 Ar- 36 Ar,917 33 S- 32 S H 30 Si($^{\alpha}$, $^{\alpha}$) 33 P 33 S(n , $^{\alpha}$) 30 Si 31 P(3 He, n) 33 S	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82 8641.60 8641.81	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10 0.03 0.17	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607	0.4 0.4 0.0003 1.1 0.022 0.0015	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8 1.3 -1.0	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL MMn ORn MMn Bdn	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04 85Ke08 06Fi.A
33 Mg-u 33 Mg-u 33 Al-u 33 Cl-u 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si 31 P(3 He,p) 33 S 32 S(n, γ) 33 S	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82 8641.60 8641.81 8641.6398	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10 0.03 0.17 0.0033	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607 8641.6379	0.4 0.4 0.0003 1.1 0.022 0.0015 0.0006	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8 1.3 -1.0 -0.6	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL MMn ORn MMn Bdn NBS	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04 85Ke08 06Fi.A 06De21
33 Mg-u 33 Mg-u 33 Al-u 33 Cl-u 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si 31 P(3 He,p) 33 S 32 S(n, γ) 33 S 32 S(n, γ) 33 S 32 S(n, γ) 33 S 32 S(d,p) 33 S	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82 8641.60 8641.81 8641.6398 6420	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10 0.03 0.17 0.0033 6	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607 8641.6379	0.4 0.4 0.0003 1.1 0.022 0.0015 0.0006	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8 1.3 -1.0 -0.6 -0.5	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL MMn ORn MMn Bdn	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Ku19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04 85Ke08 06Fi.A 06De21 64Sp12
33 Mg-u 33 Mg-u 33 Al-u 33 Cl-u 33 Cl-u 33 Al- 39 K.846 33 Ar- 39 K.846 33 Ar- 36 Ar.917 33 S- 32 S H 30 Si(α ,p) 33 P 33 S(n, α) 30 Si 31 P(3 He,p) 33 S 32 S(n, γ) 33 S	15813.3 5460 5203 5710 5311 -9490 -9250 -9167 -9020 -9125 -8957 -8915 -9209 -66848.76 -22536.9 21582.0 20629.86 19689.2 -8437.29682 -2965 3497.6 3496.9 9787 8641.5 8641.82 8641.60 8641.81 8641.6398	3.1 900 318 180 24 250 160 142 120 64 100 128 62 0.75 7.5 7.5 0.43 4.5 0.00030 10 5. 5.0 15 0.3 0.10 0.03 0.17 0.0033	-9122 -22548.0 19686.7 -8437.2968 -2959.7 3493.507 9787.5607 8641.6379	0.4 0.4 0.0003 1.1 0.022 0.0015 0.0006	0.3 -1.4 0.7 1.0 0.5 0.2 -0.6 0.0 -0.7 -0.6 1.4 -1.5 -0.6 0.0 0.5 -0.8 -0.7 0.0 0.5 -1.8 1.3 -1.0 -0.6	2 0 U U 0 0 0 U U 0 0 U U 2 U 2 U U U U U U U U U U U U U	100	100 ³³ S	TT1 GA1 GA3 TO4 P40 TO1 GA1 GA3 TO4 GT1 GT2 GT2 LZ1 MS1 LZ1 TT1 MA8 MA6 MI3 ANL ILL MMn ORn MMn Bdn NBS	1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 2.5 1.0 1.0 1.0 1.0 1.0	13Ch49 87Gi05 91Or01 91Zh24 06Ga04 86Vi09 87Gi05 91Or01 91Zh24 04Ma.A 08Kn.A 08Su19 15Xu14 09Kw02 11Tu09 16Kw.A 03B117 01He29 05Ra34 68Be13 81Wa31 01Wa50 71Gr04 80Is02 83Ra04 85Ke08 06Fi.A 06De21

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	ompai is			Adjusted val					1 0	<u> </u>	F	Reference	
Item		Input va	nue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	Г	Keieren	
³² S(d,n) ³³ Cl		62	9	52.2	0.4	-1.1	U					72El03	
³² S(³ He,d) ³³ Cl		-3218	15	-3216.7	0.4	0.1	Ü					66Gr26	
5(110,0)		-3217	5	0210	0	0.1	Ü			CIT		70Mo08	
$^{32}S(p,\gamma)^{33}Cl$	ave.	2276.7	0.4	2276.8	0.4	0.2	1	80	80 ³³ Cl	CII		average	
$^{32}S(p,\gamma)^{33}Cl^{i}$	avc.	-3267.0	1.0	-3271.7	0.5	-4.7	В	00	00 CI			70Ab15	
5(p, f) C1		-3271.4	2.0	32/1./	0.5	-0.1	U					82Wi.A	
		-3271.5	0.8			-0.3	1	37	37 ³³ Cl ⁱ			02Py01	
$^{33}\text{Cl}^{i}(p)^{32}\text{S}$		3266.8	1.0	3271.7	0.5	4.9	В	31	37 CI			87Bo21	
$^{33}\text{Si}(\beta^{-})^{33}\text{P}$		5768	50	5823.0	1.3	1.1	U					73Go33	
$^{33}P(\beta^{-})^{33}S$		249	2	248.5	1.1	-0.2	2					54Ni06	
I(p) 3		248.3	1.3	240.3	1.1	0.2	2					84Po09	
$^{33}\text{Cl}(\beta^+)^{33}\text{S}$		5532	50	5582.5	0.4	1.0	U					60Wa04	
$^{33}\text{Cl}^{i}(\text{IT})^{33}\text{Cl}$		5548.5	0.4	5548.4	0.4	-0.1	1	83	63 ³³ Cl ⁱ			06Tr10	
$*^{33}$ Si O ₂ $-^{13}$ C C ₄ H ₄	Ei-	inal doublet ³³			0.4	-0.1	1	0.5	65 °C1				
***S1 O ₂ —**C C ₄ H ₄	For ong	inai doublet **	S1 U ₂ H ₃ -	C C4 H7								GAu	**
³⁴ Na-u		34010	429				2			GA8	1.5	12Ga45	
34 Mg $-O_{2.126}$		19747	31				2			TT1	1.0	13Ch49	
34 Mg $-u$		8855	476	8940	30	0.1	O			GA3	1.5	91Or01	
		9190	350			-0.5	U			TO4	1.5	91Zh24	
		9900	350			-1.8	U			GA5	1.5	00Sa21	
		9190	97			-1.7	U			GA7	1.5	07Ju03	
$^{34}Al-u$		-3760	430	-3221	3	0.8	O			TO1	1.5	86Vi09	*
		-3400	250			0.5	O			GA1	1.5	87Gi05	*
		-3262	218			0.1	O			GA3	1.5	91Or01	*
		-2940	120			-1.6	U			TO4	1.5	91Zh24	*
		-3199	97			-0.2	U			GT1	1.5	04Ma.A	*
		-3328	86			0.8	U			GA7	1.5	07Ju03	*
$^{34}Al - ^{39}K_{.872}$		28438.0	7.8	28427	3	-1.4	o			TT1	1.0	16Kw.A	
		28427.0	3.3				2			TT1	1.0	16Ga.1	
$^{34}Ar - ^{39}K_{.872}$		11919.02	0.36	11918.04	0.08	-2.7	U			MA8	1.0	02He23	
$^{34}Ar - ^{36}Ar_{.944}$		10907.4	3.8	10907.51	0.09	0.0	U			MA6	1.0	01He29	
$^{34}\text{Cl}-^{34}\text{S}$		5895.548	0.058	5895.48	0.04	-1.2	1	49	31 ³⁴ Cl	JY1	1.0	09Er07	
$^{34}\text{Cl}^m - ^{34}\text{S}$		6052.575	0.068	6052.60	0.04	0.4	1	41	31 ³⁴ Cl ^m	JY1	1.0	09Er07	
$^{34}S - ^{34}Ar$		-12403.19	0.20	-12403.08	0.08	0.5	1	14	13 ³⁴ Ar	JY1	1.0	11Er02	
$^{34}\text{Cl}^m - ^{34}\text{Cl}$		157.05	0.11	157.124	0.029	0.7	U			JY1	1.0	09Er07	
		157.30	0.27			-0.7	U			JY1	1.0	11Er02	
$^{34}Ar - ^{34}Cl$		6507.627	0.092	6507.60	0.07	-0.3	1	54	52 ³⁴ Ar	JY1	1.0	11Er02	
$^{34}\text{Cl}^m - ^{34}\text{Ar}$		-6350.41	0.11	-6350.48	0.07	-0.6	1	39	35 ³⁴ Ar	JY1	1.0	11Er02	
$C_4 H_3 - {}^{34}PO$		54914.59	0.87				2			MS1	1.0	09Kw02	2 *
³⁰ Si(⁷ Li, ³ He) ³⁴ P		100	40	91.6	0.8	-0.2	U					77Pe17	
$^{31}P(\alpha,p)^{34}S$		629.9	2.9	627.09	0.04	-1.0	U			Har		73Ry01	
$^{31}P(\alpha,n)^{34}C1$		-5632	10	-5646.86	0.05	-1.5	U			Tal		70Um01	í
1 (w,ii) Ci		-5641.5	3.7	-3040.00	0.03	-1.3	U			Har		73Ry01	
34 S(d, α) 32 P				5092 00	0.06	-1.4	U			Hai			
$^{32}S(^{3}He,n)^{34}Ar$		5096	10	5083.99						CIT		78Ba30	
³⁴ S(¹³ C, ¹⁴ O) ³³ Si		-759	15	-777.34	0.08	-1.2	U			CIT		67Mi02	
		-14243	75	-14300.1	0.7	-0.8	U			Can		86Fi06	-
33 S(n, γ) 34 S		11417.12	0.10	11417.15	0.04	0.3	_			ORn		83Ra04	Z
33 0 (1) 31 =		11417.22	0.23	0405 -0	0	-0.3	_			Bdn		06Fi.A	
$^{33}S(d,p)^{34}S$		9202	10	9192.58	0.04	-0.9	U			MIT		64Sp12	
22 24		9195	6			-0.4	U		24	Utr		71Va21	
$^{33}S(n,\gamma)^{34}S$	ave.	11417.14	0.09	11417.15	0.04	0.1	1	24	$24^{-34}S$			average	
33 S(p, γ) 34 Cl		5142.42	0.20	5143.20	0.05	3.9	В			Oak		83Ra04	
		5142.4	0.3			2.7	U			Utr		83Wa27	Z
									24				
34 Si(β^-) 34 P		5143.29	0.07			-1.3	1	48	48 ³⁴ Cl	Auc		94Li20	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	/alue	Adjusted	l value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
34D(0-)34G	5202	45	5202.0	0.0	0.0				ANTO		720.00
$^{34}P(\beta^{-})^{34}S$	5383	45	5383.0	0.8	0.0	U			ANB		73Go33
$^{34}S(t,^{3}He)^{34}P$	-5368	20	-5364.4	0.8	0.2	U			LAI		77Aj01
$^{34}S(^{7}Li,^{7}Be)^{34}P$	-6224	40	-6244.9	0.8	-0.5	U			Can		85Dr06
$^{34}\text{Cl}(\beta^{+})^{34}\text{S}$	5522	30	5491.60	0.04	-1.0	U					56Gr07
34 S(p,n) 34 Cl	-6252	10	-6273.95	0.04	-2.2	U			Tal		70Um01
	-6271.9	1.9			-1.1	U			Har		75Fr.A
	-6274.27	0.56			0.6	U			Auc		77Ba16
	-6273.11	0.25			-3.4	F			Auc		92Ba.A *
$^{34}S(^{3}He,t)^{34}Cl$	-5510.8	0.4	-5510.20	0.04	1.5	F			Mun		77Vo02 *
$^{34}S(^{3}He,t)^{34}Cl-^{27}Al()^{27}Si$	-678.7	2.3	-679.24	0.10	-0.2	U			ChR		74Ha35
$^{34}\text{Cl}^m(\text{IT})^{34}\text{Cl}$	146.36	0.03	146.360	0.027	0.0	1	84	65 ³⁴ Cl ^m			Ens126
$*^{34}Al-u$	Possible isomeric m										12Ro25 **
$*C_4 H_3 - {}^{34}PO$	For original doublet	³⁴ P H ₂ O=	C4 Hs								GAu **
$*^{33}S(p,\gamma)^{34}Cl$	E_p =974.76(0.15,Z)										83Ra04 **
$*^{34}S(p,n)^{34}Cl$	F: disturbed by reso			ncartain							94Li20 **
$*^{34}S(^{3}He,t)^{34}Cl$	F : rejected in refere			ilcertain							09Fa15 **
* 5(ne,t) CI	r : rejected in refere	nce of same	group								09Fa13 **
35 Mg $-$ u	18669	1721	16790	290	-0.7	o			GA3	1.5	91Or01
wig-u	18830	1070	10790	290	-0.7 -1.3					1.5	00Sa21
	16790	193			-1.5	o 2			GA3	1.5	07Ju03
³⁵ Al-u			240	0	0.1						
AI—u	-340	460	-240	8	0.1	0			GA1	1.5	87Gi05
	-296	298			0.1	0			GA3	1.5	91Or01
	80	190			-1.1	U			TO4	1.5	91Zh24
35 01 77	-236	75		0.04	0.0	U			GA7	1.5	07Ju03
C_3 $-$ ³⁵ $Cl H$	23320.8	0.3	23322.27	0.04	2.0	U		25	M17	2.5	66Be10
	23322.239				0.7	1	56	56 ³⁵ Cl	B07	1.5	71Sm01
	23321.83	0.63			0.3	U			J5	2.5	72Ka57
25	23322.328	0.325			-0.1	U			J5	2.5	72Ka57
$C_5 H_{10} - ^{35}Cl_2$	140549.37	2.98	140544.93	0.08	-0.6	U			C2	2.5	65De09
	140545.01	0.13			-0.4	1	15	15 ³⁵ Cl	B07	1.5	71Sm01
$C_4 H_6 O^{-35} Cl_2$	104153.75	3.45	104159.42	0.08	0.7	U			C2	2.5	65De09
$C_2 D_6 - ^{35}Cl H$	107934.90	0.54	107932.94	0.04	-1.5	U			J5	2.5	72Ka57
	107933.422	0.538			-0.4	U			J5	2.5	72Ka57
$C_3 H-D^{35}Cl$	24871.92	0.75	24870.56	0.04	-0.7	U			C2	2.5	65De09
$C_8 H_9 - ^{35}Cl_3$	163867.25	0.90	163867.21	0.11	0.0	U			A2	2.5	70St25
³⁵ Ar–u	-24747.3	4.3	-24742.3	0.7	1.2	U			LZ1	1.0	11Tu09
$^{35}\text{Al}-^{39}\text{K}_{.897}$	32315.1	7.9				2			TT1	1.0	16Ga.1
$^{35}K - ^{39}K_{.897}$	20560.69	0.55				2			MA8	1.0	07Ya08
$^{35}\text{Cl}(p,\alpha)^{32}\text{S}$	1862	5	1866.06	0.04	0.8	Ū			Bar	1.0	57Va03 Y
$CI(p,\omega)$ B	1865	8	1000.00	0.01	0.1	U			MIT		64Sp12
32 S(α ,p) 35 Cl	-1862	17	-1866.06	0.04	-0.2	U			MIT		64Sp12
$^{32}S(\alpha,n)^{35}Ar$	-8751	18	-8614.7	0.04	7.6	В			Tal		63Ne05
$^{35}\text{Cl}(d,\alpha)^{33}\text{S}$		10		0.7	-0.2	ь U					
³³ C(3μ) ³⁵ Λ	8285		8283.13						MIT		64Sp12
33 S(3 He,n) 35 Ar	3335	16	3321.3	0.7	-0.9	U					75Da14
35 K ⁱ (2p) ³³ Cl	4311	40	5 000 4		6.3	2					85Ay01
$^{34}S(^{18}O,^{17}F)^{35}P$	-7796	40	-7808.4	1.9	-0.3	U			Can		88Or01
34 S(n, γ) 35 S	6986.00	0.10	6985.84	0.04	-1.6	-			ORn		83Ra04 Z
	6985.84	0.05			0.0	_			MMn		85Ke08 Z
24 25	6986.09	0.14			-1.8	U			Bdn		06Fi.A
$^{34}S(d,p)^{35}S$	4762	10	4761.27	0.04	-0.1	U			MIT		64Sp12
	4757	5			0.9	U			Utr		71Va18
34 S $(n,\gamma)^{35}$ S	ave. 6985.87	0.04	6985.84	0.04	-0.8	1	75	$46^{-34}S$			average
34 S(p, γ) 35 Cl	6367.4	1.6	6370.81	0.04	2.1	U					72Hu10
	6370.7	0.4			0.3	U					76Sp08 Z
	6370.70	0.20			0.6	U			Oak		83Ra04 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
35 Cl $(\gamma,n)^{34}$ Cl	-12660	40	-12644.76	0.05	0.4	U					61Sa11
$^{35}P(\beta^{-})^{35}S$	3909	75	3988.4	1.9	1.1	U					72Go31
$^{35}S(\beta^{-})^{35}C1$	167.4	0.2	167.322	0.026	-0.4	Ü					57Co62
Б(р) Сі	166.80	0.15	107.322	0.020	3.5	В					85Al11
	167.288	0.100			0.3	U					85Ap01 ×
	166.93	0.2			2.0	0					85Ma59
	167.4	0.1			-0.8	Ü					85Oh06 ×
	166.7	0.2			3.1	В					89Si04 ×
	167.56	0.03			-7.9	В					92Ch27 *
	167.35	0.10			-0.3	U					93Ab11 >
	167.23	0.10			0.9	U					93Be21 >
	167.27	0.10			0.5	U					93Mo01 >
	167.334	0.027			-0.5	1	91	71^{-35} S			00Ho13
$^{35}Cl(n,p)^{35}S$	612	4	615.025	0.026	0.8	U			BNL		68Sc01
35 Ar(β^{+}) 35 Cl	5980	40	5966.2	0.7	-0.3	U					56Ki29
(p)	5950	50			0.3	Ü					60Wa04
$^{35}Cl(p,n)^{35}Ar$	-6747.2	1.6	-6748.6	0.7	-0.9	2			Har		75Fr.A 2
2.(P,) 1 H	-6747.9	1.0	0.10.0	0.7	-0.7	2			Auc		77Wh03 2
	-6750.4	1.2			1.5	2			Mtr		78Az01
$*^{34}S(p,\gamma)^{35}Cl$	$E_p = 1264.97(0.13, 2)$		1(0.15.7) level		1.5	_			1,111		83Ra04 *>
$*^{35}S(\beta^{-})^{35}C1$	Original error (0.03)										AHW *>
$*^{35}Cl(p,n)^{35}Ar$	Original T=6942.2			2)							GAu **
· C(p,n) / n	011gmar 1=07+2.2	(2.2) recano	rated 05+3.5(1.	2)							O/Iu
$^{36}{ m Mg-u}$	24930	1610	21880	740	-1.3	o			GA5	1.5	00Sa21
	21879	494	21000	, .0	1.0	2			GA7	1.5	07Ju03
36 Al $-u$	6187	421	6390	160	0.3	0			GA3	1.5	91Or01
	6500	400	0270	100	-0.2	Ü			TO4	1.5	91Zh24
	6140	310			0.5	0			GA5	1.5	00Sa21
	6388	107			0.5	2			GA7	1.5	07Ju03
³⁶ Si-u	-13850	640	-13350	80	0.5	Ū			TO1	1.5	86Vi09
51 4	-13490	320	10000	00	0.3	0			GA1	1.5	87Gi05
	-13578	191			0.8	0			GA3	1.5	91Or01
	-13110	150			-1.1	2			TO4	1.5	91Zh24
	-13376	75			0.2	2			GT1	1.5	04Ma.A
	-13280	118			-0.4	2			GA7	1.5	07Ju03
	-13484	163			0.8	2			LZ1	1.0	15Xu14
36 Ar $-u$	-32454.895	0.015	-32454.895	0.029	0.0	0			ST2	1.0	02Bf02
	-32454.895	0.029	02.01.070	0.029	0.0	1	100	100 ³⁶ Ar	ST2	1.0	03Fr08
$^{36}K - ^{39}K_{.923}$	14800.99	0.38	14800.9	0.4	-0.2	1	93	93 ³⁶ K	MA8	1.0	07Ya08
³⁶ Ar(³ He, ⁸ Li) ³¹ Cl	-29180	50	-29212	3	-0.6	U	75)5 II	MSU	1.0	77Be13
$^{36}S(^{48}Ca,^{52}V)^{32}A1$	-12651	370	-12346	7	0.8	0			Dar		87Ch.A
$^{36}S(^{48}Ca,^{51}V)^{33}A1$	-12031 -14150	140	-14188	7	-0.3	U			Dar		86Wo07
$^{36}S(^{14}C,^{17}O)^{33}Si$	-6380	20	-6321.1	0.7	2.9	U			Mun		84Ma49
³⁶ S(¹¹ B, ¹⁴ N) ³³ Si			-0321.1 -4345.5								85Fi03
36 Ar(3 He, 6 He) 33 Ar	-4311	30		0.7	-1.2	U			Can		83F103 74Na07
36g/11p 13xx 34g:	-23512	30	-23508.1	0.4	0.1	U			MSU		
³⁶ S(¹¹ B, ¹³ N) ³⁴ Si ³⁶ S(¹⁴ C, ¹⁶ O) ³⁴ Si	-7327	25	-7385	14	-2.3	2			Can		85Fi03
	-2989	20	-2950	14	1.9	2			Mun		84Ma49
$^{36}S(^{64}Ni,^{66}Zn)^{34}Si$	-8890	41	-8907	14	-0.4	0			Dar		85Wo07 >
26	-8903	33			-0.1	2			Dar		86Sm05
$^{36}S(d,\alpha)^{34}P$	4604.4	5.	4595.4	0.8	-1.8	U					82So.A
36 Ar(p,t) 34 Ar	-19513	3	-19514.09	0.08	-0.4	U			MSU		74Ha02
36 Ar(p,t) 34 Ar ⁱ	07.472	50	-27448	5	0.5	U					69Br21 :
AI(p,t) AI	-27473										
4,	-27448	5				2					
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si	$-27448 \\ -16184$	5 50	-16110	40	1.5	2			Mun		84Ma49
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si ³⁶ S(¹³ C, ¹⁴ O) ³⁵ Si	-27448 -16184 -21122	5 50 60	-16110 -21160	40 40	-0.6	2 2			Can		84Ma49 86Fi06
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si ³⁶ S(¹³ C, ¹⁴ O) ³⁵ Si ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si	-27448 -16184 -21122 -17250	5 50	-16110		-0.6 -2.1	2 2 2			Can Dar		84Ma49 86Fi06 86Sm05 *
³⁶ S(¹⁴ C, ¹⁵ O) ³⁵ Si ³⁶ S(¹³ C, ¹⁴ O) ³⁵ Si	-27448 -16184 -21122	5 50 60	-16110 -21160	40	-0.6	2 2			Can		84Ma49 86Fi06

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	-2927	10	-2887.9	1.9	3.9	В			Mun		84Ma49 ×
³⁶ S(⁶ Li, ⁷ Be) ³⁵ P	-7521	17	-7488.5	1.9	1.9	U			Can		85Dr06
³⁶ S(⁶⁴ Ni, ⁶⁵ Cu) ³⁵ P	-7521 -5659										
		34	-5641.6	2.0	0.5	U			Dar		85Wo.A
35 Cl $(n,\gamma)^{36}$ Cl	8579.73	0.20	8579.794	0.005	0.3	U			BNn		78St25 Z
	8579.7	0.3			0.3	0			MMn		80Is02 Z
	8579.81	0.20			-0.1	U			MMn		81Ke02 Z
	8579.66	0.10			1.3	U					81Su.A Z
	8579.61	0.09			2.0	U			ILn		82Kr12 Z
	8579.67	0.17			0.7	U		26	Bdn		06Fi.A
	8579.7945	0.0048			0.0	1	100	99 ³⁶ Cl	NBS		06De21
35 Cl(d,p) 36 Cl	6360	8	6355.228	0.005	-0.6	U			MIT		64Sp12
35 Cl(p, γ) 36 Ar	8506.1	0.5	8506.98	0.04	1.8	U					72Ho40 Z
35 Cl(p, γ) 36 Ar ^{j}	-2346.8	1.5	-2345.2	1.2	1.1	2					76Hu01
	-2342.5	1.9			-1.4	2					76Ma40
36 Ar(d,t) 35 Ar	-9007	10	-8998.3	0.7	0.9	U			Yal		70Wh04
36 K ⁱ (p) 35 Ar	2592	21	2623.8	2.3	1.5	U			Brk		81Ay01
(F)	2623.8	2.3				3					95Ga16
³⁶ S(⁷ Li, ⁷ Be) ³⁶ P	-11277	27	-11275	13	0.1	2			Can		85Dr06
$^{36}S(^{14}C,^{14}N)^{36}P$	-10256	15	-10257	13	0.0	2			Mun		84Ma49
$^{36}\text{Cl}(\beta^+)^{36}\text{S}$	1137	18	1142.13	0.19	0.3	U			wium		68Pi03
$^{36}\text{Cl}(\varepsilon)^{36}\text{S}$			1142.13	0.19							
CI(E) S	1180	15			-2.5	U					64Li10
260 260	1160	18	1001.15	0.40	-1.0	U	2.5	26.26.0			65Be19
³⁶ S(p,n) ³⁶ Cl	-1924.64	0.31	-1924.47	0.19	0.5	1	37	$36^{-36}S$			01Wa50
$^{36}\text{Cl}(\beta^{-})^{36}\text{Ar}$	708.7	0.6	709.53	0.04	1.4	U					67Sp06
36 Ar(p,n) 36 K	-13588.3	8.	-13596.8	0.3	-1.1	U			BNL		71Go18 Z
	-13618	23			0.9	U					71Ja09
36 Ar(3 He,t) 36 K	-12930	40	-12833.1	0.3	2.4	U			Duk		70Dz04
* ³⁶ S(⁶⁴ Ni, ⁶⁶ Zn) ³⁴ Si	Calibrated with ³⁶ S	(⁶⁴ Ni, ⁶² Ni) <i>M</i>	I - A = -26862(12) now -2	26861(7)						AHW **
$*^{36}S(d,\alpha)^{34}P$											
	Original error 1.2 ju	idged too sma	all								GAu **
				Q = -1952		und state					GAu ** MMC12a**
$*^{36}$ Ar(p,t) ³⁴ Ar ⁱ	IT=7950(50); Q reb	uilt, estimate	d with 72Pa02		3 for gro	und state					MMC12a**
$*^{36}$ Ar(p,t) ³⁴ Ar ⁱ $*^{36}$ Ar(p,t) ³⁴ Ar ⁱ	IT=7950(50); <i>Q</i> rebu	ouilt, estimate	d with $72Pa02$ or's $Q = -19523$	for ground	3 for gro						
* ³⁶ Ar(p,t) ³⁴ Ar ⁱ * ³⁶ Ar(p,t) ³⁴ Ar ⁱ * ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si	IT=7950(50); Q reb	ouilt, estimate tilt with author for average o	d with $72Pa02$ or's $Q = -19523$	for ground	3 for gro						MMC12a** MMC128**
* ³⁶ Ar(p,t) ³⁴ Ar ⁱ * ³⁶ Ar(p,t) ³⁴ Ar ⁱ * ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si * ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> rebu <i>M</i> - <i>A</i> =-14482(59) Original report -269	ouilt, estimate tilt with author for average of 93 is a typo	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev	vels			GA3	1.5	MMC12a** MMC128** 86Sm05 ** GAu **
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> rebu <i>M</i> - <i>A</i> =-14482(59) Original report -269	ouilt, estimate tilt with author for average of 93 is a typo	d with $72Pa02$ or's $Q = -19523$	for ground	3 for gro d state 4, 207 lev	vels			GA3	1.5	MMC12a** MMC128** 86Sm05 ** GAu **
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> rebu <i>M</i> - <i>A</i> =-14482(59) Original report -269 10310 10900	ouilt, estimate tilt with author for average of 93 is a typo 579 450	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev	vels o o			GA5	1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> rebu <i>M</i> - <i>A</i> =-14482(59) Original report -269 10310 10900 10531	ouilt, estimate tilt with author for average of 93 is a typo 579 450 129	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev 0.3 -0.5	o o o 2			GA5 GA7	1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03
k ³⁶ Ar(p,t) ³⁴ Ar ⁱ k ³⁶ Ar(p,t) ³⁴ Ar ⁱ k ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si k ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> reb <i>M</i> - <i>A</i> =-14482(59) Original report -269 10310 10900 10531 -7550	ouilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev 0.3 -0.5 0.2	vels o o o 2 o			GA5 GA7 GA1	1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> reb <i>M</i> - <i>A</i> =-14482(59) Original report -269 10310 10900 10531 -7550 -7310	puilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6	vels o o o 2 o o			GA5 GA7 GA1 GA3	1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); Q reb IT=7925(5); Q rebu M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930	puilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305 150	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6	o o 2 o o 2			GA5 GA7 GA1 GA3 TO4	1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24
s^{36} Ar(p,t) s^{34} Ar ⁱ s^{36} Ar(p,t) s^{34} Ar ⁱ s^{36} S(s^{64} Ni, s^{65} Zn) s^{35} Si s^{36} S(s^{14} C, s^{15} N) s^{35} P	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107	puilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305 150 97	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4	o o o 2 o o 2 2 2			GA5 GA7 GA1 GA3 TO4 GA7	1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740	puilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305 150 97 430	d with 72Pa02 or's $Q = -19523$ of ground state	3 for ground and 54, 114	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5	o o 2 o 0 2 2 U			GA5 GA7 GA1 GA3 TO4 GA7 TO1	1.5 1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09
s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ Ar(p,t) ³⁴ Ar ⁱ s ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si s ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P s ³⁷ Al-u	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910	ouilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305 150 97 430 190	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7	o o o 2 o o 2 2 U o o			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1	1.5 1.5 1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05
3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si 3 ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P 3 ³⁷ Al-u 3 ³⁷ Si-u	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442	579 450 129 1410 305 150 97 430 190 200	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190 120 40	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2	o o o 2 o o o 2 2 U o O U			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01
s^{36} Ar(p,t) s^{34} Ar ⁱ s^{36} Ar(p,t) s^{34} Ar ⁱ s^{36} S(s^{64} Ni, s^{65} Zn) s^{35} Si s^{36} S(s^{14} C, s^{15} N) s^{35} P	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910	ouilt, estimate tilt with author for average of 93 is a typo 579 450 129 1410 305 150 97 430 190	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7	o o o 2 o o 2 2 U o o			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1	1.5 1.5 1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05
3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si 3 ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P 3 ³⁷ Al-u 3 ³⁷ Si-u	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442	579 450 129 1410 305 150 97 430 190 200	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190 120 40	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2	o o o 2 o o o 2 2 U o O U			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01
36 Ar(p,t) 34 Ar i 36 Ar(p,t) 34 Ar i 36 S(64 Ni, 65 Zn) 35 Si 36 S(14 C, 15 N) 35 P 37 Al-u 37 Si-u 37 P-u C_3 H- 37 Cl	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73	579 450 129 1410 305 150 97 430 190 200 1.09	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190 120 40	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8	o o o 2 o o o 2 2 U o O U U			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09
36 Ar(p,t) 34 Ar i 36 Ar(p,t) 34 Ar i 36 S(64 Ni, 65 Zn) 35 Si 36 S(14 C, 15 N) 35 P 37 Al-u 37 Si-u 37 P-u C_3 H- 37 Cl C_2 D ₈ - 37 Cl H ₃	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2	579 450 129 1410 305 150 97 430 190 200 1.09 0.2	d with 72Pa02 or's $Q = -19523$ of ground state 10530 -7050	3 for ground and 54, 114 190 120 40	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5	vels 0 0 2 0 0 2 0 0 2 2 U 0 U U U			GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10
36 Ar(p,t) 34 Ar i 36 Ar(p,t) 34 Ar i 36 S(64 Ni, 65 Zn) 35 Si 36 S(14 C, 15 N) 35 P 37 Al-u 37 Si-u 37 P-u C_3 H- 37 Cl C_2 D ₈ - 37 Cl H ₃	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54	3 for ground and 54, 114 190 120 40 0.06	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4	vels 0 0 2 0 0 2 2 U 0 U U U U U		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01
3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ Ar(p,t) ³⁴ Ar ⁱ 3 ³⁶ S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si 3 ³⁶ S(¹⁴ C, ¹⁵ N) ³⁵ P 3 ³⁷ Al-u 3 ³⁷ Si-u C ₃ H- ³⁷ Cl C ₂ D ₈ - ³⁷ Cl H ₃ C ₃ H ₆ O ₂ - ³⁷ Cl ₂	IT=7950(50); <i>Q</i> reb IT=7925(5); <i>Q</i> reb <i>M</i> - <i>A</i> =-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26	190 120 40 0.06 0.11	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2	vels 0 0 2 0 0 2 2 U 0 U U U U 1	85	85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01
36 Ar(p,t) 34 Ar ⁱ 36 Ar(p,t) 34 Ar ⁱ 36 Ar(p,t) 34 Ar ⁱ 36 S(64 Ni, 65 Zn) 35 Si 36 S(14 C, 15 N) 35 P 37 Al-u 37 Si-u 37 P-u 27 C1 27 C2 27 C1 27 C1	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02	190 120 40 0.06 0.11 0.06	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 1.5 1.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09
3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6S(p,t) ³⁴ Ar ⁱ 3 ³ 6S(con to the content of	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96 219665.80	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14 0.90	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02 219667.73	190 120 40 0.06 0.11 0.06 0.17	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2 0.2	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2 A2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 1.5 2.5 2.5 2.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09 70St25
3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6S(⁶⁴ Ni, ⁶⁵ Zn) ³⁵ Si 3 ³ 6S(¹⁴ C, ¹⁵ N) ³⁵ P 3 ³ Al-u 3 ³ Si-u C ₂ D ₈ -3 ³ Cl H ₃ C ₃ H ₆ O ₂ -3 ³ Cl C ₈ H ₁₅ -3 ³ Cl C ₈ H ₁₅ -3 ³ Cl C ₃ H ₃ -D 3 ³ Cl	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96 219665.80 43473.27	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14 0.90 1.33	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02 219667.73 43470.73	190 120 40 0.06 0.11 0.06 0.17 0.06	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2 0.2 -0.7	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2 A2 C2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09 70St25 65De09
3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6Ar(p,t) ³⁴ Ar ⁱ 3 ³ 6S(f ⁶⁴ Ni, f ⁶⁵ Zn) ³⁵ Si 3 ³ 6S(¹⁴ C, f ¹⁵ N) ³⁵ P 3 ³ Al-u 3 ³ Si-u 3 ³ P-u C ₃ H-3 ³ Cl C ₃ H ₆ O ₂ -3 ³ Cl ₂ C ₃ H ₅ -D ₂ 3 ⁷ Cl C ₈ H ₁₅ -3 ³ Cl ₃ C ₃ H ₃ -D 3 ³ Cl 3 ³ K-u	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96 219665.80 43473.27 -26632.5	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14 0.90 1.33 6.4	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02 219667.73	190 120 40 0.06 0.11 0.06 0.17	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2 0.2	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2 A2 C2 LZ1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09 70St25 65De09 11Tu09
36Ar(p,t)*34Ar **36Ar(p,t)*34Ar** **36S(64Ni,65Zn)*35Si **36S(14C,15N)*35P **37Al-u **37P-u **C3 H-*37Cl **C2 D8-*37Cl H3 **C3 H6 O2-*37Cl **C3 H5-*D2**37Cl **C8 H15-*37Cl3 **C3 H3-*D**37Cl **T-*D3**37Cl **T-*D3**7Cl **T-	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96 219665.80 43473.27 -26632.5 25638.22	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14 0.90 1.33 6.4 0.35	d with 72Pa02 or's Q =-19523 of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02 219667.73 43470.73 -26624.11	190 120 40 0.06 0.11 0.06 0.17 0.06 0.10	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2 0.2 -0.7 0.9 -0.8 1.3	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2 A2 C2 LZ1 MS1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.0 1.0	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09 70St25 65De09 11Tu09 07Ri08
$*^{36}$ Ar(p,t) 34 Ar ⁱ $*^{36}$ Ar(p,t) 34 Ar ⁱ $*^{36}$ S(64 Ni, 65 Zn) 35 Si $*^{36}$ S(14 C, 15 N) 35 P 37 Al-u 37 Si-u 37 P-u C_2 D ₈ - 37 Cl C_3 H ₆ O ₂ - 37 Cl C_3 H ₅ -D ₂ 37 Cl C ₈ H ₁₅ - 37 Cl C ₈ H ₁₅ - 37 Cl C ₃ H ₃ -D 37 Cl	IT=7950(50); Q reb IT=7925(5); Q reb M - A=-14482(59) Original report -269 10310 10900 10531 -7550 -7310 -6930 -7107 -20740 -19910 -20442 41924.73 41922.2 41922.176 123436.51 104974.24 45020.96 219665.80 43473.27 -26632.5	579 450 129 1410 305 150 97 430 190 200 1.09 0.2 0.305 0.12 0.08 1.14 0.90 1.33 6.4	d with $72Pa02$ or's $Q = -19523$ of ground state 10530 -7050 -20390 41922.45 123436.54 104974.26 45019.02 219667.73 43470.73	190 120 40 0.06 0.11 0.06 0.17 0.06	3 for gro d state 4, 207 lev 0.3 -0.5 0.2 0.6 -0.6 0.4 0.5 -1.7 0.2 -0.8 0.5 0.4 0.2 0.2 -0.7	vels o		85 ³⁷ Cl	GA5 GA7 GA1 GA3 TO4 GA7 TO1 GA1 GA3 C2 M17 J5 B07 B07 C2 A2 C2 LZ1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	MMC12a** MMC128** 86Sm05 ** GAu ** 91Or01 00Sa21 07Ju03 87Gi05 91Or01 91Zh24 07Ju03 86Vi09 87Gi05 91Or01 65De09 66Be10 72Ka57 71Sm01 71Sm01 65De09 70St25 65De09 11Tu09

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	=	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
G II 35 at 37 at	•				-			0 37 ~:	D.=		710 01
$C_5 H_{12} - {}^{35}Cl {}^{37}Cl$	159145.17	0.12	159145.11	0.07	-0.3	1	13	9 ³⁷ Cl	B07	1.5	71Sm01
H ₂ ³⁵ Cl ⁻³⁷ Cl	18600.0	0.4	18600.17	0.07	0.2	U			M17	2.5	66Be10
$D^{35}Cl^{-37}Cl$	17052.95	1.02	17051.89	0.07	-0.4	U			C2	2.5	65De09
27 20	17051.816	0.185	5010.13	0.40	0.2	U			J5	2.5	72Ka57
$^{37}K - ^{39}K_{.949}$	7817.98	0.33	7818.43	0.10	1.4	U			MA8	1.0	07Ya08
$^{37}\text{Cl}(p,\alpha)^{34}\text{S}$	3030	6	3034.20	0.07	0.7	U			Bar		57Va03 Y
27 24 ~	3029	8			0.7	U			MIT		64Sp12
37 Ar(n, α) 34 S	4630	7	4630.42	0.21	0.1	U			ILL		78As06
$^{34}S(\alpha,n)^{37}Ar$	-4625	90	-4630.42	0.21	-0.1	U			Tal		63Ne05
$^{37}\text{Cl}(d,\alpha)^{35}\text{S}$	7791	12	7795.47	0.07	0.4	U			MIT		64Sp12
$^{37}\text{Cl}(p,^{3}\text{He})^{35}\text{S}^{i}$	-19713	10				2					75Gu15
35 Cl(3 He,p) 37 Ar	9582	15	9576.38	0.21	-0.4	U			MIT		67Sp09
36 Mg(n, γ) 37 Mg	240	110				3					14Ko14 *
$^{36}S(^{18}O,^{17}F)^{37}P$	-14410	40	-14400	40	0.2	2			Can		88Or.A *
$^{36}S(^{48}Ca,^{47}Sc)^{37}P$	-11490	120	-11560	40	-0.6	2			Dar		88Fi04 *
36 S(n, γ) 37 S	4303.52	0.12	4303.60	0.06	0.7	2			ORn		84Ra09 Z
	4303.61	0.09			-0.1	2			Bdn		06Fi.A
$^{36}S(d,p)^{37}S$	2079.12	0.13	2079.04	0.06	-0.6	2					84Pi03
$^{36}S(^{14}C,^{13}C)^{37}S$	-3874	7	-3872.83	0.06	0.2	U			Mun		84Ma49
$^{37}\text{Cl}(^{13}\text{C},^{14}\text{O})^{36}\text{P}$	-16433	50	-16393	13	0.8	U			Can		88Or01
$^{36}S(p,\gamma)^{37}Cl$	8386.47	0.23	8386.38	0.19	-0.4	1	65	64 ³⁶ S	Utr		84No05 Z
36 S(p, γ) 37 Cl ⁱ	-1835.5	0.3				2					84No05
36 Ar(n, γ) 37 Ar	8791.1	1.0	8787.44	0.21	-3.7	В					68Wi25 Z
	8788.8	1.2			-1.1	U					70Ha56 Z
	8789.9	0.9			-2.7	U			Bdn		06Fi.A
36 Ar(p, γ) 37 K	1857.3	1.0	1857.63	0.09	0.3	U					64Ar17
4.17	1857.63	0.09				2			Utr		88De03 Z
36 Ar(d,n) 37 K	-320	100	-366.94	0.09	-0.5	U			Yal		61Ya01
36 Ar(p, γ) 37 K ⁱ	-3192.6	0.8				2					88De03
$^{37}S(\beta^{-})^{37}C1$	4750	40	4865.12	0.20	2.9	U					67Wi14
$^{37}Cl(t,^{3}He)^{37}S$	-4854	30	-4846.53	0.20	0.2	U			LAl		70Aj01
37 Ar(ε) 37 Cl	818	15	813.87	0.20	-0.3	U					53An01
$^{37}Cl(p,n)^{37}Ar$	-1595.5	4.0	-1596.22	0.20	-0.2	U			Wis		50Ri59 Y
4. /	-1595.4	1.0			-0.8	U			MIT		52Sc09 Z
	-1596.9	2.4			0.3	U			Oak		64Jo11
	-1596.8	1.0			0.6	U			Duk		66Pa18 Z
	-1596.22	0.20				2			PTB		98Bo30
	-1596.3	1.0			0.1	U					01Wa50
37 K(β^{+}) 37 Ar	6120	70	6147.47	0.23	0.4	U					58Su60
·	6170	70			-0.3	U					60Wa04
$*H_3 O-^{37}Ca_{.514}$	Error in Table II: M	A - A = 1313	5.7(1.4) correct	ed to -13	136.06(0.	64) keV					07Ri08 **
$*^{36}Mg(n,\gamma)^{37}Mg$	Symmetrized from	220(+120-9	00) keV								14Ko14 **
$*^{36}S(^{18}O,^{17}F)^{37}P$	And $Q = -13650(40)$	0), $M - A = -$	19750(40) if ot	her peak i	s ground	state one					88Or.A **
$*^{36}S(^{48}Ca,^{47}Sc)^{37}P$	And $Q = -11569(80)$	0), $M - A = -$	18980(80) if ot	her peak o	due to ⁴⁷ S	c 807.89	level				88Fi04 **
³⁸ Al-u	15240	1500	17400	400	1.0	o			GA4	1.5	00Sa21
	17980	920			-0.4	0			GA5	1.5	00Sa21
	17402	268				2			GA7	1.5	07Ju03
³⁸ Si-u	-4510	180	-4480	110	0.1	o			GA4	1.5	00Sa21
	-4020	290			-1.1	Ü			TO4	1.5	91Zh24
	-4100	320			-0.8	0			GA5	1.5	00Sa21
	-4477	75				2			GA7	1.5	07Ju03
$^{38}P-u$	-14420	620	-15700	80	-1.4	U			GA1	1.5	87Gi05
	-15910	140			1.0	2			GA4	1.5	00Sa21
	-15530	150			-0.7	2			TO4	1.5	91Zh24
	-16110	310			0.9	U			GA5	1.5	00Sa21
	-15717	75			0.2	0			GT1	1.5	04Ma.A
	-15660	100			-0.1	2			GT2	2.5	08Kn.A
	-15688	97			-0.1	2			LZ1	1.0	15Xu14

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	value	Adjusted	value	v_i	Dg	Signf.	Main infl	l. Lab	<i>F</i>	Reference
³⁸ Ca-H ₆ O ₂	-60460.24	0.30	-60460.21	0.21	0.1	0			MS1	1.0	06Bo11
0 2	-60460.24	0.30			0.1	1	48	48 ³⁸ C	a MS1	1.0	07Ri08
$^{38}Ar - ^{39}K_{.974}$	-1917.88	0.37	-1918.01	0.21	-0.4	1	32	32 ³⁸ A		1.0	02He23
$^{38}K - ^{39}K_{.974}$	4430.88	0.44	4431.00	0.21	0.3	1	23	23 ³⁸ K		1.0	07Ya08
38 Ca 19 F $-^{39}$ K _{1.462}	27783.80	0.63	27783.51	0.21	-0.5	U			MA8	1.0	07Ge07
$^{38}K - ^{38}Ar$	6348.974	0.068	6349.01	0.05	0.6	1	50	27 ³⁸ K		1.0	09Er07
$^{38}K^{m}-^{38}Ar$	6488.743	0.049	6488.73	0.04	-0.2	1	72	45 ³⁸ K		1.0	09Er07
$^{38}Ar-^{38}Ca$	-13587.18	0.12	-13587.12	0.07	0.5	1	32	17 ³⁸ A	r JY1	1.0	11Er02
$^{38}K^{m}-^{38}K$	139.698	0.065	139.72	0.05	0.3	_	32	17 7	JY1	1.0	09Er07
K - K	139.78	0.003	139.72	0.03	-0.4	_			JY1	1.0	11Er02
	ave. 139.71	0.06			0.1	1	60	34 ³⁸ K		1.0	
³⁸ Ca- ³⁸ K	7238.04	0.10	7238.11	0.07	0.7	1	45	25 ³⁸ K		1.0	average 11Er02
38 K m $-^{38}$ Ca				0.07			37	23 ³⁸ K			
	-7098.43	0.11	-7098.39		0.4	1	37	21 36K	JII	1.0	11Er02
24 Mg(16 O,2n) 38 Ca	-12727	30	-12754.71	0.19	-0.9	U					72Zi02
$^{35}Cl(\alpha,p)^{38}Ar$	837.2	2.4	837.24	0.20	0.0	U			Har		75Sq01
35 Cl $(\alpha,n)^{38}$ K	-5862.1	1.5	-5859.17	0.20	2.0	U			Mun		76Sh24
26	-5858.7	2.9		_	-0.2	U			Har		75Sq01
$^{36}S(t,p)^{38}S$	3838	30	3858	7	0.7	U					85Da15
$^{6}S(^{14}C,^{12}C)^{38}S$	-781	10	-783	7	-0.2	R			Mun		84Ma49
66 Ar(3 He,n) 38 Ca	-1365	21	-1313.14	0.20	2.5	U			CIT		69Sh04
57 Cl(n, γ) 38 Cl	6107.84	0.30	6107.88	0.08	0.1	U					73Sp06
	6107.95	0.10			-0.7	2			MMn		81Ke02
	6107.73	0.15			1.0	2			Bdn		06Fi.A
³⁷ Cl(d,p) ³⁸ Cl	3885	8	3883.32	0.08	-0.2	U			MIT		64Sp12
	3883.28	0.50			0.1	U			Rez		90Pi05
$^{37}\text{Cl}(p,\gamma)^{38}\text{Ar}$	10243.0	1.0	10242.25	0.20	-0.7	U					68En01
$^{88}S(\beta^{-})^{38}C1$	2947	20	2937	7	-0.5	3					71En01
4 /	2936	12			0.1	3					72Vi11
$^{88}\text{Cl}(\beta^-)^{38}\text{Ar}$	4913	5	4916.72	0.22	0.7	U					68Va06
$^{88}\text{K}(\beta^{+})^{38}\text{Ar}$	5870	30	5914.07	0.04	1.5	U					56Gr07
(-)	5790	50			2.5	Ü					67Va27
$^{38}Ar(p,n)^{38}K$	-6695.5	4.	-6696.41	0.04	-0.2	Ü			Har		75Sq01
7 п (р,п)	-6695.65	0.70	0070.41	0.04	-1.1	U			1101		78Ja06
38 Ar(p,n) 38 K ^m	-6826.73	0.12	-6826.56	0.04	1.4	U			Auc		98Ha36
$^{24}\text{Mg}(^{16}\text{O},2\text{n})^{38}\text{Ca}$	$E(^{16}O)=24880(30)$ to 2				1.7	O			Auc		Ens082 *
$^{85}Cl(\alpha,n)^{38}K$	Q = -5989.1(2.9,Z) to	28 ievei at 22	15.15(0.10) KC	V							Nub16b *
$^{37}Cl(d,p)^{38}Cl$				ommon () ()6/	1 1ra V						
38 K(β^{+}) 38 Ar	Estimated systematic e										
$\mathbf{K}(\mathbf{p}^{+})$ Ar	E_{β^+} =2680(30) 2600(5	o) respective.	iy, to Z Tevel a	u 410/.04	KC V						Ens082 *
³⁹ Al–u	22970	1580	22170#	430#	-0.3	o			GA5	1.5	00Sa21
	21653	676			0.5	D			GA7	1.5	07Ju03
³⁹ Si-u	1900	540	2490	150	0.7	o			GA4	1.5	00Sa21
	2210	490			0.4	0			GA5	1.5	00Sa21
	2491	97				2			GA7	1.5	07Ju03
³⁹ P-u	-13890	140	-13710	120	0.8	2			GA4	1.5	00Sa21
**	-13580	160		-	-0.6	2			TO4	1.5	91Zh24
	-13870	280			0.4	2			GA5	1.5	00Sa21
	-13602	140			-0.5	2			GT1	1.5	04Ma.A
$^{39}K - ^{23}Na_{1.696}$	-18942.88	0.58	-18942.216	0.006	0.8	U			Ma8	1.5	04Mu05
39Ca-u	-18942.88 -29278.8	6.4	-18942.210 -29289.2		-1.6	U			LZ1		11Tu09
$^{39}K - ^{36}Ar_{1.083}$				0.6						1.0	
K-1 AI1.083	-1144.65	0.44	-1144.86	0.03	-0.5	U			MA8	1.0	02He23
3917 3717	-1144.83	0.40	0001.70	0.11	-0.1	U			MA8	1.0	03B117
$^{39}K - ^{37}K_{1.054}$	-8231.29	0.53	-8231.70	0.11	-0.5	U	100	400 20	Ma8	1.5	08Mu05
³⁹ Ca ¹⁹ F – ³⁹ K _{1.487}	23082.43	0.64	23082.4	0.6	0.0	1	100	100 ³⁹ C		1.0	08Ge08
$^{39}K - ^{40}Ar$	1323.3631	0.0043	1323.363	0.004	-0.1	1	100	100^{-39} K	FS1	1.0	10Mo30

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{39}{\rm K}({\rm p},\alpha)^{36}{\rm Ar}$	1287	7	1288.405	0.027	0.2	11			МІТ		640-12
$^{37}\text{Cl}(t,p)^{39}\text{Cl}$						U			MIT		64Sp12
	5701.9	2.5	5699.5	1.7	-1.0	2			Str		84An03
39 K(p, 3 He) 37 Ar ⁱ	-15493.4	6.	21710.1	0.0	1.7	2			MSU		73Be23
39 K(p,t) 37 K ⁱ	-21713.1	3.	-21718.1	0.8	-1.7	U			MSU		73Be23
$^{39}\text{Sc}^{i}(2p)^{37}\text{K}$	4969	120	5170	40	1.7	U			Lis		90De43
	4877	40			7.3	В			Brk		92Mo15
	5146	40			0.6	o			Bor		01Gi01
	5170	40				3			Bor		07Do17
38 Ar(p, γ) 39 K	6380.9	1.1	6381.34	0.19	0.4	U					70Ma31
	6382.2	0.8			-1.1	U					84Ha27
39 K(p,d) 38 K	-10851	2	-10853.19	0.20	-1.1	U			MSU		74Wi17
$^{39}\text{K}(^{3}\text{He},\alpha)^{38}\text{K}$	7498	15	7499.87	0.20	0.1	U			Roc		66B104
, , ,	7483	10			1.7	U			Roc		72Fe06
$^{39}Cl(\beta^{-})^{39}Ar$	3440	20	3442	5	0.1	Ü			1100		56Pe38
$^{39}\text{Ar}(\beta^{-})^{39}\text{K}$	565	5	3442	3	0.1	2					50Br66
$^{39}\text{Ca}(\beta^+)^{39}\text{K}$	6512	25	6524.5	0.6	0.5	U					58Ki40
					0.5				TT 1		
39 K(p,n) 39 Ca	-7302.5	6.	-7306.8	0.6	-0.7	U			Tal		70Ke08
20	-7314.9	1.8	20		4.5	В					78Ra15
³⁹ Al−u	Trends from Mass Surf										GAu *
$*^{39}$ K(p, 3 He) 37 Ar ⁱ	M - A = -25954(6); reb			ne1971; rec	alibratio	n +0.35					MMC123*
$*^{39}$ K(p,t) ³⁷ K ⁱ	M - A = -19753(3); Q r										MMC123*
$^{39}\text{Sc}^{i}(2p)^{37}\text{K}$	E_{2p} =3600(120) to 1/2 ⁺	level at 137	0.85 keV								Ens123 *
$^{39}\text{Sc}^{i}(2p)^{37}\text{K}$	Other possibility ³⁹ Sc ⁱ	$(\alpha)^{35}$ K=3600	(120) keV								90De43 *
$^{39}\text{Sc}^{i}(2p)^{37}\text{K}$	E_{2p} =4750(40) p+p at 9			$+ Mp/M(^{3})$	⁷ K)1						MMC123*
$^{39}\text{Sc}^{i}(2p)^{37}\text{K}$	E_{2p} =4880(40) + recoil					7					MMC135*
39 Sc ⁱ (2p) ³⁷ K	IAS identification not s										MMC135*
⁴⁰ Si-u	5290	1010	5830	370	0.4	o			GA4	1.5	00Sa21
51 4	6180	740	2020	5,0	-0.3	o				1.5	00Sa21
	5829	247			0.5	2			GA7	1.5	07Ju03
$^{40}P-u$	-8800	200	-8710	160		0			GA4	1.5	00Sa21
1 —u	-8800	200	-6/10						UA4		003421
	9050	210		160	0.3				TO4	15	
	-8950	210		100	0.8	2			TO4	1.5	91Zh24
	-8200	320		100	$0.8 \\ -1.1$	2 0			GA5	1.5	91Zh24 00Sa21
40 g	$-8200 \\ -8621$	320 129	04515		0.8 -1.1 -0.5	2 o 2			GA5 GA7	1.5 1.5	91Zh24 00Sa21 07Ju03
⁴⁰ S-u	$-8200 \\ -8621 \\ -24440$	320 129 190	-24517	4	0.8 -1.1 -0.5 -0.3	2 0 2 0			GA5 GA7 GA4	1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21
⁴⁰ S-u	-8200 -8621 -24440 -24530	320 129 190 250	-24517		0.8 -1.1 -0.5 -0.3 0.0	2 o 2 o U			GA5 GA7 GA4 TO4	1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24
⁴⁰ S-u	-8200 -8621 -24440 -24530 -24910	320 129 190 250 340	-24517		0.8 -1.1 -0.5 -0.3 0.0 0.8	2 o 2 o U o			GA5 GA7 GA4 TO4 GA5	1.5 1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21
	-8200 -8621 -24440 -24530 -24910 -24627	320 129 190 250 340 129		4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6	2 o 2 o U o U		40	GA5 GA7 GA4 TO4 GA5 GA7	1.5 1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03
C ₃ H ₄ – ⁴⁰ Ar	-8200 -8621 -24440 -24530 -24910	320 129 190 250 340 129 0.0035	-24517 68917.0052	4 0.0024	0.8 -1.1 -0.5 -0.3 0.0 0.8	2 o 2 o U o	46	46 ⁴⁰ Ar	GA5 GA7 GA4 TO4 GA5 GA7 MI1	1.5 1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$	-8200 -8621 -24440 -24530 -24910 -24627	320 129 190 250 340 129		4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6	2 o 2 o U o U	46 36	46 ⁴⁰ Ar 33 ⁴⁰ Ar	GA5 GA7 GA4 TO4 GA5 GA7	1.5 1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053	320 129 190 250 340 129 0.0035	68917.0052	4 0.0024	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0	2 o 2 o U o U			GA5 GA7 GA4 TO4 GA5 GA7 MI1	1.5 1.5 1.5 1.5 1.5 1.5	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08
$C_3 H_4 - {}^{40}Ar$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045	320 129 190 250 340 129 0.0035 0.0040 0.0042	68917.0052 150431.1011	4 0.0024 0.0024	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0	2 o 2 o U o U 1 1			GA5 GA7 GA4 TO4 GA5 GA7 MI1	1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060	68917.0052 150431.1011	4 0.0024 0.0024	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1	2 o 2 o U o U 1 1	36	33 ⁴⁰ Ar	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1	1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08
$\begin{array}{l} C_3 H_4 - ^{40} Ar \\ C_2 D_8 - ^{40} Ar \\ ^{20} Ne_2 - ^{40} Ar \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003	68917.0052 150431.1011 22497.228	4 0.0024 0.0024 0.003	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1	2 o 2 o U o U 1 1 -			GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 average
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$ ${}^{20}Ne_2 - {}^{40}Ar$ ${}^{40}Ar - u$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226 -37616.878	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003	68917.0052 150431.1011 22497.228 -37616.8762	4 0.0024 0.0024 0.003	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9	2 o 2 o U o U 1 1 - - 1 U	36 74	33 ⁴⁰ Ar 60 ²⁰ Ne	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 average 02Bf02
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$ ${}^{20}Ne_2 - {}^{40}Ar$ ${}^{40}Ar - u$ ${}^{40}Ca - H_{40}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226 -37616.878 -350410.425	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424	4 0.0024 0.0024 0.003 0.0024 0.022	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0	2 o 2 o U o U 1 1	36	33 ⁴⁰ Ar	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18
$C_3 H_4 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$ $C_2 D_8 - {}^{40}Ar$ $C_3 M_{e_2} - {}^{40}Ar$ $C_4 - U_4 - U_4 - U_5 - U_6$ $C_4 - U_5 - U_6$ $C_4 - U_5 - U_6$ $C_5 - U_6 - U_6$ $C_7 - U_7 - U_7$ $C_8 - U_8$ $C_8 $	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226 -37616.878 -350410.425 22541	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544	4 0.0024 0.0024 0.003 0.0024 0.022 4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.0 0.2	2 o 2 o U o U 1 1 	36 74 99	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 95Di08 02Bf02 06Na18 09Ri12
$C_3 H_4^{-40} Ar$ $C_2 D_8^{-40} Ar$ $^{20} Ne_2^{-40} Ar$ $^{40} Ar - u$ $^{40} Ca - H_{40}$ $^{40} S O^{41} K_{1.366}$ $^{40} S^{41} K_{976}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226 -37616.878 -350410.425 22541 12752.0	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741	4 0.0024 0.0024 0.003 0.0024 0.022 4 4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.0 0.2 -1.2	2 o 2 o U o U 1 1 - - 1 U 1 U	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 95Di08 02Bf02 06Na18 09Ri12
$\begin{array}{c} C_3 H_4 - ^{40} Ar \\ C_2 D_8 - ^{40} Ar \\ ^{20} Ne_2 - ^{40} Ar \\ \end{array}$ $\begin{array}{c} ^{40} Ar - u \\ ^{40} Ca - H_{40} \\ ^{40} S O^{-41} K_{1.366} \\ ^{40} S - ^{41} K_{.976} \\ ^{40} S - ^{40} Ar \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.226 -37616.878 -350410.425 22541 12752.0 13096.6	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099	4 0.0024 0.0024 0.003 0.0024 0.022 4 4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.0 0.2 -1.2 0.6	2 o 2 o U o U 1 1 1 U 1 U 1	36 74 99	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12
$\begin{array}{l} C_3 \ H_4-^{40} Ar \\ C_2 \ D_8-^{40} Ar \\ ^{20} Ne_2-^{40} Ar \\ \end{array}$ $^{40} Ar-u \\ ^{40} Ca-H_{40} \\ ^{40} S \ O^{-41} K_{1.366} \\ ^{40} S-^{41} K_{.976} \\ ^{40} S-^{40} Ar \\ ^{40} Ca-^{40} Ar \\ \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2246 -37616.878 -350410.425 22541 12752.0 13096.6 208.2	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099 207.742	4 0.0024 0.0024 0.003 0.0024 0.022 4 4 0.022	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.2 -1.2 0.6 -0.4	2 o 2 o U o U 1 1 1 U 1 U 1 U 1	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 MS1 J3	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11
$\begin{array}{c} C_3 H_4 - ^{40} Ar \\ C_2 D_8 - ^{40} Ar \\ ^{20} Ne_2 - ^{40} Ar \\ \end{array}$ $\begin{array}{c} ^{40} Ar - u \\ ^{40} Ca - H_{40} \\ ^{40} S O^{-41} K_{1.366} \\ ^{40} S - ^{41} K_{.976} \\ ^{40} S - ^{40} Ar \\ ^{40} Ca - ^{40} Ar \\ ^{40} Ca - ^{40} Ar \\ ^{40} Ca (^{3} He, ^{8} Li)^{35} K \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2246 -37616.878 -350410.425 22541 12752.0 13096.6 208.2 -29693	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5 20	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099	4 0.0024 0.0024 0.003 0.0024 0.022 4 4	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.0 0.2 -1.2 0.6	2 o 2 o U o U 1 1 1 U 1 U 1 U U	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 MS1 J3 MSU	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11 76Be08
$\begin{array}{l} C_3 \ H_4-^{40} Ar \\ C_2 \ D_8-^{40} Ar \\ ^{20} Ne_2-^{40} Ar \\ \end{array}$ $\begin{array}{l} ^{40} Ar-u \\ ^{40} Ca-H_{40} \\ ^{40} S \ O^{-41} K_{1.366} \\ ^{40} S \ ^{-41} K_{976} \\ ^{40} S \ ^{-40} Ar \\ ^{40} Ca(^3He,^8Li)^{35} K \\ ^{40} Ca(\alpha,^8He)^{36} Ca \\ \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.2280 -37616.878 -350410.425 22541 12752.0 13096.6 208.2 -29693 -57580	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099 207.742 -29688.1	4 0.0024 0.0024 0.003 0.0024 0.022 4 4 0.022	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.2 -1.2 0.6 -0.4	2 o 2 o U o U 1 1 1 U 1 U 1 U U 2	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 MS1 J3	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11 76Be08 77Tr03
$\begin{array}{c} C_3 H_4 - ^{40} Ar \\ C_2 D_8 - ^{40} Ar \\ ^{20} Ne_2 - ^{40} Ar \\ \end{array}$ $\begin{array}{c} ^{40} Ar - u \\ ^{40} Ca - H_{40} \\ ^{40} S O^{-41} K_{1.366} \\ ^{40} S - ^{40} Ar \\ ^{40} S - ^{40} Ar \\ ^{40} Ca - ^{40} Ar \\ ^{40} Ca - ^{40} Ar \\ ^{40} Ca (^{3} He, ^{8} Li)^{35} K \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2280 ave. 22497.2280 -37616.878 -350410.425 22541 12752.0 13096.6 208.2 -29693 -57580 -2500	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5 20	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099 207.742	4 0.0024 0.0024 0.003 0.0024 0.022 4 4 0.022	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.2 -1.2 0.6 -0.4	2 o 2 o U o U 1 11 U 1 U 1 U U 2 U U	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 J3 MSU Tex	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11 76Be08
$\begin{array}{c} C_3H_4-^{40}Ar \\ C_2D_8-^{40}Ar \\ ^{20}Ne_2-^{40}Ar \end{array}$ $^{40}Ar-u$ $^{40}Ca-H_{40}$ $^{40}SO^{-41}K_{1.366}$ $^{40}S^{-41}K_{.976}$ $^{40}S^{-40}Ar$ $^{40}Ca(^3He,^8Li)^{35}K$ $^{40}Ca(\alpha,^8He)^{36}Ca$ $^{40}Ar(n,\alpha)^{37}S$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2245 22497.2280 ave. 22497.2280 -37616.878 -350410.425 22541 12752.0 13096.6 208.2 -29693 -57580	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5 20 40	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099 207.742 -29688.1	0.0024 0.0024 0.003 0.0024 0.022 4 4 0.022 0.5	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.2 -1.2 0.6 -0.4 0.2	2 o 2 o U o U 1 1 1 U 1 U 1 U U 2	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 J3 MSU Tex	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11 76Be08 77Tr03
$\begin{array}{c} C_3 H_4 - ^{40} Ar \\ C_2 D_8 - ^{40} Ar \\ ^{20} Ne_2 - ^{40} Ar \\ \end{array}$ $\begin{array}{c} ^{40} Ar - u \\ ^{40} Ca - H_{40} \\ ^{40} S O^{-41} K_{1.366} \\ ^{40} S^{-41} K_{.976} \\ ^{40} S^{-40} Ar \\ ^{40} Ca - ^{40} Ar \\ ^{40} Ca (^3 He, ^8Li)^{35} K \\ ^{40} Ca (\alpha, ^8He)^{36} Ca \\ \end{array}$	-8200 -8621 -24440 -24530 -24910 -24627 68917.0053 150431.1045 22497.2280 ave. 22497.2280 -37616.878 -350410.425 22541 12752.0 13096.6 208.2 -29693 -57580 -2500	320 129 190 250 340 129 0.0035 0.0040 0.0042 0.0060 0.003 0.040 0.022 16 9.4 4.8 0.5 20 40 50	68917.0052 150431.1011 22497.228 -37616.8762 -350410.424 22544 12741 13099 207.742 -29688.1	0.0024 0.0024 0.003 0.0024 0.022 4 4 0.022 0.5	0.8 -1.1 -0.5 -0.3 0.0 0.8 0.6 0.0 -0.8 1.0 0.1 0.9 0.0 0.2 -1.2 0.6 -0.4 0.2	2 o 2 o U o U 1 11 U 1 U 1 U U 2 U U	36 74 99 21	33 ⁴⁰ Ar 60 ²⁰ Ne 99 ⁴⁰ Ca 21 ⁴⁰ S	GA5 GA7 GA4 TO4 GA5 GA7 MI1 MI1 MI1 ST2 ST2 MS1 MS1 J3 MSU Tex	1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	91Zh24 00Sa21 07Ju03 00Sa21 91Zh24 00Sa21 07Ju03 95Di08 95Di08 95Di08 95Di08 95Di08 95Di08 average 02Bf02 06Na18 09Ri12 09Ri12 09Ri12 68Fu11 76Be08 77Tr03 55Be78

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
⁴⁰ Ca(³ He, ⁶ He) ³⁷ Ca		-24270	50	-24371.2	0.6	-2.0	U			Brk	68Bu02
Ca(Tic, Tic) Ca		-24368	25	24371.2	0.0	-0.1	U			MSU	73Be23
40 Ar(p, 3 He) 38 Cl i		-24300 -21092	24			-0.1	2			Brk	70Ha10
40 Ar(p,t) 38 Ar ^j		-26765	31				2			DIK	70Ha10
40 Ca(d, α) 38 K		4655		4665.18	0.20	1.0				MIT	
40 Ca(p,t) 38 Ca			10			1.0	U			IVIII	64Sp12
"Ca(p,t)" Ca		-20459	25	-20448.72	0.20	0.4	U			MOLI	66Ha32
		-20428	11			-1.9	U			MSU	72Pa02
40 + 418 0 10 2 20 0		-20452	5	44440	~ 0	0.7	U			MSU	74Se05
⁴⁰ Ar(¹⁸ O, ¹⁹ Ne) ³⁹ S		-14504	200	-14410	50	0.5	U			Can	84Ho.B
40 Ar(13 C, 14 O) 39 S		-16760	50				2			Can	89Dr03
40 Ar(t, α) 39 Cl		7256	40	7285.2	1.7	0.7	U			LAl	61Ja07
40 Ar(d, 3 He) 39 Cl $-^{36}$ Ar() 35 Cl		-4024.13	2.42	-4021.7	1.7	1.0	R			Hei	93Ma50
40 Ar(3 He, α) 39 Ar i		1604	19	1627	7	1.2	2				67Gr01
		1631.3	8.0			-0.5	2				72Wi07
39 K(n, γ) 40 K		7799.50	0.08	7799.62	0.06	1.5	_			ILn	84Vo01
		7799.56	0.16			0.4	_			Bdn	06Fi.A
39 K(d,p) 40 K		5579	10	5575.05	0.06	-0.4	U			MIT	64Sp12
39 K(n, γ) 40 K	ave.	7799.51	0.07	7799.62	0.06	1.5	1	61	$61^{-40} { m K}$		average
39 K(p, γ) 40 Ca		8329.5	0.9	8328.165	0.021	-1.5	U				68Do12
4.17		8329.6	0.9			-1.6	U				68Li12
		8328.24	0.09			-0.8	Ü			Utr	90Ki07
$^{39}\text{K}(^{3}\text{He,d})^{40}\text{Ca}$		2845	8	2834.690	0.021	-1.3	Ü			Oak	67Se10
$^{40}\text{Ca}(^{3}\text{He},\alpha)^{39}\text{Ca}$		4950	20	4942.6	0.6	-0.4	U			Ald	66Hi06
Ca(Tic,a) Ca		4919	15	4742.0	0.0	1.6	U			MIT	71Ra35
⁴⁰ Ca(⁷ Li, ⁸ He) ³⁹ Sc		-37400	40	-37376	24	0.6	2			MSU	88Mo18
⁴⁰ Ca(¹⁴ N, ¹⁵ C) ³⁹ Sc											
		-27670	30	-27683	24	-0.4	2			Can	88Wo07
$^{40}\mathrm{Sc}^{i}(\mathrm{p})^{39}\mathrm{Ca}$		3840	120	3830	6	-0.1	0			Lis	90De43
		3820	30			0.3	U			GGT	90Zh.A
		3827.7	10.			0.2	2			GSI	97Li25
		3830.8	7.			-0.1	2			Lis	98Bh12
40 - 40		3841	20			-0.6	U			Bor	07Do17
$^{40}\text{Cl}(\beta^-)^{40}\text{Ar}$		7320	80	7480	30	2.0	2				89Mi03
40 Ar(7 Li, 7 Be) 40 Cl		-8375	35	-8340	30	0.9	2				84Fi02
$^{40}\mathrm{K}(\varepsilon)^{40}\mathrm{Ar}$		1504	7	1504.40	0.06	0.1	U				67Mc10
		1497	8			0.9	U				68Az01
40 K(n,p) 40 Ar		2270	5	2286.75	0.06	3.3	В			BNL	68Sc01
-		2286.7	1.0			0.0	U			ILL	81We12
40 Ar(p,n) 40 K		-2286.3	1.0	-2286.75	0.06	-0.4	U			Duk	66Pa18
4, ,		-2286.3	1.0			-0.4	U				01Wa50
$^{40}{\rm K}(\beta^-)^{40}{\rm Ca}$		1325	15	1310.89	0.06	-0.9	U				52Fe16
() /		1350	20			-2.0	Ü				59Ke26
40 Sc(β^{+}) 40 Ca		14330	40	14323.0	2.8	-0.2	Ü				68Ar03
40 Ca(p,n) 40 Sc		-15105.4	2.9	11323.0	2.0	0.2	2			Yal	69Ov01
$^{40}\text{Ca}(^{3}\text{He,t})^{40}\text{Sc}$		-13103.4 -14490	60	-14341.6	2.8	2.5	U			Bld	65Ri06
$^{40}\text{Ca}(\pi^+,\pi^-)^{40}\text{Ti}$		-24974	160	-14541.0	2.0	2.3				Diu	82Mo12
40 Ca(3 He, 6 He) 37 Ca	A			-1113543		_	2				
40 A (3H) 38 Gii				all calibration			10p 4	~ 1 · 1 ·			AHW *
40 Ar(p, 3 He) 38 Cl i				1093.65(23.68)				5 keV			MMC123*
40 Ar(p,t) ³⁸ Ar ^j				n ¹⁰ C=15702.5	(1.8) fro	m refere	nce				68Br23 *
40 Ar(3 He, α) 39 Ar ⁱ		89(20); <i>Q</i> reb									MMC123*
40 Ar(3 He, α) 39 Ar ⁱ		75(10); <i>Q</i> reb									MMC123*
39 K(p, γ) 40 Ca				at 9641.1(0.8)							Ens048 *
$^{40}\text{Sc}^{i}(p)^{39}\text{Ca}$	Uncer	tainty not give	en, estima	ated from grap	h: stat(9l	keV), cal	lib(11)				GAu *
40 Sc ⁱ (p) ³⁹ Ca				(20) $Q_p = 1364$.				l			Ens062 *
40 Sc ⁱ (p) ³⁹ Ca		70(10) in orig			•						MMC123*
40 K $(\varepsilon)^{40}$ Ar				respectively, to	o 2 ⁺ leve	l at 1460	0.851. re	calculated	0		Ens048 *
$^{40}\text{Sc}(\beta^+)^{40}\text{Ca}$				3736.69 keV,			,		~		Ens048 *
$^{40}\text{Ca}(\pi^+,\pi^-)^{40}\text{Ti}$				Q = -27704(20)		-p					GAu *
· Cu(n ,n) 11	Recall	Dialica 10 O	(n ,n)	2 2//04(20	O) KC V						OAu *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁴¹ Si-u		14560	1980	13010	600	-0.5	o			GA5	1.5	00Sa21
		13011	397				2			GA7	1.5	07Ju03
$^{41}P-u$		-5930	300	-5350	130	1.3	O			GA4	1.5	00Sa21
		-5200	500			-0.2	U			TO4	1.5	91Zh24
		-5290	420			-0.1	o			GA5	1.5	00Sa21
41		-5346	86				2			GA7	1.5	07Ju03
$^{41}S-u$		-20500	150	-20407	4	0.4	U			GA4	1.5	00Sa21
		-19970	230			-1.3	U			TO4	1.5	91Zh24
		-20430	330			0.0	U			GA5	1.5	00Sa21
41		-20494	75			0.8	U			GT1	1.5	04Ma.A
⁴¹ S-C ₂ H O		-23146.2	4.4				2			MS1	1.0	09Ri12
⁴¹ Cl-u		-29620	190	-29320	70	1.1	2			TO3	1.5	90Tu01
41		-29500	270			0.5	2			TO4	1.5	91Zh24
⁴¹ Sc−u		-30741	12	-30748.90	0.09	-0.7	U			LZ1	1.0	11Tu09
⁴¹ Ti—u		-16200	390	-16850	30	-1.1	U			GT1	1.5	04St05
41 20		-16852	30				2			LZ1	1.0	12Zh34
$^{41}K - ^{39}K_{1.051}$		-30.05	0.32	-30.260	0.006	-0.7	U			MA8	1.0	02He23
		-29.5	2.4			-0.3	U			MA8	1.0	09Na.A
$^{41}K - ^{40}ArH$		-8382.9005	0.0061	-8382.898	0.003	0.4	-			FS1	1.0	10Mo30
$^{1}K_{-40}^{40}Ar$		-557.8652	0.0039	-557.866	0.003	-0.2	-			FS1	1.0	10Mo30
^{11}K ^{-40}Ar H	ave.	-8382.898	0.003	-8382.898	0.003	0.1	1	100	$100^{-41} { m K}$			average
$^{-1}$ K(p, α) ³⁸ Ar		4002	20	4019.33	0.20	0.9	U			ChR		60C102
		4018	10			0.1	U			MIT		64Sp12
$^{-1}$ K(d, α) ³⁹ Ar		8397	15	8393	5	-0.2	U			MIT		67Sp09
9 K(3 He,p) 41 Ca		8920	20	8972.95	0.14	2.6	U			MIT		67Sp09
0 Ar(18 O, 17 F) 41 Cl		-10530	83	-10470	70	0.8	R			Can		84Ho.B
0 Ar(n, γ) 41 Ar		6098.4	0.7	6098.9	0.3	0.8	2					70Ha56
		6099.1	0.4			-0.4	2			Bdn		06Fi.A
0 Ar(d,p) 41 Ar		3878	6	3874.4	0.3	-0.6	U			MIT		64Sp12
0 Ar(p, γ) 41 K		7807.8	0.3	7808.619	0.003	2.7	U					89Sm06
0 Ar(3 He,d) 41 K i		-6034	15				2					75Me10
$^{-0}$ K(n, γ) ⁴¹ K		10095.19	0.10	10095.37	0.06	1.8	_			ILn		84Kr05
		10095.25	0.20			0.6	_			Bdn		06Fi.A
	ave.	10095.20	0.09			1.9	1	39	39^{-40} K			average
$^{-0}$ Ca(n, γ) 41 Ca		8363.0	0.5	8362.82	0.14	-0.4	_					69Ar.A
•		8362.5	0.5			0.6	_					70Cr04
		8362.72	0.3			0.3	_			MMn		80Is02
		8362.86	0.17			-0.2	_			Bdn		06Fi.A
$^{-0}$ Ca(d,p) 41 Ca		6134	4	6138.26	0.14	1.1	U			MIT		68Be36
10 Ca(n, γ) 41 Ca	ave.	8362.81	0.14	8362.82	0.14	0.1	1	100	100 ⁴¹ Ca			average
0 Ca(p, γ) 41 Sc		1085.7	1.4	1085.00	0.08	-0.5	U					73Al11
4,1,		1085.09	0.09			-1.0	1	79	79 ⁴¹ Sc	Utr		87Zi02
0 Ca(d,n) 41 Sc		-1145	15	-1139.57	0.08	0.4	U					61Ma08
10 Ca(p, γ) 41 Sc ^r		-1796.4	1.5	-1797.33	0.09	-0.6	U					77Ko10
${}^{0}\text{Ca}(\mathbf{p}, \gamma)^{41}\text{Sc}^{i}$		-4851.4	4.9	-4854	3	-0.5	2					76Fo01
$^{1}\mathrm{Sc}^{i}(\mathrm{p})^{40}\mathrm{Ca}$		4855.6	5.	4854	3	-0.4	2			Jyp		97Ho12
Бе (р) Са		4855.6	8.	1031	5	-0.2	2			Lis		98Bh12
		4857	16			-0.2	Ū			Bor		07Do17
$^{41}\text{Cl}(\beta^-)^{41}\text{Ar}$		5670	150	5760	70	0.6	R			Вог		74Gu10
-1 Ar(β ⁻) ⁴¹ K		2492.0	1.1	2492.0	0.3	0.0	U					64Pa03
1 K(p,n) 41 Ca		-1209.6	1.5	-1204.00	0.14	3.7	В			Oak		64Jo11
К (р,п) Са		-1203.8	0.5	1204.00	0.14	-0.4	U			Can		70Kn03
1 Sc(β^{+}) 41 Ca		6630	100	6495.48	0.16	-1.3	U			Can		62Cr04
$^{-1}$ Sc r (IT) 41 Sc		2882.6	0.3	2882.32	0.05	-0.9	U					77Ko10
56 (11) 56		2882.39	0.3	2002.32	0.03	-0.9 -0.7	-			Utr		87Zi02
		2882.26	0.10			-0.7 1.1	_			Utr		89Ki11
	01/0		0.06				1	93	72 41 Sc ^r	Ou		
le c uo	ave.	2882.29		0		0.6	1	93	12 ·· SC'			average
¹¹ S-C ₂ H O ¹¹ Ti-u		ginal doublet 41		2 0								09Ri12 >
		result in reference		71								13Ya03 >
40 Ar(3 He,d) 41 K ⁱ		49(15); <i>Q</i> rebuilt										MMC123
40 Ca(p, γ) 41 Sc		7.25(0.05,Z) to 1										87Zi02 >
$^{41}\text{Ar}(\beta^{-})^{41}\text{K}$	$E_{B-}=1$	198.3(1.1) to 7/2	2 level at 12	293.609 keV								Ens163 >

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁴² Si-u	20860	3990	17680#	540#	-0.5	o			GA5	1.5	99Sa.A
51 u	16275	623	1700011	5 1011	1.5	Ď			GA7	1.5	07Ju03 *
$^{42}P-u$	260	740	1080	340	0.7	0			GA4	1.5	00Sa21
ı u	1550	630	1000	510	-0.5	0			GA5	1.5	00Sa21
	1084	225			0.5	2			GA7	1.5	07Ju03
$^{42}S-u$	-18940	150	-18935	3	0.0	Ū			GA4	1.5	00Sa21
5 4	-18510	350	10,00		-0.8	Ü			TO4	1.5	91Zh24
	-19390	350			0.9	Ü			GA5	1.5	00Sa21
	-18934.9	3.0			0.7	2			MS1	1.0	09Ri12 *
⁴² Cl-u	-27000	190	-26660	60	1.2	Ü			TO3	1.5	90Tu01
	-26870	190			0.7	Ü			TO4	1.5	91Zh24
	-26658	64				2			LZ1	1.0	15Xu14
⁴² Ti-u	-26973	25	-26950.98	0.30	0.9	U			LZ1	1.0	16Zh.A
$^{42}Ar - ^{36}Ar_{1.167}$	920.6	6.2				2			MA6	1.0	01He29
$^{42}S^{-41}K_{1.024}$	20151.8	9.5	20156	3	0.4	Ü			MS1	1.0	09Ri12
42 Sc $^{-42}$ Ca	6898.74	0.22	6898.69	0.10	-0.2	1	22	19 ⁴² Sc	JY1	1.0	06Er08
$^{42}\mathrm{Sc}^m-^{42}\mathrm{Ca}$	7560.68	0.23	7560.34	0.11	-1.5	1	25	22^{-42}Sc^{m}	JY1	1.0	06Er08
⁴² Ti- ⁴² Ca	14431.69	0.71	14431.19	0.26	-0.7	1	13	13 ⁴² Ti	JY1	1.0	09Ku19
$^{42}\mathrm{Sc}^m - ^{42}\mathrm{Sc}$	661.97	0.24	661.65	0.06	-1.3	Ü	13	15 11	JY1	1.0	06Er08
Se Se	662.50	0.42	001.05	0.00	-2.0	Ü			JY1	1.0	09Ku19
⁴² Ti- ⁴² Sc	7532.92	0.34	7532.50	0.24	-1.2	1	50	49 ⁴² Ti	JY1	1.0	09Ku19
$^{42}\text{Ti}-^{42}\text{Sc}^m$	6870.19	0.38	6870.85	0.24	1.7	1	40	38 ⁴² Ti	JY1	1.0	09Ku19
²⁸ Si(¹⁶ O,2n) ⁴² Ti	-17250	13	-17267.76	0.28	-1.4	Ü	10	30 11	311	1.0	72Zi02
42 Ca(p, α) ³⁹ K	118	7	124.00	0.26	0.9	U			MIT		64Sp12
39 K $(\alpha,n)^{42}$ Sc	-7160	60	-7332.44	0.13	-2.9	U			Yal		61Sm05
K(u,n) Se	-7455	30	7332.44	0.17	4.1	В			Tal		65Ne02
40 Ar(t,p) 42 Ar	7043	40	7044	6	0.0	U			LAI		61Ja07
40 Ca(3 He,p) 42 Sc	4966	20	4917.02	0.17	-2.4	U			MIT		64Sp12
Ca(Tic,p) Sc	4905	5	4717.02	0.17	2.4	U			ANL		74Ha55
40 Ca(3 He,n) 42 Ti	-2865	6	-2881.81	0.28	-2.8	U			CIT		67Mi02
41 K(n, γ) 42 K	7533.78	0.15	7533.80	0.11	0.1	2			ILn		85Kr06 Z
II(II,7) II	7533.82	0.15	7555.00	0.11	-0.1	2			Bdn		06Fi.A
41 K(d,p) 42 K	5314	12	5309.23	0.11	-0.4	Ū			MIT		64Sp12
41 K(p, γ) 42 Ca	10275.5	3.4	10276.67	0.15	0.3	Ü			1,111		71Vi14
41 Ca(n, γ) 42 Ca	11480.63	0.06	11480.67	0.06	0.7	1	91	90 ⁴² Ca	ORn		89Ki11 Z
$^{42}\text{Ca}(^{3}\text{He},\alpha)^{41}\text{Ca}$	9102	15	9096.95	0.06	-0.3	Ü	71	70 Cu	MIT		71Ra35
$^{41}\text{Ca}(p,\gamma)^{42}\text{Sc}^r - ^{40}\text{Ca}()^{41}\text{Sc}^r$	-6.67	0.05	-6.70	0.05	-0.6	1	94	$66^{42}\mathrm{Sc}^r$	Utr		89Ki11 *
$^{42}\text{Cl}(\beta^-)^{42}\text{Ar}$	9760	220	9590	60	-0.8	Ü	74	00 50	Cti		89Mi03
$^{42}\text{K}(\beta^{-})^{42}\text{Ca}$	3519.	3.5	3525.22	0.18	1.8	Ü					68Va06
n(p) cu	3524	6	3323.22	0.10	0.2	Ü					75Ra09
$^{42}\text{Sc}(\beta^{+})^{42}\text{Ca}$	6342	100	6426.09	0.10	0.8	Ü					61Ja22
5e(p') ea	6486	100	0.120.09	0.10	-0.6	Ü					63Ro10 *
42 Ca(p,n) 42 Sc	-7213.7	2.3	-7208.44	0.10	2.3	Ü			Har		75Fr.A
⁴² Ca(³ He,t) ⁴² Sc	-6442.3	0.4	-6444.68	0.10	-6.0	F			Mun		77Vo02 *
$^{42}\text{Ca}(^{3}\text{He,t})^{42}\text{Sc}-^{27}\text{Al}()^{27}\text{Si}$	-1611.7	2.6	-1613.73	0.14	-0.8	Ü			ChR		74Ha35
$^{42}\text{Ca}(^{3}\text{He,t})^{42}\text{Sc}-^{26}\text{Mg}()^{26}\text{Al}$	-2417.8	3.5	-2421.70	0.14	-1.1	U			ChR		74Ha35
Ca(He,t) Se Mg() M	-2421.83	0.23	2421.70	0.11	0.6	1	23	14 ⁴² Sc	ChR		87Ko34 *
42 Sc ^{m} (IT) 42 Sc	616.28	0.23	616.32	0.06	0.7	1	93	76 ⁴² Sc ^m	CIIIC		Ens167
$^{42}\text{Sc}^{r}(\text{IT})^{42}\text{Sc}$	6076.33	0.08	6076.26		-0.9	1	93 84	50 ⁴² Sc	Utr		89Ki11 Z
* ⁴² Si-u	Trends from Ma						04	50 SC	Ou		
* ⁴² S-u	For original doub	ss Surrace	TWO Suggest	D 2	0 1088 001 1740 272	unu ! 1)					GAu ** 09Ri12 **
$*^{42}S - u$ $*^{41}Ca(p, \gamma)^{42}Sc^r - {^{40}Ca()^{41}Sc^r}$											
	Calculated from										GAu **
$*^{42}Sc(\beta^+)^{42}Ca$	$E_{\beta^+} = 2870(100)$			o level	at 5189.	∠o kev					Ens167 **
$*^{42}$ Ca(3 He,t) 42 Sc	F: rejected in re			137							09Fa15 **
$*^{42}$ Ca(3 He,t) 42 Sc $-^{26}$ Mg() 26 Al	Q = -2193.52(0.5)	23) to ²⁰ A	ı" at 228.306	keV							Nub16b **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁴³ P-u		4220	1620	5020	600	0.3	U			GA4	1.5	00Sa21
™P—u		6190	1040	3020	000	-0.7				GA4 GA5	1.5	00Sa21
						-0.7	0					
⁴³ S-u		5024	397	12002	-	0.0	2			GA7	1.5	07Ju03
√S−u		-12810	250	-13092	5	-0.8	0			GA4	1.5	00Sa21
		-13400	900			0.2	U			TO4	1.5	91Zh24
		-12900	460			-0.3	0			GA5	1.5	00Sa21
		-12958	107			-0.8	U			GA7	1.5	07Ju03
		-13087	22			-0.2	2			MS1	1.0	09Ri12 *
		-13092.7	5.5			0.1	2			MS1	1.0	09Ri12 *
12		-13022	236			-0.2	U			GA8	1.5	12Ga45
⁴³ Cl-u		-26090	300	-25940	70	0.3	O			GA4	1.5	00Sa21
		-25740	200			-0.7	O			TO3	1.5	90Tu01
		-25970	350			0.1	U			TO4	1.5	91Zh24
		-26010	330			0.1	O			GA5	1.5	00Sa21
		-25905	86			-0.2	O			GT1	1.5	04Ma.A
		-25894	140			-0.2	2			GA7	1.5	07Ju03
		-26361	100			1.7	C			GT2	2.5	08Kn.A
		-25941	70			0.1	2			LZ1	1.0	15Xu14
$^{43}V-u$		-19234	46				2			LZ1	1.0	13Ya03
$^{43}Ar - ^{36}Ar_{1.194}$		4387.2	5.7				2			MA6	1.0	01He29
$^{43}\text{K} - ^{39}\text{K}_{1.103}$		766.45	0.44				2			MA8	1.0	07Ya08
$^{43}\text{Ca}(p,\alpha)^{40}\text{K}$		-14	8	-9.28	0.23	0.6	U			MIT		64Sp12
40 Ca(α ,p) 43 Sc		-3470	30	-3522.3	1.9	-1.7	U					61Ma03
40 Ca $(\alpha,n)^{43}$ Ti		-11169.9	10.	-11172	7	-0.2	2			Tal		67Al08
$^{41}\text{K}(^{3}\text{He,p})^{43}\text{Ca}^{i}$		2452	30	2497	14	1.5	1	23	23 ⁴³ Ca ⁱ	MIT		68Do02
$^{43}V^{i}(2p)^{41}Sc$		4320	50	4359	15	0.8	Ü	23	25 Cu	Lis		92Bo37
v (2p) Sc		4503	22	4337	13	-6.5	В			Bor		01Gi01 *
		4348	16			0.7	1	89	89 ⁴³ V ⁱ	Bor		07Do17
42 Ca(n, γ) 43 Ca		7933.1	0.5	7932.89	0.17	-0.4	_	09	09 V	DOI		69Ar.A Z
$Ca(\Pi,\gamma)$ Ca		7933.1	0.5	1932.69	0.17	-0.4 -0.4	_			Ptn		69Gr08 Z
		7933.1								rui		
		7933.1	0.4 0.23			$-0.5 \\ 0.7$	_			Bdn		71Bi.A 06Fi.A
42 Ca(d,p) 43 Ca		5716	10	5708.33	0.17	-0.8	U			MIT		
Ca(u,p) Ca				3708.33	0.17							64Sp12
⁴³ Ca(d,t) ⁴² Ca		5707	12	1675 67	0.17	0.1	U			MIT		66Do02
		-1672	10	-1675.67	0.17	-0.4	U	00	99 ⁴³ Ca	Ald		64Bj02
42 Ca(n, γ) 43 Ca	ave.	7932.89	0.17	7932.89	0.17	0.0	1	99	99 ⁴³ Ca			average
42 Ca(p, γ) 43 Sc		4935	5	4929.8	1.9	-1.0	2					65Br31
12 - 2 12 - :		4929	2			0.4	2		42 - :			69Wa19
42 Ca(3 He,d) 43 Sc ⁱ		-4808	8	-4795	3	1.6	1	17	17^{43}Sc^{i}			66Sc17 *
$^{43}V^{i}(p)^{42}Ti$		8200	45	8111	15	-2.0	1	11	$11^{43}V^i$	Bor		01Gi01 *
43 K(β^{-}) 43 Ca		1817	20	1833.4	0.5	0.8	U					54Li24 *
		1815	10			1.8	U					59Be72 *
43 Sc(β^{+}) 43 Ca		2200	20	2220.7	1.9	1.0	U					52Ha44
		2220	10			0.1	U					54Li42
43 Ca(p,n) 43 Sc		-3005	10	-3003.1	1.9	0.2	U			Har		60Mc12 Y
		-2998	10			-0.5	U					67Mc07
43 Ca(3 He,t) 43 Sc i		-6467	8	-6471	3	-0.5	_					71Al19 *
		-6469	4			-0.5	_					71Be29 *
	ave.	-6469	4			-0.7	1	83	$83^{43} Sc^{i}$			average
$*^{43}S-u$				O) $_{0.754}$, D_{M} :	=-38753(09Ri12 **
* ⁴³ S-u	For original	inal doublet ⁴³	3S C H-(C	¹ ₃ H ₅ O) _{0.982} ,	$D_{M} = -38$	694.8(5.5) <i>µ</i> n					09Ri12 **
$*^{43}V^{i}(2p)^{41}Sc$				reanalysed ar								MMC135**
$*^{42}$ Ca(3 He,d) 43 Sc ⁱ		8(8); Q rebuilt			ia menude	. m 0/D(, 1 /					MMC123**
$*^{43}V^{i}(p)^{42}Ti$		—		38+1554 keV	_ recoil_	118 kaV						MMC135**
* 43 K(β^-) 43 Ca												
* 43 Ca(3 He,t) 43 Sc ⁱ				ly, to $3/2^+$ leve	cı at 990.2	LJ / Ke V						Ens156 **
		S(8); Q rebuilt			X7 C 42	C (\A2	C C	A 1071				MMC123**
$*^{43}$ Ca(3 He,t) 43 Sc i	CDE=72	238(4) Q = -6	4/4(4); rec	alibration +6 k	tev for 42	Ca(p,n) ^{→2}	Sc from .	Ame1961				MMC123**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	. Compa	Input v		Adjusted		$\frac{\mathbf{v}_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
		Input .		Tajastea	rarae	- 1	28	518	1124111 11111			
$^{44}P-u$		10070	966	11220#	540#	0.8	D			GA7	1.5	07Ju03 *
$^{44}S-u$		-10510	580	-9881	6	0.7	O			GA4	1.5	00Sa21
		-8960	620			-1.0	O			GA5	1.5	00Sa21
		-9769	150			-0.5	U			GA7	1.5	07Ju03
		-10027	301			0.3	U			GA8	1.5	12Ga45
⁴⁴ S-C ₂ H ₄ O		-36095.9	5.6				2			MS1	1.0	09Ri12 *
⁴⁴ Cl-u		-21700	130	-21880	150	-0.9	2			GA4	1.5	00Sa21
		-21500	500			-0.5	U			TO3	1.5	90Tu01
		-21450	270			-1.1	U			TO4	1.5	91Zh24
		-22150	370			0.5	2			GA5	1.5	00Sa21
		-22115	161			1.0	2			GT1	1.5	04Ma.A
⁴⁴ Ca-u		-44515.3	10.0	-44518.5	0.3	-0.3	U			MR1	1.0	15Wi.A
⁴⁴ Sc-u		-40480	410	-40597.1	1.9	-0.2	U			TO6	1.5	98Ba.A *
$^{44}V-u$		-25890	130				2			GT1	1.5	04St05 *
$^{44}Ar - ^{39}K_{1.128}$		5862.9	1.7				2			MA8	1.0	03B117
$^{44}\text{K} - ^{39}\text{K}_{1.128}$		2526.07	0.45				2			MA8	1.0	07Ya08
		2529.2	2.2	2526.1	0.5	-1.4	o			TT1	1.0	10La.A
		2529.1	1.7			-1.8	U			TT1	1.0	12La05
40 Ca $(\alpha, \gamma)^{44}$ Ti		5127.1	0.7				2					82Di05
44 Ca(p, α) 41 K		-1058	10	-1045.1	0.3	1.3	U			MIT		64Sp12
41 K(α ,n) 44 Sc		-3420	60	-3390.0	1.8	0.5	U			Yal		61Sm05
44 Ca(d, α) 42 K		4273	20	4264.2	0.3	-0.4	U					77Pa24
42 Ca(t,p) 44 Ca		10593	15	10582.27	0.29	-0.7	U			Ald		67Bj06
42 Ca(3 He,p) 44 Sc		6920	20	6911.0	1.7	-0.5	U			Hei		70Sc22
43 Ca(n, γ) 44 Ca		11130.6	0.5	11131.17	0.23	1.1	_					69Ar.A Z
		11130.1	0.7			1.5	_					72Wh02 Z
		11131.54	0.29			-1.3	_			Bdn		06Fi.A
43 Ca(d,p) 44 Ca		8922	14	8906.60	0.23	-1.1	U			MIT		64Sp12
		8920	10			-1.3	U			Kop		67Bj02
44 Ca(3 He, α) 43 Ca		9452	15	9446.45	0.23	-0.4	U			MIT		71Ra35
43 Ca(n, γ) 44 Ca	ave.	11131.17	0.24	11131.17	0.23	0.0	1	99	98 ⁴⁴ Ca			average
44 Ca(p,d) 43 Ca ⁱ		-16880	30	-16901	14	-0.7	_					72Ma23 *
44 Ca(d,t) 43 Ca ⁱ		-12858.7	19.7	-12869	14	-0.5	_					76Do05 *
44 Ca(p,d) 43 Ca ⁱ	ave.	-16888	16	-16901	14	-0.8	1	77	77 ⁴³ Ca ⁱ			average
43 Ca(p, γ) 44 Sc		6694	2	6696.1	1.7	1.1	2					71Po.A
43 Ca(3 He,d) 44 Sc i		-1583	5	-1575.1	2.5	1.6	1	24	24^{44}Sc^{i}			68Sc15
$^{44}V^{i}(p)^{43}Ti$		950	50	908	11	-0.8	U			Lis		92Bo37
**		908	11				3			Bor		07Do17
		917	53			-0.2	U					14Po05
$^{44}\text{K}(\beta^{-})^{44}\text{Ca}$		5580	80	5687.2	0.5	1.3	U					70Le05
44 Ca(t, 3 He) 44 K		-5660	40	-5668.6	0.5	-0.2	U			LAl		70Aj01
$^{44}Sc(\beta^{+})^{44}Ca$		3642	5	3652.7	1.8	2.1	R					50Br52 *
•		3650	5			0.5	R					55B123 *
44 Ca(p,n) 44 Sc		-4410	15	-4435.0	1.8	-1.7	U			Har		60Mc12 Y
. ,		-4447	10			1.2	U					67Mc07
44 Ca(3 He,t) 44 Sc i		-6444	4	-6449.0	2.5	-1.3	_					71Be29 *
, , ,		-6449	4			0.0	_					72Ma50 *
	ave.	-6446.5	2.8			-0.9	1	76	76^{44}Sc^{i}			average
$*^{44}P-u$		from Mass Su	rface TMS	S suggest ⁴⁴ P	1070 less t							GAu **
$*^{44}S-C_2H_4O$		ginal doublet 4										09Ri12 **
*44Sc-u		=-37570(370)			271.240 k	æV						Nub16c **
* ⁴⁴ V-u		=-23980(80) k										Nub16b **
* ⁴⁴ V-u		s have unduely		-								GAu **
$*^{44}$ Ca(p,d) 43 Ca ⁱ		0(30); Q rebui			5001							MMC123**
$*^{44}$ Ca(d,t) 43 Ca ⁱ		30(20); Q rebui										MMC123**
$*^{43}$ Ca(3 He,d) 44 Sc ⁱ		06(5); Q rebuilt										MMC123**
$*^{44}Sc(\beta^+)^{44}Ca$		463(5) 1471(5)			el at 1157	019 keV						Ens119 **
$*^{44}$ Ca(3 He,t) 44 Sc ⁱ		7214(4) Q = -6					12Sc from	Ame1961				MMC123**
$*^{44}$ Ca(3 He,t) 44 Sc ⁱ		31(5); Q rebuilt			AC V 101	Cu(p,11)	Se Holl					MMC123**
Ca(110,t) 50	11-2/0	,1(2), & 1couli	with Aill	01//1								1V11V1 C 1 2 J 4 4

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁴⁵ S-u		-3610	2460	-4280	1110	-0.2	o			GA4	1.5	00Sa21
5-u		-3330	2880	-4200	1110	-0.2	0			GA5	1.5	00Sa21
		-4283	741			0.2	2			GA7	1.5	07Ju03
⁴⁵ Cl-u		-19690	140	-19610	150	0.4	0			GA4	1.5	00Sa21
0		-20300	700	1,010	100	0.7	Ü			TO3	1.5	90Tu01
		-19850	460			0.4	0			GA5	1.5	00Sa21
		-19710	107			0.7	2			GA7	1.5	07Ju03
		-19098	236			-1.4	2			GA8	1.5	12Ga45
$^{45}V-u$		-34225.7	9.7	-34231.0	0.9	-0.6	U			LZ1	1.0	11Tu09
⁴⁵ Cr–u		-20390	540	-20950	40	-0.7	Ü			GT1	1.5	04St05 ×
		-20950	38				2			LZ1	1.0	12Zh34 *
$^{45}Ar - ^{39}K_{1.154}$		9922.45	0.55				2			MA8	1.0	03B117
$^{45}K - ^{39}K_{1.154}$		2574.21	0.56				2			MA8	1.0	07Ya08
$^{45}V - ^{45}Ti$		7647.74	0.23	7647.74	0.23	0.0	1	100	$100^{-45} V$	JY1	1.0	14Ka22
45 Sc(p, α) 42 Ca		2343	8	2339.4	0.7	-0.4	Ü	100	100 ,	MIT	1.0	64Sp12
45 Sc(d, α) 43 Ca		8028	12	8047.7	0.7	1.6	Ü			MIT		64Sp12
50(0,00)		8059	12	001717	0.7	-0.9	Ü			Kop		67Ha.A
⁴³ Ca(³ He,p) ⁴⁵ Sc		10310	20	10305.3	0.7	-0.2	Ü			Hei		70Sc22
⁴⁵ Fe(2p) ⁴³ Cr		1140	40	1154	16	0.3	0			1101		02Gi09
1 c(2p) C1		1100	100	1154	10	0.5	Ü					02Pf02
		1154	16			0.5	3					05Do20
44 Ca(n, γ) 45 Ca		7414.8	1.0	7414.82	0.17	0.0	Ü					69Ar.A Z
Cu(n, ₁) Cu		7414.83	0.3	7111.02	0.17	0.0	_			MMn		80Is02 Z
		7414.79	0.21			0.1	_			Bdn		06Fi.A
44 Ca(d,p) 45 Ca		5184	4	5190.25	0.17	1.6	U			MIT		68Be36
44 Ca(n, γ) 45 Ca	ave.	7414.80	0.17	7414.82	0.17	0.1	1	99	97 ⁴⁵ Ca	14111		average
$^{44}\text{Ca}(p,\gamma)^{45}\text{Sc}$	ave.	6887.8	1.2	6892.2	0.7	3.7	В	//) Ca			74Sc02 Z
$^{45}\text{Sc}(^{3}\text{He},\alpha)^{44}\text{Sc}$		9249	15	9250.4	1.9	0.1	U			MIT		71Ra09
45 Sc(d,t) 44 Sc ⁱ		-7846	10	-7847.7	2.6	-0.2	U			14111		71Oh01 ×
$^{45}V^{i}(p)^{44}Ti$		3190	50	3170	9	-0.2 -0.4	U					74Ja10 *
v (p) 11		3170	9	3170	7	-0.4	3			Bor		07Do17 *
45 K $(\beta^{-})^{45}$ Ca		4180	200	4196.5	0.6	0.1	U			Вог		64Mo18
$^{45}\text{Ca}(\beta^{-})^{45}\text{Sc}$		258	2	259.7	0.7	0.9	1	14	11 ⁴⁵ Sc			65Fr12
$^{45}\text{Ti}(\beta^{+})^{45}\text{Sc}$		2066	5	2062.1	0.7	-0.8	U	17	11 50			66Po04
$^{45}Sc(p,n)^{45}Ti$		-2844.2	4.	-2844.4	0.5	-0.3	U			Ric		55Br16 Y
3c(p,ii) 11		-2843.6	4.0	-2044.4	0.5	-0.1 -0.2	U			Can		70Kn03
		-2844.4	0.5			0.0	1	100	100 ⁴⁵ Ti	PTB		85Sc16 Z
45 Sc(3 He,t) 45 Ti i		-2844.4 -6801	4	-6800	3	0.3	1	61	60 ⁴⁵ Ti ⁱ	1110		71Be29 *
*45Cr-u	M 1-			xture gs+m at 1			1	01	00 11			Nub16b **
* CI=u * ⁴⁵ Cr=u		sult in referen		xiuie gs+iii ai	107(1) KC V							13Ya03 **
* 45 Sc(d,t) 44 Sc ⁱ				=-5062; <i>Q</i> rebu	.:1+							MMC123**
$^{45}V^{i}(p)^{44}Ti$						1ro V						
$*^{45}Sc(^{3}He,t)^{45}Ti^{i}$				ely, to 2 ⁺ level			Co fuero	1061				
* "Sc("He,t) " 11"	CDE=/3	0/1(4) Q = -0	807(4); rec	calibration +6 k	ev forC	.a(p,n)	Sc from F	Ame1901				MMC123**
⁴⁶ Cl-u		-16000	860	-14880	220	0.9	o			GA4	1.5	00Sa21
		-14940	1730			0.0	o			GA5	1.5	00Sa21
		-14826	172			-0.2	2			GA7	1.5	07Ju03
		-15040	301			0.4	2			GA8	1.5	12Ga45
⁴⁶ Ar-u		-32013	107	-31962.6	1.2	0.3	U			GT1	1.5	04Ma.A
⁴⁶ Sc-u		-44650	230	-44832.5	0.7	-0.5	U			TO6	1.5	98Ba.A *
$C_2 H_8 N^{-46} Ti$		113071	7	113047.41	0.18	-0.8	U			R09	4.0	72De11
C ¹³ C H ₅ O- ⁴⁶ Ti		84799	13	84767.76	0.18	-0.6	U			R09	4.0	72De11
C H ₄ N O- ⁴⁶ Ti		76672	8	76661.90	0.18	-0.3	U			R09	4.0	72De11
C ₅ H ₂ - ⁴⁶ Ti O		68145	15	68108.59	0.18	-0.6	U			R09	4.0	72De11
$C H_2 O_2 - {}^{46}Ti$							U					72De11

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Input v						Signf.		Lab	F	
Item	Input v	arue	Adjusted	varue	v_i	Dg	Signi.	Main infl.	Lab	F	Reference
13 C H O ₂ $-^{46}$ Ti	48423	9	48382.25	0.18	-1.1	U			R09	4.0	72De11
⁴⁶ Ti- ²² Ne _{2 001}	-29358.74	0.48	-29359.41	0.18	-1.4	1	14	13 ⁴⁶ Ti	CP1	1.0	05Sa44
$^{46}V - ^{22}Ne_{2.091}$	-21787.10	0.58	-21788.29	0.22	-2.1	1	14	$14^{-46}V$	CP1	1.0	05Sa44
⁴⁶ Cr-u	-31638	15	-31639	12	-0.1	1	67	67 ⁴⁶ Cr	LZ1	1.0	16Zh.A
$^{46}\text{Ar} - ^{39}\text{K}_{1.179}$	10827.5	1.2	0100)		0.1	2	0,	0, 61	MA8	1.0	15Mo.A
$^{46}K^{-39}K_{1.179}$	4771.64	0.78				2			MA8	1.0	07Ya08
$^{46}V - ^{46}Ti$	7571.67	0.76	7571.12	0.10	-1.4	U			CP1	1.0	05Sa44
v — 11	7571.41	0.33	7371.12	0.10	-0.9	0			JY1	1.0	055a44 06Er08
	7571.10	0.33			0.1	1	83	100 ⁴⁶ V	JY1	1.0	11Er02
³² S(¹⁶ O,2n) ⁴⁶ Cr			-17424	11	-0.1	1	33	33 ⁴⁶ Cr	J 1 1	1.0	72Zi02
	-17421.6	20.		11			33	33 °CI	MITT		
46 Ti(p, α) 43 Sc	-3065	14	-3075.6	1.9	-0.8	U			MIT		64Sp12 *
16m; 3xx 6xx 13m;	-3083	10	15160	_	0.7	U			Tal		65Pl01
⁴⁶ Ti(³ He, ⁶ He) ⁴³ Ti	-17470	12	-17468	7	0.2	R			MSU		77Mu03 *
⁴⁴ Ca(t,p) ⁴⁶ Ca	9339	20	9331.5	2.3	-0.4	U			Kop		67Bj06
⁴⁴ Ca(³ He,p) ⁴⁶ Sc	7940	20	7934.8	0.7	-0.3	U			Hei		70Sc22
46 Ti(d, α) 44 Sc	4400	12	4399.0	1.8	-0.1	U			Kop		67Ha.A
⁴⁶ Ti(p,t) ⁴⁴ Ti	-14235	10	-14240.1	0.7	-0.5	U			Oak		72Ra05
46 Ca(t, α) 45 K	5998	10	6001.2	2.3	0.3	U			Ald		68Sa09
46 Ca(d,t) 45 Ca	-4144	10	-4141.3	2.3	0.3	U			Ald		67Bj05
46 Ca(3 He, α) 45 Ca	10194	10	10179.1	2.3	-1.5	U			MIT		71Ra35
45 Sc $(n,\gamma)^{46}$ Sc	8760.61	0.3	8760.64	0.10	0.1	2			BNn		80Li07 Z
	8760.58	0.14			0.4	2			Utr		82Ti02 Z
	8760.75	0.18			-0.6	2			Bdn		06Fi.A
45 Sc(d,p) 46 Sc	6541	8	6536.07	0.10	-0.6	Ū			MIT		64Sp12
Se(u,p) Se	6543	8	0330.07	0.10	-0.9	U			Kop		67Ha.A
45 Sc(p, γ) 46 Ti	10344.7	0.7	10344.9	0.7	0.2	1	89	88 ⁴⁵ Sc	кор		71Gu.A
$^{46}\text{Ti}(p,d)^{45}\text{Ti}^i$	-15682		-15684	3	-0.4	1	40	40 ⁴⁵ Ti ⁱ			71Gu.A 78Ko27
$^{46}\text{Cr}^{i}(p)^{45}\text{V}$		5					40	40 11			
Cr(p) v	4350	50	4269	13	-1.6	U			Lis		92Bo37
163.5 16.345.0	4269	13	40.40	20	10.0	2			Bor		07Do17 *
46 Mn ⁱ (p) 45 Cr	3520	100	4840	30	13.2	В			Lis		92Bo37
16	4840	33				3			Bor		07Do17 *
46 K(β^{-}) 46 Ca	7650	300	7725.4	2.4	0.3	U		16 :			66Pa20
46 Ca(3 He,t) 46 Sc ⁱ	-6407	4	-6410	3	-0.8	1	72	63 $^{46}Sc^{i}$			71Be29 *
46 Sc $(\beta^-)^{46}$ Ti	2367	3	2366.6	0.7	-0.1	U					53Yo03 *
	2364	6			0.4	U					56Wo09 *
$^{46}\text{Ti}(p,n)^{46}\text{V}$	-7844	9	-7834.80	0.09	1.0	U			Tal		63Ja12
	-7835.8	1.8			0.6	U			Har		76Sq01 Z
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V}$	-7069.0	0.6	-7071.04	0.09	-3.4	F			Mun		77Vo02 *
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{27}\text{Al}()^{27}\text{Si}$	-2230.8	2.7	-2240.09	0.13	-3.4	В			ChR		74Ha35
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{47}\text{Ti}()^{47}\text{V}$	-4121.62	0.19	-4121.70	0.14	-0.4	1	56	39 ⁴⁷ V	Mun		09Fa15 *
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{48}\text{Ti}()^{48}\text{V}^{i}$	-18.57	0.20	-18.58	0.20	0.0	1	100	$100^{-48}V^{i}$	Mun		09Fa15
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{50}\text{Ti}()^{50}\text{V}^{i}$	-31.21	0.25	-31.21	0.25	0.0	1	100	$100^{50}V^{i}$	Mun		09Fa.A
⁴⁶ Sc-u	M - A = -41520			+n at 14	2.528 ke	V					Nub16c **
$^{46}\text{Ti}(p,\alpha)^{43}\text{Sc}$	Q = -3217 proba										Nub16b **
⁴⁶ Ti(³ He, ⁶ He) ⁴³ Ti	Averaged with re				alibratio	n 27 A1(3	He ⁶ He)				75Mu09 **
$^{46}\text{Cr}^{i}(p)^{45}\text{V}$	Q_p =4254(15) 34) at			MMC128**
C1 (p) V	$Q_p = 4234(13) 34$ 1272.2 keV	194(23) 30	03(13) to gro	una state	, (312)	ievei at i	91.2, (112) at			Ens082 **
$^{46}\text{Mn}^{i}(p)^{45}\text{Cr}$	$Q_p = 4239(33)$ to	(5/2+) ata	sta at 102 6 1	107(1)							
⁴⁶ Ca(³ He,t) ⁴⁶ Sc ⁱ					v. c 42	0-()42	2 C - C A -	1061			11Ho02 **
	CDE=7177(4) Q				v ior ·-	Ca(p,n)	Sc from Ar	ne1961			MMC123**
$^{46}\text{Sc}(\beta^-)^{46}\text{Ti}$	E_{β} = 357(3) to 4										Ens00b **
$^{46}\text{Sc}(\beta^-)^{46}\text{Ti}$	E_{β} = 1475(6) to			V							Ens00b **
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V}$	F: rejected in re	ference of	same group								09Fa15 **
$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{47}\text{Ti}()^{47}\text{V}$	Q - Q = 28.73(0.	16) keV to	o 47 V ⁱ IAS at	4150.35((0.11) ke	V					Ens075 **
⁴⁷ Cl—u	0576	1074	10500#	420±	0.6	Б			C 4.7	1.5	071,,02
	-9576	1074	-10500#	430#	-0.6	D			GA7	1.5	07Ju03 *
⁴⁷ Ar–u	-25400	600	-27231.9	1.2	-2.0	U			TO3	1.5	90Tu01
	-26570	1360			-0.3	U			GA5	1.5	00Sa21
	-26903	204			-1.1	U			GA8	1.5	12Ga45

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Itam Itam	ipai ison o			•								Doform -	
Item		Input va	arue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u>e</u> _
47 Sc $-$ u		-47630	230	-47597.3	2.1	0.1	U			TO6	1.5	98Ba.A	*
C ³⁵ Cl- ⁴⁷ Ti		17085.94	0.82	17094.94	0.13	4.4	В			H32	2.5	79Ko10	
$C^{13}CH_8N^{-47}Ti$		117329	14	117271.34	0.12	-1.0	U			R09	4.0	72De11	
$C_2 H_7 O^{-47} Ti$		98012	7	97932.09	0.12	-2.9	В			R09	4.0	72De11	
$C_5 H_3 - {}^{47}\text{Ti O}$		76869	10	76802.72	0.12	-1.7	U			R09	4.0	72De11	
$C H_3 O_2 - {}^{47}Ti$		61608	10	61546.58	0.12	-1.5	U			R09	4.0	72De11	
⁴⁷ Cr-u		-37103.8	8.6	-37104	6	-0.1	1	57	57 ⁴⁷ Cr	LZ1	1.0	11Tu09	
⁴⁷ Mn-u		-24226	34				2			LZ1	1.0	13Ya03	
$^{47}Ar - ^{39}K_{1.205}$		16501.8	1.2				2			MA8	1.0	15Mo.A	
$^{47}K - ^{39}K_{1.205}$		5398.5	2.7	5395.3	1.5	-1.2	o			TT1	1.0	10La.A	
		5395.3	1.5				2			TT1	1.0	12La05	
⁴⁶ Ti ¹³ C- ⁴⁷ Ti C		4218.03	0.94	4223.94	0.14	2.5	U			H32	2.5	79Ko10	
⁴⁷ Ti- ⁴⁶ Ti		-929	41	-869.10	0.14	0.4	U			R09	4.0	72De11	
$^{47}\text{Ti}(d,\alpha)^{45}\text{Sc}$		6830	12	6845.3	0.7	1.3	U			Kop		67Ha.A	
46 Ar(d,p) 47 Ar		1327	80	1440.2	1.6	1.4	U					06Ga28	
46 Ca(n, γ) 47 Ca		7277.4	0.6	7276.37	0.27	-1.7	-					70Cr04	Z
		7276.1	0.3			0.9	-			Bdn		06Fi.A	
46 Ca(d,p) 47 Ca		5055	8	5051.81	0.27	-0.4	U			Kop		67Ha.A	
46 47		5044	4			2.0	U		16	MIT		68Be36	
46 Ca(n, γ) 47 Ca	ave.	7276.36	0.27	7276.37	0.27	0.1	1	100	90 ⁴⁶ Ca			average	
$^{46}\text{Ti}(n,\gamma)^{47}\text{Ti}$		8875.1	3.0	8880.88	0.13	1.9	U		16			69Te01	Z
46 47		8880.5	0.3			1.3	1	20	18 ⁴⁶ Ti	Bdn		06Fi.A	
$^{46}\text{Ti}(d,p)^{47}\text{Ti}$		6658	6	6656.32	0.13	-0.3	U			MIT		67Ba32	*
		6659	8			-0.3	U			Kop		67Ba32	*
46		6654.3	1.7			1.2	U		46	NDm		76Jo01	
$^{46}\text{Ti}(d,p)^{47}\text{Ti}-^{48}\text{Ti}()^{49}\text{Ti}$		738.15	0.25	738.49	0.14	1.3	1	30	25 ⁴⁶ Ti	Mun		09Fa15	
$^{46}\text{Ti}(p,\gamma)^{47}\text{V}$		5167.80	0.07	5167.79	0.07	-0.2	1	94	61 ⁴⁷ V	Utr		86De13	*
⁴⁶ Ti(³ He,d) ⁴⁷ V		-317	15	-325.69	0.07	-0.6	U			MIT		67Do03	
47 Mn ⁱ (p) 46 Cr		6867	20	6992	13	6.2	В			Bor		01Gi01	*
477740 147.0		6992	13		2 (2			Bor		07Do17	*
$^{47}\text{K}(\beta^{-})^{47}\text{Ca}$		6700	300	6632.4	2.6	-0.2	U					64Ku02	*
47 Ca(β ⁻) 47 Sc		1984.6	5.	1992.2	1.2	1.5	U					67Hs03	*
		1992.3	5.			0.0	U	07	01 47 G			68Fi04	*
$^{47}\text{Sc}(\beta^{-})^{47}\text{Ti}$		1991.9	1.2	600.0	1.0	0.2	1	97	91 ⁴⁷ Ca 93 ⁴⁷ Sc			87Ju04	
$^{17}\text{Sc}(\beta^{-})^{11}$ $^{47}\text{V}(\beta^{+})^{47}\text{Ti}$		600	2	600.8	1.9	0.4	1	93	93 "Sc			56Gr12	
$^{47}\text{Ti}(p,n)^{47}\text{V}$		2912 -3706	10 13	2930.75 -3713.09	0.14 0.14	1.9 -0.5	U U			Har		54Da31 60Mc12	v
* ⁴⁷ Cl-u	Tuon do f									паг			
***CI-u * ⁴⁷ Sc-u				IS suggest ⁴⁷ C nixture gs+m								GAu Nub16c	**
* 3c-u				om half-life=2								GAu	**
$*^{46}$ Ti(d,p) ⁴⁷ Ti		_).2% for recal		u IOI-I	μs					AHW	**
$*^{46}\text{Ti}(p,\gamma)^{47}\text{V}$				el at 6132.60		W							**
$*^{47}\text{Mn}^{i}(p)^{46}\text{Cr}$				level at 892.16			1 keV·					Ens102	
* Will (b) Ci		analysed and			and (+) at 1767	.1 KC V,					07Do17	
$*^{47}$ Mn ⁱ (p) ⁴⁶ Cr				level at 892.16	S and (A+	h) at 1087	1 keV					Ens102	
* Will (p) C1				to (3^-) at 31 !								MMC128	
$*^{47}$ K(β^-) ⁴⁷ Ca				2^+ and 2599.5			•					Ens075	
$*^{47}Ca(\beta^{-})^{47}Sc$				(4) for shape 1								87Ju04	
\star Ca(ρ) 3C	Original	values mere	ased by 4	(4) for snape i	iactoi							6/Ju0 4	**
⁴⁸ Ar-u		-23920	330				2			MT1	1.0	15Me01	
$^{48}K - ^{39}K_{1.231}$		10017.7	2.5	10018.5	0.8	0.3	o			TT1	1.0	10La.A	
		10018.50	0.83				2			TT1	1.0	12La05	
$^{48}\text{Ca} - ^{39}\text{K}_{1.231}$		-2799.93	0.22	-2799.78	0.10	0.7	1	22	22 ⁴⁸ Ca	MS1	1.0	12Re17	
⁴⁸ Ca-N ¹⁸ O O		-44625.15	0.29	-44625.33	0.10	-0.6	1	13	13 ⁴⁸ Ca	TT1	1.0	14Kw04	
¹³ C ³⁵ Cl- ⁴⁸ Ti		24261.73	0.75	24266.60	0.12	2.6	U			H32	2.5	79Ko10	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Temp		ompar	ison of input		•	•		_		- `			
Second	Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
Second	C ₅ H ₄ – ⁴⁸ Ti O		88492	24	88444.58	0.12	-0.5	U			R09	4.0	72De11
C _A Hay 10 75935 17 75868.52 0.12 -1.0 U R09 4.0 72Del 1 48 TO - SiRo 753 9277.77 1.2 9277.88 0.12 0.2 0.0 1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 3.0 1.0	-54												
C1—8°T 52109 19 \$2059.07 0.12 -0.7 U R0 4.0 72Del1 8°T T O - 8′R9575 0.2 9277.7 1.2 9277.80 0.12 0.0 1 26 26 8°T TTI 1.0 14SWal 4°M T O - 14/80 1.20 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 -31454 10 108586 10 11 55 55 8% Min L21 10 6806 481 10 10874 40 10 11 10 18 40 6810 20 11 11 10 18 40 12817 40 10 11 10 18 40 12817 40 10 10 10 10 10 10 10 10	C ₄ H ₂ N- ⁴⁸ Ti O				75868.52	0.12							
48 T O - SR D753 9277.7 1.2 9277.8 0.12 0.2 U ————————————————————————————————————	$C_4 - {}^{48}\text{Ti}$												
48T.—NISO 4-9207,30 0.23 4-9207,30 1.2 0.0 1 26 26 **T TTI 1.0 148 Mm—u -31480 102 -31451 70 20 U 10 10 **S06 11 **S0 10 **S6 MSI 10 **S06 MSI 10	⁴⁸ Ti O- ⁸⁵ Rb 753												
48 Mn—u -31480 120 -31451 7 0.2 U GT1 1.50 48 Ca-40 Ca1.200 -31451 10 1.50 55 54 Mm MZ1 1.0 1.0 ZBA 48 Ca-40 Ca1.200 -2586 Ca2 0.23 -2286 RJ 0.11 0.4 1 21 20 48 Ca MS1 1.0 12Re17 48 TG Ca-40 Ca1.20 2274 447 0.10 0.8 1 21 20 de Ca 48 SI 1.0 12Re17 48 TG Ca1.40 1.0 1.0 18 TG Ca1.40 1.0	⁴⁸ Ti-N ¹⁸ O O								26	26 ⁴⁸ Ti			
a8ca - a - c - c - c - c - c - c - c - c -	⁴⁸ Mn-u												
-8°Ca-θ'Cal_200						,			55	55 ⁴⁸ Mn			
-8Ca-4 K1.171	⁴⁸ Ca- ⁴⁰ Ca _{1,200}				-2586.13	0.11				20 ⁴⁸ Ca			
48T O - 5-5 Mn 164 14972.6 1.2 14973.3 0.4 0.6 1 11 10 55Mn 0.4 0.6 12.0 U H18 4.0 648.00 4.0 <t< td=""><td>⁴⁸Ca-⁴¹K_{1,171}</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>22. ⁴⁸Ca</td><td></td><td></td><td></td></t<>	⁴⁸ Ca- ⁴¹ K _{1,171}									22. ⁴⁸ Ca			
46-Ti 3 ^C CL - ⁴⁸ ST 1.5 ^C CL 1726.8 1.1 1735.81 0.16 2.0 U H18 4.0 648a03 48T 1.6 ^C Ca 1730.29 0.87 2.5 U H32 2.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.11 138 12.5 785.2 118 18.4 0.4 138 12.5 785.2 110 13.4 148 12.2 2.2 128 12.4 171 10.1 148 24.2 18.6 18.6 18.6 6.7 171 10.1 148 24.2 18.6 18.6 18.7 19.0 176 24.2 18.0 18.2	⁴⁸ Ti O- ⁵⁵ Mn _{1 164}									10 ⁵⁵ Mn			
***T.=**E*Ca -4582.018 0.086 -4581.97 0.08 0.5 1 88 65 4*Ti MS1 1.0 188 1.0 138 1.0	⁴⁶ Ti ³⁷ Cl- ⁴⁸ Ti ³⁵ Cl									10 1.111			
48°T—6°Ca —4582.018 0.08 -4581.97 0.08 0.5 1 88 65 48°T MSI 1.0 13B1/2 48°T—6°T —3791 48 —3816.82 0.04 —0.1 U F R09 4.0 72De11 48°Ca(14°C,11°C)*0°S —17416 35 —17105 4 8.9 F F Pri 79K0.8 48°Ca(24°C,11°C)*0°S —17416 35 —17105 4 8.9 F F Pri 79K0.8 48°Ca(3°Be)*3°Ar —21166.55 70.2 221138 5 0.4 U Brk 74J601 48°Ca(3°C,11°S)*3°A —22840 60.2 227979.9 0.5 0.7 U Brk 74J01 64Y0.03 48°Ca(4°C,18°)*6°Ar —23324.8 70.2 223286.4 1.5 0.5 U ANL 64Yn0.3 48°Ca(4°C,16°O)*6°Ar —6739 5 —964.8 1.1 0.9 U ANL 65Ma0.4 <t< td=""><td>11 61 11 61</td><td></td><td></td><td></td><td>1,55.01</td><td>0.10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	11 61 11 61				1,55.01	0.10							
-4581.86	⁴⁸ Ti- ⁴⁸ Ca				-4581.97	0.08			88	65 ⁴⁸ Ti			
48Ti— ²⁷ Ti -3791 48 -3816.82 0.04 -0.1 U R09 4.0 72De11 72De11 48°Ca(² He, ² B) ⁴ S Pri 79Ko. B 48°Ca(² He, ² B) ⁴ S -17166 35 -17105 4 8.9 F Pri 79Ko. B 48°Ca(² He, ² B) ⁴ S -21165.5 70.2 -21138 5 0.4 U Brk 74le01 48°Ca(² Ca(² Be) ⁵ SA -21165.5 70.2 -21389.2 1.6 -1.4 U MSU 76Ca03 48°Ca(² Ca(² Be) ⁵ SA -27840.4 60.2 -27797.9 0.5 0.7 0.6 U Brk 74Je01 48°Ca(² Ca(² Ca) ⁶ SC -2556.8 0.7 0.6 U ANL 46 Yn03 48°Ca(² Ca(² Ca) ⁶ SG -2556.8 0.7 0.6 U ANL 46 Yn03 48°Ca(² Ca(² Ca) ⁶ SA 1915 15 -2556.8 0.5 U ANL 46 Yn03 48°Ca(² Ca(² Ca) ⁶ O) ⁶ Ar -6739 50 -6694.8 1.1 0.9 U ANL 65 Plot 48°Ca(² Ca(² Ca) ⁶						0.00			00	00 11			
-8Ca(¹ Ch, ¹ By ¹ Ch 35 -17105	⁴⁸ Ti- ⁴⁷ Ti				-3816.82	0.04							
-8Ca(¹ H _c , ¹ Be) ¹ SC1	⁴⁸ Ca(³ He, ¹¹ C) ⁴⁰ S												
-8Ca(α,Q*Be) ⁴³ Ar													
	48 Ca(α , 9 Be) 43 Ar												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	π(ρ,ω) σε				2330.0	0.7							
48°Ca(1 ⁴ C, 1 ⁵ G) ⁴⁶ Ar -6739 50 -6694.8 1.1 0.9 U Mun 80Ma40 48°Ca(d,σ) ⁴⁶ K 1915 15 1900.1 0.7 -1.0 U ANL 65Ma07 48°Ca(d,σ) ⁴⁶ Sc 8752 20 8746.1 2.2 -0.3 U Ald 67Bj06 48°Ti(σ,3) ⁴⁶ Sc 3967 12 3979.3 0.7 1.0 U Kop 67Ha.A 48°Ti(σ,1) ⁴⁶ Sc -19394 6 -19387 4 1.2 1 37 37 ⁴⁶ Sc ² 78Ko27 48°Ti(σ,1) ⁴⁶ Ti ² -21192 7 6 - 2 2 CIT 67Mi02 48°Ti(σ,1) ⁴⁶ Ti ² -26177 6 - 0.2 R CIT 67Mi02 48°Ni(2p) ⁴⁶ Fe 1400 100 1310 40 -0.9 3 CIT 67Mi02 48°Ca(1 ⁴ C,1 ⁵ C) ⁵ O) ⁵⁷ Ar -18142 100 -18694.0 1.2 -5.5 B MSU SBE95	48Ca(6Li 8B)46Ar				-23286.4	1.5							
46°Ca(t,p) ⁴⁸ Ca 8752 20 8746.1 2.2 -0.3 U Ald 67Bj06 48Ti(a,a) ⁴⁶ Sc 3967 12 3979.3 0.7 1.0 U Kop 67Ha.A 48Ti(p,t) ⁴⁶ Sc ² -19394 6 -19387 4 1.2 1 37 37 ⁴⁶ Sc ² 78Ko27 78Ko27 48Ti(p,t) ⁴⁶ Ti ⁴ -21192 7 2 2 78Ko27 78Ko27 78Ko27 48Ti(p,t) ⁴⁶ Ti ⁴ -26177 6 2 2 CIT 67Mi02 48Ti(p,t) ⁴⁶ Ti ⁴ -26177 6 2 2 CIT 67Mi02 48Ko27 <													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{48}\text{Ti}(d,\alpha)^{46}\text{Sc}$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									37	37 46 Sci	Кор		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48Ti(p, t)46Ti ⁱ				-17367	7	1.2		31	37 30			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ ^{48}\text{Ni}(2\text{p})^{46}\text{Fe} \\ \text{1400} \\ 1280 \\ 120 \\ 1280 \\ 60 \\ 1280 \\ 60 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 $					5551	7	0.2				CIT		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48N;(2n)46E2										CII		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NI(2p) Te				1310	40							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48Co(14C 15O)47 Ar				19604.0	1.2					MCII		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ca(t,\alpha)$ K				4012.2	1.4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48Co(d t)47Co				2604.2	2.2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca(He, a) Ca				10020.1	2.2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47Ti(n 20)48Ti				11626 66	0.04							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11(11, 7) 11				11020.00	0.04			00	от 47т;			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									99	91 11			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47Ti(d p)48Ti				0402.10	0.04							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11(a,p) 11				9402.10	0.04							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47Ti(3Ha d)48V				1225 0	1.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											IVII I		
979.6 33. 1.0 o Bor 96Fa09 1013 12 0.1 - Bor 07Do17 1018 10 -0.4 - 16Or03 ave. 1016 8 -0.3 1 70 45 48Mn ⁱ average											D		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	····(p)···Cr				1014	О							
1018 10 -0.4 - 160r03 ave. 1016 8 -0.3 1 70 45 $^{48}{\rm Mn}^i$ average													
ave. 1016 8 -0.3 1 70 45 48 Mn i average											Bor		
									70	45 4835 ;			
$^{-\infty}$ K(β) $^{-\infty}$ Ca 12000 500 11940.2 0.8 -0.1 U 75Mu08	4817 (0-)48 G	ave.			11010 2	0.0			70	45 ⁴⁶ Mn ^t			
	· K(β) · Ca		12000	500	11940.2	0.8	-0.1	U					/5Mu08

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
48Co(71:7D-)48V	12050	27	12002.0	0.9	5.0	D			Ce:-		7037-14
⁴⁸ Ca(⁷ Li, ⁷ Be) ⁴⁸ K	-12959	27	-12802.0	0.8	5.8	В			Can		78We14
⁴⁸ Ca(¹⁴ C, ¹⁴ N) ⁴⁸ K	-11910	50	-11783.7	0.8	2.5	U			Mun		80Ma40
48 Ca(p,n) 48 Sc	-534	15	-503	5	2.1	U		40			67Mc07
40 - 40	-506	7			0.4	1	50	50 ⁴⁸ Sc			68Mc10
$^{48}\text{Sc}(\beta^{-})^{48}\text{Ti}$	3986	7	3989	5	0.4	1	50	50 ⁴⁸ Sc			57Va08
$^{48}V(\beta^{+})^{48}Ti$	4008	5	4015.0	1.0	1.4	U					53Ma64
	4013.6	3.			0.5	1	10	$10^{-48}V$			67Ko01
	4014	7			0.1	U					74Me15
⁴⁸ Ti(p,n) ⁴⁸ V	-4803	10	-4797.4	1.0	0.6	U			Tal		62Ne08
$^{48}\text{Ti}(^{\bar{3}}\text{He,t})^{48}\text{V}^{i}$	-7048	4	-7052.46	0.22	-1.1	U					71Be29
$^{48}V^{i}(IT)^{48}V$	3018.7	1.0	3018.9	0.9	0.2	1	90	$90^{-48}V$			Ens067
48 Mn ⁱ (IT) 48 Mn	3036.7	0.9	3036.7	0.9	0.0	1	100	55 ⁴⁸ Mn ⁱ			07Do17
⁸ Ca(³ He, ¹¹ C) ⁴⁰ S	F : possible ⁴⁰ Ca co					•	100	00 1111			GAu
⁴⁸ Ca(³ He, ⁸ B) ⁴³ Cl	F: poor spectrum.										76Ka24
⁴⁸ Ca(³ He, ⁷ Be) ⁴⁴ Ar	M - A = -32270(20)	Autilois sa	y. possibly not	10 ground s	1						GAu
			(20) for be 42	29 Ke v Teve	1						
⁴⁸ Ni(2p) ⁴⁶ Fe	From only 1 event,										05Gi15
¹⁸ Ni(2p) ⁴⁶ Fe	From 4 events, gas										12Po03
$^{18}Mn^{i}(p)^{47}Cr$	Unexpectedly low		(1.1)%								96Fa09
8 Mn ⁱ (p) ⁴⁷ Cr	Measured intensity										07Do17
8 Sc(β^-) 48 Ti	E_{β^-} =654(7) to 6 ⁺										Ens067
$^{-8}V(\beta^{+})^{48}Ti$	E_{β}^{+} =692(5) 698(3)										Ens067
$^{18}\text{Ti}(^{3}\text{He,t})^{48}\text{V}^{i}$	CDE=7818(4) Q =	–7054(4); re	calibration +6	keV for 42C	$Ca(p,n)^{42}$	Sc from	Ame1961				MMC12
48 Mn ⁱ (IT) 48 Mn	γ cascade 2633.5(0	.5)+89.9(0.6)+313.3(0.4)								GAu
⁹ Ar-u	-19110	1180	-18450 #	430#	0.6	D			MT1	1.0	15Me01
⁹ K-u	21001	225	-31789.2	0.0	0.6	TT			GT1	1.5	04Ma.A
K-u	-31981	225	-31/69.2	0.9	0.6	U			OII	1.5	04Ma.A
$^{9}K - ^{39}K_{1.256}$	-31981 13794.9	2.8	13795.4	0.9	0.6	0			TT1	1.0	10La.A
$^{9}K-^{39}K_{1.256}$		2.8				o					
$^{9}K-^{39}K_{1.256}$	13794.9 13795.4	2.8 0.86	13795.4	0.9	0.2	o 2			TT1 TT1	1.0 1.0	10La.A 12La05
$^{9}K-^{39}K_{1.256}$	13794.9 13795.4 1247.1	2.8 0.86 2.9			0.2	o 2 o			TT1 TT1 TT1	1.0 1.0 1.0	10La.A 12La05 10La.A
$^{9}K - ^{39}K_{1.256}$ $^{9}Ca - ^{39}K_{1.256}$	13794.9 13795.4 1247.1 1247.1	2.8 0.86 2.9 1.2	13795.4 1247.53	0.9 0.22	0.2 0.1 0.4	o 2 o U			TT1 TT1 TT1 TT1	1.0 1.0 1.0 1.0	10La.A 12La05 10La.A 12La05
$^{9}\text{K} - ^{39}\text{K}_{1.256}$ $^{9}\text{Ca} - ^{39}\text{K}_{1.256}$ $^{2}\text{C} \text{H}_{2} ^{35}\text{Cl} - ^{49}\text{Ti}$	13794.9 13795.4 1247.1 1247.1 36637	2.8 0.86 2.9 1.2	13795.4 1247.53 36638.13	0.9 0.22 0.13	0.2 0.1 0.4 0.0	o 2 o U U			TT1 TT1 TT1 TT1 R09	1.0 1.0 1.0 1.0 4.0	10La.A 12La05 10La.A 12La05 72De11
$^{9}K - ^{39}K_{1.256}$ $^{9}Ca - ^{39}K_{1.256}$ $^{C}H_{2}$ $^{35}Cl - ^{49}Ti$ $^{C}_{4}H - ^{49}Ti$	13794.9 13795.4 1247.1 1247.1 36637 59967	2.8 0.86 2.9 1.2 13 10	13795.4 1247.53 36638.13 59960.40	0.9 0.22 0.13 0.12	0.2 0.1 0.4 0.0 -0.2	o 2 o U U U			TT1 TT1 TT1 TT1 R09 R09	1.0 1.0 1.0 1.0 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11
$^{9}K - ^{39}K_{1.256}$ $^{9}Ca - ^{39}K_{1.256}$ $^{C}H_{2}$ $^{35}Cl - ^{49}Ti$ $^{C_4}H - ^{49}Ti$ $^{C_5}H_{5} - ^{49}Ti$ O	13794.9 13795.4 1247.1 1247.1 36637 59967 96348	2.8 0.86 2.9 1.2 13 10 19	13795.4 1247.53 36638.13 59960.40 96345.91	0.9 0.22 0.13 0.12 0.12	0.2 0.1 0.4 0.0 -0.2 0.0	o 2 o U U U U			TT1 TT1 TT1 TT1 R09 R09 R09	1.0 1.0 1.0 1.0 4.0 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} C H ₂ ³⁵ Cl- ⁴⁹ Ti C ₄ H- ⁴⁹ Ti C ₅ H ₅ - ⁴⁹ Ti O C H ₅ ³² S- ⁴⁹ Ti	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365	2.8 0.86 2.9 1.2 13 10 19	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71	0.9 0.22 0.13 0.12 0.12 0.12	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6	o 2 o U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 R09	1.0 1.0 1.0 1.0 4.0 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} C H ₂ ³⁵ Cl- ⁴⁹ Ti C ₄ H- ⁴⁹ Ti C ₅ H ₅ - ⁴⁹ Ti O C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410	2.8 0.86 2.9 1.2 13 10 19 14	13795.4 1247.53 36638.13 59960.40 96345.91	0.9 0.22 0.13 0.12 0.12	0.2 0.1 0.4 0.0 -0.2 0.0	0 2 0 U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 R09 LZ1	1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ^C H ₂ ³⁵ Cl- ⁴⁹ Ti ^C ₄ H- ⁴⁹ Ti ^C ₅ H ₅ - ⁴⁹ Ti O ^C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571	2.8 0.86 2.9 1.2 13 10 19 14 12 26	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4	0.9 0.22 0.13 0.12 0.12 0.12 2.4	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9	0 2 0 U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09 12Zh34
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ^C H ₂ ³⁵ Cl- ⁴⁹ Ti ^C ₄ H- ⁴⁹ Ti ^C ₅ H ₅ - ⁴⁹ Ti O ^C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71	0.9 0.22 0.13 0.12 0.12 0.12	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9	0 2 0 U U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ^C H ₂ ³⁵ Cl- ⁴⁹ Ti ^C ₄ H- ⁴⁹ Ti ^C ₅ H ₅ - ⁴⁹ Ti O ^C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u ⁷ Ti ³⁷ Cl- ⁴⁹ Ti ³⁵ Cl	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5. 0.35	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ^C H ₂ ³⁵ Cl- ⁴⁹ Ti ^C ₄ H- ⁴⁹ Ti ^C ₅ H ₅ - ⁴⁹ Ti O ^C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u ⁷ Ti ³⁷ Cl- ⁴⁹ Ti ³⁵ Cl	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5. 0.35	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4	0.9 0.22 0.13 0.12 0.12 0.12 2.4	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18 H32	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} C H ₂ ³⁵ Cl- ⁴⁹ Ti C ₄ H- ⁴⁹ Ti C ₅ H ₅ - ⁴⁹ Ti O C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u ⁷ Ti ³⁷ Cl- ⁴⁹ Ti ³⁵ Cl	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5. 0.35	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹⁰ CH ₂ ³⁵ Cl- ⁴⁹ Ti ¹² 4 H- ⁴⁹ Ti ¹² 5 H ₅ - ⁴⁹ Ti O ¹³ CH ₅ ³² S- ⁴⁹ Ti ¹⁹ Mn-u ¹⁹ Fe-u ¹⁷ Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti ¹³ C- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5 0.35 4 0.80	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18 H32	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 79Ko10
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹⁰ C H ₂ ³⁵ Cl- ⁴⁹ Ti ¹² A H- ⁴⁹ Ti ¹² S ₅ H ₅ - ⁴⁹ Ti O ¹³ C H ₅ ³² S- ⁴⁹ Ti ¹⁹ Mn-u ¹⁹ Fe-u ¹⁸ Ti ¹³ Cl- ⁴⁹ Ti C ¹⁸ Ti ¹³ C- ⁴⁹ Ti C ¹⁹ Ti H- ⁴⁹ Ti	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6 0.35 4 0.80 7	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18 H32 H32 R09	1.0 1.0 1.0 1.0 4.0 4.0 4.0 1.0 1.0 4.0 2.5 2.5 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 79Ko10 72De11
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹⁰ Ca- ³⁹ K _{1.256} ¹⁰ C ₄ H- ⁴⁹ Ti ¹⁰ C ₅ H ₅ - ⁴⁹ Ti O ¹⁰ CH ₅ ³² S- ⁴⁹ Ti ¹⁰ 9Mn-u ¹⁰ Fe-u ¹⁰ Ti ³⁷ Cl- ⁴⁹ Ti C ¹⁰ Ti ¹³ C- ⁴⁹ Ti C ¹⁰ Ti H- ⁴⁹ Ti	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5 0.35 4 0.80 7 27 3 0.25	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 79Ko10 72De11 72De11 14Ka22
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹ CH ₂ ³⁵ Cl- ⁴⁹ Ti ¹ 4 H- ⁴⁹ Ti ² 5 H ₅ - ⁴⁹ Ti O ¹ C H ₅ ³² S- ⁴⁹ Ti ¹ 9Mn-u ¹ 9Fe-u ¹ 7Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti ¹³ C- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti- ⁴⁸ Ti	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 5 0.35 4 0.80 7 27 3 0.25 36	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1 R09	1.0 1.0 1.0 1.0 4.0 4.0 4.0 1.0 1.0 4.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 79Ko10 72De11 72De11 14Ka22 72De11
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹ Ca+ ³⁵ Cl- ⁴⁹ Ti ¹ Ca H- ⁴⁹ Ti ¹ C ₅ H ₅ - ⁴⁹ Ti O ¹ C H ₅ ³² S- ⁴⁹ Ti ¹ 9Mn-u ¹ 9Fe-u ¹ 7Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti ¹³ C- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti- ⁴⁸ Ti ⁹ Ti(d,α) ⁴⁷ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6 0.35 4 0.80 7 27 3 0.25 36 12	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹ Ca+ ³⁵ Cl- ⁴⁹ Ti ¹ 4 H- ⁴⁹ Ti ² 5 H ₅ - ⁴⁹ Ti O ¹ C H ₅ ³² S- ⁴⁹ Ti ¹ 9Mn-u ¹ 9Fe-u ¹ 7Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti- ⁴⁸ Ti ⁹ Ti(d,α) ⁴⁷ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 79Ko10 72De11 14Ka22 72De11 67Ha.A
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹ Ca+ ³⁵ Cl- ⁴⁹ Ti ¹ 4 H- ⁴⁹ Ti ² 5 H ₅ - ⁴⁹ Ti O ¹ C H ₅ ³² S- ⁴⁹ Ti ¹ 9Mn-u ¹ 9Fe-u ¹ 7Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti- ⁴⁸ Ti ⁹ Ti(d,α) ⁴⁷ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LY1 R09 R09 LY1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ¹⁰ C ₄ H- ⁴⁹ Ti ¹⁰ C ₅ H ₅ - ⁴⁹ Ti O ¹⁰ C H ₅ ³² S- ⁴⁹ Ti ¹⁰ 9Mn-u ¹⁰ Fe-u ¹⁷ Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ¹⁹ Mn- ⁴⁹ Cr ¹⁹ Ti- ⁴⁸ Ti ¹⁹ Ti(d,α) ⁴⁷ Sc ⁸ Ca(n,γ) ⁴⁹ Ca	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30 3 0.23	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.0	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1 R09 Kop	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A
⁹ K – ³⁹ K _{1.256} ⁹ Ca – ³⁹ K _{1.256} ¹⁰ C ₄ H – ⁴⁹ Ti ¹⁰ C ₅ H ₅ – ⁴⁹ Ti O ¹⁰ C H ₅ ³² S – ⁴⁹ Ti ¹⁰ 9Mn – u ¹⁰ Fe – u ¹⁰ Ti ³⁷ Cl – ⁴⁹ Ti C ¹⁸ Ti ¹³ C – ⁴⁹ Ti C ¹⁸ Ti H – ⁴⁹ Ti ¹⁹ Mn – ⁴⁹ Cr ¹⁹ Ti – ⁴⁸ Ti ¹⁹ Ti – ⁴⁸ Ti ¹⁹ Ti (Δα) ⁴⁷ Sc ⁸ Ca(n, γ) ⁴⁹ Ca	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30 3 0.23 7	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.0	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R32 R09 R09 JY1 R09 Kop	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ^C H ₂ ³⁵ Cl- ⁴⁹ Ti ^C ₄ H- ⁴⁹ Ti ^C ₅ H ₅ - ⁴⁹ Ti O ^C H ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u ⁸ Ti ¹³ Cl- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti(4,α) ⁴⁷ Sc ⁸ Ca(n,γ) ⁴⁹ Ca	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30 3 0.23 7 4	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.0 -0.7 1.7	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 JY1 R09 Kop	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36
$^{19}K - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{49}Ti$ $^{19}Ca + ^{49}Ti$	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30 3 0.30 4 3 0.30 3 4 3 4 3 4 4 4 4 5 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.1 0.7 1.2 -0.9	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R32 R09 R09 JY1 R09 Kop	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01
⁹ K- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ⁹ Ca- ³⁹ K _{1.256} ² CH ₂ ³⁵ Cl- ⁴⁹ Ti ² C ₄ H- ⁴⁹ Ti ² C ₅ H ₅ - ⁴⁹ Ti O ² CH ₅ ³² S- ⁴⁹ Ti ⁹ Mn-u ⁹ Fe-u ⁷ Ti ³⁷ Cl- ⁴⁹ Ti C ⁸ Ti ¹³ C- ⁴⁹ Ti C ⁸ Ti H- ⁴⁹ Ti ⁹ Mn- ⁴⁹ Cr ⁹ Ti- ⁴⁸ Ti ⁹ Ti(d,α) ⁴⁷ Sc ⁸ Ca(n,γ) ⁴⁹ Ca ⁸ Ca(d,p) ⁴⁹ Ca ⁸ Ca(h,γ) ⁴⁹ Sc ⁸ Ca(h,γ) ⁴⁹ Sc ⁸ Ca(h,γ) ⁴⁹ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917 9628.7 7404	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6. 0.35 4. 0.80 7 27 36 12 0.7 3. 0.25 36 12 0.7 3. 0.30 3. 0.23 7 4 3. 6 7	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6 7401.0	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.1 0.7 1.2 -0.9 -0.4	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LY1 R09 R09 LY1 R09 R09 LY1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01 68Gr09
¹⁹ K – ³⁹ K _{1.256} ¹⁹ Ca – ³⁹ K _{1.256} ¹⁹ Ca – ³⁹ K _{1.256} ¹⁰ C H ₂ ³⁵ Cl – ⁴⁹ Ti ¹⁰ C ₄ H – ⁴⁹ Ti ¹⁰ C ₅ H ₅ – ⁴⁹ Ti O ¹⁰ C H ₅ ³² S – ⁴⁹ Ti ¹⁹ Mn – u ¹⁹ Fe – u ¹⁷ Ti ³⁷ Cl – ⁴⁹ Ti ³⁵ Cl ¹⁸ Ti I ³ C – ⁴⁹ Ti C ¹⁸ Ti H – ⁴⁹ Ti ¹⁹ Mn – ⁴⁹ Cr ¹⁹ Ti – ⁴⁸ Ti ¹⁹ Ti (d,α) ⁴⁷ Sc ¹⁸ Ca(n,γ) ⁴⁹ Ca ¹⁸ Ca(d,p) ⁴⁹ Ca ¹⁸ Ca(d,p) ⁴⁹ Ca ¹⁸ Ca(d,p) ⁴⁹ Sc ¹⁸ Ca(d,n) ⁴⁹ Sc ¹⁸ Ca(d,n) ⁴⁹ Sc ¹⁸ Ca(d,n) ⁴⁹ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917 9628.7 7404	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.30 3 0.23 7 4 3.6 7 12	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6 7401.0 4132.1	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.1 0.7 1.2 -0.9 -0.4 -1.5	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R32 R09 R09 JY1 R09 Kop	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01
$^{19}K - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{39}K_{1.256}$ $^{19}Ca - ^{49}Ti$ $^{19}C_4 H - ^{49}Ti$ $^{19}C_5 H_5 - ^{49}Ti$ $^{19}Mn - ^{19}Fe - ^{19}Ti$ $^{19}Mn - ^{19}Ti$ $^{19}Mn - ^{49}Ti$ ^{18}Ti $^{13}C - ^{49}Ti$ $^{19}Mn - ^{49}Ti$ $^{19}Mn - ^{49}Ti$ $^{19}Ti - ^{48}Ti$ $^{19}Ti - ^{48}Ti$ $^{19}Ti - ^{48}Ti$ $^{19}Ti - ^{48}Ti$ $^{19}Ti - ^{49}Ca$ $^{18}Ca(n, \gamma)^{49}Ca$ $^{18}Ca(d, p)^{49}Ca$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(d, p)^{49}Sc$ $^{18}Ca(p, p)^{49}Sc$	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917 9628.7 7404	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6. 0.35 4. 0.80 7 27 36 12 0.7 3. 0.25 36 12 0.7 3. 0.30 3. 0.23 7 4 3. 6 7	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6 7401.0 4132.1 9625.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.1 0.7 1.2 -0.9 -0.4	0 2 0 U U U U U U U U U U U U U U U U U	100	100 ⁴⁹ Mn	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LZ1 R09 R09 R09 LZ1 R09 R09 RO9 LZ1 R09 R09 R09 LZ1 R09 R09 R09 R09 LZ1 R09 R09 R09 LZ1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01 68Gr09 66Er02 average
49 K $^{-39}$ K $_{1.256}$ 49 Ca $^{-39}$ K $_{1.256}$ 12 Ca $^{-39}$ K $_{1.256}$ C H $_2$ 35 Cl $^{-49}$ Ti C $_5$ H $_5$ $^{-49}$ Ti O C H $_5$ 32 S $^{-49}$ Ti O C H $_5$ 32 S $^{-49}$ Ti O C H $_5$ 32 S $^{-49}$ Ti C C H $_5$ 32 S $^{-49}$ Ti C C H $_5$ 32 SC $^{-49}$ Ti C C C H $_5$ 32 Cl $^{-49}$ Ti C C C H $_5$ 32 Cl $^{-49}$ Ti C C C C C C C C C C C C C C C C C C C	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917 9628.7 7404	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6 0.35 4 0.80 7 27 3 0.25 36 12 0.7 4 3.6 7 12 3	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6 7401.0 4132.1	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.1 0.7 1.2 -0.9 -0.4 -1.5	0 2 0 U U U U U U U U U U U U U U U U U		71 ⁴⁹ Sc	TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LY1 R09 R09 LY1 R09 R09 LY1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01 68Gr09 66Er02
A-u K-u K-u K-u K-u K-a ³⁹ K _{1.256} 49 Ca- ³⁹ K _{1.256} C H ₂ ³⁵ Cl- ⁴⁹ Ti C ₄ H- ⁴⁹ Ti C ₅ H ₅ - ⁴⁹ Ti O C H ₅ ³² S- ⁴⁹ Ti 49 Mn-u 49 Fe-u 47 Ti ³⁷ Cl- ⁴⁹ Ti C 48 Ti ¹³ C- ⁴⁹ Ti C 48 Ti H- ⁴⁹ Ti 49 Mn- ⁴⁹ Cr 49 Ti- ⁴⁸ Ti 49 Ti(d,α) ⁴⁷ Sc 48 Ca(n,γ) ⁴⁹ Ca 48 Ca(d,p) ⁴⁹ Ca 48 Ca(d,p) ⁴⁹ Ca 48 Ca(d,p) ⁴⁹ Sc 48 Ca(d,n) ⁴⁹ Sc 48 Ca(d,n) ⁴⁹ Sc 48 Ca(d,γ) ⁴⁹ Sc 48 Ca(f,γ) ⁴⁹ Sc 48 Ca(f,γ) ⁴⁹ Sc 48 Ca(f,γ) ⁴⁹ Sc	13794.9 13795.4 1247.1 1247.1 36637 59967 96348 63365 -40410 -26571 946.4 944.4 3432.6 7876 7874 8279.6 -43 6476 5146.6 5146.3 5146.4 2917 2917 9628.7 7404 4150 ave. 9629	2.8 0.86 2.9 1.2 13 10 19 14 12 26 1.1 6 0.35 4 0.80 7 27 3 0.25 36 12 0.7 3 0.23 7 4 3.6 7 12 3 0.33 0.23 7 4 3.6 7 12 3 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 12 0.35 13 13 13 13 13 13 13 13 13 13	13795.4 1247.53 36638.13 59960.40 96345.91 63331.71 -40387.4 943.02 3431.14 7901.34 8279.63 -76.31 6483.6 5146.45 2921.89 9625.6 7401.0 4132.1 9625.6	0.9 0.22 0.13 0.12 0.12 0.12 2.4 0.09 0.03 0.03 0.25 0.03 1.9 0.18 0.18	0.2 0.1 0.4 0.0 -0.2 0.0 -0.6 1.9 -0.8 -1.7 -0.7 0.9 0.3 0.0 -0.2 0.6 -0.2 0.7 1.2 -0.9 -0.4 -1.5 -1.0	0 2 0 U U U U U U U U U U U U U U U U U			TT1 TT1 TT1 R09 R09 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LZ1 LZ1 H18 H32 R09 R09 LZ1 R09 R09 R09 LZ1 R09 R09 RO9 LZ1 R09 R09 R09 LZ1 R09 R09 R09 R09 LZ1 R09 R09 R09 LZ1 R09	1.0 1.0 1.0 4.0 4.0 4.0 4.0 1.0 1.0 2.5 2.5 4.0 4.0	10La.A 12La05 10La.A 12La05 72De11 72De11 72De11 11Tu09 12Zh34 64Ba03 79Ko10 72De11 72De11 14Ka22 72De11 67Ha.A 69Ar.A 70Cr04 06Fi.A 66Er02 68Be36 68Vi01 68Gr09 66Er02 average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Input va	llue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁴⁸ Ti(d,p) ⁴⁹ Ti	5907	8	5917.829	0.030	1.4	U			Kop		67Ba32
(,F)	5918	6			0.0	Ü			MIT		67Ba32
	5918.6	1.7			-0.5	Ü			NDm		76Jo01
$^{48}\text{Ti}(p,\gamma)^{49}\text{V}$	6756.8	1.5	6758.2	0.8	0.9	R			TIDIII		72Ki06
$^{49}\text{Mn}^{i}(p)^{48}\text{Cr}$	2712.2	50.	2729	16	0.3	U					70Ce02
WIII (p) CI	2730	29	2129	10	0.0	0			Bor		96Fa09
	2729	16			0.0	3			Bor		07Do17
$^{49}\text{K}(\beta^{-})^{49}\text{Ca}$	10970	70	11688.3	0.8	10.3	В			DOI		86Mi08
$^{49}\text{Ca}(\beta^-)^{49}\text{Sc}$											
Ca(p) Sc	5200	100	5261.5	2.7	0.6	U					56Ma27
40 a (0 -) 40 m²	4970	50	2002.7		5.8	В	•	29 ⁴⁹ Sc			56Ok02
$^{49}\mathrm{Sc}(\beta^-)^{49}\mathrm{Ti}$	2010	5	2002.5	2.7	-1.5	1	29	29 ⁴⁹ Sc			61Re06
40 40	1983	7			2.8	В					69F102
$^{49}V(\varepsilon)^{49}Ti$	626	10	601.9	0.8	-2.4	U					56Ha59
⁴⁹ Ti(p,n) ⁴⁹ V	-1383	9	-1384.2	0.8	-0.1	U			Har		60Mc12
	-1383.6	1.0			-0.6	2			Oak		64Jo11
$^{49}\text{Ti}(^{3}\text{He,t})^{49}\text{V}^{i}$	-7052	4				2					71Be29
$^{49}Cr(\beta^+)^{49}V$	2590	20	2628.9	2.4	1.9	U					53Cr18
⁴⁹ Ar–u	Trends from Mass										GAu
⁴⁹ Fe-u	Same result in refe										13Ya03
$^{49}\text{Mn}^{i}(p)^{48}\text{Cr}$	Q_p =1960(50) 1978		16) respectivel	v to 2 ⁺ le	evel at 75	2 19(0 1	1) keV				Ens067
$^{49}\text{Ti}(^{3}\text{He,t})^{49}\text{V}^{i}$	CDE=7822(4) Q =	- 7058(4)·	recalibration 4	6 keV for	42Ca(n.n)42 Sc fro	m Amalo	161			MMC123
$^{49}\text{Cr}(\beta^+)^{49}\text{V}$	$E_{\beta^+} = 1540(10) \ 139$										Ens089
CI(p') V	Lβ+=13+0(10) 132	70(20) to (7	72)ground sta	110 + (3/2)50.0352	2 and 3/2	at 132.)	202			Liisoo
⁵⁰ K-u	-26100	800	-27620	8	-1.3	U			TO3	1.5	90Tu01
$^{50}K - ^{39}K_{1.282}$	18899	11	18908	8	0.8				TT1	1.0	10La.A
$K - K_{1.282}$			10900	0	0.8	o 2			TT1		
50 Ca $-^{39}$ K _{1.282}	18908.3	8.3	1027.5	1.7	0.1					1.0	12La05
Ca— K _{1.282}	4027.0	4.0	4027.5	1.7	0.1	0			TT1	1.0	10La.A
50 a	4027.5	1.7	45024		0.0	2			TT1	1.0	12La05
⁵⁰ Sc-u	-47940	250	-47824	16	0.3	U			TO6	1.5	98Ba.A
C H ₃ ³⁵ Cl- ⁵⁰ Ti		23	47541.95	0.13	-0.1	U			R09	4.0	72De11
	47550										
$C_4 H_2 - {}^{50}Ti$	70860	8	70864.23	0.13	0.1	U			R09	4.0	72De11
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti O}$											
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti O}$	70860	8	70864.23	0.13	0.1	U			R09	4.0	72De11
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 {}^{13}\text{C H} - {}^{50}\text{Ti}$	70860 107253 66401	8 18 21	70864.23 107249.73 66394.03	0.13 0.13 0.13	$0.1 \\ 0.0 \\ -0.1$	U U U			R09 R09 R09	4.0 4.0 4.0	72De11 72De11 72De11
$C_4 H_2^{-50}$ Ti $C_5 H_6^{-50}$ Ti O $C_3 ^{13}$ C H $^{-50}$ Ti $C_3 N^{-50}$ Ti	70860 107253 66401 58279	8 18 21 43	70864.23 107249.73 66394.03 58288.17	0.13 0.13 0.13 0.13	$0.1 \\ 0.0 \\ -0.1 \\ 0.1$	U U U U			R09 R09 R09 R09	4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 {}^{13}\text{C H} - {}^{50}\text{Ti}$ $C_3 N - {}^{50}\text{Ti}$ $C_4 H_2 - {}^{50}\text{V}$	70860 107253 66401 58279 68485	8 18 21 43 14	70864.23 107249.73 66394.03 58288.17 68494.2	0.13 0.13 0.13 0.13 0.4	0.1 0.0 -0.1 0.1 0.2	U U U U U			R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $C_3 H_3 C H - {}^{50}\text{Ti}$ $C_3 N - {}^{50}\text{Ti}$ $C_4 H_2 - {}^{50}\text{V}$ $C_3 N - {}^{50}\text{V}$	70860 107253 66401 58279 68485 55903	8 18 21 43 14 23	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2	0.13 0.13 0.13 0.13 0.4 0.4	0.1 0.0 -0.1 0.1 0.2 0.2	U U U U U			R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ ¹³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₃ ³⁵ Cl - ⁵⁰ V	70860 107253 66401 58279 68485 55903 45158	8 18 21 43 14 23 17	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9	0.13 0.13 0.13 0.13 0.4 0.4	0.1 0.0 -0.1 0.1 0.2 0.2	U U U U U U			R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₇ H ₃ 3 ⁵ Cl - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608	8 18 21 43 14 23 17 8	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6	0.13 0.13 0.13 0.13 0.4 0.4 0.4	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0	U U U U U U U			R09 R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ ¹³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₄ H ₃ ³⁵ Cl - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₃ N - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051	8 18 21 43 14 23 17 8 7	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6	0.13 0.13 0.13 0.13 0.4 0.4 0.4 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0 -0.7	U U U U U U U U			R09 R09 R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ 1 ³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₃ - ³⁵ Cl - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₃ N - ⁵⁰ Cr C ₄ H ₃ - ³⁵ Cl - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290	8 18 21 43 14 23 17 8 7	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6	0.13 0.13 0.13 0.13 0.4 0.4 0.4	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0	U U U U U U U U			R09 R09 R09 R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₃ I ₅ Cl - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₃ N - ⁵⁰ Cr C ₄ H ₃ I ₅ Cl - ⁵⁰ Cr C ₆ H ₃ I ₅ Cl - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051	8 18 21 43 14 23 17 8 7	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6	0.13 0.13 0.13 0.13 0.4 0.4 0.4 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0 -0.7	U U U U U U U U			R09 R09 R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ H ₃ 35Cl - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290	8 18 21 43 14 23 17 8 7	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6	0.13 0.13 0.13 0.13 0.4 0.4 0.4 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0 -0.7	U U U U U U U U			R09 R09 R09 R09 R09 R09 R09 R09 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ ¹³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₃ ³⁵ Cl - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₃ N - ⁵⁰ Cr C ₄ H ₃ ³⁵ Cl - ⁵⁰ Cr C ₇ H ₃ ³⁵ Cl - ⁵⁰ Cr C ₉ H ₃ ³⁵ Cl - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47	8 18 21 43 14 23 17 8 7 14 9 0.88	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0 -0.7 -0.1	U U U U U U U U U	52	52 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ H ₃ 35Cl - ⁵⁰ Cr C ₇ H ₃ 35Cl - ⁵⁰ Cr C ₇ H ₃ 35Cl - ⁵⁰ Cr C ₉ H ₃ 35Cl - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4	U U U U U U U U U U U U U U U U 1 B 1		52 ⁵⁰ Mn 81 ⁵⁰ Mn ^m	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De10 08Er04
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₃ N - ⁵⁰ Cr C ₄ H ₃ I ₅ Cl - ⁵⁰ Cr C ₇ H ₃ I ₅ Cl - ⁵⁰ Cr C ₉ Ti I ₃ C - ⁵⁰ Ti C C ₉ M ₀ - ⁵⁰ Cr C ₉ M ₀ - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3	U U U U U U U U U U U U U U 1 1 1 1 1 1	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 72De10 08Er04 08Er04
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ 1 ³ C H - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ N - ⁵⁰ Cr C ₈ H ₃ 3 ⁵ Cl - ⁵⁰ Cr C ₉ Ti 1 ³ C - ⁵⁰ Ti C C ₉ Mn - ⁵⁰ Cr C ₉ Mn - ⁵⁰ Cr C ₉ Mn - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4	U U U U U U U U U U U U U U I I I I I I		52 ⁵⁰ Mn 81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 08Er04 08Er04 08Er04
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₃ N - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ S N - ⁵⁰ Cr C ₈ N - ⁵⁰ Cr C ₉ H ₃ I ³ Cl - ⁵⁰ Cr C ₉ H ₃ I ³ Cl - ⁵⁰ Cr C ₁ M - ⁵⁰ Cr C ₂ M - ⁵⁰ Cr C ₃ M - ⁵⁰ Cr C ₄ M - ⁵⁰ Cr C ₅ M - ⁵⁰ Cr C ₆ M - ⁵⁰ Cr C ₇ M - ⁵⁰ Cr C ₈ M - ⁵⁰ Cr C ₉ M - ⁵⁰ Cr C ₉ M - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0	U U U U U U U U U U U U U U U U U U U	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 JY1 R09	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 08Er04 08Er04 08Er04 72De11
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₃ N - ⁵⁰ V C ₅ N - ⁵⁰ Cr C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ N - ⁵⁰ Cr C ₈ N - ⁵⁰ Cr C ₉ H ₃ I ³ C - ⁵⁰ Cr C ₉ Ti I ³ C - ⁵⁰ Ti C C ₉ Mn - ⁵⁰ Cr C ₉ Mn - ⁵⁰ Cr	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4	U U U U U U U U U U U U U U U U U U U	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 JY1 R09 MSU	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 08Er04 08Er04 08Er04 72De11 75Mu09
C ₄ H ₂ - ⁵⁰ Ti C ₅ H ₆ - ⁵⁰ Ti O C ₃ I ³ C H - ⁵⁰ Ti C ₄ H ₂ - ⁵⁰ V C ₅ N - ⁵⁰ V C ₄ H ₂ - ⁵⁰ V C ₄ H ₂ - ⁵⁰ Cr C ₅ N - ⁵⁰ Cr C ₇ N - ⁵⁰ Cr C ₈ N - ⁵⁰ Cr C ₉ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Cr C ₁ H ₃ I ³ C - ⁵⁰ Ti C C ₁ H ₃ I ³ C - ⁵⁰ Ti C C ₁ H ₃ I ³ C - ⁵⁰ Ti C C ₂ H ₃ I ³ C - ⁵⁰ Ti C C ₃ H ₃ I ³ C - ⁵⁰ Ti C C ₄ H ₃ I ³ C - ⁵⁰ Ti C C ₅ H ₃ I ³ C - ⁵⁰ Ti C C ₇ H ₉ H ₉ I ³ C - ⁵⁰ Ti C C ₈ H ₉ I ³ C - ⁵⁰ Ti C C ₉ H ₉ I ³ C	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4	U U U U U U U U U U U U U U U U U U U	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 JY1 R09 MSU Tal	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0	U U U U U U U U U U U U U U U U U U U	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 67Sp09
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $C_6 H_6 - {}^{50}\text{Ti}$ $C_7 H_6 - {}^{50}\text{Ti}$ $C_7 H_7 - {}^{50}\text{Ti}$ $C_7 H_7 - {}^{50}\text{Ti}$ $C_7 H_7 - {}^{50}\text{Ti}$ $C_7 H_7 - {}^{50}\text{Cr}$ $C_7 H_7 - {}^{50}$	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572 -3387	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23 10	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4 -3391.4	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0 0.2 -0.4	U U U U U U U U U U U U U U U U U U U	81 55	81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT Ald	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01 67Sp09 66Br06
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $O_5 H_7 - {}^{50}\text{Ti}$ $O_5 H_7 - {}^{50}\text{Ti}$ $O_5 H_7 - {}^{50}\text{Cr}$ $O_5 H_7 - {}^{50}\text{Cr}$ $O_5 H_7 - {}^{50}\text{Cr}$ $O_7 - {}^{50}\text{Cr}$	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0	U U U U U U U U U U U U U U U U U U U	81	$81^{-50} Mn^{m}$	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 67Sp09
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572 -3387	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23 10 14	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4 -3391.4	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4 0.5	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0 0.2 -0.4	U U U U U U U U U U U U U U U U U U U	81 55	81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT Ald	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01 67Sp09 66Br06
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O $C_3 H_3 - {}^{50}\text{Ti}$ O	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572 -3387 -18365 3012	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23 10 14 15	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4 -3391.4 -18360	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4 0.5 6	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0 0.2 -0.4 0.0	U U U U U U U U U U U U U U U U U U U	81 55	81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT Ald MSU Ald	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01 67Sp09 66Br06 77Mu03 66Hi01
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ O $C_3 H_6 - {}^{50}\text{Ti}$ O $C_4 H_2 - {}^{50}\text{V}$ O $C_4 H_2 - {}^{50}\text{V}$ C $C_4 H_2 - {}^{50}\text{Cr}$ C $C_3 N - {}^{50}\text{Cr}$ C $C_3 N - {}^{50}\text{Cr}$ C $C_4 H_3 - {}^{35}\text{Cl} - {}^{50}\text{Cr}$ C $C_5 H_3 - {}^{50}\text{Cr}$ C $C_6 H_6 - {}^{45}\text{V}$ C $C_6 H_6 - {}^{45}\text{Cr}$ C $C_6 H_6 - {}^{45$	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572 -3387 -18365 3012 3020	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23 10 14 15 10	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4 -3391.4 -18360	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4 0.5 6	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0 0.2 -0.4	U U U U U U U U U U U U U U U U U U U	81 55	81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT Ald MSU Ald LAl	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01 67Sp09 66Br06 77Mu03 66Hi01 66Wi11
$C_4 H_2 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $C_5 H_6 - {}^{50}\text{Ti}$ $C_3 N - {}^{50}\text{Ti}$ $C_4 H_2 - {}^{50}\text{V}$ $C_3 N - {}^{50}\text{V}$ $C_4 H_2 - {}^{50}\text{V}$ $C_4 H_2 - {}^{50}\text{V}$ $C_4 H_2 - {}^{50}\text{Cr}$ $C_3 N - {}^{50}\text{Cr}$ $C_3 N - {}^{50}\text{Cr}$ $C_4 H_2 - {}^{50}\text{Cr}$ $C_5 N - {}^{50}\text{Cr}$ $C_7 H_3 + {}^{50}\text{Cr}$ $C_7 H_3 + {}^{50}\text{Cr}$ $C_7 H_7 $	70860 107253 66401 58279 68485 55903 45158 69608 57051 46290 -37012 6440.47 8195.91 8437.852 241.840 -3075 -28686 -2231 572 -3387 -18365 3012	8 18 21 43 14 23 17 8 7 14 9 0.88 0.10 0.065 0.100 38 17 15 23 10 14 15	70864.23 107249.73 66394.03 58288.17 68494.2 55918.2 45171.9 69608.6 57032.6 46286.3 6433.62 8195.95 8437.83 241.88 -3078.79 -28679.2 -2231.0 577.4 -3391.4 -18360	0.13 0.13 0.13 0.13 0.4 0.4 0.5 0.5 0.5 0.04 0.07 0.06 0.07 0.04 1.0 1.9 0.4 0.5 6	0.1 0.0 -0.1 0.1 0.2 0.2 0.0 -0.7 -0.1 -3.1 0.4 -0.3 0.4 0.0 0.4 0.0 0.2 -0.4 0.0	U U U U U U U U U U U U U U U U U U U	81 55	81 ⁵⁰ Mn ^m 37 ⁵⁰ Mn	R09 R09 R09 R09 R09 R09 R09 R09 R09 LZ1 H32 JY1 JY1 R09 MSU Tal MIT Ald MSU Ald	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	72De11 6Zh.A 79Ko10 08Er04 08Er04 08Er04 72De11 75Mu09 65Pl01 67Sp09 66Br06 77Mu03 66Hi01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
50 Cr(d, α) 48 V	4928	12	4926.4	1.1	-0.1	U			Kop		67Ha.A
Cr(u,w) V	4923	15	4720.4	1.1	0.2	U			MIT		68Do03
50 Cr(d, α) 48 V i	1880	11	1907.6	0.5	2.5	U			MIT		68Do03
50 Cr(p,t) 48 Cr	-15100	8	-15101	7	-0.1	2			Oak		71Do18
0.(4,0)	-15100	30	10101	•	0.0	Ū			Bld		72Sh27
50 Cr(p,t) 48 Cr ^j	-23861	15			0.0	2			MSU		75Mo26
$^{50}\text{Co}^{i}(2p)^{48}\text{Mn}$	1972	13				2			Bor		07Do17
50 Ti $(t,\alpha)^{49}$ Sc	7644	25	7654.5	2.7	0.4	Ū			LAI		66Wi11
$^{49}\text{Ti}(n,\gamma)^{50}\text{Ti}$	10939.6	0.3	10939.19	0.04	-1.4	Ü			MMn		80Is02
11(1.,1)	10939.19	0.04	10,0,11	0.0.	0.0	1	100	100 ⁵⁰ Ti	Ptn		84Ru06
	10939.20	0.22			0.0	Ü	100	100 11	Bdn		06Fi.A
$^{49}\text{Ti}(d,p)^{50}\text{Ti}$	8723	8	8714.62	0.04	-1.0	Ü			Kop		67Ba32
11(0,p) 11	8721	6	0,102	0.0.	-1.1	Ü			MIT		67Ba32
50 Cr(p,d) 49 Cr	-10790	30	-10775.8	2.2	0.5	Ü			Pri		67Wh03
50 Cr(d,t) 49 Cr	-6743.1	2.2	-6743.1	2.2	0.0	1	100	100 ⁴⁹ Cr	NDm		76Jo01
50 Fe ^{<i>i</i>} (p) ⁴⁹ Mn	4389	41	4332	10	-1.4	0	100	100 CI	Bor		96Fa09
10 (p) 1411	4332	10	1332	10	1	2			Bor		07Do17
50 K(β^{-}) 50 Ca	14050	300	13861	8	-0.6	U			Вог		86Mi08
$^{50}\text{Sc}(\beta^{-})^{50}\text{Ti}$	6500	200	6884	15	1.9	U					63Ch03
Se(p') 11	6260	100	0004	13	6.2	В					69Wa24
$^{50}V(n,p)^{50}Ti$	2979	15	2990.0	0.4	0.7	U			ILL		81Wa31
(n,p) 11	2984	10	2))0.0	0.4	0.6	U			ILL		94Wa17
$^{50}\text{Ti}(p,n)^{50}\text{V}$	-2991	10	-2990.0	0.4	0.1	U			Har		60Mc12
$^{50}\text{Ti}(^{3}\text{He,t})^{50}\text{V}^{i}$	-7032	4	-7039.83	0.27	-2.0	U			1141		71Be29
50 Cr(p,n) 50 Mn	-8416.1	1.9	-8416.82	0.07	-0.4	U			Har		75Fr.A
50 Cr(3 He,t) 50 Mn	-7650.5	0.4	-7653.07	0.07	-6.4	F			Mun		77Vo02
50 Cr(3 He,t) 50 Mn- 27 Al() 27 Si	-2820.0	2.8	-7633.07 -2822.12	0.07	-0.4 -0.8	U			ChR		74Ha35
50 Cr(3 He,t) 50 Mn- 42 Ca() 42 Sc	-2820.0 -1207.6	2.3	-2822.12 -1208.38	0.12	-0.3	U			ChR		74Ha35
50 Cr(3 He,t) 50 Mn- 54 Fe() 54 Co	610.09	0.17	610.07	0.12	-0.3 -0.1	1	35	23 ⁵⁴ Co	ChR		87Ko34
.50Sc-u	M - A = -44530(22)						33	23 ' C0	Clik		Nub16b *
c^{50} Cr(p, 6 He) 45 V				111 at 250).093 KC V						
c ⁵⁰ Cr(³ He, ⁶ He) ⁴⁷ Cr	Original Q increase			r-\							
50 Cr(d, α) 48 V ⁱ	Original Q reduced										AHW *
c^{50} Cr(p,t) ⁴⁸ Cr ^j	IT=3043(9); rebuil				O1:14	:'41- A	1071				MMC124*
	Strongest of two fr				Q rebuiii	with A	me19/1				75Mo26 *
c^{50} Fe ⁱ (p) ⁴⁹ Mn	E_p =2790(41) to 11				1 . 154	1 2125	1				Ens089 *
$e^{50} \text{Fe}^{i}(p)^{49} \text{Mn}$	$Q_p = 2770(12) 41.1$	%, 1874(16) 1.0% to 1	1/2 ⁽⁻⁾ le	vel at 154	1.3125,	and				Ens089 *
50	13/2 ⁽⁻⁾ at 2481.3				- 2 12						Ens089 *
50 Ti(3 He,t) 50 V ⁱ	CDE=7802(4) Q =			n +6 keV	for ⁴² Ca	(p,n) ⁴² S	Sc from A	me1961			MMC123*
c^{50} Cr(3 He,t) 50 Mn	F: rejected in refer			50							09Fa15 *
c^{50} Cr(3 He,t) 50 Mn- 54 Fe() 54 Co	Q - Q = 40.90(0.16)) to 650.9	99(0.06) level	in ³⁰ Mn							Ens10c *
⁵¹ Ca- ³⁹ K _{1,308}	8467.58	0.56				2			MA8	1.0	13Wi06
$^{51}\text{Ca} - \text{u}$	-38800	350	-39004.3	0.6	-0.4	U			TO3	1.5	90Tu01
Cu u	-38900 -38900	400	J/00 T. J	0.0	-0.4 -0.2	U			TO5	1.5	94Se12
	-39249	183			0.9	U			GT1	1.5	04Ma.A
$^{51}V - ^{39}K_{1.308}$	-8571.23	0.73	-8571.2	0.4	0.9	_			TT1	1.0	14Ma21
11.308	-8570.68	0.73	03/1.2	0.7	-0.5	_			TT1	1.0	14Ma21
	ave. -8571.0	0.55			-0.3	1	54	54 ⁵¹ V		1.0	average
$C_4 H_3 - {}^{51}V$	79526	9	79518.2	0.4	-0.3 -0.2	U	J T	J ⊤ V	R09	4.0	72De11
$C_4 H_3 = V$ $C_5 H_7 = {}^{51}V O$	115921	13	115903.7	0.4	-0.2 -0.3	U			R09	4.0	72De11 72De11
$C_4 H_5 N^{-51} V O$		13	103327.7	0.4	-0.3 -0.1	U			R09	4.0	72De11 72De11
C4 115 IN - V U	103334	13	103341.1	0.4	-0.1	U			NUS	+.∪	120011
	103334	7	66042.2	0.4	Ω	T T			$\mathbf{p} \cap \mathbf{n}$	4.0	72De11
C ₃ H N-51V	66943	7	66942.2	0.4	0.0	U			R09	4.0	72De11
$C_3 H N^{-51} V$ $^{51}Cr^{-39}K_{1.308}$	66943 -7763.66	0.78	66942.2 -7763.4	0.4 0.4	0.3	-			TT1	1.0	14Ma21
$C_3 H N - {}^{51}V$	66943						43	43 ⁵¹ Cr			

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁵¹ Fe-u	-43148	12	-43159	10	-0.9	1	64	64 ⁵¹ Fe	LZ1	1.0	11Tu09
⁵¹ Co-u			-43139	10	-0.9		04	04 FC			
⁵¹ Ca- ⁵⁸ Ni _{.879}	-29353	52	17020.2	0.7	0.2	2			LZ1	1.0	14Sh14
⁴⁷ Ti ³⁷ Cl ₂ - ⁵¹ V ³⁵ Cl ₂	17823	24	17830.2	0.7	0.3	U			TT1	1.0	12Ga29
	1906.	1.8	1900.7	0.5	-0.7	U			H18	4.0	64Ba03
⁹ Ti ³⁷ Cl ⁻⁵¹ V ³⁵ Cl	956.7	0.7	957.6	0.5	0.3	U			H18	4.0	64Ba03
$^{1}K - ^{51}V$	31871	14				2			TT1	1.0	12Ga29
51 Cr $-^{51}$ V	807.4		807.78	0.23	0.5	_			TT1	1.0	14Ma21
	806.3	1.2			1.2	_			TT1	1.0	14Ma21
	ave. 807.2	0.6			1.0	1	14	$7^{51}V$			average
⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca	-15900	150	-15521.8	0.5	2.5	U			Mun		80Ma40
	-16886	100			13.6	В			MSU		85Be50
¹⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca	-12040	120	-11530.7	0.7	4.2	В			Hei		85Br03
, , ,	-13900	40			59.2	В			Can		88Ca21
$^{-8}$ Ca(α ,p) 51 Sc	-5860	20				2			ANL		66Er02
$^{51}V(p,\alpha)^{48}Ti$	1162	10	1152.9	0.4	-0.9	Ū			MIT		64Sp12
$^{51}V(d,\alpha)^{49}Ti$	7066	12	7070.8	0.4	0.4	U			Kop		67Ha.A
$V(\mathbf{u},\alpha)$ 11 $^{50}\mathrm{Ti}(\mathbf{n},\gamma)^{51}\mathrm{Ti}$	6372.3	1.2	6372.5		0.4				кор		71Ar39
11(11, 7) 11		0.6	03/2.3	0.5	-0.2	2 2			Bdn		06Fi.A
0m:74>51m:	6372.6		41.47.0	0.5							
$^{60}\mathrm{Ti}(\mathrm{d,p})^{51}\mathrm{Ti}$	4143	6	4147.9	0.5	0.8	U			MIT		67Ba32
	4148	8			0.0	U			Kop		67Ba32
51	4147.7	1.2			0.2	2			NDm		76Jo01
$^{50}\mathrm{Ti}(\mathrm{p},\gamma)^{51}\mathrm{V}$	8063.3	2.0	8061.2	0.4	-1.1	U					70K105
	8063.6				-1.2	U					70Ma36
60 Ti(3 He,d) 51 V	2555	15	2567.7	0.4	0.8	U			MIT		67Ob04
$^{50}V(n,\gamma)^{51}V$	11051.1	8 0.10	11051.15	0.08	-0.3	2			MMn		78Ro03
	11051.0	5 0.17			0.6	2			ILn		91Mi08
	11051.1	4 0.22			0.0	2			Bdn		06Fi.A
$^{1}V(\gamma,n)^{50}V$	-11040	60	-11051.15	0.08	-0.2	U			Phi		60Ge01
$^{50}V(d,p)^{51}V$	8840	15	8826.58	0.08	-0.9	U			MIT		67De02
· (, r)	8828	20			-0.1	Ü			Kop		67Ha.A
$^{1}V(p,d)^{50}V$	-8815	20	-8826.58	0.08	-0.6	Ü			Oak		65Ba29
$^{60}V(^{3}He,d)^{51}Cr$	4031	12	4022.88	0.23	-0.7	U			MIT		69Do01
50 Cr(n, γ) 51 Cr	9261.7			0.20							80Is02
*Cr(II, y) * *Cr			9260.64	0.20	-3.6	В	00	07.500	MMn		
50 a (1) 51 a	9260.6		502405		0.1	1	98	87 ⁵⁰ Cr	Bdn		06Fi.A
50 Cr(d,p) 51 Cr	7049	8	7036.07	0.20	-1.6	U			Kop		67Ha.A
70 51	7041	6			-0.8	U		51	MIT		68Ro09
60 Cr(p, γ) 51 Mn	5270.8	0.3	5270.78	0.29	-0.1	1	95	81 ⁵¹ Mn			72Fo25
50 Cr(3 He,d) 51 Mn	-206	15	-222.70	0.29	-1.1	U			MIT		67Sp09
60 Cr(p, γ) 51 Mn i	819	2	820.2	1.5	0.6	2					72Fo25
60 Cr(3 He,d) 51 Mn i	-4652	20	-4673.3	1.5	-1.1	U			MIT		67Ra14
	-4671.7	2.3			-0.7	2					79Pa14
51 Co ⁱ (p) 50 Fe	6513	16				3			Bor		07Do17
$^{51}\text{Ti}(\beta^{-})^{51}\text{V}$	2440	30	2471.0	0.6	1.0	U					55Bu01
4 /	2450	30			0.7	U					55Ma01
51 Cr $(\varepsilon)^{51}$ V	756	5	752.45	0.21	-0.7	Ü					55Bi29
$^{51}V(p,n)^{51}Cr$	-1533.5		-1534.79	0.21	-0.7	U			Nvl		59Go68
v (p,n) Ci	-1533.3 -1533.3	1.8	-1334.77	0.21	-0.8	U			Oak		64Jo11
	-1533.7				-0.3 -0.7	U			Can		70Kn03
							70	39 ⁵¹ V			
$^{11}V(^{3}He,t)^{51}Cr^{i}$	-1534.9				0.6	1	78	39 ° V	PTB		89Sc24
	-7384	5	2207.7			2					71Be29
$^{51}\text{Mn}(\beta^+)^{51}\text{Cr}$	3232	20	3207.5	0.3	-1.2	U					66Gl02
⁴⁸ Ca(¹⁴ C, ¹¹ C) ⁵¹ Ca	May be a ⁴⁰ Ca con										85Be50
	Proposed 970(90)				e in refere	ence					85Be50
	Weels M 4- 261	20(120) lev	vel disregarded	l							AHW
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca	weak $M - A = -301$	()									
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca ⁵⁰ Cr(³ He,d) ⁵¹ Mn ⁱ	M = A = -301 IT=4449(3); <i>Q</i> reb		-								MMC124
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca ⁵⁰ Cr(³ He,d) ⁵¹ Mn ⁱ		uilt with Ar	me1977								MMC124 Ens10c
⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca ⁴⁸ Ca(¹⁸ O, ¹⁵ O) ⁵¹ Ca ⁵⁰ Cr(³ He,d) ⁵¹ Mn ⁱ ⁵¹ Co ⁱ (p) ⁵⁰ Fe ⁵¹ Co ⁱ (p) ⁵⁰ Fe	IT=4449(3); Q reb	uilt with Ar ⁺) level at	me1977 1851.5 keV								

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	Input vi	arue	riajustea	varae	*1	- 25	oigiii.	Trium min.	Luo	-	
$^{52}K-u$	-18398	36				2			MR1	1.0	15Ro10
$^{52}\text{Ca} - ^{39}\text{K}_{1.333}$	11592.90	0.72				2			MA8	1.0	13Wi06
⁵² Ca-u	-34900	500	-36786.4	0.7	-2.5	U			TO3	1.5	90Tu01
	-36792	11			0.5	U			MR1	1.0	13Wi06
⁵² Sc-u	-43500	230	-43420	90	0.2	2			TO3	1.5	90Tu01
	-43350	250			-0.2	2			TO5	1.5	94Se12
	-43110	240			-0.9	2			TO6	1.5	98Ba.A
	-43438	97			0.2	2			LZ1	1.0	15Xu14
	-43260	560			-0.3	U			MT1	1.0	15Me08
$^{52}Cr - ^{39}K_{1.333}$	-11116.33	0.48	-11115.8	0.4	1.2	1	58	58 ⁵² Cr	MA8	1.0	17Mo.A
$C_4 H_4 - {}^{52}Cr$	90826	9	90795.1	0.4	-0.9	U			R09	4.0	72De11
$C_3^{13}C H_3 - {}^{52}Cr$	86373	18	86324.9	0.4	-0.7	Ü			R09	4.0	72De11
$C_3 H_2 N^{-52}Cr$	78253	6	78219.1	0.4	-1.4	U			R09	4.0	72De11
⁵² Co-u	-36888	9	,021,11	0		2			LZ1	1.0	16Xu10
52 Co ^m -u	-36473	11				2			LZ1	1.0	16Xu10
⁵² Ca- ⁵⁸ Ni _{.897}	21220	110	21212.1	0.8	-0.1	U			TT1	1.0	12Ga29
$^{52}\text{Ca} - ^{52}\text{Cr}$	22740	82	22708.7	0.8	-0.4	U			TT1	1.0	12Ga29
$^{52}\text{Cr}-^{50}\text{Cr}$	-5566	41	-5536.5	0.6	0.2	U			R09	4.0	72De11
52 Cr(p, α) 49 V	-2596	10	-2593.3	0.9	0.2	U			Ald	4.0	66Br06
50 Ti(t,p) 52 Ti	-2390 5698		-2393.3 5699	7							66Wi11
11(t,p)* 11	5700	10 10	3099	/	$0.1 \\ -0.1$	2 2			LAI LAI		71Ca19
⁵⁰ Ti(³ He,p) ⁵² V			7654.4	0.4	0.1	U			Phi		
52 Cr(d, α) 50 V	7653	15		0.4							75Ca07
	4517	12	4515.6	0.5	-0.1	U			Kop		67Ha.A
52 Cr(p, 3 He) 50 V ⁱ	-18645	6	-18651.1	0.4	-1.0	U					78Ko27
52 Cr(p,t) 50 Cr ⁱ	-21244	7				2					78Ko27
52 Cr(p,t) 50 Cr ^j	-26041	6	5044.04	0.12		2					78Ko27
51 V $(n,\gamma)^{52}$ V	7311.2	0.5	7311.24	0.13	0.1	2			**		84De15
	7311.18	0.26			0.2	2			ILn		91Mi08 Z
51**** >52**	7311.27	0.15	5006 60	0.12	-0.2	2			Bdn		06Fi.A
$^{51}V(d,p)^{52}V$	5098	9	5086.68	0.13	-1.3	U			MIT		64Sp12
51xx \ \52 c	5086	8	10504.4	0.5	0.1	U			Kop		67Ha.A
$^{51}V(p,\gamma)^{52}Cr$	10500.7	2.8	10504.4	0.5	1.3	U			ъ		74Ro44 Z
52 Co i (p) 51 Fe	1367	60	1487	14	2.0	0			Bor		94Fa06
	1349	10			13.8	В			Bor		07Do17
52 a (0-)52 a	1352	10	6400		13.5	В					16Or03
$^{52}\text{Ca}(\beta^{-})^{52}\text{Sc}$	5700	200	6180	80	2.4	В					85Hu03
$^{52}\text{Sc}(\beta^{-})^{52}\text{Ti}$	8020	250	9030	80	4.0	В					85Hu03
$^{52}\text{Ti}(\beta^{-})^{52}\text{V}$	1940	200	1974	7	0.2	U					67Mo11 *
$^{52}\text{V}(\beta^-)^{52}\text{Cr}$	3904	30	3975.5	0.5	2.4	U					65Ko09 *
52 52	3854	30			4.0	В					67Va27 *
52 Mn(β^+) 52 Cr	4710.9	4.	4712.0	1.9	0.3	R					58Ko57 *
50 50	4707.9	6.			0.7	R					60Ka20 *
$^{52}Cr(p,n)^{52}Mn$	-5479	10	-5494.3	1.9	-1.5	U			Ric		66Ri09
$^{52}\text{Cr}(^{3}\text{He,t})^{52}\text{Mn}^{i}$	-7653	5				2					71Be29 *
52 Fe(β^{+}) 52 Mn	2372	10	2377	5	0.5	-					56Ar33 *
	2229	130			1.1	U					79Ge02 *
	2510	100			-1.3	U					95Ir01
	ave. 2375	6			0.4	1	65	61 ⁵² Fe			average
$^{52}\text{Co}^{i}(\text{IT})^{52}\text{Co}^{m}$	2548	2				3					16Or03
$*^{52}\text{Ti}(\beta^{-})^{52}\text{V}$	$E_{\beta^-} = 1800(200)$ to 1 ⁺										Ens159 **
$*^{52}V(\beta^{-})^{52}Cr$	$E_{\beta}^{'} = 2470(30) \ 2420(30)$	30) respec	tively, to 2 ⁺ lo	evel at 14	34.091 ke	V					Ens159 **
$*^{52}$ Mn(β^+) 52 Cr	$E_{\beta^+}^{r}$ =575(4) and 572(6) respect	ively, to 6+ le	vel at 31	13.858 keV	V					Ens159 **
$*^{52}$ Cr(3 He,t) 52 Mn i	CDE=8414(5) Q = -7						n Ame1961				MMC123**
$*^{52}$ Fe(β^+) 52 Mn	$E_{\beta^+} = 804(10) \text{ to } 1^+ \text{ le}$				• /						Ens159 **
$*^{52}$ Fe(β^+) 52 Mn	$E_{\beta}^{+} = 5350(130)$ from			11 ⁺ leve	el at 3837.2	2 keV					Ens159 **
• /	P										

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Compari	Input v		Adjusted			ea, Exp Dg	Signf.	Main infl.	Lab	002-50) F	Reference
Item		mput v	aiue	Aujusteu	value	v_i	Dg	Sigili.	Maiii iiiii.	Lau	Г	Reference
$^{53}K-u$		-13200	120				2			MR1	1.0	15Ro10
⁵³ Ca-u		-31549	47				2			MR1	1.0	13Wi06
⁵³ Sc-u		-41440	260	-41770	100	-0.8	o			TO3	1.5	90Tu01
		-41830	280			0.1	U			TO5	1.5	94Se12
		-41100	400			-1.1	U			TO6	1.5	98Ba.A
		-41694	118			-0.4	2			GT1	1.5	04Ma.A
		-40910	290			-3.0	В			MT1	1.0	11Es06
		-41804	123			0.3	2			LZ1	1.0	15Xu14
		-40980	610			-1.3	U			MT1	1.0	15Me08
$C_4 H_5 - {}^{53}Cr$		98529	8	98478.2	0.4	-1.6	Ü			R09	4.0	72De11
C ₃ H ₃ N- ⁵³ Cr		85958	10	85902.1	0.4	-1.4	Ü			R09	4.0	72De11
C_2 ^{13}C H_2 $N-^{53}Cr$		81507	27	81431.9	0.4	-0.7	Ü			R09	4.0	72De11
$C_3 \text{ H O}^{-53}\text{Cr}$		62152	14	62092.7	0.4	-1.1	U			R09	4.0	72De11
⁵³ Co-u		-45783	18	-45796.8	1.8	-0.8	U			LZ1	1.0	11Tu09
⁵³ Ni-u				-43/90.8	1.6	-0.8						
		-31810	27	000= 6		0.4	2	0.4	02 53 G	LZ1	1.0	12Zh34
⁵³ Co- ⁵³ Fe		8897.67	0.49	8897.6	0.5	-0.1	1	94	93 ⁵³ Co	JY1	1.0	10Ka26
$^{53}\text{Co}^m - ^{53}\text{Fe}$		12305.2	1.3	12305.3	1.0	0.1	1	59	58 ⁵³ Co ^m	JY1	1.0	10Ka26
$^{53}\text{Co}^{m} - ^{53}\text{Co}$		3407.9	1.5	3407.6	1.0	-0.2	1	46	39 ⁵³ Co ^m	JY1	1.0	10Ka26
⁵³ Cr- ⁵² Cr		115	46	141.97	0.15	0.1	U			R09	4.0	72De11
$^{51}V(t,p)^{53}V$		7325	25	7308	3	-0.7	U			Ald		67Hi02
53 Cr(d, α) 51 V		7635	12	7627.6	0.5	-0.6	U			Kop		67Ha.A
52 Cr(n, γ) 53 Cr		7939.52	0.3	7939.07	0.14	-1.5	_			MMn		80Is02
		7939.01	0.2			0.3	_			BNn		80Ko01
		7939.10	0.28			-0.1	_			Bdn		06Fi.A
⁵² Cr(d,p) ⁵³ Cr		5725	6	5714.51	0.14	-1.7	U			MIT		64Sp12
(1)		5719	8			-0.6	U			Kop		67Ha.A
52 Cr(n, γ) 53 Cr	ave.	7939.15	0.14	7939.07	0.14	-0.5	1	95	62 ⁵³ Cr			average
52 Cr(p, γ) 53 Mn		6559.1	1.1	6559.8	0.3	0.7	Ü	,,,	02 01			_
$Cr(p, \gamma)$		6559.72	0.36	0337.0	0.5	0.3	1	86	77 ⁵³ Mn			70Ma25 79Sw01
⁵² Cr(³ He,d) ⁵³ Mn		1070	15	1066.4	0.3	-0.2	U	00	// IVIII	MIT		67Ob04
$^{53}\text{Co}^m(p)^{52}\text{Fe}$										IVIII		
••Со"(р)ге		1559.7	40.	1556	5	-0.1	0					70Ja22
		1600.5	30.			-1.5	U					70Ce04
		1590	30			-1.1	U					72Ce01
		1590	30			-1.1	U		52-			76Vi02
52 - 1 52-		1552.3	8.0			0.5	1	42	39 ⁵² Fe			15Sh16
53 Co ^{i} (p) 52 Fe		2789.5	50.	2707	6	-1.7	U					76Vi02
		2778.5	18.			-4.0	В			Bor		07Do17
$^{53}\text{Ti}(\beta^{-})^{53}\text{V}$		5020	100				3			ANB		77Pa01
$^{53}V(\beta^{-})^{53}Cr$		3536	50	3436	3	-2.0	U					56Sc.A
53 Cr(p,n) 53 Mn		-1379	8	-1379.2	0.4	0.0	U			MIT		52Lo06
		-1381.1	1.6			1.2	U			Oak		64Jo11
53 Cr(3 He,t) 53 Mn i		-7589	4				2					71Be29
53 Fe(β^{+}) 53 Mn		3860	100	3742.6	1.7	-1.2	U					59Ju40
4 /		3820	100			-0.8	U					75Bl01
⁵³ Co ⁱ (IT) ⁵³ Co		4325	2				2					16Su10
.53Ni-u	Same re	sult in referen					-					13Ya03
$^{53}\text{Co}^m(p)^{52}\text{Fe}$		Q = 1558(8)		for recoil								16Hu.A
$^{.53}\text{Co}^{i}(p)^{52}\text{Fe}$					v.a1 at 0.40	45 1ra V						
				tively, to 2 ⁺ le		.43 Ke v						Ens159
$^{53}V(\beta^{-})^{53}Cr$	E_{β} =25	30(50) to 5/2	level at	1006.27 keV		50	50					Ens09a
53 Cr(3 He,t) 53 Mn i	CDE=8	350(4) Q = -7	7586(4); r	ecalibration –	3 keV for	⁵⁰ Cr(p,n)	⁵⁰ Mn fro	m Ame196	1			MMC123
⁵⁴ Ca-u		-27011	52				2			MR1	1.0	13Wi06
⁵⁴ Sc-u				26200	200	0.4						
- sc-u		-36060	500	-36380	290	-0.4	О			TO3	1.5	90Tu01
		-37060	500			0.9	0			TO5	1.5	94Se12
		-36960	400			1.0	U			TO6	1.5	98Ba.A
		-37059	225			2.0	U			GT1	1.5	04Ma.A
		-36070	390			-0.8	2			MT1	1.0	11Es06
		-37202	585			1.4	2			LZ1	1.0	15Xu14
		-36230	680			-0.2	2			MT1	1.0	15Me08
⁵⁴ Ti-u		-48820	230	-48980	90	-0.5	2			TO3	1.5	90Tu01
		-49130	250			0.4	2			TO5	1.5	94Se12

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	omparis	Input v		Adjusted					Moin infl		F	Reference
Item		Input va	arue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁵⁴ Ti-u		-48820	280	-48980	90	-0.4	2			TO6	1.5	98Ba.A
		-48998	118			0.2	2			LZ1	1.0	15Xu14
$C_4 H_6 - {}^{54}Cr$		108018	17	108072.2	0.4	0.8	U			R09	4.0	72De11
$C_3^{13}C H_5 - {}^{54}Cr$		103569	15	103602.0	0.4	0.5	U			R09	4.0	72De11
C ₃ H ₄ N ⁻⁵⁴ Cr		95445	13	95496.1	0.4	1.0	U			R09	4.0	72De11
$C_2^{13}C H_3 N^{-54}Cr$		90960	24	91025.9	0.4	0.7	Ü			R09	4.0	72De11
$C_2 N O^{-54} Cr$		59057	26	59110.6	0.4	0.5	Ü			R09	4.0	72De11
¹³ C ³⁷ Cl ₃ - ⁵⁴ Fe ³⁵ Cl ₂		23744.46	1.26	23748.9	0.4	1.4	U			H39	2.5	84Ha20
$C_4 H_6 - {}^{54}Fe$		107368	11	107341.9	0.4	-0.6	Ü			R09	4.0	72De11
$C_3 H_4 N^{-54} Fe$		94791	8	94765.8	0.4	-0.8	Ü			R09	4.0	72De11
$C_2 \text{ N O}^{-54}\text{Fe}$		58411	8	58380.3	0.4	-1.0	U			R09	4.0	72De11
$C_3^{13}C H_5 - {}^{54}Fe$		102908	48	102871.7	0.4	-0.2	U			R09	4.0	72De11
⁵⁴ Ni–u		-42167	5	102071.7	0.1	0.2	2			LZ1	1.0	16Zh.A
54 Co $-^{54}$ Fe		8850.94	0.14	8850.89	0.10	-0.4	1	47	47 ⁵⁴ Co	JY1	1.0	08Er04
$^{54}\text{Co}^{m} - ^{54}\text{Fe}$		9062.960	0.092	9062.99	0.08	0.3	1	81	81 ⁵⁴ Co ^m	JY1	1.0	08Er04
$^{54}\text{Co}^{m} - ^{54}\text{Co}$		212.18	0.15	212.10	0.10	-0.5	1	49	30 ⁵⁴ Co	JY1	1.0	08Er04
⁵⁴ Cr- ⁵³ Cr		-1662	48	-1768.95	0.13	-0.6	Ü	77	30 60	R09	4.0	72De11
⁵⁴ Fe(p, ⁶ He) ⁴⁹ Mn		-28943	24	-28937.0	2.3	0.3	U			MSU	4.0	75Mu09 *
54 Fe(α , 8 He) 50 Fe		-50950	60	-50963	8	-0.2	U			Tex		77Tr05
54 Cr(p, α) 51 V		130	30	133.1	0.5	0.1	U			Kop		64Ve02
54 Fe(p, α) 51 Mn		-3145	9	-3146.6	0.6	-0.2	U			Ald		66Br05
rc(p,w) wiii		-3146.9	1.1	-3140.0	0.0	0.3	1	28	19 ⁵¹ Mn	NDm		74Jo14
54 Fe(p, α) 51 Mn ⁱ		-3140.9 -7606.6	5.0	-7597.1	1.6	1.9	U	20	19 WIII	NDIII		743014 79Ta22 *
⁵⁴ Fe(³ He, ⁶ He) ⁵¹ Fe		-7600.6 -18694	15	-7397.1 -18713	9	-1.3	1	36	36 ⁵¹ Fe	MSU		791a22 * 77Mu03 *
54 Cr(d, α) 52 V		5225	12	5219.8	0.5	-1.3 -0.4	U	30	30 Fe			67Ha.A
52 Cr(t,p) 54 Cr		9171	10				U			Kop		
52 Cr(3 He,p) 54 Mn				9176.36	0.18	0.5				LAI		71Ca19
Cr(-He,p)Min		7785 7788	15 9	7780.6	1.0	$-0.3 \\ -0.8$	U			MIT Phi		69Ly06 72Be07
52 Cr(3 He,p) 54 Mn i		1633.6	3.9	1634.5	2.8	0.2	U	51	51 ⁵⁴ Mn ⁱ	PIII		
52 Cr(3 He,n) 54 Fe j		-7173	20	1034.3	2.0	0.2	1	31	31 WIII			72Be07 * 75Bo14
54 Fe(d, α) 52 Mn		-7173 5169	12	5163.6	1.8	0.5	2 U			Von		73 Б 014 67На.А
Fe(a,α) ³² Min				3103.0	1.8	-0.5				Kop		
		5159 5163.3	15			0.3 0.1	U			MIT NDm		67Sp09 76Jo01
	0710		2.2				- 1	97	97 ⁵² Mn	NDIII		
54 Fe(p,t) 52 Fe	ave.	5163.8	1.8	15505	_	-0.1	1	97	97 *-MIN			average
⁵⁴ Fe(p,t) ⁵² Fe ^j		-15584	8	-15585	5 6	-0.1	R					78Ko27 *
Fe(p,t) Fe		-24139	7	-24140	0	-0.1	2					78Ko27
⁵⁴ Zn(2p) ⁵² Ni		-24141.3	11.0	1.400	20	0.1	2					78De18 *
Zn(2p)**N1		1480	20 20	1480	20	0.0	o 3					05Gi15
		1480 1280	210			1.0	U					05B115 11As08
54 Cr(d, 3 He) 53 V		-6879.2	3.1			1.0	2			NDm		79Br.B
53 Cr(n, γ) 54 Cr		-0879.2 9719.30	0.16	9719.08	0.12	1.4				NDIII		68Wh03 Z
$Cr(n,\gamma)$ Cr		9719.30	0.16	9/19.08	0.12	-1.4	_					
						2.0	_			MMn		
		9718.91 9718.0	0.27 0.2			0.6 5.4	В			MMn		80Is02 Z 87Mh.A
		9719.7	0.5			-1.2	– –			SAn		89Ho15 Z
		9720.00	0.20			-4.6	C			Bdn		06Fi.A
53 Cr(d,p) 54 Cr		7480	12	7494.52	0.12	1.2	U			MIT		64Sp12
C1(u,p) C1		7514	10	1774.32	0.12	-1.9	U			Kop		67Ha.A
53 Cr(n, γ) 54 Cr	ave.	9719.14	0.13	9719.08	0.12	-0.5	1	96	58 ⁵⁴ Cr	кор		average
53 Cr(p, γ) 54 Mn	ave.	9719.14 7559.6	1.0	9/19.08	0.12	-0.3	2	90	30 CI			average 75We10 Z
53 Cr(3 He,d) 54 Mn				2066 1	1.0	1.2				MIT		69Ly06
⁵⁴ Fe(d,t) ⁵³ Fe		2080	12 2.1	2066.1	1.0	-1.2	U			MIT		•
54 Fe(3 He. α) 53 Fe		-7121.5		-7121.1	1.6	0.2	_ II			NDm		74Jo14
ге(-пе,и)-ге		7197 7100 6	20	7199.3	1.6	0.1	U			MIT		68Tr01
54 Fe(d,t) 53 Fe	677.0	7199.6	2.6	7121 1	1.4	-0.1	_ 1	08	98 ⁵³ Fe	NDm		74Jo14
re(u,t) re	ave.	-7121.2	1.6	-7121.1	1.6	0.1	1	98	90 Fe			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{54}\text{Ti}(\beta^{-})^{54}\text{V}$	4280	160	4270	80	-0.1	R					96Do23
$^{54}V(\beta^{-})^{54}Cr$											
	7000	100	7042	15	0.4	U					70Wa14
54 Cr(t, 3 He) 54 V	-7023	15				2			LAl		77Fl03
$^{54}\mathrm{Mn}(\varepsilon)^{54}\mathrm{Cr}$	1359	8	1377.1	1.0	2.3	U					72Ko47
	1379	8			-0.2	U					00Hi08
54 Cr(p,n) 54 Mn	-2160	5	-2159.5	1.0	0.1	U			MIT		52Lo06
54 Cr(3 He,t) 54 Mn i	-7541	4	-7541.9	2.8	-0.2	1	49	49 ⁵⁴ Mn ⁱ			71Be29
$^{54}\text{Co}(\beta^{+})^{54}\text{Fe}$	8023	110	8244.55	0.09	2.0	U					59Su.A
,	8459	41			-5.2	C					60Mi.A
54 Fe(p,n) 54 Co	-9031.1	2.5	-9026.89	0.09	1.7	U			Yal		69Ov01
1 c (p,n) cc	-9023.7	1.8	,020.0	0.07	-1.8	Ü			Har		74Ho21
⁵⁴ Fe(³ He,t) ⁵⁴ Co	-8261.2	1.0	-8263.14	0.09	-1.9	F			Mun		77Vo02
⁵⁴ Fe(³ He,t) ⁵⁴ Co- ²⁷ Al() ²⁷ Si											
	-3432.5	3.0	-3432.19	0.13	0.1	U			ChR		74Ha35
54 Fe(3 He,t) 54 Co $-^{42}$ Ca() 42 Sc	-1817.24	0.18	-1818.45		-6.7	В			ChR		87Ko34
* ⁵⁴ Sc—u	Original -36000(50										GAu *
* ⁵⁴ Sc—u	Original -37000(50	0) μu or <i>I</i>	A - A = -3447	0(470) k	eV						GAu *
$*^{54}$ Sc $-$ u	M - A = -34370(370)) keV for	mixture gs+n	n at 110.5	6 keV						Nub16b *
$*^{54}$ Sc $-$ u	M - A = -33540(360)) keV for	mixture gs+n	n at 110.5	keV						Nub16b *
$*^{54}$ Sc $-u$	No isomeric correct		_								HWJ151 *
$*^{54}$ Fe(p, 6 He) 49 Mn	Q increased 1 for re										AHW *
$*^{54}$ Fe(p, α) ⁵¹ Mn ⁱ	IT=4459(5); <i>Q</i> rebu										MMC124*
* Fe(p,a) Will * * Fe(3He,6He)51Fe				(a)							75Mu09 *
	Averaged with refer			le)							
$*^{52}$ Cr(3 He,p) 54 Mn i	IT=6151(5); <i>Q</i> rebu										MMC124*
$*^{54}$ Fe(p,t) 52 Fe	Q = -21239(8) to ⁵²										Nub16c *
$*^{54} \text{Fe}(p,t)^{52} \text{Fe}^{j}$	IT=8561(5); Q rebu										MMC124*
5/3.5 ()5/10	IBE= $518(8)$ to 2^+ le	evel at 834	4.855 keV, B(K)=5.99							Ens148 *
$*^{54}$ Mn(ε) 54 Cr	IBE-310(0) to 2										E140 .
$*^{54}Mn(\varepsilon)^{54}Cr$ $*^{54}Mn(\varepsilon)^{54}Cr$	IBE=544(8) to 2 ⁺ le										Ens148 *
	IBE=544(8) to 2 ⁺ le			–3 keV f	or ⁵⁰ Cr(r	o,n) ⁵⁰ Mı	n from Ar	ne1961			
$*^{54}$ Mn(ε) 54 Cr $*^{54}$ Cr(3 He,t) 54 Mn i	IBE=544(8) to 2^+ lo CDE=8302(4) $Q = -$	-7538(4);	recalibration	–3 keV f	or ⁵⁰ Cr(p	o,n) ⁵⁰ Mi	n from Ar	me1961			MMC123*
$*^{54}$ Mn(ε) ⁵⁴ Cr $*^{54}$ Cr(3 He,t) ⁵⁴ Mn ⁱ $*^{54}$ Co(β ⁺) ⁵⁴ Fe	IBE=544(8) to 2^+ to $CDE=8302(4)$ $Q=-E_{\beta^+}=4250(110)$ from	-7538(4); m ⁵⁴ Co ^m a	recalibration at 197.57 to 2	949.2 6+	level			me1961			MMC123* Nub16b *
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β ⁺) 54 Fe 54 Fe(p,n) 54 Co	IBE=544(8) to 2^{+} lo CDE=8302(4) $Q = E_{\beta} + 4250(110)$ from Uncorrected for resonant	-7538(4); m ⁵⁴ Co ^m a onance. O	recalibration at 197.57 to 2 rig T=9204.1	949.2 6+	level			me1961			MMC123* Nub16b * 76Fr13 *
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn ⁱ 54 Co(6 +) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2 ⁺ lo CDE=8302(4) Q =- E_{β} +=4250(110) fro Uncorrected for reso Original value –826	-7538(4); m ⁵⁴ Co ^m a onance. O 0.2(0.6) re	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated	949.2 6+	level			me1961			MMC123* Nub16b * 76Fr13 * AHW *
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β ⁺) 54 Fe 54 Fe(p,n) 54 Co	IBE=544(8) to 2^{+} lo CDE=8302(4) $Q = -E_{\beta} + 4250(110)$ from Uncorrected for resonant	-7538(4); m ⁵⁴ Co ^m a onance. O 0.2(0.6) re	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated	949.2 6+	level			me1961			MMC123* Nub16b * 76Fr13 *
x ⁵⁴ Mn(ε) ⁵⁴ Cr x ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ x ⁵⁴ Co(β ⁺) ⁵⁴ Fe x ⁵⁴ Fe(p,n) ⁵⁴ Co x ⁵⁴ Fe(³ He,t) ⁵⁴ Co x ⁵⁴ Fe(³ He,t) ⁵⁴ Co	IBE=544(8) to 2 ⁺ le CDE=8302(4) $Q = E_{\beta^+}$ =4250(110) fro Uncorrected for ress Original value –826 F: rejected in refere	-7538(4); m ⁵⁴ Co ^m a conance. O 0.2(0.6) re-	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated ne group	949.2 6 ⁺ (1.8) cor	level rected in	referenc		ne1961	TO3	15	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 *
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn ⁱ 54 Co(6 +) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2 ⁺ le CDE=8302(4) Q =- E_{β^+} =4250(110) fro Uncorrected for ress Original value -826 F: rejected in refere -30600	-7538(4); m ⁵⁴ Co ^m a onance. O 0.2(0.6) re ence of san	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated	949.2 6+	level rected in	reference		ne1961		1.5	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 *
x ⁵⁴ Mn(ε) ⁵⁴ Cr x ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ x ⁵⁴ Co(β ⁺) ⁵⁴ Fe x ⁵⁴ Fe(p,n) ⁵⁴ Co x ⁵⁴ Fe(³ He,t) ⁵⁴ Co x ⁵⁴ Fe(³ He,t) ⁵⁴ Co	IBE=544(8) to 2+ le CDE=8302(4) $Q = E_{\beta+} = 4250(110)$ fro Uncorrected for resource Original value -826 F: rejected in reference -30600 -32100	-7538(4); m ⁵⁴ Co ^m a onance. O 0.2(0.6) re ence of san 1100 600	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated ne group	949.2 6 ⁺ (1.8) cor	-1.1 -0.3	reference 2 2 2		ne1961	TO6	1.5	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β^+) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2+ le CDE=8302(4) $Q = E_{\beta+} = 4250(110)$ fro Uncorrected for resources Original value -826 F: rejected in references -30600 -32100 -32460	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) re- ence of san 1100 600 640	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated ne group	949.2 6 ⁺ (1.8) cor	-1.1 -0.3 0.1	reference 2 2 0		ne1961	TO6 MT1	1.5 1.0	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A 11Es06
c ⁵⁴ Mn(ε) ⁵⁴ Cr c ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ c ⁵⁴ Co(β ⁺) ⁵⁴ Fe c ⁵⁴ Fe(p,n) ⁵⁴ Co c ⁵⁴ Fe(³ He,t) ⁵⁴ Co c ⁵⁴ Fe(³ He,t) ⁵⁴ Co	IBE=544(8) to 2^+ le CDE=8302(4) $Q = E_{\beta^+} = 4250(110)$ fro Uncorrected for resource Original value -826 F: rejected in reference -30600 -32100 -32460 -32760	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) ro ence of san 1100 600 640 620	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380	949.2 6 ⁺ (1.8) cor 490	-1.1 -0.3 0.1 0.6	2 2 0 2		ne1961	TO6 MT1 MT1	1.5 1.0 1.0	MMC123a Nub16b a 76Fr13 a AHW a 09Fa15 a 90Tu01 98Ba.A 11Es06 15Me08
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) fro Uncorrected for resource Original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650	-7538(4); m ⁵⁴ Co ^m ; onance. O 0.2(0.6) rence of san 1100 600 640 620 280	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated ne group	949.2 6 ⁺ (1.8) cor	-1.1 -0.3 0.1 0.6 -0.2	2 2 0 2		ne1961	TO6 MT1 MT1 TO3	1.5 1.0 1.0 1.5	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A 11Es06 15Me08 90Tu01
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β ⁺) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2^+ le CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) fro Uncorrected for ress Original value -826 F: rejected in refere -30600 -32100 -32460 -32760 -44650 -44880	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) ruence of san 1100 600 640 620 280 260	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380	949.2 6 ⁺ (1.8) cor 490	-1.1 -0.3 0.1 0.6 -0.2	2 2 0 2		ne1961	TO6 MT1 MT1 TO3 TO5	1.5 1.0 1.0 1.5 1.5	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) fro Uncorrected for resource Original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) ruence of san 1100 600 640 620 280 260 350	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380	949.2 6 ⁺ (1.8) cor 490	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7	2 2 0 2	ee		TO6 MT1 MT1 TO3 TO5	1.5 1.0 1.0 1.5	MMC1233 Nub16b 276Fr13 28 AHW 29 09Fa15 29 90Tu01 98Ba.A 11Es06 15Me08 90Tu01
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β ⁺) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2^+ le CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) fro Uncorrected for ress Original value -826 F: rejected in refere -30600 -32100 -32460 -32760 -44650 -44880	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) ruence of san 1100 600 640 620 280 260	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380	949.2 6 ⁺ (1.8) cor 490	-1.1 -0.3 0.1 0.6 -0.2	2 2 0 2 -		ne 1961 48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5	1.5 1.0 1.0 1.5 1.5	MMC1233 Nub16b 5 76Fr13 6 AHW 5 09Fa15 7 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12
54 Mn(ε) 54 Cr 54 Cr(3 He,t) 54 Mn i 54 Co(β ⁺) 54 Fe 54 Fe(p,n) 54 Co 54 Fe(3 He,t) 54 Co 54 Fe(3 He,t) 54 Co	IBE=544(8) to 2^+ le CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) fro Uncorrected for ress Original value -826 F: rejected in refere -30600 -32100 -32460 -32760 -44650 -44880 -44360	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) ruence of san 1100 600 640 620 280 260 350	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380	949.2 6 ⁺ (1.8) cor 490	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7	2 2 0 2 -	ee		TO6 MT1 MT1 TO3 TO5 TO6	1.5 1.0 1.0 1.5 1.5	MMC1233 Nub16b 276Fr13 28 AHW 29 09Fa15 29 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β+) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁵ Sc-u	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) from Uncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44880 -44360 ave. -44680 -2093.4	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7	949.2 6 ⁺ (1.8) cor 490 170 0.4	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1	2 2 0 2 - - 1 U	ee		TO6 MT1 MT1 TO3 TO5 TO6	1.5 1.0 1.0 1.5 1.5 1.5	MMC123: Nub16b 2 76Fr13 2 AHW 2 09Fa15 2 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co 55Sc—u 55Ti—u	IBE=544(8) to 2^+ ld CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frow Uncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44650 -4460 ave. -44680 ave. -44680 -2093.4 116757	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 250 1.3	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8	2 2 0 2 1 U U	ee		TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09	1.5 1.0 1.0 1.5 1.5 1.5 4.0	MMC1233 Nub16b 576Fr13 64 AHW 5909Fa15 59 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u	IBE=544(8) to 2^+ ld CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frow Uncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44650 -4460 ave. -4460 ave. -4460 ave. -4460 -2093.4 -116757 -112281	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 250 1.3 8 25	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2	2 2 0 2 1 U U U U	ee		TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09	1.5 1.0 1.0 1.5 1.5 1.5 1.5 4.0 4.0	MMC123; Nub16b 76Fr13 AHW 90Fa15 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β ⁺) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Cr- ⁸⁵ Rb. ₆₄₇ C ₄ H ₇ - ⁵⁵ Mn C ₃ ¹³ C H ₆ - ⁵⁵ Mn C ₃ H ₅ N- ⁵⁵ Mn	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frou Uncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44650 -4460 ave. -4460 ave. -4460 ave. -4460 ave. -4460 -2093.4 -116757 -112281 -104202	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 250 1.3 8 25 10	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2	2 2 0 2 1 U U U U U U	ee		TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09	1.5 1.0 1.5 1.5 1.5 1.5 4.0 4.0 4.0	MMC1233 Nub16b 576Fr13 64 AHW 5909Fa15 58 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β ⁺) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Ti-u ⁵⁵ Cr- ⁸⁵ Rb.647 C ₄ H ₇ - ⁵⁵ Mn C ₃ ¹³ C H ₆ - ⁵⁵ Mn C ₃ H ₅ N- ⁵⁵ Mn C ₂ H ₃ N ₂ - ⁵⁵ Mn	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frouncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44880 -44360 ave44680 -2093.4 116757 112281 104202 91618	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 28	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3	2 2 0 2 1 U U U U U U U U U	ee		TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09	1.5 1.0 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0	90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Sight He,t) ⁵⁵ Mn C ₃ H ₅ N- ⁵⁵ Mn C ₂ H ₃ N ₂ - ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frouncorrected for resource original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44880 -44360 ave44680 ave44680 116757 112281 104202 91618 80372	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 1.3 8 25 10 28 10	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6	2 2 0 2 1 U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09	1.5 1.0 1.5 1.5 1.5 1.5 4.0 4.0 4.0 4.0 4.0	90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β ⁺) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Ti-u ⁵⁵ Cr- ⁸⁵ Rb.647 C ₄ H ₇ - ⁵⁵ Mn C ₃ ¹³ C H ₆ - ⁵⁵ Mn C ₃ H ₅ N- ⁵⁵ Mn C ₂ H ₃ N ₂ - ⁵⁵ Mn	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 1.3 8 25 10 28 10 0.84	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4	2 2 0 2 1 U U U U U U U U U I 1	ee		TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 R09 MA8	1.5 1.0 1.5 1.5 1.5 1.5 4.0 4.0 4.0 4.0 4.0	90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11 12Na15
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Sri-u ⁵⁵ Mn C ₃ H ₃ CH ₆ - ⁵⁵ Mn C ₃ H ₃ N- ⁵⁵ Mn C ₃ H ₃ N- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 1.3 8 25 10 28 10 0.84 1.3	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09	1.5 1.0 1.5 1.5 1.5 1.5 4.0 4.0 4.0 4.0 4.0	90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Si-u ⁵⁵ Ti-u ⁵⁵ Mn C ₃ H ₃ CH ₆ - ⁵⁵ Mn C ₃ H ₃ N- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn Signal Signal S	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 1.3 8 25 10 28 10 0.84	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4	2 2 0 2 1 U U U U U U U U U I 1	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 R09 MA8	1.5 1.0 1.5 1.5 1.5 1.5 4.0 4.0 4.0 4.0 4.0	90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11 12Na15
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Sri-u ⁵⁵ Ti-u ⁵⁵ Mn C ₃ H ₃ CH ₆ -55Mn C ₃ H ₅ N-55Mn C ₂ H ₃ N ₂ -55Mn C ₃ H ₃ O-55Mn C ₃ H ₃ O-55Mn C ₃ H ₃ O-55Mn	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) rence of san 1100 600 640 620 280 260 350 1.3 8 25 10 28 10 0.84 1.3	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8	1.5 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0	90Tu01 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co 5 ⁵⁵ Sc-u 5 ⁵⁵ Sc-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Mn C ₃ H ₃ C H ₆ -5 ⁵⁵ Mn C ₃ H ₃ N ₂ -5 ⁵⁵ Mn C ₃ H ₃ N ₂ -5 ⁵⁵ Mn C ₃ H ₃ O-5 ⁵⁵ Mn C ₃ H ₃ O-5 ⁵⁵ Mn S ⁵⁵ Mn-8 ⁵⁵ Rb _{.647} 5 ⁵⁵ Ni-u 5 ⁵⁵ Cu-u	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frouncorrected for resource original value -826 F: rejected in reference original value -3260 -32100 -32460 -32760 -44650 -44880 -44360 ave44680 -2093.4 116757 112281 104202 91618 80372 -4884.41 -4887.0 -48678 -33962	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7	2 2 0 2 - 1 U U U U U U U U U U U U 2	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	90Tu01 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Ti-u ⁵⁵ Ti-u ⁵⁵ Ti-u ⁵⁵ Mn C ₃ H ₃ C ₅ Mn C ₃ H ₃ N ₂ - ⁵⁵ Mn C ₃ H ₃ N ₂ - ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn ⁵⁵ Mn- ⁸⁵ Rb. ₆₄₇ ⁵⁵ Ni-u ⁵⁵ Cu-u ⁵⁵ Cu-u ⁵⁵ Cu-u	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frouncorrected for resource original value -826 F: rejected in reference original value -3260 -32100 -32460 -32760 -44650 -44880 -44360 ave44680 -2093.4 116757 112281 104202 91618 80372 -4884.41 -4887.0 -48678 -33962 9333.43	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167 0.62	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8 -48670.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4	2 2 0 2 - 1 U U U U U U U U U U U U 2 2 2	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1	1.5 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0	90Tu01 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Ti-u ⁵⁵ Ti-u ⁵⁵ Ti-u ⁵⁵ Mn C ₃ H ₃ C ₅ Mn C ₃ H ₅ N- ⁵⁵ Mn C ₃ H ₃ N- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn ⁵⁵ Mn- ⁸⁵ Rb. ₆₄₇	IBE=544(8) to 2^+ lo CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) frouncorrected for resource original value -826 F: rejected in reference original value -3260 -32100 -32460 -32760 -44650 -44880 -44360 ave44680 -2093.4 116757 112281 104202 91618 80372 -4884.41 -4887.0 -48678 -33962 9333.43 2570	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167 0.62 8	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4	2 2 0 2 - 1 U U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1 MIT	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	MMC123a Nub16b a 76Fr13 a AHW a 09Fa15 a 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 12Na15 17Mo.A 11Tu09 13Ya03 10Ka26 64Sp12
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β ⁺) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Si-u ⁵⁵ Cr- ⁸⁵ Rb.647 C ₄ H ₇ - ⁵⁵ Mn C ₃ H ₃ C ₉ - ⁵⁵ Mn C ₂ H ₃ N ₂ - ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn ⁵⁵ Mn- ⁸⁵ Rb.647 ⁵⁵ Ni-u ⁵⁵ Cu-u ⁵⁵ Cu-u ⁵⁵ Cu-u ⁵⁵ Cu-u	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167 0.62 8 10	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8 -48670.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1 MIT ANL	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	MMC123a Nub16b a 76Fr13 a AHW a 09Fa15 a 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 12Na15 17Mo.A 11Tu09 13Ya03 10Ka26 64Sp12 67Ka11
⁵⁴ Mn(ε) ⁵⁴ Cr ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ ⁵⁴ Co(β+) ⁵⁴ Fe ⁵⁴ Fe(p,n) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁴ Fe(³ He,t) ⁵⁴ Co ⁵⁵ Sc-u ⁵⁵ Sc-u ⁵⁵ Si-u ⁵⁵ Ti-u ⁵⁵ Ti-u ⁵⁵ Mn C ₃ H ₃ C ₅ Mn C ₃ H ₃ N ₂ - ⁵⁵ Mn C ₃ H ₃ O- ⁵⁵ Mn C ₅ H ₃ O- ⁵⁵ Mn C ₅ H ₃ O- ⁵⁵ Mn C ₅ H ₃ O- ⁵⁵ Ni-0 ⁵⁵ Ni-u ⁵⁵ Cu-u ⁵⁵ Cu-u ⁵⁵ Cu-u	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167 0.62 8 10 8	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8 -48670.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1 MIT ANL	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	MMC123a Nub16b a 76Fr13 a AHW a 09Fa15 a 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11 12Na15 17Mo.A 11Tu09 13Ya03 10Ka26 64Sp12 67Ka11 64Sp12
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ³⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co 5 ⁵⁵ Sc-u 5 ⁵⁵ Sc-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Mn C ₃ H ₅ N-5 ⁵⁵ Mn C ₃ H ₃ O-5 ⁵⁵ Mn C ₃ H ₃ O-5 ⁵⁵ Mn C ₃ H ₃ O-5 ⁵⁵ Mn 5 ⁵⁵ Mn-8 ⁵⁵ Rb.647 5 ⁵⁵ Ni-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Ni-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Mn(p,α) ⁵² Cr 5 ⁵⁵ Mn(d,α) ⁵³ Cr	IBE=544(8) to 2^+ la CDE=8302(4) $Q=E_{\beta^+}$ =4250(110) from Uncorrected for rest Original value -826 F: rejected in reference -30600 -32100 -32460 -32760 -44650 -44880 -44360 ave. -44680 ave. -44680 -2093.4 116757 112281 104202 91618 80372 -4884.41 -4887.0 -48678 -33962 9333.43 2570 2600 8283 8277	-7538(4); m ⁵⁴ Co ^m sonance. O 0.2(0.6) receive of said said said said said said said said	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8 -48670.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4 0.1 -2.9 0.3 0.6	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1 MIT ANL	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 12Na15 17Mo.A 11Tu09 13Ya03 10Ka26 64Sp12 67Ka11
s ⁵⁴ Mn(ε) ⁵⁴ Cr s ⁵⁴ Cr(³ He,t) ⁵⁴ Mn ⁱ s ⁵⁴ Co(β ⁺) ⁵⁴ Fe s ⁵⁴ Fe(p,n) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co s ⁵⁴ Fe(³ He,t) ⁵⁴ Co 5 ⁵⁵ Sc-u 5 ⁵⁵ Sc-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Ti-u 5 ⁵⁵ Mn C ₃ H ₅ N-55Mn C ₃ H ₅ N-55Mn C ₃ H ₃ O-55Mn 5 ⁵⁵ Mn-8 ⁵⁵ Rb.647 5 ⁵⁵ Ni-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Ni-u 5 ⁵⁵ Cu-u 5 ⁵⁵ Ni-5 ⁵⁵ Co	IBE=544(8) to 2^+ local Label Lab	-7538(4); m ⁵⁴ Co ^m : onance. O 0.2(0.6) runce of san 1100 600 640 620 280 260 350 250 1.3 8 25 10 0.84 1.3 18 167 0.62 8 10 8	recalibration at 197.57 to 2 rig T=9204.1 ecalibrated me group -32380 -44730 -2090.7 116732.1 112261.9 104156.0 91579.9 80346.5 -4884.8 -48670.0	949.2 6 ⁺ (1.8) cor 490 170 0.4 0.3 0.3 0.3 0.3 0.3 0.3	-1.1 -0.3 0.1 0.6 -0.2 0.4 -0.7 -0.2 2.1 -0.8 -0.2 -1.2 -0.3 -0.6 -0.4 1.7 0.4	2 2 0 2 1 U U U U U U U U U U U U U U U U U	48	48 ⁵⁵ Ti	TO6 MT1 MT1 TO3 TO5 TO6 MA8 R09 R09 R09 R09 MA8 MA8 LZ1 LZ1 JY1 MIT ANL	1.5 1.0 1.0 1.5 1.5 1.5 1.5 1.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0	MMC123* Nub16b * 76Fr13 * AHW * 09Fa15 * 90Tu01 98Ba.A 11Es06 15Me08 90Tu01 94Se12 98Ba.A average 17Mo.A 72De11 72De11 72De11 72De11 72De11 12Na15 17Mo.A 11Tu09 13Ya03 10Ka26 64Sp12 67Ka11 64Sp12

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	. Compai	Input v		Adjusted		$\frac{\mathbf{continu}}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
nem		Input v	aruc	Aujusteu	varue	v _l	Dg	Sigiii.	wiam mm.	Lao		Reference
54 Cr(d,p) 55 Cr		4027	8	4021.70	0.19	-0.7	U			MIT		64Sp12
		4035	8			-1.7	U			Kop		67Ha.A
		4022.1	1.2			-0.3	U			NDm		74Jo14
54 Cr(n, γ) 55 Cr	ave.	6246.26	0.19	6246.26	0.19	0.0	1	100	100 ⁵⁵ Cr			average
54 Cr(p, γ) 55 Mn		8067.2	0.4	8066.6	0.3	-1.5	1	63	42 ⁵⁴ Cr			78We12
⁵⁴ Cr(³ He,d) ⁵⁵ Mn		2568	18	2573.1	0.3	0.3	U			MIT		69Ra02
55 Mn(γ ,n) 54 Mn		-10192	20	-10226.1	1.1	-1.7	U			Phi		60Ge01
54 Fe $(n,\gamma)^{55}$ Fe		9297.91	0.3	9298.12	0.19	0.7	-			MMn		80Is02 Z
54E (1)55E		9298.53	0.27	7072 55	0.10	-1.5	_			Bdn		06Fi.A
54 Fe(d,p) 55 Fe		7084	8	7073.55	0.19	-1.3	U			MIT		64Sp12
		7083 7072.3	10 1.7			-0.9 0.7	U U			Kop NDm		67Ha.A 74Jo14
54 Fe(n, γ) 55 Fe	ave.	9298.25	0.20	9298.12	0.19	-0.7	1	90	71 ⁵⁴ Fe	NDIII		
54 Fe(p, γ) 55 Co	avc.	5064.0	0.20	5064.35	0.19	0.5	_	90	/1 10			average 77Er02 Z
$\Gamma e(p, \gamma)$ Co		5063.9	0.7	3004.33	0.30	1.1	_					80Ha36 Z
⁵⁴ Fe(³ He,d) ⁵⁵ Co		-428	15	-429.12	0.30	-0.1	U			MIT		67Ob04
1 c(11c,u) Co		-426.9	2.2	427.12	0.50	-1.0	U			NDm		74Jo14
54 Fe(p, γ) 55 Co	ave.	5063.9	0.3	5064.35	0.30	1.2	1	74	55 ⁵⁵ Co	1,2,11		average
$^{55}\text{Ti}(\beta^{-})^{55}\text{V}$		7440	200	7480	160	0.2	1	62	52 ⁵⁵ Ti			96Do23
$^{55}V(\beta^{-})^{55}Cr$		5956	100	5970	100	0.1	1	90	90 ⁵⁵ V	ANB		77Na17
$^{55}Cr(\beta^{-})^{55}Mn$		2500	40	2602.7	0.4	2.6	U					63Me06
4 /		2494	25			4.3	В					65Ko09
55 Fe(ε) 55 Mn		224.5	4.	231.11	0.18	1.7	U					65Be19
		224.5	3.			2.2	U					69Ka13
		231.4	0.4			-0.7	_					89Z1.A
		230.7	1.9			0.2	U					90Is06
		231.0	1.0			0.1	U					93Wi05 *
		231.37	0.30			-0.9	-					95Da14 *
		231.0	0.3			0.4	_					95Sy01 *
⁵⁵ Mn(p,n) ⁵⁵ Fe		232.36	0.64	1012.46	0.10	-1.9	U			NT 1		01Ke14
Min(p,n) Fe		-1015.7 -1014.6	2. 0.8	-1013.46	0.18	1.1 1.4	U U			Nvl Oak		59Go68 Z 64Jo11 Z
55 Fe(ε) 55 Mn	0110	231.23	0.8	231.11	0.18	-0.6	1	91	82 ⁵⁵ Fe	Oak		
55 Mn(3 He,t) 55 Fe i	ave.	-7883	6	231.11	0.16	-0.0	2	71	62 16			average 71Be29 *
$^{55}\text{Co}(\beta^+)^{55}\text{Fe}$		3466	2	3451.4	0.3	-7.3	В					66Fi06 *
$*^{55}$ Fe(ε) ⁵⁵ Mn	Error est	timated by ev		3431.4	0.5	7.3	ь					AHW **
$*^{55}$ Fe(ε) ⁵⁵ Mn		error 0.10 in		evaluator								GAu **
$*^{55}$ Fe(ε) ⁵⁵ Mn				creased by eva	aluator							GAu **
$*^{55}$ Mn(3 He,t) 55 Fe ⁱ				calibration +7		⁴ Fe(p.n) ⁵	⁵⁴ Co from	Ame1961				MMC123**
$*^{55}$ Co(β^+) ⁵⁵ Fe		13(2) to 5/2				4,7						Ens097 **
4 /	ρ	,										
56 ~							_					
⁵⁶ Sc-u		-26680	630				2			MT1	1.0	15Me08 *
⁵⁶ Ti-u		-41300	350	-42210	130	-1.7	-			TO3	1.5	90Tu01
		-42010	300			-0.4	-			TO5	1.5	94Se12
		-41770	270			-1.1	_			TO6	1.5	98Ba.A
		-42319 42700	129			0.6	_			GT1	1.5	04Ma.A
	0770	-42700	290			1.7	- 1	00	90 ⁵⁶ Ti	LZ1	1.0	15Xu14
⁵⁶ V-u	ave.	-42240 -49470	140 250	-49550	190	0.2	1	90	90 11	TO2	1.5	average 90Tu01
v — u		-49470 -49640	250 260	-49330	190	$-0.2 \\ 0.2$	_			TO3 TO5	1.5 1.5	901u01 94Se12
		-49040 -49310	250			-0.2	_			TO6	1.5	94Se12 98Ba.A
	ave.	-49310 -49470	220			-0.6 -0.4	1	75	75 ⁵⁶ V	100	1.3	average
⁵⁶ Cr- ⁸⁵ Rb _{.659}	avc.	-49470 -1216.3	2.0	-1220.3	0.6	-0.4 -2.0	U	13	15 v	MA8	1.0	05Gu27
$^{56}\text{Mn} - ^{85}\text{Rb}_{.659}$		-1210.3 -2965.1	1.5	-1220.5 -2966.5	0.0	-2.0 -0.9	U			MA8	1.0	05Gu27 05Gu37
$^{56}\text{Mn} - ^{39}\text{K}_{1.436}$		-8979.0	2.7	-8979.6	0.4	-0.2	U			MA8	1.0	09Na.A
11.430		0,1,7.0	2.7	5717.0	0.4	0.2	C			1,1110	1.0	0/114.71

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Input va		Adjusted				Signf.	Main infl.	Lab	F	Reference
Item	input va	arue	Adjusted	value	v_i	Dg	Sigiii.	Maiii iiiii.	Lab	Г	Reference
$C_4 H_8 - {}^{56}Fe$	127754	10	127664.6	0.3	-2.2	U			R09	4.0	72De11
$C_3^{13}C H_7 - {}^{56}Fe$	123300	47	123194.4	0.3	-0.6	Ü			R09	4.0	72De11
$C_3 H_6 N^{-56} Fe$	115171	13	115088.6	0.3	-1.6	Ü			R09	4.0	72De11
$C_3 H_6 N$ $C_3 H_4 O^{-56} Fe$	91381	15	91279.1	0.3	-1.7	U			R09	4.0	72De11
$C_2 H_2 N O^{-56} Fe$	78790	24	78703.1	0.3	-0.9	U			R09	4.0	72De11
$C_2 G_2 - ^{56}Fe$	54990	9	54893.6	0.3	-0.9 -2.7	В			R09	4.0	72De11
56 Fe $^{-85}$ Rb _{.659}	-6933.79	0.62	-6933.8	0.3	-2.7 -0.1	1	27	27 ⁵⁶ Fe	MA8	1.0	17Mo.A
56Cu-u	-0933.79 -41485	16	-0933.6	0.3	-0.1	2	21	21 16	LZ1	1.0	17Mo.A 16Zh.A
56Fe-58Ni _{.966}	-2604.70		-2604.54	0.26	0.3	1	31	26 ⁵⁸ Ni	JY1		
⁵⁶ Co- ⁵⁸ Ni _{.966}	-2004.70 2297.85	0.47 0.55	2298.0	0.26 0.4	0.3	1	58	51 ⁵⁶ Co		1.0	10Ka26
⁵⁶ Ni- ⁵⁵ Co _{1.018}								33 ⁵⁵ Co	JY1	1.0	10Ka26
⁵⁶ Cr ⁻⁵⁶ Fe	1176.23	0.48	1175.4	0.4	-1.7	1	60	33 - 0	JY1	1.0	10Ka26
⁵⁶ Ni- ⁵⁶ Fe	5713.49	0.56	7100.2	0.2	0.5	2	10	40 ⁵⁶ Ni	MA8	1.0	17Mo.A
⁵⁶ Ni- ⁵⁶ Co	7192.00	0.52	7192.3	0.3	0.5	1	42	40 ⁵⁶ Ni 49 ⁵⁶ Co	JY1	1.0	10Ka26
	2289.61	0.49	2289.7	0.4	0.2	1	67	49 ³⁰ Co	JY1	1.0	10Ka26
⁵⁶ Fe- ⁵⁴ Fe	-4755	47	-4672.69	0.30	0.4	U			R09	4.0	72De11
56 Fe(p, α) 53 Mn	-1060	9	-1052.9	0.4	0.8	U			MIT		64Sp12
	-1056	9			0.3	U	•	22 532 5	Ald		66Br05
54 a 56 a	-1052.3	0.8		0.6	-0.8	1	29	23 ⁵³ Mn	NDm		74Jo14
54 Cr(t,p) 56 Cr	5995	30	6011.1	0.6	0.5	U			Ald		68Ch20
56- (1)543-6	6024	10			-1.3	U			LAl		71Ca19
56 Fe(d, α) 54 Mn	5662	12	5661.4	1.1	-0.1	U			Kop		67Ha.A
54 2 56	5673	30			-0.4	U					67Hj01
54 Fe(3 He,p) 56 Co	7410	10	7428.1	0.5	1.8	U			CIT		67Mi02
54 2 56	7408	15			1.3	U			MIT		68Be10
⁵⁴ Fe(³ He,n) ⁵⁶ Ni	4513	14	4512.9	0.4	0.0	U			CIT		67Mi02
55 Mn(n, γ) 56 Mn	7270.53	0.3	7270.44	0.13	-0.3	2			MMn		80Is02 Z
55 5/	7270.42	0.15			0.1	2			Bdn		06Fi.A
55 Mn(d,p) 56 Mn	5052	5	5045.88	0.13	-1.2	U			MIT		64Sp12
55	5053	8			-0.9	U			Kop		67Ha.A
55 Mn(p, γ) 56 Fe	10189	7	10183.64	0.16	-0.8	U					69Fr22
	10193.7	4.5			-2.2	U					70Sa19 *
	10195.7	3.6			-3.4	В		55			74Pe15 *
56- 44 55-	10183.80	0.17			-0.9	1	86	44 ⁵⁵ Mn	Utr		92Gu03 Z
⁵⁶ Fe(d,t) ⁵⁵ Fe	-4938.3	1.3	-4939.87	0.23	-1.2	U			NDm		74Jo14
⁵⁶ Ni(p) ⁵⁵ Co	-7148.5	30.	-7166.6	0.3	-0.6	U					08Jo04 *
$^{56}\text{Cu}^{i}(p)^{55}\text{Ni}$	2929	31	2948	10	0.6	U			Bor		07Do17 *
56	2948	10				3		56			14Or04 *
$^{56}\text{Ti}(\beta^{-})^{56}\text{V}$	7030	330	6830	190	-0.6	1	35	$25^{-56}V$			96Do23
$^{56}\text{Cr}(\beta^{-})^{56}\text{Mn}$	1610	150	1626.5	0.6	0.1	U					60Dr03
$^{56}{\rm Mn}(\beta^{-})^{56}{\rm Fe}$	3685	5	3695.54	0.21	2.1	U					62Ho14 *
$^{56}\text{Co}(\beta^{+})^{56}\text{Fe}$	4566.0	2.0	4566.7	0.4	0.3	U					65Pe18 *
⁵⁶ Fe(p,n) ⁵⁶ Co	-5351	10	-5349.0	0.4	0.2	U			Tal		62Ne08 Y
56 Fe(3 He,t) 56 Co i	-8178	9				2					71Be29 *
* ⁵⁶ Sc-u	M - A = -24850(59)			at 0#(100)#) keV						15Me08 **
$*^{55}$ Mn(p, γ) ⁵⁶ Fe	$E_p = 1537(2)$ to 117										70Sa19 **
$*^{55}$ Mn(p, γ) ⁵⁶ Fe	E_p =1537(2) to 117										74Pe15 **
$*^{56}$ Ni(p) ⁵⁵ Co	$E_p = 2540(30)$ from										08Jo04 **
$*^{56}$ Cu ⁱ (p) ⁵⁵ Ni	Strongest fragment			ragment 8	5(70) keV	V lower (s	strength 1.3)			14Or04 **
$*^{56}$ Mn(β^{-}) 56 Fe	E_{β} = 2838(5) to 2										Ens115 **
$*^{56}Co(\beta^+)^{56}Fe$	$E_{\beta^+}=1459(3) \text{ to } 4^-$	+ level at 2	085.1045 keV	,							Ens115 **
$*^{56}$ Fe(3 He,t) 56 Co i	Strongest fragment					ilt with A	me1965				71Be29 **
*	recalibration +7 k	keV for ⁵⁴ F	Fe(p,n) ⁵⁴ Co fro	om Ame19	961						MMC123**
⁵⁷ Sc-u	22540	1400				2			MT1	1.0	15Ma09
⁵⁷ Ti–u	-22540 25700	1400	-36410	200	0.5	2			MT1	1.0	15Me08
11—u	-35700 36300	1000	-30410	280	-0.5	2			TO3	1.5	90Tu01
	-36200	400			-0.3	2			TO6	1.5	98Ba.A
	$-37102 \\ -36280$	408 370			$1.1 \\ -0.4$	2 2			GT1 MT1	1.5 1.0	04Ma.A 11Es06
	-30200	510			-0.4	2			141 1	1.0	112500

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

9'V-u -47300 400 -47680 90 -0.6 U TO3 1.5 90Tb01 4-47400 270 -0.1 2 TO5 1.5 983a L 4-4720 250 -0.0 0.3 2 TO5 1.5 983a L 5°Cr-a -56300 260 -0.2 U TO3 1.5 993a L 9°Cr-MSRb31 28021 2.0 -0.5 U TO5 1.5 983a L 9°Cr-MSRb31 28021 2.1 2.0 22 U MA8 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.9 9 3°Mn M8 1.0	Item	ompar	Input v		Adjusted Val		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference	
- 1,4740 - 1,4740	- Item		mput v	aruc	Aujusteu	varue	v _i	Dg	Sigiii.	Maiii iiiii.	Lau	I.	Kererene	
- 1,4740 - 1,4740	$^{57}V-u$		-47300	400	-47680	90	-0.6	U			TO3	1.5	90Tu01	
- 47320 50 - 47320 50 - 50 - 10 0 2 - 10 10 10 10 10 10 10			-47640	270			-0.1	2			TO5	1.5	94Se12	
5°C - u - 5604			-47320	250			-1.0				TO6	1.5	98Ba.A	
			-47703	91			0.3	2			LZ1	1.0	15Xu14	
Policy	⁵⁷ Cr-u		-56240	250	-56387.6	1.1	-0.4	U			TO3	1.5	90Tu01	
			-56300	260			-0.2	U			TO5	1.5	94Se12	
2801.2 1.4 2.3 2.524.9 1.6 0.1 1 4 9 95 Mm Ma8 1.0 10 10 10 10 10 10 1			-56170	270			-0.5	U			TO6	1.5	98Ba.A	
5"Mn3"Rb εσ11 -2525.1 2.3 -2524.9 1.6 0.1 1 49 49 5"Mm MA8 1.0 05Cu31 5"Mn3"Fe, 3"Cl -158378.5 3.5 188355.4 0.3 -2.6 U 3 35 3"3 Mm MA8 2.0 20bel 1 C ₁ H ₂ -5"Fe 3"Cl 1158085 11 1350832 0.3 -1.1 U 4 69 4.0 72bel 1 C ₂ H ₂ H ₂ -5"Fe 122500 10 122457.1 0.3 -1.1 U 4 6 0.4 72bel 1 C ₂ H ₁ O-5"Fe 86104 17 86071.6 0.3 -0.1 U 4 6 0.0 72bel 1 C ₁ H ₁ O-5"Fe 86104 17 86078.2 0.6 0.2 U 4 1221 1.0 117000 SPG-10-3"Fe 2897.68 0.4 0.4 0.4 0.6 U 4 1.5 0.2 77Bal 0 SPG-10-3"Fe 2897.68 0.4	⁵⁷ Cr- ⁸⁵ Rb _{.671}		2802.1	2.0	2801.5	1.1	-0.3	2			MA8	1.0	05Gu27	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2801.2	1.4			0.2	2			MA8	1.0	17Mo.A	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	57 Mn $-^{85}$ Rb _{.671}		-2525.1	2.3	-2524.9	1.6	0.1	1	49	49 ⁵⁷ Mn	MA8	1.0	05Gu37	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	57 Mn $-^{39}$ K _{1.462}					1.6	-0.8		33	33 ⁵⁷ Mn	MA8			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			158378.5	3.5	158355.4	0.3	-2.6	U			M18	2.5	68Hu05	
C ₂ H ₁ N ₂ O ^{-S} Fe 98684 8 98691.6 0.3 -1.1 U C RD9 4.0 72De11 C ₂ H ₁ N ₁ O ^{-S} Fe 86104 17 86071.6 0.3 -0.5 U RD9 4.0 72De11 2 ⁷ N ₁ - S ¹ 8 R _{b671} -1019.8 2.7 -1019.4 0.6 0.2 U HA 1.0 07Guo 2 ⁷ Cu - S ¹ Cu -50772 43 -50788.2 0.6 U H330 2.5 77Ba10 5 ⁸ Fe - S ¹ Cr 7325 7 7368.52 0.04 1.06 U H330 2.5 77Ba10 3 ⁷ Fe - S ¹ Fe 103 1627.95 0.46 1627.68 0.04 -0.6 U 28 S ¹ Ni 171 1.0 10Ka26 5 ⁷ Fe - S ¹ Fe 103 1627.95 0.46 1627.88 0.04 -0.6 U 28 S ⁸ Ni 171 1.0 10Ka26 5 ⁷ Fe - S ¹ Fe 103 3313.75 0.46 1627.95 0.2 0.2 1 74 50	$C_4 H_9 - {}^{57}Fe$		135085	11	135033.2	0.3	-1.2	U			R09	4.0	72De11	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			122500	10	122457.1	0.3	-1.1	U			R09	4.0	72De11	
5°N I - Se Re first -1019.8 2.7 -1019.4 0.6 0.2 U MA8 1.0 07Gn09 5°C C - 10 -50772 43 -50788.2 0.6 0.4 U L21 1.0 11109 5°Fe H-5°Fe 2897.68 0.47 2898.32 0.04 0.6 U H30 2.5 77Ba10 5°Fe H-5°Fe 7325 7 7368.52 0.04 1.06 U H30 2.5 77Ba10 5°Fe-5°Re 1.018 1627.95 0.46 1627.68 0.04 -0.6 U 4 1.0 10Ka26 5°Fe-5°Re 1.018 1627.95 0.46 1627.68 0.04 -1.2 1 34 28 8Ni 171 1.0 10Ka26 5°Fe-5°Re 1.018 3350.77 0.72 3350.6 0.5 -0.3 1 55 505 Ni 171 1.0 10Ka26 5°Cu-5°Ni 108 3127.6 0.5 122.6 0.4 1.2 1 2 505 Ni			98684	8	98647.6	0.3	-1.1	U			R09	4.0	72De11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 H_3 N O - {}^{57}Fe$		86104	17	86071.6	0.3	-0.5	U			R09	4.0	72De11	
6°Fe 1³C - 5°Fe C 2897.68 0.47 2898.32 0.04 0.6 U H30 2.5 77Bal0 6°Fe H - 5°Fe 7825 7 7368.52 0.04 1.6 U H30 2.5 77Bal0 6°Fe H - 5°Fe 7825 7 7368.52 0.04 1.6 U H30 2.5 77Bal0 5°Fe - 8°Ni 1983 1108.75 0.46 1627.68 0.0 4.0 0.0 U 171 1.0 108.26 9°Fe - 8°Ni 1983 3350.77 0.72 3350.6 0.5 -0.3 1 55 50°Ni 171 1.0 108.26 9°Cu - 9°Ni 1918 8126.29 0.55 9420.3 0.5 -0.2 1 73 50°Ni 171 1.0 108.26 9°Cu - 9°Ni 1918 8125.6 9420.3 0.5 -0.2 1 74 50°Ni 171 1.0 108.26 9°Fe 9°Cu - 9°Ne 6°Fe 9°Cl 3431.2 2.1 456.2 0.0 0	57 Ni $-^{85}$ Rb _{.671}		-1019.8	2.7	-1019.4	0.6	0.2	U			MA8	1.0	07Gu09	
Septe 1.57Fe 7325 77 7368.52 0.04 1.6 U	⁵⁷ Cu-u		-50772	43	-50788.2	0.6	-0.4	U			LZ1	1.0	11Tu09	
65 FR — 57 FC 7325 7 7368,52 0.04 1.6 U R09 4.0 720211 1.0 10Ka26 57 FE—58 FE,1018 1627,95 0.46 1627,68 0.04 -0.6 U JY1 1.0 10Ka26 57 FE—58 Ni,933 3350,77 0.72 3350.6 0.5 -0.3 1 55 50 57Ni JY1 1.0 10Ka26 57 Cu—58 Ni,933 3350,77 0.72 3350.6 0.5 -0.3 1 55 50 57Ni JY1 1.0 10Ka26 57 Cu—57 Re 13817.80 0.86 13819.7 0.5 2.2 1 29 28 57Cu JY1 1.0 10Ka26 57Cu—57Ri 35Cu—57Ri 431 -23 -4303 0.0 0.0 U M18 2.5 68 Hu05 68 Hu05 67 Fe 37Cl—57Fe 35Cl -3413.7 4.3 -3406.52 0.0 0 U M18 2.5 68 Hu05 68 Hu05 67 Fe 57Cl—57Fe 35Cl 4353.2 2.1 -3	56 Fe 13 C $-^{57}$ Fe C		2897.67	0.47	2898.32	0.04	0.6	U			H30	2.5	77Ba10	
65 FR — 57 FC 7325 7 7368,52 0.04 1.6 U R09 4.0 720211 1.0 10Ka26 57 FE—58 FE,1018 1627,95 0.46 1627,68 0.04 -0.6 U JY1 1.0 10Ka26 57 FE—58 Ni,933 3350,77 0.72 3350.6 0.5 -0.3 1 55 50 57Ni JY1 1.0 10Ka26 57 Cu—58 Ni,933 3350,77 0.72 3350.6 0.5 -0.3 1 55 50 57Ni JY1 1.0 10Ka26 57 Cu—57 Re 13817.80 0.86 13819.7 0.5 2.2 1 29 28 57Cu JY1 1.0 10Ka26 57Cu—57Ri 35Cu—57Ri 431 -23 -4303 0.0 0.0 U M18 2.5 68 Hu05 68 Hu05 67 Fe 37Cl—57Fe 35Cl -3413.7 4.3 -3406.52 0.0 0 U M18 2.5 68 Hu05 68 Hu05 67 Fe 57Cl—57Fe 35Cl 4353.2 2.1 -3			2897.68	0.40			0.6	U			H30	2.5	77Ba10	
5° Fe - SN Ni 983 - 1048.75 0.46 - 1048.84 0.27 -0.2 1 34 28 *8N; 171 1.0 10Ka26 5° Ni - SN Ni 983 3350.77 0.72 3350.6 0.5 -0.3 1 55 50 *7N; 171 1.0 10Ka26 5° Cu - SN Ni 1018 8126.29 0.55 8125.6 0.4 -1.2 1 63 48 *5° Cu JY1 1.0 10Ka26 5° Cu - SN Ni 9420.42 0.55 9420.3 0.5 -2.2 1 29 28 *7Cu JY1 1.0 10Ka26 5° Fe - SP Ge 456.6 1.4 456.52 0.04 0.0 U 4 50 *5°Ni JY1 1.0 10Ka26 5° Fe - SP E 456.6 1.4 456.25 0.04 0.0 U 4 50 *5°Ni JY1 1.0 10Ka26 5° Fe - SP E 450.6 1.4 3.0 0.0 0.0 U 4 50 *5°Ni 31 0 4 <td>56Fe H$-^{57}$Fe</td> <td></td> <td></td> <td>7</td> <td>7368.52</td> <td>0.04</td> <td>1.6</td> <td>U</td> <td></td> <td></td> <td>R09</td> <td>4.0</td> <td>72De11</td> <td></td>	56 Fe H $-^{57}$ Fe			7	7368.52	0.04	1.6	U			R09	4.0	72De11	
5° Fe - SN Ni 983 - 1048.75 0.46 - 1048.84 0.27 -0.2 1 34 28 *8N; 171 1.0 10Ka26 5° Ni - SN Ni 983 3350.77 0.72 3350.6 0.5 -0.3 1 55 50 *7N; 171 1.0 10Ka26 5° Cu - SN Ni 1018 8126.29 0.55 8125.6 0.4 -1.2 1 63 48 *5° Cu JY1 1.0 10Ka26 5° Cu - SN Ni 9420.42 0.55 9420.3 0.5 -2.2 1 29 28 *7Cu JY1 1.0 10Ka26 5° Fe - SP Ge 456.6 1.4 456.52 0.04 0.0 U 4 50 *5°Ni JY1 1.0 10Ka26 5° Fe - SP E 456.6 1.4 456.25 0.04 0.0 U 4 50 *5°Ni JY1 1.0 10Ka26 5° Fe - SP E 450.6 1.4 3.0 0.0 0.0 U 4 50 *5°Ni 31 0 4 <td>57Fe$-^{56}$Fe$_{1.018}$</td> <td></td> <td>1627.95</td> <td>0.46</td> <td>1627.68</td> <td>0.04</td> <td>-0.6</td> <td>U</td> <td></td> <td></td> <td>JY1</td> <td>1.0</td> <td>10Ka26</td> <td></td>	57 Fe $-^{56}$ Fe $_{1.018}$		1627.95	0.46	1627.68	0.04	-0.6	U			JY1	1.0	10Ka26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁵⁷ Fe- ⁵⁸ Ni 983		-1048.75	0.46	-1048.84	0.27	-0.2	1	34	28 ⁵⁸ Ni	JY1	1.0	10Ka26	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	⁵⁷ Ni- ⁵⁸ Ni ₉₈₃								55					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁵⁷ Cu- ⁵⁶ Ni _{1 018}													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁵⁷ Cu- ⁵⁷ Fe									28 ⁵⁷ Cu				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁵⁶ Fe ³⁷ Cl- ⁵⁷ Fe ³⁵ Cl													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 Cr(α .p) 57 Mn				-4312.6	1.5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(, _F)													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57 Fe(p, α) 54 Mn				239.8	1.1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 Fe(α , n) 57 Co													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									18	17 ⁵⁷ Mn				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									10	1, 1,111				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10(11,7)				7010.07	0.01								7.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								_			Bdn			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 Fe(d.p) 57 Fe				5421.51	0.04								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5419.8					U						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56 Fe(n, γ) 57 Fe	ave.			7646.07	0.04			99	83 ⁵⁷ Fe				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,												Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W.17													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁵⁶ Fe(³ He,d) ⁵⁷ Co				534.0	0.4					LAl			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.							29	29 ⁵⁷ Co				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2								_, 00				*
57 Cu ⁱ (p) ⁵⁶ Ni 4650 50 4609 25 -0.8 2 76Vi02 4568 10 4.1 C 98Jo.A	15(P,//)				,	0.5								
4568 10 4.1 C 98Jo.A	57 Cu ⁱ (p) 56 Ni				4609	25								
	Cu (P) 111				.507									
			4595	29			0.5	2					02Jo09	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	- · ·	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e
$^{57}\text{Ti}(\beta^{-})^{57}\text{V}$		11020	950	10500	270	-0.5	U					96Do23	
$^{57}\text{Cr}(\beta^{-})^{57}\text{Mn}$		5100	100	4961.5	1.8	-1.4	Ü			ANB		78Da04	
$^{57}\text{Mn}(\beta^{-})^{57}\text{Fe}$		2690	50	2695.6	1.5	0.1	U			AND		63Va37	
$^{57}\text{Co}(\varepsilon)^{57}\text{Fe}$		810	30				U						
				836.3 -1618.6	0.5	0.9				0-1-		71La02	,
57 Fe(p,n) 57 Co		-1619.4	2.0	-1018.0	0.5	0.4	_			Oak		64Jo11	2
		-1618.2	2.0			-0.2	-	10	10 ⁵⁷ Co	Can		70Kn03	
57E 311 57G i	ave.	-1618.8	1.4	0100.2	0.2	0.1	1	10	10 5, 60			average	
⁵⁷ Fe(³ He,t) ⁵⁷ Co ⁱ		-8122	7	-8108.2	0.3	2.0	U					71Be29	>
57 Ni(β^+) 57 Co		3245	10	3261.7	0.6	1.7	U					50Fr10	:
		3235	10			2.7	U					51Ca28	:
57 - 1 57		3246	10			1.6	U					58Ko60	>
57 Cu(β^{+}) 57 Ni		8742	130	8774.9	0.4	0.3	U					84Sh28	
56 Fe(n, γ) ⁵⁷ Fe				for calibration	n								*:
56 Fe(p, γ) 57 Co ^{i}	T=1247.9	9 recalibrate	d to T=12	48.5(0.6) keV								AHW	*
56 Fe(p, γ) ⁵⁷ Co ⁱ	T=1247.	1 recalibrate	d to T=12	47.7(0.4) keV								AHW	*:
$*^{57}$ Co(ε) ⁵⁷ Fe	IBE=674	(30) to $5/2^-$	level at 1	36.4743 keV								Ens98c	*>
$*^{57}$ Fe(3 He,t) 57 Co ^{i}				ecalibration +7	keV for	54 Fe(p,n)	⁵⁴ Co fron	n Ame1961				MMC123	; *:
$*^{57}$ Ni(β^+) ⁵⁷ Co				respectively, t									**
, , , , , ,	<u>-</u> р	(-0) 000(-0	, (,	p									
$^{58}V-u$		-43210	280	-43370	100	-0.4	2			TO3	1.5	90Tu01	
		-43350	280			-0.1	2			TO5	1.5	94Se12	
		-42700	400			-1.1	2			TO6	1.5	98Ba.A	
		-43328	107			-0.3	2			GT1	1.5	04Ma.A	
		-43457	134			0.6	2			LZ1	1.0	15Xu14	
⁵⁸ Cr-u		-55680	230	-55815.5	1.6	-0.4	U			TO3	1.5	90Tu01	
		-55750	260			-0.2	U			TO5	1.5	94Se12	
		-55490	270			-0.8	U			TO6	1.5	98Ba.A	
⁵⁸ Cr- ⁸⁵ Rb _{.682}		4343.9	1.6				2			MA8	1.0	17Mo.A	
$^{58}Mn - ^{39}K_{1.487}$		-5964.9	2.9				2			MA8	1.0	12Na15	*
$C_3 H_8 N - {}^{58}Fe$		132382	12	132400.5	0.4	0.4	Ū			R09	4.0	72De11	
$C_3 H_6 O - {}^{58}Fe$		108576	13	108591.1	0.4	0.3	U			R09	4.0	72De11	
$C_2 H_4 N O^{-58} Fe$		95999	13	96015.0	0.4	0.3	U			R09	4.0	72De11	
$C_2 H_4 NO^{-1}C_3 H_6 O^{-58}Ni$													
		106491	8	106523.0	0.4	1.0	U			R10	4.0	74De22	
C ₃ ¹³ C H ₉ - ⁵⁸ Ni		138424	14	138438.3	0.4	0.3	U			R10	4.0	74De22	
C ₃ H ₈ N- ⁵⁸ Ni		130302	25	130332.5	0.4	0.3	U			R10	4.0	74De22	
C ₂ H ₄ O N- ⁵⁸ Ni		93926	10	93947.0	0.4	0.5	U			R10	4.0	74De22	
50		93928	15			0.3	U			R10	4.0	74De22	
C ₃ H ₆ O ⁻⁵⁸ Ni		106504	14	106523.0	0.4	0.3	U			R10	4.0	74De22	
⁵⁸ Ni- ⁵⁸ Fe		2059	32	2068.0	0.3	0.1	U		50	R09	4.0	72De11	
⁵⁸ Cu- ⁵⁸ Ni		9190.61	0.50	9190.6	0.5	0.0	1	90	90 ⁵⁸ Cu	JY1	1.0	10Ka26	
⁵⁸ Ni(p, ⁶ He) ⁵³ Co		-27889	18	-27872.4	1.7	0.9	U			MSU		75Mu09	:
58 Ni(α , 8 He) 54 Ni		-50190	50	-50135	5	1.1	U			Tex		77Tr05	
58 Fe(p, α) 55 Mn		420	9	421.36	0.24	0.2	U			MIT		64Sp12	
58 Ni(p, α) 55 Co		-1341.0	2.9	-1334.8	0.4	2.1	U			BNL		73Go19	
va. : /		-1335.1	0.9			0.3	1	18	12 ⁵⁵ Co	NDm		74Jo14	
⁵⁸ Ni(³ He, ⁶ He) ⁵⁵ Ni		-17556	11	-17553.8	0.7	0.2	U			MSU		77Mu03	:
58 Fe(d, α) 56 Mn		5470	12	5467.23	0.28	-0.2	Ü			Kop		67Ha.A	
⁵⁶ Fe(³ He,p) ⁵⁸ Co		6853	15	6882.3	1.1	2.0	U			MIT		72Ly01	
58 Ni(d, α) 56 Co		6522	12	6522.5	0.4	0.0	U			Kop		67Ha.A	
111(u,u) CO		6506	10	0322.3	0.4	1.6	U			MIT		68Be10	
⁵⁸ Ni(p,t) ⁵⁶ Ni				12092.0	0.2								
1N1(p,t)**1N1 58N1:(4)56N1: i		-13987	18	-13982.0	0.3	0.3	U			Bld		65Ho07	
58 Ni(p,t) 56 Ni j		-23926	4	10044.50	0.10	0.0	2					84Ka07	:
57 Fe(n, γ) 58 Fe		10044.60	0.3	10044.59	0.18	0.0	-			MMn		80Is02	2
		10044.65	0.24			-0.2	_			Bdn		06Fi.A	
57 50										MIT		(10-12	
⁵⁷ Fe(d,p) ⁵⁸ Fe		7815	8	7820.02	0.18	0.6	U			MIT		64Sp12	
57 Fe(d,p) 58 Fe 57 Fe(n, γ) 58 Fe		7815 7824 10044.63	8 12	7820.02	0.18	0.6 -0.3	U U	93	82 ⁵⁸ Fe	Kop		64Sp12 67Ha.A	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
57 59								59			
57 Fe(p, γ) 58 Co	6952	3	6954.3	1.1	0.8	1	14	14 ⁵⁸ Co			70Er03
⁵⁸ Ni(p,d) ⁵⁷ Ni	-9971.2	7.	-9991.7	0.5	-2.9	U					79Ik04 *
58 Ni($^{\bar{3}}$ He, α) 57 Ni	8360.3	4.	8361.4	0.5	0.3	U			MSU		76Na23
	8384.8	15.			-1.6	U					79Fo09 *
⁵⁸ Ni(⁷ Li, ⁸ He) ⁵⁷ Cu	-29564	50	-29622.4	0.5	-1.2	U			MSU		85Sh03
	-29613	17			-0.6	U			Tex		86Ga19
⁵⁸ Ni(¹⁴ N, ¹⁵ C) ⁵⁷ Cu	-19900	40	-19929.6	0.9	-0.7	U			Ber		87St04
58 Mn(β^{-}) 58 Fe	5890	100	6327.6	2.7	4.4	В					69Wa10 *
,	5958	100			3.7	В					71Dy01 *
58 Fe(t, 3 He) 58 Mn	-6318	15	-6309.0	2.7	0.6	U			LAI		77Fl03 *
$^{58}\text{Co}(\beta^+)^{58}\text{Fe}$	2305	6	2308.0	1.1	0.5	Ü					52Ch31 *
CO(p) 10	2307	4	2000.0		0.2	Ü					63Rh02 *
58 Fe(3 He,t) 58 Co i	-8079	8			0.2	2					71Be29 *
⁵⁸ Ni(p,n) ⁵⁸ Cu	-9351	5	-9343.4	0.4	1.5	U			Mar		64Ma.A
M(p,n) Cu		3.4	-9343.4	0.4	2.7	U					
	-9352.6								Ric		66Bo20 Z
	-9346	10			0.3	U			Ric		66Ri09
	-9346.6	1.7			1.9	U			Yal		69Ov01 Z
59 59-	-9347.8	4.0			1.1	U			Har		76Fr13
$^{58}\text{Ni}(\pi^+,\pi^-)^{58}\text{Zn}$	-16908	50				2					86Se04
$*^{58}Mn - {}^{39}K_{1.487}$	D_M =-5887.8(2.9)			ceV; M-A	l=–55755	.6(2.7) ke	·V				Nub16b **
* ⁵⁸ Ni(p, ⁶ He) ⁵³ Co	Q increased 1 for a										AHW **
$*^{58}$ Ni(${}^{\bar{3}}$ He, 6 He) 55 Ni	Averaged with refe										75Mu09 **
$*^{58}$ Ni(p,t) 56 Ni ^j	Strongest of three	fragments	IT=9943(4); (2 rebuilt w	ith Ame1	977					MMC129**
*58Ni(p,d)57Ni	Q = -15210(7) for	⁵⁷ Ni ⁱ at 5	238.8(0.7) keV	, stronges	t fragmen	t IT=5230)(7);				Nub16b **
*	rebuilt with Q_{gs} =	-9975 ke	V, average of 7	3Ed01 and	65Sh06						73Ed01 **
$*^{58}$ Ni(3 He, α) 57 Ni	IT=5235(15); $\vec{Q} =$					h Ame19	77				MMC129**
$*^{58}$ Mn(β^-) ⁵⁸ Fe	$Q_{\beta^-}=6100(300);$										Nub16b **
$*^{58}$ Mn(β^-) ⁵⁸ Fe	Q_{β} = 6030(100) fr	rom ⁵⁸ Mn	^m at 71.77 keV								Nub16b **
$*^{58}$ Fe(t, 3 He) 58 Mn	And $Q = -6318(15)$	5)_77(8) to	58Mn ^m at 71	77 keV							Nub16b **
$*^{58}\text{Co}(\beta^+)^{58}\text{Fe}$	E_{β^+} =472(6) 474(4				662 kaV						Ens104 **
$*^{58}$ Fe(3 He,t) 58 Co ^{i}						C 1					71Be29 **
	Strongest of two for recalibration +7 l	ragilients i	Ta(n n)54Ca fn	am Amali	III AIIIC19 N41	04					MMC123**
*	recambration +/ i	KC V 101	re(p,n) Co n	om Amer	901						MIMC123**
⁵⁹ V-u	-38500	400	-40610	170	-3.5	В			TO3	1.5	90Tu01
, u	-40700	350	10010	170	0.2	2			TO5	1.5	94Se12
	-39900	400			-1.2	2			TO6	1.5	98Ba.A
	-40677	129			0.3	2			GT1	1.5	04Ma.A
⁵⁹ Cr-u			-51620	220	-0.3	2					
···Cr-u	-51490 51640	290	-51620	230					TO3	1.5	90Tu01 *
	-51640	310			0.0	2			TO5	1.5	94Se12 *
	-51100	310			-1.1	2			TO6	1.5	98Ba.A *
50 30	-52380	500			1.5	2			MT1	1.0	16Me07 *
$^{59}Mn - ^{39}K_{1.513}$	-4696.8	2.5				2		50	MA8	1.0	12Na15
⁵⁹ Fe- ⁸⁵ Rb _{.694}	-3908.1	1.0	-3908.4	0.4	-0.3	1	15	15 ⁵⁹ Fe	MA8	1.0	17Ma.A
C ₃ H ₇ O- ⁵⁹ Co	116467	12	116496.2	0.4	0.6	U			R10	4.0	74De22
C ₂ ¹³ C H ₆ O- ⁵⁹ Co	112011	25	112026.0	0.4	0.1	U			R10	4.0	74De22
C ₂ H ₅ O N-59Co	103901	6	103920.1	0.4	0.8	U			R10	4.0	74De22
⁵⁹ Zn-u		20	-50688.0	0.8	0.3	U			LZ1	1.0	11Tu09
⁵⁸ Ni H- ⁵⁹ Co	-50698	29				Ü			R10	4.0	
$M\Pi - CO$	-50698 9970	29 15	9973.16	0.22	(), I	U					74De22
	9970	15	9973.16 5722.6	0.22	0.1		36	27 ⁵⁹ 7n			74De22 10Ka26
59 Zn $-^{58}$ Cu _{1.017}	9970 5722.4	15 1.3	5722.6	0.8	0.1	1	36 81	27 ⁵⁹ Zn	JY1	1.0	10Ka26
59 Zn $-^{58}$ Cu _{1.017} 59 Zn $-^{59}$ Cu	9970 5722.4 9815.22	15 1.3 0.72	5722.6 9815.2	0.8 0.6	$0.1 \\ -0.1$	1 1	36 81	27 ⁵⁹ Zn 73 ⁵⁹ Zn	JY1 JY1	1.0 1.0	10Ka26 10Ka26
⁵⁹ Zn- ⁵⁸ Cu _{1.017} ⁵⁹ Zn- ⁵⁹ Cu ⁵⁹ Co- ⁵⁸ Ni	9970 5722.4 9815.22 -2182	15 1.3 0.72 35	5722.6 9815.2 -2148.12	0.8 0.6 0.22	$0.1 \\ -0.1 \\ 0.2$	1 1 U			JY1 JY1 R10	1.0	10Ka26 10Ka26 74De22
59 Zn $-^{58}$ Cu _{1.017} 59 Zn $-^{59}$ Cu	9970 5722.4 9815.22 -2182 3245	15 1.3 0.72 35 8	5722.6 9815.2	0.8 0.6	0.1 -0.1 0.2 -0.4	1 1 U U			JY1 JY1 R10 MIT	1.0 1.0	10Ka26 10Ka26 74De22 64Sp12
⁵⁹ Zn- ⁵⁸ Cu _{1.017} ⁵⁹ Zn- ⁵⁹ Cu ⁵⁹ Co- ⁵⁸ Ni	9970 5722.4 9815.22 -2182 3245 3243	15 1.3 0.72 35 8 9	5722.6 9815.2 -2148.12	0.8 0.6 0.22	0.1 -0.1 0.2 -0.4 -0.2	1 1 U U U			JY1 JY1 R10 MIT Ald	1.0 1.0	10Ka26 10Ka26 74De22 64Sp12 66Br05
59 Zn $^{-58}$ Cu _{1.017} 59 Zn $^{-59}$ Cu 59 Co $^{-58}$ Ni 59 Co(p, α) 56 Fe	9970 5722.4 9815.22 -2182 3245 3243 3240.4	15 1.3 0.72 35 8 9 1.4	5722.6 9815.2 -2148.12 3241.4	0.8 0.6 0.22 0.3	0.1 -0.1 0.2 -0.4 -0.2 0.7	1 U U U U			JY1 JY1 R10 MIT Ald NDm	1.0 1.0	10Ka26 10Ka26 74De22 64Sp12 66Br05 74Jo14
59 Zn $-^{58}$ Cu $_{1.017}$ 59 Zn $-^{59}$ Cu 59 Co $-^{58}$ Ni	9970 5722.4 9815.22 -2182 3245 3243	15 1.3 0.72 35 8 9	5722.6 9815.2 -2148.12	0.8 0.6 0.22	0.1 -0.1 0.2 -0.4 -0.2	1 1 U U U			JY1 JY1 R10 MIT Ald	1.0 1.0	10Ka26 10Ka26 74De22 64Sp12 66Br05

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
⁵⁹ Ni(p,t) ⁵⁷ Ni	-12738.2	3.3	-12733.7	0.5	1.4	U			MSU		76Na23	
NI(p,t) NI	-12738.2 -12738.4	5.0	-12/33.7	0.3	0.9	U			MSU		76Na23	*
58 Fe(n, γ) 59 Fe	6581.15	0.30	6581.01	0.11	-0.5	_			Ptn		73Sp06	²
$\Gamma c(n, \gamma)$	6580.94	0.30	0561.01	0.11	0.3	_			Ptn		80Ve05	Z
	6581.02	0.20			-0.1	_			Bdn		06Fi.A	_
⁵⁸ Fe(d,p) ⁵⁹ Fe	4357	8	4356.44	0.11	-0.1	– U			MIT		64Sp12	
re(u,p) re	4369	8	4330.44	0.11	-0.1 -1.6	U					67Ha.A	
58 Fe(n, γ) 59 Fe		0.11	6581.01	0.11	0.0	1	99	85 ⁵⁹ Fe	Kop			
58 Fe(p, γ) 59 Co			7363.6				99	65 TE			average 74Ke14	Z
⁵⁸ Fe(³ He,d) ⁵⁹ Co	7359.7	2.0		0.4	1.9	U			T A 1		65Bl13	
58 Fe(p, γ) 59 Co $-^{56}$ Fe() 57 Co	1871	20	1870.1	0.4	0.0	U	41	28 ⁵⁷ Co	LAl			
59 G (γ) 58 G	1336.5	0.7	1336.1	0.4	-0.6	1	41	28 ³⁷ Co	DI.		75Br29	
$^{59}\text{Co}(\gamma, n)^{58}\text{Co}$	-10441	26	-10453.9	1.1	-0.5	U	60	C1 58 C	Phi		60Ge01	
⁵⁹ Co(d,t) ⁵⁸ Co	-4196.0	1.4	-4196.6	1.1	-0.5	1	62	61 ⁵⁸ Co	NDm		74Jo14	
58 Ni $(n,\gamma)^{59}$ Ni	8999.37	0.30	8999.28	0.05	-0.3	U					75Wi06	Z
	8999.38	0.20			-0.5	U			MMn		77Is01	Z
	8999.10	0.23			0.8	U		50	ILn		93Ha05	Z
	8999.28	0.05			0.0	1	99	72 ⁵⁹ Ni	ORn		04Ra23	
50 50	8999.15	0.18			0.7	U			Bdn		06Fi.A	
⁵⁸ Ni(d,p) ⁵⁹ Ni	6797	10	6774.71	0.05	-2.2	U			Kop		67Ha.A	
	6785	5			-2.1	U			MIT		70An25	
	6773.5	1.7			0.7	U			NDm		74Jo14	
⁵⁸ Ni(p,γ) ⁵⁹ Cu	3418.5	0.5	3418.6	0.4	0.1	1	62	62 ⁵⁹ Cu			63Bo07	Z
	3419	2			-0.2	U					70Fo09	
	3416.7	2.0			0.9	U					75Kl06	Z
58 Ni(p, π^{-}) 59 Zn	-144735	40	-144783.4	0.8	-1.2	U					83Sh31	
$^{59}{\rm Mn}(\beta^-)^{59}{\rm Fe}$	5200	100	5139.5	2.4	-0.6	U			ANB		77Pa18	
$^{59}\text{Fe}(\mathring{\beta}^{-})^{59}\text{Co}$	1570	4	1564.9	0.4	-1.3	U					52Me53	*
, ,	1563	3			0.6	U					63Wo01	×
59 Ni $(\varepsilon)^{59}$ Co	1074.5	1.3	1073.00	0.19	-1.2	U					76Be02	*
⁵⁹ Co(p,n) ⁵⁹ Ni	-1855.8	2.0	-1855.35	0.19	0.2	Ü			MIT		51Mc48	Z
(4,)	-1854.3	4.0			-0.3	Ü					57Bu37	Z
	-1861	5			1.1	U			Ric		57Ch30	7
	-1855.8	1.6			0.3	U			Oak		64Jo11	7
	-1855.33	0.20			-0.1	1	95	90 ⁵⁹ Co	PTB		98Bo30	_
59 Co(3 He,t) 59 Ni i	-8436	8	-8433.5	2.1	0.3	Ü	75	<i>70</i> C0	1110		71Be29	*
59 Zn(β^+) 59 Cu	9120	100	9142.8	0.6	0.3	U					81Ar13	7
⁵⁹ Cr–u	Original –51220(240					U					GAu	
⁵⁹ Cr–u	Original –51220(240										GAu	**
⁵⁹ Cr–u											Nub16b	**
⁵⁹ Cr–u	M - A = -47350(250)											
	M - A = -48540(440)					i	20.0				Nub16b	
⁵⁹ Ni(p,t) ⁵⁷ Ni	Strongest of three IA			77.2(5.0)) for ³ /[N ₁ ' at 5 ₂	238.8					**
59 Fe(β^-) 59 Co	E_{β} = 475(3) to 3/2											**
59 Fe(β^-) 59 Co	E_{β} =462(3), 273(3)				91.605 k	eV					Ens024	**
59 Ni $(\varepsilon)^{59}$ Co	Authors add B(K)=8										AHW	**
59 Co(3 He,t) 59 Ni i	Strongest fragment	Q = -844	1(8); recalibrat	ion +5 l	keV for	⁵⁸ Ni(p,ı	1) ⁵⁸ Cu ⁱ fro	m Ame1961			MMC129) **
$^{60}V-u$	-33860	700	-35690	240	-1.7	U			TO3	1.5	90Tu01	*
	-35560	600			-0.1	2			TO5	1.5	94Se12	*
	-35180	520			-0.6	2			TO6	1.5	98Ba.A	*
	-35889	215			0.6	2			GT1	1.5	04Ma.A	
		430			-0.4	2			MT1	1.0	11Es06	>
	-35510											
⁶⁰ Cr−u			-50100	210	-1.2				TO3	1.5	90Tu01	
⁶⁰ Cr-u	-49680	240	-50100	210	$-1.2 \\ 0.4$	2			TO3 TO5	1.5 1.5	90Tu01 94Se12	
⁶⁰ Cr–u			-50100	210	-1.2 0.4 -0.5				TO3 TO5 TO6	1.5 1.5 1.5	90Tu01 94Se12 98Ba.A	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	llue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	ce
⁶⁰ Mn−u	-56550	240	-56863.4	2.5	-0.9	U			TO3	1.5	90Tu01	*
wiii—u		290	-30603.4	2.5	-0.9 -0.1	U			TO5			,
	-56810									1.5	94Se12	
03.5 30.77	-56530	280			-0.8	U			TO6	1.5	98Ba.A	
$^{0}Mn - ^{39}K_{1.538}$	-1044.0	2.5				2			MA8	1.0	12Na15	:
⁰ Co−u	-66380	280	-66184.3	0.5	0.5	U			TO6	1.5	98Ba.A	
C ₃ H ₈ O ⁻⁶⁰ Ni	126796	14	126729.6	0.4	-1.2	U			R10	4.0	74De22	
$C_2 H_6 O N^{-60} Ni$	114231	10	114153.6	0.4	-1.9	U			R10	4.0	74De22	
C_2^{13} C H ₇ O $-^{60}$ Ni	122315	10	122259.4	0.4	-1.4	U			R10	4.0	74De22	
CH ₂ N O ₂ - ⁶⁰ Ni	77843	16	77768.1	0.4	-1.2	U			R10	4.0	74De22	
$C_5 - ^{60}Ni$	69275	14	69214.7	0.4	-1.1	U			R10	4.0	74De22	
⁰ Ni- ⁸⁵ Rb _{.706}	-6937.8	1.6	-6938.3	0.4	-0.3	U			MA8	1.0	07Gu09	
0 Zn $-^{58}$ Ni _{1.034}	8698.02	0.55	8698.1	0.4	0.1	1	65	65^{60} Zn	JY1	1.0	10Ka26	
0 Zn $-^{59}$ Cu _{1.017}	3373.19	0.55	3373.2	0.4	-0.1	1	65	35 ⁶⁰ Zn	JY1	1.0	10Ka26	
⁰ Ni- ⁵⁸ Ni H	-12513	30	-12381.56	0.08	1.1	Ü	00	20 2	R10	4.0	74De22	
0 Ni $^{-59}$ Co	-2503	40	-2408.40	0.22	0.6	U			R10	4.0	74De22	
0 Ni $^{-58}$ Ni	-4624	25		0.22	0.7	U			R10	4.0	74De22	
-INI—- INI			-4556.52	0.08								
ONT: 11 59 C	-4627	45	5416.62	0.00	0.4	U			R10	4.0	74De22	
⁰ Ni H ⁻⁵⁹ Co	5310	40	5416.63	0.22	0.7	U		57	R10	4.0	74De22	
0 Ni(p, α) 57 Co	-263.6	0.7	-263.5	0.4	0.1	1	37	33 ⁵⁷ Co	NDm		74Jo14	
8 Fe(t,p) 60 Fe	6907	15	6919	3	0.8	2			LAl		71Ca19	
	6947	10			-2.8	2			MSU		76St11	
	6913	4			1.4	2			LAl		78No05	
0 Ni(d, α) 58 Co	6084.5	2.2	6084.8	1.1	0.2	1	25	25 ⁵⁸ Co	NDm		74Jo14	
⁸ Ni(t,p) ⁶⁰ Ni	11905	10	11905.21	0.07	0.0	U			Ald		71Da16	
0 Ni(p,t) 58 Ni i	-20735	40				2					74Ko08	:
0 Ni(p,t) 58 Ni j	-26444	7				2					84Ka07	:
⁸ Ni(³ He,p) ⁶⁰ Cu	5770	12	5758.6	1.6	-0.9	U			CIT		67Mi02	
1.1(110,p) cu	5746	20	0,00.0	1.0	0.6	Ü			MIT		68Yo01	
8 Ni(3 He,p) 60 Cu i	3210	10	3218	5	0.8	1	26	26 60 Cu ⁱ	MIT		68Yo01	
8 Ni(3 He,n) 60 Zn	818	18	805.5	0.4	-0.7	Ü	20	20 Cu	CIT		67Mi02	
IVI(IIC,II) ZII	821	13	605.5	0.4	-0.7 -1.2	U			Oak		72Gr39	
8 Ni(3 He,n) 60 Zn j	-6562	24			-1.2	2			Oak		74Ev02	
9 Co(n, γ) 60 Co			7401.02	0.07	0.5				DM.			:
$Co(n,\gamma)$	7491.88	0.08	7491.92	0.07	0.5	2			BNn		84Ko29	2
90 (1.)600	7492.05	0.15	5067.25	0.07	-0.9	2			Bdn		06Fi.A	
9 Co(d,p) 60 Co	5267	11	5267.35	0.07	0.0	U			MIT		64Sp12	
0 60	5272	8			-0.6	U			Kop		67Ha.A	
9 Co(p, γ) 60 Ni i	-1594	4				2					67Ar01	
9 Ni $(n,\gamma)^{60}$ Ni	11387.6	0.4	11387.73	0.05	0.3	U					75Wi06	2
	11387.73	0.05			0.0	1	99	75 ⁶⁰ Ni	ORn		04Ra23	
⁰ Ni(p,d) ⁵⁹ Ni	-9180	50	-9163.16	0.05	0.3	U			Pri		64Le10	
⁰ Ni(d,t) ⁵⁹ Ni	-5130.2	2.1	-5130.50	0.05	-0.1	U			NDm		74Jo14	
⁰ Ni(p,d) ⁵⁹ Ni ⁱ	-16505.1	2.1				2					78Ik02	:
$^{0}\text{Mn}(\beta^{-})^{60}\text{Fe}$	8234	86	8445	4	2.5	U			ANB		78No03	:
0 Co(β^{-}) 60 Ni	2823.6	1.0	2822.81	0.21	-0.8	U					68Wo02	
0 Cu(β^{+}) 60 Ni	6250	40	6128.0	1.6	-3.1	В					54Nu26	
0 Ni(p,n) 60 Cu	-6912	20	-6910.3	1.6	0.1	U			ChR		58Go77	
тт(р,п) си	-6909	10	0710.3	1.0	-0.1	U			Ric		66Ri09	
	-6910.3	1.6			-0.1	2			Yal		69Ov01	2
⁰ Ni(³ He.t) ⁶⁰ Cu ⁱ			0600	5	0.5		74	74 ⁶⁰ Cu ⁱ	Tai			
. (- , - ,	-8685	6	-8688	5	-0.5	1	/4	/4 **Cu			71Be29	:
${}^{0}\text{Zn}(\beta^{+}){}^{60}\text{Cu}$	4166	64	4170.8	1.6	0.1	U					86Ka38	
^{0}V $-u$	Original –33800(7										GAu	*
$^{0}V-u$	Original –35500(6										GAu	*
$^{0}V-u$	M - A = -32700(47)	0) keV for	mixture gs+n	1+n at 0#	#150 and 20)3.7(0.7) k	æV				Nub16b	*
$^{0}V-u$	M - A = -33010(39)	0) keV for	mixture gs+n	1+n at 0#	#150 and 20	3.7(0.7) k	æV				Nub16b	*
0 Mn $-$ u	M - A = -52540(23)	0) keV for	mixture gs+n	at 271.	90 keV						Nub16b	*
0 Mn $-$ u	M - A = -52780(26)		-								Nub16b	*
0 Mn $-$ u	M - A = -52520(25)	*	_								Nub16b	
$^{0}Mn - ^{39}K_{1.538}$	D_M =-752.1(2.5) μ					9(2.4) ke	V				Nub16b	
OCo-u	M - A = -61800(26)					.>(2.7) KC					Nub16b	
	M - A = -01800(200) IT=8830(40); Q re			1 at 30.3) NO V							
UNII(+> +\DANIII		ouur with	AIDCI9/I								MMC12	4*
											1/11/01/2	4
⁶⁰ Ni(p,t) ⁵⁸ Ni ⁱ ⁶⁰ Ni(p,t) ⁵⁸ Ni ^j ⁵⁸ Ni(³ He,n) ⁶⁰ Zn ^j	IT=14537(7); Q re IT=7380(30); Q re	built with	Ame1977								MMC12	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Compa	Input va		Adjusted		$\frac{\mathbf{continu}}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
* 60 Ni(p,d) ⁵⁹ Ni ⁱ * 60 Mn(β^-) ⁶⁰ Fe * 60 Co(β^-) ⁶⁰ Ni	$E_{\beta} = 57$	st fragment IT 14(86) from ⁶	S=7341; <i>Q</i> OMn ^m at 2	rebuilt with A 271.90 to (3 ⁺ ,	Ame1977 4 ⁺) 2792.		<u>-6</u>	~-0			-	MMC129** Ens13c **
Co(\(\beta\))*NI * ⁶⁰ Ni(³ He,t) ⁶⁰ Cu ⁱ				at 2505.753 ke ecalibration +5		⁵⁸ Ni(p,n) ⁵	⁸ Cu ⁱ froi	m Ame1961				Ens13c ** MMC123
$^{61}V-u$		-32750	960				2			MT1	1.0	11Es06
⁶¹ Cr-u		-44500	400	-45600	110	-1.8	2			TO3	1.5	90Tu01
		-45910	300			0.7	2			TO5	1.5	94Se12
		-45120	280			-1.1	2			TO6	1.5	98Ba.A
		-45679 -45634	107 176			0.5 0.2	2 2			GT1 LZ1	1.5 1.0	04Ma.A 15Xu14
		-46248	548			1.2	U			MT1	1.0	16Me07
⁶¹ Mn-u		-55160	300	-55547.5	2.5	-0.9	U			TO3	1.5	90Tu01
		-55540	280			0.0	U			TO5	1.5	94Se12
		-55320	270			-0.6	U			TO6	1.5	98Ba.A
61 Mn $-^{39}$ K _{1.564}		1215.6	2.5				2			MA8	1.0	12Na15
61 Fe $-^{39}$ K _{1.564}		-6490.7	2.8	05222 4	0.4	0.0	2			MA8	1.0	12Na15
$C H_3 N O_2 - ^{61}Ni$ $C_5 H - ^{61}Ni$		85373 76810	14 10	85323.4 76770.1	0.4 0.4	-0.9 -1.0	U U			R10 R10	4.0 4.0	74De22 74De22
⁶¹ Ga-u		-50654	59	-50600	40	-1.0 0.9	1	48	48 ⁶¹ Ga	LZ1	1.0	11Tu09
⁶⁰ Ni H- ⁶¹ Ni		7539	14	7555.34	0.05	0.3	Ú	40	40 Ga	R10	4.0	74De22
$^{61}Ni - ^{60}Ni$		339	60	269.69	0.05	-0.3	Ü			R10	4.0	74De22
⁶¹ Ni- ⁵⁸ Ni H		-12187	30	-12111.87	0.09	0.6	U			R10	4.0	74De22
⁶¹ Ni- ⁵⁹ Co		-2220	30	-2138.71	0.22	0.7	U			R10	4.0	74De22
58 Ni(α ,n) 61 Zn		-9810	30	-9526	16	9.5	В			Oak		64St01
⁵⁸ Ni(⁶ Li,t) ⁶¹ Zn		-4736	23	-4743	16	-0.3	R			LAI		78Wo01
59 Co(3 He,p) 61 Ni 60 Ni(n, γ) 61 Ni		9635 7820.22	10 0.40	9634.44 7820.10	0.21 0.05	-0.1 -0.3	U			MIT		67Sp09 75Wi06 Z
$^{\circ\circ}N_1(n,\gamma)^{\circ\circ}N_1$		7820.22 7819.96	0.40	/820.10	0.03	-0.3 0.7	U U			MMn		75Wi06 Z 77Is01 Z
		7820.02	0.20			0.4	Ü			ILn		93Ha05 Z
		7820.11	0.05			-0.1	-			ORn		04Ra23
(0) (1		7820.06	0.16			0.3	_			Bdn		06Fi.A
60 Ni(d,p) 61 Ni		5604	8	5595.54	0.05	-1.1	U			MIT		70An25
60 Ni $(n,\gamma)^{61}$ Ni	ave.	5596.1 7820.11	1.3 0.05	7820.10	0.05	$-0.4 \\ 0.0$	U 1	100	79 ⁶¹ Ni	NDm		74Jo14 average
61 Ga ⁱ (p) 60 Zn	avc.	3110	30	7020.10	0.03	0.0	2	100	77 111			87Ho.A
$^{61}\text{Fe}(\beta^{-})^{61}\text{Co}$		3827	100	3977.6	2.7	1.5	U					67Eh02 *
		3887	100			0.9	U					67Gu06 *
$^{61}\text{Co}(\beta^{-})^{61}\text{Ni}$		1290	40	1323.8	0.8	0.8	U					56Nu02
61 Cu(β^+) 61 Ni 61 Ni(p,n) 61 Cu		2227	5	2237.8	1.0	2.2	U			0-1-		500w03
⁶¹ Ni(³ He,t) ⁶¹ Cu ⁱ		-3024.0 -8630	4. 7	-3020.2	1.0	1.0	U 2			Oak		64Jo11 Z 71Be29 *
61 Zn(β^+) 61 Cu		5400	200	5635	16	1.2	U					59Cu86
61 Ga(β^+) 61 Zn		9255	50	9210	40	-0.8	1	57	52 ⁶¹ Ga			02We07
$*^{61}$ Fe(β^{-}) ⁶¹ Co	$E_{B^{-}}=28$			ectively, to 3/	2 ⁻ level a							Ens153 **
$*^{61}$ Ni(3 He,t) 61 Cu ⁱ	Stronge	st fragment IT	=6380(7)	; Q rebuilt wit	h Ame19	64						MMC129**
*	recalib	ration +5 keV	for ⁵⁸ Ni(p,n) ⁵⁸ Cu ⁱ fror	n Ame196	51						MMC123**
⁶² Cr-u		-42400	600	-43900	160	-1.7	2			TO3	1.5	90Tu01
C. u		-44200	400		100	0.5	2			TO5	1.5	94Se12
		-43100	350			-1.5	2			TO6	1.5	98Ba.A
		-44026	118			0.7	2			GT1	1.5	04Ma.A
623.4		-43897	526	50000	-	0.0	U			MT1	1.0	16Me07
⁶² Mn-u		-51510 -52030	270	-52093	7	-1.4	U			TO3	1.5	90Tu01
		-52030 -51180	280 280			$-0.1 \\ -2.2$	U U			TO5 TO6	1.5 1.5	94Se12 98Ba.A
							٥			-00		· · ·

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
62 Mn m - 39 K _{1.590}		5982.3	2.8				2			MA8	1.0	12Na15
62 Fe $-^{39}$ K _{1.590}		-5501.5	3.0				2			MA8	1.0	12Na15
$C_5 H_2 - {}^{62}Ni$		-3301.3 87299	10	87305.2	0.5	0.2	U			R10	4.0	74De22
$C_5 H_2 - N_1$ $C H_4 N O_2 - ^{62}N_1$		95859			0.5	0.2	U					74De22 74De22
$^{62}\text{Cu}-^{62}\text{Ni}$			12	95858.5	0.3	0.0				R10	4.0	06Er03
62 Zn $^{-62}$ Ni		4250.05	0.51	5000 (0.5	0.2	2	60	68 ⁶² Zn	JY1	1.0	
62Ga-62Ni		5988.49	0.58	5988.6	0.5	0.2	1	68	52 ⁶² Ga	JY1	1.0	06Er03
$^{62}Ga - ^{62}Ni$		15845.06	0.71	15844.9	0.5	-0.2	1	52	52 ⁶² Ga 48 ⁶² Ga	JY1	1.0	06Er03
		9856.21	0.45	9856.3	0.4	0.2	1	81	48 ⁶² Ga	JY1	1.0	06Er03
62Ni-61Ni		-2669	15	-2710.1	0.3	-0.7	U			R10	4.0	74De22
62Ni-60Ni		-2333	30	-2440.4	0.3	-0.9	U			R10	4.0	74De22
62 Ni(p, α) 59 Co		342	10	347.4	0.4	0.5	U			MIT		64Sp12
50 62		343.3	0.7			5.9	В			NDm		74Jo14
$^{59}\text{Co}(\alpha, p)^{62}\text{Ni}$		-346.5	2.3	-347.4	0.4	-0.4	U			NDm		74Jo14
⁶² Ni(¹⁸ O, ²⁰ Ne) ⁶⁰ Fe		911	20	926	3	0.7	U			Hei		84Ha31
62 Ni(d, α) 60 Co		5611.2	2.4	5614.8	0.4	1.5	U			NDm		74Jo14
⁶⁰ Ni(t,p) ⁶² Ni		9937	10	9934.0	0.3	-0.3	U			Ald		71Da16
⁶⁰ Ni(³ He,p) ⁶² Cu		5938	25	5956.6	0.6	0.7	U			MIT		67Sp09
60 Ni(3 He,n) 62 Zn		3580	30	3554.8	0.5	-0.8	U			Oak		72Gr39
⁶² Ni(¹⁴ C, ¹⁵ O) ⁶¹ Fe		-7921	100	-7661.5	2.7	2.6	F			Ors		84De33
62 Ni(t, α) 61 Co		8689	20	8676.6	0.7	-0.6	U			LAl		66B115
⁶¹ Ni(n,γ) ⁶² Ni		10596.2	1.5	10595.7	0.3	-0.3	-					70Fa06
		10595.8	0.7			-0.1	_					75Wi06
		10595.6	0.4			0.3	_			Bdn		06Fi.A
61Ni(d,p)62Ni		8379	8	8371.2	0.3	-1.0	U			MIT		64Sp12
		8369	15			0.1	U			Ald		67Te02
62Ni(d,t)61Ni		-4340.6	1.3	-4338.5	0.3	1.6	_			NDm		74Jo14
61 Ni $(n,\gamma)^{62}$ Ni	ave.	10595.8	0.3	10595.7	0.3	-0.2	1	88	67 ⁶² Ni			average
62 Mn ^{m} (IT) 62 Mn		343	6				3					15Ga38
62 Fe(β^{-}) 62 Co		3000	200	2546	19	-2.3	U					75Fr16
$^{62}\text{Co}(\beta^{-})^{62}\text{Ni}$		5195	30	5322	19	4.2	C					57Ga15
62Ni(t, 3He)62Co		-5350	50	-5303	19	0.9	2					72Ba31
111(1, 110)		-5296	20	2202	/	-0.4	2			LAl		76Aj03
62 Cu(β^{+}) 62 Ni		3932	10	3958.9	0.5	2.7	Ū			2211		54Nu27
Cu(p') 111		3942	10	3730.7	0.5	1.7	U					64Sa32
		3956	7			0.4	Ü					67An01
⁶² Ni(p,n) ⁶² Cu		-4733	10	-4741.2	0.5	-0.8	Ü			Bar		61Ri02
ru(p,n) eu		-4734.8	10.	4741.2	0.5	-0.6	U			Ric		66Ri09
62 Ni(3 He,t) 62 Cu i		-8591	6			0.0	2			Tele		71Be29
62 Zn(β^{+}) 62 Cu		1682	10	1619.5	0.7	-6.3	В					50Ha65
Zn(p) Cu		1697	10	1017.5	0.7	-7.8	В					54Nu27
62 Ga(β^{+}) 62 Zn		9171	26	9181.1	0.4	0.4	U			ANB		79Da04
⁶² Ni(¹⁴ C, ¹⁵ O) ⁶¹ Fe	F : not u	ınambiguousl				0.4	U			AND		84De33 *
62 Mn m (IT) 62 Mn		3(2) – 72(+8–		state transitio	J11							
$^{62}\text{Co}(\beta^{-})^{62}\text{Ni}$			(2)	22(5) leaV								
		17(30) from			. F 1 X7 C-	58 NT: (58 Ci	A 10 <i>a</i>	C1			Nub16b *
⁶² Ni(³ He,t) ⁶² Cu ⁱ	CDE=9.	360(6) Q = -8	8596(6); r	ecalibration -	+5 KeV 10	or ⁵⁶ N1(p,n) ⁵⁰ Cu ¹ Ir	om Ame190	51			MMC124*
⁶³ Cr-u		-38819	462	-38660	380	0.2	2			GT1	1.5	04Ma.A
		-37870	700			-1.1	o			MT1	1.0	11Es06
		-38583	462			-0.2	2			MT1	1.0	16Me07
⁶³ Mn-u		-49300	400	-50335	4	-1.7	U			TO3	1.5	90Tu01
*		-50190	300		•	-0.3	Ü			TO5	1.5	94Se12
		-49600	290			-1.7	Ü			TO6	1.5	98Ba.A
		-50500	107			1.0	0			GT1	1.5	04Ma.A
		-50829	107			1.9	U			GT2	2.5	04Ma.A
63 Mn $-^{39}$ K _{1.615}		8278.7	4.0			1.7	2			MA8	1.0	12Na15
$N_{1.615}$		04/0./	4.0				2			IVIAO	1.0	1218113

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	omparis	son of input a		•								D - f
Item		Input va	iiue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁶³ Fe−u		-59190	240	-59727	5	-1.5	U			TO3	1.5	90Tu01
		-59570	290			-0.4	Ü			TO5	1.5	94Se12
		-58990	300			-1.6	U			TO6	1.5	98Ba.A
63 Fe $-^{39}$ K $_{1.615}$		-1114.5	6.1	-1113	5	0.2	1	57	57 ⁶³ Fe	MA8	1.0	12Na15
⁶³ Fe−H C ₂ F ₂		-64354	10	-64359	5	-0.5	o			MS1	1.0	08B105
		-64353	10			-0.6	1	21	21 ⁶³ Fe	MS1	1.0	10Fe01
63 Fe-C 32 S F		-30204	10	-30202	5	0.2	1	21	21 ⁶³ Fe	MS1	1.0	10Fe01
$C_5 H_3 - {}^{63}Cu$		93930	4	93877.9	0.5	-3.3	В			R10	4.0	74De22
$C_4 H N - ^{63}Cu$		81347	10	81301.8	0.5	-1.1	U			R10	4.0	74De22
$C_4^{13}C H_2 - {}^{63}Cu$		89466	14	89407.7	0.5	-1.0	Ü			R10	4.0	74De22
$C_2 H_7 O_2 - ^{63}Cu$		115064	16	115007.2	0.5	-0.9	U			R10	4.0	74De22
¹³ C C H ₈ O N- ⁶³ Cu		134404	18	134346.5	0.5	-0.8	Ü			R10	4.0	74De22
⁴⁷ Ti O- ⁶³ Cu		17036	23	17075.1	0.5	0.4	Ü			R09	4.0	72De11
63 Ga $-^{85}$ Rb _{.741}		4658.0	1.4	1,0,011	0.0	0	2			MA8	1.0	07Gu09
$C_5 H_2 - {}^{63}Ga_{.984}$		75382.6	6.7	75384.6	1.4	0.3	Ū			MS1	1.0	07Sc24
63Ge-u		-50372	40	7220.10		0.0	2			LZ1	1.0	11Tu02
⁶³ Cu- ⁶² Ni		1193	35	1252.37	0.06	0.4	Ū			R10	4.0	74De22
63Cu-61Ni		-1449	30	-1457.7	0.3	-0.1	Ü			R10	4.0	74De22
63 Cu(p, α) 60 Ni		3757	8	3757.4	0.3	0.1	Ü			MIT		64Sp12
$\operatorname{Cu}(p,\omega)$ 141		3780	10	3737.4	0.5	-2.3	U			Min		67Jo03
		3754.9	1.5			1.7	Ü			NDm		76Jo01
60 Ni(α ,n) 63 Zn		-7970	40	-7906.1	1.6	1.6	Ü			Oak		64St01
111(W,II) ZII		-7910	20	7,500.1	1.0	0.2	Ü			Ouk		67Bi04
63 Cu(d, α) 61 Ni		9376	30	9353.0	0.3	-0.8	Ü					67Hj01
62 Ni $(n,\gamma)^{63}$ Ni		6838.04	0.20	6837.77	0.06	-1.4	_			MMn		77Is01 Z
111(11,1) 111		6837.88	0.18	0057177	0.00	-0.6	_			ILn		92Ha21 Z
		6837.89	0.14			-0.9	_			Bdn		06Fi.A
		6837.75	0.18			0.1	_			JAn		12Os04
62Ni(d,p)63Ni		4620	6	4613.20	0.06	-1.1	U			MIT		70An25
- ·-(,F)		4614.0	1.1			-0.7	Ü			NDm		74Jo14
62 Ni $(n,\gamma)^{63}$ Ni	ave.	6837.88	0.09	6837.77	0.06	-1.3	1	48	34 ⁶³ Ni			average
62 Ni(p, γ) 63 Cu		6119.2	1.5	6122.40	0.06	2.1	U					72Ki15
1(1(p, ₁)) ou		6122.30	0.08	01220	0.00	1.2	1	54	38 ⁶³ Cu	Utr		86De14 Z
⁶³ Cu(γ,n) ⁶² Cu		-10833	17	-10863.6	0.5	-1.8	Ü	٥.	20 04	Phi		60Ge01
$^{63}\text{Co}(\beta^{-})^{63}\text{Ni}$		3590	50	3661	19	1.4	1	14	14 ⁶³ Co			69Ki.A
$^{63}\text{Ni}(\beta^{-})^{63}\text{Cu}$		65.87	0.15	66.977	0.015	7.4	В		11 66			66Hs01
111(p) Cu		66.946	0.020	00.577	0.015	1.5	0					87He14
		66.945	0.004			7.9	F					92Ka29 *
		66.9459	0.0054			5.7	F					93Oh02 *
		66.980	0.015			-0.2	1	98	55 ⁶³ Ni			99Ho09
63 Zn(β^{+}) 63 Cu		3352	20	3366.4	1.5	0.7	Ü	, ,	00 111			61Cu02
Zn(p) cu		3390	30	3300.1	1.0	-0.8	Ü					61Va08
63 Cu(p,n) 63 Zn		-4146.5	4.	-4148.7	1.5	-0.6	_			Ric		55Br16
Cu(p,n) 2m		-4139.5	8.		1.0	-1.2	U			Oak		55Ki28 Z
		-4150.1	4.4			0.3	_			Tkm		63Ok01
	ave.	-4148.1	2.9			-0.2	1	28	27^{-63} Zn			average
63 Cu(3 He,t) 63 Zn i		-8875	6				2					71Be29 *
63 Ga(β^+) 63 Zn		5520	100	5666.3	2.0	1.5	Ū					72Fi.A
$*^{63}Ni(\beta^{-})^{63}Cu$	F : exci	tation of atomic					_					99Ho09 **
$*^{63}$ Cu(3 He,t) 63 Zn i		644(6) Q = -88				i(p,n) ⁵⁸ (Cu ⁱ from	Ame1961				MMC124**
64.0		25042	472				_			3.677.4	1.0	101.07
⁶⁴ Cr-u		-35942	472				2			MT1	1.0	16Me07
⁶⁴ Mn-u		-45340	350	-46151	4	-1.5	U			TO3	1.5	90Tu01 *
		-46340	350			0.4	U			TO5	1.5	94Se12 *
		-45664	306			-1.1	U			TO6	1.5	98Ba.A *
		-46280	129			0.7	U			GT1	1.5	04Ma.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	- 3P#1	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
item		mput va	iiuc	Aujusicu	varue	v ₁	Dg	Sigiii.	wam mi.	Lao	1	Reference
$^{64}Mn - ^{85}Rb_{.753}$		20271.7	3.8				2			MA8	1.0	12Na15
⁶⁴ Fe-u		-58600	400	-59012	5	-0.7	U			TO3	1.5	90Tu01
		-59130	300			0.3	U			TO5	1.5	94Se12
		-58500	350			-1.0	U			TO6	1.5	98Ba.A
		-59012.2	5.3			0.0	o			MS1	1.0	08B105
$H C_2 F_2 - {}^{64}Fe_{.984}$		62699.4	5.3				2			MS1	1.0	10Fe01
64 Co ^{m} -u		-64075.5	4.5	-64075	4	0.1	o			MS1	1.0	08B105
$H C_2 F_2 - {}^{64}Co^m_{.984}$		67681.6	4.6	67681	4	-0.1	1	87	87 ⁶⁴ Co ^m	MS1	1.0	10Fe01
$^{64}\text{Co}^m - ^{32}\text{S O}_2$		-25974	12	-25976	4	-0.1	1	13	13 ⁶⁴ Co ^m	MS1	1.0	10Fe01
C ₅ H ₄ -64Ni		103278	10	103333.8	0.5	1.4	U			R10	4.0	74De22
C ₄ ¹³ C H ₃ - ⁶⁴ Ni		98809	12	98863.6	0.5	1.1	U			R10	4.0	74De22
C ₄ H ₂ N-64Ni		90703	16	90757.7	0.5	0.9	U			R10	4.0	74De22
⁶⁴ Ni- ⁸⁵ Rb _{.753}		-5609.2	1.4	-5611.3	0.5	-1.5	1	13	13 ⁶⁴ Ni	MA8	1.0	07Gu09
64 Zn $-^{85}$ Rb $_{753}$		-4430.1	8.4	-4435.9	0.7	-0.7	U			MA8	1.0	07Ke09
⁶⁴ Ga- ⁸⁵ Rb _{.753}		3261.3	2.5	3262.7	1.5	0.6	1	38	38 ⁶⁴ Ga	MA8	1.0	07Gu09
C ₅ H ₂ -64Ga _{.969}		76851.5	2.6	76851.7	1.5	0.1	1	33	33 ⁶⁴ Ga	MS1	1.0	07Sc24
⁶⁴ Ge-u		-57090	690	-58310	4	-1.2	U			GA6	1.5	02Li24
$H^{32}SO_2-^{64}GeH$		20210.5	4.0				2			MS1	1.0	07Sc24
64 Ge $-^{85}$ Rb _{.753}		8070	43	8112	4	1.0	U			MS1	1.0	12Sc.A
64 Ga $^{-64}$ Zn		7698.5	4.1	7698.6	1.6	0.0	1	15	13 ⁶⁴ Ga	CP1	1.0	07Cl01
64 Ge $^{-64}$ Zn		12517	33	12548	4	0.9	U			CP1	1.0	07Cl01
⁶⁴ Ni- ⁶³ Cu		-1523	30	-1630.90	0.22	-0.9	Ü			R10	4.0	74De22
64 Ga $^{-63}$ Ga		-2730	150	-2453.8	2.1	0.7	Ü			CR1	2.5	89Sh10
⁶⁴ Ni- ⁶² Ni		-352	25	-378.53	0.23	-0.3	Ü			R10	4.0	74De22
⁶⁴ Ni(³ He, ⁸ B) ⁵⁹ Mn		-19610	30	-19564.0	2.6	1.5	U			MSU	1.0	76Ka24
⁶⁴ Ni(³ He, ⁷ Be) ⁶⁰ Fe		-6511	10	-6524	3	-1.3	R			MSU		76St11
$^{64}\text{Ni}(\alpha,^{7}\text{Be})^{61}\text{Fe}$		-21523	20	-21522.5	2.7	0.0	U			Tex		77Co08
64Ni(14C, 17O)61Fe		-4609	100	-4349.8	2.7	2.6	U			Ors		84Be.A
64 Ni(p, α) 61 Co		663.2	0.7	-4347.0	2.7	2.0	2			NDm		74Jo14
64 Zn(p, α) 61 Cu		830	15	844.1	0.7	0.9	U			NDIII		67Br10
Zn(p,a) Cu		830	10	044.1	0.7	1.4	U			Min		67Jo03
		844.1	0.7			1.7	2			NDm		76Jo01
⁶⁴ Zn(³ He, ⁶ He) ⁶¹ Zn		-12331	23	-12316	16	0.7	_			MSU		79We02
Zii(Tic, Tic) Zii	ave.	-12320	16	-12310	10	0.7	1	95	95 ⁶¹ Zn	WISC		average
⁶⁴ Ni(¹¹ B, ¹³ N) ⁶² Fe	avc.	-4930	70	-4898.6	2.8	0.3	U	75	<i>)</i> 5 ZII	Tex		77Co08
64Ni(14C,16O)62Fe		- 4 930	40	-464.0	2.8	0.4	U			Ors		81Be40
64Ni(18O,20Ne)62Fe		-1915	50	-404.0 -1961.8	2.8	-0.9	U			Can		76Hi14
MI(O, Ne) re		-1913 -1920	21	-1901.8	2.0	-0.9 -2.0	U			Hei		77Bh03
		-1920 -1947	26			-2.0 -0.6	U			Hei		84Ha31
⁶⁴ Ni(d,α) ⁶² Co		5190	20	5036	19	-0.0 -7.7	В			1101		72Ba31
62 Ni(t,p) 64 Ni		7999		8013.44	0.21	0.7	U			Ald		72Ba31 71Da16
62Ni(³ He,p) ⁶⁴ Cu		6299	20 25	6320.47		0.7	U					
62Ni(³ He,n) ⁶⁴ Zn					0.11					MIT		67Sp09
64 Zn(d, α) 62 Cu		6118	12	6117.6	0.6	0.0	U			Oak		72Gr39
64π (162π		7508	15	7494.2	0.8	-0.9	U			MIT		67Sp09
⁶⁴ Zn(p,t) ⁶² Zn ⁶⁴ Ni(¹⁴ C, ¹⁵ O) ⁶³ Fe		-12493	10	-12496.9	0.8	-0.4	U			Bld		72Fa08
⁶⁴ Ni(³⁴ S, ³⁵ Ar) ⁶³ Fe		-11387	60	-11299	4	1.5	U			Ors		82De.A
		-17931	260	-18348	4	-1.6	U	0.6	0 < 63 <	Hei		83Wi.B
64 Ni(t, α) 63 Co		7266	20	7277	19	0.6	1	86	86 ⁶³ Co	LAl		66Bl15
63 Ni $(n,\gamma)^{64}$ Ni		9657.32	0.4	9657.46	0.20	0.4	_					75Wi06
		9657.58	0.24			-0.5	_	0.0	07 643	ILn		92Ha21
63 64 -	ave.	9657.51	0.21			-0.2	1	98	87 ⁶⁴ Ni			average
63 Cu(n, γ) 64 Cu		7916.07	0.12	7916.11	0.10	0.3	_			BNn		83De28
		7915.52	0.08			7.4	В					02Bo11
		7916.14	0.16			-0.2	_			Bdn		06Fi.A
63Cu(d,p)64Cu		5697	8	5691.54	0.10	-0.7	U			MIT		64Sp12
63 Cu(n, γ) 64 Cu	ave.	7916.10	0.10	7916.11	0.10	0.2	1	99	90 ⁶⁴ Cu			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁶⁴ Zn(n,d) ⁶³ Cu		-5520	50	-5488.7	0.6	0.6	U					65Wa14
64 Zn(d,t) 63 Zn		-5604.9	1.7	-5604.7	1.5	0.1	1	76	73 ⁶³ Zn	NDm		76Jo01
$^{64}\text{Co}(\beta^{-})^{64}\text{Ni}$		7000	500	7307	20	0.6	Ü	70	73 211	TUDIII		69Wa15
CO(p') 141		7000	400	7307	20	0.8	Ü					74Ra31
⁶⁴ Ni(t, ³ He) ⁶⁴ Co		−7288	20			0.0	2			LAl		72F117
$^{64}\text{Cu}(\beta^+)^{64}\text{Ni}$		1673.4	1.0	1674 29	0.22	1.0	U			LAI		83Ch47
⁶⁴ Ni(p,n) ⁶⁴ Cu				1674.38	0.23	1.0						
··N1(p,n) ··Cu		-2458	6	-2456.72	0.23	0.2	U			DTD		61Va19
64.0 (0-)64.7		-2458.22	0.31	550.5	0.6	4.8	В	40	22 647	PTB		92Bo02
$^{64}\text{Cu}(\beta^{-})^{64}\text{Zn}$		577.8	1.0	579.5	0.6	1.7	1	42	32^{64} Zn			83Ch47
64 Ga(β^{+}) 64 Zn		7072	30	7171.2	1.5	3.3	В		64			60Ja07
⁶⁴ Zn(p,n) ⁶⁴ Ga		-7951	4	-7953.5	1.5	-0.6	1	14	12 ⁶⁴ Ga	Tex		72Da.A
64 Zn(3 He,t) 64 Ga		-7206	8	-7189.8	1.5	2.0	U			MSU		74Ro16
64 Zn(3 He,t) 64 Ga i		-9141	17	-9096.8	2.5	2.6	U			MIT		70Hi06
		-9110	6			2.2	1	17	17 ⁶⁴ Ga ⁱ			71Be29
⁶⁴ Ga ⁱ (IT) ⁶⁴ Ga		1905.1	2.3	1907.0	2.2	0.8	1	88	83 ⁶⁴ Ga ⁱ			74Ro16
64 Ge(β^+) 64 Ga		4410	250	4517	4	0.4	U					73Da01
⁶⁴ Mn−u	Origina			A - A = -42170			C					GAu >
⁶⁴ Mn–u				A = -421700								GAu >
⁵⁴ Mn–u				mixture gs+m			lra V					
⁶⁴ Ni(¹⁴ C, ¹⁷ O) ⁶¹ Fe						0.3) (4 1)	Ke v					
				ned in PrvCom								84De33 >
⁶⁴ Ni(¹⁸ O, ²⁰ Ne) ⁶² Fe				3(20), Q(62)=9								AHW
⁶⁴ Ni(¹⁴ C, ¹⁵ O) ⁶³ Fe	Origina	ıl –11743(60)	reinterpr	eted as $(3/2^-)$	356.2 lev	el in ⁶³ Fe	;					GAu >
64 Zn(3 He,t) 64 Ga				vith Ame1971								GAu »
54 Zn(3 He,t) 64 Ga i	CDE=9	0879(6) Q = -9	9115(6);	recalibration +	5 keV for	r ⁵⁸ Ni(p,n) ⁵⁸ Cu ⁱ fr	om Ame19	961			MMC124*
$^{64}\mathrm{Ge}(\beta^+)^{64}\mathrm{Ga}$	$E_{\beta^+}=29$	960(250) to (1	(1 ⁺) level	at 427.03 keV								Ens073 >
⁶⁵ Mn-u		-43900 -43500	600 500	-43980	4	$-0.1 \\ -0.6$	U U			TO5 TO6	1.5 1.5	94Se12 98Ba.A
		-43790	330			-0.6	U			MT1	1.0	11Es06
$^{65}Mn - ^{85}Rb_{.765}$		23500.6	4.0				2			MA8	1.0	12Na15
⁵⁵ Fe-u		-54680	300	-54985	5	-0.7	U			TO3	1.5	90Tu01
		-55270	320			0.6	U			TO5	1.5	94Se12
		-54290	380			-1.2	U			TO6	1.5	98Ba.A
		-54985.9	5.4			0.2	o			MS1	1.0	08B105
$O_2 - ^{65} Fe_{.492}$		16881.7	2.7				2			MS1	1.0	10Fe01
⁶⁵ Co-u		-63537.9	2.3	-63537.9	2.2	0.0	o			MS1	1.0	08B105
$O_2 - ^{65}Co_{.492}$		21089.9	1.1				2			MS1	1.0	10Fe01
⁶⁵ Ni- ⁸⁵ Rb _{.765}		-2438.0	2.4	-2434.5	0.5	1.5	U			MA8	1.0	07Gu09
$C_5 H_5 - {}^{65}Cu$		111384	4	111335.7	0.7	-3.0	В			R10	4.0	74De22
C ₅ H ₅ – Cu C ₄ H ₃ N– ⁶⁵ Cu												
C4 H3 N — *** Cu		98800	8	98759.6	0.7	-1.3	U			R10	4.0	74De22
$C_4^{13}CH_4^{-65}Cu$		106921	18	106865.5	0.7	-0.8	U			R10	4.0	74De22
⁴⁹ Ti O ⁻⁶⁵ Cu		15030	10	14989.8	0.7	-1.0	U			R09	4.0	72De11
⁶⁵ Cu- ⁸⁵ Rb _{.765}		-4730.6	1.2	-4729.7	0.7	0.8	1	34	34 ⁶⁵ Cu	MA8	1.0	07Gu09
⁶⁵ Ga- ⁸⁵ Rb _{.765}		215.4	1.5	215.2	0.9	-0.1	1	34	34 ⁶⁵ Ga	MA8	1.0	07Gu09
⁶⁵ Ge−u		-60080	270	-60631.9	2.3	-1.4	U			GA6	1.5	02Li24
$C_5 H_2 - {}^{65}Ge_{.939}$		72585.2	4.0	72583.4	2.2	-0.5	_			MS1	1.0	07Sc24
$C_5 H_5 - {}^{65}Ge_{.985}$		98847.2	4.2	98847.5	2.3	0.1	_			MS1	1.0	07Sc24
$C_5 H_2 - {}^{65}Ge_{.939}$	ave.	72584.2	2.9	72583.4	2.2	-0.3	1	57	57 ⁶⁵ Ge			average
⁵⁵ Ge H ⁻⁸⁵ Rb _{.776}	410.	15634.4	6.2	15644.3	2.3	1.6	1	14	14 ⁶⁵ Ge	MS1	1.0	07Sc24
65 Ge O H $-^{85}$ Rb _{.965}									29 ⁶⁵ Ge			
06 O H− 55 Kb.965		27237.1	4.3	27230.7	2.3	-1.5	1	29	29 ° Ge	MS1	1.0	12Sc.A
⁵ As-u		-50389	91				2			LZ1	1.0	11Tu02
⁶⁵ Cu- ⁶⁴ Ni		-275	40	-176.9	0.7	0.6	U			R10	4.0	74De22
65Cu-63Cu		-1784	10	-1807.7	0.7	-0.6	U			R10	4.0	74De22
65 Cu(p, α) 62 Ni		4345	8	4346.7	0.7	0.2	U			MIT		64Sp12
		4340	10			0.7	U			Min		67Jo03
		4344.6	1.8			1.2	1	14	10 ⁶⁵ Cu	NDm		76Jo01
							-	•				

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
62			40				-					
62 Ni(α ,n) 65 Zn		-6510	40	-6480.7	0.7	0.7	U			Oak		64St01
65 Cu(d, α) 63 Ni		9012	40	8959.9	0.7	-1.3	U					67Hj01
63Cu(t,p)65Cu		9351	25	9344.7	0.7	-0.3	U			Ald		66Bj02
64 Ni $(n,\gamma)^{65}$ Ni		6097.86	0.20	6098.08	0.14	1.1	2			MMn		77Is01 Z
⁶⁴ Ni(d,p) ⁶⁵ Ni		6098.28	0.19	2072 51	0.14	$-1.0 \\ -0.4$	2 U			Bdn MIT		06Fi.A
NI(a,p) NI		3876 3867	6 15	3873.51	0.14	-0.4 0.4	U			Ald		64Sp12 67Te02
		3870	5			0.4	U			MIT		70An25
65 Cu(t, α) 64 Ni		12352	11	12360.2	0.7	0.7	U			14111		72He23
65 Cu(γ ,n) 64 Cu		-9896	28	-9910.4	0.7	-0.5	U			Phi		60Ge01
65 Cu(d,t) 64 Cu		-3650	60	-3653.2	0.7	-0.1	Ü			ANL		60Ze02
64 Zn(n, γ) 65 Zn		7979.3	0.8	7979.32	0.17	0.0	Ü			THE		71Ot01 Z
ZII(II, /) ZII		7979.2	0.5	7777.32	0.17	0.2	Ü					75De.A Z
		7979.28	0.17			0.2	1	98	55 ⁶⁵ Zn	Bdn		06Fi.A
64 Zn(d,p) 65 Zn		5758	10	5754.76	0.17	-0.3	U			ANL		67Vo05
64 Zn(p, γ) 65 Ga		3942.0	1.0	3942.5	0.6	0.5	_					75We24 Z
4.77		3943.0	1.0			-0.5	_					87Vi01
	ave.	3942.5	0.7			-0.1	1	83	66 ⁶⁵ Ga			average
65 Ge(ε p) 64 Zn		2300	100	2236.8	2.3	-0.6	U			ChR		81Ha44
65 As i (p) 64 Ge		3603	30	3576	17	-0.9	3					93Ba12
		3564	20			0.6	3					11Ro47 *
65 Ni(β^{-}) 65 Cu		2140	10	2138.0	0.7	-0.2	U					64Fr04
65 Zn(β^+) 65 Cu		1347	2	1351.6	0.4	2.3	U					49Ma57
		1347	2			2.3	U					53Ba82
		1347	3			1.5	U					53Pe14
		1349	3			0.9	U					53Sa26
		1342	4			2.4	U					53Yu04
⁶⁵ Cu(p,n) ⁶⁵ Zn		1346	4	2124.0	0.4	1.4	U					56Av28
⁶⁵ Cu(p,n) ⁶⁵ Zn		-2131.4	1.5	-2134.0	0.4	-1.7	U U					56Ma14 Z
		-2135.8 -2135.3	2.5 1.8			0.7 0.7	U			Tkm		57Be44 Z 63Ok01
		-2135.5 -2135.6	1.7			0.7	U			Oak		64Jo11 Z
		-2134.6	0.8			0.7	_			Yal		69Ov01 Z
		-2133.55	0.43			-1.0	_			PTB		89Sc24
	ave.	-2133.8	0.4			-0.6	1	91	46 ⁶⁵ Cu			average
65 Ga(β^{+}) 65 Zn		3277	30	3254.5	0.7	-0.7	U					57Da07
$^{65}{\rm Ge}(\beta^+)^{65}{\rm Ga}$		5220	400	6179.3	2.3	2.4	U					58Po79
* ⁶⁵ Fe-u	M - A = -	-50740(250) k	eV for mi	xture gs+m at	393.7(0.2	2) keV						Nub16b **
$*^{65}$ Fe $-u$				xture gs+m at								Nub16b **
$*^{65}$ Fe $-u$	M-A=-	-50370(330) k	eV for mi	xture gs+m at	393.7(0.2	2) keV and						Nub16b **
*				half-life=430								GAu **
* ⁶⁵ Fe-u				1 state, $D_M = -5$								Nub16b **
$*O_2 - {}^{65}Fe_{.492}$	D_{M} =168	83.6(3.6) μu	to ground	state, $D_M = 166$	571.2(4.2) to 65 Fe m	at 393.7	keV				Nub16b **
$*C_5 H_2 - {}^{65}Ge_{.939}$				e H) $_{0.939}$, D_{N}								GAu **
$*C_5 H_5 - {}^{65}Ge_{.985}$				e H) $_{0.985}$, D_{N}								GAu **
$*^{65}$ Ge H $-^{85}$ Rb _{.776}				a precision fo	r ⁰³ Ge of	2.4 keV, w	hile					GAu **
* 65 . i 61 ~		ble III gives 1										GAu **
$*^{65}\mathrm{As}^{i}(\mathrm{p})^{64}\mathrm{Ge}$	And E_p =	=2620(30) to 9	001.7 level									11Ro47 **
⁶⁶ Mn-u		-39860	860	-39453	12	0.5	U			MT1	1.0	11Es06 *
66 Mn $-^{85}$ Rb $_{.776}$		28998	12				2			MA8	1.0	12Na15
⁶⁶ Fe−u		-52300	700	-53750	4	-1.4	U			TO3	1.5	90Tu01
		-54020	350			0.5	U			TO5	1.5	94Se12
		-52800	300			-2.1	U			TO6	1.5	98Ba.A
		-53935	150			0.8	U			GT1	1.5	04Ma.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

		Innut w	مبياه	A dinetad	wolno	***	Da	Signf.	Main infl.	Lab	F	Reference	20
Item		Input va	iiuc	Adjusted	value	v_i	Dg	Sigiii.	Maiii IIIII.	Lau	Г	Kelelelik	
⁶⁶ Fe- ²⁸ Si F ₂	-	-27482.9	4.4				2			MS1	1.0	10Fe01	
⁶⁶ Co−u	-	-60470	300	-60557	15	-0.2	U			TO5	1.5	94Se12	*
		-59870	290			-1.6	U			TO6	1.5	98Ba.A	*
⁶⁶ Co−O C F ₂		-52278	15	-52278	15	0.0	o			MS1	1.0	08B105	
		-52278	15				2			MS1	1.0	10Fe01	
⁶⁶ Ni- ⁸⁵ Rb.776		-2409.5	1.5				2			MA8	1.0	07Gu09	
⁶⁶ Cu- ⁸⁵ Rb _{.776}		-2680.6	2.2	-2680.0	0.7	0.3	1	10	10 ⁶⁶ Cu	MA8	1.0	07Gu09	
$C_5 H_5 - {}^{66}Ge_{.970}$		103278.9	2.5				2			MS1	1.0	07Sc24	*
⁶⁶ As-u	-	-55290	730	-55851	6	-0.5	U			GA6	1.5	02Li24	
⁶⁶ As- ⁸⁵ Rb _{.776}		12607	32	12600	6	-0.2	U			MS1	1.0	07Sc24	
⁶⁶ As O- ⁸⁵ Rb _{.965}		24186.3	6.1				2			MS1	1.0	12Sc.A	
66 Zn(p, α) 63 Cu		1544.3	0.8	1544.6	0.7	0.4	1	74	$66 ^{66}\mathrm{Zn}$	NDm		76Jo01	
63 Cu(α ,n) 66 Ga		-7670	30	-7502.5	1.1	5.6	В			Oak		64St01	
64Ni(t,p)66Ni		6559	25	6568.2	1.5	0.4	U			Ald		71Da16	
64 Zn(t,p) 66 Zn		10582	15	10556.0	0.9	-1.7	U			Ald		72Hu06	
65 Cu(n, γ) 66 Cu		7065.80	0.12	7065.93	0.09	1.1	_			BNn		83De29	Z
		7066.13	0.15			-1.3	_			Bdn		06Fi.A	
65 Cu(d,p) 66 Cu		4837	8	4841.36	0.09	0.5	U			MIT		64Sp12	
65 Cu(n, γ) 66 Cu	ave.	7065.93	0.09	7065.93	0.09	0.0	1	100	90 ⁶⁶ Cu			average	
66 Zn(d,t) 65 Zn		-4770	60	-4801.2	0.9	-0.5	U			ANL		60Ze02	
$^{66}\text{Co}(\beta^{-})^{66}\text{Ni}$		9700	500	9598	14	-0.2	U					88Bo06	
$^{66}\text{Ni}(\beta^{-})^{66}\text{Cu}$		200	30	252.0	1.5	1.7	U					56Jo20	
66 Cu(β^{-}) 66 Zn		2650	30	2640.9	0.9	-0.3	U					51Fr19	*
		2650	30			-0.3	U					56Jo20	
66 Ga(β^{+}) 66 Zn		5175.0	3.0	5175.5	0.8	0.2	U					63Ca03	*
		5175.5	0.8				2					14Se12	
66 Zn(3 He,t) 66 Ga i		-9044	6				2					71Be29	*
66 Ge(β^{+}) 66 Ga		2490	50	2116.6	2.6	-7.5	F					69Ba31	*
		2420	30			-10.1	F					69Sa08	*
		2100	30			0.6	U					70De39	*
66 As(β^{+}) 66 Ge		9550	50	9582	6	0.6	U			ANB		79Da.A	
* ⁶⁶ Mn-u				ixture gs+m a		$V(5^{-})$						Nub16b	**
* ⁶⁶ Co-u	_		•	-A = -56040(2)								GAu	**
* ⁶⁶ Co-u				ixture gs+m+) keV					Nub16b	**
*				ratio R=0.5(0.2) to gro	und state,						GAu	**
*	from hal	f-life=1.21 /	us and TO	F=1 μs								GAu	**
*C ₅ H ₅ - ⁶⁶ Ge _{.970}	For origin	nal doublet C	$C_5 H_5 - (^{66}C_5)$	Ge H) $_{0.970}$, D	M = 95688.6	6(2.5) μu						GAu	**
$*^{66}$ Cu(β^-) ⁶⁶ Zn				and state and	2 ⁺ level at	1039.227	9 keV					Ens104	**
$*^{66}$ Ga(β^+) 66 Zn		$E_{\beta^+} = 4153(3)$			_							14Se12	**
$*^{66}$ Zn(3 He,t) 66 Ga i				calibration +5				n Ame1961				MMC12	4**
$*^{66}$ Ge(β^+) 66 Ga				probably dist								AHW	**
$*^{66}$ Ge(β^+) 66 Ga				probably dist								AHW	**
$*^{66}$ Ge(β^+) 66 Ga	$E_{\beta^+} = 1023$	8(30), 668(3	0), 558(50)) to 43.812 1	+, 381.859	1 ⁺ , 536.0	618 1 ⁺ le	evel				Ens104	**
⁶⁷ Mn-u	-	-36600	670	-35920#	320#	1.0	D			MT1	1.0	15Me.A	*
⁶⁷ Fe−u	-	-50190	500	-48960	290	1.6	2			TO5	1.5	94Se12	*
	-	-48450	380			-0.9	2			TO6	1.5	98Ba.A	*
	-	-49641	440			1.0	2			GT1	1.5	04Ma.A	
		-49580	300			2.1	o			MT1	1.0	11Es06	*
		-48510	460			-1.0	2			MT1	1.0	15Me.A	
⁶⁷ Co-u	-	-59390	300	-59390	7	0.0	U			TO5	1.5	94Se12	
	-	-58730	350			-1.3	U			TO6	1.5	98Ba.A	
²⁸ Si F ₂ - ⁶⁷ Co _{.985}		32232.9	8.0	32232	7	-0.1	2			MS1	1.0	10Fe01	
		32231	13			0.1	2			MS1	1.0	10Fe01	*
$^{67}Ni-u$		-68370	430	-68431	3	-0.1	U			TO5	1.5	94Se12	*
	-	-68090	470			-0.5	U			TO6	1.5	98Ba.A	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Comparis	Input va		Adjusted v		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
		Input vu		Tajastea	· urue	- 1	25	Jigiii.		20		
67 Ni $-^{85}$ Rb.788		1079.1	3.1				2			MA8	1.0	07Gu09
67 Cu $-^{85}$ Rb _{.788}		-2760.0	1.3	-2760.8	1.0	-0.6	1	54	54 ⁶⁷ Cu	MA8	1.0	07Gu09
⁶⁷ As-u		-60500	260	-60748.9	0.5	-0.6	U			GA6	1.5	02Li24
67 As $-^{86}$ Kr _{.779}		8885.7	2.9	8885.4	0.5	-0.1	U			MS1	1.0	07Sc24
		8808	30			2.6	U			MS1	1.0	07Sc24
67 As $-^{85}$ Rb $_{.788}$		8762.5	1.7	8760.8	0.5	-1.0	U			MS1	1.0	07Sc24
		8760.87	0.54			-0.1	1	77	77 ⁶⁷ As	MS1	1.0	12Sc.A
67 As O $-^{85}$ Rb _{.976}		20258.7	1.0	20258.9	0.5	0.2	1	23	23 ⁶⁷ As	MS1	1.0	12Sc.A
⁶⁷ Se-u		-50006	72				2			LZ1	1.0	11Tu02
67 Zn N $-^{66}$ Zn 15 N		4060.21	0.32	4058.88	0.25	-1.7	U			H30	2.5	77Ba10 *
64 Zn(α ,n) 67 Ge		-9240	60	-8992	5	4.1	В			Oak		64St01
		-8987.5	12.			-0.4	2			ANL		78Mu05
		-8993	5			0.2	2					79A104
65 Cu(t,p) 67 Cu		7716	25	7716.7	1.1	0.0	U			Ald		66Bj02
65 Cu(3 He,p) 67 Zn		8185	40	8258.9	0.9	1.8	U			MIT		74Is01
66 Zn(n, γ) 67 Zn		7052.5	0.6	7052.47	0.23	-0.1	_					71Ot01 Z
		7052.5	0.5			-0.1	_					75De.A Z
		7052.5	0.3			-0.1	-			Bdn		06Fi.A
66 Zn(d,p) 67 Zn		4827	10	4827.90	0.23	0.1	U			ANL		67Vo05
		4820	5			1.6	U			MIT		74Is01
67 Zn(d,t) 66 Zn		-800	60	-795.24	0.23	0.1	U			ANL		60Ze02
66 Zn(n, γ) 67 Zn	ave.	7052.50	0.24	7052.47	0.23	-0.1	1	98	64 ⁶⁷ Zn			average
$^{67}\mathrm{Ni}(\beta^-)^{67}\mathrm{Cu}$		3830	90	3577	3	-2.8	U					75Re09
$^{67}\mathrm{Cu}(\beta^-)^{67}\mathrm{Zn}$		577	8	560.8	0.8	-2.0	U					53Ea11
		560.3	1.0			0.5	1	69	46 ⁶⁷ Cu	ANB		15Ch57
67 Zn(p,n) 67 Ga		-1776	5	-1783.6	1.1	-1.5	U			Ric		57Ch30 Y
		-1783.3	1.4			-0.2	1	66	55 ⁶⁷ Ga	Oak		64Jo11 Z
$^{67}\mathrm{Ge}(\beta^+)^{67}\mathrm{Ga}$		4330	100	4221	5	-1.1	U					59Ri35 *
		4370	150			-1.0	U					69Ba07 *
67 As(β^{+}) 67 Ge		6010	100	6071	5	0.6	U			ANB		80Mu12
$*^{67}Mn-u$				suggest ⁶⁷ Mn (ound						GAu **
$*^{67}$ Fe-u				-A=-46570(47								GAu **
* ⁶⁷ Fe-u				xture gs+m at 4								Nub16b **
* ⁶⁷ Fe-u				xture gs+m at 4		7						Nub16b **
*28Si F ₂ -67Co _{.985}				491.55(0.11) k								10Fe01 **
* ⁶⁷ Ni-u				A = -63190(28)								GAu **
* ⁶⁷ Ni-u				xture gs+m at 1								Nub16b **
$*^{67}$ Zn N $-^{66}$ Zn 15 N	_	, ,		t 0.20 μu estim	•							GAu **
$*^{67}$ Ge $(\beta^+)^{67}$ Ga	$E_{\beta^+} = 3140$	0(100) 3180(100) respe	ectively, to 1/2	level at 1	66.98 ke	V					Ens05c **
⁶⁸ Fe-u		-46300	500	-46690	390	-0.5	2			TO6	1.5	98Ba.A
		-47330	460			1.4	O			MT1	1.0	11Es06
		-46830	460			0.3	2			MT1	1.0	15Me.A
⁶⁸ Co−u		-55640	350	-55750	200	-0.2	O			TO5	1.5	94Se12
		-54750	300			-2.2	U			TO6	1.5	98Ba.A
		-55730	140			-0.1	2			GT2	2.5	08Kn.A *
		-55760	250			0.0	2			MT1	1.0	11Es06 *
$^{68}Ni-u$		-68030	930	-68131	3	-0.1	U			TO5	1.5	94Se12 *
ro. 0#		-67530	930			-0.4	U			TO6	1.5	98Ba.A *
⁶⁸ Ni- ⁸⁵ Rb _{.800}		2437.0	3.2				2			MA8	1.0	07Gu09
⁶⁸ Cu−u		-70570	440	-70389.1	1.7	0.3	U			TO6	1.5	98Ba.A *
⁶⁸ Cu- ⁸⁵ Rb _{.800}		179.1	1.7				2			MA8	1.0	07Gu09 *
68 Ga $-^{85}$ Rb $_{.800}$		-1484	37	-1451.6	1.5	0.9	U			MA8	1.0	07Gu09
68 Ge $-C_5$ H $_8$		-134496.7	8.6	-134504.9	2.0	-1.0	U			CP1	1.0	04C103
		-134506.3	2.8			0.5	2			CP1	1.0	04C103
	-	-134503.5	2.9			-0.5	2			CP1	1.0	04C103

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
				<u>y</u>		-						
⁶⁸ As-u		-63221	107	-63225.9	2.0	0.0	U			GT1	1.5	01Ha66
68 As $-C_5$ H ₈		-125839	13	-125826.1	2.0	1.0	U			CP1	1.0	04C103
		-125827.7	9.9			0.2	U			CP1	1.0	04C103
		-125827.1	2.9			0.3	-			CP1	1.0	04C103
		-125824.4	3.1			-0.6	-			CP1	1.0	04Cl03
	ave.	-125825.8	2.1			-0.1	1	88	88 ⁶⁸ As			average
$C F_3 - {}^{68}As_{1.015}$		59385.8	5.7	59383.7	2.0	-0.4	1	12	12 ⁶⁸ As	MS1	1.0	07Sc24
⁶⁸ Se−u		-56197	86	-58174.8	0.5	-23.0	F			CS1	1.0	01La31 *
		-57560	1070			-0.4	U			GA6	1.5	02Li24
79		-57900	300			-0.9	U			CS1	1.0	08Go23
68 Se- C_5 H ₈		-120801	31	-120775.0	0.5	0.8	U			CP1	1.0	04Cl03
$C F_3 - {}^{68}Se_{1.015}$		54256.87	0.54				2			MS1	1.0	09Sa12
68 Zn 35 Cl $-^{66}$ Zn 37 Cl		1757.9	1.0	1760.7	0.3	0.7	U			H18	4.0	64Ba03
68 As $-^{68}$ Ge		8698.8	9.9	8678.8	2.8	-2.0	U			CP1	1.0	04C103
68 Se $-^{68}$ Ge		13669	27	13729.9	2.1	2.3	U			CP1	1.0	04Cl03
65 Cu(α ,n) 68 Ga		-5800	40	-5824.1	1.5	-0.6	U			Oak		64St01
66 Ni(t,p) 68 Ni $-^{68}$ Zn() 70 Zn		-2110	21	-2100	4	0.5	U			Hei		77Bh03
66 Zn(t,p) 68 Zn		8758	15	8768.8	0.3	0.7	U			Ald		72Hu06
⁶⁸ Zn(¹⁴ C, ¹⁵ O) ⁶⁷ Ni		-6052	150	-6100	3	-0.3	U			Ors		84De33
67 Zn(n, γ) 68 Zn		10198.2	0.4	10198.10	0.19	-0.3	-					71Ot01 Z
(9) (7)		10198.06	0.22			0.2	-			Bdn		06Fi.A
68 Zn(d,t) 67 Zn		-3930	60	-3940.87	0.19	-0.2	U		69	ANL		60Ze02
67 Zn(n, γ) 68 Zn	ave.	10198.09	0.19	10198.10	0.19	0.0	1	100	99 ⁶⁸ Zn			average
68 Cu(β^-) 68 Zn		4580	60	4440.1	1.8	-2.3	U					64Ba13
69 2 69		4590	50			-3.0	В					72Sw01
68 Zn(t, 3 He) 68 Cu		-4410	20	-4421.5	1.8	-0.6	U			LAl		77Sh08
68 Ga(β^+) 68 Zn		2921.1	1.2				2					72S103
69- 4 69-		2915	10	2921.1	1.2	0.6	U					85Bo58
68 Zn(p,n) 68 Ga		-3693	6	-3703.4	1.2	-1.7	U			Ric		55Br16 Z
		-3703	5			-0.1	U			Ric		57Ch30 Z
68 + (0+)68 G		-3707	5	0004.2	2.6	0.7	U			Oak		64Jo11 Z
68 As(β^{+}) 68 Ge		8100	100	8084.3	2.6	-0.2	U			ANB		77Pa13
68 Se(β^{+}) 68 As		8073	54 200	4705 1	1.0	0.2	U					02Cl.A *
*68Co-u	14 4	4710		4705.1	1.9	0.0	U					04Wo16
***Co-u * ⁶⁸ Co-u				ture gs+m at								Nub16b **
***C0=u * ⁶⁸ Ni=u				ixture gs+m at								Nub16b **
***Ni-u * ⁶⁸ Ni-u				ixture gs+n at								Nub16b **
***NI-u * ⁶⁸ Cu-u				ixture gs+n at								Nub16b **
***Cu-u * ⁶⁸ Cu- ⁸⁵ Rb _{.800}				ixture gs+m at	. /21.20 K	.e v						Nub16b **
***Cu-**Rb _{.800} * ⁶⁸ Cu- ⁸⁵ Rb _{.800}	Inis res	ult was first p	ubiisned ii	n reference · ⁸⁵ Rb _{.800} , yield	J:	-6716	7(2,2) 1	3 7				04B116 **
Cu=Rb _{.800} * ⁶⁸ Se=u	Also 94	8.0(1.0) μu 10	or Cu –	not trusted, see	ang excit	. 01 /10. 80 7. .	/(2.2) Ke	; v				07Gu09 ** GAu **
$*^{68}$ As(β^+) ⁶⁸ Ge					i and	Zľ						
***As(p*)**Ge	FIOIII III	ass difference	8007(04)	μu								02Cl.A **
⁶⁹ Fe-u		-42240	640	-41900#	430#	0.5	D			MT1	1.0	15Me.A *
⁶⁹ Co−u		-54800	400	-53980	150	1.4	0			TO5	1.5	94Se12
- CO 4		-53050	300	22,00	100	-2.1	2			TO6	1.5	98Ba.A
		-54070	230			0.4	2			MT1	1.0	11Es06
		-54117	223			0.6	2			LZ1	1.0	15Xu14
⁶⁹ Ni-u		-64600	400	-64390	4	0.4	Ū			TO5	1.5	94Se12 *
		-64250	450		•	-0.2	Ü			TO6	1.5	98Ba.A *
⁶⁹ Ni- ⁸⁵ Rb _{.812}		7237.0	4.0				2			MA8		07Gu09
69 Cu $-^{85}$ Rb _{.812}		1056.0	1.5				2			MA8		07Gu09
69 Zn-u		-73580	400	-73449.6	0.9	0.2	Ū			TO6	1.5	98Ba.A *
$C_5 H_9 - ^{69} Ga$		144852.7	2.4	144851.8	1.3	-0.2	Ü			M15	2.5	63Ri07
5 /							-					- ··

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	1										
69 Ga $-^{85}$ Rb _{.812}	-2799.8	1.6	-2799.7	1.3	0.0	1	65	65 ⁶⁹ Ga	MA8	1.0	07Gu09
$C F_3 - {}^{69}Se$	55794.7	1.6	55794.6	1.6	0.0	1	100	100 ⁶⁹ Se	MS1	1.0	07Sc24
69 Ga(p, α) 66 Zn	4440	10	4435.4	1.4	-0.5	U			ANL		67Ka11
66 Zn(α ,n) 69 Ge	-7520	30	-7444.9	1.5	2.5	U			Oak		64St01
67 Zn(t,p) 69 Zn	8168	20	8198.37	0.25	1.5	U			Ald		72Hu06
68 Zn(n, γ) 69 Zn	6482.3 6481.8	0.8 0.5	6482.07	0.16	-0.3 0.5	U U					71Ot01 Z 75De.A Z
	6482.07	0.3			0.5	2			Bdn		06Fi.A
68 Zn(d,p) 69 Zn	4259	10	4257.50	0.16	-0.1	U			ANL		67Vo05
2m(u,p) 2m	4243	10	.207.00	0.10	1.5	Ü			MIT		75Is04
68 Zn(3 He,d) 69 Ga	1126	20	1116.2	1.4	-0.5	U					74Ri08
$^{69}\mathrm{Se}(\varepsilon\mathrm{p})^{68}\mathrm{Ge}$	3390	50	3255.1	2.4	-2.7	U			ChR		76Ha29
	3370	70			-1.6	U			ChR		77Ma24
69 Br(p) 68 Se	789	37	640	40	-4.0	В			MSU		11Ro18 *
60- : 60 -	641	42				3			MSU		14De41 *
69 Br $^{i}(p)^{68}$ Se	4131	50	4129	19	0.0	3					97Xu01 *
	4210.6	50.			-1.6	3			MSU		11Ro47 *
69 Cu(β^-) 69 Zn	4113 2480	22 70	2681.6	1.6	0.7 2.9	3 U			MSU		14De41 * 66Va12
69 Zn(β^{-}) 69 Ga	897	5	910.0	1.4	2.6	U					53Du03
$^{69}\text{Ge}(\beta^+)^{69}\text{Ga}$	2225	15	2227.1	0.5	0.1	U					51Hu38 *
⁶⁹ Ga(p,n) ⁶⁹ Ge	-3008.8	3.2	-3009.5	0.5	-0.2	U			Tkm		63Ok01
Ou(p,n) Of	-3006.0	4.	2007.2	0.0	-0.9	Ü			Oak		64Jo11 Z
	-3009.50	0.55			0.0	1	100	100 ⁶⁹ Ge	PTB		92Bo.B Z
69 As(β^{+}) 69 Ge	3972	50	3990	30	0.3	_					70Bo19
•	4067	50			-1.6	_			ChR		77Ma24 *
	ave. 4020	40			-0.9	1	82	82 ⁶⁹ As			average
69 Se(β^+) 69 As	6817	75	6680	30	-1.9	1	18	18 ⁶⁹ As	ChR		77Ma24 *
* ⁶⁹ Fe-u	Trends from Mass Sur										GAu **
* ⁶⁹ Ni-u	M - A = -59940(330) 1										Nub16b **
* ⁶⁹ Ni-u	M - A = -59620(380) l		-								Nub16b **
*	and assuming for sec from half-life=439 n			13(0.06) to	ground s	state,					GAu ** GAu **
* ⁶⁹ Zn-u	M - A = -68320(350) 1		•	438 636 k	eV						Nub16b **
$*^{69}$ Br(p) ⁶⁸ Se	Symmetrized from Q_{II}		-	430.030 K	· ·						GAu **
$*^{69}$ Br(p) ⁶⁸ Se	And E_p =751(+132–82			h previous	item						14De41 **
$*^{69}$ Br ⁱ (p) ⁶⁸ Se	Might be also a more										GAu **
$*^{69} Br^{i}(p)^{68} Se$	$E_p = 2970(50)$ to (2^+)										GAu **
$*^{69} Br^{i}(p)^{68} Se$	A weaker peak around	l 4 MeV ca	nnot be exclu	ded, could	feed low	er (2 ⁺)					GAu **
$*^{69} Br^{i}(p)^{68} Se$	Original $Q = 2939(22)$	corrected	to $Q_p = 2916(2)$	22) to (2^+)	level at 1	1196.7 ke	V				16Hu.A **
$*^{69}$ Ge(β^+) ⁶⁹ Ga	E_{β^+} =1215, 610 to gro			5/2 ⁻ level	S						Ens141 **
$*^{69}$ As(β^{+}) ⁶⁹ Ge	E_{β^+} = 2812(50) to 3/2										Ens141 **
$*^{69}$ Se(β^+) 69 As	$E_{\beta^+} = 5006(75)$ to 789	.46 (1/2 ⁻ ,3	3/2 ⁻) level, an	d others							Ens141 **
⁷⁰ Co−u	-49000	600	-50060#	320#	-1.2	U			TO6	1.5	98Ba.A
Co-u	-50370	320	-30000#	320#	1.0	D			MT1	1.0	11Es06 *
70 Ni $-$ u	-63980	350	-63568.7	2.3	0.8	U			TO5	1.5	94Se12 *
	-63020	350	03300.7	2.3	-1.0	Ü			TO6	1.5	98Ba.A *
⁷⁰ Cu- ⁸⁵ Rb _{.824}	5077.6	1.7	5077.3	1.2	-0.2	2			MA8	1.0	07Gu09 *
	5077.2	2.2			0.1	2			MA8	1.0	07Gu09 *
# 0 05	5077.0	2.3			0.1	2			MA8	1.0	07Gu09 *
70 Ga $-^{85}$ Rb _{.824}	-1293.0	2.3	-1292.8	1.3	0.1	1	31	31 ⁷⁰ Ga	MA8	1.0	07Gu09
$C_5 H_{10} - {}^{70}Ge$	154001.3	2.2	154001.6	0.9	0.1	U			M15	2.5	63Ri07
$C_4 H_6 O^{-70}Ge$	117616.1	1.8	117616.1	0.9	0.0	U			M15	2.5	63Ri07
⁷⁰ Se−u	-66890	490	-66484.5	1.7	0.6	0			GA6	1.5	98Ch20
	-66635 -66520	75 140			1.3 0.2	U U			GT1 GA6	1.5	01Ha66
	-00320	140			0.2	U			GAO	1.5	02Li24

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
70 Se $-^{13}$ C F ₃		-65048.8	1.7				2			MS1	1.0	09Sa12
70 Se $-^{85}$ Rb _{.824}		6209	18	6200.8	1.7	-0.5	U			MA8	1.0	11He10
70 Br $-^{13}$ C F ₃		-53772	16				2			MS1	1.0	09Sa12
70 Ni $-^{72}$ Ge _{.972}		12173.6	2.3				2			JY1	1.0	07Ra27
⁷⁰ Zn ³⁵ Cl- ⁶⁸ Zn ³⁷ Cl		3429.5	1.7	3425.0	2.2	-0.7	1	10	9 ⁷⁰ Zn	H18	4.0	64Ba03
70 Zn(3 He, 8 B) 65 Co		-18385	13	-18370	3	1.2	U			Pri		78Ko24
70 Zn(α , 7 Be) 67 Ni		-19155	36	-19166	3	-0.3	U			Tex		78Co.A
		-19164	22			-0.1	U			Pri		78Ko28
70 Zn(14 C, 17 O) 67 Ni		-1661	100	-1993	3	-3.3	В			Ors		88Gi04
70 Ge(p, α) 67 Ga		1180.9	1.5	1181.2	1.2	0.2	1	60	45 ⁶⁷ Ga	NDm		76Jo01
⁷⁰ Ge(³ He, ⁶ He) ⁶⁷ Ge		-10572	30	-10565	5	0.2	U			MSU		78Pa11
70 Zn(14 C, 16 O) 68 Ni		1727	30	1656	4	-2.4	U			Ors		88Gi04
⁷⁰ Zn(¹⁸ O, ²⁰ Ne) ⁶⁸ Ni		172	26	158	4	-0.5	Ü			Hei		84Ha31
68 Zn(t,p) 70 Zn		7196	15	7218.5	2.0	1.5	Ü			Ald		72Hu06
70 Ge(p,t) 68 Ge		-11251	13	-11243.9	2.1	0.5	U			ChR		72Hs01
GC(p,t) GC		-11242	7	112 13.7	2.1	-0.3	Ü			Ors		77Gu02
⁷⁰ Zn(¹⁴ C, ¹⁵ O) ⁶⁹ Ni		-8936	150	-9422	4	-3.2	В			Ors		84De33
70 Zn(d, 3 He) 69 Cu		-5605	10	-5624.0	2.4	-1.9	U			ANL		78Ze04
Zii(u, 11c) Cu		-5622	13	3021.0	2	-0.2	U			Hei		84Ha31
70 Zn(t, α) 69 Cu		8682	20	8696.4	2.4	0.7	U			LAI		81Aj02
69 Ga(n, γ) 70 Ga		7654.0	1.0	7653.65	0.17	-0.4	U			L/ 11		71Ar12 2
Gu(II, /) Gu		7651.6	1.0	7033.03	0.17	2.0	F					71Ve03
		7653.65	0.17			0.0	1	100	64 ⁷⁰ Ga	Bdn		06Fi.A
⁶⁹ Ga(d,p) ⁷⁰ Ga		5430	10	5429.08	0.17	-0.1	Ú	100	0+ Gu	Kop		71Ar12
⁷⁰ Ge(d, ³ He) ⁶⁹ Ga		-3030	7	-3029.6	1.5	0.1	U			Ors		78Ro14
70 Cu(β ⁻) 70 Zn		6310	110	6588.4	2.2	2.5	U			013		75Re09
Cu(p) Zn		5928	110	0300.1	2.2	6.0	В					75Re09
70 Zn(t, 3 He) 70 Cu		-6559	20	-6569.8	2.2	-0.5	U			LAl		77Sh08
Zii(t, 11c) Cu		-6602	20	0307.0	2.2	1.6	U			LAI		87Aj.A
70 Zn(p,n) 70 Ga		-1436.3	2.0	-1436.9	1.6	-0.3	_			Nvl		59Go68 2
Ζп(р,п) Ой		-1439.1	3.0	1 150.5	1.0	0.7	_			Oak		64Jo11 2
	ave.	-1437.2	1.6			0.1	1	92	88 ⁷⁰ Zn	Oun		average
70 Ga(β^{-}) 70 Ge	4,01	1650	10	1651.7	1.5	0.2	Ü		00 2			57Bu41
$^{70}\text{As}(\beta^{+})^{70}\text{Ge}$		6220	50	1031.7	1.5	0.2	2					63Bo14
70 Se(β^{+}) 70 As		2780	200	2410	50	-1.8	F					75La02
BC(p) 115		2736	85	2110	50	-3.8	В					01To06
70 Br(β^{+}) 70 Se		9970	170	10504	15	3.1	C			ANB		79Da.A
21(p) 50		9898	80	1000.		7.6	В			11112		04Ka38
* ⁷⁰ Co-u	M - A =			nixture gs+m a	at 200#20							Nub16b *
* ⁷⁰ Co-u				S suggest ⁷⁰ C								GAu *
* ⁷⁰ Ni-u				-A = -59490(GAu *
* ⁷⁰ Ni-u				nixture gs+m a								Nub16b *
*				m half-life=23			s					GAu *
*70Cu-85Rb.824				first publishe								04Va07 *
* ⁷⁰ Cu- ⁸⁵ Rb _{.824}				at 101.1(0.3)			5.4(2.0)	keV				Nub16b *
* ⁷⁰ Cu- ⁸⁵ Rb _{.824}	$D_{M}=53$	37.4(2.3) µn f	for 70 Cu ⁿ	at 242.6(0.5)	keV: <i>M</i> –	A = -62.73	4.1(2.2)1	keV				Nub16b *
$*^{70}Br - {}^{13}CF_3$	$D_M = -5$	1311(16) μπ f	for 70 Br ^m	at 2292.3(0.8)	keV	02/0	(2.2)					Nub16b *
$*^{69}$ Ga(n, γ) ⁷⁰ Ga				nan for other a		Z recalibra	ated					AHW *
$*^{70}$ Cu(β^-) 70 Zn				4^+ level at 17								Ens04c *
$*^{70}$ Cu(β^-) 70 Zn				at 242.6 keV		at 5057.0) I KC V					Nub16b *:
* $Cu(\beta^{-})$ ZII * 70 As $(\beta^{+})^{70}$ Ge				046.427, 4 ⁺ a		7 keV						Ens04c *:
$*^{70}$ Se(β^+) 70 As							l koV					
				81.49, 1 ⁺ at 2			L KC V					Ens04c *
$*^{70}$ Se(β^+) 70 As				sagrees with N	nubase 41	.1(0.3)m						Nub16b *:
$*^{70}$ Br(β^+) 70 Se	$Q_{\beta^+}=12$	2190(80) from	1 2292.3 /	"Rt"								04Ka38 *:

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted v	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁷¹ Co−u		-47100	600	-47630	500	-0.6	2			TO6	1.5	98Ba.A
co u		-47870	600	17050	500	0.4	2			MT1	1.0	11Es06
71 Ni $-$ u		-60000	400	-59481.0	2.4	0.9	U			TO5	1.5	94Se12
THE U		-58700	350	37101.0	2	-1.5	U			TO6	1.5	98Ba.A
⁷¹ Cu- ⁸⁵ Rb _{.835}		6332.4	1.6			1.5	2			MA8	1.0	07Gu09
⁷¹ Zn-u		-72080	380	-72280.4	2.8	-0.4	U			TO6	1.5	98Ba.A
71 Zn ^m $-^{85}$ Rb _{.835}		1544.3	2.6	1544.4	2.5	0.0	1	95	95 ⁷¹ Zn ^m		1.0	08Ba54
$C_5 H_{11} - {}^{71}Ga$		161370.2	3.2	161372.8	0.9	0.3	U	75)3 Zn	M15	2.5	63Ri07
71 Ga $-^{85}$ Rb _{.835}		-1641.6	3.0	-1641.9	0.9	-0.1	_			MA8	1.0	07Gu09
Ga- Kb.835		-1641.0 -1640.2	1.3	-1041.9	0.9	-0.1	_			MA8	1.0	07Gu09
	ovo	-1640.2 -1640.4	1.2			-1.3	1	53	53 ⁷¹ Ga	MAO	1.0	
⁷¹ Se-u	ave.	-68160	340	-67791	3	0.7		33	33 Ga	GA6	1.5	average 98Ch20
Se-u				-07791	3	-0.9	0			GA0 GT1		
		-67687 -67830	75 120			-0.9 0.2	U U			GA6	1.5	01Ha66 02Li24
71 Se $-^{85}$ Rb _{.835}		-07830 5865.0	3.0			0.2				MA8	1.5	11He10
⁷¹ Br—u				(0(50		0.7	2				1.0	
		-61260	610	-60658	6	0.7	U	100	100 ⁷¹ Br	GA6	1.5	02Li24
¹¹ Br H ₂ -C ₄ H ₉ O		-110347.7	5.8	-110348	6	0.0	1	100		MS1	1.0	09Sa12
Kr-u		-49727	151	-49730	140	0.0	1	84	84 ⁷¹ Kr	LZ1	1.0	11Tu02
$^{11}\text{Ni}-^{72}\text{Ge}_{.986}$		17352.2	2.4				2			JY1	1.0	07Ra27
8 Zn(α ,n) 71 Ge		-5630	40	-5747.0	1.1	-2.9	U			Oak		64St01
10 Zn(18 O, 17 F) 71 Cu		-9529	35	-9588.1	2.4	-1.7	U		- 71 -	Ber		89Bo.A
0 Zn(d,p) 71 Zn		3609	10	3611	3	0.2	1	10	7 ⁷¹ Zn	ANL		67Vo05
0 Zn(3 He,d) 71 Ga		2380	20	2369.9	2.1	-0.5	U					74Ri08
1 Ga $(\gamma,n)^{70}$ Ga		-9240	60	-9300.3	1.4	-1.0	U			Phi		60Ge01
1 Ga(d,t) 70 Ga		-3054	10	-3043.1	1.4	1.1	U			Kop		71Ar12
0 Ge(n, γ) 71 Ge		7415.3	1.5	7415.94	0.11	0.4	U					70Or.A
		7415.1	2.			0.4	U					72Gr34
		7415.95	0.15			-0.1	_			MMn		91Is01
		7415.93	0.15			0.1	_			Bdn		06Fi.A
70 Ge(d,p) 71 Ge		5182	10	5191.37	0.11	0.9	U			Kyu		73Ka03
70 Ge $(n,\gamma)^{71}$ Ge	ave.	7415.94	0.11	7415.94	0.11	0.0	1	100	85 ⁷⁰ Ge			average
$^{\prime 0}$ Ge(p, γ) ⁷¹ As		4619	5	4620	4	0.2	R					75Li14
1 Zn m (IT) 71 Zn		157.7	1.3	157.7	1.3	0.0	1	98	93 ⁷¹ Zn			Ens10c
1 Zn(β^{-}) 71 Ga		2610	50	2810.4	2.8	4.0	В					61Th01
•		2786	50			0.5	U					61Th01
		2796	50			0.3	U					64So01
1 Ge $(\varepsilon)^{71}$ Ga		233.0	0.5	232.64	0.22	-0.7	_			Hei		84Ha.A
		229.3	1.0			3.3	F					91Zl01
		232.1	0.5			1.1	_					93Di03
		232.71	0.29			-0.2	_					95Le19
		233.5	1.2			-0.7	U			TT1		13Fr13
1 Ga(p,n) 71 Ge		-1018.4	2.0	-1014.98	0.22	1.7	U			Oak		64Jo11
1 Ge(ε) 71 Ga	ave.	232.65	0.22	232.64	0.22	0.0	1	99	86 ⁷¹ Ge			average
1 Ga(3 He,t) 71 Ge- 65 Cu() 65 Zn		1122.0	0.9	1119.0		-3.3	В			Pri		84Ko10
$^{11}\text{As}(\beta^{+})^{71}\text{Ge}$		1997	20	2013	4	0.8	U					53St31
, J.		2010	10		•	0.3	2					54Th36
		2012	10			0.1	2					55Gr08
71 Se(β^+) 71 As		4428	125	4747	5	2.5	U					73Sc17
20(P) 110		4762	35	., .,	5	-0.4	U					01To06
71 Kr $(\varepsilon)^{71}$ Br		10140	320	10180	130	0.1	1	16	16 ⁷¹ Kr			97Oi01
⁷¹ Zn-u	M 1-						1	10	10 Ki			
1 Zn $(\beta^{-})^{71}$ Ga		=–67060(350) 450(50) 1460					2) to 0/	2± at 1402	74			Nub16c
	r	450(50) 1460		cuvery, from	Zii at	137.7(1	.3) 10 9/.	∠ at 1493	./4			Ens10c
71 Ge(ε) 71 Ga		s 17 keV neutr		191 -								AHW
71 Ge $(\varepsilon)^{71}$ Ga 71 As $(\beta^+)^{71}$ Ge		al error 0.1 inc										GAu
11 Ac(KT)/1(+e	$E_{o+}=8$	00(20) 813(10	n 815(10) respectively,	to 5/2 ⁻	level at 1	74.943	keV				Ens10c

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁷² Ni-u	-58700	500	-58214.1	2.4	0.6	U			TO5	1.5	94Se12
141 u	-57400	400	30214.1	2.4	-1.4	U			TO6	1.5	98Ba.A
⁷² Cu−u	-64250	510	-64179.7	1.5	0.1	U			TO6	1.5	98Ba.A *
⁷² Cu- ⁸⁵ Rb _{.847}	10534.4	1.5	-04175.7	1.5	0.1	2			MA8	1.0	07Gu09
$^{72}Zn - ^{85}Rb_{.847}$	1556.9	2.3				2			MA8	1.0	08Ba54
72 Ga $-^{85}$ Rb _{.847}	1079.5	1.5	1081.5	0.9	1.4	1	34	34 ⁷² Ga	MA8	1.0	07Gu09
$C_4 H_8 O^{-72}Ge$	135438.4	2.1	135439.05	0.9	0.1	U	34	34 Ga	M15	2.5	63Ri07
72 Ge-u	-77906	25	-77924.17	0.08	-0.7	U			MR1	1.0	15Wi.A
Ge—u	-77906 -77927	22	-//924.1/	0.08	-0.7 0.1	U			MR1	1.0	15Wi.A 15Wi.A
	-77898					U					
72 Se $-^{85}$ Rb _{.847}		20			-1.3				MR1	1.0	15Wi.A
⁷² Br ²⁷ Al- ⁸⁵ Rb _{1.165}	1854.6	2.1	20000 0	1.1	0.0	2			MA8	1.0	11He10
$^{72}\text{Br} - ^{85}\text{Rb}_{.847}$	20892.1	7.2	20898.0	1.1	0.8	U			MA8	1.0	11He10
72 K 85 D	11308.7	1.1				2			MS1	1.0	15Va05 *
⁷² Kr- ⁸⁵ Rb _{.847}	16806.5	8.6	45000		0.4	2			MA8	1.0	06Ro11
70 Ge H ₂ $-^{72}$ Ge	17821.3	1.7	17822.9	0.9	0.4	U			M15	2.5	63Ri07
⁷² Ge ³⁵ Cl ⁻⁷⁰ Ge ³⁷ Cl	779.8	5.9	777.2	0.9	-0.2	U			H40	2.5	85El01
72 Ni $-^{72}$ Ge	19710.1	2.4				2			JY1	1.0	07Ra27
70 Zn(t,p) 72 Zn	6231	20	6241.6	2.9	0.5	U			Ald		72Hu06
71 Ga(n, γ) 72 Ga	6521.1	1.0	6520.47	0.19	-0.6	U					70Li04 Z
	6519.8	1.0			0.7	F					71Ve03 *
	6520.44	0.19			0.2	1	99	66 ⁷² Ga	Bdn		06Fi.A
72 Ge(d, 3 He) 71 Ga	-4241	7	-4242.3	0.8	-0.2	U			Ors		78Ro14
$^{72}\mathrm{Zn}(\beta^-)^{72}\mathrm{Ga}$	422	20	442.8	2.3	1.0	U					63De11 *
	458	6			-2.5	В					63Th03 *
72 Ga(β^{-}) 72 Ge	4000	20	3997.6	0.8	-0.1	U					55Jo09 *
	3984	10			1.4	U					60La04 *
72 As(β^{+}) 72 Ge	4361	10	4356	4	-0.5	2					50Me55
	4345	10			1.1	2					68Vi05
72 Ge(p,n) 72 As	-5140	5	-5138	4	0.3	2			Kyu		76Ki12
72 Br(β^{+}) 72 Se	8869	95	8806.4	2.2	-0.7	U					01To06
72 Kr(β^{+}) 72 Br	5040	80	5121	8	1.0	U					73Sc17 *
$*^{72}$ Cu-u	M - A = -59710(4)										Nub16b **
$*^{72}$ Br $-^{85}$ Rb _{.847}	D_M =11308.4(1.1))uu, 1141	7.2(1.2) for gre	ound sta	ite and ⁷² Br	m at 100.	.76(0.15) k	æV			Nub16b **
*	respectively M -	-A = -590	62.0(1.0) and -	-58960.	7(1.1) keV						15Va05 **
$*^{71}$ Ga $(n, \gamma)^{72}$ Ga	$F : E(\gamma)$ systematic	ically low	er than for oth	er autho	ors; Z recal	librated					AHW **
$*^{72}$ Zn(β^-) ⁷² Ga	E_{β} = 260(20) 296	6(6) respe	ctively, to 1+ l	level at	161.53 keV						Ens102 **
$*^{72}$ Ga(β^-) 72 Ge	$E_{\beta}^{r} = 3166(20) 31$					κeV					Ens102 **
$*^{72}$ Kr $(\beta^+)^{72}$ Br	$E_{\beta^+}^{\rho}$ =3794(180),						1 ⁺ ,				73Sc17 **
*	415.05 1 ⁺ and 5										Ens102 **
⁷³ Ni-u	-52500	500	-53793.3	2.6	-1.7	U			TO6	1.5	98Ba.A
⁷³ Cu-u	-62740	350	-63325.6	2.1	-1.1	Ü			TO6	1.5	98Ba.A
⁷³ Cu ⁻⁸⁵ Rb _{.859}	12447.9	4.2	12447.0	2.1	-0.2	1	25	25 ⁷³ Cu	MA8		07Gu09
73 Zn-u	-70100	380	-70417.4	2.0	-0.2 -0.6	U	23	25 Cu	TO6	1.5	98Ba.A *
73 Zn $^{-85}$ Rb _{.859}	5355.2	2.0	,011,.7	2.0	0.0	2			MA8	1.0	08Ba54
73 Ga 85 Rb _{.859}	947.3	1.8				2			MA8	1.0	07Gu09
C ₄ H ₉ O ⁻⁷³ Ge	141878.4	2.1	141880.95	0.06	0.5	U			M15	2.5	63Ri07
⁷³ Se- ⁸⁵ Rb _{.859}	2511	11	2528	8	1.5		52	52 ⁷³ Se	MA8	1.0	
⁷³ Br-u	-68428			8		1	32	32 Se	GT1		
⁷³ Br ²⁷ Al- ⁸⁵ Rb _{1,176}	-68428 16945.3	97 7 °	-68328	o	0.7	U				1.5	01Ha66
73 Kr $-^{85}$ Rb _{.859}	15061.8	7.8	15062	7	0.0	2			MA8	1.0	11He10
KI — KO _{.859}		7.1	15062	7	0.0	0			MA8	1.0	04Ro32 *
	15062.8	9.7			-0.1	2			MA8	1.0	06Ro11
73 Ni $-^{72}$ Ge _{1.014}	15060.7	10.3			0.1	2			MA8	1.0	06Ro11
$^{73}\text{Cu} - ^{72}\text{Ge}_{1.014}$	25221.8	2.6	15600 5	2.1	0.1	2	75	75 730	JY1	1.0	07Ra27
Cu-~Ge _{1.014}	15689.2	2.4	15689.5	2.1	0.1	1	75	75 ⁷³ Cu	JY1	1.0	07Ra27

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁷² Ge H- ⁷³ Ge		6443.9	1.3	6441.90	0.05	-0.6	U			M15	2.5	63Ri07
$^{73}\text{Br}-^{72}\text{Br}$		-4610	330	-4923	8	-0.4	U			CR1	2.5	89Sh10 *
DI- DI		-4709	166	-4923	o	-0.4	U			CR2	1.5	91Sh19 *
72 Ge(n, γ) 73 Ge		6783.4	0.9	6782.94	0.05	-0.5	U			CKZ	1.5	72Gr34
$Ge(\Pi,\gamma)$		6780.9	2.	0762.94	0.03	-0.3	U					72G134 72Ha74
		6782.94	0.05			0.0	1	100	100 ⁷² Ge	MMn		91Is01 Z
		6783.12	0.05			-1.2	U	100	100 Ge	Bdn		06Fi.A
72 Ge(d,p) 73 Ge		4571	4	4558.37	0.05	-3.2	В			Ald		69He05
GC(u,p) GC		4563	10	4336.37	0.03	-0.5	U			Kop		72Ha74
		4541	10			1.7	U			Kyu		72Ha74 73Ka03
72 Ge(3 He,d) 73 As		160	4	162	4	0.6	1	93	93 ⁷³ As	Hei		76Sc13
73 Kr(ε p) 72 Se		3700	150	4027	7	2.2	U	73	93 As	ChR		81Ha44
$^{73}\text{Rb}^{i}(p)^{72}\text{Kr}$		3803	40	4027	,	2.2	3			CIIIC		93Ba61
$^{73}\text{Ga}(\beta^-)^{73}\text{Ge}$		1554	40	1598.2	1.7	1.1	U					58Yt22 *
Ga(p) GC		1564	80	1376.2	1.7	0.4	U					70Wa21 *
73 Ge(p,n) 73 As		-1121.6	15.	-1127	4	-0.4	U			Oak		64Jo11 *
$^{73}\text{Se}(\beta^{+})^{73}\text{As}$		2740	10	2725	7	-1.5	1	55	48 ⁷³ Se	Oak		56Ha10 *
$^{73}\text{Br}(\beta^+)^{73}\text{Se}$		4748	500	4580	10	-0.3	U	33	40 50			70Mu02 *
$BI(p^{-})$ Se		4648	400	4360	10	-0.3 -0.2	U					70Niu02 * 74Ro11 *
		4688	140			-0.2 -0.8	U					87He21 *
		4610	70			-0.3 -0.4	U					01To06
73 Kr(β^{+}) 73 Br		6790	350	7096	10	0.9	U					73Sc17 *
$KI(p^{-})$ bi		6860	220	7070	10	1.1	U					97Oi01
$*^{73}$ Zn $-u$	M = A -	=-65200(350) k		re os∔m at 10⁴	5.5 keV	1.1	O					Nub16c **
* ⁷³ Se- ⁸⁵ Rb _{.859}		24.6(7.3) μu fo				68230	0(6 8) k	οV				Nub16b **
$*^{73}$ Kr $-^{85}$ Rb _{.859}		ned results of ne	_		v, m-A	00230.	.0(0.6) K	CV				GAu **
$*^{73}Br^{-72}Br$		660(330) μu co			ture at 100	76 keV						Nub16b **
$*^{73}Br - ^{72}Br$	Erom 72	² Br/ ⁷³ Br=0.986	35312(227)	Di gs+iii iiiix	ture at 100	. 70 KC V						AHW **
$*^{73}$ Ga(β^-) ⁷³ Ge		190(40) 1200(8		dy to 3/2 - leve	al at 364 0) kaV						Ens043 **
$*^{73}$ Ge(p,n) ⁷³ As		$5(15)$ to $5/2^-$ le			zi at 504.02	2 KC V						Ens043 **
* $Ge(\beta, I)$ As * $^{73}Se(\beta^+)^{73}As$		290(10) to 9/2 ⁺										
$*^{73}\text{Br}(\beta^+)^{73}\text{Se}$	E_{β} +-12	700(500) 3600(400) 2640(1	.900 KC V	to 73 com	at 25 71	1 1ra V /					Ens043 ** Nub16b **
* $BI(\beta^{+})$ Se * $^{73}Kr(\beta^{+})^{73}Br$					y, 10 Se	at 23.71	I KC V					Ens043 **
* KI(p') BI	<i>E</i> β+-3.	589(350) to 3/2	ievei at 17	0.00 KC V								Eliso43 **
⁷⁴ Ni-u		-52830	1060	-52020#	210#	0.8	D			MT1	1.0	11Es06 *
⁷⁴ Cu-u		-59400	400	-60125	7	-1.2	U			TO6	1.5	98Ba.A
⁷⁴ Cu- ⁸⁵ Rb _{.871}		16706.0	6.6	00123	,	1.2	2			MA8	1.0	07Gu09
$^{74}Zn - ^{85}Rb_{.871}$		6238.4	2.7				2			MA8	1.0	08Ba54
74 Ga $-^{85}$ Rb _{.871}		3776.9	22.6	3777	3	0.0	U			MA8	1.0	07Ke09 *
Gu 10.8/1		3776.9	4.0	3111	3	0.0	2			MA8	1.0	07Gu09
		3806.5	34.6			-0.9	Ū			MA8	1.0	07Ke09 *
		3776.8	5.4			0.0	2			TT1	1.0	15Ma30
${ m C}^{32}{ m S}_2{ m -}^{74}{ m Ge}{ m H}_2$		7314.0	1.4	7314.522	0.014	0.1	Ü			M15	2.5	63Ri07
⁷⁴ Ge ⁻⁸⁴ Kr		9680.0337	0.0128	9680.034	0.013	0.0	1	100	100 ⁷⁴ Ge	FS1	1.0	10Mo03
$C_6 H_2 - {}^{74}Se$		93173.8	3.8	93174.129	0.016	0.0	Ü	100	100 00	M15	2.5	63Ri07
$^{74}\text{Se}-^{84}\text{Kr}$		10978.2066	0.0128	10978.207	0.015	0.0	0			FS1	1.0	10Mo03 *
74 Se $-^{85}$ Rb _{.871}		-691.4	7.3	-692.927	0.015	-0.2	U				1.0	11He10
74 Br 27 Al $^{-85}$ Rb _{1.188}		16246.0	6.8	16242	6	-0.5	1	85	85 ⁷⁴ Br	MA8	1.0	11He10 *
$^{74}\text{Kr}-^{85}\text{Rb}_{.871}$		9915.0	2.2	9915.2	2.2	0.1	0	0.5	05 D I	MA8	1.0	04Ro32 *
181 180.8/1		9915.0	2.6	7713.2	2.2	-0.6	_			MA8	1.0	04R032 *
		9909.7	4.4			1.2	_				1.0	06Ro11
	ave.	9915.0	2.2			0.1	1	93	93 ⁷⁴ Kr	1.27 10	1.0	average
74 Rb $-^{85}$ Rb $_{.871}$	4,0.	21109	19	21097	3	-0.6	Ü	,,,	,, 111	MA8	1.0	07Ke09
1.0.8/1		21107	4.3		5	-0.0	0			MA8	1.0	04Ke10 *
		21097.7	5.2			0.3	_			MA8	1.0	07Ke09
		21102.7	7.5			-0.8	_			MA8	1.0	07Ke09
		21096.4	6.5			0.1	_			TT1	1.0	15Ma30
	ave.	21097	4			-0.1	1	83	83 ⁷⁴ Rb			average
	· · · ·		•			~	-					

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁷⁴ Rb-u		-55765	125	-55734	3	0.2	U			P40	1.0	06Lu19
⁷⁴ Ge ³⁵ Cl- ⁷² Ge ³⁷ Cl		2047.5	1.1	2052.05	0.11	1.0	U			H18	4.0	64Ba03
de el de el		2047.74	0.71	2032.03	0.11	2.4	Ü			H40	2.5	85El01
		2052.01	0.26			0.1	Ü			H44	1.5	91Hy01
⁷⁴ Se ³⁵ Cl- ⁷² Ge ³⁷ Cl		3347.9	4.7	3350.22	0.11	0.2	Ü			H40	2.5	85El01
⁷³ Ge H- ⁷⁴ Ge		10105.1	1.7	10106.23	0.06	0.3	Ü			M15	2.5	63Ri07
⁷⁴ Se- ⁷⁴ Ge		1298.5	8.5	1298.173	0.008	0.0	Ü			H40	2.5	85El01
50		1298.7	3.7	12,011,0	0.000	-0.1	Ü			H40	2.5	85El01
		1298.096	0.053			1.5	Ü			JY1	1.0	10Ko15
		1298.1729	0.0080			0.0	1	100	100 ⁷⁴ Se	FS1	1.0	10Mo03
$^{74}{\rm Br}{-}^{73}{\rm Br}$		-1244	410	-1761	10	-0.5	U			CR1	2.5	89Sh10
74 Se(p,t) 72 Se		-11979	24	-12005.9	2.0	-1.1	Ü			Win		74De31
74 Ge(14 C, 15 O) 73 Zn		-8018	150	-7664.8	1.9	2.4	Ü			Ors		84De33
74 Ge(d, 3 He) 73 Ga		-5515	7	-5518.6	1.7	-0.5	Ü			Ors		78Ro14
36(a, 110) 3a		-5509	13	2210.0	1.,	-0.7	Ü			Hei		84Ha31
73 Ge(n, γ) 74 Ge		10200.2	0.6	10196.24	0.06	-6.6	В					70Ha60
(,1)		10198	2			-0.9	U					74Ch18
		10195.90	0.15			2.2	_			ILn		85Ho.A
		10196.32	0.14			-0.6	_					89Bu.A
		10196.31	0.07			-1.1	_			MMn		91Is01
		10196.06	0.20			0.9	_			Bdn		06Fi.A
	ave.	10196.24	0.06			0.0	1	100	100 ⁷³ Ge			average
74 Se(d, 3 He) 73 As		-3027	8	-3056	4	-3.6	В			Ors		83Ro08
74 Zn(β^{-}) 74 Ga		2350	100	2293	4	-0.6	U					72Er05
74 Ga(β^{-}) 74 Ge		5400	100	5372.8	3.0	-0.3	U					62Ei02
74 As(β^{+}) 74 Ge		2558	4	2562.4	1.7	1.1	_					71Bo01
74 Ge(p,n) 74 As		-3343.5	5.6	-3344.7	1.7	-0.2	_			Tkm		63Ok01
(F,)		-3348.3	5.			0.7	_			Oak		64Jo11
		-3346	5			0.3	_					70Fi03
		-3347	3			0.8	_			Kyu		73Ki11
74 As(β^{+}) 74 Ge	ave.	2562.9	1.9	2562.4	1.7	-0.3	1	82	82 ⁷⁴ As	J		average
74 As(β^{-}) 74 Se		1351	4	1353.1	1.7	0.5	1	18	18 ⁷⁴ As			71Bo01
74 Br(β^{+}) 74 Se		6857	100	6925	6	0.7	U					69La15
74 Se(p,n) 74 Br		-7689	15	-7707	6	-1.2	1	15	15 ⁷⁴ Br			75Lu02
$^{74}\text{Kr}(\beta^{+})^{74}\text{Br}$		3000	200	2956	6	-0.2	U					74Ro11
())		3327	125			-3.0	В					75Sc07
74 Rb(β^{+}) 74 Kr		10000	1500	10416	3	0.3	U					76Da.D
· ()		10413.8	7.0			0.3	1	24	17 ⁷⁴ Rb			03Pi08
⁷⁴ Ni-u	Trends	from Mass Sur		iggest ⁷⁴ Ni 750	less bour							GAu :
⁷⁴ Ga- ⁸⁵ Rb _{.871}				.0(1.7) keV for			< 0.1 at 5	9.571 keV				Nub16b
⁷⁴ Ga- ⁸⁵ Rb _{.871}				.0(1.7) keV for								Nub16b
e^{74} Se $-^{84}$ Kr				e^{74} Ge $-^{74}$ Se be								10Mo03 =
⁷⁴ Br ²⁷ Al- ⁸⁵ Rb _{1.188}				gs+m at 13.58 k		A=-8247	74.9(4.9)) keV				Nub16b
⁷⁴ Kr- ⁸⁵ Rb _{.871}		ned results of n			,							GAu :
74 Rb $-^{85}$ Rb _{.871}		ned results of n										GAu :
$e^{74} Br - {}^{73} Br$		230(410) µu fo										Nub16b
* ⁷⁴ Se(p,t) ⁷² Se		al error 12; add										GAu :
* ⁷⁴ Se(d, ³ He) ⁷³ As	Q = -30	033(8) for $O(^{76})$	$Se(d^3He)=$	-4020.7(2.0), n	ow 4014	5 keV						AHW :
74 Zn(β^{-}) ⁷⁴ Ga		100(100) to 1 ⁺										Ens067
74 Ga(β^-) ⁷⁴ Ge		450(100) to 3 ⁻										Ens067 :
74 As $(\beta^+)^{74}$ Ge				eport $E(2^+)=59$	3 1(1 5) 3	while						AHW
k		=595.850(0.00)			J.1(1.J)	., 11110						Ens067
8 74 As $(\beta^{-})^{74}$ Se				iso Kb(p) icreased, see ⁸⁴	$Rb(B^+)$							AHW :
$*^{74}$ Br(β^+) 74 Se				.76, 1363.21 le								69La15
· Di(h) ge		74 Br ^m at 13.8(0		. 10, 1303.21 16	v C15							
e^{74} Se(p,n) ⁷⁴ Br				lroV								93Do05 =
* 74 Rb(β ⁺) 74 Kr		$8(15)$ to (2^-) le			ntio							Ens067
$*^{74}$ Rb(β^+) ⁷⁴ Kr				and branching ra	atiO							GAu :
* Κυ(<i>p</i>) 'Kr	Origina	al 10405(9) re-e	varuateu in i	ciciciice								11To.A =

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	ompariso			adjusted valu		itinued,							
Item		Input v	ralue	Adjusted	value	v_i	Dg	Signf.	Maiı	n infl.	Lab	F	Reference
⁷⁵ Cu-u		-58100	700	-58477.4	2.5	-0.4	U				TO6	1.5	98Ba.A
⁷⁵ Zn- ⁸⁵ Rb _{.882}		10641.7	2.1	30177.1	2.3	0.1	2				MA8	1.0	08Ba54
75 Ga $-^{85}$ Rb _{.882}		4301.7	2.6				2				MA8	1.0	07Gu09
$C_3 H_7 O_2 - {}^{75}As$		123009.8	2.6	123009.9	0.9	0.0	Ū				M15	2.5	63Ri07
75 As $-^{85}$ Rb _{.882}		-601.3	7.6	-604.0	0.9	-0.4	U				MA8	1.0	02Ke.A
75 Br 27 Al $-^{85}$ Rb _{1.200}		13201.3	4.6		***		2				MA8	1.0	11He10
75 Kr $-^{85}$ Rb _{.882}		8747.2	8.7				2				MA8	1.0	06Ro11
$^{75}\text{Rb} - ^{85}\text{Rb}_{.882}$		16371	8	16374.7	1.3	0.5	U				MA2	1.0	94Ot01
.002		16374.7	1.7			0.0	2				MA8	1.0	07Ke09
		16368	21			0.3	U				MA8	1.0	07Ke09
		16374.6	1.9			0.0	2				TT1	1.0	15Ma30
75 Cu $-^{72}$ Ge _{1.042}		22719.6	2.5				2				JY1	1.0	07Ra27
⁷⁵ As ³⁵ Cl- ⁷³ Ge ³⁷ Cl		1079.6	5.0	1085.7	1.0	0.5	U				H40	2.5	85El01
74 Ge(n, γ) 75 Ge		6505.9	1.1	6505.84	0.05	-0.1	U						72Gr34
		6505.5	2.			0.2	U						72Ha74
		6505.81	0.30			0.1	U						89Bu.A *
		6505.26	0.08			7.3	В				MMn		91Is01 Z
		6505.45	0.14			2.8	C				Bdn		06Fi.A
7.4 7.5		6505.84	0.05				2						12Me04
74 Ge(d,p) 75 Ge		4265	15	4281.27	0.05	1.1	U				MIT		67Sp09
		4282	10			-0.1	U				Kop		72Ha74
74 75 .		4268	10			1.3	U				Kyu		73Ka03
74 Ge(p, γ) 75 As		6901.6	5.	6900.7	0.9	-0.2	U						74Wa08
74 Ge(3 He,d) 75 As		1414	4	1407.2	0.9	-1.7	U				Hei		76Sc13
75 As $(\gamma, n)^{74}$ As		-10259	31	-10245.5	1.9	0.4	U				Phi		60Ge01
74 Se(n, γ) 75 Se		8027.84	0.30	8027.60	0.07	-0.8	U				BNn		81En07 Z
		8027.60	0.08			0.0	-				ILn		84To11 Z
		8027.59	0.16			0.0	-	100	100	75 c	Bdn		06Fi.A
757 (0-)750	ave.	8027.60	0.07	7006	2	0.0	1	100	100	⁷⁵ Se	G.		average
75 Zn(β^{-}) 75 Ga		6060	80	5906	3	-1.9	U				Stu		86Ek01
75 Ga(β^-) 75 Ge 75 Ge(β^-) 75 As		3300	200	3392.4	2.4	0.5	U						60Mo01
		1188	20	1177.2	0.9	-0.5	U				NI1		55Sc09
75 As(p,n) 75 Se		-1647.2	2.0	-1647.1	0.9	0.1	_				Nvl		59Go68 Z
		-1647.3 -1643	1.1 5			$0.3 \\ -0.8$	– U				Oak		64Jo11 Z 70Fi03
	0110	-1643 -1647.3	1.0			0.3	1	85	85	⁷⁵ As			
75 Br(β^{+}) 75 Se	ave.	3010	20	3062	4	2.6	U	63	63	AS			average 52Fu04 *
$\operatorname{Bl}(p^+)^{-1}\operatorname{Sc}$		3030	50	3002	4	0.6	U						52Fu04 * 61Ba43 *
		3050	20			0.6	U						69Ra24 *
75 Kr(β^{+}) 75 Br		4400	200	4783	9	1.9	U						74Ro12 *
75 Sr(ε) 75 Rb		10600	220	4703		1.7	3						03Hu01
$*^{74}$ Ge $(n,\gamma)^{75}$ Ge	Origina	ıl error 0.03 ke		d			3						GAu **
$*^{75}$ Br(β^+) 75 Se				0) respectively,	to 3/2-	level at 2	86 5714	keV					Ens139 **
$*^{75}$ Kr(β^+) 75 Br				, 154.61 (3/2)		ic ver at 2	.00.5711	KC (Ens139 **
* Iα(ρ) Di	<i>L</i> _β +-32	200(200) to 13	2.40 (3/2)	, 134.01 (3/2)	icveis								LHS15) ***
⁷⁶ Cu- ⁸⁵ Rb _{.894}		24135.0	7.2				2				MA8	1.0	07Gu09
⁷⁶ Zn- ⁸⁵ Rb _{.894}		24135.0 11975.5	2.0	11974.9	1.6	-0.3	2 1	61	61	⁷⁶ Zn	MA8	1.0	07Gu09 08Ba54
76 Zn $-^{88}$ Rb _{.864}					1.6			39		⁷⁶ Zn			
76 Ga $-^{85}$ Rb _{.894}		9737.4	2.5	9738.3	1.0	0.4	1 2	39	39	ZII	JY1	1.0	08Ha23
$C^{32}S_2 - {}^{76}Ge$		7687.6	2.1	22720 622	0.010	0.5	U				MA8	1.0	07Gu09 63Ri07
⁷⁶ Ge-u		22741.6 -78597.242	1.5 0.096	22739.622 -78597.273	0.019	$-0.5 \\ -0.3$	U				M15 ST2	2.5 1.0	01Do08
$C_6 H_4 - {}^{76}Se$													
C ₆ H ₄ −7 Se ⁷⁶ Se−u		112100 -80786.205	8	112086.424	0.017	-0.7	U				M15 ST2	2.5	63Ri07
⁷⁶ Kr- ⁸⁵ Rb _{.894}		-80786.205 4774.3	0.081 4.7	-80786.296 4771	0.017 4	$-1.1 \\ -0.8$	U	84	01	⁷⁶ Kr	MA8	1.0 1.0	01Do08 06Ro11
$^{76}\text{Rb} - ^{85}\text{Rb}_{.894}$							1	04	64	KI			
KU- KU.894		13931 13932.2	8 2.0	13933.0	1.0	0.3 0.4	U 2				MA2 MA8	1.0 1.0	94Ot01 07Ke09
		13932.2	15			0.4	U				MA8	1.0	07Ke09 07Ke09
		13923	1.6			-1.4	2				MA8	1.0	07Ke09 07Ke09
		13933.3	1.7			1.2	2				TT1	1.0	15Ma30
		13925.2	4.5			1.7	Ü				TT1	1.0	15Ma30
		13933.5	3.4			-0.1	0				TT1	1.0	15Ma30 *
		10,00.0	٥. ١			5.1	0					1.0	101.1400

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

		lue	Adjusted	varue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u> </u>
⁷⁶ Sr ¹⁹ F- ⁸⁵ Rb _{1.118}	38785	37				2			MA8	1.0	05Si34	
$^{76}\text{Sr}-\text{u}$	-58813	107	-58240	40	5.4	F			CS1	1.0	033134 01La31	
⁷⁶ Ge- ⁸⁴ Kr	9904.9983	0.0175	9904.998	0.019	0.0				FS1	1.0	10Mo03	*
⁷⁶ Se ⁻⁸⁴ Kr		0.0173	7715.976			0	100	100 ⁷⁶ Se	FS1		10Mo03	*
74 Ge H ₂ $-^{76}$ Ge	7715.9762 15425.0	1.7	15425.100	0.017 0.023	$0.0 \\ 0.0$	1 U	100	100 ~Se	M15	1.0 2.5	63Ri07	
⁷⁶ Ge ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl												
"Ge "CI—"Ge "CI	3175.7 3170.41	1.5 0.74	3175.07	0.07	-0.1	U U			H18	4.0	64Ba03	
	3174.61	0.74			2.5 0.8	U			H40 H44	2.5 1.5	85El01 91Hy01	
⁷⁶ Se ³⁵ Cl- ⁷⁴ Ge ³⁷ Cl	986.30	0.41	986.05	0.07	-0.3	U			H44	1.5	91Hy01 91Hy01	
$^{76}\text{Ge}-^{76}\text{Se}$	2190.92	0.65	2189.022	0.008	-0.3 -1.3	U			H40	2.5	85El01	
de-se	2188.60	0.39	2109.022	0.008	-1.3 0.7	U			H44	1.5	91Hy01	
	2188.963	0.42			1.1	U			ST2	1.0	01Do08	
	2188.98	0.054			0.3	U			JY1	1.0	08Ra09	
	2189.0221	0.008			0.0	1	100	100 ⁷⁶ Ge	FS1	1.0	10Mo03	
75 Rb $-^{76}$ Rb $_{.493}$ 74 Rb $_{.507}$	-1140	170	-1081.1	2.0	0.0	U	100	100 GC	P20	2.5	82Au01	
$^{76}\text{Ge}(^{14}\text{C}, ^{17}\text{O})^{73}\text{Zn}$	-3779	40	-3790.8	1.9	-0.3	U			Ors	2.3	84Be10	J.
⁷⁶ Ge(¹⁴ C, ¹⁶ O) ⁷⁴ Zn	163	40	300.7	2.5	3.4	В			Ors		84Be10	•
⁷⁶ Ge(¹⁸ O, ²⁰ Ne) ⁷⁴ Zn	-1219	21	-1197.1	2.5	1.0	U			Hei		84Ha31	
⁷⁶ Ge(¹⁴ C, ¹⁵ O) ⁷⁵ Zn	-1219 -10354	150	-1197.1 -10489.7	2.0	-0.9	U			Ors		84De33	
⁷⁶ Ge(d, ³ He) ⁷⁵ Ga	-6545		-6543.8		0.2	U						
Ge(d, He) Ga	-6536	7 22	-0343.8	2.4	-0.4	U			Ors Hei		78Ro14 84Ha31	
75 As(n, γ) 76 As	-0330 7329	2	7328.50	0.07	-0.4 -0.3	U			псі		68Jo11	
$As(\Pi, \gamma) = As$	7328.421	0.075	1326.30	0.07	1.0	2			ILn		90Ho10	7
	7328.421	0.073			-2.1	2			Bdn		06Fi.A	L
75 As(d,p) 76 As	5105	5	5103.93	0.07	-0.2	U			Dun		76Mo32	
75 Se $(n,\gamma)^{76}$ Se	11154.15	0.30	11153.79	0.07	-0.2 -1.2	U			ILn		83To20	7
$^{76}Zn(\beta^{-})^{76}Ga$	4160	80	3993.6	2.4	-1.2 -2.1	U			Stu		86Ek01	L
$^{76}\text{Ga}(\beta^-)^{76}\text{Ge}$	6770	150	6916.2	2.4	1.0				Stu		77Al17	
Ga(p) Ge	7010	90	0910.2	2.0	-1.0	o U			Stu		86Ek01	
76 Ge(p,n) 76 As	-1705	5	-1703.9	0.9	0.2	U			Stu		70Fi03	
$^{76}\text{As}(\beta^-)^{76}\text{Se}$	2970	2	2960.6	0.9	-4.7	В					69Na11	
$^{76}\text{Br}(\beta^+)^{76}\text{Se}$	5002	20	4963	9	-4.7 -2.0	2					71Dz08	
76 Br(n,p) 76 Se	5730	15	5745	9	-2.0 1.0	2			ILL		78An14	
⁷⁶ Se(p,n) ⁷⁶ Br	-5738.6	15.	-5745	9	-0.4	2			ILL		75Lu02	
$^{76}\text{Rb}(\beta^{+})^{76}\text{Kr}$	-3738.0 8793	570	8535	4	-0.4	U					75Lu02 75We23	
$KO(p^{+})^{-}KI$	8063	44	8333	4	-0.3 10.7	F					82Mo10	J.
	8094	162			2.7	F			BNL		83Li11	*
	8250	150			1.9	U			IRS		93A103	*
* ⁷⁶ Rb- ⁸⁵ Rb _{.894}	no accuracy check		and for this 12-	t charge st		U			що		15Ma30	de de
* ⁷⁶ Sr-u	F: other results in				aic						~ .	
$*^{76}$ Ge $-^{84}$ Kr	Not independent m										10Mo03	**
* Ge Ki * ⁷⁶ Ge(¹⁴ C, ¹⁷ O) ⁷³ Zn	Q = -3974(40) M -				V							**
* 76 Rb(β^+) 76 Kr	E_{β^+} =4558(30) to 1					hy outhor	*0				Ens953	
$*^{76}\text{Rb}(\beta^{+})^{76}\text{Kr}$					rections i	by author	18					
***Kb(p +)**Kr	F : 29.6% feeding	above 25/0.	95 level from r	eterence							84Mo22	**
⁷⁷ Cu−u	-51850	540	-52200#	160#	-0.6	D			OR1	1.0	06Ha62	*
77 Zn $-$ u	-62790	780	-63112.8	2.1	-0.3	U			TO6	1.5		*
	-63380	260	*********		0.4	Ü			GT2	2.5	08Kn.A	
$^{77}Zn-^{88}Rb_{.875}$	14485.7	4.5	14486.1	2.1	0.1	1	22	22 ⁷⁷ Zn	JY1	1.0	08Ha23	
$C_6 H_5 - {}^{77}Se$	119211.9	4.2	119211.01	0.07	-0.1	Ú			M15	2.5	63Ri07	
$^{77}\text{Rb} - ^{39}\text{K}_{1.974}$	1912	27	2045.0	1.4	4.9	В			MA2		87Bo59	
$^{77}Zn-^{85}Rb_{.906}$	16805.8	2.4	16805.7	2.1	0.0	1	78	78 ⁷⁷ Zn	MA8		08Ba54	
⁷⁷ Ga- ⁸⁵ Rb _{.906}	9072.8	2.6			٥.٠	2			MA8		07Gu09	
77 Kr $-^{85}$ Rb _{.906}	4588.5	2.1				2			MA8		06Ro11	
		4.1				_			111/10	1.0	0011011	
$^{77}\text{Rb}-^{85}\text{Rb}_{.906}$	10327	8	10320.1	1.4	-0.9	U			MA2	1.0	94Ot01	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
⁷⁷ Sr ¹⁹ F- ⁸⁵ Rb _{1.129}		35938.0	8.5				2			MA8	1.0	05Si34
$^{75}\text{Rb} - ^{77}\text{Rb}_{.325} + ^{74}\text{Rb}_{.676}$		-1340	380	-1053.6	2.4	0.3	U			P20	2.5	82Au01
$^{76}\text{Rb} - ^{77}\text{Rb}_{.494} ^{75}\text{Rb}_{.507}$		525	30	557.1	1.3	0.3	U			P20	2.5	82Au01
76 Ge(n, γ) 77 Ge		6072.5	1.0	6071.29	0.05	-1.2	U			1 20	2.3	72Gr34 Z
$GC(\Pi,\gamma)$ GC		6071.7	1.2	0071.27	0.03	-0.3	U					72Ha74 Z
		6072.3	0.4			-2.5	U			Bdn		06Fi.A
		6071.29	0.05			2.3	2			Dun		12Me04
76 Ge(d,p) 77 Ge		3839	10	3846.72	0.05	0.8	U			Kop		72Ha74
Ge(u,p) Ge		3823	12	3040.72	0.03	2.0	U			Kyu		73Ka03
76 Ge(3 He,d) 77 As		2497	3	2498.9	1.7	0.6	1	32	32 ⁷⁷ As	Hei		76Sc13
76 Se(n, γ) 77 Se		7418.87	0.20	7418.86		-0.1	_	32	32 113	BNn		81En07
Be(II, 1) Be		7418.85	0.07	7 110.00	0.00	0.1	_			ILn		85To10 Z
		7418.85	0.15			0.0	_			Bdn		06Fi.A
76 Se(d,p) 77 Se		5192	10	5194.29	0.06	0.2	U			Ald		63Ma27
76 Se(n, γ) 77 Se	ave.	7418.85	0.06	7418.86	0.06	0.1	1	99	99 ⁷⁷ Se	1 110		average
$^{77}\mathrm{Sr}(\varepsilon\mathrm{p})^{76}\mathrm{Kr}$	4.0.	3850	200	3921	9	0.4	Ü		,, 50	ChR		76Ha29
$^{77}Zn(\beta^{-})^{77}Ga$		7270	120	7203	3	-0.6	Ü			Stu		86Ek01
77 Ga(β^-) 77 Ge		5340	60	5220.5	2.4	-2.0	U			Stu		77Al17
$\operatorname{Gu}(p^{-})$ Ge		5690	300	3220.3	2.1	-1.6	Ü			Stu		86Ek01
$^{77}\text{Ge}(\beta^{-})^{77}\text{As}$		2670	100	2703.5	1.7	0.3	U			Stu		52Sm13 *
$^{77}\text{As}(\beta^{-})^{77}\text{Se}$		700	7	683.2	1.7	-2.4	U					51Ca04
715(p) 50		679	4	003.2	1.7	1.0	1	18	18 ⁷⁷ As			51Je01
77 Br(β^{+}) 77 Se		1358	20	1364.7	2.8	0.3	Ü	10	10 713			51Ca28
77 Se(p,n) 77 Br		-2147	4	-2147.0	2.8	0.0	2			Oak		58Jo01
Бе (р,п) Б г		-2147.0	4.	2147.0	2.0	0.0	2			Tkm		63Ok01
$^{77} \text{Kr}(\beta^+)^{77} \text{Br}$		3012	30	3065	3	1.8	U			TKIII		55Th01 *
III(p) B1		3027	40	5005	5	1.0	Ü					73Ba22 *
		3300	100			-2.3	Ü					74Ro11 *
		2760	42			7.3	В					82Mo10 *
77 Rb(β^{+}) 77 Kr		5180	390	5339.0	2.4	0.4	U					75We23
,		5272	26			2.6	U					82Mo10
		5113	69			3.3	В			BNL		83Li11
		5320	70			0.3	U			IRS		93A103
$^{77}{\rm Sr}(\beta^+)^{77}{\rm Rb}$		6986	227	7027	8	0.2	U			BNL		83Li11
* ⁷⁷ Cu-u				IS suggest 77								GAu **
$*^{77}$ Zn $-$ u	M - A = -	58100(700)	keV for r	nixture gs+m	at 772.4	440 keV						Nub16b **
$*^{77}$ Zn $-$ u				ixture gs+m a		40 keV (1/2	-)					Nub16b **
$*^{77}$ Ge(β^-) ⁷⁷ As	$E_{\beta} = 219$	96(100) to 9	2^{+77} As ⁿ	ⁿ at 475.48 ke	eV							Nub16c **
$*^{77}$ Kr(β^+) ⁷⁷ Br	Error not	in 55Th01,	estimated	l by evaluator	r							AHW **
$*^{77}$ Kr(β^+) ⁷⁷ Br	$E_{\beta^{+}} = 186$	50(30) 1875	(40) respe	ctively, to 5/2	2 ⁺ level	at 129.64 k	eV					Ens126 **
$*^{77}$ Kr $(\beta^+)^{77}$ Br	$E_{\beta^{+}}=200$	00(100) 152	8(36) resp	pectively, to ($3/2)^{+}$ lev	vel at 276.2	2 keV					Ens126 **
⁷⁸ Cu-u		-47770	540				2			OR1	1.0	06Ha62
$^{78}Zn - ^{88}Rb_{.886}$		16863.8	2.9	16863.6	2.1	-0.1	1	52	52 ⁷⁸ Zn	JY1	1.0	08Ha23
78 Ga $-^{88}$ Rb _{.886}		10184.3	3.3	10183.2	2.0	-0.3	1	38	38^{-78} Ga	JY1	1.0	08Ha23
$C_6 H_6 - {}^{78}Se$		129642.6	2.2	129640.95	0.19	-0.3	U			M15	2.5	63Ri07
$C_6 H_6 - {}^{78}Kr$		126548.3	3.6	126583.9	0.3	4.0	В			M15	2.5	63Ri07
		126554	17			1.2	U			R11	1.5	78Di09
_		126560	7			2.3	U			R11	1.5	78Di09
$C_5 \text{ N H}_4 - {}^{78}\text{Kr}$		113994	20	114007.8	0.3	0.5	U			R11	1.5	78Di09
78 Kr $-^{86}$ Kr $_{.907}$		1441.2	1.0	1442.5	0.3	1.3	1	11	11 ⁷⁸ Kr	MS1	1.0	06Ri15
78 Zn $-^{85}$ Rb $_{918}$		19266.0	3.0	19266.2	2.1	0.1	1	48	48^{-78} Zn	MA8	1.0	08Ba54
78 Ga $-^{85}$ Rb _{.918}		12585.2	2.6	12585.9	2.0	0.3	1	62	62 ⁷⁸ Ga	MA8	1.0	07Gu09
78 Kr $-^{85}$ Rb _{.918}		1342.3	1.4	1343.4	0.3	0.8	U			MA8	1.0	06Ro11
		1338.9	2.2			2.0	U			MA8	1.0	06Ro11
78 Rb $-^{85}$ Rb $_{.918}$		9118	8	9119	3	0.1	2			MA2	1.0	94Ot01
		9121.3	7.5			-0.3	2			TT1	1.0	12Ga15 *
		9118.3	4.5			0.1	2			TT1	1.0	12Ga15 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

78Sr-85Rb.918 78Se 35Cl-74Ge 37Cl 78Se 35Cl-76Ge 37Cl 78Se 35Cl-76Se 37Cl		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	_
⁷⁸ Se ³⁵ Cl ₂ - ⁷⁴ Ge ³⁷ Cl ₂ ⁷⁸ Se ³⁵ Cl- ⁷⁶ Ge ³⁷ Cl		13157	0										
78 Se 35 Cl $^{-76}$ Ge 37 Cl			8				2			MA2	1.0	94Ot01	
		2030.4	2.2	2031.70	0.24	0.4	U			H44	1.5	91Hy01	
⁷⁸ Se ³⁵ Cl- ⁷⁶ Se ³⁷ Cl		-1147.60	0.92	-1143.37	0.20	1.8	U			H40	2.5	85El01	
⁷⁸ Se ³⁵ Cl- ⁷⁶ Se ³⁷ Cl		-1143.57	0.72			0.2	U			H44	1.5	91Hy01	
		1042.03	1.35	1045.65	0.20	1.1	U			H40	2.5	85El01	
		1044.58	0.45			1.6	U			H44	1.5	91Hy01	
76 Se H ₂ $-^{78}$ Kr		14440	25	14497.4	0.3	1.5	Ü			R11	1.5	78Di09	
77 Se H $-^{78}$ Kr		7367	26	7372.8	0.3	0.1	Ü			R11	1.5	78Di09	
78 Kr $-^{78}$ Se		3074	16	3057.10	0.28	-0.7	Ü			R11	1.5	78Di09	
III Se		3098	20	3037.10	0.20	-1.4	Ü			R11	1.5	78Di09	
		3057.18	0.29			-0.3	1	92	89 ⁷⁸ Kr	MS1	1.0	13Bu17	
78 Se H $-^{78}$ Kr		4724	33	4767.93	0.28	0.9	Ü	72	0) 111	R11	1.5	78Di09	
$^{76}\text{Rb} - ^{78}\text{Rb}_{.325}^{x} ^{75}\text{Rb}_{.676}^{x}$		-130	40	-69	4	0.6	U			P20	2.5	82Au01	
$^{77}\text{Rb} - ^{78}\text{Rb}_{.494}^{x} ^{76}\text{Rb}_{.507}^{8}$		-130 -1192	19	-1138	6	1.1	U			P20	2.5	82Au01	
78 Kr(α , 8 He) 74 Kr		-41080	75	-41031.2	2.0	0.7	U			Tex	2.3	82Mo23	
78 Se(p, α) 75 As								1.5	15 ⁷⁵ As				不
		870.9	2.3	872.3	0.9	0.6	1	15	15 As	NDm		82Zu04	
⁷⁸ Kr(³ He, ⁶ He) ⁷⁵ Kr		-12581	14	-12516	8	4.7	В			T 41		87Mo06	
76 Ge(t,p) 78 Ge		6310	5	6310	4	0.0	2			LAI		78Ar12	
78.5 () 76.5		6310	5	0.424.02	0.10	0.0	2			Phi		81St18	
78 Se(p,t) 76 Se		-9433.7	4.3	-9434.83	0.18	-0.3	U			NDm		82Zu04	
78 Kr(α , 6 He) 76 Kr		-20351	10	-20332	4	1.9	О			Tex		82Mo23	*
78 Kr(p,t) 76 Kr		-12840	15	-12825	4	1.0	U		77	Tky		81Ma30	
78 Se(d, 3 He) 77 As		-4904	4	-4905.1	1.7	-0.3	1	18	18 ⁷⁷ As	Ors		83Ro08	*
77 Se $(n,\gamma)^{78}$ Se		10497.7	0.3	10497.77	0.17	0.2	-			BNn		81En07	Z
		10497.75	0.21			0.1	_			Bdn		06Fi.A	
78 Se(p,d) 77 Se		-8271.9	4.0	-8273.21	0.17	-0.3	U			NDm		82Zu04	
77 Se(n, γ) 78 Se	ave.	10497.73	0.17	10497.77	0.17	0.2	1	96	95 ⁷⁸ Se			average	
78 Kr(d,t) 77 Kr		-5804	7	-5822.9	2.0	-2.7	U					87Mo06	
78 Zn(β^{-}) 78 Ga		6440	140	6222.7	2.7	-1.6	o			Stu		86Ek01	
		6364	90			-1.6	U			Stu		00Me.A	
$^{78}\mathrm{Ga}(\beta^-)^{78}\mathrm{Ge}$		8140	160	8156	4	0.1	o			Stu		77Al17	
		8200	80			-0.5	o			Stu		86Ek01	
		8054	43			2.4	U			Stu		00Me.A	
78 Ge(β^{-}) 78 As		967	30	955	10	-0.4	R					65Fr04	*
		987	20			-1.6	R					65Kv01	*
78 As(β^{-}) 78 Se		4270	100	4209	10	-0.6	U					70Mc01	
		4310	100			-1.0	U					71Mo20	*
78 Br(β^{+}) 78 Se		3542	50	3574	4	0.6	U			Bar		61Ri02	
78 Se(p,n) 78 Br		-4344	10	-4356	4	-1.2	2			Bar		61Ri02	
_		-4370	10			1.4	2			LAl		61Sc11	
		-4355.5	7.4			-0.1	2			Tkm		63Ok01	Z
		-4356	5			0.0	2					70Fi03	Z
78 Rb(β^{+}) 78 Kr		7085	370	7243	3	0.4	U					75We23	*
* .		7240	50			0.1	U					81Ba40	
		7185	50			1.2	U			IRS		93A103	*
78 Rb x (IT) 78 Rb		74	12				3					82Au01	*
* ⁷⁸ Rb- ⁸⁵ Rb _{.918}	Correcti	ion for e bir	nding=+97	7eV is negligi	ble							12Ga15	
* ⁷⁸ Rb- ⁸⁵ Rb _{.918}				66824.9(4.2)1		cted for e	bindir	1g=+97eV				12Ga15	
*		${}^{8}\text{Rb}^{n}$ at 111.1						0				Nub16b	
$*^{78}$ Kr(α , 8 He) 74 Kr				nts included 1	backgro	and event						GAu	**
$*^{78}$ Kr(α , ⁶ He) ⁷⁶ Kr				0 Kr(α , 6 He) 78								GAu	**
$*^{78}$ Se(d, 3 He) 77 As				eted, see ⁷⁴ Se(·						AHW	**
$*^{78}$ Ge(β^-) ⁷⁸ As				vely, to 1^+ lev		3 keV						Ens09a	
$*^{78}$ As(β^-) ⁷⁸ Se				1308.644 keV		.5 RC V						Ens09a	
						1 1	-+ 0764	10137					
$*^{78}$ Rb(β^+) 78 Kr	$E_{\beta^+}=34$	10(3/0) fron	n ~Kb" 4'	(-) at 111.19(U.22) to (4) level	at 2/64.	10 KeV				Ens09a	
$*^{78}$ Rb(β^+) 78 Kr	$Q_{\beta^+}=71$	180(80); and	/300(50)	from ⁷⁸ Rb ⁿ at	t 111.19(0.22) keV						Ens09a	
$*^{78}$ Rb ^x (IT) ⁷⁸ Rb	Correcte	ed; using ⁷⁸ R	$b^n(\Gamma\Gamma)=1$	11.2 keV								GAu	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	;
70												_
⁷⁹ Cu−u	-46700	540	-44810#	320#	3.5	D		=0	OR1	1.0		*
79 Zn $-^{88}$ Rb _{.898}	22278.1	2.9	22276.7	2.4	-0.5	1	68	68 ⁷⁹ Zn	JY1	1.0	08Ha23	
79 Ga $-^{88}$ Rb $_{.898}$	12490.9	2.0	12490.9	2.0	0.0	1	100	100 ⁷⁹ Ga	JY1	1.0	08Ha23	
⁷⁹ Ga-u	-67064	129	-67147.7	2.0	-0.3	U			GT2	2.5	08Su19	
$C_6 H_7 - ^{79}Br$	136444.3	2.4	136437.6	1.1	-1.1	U			M15	2.5	63Ri07	
	136444	15			-0.3	U			R11	1.5	78Di09	
	136449	12			-0.6	U			R11	1.5	78Di09	
$C_5^{13}CH_6-^{79}Br$	131976	16	131967.4	1.1	-0.4	U			R11	1.5	78Di09	
3	131974	17			-0.3	U			R11	1.5	78Di09	
$C_5 N H_5 - ^{79}Br$	123870	7	123861.6	1.1	-0.8	U			R11	1.5	78Di09	
-3-13	123871	14			-0.4	Ü			R11	1.5	78Di09	
$C_5 O H_3 - ^{79} Br$	100061	15	100052.1	1.1	-0.4	Ü			R11	1.5	78Di09	
0, 0 11, 21	100057	20	100002.1		-0.2	Ü			R11	1.5	78Di09	
C ₄ N O H- ⁷⁹ Br	87489	20	87476.1	1.1	-0.4	Ü			R11	1.5	78Di09	
⁷⁹ Kr–u	-79981	52	-79917	4	1.2	U			GS2	1.0	05Li24	*
⁷⁹ Y-u	-62070	85	-/////	7	1.2	2			LZ1	1.0	16Xi.A	~
79 Zn $-^{85}$ Rb _{.929}	24582.4	4.2	24585.4	2.4	0.7		32	32 ⁷⁹ Zn	MA8	1.0		
79 D1 85 D1				2.4		1	32	32 - ZII			08Ba54	
79 Rb $-^{85}$ Rb $_{.929}$	5934	8	5937.2	2.3	0.4	U			MA2	1.0	94Ot01	
70 ~ 85	5937.2	2.3				2			MA8	1.0	07Ke09	
79 Sr $-^{85}$ Rb.929	11655	9				2			MA2	1.0	94Ot01	
77 Se H ₂ $-^{79}$ Br	17239	8	17226.6	1.1	-1.0	U			R11	1.5	78Di09	
78 Se H $-^{79}$ Br	6806	8	6796.7	1.1	-0.8	U			R11	1.5	78Di09	
79 Br $-^{78}$ Kr	-2072	30	-2028.7	1.1	1.0	U			R11	1.5	78Di09	
77 Rb $-^{79}$ Rb $_{.487}$ 75 Rb $_{.513}$	-1010	40	-996.2	1.8	0.1	U			P20	2.5	82Au01	
⁷⁷ Rb- ⁷⁹ Rb _{.325} ⁷⁶ Rb _{.675}	-1060	40	-996.1	1.6	0.6	U			P20	2.5	82Au01	
	-990	70			0.0	U			P20	2.5	82Au01	
$^{78}\text{Rb}^{x} - ^{79}\text{Rb}_{.494} ^{77}\text{Rb}_{.506}$	940	40	919	12	-0.2	U			P20	2.5	82Au01	
78 Se(n, γ) 79 Se	6962.6	0.3	6962.83	0.13	0.8	2					79Br.A	Z
	6962.2	0.3			2.1	2			BNn			Z
	6963.11	0.17			-1.6	2			Bdn		06Fi.A	
78 Se(d,p) 79 Se	4756	6	4738.27	0.13	-3.0	В			MIT		64Sp12	
78 Kr(d,p) 79 Kr	5980	50	6111	3	2.6	U			Yal		56B110	
78 Kr(3 He,d) 79 Rb	-1585	10	-1579.8	2.2	0.5	U			Phi		87St11	
$^{79}{\rm Zn}(\beta^{-})^{79}{\rm Ga}$	8550	240	9115.4	2.9	2.4	Ü			Stu		86Ek01	
$^{79}\text{Ga}(\beta^{-})^{79}\text{Ge}$	6770	80	6980	40	2.6	0			Stu		77Al17	
$Ga(p^{-})$ GC	7000	80	0700	40	-0.3	0			Stu		86Ek01	
	6979	40			0.0	1	86	86 ⁷⁹ Ge	Stu		00Me.A	
79 Ge(β^-) 79 As	4300	200	4110	40	-1.0	U	00	00 GC	Stu		70Ka04	
Ge(p) As	4110	100	4110	40	0.0	1	14	14 ⁷⁹ Ge	Stu		81Al20	
79 As(β^{-}) 79 Se			2201	_			14	14 Ge	Siu			
$^{79}\text{Se}(\beta^{-})^{79}\text{Br}$	2230	50	2281	5	1.0	U						*
	160	5	150.6	1.0	-1.9	U					49Pa.A	
79 Kr $(\beta^+)^{79}$ Br	1612	10	1626	3	1.4	4					52Be55	
	1620	5			1.2	4					54Th39	
70 - 70	1635	5			-1.8	4					64Bo25	
79 Rb(β^{+}) 79 Kr	3530	50	3639	4	2.2	U					71Li02	*
	3720	90			-0.9	U					72Br31	*
	3650	70			-0.2	U			IRS		93A103	
79 Sr(β^+) 79 Rb	5259	78	5326	9	0.9	U			BNL		81Li12	
	5059	67			4.0	В			Ors		82De36	
79 Y $(\beta^+)^{79}$ Sr	7120	450	7660	80	1.2	U					92Mu12	
* ⁷⁹ Cu-u	Trends from Mas	s Surface	TMS suggest	⁷⁹ Cu 1760	less bou	nd					GAu >	**
* ⁷⁹ Kr-u	M - A = -74437(3)										Nub16c >	**
$*^{79}$ As $(\beta^{-})^{79}$ Se	E_{β} = 1700(50) to		-									**
$*^{79}$ Rb(β^+) ⁷⁹ Kr	$E_{\beta}^{+} = 1825(50) 26$					7 keV					Ens167 >	
. 1000	$\Delta_{p} = 1023(30) 2$	0.20(70)10	opecurery, to	icvci	at 000.1	, RC 1					LIDIO!	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference	=
⁸⁰ Ga-u		-63441	129	-63579	3	-0.4	U				GT2	2.5	08Su19	
$C_6 H_8 - {}^{80}Se$		146068.5	2.9	146078.5	1.0	1.4	U				M15	2.5	63Ri07	
$C_6 H_8 - {}^{80}Kr$			4.6											
C ₆ n ₈ -**Kr		146225.7		146222.2	0.7	-0.3	U				M15	2.5	63Ri07	
		146235	18			-0.5	U				R11	1.5	78Di09	
G G TT 80-T		146215	16	100001 =		0.3	U				R11	1.5	78Di09	
$C_5 O H_4 - {}^{80}Kr$		109834	20	109836.7	0.7	0.1	U				R11	1.5	78Di09	
$^{80}Y-u$		-65720	190	-65645	7	0.4	U				1.0	1.0	98Is06	
		-66664	86			11.8	F				CS1	1.0	01La31	*
00		-65600	200			-0.2	U				CS1	1.0	08Go23	
80 Y O $^{-96}$ Mo		24594.6	6.7				2				JY1	1.0	06Ka48	
⁸⁰ Zr-u		-59600	1600	-58360#	320#	0.8	D				1.0	1.0	98Is06	*
		-59740	161			8.6	F				CS1	1.0	01La31	*
80 Zn $-^{88}$ Rb $_{.909}$		25165.2	7.3	25167.1	2.8	0.3	1	14	14	80 Zn	JY1	1.0	08Ha23	
80 Ga $^{-88}$ Rb.909		17034.9	3.1				2				JY1	1.0	08Ha23	
80 Ge $-^{88}$ Rb.909		5964.9	2.2				2				JY1	1.0	08Ha23	
80 Kr $-^{86}$ Kr 930		-488.9	1.1	-489.8	0.7	-0.8	1	46	46	80 Kr	MS1	1.0	06Ri15	
80 Zn $-^{85}$ Rb $_{941}$		27559.1	3.0	27558.8	2.8	-0.1	1	86	86	80 Zn	MA8	1.0	08Ba54	
80 Kr $-^{85}$ Rb _{.941}		-614.5	1.7	-616.1	0.7	-0.9	1	19	19	80 Kr		1.0	06Ro11	
		-627.1	9.6			1.1	U				MA8	1.0		*
$^{80}\text{Rb}-^{85}\text{Rb}_{.941}$		5528	8	5522.3	2.0	-0.7	U				MA2	1.0	94Ot01	
555.541		5522.3	2.0				2					1.0	07Ke09	
80 Sr $-^{85}$ Rb.941		7531	8	7523	4	-1.0	2				MA2	1.0	94Ot01	
51 10.941		7513	14	7323	•	0.7	Ū				MA8	1.0	05Si34	
		7521.3	4.2			0.5	2				SH1	1.0	11Ha08	
⁸⁰ Se ³⁵ Cl- ⁷⁸ Se ³⁷ Cl		2164.8	1.4	2162.7	1.0	-0.4	Ū				H18	4.0	64Ba03	
se ei se ei		2160.8	9.2	2102.7	1.0	0.1	U				H40	2.5	85El01	
80 As $-^{80}$ Kr		6096.5	3.5			0.1	2				MS1	1.0	07Bo50	
80 Kr $^{-79}$ Br		-1955	28	-1959.6	1.2	-0.1	Ü				R11	1.5	78Di09	
80 Kr $^{-78}$ Kr		-4046	30	-1939.0 -3988.3	0.8	1.3	U						78Di09	
$^{79}\text{Rb} - ^{80}\text{Rb}_{.658}$ $^{77}\text{Rb}_{.342}$											R11	1.5		
79 D1 80 D1 78 D1 r		-1218	27	-1139.5	2.5	1.2	U				P20	2.5	82Au01	
79 Rb $-^{80}$ Rb $_{.494}$ 78 Rb $_{.506}$		-1313	24	-1316	7	-0.1	U	40	22	⁷⁷ As	P20	2.5	82Au01	
80 Se(p, α) 77 As		1020.0	2.8	1020.9	1.8	0.3	1	40	32	''As	NDm		82Zu04	
80 Kr(3 He, 6 He) 77 Kr		-10398	24	-10384.8	2.1	0.6	U						87Mo06	
80 Se(d, α) 78 As		5755	12	5768	10	1.1	2				Phi		77Mo13	
80 Se(p,t) 78 Se		-8395.1	3.0	-8394.4	1.0	0.2	_			00	NDm		82Zu04	
	ave.	-8394.1	2.1			-0.1	1	21	20	⁸⁰ Se			average	
80 Kr(α , 6 He) 78 Kr- 78 Kr() 76 Kr		1432	10	1449	4	1.7	1	17	16	⁷⁶ Kr			82Mo23	
78 Kr(3 He,n) 80 Sr		2990	30	2993	3	0.1	U						79A119	
80 Se(d, 3 He) 79 As		-5921	7	-5919	5	0.3	_				Ors			*
		-5921	13			0.2	_				Hei		83Wi14	
80 Se(t, α) 79 As		8407	10	8401	5	-0.6	_				Phi		83Mo09	
80 Se(d, 3 He) 79 As	ave.	-5919	5	-5919	5	0.0	1	100	100) ⁷⁹ As			average	
80 Se(p,d) 79 Se		-7687.6	3.0	-7688.7	1.0	-0.4	R				NDm		82Zu04	
79 Br(n, γ) 80 Br		7892.11	0.20	7892.28	0.13	0.8	3				ILn		78Do06	Z
•		7892.41	0.18			-0.7	3				Bdn		06Fi.A	
79 Br(d,p) 80 Br		5640	20	5667.71	0.13	1.4	U				Mtr		72Ch33	
80 Zn(β^{-}) 80 Ga		7540	200	7575	4	0.2	U				Stu		86Ek01	
4 /		7150	150			2.8	Ü				Trs		86Gi07	
80 Ga(β^{-}) 80 Ge		10000	300	10312	4	1.0	0				Stu		81Al20	
		10380	120		•	-0.6	Ü				Stu		86Ek01	
80 Ge(β^-) 80 As		2640	70	2679	4	0.6	U				Stu		77Al17	
GO(D) 110		2630	20	2017	-	2.5	U				Trs		86Gi07	
80 As(β^{-}) 80 Se		6000	200	5545	3	-2.3	U				113		59Me68	
13(p) 30		5470	90	JJ4J	3	-2.3 0.8	U				Trs		86Gi07	
80 Se(t, 3 He) 80 As		-5560	25	-5526	3	1.3	U				LAl		79Aj02	
sett, nej As		-3300	23	-3320	3	1.5	U				LAI		17AJU2	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e_
$^{80}{ m Br}(eta^+)^{80}{ m Se}$		1884	10	1870.5	0.3	-1.4	U					54Li19	
4		1872	7			-0.2	U					69Ka06	
80 Se(p,n) 80 Br		-2655.2	2.8	-2652.8	0.3	0.9	U			Tkm		63Ok01	
4,,,		-2652.5	3.0			-0.1	U			Oak		64Jo11	Z
		-2653.2	5.			0.1	U					70Fi03	
		-2652.81	0.31				2			PTB		92Bo02	Z
$^{80}{\rm Br}(\beta^{-})^{80}{\rm Kr}$		1970	30	2004.4	1.2	1.1	U					52Fu04	
•		2040	20			-1.8	U					54Li19	
		1997	10			0.7	U					69Ka06	
$^{80}{ m Rb}(eta^+)^{80}{ m Kr}$		5120	500	5717.9	2.0	1.2	U					61Ho13	
•		5500	350			0.6	U					75We23	*
		5650	100			0.7	U			IRS		93A103	
80 Kr(p,n) 80 Rb		-6484.0	20.	-6500.2	2.0	-0.8	U					72Ja.A	
$^{80}Y(\beta^{+})^{80}Sr$		6952	152	9163	7	14.5	F			BNL		81Li12	*
,		6934	242			9.2	F			Ors		82De36	*
		6200	600			4.9	F					96Sh27	*
$*^{80}Y-u$	F: belo	ow lower limi	t M>-658	890(90) μu –	-61376(8	33) keV dete	rmined i	n reference					**
$*^{80}$ Zr $-u$		from Mass S										GAu	**
$*^{80}$ Zr $-u$		er results in sa										GAu	**
*80Kr-85Rb.941		ne measureme		,								GAu	**
*80Se(d, 3He) 79 As		ally –5927(7),		$(d.^3He)$								AHW	**
$*^{80}$ Rb(β^{+}) 80 Kr		860(350) to 2											**
$*^{80}Y(\beta^+)^{80}Sr$		ow lower limit			/ determ	ined in refer	rence					03Ba18	
Γ(<i>p</i> ') 51	1 . 0010	ow lower min	ι 2β- > (3)2)(23) Re v	determ	inica in icici	chee					0310	4-4-
⁸¹ Ge-u		-71710	240	-71167.1	2.2	0.9	U			GT2	2.5	08Kn.A	*
$C_6 H_9 - ^{81}Br$		154135.3	3.8	154137.1	1.0	0.2	Ü			M15	2.5	63Ri07	
C ₆ 119 D1		154143	17	131137.1	1.0	-0.2	Ü			R11	1.5	78Di09	
		154134	10			0.2	Ü			R11	1.5	78Di09	
$C_5 N H_7 - ^{81} Br$		141561	10	141561.0	1.0	0.0	Ü			R11	1.5	78Di09	
C3 1(11) B1		141553	18	111301.0	1.0	0.3	Ü			R11	1.5	78Di09	
$C_5 O H_5 - {}^{81}Br$		117742	12	117751.6	1.0	0.5	Ü			R11	1.5	78Di09	
$C_4 O_2 H^{-81} Br$		81356	20	81366.1	1.0	0.3	Ü			R11	1.5	78Di09	
$C_4 \stackrel{13}{}C O H_4 - ^{81}Br$		113275	14	113281.4	1.0	0.3	Ü			R11	1.5	78Di09	
81Rb-u		-80958	41	-81006	5	-1.2	U			GS2	1.0	05Li24	4
⁸¹ Y O- ⁹⁷ Mo		18352.0	5.8	-81000	3	-1.2	2			JY1	1.0	05E124 06Ka48	7
81 Zr $-$ u		-61686	101				2			LZ1	1.0	16Xi.A	
81 Ga $-^{88}$ Rb _{.920}		19723.5	3.5				2			JY1	1.0	08Ha23	
81 Ge $-^{88}$ Rb _{.920}		10422.6	2.2				2			JY1	1.0	08Ha23	
81 As $-^{88}$ Rb _{.920}		3721.9	3.3	3721.9	2.8	0.0	1	74	74 ⁸¹ As	JY1	1.0	08Ha23	
81 Zn $^{-85}$ Rb $_{.953}$				3721.9	2.0	0.0	2	74	74 AS				
81 Rb $-^{85}$ Rb $_{.953}$		34467.0	5.4 8	3058	5	0.6				MA8	1.0 1.0	08Ba54 94Ot01	
Kb- Kb _{.953}		3063 3055.4	9.2	3038	3	-0.6 0.3	_			MA2 SH1	1.0	11Ha08	*
	0710	3060				-0.2	_ 1	76	76 ⁸¹ Rb	эпі	1.0		*
⁸¹ Sr- ⁸⁵ Rb _{.953}	ave.		6	7076	2		1	70	/0 ** Kb	3440	1.0	average	
Sr—SRb.953		7278	8	7276	3	-0.3	2			MA2	1.0	94Ot01	
		7272	12			0.3	U			MA8	1.0	05Si34	
81 Se $-^{80}$ Kr _{1.013}		7275.3	3.7	2702 1	1.2	0.1	2	26	10.810	SH1	1.0	11Ha08	
80c- H 81D		2704.2	2.4	2702.1		-0.9	1	26	18 ⁸¹ Se	MS1	1.0	07Bo50	*
⁸⁰ Se H- ⁸¹ Br		8023	8	8058.6	1.5	3.0	В			R11	1.5	78Di09	
80 Kr H $^{-81}$ Br		7922	18	7914.9	1.3	-0.3	U			R11	1.5	78Di09	
⁸¹ Br-H ⁷⁹ Br		-9865	13	-9874.4	1.5	-0.3	U			M15	2.5	63Ri07	
81 Br $-^{80}$ Kr		-91	32	-89.8	1.3	0.0	U			R11	1.5	78Di09	
$^{81}{ m Br}{-}^{79}{ m Br}$		-2020	32	-2049.4	1.5	-0.6	U			R11	1.5	78Di09	
70 21 70		-2014	35			-0.7	U			R11	1.5	78Di09	
79 Rb $-^{81}$ Rb $_{.325}$ 78 Rb $_{.675}$		-1130	30	-1148	9	-0.2	U			P20	2.5	82Au01	
80 Rb $-^{81}$ Rb $_{.494}$ 79 Rb $_{.506}$		927	29	926	3	0.0	U			P20	2.5	82Au01	
80 Se(n, γ) 81 Se		6700.9	0.5	6700.8	0.3	-0.1	-			BNn		81En07	Z
		6700.9	0.5			-0.1	-			Bdn		06Fi.A	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
80 Se(d,p) 81 Se	4490	6	4476.3	0.3	-2.3	U			MIT		64Sp12
Sc(u,p) Sc	4477.5	3.0	4470.3	0.5	-2.3 -0.4	U			NDm		82Zu04
80 Se(n, γ) 81 Se		0.4	6700.8	0.3	-0.4 -0.1		97	71 ⁸¹ Se	NDIII		
1 Br $(\gamma,n)^{80}$ Br						1	91	/1 Se	DI.:		average
	-10130	35	-10159.4	1.4	-0.8	U			Phi		60Ge01
0 Kr(d,p) 81 Kr	5660	15	5649.6	1.2	-0.7	U	4.0	- 81 rr	Tex		75Ch11 :
0 2 81	5646	4			0.9	1	10	7 81 Kr	Oak		86Bu18
60 Kr(3 He,d) 81 Rb	-637	10	-641	5	-0.4	1	24	24 ⁸¹ Rb	Phi		87St11
81 Zr $(\varepsilon p)^{80}$ Sr	4700	200	5560	90	4.3	В					99Hu05
1 Ga(β^{-}) 81 Ge	8320	150	8664	4	2.3	U			Stu		81Al20
81 Ge(β^-) 81 As	6230	120	6242	3	0.1	U			Stu		81Al20
81 As(β^-) 81 Se	3800	200	3855.7	2.8	0.3	U					60Mo01
	3730	100			1.3	U			Stu		77Al17
81 Se(β^-) 81 Br	1600	50	1588.0	1.4	-0.2	U					60Ku06
,	1560	50			0.6	U					67Yt03
1 Kr(ε) 81 Br	280.7	0.5	280.9	0.5	0.3	1	89	84 ⁸¹ Kr			88Ax01
⁸¹ Br(p,n) ⁸¹ Kr	-1062	4	-1063.2	0.5	-0.3	U					84Fi.A
¹ Br(³ He,t) ⁸¹ Kr	-296	6	-299.4	0.5	-0.6	U					84Bu23
1 Br(3 He,t) 81 Kr $-^{51}$ V() 51 Cr	470.6	1.8	471.6	0.5	0.6	U			Pri		82Ko06
$^{1}\text{Rb}(\beta^{+})^{81}\text{Kr}$	2260	30	2240	5	-0.7	U			1 11		75Va24
$KO(p^{-})$ Ki	2290	50	22 1 0	5	-0.7 -1.0	U					77Li14
1 Sr(β^{+}) 81 Rb	3990	30	3929	6	-1.0 -2.0	U					
1 Sr(β^{+}) 81 Sr				6					DAII		
$Y(p^+)^{\circ 1}$ Sr	5408	86	5815	6	4.7	В			BNL		81Li12
1g (0±)81x	5620	89	0250	00	2.2	U			Ors		82De36
${}^{1}Zr(\beta^{+})^{81}Y$	7160	290	8250	90	3.8	В			Ors		82De36
¹ Ge-u	M - A = -66454(93) kg	eV for mixt	ture gs+m at 67	9.14 ke	V						Nub16b *
1											Muh16h
¹Rb-u	M - A = -75369(29) kg	eV for mixt									
81 Rb $-^{85}$ Rb $_{.953}$	D_M =3148.1(9.2) keV	eV for mixt for ⁸¹ Rb ^m	at 86.31(0.07)	keV; M	-A = -75	373.1(8	.6) keV				Nub16b *
⁵¹ Rb- ⁸⁵ Rb _{.953} ⁵¹ Se- ⁸⁰ Kr _{1.013}	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f	eV for mixt for 81 Rb m at	at 86.31(0.07) 103.00(0.06)k	keV; <i>M</i> eV; <i>M</i> -	- A=-75 - A=-762	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b *
⁸¹ Rb- ⁸⁵ Rb _{.953} ⁸¹ Se- ⁸⁰ Kr _{1.013} ⁸⁰ Kr(d,p) ⁸¹ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f Original value 5610(1	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpo	at 86.31(0.07) 103.00(0.06)k reted as going t	keV; <i>M</i> eV; <i>M</i> - to 49.57	− A=−75 − A=−762 level	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b * Nub16b *
⁵¹ Rb- ⁸⁵ Rb _{.953} ⁵¹ Se- ⁸⁰ Kr _{1.013} ⁶⁰ Kr(d,p) ⁸¹ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpo	at 86.31(0.07) 103.00(0.06)k reted as going t	keV; <i>M</i> eV; <i>M</i> - to 49.57	− A=−75 − A=−762 level	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b * Nub16b * 76Me08 *
81 Rb $^{-85}$ Rb $_{.953}$ 81 Se $^{-80}$ Kr $_{1.013}$ 80 Kr(d,p) 81 Kr 81 Ge(β^{-}) 81 As	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f Original value 5610(1 Q_{β} =6230(120); and	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr 6930(280)	at 86.31(0.07) at 103.00(0.06)k reted as going t from ⁸¹ Ge ^m at	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14	− A=−75 - A=−762 level keV	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b * Nub16b * 76Me08 * Nub16b *
81 Rb $-^{85}$ Rb $_{.953}$ 81 Se $-^{80}$ Kr $_{1.013}$ 80 Kr(d,p) 81 Kr 81 Ge(β^-) 81 As 81 Kr(ε) 81 Br	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f Original value 5610(1 Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$	eV for mixt for ⁸¹ Rb ^m : for ⁸¹ Se ^m at 15) reinterpr 6930(280) =4.7(0.5) to	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 10.5/2 level at	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14	− A=−75 - A=−762 level keV	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a *
81 Rb $-^{85}$ Rb $_{.953}$ 81 Se $-^{80}$ Kr $_{1.013}$ 80 Kr $(d,p)^{81}$ Kr 81 Ge $(\beta^-)^{81}$ As 81 Kr $(\varepsilon)^{81}$ Br 81 Br $(^{3}$ He,t $)^{81}$ Kr $-^{51}$ V $()^{51}$ Cr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f Original value 5610(1 Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03)	eV for mixt for ⁸¹ Rb ^m : for ⁸¹ Se ^m at 15) reinterpr 6930(280) =4.7(0.5) to 1 level=13.7	at 86.31(0.07) 103.00(0.06)k reted as going t from ⁸¹ Ge ^m at 0.5/2 ⁻ level at (1.8) keV	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14	− A=−75 - A=−762 level keV	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b ** Nub16b ** 76Me08 ** Nub16b ** Ens08a ** GAu **
81 Rb $-^{85}$ Rb $_{.953}$ 81 Se $-^{80}$ Kr $_{1.013}$ 80 Kr $_{.013}$ Kr 81 Ge $_{.013}$ Ge $_{.013}$ Rs 81 Kr $_{.013}$ Rs 81 Br $_{.013}$ Rr $_{.01$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u f Original value 5610(1 Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$	eV for mixt for ⁸¹ Rb ^m ; for ⁸¹ Se ^m at 15) reinterput 6930(280) =4.7(0.5) to 0 level=13.7 level at 19	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 0.5/2 ⁻ level at (1.8) keV 90.64 keV	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985	− A=−75 - A=−762 level keV	373.1(8 283.2(2.	.6) keV 4) keV				Nub16b ** Nub16b ** 76Me08 ** Nub16b ** Ens08a ** GAu ** Ens08a **
81 Rb $-^{85}$ Rb $_{.953}$ 81 Se $-^{80}$ Kr $_{1.013}$ 80 Kr $_{(d,p)}$ 81Kr 81 Ge $_{(\beta^{-})}$ 81As 81 Kr $_{(\epsilon)}$ 81Br 81 Br $_{(3^{1}$ He,t)}81Kr $_{(-5^{1})}$ V $_{()}$ 51Cr 81 Rb $_{(\beta^{+})}$ 81Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr (6930(280)) 1=4.7(0.5) to 10 level=13.7 level at 19 1.241 3/2 1	at $86.31(0.07)$ 103.00(0.06)k reted as going the from 81 Ge m at 100.00 seven at 100.00 seven at 100.00 sevel, and other	keV; <i>M</i> - eV; <i>M</i> - to 49.57 679.14 275.985	- A=-75 - A=-762 · level keV · keV	283.2(2.	.6) keV 4) keV		CIT!	1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * Ens08a * Ens08a *
$^{14}\text{Rb} - ^{85}\text{Rb}_{.953}$ $^{14}\text{Se} - ^{80}\text{Kr}_{1.013}$ $^{10}\text{Kr}(d,p)^{81}\text{Kr}$ $^{14}\text{Ge}(\beta^{-})^{81}\text{As}$ $^{14}\text{Kr}(\epsilon)^{81}\text{Br}$ $^{14}\text{Br}(^{3}\text{He},t)^{81}\text{Kr} - ^{51}\text{V}()^{51}\text{Cr}$ $^{14}\text{Rb}(\beta^{+})^{81}\text{Kr}$ $^{14}\text{Sr}(\beta^{+})^{81}\text{Rb}$ $^{14}\text{Sr}(\beta^{-})^{81}\text{Rb}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q-Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr (6930(280) 1=4.7(0.5) to 1 level=13.7 level at 19 1.241 3/2 1	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Gem at the control of t	keV; <i>M</i> - eV; <i>M</i> - to 49.57 679.14 275.985	- A=-75 - A=-762 I level keV i keV	0.83.2(2.4 U	.6) keV 4) keV		GT1	1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * Ens08a * Ens08a * 04Ma.A
14 Rb $^{-85}$ Rb $_{.953}$ 14 Se $^{-80}$ Kr $_{1.013}$ 10 Kr $(d,p)^{81}$ Kr 14 Ge $(\beta^{-})^{81}$ As 14 Kr $(\epsilon)^{81}$ Br 14 Br $(^{3}$ He $_{,t})^{81}$ Kr $^{-51}$ V $()^{51}$ Cr 14 Rb $(\beta^{+})^{81}$ Kr 14 Sr $(\beta^{+})^{81}$ Rb 12 Ga $^{-4}$ U	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u if Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301 -56812 -70400	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr (6930(280)) 124.7(0.5) to 10 level=13.7 1 level at 19 1.241 3/2 1	at 86.31(0.07) 103.00(0.06)k reted as going t from ⁸¹ Ge ^m at to 5/2 ⁻ level at (1.8) keV 90.64 keV level, and other -56823.5 -70226.0	keV; <i>M</i> - eV; <i>M</i> - to 49.57 679.14 275.985 • <i>E</i> _β + 2.6 2.4	- A=-75 - A=-762 level keV 5 keV	U U U	.6) keV 4) keV		GT2	2.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19
1 Rb 85 Rb ${}_{.953}$ 1 Se ${}^{-80}$ Kr ${}_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β ${}^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr ${}^{-51}$ V() 51 Cr 1 Rb(β ${}^{+}$) 81 Kr 1 Sr(β ${}^{+}$) 81 Rb	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u if Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q-Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr (6930(280)) 100(280) 101	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Gem at the control of t	keV; M eV; M for 49.57 679.14 275.985 E_{β} 2.6 2.4 0.5	- A=-752 - A=-762 level keV s keV 0.0 0.5 0.5	U U U U	.6) keV 4) keV		GT2 M15	2.5 2.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07
1 Rb ${}^{-85}$ Rb ${}_{.953}$ 1 Se ${}^{-80}$ Kr ${}_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β ${}^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr ${}^{-51}$ V() 51 Cr 1 Rb(β ${}^{+}$) 81 Kr 1 Sr(β ${}^{+}$) 81 Rb	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u if Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301 -56812 -70400	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr (6930(280)) 124.7(0.5) to 10 level=13.7 1 level at 19 1.241 3/2 1	at 86.31(0.07) 103.00(0.06)k reted as going t from ⁸¹ Ge ^m at to 5/2 ⁻ level at (1.8) keV 90.64 keV level, and other -56823.5 -70226.0	keV; M eV; M for 49.57 679.14 275.985 E_{β} 2.6 2.4 0.5	- A=-75 - A=-762 level keV 5 keV	U U U	.6) keV 4) keV		GT2 M15 M15	2.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07
$^{14}\text{Rb} - ^{85}\text{Rb}_{.953}$ $^{14}\text{Se} - ^{80}\text{Kr}_{1.013}$ $^{10}\text{Kr}(d,p)^{81}\text{Kr}$ $^{14}\text{Ge}(\beta^{-})^{81}\text{As}$ $^{14}\text{Kr}(\epsilon)^{81}\text{Br}$ $^{14}\text{Br}(^{3}\text{He},t)^{81}\text{Kr} - ^{51}\text{V}()^{51}\text{Cr}$ $^{14}\text{Rb}(\beta^{+})^{81}\text{Kr}$ $^{14}\text{Sr}(\beta^{+})^{81}\text{Rb}$ $^{12}\text{Ga} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr 6930(280) 100 at 100 at 100 at 100 100 at 100 at	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Gem at the control of t	keV; M eV; M for 49.57 679.14 275.985 E_{β} 2.6 2.4 0.5	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8	U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11	2.5 2.5 2.5 1.5	Nub16b
81 Rb 85 Rb $_{.953}$ 81 Se $^{-80}$ Kr $_{1.013}$ 80 Kr(d,p) 81 Kr 81 Ge(β^{-}) 81 As 81 Kr(ϵ) 81 Br 81 Br(31 He,t) 81 Kr $^{-51}$ V() 51 Cr 81 Rb(β^{+}) 81 Kr 81 Sr(β^{+}) 81 Rb	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784	eV for mixt for ⁸¹ Rb ^m ; for ⁸¹ Rb ^m at 15) reinterpress for 6930(280) = 4.7(0.5) to blevel=13.7 - level at 19.241 3/2-1 268 129 4.6 3.4 14 16	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Gem at the control of t	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6	U U U U U U	.6) keV 4) keV		GT2 M15 M15	2.5 2.5 2.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07
1 Rb $^{-85}$ Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge+ $^{-}$ U 2 Ce- $^{-}$ U	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Se ^m at 15) reinterpr 6930(280) 100 at 100 at 100 at 100 100 at 100 at	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Gem at the control of t	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 - E _{β+} 2.6 2.4 0.5 0.006	- A=-752 - A=-762 Flevel keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2	U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11	2.5 2.5 2.5 1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07 78Di09 78Di09 78Di09
1 Rb 85 Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Se 2 Gh 10 $^{-82}$ Se 2 Gh 10 $^{-82}$ Kr 2 So N H 8 $^{-82}$ Kr 2 So O H 6 $^{-82}$ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} =1050(30) to 1/2 E_{β} =2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784	eV for mixt for ⁸¹ Rb ^m ; for ⁸¹ Rb ^m at 15) reinterpress for 6930(280) = 4.7(0.5) to blevel=13.7 - level at 19.241 3/2-1 268 129 4.6 3.4 14 16	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at the 5/2 ⁻ level at (1.8) keV 90.64 keV level, and other 1-56823.5 161550.8 164769.167	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 - E _{β+} 2.6 2.4 0.5 0.006	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6	U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11	2.5 2.5 2.5 1.5 1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09
1 Rb 85 Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Se 2 Gh 10 $^{-82}$ Se 2 Gh 10 $^{-82}$ Kr 2 So N H 8 $^{-82}$ Kr 2 So O H 6 $^{-82}$ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterprecipitation (15) reinterprecipitation	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at to 5/2 ⁻ level at (1.8) keV 90.64 keV devel, and other -56823.5 -70226.0 161550.8 164769.167	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 - E _{β+} 2.6 2.4 0.5 0.006	- A=-752 - A=-762 Flevel keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2	U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11	2.5 2.5 2.5 1.5 1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07 78Di09 78Di09 78Di09
1 Rb $^{-85}$ Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-1}$ U 2 Se 2 Gh $^{-82}$ Kr 2 Se 2 Ch $^{-82}$ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =0 to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15 reinterpress for 81	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 0.006	- A=-752 - A=-762 level keV 6 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 R11 GS2	2.5 2.5 2.5 1.5 1.5 1.5 1.5	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 78Di09 78Di09 78Di09 78Di09 05Li24
1 Rb $^{-85}$ Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-1}$ U 2 Se 2 Gh $^{-82}$ Kr 2 Se 2 Ch $^{-82}$ Kr	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1 Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q-Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for ⁸¹ Se to 15, reinterpress	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at to 5/2 ⁻ level at (1.8) keV 90.64 keV level, and other -56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 - E _{β+} 2.6 2.4 0.5 0.006 0.006 3	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 R11 GS2 GS2	2.5 2.5 2.5 1.5 1.5 1.5 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 78Di09 05Li24 05Li24
1 Rb $^{-85}$ Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Se 2 Gh $^{-}$ 06 $^{-82}$ Kr $^{-5}$ 5 O H 6 $^{-82}$ Kr 2 Rb $^{-}$ u 2 Sr $^{-}$ u 2 Y O $^{-98}$ Mo	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u it Original value 5610(1 Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q-Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for ⁸¹ Se to 15) reinterpress for 150 reinterpress	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 0.006 3	- A=-752 - A=-762 level keV 6 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1	2.5 2.5 2.5 1.5 1.5 1.5 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 05Li24 06Ka48
1 Rb 85 Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He, 0 He, 1 He) 81 Kr 1 Sr(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ U 2 Se 2 Gh $^{-}$ 8EKr 2 5 N H 8 8EKr 2 8E Kr 2 8E Ch 2 8E Ch 2 8E Ch 2 9E Ch 2 8E Ch 2 8	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 16 se	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 0.006 3	- A=-752 - A=-762 level keV 6 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1	2.5 2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 05Li24 06Ka48 16Xi.A
1 Rb $-^{85}$ Rb $_{.953}$ 1 Se $-^{80}$ Kr $_{1.013}$ 10 Kr(d,p) 81 Kr 1 Ge(β^{-}) 81 As 1 Kr(ϵ) 81 Br 1 Br(3 He,t) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β^{+}) 81 Kr 1 Sr(β^{+}) 81 Rb 2 Ga $-$ u 12 Ge $-$ u 12	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 16 se	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 0.006 3	- A=-752 - A=-762 level keV 6 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1	2.5 2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 78Di09 78Di09 05Li24 05Li24 06Ka48 16Xi.A 08Ha23
1 Rb $^{-85}$ Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He,1) 81 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ U 2 Se $^{-}$ C5 N H $_{8}$ $^{-82}$ Kr $^{-2}$ Sh $^{-}$ u 2 Sr $^{-}$ u 2 Y O $^{-98}$ Mo 2 Zr $^{-}$ u 2 Ga $^{-88}$ Rb $^{-932}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15, reinterpress for 81 Se at 16, reinterpress for	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 0.006 3	- A=-752 - A=-762 level keV 6 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4	U U U U U U U U U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23
1 Rb 85 Rb $_{.953}$ 1 Se $^{-80}$ Kr $_{1.013}$ 0 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He, 1 8 1 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Ge $^{-}$ u 2 Se 2 Gh $^{-}$ 0 Hg $^{-82}$ Kr 2 Se 2 Ch $^{-82}$ Kr 2 Se $^{-2}$ Ch $^{-98}$ Mo 2 Zr $^{-u}$ 2 Y O $^{-98}$ Mo 2 Zr $^{-u}$ 2 Ga $^{-88}$ Rb $^{-932}$ 2 Ge $^{-88}$ Rb $^{-932}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 16 se	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 55/2 ⁻ level at (1.8) keV 90.64 keV evel, and other -56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658 -81791 -81600	keV; <i>M</i> eV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 - level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4	U U U U U U U U U U U U U U U U U U U	.6) keV 4) keV		GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 08Ha23
1 Rb $-^{85}$ Rb $_{.953}$ 1 Se $-^{80}$ Kr $_{1.013}$ 10 Kr(d,p) 81 Kr 1 Ge(β $^{-}$) 81 As 1 Kr(ε) 81 Br 1 Br(3 He, 1 8 1 Kr $^{-51}$ V() 51 Cr 1 Rb(β $^{+}$) 81 Kr 1 Sr(β $^{+}$) 81 Rb 2 Ga $-$ u 2 Ge $-$ u 2 Ge $-$ u 2 Ge $-$ u 2 Ge $-$ u 2 Se 2 Gh $_{10}$ $-^{82}$ Kr 2 Se 2 Ch $_{10}$ $-^{82}$ Kr 2 Se 2 Ch $_{20}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164777 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6 -1329.4	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15, reinterpress for 81 Se at 16, reinterpress for	at 86.31(0.07) 103.00(0.06)k reted as going the from 81 Ge ^m at 20 5/2 ⁻ level at (1.8) keV 90.64 keV evel, and other 10 -56823.5 164769.167 152193.107 128383.658 18791	keV; <i>M</i> eV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4 0.1	U U U U U U U U U U U U U U U U U U U	4) keV	02	GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1 JY1 JY1 MS1	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 08Ha23 06Ri15
${}^{1}\text{Rb} - {}^{85}\text{Rb}, {}^{953}$ ${}^{1}\text{Se} - {}^{80}\text{Kr}_{1,013}, {}^{0}\text{Kr}(d,p)^{81}\text{Kr}$ ${}^{1}\text{Ge}(\beta^{-})^{81}\text{As}, {}^{1}\text{Kr}(\epsilon)^{81}\text{Br}, {}^{1}\text{Br}(\beta^{+})^{81}\text{Kr}, {}^{-51}\text{V}()^{51}\text{Cr}, {}^{1}\text{Rb}(\beta^{+})^{81}\text{Kr}, {}^{-51}\text{V}()^{51}\text{Cr}, {}^{1}\text{Rb}(\beta^{+})^{81}\text{Kr}, {}^{1}\text{Sr}(\beta^{+})^{81}\text{Rb}, {}^{2}\text{Ga} - {\rm u}$ ${}^{2}\text{Ge} - {\rm u}$ ${}^{2}\text{Kr}$ ${}^{2}\text{Sh} - {\rm u}$ ${}^{2}\text{Sr} - {\rm u}$ ${}^{2}\text{Y} - {\rm u}^{-98}\text{Mo}$ ${}^{2}\text{Zr} - {\rm u}$ ${}^{2}\text{Gg} - {\rm u}^{88}\text{Rb}, {\rm y}_{32}$ ${}^{2}\text{Gg} - {\rm u}^{88}\text{Kb}, {\rm y}_{32}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6 -1329.4 -1330.7684	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15, reinterpress for 81 Se at 16, reinterpress for	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 55/2 ⁻ level at (1.8) keV 90.64 keV evel, and other -56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658 -81791 -81600	keV; <i>M</i> eV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 - level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4	U U U U U U U U U U U U U U U 2 2 2 2 2	.6) keV 4) keV	25 ⁸² Kr	GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1 JY1 JY1 JY1 FS1	2.5 2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 08Ha23 06Ri15 13Ho22
$^{13}\text{Rb} - ^{85}\text{Rb}_{.953}$ $^{13}\text{Re} - ^{80}\text{Kr}_{1.013}$ $^{10}\text{Kr}(d,p)^{81}\text{Kr}$ $^{13}\text{Ge}(\beta^{-})^{81}\text{As}$ $^{13}\text{Rr}(\epsilon)^{81}\text{Br}$ $^{13}\text{Rr}(\epsilon)^{81}\text{Br}$ $^{13}\text{Rr}(\epsilon)^{81}\text{Kr} - ^{51}\text{V}()^{51}\text{Cr}$ $^{13}\text{Rb}(\beta^{+})^{81}\text{Kr}$ $^{13}\text{Sr}(\beta^{+})^{81}\text{Rb}$ $^{12}\text{Ga} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Ge} - \text{u}$ $^{12}\text{Sr}(\beta^{-})^{82}\text{Kr}$ $^{12}\text{Sp}(\beta^{-})^{82}\text{Kr}$ $^{12}\text{Sp}(\beta^{-})^{83}\text{Kr}$ $^{12}\text{Sp}(\beta^{-})^{83}\text{Kr}$ $^{12}\text{Ge} - \text{u}^{88}\text{Rb}_{.932}$ $^{12}\text{Gg} - \text{u}^{88}\text{Rb}_{.932}$	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6 -1329.4 -1330.7684 39697.0	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15, reinterpress for 81 Se at 16, reinterpress for	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 55/2 ⁻ level at (1.8) keV 90.64 keV level, and other 1.56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658 -81791 -81600	keV; <i>M</i> eV; <i>M</i> eV; <i>M</i> - to 49.57 679.14 275.985 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4 0.1	U U U U U U U U U U U U U 2 2 2 2 2 2 1 2	4) keV	25 ⁸² Kr	GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1 JY1 MS1 FS1 MA8	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 06Ri15
81 Rb 85 Rb 953 81 Se $^{-80}$ Kr 1,013 80 Kr(d,p) 81 Kr 81 Ge(β^-) 81 As 81 Kr(ϵ) 81 Br 81 Br(31 He,t) 81 Kr $^{-51}$ V() 51 Cr 81 Rb(β^+) 81 Kr 81 Sr(β^+) 81 Rb 82 Ga $^{-4}$ u 82 Ge $^{-4}$ u 82 Ge $^{-4}$ u 82 Ce $^{-4}$ U 82 Ch $^{-82}$ Kr 82 Ch $^{-82}$ Kr 82 Ch $^{-82}$ Kr 82 Ch $^{-98}$ Mo 82 Zr $^{-4}$ Se 82 Ca $^{-88}$ Rb $^{-932}$ Se 82 Ca $^{-88}$ Rb $^{-932}$ Se 82 Ca $^{-88}$ Rb $^{-932}$ Se 82 Ch $^{-85}$ Rb $^{-965}$ Se 82 Kr $^{-85}$ Rb $^{-965}$ Se 82 Kr $^{-85}$ Rb $^{-965}$ Se	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u in Original value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q=Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6 -1329.4 -1330.7684	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 15, reinterpress for 81 Se at 16, reinterpress for	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 55/2 ⁻ level at (1.8) keV 90.64 keV evel, and other -56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658 -81791 -81600	keV; M eV; M eV; M - to 49.57 679.14 275.985 e E _{β+} 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4 0.1	U U U U U U U U U U U U U U U 2 2 2 2 2	4) keV	25 ⁸² Kr	GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1 JY1 JY1 JY1 FS1	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Nub16b * Nub16b * 76Me08 * Nub16b * Ens08a * GAu * Ens08a * Ens08a * 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 08Ha23 06Ri15 13Ho22
81 Rb-u 81 Rb- 85 Rb. 953 81 Se- 80 Kr. 1013 80 Kr. 10 Fi Kr 81 Ge(β -) 81 As 81 Kr. 10 Fi Kr 81 Ge(β -) 81 As 81 Kr. 10 Fi Kr- 10	D_M =3148.1(9.2) keV D_M =2814.8(2.4) μ u foriginal value 5610(1) Q_{β} =6230(120); and LM=0.42(0.05), $Q(\varepsilon)$ Q =Q to 456.89(0.03) E_{β} +=1050(30) to 1/2 E_{β} +=2684(30) to 301 -56812 -70400 161545.0 164769.8 164787 164784 152200 128396 -81775 -81604 16441.2 -68311 25830.4 12427.9 7392.6 -1329.4 -1330.7684 39697.0	eV for mixt for ⁸¹ Rb ^m at for ⁸¹ Rb ^m at 15) reinterpress for 81 Se at 16 se	at 86.31(0.07) 103.00(0.06)k reted as going to from ⁸¹ Ge ^m at 55/2 ⁻ level at (1.8) keV 90.64 keV level, and other 1.56823.5 -70226.0 161550.8 164769.167 152193.107 128383.658 -81791 -81600	keV; M eV; M eV; M - to 49.57 679.14 275.985 e E _{β+} 2.6 2.4 0.5 0.006 0.006 3 6	- A=-752 - A=-762 level keV 5 keV 0.0 0.5 0.5 -0.1 -0.8 -0.6 -0.2 -0.4 -0.4 0.1	U U U U U U U U U U U U U 2 2 2 2 2 2 1 2	4) keV	25 ⁸² Kr	GT2 M15 M15 R11 R11 R11 GS2 GS2 JY1 LZ1 JY1 JY1 JY1 MS1 FS1 MA8	2.5 2.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	GAu *** Ens08a *** 04Ma.A 08Su19 63Ri07 63Ri07 78Di09 78Di09 78Di09 05Li24 06Ka48 16Xi.A 08Ha23 08Ha23 08Ha23 06Ri15 13Ho22 13Wo06

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	ipui isoi	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
				<u> </u>		<u> </u>						
82 Sr $-^{85}$ Rb.965		3517	8	3523	6	0.7	1	65	65 ⁸² Sr	MA2	1.0	94Ot01
82Se 35Cl-80Se 37Cl		3128.92	0.63	3127.9	1.0	-0.7	1	41	37 ⁸⁰ Se	H40	2.5	85El01
80 Se H ₂ $-^{82}$ Kr		18665	18	18690.7	1.0	1.0	U			R11	1.5	78Di09
		18671	19			0.7	U			R11	1.5	78Di09
82 Kr $-^{84}$ Kr $_{.976}$		-140.6277	0.0051	-140.627	0.005	0.1	1	78	75 ⁸² Kr	FS1	1.0	13Ho22
⁸¹ Br H- ⁸² Se		7419	8	7413.7	1.2	-0.4	U			R11	1.5	78Di09
81 Br H $-^{82}$ Kr		10662	20	10632.1	1.0	-1.0	Ü			R11	1.5	78Di09
82 Se $-^{82}$ Kr		3222	16	3218.4	0.5	-0.2	Ü			R11	1.5	78Di09
Se III		3218	22	3210.1	0.5	0.0	Ü			R11	1.5	78Di09
		3216.1	1.6			1.0	U			H45	1.5	93Nx01
		3218.36	0.52			0.0	1	93	93 ⁸² Se	MS1	1.0	13Li01
$^{82}{\rm Kr}{-}^{78}{\rm Se~H_3}$		-27269	35	-27303.19	0.19	-0.7	U	73	<i>)</i> 500	R11	1.5	78Di09
80 Se $H_3 - ^{82}$ Kr		26466	32	26515.7	1.0	1.0	U			R11	1.5	78Di09
82 Kr $-^{81}$ Br												
82 Se H-82 Kr		-2805	32	-2807.1	1.0	0.0	U			R11	1.5	78Di09
$^{79}\text{Rb} - ^{82}\text{Rb}_{.241} ^{78}\text{Rb}_{.760}^{x}$		11082	40	11043.4	0.5	-0.6	U			R11	1.5	78Di09
$^{79}\text{Rb} - ^{82}\text{Rb}_{.241} ^{78}\text{Rb}_{.760}^{x}$		-1536	29	-1627	10	-1.3	U			P20	2.5	82Au01 Y
$^{81}_{80}$ Rb $-^{82}_{82}$ Rb $^{.741}_{.741}$ $^{78}_{.70}$ Rb $^{.760}_{.260}$		-1680	40	-1618	6	0.6	U			P20	2.5	82Au01 Y
80 Rb $-^{82}$ Rb $_{.325}$ 79 Rb $_{.675}$		440	40	377.6	2.6	-0.6	U			P20	2.5	82Au01 Y
82 Kr(3 He, 6 He) 79 Kr		-8822	31	-8810	3	0.4	U					87Mo06
82 Se(14 C, 16 O) 80 Ge		-449	60	-301.7	2.1	2.5	U			Ors		83Be.C
82 Se(18 O, 20 Ne) 80 Ge		-2020	40	-1799.5	2.1	5.5	В			Hei		83Wi14 *
82 Se(p,t) 80 Se		-7496.1	3.0	-7495.3	0.9	0.3	1	10	9 ⁸⁰ Se	NDm		82Zu04
82 Se(d, 3 He) 81 As		-6864	10	-6856.1	2.7	0.8	_			Ors		83Ro08 *
		-6861	18			0.3	U			Hei		83Wi14
82 Se(t, α) 81 As		7467	6	7464.3	2.7	-0.4	_			Phi		82Mo04
82 Se(d, 3 He) 81 As	ave.	-6856	5	-6856.1	2.7	0.0	1	27	26 81 As			average
82 Se(p,d) 81 Se		-7051.8	2.8	-7051.6	1.0	0.1	1	12	11 ⁸¹ Se	NDm		82Zu04
81 Br(n, γ) 82 Br		7592.80	0.20	7592.94	0.12	0.7	_			ILn		78Do06 Z
$BI(\Pi, \gamma)$		7593.02	0.15	7372.71	0.12	-0.5	_			Bdn		06Fi.A
81 Br(d,p) 82 Br		5400	20	5368.38	0.12	-1.6	U			Mtr		72Ch33
81 Br $(n,\gamma)^{82}$ Br	ave.	7592.94	0.12	7592.94	0.12	0.0	1	100	94 ⁸¹ Br	IVILI		
$^{82}\text{Ge}(\beta^-)^{82}\text{As}$	ave.	4700	140	4690	4	-0.0	U	100	94 DI	Stu		average 81Al20
$^{82}As(\beta^-)^{82}Se$		7270	200	7488	4	1.1				Siu		
As(p) se		6360		7400	4	5.6	U					
			200			-8.4	В			Ctu		
		7740 7531	30 21			-8.4 -2.0	C U			Stu Stu		00Me.A * 04Ga44 *
82 Se(t, 3 He) 82 As				7470	4							
		-7500	25	-7470	4	1.2	U	0.4	94 ⁸² Br	LAI		79Aj02
82 Br(β^{-}) 82 Kr		3092.9	1.0	3093.1	1.0	0.2	1	94	94 °2Br			56Wa24 *
82 Rb(β^+) 82 Kr		4400	15	4404	3	0.3	U			TD C		69Be74 *
82 82		4420	60		_	-0.3	U			IRS		93A103 *
82 Kr(p,n) 82 Rb		-5161	20	-5186	3	-1.3	U					72Ja.A
$^{82}\text{Rb}^{m}(\text{IT})^{82}\text{Rb}$		69.0	1.5				3					Ens035
$^{82}Y(\beta^{+})^{82}Sr$		7868	185	7946	8	0.4	U			BNL		81Li12
		7793	123			1.2	U			Ors		82De36
82 Zr(β^{+}) 82 Y		4000	500	4433	12	0.9	F			Ors		82De36 *
$*^{82}$ Rb $-u$		=-76138(30) ke										Nub16b **
$*^{82}$ As $-^{88}$ Rb _{.932}	$D_{M} = 73$	95.1(4.6) 7532	.5(4.0) μu t	o ground state	and 82 As	s ^m at 132	2.1(0.2) 1	κeV				Nub16b **
$*^{82}$ Se(18 O, 20 Ne) 80 Ge	Recalib	orated to ⁶⁴ Ni()	62Fe=-1938	(15) keV								AHW **
$*^{82}$ Se(d, 3 He) 81 As		ally -6870(10),										AHW **
$*^{82}$ As $(\beta^{-})^{82}$ Se		200(200) to gro			75 2 ⁺ lev	el (10%)					Ens035 **
$*^{82}$ As $(\beta^{-})^{82}$ Se	$F_0 = 30$	600(200) from	$82 \Delta s^m$ at 13	2.1 to 5 ⁻ level	at 2893	70 and 1	, higher lev	vels				Ens035 **
$*^{82}$ As(β^{-}) ⁸² Se	and F_{-}	=7625(22) fro	m 82 A cm of	132 1 keV	. a. 2073.	, o and i		. 215				00Me.A **
* $As(\beta^{-})$ Se * $^{82}As(\beta^{-})^{82}Se$	Avana -	= 7023(22) from e of 3 branches	A3 al	132.1 KC V	2 branal	on from-	82 A cm -	122 1				
					∠ branch	es from	As" al	132.1				04Ga44 **
$*^{82}$ Br $(\beta^{-})^{82}$ Kr		44(1) to 4 ⁻ lev			(1.5)	_ 1	. 06 10 3	160				Ens035 **
$*^{82}$ Rb(β^{+}) ⁸² Kr		350(60); and 80					at 2648.3	860				Ens035 **
$*^{82}$ Rb(β^{+}) ⁸² Kr		360(100); and				7						Nub16b **
$*^{82}$ Zr(β^+) 82 Y	F : for 2	2.5(0.1) m activ	vity, but Ens	df adopts 32(5) s							Ens035 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

33 Ge-u 33 As-u 26 H ₁₁ - 83 Kr 25 N H ₉ - 83 Kr 25 O H ₇ - 83 Kr 33 Y O- 98 Mo _{1.010} 33 Zr O- 98 Mo _{1.010}	-65626 -65270 -65276 -74677 171946.8 171948 159344 159360	268 320 129 129 3.4	-65460.9	2.6	$0.4 \\ -0.6$	o U				GT1 OR1	1.5 1.0	04Ma.A	
33 As-u C_6 H ₁₁ - 83 Kr C_5 N H ₉ - 83 Kr C_5 O H ₇ - 83 Kr 33 Y O- 98 Mo _{1.010} 33 Zr O- 98 Mo _{1.010}	-65270 -65276 -74677 171946.8 171948 159344	320 129 129 3.4											
$C_6 H_{11} = ^{83} Kr$ $C_5 N H_9 = ^{83} Kr$ $C_5 O H_7 = ^{83} Kr$ $^{33} Y O = ^{98} Mo_{1.010}$ $^{33} Zr O = ^{98} Mo_{1.010}$	-65276 -74677 171946.8 171948 159344	129 129 3.4									1.0	06Ha62	
$C_6 H_{11} = ^{83} Kr$ $C_5 N H_9 = ^{83} Kr$ $C_5 O H_7 = ^{83} Kr$ $^{33} Y O = ^{98} Mo_{1.010}$ $^{33} Zr O = ^{98} Mo_{1.010}$	-74677 171946.8 171948 159344	129 3.4			-0.6	Ü				GT2	2.5	08Su19	
$C_6 H_{11} = ^{83} Kr$ $C_5 N H_9 = ^{83} Kr$ $C_5 O H_7 = ^{83} Kr$ $^{33} Y O = ^{98} Mo_{1.010}$ $^{33} Zr O = ^{98} Mo_{1.010}$	171946.8 171948 159344	3.4	-74793	3	-0.4	Ü				GT2	2.5	08Su19	
$C_5 \text{ N H}_9 - {}^{83}\text{Kr}$ $C_5 \text{ O H}_7 - {}^{83}\text{Kr}$ ${}^{83}\text{Y O} - {}^{98}\text{Mo}_{1.010}$ ${}^{83}\text{Zr O} - {}^{98}\text{Mo}_{1.010}$	171948 159344		171948.836	0.010	0.2	Ü				M15	2.5	63Ri07	
$C_5 O H_7 = {}^{83}Kr$ ${}^{33}Y O = {}^{98}Mo_{1.010}$ ${}^{33}Zr O = {}^{98}Mo_{1.010}$	159344	16	1,15,101020	0.010	0.0	Ü				R11	1.5	78Di09	
$C_5 O H_7 = {}^{83}Kr$ ${}^{33}Y O = {}^{98}Mo_{1.010}$ ${}^{33}Zr O = {}^{98}Mo_{1.010}$		25	159372.776	0.010	0.8	Ü				R11	1.5	78Di09	
33 Y O $^{-98}$ Mo _{1.010} 33 Zr O $^{-98}$ Mo _{1.010}		19	10,0,2,,,0	0.010	0.4	Ü				R11	1.5	78Di09	
33 Y O $^{-98}$ Mo _{1.010} 33 Zr O $^{-98}$ Mo _{1.010}	135543	25	135563.327	0.010	0.5	Ü				R11	1.5	78Di09	
33 Zr O $^{-98}$ Mo _{1.010}	12941	20				2				JY1	1.0	06Ka48	*
2 1.010	19697.9	6.9				2				JY1	1.0	06Ka48	
³³ Nb-u	-61789	162				2				LZ1	1.0	16Xi.A	
83 Ga $-^{88}$ Rb _{.943}	30749.7	2.8				2				JY1	1.0	08Ha23	
83 Ge $-^{88}$ Rb _{.943}	18168.5	2.6				2				JY1	1.0	08Ha23	
33As-88Rb.943	8836.3	3.0				2				JY1	1.0	08Ha23	
80 Se H ₃ $-^{83}$ Kr	25825	25	25870.4	1.0	1.2	Ū				R11	1.5	78Di09	
33 Kr $^{-86}$ Kr $_{.965}$	386.6	1.1	387.261	0.009	0.6	U				MS1	1.0	06Ri15	
$^{33}\text{Rb}-^{85}\text{Rb}_{.976}$	1207	8	1207.4	2.5	0.0	U				MA2	1.0	94Ot01	
Ku- Ku.976	1207.4	2.5	1207.4	2.3	0.0	1	100	100	83Rb	MA8	1.0	07Ke09	
³² Se H- ⁸³ Kr	10380	18	10398.1	0.5	0.7	U	100	100	Κυ	R11	1.5	78Di09	
-3e nKi	10368	16	10396.1	0.5	1.3					R11		78Di09	
³² Kr H- ⁸³ Kr			7170 660	0.010		U					1.5		
³³ Kr ⁻⁸⁴ Kr _{.988}	7160 1566.7601	18 0.0089	7179.669 1566.760	0.010	0.7 0.0	U	100	100	⁸³ Kr	R11 FS1	1.5	78Di09 13Ho22	
³³ Sr- ⁸³ Rb				0.009		1			83 Sr		1.0		
33 Kr $^{-80}$ Se H ₂	2447	9	2440	7	-0.8	1	59	39	Sr	MA2	1.0	94Ot01	
85 Rb 83 Kr H	-18022	36	-18045.3	1.0	-0.4	U				R11	1.5	78Di09	
³³ Kr ⁻⁸² Se	-10211	45	-10161.813	0.010	0.7	U				R11	1.5	78Di09	
³³ Kr ⁻⁸² Se ³³ Kr ⁻⁸² Kr	-2572	35	-2573.0	0.5	0.0	U				R11	1.5	78Di09	
	648	12	645.363	0.010		U				M15	2.5	63Ri07	•
⁸¹ Rb- ⁸³ Rb _{.488} ⁷⁹ Rb _{.513}	-529	26	-548	5	-0.3	U				P20	2.5	82Au01	
⁸¹ Rb- ⁸³ Rb _{.325} ⁸⁰ Rb _{.675}	-1054	27	-1040	5	0.2	U				P20	2.5	82Au01	
⁸² Rb- ⁸³ Rb _{.659} ⁸⁰ Rb _{.342}	627	24	604	3	-0.4	U				P20	2.5	82Au01	
⁸² Rb- ⁸³ Rb _{.494} ⁸¹ Rb _{.506}	1098	23	1054	4	-0.8	U				P21	2.5	82Au01	Y
32 Ge(d,p) 83 Ge	1470	70	1408	3	-0.9	U				NDm		05Th03	
32 Se(d,p) 83 Se	3593.4	3.0	2215			2	4.2		92-	NDm		78Mo12	
32 Se(3 He,d) 83 Br	3207.4	5.6	3215	4	1.4	1	46	46	83 Br	NDm		83Zu01	
32 Kr(3 He,d) 83 Rb	288	10	274.3	2.3	-1.4	U				Phi		87St11	
83 Zr(ε p) 82 Sr	2750	100	2809	9	0.6	U						83Ha06	
33 As(β^{-}) 83 Se	5460	220	5671	4	1.0	U				Stu		77Al17	
83 Se(β^-) 83 Br	3610	40	3673	5	1.6	U						67Ma35	
02- 02-	3681	20			-0.4	U						68Sc10	*
83 Br(β ⁻) 83 Kr	982	10	977	4	-0.5	-						51Du03	*
	967	15			0.7	U						63Pa09	*
	966	6			1.8	_			92_			69Ph03	*
22	ave. 970	5			1.3	1	54	54	83 Br			average	
83 Rb(ε) 83 Kr	750	20	920.0	2.3	8.5	В			02			70Go45	*
33 Sr(β^{+}) 83 Rb	2264	10	2273	6	0.9	1	41	41	⁸³ Sr			68Et01	*
33 Y $(\beta^+)^{83}$ Sr	4509	85	4592	20	1.0	U				BNL		81Li12	*
22	4455	50			2.7	В				Ors		82De36	*
$^{33}Zr(\beta^+)^{83}Y$	5868	85	6294	20	5.0	В				Ors		82De36	*
33 Nb(β^{+}) 83 Zr	7500	300	8360	150	2.9	В						88Ku14	
83 Y O $^{-98}$ Mo _{1.010}	D_M =12973.8(5.9) μu	for mixture	gs+m at 62.04	(0.10) keV	V; M-A	=-7217	2.9(5.8) keV	7				Nub16b	**
83 Se(β^-) 83 Br	Q_{β^-} =3910(20) from ⁸	63 Se ^{m} at 228	3.92 keV									Nub16b	**
83 Br(β^{-}) 83 Kr	$E_{\beta}^{'} = 940(10) 925(15)$	924(6) resp	ectively, to ⁸³ l	Kr ⁿ at 41.5	5575 keV	1						Nub16b	**
83 Rb(ε) 83 Kr	LK=0.132(0.002) to 5	$1/2^-$ level at	561.9585, reca	lculated (2							Ens153	**
83 Sr(β^{+}) 83 Rb	E_{β^+} =1227(8) 24% to					other E_{f}	<u>r</u> +					Nub16b	**
$^{33}Y(\beta^{+})^{83}Sr$	$E_{\beta^{+}}^{\beta} = 2868(85) \text{ from } ^{8}$											Ens153	
$^{33}Y(\beta^{+})^{83}Sr$	E_{β^+} =3353(50) to 9/2											Ens153	
VF / ==	and E_{β} = 2941(84) f	rom ⁸³ Y ^m a	t 62.04 to (3/2) level at	681 11 1	кеV						Ens153	
33 Zr(β^{+}) 83 Y	Q_{β^+} =5806(85) to ⁸³ Y	.o 1 a m _{at 62 0/1} 1	reV	, iover at	551.111	,						Nub16b	
33 Zr(β^{+}) ⁸³ Y	Q_{β}^{+} =3800(83) to 1 Recalculated value 58			rented								87Ra06	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Compan	Input va		Adjusted value		v_i	Dg	Signf.	Main infl		F	Reference
				-								
⁸⁴ Ge-u		-62270	430	-62425	3	-0.4	U			OR1	1.0	06Ha62
⁸⁴ As-u		-70530	320	-70697	3	-0.5	U			OR1	1.0	06Ha62 *
0.4		-70710	140			0.0	U			GT2	2.5	08Su19 *
$C_6 H_{12} - ^{84} Kr$		182399.4	2.5	182402.658	0.004	0.5	U			M15	2.5	63Ri07
0.4		182392	6			1.2	U			R11	1.5	78Di09
$C_5 N H_{10} - ^{84}Kr$		169819	18	169826.598	0.004	0.3	U			R11	1.5	78Di09
0.4		169819	13			0.4	U			R11	1.5	78Di09
$C_5 O H_8 - {}^{84}Kr$		146010	20	146017.149	0.004	0.2	U			R11	1.5	78Di09
$C_4^{13}COH_7-^{84}Kr$		141543	18	141546.952	0.004	0.1	U			R11	1.5	78Di09
84 Kr $-N_6$		-106946.3154	0.0152	-106946.298	0.004	1.1	O			FS1	1.0	05Sh38 *
		-106946.2971	0.0086			-0.1	1	22	21 ⁸⁴ K	r FS1	1.0	09Re03
$^{84}{ m Kr}~{ m H}{ m -}^{85}{ m Rb}$		7515	18	7533.023	0.004	0.7	U			R11	1.5	78Di09
$C_6 H_{12} - ^{84} Sr$		180470.8	2.6	180481.3	1.3	1.6	U			M15	2.5	63Ri07
$^{84}\text{Y O}-^{97}\text{Mo}_{1.031}$		12483.5	5.1	12482	5	-0.2	1	82	82 ⁸⁴ Y	JY1	1.0	08We10
84 Zr O $^{-98}$ Mo _{1.020}		14728.6	5.9				2			JY1	1.0	06Ka48
⁸⁴ Nb-u		-65721	14				2			LZ1	1.0	16Xi.A
84 Ge $-^{88}$ Rb _{.955}		22268.7	3.4				2			JY1	1.0	08Ha23
84 As $-^{88}$ Rb.955		13996.9	3.4				2			JY1	1.0	08Ha23
84 Se $-^{88}$ Rb _{.955}		3160.4	2.1	3160.4	2.1	0.0	1	100	100 84 S	e JY1	1.0	08Ha23
82 Se H ₂ $-^{84}$ Kr		20834	16	20851.9	0.5	0.7	U			R11	1.5	78Di09
84 Kr $-^{86}$ Kr.977		-1168.3	1.0	-1168.8534	0.0022	-0.6	U			MS1	1.0	06Ri15
83 Kr H $-^{84}$ Kr		10465	16	10453.822	0.009	-0.5	U			R11	1.5	78Di09
84 Kr $-^{85}$ Rb _{.988}		-1349.4	1.5	-1350.534	0.004	-0.8	U			MA8		06De36
⁸⁴ Rb- ⁸⁵ Rb _{.988}		1536	8	1527.0	2.4	-1.1	Ü			MA2		94Ot01
⁸⁴ Sr- ⁸⁵ Rb _{.988}		570.9	1.5	570.9	1.3	0.0	_			MA8		07Ke09
51 110.966		572.1	4.3	370.5	1.5	-0.3	_			SH1	1.0	11Ha08
	ave.	571.0	1.4			-0.1	1	89	89 ⁸⁴ S		110	average
84 Kr $-^{80}$ Se H ₃	uve.	-28505	48	-28499.2	1.0	0.1	Ú	0)	0) 0	R11	1.5	78Di09
84 Kr $^{-83}$ Kr		-2628	12	-2628.790	0.009	0.0	U			M15	2.5	63Ri07
Ki Ki		-2646	30	2020.770	0.007	0.4	U			R11	1.5	78Di09
$^{84}{\rm Kr}{-}^{40}{\rm Ar}_2$		-13268.5136	0.0171	-13268.519	0.006	-0.3	1	13	7 ⁴⁰ A	r FS1	1.0	05Sh38 *
$C_2 O_4 - {}^{84}Kr$		68160.7359	0.0171	68160.750	0.004	0.7	0	13	, ,	FS1	1.0	05Sh38 *
C ₂ O ₄ — Ki		68160.7516	0.0203	00100.750	0.004	-0.1	1	10	9 ⁸⁴ K	r FS1	1.0	09Re03
82 Se(t,p) 84 Se		6016	15	6014.7	2.0	-0.1	U	10	<i>y</i> K	LAI	1.0	74Kn02
84 Sr(p,t) 82 Sr		-12310	10	-12300	6	1.0	1	36	35 ⁸² S			73Ba56
31(p,t) 31		-12310 -12295	24	-12300	U	-0.2	U	30	<i>33</i> 3.	Win		74De31 *
83 Kr $(n,\gamma)^{84}$ Kr		10519.5	1.8	10520.019	0.008	0.3	U			VV 111		72Ma42 Z
$Ki(ii, \gamma)$ Ki		10519.5	0.3	10320.019	0.008	-1.9	U			Bdn		06Fi.A
84 Sr(d,t) 83 Sr		-5720	30	-5666	7	1.8	U			Duli		70Be24 *
$^{84}\text{As}(\beta^{-})^{84}\text{Se}$		7195	200	10094	4	14.5	F			Trs		94Gi07 *
As(p) se		9120	880	10054	4	1.1	U			115		96WaZX
84 Se(β^{-}) 84 Br		1818	50	1835	26	0.3	1	27	26 ⁸⁴ B	r		68Re12 *
$SC(p^{-})$ Bi		1808	100	1633	20	0.3	U	21	20 B	ı		70Ei02 *
$^{84}\mathrm{Br}(eta^-)^{84}\mathrm{Kr}$		4650	30	4656	26	0.3	1	74	74 ⁸⁴ B	r		70Ei02 * 70Ha21 *
84 Br $^m(\beta^-)^{84}$ Kr		4970	100	4030	20	0.2	2	74	/+ D	ı		70Ha21 *
$^{84}\text{Rb}(\beta^{+})^{84}\text{Kr}$		2679		2680.4	2.2	0.5	_					64La03
$K_0(p^+)^+K_1$			3	2000.4	2.2							
84 Rb(n,p) 84 Kr		2682	5	2462.7	2.2	-0.3	_			11 1		71Bo01 *
$^{84}\text{Rb}(\beta^{+})^{84}\text{Kr}$		3450	10	3462.7	2.2	1.3	U	72	73 ⁸⁴ R	ILL		76An05
$^{84}\text{Rb}(\beta^{-})^{84}\text{Sr}$	ave.	2679.8	2.6	2680.4	2.2	0.2	1	73				average
84x(0+)84c		892	4	890.6	2.3	-0.3	1	34	27 ⁸⁴ R	D		71Bo01 *
$^{84}Y(\beta^{+})^{84}Sr$		6950	30	6755	4	-6.5	F	10	10 8/15			70Va.A *
		6750	10			0.5	1	19	18 ⁸⁴ Y			70Re.A *
		6423	135			2.5	U			BNL		81Li12 *
84371 (0+)847		6408	124	10202	1.4	2.8	U			Ors		82De36 *
$^{84}\text{Nb}(\beta^{+})^{84}\text{Zr}$		7200	300	10203	14	10.0	В					96Sh27
*84As-u				0) keV in the pu								08Ha.A **
* ⁸⁴ As-u				re gs+m at 0#(10)0#) keV							Nub16b **
$*^{84}$ Kr $-N_6$		ed in reference of	_									09Re03 **
$*^{84}$ Kr $-^{40}$ Ar ₂		ed in reference of	_	•								09Re03 **
$*C_2 O_4 - {}^{84}Kr$		ed in reference of										09Re03 **
$*^{84}$ Sr(p,t) 82 Sr		l error 12; added										GAu **
$*^{84}$ Sr(d,t) 83 Sr	Q = -57	755(30) to 9/2 ⁺	level at 35.4	7 keV								Ens153 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	ılue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	ce
$*^{84}$ As(β^{-}) ⁸⁴ Se	F: observed $(\beta^- n)$	decay impli	es $O_{o_{-}} > 86810$	(15) keV							93Ru01	**
$*^{84}$ Se(β^-) ⁸⁴ Br	E_{β^-} =1410(50) 1400	0(100) resne	ectively to 1^+ le	vel at 408	2 keV							
$*^{84}$ Br(β^-) ⁸⁴ Kr	E_{β} =4626(15),3810					897 784	0+					
$*^{84}$ Br ^{m} (β^-) ⁸⁴ Kr	E_{β} = 2200(100) to :			atc, 661.6	1132,1	071.704	U					**
* B1 (β) K1 * 84 Rb(β ⁺) 84 Kr	Original error incre			977 271 5) while						AHW	
* KD(p ') KI	$E(2^+)=881.615(0.$) wille							**
* $*^{84}$ Rb(β^-) 84 Sr	Originally 891.8(2.6)										AHW	**
$*^{84}Y(\beta^{+})^{84}Sr$	F: possibly addition			(p ·)							AHW	**
$*^{84}Y(\beta^{+})^{84}Sr$	E_{β^+} =1641(10) and			nd 35111	keV							
$*^{84}Y(\beta^{+})^{84}Sr$	Q_{β^+} =6409(170), ar				KC V						00Do10	
$*^{84}Y(\beta^{+})^{84}Sr$	$Q_{\beta^+}=6475(124)$ fro)/ KC V							00Do10	
* 1(p) 51	Qβ+=0+75(12+) IIC	7111 1 at v	37 KC V								000010	**
⁸⁵ Ge-u	-57220	540	-57030	4	0.4	U			OR1	1.0	06Ha62	
85As-u	-68095	225	-67836	3	0.4	0			GT1	1.5	04Ma.A	
As-u	-67887	129	-07830	3	0.3	U			GT2	2.5	08Su19	
$C_6 H_{13} - ^{85}Rb$	189927.6	3.9	189935.682	0.005	0.2	U			M15	2.5	63Ri07	
C ₆ 11 ₁₃ - R ₀	189930	15	109933.002	0.003	0.3	U			R11	1.5	78Di09	
$C_4 NOH_7 - ^{85}Rb$	140985	18	140974.112	0.005	-0.4	U			R11	1.5	78Di09	
$^{85}\text{Rb} - ^{39}\text{K}_{2.179}$	-9124.6	2.7	-9126.700	0.012	-0.8	U			MA8	1.0	09Na.A	
$^{85}\text{Rb}-^{120}\text{Sn}_{.708}$	-18970.8	2.2	-18969.2	0.7	0.7	U			JY1	1.0	11Ha48	
$^{85}Y-u$	-83559	31	-83567	20	-0.3	2			GS2	1.0	05Li24	*
85 Zr O $-^{98}$ Mo _{1.031}	13886.7	6.9	-63307	20	-0.5	2			JY1	1.0	05E124	
85 Nb O $^{-98}$ Mo _{1.031}	21246	26	21289	4	1.7	U			JY1	1.0	06Ka48	
85Ge-88Rb _{.966}	28638.8	4.0	21207	7	1.7	2			JY1	1.0	08Ha23	
85As-88Rb _{.966}	17832.8	3.3				2			JY1	1.0	08Ha23	
85Se-88Rb.966	7929.9	2.8				2			JY1	1.0	08Ha23	
85Br-88Rb.966	1314.9	3.3				2			JY1	1.0	07Ra23	
$^{85}\text{Nb}-^{85}\text{Rb}$	17056.1	4.4				2			SH1	1.0	11Ha08	ψ.
$^{85}\text{Mo} - ^{85}\text{Rb}$	26471	17				2			SH1	1.0	11Ha08	
$C_6 H_{14} - ^{85}Rb$	197760.706	0.014	197760.714	0.005	0.6	U			MI2	1.0	99Br47	
$^{85}\text{Rb}-\text{C}_6\text{ H}_{12}$	-182110.662	0.024	-182110.649	0.005	0.5	U			MI2	1.0	99Br47	
$^{85}\text{Rb} - ^{84}\text{Kr}$	300	32	292.009	0.003	-0.2	U			R11	1.5	78Di09	
Ko Ki	292.0121	0.0064	272.007	0.004	-0.5	1	39	34 ⁸⁵ Rb	FS1	1.0	10Mo30)
83Rb-85Rb.488 81Rb.512	-351	22	-339	3	0.2	Ü	37	31 10	P21	2.5	82Au01	
84Kr(d,p)85Kr	4895	8	4887.7	2.0	-0.9	Ü			MIT	2.5	63Ho.A	
85 Rb(γ ,n) 84 Rb	-10650	80	-10479.7	2.2	2.1	Ü			Phi		60Ge01	
85 Rb(p,d) 84 Rb	-8275	6	-8255.1	2.2	3.3	В			Bld		78Sh11	
84 Sr(d,p) 85 Sr	6303	8	6300	3	-0.3	1	14	12 ⁸⁵ Sr	Dia		71Mo02	,
$^{85}\text{Mo}(\varepsilon p)^{84}\text{Zr}$	5100	200	6623	17	7.6	В	1-7	12 51			99Hu05	
$^{85}\text{Se}(\beta^{-})^{85}\text{Br}$	6185	90	6162	4	-0.3	0			Bwg		87Gr.A	
Se(p) Bi	6182	23	0102	7	-0.9	Ü			Bwg		92Gr.A	
85 Br(β^{-}) 85 Kr	2870	19	2905	4	1.8	U			Stu		79Al05	
$^{85}\text{Kr}(\beta^{-})^{85}\text{Rb}$	687	2	2703	7	1.0	2			Stu		70Wo08	į.
85 Sr $(\varepsilon)^{85}$ Rb	1007	30	1064.1	2.8	1.9	U					69Mc05	
85 Rb(p,n) 85 Sr	-1890	30	-1846.4	2.8	1.5	Ü			BNL		58El44	
85Rb(³ He,t) ⁸⁵ Sr	-1083	3	-1082.6	2.8	0.1	1	88	88 ⁸⁵ Sr	Pri		82Ko06	
$^{85}Y(\beta^{+})^{85}Sr$	3255	25	3261	19	0.2	R	00	00 51			63Do07	
85 Zr(β^{+}) 85 Y	4693	99	4667	20	-0.2	U			Ors		82De36	
$^{85}\text{Nb}(\beta^{+})^{85}\text{Zr}$	6000	200	6896	8	4.5	F			013		88Ku14	
*85Y-u	M - A = -77824(28)				4.5	•					Nub16c	
* 1 – u * ⁸⁵ Nb O– ⁹⁸ Mo _{1.031}	M - A = 77824(28) $D_M = 21292.2(6.9) \mu$		_		M = A-	66274 8	(6.6) keV				Nub16b	
$*^{85}\text{Nb}-{}^{85}\text{Rb}$	Misprint in publicat					002/7.0	(0.0) KC V				GAu	**
$*^{85}Y(\beta^{+})^{85}Sr$	E_{β^+} =1540(20) to 3/2			.50007)							Ens148	
- 1(<i>p</i>) 31	and E_{β^+} =1340(20) to 3/2) from $85 \mathbf{V}^n$	173.23 KEV 1 at 10.68 (confli	cting \	outer err	or usad)					Nub16b	
	anu r.p+=7.7.40010	THOM	at 12.00 (COIIIII	$cons \rightarrow 0$	outel cil	or uscu)					(N ((() () () ()	ポ ボ
$*^{85}$ Nb(β^+) 85 Zr	F: see discussion of					, ,,,					06Ka48	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
⁸⁶ Ge-u		-54750	540	-53030	470	3.2	В			OR1	1.0	06Ha62
GC u		-53033	188	33030	470	3.2	2			GT3	2.5	16Kn03
⁸⁶ As-u		-63586	247	-63298	4	0.8	0			GT1	1.5	04Ma.A
110 0		-63189	129	00270	•	-0.3	Ü			GT2	2.5	08Su19
⁸⁶ Se-u		-75702	128	-75688.3	2.7	0.0	U			GT2	2.5	08Su19
$C_6 H_{14} - {}^{86}Kr$		198936.7	2.7	198939.825	0.004	0.5	Ü			M15	2.5	63Ri07
00 1114 121		198933	15	1,0,0,1,020	0.00.	0.3	Ü			R11	1.5	78Di09
$C_5 \text{ N H}_{12} - {}^{86}\text{Kr}$		186366	20	186363.765	0.004	-0.1	U			R11	1.5	78Di09
⁸⁶ Kr-u		-89389.271	0.110	-89389.374	0.004	-0.9	U			ST2	1.0	02Bf02
86 Kr $-^{120}$ Sn _{.717}		-19269.6	2.2	-19268.1	0.7	0.7	U			JY1	1.0	11Ha48
$C_6 H_{14} - {}^{86}Sr$		200264.9	3.6	200289.725	0.006	2.8	Ü			M15	2.5	63Ri07
$^{86}Y-u$		-85019	75	-85114	15	-1.3	Ü			GS2	1.0	05Li24 *
⁸⁶ Zr O- ⁹⁸ Mo _{1.041}		9692.8	6.9	9686	4	-0.9	1	31	31^{-86} Zr	JY1	1.0	06Ka48
⁸⁶ Nb O- ⁹⁸ Mo _{1.041}		19171.0	5.9				2			JY1	1.0	06Ka48
⁸⁶ As- ⁸⁸ Rb _{.977}		23346.2	3.7				2			JY1	1.0	08Ha23
⁸⁶ Se- ⁸⁸ Rb. ₉₇₇		10956.4	2.7				2			JY1	1.0	08Ha23
⁸⁶ Br- ⁸⁸ Rb _{.977}		5450.1	3.3				2			JY1	1.0	07Ra23
86Kr-84Kr ₁ 024		1236.9544	0.0042	1236.9565	0.0023	0.5	1	30	$20^{-84} \mathrm{Kr}$	FS1	1.0	12Ra34
86 Sr $-^{84}$ Kr $_{1.024}$		-112.9463	0.0054	-112.944	0.004	0.5	1	59	54 ⁸⁶ Sr	FS1	1.0	12Ra34
86 Kr $-^{85}$ Rb _{1.012}		-120.3	3.6	-120.591	0.004	-0.1	Ü	0,	<i>5</i> . 51	MA8		06Ro11
110 1.012		-119.1	1.6	120.071	0.00.	-0.9	Ü			MA8		06De36
		-54	88			-0.8	Ü			MA9		10Na13 *
$^{86}\text{Rb}-^{85}\text{Rb}_{1.012}$		441	9	436.23	0.21	-0.5	Ü			MA2		94Ot01
86 Sr 19 F $-^{85}$ Rb _{1.235}		16608	13	16603.565	0.006	-0.3	Ü			MA8		05Si34
$^{86}\text{Zr}-^{85}\text{Rb}_{1.012}$		5562.7	4.6	5566	4	0.6	1	69	69 ⁸⁶ Zr	SH1	1.0	11Ha08
$^{86}\text{Mo}-^{85}\text{Rb}_{1.012}$		20443.6	4.0	2200	•	0.0	2	0,	٠, ٢,	SH1	1.0	11Ha08
86Sr-86Kr		-1349.8965	0.0060	-1349.900	0.004	-0.6	1	49	46 ⁸⁶ Sr	FS1	1.0	12Ra34
86 Kr $-^{85}$ Rb		-1206	42	-1179.111	0.004	0.4	Ú	17	10 51	R11	1.5	78Di09
Ki Ko		-1179.1083	0.0071	1177.111	0.004	-0.4	_			FS1	1.0	10Mo30 *
		-1179.1109	0.0059			-0.1	_			FS1	1.0	10Mo30 *
	ave.	-1179.110	0.005			-0.3	1	69	66 ⁸⁵ Rb	151		average
86 Kr $-N_{6}$		-107833.3986	0.0074	-107833.400	0.004	-0.3	1	28	27 ⁸⁶ Kr	FS1	1.0	09Re03
$C_2 O_4 - {}^{86}Kr$		69047.8337	0.0155	69047.852	0.004	1.2	0	20	27 111	FS1	1.0	05Sh38 *
C ₂ O ₄ III		69047.8440	0.0113	07017.032	0.001	0.7	1	12	12 ⁸⁶ Kr	FS1	1.0	09Re03
$^{86}{\rm Kr}{-}^{84}{\rm Kr}$		-908	32	-887.1024	0.0023	0.4	Ü			R11	1.5	78Di09
		-887.1041	0.0125	00711021	0.0025	0.1	o			FS1	1.0	05Sh38 *
		-887.1080	0.0069			0.8	_			FS1	1.0	09Re03 *
		-887.0954	0.0060			-1.2	_			FS1	1.0	10Mo30 *
	ave.	-887.101	0.005			-0.3	1	25	15 ⁸⁴ Kr			average
86 Sr(p,t) 84 Sr		-11535	10	-11534.4	1.2	0.1	U			Oak		73Ba56
85 Rb(n, γ) 86 Rb		8651.1	1.0	8650.98	0.20	-0.1	U					69Da15 Z
		8651.3	1.5			-0.2	U					70Or.A
		8650.98	0.20				2			Bdn		06Fi.A
85 Rb(d,p) 86 Rb		6433	10	6426.41	0.20	-0.7	U			Tal		69Da15
86 Se(β^{-}) 86 Br		5095	100	5129	4	0.3	o			Bwg		87Gr.A
•		5099	11			2.7	C			Bwg		92Gr.A
86 Br(β^{-}) 86 Kr		7620	60	7633	3	0.2	U			Stu		79A105
		7626	11			0.7	U			Bwg		92Gr.A
86 Rb(β^{-}) 86 Sr		1774	5	1776.10	0.20	0.4	U					64Da16
		1770	3			2.0	U					66An10
		1779.2	2.5			-1.2	U					75Be21
		1775	3			0.4	U					75Ra09
86 Y $(\beta^{+})^{86}$ Sr		5220	20	5240	14	1.0	2					62Ya01 *
		5260	20			-1.0	2					65Va02 *
86 Nb(β^{+}) 86 Zr		7978	80	8835	7	10.7	F					82De43 *
86 Mo(β^{+}) 86 Nb		5019	430	5024	7	0.0	U					94Sh07 *
*86Y-u	M 1	-70086(20) keV	for mixtur	e gs+m at 218.21	keV							Nub16b **
	M - A =	-17000(27) KC										
$*^{86}$ Kr $-^{85}$ Rb _{1.012}				read 1.011 763								GAu **
$*^{86}$ Kr $-^{85}$ Rb _{1.012} $*^{86}$ Kr $-^{85}$ Rb	Typo in		ratio should	read 1.011 763								GAu ** 10Mo30 **
$*^{86}$ Kr $-^{85}$ Rb $_{1.012}$ $*^{86}$ Kr $-^{85}$ Rb $*$ C $_2$ O $_4$ $-^{86}$ Kr	Typo in Differen	original paper,	ratio should : 3 ⁺ and 2 ⁺	read 1.011 763								10Mo30 **
$*^{86}$ Kr $-^{85}$ Rb _{1.012} $*^{86}$ Kr $-^{85}$ Rb	Typo in Different Correct	original paper, nt charge states	ratio should : 3 ⁺ and 2 ⁺ of same grou	read 1.011 763 9								

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input a		Adjusted variety		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u>e</u>
$*^{86}Y(\beta^+)^{86}Sr$ $*^{86}Nb(\beta^+)^{86}Zr$ $*^{86}Mo(\beta^+)^{86}Nb$	E_{β^+} =2019(20) 1960 F: see discussion of E_{β^+} =3900(400) to (this result i	n reference	1 4 ⁺ lev	el, and o	other $E_{oldsymbol{eta}^+}$					Ens14c 06Ka48 94Sh07	**
	,											
⁸⁷ Se-u	-71357	128	-71311.4	2.4	0.1	U			GT2	2.5	08Su19	
⁸⁷ Kr–u	-86622	30	-86645.24	0.26	-0.8	Ü			GS2	1.0	05Li24	
$C_4 H_7 O_2 - ^{87}Rb$	135417.8	2.7	135423.934	0.006	0.9	U			M15	2.5	63Ri07	
$C_5^{13}CH_{14}-^{87}Rb$	203767	15	203724.755	0.006	-1.9	U			R11	1.5	78Di09	
$C_4 O N H_9 - {}^{87}Rb$	159277	15	159233.383	0.006	-1.9	U			R11	1.5	78Di09	
$C_3^{13}CONH_8-^{87}Rb$	154809	25	154763.186	0.006	-1.2	U			R11	1.5	78Di09	
$C_4 H_7 O_2 - {}^{87}Sr$	135722.2	3.5	135726.969	0.005	0.5	U			M15	2.5	63Ri07	
⁸⁷ Y-u	-89153	30	-89123.9	1.2	1.0	U			GS2	1.0	03Li.A	*
⁸⁷ Zr-u	-85222	30	-85183	4	1.3	U	=-	72 97 7	GS2	1.0	05Li24	
87 Zr O $^{-97}$ Mo _{1.062}	9543.3	5.2	9542	4	-0.2	1	73	73 ⁸⁷ Zr	JY1	1.0	08We10	
87 Nb _{1.069} -C ₇ H ₉ 87 Nb O- 98 Mo _{1.051}	-155224	30	-155205	8	0.6	U			CP1	1.0	11Fa10	
87Ma C H	15027.9 -147186.1	7.3 4.8	-147184	3	0.5	2	47	47 ⁸⁷ Mo	JY1 CP1	1.0	06Ka48	*
$^{87}\text{Mo}_{1.069}$ –C ₇ H ₉ ^{87}Sr – $^{84}\text{Kr}_{1.036}$	565.8516	0.0059	565.850	0.004	$0.5 \\ -0.2$	1 1	47 47	47 87 Sr	FS1	1.0 1.0	11Fa10 12Ra34	
$^{87}\text{Kr}-^{85}\text{Rb}_{1.024}$	3683.0	2.9	3682.07	0.004	-0.2 -0.3	U	47	41 31	MA8	1.0	06De36	
$KI = KU_{1.024}$	3684.1	4.7	3082.07	0.20	-0.3 -0.4	U			MA8	1.0	10Na13	
$^{87}\text{Rb} - ^{85}\text{Rb}_{1.024}$	-490	9	-492.156	0.007	-0.2	U			MA2		94Ot01	
K0 K01.024	-493.0	2.7	472.130	0.007	0.3	U				1.0	06De36	
	-492.33	0.80			0.2	Ü			MA8	1.0	07Ke09	
	-492.4	1.4			0.2	U				1.0	09Na.A	
	-492.04	0.87			-0.1	U			MA8	1.0	11He10	
$^{87}Sr-^{85}Rb_{1.024}$	-780	9	-795.191	0.005	-1.7	U			MA2	1.0	94Ot01	
$^{87}\text{Mo}-^{85}\text{Rb}_{1.024}$	18525.6	4.2	18524	3	-0.5	1	53	53 ⁸⁷ Mo	SH1	1.0	11Ha08	
$^{87}\text{Tc} - ^{85}\text{Rb}_{1.024}$	28394.5	4.5				2			SH1	1.0	11Ha08	*
87 As $-^{88}$ Rb $_{.989}$	28000.6	3.2				2			JY1	1.0	08Ha23	
⁸⁷ Se- ⁸⁸ Rb _{.989}	16397.5	2.4				2			JY1	1.0	08Ha23	
⁸⁷ Br- ⁸⁸ Rb. ₉₈₉	8382.9	3.4				2			JY1	1.0	07Ra23	
⁸⁶ Kr H- ⁸⁷ Rb	9309	16	9255.127	0.006	-2.2	U		97	R11	1.5	78Di09	
$^{87}\text{Sr} - ^{86}\text{Kr}_{1.012}$	-660.4616	0.0050	-660.461	0.004	0.2	1	62	59 ⁸⁷ Sr	FS1	1.0	12Ra34	
$C_6 H_{16} - {}^{87}Rb$	216019.966	0.023	216019.985	0.007	0.8	U	10	10 8701	MI2	1.0	99Br47	
⁸⁷ Rb-C ₆ H ₁₄	-200369.931	0.015	-200369.920	0.007	0.7	1	19	18 ⁸⁷ Rb	MI2	1.0	99Br47	
87 Rb $-^{86}$ Kr	-1477	30	-1430.095	0.006	1.0	U	07	81 ⁸⁷ Rb	R11	1.5	78Di09	
87 Sr $-^{86}$ Sr	-1430.0932 -382	0.0059	292 220	0.006	-0.3	1 U	87	81 * Kb	FS1	1.0	10Mo30	
$^{87}\text{Rb} - ^{85}\text{Rb}$	-382 -2620	12 35	-383.230 -2609.206	0.006 0.007	0.0	U			M15 R11	2.5 1.5	63Ri07 78Di09	
⁸⁵ Rb- ⁸⁷ Rb _{.489} ⁸³ Rb _{.512}	-2020 -310	30	-314.8	1.2	-0.1	U			P21	2.5	82Au01	
⁸⁴ Rb- ⁸⁷ Rb _{.241} ⁸³ Rb _{.759}	850	72	643.7	2.8	-1.1	U			P21	2.5	82Au01	*
87 Sr(p,t)85 Sr	-11440	10	-11437.6	2.8	0.2	Ü			Oak	2.5	73Ba56	
87 Br(β -n) 86 Kr	1335	25	1303	3	-1.3	Ü			oun		84Kr.B	
86 Kr $(n,\gamma)^{87}$ Kr	5515.04	0.6	5515.17	0.25	0.2	2					77Je03	Z
	5515.20	0.27			-0.1	2			Bdn		06Fi.A	
86 Kr(d,p) 87 Kr	3286	8	3290.61	0.25	0.6	U			MIT		63Ho.A	
87 Rb $(\gamma,n)^{86}$ Rb	-9990	70	-9922.11	0.20	1.0	U			Phi		60Ge01	
87 Rb(d,t) 86 Rb	-3659	15	-3664.89	0.20	-0.4	U			Tal		69Da15	
86 Sr(n, γ) 87 Sr	8428.12	0.17	8428.294	0.005	1.0	U			ILn		86Wi16	Z
0.5	8428.17	0.17			0.7	U			Bdn		06Fi.A	
86 Sr(d,p) 87 Sr	6203	8	6203.728	0.005	0.1	U					71Mo02	
86 Sr(p, γ) 87 Y	5785.4	3.3	5784.3	1.1	-0.3	R					71Um03	
86 Sr(3 He,d) 87 Y	346	15	290.8	1.1	-3.7	В			ANL		71Ma11	
87 Mo(ε p) 86 Zr	3700	300	3795	5	0.3	U			_		83Ha06	
87 Se $(\beta^-)^{87}$ Br	7250 7275	150	7466	4	1.4	0			Bwg		87Gr.A	
	7275	35			5.4	В			Bwg		92Gr.A	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{87}{ m Br}(eta^-)^{87}{ m Kr}$	6830	120	6818	3	-0.1	U			Stu		79Al05
o, Br(b) o, Kr			0818	3							
	6750	150			0.5	0			Bwg		87Gr.B
87 12 187-1	6855	25			-1.5	U			Bwg		92Gr.A
$^{87}\text{Kr}(\beta^{-})^{87}\text{Rb}$	3888	7	3888.27	0.25	0.0	U					73Wo01
87 Rb(β^-) 87 Sr	272	3	282.275	0.006	3.4	В					59F140
	274	3			2.8	В					61Be41
87 Rb(3 He,t) 87 Sr- 81 Br() 81 Kr	564.0	1.5	563.1	0.5	-0.6	1	10	9 ⁸¹ Kr	Pri		82Ko06
$^{87}Y(\beta^{+})^{87}Sr$	2190	50	1861.7	1.1	-6.6	В					67Mi13
•	1791	40			1.8	U					69Zo04
87 Sr(p,n) 87 Y	-2644.2	1.2	-2644.0	1.1	0.1	2					71Um03
$87 \text{Zr}(\beta^+)^{87} \text{Y}$	3663	40	3671	4	0.2	U					65Ba48
$^{87}\text{Nb}(\beta^{+})^{87}\text{Zr}$	5165	60	5473	8	5.1	В					
$^{87}\text{Mo}(\beta^+)^{87}\text{Nb}$	6382	308	6990	7	2.0	U					82De43 82De43
$MO(p^{+})$ No			0990	/							
87	6589	300	7		1.3	U					91Mi15
* ⁸⁷ Y-u	M - A = -82665(28)										Nub16b >
*87Nb O-98Mo _{1.051}	D_M =15030.0(6.9)			.9(0.1) ke	eV; M-L	A = -738'	70.2(6.7)	keV			Nub16b →
$*^{87}$ Tc $-^{85}$ Rb _{1.024}	Most probably the	high-spin i	isomer								11Ha08 >
*84Rb-87Rb _{.241} 83Rb _{.759}	D_M =1080(40) keV	corrected '	-230(60) for m	nixture gs	s+m at 40	63.59 ke	V				Nub16b >
$*^{87}Y(\beta^+)^{87}Sr$	$E_{\beta^+} = 780(50)$ to ⁸⁷										Nub16b *
87 Y $(\beta^{+})^{87}$ Sr	$E_{\beta^+} = 1150(40)$ fro	m 87 Y m at	380.82 keV								Nub16b >
e^{87} Zr(β^+) e^{87} Y	$E_{\beta^+} = 2260(40) \text{ to}^3$	87 Vm at 391	182 keV								Nub16b
e^{87} Nb(β^+) ⁸⁷ Zr	Q_{β^+} =5169(60) fro										
											Nub16b >
$*^{87}$ Mo(β^+) 87 Nb	$Q_{\beta^+}^{r}$ =6378(308)) t										Nub16b *
$*^{87}$ Mo(β^+) 87 Nb	$E_{\beta^+} = 5300(300)$ to	$(7/2)^+$ lev	el at 266.9 keV	/							Ens15a *
00											
⁸⁸ Se-u	-68555	129	-68583	4	-0.1	U			GT2		08Su19
⁸⁸ Br-u	-75832	100	-75917	3	-0.3	o			GT2	2.5	08Kn.A
	-75823	129			-0.3	U			GT2	2.5	08Su19
$C_4 H_8 O_2 - ^{88}Sr$	146789.1	4.7	146817.242	0.006	2.4	U			M15	2.5	63Ri07
$^{88}Y-n$	-90500	31	-90498.7	1.6	0.0	U			GS2	1.0	05Li24
88 Zr O $^{-98}$ Mo _{1.061}	5502.3	6.9	5502	6	0.0	1	71	71 ⁸⁸ Zr	JY1	1.0	06Ka48
⁸⁸ Nb O- ⁹⁸ Mo _{1.061}	13452	78	13510	60	0.7	1	66	66 ⁸⁸ Nb	JY1	1.0	06Ka48
$^{88}\text{Sr}-^{84}\text{Kr}_{1.048}$	-1637.3606	0.0069	-1637.366	0.005	-0.8	1	46	42 ⁸⁸ Sr	FS1	1.0	12Ra34
88 Kr $-^{85}$ Rb _{1.035}			-1037.300	0.003	-0.8		40	42 31			
88 D1 85 D1 85 D1	5745.5	2.8	2612.21	0.17	0.2	2			MA8		06De36
⁸⁸ Rb- ⁸⁵ Rb _{1.035}	2615	9	2613.21	0.17	-0.2	U			MA4		02Ra23
88 Sr $-^{85}$ Rb $_{1.035}$	-3108	20	-3090.126	0.006	0.9	U			MA8		07Ke09
	-3088	11			-0.2	U			MA8	1.0	05Si34
$^{88}\text{Mo}-^{85}\text{Rb}_{1.035}$	13265.4	4.1				2			JY1	1.0	08We10
$^{88}\text{Tc} - ^{85}\text{Rb}_{1.035}$	25080	160				2			JY1	1.0	08We10
88 Sr $-^{86}$ Kr $_{1.023}$	-2942.4188	0.0059	-2942.415	0.005	0.7	1	61	58 ⁸⁸ Sr	FS1	1.0	12Ra34
⁸⁸ Se- ⁸⁸ Rb	20101.9	3.6				2			JY1	1.0	08Ha23
88Br-88Rb	12767.7	3.4				2			JY1	1.0	07Ra23
$^{88}\text{Sr}-^{87}\text{Sr}$			2265 241	0.006	0.2						
	-3260	12	-3265.241	0.006	-0.2	U			M15	2.5	63Ri07
86 Kr(t,p) 88 Kr	4091	15	4086.5	2.6	-0.3	U			LAI		76Fl02
88 Sr(p,t) 86 Sr	-11060	10	-11059.368	0.006	0.1	U		22	Oak		73Ba56
87 Rb(n, γ) 88 Rb	6082.52	0.16	6082.52	0.16	0.0	1	99	99 ⁸⁸ Rb	Bdn		06Fi.A
87 Rb(d,p) 88 Rb	3858	15	3857.96	0.16	0.0	U			Oak		71Ra17
-	3837	20			1.0	U					71To05
87 Sr $(n,\gamma)^{88}$ Sr	11112.63	0.22	11112.869	0.006	1.1	Ü			ILn		87Wi15
(,1)	11112.64	0.22	11112.007	0.000	1.0	U			Bdn		06Fi.A
$87 \text{Sr}(d,p)^{88} \text{Sr}$			0000 202	0.005	4.7						
	8865	5	8888.303			В			MIT		68Co20
$^{88}\text{Se}(\beta^{-})^{88}\text{Br}$	6854	31	6832	5	-0.7	U			Bwg		92Gr.A
88 Br(β^{-}) 88 Kr	8970	130	8975	4	0.0	U			Stu		79A105
	8880	200			0.5	O			Bwg		87Gr.B
	8960	36			0.4	U			Bwg		92Gr.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Referenc	ce
8817 (0=)88D1		2020	20	2017.7	2.1	0.4					TD		70337 17	
88 Kr(β^{-}) 88 Rb		2930	30	2917.7	2.6	-0.4	U				Trs		78Wo15	
88 Rb(β^-) 88 Sr		5310	60	5312.62	0.16	0.0	U				Trs		78Wo15	
		5318	9			-0.6	U				Gsn		80De02	*
88774043880		5313	5			-0.1	U				Trs		82Br23	
$^{88}Y(\beta^{+})^{88}Sr$		3622.6	1.5	4404.0			2				-		79An36	*
88 Sr(p,n) 88 Y		-4402	6	-4404.9	1.5	-0.5	U				Bar		61Sh23	
99		-4406	10			0.1	U			99	Tal		62Ne08	
88 Nb(β^{+}) 88 Zr		7550	100	7460	60	-0.9	1	35	34	⁸⁸ Nb			84Ox01	
$^{88}\text{Nb}^{m}(\beta^{+})^{88}\text{Zr}$		7590	100				2						84Ox01	
$^{88}\text{Tc}(\beta^{+})^{88}\text{Mo}$		8600	1300	11010	150	1.9	U						96Od01	
00 00		7800	600			5.3	В						96Sh27	
*88Nb O-98Mo _{1.061}				re gs+m at 14	0(120) ke	eV; M-A	4=–7615	0.9(6.7) ke	V				Nub16b	
$*^{88}$ Tc $-^{85}$ Rb _{1.035}		robably the hi											08We10	**
$*^{88}$ Tc $-^{85}$ Rb _{1.035}				re gs+m at 0#3	300 keV;	M-A=	-61679.1	(3.8) keV					Nub16b	**
$*^{88}$ Rb(β^{-}) ⁸⁸ Sr	Origina	al error 4 corre	cted in ref	erence									94Ha.A	**
$*^{88}Y(\beta^{+})^{88}Sr$	$E_{\beta^+}=7$	64.6(1.5) to 2	level at 1	1836.090 keV									Ens141	**
⁸⁹ Se-u		-63285	225	-63331	4	-0.1	o				GT1	1.5	04Ma.A	
		-63291	129			-0.1	U				GT2	2.5	08Su19	
$C_7 H_5 - ^{89}Y$		133247.0	3.4	133284.0	1.7	4.3	В				M15	2.5	63Ri07	
⁸⁹ Nb-u		-86588	34	-86555	25	1.0	_				GS2	1.0	05Li24	*
110 4	ave.	-86582	29	00000	20	1.0	1	78	78	⁸⁹ Nb	052	110	average	
89 Kr $-^{85}$ Rb _{1.047}	4.0.	10191.6	2.3			1.0	2	, 0	, 0	110	MA8	1.0	06De36	
$^{89}\text{Rb}-^{85}\text{Rb}_{1.047}$		4628	9	4634	6	0.7	1	42	42	⁸⁹ Rb	MA4	1.0	02Ra23	
$^{89}\text{Mo}-^{85}\text{Rb}_{1.047}$		11824.3	4.2	4054	O	0.7	2	72	72	Ro	JY1	1.0	08We10	
$^{89}\text{Tc}-^{85}\text{Rb}_{1.047}$		20007	17	20005	4	-0.1	U				SH1	1.0	08We10	
TC- K01.047		20007	4.1	20003	4	-0.1	2				JY1	1.0	08We10	
89 Se $-^{88}$ Rb _{1.011}		26329.0	4.1				2				JY1	1.0	08Ha23	
$^{89}\text{Br}-^{88}\text{Rb}_{1.011}$		16364.5	3.5				2					1.0	07Ra23	
⁸⁸ Rb- ⁸⁹ Rb _{.494} ⁸⁷ Rb _{.506}		545	23	563.4	2.7	0.3					JY1 P21	2.5		
89 Y(d, α) 87 Sr					2.7		U					2.3	82Au01	
88 Sr(n, γ) 89 Sr		7889	15	7882.5	1.6	-0.4	U				Mtr		72Br13	7
$Sr(n,\gamma)$ Sr		6358.70	0.13	6358.72	0.09	0.1	-				ILn		89Wi05	Z
88 Sr(d,p) 89 Sr		6358.73	0.13	4124.15	0.00	-0.1	_				Bdn		06Fi.A	
88g (389g		4133	5	4134.15	0.09	0.2	U	100	100	⁸⁹ Sr	MIT		67Sp09	
${}^{88}\text{Sr}(n,\gamma){}^{89}\text{Sr}$	ave.	6358.71	0.09	6358.72	0.09	0.0	1	100	100				average	-
${}^{88}Sr(p,\gamma){}^{89}Y$		7078	4	7075.7	1.6	-0.6	1	16	16	65 Y	D1 :		75Be.B	Z
89 Y $(\gamma,n)^{88}$ Y		-11540	40	-11480.7	2.2	1.5	U				Phi		63Ge02	
89 Br(β^{-}) 89 Kr		8140	140	8262	4	0.9	U				Stu		81Ho17	
		8120	120			1.2	0				Bwg		87Gr.B	
8077 (0.)8071		8155	30			3.6	C				Bwg		92Gr.A	
89 Kr(β ⁻) 89 Rb		5150	30	5177	6	0.9	U				-		67Ki01	
		5191	60			-0.2	U				Trs		78Wo15	
80-1 10 180-		5140	120		_	0.3	U				Stu		81Ho17	*
$^{89}\text{Rb}(\beta^{-})^{89}\text{Sr}$		4486	12	4497	5	0.9	_						66Ki06	
		4491	15			0.4	O				Gsn		80Bl.A	
		4510	9			-1.5	_			00	Gsn		80De02	*
00 00	ave.	4501	7			-0.7	1	57	57	⁸⁹ Rb			average	
89 Sr(β^{-}) 89 Y		1463	5	1499.3	1.6	7.3	В						49La06	
00 . 00		1488	4			2.8	В						70Wo05	
89 Zr(β^{+}) 89 Y		2841	10	2832.8	2.8	-0.8	U						51Hy24	*
		2832	10			0.1	U						53Sh48	*
		2828	7			0.7	_						60Ha26	
		2612.0	4	2615 1	2.8	-0.6					Tkm		63Ok01	Z
$^{89}Y(p,n)^{89}Zr$		-3612.8	4.	-3615.1	2.0		_							
89 Y(p,n) 89 Zr		-3612.8 -3619.4 2832	6.	2832.8	2.8	0.7	_	85	81	⁸⁹ Zr	Oak		64Jo11	Z

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-1741 15011	Input va		Adjusted value		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{89}{ m Nb}(eta^+)^{89}{ m Zr}$		3870	100	4250	24	3.8	D					55Ma13
$\sim NB(p +) \sim Zr$				4250	24		В	23	22 ⁸⁹ Nb			
$^{89}{ m Mo}(eta^+)^{89}{ m Nb}$		4340	50	5(10	24	-1.8	1	23	22 ° NB			74Vo08
		5970	300	5610	24	-1.2	U					64Bu12
$^{89}\text{Tc}(\beta^+)^{89}\text{Mo}$		7510	210	7620	5	0.5	U					91He04 *
*89Nb-u				xture gs+m at 0	#30 ke\	/						Nub16b **
$*^{89}$ Kr(β^{-}) ⁸⁹ Rb		970(60) to 220.										GAu **
$*^{89}$ Kr(β^-) ⁸⁹ Rb				yields 4610(12	20) 4867	(152) 51	35(123)	keV				GAu **
$*^{89}$ Rb(β^-) ⁸⁹ Sr		al error 8 correc										94Ha.A **
$*^{89}$ Zr(β^+) ⁸⁹ Y	$E_{\beta^+}=9$	10(10) 901(10)	897(7) re	espectively, to ⁸	$^{9}\mathbf{Y}^{m}$ at 9	908.97 ke	eV					Nub16b **
$*^{89}Tc(\beta^+)^{89}Mo$	$E_{\beta}^{\prime}=63$	370(210) to 11	8.8 level;	no Fermi-Kur	rie plot							91He04 **
⁹⁰ Se−u		-59904	236				2			GT1	1.5	04Ma.A
$C_4 H_{10} O_2 - {}^{90}Zr$		163377	6	163380.80	0.13	0.3	Ū			M15	2.5	63Ri07
90 Zr-u		-95301.36	0.23	-95301.24	0.13	0.5	1	30	30 ⁹⁰ Zr	MS1	1.0	15Gu09
90 Nb $-u$		-93301.30 -88872	50	-93301.24 -88741	4	2.6	U	30	30 ZI	GS2	1.0	05Li24 *
⁹⁰ Mo-C ₇ H ₆							1	63	63 ⁹⁰ Mo	CP1		
90M		-133018.9	4.7	-133019	4	0.0		03	63 ~ MO		1.0	11Fa10
⁹⁰ Мо _{1.033} -С ₇ Н ₉		-159318	23	-159334	4	-0.7	U			CP1	1.0	11Fa10
⁹⁰ Tc−C ₇ H ₆		-122880.3	6.7	-122876.3	1.1	0.6	U			CP1	1.0	11Fa10
90 Tc _{1.033} -C ₇ H ₉		-148835	22	-148856.9	1.1	-1.0	U			CP1	1.0	11Fa10
00-		-148854.2	8.5			-0.3	U		00-	CP1	1.0	11Fa10
⁹⁰ Ru _{1.033} −C ₇ H ₉		-142382	11	-142380	4	0.2	1	14	14 ⁹⁰ Ru	CP1	1.0	11Fa10
90 Kr $-^{85}$ Rb _{1.059}		12942.6	2.0				2		0.0	MA8	1.0	06De36
90 Rb $-^{85}$ Rb $_{1.059}$		8211	9	8213	7	0.3	1	60	60 ⁹⁰ Rb	MA4	1.0	02Ra23 *
$^{90}\text{Tc}-^{85}\text{Rb}_{1.059}$		17489.2	8.0	17488.6	1.1	-0.1	U			SH1	1.0	08We10
		17489.8	4.2			-0.3	U			JY1	1.0	08We10
90 Ru $-^{85}$ Rb _{1.059}		23775	11	23759	4	-1.5	_			SH1	1.0	08We10
		23756.6	4.7			0.5	_			JY1	1.0	08We10
	ave.	23759	4			-0.1	1	86	86 ⁹⁰ Ru			average
90 Tc $-^{86}$ Kr _{1.047}		17664.6	1.1				2			JY1	1.0	12Ka12
$^{90}\text{Tc}^{m} - ^{86}\text{Kr}_{1.047}$		17819.2	1.4				2			JY1	1.0	12Ka12
90 Zr $-^{87}$ Rb _{1.034}		-1393.79	0.16	-1393.91	0.13	-0.7	1	62	62^{-90} Zr	MS1	1.0	15Gu09
$^{90}\text{Br}-^{88}\text{Rb}_{1.023}$		22017.0	3.6	10,0.,1	0.12	0.,	2	02	02 21	JY1	1.0	07Ra23
$^{89}\text{Rb} - ^{90}\text{Rb}_{.791}^{x} ^{85}\text{Rb}_{.209}$		-1826	24	-1818	12	0.1	U			P21	2.5	82Au01
90 Zr(α , 8 He) 86 Zr		-40136	30	-39988	4	4.9	В			INS	2.3	90Ka01
90 Zr(3 He, 6 He) 87 Zr								27	27 ⁸⁷ Zr			
907 ()887		-12083	8	-12086	4	-0.4	1	27	27 88 Zr 29 88 Zr	MSU		78Pa11
90 Zr(p,t) 88 Zr		-12805	10	-12805	5	0.0	1	29	29 ° Zr	Oak		71Ba43
89 Y $(n,\gamma)^{90}$ Y		6857.1	1.0	6857.03	0.10	-0.1	U			ORn		81Ra07
		6857.26	0.30			-0.8	-					83De17
		6856.98	0.17			0.3	-			ILn		93Mi04 Z
80		6857.01	0.14			0.1	_			Bdn		06Fi.A
89 Y(d,p) 90 Y		4635	5	4632.46	0.10	-0.5	U		00			64Wa14
89 Y $(n,\gamma)^{90}$ Y	ave.	6857.03	0.10	6857.03	0.10	0.0	1	100	63 ⁸⁹ Y			average
89 Y(p, γ) 90 Zr		8351	4	8353.2	1.6	0.5	1	16	16 ⁸⁹ Y			75Be.B
90 Zr(γ ,n) 89 Zr		-11940	50	-11968	3	-0.6	U			Phi		63Ge02
90 Zr(p,d) 89 Zr		-9728	10	-9744	3	-1.6	U			Oak		71Ba43
90 Zr(d,t) 89 Zr		-5719.2	7.1	-5711	3	1.1	1	19	19 ⁸⁹ Zr	SPa		79Bo37
90 Zr(3 He, α) 89 Zr		8580	50	8609	3	0.6	U			Phi		67Fo04
90 Br(β^{-}) 90 Kr		9800	400	10959	4	2.9	U			Stu		81Ho17
4- /		10280	110			6.2	C			Bwg		87Gr.B
		10350	75			8.1	C			Bwg		92Gr.A
90 Kr(β^{-}) 90 Rb		4410	30	4405	7	-0.2	U					70Ma11
π(β) πο		4390	40	1103	,	0.4	Ü			Trs		78Wo15
		4380	25			1.0	U			Bwg		87Gr.A
90 Rb x (IT) 90 Rb		71	12			1.0	2			D 115		82Au01
$^{90}\text{Rb}(\beta^{-})^{90}\text{Sr}$		6550	60	6584	7	0.6	U			Trs		78Wo15
$KO(p^{-})$ SI				0304	/	0.6						78 W 015 78 St 02
		6560 6585	150				U			Bwg		
		6585	15			-0.1	0			Gsn		80Bl.A
		6578	15			0.4	0	42	40 9051	Gsn		80De02
90 a (a -) 90		6587	10			-0.3	1	43	40 ⁹⁰ Rb	Gsn		92Pr03
90 Sr(β^{-}) 90 Y		546	2	545.9	1.4	0.0	-					64Da16
		546	2			0.0	-					83Ha35

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
90 Sr(β^{-}) 90 Y	ave.	546.0	1.4	545.9	1.4	0.0	1	99	97 ⁹⁰ Sr			average
$^{90}Y(\beta^{-})^{90}Zr$	ave.	2271	2	2278.5	1.6	3.7	В	99	97 31			61Ni02
$\Gamma(p^{-})^{-}Z_{1}$		2284	5	2210.3	1.0	-1.1	-					64Da16
		2273	5			1.1	_					64La13
		2280	5			-0.3	_					66Ri01
		2278	8			-0.3	U			Gsn		80Bl.A
		2279.5	2.9			-0.4	_			Osii		83Ha35
	01/0	2279.3	2.0			-0.4	1	62	62 ⁹⁰ Y			average
90 Nb(β^{+}) 90 Zr	ave.	6111	4	6111	3	0.0	1	69	69 ⁹⁰ Nb			
$^{90}\text{Mo}(\beta^+)^{90}\text{Nb}$		2489	4	2489	3	0.0	1	69	37 ⁹⁰ Mo			68Pe01 * 66Pe10 *
$^{90}\text{Tc}(\beta^+)^{90}\text{Mo}$		8920	410	9448	4	1.3	U	09	37 WO			74Ia01 *
re(p) Mo		9270	300	2440	4	0.6	U					81Ox01 *
		8726	300			2.4	U					81Ox01 *
$*^{90}$ Nb $-u$	Μ Λ-			xture gs+n at 12	22 370 1		U					Nub16b **
$*^{90}$ Rb $-^{85}$ Rb _{1.059}	D 93	==62721(29) KG	0 D m of 1	.06.90 keV; <i>M</i> -	22.370 F 27. – 70	260(0) 1:	ωV					Nub16b **
$*^{90}\text{Nb}(\beta^+)^{90}\text{Zr}$	D_M =0.5	$520(9) \mu \text{u for}$ 500(4) to 6 ⁺ le	NU at 1	100.90 Ke v , M -	-A/5	7200(9) K	E V					
$*^{90}Mo(\beta^+)^{90}Nb$												Ens981 **
		085(4) to 1 ⁺ le			1	0.5.6()	1047.07	(1.50() 1				Ens981 **
$*^{90}\text{Tc}(\beta^{+})^{90}\text{Mo}$				144.1 to ground	a state (85%) and	1 94 / .97	(15%) lev	eı			74Ia01 **
$*^{90}\text{Tc}(\beta^+)^{90}\text{Mo}$		300(300) to 29				0.45.0-						Ens981 **
$*^{90}Tc(\beta^+)^{90}Mo$	$E_{\beta^+}=6$	900(300) from	Tc" at	144.0(1.7) to 2	[⊤] level	a 947.97	keV					Ens981 **
01 ~												
⁹¹ Se-u		-54300	186				2			GT3	2.5	16Kn03
⁹¹ Rb-u		-83532	21	-83463	8	1.3	U			Pb1	2.5	89A133
$C_7 H_7 - {}^{91}Zr$		149143.1	4.4	149135.00	0.11	-0.7	U		01-	M15	2.5	63Ri07
⁹¹ Zr-u		-94359.85	0.25	-94359.78	0.11	0.3	1	20	20^{91} Zr	MS1	1.0	15Gu09
⁹¹ Nb−u		-93064	46	-93010	3	1.2	U		01	GS2	1.0	05Li24 *
⁹¹ Mo-C ₇ H ₇		-143031.3	8.3	-143030	7	0.2	1	65	65 ⁹¹ Mo	CP1	1.0	11Fa10
91Tc-C ₇ H ₇		-136340.9	6.7	-136350.3	2.5	-1.4	-			CP1	1.0	11Fa10
		-136353.6	4.6			0.7	_		01-	CP1	1.0	11Fa10
01	ave.	-136350	4			-0.2	1	45	45 ⁹¹ Tc			average
⁹¹ Ru _{1.011} -C ₇ H ₈		-136730	620	-136664.6	2.4	0.1	U		0.1	CP1	1.0	11Fa10
91Ru-C ₇ H ₇		-128035.6	3.9	-128033.7	2.4	0.5	1	37	37 ⁹¹ Ru	CP1	1.0	11Fa10
⁹¹ Ru _{1.022} -C ₇ H ₉		-145260	23	-145295.4	2.4	-1.5	U			CP1	1.0	11Fa10
91 Kr $-^{85}$ Rb _{1.071}		18279.5	2.4				2			MA8	1.0	06De36
91 Rb $-^{85}$ Rb $_{1.071}$		11003	10	11010	8	0.7	1	70	70 ⁹¹ Rb	MA4	1.0	02Ra23
91 Sr $-^{85}$ Rb _{1.071}		4702	9	4669	6	-3.7	В			MA4	1.0	02Ra23
$^{91}\text{Tc}-^{85}\text{Rb}_{1.071}$		12898.3	5.4	12898.2	2.5	0.0	1	22	22 ⁹¹ Tc	SH1	1.0	08We10
91 Ru $-^{85}$ Rb $_{1.071}$		21223	11	21214.7	2.4	-0.8	_			SH1	1.0	08We10
		21215.5	4.2			-0.2	_			JY1	1.0	08We10
	ave.	21216	4			-0.4	1	37	37 ⁹¹ Ru			average
$^{91}Zr-^{87}Rb_{1.046}$		637.32	0.19	637.39	0.11	0.4	1	35	35 ⁹¹ Zr	MS1	1.0	15Gu09
91 Br $-^{88}$ Rb _{1.034}		26098.3	3.8				2			JY1	1.0	07Ra23
$^{91}\text{Tc}-^{94}\text{Mo}_{.968}$		10303.0	4.4	10304.1	2.5	0.2	1	33	33 ⁹¹ Tc	JY1	1.0	08We10
⁹¹ Ru- ⁹⁴ Mo _{.968}		18620.9	4.7	18620.6	2.4	-0.1	1	26	26 ⁹¹ Ru	JY1	1.0	08We10
$^{91}Zr - ^{90}Zr$		942	12	941.47	0.16	0.0	U			M15	2.5	63Ri07
90 Rb x - 91 Rb $_{.824}$ 85 Rb $_{.176}$		-686	24	-770	15	-1.4	U			P21	2.5	82Au01
91 Zr(p,t) 89 Zr		-10677	10	-10681	3	-0.4	U			Oak		71Ba43
90 Zr(n, γ) 91 Zr		7194.4	0.5	7194.35	0.15	-0.1	_					81Lo.A Z
		7192.7	0.8			2.1	_			Bdn		06Fi.A
90 Zr(d,p) 91 Zr		4959	20	4969.78	0.15	0.5	U			Pit		64Co11
. •:		4969	8			0.1	U			MIT		72Gr12
		4970.3	2.2			-0.2	U			SPa		79Bo37
$^{91}Zr(p,d)^{90}Zr$		-4977	10	-4969.78	0.15	0.7	U			Oak		71Ba43
$\Sigma_{I}(p,u)$ Σ_{I}												
$^{91}Zr(d,t)^{90}Zr$		-932	20	-937.12	0.15	-0.3	U			Pit		64Co11
91 Zr(d,t) 90 Zr		-932 -940.3	20 3.7	-937.12	0.15	-0.3 0.9	U			SPa		64Co11 79Bo37

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

		Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Referen	ice
90 Zr(p, γ) 91 Nb		5167	5	5154.4	2.9	-2.5	В					71Ra08	ł
ZI(p, j) 110		5167	4	3134.4	2.7	-3.1	C					75Be.B	
90 Zr(3 He,d) 91 Nb		-227	20	-339.0	2.9	-5.6	В			Hei		70Kn05	
90 Zr(α ,t) 91 Nb		-14643	27	-14659.4	2.9	-0.6	U			Brk		71Zi03	
01 Ru $^{m}(\varepsilon p)^{90}$ Mo		4300	500	11037.1	2.,	0.0	2			Dik		83Ha06	
91 Br(β^-) 91 Kr		9790	100	9867	4	0.8	Ū			Bwg		89Gr03	
ы(р) кі		9805	50	7007	-	1.2	U			Bwg		92Gr.A	
91 Kr(β^{-}) 91 Rb		6420	80	6771	8	4.4	В			Trs		78Wo15	
π(ρ) πο		6450	80	0771	Ü	4.0	В			Bwg		89Gr03	
91 Rb(β^{-}) 91 Sr		5830	45	5907	9	1.7	U			Trs		78Wo15	
πο(ρ) 51		5927	24	3701		-0.8	0			Gsn		80De02	
		5920	28			-0.5	_			McG		83Ia02	
		5930	22			-1.1	_			Gsn		92Pr03	
	ave.	5926	17			-1.1	1	26	18 ⁹¹ Rb	0011		average	
91 Sr(β^{-}) 91 Y		2669	10	2699	5	3.0	В		10 110			53Am0	
SI(p) 1		2684	10	20))	5	1.5	_					73Ha11	
		2704	8			-0.6	_			Gsn		80De02	
		2709	15			-0.6	_			McG		83Ia02	
	ave.	2698	6			0.2	1	83	81 ⁹¹ Sr	1.100		average	
91 Y(β^{-}) 91 Zr		1545	5	1544.3	1.8	-0.1	_	00	01 51			64La13	
1(p) 21		1544	2	1511.5	1.0	0.1	_					75Ra08	
	ave.	1544.1	1.9			0.1	1	98	98 ⁹¹ Y			average	
91 Zr(p,n) 91 Nb	avc.	-2045	6	-2039.9	2.9	0.8	_	70	<i>7</i> 0 1	Oak		70Ki01	
21(p,n) 110		-2038.8	3.4	2037.7	2.7	-0.3	_			Kyu		71Ma47	
	ave.	-2040.3	3.0			0.3	1	98	98 ⁹¹ Nb	Ttyu		average	
$^{91}{\rm Mo}(\beta^{+})^{91}{\rm Nb}$	avc.	4460	30	4429	7	-1.0	_	70	70 110			56Sm96	
1410(p) 140		4435	23	772)	,	-0.3	_					93Os06	
	ave.	4444	18			-0.8	1	14	11 ⁹¹ Mo			average	
$^{91}\text{Tc}(\beta^{+})^{91}\text{Mo}$	uve.	6220	200	6222	7	0.0	Ü		11 1110			74Ia01	
Nb-u	M = A -			nixture gs+m a			C					Nub16b	1 *
		000000(00)1	C V 101 11	iixtuic go i iii u	t 107.0							1140100	
	Fo -57	760(40) to ⁹¹	Sr ground	state < 8% an	d 93 62	98 keV (3)	2)+ leve	1 25%				Enc13a	*
91 Rb(β^-) 91 Sr	$E_{\beta} = 57$	760(40) to ⁹¹	Sr ground	state <8% an	d 93.62	28 keV (3/	2) ⁺ leve	el 25%				Ens13a	
91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr	E_{β} = 57 Origina	760(40) to ⁹¹ 3 1 error 8 corr	ected to 1	3 keV in refer	d 93.62 ence	28 keV (3/						94Ha.A	*
91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr	$E_{\beta^-}=57$ Original $E_{\beta^-}=58$	760(40) to ⁹¹ 5 1 error 8 corr 357 to mixtur	ected to 1 e ⁹¹ Sr gro	3 keV in referound state <89	d 93.62 ence % and 9	28 keV (3/ 23.628 (3/2	2) ⁺ leve	el 25%	02 629 loval 2	5 0%		94Ha.A Ens13a	*
91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr	E_{β} = 57 Original E_{β} = 58 E_{β} = 58	760(40) to ⁹¹ 51 error 8 corrors 857 to mixtur 350(20) and <i>B</i>	ected to 1 e ⁹¹ Sr gro E _β -=5860	3 keV in reference ound state < 890 (10) respective	d 93.62 ence % and 9 ely, to	28 keV (3/ 23.628 (3/2	2) ⁺ leve	el 25%	93.628 level 2	5%		94Ha.A Ens13a Ens13a	*
91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr 91 Rb(β^{-}) 91 Sr	E_{β} =57 Origina E_{β} =58 E_{β} =58 E_{β} =26	760(40) to ⁹¹ 51 error 8 corrors 357 to mixtur 350(20) and <i>B</i> 565(10), 2030	ected to 1 e 91 Sr gro E_{β} = 5860 0(20), 135	3 keV in reference ound state < 890 (10) respective (59(10), 1093(10))	d 93.62 ence % and 9 ely, to 9	28 keV (3/ 23.628 (3/2 21 Sr grou	2) ⁺ leve nd state	el 25% <8% and	93.628 level 2	5%		94Ha.A Ens13a Ens13a 53Am0	* * *
91 Rb(β^{-}) 91 Sr 91 Sr(β^{-}) 91 Y	E_{β} = 57 Original E_{β} = 58 E_{β} = 26 ground	760(40) to ⁹¹ 31 error 8 corror 8 corror 8 corror 857 to mixtur 850(20) and <i>B</i> 665(10), 2030 11 state, 3/2 1	ected to 1 e 91 Sr gro E_{β} = 5860 (20), 135 devel at 65	3 keV in reference ound state < 89 0(10) respective 59(10), 1093(153.02 keV, (5/2	d 93.62 ence % and 9 ely, to 9 0) to 2) ⁺ at 1	28 keV (3/2) 33.628 (3/2) 31 Sr groun 305.39, (5	2) ⁺ leve nd state 5/2) ⁻ at	el 25% <8% and	93.628 level 2	5%		94Ha.A Ens13a Ens13a 53Am0 Ens13a	* * * * !8 *
91 Rb(β^{-}) 91 Sr 91 Sr(β^{-}) 91 Y	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corror 8 corror 857 to mixtur 350(20) and <i>B</i> 665(10), 2030 at state, 3/2 ⁻¹ 1 error 4 incre	ected to 1 e 91 Sr gro E_{β} = 5860 (20), 1351 evel at 651 eased: in	3 keV in reference state <890 (10) respective (10), 1093	d 93.62 ence % and 9 ely, to 9 0) to 2) ⁺ at 1	28 keV (3/2) 33.628 (3/2) 31 Sr groun 305.39, (5	2) ⁺ leve nd state 5/2) ⁻ at	el 25% <8% and	93.628 level 2	5%		94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW	*** *** *** ***
91 Rb(β^{-}) 91 Sr 91 Sr(β^{-}) 91 Y	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corror 8 corror 8 corror 857 to mixtur 850(20) and <i>B</i> 665(10), 2030 11 state, 3/2 1	ected to 1 e 91 Sr gro E_{β} = 5860 (20), 1351 evel at 651 eased: in	3 keV in reference state <890 (10) respective (10), 1093	d 93.62 ence % and 9 ely, to 9 0) to 2) ⁺ at 1	28 keV (3/2) 33.628 (3/2) 31 Sr groun 305.39, (5	2) ⁺ leve nd state 5/2) ⁻ at	el 25% <8% and	93.628 level 2	5%		94Ha.A Ens13a Ens13a 53Am0 Ens13a	*** *** *** **
91 Rb(β -) 91 Sr 91 Sr(β -) 91 Y 91 Sr(β -) 91 Y 91 Sr(β -) 91 Y	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to 913 1 error 8 corro 357 to mixtur 350(20) and <i>I</i> 565(10), 203(1 state, 3/2 1 1 error 4 incro 1 error 3 corro	ected to 1 e 91 Sr gro E_{β} = 5860 (20), 135 evel at 65 eased: in ected in re	3 keV in reference and state < 89 (10) respective (59 (10), 1093 (153.02 keV, (5/2 disagreement versions) (5/2 disagreement versions) (5/2 disagreement versions)	d 93.62 ence % and 9 ely, to 0) to 2)+ at 1 with oth	28 keV (3/ 23.628 (3/2 201 Sr groun 305.39, (3/2 201 ner results	$(2)^+$ level level level $(2)^+$ level $(2)^+$ level $(3)^+$ level $(3)^+$ at $(3)^+$ $(4)^+$	el 25% <8% and	93.628 level 2	5% GT2		94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW	*: *: *: *: *: *: *:
91 Rb(β -) 91 Sr 91 Sr(β -) 91 Y 91 Sr(β -) 91 Y 91 Sr(β -) 91 Y 91 Sr(β -) 91 Y 92 Br-u 92 Rb-u	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corros 757 to mixtur 750(20) and 1655(10), 20301 state, 3/2 1 error 4 incre 1 error 3 corros 750(40) to 911 error 3 corros 750(40)	ected to 1 e ⁹¹ Sr gro E_{β} = 5860 0(20), 135 level at 65 eased: in ected in re	3 keV in reference and state <8% (10) respective (59(10), 1093(153.02 keV, (5/2) disagreement veference	d 93.62 ence % and 9 ely, to 0 0) to 2)+ at 1 with oth	28 keV (3/ 23.628 (3/2 201 Sr groun 305.39, (2 201 ner results	2) ⁺ levend state 5/2) ⁻ at	el 25% <8% and	93.628 level 2		2.5 2.5	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A	* * * * * * *
$^{11}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Sr}$	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corror 8 corror 8 corror 8 corror 8 corror 8 corror 9 corr	ected to 1 e 91 Sr grow \overline{c}_{β} = 5866 (20), 135 evel at 65 eased: in ected in record i	3 keV in reference state < 89 (10) respective (59 (10), 1093 (153.02 keV, (5/2 disagreement verterence) -60368 -80272 157564.94	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 0.11	1.3 0.6 -0.5	$(2)^+$ level level level $(2)^+$ level $(2)^+$ level $(3)^+$ level $(3)^+$ at $(3)^+$ $(4)^+$	el 25% <8% and		GT2	2.5	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A	**************************************
1 Rb(β -) 91 Sr 1 Sr(β -) 91 Y 1 Sr(β -) 91 Y 1 Sr(β -) 91 Y 2 Br-u 2 Rb-u 2 7H ₈ - 92 Zr 2 Zr-u	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corror 8 corror 8 corror 8 corror 8 corror 8 corror 9 corr	ected to 1 e 91 Sr grow \overline{c}_{β} = 5866 (20), 135 evel at 65 eased: in ected in record i	3 keV in reference state < 89 (10) respective (59 (10), 1093 (153.02 keV, (5/2 disagreement verterence	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 0.11	28 keV (3/2) 3.628 (3/2) 91 Sr groun 305.39, (4) her results 1.3 0.6	2) ⁺ level nd state 10 d state U U U	el 25% <8% and	93.628 level 2 37 ⁹² Zr	GT2 Pb1	2.5 2.5	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A	******
¹¹ Rb(β ⁻) ⁹¹ Sr ¹² Rb(β ⁻) ⁹¹ Sr ¹³ Rb(β ⁻) ⁹¹ Sr ¹⁴ Rb(β ⁻) ⁹¹ Sr ¹⁵ Sr(β ⁻) ⁹¹ Y ¹⁵ Sr(β ⁻) ⁹¹ Y ¹⁵ Sr(β ⁻) ⁹¹ Y ¹⁶ Sr(β ⁻) ⁹¹ Y ¹⁷ Sr(β ⁻) ⁹¹ Y ¹⁷ Sr ₂ C ₁ C ₂ C ₃	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to ⁹¹ 31 error 8 corror 8 corror 8 corror 8 corror 8 corror 8 corror 9 corr	ected to 1 e 91 Sr grow \overline{c}_{β} = 5866 (20), 135 evel at 65 eased: in ected in record i	3 keV in reference state < 89 (10) respective (59 (10), 1093 (153.02 keV, (5/2 disagreement verterence) -60368 -80272 157564.94	d 93.62 ence % and 9 ely, to 0 0) to 2) + at 1 with oth 7 7 0.11 0.11	1.3 0.6 -0.5	2) ⁺ level nd state 10 d state U U U	el 25% <8% and 1545.90		GT2 Pb1 M15	2.5 2.5 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A	***************************************
$^{11}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Y}$	E_{β} -=57 Original E_{β} -=58 E_{β} -=26 ground Original	760(40) to 913 1 error 8 corro 357 to mixtur 350(20) and I 365(10), 2030 1 state, 3/2 1 1 error 4 incre 1 error 3 corro -60711 -80323 157569.4 -94964.66	eeted to 1 e ⁹¹ Sr gro \mathcal{E}_{β} = 5866 $\mathcal{E}_{(2)}$ (20), 135 elevel at 65 eased: in ected in r	3 keV in reference state <89 (10) respective (59(10), 1093(1) (53.02 keV, (5/2) disagreement versione = -60368	d 93.62 ence % and 9 ely, to 0 0) to 2) + at 1 with oth 7 7 0.11 0.11 1.9	1.3 0.6 -0.5 -0.1	2) ⁺ levend state 5/2) ⁻ at U U U 1	el 25% <8% and 1545.90		GT2 Pb1 M15 MS1	2.5 2.5 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89A133 63Ri07 15Gu09	*******
$^{11}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{14}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{15}\text{Sr}(\beta^{-})^{91}\text{Y}$	E_{β} = 57 Origina E_{β} = 58 E_{β} = 58 E_{β} = 20 ground Origina Origina	760(40) to 913 1 error 8 corro 357 to mixtur 350(20) and I 365(10), 203(1 state, 3/2 1 1 error 4 incre 1 error 3 corro -60711 -80323 157569.4 -94964.66 -92851	ected to 1 e ⁹¹ Sr grow (F _B = 5860) (20), 135 evel at 65 eased: in ected in rectal	3 keV in reference state <89 (10) respective (59(10), 1093(1) (53.02 keV, (5/2) disagreement version = 60368 -80272 157564.94 -94964.68 -92811.4	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 7 0.11 0.11 1.9 0.17	1.3 0.6 -0.5 -0.1 0.7	2) ⁺ levend state 5/2) ⁻ at U U U U U U U	el 25% <8% and 1545.90		GT2 Pb1 M15 MS1 GS2	2.5 2.5 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89A133 63Ri07 15Gu09	**************************************
1 Rb(β^{-}) 91 Sr 1 Sr(β^{-}) 91 Y 1 Sr(β^{-}) 91 Y 1 Sr(β^{-}) 91 Y 2 Br-u 2 Rb-u 2 Rb-u 2 Zr-u 2 Nb-u 2 Zyr-u 2 Nb-u 2 Zyn-u 2 Mo _{1.011} -C ₇ H ₉	E_{β} = 57 Origina E_{β} = 58 E_{β} = 58 E_{β} = 20 ground Origina Origina	760(40) to 913 1 error 8 corro 7857 to mixtur 7850(20) and I 7865(10), 2036 1 state, 3/2 1 1 error 4 incre 1 error 3 corro -60711 -80323 157569.4 -94964.66 -92851 155790.0	ected to 1 e 91 Sr grow \mathcal{E}_{β} = 5860 (20), 135 evel at 65 eased: in ected in received in \mathcal{E}_{β} = 3.8 0.18 56 3.2	3 keV in reference state <89 (10) respective (10), 1093(153.02 keV, (5/2) disagreement verteerence -60368 -80272 157564.94 -94964.68 -92811.4 155793.10	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 7 0.11 0.11 1.9 0.17 0.17	1.3 0.6 -0.5 -0.1 0.7 0.4	2)+ levend state 5/2)- at U U U U U U U U U	el 25% <8% and 1545.90		GT2 Pb1 M15 MS1 GS2 M15	2.5 2.5 1.0 1.0 2.5 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07	**************************************
$^{12}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{13}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{14}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{15}\text{Sr}(\beta^{-})^{91}\text{Y}$	E_{β} = 57 Origina E_{β} = 58 E_{β} = 26 ground Origina Origina	760(40) to 913 1 error 8 corro 357 to mixtur 350(20) and I 365(10), 203(1 state, 3/2 1 1 error 4 incre 1 error 3 corro -60711 -80323 157569.4 -94964.66 -92851 155790.0 -164641.3	ected to 1 e 91 Sr grow \mathcal{E}_{β} = 5860 (20), 135 evel at 65 eased: in ected in received in \mathcal{E}_{β} = 56 3.2 7.0	3 keV in reference state < 89 (10) respective (10), 1093(153.02 keV, (5/2) disagreement vertex (10), 1093(153.02 keV, (5/2) disagreement vertex (10), 1093(15), 1093(16), 1093(1	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 7 0.11 0.11 1.9 0.17 0.17	1.3 0.6 -0.5 -0.1 0.7 0.4 -0.3	2)+ levend state 5/2)- at U U U U U U U U U U	el 25% <8% and 1545.90	37 ⁹² Zr	GT2 Pb1 M15 MS1 GS2 M15 CP1	2.5 2.5 1.0 1.0 2.5 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10	* * * * * * * * * * * * * * * * * * *
1 Rb(β^{-}) 91 Sr 1 Sr(β^{-}) 91 Y 1 Sr(β^{-}) 91 Y 1 Sr(β^{-}) 91 Y 2 Br-u 2 Rb-u 2 Rb-u 2 Zr-u 2 Nb-u 2 7H ₈ - 92 Mo 2 Mo _{1.011} -C ₇ H ₉ 2 Mo-u 2 Tc-C ₇ H ₈	E_{β} = 57 Origina E_{β} = 58 E_{β} = 26 ground Origina Origina	760(40) to ⁹¹ ; 1 error 8 corn 357 to mixtur 350(20) and <i>I</i> 365(10), 2030 1 state, 3/2 1 1 error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -92851 155790.0 -164641.3 -93193.14	ected to 1 e 91 Sr grof F _B = 5860 (20), 135 evel at 65 eased: in ected in re 103 32 3.8 0.18 56 3.2 7.0 0.47 13	3 keV in reference state < 89 (10) respective (10), 1093(1 (153.02 keV, (5/2 (153.02	d 93.62 ence % and 9 ely, to 0 to 2) + at 1 with oth 7 7 0.11 0.11 1.9 0.17 0.17 3	1.3 0.6 -0.5 -0.3 0.6 -0.5 -0.1 -0.3 0.6 -0.2	2)+ levend state 5/2) - at U U U U U U U U U U U U	el 25% <8% and 1545.90	37 ⁹² Zr	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1	2.5 2.5 1.0 1.0 2.5 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10	* * * * * * * * * * * * * * * * * * *
$^{14}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{14}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{14}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{14}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{14}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{14}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{14}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{14}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{12}\text{Sr}(\beta^{-})^{91}\text{Y}$ ^{12}Sr	E_{β} = 57 Origina E_{β} = 58 E_{β} = 26 ground Origina Origina	760(40) to 91; 1 error 8 corn 857 to mixtur 850(20) and 1655(10), 2030; 1 state, 3/2 1 l error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -92851 155790.0 -164641.3 -93193.14 -147328 -138569	ected to 1 e 91 Sr grof F _B = 5860 (20), 135 evel at 65 eased: in ected in r 103 32 3.8 0.18 56 3.2 7.0 0.47 13 10	3 keV in reference state < 89 (10) respective (10), 1093(1) (153.02 keV, (5/2) (153.02 ke	d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 7 7 0.11 0.11 1.9 0.17 0.17 3 3	1.3 0.6 -0.5 -0.1 0.6 -0.2 -0.4	2)+ levend state U U U U U U U U O O O O O O O O O O O	el 25% <8% and 1545.90	37 ⁹² Zr	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1 CP1	2.5 2.5 1.0 1.0 2.5 1.0 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10 15Gu09	* * * * * * * * * * * * * * * * * * *
$^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{13}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{13}\text{Sr}(\beta^-)^{91}\text{Y}$ $^{13}\text{Sr}(\beta^-)^{91}\text{Y}$ $^{13}\text{Sr}(\beta^-)^{91}\text{Y}$ $^{12}\text{Sr}(\beta^-)^{91}\text{Y}$ $^{12}\text{Sr}(\beta^-$	E_{β} = 57 Origina E_{β} = 58 E_{β} = 26 ground Origina Origina	760(40) to 91; 1 error 8 corn 357 to mixtur 350(20) and 16 565(10), 2030; 1 state, 3/2 1 1 error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -92851 155790.0 -164641.3 -93193.14 -147328 -138569 -156087.6	ected to 1 e 91 Sr grof F _B = 5860 (20), 135 evel at 65 eased: in ected in rected in	3 keV in reference state < 89 (10) respective (10), 1093(1) (153.02 keV, (5/2) keV, (5/2)	d 93.62 ence % and 9 elly, to 0) to 2) + at 1 with oth 0.11 0.11 1.9 0.17 0.17 3 3 3 3	1.3 0.6 -0.5 -0.1 0.6 -0.2 -0.4 0.0	2)+ levend state 5/2) - at U U U U U U	el 25% <8% and 1545.90 37	37 ⁹² Zr 13 ⁹² Mo	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1	2.5 2.5 1.0 1.0 2.5 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10 11Fa10	* * * * * * * * * * * * * * * * * * *
$^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{12}\text{Rb}(\beta^-)^{91}\text{Sr}$ $^{12}\text{Sr}(\beta^-)^{91}\text{Y}$ $^{12}\text{Sr}(\beta^-$	E_{β} = 57 Origina E_{β} = 58 E_{β} = 20 ground Origina Origina	760(40) to 91; 1 error 8 corn 857 to mixtur 850(20) and 16 65(10), 2030; 1 state, 3/2 1 1 error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -94964.66 -949851 155790.0 -164641.3 -93193.14 -147328 -138569 -156087.6 -138572	ected to 1 e 91 Sr grof F _B = 5860 (20), 135 evel at 65 eased: in ected in rected in	3 keV in reference state < 89 (10) respective (10), 1093(1), 1093(d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 0.11 1.9 0.17 0.17 3 3 3 3 3	1.3 0.6 -0.5 -0.1 0.6 -0.2 -0.4 -0.2	2)+ levend state 5/2) - at U U U U U U 1 U 1	el 25% <8% and 1545.90	37 ⁹² Zr	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1 CP1 CP1	2.5 2.5 1.0 1.0 2.5 1.0 1.0 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10 11Fa10 11Fa10 average	*******
9 ¹ Rb(β ⁻) ⁹¹ Sr 9 ¹ Sr(β ⁻) ⁹¹ Y 9 ² Sh ⁻ u 9 ² Rb-u C ₇ H ₈ - 9 ² Zr 9 ² Zr - u 9 ² Nb-u C ₇ H ₈ - 9 ² Mo 9 ² Mo _{1.011} - C ₇ H ₉ 9 ² Tc-C ₇ H ₈ 9 ² Tc _{1.011} - C ₇ H ₉ 9 ² Tc _{1.011} - C ₇ H ₉ 9 ² Tc _{1.011} - C ₇ H ₉ 9 ² Tc _{1.011} - C ₇ H ₉	E_{β} = 57 Origina E_{β} = 58 E_{β} = 20 ground Origina Origina	760(40) to 91; 1 error 8 corn 357 to mixtur 350(20) and B 665(10), 2030; 1 state, 3/2 1 1 error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -949851 155790.0 -164641.3 -93193.14 -147328 -138569 -156087.6 -138572 -142352	ected to 1 e 91 Sr grof $E_B = 5860$ (20), 135 evel at 65 eased: in ected in r. 103 32 3.8 0.18 56 3.2 7.0 0.47 13 10 6.1 5 18	3 keV in reference state < 89 (10) respective (10), 1093(1) (153.02 keV, (5/2) keV, (5/2)	d 93.62 ence % and 9 elly, to 0) to 2) + at 1 with oth 0.11 0.11 1.9 0.17 0.17 3 3 3 3	1.3 0.6 -0.5 -0.1 0.6 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4	2)+ levend state 5/2) - at U U U U U U U I O O	el 25% <8% and 1545.90 37	37 ⁹² Zr 13 ⁹² Mo	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1 CP1 CP1	2.5 2.5 1.0 1.0 2.5 1.0 1.0 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89A133 63Ri07 15Gu09 05Li24 63Ri07 11Fa10 15Gu09 11Fa10 11Fa10 208Fa11	******
$^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Rb}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Sr}(\beta^{-})^{91}\text{Sr}$ $^{91}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{91}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{92}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{92}\text{Sr}(\beta^{-})^{91}\text{Y}$ $^{92}\text{Rb}-\text{u}$ $^{02}\text{Rb}-\text{u}$ $^{02}\text{C}_7 + \text{H}_8 - \text{9}^2\text{Zr}$ $^{92}\text{Zr}-\text{u}$ $^{92}\text{Nb}-\text{u}$ $^{02}\text{C}_7 + \text{H}_8 - \text{9}^2\text{Mo}$ $^{92}\text{Mo}_{1,011} - \text{C}_7 + \text{H}_9$ $^{92}\text{Mo}_{-}\text{u}$ $^{92}\text{Tc}_{-}, \text{989} - \text{C}_7 + \text{T}_7$ $^{92}\text{Tc}_{-}, \text{1011} - \text{C}_7 + \text{H}_9$ $^{92}\text{Tc}_{-}, \text{989} - \text{C}_7 + \text{T}_7$ $^{92}\text{Ru} - \text{C}_7 + \text{H}_8$	E_{β} = 57 Origina E_{β} = 58 E_{β} = 20 ground Origina Origina	760(40) to 91; 1 error 8 corn 857 to mixtur 850(20) and 16 65(10), 2030; 1 state, 3/2 1 1 error 4 incre 1 error 3 corn -60711 -80323 157569.4 -94964.66 -94964.66 -949851 155790.0 -164641.3 -93193.14 -147328 -138569 -156087.6 -138572	ected to 1 e 91 Sr grof F _B = 5860 (20), 135 evel at 65 eased: in ected in rected in	3 keV in reference state < 89 (10) respective (10), 1093(1), 1093(d 93.62 ence % and 9 ely, to 0) to 2) + at 1 with oth 0.11 1.9 0.17 0.17 3 3 3 3 3	1.3 0.6 -0.5 -0.1 0.6 -0.2 -0.4 -0.2	2)+ levend state 5/2) - at U U U U U U 1 U 1	el 25% <8% and 1545.90 37	37 ⁹² Zr 13 ⁹² Mo	GT2 Pb1 M15 MS1 GS2 M15 CP1 MS1 CP1 CP1	2.5 2.5 1.0 1.0 2.5 1.0 1.0 1.0 1.0	94Ha.A Ens13a Ens13a 53Am0 Ens13a AHW 94Ha.A 08Kn.A 89Al33 63Ri07 15Gu09 05Li24 63Ri07 11Fa10 11Fa10 11Fa10 average	**************************************

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Pai 1501	Input va		Adjusted v		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
		Input vo	iluc	rajustea	raruc	v ₁	Ds	orgin.	wam mii.	Lao		Reference
92Ru _{1.011} -C ₇ H ₉		-151074.5	5.6	-151068.3	2.9	1.1	o			CP1	1.0	08Fa11
-1.011 - 7 9		-151074.5	5.6			1.1	1	28	28 ⁹² Ru	CP1	1.0	11Fa10
92Rh _{1.011} -C ₇ H ₉		-138825	23	-138802	5	1.0	U			CP1	1.0	11Fa10
		-138818	17			1.0	U			CP1	1.0	11Fa10
92 Kr $-^{85}$ Rb _{1.082}		21616.6	2.9				2			MA8	1.0	06De36
92Rb-85Rb1 082		15176	9	15172	7	-0.4	1	53	53 ⁹² Rb	MA4	1.0	02Ra23
$^{92}\text{Sr}-^{85}\text{Rb}_{1.082}$		6482	9	6482	4	0.0	_			MA4	1.0	02Ra23
1.082		6484.0	4.3			-0.5	_			MA8	1.0	05Gu37
	ave.	6484	4			-0.5	1	90	90 ⁹² Sr			average
$^{92}\text{Mo}-^{85}\text{Rb}_{1.082}$		2251.43	0.85	2250.66	0.17	-0.9	U			JY1	1.0	12Ka13
$^{92}\text{Tc}-^{85}\text{Rb}_{1.082}$		10728	12	10713	3	-1.2	Ü			SH1	1.0	08We10
10 1.062		10712.5	4.3	10,15		0.2	1	60	60 ⁹² Tc	JY1	1.0	08We10
92 Ru $-^{85}$ Rb _{1.082}		15684.3	5.7	15677.9	2.9	-1.1	_	00	00 10	SH1	1.0	08We10
101.002		15677.9	4.3	100,715	2.,	0.0	_			JY1	1.0	08We10
	ave.	15680	3			-0.7	1	72	72 ⁹² Ru	011	1.0	average
$^{92}\text{Rh} - ^{85}\text{Rb}_{1.082}$	ave.	27841	37	27811	5	-0.8	Ú	, 2	72 Ru	SH1	1.0	08We10
101.082		27811.2	4.7	27011	J	0.0	2			JY1	1.0	08We10
$^{92}Zr-^{87}Rb_{1.057}$		1031.51	0.21	1031.50	0.11	0.0	1	27	27 ⁹² Zr	MS1	1.0	15Gu09
$^{92}\text{Mo}-^{87}\text{Rb}_{1.057}$		2803.38	0.21	2803.34	0.11	-0.2	1	87	87 ⁹² Mo	MS1	1.0	15Gu09
$^{92}\text{Br}-^{88}\text{Rb}_{1.045}$		32306.8	7.2	2505.54	J.17	3.2	2	٠,	0, 1110	JY1	1.0	07Ra23
92Zr 35Cl-90Zr 37Cl		3285	2	3286.67	0.18	0.2	Ū			H13	4.0	63Ba20
$^{92}Zr - ^{91}Zr$		-603	12	-604.90	0.10	-0.1	U			M15	2.5	63Ri07
$^{88}\text{Rb} - ^{92}\text{Rb}_{.410} ^{85}\text{Rb}_{.592}$		-3258	22	-3309.2	2.5	-0.9	U			P21	2.5	82Au01
$^{89}\text{Rb} - ^{92}\text{Rb}_{.553}$ $^{85}\text{Rb}_{.449}$		-3457	24	-3470	6	-0.2	U			P21	2.5	82Au01
$^{91}\text{Rb} - ^{92}\text{Rb}_{.848} ^{85}\text{Rb}_{.153}$		-1703	25	-1766	9	-1.0	U			P21	2.5	82Au01
$^{90}\text{Rb}^{x} - ^{92}\text{Rb}_{.699}$ $^{85}\text{Rb}_{.303}$		-2059	24	-2131	14	-1.0	U			P21	2.5	82Au01
$^{90}\text{Rb}^{x} - ^{92}\text{Rb}_{.326} ^{89}\text{Rb}_{.674}$		209	24	157	14	-0.9	U			P21	2.5	82Au01
$^{92}\text{Mo}(\alpha,^{8}\text{He})^{88}\text{Mo}$		-43278	20	-43307	4	-0.5	U			INS	2.5	90Ka01
$^{92}\text{Mo}(p,\alpha)^{89}\text{Nb}$		-1306	50	-1319	24	-0.3	R			ANL		75Se.A
$^{92}\text{Mo}(^{3}\text{He}, ^{6}\text{He})^{89}\text{Mo}$		-14465	15	-14455	4	0.7	U			MSU		80Pa02
$^{92}Zr(p,t)^{90}Zr$		-7372	14	-7347.33	0.15	1.8	U			Bld		66St15
$\Sigma_{\Gamma}(p,t)$ Σ_{Γ}		-7372 -7350	10	-7547.55	0.13	0.3	U			Oak		71Ba43
92 Mo(p,t) 90 Mo		-14330	30	-14297	3	1.1	U			VUn		76Ka08
$^{92}\text{Rb}(\beta^{-}\text{n})^{91}\text{Sr}$		785	15	808	8	1.5	1	26	15 ⁹² Rb	VOII		84Kr.B
91 Zr(n, γ) 92 Zr		8634.91	0.20	8634.78	0.09	-0.7	_	20	13 10	ILn		79Br25 Z
21(11,7) 21		8634.64	0.15	0054.70	0.07	0.9	_			ш		81Su.A Z
		8635.00	0.13			-0.9	_			Bdn		06Fi.A
91 Zr(d,p) 92 Zr		6470	30	6410.21	0.09	-2.0	U			Dun		62Ma06
Zi(u,p) Zi		6395	20	0410.21	0.07	0.8	U			Pit		64Co11
		6410.9	4.3			-0.2	U			SPa		79Bo37
92 Zr(p,d) 91 Zr		-6410	11	-6410.21	0.09	0.0	Ü			Bld		66St15
21(p,a) 21		-6410	10	0110.21	0.07	0.0	Ü			Oak		71Ba43
92 Zr(d,t) 91 Zr		-2363	25	-2377.55	0.09	-0.6	Ü			Pit		64Co11
91 Zr(n, γ) 92 Zr	ave.	8634.79		8634.78		-0.1	1	75	39 ⁹¹ Zr	111		average
$^{92}\text{Mo}(p,d)^{91}\text{Mo}$	avc.	-10446	15	-10447	6	0.0	_	13	37 Z I	Tex		73Ko03
мю(р, u) мю		-10432	25	10447	Ü	-0.6	_			Grn		73Mo03
	ave.	-10442	13			-0.3	1	24	24 ⁹¹ Mo	Om		average
$^{92}{\rm Br}(\beta^-)^{92}{\rm Kr}$	avc.	12155	100	12537	7	3.8	В	27	24 1110	Bwg		89Gr03
$\mathbf{B}(\mathbf{p}^{-})$ Ki		12220	55	12337	,	5.8	C			Bwg		92Gr.A
92 Kr(β^{-}) 92 Rb		6160	80	6003	7	-2.0	Ü			Trs		78Wo15
$\mathbf{n}(\mathbf{p}_{-})$ \mathbf{n}_{0}		6045	80	0005	,	-2.0 -0.5	0			Bwg		89Gr03
		5987	10			1.6	0			Bwg		92Gr.A
		5993	27			0.4	Ü			Bwg		92Gr06
92 Rb(β^{-}) 92 Sr		8080	160	8095	6	0.1	U			Trs		78Wo15
20(p) 51		8091	15	0075	J	0.3	0			Gsn		80Bl.A
		8111	15			-1.1	0			Gsn		80De02
		8080	30			0.5	_			McG		83Ia02
		8095	25			0.0	o			Bwg		87Gr.A
		8096	16			-0.1	_			Bwg		92Gr.A
		8107	15			-0.8	_			Gsn		92Pr03
	ave.	8099	10			-0.4	1	39	32 ⁹² Rb	-		average
												-

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	1	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
92 Sr(β^-) 92 Y		1929	50	1949	9	0.4	U					57He39 *
SI(p) 1		1929	30	1747	,	0.4	-			Trs		78Wo15 *
		1930	20			1.5	_			McG		83Ia02
	ave.	1920	20 17			1.6	- 1	32	29 ⁹² Y	MICG		average
$^{92}Y(\beta^{-})^{92}Zr$	ave.	3640	20	3643	9	0.1	_	32	29 1			62Bu16
$\Gamma(p)$ ZI		3630	15	3043	9	0.1	_			McG		83Ia02
	0110	3634	12			0.8	1	58	58 ⁹² Y	Wicd		
92 Nb(β^{+}) 92 Zr	ave.	2005	6	2005.7	1.8	0.7	U	30	36 1			average 59We30 *
$ND(p^+)$ ZI		2003	6	2003.7	1.0	-0.4	U					62Bu16 *
92 Zr(p,n) 92 Nb		-2790.7		-2788.1	1.0					Vvm		
ZI(p,II)IND		-2790.7 -2792	2.3	-2788.1	1.8	1.1	_			Kyu		74Ku01
	0710	-2792 -2790.9	5 2.1			0.8	_ 1	73	73 ⁹² Nb			75Ke12
$^{92}{\rm Tc}(\beta^+)^{92}{\rm Mo}$	ave.			7002	2	1.4	1	13	/3 ~- NO			average 64Va05
		7880	100	7883	3	0.0	U			Tr. 1		
⁹² Mo(p,n) ⁹² Tc		-8672	50	-8665	3	0.1	U			Tal		66Mo06 *
$^{92}\text{Mo}(^{3}\text{He,t})^{92}\text{Tc}$	16.4	-7882	30	-7901	3	-0.6	U			ChR		73Ha02
* ⁹² Nb-u				nixture gs+m a								Nub16b **
$*^{92}Sr(\beta^{-})^{92}Y$	E_{β} = 5	45(50) 546(30)) respec	tively, to 1 ⁺ lev	vel at 138.	3.91 keV						Ens12a **
$*^{92}$ Nb(β^+) 92 Zr	$p^{+} = 56$	$6(6)\times10^{-3}, 60$	$0(6) \times 10^{-6}$	⁻⁵ respectively.	, to 2 ⁺ lev	el at 934	.51 keV					Ens12a **
*				2143(6) respect	ively, fror	n ⁹² Nb ^m	at 135.5	keV				AHW **
$*^{92}$ Mo(p,n) 92 Tc	T=9040	0(50) to (4 ⁺) l	level at 2	70.09 keV								Ens12a **
⁹³ Br-u		-56866	322	-56780	460	0.2	o			GT1	1.5	04Ma.A
Bi u		-56780	185	30700	100	0.2	2			GT3	2.5	16Kn03
⁹³ Rb-u		−78036	21	-77961	8	1.4	Ū			Pb1	2.5	89Al33
no u		-77868	100	77701	O	-0.4	Ü			GT2	2.5	08Kn.A
$C_7 H_9 - {}^{93}Nb$		164046.9	3.5	164052.1	1.6	0.6	Ü			M15	2.5	63Ri07
93Mo-u		-93194	30	-93191.23	0.19	0.0	U			GS2	1.0	05Li24 *
⁹³ Tc-u		-89729	31	-89754.9	1.1	-0.8	U			GS2	1.0	05Li24
⁹³ Tc-C ₇ H ₉		-160189.5	7.7	-160180.1	1.1	1.2	U			CP1	1.0	11Fa10
10-07 119		-160139.3 -160170	22	-100100.1	1.1	-0.5	U			CP1	1.0	11Fa10
		-160170	8.5			1.1	U			CP1	1.0	11Fa10
⁹³ Tc _{.989} -C ₇ H ₈		-150139.4 -151270	190	-151367.8	1.1	-0.5	U			CP1	1.0	11Fa10
93Ru-C ₇ H ₉		-151270 -153318.2	6.4	-151307.8 -153320.8	2.2	-0.3 -0.4	_			CP1	1.0	11Fa10
Ku-C/ 119		-153316.2 -153307	23	-133320.6	2.2	-0.4 -0.6	U			CP1	1.0	11Fa10
		-153307 -153324.0	4.8			0.7	_			CP1	1.0	11Fa10
		-153324.0 -153321.9	3.5			0.7	_			CP1	1.0	11Fa10
	ave.		2.6			0.3	1	73	73 ⁹³ Ru	CII	1.0	average
93Rh-C ₇ H ₉	ave.	-133321.9 -144485	25	-144512.5	2.8	-1.1	0	13	73 Ku	CP1	1.0	08Fa11
KII—C7 119		-144485	26	-144312.3	2.0	-1.1	U			CP1	1.0	11Fa10
		-144463 -144527.7	5.3			2.9	U			CP1	1.0	08Fa11
		-144527.7	5.2			2.9	U			CP1	1.0	11Fa10
		-144512.9	3.8			0.1	1	55	55 ⁹³ Rh	CP1	1.0	11Fa10
93 Kr $-^{85}$ Rb _{1.094}						0.1	2	33	33 Kii			
$^{93}\text{Rb}-^{85}\text{Rb}_{1.094}$		27649.2 18549	2.7 10	18541	8	-0.8	1	71	71 ⁹³ Rb	MA8 MA4	1.0 1.0	06De36 02Ra23
93 Sr 85 Rb _{1.094}									66 ⁹³ Sr			
93 Ru 85 Rb _{1.094}		10526	10	10526	8	0.0	1	66	66 ²³ Sr 27 ⁹³ Ru	MA4	1.0	02Ra23
93 P.J. 85 P.J		13609.4	4.3	13606.5	2.2	-0.7	1	27	27 × Ku	JY1	1.0	08We10
$^{93}\text{Rh} - ^{85}\text{Rb}_{1.094}$		22428	12	22414.8	2.8	-1.1	_			SH1	1.0	08We10
		22413.5	4.5			0.3	_	45	45 9351	JY1	1.0	08We10
9151 9351 9051	ave.	22415	4	450		-0.1	1	45	45 ⁹³ Rh	DC 4	2.5	average
91Rb-93Rb.489 89Rb.511		-471	9	-479	9	-0.4	1	15	12 ⁹¹ Rb	P31	2.5	86Au02
91Rb-93Rb.326 90Rb.674 92Rb-93Rb.495 91Rb.505		-656	23	-627	12	0.5	U			P21	2.5	82Au01
⁹² Rb- ⁹³ Rb _{.495} ⁹¹ Rb _{.505}		465	23	436	8	-0.5	U			P21	2.5	82Au01
93 Rb(β^{-} n) 92 Sr		2220	30	2176	9	-1.5	U					84Kr.B
$^{92}Sr(n,\gamma)^{93}Sr$		5230	6	5290	8	10.0	В					80Kr07
92 Zr(n, γ) 93 Zr		6733.7	1.1	6734.3	0.4	0.6	_					72Gr23 Z
		6734.0	0.7			0.5	_					79Ke.D Z
		6735.3	0.7			-1.4	-			Bdn		06Fi.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	· Compai	Input va		Adjusted			Dg	Signf.	Main infl.	Lab	F	Reference
		mput va	aiue	Aujusteu	value	v_i	Dg	Sigiii.	Iviaiii iiiii.	Lau	Г	Reference
$92Zr(d,p)^{93}Zr$		4493	20	4509.8	0.4	0.8	U			Pit		64Co11
92 Zr(n, γ) 93 Zr	ave.	6734.5	0.5	6734.3	0.4	-0.4	1	98	98 ⁹³ Zr			average
93 Nb(γ ,n) 92 Nb		-8780	60	-8830.9	2.0	-0.8	U			Phi		60Ge01
		-8825	3			-2.0	1	44	27 ⁹² Nb	McM		79Ba06
93 Nb(d,t) 92 Nb		-2581	20	-2573.6	2.0	0.4	U			Pit		64Co11
(, , , ,		-2571	10			-0.3	U			Tal		64Sh04
92 Mo(n, γ) 93 Mo		8067.4	1.5	8069.81	0.09	1.6	U					73Wa17
		8066	2			1.9	U					77Ri04
		8069.81	0.09				2			MMn		91Is02 Z
		8070.0	0.3			-0.6	U			Bdn		06Fi.A
92 Mo(d,p) 93 Mo		5853	20	5845.24	0.09	-0.4	U			Pit		64Co11
92 Mo(p, γ) 93 Tc		4081	5	4086.5	1.0	1.1	U					75Be.B
4.17		4086.5	1.0				2					83Ay01
92 Mo(3 He,d) 93 Tc		-1411	4	-1407.0	1.0	1.0	U			Hei		83Wi.A
93 Kr($\hat{\beta}^{-}$) 93 Rb		8700	500	8484	8	-0.4	U			Trs		78Wo15
,		8600	100			-1.2	U			Bwg		87Gr.A
93 Rb(β^{-}) 93 Sr		7560	120	7466	9	-0.8	U			Trs		78Wo15
4.)		7488	15			-1.5	o			Gsn		80B1.A
		7485	15			-1.3	0			Gsn		80De02
		7440	30			0.9	_			McG		83Ia02
		7455	35			0.3	_			Bwg		87Gr.A
		7456	15			0.7	_			Gsn		92Pr03
	ave.	7453	13			1.0	1	50	26 ⁹³ Rb			average
$^{93}\text{Sr}(\beta^{-})^{93}\text{Y}$		4130	100	4141	12	0.1	U			Bwg		78St02
, ,		4110	20			1.6	1	34	24 ⁹³ Y	McG		83Ia02
$^{93}Y(\beta^{-})^{93}Zr$		2890	20	2895	10	0.2	_					59Kn38
4 /		2880	15			1.0	_			McG		83Ia02
	ave.	2884	12			0.9	1	76	76 ⁹³ Y			average
93 Zr(β^{-}) 93 Nb		93.8	2.	90.8	1.5	-1.5	1	55	53 ⁹³ Nb			53Gl.A *
93 Mo(ε) 93 Nb		158	15	405.8	1.5	16.5	В					64Ho08 *
93 Nb(p,n) 93 Mo		-1188	10	-1188.1	1.5	0.0	U					68Fi01
*		-1190	5			0.4	U					75Ch05
$^{93}\text{Tc}(\beta^{+})^{93}\text{Mo}$		3185.1	5.	3201.0	1.0	3.2	В					51Bo48 *
•		3192.1	3.			3.0	В					74An24 *
93 Ru(β^{+}) 93 Tc		6337	85	6389.4	2.3	0.6	U					83Ay01
* ⁹³ Mo-u	M-A=	-84385(28) ke	eV for ⁹³ N	Io ^m at 2424.95	keV							Ens115 **
$*^{93}$ Zr(β^-) 93 Nb	$E_{\beta} = 63$	(2) to $1/2^{-}$ lev	vel at 30.7	7 keV								Ens115 **
$*^{93}$ Mo(ε) ⁹³ Nb	L/K=0.3	36(0.04) to 1/2	- level at	30.82 keV, rec	alculated	Q						Ens115 **
$*^{93}$ Tc(β^+) ⁹³ Mo				, to $7/2^+$ level								Ens115 **
0.4												
⁹⁴ Br-u		-50242	429	-50890 #	320#	-0.6	D			GT3	2.5	16Kn03 *
⁹⁴ Kr–u		-66238	247	-65860	13	1.0	U			GT1	1.5	04Ma.A
$^{94}{\rm Kr}-^{85}{\rm Rb}_{1.106}$		31701	13				2			MA8	1.0	06De36
		31665	24	31701	13	1.5	U			MA8	1.0	10Na13
		31649	97			0.5	U			MA9	1.0	10Na13 *
⁹⁴ Rb-u		-73602	54	-73605.2	2.2	0.0	F			Pb1	2.5	89A133 *
$^{94}\text{Rb} - ^{85}\text{Rb}_{1.106}$		23958	10	23955.4	2.2	-0.3	U			MA4	1.0	02Ra23
		23955.6	2.6			-0.1	1	70	70 ⁹⁴ Rb	TT1	1.0	12Si10 *
$^{94}Sr-^{85}Rb_{1.106}$		12924	10	12916.2	1.8	-0.8	U			MA4	1.0	02Ra23
		12916.0	1.8			0.1	1	98	98 ⁹⁴ Sr	TT1	1.0	12Si10 *
$C_7 H_{10} - {}^{94}Zr$		171929.4	3.9	171937.80	0.18	0.9	U			M15	2.5	63Ri07
94 Zr $-$ u		-93687.34	0.20	-93687.48	0.18	-0.7	1	77	77 ⁹⁴ Zr	MS1	1.0	15Gu09
$^{94}\text{Mo}-^{85}\text{Rb}_{1.106}$		2645.6	1.0	2644.14	0.15	-1.5	U			JY1	1.0	12Ka13
$C_7 H_{10} - {}^{94}Mo$		173159.6	3.2	173166.73	0.15	0.9	U			M15	2.5	63Ri07
⁹⁴ Mo-u		-94916.31	0.42	-94916.41	0.15	-0.2	1	13	13 ⁹⁴ Mo	MS1	1.0	15Gu09

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-purison	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
				-								
⁹⁴ Tc-u		-90362	39	-90348	4	0.4	U			GS2	1.0	05Li24 *
94 Ru $-^{85}$ Rb _{1.106}		8891	25	8903	3	0.5	U		04-	SH1	1.0	08We10
04		8907.1	4.5		_	-0.8	1	56	56 ⁹⁴ Ru	JY1	1.0	08We10
94Ru-C ₇ H ₁₀		-166912.2	5.1	-166907	3	0.9	1	44	44 ⁹⁴ Ru	CP1	1.0	11Fa10
$^{94}\text{Rh} - ^{85}\text{Rb}_{1.106}$		19291.2	4.6	19291	4	0.0	1	62	62 ⁹⁴ Rh	JY1	1.0	08We10
94 Rh-C ₇ H ₁₀		-156520.2	5.9	-156520	4	0.1	1	38	38 ⁹⁴ Rh	CP1	1.0	11Fa10
94Rh _{.989} -C ₇ H ₉		-147834	30	-147834	4	0.0	U			CP1	1.0	11Fa10
$^{94}\text{Kr} - ^{86}\text{Kr}_{1.093}$		31710	110	31843	13	1.2	U		04-	MA9	1.0	10Na13
94Zr-87Rb _{1.080}		4397.13	0.37	4397.55	0.18	1.1	1	23	23^{-94} Zr	MS1	1.0	15Gu09
$^{94}\text{Mo}-^{87}\text{Rb}_{1.080}$		3168.68	0.35	3168.62	0.15	-0.2	1	19	19 ⁹⁴ Mo	MS1	1.0	15Gu09
$^{94}\text{Rb} - ^{88}\text{Rb}_{1.068}$		21109.1	4.0	21109.8	2.2	0.2	1	30	30 ⁹⁴ Rb	JY1	1.0	07Ra23
⁹⁴ Zr ³⁵ Cl- ⁹² Zr ³⁷ Cl		4235.0	2.	4227.31	0.22	-1.0	U			H13	4.0	63Ba20
⁹⁴ Mo ³⁵ Cl- ⁹² Mo ³⁷ Cl		1234.0	2.	1226.55	0.24	-0.9	U			H11	4.0	63Bi12
⁹⁴ Pd- ⁹⁴ Mo		23952.7	4.6				2			JY1	1.0	08We10
92 Rb $-^{94}$ Rb $_{.587}$ 89 Rb $_{.413}$		-764	24	-779	7	-0.2	U			P21	2.5	82Au01 Y
$^{92}\text{Rb} - ^{94}\text{Rb}_{.489} ^{90}\text{Rb}_{.511}^{x}$		-717	23	-726	9	-0.2	U			P21	2.5	82Au01 Y
$^{93}\text{Rb} - ^{94}\text{Rb}_{.742} ^{90}\text{Rb}_{.258}^{x}$		-1296	25	-1289	9	0.1	U			P21	2.5	82Au01 Y
93Rb-94Rb.495 92Rb.505		-840	40	-921	8	-0.8	F		02	P31	2.5	86Au02 *
94 Zr(d, α) 92 Y		8278	25	8258	9	-0.8	1	13	13 ⁹² Y	Grn		74Gi09
94 Zr(p,t) 92 Zr		-6466	12	-6471.13	0.19	-0.4	U			Bld		66St15
04		-6470	10			-0.1	U			Oak		71Ba43
94 Ag ⁿ (2p) 92 Rh		3449	100	2500#	300#	-9.5	F					06Mu03 *
$^{94}\text{Rb}(\beta^{-}\text{n})^{93}\text{Sr}$		3580	80	3452	8	-1.6	U					84Kr.B
94 Zr(p,d) 93 Zr		-5983	15	-5994.0	0.5	-0.7	U			Bld		66St15
945 (1.)935		-6000	10	10/1		0.6	U			Oak		71Ba43
94 Zr(d,t) 93 Zr		-1969	20	-1961.4	0.5	0.4	U			Pit		64Co11
0227 ()0427		-1960.2	2.4	5005 F.	0.00	-0.5	U			SPa		79Bo37
93 Nb(n, γ) 94 Nb		7229.13	0.12	7227.54	0.08	-13.2	C					84Bo.C
		7227.51	0.09			0.3	-			MMn		88Ke09 Z
		7227.63	0.15			-0.6	_	100	69 ⁹⁴ Nb	Bdn		06Fi.A
⁹⁴ Mo(d,t) ⁹³ Mo	ave.	7227.54	0.08	2421.00	0.22	0.0	1	100	69 - Nb	D'		average
$^{94}\text{Ag}^{n}(p)^{93}\text{Pd}$		-3441 5790	20	-3421.08	0.23	1.0	U			Pit		64Co11
Ag"(p) Pd		5780	30	5790	17	0.3	4					05Mu15 *
94 Rb(β^{-}) 94 Sr		5794 10304	20 20	10282.9	2.6	-0.2 -1.1	4			Gsn		09Ce04 * 80Bl.A
Ro(p) Si		10304	100	10282.9	2.0	-1.1 -0.4	0			Gsn		80De02 *
		10322	140			-0.4 -0.5	o U			Trs		82Br23 *
		10335	45			-0.3 -1.2	U			Bwg		82Pa24 *
		10333	20			-1.5	U			Gsn		92Pr03 *
$^{94}\text{Sr}(\beta^{-})^{94}\text{Y}$		3512	10	3506	6	-0.6	1	41	$40^{-94} Y$	Gsn		80De02 *
$^{94}Y(\beta^{-})^{94}Zr$		4920	9	4918	6	-0.2	1	50	50 ⁹⁴ Y	Gsn		80De02 *
$^{94}\text{Nb}(\beta^{-})^{94}\text{Mo}$		2043.3	6.	2045.0	1.5	0.3	_	50	30 1	OSII		66Sn02 *
110(p) 1110		2046.3	3.	2013.0	1.5	-0.4	_					68Ho10 *
	ave.	2045.7	2.7			-0.3	1	31	31 ⁹⁴ Nb			average
$^{94}{\rm Tc}(\beta^+)^{94}{\rm Mo}$		4261	5	4256	4	-1.1	2		2.2 2.0			64Ha29 *
$^{94}\text{Mo}(p,n)^{94}\text{Tc}$		-5027.8	7.	-5038	4	-1.5	2					73Mc04 *
$^{94}\text{Rh}(\beta^{+})^{94}\text{Ru}$		9930	400	9676	5	-0.6	Ū					80Ox01 *
•		9750	320			-0.2	Ü					06Ba55
$^{94}\text{Pd}(\beta^{+})^{94}\text{Rh}$		6700	320	6805	5	0.3	U					06Ba55
$^{94}\text{Ag}^{n}(\beta^{+})^{94}\text{Pd}$		17700	500	20180#	300#	5.0	D					04Mu30 *
* ⁹⁴ Br-u	Trends	from Mass Su		S suggest 94Br		e bound						GAu **
$*^{94}$ Kr $-^{85}$ Rb _{1 106}				ould read 1.000								GAu **
*94Rb-u	• •	sibly isomeric										92Al.B **
$*^{94}Rb-^{85}Rb_{1.106}$				-68561.8(2.4)ka	eV correc	ted for e	bindin	g=-775eV				12Si10 **
$*^{94}Sr-^{85}Rb_{1.106}$				-78845.2(1.7)k								12Si10 **
*94Tc-u				ixture gs+m at								Nub16b **
$*^{93}$ Rb $-^{94}$ Rb $_{.495}$ 92 Rb $_{.505}$		ction based on		-	(-)							86Au02 **
$*^{94}$ Ag ⁿ (2p) ⁹² Rh		900(100) to (11										Ens12a **
$*^{94}$ Ag ⁿ (2p) ⁹² Rh		vidence from										09Ce04 **
$*^{94}$ Ag ⁿ (2p) ⁹² Rh		ssibly misiden										09Je05 **
$*^{94}$ Ag ⁿ (p) ⁹³ Pd				(t ⁺) at 4995.6, (33/2-,35/	(2^{-}) at 47	752.7					Ens115 **
$*^{94}$ Ag ⁿ (p) ⁹³ Pd		0(20) to level (Ens115 **
÷ 4/	P	. ,	,									

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	nparison of inpu										Dafarre
Item	Inp	ut value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$*^{94}$ Rb(β^-) 94 Sr	Original value 10	304(30) corre	ected in referen	ce							94Ha.A **
$*^{94}$ Rb $(\beta^{-})^{94}$ Sr	Original error 10				or lower	level fee	eding				94Ha.A **
$*^{94}$ Rb(β^{-}) 94 Sr	As corrected in r										87Gr.A **
$*^{94}$ Rb(β^{-}) ⁹⁴ Sr	E_{β} = 9475(20) to		36.91 keV								Ens116 **
$*^{94}$ Sr(β^{-}) 94 Y	Original error 6										94Ha.A **
$*^{94}Y(\beta^{-})^{94}Zr$	Original error 5										94Ha.A **
$*^{94}Nb(\beta^{-})^{94}Mo$	E_{β} = 470(6) 473			t 1573 7	6 keV						Ens069 **
$*^{94}\text{Tc}(\beta^+)^{94}\text{Mo}$	$E_{\beta^{+}}$ =816(5) to 6			. 1373.7	o ke v						Ens069 **
$*^{94}Mo(p,n)^{94}Tc$	E_{β} = 810(3) to 0 T=5158(7) to 94	Fom at $76(3)$ k	3.43 KC V								Nub16b **
$*^{94}\text{Rh}(\beta^+)^{94}\text{Ru}$	E_{β^+} =6400(400)										Ens069 **
$*^{94}\text{Ag}^{n}(\beta^{+})^{94}\text{Pd}$											04Mu30 **
$*^{94} Ag^{n}(\beta^{+})^{94} Pd$	Q_{β^+} larger than Trends from Mas	1 /. / IVIC V, UIIC	S angest 94 A a	n 2490 1		a					
** 'Ag"(p *)* 'Pd	Trends from Was	s Surface Tivi	.s suggest Ag	, 2480 I	ess dound	u					GAu **
⁹⁵ Kr–u	-6018	3 150	-60289	20	-0.5	U			GT1	1.5	04Ma.A
95 Kr $-^{85}$ Rb _{1.118}	3833		0020)		0.0	2			MA8	1.0	06De36
95Rb-u	-7061		-70737	22	-0.6	Ū			Pb1	2.5	89Al33
$^{95}Sr-^{85}Rb_{1.118}$	1798		17975	6	-1.2	1	39	39 ⁹⁵ Sr	MA4	1.0	02Ra23
$^{95}\text{Mo}-^{85}\text{Rb}_{1.118}$	445		4456.52	0.13	-1.1	U	37	37 51	JY1	1.0	12Ka13
$C_7 H_{11} - {}^{95}Mo$	18023		180237.91	0.13	0.2	U			M15	2.5	63Ri07
95Mo-u	-9416		-94162.56	0.13	-1.6	1	12	12 ⁹⁵ Mo	MS1	1.0	15Gu09
⁹⁵ Tc-u	-9241°		-92348	5	2.2	U	12	12 100	GS2	1.0	05Li24 *
$^{95}\text{Rh}-^{85}\text{Rb}_{1.118}$	1451		14517	4	0.4	1	86	86 ⁹⁵ Rh	JY1	1.0	03L124 *
95Rh _{.989} -C ₇ H ₁₀	-16141		-161427	4	-1.0	1	14	14 ⁹⁵ Rh	CP1	1.0	11Fa10
$^{95}\text{Mo}-^{87}\text{Rb}_{1.092}$						U	14	14 KII			
$^{95}\text{Sr}-^{97}\text{Zr}_{.979}$	501		5012.30	0.13	-0.1	1	39	39 ⁹⁵ Sr	MS1	1.0	15Gu09
$^{95}Y - ^{97}Zr_{.979}$	652		6529 -9	6 7	0.0 3.6		39	39 - 31	JY1	1.0	06Ha03
$^{95}\text{Pd}-^{94}\text{Mo}_{1.011}$	-3 2084		20849	3		B 2			JY1 JY1	1.0	07Ha32 08We10
Fu="Mo _{1.011}			20849	3	0.0	2				1.0	
95 Mo $-^{94}$ Mo	2084 75		752 05	0.10					JY1	1.0	08We10 *
			753.85		-0.1	U			M15	2.5	63Ri07
93Rb-95Rb _{.653} 89Rb _{.348}	-132		-1157	15	2.7	U			P21	2.5	82Au01
$^{93}\text{Rb} - ^{95}\text{Rb}_{.587} ^{90}\text{Rb}_{.413}^{x}$	-137		-1193	15	3.0	В			P21	2.5	82Au01
94Rb-95Rb _{.792} 90Rb _{.209}	-1		196	16	3.0	В			P21	2.5	82Au01 Y
92Rb-95Rb.242 91Rb.758	8		104	10	0.4	U			P21	2.5	82Au01
93 Rb $-^{95}$ Rb $_{.489}$ 91 Rb $_{.511}$	-65		-671	13	-0.6	F		05	P31	2.5	86Au02 *
$^{94}\text{Rb} - ^{95}\text{Rb}_{.660} ^{92}\text{Rb}_{.341}$	43		423	14	-0.3	1	13	13 ⁹⁵ Rb	P31	2.5	86Au02
953.5 ()92.5	46			0.46	-0.6	U			P31	2.5	86Au02
$^{95}\text{Mo}(n,\alpha)^{92}\text{Zr}$	640		6393.57	0.16	-0.4	U			ILL		75Em04
95 Rb(β^{-} n) 94 Sr	512		4883	20	-2.4	U					84Kr.B
94 Zr(n, γ) 95 Zr	646		6461.9	0.9	0.3	_					79Ke.D Z
	635				347.1	F			Bdn		06Fi.A *
04	646				3.3	C			Bdn		08Fi.A *
94 Zr(d,p) 95 Zr	422		4237.4	0.9	0.7	U			Pit		64Co11
04	423				0.0	_		05	SPa		79Bo37
$^{94}Zr(n,\gamma)^{95}Zr$	ave. 646		6461.9	0.9	0.3	1	92	91 ⁹⁵ Zr			average
94 Mo(n, γ) 95 Mo	736		7369.11	0.09	1.1	U		0.4			77Ri04
	736				0.1	1	89	68 ⁹⁴ Mo	MMn		91Is02 Z
	736				1.4	U			Bdn		06Fi.A
94 Mo(d,p) 95 Mo	513		5144.54	0.09	0.4	U			Pit		64Co11
$^{95}\mathrm{Pd}(\varepsilon\mathrm{p})^{94}\mathrm{Ru}$	511		5329	4	0.7	U					82Ku15 *
95 Rb(β^{-}) 95 Sr	922		9228	20	0.1	o			Gsn		80Bl.A
	927				-0.5	o			Gsn		80De02 *
	930				-2.4	C			Gsn		84Bl.A
	928) 45			-1.2	_			Bwg		87Gr.A
	927				-1.3	_			Gsn		92Pr03
	ave. 927	5 28			-1.7	1	53	51 ⁹⁵ Rb			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{95}\text{Sr}(\beta^-)^{95}\text{Y}$		6110	150	6089	7	-0.1	U					70Ma.A
2-(-) -		6060	100			0.3	Ü			Bwg		78St02
		6082	10			0.7	1	52	32 ⁹⁵ Y	Gsn		84Bl.A
		6052	25			1.5	U					90Ma03
$^{95}Y(\beta^{-})^{95}Zr$		4445	9	4451	7	0.7	1	57	56 ⁹⁵ Y	Gsn		80De02 *
95 Zr(β^{-}) 95 Nb		1125	8	1126.3	1.0	0.2	Ü					54Za05
21(6) 110		1119	5	1120.0	1.0	1.5	Ü					55Dr43
		1122.7	3.			1.2	1	11	8 ⁹⁵ Zr			74An22 *
95 Nb(β^{-}) 95 Mo		925.5	0.5	925.6	0.5	0.2	1	98	97 ⁹⁵ Nb			63La06 *
$^{95}\text{Tc}(\beta^{+})^{95}\text{Mo}$		1683	10	1691	5	0.8	_		.,			65Cr04 *
10(p) 1.10		1693	6	10,1		-0.4	_					74An05 *
95 Mo(p,n) 95 Tc		-2440	30	-2473	5	-1.1	U					57Le27
(F,)		-2490	6		-	2.9	В			Oak		70Ki01
$^{95}\text{Tc}(\beta^+)^{95}\text{Mo}$	ave.	1690	5	1691	5	0.0	1	97	97 ⁹⁵ Tc			average
95 Ru(β^{+}) 95 Tc		2558	30	2564	11	0.2	1	12	10 ⁹⁵ Ru			68Pi03 *
$^{95}\text{Rh}(\beta^{+})^{95}\text{Ru}$		5110	150	5117	10	0.0	Ü		10 110			75We03 *
*95Tc-u	M - A =	:-86066(28) ke					C					Nub16b **
* ⁹⁵ Pd- ⁹⁴ Mo _{1.011}	$D_{M}=22$	862.1(4.5) μu	for ⁹⁵ Pd ^m	at 1875 13 ke	$V \cdot M = A$	\=_68090	2(4.4) k	eV				Nub16b **
*93Rb-95Rb _{.489} 91Rb _{.511}		ected by author		at 1075.15 kc	1, 111	1- 00070.	.2(+.+) K	1				86Au02 **
$*^{94}$ Zr(n, γ) ⁹⁵ Zr		e from 06Fi.A										08Fi.A **
$*^{94}$ Zr(n, γ) 95 Zr		vidence	retracted									08Fi.A **
* 95 Pd(ε p) 94 Ru		00(300) from ⁹⁵	$\mathbf{D}d^m$ of $1\mathbf{S}^n$	75 13 to ⁹⁴ Pu	m at 264	1.1 kaV						Nub16b **
* Tu(ep) Ku *		E_p ; both from f		75.15 to Ku	at 204	4.1 KC V						82No06 **
$*^{95}$ Rb(β^-) 95 Sr		595(100) to (3/		aval at 680.70	correct	ad in rafa	ranca					92Pr03 **
$*^{95}Y(\beta^{-})^{95}Zr$		l error 5 correc			, conce	cu ili icici	rence					
*** I (p) ** ZF	Origina	4417(10) Sixon	by some	rence	a							94Ha.A **
$*^{95}$ Zr(β^-) 95 Nb		4417(10) given			u							84Bl.A **
		$87(3)$ to $1/2^{-1}$										Ens10a **
$*^{95}$ Nb(β^-) 95 Mo		59.7(0.5) to 7/2			20.04							Ens10a **
$*^{95}\text{Tc}(\beta^+)^{95}\text{Mo}$		00(10) 710(6) r			at 38.91	keV						Nub16b **
$*^{95}$ Ru(β^+) 95 Tc		200(30) to 7/2 ⁺										Ens10a **
$*^{95}$ Rh(β^+) 95 Ru	$E_{\beta^+}=3$	150(150) to 7/2	!T level at	941.79 keV								Ens10a **
⁹⁶ Kr- ⁸⁵ Rb _{1.129}		42606	22				2			MA8	1.0	10Na13
⁹⁶ Rb-u		-65508	43	-65867	4	-3.3	F			Pb1	2.5	89Al33 *
96 Zr $-^{87}$ Rb _{1.103}		8451.49	0.34	8451.50	0.12	0.0	1	13	13 ⁹⁶ Zr	MS1	1.0	15Gu09
$C_7 H_{12} - {}^{96}Zr$		185628	6	185622.77	0.12	-0.3	U			M15	2.5	63Ri07
⁹⁶ Zr–u		-91691	43	-91722.38	0.12	-0.7	U			JY0	1.0	04Ri12
		-91722.60	0.17			1.3	1	52	52 ⁹⁶ Zr	MS1	1.0	15Gu09
96 Mo $-^{85}$ Rb _{1.129}		4265.7	1.1	4264.16	0.13	-1.4	U			JY1	1.0	12Ka13
$^{96}\text{Mo}-^{87}\text{Rb}_{1.103}$		4848.96	0.43	4848.65	0.13	-0.7	Ü			MS1	1.0	15Gu09
$C_7 H_{12} - {}^{96}Mo$		189226.9	3.0	189225.61	0.13	-0.2	U			M15	2.5	63Ri07
⁹⁶ Mo-u		-95324.94	0.47	-95325.23	0.13	-0.6	U				1.0	15Gu09
⁹⁶ Tc-u		-92192	32	-92133	6	1.8	U			GS2	1.0	05Li24 *
$C_7 H_{12} - {}^{96}Ru$		186304.6	3.8	186311.47	0.18	0.7	U			M16	2.5	63Da10
⁹⁶ Rb- ⁸⁸ Rb _{1.091}		30887.7	3.6	30888	4	0.7	1	100	100 ⁹⁶ Rb	JY1	1.0	07Ra23
⁹⁶ Zr ³⁵ Cl- ⁹⁴ Zr ³⁷ Cl		4929	3.0	4915.21				100	100 Kb		4.0	63Ba20
⁹⁶ Mo ³⁵ Cl- ⁹⁴ Mo ³⁷ Cl		2539	2	2541.29	0.22 0.13	-1.1 0.3	U U			H13 H11	4.0	63Bi12
⁹⁶ Pd- ⁹⁴ Mo _{1.021}				2541.29	0.13	0.5	2					08We10
$^{96}\text{Sr}-^{97}\text{Zr}_{.990}$		15123.4	4.5	00/5	0	0.2		02	83 ⁹⁶ Sr	JY1	1.0	
⁹⁶ Y- ⁹⁷ Zr _{.990}		9868	10	9865	9	-0.3	1	83		JY1	1.0	06Ha03
$^{96}Y^{-97}Zr_{.990}$ $^{96}Y^{m}^{-97}Zr_{.990}$		4053.7	6.8	4055	7	0.2	1	92	92 ⁹⁶ Y	JY1	1.0	07Ha32
96N 97N		5708.1	6.7	0001.00	0.17	0.2	2			JY1	1.0	07Ha32
⁹⁶ Mo- ⁹⁷ Mo _{.990}		-2280.5	5.8	-2281.96	0.17	-0.3	U			JY1	1.0	06Ka48
⁹⁶ Zr- ⁹⁶ Nb		176.02	0.13	176.03	0.11	0.1	1	68	63 ⁹⁶ Nb	JY1	1.0	16Al03
⁹⁶ Zr- ⁹⁶ Mo		3602.919	0.092	3602.85	0.08	-0.8	1	75	46 ⁹⁶ Mo	JY1	1.0	16Al03
$^{96}\text{Nb} - ^{96}\text{Mo}$		3426.80	0.17	3426.82	0.11	0.1	1	46	37 ⁹⁶ Nb	JY1	1.0	16Al03

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-F	Input v		Adjusted		v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference	ce_
96 Ru $-^{96}$ Mo		2914.14	0.13	2914.14	0.13	0.0	1	100	100) ⁹⁶ Ru	SH1	1.0	11El04	
$^{96}\text{Mo}-^{95}\text{Mo}$		-1161	12	-1162.67	0.05	-0.1	U				M15	2.5	63Ri07	
93 Rb $-^{96}$ Rb $_{.554}$ 89 Rb $_{.448}$		-2210	27	-2022	8	2.8	U				P21	2.5	82Au01	
95Rb-96Rb _{.848} 89Rb _{.152}		-1590	30	-1443	20	2.0	U				P21	2.5	82Au01	
94Rb-96Rb _{.699} 89Rb _{.302}		-1250	30	-999	4	3.3	В				P21	2.5	82Au01	Y
94Rb-96Rb _{.588} 91Rb _{.413}		-380	25	-378	4	0.0	U				P21	2.5	82Au01	
$^{95}\text{Rb} - ^{96}\text{Rb}_{.742} ^{92}\text{Rb}_{.258}$		-1116	27	-1075	20	0.6	U				P21	2.5	82Au01	
.742 -10.236		-1143	16			1.7	1	26	26	95 Rb	P31	2.5	86Au02	
96 Zr(d, α) 94 Y		7609	20	7623	6	0.7	1	10	10	⁹⁴ Y	Grn		74Gi09	
96 Zr(p,t) 94 Zr		-5825	10	-5830.36	0.20	-0.5	U				Oak		71Ba43	
⁹⁶ Ru(p,t) ⁹⁴ Ru		-11165	10	-11158	3	0.7	U				Oak		71Ba01	
96 Zr(t, α) 95 Y		8294	20	8295	7	0.0	1	11	11	⁹⁵ Y	LAI		83F106	
96 Zr(p,d) 95 Zr		-5440	20	-5625.7	0.9	-9.3	В	••		•	Bld		67St24	
()		-5630	10			0.4	U				Oak		71Ba43	
96 Zr(d,t) 95 Zr		-1603	20	-1593.0	0.9	0.5	Ü				Pit		64Co11	
(-,-,		-1595.8	2.8			1.0	Ü				SPa		79Bo37	
96 Mo(t, α) 95 Nb		10524	20	10516.3	0.5	-0.4	Ü				LAI		83F106	
$^{95}\text{Mo}(n,\gamma)^{96}\text{Mo}$		9154.2	0.5	9154.33	0.05	0.3	U				2.1.		70He27	
1.10(1.,7)		9154.32	0.05	, 10	0.02	0.3	1	96	67	⁹⁵ Mo	MMn		91Is02	Z
		9153.90	0.20			2.2	Ü	70	07	1110	Bdn		06Fi.A	_
96 Mo(d,t) 95 Mo		-2923	20	-2897.11	0.05	1.3	U				Pit		64Co11	
96Ru(p,d)95Ru		-8470	10	-8469	10	0.1	1	90	90	⁹⁵ Ru	Oak		71Ba01	
96 Ag(ε p) 95 Rh		6540	90	0407	10	0.1	2	70	70	Ru	Ouk		03Ba39	*
$^{96}\text{Rb}(\beta^-)^{96}\text{Sr}$		10800	220	11570	9	3.5	В						79Pe17	**
$Ko(p^{-})$ Si		11303	250	11370		1.1	0				Gsn		80De02	
		11547	100			0.2	U				Trs		82Br23	
		11553	45			0.4	U				Gsn		84Bl.A	
		11590	80			-0.3	U				Bwg		87Gr.A	
		11709	40			-3.5	В				Gsn		92Pr03	*
96 Sr(β^-) 96 Y		5332	30	5412	10	2.7	F						79Pe17	*
51(p') 1		5413	22	3112	10	-0.1	_				Gsn		80De02	
		5345	50			1.3	U				Bwg		87Gr.A	
		5354	40			1.4	_				8		90Ma03	
	ave.	5399	19			0.6	1	25	17	⁹⁶ Sr			average	
$^{96}Y(\beta^{-})^{96}Zr$		7120	50	7103	6	-0.3	U				Gsn		80De02	*
V		7030	70			1.0	U				Bwg		87Gr.A	
		7067	30			1.2	U						90Ma03	*
$^{96}Y^{m}(\beta^{-})^{96}Zr$		8030	150	8643	6	4.1	C				Bwg		87Gr.A	
4 /		8600	200			0.2	U				U		88St.A	
		8237	21			19.3	C				Bwg		92Gr.A	
96 Nb(β^{-}) 96 Mo		3186.8	3.2	3192.06	0.11	1.6	U				U		68An03	*
⁹⁶ Mo(p,n) ⁹⁶ Tc		-3760	10	-3756	5	0.4	2						74Do09	
4, ,		-3754	6			-0.3	2						78Ke10	
96 Rh(β^{+}) 96 Ru		6472	200	6393	10	-0.4	U						75Gu01	*
⁹⁶ Ru(p,n) ⁹⁶ Rh		-7175	10				2						70As08	Z
$^{96}\text{Pd}(\hat{\beta}^{+})^{96}\text{Rh}$		3450	150	3504	11	0.4	U						85Ry02	
* ⁹⁶ Rb-u	F: poss	ibly isomeric											92Al.B	
* ⁹⁶ Tc-u				ixture gs+m a	t 34.23 k	eV							Nub16b	
$*^{96}$ Ag $(\varepsilon p)^{95}$ Rh				y –110 keV fo			-decavi	ng ⁹⁶ Ag					03Ba39	
* 115(CP) 1411		to two isome			1 IIIIACUI	c or two p	accayı	66					03Ba39	
$*^{96}$ Rb(β^-) 96 Sr		0894(40) to 2											Ens08a	
$*^{96}$ Sr(β^-) 96 Y				31.70 keV, an	d other F	7.							Ens08a	
$*^{96}$ Sr(β^-) 96 Y				e are strongly									79Pe17	
$*^{96}$ Sr(β^-) 96 Y		l error 20 co		0,	Commett	···g								
* SI(p) 1					nad								94Ha.A	
$*$ $*^{96}$ Y(β^-) 96 Zr	Ω _β -=3	0704(10) giv	n by come	e group, not u	ad ad								84Bl.A	
				group, not us		E							84Bl.A	
$*^{96}Y(\beta^{-})^{96}Zr$				750.497 keV,		r Ε β-							Ens08a	
$*^{96}\text{Nb}(\beta^{-})^{96}\text{Mo}$				2438.477 keV	/								Ens08a	
$*^{96}$ Rh(β^+) 96 Ru				2149.74 keV									Ens08a	
$*^{96}Pd(\beta^+)^{96}Rh$	$p^{+} = 0.2$	257(0.03) to	1 ⁺ level a	t 1274.78 keV	7								Ens08a	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	-
97 Kr $-^{86}$ Kr $_{1.128}$		49920	140				2			MA9	1.0	10Na13	
97Rb-u		-62512	64	-62822.9	2.1	-1.9	U			Pb1	2.5	89Al33	
$^{97}\text{Rb}-^{88}\text{Rb}_{1.102}$		34908.0	5.7	34907.3	2.1	-0.1	1	13	13 ⁹⁷ Rb	JY1	1.0	07Ra23	
$^{97}\text{Rb}-^{85}\text{Rb}_{1.141}$		37824.9	2.2	37825.0	2.1	-0.1 0.1		87	87 ⁹⁷ Rb	TT1		12Si10	
$^{97}\text{Sr}-^{85}\text{Rb}_{1.141}$							1		87 ⁹⁷ Sr		1.0		*
97 Sr—u Rb _{1.141}		27022.9	3.9	27023	4	-0.1	1	87	8/ / Sr	TT1	1.0	12Si10	*
77Sr—u		−73599	99	-73625	4	-0.1	U			GT2	2.5	08Kn.A	
$^{97}\text{Mo} - ^{85}\text{Rb}_{1.141}$		6666.9	1.2	6664.82	0.18	-1.7	U		073.5	JY1	1.0	12Ka13	
$^{97}\text{Mo}-^{87}\text{Rb}_{1.115}$		7280.86	0.39	7280.61	0.18	-0.6	1	21	21 ⁹⁷ Mo	MS1	1.0	15Gu09	
$C_5 H_5 O_2 - {}^{97}Mo$		122937.6	2.3	122937.50	0.18	0.0	U		07-	M15	2.5	63Ri07	
⁹⁷ Mo-u		-93982.95	0.36	-93983.10	0.18	-0.4	1	24	24 ⁹⁷ Mo	MS1	1.0	15Gu09	
⁹⁷ Ru-u		-92471	30	-92454.2	3.0	0.6	U			GS2	1.0	05Li24	
$^{97}\text{Pd}-^{85}\text{Rb}_{1.141}$		17119.9	5.2				2			JY1	1.0	09E108	
⁹⁷ Mo ³⁵ Cl- ⁹⁵ Mo ³⁷ Cl		3138	2	3129.57	0.19	-1.1	U			H11	4.0	63Bi12	
$^{97}Sr-^{97}Zr$		15416	10	15417	4	0.1	1	13	13 ⁹⁷ Sr	JY1	1.0	06Ha03	
$^{97}Y - ^{97}Zr$		7322.9	7.2				2			JY1	1.0	07Ha32	*
$^{97}\text{Mo}-^{96}\text{Mo}$		1346	12	1342.13	0.18	-0.1	U			M15	2.5	63Ri07	
$^{94}\text{Rb} - ^{97}\text{Rb}_{.485} ^{91}\text{Rb}_{.516}$		-21	25	-65	5	-0.7	U			P21	2.5	82Au01	Y
⁹⁶ Rb- ⁹⁷ Rb _{.792} ⁹² Rb _{.209}		650	30	620	4	-0.4	U			P21	2.5	82Au01	
95Rb-97Rb.490 93Rb.511		-165	25	-108	21	0.9	1	11	10 ⁹⁵ Rb	P21	2.5	82Au01	
96Rb-97Rb.742 93Rb.258		848	19	803	4	-1.0	Ü		10 10	P31	2.5	86Au02	
96 Zr(n, γ) 97 Zr		5574	5	5575.1	0.4	0.2	U			131	2.5	77Ba33	
$\Sigma_{\Gamma}(\Pi, \gamma) = \Sigma_{\Gamma}$		5575.1	0.4	3373.1	0.4	0.2	1	99	99 ⁹⁷ Zr	Bdn		06Fi.A	
96 Zr(d,p) 97 Zr		3373.1	20	3350.6	0.4	0.1	U	99	99 ZI	Pit		64Co11	
96 Mo(n, γ) 97 Mo										PII			
$NIO(n,\gamma)$ NIO		6821.1	1.0	6821.13	0.16	0.0	U					73De39	
		6820	2			0.6	U					77Ri04	-
		6821.15	0.25			-0.1	_			MMn		91Is02	Z
063.5 (1.3973.5		6821.5	0.4	450655	0.46	-0.9	-			Bdn		06Fi.A	
$^{96}\text{Mo}(d,p)^{97}\text{Mo}$		4582	20	4596.57	0.16	0.7	U		07-	Pit		64Co11	
$^{96}\text{Mo}(n,\gamma)^{97}\text{Mo}$	ave.	6821.25	0.21	6821.13	0.16	-0.5	1	59	44 ⁹⁷ Mo			average	
96 Mo(3 He,d) 97 Tc		229	8	225	4	-0.5	_			ANL		74Co27	
		220	8			0.6	_			Pit		74Co27	
	ave.	225	6			0.1	1	53	53 ⁹⁷ Tc			average	
96 Ru(d,p) 97 Ru		5886	3	5886.9	2.8	0.3	2			Can		77Ho02	
		5892	7			-0.7	2			ANL		77Me04	
97 Rb(β^{-}) 97 Sr		10020	50	10062	4	0.8	U			Gsn		80De02	
		10450	30			-12.9	C			Gsn		84B1.A	
		10440	60			-6.3	C			Bwg		87Gr.A	
		10462	40			-10.0	В			Gsn		92Pr03	
$^{97} Sr(\beta^{-})^{97} Y$		7452	40	7540	8	2.2	U			Gsn		84B1.A	
•		7420	80			1.5	o			Bwg		87Gr.A	
		7480	18			3.3	C			Bwg		92Gr.A	
$^{97}Y(\beta^{-})^{97}Zr$		6702	25	6821	7	4.8	Č			Gsn		84Bl.A	
- ()- /		6640	70			2.6	0			Bwg		87Gr.A	*
		6689	13			10.2	Č			Bwg		92Gr.A	*
97 Zr(β^{-}) 97 Nb		2657.3	6.	2663	4	1.0	1	50	50 ⁹⁷ Nb	25		74Ra.A	*
$^{97}\text{Nb}(\beta^{-})^{97}\text{Mo}$		1933.1	6.	1939	4	1.0	1	50	50 ⁹⁷ Nb			74Ra.A	*
$^{97}\text{Mo}(p,n)^{97}\text{Tc}$		-1128	9	-1103	4	2.8	В	30	30 110	Oak		70Ki01	*
Mo(p,ii) Te				-1103	4			47	47 ⁹⁷ Tc			74Co27	
97 Ru(β^{+}) 97 Tc		-1102	6	1104	_	-0.1	1	47	4/ 10	ANL			
		1150	100	1104	5	-0.5	U					70Ho01	*
97 Rh $(\beta^+)^{97}$ Ru		3533	50	3520	40	-0.2	3					62Ba28	*
07-112-197-1		3513	50			0.2	3					62Ch21	*
$^{97}\text{Pd}(\beta^+)^{97}\text{Rh}$		4790	300	4790	40	0.0	U					80Go11	*
97 Ag(β^{+}) 97 Pd		6980	110				3					99Hu10	
$*^{97}$ Rb $-^{85}$ Rb _{1.141}		$7825.7(2.2) \mu$										12Si10 =	**
$*^{97}$ Sr $-^{85}$ Rb _{1.141}		$7023.5(3.9) \mu$											**
$*^{97}Y-^{97}Zr$		039.5(7.2) μu					453.9(6.	.7) keV				Nub16b	**
$*^{97}Y(\beta^{-})^{97}Zr$	$E_{\beta} = 6$	6645(70); and	7280(150) from $^{97}\mathrm{Y}^m$ a	nt 667.521	keV	-					Nub16b	**
$*^{97}Y(\beta^{-})^{97}Zr$	$E_{\beta}^{\rho} = \epsilon$	6688(13); and	7361(26)	from $^{97}Y^m$ at	667.52 ke	eV						Nub16b	
$*^{97}Zr(\beta^-)^{97}Nb$		1914(2) to 1/2										Ens104	
$*^{97}\text{Nb}(\beta^-)^{97}\text{Mo}$		$1275(2)$ to $7/2^{-1}$										Ens104 :	
$*^{97}$ Ru(β^+) 97 Tc		.0001 (see fig					. 3.7					Ens104 :	
$*^{97}$ Rh(β^+) 97 Ru	$E_{\beta} = 2$	2090(50) 2070	(50) respe	ectively, to 7/2	z r level at	t 421.54 ke	٧					Ens104	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Mair	n infl.	Lab	F	Referen	ce
$*^{97}\text{Pd}(\beta^+)^{97}\text{Rh}$	$E_{\beta^+}=3$	500(300) to 7	/2 ⁺ level	at 265.36 keV									Ens104	**
98 Rb $-^{85}$ Rb $_{1.153}$		43331	32	43339	17	0.2	1	29	29	⁹⁸ Rb	TT1	1.0	12Si10	*
⁹⁸ Rb-u		-58359	29	-58368	17	-0.3	_				MA8	1.0	13Ma81	
		-58370	29			0.1	_				TT1	1.0	16Kl04	*
	ave.	-58365	21			-0.2	1	71	71	98 Rb			average	
98 Rb m -u		-58289	22				2				TT1	1.0	12Si10	*
$^{98}\text{Sr}-^{85}\text{Rb}_{1.153}$		30396.7	4.3	30398	3	0.4	-				TT1	1.0	12Si10	*
		30405.3	7.2			-1.0	_	0.0	0.0	08.0	TT1	1.0	16K104	*
⁹⁸ Zr-u	ave.	30399	4	97265	0	-0.2	1	88	88	⁹⁸ Sr	1370	1.0	average	
⁹⁸ Mo- ⁸⁵ Rb _{1.153}		-87247 7104.1	43 5.7	-87265 7110.04	9 0.19	-0.4 1.0	U U				JY0 MA8	1.0 1.0	04Ri12 11He10	
MO- K01.153		7111.6	1.3	/110.04	0.19	-1.0	U				JY1	1.0	12Ka13	
$^{98}\text{Mo}-^{87}\text{Rb}_{1.126}$		7665.96	0.64	7666.33	0.19	0.6	U				MS1	1.0	15Gu09	
$C_5 H_6 O_2 - {}^{98}Mo$		131375.4	2.8	131375.82	0.19	0.1	Ü				M15	2.5	63Ri07	
⁹⁸ Mo-u		-94596.21	0.53	-94596.39	0.19	-0.3	1	12	12	⁹⁸ Mo	MS1	1.0	15Gu09	
$C_7 H_{14} - {}^{98}Ru$		204263.5	2.9	204264	7	0.0	1	92	92	⁹⁸ Ru	M16	2.5	63Da10	
⁹⁸ Rh-u		-89302	46	-89292	13	0.2	U				GS2	1.0	05Li24	*
$^{98}\text{Pd}-^{85}\text{Rb}_{1.153}$		14404.5	5.1	14405	5	0.1	1	100	100	⁹⁸ Pd	JY1	1.0	09E108	
98 Ag $-^{85}$ Rb _{1.153}		23283	40	23270	40	-0.4	1	78	78	98 Ag	MA8	1.0	11He10	
⁹⁸ Mo ³⁵ Cl- ⁹⁶ Mo ³⁷ Cl		3690	2	3678.94	0.20	-1.4	U			00	H11	4.0	63Bi12	
$^{98}\text{Sr}-^{97}\text{Zr}_{1.010}$		18620	10	18625	3	0.5	1	12	12	⁹⁸ Sr	JY1	1.0	06Ha03	
$^{98}Y - ^{97}Zr_{1.010}$		12321.4	8.5	2440			2		0.0	08-	JY1	1.0	07Ha32	
$^{98}Zr - ^{97}Zr_{1.010}$		2668	10	2668	9	0.0	1	82	82	98 Zr	JY1	1.0	06Ha03	
98Mo-97Mo _{1.010} 98Mo-97Mo		327.9	5.8	326.53	0.07	-0.2	U				JY1	1.0	06Ka48	
94Rb-98Rb _{.411} 91Rb _{.590}		-614 -290	12 40	-613.30 -347	0.07 8	$0.0 \\ -0.6$	U U				M15 P21	2.5 2.5	63Ri07 82Au01	v
97Rb-98Rb _{.792} 93Rb _{.209}		-250 -250	60	-347 -281	13	-0.0 -0.2	U				P21	2.5	82Au01	1
$^{96}\text{Rb} - ^{98}\text{Rb}_{.490} + ^{94}\text{Rb}_{.511}$		330	30	322	9	-0.2 -0.1	U				P21	2.5	82Au01	v
$^{97}\text{Rb} - ^{98}\text{Rb}_{.660} ^{95}\text{Rb}_{.340}$		-300	50	-232	13	0.5	U				P21	2.5	82Au01	1
10 10.000 10.540		-232	27	232	15	0.0	Ü				P31	2.5	86Au02	
$^{96}Zr(t,p)^{98}Zr$		3508	20	3509	8	0.0	1	18	18	98 Zr	LAI		69B101	
96 Zr(3 He,p) 98 Nb		5728	5				2				Phi		75Me13	į
⁹⁶ Ru(¹⁶ O, ¹⁴ C) ⁹⁸ Pd		-12529	20	-12516	5	0.6	U				BNL		82Th01	
98 Mo(t, α) 97 Nb		10019	20	10015	4	-0.2	U				LAl		83F106	
97 Mo(n, γ) 98 Mo		8642.4	0.5	8642.60	0.06	0.4	U						71He10	
		8642.60	0.07			0.0	_				MMn		91Is02	Z
983.5 (1.)973.5		8642.57	0.18	2205.25	0.06	0.2	_				Bdn		06Fi.A	
98 Mo(d,t) 97 Mo 97 Mo(n, γ) 98 Mo		-2379 8642.60	20 0.07	-2385.37	0.06	-0.3	U	00	97	⁹⁸ Mo	Pit		64Co11	
$^{97}\text{Mo}(^{3}\text{He,d})^{98}\text{Tc}$	ave.	8642.60 680	8	8642.60 683	0.06	0.0 0.4	1	98	87	MIO	ANL		average 74Co27	
Mo(ne,u) 10		686	10	063	3	-0.3	_				McM		76Ma16	
	ave.	682	6			0.1	1	29	29	⁹⁸ Tc	WICIVI		average	
$^{98}\text{Rb}(\beta^{-})^{98}\text{Sr}$	uve.	11200	110	12054	16	7.8	В	2)		10			79Pe17	
· ()		12343	150			-1.9	U				Trs		82Br23	
		12519	60			-7.8	C				Gsn		84B1.A	
		12270	30			-7.2	C				McG		84Ia.A	
		12440	75			-5.1	C				Bwg		87Gr.A	
00		12380	65			-5.0	В				Gsn		92Pr03	
$^{98}\text{Rb}^{m}(\beta^{-})^{98}\text{Sr}$		12710	120	12127	21	-4.9	C				Bwg		87Gr.A	
98 Sr(β^{-}) 98 Y		5730	40	5872	9	3.5	C				C		79Pe17	
		5821 5815	10			5.1	C				Gsn		84Bl.A	
$^{98}\text{Y}(\beta^{-})^{98}\text{Zr}$		3813 8974	40 100	8992	12	1.4 0.2	U U				Bwg		87Gr.A 79Pe17	*
I(p) LI		8780	30	0/74	12	7.1	C				Gsn		84Bl.A	*
		8840	55			2.8	C				Bwg		87Gr.A	
		8963	41			0.7	Ü				6		88Ma.A	
		8830	17			9.5	C				Bwg		92Gr.A	
							-				0			

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{98}Y^{m}(\beta^{-})^{98}Zr$	9780	200	9233	27	-2.7	0			Bwg		87Gr.A
1 (β) 21	9233	27	7233	21	2.7	2			Bwg		92Gr.A
98 Zr(β^{-}) 98 Nb	2300	200	2238	10	-0.3	Ü			Bwg		76He10
$^{98}\text{Nb}(\beta^{-})^{98}\text{Mo}$	4300	200	4591	5	1.5	U					66Gu05
110(p) 1110	4300	200	4371	3	1.5	U					67Hu07
	4800	200			-1.0	U					76He10
	4580	100			0.1	Ü			Bwg		78St02
⁹⁸ Mo(p,n) ⁹⁸ Tc	-2458	10	-2466	3	-0.8	1	11	11 ⁹⁸ Tc	ANL		74Co27
$^{98}\text{Tc}(\beta^{-})^{98}\text{Ru}$	1795	22	1793	7	-0.1	1	11	8 ⁹⁸ Ru	711112		73Ok.A
$^{98}\text{Rh}(\beta^+)^{98}\text{Ru}$	5120	100	5050	10	-0.7	U	11	o Ru			72Ba37
Kii(p) Ku	5151	50	3030	10	-2.0	U					94Ba06
⁹⁸ Ru(p,n) ⁹⁸ Rh	-5832	10			-2.0	2					70As08
$^{98}\text{Ag}(\beta^{+})^{98}\text{Pd}$	8420	150	8250	30	-1.1	U					79Ve.A
Ag(p) Tu	8200	70	0230	30	0.8	1	22	22 ⁹⁸ Ag			00Hu17
$^{98}\text{Cd}(\beta^+)^{98}\text{Ag}$	5330	140	5430	40	0.3	U	22	ZZ Ag			92Pl01
$^{98}\text{Cd}(\varepsilon)^{98}\text{Ag}$	5430	40	3430	40	0.7	2					92F101 01St.A
$*^{98}$ Rb $-^{85}$ Rb _{1.153}			7) un M A-	542177	1/2 4)1raX/		d for colu				
***KD=**KD _{1.153}	Original D_M =43						_				16Kl04 ×
*98Rb-85Rb _{1.153}	Original $M - A =$										16Kl04 >
* ⁹⁸ Rb-u	Original $M - A =$		o(5.5) correcte	ed for iso	m mixture	$e E_x = 80$	0(30) R= 0	.65(0.15)			16Kl04 ×
$*^{98}$ Rb m -u	Data re-analysis				_						16Kl04 >
$*^{98}$ Sr $-^{85}$ Rb _{1.153}	D_M =30397.3(4.3					l for e ⁻ l	oinding=-	-529eV			12Si10 >
$*^{98}$ Sr $-^{85}$ Rb _{1.153}	Former measure										16Kl04 >
* ⁹⁸ Rh-u	M - A = -83154				#50 keV						Nub16b >
$*^{98}Y(\beta^{-})^{98}Zr$	E_{β} = 4810(100)										Ens035 >
$*^{98}$ Tc(β^-) 98 Ru	E_{β} = 397(22) to										Ens035 >
$*^{98}$ Rh $(\beta^+)^{98}$ Ru	$E_{\beta^+} = 3450(100)$	to 2 ⁺ lev	el at 652.44 k	eV, and	others						Ens035 >
$*^{98}$ Rh $(\beta^+)^{98}$ Ru	$E_{\beta^+} = 3476(50) \text{ t}$	o 2 ⁺ leve	l at 652.44 ke	V							Ens035 >
$*^{98}$ Ag(β^+) 98 Pd	$Q_{\beta^+} = 6880(150)$	to 4 ⁺ lev	el at 1541.40	keV							Ens035 *
$^{99}\text{Rb}-^{85}\text{Rb}_{1.165}$	47885.1	4.8	47884	4	-0.2	2			MA8	1.0	13Ma81
	47880	10			0.4	2			TT1	1.0	16Kl04
99 Sr $-^{85}$ Rb _{1.165}	35663	21	35645	5	-0.8	o			TT1	1.0	12Si10
1.103	35644.5	7.0			0.1	1	53	53 ⁹⁹ Sr	TT1	1.0	16Kl04
⁹⁹ Zr-u	-83323	19	-83329	11	-0.3	1	35	35 ⁹⁹ Zr	JY0	1.0	04Ri12
$C_7 H_{15} - {}^{99}Ru$	211442.8	3.0	211445.2	0.4	0.3	U			M16	2.5	63Da10
$^{99}\text{Ag}-^{85}\text{Rb}_{1.165}$	20401.0	8.5	20411	7	1.1	2			SH1	1.0	07Ma92
115 1101.103	20427	11	20111	,	-1.5	2			MA8	1.0	11He10
$^{99}\text{Cd}-^{85}\text{Rb}_{1.165}$	27690.8	1.7			1.5	2			MA8	1.0	09Br09
99Pd-96Mo _{1.031}	10052.8	5.5	10054	5	0.1	1	94	94 ⁹⁹ Pd	JY1	1.0	09El08
$^{99}\text{Sr}-^{97}\text{Zr}_{1.021}$	23794.1	7.4	23793	5	-0.1	1	47	47 ⁹⁹ Sr	JY1	1.0	06Ha03
$^{99}Y - ^{97}Zr_{1.021}$	15066.8	7.4	23193	3	-0.1	2	47	47 31	JY1	1.0	07Ha32
$^{99}Zr^{-97}Zr_{1.021}$			7502	1.1	0.2		65	65 ⁹⁹ Zr	JY1		
99 Ru 98 Ru	7580	14	7583	11	0.2	1	65	05 ~ Zr		1.0	06Ha03
97D1 99D1 93D1	652	11	644	7	-0.3	U			M16	2.5	63Da10
97Rb-99Rb.653 93Rb.348	100	100	135	4	0.1	U			P21	2.5	82Au01
98 Rb $^{-99}$ Rb $_{.742}$ 95 Rb $_{.258}$	690	180	563	17	-0.3	U			P21	2.5	82Au01
⁹⁷ Rb- ⁹⁹ Rb _{.490} ⁹⁵ Rb _{.511}	350	60	201	11	-1.0	U			P31	2.5	86Au02
99 Ru(n, α) 96 Mo	6822	5	6815.9	0.4	-1.2	U					01Wa50
⁹⁶ Ru(¹⁶ O, ¹³ C) ⁹⁹ Pd	-11723	20	-11760	5	-1.8	U			BNL		82Th01
98 Mo(n, γ) 99 Mo	5927.7	1.	5925.44	0.15	-2.3	U					73De39
	5927	1			-1.6	U					74Er.A
	5924.6	0.6			1.4	U					76Ch02
	5923	2			1.2	U					77Ri04
	5925.42	0.15			0.2	1	100	99 ⁹⁹ Mo	MMn		91Is02
	5927.7	0.5			-4.5	C			Bdn		06Fi.A
⁹⁸ Mo(d,p) ⁹⁹ Mo	3687	20	3700.88	0.15	0.7	U			Pit		64Co11
* **											

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Maii	n infl.	Lab	F	Reference
⁹⁸ Mo(³ He,d) ⁹⁹ Tc		1010	20	1007.4	0.9	-0.1	U				McM		77Ch06
⁹⁹ Tc(p,d) ⁹⁸ Tc		-6740	5	-6742	3	-0.5	_				1410141		76S106
те(р,а) те		−6755	9	07.12	5	1.4	_				Bld		77Em02
	ave.	-6744	4			0.3	1	59	57	⁹⁸ Tc	Dia		average
99 Rb(β^{-}) 99 Sr	uve.	11340	120	11400	6	0.5	Ü	37	37	10	McG		84Ia.A
κυ(β) 51		10960	130	11400	O	3.4	Č				Bwg		87Gr.A
99 Sr(β^-) 99 Y		8030	80	8128	8	1.2	U				McG		84Ia.A
SI(p') 1		8360	75	0120	O	-3.1	C				Bwg		87Gr.A
$^{99}Y(\beta^{-})^{99}Zr$		7605	60	6971	12	-10.6	C				Bwg		87Gr.A
1(p) Zi		7568	14	07/1	12	-42.7	Č				Bwg		92Gr.A
99 Zr(β^{-}) 99 Nb		4550	35	4715	16	4.7	C				Bwg		87Gr.A
21(p) 110		4559	15	1713	10	10.4	Č				Bwg		92Gr.A
$^{99}\text{Nb}(\beta^{-})^{99}\text{Mo}$		3740	200	3635	12	-0.5	Ü				D 11 5		70Ei02
$^{99}\text{Mo}(\beta^{-})^{99}\text{Tc}$		1356.7	1.0	1357.8	0.9	1.1	1	79	78	⁹⁹ Tc			71Na01
$^{99}\text{Tc}(\beta^{-})^{99}\text{Ru}$		292	3	297.5	0.9	1.8	U	1)	70	10			51Ta05
rc(p) Ku		290	4	291.3	0.9	1.9	U						52Fe16
						2.0		22	20	⁹⁹ Tc			
99 Rh(β^{+}) 99 Ru		293.5	2.0	2044	7		1	22	20	10			80Al02
KII(p ·) · Ku		2038	10	2044	7	0.6	_						52Sc11 = 59To25 =
		2053 2170	10 30			$-0.9 \\ -4.2$	– В						
	0710	2046	30 7			-4.2 -0.2	ь 1	90	89	99Rh			
$^{99}\text{Pd}(\beta^+)^{99}\text{Rh}$	ave.			2200	0				11	99Rh			average 69Ph01
99 Ag(β^{+}) 99 Pd		3410	20	3399	8	-0.6	1	16	11	Kn			
99 Sr 85 Rb _{1.165}	0 : : 1	5430	150	5470	8	0.3	U						81Hu03
99NI (0=\99N		D_M =35661.6			5.3(4.1)Ke V	re-evaluat	ea						16Kl04 *:
99 Nb(β^{-}) 99 Mo		00(200) to 7/2											Ens112 *:
$*^{99}\text{Mo}(\beta^{-})^{99}\text{Tc}$		14(1) to 1/2 ⁻											Ens112 *:
$*^{99}\text{Tc}(\beta^{-})^{99}\text{Ru}$		4.8(2.6), 346.				round state	, 89.57 1	evel					Ens112 *:
$*^{99}$ Rh(β^+) 99 Ru		0(10) from ⁹⁹											Ens112 **
$*^{99}$ Rh $(\beta^+)^{99}$ Ru		30(10), 710(1											59To25 **
*	-	nd state, 321.											Ens112 *
$*^{99}$ Rh(β^+) 99 Ru		er than 2059.					ay						Ens112 *
$*^{99}$ Rh(eta^+) 99 Ru		posed that E_{β}											74An23 **
$*^{99}$ Rh $(\beta^+)^{99}$ Ru	$E_{\beta^+} = 110$	00(50), 680(3	0) and 540	(30) to 89.57	. 442.59 an								
$*^{99} Pd(\beta^+)^{99} Rh$				(==) -=	,	d 618.13 le	vels						Ens112 *:
	$E_{\beta^+} = 218$	80(20), 1930(,	d 618.13 le	vels						Ens112 ** 69Ph01 **
* '		30(20), 1930(7 7/2 ⁺ , 464.4	20), 1510(2	20) keV				te					
*			20), 1510(2	20) keV				te			MA8	1.0	69Ph01 **
* 100Rb-85Rb _{1.176}		7 7/2+, 464.4	20), 1510(2 (5/2,7/2) ⁺	20) keV			ound sta	te			MA8 TT1	1.0 1.0	69Ph01 ** Ens112 **
100Rb-85Rb _{1.176}		7 7/2 ⁺ , 464.4 54087	20), 1510(2 (5/2,7/2) ⁺ ,	20) keV , 874.5 5/2 ⁺ : 54087	levels abov	e (1/2 ⁻) gr	ound sta	te 41	41	¹⁰⁰ Sr			69Ph01 **: Ens112 *: 13Ma81 16Kl04
100Rb-85Rb _{1.176}		7 7/2 ⁺ , 464.4 54087 54150 39520	20), 1510(2 (5/2,7/2) ⁺ .	20) keV , 874.5 5/2 ⁺ 54087 39515	levels abov	-0.5 -0.4	ound star 2 U 1		41	¹⁰⁰ Sr	TT1 TT1	1.0 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u	to 200.7	54087 54150 39520 -72270	20), 1510(2 (5/2,7/2) ⁺ , 21 140	20) keV , 874.5 5/2 ⁺ : 54087	levels abov	e (1/2 ⁻) gr	ound star 2 U		41		TT1	1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A **:
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u	to 200.7	7 7/2 ⁺ , 464.4 54087 54150 39520 -72270 -72290	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140	20) keV , 874.5 5/2+ 1 54087 39515 -72279	21 8 12	-0.5 -0.4 0.0 0.0	ound star 2 U 1 o U	41			TT1 TT1 GT2 GT2	1.0 1.0 2.5 2.5	69Ph01 *: Ens112 *: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u	to 200.7	54087 54150 39520 -72270 -72290 -82016	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18	20) keV 874.5 5/2+ 54087 39515 -72279 -81995	21 8 12 9	-0.5 -0.4 0.0 0.0 1.2	2 U 1 o U 1		41	¹⁰⁰ Sr	TT1 TT1 GT2 GT2 JY0	1.0 1.0 2.5 2.5 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u	to 200.7	54087 54150 39520 -72270 -72290 -82016 11216	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27	20) keV , 874.5 5/2+ 1 54087 39515 -72279	21 8 12	-0.5 -0.4 0.0 0.0 1.2 -0.5	2 U 1 o U 1 U	41			TT1 TT1 GT2 GT2 JY0 MA8	1.0 1.0 2.5 2.5 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176}	to 200.7	54087 54150 39520 -72270 -72290 -82016 11216 11205.5	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4	20) keV 874.5 5/2+ 54087 39515 -72279 -81995 11203.2	21 8 12 9 0.3	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6	2 U 1 o U 1 U U	41 24	24	¹⁰⁰ Zr	TT1 TT1 GT2 GT2 JY0 MA8 JY1	1.0 1.0 2.5 2.5 1.0 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176} 100Mo-87Rb _{1.149}	to 200.7	54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4 0.57	20) keV . 874.5 5/2+ 54087 39515 -72279 -81995 11203.2 11819.6	21 8 12 9 0.3 0.3	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2	2 U 1 o U 1 U U U	41			TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1	1.0 1.0 2.5 2.5 1.0 1.0 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09
100 Rb $-^{85}$ Rb $_{1.176}$ 100 Sr $-^{85}$ Rb $_{1.176}$ 100 Y $-$ u 100 Zr $-$ u 100 Mo $-^{85}$ Rb $_{1.176}$ 100 Mo $-^{87}$ Rb $_{1.149}$ C7 H $_{16}$ $-^{100}$ Mo	to 200.7	54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4 0.57 4.2	20) keV . 874.5 5/2+ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5	21 8 12 9 0.3 0.3 0.3	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2	2 U 1 0 U 1 U U 1 U U	41 24 32	24	¹⁰⁰ Zr	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07
100 Rb $-^{85}$ Rb _{1.176} 100 Sr $-^{85}$ Rb _{1.176} 100 Y $-$ u 100 Zr $-$ u 100 Mo $-^{85}$ Rb _{1.176} 100 Mo $-^{87}$ Rb _{1.149} 100 Mo $^{-87}$ Rb _{1.149} 100 Mo $^{-80}$ Mo	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40	20) keV 874.5 5/2 ⁺ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0	21 8 12 9 0.3 0.3 0.3 0.3	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2	2 U 1 0 U 1 U U 1 U 1	41 24	24	¹⁰⁰ Zr	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0	69Ph01 **: Ens112 **: 13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176} 100Mo-87Rb _{1.149} C ₇ H ₁₆ -100Mo 100Mo-u C ₇ H ₁₆ -100Ru	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7	20) keV , 874.5 5/2 ⁺ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1	21 8 12 9 0.3 0.3 0.3 0.3 0.4	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7	2 U 1 o U 1 U U 1 U U	41 24 32 66	24 32 66	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10
100 Rb $-^{85}$ Rb _{1.176} 100 Sr $-^{85}$ Rb _{1.176} 100 Y $-$ u 100 Zr $-$ u 100 Mo $-^{85}$ Rb _{1.176} 100 Mo $-^{87}$ Rb _{1.149} C ₇ H ₁₆ $-^{100}$ Mo $-$ u C ₇ H ₁₆ $-^{100}$ Ru 100 Rh $-$ u	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855	20), 1510(2 (5/2,7/2) ⁺ , 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7	20) keV , 874.5 5/2 ⁺ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1 -91886	21 8 12 9 0.3 0.3 0.3 0.3 0.4	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7	2 U 1 0 U 1 U 1 U 1 U 1	41 24 32	24	¹⁰⁰ Zr	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176} 100Mo-87Rb _{1.149} C ₇ H ₁₆ -100Mo 100Mo-u C ₇ H ₁₆ -100Ru	to 200.7	54087 54087 54150 39520 -72270 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855 19849.9	20), 1510(2 (5/2,7/2)+1 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7 46 7.1	20) keV , 874.5 5/2 ⁺ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1	21 8 12 9 0.3 0.3 0.3 0.3 0.4	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7	2 U 1 0 U 1 U 1 U 1 U 1 2	41 24 32 66	24 32 66	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2 JY1	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0	13Ma81 16Kl04 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24 09El08
100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176} 100Mo-87Rb _{1.149} C ₇ H ₁₆ -100Mo 100Mo-u C ₇ H ₁₆ -100Ru 100Rh-u 100Ag-85Rb _{1.176}	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855 19849.9 19851.8	20), 1510(2 (5/2,7/2)+1 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7 46 7.1 8.2	20) keV , 874.5 5/2+ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1 -91886 19851	21 8 12 9 0.3 0.3 0.3 0.3 0.4 19 5	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7	2 U 1 0 U 1 U U 1 U 1 U 1 2 2 2	41 24 32 66	24 32 66	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2 JY1 MA8	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0 1.0	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24 09El08 11He10
100 Rb - 85 Rb _{1.176} 100 Sr - 85 Rb _{1.176} 100 Y - u 100 Zr - u 100 Mo - 85 Rb _{1.176} 100 Mo - 87 Rb _{1.149} C ₇ H ₁₆ - 100 Mo 100 Mo - u C ₇ H ₁₆ - 100 Ru 100 Rh - u 100 Ag - 85 Rb _{1.176}	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855 19849.9 19851.8 -79636	20), 1510(2 (5/2,7/2) ⁺ ; 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7 46 7.1 8.2 214	20) keV . 874.5 5/2+ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1 -91886 19851 -79651.2	21 8 12 9 0.3 0.3 0.3 0.3 0.4 19 5	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7 0.1 -0.1	2 U 1 0 U 1 U 1 U 1 U 1 2 2 U U	41 24 32 66 18	24 32 66 18	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo ¹⁰⁰ Rh	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2 JY1 MA8 CS1	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0 1.0	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24 09El08 11He10 96Ch32
100 Rb - 85 Rb _{1.176} 100 Sr - 85 Rb _{1.176} 100 Y - u 100 Zr - u 100 Mo - 85 Rb _{1.176} 100 Mo - 87 Rb _{1.149} C ₇ H ₁₆ - 100 Mo 100 Mo - u C ₇ H ₁₆ - 100 Ru 100 Rh - u 100 Ag - 85 Rb _{1.176} 100 Cd - u 100 Cd - u 100 Cd - 85 Rb _{1.176}	to 200.7	54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855 19849.9 19851.8 -79636 24084.1	20), 1510(2 (5/2,7/2)+1 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7 46 7.1 8.2 214 1.8	54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1 -91886 19851 -79651.2 24084.1	21 8 12 9 0.3 0.3 0.3 0.3 0.4 19 5	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7 0.1 -0.1 0.0	2 U 1 0 U 1 U 1 U 1 U 1 2 2 U 1	41 24 32 66 18	24 32 66 18	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo ¹⁰⁰ Rh	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2 JY1 MA8 CS1 MA8	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0 1.0 1.0 1.0	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24 09El08 11He10 96Ch32 09Br09
* 100Rb-85Rb _{1.176} 100Sr-85Rb _{1.176} 100Y-u 100Zr-u 100Mo-85Rb _{1.176} 100Mo-87Rb _{1.149} C ₇ H ₁₆ -100Mo 100Mo-u C ₇ H ₁₆ -100Ru 100Rh-u 100Ag-85Rb _{1.176}	to 200.7	54087 54087 54150 39520 -72270 -72290 -82016 11216 11205.5 11820.25 217730.3 -92532.51 220983.8 -91855 19849.9 19851.8 -79636	20), 1510(2 (5/2,7/2) ⁺ ; 21 140 12 110 140 18 27 1.4 0.57 4.2 0.40 3.7 46 7.1 8.2 214	20) keV . 874.5 5/2+ 54087 39515 -72279 -81995 11203.2 11819.6 217732.5 -92532.0 220990.1 -91886 19851 -79651.2	21 8 12 9 0.3 0.3 0.3 0.3 0.4 19 5	-0.5 -0.4 0.0 0.0 1.2 -0.5 -1.6 -1.2 0.2 1.2 0.7 -0.7 0.1 -0.1	2 U 1 0 U 1 U 1 U 1 U 1 2 2 U U	41 24 32 66 18	24 32 66 18	¹⁰⁰ Zr ¹⁰⁰ Mo ¹⁰⁰ Mo ¹⁰⁰ Rh	TT1 TT1 GT2 GT2 JY0 MA8 JY1 MS1 M15 MS1 M16 GS2 JY1 MA8 CS1	1.0 1.0 2.5 2.5 1.0 1.0 1.0 2.5 1.0 2.5 1.0 1.0	13Ma81 16Kl04 16Kl04 08Kn.A 08Su19 04Ri12 11He10 12Ka13 15Gu09 63Ri07 15Gu09 63Da10 05Li24 09El08 11He10 96Ch32

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input da		Adjusted Valu				Signf.	Main infl.	Lab	F	Reference
	Input va	arue	Adjusted	value	v_i	Dg	Sigiii.	Iviani iiii.	Lau	Г	Kelelelice
100 Sr $-^{97}$ Zr _{1.031}	27579	10	27583	8	0.4	1	59	59 ¹⁰⁰ Sr	JY1	1.0	06Ha03
$^{100}Y - ^{97}Zr_{1.021}$	19524	12				2			JY1	1.0	07Ha32
100 Y ^m $^{-97}$ Zr _{1 021}	19679	12				2			JY1	1.0	07Ha32
100 Zr $^{-97}$ Zr _{1 021}	9815	10	9808	9	-0.7	1	76	76^{-100} Zr	JY1	1.0	06Ha03
$^{100}\text{Nb}^m - ^{97}\text{Zr}_{1.031}$	6472.6	2.1				2			JY1	1.0	07Ha32
¹⁰⁰ Mo ³⁵ Cl- ⁹⁸ Mo ³⁷ Cl	5019	2	5014.5	0.4	-0.6	U			H11	4.0	63Bi12
$^{100}{\rm Nb} - ^{100}{\rm Nb}^{m}$	-335.7	8.3				3			JY1	1.0	07Ha32
100 Mo $^{-100}$ Ru	3257.55	0.18	3257.52	0.18	-0.1	1	99	97 ¹⁰⁰ Ru	JY1	1.0	08Ra09
100 Ru $^{-99}$ Ru	-1718	11	-1719.826	0.028	-0.1	U			M16	2.5	63Da10
96Ru(16O,12C)100Pd	-5599	26	-5605	18	-0.2	1	46	$46^{100} Pd$	BNL		82Th01
¹⁰⁰ Mo(d, ³ He) ⁹⁹ Nb	-5639	15	-5653	12	-0.9	2			Tex		74Bi08
100 Mo(t, α) 99 Nb	8642	20	8667	12	1.3	2			LAI		83F106
100 Mo(d,t) 99 Mo	-2038	20	-2037.0	0.4	0.0	Ū			Pit		64Co11
$^{99}\text{Tc}(n,\gamma)^{100}\text{Tc}$	6764.4	1.	2007.0	0	0.0	2			- 11		79Pi08
10(11,7)	6765.20	0.04	6764.4	1.0	-20.0	Č					04Fu.A
99 Ru(n, γ) 100 Ru	9673.2	0.7	9673.324	0.026	0.2	Ü					74Ri03
114(13,7)	9672.65	0.06	7072.02.	0.020	11.2	В			ILn		88Co18 Z
	9673.39	0.05			-1.3	_			MMn		91Is02 Z
	9673.30	0.03			0.8	_			ILn		00Ge01
	9673.41	0.19			-0.5	U			Bdn		06Fi.A
	ave. 9673.324	0.026			0.0	1	100	98 ⁹⁹ Ru			average
100 Sr(β^-) 100 Y	7460	140	7506	13	0.3	U		, ,	McG		84Ia.A *
51(6)	7075	100	,,,,,	10	4.3	Č			Bwg		87Gr.A
100 Y $(\beta^{-})^{100}$ Zr	7920	100	9050	14	11.3	Č			McG		84Ia.A *
1(p') 21	9310	70	7020		-3.7	Č			Bwg		87Gr.A
100 Zr(β^{-}) 100 Nb	3335	25	3420	11	3.4	Č			Bwg		87Gr.A
$^{100}{\rm Nb}(\beta^{-})^{100}{\rm Mo}$	6245	25	6396	8	6.0	C			Bwg		87Gr.A
$^{100}\text{Nb}^{m}(\beta^{-})^{100}\text{Mo}$	6745	75	6708.3	2.0	-0.5	Ü			Bwg		87Gr.A
100 Mo(t, 3 He) 100 Nb m	-6690	30	-6689.7	2.0	0.0	Ü			LAI		79Aj03
100 Rh(β^{+}) 100 Ru	3630	20	3636	18	0.3	1	82	$82^{100}Rh$			53Ma64
100 Ag(β^{+}) 100 Pd	7075	90	7075	18	0.0	U	~-				79Ve.A *
	7022	200			0.3	Ü					80Ha20 *
$^{100}\text{Cd}(\beta^+)^{100}\text{Ag}$	3890	70	3943	5	0.8	U					89Ry02
$100 \text{In}(\beta^+)^{100} \text{Cd}$	10900	930	9880	180	-1.1	U			Lvp		95Sz01 *
V	10080	230			-0.9	1	63	63^{-100} In			02Pl03
100 Sn $(\beta^+)^{100}$ In	7390	660	7030	240	-0.5	o			GSI		97Su06 *
4 /	7840	660			-1.2	0			GSI		02Fa13 *
	7030	240				2			GSI		12Hi07 *
$*^{100}Y-u$	M - A = -67245(93) k	eV for mix	ture gs+m at 1	144(16) ke	V						Nub16b **
$*^{100}Y-u$	M - A = -67264(119)										Nub16b **
*100Rh-u	M - A = -85508(29) k		-								Nub16b **
$*^{100}$ Ag $-^{85}$ Rb _{1.176}	D_M =19858.2(5.2) μu		-		-A = -78	131.0(4.	9) keV				Nub16b **
$*^{100}$ Ag $-^{85}$ Rb _{1.176}	D_M =19860.2(6.6) μu		•								Nub16b **
$*^{100}$ Sr(β^-) 100 Y	E_{β} = 7450(140) assu		_								Ens082 **
$*^{100}Y(\beta^{-})^{100}Zr$	Not unambiguously g										GAu **
$*^{100}$ Ag(β^{+}) ¹⁰⁰ Pd	From 5 ⁺ ground state			20.4 keV							79Ve.A **
$*^{100}$ Ag(β^+) 100 Pd	E_{β^+} =5350(200) from				565.50 ke	v					Ens082 **
$*^{100}$ In(β^+) ¹⁰⁰ Cd	From lower and uppe					*					GAu **
$*^{100}\text{Sn}(\beta^+)^{100}\text{In}$	Q_{β^+} =7200(+800–500			-300) keV							97Su06 **
$*^{100}$ Sn(β^+) 100 In	$E_{\beta^+} = 3800(+700-300)$, ,							96Ki23 **
$*^{100}\text{Sn}(\beta^+)^{100}\text{In}$	$E_{\beta^+} = 3800(4700 - 300)$ $E_{\beta^+} = 3290(200)$ to 1			<80 keV							12Hi07 **
SII(p) III	Lβ+-3270(200) t0 1	icvei at 2	121TA, WILLIA	∠OU KE V							121110/ **
$^{101}\mathrm{Sr}-^{85}\mathrm{Rb}_{1.188}$	45410	22	45400	9	-0.5	2			MA8	1.0	16De.A
	45398	10			0.2	2			TT1	1.0	16Kl04
101 Zr $-$ u	-78573	20	-78547	9	1.3	1	20	20^{-101} Zr	JY0	1.0	04Ri12

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	ce_
C II 101 B	100510.5	2.2	122552 1	0.4	0.5	**			1/1/	2.5	(25, 10	
C ₈ H ₅ - ¹⁰¹ Ru	133549.5	2.2	133552.1	0.4	0.5	U			M16	2.5	63Da10	
¹⁰¹ Rh-u ¹⁰¹ Pd-u	-93821	58	-93841	6	-0.3	U			GS2	1.0	05Li24	>
101 Pd—u	-91816	30	-91715	5	3.4	C			GS2	1.0	05Li24	
$^{101} Ag - ^{85} Rb_{1.188}$	17470.5	7.2	17478	5	1.0	2			SH1	1.0	07Ma92	
101 c. 1 . 85 p. 1	17485.6	7.5	22200.0	1.6	-1.0	2			MA8	1.0	11He10	
$^{101}\text{Cd} - ^{85}\text{Rb}_{1.188}$	23367	11	23380.0	1.6	1.2	U			SH1	1.0	07Ma92	
101p. 963.	23380.0	1.6	0565	_	0.1	2	0.2	02 101 p.1	MA8	1.0	09Br09	
$^{101}\text{Pd} - ^{96}\text{Mo}_{1.052}$	8567.4	5.1	8567	5	-0.1	1	93	93 ¹⁰¹ Pd	JY1	1.0	09El08	
¹⁰¹ Cd- ⁹⁶ Mo _{1.052}	18872.7	5.5	18868.4	1.6	-0.8	U			JY1	1.0	09E108	
$^{101}Y - ^{97}Zr_{1.041}$	22847.5	7.6				2		aa 101—	JY1	1.0	07Ha32	
101 Zr $^{-97}$ Zr _{1.041}	14153	10	14146	9	-0.7	1	80	80^{-101} Zr	JY1	1.0	06Ha03	
¹⁰¹ Nb- ¹⁰² Ru _{.990}	10009.6	4.0				2			JY1	1.0	07Ha32	
101 Ru $^{-100}$ Ru	1368	11	1362.62	0.25	-0.2	U			M16	2.5	63Da10	
$^{100}{ m Mo}({ m n},\gamma)^{101}{ m Mo}$	5398.4	0.5	5398.24	0.07	-0.3	U			ILn		75Ka.A	
	5399.6	0.7			-1.9	U			ORn		79We07	
	5398.23				0.1	2			ILn		90Se17	7
100	5398.27				-0.2	2			Bdn		06Fi.A	
100 Mo(d,p) 101 Mo	3161	6	3173.68	0.07	2.1	U					72Si25	
100 Ru(n, γ) 101 Ru	6802.0	0.7	6802.04	0.24	0.1	_					82Ba69	
100	6802.04				0.0	_			Bdn		06Fi.A	
¹⁰⁰ Ru(d,p) ¹⁰¹ Ru	4581	4	4577.48	0.24	-0.9	U		101			77Ho02	
100 Ru(n, γ) 101 Ru	ave. 6802.04		6802.04	0.24	0.0	1	100	99 ¹⁰¹ Ru			average	
101 Sn $(\varepsilon p)^{100}$ Cd	6600	300				2					10St.A	
101 Rb $(\beta^{-})^{101}$ Sr	11810	110	12480#	200#	6.1	D			Bwg		92Ba28	*
$^{101}\text{Sr}(\beta^{-})^{101}\text{Y}$	9505	80	9736	11	2.9	В			Bwg		92Ba28	
101 Y(β^{-}) 101 Zr	8545	90	8105	11	-4.9	В			Bwg		92Ba28	
101 Zr(β^{-}) 101 Nb	5520	45	5726	9	4.6	В			Bwg		87Gr18	
404	5485	25			9.6	C			Bwg		92Gr.A	
$^{101}{ m Nb}(eta^-)^{101}{ m Mo}$	4575	30	4628	4	1.8	U			Bwg		87Gr.A	
	4590	30			1.3	U			Bwg		87Gr18	
	4569	18			3.3	C			Bwg		92Gr.A	
101 Mo(β^{-}) 101 Tc	2836	40	2825	24	-0.3	R					570k.A	*
$^{101}\text{Tc}(\beta^{-})^{101}\text{Ru}$	1620	30	1614	24	-0.2	2		404			71Ar23	*
$^{101}\text{Pd}(\beta^+)^{101}\text{Rh}$	1980	4	1980	4	0.1	1	95	$88^{101}Rh$			71Ib01	*
101 Ag(β^+) 101 Pd	4100	200	4098	7	0.0	U					72We.A	
	4350	200			-1.3	U					78Ha11	
101	4180	150			-0.5	U					79Ve.A	*
$^{101}\text{Cd}(\beta^+)^{101}\text{Ag}$	5530	130	5498	5	-0.2	U					70Be.A	k
404	5350	200			0.7	U					72We.A	
* ¹⁰¹ Rh-u	M - A = -87315(29) 1										Nub16b	**
$*^{101}$ Rb(β^-) 101 Sr	Trends from Mass S				bound						GAu	**
$*^{101}\text{Mo}(\beta^{-})^{101}\text{Tc}$	E_{β} = 2230(40) to (1/										Ens06a	
$*^{101}$ Tc(β^-) ¹⁰¹ Ru	E_{β} = 1320(30) to 30			to 545.115	5 7/2 ⁺ lev	els					Ens06a	
$*^{101}$ Pd(β^+) 101 Rh	$E_{\beta^+} = 776(4)$ to $7/2^+$	level at 181	1.78 keV								Ens06a	**
$*^{101}$ Ag(β^+) 101 Pd	$E_{\beta}^{'} = 2895(150)$ to 7	/2 ⁺ level at	261.0 keV, an	d others							Ens06a	**
$*^{101}\text{Cd}(\beta^+)^{101}\text{Ag}$	Measured E_{β^+} may										70Be.A	**
¹⁰² Sr- ⁸⁵ Rb _{1.200}	49857	72				2			MA8	1.0	16De.A	
$^{102}Y - ^{120}Sn_{.850}$	17456.3	4.3				2			JY1	1.0	11Ha48	×
102 Zr $-u$	-76780	43	-76853	9	-1.7	U			JY0	1.0	04Ri12	
$C_8 H_6 - {}^{102}Ru$	142604.8	3.2	142609.9	0.4	0.6	Ü			M16	2.5	63Da10	
102	141324	19	141318.1	0.6	-0.1	Ü			M16	2.5	63Da10	
$C_8 H_6 - {}^{102}Pd$			1.1010.1	5.0	J. 1	_			1.110		0020110	
$C_8 H_6 - ^{102}Pd$	141346	18			-1.0	U			R12	1.5	83De51	
$C_8 H_6 - {}^{102}Pd$ $C_7 N H_4 - {}^{102}Pd$	141346 128775	18 19	128742.1	0.6	$-1.0 \\ -1.2$	U U			R12 R12	1.5 1.5	83De51 83De51	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

¹⁰² Ag-u -88315 30 -88295 9 0.7 U	Main infl.	Lab	F	Reference
102 Ag-u -88315 30 -88295 9 0.7 U				
		GS2	1.0	05Li24 *
¹⁰² Cd ⁻⁸⁵ Rb _{1,200} 20320.9 7.3 20334.1 1.8 1.8 U		SH1	1.0	07Ma92
20334.2 1.9 0.0 1 88	88 ¹⁰² Cd	MA8	1.0	09Br09
102 In $^{-85}$ Rb _{1.200} 29959 13 29958 5 -0.1 1 14	14 ¹⁰² In	SH1	1.0	07Ma92
$^{102}\text{Cd}^{-96}\text{Mo}_{1.063}$ 15811.9 5.2 15812.5 1.8 0.1 1 12	12 ¹⁰² Cd	JY1	1.0	09El08
102 In $^{-96}$ Mov occ 25436.5 5.3 25437 5 0.0 1 86	86 ¹⁰² In	JY1	1.0	09E108
102 Zr $^{-97}$ Zr $_{1.052}$ $^{16822.0}$ $^{9.8}$ 16820 9 $^{-0.2}$ 1 92	92^{-102} Zr	JY1	1.0	06Ha03
$^{102}\text{Nb} - ^{97}\text{Zr}_{1.052}$ $^{10622.0}$ $^{9.0}$ $^{10622.0}$ 99	99 ¹⁰² Nb		1.0	07Ha32
$^{102}\text{Mo} - ^{97}\text{Zr}_{1.052}$ 3961.0 9.8 3961 9 0.0 1 83	83 ¹⁰² Mo		1.0	06Ha03
$^{102}\text{Nb}^m - ^{102}\text{Nb}$ 100.2 7.9 101 8 0.1 1 95	94 ¹⁰² Nb ⁴		1.0	07Ha32
100.22 7.5 101 0 0.1 1 25 102Pd-102Ru 1291.76 0.39 1291.8 0.4 0.0 1 100	100 ¹⁰² Pd	SH1	1.0	11Go23
102 Ru -101 Ru -1233 11 -1232.78 0.05 0.0 U	100 1 0	M16	2.5	63Da10
100 Mo(t,p) 102 Mo 102 Mo 100 Mo 100	17 ¹⁰² Mo	LAl	2.3	72Ca10
$^{100}\text{Mo}(^3\text{He,p})^{102}\text{Tc}$ $^{100}\text{Mo}(^3\text{He,p})^{102}$	$\frac{17}{21}$ $\frac{102}{102}$ Tc	Pri		82De03
¹⁰² Pd(p,t) ¹⁰⁰ Pd	54 ¹⁰⁰ Pd	Win		74De31 *
101 Ru(n, γ) 102 Ru 9220.4 0.9 9219.64 0.05 -0.8 U	34 Fu	VV 111		74De31 * 74Ri03
	99 ¹⁰² Ru	MMn		91Is02 Z
9219.64 0.05 0.0 1 100 9219.63 0.19 0.1 U	99 KU	Bdn		911802 Z 06Fi.A
102 101				
		Lvp		91Re.A * 92Ba28
Y '		Bwg		
	8 ¹⁰² Zr	Bwg		92Ba28
	8 102Zr	Bwg		87Gr18
4 /		Bwg		87Gr.A
7335 40 -1.8 U $^{102}\text{Nb}^m(\beta^-)^{102}\text{Mo}$ 7215 40 7356 11 3.5 C		Bwg		87Gr18
4 /		Bwg		87Gr.A
		Bwg		87Gr18
4 /				69Bl16
				61Hi06 63Bo17
				83Do11
				61Hi06
				67Ch05
5966 100 -3.1 B 4910 140 5.3 C				67Ch05 * 70Be.A *
4910 140 5.3 C 5350 200 1.5 U				70Be.A * 72We.A
5880 110 -2.0 U				72 We.A 79 Ve.A
$^{102}\text{Cd}(\beta^+)^{102}\text{Ag}$ 2554 57 2587 8 0.6 U				72We.A
2587 8 0.0 C		GSI		
$^{102}\text{In}(\beta^{+})^{102}\text{Cd}$ 9250 380 8965 5 -0.8 U		Lvp		91Ke08 * 95Sz01 *
8970 150 0.0 U		GSI		98Ka.A
8910 170 0.3 U		GSI		03Gi06 *
102		GSI		03G100 *
$^{102}\text{Sn}(\beta^+)^{102}\text{In}$ 5780 70 5760 100 -0.3 o 5760 100		GSI		02Fa13
$*^{102}Y^{-120}Sn_{.850}$ Associated with low-spin isomer		051		11Ha48 **
$^{+102}$ Ag-u $M-A=-82260(28)$ keV for mixture gs+m at 9.40 keV				Nub16b **
* $^{102}\text{Pd}(\text{p,t})^{100}\text{Pd}$ Original error 12; added systematic error 21 keV				G 1
* Fulp (i) Full Original circle 12, added systematic circle 21 keV * 102 In(ε p) 101 Ag Estimated using proton spectrum from 1450 to 3200 keV				~ .
$E_{\beta^+} = 3340(100)$, 3070(130) from $E_{\beta^+} = 3340(100)$, 3070(130) $E_{\beta^+} = 3340(100)$, 3070(130) from $E_{\beta^+} = 3340(100)$, 3070(130) $E_{\beta^+} = 3340(100)$, 3070(130) from $E_{\beta^+} = 3340(100)$				GAu ** Ens098 **
E_{β} = 5340(100), 5070(130) from Ag at 9.40 to 1334.46, 2017.8 levels Q_{β} = 4920(100) from 102 Ag at 9.40 keV				
				Nub16b **
$k^{102}\text{Cd}(\beta^+)^{102}\text{Ag}$ $E_{\beta^+}=1075(8) \text{ to } 1^+ \text{ level at } 490.44 \text{ keV}$				Ens098 **
* 102 In(β^+) 102 Cd From 9900 keV upper and 8600 keV lower limits				GAu **
* 102 In(β^+) 102 Cd Good agreement with authors' earlier measurement, average=8950(120) keV				03Gi06 **
			1.5	0434 4
103 Y-u -63060 183 -62757 12 1.1 o		GT1	1.5	04Ma.A
$^{103}\mathrm{Y}-\mathrm{u}$ -63060 183 -62757 12 1.1 o -62803 106 0.2 U $^{103}\mathrm{Y}-^{120}\mathrm{Sn}_{.858}$ 21154 12 2		GT1 GT2 JY1	2.5 1.0	04Ma.A 08Kn.A 11Ha48

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	· compar	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁰³ Zr-u		-72765	64	-72803	10	-0.6	U			JY0	1.0	04Ri12
$C_8 H_7 - ^{103}Rh$		149263.5	3.3	149281.2	2.5	2.1	U			M16	2.5	63Da10
0 /		149261	19			0.7	U			R12	1.5	83De51
C ₇ N H ₅ -103Rh		136681	18	136705.1	2.5	0.9	U			R12	1.5	83De51
103 Pd $-u$		-93894.8	14.5	-93889.2	1.0	0.4	U			GS4	1.0	14Ya.A
¹⁰³ Ag-u		-91091	52	-91039	4	1.0	Ü			GS2	1.0	05Li24 *
103 Ag $^{-85}$ Rb _{1.212}		15875	14	15871	4	-0.3	Ü			SH1	1.0	07Ma92
		15871.4	4.4		•		2			MA8	1.0	11He10
$^{103}\text{Cd} - ^{85}\text{Rb}_{1.212}$		20328	11	20327.8	1.9	0.0	Ū			SH1	1.0	07Ma92
Cu 101.212		20328.2	2.1	20327.0	1.,	-0.2	1	86	86 ¹⁰³ Cd	MA8	1.0	09Br09
103 In $-^{85}$ Rb $_{1.212}$		26785	11	26789	10	0.4	1	88	88 ¹⁰³ In	SH1	1.0	07Ma92
$^{103}\text{Cd} - ^{96}\text{Mo}_{1.073}$		15699.2	5.2	15700.9	1.9	0.3	1	14	14 ¹⁰³ Cd	JY1	1.0	07Ma92 09El08
$^{103}Zr^{-97}Zr_{1.062}$		21760.5	9.9	13700.7	1.7	0.5	2	14	14 Cu	JY1	1.0	06Ha03
$^{103}\text{Mo} - ^{97}\text{Zr}_{1.062}$		7648.4	9.9				2			JY1		06Ha03
$^{103}\text{Nb} - ^{102}\text{Ru}_{1.010}$											1.0	
¹⁰³ Cd- ¹⁰² Cd		16069.7	4.2	1064.0	2.6	2.0	2			JY1	1.0	07Ha32
		-1534	154	-1064.9	2.6	2.0	U	4.0	40 10154	CR2	1.5	92Sh.A *
103 Rh(p,t) 101 Rh		-8275	17	-8280	6	-0.3	1	13	12 ¹⁰¹ Rh	Pri		64Th05
102 Ru(n, γ) 103 Ru		6232.2	0.3	6232.05	0.15	-0.5	-					82Ba69 Z
102 102		6232.00	0.17			0.3	_			Bdn		06Fi.A
¹⁰² Ru(d,p) ¹⁰³ Ru		4005	15	4007.49	0.15	0.2	U		400	ANL		71Fo01
102 Ru $(n,\gamma)^{103}$ Ru	ave.	6232.05	0.15	6232.05	0.15	0.0	1	100	99 ¹⁰³ Ru			average
103 Rh $(\gamma,n)^{102}$ Rh		-9307	32	-9320	7	-0.4	U			Phi		60Ge01
103 Rh(p,d) 102 Rh		-7144	16	-7095	7	3.1	В			Pri		64Th05
102 Pd(n, γ) 103 Pd		7624.6	1.5	7625.3	0.8	0.5	2					70Bo29
		7625.6	0.9			-0.3	2			Bdn		06Fi.A
103 Zr(β^-) 103 Nb		6945	85	7213	10	3.2	В			Bwg		87Gr18
$^{103}\text{Nb}(\beta^{-})^{103}\text{Mo}$		5535	35	5932	10	11.3	C			Bwg		87Gr.A
• /		5530	30			13.4	В			Bwg		87Gr18
103 Mo(β^{-}) 103 Tc		3750	60	3643	13	-1.8	U			Bwg		87Gr18
$^{103}\text{Tc}(\vec{\beta}^-)^{103}\text{Ru}$		2615	45	2663	10	1.1	U			Bwg		87Gr.A
103 Ru(β^{-}) 103 Rh		764	4	764.5	2.3	0.1	_					58Ro09 *
· (J.)		760	6			0.8	_					65Mu09 *
		762	5			0.5	_					70Pe04 *
		769	4			-1.1	_					82Oh04
	ave.	764.6	2.3			0.0	1	98	98 ¹⁰³ Rh			average
$^{103}\mathrm{Pd}(\varepsilon)^{103}\mathrm{Rh}$		564	20	574.5	2.4	0.5	U					54Ri09 *
		543.0	0.8			39.4	В					86Be53
103 Ag(β^+) 103 Pd		2580	100	2654	4	0.7	U					62Pa05 *
11g(p) 1 d		2700	100	2031	•	-0.5	Ü					66Ja12
		2320	50			6.7	В					69Ba02
		2622	34			1.0	U			Dlf		88Bo28 *
$^{103}\text{Cd}(\beta^+)^{103}\text{Ag}$		4200	130	4151	4	-0.4	U			DII		70Be.A
Cu(p) Hg		4250	200	4131	7	-0.5	U					70Be.A 72We.A
		4131	23			0.9	U			Dlf		88Bo28 *
103 In(β^+) 103 Cd		5380	200	6019	10	3.2	В			Brk		83Wo04
$m(p^*)$ Cu				0019	10			12	12 ¹⁰³ In	Dlf		
		6050	28			-1.1	1	12	12 111	DII		88Bo28 *
103 Sn $(\beta^+)^{103}$ In		6040	60	7660	70	-0.3	U			CCI		98Ka42
$\sin(p^+)^{\cos}$ in		7500	600	7660	70	0.3	0			GSI		04Mu32
103 .	14.4	7660	70		104 451	• •	2			GSI		05Ka34 *
* ¹⁰³ Ag-u	M - A=-	-84 /84(29) Ke	ev for mix	ture gs+m at 1	134.45 Ke	V						Nub16b **
* ¹⁰³ Cd- ¹⁰² Cd		$Cd/^{103}Cd=0$.										AHW **
$*^{103}$ Ru(β^-) ¹⁰³ Rh	$E_{\beta} = 227$	$/(4)$ to $5/2^{+}$ l	evel at 536	6.840 keV, and	other E_{β}	-						Ens09a **
$*^{103}$ Ru(β^-) ¹⁰³ Rh	$E_{\beta} = 112$	$2(6)$ to $5/2^+$ 1	evel at 650	0.064 keV, and	other $E_{oldsymbol{eta}}$	-						Ens09a **
$*^{103}$ Ru(β^-) 103 Rh	$E_{\beta} = 225$	$5(5)$ to $5/2^+$ 1	evel at 536	6.840 keV, and	other E_{β}	=						Ens09a **
$*^{103}$ Pd $(\varepsilon)^{103}$ Rh	IBE=500	$0(20)$ to 103 Rh	$n^m 7/2^+$ at	39.753 keV	,							Nub16b **
$*^{103}$ Ag(β^+) ¹⁰³ Pd				266.861 keV,	and other	r $E_{oldsymbol{eta}^+}$						Ens09a **
$*^{103}$ Ag(β^+) 103 Pd				error 20 keV			or					GAu **
$*^{103}Cd(\beta^+)^{103}Ag$				error 20 keV								GAu **
$*^{103}$ In(β^+) ¹⁰³ Cd				error 20 keV e								Ens09a **
$*^{103}\text{Sn}(\beta^+)^{103}\text{In}$		7640(70) rec		2.1.01 20 Re V C	Jamaica	oj crandat						05Ka34 **
~ Sn(ρ) III	Original	7040(70) 160	anorated									03IXa34 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input vata a	•	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	-
	mput ,		Tajastea	rarae	- 1	28	Dig.iii	.,	2.00			-
104 Zr $-$ u	-70661	54	-70558	10	1.9	U			JY0	1.0	04Ri12	
104 Nb $-u$	-77470	140	-77100.9	2.9	1.1	U			GT2	2.5	08Kn.A *	*
$C_8 H_8 - ^{104}Ru$	157171.5	3.4	157174.9	2.7	0.4	1	10	10 ¹⁰⁴ Ru	M16	2.5	63Da10	
$C_8 H_8 - {}^{104}Pd$	158612	10	158569.9	1.4	-1.7	U			M16	2.5	63Da10	
	158599	12			-1.6	U			R12	1.5	83De51	
$C_7 N H_6 - {}^{104}Pd$	146013	8	145993.8	1.4	-1.6	U			R12	1.5	83De51	
C_6^{13} C N $H_5 - ^{104}$ Pd	141552	20	141523.6	1.4	-0.9	U			R12	1.5	83De51	
104 Pd $-u$	-95938	30	-95969.6	1.4	-1.1	U			GS2	1.0	05Li24	
104 Ag $-$ u	-91410	30	-91376	5	1.1	U			GS2	1.0	05Li24 *	*
104 Cd $-u$	-90147	30	-90143.8	1.8	0.1	U			GS2	1.0	05Li24	
$^{104}\text{Cd}-^{85}\text{Rb}_{1.224}$	17813.7	5.5	17825.6	1.8	2.2	U			SH1	1.0	07Ma92	
	17825.5	1.9			0.0	1	89	89 ¹⁰⁴ Cd	MA8	1.0	09Br09	
$^{104}In-^{85}Rb_{1.224}$	26183.9	6.2				2			SH1	1.0	07Ma92	
404	26140.3	29.6	26184	6	1.5	U		404	JY1	1.0	09El08 ×	*
104 Sn $-^{87}$ Rb _{1.195}	31636.9	6.4	31634	6	-0.4	1	93	93 ¹⁰⁴ Sn	JY1	1.0	09El07	
$^{104}\text{Cd} - ^{96}\text{Mo}_{1.083}$	13094.2	5.5	13093.4	1.8	-0.1	1	11	11 ¹⁰⁴ Cd	JY1	1.0	09El08	
104 Zr $^{-97}$ Zr _{1.072}	24896	10				2			JY1	1.0	06Ha03	
$^{104}\text{Nb} - ^{97}\text{Zr}_{1.072}$	18352.8	2.9				2		104	JY1	1.0	07Ha32 ×	*
104 Mo $^{-97}$ Zr _{1.072}	9194.0	9.7	9194	10	0.0	1	97	97 ¹⁰⁴ Mo	JY1	1.0	06Ha03	
104 In $^{-103}$ In	-1241	231	-1664	12	-1.2	U			CR2	1.5	91Sh19 *	*
$^{104}\text{Pd} - ^{102}\text{Pd}$	-1617	30	-1601.7	1.5	0.3	U		102	R12	1.5	83De51	
104 Ru(d, α) 102 Tc	7180	10	7188	9	0.8	1	80	79 ¹⁰² Tc	Pri		82De03	
102 Ru(t,p) 104 Ru	6648	30	6650.1	2.5	0.1	U			LAl		72Ca10	
104 Ru(d, 3 He) 103 Tc	-5289	10	-5287	9	0.2	2			VUn		83De20	
104 Ru(t, α) 103 Tc	9048	30	9033	9	-0.5	2		104-	LAl		81F102	
104 Ru(d,t) 103 Ru $^{-148}$ Gd() 147 Gd	85	3	83.8	2.4	-0.4	1	65	58 ¹⁰⁴ Ru	Jul		86Ru04 ×	
103 Rh $(n,\gamma)^{104}$ Rh	6998.96		6998.96	0.08	0.0	2			MMn		81Ke03 Z	۷.
10351 (1) 10451	6998.95		1551.00	0.00	0.0	2			Bdn		06Fi.A	
103 Rh(d,p) 104 Rh 104 Pd(d,t) 103 Pd	4786	10	4774.39	0.08	-1.2	U			MIT		64Sp12	
104Pd(d,t)103Pd	-3762	25	-3752.0	1.6	0.4	U			Pit		64Co11	
¹⁰⁴ Sb(p) ¹⁰³ Sn ¹⁰⁴ Nb ^m (IT) ¹⁰⁴ Nb	510	100				3			ъ		94Pa12 *	
	215	120	0521	0	4.7	3			Bwg		87Gr18 ×	k
$^{104}{ m Nb}(eta^-)^{104}{ m Mo}$ $^{104}{ m Nb}^m(eta^-)^{104}{ m Mo}$	8105	90	8531	9	4.7	В			Bwg		87Gr18	
$^{104}\text{Mo}(\beta^-)^{104}\text{Tc}$	8320	80	8750	120	5.3	В			Bwg		87Gr18 ×	k
10 Mo(p)10 1c	4800	200	2153	24	-13.2	В			D		64Te02	
	2155 2160	40			$0.0 \\ -0.2$	-			Bwg		87Gr18 94Jo.A	
		40 28			-0.2 -0.1	- 1	73	70 ¹⁰⁴ Tc	Jyv			
$^{104}{ m Tc}(eta^-)^{104}{ m Ru}$	ave. 2158 5620	70	5592	25	-0.1 -0.4	_	13	70 10			average 78Su03	
re(β) Ru	5590	60	3392	23	0.0	_			Bwg		87Gr18	
	ave. 5600	50			-0.2	1	30	30 ¹⁰⁴ Tc	Dwg		average	
104 Rh(β^-) 104 Pd	2440	30	2435.8	2.7	-0.1	Ü	30	30 10			55Bu.A	
$^{104}\text{Ag}(\beta^+)^{104}\text{Pd}$	4276	15	4279	4	0.2	U					60Nu02 ×	*
115(p) 14	4350	200	1277	•	-0.4	U					72We.A	
	4306	31			-0.9	Ü			Dlf		88Bo28 ×	*
$^{104}\text{Pd}(p,n)^{104}\text{Ag}$	-5061	4			0.7	3			2		79De44	
$^{104}\text{Cd}(\beta^+)^{104}\text{Ag}$	1587	60	1148	5	-7.3	В					70Mu17 ×	*
	1403	26			-9.8	В			GSI		79Pl06 ×	
104 In(β^+) 104 Cd	7100	200	7786	6	3.4	В					78Hu06 *	
V	7260	250			2.1	U			Brk		83Wo04 *	
	7800	250			-0.1	U			Dlf		88Bo28	
	7890	120			-0.9	U			Dlf		90Re08	
	7880	100			-0.9	U			GSI		98Ka.A	
104 Sn $(\beta^+)^{104}$ In	4550	300	4556	8	0.0	U					88Ba10 ×	*
·	4515	60			0.7	U			GSI		91Ke11	
$*^{104}$ Nb $-u$	D_M =-77350(100)	μu for mi	xture gs+m a	t 220(120	(M-A)	=-7205	1(93) keV				Nub16b **	*
$*^{104}$ Ag $-$ u	M - A = -85144(28)) keV for	mixture gs+n	n at 6.90	keV						Nub16b **	*
$*^{104}In^{-85}Rb_{1,224}$	D_M =26190.5(5.5)	μu for mi	xture gs+m a	t 93.48 k	eV; M-A	4=-761	76.5(5.1) k	æV			Nub16b **	*
$*^{104}$ Nb $-^{97}$ Zr _{1.072}	Only long-lived st										07Ri01 **	*
$*^{104}In^{-103}In$	From ¹⁰³ In/ ¹⁰⁴ In=										AHW **	
$*^{104}$ Ru(d,t) 103 Ru $-^{148}$ Gd() 147 Gd	$Q = 82(3)$ to $5/2^+$										Ens09a **	
$*^{104}$ Sb(p) 103 Sn	Below 550 keV; va	alue and e	rror estimated	l by evalı	ıator						94Pa12 **	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

1.00 1.00		Compart							=	OI lable on		F		
Jaba Nay (3) – Jim Nay **Jaba Nay (3) — Better use the difference of the two Q_g - SJaba $A_g(g) + Jim Jab = 100 + Jim Jaba (2) + Jim $	Item		input Va	nue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	Г	Keieren	
Jaba Nay (3) – Jim Nay **Jaba Nay (3) — Better use the difference of the two Q_g - SJaba $A_g(g) + Jim Jab = 100 + Jim Jaba (2) + Jim $	$*^{104}\text{Nb}^{m}(\text{IT})^{104}\text{Nb}$	From d	ifference in C	O_{R-}									GAu	**
	\ /				e two O_{R-} 's									
100 100	$*^{104}$ Ag(β^+) 104 Pd					evel at 5	55.81 keV							**
** and E_g : =2729(24) from 104 Ag at 6.90 to 2^+ livel at 1555.81 keV . *** plus systematic error 20 keV estimated by evaluator . *** plus systematic error 2005) respectively, to 1+ level at 190.6 keV; recalculated E_g *** *** plus systematic error 2005) respectively, to 1+ level at 190.6 keV; recalculated E_g *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005) respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic error 2005 respectively, to 1+ level at 1492.1 keV . *** plus systematic er													Ens079	**
plus systematic error 20 keV estimated by evaluated public						2 ⁺ leve	el at 555.81	keV						
	*													
$μ^{101} MeB^{+} y^{104} Cd$ $μ^{108} Sn(B^{+} y^{104} Cd)$ $p^{+} = 0.71(0.07) to 11.39 25 level$ $e^{-108} Sn(B^{+} y^{104} Cd)$ $p^{+} = 0.71(0.07) to 11.39 25 level$ $e^{-108} Sn(B^{+} y^{104} Cd)$ $p^{+} = 0.71(0.07) to 11.39 25 level$ $e^{-108} Sn(B^{+} y^{104} Cd)$ $p^{+} = 0.71(0.07) to 11.39 25 level$ $e^{-108} Sn(B^{+} y^{104} Cd)$ $p^{+} = 0.71(0.07) to 11.39 25 level$ $e^{-108} Sn(B^{+} y^{104} Cd)$ $e^{-108} Sn(B^{+} y^{104} Cd$	$*^{104}Cd(\beta^+)^{104}Ag$							0.6 keV	; recalcula	ted E_{β^+}			Ens079	**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										r			Ens079	**
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$*^{104}$ Sn(β^+) 104 In												Ens079	**
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{105}Y-u$							2					16Kn03	}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	105 Rh $-u$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_8 H_9 - {}^{105}Pd$				165345.8	1.2								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105-													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
100 10 100														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_7 O H_5 - {}^{105}Pd$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 Ag — u													*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 Cd — 85 D4								00	00 105 0.1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 La 85 DI				18403.6	1.5	0.1		99	99 1.5 Ca				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 cm 85 ph				20208	4	0.6		26	26 105 cm				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 cn 87 Db									50 105 Sn				۷.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 7 r 97 7 r				30000	4	-0.4		36	36 311				į
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$105 \text{Mo} - 97 \text{Zr}_{1.082}$				13310	10	0.0		08	08 105Mo				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$105 \text{ Nb} - 102 \text{ Ru}_{1.082}$				13317	10	0.0		70	76 IVIO				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 Pd = 104 Pd				1049 1	0.8	0.0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											CITE	1.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10(00) 511				2005									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	104 Ru $(n, \gamma)^{105}$ Ru		5909.9	0.5	5910.10	0.11	0.4	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5910.1	0.2			0.0	_					78Gu14	ļ.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5910.11	0.14			-0.1	_			Bdn		06Fi.A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104 Ru(d,p) 105 Ru				3685.53	0.11								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104 105									105	Mun			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104 Ru(n, γ) 105 Ru	ave.			5910.10	0.11	0.0		100	69 ¹⁰⁵ Ru				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{104}\text{Pd}(n,\gamma)^{105}\text{Pd}$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									<i>C</i> 1	50 105m	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$105 \text{ Mo}(\beta)^{105} \text{ Tc}$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105 D (P =) 105 D b										вwg			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 Ru(p)105 Rn								51	25 105 Kn				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kii(p)***Pu				300.0	2.3								
ave. $\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave							78	75 ¹⁰⁵ Rh				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105 Ag(ε) 105 Pd	avc.			1347	5			, 0	7.5 KII				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	115(0) 10				1571	J								*
2600 200 0.7 U 72We.A 2742 11 -0.5 - 86Bo28 *	$^{105}\text{Cd}(\beta^+)^{105}\text{Ag}$				2737	4								
2742 11 -0.5 - $86Bo28 *$	(- /					-								
ave. 2739 5 -0.4 1 92 91 105 Ag average														
		ave.							92	91 ¹⁰⁵ Ag				

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
1051 (0+)10501		51.40	200	4602	10					D.		02111 04
105 In(β^+) 105 Cd		5140	200	4693	10	-2.2	U			Brk		83Wo04
105 g (0+)105 r		4849	13	6202		-12.0	В			CCT		86Bo28
$^{105}\text{Sn}(\beta^+)^{105}\text{In}$	1.6	6230	80	6303	11	0.9	U			GSI		06Ka74
* ¹⁰⁵ Rh-u		=-87847(32) k										Nub16b *
* ¹⁰⁵ Ag-u	M-A=	=-87113(28) k	eV for m	ixture gs+m a	t 25.479 ke	eV						Nub16c *
* ¹⁰⁵ In- ¹⁰⁴ In		⁰⁴ In/ ¹⁰⁵ In=0.9										AHW *
$*^{105}$ Te(α) ¹⁰¹ Sn		20(50), 4703(Ens07a *
$*^{105}$ Te(α) ¹⁰¹ Sn		$11(3)$ to $7/2^+$				(20) to gro	und state	e				Ens07a *
$*^{105}Sb(p)^{104}Sn$		ected 150 prot										05Li47 *:
$*^{105}$ Ag(ε) ¹⁰⁵ Pd		$152(0.002) \rightarrow$			r) to 3/2 ⁻	level at 10	187.96 ke	eV				Ens05b *
$*^{105}Cd(\beta^+)^{105}Ag$	$E_{\beta^+}=1$	691(5) to ¹⁰⁵ A	\log^m at 25.	479 keV								Nub16b *:
$*^{105}Cd(\beta^+)^{105}Ag$	$E_{\beta^+}=1$	695(11) to ¹⁰⁵	Ag^m at 25	5.479 keV								Nub16b *:
$*^{105}$ In(β^+) 105 Cd	$E_{\beta^+}=3$	696(13) to 7/2	⁺ level at	131.11 keV								Ens05b *
¹⁰⁶ Zr-u		-62674	322	-62860	470	-0.4	0			GT1	1.5	04Ma.A
<i>_</i>		-62856	186	02000	170	J. T	2			GT3	2.5	16Kn03
¹⁰⁶ Nb-u		-70843	258	-71072	4	-0.6	U			GT1	1.5	04Ma.A
$^{106}\text{Mo} - ^{97}\text{Zr}_{1.093}$		15589.8	9.8	71072	-	0.0	2			JY1	1.0	06Ha03
$C_8 H_{10} - {}^{106}Pd$		174764.0	4.3	174770.0	1.2	0.6	U			M16	2.5	63Da10
C8 1110 - 1 u		174751	32	174770.0	1.2	0.4	U			R12	1.5	83De51
		174766	8			0.3	U			R12	1.5	83De51
$C_7^{13}CH_9-^{106}Pd$		170285	32	170299.8	1.2	0.3	U			R12	1.5	83De51
C/ Clig— lu		170298	30	1702)).0	1.2	0.0	U			R12	1.5	83De51
C ₇ N H ₈ - ¹⁰⁶ Pd		162186	18	162194.0	1.2	0.3	U			R12	1.5	83De51
$C_7 O H_6 - {}^{106}Pd$		138378	20	138384.5	1.2	0.3	U			R12	1.5	83De51
106Pd-u		-96495	30	-96519.7	1.2		U			GS2		05Li24
Pu-u		-96521.0	1.9	-90319.7	1.2	$-0.8 \\ 0.5$				TG1	1.0 1.5	12Sm01
		-96521.0 -96524.9				0.3	-			TG1	1.5	12Sm01
	0710		4.7				1	20	20 ¹⁰⁶ Pd	101	1.5	
¹⁰⁶ Ag-u	ave.	-96521.5 -93318	2.6 44	02226	2	0.7	1 U	20	20 Pu	GS2	1.0	average 05Li24
$C_8 H_{10} - {}^{106}Cd$				-93336	3	-0.4						
C ₈ H ₁₀ -***Cd		171789.3	2.7	171790.5	1.2	0.2	U			M16	2.5	63Da10
C NII 106CI		171841	17	150014.5	1.0	-2.0	U			R12	1.5	83De51
$C_7 N H_8 - {}^{106}Cd$		159210	15	159214.5	1.2	0.2	U			R12	1.5	83De51
¹⁰⁶ Cd-u		-93540.6	1.7	-93540.2	1.2	0.2	-			TG1	1.5	12Sm01
		-93545.7	3.47			1.1	_	27	27 106 6 1	TG1	1.5	12Sm01
106 0 1 95 0 1	ave.	-93541.6	2.3	161500		0.6	1	27	27 ¹⁰⁶ Cd		4.0	average
106 Cd $-^{85}$ Rb _{1.247}		16459.8	1.8	16458.0	1.2	-1.0	1	43	43 ¹⁰⁶ Cd	MA8	1.0	09Br09
¹⁰⁶ In-u		-86516	32	-86536	13	-0.6	U		106	GS2	1.0	05Li24
106 Sn $-^{85}$ Rb _{1.247}		26959.4	8.7	26956	5	-0.4	1	39	39 ¹⁰⁶ Sn	SH1	1.0	07Ma92
106 Sn $-^{87}$ Rb _{1.218}		27578.0	7.6	27576	5	-0.3	1	52	52 ¹⁰⁶ Sn	JY1	1.0	09E107
$^{106}\text{Sb} - ^{87}\text{Rb}_{1.218}$		39256.1	8.0				2			JY1	1.0	09E107
$^{106}\text{Nb} - ^{102}\text{Ru}_{1.039}$		28318.2	4.4				2			JY1	1.0	07Ha32
$^{106}\text{Tc} - ^{102}\text{Ru}_{1.039}$		13780.7	4.7	13747	13	-7.1	F		405	JY1	1.0	07Ha20
106 Ru $^{-105}$ Ru $^{1.039}$		511.8	9.1	505	6	-0.7	1	42	37 ¹⁰⁶ Ru	JY1	1.0	07Ha20
$^{106}\text{Cd} - ^{106}\text{Pd}$		2979.50	0.11	2979.50	0.11	0.0	1	100	70 ¹⁰⁶ Pd	SH1	1.0	11Go23
		2979.08	0.60			0.5	U			TG1	1.5	12Sm01
106 Pd $-^{105}$ Pd		-1608	25	-1599.2	0.3	0.2	U			R12	1.5	83De51
$^{106}\text{Pd}-^{104}\text{Pd}$		-508	32	-550.1	0.8	-0.9	U			R12	1.5	83De51
$^{106}{\rm Te}(\alpha)^{102}{\rm Sn}$		4323.5	30.	4290	9	-1.1	U					81Sc17
• •		4290.2	9.				3					94Pa11
		4323.5	30.			-1.1	U					02Ma19
		4261.0	62.4			0.5	U					16Ca33
$^{106}\text{Cd}(^{3}\text{He}, ^{6}\text{He})^{103}\text{Cd}$		-9173	17	-9141.4	2.1	1.9	U			MSU		78Pa11
104 Ru(t,p) 106 Ru		5892	20	5888	5	-0.2	Ü			LAI		72Ca10
$\mathbf{R}\mathbf{u}(\mathbf{t},\mathbf{p})$ $\mathbf{R}\mathbf{u}$				2000	J	-0.2	U			L/ 11		12Cu10

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	ompariso	Input v		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
Item		Input vi	iruc	rajustea	varue	· i	Ds	oigiii.	TVIGINI IIIII.	Luo		Reference
106 Cd(p,t) 104 Cd		-10802	15	-10824.6	2.0	-1.5	U			MSU		82Cr01
		-10829	12			0.4	U			Pri		83De03
		-10819	12			-0.5	U			Ors		84Ro.A
105 Pd $(n,\gamma)^{106}$ Pd		9562.8	1.1	9560.96	0.28	-1.7	U					70Bo29
		9560.5	0.4			1.1	_			BNn		87Fo20 *
		9561.4	0.4			-1.1	_			Bdn		06Fi.A
$^{105}\text{Pd}(d,p)^{106}\text{Pd}$		7349	30	7336.39	0.28	-0.4	U			Pit		64Co11
$^{106}Pd(d,t)^{105}Pd$		-3311	25	-3303.73	0.28	0.3	U			Pit		64Co11
$^{105}\text{Pd}(n,\gamma)^{106}\text{Pd}$	ave.	9560.95	0.28	9560.96	0.28	0.0	1	100	96 ¹⁰⁵ Pd			average
$^{105}\text{Pd}(^{3}\text{He,d})^{106}\text{Ag}$		322	8	320.0	2.8	-0.3	1	12	12^{106} Ag	Bld		75An07
106 Cd(d,t) 105 Cd		-4661	50	-4612.4	1.8	1.0	U					73De16
$^{106}\text{Cd}(^{3}\text{He},\alpha)^{105}\text{Cd}$		9728	25	9708.0	1.8	-0.8	U			Man		75Ch21
$^{106} \text{Mo}(\beta^{-})^{106} \text{Tc}$		3510	45	3642	15	2.9	U			Bwg		87Gr18
		3520	17			7.2	C			Bwg		92Gr.A
		3520	17			7.2	C			Jyv		94Jo.A
$^{106}\text{Tc}(\beta^-)^{106}\text{Ru}$		6545	45	6547	11	0.0	o			Bwg		87Gr18
		6547	11				2			Bwg		92Gr.A
106 Ru(β^-) 106 Rh		39.2	0.3	39.40	0.21	0.7	_					50Ag01
		39.6	0.3			-0.7	_					58Gr07
	ave.	39.40	0.21			0.0	1	100	63 ¹⁰⁶ Ru			average
106 Rh $(\beta^{-})^{106}$ Pd		3530	10	3545	5	1.5	_					52Al06
		3550	10			-0.5	_					58Gr07
		3550	20			-0.3	_					60Se05
	ave.	3541	7			0.6	1	64	63^{-106} Rh			average
$^{106}\text{Rh}^{m}(\beta^{-})^{106}\text{Pd}$		3677	10				2					66De11 *
106 Ag(β^{+}) 106 Pd		2980	20	2965.1	2.8	-0.7	U					53Be42
		3011	72			-0.6	U					86Bo28
106 Ag $(\varepsilon)^{106}$ Pd		2961	4			1.0	_					78Ge01 *
$^{106}\text{Pd}(p,n)^{106}\text{Ag}$		-3754	13	-3747.5	2.8	0.5	U			Oak		64Jo11
		-3756	5			1.7	_					79De44
106 Ag $(\varepsilon)^{106}$ Pd	ave.	2966	3	2965.1	2.8	-0.3	1	81	81^{-106} Ag			average
106 In(β^+) 106 Cd		6516	30	6524	12	0.3	2		_			66Ca09 *
•		6507	29			0.6	2					86Bo28 *
$^{106}\text{Cd}(p,n)^{106}\text{In}$		-7312.9	15.	-7306	12	0.4	2			ANL		84Fi05 *
106 Sn $(\beta^+)^{106}$ In		3195	60	3254	13	1.0	U			GSI		79Pl06 *
		3200	100			0.5	U					88Ba10
$*^{106}$ Ag $-u$	M-A=	-86880(32) k	eV for mi	xture gs+m at	89.66 ke	·V						Nub16b **
$*^{106}In-u$	M-A=	-80575(29) k	eV for mi	xture gs+m at	28.6 keV	7						Nub16b **
$*^{106}Tc-^{102}Ru_{1.039}$	F: unide	entified impu	rities in th	ne trap								07Ha20 **
$*^{106}$ Cd(3 He, 6 He) 103 Cd	First exc	cited state at 1	87.89 ke	V yields $Q = -$	9146 keV	V						GAu **
$*^{104}Pd(^{3}He,p)^{106}Ag$	F: with	drawn by autl	nors									AHW **
$*^{105}Pd(n,\gamma)^{106}Pd$	Calculat	ted from 13 γ	energies	in 2 keV n-cap	oture							AHW **
*	to leve	ls in ¹⁰⁶ Pd; co	orrected for	or recoil								Ens086 **
$*^{106}$ Rh $^{m}(\beta^{-})^{106}$ Pd	$E_{B^{-}} = 92$	$0(10)$ to 5^+ le	evel at 27	57.06 keV								Ens086 **
$*^{106}$ Ag $(\varepsilon)^{106}$ Pd				99(4), recalcul	lated O							AHW **
*				to 5^+ level at		keV						Ens086 **
$*^{106}$ In(β^+) 106 Cd				at 28.6 to 2 ⁺			7					Ens086 **
$*^{106} In(\beta^+)^{106} Cd$				491.66 keV an								Ens086 **
· · · · · · · · · · · · · · · · · · ·				el at 632.64 ke		., 110111						Ens086 **
* * * * * * * * * * * * * * * * * * *		$(2)^{+}$ at 26.0 (15) to 2^{+} lev			•							Ens086 **
$*^{106}$ Sn(β^+) 106 In		253(0.021) to										Ens086 **
¹⁰⁷ Zr—u		-58379	482				2			GT3	2.5	16Kn03
107 Nb—u		-68326	279	-68410	9	-0.2	U			GT1	1.5	04Ma.A
$^{107}\text{Mo} - ^{97}\text{Zr}_{1.103}$		20326.7	9.9	00710	,	0.2	2			JY1	1.0	06Ha03
MIO ZI 1.103		20320.7	2.2				_			J I I	1.0	0011403

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input via a support of the support o		Adjuste		$\frac{(\mathbf{continue})}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
	mput v		Tajaste	a rarae	-1	28	515				
107 Pd $-u$	-95013	95	-94871.9	1.3	1.5	U			GS2	1.0	05Li24 *
$C_8 H_{11} - ^{107}Ag$	180986.4	3.1	180983.8	2.6	-0.3	1	11	11 ¹⁰⁷ Ag	M16	2.5	63Da10
405	180994	17			-0.4	U			R12	1.5	83De51
$C_7 \text{ N H}_9 - {}^{107}_{107} \text{Ag}$	168415	8	168407.8	2.6	-0.6	U			R12	1.5	83De51
$C_7 O H_7 - {}^{107}Ag$	144595	18	144598.3	2.6	0.1	U			R12	1.5	83De51
$C_6^{13}COH_6-107Ag$	140131	16	140128.1	2.6	-0.1	U			R12	1.5	83De51
$C_6 \text{ N O H}_5 - ^{107} \text{Ag}$	132025	16	132022.3	2.6	-0.1	U			R12	1.5	83De51
¹⁰⁷ Cd-u	-93410	30	-93387.9	1.8	0.7	U		107	GS2	1.0	05Li24
107 Cd $-^{85}$ Rb _{1.259}	17668.7	1.9	17668.8	1.8	0.1	1	88	88 ¹⁰⁷ Cd	MA8	1.0	09Br09
¹⁰⁷ In-u	-89710	30	-89710	12	0.0	U			GS2	1.0	05Li24
107 Sn $^{-87}$ Rb _{1.230}	27421.6	5.7	25050			2	5 0	50 107 gr	JY1	1.0	09El07
$^{107}\text{Sb} - ^{87}\text{Rb}_{1.230}$	35866.2	5.8	35859	4	-1.3	1	59	59 ¹⁰⁷ Sb	JY1	1.0	09El07
¹⁰⁷ Sb- ¹³³ Cs _{.805}	251.8	9.7	262	4	1.0	1	21	21 ¹⁰⁷ Sb	SH1	1.0	07Ma92
107 Nb $-^{102}$ Ru $_{1.049}$ 107 Tc $-^{105}$ Ru $_{1.019}$	31936.7	8.6				2			JY1	1.0	07Ha32
107 Ru $^{-105}$ Ru $_{1.019}$	9465.8	8.9				2			JY1	1.0	07Ha20
$^{107}\text{Sn} - ^{106}\text{Sn}$	3977.2	8.9	1244	0	0.7	2			JY1	1.0	07Ha20
$^{107}\text{Te}(\alpha)^{103}\text{Sn}$	-1148	86	-1244 4008	8	-0.7	U			CR2	1.5	92Sh.A *
$1e(\alpha)^{-\alpha}$ Sn	3982.2 4011.3	15. 5.	4008	5	1.7 -0.6	3					79Sc22 91He21
107 Ag(p,t) 105 Ag	-9015	3. 15	-8997	5	1.2	1	11	9 ¹⁰⁵ Ag	Min		75Ku14 *
106 Pd $(n,\gamma)^{107}$ Pd	6536.4	0.5	6536.4	0.5	0.1	1	99	94 ¹⁰⁷ Pd	Bdn		06Fi.A
107 Ag $(\gamma,n)^{106}$ Ag	-9353	34	-9536	4	-5.4	В	99	94 Fu	Phi		60Ge01
$^{107}Ag(p,d)^{106}Ag$	-9333 -7305	11	-9330 -7311	4	-3.4 -0.5	Б 1	10	7 ¹⁰⁶ Ag	Bld		75An07
$^{107}\text{Mo}(\beta^-)^{107}\text{Tc}$	6160	60	6198	13	0.6	U	10	/ Ag	Bwg		89Gr23
$^{107}\text{Tc}(\beta^{-})^{107}\text{Ru}$	4820	85	5113	12	3.4	В			Bwg		89Gr23
107 Ru(β^{-}) 107 Rh	3140	300	3001	15	-0.5	U			Dwg		62Pi02 *
Ru(p) Kii	2900	135	3001	13	0.7	U			Bwg		89Gr23
107 Rh $(\beta^{-})^{107}$ Pd	1510	40	1509	12	0.0	Ü			25		62Pi02 *
$^{107}\text{Pd}(\beta^{-})^{107}\text{Ag}$	33	3	34.0	2.3	0.3	1	60	53 ¹⁰⁷ Ag			49Pa.B
$^{107}\text{Cd}(\beta^+)^{107}\text{Ag}$	1417	4	1416.4	2.6	-0.1	1	41	30 ¹⁰⁷ Ag			62La10 *
107 In(β^+) 107 Cd	3426	11				2					86Bo28 *
*107Pd-u	M - A = -88397(62) 1	keV for n	nixture gs+n	at 214.61	keV						Nub16b **
$*^{107}$ Sn $-^{106}$ Sn	From ¹⁰⁷ Sn/ ¹⁰⁶ Sn=1	.0094305	53(81)								AHW **
$*^{107}$ Ag(p,t) 105 Ag	Recalibrated with (p.	t) results	s on ¹⁰⁴ Pd, ¹⁰³	⁵ Pd, ¹⁰⁶ P	d and ¹⁰⁸ Pd						AHW **
$*^{107}$ Ru(β^-) 107 Rh	E_{β} = 2100(300) to (5	5/2+,7/2	+) level at 10-	41.950 ke	eV						Ens085 **
$*^{107}$ Rh(β^-) 107 Pd	$E_{\beta}^{'} = 840(40)$ to $5/2^{-}$	⊢ level at	670.06 keV								Ens085 **
$*^{107}Cd(\beta^+)^{107}Ag$	$E_{\beta}^{r} = 302(4)$ to 107 A	g^m at 93.	125 keV								Nub16b **
$*^{107}$ In(β^+) 107 Cd	$E_{\beta^+}^{r}$ = 2199(11) to 5/2	2 ⁺ level a	at 204.98 keV	7							Ens085 **
108 Nb $-u$	-64413	440	-63925	9	0.7	o			GT1	1.5	04Ma.A
	-63945	112			0.1	U			GT2	2.5	08Kn.A
108 Nb $-^{120}$ Sn $_{.900}$	24093.3	8.8				2			JY1	1.0	11Ha48
$^{108}\text{Mo}-^{97}\text{Zr}_{1.113}$	23144.8	9.9				2			JY1	1.0	06Ha03
¹⁰⁸ Mo-u	-76039	215	-75960	10	0.2	U			GT1	1.5	04Ma.A
$^{108}\text{Rh} - ^{120}\text{Sn}_{.900}$	-3267	15				2			JY1	1.0	07Ha20
$^{108}\text{Rh}^m - ^{120}\text{Sn}_{.900}$	-3144	13				2			JY1	1.0	07Ha20
$C_8 H_{12} - ^{108} Pd$	190014	6	190008.6	1.2	-0.4	U			M16	2.5	63Da10
12 100	190005	19			0.1	U			R12	1.5	83De51
$C_7^{13}CH_{11}-{}^{108}Pd$	185532	30	185538.4	1.2	0.1	U			R12	1.5	83De51
$C_7 N H_{10} - {}^{108}Pd$	177422	17	177432.5	1.2	0.4	U			R12	1.5	83De51
C_6^{13} C N $H_9 - {}^{108}$ Pd	172943	18	172962.3	1.2	0.7	U			R12	1.5	83De51
$C_7 O H_8 - {}^{108}Pd$	153611	17	153623.1	1.2	0.5	U			R12	1.5	83De51
$C_6 \text{ N O H}_6 - ^{108} \text{Pd}$	141031	16	141047.0	1.2	0.7	U			R12	1.5	83De51
108 Pd $-u$	-96109.6	1.3	-96108.2	1.2	0.7	-			TG1	1.5	12Sm01
	-96108.1	4.7			0.0	_ 1	40	40 ¹⁰⁸ Pd	TG1	1.5	12Sm01
	ave. -96109.5	1.9			0.7	1	40	40 100 Pd			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	onipariso	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
		1										
108 Ag $-$ u		-93973	50	-94049.7	2.6	-1.5	U			GS2	1.0	05Li24 *
108 Ag $^{-133}$ Cs $_{.812}$		-17218	84	-17276.7	2.6	-0.7	U			MA8	1.0	08Br.A *
$C_8 H_{12} - {}^{108}Cd$		189715.6	2.9	189716.8	1.2	0.2	U			M16	2.5	63Da10
0 12		189695	16			0.9	U			R12	1.5	83De51
C ₇ N H ₁₀ -108Cd		177140	30	177140.7	1.2	0.0	U			R12	1.5	83De51
C_6^{13} C N H ₉ $-^{108}$ Cd		172653	15	172670.5	1.2	0.8	Ü			R12	1.5	83De51
$C_6 \text{ N O H}_6 - ^{108}\text{Cd}$		140746	15	140755.2	1.2	0.4	U			R12	1.5	83De51
$^{108}\text{Cd} - ^{85}\text{Rb}_{1.271}$		16298.5	2.3	16298.8	1.2	0.1	1	27	27 ¹⁰⁸ Cd	MA8	1.0	09Br09
¹⁰⁸ Cd-u		-95818.3	1.7	-95816.4	1.2	0.7	_	21	27 Cu	TG1	1.5	12Sm01
Cu-u		-95817.1	4.87	-)3010.4	1.2	0.7	_			TG1	1.5	12Sm01
	0110	-95817.1 -95818.2	2.4			0.7	1	25	25 ¹⁰⁸ Cd	101	1.5	
108 In $-$ u	ave.	-93616.2 -90277	31	-90306	0	-0.9	U	23	25 Cu	GS2	1.0	average 05Li24 *
¹⁰⁸ Sn-u					9							
$^{108}\text{Sn}-\text{u}$ $^{108}\text{Sn}-^{87}\text{Rb}_{1.241}$		-88102	32	-88106	6	-0.1	U	0.6	96 ¹⁰⁸ Sn	GS2	1.0	05Li24
108 St 87 Rt		24599.8	5.9	24601	6	0.2	1	96	96 100Sn	JY1	1.0	09E107
$^{108}\text{Sb} - ^{87}\text{Rb}_{1.241}$		34933.7	5.9				2		100_	JY1	1.0	09E107
$^{108}\text{Te} - ^{87}\text{Rb}_{1.241}$		42085.3	6.0	42087	6	0.4	1	94	94 ¹⁰⁸ Te	JY1	1.0	09E107
108 Tc $^{-105}$ Ru _{1.029}		13423.4	9.0				2			JY1	1.0	07Ha20
108 Ru $^{-105}$ Ru $^{1.029}$		5115.7	8.9				2			JY1	1.0	07Ha20
¹⁰⁸ Pd- ¹⁰⁸ Cd		-292.05	0.59	-291.8	0.8	0.3	1	87	46 ¹⁰⁸ Cd	TG1	1.5	12Sm01
108 Sn $-^{107}$ Sn		-3650	76	-3819	8	-1.5	U			CR2	1.5	92Sh.A *
$^{108}\text{Pd} - ^{106}\text{Pd}$		425	40	411.5	1.7	-0.2	U			R12	1.5	83De51
$^{108}\text{Cd} - ^{106}\text{Cd}$		-2232	32	-2276.2	1.7	-0.9	U			R12	1.5	83De51
$^{108}{\rm Te}(\alpha)^{104}{\rm Sn}$		3406.4	30.	3420	8	0.5	Ü					65Ma12
re(a) Sii		3448.0	20.	3120	O	-1.3	1	13	7 ¹⁰⁴ Sn			81Sc17
		3444.9	4.			-6.1	В	13	7 511			91He21
		3406.4	25.			0.6	U					9111c21 91Pa05
$^{108}I(\alpha)^{104}Sb$				4100	50							
$I(\alpha)^{**}Sb$		4034.7	25.	4100	50	1.3	F					91Pa05 *
108 p. (4.3 r.) 107 p. (4099.1	5.				4					94Pa12
¹⁰⁸ Pd(d, ³ He) ¹⁰⁷ Rh		-4456	12	2015		0.4	2			Grn		86Ka43
¹⁰⁸ Pd(d,t) ¹⁰⁷ Pd		-2977	30	-2965.7	1.6	0.4	U			Pit		64Co11
107 Ag(n, γ) 108 Ag		7269.6	0.6	7271.41	0.17	3.0	В			ILn		85Ma54 Z
107 100		7271.41	0.17				2			Bdn		06Fi.A
107 Ag(d,p) 108 Ag		5051	7	5046.84	0.17	-0.6	U			MIT		67Sp09
$^{108}{ m Mo}(eta^-)^{108}{ m Tc}$		5135	60	5167	13	0.5	U			Bwg		92Gr.A
		5120	40			1.2	O					94Jo.A
		5100	60			1.1	U					95Jo02
$^{108}\text{Tc}(\beta^{-})^{108}\text{Ru}$		7720	50	7739	12	0.4	U			Bwg		89Gr23
108 Ru(β^{-}) 108 Rh		1315	100	1370	16	0.6	U					62Pi02 *
		1420	185			-0.3	U			Bwg		89Gr23
		1380	80			-0.1	0			Jyv		92Jo05
		1350	60			0.3	U			Jyv		94Jo.A
108 Rh(β^{-}) 108 Pd		4500	600	4492	14	0.0	U			•		62Pi02
• /		4505	105			-0.1	U			Bwg		89Gr23
$^{108}\text{Rh}^{m}(\beta^{-})^{108}\text{Pd}$		4434	50	4607	12	3.5	В					69Pi08 *
9 /		4510	100			1.0	U					84Bh02 *
108 Ag(β^+) 108 Pd		1902	25	1917.4	2.6	0.6	U					62Fr07
$^{108}\text{Pd}(p,n)^{108}\text{Ag}$		-2675	100	-2699.8	2.6	-0.2	U			Oak		64Jo11
$^{108}\text{Ag}(\beta^{-})^{108}\text{Cd}$		1650	40	1645.7	2.6	-0.1	Ü			Oun		60Wa10
$^{108}\text{In}(\beta^{+})^{108}\text{Cd}$		5124	50	5133	9	0.2	U					62Ka23 *
$\Pi(p)$ cu		5125	14	3133	,	0.5	_					0.65
$^{108}\text{Cd}(p,n)^{108}\text{In}$				5015	0					ANII		
		-5927	12	-5915	9	1.0	_	00	00 1081	ANL		84Fi05 *
108 In(β^+) 108 Cd	ave.	5136	9	5133	9	-0.4	1	89	89 ¹⁰⁸ In			average
$^{108}_{108}$ Sn $(\beta^+)^{108}$ In		2078	25	2050	10	-1.1	1	15	11 ¹⁰⁸ In	GSI		79Pl06 *
*108 Ag-u				xture gs+m at								Nub16b **
$*^{108}_{108}$ Ag $-^{133}$ Cs _{.812}				e gs+m at 109			87497(72	2) keV				Nub16b **
* ¹⁰⁸ In-u				xture gs+m at	29.75 ke	V						Nub16b **
$*^{108}Sn-^{107}Sn$		$^{7}Sn/^{108}Sn=0.9$										AHW **
$*^{108}I(\alpha)^{104}Sb$	F: Same	authors say:	Consister	nt with new va	lue, if re	calibrated						94Pa12 **
$*^{108}$ Ru(β^-) 108 Rh		50(100) to 1 ⁺										Ens08a **
$*^{108}\text{Rh}^{m}(\beta^{-})^{108}\text{Pd}$				evel at 2863.70	0 keV							Ens08a **
$*^{108}\text{Rh}^{m}(\beta^{-})^{108}\text{Pd}$		$70(100)$ to 4^+										Ens08a **
$*^{108}In(\beta^+)^{108}Cd$				307.81 keV, an	$dE_{c} = 3$	500(50) fr	om ¹⁰⁸ In	m				Ens08a **
. III(p) Cu	2p+-12.	20(00) 100	ut 20	KC 1, an	2p+-3		J111 111					2110000 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Inj	out value	Adjusted	l value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
*	at 29.75 to 2	level at 630	2.986 keV								Nub16b **
$*^{108}$ In(β^+) 108 Cd	$E_{\beta^+} = 1887(28)$			V, and E_{β}	+=3494	(14) froi	$n^{108}In^m$				Ens08a **
*	at 29.75 to 2	level at 632	2.986 keV	, р							Nub16b **
$*^{108}Cd(p,n)^{108}In$	Q(not T, PrvC), errors	statistica	l only,					AHW **
*	to 3 ⁺ levels a	t respectivel	y, 198.36 and	266.06 kg	eV	•					Ens08a **
$*^{108}$ Sn $(\beta^+)^{108}$ In	$p^+ = 35(6) \times 10^{-1}$	0^{-4} to 1^{+} lev	vel at 698.85 k	æV							Ens08a **
¹⁰⁹ Nb-u	-6078	4 376	-60860	280	-0.1	0			GT1	1.5	04Ma.A
110 4	-6085		00000	200	0.1	2			GT1	1.5	16Kn03
109 Mo $-^{97}$ Zr _{1.124}	2851					2			JY1	1.0	06Ha03
¹⁰⁹ Mo-u	-7155		-71569	12	0.0	U			GT1	1.5	04Ma.A
$^{109}\text{Rh} - ^{120}\text{Sn}_{.908}$	-246	3.6 7.2	-2450	4	1.9	1	37	36^{-109} Rh	JY1	1.0	07Ha20
$C_8 H_{13} - ^{109} Ag$	19697	2.1 3.8	196969.6	1.4	-0.3	U			M16	2.5	63Da10
	19697	2 6			-0.3	U			R12	1.5	83De51
$C_6^{13}COH_8-^{109}Ag$	15611	0 16	156113.9	1.4	0.2	U			R12	1.5	83De51
$C_6 \text{ N O H}_7 - ^{109} \text{Ag}$	14800		148008.1	1.4	0.1	U			R12	1.5	83De51
$^{109}_{100}$ Ag $^{-133}_{25}$ Cs.820	-1776		-17714.8	1.4	0.6	U		100	MA8		08Br.A *
109 Cd $-^{85}$ Rb _{1.282}	1807		18072.3	1.6	-0.3	1	75	75 ¹⁰⁹ Cd	MA8		09Br09
109 Sn-u	-8874		-88707	9	1.3	U		100	GS2	1.0	05Li24
$^{109}\text{Sb} - ^{87}\text{Rb}_{1.253}$	3193		31938	6	0.0	1	92	92 ¹⁰⁹ Sb	JY1	1.0	09El07
¹⁰⁹ Sb- ¹³³ Cs _{.820}	-436		-4329	6	1.6	U		100-	SH1	1.0	07Ma92
$^{109}\text{Te} - ^{87}\text{Rb}_{1.253}$	4110		41101	5	0.0	1	54	54 ¹⁰⁹ Te	JY1	1.0	09El07
109 Te $^{-133}$ Cs $_{.820}$ 109 Tc $^{-105}$ Ru $_{1.038}$	483		4834	5	-0.2	1	32	32 ¹⁰⁹ Te	SH1	1.0	07Ma92
109 Ru $^{-105}$ Ru $_{1.038}$	1601					2			JY1	1.0	07Ha20
109 Ag $^{-107}$ Ag	908		225.0	2.0	0.0	2			JY1	1.0	07Ha20
$^{109}\text{Te}(\alpha)^{105}\text{Sn}$	-33 319		-335.8 3198	2.9 6	0.0	U			R12	1.5	83De51
$1e(\alpha)^{***}Sii$	319		3198	O	0.0	U 1	13	7 ¹⁰⁹ Te			65Ma12 79Sc22
	322				-7.0	C	13	/ 16			91He21
109 I(α) 105 Sb	391				-7.0	3			ORa		07Ma35
109 Xe(α) 105 Te	421					4			Olta		06Li41 *
109 Ag(p,t) 107 Ag	-799		-7973.6	2.7	1.4	Ü			Min		75Ku14 *
$^{108}\text{Pd}(n,\gamma)^{109}\text{Pd}$	615		6153.59		-0.7	_			ILn		80Ca02 Z
(,1)		3.54 0.17			0.3	_			Bdn		06Fi.A
$^{108}\text{Pd}(d,p)^{109}\text{Pd}$	393	6 30	3929.02	0.15	-0.2	U			Pit		64Co11
$^{108}\text{Pd}(n,\gamma)^{109}\text{Pd}$	ave. 615	3.60 0.15	6153.59	0.15	-0.1	1	100	81 ¹⁰⁹ Pd			average
109 Ag $(\gamma,n)^{108}$ Ag	-919	6 26	-9184.0	2.7	0.5	U			Phi		60Ge01
109 Ag(d,t) 108 Ag	-294	7 30	-2926.8	2.7	0.7	U			Pit		64Co11
$^{108}\text{Cd}(^{3}\text{He,d})^{109}\text{In} - ^{110}\text{Cd}()^{111}\text{In}$	-80	6.5 2.6	-807.0	2.5	-0.2	1	91	70 ¹⁰⁹ In			80Ta07
109 Te $(\varepsilon p)^{108}$ Sn	714		7066	7	-1.2	U					73Bo20
109 I(p) 108 Te	81		820	4	0.2	O					84Fa04
		9.6 2.0			0.3	0					92He.A
100m (0-)100p		0.2 4.0	6456	10	2.0	2			ъ.		95Ho26
$^{109}\text{Tc}(\beta^-)^{109}\text{Ru}$	631		6456	13	2.0	U			Bwg		89Gr23
109 Ru(β^-) 109 Rh 109 Rh(β^-) 109 Pd	416		4261	10	1.6	U			Bwg		89Gr23
$^{109}\text{Pd}(\beta^-)^{109}\text{Ag}$	257		2607	4	0.6	U	40	30 ¹⁰⁹ Ag			78Ka10 *
$^{109}\text{Cd}(\varepsilon)^{109}\text{Ag}$	111		1112.9	1.4	-1.5	1 C	49	30 M Ag			62Br15 *
Cu(E) Ag	18 21		215.1	1.8	11.0 0.4	C 1	35	22 ¹⁰⁹ Cd			68Go.A *
109 In(β^+) 109 Cd	201		2015	4	0.4	_	33	22 ** Cu			Averag * 62No06 *
$m(p^+)$ Cu	201		2013	4	-1.0	_					62No06 * 71Ba08 *
	ave. 201				-0.5	1	33	30 ¹⁰⁹ In			average
109 Sn $(\beta^+)^{109}$ In	412		3859	9	-5.2	В	55	20 III			70Sh05
$^{109}\text{Sb}(\beta^+)^{109}\text{Sn}$	638		6379	9	0.0	1	30	22 ¹⁰⁹ Sn			82Jo03 *
$*^{109}$ Ag $-^{133}$ Cs _{.820}	$D_M = -17719(7)$										Nub16b **
$*^{109}$ Xe(α) ¹⁰⁵ Te	Also E_{α} =3918			55.05-1	, 171	.1- 00	20(13) N	- •			06Li41 **
$*^{109}$ Ag(p,t) 107 Ag	Recalibrated v			¹⁰⁵ Pd. ¹⁰⁶	Pd and 1	08 Pd					AHW **
$*^{109}$ Rh(β^-) ¹⁰⁹ Pd	E_{β} = 2250(50)										Ens062 **
$*^{109} Pd(\beta^-)^{109} Ag$	E_{β} = 1028(2)	to ¹⁰⁹ Ag ^m at	88.0341 keV	-							Nub16b **
$*^{109}$ Cd $(\varepsilon)^{109}$ Ag	IBE=68(3) giv	es 94(3) to ¹	09 Ag ^m at 88.0	341 keV							Nub16b **
			5		6(3); rec						

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	1	Input v		Adjuste		v _i	Dg	Signf.	Main infl.	Lab	F	Reference
*	to ¹⁰⁹	Ag m at 88.034	11 keV									Nub16b **
*		/K=0.228(0.0										65Le06 **
*		0.195(0.005)		X=0.258(0.00	$(06) \rightarrow Q$	$_{\beta^+}=109(5)$	not used					65Le06 **
*		/K=0.226(0.0				r						70Go39 **
$*^{109}$ In(β^+) 109 Cd	$E_{\beta^+}=7$	90(8) 805(15)	respectiv	ely, to $7/2^+$ l	level at 2	203.30 keV						Ens062 **
$*^{109}$ Sb $(\beta^+)^{109}$ Sn	$E_{\beta^+}=4$	416(21) to 3/2	2 ⁺ level at	925.6 keV,	and othe	r $E_{oldsymbol{eta}^+}$						Ens062 **
¹¹⁰ Nb-u		-56157	360				2			GT3	2.5	16Kn03
110 Mo $-^{97}$ Zr _{1.134}		31685	26				2			JY1	1.0	06Ha03
¹¹⁰ Mo-u		-69544	268	-69289	26	0.6	U			GT1	1.5	04Ma.A
¹¹⁰ Ru-u		-85897	78	-85961	10	-0.8	U			JY0	1.0	03Ko.A
¹¹⁰ Rh-u		-88835	130	-88920	19	-0.7	U			JY0	1.0	03Ko.A *
$^{110}\text{Rh} - ^{120}\text{Sn}_{.917}$		815	110	761	19	-0.5	U			JY1	1.0	07Ha20 *
$C_8 H_{14} - ^{110} Pd$		204389	9	204377.6	0.7	-0.5	U			M16	2.5	63Da10
$C_7^{13}CH_{13}-^{110}Pd$		204380	20	100007.4	0.7	-0.1	U			R12	1.5	83De51
$C_7 \cdot C \cdot H_{13} - Pd$ $C_6 \cdot N \cdot O \cdot H_8 - ^{110}Pd$		199913 155418	20 17	199907.4 155416.0	0.7 0.7	$-0.2 \\ -0.1$	U U			R12 R12	1.5 1.5	83De51 83De51
$C_6 \times O H_8 - F d$ $C_5 \times O H_7 - V O H_7 - V O H_7 - V O H_8 -$		150946	17	150945.8	0.7	-0.1 0.0	U			R12	1.5	83De51
$C_6 O_2 H_6 - {}^{110}Pd$		131609	18	131606.6	0.7	-0.1	U			R12	1.5	83De51
110 Pd-u		-94829.7	1.5	-94827.1	0.7	1.7	_			MA8	1.0	12Fi01
		-94829.5	1.7	,		0.9	_			TG1	1.5	12Sm01
		-94830.9	3.0			0.8	_			TG1	1.5	12Sm01
	ave.	-94829.7	1.2			2.1	1	28	28 ¹¹⁰ Pd			average
$C_8 H_{14} - ^{110}Cd$		206548.4	4.6	206543.0	0.4	-0.5	U			M16	2.5	63Da10
		206550	45			-0.1	U			R12	1.5	83De51
12 110		206569	13			-1.3	U			R12	1.5	83De51
C_7 ¹³ C H_{13} – ¹¹⁰ Cd		202093	14	202072.8	0.4	-1.0	U			R12	1.5	83De51
2 2 110 2 1		202053	28	450455.5		0.5	U			R12	1.5	83De51
$C_7 O H_{10} - {}^{110}Cd$		170156	16	170157.5	0.4	0.1	U			R12	1.5	83De51
C ₆ N O H ₈ - ¹¹⁰ Cd C ₅ ¹³ C N O H ₇ - ¹¹⁰ Cd		157614	17	157581.4	0.4	-1.3	U			R12	1.5	83De51
$C_6 O_2 H_6 - {}^{110}Cd$		153131 133801	17 18	153111.2 133772.0	0.4 0.4	$-0.8 \\ -1.1$	U U			R12 R12	1.5 1.5	83De51 83De51
$C_6 G_2 H_6 - Cd$ $C_9 H_2 - ^{110}Cd$		112661	19	112642.6	0.4	-0.6	U			R12	1.5	83De51
110Cd-u		-96993.6	1.5	-96992.5	0.4	0.7	_			MA8	1.0	12Fi01
cu u		-96997.0	1.5	70772.3	0.1	2.0	_			TG1	1.5	12Sm01
		-96992.2	2.4			-0.1	_			TG1	1.5	12Sm01
	ave.	-96994.4	1.2			1.6	1	12	12 ¹¹⁰ Cd			average
110 In $-$ u		-92898	36	-92829	12	1.9	U			GS2	1.0	05Li24 *
¹¹⁰ Sn-u		-92189	30	-92155	15	1.1	2			GS2	1.0	05Li24
$^{110}\text{Sb} - ^{87}\text{Rb}_{1.264}$		31650.1	6.4				2		440	JY1	1.0	09El07
$^{110}\text{Te} - ^{133}\text{Cs}_{.827}$		643.8	7.7	649	7	0.7	1	84	84 ¹¹⁰ Te	SH1	1.0	07Ma92
110 Tc $-^{105}$ Ru _{1.048}		20424.0	9.8				2		- 110-	JY1	1.0	07Ha20
110 Ru $^{-105}$ Ru $^{1.048}$		10719.5	9.3	10721	9	0.2	1	97	97 ¹¹⁰ Ru	JY1	1.0	07Ha20
¹¹⁰ Cd ³⁵ Cl- ¹⁰⁸ Cd ³⁷ Cl		1764	5	1774.0	1.3	0.5	U			H11	4.0	63Bi12
$^{110}\text{Pd} - ^{110}\text{Cd}$		2166.24	0.69	2165.4	0.6	-1.2	-			MA8 TG1	1.0	12Fi01
	OVA	2166.2 2166.2	1.3 0.7			-0.4 -1.3	1	80	71 ¹¹⁰ Pd	101	1.5	12Sm01
$^{110}\text{Pd}-^{108}\text{Pd}$	ave.	1288	35	1281.1	1.3	-0.1	U	80	/1 1 u	R12	1.5	average 83De51
¹¹⁰ Cd- ¹⁰⁸ Cd		-1219	34	-1176.1	1.3	0.8	U			R12	1.5	83De51
$^{110}\mathrm{Te}(\alpha)^{106}\mathrm{Sn}$		2723.2	15.6	2699	8	-1.6	1	25	16 ¹¹⁰ Te		1.0	81Sc17
$^{110}I(\alpha)^{106}Sb$		3574.2	10.	3580	50	0.2	3		10 10			81Sc17
		3586.7	5.	2200		-0.1	3					91He21
110 Xe(α) 106 Te		3878.3	30.	3872	9	-0.2	4					81Sc17
• •		3886.6	15.			-0.9	4					92He.A
		3871.0	30.			0.0	4					02Ma19
		3857.5	19.7			0.7	4			Jya		07Sa36
		3860.7	20.8			0.6	4					16Ca33

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	<i>F</i>	Reference	<u>=</u>
¹¹⁰ Pd(p,t) ¹⁰⁸ Pd		-6495	15	-6467.5	1.3	1.8	U			Min		75Ku14	*
¹¹⁰ Pd(d, ³ He) ¹⁰⁹ Rh		-5134	5	-5127	4	1.4	1	65	64 ¹⁰⁹ Rh	VUn		87Ka29	
$^{110}\text{Pd}(t,\alpha)^{109}\text{Rh}$		9206	25	9193	4	-0.5	Ü	05	o i iui	LAI		82F109	
109 Ag(n, γ) 110 Ag		6809.2	0.1	6809.19	0.10	-0.1	1	100	57 ¹⁰⁹ Ag	2.11		81Bo.B	
1.5(,1) 1.25		6808.20	0.16	0007.17	0.10	6.2	Ċ	100	0, 118	Bdn		06Fi.A	
109 Ag(d,p) 110 Ag		4590	5	4584.63	0.10	-1.1	Ü			MIT		64Sp12	
$^{110}\text{Cd}(d,t)^{109}\text{Cd}$		-3664	30	-3657.7	1.6	0.2	U			Pit		64Ro17	
$^{110}\text{Tc}(\beta^{-})^{110}\text{Ru}$		6680	120	9038	13	19.7	Č			Jyv		89Jo.A	
()- /		9021	55	, , , ,		0.3	Ü			Jyv		00Kr.A	
110 Ru(β^{-}) 110 Rh		2810	50	2756	19	-1.1	1	15	12 ¹¹⁰ Rh	Jyv		91Jo11	*
$^{110}\text{Rh}(\beta^{-})^{110}\text{Pd}$		5500	500	5502	18	0.0	Ü	10	12 141	٠, ٠		63Ka21	
()-)		5400	100			1.0	Ü					70Pi01	*
		5510	19			-0.4	1	88	88 ¹¹⁰ Rh	Bwg		00Kr.A	
110 Ag(β^{-}) 110 Cd		2891.4	3.0	2890.7	1.3	-0.2	_			8			*
		2892.9	2.0			-1.1	_					67Mo12	
	ave.	2892.4	1.7			-1.1	1	59	57 ¹¹⁰ Ag			average	
110 In(β^+) 110 Cd		3928	20	3878	12	-2.5	2						*
III(p) Cu		3868	20	2070		0.5	2					53B144	*
		3838	20			2.0	2					62Ka08	*
110 Sb $(\beta^+)^{110}$ Sn		8750	200	8392	15	-1.8	U					72Mi26	*
- · · · ·		9085	100			-6.9	В					72Si28	*
$*^{110}Rh-u$	M-A=-			cture gs+m at	220#(150							Nub16b	
*110Rh-120Sn,917				gs+m at 220#			=-82668	1(6.8) keV				Nub16b	
* ¹¹⁰ In-u				cture gs+m at	. ,			-(010)				Nub16b	
$*^{110}$ Pd(p,t) 108 Pd				n ¹⁰⁴ Pd, ¹⁰⁵ Po									**
$*^{110}$ Ru(β^-) ¹¹⁰ Rh		$00(50)$ to 1^+			,							Ens126	
$*^{110}$ Rh(β^-) ¹¹⁰ Pd				at 2790.64 and	1 2805 03	keV						Ens126	
$*^{110}$ Ag(β^-) ¹¹⁰ Cd				7.59 to 6 ⁺ lev			J					Ens126	
$*^{110}$ Ag(β^-) ¹¹⁰ Cd				110 Ag ⁿ at 11') keV				Ens126	
$*^{110}$ In(β^+) ¹¹⁰ Cd				20) respective								Nub16b	
* III(<i>p</i>) Cu	r .	evel at 657.76		20) respective	1y, 110111	III at 0	2.08(0.0	+) KC V				Ens126	
$*^{110}$ Sb(β^+) 110 Sn				pectively, to 2	+ level at	1211.72;	and other	$E_{oldsymbol{eta}^+}$				Ens126	
¹¹¹ Mo-u		-64348	279	-64348	14	0.0	U			GT1	1.5	04Ma.A	
¹¹¹ Ru-u		-82302	79	-82432	10	-1.7	U			JY0	1.0	03Ko.A	
$^{111}Rh-u$		-88282	79	-88357	7	-1.0	U			JY0	1.0	03Ko.A	
$^{111}Rh-^{120}Sn_{.925}$		2105.8	7.3				2			JY1	1.0	07Ha20	
¹¹¹ Ag-u		-94741	51	-94703.2	1.6	0.7	U			GS2	1.0	05Li24	*
$C_8 H_{15} - ^{111}Cd$		213184.4	3.9	213191.7	0.4	0.8	U			M16	2.5	63Da10	
		213197	40			-0.1	U			R12	1.5	83De51	
$C_7^{13}CH_{14}-^{111}Cd$		208719	19	208721.5	0.4	0.1	U			R12	1.5	83De51	
$C_7 O H_{11} - {}^{111}Cd$		176814	16	176806.2	0.4	-0.3	U			R12	1.5	83De51	
$C_9 H_3 - {}^{111}Cd$		119317	18	119291.3	0.4	-1.0	U			R12	1.5	83De51	
$C_8 \text{ N H}-^{111}\text{Cd}$		106723	17	106715.3	0.4	-0.3	U			R12	1.5	83De51	
¹¹¹ Cd-u		-95774	30	-95816.2	0.4	-1.4	U			GS2	1.0	05Li24	*
¹¹¹ Sb-u		-86837	30	-86782	10	1.8	U			GS2	1.0	05Li24	
¹¹¹ Sb- ¹³³ Cs _{.835}		-7834.2	9.5				2			SH1	1.0	07Ma92	
¹¹¹ Te- ¹³³ Cs 925		-51.8	6.9				2			SH1	1.0	07Ma92	
$^{111}I - ^{87}Rb_{1,276}$		46150.4	6.1	46155	5	0.7	1	70	$70^{-111}I$	JY1	1.0	09El07	
^{111}I ^{-133}Cs 835		9197	19	9217	5	1.0	U			SH1	1.0	07Ma92	
$^{111}\text{Tc} - ^{105}\text{Ru}_{1.057}$		23412	11			-	2			JY1	1.0	07Ha20	
111 Ru $^{-105}$ Ru _{1.057}		15080.6	10.0				2			JY1	1.0	07Ha20	
110Cd H-111Cd		6638	18	6648.73	0.18	0.4	U			R12	1.5	83De51	
¹¹¹ Mo ⁻¹¹¹ Tc		9753.0	7.3	0070.73	0.10	0.4	3			JY1	1.0	11Ha48	*
¹¹¹ Cd- ¹¹⁰ Cd		1180	11	1176.31	0.18	-0.1	U			M16	2.5	63Da10	40
cu cu		1208	34	1170.51	0.10	-0.6	U			R12	1.5	83De51	
		1200	J- r			0.0	U			1114	1.5	0520031	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	.	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹¹¹ Cd H- ¹¹⁰ Cd		8994	35	9001.34	0.18	0.1	U			R12	1.5	83De51
111 I(α) 107 Sb		3270.1	10.	3275	5	0.4	_					79Sc22
,		3293.0	10.			-1.8	_					92He.A
	ave.	3281	7			-0.9	1	50	$30^{-111}I$			average
111 Xe(α) 107 Te		3693.3	25.	3720	50	0.5	4					79Sc22
		3714.1	30.			0.1	4					81Sc17
110		3723.5	10.			-0.1	4					91He21
$^{110}\text{Pd}(n,\gamma)^{111}\text{Pd}$		5726.3	0.4				2			Bdn		06Fi.A
110 Cd $(n,\gamma)^{111}$ Cd		6980	100	6975.60	0.17	0.0	U					61Ja21
		6975.5	0.5			0.2	-					86Ba72
		6975.9	0.2			-1.5	-			ъ.		90Ne.B
111.01/ \110.01		6975.1	0.4	6077.60	0.17	1.2	-			Bdn		06Fi.A
$^{111}\text{Cd}(\gamma, n)^{110}\text{Cd}$		-6975	3	-6975.60	0.17	-0.2	U			McM		79Ba06
$^{110}\text{Cd}(d,p)^{111}\text{Cd}$		4740	30	4751.03	0.17	0.4	U			Pit		64Ro17
¹¹¹ Cd(d,t) ¹¹⁰ Cd		4750.68 -745	0.88 30	-718.37	0.17	0.4 0.9	U			Rez Pit		90Pi05 * 64Co11
$^{110}\text{Cd}(n,\gamma)^{111}\text{Cd}$	0710	- 745 6975.71	0.17	-/18.37 6975.60	0.17	-0.7	U 1	97	77 ¹¹⁰ Cd	PIL		
$^{111}\text{Te}(\varepsilon p)^{110}\text{Sn}$	ave.	5070	70	4966	15	-0.7 -1.5	U	91	// Cu			average 68Ba53
$^{111}\text{Tc}(\beta^-)^{111}\text{Ru}$		7480	80	7761	13	3.5	В			Jyv		96Kl.A
1c(ρ) Ku		7449	80	7701	14	3.9	В			Jyv		00Kr.A
111 Ru(β^{-}) 111 Rh		5039	50	5519	12	9.6	C			Jyv		00Kr.A
$^{111}\text{Rh}(\beta^{-})^{111}\text{Pd}$		3640	50	3681	7	0.8	Ü			Jyv		00Kr.A
rui(p) ru		3650	33	5001	,	1.0	Ü			Bwg		00Kr.A
$^{111}\text{Pd}(\beta^{-})^{111}\text{Ag}$		2210	100	2229.6	1.6	0.2	Ü			8		52Mc34 *
- 7 8		2190	50			0.8	U					57Kn.A *
		2160	100			0.7	U					60Pr07 *
111 Ag(β^{-}) 111 Cd		1028	3	1036.8	1.4	2.9	В					67Le06
		1035	2			0.9	2					71Na02
		1038.6	2.			-0.9	2					77Re12
$^{111}\text{Cd}(p,n)^{111}\text{In}$		-1635	20	-1643	3	-0.4	U			Oak		74Ki02
$^{111}\text{Sn}(\beta^+)^{111}\text{In}$		2530	30	2453	6	-2.6	U					51Mc11
$^{111}\text{Sb}(\beta^+)^{111}\text{Sn}$		4470	50	5102	10	12.6	В					72Si28 *
* ¹¹¹ Ag-u	M-A=-	-88221(44) ke	V for mix	ture gs+m at 5	9.82 keV							Nub16b **
* ¹¹¹ Cd-u				$Cd^{m} 11/2^{-}$ at 3								Nub16b **
* ¹¹¹ Mo ⁻ 111Tc				lso ¹⁰² Y and ¹			ne work)					GAu **
* ¹¹⁰ Cd(d,p) ¹¹¹ Cd				dded to statist								AHW **
$*^{111}Pd(\beta^{-})^{111}Ag$				(100) respectiv	ely, to 11	¹ Ag ^m at 59	9.82 keV					Nub16b **
$*^{111}Sb(\beta^+)^{111}Sn$	$E_{\beta^{+}} = 329$	90(50) to 5/2	level at l	154.48 keV								Ens095 **
$^{112}{\rm Tc} - ^{102}{\rm Ru}_{1.098}$		34976.0	5.9				2			JY1	1.0	07Ha20
¹¹² Ru-u		-81033	78	-81193	10	-2.1	U			JY0	1.0	03Ko.A
$^{112}Rh-u$		-85506	119	-85600	50	-0.8	1	16	16 ¹¹² Rh	JY0	1.0	03Ko.A *
¹¹² Ag- ¹³³ Cs _{.842}		-13342.0	2.6				2			MA8	1.0	10Br02
$C_8 H_{16} - ^{112}Cd$		222445.3	3.9	222436.63	0.27	-0.9	U			M16	2.5	63Da10
$C_7 O H_{12} - {}^{112}Cd$		186063	16	186051.12	0.27	-0.5	U			R12	1.5	83De51
$C_9 H_4 - ^{112}Cd$		128541	19	128536.25	0.27	-0.2	U			R12	1.5	83De51
110		128550	10			-0.9	U			R12	1.5	83De51
$C_8 N H_2 - {}^{112}Cd$		115979	14	115960.19	0.27	-0.9	U			R12	1.5	83De51
¹¹² In-u		-94366	58	-94461	5	-1.6	U			GS2	1.0	05Li24 *
$C_8 \; H_{16} - ^{112} Sn$		220384	9	220375.6	0.3	-0.4	U			M16	2.5	63Da10
112 9 86		220385	8	212000	0.2	-0.8	U			R13	1.5	83De51
112 Sn $^{-86}$ Kr $_{1.302}$		21210.3	2.5	21209.8	0.3	-0.2	U			JY1	1.0	11Ha48
¹¹² Sb-u ¹¹² Te- ¹³³ Cs _{.842}		-87597	30	-87600	19	-0.1	2			GS2	1.0	05Li24
¹¹² Ie ⁻¹³³ Cs _{.842}		-3662.7	9.0				2			SH1	1.0	07Ma92
1-155 Cs _{.842}		7614	11				2			SH1	1.0	07Ma92

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

1	Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
1	112 ph _120 s p	5640	110	5650	50	0.1	1	10	10 112Rh	IV1	1.0	07H220 *
198a 198a 198a 2995 20 20 20 20 20 20 20 2	112Pd_120Sp ass											
1	112 Sn_120 Sn_ccc											
	112 p u 105 p u 267			-3727.3	0.7	0.4		27	22 311			
	112 Cd 35 Cl 110 Cd 37 Cl			2706.5	0.2	0.7						
11												
112Cq - 1112Cd								00	07 1126			
11	311- Cu							99	9/ 311			
-1-410	112C4 111C4											
11°Ccd 11°Ccd 2-38 39	···Ca-···Ca			-1419.9	0.3							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112 Ca 110 Ca			242.6	0.2							
112 (A)												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										K1Z	1.3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Xe(\alpha)$ Te			3330	O							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	112cn/3Ha 6Ha)109cn			9696	0			70	70 109cm	MCII		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								11	11 ··-Pa			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										Roc		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	···Ca(n,γ)···2Ca			9393.93	0.28			00	01 111 01			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11201/ 11101			0202.02	0.20			89	81 111Cd			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	111Cd(d,p)112Cd			7169.36	0.28							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 a.v. 111 a.			2126 70	0.20							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112 Sn(d,t) 111 Sn									SPa		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cs(p) Xe			816	4							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112m (0=)112m			10272	1.1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1c(p)Ru			10372	11							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112p(n=)112pt			4100	50					-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	****Pa			6390	40			"	cc 112pt	-		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112ptm(0=)112pt					0.3		00	66 ·Kn			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				262	7	1.0				вwg		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{112}Ag(p)^{112}Cd$			3991.1	2.4							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1121(0+)1120.1			2505	4							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	····Ca(p,n)····In			-3367	4			50	50 112T			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 r (0-)112 g			((5	4					1 Ky		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								50	50 112In			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{112}\text{Sb}(\beta^+)^{112}\text{Sn}$			7056	18							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
**112Rh — u	1120 ()11201			7020	10					X 77 7		
\begin{array}{ll} \text{**} & \text{}	112Sn(p,n)112Sb									VUn		
*** ************* ********** *********	*112Rh—u						s+m at 34	40(70) keV				
	*112In-u			_								
**\frac{112}{12}\text{Pd}(\beta^-)^{112}\text{Ag} \text{\$E_{\beta}^- = 280(20) to (1^+) level at 18.5 keV} \text{Ens 14c} **\text{\$E_{\beta}^- = 3440(20) to 2^+ level at 617.518 keV} \text{Ens 14c} **\text{\$E_{\beta}^- = 3350(20) to 2^+ level at 617.518 keV; error increased by evaluator} \text{Ens 14c} **\text{\$E_{\beta}^- = 3350(20) to 2^+ level at 617.518 keV; error increased by evaluator} \text{Ens 14c} **						keV; <i>M</i> −	A = -795	71.2(7.0) ke	eV			
** E_{β}^{-12} Ag(β^{-}) 12Cd E_{β}^{-3} 440(20) to 2 ⁺ level at 617.518 keV Ens14c ** E_{β}^{-1} Ens14c 0.5 Ens14c ** E_{β}^{-3} Ens14c 0.5 Ens14c **					′							
* 112 Ag(β^-) 112 Cd $E_{\beta^-}^{'}$ =3350(20) to 2 ⁺ level at 617.518 keV; error increased by evaluator Ens14c **												
	$*^{112}$ Ag(β^-) 112 Cd											
*112Sb(β^+)112Sn E_{β^+} =5200(100) 4750(50) 4783(26) respectively, to 2 ⁺ level at 1256.69 keV Ens14c **												
	$*^{112}$ Sb $(\beta^+)^{112}$ Sn	$E_{\beta^+} = 5200(100)$	4750(50)	4783(26) resp	ectively,	to 2 ⁺ leve	el at 1256	.69 keV				Ens14c **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference	-
													-
¹¹³ Mo-u		-57317	337	-56350#	320#	1.1	D			GT3	2.5		*
113 Tc $-u$		-67633	268	-67431	4	0.5	O			GT1	1.5	04Ma.A	
440		-67502	106			0.3	U			GT2	2.5	08Kn.A	
113 Tc $-^{129}$ Xe _{.876}		15981.0	3.6				2			JY1	1.0	11Ha48	
¹¹³ Ru–u		-77031	93	-77150	40	-1.3	-			JY0	1.0	03Ko.A	*
		-77240	110			0.3	O			GT2	2.5	08Kn.A	
		-77295	140			0.4	_			GT2	2.5	08Su19	
440	ave.	-77050	90			-1.2	1	19	19 ¹¹³ Ru			average	
$^{113}Rh-u$		-84464	83	-84560	8	-1.2	U			JY0	1.0	03Ko.A	
$C_9 H_5 - {}^{113}Cd$		134721.1	3.9	134717.06	0.26	-0.4	U			M16	2.5	63Da10	
		134727	19			-0.3	U			R12	1.5	83De51	
		134728	5			-1.5	U			R12	1.5	83De51	
$C_7 O H_{13} - {}^{113}Cd$		192250	16	192231.94	0.26	-0.8	U			R12	1.5	83De51	
$C_6^{13}COH_{12}-^{113}Cd$		187772	17	187761.74	0.26	-0.4	U			R12	1.5	83De51	
$C_8 \text{ N H}_3 - ^{113}\text{Cd}$		122161	19	122141.00	0.26	-0.7	U			R12	1.5	83De51	
¹¹³ Cd-u		-95506	93	-95591.90	0.26	-0.9	U			GS2	1.0	05Li24	*
$C_9 H_5 - ^{113}In$		135015	9	135064.71	0.20	2.2	U			M16	2.5	63Da10	
		135087	6			-2.5	U			R12	1.5	83De51	
$C_8 \text{ N H}_3 - ^{113} \text{In}$		122506	14	122488.65	0.20	-0.8	U			R12	1.5	83De51	
¹¹³ In-u		-95969	126	-95939.55	0.20	0.2	U			GS2	1.0	05Li24 =	*
¹¹³ Sn-u		-94796	39	-94824.2	1.7	-0.7	U			GS2	1.0	05Li24	*
¹¹³ Sb-u		-90635	30	-90625	18	0.3	R			GS2	1.0	05Li24	
$^{113}\text{Te}-\text{u}$		-84109	30				2			GS2	1.0	05Li24	
^{113}I – ^{133}Cs 850		4015.9	8.6				2			SH1	1.0	07Ma92	
113 Xe $-^{133}$ Cs 850		13585.5	8.1	13588	7	0.2	1	82	82 ¹¹³ Xe	SH1	1.0	07Ma92	
113 Ru $^{-105}$ Ru _{1 076}		22087	44	22110	40	0.6	1	81	81 ¹¹³ Ru	JY1	1.0	07Ha20	*
$^{113}\text{Rh} - ^{120}\text{Sn}_{942}$		7565.4	7.6				2			JY1	1.0	07Ha20	
$^{113}\text{Pd} - ^{120}\text{Sn}_{.942}$		2387.1	7.4				2			JY1	1.0	07Ha20	
¹¹³ Cd ³⁵ Cl- ¹¹¹ Cd ³⁷ Cl		3174	2	3174.4	0.4	0.1	U			H11	4.0	63Bi12	
$^{112}\text{Cd H}-^{113}\text{Cd}$		6164	20	6180.82	0.23	0.6	U			R12	1.5	83De51	
$^{113}\text{Cd} - ^{112}\text{Cd}_{1.009}$		2519.36	0.29	2519.33	0.23	-0.1	1	65	35 ¹¹² Cd	MS1	1.0	16Ga24	
$^{113}In-^{112}Cd_{1.009}$		2171.26	0.32	2171.68	0.26	1.3	1	65	48 ¹¹² Cd	MS1	1.0	16Ga24	
¹¹³ Cd- ¹¹¹ Cd H		-7623	42	-7600.7	0.4	0.4	U			R12	1.5	83De51	
¹¹³ Cd- ¹¹² Cd		1642	11	1644.21	0.23	0.1	Ü			M16	2.5	63Da10	
		1620	40			0.4	Ü			R12	1.5	83De51	
¹¹³ In- ¹¹² Cd		1297	45	1296.56	0.26	0.0	Ü			R12	1.5	83De51	
¹¹³ Cd- ¹¹⁰ Cd H		-6412	32	-6424.4	0.4	-0.3	Ü			R12	1.5	83De51	
¹¹³ Cd- ¹¹¹ Cd		242	35	224.3	0.4	-0.3	Ü			R12	1.5	83De51	
¹¹³ Cd H- ¹¹² Cd		9467	35	9469.25	0.23	0.0	Ü			R12	1.5	83De51	
$^{113}\text{I}(\alpha)^{109}\text{Sb}$		2706.0	41.5	2707	10	0.0	Ü			1112	1.5	81Sc17	
113 Xe(α) 109 Te		3094.8	15.	3087	8	-0.5	1	24	18 ¹¹³ Xe			79Sc22	
$^{111}\text{Cd}(t,p)^{113}\text{Cd}$		7456	20	7451.9	0.3	-0.2	Ü	24	10 /10	Ald		67Hi01	
¹¹³ Cd(p,t) ¹¹¹ Cd		-7456	5	-7451.9	0.3	0.8	U			Min		73Oo01	
113 In(p,t) 111 In $^{-115}$ In() 113 In		-810	10	-806	3	0.4	1	12	12 ¹¹¹ In	Roc		74Ma09	
113 In(p,t) 111 In $^{-112}$ Cd() 110 Cd		-746.3	4.1	-300 -748	3	-0.5	1	69	69 ¹¹¹ In	SPa		80Ta07	
$^{112}\text{Cd}(n,\gamma)^{113}\text{Cd}$		6550	100	6539.74	0.22	-0.3 -0.1	U	09	09 111	эга		61Ja21	
$\operatorname{Cd}(\Pi,\gamma)$		6542.0		0339.74	0.22								
$^{112}\text{Cd}(d,p)^{113}\text{Cd}$			0.2	1215 10	0.22	-11.3	C			D:+		90Ne.A	
Cu(a,p) Ca		4318	30	4315.18	0.22	-0.1	U	11	6 112Cd	Pit		64Ro17	
$^{113}\text{Cd}(d,t)^{112}\text{Cd}$		4315.56	0.64	202.51	0.22	-0.6	1	11	6Cd	Rez		90Pi05 = 64Co11	*
¹¹³ In(d,t) ¹¹² In		-254	30	-282.51	0.22	-1.0	U			Pit			
		-3180	25	-3191	4	-0.4	U			Pit		67Hj03	
112 Sn(n, γ) 113 Sn		7741.9	2.3	7744.4	1.6	1.1	_			ORn		75Sl.A	
112 Sn(d,p) 113 Sn		5504	25	5519.8	1.6	0.6	U			Pit		64Co11	
112g (->113g		5518.2	3.2	77.44.4	1.0	0.5	_	70	co 113 c	SPa		75Be09	
112 Sn(n, γ) 113 Sn	ave.	7742.2	1.9	7744.4	1.6	1.2	1	70	69 ¹¹³ Sn	C		average	
112 Sn(3 He,d) 113 Sb		-2400	40	-2443	17	-1.1	R			Sac		68Co22	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
113 Xe(ε p) 112 Te		7920	150	8075	11	1.0	o					82Pl05
		8300	150			-1.5	U					05Ja10
113 Cs(p) 112 Xe		967	4	972.8	2.2	1.5	o					84Fa04 *
*		982.7	4.			-2.5	3					92He.A
		967.6	6.			0.9	3					94Pa12
		968.6	3.			1.4	3					95Ho26
113 Ru(β^-) 113 Rh		6480	50	6900	40	8.4	C			Jyv		00Kr.A
113 Rh(β^{-}) 113 Pd		5008	50	4824	10	-3.7	C			Jyv		00Kr.A
$^{113}\text{Pd}(\beta^{-})^{113}\text{Ag}$		3360	150	3436	18	0.5	U					75Br.A
		3340	35			2.7	В			Stu		90Fo07
113 Ag(β^{-}) 113 Cd		2010	20	2016	17	0.3	2					57Je.A
		2070	150			-0.4	U					70Ma47 *
		2031	30			-0.5	2			Stu		90Fo07 *
$^{113}\text{Cd}(\beta^{-})^{113}\text{In}$		326.4	15.	323.83	0.27	-0.2	U					51Ca43 *
		316.4	30.			0.2	U					54De13 *
		320	10			0.4	U			CIT		88Mi13
		344.9	21.0			-1.0	U					07Be61
112		322.2	0.9			1.8	U					09Da03
113 Sn(β^+) 113 In		1034.6	5.0	1039.0	1.6	0.9	_					93Li10 *
113 In(p,n) 113 Sn		-1809	6	-1821.3	1.6	-2.1	_		112	Oak		73Ra13
113 Sn(β^+) 113 In	ave.	1031	4	1039.0	1.6	2.0	1	17	17 ¹¹³ Sn			average
113 Sb $(\beta^+)^{113}$ Sn		3934	30	3911	17	-0.8	2					61Se08 *
112 - 112		3945	50			-0.7	2					69Ki16 *
$^{113}\text{Te}(\beta^+)^{113}\text{Sb}$		5520	300	6070	30	1.8	U					74Bu21
112-		5720	200	112		1.7	U					74Ch17
* ¹¹³ Mo-u				IS suggest ¹¹³ !								GAu **
¹¹³ Ru−u				ixture gs+m at								Nub16b **
* ¹¹³ Ru—u				ixture gs+m at								Nub16b **
* ¹¹³ Ru-u				nixture gs+m								Nub16b **
* ¹¹³ Cd-u				ixture gs+m at								Nub16b **
* ¹¹³ In-u				ixture gs+m at								Nub16b **
* ¹¹³ Sn-u				ixture gs+m at								Nub16b **
* ¹¹³ Ru- ¹⁰⁵ Ru _{1.076}				gs+m at 130(1822(12)	keV				Nub16b **
* ¹¹² Cd(d,p) ¹¹³ Cd		•		added to stati		0.40						AHW **
$*^{113}$ Cs(p) $^{\bar{1}12}$ Xe				perseded by 9:								87Gi07 **
$*^{113}$ Ag(β^-) ¹¹³ Cd				at 43.50 to 5/2	e level at	583.962 k	æV					Ens106 **
$*^{113}$ Ag(β^-) ¹¹³ Cd				t 43.50 keV								Nub16b **
$*^{113}\text{Cd}(\beta^-)^{113}\text{In}$				ively, from 113		3.54 keV						Nub16b **
113 Sn(β^+) ¹¹³ In				at 391.699 ke								Ens106 **
$*^{113}$ Sb $(\beta^+)^{113}$ Sn				ctively, to 3/2	⁺ level at ²	198.06 ke	V,					Ens106 **
*	plus 6%	to 5/2 ⁺ at 4	109.83 ke	V								Ens106 **
114—												
114 Tc $-u$		-62459	365	-62910	470	-0.8	0			GT1	1.5	04Ma.A
114- 105		-62910	186				2			GT3	2.5	16Kn03
114 Ru $^{-105}$ Ru $_{1.086}$		24805	13	24802	5	-0.2	U			JY1	1.0	07Ha20
¹¹⁴ Ru-u		-75642	236	-75386	4	0.7	U			GT1	1.5	04Ma.A
114Rh-u		-81193	120	-81280	80	-0.7	1	41	41 ¹¹⁴ Rh	JY0	1.0	03Ko.A *
114 A ~ 155 Co		-10149.3	4.9				2			MA8	1.0	10Br02
¹¹⁴ Ag- ¹³³ Cs _{.857}		237487.6	4.	237485.59	0.30	-0.2	U			M16	2.5	63Da10
$C_8 H_{18} - ^{114}Cd$			1 ~	164714.57	0.30	0.1	U			R12	1.5	83De51
		164713	15	104/14.5/								
C ₈ H ₁₈ - ¹¹⁴ Cd C ₆ O ₂ H ₁₀ - ¹¹⁴ Cd		164711	15			0.2	U			R12	1.5	83De51
C ₈ H ₁₈ - ¹¹⁴ Cd C ₆ O ₂ H ₁₀ - ¹¹⁴ Cd		164711 143591	15 5	143585.20	0.30	-0.8	U			R12	1.5	83De51
C ₈ H ₁₈ - ¹¹⁴ Cd C ₆ O ₂ H ₁₀ - ¹¹⁴ Cd C ₉ H ₆ - ¹¹⁴ Cd		164711 143591 143586	15 5 8	143585.20	0.30	$-0.8 \\ -0.1$	U U			R12 R12	1.5 1.5	83De51 83De51
$C_8 H_{18}^{-114}Cd$ $C_6 O_2 H_{10}^{-114}Cd$ $C_9 H_6^{-114}Cd$ $C_8 ^{13}C H_5^{-114}Cd$		164711 143591 143586 139117	15 5 8 17	143585.20 139115.01		-0.8 -0.1 -0.1	U			R12 R12 R12	1.5	83De51 83De51 83De51
C ₈ H ₁₈ - ¹¹⁴ Cd C ₆ O ₂ H ₁₀ - ¹¹⁴ Cd C ₉ H ₆ - ¹¹⁴ Cd		164711 143591 143586	15 5 8	143585.20	0.30	$-0.8 \\ -0.1$	U U			R12 R12	1.5 1.5	83De51 83De51

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-pu-150	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
		1		.,								
$^{114}\text{Cd} - ^{133}\text{Cs}_{.857}$		-15611.4	4.2	-15607.34	0.30	1.0	U			MA8	1.0	10Br02
¹¹⁴ In-u		-94986	68	-95083.6	0.3	-1.4	U			GS2	1.0	05Li24 *
$C_8 H_{18} - ^{114} Sn$		238092	10	238070.45	0.03	-0.9	U			M16	2.5	63Da10
- 0 10		238066	8			0.4	U			R13	1.5	83De51
¹¹⁴ Sb-u		-90731	30	-90711	23	0.7	1	61	61 ¹¹⁴ Sb	GS2	1.0	05Li24
¹¹⁴ Te-u		-87911	30	70711	23	0.7	2	01	01 50	GS2	1.0	05Li24
114 Xe $^{-133}$ Cs _{.857}		9008	12									03L124 04Di18
114Ru-120Sn _{.950}							2			MA6	1.0	
114Pt 120G		17522.0	3.7	11620	00	0.6	2	50	50 11/D1	JY1	1.0	11Ha48
¹¹⁴ Rh- ¹²⁰ Sn _{.950}		11570	100	11630	80	0.6	1	59	59 ¹¹⁴ Rh	JY1	1.0	07Ha20 *
¹¹⁴ Pd- ¹²⁰ Sn _{.950}		3277.0	7.4				2			JY1	1.0	07Ha20
¹¹⁴ Cd ³⁵ Cl- ¹¹² Cd ³⁷ Cl		3546	3	3551.22	0.28	0.4	U			H11	4.0	63Bi12
		3547	3			0.6	U			H20	2.5	66Ma05
		3548.5	1.0			1.1	U			H26	2.5	73Me28
113 Cd H $-^{114}$ Cd		8859	18	8868.14	0.15	0.3	U			R12	1.5	83De51
$^{114}\text{Tc}^{m}-^{114}\text{Ru}$		12651	13				3			JY1	1.0	11Ha48 *
¹¹⁴ Cd- ¹¹² Cd H		-7225	33	-7223.93	0.27	0.0	Ü			R12	1.5	83De51
¹¹⁴ Cd- ¹¹³ Cd		-1040	11	-1043.11	0.15	-0.1	U			M16	2.5	63Da10
Cu- Cu		-1040 -1032	33	-1043.11	0.13	-0.1 -0.2	U			R12	1.5	83De51
¹¹⁴ Cd- ¹¹³ In				(05.5	0.2							
		-679	45	-695.5	0.3	-0.2	U			R12	1.5	83De51
¹¹⁴ Cd- ¹¹¹ Cd H		-8651	35	-8643.8	0.4	0.1	U			R12	1.5	83De51
¹¹⁴ Cd- ¹¹² Cd		587	33	601.11	0.27	0.3	U			R12	1.5	83De51
$^{114}\text{Cd H} - ^{113}\text{Cd}$		6821	35	6781.92	0.15	-0.7	U			R12	1.5	83De51
114 Ba $(\gamma,^{12}C)^{102}$ Sn		18110	780	19029	23	1.2	U					95Gu01
$^{114}\text{Cs}(\alpha)^{110}\text{I}$		3343.5	30.	3360	50	0.3	o			GSa		80Ro04
		3357.0	30.				4			GSa		81Sc17
114 Ba(α) 110 Xe		3534.2	40.	3592	19	1.4	5					02Ma19
24(0) 110		3606.8	20.	5572		-0.7	5					16Ca33
112 Cd(t,p) 114 Cd		7105	20	7100.91	0.25	-0.2	Ü			Ald		67Hi01
¹¹⁴ Cd(p,t) ¹¹² Cd		-7106	5	-7100.91	0.25	1.0	U			Min		73Oo01
112 Sn(t,p) 114 Sn		9579	15	9565.51	0.30	-0.9	U			Ald		69Bj01
114 Sn(p,t) 112 Sn		-9582	15	-9565.51	0.30	1.1	U			Roc		70F108
113 Cd(n, γ) 114 Cd		9042.76	0.20	9042.97	0.14	1.0	-			ILn		79Br25 Z
		9043.18	0.19			-1.1	-			Bdn		06Fi.A
$^{114}\text{Cd}(\gamma, n)^{113}\text{Cd}$		-9050	4	-9042.97	0.14	1.8	U			McM		79Ba06
$^{113}\text{Cd}(d,p)^{114}\text{Cd}$		6817	30	6818.40	0.14	0.0	U			Pit		64Co11
* **		6822	8			-0.5	U			MIT		67Co15
$^{114}\text{Cd}(d,t)^{113}\text{Cd}$		-2801	30	-2785.74	0.14	0.5	U			Pit		64Ro17
$^{113}\text{Cd}(n,\gamma)^{114}\text{Cd}$	ave.	9042.98	0.14	9042.97	0.14	-0.1	1	98	93 ¹¹⁴ Cd			average
113 In(n, γ) 114 In	avc.	7274.0	1.2	7274.00	0.25	0.0	Ü	70)3 Cu			75Ra07 Z
$III(II, \gamma) = III$		7273.83	0.27	7274.00	0.23	0.6	1	88	82 ¹¹⁴ In	Bdn		06Fi.A
1131(4)1141				5040 44	0.25			00	62 III			
113 In(d,p) 114 In		5082	25	5049.44	0.25	-1.3	U			Pit		67Hj03
114 Sn(d, 3 He) 113 In		-2980	50	-2988.10	0.19	-0.2	U			Sac		69Co03
114 Sn(p,d) 113 Sn		-8101	15	-8078.3	1.6	1.5	U			Har		70Ca01
114 Sn(d,t) 113 Sn		-4052	20	-4045.7	1.6	0.3	U			Pit		64Co11
		-4043.7	4.2			-0.5	1	14	14 ¹¹³ Sn	SPa		75Be09
$^{114}\mathrm{Cs}(\varepsilon\mathrm{p})^{113}\mathrm{I}$		8730	150	9150	70	2.8	В					82Pl05
114 Ru $(\beta^{-})^{114}$ Rh		6100	200	5490	70	-3.1	В			Jyv		92Jo05 *
V		6120	200			-3.2	C			Jyv		94Jo.A
$^{114}\text{Rh}(\beta^{-})^{114}\text{Pd}$		6500	500	7780	70	2.6	U			Jyv		88Ay02
(p) 1 u		7392	53			7.3	C			Jyv		00Kr.A
$^{114}\text{Pd}(\beta^{-})^{114}\text{Ag}$		1450		1440	8					J y v		75Br.A
ru(p) Ag			100	1440	o	-0.1	U			T		
		1450	100			-0.1	О			Jyv		89Ay.A
		1450	100			-0.1	0			Jyv		89Ko22
		1414	30			0.9	U			Stu		90Fo07
114 - 114		1451	25			-0.4	U			Jyv		94Jo.A
114 Ag(β^{-}) 114 Cd		4850	150	5084	5	1.6	U					71Ro19
		4900	260			0.7	U					72Wa06
		5160	110			-0.7	o			Stu		84Lu02
		5018	35			1.9	U			Stu		90Fo07

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	value	v_i	Dg	Signf.	Mair	n infl.	Lab	F	Reference
114 In(β^+) 114 Cd	1422	25	1445.1	0.4	0.9	U						56Gr35
in(p) in Ca	1417		1443.1	0.4								
$^{114}\text{In}(\beta^{-})^{114}\text{Sn}$		20	1000 0	0.2	1.4	U						57Dz64
in(p) in Sn	1987	2	1989.9	0.3	1.5	U						61Da01
	1989	1			0.9	_ D						61Ni02
	1980	2			5.0	В						64An12
	1988.5	1.0			1.4	_	10	10	11/1-			68Ze04
114 at (0 1) 114 a	ave. 1988.8	0.7			1.7	1	18	18	¹¹⁴ In			average
$^{114}\text{Sb}(\beta^+)^{114}\text{Sn}$	5690	100	6063	22	3.7	C						69Bu.A
114 114	6370	100			-3.1	В			114			72Mi27
$^{114}Sn(p,n)^{114}Sb$	-6875	35	-6845	22	0.8	1	39	39	^{114}Sb	VUn		76Ka19
¹¹⁴ Rh−u	Average of 2 values; <i>M</i>				s+m at 20	00#150 k	eV					Nub16b *
k ¹¹⁴ In—u	M - A = -88384(31) ke		•									Nub16b *
114 Rh -120 Sn $_{.950}$	D_M =11678.0(7.8) μ u	for mixture g	s+m at 200#15	0 keV; <i>M</i>	-A = -75	665.6(7.	.3) keV					Nub16b >
$*^{114}$ Tc m - 114 Ru	Mixture of two isomer	ric states with	stronger comp	onent of	low-spin	state						11Ri01 *
*	however, estimates fr	om TMS sug	gest this is 1147	Γc^m								GAu *
$*^{114}$ Ru(β^-) 114 Rh	E_{β} = 5910(120) doubl	let to (2) ⁺ lev	el at 127.0, 1+	at 255.2	keV							Ens123 *
$*^{114}Sb(\beta^+)^{114}Sn$	$E_{\beta^+}^{r}$ = 3365(50) to 2 ⁺ a	at 1299.907, c	original error do	oubled see	e 114Sn(p	n)						Ens123 *
$*^{114}$ Sb $(\beta^+)^{114}$ Sn	$E_{\beta^+}^{}=4050(100)$ to 2^+	at 1299.907	level, see 112 Sb	$o(\beta^+)$	•							Ens123 *
115 Tc $-u$	-60462	339				2				GT3	2.5	16Kn03
¹¹⁵ Rh-u	-79664	85	-79689	8	-0.3	U				JY0	1.0	03Ko.A
¹¹⁵ Ag- ¹³³ Cs _{.865}	-9439	24	-9449	20	-0.4	1	67	67	¹¹⁵ Ag	MA8	1.0	10Br02
$C_9 H_7 - ^{115} In$	150910	8	150896.452	0.012	-0.7	U			8	M16	2.5	63Da10
Cy II, III	150932	16	150070.152	0.012	-1.5	Ü				R12	1.5	83De51
C ₆ O ₂ H ₁₁ - ¹¹⁵ In	172055	16	172025.820	0.012	-1.2	Ü				R12	1.5	83De51
$C_8 \text{ N H}_5 - ^{115} \text{In}$	138355	13	138320.392	0.012	-1.2	U				R12	1.5	83De51
¹¹⁵ In–u	-96095	30	-96121.226	0.012	-0.9	U				GS2	1.0	05Li24
$C_9 H_7 - ^{115}Sn$												
C ₉ H ₇ Sn	151411	8	151430.528	0.016	1.0	U				M16	2.5	63Da10
¹¹⁵ Sb-u	151440	8	02.402	17	-0.8	U				R13	1.5	83De51
115 Te—u	-93402	30	-93402	17	0.0	2				GS2	1.0	05Li24
115 Te-u	-88098	30				2				GS2	1.0	05Li24
¹¹⁵ I-u	-81952	31				2				GS2	1.0	05Li24
¹¹⁵ Xe- ¹³³ Cs _{.865}	8078	13				2				MA6	1.0	04Di18
115 Ru $^{-120}$ Sn $_{.958}$	22633	95				2				JY1	1.0	07Ha20
$^{115}Rh-^{120}Sn_{.958}$	14001.6	7.8				2				JY1	1.0	07Ha20
$^{115}\text{Pd}-^{120}\text{Sn}_{.958}$	7347	15	7349	15	0.2	1	94	94	¹¹⁵ Pd	JY1	1.0	07Ha20
115 Sn $^{-120}$ Sn $_{958}$	-2963.9	2.0	-2964.7	0.9	-0.4	1	21	21	120 Sn	JY1	1.0	11Ha48
$^{113}\text{Cd} - ^{115}\text{In}_{983}$	-1104.76	0.34	-1104.74	0.26	0.1	1	59	59	¹¹³ Cd	MS1	1.0	16Ga24
$^{113}In - ^{115}In_{983}$	-1452.08	0.23	-1452.39	0.20	-1.3	1	77	77	113 In	MS1	1.0	16Ga24
$^{115}In-^{115}Sn$	534.0768		534.077	0.010	0.0	1	100		¹¹⁵ Sn	FS1	1.0	09Mo23
	534.28	0.18	22 1.011	5.510	-1.1	Ü	100	100	511	JY1	1.0	09Wi10
¹¹⁵ In- ¹¹⁴ Cd	483	45	513.78	0.30	0.5	Ü				R12	1.5	83De51
$^{115}\text{Sn} - ^{114}\text{Sn}$	573	11	564.565	0.027	-0.3	U				M16	2.5	63Da10
$^{115}In - ^{113}In$	-200	28	-181.67	0.027	-0.3 0.4	U				R12	1.5	83De51
$^{115}In-^{129}Xe$	-200 -902.0845		-181.07 -902.085	0.20	0.4		100	100	¹¹⁵ In	FS1	1.0	09Mo23
¹¹⁵ Sn- ¹²⁹ Xe						1	100	100	In			
	-1436.1613		-1436.162	0.015	0.0	0				FS1	1.0	09Mo23
¹¹³ Cd(t,p) ¹¹⁵ Cd	6702	20	6702.0	0.6	0.0	U				Ald		67Hi01
¹¹⁴ Cd(n,γ) ¹¹⁵ Cd	6160	100	6140.9	0.6	-0.2	U						61Ja21
$^{114}\text{Cd}(d,p)^{115}\text{Cd}$	3923	30	3916.3	0.6	-0.2	U				Pit		64Ro17
	3929	20			-0.6	U			115	Oak		64Si18
	3916.30	0.59			0.0	1	100	100	¹¹⁵ Cd	Rez		90Pi05
	1220	15	1316.91	0.28	-0.2	U						70Th.A
¹¹⁴ Cd(³ He,d) ¹¹⁵ In	1320									Phi		(00 01
$^{114}\text{Cd}(^{3}\text{He,d})^{115}\text{In}$ $^{115}\text{In}(\gamma, n)^{114}\text{In}$	-9025	29	-9037.9	0.3	-0.4	U				PIII		60Ge01
		29 5	-9037.9	0.3	$-0.4 \\ 0.2$							79Ba06
	-9025		-9037.9 -2780.6	0.3	-0.4 0.2 0.3	U U U				McM Pit		

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	. Comparison of inpu Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	•										
114 Sn(n, γ) 115 Sn	7545.5	2.0	7545.429	0.025	0.0	U		114	ORn		78Ra16 Z
1140 (1.)1150	7545.427	0.025	5220.062	0.025	0.1	1	100	100 ¹¹⁴ Sn			16Ur03
114 Sn(d,p) 115 Sn	5329	25	5320.863	0.025	-0.3	U			Pit		64Co11 75Be09
¹¹⁵ Sn(d,t) ¹¹⁴ Sn	5320.6 -1304	3.4 30	-1288.200	0.025	0.1 0.5	U U			SPa Pit		64Co11
115 Xe(ε p) 114 Te	6200	130	-1288.200 5940	30	-2.0	U			PIL		72Ho18
115 Ru(β^-) 115 Rh	7780	100	8040	90	2.6	C			Jyv		00Kr.A
$^{115}\text{Rh}(\beta^{-})^{115}\text{Pd}$	6000	500	6197	15	0.4	U			Jyv		88Ay01
$Kii(p^{-})$ Tu	6566	50	0177	13	-7.4	C			Jyv		00Kr.A
$^{115}\text{Pd}(\beta^{-})^{115}\text{Ag}$	4584	50	4556	22	-0.6	1	19	12 115 Ag	Stu		90Fo07
$^{115}\text{Ag}(\beta^{-})^{115}\text{Cd}$	3180	100	3102	18	-0.8	Ü			,		64Ba36 *
80,	3118	100			-0.2	U					78Ma18 *
	3091	40			0.3	1	21	21 ¹¹⁵ Ag	ţ		90Fo07 *
$^{115}\text{Cd}(\beta^-)^{115}\text{In}$	1460	4	1451.9	0.7	-2.0	U			,		74Bo26 *
•	1431	5			4.2	В					75Bo29 *
	1440	2			5.9	В					76Ra16 *
$^{115}\text{In}(\beta^{-})^{115}\text{Sn}$	494	20	497.489	0.010	0.2	U					49Be53 *
	630	30			-4.4	В					50Ma76
	625	70			-1.8	U					61Be15
	494	30			0.1	U					62Se03 *
	480	30			0.6	U					62Wa15
	495 482	20 15			0.1 1.0	U U					72Mu02 78Pf01 *
115 Sb $(\beta^+)^{115}$ Sn	3030	20	3030	16	0.0	R					78Pf01 * 61Se08 *
$*^{115}$ Ag $-^{133}$ Cs _{.865}	D_M =-9416.7(9.2) μ u						1052 0(8 6)	keV			Nub16b **
$*^{115}$ Te $-u$	M - A = -82058(28) ke				J KC V, MI	71=-0	1 /32.7(0.0)	rc v			Nub16b **
$*^{115}$ Ru $-^{120}$ Sn _{.958}	D_M =22767.3(7.3) μ u				1 – A=–6	6064.80	6.9) keV				Nub16b **
* ¹¹⁵ Pd- ¹²⁰ Sn _{.958}	D_M =7348(15), 7442(1		-			(0.5) 110 .				Nub16b **
*115Sn-129Xe	Used are the equation					blets					GAu **
$*^{114}Cd(d,p)^{115}Cd$	Estimated systematic										AHW **
$*^{115}$ Ag(β^{-}) ¹¹⁵ Cd	E_{β} = 2950(100) to (3/										Ens12a **
$*^{115}$ Ag(β^-) ¹¹⁵ Cd	E_{β}^{-} =721(100) to (23)										Ens12a **
$*^{115}$ Ag(β^-) ¹¹⁵ Cd	$Q_{\beta}^{-}=3132(40) \text{ from}^{-1}$				Ρ						Nub16b **
$*^{115}\text{Cd}(\beta^-)^{115}\text{In}$	$E_{\beta}^{r} = 593(2), 636(2) \text{ t}$			1/2 ⁺ at 82	8.588 ke	V					Ens12a **
$*^{115}\text{Cd}(\beta^-)^{115}\text{In}$	$E_{\beta}^{\prime} = 320(5), 679(6) \text{ f}$	rom 115Cdm	181.0 to 13/2	2+ 1290.5	92, 7/2+	933.780)				Ens12a **
$*^{115}Cd(\beta^-)^{115}In$	Q_{β}^{-} =1621(2) from ¹¹	⁵ Cd ^m at 181	.0 keV								Nub16b **
$*^{115}$ In(β^-) ¹¹⁵ Sn	$Q_{\beta}^{r} = 830(20)$ from ¹¹										Nub16b **
$*^{115}$ In(β^-) ¹¹⁵ Sn	$Q_{\beta}^{\prime} = 830(30)$ from ¹¹	$^{5}In^{m}$ at 336.	244 keV								Nub16b **
$*^{115}$ In(β^-) ¹¹⁵ Sn	$Q_{\beta^-}^{\prime}$ is larger than firs	t excitation	energy 497.3	34(0.023)	in $^{115}\mathrm{Sn}$						05Ca03 **
$*^{115}$ Sb $(\beta^+)^{115}$ Sn	$E_{\beta^+}^{r} = 1510(20)$ to $3/2^{-1}$	⁺ level at 49	7.334 keV								Ens12a **
116 Ru $-^{129}$ Xe $_{.899}$	16821.2	4.0				2			JY1	1.0	11Ha48
116Rh—u	-75936		-75940	80	0.0	_			JY0	1.0	03Ko.A *
10. u	−75960	140	,0,,0	00	0.1	_			GT2	2.5	08Kn.A *
	ave. -75940	130			0.0	1	37	37 ¹¹⁶ Rh			average
116 Ag $-^{133}$ Cs $_{.872}$	-6167.3	3.5				2			MA8	1.0	10Br02
C ₉ H ₈ -116Cd	157837.4	2.9	157837.03	0.17	-0.1	U			M16	2.5	63Da10
	157851	5			-1.9	U			R12	1.5	83De51
	157846	22			-0.3	U			R12	1.5	83De51
$C_6 O_2 H_{12} - ^{116}Cd$	178982	15	178966.40	0.17	-0.7	U			R12	1.5	83De51
$C_8^{13}CH_7-^{116}Cd$	153376	8	153366.83	0.17	-0.8	U			R12	1.5	83De51
	153382	22			-0.5	U			R12	1.5	83De51
$C_8 \text{ N H}_6 - ^{116}\text{Cd}$	145262	17	145260.97	0.17	0.0	U			R12	1.5	83De51
$C_9 H_8 - ^{116}Sn$	160861	8	160857.43	0.10	-0.2	U			M16	2.5	63Da10
	160857	8			0.0	U			R13	1.5	83De51

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab F	Reference
¹¹⁶ Sb-u	-93128	129	-93207	6	-0.6	U			GS2 1.0	05Li24 *
116 Te $-$ u	-91540	30				2			GS2 1.0	05Li24
116 Xe $^{-133}$ Cs _{.872}	4027	14				2			MA6 1.0	04Di18
$^{116}\text{Rh} - ^{120}\text{Sn}_{.967}$	18633	100	18630	80	0.0	1	63	63 ¹¹⁶ Rh	JY1 1.0	07Ha20 *
$^{116}\text{Pd} - ^{120}\text{Sn}_{.967}$	8868.0	7.6				2			JY1 1.0	07Ha20
¹¹⁶ Cd ³⁵ Cl- ¹¹⁴ Cd ³⁷ Cl	4353	3	4348.4	0.3	-0.4	U			H11 4.0	63Bi12
	4344	2			0.9	U			H20 2.5	66Ma05
	4348.7	1.2			-0.1	o			H26 2.5	73Me28
	4347.46	0.44			0.8	1	10	7 ¹¹⁴ Cd	H49 2.5	10Mc04
$^{116}\text{Cd} - ^{116}\text{Sn}$	3020.42	0.14	3020.41	0.14	-0.1	1	99	98 ¹¹⁶ Cd	JY1 1.0	11Ra24
¹¹⁶ Cd- ¹¹⁴ Cd H	-6452	32	-6426.8	0.3	0.5	U			R12 1.5	83De51
116 Sn $^{-115}$ Sn	-1602	11	-1601.87	0.10	0.0	U			M16 2.5	63Da10
¹¹⁶ Cd- ¹¹³ Cd H	-7458	32	-7469.9	0.3	-0.2	U			R12 1.5	83De51
¹¹⁶ Cd- ¹¹⁴ Cd	1370	32	1398.2	0.3	0.6	U			R12 1.5	83De51
$^{116}\mathrm{Cs}(\varepsilon\alpha)^{112}\mathrm{Te}$	12300	400	13100#	100#	2.0	D			1112 1.5	77Bo28
Cs(cu) ic	12400	900	1310011	10011	0.8	D				76Jo.A *
¹¹⁶ Cd(¹⁴ C, ¹⁶ O) ¹¹⁴ Pd	2497	29	2535	7	1.3	U			LAI	84Co19
$^{114}\text{Cd}(t,p)^{116}\text{Cd}$	6362	20	6358.4	0.3	-0.2	U			Ald	67Hi01
¹¹⁶ Cd(p,t) ¹¹⁴ Cd	-6363	5	-6358.4	0.3	0.9	U			Min	73Oo01
$^{116}Sn(p,t)^{114}Sn$	-8619	15	-8627.09						Roc	70Fl08
$^{116}\text{Cd}(\gamma, n)^{115}\text{Cd}$				0.10		U				
	-8702	4	-8699.3	0.7	0.7	U			McM	79Ba06
¹¹⁶ Cd(d,t) ¹¹⁵ Cd	-2458	30	-2442.1	0.7	0.5	U			Pit	64Ro17
115 In $(n,\gamma)^{116}$ In	6783.8	1.2	6784.72	0.22	0.8	U				72Ra39 Z
	6784.4	1.1			0.3	U			D .	74Co35
115- 44 116-	6784.72					2			Bdn	06Fi.A
$^{115}In(d,p)^{116}In$	4494	25	4560.15	0.22	2.6	U			Pit	64Co11
116 2 115	4580	30			-0.7	U			Pit	67Hj03
116 Sn(d, 3 He) 115 In	-3740	50	-3785.12	0.10		U			Sac	69Co03
115 Sn $(n, \gamma)^{116}$ Sn	9562.2	1.5	9563.45	0.09	0.8	U				72Mc08
	9563.5	0.5			-0.1	U				84Ga.B
	9563.41	0.11			0.4	_			ORn	91Ra01 Z
	9563.55	0.19			-0.5	_			Bdn	06Fi.A
115 Sn(d,p) 116 Sn	7358	30	7338.89	0.09	-0.6	U			Pit	64Co11
116 Sn(p,d) 115 Sn	-7344	15	-7338.89	0.09	0.3	U			Har	70Ca01
116 Sn(d,t) 115 Sn	-3309	20	-3306.22	0.09	0.1	U			Pit	64Co11
	-3305.0	2.5			-0.5	U			SPa	75Be09
115 Sn $(n,\gamma)^{116}$ Sn	ave. 9563.45	0.10	9563.45	0.09	0.1	1	99	99 ¹¹⁶ Sn		average
115 Sn(3 He,d) 116 Sb $-^{120}$ Sn() 121 Sb	-1722	10	-1714	5	0.8	1	30	25 ¹¹⁶ Sb	VUn	78Ka12
116 Cs $(\varepsilon p)^{115}$ I	6350	300	7010#	100#	2.2	U				78Da07 *
116 Rh $(\beta^{-})^{116}$ Pd	8000	500	9100	70	2.2	U			Jyv	88Ay02
$^{116}\text{Pd}(\beta^{-})^{116}\text{Ag}$	2615	100	2711	8	1.0	U			- 3	75Br.A
	2620	100			0.9	o			Jyv	89Ay.A
	2607	30			3.5	В			Stu	90Fo07
	2620	100			0.9	U			Jyv	94Jo.A
116 Ag(β^{-}) 116 Cd	6062	130	6170	3	0.8	o			Stu	82Al29 *
$n_{\mathcal{G}}(p^{-})$ Cu	5800	200	0170	3	1.8	U			Sta	82Br10
	6194	50			-0.5	U			Stu	90Fo07 *
$^{116}\text{In}(\beta^{-})^{116}\text{Sn}$	3290	60	3276.22	0.24		U			Stu	54Bo39
$^{116}\text{Sb}(\beta^+)^{116}\text{Sn}$	4586	100	4704	5	1.2	U				64 TH 0.5
$30(p^{+})$ 311			4704	3						
116g / \116g	4606	50	5.406	_	2.0	U			3711	68Ki07 *
116 Sn(p,n) 116 Sb	-5515	40	-5486	5	0.7	U	7.5	as 116cm	VUn	76Ka19
116 gr n (0+) 116 g	-5483.2	6.			-0.5	1	75	75 ¹¹⁶ Sb	Oak	77Jo03
$^{116}\text{Sb}^{n}(\beta^{+})^{116}\text{Sn}$	5090	40				2				60Je03 *
$^{116}\text{Te}(\beta^+)^{116}\text{Sb}$	1554	100	1553	28	0.0	U				61Fi05 *
$^{116}\text{I}(\beta^+)^{116}\text{Te}$	7760	130	7780	100	0.1	R				70Be.A
116	7710	200			0.3	R				76Go02
116 Xe(β^+) 116 I	4340	200	4450	100	0.5	3				76Go02
* ¹¹⁶ Rh-u	M - A = -70634(96)		-							Nub16b **
$*^{116}Rh-u$	M - A = -70662(93)) keV for	mixture gs+	m at 200	#150 ke	·V				Nub16b **
* ¹¹⁶ Sb-u	M - A = -86553(34)) keV for	mixture gs+	n at 390((40) keV	7				Nub16b **
$*^{116}Rh-^{120}Sn_{.967}$	D_M =18740.7(8.4)	μu for m	ixture gs+m	at 200#1	50 keV	; M-A=	=-70635.5	(7.9) keV		Nub16b **
$*^{116}$ Cs $(\varepsilon\alpha)^{112}$ Te	Q = 12500(900) fr									Nub16b **
` /	~				•					

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Compai	Input va		Adjuste					on of Table o	Lab	F	Reference
Item		mput va	nue	Aujuste	d value	v_i	Dg	Signf.	Main infl.	Lab	Г	Reference
$*^{116}$ Cs $(\varepsilon\alpha)^{112}$ Te	Trends	from Mass S	urface T	MS suggest	¹¹⁶ Cs 780	less boun	d					GAu **
$*^{116}$ Cs $(\varepsilon p)^{115}$ I		50(300) from										Nub16b **
$*^{116}$ Ag(β^-) ¹¹⁶ Cd		110(130) from				- '						Nub16b **
$*^{116}$ Ag(β^-) ¹¹⁶ Cd		199(100); and				90 keV						Nub16b **
$*^{116}Sb(\beta^+)^{116}Sn$		270(100), and					in keV					Ens104 **
$*^{116}Sb^{n}(\beta^{+})^{116}Sn$		$160(40)$ to 7^-				at 1293.30	JO KC V					Ens104 **
* $36 (\beta^{+})^{-116} \text{Sb}$					V							
* 'le(p') 'Sb	L_{β} =42	40(100) to 1 ⁺	ievei at	93.99 Ke v								Ens104 **
117												
¹¹⁷ Ru-u		-63897	419	-63870	470	0.1	0			GT1	1.5	04Ma.A
117-51		-63865	186	50064	4.0		2			GT3	2.5	16Kn03
¹¹⁷ Rh-u		-73903	408	-73964	10	-0.1	U	0.2	02 117 4	GT1	1.5	04Ma.A
117 Ag $^{-133}$ Cs _{.880}		-5029	16	-5024	15	0.3	1	83	83 ¹¹⁷ Ag	MA8		10Br02 *
$C_9 H_9 - ^{117}Sn$		167486	12	167471.3	0.5	-0.5	U			M16	2.5	63Da10
- 25 117		167471	8			0.0	U			R13	1.5	83De51
$C_{117}^{35}Cl_3-^{117}Sn$		3596	2	3604.1	0.5	1.0	U			H14	4.0	62Ba24
¹¹⁷ Te-u		-91318	30	-91354	14	-1.2	_			GS2	1.0	05Li24
		-91359	30			0.2	_		117—	GS2	1.0	05Li24 *
117-	ave.	-91339	21			-0.7	1	46	46 ¹¹⁷ Te			average
¹¹⁷ I-u		-86350	30	-86352	28	-0.1	1	88	$88^{-117}I$	GS2	1.0	05Li24
¹¹⁷ Xe-u		-79647	30	-79641	11	0.2	R			GS2	1.0	05Li24
¹¹⁷ Xe- ¹³³ Cs _{.880}		3562	12	3561	11	-0.1	2			MA6		04Di18
¹¹⁷ Cs- ¹³³ Cs _{.880}		11819	67				2			MA4		99Am05 *
$^{117}Rh-^{120}Sn_{.975}$		21388.8	9.5				2			JY1	1.0	07Ha20
$^{117}\text{Pd} - ^{120}\text{Sn}_{.975}$		13309.4	7.9	13308	8	-0.2	1	96	96 ¹¹⁷ Pd	JY1	1.0	07Ha20
$^{117}\text{Sn} - ^{116}\text{Sn}$		1219	11	1211.2	0.5	-0.3	U			M16	2.5	63Da10
$^{116}\text{Cd}(d,p)^{117}\text{Cd}$		3538	30	3552.7	1.0	0.5	U			Pit		64Ro17
		3550	20			0.1	U			Oak		64Si18
		3552.66	1.0				2			Rez		90Pi05 *
116 Sn $(n, \gamma)^{117}$ Sn		6943.5	2.0	6943.1	0.5	-0.2	U					75Bh01 Z
		6943.3	1.5			-0.1	U			ORn		78Ra16 Z
		6942.9	0.5			0.4	_			Bdn		06Fi.A
116 Sn(d,p) 117 Sn		4721.0	1.8	4718.5	0.5	-1.4	_			SPa		75Be09
116 Sn(n, γ) 117 Sn	ave.	6943.1	0.5	6943.1	0.5	0.0	1	97	97 ¹¹⁷ Sn			average
116 Sn(3 He,d) 117 Sb		-1091	10	-1091	8	0.0	1	71	71 ¹¹⁷ Sb	VUn		78Ka12 *
117 Xe $(\varepsilon p)^{116}$ Te		4100	200	3795	30	-1.5	U					72Ho18
117 Ba $(\varepsilon p)^{116}$ Xe		7900	300	8300	250	1.3	F					78Bo20 *
(1)		8300	250				3			GSI		05Ja06
117 La(p) 116 Ba		789.8	6.	820	3	5.0	В					01So02 *
		813.0	5.			1.4	o			Arp		01Ma69
		820.1	3.				3			Arp		11Li28
$^{117}\text{Pd}(\beta^{-})^{117}\text{Ag}$		5735	32	5758	15	0.7	1	21	17 ¹¹⁷ Ag	Jyv		00Kr.A
$^{117}\text{Ag}(\beta^{-})^{117}\text{Cd}$		4160	50	4236	14	1.5	U		8	Stu		82Al29 *
$^{117}\text{Cd}(\beta^-)^{117}\text{In}$		2535	20	2525	5	-0.5	U					75Ta06 *
$^{117}\text{In}(\beta^-)^{117}\text{Sn}$		1456.6	5.	1455	5	-0.4	1	94	94 ¹¹⁷ In			55Mc17 *
$^{117}\text{Sb}(\beta^+)^{117}\text{Sn}$		1751	40	1758	8	0.2	Ü	7.	,			64Ba46 *
$^{117}\text{Sn}(p,n)^{117}\text{Sb}$		-2525	20	-2541	8	-0.8	1	18	18 ¹¹⁷ Sb	Oak		71Ke21
$^{117}\text{Te}(\beta^+)^{117}\text{Sb}$		3552	20	3544	13	-0.4	_	10	10 50	Ouk		62Kh05 *
10(p) 50		3492	30	3344	13	1.7	_					67Be46 *
	ave.	3534	17			0.6	1	62	51 ¹¹⁷ Te			average
$^{117}I(\beta^+)^{117}Te$	avc.	4680	100	4659	29	-0.2	_	02	31 10			69La33 *
I(p) ic		4610		4037	2)	0.4	_					70Be.A *
	0370	4650	110 70			0.4	1	15	12 ¹¹⁷ I			
117 Xe(β^+) 117 I	ave.	6270	300	6251	28	-0.1	U	13	14 1			average 85Le10 *
$^{117}\text{Cs}^{x}(\text{IT})^{117}\text{Cs}$		50	50	0231	20	-0.1	3					AHW
* ¹¹⁷ Ag- ¹³³ Cs _{.880}	D - 5	50 013.3(4.0) μι		and state or	117 д ст -	108 6 1-257		. 90170 2/0	7) keV			
*117Ag-133Cs _{.880} *117Te-u	$D_M = -3$	013.3(4.0) μι :–84804(28) l	u ior gro	unu state or	- at 206.1	t ∠o.∪ KeV;	, M - A =	-021/2.3(3	0.7) Ke V			Nub16b **
* ¹¹⁷ Te-u * ¹¹⁷ Cs- ¹³³ Cs _{.880}							664107	10) 1rc V				Nub16b **
		900(21) μu f						19) KeV				Nub16b **
* ¹¹⁶ Cd(d,p) ¹¹⁷ Cd		ed systematic										AHW **
$*^{116}$ Sn(3 He,d) 117 Sb		120Sn(³ He,d)				(2.0) keV						AHW **
$*^{117}$ Ba(ε p) ¹¹⁶ Xe		grees with ne				1 1 1 17 77	10(5)					GAu **
$*^{117}$ La(p) 116 Ba	Reports	s also an isom	ier ''' La	$E_p = 933(1)$	u) Q _p =94	1.1 keV T	=10(5) m	ıs,				01So02 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Int	out value	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	$\frac{F}{F}$	Reference
					- 1	- 8	~ -8				
*	not observed is					r statistic	cs				11Li28 **
$*^{117}$ Ag(β^-) ¹¹⁷ Cd	Q_{β^-} =4260(110); and 4170(5	50) from ¹¹⁷ Ag	g^{m} at 28.6	keV						Nub16b **
$*^{117}Cd(\beta^-)^{117}In$	$Q_{\beta}^{-}=2220(20)$	to $^{11}/In^m$ at 3	315.303 keV								Nub16b **
$*^{117} In(\beta^{-})^{117} Sn$	$E_{\beta}^{'} = 740(10)$ to	$7/2^+$ level a	t 711.54; and	1772(5), 1	1616(5) f	rom					Ens111 **
* 117 gr (0+\117 g			ground state, 3/		at 158.56	keV					Nub16b **
$*^{117}Sb(\beta^+)^{117}Sn$	$E_{\beta^+} = 570(40)$ to				. 710 71	* 7					Ens111 **
$*^{117}\text{Te}(\beta^+)^{117}\text{Sb}$	$E_{\beta}^{'} = 1810(20)$	1/50(30) res	pectively, to 1/	2 level a	at /19./1	keV					Ens111 **
$*^{117}I(\beta^+)^{117}Te$	$E_{\beta}^{r} = 3500(50),$	3250(50) to	$5/2^+$ level at 2	74.4, (3/2	2) at 32:	5.9 keV					Ens111 **
$*^{117}$ I(β^+) 117 Te $*^{117}$ Xe(β^+) 117 I	Q_{β^+} =4310(100 May be lower li		5/2 level at 2	2/4.4, (3/2	2) ' at 32	5.9 KeV					Ens111 **
* 'Ae(p') '1	May be lower if	IIIIt									AHW **
440											
¹¹⁸ Ru-u	-61879		-61470#	220#	0.8	D				2.5	16Kn03 *
¹¹⁸ Rh-u	-69598		-69660	26	-0.1	U		. 119		1.5	04Ma.A
$^{118}\text{Pd} - ^{129}\text{Xe}_{.915}$	6193		6192.4	2.7	-0.3	1	39	39 ¹¹⁸ Pd		1.0	11Ha48
¹¹⁸ Ag- ¹³³ Cs _{.887}	-1540		17///12 7	0.5	0.1	2				1.0	10Br02 *
$C_9 H_{10} - ^{118} Sn$	17664		176643.7	0.5	-0.1	U				2.5	63Da10
¹¹⁸ Te-u	17663° -94162		-94146	20	0.6 0.5	U R				1.5 1.0	83De51 05Li24
118 I – u	-86932		-86926	21	0.3	2				1.0	05Li24
I—u	-86920		-80720	21	-0.2	2				1.0	05Li24 *
118 Xe $-$ u	-83785		-83821	11	-1.2	R				1.0	05Li24
118 Xe $^{-133}$ Cs 887	3		43	11	0.5	2				1.0	04Di18
$^{118}\text{Cs}^{x} - ^{133}\text{Cs}_{.887}$	10424		10429	13	0.3	o				1.0	90St25
	10429) 13				2			MA1	1.0	99Am05
$^{118}Rh-^{120}Sn_{.983}$	26470	5 26				2			JY1	1.0	07Ha20
$^{118}\text{Pd}-^{120}\text{Sn}_{.983}$	15199	9.7 7.9	15202.4	2.6	0.3	-			JY1	1.0	07Ha20
	15202				0.1	-		110	JY1	1.0	11Ha48
110 25 116 27	ave. 15202				0.2	1	64	61 ¹¹⁸ Pd			average
¹¹⁸ Sn ³⁵ Cl- ¹¹⁶ Sn ³⁷ Cl	2814		2813.9	0.5	0.0	U				4.0	62Ba23
118 Sn $^{-117}$ Sn	-1338		-1347.41	0.14	-0.3	U				2.5	63Da10
117 Cs ^x $-^{118}$ Cs ^x _{.496} 116 Cs _{.504} 118 Cs($\varepsilon \alpha$) 114 Te	-1160		-1250#	100#	-0.1	U			P32	2.5	86Au02
$\operatorname{Cs}(\varepsilon\alpha)^{**}$ le	10600		11050	30	2.3 1.5	U					77Bo28
$^{116}\text{Cd}(t,p)^{118}\text{Cd}$	10750 5650				1.3	U 2			Ald		78Da07 * 67Hi01
116 Sn(t,p) 118 Sn	7769		7787.7	0.5	1.2	U			Ald		68Bj02
¹¹⁸ Sn(p,t) ¹¹⁶ Sn	-779 -779		-7787.7 -7787.7	0.5	0.2	U			Roc		70Fl08
118 Sn(d, 3 He) 117 In	-444 <u>(</u>		-4505	5	-1.6	U			Sac		69Co03
Sh(a, Tie) In	-448		1303	J	-1.6	Ü			MSU		71We01
117 Sn $(n,\gamma)^{118}$ Sn	9320		9326.42	0.13	0.0	U					70Or.A
	9324				0.8	U			ORn		75S1.A
	9320	5.42 0.13	i		0.0	1	100	97 ¹¹⁸ Sn			02Bo11
	932	7.9 1.1			-1.3	U			Bdn		06Fi.A
117 Sn(d,p) 118 Sn	7090) 12	7101.85	0.13	1.0	U			Tal		64No06
118 Sn(p,d) 117 Sn	-709°		-7101.85	0.13	-0.3	U			Har		70Ca01
118 Cs $(\varepsilon p)^{117}$ I	4700		4738	29	0.1	U					78Da07
$^{118}\text{Pd}(\beta^-)^{118}\text{Ag}$	4100		4165	4	0.3	U			Jyv		89Ko22 *
118 Ag(β^{-}) 118 Cd	7122		7148	20	0.3	U			Stu		82A129 *
	7110				0.1	U			Stu		82A129 *
$^{118}\text{In}(\beta^{-})^{118}\text{Sn}$	7155		1125	0	-0.1	U					95Ap.A
$\operatorname{III}(p)$ Sn	4200 4200		4425	8	0.6 0.7	U U					61Gl02 64Ka10
	4310				1.1	U					87Ga.A
$^{118}\text{In}^{m}(\beta^{-})^{118}\text{Sn}$	4270		4530#	50#	2.5	D					64Ka10 *
$^{118}\text{Sb}(\beta^+)^{118}\text{Sn}$	3610		3656.6	3.0	0.9	U					61Fi05
118 Sn(p,n) 118 Sb	-447		-4439.0	3.0	6.8	F			Tkm		63Ok01 *
* • •	-4439					2			Oak		77Jo03
		-							-		

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Referenc	:e
$^{118}\text{Sb}^{n}(\beta^{+})^{118}\text{Sn}$		3907	5				2						61Bo13	>
$^{118}\text{I}(\beta^+)^{118}\text{Te}$		7080	150	6726	27	-2.4	U						68La18	:
•		7068	100			-3.4	C						70Be.A	:
118 Xe(β^+) 118 I		3720	110	2892	22	-7.5	F						70Be.A	
118 Cs $(\beta^+)^{118}$ Xe		9300	1000	9670	16	0.4	U						76Da.C	
$^{118}\text{Cs}^{x}(\text{IT})^{118}\text{Cs}$		5	4				3						82Au01	:
* ¹¹⁸ Ru-u	Trends	from Mass	Surface T	MS suggest	¹¹⁸ Ru 3	80 less bou	nd						GAu	*
* ¹¹⁸ Ag- ¹³³ Cs _{.887}	$D_{M} = -1$	403.5(2.7)	μu for ¹¹⁸	$^{3}Ag^{n}$ at 127.	63(0.10)	keV; M-A	4=-7942	26.3(2.5) k	eV				Nub16b	*
* ¹¹⁸ I-u	M-A=	=-80775(28)	keV for	$^{118}I^{m}7^{-}$ at	188.8 ke	V							Nub16b	*
$*^{118}$ Cs $(\varepsilon\alpha)^{114}$ Te	As read	d from Fig. 2	2 (p.401)										GAu	*
$*^{118} Pd(\beta^-)^{118} Ag$	Origina	al value 400	0(200) co	rrected for r	ew branc	ching ratios	;						93Ja03	*
$*^{118}$ Ag(β^-) ¹¹⁸ Cd	E_{β} =4	330(240), 39	960(170)	3810(150)	reinterpro	eted as feed	ling						95Ap.A	*
*	(1) le	vel at 2788.7	72, (1) at	3224.32, (2,	3,4) at 32	265.77 keV							Ens959	*:
$*^{118}$ Ag(β^-) ¹¹⁸ Cd	E_{β} = 3	990(720), 39	910(630)	reinterprete	d as ¹¹⁸ A	g ⁿ at 127.6	3(0.10)	keV					95Ap.A	*:
*	to (2,3	3,4) level at	3181.73,	3381.8 keV									Ens959	*:
$*^{118} In^m (\beta^-)^{118} Sn$	$E_{\beta} = 2$	000(100) to	4 ⁺ level	at 2280.342	level, an	d other E_{β}	_						Ens959	*:
$*^{118} In^m (\beta^-)^{118} Sn$				MS suggest									GAu	*
$*^{118}$ Sn(p,n) 118 Sb		note added i											77Jo03	*:
$*^{118}Sb^{n}(\beta^{+})^{118}Sn$				el at 2574.91	keV, rec	alculated C)						Ens959	*:
$*^{118}I(\beta^{+})^{118}Te$				at 605.70 ke		~							Ens959	
$*^{118}I(\beta^+)^{118}Te$				at 605.70 ke									Ens959	*
$*^{118}$ Xe(β^+) ¹¹⁸ I		bably contar											GAu	**
$*^{118}$ Cs x (IT) 118 Cs		•		r new estima	ated IT=1	00(60)#							Nub16b	
,	C	, ,				. ,								
¹¹⁹ Rh-u		-67698	268	-67443	10	0.6	U				GT1	1.5	04Ma.A	
119 Rh $-^{129}$ Xe 922		20349	10				2				JY1	1.0	11Ha48	
¹¹⁹ Pd-u		-76844	208	-76660	9	0.6	U				GT1	1.5	04Ma.A	
119 Ag $^{-133}$ Cs _{.895}		188	16	191	16	0.2	1	97	97	¹¹⁹ Ag	MA8	1.0	10Br02	;
$C_9 H_{11} - {}^{119}Sn$		182778	7	182764.1	0.8	-0.8	U				M16	2.5	63Da10	
		182762	8			0.2	U				R13	1.5	83De51	
¹¹⁹ I—u		-89926	30				2				GS2	1.0	05Li24	
¹¹⁹ Xe-u		-84601	30	-84589	11	0.4	R				GS2	1.0	05Li24	
119 Xe $-^{133}$ Cs _{.895}		33	12	31	11	-0.1	2				MA6	1.0	04Di18	
¹¹⁹ Cs-u		-77532	57	-77623	15	-1.6	U				GS2	1.0	05Li24	:
$^{119}\text{Cs}^{x} - ^{133}\text{Cs}_{.895}$		7011	16	7015	9	0.3	o				MA1	1.0	90St25	
		7018	13			-0.2	2				MA1	1.0	99Am05	i
		7012	13			0.2	2				MA4	1.0	99Am05	i
¹¹⁹ Sn ³⁵ Cl- ¹¹⁷ Sn ³⁷ Cl		3306	2	3307.3	0.6	0.2	U				H15	4.0	62Ba23	
$^{119}\text{Pd}-^{120}\text{Sn}_{.992}$		20356.2	8.8				2				JY1	1.0	07Ha20	
119 Sn $^{-118}$ Sn		1709	12	1704.6	0.6	-0.1	U				M16	2.5	63Da10	
$^{119}I - ^{118}I$		-2747	155	-3000	40	-1.1	U				CR2	1.5	92Sh.A	:
$^{119}I - ^{117}I$		-3570	155	-3570	40	0.0	U				CR2	1.5	92Sh.A	>
${}^{118}\text{Cs}^x - {}^{119}\text{Cs}^x_{.661} {}^{116}\text{Cs}_{.339} $ ${}^{118}\text{Cs}^x - {}^{119}\text{Cs}^x_{.496} {}^{117}\text{Cs}^x_{.504}$		530	80	410#	40#	-0.6	U				P32	2.5	86Au02	
$^{118}\text{Cs}^x - ^{119}\text{Cs}^{\overset{\circ}{x}}_{496} ^{117}\text{Cs}^x_{504}$		870	50	940	40	0.5	U				P22	2.5	82Au01	
		980	40			-0.4	U				P32	2.5	86Au02	
119 Sn(t, α) 118 In $-^{118}$ Sn() 117 In		-127	6	-127	6	0.0	1	100	100	118 In	McM		85Pi03	
118 Sn $(n,\gamma)^{119}$ Sn		6484.6	1.5	6483.5	0.5	-0.7	-				ORn		78Ra16	
		6483.3	0.6			0.3	_				Bdn		06Fi.A	
118 Sn(d,p) 119 Sn		4238	12	4258.9	0.5	1.7	U				MIT		67Sp09	
118 Sn $(n,\gamma)^{119}$ Sn	ave.	6483.5	0.6	6483.5	0.5	0.0	1	96	93	¹¹⁹ Sn			average	
¹¹⁸ Sn(³ He,d) ¹¹⁹ Sb		-388	10	-383	8	0.5	1	59	59	¹¹⁹ Sb	VUn		78Ka12	:
119 Ba $(\varepsilon p)^{118}$ Xe		6200	200				3						78Bo20	
119 Ag(β^{-}) 119 Cd		5350	40	5330	40	-0.5	1	81	78	¹¹⁹ Cd	Stu		82A129	
$^{119}\text{Cd}(\beta^-)^{119}\text{In}$		3797	80	3720	40	-0.9	1	23	22	¹¹⁹ Cd	Stu		82A129	>
$^{119} In(\vec{\beta}^-)^{119} Sn$		2387	100	2366	7	-0.2	U						60Yu01	:
* .		2413	200			-0.2	U						61Gl06	:
119 Sb $(\varepsilon)^{119}$ Sn		579	20	591	8	0.6	_						570105	:
											0.1			
119 Sn(p,n) 119 Sb 119 Sb 119 Sb		-1369	15	-1373	8	-0.3	_			¹¹⁹ Sb	Oak		71Ke21	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{119}\text{Te}(\beta^+)^{119}\text{Sb}$	2293	2				2					60Ko12
$^{119}I(\beta^+)^{119}Te$	3630	100	3416	29	-2.1	U					69La33
1(<i>p</i>) 10	3370	100	5110		0.5	U					70Be.A
119 Xe(β^+) 119 I	4990	120	4971	30	-0.2	U					70Be.A
$^{119}\text{Cs}(\beta^+)^{119}\text{Xe}$	6260	290	6489	17	0.8	U					83Pa.A
$^{119}\text{Cs}^{x}(\text{IT})^{119}\text{Cs}$	16	11	0107	1,	0.0	3					82Au01
$*^{119}$ Ag $-^{133}$ Cs _{.895}	D_M =198.4(5.7		r ground sta	te or ¹¹⁹	$A \sigma^m$ at $2.0 \pm$: M – A=–	78638.7(5.3)	keV		Nub16b
* ¹¹⁹ Cs-u	M - A = -72195						,	70030.7(3.3)			Nub16b
* ¹¹⁹ I— ¹¹⁸ I	From ¹¹⁸ I/ ¹¹⁹ I:) μu. revis	sed by			GAu
*	authors: -284										Nub16b
$*^{119}I - {}^{117}I$	From ¹¹⁷ I/ ¹¹⁹ I:			8							GAu
$*^{118}$ Sn(3 He.d) 119 Sb	$Q - Q(^{120}\text{Sn}(^3$. ,	10), <i>O</i> (1	20)=285.1	(2.1) ke	eV				AHW
$*^{119}$ Ba $(\varepsilon p)^{118}$ Xe	Trends from M										GAu
$*^{119}\text{Cd}(\beta^-)^{119}\text{In}$	$Q_{\beta} = 3800(90)$										Nub16b
$*^{119} In(\beta^-)^{119} Sn$	E_{β} = 1600(100										Ens09a
$*^{119} In(\beta^-)^{119} Sn$	E_{β} = 2700(200					level at	t 23 871 ke	·V			Ens09a
$*^{119}$ Sb $(\varepsilon)^{119}$ Sn	IBE=526(20) t				,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,01 0	. 2010/11				Ens09a
$*^{119}$ Te(β^+) ¹¹⁹ Sb	E_{β^+} =627(2) to										Ens09a
$*^{119}I(\beta^+)^{119}Te$	$E_{\beta^+} = 2350(100$				reV						Ens09a
$*^{119}$ Cs(β^+) ¹¹⁹ Xe	$E_{\beta^+} = 4980(290)$										Ens09a
$*^{119}$ Cs ^x (IT) ¹¹⁹ Cs	$E_{\beta^{+}} = 4980(290)$ Original 33(22)					20)#					~ .
* 'Cs'(11) 'Cs	Original 33(22	.) сопе	cted for fiew	estimat	zu 11–30(3	ου) π					GAu
¹²⁰ Pd- ¹²⁹ Xe _{.930}	13107.0	4.4	13105.1	2.5	-0.4	1	31	31 ¹²⁰ Pd	JY1	1.0	11Ha48
$^{120}\text{Ag} - ^{133}\text{Cs}_{.902}$	4067.1	4.8	13103.1	2.3	-0.4	2	31	31 Iu	MA8		10Br02
Ag — Cs.902	4086	12	4067	5	-1.6	0			MA8		10Br02
¹²⁰ Cd- ¹³³ Cs.902	-4849.6	4.0	4007	3	-1.0	2			MA8		10Br02
$C_9 H_{12} - {}^{120}Sn$	191709	11	191698.5	1.0	-0.4	U			M16		63Da10
C9 11 ₁₂ — Sii	191705	8	171070.5	1.0	-0.5	U			R13	1.5	83De51
¹³ C ³⁵ Cl ₂ ³⁷ Cl- ¹²⁰ Sn	4758	3	4760.9	1.0	0.2	U			H14	4.0	62Ba24
120Sb-u	-94796	76	-94920	8	-1.6	U			GS2	1.0	05Li24
$C_9 H_{12} - {}^{120}Te$	189879	9	189841	3	-1.7	U			M16		63Da10
Cg 11 ₁₂ 1c	189868	8	107041	5	-2.3	U			R13		83De51
$^{120}I-u$	-90222	104	-89913	16	3.0	C			GS2		05Li24
¹²⁰ Xe-u	-88231	30	-88216	13	0.5	R				1.0	05Li24
¹²⁰ Xe ⁻¹³³ Cs _{.902}	-2930	14	-2933	13	-0.2	2			MA6		04Di18
120Cs-u	-79342	54	-79323	11	0.4	U			GS2		05Li24
$^{120}\text{Cs}^x - ^{133}\text{Cs}_{.902}$	5947	16	5965	10	1.1	0			MA1		90St25
cs = cs.902	5956	12	3703	10	0.7	2			MA1		99Am05
	5983	17			-1.1	2			MA4		99Am05
¹²⁰ Sn ³⁵ Cl- ¹¹⁸ Sn ³⁷ Cl	3546	2	3545.4	1.1	-0.1	U			H15		62Ba23
$^{120}\text{Pd}-^{120}\text{Sn}$	22317.1	9.7	22349.4	2.4	3.3	В			JY1	1.0	02Ba23 07Ha20
14- 311	22348.6	2.8	22347.4	2.4	0.3	1	72	69 ¹²⁰ Pd	JY1	1.0	11Ha48
$^{120}\text{Te}-^{120}\text{Sn}$			1050	2			12	09 Fu			
ie– sii	1842.2 1839.7	1.7	1858	3	9.1 10.6	В			CP1 CP1	1.0	09Sc19 09Sc19
$^{120}{\rm Sn}-^{119}{\rm Sn}$	-1113	1.7 11	-1109.3	1.2	0.1	B U			M16	1.0 2.5	63Da10
$118C_{0}x$ $120C_{0}x$ $117C_{0}x$											
$C_{S} = C_{S,328} C_{S,672}$	460	120	480	60	0.1	U			P22	2.5	82Au01
$^{120}\mathrm{Sn} - ^{119}\mathrm{Sn} \\ ^{118}\mathrm{Cs}^x - ^{120}\mathrm{Cs}^x_{,328} \\ ^{119}\mathrm{Cs}^x - ^{120}\mathrm{Cs}^x_{,661} \\ ^{119}\mathrm{Cs}^x - ^{120}\mathrm{Cs}^x_{,496} \\ ^{118}\mathrm{Cs}^x_{,504} \\$	-940	50	-928	29	0.1	U			P22	2.5	82Au01
Cs – Cs _{.496} – Cs _{.504}	-1220	30 60	-1167	11	0.7	U			P22 P32	2.5	82Au01
	$-1180 \\ -1200$	60 30			0.1 0.4	U U			P32 P32	2.5 2.5	86Au02 86Au02
120 Cs $(\varepsilon\alpha)^{116}$ Te	-1270	50	0055	20	0.8	F			P32	2.5	86Au02
118 Sn(t,p) 120 Sn	9200	300	8955	30	-0.8	U			A 1 J		76Jo.A
120 Sn(t,p) 120 Sn 120 Sn(p,t) 118 Sn	7107	15	7106.4	1.0	0.0	U			Ald		68Bj02
*** \n(n t)*** \n	-7109	10	-7106.4	1.0	0.3	U			Roc		70Fl08
120 Te(p,t) 118 Te	-9343	24	-9332	18	0.4	2			Win		74De31

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹²⁰ Sn(d, ³ He) ¹¹⁹ In	-5160	40	-5195	7	-0.9	U			Sac		69Co03
Sh(u, He) In	-5169	20	3173	,	-1.3	1	13	13 ¹¹⁹ In	MSU		71We01
20 Sn(t, α) ¹¹⁹ In $^{-118}$ Sn() ¹¹⁷ In	-692	6	-689	6	0.5	1	92	86 ¹¹⁹ In	McM		85Pi03
$^{19}\text{Sn(d,p)}^{120}\text{Sn}$	6890	12	6880.1	1.1	-0.8	U	72	60 III	Tal		64No06
²⁰ Sn(p,d) ¹¹⁹ Sn											
	-6889	15	-6880.1	1.1	0.6	U	10	12 120 0	Har		70Ca01
20 Sn(d,t) 119 Sn	-2847.0	2.5	-2847.4	1.1	-0.2	1	19	12 ¹²⁰ Sn	SPa		75Be09
$^{20}\text{Pd}(\beta^{-})^{120}\text{Ag}$	5500	100	5371	5	-1.3	U			Jyv		94Jo.A
20 Ag(β^-) 120 Cd	8200	100	8306	6	1.1	U			Stu		82A129
	8450	100			-1.4	U					95Ap.A
20 In(β^-) 120 Sn	5300	170	5370	40	0.4	U			Stu		78Al18
	5370	40				2					87Ga.A
20 In $^{m}(\beta^{-})^{120}$ Sn	5280	200	5420#	50#	0.7	D					64Ka10
4	5340	170			0.5	D			Stu		78A118
20 Sb(β^{+}) 120 Sn	2720	20	2681	7	-2.0	U					50B192
(-)	2770	30			-3.0	В					69Ki15
20 Sn(p,n) 120 Sb	-3462.9	7.1			5.0	2			Tkm		63Ok01
$^{20}I(\beta^+)^{120}Te$	5615	15				2			1 KIII		70Ga32
I(p) IC	5608	150	5615	15	0.0	U					68La18
20 Xe(β^{+}) 120 I											
	1960	40 500	1581	19	-9.5	В					74Mu10
$^{20}\text{Cs}(\beta^+)^{120}\text{Xe}$	7300	500	8284	15	2.0	U					76Ba.A
	7800	1000			0.5	U					76Da.C
	7380	230			3.9	C					83Pa.A
	8210	200			0.4	U			IRS		93A103
20 Cs x (IT) 120 Cs	5	4				3					82Au01
20 Ba(β^{+}) 120 Cs	5000	300				4					92Xu04
²⁰ Sb−u	M - A = -88302(50)	keV for	mixture gs+	m at 0#1	00 keV						Nub16b
$^{20}I-u$	M - A = -83881(28)	keV for	mixture gs+	n at 320	(15) keV						Nub16b
²⁰ Cs−u	M - A = -73856(29)	keV for	mixture gs+	m at 100	#60 keV						Nub16b
$^{19}\text{Cs}^x - ^{120}\text{Cs}^x_{.496}$ ^{118}C	F: rejection based		-								86Au02
20 Te(p,t) 118 Te	Original error 12; a										GAu
$^{20}\text{In}^{m}(\beta^{-})^{120}\text{Sn}$	E_{β} =3100(200),22				99 3057 9	46 keV					Ens029
$^{20}\text{In}^{m}(\beta^{-})^{120}\text{Sn}$	E_{β} = 3100(200),222 E_{β} = 3100(170) to					TO KC V					Ens029
$^{20}\text{In}^m(\beta^-)^{120}\text{Sn}$	$E_{\beta} = 3100(170)$ to	d level	at 2194.299	120 t m 1	oulei E _β -	1					
	Trends from Mass										GAu
$^{20}I(\beta^{+})^{120}Te$	$E_{\beta^+}=4595(15), 400$	30(20) to	ground state	$e, 2^{-}$ leve	el at 560.43	8 keV					Ens029
$^{20}I(\beta^+)^{120}Te$	$E_{\beta}^{'} = 3130(150)$ from					3 keV					Ens029
20 Xe(β^{+}) 120 I	$p^+ = 0.07(0.01)$ to										Ens029
20 Cs(β^{+}) 120 Xe	E_{β} = 6000(500) 65	00(1000)	6040(230),	respectiv	vely, to 2 ⁺	level at	322.61 keV	7			Ens029
$^{20}\text{Cs}^{x}(\text{IT})^{120}\text{Cs}$	Original 24(19) con										Nub16b
²¹ Rh–u	-60387	266				2			GT3	2.5	16Kn03
²¹ Pd—u	-71820	311	-71050	4	1.7	U			GT1	1.5	04Ma.A
$^{21}\text{Ag}-^{133}\text{Cs}_{.910}$			-/1030	4	1./						
Ag- C8.910	6164	13	6164	12	0.4	2			MA8		10Br02
21 0 1 130 22	6170	17		13	-0.4	0					10Br02
$^{21}\text{Cd} - ^{130}\text{Xe}_{.931}$	2796.2	3.0	2796.5	2.1	0.1	2			JY1	1.0	12Ha25
101	2796.7	2.9			-0.1	2			JY1	1.0	13Ka08
$_9 \mathrm{H}_{13} - ^{121} \mathrm{Sb}$	197910.5	3.7	197915.3	2.8	0.5	U			M16	2.5	63Da10
	197910	8			0.4	U			R13	1.5	83De51
²¹ Sb-C ³⁵ Cl ³⁷ Cl ₂	3162	3	3152.2	2.8	-0.8	U			H14	4.0	62Ba24
Sb-C 33Cl 37Cl ₂		30	-96189.9	2.8	-0.3	Ü			GS2	1.0	05Li24
	-96180	20		6	0.5	U			GS2	1.0	05Li24
²¹ Sb-u	-96180 -92609	30			0.5	U					UJ 114T
²¹ Sb—u ²¹ I—u	-92609	30	-92595 88547			P			(300	1 (1	051 :24
²¹ Sb-u ²¹ I-u ²¹ Xe-u	$-92609 \\ -88562$	30	-88547	11	0.5	R			GS2	1.0	05Li24
²¹ Sb-u ²¹ I-u ²¹ Xe-u	-92609 -88562 -2495	30 13			0.5 - 1.0	-	0.5	0 = 121		1.0	04Di18
²¹ Sb-u ²¹ I-u ²¹ Xe-u ²¹ Xe- ¹³³ Cs _{.910}	-92609 -88562 -2495 ave2499	30 13 12	-88547 -2508	11 11	0.5 -1.0 -0.7		85	85 ¹²¹ Xe	MA6	1.0	04Di18 average
²¹ Sb-u ²¹ I-u ²¹ Xe-u ²¹ Xe-u ²¹ Xe-1 ³³ Cs _{.910}	-92609 -88562 -2495	30 13	-88547	11	0.5 - 1.0	-	85 38	85 ¹²¹ Xe 38 ¹²¹ Cs		1.0	04Di18

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	<u>e</u>
¹²¹ Cs-u		-82821	38	-82773	15	1.3	1	16	16 ¹²¹ Cs	GS2	1.0	05Li24	*
¹²¹ Pd- ¹²⁹ Xe _{.938}		18265.9	3.6				2			JY1	1.0	11Ha48	*
¹²¹ Sb ³⁵ Cl- ¹¹⁹ Sn ³⁷ Cl		3452	2	3449.0	2.9	-0.4	U			H14	4.0	62Ba24	
119 Cox 121 Cox 118 Cox		-1080	30	-1047	13	0.4	Ü			P22	2.5	82Au01	
$^{120}\text{Cs}^x - ^{121}\text{Cs}^x_{.661} $ $^{118}\text{Cs}^x_{.339} $ $^{120}\text{Cs}^x - ^{121}\text{Cs}^x_{.496} $ $^{119}\text{Cs}^x_{.504} $		280	30	240	15	-0.5	U			P22	2.5	82Au01	
120Cs ^x $=121$ Cs ^x $=119$ Cs ^x		790	30	770	13	-0.3	U			P22	2.5	82Au01	
C5		860	50	770	13	-0.7	U			P32	2.5	86Au02	
		813	14			-1.2	U			P32	2.5	86Au02	
120 Sn(n, γ) 121 Sn		6170.3	2.	6170.2	0.3	0.0	U			132	2.3	76Ca24	
$\operatorname{Sh}(\Pi, \gamma)$ Sh		6170.5	0.7	0170.2	0.5	-0.4	_					81Ba53	
		6170.1	0.4			0.3	_			Bdn		06Fi.A	
¹²⁰ Sn(d,p) ¹²¹ Sn		3946.2	1.7	3945.6	0.3	-0.3	_			SPa		75Be09	
120 Sn(n, γ) 121 Sn	ave.	6170.2	0.3	6170.2	0.3	0.0	1	99	97 ¹²¹ Sn	or a		average	
$^{121}\text{Sb}(\gamma, n)^{120}\text{Sb}$	avc.	-9310	60	-9254	8	0.0	U	77	97 311	Phi		60Ge01	
30(7,11) 30		-9240	25	-9234	o	-0.6	U			McM		79Ba06	
$^{120}\text{Te}(^{3}\text{He,d})^{121}\text{I}$		-9240 -1320.5	4.4	1221	4	-0.0 -0.1		99	99 ¹²¹ I	Hei		78Sz09	
121 Ba(ε p) 120 Xe		4200		-1321 4140			1 D	99	99 1	пеі			
¹²¹ Pr(p) ¹²⁰ Ce			300 50	890	140 10	-0.2	R					78Bo20	
-2- Pr(p)-2-Ce		837		890	10	1.1	F					90Bo39	>
$^{121}\text{Ag}(\beta^-)^{121}\text{Cd}$		889.6	10.	((71	10	2.2	3			Arp		05Ro19	2
121 G 1 (2 -) 121 K		6400	120	6671	12	2.3	U			Stu		82A129	
$^{121}\text{Cd}(\beta^-)^{121}\text{In}$		4780	80	4762	27	-0.2	U			Stu		82A129	3
$^{121}\text{In}(\beta^-)^{121}\text{Sn}$		3426	200	3361	27	-0.3	U			G.		60Yu01	3
121 g (0=)121 gr		3406	50	100.1	2.7	-0.9	R			Stu		78Al18	:
121 Sn(β^-) 121 Sb		383	5	403.1	2.7	4.0	В					49Du15	
121 m × 0 ± 121 gr		383.4	3.	4055	2.	6.6	В		m 4 121 m			68Sn01	:
$^{121}\text{Te}(\beta^+)^{121}\text{Sb}$		1080	30	1055	26	-0.8	1	74	74 ¹²¹ Te			75Me23	:
21 I(β^{+}) 121 Te		2364	50	2294	26	-1.4	1	27	26 ¹²¹ Te			53Fi.A	:
121 (2 121-		2384	100			-0.9	U					65Bu03	3
121 Xe(β^+) 121 I		3790	100	3770	12	-0.2	U					60Mo.A	
121 - 121 -		4160	140			-2.8	U					70Be.A	
121 Cs $(\beta^+)^{121}$ Xe		5650	490	5379	14	-0.6	U					75We23	
		5400	20			-1.1	_					81So06	
		5210	220			0.8	U					83Pa.A	:
		5300	100			0.8	U			IRS		93A103	:
		5400	40			-0.5	_		121	JAE		96Os04	>
121 121	ave.	5400	18			-1.2	1	61	46 ¹²¹ Cs			average	
$^{21}\text{Cs}^{x}(\text{IT})^{121}\text{Cs}$		46	8				2					GAu	
121 Ba $(\beta^+)^{121}$ Cs		6340	160	6360	140	0.1	2			JAE		96Os04	
121 Ag $^{-133}$ Cs $_{.910}$									392.5(4.7) ke	V		Nub16b	
121 Ag $^{-133}$ Cs $_{.910}$	$D_M=6$	180(12) μu	for grou	and state or	$^{121}Ag^m$	at 20#20 l	keV; <i>M</i> -	- A=-7438	88(11) keV			Nub16b	
$^{121}\text{Cd} - ^{130}\text{Xe}_{.931}$				$^{21}\text{Cd}^m$ at 21			A = -8	30858.7(2.7	7) keV			Nub16b	
$^{121}\text{Cs} - ^{133}\text{Cs}_{.910}$				ture gs+m a								Nub16b	*
121 Cs $-^{133}$ Cs $_{.910}$				ture gs+m a			=-7708	4(12) keV				Nub16b	*
¹²¹ Cs-u				or mixture								Nub16b	*
121 Pd $-^{129}$ Xe _{.938}	Taken	as low-spir	isomer	(see also 10	$^{12}\mathrm{Y}$ and 1	¹⁴ Tc doul	olets in s	same paper	.)			GAu	*
121 Pr(p) 120 Ce	F: mis	sassigned a	ecording	to reference	ee							05Ro19	*
121 Pr(p) 120 Ce	$E_p = 88$	2(10); in pi	ublicatio	n Q_p =900(10) keV							WgM10c	;*:
$^{121}\text{Cd}(\beta^-)^{121}\text{In}$	$\hat{Q_{\beta}} = 2$	1890(150);	and 496	0(80) from	$^{121}\mathrm{Cd}^m$ a	at 214.86	keV					Nub16b	*:
$^{121}\text{In}(\beta^-)^{121}\text{Sn}$								d 1/2 ⁺ leve	el at 60.34 ke	V		Ens106	
$\ln(\beta^{-1})^{121}$ Sn				el at 925.5		-						Ens106	
$121 \operatorname{Sn}(\beta^{-})^{121} \operatorname{Sb}$				From ¹²¹ Sn ⁿ		to 7/2 ⁺ le	vel at 37	7.1298 keV	7			Ens106	
$^{121}\text{Te}(\beta^+)^{121}\text{Sb}$				$Q_{B^{+}}=315(30$, O NO 1					*
10(p) 50				$2\beta + -313(30)$ to $7/2^+$ leve			1						
121 I(β^+) 121 Te							212 101	keV.				Ens106	
				respectivel		ievei at	Z1Z.191	NC V				Ens106	
121 Cs $(\beta^+)^{121}$ Xe				evel at 459.		121 a	(0.51.5	7				Ens106	
c^{121} Cs $(\beta^+)^{121}$ Xe	$Q_{\beta^+}=5$	5370(100) 5	0470(40)	respective	ly, from	"Cs" at	68.5 ke	V				Ens106	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	7011 01 1	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Referenc	e e
		60200	207	60260	21	0.1				C/TI		043.5	
122 Pd—u		-69308	397	-69368	21	-0.1	U			GT1	1.5	04Ma.A	
122 Ag $-u$		-76280	110	-76340	40	-0.2	О			GT2	2.5	08Kn.A	*
100 100		-76340	130			0.0	U			GT2	2.5	08Su19	*
122 Ag $^{-133}$ Cs _{.917}		10365	41				2			MA8	1.0	10Br02	*
¹²² Cd- ¹³³ Cs. ₉₁₇		155.1	4.7	159.6	2.5	1.0	1	28	28 ¹²² Cd	MA8	1.0	10Br02	
$C_8 H_{12} N^{-122} Sn$		193541	8	193530.4	2.6	-0.5	U			M16	2.5	63Da10	
		193558	8			-2.3	U			R13	1.5	83De51	
$C_8 H_{12} N^{-122} Te$		193925	9	193931.0	1.6	0.3	U			M16	2.5	63Da10	
		193926	8			0.4	U			R13	1.5	83De51	
122 Xe $-$ u		-91637	30	-91632	12	0.2	R			GS2	1.0	05Li24	
122 Xe $^{-133}$ Cs $_{017}$		-4931	13	-4932	12	-0.1	2			MA6	1.0	04Di18	
$^{122}\text{Cs} - ^{133}\text{Cs}_{.917}$		2812	48	2810	40	-0.1	o			MA1	1.0	90St25	*
		2805	48			0.1	1	57	57 ¹²² Cs	MA1	1.0	99Am05	
¹²² Cs-u		-83887	55	-83890	40	-0.1	1	43	43 ¹²² Cs	GS2	1.0	05Li24	*
$^{122}\text{Cs}^{n} - ^{133}\text{Cs}_{.917}$		2952	16	2959	10	0.4	0	15	15 05	MA1	1.0	90St25	
Cs — Cs.91/		2961	12	2)3)	10	-0.2	2			MA1	1.0	99Am05	
		2955	17			0.2	2			MA4	1.0	99Am05	
¹²² Ba-u		-80096	30			0.2	2			GS2	1.0	05Li24	
¹²² Cd- ¹³⁰ Xe _{.938}				207.2	2.5	0.6		70	72 ¹²² Cd				
$^{122}\text{Pd} - ^{129}\text{Xe}_{.946}$		3969.0	2.9	3967.3	2.5	-0.6	1	72	72 Cu	JY1	1.0	12Ha25	
122 Pd — 123 Xe _{.946}		20709	21	4400.0			2			JY1	1.0	11Ha48	
$\begin{array}{c} 10 - X_{c}.946 \\ 122 \text{Sn} \ ^{35}\text{Cl} - 120 \text{Sn} \ ^{37}\text{Cl} \\ 119 \text{Cs}^x - 122 \text{Cs}^x_{.244} \ & 118 \text{Cs}^x_{.756} \\ 120 \text{Cs}^x - 122 \text{Cs}^x_{.492} \ & 118 \text{Cs}^x_{.508} \\ 120 \text{Cs}^x - 122 \text{Cs}^x_{.492} \ & 119 \text{Cs}^x_{.508} \end{array}$		4196	2	4192.2	2.5	-0.5	U			H15	4.0	62Ba23	
$^{119}\text{Cs}^x - ^{122}\text{Cs}^x_{.244} ^{118}\text{Cs}^x_{.756}$		-1600	80	-1511	15	0.4	U			P32	2.5	86Au02	
$ \begin{array}{c} 120 \text{Cs}^{2} - 22 \text{Cs}^{2}_{.492} & 118 \text{Cs}^{2}_{.508} \\ 120 \text{Cs}^{2} - 122 \text{Cs}^{2}_{.492} & 119 \text{Cs}^{2}_{.572} \\ 120 \text{Cs}^{2} - 122 \text{Cs}^{2}_{.328} & 119 \text{Cs}^{2}_{.672} \end{array} $		-724	27	-694	20	0.4	U			P32	2.5	86Au02	
$^{120}\text{Cs}^x - ^{122}\text{Cs}^x_{.328} ^{119}\text{Cs}^x_{.672}$		350	50	321	16	-0.2	U			P22	2.5	82Au01	
		360	17			-0.9	U			P32	2.5	86Au02	
$^{121}\text{Cs}^x - ^{122}\text{Cs}^x_{.496}$ $^{120}\text{Cs}^x_{.504}$		-1100	40	-1066	24	0.3	U			P32	2.5	86Au02	
		-1169	15			2.7	U			P32	2.5	86Au02	
122 Sn(p,t) 120 Sn		-6504	15	-6503.8	2.3	0.0	U			Roc		70F108	
$^{122}\text{Te}(p,t)^{120}\text{Te}$		-8560	24	-8607.3	2.7	-2.0	U			Win		74De31	*
$^{122}\text{Te}(p,t)^{120}\text{Te} - ^{132}\text{Ba}()^{130}\text{Ba}$		227.0	0.2	227.00	0.20	0.0	1	100	80 ¹²⁰ Te			08Su14	
$^{122}\text{Te}(p,t)^{120}\text{Te}-^{144}\text{Sm}()^{142}\text{Sm}$		2032.6	0.4	2032.6	0.4	0.0	1	100	79 ¹⁴² Sm			09Bu.A	
122 Sn(d, 3 He) 121 In		-5910	50	-5901	27	0.2	2			Sac		69Co03	
		-5861	43			-0.9	2			MSU		71We01	
122 Sn(p,d) 121 Sn		-6587	15	-6590.8	2.3	-0.3	Ū			Har		70Ca01	
122 Sn(d,t) 121 Sn		-2558.8	3.0	-2558.2	2.3	0.2	1	60	57 ¹²² Sn	SPa		75Be09	
$^{121}\text{Sb}(n,\gamma)^{122}\text{Sb}$		6806.4	0.3	6806.37	0.13	-0.1	_	00	<i>57</i> BH	or u		72Sh.A	Z
55(11,7) 50		6806.36	0.15	0000.57	0.13	0.0	_			Bdn		06Fi.A	
	ave.	6806.37	0.13			0.0	1	100	95 ¹²¹ Sb	Dun			
$^{122}\text{In}(\beta^{-})^{122}\text{Sn}$	ave.	6440	200	6370	50	-0.4	U	100	95 30			average 71Ta07	.1.
$m(p^{-})$ Sii				0370	30	-0.4 -0.6				Ctu			*
122 Sn(t, 3 He) 122 In		6510	230			-0.6	U			Stu		78Al18	
		-6350	50	((()	120	0.4	2			LAI		78Aj01	
$^{122}\text{In}^{n}(\beta^{-})^{122}\text{Sn}$		6736	200	6660	130	-0.4	2			G.		71Ta07	*
122 122		6590	180		_	0.4	2			Stu		78Al18	
$^{122}\text{Sb}(\beta^+)^{122}\text{Sn}$		1587	25	1606	3	0.8	U					58Pe17	
122 Sb $(\beta^{-})^{122}$ Te		1970	5	1979.1	2.1	1.8	-					55Fa33	
		1980	3			-0.3	-					68Hs02	
	ave.	1977.4	2.6			0.7	1	68	67 ¹²² Sb			average	
$^{122}\text{I}(\beta^+)^{122}\text{Te}$		4140	40	4234	5	2.4	U					54Ma75	
		4140	40			2.4	U					60Mo.A	
		4234	5				2					77Re.A	
122 Cs $(\beta^+)^{122}$ Xe		7150	700	7210	40	0.1	U					75We23	*
•		7050	180			0.9	U					83Pa.A	*
		7000	150			1.4	U			IRS		93A103	
		7080	50			2.6	В			JAE		96Os04	
122 Cs ^{n} (β^+) 122 Xe		6950	250	7350	14	1.6	U					83Pa.A	*
4- /		7300	150		•	0.3	Ü			IRS		93Al03	
		. 200	100			5.5	C					75.1105	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	arison of input da	t value	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	търс	t varue	rajustea	varue	v ₁	Ds	orgin.	iviani inii.	Luo		reference
$^{122}\text{Cs}^{x}(\text{IT})^{122}\text{Cs}$	14	7				2					82Au01 *
$*^{122}Ag-u$	M - A = -71014(94)										Nub16b **
$*^{122}$ Ag $-u$	M - A = -71065(12)	20) keV for n	nixture gs+m a	at 80#(50	#) keV						Nub16b **
* ¹²² Ag- ¹³³ Cs _{.917}	D_M =10408(18) μ	u for mixture	gs+m at 80#(50#) keV	; M-A=	-71066	(17) keV				Nub16b **
*122Cs-133Cs.917	D_M =2887(12) μ u	for mixture g	gs+n at 140(30)) keV							Nub16b **
* ¹²² Cs- ¹³³ Cs _{.917}	D_M =2880(12) μ u	for mixture	gs+n at 140(30)) keV; M	-A = -7	8078(12)) keV				Nub16b **
* ¹²² Cs-u	M - A = -78070(28)	3) keV for mi	xture gs+m at	140(30)	keV						Nub16b **
$*^{122}$ Te(p,t) 120 Te	Original error 12;	added syster	natic error 21	keV							GAu **
$*^{122}$ In(β^-) ¹²² Sn	$E_{\beta} = 5300(200)$ to	2 ⁺ level at	1140.51 keV								Ens074 **
$*^{122} In^{n} (\beta^{-})^{122} Sn$	$E_{\beta}^{r} = 4400(200)$ to										Ens074 **
$*^{122}$ Cs $(\beta^+)^{122}$ Xe	$E_{\beta^+}^{P} = 5800(700) 5$			+ level at	331.28	keV					Ens074 **
$*^{122}$ Cs ⁿ (β^+) ¹²² Xe	$E_{\beta^+} = 3710(250)$ to										Ens074 **
$*^{122}Cs^{x}(IT)^{122}Cs$	Original was 45(3			40(30) ke	·V						Nub16b **
. 65 (11)	originar was rece	5), 10,150 a a.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0(00) 110	•						1140100
¹²³ Pd-u	-64423	290	-64870	850	-1.0	0			GT1	1.5	04Ma.A
1 u—u	-64874	339	-040/0	0.50	-1.0	o 2			GT3	2.5	16Kn03
123 Ag $-$ u	-74729		-74660	30	0.2						
Ag-u		215	-/4000	30	$0.2 \\ -0.6$	0			GT1 GT2	1.5	04Ma.A
123 Ag $^{-133}$ Cs $_{.925}$	-74479	130	12700	20		U				2.5	08Su19 *
Ag_133Cs _{.925}	12700	120	12790	30	0.8	U			MA8		10Br02
123 G 1 133 G	12794	33	12.10.1	2.0	2.7	2			MA8	1.0	10Br02 *
¹²³ Cd- ¹³³ Cs _{.925}	4491	52	4349.4	2.9	-2.7	U			MA8		10Br02 *
$C_8 H_{13} N^{-123} Sb$	200580.0		200585.4	1.6	0.7	U			M16	2.5	63Da10
G 11 122m	200615	8	200520 5		-2.5	U			R13	1.5	83De51
$C_8 H_{13} N^{-123} Te$	200538	16	200529.7	1.6	-0.2	U			M16	2.5	63Da10
122	200515	8			1.2	U			R13	1.5	83De51
¹²³ Te-u	-95615	83	-95730.3	1.6	-1.4	U			GS2	1.0	05Li24 *
¹²³ I-u	-94444	30	-94411	4	1.1	U			GS2	1.0	05Li24
¹²³ Xe ⁻¹³³ Cs _{.925}	-4048	13	-4061	10	-1.0	1	62	62 ¹²³ Xe		1.0	04Di18
¹²³ Cs-u	-87007	57	-87004	13	0.1	U			GS2	1.0	05Li24 *
123 Cs $-^{133}$ Cs $_{.925}$	447	17	453	13	0.4	o			MA1	1.0	90St25
	453	13				2			MA1	1.0	99Am05
123 Ba $-^{133}$ Cs.925	6238	13				2			MA5	1.0	00Be42
¹²³ Ba-u	-81327	30	-81219	13	3.6	C			GS2	1.0	05Li24
$^{123}\text{Cd} - ^{130}\text{Xe}_{946}$	8172.5	2.9	8172.6	2.9	0.0	1	100	100 ¹²³ Cc	l JY1	1.0	12Ha25
$^{123}\text{Cd}^m - ^{130}\text{Xe}_{.946}$	8326.5	3.3				2			JY1	1.0	13Ka08
¹²³ Sb ³⁵ Cl- ¹²¹ Sb ³⁷ Cl	3343	2	3354.0	2.3	1.4	U			H14	4.0	62Ba24
$^{123}\text{Te} - ^{123}\text{Sb}$	55.7			0.07	0.0	1	100	96 ¹²³ Sb		1.0	16Fi07
$^{119}\text{Cs}^x - ^{123}\text{Cs}^x_{.193}$ $^{118}\text{Cs}^x_{.807}$	-1480	60	-1447	13	0.2	U			P32	2.5	86Au02
$^{123}\text{Te}(n,\alpha)^{120}\text{Sn}$	7564	30	7572.6	1.7	0.3	Ü			ILL		75Em04
121 Sb(t,p) 123 Sb	7295	20	7284.6	2.1	-0.5	Ü			Ald		67Hi01
122 Sn(n, γ) 123 Sn	5948	3	5946.2	1.2	-0.6	_			7110		75Bh01
$SH(H, \gamma) = SH$	5945.8		3740.2	1.2	0.2	_					77Ca09
122 Sn(d,p) 123 Sn	3726	12	3721.6	1.2	-0.4	U			Tal		64Ne10
Sil(u,p) Sil	3726 3716	11	3/21.0	1.2	0.5	U			Tai		72Ca33
	3710				-0.1				SPa		75Be09
122 Sn $(n, \gamma)^{123}$ Sn			5046.2	1.2		- 1	0.4	51 ¹²³ Sn	эга		
	ave. 5946.3	1.2	5946.2	1.2	-0.1	1	94	51 ¹²³ Sn			average
123 Sb $(\gamma,n)^{122}$ Sb	-8980	50	-8960.0	2.1	0.4	U	20	20 122 21	Phi		60Ge01
122m ()123—	-8966	4	ا منجمر		1.5	1	28	28 ¹²² Sb	McM		79Ba06
$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$	6937	5	6929.01	0.08	-1.6	U					68Ch.A
	6929.1	0.5			-0.2	U					91Ho08
	6928.9				0.5	_					00Bo24
100	6929.1				-0.9	_			Bdn		06Fi.A
$^{122}\text{Te}(d,p)^{123}\text{Te}$	4706	6	4704.45	0.08	-0.3	U			MIT		75Li22
$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$	ave. 6929.0	1 0.08	6929.01	0.08	0.0	1	100	98 ¹²² Te			average
$^{122}\text{Te}(^{3}\text{He,d})^{123}\text{I}$	-574.2	3.5	-575	3	-0.3	1	97	96 ¹²³ I	Hei		78Sz04

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
	r										
$^{123}\text{Cd}(\beta^-)^{123}\text{In}$	6033	35	6016	20	-0.5	1	32	32 ¹²³ In	Stu		87Sp09 *
$^{123}\text{In}(\beta^{-})^{123}\text{Sn}$	4400	30	4386	20	-0.5	1	44	43 ¹²³ In	Stu		87Sp09 *
123 Sn(β^-) 123 Sb	1395	10	1407.9	2.7	1.3	-					49Du15 *
	1420	10			-1.2	-					50Ke11
	1399	20			0.4	U					66Au04 *
	ave. 1408	7			0.1	1	14	11 ¹²³ Sn			average
$^{123}I(\beta^+)^{123}Te$	1260	7	1228	3	-4.5	C					86Ag.A
123 Xe(β^+) 123 I	2720	100	2695	10	-0.2	U					54Ma75
	2676	15			1.3	1	42	38 ¹²³ Xe			60Mo.A *
$^{123}\text{Cs}(\beta^+)^{123}\text{Xe}$	4110	310	4205	15	0.3	U					75We23 *
	4000	140			1.5	U					81So06 *
	4050	180			0.9	U					83Pa.A *
	4200	100			0.1	U			IRS		93A103
	4110	30			3.2	В			JAE		96Os04
$^{123}\text{Cs}^{x}(\text{IT})^{123}\text{Cs}$	7	4				3					82Au01 *
123 Ba $(\beta^+)^{123}$ Cs	5330	100	5389	17	0.6	U			JAE		96Os04
*123Ag-u	Isomer should be exp	pected, but	123 Ag ^m at 20	0#(20#) ke	eV, correcti	on negli	gible				GAu **
$*^{123}$ Ag $-^{133}$ Cs 925	D_M =12805(30) μ u f										Nub16b **
*123Cd-133Cs.925	D_M =4568(26) μ u for	r mixture g	gs+m at 143(4	4) keV; M	-A = -772	10(25)					Nub16b **
*123Te-u	M - A = -88941(30) k	keV for mi	xture gs+m a	t 247.47 k	æV						Nub16b **
$*^{123}$ Cs $-u$	M - A = -80968(28) k	keV for mi	xture gs+m a	t 156.27 k	æV						Nub16b **
$*^{123}\text{Cd}(\beta^-)^{123}\text{In}$	Q = 3590(51) 3464(4)	11) 3547(3	6) from grou	nd state to	2393 2529	9 2541 le	evels				89Hu03 **
$*^{123}$ In(β^-) ¹²³ Sn	Q_{β} = 4410(31); and	4645(72) f	from $^{123}In^m$ a	it 327.21 l	кeV						Nub16b **
$*^{123}$ Sn(β^-) ¹²³ Sb	E_{β} = 1260(10) from										Ens04a **
$*^{123}$ Sn(β^-) ¹²³ Sb	E_{β} = 310(20) to 9/2										Ens04a **
$*^{123}$ Xe(β^+) ¹²³ I	$E_{\beta^+}=1505(15)$ to 1/2										Ens04a **
$*^{123}$ Cs $(\beta^+)^{123}$ Xe	E_{β^+} =2990(310) to 3.										Ens04a **
$*^{123}$ Cs(β^+) 123 Xe	E_{β^+} =2370(140) to (1			5 keV and	other Fac						Ens04a **
$*^{123}$ Cs(β^+) ¹²³ Xe	$E_{\beta^+} = 2930(180)$ to 3			J KC V, and	i other L _B +						Ens04a **
$*^{123}Cs^{x}(IT)^{123}Cs$	$E_{\beta^{+}}$ = 2930(180) to 3. Based on 123 Cs ^m (IT)			otio D <0	1						Nub16b **
* Cs (11) Cs	based on Cs (11)	–130.27 a	na isomene i	ano K	.1						Nublob **
¹²⁴ Pd—u	CAC17	200	(2(00))	22011	1.0	ъ.			CITTO	2.5	1617 00
124Pd—u	-64617	399	-62680#	320#	1.9	D			GT3	2.5	16Kn03 *
124 Ag $^{-133}$ Cs $_{.932}$	17050	270				2		124	MA8	1.0	10Br02 *
¹²⁴ Cd ⁻¹³³ Cs _{.932}	5781	10	5776	3	-0.5	1	10	10 ¹²⁴ Cd	MA8	1.0	10Br02
$C_7^{13}C H_{13} N^{-124}Sn$	202886	8	202877.6	1.1	-0.4	U			M16	2.5	63Da10
124	202891	8	12111		-1.1	U	20	2= 124 a	R13	1.5	83De51
¹²⁴ Sn- ¹³ C ³⁷ Cl ₃	4210.47	0.71	4214.1	1.1	2.0	1	38	37 ¹²⁴ Sn	H39	2.5	84Ha20
124 Sn $^{-133}$ Cs $_{.932}$	-6598	21	-6604.5	1.1	-0.3	U		124-	MA8	1.0	05Si34
$^{124}\text{Te} - ^{13}\text{C} ^{37}\text{Cl}_3$	1754.63	1.26	1754.5	1.6	0.0	1	26	26 ¹²⁴ Te	H39	2.5	84Ha20
¹²⁴ Te ⁻⁵⁴ Fe ³⁵ Cl ₂	25501.65	2.56	25503.4	1.7	0.3	U			H39	2.5	84Ha20
C_7 ^{13}C H_{13} $N-^{124}Te$	205336	13	205337.2	1.6	0.0	U			M16	2.5	63Da10
124-	205325	8			1.0	U			R13	1.5	83De51
¹²⁴ I-u	-93786	30	-93791.0	2.6	-0.2	U		124	GS2	1.0	05Li24
124 Xe $-^{13}$ C 37 Cl ₃	4831.15		4829.0	1.9	-0.5	1	24	24 ¹²⁴ Xe	H39	2.5	84Ha20
124 Xe $-^{54}$ Fe 35 Cl ₂	28575.78		28577.9	1.9	0.9	1	60	59 ¹²⁴ Xe	H39	2.5	84Ha20
¹²⁴ Xe ⁻¹³³ Cs _{.932}	-5986	13	-5989.6	1.9	-0.3	U			MA6	1.0	04Di18
$^{124}\text{Cs} - ^{133}\text{Cs}_{.932}$	361	16	377	9	1.0	O			MA1	1.0	90St25
		1.2			0.5	R			MA1	1.0	99Am05
	370	13									
	370 361	15			1.0	R			MA8	1.0	05Gu37
¹²⁴ Cs-u			-87742	9	$1.0 \\ -1.5$	R 2			GS2	1.0 1.0	
	361 -87696 -87693	15	-87742	9	1.0	R			GS2 GS2		05Gu37
¹²⁴ Ba- ¹³³ Cs _{.932}	361 -87696	15 30	-87742 3212	9	$1.0 \\ -1.5$	R 2			GS2	1.0	05Gu37 05Li24
¹²⁴ Ba- ¹³³ Cs _{.932} ¹²⁴ Ba-u	361 -87696 -87693	15 30 30			$ \begin{array}{r} 1.0 \\ -1.5 \\ -1.6 \end{array} $	R 2 2			GS2 GS2 MA1 GS2	1.0 1.0	05Gu37 05Li24 05Li24 *
¹²⁴ Ba- ¹³³ Cs _{.932}	361 -87696 -87693 3212	15 30 30 15	3212	13	1.0 -1.5 -1.6 0.0	R 2 2 2		89 ¹²⁴ Cd	GS2 GS2 MA1	1.0 1.0 1.0	05Gu37 05Li24 05Li24 * 99Am05

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹²⁴ Sn- ¹²⁹ Xe _{.961}		-3214.3	2.1	-3217.7	1.1	-1.6	1	27	27 ¹²⁴ Sn	JY1	1.0	11Ha48
$^{124}\text{Sn} - ^{120}\text{Sn}_{1.033}$		6305.1	2.1	6302.2	1.3	-1.4	1	36	20 ¹²⁴ Sn	JY1	1.0	11Ha48
¹²⁴ Sn ³⁵ Cl- ¹²² Sn ³⁷ Cl		4784	2	4782.8	2.6	-0.1	U	50	20 511	H15	4.0	62Ba23
¹²⁴ Te ³⁵ Cl- ¹²² Te ³⁷ Cl		2728	2	2723.74	0.15	-0.1 -0.5	U			H16	4.0	63Ba47
$^{124}\text{Sn} - ^{124}\text{Te}$			0.89				1	52	41 ¹²⁴ Te		2.5	84Ha20
124 Xe $^{-124}$ Te		2458.51		2459.6	1.6	0.5		53 27	16 ¹²⁴ Xe	H39		
$^{124}\text{Sn} - ^{122}\text{Sn}$		3076.00	1.78	3074.5	2.3	-0.3	1	21	16 Xe	H39	2.5	84Ha20
${}^{120}\text{Cs}^x - {}^{124}\text{Cs}^x_{.194} {}^{119}\text{Cs}^x_{.807}$		1838	22	1832.7	2.6	-0.1	U			M16	2.5	63Da10
${}^{120}\text{Cs}^x - {}^{124}\text{Cs}^x_{.194} {}^{119}\text{Cs}^x_{.807} $ ${}^{121}\text{Cs}^x - {}^{124}\text{Cs}^x_{.244} {}^{120}\text{Cs}^x_{.756} $		310	30	304	12	-0.1	U			P22	2.5	82Au01
$ \begin{array}{c} 121 \text{Cs}^x - 124 \text{Cs}^x_{.244} & 120 \text{Cs}^x_{.756} \\ 123 \text{Cs}^x - 124 \text{Cs}^x_{.744} & 120 \text{Cs}^x_{.256} \end{array} $		-1360	30	-1265	19	1.3	U			P22	2.5	82Au01
$^{123}\text{Cs}^{x} - ^{124}\text{Cs}^{x}_{.744} ^{120}\text{Cs}^{x}_{.256}$		-1390	30	-1337	21	0.7	U			P22	2.5	82Au01
¹²⁴ Sn(d, ⁶ Li) ¹²⁰ Cd		-5216	24	-5228	4	-0.5	U			MOTI		79Ja21
¹²⁴ Sn(³ He, ⁷ Be) ¹²⁰ Cd		-5098	30	-5115	4	-0.6	U			MSU		76St11
124 Sn(18 O, 20 Ne) 122 Cd		-1266	39	-1362.7	2.5	-2.5	U					97Gu32 *
122 Sn(t,p) 124 Sn		5931	15	5953.7	2.4	1.5	U			Roc		70Fl05
124 Sn(p,t) 122 Sn		-5956	10	-5953.7	2.4	0.2	U			_		64A129
124 Sn(d, 3 He) 123 In		-6610	50	-6599	20	0.2	_			Sac		69Co03
		-6572	66			-0.4	_		25 1235	MSU		71We01
124 122 -	ave.		40			-0.1	1	25	$25\ ^{123}In$			average
124 Sn(p,d) 123 Sn		-6279	15	-6264.8	2.4	0.9	U			Har		70Ca01
124 Sn(d,t) 123 Sn		-2260	35	-2232.1	2.4	0.8	U		- 122 -	Pit		64Co11
122 124		-2233.4	3.7			0.4	1	42	38 ¹²³ Sn	SPa		75Be09
123 Sb $(n,\gamma)^{124}$ Sb		6467.55	0.10	6467.50	0.06	-0.5	2					73Sh.A Z
		6467.40	0.10			1.0	2					81Su.A Z
122		6467.58	0.14			-0.6	2			Bdn		06Fi.A
$^{123}\text{Te}(n,\gamma)^{124}\text{Te}$		9425	2	9424.48	0.09	-0.3	U					69Bu05
		9423.7	1.5			0.5	U			_		70Or.A
		9424.05	0.30			1.4	_			Ltn		95Ge06 Z
		9423.89	0.20			3.0	C			Bdn		06Fi.A
		9424.53	0.10			-0.5	_	400	94 ¹²³ Te			06Vo09
124 a 1/2 -> 124	ave.	9424.48	0.09	44.50	20	0.0	1	100				average
$^{124}\text{Cd}(\beta^{-})^{124}\text{In}$		4166	39	4170	30	0.1	1	61	61 ¹²⁴ In	Stu		87Sp09
$^{124}\text{In}(\hat{\beta}^{-})^{124}\text{Sn}$		7180	50	7360	30	3.7	В		- 124-	Stu		78Al18
124 a 4 3 x x > 124 x		7360	49	50.50	20	0.1	1	39	39 ¹²⁴ In	Stu		87Sp09
124 Sn(t, 3 He) 124 In		-7590	50	-7350	30	4.9	В			LAl		78Aj01
$^{124}\text{In}^{m}(\beta^{-})^{124}\text{Sn}$		7370	210	7340	50	-0.1	0			Stu		78Al18
124 gr (0 =) 124 m		7341	51	2005.05	0.12	0.5	2			Stu		87Sp09
124 Sb(β^-) 124 Te		2907.7	5.	2905.07	0.13	-0.5	U					65Hs02 *
		2903.7	4.			0.3	U					66Ca10 *
124x (0+)124m		2904.7	2.	2150 (1.0	0.2	U					69Na05 *
$^{124}\text{I}(\beta^+)^{124}\text{Te}$		3157	4	3159.6	1.9	0.6	2					71Bo01 *
124 Cs $(\beta^+)^{124}$ Xe		3160.3	2.1	5020	0	-0.3	2					92Wo03
$^{124}\mathrm{Cs}(\beta^+)^{124}\mathrm{Xe}$		5920	460	5930	8	0.0	U			IDC		75We23
		5900	90			0.3	U			IRS		93A103
$^{124}\text{Cs}^{x}(\text{IT})^{124}\text{Cs}$		5910	30			0.7	U			JAE		96Os04
		30	20	0020	60	0.0	3					AHW *
$^{124}\text{La}(\beta^+)^{124}\text{Ba}$	m 1	8930	110	8830	60 124 D 1 100	-0.9	R			JAE		98Ko66
* ¹²⁴ Pd—u		from Mass						150) 1 11				WgM168**
$*^{124}$ Ag $-^{133}$ Cs _{.932}		7050(270) µ					66200(2	250) ke v				Nub16b **
* ¹²⁴ Cs-u		=-81223(28)										Nub16b **
* ¹²⁴ La-u		=-70244(32)					X 7					Nub16b **
* ¹²⁴ Sn(¹⁸ O, ²⁰ Ne) ¹²² Cd		al $Q = -1250$										GAu **
$*^{124}Sb(\beta^{-})^{124}Te$		2305(5) 2301			ely, to 2 ⁺	ievel at 60	2.7271 l	keV				Ens087 **
$*^{124}I(\beta^+)^{124}Te$		al error incre										AHW **
$*^{124}Cs^{x}(IT)^{124}Cs$	Based	on ¹²⁴ Cs ^m (I	1)=462.63	keV	120 ~ 1	22.0						Nub16b **
$*^{124}Cs^x(IT)^{124}Cs$	Isomer	ric ratio assu	med < 0.1	as for 118Cs	s, ¹²⁰ Cs, ¹	²² Cs						AHW **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹²⁵ Ag-u		-68954	429	-69270	470	-0.5	_			GT1	1.5	04Ma.A
Ag-u		-68954 -69265	186	-69270	470	-0.5	o 2			GT3	2.5	04Ma.A 16Kn03
¹²⁵ Cd-u		-09203 -78770	120	-78742	3	0.1				GT2	2.5	
Cu-u		-78770 -78780	140	-76742	3	0.1	o U			GT2	2.5	08Kn.A * 08Su19 *
C ₇ H ₆ ³⁵ Cl- ¹²⁵ Te		111363	6	111373.0	1.6	0.1	U			M16	2.5	63Da10
C ₇ H ₆ C ₁ T _e		111368	8	1113/3.0	1.0	0.7	U			R13	1.5	83De51
$^{125}I-u$		-95374	30	-95370.7	1.6	0.4	U			GS2	1.0	05Li24
$^{1-u}$ 125 Cs $-u$		-90280	30	-93370.7 -90272	8	0.1	U			GS2	1.0	05Li24
125Ba-u		-90280 -85569	30	-90272 -85528	12	1.4	R			GS2	1.0	05Li24
125La-u		-83309 -79191		-63326 -79184	28	0.2	1	87	87 ¹²⁵ La	GS2	1.0	05Li24
125Cd-133Cs.940			30					87	8/ La			
$^{125}\text{Cd}^{-133}\text{Cs}_{.940}$		10133	13	10133	3	0.0	U			TT1	1.0	16La.A
125Cs-133Cs.940		10334	13	10333	3	-0.1	U			TT1	1.0	16La.A
125 Cs – 155 Cs.940		-1392	17	-1397	8	-0.3	О			MA1	1.0	90St25
		-1382	14			-1.1	_				1.0	99Am05
		-1386	14			-0.8	_		125.0	MA4	1.0	99Am05
125 122	ave.	-1384	10			-1.3	1	71	71 ¹²⁵ Cs			average
¹²⁵ Ba- ¹³³ Cs _{.940}		3356	13	3347	12	-0.7	_		125	MA5	1.0	00Be42
125 120	ave.	3348	12			-0.1	1	98	98 ¹²⁵ Ba			average
¹²⁵ Cd- ¹³⁰ Xe _{.962}		14081.6	3.1	14082	3	0.0	1	100	100 ¹²⁵ Cd	JY1	1.0	12Ha25
$^{125}\text{Cd}^m - ^{130}\text{Xe}_{.962}$		14281.6	3.4				2			JY1	1.0	13Ka08
¹²⁵ Te ³⁵ Cl- ¹²³ Te ³⁷ Cl		3090	2	3110.26	0.13	2.5	U			H16	4.0	63Ba47
$^{122}\text{Cs}^x - ^{125}\text{Cs}_{.244}$ $^{121}\text{Cs}^x_{.756}$		715	23	640	40	-1.3	U			P32	2.5	86Au02
123 Sb(t,p) 125 Sb		6696	20	6693.0	2.1	-0.1	U			Ald		67Hi01
124 Sn(n, γ) 125 Sn		5733.1	1.5	5733.50	0.20	0.3	U					77Ca09 Z
		5733.1	0.6			0.7	U					81Ba53
		5733.5	0.2			0.0	1	100	100 ¹²⁵ Sn			11To04
124 Sn(d,p) 125 Sn		3530	30	3508.93	0.20	-0.7	U			Pit		64Co11
		3506	12			0.2	U			Tal		64Ne10
		3515	11			-0.6	U					72Ca33
		3509.4	3.6			-0.1	U			SPa		75Be09
$^{124}\text{Te}(n,\gamma)^{125}\text{Te}$		6569.0	1.0	6568.970	0.030	0.0	U					71Gr.A
		6568.97	0.03			0.0	1	100	83 ¹²⁵ Te	Prn		99Ho01
		6569.39	0.19			-2.2	U			Bdn		06Fi.A
$^{125}\text{Te}(\gamma, n)^{124}\text{Te}$		-6560	60	-6568.970	0.030	-0.1	U			Phi		60Ge01
$^{124}\text{Te}(d,p)^{125}\text{Te}$		4344	8	4344.40	0.03	0.1	U			MIT		69Gr24
¹²⁴ Te(³ He,d) ¹²⁵ I		115.1	3.0	107.38	0.07	-2.6	U			Hei		78Sz04
$^{124}\text{Te}(\alpha,t)^{125}\text{I}$		-14203	7	-14213.01	0.07	-1.4	U			Hei		78Sz04
124 Xe(n, γ) 125 Xe		7603.3	0.4	7603.3	0.4	-0.1	1	100	99 ¹²⁵ Xe			82Ka.A
$^{125}\text{Cd}(\beta^-)^{125}\text{In}$		7122	62	7129	27	0.1	1	19	19 125In	Stu		87Sp09 *
$^{125}\text{Cd}^{m}(\beta^{-})^{125}\text{In}$		7172	35	7315	27	4.1	В			Stu		87Sp09 *
$^{125}\text{In}(\beta^-)^{125}\text{Sn}$		5418	30	5420	27	0.1	1	81	81 ¹²⁵ In	Stu		87Sp09 *
$^{125}\text{Sn}(\beta^{-})^{125}\text{Sb}$		2330	10	2359.9	2.6	3.0	В	01	01 111	ota		50Ha58
$\operatorname{SH}(\mathcal{P}^{-})$ 30		2370	20	2337.7	2.0	-0.5	U					50Ke11
		2335	40			0.6	U					64De02 *
125 Sb(β^-) 125 Te		767.7	3.	766.7	2.1	-0.3	2					64Ma30 *
30(p) 1c		765.7	3.	700.7	2.1	0.3	2					66Ma49 *
$^{125}I(\varepsilon)^{125}Te$		184	7	185.77	0.06	0.3	U					64Le05 *
1(8) 10		185	8	165.77	0.00	0.3	U					66Sm05 *
		177.2	2.			4.3	C					
		186.1	0.3			-1.1	U					68Go.A * 86Bo46
		179.3	2.0			3.2	В					90Li14 *
		179.3	0.06			3.4	2					90L114 * 94Hi04
$^{125}\mathrm{Xe}(\varepsilon)^{125}\mathrm{I}$		1735	40	1643.8	2.2	-2.3	U					
$^{125}\text{Cs}(\beta^+)^{125}\text{Xe}$												
$Cs(p^{-})$ Ae		3072	20	3105	8	1.7	_					54Ma54
		3082	20			1.2	_ II			IDC		75We23
	6710	3100	100			0.1	U 1	21	29 125Cs	IRS		93A103
	ave.	3077	14			2.0	1	31	29 CS			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input da		Adjusted		v_i	Dg	Signf.	Main infl.		F	Reference
105 - 105											
125 Ba $(\beta^+)^{125}$ Cs	4560	250	4419	13	-0.6	U					68Da09 *
125- 121-125-	4380	50			0.8	U		125-	JAE		96Os04
$^{125}\text{La}(\beta^+)^{125}\text{Ba}$	5950	70	5909	28	-0.6	1	16	13 ¹²⁵ La	JAE		98Ko66
* ¹²⁵ Cd-u	M - A = -73274(93)										Nub16b **
* ¹²⁵ Cd-u	M - A = -73287(12)) keV						Nub16b **
$*^{125}Cd(\beta^-)^{125}In$	E_{β} = 4625(62) to (Ens112 **
$*^{125}$ Cd ^m $(\beta^{-})^{125}$ In	E_{β} = 5009(109), 4	581(126),	4533(39) to 21	101.40, 20	540.29, 2	641.26 1	evels				Ens112 **
$*^{125}$ In(β^-) ¹²⁵ Sn	$Q_{\beta^-} = 5443(31)$; an										Nub16b **
$*^{125}$ Sn(β^-) 125 Sb	$E_{\beta}^{-} = 2030(40)$ from						V				Ens112 **
$*^{125}$ Sb $(\beta^{-})^{125}$ Te	E_{β} = 623(3) 621(3) respectiv	ely, to $1/2^-$ le	vel at 144	1.775 keV	7					Ens112 **
$*^{125}$ I $(\varepsilon)^{125}$ Te	LMK=0.254(0.003	0.253(0.0	005) IBE=110	(2) 150.6	(0.3) resp	ectively	, all to				AHW **
*	$3/2^{+}$ level at 35.4	925 keV. Q	Q(LMK) recald	culated, e	rror main	ly theor	y				Ens112 **
$*^{125}$ I $(\varepsilon)^{125}$ Te	IBE=112.0(2.0)(1s										Ens112 **
$*^{125}$ Xe $(\varepsilon)^{125}$ I	E_{β^+} =470(40) to 3/	2 ⁺ at 188.	$416 \text{ and } 1/2^{+}$	at 243.38	2 keV, ra	tio 1:2					Ens112 **
$*^{125}$ Ba $(\beta^+)^{125}$ Cs	$E_{\beta^+}^{'}$ = 3450(250) to	$(5/2^+)$ lev	el at 84.82 lev	rel							Ens112 **
¹²⁶ Ag-u	(500/	220	65140#	220#	1.0	D			CT2	. 5	16Vn02
Ag—u	-65926	329	-65140#	220#	1.0	D				2.5	16Kn03 *
$C_{10} H_6 - ^{126} Te$	143623	9	143639.3	1.6	0.7	U				2.5	63Da10
126 Xe $-$ u	143640	8	05702	1	-0.1	U				1.5	83De51
¹²⁶ Xe-u	-95647	30	-95703	4	-1.9	U				0.1	05Li24
126La-u	-88745	30	-88750	13	-0.2	R				0.1	05Li24
¹²⁶ Ce-u	-80503	232	-80490	100	0.1	2				0.1	05Li24 *
¹²⁶ Xe- ¹³⁴ Xe _{.940}	-76029	30	(77)	4	0.0	2				0.1	05Li24
120Xe-134Xe _{.940}	-6772.8	2.9	-6773	4	0.0	0	00	00 126**		0.1	05He.A
¹²⁶ Cd- ¹³³ Cs _{.947}	-6773.2	3.8	110661	2.7	0.1	1	98	98 ¹²⁶ Xe		0.1	06He29
120Cd=135Cs _{.947}	11966.5	4.5	11966.1	2.7	-0.1	1	35	35 ¹²⁶ Cd		0.1	10Br02
	11956	15			0.7	U			MA8 1		10Br02
$^{126}\text{Cs} - ^{133}\text{Cs}_{.947}$	11958	13	1017	1.1	0.6	U				0.1	16La.A
125 Cs_155 Cs_947	-1027	17	-1017	11	0.6	0	7.4	74 ¹²⁶ Cs		0.1	90St25
¹²⁶ Ba- ¹³³ Cs _{.947}	-1011	13	707	12	-0.5	1	74	/4 Cs		0.1	99Am05
¹²⁶ Cd- ¹³⁰ Xe ₉₆₉	786	15	787	13	0.1	2	(5	65 ¹²⁶ Cd		0.1	99Am05
¹²⁶ Te ³⁵ Cl- ¹²⁴ Te ³⁷ Cl	15928.6	3.3	15928.6	2.7	0.0	1	65	65 12°Ca		0.1	12Ha25
125 Te 55 Cl=12+Te 57 Cl	3432	2	3443.91	0.11	1.5	U				1.0	63Ba47
123 g. r. 126 g. 121 g. r	3441.28		1125	1.7	1.1	U				1.5	90Dy04
$^{123}\text{Cs}^x - ^{126}\text{Cs}_{.390} ^{121}\text{Cs}_{.610}^x$	-1160	30	-1135	17	0.3	U				2.5	82Au01
$^{124}\text{Cs}^{x} - ^{126}\text{Cs}_{.590} ^{121}\text{Cs}_{.410}^{x}$	-340 570	30	-341	23	0.0	U				2.5	82Au01
$^{124}\text{Cs}^x - ^{126}\text{Cs}_{.492} ^{122}\text{Cs}_{.508}^x$	-570	30	-510	28	0.8	U				2.5	82Au01
$^{124}\text{Cs}^x - ^{126}\text{Cs}_{.328} ^{123}\text{Cs}_{.672}^x$	390	30	422	24	0.4	U				2.5	82Au01
$^{125}\text{Cs} - ^{126}\text{Cs} \cdot ^{496}$	-1130	30	-1072	14	0.8	U				2.5	82Au01
124 Sn(t,p) 126 Sn	5445	15	5442	10	-0.2	_			Ald		69Bj01
	5444	15			-0.1	_	06	96 ¹²⁶ Sn	Roc		70F105
125 T- (2) 126 T	ave. 5444	11	0112.60	0.00	-0.2	1	96	90 12°Sn			average
$^{125}\text{Te}(n,\gamma)^{126}\text{Te}$	9113.7	0.4	9113.69	0.08	0.0	U	100	o. 126m			77Ko.A
126T- (**)125T	9113.69		0112.60	0.00	0.0	1	100	83 ¹²⁶ Te	DI.		03Vo03
$^{126}\text{Te}(\gamma, n)^{125}\text{Te}$	-8840	120	-9113.69	0.08	-2.3	U			Phi		60Ge01
$^{125}\text{Te}(d,p)^{126}\text{Te}$	6892	6	6889.13	0.08	-0.5	U		ez 126+	MIT		71Gr01
$^{126}\text{Cd}(\beta^-)^{126}\text{In}$	5486	36	5516	27	0.8	1	56	56 ¹²⁶ In	Stu		87Sp09
$^{126}\text{In}(\beta^{-})^{126}\text{Sn}$	8207	39	8242	27	0.9	1	48	44 ¹²⁶ In	Stu		87Sp09
$^{126}\text{In}^m(\beta^-)^{126}\text{Sn}$	8309	51				2			Stu		87Sp09
$^{126}\text{Sn}(\beta^-)^{126}\text{Sb}$	378	30				2					71Or04 *
$^{126}\text{Sb}(\beta^{-})^{126}\text{Te}$	3667	150	3670	30	0.0	U		101			71Or04 *
$^{126}I(\beta^+)^{126}Te$	2151	5	2154	4	0.6	1	54	52 ¹²⁶ I			59Ha27
$^{126}I(\beta^-)^{126}Xe$	1258	5	1236	5	-4.5	В					55Ko14 *
$^{126}\text{Cs}(\beta^+)^{126}\text{Xe}$	4670	140	4796	11	0.9	U					75We23 *
	4810	100			-0.1	U			·		76Pa11 *
	4830	40			-0.8	U			JAE		92Os07
	4730	100			0.7	U	•	126 ~	IRS		93A103
	4780	20			0.8	1	28	26 ¹²⁶ Cs	JAE		96Os04

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
126 La $(\beta^+)^{126}$ Ba		7700	100	7700	90	0.0	R			JAE		98Ko66
				7700	90	0.0						
126 La ^m $(\beta^+)^{126}$ Ba		7910	400		126		3			JAE		98Ko66
Ag-u				MS suggest								WgM168:
¹²⁶ La−u	M-A=	=-74883(28)	keV for	mixture gs+r	n at 210	(410) keV						Nub16b
s^{126} Sn(β^-) 126 Sb	$E_{B-}=2$	$50(30)$ to 2^+	level at	127.9 keV								Ens031 =
$^{126}\text{Sb}(\beta^{-})^{126}\text{Te}$					te and ¹²	26 Sh ^m at 1	7.7 to 6	+ level at	1776.19 keV			Ens031
$^{126}I(\beta^{-})^{126}Xe$	<i>E</i> _β 1	2505 to 2± 1	1 . 2	oo caaa wa	1 41	50 at 1	7.7 to 0	icvei at	1770.17 KC V			
	E_{β} = 8	65(5) to 2 1	evel at 3	88.631 keV, a	and otne	r E _β -						Ens031
$*^{126}$ Cs(β^+) 126 Xe	$E_{\beta^+}=3$	260(140) 34	00(100) 1	respectively,	to 2 ⁺ lev	vel at 388.	631 ke\	/				Ens031 :
127-			_									
$C_{10} H_7 - ^{127}I$		150297	6	150303	4	0.4	U		127	M16	2.5	63Da10
		150305.3	3.4			-0.2	1	21	$21^{-127}I$	M16	2.5	63Da10
		150322	8			-1.6	U			R13	1.5	83De51
¹²⁷ Cs-u		-92571	30	-92583	6	-0.4	U			GS2	1.0	05Li24
¹²⁷ Ba-u		-88923	39	-88909	12	0.4	R			GS2	1.0	05Li24
127La-u		-83640	30	-83625	28	0.5	1	87	87 ¹²⁷ La	GS2	1.0	05Li24
127Ce-u				-63023	20	0.5		07	o/ La			
127 Ce—u		-77273	31				2			GS2	1.0	05Li24
¹²⁷ Cd- ¹³³ Cs _{.955}		16490	13				2			TT1	1.0	16La.A
$^{127}\text{Cd}^m - ^{133}\text{Cs}_{.955}$		16799	11	16786	9	-1.2	1	61	61 ¹²⁷ Cd ^m	TT1	1.0	16La.A
127 Sn 34 S $-^{133}$ Cs _{1.211}		-7237	12	-7245	11	-0.7	1	81	81 ¹²⁷ Sn	MA8	1.0	08Dw01
$^{127}\text{Cs} - ^{133}\text{Cs}_{.955}$		-2303	17	-2289	6	0.8	0	01	01 511	MA1	1.0	90St25
CS= ** CS.955				-2289	O							
		-2287	13			-0.2	_			MA1	1.0	99Am05
		-2293.3	7.7			0.5	-			MA8	1.0	05Gu37
	ave.	-2292	7			0.4	1	82	82 ¹²⁷ Cs			average
¹²⁷ Ba- ¹³³ Cs _{.955}		1389	13	1385	12	-0.3	_			MA5	1.0	00Be42
24 05.933	ave.	1387	12	1000		-0.2	1	98	98 ¹²⁷ Ba	1,11,10	1.0	average
$^{127}\text{Cd}^m - ^{130}\text{Xe}_{.977}$	ave.			20764	0				38 ¹²⁷ Cd ^m	T3.7.1	1.0	
127 Cd ^m – 130 Xe _{.977}		20741	14	20764	9	1.6	1	38	38 127 Cd**	JY1	1.0	12Ha25
$^{125}\text{Cs} - ^{127}\text{Cs}_{.591} ^{122}\text{Cs}_{.410}^{x}$		-1098	18	-1086	16	0.3	U			P32	2.5	86Au02
$^{126}\text{Te}(n,\gamma)^{127}\text{Te}$		6289	3	6287.65	0.18	-0.5	U					72Mu.A
• • • • • • • • • • • • • • • • • • • •		6287.8	0.4			-0.4	_			Bdn		06Fi.A
		6287.6	0.2			0.2	_			Prn		05Ho15
$^{126}\text{Te}(d,p)^{127}\text{Te}$				10(2.00	0.10							
126— 127—		4044	8	4063.08	0.18	2.4	U		127-	MIT		68Gr16
$^{126}\text{Te}(n,\gamma)^{127}\text{Te}$	ave.	6287.64	0.18	6287.65	0.18	0.0	1	100	98 ¹²⁷ Te			average
$^{127}I(\gamma,n)^{126}I$		-9135	22	-9143.9	2.7	-0.4	U			Phi		60Ge01
		-9145	3			0.4	1	83	$48^{-126}I$	MMn		86Ts04
$^{127}\text{Cd}^{m}(\beta^{-})^{127}\text{In}$		8468	63	8425	22	-0.7	1	13	11 ¹²⁷ In	Stu		87Sp09
								13	11 111			
$^{127}\text{In}(\beta^-)^{127}\text{Sn}$		6514	31	6575	19	2.0	0		127-	Stu		87Sp09
		6579	20			-0.2	1	91	89 ¹²⁷ In	Stu		04Ga24
$^{127}\text{In}^{n}(\beta^{-})^{127}\text{Sn}$		8442	56				2			Stu		04Ga24
$^{127}\text{Sn}(\beta^{-})^{127}\text{Sb}$		3201	24	3229	11	1.2	1	21	17 127 Sn	Stu		77Lu06
$^{127}\text{Sb}(\beta^-)^{127}\text{Te}$		1581	5	1582	5	0.2	1	97	96 ¹²⁷ Sb			67Ra13
$^{127}\text{Te}(\beta^-)^{127}\text{I}$								71	70 50			
12/ 1e(p)12/1		683	10	702	4	1.9	-					55Da37
		695	10			0.7	-					56Kn20
	ave.	689	7			1.9	1	26	$24^{-127}I$			average
127 Xe $(\varepsilon)^{127}$ I		663.3	2.2	662.3	2.0	-0.4	_					68Sc14
$^{127}I(^{3}He,t)^{127}Xe$		-676	6	-680.9	2.0	-0.8	_			Pri		89Ch01
127 Xe $(\varepsilon)^{127}$ I								00	91 ¹²⁷ Xe	111		
	ave.	662.6	2.1	662.3	2.0	-0.1	1	98	91 127 Xe			average
$^{127}\text{Cs}(\beta^+)^{127}\text{Xe}$		2115	25	2081	6	-1.3	_					54Ma54
		2076	20			0.3	_					67Sp08
		2089	20			-0.4	_					75We23
	ave.	2090	12			-0.7	1	27	18 ¹²⁷ Cs			average
127 Ba(β^+) 127 Cs	avc.			2.400	12			21	10 Cs			
		3450	100	3422	13	-0.3	U		127-			76Be11
$^{127}\text{La}(\beta^+)^{127}\text{Ba}$		5010	70	4922	28	-1.3	1	16	13 ¹²⁷ La	JAE		98Ko66
¹²⁷ Ba−u	M-A=	=-82791(28)	keV for	mixture gs+r	n at 80.3	32 keV						Nub16b
* ¹²⁷ La—u				mixture gs+r								Nub16b
× ¹²⁷ Ce−u				mixture gs+r								Nub16b
127g., 34g. 133g												
s^{127} Sn 34 S $-^{133}$ Cs _{1.211}				nixture gs+m	at 5.07/(u.uo) keV						Nub16b
$^{127}\text{Cd}^m - ^{130}\text{Xe}_{.977}$	Re-assi	igned to ¹²⁷ C	Cd^m by th	e evaluator								GAu :
		7010/20	O) to 1271	\ln^m at 408.9 l	$\sim V$							Nub16b =
	Also E	B-=1910(20	0) 10 1	n at 408.9 i	LC V							Nubiob .
$*^{127}\text{Cd}^m(\beta^-)^{127}\text{In}$	Also E	_β ==/910(20 igned to ¹²⁷ C	Id^m by th	n at 408.9 i e evaluator	CC V							
* $^{127}\text{Cd}^m(\beta^-)^{127}\text{In}$ * $^{127}\text{Cd}^m(\beta^-)^{127}\text{In}$ * $^{127}\text{In}(\beta^-)^{127}\text{Sn}$	Re-assi	igned to ¹²⁷ C	Cd ^m by th	ne evaluator Tin ^m at 408.9								GAu :

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e
$*^{127}$ In(β^-) ¹²⁷ Sn	Also F	-6000(63)	from 127	In ^{m} at 408.9 k	reV							Nub16b	**
$*^{127}\text{Sn}(\beta^{-})^{127}\text{Sb}$		206(24) from			ic v							Nub16b	
$*^{127}Sb(\beta^-)^{127}Te$	Q_{β} = 3	402(5) 4- 11/) = 11 -	11 3.07 Ke v		E							
				it 88.23 keV, a			1 . 411	0651 11				Ens118	
$*^{127}$ Cs $(\beta^+)^{127}$ Xe				xture gs+124					~~~			Ens118	
$*^{127}$ Cs(β^+) ¹²⁷ Xe				(30) to ground					965			Ens118	
$*^{127}$ Cs(β^+) ¹²⁷ Xe				xture gs+124			el at 411	.965 keV				Ens118	
$*^{127}$ Ba(β^+) ¹²⁷ Cs	$E_{\beta^+}=22$	230(100) to 3	/2 ⁺ level	at 180.92 keV	V, and oth	her $E_{oldsymbol{eta}^+}$						Ens118	**
¹²⁸ Sn-u		-89512	25	-89493	19	0.8	1	58	58 ¹²⁸ Sn	GS3	1.0	12Ch19	
$C_{10} H_8 - {}^{128}Te$		158112	9	158138.9	0.9	1.2	U	50	36 311	M16	2.5	63Da10	
C ₁₀ 118 — 10		158141.2	7.	130130.7	0.7	-0.1	U			C3	2.5	70Ke05	
		158151	8			-1.0	U			R13	1.5	83De51	
$C_{10} H_8 - ^{128}Xe$		159068.2	4.2	159069.3	1.1	0.1	U			M16	2.5	63Da10	
		159069.7	0.7	137007.3	1.1	-0.3	1	42	42 ¹²⁸ Xe	C3	2.5	70Ke05	
128 Cs $-u$		-92181	30	-92251	6	-0.3 -2.3	U	74	72 AC	GS2	1.0	05Li24	
128Ba-u		-92161 -91663	30	-92231 -91658	6	-2.3 0.2	R			GS2	1.0	05Li24	
¹²⁸ La–u		-84436	69	-84410	60	0.2	2			GS2	1.0	05Li24	*
¹²⁸ Ce−u		-81089	30	04410	00	0.4	2			GS2	1.0	05Li24	-,-
¹²⁸ Pr-u		-71209	32				2			GS2	1.0	05Li24	
¹²⁸ Cd- ¹³³ Cs _{.962}		18759	11	18768	8	0.8	1	50	50 ¹²⁸ Cd	MA8	1.0	10Br02	
128 Sn 34 S $-^{133}$ Cs _{1.218}		-6396	14	-6466	19	-5.0	F	30	30 Cu	MA8	1.0	08Dw01	*
$^{128}\text{Cs} - ^{133}\text{Cs}_{.962}$		-1306	17	-1296	6	0.6	0			MA1	1.0	90St25	т
Cs— Cs.962		-1293	13	-1270	U	-0.2	1	20	20 ¹²⁸ Cs	MA1	1.0	99Am05	
¹²⁸ Ba- ¹³³ Cs _{.962}		-720	13	-702	6	1.4	_	20	20 Cs	MA1	1.0	99Am05	
Ba = Cs.962	ave.	-720 -718	12	-702	U	1.3	1	22	22 ¹²⁸ Ba	MIAI	1.0	average	
$^{128}\text{Cd} - ^{130}\text{Xe}_{.985}$	avc.	22865	11	22856	8	-0.8	1	50	50 ¹²⁸ Cd	JY1	1.0	12Ha25	
¹²⁸ Te ³⁵ Cl- ¹²⁶ Te ³⁷ Cl		4106	2	4100.6	1.8	-0.3	U	30	30 Cu	H16	4.0	63Ba47	
ic ci– ic ci		4102.3	1.8	4100.0	1.0	-0.7	1	16	12 ¹²⁶ Te	C3	2.5	70Ke05	
$^{128}\text{Te}-^{128}\text{Xe}$		931.26	1.20	930.3	1.0	-0.5	_	10	12 10	H43	1.5	90Dy04	
ic— Ac		929.6	1.4	750.5	1.0	0.5	_			CP1	1.0	09Sc19	
	ave.	930.2	1.1			0.3	1	77	56 ¹²⁸ Xe	CII	1.0	average	
128 Xe $-^{126}$ Xe	arc.	-774	45	-766	4	0.1	Ü	,,	30 110	M16	2.5	63Da10	
$^{126}\text{Cs} - ^{128}\text{Cs}_{.656} ^{122}\text{Cs}_{.344}^{x}$		-1130	30	-1103	16	0.4	U			P22	2.5	82Au01	
$^{124}\text{Cs}^x - ^{128}\text{Cs}_{.323}^{323} ^{122}\text{Cs}_{.678}^x$		-1070	30	-970	30	1.3	U			P22	2.5	82Au01	
$^{126}\text{Cs} - ^{128}\text{Cs}_{.591} ^{123}\text{Cs}_{.410}^{x}$		-350	30	-340	12	0.1	U			P22	2.5	82Au01	
$^{124}\text{Cs}^x - ^{128}\text{Cs}_{.194} ^{123}\text{Cs}_{.807}^x$		370	50	366	24	0.0	U			P22	2.5	82Au01	
$^{125}\text{Cs} - ^{128}\text{Cs}_{.244} ^{124}\text{Cs}_{.756}^{x}$		-1440	30	-1354	18	1.1	U			P22	2.5	82Au01	
$^{126}\text{Cs} - ^{128}\text{Cs}_{.492}$ $^{124}\text{Cs}_{.508}^{x}$		-610	30	-568	15	0.6	U			P22	2.5	82Au01	
127Cs-128Cs.661 125Cs.339		-965	16	-934	7	0.8	U			P32	2.5	86Au02	
$^{127}\text{Cs} - ^{128}\text{Cs}_{.496}$ $^{126}\text{Cs}_{.504}$		-1160	30	-1105	8	0.7	U			P22	2.5	82Au01	
$^{128}\text{Te}(\gamma, n)^{127}\text{Te}$		-8410	120	-8783.4	1.7	-3.1	В			Phi	2.3	60Ge01	
$^{127}I(n,\gamma)^{128}I$		6825.7	0.5	6826.13	0.05	0.9	U			1 111		71Sc07	
1(11,7)		6826.12	0.05	0020.13	0.03	0.2	_			MMn		90Is03	Z
		6826.22	0.14			-0.6	_			Bdn		06Fi.A	_
	ave.	6826.13	0.05			0.0	1	100	87 ¹²⁸ I	2011		average	
$^{128}\text{Cd}(\beta^-)^{128}\text{In}$	arc.	7070	290	6900	150	-0.6	1	28	28 ¹²⁸ In	Stu		87Sp09	
$128 \text{In}(\beta^-)^{128} \text{Sn}$		9280	180	9220	150	-0.4	1	72	72 ¹²⁸ In	Stu		78Al18	*
m(p) 511		8984	37	/220	150	6.3	F	, =	, 2 111	Stu		87Sp09	*
		8950	103			2.6	F			Gsn		90St13	*
$^{128} \text{In}^m (\beta^-)^{128} \text{Sn}$		9390	220	9298	28	-0.4	0			Stu		78Al18	*
(-) 5		9306	30	. = , 0		-0.3	2			Stu		87Sp09	*
		9230	90			0.8	2			Gsn		90St13	*
$^{128}\text{Sn}(\beta^{-})^{128}\text{Sb}^{m}$		1265	30	1258	12	-0.2	_					76Nu01	*
4.)		1290	40			-0.8	_			Stu		77Lu06	*
		1260	15			-0.1	_			Gsn		90St13	*
	ave.	1264	13			-0.4	1	87	45 128 Sb ^m			average	
	2.0.					J	•		55				

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjusted v	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{128}\text{Sb}^{m}(\text{IT})^{128}\text{Sb}$	10	7				2					AHW
$^{128}\text{Sb}(\beta^-)^{128}\text{Te}$	4640	100	4363	19	-2.8	Ū					71Ki15
$^{128}\text{Sb}^{m}(\beta^{-})^{128}\text{Te}$	4391	40	4373	18	-0.4	_			Stu		77Lu06
30 (p) Te			4373	10							
	4395	30			-0.7	_		55 128 CL m	Gsn		90St13
28-12-128-	ave. 4394	24			-0.8	1	55	55 ¹²⁸ Sb ^m			average
$^{28}I(\beta^+)^{128}Te$	1277	13	1255	4	-1.7	U		120			61La16
$^{28}I(\beta^{-})^{128}Xe$	2116	10	2122	4	0.6	1	14	$13^{128}I$			56Be18
$^{28}\text{Cs}(\beta^+)^{128}\text{Xe}$	3855	90	3929	5	0.8	U					75We23
	3928	6			0.1	1	80	80 ¹²⁸ Cs			76Cr.B
	3907	40			0.5	o			IRS		83A106
	3930	100			0.0	U			IRS		93A103
28 La(β^+) 128 Ba	6650	400	6750	50	0.3	U					66Li04
•	6820	100			-0.7	R			JAE		98Ko66
¹²⁸ La-u	M - A = -78601(28) ke	V for mixtu	ire gs+m at 10	0#100 ke							Nub16b
²⁸ Sn ³⁴ S- ¹³³ Cs _{1.218}	F : authors say "possib		-			,,					GAu
$128 \text{In}(\beta^-)^{128} \text{Sn}$	E_{β} = 4980(180) to (2)			cincin ac	andonec						Ens15a
$\ln(\beta^{-})^{128} \text{Sn}$				170) 704	7(100)	~ 2104	77				
$\operatorname{III}(p^{-})$ Sii	$E_{\beta^-} = 5464(37) \text{ to } (2)^+$										Ens15a
28 t (0-)128 g	1168.82; different equ					not see	11				FGK126
$^{28}\text{In}(\beta^{-})^{128}\text{Sn}$	E_{β} = 4650(120), 5440										FGK126
$^{28}\text{In}(\beta^{-})^{128}\text{Sn}$	F: above 2 items confl		one and with	trends in	Ex of 8	isome	r				GAu
$^{28}\text{In}^{m}(\beta^{-})^{128}\text{Sn}$	E_{β} = 5430(220) to 395	58 level									FGK126
$^{28}\text{In}^{m}(\beta^{-})^{128}\text{Sn}$	E_{B^-} =5239(40), 5350(4	44) to 4066.	, 3958 level								FGK126
$^{28}\text{In}^{m}(\beta^{-})^{128}\text{Sn}$	$E_{\beta}^{P} = 5160(170), 5250$			s							FGK126
$^{28}\text{Sn}(\beta^{-})^{128}\text{Sb}^{m}$	$E_{\beta}^{P} = 630(30) 655(40)$				128 Sbm a	t 10(7) k	æV				Ens15a
$^{28}\text{Sb}^{m}(\text{IT})^{128}\text{Sb}$	From 3.6% IT for M3		1 10,01 033.	2 40010	50 u	10(7)1					Ens15a
			227 69 kaV								
28 Ch (R - \128 To		ievei at 2.	337.00 KCV								Ens15a
	E_{β} = 2300(100) to (7)		4- 6+ 1	-1 -4 1011	121-37						D15-
$^{128}{\rm Sb}^m(\beta^-)^{128}{\rm Te}$	$E_{\beta}^{r} = 2580(40) \ 2585(3)$	0) respectiv					4.1. 17				
$^{128}\text{Sb}^{m}(\beta^{-})^{128}\text{Te}$ $^{128}\text{I}(\beta^{-})^{128}\text{Xe}$	E'_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β}	0) respectiv _=1665(15) to ground sta				1 keV				Ens15a
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I $(\beta^{-})^{128}$ Xe 128 Cs $(\beta^{+})^{128}$ Xe	E'_{β^-} =2580(40) 2585(3 E_{β^-} =2120(10) and E_{β} E_{β^+} =2390(90) to 2 ⁺ lo	0) respectiv ==1665(15 evel at 442.) to ground sta 911 keV	ate and 2	⁺ level a	t 442.91	1 keV				Ens15a Ens15a
$^{128}\text{Sb}^m(\beta^-)^{128}\text{Te}$ $^{128}\text{I}(\beta^-)^{128}\text{Xe}$ $^{128}\text{Cs}(\beta^+)^{128}\text{Xe}$	E'_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β}	0) respectiv ==1665(15 evel at 442.) to ground sta 911 keV	ate and 2	⁺ level a	t 442.91	1 keV				Ens15a Ens15a Ens15a Ens15a
128 Sb(β ⁻)128 Te 128 Sb ^m (β ⁻)128 Te 128 I(β ⁻)128 Xe 128 Cs(β ⁺)128 Xe 128 La(β ⁺)128 Ba	E'_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2 ⁺ le E_{β} + 3200(400) 3370(0) respectiv ==1665(15 evel at 442. 100) respec) to ground sta 911 keV ctively, to (4 ⁻ ,	ate and 2 ⁻ 5 ⁺) level	+ level a at 2425	t 442.91 .45 keV	1 keV		GT3	2.5	Ens15a Ens15a Ens15a
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I(β^{-}) 128 Xe 128 Cs(β^{+}) 128 Xe 128 Ca(β^{+}) 128 Ba	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(6)$ $= -67789$	0) respectiv ==1665(15 evel at 442. 100) respec) to ground sta 911 keV etively, to $(4^-,$ -67696	ate and 2 ⁻ 5 ⁺) level	+ level a at 2425	t 442.91 45 keV U		26 129 Sp	GT3		Ens15a Ens15a Ens15a
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(400$	0) respectiv ==1665(15) evel at 442. 100) respective 186 31) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518	18 19	+ level a at 2425 0.2 0.1	t 442.91 45 keV U 1	36	36 ¹²⁹ Sn	MA8	1.0	Ens15a Ens15a Ens15a
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd-u}$ ${}^{29}\text{Sn-u}$ ${}^{29}\text{Xe}{}^{-120}\text{Sn}_{1.075}$	E'_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + =2390(90) to 2 ⁺ le E_{β} + =3200(400) 3370(-67789 -86521 9913.3	0) respectiv ==1665(15 evel at 442. 100) respective 186 31 2.4) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518 9913.9	18 19 1.0	+ level a at 2425 0.2 0.1 0.2	t 442.91 45 keV U 1 1		36 ¹²⁹ Sn 19 ¹²⁰ Sn	MA8 JY1	1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd-u}$ ${}^{29}\text{Sn-u}$ ${}^{29}\text{Xe}{}^{-120}\text{Sn}_{1.075}$ ${}^{210}\text{Hg}{}^{-129}\text{Xe}$	$E'_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(40$	0) respectiv ==1665(15 evel at 442. 100) respective 186 31 2.4 3.6	o) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518 9913.9 165644.431	18 19 1.0 0.006	+ level a at 2425 0.2 0.1 0.2 0.1	t 442.91 45 keV U 1 1 U	36		MA8 JY1 M16	1.0 1.0 2.5	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10
${}^{28}{\rm Sb^m}(\beta^-){}^{128}{\rm Te}$ ${}^{28}{\rm I}(\beta^-){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm La}(\beta^+){}^{128}{\rm Ba}$ ${}^{29}{\rm Cd}{\rm -u}$ ${}^{29}{\rm Sn}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -}{}^{120}{\rm Sn}_{1.075}$ ${}^{21}{\rm O}$ ${}^{12}{\rm Hg}{\rm -}{}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -u}$	E'_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + =2390(90) to 2 ⁺ le E_{β} + =3200(400) 3370(-67789 -86521 9913.3	0) respectiv ==1665(15 evel at 442. 100) respective 186 31 2.4) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518 9913.9	18 19 1.0	+ level a at 2425 0.2 0.1 0.2	t 442.91 45 keV U 1 1	36		MA8 JY1	1.0 1.0 2.5	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd-u}$ ${}^{29}\text{Sn-u}$ ${}^{29}\text{Xe}{}^{-120}\text{Sn}_{1.075}$ ${}^{21}\text{O}$ ${}^{12}\text{H}$ ${}^{-129}\text{Xe}$ ${}^{29}\text{Xe-u}$ ${}^{29}\text{Xe-U}$	$E'_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(40$	0) respectiv ==1665(15 evel at 442. 100) respective 186 31 2.4 3.6	o) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518 9913.9 165644.431	18 19 1.0 0.006	+ level a at 2425 0.2 0.1 0.2 0.1	t 442.91 45 keV U 1 1 U	36	19 ¹²⁰ Sn	MA8 JY1 M16	1.0 1.0 2.5 2.5	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I($\beta^{-})^{128}$ Xe 128 Cs($\beta^{+})^{128}$ Xe 128 La($\beta^{+})^{128}$ Ba 129 Cd-u 129 Sn-u 129 Sn-u 129 Xe- 120 Sn _{1.075} 120 C ₁₀ H9- 129 Xe 129 Xe-u 129 Xe-U 129 Xe- 120 Sn- 129 Xe	$E'_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(40$	0) respective = 1665(15) evel at 442. 100) respective = 186	o) to ground sta 911 keV etively, to (4 ⁻ , -67696 -86518 9913.9 165644.431 -95219.141	18 19 1.0 0.006 0.006	+ level a at 2425 0.2 0.1 0.2 0.1 0.7	442.91 45 keV U 1 1 U U	36	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC	1.0 1.0 2.5 2.5	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08
${}^{28}\mathrm{Sb^m}(\beta^-){}^{128}\mathrm{Te}$ ${}^{28}\mathrm{I}(\beta^-){}^{128}\mathrm{Xe}$ ${}^{28}\mathrm{Cs}(\beta^+){}^{128}\mathrm{Xe}$ ${}^{28}\mathrm{Cs}(\beta^+){}^{128}\mathrm{Ba}$ ${}^{29}\mathrm{Cd}-\mathrm{u}$ ${}^{29}\mathrm{Sn}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-{}^{120}\mathrm{Sn}_{1.075}$ ${}^{21}\mathrm{o}$ ${}^{19}\mathrm{H}_9-{}^{129}\mathrm{Xe}$ ${}^{29}\mathrm{Xe}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-\mathrm{c}_2$ ${}^{35}\mathrm{Cl}_3$ ${}^{29}\mathrm{Xe}_2-{}^{86}\mathrm{Kr}_3$ ${}^{29}\mathrm{La}-\mathrm{u}$	$E_{\beta}^{-} = 2580(40) \ 2585(3)$ $E_{\beta}^{-} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta}^{+} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta}^{+} = 3200(400) \ 3370$	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23	18 19 1.0 0.006 0.11	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7	442.91 45 keV U 1 1 U U U	36 19	19 ¹²⁰ Sn	MA8 JY1 M16 ACC H47	1.0 1.0 2.5 2.5 1.5	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01
${}^{28}\mathrm{Sb^m}(\beta^-){}^{128}\mathrm{Te}$ ${}^{28}\mathrm{I}(\beta^-){}^{128}\mathrm{Xe}$ ${}^{28}\mathrm{Cs}(\beta^+){}^{128}\mathrm{Xe}$ ${}^{28}\mathrm{Cs}(\beta^+){}^{128}\mathrm{Ba}$ ${}^{29}\mathrm{Cd}-\mathrm{u}$ ${}^{29}\mathrm{Sn}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-{}^{120}\mathrm{Sn}_{1.075}$ ${}^{21}\mathrm{o}$ ${}^{19}\mathrm{H}_9-{}^{129}\mathrm{Xe}$ ${}^{29}\mathrm{Xe}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-\mathrm{u}$ ${}^{29}\mathrm{Xe}-\mathrm{c}_2$ ${}^{35}\mathrm{Cl}_3$ ${}^{29}\mathrm{Xe}_2-{}^{86}\mathrm{Kr}_3$ ${}^{29}\mathrm{La}-\mathrm{u}$	$E_{\beta}^{-} = 2580(40) \ 2585(3)$ $E_{\beta}^{-} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta}^{+} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta}^{+} = 3200(400) \ 3370(90) \ \text{cos}$ -67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7	t 442.91 45 keV U 1 1 U U U U 1	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2	1.0 1.0 2.5 2.5 1.5 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{210}\text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2{}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{c}_8{}^{6}\text{Kr}_3$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$	$E_{\beta}^{-} = 2580(40) \ 2585(3)$ $E_{\beta}^{-} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta}^{+} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta}^{+} = 3200(400) \ 3370(90) \ \text{and} \ E_{\beta}^{-} = 3200(400) \ \text{and} \ E_{\beta}^{-} = 3200(400) \ \text{and} \ E_{\beta}^{-} = 3200(400) \ \text{and} \ E_{\beta}^{-} = 2300(400) \ \text{and} \$	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7	t 442.91 45 keV U 1 1 U U U 1 1 2	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2 GS2	1.0 1.0 2.5 2.5 1.5 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24
${}^{28}{\rm Sb}^m(\beta^-){}^{128}{\rm Te}$ ${}^{28}{\rm I}(\beta^-){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm La}(\beta^+){}^{128}{\rm Ba}$ ${}^{29}{\rm Cd}{\rm -u}$ ${}^{29}{\rm Sn}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -}{}^{120}{\rm Sn}_{1.075}$ ${}^{C_{10}}{\rm Hg}{\rm -}{}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -C}_2$ ${}^{35}{\rm Cl}_3$ ${}^{29}{\rm Xe}_2{\rm -8}^6{\rm Kr}_3$ ${}^{29}{\rm La}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$	$E_{\beta}^{-} = 2580(40) \ 2585(3)$ $E_{\beta}^{-} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta}^{+} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta}^{+} = 3200(400) \ 3370(90) \ \text{and} \ E_{\beta}^{-} = 3200(400) \ \text{and} \$	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2	t 442.91 45 keV U 1 1 U U U 1 1 2 2	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24
${}^{28}{\rm Sb}^m(\beta^-){}^{128}{\rm Te}$ ${}^{28}{\rm I}(\beta^-){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm La}(\beta^+){}^{128}{\rm Ba}$ ${}^{29}{\rm Cd}{\rm -u}$ ${}^{29}{\rm Sn}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -}{}^{120}{\rm Sn}_{1.075}$ ${}^{C_{10}}{\rm Hg}{\rm -}{}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -C}_2$ ${}^{35}{\rm Cl}_3$ ${}^{29}{\rm Xe}_2{\rm -8}^6{\rm Kr}_3$ ${}^{29}{\rm La}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} + 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} + 3200(400) \ 3370(400$	0) respectiv ==1665(15 evel at 442. 100) respect 186 31 2.4 3.6 5.4 0.68 0.0250 30 30 32 3.8	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2	442.91 45 keV U 1 1 U U U 1 1 2 2	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A
${}^{28}{\rm Sb^m}(\beta^-){}^{128}{\rm Te}$ ${}^{28}{\rm I}(\beta^-){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm La}(\beta^+){}^{128}{\rm Ba}$ ${}^{29}{\rm Cd}{\rm -u}$ ${}^{29}{\rm Sn}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -}{}^{120}{\rm Sn}_{1.075}$ ${}^{C_{10}}{\rm Hg}{\rm -}{}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -c}{\rm c}$ ${}^{35}{\rm Cl}{\rm a}$ ${}^{29}{\rm Xe}{\rm -c}{\rm u}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ 1c E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O} \text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{Ge}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Ye}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cd}-{}^{133}\text{Cs}_{.970}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ 1c E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306	18 19 1.0 0.006 0.006 0.11 0.014 23	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 -0.6 -0.2	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2	36 19	19 ¹²⁰ Sn 15 ⁸⁶ Kr	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O} \text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{23}\text{Cl}_3$ ${}^{29}\text{Xe}_2-{}^{86}\text{Kr}_3$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Ye}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cd}-{}^{133}\text{Cs}_{.070}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ 1c E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306	18 19 1.0 0.006 0.006 0.11 0.014	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{210}\text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Ye}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cd}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306	18 19 1.0 0.006 0.006 0.11 0.014 23	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1 MA1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05HeA 06He29 15At03 90St25 99Am05
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{210}\text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Ye}-\text{d}$ ${}^{29}\text{Cs}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cd}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{In}-{}^{130}\text{Xe}_{.992}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633	18 19 1.0 0.006 0.006 0.11 0.014 23	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La 12 ¹²⁹ Cs 99 ¹²⁹ In	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1 JY1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O}$ ${}^{10}\text{Hg}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{C}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Ze}-\text{u}$ ${}^{29}\text{Ze}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Cs}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{-130}\text{Xe}_{.992}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633	18 19 1.0 0.006 0.006 0.11 0.014 23 5 2.9 3	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1	4442.91 45 keV U 1 1 1 U U U 1 1 2 2 0 0 1 1 1	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La 12 ¹²⁹ Cs 99 ¹²⁹ In 99 ¹²⁹ In	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 MA1 JY1 JY1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{20}\text{Lo}$ ${}^{49}\text{Lo}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{G}_{2}$ ${}^{35}\text{Cl}_{3}$ ${}^{29}\text{Xe}_{2}-{}^{86}\text{Kr}_{3}$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Cr}$ ${}^{29}\text{Ce}^{-134}\text{Xe}_{.963}$ ${}^{29}\text{Cs}^{-133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}^{-133}\text{Cs}_{.970}$ ${}^{29}\text{In}^{-130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{-130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{-130}\text{Xe}_{.992}$ ${}^{29}\text{Lo}$ ${}^{10}\text{Hi}_{0}^{-129}\text{Xe}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633	18 19 1.0 0.006 0.006 0.11 0.014 23	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La 12 ¹²⁹ Cs 99 ¹²⁹ In	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1 JY1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Ls}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O}$ ${}^{49}\text{H}^{-129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{d}$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}_2-{}^{86}\text{Kr}_3$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Xe}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{In}^{-30}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-{}^{128}\text{Xe}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9 18016.5	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633	18 19 1.0 0.006 0.006 0.11 0.014 23 5 2.9 3	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1	4442.91 45 keV U 1 1 1 U U U 1 1 2 2 0 0 1 1 1	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La 12 ¹²⁹ Cs 99 ¹²⁹ In 99 ¹²⁹ In	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 MA1 JY1 JY1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a I6Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O}$ ${}^{49}\text{C}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}_2^{-86}\text{Kr}_3$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Xe}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{In}^{-30}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-{}^{128}\text{Xe}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9 18016.5 173469.4660 1247	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9	18 19 1.0 0.006 0.006 0.11 0.014 23 0.009 5 2.9 3 0.006 1.1	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1	442.91 45 keV U 1 1 1 U U U 1 1 2 2 0 0 1 1 1 1 U	36 19 30 58	19 ¹²⁰ Sn 15 ⁸⁶ Kr 58 ¹²⁹ La 12 ¹²⁹ Cs 99 ¹²⁹ In 99 ¹²⁹ In	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a I6Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10
${}^{28}\text{Sb}^m(\beta^-){}^{128}\text{Te}$ ${}^{28}\text{I}(\beta^-){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{Cs}(\beta^+){}^{128}\text{Xe}$ ${}^{28}\text{La}(\beta^+){}^{128}\text{Ba}$ ${}^{29}\text{Cd}-\text{u}$ ${}^{29}\text{Sn}-\text{u}$ ${}^{29}\text{Xe}-{}^{120}\text{Sn}_{1.075}$ ${}^{21}\text{O}$ ${}^{49}\text{C}^{129}\text{Xe}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{u}$ ${}^{29}\text{Xe}-\text{c}_2$ ${}^{35}\text{Cl}_3$ ${}^{29}\text{Xe}_2^{-86}\text{Kr}_3$ ${}^{29}\text{La}-\text{u}$ ${}^{29}\text{Ce}-\text{u}$ ${}^{29}\text{Pr}-\text{u}$ ${}^{29}\text{Xe}-{}^{134}\text{Xe}_{.963}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{Cs}-{}^{133}\text{Cs}_{.970}$ ${}^{29}\text{In}^{-30}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{130}\text{Xe}_{.992}$ ${}^{29}\text{In}^{m}-{}^{129}\text{Xe}$ ${}^{29}\text{Xe}-{}^{128}\text{Xe}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9 18016.5 173469.4660 1247 64706.8420	0) respective = 1665(15) evel at 442. 100) respective = 186	-67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463	18 19 1.0 0.006 0.006 0.11 0.014 23 5 2.9 3 0.006	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7	442.91 45 keV U 1 1 U U U 1 1 2 2 0 U 2 0 1 1 1 1 U	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38
${}^{28}{\rm Sb^m}(\beta^-){}^{128}{\rm Te}$ ${}^{28}{\rm I}(\beta^-){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm Cs}(\beta^+){}^{128}{\rm Xe}$ ${}^{28}{\rm La}(\beta^+){}^{128}{\rm Ba}$ ${}^{29}{\rm Cd}{\rm -u}$ ${}^{29}{\rm Sn}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -l}^{20}{\rm Sn}_{1.075}$ ${}^{21}{\rm Cl}_{0}{\rm Hg}{\rm -l}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Xe}{\rm -c}_{\rm 2}{\rm ^{35}{\rm Cl}_{\rm 3}}$ ${}^{29}{\rm Xe}{\rm -x}{\rm ^{35}{\rm Cl}_{\rm 3}}$ ${}^{29}{\rm Xe}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$ ${}^{29}{\rm Ce}{\rm -u}$ ${}^{29}{\rm Ye}{\rm -l}^{134}{\rm Xe}_{.963}$ ${}^{29}{\rm Cs}{\rm -l}^{133}{\rm Cs}_{.970}$ ${}^{29}{\rm In}{\rm -l}^{130}{\rm Xe}_{.992}$ ${}^{29}{\rm In}{\rm -l}^{130}{\rm Xe}_{.992}$ ${}^{29}{\rm In}{\rm -l}^{129}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -l}^{28}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -l}^{28}{\rm Xe}$ ${}^{29}{\rm Xe}{\rm -l}^{28}{\rm Xe}$	E_{β} = 2580(40) 2585(3 E_{β} = 2120(10) and E_{β} E_{β} + 2390(90) to 2+ le E_{β} + 3200(400) 3370(-67789 -86521 9913.3 165643.6 -95228.7 -1777.98 77729.8547 -87300 -81898 -74905 -4114.7 -4119.3 24016 -2234 -2216 17523.9 18016.5 173469.4660 1247 64706.8420 64706.8516	0) respective = 1665(15) evel at 442. 100) respective = 186) to ground sta 911 keV 211 keV 211 keV 212 ctively, to (4-, -67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9 64706.859	18 19 1.0 0.006 0.011 0.014 23 0.009 5 2.9 3 0.006 1.1 0.006	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7 0.4	442.91 45 keV U 1 1 U U U 1 1 2 0 0 U 2 0 1 1 1 1 0 U 2	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1 FS1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38 09Re03
${}^{28}Sb^m(\beta^-)^{128}Te$ ${}^{28}I(\beta^-)^{128}Xe$ ${}^{28}Cs(\beta^+)^{128}Xe$ ${}^{28}Cs(\beta^+)^{128}Xe$ ${}^{28}La(\beta^+)^{128}Ba$ ${}^{29}Cd-u$ ${}^{29}Sn-u$ ${}^{29}Xe^{-120}Sn_{1.075}$ ${}^{21}O_{10}H_9^{-129}Xe$ ${}^{29}Xe-u$ ${}^{29}Xe^{-2}^{35}Cl_3$ ${}^{29}Xe^{-2}^{35}Cl_3$ ${}^{29}Xe^{-3}^{35}Cl_3$ ${}^{29}Xe^{-3}^{45}Kr_3$ ${}^{29}La-u$ ${}^{29}Ce^{-u}$ ${}^{29}Ye^{-134}Xe_{.963}$ ${}^{29}Cd^{-133}Cs_{.970}$ ${}^{29}Se^{-133}Cs_{.970}$ ${}^{29}In^{-130}Xe_{.992}$ ${}^{29}In^{-130}Xe_{.992}$ ${}^{29}In^{-129}Xe$ ${}^{29}Xe^{-128}Xe$ ${}^{29}Xe^{-128}Xe$ ${}^{29}Xe^{-284}Kr_3$	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(10) \ \text{e}$ $E_{\beta} = 3200(400) \ $	0) respective = 1665(15) evel at 442. 100) respective = 186	1) to ground star 1911 keV etively, to (4-, -67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9 64706.859 75068.532	18 19 1.0 0.006 0.011 0.014 23 0.009 5 2.9 3 0.006 1.1 0.006	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7 0.4 0.5	45 keV U 1 1 U U 1 1 2 0 U 2 0 1 1 1 U 0 1 1 1 1 1	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1 FS1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38 09Re03
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I(β^{-}) 128 Xe 128 Cs(β^{+}) 128 Xe 128 Cs(β^{+}) 128 Xe 128 La(β^{+}) 128 Ba 129 Cd-u 129 Sn-u 129 Xe- 120 Sn _{1.075} 120 C ₁₀ H9- 129 Xe 129 Xe-u 129 Xe-C ₂ 35 Cl ₃ 129 Xe-C ₂ 35 Cl ₃ 129 Xe-u 129 Ye-u 129 Ye-u 129 Ye-u 129 Ye-3 129 Co-1 130 Xe,963 129 Cd- 133 Cs,970 129 Cs- 133 Cs,970 129 Cs- 133 Cs,970 129 In- 130 Xe,992 129 In- 130 Xe,992 129 In- 130 Xe,992 129 In- 129 Xe 129 Xe- 128 Xe 129 Xe- 128 Xe 129 Xe- 128 Xe 129 Xe- 129 Xe 129 Xe- 128 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(10) \ \text{e}$ $E_{\beta} = 3200(400) \ \text{e}$ $E_{\beta} = 3$	0) respective = 1665(15) evel at 442. 100) respective = 186	1) to ground star 1911 keV etively, to (4-, -67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9 64706.859 75068.532 500	18 19 1.0 0.006 0.011 0.014 23 0.009 5 2.9 3 0.006 1.1 0.006 0.014 7	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7 0.4 0.5 -0.1	442.91 45 keV U 1 1 U U U 1 1 2 0 0 1 1 1 1 U 0 0 1 1 1 1 0 0 1	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1 FS1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38 09Re03
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I(β^{-}) 128 Xe 128 Cs(β^{+}) 128 Xe 128 Cs(β^{+}) 128 Xe 128 La(β^{+}) 128 Ba 129 Cd-u 129 Sn-u 129 Xe- 120 Sn _{1.075} 120 C ₁₀ H9- 129 Xe 129 Xe-u 129 Xe-C ₂ 35 Cl ₃ 129 Xe-C ₂ 35 Cl ₃ 129 Xe-u 129 Ye-u 129 Ye-u 129 Ye-u 129 Ye-3 129 Co-1 130 Xe,963 129 Cd- 133 Cs,970 129 Cs- 133 Cs,970 129 Cs- 133 Cs,970 129 In- 130 Xe,992 129 In- 130 Xe,992 129 In- 130 Xe,992 129 In- 129 Xe 129 Xe- 128 Xe 129 Xe- 128 Xe 129 Xe- 128 Xe 129 Xe- 129 Xe 129 Xe- 128 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe 129 Xe- 129 Xe	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 2390(400) \ 3370(400$	0) respective = 1665(15) evel at 442. 100) respective = 186	1) to ground star 1911 keV etively, to (4-, -67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9 64706.859 75068.532	18 19 1.0 0.006 0.011 0.014 23 0.009 5 2.9 3 0.006 1.1 0.006	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7 0.4 0.5 -0.1 -0.9	442.91 45 keV U 1 1 U U U 1 1 2 2 0 1 1 1 1 U 0 U 1 1 1 0 0 1 1 1 0 1 1 1 1	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1 FS1 FS1 P22	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38 09Re03 05Sh38 82Au01 72Mu.A
128 Sb $^{m}(\beta^{-})^{128}$ Te 128 I $(\beta^{-})^{128}$ Xe 128 Cs $(\beta^{+})^{128}$ Xe	$E_{\beta} = 2580(40) \ 2585(3)$ $E_{\beta} = 2120(10) \ \text{and} \ E_{\beta}$ $E_{\beta} = 2390(90) \ \text{to} \ 2^{+} \ \text{le}$ $E_{\beta} = 3200(400) \ 3370(10) \ \text{e}$ $E_{\beta} = 3200(400) \ \text{e}$ $E_{\beta} = 3$	0) respective = 1665(15) evel at 442. 100) respective = 186	1) to ground star 1911 keV etively, to (4-, -67696 -86518 9913.9 165644.431 -95219.141 -1777.23 77729.839 -87306 -4112.633 -2223 17524.2 18016 173469.463 1249.9 64706.859 75068.532 500	18 19 1.0 0.006 0.011 0.014 23 0.009 5 2.9 3 0.006 1.1 0.006 0.014 7	+ level a at 2425 0.2 0.1 0.2 0.1 0.7 0.7 -0.6 -0.2 0.5 1.3 0.6 -0.5 0.1 -0.1 -0.2 0.1 0.7 0.4 0.5 -0.1	442.91 45 keV U 1 1 U U U 1 1 2 0 0 1 1 1 1 U 0 0 1 1 1 1 0 0 1	36 19 30 58 12 99 99 15	19 120 Sn 15 86 Kr 58 129 La 12 129 Cs 99 129 In 99 129 In 15 129 Xe	MA8 JY1 M16 ACC H47 FS1 GS2 GS2 MA8 MA8 MA1 JY1 JY1 FS1 M16 FS1 FS1	1.0 1.0 2.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ens15a Ens15a Ens15a Ens15a 16Kn02 05Si34 11Ha48 63Da10 90Me08 94Hy01 05Sh38 05Li24 05Li24 05He.A 06He29 15At03 90St25 99Am05 12Ha25 13Ka08 09Re03 63Da10 05Sh38 09Re03 05Sh38 82Au01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	ompur isc	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab F	Reference
128 m (1) 120 m		2055	40	2055.04	0.00						
$^{128}\text{Te}(d,p)^{129}\text{Te}$		3857	10	3857.84	0.08	0.1	U	100	oo 120m	MIT	67Mo22
$^{128}\text{Te}(n,\gamma)^{129}\text{Te}$	ave.	6082.41	0.08	6082.41	0.08	0.0	1	100	98 ¹²⁹ Te		average
$^{129}\text{Nd}(\varepsilon p)^{128}\text{Ce}$		5300	300	5930#	200#	2.1	D			Ctro	78Bo.A *
129 In(β^-) 129 Sn		7655	32	7753	17	3.1	В	4.4	44 129 0	Stu	87Sp09
129 T m (0 -) 129 G		7780	26	0011	17	-1.0	1	44	44 ¹²⁹ Sn	Stu	04Ga24 *
$^{129} \text{In}^m (\beta^-)^{129} \text{Sn}$		8033	66	8211	17	2.7	В	21	21 129 0	Stu	87Sp09
$^{129}\text{In}^{p}(\beta^{-})^{129}\text{Sn}$		8149	38			1.6	1	21	21 ¹²⁹ Sn	Stu	04Ga24
		9410	50	4020	27	0.4	2			Stu	04Ga24
129 Sn(β^-) 129 Sb 129 Sb(β^-) 129 Te		3996	120	4038	27	0.4	U			Stu	77Lu06 *
$^{129}\text{Te}(\beta^-)^{129}\text{I}$		2345	30	2375	21	1.0	2				70Oh05 *
1e(p)**1		1453	28	1502	3	1.8	U				56Gr10 *
		1485	10			1.7	U	62	60 ¹²⁹ I		64De10 *
$^{129}I(\beta^-)^{129}Xe$		1503	4	100	2	-0.2	1	62	40 ¹²⁹ I		68Go34 *
$^{129}\text{Cs}(\beta^+)^{129}\text{Xe}$		190	5	189	3	-0.2	1	40	83 ¹²⁹ Cs		54De17 *
$^{129}\text{Ba}(\beta^+)^{129}\text{Cs}$		1197	5	1197	5	0.0	1	83	45 ¹²⁹ Ba		76Ma35
$^{129}\text{La}(\beta^+)^{129}\text{Ba}$		2446	15	2436	11	-0.7	1	50	45 Ea		61Ar05 *
La(p +) Ba		3720	50	3739	22	0.4	_			IAT:	79Br05 *
		3740	40			0.0	- 1	40	42 ¹²⁹ La	JAE	98Ko66
$^{129}\text{Ce}(\beta^+)^{129}\text{La}$	ave.	3730	30	5040	40	0.2	1	48	42 12 La	IDC	average
$*^{129}Sn-u$	14 4	5600	200	5040	40	-2.8	U			IRS	93Al03
				xture gs+m at 3	33.13 Ke V						Nub16b **
$*^{129}Xe_2 - ^{86}Kr_3$ $*^{129}Pr - u$		d in reference									09Re03 **
**** Pr-u				d T=1# ms not	considered	1					Nub16b **
$*C_3 O_6 - {}^{129}Xe$		d in referenc		· 1							09Re03 **
$*^{129}$ Xe ₂ $-^{84}$ Kr ₃ $*^{129}$ Nd(ε p) ¹²⁸ Ce		d in referenc			1 (20 1	l					09Re03 **
* 129 In(β^-) 129 Sn	F 77	rom Mass St	(50) form	S suggest ¹²⁹ N	a 630 less	bound 11-					GAu **
				ground state, 1		ieveis					03Ge04 **
$*^{129}$ Sn(β^-) ¹²⁹ Sb				at 645.14 keV							Ens148 **
$*^{129}$ Sb $(\beta^-)^{129}$ Te				544.585 keV, a							Ens148 **
$*^{129}$ Te(β^-) ¹²⁹ I				27.793 keV and			2""				Ens148 **
* 120m (0-) 120r				ge=8.0: arithm) — III	0.5.54			Nub16b **
$*^{129}\text{Te}(\beta^-)^{129}\text{I}$	$E_{\beta} = 143$	52(10) to 5/2	⊤ level at	27.793 keV an	id 1595(10)) from 123	Te" at I	.05.51			Ens148 **
$*^{129}\text{Te}(\beta^-)^{129}\text{I}$	E_{β} =14	$76(4)$ to $5/2^{-1}$	level at 2	27.793 keV and	l 1607(7) fr	rom 129 Te	e ^m at 105	5.51			Ens148 **
$*^{129}I(\beta^-)^{129}Xe$		$0(5)$ to $3/2^+$			20						Ens148 **
$*^{129}$ Ba $(\beta^+)^{129}$ Cs				975(60) from ¹		.42(0.06)	keV				Nub16b **
* 120 120-				at 426.47 keV							Ens148 **
$*^{129}$ La $(\beta^+)^{129}$ Ba	$E_{\beta^+} = 242$	20(50) to 1/2	t ⁺ level at	278.57 keV, ar	nd other $E_{oldsymbol{eta}}$	+					Ens148 **
130 Cd $-u$		-66700	441	-65612	24	1.0	U			GT3 2.5	16Kn02
$C_9 H_8 N^{-130} Te$		159446	10	159451.515	0.012	0.2	Ü			M16 2.5	63Da10
13 C C ₈ N H ₇ $-^{130}$ Te		154990.6	7.	154981.318	0.012		U			C3 2.5	70Ke05
$C_9 H_8 N^{-130} Te$		159449	8	159451.515	0.012	0.2	Ü			R13 1.5	83De51
$C_{10} H_{10} - ^{130} Xe$		174743.6	4.2	174740.973	0.012	-0.3	U			M16 2.5	63Da10
13 C C ₈ N H ₇ $-^{130}$ Xe		157695.4	0.7	157694.716	0.010		U			C3 2.5	70Ke05
¹³⁰ Xe-C ¹³ C ³⁵ Cl ₃		-6407.63	1.21	-6403.57	0.010	2.2	U			H47 1.5	94Hy01
¹³⁰ Cs-u		-93181	60	-93291	9	-1.8	U			GS2 1.0	05Li24 *
$C_{10} H_{10} - ^{130} Ba$		171926	68	171929.4	2.7	0.0	U			R07 1.5	68De17
130 Ba $^{-85}$ Rb _{1.529}		41195.8	3.4	41194.4	2.7	-0.4	1	65	65 ¹³⁰ Ba	MA8 1.0	05Gu37
¹³⁰ La-u		-87635	30	-87631	28	0.1	2	03	03 B a	GS2 1.0	05Gu37 05Li24
¹³⁰ Ce-u		-85264	30	0,031	20	0.1	2			GS2 1.0 GS2 1.0	05Li24
¹³⁰ Pr-u		-76410	69				2			GS2 1.0 GS2 1.0	05Li24 *
11-u 130Nd-u		-70410 -71494	30				2			GS2 1.0 GS2 1.0	05Li24 *
130 Xe $^{-134}$ Xe $_{.970}$		-4726.6	5.6	-4721.891	0.012	0.8	0			MA8 1.0	05He.A
210 210,9/0		-4724.8	7.0	1,21.071	0.012	0.4	U			MA8 1.0	06He29
¹³⁰ Cd- ¹³³ Cs _{.977}		26761	24			0.4	2			MA8 1.0	15At03
CG C3.9//		20,01	~ r				_			1,1110 1.0	151105

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u>e</u>
¹³⁰ In- ¹³³ Cs _{.977}		17204	120	17250	40	0.2				CD1	1.0	1237 12	_
130 In — 133 Cs.977		17384	130	17350	40	-0.3	U			CP1	1.0	13Va12	*
130 Sn $^{-133}$ Cs $_{.977}$		6346	17	6348.0	2.0	0.1	U			MA8		05Si34	
		6344	12			0.3	U		120	MA8		05Si34	*
120 122		6349.5	3.9			-0.4	1	27	27 ¹³⁰ Sn	CP1	1.0	13Va12	
130 Xe $-^{133}$ Cs _{.977}		-4114	13	-4117.217	0.011	-0.2	U			MA6		04Di18	
$^{130}\text{Cs} - ^{133}\text{Cs}_{.977}$		-928	17	-917	9	0.6	O		400	MA1	1.0	90St25	
		-916	13			-0.1	1	48	48 ¹³⁰ Cs	MA1		99Am05	
130 Nd 19 F $-^{133}$ Cs $_{1.120}$		32902	130	32800	30	-0.8	U			MA5	1.0	00Be42	*
130 Te 35 Cl $^{-128}$ Te 37 Cl		4715	2	4711.5	0.9	-0.4	o			H16	4.0	63Ba47	
		4711.7	1.8			0.0	U			C3	2.5	70Ke05	
		4711.57	0.72			0.0	1	74	74 ¹²⁸ Te	H43	1.5	90Dy04	
130 Xe $^{-129}$ Xe $_{1.008}$		-509.78	0.34	-509.755	0.009	0.1	U			CP1	1.0	09Sc19	
		-509.96	0.26			0.8	U			SH2	1.0	13El01	*
		-509.02	0.94			-0.8	U			SH1	1.0	13El01	*
130 Sn $^{-130}$ Xe		10463.9	3.6	10465.2	2.0	0.4	_			JY1	1.0	12Ha25	
		10465.4	3.1			-0.1	_			JY1	1.0	13Ka08	*
	ave.	10464.8	2.3			0.2	1	73	73 ¹³⁰ Sn			average	
$^{130}\text{Te} - ^{130}\text{Xe}$		2706.2	7.	2713.398	0.012	0.4	U			C3	2.5	70Ke05	
		2712.98	3.02			0.1	U			H43	1.5	90Dy04	
		2713.416	0.034			-0.5	_			FS1	1.0	09Re07	
		2713.402	0.026			-0.2	_			FS1	1.0	09Re07	*
		2713.402	0.014			-0.3	o			FS1	1.0	09Re07	*
		2712.86	0.34			1.6	U			CP1	1.0	09Sc19	
		2712.82	0.25			2.3	U			JY1	1.0	11Ra24	
	ave.	2713.407	0.021			-0.4	1	35	22 ¹³⁰ Te			average	
$^{130}\text{Te}-^{129}\text{Xe}$		1441.885	0.012	1441.888	0.011	0.3	1	78	78 ¹³⁰ Te	FS1	1.0	09Re07	
130 Xe $^{-129}$ Xe		-1277	12	-1271.510	0.009	0.2	Ü	, 0	, 0 10	M16	2.5	63Da10	
110 110		-1271.517	0.012	12/11010	0.007	0.6	1	52	50 ¹³⁰ Xe	FS1	1.0	09Re07	
$^{129}\text{Cs} - ^{130}\text{Cs}_{.794}^{x}$ $^{125}\text{Cs}_{.206}$		-1270	40	-1200	14	0.7	Ü	32	30 110	P22	2.5	82Au01	
¹³⁰ Ba(p,t) ¹²⁸ Ba		-9482	32	-9543.9	2.8	-1.9	U			Win	2.5	74De31	*
130 Ba(p,t) 128 Ba $^{-144}$ Sm() 142 Sm		1095.9	1.0	1096.0	1.0	0.1	1	99	78 ¹²⁸ Ba	***111		09Pa25	-1-
$^{130}\text{Te}(d,^{3}\text{He})^{129}\text{Sb}$		-4550	30	-4519	21	1.0	R	"	70 Da	Oak		68Au04	
$^{129}I(n,\gamma)^{130}I$		6500.33	0.04	-4319	21	1.0	2			ILn		89Sa11	Z
$^{1(11,\gamma)}$ 1 129 Xe(n, γ) 130 Xe		9255.3		0255 721	0.008	0.4	U			ILII			Z
$Ae(\Pi,\gamma)$ Ae			1.0 0.8	9255.721	0.008		U					71Gr28	Z
		9256.1				$-0.5 \\ 0.5$	U			Ddm		74Ge05 06Fi.A	Z
¹²⁹ Xe(³ He,d) ¹³⁰ Cs		9255.57	0.30	1	0			17	17 ¹³⁰ Cs	Bdn			
¹³⁰ Ba(d,t) ¹²⁹ Ba		5	20	-1	8	-0.3	1	17	48 ¹²⁹ Ba	ChR		81Ha08	
130E (129G		-4001	15	-4012	11	-0.8	1	50	48 12 Ba	Tal		74Gr22	
130 Eu(p) 129 Sm		1028.0	15.0	0.550	40	2 (3			Arp		04Da04	
$^{130}\text{Cd}(\beta^-)^{130}\text{In}$		8350	160	8770	40	2.6	В			Bwg		03Di06	*
130 In(β^-) 130 Sn		10249	38				2			Stu		87Sp09	
120- 120-		9880	90	10250	40	4.1	В			Gsn		90St13	
$^{130} \mathrm{In}^m (\beta^-)^{130} \mathrm{Sn}$		10300	37				2			Stu		87Sp09	
400		10170	170	10300	40	0.8	U			Gsn		90St13	
130 In $^{n}(\beta^{-})^{130}$ Sn		10650	49				2			Stu		87Sp09	
		9880	200	10650	50	3.8	В			Gsn		90St13	
130 Sn(β^-) 130 Sb		2195	35	2153	14	-1.2	_			Stu		77Lu06	*
		2080	40			1.8	_					77Nu01	*
		2149	18			0.2	_			Gsn		90St13	*
	ave.	2148	15			0.4	1	90	$90^{-130}{ m Sb}$			average	
130 Sb $(\beta^{-})^{130}$ Te		5046	100	5067	14	0.2	U					71Ki15	*
		5015	100			0.5	U			Stu		77Lu06	*
		4990	70			1.1	U			Gsn		90St13	*
		5015	45			1.2	1	10	10 ¹³⁰ Sb	Stu		95Me16	
130 I(β^-) 130 Xe		2983	10	2944	3	-3.9	В					65Da01	*
4. \		2964	50		-	-0.4	U					70Qa03	*
130 Cs(β^+) 130 Xe		2992	20	2981	8	-0.6	_					52Sm41	
		2972	20		~	0.4	_					75We23	
	ave.	2982	14			-0.1	1	35	35 ¹³⁰ Cs			average	
	avc.	2732				0.1		55	55 Cs			arciuse	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹³⁰ Cs ^x (IT) ¹³⁰ Cs		27	15				2					AHW *
$^{130}\text{Cs}(\beta^-)^{130}\text{Ba}$		442	50	362	9	-1.6	U					52Sm41 *
$^{130}\text{La}(\beta^+)^{130}\text{Ba}$		5660	70	5634	26	-0.4	R			JAE		98Ko66
$*^{130}$ Cs $-u$	Μ Λ-	=-86716(30) ke				-0.4	K			JAL		Nub16b **
* Cs-u * ¹³⁰ Pr-u		=-71125(29) ke		-								Nub16b **
* ¹³⁰ In- ¹³³ Cs _{.977}		=-69652(20) ke		-								Nub16b **
* III— Cs.9//		ing no 8 ⁻ # iso:		c gs+11 at +00(00) KC V							GAu **
* ¹³⁰ Sn- ¹³³ Cs _{.977}		$34(12) \mu u$ for		16 88 keV: <i>M</i> -	- A=-7818	89(11) ke	·V					Nub16b **
* ¹³⁰ Nd ¹⁹ F- ¹³³ Cs _{1.120}		ve result, low st		.0.00 110 1,112	, , , ,	,,(11) 110	,					00Be42 **
$*^{130}$ Xe $-^{129}$ Xe $_{1.008}$		tively for PI–I		sev ToF-ICR	techniques	3						13El01 **
* ¹³⁰ Sn- ¹³⁰ Xe		2555.5(3.1) μu					2.9) keV					Nub16b **
* ¹³⁰ Te- ¹³⁰ Xe		em 1 ion; secon										GAu **
$*^{130}$ Te $-^{130}$ Xe		nation of ¹³⁰ Xe										GAu **
$*^{130}$ Ba(p,t) ¹²⁸ Ba		olved peak. C			eased to 24	keV and	d					GAu **
*		systematic erro	-	,								GAu **
$*^{130}$ Cd(β^-) ¹³⁰ In	$E_{\beta} = 62$	224(+165–157)	to 1+ level a	at 2120.2 keV								Ens086 **
$*^{130}$ Sn(β^-) ¹³⁰ Sb		490(90), 1150(1047.67 ke	·V						Ens017 **
$*^{130}$ Sn(β^-) ¹³⁰ Sb		280(80), 1060(Ens017 **
$*^{130}$ Sn(β^-) ¹³⁰ Sb		415(30), 1112(Ens017 **
*		3σ conflicting										Nub16b **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	E_{R} =29	900(100) to ¹³⁰	Te ^{m} at 2146.	41 keV								Nub16b **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	O = 502	20(100) from ¹³	$^{60}{\rm Sb}^{m}$ at 4.80	keV								Nub16b **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te		960(25) from ¹³			ent							Nub16b **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te		l from given av		-		0) keV						GAu **
$*^{130}I(\beta^{-})^{130}Xe$	$E_{\beta} = 1$	702(10) 1042(1	0) 618(10) to	4+ 1204.614	, 6+ 1944.	140, 5 ⁺	2362.07	3				Ens017 **
$*^{130}I(\beta^-)^{130}Xe$	$E_{\beta}^{r}=24$	480(50), 1850(80) from ¹³⁰ I	m at 39.9525 to	o 2 ⁺ levels	s at 536.0	068,					GAu **
*		122.112 keV										Ens017 **
$*^{130}$ Cs x (IT) 130 Cs	Combin	ning isomer rati	o of referenc	e								82Au01 **
*	with ¹	$^{30}\text{Cs}^m(\text{IT})=163$.25 keV									Nub16b **
$*^{130}$ Cs $(\beta^{-})^{130}$ Ba	Value g	given without as	sociated erro	or								AHW **
121												
131 Cd $-u$		-59671	1023	-59280	110	0.2	U			GT3	2.5	16Kn02
131 0		-59280	110	92047	4	0.4	2			MR1		15At03
¹³¹ Sn-u		-82958 82050	26	-82947	4	0.4	U			MA8		05Si34 *
¹³¹ Sb-u		-82950 88170	130 530	99010.7	2.2	0.0	U			GT2 GT2	2.5	08Su19 * 08Kn.A *
$C_{10} H_{11} - {}^{131}Xe$		-88170 180991.6	3.0	-88010.7 180991.218	2.2 0.009	$0.1 \\ -0.1$	U U			M16	2.5 2.5	08Kn.A * 63Da10
$C_{10} H_{11} - X_{e}$ $^{131}Xe - u$		-94925.5	5.7	-94915.864	0.009	0.7	U			ACC		90Me08
131 Xe-C ₂ 35 Cl ₂ 37 Cl		1472.65	0.80	1476.16	0.009	2.9	В			H47	1.5	94Hy01
131 Ba-u		-92955	66	-93058.8	2.8	-1.6	U			GS2	1.0	05Li24 *
¹³¹ La–u		-89930	30	- 75056.6	2.0	-1.0	2			GS2	1.0	05Li24 *
¹³¹ Ce-u		-85579	36	-85570	40	0.2	1	96	96 ¹³¹ Ce	GS2	1.0	05Li24 *
¹³¹ Pr-u		-79741	56	-79770	50	-0.4	1	81	81 ¹³¹ Pr	GS2		05Li24 *
¹³¹ Nd-u		-72753	30	-72752	30	0.0	1	97	97 ¹³¹ Nd		1.0	05Li24
¹³¹ In- ¹³³ Cs _{.985}		20262	37	20101.9	2.9	-4.3	C		<i>,</i> 1, u	CP1	1.0	13Va12 *
131 Sn 34 S $-^{133}$ Cs _{1.241}		2253	11	2254	4	0.1	_			MA8		08Dw01 *
			4.7	10183	4	-1.1	_				1.0	13Va12
131 Sn=133 Cs oss		10188.2						0.1			1.0	10 (412
$^{131}\text{Sn} - ^{133}\text{Cs}_{985}$	ave.	10188.2 2259			4	-1.0	1	81	81 ¹³¹ Sn			average
¹³¹ Sn- ¹³³ Cs _{.985} ¹³¹ Sn ³⁴ S- ¹³³ Cs _{1.241} ¹³¹ Sb- ¹³³ Cs oss	ave.	2259	4	2254	4 2.2	-1.0 0.5	1 U	81	81 ¹³¹ Sn	CP1	1.0	average 13Va12
131 Sn-133 Cs _{.985} 131 Sn 34 S-133 Cs _{.1.241} 131 Sb-133 Cs _{.985} 131 Xe-129 Xe _{1.016}	ave.	2259 5114	4 11	2254 5119.2	2.2	0.5	U			CP1 FS1	1.0 1.0	13Va12
131 Sn-133 Cs _{.985} 131 Sn 34 S-133 Cs _{.1.241} 131 Sb-133 Cs _{.985} 131 Xe-129 Xe _{1.016}	ave.	2259 5114 1826.7855	4 11 0.0096	2254 5119.2 1826.787		0.5 0.1	U 1	66	81 ¹³¹ Sn 62 ¹³¹ Xe	FS1	1.0	13Va12 13Ho22
$^{131}\mathrm{Sn}^{-133}\mathrm{Cs}_{.985}$ $^{131}\mathrm{Sn}^{34}\mathrm{S}^{-133}\mathrm{Cs}_{1.241}$ $^{131}\mathrm{Sb}^{-133}\mathrm{Cs}_{.985}$ $^{131}\mathrm{Xe}^{-129}\mathrm{Xe}_{1.016}$ $^{131}\mathrm{Cs}^{-133}\mathrm{Cs}_{.985}$	ave.	2259 5114	4 11	2254 5119.2	2.2 0.008	0.5	U				1.0 1.0	13Va12
131 Sn-133 Cs _{.985} 131 Sn 34 S-133 Cs _{.1241} 131 Sb-133 Cs _{.985} 131 Xe-129 Xe _{1.016} 131 Cs-133 Cs _{.985}	ave.	2259 5114 1826.7855 -1429 -1419	4 11 0.0096 18 14	2254 5119.2 1826.787 -1405	2.2 0.008	0.5 0.1 1.3 1.0	U 1 0 1	66	62 ¹³¹ Xe	FS1 MA1	1.0 1.0 1.0	13Va12 13Ho22 90St25 99Am05
131 Sn-133 Cs _{.985} 131 Sn 34 S-133 Cs _{.1.241} 131 Sb-133 Cs _{.985} 131 Xe-129 Xe _{1.016}	ave.	2259 5114 1826.7855 -1429	4 11 0.0096 18	2254 5119.2 1826.787	2.2 0.008 5	0.5 0.1 1.3	U 1 o	66	62 ¹³¹ Xe	FS1 MA1 MA1	1.0 1.0 1.0	13Va12 13Ho22 90St25

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e
121 a 122**				1010:								107	_
¹³¹ Sn- ¹³² Xe _{.992}		12134	21	12131	4	-0.1	U		121	JY1	1.0	12Ha25	*
$^{131}\text{Sb} - ^{130}\text{Xe}_{1.008}$		9250.7	2.3	9251.9	2.2	0.5	1	95	95 ¹³¹ Sb	JY1	1.0	12Ha25	
131 Xe $-^{132}$ Xe $_{.992}$		162.283	0.030	162.288	0.008	0.2	_			SH1	1.0	14Ne15	
		162.292	0.014			-0.3	_			FS1	1.0	13Ho22	
	ave.	162.290	0.013			-0.2	1	40	38 ¹³¹ Xe			average	
131 Xe $^{-130}$ Xe		1574	11	1574.787	0.011	0.0	U			M16	2.5	63Da10	
¹²⁸ Cs- ¹³¹ Cs _{.391} ¹²⁶ Cs _{.610}		-100	30	-47	9	0.7	U			P22	2.5	82Au01	
¹²⁸ Cs- ¹³¹ Cs _{.244} ¹²⁷ Cs _{.756}		783	21	752	7	-0.6	F			P33	2.5	86Au02	*
¹²⁹ Cs- ¹³¹ Cs _{.328} ¹²⁸ Cs _{.672}		-1030	30	-870	6	2.1	U			P22	2.5	82Au01	
$^{130}\text{Te}(n,\gamma)^{131}\text{Te}$		5929.7	0.5	5929.38	0.06	-0.6	U					77Ko.A	
(,1)		5929.5	0.4			-0.3	Ü					80Ho29	\mathbf{z}
		5929.38	0.06			0.2	2			Prn		03To08	_
		5930.16	0.19			-4.1	Ĉ			Bdn		06Fi.A	
¹³⁰ Te(d,p) ¹³¹ Te		3703	6	3704.81	0.06	0.3	Ü			MIT		67Gr21	
130 Ba $(n,\gamma)^{131}$ Ba		7493.5	0.3	7493.50	0.30	0.0	1	100	95 ¹³¹ Ba	14111		82Ka.A	
130 Ba(d,p) 131 Ba			15			0.0	U	100	95 Da	ANII		70Vo04	
131 Nd(ε p) 130 Ce		5269		5268.94	0.30					ANL			
131E (130g		4600	400	4370	40	-0.6	U					78Bo.A	
131 Eu(p) 130 Sm		957.4	8.	947	5	-1.3	3					98Da03	
121- 10 121-		939.2	7.		_	1.1	3					99So17	
$^{131}\text{In}(\beta^-)^{131}\text{Sn}$		8820	200	9240	5	2.1	U					80De35	
		8930	150			2.1	O			Stu		84Fo19	
		9184	33			1.7	O			Stu		88Fo05	
		9165	30			2.5	o			Stu		95Me16	
		9174	22			3.0	В			Stu		99Fo01	
		9222	18			1.0	U			Stu		04Fo06	
$^{131}\text{In}^{m}(\beta^{-})^{131}\text{Sn}$		9230	220	9605	8	1.7	O			Stu		84Fo19	
		9547	46			1.3	o			Stu		88Fo05	
		9480	70			1.8	o			Stu		95Me16	
		9524	26			3.1	В			Stu		04Fo06	
131 In ⁿ (β^-) 131 Sn		13000	500	12990	90	0.0	o			Stu		84Fo19	
		13450	163			-2.8	В			Stu		88Fo05	
		13230	80			-3.1	В			Stu		95Me16	
		12986	86				2			Stu		04Fo06	
131 Sn(β^-) 131 Sb		4582	120	4717	4	1.1	o			Bwg		79Ke02	*
,		4640	20			3.8	В			Stu		84Fo19	*
		4610	110			1.0	U			Bwg		87Gr.A	*
		4689	14			2.0	o			Stu		95Me16	
		4688	14			2.1	o			Stu		99Fo01	
		4701	8			2.0	1	25	19 ¹³¹ Sn	Stu		04Fo06	*
131 Sb(β^-) 131 Te		3190	70	3229.6	2.1	0.6	o			Stu		77Lu06	
56(\$\rightarrow\$) 10		3217	20	5225.0		0.6	0			Stu		95Me16	
		3200	26			1.1	Ü			Stu		99Fo01	
$^{131}\text{Te}(\beta^-)^{131}\text{I}$		2275	10	2231.7	0.6	-4.3	В			Stu		61Be20	*
1c(ρ') 1		2278	15	2231.7	0.0	-3.1	В					65De22	*
$^{131}I(\beta^-)^{131}Xe$		971.0	0.7	970.8	0.6	-0.2						51Ve05	
I(p) Ae		971.0		970.8	0.0		2						*
131 Cs $(\varepsilon)^{131}$ Xe			1.2	255	_	0.4	2					52Ro16	*
$Cs(\varepsilon)$ Xe		355	10	355	5	0.0	_					54Sa22 56Ho66	
		355	10			0.0	_						
		360	15			-0.3	-	60	co 131 c			57Mi63	
131p (0+)131c	ave.	356	6	1077	~	-0.2	1	60	60 ¹³¹ Cs			average	
131 Ba(β^+) 131 Cs		1370	16	1375	5	0.3	-					76Ge14	*
		1371	12			0.3	_		101			78Va04	*
***	ave.	1371	10			0.5	1	30	25 ¹³¹ Cs			average	
131r (0±\131r)		2960	100	2914	28	-0.5	U					60Cr01	
$^{131}\text{La}(\beta^+)^{131}\text{Ba}$													
$^{131}\text{La}(\beta^+)^{131}\text{Ba}$ $^{131}\text{Ce}(\beta^+)^{131}\text{La}$ $^{131}\text{Pr}(\beta^+)^{131}\text{Ce}$		4020 5250	400	4060	40 60	0.1	U		9 ¹³¹ Pr	IRS		66No05 93Al03	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input val	ue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
131 Nd(β^+) 131 Pr		6560	150	6530	50	-0.2	1	13	9 ¹³¹ Pr	IRS		93Al03
$*^{131}$ Sn-u	M - A	A=-77242(15) keV					_		,			Nub16b **
*		131 Sn 34 S $-^{133}$ Cs				rget						GAu **
$*^{131}Sn-u$		A=-77238(120) ke				-8						Nub16b **
* ¹³¹ Sb-u		A=-81291(96) keV		-								Nub16b **
* ¹³¹ Ba-u		A=-86494(30) keV		-								Nub16b **
* ¹³¹ Ce-u		1=-79685(28) keV		-								Nub16b **
* ¹³¹ Pr-u		1=-74202(28) keV		-								Nub16b **
* ¹³¹ In- ¹³³ Cs _{.985}		ratio mistyped, de		-		ble 1 of i	naner					GAu **
$*^{131}$ Sn 34 S $-^{133}$ Cs _{1.241}		$2300.3(3.6) \mu u$ for						5)				Nub16b **
$*^{131}Sn - {}^{132}Xe_{.992}$		2168.7(3.4) μu fo										Nub16b **
*		tical to result give		-	7, 1, 1, 1	1- //22).O(3. <u>2</u>) RC V				13Ka08 **
*128Cs-131Cs.244 127C		ection based on li										86Au02 **
$*^{131}$ Sn(β^-) ¹³¹ Sb		3870(120), 2620(æV							Nub16b **
* Sh(p) So		$/2^+$) level at 798.4										Ens06c **
$*^{131}$ Sn(β^-) ¹³¹ Sb		:4638(20); and 479										Nub16b **
$*^{131}\text{Sn}(\beta^{-})^{131}\text{Sb}$:4600(110); and 40										
												Nub16b **
$*^{131}$ Sn(β^-) ¹³¹ Sb		4698(11); and 476				2501 1						Nub16b **
$*^{131}\text{Te}(\beta^{-})^{131}\text{I}$		2457(10) 2460(15										Nub16b **
$*^{131}I(\beta^-)^{131}Xe$		606.5(0.7) 605.9(Ens06c **
$*^{131}$ Ba $(\beta^+)^{131}$ Cs		$22(11) \times 10^{-6}$ to 3.			culated p	p^+ and Q						Ens06c **
$*^{131}$ Ba(β^+) ¹³¹ Cs		0.165(0.001) to 3/										Ens06c **
$*^{131}$ Ce $(\beta^+)^{131}$ La	$E_{\beta^+}=$	2800(400) to 7/2 ⁺	level at 19	95.68 keV								Ens06c **
¹³² Sb-u		-85850	150	-85492.0	2.6	1.0	U			GT2	2.5	08Su19 *
$C_{10} H_{12} - {}^{132}Xe$		189740.8	3.3	189745.300	0.006	0.5	U			M16		63Da10
¹³² Xe-u		-95856.2	4.0	-95844.913	0.006	1.1	U			ACC		90Me08
¹³² Xe-C ¹³ C ³⁵ Cl ₂ ³⁷	'Cl	-2803.73	1.40	-2807.72	0.09	-1.9	U			H47	1.5	94Hy01
132 Xe-C ₃ O ₆	Ci	-65332.6117	0.0248	-65332.631	0.006		0			FS1	1.0	05Sh38 *
AC C3 O6		-65332.6238	0.0140	03332.031	0.000	-0.5	1	16	15 ¹³² Xe	FS1	1.0	09Re03
$C_{10} H_{12} - ^{132} Ba$		188863	70	188839.3	1.1	-0.3	U	10	13 AC	R07	1.5	68De17
$c_{10} m_2 - ba$		188821	88	100037.3	1.1	0.1	U			R07	1.5	68De17
132 La $-u$		-89874	67	-89880	40	-0.1	1	34	34 ¹³² La	GS2	1.0	05Li24 *
¹³² Ce-u		-88542	30	-88536	22	0.2	1	54	54 ¹³² Ce	GS2	1.0	05Li24 *
132 Ce O $^{-142}$ Sm _{1.042}		-5258	32	-5265	22	-0.2	1	47	46 ¹³² Ce	MA7		03E124 01Bo59 *
132 Pr $-u$		-80760	31	-3203	22	-0.2	2	47	40 CC	GS2		
132Nd-u		-80760 -76690		-76679	26	0.4						05Li24 * 05Li24
132 Xe $^{-129}$ Xe $_{1.023}$			30		26 0.004	0.4	2 U			GS2	1.0	
Ae-12 Ae _{1.023}		1564.20	0.32	1564.268	0.004	0.2				CP1	1.0	09Sc19
$^{132}{\rm Sb} - ^{130}{\rm Xe}_{1.015}$		1565.4	1.0	12446.0	26	-1.1	U	02	83 ¹³² Sb	CP1 JY1	1.0	09Sc19
$^{132}\text{Te} - ^{130}\text{Xe}_{1.015}$		12445.7	2.9	12446.0	2.6	0.1	1	83			1.0	12Ha25
$^{132}\text{Sn} - ^{133}\text{Cs}_{.992}$		6482.9	4.3	6485	4	0.4	1	76	76 ¹³² Te	JY1	1.0	12Ha25
132Sn-133Cs _{.992}		11621	19	11615.6	2.1	-0.3	U			MA8		05Si34
132 34 133 0		11613.1	2.9	2606.0	2.1	0.8	_			CP1		13Va12
¹³² Sn ³⁴ S- ¹³³ Cs _{1.248}		3686.3	7.7	3686.9	2.1	0.1	_	(1	(1 132 g	MA8	1.0	08Dw01
$^{132}\text{Sn} - ^{133}\text{Cs}_{.992}$	ave.	11613.3	2.7	11615.6	2.1	0.8	1	61	61 ¹³² Sn	an.	1.0	average
¹³² Sb- ¹³³ Cs.992		8301.3	6.5	8299.7	2.6	-0.3	1	17	17 ¹³² Sb	CP1	1.0	13Va12
$^{132}\text{Cs} - ^{133}\text{Cs}_{.992}$		223	18	229.4	1.1	0.4	0			MA1		90St25
		232	14			-0.2	U			MA1		99Am05
		246.9	5.9			-3.0	C	=-	TO 122 -	MA8		09Bo.A
122 122		230.8	1.3			-1.1	1	73	73 ¹³² Cs	MA8		15At.A
					26	-0.7	R			MA5	1.0	00Be42
132 Nd $-^{133}$ Cs.992		17147	52	17113					100			
132 Sn $^{-132}$ Xe		13672.3	3.4	13668.8	2.1	-1.0	1	39	39 ¹³² Sn	JY1	1.0	12Ha25
132 Sn $^{-132}$ Xe 132 Xe $^{-131}$ Xe								39		JY1 M16	1.0	
132 Sn $-^{132}$ Xe		13672.3	3.4	13668.8	2.1	-1.0	1	39 34 40	39 ¹³² Sn 33 ¹³² Xe 38 ¹³⁰ Xe	JY1	1.0	12Ha25

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹³² Ba- ¹³⁰ Ba		-1241	4	-1259.8	2.9	-1.9	U			M17	2.5	66Be10
Bu Bu		-1253	68	1237.0	2.7	-0.1	U			R07	1.5	68De17
132 Xe $^{-129}$ Xe		-625.7755	0.0156	-625.772	0.004	0.2	0			FS1	1.0	05Sh38
Ac Ac		-625.7703	0.0130	023.772	0.004	-0.1	_			FS1	1.0	09Re03
		-625.7732	0.0115			0.1	_			FS1	1.0	09Re03
		-625.771	0.0123			-0.1	_			FS1	1.0	09Re07
		-625.7771	0.0083			0.6	_			FS1	1.0	10Mo30
	ave.	-625.774	0.005			0.4	1	48	28 ¹²⁹ Xe	151	1.0	average
132 Xe ₂ $-^{84}$ Kr ₃	avc.	73816.9775	0.0594	73816.988	0.014	0.2	U	70	20 AC	FS1	1.0	05Sh38
132 Xe ₂ $-^{86}$ Kr ₃		76478.3099	0.0374	76478.295	0.014		1	11	6 ⁸⁶ Kr	FS1	1.0	05Sh38
$^{14}N_{10}-^{132}Xe$		126584.9632	0.0412	126584.958		-0.3	1	11	10 ¹³² Xe	FS1	1.0	09Re03
$^{131}\text{Cs} - ^{132}\text{Cs}_{.794}$ $^{127}\text{Cs}_{.206}$		-1118	16	-1094	5	0.6	F	11	10 Ac	P33	2.5	86Au02
$^{131}\text{Cs} - ^{132}\text{Cs}_{.744} + ^{128}\text{Cs}_{.256}$		-1116 -1200			5					P22	2.5	
$^{130}\text{Cs}^x - ^{132}\text{Cs}_{.492}$ $^{128}\text{Cs}_{.508}$			30	-1219		-0.2	U					82Au01
131 V (132 V		-210	40	-340	17	-1.3	U			P22	2.5	82Au01
131 Xe(n, γ) 132 Xe		8936.3	1.0	8936.721	0.007	0.4	U					71Ge05
		8935	2			0.9	U			D.I		71Gr28
1321 (0=)1320		8936.65	0.22	1.41.40	60	0.3	U			Bdn		06Fi.A
$^{132}\text{In}(\beta^-)^{132}\text{Sn}$		13600	400	14140	60	1.3	U			G.		86Bj01
122 - 122 - 1		14135	60		_		2			Stu		95Me16
$^{132}\text{Sn}(\beta^{-})^{132}\text{Sb}$		3080	40	3089	3	0.2	O			Stu		77Al09
		3103	10			-1.4	O			Stu		95Me16
122 2 122		3115	10			-2.6	U			Stu		99Fo01
$^{132}\text{Sb}(\beta^{-})^{132}\text{Te}$		5530	70	5553	4	0.3	O			Stu		77A109
		5486	24			2.8	U			Stu		95Me16
122		5491	20			3.1	В			Stu		99Fo01
$^{132}\text{Te}(\beta^-)^{132}\text{I}$		493	4	515	3	5.6	В					65Iv01
		517	4			-0.4	1	76	$52^{132}I$	Stu		99Fo01
$^{132}I(\beta^-)^{132}Xe$		3596	15	3575	4	-1.4	_					61De17
		3558	15			1.2	_					65Jo13
		3580	7			-0.6	_			Stu		99Fo01
	ave.	3579	6			-0.6	1	48	$48^{-132}I$			average
$^{132}I^{m}(\beta^{-})^{132}Xe$		3685	10				2					74Di03
$^{132}\text{Cs}(\beta^+)^{132}\text{Xe}$		2090	25	2126.3	1.0	1.5	U					63Ta05
•		2127.7	6.			-0.2	U					87De33
$^{132}\text{La}(\beta^+)^{132}\text{Ba}$		4820	100	4710	40	-1.1	_					60Wa03
,		4680	50			0.6	_					67Fr02
	ave.	4710	40			0.1	1	66	66 ¹³² La			average
¹³² Sb-u		=-79870(124) 1		ture gs+m at 2	200(30) k							Nub16b *
132 Xe-C ₃ O ₆		ted in reference		_	()							09Re03 *
¹³² La–u		=-83623(30) ke	_		88.20 keV	J						Nub16b *
132 Ce O $^{-142}$ Sm _{1.042}		al error (22 keV					n tran					GAu *
132Pr-u	_	=-75213(28) ke		•			пип					Nub16b *
132 Xe $^{-129}$ Xe		ted in reference			Jπ30 KC V							09Re03 *
132 Xe $^{-129}$ Xe		em 5 ⁺ ions; sec	_		darad to 1	ha indan	andant					09Re03 *
132 Xe ₂ $-^{84}$ Kr ₃		ted in reference			dered to t	be macp	endent					09Re03 *
$^{132}Xe_2 - ^{86}Kr_3$			-									
$^{131}\text{Cs} - ^{132}\text{Cs}_{.794}$ ^{127}Cs .		ted in reference	-									09Re03 *
		jection based or			277.061							86Au02 *
$^{132}\text{Te}(\beta^-)^{132}\text{I}$		215(4) 239(4) re										Ens054 *
$^{132}I(\beta^-)^{132}Xe$		2156(15) 2118(1					٠V					Ens054 *
$^{132}I^{m}(\beta^{-})^{132}Xe$		465(10) to 7 ⁻¹			d other E_{μ}	B-						Ens054 *
$^{132}\text{Cs}(\beta^+)^{132}\text{Xe}$		$100(25)$ to 2^+ le										Ens054 *
132 Cs $(\beta^+)^{132}$ Xe	$p^{+} = 0$.0042(0.0001) §	gives $E_{\beta^+}=4$	438(6) recalcu	lated Q							AHW *
		level at 667.71										Ens054 *
¹³³ Sb-u		94766	100	94739	2	0.2	_			CTO	2.5	00V A
50-u		-84766 84705	100	-84728	3	0.2	0			GT2		08Kn.A
		-84795 84702	129			0.2	U			GT2		08Su19
		-84702	25			-1.0	U			GS3	1.0	12Ch19

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
$C_{10} H_{13} - ^{133}Cs$	196266	64	196273.458	0.009	0.1	U			R07	1.5	68De17	
C ₁₀ H ₁₃ — Cs	196279	25	170273.436	0.007	-0.1	U			R07	1.5	68De17	
$C_9^{13}CH_{12}-^{133}Cs$	191796	34	191803.261	0.009	0.1	U			R07	1.5	68De17	
$C_8 O N H_7 - {}^{133}Cs$	147321	25				U						
$C_8 \text{ O N H}_7 - \text{ CS}$ $C_7 ^{13}\text{C N O H}_6 - ^{133}\text{CS}$			147311.889	0.009	-0.2				R07	1.5	68De17	
$^{133}\text{Cs}-^{85}\text{Rb}_{1.565}$	142835	31	142841.692	0.009	0.1	U			R07	1.5	68De17	
155Cs-65 Rb _{1.565}	43500	13	43501.027	0.011	0.1	U			MA5	1.0	00Be42	
	43499.3	1.6			1.1	U			MA8	1.0	07Ke09	
	43500.9	6.7			0.0	U			MA8	1.0	02Ke.A	
	43500.1	6.7			0.1	U			MA8	1.0	09Na.A	
	43470	47			0.7	U			MA9	1.0	09Na.A	
122 -	43501.2	1.7			-0.1	U			MA8	1.0	11He10	
¹³³ Cs-u	-94548.41	0.41	-94548.039	0.009	0.9	U			ST2	1.0	99Ca46	*
¹³³ La–u	-91810	120	-91780	30	0.2	U			GS1	1.0	00Ra23	
100	-91782	30				2			GS2	1.0	05Li24	
¹³³ Ce-u	-88471	32	-88480	18	-0.3	2			GS2	1.0	05Li24	*
133 Ce O $^{-142}$ Sm $_{1.049}$	-4618	21	-4615	18	0.2	R			MA7	1.0	01Bo59	*
¹³³ Pr-u	-83663	30	-83669	13	-0.2	R			GS2	1.0	05Li24	
¹³³ Nd-u	-77652	50				2			GS2	1.0	05Li24	*
¹³³ Pm-u	-70218	54				2			GS2	1.0	05Li24	*
133Sb-136Xe oze	6022	10	6016	3	-0.6	1	11	11 ¹³³ Sb	CP1	1.0	12Va02	
133Sb-130Xe _{1.022}	13984.7	4.0	13982	3	-0.7	1	70	70 ¹³³ Sb	JY1	1.0	12Ha25	
$^{133}\text{Te} - ^{130}\text{Xe}_{1.023}$	9672.1	2.3	9673.3	2.2	0.5	1	93	93 ¹³³ Te	JY1	1.0	12Ha25	
¹³³ Sn- ¹³⁴ Xe _{.993}	17856.5	2.4	17858.5	2.0	0.8	1	73	73 ¹³³ Sn	JY1	1.0	12Ha25	
133 Sn 34 S $^{-133}$ Cs _{1.256}	10562	25	10533.1	2.0	-1.2	Ü	13	75 511	MA8	1.0	08Dw01	
^{133}Sn ^{-133}Cs	18467.0	3.9	18461.8	2.0	-1.2	1	27	27 ¹³³ Sn	CP1	1.0	13Va12	
¹³³ Sb- ¹³³ Cs	9818	13	9820	3	0.2	Ü	21	27 311	CP1	1.0	13 Va12	
$^{133}\text{Te}-^{133}\text{Cs}_{1.000}$	5551.4	6.9		2.2					CP1		13 Va12	
$^{133}I^{-133}Cs$			5511.4	2.2	-5.8	В				1.0		
133 Pr $^{-133}$ Cs	2375.4	6.9	10070	1.2	0.1	2			CP1	1.0	13Va12	
133 G G G	10877	15	10879	13	0.1	2		11 133 0	MA5	1.0	00Be42	
¹³³ Cs-C ₃ O ₆	-64035.786	0.026	-64035.757	0.009	1.1	1	11	11 ¹³³ Cs	MI2	1.0	99Br47	
133 Cs- C_{10} H_{12}	-188448.445	0.057	-188448.426	0.009	0.3	U		122	MI2	1.0	99Br47	
133 Cs $-^{132}$ Xe	1296.8803	0.0103	1296.874	0.007	-0.6	1	50	45 ¹³³ Cs	FS1	1.0	10Mo30	
¹³³ Cs- ¹²⁹ Xe	671.1007	0.0103	671.102	0.007	0.1	1	50	44 ¹³³ Cs	FS1	1.0	10Mo30	
133 Cs $(\gamma,n)^{132}$ Cs	-8988	33	-8989.6	1.0	0.0	U			Phi		60Ge01	
	-8986	2			-1.8	1	27	27 ¹³² Cs	MMn		85Ts02	
132 Ba $(n, \gamma)^{133}$ Ba	7189.91	0.36	7189.9	0.4	0.0	1	100	98 ¹³² Ba	MMn		90Is07	Z
¹³² Ba(d,p) ¹³³ Ba	4977	15	4965.3	0.4	-0.8	U			ANL		70Vo04	
133 Sn(β^{-}) 133 Sb	7830	70	8050	4	3.1	В			Stu		83B116	*
* .	8013	50			0.7	o			Stu		92Sp.A	*
	7990	25			2.4	U			Stu		95Me16	
133 Sb(β^-) 133 Te	3966	50	4014	4	1.0	o			Stu		70Ru.A	*
4	4003	10			1.1	0			Stu		95Me16	
	4002	7			1.7	1	25	18 ¹³³ Sb	Stu		99Fo01	
$^{133}\text{Te}(\beta^{-})^{133}\text{I}$	2960	100	2921	7	-0.4	Ü	23	10 50	Stu		68Mc09	
10(β) 1	2876	100	2)21	,	0.5	U					68Pa03	*
	3392	100			-4.7	C			Stu		70Ru.A	*
	2890	15			2.1				Stu		95Me16	7
	2942	24			-0.9	o U			Stu		99Fo01	
$^{133}I(\beta^-)^{133}Xe$			1785	7	-0.3				Siu			
1(b) VG	1800 1760	50 30	1/83	7		U					59Ho97	*
	1760	30			0.8	U			C4		66Ei01	*
133x (0-)1330	1757	4	407.4	2.4	7.1	В			Stu		99Fo01	
133 Xe(β^-) 133 Cs	428.0	4.	427.4	2.4	-0.2	2					52Be55	*
	427.0	3.			0.1	2					61Er04	*
122 122	424	11			0.3	U		122	Stu		99Fo01	
133 Ba $(\varepsilon)^{133}$ Cs	517.3	1.0	517.3	1.0	0.0	1	98	98 ¹³³ Ba			67Sc10	*
	498	5			3.9	F					68Mc06	*
	486	2 5			15.7 -0.7	F U					69Bo49 69To14	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted v		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.		$\frac{F}{F}$	Reference	<u></u>
	*				-							_
133 La(β^+) 133 Ba	2230	200	2059	28	-0.9	U						*
* ¹³³ Cs-u	As revised in reference										02Bf02 >	
* ¹³³ Ce-u	M - A = -82392(28) ke				07150	(16) 1 3	7				Nub16b >	
$*^{133}$ Ce O $-^{142}$ Sm _{1.049} $*^{133}$ Nd $-$ u	$D_M = -4599(16) \mu \text{u for}$	_			-8/150	(16) ke	V				Nub16b >	
* ¹³³ Pm-u	M - A = -72268(28) ke										Nub16b >	
*133 C (P =) 133 CL	M - A = -65342(33) ke			. / Ke V							Nub16b >	
$*^{133}$ Sn(β^-) ¹³³ Sb	E_{β} = 6870(70) to 5/2 ⁺										Ens114 >	
$*^{133}$ Sn(β^-) ¹³³ Sb	Private communicati			14.							92Ch09 >	
$*^{133}$ Sb $(\beta^{-})^{133}$ Te	E_{β} = 1210(50) to (5/2)			-evaluate	ea						Ens114 >	
$*^{133}\text{Te}(\beta^-)^{133}\text{I}$	$Q_{\beta^-} = 3210(100)$ from			. 1							Nub16b >	
* $*133 \text{Te}(\beta^-)^{133} \text{I}$	reported as belonging											**
*** $Ie(\beta^{-})^{133}Xe$	E_{β} = 850(100) to (3/2)				0701 3	7					Ens114 >	
	E_{β} = 1270(50) 1230(3					V					Ens114 >	
$*^{133}$ Xe(β^-) ¹³³ Cs	E_{β} = 347(4) 346(3) res										Ens114 >	
$*^{133}$ Ba(ε) ¹³³ Cs	From L/K=0.371(0.00										Ens114 >	
* $*^{133}$ Ba(ε) ¹³³ Cs	and L/K=0.221(0.005		vei at 383.8491	i kev: Q	=521(5,) ke v					Ens114 >	
	F: badly resolved L-1		0.45(0.04)		1/2+	427.01	121-37				Ens114 >	
* 133 Ba(ε) 133 Cs * 133 La(β ⁺) 133 Ba	L/K=0.67(0.15) LM/K			pecuvely	, το 1/2	45/.01	13 KeV				Ens114 > Ens114 >	
* * La(p *) * Ba	E_{β} = 1200(200) to 3/2	level at 1.	2.327 Ke V								Elisi 14	**
124												
¹³⁴ Te-u	-88844	130	-88603.6	2.9	0.7	U			GT2		08Su19	
$C_{10} H_{14} - {}^{134}Xe$	204155.5	3.2	204157.417		0.2	U				2.5	63Da10	
¹³⁴ Xe-u	-94634.4	5.4	-94606.966		2.0	U				2.5	90Me08	
¹³⁴ Xe-C ¹³ C ³⁵ Cl ³⁷ Cl ₂	1381.76	0.60	1380.33	0.12	-1.6	U				1.5	94Hy01	
$C_{10} H_{14} - ^{134} Ba$	205025	20	205042.1	0.3	0.3	U				2.5	66Be10	
124	205010	46			0.5	U			R07	1.5	68De17	
$C_{11} H_2 - {}^{134}Ba$	111125	48	111141.7	0.3	0.2	U			R07	1.5	68De17	
$C_8 \text{ N O H}_8 - ^{134} \text{Ba}$	156063	78	156080.5	0.3	0.1	U			R07	1.5	68De17	
$C_{12} H_6 - ^{134} Ba O$	147531	64	147527.2	0.3	0.0	U				1.5	68De17	
¹³⁴ La–u	-91456	34	-91486	21	-0.9	2				1.0	05Li24	
¹³⁴ Ce-u	-91190	130	-91072	22	0.9	U				1.0	00Ra23	
124 - 142 -	-91056	30			-0.5	2				1.0	05Li24	
134 Ce O $^{-142}$ Sm _{1.056}	-6631	32	-6613	22	0.6	R				1.0		*
¹³⁴ Pr-u	-84285	37	-84303	22	-0.5	2				1.0	05Li24	*
¹³⁴ Nd-u	-81234	30	-81210	13	0.8	R				1.0	05Li24	
¹³⁴ Pm-u	-71647	62	20017.5	1.0	0.2	2				1.0	05Li24	*
$^{134}Sb - ^{130}Xe_{1.031}$	20016.8	2.2	20017.5	1.8	0.3	2			JY1	1.0	12Ha25	
$^{134}\text{Te} - ^{130}\text{Xe}_{1.031}$	20019.2	3.3	10070.0	2.0	-0.5	2	7.1	71 ¹³⁴ Te	JY1	1.0		*
134 Sb $^{-136}$ Xe _{1.031}	10877.1	3.5	10878.2	2.9	0.3	1	71	71 ¹³⁴ Te	JY1	1.0	12Ha25	
¹³⁴ Te- ¹³⁶ Xe _{.985}	11906	36	11929.4	1.8	0.7	U	21	21 ¹³⁴ Te		1.0		*
134 Xe $^{-132}$ Xe $_{1.015}$	2791.4	6.5	2790.1	2.9	-0.2	1	21			1.0	12Va02	
134 Sn 34 S $^{-133}$ Cs _{1.263}	2675.6193	0.0084	2675.619	_	0.0	1	100	100 ¹³⁴ Xe		1.0	13Ho22	
$^{134}\text{Sn}^{-133}\text{Cs}_{1.008}$	16080	160	15962	3	-0.7	U				1.0	08Dw01	
$^{134}\text{Sb} - ^{133}\text{Cs}_{1.008}$	23974	17	23985	3	0.6	U				1.0	13Va12	
^{134}I $^{-133}Cs_{1.008}$	15850 5083.0	11	15840.1	1.8	-0.9	U	50	59 ¹³⁴ I		1.0	13Va12	
$^{134}\text{Cs} - ^{133}\text{Cs}_{1.008}$		6.8	5080	5	-0.4	1	59	391		1.0	13Va12	
CS CS _{1.008}	2025	18	2022.929	0.015		0			MA1		90St25	
134 Pr $-^{133}$ Cs _{1.008}	2033 10992	14 27	11001	22	-0.7	U			MA1		99Am05	
¹³⁴ Nd- ¹³³ Cs _{1.008}		27		22 13	$0.3 \\ -0.4$	R 2			MA5		00Be42 00Be42	*
$^{134}\text{Sn} - ^{134}\text{Xe}$	14100 23287 4	14	14095	13	-0.4	2 2			MA5		00Ве42 12На25	
¹³⁴ Ba-C ₁₀ H ₁₃	23287.4	3.4	-197217.0	0.2	0.2	U U				1.0 2.5	12Ha25 66Be10	
134 Ba $^{-132}$ Ba	-197229	20		0.3	0.2							
ра— ра	-553 550	4	-552.7	1.2	0.0	U				2.5	66Be10 68De17	
$^{131}\text{Cs} - ^{134}\text{Cs}_{.244}$ $^{130}\text{Cs}_{.756}^{x}$	-550 -1313	121	-1182	14	0.0	U				1.5 2.5		.1
133 Cs(n, γ) 134 Cs	-1313 6891.540	50	-1182 6891.540		1.1	U				2.3		*
$Cs(\Pi,\gamma)$		0.017	0691.540	0.014	0.0	-			MMn II n			Z 7
	6891.540 6891.39	0.027 0.14			0.0 1.1	– U			ILn Bdn		87Bo24 06Fi.A	L
		0.14			0.0	1	100	100 ¹³⁴ Cs	Dull			
	ave. 6891.540	0.014			0.0	1	100	100 CS			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u>е</u>
134g (0-)134g	7270	00	7507		2.4				G.		053.5.16	_
$^{134}\text{Sn}(\beta^-)^{134}\text{Sb}$	7370	90	7587	4	2.4	U			Stu		95Me16	
134 Sb(β^{-}) 134 Te	8306	210	8513	3	1.0	O			Stu		72Ke21	*
	7960	240			2.3	0			Stu		77Lu06	*
	8310	80			2.5	U U			Bwg		79Ke02	*
$^{134}\text{Te}(\beta^-)^{134}\text{I}$	8390 1560	45 90	1510	5	2.7 -0.6	U			Stu Stu		95Me16 77Lu06	
16(<i>p</i>) 1	1550	30	1310	3	-0.0 -1.3	U			Stu		95Me16	*
	1513	7			-0.5	1	50	$41^{-134}I$	Stu		99Fo01	
$^{134}I(\beta^-)^{134}Xe$	4170	60	4082	5	-0.5 -1.5	U	30	71 1	Stu		61Jo08	*
I(p) Ac	4175	15	7002	3	-6.2	В			Stu		95Me16	~
	4052	8			3.8	В			Stu		99Fo01	
134 Cs $(\beta^-)^{134}$ Ba	2058.6	0.4	2058.7	0.3	0.2	1	58	58 ¹³⁴ Ba	ora -		68Hs01	*
$^{134}\text{La}(\beta^+)^{134}\text{Ba}$	3772	50	3731	20	-0.8	R		20 24			65Bi12	
24(p) 24	3692	30	5,51		1.3	R					73Al20	
134 Ce $(\varepsilon)^{134}$ La	500	200	386	29	-0.6	U					76Gr09	*
134 Pr(β^+) 134 Ce	6190	90	6305	29	1.3	Ü			Dbn		95Ve08	*
134 Nd(β^+) 134 Pr	2770	150	2882	24	0.7	Ü					77Ko.B	
134 Pm(β^+) 134 Nd	9170	200	8910	60	-1.3	Ü			Dbn		95Ve08	*
$*^{134}$ Ce O $-^{142}$ Sm _{1.056}	Original error (2						rap				- .	**
* ¹³⁴ Pr-u	M - A = -78477(1				Nub16b	
$*^{134}$ Pm $-u$	M - A = -66739										Nub16b	
*134Sb-130Xe _{1.031}	D_M =20318.7(3.					3740.00	2.9) keV				Nub16b	
*134Sb-136Xe.985	D_M =12206(36)										Nub16b	
*	assuming high	spin is fa	vored, as for	. 136 Im		. /					~ .	**
$*^{134}$ Pr $-^{133}$ Cs _{1.008}	Most certainly g				mpletely ex	xcluded					00Be42	
$*^{134}$ Pr $-^{133}$ Cs _{1.008}	D_M =11029(16)						(15) keV				Nub16b	**
$*^{131}$ Cs $-^{134}$ Cs $_{.244}$ 130 Cs x	$D_M = -1330(50)$	keV for 1	nixture gs+n	n at 138.7	441 keV						Nub171	
$*^{134}$ Sb $(\beta^{-})^{134}$ Te	E_{β} = 8400(300)	, and 680	00(300) from	134 Sbm a	t 279(1) to	$^{134}\text{Te}^{m}$ a	t 1691.34				Nub16b	**
$*^{134}$ Sb $(\beta^{-})^{134}$ Te	$E_{\beta}^{-} = 5840(240)$	from 134	Sb ^m at 279(1) to $(6)^+$	level at 239	97.70 ke	V				Ens04a	**
$*^{134}$ Sb $(\beta^{-})^{134}$ Te	$E_{\beta}^{-} = 8420(120)$										Nub16b	**
*	to 6 ⁺ levels at										Ens04a	**
$*^{134}\text{Te}(\beta^-)^{134}\text{I}$	E_{β} = 730(110) 6					κeV					Ens04a	**
$*^{134}I(\beta^-)^{134}Xe$	$E_{\beta}^{P} = 2410(60)$ 1						2867.38 kg	eV			Ens04a	**
$*^{134}$ Cs $(\beta^{-})^{134}$ Ba	$E_{\beta}^{-}=658.0(0.4)$										Ens04a	**
$*^{134}$ Ce $(\varepsilon)^{134}$ La	LK=0.798(0.04)										76Gr09	**
$*^{134} Pr(\beta^+)^{134} Ce$	$E_{\beta^+}=4120(90) \text{ t}$										Ens04a	
$*^{134}$ Pm(β^+) ¹³⁴ Nd	$E_{\beta^+} = 7360(200)$										Ens04a	
()	-p:()											
¹³⁵ Sb—u	-74932	103	-74815.6	2.8	0.5	o			GT2	2.5	08Kn.A	
· 6 55 - 55	-74943	130			0.4	Ü			GT2	2.5	08Su19	
$^{135}\text{Te}{-u}$	-83643	106	-83445.3	1.8	0.7	U			GT2	2.5	08Kn.A	
	-83441	132			0.0	Ü			GT2	2.5	08Su19	
C ₈ N O H ₉ -135Ba	162731	48	162725.3	0.3	-0.1	Ü			R07	1.5	68De17	
$C_{11} H_3 - {}^{135}Ba$	117822	77	117786.5	0.3	-0.3	Ü			R07	1.5	68De17	
$C_{12} H_7 - ^{135} Ba O$	154160	46	154172.0	0.3	0.2	Ü			R07	1.5	68De17	
		30	-90839	11	-2.0	1	13	13 ¹³⁵ Ce	GS2	1.0	05Li24	*
¹³⁵ Ce-u	-90779	30				R	-		GS2	1.0	05Li24	
¹³⁵ Ce-u ¹³⁵ Pr-u	-90779 -86897		-86888	13	U						UJL/124	
135 Pr $-u$	-86897	30	-86888 -81819	13 21	$0.3 \\ -0.1$							
¹³⁵ Pr-u ¹³⁵ Nd-u	$-86897 \\ -81800$	30 130	-86888 -81819	21	-0.1	o			GS1	1.0	00Ra23	*
¹³⁵ Pr-u ¹³⁵ Nd-u	-86897 -81800 -81811	30 130 36				o R			GS1 GS2	1.0 1.0	00Ra23 05Li24	*
¹³⁵ Pr-u ¹³⁵ Nd-u ¹³⁵ Pm-u	-86897 -81800 -81811 -75204	30 130 36 81			-0.1	o R 2			GS1 GS2 GS2	1.0 1.0 1.0	00Ra23 05Li24 05Li24	
135 Pr-u 135 Nd-u 135 Pm-u 135 Sm-u 135 Sn-130 Xet 039	-86897 -81800 -81811 -75204 -67480	30 130 36 81 166			-0.1	o R 2 2			GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	00Ra23 05Li24 05Li24 05Li24	*
135 Pr-u 135 Nd-u 135 Pm-u 135 Sm-u 135 Sn-130 Xe _{1.038} 135 Sb-130 Xe _{1.038}	-86897 -81800 -81811 -75204 -67480 35065.9	30 130 36 81 166 3.3	-81819	21	$-0.1 \\ -0.2$	o R 2 2 2	84	84 ¹³⁵ Sh	GS1 GS2 GS2 GS2 JY1	1.0 1.0 1.0 1.0	00Ra23 05Li24 05Li24 05Li24 12Ha25	*
¹³⁵ Pr-u ¹³⁵ Nd-u ¹³⁵ Pm-u ¹³⁵ Sm-u	-86897 -81800 -81811 -75204 -67480	30 130 36 81 166			-0.1	o R 2 2	84 41	84 ¹³⁵ Sb 41 ¹³⁵ Te	GS1 GS2 GS2 GS2	1.0 1.0 1.0 1.0	00Ra23 05Li24 05Li24 05Li24	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item Input value Adjusted value v_i Dg Signf. Main infl. Lab $^{135}\text{Sb}^{-133}\text{Cs}_{1.015}$ 21146.8 7.0 21150.6 2.8 0.5 1 16 $^{16}\text{I}^{35}\text{Sb}^{-185}$ CPI $^{135}\text{Te}^{-133}\text{Cs}_{1.015}$ 12520.3 2.4 12521.0 1.8 0.3 1 59 59 $^{135}\text{Te}^{-185}$ CPI $^{135}\text{L}^{-133}\text{Cs}_{1.015}$ 6026.6 2.3 6025.6 2.2 -0.4 1 93 93 $^{135}\text{Te}^{-185}$ CPI $^{135}\text{Cs}^{-133}\text{Cs}_{1.015}$ 1958 18 1943.5 1.1 -0.8 0 MA1 $^{135}\text{Pc}^{-133}\text{Cs}_{1.015}$ 1958 18 1943.5 1.1 -0.8 0 MA1 $^{135}\text{Pc}^{-133}\text{Cs}_{1.015}$ 9080 14 9078 13 -0.1 2 MA5 $^{135}\text{Nc}^{-133}\text{Cs}_{1.015}$ 14144 25 14148 21 0.1 2 MA5 $^{135}\text{L}^{-136}\text{Nc}_{.993}$	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	Reference 13Va12 13Va12 13Va12 90St25 99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17 68De17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	13Va12 13Va12 90St25 99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	13Va12 90St25 99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	90St25 99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17 68De17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	90St25 99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17 68De17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 1.0 2.5 2.5 1.5	99Am05 00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 1.0 2.5 2.5 1.5	00Be42 00Be42 12Va02 12Va02 66Be10 66Be10 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.0 1.0 2.5 2.5 1.5	00Be42 12Va02 12Va02 66Be10 66Be10 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.0 2.5 2.5 1.5	12Va02 12Va02 66Be10 66Be10 68De17 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 2.5 2.5 1.5	12Va02 66Be10 66Be10 68De17 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5 2.5 1.5	66Be10 66Be10 68De17 68De17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5 1.5	66Be10 68De17 68De17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	68De17 68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		68De17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		COTTLA
6972.17 0.18 -1.2 - MMn 6971.84 0.17 0.7 - Ltn 6973.24 0.22 -5.8 B BNn		92U1.A
6971.84 0.17 0.7 – Ltn 6973.24 0.22 –5.8 B BNn		77Ko.A
6973.24 0.22 —5.8 B		90Is07
		93Bo01
		93Ch21
6971.87 0.18 0.5 - Bdn		06Fi.A
134Ba(d,p) ¹³⁵ Ba 4746 15 4747.40 0.10 0.1 U ANL		70Vo04
134 Ba(n, γ) 135 Ba ave. 6971.96 0.10 6971.96 0.10 1 97 55 135 Ba		average
$\frac{135}{136}$ Tb(p) $\frac{134}{136}$ Gd 1188 7 3 Arp		04Wo07
$^{135}{ m Sb}(eta^-)^{135}{ m Te}$ 8120 50 8038 3 -1.6 U Stu		89Ho08
$^{135}\text{Te}(\beta^-)^{135}\text{I}$ 5950 240 6050.4 2.7 0.4 o Stu		77Lu06
5950 100 1.0 o Bwg		79Ke02
5970 200 0.4 U		85Sa15
5960 100 0.9 U Bwg		87Gr.A
5888 13 12.5 B Stu		07Fo02
$^{135}\text{I}(\beta^-)^{135}\text{Xe}$ 2780 80 2634 4 -1.8 U		70Ma19
2590 50 0.9 U Stu		76Lu04
2627 6 1.2 1 42 34 ¹³⁵ Xe Stu		99Fo01
135 Xe(β^{-}) 135 Cs 1155 10 1168 4 1.3 –		52Be55
1167 5 0.3 – Stu		99Fo01
ave. 1165 4 0.9 1 68 66^{-135} Xe		average
$^{135}\text{Cs}(\beta^-)^{135}\text{Ba}$ 205 5 268.9 1.0 12.8 B		53Li01
$^{135}\text{La}(\beta^+)^{135}\text{Ba}$ 1200 10 1207 9 0.7 1 89 89 ^{135}La		71Ba18
135 Ce(β^+) 135 La 2027 5 2027 5 0.0 –		76Ga.A
2016 13 0.9 –		81Sa09
ave. 2026 5 0.3 1 98 87 ¹³⁵ Ce		average
135 Pr(β^+) 135 Ce 3720 150 3680 16 -0.3 U		54Ha68
$^{135}\text{Pm}^m(\beta^+)^{135}\text{Nd}$ 6040 150 6390# 50# 2.3 D		95Ve08
M - A = -84114(28) keV for ¹³⁵ Ce ^m at 445.81 keV		Nub16b *
M - A = -76174(28) keV for mixture gs+m at 64.95 keV		Nub16b *
M - A = -69952(28) keV for mixture gs+m at 200#80 keV		Nub16b *
M - A = -62857(38) keV for mixture gs+m at 0#300 keV		Nub16b *
$^{135}\text{Nd} - ^{133}\text{Cs}_{1.015}$ $D_M = 14179(14) \mu \text{u} \text{ for gs+m mixture at } 64.95 \text{keV}; M - A = -76185(13) \text{keV}$		Nub16b *
105		
		Ens083 *
$^{135}\text{Te}(\beta^-)^{135}\text{I}$ $E_{\beta^-} = 5370(100) \text{ to } 5/2^+ \text{ level at } 603.68 \text{ keV}$		Ens083 *
$^{135}\text{I}(\beta^-)^{135}\text{Xe}$ $E_{\beta^-}=1320(50)$ to $5/2^+$ level at 1260.416 keV, and other E_{β^-}		Ens083 *
135 Xe(β^{-}) 135 Cs $E_{\beta^{-}}$ =905(10) 917(5) respectively, to 5/2 ⁺ level at 249.767 keV		Ens083 *
$^{135}\text{La}(\beta^+)^{135}\text{Ba}$ $p^+ = 7(1) \times 10^{-5}$, from reanalysis		AHW *
135 La(β^+) 135 Ba But 65Mo05 says p $^+$ <0.002% (2×10 $^-$ 5) or E_{β^+} <125 keV		65Mo05 *
135 Ce(β^+) 135 La E_{β^+} =705(5) 694(13) respectively, to 1/2 ⁺ level at 300.052 keV		Ens083 *
135 Pr(β^+) 135 Ce E_{β^+} =2500(100) to levels (5/2 ⁺) 296.11 and 3/2(⁺) 82.67 keV, roughly equal		Ens083 *
135 Pm ^m (β^+) ¹³⁵ Nd E_{β^+} =4920(150) to mixture ground state and (11/2 ⁻) level at 198.5 keV		Ens083 *
135 Pm ^m (β^+) ¹³⁵ Nd Trends from Mass Surface TMS suggest 135 Pm ^m 350 less bound (see Nubase)		GAu *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference	ce
¹³⁶ Te-u		70045	25	70000 0	2.4	1.0					CC2	1.0	12Cl-10	
136 Xe $^{-120}$ Sn _{1.133}		-79945	25	-79898.8	2.4	1.8	U				GS3	1.0	12Ch19	
136 Xe — 126 Sn _{1.133}		18019.8	3.1	18019.8	1.1	0.0	U				JY1	1.0	11Ha48	
$C_{10} H_{16} - {}^{136}Xe$		217982.	3.9	217986.039	0.007	0.4	U				M16	2.5	63Da10	
¹³⁶ Xe-u		-92793.6	9.0	-92785.524	0.007	0.4	U			126	ACC	2.5	90Me08	
136 Xe $-^{28}$ Si ₄ D ₁₂		-169712.9828	0.0162	-169713.001	0.007	-1.1	1	20	18	¹³⁶ Xe	FS1	1.0	07Re03	
$C_{11} H_4 - ^{136} Ba$		126737	56	126724.2	0.3	-0.2	U				R07	1.5	68De17	
C ₈ N O H ₁₀ -136Ba		171635	56	171663.0	0.3	0.3	U				R07	1.5	68De17	
$C_{12} H_8 - ^{136} Ba O$		163094	40	163109.7	0.3	0.3	U				R07	1.5	68De17	
¹³⁶ La-u		-92394	88	-92370	60	0.3	2				GS2	1.0	05Li24	*
$C_{10} H_{16} - ^{136}Ce$		218128	50	218071.1	0.4	-0.3	U				R05	4.0	65De13	
$C_{12} H_8 - {}^{136}Ce O$		160563	36	160556.2	0.4	0.0	U				R05	4.0	65De13	
¹³⁶ Nd-u		-85044	30	-85024	13	0.7	R				GS2	1.0	05Li24	
¹³⁶ Pm-u		-76378	79	-76400	70	-0.3	2				GS2	1.0	05Li24	*
¹³⁶ Sm-u		-71768	30	-71724	13	1.5	R				GS2	1.0	05Li24	-1-
$^{136}\text{Sb}-^{130}\text{Xe}_{1.046}$		31675.1	6.8	31678	6	0.5	1	85	85	¹³⁶ Sb	JY1	1.0	12Ha25	
$^{136}\text{Te}-^{130}\text{Xe}_{1.046}$			3.1		2.4	0.3	1	62	62	¹³⁶ Te	JY1	1.0	12Ha25	
$^{136}\text{Sb} - ^{133}\text{Cs}_{1.023}$		21029.9		21030.4						¹³⁶ Sb				
136 m 133 c		27489	16	27472	6	-1.1	1	15	15		CP1	1.0	13Va12	
^{136}Te $-^{133}\text{Cs}_{1.023}$		16827.7	6.8	16823.8	2.4	-0.6	1	13	13	¹³⁶ Te	CP1	1.0	13Va12	
136 Xe $-^{133}$ Cs _{1.023}		3936.5	1.9	3937.121	0.011	0.3	U				MA8	1.0	09Ne11	
$^{136}\text{Cs} - ^{133}\text{Cs}_{1.023}$		4007	18	4034.2	2.0	1.5	О				MA1	1.0	90St25	
40.5		4021	14			0.9	U				MA1	1.0	99Am05	5
136 Pr $-^{133}$ Cs _{1.023}		9418	15	9400	12	-1.2	1	67	67	¹³⁶ Pr	MA5	1.0	00Be42	
136 Nd $-^{133}$ Cs _{1.023}		11703	14	11699	13	-0.3	2				MA5	1.0	00Be42	
$^{136}\text{Pm}^{m} - ^{133}\text{Cs}_{1.023}$		20429	100				2				MA5	1.0	00Be42	*
$^{136}\text{Sm} - ^{133}\text{Cs}_{1.023}$		25009	15	24998	13	-0.7	2				MA5	1.0	00Be42	
136 Xe $^{-134}$ Xe $^{1.025}$		3245.8	3.8	3240.546	0.012	-1.4	o				MA8	1.0	05He.A	
1.013		3244.3	4.0			-0.9	U				MA8	1.0	06He29	
$^{136}\text{Te} - ^{136}\text{Xe}$		12887.9	5.0	12886.7	2.4	-0.2	1	24	24	¹³⁶ Te	CP1	1.0	12Va02	
$^{136}I^{m}-^{136}Xe$		7611.2	4.9	12000.7		0.2	2			10	CP1	1.0	12Va02	*
136 Xe $^{-136}$ Ba		2639.6	0.6	2638.5	0.3	-0.7	_				H49	2.5	10Mc04	
Ac Bu		2638.62	0.52	2030.3	0.5	-0.2	_				JY1	1.0	11Ko03	
	01/0	2638.7	0.52			-0.4	1	45	45	¹³⁶ Ba	311	1.0		
¹³⁶ Ce- ¹³⁶ Ba	ave.	2553.46	0.3	2553.48	0.29	-0.4 0.1		100		¹³⁶ Ce	JY1	1.0	average 11Ko03	
136 Xe $^{-13}$ C ₃ O ₆							1	100	100	Ce		1.0		
$Xe^{-\alpha}C_3 O_6$		-72337.7553	0.0109	-72337.747	0.007	0.8	_				FS1	1.0	07Re03	
		-72337.7464	0.0109			0.0	_	0.2	0.0	136***	FS1	1.0	07Re03	
126 125	ave.	-72337.751	0.008			0.5	1	82	82	¹³⁶ Xe			average	
136 Ba $^{-135}$ Ba		-1115	3	-1112.65	0.04	0.3	U				M17	2.5	66Be10	
		-1119	50			0.1	U				R07	1.5	68De17	
106 104		-1074	50			-0.5	U				R07	1.5	68De17	
136 Ba $^{-134}$ Ba		67	5	67.56	0.12	0.0	U				M17	2.5	66Be10	
		69	128			0.0	U				R07	1.5	68De17	
40.0		72	78			0.0	U				R07	1.5	68De17	
$N_{10}-^{136}Xe$		123525.5778	0.0235	123525.568	0.007	-0.4	U				FS1	1.0	07Re03	
$^{136}\text{Te}(\beta^-\text{n})^{135}\text{I}$		1285	50	1283	3	0.0	U						84Kr.B	
136 Xe(d, 3 He) 135 I		-4438	30	-4445.5	2.1	-0.3	U				Oak		71Wi04	
136 Xe(d,t) 135 Xe		-1723	40	-1830	4	-2.7	U				Oak		68Mo21	
135 Ba $(n, \gamma)^{136}$ Ba		9106.4	0.8	9107.74	0.04	1.7	U						69Ge07	
· · · · · ·		9107.74	0.04			0.0	_				MMn		90Is07	Z
		9107.73	0.19			0.1	_				Bdn		06Fi.A	
135 Ba(d,p) 136 Ba		6886	15	6883.17	0.04	-0.2	U				ANL		70Vo04	
135 Ba $(n,\gamma)^{136}$ Ba	ave.	9107.74	0.04	9107.74	0.04	0.0	1	100	55	¹³⁶ Ba			average	
$^{136}\text{Te}(\beta^{-})^{136}\text{I}$	ave.	5107.74	150	5120	14	0.0	U	100	33	Du			77Sc21	
IC(p)		5095	100	3120	17	0.1	U				Bwg		87Gr.A	
		5086	20			1.7		50	50	^{136}I	Stu		07Fo02	
$^{136}I(\beta^-)^{136}Xe$				6884	14		1	50	50	1	Siu			
1(<i>p</i>) α Xe		6960	100	0884	14	-0.8	U				Ct		59Jo37	*
		6690	150			1.3	U				Stu		76Lu04	*
		6925	70			-0.6	U	50		136*	Bwg		87Gr.A	
		6850	20			1.7	1	50	50	^{136}I	Stu		07Fo02	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{136}I^{m}(\beta^{-})^{136}Xe$	7100	230	7090	5	0.0	0			Stu		76Lu04
4 /	7705	120			-5.1	C			Bwg		87Gr.A
	7051	12			3.2	В			Stu		07Fo02
$^{136}\text{Cs}(\beta^-)^{136}\text{Ba}$	2548.1	2.0	2548.2	1.9	0.1	2			Sta		540105
Cs(p) Da	2549	5	2340.2	1.9	-0.2	2					65Re07
136 La $(\beta^+)^{136}$ Ba			2050	50							
	2870	70	2850	50	-0.3	R					59Gi50
136 Pr(β^+) 136 Ce	5084	50	5168	11	1.7	U					68Zh04
	5114	75			0.7	U		106			71Ke07
	5134	20			1.7	1	33	33 ¹³⁶ Pr	IRS		83Al.B
136 Nd(β^+) 136 Pr	2501	50	2141	16	-7.2	В					68Zh04
	2211	25			-2.8	В					75Br16
136 Pm(β^+) 136 Nd	7850	200	8030	70	0.9	R			IRS		83Al06
:136La-u	M - A = -85935	5(32) ke	V for mixture	e gs+m a	at 259.3 ke	eV					Nub16b
¹³⁶ Pm-u	M - A = -7109										Nub16b
136 Pm m $-^{133}$ Cs _{1.023}	Slightly contar						rancad				00Be42
$^{136}I^{m} - ^{136}Xe$	High spin ison					(20) IIIC	icascu				
						. 2+1	1 1010	007 0004 16			GAu
$^{136}I(\beta^{-})^{136}Xe$	E_{β} = 7000(100								ke V		Ens026
$^{136}I(\beta^{-})^{136}Xe$	$E_{\beta} = 5370(400$	0), 4700	0(320), 3920(220) to 2	t ⁺ levels 1	1313.027	7, 2289.53	3, 2634.16			Ens026
$^{136}I^{m}(\beta^{-})^{136}Xe$	$E_{\beta}^{'}=5170(400$							el			Ens026
136 Cs $(\beta^{-})^{136}$ Ba	$E_{\beta}^{r} = 341(2) 34$	42(5) re	espectively, to	6 ⁺ leve	1 at 2207.0	077 keV					Ens026
136 Pr(β^+) 136 Ce	$E_{\beta^+} = 2970(50)$							keV			Ens026
136 Nd(β^{+}) 136 Pr	$E_{\beta^+} = 1330(50)$,,						Ens026
136 Nd(β^{+}) 136 Pr	$K/\beta^+=13.2(0.1)$										
136 Pm(β^{+}) 136 Nd	E_{β} = 4732(70)			spin isoi	mer going	to seve	ral				AHW
•	high spin leve	els arou	nd 2100 keV								AHW
¹³⁷ Sb-u	-64445	215	-64480	60	-0.1	0			GT1	1.5	04Ma.A
55 4	-65068	186	000	00	1.3	Ü			GT3	2.5	16Kn03
$^{137}\text{Te}-\text{u}$	-74528	101	-74400.6	2.3	0.5				GT2	2.5	08Kn.A
re—u			- 74400.0	2.3		0			GT2		
¹³⁷ I-u	-74386	129	01072	0	0.0	U				2.5	08Su19
	-82145	130	-81972	9	0.5	U			GT2	2.5	08Su19
$C_{11}H_5-^{137}Ba$	133366	24	133297.8	0.3	-1.9	U			R07	1.5	68De17
C_7 ^{13}C N O $H_{10}-^{137}Ba$	173792	73	173766.4	0.3	-0.2	U			R07	1.5	68De17
$C_{12} H_9 - ^{137} Ba O$	169692	39	169683.3	0.3	-0.1	U			R07	1.5	68De17
¹³⁷ La-u	-93556	30	-93549.4	1.8	0.2	U			GS2	1.0	05Li24
¹³⁷ Ce-u	-92101	85	-92237.4	0.5	-1.6	U			GS2	1.0	05Li24
137 Nd $-u$	-85438	30	-85438	13	0.0	1	18	18 ¹³⁷ Nd	GS2	1.0	05Li24
¹³⁷ Pm-u	-79608	62	-79520	14	1.4	Ú	10	10 114	GS2	1.0	05Li24
¹³⁷ Sm-u	-73025		-73030				44	44 ¹³⁷ Sm	GS2		05Li24
$^{137}\text{Te}-^{130}\text{Xe}_{1.054}$		69		50	-0.1	1		70 ¹³⁷ Te		1.0	
137 ct 133 C	27300.0	2.7	27300.5	2.3	0.2	1	70	/U 13/ 1e	JY1	1.0	12Ha25
$^{137}\text{Sb} - ^{133}\text{Cs}_{1.030}$	32907	56				2		- 127	CP1	1.0	13Va12
$^{137}\text{Te} - ^{133}\text{Cs}_{1.030}$	22985.0	4.1	22983.8	2.3	-0.3	1	30	30 ¹³⁷ Te		1.0	13Va12
137 Xe $-^{133}$ Cs _{1.030}	8943.6	2.0	8942.25	0.11	-0.7	U			MA8	1.0	09Ne11
$^{137}\text{Cs} - ^{133}\text{Cs}_{1.030}$	4452	19	4473.9	0.4	1.2	o			MA1	1.0	90St25
	4470	14			0.3	U			MA1		99Am05
137 Pr $^{-133}$ Cs _{1.030}	8095	15	8064	9	-2.1	1	34	34 ¹³⁷ Pr	MA5		00Be42
$^{137}\text{Nd} - ^{133}\text{Cs}_{1.030}$	11947	14	11947	13	0.0	1	81	81 ¹³⁷ Nd	MA5		00Be42
137 Pm $-^{133}$ Cs _{1.030}	17864	14	11771	1.5	5.0	2	01	01 11 u	MA5		00Be42
$^{137}\text{Sm} - ^{133}\text{Cs}_{1.030}$			24250	50	0.1		2.4	24 1376.			
137E 133 C	24350	78	24350	50	0.1	1	34	34 ¹³⁷ Sm	MA5		00Be42
137 Eu $^{-133}$ Cs $_{1.030}$	32815.2	4.7				2			MA8		13Wo05
¹³⁷ Ba ³⁵ Cl- ¹³⁵ Ba ³⁷ Cl	3089.1	0.6	3088.88		-0.1	U			H49	2.5	10Mc04
$^{137}\text{Te} - ^{136}\text{Xe}_{1.007}$	19057	18	19034.4	2.3	-1.3	U			CP1	1.0	12Va02
^{137}I $^{-136}Xe_{1.007}$	11463.2	9.0				2			CP1	1.0	12Va02
137 Xe $^{-136}$ Xe $_{1.007}$	5004	11	4992.79	0.11	-1.0	U			CP1	1.0	12Va02
¹³⁷ Ba- ¹³⁶ Ba	1249	3	1251.42		0.3	U			M17	2.5	66Be10
ചര— ഥർ	1249	50	1231.42	0.07	0.3	U			R07	1.5	68De17
	1227	44			0.4	U			R07	1.5	68De17

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Mair	n infl.	Lab	F	Referenc
¹³⁷ Ba- ¹³⁵ Ba		143	3	138.77	0.09	-0.6	U				M17	2.5	66Be10
Du Du		69	63	150.77	0.07	0.7	Ü				R07	1.5	68De17
		106	46			0.5	Ü				R07	1.5	68De17
$^{137}I(\beta^-n)^{136}Xe$		1850	30	2002	8	5.1	Č						84Kr.B
36 Xe(n, γ) 137 Xe		4025.5	0.5	4025.56	0.10	0.1	Ü						77Fo02
71c(n, ₁) 71c		4025.8	0.3	1023.30	0.10	-0.8	2						77Pr07
		4025.53	0.11			0.3	2				Bdn		06Fi.A
136 Xe(d,p) 137 Xe		1637	20	1801.00	0.10	8.2	F				Oak		68Mo21
³⁶ Xe(³ He,d) ¹³⁷ Cs		1918	12	1911.9	0.4	-0.5	U				ChR		81Ha08
136 Ba $(n,\gamma)^{137}$ Ba		6891	5	6905.63	0.07	2.9	Ü						69Gr31
24(11,7)		6905.54	0.10	0,00.00	0.07	0.9	_				MMn		90Is07
		6905.70	0.12			-0.6	_				Mtn		95Bo03
		6905.74	0.16			-0.7	_				Bdn		06Fi.A
137 Ba $(\gamma,n)^{136}$ Ba		-6949	38	-6905.63	0.07	1.1	U				Phi		60Ge01
136 Ba(d,p) 137 Ba		4680	15	4681.06	0.07	0.1	Ü				ANL		70Vo04
136 Ba(n, γ) 137 Ba	ave.	6905.63	0.07	6905.63	0.07	0.0	1	100	99	¹³⁷ Ba	11112		average
$^{36}\text{Ce}(n,\gamma)^{137}\text{Ce}$	۵,0.	7481.3	0.4	7481.53	0.16	0.6	_	100	//	Du			81Ko.A
55(,7)		7481.58	0.17	, .01.55	0.10	-0.3	_				Bdn		06Fi.A
	ave.	7481.54	0.16			0.0	1	100	100	¹³⁷ Ce	Dun		average
$^{137}\text{Te}(\beta^-)^{137}\text{I}$	ave.	7030	300	7053	9	0.1	Ú	100	100				85Sa15
10(β) 1		6925	130	7033		1.0	U				Bwg		87Gr.A
$^{137}I(\beta^-)^{137}Xe$		5880	60	6027	8	2.5	U				Bwg		87Gr.A
137 Xe(β^-) 137 Cs		4140	70	4162.2	0.4	0.3	U				Dws		64On03
Ac(p) Cs		4150	100	4102.2	0.4	0.3	U						68Ho22
$^{37}\text{Cs}(\beta^-)^{137}\text{Ba}$		1173.29	0.84	1175.63	0.17	2.8	U						68Wo02
Cs(p) ba		1175.29	0.34	1175.05	0.17	0.3	2						78Ch22
		1175.69	0.20			-0.3	2						83Be18
$^{37}\text{Ce}(\beta^+)^{137}\text{La}$		1222.1	1.6			-0.5	2						81Ar.A
$^{37}\text{Pr}(\beta^+)^{137}\text{Ce}$		2702	10	2717	8	1.5	1	66	66	¹³⁷ Pr			73Bu17
$^{37}\text{Nd}(\beta^+)^{137}\text{Pr}$		3497	40	3617	14	3.0	В	00	00	11			73Bu17
Nd(p) 11		3690	54	3017	14	-1.3	U						85Af.A
$^{37}\text{Pm}^{m}(\beta^{+})^{137}\text{Nd}$		5690	130	5660	50	-0.3	_				IRS		83Al06
$I III (p^{-}) I V U$		5650	60	3000	30	-0.3 0.1	_				Dbn		95Ve08
	ave.	5660	50			0.0	1	71	70	$^{137}\text{Pm}^{m}$	Don		
$^{37}\text{Sm}(\beta^{+})^{137}\text{Pm}^{m}$	avc.	5900	70	5900	50	0.0	1	53	30	$^{137}\mathrm{Pm}^{m}$	Dbn		average 95Ve08
³⁷ Ce–u	M 1-			ture gs+m at			1	33	30	1 111	Don		Nub16b
³⁷ Pm—u				ture gs+m at									Nub16b
^{.37} Sm–u				ture gs+m at									Nub16b
$^{137}\text{Sm} - ^{133}\text{Cs}_{1.030}$				ate and isome									00Be42
Siii- Cs _{1.030}				gs+m at 180			70/1/13) kaV					Nub16b
136 Xe(d,p) 137 Xe				-) Ke v					AHW
				d and value lo									
$^{137}\text{Cs}(\beta^-)^{137}\text{Ba}$				514.03(0.23)	ιο ···Ba	at 001.0	Jy ke v						Nub16b
$^{137}\text{Ce}(\beta^+)^{137}\text{La}$		9.5(1.6) to 5/2			2/2+1	1 . 77 -	1 37						Ens079
137 Nd(β^+) 137 Pr	$E_{\beta} = 240$	$U(40) E_{\beta} = 2$	2592(54) r	espectively, to	0 3/2 [⊤] lev	el at 75.5	Ke V	1 77					Ens079
$^{137}\text{Pm}^{m}(\beta^{+})^{137}\text{Nd}$	$E_{\beta^+} = 413$	32(+150–115) 4110(60)) respectively,	to 11/2	137 Nd ^m at	519.43	keV					Nub16b
¹³⁸ Sb-u		-58208	457				2				GT3	2.5	16Kn03
138Te-u		-70940	247	-70528	4	1.1	0				GT1	1.5	04Ma.A
10 u		-70540 -70583	106	10320	-	0.2	0				GT2	2.5	04Ma.A
		-70583 -70591	131			0.2	U				GT2	2.5	08Su19
		235609	20	235603.4	0.3	-0.2	U				M17	2.5	66Be10
C10 H10 - 138 R2		20000	20	433003.4			U					2.5	
C ₁₀ H ₁₈ - ¹³⁸ Ba		1/16/10	51	1/1703.0	0.3	0.7	T T				R07	1.5	68Da17
C ₁₁ H ₇ - ¹³⁸ Ba H		141649	51	141703.0	0.3	0.7	U				R07	1.5	68De17
$C_{10} H_{18} - ^{138}Ba$ $C_{11} H_7 - ^{138}Ba H$ $C_{11} H_6 - ^{138}Ba$ $C_{12} H_{10} - ^{138}Ba O$		141649 141701 178106	51 30 15	141703.0 178088.5	0.3	0.7 0.0 -0.8	U U U				R07 R07 R07	1.5 1.5 1.5	68De17 68De17 68De17

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	iipai iso	Input va		Adjusted			Dg	Signf.	Main infl.	Lab	F	Reference	_
- Item		Input va	aruc	Aujusicu	varue	v_i	Dg	Sigiii.	Maiii iiiii.	Lau	I.	Reference	_
$C_{11}^{13}CH_9-^{138}BaO$		173612	37	173618.3	0.3	0.1	U			R07	1.5	68De17	
$C_{10} H_{18} - {}^{138}Ce$		234799	60	234862	5	0.3	Ü			R05	4.0	65De13	
$C_{12} H_{10}^{-138} Ce O$		177382	46	177347	5	-0.2	Ü			R05	4.0	65De13	
$C_9^{13}CH_{17}^{-138}Ce$		230358	60	230392	5	0.1	U			R05	4.0	65De13	
$^{138}\text{Pr}^{m}$ – u		-88896	30	-88870	18	0.9	1	35	$35^{-138} Pr^{m}$	GS2	1.0	05Li24	
138Nd-u		-88060	130	-88050	12	0.1	0	33	33 11	GS1	1.0	00Ra23	
Nu-u		-88060	30	-88030	12	0.3	R			GS2	1.0	05Li24	
¹³⁸ Pm-u		-80242	141	-80452	30	-1.5	0			GS1	1.0	00Ra23	*
I III—u		-80454	35	-00432	30	0.1	1	72	72 ¹³⁸ Pm	GS2	1.0	05Li24	*
138 Sm $-$ u		-80434 -76766	30	-76756	13	0.1	R	12	72 FIII	GS2	1.0	05Li24	*
¹³⁸ Eu–u		-66291	30	-70730	13	0.5	2			GS2	1.0	05Li24	
$^{138}\text{Te}-^{130}\text{Xe}_{1.062}$		31945.3		31946	4	0.0		75	75 ¹³⁸ Te	JY1	1.0	12Ha25	
$^{138}\text{Te} - ^{133}\text{Cs}_{1.038}$			4.7		4		1	75 25	25 ¹³⁸ Te				
138 Xe $^{-133}$ Cs $_{1.038}$		27614.0	8.1	27613	4	-0.1	1	25	74 ¹³⁸ Xe	CP1	1.0	13Va12	
138C 133C		12284.1	3.5	12287	3	0.9	1	74	49 ¹³⁸ Cs	MA8	1.0	09Ne11	
$^{138}\text{Cs} - ^{133}\text{Cs}_{1.038}$		9158	14	9158	10	0.0	1	49	49 130Cs	MA1	1.0	99Am05	
¹³⁸ Ba ⁻¹³³ Cs _{1.038}		3388	14	3388.1	0.3	0.0	U			MA1	1.0	99Am05	
138 Nd $-^{133}$ Cs _{1.038}		10093	14	10091	12	-0.2	_		120	MA5	1.0	00Be42	
120 122	ave.	10091	13			0.0	1	96	96 ¹³⁸ Nd			average	
138 Pm m $-^{133}$ Cs _{1.038}		17721	14				2			MA5	1.0	00Be42	
138 Sm $-^{133}$ Cs _{1.038}		21387	14	21385	13	-0.2	2			MA5	1.0	00Be42	
$^{138}I^{-136}Xe_{1.015}$		16903.7	6.4				2			CP1	1.0	12Va02	
138 Xe $^{-136}$ Xe $_{1.015}$		8332.2	5.9	8324	3	-1.5	1	26	26^{138} Xe	CP1	1.0	12Va02	
¹³⁸ Ba ³⁵ Cl- ¹³⁶ Ba ³⁷ Cl		3621.1	0.6	3621.38	0.11	0.2	U			H49	2.5	10Mc04	
138 Ba $^{-137}$ Ba		-582	2	-580.15	0.04	0.4	U			M17	2.5	66Be10	
		-480	27			-2.5	U			R07	1.5	68De17	
		-553	40			-0.5	U			R07	1.5	68De17	
138 Ba $^{-136}$ Ba		676	3	671.27	0.09	-0.6	U			M17	2.5	66Be10	
		658	98			0.1	U			R07	1.5	68De17	
		628	43			0.7	U			R07	1.5	68De17	
$^{138}\text{Ce} - ^{136}\text{Ce}$		-1040	47	-1141	5	-0.5	U			R05	4.0	65De13	
		-1158	20			0.3	U			M17	2.5	66Be10	
138 Ba H $^{-137}$ Ba		7399	88	7244.89	0.04	-1.2	U			R07	1.5	68De17	
		7280	43			-0.5	U			R07	1.5	68De17	
137 Ba $(n,\gamma)^{138}$ Ba		8611.3	0.8	8611.72	0.04	0.5	U					68Ma35	
		8611.72	0.04			0.0	1	100	99 ¹³⁸ Ba	MMn		90Is07	Z
		8611.5	0.15			1.5	U			Ltn		95Bo05	
		8611.63	0.18			0.5	Ü			Bdn		06Fi.A	
137 Ba(d,p) 138 Ba		6398	15	6387.15	0.04	-0.7	Ü			ANL		70Vo04	
$^{138}I(\beta^-)^{138}Xe$		7820	70	7992	7	2.5	Ü			Bwg		87Gr.A	
138 Xe(β^{-}) 138 Cs		2700	50	2915	10	4.3	В			D 11 5		72Mo33	*
71c(p) es		2830	80	2715	10	1.1	U			Trs		78Wo15	
$^{138}\text{Cs}^{x}(\text{IT})^{138}\text{Cs}$		40	23			1.1	2			113		82Au01	*
$^{138}\text{Cs}(\beta^-)^{138}\text{Ba}$		5350	80	5375	9	0.3	U			Trs		78Wo15	-15
Cs(p') Ba		5388	25	3313		-0.5	_			Gsn		81De25	
		5370	15			0.3	_			McG		84He.A	
	ave	5375	13			0.0	1	51	51 ¹³⁸ Cs	Mico		average	
138 La $(\varepsilon)^{138}$ Ba	ave.	1620	15	1742	3	8.2		51	J1 C8			56Tu17	ų.
$^{138}\text{La}(\beta^-)^{138}\text{Ce}$		994					B						*
La(p) ace			10	1052	4	5.8 -2.7	В					57Gl20 70El.A	*
		1159	40				U	00	82 ¹³⁸ Ce				*
138p(0+)138c		1052.7	4.3			-0.2	1	88	82 13°Ce			16Qu01	*
138 Pr(β^+) 138 Ce		4437	10	4700	16	0.6	2	67	CE 1385			71Af05	
$^{138}\text{Pr}^{m}(\beta^{+})^{138}\text{Ce}$		4801	20	4789	16	-0.6	1	67	65 ¹³⁸ Pr ^m			64Fu08	*
138 Nd(β^+) 138 Pr		2020	100	1116	16	-9.0	C			TD =		61Bo.B	
138 Pm(β^+) 138 Nd		7090	100	7078	29	-0.1	-			IRS		83A106	
		7080	60			0.0	_		-0 120-	Dbn		95Ve08	
	ave.	7080	50			-0.1	1	31	28 ¹³⁸ Pm			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item Table 1. Compa	ai ison oi	Input uata		Adjusted Valu		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
$^{138}\text{Pm}^{m}(\beta^{+})^{138}\text{Nd}$		7000	250	7108	17	0.4	U					81De38 *
* ¹³⁸ Pm-u	14 4						U					
* ¹³⁸ Pm-u * ¹³⁸ Pm-u				mixture gs+m								Nub16b **
$*^{138}$ Pm $-$ u $*^{138}$ Xe(β^-) ¹³⁸ Cs				nixture gs+m			112 260 1	\$7				Nub16b **
				1- 2-) level a	at 258.40	0, 1 ⁻ at 4	112.260 1	ke V				Ens035 **
$*^{138}$ Cs ^x (IT) ¹³⁸ Cs		on ¹³⁸ Cs ^m (IT)										Nub16b **
$*^{138}$ La(ε) ¹³⁸ Ba				1435.816 ke								Ens035 **
$*^{138}$ La(β^-) ¹³⁸ Ce				4.3) respective	ely, to 2^{\dagger}	level at	788.744	keV				Ens035 **
$*^{138}$ Pr ^m $(\beta^+)^{138}$ Ce				2129.17 keV								Ens035 **
$*^{138}$ Pm $^{m}(\beta^{+})^{138}$ Nd	$E_{\beta^{+}} = 39$	900(200) to 5	- level a	t 1990.4, 6 ⁺ a	ıt 2134.3	and (5 ⁻)	at 2221.	8keV				Ens035 **
¹³⁹ Te-u		-64541	333	-64633	4	-0.2	U			GT1	1.5	04Ma.A
$^{139}\text{Te} - ^{130}\text{Xe}_{1.069}$		38515.7	3.8	01033	•	0.2	2			JY1	1.0	12Ha25
139 I – u		-73838	102	-73507	4	1.3	Ū			GT2	2.5	08Kn.A
1 4		−73567	130	75507	•	0.2	Ü			GT2	2.5	08Su19
$C_6^{13}CO_3H_6-^{139}La$		128474	41	128690.1	2.2	1.3	Ü			R05	4.0	65De13
$C_7 O_3 H_7 - {}^{139}La$		133063	32	133160.3	2.2	0.8	U			R05	4.0	65De13
$C_6 \text{ N } O_3 \text{ H}_5 - {}^{139}\text{La}$		120496	21	120584.2	2.2	1.1	U			R05	4.0	65De13
$C_{12} H_{11} - {}^{139}La O$		184568	66	184801.9	2.2	0.9	U			R05	4.0	65De13
$C_{12} \stackrel{11}{}_{11} - \stackrel{1}{}_{12} \stackrel{1}{}_{0}$ $C_{11} \stackrel{13}{}_{0} \stackrel{1}{}_{0} - \stackrel{139}{}_{0} \stackrel{1}{}_{0} \stackrel{1}{}_{0}$		180100	58	180331.7	2.2	1.0	U			R05	4.0	65De13
139 Nd-u		-87840	79	-88046	30	-2.6	U			GS2	1.0	05Li24 *
139 Sm-u		-77704	30	-77703	12	0.0	R			GS2	1.0	05Li24 *
Siii—u		-77711	30	-77703	12	0.3	R			GS2	1.0	05Li24 *
¹³⁹ Eu-u		-70215	30	-70208	14	0.2	R			GS2	1.0	05Li24
$^{139}\text{Te} - ^{133}\text{Cs}_{1.045}$		34185	17	34170	4	-0.9	U			CP1	1.0	13Va12
$^{139}I^{-133}Cs_{1.045}$		25296.1	4.3	34170	7	-0.7	2			CP1	1.0	13 Va12
139 Xe $^{-133}$ Cs _{1.045}		17594.9	2.3				2			MA8	1.0	09Ne11 *
$^{139}\text{Cs} - ^{133}\text{Cs}_{1.045}$		12163	14	12167	3	0.3	U			MA1	1.0	99Am05
139 Ba $-^{133}$ Cs _{1.045}		7649	14	7644.0	0.3	-0.4	U			MA1	1.0	99Am05
139 Pm $-^{133}$ Cs _{1.045}		15604	15	15603	15	-0.1	1	95	95 ¹³⁹ Pm	MA5	1.0	00Be42
139 Sm $-^{133}$ Cs _{1.045}		21101	14	21099	12	-0.1	2)3	<i>75</i> T III	MA5	1.0	00Be42
139 Eu $^{-133}$ Cs _{1.045}		28597	16	28595	14	-0.1	2			MA5	1.0	00Be42
$^{139}I^{-136}Xe_{1.022}$		21333	31	21320	4	-0.4	Ū			CP1	1.0	12Va02
139 Xe $^{-136}$ Xe $_{1.022}$		13618	12	13619.0	2.3	0.1	Ü			CP1	1.0	12Va02
^{139}La ^{-138}La		-622	132	-759.0	2.7	-0.3	Ü			R05	4.0	65De13
$^{139}\text{La}-^{138}\text{Ce}$		485	74	370	5	-0.4	Ü			R05	4.0	65De13
¹³³ Cs- ¹³⁹ Cs _{.239} ¹³¹ Cs _{.761}		-1774	24	-1771	4	0.1	F			P33	2.5	86Au02 *
$^{138}\text{Cs}^{x} - ^{139}\text{Cs}_{.496} ^{137}\text{Cs}_{.504}$		770	40	800	25	0.3	Ü			P23	2.5	82Au01
138 Ba $(n,\gamma)^{139}$ Ba		4723.4	0.7	4723.43	0.04	0.0	Ü					69Mo13
Du(11,7) Du		4723.4	0.3	.,255	0.0.	0.1	Ü					80Ba.A
		4723.43	0.04			0.0	1	100	99 ¹³⁹ Ba	MMn		90Is07 Z
		4723.20	0.14			1.6	U			Bdn		06Fi.A
138 Ba(d,p) 139 Ba		2495	10	2498.86	0.04	0.4	U			MIT		64Sp12
(1)		2496	15			0.2	U			Hei		67Wi08
		2493	10			0.6	U			ANL		70Vo04
139 La $(\gamma,n)^{138}$ La		-8775	25	-8778.3	2.5	-0.1	U			Phi		60Ge01
138 La(d,p) 139 La		6553	3	6553.8	2.5	0.3	_			Tal		71Du02
139 La(d,t) 138 La		-2522	5	-2521.1	2.5	0.2	_			Tal		72La20
138 La(d,p) 139 La	ave.	6553.4	2.6	6553.8	2.5	0.1	1	96	94 ¹³⁸ La			average
$^{139}I(\beta^{-})^{139}Xe$		6815	100	7174	5	3.6	C			Bwg		87Gr.A
4. /		6806	23			16.0	В			Bwg		92Gr06
139 Xe(β^-) 139 Cs		5020	60	5056	4	0.6	U			Trs		78Wo15
4		5062	22			-0.3	U			Bwg		92Gr06
139 Cs $(\beta^{-})^{139}$ Ba		4290	70	4213	3	-1.1	Ü			Trs		78Wo15
v / "		4190	25	-		0.9	o			Gsn		80Bl.A
		4213	5			0.0	0			Gsn		81De25
		4214	4			-0.3	2			McG		84He.A
		4211	5			0.4	2			Gsn		92Pr04
139 Ba $(\beta^{-})^{139}$ La		2307	5	2312.5	2.0	1.1	_					75Fl07 *
•		2336	25			-0.9	U			Gsn		81De25
		2316	4			-0.9	_			McG		84He.A
	ave.	2312	3			0.0	1	42	41 ¹³⁹ La			average
												_

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{139}\mathrm{Ce}(\varepsilon)^{139}\mathrm{La}$		278	7	278	7	0.0	1	99	99 ¹³⁹ Ce			Averag
$^{139}\text{Pr}(\beta^+)^{139}\text{Ce}$									98 ¹³⁹ Pr			_
$^{139}\text{Nd}(\beta^+)^{139}\text{Pr}$		2129	3	2129.1	3.0	0.0	1	100				81Ar.A
		2787	50	2805	28	0.4	1	31	30 ¹³⁹ Nd			75Vy02
139 Pm(β^+) 139 Nd		4450	100	4513	26	0.6	_			TD 6		77De06
		4540	40			-0.7	_			IRS		83Al06
		4470	50			0.9	_		120	Dbn		95Ve08
120 - 120	ave.	4507	30			0.2	1	76	70 ¹³⁹ Nd			average
$^{139}\text{Sm}(\beta^+)^{139}\text{Pm}$		5430	150	5120	17	-2.1	U					82De06
120		5510	150			-2.6	U			IRS		83Al06
139 Eu(β^+) 139 Sm		6080	50	6982	17	18.0	C			Dbn		95Ve08
¹³⁹ Nd—u	M-A=-8	81707(30)	keV for	mixture gs+n	1 at 231.1	5 keV						Nub16b *
¹³⁹ Sm-u				$^{139}\text{Sm}^{m}$ at 45								Nub16b *
139 Xe $-^{133}$ Cs _{1.045}	Typo in o	riginal pap	er, ratio	should read 1	.045 245	4357(175)						GAu *
133 Cs $^{-139}$ Cs $_{.239}$ 131 Cs.	F : rejecti	ion based o	n line-sh	ape analysis								86Au02 *
139 Ba(β^-) 139 La	$E_{\beta} = 214$	-1(5) to 5/2	+ level a	t 165.8576 ke	eV							Ens014 *
139 Ce $(\varepsilon)^{139}$ La				2 ⁺ level at 10		keV in 10 re	ferences	:				Ens014 *
	pK=0.76		,									54Pr31 *
	pK=0.73											56Ke23 *
	pK=0.68											67Ma07 *
	pK=0.75											68Ad08 *
	pK=0.69											68Va08 *
	pK=0.71											72Ca07 *
	pK=0.78											72Sc08 *
	1	26(0.010)										75Ha43 *
		01(0.034)										75Pl06 *
	-	05(0.020)										76Ha36 *
39 Nd(β^+) 139 Pr			1170(50) from ¹³⁹ Nd	m at 231	15 to 1/2= 1	evel at 8	21 98				Ens014 *
$^{39}\text{Pm}(\beta^+)^{139}\text{Nd}$				to $3/2^+$ levels				21.70				Ens014 *
$^{139}\text{Sm}(\beta^+)^{139}\text{Pm}$				level at 306		0, 402.77 K	- v					Ens014 *
$^{139}\text{Sm}(\beta^+)^{139}\text{Pm}$						39 D m -4 10	00 7 1 17					
				¹³⁹ Sm ^m at 45	17.40 to 11	"Pm" at 18	88.7 Ke V					Nub16b *
139 Eu $(\beta^+)^{139}$ Sm	E_{β} = 460	10(50) to 13	'Sm" at	457.40 keV								Nub16b *
¹⁴⁰ Te-u		-60827	225	-60740	70	0.3	U			GT1	1.5	04Ma.A
$^{140}\text{Te} - ^{130}\text{Xe}_{1.077}$		43419	30	43180	70	-7.9	В			JY1	1.0	12Ha25
140 I – u		-68181	193	-68284	13	-7.9 -0.4				GT1	1.5	04Ma.A
1—u		-68463	102	-08284	13	-0.4 0.7	0			GT2	2.5	
							0					08Kn.A 08Su19
		-68273	130			0.0	0			GT2 GT2	2.5	
¹⁴⁰ Xe-u		-68202	186	-78354.2	2.5	-0.2	U			GT2	2.5 2.5	16Kn03
ΛC−u		-78449	103	-10334.2	2.5	0.4	0					08Kn.A
C II 140 C		-78229	130	157152.0	1.7	-0.4	U			GT2	2.5	08Su19
$C_{11} H_8 - {}^{140}Ce$		157116	29	157153.8	1.7	0.3	U			R05	4.0	65De13
$C_{10}^{13}CH_7-^{140}Ce$		152553	17	152683.6	1.7	1.9	U			R05	4.0	65De13
$C_{10} \text{ N H}_6 - {}^{140}\text{Ce}$		144599	35	144577.8	1.7	-0.2	U			R05	4.0	65De13
$C_{10} N_2 H_8 - ^{140}Ce O$		168207	48	168387.2	1.7	0.9	U			R05	4.0	65De13
¹⁴⁰ Nd-u		-90448	30	-90456	4	-0.3	U		1.00	GS2	1.0	05Li24
140 Pm m -u		-83532	30	-83503	14	1.0	1	22	$22^{-140}\mathrm{Pm}^m$	GS2	1.0	05Li24
¹⁴⁰ Sm−u		-81018	30	-81005	13	0.4	R			GS2	1.0	05Li24
¹⁴⁰ Gd−u		-66326	30				2			GS2	1.0	05Li24
$^{140}\text{Te}-^{133}\text{Cs}_{1.053}$		38822	67				2			CP1	1.0	13Va12
$^{140}I - ^{133}Cs_{1.053}$		31275	13				2			CP1	1.0	13Va12
140 Xe $^{-133}$ Cs _{1.052}		21204.9	2.5				2			MA8	1.0	09Ne11
- 1.033		16837	14	16842	9	0.4	_			MA1	1.0	99Am05
140Cs-133Cs _{1.052}			- 1	10012	-	0.1					1.0	//
$^{140}\text{Cs} - ^{133}\text{Cs}_{1.053}$			14			-1.0	_			MA4	1.0	99Am05
$^{140}\text{Cs} - ^{133}\text{Cs}_{1.053}$	ave	16857	14 10			-1.0 -0.5	- 1	79	79 ¹⁴⁰ Cs	MA4	1.0	99Am05
$^{140}\text{Cs} - ^{133}\text{Cs}_{1.053}$ $^{140}\text{Ba} - ^{133}\text{Cs}_{1.053}$	ave.		14 10 14	10166	9	-1.0 -0.5 1.1	- 1 1	79 37	79 ¹⁴⁰ Cs 37 ¹⁴⁰ Ba		1.0	99Am05 average 99Am05

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	u115011 0	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	-
¹⁴⁰ Ce O- ¹³³ Cs _{1.173}		11260.2	2.7	11265.0	1.7	1.0	1	40	40 ¹⁴⁰ Ce	MAG	1.0	17M- A	_
140NH 0 133 G		11269.2	2.7	11265.9	1.7	-1.2	1	40	40 140Ce	MA8	1.0	17Ma.A	
140 Nd O $-^{133}$ Cs _{1.173}		15363.8	3.7				2		-a 140	MA8	1.0	17Ma.A	
140 Pm m - 133 Cs _{1.053}		16064	16	16056	14	-0.5	1	78	78^{-140}Pm^{m}	MA5	1.0	00Be42	
140 Sm $-^{133}$ Cs _{1.053}		18557	15	18554	13	-0.2	2			MA5	1.0	00Be42	
140 Xe $^{-136}$ Xe $_{1.029}$		17134	11	17122.1	2.5	-1.1	U			CP1	1.0	12Va02	
$C_{11} H_9 - ^{140}Ce$		164956	40	164978.9	1.7	0.2	U			M17	2.5	66Be10	
140 Ce $-^{139}$ La		-1029	80	-912.4	1.9	0.4	U			R05	4.0	65De13	
$C_{11} H_{10} - ^{140}Ce$		172765	40	172803.9	1.7	0.4	U			M17	2.5	66Be10	
$^{140}\text{Ce} - ^{138}\text{Ce}$		-497	83	-542	5	-0.1	U			R05	4.0	65De13	
		-543	8			0.0	U			M17	2.5	66Be10	
$^{139}\text{Cs} - ^{140}\text{Cs}_{.883}$ $^{131}\text{Cs}_{.118}$		-2280	40	-2275	8	0.1	U			P23	2.5	82Au01	
¹³⁹ Cs- ¹⁴⁰ Cs _{.869} ¹³² Cs _{.132}		-2210	40	-2240	8	-0.3	U			P23	2.5	82Au01	
$^{138}\text{Ce}(t,p)^{140}\text{Ce}$		8184	15	8166	5	-1.2	_			LAI		72Mu09	
140 Ce(p,t) 138 Ce		-8167	20	-8166	5	0.0	_			Brk		77Sh06	
$^{138}\text{Ce}(t,p)^{140}\text{Ce}$	ave.	8178	12	8166	5	-1.0	1	16	16 ¹³⁸ Ce	DIK			
139 La $(n,\gamma)^{140}$ La	ave.	5161.1	1.0	5160.98	0.04	-0.1	U	10	10 CC			average 70Ju04	
$La(\Pi,\gamma)$ La		5161.1		3100.96	0.04	1.0							
		5160.97	1 0.05			0.1	U			MMn		72Fu10 90Is09 Z	7
							_						5
139 La(d,p) 140 La		5161.00	0.10	2026 41	0.04	-0.2	_			Bdn		06Fi.A	
		2938	3	2936.41	0.04	-0.5	U	400	130-	Tal		67Ke02	
139 La(n, γ) 140 La	ave.	5160.98	0.04	5160.98	0.04	0.0	1	100	57 ¹³⁹ La			average	
$^{140}\text{Ho}(p)^{139}\text{Dy}$		1093.9	10.				3					99Ry04	
140 Xe(β^-) 140 Cs		4060	60	4064	9	0.1	U			Trs		78Wo15	
$^{140}\text{Cs}(\beta^-)^{140}\text{Ba}$		6100	100	6219	10	1.2	U			Trs		78Wo15	
		6235	25			-0.6	O			Gsn		80Bl.A	
		6220	15			-0.1	O			Gsn		81De25	
		6212	20			0.4	_			Gsn		92Pr04	
		6199	25			0.8	_			Ida		93Gr17	
	ave.	6207	16			0.8	1	40	21 ¹⁴⁰ Cs			average	
140 Ba(β^{-}) 140 La		1060	20	1047	8	-0.7	_					49Be36 >	*
4		1050	20			-0.2	_						*
		1055	30			-0.3	_					65Bu07 >	
	ave.	1055	13			-0.7	1	39	38^{-140} Ba			average	
140 La(β^-) 140 Ce		3760.2	2.0	3760.2	1.7	0.0	1	75	56 ¹⁴⁰ La			72Na04	*
$^{140}\Pr(\beta^{+})^{140}$ Ce		3388	6				2					68Ab17	
140 Nd $(\varepsilon)^{140}$ Pr		160	60	429	7	4.5	В					72Ba91	
140 Pm(β^+) 140 Nd		6080	100	6045	24	-0.3	U					75Ke09	
Tim(p) Tid		6090	40	0043	2-7	-1.1	3			IRS		83A106	
		6020	30			0.8	3			Dbn		95Ve08	
$^{140}\text{Pm}^{m}(\beta^{+})^{140}\text{Nd}$		6484	70	6476	14	-0.1	U			Don			
$^{140}\mathrm{Sm}(\varepsilon)^{140}\mathrm{Pm}$			300	2758	27	-0.1 -2.1	U					75Ke09 > 87De04	۴
$^{140}\text{Eu}(\beta^+)^{140}\text{Sm}$		3400								I DI			
Eu(p *) * * Sm		8400	400	8470	50	0.2	U			LBL			*
140 G 1 (0+) 140 F		8470	50	5200	60	1.0	3			Dbn		95Ve08	
$^{140}\text{Gd}(\beta^+)^{140}\text{Eu}$		4800	400	5200	60	1.0	U			LBL		91Fi03	
140 Tb $(\beta^+)^{140}$ Gd		11300	800				3			LBL			*
$*^{140}$ Ba $(\beta^{-})^{140}$ La	r			level at 29.90								Ens077 *>	*
$*^{140}$ Ba $(\beta^{-})^{140}$ La	E_{β} =10	020(20), 830((50), 590(50) to 2^- leve	el at 29.9	$641, 2^{-}$ a	t 162.65	91,				GAu *	*
*	and 1	at 467.653 l	keV									Ens077 *>	*
$*^{140}$ Ba(β^-) ¹⁴⁰ La	$E_{B^{-}}=10$	030(30), 1020	$0(30)$ to 2^{-1}	level at 29.9	9641, 1 ⁻	at 43.844	· keV					Ens077 *>	*
$*^{140}$ La(β^-) ¹⁴⁰ Ce	$E_{B^{-}}^{r} = 21$	164(2) to 2 ⁺	level at 15	96.237 keV								Ens077 *>	*
$*^{140} \text{Pm}^m (\beta^+)^{140} \text{Nd}$		240(70) to 7										Ens077 *>	
$*^{140}$ Eu(β^+) ¹⁴⁰ Sm		+. May be 1										91Fi03 *>	
$*^{140}\text{Tb}(\beta^+)^{140}\text{Gd}$	Lower 1	•	ower min									91Fi03 **	
- 1 <i>υ</i> (<i>ρ</i>) Oα	LUWUI	111Ht										711 IU3 **	i.
¹⁴¹ I—u		-64316	419	-64334	17	0.0	o			GT1	1.5	04Ma.A	
		-64549	120			0.7	o			GT2	2.5	08Kn.A	
		-64736	137			1.2	0			GT2	2.5	08Su19	
		-64445	186			0.2	Ü			GT3	2.5	16Kn03	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	, –
¹⁴¹ Xe-u		72002	126	72212	2	0.4				CTO	2.5	00IZ A	
···Xe-u		-73092	126	-73213	3	-0.4	0			GT2	2.5	08Kn.A	
141 p		-73560	136	05506		1.0	U	50	50 141 p	GT2	2.5	08Su19	
¹⁴¹ Ba-u		-85603.5	7.5	-85596	6	0.9	1	58	58 ¹⁴¹ Ba	CP1	1.0	06Sa56	
$C_{11} H_9 - {}^{141}Pr$		162852	41	162766.9	1.8	-0.5	U			R05	4.0	65De13	
$C_{10} N H_7 - {}^{141}Pr$		150229	37	150190.8	1.8	-0.3	U			R05	4.0	65De13	
C_9^{13} C N H_6 $-^{141}$ Pr		145722	65	145720.6	1.8	0.0	U			R05	4.0	65De13	
¹⁴¹ Pr-u		-92374	30	-92341.6	1.8	1.1	U			GS2	1.0	05Li24	
¹⁴¹ Nd-u		-90401	30	-90385	4	0.5	U			GS2	1.0	05Li24	
		-90365	30			-0.7	U			GS2	1.0	05Li24	*
¹⁴¹ Sm-u		-81496	62	-81518	9	-0.4	U			GS2	1.0	05Li24	*
¹⁴¹ Eu-u		-75048	42	-75068	14	-0.5	U			GS2	1.0	05Li24	*
141 Gd $-u$		-67881	30	-67874	21	0.2	2			GS2	1.0	05Li24	
		-67867	30			-0.2	2			GS2	1.0	05Li24	*
141 Tb $-u$		-58552	113				2			GS2	1.0	05Li24	*
^{141}I $^{-133}Cs_{1.060}$		35887	17				2			CP1	1.0	13Va12	
141 Xe $^{-133}$ Cs _{1.060}		27008.1	3.1				2			MA8	1.0	09Ne11	
$^{141}Cs - ^{133}Cs_{1.060}$		20269	16	20266	10	-0.2	1	38	38 ¹⁴¹ Cs	MA4	1.0	99Am05	
$^{141}\text{Ba} - ^{133}\text{Cs}_{1.060}$		14625	15	14624	6	0.0	_			MA1	1.0	99Am05	
		14631	16			-0.4	_			MA4	1.0	99Am05	
	ave.	14628	11			-0.3	1	27	27 ¹⁴¹ Ba			average	
141 Pm $-^{133}$ Cs _{1.060}		13776	15				2			MA5	1.0	00Be42	
¹⁴¹ Sm- ¹³³ Cs _{1.060}		18692	14	18703	9	0.8	1	43	43 ¹⁴¹ Sm	MA5	1.0	00Be42	*
$^{141}\text{Eu} - ^{133}\text{Cs}_{1.060}$		25164	15	25153	14	-0.8	1	82	82 ¹⁴¹ Eu	MA5	1.0	00Be42	*
141 Xe $^{-136}$ Xe _{1 037}		23003	10	23006	3	0.3	U			CP1	1.0	12Va02	
141 Cs $^{-136}$ Xe _{1 037}		16277	22	16264	10	-0.6	1	20	20 ¹⁴¹ Cs	CP1	1.0	12Va02	
$^{139}\text{Cs} - ^{141}\text{Cs}_{.789} ^{131}\text{Cs}_{.212}$		-3190	40	-3270	8	-0.8	U			P23	2.5	82Au01	
$^{140}\text{Cs} - ^{141}\text{Cs}_{.894}$ $^{131}\text{Cs}_{.107}$		-970	40	-1045	12	-0.7	U			P23	2.5	82Au01	
$^{139}\text{Cs} - ^{141}\text{Cs}_{.767}$ $^{132}\text{Cs}_{.234}$		-3210	40	-3183	8	0.3	U			P23	2.5	82Au01	
141 Cs $(\beta^- n)^{140}$ Ba		735	30	721	12	-0.5	1	15	9 ¹⁴¹ Cs			84Kr.B	
140 Ce $(n, \gamma)^{141}$ Ce		5428.6	0.6	5428.14	0.10	-0.8	U			BNn			Z
		5428.01	0.20			0.7	_			Ptn			Z
		5428.19	0.12			-0.4	_			Bdn		06Fi.A	
140 Ce(d,p) 141 Ce		3210	10	3203.58	0.10	-0.6	U			MIT		64Sp12	
()1		3202	15			0.1	U			Hei		67Wi08	
140 Ce $(n, \gamma)^{141}$ Ce	ave.	5428.14	0.10	5428.14	0.10	0.0	1	100	64 ¹⁴¹ Ce			average	
141 Pr $(\gamma,n)^{140}$ Pr		-9361	23	-9399	6	-1.6	U			Phi		60Ge01	
$^{141}\text{Ho}(p)^{140}\text{Dy}$		1177.4	8.	1177	7	-0.1	3					98Da03	
По(р) Бу		1172.9	20.	11//	,	0.2	3						*
141 Xe(β^-) 141 Cs		6150	90	6280	10	1.4	Ü			Trs		78Wo15	
$^{141}\text{Cs}(\beta^-)^{141}\text{Ba}$		5200	80	5255	10	0.7	Ü			Trs		78Wo15	
C5(p) Bu		5264	15	3233	10	-0.6	0			Gsn		80Bl.A	*
		5252	15			0.2	0			Gsn		81De25	
		5242	15			0.9	1	41	33 ¹⁴¹ Cs	Gsn		92Pr04	
141 Ba $(\beta^{-})^{141}$ La		3010	60	3199	7	3.2	В	71	33 Cs	Trs		78Wo15	
Bu(p) Eu		3208	35	3177	,	-0.3	U			Gsn		81De25	
		3217	20			-0.9	1	11	7 ¹⁴¹ Ba	McG		84He.A	
$^{141}\text{La}(\beta^-)^{141}\text{Ce}$		2430	30	2501	4	2.4	U	11	/ Da	Mico		51Du19	
La(p) CC		2502	4	2301	7	-0.2	1	96	96 ¹⁴¹ La	McG		84He.A	
$^{141}\text{Ce}(\beta^-)^{141}\text{Pr}$		584		582.7	1.2	-0.2 -0.4		90	90 La	MCG		50Fr58	J.
CC(p) FI		585	3 4	304.1	1.4	-0.4 -0.6	_					52Ko27	*
		576.4	2.0			3.2	- В					55Jo02	
		581.4	2.0			0.7						68Be06	*
		582.2	2.6			0.7	_					79Ha09	*
	9370	582.5	1.3			0.2	1	83	48 ¹⁴¹ Pr			average	т
141 Nd(β^+) 141 Pr	ave.	382.3 1816		1823.0	2.8	0.2	2	0.5	40 FI			73Bu21	
$\operatorname{Nu}(p^+)$ Pf		1824	8	1023.0	2.0	-0.3	2						*
		1024	5			-0.5	4					/oga.A	T

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
141 Pm(β^+) 141 Nd		3730	60	3670	14	-1.0	U					70Ch29 *
Till(p) Tid		3640	70	3070	17	0.4	U					75Ke09
141 Sm(β^+) 141 Pm		4580	50	4589	16	0.2	U					77Ke03 *
Sin(p) Tin		4463	60	4307	10	2.1	U			IRS		83Al06 *
		4524	80			0.8	U			IRS		93Al03 *
141 Eu(β^+) 141 Sm		6030	100	6008	14	-0.2	U			1145		77De25 *
Eu(p) Sin		5950	40	0000		1.5	_			IRS		83Al06 *
		6035	60			-0.4	U			1145		85Af.A
		5550	100			4.6	В			IRS		93Al03
		5980	40			0.7	_			Dbn		95Ve08 *
	ave.	5965	28			1.5	1	26	18 ¹⁴¹ Eu	2011		average
¹⁴¹ Nd-u				¹⁴¹ Nd ^m at 75	6 51 keV	1.5	•	20	10 Lu			Nub16b **
¹⁴¹ Sm−u				mixture gs+n		keV						Nub16b **
× 141 Eu−u				mixture gs+n								Nub16b **
s Eu-u s ¹⁴¹ Gd-u				141 Gd ^m at 37		KC V						Nub16b **
s Gu—u s ¹⁴¹ Tb—u				mixture gs+n) koV						Nub16b **
s^{141} Sm $-^{133}$ Cs _{1.060}				378(14) from			7					
141 Eu 133 Cs _{1.060}							′					Nub16b **
* ¹⁴¹ Ho(p) ¹⁴⁰ Dy				tamination c	annot be e	excluded						00Be42 **
		30(20) from ¹			T 7							Nub16b **
141 Cs(β^-) 141 Ba				el at 48.53 ke					2.4			Ens141 **
e^{141} Ce(β^-) ¹⁴¹ Pr				36(2) 436.7(ctively, to 7	//2 [⊤] leve	I at 145.44	34			Ens141 **
141 Nd(β^+) ¹⁴¹ Pr				Sa.A in the 19								GAu *>
141 Pm(β^+) 141 Nd				lue to lack of								GAu *>
141 Sm(β^{+}) 141 Pm				3/2 ⁺ level at		$1/2)^+$ at 438	8.69 keV					Ens141 **
:	and E_{β}	$_{3}+=1670(70)$, 1600(7	(0) from ¹⁴¹ S	m^m							77Ke03 **
k				1, (9/2,11/2,1								Ens141 **
$*^{141}$ Sm $(\beta^+)^{141}$ Pm				level at 403.8		$(1/2)^+$ 438	8.29 keV					Ens141 **
$*^{141}$ Sm(β^+) 141 Pm	$Q_{\beta^+}=47$	700(80) from	1 ⁴¹ Sm"	¹ at 175.9 keV	V							Nub16b **
141 Eu $(\beta^+)^{141}$ Sm	$E_{\beta}^{\prime}=46$	520(110) to (5/2) ⁺ le	vel at 395.56	keV, and	other E_{β^+} (not giver	1)				Ens141 **
$*^{141}$ Eu(β^+) ¹⁴¹ Sm	$E_{B^{+}} = 49$	925(40) to 3/2	2 ⁺ level	at 1.58 keV		,						Ens141 **
$*^{141}$ Eu(β^+) ¹⁴¹ Sm	$E_{\beta}^{\prime}=49$	960(40) to 3/2	2 ⁺ level	at 1.58 keV								Ens141 **
142-		50500	2.00							am.		0.025
¹⁴² I-u		-58798	268	5000 66	• •	0.0	2			GT1	1.5	04Ma.A
¹⁴² Xe-u		-70247	111	-70026.9	2.9	0.8	U			GT2	2.5	08Kn.A
142 Xe $^{-133}$ Cs _{1.068}		30950.4	2.9				2			MA8	1.0	09Ne11
$^{142}\text{Cs} - ^{133}\text{Cs}_{1.068}$		25270	16	25277	8	0.4	-			MA4	1.0	99Am05
		25304	23			-1.2	-			CP1	1.0	13Va12
	ave.	25281	13			-0.3	1	33	33 ¹⁴² Cs			average
$^{142}\text{Ba} - ^{133}\text{Cs}_{1.068}$		17410	15	17410	6	0.0	-			MA1	1.0	99Am05
		17420	16			-0.6	-			MA4	1.0	99Am05
	ave.	17415	11			-0.4	1	34	$34^{-142}Ba$			average
142 Ba $-$ u		-83576.8	9.1	-83567	6	1.1	1	49	$49^{-142}Ba$	CP1	1.0	06Sa56
$C_{11} H_{10} - ^{142}Ce$		169111	15	169000.4	2.7	-1.8	U			R05	4.0	65De13
		168955	40			0.5	U			M17	2.5	66Be10
		168955	40			0.5	U			M17	2.5	66Be10
C_{10} $^{13}CH_9-^{142}Ce$		164528	82	164530.2	2.7	0.0	U			R05	4.0	65De13
C_{10} N $H_8 - ^{142}$ Ce		156558	42	156424.4	2.7	-0.8	Ü			R05	4.0	65De13
$C_{11} H_{10} - {}^{142}Nd$		170509	36	170521.4	1.5	0.1	U			R05	4.0	65De13
$C_{10} \text{ N H}_8 - {}^{142}\text{Nd}$		157870	43	157945.4	1.5	0.1	U			R05	4.0	65De13
$C_{10} \text{ O H}_6 - ^{142}\text{Nd}$		134076	36	134135.9	1.5	0.4	U			R05	4.0	65De13
$C_{10} \ ^{13}C \ H_9 - ^{142}Nd$										R05		
$^{142}\text{Pm}-\text{u}$		166021	32	166051.2	1.5	0.2	U				4.0	65De13 *
Pm−u		-87136	30	-87110	25	0.9	_	90	89 ¹⁴² Pm	GS2	1.0	05Li24
	ave.	-87124	27			0.5	1	89	89 172 Pm			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e_
¹⁴² Sm- ¹³³ Cs _{1.068}		16173	14	16182	3	0.6	U			MA5	1.0	00Be42	
$^{142}\text{Eu}^m - ^{133}\text{Cs}_{1.068}$		24909	15	24910	13	0.0	2				1.0		
$^{142}\text{Eu}^m - \text{u}$										MA5		00Be42	
142Gd-u		-76063	30	-76067	13	-0.1	R			GS2	1.0	05Li24	
142 G 136 V		-71884	30	21160	0	0.2	2	40	40 142 G	GS2	1.0	05Li24	
142 Cs $^{-136}$ Xe _{1.044}		21171	11	21168	8	-0.3	1	48	48 ¹⁴² Cs	CP1	1.0	12Va02	
¹⁴² Ce-C ₁₁ H ₉		-161176	40	-161175.4	2.7	0.0	U			M17	2.5	66Be10	
¹⁴² Nd-C ₁₁ H ₉		-162665	30	-162696.4	1.5	-0.4	U			M17	2.5	66Be10	
$^{142}\text{Ce} - ^{140}\text{Ce}$		3818	3	3803.5	2.7	-1.9	U			M17	2.5	66Be10	
¹⁴² Ce- ¹³⁸ Ce		3644	35	3261	6	-2.7	В			R05	4.0	65De13	
¹³⁹ Cs- ¹⁴² Cs _{.685} ¹³² Cs _{.316}		-4840	40	-4858	6	-0.2	U			P23	2.5	82Au01	
$^{140}\text{Cs} - ^{142}\text{Cs}_{.789} ^{132}\text{Cs}_{.212}$		-2950	40	-2938	10	0.1	U			P23	2.5	82Au01	
¹⁴¹ Cs- ¹⁴² Cs _{.794} ¹³⁷ Cs _{.206}		-580	40	-661	11	-0.8	U			P23	2.5	82Au01	
$^{138}\text{Cs}^x - ^{142}\text{Cs}_{194} ^{137}\text{Cs}_{806}$		550	40	589	25	0.4	U			P23	2.5	82Au01	
140 Cs $^{-142}$ Cs $_{329}$ 139 Cs $_{671}$		260	40	300	9	0.4	U			P23	2.5	82Au01	
$^{141}\text{Cs} - ^{142}\text{Cs}_{.662} ^{139}\text{Cs}_{.338}$		-410	40	-520	10	-1.1	U			P23	2.5	82Au01	
$^{141}\text{Cs} - ^{142}\text{Cs}_{.496}$ $^{140}\text{Cs}_{.504}$		-640	40	-669	11	-0.3	Ü			P23	2.5	82Au01	
25.496 25.304		-663	19	00)		-0.1	U			P33	2.5	86Au02	
$^{142}\text{Ce}(\alpha)^{138}\text{Ba}$		1545	200	1303.5	2.5	-1.2	U			133	2.5	57Ri43	
$^{140}\text{Ce}(t,p)^{142}\text{Ce}$		4112	5	4117.9	2.5	1.2	1	25	20 ¹⁴² Ce	LAl		72Mu09	
¹⁴² Ce(p,t) ¹⁴⁰ Ce								23	20 - Ce				
142 × 140 ×		-4170	20	-4117.9	2.5	2.6	U			Osa		70Ya05	
¹⁴² Nd(p,t) ¹⁴⁰ Nd		-9150	20	-9352	4	-10.1	В			Osa		71Ya10	
142 Ce $(\gamma,n)^{141}$ Ce		-7240	70	-7171.6	2.5	1.0	U			Phi		60Ge01	
142 Ce(d,t) 141 Ce		-909	15	-914.4	2.5	-0.4	U			Mtr		72Le17	
$^{141}\Pr(n,\gamma)^{142}\Pr$		5843.14	0.10	5843.15	0.08	0.1	-			MMn		81Ke11	
		5843.16	0.12			-0.1	_			Bdn		06Fi.A	
$^{41}\Pr(d,p)^{142}\Pr$		3626	10	3618.58	0.08	-0.7	U			MIT		64Sp12	
$^{41}\Pr(n,\gamma)^{142}\Pr$	ave.	5843.15	0.08	5843.15	0.08	0.0	1	100	52 ¹⁴¹ Pr			average	
42 Xe(β^{-}) 142 Cs		5040	100	5285	8	2.4	U			Trs		78Wo15	
$^{42}\text{Cs}(\beta^{-})^{142}\text{Ba}$		7230	70	7328	8	1.4	U			Trs		78Wo15	
		7329	20			-0.1	O			Gsn		81De25	
		7280	40			1.2	Ü			Bwg		87Gr.A	
		7315	15			0.8	1	31	19 ¹⁴² Cs	Gsn		92Pr04	
142 Ba(β^-) 142 La		2200	25	2182	8	-0.7	1	11	6 ¹⁴² La	OSII		83Ch39	
Ba(p) La		2216	5	2102	o	-6.8	C	11	0 La	McG		84He.A	
$^{142}\text{La}(\beta^-)^{142}\text{Ce}$				4500						MCG			
La(p) - Ce		4517	25	4509	6	-0.3	U	05	94 ¹⁴² La	M G		65Pr03	
1425 (0-) 1425 (4510	6	24.62.5		-0.2	1	95	94 142La	McG		84He.A	
$^{142}\Pr(\beta^{-})^{142}$ Nd		2164	2	2162.5	1.4	-0.7	-					66Be12	
		2158	3			1.5	-		1.42			75Ra09	
	ave.	2162.2	1.7			0.2	1	72	52 ¹⁴² Pr			average	
142 Pm(β^{+}) 142 Nd		4800	80	4808	24	0.1	R					60Ma.A	
		4880	80			-0.9	R			IRS		83Al06	
		4880	160			-0.5	U			LBL		91Fi03	
142 Sm(β^+) 142 Pm		2050	70	2156	24	1.5	1	12	11 ¹⁴² Pm			60Ma.A	
•		2100	400			0.1	U			LBL		91Fi03	
142 Eu $(\beta^+)^{142}$ Sm		8000	300	7670	30	-1.1	U					75Ke08	
4- /		7400	100			2.7	U					82Gr.A	
		7000	300			2.2	Ü			LBL		91Fi03	
		7673	30			2.2	2			Dbn		94Po26	
142 Eu $^{m}(\beta^{+})^{142}$ Sm		8150	100	8130	13	-0.2	Ū			Don		75Ke08	
Lu (p) Siii		8174	50	0130	13	-0.2	U			IRS		83A106	
		7480	100				В			IRS			
						6.5						93Al03	
42C4(0+)142E		8150	60	4250	40	-0.3	U			Dbn		94Po26	
$^{142}\text{Gd}(\beta^+)^{142}\text{Eu}$		4200	300	4350	40	0.5	U			LBL		91Fi03	
$^{142}\text{Tb}(\beta^+)^{142}\text{Gd}$		10400	700				3			LBL		91Fi03	
42 Dy(β^+) 142 Tb		7100	200	6440#	200#	-3.3	D			LBL		91Fi03	
$C_{10}^{13}CH_9-^{142}Nd$				nly a typo; reb	uilt from	M=141.9	907760(36)u				WgM12	7>
1475 1405	ъ.		ith ¹⁴⁰ Nd	-11								AHW	>
142 Eu $^{m}(\beta^{+})^{142}$ Sm				ectively, to 7	level at	2372.1 ke	·V					Ens118	×
142 Eu $^{m}(\beta^{+})^{142}$ Sm 142 Eu $^{m}(\beta^{+})^{142}$ Sm	$E_{\beta^+}=47$	760(100) 4782	2(50) resp			2372.1 ke	eV						
142 Nd(p,t) 140 Nd 142 Eu $^m(\beta^+)^{142}$ Sm 142 Eu $^m(\beta^+)^{142}$ Sm 142 Eu $^m(\beta^+)^{142}$ Sm	$E_{\beta^+}=47$ Measur	760(100) 4782	2(50) resp 3.4(0.5) s	ectively, to 7 ⁻ corresponds to		2372.1 ke	eV					GAu	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	ce
¹⁴³ I—u		-53849	495	-54350#	220#	-0.4	D			GT3	2.5	16Kn03	
¹⁴³ Xe-u											2.5		
Xe-u		-64649	290	-64630	5	0.0	О			GT1	1.5	04Ma.A	
		-64858	108			0.8	0			GT2	2.5	08Kn.A	
143 133		-64684	133			0.2	U			GT2	2.5	08Su19	
143 Xe $^{-133}$ Cs _{1.075}		37008.7	5.0				2			MA8	1.0	09Ne11	
143 Cs – u		-72771	117	-72653	8	0.4	U		142	GT2	2.5	08Kn.A	
$^{143}\text{Cs} - ^{133}\text{Cs}_{1.075}$		28985.6	8.5	28986	8	0.1	1	91	91 ¹⁴³ Cs	CP1	1.0	13Va12	
143 Ba $-^{133}$ Cs _{1.075}		22268	16	22264	7	-0.2	1	21	21 ¹⁴³ Ba	MA1	1.0	99Am05	j
¹⁴³ Ba-u		-79375.0	8.5	-79375	7	0.0	1	73	73 ¹⁴³ Ba	CP1	1.0	06Sa56	
¹⁴³ La-u		-83918.1	8.7	-83921	8	-0.3	1	82	82 ¹⁴³ La	CP1	1.0	06Sa56	
$C_{10} N H_9 - ^{143}Nd$		163719	31	163679.4	1.5	-0.3	U			R05	4.0	65De13	
$C_{10} O H_7 - {}^{143}Nd$		139814	42	139870.0	1.5	0.3	U			R05	4.0	65De13	
143 Pm $-^{133}$ Cs _{1.075}		12567	15	12577	3	0.7	U			MA5	1.0	00Be42	
143 Sm $-^{133}$ Cs _{1.075}		16268	15	16274	3	0.4	U			MA5	1.0	00Be42	
¹⁴³ Sm-u		-85347	30	-85365	3	-0.6	U			GS2	1.0	05Li24	*
143 Eu $-^{133}$ Cs $_{1.075}$		21947	14	21938	12	-0.7	2			MA5	1.0	00Be42	
¹⁴³ Eu-u		-79706	30	-79701	12	0.2	R			GS2	1.0	05Li24	
¹⁴³ Gd-u		-73012	56	-73250	220	-4.2	C			GS2	1.0	05Li24	*
¹⁴³ Tb-u		-64879	64	-64860	60	0.3	U			GS2	1.0	05Li24	*
$^{16-u}$ $^{143}\text{Tb}-^{85}\text{Rb}_{1.682}$		83507	55	-04800	00	0.5	2			SH1	1.0	03L124 07Ra37	
16 16 16 1682 143 Dy $^{-85}$ Rb _{1.682}													*
¹⁴³ Nd ³⁵ Cl- ¹⁴¹ Pr ³⁷ Cl		92364	14	5111 6		0.4	2			SH1	1.0	07Ra37	*
143 Nd 55 CI — 147 Pr 57 CI		5116	4	5111.6	1.5	-0.4	U			H21	2.5	70Ma05	
¹⁴³ Nd-C ₁₁ H ₁₀		-168422	30	-168430.4	1.5	-0.1	U			M17	2.5	66Be10	
143 Nd $-^{142}$ Nd		2322	46	2090.99	0.07	-1.3	U			R05	4.0	65De13	
142		2084	2			1.4	U			M17	2.5	66Be10	
¹⁴³ Nd-C ₁₁ H ₉		-160594	30	-160605.4	1.5	-0.2	U			M17	2.5	66Be10	
¹⁴¹ Cs- ¹⁴³ Cs _{.493} ¹³⁹ Cs _{.507}		-230	40	-198	10	0.3	U			P23	2.5	82Au01	
		-115	22			-1.5	U			P33	2.5	86Au02	
¹⁴² Cs- ¹⁴³ Cs _{.497} ¹⁴¹ Cs _{.504}		647	15	657	9	0.3	U			P33	2.5	86Au02	
143 Nd(n, α) 140 Ce		9699	15	9720.3	1.6	1.4	U			ILL		75Em.A	
143 Nd(p,t) 141 Nd		-7450	20	-7470	3	-1.0	U			Osa		71Ya10	
$^{142}\text{Ce}(n,\gamma)^{143}\text{Ce}$		5145.9	0.5	5144.80	0.09	-2.2	U					76Ge02	
		5144.78	0.15			0.1	_			Ptn		80Ba.A	Z
		5144.81	0.12			-0.1	_			Bdn		06Fi.A	
142 Ce(d,p) 143 Ce		2945	15	2920.23	0.09	-1.7	U			Mtr		72Le17	
$^{142}\text{Ce}(n,\gamma)^{143}\text{Ce}$	ave.	5144.80	0.09	5144.80	0.09	0.0	1	100	79 ¹⁴² Ce			average	
142 Nd(n, γ) 143 Nd		6123.62	0.08	6123.57	0.07	-0.6	_			MMn		82Is05	Z
		6123.41	0.14			1.1	_			Bdn		06Fi.A	
¹⁴² Nd(d,p) ¹⁴³ Nd		3916	15	3899.00	0.07	-1.1	U			Kop		67Ch16	
(, _F)		3902	15			-0.2	Ü			Tal		67Ne04	
		3902	15			-0.2	Ü			Hei		67Wi08	
142 Nd(n, γ) 143 Nd	ave.	6123.57	0.07	6123.57	0.07	0.0	1	100	79 ¹⁴² Nd			average	
¹⁴² Nd(³ He,d) ¹⁴³ Pm	ave.	-1099	25	-1193.8	2.7	-3.8	В	100	75 114	Oak		71Wi04	
ru(rie,u) - riii		-1195	5	1175.0	2.7	0.2	1	29	29 ¹⁴³ Pm	McM		80St10	4
$^{143}\text{Cs}(\beta^-)^{143}\text{Ba}$		6250	90	6262	10	0.1		2)	2) 1111	Gsn		81De25	*
$Cs(p^{-})$ Ba		6240	70	0202	10	0.1	o U			Bwg		87Gr.A	•
		6270				-0.3		15	9 ¹⁴³ Cs			92Pr04	
143 Ba $(\beta^-)^{143}$ La			25	4024	10		1	13	9 Cs	Gsn			
Ba(p) La		4240	50	4234	10	-0.1	U			C		79Sc11	
		4259	40			-0.6	U			Gsn		81De25	
1431 (0-)143 ~		4210	70	2 12 7	6	0.3	U	20	10 1/13-	Bwg		87Gr.A	
$^{143}\text{La}(\beta^-)^{143}\text{Ce}$		3425	17	3435	8	0.6	1	20	18 ¹⁴³ La			84Is09	*
$^{143}\text{Ce}(\beta^-)^{143}\text{Pr}$		1460.6	2.	1461.6	1.9	0.5	1	87	77 ¹⁴³ Ce			77Ra18	*
143 Pr(β^-) 143 Nd		932	2	934.0	1.4	1.0	_					49Fe18	
		935	2			-0.5	-		1.42			76Ra33	
	ave.	933.5	1.4			0.3	1	94	90 ¹⁴³ Pr			average	
143 Pm(β^+) 143 Nd		1000	70	1041.6	2.7	0.6	U					67Va01	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
143 Sm(β^+) 143 Pm		3492	30	3443	4	-1.6	U					66Be21
Sin(p) 1 in		3437	30	3113		0.2	Ü			IRS		83Al06
		3500	60			-0.9	U			IRS		93Al03
		3461	40			-0.4	U			Dbn		94Po26
143 Eu(β^+) 143 Sm		5100	50	5276	11	3.5	В			Don		74Ch21
Eu(p) Sin		5160	60	3270	11	1.9	0			IRS		83Ve.A
		5240	70			0.5				IRS		83Al06
		5250	80			0.3	o U			IRS		
						1.3						93Al03
$^{143}\text{Gd}(\beta^+)^{143}\text{Eu}$		5236	30			1.3	R			Dbn		94Po26
¹⁴³ I–u	TD 1.6	6010	200	ra . 143	1.750.1		3			IRS		93A103
143 Sm-u	Trends fro	om Mass Su	iriace I N	AS suggest 143	1 /50 les	s bound						GAu *
143 G 1				13 Sm ^m at 753.								Nub16b *
¹⁴³ Gd-u				ixture gs+m a								Nub16b *
¹⁴³ Tb-u		. ,		ixture gs+m a								Nub16b *
142	-	•		ore correcting			ire					GAu *
$^{143}\text{Tb} - ^{85}\text{Rb}_{1.682}$				mixture gs+r								Nub16b *
143 Dy $^{-85}$ Rb _{1.682}				05(14) for ¹⁴³ I		0.7 keV						Nub16b *
¹⁴² Nd(³ He,d) ¹⁴³ Pm				Q = -87.6(0.9)								AHW *
143 Cs $(\beta^{-})^{143}$ Ba	$E_{\beta} = 6076$	0(50) and 5	847(100)	to 3/2 ⁻ level	at 228.83	3 keV						Ens123 *
$^{143}\text{La}(\beta^-)^{143}\text{Ce}$				round state, 29			18.9 ke	V				Ens123 *
$^{143}\text{Ce}(\beta^{-})^{143}\text{Pr}$				350.622 keV								Ens123 *
143 Pm(β^{+}) 143 Nd				l at 742.05 ke	V, and n ⁺	<1×10	-6					Ens123 *
$^{143}\text{Gd}(\beta^+)^{143}\text{Eu}$				at 152.6 keV	,Р							Nub16b *
()	Σρ	(200)	-									
¹⁴⁴ Xe ⁻¹³³ Cs _{1.083}		41340.6	5.7				2			MA8	1.0	09Ne11
$^{144}\text{Cs} - ^{133}\text{Cs}_{1.083}$		34488	33	34471	22	-0.5	1	43	43 ¹⁴⁴ Cs	CP1	1.0	13Va12
144 Ba $^{-133}$ Cs _{1.083}		25347	15	25350	8	0.2	1	26	26 ¹⁴⁴ Ba	MA1	1.0	99Am05
¹⁴⁴ Ba-u	_	-77045.3	9.1	-77045	8	0.0	1	71	71 ¹⁴⁴ Ba	CP1	1.0	06Sa56
¹⁴⁴ La–u		-80337.1	19.3	-80354	14	-0.9	2	, 1	/1 Bu	CP1	1.0	06Sa56
La-u		-80377.1	20	-60334	17	0.9	2			GS3	1.0	12Ch19
C ₁₀ O H ₈ - ¹⁴⁴ Nd		147408	28	147422.0	1.5	0.9	U			R05	4.0	65De13
C ₁₀ O H ₈ – Nu		147408	29	147422.0	1.5		U					
C ₉ ¹³ C N H ₉ – ¹⁴⁴ Nd				166761.2	1.5	0.3				R05	4.0	65De13
		166777	28	166761.3	1.5	-0.1 0.3	U			R05	4.0	65De13
$C_{10} H_8 O - {}^{144}Sm$		145450	50	145508.5	1.7	1113	U			R04	4.0	64De15
C ₉ ¹³ C H ₉ N- ¹⁴⁴ Sm				1 < 10 15 0							4.0	
		164955	46	164847.8	1.7	-0.6	U	16	46 144-	R04	4.0	64De15
144 = 155 Cs _{1.083}		21223	17	21215	1.7 12	$-0.6 \\ -0.5$	U 1	46	46 ¹⁴⁴ Eu	R04 MA5	1.0	64De15 00Be42
¹⁴⁴ Eu-u	_	21223 -81117	17 30		1.7	-0.6	U 1 1	46 15	46 ¹⁴⁴ Eu 15 ¹⁴⁴ Eu	R04 MA5 GS2	1.0 1.0	64De15 00Be42 05Li24
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u	- -	21223 -81117 -77037	17 30 30	21215	1.7 12	$-0.6 \\ -0.5$	U 1 1 2			R04 MA5 GS2 GS2	1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24
¹⁴⁴ Eu—u ¹⁴⁴ Gd—u ¹⁴⁴ Tb—u	- - -	21223 -81117 -77037 -66955	17 30 30 30	21215 -81180	1.7 12 12	-0.6 -0.5 -2.1	U 1 1 2 2			R04 MA5 GS2 GS2 GS2	1.0 1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24 05Li24
¹⁴⁴ Eu—u ¹⁴⁴ Gd—u ¹⁴⁴ Tb—u ¹⁴⁴ Dy—u	- - -	21223 -81117 -77037	17 30 30 30 30 33	21215	1.7 12	$-0.6 \\ -0.5$	U 1 1 2 2 U			R04 MA5 GS2 GS2 GS2 GS2	1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1 694}	- - -	21223 -81117 -77037 -66955	17 30 30 30	21215 -81180	1.7 12 12	-0.6 -0.5 -2.1	U 1 1 2 2			R04 MA5 GS2 GS2 GS2	1.0 1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24 05Li24
¹⁴⁴ Eu – u ¹⁴⁴ Gd – u ¹⁴⁴ Tb – u ¹⁴⁴ Dy – u ¹⁴⁴ Dy – ⁸⁵ Rb _{1.694}	- - - -	21223 -81117 -77037 -66955 -60746	17 30 30 30 30 33	21215 -81180	1.7 12 12	-0.6 -0.5 -2.1	U 1 1 2 2 U			R04 MA5 GS2 GS2 GS2 GS2	1.0 1.0 1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694}	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9	17 30 30 30 30 33 7.7 9.1	21215 -81180 -60730	1.7 12 12	-0.6 -0.5 -2.1	U 1 1 2 2 U 2 2			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1	1.0 1.0 1.0 1.0 1.0 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694}	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329	17 30 30 30 33 7.7 9.1 3	21215 -81180	1.7 12 12	-0.6 -0.5 -2.1 0.5	U 1 1 2 2 U 2 U 2 U			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694} ¹⁴⁴ Nd ³⁵ Cl- ¹⁴² Nd ³⁷ Cl	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308	17 30 30 30 33 7.7 9.1 3	21215 -81180 -60730 5314.08	1.7 12 12 8 0.12	-0.6 -0.5 -2.1 0.5 -1.2 0.8	U 1 1 2 2 U 2 U 2 U U			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21	1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694} ¹⁴⁴ Nd ³⁵ Cl- ¹⁴² Nd ³⁷ Cl	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951	17 30 30 30 33 7.7 9.1 3 3	21215 -81180 -60730	1.7 12 12 8	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1	U 1 1 2 2 2 U 2 2 U U B			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694} ¹⁴⁴ Nd ³⁵ Cl- ¹⁴² Nd ³⁷ Cl	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9	17 30 30 30 33 7.7 9.1 3 3 1.1	21215 -81180 -60730 5314.08	1.7 12 12 8 0.12	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6	U 1 1 2 2 U 2 2 U U B -			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21 H19	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08
¹⁴⁴ Eu-u ¹⁴⁴ Gd-u ¹⁴⁴ Tb-u ¹⁴⁴ Dy-u ¹⁴⁴ Dy- ⁸⁵ Rb _{1.694} ¹⁴⁴ Ho- ⁸⁵ Rb _{1.694} ¹⁴⁴ Nd ³⁵ Cl- ¹⁴² Nd ³⁷ Cl	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68	17 30 30 30 33 7.7 9.1 3 3 3 1.1 0.94	21215 -81180 -60730 5314.08	1.7 12 12 8 0.12	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2	U 1 1 2 2 U 2 U 2 U B -	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23
144Eu-u 144Gd-u 144Tb-u 144Dy-u 144Dy-u 144Dy-85Rb _{1.694} 144Ho-85Rb _{1.694} 144Nd 35Cl-142Nd 37Cl 144Sm-144Nd	- - - -	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5	17 30 30 30 33 7.7 9.1 3 3 3 1.1 0.94 0.9	21215 -81180 -60730 5314.08 1913.5	1.7 12 12 8 0.12	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2	U 1 1 2 2 2 U 2 2 U U B - 1			R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21 H19 H25 SH1	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average
144Eu-u 144Gd-u 144Tb-u 144Dy-u 144Dy-u 144Dy-85Rb _{1.694} 144Ho-85Rb _{1.694} 144Nd 35Cl-142Nd 37Cl 144Sm-144Nd	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25	21215 -81180 -60730 5314.08	1.7 12 12 8 0.12	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0	U 1 1 2 2 2 U 2 2 U U B - 1 U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21 H19 H25 SH1	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13
144Eu-u 144Gd-u 144Tb-u 144Tb-u 144Dy-u 144Dy-85Rb _{1.694} 144Ho-85Rb _{1.694} 144Nd 35Cl-142Nd 37Cl 144Sm-144Nd	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269 273	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25 3	21215 -81180 -60730 5314.08 1913.5	1.7 12 12 8 0.12 0.9	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0 0.0	U 1 1 2 2 2 U 2 2 U U B - 1 U U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21 H19 H25 SH1	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13 66Be10
144 Eu – u 144 Gd – u 144 Gd – u 144 Tb – u 144 Dy – u 144 Dy – 85 Rb _{1.694} 144 Ho – 85 Rb _{1.694} 144 Nd 35 Cl – 142 Nd 37 Cl 144 Sm – 144 Nd	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269 273 2366	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25 3	21215 -81180 -60730 5314.08 1913.5 272.98 2363.97	1.7 12 12 8 0.12 0.9	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0 0.0 -0.3	U 1 1 2 2 2 U 2 2 U U B 1 U U U U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 SH1 H12 H21 H25 SH1	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0 4.0 2.5 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13 66Be10 66Be10
144 Eu – u 144 Gd – u 144 Gd – u 144 Tb – u 144 Dy – u 144 Dy – 85 Rb _{1.694} 144 Ho – 85 Rb _{1.694} 144 Nd 35 Cl – 142 Nd 37 Cl 144 Sm – 144 Nd 144 Nd – 143 Nd 144 Nd – 142 Nd 142 Cs – 144 Cs 592 139 Cs 409	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269 273 2366 -60	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25 3 40	21215 -81180 -60730 5314.08 1913.5 272.98 2363.97 -51	1.7 12 12 8 0.12 0.9 0.06 0.09	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0 0.0 -0.3 0.1	U 1 1 2 2 2 U 2 2 U U B B 1 U U U U U U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 H12 H21 H19 H25 SH1 R05 M17 M17 P23	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0 4.0 2.5 2.5 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13 66Be10 66Be10 82Au01
144 Eu – u 144 Gd – u 144 Tb – u 144 Dy – u 144 Dy – s5 Rb 1.694 144 Ho – s5 Rb 1.694 144 Nd 35 Cl – 142 Nd 37 Cl 144 Sm – 144 Nd 144 Nd – 143 Nd 144 Nd – 142 Nd 142 Cs – 144 Cs .592 139 Cs .409 143 Cs – 144 CS .745 140 Cs .255	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269 273 2366 -60 -920	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25 3 40 50	21215 -81180 -60730 5314.08 1913.5 272.98 2363.97 -51 -891	1.7 12 12 8 0.12 0.9 0.06 0.09 14 17	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0 0.0 -0.3 0.1 0.2	U 1 1 2 2 2 U 2 2 U U B B - 1 U U U U U U U U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 H12 H21 H19 H25 SH1 R05 M17 M17 P23 P23	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0 4.0 2.5 2.5 2.5 2.5 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13 66Be10 66Be10 82Au01 82Au01
144 Eu – 133 Cs _{1.083} 144 Eu – u 144 Gd – u 144 Tb – u 144 Dy – u 144 Dy – u 144 Ho – 85 Rb _{1.694} 144 Ho – 85 Rb _{1.694} 144 Nd 35 Cl – 142 Nd 37 Cl 144 Sm – 144 Nd 144 Nd – 143 Nd 144 Nd – 142 Nd 142 Cs – 144 Cs .592 139 Cs .409 143 Cs – 144 Cs .745 140 Cs .255 142 Cs – 144 Cs .329 141 Cs .671 143 Cs – 144 Cs .662 141 Cs .338	- - - - 1	21223 -81117 -77037 -66955 -60746 88697.7 101537.9 5329 5308 1951 1911.9 1913.68 1913.5 269 273 2366 -60	17 30 30 30 33 7.7 9.1 3 3 1.1 0.94 0.9 25 3 40	21215 -81180 -60730 5314.08 1913.5 272.98 2363.97 -51	1.7 12 12 8 0.12 0.9 0.06 0.09	-0.6 -0.5 -2.1 0.5 -1.2 0.8 -3.1 0.6 -0.2 0.0 0.0 -0.3 0.1	U 1 1 2 2 2 U 2 2 U U B B 1 U U U U U U U	15	15 ¹⁴⁴ Eu	R04 MA5 GS2 GS2 GS2 GS2 SH1 H12 H21 H19 H25 SH1 R05 M17 M17 P23	1.0 1.0 1.0 1.0 1.0 1.0 4.0 2.5 4.0 2.5 1.0 4.0 2.5 2.5 2.5	64De15 00Be42 05Li24 05Li24 05Li24 05Li24 07Ra37 07Ra37 64Ba15 70Ma05 64Mc11 72Ba08 11Go23 average 65De13 66Be10 66Be10 82Au01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	or inpu	Input va		Adjusted		v_i	Dg	Signf.		in infl.	Lab	F	Reference
		F				- 1	- 8	~-8					
$^{143}\text{Cs} - ^{144}\text{Cs}_{.497}$ $^{142}\text{Cs}_{.504}$		-790	50	-690	13	0.8	U				P23	2.5	82Au01
144 Nd(α) 140 Ce		1882.4	30.	1903.2	1.6	0.7	U						61Ma05
		1882.4	20.			1.0	U						65Is01
144 Sm(3 He, 6 He) 141 Sm		-8693	12	-8693	9	0.0	1	51	50	¹⁴¹ Sm	MSU		78Pa11
142 Ce(t,p) 144 Ce		3582	15	3560	3	-1.5	U				LAl		72Mu09
142 Nd(t,p) 144 Nd		5450	30	5458.82	0.09	0.3	U				Ald		72Ch11
144 Nd(p,t) 142 Nd		-5470	20	-5458.82	0.09	0.6	U				Osa		71Ya10
144 Sm(p,t) 142 Sm		-10649	15	-10639.9	2.7	0.6	U				Ham		73Oe02
143 Nd $(n,\gamma)^{144}$ Nd		7817.11	0.07	7817.04	0.05	-1.0	_				MMn		82Is05 Z
		7816.93	0.08			1.4	-				ILn		91Ro.A Z
144		7816.94	0.23			0.4	U				Bdn		06Fi.A
144 Nd(d,t) 143 Nd		-1555	15	-1559.81	0.05	-0.3	U			144	Ors		73Ga01
143 Nd(n, γ) 144 Nd	ave.	7817.03	0.05	7817.04	0.05	0.1	1	99	61	¹⁴⁴ Nd			average
¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm		-804	5	-790.6	2.6	2.7	В			1.42	McM		80St10 *
143 Nd(3 He,d) 144 Pm $-^{142}$ Nd() 143 Pm		402.7	1.6	403.2	1.5	0.3	1	91	49	¹⁴³ Pm			75Ma04
144 Sm(t, α) 143 Pm		13542	25	13520.0	2.7	-0.9	U				Ald		68Ha13
¹⁴⁴ Sm(d,t) ¹⁴³ Sm		-4262	10	-4262.5	2.3	0.0	U			142			72Ja28
144 Sm(p,d) 143 Sm $^{-148}$ Gd() 147 Gd		-1536	2	-1536.0	2.0	0.0	1	100	100) ¹⁴³ Sm			86Ru04
144 Tm(p) 143 Er		1712.0	16.				3				ORp		05Gr32
$^{144}\text{Cs}(\hat{\beta}^{-})^{144}\text{Ba}$		8451	30	8496	20	1.5	О				Gsn		81De25
		8560	80			-0.8	_				Bwg		87Gr.A
		8462	35			1.0	_	44	20	¹⁴⁴ Cs	Gsn		92Pr04
144 Ba(β^-) 144 La	ave.	8480	30	2002	1.5	0.6	1	41	38	144Cs	D		average
$^{144}\text{La}(\beta^-)^{144}\text{Ce}$		3055	70 100	3083 5582	15 13	0.4 12.8	U				Bwg		87Gr.A 79Ik07
La(p) Ce		4300 5435	90	3362	13	12.8	B U				Bwg		791kU7 87Gr.A
		5540	100			0.4	0				Kur		02Sh.B
		5540	100			0.4	U				Kur		02Sh16
$^{144}\text{Ce}(\beta^{-})^{144}\text{Pr}$		315.6	1.5	318.6	0.8	2.0	3				Ttui		66Da04
GC(p') 11		320	1	510.0	0.0	-1.4	3						76Ra33
144 Pr(β^{-}) 144 Nd		2996	3	2997.4	2.4	0.5	2						59Po77
()- /		3000	4			-0.6	2						66Da04
144 Eu(β^+) 144 Sm		6330	30	6346	11	0.5	_				IRS		83A106
•		6400	80			-0.7	U				IRS		93A103
		6287	30			2.0	_				Dbn		94Po26
144 Sm(p,n) 144 Eu		-7110.0	30.	-7129	11	-0.6	_						65Me12
144 Eu($\hat{\beta}^+$) 144 Sm	ave.	6315	17	6346	11	1.8	1	39	39	¹⁴⁴ Eu			average
$^{144}\text{Gd}(\beta^+)^{144}\text{Eu}$		4300	400	3860	30	-1.1	U						70Ar04
* ¹⁴⁴ Tb-u	M-A	=-61971(28) keV for	$144 \text{Tb}^{m} \text{ at } 3$	96.9 ke	V							Nub16b **
$*^{143}$ Nd(3 He,d) 144 Pm	Based	on ¹⁴⁶ Nd(³ H	He,d) ¹⁴⁷ F	Pm Q = -87.6	(0.9) ke	eV							AHW **
145 Xe $-^{133}$ Cs _{1.090}		47777	10				^				3440	1.0	0031 11
145 C 133 C 133 C		47777	12	20506	10	0.1	2				MA8		09Ne11
$^{145}\text{Cs} - ^{133}\text{Cs}_{1.090}$		38588	12	38586	10	-0.1	_				MA8		08We02
		38583	17			0.2	_	00	00	¹⁴⁵ Cs	CP1	1.0	13Va12
¹⁴⁵ Ba-u	ave.	38586	10			0.0	1	99	99	···Cs	CD1	1.0	average
¹⁴⁵ La-u		-72481.6	9.1	70102	12	0.2	2	00	00	¹⁴⁵ La	CP1	1.0	06Sa56
¹⁴⁵ Ce-u		-78188.8	13.3	-78192	13	-0.2	1	98	98 16	¹⁴⁵ Ce		1.0	06Sa56 06Sa56
$C_{10} O H_9 - {}^{145}Nd$		-82771.8	92.2	-82730	40	0.4	1	16	10	Ce		1.0	
$C_{10} \cup B_9 - Ma$		152641 152653	55 30	152760.7	1.5	0.5 0.9	U U				R05 R05	4.0 4.0	65De13 65De13
$C_9^{13}COH_8-^{145}Nd$		148231	31	148290.5	1.5	0.5	U				R05	4.0	65De13
¹⁴⁵ Pm-u		-87255	30	-87244	3	0.3	U				GS2	1.0	05Li24
145Sm—u		-87233 -86535	30	-87244 -86582.8	3 1.7	-1.6	U				GS2	1.0	05Li24
¹⁴⁵ Eu- ¹³³ Cs _{1.090}		19338	30 17	19330	3	-0.5	U				MA5		00Be42
145Gd—u		-78287	30	-78290	21	-0.3 -0.1	_					1.0	05Li24
Gu u		-78294	30	70270		0.1	_				GS2		05Li24 *
	ave.	-78291	21			0.0	1	99	99	¹⁴⁵ Gd			average
	-	-											3.

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
¹⁴⁵ Tb-u		-71134	266	-71270	120	-0.5	1	19	19 ¹⁴⁵ Tb	GS2	1.0	05Li24	*
¹⁴⁵ Dy-u		-62575	49	-62526	7	1.0	Ü		1, 10	GS2	1.0	05Li24	*
¹⁴⁵ Dy ⁻⁸⁵ Rb _{1.706}		87960.7	7.0	02320	,	1.0	2			SH1	1.0	07Ra37	*
$^{145}\text{Ho}-^{85}\text{Rb}_{1.706}$													*
145 N 1 25 GI 141 D 27 GI		97754.1	8.0	10001 0			2			SH1	1.0	07Ra37	
¹⁴⁵ Nd ³⁵ Cl ₂ - ¹⁴¹ Pr ³⁷ Cl ₂		10828	7	10821.0	1.5	-0.4	U			H21	2.5	70Ma05	
¹⁴⁵ Nd ³⁵ Cl- ¹⁴³ Nd ³⁷ Cl		5744	5	5709.42	0.26		U			H12	4.0	64Ba15	
		5703	4			0.6	U			H21	2.5	70Ma05	
145 Nd $^{-144}$ Nd		2582	21	2486.33	0.25	-1.1	U			R05	4.0	65De13	
		2480	2			1.3	U			M17	2.5	66Be10	
$^{145}\text{Nd} - ^{143}\text{Nd}$		2862	40	2759.31	0.25	-0.6	U			R05	4.0	65De13	
		2751	3			1.1	U			M17	2.5	66Be10	
$^{142}\text{Cs} - ^{145}\text{Cs}_{.490}$ $^{139}\text{Cs}_{.511}$		240	50	150	9	-0.7	Ü			P23	2.5	82Au01	
$^{144}\text{Cs} - ^{145}\text{Cs}_{.828} ^{139}\text{Cs}_{.173}$		450	50	415	21	-0.3	U			P23	2.5	82Au01	
143Cs-145Cs _{.592} 140Cs _{.409}													
143 G 145 G 141 G		-700	80	-610	10	0.5	U			P23	2.5	82Au01	
¹⁴³ Cs ⁻¹⁴⁵ Cs _{.493} ¹⁴¹ Cs _{.507}		-310	40	-309	10	0.0	U		144	P23	2.5	82Au01	
$^{144}\text{Cs} - ^{145}\text{Cs}_{.662}$ $^{142}\text{Cs}_{.338}$		320	18	319	21	0.0	1	21	20 ¹⁴⁴ Cs	P33	2.5	86Au02	
$^{144}\text{Cs} - ^{145}\text{Cs}_{.497} ^{143}\text{Cs}_{.503}$		600	40	616	21	0.2	U			P23	2.5	82Au01	
145 Pm(α) 141 Pr		2303.6	40.	2323.3	2.9	0.5	U					62Nu01	
145 Nd(n, α) 142 Ce		8706	30	8747.6	2.2	1.4	U			ILL		75Em04	
¹⁴⁵ Nd(p,t) ¹⁴³ Nd		-5100	20	-5090.56	0.24	0.5	U			Osa		71Ya10	
144 Nd $(n,\gamma)^{145}$ Nd		5755.3	0.7	5755.31	0.23	0.0	_			054		75Na.A	
ru(ii, į) ru		5756.9	2.0	3733.31	0.23	-0.8	U					77Mc09	
		5755.26	0.25			0.2				Bdn		06Fi.A	
144511/1 \145511				2520.75	0.00		_						
144 Nd(d,p) 145 Nd		3521	15	3530.75	0.23	0.6	U			Hei		67Wi08	
144 145		3538	15			-0.5	U		1.45	Ors		73Ga01	
144 Nd(n, γ) 145 Nd	ave.	5755.26	0.24	5755.31	0.23	0.2	1	95	89 ¹⁴⁵ Nd			average	
144 Nd(3 He,d) 145 Pm		-680	5	-685.0	2.5	-1.0	1	26	25 ¹⁴⁵ Pm	McM		80St10	*
144 Nd(3 He,d) 145 Pm $-^{143}$ Nd() 144 Pm		105.2	1.6	105.7	1.5	0.3	1	91	57 ¹⁴⁴ Pm			75Ma04	
144 Sm $(n,\gamma)^{145}$ Sm		6757.1	0.3	6757.10	0.30	0.0	1	99	92 ¹⁴⁵ Sm			79Wa22	
144 Sm(d,p) 145 Sm		4533	12	4532.53	0.30	0.0	U			Tal		65Ke09	
2(±, F)		4547	15			-1.0	Ü			Kop		67Ch16	
¹⁴⁴ Sm(³ He,d) ¹⁴⁵ Eu		-2184	4	-2178.5	2.7	1.4	_			Mun		82Sc25	
Sili(fie,u) Eu		-2174	4	-2176.3	2.7	-1.1				Mun		84Ru.A	
							_	02	91 ¹⁴⁵ Eu				
1455 ()144 6 1	ave.	-2179.0	2.8	(220	••	0.2	1	92	91 145 Eu			average	
145 Dy $(\varepsilon p)^{144}$ Gd		6000	500	6228	29	0.5	U					83La.A	*
145 Tm(p) 144 Er		1740.1	10.	1736	7	-0.4	3			ORp		98Ba13	
		1732.1	10.			0.4	3			Arp		07Se06	
$^{145}\text{Cs}(\beta^-)^{145}\text{Ba}$		7358	70	7462	12	1.5	U			Gsn		81De25	
		7930	75			-6.2	C			Bwg		87Gr.A	
		7865	50			-8.1	В			Gsn		92Pr04	
145 Ba $(\beta^{-})^{145}$ La		4925	80	5319	15	4.9	C			Bwg		87Gr.A	
$^{145}\text{La}(\beta^{-})^{145}\text{Ce}$		4110	80	4230	40	1.5	1	19	18 ¹⁴⁵ Ce	Bwg		87Gr.A	
$^{145}\text{Ce}(\beta^-)^{145}\text{Pr}$		2490	100	2560	30	0.7	_	17	10 CC	Dwg		67Ho19	*
Ce(p) FI				2300	30	-0.4							
		2600	100				_			ъ		80Ya07	*
		2530	50			0.6	-		1.45	Bwg		87Gr.A	
145	ave.	2540	40			0.6	1	68	67 ¹⁴⁵ Ce			average	
145 Pr(β^{-}) 145 Nd		1805	10	1806	7	0.1	1	50	50 ¹⁴⁵ Pr			59Dr.A	
145 Pm $(\varepsilon)^{145}$ Nd		143	15	164.5	2.5	1.4	U					59Br65	*
		150	5			2.9	В					74To04	*
145 Sm $(\varepsilon)^{145}$ Pm		607	6	616.2	2.5	1.5	_					71My01	
\-/		622	5			-1.2	_					83Vo10	*
	ave.	616	4			0.1	1	44	41 ¹⁴⁵ Pm			average	
145 Eu(β^+) 145 Sm	ave.			2650.9	27			7-7	71 1111				.1.
$\operatorname{Eu}(p^+)$ Sill		2710	15	2659.8	2.7	-3.3	В					68Ad04	*
145 0 140 ± 145 0		2647	12	50 - 5	2.0	1.1	U					83Sc28	*
$^{145} \text{Gd}(\beta^+)^{145} \text{Eu}$		5070	60	5065	20	-0.1	U					79Fi07	
		5090	90			-0.3	o			IRS		83Ve.A	*
		5070	80			-0.1	U			IRS		85Al13	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.		n infl.	Lab	F	Reference
145												
$^{145}\mathrm{Gd}(\varepsilon)^{145}\mathrm{Eu}$	5000	70	5065	20	0.9	U						77Ho18
$^{145}\text{Tb}(\beta^+)^{145}\text{Gd}$	6700	200	6540	110	-0.8	_						86Ve.A *
	6400	150			0.9	_				IRS		93A103
	ave. 6510	120			0.2	1	81	81	¹⁴⁵ Tb			average
145 Dy $(\beta^+)^{145}$ Tb m	7300	200				3				IRS		93A103
* ¹⁴⁵ Gd-u	M - A = -72181(28)	keV for	145Gd ^m at 749	9.1 keV								Nub16b **
$*^{145}$ Tb $-u$	M - A = -65881(28)				20) keV							Nub16b **
*145Dy-u	M - A = -58230(30)											Nub16b **
$*^{145}$ Dy $-^{85}$ Rb _{1.706}	D_M =88054.7(6.8) μ		_			tio R=0	741(13)					Nub16b **
* ¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm	Based on ¹⁴⁶ Nd(³ H						, .1(10)					AHW **
* 145 Dy(ε p) 144 Gd	As read from graph		m g = 07.0(c).) KC V								AHW **
* $^{145}\text{Ce}(\beta^-)^{145}\text{Pr}$	E_{β} =1700(100) 18		rospostivaly to	o (2/2)= 1	aval at 79	6 01. on	d other F					Ens092 **
* $\operatorname{Ce}(p^{-})$ F1 * $^{145}\operatorname{Pm}(\varepsilon)^{145}\operatorname{Nd}$					ever at 76	0.91, an	u omei £ _β -					
	LM/K=0.85(0.03) t				.1 17							Ens092 **
$*^{145}$ Pm $(\varepsilon)^{145}$ Nd	pK=0.554(0.025) to											Ens092 **
$*^{145}$ Sm $(\varepsilon)^{145}$ Pm	pK=0.27(0.03) 0.35				vel at 492	.31 keV						Ens092 **
$*^{145}$ Eu $(\beta^+)^{145}$ Sm	$E_{\beta^+} = 794(15)$ to $3/2$											Ens092 **
$*^{145}$ Eu(β^+) ¹⁴⁵ Sm	pK=0.72(0.02) to (3)					3.37 lev	els					Ens092 **
$*^{145}$ Gd(β^+) ¹⁴⁵ Eu	E_{β^+} =2310(90) to 3	/2 ⁺ leve	l at 1758.03 ke	eV, and ot	ther E_{β^+}							Ens092 **
$*^{145}$ Tb $(\beta^+)^{145}$ Gd	$E_{\beta^+} = 3300(200)$ to	$(9/2^{-})$ le	evel at 2382.3(0.2) keV	,							Ens092 **
-	r											
146** 133 a	50000	2.									4.0	0037.44
146 Xe $^{-133}$ Cs _{1.098}	52332	26				2				MA8	1.0	09Ne11
$^{146}\text{Cs} - ^{133}\text{Cs}_{1.098}$	44437.4	3.3	44436	3	-0.5	2				MA8	1.0	15At.A
146	44421.8	9.2			1.5	2				CP1	1.0	13Va12
146 Ba $-$ u	-69618	112	-69724	22	-0.4	o				GT2	2.5	08Kn.A
	-69963	141			0.7	U				GT2	2.5	08Su19
	-69717.5	23.7			-0.3	1	89	89	¹⁴⁶ Ba	CP1	1.0	06Sa56
¹⁴⁶ La-u	-74252	86	-74130	40	1.4	1	18	18	¹⁴⁶ La	CP1	1.0	06Sa56 *
146 Ce $-u$	-81191.8	20.8	-81198	18	-0.3	_				CP1	1.0	06Sa56
	-81171	40			-0.7	_				GS3	1.0	12Ch19
	ave. -81187	18			-0.6	1	90	90	¹⁴⁶ Ce			average
$C_{12} H_2 - ^{146}Nd$	102453	31	102527.6	1.5	0.6	U				R05	4.0	65De13
$C_{10} O H_{10} - {}^{146}Nd$	160017	27	160042.4	1.5	0.2	U				R05	4.0	65De13
210 2 2-10	159971	50			0.4	Ü				R05	4.0	65De13
$C_9^{13}COH_9-^{146}Nd$	155525	35	155572.2	1.5	0.3	Ü				R05	4.0	65De13
¹⁴⁶ Pm-u	-85289	30	-85298	5	-0.3	U				GS2	1.0	05Li24
^{146}Eu $^{-133}\text{Cs}_{1.098}$	21029	15	21025	6	-0.3	1	19	19	¹⁴⁶ Eu	MA5	1.0	00Be42
146Tb-u						C	19	19	Eu	GS2		
	-72464 67150	77	-72750	50	-3.7						1.0	
¹⁴⁶ Dy-u	-67150	30	-67155	7	-0.2	U	100	100	1460	GS2	1.0	05Li24
146 Dy $-^{85}$ Rb _{1.718}	84390.0	7.2	84390	7	0.0	1	100		¹⁴⁶ Dy	SH1	1.0	07Ra37
$^{146}\text{Ho} - ^{133}\text{Cs}_{1.098}$	48797	10	48807	7	1.0	1	50	50	¹⁴⁶ Ho	SH1	1.0	07Ra37
¹⁴⁶ Ho ⁻⁸⁵ Rb _{1.718}	96549	10	96539	7	-1.0	1	50	50	¹⁴⁶ Ho	SH1	1.0	07Ra37
146 Er $-^{85}$ Rb _{1.718}	103960.4	9.2	103964	7	0.3	1	61	61	¹⁴⁶ Er	SH1	1.0	07Ra37
¹⁴⁶ Nd ³⁵ Cl- ¹⁴⁴ Nd ³⁷ Cl	6003	3	5979.75	0.27	-1.9	U				H12	4.0	64Ba15
	5966	4			1.4	U				H21	2.5	70Ma05
	5982.8	1.1			-1.1	U				H25	2.5	72Ba08
146 Nd $-^{145}$ Nd	526	33	543.30	0.09	0.1	U				R05	4.0	65De13
	536	2			1.5	U				M17	2.5	66Be10
146 Nd $^{-144}$ Nd	3147	36	3029.64	0.26	-0.8	U				R05	4.0	65De13
	3026	3			0.5	U				M17	2.5	66Be10
$^{145}\text{Cs} - ^{146}\text{Cs}_{.828}$ $^{140}\text{Cs}_{.173}$	-580	80	-928	9	-1.7	Ü				P23	2.5	82Au01
$^{144}\text{Cs} - ^{146}\text{Cs}_{.329} ^{143}\text{Cs}_{.671}$	320	50	336	21	0.1	U				P23	2.5	82Au01
145Cs-146Cs _{.662} 143Cs _{.338}	-440	30	-565	10	-1.7	U				P33	2.5	86Au02
145Cs-146Cs _{.497} 144Cs _{.503}			-363 -740							P33	2.5	
146 Sm(α) 142 Nd	-730	30		13	-0.1	U				гээ	2.3	86Au02
$\operatorname{Sm}(\alpha)$. Nd	2529.5	20.	2528.8	2.8	0.0	U						64Nu02
	2622.0	30.			-3.1	В	4.77		146~			66Fr11
	2524.2	4.			1.1	1	47	46	¹⁴⁶ Sm			87Me08 Z

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	inpariso									Jage 030002-30)	
Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
144 146											
144 Nd(t,p) 146 Nd		4834	30	4838.75	0.24	0.2	U			Ald	72Ch11
144 Sm(t,p) 146 Sm		6681	25	6691.6	2.8	0.4	U		146-	Ald	66Bj01
¹⁴⁴ Sm(³ He,p) ¹⁴⁶ Eu		2797	12	2794	6	-0.2	1	25	24 ¹⁴⁶ Eu		84Ru.A
¹⁴⁴ Sm(³ He,n) ¹⁴⁶ Gd		977	30	980	4	0.1	U			Bld	79Al07
144 Sm(12 C, 10 Be) 146 Gd		-18476	25	-18487	4	-0.4	U			MSU	80Pa07
146 Nd(d, 3 He) 145 Pr		-3095	10	-3095	7	0.0	1	50	49 ¹⁴⁵ Pr	KVI	79Sa.A
145 Nd(n, γ) 146 Nd		7565.28	0.10	7565.23	0.09	-0.5	-			MMn	82Is05 Z
		7565.05	0.18			1.0	_			Bdn	06Fi.A
	ave.	7565.23	0.09			0.1	1	99	88 ¹⁴⁶ Nd		average
146 Sm(3 He, α) 145 Sm		12161	5	12161.3	2.9	0.1	1	33	$30^{-146} Sm$		86Ru04 *
$^{146}\text{Tm}(p)^{145}\text{Er}$		895.2	8.	896	6	0.1	o			ORp	03Gi10
47		896.2	8.			-0.1	3			Arp	05Ro40
		895.2	8.			0.1	3			ORp	06Ta08
$^{146}\text{Tm}^{m}(p)^{145}\text{Er}$		1197.3	5.	1199.3	1.0	0.4	U			Dap	93Li18
47		1198.3	10.			0.1	0			ORp	01Ry01
		1200.3	8.			-0.1	Ü			Arp	05Ro40
		1199.3	1.			0.1	3			ORp	06Ta08
$^{146}\text{Tm}^{m}(p)^{145}\text{Er}^{m}$		994.5	4.				4			ORp	06Ta08
$^{146}\text{Tm}^{n}(p)^{145}\text{Er}^{m}$		1126.8	5.	1127.8	1.0	0.2	Ü			Dap	93Li18
тш (р) Ег		1127.8	10.	1127.0	1.0	0.0	0			ORp	01Ry01
		1127.8	8.			-0.3	U			Arp	05Ro40
		1127.8	1.			-0.5	5			ORp	05R040 06Ta08
$^{146}\text{Cs}(\beta^-)^{146}\text{Ba}$		9300	900	9637	21	0.4				Gsn	81De25
$Cs(p^{-})$ Ba				9037	21	5.4	o B				
		9310	60							Bwg	87Gr.A
146p (0-)146r		9375	50	4100	20	5.2	В			Gsn	92Pr04
146 Ba $(\beta^{-})^{146}$ La		4280	100	4100	30	-1.8	-			Gsn	81De25 *
		4030	50			1.5	_	5.0	45 1/6T	Bwg	87Gr.A
146 146	ave.	4080	40			0.5	1	56	45 ¹⁴⁶ La		average
146 La(β^{-}) 146 Ce		6175	100	6590	30	4.1	В			Gsn	81De25 *
		6380	30			6.8	В			Trs	82Br23 *
		6620	70			-0.5	-			Bwg	87Gr.A
		6580	80			0.1	-		146		01Ko07 *
	ave.	6600	50			-0.3	1	43	37 ¹⁴⁶ La		average
$^{146}\text{Ce}(\beta^-)^{146}\text{Pr}$		1100	80	1050	30	-0.7	-				54Be10 *
		1050	100			0.0	-				67Ho19 *
		951	50			1.9	_				80Ya07 *
		1065	100			-0.2	_				81Eb01 *
	ave.	1010	40			1.0	1	80	76 ¹⁴⁶ Pr		average
146 Pr(β^{-}) 146 Nd		4150	200	4240	30	0.5	U				54Be10 *
•		4250	200			0.0	U				65Ra02 *
		4080	100			1.6	_				68Da13 *
		4140	100			1.0	_				78Ik03 *
	ave.	4110	70			1.9	1	24	$24^{-146} Pr$		average
146 Pm(β^{-}) 146 Sm		1542	3				2				74Sc06 *
$^{146}\text{Eu}(\beta^+)^{146}\text{Sm}$		3871	10	3879	6	0.8	_				62Fu16 *
Σα(β΄) Σιιι		3871	20	20,7	Ü	0.4	_				64Ta11 *
		3896	20			-0.9	_			Got	88Sa06 *
	ave.	3875	8			0.4	1	52	46 ¹⁴⁶ Eu	Got	average
$^{146} { m Gd}(eta^+)^{146} { m Eu}$	avc.	1757	30	1032	7	-24.2	В	32	40 Lu		70Ag01 *
$\operatorname{Gu}(p)$ Eu		1300	200	1032	,	-24.2 -1.3	U				81Ka07 *
$^{146}\text{Tb}(\beta^+)^{146}\text{Gd}$		8240	150	8320	40	0.5				IRS	83Al06
10(p ·) · Gu				8320	40		0				
		7910	150			2.7	U	00	80 ¹⁴⁶ Tb	IRS	93Al03 *
146p (0+)146m		8310	50	5210	50	0.2	1	80		Dbn	94Po26
$^{146}_{146}$ Dy $(\beta^+)^{146}$ Tb		5160	100	5210	50	0.5	1	20	20 ¹⁴⁶ Tb	IRS	93A103
* ¹⁴⁶ La-u		4182.5(30.6)					1 - A = -	69100.6(28.:	5) keV		Nub16b **
* ¹⁴⁶ Tb-u	M-A=	=-67424(28)	keV for n	nixture gs+m	at 150#1	00 keV					Nub16b **
$*^{146}$ Sm(3 He, α) 145 Sm		148 Gd(3 He, α									AHW **
$*^{146}$ Ba $(\beta^{-})^{146}$ La	E_{β} =3	910(100) to 1	+ level a	t 372.4 keV, a	and other	E_{β}					Ens97c **
$*^{146}$ La(β^-) ¹⁴⁶ Ce		919(100) 612					keV, and	other E_{β^-}			Ens97c **
$*^{146}$ La(β^-) ¹⁴⁶ Ce		580(100) and									01Ko07 **
$*^{146}$ Ce(β^-) ¹⁴⁶ Pr		50(80) 700(1									Ens97c **
$*^{146} Pr(\beta^{-})^{146} Nd$		700(200) 380						- 1.0 .			Ens97c **
, 110	-p -3	. 55(250) 500	- (- 55) IC		_ 10,01		-10 /				

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Table I. Comp	arison (of input dat	ta and a	djusted val	ues (co	ntinued,	Explai	nation of	Table on pa	ge 0300	002-50)	
Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$*^{146}$ Pr(β^-) ¹⁴⁶ Nd	F_{α} -4	100(200), 36	00(100)	2100(100) to	ground s	state 2 ⁺ 4	153 77 2	+ 1978 45	levels			Ens97c **
$*^{146}\Pr(\beta^-)^{146}Nd$	$E_p = 1$	150(150), 37	00(100),	2160(100) to	ground s	tate 2+/	153.77, 2	+ 1078.45	levels			Ens97c **
$*^{146}$ Pm(β^-) ¹⁴⁶ Sm		$95(3)$ to 2^+ 10			ground s		133.11, 2	1770.43	icveis			Ens97c **
$*^{146}\text{Eu}(\beta^+)^{146}\text{Sm}$		107(11) 2100			+ lovol o	+ 747 2 150	W and a	thor F				Ens97c **
				ectively, to 2	ievei a	ι /4/.∠ K	v, and o	μ_{β}				
$*^{146}$ Eu(β^+) 146 Sm		2045.8 leve		04.501.37								Ens97c **
$*^{146}$ Gd(β^+) 146 Eu		50(30) to 1 ⁻				150 (0-	L					Ens97c **
$*^{146}$ Gd(β^+) 146 Eu		690.7 level, p					⁻)					Ens97c **
$*^{146}$ Tb $(\beta^+)^{146}$ Gd		ed half-life 2										GAu **
*	<i>Q</i> _β -=	=8060(100) ke	eV from ¹	⁴⁶ Tb ^m at esti	mated 15	60#100 ke	eV					Nub16b **
$^{147}\text{Cs} - ^{133}\text{Cs}_{1.105}$		48640	64	48737	9	1.5	U			MA8	1.0	08We02
25 251.105		48737.1	9.0	.0,5,		1.0	2			MA8	1.0	15At.A
¹⁴⁷ Ba-u		-64696.1	21.2				2			CP1	1.0	06Sa56
147La-u		-71582.2	11.5				2			CP1	1.0	06Sa56
¹⁴⁷ Ce-u		-77309.2	9.6	-77310	9	-0.1	1	92	92 ¹⁴⁷ Ce	CP1	1.0	06Sa56
$C_8 H_5 N O_2 - ^{147} Sm$		117197	40	117124.3	1.5	-0.5	Ü	72	<i>72</i> CC	R04	4.0	64De15
$C_9 H_7 O_2 - {}^{147}Sm$		129703	17	129700.4	1.5	0.0	U			R04	4.0	64De15
147 Eu $^{-133}$ Cs _{1.105}		21215	16	21227.9	2.8	0.8	U			MA5	1.0	00Be42
$^{147}\text{Tb}-\text{u}$												
$^{147}\text{Tb} - ^{133}\text{Cs}_{1.105}$		-75934	34	-75945	9	-0.3	U	52	53 ¹⁴⁷ Tb	GS2	1.0	05Li24 *
147p		28533	12	28530	9	-0.2	1	53	53 117 16	SH1	1.0	07Ra37 *
¹⁴⁷ Dy-u		-68909	30	-68917	10	-0.3	U			GS2	1.0	05Li24
147 133		-68908	30			-0.3	U			GS2	1.0	05Li24 *
147 Dy $^{-133}$ Cs _{1.105}		35558.3	9.5		_		2			SH1	1.0	07Ra37 *
¹⁴⁷ Ho-u		-59944	30	-59858	5	2.9	В		147	GS2	1.0	05Li24
147 Ho $-^{133}$ Cs _{1.105}		44613.7	7.8	44618	5	0.5	1	47	47 ¹⁴⁷ Ho	SH1	1.0	07Ra37
147 Ho $-^{85}$ Rb _{1.729}		92661.6	7.4	92658	5	-0.5	1	53	53 ¹⁴⁷ Ho	SH1	1.0	07Ra37
147 Er $^{-133}$ Cs _{1.105}		54452	42	54440	40	-0.3	o			SH1	1.0	07Ra37 *
147 Er $^{-85}$ Rb _{1.729}		102480	41				2			SH1	1.0	07Ra37 *
$^{147}\text{Tm} - ^{85}\text{Rb}_{1.729}$		113900	11	113895	7	-0.4	1	45	45 ¹⁴⁷ Tm	SH1	1.0	07Ra37
147 Eu $^{-142}$ Sm $_{1.035}$		4516	17	4516	4	0.0	U			MA7	1.0	01Bo59
¹⁴⁷ Sm ³⁵ Cl- ¹⁴⁵ Nd ³⁷ Cl		5305	4	5275.0	0.4	-1.9	U			H12	4.0	64Ba15
		5264	4			1.1	U			H21	2.5	70Ma05
$^{145}\text{Cs} - ^{147}\text{Cs}_{.705}$ $^{140}\text{Cs}_{.296}$		-170	170	-644	11	-1.1	U			P23	2.5	82Au01
$^{144}\text{Cs} - ^{147}\text{Cs}_{.490}$ $^{141}\text{Cs}_{.511}$		80	250	227	21	0.2	U			P23	2.5	82Au01
$^{145}\text{Cs} - ^{147}\text{Cs}_{.493}$ $^{143}\text{Cs}_{.507}$		-87	22	-146	11	-1.1	U			P33	2.5	86Au02
$^{147}{\rm Sm}(\alpha)^{143}{\rm Nd}$		2292.5	10.	2311.0	0.4	1.8	U					62Si14 Z
		2296.7	5.			2.9	U					66Ma05 Z
		2300.8	5.			2.0	U					70Gu14 Z
		2310.5	0.5			0.9	1	50	28 ¹⁴⁷ Sm			16Ca.1
147 Eu(α) 143 Pm		2990.6	10.	2991	3	0.0	U					62Si14 Z
		2981.5	20.			0.5	U					64To04 Z
		2987.2	5.			0.7	1	37	22 ¹⁴³ Pm	Dba		67Go32 Z
147 Sm(n, α) 144 Nd		10114	8	10128.0	0.4	1.8	U			ILL		74Em01
¹⁴⁴ Sm(¹² C, ⁹ Be) ¹⁴⁷ Gd		-17832	30	-17957.0	1.2	-4.2	В			MSU		80Pa07
Sin(e, be) du		-17921	25	17757.0	1.2	-1.4	U			Ors		85Be24
¹⁴⁴ Sm(¹⁴ N, ¹¹ Be) ¹⁴⁷ Tb		-28280	50	-28537	8	-5.1	В			Hei		85Gy01
147 Sm(p,t) 145 Sm		-6287	8	-6275.9	0.9	1.4	U			Min		72De47
146 Nd(n, γ) 147 Nd		5292.19	0.15	5292.20	0.09	0.1				ILn		75Ro16 Z
-1 Nu(Π , γ) -1 Nu				3292.20	0.09		_					
146 217 1 147 211		5292.19	0.11	2067.62	0.00	0.1	_			Bdn		06Fi.A
¹⁴⁶ Nd(d,p) ¹⁴⁷ Nd		3070	15	3067.63	0.09	-0.2	U	00	89 ¹⁴⁷ Nd	Hei		67Wi08
146 Nd(n, γ) 147 Nd	ave.	5292.19	0.09	5292.20	0.09	0.1	1	99	89 ' ' 'Nd			average
147 Sm(d,t) 146 Sm		-98	10	-84.1	2.8	1.4	U		10 147-	McM		75Si03
¹⁴⁷ Tb(p) ¹⁴⁶ Gd		-1945	18	-1946	9	0.0	1	23	19 ¹⁴⁷ Tb			87Sc.A
$^{147}\text{Tm}(p)^{146}\text{Er}$		1062.2	6.	1059	3	-0.6	0		147			82K103
		1058.2	3.3			0.1	1	94	55 ¹⁴⁷ Tm	Dap		93Se04 *
147		1067.3	15.			-0.6	U			ORp		03Gi10
$^{147}\text{Tm}^{m}(p)^{146}\text{Er}$		1124.7	6.	1120	3	-0.7	2					84Ho.A
		1118.5	3.9			0.5	2			Dap		93Se04

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
147 Ba(β^{-}) 147 La		5750	50	6414	22	13.3	С			Bwg	87Gr.A
$^{147}\text{La}(\beta^{-})^{147}\text{Ce}$		4945	55	5336	14	7.1	C			Bwg	87Gr.A
La(p) CC		5150	40	3330	14	4.6	В			Kur	95Ik03
		5370	100			-0.3	0			Kur	02Sh.B
		5366	40			-0.8	U			Kur	09Ha.B
$^{147}\text{Ce}(\beta^-)^{147}\text{Pr}$		3290	40	3430	16	3.5	Č			Bwg	87Gr.A
CC(p') 11		3426	20	5450	10	0.2	1	60	52 ¹⁴⁷ Pr	Kur	95Ik03
		3380	100			0.5	Ü	00	32 11	Kur	02Sh.B
147 Pr(β^-) 147 Nd		2700	200	2703	16	0.0	U			1101	64Ho03
11(5) 110		2790	100	2,00	10	-0.9	Ü				81Ya06
		2711	28			-0.3	_			Kur	95Ik03
	ave.	2697	23			0.2	1	48	48 ¹⁴⁷ Pr		average
147 Nd(β^-) 147 Pm		894.6	1.0	895.5	0.5	0.9	1	23	13 ¹⁴⁷ Pm		67Ca18
$^{147}\text{Pm}(\beta^{-})^{147}\text{Sm}$		223.2	0.5	224.09	0.29	1.8	_				50La04
(-)		224.3	1.3			-0.2	_				58Ha32
		224.5	0.4			-1.0	_				66Hs01
	ave.	224.0	0.3			0.3	1	93	87 ¹⁴⁷ Pm		average
147 Eu(β^+) 147 Sm		1767	10	1721.6	2.3	-4.5	В				67Ad03
		1723	3			-0.5	1	58	57 ¹⁴⁷ Eu		80Bu04
		1702	13			1.5	U				84Sc18
		1692	18			1.6	U				84Sc18
$^{147}\text{Gd}(\beta^+)^{147}\text{Eu}$		2185	5	2187.8	2.5	0.6	1	25	19 ¹⁴⁷ Eu		80Vy01
()		2199	17			-0.7	U				84Sc18
$^{147}\text{Tb}(\beta^+)^{147}\text{Gd}$		4700	90	4614	8	-1.0	U				83Ve06
4.)		4490	60			2.1	U			Got	85Ti01
		4560	50			1.1	U				Averag
		4609	15			0.4	1	29	28^{-147} Tb	GSI	91Ke11
		4509	60			1.8	U			IRS	93A103
147 Dy $(\beta^+)^{147}$ Tb		6334	60	6547	12	3.5	В			IRS	83A106
3 4 /		6480	100			0.7	U			IRS	83A118
		6334	60			3.5	C				85Af.A
		6480	100			0.7	U			IRS	85A108
¹⁴⁷ Tb-u	M - A =	÷70707(28	3) keV for	mixture gs-	+m at 50.6 l	κeV					Nub16b *
$^{147}\text{Tb} - ^{133}\text{Cs}_{1.105}$						vith ratio R=	0.741(13)			Nub16b *
: ¹⁴⁷ Dy—u				147 Dy m at $^{\prime}$							Nub16c *
147 Dv $^{-133}$ Cs _{1 105}	$D_{M} = 35$	567(14) ar	$d D_M = 36$	358.4(9.5) 1	for 147 Dy m a	at 750.5 keV					Nub16b *
147 Er $^{-133}$ Cs _{1.105}						V with ratio		(13)			Nub16b *
	error d	lue to exci	tation ener	rgy, use only	y next item						GAu *
147 Er $-^{85}$ Rb _{1.729}	$D_{M} = 10$	2559.5(8.3	β) μu for r	nixture gs+	m at 100#50	keV with R	=0.741(1	(3)			Nub16b *
$^{147}\text{Tm}(p)^{146}\text{Er}$	Q_p from	$E_p = 1051$.0(3.3), no	o screening	correction s	should be app	olied				GAu *
$^{147}\Pr(\beta^{-})^{147}\text{Nd}$						1350.5 keV					Ens092 *
147 Nd(β^-) 147 Pm				el at 91.104							Ens092 *
147 Eu(β^+) 147 Sm	$p^{+} = 2.9$	$9(0.3) \times 10^{-1}$	$^{-3}$ to $3/2^{-}$	level at 19	7.284 keV						Ens092 *
147 Eu(β^+) 147 Sm					nt 1548.634	keV					Ens092 *
$^{147}\text{Gd}(\beta^+)^{147}\text{Eu}$				t 229.323 ke							Ens092 *
$^{147}\text{Gd}(\beta^+)^{147}\text{Eu}$	P				lated by AF	IW					84Sc18 *
$^{147}\text{Tb}(\beta^+)^{147}\text{Gd}$						t 1292.3 keV	. reinterr	retd			Ens092 *
$^{147}\text{Tb}(\beta^+)^{147}\text{Gd}$						om ¹⁴⁷ Tb ^m a					Ens092 *
10(p) 00						g correction					AHW *
				$A/\beta^{+}=2.2(0)$		5 correction	applied)	•			84Ha.B *
		$\beta^{+}=2.17(0.07)$		P C	,					85Al08 *	
				$LM/\beta^{+}=1.9$	9(0.17)				85Sc09 *		
$^{147}\text{Tb}(\beta^+)^{147}\text{Gd}$					from 147 Tb ^m				Nub16b *		
147 Dy(β^+) 147 Tb	E_{0+} -60	012(60) fro	m ¹⁴⁷ Dv ⁿ	at 750 5 to	147Th^m at	50.6(0.9) ke	V				Nub16b *
147 Dy(β^+) 147 Tb						t 50.6(0.9) ke					
147 Dy(β^+) 147 Tb											Nub16b *
						50.6(0.9) ke					Nub16b *
147 Dy $(\beta^+)^{147}$ Tb	$Q_{\beta^+}=7$	1 (001)061	rom '-'D	y at /50.5	to · · · I b · · a	t 50.6(0.9) k	e v				Nub16b *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁴⁸ Cs- ¹³³ Cs _{1.113}		54871	14				2			MA8	1.0	15At.A
¹⁴⁸ La–u		-67320.6	20.9				2			CP1	1.0	06Sa56
¹⁴⁸ Ce-u		-75578.2	13.0	-75576	12	0.2	1	85	85 ¹⁴⁸ Ce	CP1	1.0	06Sa56
¹⁴⁸ Pr-u		-77781	41	-77870 -77870	16	-2.2	В	0.5	65 CC	CP1	1.0	06Sa56 ×
$C_{12} H_4 - {}^{148}Nd$		114261	34	114401.0	2.3	1.0	U			R05	4.0	65De13
$C_{12} \text{ H}_4$ Nd $C_9 \text{ N O H}_{10}$ $-^{148} \text{Nd}$		159186	59	159339.9	2.3	0.7	U			R05	4.0	65De13
$C_9 H_8 O_2 - {}^{148}Sm$		137540	26	137600.5	1.5	0.6	U			R04	4.0	64De15
$C_9 H_{10} N O - ^{148}Sm$		161275	31			1.1	U				4.0	64De15
C ₈ ¹³ C H ₇ O ₂ – ¹⁴⁸ Sm		133030		161409.9 133130.3	1.5					R04		64De15
^{148}Eu $^{133}\text{Cs}_{1.113}$			60		1.5	0.4	U	£ 1	51 ¹⁴⁸ Eu	R04	4.0	
¹⁴⁸ Tb-u		23315	15	23321	11	0.4	1	51	31 - Eu	MA5		00Be42
148P 133 C		-75692	41	-75725	13	-0.8	U			GS2	1.0	05Li24 *
148 Dy $^{-133}$ Cs _{1.113}		32394	16	32382	9	-0.8	-			MA5		00Be42
		32380	14			0.1	_	70	70 148p	SH1	1.0	07Ra37
149	ave.	32386	11			-0.4	1	79	79 ¹⁴⁸ Dy			average
¹⁴⁸ Ho-u		-62201	100	-62260	90	-0.6	U			GS2	1.0	05Li24 *
$^{148}\text{Ho} - ^{85}\text{Rb}_{1.741}$		91318	90				2			SH1	1.0	07Ra37 ×
$^{148}\text{Er} - ^{133}\text{Cs}_{1.113}$		49967	11				2			SH1	1.0	07Ra37
148 Tm $-^{133}$ Cs $_{1.113}$		63616	11				2			SH1	1.0	07Ra37
148 Eu $^{-142}$ Sm $_{1.042}$		6451	17	6446	11	-0.3	1	41	38 ¹⁴⁸ Eu	MA7	1.0	01Bo59
¹⁴⁸ Nd ³⁵ Cl ₂ – ¹⁴⁴ Nd ³⁷ Cl ₂		12690	9	12706.4	1.8	0.7	U			H21	2.5	70Ma05
		12703.6	2.1			0.5	1	12	11 ¹⁴⁸ Nd	H25	2.5	72Ba08
¹⁴⁸ Sm ³⁵ Cl ₂ - ¹⁴⁴ Sm ³⁷ Cl ₂		8710	10	8722.9	0.9	0.3	U			H12	4.0	64Ba15
2 2		8721.4	2.6			0.2	U			H25	2.5	72Ba08
¹⁴⁸ Nd ³⁵ Cl- ¹⁴⁶ Nd ³⁷ Cl		6740	5	6726.7	1.8	-0.7	U			H12	4.0	64Ba15
		6721	4			0.6	Ü			H21	2.5	70Ma05
		6723.8	2.7			0.4	Ü			H25	2.5	72Ba08
		6725.7	0.9			0.4	1	62	61 ¹⁴⁸ Nd	H26	2.5	73Me28
¹⁴⁸ Sm ³⁵ Cl- ¹⁴⁶ Nd ³⁷ Cl		4656	3	4656.6	0.5	0.1	U	0 2	01 114	H12	4.0	64Ba15
¹⁴⁸ Sm ⁻¹⁴⁷ Sm		110	44	-75.05	0.28	-1.1	U			R04	4.0	64De15
¹⁴⁸ Nd- ¹⁴⁶ Nd		3866	50	3776.6	1.8	-0.4	U			R05	4.0	65De13
Nu- Nu		3773	3	3770.0	1.0	0.5	U			M17	2.5	66Be10
¹⁴⁵ Cs- ¹⁴⁸ Cs _{.392} ¹⁴³ Cs _{.608}		-370	90	-519	11	-0.7	U			P33	2.5	86Au02
$^{148}\text{Sm}(\alpha)^{144}\text{Nd}$				1986.8	0.4		U			F 33	2.3	70Gu14
$Sin(\alpha)$ Nu		2014.6	20.	1960.6	0.4	-1.4		52	26 ¹⁴⁴ Nd			
148 Eu(α) 144 Pm		1987.3	0.5	2602	10	-1.0	1	52	10 ¹⁴⁸ Eu			16Ca.1
148 G (α) 144 G		2703.2	30.	2692	10	-0.4	1	11				64To04
$^{148}\text{Gd}(\alpha)^{144}\text{Sm}$		3271.29	0.03	3271.29	0.03	0.0	1	100	96 ¹⁴⁸ Gd			73Go29
¹⁴⁶ Nd(t,p) ¹⁴⁸ Nd		4139	30	4143.0	1.7	0.1	U		146	Ald		72Ch11
148 Sm(p,t) 146 Sm		-6011	8	-6000.8	2.8	1.3	1	12	12 ¹⁴⁶ Sm	Min		72De47
140 146		-6018	15			1.1	U			Ham		74Oe03
¹⁴⁸ Gd(p,t) ¹⁴⁶ Gd		-7844	14	-7844	4	0.0	U		146	LAl		83Fl05
148 Gd(p,t) 146 Gd $^{-65}$ Cu() 63 Cu		1500	4	1500	4	0.1	1	90	89 ¹⁴⁶ Gd	Liv		86Ma40
¹⁴⁸ Nd(d, ³ He) ¹⁴⁷ Pr		-3726	40	-3759	16	-0.8	R			KVI		79Sa.A
148 Nd(d,t) 147 Nd		-1072	4	-1075.3	1.7	-0.8	1	17	17 ¹⁴⁸ Nd	McM		77St22
147 Sm $(n,\gamma)^{148}$ Sm		8139.8	1.2	8141.23	0.26	1.2	U					69Re04 Z
		8141.1	1.5			0.1	U					70Bu19 Z
		8141.8	0.8			-0.7	_					71Gr37 Z
		8141.3	0.3			-0.2	_			Bdn		06Fi.A
147 Sm(d,p) 148 Sm		5920	10	5916.66	0.26	-0.3	U			Tal		64Ke03
148 Sm(d,t) 147 Sm		-1890	15	-1884.00	0.26	0.4	U			Kop		67Ve04
$^{147}\text{Sm}(n,\gamma)^{148}\text{Sm}$	ave.	8141.36	0.28	8141.23	0.26	-0.5	1	84	51 ¹⁴⁷ Sm	P		average
¹⁴⁸ Gd(p,d) ¹⁴⁷ Gd	ave.	-6755	5	-6759.1	1.2	-0.8	U	07	51 5III			86Ru04
¹⁴⁸ Gd(p,d) ¹⁴⁷ Gd- ¹⁴⁸ Sm() ¹⁴⁷ Sm		-842	2	-842.5	1.2	-0.3 -0.2	_					86Ru04
$^{148}\text{Gd}(d,t)^{147}\text{Gd} - ^{148}\text{Sm}()^{147}\text{Sm}$		-842 -843	2	- 0 1 2.3	1.4	0.3	_					86Ru04
$^{148}\text{Gd}(^{3}\text{He},\alpha)^{147}\text{Gd} - ^{148}\text{Sm}()^{147}\text{Sm}$		-843 -842	3			-0.2						86Ru04
¹⁴⁸ Gd(p,d) ¹⁴⁷ Gd ⁻¹⁴⁸ Sm() ¹⁴⁷ S	0712	$-842 \\ -842.4$				-0.2 -0.1	_ 1	89	86 ¹⁴⁷ Gd			
148 Ba(β^-) 148 La	ave.		1.3			-0.1	1	09	80 · · · · Ga	D		average
· · · ва(<i>р</i>) · · · · La		5115	60				3			Bwg		90Gr10

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Ir	put value		sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
148 La(β^-) 148 Ce	7310	140	7690	22	2.7	U			Trs		82Br23 *
La(p) Ce			7090	22							
	7255 7650				7.9 0.4	B U			Bwg		90Gr10 02Sh.B
	7732				-0.6	U			Kur Kur		02311.B 09Ha.B
$^{148}\text{Ce}(\beta^-)^{148}\text{Pr}$	2060		2137	13	1.0	U					87Gr.A
Ce(p) F1	2140		2137	13	-0.2	1	81	66 ¹⁴⁸ Pr	Bwg		95Ik03
148 Pr(β^{-}) 148 Nd			4873	15	-0.2 0.4	U	81	00 PI	Kur		
PI(p) Nu	4800 4965		4673	15	-0.4	U			Dwg		79Ik06 87Gr.A
	4890				-0.9 -0.3				Bwg		88Ka14
	4880				-0.3 -0.2	_			Kur		95Ik03
	4930				-0.2 -0.6	U			Kur		02Sh.B
	ave. 4883				-0.4	1	34	34 ¹⁴⁸ Pr	ixui		
148 Pm(β^-) 148 Sm	2480		2471	6	-0.4 -0.6	R	34	34 11			average 62Sc04 *
1 III(<i>p</i>) 3III	2475		2471	U	-0.0 -0.1	U					63Ba31 *
148 Eu(β^+) 148 Sm	3122		3037	10	-2.8	U					63Ba32 *
Eu(p) Siii	3150		3037	10	-3.8	В					70Ag01 *
$^{148}\text{Tb}(\beta^+)^{148}\text{Gd}$	5630		5732	13	1.3	F					76Cr.B *
10(p) Gu	5835		3132	13	-1.5	U					83Ve06 *
	5710				0.2	U			Got		85Sc09 *
	5390				3.4	В			Got		85Ti01 *
	5760				-0.3	U			IRS		93Al03 *
	5752				-0.5	1	10	10 ¹⁴⁸ Tb	GSI		95Ke05 *
148 Dy $(\beta^+)^{148}$ Tb	2660		2678	10	0.3	Ü	10	10 10	ODI		81Sc21
Σ (β) 10	2805		2070	10	-2.1	U					81Sp03 *
	2700				-0.4	Ü			IRS		82Al.A
	2700				-0.4	Ü			1115		82Ve.A
	2722				-0.7	Ü					83Ve06 *
	2835				-1.7	U					84Ha.B *
	2740				-1.0	U			Got		85Sc09 *
	2682				-0.4	1	92	86^{-148} Tb	GSI		95Ke05 *
$^{148}\text{Ho}^{m}(\beta^{+})^{148}\text{Dy}$	9400		10120#	130#	2.9	В			IRS		93A103
$*^{148}$ Pr $-u$	$D_M = -77739.3$	3(30.6) µu f	or mixture g	s+m at 76.8	80; M - A = -	72413.70	(28.5) keV				Nub16b **
$*^{148}$ Tb $-u$	M - A = -7046		-								Nub16b **
$*^{148}$ Ho $-$ u	M - A = -5781										Nub16b **
*	outweighed					ture					GAu **
$*^{148}$ Ho $-^{85}$ Rb _{1.741}	D_M =91517.5(9.5) μu for	mixture gs+	m at 250#1	00 keV with	R=0.74	(15)				Nub16b **
$*^{148}$ La(β^-) ¹⁴⁸ Ce	E_{β} = 5862(10										90Gr10 **
$*^{148}$ Pm(β^-) ¹⁴⁸ Sm	$E_{\beta}^{r} = 2460(20$										Ens144 **
$*^{148}$ Pm(β^-) ¹⁴⁸ Sm	$E_{\beta}^{P} = 2480(30)$) 1930(30)	1020(30) to	ground stat	e, 2 ⁺ at 550	.255, 1	at 1465.13	7 keV			Ens144 **
*	and E_{β} = 40										Nub16b **
$*^{148}$ Eu(β^+) ¹⁴⁸ Sm	$E_{\beta^+} = 920(30)$										Ens144 **
$*^{148}$ Eu(β^+) 148 Sm	$E_{\beta^+}^{\beta} = 540(30)$				$\operatorname{er} E_{R+}$						Ens144 **
$*^{148}$ Tb $(\beta^+)^{148}$ Gd	$E_{\beta}^{+} = 4610(80)$				P						76Cr.B **
*	F : since ¹⁴⁸	Th ground s	tate 2 ⁻ . tran	sition to ¹⁴⁸	Gd ground	state wea	ık				AHW **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$E_{\beta^+} = 2210(70)$) from ¹⁴⁸ T	b ^m at 90.1 to	o 8 ⁺ level a	t 2693 35 ke	V and					Nub16b **
*	$E_{\beta^{+}} = 4560(8$										Ens144 **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$p^+ = 0.271(0.$						3 35 keV				Ens144 **
*	but assuming				ut > 0.12 to 0	ut 20).	oloc no ,				90Sa32 **
$*^{148}$ Tb(β^+) ¹⁴⁸ Gd	$KL/\beta^+=1.54$				-5295(45) ka	eV					85Ti01 **
*	but assuming										AHW **
$*^{148}$ Tb(β^+) 148 Gd	$Q_{\beta^+} = 5700(80$										Nub16b **
$*^{148}\text{Tb}(\beta^+)^{148}\text{Gd}$	$Q_{\beta^+} = 5750(400)$										Nub16b **
* $^{10}(\beta^{+})^{148}$ Tb	$p^+ = 0.069(0.$										
* $Dy(\beta^+)^{-10}$ * $^{148}Dy(\beta^+)^{148}Tb$	$E_{\beta^+} = 1040(60$										Ens144 ** Ens144 **
* 148 Dy(β^+) 148 Tb					٧.						
* 148 Dy(β^+) 148 Tb	$p^+ = 0.055(0.$				voc () =26	SQD(20) 1:	roV.				Ens144 **
	$\beta^{+}/K=0.045($					00U(3U) K	C V				Ens144 **
$*^{148}$ Dy(β^+) ¹⁴⁸ Tb	GSI average of			130(10) Of T	erence						91Ke11 **
*	to 1 ⁺ level a	ι 020.24 Ke	v								Ens144 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Table 1. Com	pariso	-		•	•							D.C.	
Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	<u>e</u>
¹⁴⁹ Ba-u		-57027	188				2			GT3	2.5	16Kn03	
¹⁴⁹ Ce-u		-71573.1	11.0				2			CP1	1.0	06Sa56	
¹⁴⁹ Pr–u		-76263.9	10.6				2			CP1	1.0	06Sa56	
$C_8^{13}CH_8O_2-^{149}Sm$		138597	29	138593.0	1.4	0.0	Ü			R04	4.0	64De15	
$C_9 H_{11} N O^{-149} Sm$		166820	33	166872.6	1.4	0.4	U			R04	4.0	64De15	
C_8 ^{13}C H_{10} N $O-^{149}$ Sm		162408	46	162402.4	1.4	0.0	U			R04	4.0	64De15	
149 Eu $^{-133}$ Cs _{1.120}		23849	17	23831	4	-1.1	U			MA5	1.0	00Be42	
¹⁴⁹ Tb-u		-76730	32	-76746	4	-0.5	U			GS2	1.0	05Li24	*
149 Dy $^{-133}$ Cs _{1.120}		33278	109	33219	10	-0.5	U			MA5	1.0	00Be42	-1-
149Dy-u		-72698	30	-72675	10	0.8	U			GS2	1.0	05Li24	*
149 H o—и		-66179	34	-66180	13	0.0	1	14	14 ¹⁴⁹ Ho	GS2	1.0	05Li24	*
110-u 149Er-u		-57694	30	-00180	13	0.0	2	14	14 110	GS2	1.0	05Li24	*
149 Eu $^{-142}$ Sm _{1.049}		6909	18	6888	5	-1.2	Ü			MA7	1.0	03Ei24 01Bo59	*
149 Dy $^{-142}$ Sm _{1.049}		16249	16	16276	10	1.7	1	39	36 ¹⁴⁹ Dy	MA7	1.0	01B059	
¹⁴⁹ Sm ³⁵ Cl- ¹⁴⁷ Sm ³⁷ Cl		5257		5237.4	1.0	-1.7	U	39	30 Ду	H12	4.0	64Ba15	
SIII CI SIII CI		5231	4	3237.4	1.0	-1.2 0.9	U			H21	2.5	70Ma05	
		5239.8	0.8			-1.2	1	24	14 ¹⁴⁷ Sm	M21	2.5	75Ka25	
¹⁴⁹ Sm- ¹⁴⁸ Sm		2282	31	2362.4	1.0	-1.2 0.6	U	24	14 * " 3111	R04	4.0	64De15	
149 Sm $^{-147}$ Sm					1.0								
$^{149}\text{Gd}(\alpha)^{145}\text{Sm}$		2320	60	2287.3	1.0	-0.1	U			R04	4.0	64De15	7
¹³ Gd(α) ¹³ Sm		3102.3	10.	3099	3	-0.3	_			OD-		65Ma51	
		3096.1	10.3			0.3	_			ORa		66Wi12	Z
		3099.1	5.			0.1	_	5.0	53 ¹⁴⁹ Gd	Dba		67Go32	Z
$^{149}{ m Tb}(\alpha)^{145}{ m Eu}$	ave.	3099	4	4077.0	2.2	0.1	1	56	55 - Ga	DI		average	7
$^{1.5}$ 16(α) $^{1.5}$ Eu		4074.4	3.	4077.9	2.2	1.2	_			Dba		67Go32	
		4073.8	7.			0.6	U			ORa		74To07	*
		4074.6	10.			0.3	U			D1		81Ho.A	Z
		4081.8 4082.8	5.			$-0.8 \\ -1.2$	_			Bka		82Bo04 96Pa01	L
	0710	4082.8	4. 2.2			-1.2 -0.1	_ 1	95	86 ¹⁴⁹ Tb	Daa			
149 Sm(n, α) 146 Nd	ave.	9429	4	9436.5	1.0		1	93	80 10	McM		average 67Oa01	
Sin(n,a) Nd		9429	15	9430.3	1.0	1.9 1.0	U U			ILL		75Em.A	
¹⁴⁹ Sm(p,t) ¹⁴⁷ Sm		-5532	8	-5530.2	0.9	0.2	U			Min		73EIII.A 72De47	
Sin(p,t) Sin		-5532 -5532	7	-3330.2	0.9	0.2	U			McM		72De47 73Ga04	
148 Nd $(n,\gamma)^{149}$ Nd		5038.76	0.10	5038.79	0.07	0.3						75Ga04 76Pi04	Z
$Nd(\Pi,\gamma)$ Nd		5038.82	0.10	3038.79	0.07	-0.3	2 2			ILn Bdn		76Fi04 06Fi.A	L
148 Nd(3 He,d) 149 Pm		455	5	451.8	2.5	-0.5 -0.6	1	24	13 ¹⁴⁹ Pm	McM		80St10	
¹⁴⁹ Sm(d, ³ He) ¹⁴⁸ Pm		-2064	6	-2066			2	24	13 FIII	IVICIVI		88No02	*
148 Sm(n, γ) 149 Sm		-2004 5872.5		-2000 5870.8	6 0.9	$-0.3 \\ -0.9$		25	15 ¹⁴⁸ Sm			70Sm.A	
$Sin(n,\gamma)$ Sin		5850.8	1.8 0.6	3670.6	0.9	33.3	1 C	23	15 5111			82Ba15	
149 Sm $(\gamma,n)^{148}$ Sm		-5890	160	-5870.8	0.9	0.1	U			Phi		60Ge01	
148 Sm(d,p) 149 Sm				-3670.8 3646.2	0.9		U					67Ve04	
149 Er(ε p) 148 Dy		3656	15			-0.7				Kop			
Er(Ep) Dy		5758	900	6829	29	1.2	U			I DI		83La.A	*
1491 - (0-)1490-		7080	470			-0.5	U			LBL		89Fi01	
149 La(β^-) 149 Ce 149 Ce(β^-) 149 Pr		6450	200	1260	1.4	2.4	3			Kur		02Sh.B	
Ce(p)***Pr		4190	75	4369	14	2.4	U			Bwg		87Gr.A	
		4380	60			-0.2	U			Kur		95Ik03	
$^{149}\Pr(\beta^-)^{149}\text{Nd}$		4310	100	2226	10	0.6	U			Kur		02Sh.B	
Pr(p) Na		3000	200	3336	10	1.7	U			V		67Va14 95Ik03	
$^{149}\text{Nd}(\beta^-)^{149}\text{Pm}$		3390	90	1600 0	2.5	-0.6	U			Kur			
$^{149}\text{Pm}(\beta^-)^{149}\text{Sm}$		1669	10	1688.8	2.5	2.0	U	00	87 ¹⁴⁹ Pm			64Go08	*
Pm(p) Sm		1072	2	1071.5	1.9	-0.3	1 D	88	8/ ***Pm			60Ar05	
149 Eu $(\varepsilon)^{149}$ Sm		1062	2	(05	4	4.7	В	1.4	14 ¹⁴⁹ Eu			78Re01	
149 Eu(ε) 149 Sm		680	10	695	4	1.5	1	14		<i>C</i> .		85Ad.A	
		1308	6	1314	4	1.0	1	48	30 ¹⁴⁹ Eu	Got		84Sc.B	
$^{149}{ m Tb}(eta^+)^{149}{ m Gd}$		3575	50	3638	4	1.3	U	10	10 1/0-	Got		85Sc09	*
		3635	10			0.3	1	19	$10^{-149} { m Tb}$	GSI		91Ke06	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference
149 Dy $(\beta^+)^{149}$ Tb		3930	150	3793	9	-0.9	U						84A136 ×
Σ,(β') 10		3925	65	3173		-2.0	U				Got		90Sa32 ×
		3797	13			-0.3	1	50	46	¹⁴⁹ Dy	GSI		91Ke11 ×
		3950	100			-0.5 -1.6	Ü	30	70	Dy	IRS		93Al03
$^{149}\text{Ho}(\beta^+)^{149}\text{Dy}$		6043	50	6049	13	0.1	_				IRS		83A106 ×
По(р) Бу		5330	100	0049	13	7.2	C				Щ		84Ha.B
		6000	90			0.5	U				IRS		93Al03
		6009	20			2.0					GSI		
	0710		19			1.9	- 1	48	32	¹⁴⁹ Ho	USI		
149 Er $(\varepsilon)^{149}$ Ho	ave.	6014		7000	20		1	46	32	по	I DI		average
* ¹⁴⁹ Tb-u	14.4	8610	650	7900	30	-1.1	U				LBL		89Fi01 >
* ¹⁴⁹ Dy-u				nixture gs+m		ke v							Nub16c **
*149T				⁴⁹ Dy ^m at 266		* 7							Nub16b **
* ¹⁴⁹ Ho-u				nixture gs+m		ke V							Nub16b **
* ¹⁴⁹ Er-u				⁴⁹ Er ^m at 741.8	s keV								Nub16b **
$*^{149}$ Tb(α) ¹⁴⁵ Eu	E_{α} =39	99(7) from ¹⁴	9 Tb $^{\prime\prime\prime}$ at 3	35.78 keV									Nub16c **
* ¹⁴⁸ Nd(³ He,d) ¹⁴⁹ Pm				Q = -87.6(0.9)									AHW **
$*^{149}$ Er $(\varepsilon p)^{148}$ Dy) from ¹⁴⁹ Er ^m		keV							Nub16b **
$*^{149}$ Nd(β^-) ¹⁴⁹ Pm	$E_{\beta} = 1$	555(10) to 5/	2 ⁺ level a	at 114.312 lev	el								Ens046 **
$*^{149}$ Tb $(\beta^+)^{149}$ Gd	$\beta^{+}/K=$	0.31(0.03) fr	om ¹⁴⁹ Tb	m at 35.78 to 9	9/2 ⁻ leve	1 at 795.8	2 keV						Ens046 **
$*^{149}$ Tb $(\beta^+)^{149}$ Gd	$E_{\beta^+}=1$	853(10) from	1 ⁴⁹ Tb ^m a	at 35.78 to 9/2	- level at	t 795.82 k	κeV						Ens046 **
$*^{149}$ Dy $(\beta^+)^{149}$ Tb				1876.96 levels									Ens046 **
$*^{149}$ Dy $(\beta^+)^{149}$ Tb				, 17.6(4.9) to		35, 1728	levels						90Sa32 **
$*^{149}$ Dy(β^+) ¹⁴⁹ Tb				$E_{\beta} = 1965(10)$									GAu **
*				ound substrac		0 10 101 00							GAu **
$*^{149}$ Ho(β^+) ¹⁴⁹ Dy	-		_	at 1090.76 ke									Ens046 **
$*^{149}\text{Ho}(\beta^+)^{149}\text{Dy}$				at 1090.76 keV									Ens046 **
* 149 Er(ε) 149 Ho	Eβ+-3	8+_0 68(0 2/	2 16ver 14	9 Er ^m at 741.8	v .to 4600 7	7 1ava1							Ens046 **
¹⁵⁰ Ba-u		-55309	371	-53570#	320#	1.9	D				GT3	2.5	16Kn03 ×
150La-u		-60258	187	3337011	32011	1.7	2				GT3	2.5	16Kn03
¹⁵⁰ Ce-u		-69618.6	13.1	-69616	13	0.2	1	92	92	¹⁵⁰ Ce	CP1	1.0	06Sa56
150Pr-u		-73322.9	10.6	-73324	10	-0.1	1	83	83	150Pr	CP1	1.0	06Sa56
$C_{12} H_6 - {}^{150}Nd$		126194	43	126048.7	1.4	-0.1	U	0.5	0.5	11	R05	4.0	65De13
$C_{12}^{11} I_{16}^{16} - I_{14}^{16}$ $C_{8}^{13} C N O H_{11} - I_{50}^{150} Nd$													
		166439	34	166517.3	1.4	0.6	U				R05	4.0	65De13
C ₉ N O H ₁₂ - ¹⁵⁰ Nd		170931	46	170987.5	1.4	0.3	U				R05	4.0	65De13
$C_{12} H_6 - {}^{150}Sm$		129810	140	129668.0	1.4	-0.3	U				R04	4.0	64De15
C ₈ ¹³ C H ₁₁ N O ⁻¹⁵⁰ Sm		170029	25	170136.6	1.4	1.1	U				R04	4.0	64De15
$C_9 H_{12} N O^{-150} Sm$		174612	47	174606.8	1.4	0.0	U			150	R04	4.0	64De15
$^{150}\text{Tb}^{m}$ – u		-75850	30	-75840	28	0.3	1	89	89	$^{150}\mathrm{Tb}^m$		1.0	05Li24
$^{150}\text{Ho}-^{133}\text{Cs}_{1.128}$		40150	29	40149	15	-0.1	_			4.50	MA5	1.0	00Be42
	ave.	40132	21			0.8	1	53	53	¹⁵⁰ Ho			average
¹⁵⁰ Ho-u		-66504	40	-66502	15	0.1	U				GS2	1.0	05Li24 ×
150 Er $-u$		-62060	30	-62084	18	-0.8	1	38	38	¹⁵⁰ Er	GS2	1.0	05Li24
¹⁵⁰ Nd ³⁵ Cl ₂ - ¹⁴⁶ Nd ³⁷ Cl ₂		13654	9	13679.2	1.1	1.1	U				H21	2.5	70Ma05
		13672.5	1.8			1.5	U				H25	2.5	72Ba08
¹⁵⁰ Nd ³⁵ Cl- ¹⁴⁸ Nd ³⁷ Cl		7006	4	6952.5	2.0	-3.3	В				H12	4.0	64Ba15
		6939	4			1.4	U				H21	2.5	70Ma05
150Sm 35Cl-148Sm 37Cl		5452	8	5403.3	1.0	-1.5	Ü				H12	4.0	64Ba15
		5400	4			0.3	Ü				H21	2.5	70Ma05
		5404.8	0.6			-1.0	1	41	26	¹⁴⁸ Sm	M21	2.5	75Ka25
150 Nd $^{-150}$ Sm		3633	4	3619.33	0.21	-0.9	U		20	5111	H19	4.0	64Mc11
nu- siii		3617.0	1.2	3019.33	0.21	-0.9 0.8	U				H25	2.5	72Ba08
		3617.0	0.21			0.0		100	100) ¹⁵⁰ Nd	п23 JY1	1.0	10Ko28
150 Sm $-^{149}$ Sm				00.8	0.4		1	100	100	, INU			
sinsm		149	30	90.8	0.4	-0.5	U				R04	4.0	64De15

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	1	Input v	·		ed value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e
						- 1	- 8	~-8					_
150 Nd $-^{148}$ Nd		3860	46	4002.4	2.0	0.8	U			R05	4.0	65De13	
		3988	3			1.9	U			M17	2.5	66Be10	
150 Sm $-^{148}$ Sm		2430	50	2453.2	1.0	0.1	U			R04	4.0	64De15	
150 Nd $-^{146}$ Nd		7719	67	7779.0	1.0	0.2	U			R05	4.0	65De13	
150 Gd(α) 146 Sm		2804.9	10.	2807	6	0.2	_					62Si14	
		2792.6	18.			0.8	_					65Og01	
	ave.	2802	9			0.6	1	45	39 ¹⁵⁰ Gd			average	
150 Tb $(\alpha)^{146}$ Eu		3585.5	5.	3587	5	0.3	1	92	80^{-150} Tb	Dba		67Go32	
150 Dy $(\alpha)^{146}$ Gd		4345.8	5.	4351.3	1.5	1.1	_			Dba		67Go32	Z
		4349.5	5.			0.3	_			GSa		79Ho10	Z
		4351.3	3.			0.0	-			Bka		82Bo04	*
		4352.5	2.1			-0.6	_		150	Ora		82De11	Z
	ave.	4351.3	1.5			0.0	1	99	92 ¹⁵⁰ Dy			average	
148 Nd(t,p) 150 Nd		3935	30	3932.6	1.9	-0.1	U			Ald		72Ch11	
148 Sm(t,p) 150 Sm		5372	25	5375.7	0.9	0.1	U			Ald		66Bj01	
150 Sm(p,t) 148 Sm		-5379	8	-5375.7	0.9	0.4	U			Min		72De47	
4.50		-5378	15			0.2	U			Ham		74Oe03	
150 Nd(d, 3 He) 149 Pr		-4501	10	-4436	10	6.5	C			KVI		79Sa.A	
¹⁵⁰ Nd(d,t) ¹⁴⁹ Nd		-1122	10	-1118.4	1.9	0.4	U			McM		73Bu02	
149 Sm $(n, \gamma)^{150}$ Sm		7984.9	0.6	7986.7	0.4	3.0	В					69Re04	Z
		7986.7	1.5			0.0	-						Z
440		7986.7	0.4			0.0	_			Bdn		06Fi.A	
149 Sm(d,p) 150 Sm		5764	4	5762.2	0.4	-0.5	U			Tal		64Ke03	
150 Sm(d,t) 149 Sm		-1738	15	-1729.5	0.4	0.6	U			Kop		67Ve04	
149 Sm $(n, \gamma)^{150}$ Sm	ave.	7986.7	0.4	7986.7	0.4	0.0	1	95	79 ¹⁴⁹ Sm			average	
150 Lu(p) 149 Yb		1269.6	4.	1269.6	2.3	0.0	3					84Ho.A	
		1269.6	4.			0.0	3			Dap		93Se04	
150 140		1269.6	4.			0.0	3			ORp		03Gi10	
150 Lu $^{m}(p)^{149}$ Yb		1303.8	15.	1291	5	-0.8	O			ORp		00Gi01	
		1285.6	8.			0.7	3			ORp		03Gi10	
150 150-		1294.7	6.			-0.5	3			Arp		03Ro21	
$^{150}\text{Ce}(\beta^-)^{150}\text{Pr}$		3010	90	3454	14	4.9	C		a 150 ~	Bwg		87Gr.A	
150 - 150		3480	40			-0.7	1	13	8 ¹⁵⁰ Ce	Kur		95Ik03	
150 Pr(β^-) 150 Nd		5690	80	5379	9	-3.9	C		150-	Bwg		87Gr.A	
		5386	26			-0.3	1	12	12 ¹⁵⁰ Pr	Kur		95Ik03	
150- 150-		5290	100			0.9	U			Kur		02Sh.B	
150 Pm(β^-) 150 Sm		3454	20				2					77Ho09	
150 Eu(β^+) 150 Sm		2222	25	2259	6	1.5	U					65Gu03	*
150 Eu(β^-) 150 Gd		978	10	972	4	-0.6	-					63Yo07	*
		968	4			0.9	_	0.4	50 150 m			65Gu03	*
150m (0+\150 cm	ave.	969	4	4650	0	0.6	1	91	53 ¹⁵⁰ Eu			average	
$^{150}{ m Tb}(eta^+)^{150}{ m Gd}$		4720	40	4658	8	-1.5	U	2.1	a o 150mm			68Wi21	
		4670	15			-0.8	1	31	20 ¹⁵⁰ Tb			76Cr.B	
		4760	50			-2.0	U					77Ha31	*
$^{150}\text{Tb}^{m}(\beta^{+})^{150}\text{Gd}$		4620	60	5110	27	0.6	U			IDC		83Ve06	
150p-(0+)150pp		5040	100	5119	27	0.8	U			IRS		93Al03	
150 Dy $(\beta^+)^{150}$ Tb		1760	40	1796	8	0.9	U					81Ka07	*
$^{150}{\rm Ho}(\beta^+)^{150}{\rm Dy}$		6980	150	7364	14	2.6	U			IDC		84A136	*
150 Ho $(\varepsilon)^{150}$ Dy		6560	100			8.0	В			IRS		93A103	
$Ho(\varepsilon)^{-1}$ Dy		7400	200			-0.2	U	20	27 15011			98Ag.A	
		7372	27			-0.3	1	29	27 ¹⁵⁰ Ho			00Ca.A	
15011-m(0+\150p		7444	126			-0.6	U			IDC		01Ro35	
$^{150}\text{Ho}^{m}(\beta^{+})^{150}\text{Dy}$		7360	50	7260	50	10.5	2			IRS		83Al06	*
		6575	75	7360	50	10.5	C			<i>C</i> ·		84Ha.B	*
		6625	120			6.1	В			Got		85Sc09	*
		6900	130			3.5	В			Got		90Sa32	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	r	Input v		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.		n infl.	Lab	F	Reference	-
150 1		-				-								_
150 Er(β^+) 150 Ho		4010	80	4115	14	1.3	o						82No08	*
		4105	75			0.1	U			4.50			84Ha.B	*
		4108	15			0.4	1	82	62	150 Er	GSI		91Ke11	*
$*^{150}$ Ba $-$ u				IS suggest 150			l						WgM168	**
* ¹⁵⁰ Ho-u	M-A=	=–61948(28) l	keV for m	ixture gs+m a	t - 0(50) k	eV							Nub16b	
$*^{150}$ Dy $(\alpha)^{146}$ Gd		orated as in re											91Ry01	**
$*^{150}$ Eu(β^+) ¹⁵⁰ Sm		242(25) from											Nub16b	**
$*^{150}$ Eu(β^-) ¹⁵⁰ Gd	Q_{β} =1	020(10) 1010	(4) respec	tively, from 15	$^{50}\mathrm{Eu}^m$ at 4	1.7 keV							Nub16b	**
$*^{150}$ Tb $(\beta^+)^{150}$ Gd	$E_{\beta^+}=1$	655(80) to 2+	at 2091.6	23, and other	E_{β^+} . Ori	g. error 3	5 increas	sed					Ens136	**
$*^{150}$ Dy $(\beta^+)^{150}$ Tb	$p^{+} = 20$	$(10) \times 10^{-3}$ to	1^{+} 397.2	level combine	ed with lo	wer limit	through	$^{146}\mathrm{Gd}(\varepsilon)$					Ens136	**
$*^{150}$ Ho(β^+) ¹⁵⁰ Dy	$E_{\beta^+}=4$	550(150) to 1	395.0 and	1456.8 levels	3		_						82No08	**
$*^{150}$ Ho ^{m} (β^+) ¹⁵⁰ Dy		940(50) to 8 ⁺											Ens136	**
$*^{150}$ Ho ^{m} (β^+) ¹⁵⁰ Dy				pectively to 8	+ level at	2401.6 ke	eV							**
$*^{150}$ Ho ^{m} (β^+) ¹⁵⁰ Dy				+ to 2401.6 le										**
*		feeding of his											90Sa32	
$*^{150}$ Er(β^+) ¹⁵⁰ Ho				1 ⁺ level at 47	6 16 keV									**
$*^{150}$ Er(β^+) 150 Ho		610(15) to 1 ⁺			NO 1								Ens136	
Th(p') Ho	<i>L</i> _{<i>p</i>} - <i>L</i>	010(13) to 1	iever ac	70.10 Ke v									Liisiso	
¹⁵¹ La-u		50724	207	57020	470	2.5	C				CT1	1.5	04114- 4	
La-u		-58734 -57231	397	-57230	470	2.5	C 2				GT1	1.5	04Ma.A	
¹⁵¹ Ce-u			187								GT3 CP1	2.5	16Kn03	
151Pr-u		-65727.8	19.0	71601	12	0.5	2	77	77	¹⁵¹ Pr	CP1	1.0	06Sa56	
		-71697.5	14.3	-71691	13	0.5	1	//	//	··· PI		1.0	06Sa56	
$C_{12} H_7 - {}^{151}Eu$		134920	37	134918.4	1.4	0.0	U				R04	4.0	64De15	
$C_{10} H_{15} O - {}^{151}Eu$ ${}^{151}Eu - {}^{85}Rb_{1.776}$		192490	70	192433.2	1.4	-0.2	U				R04	4.0	64De15	
¹⁵¹ Eu- ⁶⁵ Rb _{1.776} ¹⁵¹ Tb-u		76520	15	76518.3	1.4	-0.1	U				MA5	1.0	00Be42	
		-76866 72000	43	-76891	4	-0.6	U				GS2	1.0	05Li24	*
¹⁵¹ Dy-u		-73809	30	-73809	4	0.0	U				GS2	1.0	05Li24	
¹⁵¹ Ho-u		-68323	33	-68302	9	0.6	U				GS2	1.0	05Li24	*
151 Er $-u$		-62528	30	-62551	18	-0.8	2				GS2	1.0	05Li24	
151 p. 35 ct. 149 g. 37 ct.		-62540	30	5615.6	0.7	-0.4	2				GS2	1.0	05Li24	*
¹⁵¹ Eu ³⁵ Cl- ¹⁴⁹ Sm ³⁷ Cl		5620.3	2.6	5615.6	0.7	-0.7	U				H25	2.5	72Ba08	
¹⁵¹ Eu- ¹⁵⁰ Sm		2800	60	2574.7	0.6	-0.9	U				R04	4.0	64De15	
151 Eu $(\alpha)^{147}$ Pm		1960	30	1964.5	1.1	0.1	U						07Be48	
151 9 14 147 9		1948.9	8.6	24525	• •	1.8	U						14Ca13	
$^{151}\text{Gd}(\alpha)^{147}\text{Sm}$		2670.8	30.	2652.7	2.9	-0.6	U		40	151 m	ъ.		65Si06	
151 Tb(α) 147 Eu		3499.6	5.	3496	4	-0.6	1	58	49	¹⁵¹ Tb	Dba		67Go32	_
151 Dy $(\alpha)^{147}$ Gd		4175.5	5.	4179.6	2.6	0.8	2				Dba			Z
151*** () 147****		4181.1	3.	4607.0		-0.5	2				Bka		82Bo04	Z
151 Ho(α) 147 Tb		4696.3	5.	4695.0	1.8	-0.3	2				GSa		79Ho10	*
		4695.8	3.			-0.3	2				Bka		82Bo04	*
		4693.8	3.			0.4	2				Ora		82De11	*
151.0 ()148.0		4694.9	5.	7050	_	0.0	2				Daa		96Pa01	*
151 Eu(n, α) 148 Pm		7870	20	7859	6	-0.5	U				ILL		74Em01	
151 Sm(p,t) 149 Sm		-5100	4	-5101.4	0.4	-0.3	U			1/10-	McM		73Ga04	
¹⁵¹ Eu(p,t) ¹⁴⁹ Eu		-5872	5	-5873	4	-0.1	1	57	56	¹⁴⁹ Eu	Min		75Ta12	_
150 Nd(n, γ) 151 Nd		5334.55	0.2	5334.55	0.10	0.0	-				ILn			Z
150571/1 \15157		5334.55	0.11	2100.00	0.10	0.0	-				Bdn		06Fi.A	
¹⁵⁰ Nd(d,p) ¹⁵¹ Nd		3084	15	3109.98	0.10	1.7	U	400		151	Tal		67Ne08	
150 Nd(n, γ) 151 Nd	ave.	5334.55	0.10	5334.55	0.10	0.0	1	100	100	151 Nd			average	
¹⁵⁰ Nd(³ He,d) ¹⁵¹ Pm		1503	5	1502	4	-0.2	1	80	80	¹⁵¹ Pm	McM		80St10	*
150 Sm $(n,\gamma)^{151}$ Sm		5596.5	1.8	5596.46	0.11	0.0	U							*
		5596.	1.5			0.3	U						71Gr22	
		5596.42	0.20			0.2	-				ILn			Z
150 151 -		5596.44	0.13			0.1	_				Bdn		06Fi.A	
150 Sm(d,p) 151 Sm		3369	16	3371.89	0.11	0.2	U	400		150 ~	Tal		65Ke09	
150 Sm $(n,\gamma)^{151}$ Sm	ave.	5596.43	0.11	5596.46	0.11	0.2	1	100	62	¹⁵⁰ Sm			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
151 150												
151 Eu $(\gamma, n)^{150}$ Eu		-8040	110	-7932	6	1.0	U		4.50	Phi		60Ge01
¹⁵¹ Eu(p,d) ¹⁵⁰ Eu		-5721	9	-5707	6	1.5	1	47	47 ¹⁵⁰ Eu			82So.B
151 Yb $(\varepsilon p)^{150}$ Er		9000	300				2			ORa		86To12
¹⁵¹ Lu(p) ¹⁵⁰ Yb		1239.2	3.	1241.0	1.8	0.6	O			Dap		82Ho04
		1241.0	2.8			0.0	3			Dap		93Se04
		1241.3	3.0			-0.1	3			ORp		03Gi10
		1240.3	4.0			0.2	3			Man		15Ta12
$^{151}Lu^{m}(p)^{150}Yb$		1318.8	10.	1294	4	-2.5	В			Dap		98Ba.B
47		1293.6	4.				3			Man		15Ta12
$^{151}\text{Ce}(\beta^-)^{151}\text{Pr}$		5270	100	5555	21	2.8	U			Kur		02Sh.B
151 Pr(β^-) 151 Nd		4170	75	4163	12	-0.1	Ü			Bwg		90Gr10
11(p) 11u		4136	40	4103	12	0.7	_			Ida		93Gr17
		4210	30			-1.6	_			Kur		95Ik03
	ave.	4183	24			-0.8	1	24	23 ¹⁵¹ Pr	IXUI		
151 Nd(β^-) 151 Pm	ave.			2442	4			24	23 11			average
Na(p) Pill		2510	50	2443	4	-1.3	U			17		73Se12
151p (0=)151g		2480	50	1100	4	-0.7	U	20	20 ¹⁵¹ Pm	Kur		95Ik03
151 Pm(β^-) 151 Sm		1195	10	1190	4	-0.5	1	20				64Be10
151 Sm(β^-) 151 Eu		75.9	0.6	76.6	0.5	1.1	1	80	59 ¹⁵¹ Eu			59Ac28
$^{151}\mathrm{Gd}(\varepsilon)^{151}\mathrm{Eu}$		463	3	464.1	2.8	0.4	1	86	85 ¹⁵¹ Gd			83Vo10
$^{151}\text{Tb}(\beta^+)^{151}\text{Gd}$		2562	5	2565	4	0.6	-					77Cr05
		2566	12			-0.1	-					84Sc18
	ave.	2563	5			0.6	1	66	51 ¹⁵¹ Tb			average
$^{151}\text{Ho}(\beta^+)^{151}\text{Dy}$		5080	50	5130	9	1.0	U			IRS		83A106
		5100	80			0.4	U			IRS		93A103
151 Er(β^+) 151 Ho		5130	110	5356	18	2.1	U					98Fo06
$^{151}\text{Tm}(\beta^+)^{151}\text{Er}$		6025	145	7494	25	10.1	C					84Ha.B
() - /		7074	50			8.4	F			GSI		91Ke11
$^{151}\text{Tm}^{m}(\text{IT})^{151}\text{Tm}$		96.4	7.0	94	6	-0.4	0					97Da07
$^{151}Lu^{m}(IT)^{151}Lu$		77	5	53	4	-4.9	В			Dap		99Bi14
151Tb-u	Μ Λ-			mixture gs-			ь			Бар		Nub16b
15-u ¹⁵¹ Ho-u				mixture gs-								
151Er-u												Nub16b
				151 Er ^m at 2			TT 197 4.1	0(0.0)				Nub16b
$^{151}\text{Ho}(\alpha)^{147}\text{Tb}$				50.6(0.9); 4								Nub16b
151 Ho(α) 147 Tb				50.6(0.9); 4								Nub16b
151 Ho(α) 147 Tb				50.6(0.9); 4	607.2(4,2	Z) from 131	Ho ^m 41	.0(0.2)				Nub16b
151 Ho(α) 147 Tb		1(5,Z) to ¹⁴										Nub16b
¹⁵⁰ Nd(³ He,d) ¹⁵¹ Pm				m Q = -87.6		Į.						AHW
150 Sm $(n,\gamma)^{151}$ Sm	$E(\gamma)=559$	91.7(1.8) to	$3/2^{-}$ le	vel at 4.821	keV							Ens091
$^{151}\mathrm{Yb}(\varepsilon\mathrm{p})^{150}\mathrm{Er}$	E_p estim	ated 7300(300) to 1	evels aroun	d 1700 ke	·V						GAu
	"Statist	ical p's ori	ginate fro	om 11/2 ⁻ is	omer."							86To12
151 Pr(β^-) 151 Nd	Two high	hest $Q_{B} = 4$	4135(50)	,4137(40) k	eV							AHW
$^{151}\text{Nd}(\beta^{-})^{151}\text{Pm}$				10(50) to 3/		at 255.692.	$1/2^{+}$ at	426.451.				Ens091
()- /		⁺ at 1297.0		- (),				,				Ens091
151 Pm(β^-) 151 Sm				ite and 3/2	loval at	1 221 kaW	and othe	ar F.				Ens091
$^{151}\mathrm{Gd}(\varepsilon)^{151}\mathrm{Eu}$				(2^{-}) level a			and our	1 <i>L</i> β-				
	pK=0.03	02(0.007) (0	04(5) 1	0^{-4} level a	1 333.04 1	ke v	. 020.20	201 37	l d E			Ens091
$^{151}\text{Tb}(\beta^+)^{151}\text{Gd}$				0 ⁻⁴ respect		1/2 level	at 839.32	20 ke v, and	otner E_{β^+}			Ens091
$^{151}\text{Ho}(\beta^+)^{151}\text{Dy}$				at 527.40 k								Ens091
151 Tm(β^+) 151 Er	-			el at 801.52								Ens091
$^{151}\text{Tm}(\beta^+)^{151}\text{Er}$	F: lower	r limit: pos	itrons esc	cape from d	etector; E	$E_{\beta^+} = 5250($	50) to 80	1.6 level				91Ke11
$^{151}\mathrm{Tm}^m(\mathrm{IT})^{151}\mathrm{Tm}$	Only α-	decay energ	gies are u	ised		,						GAu >
152 p		60447.1	10.0				2			CD1	1.0	0/5 5/
¹⁵² Pr-u		-68447.1	19.9				2			CP1	1.0	06Sa56
$C_{12} H_8 - ^{152}Sm$		142764	32	142861.2	1.3	0.8	U			R04	4.0	64De15
		142867.0	5.0			-0.5	U			M22	2.5	75Ka25
¹⁵² Eu-u												, , , , , ,

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Referenc	e_
$C_{12} H_8 - ^{152}Gd$		142870	50	142801.4	1.3	-0.3	U				R04	4.0	64De15	
152Gd O-C ₁₄		-85290.7	3.5	-85286.6	1.3	0.8	U				TG1	1.5	11Ke03	
¹⁵² Tb-u		-76212	159	-75920	40	1.9	U				GS2	1.0	05Li24	*
¹⁵² Dy-u		-75278	30	-75275	5	0.1	U				GS2	1.0	05Li24	
¹⁵² Ho-u		-68248	58	-68283	13	-0.6	U				GS2	1.0	05Li24	*
¹⁵² Er-u		-64962	30	-64950	9	0.4	Ü				GS2	1.0	05Li24	
¹⁵² Tm-u		-55524	58	-55520	60	0.0	1	100	100	¹⁵² Tm	GS2	1.0	05Li24	
¹⁵² Sm ³⁵ Cl ₂ - ¹⁴⁸ Sm ³⁷ Cl ₂		10802	10	10810.2	1.1	0.3	Ü	100	100		H21	2.5	70Ma05	
511 612 511 612		10810.8	2.0	10010.2		-0.1	Ü				H25	2.5	72Ba08	
		10807.9	1.4			0.7	U				M21	2.5	75Ka25	
152Sm 35Cl-150Sm 37Cl		5429	4	5407.0	0.7	-1.4	U				H12	4.0	64Ba15	
		5396	4			1.1	0				H21	2.5	70Ma05	
		5402.7	0.8			2.1	1	11	8	$^{150}\mathrm{Sm}$	M21	2.5	75Ka25	
152 Gd $-^{152}$ Sm		59.80	0.19	59.78	0.19	-0.1	1	98	72	152 Sm	SH1	1.0	11El02	
152 Sm $-^{151}$ Eu		95	42	-117.8	0.7	-1.3	U				R04	4.0	64De15	
152 Sm $-^{150}$ Sm		2563	31	2456.8	0.7	-0.9	U				R04	4.0	64De15	
152 Gd(α) 148 Sm		2197.9	30.	2204.4	1.0	0.2	U						61Ma05	
152 Dy(α) 148 Gd		3728.0	8.	3727	4	-0.2	2						65Ma51	
		3726.0	5.			0.1	2				Dba		67Go32	
152 Ho(α) 148 Tb		4506.9	3.	4507.4	1.3	0.2	_				Bka		82Bo04	*
		4508.0	2.			-0.3	_				Ora		82De11	Z
		4505.8	3.			0.5	_						82To14	
		4507.9	3.			-0.2	-						87St.A	Z
	ave.	4507.3	1.3			0.0	1	100	95	¹⁵² Ho			average	
152 Er(α) 148 Dy		4935.2	5.	4934.3	1.6	-0.2	_				GSa		79Ho10	
		4934.6	3.			-0.1	-				Bka		82Bo04	Z
		4934.3	2.			0.0	_				Ora		82De11	Z
	ave.	4934.5	1.6			-0.1	1	100	85	¹⁵² Er			average	
150 Nd(t,p) 152 Nd		4125	30	4130	24	0.2	1	66	66	¹⁵² Nd	Ald		72Ch11	
150 Sm(t,p) 152 Sm		5376	25	5372.3	0.6	-0.1	U				Ald		66Bj01	
152 Sm(p,t) 150 Sm		-5378	8	-5372.3	0.6	0.7	U				Min		72De47	
		-5376	4			0.9	U				McM		73Ga04	
		-5379	15			0.4	U				Ham		74Oe03	
151 Sm $(n,\gamma)^{152}$ Sm		8257.6	0.8	8257.6	0.6	0.1	1	58	41	¹⁵¹ Sm			71Gr22	Z
151 Sm $(p,\gamma)^{152}$ Eu		5604	4	5600.9	0.5	-0.8	U			150			75Jo.A	
151 Eu $(n,\gamma)^{152}$ Eu		6306.70	0.10	6306.72	0.10	0.2	1	99	60	$^{152}\mathrm{Eu}$	ILn		85Vo15	Z
152		6307.11	0.14			-2.8	C				Bdn		06Fi.A	
¹⁵² Gd(d,t) ¹⁵¹ Gd		-2338	10	-2332.3	2.9	0.6	U				Kop		67Tj01	
152 Pr(β^-) 152 Nd		6350	120	6390	30	0.3	U				Kur		95Ik03	
152 Nd(β^-) 152 Pm		1088	27	1105	19	0.6	-						93Sh23	
		1120	30			-0.5	_			152	Kur		95Ik03	
152- 10 152-	ave.	1102	20			0.1	1	85	51	¹⁵² Pm			average	
152 Pm(β^-) 152 Sm		3600	200	3508	26	-0.5	U						71Da19	
		3520	150			-0.1	U						72Wa04	
		3400	200			0.5	U						75Wi08	
		3500	100			0.1	_				17		77Ya07	
		3500	40			0.2	_	40	40	¹⁵² Pm	Kur		95Ik03	
152p m(0=)152g	ave.	3500	40	2650	00	0.2	1	49	49	132Pm			average	
$^{152}\text{Pm}^{m}(\beta^{-})^{152}\text{Sm}$		3603	100	3650	80	0.5	2						71Da19	
152 Eu $(\beta^+)^{152}$ Sm		3753	150	1074.2	0.7	-0.7	2						72Wa04	
Eu(p ·) ··· Sm		1871	5	1874.3	0.7	0.7	U						58Al99	*
		1866	5			1.7	U						62Lo10	*
		1870.8	2.			1.8	-						72Sv02	*
	01/0	1872.8	1.5			1.0	- 1	33	26	¹⁵² Eu			77Mi.A	*
152 Eu $(\beta^{-})^{152}$ Gd	ave.	1872.1	1.2	1010 7	0.7	1.9 1.0	1	33	20	Eu			average 58Al99	
$Eu(p) \cdot Ga$		1809 1827	10 7	1818.7	0.7	-1.0	U U							*
		1827	20			-1.2 -0.9	U						60La04 60Sc14	*
		1806	4			3.2	В						69An18	*
		1000	-			5.4	ъ						07/11110	4

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Referen	ce
152 Tb $(\beta^+)^{152}$ Gd		3990	40				2						76Cr.B	*
$^{152}\text{Ho}(\beta^+)^{152}\text{Dy}$		6690		6512	13	1.0	Ü				IDC			
$no(p^+)$ by			100	6513	13	-1.8					IRS		83A106	
		6270	140			1.7	U				IDC		Averag	*
152m (0+)152m		6225	90	0700	50	3.2	В				IRS		93A103	
$^{152}\text{Tm}(\beta^+)^{152}\text{Er}$		8820	240	8780	50	-0.2	U						16Na02	
$^{152}\text{Tm}^{m}(\beta^{+})^{152}\text{Er}$		6850	110	8680	240	16.6	C						84Ha.B	
152 r n (0+) 152 m		8680	240	7.170	4.40		2				~		16Na02	
$^{152}{ m Yb}(m{\beta}^+)^{152}{ m Tm}$		5465	195	5450	140	-0.1	_				Got		90Sa.A	
		5434	200			0.1	_			150	GSI		04Na.A	
150	ave.	5450	140			0.0	1	100	100	¹⁵² Yb			average	
¹⁵² Eu−u		,		or mixture gs+			d 147.8	6 keV					Nub16b) *
¹⁵² Tb−u		,		or mixture gs+									Nub16b) *
¹⁵² Ho-u				or mixture gs+									Nub16b) *
152 Ho(α) 148 Tb	E_{α} =43	89.1(3,Z); a	nd 4455	5.1(3,Z) from	¹⁵² Ho ^m to	o ¹⁴⁸ Tb ^m							82Bo04	*
	comb	ined with 15	2 Ho m (I'	Γ)- 148 Tb m (IT)	=160(1)-	90.1(0.3)	keV						87St.A	*
$^{152}\text{Pm}^{m}(\beta^{-})^{152}\text{Sm}$) respectively,				V					Ens13b	*
152 Eu(β^+) 152 Sm				tively, from 1									Nub16b) *
152 Eu(β^+) 152 Sm	E_{o} =7	27(2) 729(1	5) resp	ectively, to 2 ⁺	level at	121 7818	keV						Ens13b	
152 Eu(β^-) 152 Gd	$O_{c} = 1$	855(10) fro	m 152E	1^m at 45.5998	keV	. 21. / 010	7						Nub16b	
$^{52}\text{Eu}(\beta^{-})^{152}\text{Gd}$														
				it 344.2790 ke		2+ . 2	44.2700	4+ . 755	20711	* 7			Ens13b	
52 Eu(β^-) 152 Gd				072(20) to gre		e, 2' at 3	44.2790	, 4 at 755	.3961 l	ke v			Ens13b	
52 Eu(β^-) 152 Gd				ⁿ at 45.5998 k									Nub16b	
$^{52}\text{Tb}(\beta^{+})^{152}\text{Gd}$				round state, 5.									Ens13b	*
$^{52}\text{Ho}(\beta^+)^{152}\text{Dy}$	$E_{\beta^+}=3$	390(100) fr	om ¹⁵² H	Io m at 160(1)	to 8 ⁺ lev	el at 2437	7.42 keV	7					Ens13b	k
$^{52}\text{Ho}(\beta^{+})^{152}\text{Dy}$	From a	dopted KLN	$M/\beta^+=0$	0.97(0.13)									AHW	>
	from	$^{152}\text{Ho}^{m}$ at 1	60(1) to	8 ⁺ level at 24	437.42 ke	eV							Ens13b	>
	after e	extra 3(2)%	side-fee	eding correction	on; see re	ference							90Sa32	>
	$p^{+} = 0$	0.52(0.04)/.9	967 give	es KLM/ β^+ =0	0.86(0.14))							85Sc09	*
	KLM	$/\beta^{+}=1.12(0$.10) afte	er 0.967(0.008	3) side-fee	eding con	rection						90Sa32	*
$^{52}\text{Ho}(\beta^+)^{152}\text{Dy}$				100) from 152									Nub16b) *
$^{52}\text{Tm}^{m}(\beta^{+})^{152}\text{Er}$				1 at 2183.3 ke		. ,							Ens13b	
52 Yb(β^{+}) 152 Tm		orted in refe											11Es03	*
150														
¹⁵³ Pr-u		-66110.5	15.3	-66096	13	0.9	_				CP1	1.0	06Sa56	
		-66065	40			-0.8	_				CP1	1.0	12Va02	
	ave.	-66105	14			0.6	1	80	80	¹⁵³ Pr			average	
53 Pr $-^{80}$ Kr _{1.913}		93906	40	93872	13	-0.8	1	10	10	¹⁵³ Pr	CP1	1.0	12Va02	
53 Pr $-^{86}$ Kr _{1.779}		92958	40	92927	13	-0.8	1	10	10	¹⁵³ Pr	CP1	1.0	12Va02	
⁵³ Nd-u		-72283.3	5.2	-72282.1	2.9	0.2	1	32	32	¹⁵³ Nd	CP1	1.0	12Va02	
53 Nd $-^{80}$ Kr _{1.913}		87687.9	4.7	87687	3	-0.2	1	42	36	¹⁵³ Nd	CP1	1.0	12Va02	
$^{53}\text{Nd}-^{86}\text{Kr}_{1.779}$		86740.7	5.3	86741.6	2.9	0.2	1	31	31	153Nd	CP1	1.0	12Va02	
53Pm-u		-75833	23	-75844	10	-0.5	1	18	18	¹⁵³ Pm		1.0	12Va02	
53 Pm $-^{80}$ Kr _{1.913}		84139	23	84125	10	-0.5		18	18	153Pm	CD1	1.0	12 Va02 12 Va02	
53 Pm $-^{86}$ Kr _{1.779}							1		18	153Pm	CD1			
55 Pm – 55 Kr _{1.779}		83192	23	83180	10	-0.5	1	18	18	Pm		1.0	12Va02	
C ₁₂ H ₉ - ¹⁵³ Eu		149103	18	149188.2	1.4	1.2	U				R04	4.0	64De15	
$C_{11}^{13}CH_8-^{153}Eu$		144606	30	144718.0	1.4	0.9	U				R04	4.0	64De15	
$^{13}_{22}$ C $^{13}_{35}$ C $^{153}_{16}$ C $^{-153}_{25}$ Eu		201934	38	202232.9	1.4	2.0	U				R04	4.0	64De15	
53 Eu $^{-85}$ Rb _{1.800}		80021	16	80015.5	1.4	-0.3	U				MA5	1.0	00Be42	
⁵³ Ho-u		-69814	37	-69793	5	0.6	U				GS2	1.0	05Li24	
⁵³ Er-u		-64942	30	-64916	10	0.9	U				GS2	1.0	05Li24	
⁵³ Eu ³⁵ Cl- ¹⁵¹ Eu ³⁷ Cl		4334	4	4330.29	0.18	-0.4	U				H21	2.5	70Ma05	5
³⁸ La O- ¹⁵³ Eu		-19266	123	-19205	4	0.1	U				R05	4.0	65De13	
⁵³ Eu O-C ₁₄		-83849.6	5.8	-83848.3	1.4	0.1	U				TG1	1.5	11Ke03	
⁵³ Eu- ¹⁵² Sm		1544	42	1498.0	0.7	-0.3	U				R04	4.0	64De15	
⁵³ Eu- ¹⁵¹ Eu		1567	33	1380.18	0.17	-0.3	U				R04	4.0	64De15	
53 Dy(α) 149 Gd		3560.0	8.	3559	4	-0.1	-				1104	7.0	65Ma51	
Dy(u) Ou				3339	+						Dba			
		3554.9	5.			0.8	- 1	(0	40	¹⁵³ Dy	Doa		67Go32	
153 r	ave.	3556	4	40.73		0.7	1	69	48	ЪЪ			average	
153 Ho(α) 149 Tb		4052.3	5.	4052	4	-0.1	2				0-		68Go.C	
		4051.0	5.			0.1	2				ORa		71To01	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab <i>F</i>	Reference
153 Er(α) 149 Dy		4799.8	10.	4802.4	1.4	0.3	U				81Ho.A
$EI(\alpha)$ Dy		4804.5	3.	4602.4	1.4	-0.7	-			Bka	82Bo04 Z
			2.			0.2					
		4802.0					_			Ora	
		4802.8	3.			-0.1	_			ъ	87Sc.A Z
		4799.7	4.			0.6	_		- 152-	Daa	96Pa01
152	ave.	4802.4	1.4			0.0	1	100	97 ¹⁵³ Er		average
153 Tm $(\alpha)^{149}$ Ho		5252.3	5.	5248.3	1.5	-0.8	U			GSa	79Ho10 *
		5246.1	3.			0.7	-			Bka	82Bo04 *
		5249.2	2.			-0.4	_			Ora	82De11 *
		5247.7	3.			0.2	o				87Sc.A *
		5247.7	3.			0.2	_				88Sc.A
		5249.5	5.			-0.2	U			Daa	96Pa01
	ave.	5248.1	1.5			0.1	1	100	53 ¹⁴⁹ Ho		average
153 Gd(n, α) 150 Sm		9790	30	9815.0	0.6	0.8	U			ILL	81Wa31
¹⁵³ Eu(p,t) ¹⁵¹ Eu		-6374	5	-6375.21	0.16	-0.2	U			Min	75Ta12
152 Sm(n, γ) 153 Sm		5867.1	0.4	5868.40	0.13	3.3	В			141111	69Re04 Z
Sili(li, /) Sili		5868.4	0.4	3606.40	0.13	0.0	2				71Be41 Z
		5868.4	0.7			0.0	U			D.I	
152 g (1) 153 g		5868.40	0.15	2612.02	0.42	0.0	2			Bdn	06Fi.A
152 Sm(d,p) 153 Sm		3645	12	3643.83	0.13	-0.1	U		152	Tal	65Ke09
152 Eu(n, γ) 153 Eu		8550.28	0.12	8550.28	0.12	0.0	1	100	87 ¹⁵³ Eu	ILn	85Vo15 Z
153 Eu $(\gamma,n)^{152}$ Eu		-8650	130	-8550.28	0.12	0.8	U			Phi	60Ge01
152 Gd(n, γ) 153 Gd		6247.27	0.35	6246.95	0.13	-0.9	-			ILn	85Vo15 Z
		6246.89	0.14			0.4	_			ILn	93Sp.A
		6247.48	0.21			-2.5	В			Bdn	06Fi.A
¹⁵² Gd(d,p) ¹⁵³ Gd		4015	10	4022.39	0.13	0.7	U			Kop	67Tj01
152 Gd(n, γ) 153 Gd	ave.	6246.94	0.13	6246.95	0.13	0.1	1	99	74 ¹⁵² Gd	г	average
¹⁵² Gd(³ He,d) ¹⁵³ Tb	avc.	-1634	30	-1598	4	1.2	Ü	,,	74 Gu	McM	76St10
153 Pr(β^-) 153 Nd		5720		5762	12	0.4				Kur	
$^{153}\text{Nd}(\beta^-)^{153}\text{Pm}$			100				U	1.4	12 153p		02Sh.B
$Nd(p)^{133}Pm$		3336	25	3318	9	-0.7	1	14	13 ¹⁵³ Pm	Ida	93Gr17
152- 10 152-		3260	100		_	0.6	U			Kur	02Sh.B
153 Pm(β^-) 153 Sm		1777	50	1912	9	2.7	U				62Ko10 *
		1863	15			3.3	В			Ida	93Gr17
153 Sm $(\beta^{-})^{153}$ Eu		810	10	807.5	0.7	-0.2	U				54Gr19
		795	10			1.3	U				54Le08
		820	10			-1.2	U				55Ma62
		825	10			-1.7	U				56Du31
		792	10			1.6	U				57Jo24
153 Tb $(\beta^+)^{153}$ Gd		1573	5	1569	4	-0.8	1	59	59 ¹⁵³ Tb		78Cr02 *
153 Dy $(\beta^+)^{153}$ Tb		2171	2	2170.4	1.9	-0.3	1	93	52 ¹⁵³ Dy		78Gr13 *
$^{153}\text{Ho}(\beta^+)^{153}\text{Dy}$		4153	50	4131	6	-0.4	0		,	IRS	83Al06 *
110(p) 2)		4160	60		Ü	-0.5	Ü			IRS	93Al03
153 Lu m (IT) 153 Lu		80	5			0.5	4			IKS	97Ir01
153Pr—u	D	ents frequenc		D.++ //C II	1)+ 0.0	00.42025072					
153 N. I											WgM124**
*153Nd-u	Represe	ents frequenc	y ratio 153	$Pr^{-1}/(C_{12}H_{12})$	(4)' = 0.9	94342.931	(34)				WgM124**
¹⁵³ Pm−u		ents frequenc					(15)				WgM124**
s ¹⁵³ Ho-u		-64997(28)		-							Nub16b **
¹⁵³ Eu ³⁵ Cl- ¹⁵¹ Eu ³⁷ Cl		ed by 5 for sy			H21 with	n later data					AHW **
153 Ho(α) ¹⁴⁹ Tb	E_{α} =401	13.1(5,Z) from	m ¹⁵³ Ho ^m	at 68.7 keV							Nub16b **
153 Ho(α) ¹⁴⁹ Tb	E_{α} =391	10(5) to ¹⁴⁹ T	b ^m at 35.7	8 keV							Nub16b **
153 Tm $(\alpha)^{149}$ Ho		14.2(5,Z) 510			espective	lv. contain	a 8%				AHW **
` /		$(\alpha)^{149} \text{Ho} - 1$									Nub16b **
k	1 111			$(\alpha)^{149}$ Ho ^m b				·V			GAu **
	=5.600) 3) keV lowe			ancii, co			•			O21u ↑↑
<						(a) branch					875c A
153 Tm $(\alpha)^{149}$ Ho	E_{α} =51	10.6(3,Z); an	d 5103.6(4	I,Z) for lowe	r ¹⁵³ Tm ^m		1				
153 Tm(α) ¹⁴⁹ Ho 153 Pm(β ⁻) ¹⁵³ Sm	$E_{\alpha}=511$ $E_{\beta}=10$	10.6(3,Z); and 550(50) to 3/2	d 5103.6(4 2 ⁻ level a	1,Z) for lowe t 127.298 ke	r ¹⁵³ Tm ^m V, and oth		1				87Sc.A ** Ens062 **
$^{153}_{c}$ Tm(α) ¹⁴⁹ Ho 153 Pm(β ⁻) ¹⁵³ Sm 153 Tb(β ⁺) ¹⁵³ Gd	$E_{\alpha}=511$ $E_{\beta}=10$ $E_{\beta}+=33$	10.6(3,Z); and 650(50) to 3/2+	d 5103.6(4 2 ⁻ level a level at 2	4,Z) for lowe t 127.298 ke 12.0078 keV	r ¹⁵³ Tm ^m V, and oth		ı				Ens062 ** Ens062 **
153 Tm(α) ¹⁴⁹ Ho 153 Pm(β ⁻) ¹⁵³ Sm	$E_{\alpha}=511$ $E_{\beta}=10$ $E_{\beta}+=33$	10.6(3,Z); and 550(50) to 3/2	d 5103.6(4 2 ⁻ level a level at 2	4,Z) for lowe t 127.298 ke 12.0078 keV	r ¹⁵³ Tm ^m V, and oth		l				Ens062 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

1501 1501	Item	•	Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Referenc	e
1.0 1.0	¹⁵⁴ Ce−u		-56404	619	-56060#	220#	0.2	D				GT3	2.5	16Kn03	*
C1 Ho -154 Cd 157149 40 1573469 1.3 4. 4. 4. 4. 4. 4. 4.	$C_{12} H_{10} = {}^{154}Sm$														
C ₂ H ₀ -15°G 10°G 10°G	C12 1110 Sin				130034.2	1.0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C. H 154Gd				157376 0	1.3									
Cn 1	C 13CH 154Cd														
C1 C1 C2 C3 C3 C3 C3 C3 C3 C3															
	$C_{10} \stackrel{15}{\sim} C_2 H_8 - \stackrel{15}{\sim} Gd$														
	C ₁₀ H ₆ N ₂ – 134 Gd														
1549p 132 Sq 1,138	¹⁵⁴ Gd- ¹⁵⁶ La O														
	¹⁵⁴ Tb-u														*
	154 Dy $-^{133}$ Cs $_{1.158}$		33903	19	33916	8	0.7	1	18	18	¹⁵⁴ Dy		1.0	00Be42	*
1545m 35Cl -159Sm 37Cl 525m 522m 10832,9 5.2 10834.2 1.1 0.1	¹⁵⁴ Ho-u		-69350	83	-69393	9	-0.5	U				GS2	1.0	05Li24	*
1545m 35Cl -159Sm 37Cl 525m 522m 10832,9 5.2 10834.2 1.1 0.1	¹⁵⁴ Tm-u		-58479	49	-58430	15	1.0	U				GS2	1.0	05Li24	*
548m 35Cl 152Sm 37Cl 5480	154 Sm 35 Cl ₂ $-^{150}$ Sm 37 Cl ₂		10832.9	5.2	10834.2	1.1	0.1	U				M21	2.5	75Ka25	
S417			5480	4	5427.2	0.9	-3.3	В				H12	4.0	64Ba15	
S427.2															
154Ga 35Cl 152Ga 37Cl 4019.5 2. 4024.69 0.2 1.0 U									80	78	154Sm				
1548m 1546m 1338.2 3.8 1342.8 0.9 0.5	154Gd 35C1_152Gd 37C1				4024 60	0.23			00	70	om				
1348cm 1348cm 1348cm 1342.8 0.9 0.5 0.0 0.1 21 154sm M21 2.5 75ka25 154sm C12 Hg 148211.0 0.1 0	du ci- du ci				4024.07	0.23									
1342.8	154cm 154Cd				1242 0	0.0									
154Sm C12 Hg	Siii— Gu				1342.6	0.9			21	21	154 C				
139La O_155Gd	1540 0 11				4.40200.4				21	21	134Sm				
154Sm 152Bm 1082	134Sm-C ₁₂ H ₉														
154 G 1-15 G 1															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1082	42		1.2	-0.6	U				R04	4.0	64De15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2477.1		-1.1	U				R04			
			1400	50	1074.58	0.22	-1.6	U				R04	4.0	64De15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154 Gd O $-$ C $_{15}$		-84207.4	5.9	-84212.0	1.3	-0.5	U				TG1	1.5	09Ke.A	
			-84206.6	4.3			-0.8	U				TG1	1.5	11Ke03	
	154 Dy $(\alpha)^{150}$ Gd		2946.4	5.	2945	5	-0.3	1	93	82	¹⁵⁴ Dy	Dba		67Go32	Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4041.3	5.		4	0.0	2			-			68Go.C	Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.0					ORa			Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{154}\text{Ho}^{m}(\alpha)^{150}\text{Tb}^{m}$				3823	5									Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110 (01) 10				2022										Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave							100	89	154 Hom	Ortu			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$154 E_{r(\alpha)} 150 D_{v}$	avc.			4270.7	26			100	0)	110				Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EI(u) by				4219.1	2.0						Rko			Z
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									00	02	154-	Бка			L
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	154m ()150rr	ave.			5002.0	2.6			98	92	.s.Er	GG.			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$13+1 \mathrm{m}(\alpha)^{130} \mathrm{Ho}$				5093.8	2.6									Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154														_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{134}\text{Tm}^m(\alpha)^{130}\text{Ho}^m$				5171.8	1.6									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154							3							Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154 Yb(α) 150 Er		5473.4		5474.3	1.7		-				GSa		79Ho10	Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.			-0.2	-				Ora			Z
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5473.4	4.			0.2	-				Daa		96Pa01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.	5474.3	1.7			0.0	1	100	100	¹⁵⁴ Yb			average	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	152 Sm(t,p) 154 Sm		5361	25	5353.4	0.8	-0.3	U				Ald		66Bj01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	154 Sm(p,t) 152 Sm		-5357	8	-5353.4	0.8	0.4	U				Min			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.77														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	154 Gd(p,t) 152 Gd				-6659.88	0.21									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												Ι Δ1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9374							3/1	22	153 Dm	ப்ப			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ave.							J +	33	FIII	ш			7
ave. 6442.20 0.24 0.1 1 99 85 ¹⁵⁴ Eu average $^{153}\mathrm{Gd}(\mathrm{n},\gamma)^{154}\mathrm{Gd}$ 8895.25 0.30 8894.72 0.17 -1.8 - ILn 85Vo15	Eu(II, y) Eu				0442.22	0.24									L
$^{153}\mathrm{Gd}(\mathrm{n},\gamma)^{154}\mathrm{Gd}$ 8895.25 0.30 8894.72 0.17 -1.8 - ILn 85Vo15									00	0.5	154-	DUII			
	153 0 1/2 154 0 1	ave.			000155	6 15			99	85	15-Eu	**		_	_
8894.47 0.20 1.3 – ILn 93Sp.A	$Gd(n,\gamma)^{13}$ Gd				8894.72	0.17									Z
•			8894.47	0.20			1.3	-				ILn		93Sp.A	Z

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁵⁴ Gd(d,t) ¹⁵³ Gd		-2642	10	-2637.49	0.17	0.5	T T			Van		67T;01
153 Gd(n, γ) 154 Gd					0.17		U	00	74 ¹⁵³ Gd	Kop		67Tj01
	ave.	8894.71	0.17	8894.72	0.17	0.1	1	98	/4 *** Ga	17		average
154 Pr(β^-) 154 Nd		7720	100				5			Kur		02Sh.B
154 Nd(β^-) 154 Pm		2687	25	20	10	2.2	4			Ida		93Gr17
154 Pm m (IT) 154 Pm		-210	70	20	12	3.3	В					72Ta13
154- 10 154-		20	12				3					90So08
154 Pm(β^{-}) 154 Sm		3900	200	3940	50	0.2	U					71Da28
		4396	180			-2.5	U					72Ta13
154		3880	200			0.3	U					74Ya07
154 Pm $^{m}(\beta^{-})^{154}$ Sm		3900	200	3960	40	0.3	U					71Da28
		4190	170			-1.3	U					72Ta13
		3940	50			0.5	2					73Pr05
		3940	200			0.1	U					74Ya07
		4056	100			-0.9	2			Ida		93Gr17
154 Eu(β^-) 154 Gd		1978	5	1967.8	0.8	-2.0	U					60La04
		1967	2			0.4	1	14	12 ¹⁵⁴ Eu			77Ra08 >
		1975	3			-2.4	U					81Bu.A
$^{54}\text{Tb}(\beta^{+})^{154}\text{Gd}$		3562	50	3550	50	-0.2	2					70Ag03
$^{154}\text{Ho}(\beta^+)^{154}\text{Dy}$		5700	80	5755	10	0.7	U			IRS		83Al06 =
		5750	80			0.1	U			IRS		93A103
$^{154}\text{Ho}^m(\beta^+)^{154}\text{Dy}$		5994	100	5997	28	0.0	o			IRS		83Al.A
•		6070	80			-0.9	1	12	11 ¹⁵⁴ Ho ^m	IRS		93A103
$^{154}{\rm Tm}^m(\beta^+)^{154}{\rm Er}$		8234	150	8250	50	0.1	U			Dbn		94Po26
54 Lu(β^{+}) 154 Yb		7556	450	10220#	200#	5.9	C					84Ha.B
154 Lu ^m (IT) 154 Lu		58.7	9.3	60	12	0.1	0			Ara		97Da07
⁵⁴ Ce-u	Trends from	m Mass Su	rface TMS	suggest 154Ce	320 less l	hound	O			7114		GAu *:
¹⁵⁴ Tb-u				ture gs+m+n a			0 keV					Nub16b *
154 Dy $^{-133}$ Cs _{1.158}				contamination			O KC V					00Be42 *:
Dy - Cs _{1.158}	cannot be		sci ved, but	Contamination	10y 10							00Be42 *:
¹⁵⁴ Ho-u			aV for mix	ture gs+m at 2	13(28) ka	V						Nub16b *:
110—u 154Tm—u				-								Nub16b *:
$^{154}\text{Pr}(\beta^-)^{154}\text{Nd}$				ture gs+m at 7	0(30) KE V							96To05 *:
$^{154}\text{Pm}^{m}(\text{IT})^{154}\text{Pm}$	E_{β} = 74900 Only use the	(100) to 4	154 - 154 -	33.2 KC V								
												GAu *
$^{154}\text{Pm}^m(\text{IT})^{154}\text{Pm}$	Supported l	•										12So10 *
154 Pm(β^-) 154 Sm	$E_{\beta} = 24100$											Ens09a *V
154 Pm(β^-) 154 Sm				+ levels at 14								Ens09a *:
$^{154}\text{Pm}^m(\beta^-)^{154}\text{Sm}$				to 921.345 1			5.81 1					Ens09a *:
154 Pm ^{m} (β ⁻) 154 Sm				475.81 keV, aı								Ens09a *:
$^{154}\text{Pm}^{m}(\beta^{-})^{154}\text{Sm}$				and state, 1 ⁻ le								Ens09a *
$^{154}\text{Pm}^{m}(\beta^{-})^{154}\text{Sm}$	$E_{\beta}^{'} = 30000$	(200), 1900	0(200), 180	$00(200)$ to 1^-	level at 92	$1.345, 2^{+}$	at 2069.	.07,				Ens09a *
	and (1,2 ⁺)) at 2139.8	2 keV									Ens09a *:
154 Eu(β^{-}) 154 Gd				ely, to 2 ⁺ leve	l at 123.07	09 keV						Ens09a *:
154 Eu $(\beta^{-})^{154}$ Gd				.5593 keV, and								Ens09a *
$^{154}\text{Tb}(\beta^+)^{154}\text{Gd}$				and state and 0			keV					Ens09a *
$^{154}\text{Ho}(\beta^+)^{154}\text{Dy}$	$E_{\beta^+} = 43400$				icvei at	000.0073	KC V					Ens09a *
$^{154}\text{Ho}^{m}(\beta^{+})^{154}\text{Dy}$												
	$E_{\beta}^{+} = 25000$	(100) to 7	16ver at 24	4/2.40 Ke V								Ens09a *
$^{154}\text{Tm}^m(\beta^+)^{154}\text{Er}$	$E_{\beta}^{'} = 48820$	(150) to 8 ⁺	level 232	9.5 keV		-1-						Ens09a *
154 Lu(β^+) 154 Yb	$p^+ = 0.75(0$	(0.05) Q = 5	5710(450) f	from ¹⁵⁴ Lu ^m a	t 200#150	to 8 ⁺ lev	el at 204	6.2 keV				Ens09a *
154 Lu m (IT) 154 Lu	Use only th	ieir Q_{α} 's										GAu **
			21	-59491	18	0.0	1	35	35 ¹⁵⁵ Pr	CP1	1.0	121/202
¹⁵⁵ Pr—u	_	59492										1 Z VaU2. 3
155Pr-u		-59492 102571	31									
$^{155}Pr-^{80}Kr_{1.938}$	1	102571	33	102569	18	-0.1	1	31	31 ¹⁵⁵ Pr	CP1	1.0	12Va02
155 Pr $-^{80}$ Kr _{1.938} 155 Pr $-^{86}$ Kr _{1.802}	1 1	102571 101588	33 32	102569 101589	18 18	$-0.1 \\ 0.0$	1 1	31 33	31 ¹⁵⁵ Pr 33 ¹⁵⁵ Pr	CP1 CP1	1.0 1.0	12Va02 12Va02
$^{155}Pr-u \\ ^{155}Pr-^{80}Kr_{1.938} \\ ^{155}Pr-^{86}Kr_{1.802} \\ ^{155}Nd-u \\ ^{155}Nd-^{80}Kr_{1.938}$	1 1 —	102571	33	102569	18	-0.1	1	31	31 ¹⁵⁵ Pr	CP1	1.0	12Va02

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	ce
155 Nd $-^{86}$ Kr $_{1.802}$		94215	17	94215	10	0.0	1	33	33 ¹⁵⁵ Nd	CP1	1.0	12Va02	
¹⁵⁵ Pm-u		-71863.8	8.8	-71863	5	0.1	1	33	33 ¹⁵⁵ Pm	CP1	1.0	12Va02	*
155 Pm $-^{80}$ Kr _{1.938}		90197.8	8.6	90196	5	-0.2	1	36	34 ¹⁵⁵ Pm	CP1	1.0	12Va02	
155 Pm $-^{86}$ Kr _{1.802}		89216.0	8.8	89217	5	0.1	1	33	33 ¹⁵⁵ Pm	CP1	1.0	12Va02	
¹⁵⁵ Sm-u		-75357	24	-75352.9	1.6	0.2	Ü	33	33 TIII	CP1	1.0	12Va02	*
155 Sm $-^{80}$ Kr _{1.938}		86704	24	86706.4	2.1	0.1	U			CP1	1.0	12 Va02	4
155 Sm $-^{86}$ Kr _{1.802}		85722	24	85726.7	1.6	0.1	U			CP1	1.0	12 Va02	
$C_{12} H_{11} - {}^{155}Gd$		163530	70	163445.6	1.3	-0.3	U			R04	4.0	64De15	
$C_{12} H_{11} - Gd$ $C_{11} ^{13}C H_{10} - ^{155}Gd$		158921	42	158975.4		0.3	U			R04	4.0	64De15	
$C_{10}^{13}C_{2}H_{9}-^{155}Gd$				154505.2	1.3						4.0	64De15	
$C_{10} + C_2 + H_9 = -4 \text{ Gd}$ $C_{10} + H_7 + N_2 = -155 \text{ Gd}$		154450	140	138293.4	1.3	0.1	U			R04		64De15	
$^{155}\text{Gd} - ^{139}\text{La O}$		138213	38		1.3	0.5	U			R04	4.0		
155Tb-u		21252	32	21356.4	2.3	0.8	U			R05	4.0	65De13	
155 D — U		-76431	30	-76490	11	-2.0	U			GS2	1.0	05Li24	
¹⁵⁵ Dy-u		-74227	30	-74242	10	-0.5	U	20	20 15511	GS2	1.0	05Li24	
¹⁵⁵ Ho-u		-70867	30	-70896	19	-1.0	1	39	39 ¹⁵⁵ Ho	GS2	1.0	05Li24	
¹⁵⁵ Er-u		-66785	30	-66784	7	0.0	U			GS2	1.0	05Li24	
¹⁵⁵ Tm-u		-60814	33	-60790	11	0.7	U			GS2	1.0	05Li24	*
¹⁵⁵ Gd ³⁵ Cl ₃ – ¹⁴⁹ Sm ³⁷ Cl ₃		14282.4	6.3	14288.8	0.9	0.4	U			M21	2.5	75Ka25	
¹⁵⁵ Gd ³⁵ Cl- ¹⁵³ Eu ³⁷ Cl		4345.4	2.4	4342.9	0.8	-0.4	U			H25	2.5	72Ba08	
¹⁵⁵ Gd- ¹³⁸ La O		20558	49	20597	4	0.2	U			R05	4.0	65De13	
155 Gd $-^{154}$ Gd		1480	60	1756.40	0.20	1.2	U			R04	4.0	64De15	
155 Gd O $-$ C $_{15}$		-82452.8	5.0	-82455.6	1.3	-0.4	O			TG1	1.5	09Ke.A	
		-82452.2	2.6			-0.9	1	11	11 ¹⁵⁵ Gd	TG1	1.5	11Ke03	
155 Er(α) 151 Dy		4118.3	5.				3			ORa		74To07	Z
$^{155}{ m Tm}(\alpha)^{151}{ m Ho}$		4578.3	10.3	4572	5	-0.6	3			ORa		71To01	*
		4568.1	10.			0.4	3			ORa		71To01	*
		4570.1	8.			0.2	3					92Ha10	*
155 Yb(α) 151 Er		5344.1	5.	5338.8	2.1	-1.1	3			GSa		79Ho10	
		5336.6	5.			0.4	3			Bka		82Bo04	Z
		5344.2	5.			-1.1	3					87Ka.A	
		5331.8	4.			1.7	3			ORa		91To08	
		5340.1	4.			-0.3	3			Daa		96Pa01	
155 Lu(α) 151 Tm		5796.9	5.	5802.8	2.6	1.2	5					89Ho12	*
		5797.9	5.			1.0	5			ORa		91To08	
		5805.1	5.			-0.5	5			Daa		96Pa01	
		5811.2	5.			-1.7	5			Ara		97Da07	
155 Lu $^m(\alpha)^{151}$ Tm m		5723.0	10.	5730.6	2.8	0.7	6					89Ho12	
		5727.1	5.			0.7	6			ORa		91To08	
		5732.2	5.			-0.3	6			Daa		96Pa01	
		5734.2	5.			-0.7	6			Ara		97Da07	
155 Lu ⁿ (α) ¹⁵¹ Tm		7574.9	15.	7584	3	0.2	U					89Ho12	*
		7586.2	5.			-0.5	O			Daa		96Pa01	*
155 Gd(n, α) 152 Sm		8331	6	8339.1	0.3	1.4	U			McM		69Be17	
155 Gd(p,t) 153 Gd		-6850	7	-6848.17	0.25	0.3	U			McM		73Lo08	
		-6853	5			1.0	U			Min		73Oo01	
154 Sm(n, γ) 155 Sm		5806.8	0.6	5806.96	0.27	0.3	2					82Ba15	Z
		5807.0	0.3			-0.1	2			ILn		82Sc03	Z
154 Sm(d,p) 155 Sm		3584	12	3582.39	0.27	-0.1	U			Tal		65Ke09	
154 Eu $(n,\gamma)^{155}$ Eu		8151.3	0.4	8151.3	0.4	0.0	1	100	98 ¹⁵⁵ Eu	ILn		86Pr03	
154 Gd $(n,\gamma)^{155}$ Gd		6435.11	0.30	6435.24	0.18	0.4	_			ILn		86Sc25	Z
		6435.29	0.23			-0.2	_			Bdn		06Fi.A	
154 Gd(d,p) 155 Gd		4217	10	4210.68	0.18	-0.6	U			Kop		67Tj01	
155 Gd(d,t) 154 Gd		-190	10	-178.01	0.18	1.2	Ü			Kop		67Tj01	
$^{154}\text{Gd}(n,\gamma)^{155}\text{Gd}$	ave.	6435.22	0.18	6435.24	0.18	0.1	1	99	73 ¹⁵⁴ Gd	. 1		average	
$^{155}\text{Ta}(p)^{154}\text{Hf}$	=	1776	10	1453	15	-32.3	В			Arp		99Uu01	*
		1453	15		-		3			Jya		07Pa27	-

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input u		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
155a. 1/0-155a	1000	150	1656	10	2.0				T.1		020 17
155 Nd(β^-) 155 Pm	4222	150	4656	10	2.9	U			Ida		93Gr17
155 Pm(β^-) 155 Sm	3224	30	3251	5	0.9	U			Ida		93Gr17
155 Sm $(\beta^{-})^{155}$ Eu	1634	15	1627.3	1.2	-0.4	U					63Kr04 *
	1624	15			0.2	U					65Fu13 *
155 155	1607	25			0.8	U			Ida		93Gr17
155 Eu(β^-) 155 Gd	252	5	251.8	0.9	0.0	U					54Le08
	245	5			1.4	U					58Gl56
155 p. (0) 155 m.	245	5	2004.5	4.0	1.4	U					59Am16
155 Dy(β^+) 155 Tb	2099	6	2094.5	1.9	-0.8	2					63Pe13 *
155*** (0+)155**	2094	2	2446		0.2	2		. 155			80Bu04 *
$^{155}\text{Ho}(\beta^+)^{155}\text{Dy}$	3102	20	3116	17	0.7	1	69	61 ¹⁵⁵ Ho			72To07 *
155 Lu m (IT) 155 Lu	23.0	6.2	21	4	-0.3	5					96Pa01
1551 n (ITP) 1551	19.9	6.2			0.2	5					97Da07
¹⁵⁵ Lu ⁿ (IT) ¹⁵⁵ Lu	1781	2	D ++ //G II	·+ 0.00	1 40550/0	5					96Pa01
* ¹⁵⁵ Pr-u	Represents frequenc	y ratio 155	$Pr^{-}/(C_{12}H_4)$) = 0.98	3142559(2)	0)					WgM124**
* ¹⁵⁵ Nd-u	Represents frequenc	y ratio 155	$Nd^{++}/(C_{12}H_{*})$	$_{4})^{+}=0.9$	8147230(H)					WgM124**
* ¹⁵⁵ Pm-u	Represents frequenc	y ratio 155	$Pm^{++}/(C_{12}H)$	4) = 0.9	81503965	(56)					WgM124**
* ¹⁵⁵ Sm-u	Represents frequenc					15)					WgM124**
* ¹⁵⁵ Tm-u	M - A = -56627(28)										Nub16b **
$*^{155}$ Tm(α) ¹⁵¹ Ho	First assigned to 156										94To10 **
$*^{155}$ Tm(α) ¹⁵¹ Ho	Doublet from ground				V apart						90Po13 **
$*^{155}$ Lu(α) ¹⁵¹ Tm	Original value E=56			librated							79Ho10 **
$*^{155}Lu^{n}(\alpha)^{151}Tm$	Original value E=74										81Ho.A **
$*^{155}$ Lu ⁿ (α) ¹⁵¹ Tm	Replaced by authors										AHW **
$*^{155}$ Ta(p) 154 Hf	$E_p = 1765(10)$ for (11					tly lowe	r				99Uu01 **
* 155 ~ 155 —	1776 keV proton n										07Pa27 **
$*^{155}$ Sm(β^-) 155 Eu	E_{β} = 1530(15) E_{β} =										Ens051 **
$*^{155}$ Dy(β^+) 155 Tb	E_{β^+} =850(6) 845(2)				.918 keV, a	and othe	r $E_{oldsymbol{eta}^+}$				Ens051 **
$*^{155}$ Ho(β^+) ¹⁵⁵ Dy	$E_{\beta^+} = 1840(20)$ to 3/2	2 ⁺ level a	t 240.196 keV								Ens051 **
150								156			
¹⁵⁶ Pm-u	-68883.4	6.9	-68883	4	0.1	1	32	32 ¹⁵⁶ Pm	CP1	1.0	12Va02 *
156 Pm $-^{80}$ Kr _{1.950}	94181.7	6.4	94180	4	-0.2	1	38	35 ¹⁵⁶ Pm	CP1	1.0	12Va02
156 Pm $-^{86}$ Kr _{1.814}	93269.1	6.8	93270	4	0.1	1	33	33 ¹⁵⁶ Pm	CP1	1.0	12Va02
$C_{12} H_{12} - {}^{156}Gd$	171923	44	171769.8	1.3	-0.9	U			R04	4.0	64De15
$C_{11}^{13}CH_{11}-{}^{156}Gd$	167384	43	167299.6	1.3	-0.5	U			R04	4.0	64De15
C_{10} $^{13}C_2$ H_{10} ^{-156}Gd	162810	60	162829.4	1.3	0.1	U			R04	4.0	64De15
$C_{10} H_8 N_2 - ^{156}Gd$	146661	38	146617.7	1.3	-0.3	U			R04	4.0	64De15
¹⁵⁶ Tb-u	-75165	40	-75246	4	-2.0	U			GS2	1.0	05Li24 *
$C_{10} H_8 N_2 - {}^{156}Dy$	145130	100	144464.2	1.3	-1.7	U		156	R04	4.0	64De15
156 Dy $-^{133}$ Cs _{1.173}	35195.1	4.8	35188.9	1.3	-1.3	1	7	7 ¹⁵⁶ Dy	MA8	1.0	17Ma.A
¹⁵⁶ Ho−u	-70107	122	-70290	60	-1.5	o			GS1	1.0	00Ra23 *
¹⁵⁶ Ho ⁿ −u	-70107	30				2		156	GS2	1.0	05Li24 *
¹⁵⁶ Er−u	-68907	30	-68934	26	-0.9	1	78	78 ¹⁵⁶ Er	GS2	1.0	05Li24
156 Tm $-u$	-61044	30	-61014	15	1.0	U			GS2	1.0	05Li24
¹⁵⁶ Yb−u	-57202	30	-57183	10	0.6	U			GS2	1.0	05Li24
¹⁵⁶ Gd ³⁵ Cl- ¹⁵⁴ Gd ³⁷ Cl	4199	5	4207.27	0.22	0.4	U			H12	4.0	64Ba15
Ga Ga Ga									****	2.5	70Ma05
Ga CI Ga CI	4206	10			0.1	U			H21		
Ga CI Ga CI	4206 4204.8	10 1.4			0.7	U			H25	2.5	72Ba08
	4206 4204.8 4203.0	10 1.4 1.0			0.7 1.7	U U		150	H25 M21	2.5 2.5	72Ba08 75Ka25
¹⁵⁶ Dy- ¹⁵⁶ Gd	4206 4204.8 4203.0 2153.47	10 1.4 1.0 0.11	2153.48	0.11	0.7 1.7 0.0	U U 1	100	92 ¹⁵⁶ Dy	H25 M21 SH1	2.5 2.5 1.0	72Ba08 75Ka25 11El05
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O	4206 4204.8 4203.0 2153.47 20618	10 1.4 1.0 0.11 71	2153.48 20857.1	2.3	0.7 1.7 0.0 0.8	U U 1 U	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05	2.5 2.5 1.0 4.0	72Ba08 75Ka25 11El05 65De13
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O ¹⁵⁶ Gd- ¹⁵⁵ Gd	4206 4204.8 4203.0 2153.47 20618 -584	10 1.4 1.0 0.11 71 33	2153.48 20857.1 -499.23	2.3 0.07	0.7 1.7 0.0 0.8 0.6	U U 1	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05 R04	2.5 2.5 1.0 4.0 4.0	72Ba08 75Ka25 11El05 65De13 64De15
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O	4206 4204.8 4203.0 2153.47 20618 -584 -82946.5	10 1.4 1.0 0.11 71 33 5.8	2153.48 20857.1	2.3	0.7 1.7 0.0 0.8 0.6 -1.0	U U 1 U U o	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05 R04 TG1	2.5 2.5 1.0 4.0 4.0 1.5	72Ba08 75Ka25 11El05 65De13 64De15 09Ke.A
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O ¹⁵⁶ Gd- ¹⁵⁵ Gd ¹⁵⁶ Gd O-C ₁₅	4206 4204.8 4203.0 2153.47 20618 -584 -82946.5 -82945.6	10 1.4 1.0 0.11 71 33 5.8 3.6	2153.48 20857.1 -499.23 -82954.8	2.3 0.07 1.3	0.7 1.7 0.0 0.8 0.6 -1.0 -1.7	U U 1 U U o U	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05 R04	2.5 2.5 1.0 4.0 4.0	72Ba08 75Ka25 11El05 65De13 64De15 09Ke.A 11Ke03
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O ¹⁵⁶ Gd- ¹⁵⁵ Gd ¹⁵⁶ Gd O-C ₁₅ ¹⁵⁶ Er(α) ¹⁵² Dy	4206 4204.8 4203.0 2153.47 20618 -584 -82946.5 -82945.6 3109.9	10 1.4 1.0 0.11 71 33 5.8 3.6 70.	2153.48 20857.1 -499.23 -82954.8 3481	2.3 0.07 1.3	0.7 1.7 0.0 0.8 0.6 -1.0 -1.7 5.3	U U 1 U U o	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05 R04 TG1	2.5 2.5 1.0 4.0 4.0 1.5	72Ba08 75Ka25 11El05 65De13 64De15 09Ke.A 11Ke03 95Ka.A
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O ¹⁵⁶ Gd- ¹⁵⁵ Gd ¹⁵⁶ Gd O-C ₁₅	4206 4204.8 4203.0 2153.47 20618 -584 -82946.5 -82945.6 3109.9 4341.6	10 1.4 1.0 0.11 71 33 5.8 3.6 70.	2153.48 20857.1 -499.23 -82954.8	2.3 0.07 1.3	0.7 1.7 0.0 0.8 0.6 -1.0 -1.7 5.3 0.4	U U 1 U U o U	100	92 ¹⁵⁶ Dy	H25 M21 SH1 R05 R04 TG1	2.5 2.5 1.0 4.0 4.0 1.5	72Ba08 75Ka25 11El05 65De13 64De15 09Ke.A 11Ke03 95Ka.A 71To10
¹⁵⁶ Dy- ¹⁵⁶ Gd ¹⁵⁶ Gd- ¹³⁹ La O ¹⁵⁶ Gd- ¹⁵⁵ Gd ¹⁵⁶ Gd O-C ₁₅ ¹⁵⁶ Er(α) ¹⁵² Dy	4206 4204.8 4203.0 2153.47 20618 -584 -82946.5 -82945.6 3109.9	10 1.4 1.0 0.11 71 33 5.8 3.6 70.	2153.48 20857.1 -499.23 -82954.8 3481	2.3 0.07 1.3	0.7 1.7 0.0 0.8 0.6 -1.0 -1.7 5.3	U U 1 U U o U C	100	92 ¹⁵⁶ Dy 94 ¹⁵⁶ Tm	H25 M21 SH1 R05 R04 TG1	2.5 2.5 1.0 4.0 4.0 1.5	72Ba08 75Ka25 11El05 65De13 64De15 09Ke.A 11Ke03 95Ka.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	on or m	Input v	•	Adjuste		v_i	Dg	Signf.		n infl.	Lab F	Reference	_
$^{156}\mathrm{Tm}^m(\alpha)^{152}\mathrm{Ho}$		4737.5	10.	*			F				ORa	71To01 >	*
156 Yb(α) 152 Er					4	0.4					OKa		ř
$r_{\rm B}(\alpha)^{-1}$ Er		4813.6 4809.6	10.	4810	4	$-0.4 \\ 0.0$	-				GSa	77Ha48 79Ho10	
		4810.6	10. 4.			-0.2	-						
							- 1	00	83	¹⁵⁶ Yb	Daa	96Pa01	
156r (>152m	ave.	4811	4	5506	2	-0.3	1	98	83	150 Y B		average	
156 Lu(α) 152 Tm		5593.7	10.	5596	3	0.2	U				GSa	79Ho10	
		5592.7	5.			0.6	2				Dba	92Po14	
156 152		5597.9	4.			-0.5	2				Daa	96Pa01	_
156 Lu $^m(\alpha)^{152}$ Tm m		5713.7	5.	5711.5	2.6	-0.4	3				GSa	79Ho10 Z	<u>_</u>
		5709.7	5.			0.4	3				Dba	92Po14	
		5709.7	8.			0.2	3					92Ha10	
150		5711.7	4.			-0.1	3				Daa	96Pa01	
156 Hf(α) 152 Yb		6033.0	10.	6029	4	-0.4	-				GSa	79Ho10	
		6027.9	4.			0.2	_				Daa	96Pa01	
	ave.	6029	4			0.0	1	100	100	¹⁵⁶ Hf		average	
$^{156}{\rm Hf}^{m}(\alpha)^{152}{\rm Yb}$		8009.8	15.	7988	4	-1.5	U				GSa	81Ho.A	
		7987.2	4.			0.1	o				Daa	96Pa01 >	*
154 Sm(t,p) 156 Sm		4556	25	4566	9	0.4	1	12	11	156 Sm	Ald	66Bj01	
154 Eu(t,p) 156 Eu		6003	4	6005	3	0.6	1	71	70	¹⁵⁶ Eu	LAl		*
154 Gd(t,p) 156 Gd		6495.1	3.6	6489.80	0.19	-1.5	U				McM	89Lo07	
156 Gd(p,t) 154 Gd		-6490	7	-6489.80	0.19	0.0	Ü				McM	73Lo08	
Gu(p,t) Gu		-6490	5	0107.00	0.17	0.0	Ü				Min	73Oo01	
155 Gd $(n,\gamma)^{156}$ Gd		8536.8	0.5	8536.35	0.07	-0.9	U				ILn	82Ba28	
Gu(II, //) Gu		8536.39	0.07	0550.55	0.07	-0.6	_				MMn		Z
		8536.04	0.07			-0.6 1.6	_				Bdn	06Fi.A	_
¹⁵⁵ Gd(d,p) ¹⁵⁶ Gd		6319	10	6211 70	0.07	-0.7							
¹⁵⁶ Gd(d,t) ¹⁵⁵ Gd				6311.78	0.07		U				Kop	67Tj01	
		-2287	10	-2279.12	0.07	0.8	U	100	50	155.0.1	Kop	67Tj01	
155 Gd(n, γ) 156 Gd	ave.	8536.35	0.07	8536.35	0.07	0.0	1	100		155Gd		average	
155 Gd(α ,t) 156 Tb $^{-158}$ Gd() 159 Tb		-821.9	3.6	-822	4	0.0	1	100	100	¹⁵⁶ Tb	McM	75Bu02	
156 Dy(d,t) 155 Dy		-3184	10	-3188	10	-0.4	1	92	92	¹⁵⁵ Dy	Kop	70Gr46	
¹⁵⁶ Ta(p) ¹⁵⁵ Hf		1028.6	13.	1020	4	-0.7	O				Dap	92Pa05	
		1013.6	5.			1.2	O				Dap	96Pa01	
		1017.9	5.			0.4	3				Dap	11Da12	
$^{156}\text{Ta}^{m}(p)^{155}\text{Hf}$		1110.2	12.	1114	7	0.3	3				Dap	93Li34	
		1115.2	8.			-0.2	3				Dap	96Pa01	
156 Nd(β^-) 156 Pm		3690	200				2				Kur	02Sh.B >	*
156 Pm $(\beta^{-})^{156}$ Sm		5155	35	5197	9	1.2	U				Stu	90He11	
		5110	100			0.9	U				Kur	02Sh.B	
156 Sm(β^-) 156 Eu		721	10	722	8	0.1	_					63Gu04 >	*
•		721	15			0.1	_					65Wi08 >	*
	ave.	721	8			0.1	1	90	89	$^{156}\mathrm{Sm}$		average	
156 Eu(β^-) 156 Gd		2430	10	2452	3	2.2	_					62Ew01	
		2460	10			-0.8	_					63Th02	
		2450	15			0.2	_					64Pe17	
		2478	20			-1.3	U					67Va23	
	ave.	2446	6			1.0	1	28	28	¹⁵⁶ Eu		average	
$^{156}\text{Tb}(\beta^+)^{156}\text{Gd}$	avc.	3570	50	2444	4	-22.5	В	20	20	Lu			*
$^{156}\text{Ho}(\beta^+)^{156}\text{Dy}$													
$Ho(p^+)^{**}Dy$		4400	400	5050	60	1.6	U						*
		5050	90			0.0	0					02Iz01	
1565 (0+)15611		5050	60	1070	60	5 0	2						*
156 Er(β^+) 156 Ho		1670	70	1270	60	-5.8	В			156		•	*
156 Tm(β^+) 156 Er		7458	50	7377	27	-1.6	1	29	22	¹⁵⁶ Er	Dbn		*
150 150		7390	100			-0.1	U					95Ga.A	
$^{156}\text{Hf}^m(\text{IT})^{156}\text{Hf}$		1959	1	156			2					96Pa01	
* ¹⁵⁶ Pm-u				156 Pm $^{++}/($								WgM124*	
* ¹⁵⁶ Tb-u	M-A=	=-69968(32	2) keV for	mixture gs	+m+n at :	54(3) and 8	8.4 keV	7				Nub16b *>	*
* ¹⁵⁶ Ho-u	M-A=	=-65230(10	00) keV fo	or mixture g	s+m+n at	52.37 and	170(70)) keV				Nub16b *>	*
$*^{156}$ Ho ⁿ -u	Assum	ing high sp	in isomer	is favored	,			,				GAu *>	
$*^{156}$ Tm $^{m}(\alpha)^{152}$ Ho				to $^{152}\mathrm{Ho}^m$	at 160(1).	reassigned	to 155 T	m 'm				94To10 *>	
$*^{156}$ Hf ^m (α) ¹⁵² Yb	Replac	ed by autho	ors' value	for ¹⁵⁶ Hf ^m	(IT)	5	_					AHW *	
$*^{154}$ Eu(t,p) ¹⁵⁶ Eu		$69(4)$ to 3^{-}			,							91Ba06 *>	
$*^{156}Nd(\beta^{-})^{156}Pm$	∠55 Trende	from Mass	Surface '	TMS sugge	st 156 N.d. 7	70 less hour	nd					GAu *	
-10(p) III	1101103		Surrace	inio sugge	J. 114 /	o icas boul						0/1u ↑/	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	pu. 13011	Input va		Adjusted Va			Dg	Signf.	Main infl.	Lab	F	Reference
TICIII		тіриі Va	uuc	Aujusieu	value	v_i	Dg	oigiii.	iviani iiiii.	Lau	I'	Kererence
$*^{156}$ Sm $(\beta^{-})^{156}$ Eu	E_{β} =43	30(10) 430(15	i) respect	ively, to 1 ⁺ le	vel at 29	1.3037 ke	V					Ens12a *:
$*^{156}$ Tb $(\beta^+)^{156}$ Gd				t 88.4 to groun								Nub16b *:
$*^{156}$ Ho(β^+) ¹⁵⁶ Dy		800(50) to lev										Ens12a *:
$*^{156}$ Ho(β^+) ¹⁵⁶ Dy				cs only, incre	ased by e	valuator						GAu *
$*^{156}$ Er(β^+) 156 Ho				vel at 82.23 ke								Ens12a *
$*^{156}$ Tm(β^+) 156 Er		$091(50)$ to 2^+			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	., 200						Ens12a *
(- <i>ρ</i> · · · ·											
¹⁵⁷ Nd—u		-60614	47	-60614	27	0.0	1	32	32 ¹⁵⁷ Nd	CP1	1.0	12Va02
$^{157}\text{Nd} - ^{80}\text{Kr}_{1.963}$		103537	46	103536	27	0.0	1	34	34 ¹⁵⁷ Nd	CP1	1.0	12 Va02
$^{157}\text{Nd} - ^{86}\text{Kr}_{1.826}$		102610	46	102611	27	0.0	1	34	34 ¹⁵⁷ Nd	CP1	1.0	12 Va02 12 Va02
157Pm—u		-66880	13	-66879	8	0.1	1	33	33 ¹⁵⁷ Pm	CP1	1.0	12Va02
157 Pm $-^{80}$ Kr _{1.963}		97273	13	97271	8	-0.1	1	34	33 ¹⁵⁷ Pm	CP1	1.0	12Va02
157 Pm $-^{86}$ Kr _{1.826}		96346	13	96346	8	0.0	1	33	33 ¹⁵⁷ Pm	CP1	1.0	12Va02
157 Sm $-u$		-71582.2	8.3	-71581	5	0.1	1	33	33 ¹⁵⁷ Sm	CP1	1.0	12Va02
157 Sm $-^{80}$ Kr _{1.963}		92570.0	8.0	92569	5	-0.2	1	36	34 ¹⁵⁷ Sm	CP1	1.0	12Va02
157 Sm $-^{86}$ Kr _{1.826}		91643.0	8.3	91644	5	0.1	1	33	33 ¹⁵⁷ Sm	CP1	1.0	12Va02
$C_{10} H_9 N_2 - {}^{157}Gd$		152720	60	152605.4	1.3	-0.5	Ü		00 0111	R04	4.0	64De15
$C_9^{13}CH_8N_2-^{157}Gd$		148170	70	148135.2	1.3	-0.1	Ü			R04	4.0	64De15
$C_{10} H_5 O_2 - ^{157}Gd$		105080	60	104986.5	1.3	-0.4	Ü			R04	4.0	64De15
¹⁵⁷ Ho–u		-71724	30	-71748	25	-0.8	1	71	71 ¹⁵⁷ Ho	GS2	1.0	05Li24
157 Er $-u$		-68084	30	-68077	28	0.2	1	90	90 ¹⁵⁷ Er	GS2	1.0	05Li24
157 Tm $-u$		-63027	30				2			GS2	1.0	05Li24
157 Yb $-u$		-57389	30	-57351	12	1.3	U			GS2	1.0	05Li24
157 Lu $-$ u		-49842	31	-49856	13	-0.5	1	17	17 ¹⁵⁷ Lu	GS2	1.0	05Li24
¹⁵⁷ Gd ³⁵ Cl- ¹⁵⁵ Gd ³⁷ Cl		4318	4	4288.18	0.19	-1.9	U			H12	4.0	64Ba15
		4287	3			0.2	U			H21	2.5	70Ma05
		4289.0	0.7			-0.5	U			M21	2.5	75Ka25
		4288.83	0.66			-0.4	U			H41	2.5	85Dy04
157 Gd $-^{156}$ Gd		1860	60	1837.31	0.16	-0.1	U			R04	4.0	64De15
157 Gd O $-$ C ₁₅		-81114.2	5.4	-81117.5	1.3	-0.4	o			TG1	1.5	09Ke.A
		-81113.6	3.3			-0.8	U			TG1	1.5	11Ke03
157 Yb(α) 153 Er		4622.0	7.	4622	6	0.0	-					77Ha48
		4623.0	10.			-0.1	-			GSa		79Ho10
157 153	ave.	4622	6			-0.1	1	99	96 ¹⁵⁷ Yb			average
157 Lu(α) 153 Tm		5097.2	5.	5107.9	2.9	2.1	O			Dba		91Le15
		5096.2	20.			0.6	U			Bka		91To09
157r m () 152m		5111.5	5.	5120.0	• •	-0.7	0			Dba		92Po14
157 Lu ^{m} (α) 153 Tm		5128.9	10.	5128.8	2.0	0.0	U			IRa		79Al16 2
		5131.8	5.			-0.6	-			GSa		79Ho10 2
		5133.7	5.			-0.9	_			ORa		83To01 2
		5128.9 5118.7	5. 5.			0.0 2.0	О			Dba Bka		91Le15 91To09
		5125.8	5. 6.			0.5	_			DKa		911009 92Ha10
		5132.0	5.			-0.6	_			Dba		92Po14
		5127.9	4.			0.2	_			Daa		96Pa01
	ave.	5128.4	2.1			0.2	1	99	54 ¹⁵³ Tm	Daa		average
157 Hf(α) 153 Yb	ave.	5869.4	10.	5880	3	1.0	3	- //	31 III			73Ea01 2
111(0) 10		5884.1	5.	3000	3	-0.8	3			GSa		79Ho10 2
		5879.1	4.			0.2	3			Daa		96Pa01
$^{157}\text{Ta}(\alpha)^{153}\text{Lu}^{m}$		6277.2	4.	6275	8	-0.6	0			Ara		97Ir01
$^{157}\text{Ta}^{m}(\alpha)^{153}\text{Lu}$		6381.9	10.	6377	4	-0.5	3			GSa		79Ho10
()		6375.8	4.	/ /	-	0.2	3			Daa		96Pa01
157 Ta $^{n}(\alpha)^{153}$ Lu		7946.9	8.	7948	8	0.0	0			Daa		96Pa01
155 Gd(t,p) 157 Gd		6417.8	2.9	6414.43	0.16	-1.2	Ü			McM		89Lo07
157 Gd(p,t) 155 Gd		-6414	7	-6414.43	0.16	-0.1	Ü			McM		73Lo08
· · · ·		-6417	5			0.5	U			Min		73Oo01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	l value	v_i	Dg	Signf.	Main infl.	Lab 1	Reference
156 Gd $(n,\gamma)^{157}$ Gd	(250.4		(250.00	0.15	0.2					70D - 20
$Gd(n,\gamma)^{-1}Gd$	6359.6		6359.88	0.15	$0.3 \\ -0.1$	U U				70Bo29 71Gr42
	6360	1			-0.1 0.5				II	
	6359.8 6359.8				0.3	0	99	57 ¹⁵⁶ Gd	ILn ILn	87Sp.A 2 03Bo25
157 G 1/11 156 G 1			6250.00	0.15		1	99	3/ ***Ga		
157 Gd(γ ,n) 156 Gd	-6350	80	-6359.88		-0.1	U			Phi	60Ge01
¹⁵⁶ Gd(d,p) ¹⁵⁷ Gd	4136	10	4135.31	0.15	-0.1	U			Kop	67Tj01
¹⁵⁷ Gd(d,t) ¹⁵⁶ Gd	-112	10	-102.65		0.9	U		. 150	Kop	67Tj01
156 Gd(α ,t) 157 Tb $-^{158}$ Gd() 159 Tb	-616.2		-614.3	0.8	0.9	1	16	9 ¹⁵⁹ Tb	McM	75Bu02
156 Dy(d,p) 157 Dy	4748	10	4742	5	-0.6	-			Tal	68Be.A
	4753	10			-1.1	-		157	Kop	70Gr46
157 156	ave. 4750	7			-1.2	1	53	52 ¹⁵⁷ Dy		average
157 Ta(p) 156 Hf	925.0		935	10	0.6	O			Dap	96Pa01
	933.0				0.2	O			Ara	97Ir01
157 Pm $(\beta^{-})^{157}$ Sm	4360	100	4381	8	0.2	U			Kur	02Sh.B
157 Sm $(\beta^{-})^{157}$ Eu	2700	200	2781	6	0.4	U				73Ka23
	2734	50			0.9	U			Ida	93Gr17
157 Eu $(\beta^{-})^{157}$ Gd	1350	20	1365	4	0.7	U				64Sh21
•	1370	20			-0.3	U				66Fu05
157 Tb $(\varepsilon)^{157}$ Gd	62.4	0.6	60.04	0.30	-3.9	В				67Na08
	62.2	0.6			-3.6	В				83Be42
	60.0				0.1	1	98	93 ¹⁵⁷ Tb		92Ra18
$^{157}\text{Ho}(\beta^+)^{157}\text{Dy}$	2540	50	2592	24	1.0	1	23	22 ¹⁵⁷ Ho		72To05
$^{157}\text{Er}(\beta^+)^{157}\text{Ho}$	3470	80	3420	30	-0.6	1	18	10 ¹⁵⁷ Er		75Al.A
EL(p) III	3805	100	3120	50	-3.9	В	10	10 11	Dbn	94Po26
$^{157}\text{Tm}(\beta^+)^{157}\text{Er}$	4480	100	4700	40	2.2	В			IRS	93Al03
TIII(p) Li	4482	100	4700	40	2.2	В			Dbn	94Po26
$^{157}{\rm Yb}(\beta^+)^{157}{\rm Tm}$	5074	100	5290	30	2.1	U			Dbn	94Po26
$^{157}\text{Lu}^m(\text{IT})^{157}\text{Lu}$	32	2	20.9	2.0	-5.5	В			Dba	941 020 91Le15
Lu (II) Lu	21		20.9	2.0	-3.3 0.0	Б 1	100	83 ¹⁵⁷ Lu	Dba	
$^{157}\text{Ta}^{m}(\text{IT})^{157}\text{Ta}$		2			0.0		100	83 Lu	Doa	92Po14
	22	5				3			ъ	97Ir01
157 Ta ⁿ (IT) ¹⁵⁷ Ta ^m	1571	7	57	_	0.00000	3			Daa	96Pa01
157 Nd—u	Represents frequ	ency ratio 1.	$Nd^{++}/(C_1)$	$_{2}H_{4})^{\top} =$	0.968925	46(29)				WgM124*
157 Pm—u	Represents frequ	ency ratio 1.	$^{57}Pm^{++}/(C_1$	$_{12}H_4)^{+} =$	=0.968964	1141(81))			WgM124*
¹⁵⁷ Sm-u	Represents frequ)			WgM124*
157Lu-u	M - A = -46417(2			n at 20.9	(2.0) keV					Nub16b *:
157 Lu(α) 153 Tm	E_{α} =4925(5) to ¹⁵									Nub16b *:
157 Lu(α) 153 Tm	E_{α} =4924(20) to	$^{153}\text{Tm}^{m}$ at 4	13.2(0.2) keV	7						Nub16b *:
157 Lu $(\alpha)^{153}$ Tm	E_{α} =4939(5) to ¹⁵	$^{13}\text{Tm}^{m}$ at 43	3.2(0.2) keV;	replaced	l by ¹⁵⁷ Lu	$I^m(IT)$				Nub16b *:
157 Ta $(\alpha)^{153}$ Lu m	Replaced by ¹⁵³ I	$u^m(IT)$								AHW *
157 Ta $^{m}(\alpha)^{153}$ Lu	Reassigned									97Ir01 *:
$^{157}\mathrm{Ta}^n(\alpha)^{153}\mathrm{Lu}$	Replaced by auth	ors' value f	for 157 Ta n (IT))						AHW *
157 Ta(p) 156 Hf	Use instead 157 Ta	$n^m(IT)$								AHW *:
$^{157}\mathrm{Sm}(\beta^-)^{157}\mathrm{Eu}$	E_{β} =2400(200)		el at 197.863	and 3/2+	at 394.3	34 keV				Ens162 *:
157 Eu(β ⁻) 157 Gd	E_{β} = 870(30) 91						nd other E			Ens162 *
$^{157}\text{Tb}(\varepsilon)^{157}\text{Gd}$	LK=2.65(0.20);				at +7+.050	, KC v, ai	id other L	3-		92Ha03 **
$^{157}\text{Tb}(\varepsilon)^{157}\text{Gd}$		_	. ,		tad.					
	LK=2.69(0.20); o				tea					85Vo09 **
157 Ho(β^+) 157 Dy	$E_{\beta^+} = 1180(50)$ to				0)	2.101	(a (a ±)			Ens162 *:
157 Er(β^+) 157 Ho	$E_{\beta^+} = 2525(100)$						$(3/2^{+})$			94Po26 *:
157 157	level at 174.55 l				\rightarrow +258 k	æV				Ens162 *:
157 Lu m (IT) 157 Lu	Derived from 157	$Lu^m(\alpha)$ -157	$Lu(\alpha)$ difference	ence						92Po14 *
	_63436	25	-63435	14	0.0	1	33	33 158pm	CP1 1	0 12Va02
¹⁵⁸ Pm-u	-63436 101720	25 25	-63435	14	0.0	1	33	33 ¹⁵⁸ Pm	CP1 1.	
¹⁵⁸ Pm-u ¹⁵⁸ Pm- ⁸⁰ Kr _{1 975}	101720	25	101718	14	-0.1	1	33	33^{158} Pm	CP1 1.	0 12Va02
¹⁵⁸ Pm-u		25 25								0 12Va02 0 12Va02

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	1888	Item	011 01 1	Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Referenc	<u>e</u>
18	1							-								_
		158 Sm $-^{80}$ Kr _{1.975}		95106.5	9.1	95104	5	-0.2	1	34	32	¹⁵⁸ Sm	CP1	1.0	12Va02	
		158 Sm $-^{86}$ Kr _{1.837}		94159.3	9.4	94159	5	0.0	1	31	31	¹⁵⁸ Sm	CP1	1.0	12Va02	
	185 161 185 161 185	¹⁵⁸ Eu-u		-72208	25	-72201	11	0.3	1	19	19	¹⁵⁸ Eu		1.0	12Va02	*
18 18 18 18 18 18 18 18	18 18 18 18 18 18 18 18	158 Eu $^{-80}$ Kr _{1 975}		92949	25	92952	11	0.1	1	20	19	¹⁵⁸ Eu		1.0	12Va02	
C1 C1 C2 C3 C3 C3 C3 C3 C3 C3	C10 Hr Q0 − 18°C d	158 Eu $^{-86}$ Kr _{1 837}									19					
12870 112870 112870 112870 100 1123648 2.5 -1.3 U U U U U U U U U	C10 Hα Oγ-198 Dγ 112870 100 1123648 2.5 −1.3 U □ C10 010	C ₁₀ H ₆ O ₂ = ¹⁵⁸ Gd														
	18 18 19 19 19 19 19 19 19 19 19 19	$C_{10} H_0 G_2 = G_0$														
		158Ho-II														*
		158Er 11														~
1	Series	Li-u				-70107	21			01	01	158 ₪				
1848 1841 1842 1841	158 158	158T 1				62020	27			01	01	El				
1881 1882 1882 1883 1884	188 βρ-142 Sm1.11s 34252 22 34248 9 -0.2 1 16 14 18 8 γ b MA7 1.0 018058 188 Lu I -50720 30 -50848 16 1.2 R 62 1.0 112 1.0 U H2 1.0 H2 0.3 U H2 1.0 H2 2.5 70Ma05 188 Gal 35Cl - 156 Gal 37Cl 4930.8 0.7 - 0.2 U - H2 2.5 75Ra28 4930.13 1.36 - 0.0 U W2 H25 2.5 75Ra28 158 Qal - 157 Gal 3081.4 3.3 3080.7 2.6 -0.1 U - H25 2.5 75Ra28 158 Gal - 157 Gal 3081.4 3.3 3080.7 2.6 -0.1 U - H25 2.5 75Ra28 158 Gal - 157 Gal 3081.4 4.7 80967.8 3.2 - - -1.2 U - 1.0	1 m-u				-03020	21			0.1	0.1	158	CSI			
Sell	158 158 159	158xz 142 g				2.42.40	0					158 x 21	GS2			
\$\sqrt{156}\text{Gd} \text{35Cl} - 156\text{Gd} \text{37Cl} - 156\text{37Cl} - 1	1586gd 35Cl 1566gd 37Cl 4956 4 4931.9 31 31 31 31 31 31 31 3	158 Y b — 142 Sm _{1.113}								16	14	136 Y b				
14929 3	1490 3	150 Lu—u														
	4930.8 4930.8 4930.8 7 1.4 0 0 0 1.2 1.	¹³⁸ Gd ³³ Cl ⁻¹³⁶ Gd ³⁷ Cl				4931.19	0.19									
4930.8 4930.8 0.7 0.2 0.2 0.5 1441 2.5 855.04 1850.9 3°C -156.05 3081.4 3.3 3080.7 2.6 -0.1 0.1 0.5 1441 2.5 855.04 1850.9 3°C -156.05 3081.4 3.3 3080.7 2.6 -0.1 0.1 0.5 1441 2.5 855.04 1850.9 3°C -156.05 3081.4 3.3 3080.7 2.6 -0.1 0.1 0.5																
1.58p 35Cl - 156 py 37Cl 3081,4 3.3 3080,7 2.6 -0.1 U 1.5 1.5 2.5 2.5 2.5 2.5 2.5 3.5 1.5 1.5 3.5	188 By															
188 189																
188 Gd -157 Gd -158	188 143,78 143															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	¹⁵⁸ Dy ³⁵ Cl ⁻¹⁵⁶ Dy ³⁷ Cl							U					2.5		
188Gd O C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			392	48	143.78	0.07	-1.3	U				R04	4.0	64De15	
188 189	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	158 Gd O $-$ C ₁₅		-80968.3	5.4	-80973.7	1.3	-0.7	o				TG1	1.5	09Ke.A	
158 179 164 174 174 18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-80967.8	3.2			-1.2	U				TG1	1.5	11Ke03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	158 Gd O $-$ C $_{14}$		-80964.7	8.2			-0.7	U				TG1	1.5	11Ke03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	158 Yb(α) 154 Er		4174.9	10.	4170	7	-0.5	_						77Ha48	
158 Lu(α) 154 Tm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ave.						1	80	71	158 Yb				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158 Lu(α) 154 Tm				4790	5						IRa		_	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eu(w) IIII				1770	5									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158Hf(\alpha)154Vb				5404.8	2.7									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Pi(\omega) = \Pi(\omega)$				3404.0	2.7									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															L
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		07/0							100	100	158 ц г	Daa			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	158To(av)154I	ave.			6124	4			100	100	п	Doo			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Ia}(\alpha)^{\operatorname{tr}}$ Lu				0124	4									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158 m m (154 m				(205.1	2.0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1a^{m}(\alpha)^{13}$ Lu ^m				6205.1	2.8									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	158m n 154r m						-0.1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_						-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 W(α) 134 Hf				6613	3									*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 154														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{158}\mathrm{W}^m(\alpha)^{154}\mathrm{Hf}$				8502	7									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8506.8				-0.2					Daa			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7.				3				Ara			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	158 Gd(p,t) 156 Gd		-5818	5	-5815.47	0.16	0.5	U				Min		73Oo01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	158 Dy(p,t) 156 Dy		-7535	15	-7539.2	2.4	-0.3	U				Pri		77Ko04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	158 Gd(t, α) 157 Eu $^{-156}$ Gd() 155 Eu		-512	5	-514	4	-0.4	1	69	67	¹⁵⁷ Eu	LAl		79Bu05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7937.39 0.17 0.00 - Bdn 06Fi.A 157Gd(d,p) ¹⁵⁸ Gd 5724 10 5712.82 0.06 -1.1 U Kop 67Tj01 5706 5 1.4 U Tal 71Sh04	157 Gd(n, γ) 158 Gd			0.07	7937.39	0.06		_				MMn		82Is05	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	× 11/														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5706 5 1.4 U Tal 71Sh04	157 Gd(d,p) 158 Gd				5712.82	0.06									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		33(a,p) 34				2.12.02	0.00									
$^{157} Gd(n,\gamma)^{158} Gd \qquad \text{ave.} \qquad 7937.39 \qquad 0.06 \qquad 7937.39 \qquad 0.06 \qquad 0.0 \qquad 1 \qquad 100 \qquad 58 ^{158} Gd \qquad \text{average} \\ ^{158} Gd(d,t)^{157} Gd-^{159} Tb()^{158} Tb \qquad \qquad 195.0 \qquad 1.5 \qquad 195.6 \qquad 0.6 \qquad 0.4 \qquad 1 \qquad 18 \qquad 18 ^{158} Tb McM \qquad 84Bu14$	$^{158}Gd(dt)^{15}/Gd$ -1688 10 -1680.16 0.06 0.8 II Kon 67Ti01	¹⁵⁸ Gd(d t) ¹⁵⁷ Gd				-1680 16	0.06									
$^{158}\text{Gd}(\text{d,t})^{157}\text{Gd} - ^{159}\text{Tb}()^{158}\text{Tb} \qquad 195.0 \qquad 1.5 \qquad 195.6 \qquad 0.6 \qquad 0.4 \qquad 1 \qquad 18 \qquad 18 ^{158}\text{Tb} \text{McM} \qquad 84\text{Bu} \\ 14 18 18 18 18 18 18 18 $	157 Gd ave 7037 30 0.06 7037 30 0.06 0.0 1 100 58 158 Gd		9370							100	50	158 C.A	тор			
	Out., 77 Ou average 1886, 48, 415, 76, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17		ave.									158 TL	Мам			
										10	18	I D				
	$^{157}\mathrm{Gd}(\alpha,t)^{158}\mathrm{Tb} - ^{158}\mathrm{Gd}()^{159}\mathrm{Tb}$ -198.3 1.0 -195.6 0.6 2.7 0 McM $75\mathrm{Bu}02$	$Ga(\alpha,t)^{-1}$ $Ib-3^{-1}$ $Ga()^{-1}$ Ib				-195.6	0.6			41	20	158				
-196.6 1.0 1.0 1 41 39 158 Tb McM 84Bu14	-190.0 1.0 1.0 1 41 39 66 16 McM 84Bu14			-196.6	1.0			1.0	1	41	39	ID	IVICIVI		84BU14	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-	Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁵⁸ Tb(p,d) ¹⁵⁷ Tb		-4560.3	4.2	-4554.0	1.0	1.5	U			Pri		85Al02 *
158 Dy(d,t) 157 Dy		-2804	10	-2797	5	0.7	_			Tal		68Be.A
Dy(u,t) Dy		-2804	10	-2171	3	0.7	_			Kop		70Gr46
	ave.	-2804	7			1.0	1	53	48 ¹⁵⁷ Dy	Кор		average
158 Pm(β^-) 158 Sm	avc.	6120	100	6161	14	0.4	0	33	40 Dy	Kur		02Sh.A
1 m(p) 5m		6085	80	0101	1-7	1.0	0			Kur		07Ha57
		6080	80			1.0	U			Kur		10Ha.A
158 Sm $(\beta^{-})^{158}$ Eu		1999	15	2005	10	0.4	1	48	42 ¹⁵⁸ Eu	Ida		93Gr17
$^{158}\text{Eu}(\beta^{-})^{158}\text{Gd}$		3550	120	3434	10	-1.0	U	70	42 Eu	Idu		65Sc19 *
Eu(p) Gu		3440	100	3434	10	-0.1	U					66Da06 *
$^{158}\mathrm{Tb}(\varepsilon)^{158}\mathrm{Gd}$		1237.542	0.018	1218.9	1.0	*****	F					83Ra25 *
10(c) Gu		1220	13	1210.7	1.0	-0.1	U					87Br33
		1222.1	3.			-1.1	Ü					85Vo13 *
$^{158}\text{Tb}(\beta^-)^{158}\text{Dy}$		952	10	936.7	2.5	-1.5	Ü					68Sc04 *
10(p) Dj		933	6	750.7	2.3	0.6	1	17	14 ¹⁵⁸ Dy			85Vo03 *
$^{158}\text{Ho}(\beta^+)^{158}\text{Dy}$		4350	100	4220	27	-1.3	U	17	14 Бу			61Bo24 *
$110(p^{\circ})$ by		4230	30	7220	21	-0.3	2					68Ab14 *
158 Er(β^+) 158 Ho		1710	40	880	40	-20.7	F					82Vy06 *
$^{158}\text{Tm}(\beta^+)^{158}\text{Er}$		6530	100	6600	30	0.7	_			IRS		93Al03
III(p) Li		6624	60	0000	30	-0.4	_			Dbn		94Po26 *
	ave.	6600	50			-0.4 0.0	1	37	19 ¹⁵⁸ Er	Doll		average
158 Lu(ε) 158 Yb	ave.	8960	200	8798	17	-0.8	U	31	19 E1			95Ga.A
*158Pm-u	Danraca	nts frequency					U					
* 158 Sm-u		nts frequency					`					WgM124** WgM124**
* * * 5in – u * 158 Eu – u		nts frequency					,					WgM124**
* ¹⁵⁸ Ho-u							137					_
* 158 W(α) 154 Hf		-66148(29) ko										Nub16b **
$*^{158}$ Tb(p,d) ¹⁵⁷ Tb		value E=645 58Gd(p,d))=1			anbratea t	0 E=0433(30) ke v					89Ho12 **
) = 11 -4	1022 (074)	- 3.7					AHW **
$*^{158}$ Eu(β^-) 158 Gd		20(120) 2430				1023.0974 K	ev					Ens043 **
* 158mm () 158 cr 1		level at 1041				2						Ens043 **
$*^{158}$ Tb $(\varepsilon)^{158}$ Gd		0009(2) to 2 ⁺	level at 11	8 / . 143, reca	alculated (Į						Ens043 **
* $*^{158}$ Tb(ε) ¹⁵⁸ Gd		<0.00002	.1 1 . 11	07 142 1 37		. 10						87Br33 **
		$39(0.01)$ to 2^+										Ens043 **
$*^{158}\text{Tb}(\beta^{-})^{158}\text{Dy}$		3(10) 834(6)					L					Ens043 **
$*^{158}$ Ho(β^+) ¹⁵⁸ Dy		0(80) to 2436		els; original	ly assigne	d to 138 Er(B	⁻);					Ens043 **
* 159 rr (0) 159 p		preted by eval		20 (25.51								AHW **
$*^{158}$ Ho(β^+) ¹⁵⁸ Dy	$E_{\beta^+}=28$	90(20), 700(6	60) to 317.1	39-637.71	2 and 243	6.52-2605.9	6 levels	, and				Ens043 **
*		300(30), 1850						5				Nub16b **
*		41.75 levels;		00) was origi	inally assi	gned to 158 E	$r(\beta^+)$;					68Ab14 **
*		preted by eval										AHW **
$*^{158}$ Er(β^+) 158 Ho		(0.1) from an			level							96Go06 **
*		1550 from up										75Bu.A **
$*^{158}$ Tm(β^+) 158 Er	$E_{\beta^+}=54$	10(60) to 2 ⁺	level at 192	2.15 keV								Ens07a **
¹⁵⁹ Pm-u		-60715	18	-60714	11	0.1	1	36	36 ¹⁵⁹ Pm		.0	12Va02 *
159 Pm $-^{80}$ Kr _{1.988}		105529	19	105527	11	-0.1	1	32	32 ¹⁵⁹ Pm	CP1 1	.0	12Va02
159 Pm $-^{86}$ Kr _{1.849}		104567	19	104567	11	0.0	1	32	32 ¹⁵⁹ Pm		.0	12Va02
¹⁵⁹ Sm-u		-66784	11	-66783	6	0.1	1	34	34 ¹⁵⁹ Sm		.0	12Va02 *
$^{159}\mathrm{Sm} - ^{80}\mathrm{Kr}_{1.988}$		99459	11	99458	6	-0.1	1	34	33 ¹⁵⁹ Sm		.0	12Va02
159 Sm $-^{86}$ Kr $_{1.849}$		98498	11	98498	6	0.0	1	34	34 ¹⁵⁹ Sm	CP1 1	.0	12Va02
¹⁵⁹ Eu-u		-70899	10	-70900	5	-0.1	1	22	22 ¹⁵⁹ Eu	CP1 1	.0	12Va02 *
159 Eu $-^{80}$ Kr $_{1.988}$		95344	10	95340	5	-0.4	1	23	21 ¹⁵⁹ Eu	CP1 1	.0	12Va02
159 Eu $-^{86}$ Kr _{1.849}		94382	10	94381	5	-0.1	1	22	22 ¹⁵⁹ Eu		.0	12Va02
C_9 ^{13}C H_6 O_2 $ ^{159}$ Tb		114840	50	114780.3	1.3	-0.3	U				.0	64De15
$C_{10} H_7 O_2 - ^{159} Tb$		119238	25	119250.5	1.3	0.1	U				.0	64De15
-												

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Referenc	<u>e</u>
		1		.,									_
¹⁵⁹ Dy-u		-74285	30	-74254.0	1.6	1.0	U			GS2	1.0	05Li24	
¹⁵⁹ Ho-u		-72365	71	-72281	3	1.2	U			GS2	1.0	05Li24	*
¹⁵⁹ Er-u		-69290	30	-69309	4	-0.6	U			GS2	1.0	05Li24	
¹⁵⁹ Tm-u		-65025	30				2			GS2	1.0	05Li24	
$^{159}\text{Yb} - ^{142}\text{Sm}_{1,120}$		35035	24	35026	19	-0.4	2			MA7	1.0	01Bo59	
¹⁵⁹ Yb-u		-59960	30	-59945	19	0.5	R			GS2	1.0	05Li24	
¹⁵⁹ Lu-u		-53420	61	-53360	40	0.9	2			GS2	1.0	05Li24	*
¹⁵⁹ Hf—u		-46044	32	-46004	18	1.2	R			GS2	1.0	05Li24	
¹⁵⁹ Tb ³⁵ Cl ₂ - ¹⁵⁵ Gd ³⁷ Cl ₂		8625.64	1.03	8624.4	0.8	-0.5	1	11	7 ¹⁵⁹ Tb	H41	2.5	85Dy04	
¹⁵⁹ Tb ³⁵ Cl- ¹⁵⁷ Gd ³⁷ Cl		4333.3	1.2	4336.2	0.8	1.0	Ü		, 10	H25	2.5	72Ba08	
io ei du ei		4337.01	0.61	1330.2	0.0	-0.5	1	28	18 ¹⁵⁹ Tb	H41	2.5	85Dy04	
159 Lu(α) 155 Tm		4534.3	10.	4490	40	-0.8	R	20	10 10	IRa	2.5	80Al14	
Lu(u) IIII		4531.3	10.	7770	40	-0.8	R			iixa		92Ha10	
159 Hf(α) 155 Yb		5221.2	10.	5225.1	2.7	0.4	U					73Ea01	Z
$III(\alpha) = Ib$		5226.2	5.	3223.1	2.7	-0.2	4			GSa		79Ho10	Z
		5223.0	5.			-0.2 0.4	4			ORa		83To01	Z
		5219.6				0.4				OKa		92Ha10	L
		5229.8	6. 5.			-0.9	4			Daa		92Ha10 96Pa01	
159 Ta $(\alpha)^{155}$ Lu ^m				5660	7		4						
$137 \operatorname{Ia}(\alpha)^{133} \operatorname{Lu}^{m}$		5658.6	5.	5660	7	0.2	О			Daa		96Pa01	*
159m m ()155r		5661.7	5.	57.45	2	-0.4	0			Ara		97Da07	*
$^{159}\mathrm{Ta}^m(\alpha)^{155}\mathrm{Lu}$		5745.8	6.	5745	3	-0.2	4			GSa		79Ho10	
		5743.8	5.			0.2	4			Daa		96Pa01	
150 155		5744.8	5.	< 150		0.0	4			Ara		97Da07	
159 W(α) 155 Hf		6444.5	6.	6450	4	1.0	3			GSa		81Ho10	*
		6440.3	5.1			2.0	0			Daa		92Pa05	
150 155		6454.7	5.			-0.8	3			Daa		96Pa01	
159 Re ^{m} (α) 155 Ta		6951.2	26.7	6969	23	0.7	R			Daa		07Pa27	
157 Gd(t,p) 159 Gd		5398.9	2.3	5398.80	0.11	0.0	U			McM		89Lo07	
$^{158}\mathrm{Gd}(\mathrm{n},\gamma)^{159}\mathrm{Gd}$		5942	1	5943.21	0.08	1.2	U					71Gr42	
		5943.07	0.15			0.9	_			ILn		87Sp.A	Z
		5943.1	0.2			0.5	_			Dbn		03Gr13	
		5943.32	0.12			-0.9	-			BNn		03Gr27	
$^{158}\text{Gd}(d,p)^{159}\text{Gd}$		3717	10	3718.64	0.08	0.2	U			Kop		67Tj01	
$^{158}\mathrm{Gd}(\mathrm{n},\gamma)^{159}\mathrm{Gd}$	ave.	5943.20	0.08	5943.21	0.08	0.1	1	100	91 ¹⁵⁹ Gd			average	
158 Gd(α ,t) 159 Tb		-13686.6	10.	-13682.1	0.8	0.5	U			McM		75Bu02	
$^{158}\text{Gd}(\alpha,t)^{159}\text{Tb} - ^{164}\text{Dy}()^{165}\text{Ho}$		-85.7	2.2	-88.2	1.1	-1.1	1	23	10 ¹⁶⁵ Ho	McM		84Bu14	
159 Tb $(\gamma, n)^{158}$ Tb		-8141	39	-8133.0	0.6	0.2	U			Phi		60Ge01	
159 Tb(d,t) 158 Tb		-1870	15	-1875.8	0.6	-0.4	U			Tal		70Jo22	
159 Tb(d,t) 158 Tb $-^{164}$ Dy() 163 Dy		-474.3	1.0	-474.9	0.6	-0.6	1	41	39^{-158} Tb	McM		84Bu14	
158 Dy(d,p) 159 Dy		4608	10	4606.5	2.6	-0.1	U			Tal		68Be.A	
- J (4600	10			0.7	Ü			Kop		70Gr46	
$^{159}\text{Re}^{m}(p)^{158}\text{W}$		1816.4	20.	1809	17	-0.4	4			Dap		06Jo10	
$^{159}\text{Pm}(\beta^{-})^{159}\text{Sm}$		5460	140	5653	12	1.4	0			Kur		07Ha57	
1 m(p) Sm		5430	140	5055	12	1.6	Ü			Kur		10Ha.A	
159 Sm(β^-) 159 Eu		3840	100	3836	7	0.0	0			Kur		02Sh.A	
Sin(p) Lu		3805	65	3636	,	0.5	0			Kur		07Ha57	
		3800	65			0.5	U			Kur		10Ha.A	
$^{159}\text{Eu}(\beta^-)^{159}\text{Gd}$		2600	50	2518	4	-1.6	U			1341		65Iw01	*
$^{159}\text{Gd}(\beta^-)^{159}\text{Tb}$								26	16 ¹⁵⁹ Tb				*
159 Dy $(\varepsilon)^{159}$ Tb		969.0 265.0	1.5	970.9	0.8	1.3	1	26	62 ¹⁵⁹ Dy			77Bo.A	
		365.9	1.3	365.2	1.2	-0.5	1	80	62 .5.Dy			68My.A	
$^{159}\text{Ho}(\beta^+)^{159}\text{Dy}$		1837.6	6.	1837.6	2.7	0.0	2					79Ad08	*
159 = (0+)150 + 1		1837.6	3.			0.0	2					82Vy02	*
159 Er(β^+) 159 Ho		2768.5	2.0	25.0.5	2 ^		3			TE C		84Ka.A	*
159m (0+) 159m		2810	100	2768.5	2.0	-0.4	U			IRS		93A103	
$^{159}\text{Tm}(\beta^+)^{159}\text{Er}$		3400	300	3991	28	2.0	U					75St07	
		3850	100			1.4	U			IRS		93A103	
		3670	100			3.2	В			Dbn		94Po26	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input va		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{159}{ m Yb}(eta^+)^{159}{ m Tm}$		5050	200	4730	30	-1.6	U			IRS		93Al03
		4554	150			1.2	U			Dbn		94Po26 *
159 Lu(β^+) 159 Yb		5850	150	6130	40	1.9	U			IRS		93A103
150		5803	150			2.2	U			Dbn		94Po26
$^{159}\text{Ta}^{m}(\text{IT})^{159}\text{Ta}$		63.7	5.2	_			4			Ara		97Da07
* ¹⁵⁹ Pm-u		ents frequency										WgM124**
* ¹⁵⁹ Sm-u		ents frequency										WgM124**
* ¹⁵⁹ Eu-u		ents frequency					3(63)					WgM124**
* ¹⁵⁹ Ho-u		=-67304(28) 1										Nub16b **
* ¹⁵⁹ Lu-u		=-49710(28) 1		nixture gs+m	at 100#	80 keV						Nub16b **
$*^{159}$ Ta $(\alpha)^{155}$ Lu ^m	Replac	ed by 155 Lu m ((IT)									AHW **
$*^{159}W(\alpha)^{155}Hf$	_	al value E_{α} =6										89Ho12 **
$*^{159}$ Eu(β^-) ¹⁵⁹ Gd	E_{β} = 2	350(50) to 7/2	2 ⁻ level a	ıt 227.412 le	vel, and	other E_{β^-}						Ens121 **
$*^{159}$ Dy $(\varepsilon)^{159}$ Tb		ntensity of fee										Ens121 **
$*^{159}$ Ho(β^+) ¹⁵⁹ Dy		06(6) 506(3)										Ens121 **
$*^{159}$ Er(β^+) ¹⁵⁹ Ho	$E_{\beta^+}=1$	122(3) to 13/2	2 ⁺ level a	t 624.5 keV,	and other	er $E_{oldsymbol{eta}^+}$						Ens121 **
$*^{159}$ Yb $(\beta^+)^{159}$ Tm	$E_{\beta}^{+}=3$	366(150) to 7	/2 ⁻ level	at 166.17 ke	eV	,						Ens121 **
¹⁶⁰ Sm-u		61666	11	61665	6	0.1	1	2.4	34 ¹⁶⁰ Sm	CP1	1.0	12Vo02
160 Sm-80 Kr _{2.000}		-64666 102581	11 11	-64665 102579	6 6	$0.1 \\ -0.2$	1 1	34 34	34 ¹⁶⁰ Sm	CP1	1.0 1.0	12Va02 * 12Va02
160 Sm $-^{86}$ Kr _{1.860}		102381	11	102379	6	-0.2 0.0	1	34	34 ¹⁶⁰ Sm	CP1	1.0	12 Va02 12 Va02
160 Eu – u		-68150	17	-68149	10	0.0	1	36	36 ¹⁶⁰ Eu	CP1	1.0	12 Va02 12 Va02 *
160 Eu $^{-80}$ Kr _{2.000}		99096	18	99095	10	-0.1	1	32	30 Eu 32 ¹⁶⁰ Eu	CP1	1.0	12 Va02 * 12 Va02
160 Eu $^{-86}$ Kr _{1.860}		98115	18	98115	10	0.0	1	32	32 ¹⁶⁰ Eu	CP1	1.0	12 Va02 12 Va02
$C_{12} H_{16} - {}^{160}Gd$		198150	50	198139.0	1.4	-0.0	U	32	32 Eu	R04	4.0	64De15
$C_{12} H_{16} - G_{00}$ $C_{12} H_{16} - G_{00}$ Dy		200050	70	199997.3	0.8	-0.1 -0.2	U			R04	4.0	64De15
C ₁₂ H ₁₆ – Dy ¹⁶⁰ Er – u		-70916	30	-70923	26	-0.2 -0.2	_			GS2	1.0	04De13
EI — u	ave.	-70910 -70914	27	-70923	20	-0.2 -0.3	1	95	95 ¹⁶⁰ Er	U32	1.0	average
160 Tm $-$ u	ave.	-64773	127	-64740	40	0.3	U	93	95 EI	GS1	1.0	
TIII—u		-64775	39	-04740	40	0.5	1	89	89 ¹⁶⁰ Tm	GS2	1.0	00Ra23 * 05Li24 *
$^{160}{\rm Yb} - ^{142}{\rm Sm}_{1.127}$		33120	20	33124	8	0.3	1	18	15 ¹⁶⁰ Yb	MA7	1.0	03L124 * 01Bo59
160 Yb-u		-62440	120	-62440	8	0.2	U	10	13 10	GS1	1.0	00Ra23
1 <i>0</i> -u		-62438	30	-02440	o	-0.0	U			GS2	1.0	05Li24
$^{160}{\rm Yb} - ^{133}{\rm Cs}_{1.203}$		51301.8	8.4	51301	8	-0.1	1	85	85 ¹⁶⁰ Yb	MA8	1.0	17Ma.A
160 Lu-u		-53967	61	31301	O	-0.1	2	0.5	05 10	GS2	1.0	05Li24 *
160Hf-u		-33307 -49334	30	-49317	10	0.6	Ü			GS2	1.0	05Li24 *
¹⁶⁰ Gd ³⁵ Cl ₂ - ¹⁵⁶ Gd ³⁷ Cl ₂		10831.70	1.27	10831.2	0.8	-0.2	U			H41	2.5	85Dy04
¹⁶⁰ Gd ³⁵ Cl- ¹⁵⁸ Gd ³⁷ Cl		5890	5	5900.0	0.8	0.5	U			H12	4.0	64Ba15
Gu CI- Gu CI		5899	3	3900.0	0.6	0.3	U			H21	2.5	70Ma05
		5900.0	0.5			0.0	_			M21	2.5	75Ka25
		5899.88	0.96			0.0	_			H41	2.5	85Dy04
	ave.	5900.0	1.1			0.0	1	51	$35^{-160} Gd$	11.11	2.5	average
¹⁶⁰ Dy ³⁵ Cl- ¹⁵⁸ Dy ³⁷ Cl	uve.	3731.8	2.3	3738.8	2.4	1.2	1	18	18 ¹⁵⁸ Dy	H25	2.5	72Ba08
$^{160}\text{Gd} - ^{160}\text{Dy}$		1854.5	0.8	1858.3	1.3	1.9	1	41	35 ¹⁶⁰ Gd	H25	2.5	72Ba08
¹⁶⁰ Gd O-C ₁₅		-78020.1	5.8	-78023.8	1.4	-0.4	0		33 Gu	TG1	1.5	09Ke.A
Gu 0-C ₁₅		-78020.1 -78019.9	3.6	-70023.0	1.7	-0.7	U			TG1	1.5	11Ke03
160 Hf(α) 156 Yb		4892.2	10.	4901.9	2.6	0.9	_			101	1.5	73Ea01 Z
π(ω) το		4905.0	5.	1,01.,	2.0	-0.6	_			GSa		79Ho10 Z
		4904.0	5.			-0.4	_			ORa		83To01 Z
		4901.8	6.			0.0	_			0714		92Ha10
		4902.8	10.			-0.1	_					95Hi12
		4900.8	6.			0.2	_			Daa		96Pa01
	ave.	4902.4	2.6			-0.2	1	99	$82^{-160} Hf$			average
160 Ta $(\alpha)^{156}$ Lu		5449.5	5.	5451	5	0.3	3			Daa		96Pa01
• •		5456.6	10.		-	-0.6	3			Jya		09Ha42
160 Ta $^m(\alpha)^{156}$ Lu m		5550.9	5.	5548.5	3.0	-0.5	4			GSa		79Ho10 Z
· · · · · · · · · · · · · · · · · · ·		5538.7	6.		- *	1.6	4					92Ha10
		5552.1	5.			-0.7	4			Daa		96Pa01
		5551.0	10.			-0.3	4			Jya		09Ha42
$^{160}{ m W}(lpha)^{156}{ m Hf}$		6072.1	10.	6066	5	-0.6	_			GSa		79Ho10
()				2000	-	0.0						

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

tem		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Referenc
60 W(α) 156 Hf		6063.9	5.	6066	5	0.3	_				Daa		96Pa01
w(a) III	ave.	6066	5	0000	3	0.0	1	100	100) ¹⁶⁰ W	Daa		average
60 Re(α) 156 Ta	avc.	6704.9	16.	6698	4	-0.4	0	100	100	, ,,	Daa		92Pa05
$Re(\alpha)$ 1a		6711.1		0098	4	-0.4 -0.8					Daa		92Fa03 96Pa01
			16.			-0.8	0						
58 a. (c.) 160 a. t		6697.7	4.	1012.0	0.7	0.5	4				Daa		11Da12
58 Gd(t,p) 160 Gd		4912.0	2.2	4913.0	0.7	0.5	U				McM		89Lo07
60 Gd(p,t) 158 Gd		-4919	5	-4913.0	0.7	1.2	U				Min		73Oo01
60 Dy(p,t) 158 Dy		-6924	5	-6926.2	2.3	-0.4	-				Min		73Oo01
		-6925.1	3.4			-0.3	-				McM		88Bu08
	ave.	-6924.8	2.8			-0.5	1	64	64	¹⁵⁸ Dy			average
60 Gd(t, α) 159 Eu $^{-158}$ Gd() 157 Eu		-666	5	-668	4	-0.4	1	69	36	¹⁵⁹ Eu	LAl		79Bu05
60 Gd(d,t) 159 Gd		-1200	10	-1194.4	0.7	0.6	U				Kop		67Tj01
$^{59}\text{Tb}(n,\gamma)^{160}\text{Tb}$		6375.45	0.3	6375.21	0.13	-0.8	_				. 1		74Ke01
10(11,7)		6375.13	0.15	0070121	0.12	0.5	_				Bdn		06Fi.A
$^{59}\text{Tb}(d,p)^{160}\text{Tb}$		4165	20	4150.65	0.13	-0.7	U				MIT		64Sp12
10(u,p) 10		4153	5	4130.03	0.13	-0.7 -0.5	U				Tal		67St14
59 Tb $(n, \gamma)^{160}$ Tb	0***			6275 21	0.12			00	00	¹⁶⁰ Tb	ıaı		
1 D(Π,γ) ²⁻² I D	ave.	6375.19	0.13	6375.21	0.13	0.1	1	99	90	10	m 1		average
60 Dy(d,t) 159 Dy		-2339	10	-2319.7	1.4	1.9	U				Tal		68Be.A
70 150		-2323	10			0.3	U				Kop		70Gr46
60 Re(p) 159 W		1269.1	6.	1267	7	-0.3	o				Dap		92Pa05
		1271	9			-0.4	o				Dap		96Pa01
		1272.2	6.			-0.9	R				Dap		11Da12
60 Eu(β^{-}) 160 Gd		3900	300	4461	10	1.9	U						73Da05
4		4200	200			1.3	U						73Mo18
		4705	60			-4.1	В				Kur		07Ha57
		4695	60			-3.9	C				Kur		10Ha.A
			35			-0.5	U				Kur		14Ha38
50TL (0-)160D-		4480		1026 5	1.2						Kui		
$^{60}{ m Tb}(eta^-)^{160}{ m Dy}$		1838	10	1836.5	1.2	-0.2	U						57Na03
		1827	10			0.9	U						59Gr93
		1825	10			1.1	U						63Wu01
60 Ho(β^{+}) 160 Dy		3290	15				2						66Av03
$^{60}\mathrm{Er}(\varepsilon)^{160}\mathrm{Ho}$		420	150	319	29	-0.7	U						82Vy06
$^{60}\text{Tm}(\beta^+)^{160}\text{Er}$		5600	300	5760	40	0.5	U						75St12
•		5890	100			-1.3	1	16	11	$^{160}{\rm Tm}$	IRS		93A103
60 Lu(β^{+}) 160 Yb		7210	240	7890	60	2.8	U						83Ge08
Ευ(β') 10		7340	100	7070	00	5.5	C				IRS		83Vi.A
		7300	100			5.9	В				IRS		93A103
⁶⁰ Sm-u	D			60 c++ //C	TT \+			7)			IKS		
∞Sm−u	Repres	ents frequen	cy ratio	60 Sm ⁺⁺ /(C	12H4)' =	=0.95077	5181(6/	')					WgM12
⁶⁰ Eu−u				60 Eu ⁺⁺ /(C ₁									WgM12
⁶⁰ Tm−u			*	r mixture gs-		. ,							Nub16b
60 Tm $-$ u	M-A=	=-60283(28)	keV for	mixture gs+1	m at 70(2	20) keV							Nub16b
⁶⁰ Lu−u	M-A=	=-50270(28)	keV for	mixture gs+1	m at 0#1	00 keV							Nub16b
60 Dy(p,t) 158 Dy	O - O(164 Dy(p,t))=	-1477.9((3.4), see 164	Dy(p,t)								AHW
60 Re(p) 159 W				$E_p=1271$		$Q_n = 1279$) 1(9.) ke	eV					WgM10
$^{60}\text{Tb}(\beta^{-})^{160}\text{Dy}$				0) respective					ther F				Ens059
$^{60}\text{Ho}(\beta^+)^{160}\text{Dy}$				1694.37 keV				c v, and c	mici L	β-			
$HO(p^{-1})$ Dy	Lβ+=3	70(13) 10 4	ievei at	1094.37 Ke v	; and 104	+3(13) III	0111 7111 77						Ens059
(0- 1/0-				l at 1285.602	2 and 3 ⁻	at 1286.	/II keV						Nub16b
60 Er $(\varepsilon)^{160}$ Ho		795(0.2) to 1											Ens059
60 Tm $(\beta^+)^{160}$ Er	$E_{\beta^+}=3$	700(300) to	854.4-10	007.95 levels	s, reassig	ned by e	valuator						Ens059
⁵¹ Sm—u		-60841	13	-60840	7	0.1	1	32	32	¹⁶¹ Sm	CP1	1.0	12Va02
61 Sm $-^{80}$ Kr _{2.013}		107493	12	107491	7	-0.2	1	38	37	¹⁶¹ Sm		1.0	12Va02
61 Sm $-^{86}$ Kr _{1.872}		106496		106497	7	0.1	1	32	32	¹⁶¹ Sm			12 Va02
OH N11 872		100490	13			0.1	1	34				1.0	
61Ev. v.		66226	10	66226	11	0.0	1	25	25	101			1037-00
61 Eu – u .61 Eu – 80 Kr _{2.013}		-66336 101996	19 19	-66336 101995	11 11	$0.0 \\ 0.0$	1 1	35 35	35 34	¹⁶¹ Eu ¹⁶¹ Eu		1.0 1.0	12Va02 12Va02

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Mair	n infl.	Lab	F	Referenc	e
¹⁶¹ Eu- ⁸⁶ Kr _{1.872}		101000	20	101001	11	0.0	1	31	31	¹⁶¹ Eu	CP1	1.0	12Va02	
$C_{13} H_5 = {}^{161}Dy$		112246	25		0.8	-0.6		31	31	Eu	R04	4.0	64De15	
¹⁶¹ Tm-u				112186.1	0.6	-0.0	U							
161xa 142 c		-66451	30	24065	16	0.2	2				GS2	1.0	05Li24	*
161 Yb $-^{142}$ Sm _{1.134}		34071	19	34065	16	-0.3	2				MA7		01Bo59	
¹⁶¹ Yb-u		-62120	110	-62093	16	0.2	U				GS1	1.0	00Ra23	
161		-62107	30			0.5	R				GS2	1.0	05Li24	
¹⁶¹ Lu-u		-56428	30				2				GS2	1.0	05Li24	
161 Hf $-u$		-49733	30	-49721	24	0.4	1	65	65	$^{161}\mathrm{Hf}$	GS2	1.0	05Li24	
¹⁶¹ Dy ³⁵ Cl- ¹⁵⁹ Tb ³⁷ Cl		4535.0	1.0	4535.3	1.3	0.1	1	25	22	¹⁵⁹ Tb	H25	2.5	72Ba08	
161 Hf(α) 157 Yb		4717.0	10.	4682	24	-0.7	_						73Ea01	\mathbf{Z}
		4725.2	10.			-0.9	_						82Sc15	Z
		4724.2	5.			-0.8	_				ORa		83To01	Z
		4716.4	7.			-0.7	_						92Ha10	
		4721.5	10.			-0.8	_						95Hi12	
	ave.	4721	3			-0.8	1	23	19	$^{161}\mathrm{Hf}$			average	
161 Ta $^m(\alpha)^{157}$ Lu m		5278.9	5.	5277	6	-0.5	F				GSa		79Ho10	*
Ta (a) Eu		5280.4	5.	3211	O	-0.8	F				Oba		92Ha10	-1-
		5271.2	7.			0.8	F				Daa		96Pa01	*
		5282.5	7. 7.			-0.9							05Sc22	
							F	0.4	5.0	¹⁶¹ Ta ^m	Jya			*
161		5273.2	6.	5000		0.5	1	94	56	ioi Iam	-		12Th13	_
$^{161}\mathrm{W}(lpha)^{157}\mathrm{Hf}$		5923.4	5.	5923	4	-0.1	4				GSa		79Ho10	Z
161 167		5922.4	5.			0.1	4				Daa		96Pa01	
$^{161}\mathrm{Re}^m(\alpha)^{157}\mathrm{Ta}^m$		6439.3	10.	6430	4	-0.9	2				GSa		79Ho10	
		6425.0	6.			0.8	2				Daa		96Pa01	
		6432.1	7.			-0.3	2				Ara		97Ir01	
161 Os $(\alpha)^{157}$ W		7065.9	12.				3						10Bi03	
161 Os $(\alpha)^{157}$ W ^p		6748.0	30.				4						10Bi03	
161 Dy(p,t) 159 Dy		-6546	5	-6549.5	1.4	-0.7	_				Min		73Oo01	
3.4777		-6547.9	2.5			-0.6	_				McM		88Bu08	*
	ave.	-6547.5	2.2			-0.9	1	40	38	¹⁵⁹ Dy			average	
$^{160}Gd(n,\gamma)^{161}Gd$	ave.	5635.4	1.0			0.7	2	10	50	Dj			71Gr42	
160 Gd(d,p) 161 Gd		3411	10	3410.8	1.0	0.0	U				Kop		67Tj01	
$^{160}\text{Gd}(\alpha, t)^{161}\text{Tb} - ^{158}\text{Gd}()^{159}\text{Tb}$								5.0	27	¹⁶⁰ Gd				
		678.0	1.0	677.0	0.7	-1.0	1	56	27		McM		75Bu02	
160 Tb $(n,\gamma)^{161}$ Tb		7696.3	0.6	7696.6	0.6	0.6	1	84	74	¹⁶¹ Tb			75He.C	
160 Dy $(n,\gamma)^{161}$ Dy		6451.5	2.	6454.39	0.08	1.4	U						77Be03	
		6454.40	0.09			-0.1	-				ILn		86Sc16	Z
460		6454.34	0.14			0.3	_				Bdn		06Fi.A	
160 Dy(d,p) 161 Dy		4231	10	4229.82	0.08	-0.1	U				Tal		68Be.A	
		4237	10			-0.7	U				Kop		70Gr46	
161 Dy(d,t) 160 Dy		-205	10	-197.16	0.08	0.8	U				Kop		70Gr46	
160 Dy $(n,\gamma)^{161}$ Dy	ave.	6454.38	0.08	6454.39	0.08	0.1	1	100	94	¹⁶⁰ Dy			average	
160 Dy(3 He,d) 161 Ho $-^{164}$ Dy() 165 Ho		-1406.5	2.0	-1406.5	2.0	0.0	1	100	100	¹⁶¹ Ho	McM		75Bu02	
161 Re(p) 160 W		1199.5	6.	1197	5	-0.4	1	79	79	¹⁶¹ Re	Ara		97Ir01	
$^{161}\text{Re}^m(p)^{160}\text{W}$		1323.3	7.	1321	5	-0.3	0				Ara		97Ir01	*
$^{161}\text{Sm}(\beta^-)^{161}\text{Eu}$		5065	130	5120	12	0.4					Kur		07Ho1	~
Sin(p) Eu		5050	130	3120	12	0.4	o U				Kur		10Ha.A	
161 Eu $(\beta^-)^{161}$ Gd				2714	11									
Eu(p) Ga		3705	60	3714	11	0.2	0				Kur		07Ha57	
		3705	60			0.2	U				Kur		10Ha.A	
161 - 440 - 161		3722	35			-0.2	U				Kur		14Ha38	
$^{161}\text{Gd}(\beta^-)^{161}\text{Tb}$		1977	30	1955.8	1.4	-0.7	U						66Zy02	*
161 Tb $(\beta^{-})^{161}$ Dy		584	6	594.2	1.3	1.7	U						63Ko08	
		590	10			0.4	U						64Fu11	
161 Er(β^+) 161 Ho		2050	40	1996	9	-1.4	U						65Gr35	*
()- /			10											
•		1980	18			0.9	R						84Ka.A	*
$^{161}\text{Tm}(\beta^+)^{161}\text{Er}$		1980 3100	200	3303	29	0.9 1.0	K U						84Ka.A 75Ad08	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{161}{ m Yb}(eta^+)^{161}{ m Tm}$		3850	250	4060	30	0.8	U					81Ad02
V /		3585	200			2.4	Ü			Dbn		94Po26
161 Lu(β^+) 161 Yb		5300	100	5280	30	-0.2	o			IRS		83Vi.A
4		5300	100			-0.2	U			IRS		93A103
		5255	150			0.1	U			Dbn		94Po26
$^{161}\text{Re}^{m}(\text{IT})^{161}\text{Re}$		123.8	1.3	123.7	1.3	-0.1	1	99	78^{-161}Re^{m}			97Ir01
161Sm-u	Repres	ents frequenc	y ratio 161	$^{1}Sm^{++}/(C_{12}I_{12})$	$(H_4)^+ = 0.$	94484487	4(74)					WgM124
¹⁶¹ Eu−u	Repres	ents frequenc	v ratio ¹⁶¹	$^{1}\text{Eu}^{++}/(\text{C}_{12}\text{H})$	$[4)^{+} = 0.9$	944877140	(11)					WgM124*
¹⁶¹ Tm−u				nixture gs+m			,					Nub16b *
$*^{161}$ Ta ^{m} (α) ¹⁵⁷ Lu ^{m}				nbiguously as								WgM151*
* ¹⁶¹ Dy(p,t) ¹⁵⁹ Dy		164 Dy(p,t))=-			Signed							AHW *
$*^{161}$ Re $^{m}(p)^{160}$ W				or ¹⁶¹ Re ^m (IT) ¹	61 Re							AHW *
161 Gd(β^-) 161 Tb				level at 417.								Ens11b *
$*^{161}$ Er(β^+) ¹⁶¹ Ho						011 15 leaV	. 7					
				ively, to 1/2+								Ens11b *
$*^{161}$ Tm(β^+) 161 Er				els around 7/2	2 one at	266.44 K	eV					Ens11b *
$*^{161}$ Lu(β^+) 161 Yb	$E_{\beta^+}=3$	866(150) to 3	67.28 lev	el								Ens11b *
C II 162 D.:		120115	10	120146.0	0.8	0.4	T.T.			D04	4.0	64Da15
$C_{13} H_6 - {}^{162}Dy$ $C_{12} H_4 N - {}^{162}Er$		120115	19 70	120146.0	0.8	0.4	U			R04	4.0	64De15
$C_{12} H_4 N^{-162} Er$ $C_{13} H_6 - {}^{162} Er$		105590	70	105587.2	0.9	0.0	U			R04	4.0	64De15
¹⁶² Tm-u		118430	170	118163.2	0.9	-0.4	U			R04	4.0	64De15
162 M 142 G		-65942	55	-65999	28	-1.0	R			GS2	1.0	05Li24
162 Yb $-^{142}$ Sm _{1.141}		32524	19	32525	16	0.1	2			MA7	1.0	01Bo59
¹⁶² Yb−u		-64210	110	-64226	16	-0.1	U			GS1	1.0	00Ra23
162-		-64223	30			-0.1	R			GS2	1.0	05Li24
162 Lu $-$ u		-56758	234	-56720	80	0.2	0			GS1	1.0	00Ra23
162		-56781	190			0.3	2			GS2	1.0	05Li24
¹⁶² Hf-u		-52756	30	-52785	10	-1.0	U			GS2	1.0	05Li24
¹⁶² Er ³⁵ Cl ₂ - ¹⁵⁸ Gd ³⁷ Cl ₂		10577.5	2.7	10575.5	1.2	-0.3	U			H25	2.5	72Ba08
¹⁶² Dy ³⁵ Cl- ¹⁶⁰ Dy ³⁷ Cl		4555	6	4551.03	0.12	-0.2	U			H12	4.0	64Ba15
		4552.1	1.1			-0.4	U			H25	2.5	72Ba08
¹⁶² Er ³⁵ Cl- ¹⁶⁰ Gd ³⁷ Cl		4674.6	1.9	4675.5	1.3	0.2	U			H25	2.5	72Ba08
162 Er $-^{162}$ Dy		1982.79	0.32	1982.8	0.3	0.0	1	100	100 ¹⁶² Er	SH1	1.0	11El04
¹⁶¹ Dy ³⁷ Cl- ¹⁶² Dy ³⁵ Cl		-3080	70	-2815.19	0.09	0.9	U			R04	4.0	64De15
162 Dy $^{-161}$ Dy		150	70	-134.92	0.06	-1.0	U			R04	4.0	64De15
		78	23			-2.3	U			R04	4.0	64De15
		22	40			-1.0	U			R04	4.0	64De15
162 Hf(α) 158 Yb		4417.2	10.	4416	5	-0.1	-					82Sc15
		4420.4	10.3			-0.4	_			ORa		83To01
		4414.2	9.			0.2	_					92Ha10
		4416.3	10.3			0.0	_					95Hi12
	ave.	4417	5			-0.1	1	95	81 ¹⁶² Hf			average
$^{162}\text{Ta}(\alpha)^{158}\text{Lu}$		5003.8	10.	5010	50	0.1	4					86Ru05
		5007.9	5.			0.0	4					92Ha10
162 W(α) 158 Hf		5669.9	10.	5678.3	2.4	0.8	U					73Ea01
()		5668.0	10.			1.0	U			ORa		75To05
		5677.5	5.			0.2	_			GSa		81Ho10
		5674.5	4.			0.9	_			Ora		82De11
		5681.6	5.			-0.6	_			Daa		96Pa01
		5681.5	5.1			-0.6	_			Jya		15Li24
	ave.	5678.3	2.4			0.0	1	100	$100^{-162}W$	U J U		average
$^{162}{\rm Re}(\alpha)^{158}{\rm Ta}$	avc.	6240.3	5.			5.0	8	100	100 11	Ara		97Da07
$^{162}\mathrm{Re}^m(\alpha)^{158}\mathrm{Ta}^m$		6274.2		6274	3	0.0						79Ho10
re (u) la			6.	6274	3	0.0	9			GSa		
		6278.3	6. 5			-0.7	9			Daa		96Pa01
		6271.1	5.			0.6	9			Ara		97Da07
		6256	16			1.1	U			Jya		16Ca15

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference	je.
$^{162}{\rm Os}(\alpha)^{158}{\rm W}$	6778.8	30.	6767	3	-0.4	U				GSa		89Ho12	
$Os(\alpha)$ w	6785.8	10.	0707	3	-0.4 -1.8	U				ORa		96Bi07	
	6767.4	3.			-1.0	4				Ara		00Ma95	
	6781.7	13.			-1.1	U				Jya		04Jo12	
60 Gd(t,p) 162 Gd	3999.5	3.8			1.1	2				McM		89Lo07	
60 Dy(t,p) 162 Dy	6169.5	1.9	6169.59	0.10	0.0	U				McM		88Bu08	
62 Dy(p,t) 160 Dy	-6168	5	-6169.59	0.10	-0.3	U				Min		73Oo01	
Dy(p,t) Dy	-6169.7	2.1	-0109.59	0.10	-0.3 0.1	U				McM		88Bu08	
62 Er(p,t) 160 Er	-7944	55	-7931	24	0.1	R				Win		74De31	
61 Dy(n, γ) 162 Dy	8196.99		8196.99	0.06	0.2	1	100	88	¹⁶¹ Dy	MMn		82Is05	
$Dy(\Pi, \gamma) = Dy$	8193	3	6190.99	0.00	1.3	U	100	00	Dy	Bdn		06Fi.A	
61 Dy(d,p) 162 Dy	5969	10	5972.43	0.06	0.3	U				Tal		67Ba34	
Dy(u,p) Dy	5981	10	3912.43	0.00	-0.9	U				Kop		70Gr46	
62 Dy(d,t) 161 Dy	-1944	10	-1939.77	0.06	0.4	U				•		70Gr46	
Dy(u,t) Dy	-1944 -1943	10	-1939.77	0.00	0.4	U				Kop Tal		77Be03	
61 Dy(3 He,d) 162 Ho $^{-164}$ Dy() 165 Ho		3.0	045.2	2.0			100	100) ¹⁶² Ho	McM			
62 Er(d,t) 161 Er	-945.3		-945.3	3.0	0.0	1	100	100	по			75Bu02	
$^{62}\text{Eu}(\beta^{-})^{162}\text{Gd}$	-2952	10	-2947	9	0.5	2				Kop		69Tj01	
o-Eu(p) o-Ga	5575	60	5580	40	0.0	O				Kur		07Ha57	
	5585	60			-0.1	0				Kur		10Ha.A	
$^{62}\text{Gd}(\beta^-)^{162}\text{Tb}$	5577	35	1.400	40	0.5	3				Kur		14Ha38	
	1442	100	1400	40	-0.5	R						70Ch02	
$^{62}\text{Tb}(\beta^{-})^{162}\text{Dy}$	2448	100	2510	40	0.6	2						66Fu08	
	2523	50			-0.3	2						66Sc24	
6211 (0+)162p	2528	80	21.40	2	-0.3	2						77Ka08	
$^{52}\text{Ho}(\beta^+)^{162}\text{Dy}$	2220	50	2140	3	-1.6	U						69Ak01	
52 Tm(β^+) 162 Er	4840	50	4857	26	0.3	2						63Ab02	
	4705	70			2.2	2				TDC		74De47	
	4900	100			-0.4	2				IRS		93A103	
62. (0+)162	4892	50		0.0	-0.7	2				Dbn		94Po26	
62 Lu(β^+) 162 Yb	6740	270	6990	80	0.9	U				TD 0		83Ge08	
	6990	120			0.0	0				IRS		83Vi.A	
	6960	100			0.3	R				IRS		93A103	
62—	7111	150			-0.8	R				Dbn		94Po26	
⁶² Tm−u	M - A = -61359											Nub16b	
⁶² Lu−u	M - A = -52730			-								Nub16b	
⁶² Lu-u	M - A = -52751						00#200 ke	V				Nub16b	
$^{62}\mathrm{Re}^m(\alpha)^{158}\mathrm{Ta}^m$	E_{α} =6037(16) k					Ta ^m						16Ca15	
62 Os $(\alpha)^{158}$ W	Original value			3.4) recal	ibrated							88Ho.B	:
60 Dy(t,p) 162 Dy	$Q - Q(^{162}$ Dy(t,											AHW	
62 Dy(p,t) 160 Dy	$Q - Q(^{164}\text{Dy}(\text{p}))$											AHW	
62 Er(p,t) 160 Er	Not resolved po			inty 28 i	ncreased t	o 51 ke	V and					GAu	
	added system											GAu	
$^{62}\mathrm{Gd}(eta^-)^{162}\mathrm{Tb}$	$E_{\beta} = 1000(100$) to 1 ⁺ lev	vel at 442.11	keV								Ens162	
$^{62}\text{Tb}(\beta^{-})^{162}\text{Dy}$	$E_{\beta}^{'}=1300(100$) 1375(50)) 1380(80) rd	espective	ely, to 2 ⁻	level at	1148.232 k	κeV				Ens078	
62 Tm(β^{+}) 162 Er	$E_{B^+}^{r} = 2110(70)$	to 2 ⁻ leve	el at 1572.84	keV								Ens078	
$^{62}\text{Tm}(\beta^+)^{162}\text{Er}$	$E_{\beta^+} = 3768(50)$											Ens078	
62 Lu(β^+) 162 Yb	$E_{\beta}^{+} = 6006(150)$				ıt 166.8. u	ınknown	intensity	ratio				Ens078	
Σω(β΄) Το	2 _p + 0000(120	, to groun		. 10,010	10010, 4		· intensity					2115070	
⁶³ Gd-u	-65824	16	-65823	9	0.1	1	32	32	¹⁶³ Gd	CP1	1.0	12Va02	
63 Gd $-^{80}$ Kr _{2 038}	104600	16	104598	9	-0.1	1	32	32	¹⁶³ Gd		1.0	12Va02	
$^{63}\text{Gd}-^{86}\text{Kr}_{1.895}$	103569	15	103570	9	0.0	1	36	36	¹⁶³ Gd	CP1	1.0	12Va02	
$C_{13} H_7 - {}^{163}Dy$	125906	36	126038.3	0.8	0.0	U	50	50	Gu	R04	4.0	64De15	
63Tm-u	-67327		-67342	6	-0.5	U				GS2	1.0	05Li24	
$^{63}\text{Yb}-^{142}\text{Sm}_{1.148}$	33686	30											
163 Yb—u		19	33685	16	-0.1	2 D				MA7	1.0	01Bo59	
1 v-u	-63663	30	-63660	16	0.1	R				GS2	1.0	05Li24	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	- ~- 111	Input v	•	Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	$\frac{F}{F}$	Referenc	e
¹⁶³ Lu-u		50720	110	50000	20	0.0				C01	1.0	00P 22	
Lu-u		-58730	110	-58820	30	-0.8	U				1.0	00Ra23	
163***		-58821	30	52005	27	0.0	2	70	70 163rrs		1.0	05Li24	
¹⁶³ Hf-u		-52911	30	-52887	27	0.8	1	79	79 ¹⁶³ Hf		1.0	05Li24	
¹⁶³ Ta-u		-45855	54	-45660	40	3.6	C				1.0	05Li24	*
¹⁶³ Dy ³⁵ Cl- ¹⁶¹ Dy ³⁷ Cl		5200	60	4747.90	0.11	-1.9	U				4.0	64De15	
		4746	3			0.3	U				2.5	70Wh01	
		4744.7	1.2			1.1	U				2.5	72Ba08	
¹⁶³ Ho O− ¹⁶³ Dy O		2.72	0.77	3.043	0.020	0.3	U				1.5	15Sc13	
$^{163}\text{Ho}-^{163}\text{Dy}$		3.042	0.037	3.043	0.020	0.0	1	31	17 ¹⁶³ Ho	SH2	1.0	15El03	
¹⁶² Dy ³⁷ Cl- ¹⁶³ Dy ³⁵ Cl		-5069	42	-4882.82	0.08	1.1	U			R04	4.0	64De15	
163 Dy $^{-162}$ Dy		2164	35	1932.71	0.05	-1.7	U			R04	4.0	64De15	
,		1985	38			-0.3	U			R04	4.0	64De15	
		2174	40			-1.5	U				4.0	64De15	
163 Dy O $-$ C $_{15}$		-76349.06	0.86	-76348.5	0.8	0.4	1	41	41 ¹⁶³ Dy		1.5	15Sc13	
163 Ho O $-C_{15}$		-76346.61	0.97	-76345.5	0.8	0.8	1	32	32 ¹⁶³ Ho	TG1	1.5	15Sc13	
$^{163}\text{Ta}(\alpha)^{159}\text{Lu}$		4741.5	15.	4749	5	0.5	3	32	32 110	101	1.5	83Sc18	*
Ia(u) Lu		4746.7	10.	4/49	3	0.3	3					86Ru05	•
		4751.8	7.			-0.4	3					92Ha10	
163 W(α) 159 Hf			7. 5.	5520	50								7
$W(\alpha)^{1/3}HI$		5520.3		5520	30	0.0	5			CC		73Ea01	Z
		5518.1	5.			0.0	5			GSa		79Ho10	
		5519.9	3.			0.0	5			Ora		82De11	Z
		5525.9	10.3			-0.1	U			Б		84Sc06	*
162 150-		5518.7	6.			0.0	5			Daa		96Pa01	
163 Re(α) 159 Ta		6017.9	5.	6012	8	-1.2	О			Ara		97Da07	*
163 Re $^m(\alpha)^{159}$ Ta m		6067.2	6.	6068	3	0.2	3			GSa		79Ho10	
		6067.2	7.			0.1	3			Daa		96Pa01	
		6069.2	5.			-0.2	3			Ara		97Da07	
163 Os $(\alpha)^{159}$ W		6674.1	30.	6677	8	0.1	4			GSa		81Ho10	
		6678.2	10.			-0.1	4			ORa		96Bi07	
		6676.2	19.			0.1	4			Daa		96Pa01	
		6674.1	30.			0.1	4			Jya		13Dr06	*
161 Dy(t,p) 163 Dy		5986.3	1.5	5986.21	0.08	-0.1	U			McM		88Bu08	*
163 Dy(p,t) 161 Dy		-5985	5	-5986.21	0.08	-0.2	U			Min		73Oo01	
24.7		-5987.1	2.2			0.4	U			McM		88Bu08	*
162 Dy $(n,\gamma)^{163}$ Dy		6270.98	0.06	6271.01	0.05	0.5	_			MMn		82Is05	Z
<i>3</i> (<i>1</i>) 3		6271.00	0.09			0.1	_			ILn		89Sc31	Z
		6271.14	0.13			-1.0	_			Bdn		06Fi.A	
163 Dy $(\gamma, n)^{162}$ Dy		-6320	110	-6271.01	0.05	0.4	U			Phi		60Ge01	
162 Dy(d,p) 163 Dy		4049	5	4046.44	0.05	-0.5	U			Tal		67Sc05	
$Dy(\mathbf{d},\mathbf{p})$ Dy		4045	10	7070.77	0.03	0.1	U			Kop		70Gr46	
¹⁶³ Dy(d,t) ¹⁶² Dy		-14	5	-13.78	0.05	0.0	U			кор		67Ba34	
Dy(d,t) Dy				-13.76	0.03					17			
162p (-4163p		-27	10	(071 01	0.05	1.3	U	100	100 ¹⁶² Dy	Kop		70Gr46	
162 Dy(n, γ) 163 Dy	ave.	6271.01	0.05	6271.01	0.05	0.1	1	100				average	
162 Dy(3 He,d) 163 Ho $^{-164}$ Dy() 165 Ho		-734.3	1.0	-734.2	0.8	0.1	1	68	56 ¹⁶⁵ Ho	McM		75Bu02	
162 Er(d,p) 163 Er		4682	10	4680	5	-0.2	1	21	21 ¹⁶³ Er			69Tj01	
163 Eu $(\beta^{-})^{163}$ Gd		4828	70	4830	70	0.0	O			Kur		07Ha57	*
		4813	70			0.2	O			Kur		10Ha.A	*
100		4829	65				2			Kur		14Ha38	
163 Gd(β^-) 163 Tb		3170	70	3282	9	1.6	O			Kur		07Ha57	
		3120	70			2.3	O			Kur		10Ha.A	
		3187	40			2.4	U			Kur		14Ha38	
163 Tb(β^-) 163 Dy		1684	50	1785	4	2.0	U					66Fu08	*
		1721	100			0.6	U					71Ka22	*
163 Ho $(\varepsilon)^{163}$ Dy		2.83	0.05	2.834	0.019	0.1	_					82An19	*
•		2.65	0.20			0.9	U					83Ba32	
		2.84	0.10			-0.1	Ü					84La.A	*
		2.56	0.05			5.5	В					85Ha12	*
		2.60	0.03			7.8	В					86Ya17	
		2.561	0.03			13.7	В					92Ha15	
		2.54	0.020			9.8	C					92Ha13	*
		2.34	0.03			1.2	U					93B0.A 94Ya07	*
		2.800	0.10			0.7	_					94 1a07 97Ga12	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Inpi	ıt value	Adjusted	value	v_i	Dg	Signf.	Main	infl.	Lab	F	Reference	:e
163 Ho $(\varepsilon)^{163}$ Dy	2.8	49 0.030	2.834	0.019	-0.5	_						14Ra.1	
Ho(e) by	ave. 2.8			0.017	0.0	1	69	39	¹⁶³ Ho			average	
163 Er(β^+) 163 Ho	1210	6	1211	5	0.1	1	58		¹⁶³ Er			63Pe16	
$^{163}\text{Tm}(\beta^+)^{163}\text{Er}$		3	1211	3	0.1	2	30	30	EI				
TIII(p ·)····Er	2439		2420	2	0.0	U				IRS		82Vy07 93Al03	
163 Yb(β^+) 163 Tm	2360	100	2439	3	0.8					IKS			
$^{163}\text{Lu}(\beta^+)^{163}\text{Yb}$	3370	100	3430	16	0.6	U						75Ad09	
Lu(p) ros Y b	4860	170	4510	30	-2.1	U				TDC		83Ge08	
	4600	200			-0.5	0				IRS		83Vi.A	
163 p	4600	200	400	_	-0.5	U				IRS		93A103	
163 Re m (IT) 163 Re	115.1		120	5	1.2	0				Ara		97Da07	
* ¹⁶³ Gd-u	Represents freque					91)						WgM12	
¹⁶³ Ta−u	M - A = -42644(28)				keV							Nub16b	
163 Ta $(\alpha)^{159}$ Lu	Original assignme											86Ru05	*
$^{163}W(\alpha)^{159}Hf$	Originally assigne											92Me10	*
•	original E_{α} =537	2 recalibrated	using their ¹⁶⁸	$Os^{-170}O$	s results							GAu	*
e^{163} Re $(\alpha)^{159}$ Ta	Replaced by author	or's value for	$^{159}\mathrm{Ta}^m(\mathrm{IT})$									AHW	*
163 Os $(\alpha)^{159}$ W	Error not given, es	stimated by ev	valuator									GAu	*
161 Dy(t,p) 163 Dy	$Q - Q(^{162}Dy(t,p))$											AHW	*
163 Dy(p,t) 161 Dy	$\widetilde{Q} - \widetilde{Q}(^{164}\mathrm{Dy}(\mathrm{p,t}))$											AHW	*
163 Eu(β^-) 163 Gd	E_{β} = 4690(70) to											14Ha38	*
e^{163} Eu $(\beta^-)^{163}$ Gd	E_{β} = 4675(70) to											14Ha38	
$^{163}\text{Tb}(\beta^{-})^{163}\text{Dy}$	E_{β} = 800(50) to 1											Ens105	
$^{169}\text{Tb}(\beta^{-})^{163}\text{Dy}$				7									
	E_{β} = 1300(100) to				1 . 1	1 4						Ens105	
163 Ho(ε) 163 Dy	Original 2.58(0.10			y, re-e	vaiuated	by autho	ors					84La.A	
163 Ho(ε) 163 Dy	Original value 2.8											84La.A	
163 Ho $(\varepsilon)^{163}$ Dy	Original value 2.6		cted to 2.561(0	.020) for	dynamic	effects						87Sp02	
162 162-	error 0.020 is sta											87Sp02	*
163 Ho $(\varepsilon)^{163}$ Dy	Original 2616< Q			ge 66 $^+$ $Q_{ m p}$	g+,								*
	corrected to 251											93Bo.A	*
163 Ho $(\varepsilon)^{163}$ Dy	"Preliminary Q_{ε} =	2.849(0.005)	'; syst error est	imated 0.0)30 by ev	valuator						GAu	*
e^{163} Tm(β^+) 163 Er	$E_{\beta^+} = 884(3)$ to $1/2$	2 ⁺ level at 54	0.56 keV, and o	other $E_{oldsymbol{eta}^+}$								Ens105	*
$*^{163}$ Yb(β^+) 163 Tm	$E_{\beta^+}^{'}=1400(100)$ to	$5/2^-$ level at	t 947.29 keV	,								Ens105	*
$*^{163}$ Re m (IT) 163 Re	Redundant with ¹⁰	67 Ir(α) 163 Re i	in same paper									GAu	*
C ₁₃ H ₈ - ¹⁶⁴ Dy	133320	38	133419.8	0.8	0.7	U				R04	4.0	64De15	
$C_{12}^{13}CH_7 - {}^{164}Dy$	128920	34	128949.6	0.8	0.2	Ü				R04	4.0	64De15	
$C_{12} H_6 N^{-164} Er$	120876	39	120816.8	0.8	-0.4	U				R04	4.0	64De15	
$C_{12} H_6 N - E_1$ $164 Tm - u$	-66440	39	-66457	26	-0.4 -0.6	1	76	76	¹⁶⁴ Tm	GS2	1.0	04De13	
$^{164}\text{Yb} - ^{142}\text{Sm}_{1.155}$	32429	30 19					70	70	1 111			03L124 01Bo59	
¹⁶⁴ Yb-u			32434	16	0.3	2				MA7	1.0		
ı v−u	-65690 65402	104	-65505	16	1.8	U				GS1	1.0	00Ra23	
¹⁶⁴ Lu-u	-65493	30	50660	20	-0.4	R				GS2	1.0	05Li24	
¹o-Lu−u	-58750	110	-58660	30	0.8	U				GS1	1.0	00Ra23	
164	-58661	30				2				GS2	1.0	05Li24	
¹⁶⁴ Hf-u	-55620	110	-55629	17	-0.1	U			164	GS1	1.0	00Ra23	
	-55596	30			-1.1	1	32	32	$^{164}\mathrm{Hf}$	GS2	1.0	05Li24	
¹⁶⁴ Ta-u	-46466	30				2				GS2	1.0	05Li24	
¹⁶⁴ Dy ³⁵ Cl- ¹⁶² Dy ³⁷ Cl	5347	5	5326.41	0.11	-1.0	U				H12	4.0	64Ba15	
	5589	19			-3.5	В				R04	4.0	64De15	
	5321	3			0.7	U				H23	2.5	70Wh01	
	5326.5	0.9			0.0	U				H25	2.5	72Ba08	
¹⁶⁴ Er ³⁵ Cl- ¹⁶² Er ³⁷ Cl	3373.3		3370.5	0.4	-0.8	U				H25	2.5	72Ba08	
$^{164}\text{Er}-^{164}\text{Dy}$	26.9		26.92	0.12	0.0	1	100	100	¹⁶⁴ Er	SH1	1.0	11El08	
¹⁶⁴ Dy ³⁵ Cl ⁻¹⁶¹ Dy ³⁷ Cl	5610	48	5191.49	0.13	-2.2	U	-			R04	4.0	64De15	
¹⁶³ Dy ³⁷ Cl- ¹⁶⁴ Dy ³⁵ Cl	-3360	50	-3393.70	0.10	-0.2	U				R04	4.0	64De15	
164 Dy $^{-163}$ Dy	392	48	443.59	0.10	0.3	U				R04	4.0	64De15	
Dy Dy	540	25	473.37	0.07	-1.0	U				R04	4.0	64De15	
	446	28			0.0	U				R04	4.0	64De15	
	440	20			0.0	U				1104	⊤. ∪	OTDUID	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	<u>e</u>
164 162													
¹⁶⁴ Er – ¹⁶² Er		556	48	420.4	0.4	-0.7	U			R04	4.0	64De15	_
$^{164}\mathrm{W}(lpha)^{160}\mathrm{Hf}$		5281.7	5.	5278.3	2.0	-0.7	-			OD		73Ea01	Z
		5274.7	5.			0.7	-			ORa		75To05	Z
		5268.7	10.			1.0	U			CC		78Sc26	*
		5279.0	5.			-0.1	-			GSa		79Ho10	7
		5279.2 5283.0	3. 8.			-0.3 -0.6	– U			Ora		82De11 84Sc06	Z
		5277.0	6.			-0.0 0.2	_			Daa		96Pa01	*
	07/0	5278.6	2.0			-0.2	1	99	81 ¹⁶⁴ W	Daa			
$^{164}{ m Re}(lpha)^{160}{ m Ta}$	ave.	5922.7	10.	5926	5	-0.2 0.4	4	99	01 W	GSa		average 79Ho10	
$KC(\mathcal{U})$ 1a		5928.9	7.	3920	3	-0.4	4			Daa		96Pa01	
		5924.7	10.			0.2	4			Jya		09Ha42	
$^{164}\text{Re}^{m}(\alpha)^{160}\text{Ta}^{m}$		5763.8	10.			0.2	5			Jya		09Ha42	
164 Os $(\alpha)^{160}$ W		6478.3	20.	6479	5	0.1	U			GSa		81Ho10	
03(<i>u</i>) W		6473.2	10.	0477	3	0.6	_			ORa		96Bi07	
		6479.4	7.			0.0	_			Daa		96Pa01	
	ave.	6477	6			0.4	1	80	80 ¹⁶⁴ Os	2		average	
$^{164}\mathrm{Ir}^m(\alpha)^{160}\mathrm{Re}^m$		7052.3	10.2			0	6	00	00 05	Jya		14Dr02	
162 Dy $(t,p)^{164}$ Dy		5447.3	1.9	5447.33	0.08	0.0	U			McM		88Bu08	*
164 Dy(p,t) 162 Dy		-5450	5	-5447.33	0.08	0.5	U			Min		73Oo01	
164 Er(p,t) 162 Er		-7262	10	-7269.2	0.3	-0.7	U			Min		73Oo01	
164 Dy $(t,\alpha)^{163}$ Tb		11153	4	7207.2	0.5	0.7	2			McM		92Ga15	*
163 Dy $(n,\gamma)^{164}$ Dy		7658.11	0.07	7658.11	0.07	0.0	1	100	84 ¹⁶⁴ Dy	MMn		82Is05	Z
$\mathcal{D}_{\mathcal{J}}(\mathbf{n}, \mathbf{r}) = \mathcal{D}_{\mathcal{J}}$		7658.90	0.06	7050.11	0.07	-13.1	Ċ	100	0. Dj	14114111		99Fo.A	_
		7655.0	0.9			3.5	C			Bdn		06Fi.A	
163 Dy(d,p) 164 Dy		5434	5	5433.55	0.07	-0.1	Ü			Tal		64Sh06	
2)(a,p) 2)		5441	10	0.00.00	0.07	-0.7	U			Kop		70Gr46	
164 Dy(d,t) 163 Dy		-1407	10	-1400.88	0.07	0.6	Ü			Kop		70Gr46	
3 (27)		-1407	10			0.6	U			Kop		70Gr46	
163 Dy(3 He,d) 164 Ho $-^{164}$ Dy() 165 Ho		-331.6	1.4	-330.7	1.1	0.6	1	67	67 ¹⁶⁴ Ho	McM		75Bu02	*
164 Er(d,t) 163 Er		-2593	10	-2589	5	0.4	1	21	21 ¹⁶³ Er	Kop		69Tj01	
$^{164}\text{Ir}^{m}(p)^{163}\text{Os}$		1828	8	1824	6	-0.5	o			Jyp		01Ke05	
4,		1818	14			0.4	5			Arp		02Ma61	
		1825	6			-0.2	5			Jyp		14Dr02	
164 Eu(β^-) 164 Gd		6430	70	6390	50	-0.5	o			Kur		07Ha57	
		6440	70			-0.7	o			Kur		10Ha.A	
		6393	50				3			Kur		14Ha38	
$^{164}\text{Tb}(\beta^-)^{164}\text{Dy}$		3890	100				2					71Gu18	*
164 Ho(β^-) 164 Er		990	30	961.4	1.4	-1.0	U					54Br96	
		965	20			-0.2	U					66Se07	
164 Tm(β^+) 164 Er		3985	20	4039	24	2.7	В					67Vr04	*
		3989	50			1.0	1	24	24 ¹⁶⁴ Tm	IRS		94Po26	*
164 Lu(β^+) 164 Yb		6390	140	6380	30	-0.1	U					83Ge08	
		6250	90			1.4	o			IRS		83Vi.A	
		6290	90			0.9	U			IRS		93A103	*
161		6255	120			1.0	U			Dbn		94Po26	*
* ¹⁶⁴ Tm-u				or mixture g	s+m at 1	0(6) keV						Nub16b	**
$*^{164}W(\alpha)^{160}Hf$		ally assigne										AHW	**
$*^{164}$ W(α) ¹⁶⁰ Hf	Origina	ally assigne	ed to 16/1	Re, re-assigi	ned in ref	ference						92Me10	**
*				rated using			results					GAu	**
$*^{162}$ Dy(t,p) 164 Dy				(1.9) keV, s								88Bu08	**
$*^{164}$ Dy(t, α) ¹⁶³ Tb			=-123(4)+54-584=	-653(4)	keV						AHW	**
$*^{163}$ Dy(3 He,d) 164 Ho $-^{164}$ Dy() 165 H	See err											75Bu02	
$*^{164}$ Tb(β^{-}) 164 Dy				el at 2194.44				nd other E_{j}	B-			Ens017	
$*^{164}$ Tm(β^+) 164 Er				nd state 10 t								Ens017	
$*^{164}$ Tm $(\beta^+)^{164}$ Er				nd state 10 t			keV					Ens017	**
$*^{164}$ Lu(β^+) ¹⁶⁴ Yb				+ level at 12								Ens017	**
$*^{164}$ Lu(β^+) 164 Yb	$E_{\beta^+}=5$	191(120) p	artly to 2	2 ⁺ level at 1	23.31 ke	eV						Ens017	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

C1 Hp	Item	JII OI III	Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
1	-												
Fig. Fig. No. 165 10 10 10 10 10 10 10 1	$C_{13} H_9 - ^{165} Ho$		140043	29	140097.2	1.1		U			R04	4.0	64De15
	$C_{12} H_7 N^{-165} Ho$		127537	28	127521.2	1.1	-0.1	U			R04	4.0	64De15
165 1	$C_{11}^{13}CH_6N^{-165}Ho$		122970	50	123051.0	1.1	0.4	U			R04	4.0	64De15
165 1	165 Tm $-^{142}$ Sm $_{1.162}$		30970	20	30975	4	0.2	U			MA7	1.0	01Bo59
1	¹⁶⁵ Yb-u		-64721	30	-64730	28	-0.3	1	90	90 ¹⁶⁵ Yb	GS2	1.0	05Li24
1	¹⁶⁵ Lu-u		-60602	30	-60593	28		1	90	90 ¹⁶⁵ Lu	GS2	1.0	05Li24
1	¹⁶⁵ Hf—u												
161													
168 169	¹⁶⁵ Ta−11				-49220	15	-1.0		25	25 ¹⁶⁵ Ta			
150 150	165W-11												
Solution	165 Ho 35 Cl 163 Dy 37 Cl								00	00 11			
Second												2.5	
Second	w(a) Hi				3029	30					OKa		
168 168 169									26	20. 165337			
165 Rem(α) 161 Tam 162 Tam 163 Tam 164 Tam	165p. (>161gr	ave.			5604	_			30	20 TH W			
165 166 167	$Re(\alpha)^{101}$ Ta				5694	6	10.8						
Sequence	165 p. m. () 161 m. m.					• •	• •				Jya		
Second	$^{103}\mathrm{Re}^{m}(\alpha)^{101}\mathrm{Ta}^{m}$				5660.9	2.8							
Second													
Section Sec								_					
Second								_					
165 Os(a) 161 Os								O					
165 Os(α) 161 W										4.00	Jya		
165 170		ave.		2.8					99	55^{-165} Re ^m			
6342.1 7. -0.9 5 -0.8 96Pa0 149 130Po6 165Pr(α)161Pace 6882.1 7. 6879 6 -0.4 1 70 48 165Pre Ara 97Da07 165Py(t,p)165Py 4890.6 2.9 4892.28 0.09 0.6 U	$^{165}\text{Os}(\alpha)^{161}\text{W}$			20.	6335	6							
165 Fm (α) 161 Rem 6882.1 30. -0.2 U 48 165 Irm Ara 97Da07 165 Dy(t,p) 165 Dy 4890.6 2.9 4892.28 0.0 0.6 U McM 88Bu08 8 164 Dy(n,γ) 165 Dy 5716.36 0.20 5715.96 0.05 -2.0 U MM 82Bu05 2 5715.95 0.06 0.06 U MM 82Bu05 2 5715.95 0.12 0.10 2 MM 82Bu05 2 164 Dy(d,p) 165 Dy 3488 5 3491.39 0.05 0.7 U McM 62Bu05 2 164 Dy(d,p) 165 Dy 3488 5 3491.39 0.05 0.7 U McM 75Bu02 2 164 Dy(3He,d) 165 Ho 717.3 10. 726.5 0.8 0.9 U McM 75Bu02 2 165 Ho(t,p) 165 Ho -8160 80 -7988 1.1 2.1 U McM 75Bu02 2 165 Ho(t,p) 165 Ho -1730 1.5 -1731.6 1.1 0.1 U McM 75Bu02 2 165 Ho(t,p) 165 Er 4431 10 4425.5 0.6 0.6 U McM 75Bu02 2 165 Ho(t,p) 165 Tm 168 Er(1) 107 Tm 1298.0 2.0 -1293.3 1.5 0.3 1.5 5 3.4 1.5 5 4 1.5 1			6317.4	10.			1.8	5			GSa		81Ho10
161 17			6342.1	7.			-0.9	5			Daa		96Pa01
163 Dy(t,p)165 Dy			6342.1	30.			-0.2	U			Jya		13Dr06 *
164 Dy(n,γ)165 Dy			6882.1	7.	6879	6	-0.4	1	70	48^{-165}Ir^m	Ara		97Da07
164 Dy(n,γ)165 Dy	163 Dy(t,p) 165 Dy		4890.6	2.9	4892.28	0.09	0.6	U			McM		88Bu08 *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	164 Dy $(n,\gamma)^{165}$ Dy		5716.36	0.20	5715.96	0.05	-2.0	U			ILn		79Br25 Z
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5715.96	0.06			0.0				MMn		
164 Dy(d,p) 165 Dy 3488 5 3491.39 0.05 0.7 U Tal 645k13													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	164 Dv(d.p) 165 Dv				3491.39	0.05							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- J (,F) - J												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	¹⁶⁴ Dv(³ He.d) ¹⁶⁵ Ho				726.5	0.8					_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	110(7,11) 110				7,00.0	1.1			33	33 164Ho			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	165 Ha(d t)164 Ha				1721 6	1 1			33	33 110			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									06	04 165 Em	Tai		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									90	94 EI	17		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164 p (165 p 168 p 169 p								50	45 165m			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									72	52^{-103}lr^m			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{165}\text{Eu}(\beta^{-})^{165}\text{Gd}$				5730	70		O					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-0.6						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Kur		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4113	65							Kur		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165 Dy(β^{-}) 165 Ho		1305	20	1286.4	0.8	-0.9	U					59Bo52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1285	10			0.1	U					63Pe11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{165}\mathrm{Er}(\varepsilon)^{165}\mathrm{Ho}$		370	10	377.4	1.0	0.7	U					63Ry01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			371	6			1.1	U					63Zy01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165 Tm(β^+) 165 Er		1591.3	2.0	1592.0	1.5	0.3		59	53 ¹⁶⁵ Tm			82Vy03 *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2762										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$3920 80 \qquad -0.8 1 20 \qquad 10^{-165} \text{Yb} IRS \qquad 93 \text{AlO3} \\ *^{165} \text{W}(\alpha)^{161} \text{Hf} \qquad \text{Originally assigned to } {}^{168} \text{Re, re-assigned in reference} \qquad \qquad 92 \text{Me} 10^{-**} \\ * \qquad \qquad \text{original } E_{\alpha} = 4894 \text{ recalibrated using their } {}^{168} \text{Os-} {}^{170} \text{Os results} \qquad \qquad GAu ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Originally assigned to } {}^{166} \text{Re} \qquad \qquad AHW ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Originally assigned to } {}^{166} \text{Re} \qquad \qquad AHW ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Due to a high spin isomer} \qquad 99 \text{Pool} ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Originally assigned to } {}^{166} \text{Re} \qquad 99 \text{Pool} ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Out to a high spin isomer} \qquad 99 \text{Pool} ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad \text{Out to a high spin isomer} \qquad 99 \text{Pool} ** \\ *^{165} \text{Re}^m(\alpha)^{161} \text{Ta}^m \qquad 99 Po$	24(p) 10				2020						IRS		
* 165 W(α) 161 Hf Originally assigned to 168 Re, re-assigned in reference 92Me10 ** original E_{α} =4894 recalibrated using their 168 Os - 170 Os results GAu ** 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re AHW ** 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re AHW ** 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re AHW ** 165 Re $^m(\alpha)^{161}$ Ta m Due to a high spin isomer									20	10 165 Vb			
* original E_{α} =4894 recalibrated using their 168 Os $-^{170}$ Os results	*165W(a)161Hf	Origin			re-accioned	in refere		1	20	10 10	III		
* 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re * 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re * 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re * 165 Re $^m(\alpha)^{161}$ Ta m Due to a high spin isomer 99Po09 **	π (ω) III	Origin Seissi	nal F = 4004	recelibre	, re-assigned tad using the	ir 16800	17000	enlte					
* 165 Re $^m(\alpha)^{161}$ Ta m Originally assigned to 166 Re ** * 165 Re $^m(\alpha)^{161}$ Ta m Due to a high spin isomer 99Po09 **	. 165 p. am (cr.) 161 T-m					11 - US-	– Os re	Suits					
* 165 Re $^m(\alpha)^{161}$ Ta m Due to a high spin isomer 99Po09 **													
	* Ke'''(α) Ta'''												
*** Error not given, estimated by evaluator GAu **	* $Re^{m}(\alpha)^{101}Ta^{m}$												
	$*^{105}$ Os $(\alpha)^{101}$ W	Error	not given, esti	ımated b	y evaluator								GAu **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	mparisoi			adjusted val		unuea,	_							
Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main ir	ıfl.	Lab	F	Reference	ce_
$^{*163}_{} \mathrm{Dy(t,p)^{165}Dy} \\ ^{*165}_{} \mathrm{Tm(\beta^+)^{165}Er} \\ ^{*165}_{} \mathrm{Yb(\beta^+)^{165}Tm}$	$E_{\beta^+} = 27$	62Dy(t,p))= 2(2) to 1/2 ⁻ 80(20) to 7/2	level at 29	7.371 keV									AHW Ens066 Ens066	** ** **
C ₁₂ H ₈ N- ¹⁶⁶ Er		135376	29	135375.2	1.3	0.0	U				R04	4.0	64De15	
012 116 11 21		135420	60	100070.2	1.0	-0.2	Ü				R04	4.0	64De15	
$C_{13} H_{10} - ^{166}Er$		147740	60	147951.3	1.3	0.9	U				R04	4.0	64De15	
¹⁶⁶ Lu–u		-60157	108	-60140	30	0.1	U				GS1	1.0	00Ra23	*
		-60141	32				2				GS2	1.0	05Li24	*
166 Hf $-u$		-57860	110	-57820	30	0.4	U				GS1	1.0	00Ra23	
		-57820	30				2				GS2	1.0	05Li24	
166 Ta $-u$		-49488	30				2				GS2	1.0	05Li24	
$^{166}W-u$		-44957	30	-44969	10	-0.4	1	12	12 16	$^6\mathrm{W}$	GS2	1.0	05Li24	
¹⁶⁶ Er ³⁵ Cl- ¹⁶⁴ Er ³⁷ Cl		4040.9	1.4	4041.7	1.2	0.2	U				H25	2.5	72Ba08	
166 Er $-^{164}$ Er		1214	46	1091.6	1.2	-0.7	U				R04	4.0	64De15	
		1110	80			-0.1	U				R04	4.0	64De15	
$^{166}\mathrm{W}(\alpha)^{162}\mathrm{Hf}$		4856.0	5.	4856	4	0.0	-				ORa		75To05	Z
		4855.0	10.			0.1	_				GSa		79Ho10	Z
		4858.3	8.2			-0.3	_		16	6			89Hi04	
166p () 162m	ave.	4856	4			-0.1	1	97	78 16	⁶ W			average	
166 Re(α) 162 Ta		5461.8	10.	5460	50	2.2	5				0		78Sc26	*
		5574.5	3.	5460	50	-2.3	U				Ora		82De11	*
		5637.0	13.			-3.5	В				Bea		92Me10	
166 Os $(\alpha)^{162}$ W		5669.9 6148.5	10. 20.	6143	3	-4.2 -0.3	B U				Daa		96Pa01 77Ca23	*
Os(a) w		6129.0	6.	0143	3	2.2	-				GSa		81Ho10	
		6148.5	6.			-0.9	_				Daa		96Pa01	
		6148.4	5.1			-1.1	_				Jya		15Li24	
	ave.	6143	3			0.0	1	100	100 16	⁶ Os	-)		average	
166 Ir(α) 162 Re		6702.8	20.	6722	6	1.0	U				GSa		81Ho10	
		6724.3	6.			-0.3	7				Ara		97Da07	
		6713.1	13.			0.7	7				Jya		04Ke06	*
166 Ir $^m(\alpha)^{162}$ Re m		6718.2	11.	6719	4	0.0	8				Daa		96Pa01	*
		6723.3	5.			-0.9	8				Ara		97Da07	
166160		6706.9	8.2			1.4	8				Jya		04Ke06	
166 Pt(α) 162 Os		7285.9	15.				5				ORa		96Bi07	
164 Dy $(t,p)^{166}$ Dy		4276.4	4.4	4277.7	0.4	0.3	U				McM		88Bu08	*
¹⁶⁶ Er(p,t) ¹⁶⁴ Er		-6641	5	-6644.0	1.1	-0.6	U				Min		73Oo01	
165 Dy(n, γ) 166 Dy 165 Ho(n, γ) 166 Ho		7043.5	0.4	6243.640	0.020	0.8	3				MMn		83Ke.A 82Is05	7
πο(11, γ) το πο		6243.69 6243.64	0.06 0.02	0243.040	0.020	$-0.8 \\ 0.0$	U 1	100	77 16	⁶ Ho	MMn		84Ke15	Z Z
		6243.68	0.02			-0.3	U	100	//	110	Bdn		06Fi.A	L
165 Ho(d,p) 166 Ho		4025	7	4019.074	0.020	-0.8	U				Tal		65St06	
166 Er(d,t) 165 Er		-2218	10	-2218.5	1.3	-0.1	Ü				Kop		69Tj01	
166 Ir(p) 165 Os		1152.0	8.0				6				Ara		97Da07	
$^{166}\text{Ir}^{m}(p)^{165}\text{Os}$		1324.1	8.	1323	10	-0.1	o				Ara		97Da07	*
166 Eu(β^-) 166 Gd		7322	300				3				Kur		14Ha38	
$^{166}\text{Tb}(\beta^{-})^{166}\text{Dy}$		4830	100	4700	70	-1.3	o				Kur		02Sh.A	
		4695	70			0.1	o				Kur		07Ha57	
		4700	70				4				Kur		10Ha.A	
166 Dy $(\beta^{-})^{166}$ Ho		483	5	486.5	0.9	0.7	U						60He09	*
$^{166}\text{Ho}(\beta^{-})^{166}\text{Er}$		1859	3	1854.7	0.9	-1.4	-						63Fu17	
		1857	3			-0.8	-						66Da04	
		1854.7	1.5			0.0	-						74Gr41	
		1851.6	2.0			1.6	- 1	70	E 4 16	⁶ Er			83Ra.A	
166 Tm(β^+) 166 Er	ave.	1854.7	1.0	2020	12	0.1	1	78	54 16	- Er			average	
$\operatorname{Im}(p)$		3043 3031	20 20	3038	12	$-0.3 \\ 0.3$	2 2						61Gr33 61Zy02	*
		3031	20			-0.1	2						63Pr13	*
		2027	_0			0.1	-						001110	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
166											
$^{166}{\rm Yb}(\varepsilon)^{166}{\rm Tm}$	280	40	293	14	0.3	U					Averag *
166 Lu(β^+) 166 Yb	5480	160	5570	30	0.6	U					74De09 *
$^{166}\text{Ir}^{m}(\text{IT})^{166}\text{Ir}$	171.5					7			Ara		97Da07
*166Lu-u	M - A = -56010(100)										Nub16b **
* ¹⁶⁶ Lu-u	M - A = -55995(28)		ixture gs+m+i	1 at 34.37	and 43.0	keV					Nub16b **
$*^{166}$ Re(α) ¹⁶² Ta	Originally assigned										AHW **
$*^{166}$ Re(α) ¹⁶² Ta	Assignment uncert		er obvious attri	bution							AHW **
$*^{166}$ Re(α) ¹⁶² Ta	Originally assigned		165-								AHW **
$*^{166}$ Re(α) ¹⁶² Ta	Assignment tentati										92Me10 **
$*^{166}$ Re(α) ¹⁶² Ta	Correlated to a ¹⁷⁰ l										GAu **
$*^{166} Ir(\alpha)^{162} Re$	All Q_{α} of reference			calibration	n error						04Ke06 **
$*^{166} \text{Ir}^m(\alpha)^{162} \text{Re}^m$	Correlated with E_{α}										96Pa01 **
$*^{164}$ Dy(t,p) 166 Dy	$Q - Q(^{162}\mathrm{Dy}(t,p)) =$										AHW **
$*^{166}$ Ir ^m (p) ¹⁶⁵ Os	Replaced by author										97Da07 **
$*^{166}$ Dy $(\beta^{-})^{166}$ Ho	E_{β} = 402(5) to 1										Ens084 **
$*^{166}$ Tm(β^+) 166 Er	$E_{\beta^+} = 1940(20) 192$						eV				Ens084 **
$*^{166}$ Yb $(\varepsilon)^{166}$ Tm	Average pK=0.712			298 keV 1	from 2 ref	erences:					Ens084 **
*	pK=0.74(0.05) to										63Ja06 **
* 1661 (0±)166371	pK=0.675(0.059)			1 17							73De22 **
$*^{166}$ Lu(β^+) 166 Yb	E_{β^+} =2225(160) to	(6 ,/) lev	vei at 2233.36	ke v							Ens084 **
$C_{13} H_{11} - ^{167}Er$	153840	130	154021.2	1.3	0.3	U			R04	4.0	64De15
$C_{13} H_{11} - E_1$	154040.4		134021.2	1.3	-0.8	U			M23	4.0	79Ha32
C ₁₂ H ₉ N- ¹⁶⁷ Er	141480	27	141445.2	1.3	-0.8 -0.3	U			R04	4.0	64De15
C ₁₂ H ₉ N = EI	141520	50	141443.2	1.3	-0.3 -0.4	U			R04	4.0	64De15
¹⁶⁷ Lu-u	-61730	34			-0.4	2			GS2	1.0	05Li24 *
167Hf—u	-57490	110	-57400	30	0.8	U			GS2 GS1	1.0	00Ra23
III u	-57400	30	37400	30	0.0	2			GS2	1.0	05Li24
¹⁶⁷ Ta-u	-51870	120	-51910	30	-0.3	Ū			GS1	1.0	00Ra23
14 4	-51907	30	01710	20	0.0	2			GS2	1.0	05Li24
$^{167}W-u$	-45175	30	-45194	20	-0.6	R			GS2	1.0	05Li24
¹⁶⁷ Er ³⁵ Cl- ¹⁶⁵ Ho ³⁷ Cl	4666	3	4676.2	1.0	1.4	U			H23	2.5	70Wh01
	4679.5				-1.1	U			H25	2.5	72Ba08
167 Er $-^{166}$ Er	1722	31	1755.10	0.19	0.3	U			R04	4.0	64De15
$^{167}{ m W}(lpha)^{163}{ m Hf}$	4661.9	20.	4741	28	1.6	_					89Me02
	4671.1	13.			1.4	_					91Me05
	ave. 4668	11			1.4	1	32	21 ¹⁶³ Hf			average
$^{167}\mathrm{Re}(\alpha)^{163}\mathrm{Ta}^m$	5138.3	12.				12			Bea		92Me10
$^{167}{\rm Re}^{m}(\alpha)^{163}{\rm Ta}$	5408.8	3.	5407.0	2.9	-0.6	4			Ora		82De11 *
	5397.5	10.			0.9	4			ChR		84Sc06 *
	5392.4				1.2	4			Bea		92Me10
$^{167}\mathrm{Os}(\alpha)^{163}\mathrm{W}$	5983.6		5980	50	0.0	6			GSa		81Ho10 Z
	5978.7				0.1	6			Ora		82De11 Z
	5996.9				-0.3	6			Daa		96Pa01
167 163-	5979.5				0.0	6			Bka		02Ro17
167 Ir(α) 163 Re	6507.1		6504.9	2.6	-0.4	2			Ara		97Da07
167- m 163- m	6504.0			_	0.3	2			Jya		05Sc22
$^{167}\mathrm{Ir}^m(\alpha)^{163}\mathrm{Re}^m$	6543.0		6561	3	1.7	2			GSa		81Ho10
	6567.6				-0.6	2			Daa		96Pa01
	6567.6				-1.4	2			Ara		97Da07
	6551.2				1.3	2			Jya		04Ke06
167 Pt(α) 163 Os	6561.5		7160	50	-0.1	2			Jya		05Sc22
Pι(α) Os	7159.8		7160	50	-0.1	5			ORa		96Bi07 04Ke06
¹⁶⁷ Er(p,t) ¹⁶⁵ Er	7150.6		6420.4	1.2	0.1	5			Jya Min		
E1(p,t) Ef	-6427 -6430	6 5	-6430.4	1.3	-0.6	U			Min		73Oo01 75St08
$^{166}{\rm Er}({\rm n},\gamma)^{167}{\rm Er}$	-6430 6436.3	5 0.50	6126 16	0.10	-0.1	U					75St08 70Bo29 Z
$EI(II,\gamma)$ EI	6436.5		6436.46	0.18	$0.2 \\ -0.1$	_					70B029 Z 70Mi01 Z
	6436.4				-0.1 0.0	_			Bdn		06Fi.A
	0430.4	0.22			0.0	_			Duli		001 1.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

tem		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
67 Er $(\gamma,n)^{166}$ Er		-6560	80	-6436.46	0.18	1.5	U			Phi		60Ge01
⁶⁶ Er(d,p) ¹⁶⁷ Er		4209	10	4211.89	0.18	0.3	U			Tal		68Ha10
(-1)		4214	10			-0.2	U			Kop		69Tj01
67 Er(d,t) 166 Er		-189	12	-179.23	0.18	0.8	U			Kop		69Bu01
66 Er(n, γ) 167 Er	ave.	6436.46	0.18	6436.46	0.18	0.0	1	99	53 ¹⁶⁷ Er	r		average
166 Er(α ,t) 167 Tm $-^{168}$ Er() 169 Tm		-666.5	1.0	-666.4	1.0	0.1	1	99	99 ¹⁶⁷ Tm	McM		75Bu02
67 Ir(p) 166 Os		1070.5	6.	1070	4	-0.1	_	"	<i>))</i> 1111	IVICIVI		97Da07
п(р) Os		1068.5	6.	1070	7	0.3	_			Jyp		05Sc22
	ave.	1069	4			0.3	1	77	77 ¹⁶⁷ Ir	зур		
$^{7} \text{Ir}^{m}(p)^{166} \text{Os}$	ave.			1246	4	0.0		//	// 11			average 97Da07
		1245.5	7.	1246	4	0.0	0					
67 Dy(β^-) 167 Ho		2350	60	1011	-	2.0	3					77Tu01
$^{67}\text{Ho}(\beta^-)^{167}\text{Er}$		970	20	1011	5	2.0	U		00 167***			68Fu07
$^{67}\text{Yb}(\beta^+)^{167}\text{Tm}$		1954	4	1953	4	-0.2	1	90	89 ¹⁶⁷ Yb			77Kr.A
67 Lu(β^+) 167 Yb		3130	100	3090	30	-0.4	U					64Ag.A
$^{67}W(\beta^+)^{167}Ta$		5620	270	6250	30	2.3	U			Got		89Me02
$^{67} \text{Ir}^m (\text{IT})^{167} \text{Ir}$		175.3	2.2	175.5	2.1	0.1	1	94	70^{-167}Ir^m	Ara		97Da07
⁶⁷ Lu–u	M-A=	=-57501(28)	keV for	mixture gs+n	n at 0#30) keV						Nub16b
$^{67}\text{Re}^{m}(\alpha)^{163}\text{Ta}$	Origina	al assignmen	t to 168 Re	e changed in	reference	•						92Me10
$^{67}\text{Re}^{m}(\alpha)^{163}\text{Ta}$				e^m changed in								92Me10
,				ted using thei			sults					GAu
67 Ir(p) 166 Os				7) from ¹⁶⁷ Ir ⁿ								05Sc22
$^{67}\text{Ir}^{m}(p)^{166}\text{Os}$	Renlace	ed by author	's value f	For 167 Ir m (IT)	167 _{Ir}							97Da07
67 Dy(β^-) 167 Ho	F1	780(60) to 3	/2 lovel	at 569.69 ke	V							
$^{67}{\rm Yb}(\beta^+)^{167}{\rm Tm}$				292.820 keV								
						0.6711.3	7					
67 Lu(β^+) 167 Yb	$E_{\beta^+}=20$	060(100) to :	5/2 leve	el at 29.658, 7	72 at 7	8.0/1 KeV	V					Ens008
$C_{13} H_{12} - {}^{168}Er$		161543.3	5.1	161524.2	1.3	-0.9	U			M23	4.0	79Ha32
$C_{12} H_{10} N^{-168} Er$		148884	44	148948.1	1.3	0.4	Ü			R04	4.0	64De15
$C_{11}^{13}C H_9 N - {}^{168}Er$		144524	29	144477.9	1.3	-0.4	U			R04	4.0	64De15
$C_{12} H_{10} N^{-168} Yb$		147010			1.3	1.1	U			R04		64De15
68Lu-u			100	147435.2							4.0	
68.1.c		-61217	70	-61260	40	-0.7	R			GS2	1.0	05Li24
⁶⁸ Hf-u		-59560 50422	104	-59430	30	1.2	U			GS1	1.0	00Ra23
6 9 –		-59432	30				2			GS2	1.0	05Li24
⁶⁸ Ta−u		-52020	110	-51950	30	0.6	U			GS1	1.0	00Ra23
		-51953	30				2			GS2	1.0	05Li24
$^{68}W-u$		-48181	30	-48195	14	-0.5	1	23	$23^{168}W$	GS2	1.0	05Li24
68 Yb 35 Cl ₂ $-^{164}$ Dy 37 Cl ₂		10612.8	8.7	10608.9	1.2	-0.2	U			H27	2.5	74Ba90
⁶⁸ Er ³⁵ Cl ⁻¹⁶⁶ Er ³⁷ Cl		5037	50	5027.28	0.24	-0.1	U			R08	1.5	69De19
		5026	3			0.2	U			H23	2.5	70Wh01
		5028.9	1.5			-0.4	U			H25	2.5	72Ba08
68 Yb $^{-168}$ Er		1512.91	0.27	1512.91	0.27	0.0	1	100	99 ¹⁶⁸ Yb	SH1	1.0	11El04
⁶⁸ Er- ¹⁶⁷ Er		284	31	322.07	0.13	0.3	Ü	100	,, 10	R04	4.0	64De15
Li – Li		320.9	4.3	322.07	0.13	0.3	U			M24	2.5	79Ha32
$^{68}W(\alpha)^{164}Hf$				4500	1.1			97	68 ¹⁶⁴ Hf	17127	2.5	
68 Re(α) 164 Ta		4506.5	12.	4500	11	-0.5	1	87	68 HI	D		91Me05
		5063	13				3			Bea		92Me10
68 Os $(\alpha)^{164}$ W		5819.0	3.	5815.6	2.7	-1.1	_			Ora		82De11
		5800.4	8.			1.9	_					84Sc06
		5812.7	8.			0.4	_		160			95Hi02
	ave.	5816.3	2.7			-0.2	1	99	$80^{168} \mathrm{Os}$			average
68 Ir(α) 164 Re		6410.9	5.	6381	9	-5.9	В			Ora		82De11
		6379.2	15.			0.1	5			Daa		96Pa01
		6382.2	10.			-0.1	5			Jya		09Ha42
			8.	6476	6	-0.1	6			Daa		96Pa01
68 Ir $^m(\alpha)^{164}$ Re m		6477.5										
68 Ir $^m(\alpha)^{164}$ Re m						0.2	6			Jva		09Ha42
		6474.4	10.		3	0.2 -0.1	6 U			Jya GSa		09Ha42 81Ho10
. ,		6474.4 6990.8	10. 20.	6990	3	-0.1	U			GSa		81Ho10
68 Ir $^m(\alpha)^{164}$ Re m		6474.4	10.		3							

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		t value	Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Reference
¹⁶⁸ Er(p,t) ¹⁶⁶ Er	-5723	6	-5725.97	0.21	-0.5	U				Min		73Oo01
168 Yb(p,t) 166 Yb	-7647	7	-3123.91	0.21	-0.5	2				Min		73Oo01 73Oo01
$^{167}\text{Er}(n,\gamma)^{168}\text{Er}$	-7047 7771.		7771.31	0.12	-0.3					IVIIII		70Mi01 Z
$\mathrm{Er}(\Pi,\gamma)$ Er	7771.		///1.31	0.12	1.3	-				ILn		70M101 Z 79Br25 Z
	7771.				-0.3	– U				ORn		84Ka22
	7771.				-0.3	U				OKII		85Va.A
					-0.9					Bdn		
167 Er(d,p) 168 Er	7771.		551671	0.12		_						06Fi.A
¹⁶⁸ Er(d,t) ¹⁶⁷ Er	5541	6	5546.74		1.0	U				Tal		67Ha25
	-1523	10	-1514.08		0.9	U	100	-	¹⁶⁸ Er	Kop		69Tj01
167 Er(n, γ) 168 Er	ave. 7771.				0.0	1	100	67	168 m			average
167 Er(α ,t) 168 Tm $-^{168}$ Er() 169 Tm	-262.		-262.3	1.5	0.0	1	100		167 Tm	McM		75Bu02
168 Yb(d,t) 167 Yb	-2797	12	-2805	4	-0.7	1	11	11	¹⁶⁷ Yb	Kop		66Bu16
$^{168}\text{Ho}(\beta^-)^{168}\text{Er}$	2740	100	2930	30	1.9	U						73Ka07 *
169	2930	30				2						90Ch37
168 Lu(β^+) 168 Yb	4475	80	4510	40	0.5	2						70Ch28 *
	4493	100			0.2	2						72Ch44 *
160-	4500	80			0.2	2				IRS		83Vi.A
* ¹⁶⁸ Lu-u	M - A = -56922			m at 202.	.81 keV							Nub16b **
$*^{168}$ Re(α) ¹⁶⁴ Ta	E_{α} =4833(13) to											Ens089 **
$*^{168} Ir^{m} (\alpha)^{164} Re^{m}$	E_{α} =6320(10), 63											09Ha42 **
$*^{168}$ Ho(β^-) ¹⁶⁸ Er	E_{β} =1900(100)			d 3 ⁺ at 8	95.79 keV	V						Ens108 **
$*^{168}$ Lu(β^+) 168 Yb	$E_{\beta^+}=1230(80) \text{ t}$											Ens108 **
$*^{168}$ Lu(β^+) 168 Yb	$E_{\beta}^{r} = 1470(100)$	from ¹⁶⁸ Lu	^m at 202.81 t	o 4 ⁺ leve	el at 2203	.84 keV						Ens108 **
$C_{12} H_{11} N^{-169} Tm$	154920	60	154931.0	0.9	0.0	U				R04	4.0	64De15
169Lu-u	-62362	31	-62356	3	0.0	U				GS2	1.0	05Li24 *
Lu-u 169Hf-u	-58741	30	-02330	3	0.2					GS2		05Li24 *
169Ta—u			£2000	20	0.2	2					1.0	
ra—u	-53960	110	-53990	30	-0.3	U				GS1	1.0	00Ra23
¹⁶⁹ W-u	-53989	30	49221	17	0.0	2	21	21	¹⁶⁹ W	GS2	1.0	05Li24
169 Re-u	-48195	30	-48221	17	-0.9	1	31	31	w W	GS2	1.0	05Li24
	-41203	63	-41234	12	-0.5	U	17	1.1	165**	GS2	1.0	05Li24 *
¹⁶⁹ Tm ³⁵ Cl ₂ – ¹⁶⁵ Ho ³⁷ Cl ₂	9793.		9790.5	1.1	-0.9	1	17	11	¹⁶⁵ Ho		2.5	72Ba08
¹⁶⁹ Tm ³⁵ Cl- ¹⁶⁷ Er ³⁷ Cl	5107	3	5114.3	1.2	1.0	U	4.0		167-	H23	2.5	70Wh01
160 p. () 165 m. m.	5113.				0.4	1	19	15	¹⁶⁷ Er	H25	2.5	72Ba08
169 Re(α) 165 Ta ^m	4989.		5100			5	0.0		165 m	Bea		92Me10 *
$^{169}\mathrm{Re}^m(\alpha)^{165}\mathrm{Ta}$	5189.		5189	3	-0.1	1	99	75	¹⁶⁵ Ta	Ora		82De11
	5191.				-0.2	U				ChR		84Sc06 *
160 - 165	5184.				0.5	U				Bea		92Me10
$^{169}\mathrm{Os}(\alpha)^{165}\mathrm{W}$	5717.		5713	3	-1.0	2				Ora		82De11
	5699.				1.7	2						84Sc06 *
	5713	8			0.1	2				_		95Hi02 *
160 165-	5711.				0.2	2				Daa		96Pa01
169 Ir(α) 165 Re	6150.		6141	4	-1.2	5				Ara		99Po09
	6138.				0.6	5				Jya		05Sc22
160- 165-	6165	14			-1.7	U				Jya		12Th13
$^{169}\mathrm{Ir}^m(\alpha)^{165}\mathrm{Re}^m$	6276.		6266.5	2.9	-3.2	В				Ora		82De11 Z
	6258.				0.8	U				GSa		84Sc.A
	6267.				-0.1	_				Daa		96Pa01
	6254.				2.4	В				Ara		99Po09
	6265.				0.3	_				Jya		05Sc22
	6268	14			-0.1	U			160	Jya		12Th13
160165	ave. 6265.				0.3	1	99	54	$^{169}\mathrm{Ir}^m$			average
169 Pt(α) 165 Os	6840.		6858	5	1.2	U				GSa		81Ho10
	6860.				-0.1	U				Daa		96Pa01
	6853.				0.5	0				Jya		04Ke06
	6857.	6 5.1				6				Jya		09Go16

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	/alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
168 Er(n, γ) 169 Er	6002.5	0.7	6003.25	0.15	1.1	U					70Bo29 2
$\operatorname{Li}(\Pi, f) = \operatorname{Li}$	6003.5	0.7	0003.23	0.13	-0.8	2					70Mu15 2
	6003.16	0.18			0.5	2			Bdn		06Fi.A
¹⁶⁸ Er(d,p) ¹⁶⁹ Er			2770 60	0.15	0.5	Ü					
Er(a,p) Er	3773	12	3778.68	0.15					Tal		68Ha10
168 160	3781	10	4.42.40.0		-0.2	U			Kop		69Tj01
168 Er(α ,t) 169 Tm	-14244.8	10.	-14240.9	1.1	0.4	U			McM		75Bu02
169 Tm $(\gamma,n)^{168}$ Tm	-8110	50	-8033.6	1.5	1.5	U			Phi		60Ge01
169 Tm(d,t) 168 Tm	-1775	6	-1776.4	1.5	-0.2	U			Pit		73Ko06
168 Yb(n, γ) 169 Yb	6866.8	0.4	6866.98	0.15	0.4	2					68Mi08
	6867.2	0.4			-0.6	2					68Sh12
	6866.97	0.18			0.0	2			Bdn		06Fi.A
168 Yb(d,p) 169 Yb	4636	12	4642.41	0.15	0.5	U			Kop		66Bu16
169 Dy $(\beta^{-})^{169}$ Ho	3200	300				3			LBL		90Ch34
$^{169}\text{Ho}(\beta^-)^{169}\text{Er}$	2070	100	2126	20	0.6	U			LDL		63Mi17
$^{169}\text{Er}(\beta^-)^{169}\text{Tm}$											
Er(p) 1m	343.8	3.	352.1	1.1	2.8	В					56Bi30
160 m () 160 m	347.8	5.	007.6		0.9	U					65Du02
$^{69}\mathrm{Yb}(\varepsilon)^{169}\mathrm{Tm}$	913	12	897.6	1.1	-1.3	U					86Ad07
	900	100			0.0	U					87Sa53
169 Lu(β^+) 169 Yb	2293	3				3					77Bo31
¹⁶⁹ Hf(β ⁺) ¹⁶⁹ Lu	3365	200	3368	28	0.0	U					69Ar23
	3250	90			1.3	U					73Me09
¹⁶⁹ Lu–u	M - A = -58075(28) k	keV for mix	ture gs+m at 2	9.0 keV							Nub16b *
⁶⁹ Re-u	M - A = -38293(29) 1		-		V						Nub16b *
$^{69}\mathrm{Re}(\alpha)^{165}\mathrm{Ta}^m$	E_{α} =4871(12), and a		-	73(13) RC	•						92Me10 *
$^{69}\mathrm{Re}^m(\alpha)^{165}\mathrm{Ta}$	Original E_{α} =5050 re			17000							
			-		resuits						GAu *
169 Os $(\alpha)^{165}$ W	Used to recalibrate o										GAu *
169 Os $(\alpha)^{165}$ W	E_{α} =5578(8), 5536(1										Ens066 *
$^{169}\text{Ho}(\beta^-)^{169}\text{Er}$	E_{β} = 1200(100) to 5.	/2 ⁻ level at	853.0 and 7/2	at 941.0	4 keV						Ens089 *
$^{169}{ m Er}(eta^-)^{169}{ m Tm}$	$E_{\beta}^{r} = 340(2) \ 344(4) \ 1$	respectively	, 55% to groun	d state, 45	5% to 3/2	2 ⁺ level	at 8.41 ke	V			Ens089 *
169 Yb $(\varepsilon)^{169}$ Tm	From decay rates to										Ens089 *
169 Yb $(\varepsilon)^{169}$ Tm	pK=0.812(0.029) to			,							Ens089 *
$^{169}\mathrm{Hf}(\beta^+)^{169}\mathrm{Lu}$	E_{β} = 1850(200) to 7.										Ens089 *
$^{169}\text{Hf}(\beta^+)^{169}\text{Lu}$	$K/\beta^+=5.2(1.0)$ to $7/2$										Ens089 *
(p)	127 0.2(110) to 77.	2 10 / 01 41	.,2.00 1.0								Ziisooy
C ₁₂ H ₁₂ N- ¹⁷⁰ Er	161210	70	161503.7	1.7	1.0	U			R04	4.0	64De15
$C_{12} H_{12} N^{-170} Yb$	161831	43	162207.146	0.011	2.2	U			R04	4.0	64De15
C ₁₁ H ₈ O N ⁻¹⁷⁰ Yb	125370	150	125821.636	0.011	0.8	Ü			R04	4.0	64De15
$C_{11}^{13}CH_{11}N^{-170}Yb$	157320	210	157736.949	0.011	0.5	Ü			R04	4.0	64De15
$^{70}\text{Yb} - ^{129}\text{Xe}_{1.318}$	60266.078		60266.070	0.009	-0.7	1	58	53 ¹⁷⁰ Yb	FS1	1.0	12Ra34
170 Yb $^{-132}$ Xe _{1.288}							50	47 ¹⁷⁰ Yb			
10- Ac _{1.288}	58215.483		58215.493	0.009	0.7	1	30	4/ *** 10	FS1	1.0	12Ra34
⁷⁰ Lu−u	-61529	42	-61521	18	0.2	R			GS2	1.0	05Li24
⁷⁰ Hf−u	-60400	104	-60390	30	0.1	U			GS1	1.0	00Ra23
70	-60391	30				2			GS2	1.0	05Li24
⁷⁰ Ta−u	-53810	104	-53830	30	-0.1	U			GS1	1.0	00Ra23
	-53825	30				2			GS2	1.0	05Li24
$^{70}W-u$	-50710	110	-50769	14	-0.5	U			GS1	1.0	00Ra23
vv —u		30			-0.5	1	22	$22^{-170}W$	GS2	1.0	05Li24
vv —u	-50/55		41775	25	0.2	_			GS2	1.0	05Li24
	-50755 -41782	30	-41//>		U.2			170	002	1.0	052127
	-41782	30 28	-41775		0.2	1	80	80 1/0 D c			average
⁷⁰ Re-u	-41782 ave. -41780	28			0.2	1	80	80 ¹⁷⁰ Re	G00	1.0	average
⁷⁰ Re-u	-41782 ave41780 -36454	28 31	-36421	10	1.1	1	80 11	80 ¹⁷⁰ Re 11 ¹⁷⁰ Os	GS2	1.0	05Li24
¹⁷⁰ Re-u	-41782 ave41780 -36454 6073	28 31 31			$1.1 \\ -0.6$	1 U			R08	1.5	05Li24 69De19
¹⁷⁰ Re-u	-41782 ave41780 -36454 6073 6040	28 31 31 3	-36421	10	$ \begin{array}{r} 1.1 \\ -0.6 \\ 0.6 \end{array} $	1 U U	11	11 ¹⁷⁰ Os	R08 H23	1.5 2.5	05Li24 69De19 70Wh01
w – u 170 Re – u 170 Os – u 170 Er ³⁵ Cl – ¹⁶⁸ Er ³⁷ Cl 170 Yb ³⁵ Cl – ¹⁶⁸ Yb ³⁷ Cl	-41782 ave41780 -36454 6073	28 31 31	-36421	10	$1.1 \\ -0.6$	1 U			R08	1.5	05Li24 69De19

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
¹⁷⁰ Er- ¹⁶⁸ Er		3450	70	3094.5	1.6	-1.3	U			R04	4.0	64De15	
170 Yb – 168 Yb		910	200	878.1	1.3					R04	4.0		
$^{70}Os(\alpha)^{166}W$						0.0	U				4.0	64De15	,
$Os(\alpha)^{ras} W$		5533.5	10.	5536.9	2.7	0.3	_			ORa		72To06	2
		5541.8	4.1			-1.2	_			Ora			7
		5523.2	8.			1.7	-					84Sc06	
		5533.4	8.			0.4	-			D.I		95Hi02	
		5537.5	5.			-0.1	_	0.0	00 170 0	Bka		02Ro17	
70 166	ave.	5537.1	2.7			-0.1	1	99	89 ¹⁷⁰ Os			average	
70 Ir(α) 166 Re p		5955.4	10.				7			Bka		02Ro17	
70 Ir $^m(\alpha)^{166}$ Re		6175.4	10.	6272	10	9.7	В					78Sc26	
		6172.7	5.			19.9	В			Ora		82De11	
		6147.9	10.			12.4	В			Daa		96Pa01	:
		6229.9	11.			3.9	В			Daa		96Pa01	
		6272.4	10.				6			Jya		07Ha45	:
70 Pt(α) 166 Os		6703.0	8.	6707	3	0.5	_			GSa		81Ho10	
		6705.0	10.			0.2	_					82En03	
		6708.1	6.			-0.1	_			ORa		96Bi07	
		6711.2	11.			-0.3	_			Jya		97Uu01	
		6723.5	14.			-1.1	_			Bka		01Ro.B	
		6707.1	7.			0.0	_			Jya		04Ke06	
	ave.	6708	3			-0.1	1	84	84 ¹⁷⁰ Pt	•		average	
70 Au(α) 166 Ir		7174.1	11.	7177	15	0.3	0			Jya		02Ke.C	
riu(w) ii		7170.0	12.	, , , ,	15	0.6	Ü			Jya		04Ke06	
70 Au ^{m} (α) 166 Ir m		7277.5	6.	7285	12	0.2	0			Jya		02Ke.C	
Au (W) II		7277.3	15.	7203	12	1.2	U			Ara		02Ma61	
		7278.5	9.			0.1	U			Jya		04Ke06	
70 Er(p, α) 167 Ho		7036				0.1	2			-		83Ta.A	
70 Er(18 O, 20 Ne) 168 Dy			5							NDm			
		4710	140	4770.2	1.5	1.2	2			3.4		98Lu08	
70 Er(p,t) 168 Er		-4785	5	-4778.3	1.5	1.3	U			Min		73Oo01	
70 Yb(p,t) 168 Yb		-6861	6	-6842.9	1.2	3.0	В			Min		73Oo01	
⁷⁰ Er(d, ³ He) ¹⁶⁹ Ho		-3107	20				2					76Su.A	
70 Er(d,t) 169 Er		-1010	10	-999.7	1.5	1.0	U			Kop		69Tj01	
69 Tm $(n, \gamma)^{170}$ Tm		6595.	2.5	6591.96	0.17	-1.2	U					66Sh03	
		6592.1	1.5			-0.1	U					70Or.A	
		6591.7	0.9			0.3	U			BNn		96Ho12	7
		6591.95	0.17			0.0	1	99	79 ¹⁶⁹ Tm	Bdn		06Fi.A	
69 Tm(d,p) 170 Tm		4420	20	4367.39	0.17	-2.6	U			CIT		66Ry01	
1,		4369	15			-0.1	U			Tal		66Sh03	
70 Yb(d,t) 169 Yb		-2211	12	-2200.4	1.2	0.9	U			Kop		66Bu16	
70 Au(p) 169 Pt		1473.8	15.	1472	12	-0.1	o			Jyp		02Ke.C	
71 u (p) 11		1471.7	12.	11,72	12	0.1	7			Jyp		04Ke06	
70 Au m (p) 169 Pt		1749.5	8.	1751	5	0.2	0					02Ke.C	
Au (p) 11		1745.4	10.	1/31	3	0.2	7			Jyp Arp		02Ma61	
		1753.5	6.			-0.4	7					04Ke06	
$^{70}\text{Ho}(\beta^{-})^{170}\text{Er}$						-0.4				Jyp		78Tu04	
$^{70}\text{Ho}^{m}(\beta^{-})^{170}\text{Er}$		3870	50				2						
		3970	60	060.1	0.0	1.0	2					78Tu04	
$^{70}\text{Tm}(\beta^{-})^{170}\text{Yb}$		970	2	968.1	0.8	-1.0	_					54Po26	
		967.3	1.			0.8	-		170			69Va17	
70	ave.	967.8	0.9			0.3	1	80	80^{-170} Tm			average	
70 Lu(eta^+) 170 Yb		3467	20	3458	17	-0.5	2					60Dz02	
		3410	50			1.0	2					65Ha30	
⁷⁰ Lu−u	M-A=-	-57267(29) 1	keV for m	ixture gs+m	at 92.91 k	æV						Nub16b	*
70 Os $(\alpha)^{166}$ W				ts in same re								GAu	*
	$E_{\alpha} = 6029$	9.8(10, Z) 60	27.2(5,Z)	6003(10) me	ost probab	oly to low l	evels in 1	¹⁶⁶ Re				GAu	*:
70 Ir ^{m} (α) 166 Re						-							
		ed with 166R	$E_{\alpha} = 55$	33 keV								96Pa01	*
170 Ir $^{m}(\alpha)^{166}$ Re 170 Ir $^{m}(\alpha)^{166}$ Re 170 Ir $^{m}(\alpha)^{166}$ Re	Correlate	ed with ¹⁶⁶ R 1(10) to leve		33 keV 6007(10) to 1	22, 60530	(10) to 75 k	eV					96Pa01 07Ha45	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main ir		Lab	F	Referenc	e
G 13GH N 171VI		164140	00	1/2007 700	0.014	0.4					D04	4.0	(4D 15	
C ₁₁ ¹³ C H ₁₂ N ⁻¹⁷¹ Yb		164140	80	163997.709	0.014		U				R04	4.0	64De15	
$C_{10} H_7 O N_2 - {}^{171}Yb$		119640	270	119506.337	0.014		U		17	1	R04	4.0	64De15	
171 Yb $^{-129}$ Xe _{1.326}		62592.096	0.012	62592.096	0.012	0.0	1	100	100 17	¹Yb	FS1	1.0	12Ra34	
¹⁷¹ Lu–u		-62132	41	-62081.3	2.0	1.2	U				GS2	1.0	05Li24	*
¹⁷¹ Hf—u		-59570	104	-59510	30	0.6	U				GS1	1.0	00Ra23	*
		-59508	31				2				GS2	1.0	05Li24	*
¹⁷¹ Ta-u		-55550	104	-55520	30	0.3	U				GS1	1.0	00Ra23	
		-55524	30				2				GS2	1.0	05Li24	
$^{171}W-u$		-50650	110	-50550	30	0.9	U				GS1	1.0	00Ra23	
		-50549	30				2				GS2	1.0	05Li24	
171 Re $-u$		-44284	30				2				GS2	1.0	05Li24	
$^{171}Os-u$		-36796	30	-36825	19	-1.0	_				GS2	1.0	05Li24	
	ave	-36801	21			-1.1	1	81	81 17	¹ Os			average	
¹⁷¹ Yb ³⁵ Cl ₂ - ¹⁶⁷ Er ³⁷ Cl ₂		10178.0	1.7	10177.6	1.3	-0.1	U				H27	2.5	74Ba90	
¹⁷¹ Yb ³⁵ Cl ⁻¹⁶⁹ Tm ³⁷ Cl		5055	3	5063.3	0.9	1.1	U				H23	2.5	70Wh01	
10 61 1111 61		5061.9	1.7	3003.3	0.7	0.3	U				H27	2.5	74Ba90	
$^{171}\text{Yb} - ^{170}\text{Yb}$		1220	60	1564.271	0.015	1.4	U				R04	4.0	64De15	
$^{171}\text{Os}(\alpha)^{167}\text{W}$												4.0		
$Os(\alpha)^{-s}$ w		5365.8	10.	5371	4	0.5	_				ORa		72To06	
		5365.8	10.			0.5	_						78Sc26	
		5393.4	15.			-1.4	_						79Ha10	
		5367.9	8.			0.4	_				ъ		95Hi02	*
		5374.0	9.			-0.3	_		16	7 W	Daa		96Pa01	
171 167	ave.	5371	4			0.1	1	99	90 16	'W			average	
171 Ir(α) 167 Re m		5854.2	10.	5866	5	1.1	5				Bka		02Ro17	*
		5865.4	8.			0.0	5				Ara		11Ko.B	*
		5871.6	7.2			-0.8	5				Anv		13An10	
$^{171} \text{Ir}^m(\alpha)^{167} \text{Re}$		6159.2	3.	6161.1	2.3	0.6	11				Ora		82De11	*
		6159	5			0.4	11						92Sc16	*
		6180	11			-1.7	11				Daa		96Pa01	*
		6159.2	8.			0.2	11				Anv		10An01	*
		6172.4	8.			-1.4	11				Ara		11Ko.B	*
171 Pt(α) 167 Os		6608.1	4.	6607	3	-0.2	7				Ora		81De22	Z
		6606.8	5.			0.1	7				GSa		81Ho10	Z
		6604.8	11.			0.2	7				Jya		97Uu01	
		6600.6	15.			0.5	U				Anv		10An01	
171 Au $^{m}(\alpha)^{167}$ Ir m		7163.9	6.	7164	4	0.1	_				Ara		97Da07	
()		7162.9	8.			0.2	_				Jya		04Ke06	
	ave.	7164	5			0.2	1	69	39 17	1 Au m	-)		average	
171 Hg(α) 167 Pt	4.0.	7667.7	15.			0.2	6	0,	0,		Jya		04Ke06	
¹⁷¹ Yb(p,t) ¹⁶⁹ Yb		-6599	5	-6590.1	1.2	1.8	Ü				Min		73Oo01	
170 Er(n, γ) 171 Er		5681.5	0.5	5681.6	0.4	0.2	_				141111		71Al01	
$EI(II,\gamma)$ EI		5681.6		3001.0	0.4	0.0					Dda		06Fi.A	
170 Er(d,p) 171 Er			0.5	2457.0	0.4		_				Bdn			
Er(d,p) Er		3450	10	3457.0	0.4	0.7	U				Tal		68Ha10	
170p ()171p		3458	10	7601.6	0.4	-0.1	U	00	co 17	1-	Kop		69Tj01	
170 Er(n, γ) 171 Er	ave.	5681.6	0.4	5681.6	0.4	0.1	1	98	62 17	¹ Er			average	
170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm		817.9	1.0	817.6	0.9	-0.3	1	82	53 17	⁰ Er	McM		75Bu02	
170 Yb $(n,\gamma)^{171}$ Yb		6614.3	0.6	6614.208	0.014		U						72Wa10	Z
170		6616.6	0.4			-6.0	C				Bdn		06Fi.A	
170 Yb(d,p) 171 Yb		4390	12	4389.642	0.014	0.0	U				Kop		66Bu16	
171 Yb(d,t) 170 Yb		-359	12	-356.979	0.014	0.2	U				Kop		66Bu16	
170 Yb(α ,t) 171 Lu $^{-174}$ Yb() 175 Lu		-1156.2	2.0	-1156.6	1.7	-0.2	1	73	61 17	¹ Lu	McM		75Bu02	
171 Au(p) 170 Pt		1452.6	17.	1448	10	-0.3	2				Arp		99Po09	
· · ·		1445.6	12.			0.2	2				Jyp		04Ke06	
171 Au m (p) 170 Pt		1702.1	6.	1702	4	0.1	_				J I		97Da07	
\(r\)		1704.1	6.	- · · · -	-	-0.3	_				Jyp		04Ke06	
	ave.	1704.1	4			-0.1	1	77	61 17	1 Au m	"JP		average	
	avc.	1,05	•			0.1	1	, ,	01	u			arcruge	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-	Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Reference	_
$^{171}\text{Ho}(\beta^-)^{171}\text{Er}$		3200	600				2				LBL		90Ch34	
				1401.2	1.0	0.7	2	20	20	171 E	LBL			
$^{171}\text{Er}(\beta^-)^{171}\text{Tm}$		1490	2	1491.3	1.3	0.7	1	39	38	¹⁷¹ Er				*
$^{171}\text{Tm}(\beta^-)^{171}\text{Yb}$		96.5	1.0	96.5	1.0	0.0	1	94	94	¹⁷¹ Tm			57Sm73	
171 Lu(β^+) 171 Yb		1479.3	3.	1478.4	1.9	-0.3	1	39	39	¹⁷¹ Lu				*
$^{171}\text{Re}(\beta^+)^{171}\text{W}$		5670	200	5840	40	0.8	U				Got		87Ru05	
171 Au m (IT) 171 Au		250	16	255	10	0.3	O						99Po09	*
*171Lu-u	M-A=	=–57840(33) k	eV for mix	ture gs+m at 7	1.13 keV								Nub16b *	*
* ¹⁷¹ Hf-u	M-A=	=-55480(100)	keV for mi	xture gs+m at	21.93 ke	V							Nub16b *	*
* ¹⁷¹ Hf-u	M-A=	=-55420(28) ke	eV for mix	ture gs+m at 2	1.93 keV								Nub16b *	*
$*^{171}$ Os $(\alpha)^{167}$ W	$E_{\alpha}=52$	41(8), 5166(8)	to ground	state and level	at 79 ke	V							95Hi02 *	*
$*^{171} Ir(\alpha)^{167} Re^m$		ated with $E_{\alpha} = 6$											02Ro17 *	:*
$*^{171} Ir(\alpha)^{167} Re^{m}$				¹⁷⁵ Au and 655	6(8) of ¹⁷	⁹ Tl							11Ko.B *	
$*^{171} \text{Ir}^{m}(\alpha)^{167} \text{Re}$				11) 5925(8) res			2 ⁻) level	at 92 keV					92Sc16 *	
" II (a) Re				u E_{α} =6438 ke'		, 10 (11/	2) icvci	at 12 Ke v					02Ro17 *	
$*^{171} \text{Ir}^m(\alpha)^{167} \text{Re}$				ted with E_{α} =64		175 Am							11Ko.B *	
*** II**(α)*** Re		38(8) to 92 lev 194(8) of ¹⁷⁹ T		led with $E_{\alpha}=0^{2}$	+31(8) 01	Au								
* 171 p. (0=)171 m				14051 17									11Ko.B *	
$*^{171}$ Er(β^-) ¹⁷¹ Tm		065(2) to 7/2											Ens029 *	
$*^{171}$ Lu(β^+) ¹⁷¹ Yb	P	$62(3)$ to $7/2^+$ 1		28 keV									Ens029 *	:*
$*^{171}\mathrm{Au}^m(\mathrm{IT})^{171}\mathrm{Au}$	Redunc	dant; use only	their Q_p										GAu *	*
G H O N 172 - 172		102560	60	100466.770	0.015						Do.	4.0	(4D 15	
$C_{10} H_6 O_2 N^{-172} Yb$		103560	60	103466.778	0.015	-0.4	U			172	R04	4.0	64De15	
172 Yb $^{-132}$ Xe _{1.303}		61272.578	0.013	61272.578	0.013	0.0	1	100	100	¹⁷² Yb		1.0	12Ra34	
¹⁷² Hf-u		-60555	30	-60550	26	0.2	2				GS2	1.0	05Li24	
172 Ta $-$ u		-55105	30				2				GS2	1.0	05Li24	
$^{172}W-u$		-52770	110	-52710	30	0.6	U				GS1	1.0	00Ra23	
		-52708	30				2				GS2	1.0	05Li24	
172 Re $-$ u		-44702	221	-44590	40	0.5	U				GS1	1.0	00Ra23	*
		-44587	62			-0.1	1	46	46	¹⁷² Re	GS2	1.0	05Li24	*
¹⁷² Yb ³⁵ Cl ₂ - ¹⁶⁸ Er ³⁷ Cl ₂		9906.7	1.7	9910.7	1.3	0.9	U				H27	2.5	74Ba90	
¹⁷² Yb ³⁵ Cl- ¹⁷⁰ Yb ³⁷ Cl		4568.5	2.0	4569.52	0.07	0.2	U				H27	2.5	74Ba90	
172 Yb $^{-171}$ Yb		-50	230	55.142	0.018	0.1	U				R04	4.0	64De15	
$^{172}{\rm Os}(\alpha)^{168}{\rm W}$		5226.8	10.	5224	7	-0.2	_						71Bo06	
σs(ω) 11		5227.8	10.	3221	,	-0.3	_				Daa		96Pa01	
	ave.	5227.0	7			-0.4	1	93	59	^{168}W	Duu			
$^{172} Ir(\alpha)^{168} Re$	ave.	5990.6	10.			-0.4	4	93	33	**			average 92Sc16	
$^{172} \text{Ir}^m(\alpha)^{168} \text{Re}$				(120.2	2.6	0.0					0			*
$^{-1}$ Ir" $(\alpha)^{-1}$ Re		6129.3	3.	6129.2	2.6	0.0	4				Ora			*
		6161	20			-1.6	F				GSa			*
		6129.1	5.			0.0	4				Б			*
172 - 168 -		6123.0	12.			0.5	U	0.7		172-	Daa			*
172 Pt(α) 168 Os		6464.8	4.	6463	4	-0.4	1	97	77	¹⁷² Pt	Ora		81De22	Z
		6474.8	15.			-0.8	U				Anv		09An20	
172 Au $(\alpha)^{168}$ Ir		6923.3	10.2				6				Jya		09Ha42	
$^{172}\mathrm{Au}^m(\alpha)^{168}\mathrm{Ir}^m$		7023.6	10.	7034	6	1.0	7						93Se09	
		7042.1	9.			-0.9	7				Daa		96Pa01	
		7033.8	10.			0.0	7				Jya		09Ha42	*
172 Hg(α) 168 Pt		7525.3	12.	7524	6	-0.1	3				-		99Se14	
		7536.5	16.			-0.8	o				Jya		04Ke06	
		7523.3	7.2			0.1	3				Jya		09Sa27	
170 Er(t,p) 172 Er		4034	4	4036	4	0.4	1	89	87	172 Er			80Sh14	
172 Yb(p,t) 170 Yb		-6161	5	-6152.366	0.015	1.7	Ü	~-	٠,		Min		73Oo01	
171 Yb $(n,\gamma)^{172}$ Yb		8020.3	0.7	8019.953	0.013	-0.5	U				1+1111			z
10(11,7) 10		8020.3	0.7	0017.733	0.017	-0.3	U						75Gr32	_
		8020.1	0.35			0.8	U				ILn			7
		8019.67				4.0							85Ge02 . 06Fi.A	Z
171 Yb(d,p) 172 Yb			0.17	5705 207	0.017		C				Bdn			
··· Y D(a,p)·/~ Y D		5797	12	5795.387	0.017	-0.1	U				Kop		66Bu16	
		5789	5			1.3	U				Tal		66Sh14	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	on or m	Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Reference
		1											
172 Yb(d,t) 171 Yb		-1772	12	-1762.724	0.017	0.8	U				Kop		66Bu16
¹⁷¹ Yb(³ He,d) ¹⁷² Lu		-792	34	-775.3	2.3	0.5	U				Roc		76El11
171 Yb(α ,t) 172 Lu $^{-174}$ Yb() 175 Lu		-791.9	2.0	-791.9	2.0	0.0	1	100) ¹⁷² Lu	McM		75Bu02
172 Er(β^-) 172 Tm		888	5	891	5	0.6	1	83	70	¹⁷² Tm			62Gu03 *
$^{172}\text{Tm}(\beta^{-})^{172}\text{Yb}$		1870	10	1881	6	1.1	1	30	30	¹⁷² Tm			66Ha15
172 Hf(ε) 172 Lu		350	50	334	25	-0.3	R						79To18
$^{172}\text{Ta}(\beta^+)^{172}\text{Hf}$		4920	180	5070	40	0.8	U						73Ca10 *
172 W(β^+) 172 Ta		3210	100	2230	40	-9.8	C						74Ca.A *
* ¹⁷² Re-u				mixture gs+m									Nub16b **
* ¹⁷² Re-u				nixture gs+m a	it 0#100	keV							Nub16b **
$*^{172} Ir(\alpha)^{168} Re$		10(10) to 89.			1.161.340								92Sc16 **
$*^{172} \text{Ir}^{m}(\alpha)^{168} \text{Re} *^{172} \text{Ir}^{m}(\alpha)^{168} \text{Re}$	$E_{\alpha}=5/$	36 followed t	oy XK(Ke 1731(a)), 128 M2 and een in neither	1 101 M3	γs :							84Sc.A **
$*^{172} \text{Ir}^{m}(\alpha)^{168} \text{Re}$								1 1roW					92Sc16 **
* II (α) - Re * 172 Au $^{m}(\alpha)^{168}$ Ir m				2(12) respective und state and			1 at 102	.1 Ke v					Ens108 ** 09Ha42 **
* $Au^{-}(a)^{-}$ H * $^{172}Er(\beta^{-})^{172}Tm$		78(5) to 1 ⁺ le			/U KE V	ievei							Ens15c **
* $EI(\beta^{-})$ Till * $^{172}Ta(\beta^{+})^{172}Hf$				1418.55 keV									Ens150 ** Ens959 **
$*^{172}W(\beta^+)^{172}Ta$						6 2 lavia	1						Ens15c **
**-w(p ·)*-1a	$E_{\beta^+}=1$	000(100) III C	conic. with	n 459.2 keV γ	110111 38	0.5 leve	ı						Elistoc **
С н 173хд		101020	70	100000 045	0.010	0.4					DO4	4.0	CAD 15
$C_{14} H_5 - {}^{173}Yb$ $C_{10} H_7 O_2 N - {}^{173}Yb$		101030	70 60	100908.946			U				R04	4.0	64De15
$C_{10} H_7 O_2 N - {}^{173}Yb$ ${}^{173}Yb - {}^{129}Xe_{1.341}$		109810	60	109462.254	0.012		U	(0	51	¹⁷³ Yb	R04	4.0	64De15
173 Yb $-^{132}$ Xe _{1.341}		65905.075	0.013	65905.080	0.010		1	60	56 44		FS1	1.0	12Ra34
¹⁷³ Hf—u		63868.901	0.015 30	63868.895	0.010	-0.4	1	47	44	10	FS1 GS2	1.0	12Ra34 05Li24
173Ta-u		-59487 56270		56250	20	0.2	2				GS2 GS1	1.0	03L124 00Ra23
ra—u		-56270 -56250	104 30	-56250	30	0.2	U 2				GS1	1.0	05Li24
$^{173}W-u$		-50230 -52340	104	-52310	30	0.3	U				GS1	1.0	00Ra23
vv —u		-52340 -52311	30	-32310	30	0.5	2				GS2	1.0	05Li24
¹⁷³ Re-u		-46910	110	-46760	30	1.4	U				GS1	1.0	00Ra23
110 0		-46757	30	.0,00			2				GS2	1.0	05Li24
¹⁷³ Os-u		-40169	30	-40192	16	-0.8	1	29	29	$^{173}\mathrm{Os}$	GS2	1.0	05Li24
¹⁷³ Ir-u		-32449	100	-32495	12	-0.5	U				GS2	1.0	05Li24 *
173 Yb 35 Cl ₂ $-^{169}$ Tm 37 Cl ₂		9898.3	1.2	9898.1	0.9	-0.1	U				H27	2.5	74Ba90
¹⁷³ Yb ³⁵ Cl- ¹⁷¹ Yb ³⁷ Cl		4827	4	4834.81	0.07	0.8	U				H23	2.5	70Wh01
		4835.3	1.6			-0.1	U				H27	2.5	74Ba90
173 Yb $^{-172}$ Yb		1970	120	1829.556	0.017	-0.3	U				R04	4.0	64De15
$^{173}\mathrm{Os}(\alpha)^{169}\mathrm{W}$		5057.2	10.	5055	6	-0.2	_						71Bo06
		5055.2	7.			-0.1	_				GSa		84Sc.A
	ave.	5056	6			-0.2	1	97	69	¹⁶⁹ W			average
173 Ir(α) 169 Re m		5544.4	10.	5541	10	-0.4	1	90	76	169 Re ^{m}			92Sc16
$^{173}\mathrm{Ir}^m(\alpha)^{169}\mathrm{Re}$		5930.4	5.	5941.8	2.5	2.3	4						67Si02 *
		5947.1	4.			-1.3	4				Ora		82De11 *
		5937	10			0.5	4				GSa		84Sc.A *
		5944.8	5.			-0.6	4				_		92Sc16 *
		5951.9	13.			-0.8	4				Daa		96Pa01 *
173 Pt(α) 169 Os		5927.3	20.	6250	50	0.7	U				Ara		01Ko.B
$^{1/3}$ Pt(α) $^{1/3}$ Os		6359.3	8.2	6350	50	-0.1	3				0		79Ha10 Z
		6352.3	3.			0.1	3				Ora		81De22 Z
		6382.9 6372.6	10. 9.			$-0.6 \\ -0.4$	0				GSa		84Sc.A 96Pa01
		6387.9	9. 15.			-0.4 -0.7	3 U				Daa Anv		09An20
173 Au(α) 169 Ir		6830.2	6.	6836	5	1.0	4				Ara		99Po09
Au(w) II		6847.6	8.	0030	5	-1.4	4				Ara		01Ko44
		6846.6	6. 14.			-0.7	U				Ara		12Th13
173 Au ^{m} (α) 169 Ir m		6896.8	10.	6897	3	0.0	_				GSa		84Sc.A
114 (w) II		6909.1	9.	5071	5	-1.3	_				Daa		96Pa01
		6891.6	4.			1.3	_				Ara		99Po09
		6900.8	6.			-0.6	_				Ara		01Ko44
		6899	15			-0.1	U				Jya		12Th13
	ave.	6896	3			0.3	1	98	52	173 Au m	•		average
$^{173}\mathrm{Hg}(\alpha)^{169}\mathrm{Pt}$		7382.0	11.3	7378	4	-0.4	7						99Se14

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
173.1. ()169.D.	50.00.5	15.4	7270	4	1.0	-					0.417.06	_
173 Hg(α) 169 Pt	7362.5	15.4	7378	4	1.0	7			Jya		04Ke06	
173*** () 171***	7378.9	5.		0.045	-0.2	7			3.51		12Od01	
173 Yb(p,t) 171 Yb	-5913	5	-5905.255	0.015	1.5	U			Min		73Oo01	_
172 Yb $(n,\gamma)^{173}$ Yb	6367.3	0.4	6367.097	0.015		U			D 1		71Al01	Z
173577 ()172577	6367.2	0.6	(2/5 005	0.015	-0.2	U			Bdn		06Fi.A	
173 Yb $(\gamma,n)^{172}$ Yb	-6500	80	-6367.097	0.015	1.7	U			Phi		60Ge01	
172 Yb(d,p) 173 Yb	4145	12	4142.531	0.015		U			Kop		66Bu16	
173 Yb(d,t) 172 Yb	-114	12	-109.868	0.015	0.3	U	100	100 173	Kop		66Bu16	
172 Yb(α ,t) 173 Lu $^{-174}$ Yb() 175 Lu	-595.6	1.0	-595.6	1.0	0.0	1	100	100 ¹⁷³ Lu	McM		75Bu02	
$^{173}\text{Tm}(\beta^{-})^{173}\text{Yb}$	1260	50	1295	4	0.7	U					63Ku22	
172- ()172	1320	40	(TO 0		-0.6	U					63Or01	
173 Lu(ε) 173 Yb	675	20	670.3	1.6	-0.2	U					73Ko13	
173 Ta(β ⁺) 173 Hf	3670	200	3020	40	-3.3	В					73Re03	
$^{173}W(\beta^+)^{173}Ta$	4000	300	3670	40	-1.1	U					80Vi.A	
* ¹⁷³ Ir-u	M - A = -30113(7)										Nub16b	
$*^{173}\mathrm{Ir}^m(\alpha)^{169}\mathrm{Re}$	$E_{\alpha} = 5660.0(5, \mathbb{Z})$			574(5) 56	81(13)	respectiv	ely,					**
*	to $(11/2^-)$ level	at 136.40	keV								Ens155	**
174												
$C_{14} H_6 - {}^{174}Yb$	108308	38	108082.645		-1.5	U			R04	4.0	64De15	
174 Yb $^{-129}$ Xe _{1.349}	67318.179	0.011	67318.168	0.009		1	72	68 ¹⁷⁴ Yt		1.0	12Ra34	
$^{174}\text{Yb} - ^{132}\text{Xe}_{1.318}$	65191.113	0.017	65191.140	0.010	1.6	1	34	32 ¹⁷⁴ Yt	FS1	1.0	12Ra34	
¹⁷⁴ Ta—u	-55546	30				2			GS2	1.0	05Li24	
$^{174}W-u$	-53940	104	-53920	30	0.2	U			GS1	1.0	00Ra23	
	-53921	30				2			GS2	1.0	05Li24	
174 Re $-$ u	-46930	104	-46890	30	0.4	U			GS1	1.0	00Ra23	
	-46885	30				2			GS2	1.0	05Li24	
$^{174}Os-u$	-42880	110	-42937	11	-0.5	U			GS1	1.0	00Ra23	
	-42919	30			-0.6	1	13	13 ¹⁷⁴ Os		1.0	05Li24	
¹⁷⁴ Ir—u	-33127	72	-33133	26	-0.1	R			GS2	1.0	05Li24	*
¹⁷⁴ Yb ³⁵ Cl- ¹⁷² Yb ³⁷ Cl	5420	4	5431.00	0.07	1.1	U			H23	2.5	70Wh01	
	5430.3	1.1			0.3	U			H27	2.5	74Ba90	
174 Yb $^{-173}$ Yb	700	50	651.333	0.014	-0.2	U			R04	4.0	64De15	
174 Hf(α) 170 Yb	2558.9	30.	2494.5	2.3	-2.1	U					61Ma05	
$^{174}\mathrm{Os}(\alpha)^{170}\mathrm{W}$	4872.2	10.	4871	10	-0.2	1	90	$78 ^{170}W$			71Bo06	
$^{174} Ir(\alpha)^{170} Re$	5624.1	10.	5625	10	0.1	1	97	77 ¹⁷⁴ Ir			92Sc16	*
174 Ir $^m(\alpha)^{170}$ Re	5817.6	6.	5817	4	-0.1	2					67Si02	*
	5816.4	5.			0.1	2					92Sc16	*
174 Pt(α) 170 Os	6176.3	10.	6183	3	0.7	2					79Ha10	Z
	6185.7	5.			-0.5	2			Ora		81De22	Z
	6182.4	5.1			0.2	2			Ara		04Go38	
174 Au $(\alpha)^{170}$ Ir	6700.3	10.	6699	7	-0.1	7			GSa		84Sc.A	
	6698.3	10.			0.1	7			Daa		96Pa01	*
174 Au $^m(\alpha)^{170}$ Ir m	6683.9	20.	6784	8	5.0	В			GSa		83Sc24	*
	6778	10			0.6	7			GSa		84Sc.A	*
	6793.5	13.			-0.7	7			Daa		96Pa01	
174 Hg(α) 170 Pt	7235.6	11.	7233	6	-0.2	2			Jya		97Uu01	
	7232.5	8.2			0.1	2					99Se14	
	7231.5	14.3			0.1	2			Bka		01Ro.B	
174 Yb(p,t) 172 Yb	-5359	5	-5349.906	0.015	1.8	U			Min		73Oo01	
173 Yb $(n,\gamma)^{174}$ Yb	7464.63	0.06	7464.604	0.013	-0.4	U			MMn		82Is05	Z
	7464.58	0.35			0.1	U			ILn		87Ge01	Z
	7465.5	0.4			-2.2	U			Bdn		06Fi.A	
173 Yb(d,p) 174 Yb	5239	12	5240.038	0.013	0.1	U			Kop		66Bu16	
	5229	5			2.2	U			Tal		66Sh14	
174 Yb(d,t) 173 Yb	-1218	12	-1207.375	0.013	0.9	U			Kop		66Bu16	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Table 1. Comparis												D - f
Item	Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Maı	n infl.	Lab	F	Reference
173 Yb(α ,t) 174 Lu $^{-174}$ Yb() 175 Lu	202.1	1.0	202.1	1.0	0.0	1	100	100	174т	14-14		75D02
$^{174}\text{Tm}(\beta^-)^{174}\text{Yb}$	-202.1	1.0	-202.1	1.0	0.0	1	100	100) ¹⁷⁴ Lu	MCM		75Bu02
1 m(p) Y b	3080	100	3080	40	0.0	2						64Ka16 *
1741 (0+)174371	3080	50	1274.2	1.6	0.0	2						67Gu12 *
174 Lu(β^+) 174 Yb 174 Lu(ε) 174 Yb	1402	5	1374.3	1.6	-5.5	В						68Kl08
	1370	7	4104	20	0.6	U						68Li01 *
174 Ta(β^+) 174 Hf * 174 Ir $-$ u	3845	80	4104	28	3.2	В						71Ch26 *
*1/4Ir-u	M - A = -3076				at 192(11) k	ev						Nub16b **
$*^{174} Ir(\alpha)^{170} Re$	$E_{\alpha} = 5275(10)$											Ens02b **
$*^{174} \text{Ir}^m(\alpha)^{170} \text{Re}$	E_{α} =5478(6) to				1.070.11							Ens02b **
$*^{174} \text{Ir}^m(\alpha)^{170} \text{Re}$	$E_{\alpha} = 5478(5) 5$					I						Ens02b **
$*^{174}$ Au $(\alpha)^{170}$ Ir	E_{α} =6538 corr	elated wi	th 170 Ir E_{α} =	=5817 ke	eV							02Ro17 **
* 174 A m < \170 x m	and only this			7								02Ro17 **
$*^{174}$ Au ^m (α) ¹⁷⁰ Ir ^m	$E_{\alpha} = 6530(20)$				170	(0.1)	4.50.5					84Sc.A **
$*^{174}$ Au ^{m} (α) ¹⁷⁰ Ir m	E_{α} =6626, 647											Ens082 **
*	$(7^-,8^-,9^-)$ a											01Ko.B **
$*^{174}$ Tm(β^-) ¹⁷⁴ Yb	E_{β} = 1200(10							ther E	$E_{oldsymbol{eta}^-}$			Ens998 **
$*^{174}$ Lu(ε) ¹⁷⁴ Yb	No K capture	to 2 ⁻ lev	el at 1318.3	61 keV -	$\rightarrow Q_{\dagger}(1380;$	and L	capture					Ens998 **
*	of ¹⁷⁴ Lu ^m at	170.83 to	$o^{1/4}Yb^m$ at	1518.14	$8 \text{ keV} \rightarrow Q_{t}$	$_{gs} > 135^{\circ}$	7 keV					Nub16b **
$*^{174}$ Ta $(\beta^+)^{174}$ Hf	$E_{\beta^+} = 2525(80$) to 4 ⁺ le	evel at 297.3	8 keV								Ens04a **
175, 27 at 142, 1, 25 at	<1210 F				0.6							
¹⁷⁵ Lu ³⁷ Cl- ¹⁴² Nd ³⁵ Cl ₂	61249.5	2.5	61245.6	1.8	-0.6	U				H31	2.5	77So02
$C_{14} H_7 - {}^{175}Lu$	114121	37	113997.9	1.3	-0.8	U				R04	4.0	64De15
$C_{13}^{13} C H_6 - {}^{175}Lu$	109763	36	109527.7	1.3	-1.6	U				R04	4.0	64De15
¹⁷⁵ Ta-u	-56350	120	-56260	30	0.7	U				GS1	1.0	00Ra23
	-56263	30				2				GS2	1.0	05Li24
$^{175}W-u$	-53290	104	-53280	30	0.1	U				GS1	1.0	00Ra23
	-53283	30				2				GS2	1.0	05Li24
¹⁷⁵ Re-u	-48630	104	-48620	30	0.1	U				GS1	1.0	00Ra23
175	-48619	30				2				GS2	1.0	05Li24
$^{175}Os-u$	-43120	110	-43055	13	0.6	U				GS1	1.0	00Ra23
	-43024	30			-1.0	1	18	18	¹⁷⁵ Os	GS2	1.0	05Li24
¹⁷⁵ Ir—u	-34353	1288	-35850	13	-0.5	U					2.5	91Br17
	-35828	30			-0.7	1	20	20	¹⁷⁵ Ir	GS2	1.0	05Li24
¹⁷⁵ Lu ³⁵ Cl- ¹⁷³ Yb ³⁷ Cl	5503	4	5511.2	1.3	0.8	U				H23	2.5	70Wh01
	5507.3	1.4			1.1	1	14	14	¹⁷⁵ Lu	H27	2.5	74Ba90
¹⁷⁵ Lu O-C ₁₆	-64316.3	4.5	-64308.1	1.3	1.2	U				TG1	1.5	11Ke03
$^{175} Ir(\alpha)^{171} Re$	5709.0	5.	5430	30	-55.6	В						67Si02 *
	5709.2	5.			-55.7	В						92Sc16 *
175 Pt(α) 171 Os	6179	5	6164	4	-3.1	C						79Ha10 *
	6178.1	3.			-4.8	В				Ora		82De11 *
	6164	4			-0.1	1	100	91	¹⁷⁵ Pt	Jya		14Pe02 *
175 Au $(\alpha)^{171}$ Ir	6562.3	15.	6583	4	1.4	U				Bka		02Ro17 *
	6580.7	8.2			0.3	6				Ara		11Ko.B *
	6583.7	4.			-0.2	6				Anv		13An10
175 Au $^{m}(\alpha)^{171}$ Ir m	6590.9	10.	6583	3	-0.7	10				Ora		75Ca06
	6775.8	10.			-19.3	F				GSa		84Sc.A *
	6588.8	9.			-0.6	10				Daa		96Pa01
	6579.6	6.			0.6	10				Ara		01Ko44
	6582.7	5.			0.1	10				Anv		10An01
	6581.7	8.2			0.2	10				Ara		11Ko.B *
175 Hg(α) 171 Pt	7020.7	20.	7072	5	2.5	o				GSa		83Sc24
	7039.2	20.			1.7	U				GSa		84Sc.A
	7071.0	24.			0.1	o				Daa		96Pa01
	7058.7	11.			1.2	8				Jya		97Uu01
	7075	5			-0.5	8				Daa		09Od01
	7082.1	20.			-0.5	U				Anv		10An01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Referenc	<u>:e</u>
174 Yb $(n,\gamma)^{175}$ Yb		5822.35	0.07	5822.35	0.07	0.1	1	100	100	¹⁷⁵ Yb	MMn		82Is05	Z
10(11,7) 10		5822.5	0.4	3622.33	0.07	-0.4	U	100	100	10	Bdn		06Fi.A	
174 Yb(d,p) 175 Yb		3595	12	3597.79	0.07	0.2	U				Kop		66Bu16	
174 Yb(α ,t) 175 Lu		-14303	10	-14303.8	1.2	-0.1	U				McM		75Bu02	
175 Lu $(\gamma,n)^{174}$ Lu		−7880	80	-7666.7	1.0	2.7	U				Phi		60Ge01	
175Lu(d,t) ¹⁷⁴ Lu		-1400	10	-1409.5	1.0	-0.9	U				Tal		70Jo08	
174 Hf(n, γ) 175 Hf		6708.4	0.5	6708.5	0.4	0.2	_				Tai			Z
$\Pi(\Pi,\gamma)$ Π		6708.4	0.5	0708.5	0.4	-0.5	_				Bdn		06Fi.A	L
	ave.	6708.6	0.4			-0.2	1	100	86	¹⁷⁵ Hf	Dun		average	
$^{175}\text{Tm}(\beta^-)^{175}\text{Yb}$	avc.	2385	50			-0.2	2	100	00	111			66Wi04	*
$^{175}\text{Yb}(\beta^{-})^{175}\text{Lu}$		466	3	470.0	1.2	1.3	_						55De18	Ψ.
16(<i>p</i>) Lu		468	5	470.0	1.2	0.4	_						55Mi90	
		471	3			-0.3	_						56Co13	
		467	3			1.0	_						62Ba32	
	ave.	468.0	1.6			1.2	1	54	54	¹⁷⁵ Lu				
$^{175}\mathrm{Hf}(\varepsilon)^{175}\mathrm{Lu}$	ave.	628	9	683.9	2.0	6.2	В	34	34	Lu			average 68Ja11	
HI(E) Lu		650	20	063.9	2.0	1.7	U						69Jo16	*
		630	3			18.0	В						88Si22	*
$*^{175}$ Ir(α) ¹⁷¹ Re	F -53	92.8(5,Z) to 18				16.0	ь						95Hi02	
$*^{175} Ir(\alpha)^{171} Re$													95Hi02 95Hi02	
$*^{175}$ Pt(α) ¹⁷¹ Os		93(5) to 189.8 37(10), 5963.0		maximal atata 76	4(0.5) 1	1							93Hl02 84Sc.A	
$*^{175}$ Pt(α) ¹⁷¹ Os					.4(0.3) 16	vei							84Sc.A	
$*^{175}$ Pt(α) $*^{171}$ Os		259.2(3,Z) to 76 21(4), 5948(4)			2) laval								14Pe02	
* 175 Au(α) 171 Ir														
		sis by AHW of				11 т							02Ro17	
$*^{175}$ Au(α) ¹⁷¹ Ir		ated with $E_{\alpha} = 6$				'Ir							11Ko.B	
$*^{175} \text{Au}^m(\alpha)^{171} \text{Ir}^m$		35(10) and 64		190.0 and 152.	/ levels								84Sc.A	
$*^{175} \text{Au}^m(\alpha)^{171} \text{Ir}^m$		assigned to ¹⁷⁴		179500 1.50	50(0) 6	171 - m							01Ko.B	
$*^{175}\mathrm{Au}^m(\alpha)^{171}\mathrm{Ir}^m$		ated with $E_{\alpha} = 7$					4.4						11Ko.B	
* 175m (0=)175xu		ent method and			ompared	to UTKo	44						11Ko.B	
$*^{175}$ Tm(β^-) ¹⁷⁵ Yb	P	870(50) to 1/2				_							Ens04a	
$*^{175}$ Hf(ε) ¹⁷⁵ Lu		712(0.008) 0.7				•							AHW	**
*	to 7/2	t ⁺ level at 432.	74 keV, ai	nd other captur	e ratios, i	ecalcula	ited						Ens04a	**
$C_{14} H_8 - ^{176} Yb$		119980	46	120025.549	0.016	0.2	U				R04	4.0	64De15	
$C_{13} H_6 N^{-176} Yb$		107190	110	107449.489	0.016	0.6	U				R04	4.0	64De15	
$^{176}\text{Yb} - ^{129}\text{Xe}_{1.364}$		72453.619	0.016	72453.614	0.014	-0.3	1	75	73	¹⁷⁶ Yb	FS1	1.0	12Ra34	
$^{176}\text{Yb} - ^{132}\text{Xe}_{1.333}$		70335.958	0.027	70335.973	0.014	0.5	1	28	27	¹⁷⁶ Yb	FS1	1.0	12Ra34	
¹⁷⁶ Lu ³⁷ Cl- ¹⁴³ Nd ³⁵ Cl ₂		61067.2	1.4	61069.1	1.8	0.5	1	27	15	¹⁴³ Nd	H31	2.5	77So02	
$C_{14} H_8 - {}^{176}Lu$		119962	49	119908.4	1.3	-0.3	Ü		10	110	R04	4.0	64De15	
¹⁷⁶ Lu O-C ₁₆		-62394.1	7.6	-62393.6	1.3	0.0	Ü				TG1	1.5	11Ke03	
¹⁷⁶ Hf O–C ₁₆		-63668.5	9.8	-63675.5	1.6	-0.5	U				TG1	1.5	11Ke03	
¹⁷⁶ Ta-u		-55143	33	03073.3	1.0	0.5	2				GS2	1.0	05Li24	
$^{176}W-u$		-54420	104	-54370	30	0.5	U				GS1	1.0	00Ra23	
₩ —u		-54366	30	-34370	30	0.5	2				GS2	1.0	05Li24	
176 Re $-u$		-34300 -48380		-48380	30	0.0					GS2 GS1	1.0		
KC—u		-48380 -48377	110 30	-40300	30	0.0	U				GS1 GS2	1.0	00Ra23 05Li24	
¹⁷⁶ Os-u		-48377 -45150		-45190	30	-0.4	2				GS2 GS1	1.0	05L124 00Ra23	
Os—u		-45130 -45194	110 30	-43170	50	-0.4	U				GS1			
¹⁷⁶ Ir—u				26270	10	1 1	2	26	26	¹⁷⁶ Ir		1.0	05Li24	
¹⁷⁶ Yb ³⁵ Cl ₂ - ¹⁷² Yb ³⁷ Cl ₂		-36328	30	-36370	18	-1.4 -0.1	1	36	36	II	GS2	1.0	05Li24	
¹⁷⁶ Yb ³⁵ Cl ² – ¹⁷⁴ Yb ³⁷ Cl		12088.9	2.4	12088.27	0.14		U				H27	2.5	74Ba90	
Yb 55Cl-177Yb 57Cl		6652	3	6657.27	0.07	0.7	U				H23	2.5	70Wh01	
176116 35 01 174116 37 01		6656.3	1.4	4211.5	1.0	0.3	U				H27	2.5	74Ba90	
¹⁷⁶ Hf ³⁵ Cl- ¹⁷⁴ Hf ³⁷ Cl		4106	16	4311.5	1.9	5.1	В	76	7.	174***	H24	2.5	73Ba40	
176- 175-		4314.21	0.86	40		-1.2	1	76	74	¹⁷⁴ Hf	H37	2.5	77Sh12	
¹⁷⁶ Lu- ¹⁷⁵ Lu		1980	60	1914.50	0.16	-0.3	U				R04	4.0	64De15	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

176 Yb $^{-174}$ Yb 176 Ir $(\alpha)^{172}$ Re 176 Pt $(\alpha)^{172}$ Os		4000											
176 Ir(α) 172 Re			50	3707.160	0.017	-1.5	U			R04	4.0	64De15	
		5237.3	8.	5230	40	-0.1	1	59	54 ¹⁷² Re	KOT	4.0	67Si02	
1 t(a) 03		5890.1	5.	5885.1	2.1	-0.1 -1.0	_	37	34 KC			79Ha10	7
		5881.4	4.	3003.1	2.1	0.9	_			Bka		82Bo04	
		5887.3	3.			-0.7	_			Ora		82De11	
		5874.8	8.			1.3	_			Daa		96Pa01	_
	ave.	5885.3	2.1			-0.1	1	99	66 ¹⁷² Os	Daa		average	
176 Au(α) 172 Ir	avc.	6574.2	10.	6433	7	-14.1	В	"	00 03	Ora		75Ca06	*
Au(tt) II		6541.5	10.	0433	,	-10.8	C			GSa		84Sc.A	*
		6433.4	7.			10.0	5			Anv		14An10	*
176 Au ^{m} (α) ^{172} Ir m		6436.6	10.	6433	4	-0.3	5			Ora		75Ca06	*
Au (a) II		6428.4	10.	0433	4	0.5	5			GSa		84Sc.A	4
		6433.4	6.			0.0	5			Ara		01Ko44	7
		6434.4	7.			-0.0	5			Anv		14An10	7
176 Hg(α) 172 Pt		6907.2	20.	6897	6	-0.5	0			GSa		83Sc24	-
$\operatorname{rig}(\omega)$ It		6924.7	10.	0077	U	-2.8	C			GSa		84Sc.A	
		6907.3	20.			-0.5	U			Daa		96Pa01	
		6897.0	6.			-0.5	_			Ara		99Po09	
		6917.5	15.			-1.3	_			Anv		09An20	
	ave.	6900	6			-0.5	1	95	72 ¹⁷⁶ Hg	Ally		average	
176 Yb(p, α) 173 Tm	ave.	7628.8	4.4			-0.5	2	73	72 11g	NDm		78Ta10	
176 Yb(p,t) 174 Yb		-4216	5	-4207.642	0.015	1.7	U			Min		73Oo01	
¹⁷⁶ Hf(p,t) ¹⁷⁴ Hf		-4210 -6397	5	-4207.042 -6392.7	1.7	0.9	1	12	12 ¹⁷⁴ Hf	Min		73Oo01	
176 Yb(d,t) 175 Yb		-621	12	-609.85	0.07	0.9	U	12	12 111			66Bu16	
175 Lu(n, γ) 176 Lu		6293.2								Kop			
$Lu(n,\gamma)$			1.2	6287.97	0.15	-4.4	В	100	79 ¹⁷⁶ Lu	***		70Wa20 91Kl02	_
		6287.96 6289.78	0.15			0.1	1	100	/9 ***Lu	ILn			Z
1751 (4)1761			0.24	4062 41	0.15	-7.5	C			Bdn		06Fi.A	
¹⁷⁵ Lu(d,p) ¹⁷⁶ Lu		4070	8	4063.41	0.15	-0.8	U			Tal		67St14	
¹⁷⁶ Lu(d,t) ¹⁷⁵ Lu		-25	15	-30.74	0.15	-0.4	U			Tal		71Mi01	
¹⁷⁶ Hf(d,t) ¹⁷⁵ Hf		-1925	8	-1908.7	1.8	2.0	U			Tal		73Za08	
¹⁷⁶ Tl(p) ¹⁷⁵ Hg		1265.2	18.				9			Jyp		04Ke06	
$^{176}\text{Tm}(\beta^-)^{176}\text{Yb}$		4120	100				2					67Gu11	*
176 Lu(β^-) 176 Hf		1162	25	1194.1	0.9	1.3	U	_,	176			69Pr11	*
176		1194.1	1.0			0.0	1	76	75 ¹⁷⁶ Hf			73Va11	*
176 Ta(β^+) 176 Hf		3100	90	3210	30	1.2	U					71Be10	*
$*^{176}$ Au(α) ¹⁷² Ir				168.4(0.5) keV								75Ca06	
$*^{176}$ Au(α) ¹⁷² Ir		8(10) to 168.4										84Sc.A	
$*^{176}$ Au(α) ¹⁷² Ir		correlated w										02Ro17	
$*^{176}$ Au(α) ¹⁷² Ir				4(20),5798(20)	to 126.3,	151.5, 236	5.6,500.0					14An10	
$*^{176}$ Au ^m $(\alpha)^{172}$ Ir ^m				E_{α} =5828 keV								02Ro17	
$*^{176}$ Au ^m $(\alpha)^{172}$ Ir ^m				ssigned to ¹⁷⁷ A	u							01Ko44	
$*^{176}$ Au ^m $(\alpha)^{172}$ Ir ^m		5(6) coinc. wi										84Sc.A	
$*^{176}\mathrm{Au}^m(\alpha)^{172}\mathrm{Ir}^m$	E_{α} =6287	7(7), 6117(7),	6082(7) t	o 0, 175.2, 211	.6 above 1	72 Ir m						14An10	**
$*^{176}$ Tm(β^-) 176 Yb	$E_{\beta} = 200$	00(100), 1150	0(100) to (3)	$3^+,4^+$) level at	2053.34,	$(3^+,4^+,5^+)$) 3052.2					Ens062	**
$*^{176}$ Lu(β^-) 176 Hf	$E_{\beta}^{-} = 565$	5(25) to 6 ⁺ le	vel at 596	.82 keV								Ens062	**
$*^{176}$ Lu(β^-) ¹⁷⁶ Hf	$\dot{Q}_{B^{-}}=13$	17(1) from ¹⁷	6 Lu m at 12	22.845 keV								Nub16b	**
$*^{176}$ Ta(β^+) 176 Hf	KLM/β^+	+=119(50) to	2 ⁻ level a	t 1247.70 keV,	1 ⁺ level a	t 2994 keV	V					Ens062	**
¹⁷⁷ Ta-u		-55559	30	-55518	4	1.4	U			GS2	1.0	05Li24	
177W-u		-53420	110	-53318 -53360	30	0.6	U			GS2 GS1	1.0	03L124 00Ra23	
vv —u				-33300	30	0.0							
¹⁷⁷ Re-u		-53357 -49620	30	40670	20	0.5	2			GS2	1.0	05Li24	
r ke−u			104	-49670	30	-0.5	U			GS1	1.0	00Ra23	
¹⁷⁷ Os-u		-49672 45020	30	45042	16	0.2	2			GS2	1.0	05Li24	
·· Os—u		-45020 -45012	104 30	-45042	16	$-0.2 \\ -1.0$	U R			GS1 GS2	1.0 1.0	00Ra23 05Li24	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e_
¹⁷⁷ Ir-u		-38810	110	-38699	21	1.0	U			GS1	1.0	00Ra23	
11 4		-38699	30	500))		0.0	2			GS2	1.0	05Li24	
177 Pt $-u$		-31545	30	-31530	16	0.5	1	29	29 ¹⁷⁷ Pt	GS2	1.0	05Li24	
¹⁷⁷ Hf O–C ₁₆		-61845.2	7.2	-61855.1	1.5	-0.9	Ü	2)	2) 11	TG1	1.5	11Ke03	
$^{177} Ir(\alpha)^{173} Re$		5127.1	10.	5080	30	-0.9	F			101	1.5	67Si02	*
177 Pt(α) ¹⁷³ Os		5654.6	6.	5642.9	2.7	-0.9 -1.9	_					79Ha10	
$Fi(\alpha)$ Os		5640.5	3.1	3042.9	2.1	0.8	_			Bka		82Bo04	
	0710	5643.3	2.7			-0.2	1	99	55 ¹⁷⁷ Pt	БКа			L
177 Au(α) 173 Ir	ave.	6292.5	10.	6298	4			99	33 Ft	Doo		average 75Ca06	
$Au(\alpha)$ If		6292.5		0298	4	0.6 0.3	– U			Daa GSa			
			20.			0.3						84Sc.A 96Pa01	
		6296.5 6298.6	10. 6.			0.2	_			Daa		01Ko44	
			7.			-0.7				Ara			
		6303.7					-	00	86 ¹⁷³ Ir	Anv		09An14	
$^{177}\mathrm{Au}^m(\alpha)^{173}\mathrm{Ir}^m$	ave.	6299	4	(2(2	4	-0.1	1	99	80 II	0		average	
$Au^{m}(\alpha)^{m}$		6251.5	10.	6262	4	1.0	3			Ora		75Ca06	
		6260.8	10.			0.1	3			GSa		84Sc.A	*
		6259.7	9.			0.2	3			Daa		96Pa01 01Ko44	*
		6263.8	6.			-0.3	3			Ara			
177 tr ()173 p.		6265.8	7.	67.40	50	-0.6	3			Anv		09An14	
177 Hg(α) 173 Pt		6732.4	8.	6740	50	0.1	4					79Ha10	
		6747.8	10.			-0.2	4			Б		91Ko.A	
		6729.4	9.2			0.1	4			Daa		96Pa01	
1777014 173 4		6734.5	15.			0.0	4			Anv		09An20	
$^{177}\text{Tl}(\alpha)^{173}\text{Au}$		7067.0	7.	=		0.0	3			Ara		99Po09	
$^{177}\mathrm{Tl}^m(\alpha)^{173}\mathrm{Au}^m$		7660.4	13.	7660	9	0.0	_			Ara		99Po09	
		7645.1	13.			1.2	_		172	Jya		04Ke06	
122	ave.	7653	9			0.8	1	86	48 ¹⁷³ Au ^m			average	
177 Hf(p,t) 175 Hf		-6071	5	-6059.8	2.0	2.2	1	16	14 ¹⁷⁵ Hf	Min		73Oo01	
176 Yb $(n,\gamma)^{177}$ Yb		5565.1	1.0	5566.40	0.22	1.3	U					72A119	Z
		5566.40	0.22				2			Bdn		06Fi.A	
176 Yb(d,p) 177 Yb		3340	16	3341.83	0.22	0.1	U			Tal		63Ve09	
		3337	12			0.4	U			Kop		66Bu16	
176 Yb(α ,t) 177 Lu $^{-174}$ Yb() 175 Lu		674.1	1.0	671.42	0.22	-2.7	U			McM		75Bu02	
176 Lu(n, γ) 177 Lu		7071.2	0.4	7072.89	0.16	4.2	В					71Ma45	Z
		7073.1	0.4			-0.5	_					72Mi16	\mathbf{Z}
		7072.85	0.17			0.2	-			Bdn		06Fi.A	
176 Lu(d,p) 177 Lu		4843	10	4848.32	0.16	0.5	U			Tal		71Mi01	
176 Lu(n, γ) 177 Lu	ave.	7072.89	0.16	7072.89	0.16	0.0	1	99	92 ¹⁷⁷ Lu			average	
176 Hf(n, γ) 177 Hf		6385.8	0.8	6375.6	1.0	-12.7	C			Bdn		06Fi.A	
177 Hf(γ ,n) 176 Hf		-6400	30	-6375.6	1.0	0.8	U			Phi		60Ge01	
176 Hf(d,p) 177 Hf		4150	7	4151.0	1.0	0.1	U			Tal		68Ri07	
177 Hf(d,t) 176 Hf		-127	11	-118.4	1.0	0.8	U			Tal		72Za04	
¹⁷⁷ Tl(p) ¹⁷⁶ Hg		1162.6	20.	1155	19	-0.4	0			Arp		99Po09	*
$^{177}\mathrm{Tl}^{m}(\mathrm{p})^{176}\mathrm{Hg}$		1969.2	10.	1962	7	-0.7	_			Arp		99Po09	
11 (P) 11g		1965.2	12.	1702	•	-0.2	_			Јур		04Ke06	
	ave.	1968	8			-0.7	1	90	62^{-177}Tl^{m}	3)P		average	
177 Yb(β^{-}) 177 Lu	avc.	1400	20	1397.4	1.2	-0.1	U	70	02 11			64Jo03	
$^{177}\text{Lu}(\beta^{-})^{177}\text{Hf}$		497	2	496.8	0.8	-0.1	_					55Ma12	
Lu(p) III		496.4	1.0	490.6	0.0	0.4	_					62El02	*
	ovio							70	70 ¹⁷⁷ Hf				•
$^{177}\text{Ta}(\beta^+)^{177}\text{Hf}$	ave.	496.5	0.9			0.3	1	78	/0 ··· HI			average	
		1166	3	100	0	0.7	2					61We11	
¹⁷⁷ Au ^m (IT) ¹⁷⁷ Au		210	30	189	8	-0.7	0					01Ko44	*
$^{177}\text{Tl}^m(\text{IT})^{177}\text{Tl}$	F C 1	807	. 18	11.1			2					99Po09	
$*^{177} Ir(\alpha)^{173} Re$				sibly to 5/2	level at 2	214./ keV						95Hi02	
$*^{177}$ Au ^m $(\alpha)^{173}$ Ir ^m		d by a 175.		17	16 .							84Sc.A	
*				keV from 17								01Ko44	
*				th E_{α} =5672 of		101						02Ro17	**
$*^{177} Au^{m}(\alpha)^{173} Ir^{m}$				=5681(13); al			6180 ke	eV				96Pa01	**
* Au (a) II	1	tor doubte a	bout cor	rectness of lat	tter rema	rk						AHW	**
*				rectified of its									
* * ¹⁷⁷ Tl(p) ¹⁷⁶ Hg	Replace	d by ¹⁷⁷ Tl ^m	(IT)									AHW	**
* * Au (a) * 1 * *177 Tl(*) 176 Hg * *177 Lu(*) 177 Hf * *177 Au ** (IT) 177 Au	Replace	d by ¹⁷⁷ Tl ^m	(IT)	95, 321.32 le								AHW Ens035	** **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
·	x is bet	ter known fro	om ¹⁸¹ Tl ^m	(IT) ¹⁸¹ Tl com	bined wit	th Q_{lpha}						09An14 *
¹⁷⁸ W-u		-54152	30	-54114	16	1.3	U			GS2	1.0	05Li24
¹⁷⁸ Re-u		-48800	110	-49010	30	-1.9	U			GS1	1.0	00Ra23
		-49011	30	1,010	50	1.,	2			GS2	1.0	05Li24
178 Os $-u$		-46790	104	-46747	15	0.4	Ū			GS1	1.0	00Ra23
		-46710	30			-1.2	1	24	24 ¹⁷⁸ Os	GS2	1.0	05Li24
¹⁷⁸ Ir-u		-38950	110	-38918	21	0.3	U			GS1	1.0	00Ra23
		-38888	30			-1.0	2			GS2	1.0	05Li24
¹⁷⁸ Pt-u		-34783	1181	-34351	11	0.1	U				2.5	91Br17
		-34300	110			-0.5	U		179-	GS1	1.0	00Ra23
178 . 133		-34333	30	100561		-0.6	1	13	13 ¹⁷⁸ Pt	GS2	1.0	05Li24
178 Au $^{-133}$ Cs _{1.338} 178 Au m - 133 Cs _{1.338}		102562	11	102561	11	-0.1	1	97	97 ¹⁷⁸ Au	MA8	1.0	17Ma.A
¹⁷⁸ Hf ³⁵ Cl ⁻¹⁷⁶ Hf ³⁷ Cl		102764 5236	11 5	5249.7	1.1	1.0	2 U			MA8 H23	1.0 2.5	17Ma.A 70Wh01
ni ci– ni ci		5239.5	1.3	5248.7	1.1	1.0 2.8	U			H27	2.5	74Ba90
¹⁷⁸ Hf O-C ₁₆		-61364.8	7.9	-61376.9	1.5	-1.0	U			TG1	1.5	11Ke03
¹⁷⁸ Pt- ¹⁷⁵ Ir		-472	1052	1500	17	0.7	U			101	2.5	91Br17
178 Pt(α) 174 Os		5583.3	5.	5573.0	2.2	-2.0	_					79Ha10
. ,		5569.9	3.			1.0	_			Bka		82Bo04
		5568.4	13.			0.4	U			Lvn		94Wa23
		5572.4	4.			0.1	_			Ara		00Ko16
150	ave.	5573.2	2.2			-0.1	1	99	75 ¹⁷⁴ Os			average
178 Au $(\alpha)^{174}$ Ir		6056.4	10.	6135	25	1.6	F		174			68Si01
79 rr () 174 p		6117.7	20.		2.0	0.3	1	26	23 ¹⁷⁴ Ir	GSa		86Ke03
78 Hg(α) 174 Pt		6578.1	6.	6577.3	3.0	-0.1	3			Б		79Ha10
		6576.1	9.			0.1 0.1	3			Daa		96Pa01
		6577.1 6578.1	4. 8.			-0.1	3			Ara Anv		00Ko48 09An14
$^{178}\mathrm{Tl}(\alpha)^{174}\mathrm{Au}$		7017.0	5.	7020	10	0.6	0			Bka		02Ro17
11(w) 11u		7020.0	10.	7020	10	0.0	8			Bka		13Li49
178 Pb(α) 174 Hg		7790.4	14.				3			Bka		01Ro.B
178 Pt(p, α) 175 Ir		4420	980	6261	16	1.9	U					91Br17
176 Yb(t,p) 178 Yb		3865	10				2			Phi		82Zu02
176 Lu(t,p) 178 Lu m		4482	5	4492.6	2.9	2.1	1	34	34 ¹⁷⁸ Lu ^m	LAl		81Gi01
178 Hf(p,t) 176 Hf		-5531	5	-5519.8	1.0	2.2	U			Min		73Oo01
177 Hf(n, γ) 178 Hf		7625	1	7625.94	0.18	0.9	U					69Fa01
		7624.4	1.5			1.0	U					77St10
		7626.2	0.3			-0.9	-			ILn		86Ha22
¹⁷⁸ Hf(d,t) ¹⁷⁷ Hf		7625.80 -1364	0.22	-1368.71	0.18	$0.6 \\ -0.5$	_			Bdn Tal		06Fi.A 68Ri07
177 Hf(n, γ) 178 Hf	OVA	-1304 7625.94	9 0.18	7625.94	0.18	-0.3 0.0	U 1	99	71 ¹⁷⁸ Hf	Tai		
$^{178}{\rm Yb}(\beta^-)^{178}{\rm Lu}$	ave.	641	30	642	10	0.0	U	99	/1 111			average 73Or03
$^{78}\text{Lu}^m(\text{IT})^{178}\text{Lu}$		120	3	123.8	2.6	1.3	1	76	66 ¹⁷⁸ Lu ^m	McM		93Bu02
$^{178}\text{Lu}(\beta^-)^{178}\text{Hf}$		2046	50	2097.5	2.1	1.0	U	70	oo Lu	1410141		73Or03
24(5) 111		2117	30	20,7.10	2.1	-0.7	Ü					75Ka15
$^{78}\text{Ta}^{m}(\beta^{+})^{178}\text{Hf}$		1937	15				2					61Ga05
$^{178}\mathrm{W}(\varepsilon)^{178}\mathrm{Ta}^m$		91.3	2.				3					67Ni02
$^{178}\text{Re}(\beta^+)^{178}\text{W}$		4660	180	4750	30	0.5	U					70Go20
178 Pt(α) 174 Os				8.601 level (n	ot used)							GAu *
178 Au(α) 174 Ir		$\operatorname{tr} E_{\alpha}$ branch			174							86Ke03 *
$^{178}\text{Tl}(\alpha)^{174}\text{Au}$				correlated with		E_{α} =6538 k	æV					02Ro17 *
$^{178}\text{Tl}(\alpha)^{174}\text{Au}$				173.0, 273.01	evels							13Li49 *
178 Yb(β^-) 178 Lu		$0(30)$ to 1^+ le			1 1	02.101.73						Ens097 *
¹⁷⁸ Lu(β ⁻) ¹⁷⁸ Hf				and 50% to 2 ⁺								Ens097 *
178 Lu(β^-) 178 Hf				and 50% to 2 ⁺								Ens097 *
$^{178}\text{Ta}^{m}(\beta^{+})^{178}\text{Hf}$				123.8(2.6) to 8								Nub16b *
19""(D 1*' HT	$E_{B^{+}}=890$	ノ(1U) to grou	na state ar	nd 2 ⁺ level at !	95.18 ke'	v, ratio 2.7	to I					Ens097 *
$178 \text{Re}(\beta^+)^{178} \text{W}$		00(180) to 4 ⁺	- 11 . ^									Ens097 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
¹⁷⁹ Lu- ⁸⁵ Rb _{2.106}		132997	21	133104	6	5.1	С			MA8	1.0	13Ro.A	
$C_{14} H_{11} - {}^{179}Hf$		140260.3	1.8	140249.5	1.5	-1.5	U			M23	4.0	79Ha32	
179W-u		-52964	76	-52920	16	0.6	U			GS2	1.0	05Li24	*
W – u ¹⁷⁹ Re– u		-52904 -50010	30	-52920 -50010		0.0	1	78	78 ¹⁷⁹ Re	GS2		05Li24	*
179 Os—u					26			70	/8 Ke		1.0		
os-u		-46220 -46176	104	-46183	18	0.4	U	25	35 ¹⁷⁹ Os	GS1	1.0	00Ra23 05Li24	
¹⁷⁹ Ir-u			30	-40882	10	-0.2 0.3	1 U	35	33 08	GS2 GS1	1.0	03L124 00Ra23	
ir—u		-40910	104	-40882	10			10	12 ¹⁷⁹ Ir		1.0		
¹⁷⁹ Pt-u		-40852	30	24641	0	-1.0	1	12	12 117 11	GS2	1.0	05Li24	
···Pt-u		-34710	110	-34641	9	0.6	U			GS1	1.0	00Ra23	
¹⁷⁹ Au-u		-34625	30	26926	12	-0.5	U	16	16 ¹⁷⁹ Au	GS2	1.0	05Li24	
¹⁷⁹ Hg- ²⁰⁸ Pb _{.861}		-26811	31	-26826	13	-0.5	1	16	74 ¹⁷⁹ Hg	GS2	1.0	05Li24	
179 Hg = 250 Pb.861		1900	34	1930	29	0.9	1	74	74 177 Hg	MA6	1.0	01Sc41	
¹⁷⁹ Hf ³⁵ Cl- ¹⁷⁷ Hf ³⁷ Cl		5539	3	5545.63	0.22	0.9	U			H23	2.5	70Wh01	
170, 170		5544.4	0.7	50 2 50 5		0.7	U			H27	2.5	74Ba90	
¹⁷⁹ Hf O-C ₁₆		-59261.8	6.5	-59259.5	1.5	0.2	U			TG1	1.5	11Ke03	
179 Pt(α) 175 Os		5370	10	5412	9	4.2	F		02 175 0			66Si08	*
		5416	10			-0.4	1	89	82 ¹⁷⁵ Os			79Ha10	*
170 175-		5382	3		_	10.1	F		175-	Bka		82Bo04	*
179 Au(α) 175 Ir		5981.8	5.	5981	5	-0.1	1	97	80 ¹⁷⁵ Ir	_		68Si01	
170 175-		5986.9	15.			-0.4	U			Jya		04Ra28	*
179 Hg(α) 175 Pt		6431.0	5.	6360	30	-1.4	_			ISa		79Ha10	Z
		6418.7	9.			-1.2	-			Daa		96Pa01	
		6430.0	4.			-1.4	_		170	Ara		02Ko09	
170	ave.	6429.1	3.0			-1.4	1	35	26^{179} Hg			average	
$^{179}\text{Tl}(\alpha)^{175}\text{Au}$		6710.2	20.	6711	3	0.0	U			GSa		83Sc24	
		6718.4	18.			-0.4	U			Daa		96Pa01	
		6719.4	10.			-0.9	7			Ara		98To14	
		6706.1	8.			0.5	7			Ara		11Ko.B	
170 175		6710.2	4.			0.1	7			Anv		13An10	
$^{179}\mathrm{Tl}^m(\alpha)^{175}\mathrm{Au}^m$		7364.5	20.	7368	4	0.2	U			GSa		83Sc24	
		7366.0	20.			0.1	U			Daa		96Pa01	
		7378.1	10.			-1.0	0			Ara		98To14	
		7372.0	5.1			-0.7	9			Anv		10An01	
170 175		7358.7	8.2			1.2	9			Ara		11Ko.B	
179 Pb(α) 175 Hg		7598.3	20.				9			Anv		10An01	*
¹⁷⁹ Hf(p,t) ¹⁷⁷ Hf		-5249	5	-5243.13	0.19	1.2	U		170	Min		73Oo01	
179 Hf(t, α) 178 Lu $^{-178}$ Hf() 177 Lu		-72	2	-73.7	1.9	-0.8	1	89	89 ¹⁷⁸ Lu	McM		93Bu02	
178 Hf(n, γ) 179 Hf		6099.02	0.10	6098.99	0.08	-0.3	_			ILn		89Ri03	Z
170 170		6098.95	0.12			0.3	-			Bdn		06Fi.A	
179 Hf(γ ,n) 178 Hf		-6000	70	-6098.99	0.08	-1.4	U			Phi		60Ge01	
¹⁷⁸ Hf(d,p) ¹⁷⁹ Hf		3877	14	3874.42	0.08	-0.2	U		170	Tal		63Ve09	
178 Hf(n, γ) 179 Hf	ave.	6098.99	0.08	6098.99	0.08	0.0	1	100	70 ¹⁷⁹ Hf			average	
179 Lu(β^{-}) 179 Hf		1350	50	1404	5	1.1	U					61Ku10	
		1380	70			0.3	U					63St06	
$^{179}\mathrm{Ta}(\varepsilon)^{179}\mathrm{Hf}$		129	16	105.6	0.4	-1.5	U					61Jo15	*
		105.61	0.41			-0.1	1	99	93 ¹⁷⁹ Ta			01Hi06	
179 Re(β^+) 179 W		2710	50	2711	27	0.0	1	29	22 ¹⁷⁹ Re			75Me20	*
$*^{179}W-u$				mixture gs+n	n at 221.	91 keV						Nub16b	**
	F · nart	of double li	ne (with	¹⁸⁰ Pt)								AHW	**
$*^{179}$ Pt(α) ¹⁷⁵ Os	i . part					/0-1 1	at 102 2	1ra V/ maga1	ibrotad			Ens092	**
$*^{179}$ Pt $(\alpha)^{175}$ Os		50(10) 5195	(10)516	1(3) respectiv	ely, to 1/	2 level	at 102.5	ke v, recar	ibiateu			LHSO/2	
$*^{179}$ Pt $(\alpha)^{175}$ Os $*^{179}$ Au $(\alpha)^{175}$ Ir	$E_{\alpha}=51$	50(10) 5195		1(3) respective round state, 4			at 102.5	ke v, recar	ibiateu			04Ra28	
$*^{179}$ Pt $(\alpha)^{175}$ Os $*^{179}$ Au $(\alpha)^{175}$ Ir	E_{α} =51. E_{α} =58.	50(10) 5195	0(15) to g	round state, 4			at 102.5	ke v, recar	iorateu				**
$*^{179}$ Pt $(\alpha)^{175}$ Os	E_{α} =51. E_{α} =58. E_{α} =73.	50(10) 5195 53(15), 5810	0(15) to g keV leve	round state, 4			at 102.5	ke v, recar	ibrated			04Ra28	** **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference
$C_{14} H_{12} - ^{180}Hf$		147356.6	4.8	147340.7	1.5	-0.8	U				M23	4.0	79Ha32
$C_{14} H_{12} - WH_1$ $^{180}W-u$		-53299	30	-53286.6	1.5	0.4	U					1.0	05Li24
¹⁸⁰ Re-u											GS2		
180 C		-49209	30	-49208	23	0.0	2				GS2	1.0	05Li24
180 Os $-u$		-47650	104	-47620	18	0.3	U			100 -	GS1	1.0	00Ra23
100		-47626	30			0.2	1	34	34	$^{180}\mathrm{Os}$	GS2	1.0	05Li24
180 Ir $-$ u		-40800	104	-40771	23	0.3	U				GS1	1.0	00Ra23
100		-40765	30			-0.2	2				GS2	1.0	05Li24
180 Pt $-u$		-36900	104	-36968	12	-0.7	U				GS1	1.0	00Ra23
		-36918	30			-1.7	R				GS2	1.0	05Li24
180 Au $-$ u		-27496	30	-27510	5	-0.5	U				GS2	1.0	05Li24
180 Au $-^{133}$ Cs _{1.353}		100411.5	5.3	100413	5	0.4	1	94	94	¹⁸⁰ Au	MA8	1.0	16Ma.1
180 Hg $-^{208}$ Pb $_{.865}$		-1569	22	-1544	14	1.2	1	38	38	180 Hg	MA6	1.0	01Sc41
180 Hf 35 Cl ₂ $-^{176}$ Hf 37 Cl ₂		11036.1	3.0	11050.0	1.1	1.9	U				H27	2.5	74Ba90
180 Hf 35 Cl $-^{178}$ Hf 37 Cl		5797	3	5801.32	0.19	0.6	U				H23	2.5	70Wh01
		5798.4	0.7			1.7	U				H27	2.5	74Ba90
$^{180}W - ^{180}Hf$		153.73	0.30	153.77	0.30	0.1	1	98	82	^{180}W	SH1	1.0	12Dr01
180 Hf $-^{179}$ Hf		730.8	4.7	733.83	0.16	0.3	U				M24	2.5	79Ha32
¹⁸⁰ Hf O–C ₁₆		-58524.5	6.5	-58525.7	1.5	-0.1	Ü				TG1	1.5	11Ke03
180 W(α) 176 Hf		2516.4	1.6	2515.3	1.0	-0.7	1	41	23	¹⁷⁶ Hf	101	1.0	04Co26
180 Pt(α) ¹⁷⁶ Os		5257.1	10.	5240	30	-2.0	F	71	23	111			66Si08 *
II(u) Os		5277.1	3	3240	30	-2.0 -14.0	F				Bka		82Bo04 *
180 Au(α) 176 Ir			30	5020	17	-0.6					GSa		
$Au(\alpha)$ If		5845 5857		5828	17		-						
		5857	30			-1.0	_	<i>C</i> 1	50	¹⁷⁶ Ir	Lvn		93Wa03 *
180*** () 176**	ave.	5851	21	<2.50 F		-1.1	1	61	59	170Ir			average
180 Hg(α) 176 Pt		6258.3	5.	6258.5	2.4	0.0	_				ISa		79Ha10 Z
		6259.5	5.			-0.2	_				Lvn		93Wa03 *
		6258.3	4.			0.0	-				Ara		00Ko48
		6259.3	5.			-0.2	_				Anv		03An27
	ave.	6258.8	2.4			-0.1	1	99	66	¹⁷⁶ Pt			average
180 Tl $(\alpha)^{176}$ Au		6709.4	10.				6				Ara		98To14 *
180 Pb(α) 176 Hg		7394.6	40.	7419	5	0.6	U				ORa		96To08
		7415.1	15.			0.2	2				Ara		99To11
		7419.2	10.			-0.1	2				Anv		09An20
		7419.2	7.			-0.1	2				Jya		10Ra12
180 Hf(p,t) 178 Hf		-5011	5	-5004.95	0.17	1.2	U				Min		73Oo01
180 Hf(t, α) 179 Lu $^{-178}$ Hf() 177 Lu		-669	5	-669	5	0.0	1	100	100	¹⁷⁹ Lu	McM		92Bu12
179 Hf(n, γ) 180 Hf		7387.3	0.4	7387.76	0.15	1.1	_						74Bu22 Z
•		7387.8	0.6			-0.1	_						90Bo52 Z
		7387.85	0.17			-0.5	_				Bdn		06Fi.A
180 Hf(γ ,n) 179 Hf		-7470	110	-7387.76	0.15	0.7	U				Phi		60Ge01
179 Hf(d,p) 180 Hf		5167	7	5163.19	0.15	-0.5	U				Tal		72Za04
180 Hf(d,t) 179 Hf		-1112	4	-1130.53	0.15	-4.6	В				Tal		68Ri07
179 Hf(n, γ) 180 Hf	ave.	7387.77	0.15	7387.76		-0.1	1	99	84	$^{180}\mathrm{Hf}$	Iui		average
180 W(d,t) 179 W	avc.	-2155	15	-2155	15	0.0	1	94	94	¹⁷⁹ W	Kop		72Ca01
$^{180}\text{Lu}(\beta^-)^{180}\text{Hf}$		3148	100	3100	70	-0.4		74	24	**	Кор		
Lu(p) Hi		3058		3100	70		2						
$^{180}\text{Ta}(\beta^-)^{180}\text{W}$			100	702.2	2.2	0.5	2						71Sw01 *
$\operatorname{Ia}(p)^{***}$ w		705	15	703.2	2.3	-0.1	U						51Br87
180p (0+)180m		712	15	2700	21	-0.6	U						62Ga07
180 Re(β^{+}) 180 W		3830	60	3799	21	-0.5	R						67Go22 *
190 176		3790	40	170		0.2	R						67Ho12 *
$*^{180}$ Pt(α) ¹⁷⁶ Os				179 Pt); E_{α} =5	140(10) l	keV							AHW **
$*^{180}$ Pt(α) ¹⁷⁶ Os		t of double li											AHW **
$*^{180}$ Au(α) ¹⁷⁶ Ir		685(10) to 40											93Wa03 **
$*^{180}$ Au(α) ¹⁷⁶ Ir	$E_{\alpha}=56$	647(10,Z) to	80(30) le	vel									93Wa03 **
$*^{180}$ Hg(α) ¹⁷⁶ Pt	E_{α} =61	20 5862 568	9(5) to g	round state, 2	2+ level a	t 264.0, 0	⁺ at 443	8 keV					Ens062 **
$*^{180}$ Tl $(\alpha)^{176}$ Au				ground state									98To14 **
$*^{180}$ Lu(β^-) ¹⁸⁰ Hf				respectively, t			.67 keV						Ens156 **
$*^{180}$ Re(β^+) ¹⁸⁰ W				pectively, to									Ens156 **
v /	ρ	,	, ,										

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	ce
		-48092	125				2			GS3	1.0	13Sh30	_
181T 0 133 C			135	02020 6			2	10	40 181m		1.0		
181 Ta O $-^{133}$ Cs _{1.481}		82943.7	3.6	82939.6	1.5	-1.1	1	18	18 ¹⁸¹ Ta	MA8	1.0	16We.A	
¹⁸¹ Ta O- ²⁰² Tl _{.975}		-29891.4	2.5	-29892.4	1.8	-0.4	1	53	$31^{-202}T1$	MA8	1.0	16We.A	
¹⁸¹ Re-u		-49915	30	-49938	13	-0.8	R			GS2	1.0	05Li24	
$^{181}Os-u$		-46670	110	-46753	27	-0.8	U			GS1	1.0	00Ra23	*
		-46756	34			0.1	1	64	64 ¹⁸¹ Os	GS2	1.0	05Li24	*
181 Ir $-$ u		-42330	104	-42365	6	-0.3	U			GS1	1.0	00Ra23	
		-42372	30			0.2	U			GS2	1.0	05Li24	
181 Pt $-u$		-36880	104	-36910	15	-0.3	U			GS1	1.0	00Ra23	
		-36900	30			-0.3	_			GS2	1.0	05Li24	
	ave.	-36890	21			-0.9	1	48	48 ¹⁸¹ Pt			average	
181 Au $-$ u		-30030	110	-29921	21	1.0	U			GS1	1.0	00Ra23	
		-29920	30			0.0	R			GS2	1.0	05Li24	
$^{181}{\rm Hg}-^{208}{\rm Pb}_{.870}$		-1929	40	-1868	17	1.5	1	17	17 ¹⁸¹ Hg	MA6	1.0	01Sc41	
$^{181}\text{Tl} - ^{133}\text{Cs}_{1.361}$		114936	11	114940	10	0.4	1	79	79 ¹⁸¹ Tl	MA8	1.0	08We02	
¹⁸¹ Ta ³⁵ Cl- ¹⁷⁹ Hf ³⁷ Cl		5128.6	2.1	5123.6	2.0	-1.0	1	14	7 ¹⁷⁹ Hf	H35	2.5	80Sh06	
¹⁸¹ Ta ¹⁷ O ³⁵ Cl- ¹⁸⁰ Ta ^m O ³⁷ Cl		7572	21	7617.31	0.21	0.9	U	17	, 111	H35	2.5	80Sh06	
$^{181}\text{Pt}(\alpha)^{177}\text{Os}$										пээ	2.5		
$PI(\alpha)$ OS		5133.7	20.	5150	5	0.8	U			ODe		66Si08	
181 Au(α) 177 Ir		5150.1	5.	5751 1	2.0	0.2	2			ORa		95Bi01	7
$Au(\alpha)^{**}$ if		5750.1	5.	5751.4	2.9	0.2	3					68Si01	Z
		5751.9	5.			-0.1	3			TD		79Ha10	
		5735	4			4.1	F			IRa		92Sa03	*
181 ()177		5752	5	(201		-0.1	3			ORa		95Bi01	*
181 Hg(α) 177 Pt		6288	5	6284	4	-0.7	_					79Ha10	
		6283	10			0.1	_			GSa		86Ke03	*
		6269.3	13.			1.2	_		101	Daa		96Pa01	*
101 177	ave.	6285	4			-0.2	1	99	83 ¹⁸¹ Hg			average	
$^{181}\text{Tl}(\alpha)^{177}\text{Au}$		6319.9	20.	6321	6	0.1	U					92Bo.D	
		6326.1	10.			-0.5	_			Ara		98To14	
		6320.9	7.			0.1	_			Anv		09An14	
	ave.	6323	6			-0.2	1	97	88 ¹⁷⁷ Au			average	
$^{181}\mathrm{Tl}(\alpha)^{177}\mathrm{Au}^m$		6120.3	20.	6132	5	0.6	2			GSa		84Sc.A	*
		6132.6	10.			-0.1	2			Ara		98To14	*
		6133.1	6.4			-0.2	2			Anv		09An14	*
181 Pb $(\alpha)^{177}$ Hg		7374.3	10.	7240	7	-13.4	F			GSa		86Ke03	*
		7203.5	15.			2.4	5			ORa		89To01	
		7224.9	20.			0.7	o			Ara		96To01	*
		7250.7	10.			-1.0	5			Ara		05Ca.A	*
		7252.0	15.			-0.8	5			Anv		09An20	*
¹⁸¹ Ta(p,t) ¹⁷⁹ Ta		-5738	5	-5741.8	1.9	-0.8	1	14	7 ¹⁷⁹ Ta	Min		73Oo01	
180 Hf(n, γ) 181 Hf		5695.2	0.6	5694.80	0.07	-0.7	U					71Al22	
		5694.80	0.07				2			Prn		02Bo41	
		5695.58	0.20			-3.9	C			Bdn		06Fi.A	
180 Hf(d,p) 181 Hf		3440	25	3470.23	0.07	1.2	U			Sac		66Ga06	
(**)17		3475	10			-0.5	U			Tal		68Ri07	
181 Ta $(\gamma,n)^{180}$ Ta		-7713	25	-7576.8	1.3	5.4	В			Phi		60Ge01	*
(1,)		-7852	26			10.6	В			Phi		60Ge01	
		-7580	5			0.6	U			McM		79Ba06	
		-7579	2			1.1	2			McM		81Co17	
181 Ta(d,t) 180 Ta		-1317.7	1.8	-1319.5	1.3	-1.0	2			NDm		79Ta.B	
180 Ta m (n, γ) 181 Ta		7651.8	0.5	7652.08	0.19	-1.0 0.6	2			MMn		81Co17	7
1α (11, γ) 1α		7652.13	0.3	1032.08	0.19	-0.0	2			ILn		84Fo.A	
180 W $(n, \gamma)^{181}$ W		6669.02				-0.2	2						L
180 W(d,p) 181 W			0.16	1111 15	0.16	1 4				Bdn		15Hu07	
181 Hg(ε p) 180 Pt		4468	15	4444.45	0.16	-1.6	U			Kop		72Ca01	
Hg(εp)Pτ		6150	200	6486	19	1.7	F					72Ho19	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	-	Input va	lue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
181 Hf(β^-) 181 Ta		1023	8	1035.5	1.8	1.6	U					52Fa14
,		1020	5			3.1	В					53Ba81
181 W(ε) 181 Ta		184	12	204.5	1.9	1.7	U					66Ra03
. ,		190	6			2.4	U					83Se17
181 Os $(\beta^+)^{181}$ Re		2990	200	2967	28	-0.1	U					67Go25
$^{181}\text{Hg}^{m}(\text{IT})^{181}\text{Hg}$		212	50				2					09An17
* ¹⁸¹ Os-u	M - A = -			nixture gs+m	at 49.20 k	eV						Nub16b *
* ¹⁸¹ Os-u				ixture gs+m								Nub16b *
$*^{181}$ Au(α) ¹⁷⁷ Ir				nd state and (3			æV					Ens035 *
*				Au shifted by								GAu ×
$*^{181}$ Au(α) ¹⁷⁷ Ir				79(5) to (3/2 ⁻								Ens035
$*^{181}$ Hg(α) ¹⁷⁷ Pt) to ground st	*			V				Nub16c ×
$*^{181}$ Hg(α) ¹⁷⁷ Pt				Z) to ground								Nub16c *
$*^{181}$ Hg(α) ¹⁷⁷ Pt		5.0(10,2), 00 $5(13)$ to $1/2^-$			state and 17	2 13011101	at 177.71					Nub16c *
* $^{181}\text{Tl}(\alpha)^{177}\text{Au}^m$				$n^{181}Tl^{m}$ at 8:	35 0 to 2/11	5 above 17	7 A 11m					Nub16b *
$*^{181}\text{Tl}(\alpha)^{177}\text{Au}^m$				11^{-11} at 8: 18^{181} Tl ^m at 8:								Nub16b *
$*^{181}\text{Tl}(\alpha)^{177}\text{Au}^m$				$^{81}\text{Tl}^m$ to ^{177}A				.m				09An14 ×
$*^{181}$ Pb $(\alpha)^{177}$ Hg		α -line not for			and lev	CI 241.3 at	ove A	1				
$*^{181}$ Pb(α) ¹⁷⁷ Hg				E_{α} =6580 ke	. 17							96To01 *
		5(10) to level			e v							96To01 ×
$*^{181}$ Pb(α) ¹⁷⁷ Hg		` /										09An20 ×
$*^{181}$ Pb(α) ¹⁷⁷ Hg		5(15) to level										09An20 >
$*^{181}$ Ta $(\gamma,n)^{180}$ Ta		10(25) to ¹⁸⁰										Nub16b *
$*^{181}$ Hg $(\varepsilon p)^{180}$ Pt		ted by autho										AHW *
$*^{181}$ Hf(β^-) ¹⁸¹ Ta	$E_{\beta} = 408$	3(8) 405(5) re	espective	ely, to ¹⁸¹ Ta ⁿ	at 615.19 k	eV						Nub16b *
$*^{181}$ Os $(\beta^+)^{181}$ Re				at 49.20 to ¹⁸		2.91 keV						Nub16b *
$*^{181}$ Hg m (IT) 181 Hg	From cas	scade x+90.3	+71.4, w	ith x estimate	ed 50#							09An17 *
¹⁸² Re-u		-48311	65	-48790	110	-7.3	С			GS2	1.0	03Li.A
182Os—u		-47883	30	-47890	23	-7.3 -0.2	1	61	61 ¹⁸² Os	GS2	1.0	05Li.A 05Li24
0s-u ¹⁸² Ir-u		-47863 -41942						56	56 ¹⁸² Ir	GS2		05Li24
182 Pt—u			30	-41924	23	0.6	1	30	30 11		1.0	
Pt-u		-38870	104	-38828	14	0.4	U	22	22 ¹⁸² Pt	GS1	1.0	00Ra23
182 4		-38860 30420	30	20202	22	1.1	1	22	22 102Pt	GS2	1.0	05Li24
¹⁸² Au-u		-30420	110	-30382	22	0.3	U			GS1	1.0	00Ra23
182**		-30412	30	25211		1.0	R	10	10 18211	GS2	1.0	05Li24
¹⁸² Hg-u		-25297	30	-25311	11	-0.5	1	12	12 ¹⁸² Hg	GS2	1.0	05Li24
$^{182}\text{Hg} - ^{208}\text{Pb}_{.875}$		-4893	19	-4881	11	0.6	_			MA6	1.0	01Sc41
		-4898	21			0.8	_		a a 182	MA6	1.0	01Sc41
192 179 -	ave.	-4895	14		_	1.0	1	56	55 ¹⁸² Hg			average
182 Pt(α) 178 Os		4928.5	30.	4951	5	0.7	U					63Gr08
		4948.9	20.			0.1	U		170 -			66Si08
102 170		4952.0	5.			-0.2	1	97	76 ¹⁷⁸ Os	ORa		95Bi01
182 Au(α) 178 Ir		5529	10	5526	4	-0.3	3					79Ha10
100 170		5525.5	5.			0.1	3			ORa		95Bi01
182 Hg(α) 178 Pt		5998.1	5.	5996	5	-0.5	-					79Ha10
		5989.9	13.3			0.4	-			Lvn		94Wa23
	ave.	5997	5			-0.3	1	95	62 ¹⁷⁸ Pt			average
		6550.2	10.	6551	6	0.1	F			GSa		86Ke03
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}$		(502.1	15.			-2.8	В					04Ra28
$^{182}\text{Tl}(\alpha)^{178}\text{Au}$		6593.1								TC-		1637-01
` '		6550.9	6.2				2			ISa		16Va01
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}^p$							3			15a		92Bo.D
` '		6550.9	6.2 20.	7066	6	-1.1				GSa		
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}^p$		6550.9 6186.2	6.2	7066	6	-1.1 -0.6	3					92Bo.D
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}^p$		6550.9 6186.2 7076.8 7074.8	6.2 20. 10. 15.	7066	6	-0.6	3 4 4			GSa ORa		92Bo.D 86Ke03 87To09
$^{182}\mathrm{Tl}(\alpha)^{178}\mathrm{Au}^p$		6550.9 6186.2 7076.8	6.2 20. 10.	7066	6		3 4			GSa		92Bo.D 86Ke03

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
180 W(t,p) 182 W		6265	5	6270.8	1.6	1.2	U			LAl		76Ca10
$^{182}W(p,t)^{180}W$		-6261	10	-6270.8	1.6	-1.0	U			Min		73Oo01
$W(p,t)$ W $^{181}\text{Ta}(n,\gamma)^{182}\text{Ta}$		6063.0	0.4	6062.94	0.11	-0.2	_			IVIIII		730001 71He13
1a(π,γ) 1a		6063.1	0.5	0002.94	0.11	-0.2 -0.3	_					77St15
		6063.1	0.5			-0.3 -0.3	_			MMn		81Co17
		6062.95	0.3			-0.3 -0.1	_			ILn		83Fo.B
		6062.89				0.4	_			Bdn		06Fi.A
¹⁸¹ Ta(d,p) ¹⁸² Ta		3832	8	3838.37	0.11	0.4	U			MIT		64Er02
181 Ta $(n,\gamma)^{182}$ Ta	ovo	6062.93	0.11	6062.94	0.11	0.3	1	100	74 ¹⁸² Ta	IVIII		
182 W(d,t) 181 W	ave.	-1809	10	-1826.3	1.6	-1.7	U	100	74 Ia	Von		average 72Ca01
182 Hf(β^-) 182 Ta				380	6	-1.7 -1.0	U			Kop		72Ca01 74Wa14
$^{182}\text{Ta}(\beta^-)^{182}\text{W}$		431	50									
1a(p)**- w		1809	5	1816.1	1.4	1.4	-					64Da15
		1813	3			1.0	_	20	26 ¹⁸² Ta			67Ba01
182 p. m (0+)182 m /	ave.	1811.9	2.6			1.6	1	30	26 ¹⁶² Ta			average
$^{182}\text{Re}^{m}(\beta^{+})^{182}\text{W}$		2860	20				2					63Ba37
$^{182}\text{Re}^{m}(\text{IT})^{182}\text{Re}$		60	100				3					63Ba37
$^{182}\text{Os}(\varepsilon)^{182}\text{Re}^{m}$		848	15	777	30	-4.7	В					70Ak02
182 Ir(β^+) 182 Os		5700	200	5560	30	-0.7	U					72We.A
182 Pt(β^+) 182 Ir		2900	200	2883	25	-0.1	U					72We.A
182 Au(β^+) 182 Pt		6850	200	7868	24	5.1	C					72We.A
182 Hg(β^+) 182 Au		4950	200	4724	23	-1.1	U					72We.A
¹⁸² Re−u	M-A=	=-44972(29)	keV for r	nixture gs+m	at 60(10	0) keV						Nub16b *
182 Au(α) ¹⁷⁸ Ir		53(10) to 2 ⁺										Ens097 *
182 Au(α) 178 Ir				nd state, 54.4	level							95Bi01 *
$^{182}\text{Tl}(\alpha)^{178}\text{Au}$, .	ion function a		100% α α	decav					WgM118*
$^{182}\text{Tl}(\alpha)^{178}\text{Au}$				with 46 keV	_							04Ra28 *
$^{182}\text{Tl}(\alpha)^{178}\text{Au}$				vith 247.2(0.5								16Va01 *
180 W(t,p) ¹⁸² W				Q(170) = -615		7						AHW *
182 Hf(β^{-}) ¹⁸² Ta	F ₀ -0	70(70) 480(5	(0) from 1	82 Hf ^m to 651.	215 (4)	1115 96	(7 ⁻) les	æls				Ens15c *
$^{182}\text{Ta}(\beta^-)^{182}\text{W}$				89.1498 keV	213 (4)	, 1113.70	(/) icv	7013				Ens15c *
$^{182}\text{Ta}(\beta^{-})^{182}\text{W}$					7							Ensise *
				00.10598 keV		1000	14001	3 7				
182 Re $^{m}(\beta^{+})^{182}$ W				level at 100.								Ens15c *
182 Os $(\varepsilon)^{182}$ Re m	pK=0.4	47(0.07) to 1	⊤ level at	726.97 keV a	bove 162	Re ^m , recal	culated	Q				Ens15c *
¹⁸³ Lu-u		-42637	86				2			GS3	1.0	13Sh30
¹⁸³ W O-C ₂ ³⁵ Cl ₅		100858.0	2.7	100875.6	0.8	2.6	U			H29	2.5	77Sh04
0 02 013		100873.6	0.8	100070.0	0.0	1.0	1	16	15^{-183} W	H48	2.5	03Ba49
¹⁸³ Re-u		-49151	30	-49179	9	-0.9	U		''	GS2	1.0	05Li24
¹⁸³ Os-u		-46879	61	-46880	50	0.1	1	77	77 ¹⁸³ Os	GS2	1.0	05Li24
183 Ir—u		-43160	104	-43160	26	0.0	U	, ,	77 Os	GS2 GS1	1.0	00Ra23
n-u		-43100 -43145	30	-43100	20		1	76	76 ¹⁸³ Ir	GS2	1.0	
¹⁸³ Pt-u				20402	17	-0.5		70	/0 II			05Li24
105Pt−u		-38440	107	-38403	17	0.3	U	27	og 183p.	GS1	1.0	00Ra23
192 .		-38400	32			-0.1	1	27	27 ¹⁸³ Pt	GS2	1.0	05Li24
183 Au $-$ u		-32440	104	-32412	10	0.3	U		192	GS1	1.0	00Ra23
102		-32371	30			-1.4	1	11	11 ¹⁸³ Au	GS2	1.0	05Li24
¹⁸³ Hg-u		-25537	35	-25555	8	-0.5	U			GS2	1.0	05Li24
183 Hg $-^{208}$ Pb $_{.880}$		-5009	19	-5009	8	0.0	_			MA6	1.0	01Sc41
		-5002	19			-0.4	_			MA6	1.0	01Sc41
	ave.	-5006	13			-0.3	1	32	32^{-183} Hg			average
$^{183}\text{Tl} - ^{133}\text{Cs}_{1.376}$		112286	11	112291	10	0.5	1	83	83 ¹⁸³ Tl	MA8	1.0	08We02
183 W O ₂ $-^{178}$ Hf 37 Cl		30455.7	5.0	30442.7	1.7	-1.0	U			H35	2.5	80Sh06
$^{183}\text{W O}_2 - ^{180}\text{W }^{35}\text{Cl}$		24421	9	24487.6	1.7	3.0	В			H24	2.5	73Ba40
		24509	6			-1.4	U			H28	2.5	77Sh04
¹⁸³ W ³⁵ Cl- ¹⁸¹ Ta ³⁷ Cl		5177.2	1.2	5175.3	1.5	-0.6	1	25	22 ¹⁸¹ Ta	H35	2.5	80Sh06
¹⁸³ W O ₂ ³⁷ Cl ⁻¹⁸² W ³⁵ Cl ₂		20045.6	1.8	20045.21	0.11	-0.0 -0.1	U	43	22 Id	H28	2.5	77Sh04
$vv \cup_2 C_1 - vv \cap C_{12}$		20043.0	1.0	20043.21	0.11	-0.1	U			П20	∠.೨	7731104

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Mair	n infl.	Lab F	Referenc	e
183 Pt(α) 179 Os		4846.1	30.	4822	9	-0.8	U					63Gr08	
1 t(a) 03		4835.9	20.0	4022		-0.7	_					66Si08	
		4819.6	10.2			0.2	_				ORa	95Bi01	
	ave.	4823	9			-0.1	1	93	65	¹⁷⁹ Os	OKu	average	
183 Au(α) 179 Ir	avc.	5462.6	5.	5465.3	2.9	0.5	_)3	03	Os		68Si01	7
$Au(\alpha)$ II		5465.5	5.	3403.3	2.7	0.0	_				Bka	82Bo04	
		5449.3	10.			1.6	F				БКа	84Br.A	,
		5468.8	5.			-0.7					ORa	95Bi01	
	ovo	5465.6	3.0			-0.7 -0.1	- 1	99	88	¹⁷⁹ Ir	OKa		
83 Hg(α) 179 Pt	ave.	6043.4		6039	4	-0.1 -0.8		99	00	11	ORa	average 76To06	
$\operatorname{ng}(a)$		6036.2	6. 5.	0039	4	-0.8 0.5	_				OKa	79Ha10	,
	0110	6039	3. 4			-0.1	- 1	98	93	¹⁷⁹ Pt			
$^{83}\mathrm{Tl}^m(\alpha)^{179}\mathrm{Au}$	ave.			((05	0		1	98	93	Pt	CC-	average	
$^{\circ\circ}$ II"(α)" Au		6593.4	30.	6605	9	0.4	U				GSa	80Sc09	
		6600.6	30.			0.2	U	0.4	67	¹⁷⁹ Au	Jya	04Ra28	
83-1 ()170		6609.5	10.			-0.4	1	84	67	'''Au	Anv	11Ve01	
83 Pb(α) 179 Hg		6928	7	5000		• •	2				Anv	02Je09	
$^{83}\text{Pb}^m(\alpha)^{179}\text{Hg}$		6950.1	25.	7022	4	2.9	В				GSa	80Sc09	
		7029	20			-0.3	U				GSa	84Sc.A	
		7026.9	10.			-0.5	2				GSa	86Ke03	
		6868.4	10.			15.4	В				ORa	87To09	
		7034	10			-1.2	2				ORa	89To01	
02 101		7018	5			0.8	2				Anv	02Je09	
$^{83}W(p,t)^{181}W$		-5810	10	-5792.6	1.6	1.7	U				Min	73Oo01	
82 Ta(n, γ) 183 Ta		6934.18	0.20				2				ILn	83Fo.B	
32 W $(n,\gamma)^{183}$ W		6191.6	2.0	6190.84	0.04	-0.4	U					67Sp03	2
		6190.1	1.5			0.5	U					70Or.A	
		6190.76	0.12			0.6	_				Ltn	93Pr.A	
		6190.89	0.13			-0.4	o				Bdn	06Fi.A	
		6190.81	0.06			0.4	_				ILn	11Bo09	
02 102		6190.88	0.06			-0.7	_				Bdn	14Hu02	
$^{83}W(\gamma,n)^{182}W$		-6290	50	-6190.84	0.04	2.0	U				Phi	60Ge01	
$^{82}W(d,p)^{183}W$		3967	5	3966.27	0.04	-0.1	U				ANL	65Er03	
		3979	10			-1.3	U				Kop	72Ca01	
$^{83}W(d,t)^{182}W$		57	15	66.39	0.04	0.6	U				Kop	72Ca01	
$^{82}W(n,\gamma)^{183}W$	ave.	6190.84	0.04	6190.84	0.04	0.0	1	100	100	^{182}W		average	
$^{82}W(^{3}He,d)^{183}Re$		-610	40	-641	8	-0.8	U				Roc	71Lu01	
83 Hg(ε p) 182 Pt		5000	200	5075	15	0.4	F					72Ho19	
83 Hf(β^{-}) 183 Ta		2010	30				3					67Mo13	
$^{33}\text{Ta}(\beta^{-})^{183}\text{W}$		1068	10	1072.8	1.4	0.5	U					55Mu19	
3 Re $(\varepsilon)^{183}$ W		556	8				2					69Ku03	
33 Ir(β^{+}) 183 Os		3450	100	3460	50	0.1	1	28	23	¹⁸³ Os		70Be.A	
$^{13}\text{Tl}^{m}(\text{IT})^{183}\text{Tl}$		628.7	0.5	628.7	0.5	0.0	1	100	83	$^{183}\mathrm{Tl}^m$		11Ve.A	
³³ Os-u	M - A = -	43582(28) k	eV for mi	xture gs+m a	t 170.73 k	eV						Nub16b	*
³³ Pt-u				xture gs+m a								Nub16c	*
⁸³ Hg-u	Existence	e of isomeric	state und	er discussion	(see Nub	ase); not co	rrected					Nub16b	
83 Au(α) 179 Ir				shifted by 1		,,						GAu	*
$^{83}\mathrm{Tl}^m(\alpha)^{179}\mathrm{Au}$				ince partially		with electro	ons					GAu	*
$^{83}\mathrm{Tl}^m(\alpha)^{179}\mathrm{Au}$				ince partially								GAu	*
$^{83}\mathrm{Tl}^m(\alpha)^{179}\mathrm{Au}$				ed with e ⁻ , in								GAu	*
$^{83}\text{Pb}(\alpha)^{179}\text{Hg}$				nd state, 217		02. 1, 02	,					02Je09	*
$^{83}\text{Pb}^{m}(\alpha)^{179}\text{Hg}$, .	and state, 171									*
10 (w) 11g		assignment			isomel							AHW	*
83 Pb $^m(\alpha)^{179}$ Hg				and state, 171	1 / icomor	and on 679	2/(15) 1:-	10				Nub16b	
$^{83}\text{Pb}^{m}(\alpha)^{179}\text{Hg}$				nd state, 171.		, anu an 0/6	ɔ+(1 <i>3)</i> III	ic				Nub16b	
IU (U) IIg		ted by autho			+ 1801Hel								
		ica ov alitno	ıs ın PTVC	UIII								AHW	*
83 Hg(ε p) 182 Pt		•		+ 450 OCO 1	X7 1	E							- Ju
183 Hg(ε p) 182 Pt 183 Hf(β^-) 183 Ta	$E_{\beta} = 154$	40(30) to (5/2	2 ⁺) level a	at 459.062 ke		er $E_{oldsymbol{eta}^-}$						Ens164	
183 Hg(ε p) 182 Pt 183 Hf(β^-) 183 Ta 183 Ta(β^-) 183 W	$E_{\beta^-} = 154$ $E_{\beta^-} = 615$	10(30) to (5/2 5(10) to 7/2	2 ⁺) level at 4	53.0695 keV	,	er $E_{oldsymbol{eta}^-}$						Ens164	*
183 Hg(ε p) 182 Pt 183 Hf(β^-) 183 Ta 183 Ta(β^-) 183 W 183 Re(ε) 183 W 183 Ir(β^+) 183 Os	$E_{\beta^-} = 154$ $E_{\beta^-} = 615$ pK=0.40	40(30) to (5/2 5(10) to 7/2 (0.07) to 7/2	2 ⁺) level at 4 level at 4 level at		V	er $E_{oldsymbol{eta}^-}$							**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	-
¹⁸⁴ W-u		-49066.76	0.99	10066.7	0.8	0.0	1	28	28 ¹⁸⁴ W	TG1	1.5	12Sm07	_
¹⁸⁴ Os-u				-49066.7			1		24 ¹⁸⁴ Os				
184 t		-47504.3	1.2	-47507.1	0.9	-1.5	1	24	24 10.Os	TG1	1.5	12Sm07	
184 Ir $-u$		-42460	110	-42520	30	-0.6	U			GS1	1.0	00Ra23	
194-		-42524	30				2			GS2	1.0	05Li24	
¹⁸⁴ Pt-u		-40120	104	-40080	17	0.4	U		104	GS1	1.0	00Ra23	
104		-40068	30			-0.4	1	31	31 ¹⁸⁴ Pt	GS2	1.0	05Li24	
184 Au $-$ u		-32540	104	-32548	24	-0.1	U			GS1	1.0		*
		-32557	37			0.2	R			GS2	1.0	05Li24	*
184 Hg $-$ u		-28230	110	-28287	11	-0.5	U			GS1	1.0	00Ra23	
		-28296	30			0.3	_			GS2	1.0	05Li24	
	ave.	-28279	17			-0.4	1	39	39 ¹⁸⁴ Hg			average	
184 Hg $-^{204}$ Pb $_{.902}$		-3986	20	-3972	11	0.7	1	29	29 ¹⁸⁴ Hg	MA6	1.0	01Sc41	
184 Hg $^{-208}$ Pb $_{.885}$		-7620	19	-7624	11	-0.2	1	32	32 ¹⁸⁴ Hg	MA6	1.0	01Sc41	
¹⁸⁴ Tl-u		-18115	112	-18125	11	-0.1	U		8	GS2	1.0		*
$^{184}\text{Tl} - ^{133}\text{Cs}_{1.383}$		112645.4	23.2	112635	11	-0.4	1	21	21 ¹⁸⁴ Tl	MA8	1.0		*
184 W O ₂ $-^{181}$ Ta 35 Cl		23917.5	2.8	23910.5	1.5	-1.0	Ü	21	21 11	H35	2.5	80Sh06	7.
¹⁸⁴ W ³⁵ Cl- ¹⁸² W ³⁷ Cl		5675	3	5677.65	0.16	0.4	U			H22	2.5	70Mc03	
waci- waci		5676.3	2.2	3077.03	0.10	0.4	U			H28	2.5	70Mc03 77Sh04	
184 m. o. 37 ct. 183 m. 35 ct.				10725 10	0.17								
¹⁸⁴ W O ₂ ³⁷ Cl ⁻¹⁸³ W ³⁵ Cl ₂		18734.7	3.0	18735.19	0.17	0.1	U		194 -	H28	2.5	77Sh04	
$^{184}\text{Os} - ^{184}\text{W}$		1560.59	0.70	1559.7	0.7	-0.9	1	46	31 ¹⁸⁴ Os	TG1	1.5	12Sm07	
184 Pt(α) 180 Os		4579.8	20.	4599	8	0.9	-					63Gr08	
		4600.2	20.			-0.1	_					66Si08	
		4602.2	10.			-0.4	-		400	ORa		95Bi01	
	ave.	4598	8			0.1	1	94	66 ¹⁸⁰ Os			average	
184 Au $(\alpha)^{180}$ Ir		5218.6	15.	5234	5	1.0	U			ISa		70Ha18	*
		5233.9	5.				3			ORa		95Bi01	*
184 Hg(α) 180 Pt		5658.2	15.	5662	4	0.2	2					70Ha18	
		5662.3	5.1			-0.1	2			ORa		76To06	
		5662.3	10.2			0.0	2			Lvn		93Wa03	Z
$^{184}\text{Tl}(\alpha)^{180}\text{Au}$		6299.4	5.	6317	9	0.4	U			ORa			Z
. ,		6292.9	10.			0.5	U			GSa			Z
		6315.2	10.2			0.2	1	83	79 ¹⁸⁴ Tl	ISa			*
184 Pb(α) 180 Hg		6765.4	10.2	6774	3	0.8	_	02	,, 11	154		80Du02	
10(0) 115		6779.6	10.	0771	5	-0.6	_			GSa		80Sc09	
		6773.6	10.			0.0	_			GSa		84Sc.A	
		6781.7	10.2			-0.8	_			ORa		87To09	
		6773.6	6.			0.1	_					98Co27	
		6772.5	10.			0.1				Jya		99To11	
		6773.6					_			Ara			
			6.			0.1	_	00	70 ¹⁸⁴ Pb	Anv		04An07	
184p. () 180m	ave.	6774	3			0.0	1	99	/0 10+Pb			average	
$^{184}\text{Bi}(\alpha)^{180}\text{Tl}$		8024.8	50.				7			Anv		03An27	
$^{182}W(t,p)^{184}W$		5127	7	5120.15	0.14	-1.0	U			LAl		76Ca10	
184 W(p,t) 182 W		-5124	5	-5120.15	0.14	0.8	U			Min		73Oo01	
183 W(n, γ) 184 W		7411.2	0.5	7411.11	0.13	-0.2	U						Z
		7411.8	0.3			-2.3	В					75Bu01 2	Z
		7411.15	0.16			-0.2	o			Bdn		06Fi.A	
		7411.11	0.13			0.0	1	99	$72^{-183}W$	Bdn		14Hu02	
$^{183}W(d,p)^{184}W$		5187	15	5186.54	0.13	0.0	U			Kop		72Ca01	
184 W(d,t) 183 W		-1154	10	-1153.88	0.13	0.0	U			Kop		72Ca01	
184 Hf(β^{-}) 184 Ta		1340	30				3			~ F			*
$^{184}\text{Ta}(\beta^{-})^{184}\text{W}$		2866	26				2						*
$^{184}\text{Ir}(\beta^+)^{184}\text{Os}$		5100	250	4642	28	-1.8	Ü					505 .	
$\Pi(p^+) = OS$		4300		4044	20								*
			100			3.4	B B						*
		4285	70			5.1	В					89Po09	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e
184 Au(β^+) 184 Pt		6380	50	7016	27	12.7	С					84Da.A	*
$^{184}\text{Hg}(\beta^{+})^{184}\text{Au}$		3760	30	3970	24	7.0	C					84Da.A	-11
$*^{184}$ Au-u	Μ Λ-			nixture gs+m			C					Nub16b	بادياد
$*^{184}$ Au-u	$M - \Lambda -$	30280(100) 30202(28)1	aV for m	ixture gs+m a	at 00.40 t 68 16 1	AU V						Nub16b	
***Au-u * ¹⁸⁴ Tl-u	M A-	30292(20) K 16900(103)	leaV for a	nixture gs+m a	ot 50/2	O) IraV							
* ¹⁸⁴ Tl- ¹³³ Cs _{1.383}							4 1606	00 5/5 00 1-	- 3.7			Nub16b	
*184 11—135 CS _{1.383}				cture gs+m at		KeV; M-1	A=-1689	98.5(5.8) K	ev			Nub16b	
$*^{184}$ Au(α) ¹⁸⁰ Ir				68.6(0.1) keV									**
* 184 • ()180 -		tion to ground										95Bi01	
$*^{184}$ Au(α) ¹⁸⁰ Ir		87(5) from ¹⁸⁴											**
$*^{184}\text{Tl}(\alpha)^{180}\text{Au}$		61(10) to leve				_						16Va01	
$*^{184}$ Hf(β^-) ¹⁸⁴ Ta				228.4 keV , an								Ens102	
$*^{184}$ Ta(β^-) ¹⁸⁴ W				746.03 keV, a	and other	$E_{oldsymbol{eta}^-}$						Ens102	
$*^{184}$ Ir(β^+) ¹⁸⁴ Os		720(250) to 4										Ens102	**
$*^{184}$ Ir(β^+) ¹⁸⁴ Os	$E_{\beta^+}=2$	900(100) to 4	⁺ level at	383.68 keV								Ens102	**
$*^{184} Ir(\beta^+)^{184} Os$	$E_{\beta^+}=2$	$320(70)$ to 2^+	level at 9	942.86 keV								Ens102	**
$*^{184}$ Au(β^+) ¹⁸⁴ Pt	$Q_{\beta^+}^{r}=6$	6450(50) from	¹⁸⁴ Au ^m a	at 68.6(0.1) ke	V							94Ib01	**
¹⁸⁵ Hf-u		-41138	69				2			GS3	1.0	13Sh30	
185 Os $-u$		-46037	31	-45954.0	0.9	2.7	F			GS2	1.0	03Li.A	*
¹⁸⁵ Ir-u		-43340	110	-43300	30	0.3	U			GS1	1.0	00Ra23	
		-43302	30				2			GS2	1.0	05Li24	
¹⁸⁵ Pt-u		-39334	112	-39386	28	-0.5	U			GS1	1.0	00Ra23	*
		-39381	44			-0.1	1	40	40 ¹⁸⁵ Pt	GS2	1.0	05Li24	*
185 Au $-$ u		-34213	115	-34201.1	2.8	0.1	o			GS1	1.0	00Ra23	*
		-34224	69			0.3	U			GS2	1.0	05Li24	*
185 Au $-^{133}$ Cs $_{1.391}$		97315.2	2.8				2			MA8	1.0	16Ma.1	
¹⁸⁵ Hg-u		-28070	107	-28109	15	-0.4	U			GS1	1.0	00Ra23	
115 "		-28088	44	2010)	10	-0.5	1	11	11 ¹⁸⁵ Hg	GS2	1.0	05Li24	*
185 Hg $-^{208}$ Pb $_{.889}$		−7373	29	-7353	15	0.7	1	26	25 ¹⁸⁵ Hg	MA6	1.0	01Sc41	*
¹⁸⁵ Tl-u		-21354	145	-21211	22	1.0	Ü	20	25 115	GS2	1.0	05Li24	*
¹⁸⁵ Re ¹⁶ O ₂ - ¹⁸² W ³⁵ Cl		25731	6	25729.2	0.7	-0.1	U			H22	2.5	70Mc03	-1-
¹⁸⁵ Re ³⁵ Cl- ¹⁸³ W ³⁷ Cl		5695	3	5683.9	0.7	-0.1 -1.5	U			H22	2.5	70Mc03	
Re CI= W CI		5678.7	1.0	3063.9	0.7	$\frac{-1.3}{2.1}$	U			H28	2.5	77Sh04	
185 Re(α , 8 He) 181 Re		-26480		-26486	12	-0.5				INS	2.3	90Ka19	
185 Pt(α) 181 Os			14		13		2	06	60 ¹⁸⁵ Pt				
		4436.6	10.2	4437	10	0.0	1	96	60 *** Pt	ORa		91Bi04	*
185 Au(α) 181 Ir		5180.2	5.	5180	5	0.0	3					68Si01	Z
		5182.9	15.			-0.2	U			OD		70Ha18	Z
185 ()181		5179	10	5550		0.1	3			ORa		91Bi04	*
185 Hg(α) 181 Pt		5777	15	5773	4	-0.3	-			0.0		70Ha18	*
		5775	5			-0.4	_			ORa		76To06	*
		5761	15			0.8	_		101-			76Gr.A	*
	ave.	5774	5			-0.2	1	97	52 ¹⁸¹ Pt			average	
$^{185}\mathrm{Tl}^m(\alpha)^{181}\mathrm{Au}$		6112.6	7.	6143	5	4.4	C					75Co.A	Z
		6143.3	5.				4			ORa		76To06	*
		6145.6	15.			-0.2	U			GSa		80Sc09	Z
185 Pb $(\alpha)^{181}$ Hg		6693	15	6695	5	0.1	U			GSa		80Sc09	*
		6555.0	15.			2.8	В			ORa		87To09	
		6695	5				2			Anv		02An15	*
185 Pb $^m(\alpha)^{181}$ Hg m		6622.9	20.	6550	5	-3.7	В			Ora		75Ca06	
-		6679.7	20.			-6.5	В			GSa		80Sc09	
		6549.8	5.				3			Anv		02An15	
185 Bi $^{m}(\alpha)^{181}$ Tl		8258.9	30.	8218	12	-1.3	_			Ara		01Po05	*
* /		8207.8	15.3			0.7	_			Anv		04An07	
	ave.	8218	14			0.0	1	76	64^{185}Bi^{m}			average	
$^{184}W(n,\gamma)^{185}W$		5753.7	0.3	5753.74	0.05	0.1	Ü			BNn		_	Z
(//		5754.62	0.24	2.00., 1	00	-3.7	C			Bdn		06Fi.A	_
		5753.74	0.05			-0.1	1	100	$85^{-185}W$	Bdn		14Hu02	
		3133.14	0.03			0.1	1	100	05 11	Dun		1-11UUZ	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.		n infl.	Lab	F	Reference
184***/ 1 \ 185***/		2524		2520.17	0.05	1.0	**				4 3 77		65E 02
184 W(d,p) 185 W		3524	5	3529.17	0.05	1.0	U				ANL		65Er03
18450/311 1/1850		3533	10	00.0	0.7	-0.4	U				Kop		72Ca01
¹⁸⁴ W(³ He,d) ¹⁸⁵ Re		-98	40	-90.9	0.7	0.2	U	100	100	184p	Roc		71Lu01
185 Re(d,t) 184 Re $^{-187}$ Re() 186 Re		-310	4	-310	4	0.0	1	100	100) ¹⁸⁴ Re	Roc		76El12
184 Os $(n,\gamma)^{185}$ Os		6625.4	0.9	6624.66	0.27	-0.8	U	0.5	- 1	185.0	ъ.		74Pr15
185 p.m. () 184 p.		6624.52	0.28	4.60=	4.0	0.5	1	95	51	¹⁸⁵ Os	Bdn		06Fi.A
$^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$		1669	50	1607	13	-1.2	0			195			95Da.A
		1606.8	16.			0.0	1	67	36	¹⁸⁵ Bi ^m	Ara		01Po05
		1568.6	50.			0.8	0						03An27
195		1591.7	5.			3.0	F						04An07
$^{185}\text{Ta}(\beta^-)^{185}\text{W}$		2013	20	1994	14	-1.0	2			195_			69Ku07
$^{185}W(\beta^{-})^{185}Re$		432.6	1.0	431.2	0.7	-1.4	1	44	28	¹⁸⁵ Re			67Wi19
$^{185}\mathrm{Os}(\varepsilon)^{185}\mathrm{Re}$		1012.7	1.0	1013.1	0.4	0.4	_						67Sc15
		1012.8	0.5			0.7	_			105			70Sc06
405	ave.	1012.8	0.4			0.8	1	88	49	¹⁸⁵ Os			average
185 Au(β^+) 185 Pt		4707	40	4830	26	3.1	F						86Da.A
$^{185}\text{Tl}^{m}(\text{IT})^{185}\text{Tl}$		454.8	1.5				5						Ens061
$*^{185}$ Os $-u$	F: conta	aminated by	isomeric	c state AND	by other	nuclides							03Li.B *
$*^{185}$ Pt $-u$	M-A=	-36590(100) keV for	r mixture gs+	m at 103	.41 keV							Nub16b *
$*^{185}$ Pt $-u$	M-A=	-36631(28)	keV for	mixture gs+r	n at 103.	41 keV							Nub16b *
* ¹⁸⁵ Au-u	M - A =	-31820(90)	keV for	mixture gs+r	n at 100#	100 keV							Nub16b *
$*^{185}$ Au $-$ u	M - A =	-31829(28)	keV for	mixture gs+r	n at 100#	100 keV							Nub16b *
* ¹⁸⁵ Hg-u	M - A =	-26112(28)	keV for	mixture gs+r	n at 103.	7 keV							Nub16b *
* ¹⁸⁵ Hg- ²⁰⁸ Pb _{.889}				ased by 20 di			nd state	lines in tra	р				01Sc41 *
* ¹⁸⁵ Tl-u				mixture gs+r									Nub16b *
$*^{185}$ Pt(α) ¹⁸¹ Os				$(1/2^{-})$ isome									Nub16b *
$*^{185}$ Au(α) ¹⁸¹ Ir				round state, 2									91Bi04 *
*				o ground stat			: from c	oinc.					95Bi01 *
$*^{185}$ Hg(α) ¹⁸¹ Pt				5,Z) to groun	-								Ens061 *
*				185 Hg ^m at 1									Ens061 *
$*^{185}$ Hg(α) ¹⁸¹ Pt				und state, 3/2									Ens061 *
*				at 103.8 to 1									Ens061 *
$*^{185}$ Hg(α) ¹⁸¹ Pt	$E_{cr} = 536$	5(15) from	¹⁸⁵ Но ^т :	at 103.8 to 13	3/2 leve	Lat 380 93	2 keV						Ens061 *
$*^{185}\text{Tl}^{m}(\alpha)^{181}\text{Au}$				=5975.2(5,Z)									76To06 *
$*^{185}\text{Tl}^{m}(\alpha)^{181}\text{Au}$				$\alpha = 5970.5(15)$		_		h					80Sc09 *
$*^{185}$ Pb(α) ¹⁸¹ Hg		5(15) to 64		α-3770.3(13	, <i>2</i>), + tiii	ics strong	er orane	11					02An15 *
$*^{185}$ Pb(α) ¹⁸¹ Hg		6(5),6288(5		260 levels									02An15 *
$*^{185}\text{Bi}^{m}(\alpha)^{181}\text{Tl}$				from only on	a avant								96Da06 *
$*^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$		om graph	autilois,	iroin only on	c event								AHW *
$*^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$			of F -1	618(11), and	1585(0)	in rafaran	CO						96Da06 *
$*^{185}\text{Bi}^m(p)^{184}\text{Pb}$		from graph		016(11), and	1363(9)	III TETETEII	CE						~ .
$*^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$		- 1		- 414 - 4 111	4 !			4114					
* 185 Ta(β^-) 185 W				edicated calil		ıın knowi	1 proton	activity					04An07 *
*** Ia(p)*** W				at 243.62 ke		± . 000 3							Ens061 *
$*^{185}$ Os $(\varepsilon)^{185}$ Re				evel at 874.81									Ens061 *
$*^{185}$ Os $(\varepsilon)^{185}$ Re				vel at 931.06	keV, and	other pK	, recalcu	ılated					Ens061 *
$*^{185}$ Au(β^+) ¹⁸⁵ Pt	F: insuf	fficient infor	rmation										GAu *
¹⁸⁶ Hf-u		-39103	55				2				GS3	1.0	13Sh30
¹⁸⁶ W O-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl		104592.7	3.2	104611.6	1.3	2.4	U				H29	2.5	77Sh04
¹⁸⁶ Ir-u		-42063	30	-42053	18	0.3	2				GS2	1.0	05Li24
¹⁸⁶ Pt-u		-40656	30	-40649	23	0.2	1	61	61	¹⁸⁶ Pt	GS2	1.0	05Li24
¹⁸⁶ Au-u		-34029	30	-34047	23	-0.6	1	56	56	¹⁸⁶ Au	GS2	1.0	05Li24
¹⁸⁶ Hg-u		-30660	104	-30638	13	0.2	Ü		23		GS1	1.0	00Ra23
6		-30630	30	20000		-0.3	1	17	17	¹⁸⁶ Hg	GS2	1.0	05Li24
$^{186} \mathrm{Hg} - ^{204} \mathrm{Pb}_{.912}$		-6065	20	-6054	13	0.6	_		1,	115	MA6		01Sc41
	ave.	-6058	17	5551		0.2	1	56	56	¹⁸⁶ Hg	1.1110	1.0	average
	avc.	0030	1/			0.2	1	50	50	112			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
¹⁸⁶ Tl-u		-21653	218	-21349	24	1.4	o			GS1	1.0	00Ra23	*
		-21513	105			1.6	U			GS2	1.0	05Li24	*
$^{186}\text{Tl} - ^{133}\text{Cs}_{1.398}$		110831	24	110829	24	-0.1	o			MA8	1.0	08We02	*
		110829	24				2			MA8	1.0	14Bo26	*
$^{186}\text{Tl}^n - ^{133}\text{Cs}_{1.398}$		111254	34				2			MA8	1.0	14Bo26	
¹⁸⁶ W O ₂ - ¹⁸³ W ³⁵ Cl		25122	5	25117.3	1.3	-0.4	U			H28	2.5	77Sh04	
¹⁸⁶ W ³⁵ Cl- ¹⁸⁴ W ³⁷ Cl		6374	3	6382.1	1.2	1.1	U			H22	2.5	70Mc03	
		6382.0	1.4			0.0	1	13	$11^{-186}W$	H28	2.5	77Sh04	
$^{186}\text{Os}(\alpha)^{182}\text{W}$		2820.6	50.	2821.2	0.9	0.0	Ü	10		1120	2.0	75Vi01	
186 Pt(α) 182 Os		4323.2	20.	4320	18	-0.2	1	79	39 ¹⁸² Os			63Gr08	
186 Au(α) 182 Ir		4907	20. 15	4912	14	0.3	1	87	44 ¹⁸² Ir	ORa		90Ak04	*
186 Hg(α) ¹⁸² Pt		5206.2	15.	5204	10	-0.1		07	44 11	OKa		70Ha18	
$\operatorname{Hg}(\alpha)^{-1}$				3204	10		_						
		5204.2	15.			0.0	_		192-			96Ri12	
196 192	ave.	5205	11			-0.1	1	83	57 ¹⁸² Pt			average	
$^{186}\mathrm{Tl}^m(\alpha)^{182}\mathrm{Au}^p$		5891.9	7.	5892	5	0.0	4					75Co.A	
		5891.9	7.			0.0	4			ORa		77Ij01	
186 Pb(α) 182 Hg		6458.2	20.	6470	6	0.6	2			Ora		74Le02	Z
		6470.1	10.			0.0	2			GSa		80Sc09	Z
		6474.7	10.			-0.5	2			ORa		84To09	2
		6476.5	15.			-0.4	2			ORa		97Ba25	
		6459.2	15.			0.7	2			Anv		97An09	
86 Bi(α) 182 Tl		7760	20	7757	12	-0.2	3			Ara		97Ba21	:
$\mathbf{B}\mathbf{I}(\alpha)$ 11				1131	12								
186 p.; m. () 182 min		7755	15	7.400	_	0.1	3			Anv		03An27	>
186 Bi $^m(\alpha)^{182}$ Tl p		7349.3	25.	7423	5	2.9	U			GSa		84Sc.A	
		7420.9	20.			0.1	U			Ara		97Ba21	
105		7422.9	5.				4			Anv		03An27	
186 Po(α) 182 Pb		8493	30	8501	14	0.3	5					05Hu.A	
		8503.2	15.3			-0.1	5					13An13	
$^{186}W(p,t)^{184}W$		-4474	5	-4464.0	1.2	2.0	U			Min		73Oo01	
186 W(p,t) 184 W $-^{184}$ W() 185	^{2}W	660.1	1.6	656.2	1.2	-2.5	o					09Le03	
4.7		657.0	1.8			-0.5	1	42	$35^{186}W$			09Le.A	
186 W(t, α) 185 Ta		11430	20	11411	14	-1.0	R			LAl		80Lo10	
$W(t,\alpha)$ 1a $^{186}W(\gamma,n)^{185}W$		-7120	60	-7192.1	1.2	-1.0	U			Phi		60Ge01	
$^{186}W(d,t)^{185}W$													
		-939	10	-934.8	1.2	0.4	U			Kop		72Ca01	_
185 Re(n, γ) 186 Re		6179.8	0.8	6179.38	0.17	-0.5	_			Tal		69La11	2
		6178.6	1.5			0.5	U					70Or.A	
		6179.34	0.18			0.2	_			Bdn		06Fi.A	
¹⁸⁵ Re(d,p) ¹⁸⁶ Re		3939	25	3954.81	0.17	0.6	U			Tal		69La11	
185 Re(n, γ) 186 Re	ave.	6179.36	0.18	6179.38	0.17	0.1	1	99	72 ¹⁸⁶ Re			average	
$^{186}\text{Ta}(\beta^-)^{186}\text{W}$		3901	60				2					69Mo16	*
86 Re(β^{-}) 186 Os		1064	2	1072.9	0.8	4.4	В					56Jo05	
πο(ρ) σσ		1071.5	1.3	1072.7	0.0	1.0	_					56Po28	
		1071.3	3			-1.0	_					64Ma36	
		1064	3			3.0	В					68An11	
								40	28 ¹⁸⁶ Re				
1967 (01) 1960	ave.	1072.2	1.2	2020		0.5	1	49	28 ***Re			average	
186 Ir(β^{+}) 186 Os		3760	200	3828	17	0.3	U					62Bo22	
105		3831	20			-0.2	R					63Em02	
186 Au(β^+) 186 Pt		5950	200	6150	30	1.0	U					72We.A	
186 Hg(β^{+}) 186 Au		3250	200	3176	24	-0.4	U					72We.A	
$^{186}\text{Tl}^{n}(\text{IT})^{186}\text{Tl}^{m}$		373.9	0.5	374.00	0.20	0.2	o			Lvn		91Va04	
. ,		374.0	0.2				3					Ens036	
⁸⁶ Ir-u	M = A	=-39181(28)		nivture os±m	at 0.8 ke	V	-					Nub16b	*
¹⁸⁶ Tl-u		=-20030(180)		_			400(40)	koV.				Nub16b	
11-u ¹⁸⁶ Tl-u													
186m; 133 c		=-19900(29)										Nub16b	
$^{186}\text{Tl} - ^{133}\text{Cs}_{1.398}$		10842.1(9.2)	•	-								Nub16b	
$^{86}\text{Tl} - ^{133}\text{Cs}_{1.398}$	$D_M=1$	10840.4(8.6)	μ u for mi	ixture gs+m a	it 20(40)	keV; <i>M</i> –	- <i>A</i> =–198	376.0(8.0)	keV			Nub16b	*
86 Au(α) 182 Ir	E_{α} =46	553(15) to 3 ⁻	level at 1	52.3 keV								95Sa42	*
186 Bi $(\alpha)^{182}$ Tl	$E_{\alpha}=71$	158(20) follow	wed by E(γ)=444 keV								03An27	*
186 Bi $(\alpha)^{182}$ Tl		152(15), 7085	•	•	=444, 520) keV						03An27	
		(), , 000	,,		,	'							
		2240(60) to (2	7-11es	el at 1661 38	R17 keV							Enc036	*
$^{186}\text{Ta}(\beta^-)^{186}\text{W}$	$E_{\beta} = 2$	2240(60) to (2				V alca st	hor F					Ens036	
186 Ta(β^{-}) 186 W 186 Ir(β^{+}) 186 Os 186 Ir(β^{+}) 186 Os	$E_{\beta^{-}} = 2$ $E_{\beta^{+}} = 2$	2240(60) to (2 2600(200) ass 1940(20) to 6	umed to 2	2 ⁺ level at 13		V, also ot	her $E_{oldsymbol{eta}^+}$					Ens036 Ens036 Ens036	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted valu		v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e_
197-		20.00								999	4.0	1201.20	_
¹⁸⁷ Ta-u		-39609	60				2			GS3	1.0	13Sh30	
¹⁸⁷ Ir-u		-42458	30				2			GS2	1.0	05Li24	
187 Pt $-u$		-39500	110	-39383	26	1.1	U			GS1	1.0	00Ra23	
		-39413	30			1.0	1	74	74 ¹⁸⁷ Pt	GS2	1.0	05Li24	
187 Au $-$ u		-35470	114	-35457	24	0.1	U			GS1	1.0	00Ra23	*
		-35441	30			-0.5	1	64	64 ¹⁸⁷ Au	GS2	1.0	05Li24	
187 Hg $-$ u		-30188	109	-30186	15	0.0	U			GS1	1.0	00Ra23	*
8		-30155	36			-0.9	1	17	17 ¹⁸⁷ Hg	GS2	1.0	05Li24	*
187 Hg $-^{208}$ Pb $_{.899}$		-9210	20	-9196	15	0.7	1	56	56 ¹⁸⁷ Hg	MA6	1.0	01Sc41	
$^{187}\text{Hg}^m - ^{208}\text{Pb}_{.899}$		-9152	19	-9132	21	1.0	0	50	30 116	MA6	1.0	01Sc41	*
187Tl-u		-24120	107	-24095	9	0.2	U			GS1	1.0	00Ra23	т
II—u		-24120 -23928	107	-24093	7	-1.5	U			GS2	1.0	05Li24	.1.
$^{187}\text{Tl}^m - ^{133}\text{Cs}_{1.406}$		-23928 109151		100100	0	1.9						03L124 08We02	*
¹⁸⁷ Pb-u			24	109198	8		F			MA8	1.0		*
187pt 133 G		-16076	45	-16089	5	-0.3	U	0.6	o c 187 pu	GS2	1.0	05Li24	*
¹⁸⁷ Pb- ¹³³ Cs _{1.406}		116843.5	5.9	116845	5	0.3	1	86	86 ¹⁸⁷ Pb	MA8	1.0	05We11	*
$^{187}\text{Pb}^m - ^{133}\text{Cs}_{1.406}$		116871.6	5.6	116866	12	-1.0	O			MA8	1.0	05We11	*
187 Re O ₂ $-^{184}$ W 35 Cl		25797.4	3.5	25795.6	0.9	-0.2	U			H28	2.5	77Sh04	
¹⁸⁷ Re ³⁵ Cl- ¹⁸⁵ Re ³⁷ Cl		5737	3	5744.1	0.9	0.9	U			H22	2.5	70Mc03	
		5744.2	1.2			0.0	1	10	6 ¹⁸⁵ Re	H28	2.5	77Sh04	
187 Re $^{-187}$ Os		2.676	0.036	2.6481	0.0017	-0.8	U			SH1	1.0	14Ne15	
187 Au(α) 183 Ir		4792.7	20.	4751	29	-0.8	1	35	19 ¹⁸³ Ir			68Si01	*
187 Hg(α) 183 Pt		5229.9	20.	5230	14	0.0	1	49	30 ¹⁸³ Pt	ISa		70Ha18	*
$^{187}\text{Hg}^{m}(\alpha)^{183}\text{Pt}$		5293.4	20.	5289	16	-0.2	1	64	49 ¹⁸⁷ Hg ^m	ISa		70Ha18	*
$^{187}\text{Tl}^{m}(\alpha)^{183}\text{Au}$		5643	20	5656	6	0.6	_	01	17 116	ORa		76To06	*
II (a) Au		5661.5	10.	3030	U	-0.6	_			GSa		80Sc09	*
		5645.1	12.			0.9				Lvn		85Co06	
		5661.5	10.			-0.6	О			Lvn		91Wa21	*
							_	0.1	77 ¹⁸³ Au	LVII			*
187 Pb $(\alpha)^{183}$ Hg	ave.	5659	7	6202	,	-0.6	1	91	// 105 Au	0		average	
167 Pb(α) 165 Hg		6393.0	10.	6393	6	0.0	_			Ora		75Ca06	*
		6395.0	19.			-0.1	О			GSa		80Sc09	
		6398.4	10.			-0.6	_		102	GSa		81Mi12	*
	ave.	6396	7			-0.4	1	77	63 ¹⁸³ Hg			average	
187 Pb $^m(\alpha)^{183}$ Hg m		6213.1	20.	6208	7	-0.2	O			Ora		74Le02	
		6213.1	10.			-0.5	2			Ora		75Ca06	
		6223.3	10.			-1.5	o			GSa		80Sc09	
		6206.0	10.2			0.2	2			GSa		81Mi12	
		6202.9	15.			0.4	2			Anv		99An36	
187 Bi(α) 183 Tl ^{m}		7139.0	10.	7150	4	1.1	2			GSa		84Sc.A	
,		7153.3	8.			-0.4	2			ORa		99Ba45	*
		7158.4	10.			-0.8	o			Anv		03An27	
		7147.2	8.			0.4	2			Jya		03Ke08	*
		7153.3	10.			-0.3	o			Anv		04An07	
		7153.3	5.			-0.6	2			Anv		06An11	*
$^{187}\mathrm{Bi}^m(\alpha)^{183}\mathrm{Tl}$		7749.1	10.	7887	7	13.8	F			GSa		84Sc.A	*
Di (α) 11		7890.1	15.	7007	,	-0.2	2			ORa		99Ba45	T
		7882.9	11.			0.4	2					03Ke08	
							2			Jya			
187p. ()183pl		7890.1	10.			-0.3	2			Anv		06An11	
$^{187}\text{Po}(\alpha)^{183}\text{Pb}$		7978.9	15.				3			Anv		06An11	*
$^{187}\text{Po}^{m}(\alpha)^{183}\text{Pb}^{m}$		7889.1	20.				3			Anv		06An11	_
$^{186}{ m W}({ m n},\gamma)^{187}{ m W}$		5466.3	0.3	5466.76	0.04	1.5	U			BNn		87Br05	Z
		5467.22	0.3			-1.5	U			Ltn		92Be17	*
		5466.59	0.12			1.4	o			Bdn		06Fi.A	
		5466.83	0.05			-1.4	_			Prn		08Bo26	
		5466.62	0.07			2.0	_			Bdn		14Hu02	
$^{186}W(d,p)^{187}W$		3236	5	3242.19	0.04	1.2	U			ANL		65Er03	
=		3240	10			0.2	U			Kop		72Ca01	
186 W $(n, \gamma)^{187}$ W	ave.	5466.76	0.04	5466.76	0.04	0.0	1	100	$55^{-186}W$	•		average	
· · · · · · · · · · · · · · · · · · ·			-		-			-					

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁸⁶ W(³ He,d) ¹⁸⁷ Re		530	40	503.4	1.1	-0.7	U			Roc		71Lu01
$^{187}\text{Re}(\gamma, n)^{186}\text{Re}$		-7180	80	-7360.7	0.9	-2.3	U			Phi		60Ge01
187 Re(d,t) 186 Re		-7180 -1055	25	-7300.7 -1103.5	0.9	-2.3 -1.9	U			Tal		69La11
$^{186}Os(n,\gamma)^{187}Os$		6291.1	1.0	6290.3	0.5	-0.8	_			Tai		74Pr15 2
$Os(\Pi,\gamma)$		6289.4	0.8	0290.3	0.5	-0.8 1.1	_			Bdn		06Fi.A
								70	40 ¹⁸⁶ Os	Bull		
$^{187}W(\beta^{-})^{187}Re$	ave.	6290.1	0.6	1212.5	1.1	0.4	1	70	40 100 Os			average
w(p) Re		1314	2	1312.5	1.1	-0.7	_					69Na03
		1310	2			1.3	_	(2)	55 ¹⁸⁷ W			70He14
187 Re(β^{-}) 187 Os	ave.	1312.0	1.4	0.4667	0.0016	0.4	1	63	55 10' W			average
Re(B) 107 Os		2.62	0.09	2.4667	0.0016	-1.7	U					65Br12
		2.64	0.05			-3.5	В					67Hu05
		2.667	0.020			-10.0	В					92Co23
		2.70	0.09			-2.6	U					93As02
		2.460	0.011			0.6	U					99A120
		2.470	0.004			-0.8	-					01Ga01
		2.4661	0.0017			0.4	_		00 107-			03Ar36
97 197 -	ave.	2.4667	0.0016			0.0	1	100	89 ¹⁸⁷ Re			average
87 Ir(β^+) 187 Os		1550	200	1670	28	0.6	U					71Ma24
87 Os(3 He,t) 187 Ir		-1521	6	-1688	28	-27.9	В		405	INS		90Ka27
87 Au(β^+) 187 Pt		3600	40	3657	27	1.4	1	47	26 ¹⁸⁷ Pt			83Gn01
87 Hg m (IT) 187 Hg		54	21	59	16	0.2	1	60	51 ¹⁸⁷ Hg ^m	MA6		01Sc41
$^{87}\text{Tl}^{m}(\text{IT})^{187}\text{Tl}$		330	5	334	3	0.7	1	45	31 ¹⁸⁷ Tl			77Sc03
$^{187}\text{Pb}^{m}(\text{IT})^{187}\text{Pb}$		33	13	19	10	-1.1	1	61	61^{-187}Pb^m	MA8		05We11
¹⁸⁷ Au–u	M-A=-	-32980(100) k	eV for mixtu	re gs+m at 120.	.33 keV							Nub16b *
¹⁸⁷ Hg-u				re gs+m at 59(1								Nub16b *
⁸⁷ Hg-u				e gs+m at 59(16								Nub16b *
87 Hg m - 208 Pb.899				n ground state a		lines						GAu *
¹⁸⁷ Tl–u				e gs+m at 334(3								Nub16b *
$^{187}\text{Tl}^m - ^{133}\text{Cs}_{1.406}$		mination from		-	, , 110 ,							08We02 *
¹⁸⁷ Pb-u			-	e gs+m at 19(10)) keV							Nub16b *
$^{187}\text{Pb} - ^{133}\text{Cs}_{1.406}$				gs+m at 19(10)		R-0.62(0	02).					Nub16b *
10 051.400		=14981.5(4.0)		g51111 at 17(10)	Ke v with	11-0.02(0.	.02),					GAu *
$^{187}\text{Pb}^m - ^{133}\text{Cs}_{1.406}$				m at 19(10) R=	8 7(0 7)· N	1 _ A1/	1964 5(5	1) keV				Nub16b *
10 - Cs _{1.406}				e ¹⁸⁷ Pb doublet				.1) KC V				GAu *
187 Au(α) 183 Ir		ent uncertain	ations for the	1 b doublet	and 10	(11)	,					Ens095 *
187 Hg(α) 183 Pt	_	$5(20)$ to $3/2^{-1}$	aval at 94 72	lroV								Ens164 *
187 Hg ^{m} (α) ¹⁸³ Pt												
$^{187}\mathrm{Tl}^m(\alpha)^{183}\mathrm{Au}$		$0(20)$ to $(13/2^{-1})$:1 4- (0	/2\= -4 12	4/0 4)1-	- 17				Ens164 *
$^{187}\text{Pb}(\alpha)^{183}\text{Hg}$				528(10) respect	ivery, to (9	12) at 12	4(U.4)K	.e v				Ens164 *
		$0(10)$ to $3/2^{-1}$			275 22 1	3 7						Ens164 *
$^{87}\text{Pb}(\alpha)^{183}\text{Hg}$				els at 67.16 and	2/3.33 ke	V						Ens164 *
$^{87}\text{Bi}(\alpha)^{183}\text{Tl}^{m}$		=7612(15) keV	-									99Ba45 *
$^{87}\text{Bi}(\alpha)^{183}\text{Tl}^m$		=7605(16) keV	-		50/1):							03Ke08 *
$^{87}\text{Bi}(\alpha)^{183}\text{Tl}^{m}$				ground state, 2	73(1) keV							06An11 *
$^{187}\text{Bi}^{m}(\alpha)^{183}\text{Tl}$				=370(20) μs								Nub16b *
87 Po(α) 183 Pb	$E_{\alpha} = 7528$			also 1 event E_{α} :	. ,	to ground	state					06An11 *
			04 keV give	n; Z recalibrat	ed							GAu *
	Only stat											
187 Ir(β^+) 187 Os	Only state $p^+ < 0.13$	5(0.05), result	$\log Q_{1}(1550)$	keV								Ens095 *
187 Ir(β^+) 187 Os 187 Au(β^+) 187 Pt	Only state $p^+ < 0.13$	5(0.05), result	$\log Q_{1}(1550)$		lculated							Ens095 * Ens095 *
187 Ir(β^+) 187 Os 187 Au(β^+) 187 Pt	Only state $p^+ < 0.13$ $K/\beta^+ = 3$	5(0.05), result 1.6(2.8) to 1/2	$Q_{i}(1550)$ + level at 13	keV		state line	s in trap					
187 Ir(β^+) 187 Os 187 Au(β^+) 187 Pt 187 Hg m (IT) 187 Hg	Only stat $p^+ < 0.13$ $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV)	ing $Q_{\dagger}(1550)$ + level at 13 increased by	keV 41.07 keV, reca		state line				GS3	1.0	Ens095 * 01Sc41 *
${}^{87}\text{Ir}(\beta^{+}){}^{187}\text{Os}$ ${}^{87}\text{Au}(\beta^{+}){}^{187}\text{Pt}$ ${}^{87}\text{Hg}^m(\Pi){}^{187}\text{Hg}$ ${}^{88}\text{Ta}\text{-u}$	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084	ing $Q_1(1550)$ + level at 13 increased by	keV 41.07 keV, reca 20 due to isom	er+ground		2			GS3 GS1	1.0 1.0	Ens095 * 01Sc41 *
${}^{87}\text{Ir}(\beta^{+}){}^{187}\text{Os}$ ${}^{87}\text{Au}(\beta^{+}){}^{187}\text{Pt}$ ${}^{87}\text{Hg}^m(\Pi){}^{187}\text{Hg}$ ${}^{88}\text{Ta}\text{-u}$	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750	ing $Q_1(1550)$ + level at 13 increased by 59 104	keV 41.07 keV, reca		0.0	2 U			GS1	1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23
$^{187}\text{Ir}(\beta^{+})^{187}\text{Os}$ $^{187}\text{Au}(\beta^{+})^{187}\text{Pt}$ $^{187}\text{Hg}^{m}(\text{IT})^{187}\text{Hg}$ ^{188}Ta ^{188}Au ^{188}Au	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750 -34674	ing <i>Q</i> ₁ (1550) + level at 13 increased by 59 104 30	keV 41.07 keV, reca 20 due to isom	er+ground		2 U B			GS1 GS2	1.0 1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23 05Li24
187 Ir(β^{+}) 187 Os 187 Au(β^{+}) 187 Pt 187 Hg m (IT) 187 Hg 188 Ta—u 188 Au—u 188 Au—1	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750 -34674 98938.9	ing <i>Q</i> ;(1550 + level at 13 increased by 59 104 30 2.9	keV 41.07 keV, reca 20 due to isom -34752.0	er+ground 2.9	$0.0 \\ -2.6$	2 U B 2			GS1 GS2 MA8	1.0 1.0 1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23 05Li24 16Ma.1
$^{187}\text{Ir}(\beta^{+})^{187}\text{Os}$ $^{187}\text{Au}(\beta^{+})^{187}\text{Pt}$ $^{187}\text{Hg}^m(\text{IT})^{187}\text{Hg}$ ^{188}Ta ^{188}Au ^{188}Au ^{188}Au	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750 -34674 98938.9 -32500	$Q_1(1550)$ + level at 13 increased by 59 104 30 2.9 104	keV 41.07 keV, reca 20 due to isom	er+ground	0.0 -2.6 0.7	2 U B 2 U	10	10 ¹⁸⁸ U.~	GS1 GS2 MA8 GS1	1.0 1.0 1.0 1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23 05Li24 16Ma.1 00Ra23
187 Ir(β^+) 187 Os 187 Au(β^+) 187 Pt 187 Hg m (IT) 187 Hg 188 Ta-u 188 Au-u 188 Au-u 188 Au- 133 Cs _{1.414}	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750 -34674 98938.9 -32500 -32428	ing Qi(1550 + level at 13 increased by 59 104 30 2.9 104 30	keV 41.07 keV, reca 20 due to isom -34752.0 -32423	2.9	0.0 -2.6 0.7 0.2	2 U B 2 U 1	19	19 ¹⁸⁸ Hg	GS1 GS2 MA8 GS1 GS2	1.0 1.0 1.0 1.0 1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23 05Li24 16Ma.1 00Ra23 05Li24
186 W(n, γ) ¹⁸⁷ W 187 Ir(β ⁺) ¹⁸⁷ Os 187 Au(β ⁺) ¹⁸⁷ Pt 187 Hg m (IT) ¹⁸⁷ Hg 188 Ta-u 188 Au-u 188 Au-u 188 Hg-u	Only stat $p^+ < 0.1$: $K/\beta^+ = 3$ Original	5(0.05), result 1.6(2.8) to 1/2 error (7 keV) -36084 -34750 -34674 98938.9 -32500	$Q_1(1550)$ + level at 13 increased by 59 104 30 2.9 104	keV 41.07 keV, reca 20 due to isom -34752.0	er+ground 2.9	0.0 -2.6 0.7	2 U B 2 U	19 63	19 ¹⁸⁸ Hg 62 ¹⁸⁸ Hg	GS1 GS2 MA8 GS1	1.0 1.0 1.0 1.0 1.0	Ens095 * 01Sc41 * 13Sh30 00Ra23 05Li24 16Ma.1 00Ra23

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Referenc	<u>—</u>
						-		<u> </u>					_
188 Tl $-u$		-23827	110	-23980	30	-1.4	U			GS1	1.0	00Ra23	*
		-23994	38			0.4	2			GS2	1.0	05Li24	*
¹⁸⁸ Pb-u		-19070	110	-19125	11	-0.5	U			GS1	1.0	00Ra23	
		-19144	30			0.6	R			GS2	1.0	05Li24	
¹⁸⁸ Os ³⁵ Cl- ¹⁸⁶ W ³⁷ Cl		4426	3	4422.3	1.2	-0.5	U			H22	2.5	70Mc03	
188 Pt(α) 184 Os		4015.7	10.	4007	5	-0.9	_					63Gr08	
		4000.3	10.			0.6	_			ORa		78El11	
		3990.1	15.			1.1	_					79Ha10	
	ave.	4005	7			0.3	1	65	65 ¹⁸⁸ Pt			average	
188 Hg(α) 184 Pt		4710.4	20.	4707	16	-0.1	1	59	40 ¹⁸⁴ Pt			79Ha10	
188 Pb $(\alpha)^{184}$ Hg		6110.3	10.	6109	3	-0.1	2			Ora		74Le02	Z
		6109.2	10.			0.0	2			Ora		77De32	Z
		6120.5	15.			-0.8	2			GSa		80Sc09	Z
		6110.5	5.			-0.3	2			ORa		81To02	Z
		6109.3	10.			0.0	2			Lvn		93Wa03	Z
		6100.0	8.			1.1	2			Jya		03Ke04	
188 Bi(α) 184 Tl		7274.5	25.	7264	5	-0.4	O			GSa		80Sc09	*
		7279.7	10.			-1.6	2			GSa		84Sc.A	*
		7255.2	7.			1.2	2			Lvn		97Wa05	*
		7259.3	5.			0.9	o			Anv		03An26	*
400		7264.8	10.			-0.1	2			Anv		06An04	*
188 Bi ⁿ (α) 184 Tl ^m		7462.9	5.				5			Anv		03An26	*
188 Bi $^n(\alpha)^{184}$ Tl n		6968.5	20.	6965	5	-0.2	O			GSa		80Sc09	
		6968.5	10.			-0.4	5			GSa		84Sc.A	
		6963.5	6.			0.2	5			Lvn		97Wa05	
		6961.3	5.			0.6	O			Anv		03An26	
100 104		6963.5	5.			0.1	5			Anv		06An04	
188 Po(α) 184 Pb		8087.4	25.	8082	15	-0.2	O			Anv		99An52	
		8080.2	15.			0.1	0			Anv		01Va.B	
100 106 -		8082.3	15.				2			Anv		03Va16	
$^{188}{\rm Os}({\rm p,t})^{186}{\rm Os}$		-5802	5	-5798.1	0.5	0.8	U			Min		73Oo01	
107 100-		-5803	4			1.2	U			McM		75Th04	_
187 Re $(n, \gamma)^{188}$ Re		5871.77	0.3	5871.65	0.04	-0.4	U					72Sh13	Z
		5871.75	0.13			-0.8	U			Bdn		06Fi.A	
100 = 107 =		5871.65	0.04				2			Prn		10Ba48	
188 Os(t, α) 187 Re		12604	10	12604.14	0.15	0.0	U			McM		76Hi08	_
$^{187}\mathrm{Os}(\mathrm{n},\gamma)^{188}\mathrm{Os}$		7989.6	0.3	7989.61	0.15	0.0	-			ъ.		83Fe06	Z
		7989.58	0.17			0.1	_	0.0	r= 187 o	Bdn		06Fi.A	
188xxx 0 = \ 188xx	ave.	7989.58	0.15			0.1	1	98	57 ¹⁸⁷ Os			average	
$^{188}W(\beta^{-})^{188}Re$		349	3	2120.12	0.45		3					64Bu10	
188 Re $(\beta^{-})^{188}$ Os		2116	2	2120.42	0.15	2.2	U					56Jo05	
$^{188}\text{Ir}(\beta^+)^{188}\text{Os}$		2111	3	2702	0	3.1	В					68An11	
$\operatorname{Ir}(\beta^+)^{\operatorname{res}}\operatorname{Os}$		2833	10	2792	9	-4.1	В					62Wa20	
		2781	20			0.6	_					69Ya02	*
		2827	30			-1.2	_	22	22 1881			70Ag03	*
188 p. / \188 r	ave.	2795	17	504	0	-0.2	1	32	32 ¹⁸⁸ Ir 68 ¹⁸⁸ Ir	OD		average	
188 Pt(ε) ¹⁸⁸ Ir 188 Au(β^+) ¹⁸⁸ Pt		525	10	524	9	-0.1	1	75	68 100 Ir	ORa		78El11	*
		5520	30	5450	6	-2.3	U					84Da.A	
188 Hg(β^+) 188 Au	16.4	2040	20	2169	13	6.5	В					84Da.A	
* ¹⁸⁸ Tl-u * ¹⁸⁸ Tl-u				ixture gs+m								GAu	**
$*^{188}$ Bi(α) ¹⁸⁴ Tl				xture gs+m at			7.5(0.5)	1 17				GAu E102	**
*Β1(α)11	•) respectively								Ens102	
* $*^{188}$ Bi(α) ¹⁸⁴ Tl				xists too, poss				S				97Wa05	
* Β1(α) 11) to ground st	ate, 11/.), 216 leve	21S					03An26	
$*^{188}\text{Bi}(\alpha)^{184}\text{Tl}$		5(10) to 117.:		5) 4 1	70 /	2201	-1-					06An04	
$*^{188}\text{Bi}^{n}(\alpha)^{184}\text{Tl}^{m}$				5) to ground s				- \$7				03An26	
$*^{188} Ir(\beta^+)^{188} Os$				30) respective	ery, to 2 ⁺	ievel at 1	55.021 k	e v				Ens024	
$*^{188}$ Pt $(\varepsilon)^{188}$ Ir	pL=0.67	(0.05) to 1^+	ievel at 47	/8.17 keV								Ens024	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	iipai ison	Input va		Adjuste		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference	<u></u>
190													_
¹⁸⁹ W-u		-38237	43				2			GS3	1.0	13Sh30	
$C_{14} H_{21} - ^{189}Os$		206188.3	6.2	206179.7	0.7	-0.3	U			M23	4.0	79Ha32	
¹⁸⁹ Au-u		-36080	140	-36052	22	0.2	U			GS1	1.0	00Ra23	*
		-36045	31			-0.2	2			GS2	1.0	05Li24	
180		-36058	30	21010	20	0.2	2			GS2	1.0	05Li24	*
189 Hg $-u$		-31788	111	-31810	30	-0.2	U		190	GS1	1.0	00Ra23	*
100 200		-31791	42			-0.3	1	65	65 ¹⁸⁹ Hg	GS2	1.0	05Li24	*
$^{189}_{100}$ Hg m - 208 Pb.909		-10501	20	-10498	19	0.2	1	92	92^{-189}Hg^m	MA6	1.0	01Sc41	
¹⁸⁹ Tl-u		-26497	139	-26426	9	0.5	U			GS1	1.0	00Ra23	*
100		-26313	93			-1.2	U			GS2	1.0	05Li24	*
¹⁸⁹ Pb-u		-19206	97	-19156	15	0.5	U			GS1	1.0	00Ra23	*
		-19193	34			1.1	1	20	20 ¹⁸⁹ Pb	GS2	1.0	05Li24	*
¹⁸⁹ Os ³⁵ Cl- ¹⁸⁷ Re ³⁷ Cl		5341	3	5343.8	0.5	0.4	U			H22	2.5	70Mc03	
189 Pb(α) 185 Hg		5954.2	10.	5915	4	-3.9	В			Ora		72Ga27	*
		5943.9	10.			-2.9	В			Ora		74Le02	*
		5915	10			0.0	_					05Fr.A	*
		5914.8	5.4			0.0	_			ISa		13Sa43	*
	ave.	5915	5			0.0	1	82	67 ¹⁸⁹ Pb			average	
$^{189}\text{Pb}^{m}(\alpha)^{185}\text{Hg}$		5958	10	5955	5	-0.3	1	28	25^{-189}Pb^{m}			05Fr.A	*
()		5955	5			0.0	0			ISa		13Sa43	*
189 Bi(α) 185 Tl		7269.4	10.	7268.2	2.7	-0.1	6			Ora		74Le02	*
B1(w) 11		7274.5	10.	7200.2	2.7	-0.6	6			GSa		84Sc.A	*
		7271.2	5.			-0.6	6			Lvn		85Co06	*
		7271.8	15.			-0.2	Ü			Anv		97An09	*
		7268.1	6.			0.0	6			Lvn		97Wa05	
		7271.5	5.			-0.7	0			Jya		02Hu14	*
		7264.2	4.5			0.9	6			Jya		03Ke08	*
$^{189}\text{Bi}^{m}(\alpha)^{185}\text{Tl}$		7362.1	20.	7452	4	1.8	U			GSa		84Sc.A	*
Βι (α) Τι		7499.0	30.	7432	7	-1.6	U			Dbb		93An19	т
		7458.2	40.			-0.2	U			ORa		95Ba75	
		7458.2	15.			-0.2 -0.4	6			Anv		97An09	
		7450.0	6.			-0.4 0.4	6			Lvn		97Wa05	
		7453.1	6.			-0.2	6			Jya		03Ke08	
189 Po(α) 185 Pb		7699.4	15.	7694	15	-0.2 -0.3				Anv			*
10(α) 10		7694.3	15.	7094	13	-0.5	o 3			Anv		05Va04	*
189 Os(p,t) 187 Os		-5431	5	-5428.6	0.5	0.5	U			Min		73Oo01	•
Os(p,t) Os		-5431	4	-5426.0	0.5	0.8	U			McM		75Th04	
188 Os $(n,\gamma)^{189}$ Os		-3432 5920.8		5920.8	0.4	0.0				IVICIVI		76Be50	
$Os(n, \gamma) Os$			2. 0.5	3920.6	0.4	0.5	U	80	59 ¹⁸⁸ Os	П.,		92Br17	
		5920.6 5922.0	0.3			-2.9	1 C	80	39 ° Os	ILn Bdn		92BH / 06Fi.A	
¹⁸⁸ Os(d,p) ¹⁸⁹ Os				2606.2	0.4		C						
1890 (1)1880		3689	10	3696.3	0.4	0.7	U			Kop		75Mo29	
189 Os(d,t) 188 Os		335	15	336.4	0.4	0.1	U			Tal		75Th06	
$^{189}W(\beta^{-})^{189}Re$		2500	200	2360	40	-0.7	U					65Ka07	
189 Re $(\beta^{-})^{189}$ Os		1000	20	1008	8	0.4	R					63Cr06	
190- (0 190-		1015	20			-0.4	R		- 0 190-			65B106	
189 Pt(β^+) 189 Ir		1950	20	1980	14	1.5	1	46	30 ¹⁸⁹ Ir			71Pl08	*
189 Au(β^+) 189 Pt		3160	300	2887	22	-0.9	U					75Un.A	
189 Hg(β^+) 189 Au		4200	200	3960	40	-1.2	U					75Un.A	
$^{189}\text{Hg}^{m}(\text{IT})^{189}\text{Hg}$		100	50	80	30	-0.4	1	43	35 ¹⁸⁹ Hg	MA6		01Sc41	
$^{189}\text{Tl}^{m}(\beta^{+})^{189}\text{Hg}$		5460	200	5300	30	-0.8	U					75Un.A	*
$^{189}\text{Pb}^{m}(\text{IT})^{189}\text{Pb}$		40	4	40	4	0.1	1	88	75^{189}Pb^m	ISa		13Sa43	
*189Au-u	M - A =	-33490(100)	keV for	mixture gs+	m at 247	'.23 keV						Nub16b >	**
$*^{189}$ Au-u	M - A =	-33341(28) 1	keV for 1	189 Au m at 24	7.23 keV	7						Nub16b >	**
* ¹⁸⁹ Hg-u	M - A =	-29570(100)	keV for	mixture gs+	m at 80(30) keV						Nub16b >	**
* ¹⁸⁹ Hg-u		-29573(28) I										Nub16b >	
* ¹⁸⁹ Tl-u		-24540(100)										Nub16b >	
* ¹⁸⁹ Tl-u		-24369(28) l										Nub16b	
* ¹⁸⁹ Pb-u		-17870(90) l										Nub16b >	
* ¹⁸⁹ Pb-u		–17858(29) l										Nub16b >	
$*^{189}$ Pb(α) ¹⁸⁵ Hg		–17636(29) 1 80.1(10,Z) pc					26.1 bos	I				Ens061 >	
$*^{189} Pb(\alpha)^{185} Hg$			•	-				,					
$*^{189}$ Pb(α) ¹⁸⁵ Hg $*^{189}$ Pb(α) ¹⁸⁵ Hg		20(10) possib	•	-			KC V					Ens061 >	
* PD(α) Hg	$E_{\alpha}=5/6$	$61 \text{ to } 3/2^- \text{ lev}$	vei at 26.	1 and E_{α} =50	023 to 17	3.8 ievei						05Fr.A >	**

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	nparison of input										
Item	Input va	lue	Adjusted v	alue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$*^{189}$ Pb $(\alpha)^{185}$ Hg	E_{α} =5764(3)(5) to 3	3/2 ⁻ level	at 26 02 and E	~=5619 <i>(</i>	2)(5) to 1'	73 9 leve	1				13Sa43 **
$*^{189}\text{Pb}^{m}(\alpha)^{185}\text{Hg}$	E_{α} =5730 to 103.8		ut 20.02 unu 2	u-301)(2)(3) to 1	75.7 1010					05Fr.A **
$*^{189}\text{Pb}^{m}(\alpha)^{185}\text{Hg}$	E_{α} =5727(2)(5) to		level								13Sa43 **
$*^{189} Pb^{m}(\alpha)^{185} Hg$	use instead 189 Pb m			tic errors	cancel						GAu **
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$	E_{α} =6670.1(10,Z) t	0.185TIM	where systema	W CHOIS	Cancer						Nub16b **
* 189 Bi(α) 185 Tl	E_{α} =6675(10) to ¹⁸ .			v							Nub16b **
					V1 5\ 1 3						
$*^{189}$ Bi $(\alpha)^{185}$ Tl $*^{189}$ Bi $(\alpha)^{185}$ Tl	E_{α} =7115.6(15,Z) a										Nub16b **
	E_{α} =7120(15), 6670 E_{α} =6674(5) to ¹⁸⁵ 7			105 II'' a	t 454.8(1.	5) Ke V					Nub16b **
$*^{189}\text{Bi}(\alpha)^{185}\text{Tl}$											77Sc03 **
$*^{189}$ Bi $(\alpha)^{185}$ Tl	E_{α} =6667(4) to ¹⁸⁵										77Sc03 **
* 180 p. m. () 185 m.	and also E_{α} =7114										03Ke08 **
$*^{189}$ Bi ^m $(\alpha)^{185}$ Tl	Only one event; no										93An19 **
$*^{189}$ Po(α) ¹⁸⁵ Pb	E_{α} =7264(15) to 27										99An52 **
$*^{189}$ Po(α) ¹⁸⁵ Pb	E_{α} =7259(15) to 27										05Va04 **
$*^{189}$ Pt(β^+) ¹⁸⁹ Ir	E_{β^+} =885(10) to gr				$13/2^{+}$ at	176.53 k	eV				Ens039 **
$*^{189}\text{Tl}^m(\beta^+)^{189}\text{Hg}$	E_{β^+} =4140(200) to	several le	vels around 300) keV							75Un.A **
$^{190}W-u$	-36917	44	-36910	40	0.1	1	94	94 ¹⁹⁰ W	GS3	1.0	13Sh30
¹⁹⁰ Au-u	-35213	106	-35248	4	-0.3	U			GS2	1.0	05Li24 *
190 Au $^{-133}$ Cs _{1.429}	99860.9	3.7	33210	·	0.5	2			MA8	1.0	16Ma.1
¹⁹⁰ Hg-u	-33670	107	-33678	17	-0.1	Ū			GS1	1.0	00Ra23
¹⁹⁰ Hg- ²⁰⁸ Pb _{.913}	-12361	20	-12361	17	0.0	1	73	73 ¹⁹⁰ Hg	MA6	1.0	01Sc41
$^{190}\text{Tl}^m$ – u	-26055	107	-26076	7	-0.2	0	13	75 Hg	GS1	1.0	00Ra23 *
11 —u	-26048	30	-20070	,	-0.2	U			GS2	1.0	05Li24 *
$^{190}\text{Tl}^m - ^{133}\text{Cs}_{1.429}$	109033.5	6.9			-0.9	2			MA8	1.0	14Bo26
$^{11} - \text{Cs}_{1.429}$ $^{190}\text{Pb} - \text{u}$	-21940	104	-21918	13	0.2	U			GS1	1.0	00Ra23
ro—u	-21940 -21905	30	-21916	13	-0.4	R			GS2	1.0	05Li24
$^{190}\text{Bi}^m - ^{133}\text{Cs}_{1.429}$	123800	27	122970	20	2.4	F			MA8	1.0	
$^{186}\text{Os} - ^{190}\text{Pt}_{.979}$		0.86	123870 -6953.3	30	-0.2		52	39 ¹⁸⁶ Os	MS1		08We02 * 16Ei01
¹⁹⁰ Os ³⁵ Cl- ¹⁸⁸ Os ³⁷ Cl	-6953.13 5557			0.6 0.5		1 U	53	39 ° OS	H22	1.0 2.5	
¹⁹⁰ Os ⁻¹⁹⁰ Pt		3	5558.2		0.2		(2)	33 ¹⁹⁰ Pt			70Mc03
	-1504.31	0.59	-1504.4	0.5	-0.1	1	62	33 Pt	MS1	1.0	16Ei01
190 Os $-C_{14}$ H ₂₁ 190 Os $-^{189}$ Os	-205897.8	5.8	-205880.2	0.7	0.8	U			M23	4.0	79Ha32
190 Pt(α) 186 Os	285.2	5.2	299.49	0.20	1.1	U			M24	2.5	79Ha32
150 Pt(α) 160 Os	3238.3	20.	3268.6	0.6	1.5	U					61Pe23
190 pt / \186 rt	3248.5	20.	5.000	_	1.0	U			0		63Gr08
190 Pb(α) 186 Hg	5699.8	10.	5698	5	-0.2	2			Ora		74Le02 Z
190 p. () 186 m.	5697.0	5.	ć0.ć 2		0.1	2			ORa		81El03 Z
$^{190}\mathrm{Bi}(\alpha)^{186}\mathrm{Tl}$	6862.2	5.	6862	3	0.0	3			Lvn		91Va04 *
	6863.3	5.			-0.2	3			Anv		03An26 *
$^{190}\mathrm{Bi}^m(\alpha)^{186}\mathrm{Tl}^m$	6860.3	6.		• •	0.3	3			Jya		13Ny01 *
$^{150}\text{Bi}^m(\alpha)^{160}\text{TI}^m$	6967.9	5.	6966.4	2.8	-0.3	4			Lvn		91Va04 *
	6969.1	5.			-0.5	4			Anv		03An26 *
100 p. m. () 186 mm	6963.1	5.	<500 t	• •	0.7	4			Jya		13Ny01 *
$^{190}\text{Bi}^{m}(\alpha)^{186}\text{Tl}^{n}$	6589.0	10.	6592.4	2.8	0.3	R			Ora		74Le02
190 Po(α) 186 Pb	7643.2	20.	7693	7	2.5	C			GSa		88Qu.A
	7651.4	40.			1.0	U			ORa		96Ba35
	7691.2	10.			0.2	3			ORa		97Ba25
100 100 -	7695.3	10.			-0.2	3			Anv		00An14 *
190 Os(p,t) 188 Os	-5234	5	-5231.4	0.5	0.5	U			Min		73Oo01
100100	-5237	4			1.4	U		100	McM		75Th04
190 Pt(p,t) 188 Pt	-7150	10	-7146	5	0.4	1	28	28 ¹⁸⁸ Pt	Ors		78Ve10
190 Os(t, α) 189 Re	11796	10	11796	8	0.0	2			McM		76Hi08
$^{189}\mathrm{Os}(\mathrm{n},\gamma)^{190}\mathrm{Os}$	7791.8	1.0	7792.34	0.19	0.5	U		100	BNn		79Ca02 Z
400 45-	7792.31	0.19			0.2	1	97	79 ¹⁸⁹ Os	Bdn		06Fi.A
190 Os(d,t) 189 Os	-1541	10	-1535.11	0.19	0.6	U			Kop		75Mo29
	-1530	4			-1.3	U			Tal		76Be50

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input va		Adjuste		v_i	Dg	Signf.		n infl.	Lab	F	Reference
¹⁹⁰ Pt(p,d) ¹⁸⁹ Pt		-6693	11	-6684	10	0.8	1	84	84	¹⁸⁹ Pt	Ors		80Ka19
$^{190}W(\beta^{-})^{190}Re$		1270	70	1250	60	-0.2	1	82	76	¹⁹⁰ Re	015		76Ha39
$^{190}\text{Re}(\beta^{-})^{190}\text{Os}$		3090	300	3070	70	-0.2 -0.1	_	02	70	KC			55At21
Ke(p) Os		3190	300	3070	70	-0.1 -0.4	_						69Ha44
		3146	200			-0.4 -0.4							64Fl02
	0110	3140	150			-0.4 -0.5	- 1	24	24	¹⁹⁰ Re			
190 Ir(β^+) 190 Os	ave.			1054.2	1.2	-0.3 -0.2	1	24	24	Ke			average 60Ka14
		2000	200	1954.2	1.2		U						
190 Au(β^+) 190 Pt		4442	15	4473	4	2.1	U						73Jo11
		4380	55			1.7	U						74Di.A
190*** (0+)190 *		4380	200	1460	16	0.5	U						75Un.A
190 Hg(β^+) 190 Au		2105	80	1463	16	-8.0	C						74Di.A
$^{190}\text{Tl}(\beta^+)^{190}\text{Hg}$		7000	400	6999	18	0.0	U						75Un.A
$^{190}\text{Tl}^m(\beta^+)^{190}\text{Hg}$		6975	300	7081	17	0.4	U						76Bi09
190 Bi(β^{+}) 190 Pb		8700	500	9817	26	2.2	F						76Bi09
¹⁹⁰ Au–u	M-A=-	-32701(28) k	eV for n	nixture gs+m	at 200#15	50 keV							Nub16b *
$^{190}\text{Tl}^m$ -u	Assumed	d by evaluate	r to be th	ne 7 ⁺ excited	isomer								GAu *
190 Bi m - 133 Cs _{1.429}	F: conta	mination du	e to grou	nd state not r	esolved								08We02 *
190 Bi $(\alpha)^{186}$ Tl	E_{α} =6716	6(5), 6507(5)	, 6431(5) to ground s	tate, 215.2	2, 293.7 lev	els						91Va04 *
$^{190}\mathrm{Bi}(\alpha)^{186}\mathrm{Tl}$	$E_{\alpha} = 6431$	1(5) to 293.7	level										03An26 *
$^{190}\mathrm{Bi}(\alpha)^{186}\mathrm{Tl}$		8(6) to 293.7											13Ny01 *
190 Bi $^{m}(\alpha)^{186}$ Tl m) to levels 0,	89.5. 373	.9 above 186	$T1^m$						91Va04 *
$^{190}\mathrm{Bi}^m(\alpha)^{186}\mathrm{Tl}^m$		5(5) to 374.0			,	.,							03An26 *
$^{190}\text{Bi}^{m}(\alpha)^{186}\text{Tl}^{m}$		0(5) to 374.0											Nub16b *
$^{190}\text{Po}(\alpha)^{186}\text{Pb}$				in reference	2000 A n L	1							97An09 *
$^{190}W(\beta^{-})^{190}Re$		$0(70)$ to 1^+ 1			2000AIII-	T							Ens036 *
$W(\beta^{-}) = Re^{-190} Re(\beta^{-})^{190} Os$					2= laval	at 1207.00	lra V						
4 /				spectively, to				3 7					Ens036 *
190 Re(β^-) 190 Os				at 204(10) to									Nub16b *
190 Ir(β^+) 190 Os				at 1163.19 ar			it 1872.13	5 keV fed					Ens036 *
$^{190}\text{Tl}(\beta^+)^{190}\text{Hg}$	$E_{\beta^{+}} = 570$	00(400) to gi	ound sta	te and 2 ⁺ lev	el at 416.	32 keV							Ens036 *
$^{190}\text{Tl}^{m}(\beta^{+})^{190}\text{Hg}$				t 1772.94 keV									Ens036 *
190 Bi(β^{+}) 190 Pb	$F: E_{\beta^+} =$	=5700(300) to	o a level	around 2000	at least								AHW *
191557		22460	45				2				GG2	1.0	1201.20
¹⁹¹ W-u		-33469	45	26221	_		2				GS3	1.0	13Sh30
¹⁹¹ Au-u		-36180	88	-36284	5	-1.2	U			101	GS2	1.0	05Li24
191 Au $^{-133}$ Cs _{1.436}		99487.3	5.3	99487	5	0.0	1	100		¹⁹¹ Au	MA8	1.0	13Kr15
¹⁹¹ Hg-u		-32811	51	-32842	24	-0.6	1	22	22	¹⁹¹ Hg	GS2	1.0	05Li24
¹⁹¹ Hg- ²⁰⁸ Pb _{.918}		-11414	29	-11408	24	0.2	1	68	68	¹⁹¹ Hg	MA6	1.0	01Sc41
¹⁹¹ Tl–u		-28340	130	-28216	8	1.0	U				GS1	1.0	00Ra23
		-28234	30			0.6	U				GS2	1.0	05Li24
		-28192	31			-0.8	U				GS2	1.0	05Li24
¹⁹¹ Pb—u		-21770	110	-21720	40	0.5	U				GS1	1.0	00Ra23
		-21719	40				2				GS2	1.0	05Li24
$^{191}\text{Bi}-^{133}\text{Cs}_{1.436}$		121552.1	8.6	121558	8	0.7	1	87	87	¹⁹¹ Bi	MA8		08We02
$^{191}\text{Pb}^{m}(\alpha)^{187}\text{Hg}^{m}$		5403.4	20.				2				Ora		74Le02
$^{191}\mathrm{Bi}(\alpha)^{187}\mathrm{Tl}$		6780.8	5.	6780	3	-0.1	_				Lvn		85Co06
DI(W) 11		6785.3	10.2	0700	3	-0.5	_				ORa		98Bi.A
		6782.3	10.2			-0.3	_				Anv		99An36
		6783.3	7.2			-0.2 -0.4	_						
		6782						71	(0	¹⁸⁷ Tl	Jya		13Ny01
$^{191}\mathrm{Bi}(\alpha)^{187}\mathrm{Tl}^m$	ave.		4	(116.6	2.5	-0.5	1	/1	09	11			average
· βι(α)· Π'''		6440.0	5.	6446.6	2.5	1.3	_				0		67Tr06
		6455.0	10.			-0.8	U				Ora		74Le02
		6445.9	5.			0.2	_				Lvn		85Co06
		6447	10			0.0	U				ORa		98Bi.A
		6458.5	20.			-0.6	U				RIa		99Ta20
		6445	10			0.2	U				Anv		99An36
		6443.2	3.			1.1	o				Jya		03Ke04
		6445.2	10.			0.1	U				Jya		13Uu01
		6450.3	4.			-0.9	_				Jya		13Ny01
	ave.	6446.2	2.7			0.2	1	83	72	$^{187}\mathrm{Tl}^m$	-		average
191 Bi $^{m}(\alpha)^{187}$ Tl		7022.8	5.	7023	3	0.0	2				Lvn		85Co06
(/		7023.4	10.		•	-0.1	Ū				ORa		98Bi.A
		. 5=5.1	-0.			0.1	_						· · ·

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{191}\mathrm{Bi}^m(\alpha)^{187}\mathrm{Tl}$		7016.2	20.	7023	3	0.3	U			RIa		99Ta20
(**)		7017.2	3.			1.7	0			Jya		03Ke04
		7031.0	15.			-0.6	Ü			Jya		13Uu01
		7022.4	4.			0.0	2			Jya		13Ny01
191 Po(α) 187 Pb		7470.8	20.	7493	5	1.1	F			GSa		93Ou03
		7487.1	15.			0.4	U			ORa		97Ba25
		7491.2	5.			0.4	1	94	94 ¹⁹¹ Po	Anv		02An19
$^{191}\text{Po}(\alpha)^{187}\text{Pb}^{m}$		7493.2	15.	7474	10	-1.2	1	45	39 ¹⁸⁷ Pb ^m	Anv		02An19
$^{191}\text{Po}^{m}(\alpha)^{187}\text{Pb}^{m}$		7535	5				2			Anv		02An19
191 At $(\alpha)^{187}$ Bi m		7713.9	11.				3			Jya		03Ke08
191 At ^m $(\alpha)^{187}$ Bi		7880.4	15.				3			Jya		03Ke08
¹⁹¹ Ir(p,t) ¹⁸⁹ Ir		-5903	15	-5920	13	-1.1	1	70	70^{-189} Ir	McM		78Lo07
90 Os $(n, \gamma)^{191}$ Os		5758.2	2.	5758.73	0.11	0.3	U					77Be15
		5759.1	1.5			-0.2	U					77Ca19
		5758.67	0.16			0.4	_			ILn		91Bo35
		5758.81	0.15			-0.5	_			Bdn		06Fi.A
	ave.	5758.74	0.11			-0.1	1	100	99 ¹⁹¹ Os			average
90 Os $(\alpha,t)^{191}$ Ir		-14569	15	-14523.9	1.1	3.0	В			McM		71Pr13
91 Ir(d,t) 190 Ir		-1769.3	0.4				2					95Ga04
$^{91}\text{Os}(\beta^{-})^{191}\text{Ir}$		313.3	3.	313.6	1.1	0.1	_					48Sa18
•		314.3	2.			-0.4	_					51Ko17
		316.3	3.			-0.9	-					58Na15
		314.3	3.			-0.2	_					60Fe03
		318.3	3.			-1.6	-					63Pl01
	ave.	315.1	1.2			-1.3	1	90	90 ¹⁹¹ Ir			average
91 Pt $(\varepsilon)^{191}$ Ir		1000	15	1011	4	0.7	U					70Sc20
91 Au(β^{+}) 191 Pt		1830	50	1900	6	1.4	U					76Vi.A
91 Hg(β^{+}) 191 Au		3430	200	3206	23	-1.1	U					75Un.A
		3180	70			0.4	1	11	10 ¹⁹¹ Hg			76Vi.A
$^{91}\text{Tl}^{m}(\beta^{+})^{191}\text{Hg}$		5178	200	4606	23	-2.9	C					75Un.A
⁹¹ Au–u	M-A=-	-33568(28) ke	eV for mix	ture gs+m at	266.2 ke	V						Nub16b
⁹¹ Hg-u	M-A=-	-30499(28) ke	eV for mix	ture gs+m at	128(22)	keV						Nub16b
												01Sc41
91 Hg $-^{208}$ Pb $_{.918}$) increase	d by 20 due to	o isomer-	ground sta	ite lines i	in trap				013041
⁹¹ Hg- ²⁰⁸ Pb _{.918} ⁹¹ Tl-u	Original	error (19keV		d by 20 due to cture gs+m at			ite lines i	in trap				
⁹¹ Hg- ²⁰⁸ Pb _{.918} ⁹¹ Tl-u	Original $M - A = -$	error (19keV -26250(90) k	eV for mix		297(7) k		ite lines i	in trap				Nub16b
⁹¹ Hg— ²⁰⁸ Pb _{.918} ⁹¹ Tl—u ⁹¹ Tl—u ⁹¹ Pb—u	Original $M - A = -M - A = -M$	error (19keV -26250(90) k	eV for mix eV for ¹⁹¹	sture gs+m at ΓI^m at $297(7)$	297(7) k		ite lines i	in trap				Nub16b Nub16b
⁹¹ Hg— ²⁰⁸ Pb _{.918} ⁹¹ Tl—u ⁹¹ Tl—u ⁹¹ Pb—u ⁹¹ Pb—u	Original $M - A = -M - A = -M$ Possible	error (19keV -26250(90) ke -25964(28) ke isomeric con	eV for mix eV for ¹⁹¹ stamination	sture gs+m at ΓI^m at $297(7)$	297(7) k keV	eV	te lines i	in trap				Nub16b Nub16b 00Ra23
91 Hg $^{-208}$ Pb. $_{918}$ 91 Tl $^{-1}$ U 91 Tl $^{-1}$ U 91 Pb $^{-1}$ U 91 Pb $^{-1}$ U 91 Pb $^{-1}$ U 91 Bi $^{m}(\alpha)^{187}$ Tl	Original $M - A = -M - A = -$ Possible $M - A = -$ average	error (19keV -26250(90) ke -25964(28) ke isomeric con -20226(28) ke 6882(20) 688	eV for mix eV for ¹⁹¹ stamination eV for mix (5(15)	sture gs+m at ΓI^m at 297(7)	297(7) k keV	eV	te lines i	in trap				Nub16b Nub16b 00Ra23 Nub16b
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-1}$ u 91 Tl $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Bi $^{m}(\alpha)^{187}$ Tl 91 Po $(\alpha)^{187}$ Pb	Original $M - A = -M - A = -$ Possible $M - A = -$ average $F : proba$	error (19keV -26250(90) ka -25964(28) ka isomeric con -20226(28) ka 6882(20) 688 ably mainly ¹	eV for mix eV for ¹⁹¹ atamination eV for mix as (15) ⁸⁹ Bi ^m	sture gs+m at ΓI^m at 297(7) in sture gs+m at	297(7) k keV 10(50) k	eV eV		in trap				Nub16b Nub16b 00Ra23 Nub16b 13Uu01
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-1}$ u 91 Tl $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Bi $^{m}(\alpha)^{187}$ Tl 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb	Original $M - A = -M - A = -M - A = -M - A = -A = -$	error (19keV -26250(90) ki -25964(28) ki isomeric con -20226(28) ki 6882(20) 688 ably mainly ¹ 4(10), 6960(1	eV for mix eV for ¹⁹¹ stamination eV for mix (5(15)) ⁸⁹ Bi ^m (5) to grou	Sture gs+m at $\Gamma \Gamma^m$ at 297(7) in sture gs+m at and state, 375(297(7) k keV 10(50) k	eV eV		in trap				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-1}$ u 91 Tl $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Bi $^{m}(\alpha)^{187}$ Tl 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Po $^{m}(\alpha)^{187}$ Pb	Original $M - A = -M - A = -M - A = -M - A = -A = -$	error (19keV -26250(90) ki -25964(28) ki isomeric con -20226(28) ki 6882(20) 688 ably mainly ¹ 4(10), 6960(1	eV for mix eV for ¹⁹¹ stamination eV for mix (5(15)) ⁸⁹ Bi ^m (5) to grou	sture gs+m at ΓI^m at 297(7) in sture gs+m at	297(7) k keV 10(50) k	eV eV		in trap				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10
91 Hg - ²⁰⁸ Pb. ₉₁₈ 91 Tl - u 91 Tl - u 91 Pb - u 91 Pb - u 91 Bi ^m (α) ¹⁸⁷ Tl 91 Po(α) ¹⁸⁷ Pb 91 Po(α) ¹⁸⁷ Pb 91 Po ^m (α) ¹⁸⁷ Pb ^m 91 Po ^m (α) ¹⁸⁷ Pb ^m 91 Po ^m (α) ¹⁸⁷ Pb ^m	Original $M-A=-M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$. $E_{\alpha}=737$	error (19keV -26250(90) kt -25964(28) kt isomeric con -20226(28) kt 6882(20) 688 ably mainly ¹ 4(10), 6960(1 6(5), 6888(5)	eV for mix eV for ¹⁹¹ tamination eV for mix (5(15)) ⁸⁹ Bi ^m 5) to grou to ¹⁸⁷ Pb ^m	Sture gs+m at $\Gamma \Gamma^m$ at 297(7) in sture gs+m at and state, 375(297(7) k keV 10(50) k (1) supers	eV eV		in trap				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19
91 Hg - ²⁰⁸ Pb. ₉₁₈ 91 Tl - u 91 Tl - u 91 Pb - u 91 Pb - u 91 Pb - u 91 Pb - α 91 Po (α) ¹⁸⁷ Pb 91 Ir (α) ¹⁸⁷ Pb	Original $M-A= M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$: $E_{\alpha}=737$: $E_{\alpha}=737$:	error (19keV -26250(90) kt -25964(28) kt isomeric con -20226(28) kt 6882(20) 688 ably mainly ¹ 4(10), 6960(1 6(5), 6888(5)	eV for mix eV for ¹⁹¹ tamination eV for mix (5(15)) ⁸⁹ Bi ^m 5) to grou to ¹⁸⁷ Pb ^m	exture gs+m at $\Gamma \Gamma^m$ at 297(7) in $\Gamma \Gamma^m$ at ture gs+m at and state, 375(and 494(1) a	297(7) k keV 10(50) k (1) supers	eV eV		in trap				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-1}$ u 91 Tl $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ d 91 Po $^{-1}$ d 91 Ir(d,t) 190 Ir 91 Os(β^{-1})11 Ir	Original $M-A= M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$ $E_{\alpha}=737$ Feeds gr	error (19keV -26250(90) ki -25964(28) ki isomeric con -20226(28) ki 6882(20) 688 ably mainly ¹ 4(10), 6960(1 6(5), 6888(5) 8(10), 6888(1 round state	eV for mix eV for ¹⁹¹ - tamination eV for mix (55(15)) ⁸⁹ Bi ^m 5) to grou to ¹⁸⁷ Pb ^m 5) superse	exture gs+m at $\Gamma \Gamma^m$ at 297(7) in $\Gamma \Gamma^m$ at ture gs+m at and state, 375(and 494(1) a	297(7) k keV 10(50) k (1) supers bove 19	eV eV seded by 02	2An19					Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-1}$ u 91 Tl $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ d 91 Po $^{-1}$ d 91 Ir(d,t) 190 Ir 91 Os(β^{-1})11 Ir	Original $M-A= M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$ $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$	error (19keV -26250(90) kr -25964(28) kr isomeric con -20226(28) kr 6882(20) 688 ably mainly ¹ 4(10), 6960(1 6(5), 6888(5) 8(10), 6888(1 round state 2(3) 143(2) 1	eV for mix eV for ¹⁹¹ - tamination eV for mix (5(15)) ⁸⁹ Bi ^m 5) to grou to ¹⁸⁷ Pb ^m 5) superso	cture gs+m at Γ I ^m at 297(7) in cture gs+m at and state, 375(and 494(1) a eded by 02An	297(7) k keV 10(50) k 1) supers bove 19	eV seded by 02 s, to 11/2-1	2An19					Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a
91 Hg $-$ 208 Pb.918 91 Tl $-$ u 91 Tl $-$ u 91 Pb $-$ u 91 Pb $-$ u 91 Pb $-$ u 91 Pb $-$ u 91 Po $(\alpha)^{187}$ Tl 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Ir $(\alpha)^{187}$ Pb 91 Ir $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Po $(\alpha)^{187}$ Pb 91 Pr $(\alpha)^{187}$ Pb 91 Pr $(\alpha)^{187}$ Pb 91 Pr $(\alpha)^{187}$ Pr	Original $M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73	error (19keV-26250(90) kr-25964(28) kr isomeric con-20226(28) kr 6882(20) 688 ably mainly 14(10), 6960(16(5), 6888(5) 8(10), 6888(1 tound state 2(3) 143(2) 1 6(0.12) to (1/2)	eV for mixeV for ¹⁹¹ tamination eV for mixeV	cture gs+m at TI ^m at 297(7) in cture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res (4) at 935.46 k	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I	eV seded by 02 s, to 11/2-1 C capture	2An19 level at 1	71.29 keV				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a
91 Hg $^{-208}$ Pb $_{.918}$ 91 T1 $^{-1}$ u 91 T1 $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Po(α) ¹⁸⁷ T1 91 Po(α) ¹⁸⁷ Pb 91 Po(α) ¹⁸⁷ Pb 91 Po $^{m}(\alpha$) ¹⁸⁷ Pb 91 Po $^{m}(\alpha)$ ¹⁸⁷ Pb 91 Ir(d,t) ¹⁹⁰ Ir 91 Os(β $^{-1}$) ⁹¹ Ir 91 Os(β $^{-1}$) ⁹¹ Ir	Original $M-A= M-A=-$ Possible $M-A=-$ average $E_{\alpha}=733$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ $E_{\beta}=850$	error (19keV-26250(90) kr-25964(28) kr isomeric con-20226(28) kr 6882(20) 688 ably mainly 14(10), 6960(16(5), 6888(5) 8(10), 6888(1) round state 2(3) 143(2) 1 6(0.12) to (1/2 0(30) to grou	eV for mixeV for	Acture gs+m at TI ^m at 297(7) in acture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at	eV seded by 02 s, to 11/2-1 C capture 9.547 keV	2An19 level at 1	71.29 keV				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a
91 Hg $^{-208}$ Pb $_{.918}$ 91 T1 $^{-1}$ u 91 T1 $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Pb $^{-1}$ u 91 Po(α) ¹⁸⁷ T1 91 Po(α) ¹⁸⁷ Pb 91 Po(α) ¹⁸⁷ Pb 91 Po $^{m}(\alpha$) ¹⁸⁷ Pb 91 Po $^{m}(\alpha)$ ¹⁸⁷ Pb 91 Ir(d,t) ¹⁹⁰ Ir 91 Os(β $^{-1}$) ⁹¹ Ir 91 Os(β $^{-1}$) ⁹¹ Ir	Original $M-A=-$ Possible $M-A=-$ average $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$: pL=0.73 $E_{\beta}=85$ (3/2-5.5	error (19keV-26250(90) kr-25964(28) kr isomeric con-20226(28) kr 6882(20) 688 ably mainly 14(10), 6960(16(5), 6888(5) 8(10), 6888(1) round state 2(3) 143(2) 1 6(0.12) to (1/2 0(30) to grou 5/2-) level at	eV for mixeV for	atture gs+m at TI ^m at 297(7) in atture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res (4) at 935.46 km (5/2 ⁻ ,7/2 ⁻	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458	eV seded by 02 s, to 11/2-1 C capture 9.547 keV 8 keV	2An $19level at 1; also E_{eta}$	71.29 keV				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a
191 Hg = 208 Pb.918 191 Tl = u 191 Tl = u 191 Pb = u 191 Pb = u 191 Pi Hg (187 Tl 191 Po(187 Pb 191 Po(0)187 Pb 191 Po(0)191 Ir 191 Os(6)191 Ir 191 Pt(6)191 Ir 191 Au(6)191 Pt	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kg-25964(28) kg isomeric con-20226(28) kg 6882(20) 688 ably mainly 14(10), 6960(16(5), 6888(5) 8(10), 6888(1) cound state 2(3) 143(2) 1 6(0.12) to (1/2 0(30) to group 5/2-) level at the d by evalua	eV for mixeV for	cture gs+m at TI ^m at 297(7) in cture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res h) at 935.46 k ad (5/2 ⁻ ,7/2 ⁻ d 5/2 ⁻ level a	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 s, to 11/2-1 C capture 9.547 keV 8 keV	2An $19level at 1; also E_{eta}$	71.29 keV				Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-}$ u 91 Tl $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Po $^{-}$ (α) 187 Tl 91 Po $^{-}$ (α) 187 Pb 91 Po $^{-}$ (α) 187 Pb 91 Po $^{-}$ (α) 187 Pb $^{-}$ 91 Po $^{-}$ (α) 187 Pb $^{-}$ 91 Ir(α) 190 Ir 91 Po $^{-}$ (β) 191 Ir 91 Po $^{-}$ (β) 191 Pt	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kr-25964(28) kr isomeric com-20226(28) kr 6882(20) 688 ably mainly ¹⁻⁴ 4(10), 6960(16(5), 6888(1) ound state 2(3) 143(2) 1 io(0.12) to (1/2 0/30) to group (3/2-) level at med by evalua 20(200) to level	eV for mixeV for	atture gs+m at TI ^m at 297(7) in atture gs+m at 197(7) in atture gs+m at 197(8) and 494(1) at 197(3) res 197(4) at 197(4) res 197(5) at	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 s, to 11/2-1 C capture 9.547 keV 8 keV	2An19 level at 1 ; also E_{eta} 9 level	71.29 keV		G53	1.0	Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a Ens07a
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-}$ u 91 Tl $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Pb $^{-}$ u 91 Po $^{-}$ (α) 187 Tl 91 Po $^{-}$ (α) 187 Pb 91 Po $^{-}$ (α) 187 Pb 91 Po $^{-}$ (α) 187 Pb $^{-}$ 91 Po $^{-}$ (α) 187 Pb $^{-}$ 91 Ir(α) 190 Ir 91 Po $^{-}$ (β) 191 Ir 91 Pt(ϵ) 191 Ir 91 Pt(ϵ) 191 Pt 91 Hg(β +) 191 Hg	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kd-25964(28) kd isomeric con-20226(28) kd 6882(20) 688 ably mainly ¹² 4(10), 6960(16(5), 6888(1) 66(5), 6888(1) cound state 2(3) 143(2) 1 6(0.12) to (1/2 0(30) to group (3/2-) level at 1 and by evalua 20(200) to level -33912	eV for mixeV for ¹⁹¹ stamination eV for mixeV for mixe	atture gs+m at TI ^m at 297(7) in at 297(7) in atture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res (5/2 - 7/2 - d 5/2 - level a anly ground state 336.32 keV	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 t, to 11/2 ⁻¹ C capture 9.547 keV 8 keV 7 3/2 ⁺ 207.	2An19 level at 1 ; also E_{β} 9 level	71.29 keV		GS3	1.0	Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a Ens07a
9! $\text{Hg} = ^{208}\text{Pb}_{.918}$ 9! $\text{Tl} = \text{u}$ 9! $\text{Pb} = \text{u}$ 9! $\text{Pb} = \text{u}$ 9! $\text{Pb} = \text{u}$ 9! $\text{Po}(\alpha)^{187}\text{Tl}$ 9! $\text{Po}(\alpha)^{187}\text{Pb}$ 9! $\text{Po}(\alpha)^{187}\text{Pb}$ 9! $\text{Po}^m(\alpha)^{187}\text{Pb}^m$ 9! $\text{Ir}(\alpha)^{190}\text{Ir}$ 9! $\text{Ir}(\alpha)^{190}\text{Ir}$ 9! $\text{Os}(\beta^-)^{191}\text{Ir}$ 9! $\text{Pot}(\varepsilon)^{191}\text{Ir}$ 9! $\text{Au}(\beta^+)^{191}\text{Pt}$ 9! $\text{Hg}(\beta^+)^{191}\text{Au}$ 9! $\text{Tl}^m(\beta^+)^{191}\text{Hg}$	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kd-25964(28) kd isomeric con-20226(28) kd 6882(20) 688 ably mainly ¹² 4(10), 6960(16(5), 6888(5) 8(10), 6888(1 ably mainly ¹³ 2(3) 143(2) 1 ably mainly ¹⁴ 2(3) 143(2) 1 ably mainly ¹⁵ 2(3) 160(12) to (1/2 ably mainly	eV for mixeV for ¹⁹¹ stamination eV for mix(5(15)) 89 Bi ^m 5) to grouto ¹⁸⁷ Pb ^m 5) superso 45(3) 1433 (++,3/2,5/2) and state at 277.88 and tor to main vel(5/2 ⁻) at 104	atture gs+m at TI ^m at 297(7) in atture gs+m at 197(7) in atture gs+m at 197(8) and 494(1) at 197(3) res 197(4) at 197(4) res 197(5) at	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 t, to 11/2 ⁻¹ K capture 9.547 keV 8 keV 7 3/2 ⁺ 207.	2An19 level at 1 ; also E_{β} 9 level $\frac{2}{U}$	71.29 keV		GS1	1.0	Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a Ens07a
91 Hg $^{-208}$ Pb $_{.918}$ 91 Tl $^{-}$ u 91 Tl $^{-}$ u 91 Pb $^{-}$ u 91 Po $^{-}$ (α) 187 Tl 91 Po $^{-}$ (α) 187 Pb 91 Po m (α) 187 Pb m 91 Po m (α) 187 Pb m 91 Pt $^{-}$ (α) 187 Pb m 91 Pt $^{-}$ (α) 187 Pb m 91 Pt $^{-}$ (α) 191 Ir 91 Au(β +) 191 Ir 91 Au(β +) 191 Pt 91 Hg(β +) 191 Au 91 Tl m (β +) 191 Hg	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kr-25964(28) kr isomeric con-20226(28) kr 6882(20) 688 ably mainly 1-4(10), 6960(16(5), 6888(5) 8(10), 6888(1) tound state (2(3) 143(2) 1 to (1/2 to (30) to grou (5/2-) level at the d by evalua 20(200) to level (20) 143(2) 1 to (30) to grou (5/2-) level at the d by evalua (20(200) to level (20) to level (20) 143(2) 1 to (33) 12 to (34) 143(2) 1 to (34) 143(2) 14	eV for mixeV for ¹⁹¹ stamination eV for mixib (15) 89 Bi ^m 5) to grouto ¹⁸⁷ Pb ^m 5) superso 45(3) 143: 45(3) 143: 277.88 and state at a 277.88 and state at croto main wel(5/2 ⁻); 76 104 30	atture gs+m at TI ^m at 297(7) in atture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res h) at 935.46 k and (5/2-,7/2-d 5/2-level and 336.32 keV	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 t, to 11/2 ⁻¹ K capture 9.547 keV 8 keV 7 3/2 ⁺ 207.	2An19 level at 1; also E_{β} 9 level 2 U R	71.29 keV		GS1 GS2	1.0 1.0	Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a Ens07a
191 Hg -208 Pb.918 191 Tl $-$ u 191 Pb $-$ u 191 Pb $-$ u 191 Pb $-$ u 191 Pb $-$ u 191 Po $(\alpha)^{187}$ Pb 191 Pt $(\epsilon)^{190}$ Ir 191 Pt $(\epsilon)^{191}$ Ir 191 Au $(\beta^+)^{191}$ Pt 191 Hg $(\beta^+)^{191}$ Au 191 Tl $(\beta^+)^{191}$ Hg 192 Re $(\beta^+)^{191}$ Hg 192 Re $(\beta^+)^{191}$ Hg 192 Re $(\beta^+)^{191}$ Hg	Original $M-A= M-A=-$ Possible $M-A=-$ average $F:$ probation $E_{\alpha}=737$ $E_{\alpha}=737$ Feeds gr $E_{\beta}=14$ pL=0.73 $E_{\beta}=85$ (3/2-,5 Reassign	error (19keV-26250(90) kd-25964(28) kd isomeric con-20226(28) kd 6882(20) 688 ably mainly ¹² 4(10), 6960(16(5), 6888(5) 8(10), 6888(1 ably mainly ¹³ 2(3) 143(2) 1 ably mainly ¹⁴ 2(3) 143(2) 1 ably mainly ¹⁵ 2(3) 160(12) to (1/2 ably mainly	eV for mixeV for ¹⁹¹ stamination eV for mix(5(15)) 89 Bi ^m 5) to grouto ¹⁸⁷ Pb ^m 5) superso 45(3) 1433 (++,3/2,5/2) and state at 277.88 and tor to main vel(5/2 ⁻) at 104	atture gs+m at TI ^m at 297(7) in at 297(7) in atture gs+m at and state, 375(and 494(1) a eded by 02An (3) 147(3) res (5/2 - 7/2 - d 5/2 - level a anly ground state 336.32 keV	297(7) k keV 10(50) k 1) supers bove 19 pectively eV, no I) level at t 293.458 tte, partly	eV seded by 02 t, to 11/2 ⁻¹ K capture 9.547 keV 8 keV 7 3/2 ⁺ 207.	2An19 level at 1 ; also E_{β} 9 level $\frac{2}{U}$	71.29 keV		GS1	1.0	Nub16b Nub16b 00Ra23 Nub16b 13Uu01 97Ba25 99An10 02An19 99An10 96Ga30 Ens07a Ens07a Ens07a Ens07a Ens07a

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	`	Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference	e_
¹⁹² Pb-u		-24280	104	-24215	14	0.6	U			GS1	1.0	00Ra23	
		-24185	30			-1.0	R			GS2	1.0	05Li24	
¹⁹² Bi-u		-14783	128	-14530	30	2.0	U			GS1	1.0	00Ra23	*
		-14489	60			-0.7	R			GS2	1.0	05Li24	*
$^{192}\text{Bi}^m - ^{133}\text{Cs}_{1.444}$		122143.5	9.6				2			MA8	1.0	08We02	
192 Os O ₂ $-^{189}$ Os 35 Cl		24301	6	24309.4	2.4	0.6	U			H22	2.5	70Mc03	
¹⁹² Os ³⁵ Cl- ¹⁹⁰ Os ³⁷ Cl		5984	3	5983.5	2.4	-0.1	U			H22	2.5	70Mc03	
192 Pb $(\alpha)^{188}$ Hg		5221.0	5.				2			ORa		79To06	Z
$^{192}\text{Bi}(\alpha)^{188}\text{Tl}$		6376.0	5.	6377	4	0.2	3			Lvn		91Va04	*
21(0) 11		6377.9	5.	0577	•	-0.2	3			Jya		13Ny01	*
$^{192} \mathrm{Bi}^{m} (\alpha)^{188} \mathrm{Tl}^{m}$		6481.4	5.	6485	3	0.7	3			-)		67Tr06	*
21 (6) 11		6491.6	10.	0.02		-0.7	3			Ora		74Le02	*
		6483.3	5.			0.3	3			Lvn		91Va04	*
		6494	8			-1.1	3			Jya		03Ke04	*
192 Po(α) 188 Pb		7322.8	20.	7320	3	-0.2	U			Jya		81Le23	
10(a) 10		7319.8	7.	7320	3	0.0	3			Lvn		93Wa04	
		7364.6	35.			-1.3	U			RIa		95Mo14	
		7349.4	30.			-1.0	U			RIa		97Pu01	
		7319.8	11.			0.0	0			Jya		01Ke06	
		7313.8	8.			0.0	3			Jya		03Ke04	
		7319.8	4.			0.0	3			Anv		03Va16	
192 At(α) 188 Bi		7695.6				0.0	3					05 va10 06An04	
192 At(α) ¹⁸⁸ Bi ^m		7629.3	25. 15.							Anv			
$^{192}\mathrm{At}^m(\alpha)^{188}\mathrm{Bi}$		7629.3 7695.6	25.				4			Anv		06An04 06An04	*
$^{192}\text{At}^m(\alpha)^{188}\text{Bi}^n$							3			Anv			
		7542.4	15.	4025.2	2.2	0.1	4			Anv		06An04	*
192 Os $(p,t)^{190}$ Os		-4835	5	-4835.3	2.2	-0.1	_			Min		73Oo01	
		-4837	4			0.4	_		54 102 o	McM		75Th04	
102- 100-	ave.	-4836	3			0.3	1	51	51 ¹⁹² Os	_		average	
192 Pt(p,t) 190 Pt		-6629	7	-6642.8	2.5	-2.0	1	13	13 ¹⁹² Pt	Ors		80Ka19	
192 Os(t, α) 191 Re		10993	10				2			McM		76Hi08	
¹⁹² Os(d,t) ¹⁹¹ Os		-1265	15	-1301.1	2.2	-2.4	U			Tal		77Be15	
191 Ir(n, γ) 192 Ir		6197.7	0.3	6198.12	0.11	1.4	0			ILn		87Ke.A	
		6198.1	0.2			0.1	_			ILn		91Ke10	
		6198.14	0.13			-0.1	-		102	Bdn		06Fi.A	
102 101	ave.	6198.13	0.11			-0.1	1	100	91 ¹⁹² Ir			average	
192 Pt(p,d) 191 Pt		-6448	6	-6437.0	2.9	1.8	1	23	26 ¹⁹¹ Pt	Ors		80Ka19	
192 Pt(p,d) 191 Pt $^{-194}$ Pt() 193 Pt		-307	3	-309.8	2.7	-0.9	1	81	74 ¹⁹¹ Pt	Ors		78Be09	
$^{192}\text{Ir}(\beta^+)^{192}\text{Os}$		1468	10	1046.6	2.4	-42.1	В					60An04	*
192 Ir(β^-) 192 Pt		1456.7	4.	1452.9	2.3	-1.0	-					65Jo04	*
		1453.3	3.			-0.1	-					77Ra17	*
	ave.	1454.5	2.4			-0.7	1	90	87 ¹⁹² Pt			average	
192 Au(β^+) 192 Pt		3514	20	3516	16	0.1	2					66Ny01	
		3520	25			-0.1	2					74Di.A	
192 Hg(β^+) 192 Au		1745	30	761	22	-32.8	F					74Di.A	*
$^{192}\text{Tl}(\beta^+)^{192}\text{Hg}$		6380	200	6140	40	-1.2	U					75Un.A	*
* ¹⁹² Tl-u	M-A=	=-25830(100) keV for	mixture gs+1	n at 1380	(45) keV						Nub16b	**
*192Bi-u	M-A=	=-13700(110) keV for	mixture gs+1	n at 140	(30) keV						Nub16b	**
$*^{192}Bi-u$				mixture gs+m								Nub16b	
$*^{192}$ Bi(α) ¹⁸⁸ Tl				ınd state, 184		,						91Va04	
$*^{192}\text{Bi}(\alpha)^{188}\text{Tl}$		64(5) to 184.		,								Ens024	
$*^{192} \text{Bi}^{m}(\alpha)^{188} \text{Tl}^{m}$				02.4 above 18	$^{88}\text{Tl}^{m}$							91Va04	
$*^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{m}$	$E_{\alpha}=60$	60(10) to (10) level	302.4 above	$^{188}\text{Tl}^{m}$							91Va04	
$*^{192}\text{Bi}^{m}(\alpha)^{188}\text{Tl}^{m}$	E63	48(5) 6253(5) 6081 <i>(</i>	10), 6052(5) 1	188TIm	and						91Va04	
*	to leve	els 103 2 26	8 8 302 /	10), 0032(3) (1 above ¹⁸⁸ Tl	m							91Va04	
* $*^{192} \text{Bi}^m(\alpha)^{188} \text{Tl}^m$	F60	62(5) to leve	0.0, 502.º 1 302 4 al	188TIm								03Ke04	
* 192 At(α) ¹⁸⁸ Bi ^m				wed by 36 ke	N v								
				•	•	and 100 1-	aV a					06An04	
	AISO E	α=144(13),	1193(13)) keV followe	-	anu 188 K	evy					06An04	
$*^{192}$ At ^m $(\alpha)^{188}$ Bi ⁿ		40(10) +- 2+	10xx01 -4 0	005 7044 1 37									
$*^{192}$ At ^m (α) ¹⁸⁸ Bi ⁿ $*^{192}$ Ir(β^+) ¹⁹² Os	$E_{\beta^+}=2\epsilon$			205.7944 keV		5750 ·	-41 -					Ens129	
$*^{192}$ At ^m (α) ¹⁸⁸ Bi ⁿ $*^{192}$ Ir(β ⁺) ¹⁹² Os $*^{192}$ Ir(β ⁻) ¹⁹² Pt	$E_{\beta^+} = 2\epsilon$ $E_{\beta^-} = 6\epsilon$	72(4) 666(2)	respectiv	ely, to 4 ⁺ lev	el at 784			β-				Ens129	**
$*^{192}$ At ^m (α) ¹⁸⁸ Bi ⁿ $*^{192}$ Ir(β^+) ¹⁹² Os	$E_{\beta^+}=2e$ $E_{\beta^-}=6e$ F: mos	72(4) 666(2) st probably d	respectivue to bac		el at 784 2.5 MeV			'β-					** **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va		Adjusted		v_i	Dg	Signf.	Main infl.	Lab F	Reference
¹⁹³ Re-u		-32455	42				2			GS3 1.0	13Sh30
¹⁹³ Au–u		-32433 -35736	96	-35862	0	-1.3	2 U				
¹⁹³ Hg-u		-33730 -33288	53	-33802 -33347	9 17	-1.3 -1.1	U			GS2 1.0 GS2 1.0	
¹⁹³ Hg- ²⁰⁸ Pb _{.928}		-33288 -11673	29	-33347 -11680	17	-0.2	1	33	33 ¹⁹³ Hg	MA6 1.0	05Li24 * 01Sc41 *
¹⁹³ Tl-u		-11073 -29690	158	-29498	7	1.2	U	33	33 · · ng	GS1 1.0	00Ra23 *
11—u		-29329	120	-23436	,	-1.4	U			GS1 1.0 GS2 1.0	05Li24 *
$^{193}\text{Tl} - ^{133}\text{Cs}_{1.451}$		107691.2	7.2			-1.4	2			MA8 1.0	14Bo26 *
$^{193}\text{Pb}-\text{u}$		-23865	125	-23830	50	0.3	0			GS1 1.0	00Ra23 *
10 u		-23846	66	23030	50	0.3	2			GS2 1.0	05Li24 *
¹⁹³ Bi-u		-16980	110	-17053	8	-0.7	Ū			GS1 1.0	00Ra23
		-17025	30	1,000	Ü	-0.9	R			GS2 1.0	05Li24
$^{193}\text{Bi}-^{133}\text{Cs}_{1.451}$		120147	11	120136	8	-1.0	_			MA8 1.0	08We02
- 1.431	ave.		10			-1.2	1	62	62 ¹⁹³ Bi		average
193 Bi(α) 189 Tl		6304.5	5.	6307	5	0.4	1	92	70 ¹⁸⁹ Tl	Lvn	85Co06 Z
$^{193}\text{Bi}(\alpha)^{189}\text{Tl}^{m}$		6017.8	5.	6021	3	0.7	2				67Tr06 Z
. ,		6024.6	10.			-0.3	2			Ora	74Le02 Z
		6023.7	5.			-0.5	2			Lvn	85Co06 Z
$^{193}\text{Bi}^{m}(\alpha)^{189}\text{Tl}$		6617.4	10.	6611	4	-0.6	_			Ora	74Le02
		6611.9	5.			-0.1	_			Lvn	85Co06 Z
		6618.4	14.			-0.5	U			Jya	05Uu02
	ave.	6613	5			-0.4	1	94	64^{193}Bi^m		average
193 Po(α) 189 Pb		7128.1	20.	7094	4	-1.7	U				67Si09
		7087.1	20.			0.3	U			Ora	77De32
		7096.4	5.			-0.5	2			Lvn	93Wa04
		7093.3	30.			0.0	U			RIa	95Mo14
		7089.2	6.			0.8	2			Jya	96En02
102 100		7096.4	10.			-0.3	2			Anv	02Va13
193 Po $^m(\alpha)^{189}$ Pb m		7143.3	10.	7154	3	1.0	2			Ora	77De32
		7148.4	20.			0.3	U			_	81Le23
		7152.5	5.			0.2	2			Lvn	93Wa04
		7139.2	30.			0.5	U			RIa	95Mo14
		7159.7	6.			-1.0	2			Jya	96En02
193 At $(\alpha)^{189}$ Bi m		7152.5	10.			0.1	2			Anv	02Va13
193 At ^m $(\alpha)^{189}$ Bi		7388.5	5.	7500	_	1.1	7			Jya	03Ke08
$At^{m}(\alpha)^{100}Bi$		7556.9 7490	20.	7580	5	1.1 15.1	0			Jya	95Le15 98En.A
		7490 7580.4	6 5.			13.1	C 7			Jya	
193 At ⁿ (α) ¹⁸⁹ Bi		7614.3	5. 5.				7			Jya Jya	03Ke08 * 03Ke08 *
$^{193}\text{Rn}(\alpha)^{189}\text{Po}$		8040.0	12.				4			Anv	05Re06 * 06An36 *
193 Ir(p,t) 191 Ir		-5490	15	-5488.32	0.23	0.1	U			McM	78Lo07
$^{192}Os(n,\gamma)^{193}Os$		5583.5	2.	5583.42	0.20	0.0	U			IVICIVI	78Be22
03(11,7) 03		5583.40	0.20	3303.42	0.20	0.1	1	100	81 ¹⁹³ Os		79Wa04
		5584.01	0.16			-3.7	Ċ	100	01 03	Bdn	06Fi.A
192 Os $(\alpha,t)^{193}$ Ir		-13923	15	-13870.8	2.4	3.5	В			McM	71Pr13
193 Ir(t, α) 192 Os $^{-191}$ Ir() 190 Os		-661	4	-653.1	2.2	2.0	1	31	31 ¹⁹² Os	LAI	82La22
192 Ir(n, γ) 193 Ir		7772.0	0.2	7771.99	0.20	0.0	1	100	94 ¹⁹³ Ir	2	85Co.B Z
193 Ir(γ ,n) 192 Ir		-7790	50	-7771.99	0.20	0.4	Ü	100	, <u></u>	Phi	60Ge01
192 Pt(n, γ) 193 Pt		6247	3	6262.5	2.3	5.2	В				68Sa13
$^{193}\text{Os}(\beta^{-})^{193}\text{Ir}$		1132	5	1141.9	2.4	2.0	1	23	19 ¹⁹³ Os		58Na15
193 Pt $(\varepsilon)^{193}$ Ir		56.6	0.3	56.63	0.30	0.1	1	100	96 ¹⁹³ Pt		83Jo04
193 Au(β^+) 193 Pt		1355	20	1075	9	-14.0	В				76Di15 *
193 Hg(β^+) 193 Au		2341	30	2343	14	0.1	_				58Br88 *
8()		2340	20			0.1	_				76Di15 *
	ave.	2340	17			0.1	1	75	67 ¹⁹³ Hg		average
$*^{193}$ Au $-$ u		=-33143(29)		nixture gs+m	at 290.1				8		Nub16c **
* ¹⁹³ Hg-u		=-30937(28)		_							Nub16c **
$*^{193}$ Hg $-^{208}$ Pb $_{928}$		nal error (18ke					l state li	nes in trap			01Sc41 **
* ¹⁹³ Tl-u	_	=-27470(100		•		_					Nub16b **
*193Tl-u		=-27134(28)		_							Nub16b **
$*^{193}\text{Tl}-^{133}\text{Cs}_{1.451}$		08091.5(5.6)					104.3(5.	2) keV			Nub16b **
* ¹⁹³ Pb-u		=-22160(100						,			Nub16b **
			, 101								

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference	e e
	put 10				- 1	- 8				•		_
* ¹⁹³ Pb-u	M - A = -22147	(28) keV	for mixture	gs+m a	t 130#80	keV					Nub16b	**
$*^{193}$ At ^m $(\alpha)^{189}$ Bi	E_{α} =7423(5), 7	325(5) to	ground state	e and 99	0.6(5) leve	el					03Ke08	**
$*^{193}$ At ⁿ (α) ¹⁸⁹ Bi	$E_{\alpha} = 7106(5)$ to	357.6(0	.5) ¹⁸⁹ Bi ⁿ lev	/el	` '						03Ke08	
$*^{193}$ Rn(α) ¹⁸⁹ Po	$E_{\alpha} = 7875(20),$				194 level	ı					06An36	
$*^{193}$ Au(β^+) ¹⁹³ Pt	$E_{\beta^+} = 153(15) \text{ t}$										Ens062	
							101 17					
$*^{193}$ Hg(β^+) ¹⁹³ Au	E_{β} = 1170(30)										Ens062	
$*^{193}$ Hg(β^+) ¹⁹³ Au	$E_{\beta^+} = 1287(15)$	reinterp	reted by AH'	W as go	ing to gro	ound sta	ite and 1/2	t level at 38.2	22keV		Ens062	**
194 Pt $-u$	-37315.72	0.67	-37316.5	0.5	-1.1	1	63	63 ¹⁹⁴ Pt	MS1		16Ei01	
194 Au $-$ u	-34768	114	-34580.9	2.3	1.6	U			GS2	1.0	05Li24	*
¹⁹⁴ Hg—u	-34527	30	-34551	3	-0.8	U			GS2	1.0	05Li24	
$^{194}\text{Hg} - ^{133}\text{Cs}_{1.459}$	103394.7	3.1				2			MA8	1.0	10El11	
$^{194}\text{Hg}-^{208}\text{Pb}_{.933}$	-12766	19	-12767	3	-0.1	U			MA6	1.0	01Sc41	
¹⁹⁴ Tl-u	-28803	135	-28919	15	-0.9	o			GS1		00Ra23	*
11 4	-28778	87	20,1,	10	-1.6	Ü			GS2		05Li24	*
$^{194}\text{Tl} - ^{133}\text{Cs}_{1.459}$	109027	15			1.0	2			MA8		14Bo26	
$^{194}\text{Tl}^m - ^{133}\text{Cs}_{1.459}$	109306.4	4.1	109306	4	0.0	0			MA8		14Bo26	
$11 - Cs_{1.459}$			109300	4	0.0	2					13St25	
¹⁹⁴ Pb-u	109306.4	4.1	25000	10	0.1				MA8			
194p.	-25980	104	-25988	19	-0.1	U			GS1		00Ra23	
¹⁹⁴ Bi-u	-17162	128	-17208	7	-0.4	0			GS1	1.0	00Ra23	*
104 122	-17178	76			-0.4	U			GS2		05Li24	*
$^{194}\text{Bi}^m - ^{133}\text{Cs}_{1.459}$	120900	54				2			MA8		08We02	*
190 Os $^{-194}$ Pt.979	-5022.45	0.68	-5021.7	0.5	1.1	1	57	52 ¹⁹⁰ Os	MS1	1.0	16Ei01	
¹⁹⁰ Pt- ¹⁹⁴ Pt _{.979}	-3516.95	0.68	-3517.3	0.5	-0.5	1	58	53 ¹⁹⁰ Pt	MS1	1.0	16Ei01	
$^{194}\text{Pt}-^{197}\text{Au}_{.985}$	-4396.4	3.2	-4388.0	0.6	2.6	U			CP1	1.0	05Sh52	
194 Au $^{-197}$ Au $_{.985}$	-1652.5	2.2				2			MA8	1.0	10El11	
$^{194}\text{Pb}(\alpha)^{190}\text{Hg}$	4737.9	20.	4738	17	0.0	1	67	40 ¹⁹⁴ Pb	ORa		87E109	
$^{194}\text{Bi}(\alpha)^{190}\text{Tl}$	5918.3	5.				4			Lvn		91Va04	*
$^{194}\mathrm{Bi}^{n}(\alpha)^{190}\mathrm{Tl}^{m}$	6015.7	5.				3			Lvn		91Va04	*
$^{194}\text{Po}(\alpha)^{190}\text{Pb}$	6991.5	10.	6987	3	-0.4	3			LVII		67Si09	Z
10(a) 10	6990.9	7.	0987	3	-0.4 -0.5	3					67Tr06	Z
	6984.4	7. 5.			-0.5	3			Ora		77De32	
												Z
	6990.0	5.			-0.6	0			Lvn		85Va03	L
	6986.3	6.			0.1	3			Lvn		93Wa04	
	6993.4	4.			-1.6	0			Jya		96En02	
104	6987.3	14.			0.0	3			Jya		05Uu02	
194 At(α) 190 Bi	7412.5	20.	7454	11	2.1	O			Jya		95Le15	*
	7462.5	15.			-0.5	4			Anv		09An11	*
	7446.5	15.			0.5	4			Jya		13Ny01	*
$^{194}\mathrm{At}^m(\alpha)^{190}\mathrm{Bi}^m$	7362.1	20.	7309	5	-2.6	o					80Ya.A	
	7351.9	20.			-2.1	U					84Ya.A	
	7341.7	20.			-1.6	o			Jya		95Le15	
	7329.4	15.3			-1.3	5			Anv		09An11	
	7306.9	5.1			0.4	5			Jya		13Ny01	
194 Rn(α) 190 Po	7862.5	10.				4			Anv		06An36	
$^{193} Ir(n, \gamma)^{194} Ir$	6067.0	0.4	6066.79	0.11	-0.5	2					82Ra.A	
$\Pi(\Pi, I) = \Pi$	6066.9	0.2	0000.77	0.11	-0.6	2					98Ba85	
	6066.71	0.14			0.6	2			Bdn		06Fi.A	
194 Pt(t, α) 193 Ir			12201 1	1.2								
194 Pt(d,t) 193 Pt	12286	20	12301.1	1.3	0.8	U			Tal		78Ya07	
	-2126	20	-2094.6	1.3	1.6	U			Pit		64Co11	
194 Pt(p,d) 193 Pt $^{-196}$ Pt() 195 Pt	-445	3	-429.8	1.3	5.1	В			Ors		78Be09	
194 Os $(\beta^-)^{194}$ Ir	96.6	2.				3					64Wi07	*
194 Ir(β^-) 194 Pt	2254	4	2228.4	1.3	-6.4	В					76Ra33	
$^{194} \text{Ir}^n (\beta^-)^{194} \text{Pt}$	2600	70				2					68Su02	*
194 Au(β^+) 194 Pt	2465	20	2548.1	2.1	4.2	В					56Th11	
•	2509	15			2.6	U					60Ba17	
	2485	30			2.1	U					70Ag03	*
	2.00					Ü					500	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Compani								Main infl		F	Dafaranaa
Item		Input va	ilue	Adjuste	u value	v_i	Dg	Signf.	Main infl.	Lab	Г	Reference
194 Hg $(\varepsilon)^{194}$ Au		40	20	28	4	-0.6	U					81Ho18
*194Au-u	M-A=	-32192(29) k	eV for n	nixture gs+m+	n at 107.	4 and 475.8	keV					Nub16b **
$*^{194}Tl-u$				mixture gs+m								Nub16b **
* ¹⁹⁴ Tl-u				nixture gs+m								Nub16b **
* ¹⁹⁴ Bi-u				mixture gs+m			0(10) keV	V				Nub16b **
* ¹⁹⁴ Bi-u				nixture gs+m+				•				Nub16b **
$*^{194}\text{Bi}^m - {}^{133}\text{Cs}_{1.459}$				d to include p								08We02 **
$*^{194}\text{Bi}(\alpha)^{190}\text{Tl}$				nd state, 151.3		una 10 Cc	, iii diiii.					91Va04 **
$*^{194}$ Bi ⁿ (α) ¹⁹⁰ Tl ^m				s 0, 112.2 abo		ı						91Va04 **
$*^{194}$ At(α) ¹⁹⁰ Bi		0(20) to 121(5 0, 11 2.2 u 00	.,.							09An11 **
$*^{194}$ At(α) ¹⁹⁰ Bi				her E_{α} : 7310	(15) 7266	5(15) 7145(15) keV					09An11 **
$*^{194}$ At $(\alpha)^{190}$ Bi		4(8) to 121(1		nei 2a. 7510	(15), 720	3(13), 71 13(15) KC (13Ny01 **
$*^{194}Os(\beta^{-})^{194}Ir$			-	43.119 keV, a	nd other i	F.						Ens066 **
$*^{194} Ir^{n} (\beta^{-})^{194} Pt$		$50 \text{ to } 10^+ \text{ lev}$			na omer r	-β-						Ens066 **
$*^{194}$ Au(β^+) ¹⁹⁴ Pt					and athan	r±						
* Au(p*) Pt	E_{β} +=12	.30(30) to 2	ievei at .	328.464 keV,	and other	E						Ens066 **
¹⁹⁵ Os-u		21692	60				2			Gez	1.0	128620
¹⁹⁵ Os—u ¹⁹⁵ Hg—u		-31682	60	22204	25	0.2	2			GS3	1.0	13Sh30
¹⁹⁵ Hg-u ¹⁹⁵ Hg- ²⁰⁸ Pb _{.938}		-33283	62	-33294	25	-0.2	U	70	79 ¹⁹⁵ Hg	GS2	1.0	05Li24 *
195 Hg — 200 Pb.938		-11381	28	-11394	25	-0.5	1	79	79 135 Hg	MA6	1.0	01Sc41 *
¹⁹⁵ Tl-u		-30320	200	-30226	12	0.5	U			GS1	1.0	00Ra23 *
		-30209	40			-0.4	-			GS2	1.0	05Li24
		-30264	33			1.2	_		aa 195mu	GS2	1.0	05Li24 *
105mr 133 c	ave.	-30242	25	100000		0.6	1	22	22 ¹⁹⁵ Tl	3.5.0		average
$^{195}\text{Tl} - ^{133}\text{Cs}_{1.466}$		108375	27	108382	12	0.2	_			MA8	1.0	14Bo26
		108472	79			-1.1	_		105	MA8	1.0	14Bo26 *
105-	ave.	108385	26			-0.1	1	22	22 ¹⁹⁵ Tl			average
¹⁹⁵ Pb-u		-25423	150	-25451	19	-0.2	O			GS1	1.0	00Ra23 *
		-25461	70			0.1	_		105	GS2	1.0	05Li24 *
105	ave.	-25457	25			0.2	1	59	59 ¹⁹⁵ Pb			average
¹⁹⁵ Bi-u		-19320	100	-19351	6	-0.3	U			GS1	1.0	00Ra23
105 122 -		-19537	128			1.5	U		105	GS2	1.0	05Li24 *
$^{195}\text{Bi} - ^{133}\text{Cs}_{1.466}$		119258.2	6.0	119256	6	-0.3	1	89	89 ¹⁹⁵ Bi	MA8	1.0	08We02
¹⁹⁵ Pt- ¹⁹⁷ Au _{.990}		-2119.9	3.2	-2110.1	0.6	3.1	В			CP1	1.0	05Sh52
$^{195}\text{Bi}(\alpha)^{191}\text{Tl}$		5832.5	5.				2			Lvn		85Co06 Z
$^{195}\mathrm{Bi}(\alpha)^{191}\mathrm{Tl}^m$		5542.9	10.	5535	5	-0.8	2			Ora		74Le02 Z
105 101-		5533.3	5.			0.4	2			Lvn		85Co06 Z
$^{195}\mathrm{Bi}^m(\alpha)^{191}\mathrm{Tl}$		6228.1	5.	6232	3	0.7	3					67Tr06 Z
		6238.4	10.			-0.6	3			Ora		74Le02 Z
105 101		6233.7	5.			-0.4	3			Lvn		85Co06 Z
195 Po $(\alpha)^{191}$ Pb		6763.1	8.	6749.9	2.8	-1.6	3					67Si09 Z
		6747.4	5.			0.5	3					67Tr06 Z
		6744.6	5.			1.0	3			Lvn		93Wa04
		6752.8	14.			-0.2	0			Jya		96Le09
		6744.6	10.			0.5	3			Anv		02Va13
195p. m / 191pr. m		6755.9	6.	6040.6	2.0	-1.0	3			Jya		05Uu02
195 Po $^m(\alpha)^{191}$ Pb m		6850.8	10.	6840.6	2.9	-1.0	3					67Si09
		6839.4	5.			0.2	3					67Tr06 Z
		6839.6	5.			0.2	3			Lvn		93Wa04
		6852.8	10.			-1.2	0			Jya		96Le09
		6839.6	10.			0.1	3			Anv		02Va13
195 44(21)191 12:22		6840.6	6.	7100	4	0.0	3			Jya		05Uu02
195 At(α) 191 Bi ^{m}		7095.8	20.	7102	4	0.3	U			Jya		95Le15
		7105	20			-0.2	U			RIa		99Ta20
		7098.9	3.			1.0	0			Jya		03Ke04 *
		7113.2	10.			-1.1	0			Jya		13Uu01
		7101.9	4.				3			Jya		13Ny01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference	•
$^{195}\mathrm{At}^m(\alpha)^{191}\mathrm{Bi}$		7340.9	30.	7373	4	1.1	0				Jya		83Le.A	*
$At(\alpha)$ Di		7371.5	30.	1313	7	0.1					Jya		95Le.A	7
							0				-			
		7403	30			-1.0	U				RIa		99Ta20	×
		7372.5	4.0			0.2	0				Jya		03Ke04	*
105 101		7373.5	4.0				2				Jya		13Ny01	*
195 Rn(α) 191 Po		7694.1	11.				2				Jya		01Ke06	
195 Rn ^{m} (α) ¹⁹¹ Po ^{m}		7713.5	11.				3				Jya		01Ke06	
194 Ir(n, γ) 195 Ir		7231.92	0.11	7231.86	0.06	-0.5	o				ILn		87Ci.A	
* ***		7231.86	0.06				3				ILn			Z
194 Pt $(n,\gamma)^{195}$ Pt		6105.06	0.12	6105.10	0.12	0.3	1	99	72	¹⁹⁵ Pt	ILn		81Ho.B	
1 ((11,7) 1 t		6109.17	0.12	0105.10	0.12	-31.3	F	"	12	1 (Bdn		06Fi.A	_
195 Pt $(\gamma,n)^{194}$ Pt				6105 10	0.12	2.3								
		-6205	44	-6105.10	0.12		U				Phi		60Ge01	
¹⁹⁴ Pt(d,p) ¹⁹⁵ Pt		3908	20	3880.53	0.12	-1.4	U				Pit		64Co11	
195 Pt(d,t) 194 Pt		140	20	152.13	0.12	0.6	U				Pit		64Co11	
195 Os $(\beta^{-})^{195}$ Ir		2000	500	2180	60	0.4	U						57Ba08	
$^{195}\text{Ir}(\beta^-)^{195}\text{Pt}$		1116	20	1101.6	1.3	-0.7	U						73Ja10	*
195 Au $(\varepsilon)^{195}$ Pt		226.8	1.0	226.8	1.0	0.0	1	100	100	¹⁹⁵ Au			Averag	*
195 Hg(β^+) 195 Au		1510	50	1554	23	0.9	1	21	21	¹⁹⁵ Hg			71Fr03	*
$^{195}\text{Tl}(\beta^+)^{195}\text{Hg}$		3000	300	2858	26	-0.5	Ú	21		115			78Go15	*
$^{195}\text{Pb}^{m}(\text{IT})^{195}\text{Pb}$								100	50	¹⁹⁵ Pb ^m	0.1			不
		202.9	0.7	202.9	0.7	0.0	1	100	59	Pb"	Oak		91Gr12	
195 Bi(β^+) 195 Pb		4850	550	5682	19	1.5	U				Oak		91Gr12	
¹⁹⁵ Hg—u				ture gs+m at									Nub16b	**
¹⁹⁵ Hg- ²⁰⁸ Pb _{.938}	Correcte	d 40(20) keV	for isome	ric mixture R	=0.3(0.2) 1	E=176.07 k	æV						Nub16b	**
: ¹⁹⁵ Tl—u				ixture gs+m at									Nub16b	**
¹⁹⁵ Tl-u				Γl^m at 482.63									Nub16b	
$^{195}\text{Tl} - ^{133}\text{Cs}_{1.466}$				at 482.63 keV		27590(72)	lcoV/						Nub16b	
11- Cs _{1.466} 195Pb-u							KC V							
195 Pb — U				ixture gs+m at									Nub16b	
¹⁹⁵ Pb—u				ture gs+m at 2									Nub16b	
¹⁹⁵ Bi−u				ture gs+m at i	399(6) keV	V							Nub16b	**
e^{195} At $(\alpha)^{191}$ Bi ^m	Correlat	ed with E_{α} =6	5313 of ¹⁹¹	Bi^m									03Ke04	**
$e^{195} At^m (\alpha)^{191} Bi$	$E_{\alpha}=719$	0(30) to 148.	7(0.5) leve	:1									03Ke04	**
· ′				i ground state									95Le15	**
195 At ^m (α) ¹⁹¹ Bi		5(30) to 148.											03Ke04	
195 At ^m $(\alpha)^{191}$ Bi		1(4) and 7075											03Ke04	
				, ,										
$*^{195}$ At ^m $(\alpha)^{191}$ Bi		2(4) and 7076											13Ny01	
195 Ir(β^{-}) 195 Pt				8.880 keV and									Ens148	**
<	and E_{β}	-=410(20) fr	om ¹⁹⁵ Ir ^m	at 100(5) to 9	$/2^{-}$ at 814	.50, and ot	her E_{β^-}						Ens148	**
195 Au $(\varepsilon)^{195}$ Pt	Average	pK=0.179(0.	006) to 5/2	2 ⁻ level at 129	9.772 from	the follow	ing refe	rences:					Ens148	**
k	pK=0.1	195(0.015) to	129.78 lev	/el			U						65De20	
k		66(0.020) to												**
•		60(0.017) to											73Go05	
		183(0.009) to											80Sa11	
105*** (0.1.) 105 4		176(0.012) to				14011		40.4					82Be.A	
$*^{195}$ Hg(β^+) 195 Au				of β^+ to ground			el at 61.	434					Ens148	
$*^{195}$ Tl(β^+) 195 Hg	$K/\beta^+=6$	(1) to ground	state and	3/2 ⁻ level at 3	37.083 keV	I							Ens148	**
19611 208 pu		10170	20	10170	2	0.2	**				3546	1.0	010 41	
¹⁹⁶ Hg- ²⁰⁸ Pb _{.942}		-12178	20	-12173	3	0.3	U				MA6	1.0	01Sc41	
¹⁹⁶ Tl-u		-29188	126	-29519	13	-2.6	U				GS2	1.0	05Li24	*
$^{196}\text{Tl} - ^{133}\text{Cs}_{1.474}$		109845	13				2				MA8	1.0	08We02	*
¹⁹⁶ Pb- ²⁰⁸ Pb _{.942}		-5228	22	-5219	8	0.4	_				MA6	1.0	01Sc41	
., .2	ave.	-5231	18			0.7	1	21	21	¹⁹⁶ Pb			average	
¹⁹⁶ Pb-u		-27200	104	-27213	8	-0.1	Ü				GS1	1.0	00Ra23	
10 u		-27200 -27232	30	21213	U	0.6	R				GS2	1.0	05Li24	
196 p :				10222	26									
¹⁹⁶ Bi-u		-19309	137	-19333	26	-0.2	0				GS1	1.0	00Ra23	*
		-19325	30			-0.3	2				GS2	1.0	05Li24	
		-19361	54			0.5	2				MA8	1.0	08We02	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
¹⁹⁶ Pt- ¹⁹⁷ Au _{.995}		-1781.1	3.0	-1782.6	0.6	-0.5	U			CP1	1.0	05Sh52
$^{196}\text{Bi}(\alpha)^{192}\text{Tl}^{p}$		5260.6	5.	1,02.0	0.0	0.0	3			Lvn	1.0	91Va04
$^{196}\text{Po}(\alpha)^{192}\text{Pb}$		6662.3	8.2	6658.1	2.4	-0.5	3			D'II		67Si09 2
10(0) 10		6653.7	5.	0030.1	2.4	0.8	3					67Tr06 2
		6658.4	8.			0.0	3					71Ho01 2
		6656.7	5.			0.3	0			Lvn		85Va03 2
		6656.7	5.			0.3	3			Lvn		93Wa04
		6653.1	18.			0.3	0			Ara		95Le04
		6657.1	10.			0.1	0			Jya		96Le09
		6654.0	5.0			0.8	3			Ara		96Ta18 ×
		6669.4	6.			-1.8	3			Jya		05Uu02
		6658.2	25.			0.0	Ü			Anv		10He25
196 At $(\alpha)^{192}$ Bi		7202.3	7.	7195	3	-1.0	4			2 1111		67Tr06
$M(\alpha)$ Bi		7187.0	25.	7175	3	0.3	Ü			Jya		95Le15
		7200.2	30.			-0.2	U			RIa		95Mo14
		7191.0	7.			0.5	0			Jya		96En01
		7195.1	5.			0.0	0			Jya		00Sm06
		7202.3	12.			-0.6	0			Anv		05De01
		7195.1	12.			0.0	0			Jya		13Uu01 :
		7194.1	5.			0.2	4			Jya		13Ny01
		7192.1	5.			0.6	4			Anv		14Ka23
196 At $^m(\alpha)^{192}$ Bi m		7023.6	15.			0.0	3			Jya		96En01 >
$^{196}\text{Rn}(\alpha)^{192}\text{Po}$		7583.1	35.	7617	9	0.9	0			RIa		95Mo14
Kii(W) TO		7648.4	30.	7017		-1.1	Ü			RIa		97Pu01
		7616.7	9.			1.1	4			Jya		01Ke06
196 Pt(t, α) 195 Ir		11565	20	11572.6	1.3	0.4	Ü			Tal		78Ya07
Γι(ι,ω) Π		11545	20	11372.0	1.5	1.4	U			LAI		81Fl.A
195 Pt $(n, \gamma)^{196}$ Pt		7921.96	0.20	7921.98	0.13	0.1	_			ILn		81Ho.B 2
$I \iota(\Pi,\gamma) = I \iota$		7921.90	0.20	7921.90	0.13	0.1	_			Bdn		06Fi.A
196 Pt $(\gamma, n)^{195}$ Pt		-8290	140	-7921.98	0.13	2.6	U			Phi		60Ge01
195 Pt(d,p) 196 Pt		5712	25	5697.41	0.13	-0.6	U			Pit		64Co11
196Pt(d,t) ¹⁹⁵ Pt		-1686	20	-1664.75	0.13	-0.6 1.1	U			Pit		64Co11
195 Pt(n, γ) 196 Pt	0710	7921.94	0.13	7921.98	0.13	0.3		99	71 ¹⁹⁶ Pt	FIL		
$^{196}\text{Os}(\beta^-)^{196}\text{Ir}$	ave.						1	99	/1 Pt			average
$^{196}\text{Ir}(\beta^-)^{196}\text{Pt}$		900	40	1160	60	6.5	В					77Ha32 ×
isolr(p) isopt		3150	60	3210	40	1.0	2					66Vo05 ×
1961 m (0-) 196D		3250	50			-0.8	2					67Mo10
196 Ir $^{m}(\beta^{-})^{196}$ Pt		3418	20	2410	20	2.1	2					65Bi04 =
196 Au(β^+) 196 Pt		3630	100	3418	20	-2.1	U	10	10 196 4			68Ja06 =
		1498	7	1505.8	3.0	1.1	1	18	18 ¹⁹⁶ Au			63Ik01
196 Au(ε) 196 Pt		1490	10		_	1.6	U		. 106			62Wa16 >
196 Au(β^-) 196 Hg		685	4	687	3	0.6	1	61	31 ¹⁹⁶ Au			62Li03
¹⁹⁶ Tl-u				cture gs+m at								Nub16b **
$^{196}\text{Tl} - ^{133}\text{Cs}_{1.474}$				103(12) keV			eV					Nub16b **
¹⁹⁶ Bi-u				ixture gs+n a								Nub16b *
¹⁹⁶ Bi-u				- ¹³³ Cs _{1.474} , <i>N</i>				V at				08We02 *:
106 102				include possi	ible 3 ⁺ and	d 10 ⁻ conta	ım.					08We02 **
196 Po(α) 192 Pb		g systematic		,								96Ta18 *:
196 At(α) 192 Bi				nts than in 00	Sm06							WgM151*
196 At ^m $(\alpha)^{192}$ Bi ^m		ed with E_{α} =7										96En01 *:
$^{196}\text{Os}(\beta^{-})^{196}\text{Ir}$	$E_{\beta} = 435$	5(20) to (0,1)	+ levels a	t 407.88, 522	.37 keV							Ens076 **
196 Ir(β^-) 196 Pt	Original	value 3170(6	0) recalib	rated using 62	² Cu							AHW *:
				el at 2468.0 k								Ens076 *:
$^{196} \text{Ir}^{m} (\beta^{-})^{196} \text{Pt}$												
	$E_{R}^{'} = 116$	50(100) to (1)	$0^{-}.11^{-})16$	evel at 2468 () keV							Ens076 *>
196 Ir $^{m}(\beta^{-})^{196}$ Pt	$E_{\beta^{-}}=116$ KL/ $\beta^{+}=$	50(100) to (100)	0 ⁻ ,11 ⁻) lo	evel at 2468.0 evel at 355.68) keV keV. reca	lculated						
$^{196}\text{Ir}^{m}(\beta^{-})^{196}\text{Pt}$ $^{196}\text{Ir}^{m}(\beta^{-})^{196}\text{Pt}$ $^{196}\text{Au}(\beta^{+})^{196}\text{Pt}$ $^{196}\text{Au}(\varepsilon)^{196}\text{Pt}$	$KL/\beta^+=$	50(100) to $(100)2.0(0.4)×10-1(0.06) to 3-1$	$^{+6}$ to 2^{+} le	evel at 355.68	keV keV, reca	lculated						Ens076 ** Ens076 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	:e
¹⁹⁷ Hg—u		-32766	30	-32786	3	-0.7	U			GS2	1.0	05Li24	
		-32765	30			-0.7	U			GS2	1.0	05Li24	*
197 Hg $-^{208}$ Pb $_{.947}$		-10664	30	-10676	4	-0.4	U			MA6	1.0	01Sc41	
¹⁹⁷ Tl–u		-30450	30	-30426	18	0.8	R			GS2	1.0	05Li24	
⁹⁷ Pb-u		-26520	110	-26565	5	-0.4	U			GS1	1.0	00Ra23	
10 u		-26609	30	20303	J	1.5	Ü			GS2	1.0	05Li24	
		-26543	30			-0.7	Ü			GS2	1.0	05Li24	*
$^{97}\text{Pb}^m - ^{133}\text{Cs}_{1.481}$		113799.6	6.0	113803	5	0.6	1	74	74 ¹⁹⁷ Pb ^m	MA8	1.0	08We02	
$^{97}\text{Bi}-^{208}\text{Pb}_{.947}$		982	22	976	9	-0.3	R	/+	74 10	MA6	1.0	01Sc41	
97Bi-u													
B1-u		-21381 -21187	192	-21135	9	1.3	U			GS1	1.0	00Ra23	*
97 Bi $-^{133}$ Cs _{1.481}			31	110001	0	1.7	U			GS2	1.0	05Li24	
"B1-133 Cs _{1.481}		118870	26	118891	9	0.8	R			MA8	1.0	08We02	
⁹⁷ Po-u		-14434	145	-14340	50	0.6	o			GS1	1.0	00Ra23	*
		-14305	90			-0.4	R		405	GS2	1.0	05Li24	*
$^{97}At^{-133}Cs_{1.481}$		133186	20	133203	9	0.8	1	18	18 ¹⁹⁷ At	MA8	1.0	16Ma.1	
$^{97}\text{At}^m - ^{133}\text{Cs}_{1.481}$		133234	15	133251	10	1.1	1	42	$42^{197} At^m$	MA8	1.0	16Ma.1	
⁹⁷ Au-C ₁₆		-33432.5	7.3	-33429.9	0.6	0.2	o			TG1	1.5	09Ke.A	
		-33432.9	5.4			0.4	U			TG1	1.5	10Ke09	
97 Au(α , 8 He) 193 Au		-26919	9	-26920	9	-0.1	1	93	93 ¹⁹³ Au			89Ka04	
$^{97}\mathrm{Bi}^m(\alpha)^{193}\mathrm{Tl}$		5890.8	10.	5898	5	0.7	o			Ora		72Ga27	
(/)		5889.7	10.		-	0.8	3			Ora		74Le02	Z
		5899.6	5.			-0.4	3			Lvn		85Co06	Z
97 Po(α) 193 Pb		6420.7	10.	6412	3	-0.9	3			2		67Si09	Z
10(ω) 10		6410.1	5.	0412	3	0.3	3					67Tr06	Z
		6409.4	9.			0.3	3					71Ho01	Z
		6411.4	5.0			0.2	3			Ara		96Ta18	*
$^{97}\text{Po}^{m}(\alpha)^{193}\text{Pb}^{m}$		6510.1		6514.7	2.1	0.0				Ala		67Tr06	
Ρο (α) Τρ			5.	0314.7	2.1		4					71Ho01	Z
		6511.4	9.			0.4	U			D1			Z
		6518.0	3.			-1.1	4			Bka		82Bo04	Z
		6512.4	5.0			0.4	4			Ara		96Ta18	*
		6517.6	10.			-0.3	0			Anv		02Va13	
		6516.6	30.			-0.1	U			Anv		10He25	
07 102		6513.0	4.6			0.4	4			Tex		12Fo09	
97 At $(\alpha)^{193}$ Bi		7103.0	5.	7104	3	0.3	_					67Tr06	Z
		7100.5	5.			0.8	o			Jya		96En01	
		7104.5	5.			0.0	O			Jya		99Sm07	
		7103.5	6.			0.1	-			Jya		05Uu02	
		7107.5	5.			-0.6	_			Anv		14Ka23	
	ave.	7105	3			-0.1	1	98	82 ¹⁹⁷ At			average	
$^{97}\mathrm{At}^m(\alpha)^{193}\mathrm{Bi}^m$		6846.2	10.	6844	4	-0.2	o			Lvn		86Co12	
		6846.2	5.			-0.4	_			Jya		99Sm07	
		6845.2	9.			-0.1	_			Jya		05Uu02	
		6837.0	16.			0.5	U			Anv		14Ka23	
	ave.	6846	4			-0.4	1	94	58 ¹⁹⁷ At ^m			average	
97 Rn $(\alpha)^{193}$ Po	ave.	7410.8	20.	7411	7	0.0	0	7.	50 7K	RIa		95No.A	
Kii(W) TO		7411.8	30.	7411	,	0.0	Ü			RIa		95Mo.14	
		7410.8	7.			0.0	3			Jya		96En02	
97 Rn ^{m} (α) ^{193} Po ^{m}		7523.1	30.	7509	6	-0.5	U			RIa		95Mo14	
Kii (a) Fo		7508.7		1309	O	-0.3 0.1						95M014 96En02	
			7.				3			Jya			
97r (>193 A :m		7510.7	14.			-0.1	3			Jya		05Uu02	
97 Fr(α) 193 At ^m		7888.4	15.		0.5		8			Anv		13Ka16	
96 Pt(n, γ) 197 Pt		5846.4	0.4	5846.56	0.26	0.4	_					78Ya07	Z
		5846.0	0.9			0.6	-			ILn		81Ho.B	Z
		5846.6	0.5			-0.1	_			BNn		83Ca04	Z
		5846.0	0.7			0.8	-			Bdn		06Fi.A	
96 Pt(d,p) 197 Pt		3627	20	3621.99	0.26	-0.3	U			Pit		64Co11	
		3606	20			0.8	U			Tal		78Ya07	
			0.27	5846.56	0.26	0.7	1	94	65 ¹⁹⁷ Pt			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	iipai iso	Input v		Adjusted			Dg	Signf.	Main infl.	Lab	F	Referenc
nem		mput v	arue	Aujustec	i value	v_i	Dg	Sigiii.	Main iiii.	Lab	Г	Reference
197 Au(γ ,n) 196 Au		-8057	22	-8072.3	2.9	-0.7	U			Phi		60Ge01
		-8080	5			1.5	_			McM		79Ba06
		-8072	7			0.0	_					79Be.A
197 Au(d,t) 196 Au		-1820	30	-1815.1	2.9	0.2	U			Pit		64Co11
197 Au $(\gamma, n)^{196}$ Au	ave.	-8077	4	-8072.3	2.9	1.2	1	52	52 ¹⁹⁶ Au			average
196 Hg(n, γ) 197 Hg		6785.3	1.5	6785.6	1.5	0.2	1	97	84 ¹⁹⁷ Hg	BNn		78Zg.A
$^{197}\text{Ir}(\beta^-)^{197}\text{Pt}$		2000	200	2156	20	0.8	U					61Ho10
197 Pt(β^-) 197 Au		719.0	0.6	720.0	0.5	1.6	1	70	36 ¹⁹⁷ Au			71Pr03
197 Hg $(\varepsilon)^{197}$ Au		415	20	600	3	9.2	В	, 0	20 114			65De20
115(0) 114		610	100	000	5	-0.1	Ü					92Da14
$^{197}\text{Tl}(\beta^+)^{197}\text{Hg}$		2220	100	2199	17	-0.2	Ü					61Ju05
¹⁹⁷ Pb ^m (IT) ¹⁹⁷ Pb		319.31	0.11	319.31		0.0	1	100	74 ¹⁹⁷ Pb			Ens053
¹⁹⁷ Hg-u	Μ _ Δ-	=-30221(28)				0.0	1	100	74 10			Nub16b
11g – u 197Pb – u	M = A.	=-30221(28) =-24405(28)	keV for 19	$97 \text{ Db}^m \text{ at } 2.10$	31 kgV							Nub16b
¹⁹⁷ Bi−u						2) koV						
$^{197}\text{Bi}-^{133}\text{Cs}_{1.481}$		=-19650(90)					(22) 1 1	.7 .1 4	9.1.			Nub16b
CS _{1.481}		8887(12) μu		19690(11) ke	v correc	tea by -10	(22) Ke	v due to pos	ssible			08We02
¹⁹⁷ Po—u		mination from			. 2201	1001 17						08We02
197 p		=-13330(110)										Nub16b
¹⁹⁷ Po-u		=-13210(32)				su keV						Nub16b
e^{197} Po(α) ¹⁹³ Pb		$E_{\alpha} = 6283(5) \text{ kg}$			-							96Ta18
$e^{197} Po^m(\alpha)^{193} Pb^m$		$E_{\alpha} = 6381(5) \text{ kg}$										96Ta18
197 Hg $(\varepsilon)^{197}$ Au		54(0.06) to 3/										Ens053
$*^{197}$ Hg $(\varepsilon)^{197}$ Au	pK=0.	746(0.033) to	268.75 le	evel $\rightarrow Q = 5^{\circ}$	74(+139-	-62) keV						Ens053
108 r. 161 p. 37 c.		74420		5 20 25 5						201		ć 15. 1 ž
¹⁹⁸ Hg- ¹⁶¹ Dy ³⁷ Cl		74130	60	73927.5	1.0	-0.8	U				4.0	64De15
¹⁹⁸ Hg ⁻¹⁶³ Dy ³⁵ Cl		68979	37	69179.6	1.0	1.4	U		100		4.0	64De15
¹⁹⁸ Hg-u		-33231.6	0.6	-33230.8	0.5	1.3	1	67	67 ¹⁹⁸ Hg		1.0	02Bf02
$^{198}\text{Tl} - ^{133}\text{Cs}_{1.489}$		111228.7	8.1				2				1.0	14Bo26
$^{198}\text{Pb} - ^{208}\text{Pb}_{.952}$		-5748	23	-5757	9	-0.4	_		100	MA6	1.0	01Sc41
400	ave.	-5739	18			-1.0	1	26	26 ¹⁹⁸ Pb			average
¹⁹⁸ Pb-u		-27990	104	-27985	9	0.1	U				1.0	00Ra23
		-27951	30			-1.1	R				1.0	05Li24
¹⁹⁸ Bi-u		-21063	162	-20790	30	1.7	O				1.0	00Ra23
		-20794	30				2				1.0	05Li24
198 Bi n -u		-20222	30				2			GS2	1.0	05Li24
¹⁹⁸ Po- ²⁰⁸ Pb _{.952}		5616	24	5616	19	0.0	1	61	61 ¹⁹⁸ Po	MA6	1.0	01Sc41
¹⁹⁸ Po−u		-16600	104	-16611	19	-0.1	U			GS1	1.0	00Ra23
$^{198}At - ^{133}Cs_{1.489}$		133570.0	7.3	133574	6	0.5	o			MA8	1.0	13Ma.A
		133573.7	6.3				2			MA8	1.0	13St25
198 At m - 133 Cs _{1.489}		133898	39	133879	9	-0.5	U			MA8	1.0	13St25
¹⁹⁸ Hg ³⁵ Cl- ¹⁹⁶ Hg ³⁷ Cl		3885.91	1.66	3886	3	0.0	1	57	57 ¹⁹⁶ Hg		2.5	80Ko25
¹⁹⁸ Pt- ¹⁹⁷ Au _{1.005}		1494.7	3.0	1493.8	2.2	-0.3	1	54	53 ¹⁹⁸ Pt		1.0	05Sh52
$^{198}\text{Po}(\alpha)^{194}\text{Pb}$		6312.8	5.	6309.7	1.4	-0.6	U					67Si09
10(00) 10		6305.7	5.	000717	1	0.8	Ü					67Tr06
		6301.2	8.			1.1	U					71Ho01
		6311.1	3.			-0.5	-			Bka		82Bo04
		6307.7	5.			0.4	U			Lvn		93Wa04
		6309.7	5.0			0.0	U			Ara		96Ta18
		6309.3	1.7			0.2	_			Tex		12Fo09
	0370	6309.7	1.7			0.2	1	100	60 ¹⁹⁴ Pb	101		
198 At(α) 194 Bi	ave.			6000 4	1.0			100	00 10			average
$Ai(\alpha)$ B1		6887.5	5.	6889.4	1.9	0.4	3			O#-		67Tr06
		6904.9	7.			-2.2	U			Ora		75Ba.B
		6889.4	15.			0.0	U			т		80Ew03
		6893.3	3.5			-1.1	3			Lvn		92Hu04
		6892.5	4.			-0.8	0			Jya		96En01
		6887.4	6.			0.3	3			Jya		05Uu02
		6888.4	3.6			0.3	3			Tex		12Fo09
			_			0.6	2			Anv		14Ka23
100 104		6886.4	5.			0.6	3			Allv		
$^{198}\mathrm{At}^m(\alpha)^{194}\mathrm{Bi}^n$		6886.4 6990.0 6997.5	5. 10.	6993.4	2.4	0.0 0.7 -0.4	4 4			Ally		67Tr06 80Ew03

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	l value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc
198 At $^m(\alpha)^{194}$ Bi n		6997.6	4.	6993.4	2.4	-1.0	4			Lvn		92Hu04
11 (W) D1		6996.6	4.	0,,,,,		-0.8	0			Jya		96En01
		6991.5				0.3						
			6.				4			Jya		05Uu02
98p ()194p		6990.5	5.	72.40		0.6	4			Anv		14Ka23
98 Rn(α) 194 Po		7344.7	10.	7349	4	0.5	4			_		84Ca32
		7353.8	5.			-0.9	4			Lvn		95Bi17
		7344.7	6.			0.8	4			Jya		96En02
98 Fr(α) 194 At		7869.2	20.4				5			Anv		13Ka16
98 Fr ^m $(\alpha)^{194}$ At ^m		7889.6	20.4				6			Anv		13Ka16
98Pt(14C,16O)196Os		6130	40				2			BNL		83Bo29
98 Pt(t, α) ¹⁹⁷ Ir		10885	20				2			LAI		83Ci01
98 Pt(p,d) 197 Pt		-5332	3	-5331.0	2.1	0.3	1	47	47 ¹⁹⁸ Pt	Ors		78Be09
)8Pt(d,t) ¹⁹⁷ Pt								47	4/ Ft			
Pt(a,t) Pt		-1305	20	-1298.3	2.1	0.3	U			Pit		64Co11
7 100		-1311	20			0.6	U			Tal		78Ya07
97 Au(n, γ) 198 Au		6512.35	0.11	6512.36	0.09	0.1	-			ILn		79Br26
		6512.32	0.16			0.2	_			Bdn		06Fi.A
⁹⁷ Au(d,p) ¹⁹⁸ Au		4282	30	4287.79	0.09	0.2	U			Pit		64Co11
(17		4298	5			-2.0	U			MIT		67Sp09
⁹⁷ Au(n,γ) ¹⁹⁸ Au	ave.	6512.34	0.09	6512.36	0.09	0.2	1	99	63 ¹⁹⁷ Au			average
$^{18}\text{Au}(\beta^{-})^{198}\text{Hg}$	avc.	1372.3	0.7	1373.5	0.5	1.8		,,,	03 7 1u			65Ke04
$Au(p)$ \cap Hg				1373.3	0.5		_					
		1372.8	1.2			0.6	_		100 .			65Pa08
	ave.	1372.4	0.6			1.8	1	66	44 ¹⁹⁸ Au			average
$^{98}\text{Tl}(\beta^{+})^{198}\text{Hg}$		3460	80	3426	8	-0.4	U					61Gu02
98 Bi n (IT) 198 Bi m		248.5	0.5				3			Lvn		92Hu04
$^{08}\text{Tl}-^{133}\text{Cs}_{1.489}$	$D_{M}=111$	812.3(8.1) μ	ı for ¹⁹⁸ T	l ^m at 543.6(0.	4) keV; M	I - A = -269	85.1(7.5) keV				Nub16b
⁰⁸ Bi−u		-19350(100) 1										Nub16b
$^{18}Po(\alpha)^{194}Pb$		=6182(5) keV				o) una ee	(10) 110					96Ta18
98 At(α) ¹⁹⁴ Bi		5(4), 6539(10				206 lavale						92Hu04
						390 levels						
98 Fr(α) 194 At		or's interpreta		g. 3d, no 210	keV γ							GAu
98 Pt(p,d) 197 Pt 98 Au(β^-) 198 Hg		96 Pt(p,d))=36										AHW
, , ,	Р	0.5(0.7) 961.0	. , 1	•								Ens163
99 Hg $-$ C $_2$ 35 Cl $_5$		124023.43	0.53	124017.5	0.6	-4.5	В		400	H34	2.5	80Ko25
		124017.21	0.37			0.3	1	38	35 ¹⁹⁹ Hg	H48	2.5	03Ba49
99 Hg $^{-183}$ W O		23144.4	0.9	23141.9	0.9	-1.1	1	16	$11^{-183}W$	H48	2.5	03Ba49
⁹ Hg- ¹⁶² Dy ³⁷ Cl		75661	41	75574.2	1.0	-0.5	U			R04	4.0	64De15
⁹⁹ Hg- ¹⁶⁴ Dy ³⁵ Cl		70087	31	70247.8	1.0	1.3	U			R04	4.0	64De15
⁹ Hg- ¹⁶⁴ Er ³⁵ Cl		70310	80	70220.9	1.0	-0.3	U			R04	4.0	64De15
ng— Er Cr ⁹⁹ Tl—u				70220.9	1.0	-0.5						
		-30123	30				2			GS2	1.0	05Li24
⁹ Pb—u		-27028	137	-27087	11	-0.4	U			GS2	1.0	05Li24
⁹ Bi-u		-22328	31	-22327	11	0.0	-			GS2	1.0	05Li24
		-22263	30			-2.1	_			GS2	1.0	05Li24
	ave.	-22294	22			-1.5	1	28	28 ¹⁹⁹ Bi			average
⁹ Po-u		-16249	144	-16327	19	-0.5	U			GS1	1.0	00Ra23
10 u		-16327	38	10327	17	0.0	R			GS2	1.0	05Li24
0		-16339	38			0.3	R		105	GS2	1.0	05Li24
$^{9}\mathrm{Bi}^{m}(\alpha)^{195}\mathrm{Tl}$		5598.7	6.	5600	6	0.1	1	93	56 ¹⁹⁵ Tl			66Ma51
9 Po(α) 195 Pb		6074.1	2.	6074.3	1.9	0.1	2			Dba		68Go.B
		6075.3	5.0			-0.2	2			Ara		96Ta18
$^{9}\text{Po}^{m}(\alpha)^{195}\text{Pb}^{m}$		6190.7	5.	6183.3	1.7	-1.5	_					67Si09
. ()		6177.6	5.1			1.1	_					67Tr06
		6182.3	3.1			0.3	_			Dba		68Go.B
		6183.5	3.1			-0.1				Bka		82Bo04
							-					
		6183.5	5.0			0.0	_ D			Ara		96Ta18
		6173.3	3.6			2.8	В		400	Tex		12Fo09
	ave.	6183.3	1.7			0.0	1	100	59 ¹⁹⁹ Po ^m			average
9 At(α) 195 Bi		6775.1	5.	6777.3	1.2	0.4	_					67Tr06
` '		6781.3	3.			-1.3	_			Ora		75Ba.B
		6775.4	5.0			0.4	_			Ara		96Ta18
						-0.4						05Uu02
		6779.4	6.				U			Jya		
		6776.8	1.5			0.3	_			Tex		12Fo09

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
199 At $(\alpha)^{195}$ Bi	ave.	6777.4	1.2	6777.3	1.2	-0.1	1	100	89 ¹⁹⁹ At			ONORC 22
199 Rn(α) 195 Po	ave.	7133.7	1.2	7132	4	-0.1 -0.1	4	100	89 At			average 80Di07
$Kii(\alpha) = 10$		7133.7	10.	/132	4	-0.1	4					82Hi14
		7138.8	10.			-0.7	4					84Ca32
		7112.2	15.			1.3	0			Jya		96Le09
		7132.6	6.			-0.1	4			Jya		05Uu02
		7121.4	10.2			1.0	4			Anv		14Ka23
199 Rn ^{m} (α) 195 Po m		7205.1	15.	7203	4	-0.1	4					80Di07
(37)		7205.1	10.			-0.2	4					82Hi14
		7204.1	10.			-0.1	4					84Ca32
		7205.1	15.			-0.1	o			Jya		96Le09
		7205.1	6.			-0.3	4			Jya		05Uu02
		7194.9	10.2			0.8	4			Anv		14Ka23
199 Fr(α) 195 At		7812.3	40.	7817	10	0.1	U					99Ta20
		7821.5	11.			-0.4	4			Anv		13Ka16
		7801.1	20.			0.8	4			Jya		13Uu01
199 Fr $^m(\alpha)^{195}$ At m		7833.7	6.	7833	6	-0.2	3			Anv		13Ka16
100		7825.6	15.3			0.5	3			Jya		13Uu01
199 Fr ⁿ $(\alpha)^{195}$ At ^p		7968.4	20.				4			Jya		13Uu01
199 Hg(p,t) 197 Hg		-6734	29	-6667	3	2.3	U		405	Pri		81Ko13
400 40 45 400		-6658	8			-1.1	1	16	16 ¹⁹⁷ Hg	Ors		82Be21
¹⁹⁸ Pt(¹⁸ O, ¹⁷ F) ¹⁹⁹ Ir		-8240	41				2					95Zh10
198 Pt $(n,\gamma)^{199}$ Pt		5602	3	5556.0	0.5	-15.3	В					68Sa13
100 100		5556.0	0.5				2			BNn		83Ca04 Z
198 Pt(d,p) 199 Pt		3347	20	3331.4	0.5	-0.8	U			Pit		64Co11
198 Au $(n,\gamma)^{199}$ Au		7584.27	0.15	7584.28	0.06	0.1	o		100	ILn		79Br26 Z
100 100		7584.28	0.06			0.0	1	100	80 ¹⁹⁹ Au	ILn		91Ma65
198 Hg(n, γ) 199 Hg		6665.2	0.5	6663.1	0.6	-4.3	В			CRn		75Lo03
199 Hg(γ ,n) 198 Hg		-6590	90	-6663.1	0.6	-0.8	U			Phi		60Ge01
199 Pt(β^-) 199 Au		1690	50	1705.1	2.1	0.3	U		- 100 .			64Jo09
199 Au(β^-) 199 Hg		453.0	1.0	452.3	0.6	-0.7	1	38	20 ¹⁹⁹ Au			68Be06
$^{199}\text{Tl}(\beta^+)^{199}\text{Hg}$ $^{199}\text{Pb}(\beta^+)^{199}\text{Tl}$		1420	150	1487	28	0.4	U					75Ma05 *
$^{199}\text{Bi}^m(\text{IT})^{199}\text{Bi}$		2870	110	2828	30	-0.4	U					70Do.A *
, B1(11), B1		667	5	667	3	-0.1	_					80Br23
		667	5			-0.1	_	00	64 ¹⁹⁹ Bi ^m			85St02
199 At m (IT) 199 At	ave.	667	4 20	244.0	1.0	-0.1 -0.5	1	98	04 BI	Irro		average 13Ja06 *
At (II) At		255 244	1	244.0	1.0	-0.3	o 2			Jya Iya		13Ja06 * 14Au03
* ¹⁹⁹ Pb-u	M 1-		_	ture gs+m at	120 5(2 7) kaV	2			Jya		Nub16b **
* ¹⁹⁹ Bi-u				$8i^m$ at $667(3)$) KC V						Nub16b **
* B1-u * ¹⁹⁹ Po-u				xture gs+m a		7) keV						Nub16b **
* ¹⁹⁹ Po-u	$M - \Lambda$	14909(35) k	eV for ¹⁹⁹ D	Po^{m} at 311.9(2)	1 311.)(2.) 7) keV	(1) KC V						Nub16b **
$*^{199}$ Po ^m $(\alpha)^{195}$ Pb ^m				orrelated deca								96Ta18 **
$*^{199}\text{Tl}(\beta^+)^{199}\text{Hg}$				$(1/2^-,3/2^-)$		221 17 fed	Reanal	vzed				Ens073 **
$*^{199}\text{Pb}(\beta^+)^{199}\text{Tl}$				366.89 keV, r			. Keanai	yzcu				Ens073 **
$*^{199}At^{m}(IT)^{199}At$				0) 240(30) as								GAu **
/II (II) /II	Comonin	ng mies 1100	20) 100(20) 240(30) as	read from	1115. 04						Ortu ***
²⁰⁰ Au-u		-29237	34	-29243	29	-0.2	1	71	71 ²⁰⁰ Au	GS3	1.0	08Ch.A
200 Au m -u		-28135	33	-28163	28	-0.8	1	73	73 ²⁰⁰ Au ^m	GS3	1.0	08Ch.A
²⁰⁰ Hg-C ¹³ C ³⁵ Cl ₅		120707.97	1.22	120708.6	0.6	0.2	Ü			H34	2.5	80Ko25
²⁰⁰ Hg- ¹⁶⁵ Ho ³⁵ Cl		69116	33	69146.2	1.2	0.2	U			R04	4.0	64De15
²⁰⁰ Hg- ¹⁶³ Dy ³⁷ Cl		73527	42	73687.5	1.0	1.0	U			R04	4.0	64De15
²⁰⁰ Pb-u		-28179	30	-28182	12	-0.1	R			GS2	1.0	05Li24
²⁰⁰ Bi-u		-21888	57	-21869	24	0.3	R			GS2	1.0	05Li24 *
²⁰⁰ Po-u		-18170	104	-18188	8	-0.2	U			GS1	1.0	00Ra23
		-18204	30		~	0.5	Ü			GS2	1.0	05Li24

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Referenc	e
20011 208 DI		0205	20	0212.2	1.0	0.2				3446	1.0	010 41	
²⁰⁰ Hg ⁻²⁰⁸ Pb _{.962}		-9205	28	-9212.2	1.2	-0.3	U			MA6	1.0	01Sc41	
⁰⁰ Hg ³⁵ Cl- ¹⁹⁸ Hg ³⁷ Cl		4525	2	4507.9	0.6	-2.1	U		200	H17	4.0	64Mc07	
100		4508.80	0.48			-0.8	1	28	$17^{200}\mathrm{Hg}$	H33	2.5	80Ko25	
00 Po $(\alpha)^{196}$ Pb		5979.8	5.	5981.6	1.8	0.4	-					67Si09	
		5980.0	3.			0.5	_					67Tr06	7
		5983.4	3.			-0.6	_					70Ra14	2
		5981.8	5.0			0.0	_		106	Ara		96Ta18	
00 106	ave.	5981.5	1.9			0.1	1	99	79 ¹⁹⁶ Pb			average	
100 At(α) 196 Bi		6594.9	5.	6596.2	1.3	0.3	3					67Tr06	2
		6596.9	2.			-0.4	3			Ora		75Ba.B	2
		6593.1	5.			0.6	0			Lvn		87Va09	
		6596.1	2.			0.0	3			Lvn		92Hu04	
		6593.1	5.0			0.6	3			Ara		96Ta18	
00 + .m / \106 p ·		6599.1	6.	6700.1	2.6	-0.5	U			Jya		05Uu02	,
200 At $^m(\alpha)^{196}$ Bi		6708.3	5.	6709.1	2.6	0.2	3			Ora		75Ba.B	2
		6705.4	5.			0.7	0			Lvn		87Va09	
00 . m () 106 p · m		6709.5	3.	< .		-0.1	3			Lvn		92Hu04	
$^{200}\mathrm{At}^m(\alpha)^{196}\mathrm{Bi}^m$		6542.8	5.	6542.7	1.3	0.0	4			0		67Tr06	
		6542.9	2.			-0.1	4			Ora		75Ba.B	2
		6540.0	5.			0.5	0			Lvn		87Va09	
		6542.1	2.			0.3	4			Lvn		92Hu04	
		6545.1	5.0			-0.5	4			Ara		96Ta18	
00		6544.1	6.	C 427 5	2.0	-0.2	U			Jya		05Uu02	
600 At $^m(\alpha)^{196}$ Bi n		6439.5	5.	6437.5	2.0	-0.4	4					67Tr06	
		6438.5	5.			-0.2	4			Ora		75Ba.B	
		6433.8	5.			0.7	0			Lvn		87Va09	
		6439.2	3.			-0.6	4			Lvn		92Hu04	
		6430.5	5.0			1.4	4			Ara		96Ta18	
00n ()196n		6436.7	6.	5 0.40.4		0.1	4			Jya		05Uu02	
00 Rn(α) 196 Po		7020.6	10.	7043.4	2.1	2.3	U					67Va.A	
		7050.3	8.			-0.9	U					71Ho01	
		7040.1	10.			0.3	U			Lvn		84Co.A	
		7043.5	2.5			-0.1	4			Lvn		93Wa04	
		7042.1	12.			0.1	O			Ara		95Le04	
		7039.0	10.			0.4	0			Jya		96Le09	
		7042.1	5.1			0.2	4			Ara		96Ta18	
		7044.1	6.			-0.1	4			Jya		05Uu02	
00 Fr(α) 196 At		7055.4	30.	7.00	4	-0.4	U			Anv		10He25	
$\operatorname{Fr}(\alpha)^{190}\operatorname{At}$		7653.4	30.	7622	4	-1.0	U			RIa		95Mo14	
		7620.7	9.			0.2	5			Jya		96En01	
		7625.8	12.			-0.3	O			Anv		05De01	
		7620.7	15.			0.1	0			Jya		13Uu01	
00 		7622.7	5.			-0.1	5			Anv		14Ka23	
00 Fr $^{m}(\alpha)^{196}$ At m		7704.4	15.				4			Jya		96En01	
98 Pt(t,p) 200 Pt 99 Hg(n, γ) 200 Hg		4356	20				2					81Ci01	
99 Hg(n, γ) 200 Hg		8029.1	0.3	8028.52	0.11	-1.9	_			BNn		67Sc30	
		8029.6	0.5			-2.2	U			CRn		75Lo03	- 1
		8028.51	0.18			0.1	-			ILn		79Br25	
		8028.37	0.17			0.9	-		200	Bdn		06Fi.A	
00	ave.	8028.53	0.11			-0.1	1	98	$64^{200} \mathrm{Hg}$			average	
00 Au(β^{-}) 200 Hg		2273	100	2263	27	-0.1	-					59Ro53	
		2200	100			0.6	-					60Gi01	
		2260	70			0.0	-		200			72He36	
	ave.	2250	50			0.3	1	29	29 ²⁰⁰ Au			average	
200 Au $^{m}(\beta^{-})^{200}$ Hg		3202	50	3270	26	1.4	1	27	27^{200}Au^{m}			72Cu07	
$^{200}\text{Tl}(\beta^{+})^{200}\text{Hg}$		2450	10	2456	6	0.6	2					57He43	:
		2459	7			-0.4	2					62Va10	*

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
200 At ⁿ (IT) ²⁰⁰ At ^m	230.9	0.2				4			Lvn		92Hu04
*200Bi-u	M - A = -20338(28)		ivtura ge Lm	at 100#7	0 kaV	4			LVII		Nub16b **
$*^{200}$ Po(α) ¹⁹⁶ Pb	Also E_{α} =5863(5) kg				O KC V						96Ta18 **
$*^{200}$ At ^m (α) ¹⁹⁶ Bi ⁿ	E_{α} =6536.7(5,Z) fro	200 A +n ^	2000 abaya 2	200 A +m							
* 200 At ^m (α) ¹⁹⁶ Bi ⁿ	E_{α} =0530.7(5,Z) IFO	200 A in c	230.9 above =	200 A .m							92Hu04 **
	E_{α} =6535.8(5,Z) fro				, m						92Hu04 **
$*^{200}$ At ^m (α) ¹⁹⁶ Bi ⁿ	E_{α} =6301(5); 6535(3										92Hu04 **
$*^{200}$ At ^m (α) ¹⁹⁶ Bi ⁿ	E_{α} =6306(5); 6538(3				At'''						92Hu04 **
$*^{200}$ At ^m (α) ¹⁹⁶ Bi ⁿ	E_{α} =6528(5) from ²⁰										92Hu04 **
$*^{200}$ At ^m $(\alpha)^{196}$ Bi ⁿ	E_{α} =6534(6) from ²⁰										92Hu04 **
$*^{200}$ Fr(α) ¹⁹⁶ At	Same group, but mu										WgM151**
$*^{200}$ Fr ^m $(\alpha)^{196}$ At ^m	Correlated with 196										96En01 **
$*^{200}$ Au(β^-) 200 Hg	E_{β} = 2250(200) to §			00) to lev	vels 1 ⁺ at 1	570.275,	,				Ens077 **
*	2 ⁺ at 1573.663, 2 ⁺										Ens077 **
$*^{200}$ Au(β^-) 200 Hg	E_{β} =2260(100), 67	0(70) to gr	ound state, 2	2 ⁺ level a	t 1593.423	keV					Ens077 **
$*^{200}$ Au $^{m}(\beta^{-})^{200}$ Hg	E_{β} = 560(50) to 11	level at 2	641.54 keV								Ens077 **
$*^{200}\text{Tl}(\beta^+)^{200}\text{Hg}$	$E_{\beta}^{'}=1052(10)\ 1069$	(7) respec	tively, to 2+	level at 3	367.943 keV	, and otl	ner E_{β^+}				Ens077 **
	r	_	-				,				
²⁰¹ Hg- ¹⁸⁵ Re O	22440	5	22430.1	1.1	-0.8	U			H48	2.5	03Ba49
201 Hg $-C_2$ 35 Cl ₄ 37 Cl	128995.43		128989.7	0.8	-0.8 -3.8	В			H34	2.5	80Ko25
201 Hg $^{-164}$ Dy 37 Cl 201 Hg $^{-166}$ Er 35 Cl	75086	42	75220.0	1.1	0.8	U			R04	4.0	64De15
	71186	35	71151.3	1.5	-0.2	U			R04	4.0	64De15
²⁰¹ Pb−u	-27418	198	-27130	15	1.5	U			GS2	1.0	05Li24 *
201 Bi $-$ u	-22935	30	-22991	16	-1.9	R			GS2	1.0	05Li24
201 -	-22995	30			0.1	R			GS2	1.0	05Li24 *
²⁰¹ Po-u	-17760	190	-17736	5	0.1	U			GS1	1.0	00Ra23 *
201	-17649	30			-2.9	U			GS2	1.0	05Li24
201 Po m -u	-17305	30	-17281	5	0.8	U			GS2	1.0	05Li24
²⁰¹ At-u	-11573	31	-11583	9	-0.3	U			GS2	1.0	05Li24
201 Hg 35 Cl $^{-199}$ Hg 37 Cl	4981	2	4972.2	0.6	-1.1	U		***	H17	4.0	64Mc07
	4972.65	0.37			-0.5	1	47	39 ²⁰¹ Hg	H33	2.5	80Ko25
	4971.8	1.0			0.1	U			H48	2.5	03Ba49
$^{201}{\rm Bi}(\alpha)^{197}{\rm Tl}$	4500.3	6.				5					66Ma51 *
201 Po(α) 197 Pb	5793.9	5.	5799.3	1.7	1.1	_					67Tr06 Z
	5799.4	2.			-0.1	_			Dba		68Go.B Z
	5800.4	4.			-0.3	_					70Ra14 Z
	ave. 5799.0	1.7			0.2	1	98	71 ²⁰¹ Po			average
$^{201}\text{Po}^{m}(\alpha)^{197}\text{Pb}^{m}$	5899.0	5.1	5903.8	1.7	0.9	2					67Tr06 Z
	5904.5	2.0			-0.4	2			Dba		68Go.B Z
	5903.9	4.1			0.0	2					70Ra14 Z
201 At(α) 197 Bi	6470.7	3.	6472.8	1.6	0.7	4					67Tr06 Z
	6476.2	5.			-0.7	U					74Ho27 Z
	6474.0	2.			-0.6	4			Ora		75Ba.B Z
	6471.0	5.0			0.4	U			Ara		96Ta18
	6472.0	4.			0.2	4			Anv		05De01
201 Rn(α) 197 Po	6862.8	8.	6860.7	2.3	-0.3	U					67Va.A
	6858.8	8.			0.2	U					71Ho01
	6866.9	20.			-0.3	Ü			GSa		87He10
	6860.5	2.5			0.1	4			Lvn		93Wa04
	6863.8	7.			-0.4	0			Ara		95Le04
	6861.8	5.0			-0.2	4			Ara		96Ta18
201 Rn $^{m}(\alpha)^{197}$ Po m	6906.8	5.	6909.5	2.1	0.5	5			1 11 U		67Va17 Z
iai (w) 10	6909.0	8.	5,0,.5	2.1	0.1	U					71Ho01 Z
	6907.7	20.			0.1	U			GSa		87He10
	6909.9	2.5			-0.1	5			Lvn		93Wa04
	6915.9	7.			-0.1 -0.9				Ara		95 Wa04 95Le04
	6910.7	5.0			-0.9 -0.3	o 5			Ara		95Le04 96Ta18
	6925.1	30.			-0.5 -0.5	U					10He25
	0923.1	50.			-0.5	U			Anv		1011623

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	ılue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
201 Fr(α) 197 At		7538.0	15.	7519	4	-1.3	U				80Ew03
11(0)		7510.8	7.	7517	•	1.1	0			Jya	96En01
		7529.1	7.			-1.4	0			Anv	05De01
			8.				2				05Uu02
		7519.0				0.0				Jya	
201 E m () 197 A .m		7519.0	5.	7.01		0.0	2			Anv	14Ka23
201 Fr ^m $(\alpha)^{197}$ At ^m		7605.7	8.	7601	6	-0.6	2			Jya	05Uu02
201 107		7596.4	8.			0.6	2			Anv	14Ka23
201 Ra(α) 197 Rn		8001.5	12.				4			Anv	14Ka23
201 Ra $^m(\alpha)^{197}$ Rn m		8065.8	20.				4			Jya	05Uu02
201 Hg(γ ,n) 200 Hg		-6210	70	-6230.6	0.6	-0.3	U			Phi	60Ge01
201 Pt(β^-) 201 Au		2660	50				2				63Go06
201 Au(β^-) 201 Hg		1270	100	1262	3	-0.1	Ū				72Pa24
$^{201}\text{Tl}(\varepsilon)^{201}\text{Hg}$		470	70	482	14	0.2	Ü				60Gu05
$^{201}\text{Pb}(\beta^+)^{201}\text{Tl}$		1900	40	1910	19	0.2	1	21	11 ²⁰¹ Tl		79Do09
²⁰¹ Pb—u	16.4						1	21	11 11		
Pb-u	M-A=	=-25225(28) k	eV for m	iixture gs+m	at 629.1	keV					Nub16b
²⁰¹ Bi-u	M-A=	=-20573(28) k	teV for 20	$^{\prime 1}$ Bi $^{\prime \prime}$ at 846.	.35 keV						Nub16b
²⁰¹ Po-u		=-16330(100)			n at 423.	8(2.4) keV					Nub16b
$^{201}\text{Bi}(\alpha)^{197}\text{Tl}$	$E_{\alpha}=52$	40(6) from ²⁰¹	Bi^m at $8a$	46.35 keV							Nub16b
201 Tl $(\varepsilon)^{201}$ Hg	pK = 0.7	70(0.04)to 1/2	- level at	167.47 keV.	recalcul	ated					Ens073
$^{201}\text{Pb}(\beta^+)^{201}\text{Tl}$	$p^{+} = 10$	$0(2) \times 10^{-3}$ to	3/2 ⁺ leve	el at 331.16 k	κeV						Ens073
²⁰² Pt-u		-24425	34	-24361	27	1.9	0			GS3 1.0	
***		-24361	27				2			GS3 1.0	
²⁰² Au-u		-26202	34	-26144	25	1.7	O			GS3 1.0	08Ch.A
		-26144	25				2			GS3 1.0	12Ch19
⁰² Hg-C ¹³ C ³⁵ Cl ₄ ³⁷ Cl		125976.01	1.32	125975.4	0.8	-0.2	U			H34 2.5	80Ko25
$C_{16} H_{10} - {}^{202}Hg$		107663	40	107606.7	0.8	-0.9	Ü			R08 1.5	
$C_{15}^{16} C_{15}^{11} C_{19}^{11} - C_{15}^{12} C_{19}^{11}$		103102	60	103136.5	0.8	0.4	U			R08 1.5	
202 Hg $^{-167}$ Er 35 Cl											
202 t 165 t 37 c		69740	60	69736.8	1.5	0.0	U			R04 4.0	
202 Hg $^{-165}$ Ho 37 Cl		74470	50	74413.0	1.3	-0.3	U		202	R04 4.0	
$^{202}\text{Tl}-^{133}\text{Cs}_{1.519}$		115727.2	3.7	115727.6	1.7	0.1	1	22	22 ²⁰² Tl	MA8 1.0	16We.A
²⁰² Pb-u		-27823	30	-27848	4	-0.8	U			GS2 1.0	05Li24
$^{202}\text{Pb}-^{133}\text{Cs}_{1.519}$		115773.4	3.6	115770	4	-0.9	o			MA8 1.0	10Bo.A
		115769.2	4.4			0.2	1	86	86 ²⁰² Pb	MA8 1.0	14Bo26
²⁰² Bi-u		-22282	30	-22267	17	0.5	1	30	30^{-202}Bi	GS2 1.0	
¹⁰² Po-u		-19270	104	-19261	9	0.1	Ü	20	00 21	GS1 1.0	
10-u		-19243	30	-17201	,	-0.6	U			GS2 1.0	
²⁰² Hg ³⁵ Cl ₂ - ¹⁹⁸ Hg ³⁷ Cl ₂				07746	0.0						
02 Hg 33 Cl ₂ $^{-19}$ Hg 37 Cl ₂		9774.87	1.06	9774.6	0.8	-0.1	U			H33 2.5	
⁰² Hg ³⁵ Cl ⁻²⁰⁰ Hg ³⁷ Cl		5271	3	5266.8	0.6	-0.4	U		202	H17 4.0	
		5266.76	0.43			0.0	1	35	$28^{-202} Hg$	H33 2.5	80Ko25
$^{02}\text{Tl} - ^{203}\text{Tl}_{.995}$		-372.4	2.1	-373.2	1.7	-0.4	1	63	48 ²⁰² Tl	MA8 1.0	16We.A
02 108		2,2									(0C - D
$^{\circ 2}$ Po(α) $^{13\circ}$ Pb		5700.9	2.	5701.0	1.7	0.0	_			Dba	08G0.B
³² Po(α) ¹³⁶ Pb		5700.9		5701.0		0.0	_			Dba	
³² Po(α) ¹⁷⁶ Pb	ave	5700.9 5701.6	3.	5701.0		$0.0 \\ -0.2$	-	99	74 ¹⁹⁸ Dh	Dba	70Ra14
. ,	ave.	5700.9 5701.6 5701.1	3. 1.7		1.7	$0.0 \\ -0.2 \\ -0.1$	- 1	99	74 ¹⁹⁸ Pb	Dba	70Ra14 average
. ,	ave.	5700.9 5701.6 5701.1 6355.8	3. 1.7 3.	5701.0 6353.8		0.0 -0.2 -0.1 -0.6	- 1 3	99	74 ¹⁹⁸ Pb	Dba	70Ra14 average 63Ho18
. ,	ave.	5700.9 5701.6 5701.1 6355.8 6351.7	3. 1.7 3. 3.		1.7	0.0 -0.2 -0.1 -0.6 0.7	- 1 3 3	99	74 ¹⁹⁸ Pb	Dba	70Ra14 average 63Ho18 67Tr06
. ,	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2	3. 1.7 3. 3. 5.		1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1	- 1 3 3 3	99	74 ¹⁹⁸ Pb		70Ra14 average 63Ho18 67Tr06 74Ho27
	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9	3. 1.7 3. 3. 5. 2.		1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0	- 1 3 3 3 3	99	74 ¹⁹⁸ Pb	Ora	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B
. ,	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354	3. 1.7 3. 3. 5. 2. 5		1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 0.0	- 1 3 3 3 3 3 3	99	74 ¹⁹⁸ Pb		70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04
$^{02}\mathrm{At}(lpha)^{198}\mathrm{Bi}$	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9	3. 1.7 3. 3. 5. 2.		1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0	- 1 3 3 3 3	99	74 ¹⁹⁸ Pb	Ora	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B
$^{02}\mathrm{At}(lpha)^{198}\mathrm{Bi}$	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0	3. 1.7 3. 3. 5. 2. 5	6353.8	1.7	$\begin{array}{c} 0.0 \\ -0.2 \\ -0.1 \\ -0.6 \\ 0.7 \\ 0.1 \\ 0.0 \\ 0.0 \\ -0.2 \end{array}$	- 1 3 3 3 3 3 3 3	99	74 ¹⁹⁸ Pb	Ora Lvn	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18
02 At $(\alpha)^{198}$ Bi	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9	3. 1.7 3. 3. 5. 2. 5 6.0 2.		1.7	$\begin{array}{c} 0.0 \\ -0.2 \\ -0.1 \\ -0.6 \\ 0.7 \\ 0.1 \\ 0.0 \\ 0.0 \\ -0.2 \\ -0.5 \end{array}$	- 1 3 3 3 3 3 3 4	99	74 ¹⁹⁸ Pb	Ora Lvn	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18
02 At $(\alpha)^{198}$ Bi	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3.	6353.8	1.7	$\begin{array}{c} 0.0 \\ -0.2 \\ -0.1 \\ -0.6 \\ 0.7 \\ 0.1 \\ 0.0 \\ 0.0 \\ -0.2 \\ -0.5 \\ 0.7 \end{array}$	- 1 3 3 3 3 3 3 4 4	99	74 ¹⁹⁸ Pb	Ora Lvn	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Tr06
02 At $(\alpha)^{198}$ Bi	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3.	6353.8	1.7	$\begin{array}{c} 0.0 \\ -0.2 \\ -0.1 \\ -0.6 \\ 0.7 \\ 0.1 \\ 0.0 \\ 0.0 \\ -0.2 \\ -0.5 \\ 0.7 \\ 0.4 \end{array}$	- 1 3 3 3 3 3 3 4 4 U	99	74 ¹⁹⁸ Pb	Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Tr06 74Ho27
02 At $(\alpha)^{198}$ Bi	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5.	6353.8	1.7	$\begin{array}{c} 0.0 \\ -0.2 \\ -0.1 \\ -0.6 \\ 0.7 \\ 0.1 \\ 0.0 \\ -0.2 \\ -0.5 \\ 0.7 \\ 0.4 \\ 0.0 \end{array}$	- 1 3 3 3 3 3 3 4 4 U 4	99	74 ¹⁹⁸ Pb	Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Tr06 74Ho27 75Ba.B
02 At $(\alpha)^{198}$ Bi	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5.	6353.8	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2	- 1 3 3 3 3 3 3 4 4 U 4 U	99	74 ¹⁹⁸ Pb	Ora Lvn Ara Ora Lvn	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04
$^{02}\mathrm{At}(lpha)^{198}\mathrm{Bi}$ $^{02}\mathrm{At}^m(lpha)^{198}\mathrm{Bi}^m$	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0 6257.1	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5. 6.0 2. 6.0	6353.8 6259.0	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2 0.3	- 1 3 3 3 3 3 3 4 4 U 4 U U U	99	74 ¹⁹⁸ Pb	Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18
$^{02}\mathrm{At}(lpha)^{198}\mathrm{Bi}$ $^{02}\mathrm{At}^m(lpha)^{198}\mathrm{Bi}^m$	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0 6257.1 6771.0	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5. 6.0 3.	6353.8	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2 0.3 0.9	- 1 3 3 3 3 3 3 4 4 U 4 U U 2 2	99	74 ¹⁹⁸ Pb	Ora Lvn Ara Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Hr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Va17
02 At $(\alpha)^{198}$ Bi 02 At $^m(\alpha)^{198}$ Bi m	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0 6257.1 6771.0 6772.3	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5. 6.0 3.	6353.8 6259.0	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2 0.3 0.9 0.2	- 1 3 3 3 3 3 3 4 4 U 4 U U U	99	74 ¹⁹⁸ Pb	Ora Lvn Ara Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 63Ho18 67Ho27 75Ba.B 92Hu04 96Ta18 67Va17 87He10
202 At $(\alpha)^{198}$ Bi 202 At $^{m}(\alpha)^{198}$ Bi m	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0 6257.1 6771.0	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5. 6.0 3.	6353.8 6259.0	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2 0.3 0.9	- 1 3 3 3 3 3 3 4 4 U 4 U U 2 2	99	74 ¹⁹⁸ Pb	Ora Lvn Ara Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Va17
202 Po(α) 198 Pb 202 At(α) 198 Bi 202 At m (α) 198 Bi m 202 Rn(α) 198 Po	ave.	5700.9 5701.6 5701.1 6355.8 6351.7 6353.2 6353.9 6354 6355.0 6259.9 6256.8 6257.2 6259.0 6260.0 6257.1 6771.0 6772.3	3. 1.7 3. 3. 5. 2. 5 6.0 2. 3. 5. 2. 5. 6.0 3.	6353.8 6259.0	1.7	0.0 -0.2 -0.1 -0.6 0.7 0.1 0.0 0.0 -0.2 -0.5 0.7 0.4 0.0 -0.2 0.3 0.9 0.2	- 1 3 3 3 3 3 3 4 4 U U U U 2 U U 2 U	99	74 ¹⁹⁸ Pb	Ora Lvn Ara Ora Lvn Ara	70Ra14 average 63Ho18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Tr06 74Ho27 75Ba.B 92Hu04 96Ta18 67Va17 87He10

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
202 Fr(α) 198 At	7397.7	15.	7386	4	-0.8	3					80Ew03 ×
II(u) At	7382.5	11.	7300	7	0.3	3			Lvn		92Hu04 ×
	7389.6	6.			-0.6	0			Jya		96En01 ×
	7387.6	8.			-0.2	3			Jya		05Uu02
	7384.5	5.1			0.3	3			Anv		14Ka23
202 Fr $^m(\alpha)^{198}$ At m	7382.5	11.	7376	4	-0.6	5			Lvn		92Hu04 ×
(**)	7388.6	6.		-	-2.1	0			Jya		96En01
	7381.5	8.			-0.7	5			Jya		05Uu02
	7372.2	5.			0.7	5			Anv		14Ka23
202 Ra(α) 198 Rn	8019.1	60.	7880	7	-2.3	0			Jya		96Le09
	7896.7	20.			-0.8	5			Jya		05Uu02
	7878.3	7.1			0.3	5			Anv		14Ka23
202 Hg(t, α) 201 Au	11567	15	11580	3	0.9	U			LAl		81Fl05
202 Hg(d, 3 He) 201 Au $-^{206}$ Pb() 205 Tl	-979.9	3.1	-980	3	0.0	1	100	100 ²⁰¹ A			94Gr07
201 Hg(n, γ) 202 Hg	7754.9	0.5	7754.10	0.20	-1.6	_			BNn		75Br02 Z
2007	7756.4	0.5			-4.6	В			CRn		75Lo03 Z
	7753.93	0.22			0.8	_			Bdn		06Fi.A
202 Hg(γ ,n) 201 Hg	-7600	130	-7754.10	0.20	-1.2	U			Phi		60Ge01
201 Hg(n, γ) 202 Hg	ave. 7754.09	0.20	7754.10	0.20	0.1	1	97	59 ²⁰¹ H	g		average
202 Au(β^-) 202 Hg	3500	300	2992	23	-1.7	U					67Wa23
, , ,	2700	300			1.0	U					72Bu05
202 Tl $(\varepsilon)^{202}$ Hg	1245	25	1365.1	1.6	4.8	В					66Le06 >
202 Pb $(\varepsilon)^{202}$ Tl	55	20	40	4	-0.8	U					54Hu61
$^{202}\text{At}^{n}(\text{IT})^{202}\text{At}^{m}$	391.7	0.2				5			Lvn		92Hu04
$*^{202}$ Pb $-u$	M - A = -23747(28)	keV for	202 Pb ^m at 21	69.85 k	eV						Nub16b **
$*^{202}$ At(α) ¹⁹⁸ Bi	E_{α} =6228(5), 6070	(10), 592	9(10) to grou	ınd state	, 164, 30	3 levels					92Hu04 **
$*^{202}$ At $^{m}(\alpha)^{198}$ Bi m	Assignment to ²⁰²	At ^m in re	ference; Z re	ecalibrat	ed						92Hu04 **
$*^{202}$ At ^m (α) ¹⁹⁸ Bi ^m	E_{α} =6135(5); and 6	5277(5) fi	rom 202 At ⁿ (α	$(1)^{198} \mathrm{Bi}^n$, with						92Hu04 **
*	$^{202}\text{At}^{n}(\text{IT})^{202}\text{At}^{m}$	=391.7(0	0.5) and ¹⁹⁸ Bi	$i^{n}(IT)^{198}$	$Bi^{m}=248$	3.5(0.5)	keV				Nub16b **
$*^{202}$ Fr(α) ¹⁹⁸ At	E_{α} =7251(10) has a	doublet	structure								92Hu04 **
$*^{202}$ Fr(α) ¹⁹⁸ At	E_{α} =7237(8), is a d	oublet									92Hu04 **
$*^{202}$ Fr(α) ¹⁹⁸ At	202 Fr E_{α} 's in corre	lation wi	th At daughte	ers							96En01 **
$*^{202}$ Fr ^m $(\alpha)^{198}$ At ^m	E_{α} =7237(8), is a d										92Hu04 **
$*^{202}$ Tl $(\varepsilon)^{202}$ Hg	pK=0.305(0.020) t	o 2 ⁺ leve	el at 959.94 k	eV							Ens083 **
$C_{16} H_{11} - {}^{203}Tl$	113735	43	113731.3	1.3	-0.1	U			R08	1.5	69De19
$C_{15}^{13}CH_{10}^{-203}Tl$	109216	95	109261.1	1.3	0.3	Ü			R08	1.5	69De19
$C_{14} N_2 H_7 - {}^{203}Tl$	88540	48	88579.2	1.3	0.5	Ü			R08	1.5	69De19
²⁰³ Tl- ¹⁶⁶ Er ³⁷ Cl	76190	48	76142.4	1.8	-0.7	U			R08	1.5	69De19
²⁰³ Tl- ¹⁶⁸ Er ³⁵ Cl	71069	36	71115.1	1.8	0.9	U			R08	1.5	69De19
$^{203}\text{Tl}-^{133}\text{Cs}_{1.526}$	116622.5	3.8	116624.3	1.3	0.5	Ü			MA8		16We.A
²⁰³ Pb-u	-26594	30	-26609	7	-0.5	Ü			GS2		05Li24
²⁰³ Po-u	-18581	30	-18584	9	-0.1	U				1.0	
203 At $-u$	-13042	30	-13057	11	-0.5	1	14	14 ²⁰³ A	t GS2		05Li24
203 Fr $^{-133}$ Cs _{1.526}	145205	17	145221	7	1.0	1	15	15 ²⁰³ Fi	MA8		08We02
^{203}At $^{-208}\text{Pb}_{.976}$	9690	25	9731	11	1.6	1	21	21 ²⁰³ A	t MA6		01Sc41
203 Rn m - 208 Pb. ₉₇₆	16579	30	16571	19	-0.3	1	41	41 ²⁰³ R		1.0	13Dr04
²⁰³ Tl ³⁵ Cl- ²⁰¹ Hg ³⁷ Cl	4997	3	4991.1	1.2	-0.5	U	71	71 K	H17	4.0	64Mc07
ii ci– iig ci	4995.23	1.49	サノフ1.1	1.2	-0.3 -1.1	1	10	8 ²⁰³ T		2.5	85De40
²⁰² Hg H- ²⁰³ Tl	6154	34	6124.6	1.2	-0.6	U	10	0 1	R08	1.5	69De19
²⁰³ Tl- ¹⁶⁷ Er ³⁵ Cl	71436		71437.2		-0.0				R08		69De19
¹⁶⁷ Er ³⁷ Cl- ²⁰³ Tl		36 33		1.8		U				1.5	
¹⁶⁹ Tm ³⁵ Cl- ²⁰³ Tl	-74404 60257	33	-74387.3	1.8	0.3	U			R08	1.5	69De19
²⁰³ Tl- ²⁰² Hg	-69257	29	-69273.0	1.5	-0.4	U			R08	1.5	69De19
²⁰³ Tl ²⁰¹ Hg	1722	20	1700.4	1.2	-0.7	U			R08	1.5	69De19
11-2 Hg	1999	29	2041.0	1.2	1.0	U			R08	1.5	69De19

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	:e
203 Po(α) 199 Pb		5496	5				5			Dba		68Go.B	×
203 At(α) ¹⁹⁹ Bi		6210.3	1.	6210.1	0.8	-0.2	_			Doa		63Ho18	
$Ai(\alpha)$ Bi		6208.7	3.	0210.1	0.6	0.5	_					67Tr06	7
		6209.4	2.			0.3	_			Dba		68Go.B	7
		6211.7	3.			-0.5	_			Ora		75Ba.B	
		6210.6	5.0			-0.3 -0.1	U			Ara		96Ta18	
	ave.	6210.1	0.8			0.0	1	100	61 ²⁰³ At	Aia			
203 Rn(α) 199 Po	ave.	6628.6	5.	6629.9	2.1	0.3	3	100	01 At			average 67Va17	7
Kii(u) 10		6630.2	2.5	0029.9	2.1	-0.1	3			Lvn		93Wa04	
		6630.2	10			-0.1 0.0	U			Jya		95Wa04 95Uu01	
		6629.8	5.0			0.0	3			Ara		96Ta18	
203 Rn $^{m}(\alpha)^{199}$ Po m		6679.5	3.0	6680.5	1.6	0.3	_			Aia		67Va17	-
$\operatorname{Kii} (a)$ 10		6681.9	10.	0000.5	1.0	-0.1	U			GSa		87He10	-
		6680.9	2.5			-0.1 -0.2				Lvn		93Wa04	
		6683.9	7.			-0.2 -0.5	о О			Ara		95 Wa04 95Le04	
		6679.8	3.			-0.3 0.2	_			Jya		96Le09	
		6682.9	5.0			-0.5	_			Ara		96Ta18	
	01/0	6680.5	1.6			0.0	1	100	59 ²⁰³ Rn ^m	Aia			
203 Fr(α) 199 At	ave.	7275.6	5.	7275	4	-0.0		100	39 Kii			average 67Va20	7
$\Gamma I(\alpha) = AI$		7273.0	10.	1213	4	-0.1 -0.7	-					80Ew03	
						0.5	-			True			
		7263.4 7273.6	25. 6.			0.3	0			Jya		94Le05 05Uu02	
	0710	7276				-0.2	1	95	85 ²⁰³ Fr	Jya			
203 Fr $^m(\alpha)^{199}$ At m	ave.		4			-0.2	1	93	92 LI	T		average	
203 Ra(α) ¹⁹⁹ Rn		7391.9	5.	7726	_	0.2	3			Jya		13Ja06	
$Ra(\alpha)^{**}$ Rn		7729.6	20.	7736	6	0.3	0			Jya		96Le09	
		7741.8	8.			-0.7	5			Jya		05Uu02	
203 Ra $^m(\alpha)^{199}$ Rn m		7727.6	10.	77(2		0.9	5			Anv		14Ka23	
265 Ra ^m (α) ¹⁵⁵ Rn ^m		7768.4	20.	7763	6	-0.3	0			Jya		96Le09	
		7765.3	8.			-0.3	5			Jya		05Uu02	
$^{203}\text{Tl}(p,t)^{201}\text{Tl}$		7760.2	8.2	6041	1.4	0.3	5	00	89 ²⁰¹ Tl	Anv		14Ka23	
202 Hg(d,p) 203 Hg $^{-204}$ Hg() 205 Hg		-6240	15	-6241	14	-0.1	1	89		Yal		71Ki01	
203 mg (a,p)203 Hg — 201 Hg()203 Hg		325	5	326	4	0.3	1	52	48 ²⁰⁵ Hg	Pit		72Mo12	
$^{203}\text{Tl}(p,d)^{202}\text{Tl}$		-5630	20	-5627.9	1.6	0.1	U			Yal		71Ki01	
203 Au(β^-) 203 Hg		2040	60	2126	3	1.4	U					94We02	
203 Hg(β^{-}) 203 Tl		489.2	2.	492.1	1.2	1.5	-					54Th17	>
		493.2	2.			-0.5	_					55Ma40	
		493.2	3.			-0.4	_		0.5. 202.55			58Ni28	>
202 pt () 203 pt	ave.	491.6	1.3	0.7.5		0.4	1	92	85 ²⁰³ Hg			average	
203 Pb $(\varepsilon)^{203}$ Tl		940	50	975	6	0.7	U		202			55Ha.A	>
203-1-203-1		980	20			-0.3	1	10	10 ²⁰³ Pb			65Le07	>
203 Bi(β^+) 203 Pb		3260	50	3262	14	0.0	U					58No30	>
203 At(β^+) 203 Po		5060	200	5148	14	0.4	U					87Se04	
203 Po(α) ¹⁹⁹ Pb				l (this is leve								Ens073	
$*^{203}$ Hg(β^{-}) ²⁰³ Tl				espectively,								Ens057	
$*^{203}$ Pb $(\varepsilon)^{203}$ Tl				spectively, t).5164 k	eV				Ens057	
$*^{203}$ Bi $(\beta^+)^{203}$ Pb	$E_{\beta^+}=1$	350(50), 740	0(50) to le	evels around	840, 15	50 keV						Ens057	**
²⁰⁴ Hg-C ¹³ C ³⁵ Cl ₃ ³⁷ Cl ₂		131776.05	1 25	131775 0	0.6	0.0	T T			Ц24	2.5	80V~25	
		131776.05		131775.9	0.6	0.0	U			H34	2.5	80Ko25	
²⁰⁴ Hg ⁻¹⁶⁹ Tm ³⁵ Cl		70420	100	70423.0	1.0	0.0	U			R04	4.0	64De15	
204 Hg $^{-167}$ Er 37 Cl		75430	60	75537.3	1.4	0.4	U	70	70 201	R04	4.0	64De15	
²⁰⁴ Hg-u		-26505.8	0.6	-26506.0	0.5	-0.3	1	79	$79^{204} \mathrm{Hg}$	ST2	1.0	02Bf02	
²⁰⁴ Po-u		-19689	30	-19690	12	0.0	R			GS2	1.0	05Li24	
204 At $-u$		-12748	30	-12749	24	0.0	-		204	GS2	1.0	05Li24	
	ave.	-12752	27			0.1	1	81	81 ²⁰⁴ At			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Mair	n infl.	Lab	F	Referenc	e
204 Rn $^{-133}$ Cs _{1.534}		136394	60	136480	8	1.4	U				SH1	1.0	13Dr04	
¹⁰⁴ Hg ³⁵ Cl ₂ - ²⁰⁰ Hg ³⁷ Cl ₂		11066.85	0.55	11067.3	0.7	0.3	1	24	12	²⁰⁰ Hg		2.5	80Ko25	
11g C12 11g C12 204Pb-208Pb.981		-4047	21	-4052.11	0.18	-0.2	U	24	12	11g	MA6	1.0	01Sc41	
104 Rn 208 Pb $_{981}$		14358.1	9.4	14348	8	-0.2 -1.1					SH1	1.0	13Dr04	
KII— P0.981		14338.1	25	14346	0	1.8	_				SH1	1.0	13Dr04 13Dr04	
								0.1	0.1	²⁰⁴ Rn	эпі	1.0		
⁰⁴ Hg ³⁵ Cl- ²⁰² Hg ³⁷ Cl	ave.	14351	9	5000 (0.0	-0.4	1	81	81	Kn	1117	4.0	average	
Hg 35Cl=252Hg 57Cl		5807	2	5800.6	0.8	-0.8	U	2.5	26	202**	H17	4.0	64Mc07	
204 203		5800.67	0.53			-0.1	1	35	26	$^{202}{\rm Hg}$	H33	2.5	80Ko25	
204 Hg $^{-203}$ Tl		1161	25	1150.0	1.3	-0.3	U				R08	1.5	69De19	
204 Pb(α) 200 Hg		2650	100	1968.5	1.1	-6.8	В						58Ri23	
204 Pb(α , 8 He) 200 Pb		-28043	13	-28044	11	0.0	2				INS		90Ka10	
04 Po $(\alpha)^{200}$ Pb		5484.6	1.5	5484.9	1.4	0.2	3				Dba		69Go23	*
		5486.3	3.			-0.5	3						70Ra14	Z
04 At $(\alpha)^{200}$ Bi		6069.9	3.	6070.4	1.2	0.2	2						63Ho18	Z
		6066.2	3.			1.4	2						67Tr06	Z
		6071.3	3.			-0.3	2				Ora		75Ba.B	
		6071.3	2.0			-0.4	2						79Sc.A	
		6072.0	3.			-0.5	2				Dba		81Va27	Z
204 Rn(α) 200 Po		6544.3	3.	6546.7	1.8	0.8	_						67Va17	Z
		6547.5	2.5			-0.3	_				Lvn		93Wa04	
		6537.4	7.			1.3	o				Ara		95Le04	
		6548.6	5.0			-0.4	_				Ara		96Ta18	
	ave.	6546.5	1.8			0.1	1	99	80	²⁰⁰ Po	7 H u		average	
204 Fr(α) 200 At	ave.	7170.4	5.	7170.3	2.4	0.0		77	80	10			67Va20	Z
$r(\alpha)$ At			5. 5.	/1/0.3	2.4	0.0	4							Z
		7169.4					4				Lvm			
		7170.6	5.			-0.1	4				Lvn		92Hu04	*
		7179.0	6.			-1.4	0				Jya		94Le05	
		7167.8	7.			0.3	4				Ara		95Le04	
		7173.9	6.			-0.6	0				Jya		05Uu02	
204 - m - 200 -		7171.9	5.			-0.3	4				Jya		13Ja06	
$^{204}\text{Fr}^{m}(\alpha)^{200}\text{At}$		7218.8	8.	7221	4	0.2	0				Lvn		92Hu04	
204 Fr $^m(\alpha)^{200}$ At m		7108.2	5.	7107.6	2.0	-0.1	4							Z
		7105.5	3.			0.7	4				Bka			Z
		7108.4	5.			-0.2	4				Lvn		92Hu04	*
		7115.6	7.			-1.1	O				Jya		94Le05	*
		7114.7	7.			-1.0	4				Ara		95Le04	
		7117.7	6.			-1.7	o				Jya		05Uu02	*
		7108.7	5.			-0.2	4				Jya		13Ja06	
204 Fr ⁿ $(\alpha)^{200}$ At ⁿ		7157.6	6.1	7152.8	2.1	-0.8	o				Jya		05Uu02	
		7153.5	5.			-0.1	o				Jya		13Ja06	
204 Ra(α) 200 Rn		7638.1	12.	7637	7	-0.1	5				Ara		95Le04	
()		7638.1	25.			-0.1	0				Jya		95Le15	
		7634.0	10.			0.3	0				Jya		96Le09	
		7636.1	8.			0.1	5				Jya		05Uu02	
		7638.1	25.			-0.1	U				Anv		10He25	
204 Pb(p,t) 202 Pb		-6835	10	-6830	4	0.5	1	15	14	²⁰² Pb	Yal		71Ki01	
$^{10}(p,t)$ 10		10962	15	10978				13	14	10				
204 Hg(d, 3 He) 203 Au $-^{206}$ Pb() 205 Tl					3	1.1	U	100	100	²⁰³ Au	LAl		81Fl05	
204 Hg(d,t) 203 Hg		-1582.0	3.0	-1582.0	3.0	0.0	1	100	100	20311	411		94Gr07	
		-1242	5	-1235.0	1.6	1.4	1	11	10	²⁰³ Hg	Ald		70An14	_
$^{03}\text{Tl}(n,\gamma)^{204}\text{Tl}$		6656.0	0.3	6656.08	0.29	0.3	1	94	65	²⁰³ Tl	MMn		74Co21	Z
04 202		6654.88	0.14			8.6	C				Bdn		06Fi.A	
04 Pb(p,d) 203 Pb		-6165	10	-6170	6	-0.5	-				Yal		71Ki01	
04 Pb(d,t) 203 Pb		-2160	20	-2137	6	1.1	_				Ald		67Bj01	
04 Pb(p,d) 203 Pb	ave.	-6171	9	-6170	6	0.0	1	52	52	²⁰³ Pb			average	
204 Au(β^{-}) 204 Hg		4500	300	4040#	200#	-1.5	F						67Wa23	*
$^{04}\text{Tl}(\varepsilon)^{204}\text{Hg}$		314	20	344.0	1.2	1.5	U						64Ch17	
. , .		332	20	-		0.6	Ü						66K102	
		385	20			-2.0	U						73La17	
$^{2.04}\text{Tl}(\beta^{-})^{2.04}\text{Pb}$		764.24	0.31	763.75	0.18	-1.6	_						67Pa08	
(-) 10		763.47	0.22	,05.75	0.10	1.3	_						68Wo02	
			V.44			1.0							0011002	
	ave.	763.73	0.18			0.1	1	97	60	²⁰⁴ Tl			average	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

$*^{204}$ Fr(α) ²⁰⁰ At		6220										
$*^{204}$ Po(α) ²⁰⁰ Pb $*^{204}$ Fr(α) ²⁰⁰ At		276.1	160 0.5	6466	25	1.5	U 5					86Ve.B * 95Bi.A
$*^{204}$ Fr(α) ²⁰⁰ At	Printing	error in refer		not ²⁰⁶ Po.	7 recalil	rated						AHW **
		1(5), 6916(8)				naica						92Hu04 **
. 11 (00) 110	$E_{\alpha}=696$	9(5); and 701	3(5) from	204 Fr ⁿ 276.1	above 204	$^{4}\mathrm{Fr}^{m}$ to 200	At^n					95Bi.A **
*	230.9	above 200 At ^m	5(5) 110111	11 270.1	ubore	11 10 .						92Hu04 **
$*^{204}$ Fr ^m $(\alpha)^{200}$ At ^m		$0(7)$ from 204	Fr ⁿ 276.1 a	above Fr ^m to	200 Atn 2	30.9 above	200 At ^m					95Bi.A **
	E_{α} =697	6(6); and 701	7(6) from	204 Fr ⁿ 276.1	above 204	4 Fr ^m to 200	At^n					GAu **
		rted 4 s activi										Ens87a **
		250(160) to 8 ⁺										Ens102 **
$C_{16} H_{13} - {}^{205}Tl$		127345	29	127298.2	1.3	-1.1	U			R08	1.5	69De19
$C_{14} N_2 H_9 - {}^{205}T1$		102091	36	102146.1	1.3	1.0	Ü			R08	1.5	69De19
²⁰⁵ Tl- ¹⁶⁸ Er ³⁷ Cl		76198	44	76148.5	1.8	-0.8	Ü			R08	1.5	69De19
²⁰⁵ Tl- ¹⁷⁰ Er ³⁵ Cl		70034	23	70103.9	2.1	2.0	Ü			R08	1.5	69De19
$^{205}\text{Tl} - ^{133}\text{Cs}_{1.541}$		120129	11	120125.8	1.3	-0.3	Ü			MA8	1.0	08We02
²⁰⁵ Bi-u		-22559	30	-22614	5	-1.8	Ü			GS2	1.0	05Li24
²⁰⁵ Po-u		-18773	30	-18810	11	-1.2	_			GS2	1.0	05Li24
	ave.	-18790	25			-0.8	1	19	19 ²⁰⁵ Po			average
205 Rn $-^{133}$ Cs _{1.541}		137456	50	137422	5	-0.7	U			SH1	1.0	13Dr04
		137458	29			-1.3	Ü			SH1	1.0	13Dr04
205 Fr $-^{133}$ Cs _{1.541}		144293.8	9.7	144292	8	-0.1	2			MA8	1.0	08We02
205 Rn $-^{208}$ Pb $_{.986}$		14748	11	14744	6	-0.3	_			SH1	1.0	13Dr04
.500		14772	20			-1.4	_			SH1	1.0	13Dr04
	ave.	14754	10			-1.0	1	33	$32^{205}Rn$			average
²⁰⁵ Tl ³⁵ Cl- ²⁰³ Tl ³⁷ Cl		5040	4	5033.3	0.6	-0.4	U			H17	4.0	64Mc07
		5031.43	1.07			0.7	-			H36	2.5	85De40
		5032.88	1.01			0.3	_			H42	1.5	93Si05
	ave.	5032.5	1.3			0.6	1	19	15 ²⁰⁵ Tl			average
205 Po $-^{205}$ Fr		-18450	2050	-17404	14	0.5	U			RI1	1.0	16Sc.A
205 At $-^{205}$ Fr		-12420	450	-12520	18	-0.2	U			RI1	1.0	16Sc.A
205 Rn $-^{205}$ Fr		-6640	330	-6871	10	-0.7	U			RI1	1.0	16Sc.A
²⁰⁵ Tl- ¹⁶⁷ Er ³⁷ Cl		76426	47	76470.5	1.8	0.6	U			R08	1.5	69De19
²⁰⁵ Tl- ¹⁶⁹ Tm ³⁵ Cl		71355	25	71356.2	1.6	0.0	U			R08	1.5	69De19
¹⁶⁹ Tm ³⁷ Cl- ²⁰⁵ Tl		-74316	32	-74306.3	1.6	0.2	U			R08	1.5	69De19
$^{205}\text{Tl} - ^{204}\text{Hg}$		938	27	933.2	1.4	-0.1	U			R08	1.5	69De19
$^{205}\text{Tl} - ^{203}\text{Tl}$		2092	20	2083.2	0.6	-0.3	U		201	R08	1.5	69De19
205 Po(α) 201 Pb		5324.1	10.	5325	10	0.1	1	95	90 ²⁰¹ Pb			67Ti04
205 At(α) 201 Bi		6016.3	4.	6019.6	1.7	0.8	4					63Ho18 Z
		6020.5	2.			-0.5	4			Dba		68Go.B Z
2055 ()2015		6018.9	5.	6206 F		0.1	4					74Ho27 Z
205 Rn(α) 201 Po		6386.6	3.	6386.5	1.8	0.0	-					67Va17 Z
		6386.6	6.			0.0	-					71Ho01 Z
		6385.7	2.5			0.3	_	07	68 ²⁰⁵ Rn	Lvn		93Wa04
205 Fr(α) 201 At	ave.	6386.1	1.9	70547	2.4	0.2	1	97	68 ²⁶⁵ Rn			average
$Fr(\alpha)^{201}At$		7056.5 7052.2	5.	7054.7	2.4	-0.3	3					67Va20 Z 74Ho27 Z
		7052.2	5. 5.			$0.5 \\ -0.5$	3			ORa		81Ri04 Z
		7052.9	7.			0.3	3					95Le04
		7052.9	7. 5.			0.3	3			Ara Anv		05De01
205 Ra(α) 201 Rn		7506.7	20.	7490	50	-0.4	F			GSa		87He10 *
ra(w) Kii		7496.6	20. 25.	7770	50	-0.4 -0.2	0			Jya		95Le15
		7486.4	20.			0.2	5			Jya		96Le09
205 Ra $^{m}(\alpha)^{201}$ Rn m		7501.7	10.	7505	9	0.3	6			Ara		95Le04
ru (w) rui		7522.1	25.	, 505	,	-0.7	0			Jya		95Le15
		7517.0	20.			-0.7 -0.6	6			Jya		96Le09
		7526.1	30.			-0.7	Ü			Anv		10He25

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	P	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	\overline{F}	Reference
				J		•			-			
205 Ac(α) 201 Fr		8093.2	30.6				3			Lza		14Zh03
204 Hg(d,p) 205 Hg		3443	5	3444	4	0.3	1	52	$52^{205} \mathrm{Hg}$	Ald		70An14
205 Tl $(\gamma,n)^{204}$ Tl		-7515	29	-7546.0	0.5	-1.1	U			Phi		60Ge01
		-7548	3			0.7	U			McM		79Ba06
$^{205}\text{Tl}(d,t)^{204}\text{Tl}$		-1288.7	0.6	-1288.8	0.5	-0.2	1	64	60^{205} Tl	Mun		90Li40
204 Pb $(n, \gamma)^{205}$ Pb		6731.53	0.15	6731.66	0.11	0.9	_			ILn		83Hu13 Z
		6731.80	0.16			-0.9	_			Bdn		06Fi.A
204 Pb(d,p) 205 Pb		4516	20	4507.10	0.11	-0.4	U			Ald		67Bj01
204 Pb $(n, \gamma)^{205}$ Pb	ave.	6731.66	0.11	6731.66	0.11	0.1	1	99	69 ²⁰⁴ Pb			average
205 Hg(β^{-}) 205 Tl		1620	200	1533	4	-0.4	U					40Kr08
		1750	200			-1.1	U					51Ly10
205 Pb $(\varepsilon)^{205}$ Tl		41.4	1.1	50.6	0.5	8.4	В					78Pe08
$^{205}\text{Bi}(\beta^+)^{205}\text{Pb}$		2701.4	10.	2706	5	0.4	_					62Bo25 *
21(6) 10		2715.4	10.	2,00	U	-1.0	_					62Pe08 *
	ave.	2708	7			-0.4	1	52	51 ²⁰⁵ Bi			average
205 Po $(\beta^+)^{205}$ Bi	avc.	3390	150	3543	11	1.0	U	32	31 BI			69Ho37 *
$*^{205}$ Ra(α) ²⁰¹ Rn	F : nos	sibly mixed v			11	1.0	O					87He10 **
* $Ra(\alpha)$ R11 * $^{205}Bi(\beta^+)^{205}Pb$					arral at 7	02 427 1.0	. 3.7					
* $BI(\beta^+)^{-1}$ Po * $^{205}Po(\beta^+)^{205}Bi$				vely, to 7/2 ⁻ 1								Ens044 **
*200 PO(D +)200 B1	p = 3	(1)×10 5 to	//2 level:	at 849.84 and	112 at .	1001.22 K	ev					Ens044 **
206p:		21.420	20	01501	0	2.4	**			aca.	1.0	051 :04
²⁰⁶ Bi−u		-21429	30	-21501	8	-2.4	U			GS2	1.0	05Li24
²⁰⁶ Po−u		-19471	30	-19526	4	-1.8	U		206	GS2	1.0	05Li24
²⁰⁶ At-u		-13305	30	-13344	16	-1.3	1	29	29 ²⁰⁶ At	GS2	1.0	05Li24
206 Rn $-^{133}$ Cs _{1.549}		136641	15	136650	9	0.6	1	38	38 ²⁰⁶ Rn	SH1	1.0	13Dr04
206 Pb 35 Cl ₂ $-^{202}$ Hg 37 Cl ₂		9722.09	0.57	9721.8	1.1	-0.2	1	62	54 ²⁰⁶ Pb	H36	2.5	85De40
²⁰⁶ Pb ³⁵ Cl- ²⁰⁴ Hg ³⁷ Cl		3929	4	3921.2	1.3	-0.5	U			H17	4.0	64Mc07
²⁰⁶ Pb ³⁵ Cl- ²⁰⁴ Pb ³⁷ Cl		4378	3	4371.81	0.15	-0.5	U			H17	4.0	64Mc07
		4370.72	1.17			0.4	U			H36	2.5	85De40
		4371.29	0.81			0.4	U			H42	1.5	93Si05
206 Rn $-^{208}$ Pb $_{.990}$		13307	15	13310	9	0.2	1	38	$37^{206}Rn$	SH1	1.0	13Dr04
$^{206}\text{At}-^{205}\text{Fr}_{1.005}$		-12110	2260	-11931	18	0.1	U			RI1	1.0	16Sc.A
206 Rn $^{-205}$ Fr _{1.005}		-7800	620	-8391	13	-1.0	U			RI1	1.0	16Sc.A
206 Fr $^{-205}$ Fr $^{1.005}$		130	140	80	30	-0.4	U			RI1	1.0	16Sc.A *
206 Po $(\alpha)^{202}$ Pb		5327.4	4.	5327.0	1.3	-0.1	2					67Ti04 Z
		5327.4	1.5			-0.3	2			Dba		69Go23 *
		5325.1	3.			0.6	2					70Ra14 Z
206 At(α) 202 Bi		5884.4	3.6	5887	5	0.7	o			Dba		68Go.B *
		5886.4	5.			0.1	1	98	70 ²⁰² Bi	Dba		81Va27 *
206 Rn(α) 202 Po		6381.8	3.	6383.7	1.6	0.6	_					67Va17 Z
. ,		6384.6	3.			-0.3	_			Dba		71Go35 Z
		6384.8	2.5			-0.4	_			Lvn		93Wa04
	ave.	6383.9	1.6			-0.1	1	99	75 ²⁰² Po			average
206 Fr(α) 202 At		6925.9	7.	6923	4	-0.4	4					67Va20 *
11(0) 111		6918.9	7.	0,23	•	0.6	4					74Ho27 *
		6924.0	7.			-0.1	4			ORa		81Ri04 *
		6924.8	7.			-0.2	4			Lvn		92Hu04 *
206 Fr ⁿ $(\alpha)^{202}$ At ⁿ		7068.8	5.	7068	4	-0.2	6			ORa		81Ri04 Z
II (w) At		7063.8	5. 5.	7,000	7	0.2	6			Lvn		92Hu04 *
206 Ra(α) 202 Rn		7416.3	5. 5.	7415	4	-0.2	3			LVII		67Va22 Z
Na(W) NII		7410.3		7413	+		3			GSa		87He10
		7414.3	10.			0.1						95Le15
			10.			0.3	0			Jya Iya		95Le15 95Uu01
		7406 7412.2	15			0.6	o 3			Jya Iya		
206 Ac(α) 202 Fr		7412.2	10.	7060	50	0.3				Jya		96Le09
$Ac(\alpha)^{-1}$ Fr		7944.6	30.	7960	50	0.3	4			Jya		98Es02
		7972.0	30.			-0.3	4			Lza		14Zh03

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{206}\text{Ac}^{m}(\alpha)^{202}\text{Fr}^{m}$	7903.8	30.				6			Jya		98Es02
$^{204}\text{Pb}(t,p)^{206}\text{Pb}$			(22(52	0.12	0.7						
$^{204}\text{Pb}(t,p)^{206}\text{Bi}$	6322	20	6336.53	0.12	0.7	U			Ald		67Ha.A
	-15798.	11.5	-15792	8	0.5	R	02	0.4. 206721	Pit		76Da20
$^{205}\text{Tl}(n,\gamma)^{206}\text{Tl}$	6503.7	0.4	6503.8	0.4	0.3	1	93	84 ²⁰⁶ Tl	MMn		74Co21 Z
205	6502.87	0.27			3.5	C			Bdn		06Fi.A
$^{205}\text{Tl}(d,p)^{206}\text{Tl}$	4276	5	4279.2	0.4	0.6	U		205	ANL		65Er02
$^{205}\text{Tl}(^{3}\text{He,d})^{206}\text{Pb}$	1761.7	1.4	1760.2	0.5	-1.1	1	13	12 ²⁰⁵ Tl	Mun		90Li40
205 Pb $(n, \gamma)^{206}$ Pb	8086.66	0.06	8086.66	0.06	0.0	1	100	69 ²⁰⁵ Pb			96Ra16 Z
206 Pb $(\gamma,n)^{205}$ Pb	-8090	70	-8086.66	0.06	0.0	U			Phi		60Ge01
	-8087	3			0.1	U			McM		79Ba06
206 Pb(d,t) 205 Pb	-1830	100	-1829.43	0.06	0.0	U			MIT		53Ha66
	-1831.2	0.5			3.5	В			Mun		90Li40
$^{206}\text{Hg}(\beta^{-})^{206}\text{Tl}$	1240	62	1308	20	1.1	U					68Wo09 *
$^{206}\text{Tl}(\beta^{-})^{206}\text{Pb}$	1534	5	1532.2	0.6	-0.4	U					71Pe23
	1527	4			1.3	Ü					72Wi18
206 Bi(β^{+}) 206 Pb	3683	33	3757	8	2.3	Ü					62Pe08 *
$^{206}\mathrm{Bi}(\varepsilon)^{206}\mathrm{Pb}$	3753	10	3131	O	0.4	2					74Go20 *
206 At(β^{+}) 206 Po	5687	150	5759	16	0.4	U					
206 Fr ⁿ (IT) 206 Fr ^m			3739	10	0.5				OD-		
	531	2				7			ORa		81Ri04
206 Fr x (IT) 206 Fr	100	100				5					AHW *
$*^{206}$ Fr $-^{205}$ Fr _{1.005}	D_M =230(110) μ u fo					1100(11	0) keV				Nub16b **
$*^{206}$ Po(α) ²⁰² Pb	Printing error in refe			Z recal	ibrated						AHW **
$*^{206}$ At(α) ²⁰² Bi	E_{α} =5702.8(2,Z) to	$(5)^+$ level	at 68(3) keV								Ens044 **
$*^{206}$ At $(\alpha)^{202}$ Bi	E_{α} =5773.8(5,Z), 57	02.8(5,Z)	to ground stat	e and (5)	⁺ level at	68(3) k	eV				Ens044 **
$*^{206}$ Fr(α) ²⁰² At	E_{α} =6793.1(5,Z); co	rrection –	2 for being a c	loublet							AHW **
$*^{206}$ Fr(α) ²⁰² At	E_{α} =6786.3(5,Z); co	rrection –	2 for being a c	loublet							AHW **
$*^{206}$ Fr(α) ²⁰² At	E_{α} =6791.3(5,Z); co										AHW **
$*^{206}$ Fr(α) ²⁰² At	E_{α} =6792(5); correc		_								AHW **
$*^{206}$ Fr ⁿ (α) ²⁰² At ⁿ	E_{α} =6930(5) and 67		-		391.7 ke	V					92Hu04 **
$*^{206}$ Hg(β^-) ²⁰⁶ Tl	E_{β} =935(62) to 1 ⁻			1) 5 551,	3)1.7 RC	•					Ens085 **
$*^{206}$ Bi(β^+) 206 Pb	$E_{\beta^+} = 977(33) \text{ to } 4^+$										
* $Bi(p^*)$ Fo * $^{206}Bi(\varepsilon)^{206}Pb$											Ens085 **
* 206 At(β^+) 206 Po	LK=0.509(0.015) to	n level:			1 00	. 1	1 . 1				E 005
				V, origina	l error 22	, recalcı	ılated				Ens085 **
	E_{β^+} =3092(150) to 6	5 ⁺ level at	1573.38 keV	V, origina	l error 22	, recalcı	ılated				Ens085 **
$*^{206}$ Fr x (IT) 206 Fr		5 ⁺ level at	1573.38 keV	V, origina	l error 22	, recalcı	ılated				
$*^{206}$ Fr x (IT) 206 Fr	E_{β^+} =3092(150) to 0 Assuming a 0.15(0.2)	6 ⁺ level at 20)% isom	1573.38 keV neric mixture				ılated		G92	1.0	Ens085 ** AHW **
	E_{β} +=3092(150) to 6 Assuming a 0.15(0.10)	6 ⁺ level at 20)% isom	1573.38 keV	V, origina 30	0.6	o	ılated		GS3	1.0	Ens085 ** AHW ** 08Ch.A
* ²⁰⁶ Fr ^x (IT) ²⁰⁶ Fr ²⁰⁷ Hg-u	E_{β} = 3092(150) to 6 Assuming a 0.15(0.10) -17721 -17700	5 ⁺ level at 20)% isom 33 32	1573.38 keV heric mixture -17700	30	0.6	o 2	ulated		GS3	1.0	Ens085 ** AHW ** 08Ch.A 12Ch19
* ²⁰⁶ Fr ^x (IT) ²⁰⁶ Fr ²⁰⁷ Hg-u ²⁰⁷ Rn- ¹³³ Cs ₁ 556	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794	5+ level at 20)% isom 33 32 28	1573.38 keV neric mixture -17700 137847	30 9	0.6 1.9	o 2 U		00 2075	GS3 SH1	1.0 1.0	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04
206Fr(IT) ²⁰⁶ Fr ²⁰⁷ Hg-u ²⁰⁷ Rn- ¹³³ Cs _{1.556} ²⁰⁷ Fr- ¹³³ Cs _{1.556}	E_{β} = 3092(150) to 6 Assuming a 0.15(0.15) -17721 -17700 137794 144062	5+ level at 20)% isom 33 32 28 20	1573.38 keV neric mixture -17700 137847 144063	30 9 19	0.6 1.9 0.1	o 2 U 1	ılated	88 ²⁰⁷ Fr	GS3 SH1 MA8	1.0 1.0 1.0	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26
* ²⁰⁶ Fr ^x (IT) ²⁰⁶ Fr ²⁰⁷ Hg-u ²⁰⁷ Rn- ¹³³ Cs ₁ 556	E_{β} +=3092(150) to 6 Assuming a 0.15(0.15) -17721 -17700 137794 144062 4413	5+ level at 20)% isom 33 32 28 20 4	1573.38 keV neric mixture -17700 137847	30 9	0.6 1.9 0.1 0.4	o 2 U 1 U		88 ²⁰⁷ Fr	GS3 SH1 MA8 H17	1.0 1.0 1.0 4.0	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07
206Fr(IT) ²⁰⁶ Fr ²⁰⁷ Hg-u ²⁰⁷ Rn- ¹³³ Cs _{1.556} ²⁰⁷ Fr- ¹³³ Cs _{1.556}	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60	5+ level at 20)% isom 33 32 28 20 4 2.40	1573.38 keV neric mixture -17700 137847 144063	30 9 19	0.6 1.9 0.1 0.4 0.7	o 2 U 1 U		88 ²⁰⁷ Fr	GS3 SH1 MA8 H17 H36	1.0 1.0 1.0 4.0 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40
$*^{206}Fr^{x}(IT)^{206}Fr$ $^{207}Hg-u$ $^{207}Rn^{-133}Cs_{1.556}$ $^{207}Fr^{-133}Cs_{1.556}$ $^{207}Pb^{35}Cl^{-205}Tl^{37}Cl$	E_{β} +=3092(150) to 6 Assuming a 0.15(0.15) -17721 -17700 137794 144062 4413	5+ level at 20)% isom 33 32 28 20 4	1573.38 keV neric mixture -17700 137847 144063	30 9 19	0.6 1.9 0.1 0.4	o 2 U 1 U		88 ²⁰⁷ Fr	GS3 SH1 MA8 H17	1.0 1.0 1.0 4.0	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07
206Fr(IT) ²⁰⁶ Fr 207Hg-u 207Rn-133Cs _{1.556} 207Fr-133Cs _{1.556} 207Pb 35Cl-205Tl 37Cl	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60	5+ level at 20)% isom 33 32 28 20 4 2.40	1573.38 keV neric mixture -17700 137847 144063	30 9 19	0.6 1.9 0.1 0.4 0.7	o 2 U 1 U		88 ²⁰⁷ Fr	GS3 SH1 MA8 H17 H36	1.0 1.0 1.0 4.0 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40
$*^{206}Fr^{x}(IT)^{206}Fr$ $^{207}Hg-u$ $^{207}Rn^{-133}Cs_{1.556}$ $^{207}Fr^{-133}Cs_{1.556}$ $^{207}Pb^{35}Cl^{-205}Tl^{37}Cl$ $^{206}PbH^{-207}Pb$ $^{206}Fr^{x}^{-207}Fr_{498}^{205}Fr_{502}$	E_{β} =3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1	1573.38 keV heric mixture -17700 137847 144063 4419.6	30 9 19 0.6	0.6 1.9 0.1 0.4 0.7 1.1	0 2 U 1 U U			GS3 SH1 MA8 H17 H36 H42	1.0 1.0 1.0 4.0 2.5 1.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05
$*^{206}Fr^{x}(IT)^{206}Fr$ $^{207}Hg-u$ $^{207}Rn^{-133}Cs_{1.556}$ $^{207}Fr^{-133}Cs_{1.556}$ $^{207}Pb^{35}Cl^{-205}Tl^{37}Cl$ $^{206}PbH^{-207}Pb$ $^{206}Fr^{x}^{-207}Fr_{498}^{205}Fr_{502}$	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90	1573.38 keV heric mixture -17700 137847 144063 4419.6 6393.42 930	30 9 19 0.6 0.10	0.6 1.9 0.1 0.4 0.7 1.1 -0.3	o 2 U 1 U U U U		88 ²⁰⁷ Fr 59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02
206 Fr(IT) ²⁰⁶ Fr 207 Hg-u 207 Rn- ¹³³ Cs _{1.556} 207 Fr- ¹³³ Cs _{1.556} 207 Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl 206 Pb H- ²⁰⁷ Pb 206 Fr*- ²⁰⁷ Fr. ₄₉₈ ²⁰⁵ Fr. ₅₀₂ 207 Po(α) ²⁰³ Pb	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5	1573.38 keV heric mixture -17700 137847 144063 4419.6	30 9 19 0.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3	o 2 U 1 U U U U U U 1	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A
206 Fr(IT) ²⁰⁶ Fr 207 Hg-u 207 Rn- ¹³³ Cs _{1.556} 207 Fr- ¹³³ Cs _{1.556} 207 Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl 206 Pb H- ²⁰⁷ Pb 206 Fr* - ²⁰⁷ Fr. ₄₉₈ ²⁰⁵ Fr. ₅₀₂ 207 Po(α) ²⁰³ Pb 207 At(α) ²⁰³ Bi	E_{β} = 3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5	5+ level at 20)% isom 33 32 28 20 4 2.40 1.1 90 2.5 3.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9	30 9 19 0.6 0.10 100 2.5	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0	o 2 U 1 U U U U U 1 3	88		GS3 SH1 MA8 H17 H36 H42 C4 P24	1.0 1.0 1.0 4.0 2.5 1.5 2.5	85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 8 W **
206 Fr(IT) ²⁰⁶ Fr 207 Hg-u 207 Rn- ¹³³ Cs _{1.556} 207 Fr- ¹³³ Cs _{1.556} 207 Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl 206 Pb H- ²⁰⁷ Pb 206 Fr*- ²⁰⁷ Fr. ₄₉₈ ²⁰⁵ Fr. ₅₀₂ 207 Po(α) ²⁰³ Pb	E_{β} +=3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3	5+ level at 20)% isom 33 32 28 20 4 2.40 1.1 90 2.5 3. 3.	1573.38 keV heric mixture -17700 137847 144063 4419.6 6393.42 930	30 9 19 0.6 0.10	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0	o 2 U U U U U U 1 3 4	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z
206 Fr(IT) ²⁰⁶ Fr 207 Hg-u 207 Rn- ¹³³ Cs _{1.556} 207 Fr- ¹³³ Cs _{1.556} 207 Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl 206 Pb H- ²⁰⁷ Pb 206 Fr* - ²⁰⁷ Fr. ₄₉₈ ²⁰⁵ Fr. ₅₀₂ 207 Po(α) ²⁰³ Pb 207 At(α) ²⁰³ Bi	E_{β} +=3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 90 2.5 3. 3.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9	30 9 19 0.6 0.10 100 2.5	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3	o 2 U 1 U U U U U 1 3 4 4	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z
* 206 Fr x (IT) 206 Fr 207 Hg $-$ u * 207 Rn $-^{133}$ Cs _{1.556} * 207 Fr $-^{133}$ Cs _{1.556} * 207 Pb 35 Cl $-^{205}$ Tl 37 Cl * 206 Pb H $-^{207}$ Pb * 206 Fr $^{x}-^{207}$ Fr $_{.498}$ 205 Fr $_{.502}$ * 207 Po(α) 203 Pb * 207 At(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3	5+ level at 20)% isom 33 32 28 20 4 2.40 1.1 90 2.5 3. 3. 2.5	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3	o 2 U U U U U U 1 3 4 4 4 4	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04
206 Fr(IT) ²⁰⁶ Fr 207 Hg-u 207 Rn- ¹³³ Cs _{1.556} 207 Fr- ¹³³ Cs _{1.556} 207 Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl 206 Pb H- ²⁰⁷ Pb 206 Fr* - ²⁰⁷ Fr. ₄₉₈ ²⁰⁵ Fr. ₅₀₂ 207 Po(α) ²⁰³ Pb 207 At(α) ²⁰³ Bi	E_{β} +=3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8	5+ level at 20)% isom 33 32 28 20 4 2.40 1.1 90 2.5 3. 3. 2.5 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9	30 9 19 0.6 0.10 100 2.5	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3	o 2 U 1 U U U U U 1 3 4 4 4 4 -	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z
* 206 Fr x (IT) 206 Fr 207 Hg $-$ u * 207 Rn $-^{133}$ Cs _{1.556} * 207 Fr $-^{133}$ Cs _{1.556} * 207 Pb 35 Cl $-^{205}$ Tl 37 Cl * 206 Pb H $-^{207}$ Pb * 206 Fr $^{x}-^{207}$ Fr $_{.498}$ 205 Fr $_{.502}$ * 207 Po(α) 203 Pb * 207 At(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0:: -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 2.5 3. 3. 2.5 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1	o 2 U 1 U U U U U 1 3 4 4 4 4	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z
* 206 Fr x (IT) 206 Fr 207 Hg $-$ u * 207 Rn $-^{133}$ Cs _{1.556} * 207 Fr $-^{133}$ Cs _{1.556} * 207 Pb 35 Cl $-^{205}$ Tl 37 Cl * 206 Pb H $-^{207}$ Pb * 206 Fr $^{x}-^{207}$ Fr $_{.498}$ 205 Fr $_{.502}$ * 207 Po(α) 203 Pb * 207 At(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0:: -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2	0 2 U 1 U U U U U 1 3 4 4 4 4	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z
* 206 Fr x (IT) 206 Fr 207 Hg $^{-}$ u 207 Rn $^{-133}$ Cs _{1.556} 207 Fr $^{-133}$ Cs _{1.556} 207 Pb 35 Cl $^{-205}$ Tl 37 Cl 206 Pb $^{-207}$ Pb 206 Fr x $^{-207}$ Fr $^{-498}$ 205 Fr $^{-502}$ 207 Po(α) 203 Pb 207 At(α) 203 Bi 207 Rn(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0:: -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2 6893	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2 -0.2	o 2 U 1 U U U U U 1 3 4 4 4 4 1	88		GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average
* 206 Fr x (IT) 206 Fr 207 Hg $-$ u * 207 Rn $-^{133}$ Cs _{1.556} * 207 Fr $-^{133}$ Cs _{1.556} * 207 Pb 35 Cl $-^{205}$ Tl 37 Cl * 206 Pb H $-^{207}$ Pb * 206 Fr $^{x}-^{207}$ Fr $_{.498}$ 205 Fr $_{.502}$ * 207 Po(α) 203 Pb * 207 At(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0:: -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5 7273.8	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5. 5. 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2 -0.2 0.0	o 2 U 1 U U U U U 1 3 4 4 4 1 4	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z
* 206 Fr x (IT) 206 Fr 207 Hg $^{-}$ u 207 Rn $^{-133}$ Cs _{1.556} 207 Fr $^{-133}$ Cs _{1.556} 207 Pb 35 Cl $^{-205}$ Tl 37 Cl 206 Pb $^{-207}$ Pb 206 Fr x $^{-207}$ Fr $^{-498}$ 205 Fr $^{-502}$ 207 Po(α) 203 Pb 207 At(α) 203 Bi 207 Rn(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0.2) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5 7273.8 7268.7	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5. 2.9 5.	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2 6893	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2 -0.2 0.0 0.1	o 2 U 1 U U U U U U 1 3 4 4 4 4 1 4 4 4	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z 87He10
* 206 Fr x (IT) 206 Fr 207 Hg $^{-}$ u 207 Rn $^{-133}$ Cs _{1.556} 207 Fr $^{-133}$ Cs _{1.556} 207 Pb 35 Cl $^{-205}$ Tl 37 Cl 206 Pb H $^{-207}$ Pb 206 Fr x $^{-207}$ Fr $_{.498}$ 205 Fr $_{.502}$ 207 Po(α) 203 Pb 207 At(α) 203 Bi 207 Rn(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0.3) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5 7273.8 7268.7	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5. 10. 12.2	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2 6893	30 9 19 0.6 0.10 100 2.5 1.6 20	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2 -0.2 0.0 0.1 -0.1	o 2 U 1 U U U U U 1 3 4 4 4 4 1 4 4 4 4	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z 87He10 95Uu01
* 206 Fr x (IT) 206 Fr 207 Hg $^{-}$ u 207 Rn $^{-133}$ Cs _{1.556} 207 Fr $^{-133}$ Cs _{1.556} 207 Pb 35 Cl $^{-205}$ Tl 37 Cl 206 Pb $^{-207}$ Pb 206 Fr x $^{-207}$ Fr $^{-498}$ 205 Fr $^{-502}$ 207 Po(α) 203 Pb 207 At(α) 203 Bi 207 Rn(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0.3) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5 7273.8 7268.7 7276.9 7464.5	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5. 10. 12.2 10.2	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2 6893	30 9 19 0.6 0.10 100 2.5 1.6	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.1 -0.2 -0.2 0.0 0.1 -0.1 0.3	o 2 U 1 U U U U U 1 3 4 4 4 4 1 4 4 4 4 2	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn ORa GSa Jya GSa	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z 87He10 95Uu01 87He10
* 206 Fr x (IT) 206 Fr 207 Hg $^{-}$ u 207 Rn $^{-133}$ Cs _{1.556} 207 Fr $^{-133}$ Cs _{1.556} 207 Pb 35 Cl $^{-205}$ Tl 37 Cl 206 Pb H $^{-207}$ Pb 206 Fr x $^{-207}$ Fr $_{.498}$ 205 Fr $_{.502}$ 207 Po(α) 203 Pb 207 At(α) 203 Bi 207 Rn(α) 203 Po	E_{β} +=3092(150) to 6 Assuming a 0.15(0.3) -17721 -17700 137794 144062 4413 4415.60 4417.32 6394.2 930 5216.0 5872.5 6256.3 6247.3 6250.4 6907.8 6895.8 6900.9 ave. 6901.5 7273.8 7268.7	5+ level at 20)% isom 33 32 28 20 4 2.40 1.40 1.1 90 2.5 3. 3. 2.5 5. 5. 10. 12.2	1573.38 keV teric mixture -17700 137847 144063 4419.6 6393.42 930 5215.9 6251.2 6893	30 9 19 0.6 0.10 100 2.5 1.6 20	0.6 1.9 0.1 0.4 0.7 1.1 -0.3 0.0 0.0 -1.6 1.3 0.3 -0.3 -0.1 -0.2 -0.2 0.0 0.1 -0.1	o 2 U 1 U U U U U 1 3 4 4 4 4 1 4 4 4 4	88 96	59 ²⁰⁷ Po	GS3 SH1 MA8 H17 H36 H42 C4 P24 Dba Dba Lvn	1.0 1.0 1.0 4.0 2.5 1.5 2.5	Ens085 ** AHW ** 08Ch.A 12Ch19 13Dr04 14Bo26 64Mc07 85De40 93Si05 71Ke02 82Au01 70Af.A 69Go23 Z 67Va20 Z 71Go35 Z 93Wa04 67Va20 Z 74Ho27 Z 81Ri04 Z average 67Va22 Z 87He10 95Uu01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Par 19011	Input va		Adjusted Vali		v_i	Dg	Signf.	Main infl.	Lab <i>F</i>	Reference
207 Ac(α) 203 Fr		7064.2	25	7040	50	0.4					041 05
$^{207}\text{Ac}(\alpha)^{203}\text{Fr}$		7864.3	25.	7840	50	-0.4	0			Jya	94Le05
205		7844.9	25.				2		207	Jya	98Es02
205 Tl(t,p) 207 Tl		4880	15	4874	5	-0.4	1	13	13 ²⁰⁷ Tl	Ald	69Ha11
207 Pb(t, α) 206 Tl		12321	25	12326.2	0.6	0.2	U			Ald	67Ha.A
206 Pb $(n, \gamma)^{207}$ Pb		6737.85	0.15	6737.78	0.10	-0.5	_			MMn	81Ke11 Z
		6737.72	0.18			0.3	_			ILn	83Hu13 Z
		6737.74	0.17			0.2	_			Bdn	06Fi.A
207 Pb $(\gamma,n)^{206}$ Pb		-6742	3	-6737.78	0.10	1.4	U			McM	79Ba06
206 Pb(d,p) 207 Pb		4480	30	4513.21	0.10	1.1	U			MIT	53Ha66
•		4510	20			0.2	U				58Mc64
		4526	30			-0.4	U			Pit	64Co11
206 Pb $(n, \gamma)^{207}$ Pb	ave.	6737.78	0.10	6737.78	0.10	0.0	1	100	87 ²⁰⁷ Pb		average
$^{207}\text{Hg}(\beta^{-})^{207}\text{Tl}$		4815	150	4550	30	-1.8	U				81Jo.B *
$^{207}\text{Tl}(\beta^{-})^{207}\text{Pb}$		1431	8	1418	5	-1.7	1	46	45 ²⁰⁷ Tl		67Da10
$^{207}\mathrm{Bi}(\varepsilon)^{207}\mathrm{Pb}$		2392	10	2397.4	2.1	0.5	Ü	.0	11		Averag *
207 Po $(\beta^+)^{207}$ Bi		2907	10	2909	7	0.2	1	44	41 ²⁰⁷ Po		58Ar56 *
$^{207}\text{Rn}(\beta^+)^{207}\text{At}$		4617	70	4593	15	-0.3	Ü	77	41 10		75Ze.A *
$*^{207}\text{Hg}(\beta^-)^{207}\text{Tl}$	E _10			.6%, 7% to (7)				W			
								V			
* $*^{207}$ Bi $(\varepsilon)^{207}$ Pb				43, (7/2 ⁻ ,9/2,1							Ens112 **
	_		5) to 112	- level at 233	9.921 Ke	v from tw	o reterei	nces:			Ens112 **
*		563(0.014)		0.00: 2-							64De16 **
* 207p (0+)207p:		56(0.04); orig			1 .1						82Ta18 **
$*^{207}$ Po(β^+) ²⁰⁷ Bi				992.43 keV, a	nd other	E_{β^+}					Ens112 **
$*^{207}$ Rn(β^+) 207 At	$E_{\beta^+}=32$	250(70) to 7/2	level a	t 344.55 keV							Ens112 **
²⁰⁸ Hg-u		-14241	33	-14240	30	0.0	o			GS3 1.0	08Ch.A
115 4		-14241	33	11210	50	0.0	2			GS3 1.0	09Ch08
$^{208}\text{Pb} - ^{133}\text{Cs}_{1.564}$		124532.0	5.6	124525.1	1.2	-1.2	Ū			MA8 1.0	08We02
10- 031.564		124524.3	5.5	124323.1	1.2	0.1	U			MA8 1.0	14Bo26
²⁰⁸ Po−u		-18710	31	-18754.4	1.9	-1.4	U			GS2 1.0	05Li24
208 Fr $^{-133}$ Cs _{1.564}		144984	20	145011	13	1.4	0			MA8 1.0	12Bo.A
$\Gamma_1 = Cs_{1.564}$		145030	16	143011	13	-1.4				MA8 1.0	12Bo.A 12Bo.A
						-1.2 -0.1	o 1	95	95 ²⁰⁸ Fr		
²⁰⁸ Pb ³⁵ Cl- ²⁰⁶ Pb ³⁷ Cl		145012	13	5126.00	0.14			93	93 FI	MA8 1.0	14Bo26
PB CI PB CI		5136	2	5136.90	0.14	0.1	U			H17 4.0	64Mc07
		5136.23	1.08			0.2	U			H36 2.5	85De40
207E 208E 206E r		5136.93	0.41	0.40	(0	0.0	U			H42 1.5	93Si05
207 Fr $^{-208}$ Fr $_{.498}$ 206 Fr $_{.502}$		-890	60	-940	60	-0.4	U			P24 2.5	82Au01
$^{208}\text{Po}(\alpha)^{204}\text{Pb}$		5216.3	2.	5215.4	1.3	-0.5	2			Dba	69Go23 Z
		5214.0	3.			0.5	2				70Ra14 Z
208 204		5215.1	2.			0.1	2				89Ma05
208 At(α) 204 Bi		5750.6	3.	5751.1	2.2	0.2	3			Dba	69Go23 Z
200 204		5751.6	3.			-0.2	3			Dba	81Va27 Z
208 Rn $(\alpha)^{204}$ Po		6269.3	4.	6260.7	1.7	-2.1	4				55Mo69 Z
		6260.0	3.			0.2	4			Dba	71Go35 Z
		6257.5	5.			0.6	4				74Ho27
		6258.7	2.5			0.8	4			Lvn	93Wa04
208 Fr(α) 204 At		6778.3	5.	6785	24	0.1	_				67Va20 Z
		6767.7	5.			0.3	_				74Ho27 Z
		6767.7	5.			0.3	_			ORa	81Ri04 Z
		6739.8	51.0			0.9	_			GSa	15De22
	ave.	6771.1	2.9			0.3	1	23	19 ²⁰⁴ At		average
208 Ra(α) 204 Rn		7273.1	5.				2				67Va22 Z
208 Ac(α) 204 Fr		7720.8	15.	7720	50	0.0	5			Jya	94Le05
- 77		7769.7	40.	=		-1.0	5			JAa	96Ik01
		7707.5	21.4			0.3	5			Lza	14Ya19
$^{208}\text{Ac}^{m}(\alpha)^{204}\text{Fr}^{n}$		7892.1	20.	7899	14	0.3	6			Dbb	94An01
(00) 11		7910.4	20.	. 5,7,7		-0.6	6			Jya	94Le05
		7871.7	50.			0.5	6			JAa	96Ik01
		/0/1./	50.			0.5	U			J1 14	/UIKUI

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	atuc	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc
08 Th $(\alpha)^{204}$ Ra	8202.0	30.				6			Anv		10He25
16 Pb(t,p) 208 Pb	5622	30	5623.85	0.11	0.1	U			Ald		67Ha.A
07 Pb $(n,\gamma)^{208}$ Pb	7367.95	0.15	7367.87	0.05	-0.5	_			MMn		81Ke11
· (),	7367.96	0.10			-0.9	_					81Su.A
	7367.81	0.11			0.5	_			ILn		83Hu13
	7367.774				1.0	_					98Be19
	7367.92	0.16			-0.3	_			Bdn		06Fi.A
08 Pb $(\gamma,n)^{207}$ Pb	-7370	3	-7367.87	0.05	0.7	U			McM		79Ba06
08 Pb(d,t) 207 Pb	-1114	25	-1110.64	0.05	0.1	Ü			Pit		64Co11
$^{10}(0.7)^{10}$ Pb $(n,\gamma)^{208}$ Pb	ave. 7367.87	0.05	7367.87	0.05	0.0	1	100	87 ²⁰⁸ Pb	111		average
$^{108}\text{Tl}(\beta^{-})^{208}\text{Pb}$	4989.7	7.	4998.5	1.7	1.3	Ü	100	0, 10			48Ma29
11() 10	4997.7	10.	.,,,,,,	1.,	0.1	Ü					54El24
$^{08}\mathrm{Bi}(\varepsilon)^{208}\mathrm{Pb}$	2810	4	2878.4	2.0	17.1	В					59Mi19
$^{08}\text{Tl}(\beta^{-})^{208}\text{Pb}$	E_{β} =1792(7) 1800										Ens077
$^{11}(\beta)$ 10 $^{08}\text{Bi}(\varepsilon)^{208}\text{Pb}$	pK=0.24(0.01) to 3					1 KC V					Ens077
$Bi(\epsilon) = i b$	p K =0.24(0.01) to 2	ievei ai	2014.J22 KC	v, recare	uiaicu						Eliso//
$^{209}\text{Bi}-^{133}\text{Cs}_{1.571}$	128937.6	4.7	128933.5	1.5	-0.9	U			MA8	1.0	08We02
09 Fr $-^{226}$ Ra $_{.925}$	-27584	36	-27550	16	1.0	2			MA3		92Bo28
⁰⁹ Bi ³⁵ Cl- ²⁰⁷ Pb ³⁷ Cl	7444	3	7451.9	0.8	0.7	U			H17	4.0	64Mc07
Di Ci io Ci	7454.13	1.51	7431.7	0.0	-0.6	U			H36	2.5	85De40
⁰⁸ Fr- ²⁰⁹ Fr _{.498} ²⁰⁷ Fr _{.502}	720	60	639	16	-0.5	U			P24	2.5	82Au01
$^{09}\text{Bi}(\alpha)^{205}\text{Tl}$	3137.0	2.2	3137.3	0.8	0.1	1	12	10 ²⁰⁹ Bi	1 27	2.3	03De11
$^{09}\text{Po}(\alpha)^{205}\text{Pb}$	4974	5	4979.2	1.4	1.0	2	12	10 Ы			66Ha29
10(α) 10	4980.0	2.	4313.2	1.4	-0.4	2			Dba		69Go23
		2.							Doa		
09 At(α) 205 Bi	4979.3		5757.0	2.0	0.0	2	06	49 ²⁰⁵ Bi	DI		89Ma05
⁷ AI(α) ²⁰⁵ B1	5757.2	2.	5757.0	2.0	-0.1	1	96	49 ²⁶⁵ Bi	Dba		69Go23
9 Rn(α) 205 Po	6157.5	3.	6155.4	2.0	-0.7	_			Dba		71Go35
	6154.2	2.5			0.5	_	00	75 ²⁰⁵ Po	Lvn		93Wa04
205	ave. 6155.5	2.0			-0.1	1	99	/5 ²⁰³ Po			average
09 Fr(α) 205 At	6777.7	5.	6777	4	0.0	3					67Va20
00- 205-	6777.3	5.			0.0	3					74Ho27
09 Ra $(\alpha)^{205}$ Rn	7147.0	5.	7143.1	2.7	-0.8	2					67Va22
	7141	5			0.4	2			GSa		03He06
00 205	7142.0	4.			0.3	2					08Ha12
09 Ac(α) 205 Fr	7733.3	15.	7730	50	-0.1	3					68Va04
	7738.4	20.			-0.2	3			Dbb		94An01
	7729.2	15.			0.0	3			Jya		94Le05
	7728.2	40.			0.0	U			JAa		96Ik01
	7725.1	10.			0.1	3			GSa		00He17
	7723.0	23.			0.1	3			Lza		14Ya19
$^{09}\mathrm{Th}^m(\alpha)^{205}\mathrm{Ra}^m$	8238.0	50.	8273	23	0.7	7			JAa		96Ik01
	8281.8	25.			-0.3	7			Anv		10He25
07 Pb(t,p) 209 Pb	2814	12	2823.4	1.3	0.8	U			Ald		68Bj03
⁰⁹ Bi(p,t) ²⁰⁷ Bi	-5864.8	2.0	-5864.9	2.0	0.0	1	98	97 ²⁰⁷ Bi	MSU		76Be.B
⁰⁸ Pb(d,p) ²⁰⁹ Pb	1705	15	1712.8	1.3	0.5	U			MIT		64Sp12
(1)	1700	10			1.3	U					67Mu16
	1718	4			-1.3	1	11	11 ²⁰⁹ Pb	Pit		72Ko03
	1715	10			-0.2	U			Yal		74Ko20
09 Bi $(t, \alpha)^{208}$ Pb	16003	25	16014.8	0.8	0.5	Ü			Ald		68Bj01
$^{09}\text{Bi}(\gamma, n)^{208}\text{Bi}$	-7432	10	-7459.8	1.9	-2.8	U			Phi		60Ge01
DI(7,II) DI	-7 4 52 -7460	2	-7437.0	1.)	0.1	2			McM		79Ba06
⁰⁹ Bi(d,t) ²⁰⁸ Bi	-1216	30	-1202.5	1.9	0.4	U			Pit		64Co11
Di(U,t) DI	-1216 -1201	5	-1202.3	1.9	-0.4	2			ANL		64Er06
$^{09}\text{Pb}(\beta^-)^{209}\text{Bi}$			6110	1 1			01	87 ²⁰⁹ Pb	AINL		
	644.6	1.2	644.0	1.1	-0.5	1 D	91	0/ " PD			72Be44
09 Rn(β^{+}) 209 At	3928	40	3942	11	0.3	R	205	m . c 2221	E.7).		74Vy01
09 Po(α) 205 Pb	E_{α} =4876.8(5,Z) 48	882.8(2, Z)	respectively.	, to (20%	ground	state + 8	su% ²⁰³ Pb	" at 2.329 ke	V)		Ens044
$^{09}Po(\alpha)^{205}Pb$	E_{α} =4882.6(2.0) 46					2.329),	$3/2^{-}$ at 26:	2.8keV			Ens044
09 Ra(α) 205 Rn	$E_{\alpha} = 7003(10)$ to gr										03He06
$^{09}\mathrm{Th}^m(\alpha)^{205}\mathrm{Ra}^m$	the decay is from ²	⁰⁹ Th ison	ner, following	Ea_1-E	a_2-Ea_3-	-Ea ₄ cor	rrelations				FGK141
⁰⁹ Bi(p,t) ²⁰⁷ Bi	$Q - Q(^{208}\text{Pb}(p,t)) =$					7					AHW
⁰⁸ Pb(d,p) ²⁰⁹ Pb	$Q - Q(^{209}Bi(d,p)) =$			4 (0 4 1)	1 37						AHW

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	ce
$*^{209}$ Rn(β^+) 209 At	$E_{\beta^+} = 21$	60(40) to 7/2	t− level a	t 745.81 keV								Ens156	**
²¹⁰ Fr- ²²⁶ Ra _{.929}		-27198	24	-27183	16	0.6	1	46	46 ²¹⁰ Fr	MA3	1.0	92Bo28	
209 Fr $^{-210}$ Fr $_{.498}$ 208 Fr $_{.502}$		-770	50	-771	17	0.0	U			P24	2.5	82Au01	
$^{210}\text{Pb}(\alpha)^{206}\text{Hg}$		3792.4	20.				2					62Ka27	
$^{210}{\rm Bi}(\alpha)^{206}{\rm Tl}$		5042.8	2.	5036.5	0.8	-3.2	В			Orm		60Wa14	- >
		5037.3	1.1			-0.8	1	50	$33^{210}Bi$			76Tu.A	>
210 Po(α) 206 Pb		5407.53	0.07	5407.53	0.07	0.0	1	100	98 ²¹⁰ Po			73Go39	7
		5407.7	2.			-0.1	U					89Ma05	
210 At $(\alpha)^{206}$ Bi		5630.9	1.5	5631.2	1.0	0.2	3			Dba		69Go23	
210- 206-		5631.4	1.3			-0.2	3			Dba		81Va27	
210 Rn(α) 206 Po		6162.1	3.	6159.0	2.2	-1.0	3			D.I		55Mo69	
210 Fr(α) 206 At		6155.9	3.	((70	_	1.0	3			Dba		71Go35	
$\operatorname{Fr}(\alpha)^{200}\operatorname{At}$		6699.9	5.	6672	5	-5.7	В	97	54 ²¹⁰ Fr	CC-		67Va20	
210 Ra(α) 206 Rn		6672.3 7156.6	5.	7151	2	-0.1	1	97	34 - Fr	GSa		05Ku06 67Va22	
$Ka(\alpha)$		7130.0	5. 5	7151	3	$-1.1 \\ 0.8$	2 2			GSa		07 Va22	
		7146.4	5.			0.5	2			Jya		07Le14	
210 Ac(α) 206 Fr		7607.2	8.	7610	50	0.0	5			Jya		68Va04	
71c(w) 11		7607.2	10.	7010	30	0.0	5			GSa		00He17	
210 Th $(\alpha)^{206}$ Ra		8052.7	17.	8069	6	0.9	4			Jya		95Uu01	
()		7962.0	50.		-	2.1	F			JAa		96Ik01	×
		8071.0	6.			-0.3	4			Anv		10He25	
208 Pb(t,p) 210 Pb		628	12	640.7	0.9	1.1	U			Ald		68Bj03	
209 Bi $(n, \gamma)^{210}$ Bi		4604.5	0.3	4604.63	0.08	0.4	_					71Mo03	,
		4604.68	0.14			-0.3	_			MMn		83Ts01	Z
		4604.63	0.10			0.0	_			Bdn		06Fi.A	
²⁰⁹ Bi(d,p) ²¹⁰ Bi		2369	10	2380.07	0.08	1.1	U		200	MIT		64Sp12	
209 Bi $(n,\gamma)^{210}$ Bi	ave.	4604.64	0.08	4604.63	0.08	0.0	1	100	86 ²⁰⁹ Bi			average	
$^{210}\text{Tl}(\beta^{-})^{210}\text{Pb}$		5500	100	5482	12	-0.2	U		210-			64We06	
$^{210}\text{Pb}(\beta^{-})^{210}\text{Bi}$		63.5	0.5	63.5	0.5	0.0	1	100	97 ²¹⁰ Pb			67Ha03	
$^{210}\text{Bi}(\beta^{-})^{210}\text{Po}$		1160.5	1.5	1161.2	0.8	0.4	_					62Da03	
	ONO	1161.5 1161.0	1.5 1.1			-0.2 0.1	- 1	52	50 ²¹⁰ Bi			67Hs01	
210 At $(\varepsilon)^{210}$ Po	ave.	3870	30	3981	8	3.7	В	32	50 Bi			average 63Sc15	*
$*^{210}\text{Bi}(\alpha)^{206}\text{Tl}$	F468			to 2 ⁻ level at				V				Ens085	
$*^{210}\text{Bi}(\alpha)^{206}\text{Tl}$				0 Bi ^m at 271.31		1 at 50-	7.070 KC	*				Nub16b	
*				vel at 304.896								Ens085	
$*^{210}$ At(α) ²⁰⁶ Bi				.5,Z) to groun		+ at 59.89	7, 5 ⁺ at	82.818				Ens085	
$*^{210}$ At(α) ²⁰⁶ Bi				3,Z) to groun								Ens085	
$*^{210}$ Fr(α) ²⁰⁶ At				ground state a								Ens085	
$*^{210}$ Ra(α) 206 Rn	$E_{\alpha}=700$	3(10) to grou	ind state,	6447(5) to 57	4.9 level							03He06	**
$*^{210}$ Th $(\alpha)^{206}$ Ra	F:Low	energy; may	be escap	e								96Ik01	**
$*^{210}\text{Tl}(\beta^{-})^{210}\text{Pb}$				evel, and othe	r $E_{oldsymbol{eta}^-}$							Ens148	**
$*^{210}$ Pb $(\beta^{-})^{210}$ Bi	$E_{\beta}^{'} = 17$	$0.0(0.5)$ to 0^{-}	level at 4	16.5390 keV	,							Ens148	**
$*^{210}$ At $(\varepsilon)^{210}$ Po	pK=0.46	6(0.10) to (6)	- level a	t 3727.34 keV								Ens148	**
²¹¹ Tl—u		-6525	45				2			GS3	1.0	08Ch.A	
211 Fr $^{-133}$ Cs _{1.586}		145517	15	145508	13	-0.6	1	74	74 ²¹¹ Fr	MA8	1.0	09Ko35	
²¹¹ Fr ²²⁶ Ra 934		-28200	25	-28176	13	1.0	1	27	26 ²¹¹ Fr	MA3	1.0	92Bo28	
211 Ra $^{-133}$ Cs _{1.586}		150846.4	8.5		-		2	•		MA8	1.0	09Ko35	
$^{211}\text{Po}^{m} - ^{211}\text{Po}$		1580	129	1570	5	0.0	Ū			9	2.5	15Di03	
207 Fr $^{-211}$ Fr $_{.327}$ 205 Fr $_{.673}$ 208 Fr $^{-211}$ Fr $_{.394}$ 206 Fr $_{.606}$		-930	100	-609	19	1.3	U			P24	2.5	82Au01	

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²¹⁰ Fr- ²¹¹ Fr _{.498} ²⁰⁹ Fr _{.502}		580	50	621	18	0.3	U			P24	2.5	82Au01
$^{211}\text{Bi}(\alpha)^{207}\text{Tl}$		6749.5	0.7	6750.4	0.5	1.2	_					61Ry02
$BI(\omega)$ II		6751.1	0.6	0750.1	0.5	-1.2	_					71Gr17
	ave.	6750.4	0.5			-0.1	1	100	57 ²¹¹ Bi			average
211 Po(α) 207 Pb	avc.	7594.5	0.5			-0.1	2	100	37 Bi	Orm		62Wa18
F0(α) F0		7594.3	3.	7594.6	0.5	0.1	U			Dba		69Go23
		7600.6		7394.0	0.5					Doa		
			2.			-3.0	В					85La17
11 D - m (ov) 207 DI-		7586.0	15.3			0.6	U			D1		15Di03
211 Po $^m(\alpha)^{207}$ Pb		9057.1	5.1	0057	~	0.5	2			Bka		82Bo04
		9049.0	15.	9057	5	0.5	U					89Ku08
211		9043.0	15.			0.9	U					15Di03
211 At(α) 207 Bi		5979.4	2.	5982.4	1.3	1.5	2			Dba		69Go23
		5981.6	3.			0.3	2			Bka		82Bo04
207		5985.9	2.			-1.7	2					85La17
211 Rn $(\alpha)^{207}$ Po		5967.9	2.	5965.5	1.4	-1.2	2					55Mo69
		5963.1	2.			1.2	2			Dba		71Go35
211 Fr(α) 207 At		6660.2	5.1	6662	3	0.4	2					67Va20
		6663.5	4.			-0.3	2			GSa		05Ku06
211 Ra(α) 207 Rn		7045.3	5.	7042	3	-0.7	3					67Va22
* *		7040	5			0.4	3			GSa		03He06
		7039.7	6.			0.4	3			Jya		07Le14
211 Ac(α) 207 Fr		7624.8	8.	7620	50	-0.1	2			-)		68Va04
71c(a) 11		7616.7	10.	7020	30	0.1	2			GSa		00He17
$^{211}\text{Th}(\alpha)^{207}\text{Ra}$		7942.9	14.	7940	50	0.0	5					95Uu01
$III(\alpha)$ Ka				7940	30					Jya		
211 pt (0=)211 p:		7930.6	30.6	1266	~	0.2	5	4.77	43 ²¹¹ Bi	Lza		15Ya13
$^{211}\text{Pb}(\beta^{-})^{211}\text{Bi}$		1378	8	1366	5	-1.5	1	47	43 ²¹¹ B1			65Co06
$^{211}\text{Po}^{m}(\alpha)^{207}\text{Pb}$		75(15) to 13/2										Ens112
$^{211}\text{Po}^{m}(\alpha)^{207}\text{Pb}$		69(15) to 13/2		1633.356 keV								Ens112
211 At(α) 207 Bi	Recalib	orated as in ref	erence									91Ry01
211 Ra $(lpha)^{207}$ Rn	Averag	e of E_{α} =6907	(3) and sev	erai branches	to known	ieveis						03He06
$^{212}\text{Bi}^n$ -u		-7127	32				2			GS3	1.0	08Ch.A
212Er 133Co		146938	10	146935	9	-0.3	1	89	89 ²¹² Fr		1.0	09Ko35
212Fr-226Ra.938 209Fr-212Fr.563 206Frx 212Fr 205Fr		-27631	28	-27608	10	0.8	1	12	11 ²¹² Fr	MA3		92Bo28
209Er 212Er 205Er		-1270	70	-1218	16	0.3	Ü	12	11 11	P24	2.5	82Au01
206E-x 212E- 205E-												
FI FI 139 FI 861		340	130	470	100	0.4	U			P24	2.5	82Au01
207 Fr $^{-212}$ Fr $_{.163}$ 206 Fr $_{.837}$		-1150	70	-1320	90	-0.9	U			P24	2.5	82Au01
$^{12}\mathrm{Bi}(\alpha)^{208}\mathrm{Tl}$		6207.12	0.04	6207.262	0.028	3.5	В			BIP		61Ry02
		6207.09	0.08			2.1	O			BIP		69Gr28
		6207.262	0.028				2			BIP		72Go.A
$^{212}\mathrm{Bi}^m(\alpha)^{208}\mathrm{Tl}$		6458.1	30.				3					78Ba44
212 Po(α) 208 Pb		8953.6	0.8	8954.20	0.11	0.7	U					61Ry02
		8953.85	0.31			1.1	_					71De52
		8953.3	0.6			1.5	U					71Gr17
		8954.25	0.12			-0.5	_					74Hu15
	ave.	8954.20	0.11			0.0	1	100	91 ²¹² Po			average
$^{212}\text{Po}^{m}(\alpha)^{208}\text{Pb}$	avc.	11874.6	20.	11877	4	0.1	2	100	<i>)</i> 1 10			62Pe15
10 (a) 10		11859.3	15.	110//	7	1.2						75Fr.B
		11884.8				-0.7	0					75F1.B 76Fr.A
			10.2				2			CC-		
112 200		11875.6	5.1	5015.1	0.6	0.3	2			GSa		12Ho12
		7829.0	9.	7817.1	0.6	-1.3	U					70Re02
212 At(α) 208 Bi			0.6				3					76Fr.A
212 At(α) 208 Bi		7817.0				1 1	T T					96Li37
. ,		7828.0	10.			-1.1	U					
. ,		7828.0 8049.3		8040.0	0.6	-1.1 -0.9	U					68Va18
. ,		7828.0 8049.3 8054.3	10.	8040.0	0.6							70Re02
		7828.0 8049.3	10. 10.	8040.0	0.6	-0.9	U					
. ,		7828.0 8049.3 8054.3	10. 10. 9.	8040.0	0.6	-0.9	U U					70Re02
$^{212}\mathrm{At}^m(lpha)^{208}\mathrm{Bi}$		7828.0 8049.3 8054.3 8040.00 8051.2	10. 10. 9. 0.61 10.			-0.9 -1.6	U U 3 U					70Re02 76Fr.A 96Li37
$^{212}\mathrm{At}^m(lpha)^{208}\mathrm{Bi}$		7828.0 8049.3 8054.3 8040.00 8051.2 6392.3	10. 10. 9. 0.61 10. 5.	8040.0 6385.1	2.6	-0.9 -1.6 -1.1 -1.4	U U 3 U 3			Dha		70Re02 76Fr.A 96Li37 55Mo69
212 At(α) 208 Bi 212 At m (α) 208 Bi 212 Rn(α) 208 Po 212 Fr(α) 208 At		7828.0 8049.3 8054.3 8040.00 8051.2 6392.3 6382.5	10. 10. 9. 0.61 10. 5. 3.	6385.1	2.6	-0.9 -1.6 -1.1 -1.4 0.9	U 3 U 3 3			Dba		70Re02 76Fr.A 96Li37 55Mo69 71Go35
$^{212}\mathrm{At}^m(lpha)^{208}\mathrm{Bi}$		7828.0 8049.3 8054.3 8040.00 8051.2 6392.3	10. 10. 9. 0.61 10. 5.			-0.9 -1.6 -1.1 -1.4	U U 3 U 3			Dba Dba		70Re02 76Fr.A 96Li37 55Mo69

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjuste	ed value	v_i	Dg	Signf.	Main infl.	Lab	F	Referen	ce
212 Fr(α) 208 At		(527.5	2	(520.0	1.6	0.5	2			D1		92D - 04	
212 Fr(α) 200 At		6527.5	3.	6529.0	1.6	0.5	2			Bka		82Bo04	*
212 Ra(α) 208 Rn		6529.5	4.	7021.7	1.7	-0.1	2			GSa		05Ku06	-
212 Ra(α) 233 Rn		7030.0	5.	7031.7	1.7	0.3	5					67Va22	
		7034.0	5.			-0.4	5			D1		74Ho27	
		7032.2	2.			-0.3	5			Bka		82Bo04	
		7028	5			0.7	5			GSa		03He06	*
212 208 —		7040	24			-0.3	U			Lza		14Ya19	
212 Ac(α) 208 Fr		7521.2	8.	7520	50	-0.1	2			-		68Va04	
		7515.1	10.			0.1	2			GSa		00He17	
212		7514.0	18.			0.1	2			Lza		14Ya19	
212 Th $(\alpha)^{208}$ Ra		7952.3	10.	7958	5	0.6	3					80Ve01	
		7959.5	5.			-0.3	3			Anv		10He25	
212 200		7980.8	20.4			-1.1	U			GSa		15De22	
212 Pa $(\alpha)^{208}$ Ac		8429.4	30.	8420	50	-0.3	6			JAa		97Mi03	
		8408.9	20.			0.1	6			Lza		14Ya19	
210 Pb(t,p) 212 Pb		515	25	481.2	2.1	-1.4	U					71El05	
$^{212}\text{Pb}(\beta^{-})^{212}\text{Bi}$		569.3	2.5	569.1	1.8	-0.1	_					48Ma30	:
		576.6	5.			-1.5	_					58Se71	:
	ave.	570.8	2.2			-0.7	1	67	34 ²¹² Bi			average	
$^{212}\text{Bi}(\beta^{-})^{212}\text{Po}$		2256	3	2251.5	1.7	-1.5	_					48Fe09	
(,)		2250.5	2.5			0.4	_					48Ma30	
	ave.	2252.8	1.9			-0.6	1	75	66 ²¹² Bi			average	
$^{212}\text{Bi}(\alpha)^{208}\text{Tl}$.57(0.07,Z)	to ground				00 Bi			Ens077	*
$^{212}\text{Bi}(\alpha)^{208}\text{Tl}$				50.837(0.02					keV			72Go.A	
e^{212} At $(\alpha)^{208}$ Bi	Original	F _7670(7,Z), 00	oration ²¹¹ Po	. 7449(1)	now 7450	2(0.5) 1	1 at 33.030	KC V			AHW	*
212 At(α) 208 Bi				calibration 2									
	-						450.5(0.	3)				05Ma.A	
e^{212} At $(\alpha)^{208}$ Bi				ite, 7618(10) to 63.3	ievei						96Li37	*
:		timated by										GAu	*
212	0 1	E 5000						* 7					
		$E_{\alpha} = 7900($										GAu	
e^{212} At ^m $(\alpha)^{208}$ Bi	Original .	$E_{\alpha} = 7887.$	7(0.2);	calibration ²	¹¹ Po 745	0(2), now 7						GAu	
$*^{212}$ At ^m $(\alpha)^{208}$ Bi	Original E_{α} =7897	$E_{\alpha} = 7887.$ 7(10) to great	7(0.2); cound sta	calibration ² ate, 7837(10	¹¹ Po 745	0(2), now 7						GAu 96Li37	*
$e^{212} At^m(\alpha)^{208} Bi$ $e^{212} At^m(\alpha)^{208} Bi$	Original E_{α} =7897 error est	E_{α} =7887.7(10) to greatinated by	7(0.2); cound start the eva	calibration ² nte, 7837(10 nluators	11Po 7450) to 63.3	0(2), now 7- level						GAu 96Li37 GAu	*:
$e^{212} At^m(\alpha)^{208} Bi$ $e^{212} At^m(\alpha)^{208} Bi$ $e^{212} Fr(\alpha)^{208} At$	Original E_{α} =7897 error est	E_{α} =7887.7(10) to greatinated by	7(0.2); cound start the eva	calibration ² ate, 7837(10	11Po 7450) to 63.3	0(2), now 7- level						GAu 96Li37 GAu 91Ry01	* * *
$R^{212}At^{m}(\alpha)^{208}Bi$ $R^{212}At^{m}(\alpha)^{208}Bi$ $R^{212}Fr(\alpha)^{208}At$ $R^{212}Fa(\alpha)^{208}Rn$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898	E_{α} =7887. 7(10) to grottimated by 1(3) (recali	7(0.2); cound started a the evaluated a tund stated	calibration ² ate, 7837(10 aluators as in reference, 6269(5) to	11 Po 7456) to 63.3 ce) to 63. o 635.1 le	0(2), now 7- level 70 level evel	450.3(0.					GAu 96Li37 GAu 91Ry01 03He06	*: *: *: *:
212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ At 212 Fr(α) ²⁰⁸ At 212 Ra(α) ²⁰⁸ Rn 212 Pb(β ⁻) ²¹² Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898	E_{α} =7887. 7(10) to grottimated by 1(3) (recali	7(0.2); cound started a the evaluated a tund stated	calibration ² ate, 7837(10 aluators as in referen	11 Po 7456) to 63.3 ce) to 63. o 635.1 le	0(2), now 7- level 70 level evel	450.3(0.					GAu 96Li37 GAu 91Ry01	**
212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 8 212 Fr(α) ²⁰⁸ At 212 Ra(α) ²⁰⁸ Rn 212 Pb(β ⁻) ²¹² Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898	E_{α} =7887. 7(10) to greatimated by 1(3) (recali 3(5) to group 0.7(2.5) 33	7(0.2); cound state the evaluation of the evalua	calibration ² tet, 7837(10 caluators as in reference, 6269(5) to pectively to	11Po 745() to 63.3 (ce) to 63. (ce) to 63. 1 le 0 ⁻ level	0(2), now 7- level 70 level evel at 238.632	450.3(0. keV			GS3	1.0	GAu 96Li37 GAu 91Ry01 03He06 Ens053	** ** ** **
c^{212} At ^m (α) ²⁰⁸ Bi c^{212} At ^m (α) ²⁰⁸ Bi c^{212} Fr(α) ²⁰⁸ At c^{212} Fr(α) ²⁰⁸ Rn c^{212} Pb(β ⁻) ²¹² Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898	E_{α} =7887. 7(10) to great imated by 1(3) (recali 8(5) to great).7(2.5) 33	7(0.2); cound star the evalubrated a und state 8(5) res	calibration ² ate, 7837(10 aluators as in reference, 6269(5) to	11 Po 7456) to 63.3 ce) to 63. o 635.1 le	0(2), now 7- level 70 level evel	450.3(0. keV			GS3 GS3	1.0	GAu 96Li37 GAu 91Ry01 03He06 Ens053	** ** ** **
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to gratimated by I(3) (recalis) 3(5) to grow 0.7(2.5) 33	7(0.2); cound start the evaluated a state 8(5) res	calibration ² ate, 7837(10 aluators as in reference, 6269(5) to pectively to	11Po 745() to 63.3 (ce) to 63. (ce) to 63. 1 le 0 level	0(2), now 7- level .70 level evel at 238.632	450.3(0. keV o 2	5)	55 ²¹³ Er	GS3	1.0	GAu 96Li37 GAu 91Ry01 03He06 Ens053	*: *: *: *:
$^{212}\text{At}^{m}(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^{m}(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^{-})^{212}\text{Bi}$ $^{213}\text{Tl}\text{-u}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot) 0.7(2.5) 33 1893 1915 147649.1	7(0.2); oound star the evan ibrated a und state 8(5) res	calibration ² ate, 7837(10 aluators as in reference, 6269(5) to pectively to	11Po 745() to 63.3 (ce) to 63.3 (ce) to 63.1 le 0 - level	0(2), now 7/2 level .70 level evel at 238.632 0.3	450.3(0. keV 0 2 1	55)	55 ²¹³ Fr	GS3 MA8	1.0 1.0	GAu 96Li37 GAu 91Ry01 03He06 Ens053	* * * *
212 At $^{m}(\alpha)^{208}$ Bi 212 At $^{m}(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^{-})^{212}$ Bi 213 Tl $-$ u 213 Fr $^{-133}$ Cs $_{1.602}$ 213 Ra $^{-133}$ Cs $_{1.602}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833	7(0.2); oound star of the evan obrated a und state 8(5) res 65 29 7.4 12	calibration ² ate, 7837(10 duators as in reference, 6269(5) to pectively to 1915 147652 151837	11Po 745() to 63.3 (ce) to 63.3 (ce) to 63.1 le 0 level 29 5 11	0(2), now 7- level .70 level evel at 238.632 0.3 0.4 0.3	450.3(0. keV 0 2 1 1	5)	55 ²¹³ Fr 77 ²¹³ Ra	GS3 MA8 SH1	1.0 1.0 1.0	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04	* * * * *
212 At $^{m}(\alpha)^{208}$ Bi 212 At $^{m}(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^{-})^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs $_{1.602}$ 213 Ra $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $^{-213}$ Fr $^{-214}$ Fr $^{-214}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540	7(0.2); ound state the evaluation that the evaluation that the state and state 8(5) res 65 29 7.4 12 330	calibration ² ate, 7837(10 aluators as in reference, 6269(5) to pectively to 1915 147652 151837 -2104	11 Po 745() to 63.3 ce) to 63.3 ce) to 63.5 le 0 635.1 le 0 level 29 5 11 24	0(2), now 7- level .70 level evel at 238.632 0.3 0.4 0.3 0.5	450.3(0. keV 0 2 1 1 U	55)		GS3 MA8 SH1 P24	1.0 1.0 1.0 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01	* * * * * *
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$ ^{213}Tl —u $^{213}\text{Fr}^{-133}\text{Cs}_{1.602}$ $^{207}\text{Fr}^{-213}\text{Fr}_{.324}$ $^{204}\text{Fr}_{.676}$ $^{208}\text{Fr}^{-213}\text{Fr}_{.279}$ $^{206}\text{Fr}^x_{.271}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1915 147649.1 151833 -2540 -700	7(0.2); cound state the evaluation that the evaluation that the state 8(5) res 65 29 7.4 12 330 60	calibration ² ate, 7837(10 duators as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850	11 Po 745() to 63.3 ce) to 63.3 ce) to 63.5 le 0 e 635.1 le 0 e level 29 5 11 24 80	0(2), now 7/2 level 270 level 238.632 0.3 0.4 0.3 0.5 -1.0	450.3(0. keV o 2 1 1 U	55)		GS3 MA8 SH1 P24 P24	1.0 1.0 1.0 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01	* * * * *
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$ ^{213}Tl —u $^{213}\text{Fr}^{-133}\text{Cs}_{1.602}$ $^{207}\text{Fr}^{-213}\text{Fr}_{1.324}$ $^{204}\text{Fr}_{1.721}$ $^{206}\text{Fr}^{-7}_{1.721}$ $^{209}\text{Fr}^{-213}\text{Fr}_{1.327}$ $^{207}\text{Fr}_{1.673}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grotimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670	7(0.2); cound star the evaluate at the evaluation state 8(5) res 65 29 7.4 12 330 60 60	ealibration ² tte, 7837(10 tluators us in referen e, 6269(5) tr pectively to 1915 147652 151837 -2104 -850 -694	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7- level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2	450.3(0. keV 0 2 1 1 U U	55)		GS3 MA8 SH1 P24 P24 P24	1.0 1.0 1.0 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01	* * * * *
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Pa}(\beta^-)^{212}\text{Bi}$ ^{213}Tl —u $^{213}\text{Fr}_{-133}^{-133}\text{Cs}_{1.602}$ $^{213}\text{Ra}_{-133}^{-133}\text{Cs}_{1.602}$ $^{207}\text{Fr}_{-213}^{-213}\text{Fr}_{.324}^{-204}\text{Fr}_{.676}$ $^{208}\text{Fr}_{-213}^{-213}\text{Fr}_{.272}^{-207}\text{Fr}_{.673}^{-721}$ $^{209}\text{Fr}_{-213}^{-213}\text{Fr}_{.327}^{-207}\text{Fr}_{.673}^{-732}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grotimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980	7(0.2); cound star the evaluation that a the	ealibration ² tte, 7837(10 tluators us in referen e, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7devel 70 level 270 level 270 level 270 at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3	450.3(0. keV o 2 1 U U U U	55)		GS3 MA8 SH1 P24 P24 P24 P24	1.0 1.0 1.0 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01	* * * * *
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$ $^{213}\text{Tl}-\text{u}$ $^{213}\text{Fr}^{133}\text{Cs}_{1.602}$ $^{207}\text{Fr}^{213}\text{Fr}_{1.324}$ $^{204}\text{Fr}676$ $^{208}\text{Fr}^{213}\text{Fr}_{1.327}$ $^{206}\text{Fr}^{7.21}$ $^{209}\text{Fr}^{213}\text{Fr}_{1.327}$ $^{209}\text{Fr}^{213}\text{Fr}_{1.327}$ $^{208}\text{Fr}804$ $^{211}\text{Fr}^{213}\text{Fr}_{1.36}$ $^{208}\text{Fr}804$ $^{211}\text{Fr}^{213}\text{Fr}_{1.30}$ $^{210}\text{Fr}670$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grotimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670	7(0.2); cound star the evaluate at the evaluation state 8(5) res 65 29 7.4 12 330 60 60	ealibration ² tte, 7837(10 tluators us in referen e, 6269(5) tr pectively to 1915 147652 151837 -2104 -850 -694	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7- level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2	450.3(0. keV 0 2 1 1 U U	55)		GS3 MA8 SH1 P24 P24 P24	1.0 1.0 1.0 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr(α) 208 At 212 Ra(α) 208 Rn 212 Pb(β -) 212 Bi 213 Tl-u 213 Fr- 133 Cs _{1.602} 207 Fr- 213 Fr. 214 204Fr.676 208 Fr- 213 Fr.279 206 Fr. 7 721 209 Fr- 213 Fr.327 207 Fr.673 209 Fr- 213 Fr.327 208 Fr.804 211 Fr- 213 Fr.330 210 Fr.670 212 Fr- 213 Fr.330 211 Fr.502	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grotimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980	7(0.2); cound star the evaluation that a the	ealibration ² tte, 7837(10 tluators us in referen e, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7devel 70 level 270 level 270 level 270 at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3	450.3(0. keV o 2 1 1 U U U U U	55)		GS3 MA8 SH1 P24 P24 P24 P24	1.0 1.0 1.0 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01	* * * * *
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$ ^{213}Tl —u $^{213}\text{Fr}_{-133}^{-133}\text{Cs}_{1.602}$ $^{213}\text{Ra}_{-133}^{-133}\text{Cs}_{1.602}$ $^{207}\text{Fr}_{-213}^{-213}\text{Fr}_{.324}^{-204}\text{Fr}_{.676}$ $^{208}\text{Fr}_{-213}^{-213}\text{Fr}_{.279}^{-206}\text{Fr}_{.721}^{7}$ $^{209}\text{Fr}_{-213}^{-213}\text{Fr}_{.327}^{-207}\text{Fr}_{.673}^{-673}$ $^{209}\text{Fr}_{-213}^{-213}\text{Fr}_{.326}^{-210}\text{Fr}_{.670}^{-670}$ $^{212}\text{Fr}_{-213}^{-213}\text{Fr}_{.336}^{-210}\text{Fr}_{.670}^{-70}$ $^{212}\text{Fr}_{-213}^{-213}\text{Fr}_{.338}^{-211}\text{Fr}_{.502}^{-213}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270	7(0.2); cound state the evaluation at the evalua	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7devel 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5	450.3(0. keV	55)		GS3 MA8 SH1 P24 P24 P24 P24 P24	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01	*: *: *: *:
$^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{At}^m(\alpha)^{208}\text{Bi}$ $^{212}\text{Fr}(\alpha)^{208}\text{At}$ $^{212}\text{Ra}(\alpha)^{208}\text{Rn}$ $^{212}\text{Pb}(\beta^-)^{212}\text{Bi}$ ^{213}Tl —u $^{213}\text{Fr}_{-133}^{-133}\text{Cs}_{1.602}$ $^{207}\text{Fr}_{-213}^{-213}\text{Fr}_{1.324}^{-204}\text{Fr}_{.676}$ $^{208}\text{Fr}_{-213}^{-213}\text{Fr}_{.279}^{-206}\text{Fr}_{.721}^{-7}$ $^{209}\text{Fr}_{-213}^{-213}\text{Fr}_{.329}^{-207}\text{Fr}_{.673}^{-673}$ $^{209}\text{Fr}_{-213}^{-213}\text{Fr}_{.329}^{-210}\text{Fr}_{.670}^{-673}$ $^{211}\text{Fr}_{-213}^{-213}\text{Fr}_{.339}^{-210}\text{Fr}_{.670}^{-670}$ $^{212}\text{Fr}_{-213}^{-213}\text{Fr}_{.339}^{-213}\text{Fr}_{.398}^{-211}\text{Fr}_{.502}^{-213}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grot timated by 1(3) (recali 8(5) to grot 0.7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6	7(0.2); cound state the evaluation of the evalua	ealibration ² tte, 7837(10 tluators us in referen e, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (co) to 63.5 (co) to 63.	0(2), now 7- level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9	450.3(0. keV 0 2 1 U U U U U 2	55)		GS3 MA8 SH1 P24 P24 P24 P24 P24 P24	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl $-$ u 213 Fr $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $_{1.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.279}$ 206 Fr $_{.721}$ 209 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.326}$ 210 Fr $_{.676}$ 212 Fr $^{-213}$ Fr $_{.326}$ 210 Fr $_{.670}$ 212 Fr $^{-213}$ Fr $_{.498}$ 211 Fr $_{.502}$ 213 Bi $(\alpha)^{209}$ Tl	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grot timated by 1(3) (recali 8(5) to grot 0.7(2.5) 33 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7	7(0.2); cound state the evaluation that a the evaluation that a state 8(5) res 65 29 7.4 12 330 60 60 60 60 50 6. 4.	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6	450.3(0. keV 0 2 1 1 U U U U U 2 2	55)		GS3 MA8 SH1 P24 P24 P24 P24 P24	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01	* * * * *
212 At ^m (α) 208 Bi 212 At ^m (α) 208 Bi 212 Fr(α) 208 At 212 Ra(α) 208 Rn 212 Pb(β $^{-}$) 212 Bi 213 Tl $^{-}$ u 213 Fr $^{-133}$ Cs _{1.602} 207 Fr $^{-213}$ Fr. ₃₂₄ 204 Fr. ₆₇₆ 208 Fr $^{-213}$ Fr. ₂₇₉ 206 Fr, 72 1 209 Fr $^{-213}$ Fr. ₃₂₇ 207 Fr. ₆₇₃ 209 Fr $^{-213}$ Fr. ₃₂₈ 208 Fr. ₈₀₄ 211 Fr $^{-213}$ Fr. ₃₃₀ 210 Fr. ₆₇₀ 212 Fr $^{-213}$ Fr. ₃₉₈ 211 Fr. ₅₀₂ 213 Bi(α) 209 Tl	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1	7(0.2); cound state the evaluation that a the evaluation that a the evaluation that a the evaluation that a the evaluation at the evaluati	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2	450.3(0. keV 0 2 1 1 U U U U U 2 2 -	55)		GS3 MA8 SH1 P24 P24 P24 P24 P24 P24 Gea	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20	* * * * *
212 At ^m (α) 208 Bi 212 At ^m (α) 208 Bi 212 Fr(α) 208 At 212 Ra(α) 208 Rn 212 Pb(β $^{-}$) 212 Bi 213 Tl $^{-}$ u 213 Fr $^{-133}$ Cs _{1.602} 207 Fr $^{-213}$ Fr. ₃₂₄ 204 Fr. ₆₇₆ 208 Fr $^{-213}$ Fr. ₂₇₉ 206 Fr, 72 1 209 Fr $^{-213}$ Fr. ₃₂₇ 207 Fr. ₆₇₃ 209 Fr $^{-213}$ Fr. ₃₂₈ 208 Fr. ₈₀₄ 211 Fr $^{-213}$ Fr. ₃₃₀ 210 Fr. ₆₇₀ 212 Fr $^{-213}$ Fr. ₃₉₈ 211 Fr. ₅₀₂ 213 Bi(α) 209 Tl	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5	7(0.2); cound state the evaluation that a the evaluation that a the evaluation that a the evaluation that a the evaluation at the evaluati	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 70 level 270 leve	450.3(0. keV o 2 1 U U U U U 2 2	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 P24	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs _{1.602} 213 Ra $^{-133}$ Cs _{1.602} 207 Fr $^{-213}$ Fr $^{.324}$ 204 Fr $^{.676}$ 208 Fr $^{-213}$ Fr $^{.327}$ 207 Fr $^{.676}$ 208 Fr $^{-213}$ Fr $^{.327}$ 207 Fr $^{.673}$ 209 Fr $^{-213}$ Fr $^{.330}$ 210 Fr $^{.670}$ 211 Fr $^{-213}$ Fr $^{.330}$ 210 Fr $^{.670}$ 212 Fr $^{-213}$ Fr $^{.498}$ 211 Fr $^{.502}$ 213 Bi $(\alpha)^{209}$ Pb	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7	7(0.2); cound state the evaluation at the evalua	calibration ² tte, 7837(10 tluators as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 70 level 270 level 270 level 270 level 270 level 270 level 270 level 271 level 272 level 273 level 274 level 275 leve	450.3(0. keV o 2 1 U U U U U 2 2 - 1	55)		GS3 MA8 SH1 P24 P24 P24 P24 P24 P24 Gea	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average	* * * * *
212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 Fr(α) ²⁰⁸ At 212 Ra(α) ²⁰⁸ Rn 212 Pb(β ⁻) ²¹² Bi 213 Tl-u 213 Fr- 133 Cs _{1.602} 207 Fr- 213 Fr. 324 204 Fr. 676 208 Fr- 213 Fr. 327 206 Fr. 72 1 209 Fr- 213 Fr. 327 207 Fr. 673 209 Fr- 213 Fr. 330 210 Fr. 670 211 Fr- 213 Fr. 330 210 Fr. 670 212 Fr- 213 Fr. 330 210 Fr. 502 213 Bi(α) ²⁰⁹ Tl 213 Po(α) ²⁰⁹ Pb	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. $7(10)$ to grottimated by $1(3)$ (recali $3(5)$ to grot). $7(2.5)$ 33 1893 1915 147649.1 151833 -2540 -700 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2	7(0.2); cound state the evaluation at the evalua	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 70 level 270 level 281 at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2 -0.1 -0.2 0.0	450.3(0. keV o 2 1 U U U U U 2 2 - 1 2	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 P24 Bka	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.326}$ 208 Fr $_{.804}$ 211 Fr $^{-213}$ Fr $_{.330}$ 210 Fr $_{.670}$ 212 Fr $^{-213}$ Fr $_{.498}$ 211 Fr $_{.502}$ 213 Bi $(\alpha)^{209}$ Pb 213 At $(\alpha)^{209}$ Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. $7(10)$ to grottimated by $1(3)$ (recali $3(5)$ to grot) $1(3)$	7(0.2); cound state the evaluation at the evalua	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level 270 level 281 at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2 -0.1 -0.2 0.0 0.	450.3(0. keV o 2 1 1 U U U U U 2 2 1 2 2	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 P24 Gea	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.326}$ 208 Fr $_{.804}$ 211 Fr $^{-213}$ Fr $_{.330}$ 210 Fr $_{.670}$ 212 Fr $^{-213}$ Fr $_{.498}$ 211 Fr $_{.502}$ 213 Bi $(\alpha)^{209}$ Pb 213 At $(\alpha)^{209}$ Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. $7(10)$ to grottimated by $1(3)$ (recalif 3(5) to grot 0.7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2 9254.2 8245.1	7(0.2); cound state the evaluation at the evalua	calibration ² tte, 7837(10 tluators as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 7450) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 270 le	450.3(0. keV o 2 1 1 U U U U U 2 2 1 2 2 3	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 P24 Bka	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20	* * * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.326}$ 208 Fr $_{.804}$ 211 Fr $^{-213}$ Fr $_{.330}$ 210 Fr $_{.670}$ 212 Fr $^{-213}$ Fr $_{.498}$ 211 Fr $_{.502}$ 213 Bi $(\alpha)^{209}$ Pb 213 At $(\alpha)^{209}$ Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. $7(10)$ to grottimated by $1(3)$ (recalif 3(5) to grot 0.7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2 9254.2 8245.1 8240.0	7(0.2); cound state the evaluation at the evaluation state 8(5) res 65 29 7.4 12 330 60 60 60 60 50 6. 4. 5. 3. 2.6 12. 5. 8.	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 7/4 level 7/4 level 1/4 238.632 1/4 0.3 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	450.3(0. keV o 2 1 1 U U U U 2 2 - 1 2 2 3 U	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13	* * * * *
212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 At $^m(\alpha)^{208}$ Bi 212 Fr $(\alpha)^{208}$ At 212 Ra $(\alpha)^{208}$ Rn 212 Pb $(\beta^-)^{212}$ Bi 213 Tl-u 213 Fr $^{-133}$ Cs $_{1.602}$ 207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.324}$ 204 Fr $_{.676}$ 208 Fr $^{-213}$ Fr $_{.327}$ 207 Fr $_{.673}$ 209 Fr $^{-213}$ Fr $_{.326}$ 208 Fr $_{.804}$ 211 Fr $^{-213}$ Fr $_{.330}$ 210 Fr $_{.670}$ 212 Fr $^{-213}$ Fr $_{.498}$ 211 Fr $_{.502}$ 213 Bi $(\alpha)^{209}$ Pb 213 At $(\alpha)^{209}$ Bi	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.5 9254.2 8245.1 8240.0 8242	7(0.2); cound state the evaluation that is the evaluation that is the evaluation that is the evaluation that is the evaluation of the eval	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 270 level 270 level 270 level 271 level 272 level 273 level 274 level 275 level 276 level 277 le	450.3(0. keV o 2 1 1 U U U U U 2 2 - 1 2 2 3 U U	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13 00He17	* * * * *
212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 Fr(α) ²⁰⁸ At 212 Ra(α) ²⁰⁸ Rn 212 Pb(β -) ²¹² Bi 213 Tl-u 213 Fr- 133 Cs _{1.602} 207 Fr- 213 Fr _{.324} 204 Fr _{.676} 208 Fr- 213 Fr _{.327} 207 Fr _{.673} 209 Fr- 213 Fr _{.327} 207 Fr _{.673} 209 Fr- 213 Fr _{.326} 208 Fr _{.804} 211 Fr- 213 Fr _{.329} 210 Fr _{.670} 212 Fr- 213 Fr _{.498} 211 Fr _{.502} 213 Po(α) ²⁰⁹ Pb	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recalis 3(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2 9254.2 8245.1 8240.0 8242 8245.2	7(0.2); cound state the evaluation at the evaluation state 8(5) res 65 29 7.4 12 330 60 60 60 60 50 6. 4. 5. 3. 2.6 12. 5. 8.	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2 -0.1 -0.2 0.0 0.0 0.0 0.5 0.3 0.0	450.3(0. keV o 2 1 1 U U U U 2 2 - 1 2 2 3 U	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13 00He17 01Ku07	* * * * *
212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 At ^m (α) ²⁰⁸ Bi 212 Ra(α) ²⁰⁸ Rn 212 Ra(α) ²⁰⁸ Rn 212 Pb(β -) ²¹² Bi 213 Tl-u 213 Fr- 133 Cs _{1.602} 207 Fr- 213 Fr ₃₂₄ 204 Fr _{.676} 208 Fr- 213 Fr _{.279} 206 Fr ^x _{.721} 209 Fr- 213 Fr _{.324} 206 Fr ^x _{.721} 209 Fr- 213 Fr _{.324} 206 Fr ^x _{.721} 209 Fr- 213 Fr _{.324} 206 Fr. 804 211 Fr- 213 Fr _{.330} 210 Fr _{.670} 212 Fr- 213 Fr _{.498} 211 Fr _{.502} 213 Bi(α) ²⁰⁹ Tl 213 Po(α) ²⁰⁹ Pb 213 At(α) ²⁰⁹ Bi 213 Rn(α) ²⁰⁹ Po	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.5 9254.2 8245.1 8240.0 8242	7(0.2); cound state the evaluation that is the evaluation that is the evaluation that is the evaluation that is the evaluation of the eval	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 270 level 270 level 270 level 271 level 272 level 273 level 274 level 275 level 276 level 277 le	450.3(0. keV o 2 1 1 U U U U U 2 2 - 1 2 2 3 U U	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka Lvn	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13 00He17	*: *: *: *:
	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grottimated by 1(3) (recalis 3(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2 9254.2 8245.1 8240.0 8242 8245.2	7(0.2); cound state the evaluation of the evalua	calibration ² ate, 7837(10 clustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 7456) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2 -0.1 -0.2 0.0 0.0 0.5 0.3 0.6 0.5 0.9	450.3(0. keV o 2 1 1 U U U U 2 2 - 1 2 2 3 U U 3	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka Lvn	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13 00He17 01Ku07	* * * * *
$\kappa^{212} At^m(\alpha)^{208} Bi$ $\kappa^{212} At^m(\alpha)^{208} Bi$ $\kappa^{212} Fr(\alpha)^{208} At$ $\kappa^{212} Fr(\alpha)^{208} At$ $\kappa^{212} Pb(\beta^-)^{212} Bi$ $\kappa^{212} Pb(\beta^-)^{212} Bi$ $\kappa^{213} Tl - u$ $\kappa^{213} Fr - \kappa^{133} Cs_{1.602}$ $\kappa^{213} Fr - \kappa^{213} Fr_{1.602}$ $\kappa^{213} Fr - \kappa^{213} Fr_{1.212}$ $\kappa^{213} Fr_{1.213}$ $\kappa^{213} Fr_{1.213}$	Original E_{α} =7897 error est E_{α} =6341 E_{α} =6898 E_{β} =330	E_{α} =7887. 7(10) to grot timated by 1(3) (recali 8(5) to grot).7(2.5) 33 1893 1915 147649.1 151833 -2540 -700 -670 -980 -830 270 5982.6 5990.7 8537.1 8536.5 8536.7 9254.2 9254.2 8245.1 8240.0 8242 8245.2 8218.6	7(0.2); cound state the evaluation that a the evaluation at the eval	calibration ² tte, 7837(10 tlustors as in reference, 6269(5) to pectively to 1915 147652 151837 -2104 -850 -694 -930 -735 332 5988 8536.1	11 Po 745() to 63.3 (ce) to 63.3 (ce) to 63.3 (ce) to 63.5 (ce) to 63.	0(2), now 7/2 level 70 level evel at 238.632 0.3 0.4 0.3 0.5 -1.0 -0.2 0.3 0.6 0.5 0.9 -0.6 -0.2 -0.1 -0.2 0.0 0.0 0.0 0.5 0.3 0.0	450.3(0. keV o 2 1 1 U U U U U 2 2 - 1 2 2 3 U U 3 U	55 77	77 ²¹³ Ra	GS3 MA8 SH1 P24 P24 P24 P24 P24 Gea Bka Lvn	1.0 1.0 2.5 2.5 2.5 2.5 2.5	GAu 96Li37 GAu 91Ry01 03He06 Ens053 10Ch19 12Ch19 09Ko35 13Dr04 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01 82Au01 64Gr11 13Ma13 64Va20 82Bo04 average 70Bo13 87De.A 67Va20 70Va13 00He17 01Ku07	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	lue	Adjusted	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
213 Fr(α) 209 At		6904.9	1.7	6004.0	1.2	0.0				CCo		051/206
213 Fr(α) 203 At			1.7	6904.9	1.2	0.0	_			GSa		05Ku06
		6880	20			1.2	U	00	53 ²⁰⁹ At	GSa		15De22
213 Ra(α) 209 Rn	ave.	6904.9	1.2	6061.7	2.2	-0.1	1	99	53 265 At			average
$Ra(\alpha)^{20}$ Rn		6860.3	5.	6861.7	2.3	0.3	_					67Va22
		6862.4	5.			-0.1	_			CC		76Ra37
		6862.2	3.			-0.2	_	00	76 ²⁰⁹ Rn	GSa		06Ku26
213p m > 209p	ave.	6861.8	2.3	0.620		-0.1	1	99	76 ²⁰⁷ Rn			average
213 Ra $^m(\alpha)^{209}$ Rn		8630.3	5.1	8630	4	-0.1	2			GG.		76Ra37
212 200-		8629.3	5.			0.1	2			GSa		06Ku26
213 Ac(α) 209 Fr		7505.2	8.	7499	4	-0.7	3					68Va04
		7497.0	10.			0.2	0			GSa		00He17
212		7497.0	5.		_	0.4	3			GSa		02He.A
213 Th $(\alpha)^{209}$ Ra		7837.4	10.	7837	7	-0.1	3					68Va18
212 200 .		7836.5	10.			0.0	3					80Ve01
213 Pa(α) 209 Ac		8393.9	15.				4		212	GSa		00He17
$^{213}\text{Bi}(\beta^{-})^{213}\text{Po}$		1430	10	1422	5	-0.8	1	30	23 ²¹³ Bi			68Va17
207 Fr $^{-213}$ Fr $_{.324}$ 204 Fr.				r mixture gs+		60(4), 326(4	l) keV					Nub171
213 Rn(α) ²⁰⁹ Po	$E_{\alpha} = 8088$	(10), 7550(15) to gro	ound state, 54	10.3 level							00He17
e^{213} Ra $(\alpha)^{209}$ Rn				,Z) to ground								Ens156 :
213 Ra(α) ²⁰⁹ Rn	$E_{\alpha} = 6731$.9, 6624.9,	6523.9(5	,Z) to ground	state, 1/2	2 ⁻ at 110.2	5, 3/2 ⁻ a	t 214.93				Ens156 =
213 Ra(α) 209 Rn				nd state and 1								Ens156
213 Ra $^{m}(\alpha)^{209}$ Rn			_	and state and								Ens156
e^{213} Ac(α) ²⁰⁹ Fr				, as in refere								91Ry01 =
213 Th $(\alpha)^{209}$ Ra		_	-	eV, as in refe								91Ry01
$e^{213} \text{Bi}(\beta^-)^{213} \text{Po}$				ound state ar		vel at 440 4	15 keV					Ens074 >
4	Р		, ,									
214 Ra $-^{133}$ Cs _{1.609}		152235	22	152227	6	-0.3	U			MA8	1.0	08We02
$^{214}\text{Bi}(\alpha)^{210}\text{Tl}$		5621.3	3.0				2					91Ry01
214 Po(α) 210 Pb		7833.54	0.06	7833.54	0.06	0.0	1	100	97 ²¹⁴ Po			71Gr17
214 At(α) 210 Bi		8987.2	4.	, 00010 .	0.00	0.0	2	100	,, 10	Bka		82Bo04
$^{214}\text{At}^{m}(\alpha)^{210}\text{Bi}$		9046.4	8.				2			Ditti		82Ew01
$^{214}\text{At}^n(\alpha)^{210}\text{Bi}$		9220.8	5.				2					82Ew01
$^{214}\text{Rn}(\alpha)^{210}\text{Po}$				9208	9	0.2						70To07
$KII(\alpha)$ PO		9212.6	20.	9208	9	-0.2	2					70Va13
214 Fr(α) 210 At		9207.5	10.	0500	4	0.1	2					
$\operatorname{Fr}(\alpha)^{-1}\operatorname{At}$		8585.5	8.	8589	4	0.4	4					68Va18
		8590.9	5.			-0.5	4			DU		70To18
		8583.8	10.			0.5	4			Dbb		89An.A
		8590.8	20.			-0.1	U			GSa		90Ni05
214		8578.7	48.	0710		0.2	U					05Li17
214 Fr $^m(\alpha)^{210}$ At		8711.7	8.	8710	3	-0.2	4					68Va04
		8711.7	5.			-0.3	4					70To18
***		8708.1	5.			0.4	4			GSa		05Ku06
214 Ra(α) 210 Rn		7271.7	5.	7272.6	2.6	0.2	4					67Va22
		7275.6	5.			-0.6	4					74Ho27
		7273.2	10.			-0.1	4			GSa		00He17
		7271.2	4.			0.3	4			GSa		06Ku26
214 Ra(α) 210 Rn ^{m}		5563.9	30.				5			GSa		06Ku26
214 Ac(α) 210 Fr		7351.7	5.	7352.1	2.5	0.1	2					68Va04
. ,		7347.6	10.			0.4	2			Dbb		89An13
		7347.6	10.			0.5	0			GSa		00He17
		7349.6	5.			0.5	o			GSa		02He.A
		7352.7	3.			-0.2	2			GSa		04Ku24
214 Th $(\alpha)^{210}$ Ra		7828.6	10.	7827	5	-0.2	3			Sou		68Va18
m(u) Ka		7823.5	10.	1041	J	-0.1 0.4						80Ve01
						-0.2	3			Ixro		
		7828.6	8.			-0.2	3			Jya		07Le14

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input va	lue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
214 Pa(α) 210 Ac	8270.9	15.				6			GSa		00He17
$^{214}\text{Pb}(\beta^{-})^{214}\text{Bi}$	1024	20	1018	11	-0.3	1	32	31 ²¹⁴ Bi	Oba		52Be78
$^{214}\text{Bi}(\beta^-)^{214}\text{Po}$	3260	30	3269	11	0.3		32	31 D 1			56Da06
21.B1(b)21.b0			3209	11		_					
	3275	15			-0.4	_		ca 214- i			60Lu07
214 210	ave. 3272	13			-0.2	1	69	69 ²¹⁴ Bi			average
$*^{214}$ Bi $(\alpha)^{210}$ Tl	E_{α} =5516(3) recomme		place of the	following	$g E_{\alpha}$:						91Ry01 *
*	E_{α} =5510.5(1.0) keV	7									34Le01 *
*	E_{α} =5515.8(3.0) keV	7									60Wa14 *
$*^{214}$ At ⁿ (α) ²¹⁰ Bi	E_{α} =8782(5) to 9 ⁻¹ lev	el at 27	1.31 keV								Ens148 *
$*^{214}$ Fr(α) ²¹⁰ At	E_{α} =8425.5, 8352.5(8	,Z) to gi	round state, ((4) ⁺ level	at 72.65 ke	V					Ens148 *
$*^{214}$ Fr(α) ²¹⁰ At	E_{α} =8428.3, 8360.3(5	Z) to gr	round state, ($(4)^+$ level	at 72.65 ke	V					Ens148 *
$*^{214}$ Fr ^m $(\alpha)^{210}$ At	E_{α} =8546.8, 8477.8(5										Ens148 *
$*^{214}$ Ra(α) ²¹⁰ Rn	E_{α} =7137(10), 6505(1										00He17 *
$*^{214}$ Ra(α) ²¹⁰ Rn	Also E_{α} =8950(30) ke	$V \cap -$	0120 0 keV t	from 214R	a ⁿ at 1865.2	keV					Nub16b *
$*^{214}$ Ra(α) ²¹⁰ Rn ^m	E_{α} =7290(30) Q_{α} =74:	ν <u>Qα</u> 20.1 fro	$m^{214}\mathbf{D}_{0}^{n}$ of	1965 2 1/2	a at 1005.2	KC V					Nub16b *
$*^{214}$ Ac(α) ²¹⁰ Fr											
	E_{α} =7210(10), 7080(1			38.6 level							00He17 *
$*^{214}$ Ac(α) ²¹⁰ Fr	Also E_{α} =7081(4) keV										04Ku24 *
$*^{214}$ Pb $(\beta^{-})^{214}$ Bi	E_{β^-} =670(20) to (0 ⁻ ,	l ⁻) leve	l at 351.932	4 keV, and	l another bra	anch					Ens092 *
215p: 132 c		16	154622				1.4	14 2155	3.5	1.6	0011.00
$^{215}\text{Bi}-^{133}\text{Cs}_{1.617}$	154654	16	154633	6	-1.3	1	14	14 ²¹⁵ Bi	MA8	1.0	08We02
215 Po(α) 211 Pb	7526.45	0.8	7526.3	0.8	-0.2	1	99	96 ²¹¹ Pb			71Gr17 2
215 At(α) 211 Bi	8178.5	4.				2			Bka		82Bo04
215 Rn(α) 211 Po	8834.7	20.	8839	8	0.2	3			ORa		69Ha32
	8839.8	8.			-0.1	3					70Va13
215 Fr(α) 211 At	9543.0	15.	9540	7	-0.2	3					70Bo13
. ,	9532.7	10.			0.8	3					74No02
	9546.9	10.			-0.6	3					84De16
215 Ra(α) 211 Rn	8862.7	5.	8864	3	0.3	3					68Va18
Ru(W) Rii	8865.5	5.	0004	3	-0.2	3					70To18
	8865.3	10.			-0.2 -0.1	3			GSa		00He17
	8865.3	46.			-0.1 0.0	U			USa		05Li17
215 Ac(α) 211 Fr			7746	2							
$Ac(\alpha)^{2}$	7748.4	5.	7746	3	-0.5	2			GG.		68Va04
	7746	10			0.0	O			GSa		00He17
	7740.3	5.			1.1	0			GSa		02He.A
215 211	7744.4	4.			0.4	2			GSa		04Ku24
215 Th $(\alpha)^{211}$ Ra	7664.9	8.	7665	4	0.0	3					68Va18
	7667.0	10.			-0.2	O			GSa		89He03
	7664	15			0.0	o			GSa		00He17
	7665	5			-0.1	3			GSa		05Ku31
	7662.8	10.			0.2	3			Jya		07Le14
215 Pa $(\alpha)^{211}$ Ac	8238.6	15.	8240	50	0.0	3			•		79Sc09
()	8244.7	15.			-0.2	0			GSa		00He17
	8233.5	20.4			0.1	3			GSa		15De22
$^{215}U(\alpha)^{211}Th$	8588.0	30.6			0.1	6			Lza		15Ya13
$*^{215}$ Ac(α) ²¹¹ Fr	E_{α} =7602(10) 7026(1:		(15) to group	d state 1	1/2- of 592		ot 652 62		LZa		
* 'Ac(α) ΓΓ		-	. , .				at 032.02				Ens136 *
$*^{215}$ Th $(\alpha)^{211}$ Ra	E_{α} =7520(15), 7387(1										00He17 *
$*^{215}$ Th $(\alpha)^{211}$ Ra	E_{α} =7523(5), 7392(4)			ground s	tate, 133.9,	194.5, 29	95.1 levels				05Ku31 *
$*^{215}$ Th $(\alpha)^{211}$ Ra	Also E_{α} =7399(20) ke	V to 13	3.9 level								07Le14 *
216-1 122 -						_					
$^{216}\text{Bi}-^{133}\text{Cs}_{1.624}$	159852	12				2		212	MA8	1.0	08We02
216 Po(α) 212 Pb	6906.44	0.5	6906.4	0.5	-0.2	1	98	67 ²¹² Pb			71Gr17
216 At(α) 212 Bi	7949.7	3.				2			Bka		82Bo04
216 At ^{<i>m</i>} (α) ²¹² Bi	8110.5	10.				2					71Br13
216 Rn(α) 212 Po	8199.2	10.	8197	6	-0.2	2					61Ru06
ν, Σ	8201.2	10.	'	-	-0.4	2					70Va13
	8192.0	10.2			0.5	2					71Br13
		12.	9174	3	-0.1	4					70Bo13
216 Er(\(\alpha \) 212 A+			91/4	3	-0.1	4					700013
216 Fr(α) 212 At	9175.3		,,,,			4					
216 Fr $(\alpha)^{212}$ At	9173.3 9174.1 9174.3	5. 5.	,,,,		0.0 0.0	4 4			GSa		96Li37 07Ku30

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	i. Compai	Input			ted value	$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
rem		трис	varue	riajus	nea varae	<i>v</i> ₁	Ds	oigiii.	TVIAIII IIIII.	Luo		Reference
216 Fr $^{m}(\alpha)^{212}$ At m		9170.2	5.				4			GSa		07Ku30
216 Ra(α) 212 Rn		9525.8	8.				4			ODu		73No09
216 Ac(α) 212 Fr		9243.3	8.	9235	6	-1.0	2					70To18 Z
$Ac(\alpha)$ 11		9223.1	10.	7233	O	1.2	2			GSa		00He17
		9241.4				-0.1	U			OSa		05Li17
216 Ac $^{m}(\alpha)^{212}$ Fr			50.9	0270	4							
$Ac^{m}(\alpha)^{2+2}$ Fr		9280.0	5.	9279	4	-0.2	2			CC		70To18 Z
		9284	10			-0.5	O			GSa		00He17 *
		9278.2	5.			0.2	0			GSa		02He.A
216 212		9277.2	7.			0.3	2			GSa		04Ku24 *
216 Th $(\alpha)^{212}$ Ra		8070.7	8.	8072	4	0.2	6					68Va18
		8071	10			0.1	o			GSa		00He17 *
		8073	5			-0.1	6			GSa		05Ku31 *
		8069.7	44.			0.1	U					05Li17
		8070.7	23.			0.1	U			Lza		14Ya19
216 Th $^{m}(\alpha)^{212}$ Ra		10099.4	20.	10116	8	0.8	6					83Hi08
()		10107.4	40.		-	0.2	Ü			Dbb		93An07
		10120.8	15.			-0.3	6			GSa		00He17
		10120.5	10.			-0.2	6			Oba		05Ku31 *
216 Pa(α) 212 Ac				2007	1.5							
$-\alpha(\alpha)$ Ac		8013.7	20.	8097	15	4.2	В			т.		79Sc09
		8110.5	50.			-0.3	U			JAa		98Ik01
216 212		8097	15				3			GSa		00He17 *
$^{216}{ m U}(lpha)^{212}{ m Th}$		8542.5	30.6	8531	26	-0.4	4			Lza		15Ma37
		8497.6	50.9			0.6	4			GSa		15De22
$^{216}{ m U}^{m}(lpha)^{212}{ m Th}$		10782.0	30.6				4			Lza		15Ma37
$*^{216}$ Fr(α) ²¹² At	$E_{\alpha} = 9004$	$4(5)$; and E_0	_x =8933(8) from 133.3	3 level to 20	5.6 keV						96Li37 **
$*^{216}$ Ac $^{m}(\alpha)^{212}$ Fr				86(15) to grou			vels					00He17 **
$*^{216}$ Ac $^{m}(\alpha)^{212}$ Fr		=9029(7) k		. , .	, .	, , , , , , , ,						04Ku24 **
$*^{216}$ Th $(\alpha)^{212}$ Ra				round state, 6	518 3 level							00He17 **
$*^{216}$ Th(α) ²¹² Ra				und state, 629								05Ku31 **
* $^{11}(\alpha)$ Ra * 216 Th $^{m}(\alpha)^{212}$ Ra						-1						
* 216 Pa(α) 212 Ac				round state, 6		ei						05Ku31 **
*Pa(α)Ac	$E_{\alpha}=/948$	8(13), 7813	(15) to g	round state, 1	133.6 level							00He17 **
217												
217 Bi $-$ u		9420	32	9372	19	-1.5	o			GS3	1.0	08Ch.A
		9372	19				2			GS3	1.0	12Ch19
217 Po(α) 213 Pb		6660.3	4.	6662.1	2.4	0.4	4			Dba		77Vy02 Z
		6660.0	4.			0.5	4			Orm		97Li23
		6666.1	4.1			-1.0	4			Anv		03Ku25
217 At(α) 213 Bi		7200.3	3.	7201.4	1.2	0.4	_					60Vo05 Z
` '		7200.3	2.			0.5	_			Orm		62Wa28 Z
		7204.6	5.			-0.6	_					64Va20 Z
		7193.1	5.			1.6	_			Dba		77Vy02 Z
		7204.0	2.			-1.3	_			Bka		82Bo04
	0710		1.2			-0.1	1	99	77 ²¹³ Bi	DKa		
217 Rn(α) 213 Po	ave.	7201.5		7007.0	2.0			99	// BI			average
217 Rn(α) 213 Po		7887.5	4.	7887.2	2.9	-0.1	2			ъ.		61Ru06 Z
217		7886.9	4.			0.1	2			Bka		82Bo04 Z
217 Fr(α) 213 At		8471.5	8.	8469	4	-0.3	3					70Bo13
		8468.4	5.			0.2	3			Lvn		87De.A
217 Ra(α) 213 Rn		9159.1	8.	9161	6	0.2	4					70To07
		9163.2	10.			-0.2	4					70Va13
217 Ac(α) 213 Fr		9831.6	10.				2					73No09
$^{217}\text{Ac}^{m}(\alpha)^{213}\text{Fr}$		11843.8	17.				2					85De14
$^{217}\text{Th}(\alpha)^{213}\text{Ra}$		9424.1	10.	9435	4	1.1	2					68Va18
III(w) Ka		9424.1	20.	7+33	7	0.6	U					73Ha32
		9421.1	15.			0.9	U			CC		00Ni02
		9442	15			-0.4	0			GSa		00He17 *
		9435.6	5.			-0.1	2			GSa		02He29 *
		9443.5	9.			-0.9	2			GSa		05Ku31
		9424.1	47.			0.2	U					05Li17
217 Pa(α) 213 Ac		8486.7	10.	8489	4	0.2	4					68Va18
		8489.8	15.			-0.1	U					79Sc09
		8486.7	50.			0.0	U			JAa		98Ik01

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Compari	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
		Input Vi		. 10,000		* 1	-5	2.5		240		
217 Pa $(\alpha)^{213}$ Ac		8490.8	15.	8489	4	-0.1	U			GSa		00He17
		8489.3	5.			-0.1	4			GSa		02He29 *
217 Pa $^m(\alpha)^{213}$ Ac		10351	20	10349	5	-0.1	U					79Sc09
		10330.8	50.			0.4	U			JAa		98Ik01
		10346.1	15.			0.2	o			GSa		00He17
217 212		10349.1	5.				4			GSa		02He29 *
$^{217}\mathrm{U}(\alpha)^{213}\mathrm{Th}^{p}$		8155.6	20.	8170	50	0.3	5					00Ma65
217 212		8175.0	14.3			-0.1	5			Jya		05Le42 *
$*^{217}$ Th $(\alpha)^{213}$ Ra				(15) to ground								00He17 **
$*^{217}$ Th $(\alpha)^{213}$ Ra				to ground sta								02He29 **
$*^{217}$ Pa $(\alpha)^{213}$ Ac				, 7710(5) to g	round state	e,466.1,612	2.5,634.3	levels				02He29 **
$*^{217}$ Pa ^m $(\alpha)^{213}$ Ac		of $5 E_{\alpha}$'s to										02He29 **
$*^{217}\mathrm{U}(\alpha)^{213}\mathrm{Th}^p$	Only one	event. Not	reported	in later public	cation 07L	.e14						WgM115**
²¹⁸ Bi-u		14170	2.4	1.4100	20	0.2				GG2	1.0	0001 4
B1—u		14178	34 29	14188	29	0.3	0			GS3 GS3	1.0	08Ch.A
218 Po(α) 214 Pb		14188	0.09	6114 75	0.09	0.0	2	100	99 ²¹⁴ Pb	022	1.0	12Ch19
218 At(α) 214 Bi		6114.76 6874		6114.75	0.09	0.0	1 2	100	99 P0	O		71Gr17 Z 58Wa.A *
218 Rn(α) 214 Po		7265.0	3	7262.5	1.9	-0.5				Orm		
KII(α) P0		7265.0 7262.4	5. 2.	1202.3	1.9	-0.5 0.0	_			Bka		56As38 Z 82Bo04 Z
	ave.	7262.4	2. 1.9			-0.0	- 1	96	93 ²¹⁸ Rn	DKa		average
218 Fr(α) 214 At	ave.	8014.0	2.			-0.2	3	90	95 KII	Bka		82Bo04 Z
218 Fr $^{m}(\alpha)^{214}$ At		8099.9	5.	8100	4	0.1	3			Бка		82Ew01 Z
$\Gamma\Gamma$ (α) At		8100.9	5. 5.	8100	4	-0.1	3					99Sh03
218 Ra(α) 214 Rn		8549.1	8.	8546	6	-0.1 -0.4	3					70To07
Ka(tt) Kii		8541.0	10.	8340	U	0.5	3					70Va13
218 Ac(α) 214 Fr		9377.4	15.			0.5	5					70Va13
218 Th(α) 214 Ra		9861.3	20.4	9849	9	-0.6	5					73Ha32
m(w) Ku		9846.1	10.	7047		0.3	5					73No09
		9851.0	81.5			0.0	Ü			GSa		15Kh09
218 Pa(α) 214 Ac		9794.1	20.	9815	10	1.0	F					79Sc09 *
()		9815	10				3			GSa		00He17 *
$^{218}\text{U}(\alpha)^{214}\text{Th}$		8786.6	25.	8775	9	-0.5	4			Dbb		92An04
		8773.2	9.			0.2	4			Jya		07Le14
$^{218}{\rm U}^{m}(\alpha)^{214}{\rm Th}$		10878.1	17.	10884	15	0.3	4			Jya		07Le14
. ,		10901.4	30.6			-0.6	4			Lza		15Ma37
$*^{218}$ At $(\alpha)^{214}$ Bi	$E_{\alpha} = 6696$.3(3.0,Z) to	(2) leve	l at 53.2282 k	eV							Ens092 **
$*^{218}$ Pa(α) ²¹⁴ Ac				ed-up with e-								00He17 **
$*^{218}$ Pa $(\alpha)^{214}$ Ac		(10) to 91.8		•								00He17 **
210-												
²¹⁹ Po-u		13601	32	13614	17	0.4	0			GS3	1.0	08Ch.A
210 122		13614	17	4.66000			2		4= 210 .	GS3	1.0	12Ch19
219 At $^{-133}$ Cs _{1.647}		166879.4	8.4	166881	3	0.2	1	17	17 ²¹⁹ At	MA8	1.0	16Ma.1
219 Po(α) 215 Pb		5914.2	5.	ć0 · =	_		3			ISa		15Fi07
219 At $(\alpha)^{215}$ Bi		6390.9	50.	6342	5	-1.0	U	0.0	0 < 215 - 1	**		53Hy83
210-5 (215-		6344.0	5.			-0.4	1	90	86 ²¹⁵ Bi	ISa		15Fi07
219 Rn(α) 215 Po		6946.21	0.3	6946.2	0.3	-0.1	1	100	96 ²¹⁵ Po			71Gr17 Z
219 Fr $(\alpha)^{215}$ At		7448.7	2.0	7448.6	1.8	-0.1	3			Orm		68Ba73 Z
210-5 (215-		7448.2	4.	04.50		0.1	3			Bka		82Bo04 Z
219 Ra(α) 215 Rn		8139.0	20.	8138	3	-0.1	U			ORa		69Ha32
		8128.7	10.			0.9	U			Dii		70Va13
		8128.7	20.			0.5	U			Dbb		89An13
219 🛦 💪 215 🖘		8138.0	3.				4					94Sh02
219 Ac(α) 215 Fr		8826.5	10.	0510	50	0.0	4					70Bo13
219 Th $(\alpha)^{215}$ Ra		9514.1	20.	9510	50	0.0	4			CC		73Ha32
		9503.9	50.9			0.2	4			GSa		15Kh09

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input va	alue	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
219 Pa $(\alpha)^{215}$ Ac		10004 (50				2					97Eo 4
$^{219}\text{U}(\alpha)^{215}\text{Th}$		10084.6	50.	00.40	50	1.6	3			DII		87Fa.A
$U(\alpha)^{213}$ Th		9860.4	40.	9940	50	1.6	4			Dbb		93An07
210 215-		9956.2	18.			-0.3	4			Jya		07Le14
$^{219}\text{Np}(\alpha)^{215}\text{Pa}$		9167.8	203.7				4			GSa		15De22 *
$*^{219}$ Np(α) ²¹⁵ Pa	$E_{\alpha} > 9000$) keV										15De22 **
²²⁰ Po-u		16420	20	16206	10	1.1				GG2	1.0	0001 4
²²³ Po-u		16420	32	16386	19	-1.1	0			GS3	1.0	08Ch.A
220 •		16386	19	1.7.100			2			GS3	1.0	12Ch19
220 At $-u$		15427	32	15433	15	0.2	0			GS3	1.0	08Ch.A
220 - 122 -		15433	15				2			GS3	1.0	12Ch19
220 Rn $-^{133}$ Cs _{1.654}		167777	11	167775.0	1.9	-0.2	U			MA8	1.0	09Ne03
²¹⁰ Fr- ²²⁰ Fr _{.159} ²⁰⁸ Fr _{.841}		-2930	60	-2917	18	0.1	U			P24	2.5	82Au01
²¹¹ Fr- ²²⁰ Fr _{.240} ²⁰⁸ Fr _{.761}		-4850	70	-4867	15	-0.1	U			P24	2.5	82Au01
²¹² Fr ²²⁰ Fr 221 ²⁰⁸ Fr 670		-5450	60	-5392	12	0.4	U			P24	2.5	82Au01
²¹² Fr ⁻²²⁰ Fr 263 ²⁰⁹ Fr 738		-3730	60	-3754	14	-0.2	U			P24	2.5	82Au01
²¹³ Fr- ²²⁰ Fr ₃₅₂ ²⁰⁹ Fr ₆₄₉		-5170	50	-5148	11	0.2	U			P24	2.5	82Au01
²¹² Fr- ²²⁰ Fr _{.193} ²¹⁰ Fr _{.808}		-3160	60	-3039	15	0.8	U			P24	2.5	82Au01
220 At(α) 216 Bi ^m		6053.3	6.				3					89Bu09
220 Rn(α) 216 Po		6404.75	0.10	6404.74	0.10	0.0	1	100	69 ²¹⁶ Po			71Gr17 Z
220 Fr(α) 216 At		6799.0	2.	6800.7	1.9	0.9	3	100	0) 10	Orm		68Ba73 *
$\Pi(\alpha)$ At		6811.6	5.	0000.7	1.)	-2.2	3			Oilli		74Ho27 *
220 Ra(α) 216 Rn		7593.3		7502	6	-2.2 -0.1						61Ru06
Ra(α) Kii			10.	7592	O		3					
		7595.3	10.			-0.3	3			DII		70Va13
		7598.4	20.4			-0.3	3			Dbb		90An19
220 216—		7587.2	10.			0.5	3			GSa		00He17
220 Ac(α) 216 Fr		8347.1	10.	8348	4	0.1	5					70Bo13
220 216		8348	5			0.0	5					97Sh09 *
220 Th $(\alpha)^{216}$ Ra		8953.1	20.				5					73Ha32
220 Pa(α) 216 Ac		9829.1	50.	9650#	50#	-3.6	D					87Fa.A *
$*^{220}$ Fr(α) ²¹⁶ At	$E_{\alpha} = 6675$	5.2, 6631.0,	6570.2(2,	Z) to ground s	state, (2)	at 44.59	$(0)^{-}$ at	105.89				Ens075 **
$*^{220}$ Fr(α) ²¹⁶ At	$E_{\alpha} = 6687$	1.5, 6642.5,	6583.5(2,	Z) to ground s	state, (2)	at 44.59	$(0)^{-}$ at	105.89				Ens075 **
$*^{220}$ Ac(α) ²¹⁶ Fr	E_{α} =7792	2, 7855 to le	vels at 409	9.3, 349.3 keV	I							Ens075 **
$*^{220}$ Pa(α) ²¹⁶ Ac	Trends fr	om Mass Su	ırface TM	S suggest ²²⁰	Pa 180 m	ore boun	d					GAu **
²²¹ Po-u		21220	(2)	21220	21	0.2				GG2	1.0	1001.10
22. Po—u		21238	62	21228	21	-0.2	0			GS3	1.0	10Ch19
221		21228	21	10015		0.2	2			GS3	1.0	12Ch19
221 At $-u$		18028	32	18017	15	-0.3	0			GS3	1.0	08Ch.A
221 226 _		18017	15		_		2			GS3	1.0	12Ch19
221 Fr $-^{226}$ Ra.978	-	-10590	34	-10596	5	-0.2	U			MA3	1.0	92Bo28
²¹¹ Fr- ²²¹ Fr _{.159} ²⁰⁹ Fr _{.841}		-3080	60	-3081	17	0.0	U			P24	2.5	82Au01
221 Rn(α) 217 Po		6161.8	5.8	6163	3	0.2	3			Dba		77Vy02 *
		6163.5	5.4			-0.1	3			Orm		97Li23 *
		6163.5	5.4			-0.1	3			Orm		04Li28 *
221 Fr(α) 217 At		6457.3	2.0	6457.7	1.4	0.2	_			Orm		62Wa28 *
		6458.5	2.0			-0.4	_			Orm		68Le07 *
	ave.	6457.9	1.4			-0.1	1	99	78 ²¹⁷ At			average
221 Ra(α) 217 Rn		6883.7	5.	6880.4	2.0	-0.7	3					61Ru06 *
		6881.3	3.			-0.3	3					95Ch74 *
		0001.5										
			3.			()./	7					97Li12 *
221 Ac $(\alpha)^{217}$ Fr		6878.3	3. 10.	7780	50	0.7 -0.1	3					
221 Ac(α) 217 Fr		6878.3 7786.2	10.	7780	50	-0.1	4			Lvn		70Bo13
$^{221}\mathrm{Ac}(lpha)^{217}\mathrm{Fr}$		6878.3 7786.2 7782.1	10. 5.	7780	50	$-0.1 \\ 0.0$	4 4			Lvn Dbb		70Bo13 87De.A
		6878.3 7786.2 7782.1 7791.3	10. 5. 15.			-0.1 0.0 -0.2	4 4 4			Lvn Dbb		70Bo13 87De.A 92An.A
$^{221}{ m Ac}(lpha)^{217}{ m Fr}$ $^{221}{ m Th}(lpha)^{217}{ m Ra}$		6878.3 7786.2 7782.1 7791.3 8628.5	10. 5. 15. 5.	7780 8626	50	-0.1 0.0 -0.2 -0.5	4 4 4 5					70Bo13 87De.A 92An.A 70To07 Z
		6878.3 7786.2 7782.1 7791.3 8628.5 8626.0	10. 5. 15. 5.			-0.1 0.0 -0.2 -0.5 0.0	4 4 4 5 5			Dbb		70Bo13 87De.A 92An.A 70To07 Z 70Va13 Z
		6878.3 7786.2 7782.1 7791.3 8628.5 8626.0 8626.4	10. 5. 15. 5. 10.			-0.1 0.0 -0.2 -0.5 0.0 -0.1	4 4 4 5 5 5			Dbb Dbb		70Bo13 87De.A 92An.A 70To07 Z 70Va13 Z 90An19
		6878.3 7786.2 7782.1 7791.3 8628.5 8626.0	10. 5. 15. 5.			-0.1 0.0 -0.2 -0.5 0.0	4 4 4 5 5			Dbb		70Bo13 87De.A 92An.A 70To07 Z 70Va13 Z

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Ipar ison or input u								Lab F	
Item	Input v	arue	Adjuste	a value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
221 Pa(α) 217 Ac	9247.7	30.				3				89Mi17
$^{12}(\alpha)^{17}$ Th	9889.3	50.9				3			GSa	15Kh09
$*^{221}$ Rn(α) ²¹⁷ Po	E_{α} =6035.3(3,Z) to		va (11/2±) la	val at 150	5)koV obo		-) around	stata	OSa	04Li28 **
$*^{221} \text{Rn}(\alpha)^{217} \text{Po}$	E_{α} =6037(2) to a ter									04Li28 **
$*^{221}$ Rn(α) ²¹⁷ Po	E_{α} =6037(2) to a term E_{α} =6037(2) to a term									04Li28 **
$*^{221}$ Fr(α) ²¹⁷ At	E_{α} =6341.1(2,Z), 63							-		Ens039 **
$*^{11}(\alpha)^{17}$ At	E_{α} =6341.1(2,Z), 61									Ens039 ** Ens039 **
* $R(\alpha) = R(\alpha)^{217} Rn$	E_{α} =6761.2 6668.2							7.4.21roV		Ens039 ** Ens039 **
* $Ra(\alpha)$ Rn * $^{221}Ra(\alpha)^{217}Rn$	E_{α} =6610(3,Z) to 14			ground	state, ievei	s at 00.5	149.16 1	74.3KC V		
* $Ra(\alpha)$ Rn * $^{221}Ra(\alpha)^{217}Rn$	E_{α} =6754, 6662, 66			02 02 1	40.2 love1					97Li12 ** 97Li12 **
* Ka(\alpha) Kii	E_{α} =0734, 0002, 00	07() 10	ground state,	, 93.02, 1	49.2 ICVCI					9/L112 **
²²² Po-u	24133	72	24140	40	0.1	o			GS3 1.0	10Ch19
10 u	24140	43	24140	70	0.1	2			GS3 1.0	12Ch19
222 At $-u$	22459	32	22494	17	1.1	0			GS3 1.0	08Ch.A
71t u	22494	17	22474	17	1.1	2			GS3 1.0	12Ch19
222 Fr $-^{133}$ Cs _{1.669}	175383.3	8.0				2			MA8 1.0	14Kr09
222 Fr $^{-226}$ Ra oca	-7410	25	-7368	8	1.7	U			MA3 1.0	92Bo28
222Fr-226Ra _{.982} 213Fr-222Fr _{.240} 210Fr _{.761} 213Fr _{.222} Fr _{.240} 212Fr _{.240}	-4810 -4810	60	-7308 -4947	13	-0.9	U			P24 2.5	82Au01
213 Fr $^{-222}$ Fr $_{.096}$ 212 Fr $_{.904}$	-1940	60	-4947 -1947	9	0.0	U			P24 2.5	82Au01
²²¹ Fr ⁻²²² Fr _{.498} ²²⁰ Fr _{.502}	-610	90	-643	6	-0.1	U			P34 2.5	86Au02
222 Rn(α) 218 Po	5590.39	0.3	5590.4	0.3	0.0	1	100	99 ²¹⁸ Po	134 2.3	71Gr17 Z
222 Ra(α) 218 Rn	6680.0	5.	6678	4	-0.4	1	69	62 ²²² Ra		56As38 Z
222 Ac(α) 218 Fr	7137.5	2.	0078	4	-0.4	4	09	02 Ka	Bka	82Bo04 Z
$^{222}\text{Ac}^m(\alpha)^{218}\text{Fr}^p$	7140.3	20.				5			DKa	72Es03 *
$^{222}\text{Th}(\alpha)^{218}\text{Ra}$	8127.7	10.	8127	5	-0.1	4				70To07
III(u) Ka	8130.7	8.	0127	3	-0.1 -0.5	4				70Va13
	8126.7	15.			0.0	4			Dbb	92An.A
	8120.6	10.			0.6	4			GSa	00He17
	8116.4	48.			0.0	U			OSa	05Li17
222 Pa(α) 218 Ac m	8697.0	30.	8736	13	1.3	7				70Bo13
$Iu(\alpha)$ $Iu(\alpha)$	8745.5	15.	0750	13	-0.6	7			GSa	95Ho.C *
222 U(α) 218 Th	9481.1	50.9			0.0	6			GSa	15Kh09
$*^{222}Ac^{m}(\alpha)^{218}Fr^{p}$	E_{α} =7011.4(20,Z) n		and state			O			Oba	AHW **
$*^{222}$ Pa $(\alpha)^{218}$ Ac ^m	E_{α} =8210(15) to ²¹⁸			oove ²¹⁸ A	\mathbf{c}^m					Nub16b **
223 At $-u$	25172	32	25151	15	-0.7	o			GS3 1.0	08Ch.A
	25151	15				2			GS3 1.0	12Ch19
223 Rn $-^{133}$ Cs _{1.677}	180453	11	180446	8	-0.6	1	58	58 ²²³ Rn	MA8 1.0	09Ne03
223 Rn $-u$	21899	32	21889	8	-0.3	O			GS3 1.0	08Ch.A
	21880	13			0.7	1	42	42^{-223} Rn	GS3 1.0	12Ch19
213 Fr $-^{223}$ Fr $_{.087}$ 212 Fr $_{.913}$	-1900	60	-1942	9	-0.3	U			P24 2.5	82Au01
²²² Fr- ²²³ Fr _{.498} ²²¹ Fr _{.502}	790	100	558	8	-0.9	U			P34 2.5	86Au02
223 Fr(α) 219 At	5431.6	80.	5561.4	2.8	1.6	U				55Ad10
	5562	3			-0.2	1	85	79 ²¹⁹ At		01Li44
223 Ra(α) 219 Rn	5978.9	0.3	5978.99	0.21	0.3	-			Orm	62Wa18 *
	5979.1	0.3			-0.4	-			BIP	71Gr17 *
	ave. 5979.00	0.21			0.0	1	100	96 ²¹⁹ Rn		average
223 Ac(α) 219 Fr	6783.2	1.0				4			Orm	69Le.A *
223 Th $(\alpha)^{219}$ Ra	7602	23	7567	4	-1.5	U			ORa	69Ha32 *
	7589	14			-1.6	U				70Va13 *
	7570	25			-0.1	U				84Mi.A
	7568	10			-0.1	5				87El02 *
	7567.4	10.			-0.1	5			Dbb	90An19 *
	7566.1	5.			0.1	5				92Li09 *
223 Pa $(\alpha)^{219}$ Ac	8345.0	10.	8330	50	-0.4	5				70Bo13
	8339.9	10.2			-0.3	o			Dbb	89An.A
	8350.0	15.			-0.5	U			Dbb	90An19
	8339.9	15.			-0.3	U			GSa	95Ho.C
	8321.6	5.			0.1	5			Jya	99Ho28

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	parison of input							- '			Dafaranas
Item	Input va	iiue	Adjusted	u vaiue	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{223}U(\alpha)^{219}Th$	8940.7	40.7				5			Dbb		91An10
223 Fr(β^{-}) 223 Ra	1170	10	1149.1	0.8	-2.1	U					75We23 *
$*^{223}$ Ra(α) ²¹⁹ Rn	$E_{\alpha} = 5747.0(0.4, Z)$										62Wa18 **
*	to 11/2 ⁺ level a					V					Ens01a **
$*^{223}$ Ra(α) ²¹⁹ Rn	$E_{\alpha} = 5747.0(0.40,$					•					71Gr17 **
*	to $11/2^+$ level a	//		,		V					Ens01a **
$*^{223}$ Ac(α) ²¹⁹ Fr	E_{α} =6661.6, 6646						at 98 58				Ens01a **
$*^{223}$ Th(α) ²¹⁹ Ra	E_{α} =7330(20) to 1					5.0, 772	ut 70.50				GAu **
$*^{223}$ Th $(\alpha)^{219}$ Ra	E_{α} =7317(10) to 1										GAu **
$*^{223}$ Th(α) ²¹⁹ Ra	E_{α} =7324(10) to			,		Λ level					92Li09 **
$*^{223}$ Th(α) ²¹⁹ Ra	E_{α} =7290(10) 559				070 to 132.	o ievei					92Li09 **
$*^{223}$ Th(α) ²¹⁹ Ra	E_{α} =7318(5), 729				52 O levels						92Li09 **
$*^{223}$ Fr(β^-) ²²³ Ra	E_{β} =1120(10) to				02.0 icveis						Ens01a **
* 11(<i>p</i>) Ka	<i>L</i> β1120(10) to	1312 ICV	C1 at 30.126 K	.c v							Elisota **
²²⁴ At-u	29744	62	29749	24	0.1	_			GS3	1.0	10Ch19
At—u		63	29749	24	0.1	0				1.0	
224 Rn $^{-133}$ Cs $_{1.684}$	29749	24	102215	11	0.7	2	12	43 ²²⁴ Rn	GS3	1.0	12Ch19
²²⁴ Rn- ¹³³ Cs _{1.684}	183304	16	183315	11	0.7	1	43	43 224Rn	MA8	1.0	09Ne03
²²⁴ Rn–u	24073	32	24096	11	0.7	0	57	57 ²²⁴ Rn	GS3	1.0	08Ch.A
224 -	24104	14	222.40	10	-0.6	1	57	5/ 224Rn	GS3	1.0	12Ch19
²²⁴ Fr-u	23399	32	23348	12	-1.6	0			GS3	1.0	08Ch.A
2245 133.0	23398	14			-3.6	В			GS3	1.0	12Ch19
224 Fr $^{-133}$ Cs _{1.684}	182567	12	1501001		0.0	2			MA8	1.0	14Kr09
224 Ra $^{-133}$ Cs _{1.684}	179430	30	179429.4	1.9	0.0	U			MA8	1.0	14Bo26
223 Fr – 224 Fr _{.747} 220 Fr _{.253} 222 Fr – 224 Fr _{.496} 220 Fr _{.505} 223 Fr – 224 Fr _{.747} 220 Fr _{.253} 223 Fr – 224 Fr _{.747} 220 Fr _{.253}	-620	70	-769	9	-0.9	U			P34	2.5	86Au02
222Fr-224Fr _{4.96} 220Fr _{.505} 223Fr-224Fr _{7.47} 220Fr _{.253} 223Fr-224Fr _{.664} 221Fr _{.336} 233Fr-224Fr _{.664} 221Fr _{.336}	10	70	-260#	50#	-1.5	U			P24	2.5	82Au01
223 Fr $^{-224}$ Fr $^{x}_{.747}$ 220 Fr $_{.253}$	-410	70	-840#	80#	-2.5	В			P24	2.5	82Au01
223 Hr — 227 Hr cc4 221 Hr coc	780	110	-520	8	-4.7	F			P34	2.5	86Au02 *
223 Fr-224 Fr ₆₆₄ 221 Fr 336	-110	70	-590#	70#	-2.7	В		220	P24	2.5	82Au01
224 Ra(α) 220 Rn	5788.93	0.15	5788.92	0.15	-0.1	1	100	69 ²²⁰ Rn			71Gr17 Z
224 Ac(α) 220 Fr	6326.9	0.7				4			Orm		69Le.A *
224 Th $(\alpha)^{220}$ Ra	7304.7	10.	7299	6	-0.6	4					61Ru06
	7304.7	10.			-0.6	4					70Va13
	7300.7	20.			-0.1	U			Dbb		89An13
	7286.4	10.			1.2	4			GSa		00He17
224 Pa $(\alpha)^{220}$ Ac	7695.2	10.	7694	4	-0.2	6					70Bo13 *
	7692.6	10.			0.1	F			Dbb		90An19 *
	7680	15			0.9	U			GSa		95Ho.C
	7693.3	5.			0.1	6					96Li05 *
$^{224}\mathrm{U}(lpha)^{220}\mathrm{Th}$	8624.3	15.	8628	7	0.3	6			Dbb		91An10
	8612.1	20.			0.8	6			ORa		92To02
	8631.9	8.1			-0.5	6			ORm		14Lo10 *
224 Fr $(\beta^{-})^{224}$ Ra	2830	50	2923	11	1.9	U					75We23 *
* ²²³ Fr ⁻²²⁴ Fr _{.664} ²²¹ Fr.	F: rejection base	d on line-	-shape analysi	is							86Au02 **
$*^{224}$ Ac(α) ²²⁰ Fr	E_{α} =6213.8, 6207	.0, 6141.	7, 6059.8(0.7	,Z) keV							69Le.A **
*	to ground state,	3 ⁺ at 6.9	$2, 3^+$ at 72.99	$9, 2^-$ at 15	56.82 keV						Ens114 **
$*^{224}$ Pa(α) ²²⁰ Ac	$E_{\alpha} = 7490(10)$ to 3	5 ⁻ level a	at 68.71 keV								Ens114 **
$*^{224}$ Pa(α) ²²⁰ Ac	F: intensities in o			rence							96Li05 **
$*^{224}$ Pa(α) ²²⁰ Ac	E_{α} =7488(5), 737	5(5) to (5	5 ⁻) level at 68	3.71 keV a	nd 184.21	level					Ens114 **
$*^{224}U(\alpha)^{220}Th$	E_{α} =8479(8), 809										14Lo10 **
$*^{224}$ Fr(β^-) ²²⁴ Ra	E_{β} = 1780(50) to		-								Ens15c **
225 - 122 -								- 225			
225 Rn $-^{133}$ Cs _{1.692}	188484	23	188461	12	-1.0	1	27	27 ²²⁵ Rn	MA8	1.0	09Ne03
²²⁵ Rn-u	28498	32	28486	12	-0.4	o			GS3	1.0	08Ch.A
	28477	14			0.6	1	73	73 ²²⁵ Rn	GS3	1.0	12Ch19

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	purison or	Input va		Adjusted v		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²²⁵ Fr-u		25574	14	25572	13	-0.1	1	84	84 ²²⁵ Fr	GS3	1.0	12Ch19
²²¹ Fr- ²²⁵ Fr _{.655} ²¹³ Fr _{.346}		-1110	60	-1096	9	0.1	U	07	04 11	P24	2.5	82Au01
124 Fr x $-^{225}$ Fr $_{.747}$ 221 Fr $_{.253}$												
224E r 225E 223E		50	80	700#	100#	3.2	В			P24	2.5	82Au01
224 Fr x - 225 Fr $_{.498}$ 223 Fr $_{.502}$		190	80	760#	100#	2.8	В			P24	2.5	82Au01
225 Ra(α) 221 Rn		5096.7	5.1				2					00Li37
225 Ac(α) 221 Fr		5936.1	2.	5935.1	1.4	-0.5	_			Orm		67Ba51 Z
		5934.5	2.			0.3	_					67Dz02 Z
	ave.	5935.3	1.4			-0.1	1	99	79 ²²¹ Fr			average
225 Th $(\alpha)^{221}$ Ra		6920.7	3.	6921.4	2.1	0.2	4					61Ru06 *
		6922.1	3.			-0.2	4					87Li.A *
225 Pa(α) 221 Ac		7381.5	20.	7390	50	0.2	U			ORa		68Ha14
		7376.4	10.			0.3	F					70Bo13 *
		7392.7	5.1				5			Lvn		87De.A
		7383.5	19.			0.2	U					00Sa52
225 U(α) 221 Th		8012.7	20.	8015	7	0.1	0			Dbb		89An13
S(G) III		8022.9	20.	0010	•	-0.4	6			GSa		89He13
		8021.9	15.			-0.5	6			ORa		92To02
		8012.7	20.4			0.1	6			Dbb		94Ye08
225N (->221D		8010	10			0.5	6			GSa		00He17 *
225 Np(α) ²²¹ Pa		8786.5	20.	1000			4		1 < 225 =	Dbb		94Ye08
225 Fr $(\beta^{-})^{225}$ Ra		1820	30	1828	12	0.3	1	16	16 ²²⁵ Fr			75We23 *
225 Ra(β^{-}) 225 Ac		360	10	356	5	-0.4	1	25	$20^{225}Ac$			55Ma.A *
		360	30			-0.1	U					55Pe24 *
$*^{225}$ Th $(\alpha)^{221}$ Ra				80.2, 6443.2(3								61Ru06 **
*				/2+ 299.16, 3/2		9, 5/2 ⁺ 3	359.02 le	vels				Ens075 **
$*^{225}$ Th $(\alpha)^{221}$ Ra	E_{α} =6799.	3, 6745.3, 6	504.3, 64	83.3, 6447.3(3	,Z) keV							87Li.A **
*	to ground	d state, $7/2^+$	53.14, 7	/2 ⁺ 299.16, 3/2	2+ 321.39	9, 5/2 ⁺ 3	359.02 le	vels				Ens075 **
$*^{225}$ Pa(α) ²²¹ Ac	F: averag	e of two bra	inches									87De.A **
$*^{225}$ U(α) ²²¹ Th	$E_{\alpha} = 78680$	15), 7621(1	5) to grou	and state, 250.9	9 level							00He17 **
$*^{225}$ Fr $(\beta^-)^{225}$ Ra				level at 225.2								Ens095 **
$*^{225}$ Ra(β^-) ²²⁵ Ac				vely, to $3/2^+$ le	vel at 40	09 keV						Ens095 **
()	-р	()()	, <u>F</u>	,,								
226 Rn $^{-133}$ Cs _{1.699}		191490	17	191499	11	0.5	1	44	44 ²²⁶ Rn	MA8	1.0	09Ne03
226Rn-u		30864	32			-0.1		44	44 Kii			
Kn-u				30861	11		0	5.0	57 226p	GS3	1.0	08Ch.A
226-		30868	15	20515	_	-0.4	1	56	56 ²²⁶ Rn	GS3	1.0	12Ch19
²²⁶ Fr-u		29565	32	29545	7	-0.6	0		226-	GS3	1.0	08Ch.A
226 122		29566	13			-1.7	1	26	26 ²²⁶ Fr	GS3	1.0	12Ch19
226 Fr $-^{133}$ Cs _{1.699}		190173.9	7.8	190182	7	1.0	1	74	74 ²²⁶ Fr	MA8	1.0	14Kr09
$^{133}\text{Cs} - ^{226}\text{Ra}_{.588}$	_	109487	9	-109488.2	1.2	-0.1	U			MA3	1.0	92Bo28
	_	109499	13			0.8	U			MA4	1.0	99Am05
²²³ Fr- ²²⁶ Fr _{.493} ²²⁰ Fr _{.507}		-800	80	-1007	4	-1.0	U			P24	2.5	82Au01
²²⁵ Fr ²²⁶ Fr ₇₀₆ ²²¹ Fr ₂₀₄		-570	100	-794	13	-0.9	U			P24	2.5	82Au01
²²⁵ Fr ⁻²²⁶ Fr _{.498} ²²⁴ Fr ^x _{.502}		-260	90	-850#	50#	-2.6	В			P24	2.5	82Au01
226 Ra(α) 222 Rn		4870.70	0.25	4870.70	0.25	0.0	1	100	99 ²²² Rn			71Gr17 Z
226 Ac(α) 222 Fr		5496.1	5.	5506	8	0.2	Ü	100	,, 1	Dba		75Va.A Z
226 Th(α) 222 Ra		6448.5	3.0	6452.5	1.0	1.3	U			Doa		
III(u) Ka		6454.8		0+34.3	1.0	-0.6				Dba		
			3.6				U	00	61 ²²⁶ Th			
226p (->>222 •		6452.6	1.0			-0.1	1	99	01 220 IN	Gea		12Ma30
226 Pa(α) 222 Ac		6986.9	10.				5					64Mc21
$^{226}\mathrm{U}(\alpha)^{222}\mathrm{Th}$		7747.4	30.	7701	4	-1.6	U					73Vi10 *
		7706.6	15.			-0.4	5			Dbb		90An22
		7701.6	5.			-0.1	5			Jya		99Gr28
		7691.4	10.			0.9	O			GSa		00He17
		7696.5	10.			0.4	5			GSa		01Ca.B
		7696.4	20.4			0.2	5			RIa		16Ka13
226 Np(α) 222 Pa		8189.2	20.4	8200	50	0.2	8			GSa		90Ni05
-		8205.5	20.			-0.2	8			Dbb		94Ye08
							-					

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adjusted	l value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²²⁶ Ra(p,t) ²²⁴ Ra	-2816	15	-2818.9	1.9	-0.2	U			ANL		74Fr01
226 Ra(d,t) 225 Ra	-2810 -146	10	-2818.9 -139.4	2.9	0.7	U			ANL		
226 Fr(β^-) 226 Ra											83Ny01
Fr(<i>p</i>)Ra	3804	330	3853	7	0.1	U					75We23 *
226 Ac(β^-) 226 Th	3704	100	1112	5	1.5	U					87Ve.A *
220 AC(p)220 In	1115	7	1112	5	-0.5	_	50	39 ²²⁶ Th			68Va17 *
226mi ()222m	ave. 1115	6		. 2+1	-0.5	1	52	39 220 Th			average
$*^{226}$ Th $(\alpha)^{222}$ Ra	E_{α} =6334.6(3,Z), 62						* 7				Ens11b **
$*^{226}$ Th $(\alpha)^{222}$ Ra	E_{α} =6337.1(1.0,Z), (level at	111.12 K	eV				Ens11b **
$*^{226}U(\alpha)^{222}Th$	E_{α} =7430(30) to 2 ⁺				. 050 50	1 17					94Ye08 **
$*^{226}$ Fr(β^-) ²²⁶ Ra	E_{β} = 3550(330) 345			1 level	at 253.73	ke V					Ens964 **
$*^{226}$ Ac(β^-) ²²⁶ Th	$E_{\beta^-} = 885(7) \text{ to } 1^- \text{ lo}$	evel at 23	0.37 keV								Ens964 **
227 Rn $^{-133}$ Cs $_{1.707}$	196686	19	196698	15	0.6	1	63	63 ²²⁷ Rn	MA8	1.0	09Ne03
$\frac{R_{1}-C_{s_{1.707}}}{227}R_{n}-u$	35288	33	35304	15	0.5		03	05 Kii	GS3	1.0	08Ch.A
KII—u			33304	13		0	27	37 ²²⁷ Rn			
²²⁷ Fr-u	35325	25	21045	6	-0.8	1	37	3/ Kn	GS3	1.0	12Ch19
rr-u	31868	32	31865	6	-0.1	0	20	20 ²²⁷ Fr	GS3	1.0	08Ch.A
227 - 133 G	31869	14	102250		-0.3	1	20	20 ²²⁷ Fr 80 ²²⁷ Fr	GS3	1.0	12Ch19
²²⁷ Fr- ¹³³ Cs _{1.707} ²²⁵ Fr- ²²⁷ Fr _{.708} ²²⁰ Fr _{.292}	193258.0	7.1	193259	6	0.1	1	80	80 Fr	MA8	1.0	14Kr09
224 F. r. 227 F. 221 F.	-410	130	-547	13	-0.4	U			P24	2.5	82Au01
22 Fr - 22 Fr 493 22 Fr 507	-220 50.12 0	80	480#	100#	3.5	В			P24	2.5	82Au01
227 Ac(α) 223 Fr	5043.0	2.0	5042.27	0.14	-0.4	U		222—			66Ba19 Z
227	5042.27	0.14			0.0	1	100	94 ²²³ Fr			86Ry04 Z
227 Th $(\alpha)^{223}$ Ra	6146.60	0.10	6146.60	0.10	0.0	1	100	96 ²²³ Ra	BIP		71Gr17 *
227 Pa $(\alpha)^{223}$ Ac	6581.5	3.	6580.4	2.1	-0.4	5					63Su.A *
227 222	6579.3	3.			0.4	5					90Sh15 *
$^{227}\mathrm{U}(\alpha)^{223}\mathrm{Th}$	7230	30	7235	3	0.2	U			ORa		69Ha32 *
	7206	16			1.8	U					91Ho05
227 222	7234.7	3.1				6			GSa		15Ka24
227 Np(α) 223 Pa	7818.0	10.	7816	14	0.0	0			Dbb		90An19
	7815.0	20.			0.1	6			GSa		90Ni05
227-	7818.0	20.			-0.1	6			Dbb		94Ye08
226 Ra(n, γ) 227 Ra	4561.43	0.27				2			ILn		81Vo03 Z
227 Fr(β^{-}) 227 Ra	2476	100	2505	6	0.3	U					75We23 *
227 Ra(β^{-}) 227 Ac	1345	20	1328.1	2.3	-0.8	U					53Bu63 *
	1335	15			-0.5	U					71Lo15 *
$^{227}\text{Ac}(\beta^{-})^{227}\text{Th}$	45.5	1.0	44.8	0.8	-0.7	_					55Be20
	43.5	1.5			0.8	-					59No41
	ave. 44.9	0.8			-0.2	1	99	96 ²²⁷ Th			average
$*^{227}$ Th $(\alpha)^{223}$ Ra	E_{α} =6038.01(0.15,Z										71Gr17 **
*	to ground state, 7/2	2 ⁺ at 61.4	$24, 1/2^+$ at 2	86.182 ke	·V						Ens01a **
$*^{227}$ Pa $(\alpha)^{223}$ Ac	E_{α} =6465.8(3,Z), 64	23.8(3,Z)	, 6415.8(3,Z)	, 6401.7(3,Z), 6350	5.7(3,Z)					63Su.A **
*	to ground state, 7/2	2^{-} at 42.4	$4, 5/2^-$ at 50.7	$7, 5/2^{+}$ at	64.62, 7/2	2 ⁺ at 110	0.06				Ens01a **
$*^{227}$ Pa $(\alpha)^{223}$ Ac	E_{α} =6463, 6421, 635										90Sh15 **
*	to ground state, 7/2	2^{-} at 42.4	$4, 5/2^-$ at 50.7	$7,7/2^{+}$ at	110.06 kg	eV					Ens01a **
$*^{227}$ U(α) ²²³ Th	E_{α} =6860(30) to 3/2	+ level at	247(1) keV								Ens01a **
$*^{227}$ Fr(β^-) ²²⁷ Ra	E_{β} = 1800(100) to 1										Ens162 **
$*^{227}$ Ra(β^-) ²²⁷ Ac	$E_{\beta}^{'}=1310(20)\ 1300$)(15) resp	ectively, to 3/	2 ⁺ level a	at 27.369	and 5/2+	at 46.354				Ens162 **
228 p 133 C	100007	24	100001	10	0.2	1	(2)	62 228p	3.540	1.0	00NL-02
228 Rn $^{-133}$ Cs _{1.714}	199897	24	199891	19	-0.3	1	63	63 ²²⁸ Rn	MA8		09Ne03
²²⁸ Rn-u	37856	33	37835	19	-0.6	0	25	25 229-	GS3	1.0	08Ch.A
228	37825	31		_	0.3	1	37	37 ²²⁸ Rn	GS3	1.0	12Ch19
²²⁸ Fr-u	35833	34	35839	7	0.2	o			MA8	1.0	11Kr.A
	35852	32			-0.4	0		220	GS3	1.0	08Ch.A
	35821	16			1.2	1	20	20^{228} Fr	GS3	1.0	12Ch19

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Inpu	ıt value	Adjusted	value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
$^{228}Fr^{-133}Cs_{1.714}$	197899.	5 8.1	197895	7	-0.6	1	80	80 ²²⁸ Fr	MA8	1.0	14Kr09
224 Fr x $-^{228}$ Fr $_{.491}$ 220 Fr $_{.509}$	-540	320	-390#	100#	0.2	U	00	00 11	P24	2.5	82Au01
228 Th(α) 224 Ra	5520.		5520.15	0.22	-0.1	1	100	69 ²²⁴ Ra	1 27	2.3	71Gr17
228 Pa(α) 224 Ac	6266.		6264.5	1.5	-0.1 -0.7	5	100	09 Ka			58Hi.A
$Ia(\alpha)$ Ac	6264.		0204.3	1.5	-0.7 -0.1	5					
	6263.				-0.1 0.5	5					93Sh07 = 94Ah03 =
$^{228}{\rm U}(\alpha)^{224}{\rm Th}$					0.3	5					61Ru06
228 Np(α) 224 Pa	6803.								TA -		
	7308.		7040	10	0.5	7			JAa		03Ni10
228 Pu $(\alpha)^{224}$ U	7949.		7940	18	-0.5	7			Dbb		94An02
228 - (2-)228 +	7911.			0.6	0.8	7			JAa		03Ni10
228 Ra(β^{-}) 228 Ac	46.		45.5	0.6	-0.6	3					61To10 =
	45.				0.0	3					72He.A
228 2 228	45.				0.2	3					95So11
$^{228}Ac(\beta^{-})^{228}Th$	2240	20	2123.7	2.6	-5.8	В					53Ky19 =
•••	2158	20			-1.7	U					57Bj56
228 Pa $(\varepsilon)^{228}$ Th	2109	15	2153	4	2.9	В					73Ku09
228 Pa $(\alpha)^{224}$ Ac	E_{α} =6119.2(3,Z),	6106.2(3,Z)	, 6079.2(3,Z)	to 37.2, 5	1.9, 78.4	levels					93Sh07 *:
228 Pa(α) 224 Ac	E_{α} =6118(3) to 3'	7.2 level									93Sh07 *
228 Pa(α) 224 Ac	E_{α} =6117(2) to 3'	7.1 level									94Ah03 *
228 Ra(β^{-}) 228 Ac	E_{β} = 40(2) 39(1)	respectively	, to 1^- level a	t 6.28 keV	, and oth	er E_{β}					Ens143 *:
228 Ra(β^{-}) 228 Ac	E_{β}^{-} =39.0(1.0) to					P					Ens143 *:
$^{228}Ac(\beta^{-})^{228}Th$	$E_{\beta}^{p} = 2180(20)$ to			nd other F	E0-						Ens143 *:
$^{228}\text{Ac}(\beta^{-})^{228}\text{Th}$	E_{β} =2100(20), 1	760 1180 to	2 ⁺ at 57 773	3- at 30	-p 6.094_2+	at 968 9	984				Ens143 *
228 Pa $(\varepsilon)^{228}$ Th	pK=0.33(0.08) to					at 700.	704				Ens143 *:
14(0) 111	pr x= 0.33(0.00) to	is level at	1)++.)0+ KC V	, recarcuit	itea						LIIST43 ····
229 Rn $^{-133}$ Cs _{1.722}	205069	14				2			MA8	1.0	09Ne03
229 Fr $^{-133}$ Cs _{1.722}	201262	40	201103	5	-4.0	В			MA8	1.0	08We02
11 031.722	201104.		201100		-0.2		70	70 ²²⁹ Fr		1.0	14Kr09
							/()	/() ~~^ Fr			
229 Fr—11			38291	5		1	70	/0 22 Fr	MA8 GS3		
²²⁹ Fr-u	38343	32	38291	5	-1.6	o			GS3	1.0	08Ch.A
	38343 38298	32 15			$-1.6 \\ -0.4$	o 1	13	13 ²²⁹ Fr	GS3 GS3	1.0 1.0	08Ch.A 12Ch19
²²⁹ Fr- ²³⁸ U 962	38343 38298 -10576	32 15 13	-10566	6	-1.6 -0.4 0.8	o 1 1			GS3 GS3 MA8	1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09
²²⁹ Fr- ²³⁸ U 962	38343 38298 -10576 197782	32 15 13 21			-1.6 -0.4 0.8 -0.6	o 1 1 2	13	13 ²²⁹ Fr	GS3 GS3 MA8 MA8	1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722}	38343 38298 -10576 197782 197746	32 15 13 21 27	-10566	6	-1.6 -0.4 0.8	o 1 1 2 2	13	13 ²²⁹ Fr	GS3 GS3 MA8 MA8 MA8	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26
²²⁹ Fr- ²³⁸ U. ₉₆₂ ²²⁹ Ra- ¹³³ Cs _{1.722} ²²⁹ Ac-u	38343 38298 -10576 197782 197746 32947	32 15 13 21 27 13	-10566 197768	6 17	-1.6 -0.4 0.8 -0.6 0.8	o 1 1 2 2 2	13	13 ²²⁹ Fr	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19
²²⁹ Fr- ²³⁸ U. ₉₆₂ ²²⁹ Ra- ¹³³ Cs _{1.722} ²²⁹ Ac-u	38343 38298 -10576 197782 197746 32947 5167	32 15 13 21 27 13 4 1.2	-10566	6	-1.6 -0.4 0.8 -0.6 0.8	o 1 1 2 2 2 2	13	13 ²²⁹ Fr	GS3 GS3 MA8 MA8 MA8	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$	38343 38298 -10576 197782 197746 32947 5167. 5168.	32 15 13 21 27 13 4 1.2 2 2.	-10566 197768	6 17	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3	o 1 1 2 2 2 2 -	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-u}$ 229 Th $^{(\alpha)}$ ²²⁵ Ra	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0	-10566 197768 5167.6	6 17 1.0	-1.6 -0.4 0.8 -0.6 0.8 -0.1 -0.3 -0.1	o 1 1 2 2 2 2	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-u}$ 229 Th $^{(\alpha)}$ ²²⁵ Ra	38343 38298 -10576 197782 197746 32947 5167. 5168.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0	-10566 197768	6 17	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3	o 1 1 2 2 2 2 -	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-u}$ 229 Th $^{(\alpha)}$ ²²⁵ Ra 229 Pa $^{(\alpha)}$ ²²⁵ Ac 229 U $^{(\alpha)}$ ²²⁵ Th	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5.	-10566 197768 5167.6	6 17 1.0	-1.6 -0.4 0.8 -0.6 0.8 -0.1 -0.3 -0.1	0 1 1 2 2 2 2 - -	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th $^{(225)}$ Ra 229 Pa $^{(225)}$ Ac 229 U $^{(225)}$ Th	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3.	-10566 197768 5167.6	6 17 1.0	-1.6 -0.4 0.8 -0.6 0.8 -0.1 -0.3 -0.1	o 1 1 2 2 2 1 1	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ u 229 Th $^{(\alpha)}$ Cs Ra 229 Pa $^{(\alpha)}$ Cs Ac 229 U $^{(\alpha)}$ Cs Th 229 Np $^{(\alpha)}$ Cs Pa	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20.	-10566 197768 5167.6	6 17 1.0	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2	o 1 1 2 2 2 2 1 1 5	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ u 229 Th $^{(\alpha)}$ Cs Ra 229 Pa $^{(\alpha)}$ Cs Ac 229 U $^{(\alpha)}$ Cs Th 229 Np $^{(\alpha)}$ Cs Pa	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23.	-10566 197768 5167.6	6 17 1.0	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2	o 1 1 2 2 2 2 1 1 5 6	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ 229 Th $^{(225)}$ Ra 229 Pa $^{(225)}$ Ac 229 U $^{(225)}$ Th 229 Np $^{(225)}$ Pa	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30.	-10566 197768 5167.6 5835 7010	6 17 1.0 4 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2	o 1 1 2 2 2 2 - 1 1 5 6 6 7	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ 229 Th $^{(225)}$ Ra 229 Pa $^{(225)}$ Ac 229 U $^{(225)}$ Th 229 Np $^{(225)}$ Pa	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015. 7592.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10.	-10566 197768 5167.6 5835 7010	6 17 1.0 4 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 0.0 -0.1	o 1 1 2 2 2 1 1 5 6 6 7 o	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-u}$ 229 Th $(\alpha)^{225}$ Ra 229 Pa $(\alpha)^{225}$ Ac 229 U $(\alpha)^{225}$ Th 229 Np $(\alpha)^{225}$ Pa 229 Pu $(\alpha)^{225}$ U	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015. 7592. 7598.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20.	-10566 197768 5167.6 5835 7010	6 17 1.0 4 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2	o 1 1 2 2 2 2 1 1 5 6 6 7 o 7	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06
229 Fr $^{-238}$ U $_{.962}$ 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-u}$ 229 Th $(\alpha)^{225}$ Ra 229 Pa $(\alpha)^{225}$ Ac 229 U $(\alpha)^{225}$ Th 229 Np $(\alpha)^{225}$ Pa 229 Pu $(\alpha)^{225}$ U	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015. 7592. 7598. 7589.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 4 20. 4 4 4 4 4 4 4 4 4 4 4 4 4	-10566 197768 5167.6 5835 7010 7590	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 66Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β $^{-)}$ 229Ac	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015. 7592. 7598. 7589. 8137.	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4	-10566 197768 5167.6 5835 7010 7590	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β $^{-)}$ 229Ac	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 5835. 6475. 7012. 7015. 7592. 7598. 8137. 1760	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 4 4 4 4 4 4 4 4 5 6 6 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	-10566 197768 5167.6 5835 7010 7590	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th $(\alpha)^{225}$ Ra 229 Pu $(\alpha)^{225}$ Th 229 Np $(\alpha)^{225}$ Pa 229 Pu $(\alpha)^{225}$ U 229 Pu $(\alpha)^{225}$ U 229 Am $(\alpha)^{225}$ Np 229 Ra $(\beta^{-})^{229}$ Ac 229 Ac $(\beta^{-})^{229}$ Th	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 7012. 7015. 7592. 7598. 7589. 8137. 1760 1140 1090	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50	-10566 197768 5167.6 5835 7010 7590	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-4}$ 229 Th $(\alpha)^{225}$ Ra 229 Pu $(\alpha)^{225}$ Th 229 Np $(\alpha)^{225}$ Pa 229 Pu $(\alpha)^{225}$ U 229 Pu $(\alpha)^{225}$ U 229 Am $(\alpha)^{225}$ Np 229 Ra $(\beta^{-})^{229}$ Ac 229 Ac $(\beta^{-})^{229}$ Th 229 Fr $^{-133}$ Cs $_{1.722}$	38343 38298 -10576 197782 197746 32947 5167. 5168. ave. 5167. 7012. 7015. 7592. 7598. 7589. 8137. 1760 1140 1090 Could be influence	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 ceed by ²²⁹ Rn	-10566 197768 5167.6 5835 7010 7590 1872 1104	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 *
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β) 229 Ac 229 Ac(β) 229 Th 229 Fr $^{-133}$ Cs $_{1.722}$	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 5835 . 6475 . 7012 . 7015 . 7592 . 7598 . 7589 . 8137 . 1760 1140 1090 Could be influence E_{α} =4978.3(1.2,2	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 eed by ²²⁹ Rn 0), 4967.3(1.3)	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1	6 17 1.0 4 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 *
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β $^{-)}$ 229Ac 229 Ac(β $^{-)}$ 229Th 229 Fr $^{-133}$ Cs $_{1.722}$ 229 Th(α) 225 Ra	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 5835 . 6475 . 7012 . 7015 . 7592 . 7598 . 8137 . 1760 1140 1090 Could be influence E_{α} =4978.3(1.2.2,2 to 100.60, 111.6	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 eed by ²²⁹ Rn 0), 4967.3(1.3)	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1)	6 17 1.0 4 50 50 50	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 * 71Gr17 *
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β $^{-)}$ 229Ac 229 Ac(β $^{-)}$ 229Th 229 Fr $^{-133}$ Cs $_{1.722}$ 229 Th(α) 225 Ra	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 7012 . 7015 . 7592 . 7598 . 7589 . 1760 1140 1090 Could be influenc E_{α} =4978.3(1.2,Z to 100.60, 111.6 E_{α} =4979.3(2,Z),	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 eed by ²²⁹ Rn (2), 4967.3(1.3)	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1) vels , 4845.1(2,Z)	6 17 1.0 4 50 50 50 12 .2,Z) keV	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 * 71Gr17 * 87He28 *
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs $_{1.722}$ 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Am(α) 225 Np 229 Ra(β $^{-)}$ 229Ac 229 Ac(β $^{-)}$ 229Th 229 Fr $^{-133}$ Cs $_{1.722}$ 229 Th(α) 225 Ra	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 7012 . 7015 . 7592 . 7598 . 7589 . 1760 1140 1090 Could be influenc E_{α} =4978.3(1.2,Z to 100.60, 111.6 E_{α} =4979.3(2,Z), to 9/2+ level at	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 ced by ²²⁹ Rn (2), 4967.3(1.2) 60, 236.25 le 4968.3(2,Z) 100.50, 7/2+	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1 vels , 4845.1(2,Z) at 111.60, 5/2	6 17 1.0 4 50 50 12 .2,Z) keV keV 2 ⁺ at 236	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 * 71Gr17 * 71Gr17 * 87He28 * Ens095 *
229 Fr $^{-238}$ U.962 229 Ra $^{-133}$ Cs _{1.722} 229 Ac $^{-1}$ 229 Th(α) 225 Ra 229 Pa(α) 225 Ac 229 U(α) 225 Th 229 Np(α) 225 Pa 229 Pu(α) 225 U 229 Pa(α) 225 VD 229 Pa(β) 225 Np 229 Pa(β) 229 Pac 229 Pac(β) 229 Th 229 Fr $^{-133}$ Cs _{1.722} 229 Th(α) 225 Ra 229 Th(α) 225 Ra	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 5835 . 6475 . 7012 . 7015 . 7592 . 7598 . 7589 . 8137 . 1760 1140 1090 Could be influent $E_{\alpha} = 4978.3(1.2, Z$ to 100.60 , 111.6 $E_{\alpha} = 4979.3(2, Z)$, to $9/2^+$ level at calibrated with	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 ced by ²²⁹ Rn 6), 4967.3(1.3 6), 236.25 le 4968.3(2,Z) 1100.50, 7/2+	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1 vels , 4845.1(2,Z) at 111.60, 5/, te for 4845 lev	6 17 1.0 4 50 50 50 12 .2,Z) keV keV 2 ⁺ at 236 rel	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3	o 1 1 2 2 2 2 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 71Gr17 87He28 Ens095 **
229 Fr $^{-238}$ U. 962 229 Ra $^{-133}$ Cs $^{1.722}$ 229 Ac $^{-1}$ 229 Th $(\alpha)^{225}$ Ra 229 Pa $(\alpha)^{225}$ Ac 229 U $(\alpha)^{225}$ Th 229 Np $(\alpha)^{225}$ Pa 229 Pu $(\alpha)^{225}$ U 229 Pu $(\alpha)^{225}$ U 229 Pa $(\beta)^{225}$ Np 229 Pa $(\beta)^{225}$ Pa 229 Pr $(\beta)^{225}$ Pa 229 Pr $(\beta)^{225}$ Pa	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 7012 . 7015 . 7592 . 7598 . 7589 . 8137 . 1760 1140 1090 Could be influenc E_{α} =4978.3(1.2,Z to 100.60, 111.6 E_{α} =4979.3(2,Z), to 9/2+ level at calibrated with E_{α} =5670.2, 5630	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 ced by ²²⁹ Rn 5), 4967.3(1 10, 236.25 le 4968.3(2,Z) 1100.50, 7/2+ 71BaB2 valu	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1 vels , 4845.1(2,Z) at 111.60, 5/ te for 4845 lev 5580.2, 5536.2	6 17 1.0 4 50 50 50 12 .2,Z) keV keV 2+ at 236 rel 2 (all 3,Z)	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3 .25 keV keV to	o 1 1 2 2 2 2 2 - - 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 87He28 average 63Su.A 61Ru06 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 75We23 73Ch24 75We23 08We02 71Gr17 87He28 Ens095 AHW
229 Fr – u 229 Fr – 238 U.962 229 Ra – 133 Cs _{1.722} 229 Ac – u 229 Th(α) ²²⁵ Ra 229 Pa(α) ²²⁵ Ac 229 U(α) ²²⁵ Th 229 Np(α) ²²⁵ Pa 229 Pu(α) ²²⁵ U 229 Am(α) ²²⁵ Np 229 Ra(β –) ²²⁹ Ac 229 Ac(β –) ²²⁹ Th 229 Fr – 133 Cs _{1.722} 229 Th(α) ²²⁵ Ra 229 Th(α) ²²⁵ Np	38343 38298 -10576 197782 197746 32947 5167 5168 . ave. 5167 . 5835 . 6475 . 7012 . 7015 . 7592 . 7598 . 7589 . 8137 . 1760 1140 1090 Could be influent $E_{\alpha} = 4978.3(1.2, Z$ to 100.60 , 111.6 $E_{\alpha} = 4979.3(2, Z)$, to $9/2^+$ level at calibrated with	32 15 13 21 27 13 4 1.2 2 2. 6 1.0 6 5. 5 3. 7 20. 8 23. 9 30. 0 10. 8 20. 4 20.4 40 150 50 ced by ²²⁹ Rn 5), 4967.3(1 10, 236.25 le 4968.3(2,Z) 1100.50, 7/2+ 71BaB2 valu	-10566 197768 5167.6 5835 7010 7590 1872 1104 contaminant 2,Z), 4845.1(1 vels , 4845.1(2,Z) at 111.60, 5/ te for 4845 lev 5580.2, 5536.2	6 17 1.0 4 50 50 50 12 .2,Z) keV keV 2+ at 236 rel 2 (all 3,Z)	-1.6 -0.4 0.8 -0.6 0.8 0.1 -0.3 -0.1 -0.2 0.0 0.0 -0.1 0.0 2.8 -0.2 0.3 .25 keV keV to	o 1 1 2 2 2 2 2 - - 1 1 5 6 6 7 0 7 5 B U	13 18	13 ²²⁹ Fr 17 ²²⁹ Fr 95 ²²⁵ Ra	GS3 GS3 MA8 MA8 MA8 GS3 Kum	1.0 1.0 1.0 1.0 1.0	08Ch.A 12Ch19 14Kr09 08We02 05He26 12Ch19 71Bb10 * 87He28 Z average 63Su.A * 61Ru06 Z 68Ha14 00Sa52 94An02 01Ca.B 10Kh06 15De22 * 75We23 73Ch24 75We23 08We02 ** 71Gr17 ** 87He28 ** Ens095 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjusted	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²³⁰ Fr- ¹³³ Cs _{1.729}	205878	32	205864	7	-0.4	0			MA8	1.0	05He26
F1= CS _{1.729}	205860.1	7.5	203604	,	-0.4	o 1	88	88 ²³⁰ Fr	MA8		14Kr09
²³⁰ Fr-u	42401	34	42391	7	-0.3		00	00 11	GS3	1.0	08Ch.A
rr-u		20	42391	/	-0.5 -1.5	0	12	12 ²³⁰ Fr	GS3	1.0	12Ch19
²³⁰ Ra- ¹³³ Cs _{1.729}	42421		200520	11		1	12	12 FI			
250 Ra – 155 Cs _{1.729}	200530	13	200528	11	-0.1	2			MA8		08We02
230 A	200524	21	26227	17	0.2	2			MA8		05He26
230 Ac $-u$	36328	32	36327	17	0.0	0			GS3	1.0	08Ch.A
230 Ra $-^{226}$ Ra $_{1.018}$	36327	17	11100		1.0	2			GS3	1.0	12Ch19
230 Ra - 226 Ra 230 Ra	11225	35	11189	11	-1.0	U	00	00 2265		1.0	92Bo28
230 Th(α) 226 Ra	4770.1	1.5	4769.9	1.5	-0.2	1	99	98 ²²⁶ Ra	Orm		66Ba14 Z
230 Pa(α) 226 Ac	5439.5	0.7	5439.4	0.7	-0.1	1	99	87 ²²⁶ Ac	Orm		66Ba14 Z
230 U(α) 226 Th	5992.8	0.7	5992.5	0.5	-0.5	2			Orm		66Ba14 Z
220	5992.1	0.7			0.5	2			Gea		12Ma30
230 Np(α) 226 Pa	6778.1	20.				6			ORa		68Ha14
230 Pu(α) 226 U	7175.0	15.	7181	7	0.4	6			Dbb		90An22
	7180.1	17.			0.0	6			Jya		99Gr28
	7182.2	10.			-0.1	6			GSa		01Ca.B
***	7185.1	20.4			-0.2	6			RIa		16Ka13
230 Th(p,t) 228 Th	-3550	15	-3569.2	1.1	-1.3	U			ANL		74Fr01
230 Th(p,t) 228 Th $-^{232}$ Th() 230 Th	-493.5	1.0	-492.6	0.5	0.9	O					91Gr13
	-492.5	0.5			-0.2	1	98	69^{228} Th			94Le22
230 Th(p,t) 228 Th $-^{184}$ W() 182 W	1564.0	1.6	1550.9	1.2	-8.2	В					09Le03
	1564.0	1.8			-7.3	C					09Le.A
230 Th(d,t) 229 Th	-541	6	-537.1	2.2	0.7	_					90Bu17
	-525	6			-2.0	_			ANL		67Er02 *
	ave. -533	4			-1.0	1	27	26^{-229} Th			average
230 Ra(β^{-}) 230 Ac	710	300	678	19	-0.1	U					80Gi04 *
230 Ac(β^{-}) 230 Th	2700	100	2976	16	2.8	U					80Gi04 *
230 Pa $(\varepsilon)^{230}$ Th	1310.3	3.	1311.0	2.8	0.2	1	89	88 ²³⁰ Pa			70Lo02 *
230 Pa(β^-) 230 U	561	15	559	5	-0.2	R					70Lo02
$*^{230}$ Th(d,t) ²²⁹ Th	$Q = -525(6)$ to 229	Th ^{m} at 0.	0035(0.0010) keV							94He08 **
$*^{230}$ Ra $(\beta^{-})^{230}$ Ac	E_{β} = 500(200) to	level at 2	11.78 keV	,							Ens129 **
$*^{230}$ Ac(β^-) ²³⁰ Th	$E_{\beta}^{P} = 1400(100)$ to			eV							Ens129 **
$*^{230}$ Pa $(\varepsilon)^{230}$ Th	pK=0.42(0.01) to				ted						Ens129 **
²³¹ Fr-u	45191	39	45175	8	-0.4	0			GS3	1.0	08Ch.A
u	45158	27	15115	J	0.6	U			GS3	1.0	12Ch19
231 Fr $-^{133}$ Cs _{1.737}	209405.3	8.3			0.0	2			MA8		14Kr09
231 Ra $^{-133}$ Cs _{1.737}	205267	21	205257	12	-0.5	1	34	34 ²³¹ Ra		1.0	05He26
$Ra = Cs_{1.737}$ 231Ra-u	41052	32	41027	12	-0.3 -0.8		34	34 Ka	GS3	1.0	08Ch.A
Ka—u	41032		41027	12		0	66	66 ²³¹ Ra		1.0	12Ch19
²³¹ Ac-u	38404	15 32	38393	14	$0.3 \\ -0.3$	1	00	00 Ka	GS3 GS3	1.0	
Ac-u			36393	14	-0.3	0					08Ch.A
231 Pa(α) 227 Ac	38393	14	5140.0	0.0	0.0	2			GS3	1.0	12Ch19
23 Pa(α) 22 Ac	5150.2	1.5	5149.9	0.8	-0.2	0			Orm		66Ba14
	5146.9	1.0			3.0	В			Kum		68Ba25 *
	5150.7	1.5			-0.5	_			Orm		69Le.A *
	5149.8	1.0			0.1	_	00	01 227 4	Kum		76Ba99 *
231 117 - 227 701	ave. 5150.1	0.8	5556.0	1.7	-0.2	1	98	91 ²²⁷ Ac			average
231 U(α) 227 Th	5551.3	50.	5576.3	1.7	0.5	U					53Cr.A
	5576.9	3.			-0.2	2					94Li12 *
						2					
221 227-	5576	2			0.1	2					97Mu08
$^{231}\text{Np}(\alpha)^{227}\text{Pa}$	5576 6368.4	8.			0.1	6					73Ja06
231 Pu(α) 227 U	5576 6368.4 6838.6	8. 20.				6 7		- 220			73Ja06 99La14
	5576 6368.4	8. 20. 3	-4133.3 5118.02	2.8 0.20	-0.1 -0.1	6	90 98	87 ²²⁹ Pa 73 ²³¹ Th	Mun ILn		73Ja06

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjusted		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
230 Th(d,p) 231 Th	2007	7	2002.45	0.20	1.0				A NIT		(7E-02
	2907	7	2893.45	0.20	-1.9	U			ANL		67Er02
231 Ac(β^-) 231 Th	2100	100	1947	13	-1.5	U		4= 221=			60Ta19
231 Th(β^-) 231 Pa	389.2	2.	391.5	1.5	1.1	1	53	47 ²³¹ Pa			75Ho14 *
$*^{231}$ Pa $(\alpha)^{227}$ Ac	E_{α} =5057.6(1.0,Z),			I(1.0,Z) to	o ground s	tate, 7/2	= at				Ens129 **
* 231p ()227 h	74.149 keV, and 9			. 46.05	4 2/2=	220 0 40	1 17				Ens129 **
$*^{231}$ Pa(α) ²²⁷ Ac $*^{231}$ Pa(α) ²²⁷ Ac	E_{α} =5015.9(1.5,Z),4			at 46.354	4, 3/2 at	330.040	keV				Ens129 **
* 231 U(α) ²²⁷ Th	E_{α} =4736.2(1.0,Z) t			4 77 7 1	1-						Ens129 ** 94Li12 **
$*^{231}$ Pa(p,t) ²²⁹ Pa	E_{α} =5471(3), 5456(Q =-4145(3) to 11		(3) 10 9.3, 24.	.4, //./ 10	eveis						
** 231 Th(β^-) 231 Pa	~		04 2140 1-3	7							98Le15 **
*****III(<i>p</i>)***Pa	E_{β} = 305(2) to 5/2	level at	04.2140 KE V	<i>(</i>							Ens136 **
232 Fr $-^{133}$ Cs _{1.744}	214353	15				2			MA8	1.0	14Kr09
232 Ra $^{-133}$ Cs _{1.744}	208368	13	208367	10	-0.1	1	57	57 ²³² Ra		1.0	05He26
232 Ra-u	43518	32	43475	10	-0.1 -1.3	0	31	31 Ka	GS3	1.0	08Ch.A
Ka-u	43474	15	75775	10	0.1	1	43	43 ²³² Ra	GS3	1.0	12Ch19
232 Ac $-u$	42052	32	42034	14	-0.6	0	73	+3 Ka	GS3	1.0	08Ch.A
Ac u	42034	14	42034	1-7	0.0	2			GS3	1.0	12Ch19
$C_{18} H_{16} = ^{232} Th$	87142.4	2.	87146.8	1.5	0.9	U			M20	2.5	73Br06
$C_{18} H_{16} - {}^{232}Th$ $C_{24} H_{16} - {}^{232}Th$ ^{37}Cl ^{35}Cl	152393.4	1.8	152391.5	1.5	-0.4	1	12	12^{-232} Th	M20	2.5	73Br06
$^{232}\text{Th}(\alpha)^{228}\text{Ra}$	4082.5	5.	4081.6	1.4	-0.2	Ü					57Ha08 Z
()	4084.6	5.			-0.6	Ü					61Ko11 Z
	4083.5	5.			-0.4	U					62Ko12 Z
	4081.6	1.4				2					89Sa01 *
$^{232}{ m U}(lpha)^{228}{ m Th}$	5413.63	0.09	5413.63	0.09	0.0	1	100	99 ²³² U	BIP		72Go33 *
232 Pu $(\alpha)^{228}$ U	6716.0	10.				6					73Ja06
232 Th(p,t) 230 Th	-3070	15	-3076.6	1.1	-0.4	U			ANL		74Fr01
232 Th(p,t) 230 Th $^{-184}$ W() 182 W	2056.4	1.6	2043.5	1.1	-8.1	В					09Le03
222	2056.5	1.8			-7.2	В					09Le.A
232 Th(d,t) 231 Th	-174	6	-183.2	1.1	-1.5	U			ANL		67Er02
232 • (0=)232 FB	-187	10	2700	1.2	0.4	U			MIT		72Gr19
232 Ac(β^-) 232 Th 232 Pa(β^-) 232 U	3700	100	3708	13	$0.1 \\ -0.3$	U					90Be.B
Pa(p)U	1344 1336	20 8	1337	7	-0.3 0.1	2 2					63Bj01 * 71Ka42 *
$*^{232}$ Th(α) ²²⁸ Ra	E_{α} =4012.3(1.4), 39) to ground s	tota 2± 1			7				Ens143 **
$*^{232}U(\alpha)^{228}$ Th	E_{α} =4012.3(1.4), 35 E_{α} =5320.12(0.14,Z										Ens143 **
$*^{232}$ Pa(β^-) ²³² U	E_{β} =1295(20) to 2					ver at 3	1.773 ICVCI				Ens06a **
$*^{232}$ Pa(β^-) ²³² U	E_{β} = 314(8) to 2 ⁻¹										Ens06a **
Τ(ρ')	<i>Dp 511(6) to 2</i>	.0.01 40 1	010.00 110 1,	and other	- 2-р						Ziiooou **
233 Fr $-^{133}$ Cs _{1.752}	218166	21				2			MA8	1.0	14Kr09
²³³ Ra–u	47602	32	47595	9	-0.2	o			GS3	1.0	08Ch.A
	47582	17			0.7	1	30	30^{233} Ra	GS3	1.0	12Ch19
233 Ra $^{-133}$ Cs _{1.752}	213248	11	213243	9	-0.5	1	70	70 ²³³ Ra	MA8	1.0	14Kr09
²³³ Ac-u	44363	32	44346	14	-0.5	o			GS3	1.0	08Ch.A
	44346	14				2			GS3	1.0	12Ch19
$^{233}{ m U}(lpha)^{229}{ m Th}$	4908.4	1.2	4908.7	1.2	0.2	1	93	70^{229} Th	Kum		68Ba25 Z
233 Np(α) 229 Pa	5626.7	50.9				2					50Ma14
233 Pu $(\alpha)^{229}$ U	6416.3	20.				6					57Th10
233 Am $(\alpha)^{229}$ Np p	6898.6	17.3				8					00Sa52
233 Cm(α) 229 Pu	7468.5	10.	7470	50	0.1	0			GSa		01Ca.B
222-1 220	7473.5	20.				8			GSa		10Kh06
233 Bk(α) 229 Am ^p	7905.9	20.3	4=~	0.00		7			GSa		15De22
232 Th $(n,\gamma)^{233}$ Th	4786.69	0.25	4786.39	0.09	-1.2	_			D.		74Ke13 Z
232Th (4 m)233Th	4786.34	0.10	25(1.92	0.00	0.5	_ 			Bdn		06Fi.A
232 Th(d,p) 233 Th	2555 2567	10	2561.82	0.09	0.7	U			MIT		72Gr19 72Vo08
232 Th $(n,\gamma)^{233}$ Th		7 0.09	4786.39	0.09	$-0.7 \\ 0.0$	U 1	100	92 ²³³ Th	ANL		
$\Pi(\Pi,\gamma) = \Pi$	ave. 4786.39	0.09	4/80.39	0.09	0.0	1	100	92 111			average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input data a	Adjusted			Dg	Signf.	Main infl.	Lab	F	Reference
IWIII	input value	Aujuste	a value	v_i	υg	oigiii.	iviaili illili,	Lau	1	ACICICIE
$^{233}\text{Th}(\beta^-)^{233}\text{Pa}$	1245 3	1242.2	1.1	-0.9	1	14	8 ²³³ Th			57Fr.A *
233 Pa $(\beta^{-})^{233}$ U	568 4	570.3	2.0	0.6	_					54Br37 *
	568 5			0.5	_					55On05 *
	566 5			0.9	-					63Bi03 *
	ave. 567.4 2	6		1.1	1	56	51 ²³³ U			average
$*^{233}$ Th $(\beta^{-})^{233}$ Pa	PrvCom to reference									58St50 **
$*^{233}$ Pa $(\beta^{-})^{233}$ U	E_{β} = 568(5), 256(4) to	ground state,	3/2 ⁺ lev	el at 311.9	904 keV					Ens057 **
$*^{233}$ Pa $(\beta^-)^{233}$ U	$E_{\beta}^{-}=568(5), 257(5)$ to									Ens057 **
$*^{233}$ Pa $(\beta^{-})^{233}$ U	$E_{\beta}^{-} = 254(5)$ to $3/2^{+}$ lo									Ens057 **
,	P									
²³⁴ Ra-u	50358 33	50382	9	0.7				GS3	1.0	08Ch.A
Ka-u	50342 33	30362	9	1.2	o U			GS3	1.0	12Ch19
234 Ra $^{-133}$ Cs _{1.759}		0		1.2	2			MA8		
234 Ac $-u$	216692.1 9		15	0.1					1.0	14Kr09
Ac-u	48137 32	48139	15	0.1	0			GS3	1.0	08Ch.A
$^{234}\text{U}(\alpha)^{230}\text{Th}$	48139 15	0 4057.5	0.7	0.1	2			GS3	1.0	12Ch19
$U(\alpha)$ In	4857.4 1 4860.4 2		0.7	0.1	-			K		55Go.A Z
				$-1.4 \\ -0.5$	_ 1	55	39 ²³⁰ Th	Kum		67Ba43 Z
234 Pu(α) 230 U				-0.3	1	33	39 111			average
234 Am(α) 230 Np	6310.1 5		150#	11.4	3					60Ho.A *
234 Cm(α) 230 Pu	6572.6 20		150#	11.4	F			CC-		90Ha02 *
$-cm(\alpha)$ Pu	7365.2 10		9	0.0	7			GSa		01Ca.B
234 Bk(α) 230 Am	7366.1 20		50	0.0	7			RIa		16Ka13
$-\mathbf{B}\mathbf{K}(\alpha)$ - $\mathbf{A}\mathbf{m}$	8087 50	8100	50	0.2	0 10			RIa		02Mo.B *
232 Th(t,p) 234 Th	8098.6 20		26	0.4				RIa		16Ka13
234 U(p,t) 232 U	2487 20 -4099 15	2494.6		0.4	U			LAI		69Br11
234 U(p,t) 232 U $^{-184}$ W() 182 W		-4125.3		-1.8	U			ANL		74Fr01
(p,t) () w() w	1007.6 1 1007.6 1		1.6	-8.0	В					09Le03
233 U(d,p) 234 U			2.0	-7.1	C			Von		09Le.A
234 U(d,t) 233 U	4656 15	4620.9		-2.3	U	1.1	11 ²³³ U	Kop		68Bj05
234 Th $(\beta^-)^{234}$ Pa m	-579 6	-588.2		-1.5	1	11	11 255 U	ANL		67Er02
23. In(p)23. Pa	192 2	195.1	1.0	1.5	3					55De40 *
	193 2			1.0	3					63Bj02 *
234 Pa m (IT) 234 Pa	198. 1	3		-1.9	3					73Go40 *
234 Pa(β^-) 234 U	79 3	2104	4	0.0	4					Nub16b
	2230 40	2194	4	-0.9	U					62Bj01
234 Pa ^m $(\beta^{-})^{234}$ U	2290 20	2272.9		-0.9	U					63Bj02
234 Np(β^+) 234 U	1812 10	1810	8	-0.2	2					67Ha04 *
234 D. (-> 230 I	1805 15			0.3	2					67Wa09 *
$*^{234}$ Pu(α) ²³⁰ U	With correction simila			1 11						91Ry01 **
$*^{234}$ Am(α) ²³⁰ Np	F: not believed to be			repiaced b	y estima	ite				GAu **
$*^{234}$ Bk(α) ²³⁰ Am	E_{α} =7850(50) to 100 k			(1=) 02	20. 1	234p m	1 4 5			16Ka13 **
$*^{234}$ Th $(\beta^{-})^{234}$ Pa ^m	E_{β} = 100(2) 100(2) 10									Ens074 **
$*^{234}$ Np(β^+) ²³⁴ U	E_{β}^{+} =790(10) pK=0.4	8(0.03) respec	tively, to	1 ⁺ at 157	0.69 and	1 T at 160	11.8 keV			Ens074 **
225								_		
235 Ac $-u$	50872 32	50840	15	-1.0	o			GS3	1.0	08Ch.A
225	50840 15				2			GS3	1.0	12Ch19
235 Th $-u$	47252 32	47255	14	0.1	O			GS3	1.0	08Ch.A
	47255 14				2			GS3	1.0	12Ch19
²³⁵ Pa-u	45421 32	45399	15	-0.7	o			GS3	1.0	08Ch.A
	45399 15				2			GS3	1.0	12Ch19
$^{235}U - ^{206}Pb C_2 H_5$	30341.0 10	30337.9	1.6	-0.1	U			C4	2.5	71Ke02
$^{235}U-C_{18}H_{18}$	-96932.8 3	8 -96922.4	1.2	1.1	U			M20	2.5	73Br06
$C_{18} H_{20} - ^{235}U$	112584.2 4			-1.0	U			M20		73Br06
$^{235}U(\alpha)^{231}Th$	4678 2			0.0	_			Kum		60Ba44 *
` '	4681 3			-1.0	_					60Vo07 *
	4675.5 3	0		0.8	_					64Sc27 *
	4677 3			0.3	_					66Ga03 *
	ave. 4677.9 1			0.1	1	28	$21^{-231} Th$			average
					-					

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input v	alue	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
235 Np(α) 231 Pa		5197.2	2.0	5193.8	1.5	-1.7	1	54	42 ²³¹ Pa	Bka		73Br12
235 Pu(α) 231 U				3193.6	1.5	-1.7		34	42 Fa	Бка		
		5951.5	20.	6576	10	0.2	3			T.4		57Th10
235 Am(α) 231 Np		6559	100	6576	13	0.2	О			JAa		99Sa.D
		6576	15			0.0	0			JAa		04Sa05
222 225		6576	13				7			JAa		04As12
$^{233}U(t,p)^{235}U$		3668	10	3661.2	2.0	-0.7	U					67Ri.A
$^{34}U(n,\gamma)^{235}U$		5297.1	0.5	5297.50	0.23	0.8	_					72Ri08
		5297.4	0.3			0.3	-					77Ko15
$^{234}U(d,p)^{235}U$		3075	7	3072.93	0.23	-0.3	U			ANL		70Br01
235 U(d,t) 234 U		935	15	959.73	0.23	1.6	U			Kop		68Bj05
$^{234}U(n,\gamma)^{235}U$	ave.	5297.32	0.26	5297.50	0.23	0.7	1	81	$63^{234}U$	•		average
$^{235}\text{Th}(\beta^{-})^{235}\text{Pa}$		1470	80	1729	19	3.2	В					89Yu01
235 Pa(β^{-}) 235 U		1410	50	1370	14	-0.8	U					68Tr07
$^{235}\mathrm{Np}(\varepsilon)^{235}\mathrm{U}$		123.5	2.	124.3	0.9	0.4	_					58Gi05
$\operatorname{Np}(\mathcal{E})$		123.6	1.	124.3	0.7	0.7	_					72Mc25
								0.1	88 ²³⁵ Np			
$^{35}U(\alpha)^{231}Th$	ave.	123.6	0.9		(7.10=)	0.8	1	91	88 Np			average
				ground state				66.906				Ens136
35 U(α) 231 Th				o ground stat								Ens136
$^{35}\mathrm{U}(\alpha)^{231}\mathrm{Th}$				ground state								Ens136
$^{35}\mathrm{U}(\alpha)^{231}\mathrm{Th}$	E_{α} =4595	5.3, 4397.3, 4	4365.3(all	3,Z) to groun	d state, (7	$/2^{-}$) level a	at 205.31	0 keV				Ens136
	and 9/2	⁻ at 236.906	keV									Ens136
35 Np(α) 231 Pa	$E_{\alpha}=5105$	5.2(3), 5097.	2(3), 5050	.8(2,Z), 5024	.8(2,Z), 49	924.8(2,Z)	to ground	l state,				AHW
•	$1/2^{-}$ at	9.206, 7/2	at 58.5699	$9, 5/2^+ \text{ at } 84.$	2148, 5/2+	at 183.49	62					Ens136
35 Am(α) 231 Np		0(100) to leve										04As12
35 Am(α) 231 Np		7(14) to level										04As12
235 Am(α) 231 Np		7(12) to level										04As12
$^{233}U(t,p)^{235}U$				it 332.845 ke	V							Ens14b
²³⁶ Ac-u		55037 54988	73 41	54990	40	-0.7	o 2			GS3 GS3	1.0 1.0	10Ch19 12Ch19
²³⁶ Th-u				10657	1.5	0.2						
···In−u		49665	32	49657	15	-0.3	0			GS3	1.0	08Ch.A
36p		49657	15	10660	1.5	0.1	2			GS3	1.0	12Ch19
³⁶ Pa-u		48666	32	48668	15	0.1	0			GS3	1.0	08Ch.A
26 222		48668	15				2			GS3	1.0	12Ch19
$^{36}\mathrm{U}(\alpha)^{232}\mathrm{Th}$		4572.2	3.	4572.9	0.9	0.2	O					60Ko04
		4570.0	3.1			1.0	_					61Ko11
		4573.1	1.0			-0.2	-			Kum		78Ba.C
	ave.	4572.8	1.0			0.1	1	82	83 ²³² Th			average
36 Pu(α) 232 U		5867.15	0.08	5867.15	0.08	0.0	1	100	99 ²³⁶ Pu			84Ry02
36 Am $(\alpha)^{232}$ Np		6256.2	40.				3			JAa		04Sa05
36 Cm(α) 232 Pu		7074.1	20.	7067	5	-0.4	U			GSa		10Kh06
Cin(ov)		7066.9	5.	, , , ,	Ü	0	7			JAa		10As.A
$^{36}U(p,t)^{234}U$		-3330	15	-3361.2	0.3	-2.1	Ú			ANL		74Fr01
$^{35}U(n,\gamma)^{236}U$		6545	2	6545.52	0.26	0.3	U			ANL		70Ka22
$O(\Pi, \gamma) = O$				0343.32	0.20							
		6545.1	0.5			0.8	_					74Ju.B
36*************		6545.4	0.5	200.20	0.26	0.2	_			4 3 77		75We.A
36 U(d,t) 235 U		-281	6	-288.29	0.26	-1.2	U		20 225	ANL		70Br01
$^{35}U(n,\gamma)^{236}U$	ave.	6545.3	0.4	6545.52	0.26	0.8	1	54	$30^{235}U$			average
36 Pa(β^{-}) 236 U		3350	100	2889	14	-4.6	В					63Wo04
200		2900	200			-0.1	U					68Tr07
236 Np m (IT) 236 Np		60	50				3					Ens06a
$^{36}\text{Np}^{m}(\beta^{-})^{236}\text{Pu}$		525	10	537	6	1.2	2					56Gr11
		544	8			-0.9	2					69Le05
236 Pa $(\beta^{-})^{236}$ U	$E_{B^{-}}=200$	$00(200)$ to 1^{-}	level at 6	687.59 keV, a	nd other E	$_{B^{-}}$, reinter	preted					Ens06a

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	omparison	Input va		Adjuste			Dg	Signf.	Main infl.	Lab	F	Reference
— Item		mput v	aruc	Aujuste	u value	v_i	Dg	Sigiii.	iviaiii iiiii.	Lau	I'	Reference
$^{237}\text{Th}-\text{u}$		53690	32	53629	17	-1.9	o			GS3	1.0	08Ch.A
		53629	17				2			GS3	1.0	12Ch19
²³⁷ Pa-u		51038	32	51023	14	-0.5	o			GS3	1.0	08Ch.A
		51023	14				2			GS3	1.0	12Ch19
237 Np(α) 233 Pa		4959.9	3.	4957.3	0.7	-0.9	U					61Ba44 *
1		4956.7	1.5			0.4	_			Kum		68Ba25 *
		4959.9	3.			-0.9	U					69Va06 *
		4956.9	0.9			0.4	-			Gea		00Si02 *
	ave.	4956.8	0.8			0.6	1	91	90 ²³³ Pa			average
237 Pu(α) 233 U		5753.3	20.	5747.6	2.3	-0.3	U					57Th10
		5747	5			0.1	1	20	15 ²³³ U	Dba		93Dm02
237 Am(α) 233 Np p		6146.2	5.				4					75Ah05 Z
237 Cm(α) 233 Pu		6774.5	10.	6770	50	-0.1	o			JAa		02As08
		6770.4	10.				7			JAa		06As03
237 Cf(α) 233 Cm		8220	20				9			GSa		10Kh06
$^{235}U(t,p)^{237}U$		3206	20	3189.5	0.5	-0.8	U			Ald		64Mi.A *
		3178	20			0.6	U			LAl		69Br11
237 Np(p,t) 235 Np		-3816	15	-3832.3	0.9	-1.1	U			ANL		74Fr01
$^{236}U(n,\gamma)^{237}U$		5125.9	0.5	5125.8	0.5	-0.3	1	85	$84^{237}U$	BNn		79Vo05 Z
$^{236}U(d,p)^{237}U$		2898	8	2901.2	0.5	0.4	U			ANL		67Er02
237 Pa $(\beta^{-})^{237}$ U		2250	100	2137	13	-1.1	U					74Ka05
$^{237}\text{U}(\beta^-)^{237}\text{Np}$		520	5	518.5	0.5	-0.3	U					53Wa05 *
_		524	5			-1.1	U					56Ba39 *
		523	5			-0.9	U					57Ra04 *
237 Pu $(\varepsilon)^{237}$ Np		222	8	220.1	1.3	-0.2	U					58Ho02 *
		207	18			0.7	U					59Gi54 *
$*^{237}$ Np(α) ²³³ Pa	E_{α} =4876.	7 4774.2 4	769.1(3,2	Z) to ground	state, 7/2 ⁻¹	⁺ at 103.63	35, 9/2 ⁺ 1	09.07 keV				Ens057 **
$*^{237}$ Np(α) ²³³ Pa	E_{α} =4787.	.9(1.5,Z) to	5/2 ⁺ lev	el at 86.48 kg	eV							Ens057 **
$*^{237}$ Np(α) ²³³ Pa	E_{α} =4791.	0(3,Z), 47	74.0(3,Z)	, 4770.0(3,Z)) keV							69Va06 **
*	to 5/2 ⁺ a	at 86.468, 7	$7/2^{+}$ at 10	3.635, 9/2+	at 109.07	keV						Ens057 **
$*^{237}$ Np(α) ²³³ Pa				at 86.468 ke	V							00Si02 **
$*^{235}U(t,p)^{237}U$	Q = 2980((20) to $7/2^{-1}$	level at	426.15 keV								Ens068 **
$*^{237}U(\beta^-)^{237}Np$	$E_{\beta} = 2450$	(5), 249(5).	, 248(5) r	espectively, t	to 53% 3/2	2 ⁻ level at	267.556,	and				Ens068 **
*	43% 1/2	level at 2	81.356 k	eV								Ens068 **
$*^{237}$ Pu $(\varepsilon)^{237}$ Np	LK=2.8(0	.8) capture	to 5/2 ⁻ 1	evel at 59.54	1 keV, red	calculated						Ens068 **
$*^{237}$ Pu $(\varepsilon)^{237}$ Np	pK=0.38(0.06) to gro	ound state	e, 7/2 ⁺ level	at 33.196,	$5/2^{-}$ at 59	9.541 keV	I				Ens068 **
238 p		7.46.40	22	5.4605	1.7	0.2				GGO	1.0	00.01
²³⁸ Pa-u		54648	32	54637	17	-0.3	0			GS3	1.0	08Ch.A
$^{238}U-^{206}Pb$ ^{32}S		54637	17	104250 5	1.0	0.1	2			GS3	1.0	12Ch19
		104253.9	10.	104250.7	1.9	-0.1	U			C4	2.5	71Ke02
${}^{\mathrm{C}_{18}\mathrm{H}_{22}-{}^{238}\mathrm{U}}_{\mathrm{C}_{24}\mathrm{H}_{20}-{}^{238}\mathrm{U}}{}^{35}\mathrm{Cl}_{2}$		121366.0	2.4	121363.7	1.6	-0.4	U	21	21 ²³⁸ U	M20	2.5	73Br06
$C_{24} H_{20} = 235 U 35 Cl_2$ 238 U = 235 U	1	168010.8	1.4	168008.3	1.6	-0.7	1	21	21 2500	M20	2.5	73Br06
238 14 234 77		6858.6	10.	6858.8	1.3	0.0	U			C4	2.5	71Ke02
$^{238}\mathrm{U}(lpha)^{234}\mathrm{Th}$		4271.5	5.	4269.9	2.1	-0.3	2					57Ha08 Z
		4265.1	5.			0.9	2					60Vo07 Z
		4272.9	5.			-0.6	2					61Ko11 Z
238 Pu(α) 234 U		4269.9	3.	5502.25	0.10	0.0	2	00	69 ²³⁸ Pu	Gea		14Po02
		5593.20	0.2	5593.27	0.19	0.4	1	90	69 ²⁵⁰ Pu			71Gr17 Z
238 Am(α) 234 Np		6041.7	30.		4.0		3					72Ah04
238 Cm(α) 234 Pu		6611.5	50.	6670	10	1.2	U					48St.A *
		6632.0	50.			0.8	U			T.4		52Hi.A
		6672.3	10.			-0.2	0			JAa		02As08
238 U(n, α) 235 Th		6670.3	10.	9026	12	47	4 D			JAa		06As03
236 U(n, α) 238 Th		8700	50	8936	13	4.7	В			A 1 1		81Wa11
255 U(t,p)255 U		2900	20	2797.7	1.2	-5.1	F			Ald		64Mi.A *
		2782	10			1.6	U U			ANL		67Er02
		2780	20			0.9	U			LAl		69Br11

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	•	Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
		r		.,		- •		<i></i>	<u> </u>			
$^{238}U(p,t)^{236}U$		-2765	15	-2797.7	1.2	-2.2	U			ANL		74Fr01
238 U(p,d) 237 U		-3951	20	-3929.2	1.3	1.1	U			Ald		64Mi.A
$^{238}U(d,t)^{237}U$		116	6	103.5	1.3	-2.1	U			ANL		67Er02
237 Np(n, γ) 238 Np		5488.32	0.20				2			BNn		79Io01
²³⁸ Pu(d,t) ²³⁷ Pu		-746	10	-742.6	1.3	0.3	U			Kop		73Gr26
238 Pa $(\beta^{-})^{238}$ U		3600	300	3586	16	0.0	U			1		68Tr07
()-)		3460	60			2.1	Ü					85Ba57
238 Np(β^{-}) 238 Pu		1295	10	1291.4	0.5	-0.4	Ü					55Ra27
πρ(β) Τα		1300	15	12)1.1	0.5	-0.6	Ü					56Ba95
$*^{238}$ Cm(α) ²³⁴ Pu	PrvCom	to reference	15			0.0	Č					58St50 *
$*^{236}U(t,p)^{238}U$		rs not satisfic	ed with ter	get material								AHW *
$*^{238}$ Pa(β^-) ²³⁸ U				1992.2 keV,	and other	F - rainte	arnratad					Ens157 *
$*^{238}$ Pa(β^-) ²³⁸ U				1992.2 KC V,	and other	E_{β} -, remite	rpreteu					
		result from th		1 . 2+1	1 . 1000	. 5271 37	1 .1	г				82Gi.A *
$*^{238}$ Np(β^-) ²³⁸ Pu	E_{β} = 2/()(10) 280(10) respectiv	rely, to 2 ⁺ lev	vei at 1028	5.557 KeV, 8	ina otner	E_{β}				Ens157 *
239 Pu(α) 235 U		5244.60	0.25	5244.52	0.21	-0.3	1	68	41 ²³⁵ U			79Ry.A
239 Am(α) 235 Np		5924.6	2.0	5922.4	1.4	-1.1	2		-	Bka		71Go01
rim(w) rip		5920.2	2.0	3,22.1	2	1.1	2			Ditt		75Ah05
239 Cm(α) 235 Pu		6539.7	140.			1.1	4			JAa		02Sh.C
$^{239}Cf(\alpha)^{235}Cm^{p}$		7760.1	25.				10			GSa		81Mu12
$^{238}U(n,\gamma)^{239}U$		4806.55	0.30	4806.38	0.17	-0.6	2			ANL		72Bo46
$O(\Pi,\gamma)$				4600.36	0.17							
$^{238}U(d,p)^{239}U$		4806.30	0.21	2581.82	0.17	0.4	2			ILn		79Br25
U(a,p) U		2588	20	2381.82	0.17	-0.3	U			Ald		64Mi.A
		2579	7			0.4	U			Tal		66Sh16
238p ()239p		2585	6	56460	0.0	-0.5	U	20	21 2385	ANL		67Er02
238 Pu(n, γ) 239 Pu		5646.7	0.5	5646.2	0.3	-0.9	1	38	31 ²³⁸ Pu			75Ma.A
238 Pu(d,p) 239 Pu		3432	10	3421.7	0.3	-1.0	U			Kop		73Gr26
²³⁹ Pu(d,t) ²³⁸ Pu		604	10	611.0	0.3	0.7	U			ANL		73Fr01
$^{239}U(\beta^{-})^{239}Np$		1290	20	1261.7	1.5	-1.4	U		220			64B111
$^{239}\text{Np}(\beta^{-})^{239}\text{Pu}$		722.5	1.0	722.8	0.9	0.3	1	87	67 ²³⁹ Np			59Co63
$*^{239}$ Pu(α) ²³⁵ U	E_{α} =5156	5.59(0.25,Z)	to 1/2 ⁺ le	vel at 0.0760	keV							Ens14b *
$*^{239}$ Am $(\alpha)^{235}$ Np	E_{α} =5824	4.6(4,Z) 5775	5.6(2,Z) 57	733.6(2,Z); g	round state	$e, (5/2)^- 49$	0.10, (7/2)- 91.6				Ens14b *
$*^{239}$ Am $(\alpha)^{235}$ Np	E_{α} =5772	2.7(2,Z) to (5	$(1/2)^{-}$ level	at 49.10 keV	7							Ens14b *
$*^{239}$ Cm(α) ²³⁵ Pu	Private c	ommunicatio	on to refere	ence								08Qi03 *
$*^{239}U(\beta^{-})^{239}Np$	$E_{B^-} = 121$	11(20) to 5/2	- level at	74.6640 keV,	and other	E_{R-}						Ens14b *
$*^{239}$ Np(β^-) ²³⁹ Pu				5.460 keV, ai								Ens14b *
240									226			
240 Pu(α) 236 U		5255.88	0.15	5255.82	0.14	-0.4	1	90	77 ²³⁶ U			72Go33
240 Am $(\alpha)^{236}$ Np p		5468.9	1.0				3		***			70Go42
240 Cm(α) 236 Pu		6397.8	0.6	6397.8	0.6	0.0	1	100	99 ²⁴⁰ Cm	Kum		71Bb10
240 Cf(α) 236 Cm		7718.9	10.	7711	4	-0.8	8					70Si19
		7713.8	20.			-0.1	U			GSa		10Kh06
		7709.7	4.1			0.3	8			JAa		10As.A
$^{238}U(t,p)^{240}U$		2242	20	2253.1	2.9	0.6	U			Ald		64Mi.A
V4.7		2253	20			0.0	Ü			LAl		69Br11
240 Pu(p,t) 238 Pu		-3692	15	-3698.7	0.4	-0.4	Ü			ANL		74Fr01
239 Pu(n, γ) 240 Pu		6534.1	1.0	6534.22	0.23	0.1	_			12		70Ch.A
14(11,7) 14		6534.3	0.4	0557.22	0.23	-0.2	_					74Ju.B
		6534.2	0.4			0.0	_					75We.A
²³⁹ Pu(d,p) ²⁴⁰ Pu		4300	10	4309.65	0.23	1.0	U			ANL		73Fr01
239 Pu(n, γ) 240 Pu	ovo	6534.24	0.27	6534.22	0.23	-0.1	1	72	46 ²³⁹ Pu	ANL		
$^{240}\text{U}(\beta^-)^{240}\text{Np}^m$	ave.								40 ²⁴⁰ Np ^m			average
		386	20	381	13	-0.2	1	43	42 ²⁴⁰ Np ³⁷ 68 ²⁴⁰ Np			53Kn23
$^{240}\text{Np}^m(\text{IT})^{240}\text{Np}$		20	15	18	14	-0.1	1	83	08 240Np			81Hs02
$^{240}\text{Np}(\beta^{-})^{240}\text{Pu}$		2199	30	2191	17	-0.3	1	32	32 ²⁴⁰ Np			51Or.A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Compar			and adjuste									D.f.
Item		Input v	alue	Adjusted	ı value	v_i	Dg	Signf.	Mai	n infl.	Lab	F	Reference
$^{240}\text{Np}^{m}(\beta^{-})^{240}\text{Pu}$		2210	20	2209	13	-0.1	1	43	43	$^{240}\mathrm{Np}^m$			59Bu20 *
240 Am $(\varepsilon)^{240}$ Pu		1395	35	1385	14	-0.3	R			1			72Ah07 *
$*^{240}$ Cm(α) ²³⁶ Pu	$E_{\alpha} = 6290$			round state, 2									Ens06a **
$*^{240}U(\beta^-)^{240}Np^m$	$E_{R-} = 360$	$0(20)$ to 240 N	Np^m , and 1	⁺ level at 44.	17 keV ab	ove							Ens08a **
$*^{240}Np^{m}(IT)^{240}Np$		ction IT =0.											AHW **
$*^{240}\text{Np}(\beta^{-})^{240}\text{Pu}$		$0(30)$ to 5^-											Ens08a **
$*^{240}Np^{m}(\beta^{-})^{240}Pu$				and 2 ⁺ level	at 42.824 l	keV. and o	ther $E_{\theta-}$						Ens08a **
$*^{240}$ Am $(\varepsilon)^{240}$ Pu				t 1030.55 keV			шег Др						Ens08a **
²⁴¹ Am O–C ₂₂		51744.8	1.9	51742.0	1.2	-1.0	1	18	18	²⁴¹ Am	TG1	1.5	14Ei01
241 Pu(α) 237 U		5139.6	3.	5140.1	0.5	0.2	U			227			68Ah01 *
241 227		5139.3	1.2			0.6	1	16	16	²³⁷ U	Kum		68Ba25 *
241 Am(α) 237 Np		5637.81	0.12	5637.82	0.12	0.1	1	100	99	²³⁷ Np			71Gr17 *
241 Cm $(\alpha)^{237}$ Pu		6182.8	2.0	6185.2	0.6	1.2	U				Kum		67Ba42 *
		6185.2	0.6			0.0	-				Kum		71Bb10 *
		6185.0	2.0			0.1	-			227			75Ah05 *
	ave.	6185.2	0.6			0.0	1	99	94	²³⁷ Pu			average
$^{241}\mathrm{Cf}(\alpha)^{237}\mathrm{Cm}^p$		7459.0	5.	7455	3	-0.9	9						70Si19
241 227		7451.9	4.1			0.7	9				JAa		10As.A
241 Es $(\alpha)^{237}$ Bk		8064.1	30.	8250	20	6.2	C				GSa		85Hi.A *
220 241		8250.2	20.				10				GSa		96Ni09
239 Pu(t,p) 241 Pu		3242	20	3293.95	0.23	2.6	U				LAl		69Br11
240 Pu $(n,\gamma)^{241}$ Pu		5241.3	0.7	5241.522	0.030	0.3	U			***			75Ma.A
		5241.52	0.03			0.1	1	100	61	²⁴⁰ Pu	ILn		98Wh01 Z
240 Pu(d,p) 241 Pu		3018	6	3016.956	0.030	-0.2	U				ANL		67Er02
241 Am(d,t) 240 Am		-388	15	-390	14	-0.1	2				Kop		76Gr19
$^{241}\text{Np}(\beta^{-})^{241}\text{Pu}$		1360	100	1310	70	-0.5	2						59Va32
		1250	100			0.6	2						66Qa02
241 Pu(β^{-}) 241 Am		20.8	0.2	20.78	0.17	-0.1	-						56Sh31
		20.7	0.3			0.3	-						99Dr13
		20.78	0.20			0.0	O						99Ya.A
		21.6	0.5			-1.6	U						10Lo14 *
	ave.	20.77	0.17			0.1	1	99	81	²⁴¹ Am			average
241 Cm $(\varepsilon)^{241}$ Am		767.5	1.2	767.4	1.2	-0.1	1	95	94	²⁴¹ Cm			89Su.A *
$*^{241}$ Pu(α) ²³⁷ U				to $5/2^+$ at 159									Ens068 **
$*^{241}$ Pu(α) ²³⁷ U				(Z) to $5/2^{+}$ at									Ens068 **
$*^{241}$ Am $(\alpha)^{237}$ Np				0.13,Z) to 5/2									Ens068 **
$*^{241}$ Cm(α) ²³⁷ Pu				to ground stat									Ens068 **
$*^{241}$ Cm(α) ²³⁷ Pu				,Z) to $1/2^{+}$ at									Ens068 **
$*^{241}$ Cm $(\alpha)^{237}$ Pu	E_{α} =5938	3.7(2,Z), 588	84.7(2,Z)	to 1/2 ⁺ at 145	5.543, 5/2 ⁺	at 201.17	9 keV						Ens068 **
$*^{241}$ Es $(\alpha)^{237}$ Bk	C: new	data from sa	me group	(next item) is	more relia	ıble							96Ni09 **
$*^{241}$ Pu(β^-) ²⁴¹ Am	No quote	ed uncertain	ty, estimat	ed by evaluat	or								GAu **
$*^{241}$ Cm $(\varepsilon)^{241}$ Am	$Q(\varepsilon)=5.5$	5(1.2) to 3/2	- level at	636.861 keV									Ens152 **
242 Pu(α) 238 U		4007.2	2.0	4004.2	1.0	1 5							52 A a A
$-Pu(\alpha)^{233}U$		4987.3	2.0	4984.2	1.0	-1.5	_ II						53As.A *
		4989.5	3.0			-1.8	U				V		56Ko67 *
	0710	4982.9	1.2			1.1	- 1	02	78	²³⁸ U	Kum		68Ba25 *
242 Am(α) 238 Np	ave.	4984.1 5587.5	1.0	5500 50	0.25	0.2	1	92	/8	0	V		average
$Aiii(\alpha)^{-1}$ Np		5587.5	0.8	5588.50	0.25	$1.3 \\ -1.7$	U				Kum		79Ba67 *
242 Cm(α) 238 Pu		5589.9 6215.63	0.8 0.08	6215 62	0.00		U	100	100	²⁴² Cm			90Ho02 * 71Gr17 Z
242 Cf(α) 238 Cm		6215.63		6215.63	0.08	0.0	1 5	100	100	, Cm			
$^{242}\text{Es}(\alpha)^{238}\text{Bk}$		7516.9	4.								Cc.		70Si19 Z
240 Pu(t,p) 242 Pu		8160.2	20.	2060.2	0.7	1.2	9 •				GSa		10An08
····Pu(t,p)-·-Pu		3043	20	3069.3	0.7	1.3	U				LAl		69Br11

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v		Adjuste		v_i	Dg	Signf.	Main infl.	Lab	F	Reference
²⁴² Pu(p,t) ²⁴⁰ Pu	2045	1.5	2060.2	0.7	1.6				ANII		74E 01
	-3045	15	-3069.3	0.7	-1.6	U	0.5	01 2425	ANL		74Fr01
241 Pu(n, γ) 242 Pu	6309.5	0.7	6309.6	0.7	0.1	1	95	81 ²⁴² Pu			72Ma.A
²⁴² Pu(d,t) ²⁴¹ Pu	-49	7	-52.3	0.7	-0.5	U			ANL		67Er02
241 Am(n, γ) 242 Am	5541.5	1.5	5537.64	0.10	-2.6	U					75Ij.A
241 242	5537.64	0.1				2			ILn		88Sa18 2
241 Am(d,p) 242 Am	3308	15	3313.07	0.10	0.3	U			Kop		76Gr19
$^{242}\text{Np}(\beta^{-})^{242}\text{Pu}$	2700	200				2					79Ha26
242 Am(β^{-}) 242 Cm	651	5	664.3	0.4	2.7	U					50Ok52
	667	5			-0.5	U					55Ba.A
$*^{242}$ Pu(α) ²³⁸ U	E_{α} =4904.6, 4860.6(2										Ens157 *
$*^{242}$ Pu(α) ²³⁸ U	E_{α} =4905.2(3,Z), 486										Ens157 *
$*^{242}$ Pu(α) ²³⁸ U	E_{α} =4900.4(1.2,Z), 48										Ens157 *
$*^{242}$ Am(α) ²³⁸ Np	E_{α} =5206.6(0.5,Z), 51	41.4(0.5,	Z) from ²⁴² A	m^m at 48.6	50 to 5 ⁻ at	342.439,					Ens157 *
*	and 6 ⁻ at 407.59 ke	V; error in	creased due	to conflict	with next it	tem					GAu *
$*^{242}$ Am(α) ²³⁸ Np	E_{α} =5208.3(0.8,Z), 51	44.3(0.9,	Z) from ²⁴² A	m^m to 5^-	6 ⁻ levels (s	see above	:)				Ens157 *
$*^{242}$ Am(β^-) ²⁴² Cm	E_{β} = 628(5) to groun										Ens026 *
242								242			
²⁴³ Am O–C ₂₂	56295.8	1.5	56294.6	1.5	-0.6	1	44	44 ²⁴³ Am	TG1	1.5	14Ei01
243 Am(α) 239 Np	5438.8	1.0	5439.1	0.9	0.3	1	87	54 ²⁴³ Am	Kum		68Ba25
243 Cm $(\alpha)^{239}$ Pu	6165.4	3.0	6168.8	1.0	1.1	U					57As.A
	6165.7	3.0			1.0	U					63Dz07
	6165.4	3.0			1.1	o			Kum		66Ba07
	6168.8	1.0				2					69Ba57
243 Bk $(\alpha)^{239}$ Am	6874.4	4.				3			Bka		66Ah.A
243 Cf(α) 239 Cm p	7178	10				6					67Fi04
243 Es(α) 239 Bk	8072.1	10.				9			RIa		89Ha27
243 Es(α) 239 Bk p	8022.3	20.	8030.9	2.9	0.4	U					73Es02
	8031.4	3.			-0.2	10			RIa		89Ha27
	8027.3	20.			0.2	o			GSa		93Ho.A
	8025.4	10.			0.6	10			GSa		10An08
243 Fm(α) 239 Cf	8689.3	25.4	8690	50	0.1	o			GSa		81Mu12
	8693.4	20.3				11			GSa		08Kh10
243 Am(p,t) 241 Am	-3407	15	-3420.2	1.2	-0.9	U			ANL		74Fr01
242 Pu(n, γ) 243 Pu	5034.2	3.	5033.6	2.4	-0.2	1	63	59 ²⁴³ Pu			76Ca25
242 Pu(d,p) 243 Pu	2807	8	2809.1	2.4	0.3	U			ANL		67Er02
243 Am(d,t) 242 Am	-111	15	-107.1	1.2	0.3	Ü			Kop		76Gr19
243 Pu(β^-) 243 Am	578	10	579.6	2.6	0.2	_			Кор		69Ho10
$\operatorname{Iu}(p)$ Am	580	10	379.0	2.0	0.2	_					77Dr07
		7			0.0	1	14	11 ²⁴³ Pu			
$*^{243}$ Am $(\alpha)^{239}$ Np			7) to 5/2= at 1	74 6640 7			14	II Fu			average
* 243 Cm(α) 239 Pu	E_{α} =5275.2(1.0,Z) 52						705				Ens14b *
	E_{α} =6063.7, 5989.7, 5			ground sta	te, //2' lev	el at /5.	705,				57As.A *
* 243 G () 239 D	5/2 ⁺ at 285.460, and			1 . 75.70	5 5 10±	205.46					Ens14b *
$*^{243}$ Cm $(\alpha)^{239}$ Pu	E_{α} =5990.5, 5783.5, 5		L) to 7/2 lev	el at 75.70	15, 5/2 at 2	285.46,					Ens14b *
* 242 ~ 220 ~	and 7/2 ⁺ at 330.124										Ens14b *
$*^{243}$ Cm(α) ²³⁹ Pu	E_{α} =6067.4, 5992.4(2										Ens14b *
$*^{243}$ Cm $(\alpha)^{239}$ Pu	E_{α} =5785.7(1.0,Z), 57					24keV					Ens14b *
$*^{243}$ Cf(α) ²³⁹ Cm ^p	Unhindered E_{α} =7060	(10); ther	e is a weaker	$E_{\alpha} = 7170$	(10) keV						AHW *
²⁴⁴ Pu O-C ₂₂	59119.3	1.9	59119.0	2.5	-0.1	1	78	78 ²⁴⁴ Pu	TG1	1.5	14Ei01
244 Pu(α) 240 U								99 ²⁴⁰ U	101	1.3	
()	4665.6	1.0	4665.6	1.0	0.0	1	100	99 - U	חזח		69Be06
244 Cm(α) 240 Pu	5901.60	0.03				2			BIP		71Gr17
244 Bk(α) 240 Am	6778.8	4.				3					66Ah.B
244 Cf(α) 240 Cm	7327.1	2.	7329.0	1.8	0.9	-					67Fi04
	7336.4	4.			-1.8	-					67Si08
	7330.4 ave. 7329.0	20.			$-0.1 \\ 0.0$	U 1	99	98 ²⁴⁴ Cf	GSa		08Kh10 average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

	Compariso			•					_	age 030002-50)	Dafa
Item		Input v	aiue	Aajust	ed value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
244 Es(α) 240 Bk p		7696.4	20.				4				73Es02
242 Pu(t,p) 244 Pu		2576	20	2571.7	2.5	-0.2	Ü			LAI	69Br11
244 Pu(p,t) 242 Pu	_	-2560	15	-2571.7	2.5	-0.8	U			ANL	72Ma15
244 Pu(t, α) 243 Np p				-23/1./	2.3	-0.8				ANL	
		12405	10	227.2	2.0	0.7	2	2.4	19 ²⁴³ Pu	ANII	79F102
²⁴⁴ Pu(d,t) ²⁴³ Pu		234	5	237.3	2.9	0.7	1	34	19 ²⁴³ Pu	ANL	76Ca25
243 Am(n, γ) 244 Am m		5277.90	0.07				2			ILn	84Vo07
244 Cm(d,t) 243 Cm		-530	7	-544.2	1.0	-2.0	U			ANL	67Er02
244 Am m (IT) 244 Am		85.0	1.0	89.3	1.6	4.3	F				84Ho02
244 Am(β^{-}) 244 Cm		1427.3	1.0				3				62Va08
$*^{244}$ Cm(α) ²⁴⁰ Pu	$E_{\alpha} = 5804.$	77(0.05,Z)	, 5762.6	5(0.03,Z) to	ground sta	te, 2 ⁺ level	l at 42.82	24 keV			Ens08a
$*^{244}$ Bk $(\alpha)^{240}$ Am	$E_{\alpha} = 6667.3$	5(4,Z), 66	25.5(3,Z) to ground	state, 2 ⁺ lev	vel at 42.82	4 keV				Ens08a
$*^{244}$ Am ^m (IT) ²⁴⁴ Am				ource no erro							AHW :
$*^{244}$ Am($\hat{\beta}^-$) 244 Cm				040.188 keV		=1498(10) f	rom				Ens036 =
*				and state and							Nub16b
	71111	ut 05.5(1.0) to grot	ina state un	. 2 ut 12.)	, 05 KC 1, 110	t useu				1140100
245 Cm(α) 241 Pu		5621.9	0.5	5624.5	0.5	5.2	В			Kum	75Ba65
Cin(u) Fu		5624.8	0.5	3024.3	0.5	-0.6		96	68 ²⁴⁵ Cm		
245 Bk $(\alpha)^{241}$ Am		5624.8 6454.7		61515	1.4		1	90	08 ··· Cm	Ara	16Ko.B 74Po08
2 1 2 1 1 2 1 2 1 2 1 2			4.	6454.5	1.4	0.0	2			17	
245 241		6454.5	1.5			0.0	2			Kum	75Ba25
245 Cf(α) 241 Cm		7257.5	2.0	7258.5	1.8	0.5	_				67Fi04
		7265	5			-1.3	-				96Ma72
		7260.8	11.			-0.2	U			GSa	04He28
	ave.	7258.5	1.9			0.0	1	98	97 ²⁴⁵ Cf		average
$^{245}\text{Es}(\alpha)^{241}\text{Bk}$		7858.5	20.	7909	3	1.0	U				73Es01
		7884.0	20.			0.5	U			GSa	85He22
		7909.4	3.				3			RIa	89Ha27
245 Es(α) 241 Bk p		7827.9	30.	7858.5	1.0	1.0	U				67Mi06
()		7858.5	1.				4			RIa	89Ha27
245 Fm(α) 241 Cf p		8285.5	20.				11			1111	67Nu01
$^{245}{\rm Md}(\alpha)^{241}{\rm Es}^p$		8824.3	20.				12			GSa	96Ni09
244 Pu(d,p) 245 Pu				2475	12	0.4					
		2469	15	2475	13	0.4	2			ANL	75Er.A
244 Cm(d,p) 245 Cm		3297	7	3294.1	0.5	-0.4	U			ANL	67Er02
245 Pu(β^{-}) 245 Am		1257	30	1278	14	0.7	R				68Da02
245 Am(β^{-}) 245 Cm		905	5	895.9	1.5	-1.8	U				55Br02
$^{245}\text{Es}^{p}(\text{IT})^{245}\text{Es}$		283	15				4				Nub16b
c^{245} Cm(α) ²⁴¹ Pu	$E_{\alpha} = 5529.0$	0, 5488.5,	5436.1(0	0.5,Z), 5303	.6, 5234.4 ((1.2,Z) keV					75Ba65
245 Cm(α) ²⁴¹ Pu				$22,9/2^{+}95.$				1.172 levels			Ens15c
*				75.05 level							FGK169
c^{245} Cm $(\alpha)^{241}$ Pu				6.6(2.0), 53							16Ko.B
(01)				8, 175.05, 2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Ens15c
245 Bk(α) ²⁴¹ Am	-			5, 175.05, 2 5886.0 (all		17100013					91Ry01
bk(α) Alli						/2- at 471	010 lea V 7				Ens15c
245 D1 (> 241 A				176, 5/2 ⁺ at							
e^{245} Bk $(\alpha)^{241}$ Am				5885.8 reca							91Ry01
245 241				$176, 5/2^+$ at			810 keV				Ens15c
245 Cf(α) 241 Cm				(0,Z) to gs+5		level					96Ma72
245 Cf(α) 241 Cm				.6 and 56.1	level						96Ma72
e^{245} Md(α) ²⁴¹ Es ^p	Second E_o	x 8635(20)) keV								96Ni09
²⁴⁴ Pu(d,p) ²⁴⁵ Pu	Q = 2252(15) to 217	level (es	stimated ene	rgy for 15/2	2 ⁻ level)					06Ma.A
e^{245} Pu(β^{-}) ²⁴⁵ Am				9/2 ⁺) level a			28 keV				Ens112
246 Cm(α) 242 Pu		5475.2	4.	5475.1	0.9	0.0	U				63Dz07
()		5474.9	2.		~	0.1	_			Kum	66Ba07
		5475.2	1.			-0.1	_				84Sh31
			0.9			0.0	1	99	98 ²⁴⁶ Cm		
	ave.	5475.1									average

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adjus	sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
246 Cf(α) 242 Cm	6871.0	1.0	6861.6	1.0	-9.4	В					63Fr04
,	6861.6	1.			0.0	1	100	99 ²⁴⁶ Cf	Kum		77Ba69
$^{246}\text{Es}(\alpha)^{242}\text{Bk}^{p}$	7451.2	30.	7492	4	1.4	U					67Mi06
(**) =	7481.9	30.	=		0.3	Ü					73Es01
	7492.0	4.			0.0	4			RIa		89Ha27
246 Fm(α) 242 Cf	8371.4	20.	8377	8	0.3	6			1111		66Ak01
rm(w) er	8376.5	20.	0377	O	0.0	6			Bka		67Nu01
	8386.7	20.			-0.5	0			GSa		96Ni09
	8378.4	10.			-0.2	6			GSa		10An08
246 Md(α) 242 Es	8884.7	20.	8890	40	0.1	0			GSa		96Ni09
Mu(a) Ls	8888.8	40.	0070	40	0.1	10			GSa		10An08
$^{246}{\rm Md}^{m}(\alpha)^{242}{\rm Es}$	8944.5					10			GSa		
244 Pu(t,p) 246 Pu		50.	2072	1.5	0.6		5.0	55 ²⁴⁶ Pu			10An08
	2085	20	2072	15	-0.6	1	56	55 ²⁴⁰ Pu	LAI		79Br19
²⁴⁶ Cm(d,t) ²⁴⁵ Cm	-196	6	-201.7	1.2	-1.0	U		246-	ANL		67Er02
246 Pu(β^-) 246 Am ^m	374	10	371	9	-0.3	1	89	45 ²⁴⁶ Pu			56Ho23
246 Am $^{m}(\beta^{-})^{246}$ Cm	2300	100	2407	15	1.1	U		246			55En16
	2420	20			-0.6	1	56	56 ²⁴⁶ Am ^m			56Sm85
246 Bk $(\varepsilon)^{246}$ Cm	1350	60				2					89Sc.A
246 Cm $(\alpha)^{242}$ Pu	E_{α} =5385.3(2,	Z), 5342	.3(2,Z) to g	round state,	2 ⁺ level at	44.54 ke	eV				Ens026 >
246 Cm(α) 242 Pu	E_{α} =5385.6(1,	Z), 5342	.6(1,Z) to g	round state,	2+ level at	44.54 ke	eV				Ens026 >
246 Cf(α) 242 Cm	E_{α} =6757.4(1.										Ens026 *
246 Cf(α) 242 Cm	$E_{\alpha} = 6750.0(1.$										Ens026 *
$^{246}{\rm Md}(\alpha)^{242}{\rm Es}$	Also a lower I				,						96Ni09 ×
$^{246}{\rm Md}^{m}(\alpha)^{242}{\rm Es}$	$E_{\alpha} = 8178(10)$			estimated to	be 100#50) keV					10An08 >
246 Pu(β^-) 246 Am ^m	$E_{\beta^-} = 150(10)$										Ens118
$^{246}\text{Am}^{m}(\beta^{-})^{246}\text{Cm}$	E_{β} = 1222(10					0 0 1 5 2	= lovel at 1	104 954			Ens118
ин (р) сн	<i>Б</i> _β 1222(10	0) 1550(20) respecti	very, to 1	iever at 107	0.043, 2	icver at 1	104.054			Elistro -
247 Cm(α) 243 Pu	5354.6	4.	5354	3	-0.2	1	71	60 ²⁴⁷ Cm			71Fi01
247 Bk(α) 243 Am	5889.6	5.	3331	5	0.2	2	, 1	oo em			69Fr01
$^{247}\mathrm{Cf}(\alpha)^{243}\mathrm{Cm}^p$	6399.6	5.				5					84Ah02
$^{247}\text{Es}(\alpha)^{243}\text{Bk}^p$	7450.7	30.	7443.8	1.0	-0.2	U					67Mi06
$ES(\alpha)$ DK'		30.	7443.6	1.0	-0.2 0.4						73Es01
	7430.5				0.4	U			DI-		
247 - 243 - 26	7443.8	1.	0250	10	2.0	5			RIa		89Ha27
247 Fm(α) 243 Cf	8060.8	50.	8258	10	3.9	В			Dba		67Fl15
	8213	18			2.5	O			GSa		89He03
	8287.3	20.			-1.5	O			GSa		04He28
247	8268.1	10.			-1.0	O			GSa		06He27
247 Fm $^m(\alpha)^{243}$ Cf	8314.9	30.	8307	5	-0.3	U			Dba		67Fl15
	8260.0	30.			1.5	o			GSa		97He29
	8304.8	11.			0.2	o			GSa		04He28
	8306.8	5.				7			GSa		06He27
47 Md(α) 243 Es	8776.6	25.	8764	10	-0.5	o			GSa		81Mu12
	8772.5	20.			-0.4	o			GSa		93Ho.A
	8770.5	10.			-0.6	o			GSa		05He27
	8764.4	10.				10			GSa		10An08
$^{47}\mathrm{Md}^m(\alpha)^{243}\mathrm{Es}$	9027.9	40.				10			GSa		10An08
246 Cm(d,p) 247 Cm	2931	8	2931	4	-0.1	1	22	21 ²⁴⁷ Cm	ANL		67Er02
247 Cf(ε) 247 Bk	646	6	614	16	-5.3	C					56Ch.A
247 Cm(α) 243 Pu	$E_{\alpha} = 5267.3(4,$						R 13 9/2 ⁻ 4	02.6			Ens148
	E_{α} =5794, 571										Ens148
	L_{α} – 3774, 371			ma state, 37	2 icver at	04.00, 77	2 at 107.2	Z RC V			AHW
247 Bk $(\alpha)^{243}$ Am	F = 9060(15)	Summed									04He28
247 Bk(α) 243 Am 247 Fm(α) 243 Cf	E_{α} =8060(15)										04He28 06He27
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf	E_{α} =7840(20)	to 318 lo									
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 2247 Fm(α) 243 Cf	E_{α} =7840(20) E_{α} =7824(10)	to 318 lo to 315 lo									
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf	E_{α} =7840(20) E_{α} =7824(10) Only one even	to 318 le to 315 le nt	evel								97He29
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed	to 318 le to 315 le nt in later w	evel vork on ²⁵¹ l	No decay							97He29 01He35
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Md(α) 243 Es	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed E_{α} =8428(25)	to 318 le to 315 le to in later w to 209.6	evel vork on ²⁵¹ l level	No decay							97He29 01He35
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Md(α) 243 Es 247 Md(α) 243 Es	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed	to 318 le to 315 le to in later w to 209.6	evel vork on ²⁵¹ l level	No decay							97He29 01He35 10An08 10An08
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Md(α) 243 Es 247 Md(α) 243 Es 247 Md(α) 243 Es	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed E_{α} =8428(25)	to 318 le to 315 le to in later w to 209.6 to 209.6	evel vork on ²⁵¹ l level level	No decay							97He29 01He35 10An08 10An08
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Md(α) 243 Es 247 Md(α) 243 Es 247 Md(α) 243 Es	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed E_{α} =8428(25) E_{α} =8424(20) E_{α} =8422(10)	to 318 le to 315 le at in later w to 209.6 to 209.6 to 209.6	evel vork on ²⁵¹ l level level level	·	ó level						97He29 = 01He35 = 10An08 = 10A
247 Bk(α) 243 Am 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm(α) 243 Cf 247 Fm m (α) 243 Cf 247 Fm m (α) 243 Cf 247 Md(α) 243 Es 247 Md(α) 243 Es	E_{α} =7840(20) E_{α} =7824(10) Only one ever Not observed E_{α} =8428(25) E_{α} =8424(20)	to 318 le to 315 le it in later w to 209.6 to 209.6 to 209.6	evel work on ²⁵¹ I level level level 0) to ground	state, 209.6	ó level						97He29 9 01He35 9 10An08 9 10A

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item		Input	value	Adjuste	d value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
*				to (5/2) ⁺ lev			ds 550;					WgM10a**
*	both co	nflict with 6	13 from SI	niptrap data t	o ²⁵⁵ No pl	us α chain						WgM10a**
248 Cm(α) 244 Pu		5161.81	0.25	5161.81	0.25	0.0	1	100	95 ²⁴⁸ Cm	Kum		77Ba69 Z
248 Cf(α) 244 Cm		6364.8	5.1	6361	5	-0.7	0	100	<i>75</i> CIII	Ttuiii		78Gr10
, ,		6361.2	5.				3					84Ah02 *
248 Es(α) 244 Bk		7165.8	20.	7160#	50#	-0.3	F					84Li.A *
248 Es $(\alpha)^{244}$ Bk p		6982.8	15.	7020	5	2.5	U					56Ch67
		6982.8	10.			3.8	В					70Ah01
248 Fm(α) 244 Cf		7020.4	5.	7005	0	0.5	5			RIa		89Ha27
2 Fm(α) 2 ···Ci		8009.4 7999.3	30. 20.	7995	8	$-0.5 \\ -0.2$	_					66Ak01 67Nu01
		8002.3	20. 15.			-0.2 -0.5	0			GSa		85He.A
		7992.2	11.			0.2	_			GSa		04He28
	ave.	7995	9			-0.1	1	79	77 ²⁴⁸ Fm	054		average
248 Md(α) 244 Es p		8497.3	30.				6					73Es01
248 Cm(p,t) 246 Cm		-2894	15	-2885.1	2.7	0.6	U			ANL		74Fr01
248 Cm(d,t) 247 Cm		49	8	46	4	-0.4	1	25	19 ²⁴⁷ Cm	ANL		67Er02
248 Bk $^{m}(\beta^{-})^{248}$ Cf		870	20				4					78Gr10
$*^{248}$ Cf(α) ²⁴⁴ Cm				ground state		at 42.965 l	κeV					Ens036 **
$*^{248}\mathrm{Es}(\alpha)^{244}\mathrm{Bk}$	F : this li	ine is not ob	served in n	nore recent w	orks							AHW **
²⁴⁹ Cf O-C ₂₂		69760.0	1.4	69765.1	1.3	2.4	1	37	37 ²⁴⁹ Cf	TG1	1.5	14Ei01
249 Bk(α) 245 Am		5520.4	2.0	5521.0	1.4	0.3	3	31	37 CI	Bka	1.5	66Ah.A *
DK(W) / IIII		5526.1	1.0	3321.0	1.7	-5.1	В			Kum		71Bb10 *
		5521.6	2.0			-0.3	3			Ara		13Ah03 *
$^{249}Cf(\alpha)^{245}Cm$		6296.0	0.7	6293.3	0.5	-3.9	В			Kum		71Bb10 *
		6293.6	0.5			-0.6	1	96	63 ²⁴⁹ Cf	Ara		15Ah03 *
249 Es $(\alpha)^{245}$ Bk p		6881.3	5.	6886.0	1.9	0.9	4					70Ah01 Z
210		6886.8	2.			-0.4	4			RIa		89Ha27
249 Fm(α) 245 Cf		7718.3	20.	7709	6	-0.5	-					73Es01 *
		7705.1	23.			0.2	O			GSa		85He06 *
		7705.0 7710.2	14. 8.1			$0.3 \\ -0.1$	-			GSa Orm		04He28 * 11Lo06 *
	ave.	7710.2	7			-0.1 -0.1	- 1	80	77 ²⁴⁹ Fm	Olli		average
$^{249}\mathrm{Md}(\alpha)^{245}\mathrm{Es}^p$	avc.	8161.3	20.	8158	9	-0.2	5	00	// III			73Es01
Mu(a) L3		8157.3	20.	0150		0.0	0			GSa		85He22
		8165	20			-0.3	0			GSa		01He35 *
		8157.3	10.			0.1	o			GSa		05He27
		8157.3	10.			0.1	5			GSa		09He20
$^{249}\text{Md}^{m}(\alpha)^{245}\text{Es}^{q}$		8212.2	20.				7			GSa		01He35
248 Cm(n, γ) 249 Cm		4713.37	0.25				2			ILn		82Ho07 Z
248 Cm(d,p) 249 Cm		2488	6	2488.80	0.25	0.1	U			ANL		67Er02
249 Cm(β^{-}) 249 Bk		870	100	904.3	2.6	0.3	U			AND		58Ea06 *
249 Bk(β^{-}) 249 Cf		885	15	122 6	0.4	1.3	U U			ANB		05Ah03 *
- Вк(р)- Сі		125 123	2 2	123.6	0.4	-0.7 0.3	U					59Va02 74Gl10
		123.6	0.4			0.5	2					14Ch47
$*^{249}$ Bk $(\alpha)^{245}$ Am	$E_{\alpha}=543$			2,Z) to groun	nd state. 7/	2+ 19.20. 9		7 keV				Ens112 **
$*^{249}$ Bk $(\alpha)^{245}$ Am				gies of highe			,_ ,,,	, 110 ,				71Bb10 **
*			_	, calibrated v			e α					75Ba27 **
$*^{249}$ Bk $(\alpha)^{245}$ Am				to ground sta		-		1				Ens112 **
$*^{249}Cf(\alpha)^{245}Cm$	E_{α} =6193	3.8(0.7,Z), 5	813.3(1.0,	Z) to ground	state, 9/2-	level at 38	8.181 ke	V				Ens112 **
$*^{249}$ Cf(α) ²⁴⁵ Cm				ground state			1 keV					Ens112 **
$*^{249}$ Fm(α) ²⁴⁵ Cf				7/2+ [624] 1								04He28 **
$*^{249}$ Fm(α) ²⁴⁵ Cf				7/2+ [624] 1								04He28 **
$*^{249}$ Fm(α) ²⁴⁵ Cf				[624] level a		·V						11Lo06 **
$*^{249}$ Fm(α) ²⁴⁵ Cf				l at 57(4) keV								11Lo06 **
$*^{249}$ Md(α) ²⁴⁵ Es ^p				ith conversion								01He35 **
$*^{249}$ Cm(β^-) ²⁴⁹ Bk	$E_{\beta} = 860$	D(100) 876(1	15) respect	ively, to $3/2^-$	level at 8	.777 keV						Ens118 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Companis	Input va		Adjusted		$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
Item		Input ve	iiuc	rajustee	a varae	· 1		orgin.	111111111111111111111111111111111111111	Luc	•	recrement
250 Cf(α) 246 Cm		6129.1	0.6	6128.51	0.19	-1.0	2			Kum		71Bb10 *
		6128.44	0.2			0.3	2					86Ry04 Z
250 Fm(α) 246 Cf		7550.9	50.	7557	8	0.1	U					57Am47
		7540.9	30.5			0.5	-					66Ak01
		7561.1	30.			-0.1	_					73Es01
		7560.1	15.			-0.2	_			ORb		77Be36
		7556.1	35.6			0.0	o			GSa		81Mu06
		7555.0	12.			0.2	_			GSa		04He28
		7544.8	35.			0.3	U			Bka		06Fo02
	ave.	7556	9			0.1	1	80	80 ²⁵⁰ Fm			average
$^{250}{\rm Md}(\alpha)^{246}{\rm Es}^{p}$		7947.4	30.	7955	24	0.2	6					73Es01
		7964.7	20.			-0.5	o			GSa		85He22
		7967.7	40.			-0.3	6			GSa		08An16
248 Cm(t,p) 250 Cm		2064	10				2					73Ba72
250 Bk $(\beta^{-})^{250}$ Cf		1760	15	1780	3	1.3	U					59Va02 *
$*^{250}$ Cf(α) ²⁴⁶ Cm	$E_{\alpha} = 6030$.6(0.6,Z), 59	88.9(0.6.	Z) to ground	state, 2 ⁺ 1	evel at 42.	852 keV					Ens118 **
$*^{250}$ Bk $(\beta^{-})^{250}$ Cf				31.852 keV a								Ens01c **
,	Ρ											
251 Cf(α) 247 Cm		6177.2	1.0	6177.0	0.9	-0.2	2			Kum		71Bb10 *
CI(α) Cm				6177.0	0.9		2			Kum		
251 Es(α) 247 Bk		6176	2	(500	2	0.5	2					03Ah07 *
$^{231}\text{Es}(\alpha)^{247}\text{BK}$		6593.5	5.	6598	3	0.9	0					70Ah01 *
251 Fm(α) 247 Cf		6597.8	3.				3					79Ah03 *
		7425.1	2.0	7062		0.1	4					73Ah02 *
251 Md(α) 247 Es		7965.5	20.	7963	4	-0.1	U			CC		73Es01 *
		7955.2	10.			0.8	4			GSa		05He27 *
25157 ()24757		7965.5	5.	07.50	4	-0.4	4			Jya		06Ch52 *
251 No(α) 247 Fm		8739.5	20.	8752	4	0.6	U			Bka		67Gh01
		8732.4	15.			1.3	O			GSa		89He03
		8762.9	20.			-0.6	O			GSa		97He29
		8760.9	20.			-0.9	O			GSa		01He35
		8747.7	11.			0.4	0			GSa		04He28
251 No $^{m}(\alpha)^{247}$ Fm m		8751.8	4.	0000	4	()	10			GSa		06He27
231 No $^{\prime\prime\prime}(\alpha)^{217}$ Fm $^{\prime\prime\prime}$		8619.6	30.	8809	4	6.3	F			GSa		97He29 *
		8805.5	13.			0.2	0			GSa		04He28
251 c. (0=)251 p.		8808.6	4.				8			GSa		06He27
251 Cm(β^-) 251 Bk		1420	20				4					78Lo13
251 Bk(β^-) 251 Cf		1093	10				3			-		84Li05 *
²⁵¹ No ^m (IT) ²⁵¹ No	T #400	106	6				9			GSa		06He27
$*^{251}$ Cf(α) ²⁴⁷ Cm				el at 404.90 ke								Ens153 **
$*^{251}$ Cf(α) ²⁴⁷ Cm				d state, 1/2 ⁺				;				Ens153 **
$*^{251}$ Es $(\alpha)^{247}$ Bk				to ground stat								Ens153 **
$*^{251}$ Es $(\alpha)^{247}$ Bk	$E_{\alpha} = 6492$.8(3,Z), 646	2.8(3,Z) t	to ground stat	$e, (5/2^-) 1$	evel at 29.3	38 keV					Ens153 **
$*^{251}$ Fm(α) ²⁴⁷ Cf	$E_{\alpha} = 7305$.7(3,Z), 683	3.7(2,Z) t	to ground stat	e and (9/2	 level at 	480.40 ke	eV				Ens153 **
$*^{251}$ Md(α) ²⁴⁷ Es	$E_{\alpha} = 7550$	(20) 7540(1	0) 7550(1) respectively	, to 7/2 ⁻ 1	evel at 293	3.7 keV					06Ch52 **
$*^{251}$ Md(α) ²⁴⁷ Es	Original e	error 1 keV i	n third re	ference incre	ased for ca	alibration						GAu **
$*^{251}$ No ^{m} (α) ²⁴⁷ Fm ^{m}	F: not ob	served in lat	er work o	on ²⁵¹ No deca	ay							01He35 **
$*^{251}$ Bk $(\beta^{-})^{251}$ Cf	$E_{\beta^-} = 915$	(10) to $3/2^+$	level at 1	177.602 keV	-							Ens139 **
252 No $-^{133}$ Cs _{1.895}		268111	34	268135	10	0.7	o			SH1	1.0	10Dw01
1.093		268133	18		-	0.1	1	31	31 ²⁵² No	SH1	1.0	10Mi.A
252 Cf(α) 248 Cm		6216.9	0.5	6216.95	0.04	0.1	Ü		2.2 1.0	Kum		71Bb10 Z
CI(W) CIII		6216.95	0.04	0210.73	0.07	0.1	2			114111		86Ry04 Z
252 Es(α) 248 Bk p		6739.5	3.				4					73Fi06 *
252 Fm(α) 248 Cf		7152.7	2.				4					84Ah02 *
I III(u) CI		1134.1	۷.				4					OTAHUZ *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Table 1.	Compari	son or mpu	i uata	anu aujusu	eu values	(Continue	u, Expi	anauon oi	Table on pa	ge usuuu	2-30)	
Item		Input va	lue	Adjuste	ed value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
252 No(α) 248 Fm		8545.9	20.	8549	5	0.1	U			Bka		67Gh01
$NO(\alpha)$ Fill		8545.9	30.	0349	3		U					
						0.1				Dba		67Mi03
		8551.0	6.			-0.4	_			CC-		77Be09
		8542.8	15.			0.4	О			GSa		85He.A
		8538.7	13.			0.7	_	02	69 ²⁵² No	GSa		04He28
252- 248	ave.	8549	6	0464		0.0	1	92	69 ²³² No	-		average
252 Lr(α) 248 Md		9163.8	20.	9164	17	0.0	7			GSa		01He35
252- 4 252-2		9165.8	30.			0.0	7			Bka		08Ne01
252 Es(ε) 252 Cf		1260	50			2	3					73Fi06
$*^{252}$ Es $(\alpha)^{248}$ Bk p		2.1(3,Z), 6522										Ens14b *
$*^{252}$ Fm(α) ²⁴⁸ Cf		8.9(2,Z), 6998					eV					Ens14b >
$*^{252}$ Lr(α) ²⁴⁸ Md	Other E_0	_e =9610(20) u	nexplair	ed, and 8990), 8820 keV							08Ne01 >
$*^{252}$ Es $(\varepsilon)^{252}$ Cf	pK=0.45	(0.10) to 3^+	level at 9	969.8 keV, red	calculated f	or non-unio	que first					Ens061 >
*	forbidd	en or allowed	transiti	on; unique fir	st forbidde	n would giv	ve 1440(1	100)				AHW *
²⁵³ No- ¹³³ Cs _{1.902}		270390	13	270393	7	0.2	1	33	33 ²⁵³ No	SH1	1.0	10Dw01
253 Cf(α) 249 Cm		6127.3	5.	6126	4	-0.3	3					66Rg01
		6124.6	5.			0.3	3					68Be21
253 Es(α) 249 Bk		6739.24	0.05				3					71Gr17
253 Fm(α) 249 Cf		7199	3	7198.0	2.7	-0.3	2					67Ah02
1111(00)		7194.2	6.	,1,0.0	2.,,	0.6	2			Orm		11Lo06
253 Md(α) 249 Es		7567.5	15.	7573	8	0.4	0			GSa		05He27
Md(w) Ls		7574.0	10.	1313	O	-0.1	5			Orm		11Lo06
		7571	15.			0.1	5			GSa		12He09
253 No(α) 249 Fm		8419	20	8415	4	-0.2	U			Bka		67Gh01
No(a) Fill		8419	30	0413	4	-0.2 -0.1	U			Dba		67Mi03
		8430	20			-0.1 -0.8				GSa		85He.A
			10				0			GSa GSa		
		8420 8412.5				-0.5	0					01He.A
			11. 5.			0.2 0.6	0			GSa		04He28
		8411.5					O			Orm		06Lo12
		8415.6	5.0			-0.2	_			Orm		11Lo06
		8412.4	11.			0.2	_	00	67 ²⁵³ No	GSa		12He09
253- (249	ave.	8415	5	0040	••	-0.1	1	90	6/ ²⁵⁵ No	-		average
253 Lr(α) 249 Md		8941.6	20.	8918	20	-1.2	О			GSa		85He22
		8935.6	10.			-1.7	О			GSa		01He35
		8927.4	15.			-0.6	0			GSa		09He20
252 240		8918.3	20.				6			GSa		10He11
253 Lr ^{m} $(\alpha)^{249}$ Md ^{m}		8862.4	20.	8850	20	-0.6	O			GSa		85He22
		8862.4	10.			-1.2	O			GSa		01He35
		8859.4	15.			-0.6	O			GSa		09He20
252		8850.2	20.				7			GSa		10He11
253 Cf(β^-) 253 Es		270	50	291	4	0.4	U					59Gh.A
253 Md p (IT) 253 Md		60	30				6					Ens139
e^{253} Cf(α) ²⁴⁹ Cm	E_{α} =5981	$1(5,Z)$ to $7/2^+$	level a	t 48.76 keV								Ens118 :
c^{253} Cf(α) ²⁴⁹ Cm	$E_{\alpha} = 5978$	3.4(5,Z), 5920	0.4(5,Z)	to 7/2+ at 48	3.76, 7/2 ⁺ a	t 110.173 k	æV					Ens118 =
253 Fm(α) ²⁴⁹ Cf	$E_{\alpha} = 7083$	3.2(4,Z), 6943	3.2(3,Z)	6846.2(3,Z)	, 6673.2(3,	Z) keV						67Ah02 =
:	to grou	nd state and l	evels 5/2	2 ⁺ at 144.98,	9/2 ⁺ at 24.	3.13, 1/2 ⁺	at 416.8 l	κeV				Ens118
253 Fm(α) ²⁴⁹ Cf	_	0(6) to 416.8										11Lo06
$^{253}{\rm Md}(\alpha)^{249}{\rm Es}$		O(15) to 353.2		vel								05He27
$^{253}{\rm Md}(\alpha)^{249}{\rm Es}$		5(10) to 354.6										11Lo06
253 Md(α) ²⁴⁹ Es		3(15) to 353.2										12He09
253 No(α) ²⁴⁹ Fm		0(20) to 279.7		, 01								04He28
253 No(α) ²⁴⁹ Fm		0(30) to 279.7										04He28
253 No(α) ²⁴⁹ Fm												
		1(20) to 279.7										04He28
253 No(α) ²⁴⁹ Fm		1(10) to 279.7		,								04He28
253 No(α) ²⁴⁹ Fm	0.0	4(11) to 279.7	` /									04He28
253 No(α) ²⁴⁹ Fm		3(5) to 279.7(04He28
253 No(α) ²⁴⁹ Fm	E_{α} =8007	7(4) to 279.8(el; also E_{α} =7	615(30) to	669(3) and						11Lo06
()												
* $*^{253}$ No(α) ²⁴⁹ Fm		30(10) to 209 4(10) to 279.5										11Lo06 × 12He09 ×

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	In	nut wel	lue	A dinet	ad valua	11.	Dα	Signf.	Main infl	Loh	F	Reference
Item	In	put val	iue	Aajuste	ed value	v_i	Dg	Signi.	Main infl.	Lab	Г	Reference
²⁵⁴ No- ¹³³ Cs _{1.910}	27155	2	15	271541	10	-0.7	o			SH1	1.0	10Dw01
1.510	27154		16			-0.2	1	42	42 ²⁵⁴ No	SH1	1.0	10Mi.A
254 Cf(α) 250 Cm		6.9	5.				3					68Be21 2
$^{254}\text{Es}(\alpha)^{250}\text{Bk}$		5.7	1.5				6			Kum		72Bb24
$^{254}\text{Es}(\alpha)^{250}\text{Bk}^{n}$		1.6	1.5				7			Kum		72Bb24
$^{254}\text{Es}^{m}(\alpha)^{250}\text{Bk}$	669		2.0				5			120111		73Ah04
254 Fm(α) 250 Cf		6.8	5.	7307.5	1.9	0.1	3			Bka		64As01 Z
rin(a) Cr		7.6	2.	7507.5	1.7	-0.1	3			DKu		84Ah02
254 No(α) 250 Fm		9.8	20.	8226	8	-0.2	0			Bka		67Gh01
110(W) 1 III		0.0	30.	0220	O	-0.5	Ü			Dba		67Mi03
			20.			0.5	0			GSa		85He22
		7.0	30.			1.6	Ü			Bka		06Fo02
			10.			0.0	_			GSa		10He10
			20.3			0.2	_			RIa		15KaZX
	ave. 822		9			0.1	1	78	58 ²⁵⁴ No	Teru		average
254 Lr(α) 250 Md		.5 14.7	20.	8816	12	0.6	0	70	36 110	GSa		85He22
LI(a) Mu		14.7 14.7	20.	8810	12	0.6	7			Lza		01Ga20
			25.7			-0.2	7			Bka		06Fo02
			20.			-0.2 -0.4	7			GSa		
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$	117		20.			-0.4	4			USa		
$*^{254}$ Es(α) ²⁵⁰ Bk				-+ 07 40 13	7		4					62Un01 :
	E_{α} =6415.4(1.5,					11 00 1 37						Ens01c *:
e^{254} Es ^m (α) ²⁵⁰ Bk	E_{α} =6558.9(2,Z						1 77					Ens01c *:
254 Fm(α) 250 Cf	E_{α} =7192.3(2,Z			to ground st	ate, 5 ⁺ leve	el at 42.721	ke V					Ens01c *:
254 Lr(α) ²⁵⁰ Md	E_{α} =8460(20) to											08An16 *:
254 Lr(α) 250 Md	E_{α} =8460(20) to											08An16 *
254 Lr(α) 250 Md	E_{α} =8437(50) to											08An16 *:
234I #(~\\23UN.Id	E = 9.190(20) + c	200 1	and E_{ϵ}	$\alpha = 8385(20) \text{ t}$	o 306.2 ke'	V						08An16 *:
$*^{254}$ Lr(α) ²⁵⁰ Md $*^{254}$ Es ^{m} (β ⁻) ²⁵⁴ Fm	E_{β} =1127(2) to											Ens05b **
$*^{254}$ Es ^m (β^-) ²⁵⁴ Fm												Ens05b **
$*^{254}$ Es ^m (β^-) ²⁵⁴ Fm		2 ⁺ le					2			SH1	1.0	Ens05b *:
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}-^{133}\text{Cs}_{1917}$	$E_{\beta^-} = 1127(2)$ to	2 ⁺ le	vel at 4				2 2			SH1 SH1	1.0 1.0	
$^{255}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}-^{133}\text{Cs}_{1.917}$ $^{255}\text{Lr}-^{133}\text{Cs}_{1.917}$	E_{β} =1127(2) to	2 ⁺ le ⁰	vel at 4 16 19	5.000 keV			2					10Mi.A 10Mi.A
$^{255}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}-^{133}\text{Cs}_{1.917}$ $^{255}\text{Lr}-^{133}\text{Cs}_{1.917}$	E_{β} = 1127(2) to 27444 27781 643	2+ le ⁰	16 19 3.0		1.3	-1.0	2 4			SH1		10Mi.A 10Mi.A 66Rg01
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk	E_{β} = 1127(2) to 27444 27781 643 643	2+ le ⁰ 1 9.3 5.6	16 19 3.0 1.5	5.000 keV 6436.3	1.3	-1.0 0.5	2 4 4					10Mi.A 10Mi.A 66Rg01 71Bb10
254 Es ^m (β -) 254 Fm 255 No- 133 Cs _{1.917} 255 Lr- 133 Cs _{1.917} 255 Es(α) 251 Bk	E_{β} = 1127(2) to 27444 27781 643 643 723	2+ le ² 0 1 9.3 5.6 7.0	16 19 3.0 1.5 4.	5.000 keV		-1.0 0.5 0.7	2 4 4 3			SH1		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01
254 Es ^m (β -) 254 Fm 255 No- 133 Cs _{1.917} 255 Lr- 133 Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf	E_{β} = 1127(2) to 27444 27781 643 643 723 724	2+ lev 00 1 99.3 55.6 77.0 00.4	16 19 3.0 1.5 4. 2.	5.000 keV 6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3	2 4 4 3 3			SH1		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01
254 Es ^m (β -) 254 Fm 255 No- 133 Cs _{1.917} 255 Lr- 133 Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790	2+ le ⁰ 0 1 9.3 5.6 7.0 0.4 01.8	16 19 3.0 1.5 4. 2. 5.	5.000 keV 6436.3	1.3	-1.0 0.5 0.7 -0.3 0.8	2 4 4 3 3 4			SH1		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12
254 Es ^m (β -) 254 Fm 255 No- 133 Cs _{1.917} 255 Lr- 133 Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790 791	2+ le ⁰ 0 1 99.3 95.6 07.0 0.4 01.8 0.7	16 19 3.0 1.5 4. 2. 5.	5.000 keV 6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3 0.8 -1.0	2 4 4 3 3 4 4			SH1 Kum		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790 791 790	2+ le ⁰ 1 99.3 55.6 67.0 60.4 01.8 0.7	16 19 3.0 1.5 4. 2. 5. 5.	5.000 keV 6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3 0.8 -1.0	2 4 4 3 3 4 4 4			SH1 Kum		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790 791 790 785	2+ lev 0 1 9.3 5.6 7.0 0.4 01.8 0.7 05.4 01.2	16 19 3.0 1.5 4. 2. 5. 4. 15.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1	2 4 4 3 3 4 4 4 U			SH1 Kum Ara GSa		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790 791 790 785 845	2+ lev 00 1 199.3 155.6 17.0 10.4 11.8 10.7 10.4 11.2 11.1	16 19 3.0 1.5 4. 2. 5. 4. 15. 6.	5.000 keV 6436.3 7239.7	1.3 1.8	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8	2 4 4 3 3 4 4 4 U B			Kum Ara GSa ORb		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 644: 645 725 796 799 844: 842	0 1 199.3 155.6 17.0 10.4 11.8 10.7 155.4 11.2 11.1 166.4	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1	2 4 3 3 4 4 4 U B			Kum Ara GSa ORb GSa		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 644: 645 725 790 791 844 842 835	2+ le ⁰ 1 19.3 55.6 67.0 0.4 01.8 0.7 05.4 01.2 01.1 06.4 01.9	16 19 3.0 1.5 4. 2. 5. 5. 4. 15. 6. 20. 35.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1	2 4 4 3 3 4 4 4 U B 0 U			Kum Ara GSa ORb GSa RIa		10Mi.A 10Mi.A 66Rg01 = 71Bb10 = 64As01 = 75Ah01 = 71Ho16 = 00Ah02 = 05He27 = 71Di03 = 98Ho13 = 04Mo40 = 100Ah040 = 100Ah0
254 Es ^m (β^-) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 645 645 725 724 790 791 796 845 845 842 839 844	2+ le ⁰ 1 19.3 15.6 17.0 18.8 10.7 15.4 11.2 11.1 16.4 11.9 19.3	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0	2 4 4 3 3 4 4 4 U B 0 U U			Kum Ara GSa ORb GSa RIa Bka		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08
254 Es ^m $(\beta^{-})^{254}$ Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es $(\alpha)^{251}$ Bk 255 Fm $(\alpha)^{251}$ Cf 255 Md $(\alpha)^{251}$ Es	E_{β} = 1127(2) to 27444 27781 643 644 723 724 790 791 790 845 844 844 842	2+ le ⁰ 1 9.3 5.6 7.0 0.4 01.8 0.7 0.5.4 01.2 61.1 66.4 01.9 9.3 66.4	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0	2 4 4 3 3 4 4 4 U B o U U U			Kum Ara GSa ORb GSa RIa Bka GSa		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20
254 Es ^m $(\beta^{-})^{254}$ Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es $(\alpha)^{251}$ Bk 255 Fm $(\alpha)^{251}$ Cf 255 Md $(\alpha)^{251}$ Es	E_{β} = 1127(2) to 27444 27781 645 645 725 724 790 791 790 845 845 846 842 846 846	2+ le ¹ 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0	2 4 4 3 3 4 4 4 U B o U U U U			Kum Ara GSa ORb GSa RIa Bka GSa Bka		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 98Ho13 04Mo40 04Fo08 06He20 06Gr24
254 Es ^m (β^-) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 643 643 722 790 791 790 785 845 842 846 842 846 842	2+ le 00 1 1 9.3 5.6 7.0 0.4 11.8 10.7 11.1 16.4 11.9 9.3 16.4 13.8 8.4	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2	2 4 4 3 3 4 4 4 U B o U U U U U U U			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Lr}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Es}(\alpha)^{251}\text{Bk}$ $^{255}\text{Fm}(\alpha)^{251}\text{Cf}$ $^{255}\text{Md}(\alpha)^{251}\text{Es}$ $^{255}\text{No}(\alpha)^{251}\text{Fm}$	E_{β} = 1127(2) to 27444 27781 643 643 722 790 791 790 844 842 844 844 842 856	2+ le 00 1 1 199.3 55.6 77.0 0.4 11.8 10.7 11.1 11.1 11.1 11.1 11.1 11.1 11.1	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3. 18.	5.000 keV 6436.3 7239.7 7905.9	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4	2 4 4 3 3 4 4 4 U B 0 U U U U U U U 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Lr}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Es}(\alpha)^{251}\text{Bk}$ $^{255}\text{Fm}(\alpha)^{251}\text{Cf}$ $^{255}\text{Md}(\alpha)^{251}\text{Es}$ $^{255}\text{No}(\alpha)^{251}\text{Fm}$	E_{β} = 1127(2) to 27444 27781 643 643 722 726 790 791 790 844 842 836 844 844 846 845 856 853	2+ le 0 1 1 1 9.3 5.6 77.0 0.4 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3. 18. 30.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4	2 4 4 3 3 4 4 4 U B 0 U U U U U U U U U			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Lr}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Es}(\alpha)^{251}\text{Bk}$ $^{255}\text{Fm}(\alpha)^{251}\text{Cf}$ $^{255}\text{Md}(\alpha)^{251}\text{Es}$ $^{255}\text{No}(\alpha)^{251}\text{Fm}$	E_{β} = 1127(2) to 27444 27781 643 643 722 724 790 791 790 785 844 844 844 846 856 853 855	2+ le 0 1 1 9.3 5.6 77.0 0.4 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4	2 4 4 3 3 4 4 4 U B 0 U U U U U 3 3 3 U U U U U U U U U U U			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 643 643 722 726 790 791 790 785 844 842 836 855 855 855 855	2+ le 0 1 1 1 9.3 5.6 77.0 0.4 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1	2 4 4 3 3 4 4 4 U B 0 U U U U U 3 3 3 4 3 3 4 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Lr}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Es}(\alpha)^{251}\text{Bk}$ $^{255}\text{Fm}(\alpha)^{251}\text{Cf}$ $^{255}\text{Md}(\alpha)^{251}\text{Es}$ $^{255}\text{No}(\alpha)^{251}\text{Fm}$ $^{255}\text{Lr}(\alpha)^{251}\text{Md}$	E_{β} = 1127(2) to 27444 27781 643 643 723 724 796 789 844 842 836 844 842 856 855 855 856	2+ le de de la companya de la compan	vel at 4 16 19 3.0 1.5 4. 2. 5. 4. 15. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.1	2 4 4 3 3 4 4 4 U B 0 U U U U U U 3 3 3 4 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A
$^{254}\text{Es}^{m}(\beta^{-})^{254}\text{Fm}$ $^{255}\text{No}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Lr}^{-133}\text{Cs}_{1.917}$ $^{255}\text{Es}(\alpha)^{251}\text{Bk}$ $^{255}\text{Fm}(\alpha)^{251}\text{Cf}$ $^{255}\text{Md}(\alpha)^{251}\text{Es}$ $^{255}\text{No}(\alpha)^{251}\text{Fm}$ $^{255}\text{Lr}(\alpha)^{251}\text{Md}$	E_{β} = 1127(2) to 27444 27781 644: 645 725 724 796 789 845 842 839 844 841 846 845 856 855 855 856 844	2+ le de de la companya de la compan	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2	2 4 4 3 3 4 4 4 U B 0 U U U U U 3 3 3 4 7 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es	E_{β} = 1127(2) to 27444 27781 644: 645 725 726 790 791 790 844: 8442 835 844 844. 856 855 855 855 856 844 849	2+ le de de la companya de la compan	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3	2 4 4 3 3 4 4 4 U B 0 U U U U U 3 3 3 4 U U U U U U U U U U U			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20
254 Es ^m (β^{-}) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	E_{β} = 1127(2) to 27444 27781 644 27781 645 645 725 790 7991 7991 7991 844 845 856 855 855 855 855 855 844 849 849	2+ le 0 0 1 9.3 5.6 7.0 0.4 11.8 10.7 15.4 11.9 19.3 16.4 11.9 19.3 16.4 11.9 19.3 16.4 16.4 17.0 17.0 18.8 19.3 1	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8	2 4 4 3 3 4 4 4 U B 0 U U U U U 3 3 3 4 4 0 3 3 0 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20 06Ch52
254 Es ^m (β^{-}) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	E_{β} = 1127(2) to 27444 27781 644: 645 725 724 790 791 799 844 844 845 856 855 856 856 844 845 846 845 856	2+ le 0 1 1 9.3 5.6 6.7 0 0 0.4 11.8 10.7 15.4 11.1 16.4 11.9 19.3 6.4 4.3 8.8 4.4 14.4 4.4 4.3 6.6 6.7 18.6 6.7	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8 -0.3	2 4 4 3 3 4 4 4 U B 0 U U U U 3 3 3 4 4 4 0 1 3 3 3 7 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20 06Ch52 08Ch52 08Ch52
254 Es ^m (β^{-}) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	E_{β} = 1127(2) to 27444 27781 645 645 645 723 724 790 791 790 788 845 842 846 845 856 853 855 855 855 855 855 855 855 855 855	2+ le 0 1 1 9.3 5.6 6.7 0.0 4 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30. 5.	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8 -0.3 -0.7	2 4 4 3 3 4 4 4 U B o U U U U 3 3 3 4 4 4 0 3 3 3 7 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya GSa Orm		10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20 06Ch52
254 Es ^m (β^{-}) 254 Fm 255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm	E_{β} = 1127(2) to 27444 27781 645 645 645 725 724 790 791 790 788 845 842 846 855 855 855 855 856 850 850 850 850 850	2+ le 0 1 1 9.3 5.6 6.7 0.0 4 11.8 10.7 11.1 11.1 11.1 11.1 11.1 11.1 11.1	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30. 5. 11. 10.2 10.2	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8 -0.3 -0.7 -0.7	2 4 4 3 3 4 4 4 U B 0 U U U U 3 3 3 4 4 4 0 1 3 3 3 7 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya GSa		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 95Gh04 01Ga20 06Ch52 08Ch52 08An16 08Ha31 11As.A
255 No $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Lr $^{-133}$ Cs _{1.917} 255 Es(α) 251 Bk 255 Fm(α) 251 Cf 255 Md(α) 251 Es 255 No(α) 251 Fm 255 Lr(α) 251 Md	E_{β} = 1127(2) to 27444 27781 645 645 645 723 724 790 791 790 788 845 842 846 845 856 853 855 855 855 855 855 855 855 855 855	2+ le 0 1 1 9.3 5.6 6.7 0.0 4 11.8 10.7 11.1 11.1 11.1 11.1 11.1 11.1 11.1	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 55. 51. 10.2	5.000 keV 6436.3 7239.7 7905.9 8428	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8 -0.3 -0.7	2 4 4 3 3 4 4 4 U B o U U U U 3 3 3 4 4 4 0 3 3 3 7 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya GSa Orm		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20 06Ch52 08Ch52
$e^{254} \text{Es}^m (\beta^-)^{254} \text{Fm}$ $e^{255} \text{No} - e^{133} \text{Cs}_{1917}$	E_{β} = 1127(2) to 27444 27781 645 645 645 725 724 790 791 790 788 845 842 846 842 856 855 855 856 856 856 856 856 856 856	2+ le 0 1 1 9.3 5.6 6.7 0.0 4 11.8 10.7 11.1 11.1 11.1 11.1 11.1 11.1 11.1	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30. 5. 11. 10.2 10.2	5.000 keV 6436.3 7239.7 7905.9 8428 8556	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.1 0.0 1.2 0.3 0.8 -0.3 -0.7 -0.7	2 4 4 3 3 4 4 4 U B o U U U U 3 3 3 4 1 3 3 4 1 3 3 3 3 3 3 3 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya GSa Orm RIa		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 95Gh04 01Ga20 06Ch52 08Ch52 08An16 08Ha31 11As.A
k^{254} Es ^m (β -) ²⁵⁴ Fm k^{255} No- ¹³³ Cs _{1.917} k^{255} Lr- ¹³³ Cs _{1.917} k^{255} Es(α) ²⁵¹ Bk k^{255} Fm(α) ²⁵¹ Cf k^{255} Md(α) ²⁵¹ Es k^{255} No(α) ²⁵¹ Fm	E_{β} = 1127(2) to 27444 27781 645 645 645 725 724 790 791 790 788 845 842 846 842 856 855 855 856 856 856 856 856 856 856	2+ le 0 1 1 9.3 5.6 6.7 0.0 4 11.8 11.9 11.1 11.1 11.1 11.1 11.1 11.1	vel at 4 16 19 3.0 1.5 4. 2. 5. 6. 20. 35. 20. 10. 60. 3. 18. 30. 10. 10. 18. 50. 30. 5. 11. 10.2 10.2 5.	5.000 keV 6436.3 7239.7 7905.9 8428 8556	1.3 1.8 2.6 3	-1.0 0.5 0.7 -0.3 0.8 -1.0 0.1 1.0 -3.8 0.1 1.0 -1.0 0.2 0.4 -0.4 0.7 0.1 0.0 1.2 0.3 0.8 -0.3 -0.7 -0.7 0.9	2 4 4 3 3 4 4 4 U B o U U U U 3 3 3 4 1 3 4 1 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 3 3			Kum Ara GSa ORb GSa RIa Bka GSa Bka JAa ORb Lza Jya Orm ORb Bka Lza Jya GSa Orm RIa		10Mi.A 10Mi.A 10Mi.A 66Rg01 71Bb10 64As01 75Ah01 70Fi12 71Ho16 00Ah02 05He27 71Di03 98Ho13 04Mo40 04Fo08 06He20 06Gr24 11As03 76Be.A 01Ga20 06Ch52 08Ha31 76Be.A 95Gh04 01Ga20 06Ch52 08Ch52 08Ch52 08Ch52

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input value Adjust	ed value v _i	Dg	Signf.	Main infl.	Lab	F	Reference
255 Rf(α) 251 No	9042 20 9055 4	0.7	10			Bka		69Gh01 *
(31)	9053 15	0.2	0			GSa		85He06 *
	9064 20	-0.4	0			GSa		97He29 *
	9062 10	-0.7	0			GSa		01He35 *
	9056 4	-0.1	10			GSa		06He27 *
255 Rf ^m (IT) 255 Rf	135 20 150 22		R					15An05 *
$*^{255}Lr - ^{133}Cs_{1.917}$	D_M =277822(17) μ u for mixture			Lr^m at 41	(8): $M - A = 8$	9958(16	6) keV	Nub16b **
$*^{255}$ Es(α) ²⁵¹ Bk	E_{α} =6303(3,Z) 6299.3(1.5,Z) re				(-),		.,	Ens139 **
$*^{255}$ Fm(α) ²⁵¹ Cf	E_{α} =7121.5, 7018.5(4,Z) to group							Ens139 **
$*^{255}$ Fm(α) ²⁵¹ Cf	E_{α} =7126.8, 7021.8(2,Z) to grou	,						Ens139 **
$*^{255}$ Md(α) ²⁵¹ Es	E_{α} =7323.5(5,Z) 7332.3(5,Z) 73				461.5 keV			Ens139 **
$*^{255}$ No(α) ²⁵¹ Fm	E_{α} =8312(9), 8121(6) to ground							06He20 **
$*^{255}$ No(α) ²⁵¹ Fm	E_{α} =8296(20), 8092(20) to grou							06He20 **
$*^{255}$ No(α) ²⁵¹ Fm	E_{α} =8060 to 199.9 level; also E_{α}							04Mo40 **
$*^{255}$ No(α) ²⁵¹ Fm	E_{α} =8341, 8092 to ground state		F787	13 keV				06He20 **
$*^{255}$ No(α) ²⁵¹ Fm	E_{α} =8290(20), 8095(10) to grou			J KC V				06He20 **
$*^{255}No(\alpha)^{251}Fm$	E_{α} =8150, 8000 to 199.9 level	nd state and 177.7 i	CVCI					06He20 **
$*^{255}No(\alpha)^{251}Fm$	E_{α} =8100(3) to ²⁵¹ Fm ^m at 200.0	00(0.11) kaV						11As03 **
$*^{255}Lr(\alpha)^{251}Md$	This is the faint α from long-liv		- around	Letate				06Ch52 **
* $LI(\alpha)$ Md * $^{255}Lr(\alpha)^{251}Md$	Line is mixed with 254 Lr's α	ed isollier to the 1/2	ground	state				01Ga20 **
* $LI(\alpha)$ Md * $^{255}Lr(\alpha)^{251}Md$	As interpreted from Fig. 1							08Ha31 **
* $LI(\alpha)$ Md * $^{255}Lr(\alpha)^{251}Md^p$	This is the most intense α from	lana lived isomente	1/2-					
* 255 Lr(α) 251 Md ^p	F: one event in a questionable ²) 1/2					06Ch52 ** AHW **
* 255 Lr(α) 251 Md p		Ds decay chain						
* 255 Lr(α) 251 Md p	No γ observed in coincidence	16 71 5 0	476(10)					08An16 **
	Original E_{α} =8371(10) corrected		1/6(10)					16Hu.A **
$*^{255}$ Lr(α) ²⁵¹ Md ^p	Uncertainty estimated by evalua							GAu **
$*^{255}$ Lr ^m (α) ²⁵¹ Md	Original error 2 keV increased f		160(10)					GAu **
$*^{255}$ Lr ^m (α) ²⁵¹ Md	Original E_{α} =8463(10) corrected		468(10)					16Hu.A **
$*^{255}$ Lr ^m (α) ²⁵¹ Md	Uncertainty estimated by evalua	itor						GAu **
$*^{255}$ Rf(α) ²⁵¹ No	E_{α} =8700(20) to 203 level	2021						01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	E_{α} =8766(15), 8715(15) to 142,							01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	E_{α} =8905(20), 8739(20) to grou	nd state, 203 level						01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	E_{α} =8722(10) to 203(3) level							01He35 **
$*^{255}$ Rf(α) ²⁵¹ No	E_{α} =8716(4) to 203.6(0.2) level							06He27 **
$*^{255}Rf^m(IT)^{255}Rf$	From 105 keV EC from K shel	l, error estim. by eva	al.					WgM164**
²⁵⁶ Lr- ¹³³ Cs _{1.925}	280499 89		2			SH1	1.0	10Mi.A
256 Fm(α) 252 Cf	7027.3 5.		3			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		68Ho13 Z
$^{256}\text{Md}^{m}(\alpha)^{252}\text{Es}$	7834.6 20. 7900 50	1.2	В					71Ho16 *
(w) L3	7896.6 16.	1.2	4					93Mo18 *
	7798.0 8.	2.0	В					00Ah02
256 No(α) 252 Fm	8553.9 30. 8582 5		U					67F105 *
()	8553.9 20.	1.4	Ü			Bka		67Gh01 *
	8578.3 12.	0.3	5					81Be03
	8582.3 6.	-0.1	5					90Ho03
256 Lr(α) 252 Md ^{p}	8787.6 20. 8771 11	-0.8	3					71Es01
(30)	8761.1 25.	0.4	0			ORb		76Be.A
	8777.4 20.	-0.3	3			ORb		76Di.A
	8767.2 35.	0.1	3			RIa		04Mo26
	8749.9 20.	1.0	3			Bka		04Fo08
256 Rf(α) 252 No	8952.1 23. 8926 15		o			GSa		85He06
()	8929.8 20.	-0.2	0			GSa		97He29
	8925.7 15.2		2			GSa		10St14
256 Db(α) 252 Lr	9336.2 20.		8			Bka		08Ne01
$^{256}\mathrm{Db}(\alpha)^{252}\mathrm{Lr}^p$	9157.4 20. 9169 14	0.6	9			GSa		01He35
()	9179.7 20.	-0.6	9			Bka		08Ne01 *
$*^{256} Md^m(\alpha)^{252} Es$	Also E_{α} =7210(5,Z) keV to 520					Linu		70Fi12 **
* 256 Md $^{m}(\alpha)^{252}$ Es	Very weak line; more precise E_0							93Mo18 **
*	α summed with electrons							WgM129**
$*^{256}$ No(α) ²⁵² Fm	Probably mixture of two branch	es						AHW **
$*^{256}$ Db(α) ²⁵² Lr ^p	5 events E_{α} =9030 9060 9020 90							08Ne01 **
- (/ = -								

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference	сe
257 Fm(α) 253 Cf	6862.7	2.	6863.5	1.4	0.4	4			Bka		67As02	2
rin(a) Ci	6864.4	2.	0005.5	1.4	-0.4	4			Бка		82Ah01	
$^{257}{\rm Md}(\alpha)^{253}{\rm Es}$	7549.3	5.	7557.6	1.0	1.7	U					70Fi12	
Mu(a) Es	7557.6	1.	1331.0	1.0	1.7	4					93Mo18	
57 No(α) 253 Fm	8474.1	30.	8477	6	0.1	U					70Es02	,
No(α) Fill	8480	30.	04//	U	-0.1	U			GSa		96Ho13	
	8476.6	6.			-0.1	3			JAa		05As05	
257 Lr(α) 253 Md p	9020.6	20.	9008	9	-0.6	7			JAa		71Es01	
$LI(\alpha) \sim WI\alpha^{\mu}$	9020.0	12.	9008	9	0.5	0			ORb		76Be.A	
	9001.3	12.			0.5	7			ORb		77Be36	
	9001.5	15.2			-0.5				GSa		97He29	
	9013.3	50.			-0.5	o U			Lza		04Ga29	
	9030.8	15.			-0.3 -0.2	7			GSa		10St14	
257 Rf(α) 253 No			0002	0								
$RI(\alpha)^{23}No$	9079.8	15.	9083	8	0.2	2			ORb		73Be33	
	9083.7	15.			-0.1	0			GSa		85He06	
	9044.0	15.			2.6	В			GSa		97He29	
	9084.1	20.			-0.1	0			GSa GS-		07St12	
	9084.1	10.			-0.1	2			GSa		10St14	
57-5 000 ()253-7	9106.2	100.	0456	_	-0.2	U			Ara		09Qi04	
$^{257}\mathrm{Rf}^m(\alpha)^{253}\mathrm{No}$	9142.5	20.	9156	7	0.7	2			Bka		69Gh01	
	9158.8	15.			-0.2	0			ORb		73Be33	
	9155.8	8.			0.0	2			ORb		90Be.A	
	9163.9	15.			-0.5	2			GSa		97He29	
252	9144.0	100.			0.1	U			Ara		09Qi04	
$^{57}\mathrm{Db}(\alpha)^{253}\mathrm{Lr}$	9112.1	20.	9207	20	4.7	В			GSa		85He22	
	9218	10			-1.1	o			GSa		01He35	
	9209.2	20.			-0.1	o			GSa		09He20	
	9206.6	20.				7			GSa		10He11	
$^{57}\mathrm{Db}^m(\alpha)^{253}\mathrm{Lr}^m$	9305.1	20.	9313	20	0.4	o			GSa		85He22	
	9308.2	10.			0.5	o			GSa		01He35	
	9300.0	20.3			0.7	o			GSa		09He20	
	9313.2	20.3				8			GSa		10He11	
57 Rf ⁿ (IT) 257 Rf ^m	1082	4				3					10Be16	
57 Fm(α) 253 Cf	E_{α} =6518.5(2,2	Z) to $(9/2^+)$	level at 2	41.01 keV							Ens139	
257 Fm(α) 253 Cf	E_{α} =6756.5(3,2	Z), 6520.5(2	2,Z) to gro	ound state, (9/	2 ⁺) level at	241.01 k	eV				Ens139	
$^{257}\mathrm{Md}(\alpha)^{253}\mathrm{Es}$	$E_{\alpha} = 7066(5, \mathbb{Z})$		_	, ,	,						93Mo18	
$^{257}\mathrm{Md}(\alpha)^{253}\mathrm{Es}$	$E_{\alpha} = 7440(2), 7$			e. 371.4 level							93Mo18	
257 No(α) 253 Fm	E_{α} =8320(30) t			-, - , - , - , - , - , - , - , - , - ,							05As05	
257 No(α) 253 Fm	E_{α} =8340(20);			he summing v	vith e-						AHW	
257 No(α) 253 Fm	E_{α} =8222(6) to										05As05	
257 Rf(α) 253 No	E_{α} =8778(15) t			E_{α} =0323(1) t	0 22.5 KC V							
257 Rf(α) 253 No				7 and 455 lave	.1						07St12	
257 Rf(α) 253 No	E_{α} =8778(20) a											
$RI(\alpha)^{253}No$	E_{α} =8778(10) t) to ground si	tate is sum	with conv	ersion e				10St14	
257 Rf(α) 253 No	$E_{\alpha} = 8800(100)$										09Qi04	
257 Rf ^m (α) 253 No	$E_{\alpha} = 9000(100)$				i 54(14) lev	el					09Qi04	
257 Db(α) 253 Lr	$E_{\alpha} = 9074(10) \text{p}$										01He35	
257 Db(α) 253 Lr	E_{α} =8965(20) o	coinc. E(γ	r)=102.2; <i>I</i>	$E_{\alpha} = 9066(20)$ s	summed wit	th conver	sion e-				09He20	
$^{258}{ m Md}(\alpha)^{254}{ m Es}$	7266.8	5.	7271.3	1.9	0.9	7					70Fi12	
111u(u) 123	7272	2	1211.3	1./	-0.4	7					93Mo18	
258 Lr(α) 254 Md			8004	10					ORb			
ri(a)Ma	8870 8010	50	8904	19	0.7	5			OKD		76Be.A	
258 D.C. (a) 254 NT	8910	20			-0.3	5					88Gr30	
258 Rf(α) 254 No	9192.8	30.5	0500	50	0.1	2					08Ga08	
258 Db(α) 254 Lr	9531.0 9500.6	50.	9500	50	-0.6	0			GSa		97Ho14 09He20	
		15.				8			GSa			

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	value	Adj	usted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
258 Db(α) 254 Lr p	0445 7	15	0427	1.4	0.6	~			Ge a		95Ha22
$DD(\alpha)^{23}$ Lt	9445.7	15.	9437	14	-0.6	0			GSa		85He22
	9446.8	20.			-0.5	9			Lza		01Ga20
259	9426.4	20.3			0.5	9			GSa		09He20
$^{258}\mathrm{Db}^m(\alpha)^{254}\mathrm{Lr}^q$	9341.1	10.				10			GSa		09He20
$*^{258}$ Md(α) ²⁵⁴ Es	E_{α} =6713(5) to 4	47.9 leve	el								93Mo18 **
$*^{258}$ Md(α) ²⁵⁴ Es	E_{α} =6763(4), 671	18(2) to 4	03.8, 447.	9 levels							93Mo18 **
$*^{258}$ Lr(α) ²⁵⁴ Md	E_{α} =8648(10) in	conciden	ce with X((L) not X(K) -	\rightarrow E(γ)=90(3	50) keV					AHW **
$*^{258}$ Lr(α) ²⁵⁴ Md	E_{α} =8752 observ										AHW **
$*^{258}$ Lr(α) ²⁵⁴ Md	Mass assignmen			ia conversion	erections						92Gr02 **
" LI(u) Wid	wass assignmen	Commin	cu)2G102 ***
259 No(α) 255 Fm	7849.2	15.	7854	5	0.3	U					73Si40 *
110(0) 1111	7869.6	15.	7054	3	-1.0	U					93Mo18 *
					-1.0				TAo		
250- ()255	7854	5	0.55.4		0.4	4			JAa		13As02 *
259 Lr(α) 255 Md p	8582.8	20.	8574	9	-0.4	6					71Es01
	8571.6	10.			0.2	6					92Ha22
	8577.7	29.			-0.1	U			Bka		92Kr01
259 Rf(α) 255 No p	8999.2	20.	9030	11	1.5	O			Bka		69Gh01
	9030	20			0.0	4					81Be03 *
	9034.7	20.			-0.2	4			GSa		98Ho13
	9026.6	35.			0.1	4			RIa		04Mo40
	9026.6	20.3			0.2	4			Bka		04Fo08
					0.2	U					
	9017	60							Bka		06Gr24
	8940.4	11.			8.2	F			GSa		10Ni14 *
250 255	8968.8	50.			1.2	U					12Zh04
259 Db(α) 255 Lr	9618.8	20.				3			Lza		01Ga20
259 Sg(α) 255 Rf	9771.2	30.5	9765	8	-0.1	O			GSa		85Mu11
	9807.7	23.			-0.9	U			Bka		09Fo02 *
	9784	50			-0.4	o			GSa		09He20 *
	9765.0	8.1				11			GSa		15An05
259 Sg $^{m}(\alpha)^{255}$ Rf	9852.4	20.3				11			GSa		15An05
$^{259}\mathrm{Sg}^m(\alpha)^{255}\mathrm{Rf}^m$	9700.0	8.1	9702	8	0.3	12					
									GSa		15An05
$*^{259}$ No(α) ²⁵⁵ Fm	suffer summing		-								WgM147**
$*^{259}$ No(α) ²⁵⁵ Fm	suffer summing			een 7689(4); e	extra unc. ad	ded					WgM147**
$*^{259}$ No(α) ²⁵⁵ Fm	E_{α} =7505(5) to 2	31.1 leve	el								13As02 **
$*^{259}$ Rf(α) ²⁵⁵ No ^p	E_{α} =8870(20); pa	artly sum	$med E_{\alpha}=8$	770(20) and e	-						AHW **
$*^{259}$ Rf(α) ²⁵⁵ No ^p	F: lifetime 107 i	ms is muc	ch shorter t	than T=2.63 s	in Nubase						Nub16b **
$*^{259}$ Sg $(\alpha)^{255}$ Rf	One event only,	resolution	1 23 keV: a	ilso a wide gro	oup at lower	9593(46)	keV				09Fo02 **
$*^{259}$ Sg(α) ²⁵⁵ Rf	One event with E										09He20 **
* 5g(a) Ki	$E_{\alpha} = 9607(10), 9$			nee with 373	, also grouj	os at					09He20 **
	L_{α} =5007(10), 5	7550(10)	KC V								0311020
260 Lr(α) 256 Md p	8155.6	20.3				6					71Es01
260 Db(α) 256 Lr	9191.5		9500#	40#	10.3	F			RIa		04Mo26 *
Du(u) Li			7JUU#	40#							
	9516.5	30.			-0.5	F			RIa		04Mo26 *
260 256	9563.2	20.			-3.1	F			Bka		04Fo08 *
$^{260}\mathrm{Db}(\alpha)^{256}\mathrm{Lr}^p$	9283.1	20.	9271	13	-0.6	4			Bka		70Gh02
	9262.8	17.			0.5	4			ORb		77Be36
	9316.5	60.			-0.8	U			GSa		95Ho04 *
	9285.1	60.			-0.2	U			GSa		02Ho11 *
	9181.3	60.			1.5	U			Lza		04Ga29 *
	9310.4	60.			-0.7	U			RIa		04Mo26 *
260 Sg(α) 256 Rf			0001	10	-0.7 -0.7						
Sg(u) Ki	9923.0	30.	9901	10	-0.7	0			GSa		85Mu11
260	9900.6	10.				3			GSa		09He20
260 Bh(α) 256 Db	10400.3	30.5				9					08Ne01 *
$*^{260}$ Db(α) ²⁵⁶ Lr	Highest energy e	event; oth	er two E_{α} =	=8810 and 850	00 keV						04Mo26 **
$*^{260}$ Db(α) ²⁵⁶ Lr	F: not observed	in experi	ments with	n greater statis	stics						77Be36 **
$*^{260}$ Db(α) ²⁵⁶ Lr ^p	Two events E_{α} =			-							FGK126 **
$*^{260}$ Db(α) ²⁵⁶ Lr ^p	Two events E_{α} =				•						FGK126 **
$*^{260}$ Db(α) ²⁵⁶ Lr ^p	Eight events out					0140 0130) keV				04Mo26 **
* 260 Db(α) 256 Lr p						, 170 /130	, no v				
	Two longer-lived										FGK126 **
$*^{260}$ Bh(α) ²⁵⁶ Db	Other events E_{α} :	=10170, 1	10170 and	10190; 10080	and 10030						08Ne01 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adj	usted value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
261 Rf(α) 257 No	8652.9	20.	8650	50	-0.1	0			GSa	96Ho13
()	8652.9	20.			-0.1	0			GSa	02Ho11
	8659	52			-0.3	0			GSa	03Tu05 *
	8642.6	50.			0.1	4			GSa	08Dv02
	8652.9	50.			-0.1	4			RIm	11Ha13 *
	8642.6	60.			0.1	4			RIm	12Ha05 *
261 Rf ^{m} (α) 257 No p	8409.1	20.	8415	15	0.3	6			Bka	70Gh01
κι (α) 110°	8388.8	30.	0713	13	0.9	0			GSa	98Tu01 *
	8429.4	30.5			-0.5	6			Dba	00La34
	8470.0	50.5			-0.3 -1.1	U			Doa	08Ga08 *
	8419.3	50.			-0.1	6			GSa	08Dv02
	8409.1	50.			0.1	0			RIm	11Ha13
	8409.1	40.6			0.1	6			RIm	13Mu08
261 Db(α) 257 Lr ^p	9069.2	20.	9068	14	-0.1	9			Bka	71Gh01
$D_0(\alpha)$ Li	9069.2	40.	9008	14	-0.1 0.0	9				04Ga29
	9066.2	20.			0.0	9			Lza GSa	10St14
261 Sg(α) 257 Rf	9709.0		9714	15						
$sg(\alpha)^{-1}$ Ki		30.	9/14	15	0.2	0			GSa	85Mu11
	9713.1	20.			0.0	F			GSa	95Ho03 *
	9770.0	20.3			-2.8	0			GSa	07St12
261 pt (>257 pt	9713.7	15.	10500	50	1.2	3			GSa	10St14 *
261 Bh(α) 257 Db	10562.1	25.	10500	50	-1.2	0			GSa	89Mu09
	10507.3	75.			-0.1	0			Bka	06Fo02 *
	10492.1	75.			0.2	8			Bka	08Ne08 *
261 p.c/ \257 p.	10504.3	40.	2/ 70 20)		-0.1	8			GSa	10He11 *
$*^{261}$ Rf(α) ²⁵⁷ No	Two events with									GAu **
$*^{261}$ Rf(α) ²⁵⁷ No	From direct prod									11Ha13 **
$*^{261}$ Rf(α) ²⁵⁷ No	Decay chain of ²			independent	of previous it	em				12Ha05 **
$*^{261}$ Rf ^m (α) ²⁵⁷ No ^p	In addition 60%									98Tu01 **
$*^{261}$ Rf ^m (α) ²⁵⁷ No ^p	Single event, dec	•								08Ga08 **
$*^{261}$ Sg(α) ²⁵⁷ Rf	$F: \alpha$'s to 157 lev			nversion elec	tron					FGK10a **
$*^{261}$ Sg $(\alpha)^{257}$ Rf	E_{α} =9410(15) to	157(1) le	evel							10St14 **
$*^{261}$ Bh(α) ²⁵⁷ Db	E_{α} =10346(75) o	ne event;	error estin	nated by eval	uator					06Fo02 **
$*^{261}$ Bh(α) ²⁵⁷ Db	Highest E_{α} ; erro	r estimat	ed; others 1	0054, 10285	, 10113, 1016	5, 9989				08Ne08 **
$*^{261}$ Bh(α) ²⁵⁷ Db	Average of 2 hig	hest 1033	31, 10355 a	s read from g	graph; error es	stimated				10He11 **
262 Db(α) 258 Lr p	8794.5	20.	8806	11	0.6	7			Bka	71Gh01
	8815.8	20.			-0.5	7				88Gr30
	8804.7	20.			0.1	7			GSa	99Dr09
	8875.8	20.			-1.4	0			RIa	09Mo12
	8814.8	30.5			-0.3	7			RIa	14Ha04
262 Sg(α) 258 Rf	9599.8	15.2				3			GSa	10Ac.A
262 Bh(α) 258 Db	10216.2	25.	10319	15	4.1	F			GSa	89Mu09 *
Bn(w) B0	10300.5	25.4	1001)	10	0.7	0			GSa	97Ho14
	10231.4	25.4			3.5	В			Bka	06Fo02
	10239.2	30.			2.7	В			Bka	08Ne08 *
	10319.5	15.			2.7	9			GSa	09He20 *
$^{262}{\rm Bh}^{m}(\alpha)^{258}{\rm Db}$	10515.5	25.4	10530	50	0.1	0			GSa	89Mu09
שנו (ע) שנו	10605.2	25.4	10330	30	-1.4	0			GSa	97Ho14
	10508.7	76.2			-1.4 0.5	0			Bka	97H014 06Fo02 *
	10508.7	76.2			-0.2	9			Bka	08Ne08
	10544.3	15.			0.0	9			GSa	09He20
$*^{262}$ Bh(α) ²⁵⁸ Db	F : not highest li		ference		0.0	,			OSa	97Ho14 **
$*^{262}Bh(\alpha)^{258}Db$	E_{α} =10096, 1002									97H014 ** 08Ne08 **
$*^{262}Bh(\alpha)^{258}Db$	$E_{\alpha} = 10096, 1002$ $E_{\alpha} = 10008(15)$ to									
$*^{262}Bh^{m}(\alpha)^{258}Db$	$E_{\alpha} = 10008(15)$ to Single event, error			untor						09He20 **
→ Dii (α) ∴ Dii	Single event, em	oi estiila	ieu by evar	uatOI						GAu **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v	alue	Adj	usted value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
262										
263 Rf(α) 259 No p	8022.2	40.6	8022	29	0.0	6				93Gr.C
262 250	8022.2	40.6			0.0	6				99Ga.A
263 Db(α) 259 Lr p	8484.3	27.				8			Bka	92Kr01
263 Sg(α) 259 Rf	9393.1	40.	9400	60	0.3	O			Bka	74Gh04
	9403.3	60.				5			Bka	06Gr24 >
263 Sg(α) 259 Rf q	9200.2	40.	9200	60	-0.1	O			Bka	74Gh04
	9149.4	60.9			0.8	o			Bka	94Gr08
	9198.1	60.9				6			Bka	06Gr24
263 Sg ^{m} (α) 259 Rf p	9391.1	20.	9390	13	-0.1	8			GSa	98Ho13
	9382.9	50.8			0.1	o			Bka	03Gi05
	9393.1	35.			-0.1	8			RIa	04Mo40
	9388.0	20.			0.1	8			Bka	04Fo08
	9198.1	11.			17.5	F			GSa	10Ni14
263 Hs(α) 259 Sg	10733.5	60.			1710	12			Bka	09Dr02
$^{263}\text{Hs}^{m}(\alpha)^{259}\text{Sg}$	11058.5	60.				12			Bka	09Dr02
263 Sg(α) ²⁵⁹ Rf			0220 1:237			12			Бка	
263 Sg(α) 259 Rf ^q	Two events E_{α} =9			1 0000 137						06Gr24 *
	Four events $E_{\alpha} = 9$									06Gr24 *
$^{263}\text{Sg}^{m}(\alpha)^{259}\text{Rf}^{p}$	Also lower E_{α} =9									04Mo40 *
263 Sg ^m (α) ²⁵⁹ Rf ^p	F: the α chain or			Is is in confli	et with other of	lata				10Ni14 *:
263 Hs ^{m} (α) ²⁵⁹ Sg	Assignment assur	med by ev	valuator							GAu *
264 Bh(α) 260 Db ^{p}	9767.3	20.	9760	18	-0.4	6			GSa	95Ho04
$D\Pi(\alpha)$ $D0^{\circ}$	9636.0	60.	2700	10	2.1	U			Lza	04Ga29
					0.6					
264 Hs(α) 260 Sg	9737.8	35.5	10501	20		6			RIa	04Mo26
$^{20.}$ Hs(α) 200 Sg	10870	210	10591	20	-1.3	0			GSa	87Mu15
	10590.8	20.				4			GSa	95Ho.B
264	10966.4	80.			-4.7	В			RIa	11Sa41
264 Bh(α) 260 Db ^p	Three more event				and 9113 keV					02Ho11 *
264 Bh(α) 260 Db ^p	Three more event			440 keV						04Ga29 *:
	Six events; also to	wo E_{α} =9	830 keV							04Mo26 *
264 Hs(α) ²⁶⁰ Sg	Six events; also to Q_{α} =11000(+100-			T(1/2), one e	vent only					
264 Hs(α) ²⁶⁰ Sg		–300) der		T(1/2), one e	vent only					04Mo26 ** 87Mu15 ** 11Sa41 **
e^{264} Bh(α) 260 Db ^p e^{264} Hs(α) 260 Sg e^{264} Hs(α) 260 Sg	$Q_{\alpha} = 11000(+100-100)$ Also $E_{\alpha} = 10610(4-100)$	–300) der 40) keV	rived from		·	E			Dha	87Mu15 *: 11Sa41 *:
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4	–300) der 40) keV 60.		T(1/2), one e	0.7	F			Dba GSa	87Mu15 * 11Sa41 * 94La22
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4	-300) der 40) keV 60. 30.	rived from		0.7 1.5	F			GSa	87Mu15 * 11Sa41 * 94La22 96Ho13
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7	-300) der 40) keV 60. 30. 30.	rived from		0.7 1.5 0.1	F o			GSa GSa	87Mu15 * 11Sa41 * 94La22 96Ho13 98Tu01
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3	-300) der 40) keV 60. 30. 30. 30.	rived from		0.7 1.5 0.1 -1.9	F o F			GSa GSa GSa	87Mu15 * 11Sa41 * 94La22 96Ho13 98Tu01 98Tu01
e^{264} Hs(α) ²⁶⁰ Sg e^{264} Hs(α) ²⁶⁰ Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6	-300) der 40) keV 60. 30. 30. 30. 50.8	rived from		0.7 1.5 0.1 -1.9 -1.1	F o F o			GSa GSa GSa GSa	87Mu15 * 11Sa41 * 94La22 96Ho13 98Tu01 98Tu01 03Tu05
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9	-300) der 40) keV 60. 30. 30. 30. 50.8 50.	rived from		0.7 1.5 0.1 -1.9 -1.1 -0.1	F o F o 6			GSa GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7	-300) der 40) keV 60. 30. 30. 30. 50.8 50.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1	F o F o			GSa GSa GSa GSa GSa RIm	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5	-300) der 40) keV 60. 30. 30. 30. 50.8 50.	rived from		0.7 1.5 0.1 -1.9 -1.1 -0.1	F o F o 6			GSa GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3	-300) der 40) keV 60. 30. 30. 30. 50.8 50.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2	F o F o 6 6			GSa GSa GSa GSa GSa RIm GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5	-300) der 40) keV 60. 30. 30. 50.8 50. 50.8 50.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1	F o F o 6 6			GSa GSa GSa GSa GSa RIm GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5	-300) der 40) keV 60. 30. 30. 50.8 50. 50.8 50. 40.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2	F o F o 6 6 o			GSa GSa GSa GSa GSa RIm GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 50.8 50.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2	F o F o 6 o o 6 o o			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5	-300) der 40) keV 60. 30. 30. 50.8 50. 50.8 50. 40. 50.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2	F 0 F 0 6 6 0 0 6 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9	-300) der 40) keV 60. 30. 30. 50.8 50. 50.8 50. 40. 50. 81.2	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7	F 0 F 0 6 6 0 0 6 0 0 6			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Dv01 08Dv02 08Mo09 12Ha05 13Su04
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9	-300) der 40) keV 60. 30. 30. 50.8 50. 40. 50. 41. 50. 81.2 50.	8980 8810	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3	F o F o 6 6 o o 6 0 o 6 11			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29
$^{264} ext{Hs}(\alpha)^{260} ext{Sg}$ $^{264} ext{Hs}(\alpha)^{260} ext{Sg}$ $^{265} ext{Sg}(\alpha)^{261} ext{Rf}^m$ $^{265} ext{Sg}^m(\alpha)^{261} ext{Rf}^p$	Q_{α} =11000(+100- Also E_{α} =10610(4 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 81.2 50. 25.	sived from 8980	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3	F 0 F 0 6 6 0 0 6 0 0 6 11 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa RIa Lza GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15
$^{264} ext{Hs}(\alpha)^{260} ext{Sg}$ $^{264} ext{Hs}(\alpha)^{260} ext{Sg}$ $^{265} ext{Sg}(\alpha)^{261} ext{Rf}^m$ $^{265} ext{Sg}^m(\alpha)^{261} ext{Rf}^p$	Q_{α} =11000(+100- Also E_{α} =10610(4 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 81.2 50. 25. 20.	8980 8810	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3	F o F o 6 6 o o 6 6 11 o o			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa	94La22 96Ho13 98Tu01 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2	-300) der 40) keV 60. 30. 30. 50.8 50. 40. 50. 40. 50. 81.2 50. 25. 20. 15.	8980 8810	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3	F 0 F 0 6 6 0 0 0 6 11 0 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 98Tu05 08Du09 12Ha05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Bh(α) 261 Db p 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 81.2 50. 25. 20. 15. 15.2	8980 8810 10470	50 40	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 98Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Bh(α) 261 Db p 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 81.2 50. 25. 20. 15. 15.2 20.	8980 8810	50	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 95Ho03
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Bh(α) 261 Db p 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 25. 20. 15. 15.2 20. 15.2	8980 8810 10470	50 40	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 95Ho03
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Bh(α) 261 Db p 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 40. 50. 25. 20. 15. 15.2 20. 15.2 15.	8980 8810 10470 10700	50 40 15	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 95Ho03
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Bh(α) 261 Db p 265 Hs(α) 261 Sg 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8 F: average but pr	-300) der 40) keV 60. 30. 30. 30. 50.8 50. 40. 50. 81.2 50. 25. 20. 15. 15.2 20. 15.2 15. cobably de	8980 8810 10470 10700 ue to sever	50 40 15 15 al groups, sec	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7 -0.6 -2.3	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	87Mu15 * 11Sa41 * 94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 95Ho03 99He11 09He20 98Tu01 *
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Hs(α) 261 Sg 265 Hs(α) 261 Sg 265 Hs m (α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8 F: average but pr F: this event is no	-300) der (40) keV (60. 30. 30. 30. 50.8 50. 40. 50. 81.2 50. 25. 15.2 20. 15. 15.2 20. 15.2 15. cobably dot trusted	8980 8810 10470 10700 ue to sever	50 40 15 15 al groups, sec	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7 -0.6 -2.3	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	87Mu15 * 11Sa41 * 94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 95Ho03 99He11 09He20 98Tu01 *
264 Hs(α) 260 Sg 264 Hs(α) 260 Sg 265 Sg(α) 261 Rf m 265 Sg m (α) 261 Rf p 265 Hs(α) 261 Sg 265 Hs(α) 261 Sg 265 Hs(α) 261 Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8 F: average but pr	-300) der (40) keV (60. 30. 30. 30. 50.8 50. 40. 50. 81.2 50. 25. 15.2 20. 15. 15.2 20. 15.2 15. cobably dot trusted	8980 8810 10470 10700 ue to sever	50 40 15 15 al groups, sec	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7 -0.6 -2.3	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 98Tu01 *
265 Sg $^{(\alpha)}$ Sg 265 Hs $^{(\alpha)}$ Sg 265 Hs $^{(\alpha)}$ Sg 265 Sg $^{(\alpha)}$ Sg 261 Rf $^{(m)}$ Sg 265 Sg $^{(\alpha)}$ S	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8 F: average but pr F: this event is not F: most probably	-300) der (40) keV (60, 30, 30, 30, 50, 8 50, 40, 50, 81, 2 50, 15, 20, 15, 20, 25, cobably dot trusted on of from	8980 8810 10470 10700 ue to sever	50 40 15 15 al groups, sec	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7 -0.6 -2.3	F 0 F 0 6 6 0 0 0 6 11 0 0 0 4 0 0 0			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	94La22 96Ho13 98Tu01 98Tu01 03Tu05 08Du09 12Ha05 03Tu05 06Dv01 08Dv02 08Mo09 12Ha05 13Su04 04Ga29 87Mu15 95Ho03 99He11 09He20 98Tu01 * 02Ho11 * GAu *
264 Hs(α) ²⁶⁰ Sg	Q_{α} =11000(+100- Also E_{α} =10610(4) 8945.3 8904.7 8975.7 9077.3 9036.6 8985.9 8975.7 8823.5 8813.3 8823.5 8843.8 8823.5 8792.9 9381.9 10524.2 10468.3 10459.2 10470.3 10712.0 10734.3 10699.8 F: average but pr F: this event is no	-300) der (40) keV (60. 30. 30. 30. 50.8 50. 40. 50. 81.2 50. 15.2 20. 15. 15.2 20. 15.2 is obably dot trusted on the fron (15) keV	8980 8810 10470 10700 ue to sever , see referen	40 15 15 al groups, see the from sar	0.7 1.5 0.1 -1.9 -1.1 -0.1 0.1 -0.2 0.0 -0.2 -0.7 -0.2 0.3 -2.1 0.1 0.7 -0.6 -2.3 e reference me group	F o F o 6 6 o o 6 6 o o 6 6 11 o o 0 4 o 0 4			GSa GSa GSa GSa GSa RIm GSa GSa GSa RIa RIa RIa Lza GSa GSa GSa GSa GSa GSa GSa	94La22 = 96Ho13 = 98Tu01 = 98Tu01 = 98Tu01 = 98Tu05 = 98Tu01 = 98T

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab .	F	Reference
266 Sg(α) 262 Rf	8762.0	50.	8800#	100#	0.8	F			Dba		94La22 *
og(w) Ri	8904.1	40.	000011	10011	-2.6	F			GSa		98Tu01 *
	8853.4	50.			-1.1	F			GSa		02Tu05 *
266 Bh(α) 262 Db ^p	9432	50.	9380	30	-1.1	9			Bka		00Wi15
Bil(W) Bo	9245.3	81.2	2500	50	1.6	9			Lza		06Qi03
	9371.2	50.			0.1	9			RIa		09Mo12 ×
266 Hs(α) 262 Sg	10335.7	20.3	10346	16	0.5	4			GSa		01Ho06
$11s(\alpha)$ 3g	10353.7	24	10540	10	-0.6	4			GSa		11Ac.A
266 Hs ^{m} (α) 262 Sg ^{p}	10592.6	20.			-0.0	7			GSa		11Ac.A
266 Mt(α) 262 Bh											
$^{266}\mathrm{Mt}^m(\alpha)^{262}\mathrm{Bh}^m$	10995.7	25.	11020	50	12.0	10 D			GSa GS-		97Ho14
Mt···(α)Bn···	11269.7	50.	11920	50	13.0	В			GSa GS-		84Mu07 ×
	11168.1	30.			25.0	В			GSa GS-		89Mu16
266 a ()262 p.a	11918.6	50.				10			GSa		97Ho14 *
$*^{266}$ Sg(α) ²⁶² Rf	Average of two			. 265 ~							02Tu05 **
$*^{266}$ Sg(α) ²⁶² Rf	F: no α decay f										08Dv02 **
$*^{266}Bh(\alpha)^{262}Db^{p}$	Also E_{α} =9770(4			m ²⁷⁸ Ed dec	ay chain						08Mo09 **
$*^{266}$ Mt ^m $(\alpha)^{262}$ Bh ^m	One E_{α} only; m										AHW **
$*^{266}\mathrm{Mt}^m(\alpha)^{262}\mathrm{Bh}^m$	One E_{α} =11739(50), one	11306; sever	al smaller							AHW **
$^{267}\mathrm{Sg}(\alpha)^{263}\mathrm{Rf}^p$	8325.0	50.				8			GSa		08Dv02
$^{267}\mathrm{Bh}(\alpha)^{263}\mathrm{Db}^p$	8964.5	30.5	8970	26	0.2	10			Bka		00Wi15
BII(W) D0	8984.8	50.5	0770	20	-0.3	10			GSa		02Tu05
267 Hs(α) 263 Sg	10015.3	60.	10038	13	0.4	6			Dba		95La20 *
$11s(\alpha)$ 3g	10013.3	20.	10036	13	0.4	6			GSa		98Ho13
	10032.0	50.			0.2	0			Bka		03Gi05
	10069.1	35.			-0.9	6			RIa		04Mo40 *
	10034.6	20.			0.1	6			Bka		04Fo08 *
	10145.2	50.			-2.2	U			GSa		10Ni14 *
267 Hs(α) 263 Sg ^{m}	9978.8	20.	9987	13	0.4	7			GSa		98Ho13 *
115(W) 5g	9979.8	35.	7767	13	0.4	7			RIa		04Mo40 *
	9997.0	20.			-0.5	7			Bka		04Fo08 *
$^{267} \text{Hs}^m(\alpha)^{263} \text{Sg}^p$	9979.8	20.			-0.5	9			Bka		04Fo08
267 Ds(α) 263 Hs	11776.8	50.8				13					
$*^{267}$ Hs(α) ²⁶³ Sg			00/0 007	0	0740((0)				Bka		95Gh04 *
	Selecting two ev					Ke v					95La20 **
$*^{267}$ Hs(α) ²⁶³ Sg	Selecting four ev				10 ke v						04Mo40 **
$*^{267}$ Hs(α) ²⁶³ Sg	Selecting two ev					a					04Fo08 **
$*^{267}$ Hs(α) ²⁶³ Sg	Directly produce			d grand-dauş	ghter also co	nflicting					10Ni14 **
$*^{267}$ Hs(α) ²⁶³ Sg ^m	And one E_{α} =97						_				98Ho13 **
$*^{267}$ Hs(α) ²⁶³ Sg ^m	Selecting 7 even				9820, 9830,	9830 keV	/				04Mo40 **
$*^{267}$ Hs(α) ²⁶³ Sg ^m	Selecting 2 even										04Fo08 **
$*^{267}$ Ds $(\alpha)^{263}$ Hs	Maybe the upper	r isomer	at about 250	keV excitati	on energy						AHW **
268 Hs(α) 264 Sg	9622.9	16.				8			GSa		10Ni14
268 Mt(α) 264 Bh p	10395.5	20.	10438	19	2.1	0			GSa		95Ho04 *
mi(w) Dir	10431.9	20.	1070	1)	0.3	8			GSa		02Ho11 *
	10476.7	50.			-0.8	8			RIa		04Mo26 *
	10268	20			-0.8 8.5	В			Bka		0.45
$*^{268}$ Mt(α) ²⁶⁴ Bh ^p			ing E(M-0	2 and 10250.			ωV		DKA		04Fo08 * 95Ho04 **
→ IVII(α) DII ^t	Two events E_{α} =					-1009 / K	.C v				95H004 ** 02Ho11 **
* $*^{268}$ Mt(α) ²⁶⁴ Bh ^p	could be decay										
	Average of even		$+ L_{\alpha} = 10239$	anu present	10294 KeV						02Ho11 **
$*^{268}$ Mt(α) 264 Bh p $*^{268}$ Mt(α) 264 Bh p	Also E_{α} =10340	ke v									04Mo26 **
* $MI(\alpha)^{207}Bh^{\nu}$	One event only										04Fo08 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
269 a	0.000.0	100	0.650	5 0		_					105106
269 Sg(α) 265 Rf	8699.6	100.	8650	50	-1.0	7			D.I		10El06
269 rr ()265 g m	8628.5	60.9	0200	20	0.4	7			Dba		15Ut02
$^{269}\mathrm{Hs}(\alpha)^{265}\mathrm{Sg}^m$	9369.6	30.	9280	30	-3.0	В			GSa		96Ho13
	9349.3	30.			-2.3	О			GSa		02Ho11
	9278.2	50.8			0.0	0			GSa		03Tu05
	9207.1	30.5			2.4	0			GSa		06Dv01
	9268.0	50.8			0.2	7			GSa		08Dv02
	9349.2	71.1			-1.0	O			RIa		08Mo09
	9288.3	40.6			-0.2	7			RIa		13Su04
269 Ds(α) 265 Hs ^{m}	11280.1	20.				5			GSa		95Ho03
$*^{269}$ Hs(α) ²⁶⁵ Sg ^m	Event number 2	only; first	event rejec	ted, see refer	rence						02Ho11 *
$*^{269}$ Hs(α) ²⁶⁵ Sg ^m	Two events E_{α} =	9230, 918	0 both follo	wing 300 μ s	s ²⁷³ Ds						02Ho11 *
$*^{269}\mathrm{Hs}(\alpha)^{265}\mathrm{Sg}^m$	Three events E_{α} :	=9180, 91	100, 8880; 1	atter probably	y due to ener	gy loss					03Tu05 *
270											
270 Db(α) 266 Lr	8019.0	30.5	8260#	200#	4.8	D			GSa		14Kh04
270 Bh(α) 266 Db	9064.5	81.2				10			Dba		07Og02
270 Hs(α) 266 Sg	9324.3	52.8	9070	40	-4.8	F			GSa		03Tu05
	9024	52			1.5	0			GSa		06Dv01
	9013.8	50.			1.1	7			GSa		08Dv02
	9123.4	77.			-0.7	7			GSa		10Gr04
	9155.8	80.			-1.1	7			Dba		13Og03
270 Mt(α) 266 Bh	10181.1	70.				10			RIa		08Mo09
270 Ds(α) 266 Hs	11196.2	50.8	11117	28	-1.6	o			GSa		01Ho06
	11117.0	28.4				5			GSa		11Ac.A
$^{270} Ds^{m}(\alpha)^{266} Hs$	12333	50	12510	50	3.5	В			GSa		01Ho06
_ (**)	12508.6	20.				5			GSa		11Ac.A
$^{270} Ds^{m}(\alpha)^{266} Hs^{m}$	11318	50	11410	50	1.7	0			GSa		01Ho06
D3 (W) 113	11405.2	52.	11410	30	1.7	6			GSa		11Ac.A
$*^{270}$ Db(α) ²⁶⁶ Lr	Trends from Mas		TMS cuga	est 270 Db 24	O less bound				OSa		GAu *
$*^{270}$ Hs(α) ²⁶⁶ Sg			I Wis sugg	est D0 24	o iess bouild						06Dv01 *
$*^{270}$ Hs(α) ²⁶⁶ Sg	F: re-assigned to		000(0.05-)	9020(0.5-)	2000(0.4-)						
$*^{270}$ Hs(α) ²⁶⁶ Sg	4 events at 8850										GAu *
$*^{270}$ Hs(α) ²⁶⁶ Sg	2 events at 8760										GAu *
$*^{270}$ Hs(α) ²⁶⁶ Sg	Symmetrized fro	om E_{α} =90	020(+50–10	0); independe	ent from pre	vious item					GAu *
$^{271}\mathrm{Sg}(\alpha)^{267}\mathrm{Rf}^p$	8658	80	8670	50	0.2	0			Dba		04Og12
$Sg(\alpha)$ KI'			8070	30	0.2	0					-
271 Bh(α) 267 Db	8668.2	81.2	0.420	50	1.4	10			Dba		06Og05
$2^{11}\text{Bn}(\alpha)^{23}\text{Db}$	9490.3	162.4	9420	50	-1.4	8			Dba		12St.A
271 ()267-0 "	9409.1	71.0			0.3	8			GSa		13Ru11
271 Hs(α) 267 Sg p	9439.6	50.7				10			GSa		08Dv02
271 Ds(α) 267 Hs	10869.8	20.	10870	18	0.0	7			GSa		98Ho13
	10870.8	35.			0.0	7			RIa		04Mo40
$^{271} Ds^{m}(\alpha)^{267} Hs$	10937.8	20.				7			Bka		04Fo08
	10803.8	50.	10938	20	2.7	F					12Zh04
$^{271}\mathrm{Ds}^m(\alpha)^{267}\mathrm{Hs}^m$	10899.2	20.	10899	13	0.0	8			GSa		98Ho13
	10880.8	50.			0.3	o			Bka		03Gi05
	10883.0	35.			0.4	8			RIa		04Mo40
	10903.3	20.			-0.2	8			Bka		04Fo08
$*^{271}$ Ds $(\alpha)^{267}$ Hs	Decay chain nun		the long-liv	ed isomer.							04Mo40 *
$*^{271}$ Ds ^m (α) ²⁶⁷ Hs	Decay chain nun		-		c.pre						04Fo08 *
* 271 Ds $^{m}(\alpha)^{267}$ Hs	F: α escaped?	1001 U, U	i ia interpret	u.1011							GAu *
* 271 Ds $^{m}(\alpha)^{267}$ Hs m	GAu : average o	f decay of	haine numb	ar 2 5 10 13	for chart li	vad isoma	r				04Mo40 *
* Ds (α) Hs *271Ds**(α)267Hs**					o tot Short-II	ved isoille	ı				
* "Ds"(α)"" Hs"	Decay chains nu	mber 5 ar	ıu /, GAU 11	nerpretation							04Fo08 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input v			usted value	v_i	Dg	Signf.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reference
272 Bh(α) 268 Db	9303.0	20.				0		Dire	15Ga24 *
			01.60	50	0.0	8		Bka	
272 Bh $(\alpha)^{268}$ Db p	9154.9	60.	9160	50	0.0	O		Dba	04Og03
	9144.7	60.9			0.2	0		Dba	12Og02
	9126.4	30.4			0.6	9		Dba	13Og01 *
272- 268-	9187.3	30.4	4440=	4.0	-0.6	9		GSa	13Ru11 *
272 Rg(α) 268 Mt	10981.9	20.	11197	13	10.8	В		GSa	95Ho04 *
	11191.9	20.			0.3	9		GSa	02Ho11 *
	11184.7	35.			0.4	9		RIa	04Mo26 *
272 269	11207.1	20.3			-0.5	9		Bka	04Fo08 *
$*^{272}Bh(\alpha)^{268}Db$	Average 9.16(2)								15Ga24 **
$*^{272}$ Bh(α) ²⁶⁸ Db ^p	Average E_{α} of 20								13Og01 **
$*^{272}Bh(\alpha)^{268}Db^{p}$	Average E_{α} of 8								13Ru11 **
$*^{272}$ Rg(α) ²⁶⁸ Mt	B: one event onl	•			ain disagreem	ent			GAu **
$*^{272}$ Rg(α) ²⁶⁸ Mt	Two events $E_{\alpha}=1$			V					02Ho11 **
$*^{272}$ Rg(α) ²⁶⁸ Mt	Also others up to	$E_{\alpha}=1156$	60 keV						04Mo26 **
$*^{272}$ Rg(α) ²⁶⁸ Mt	One event only								04Fo08 **
273 Hs(α) 269 Sg	9732.9	40.	9700	50	-0.6	8			10El06
() 56	9671.9	40.6			0.6	8		Dba	15Ut02
273 Ds(α) 269 Hs	9875.0	20.	11370	50	29.8	F		GSa	96Ho13 *
D5(W) 115	11248.1	30.	11370	50	2.4	F		GSa	96Ho13 *
	11519.1	60.			-3.0	F		Dba	96La12 *
	11366.9	20.3			5.0	8		GSa	02Ho11 *
	11311.0	70.			1.1	Ü		RIa	08Mo09
	11194.3	81.2			3.5	В		RIa	13Su04
$*^{273}$ Ds $(\alpha)^{269}$ Hs	F: this event is d		see referer	nce	5.5	ь		Kiu	02Ho11 **
$*^{273}$ Ds(α) ²⁶⁹ Hs	F : event number				H _c				GAu **
$*^{273}$ Ds(α) ²⁶⁹ Hs	F: this event is d					1720 kaV	7		02Ho11 **
$*^{273}$ Ds(α) ²⁶⁹ Hs	And one E_{α} =110		see referen	ice, average -	+ omers L _α =1	1720 KC V			02Ho11 **
. 25(a) 115	ring one Eq. 110	.00 110 .							0211011
274 Bh $(\alpha)^{270}$ Db	8930.6	101.5	8950	50	0.4	0		Dba	11Og04 *
	8890.0	50.7			1.2	6		Dba	13Og04
	8971.2	30.5			-0.4	6		GSa	14Kh04
274 Mt(α) 270 Bh p	9904.8	101.5				12		Dba	07Og02
274 Rg(α) 270 Mt	11477.9	70.				11		RIa	08Mo09 *
$*^{274}$ Bh(α) ²⁷⁰ Db	All results from t	his work	were first p	oublished in r	eference				10Og01 **
$*^{274} \mathrm{Rg}(\alpha)^{270} \mathrm{Mt}$	Also one E_{α} =111								08Mo09 **
275 Hs(α) 271 Sg	9437.5	71.0	9440	50	0.0	0		Dba	04Og12
115(W) 3g	9437.5	60.9) 111 0	50	0.0	o 11		Dba	04Og12 06Og05
275 Mt(α) 271 Bh	10482.8	90.	10480	50	0.0	U		Dba	04Og03
$MIL(\alpha)$ BII	10482.8	60.	10460	30	-0.4	U		Dba	12St.A
	10482.7	10.1			-0.4	9		GSa	13Ru11
$^{276}\mathrm{Mt}(lpha)^{272}\mathrm{Bh}$	10052	65	10100	0	2.2			DI.	040-03
$\sim Mt(\alpha)^{2/2}Bh$	10253	65	10100	9	-2.3	0		Dba	04Og03 *
	10212	84			-1.3	U		Dba	12Og02 *
	10160	16			-3.7	В		Dba	13Og01 *
	10102.3	10.1			-0.2	9		GSa	13Ru11 *
2763 5.m (\2725)	10093.0	20.			0.4	9		Bka	15Ga24 *
$^{276}\text{Mt}^{m}(\alpha)^{272}\text{Bh}$	10354	84	(21.371			9		Dba	12Og02 *
$*^{276}$ Mt(α) ²⁷² Bh	E_{α} =9710(60) to 4				00/0//				13Ru11 **
$*^{276}Mt(\alpha)^{272}Bh$	$E_{\alpha} = 9670(80)$ to					′			13Ru11 **
$*^{276}$ Mt(α) ²⁷² Bh	Average for 18 ev								13Ru11 **
$*^{276}$ Mt(α) ²⁷² Bh	$E_{\alpha} = 9530(10)$ to			. ,		evel			13Ru11 **
$*^{276}$ Mt(α) ²⁷² Bh	Average of 9 ever				2 keV level				15Ga24 **
* 276 m - 272	also one event E								15Ga24 **
$*^{276}\mathrm{Mt}^m(\alpha)^{272}\mathrm{Bh}$	E_{α} =9810(80) to 4	434 and 3	63 keV lev	/els					13Ru11 **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Reference
277 Ds $(\alpha)^{273}$ Hs p	10725 2	40.	10720	50	0.2	10					10El06
$DS(\alpha)^{2/3}HS^{p}$	10725.2		10720	50	-0.2				DI		
277.0 ()273.5	10704.8	40.6			0.2	10			Dba		15Ut02
277 Cn(α) 273 Ds	11622.2	30.	11600	50	4.0	9			GSa		96Ho13
	11821.0	30.	11620	50	-4.0	F			GSa		96Ho13
	11486.2	40.6			2.7	C			RIa		04MoZU
	11486.2	40.			2.7	В			RIa		08Mo09
277 272	11232.4	81.2			7.8	В			RIa		13Su04
$*^{277}$ Cn(α) ²⁷³ Ds	And one E_{α} =11										02Ho11 *
$*^{277}$ Cn(α) ²⁷³ Ds	F: this event is o	listrusted.	, see referer	ice							02Ho11 *
$*^{277}$ Cn $(\alpha)^{273}$ Ds	And one E_{α} =110	090(70) k	eV								08Mo09 *
278 Mt(α) 274 Bh	9689.7	190.	9630	50	-1.2	U			Dba		11Og04
M(w) Bii	9527.3	71.	7030	30	2.0	7			Dba		12Og06
	9689.6	30.4			-1.2	7			Dba		13Og04
	9588.2	30.4			0.8	7			GSa		14Kh04
278 Rg(α) 274 Mt	10846.3	81.2			0.8						
						13			Dba		07Og02
278 Ed $(\alpha)^{274}$ Rg	11850.8	40.	11050	50	2.0	12			RIa		08Mo09
278 - 1 274 -	11992.8	61.	11850	50	-2.8	O			RIa		12Mo25
$*^{278}$ Ed(α) ²⁷⁴ Rg	Also one $E_{\alpha}=11$										08Mo09 *
$*^{278}$ Ed $(\alpha)^{274}$ Rg	Post-deadline, di	isagrees v	vith previou	s result from	same group						GAu *
279 Ds $(\alpha)^{275}$ Hs p	9841.3	60.9	9840	50	0.0	o			Dba		04Og12
` '	9841.3	60.9				13			Dba		06Og05
279 Rg(α) 275 Mt	10521.1	162.3				10			Dba		04Og03
280 Rg(α) 276 Mt	10128.6	60.	10146	7	0.3	o			Dba		04Og03
	10128.6	60.			0.3	U			Dba		12Og02
	10148.8	10.2			-0.3	10			GSa		13Ru11
	10088.0	15.2			3.8	В			Dba		13Og01
	10148.8	10.2			-0.3	10			Bka		15Ga24
	10124.8	20.			1.0	10			Bka		15Ga24
$*^{280}$ Rg(α) ²⁷⁶ Mt	E_{α} =9750(60) to	237 keV	level								13Ru11 *
$*^{280}$ Rg(α) ²⁷⁶ Mt	E_{α} =9750(60) to	237 keV	level								13Ru11 *
$*^{280}$ Rg(α) ²⁷⁶ Mt	E_{α} =9770(10) to										13Ru11 *
$*^{280}$ Rg(α) ²⁷⁶ Mt	Average of 19 ev			237 keV lev	rel						13Ru11 *
$*^{280}$ Rg(α) ²⁷⁶ Mt	E_{α} =9770(10) to										15Ga24 *
$*^{280}$ Rg(α) ²⁷⁶ Mt	Highest E_{α} =998		10,01								15Ga24 *
$^{281}\mathrm{Ds}(\alpha)^{277}\mathrm{Hs}^p$	9057.9	100	0050	50	2.1	17			Dk-		000-10
$$ Ds(α) $-$ Hs $^{\nu}$	8957.8	180.	8850	50	-2.1	F			Dba		99Og10
	8825.9	100.			0.5	F			Dba		04Mo15
	8856.3	30.4			-0.1	0			GSt		10Du06
	8853.3	25.			0.0	5			GSt		11Ga19
291 277	8853.3	15.			0.0	5			GSa		12Ho12
281 Ds ^m (α) ²⁷⁷ Hs ^m	9449.8	15.				5			GSa		12Ho12
281 Rg(α) 277 Mt	9454.8	40.6	9900#	400#	9.0	D			Dba		13Og04
281 Cn(α) 277 Ds	10459.2	40.	10450	50	-0.1	11					10El06
	10448.9	40.6			0.1	11			Dba		15Ut02
$*^{281}$ Ds $(\alpha)^{277}$ Hs p	F: wrong α chain	in, see ²⁸⁵	Cn and ²⁸⁹	Fl							GAu *
* DS(U) DS'											
	F: non tracable	informati	on								GAu *
* $Ds(\alpha)$ Hs* * $^{281}Ds(\alpha)^{277}Hs^{p}$ * $^{281}Ds^{m}(\alpha)^{277}Hs^{m}$	F: non tracable : Assignment of ²⁹	information 93 Lv ^m — 28	on ³⁹ Fl ^m — ²⁸⁵ C	$2n^m - {}^{281}Ds^m$	$-^{277}\mathrm{Hs}^m$ ch:	ain is tent	ative				GAu * 12Ho12 *

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input			sted value	$\frac{v_i}{v_i}$	Dg	Signf.	Main infl.	Lab	F	Reference
Item	Input	value	Auju	sied value	v _i	Dg	Sigiii.	iviani iiii.	Lau	T'	Reference
282 Rg(α) 278 Mt p	9129.7	101.4	9170	50	0.8	o			Dba		11Og04
	9139.8	50.7			0.6	9			Dba		13Og04
	9180.4	30.4			-0.2	9			GSa		14Kh04 *
282 Cn(α) 278 Ds	9667.4	100.	10170#	200#	10.1	F			Dba		04Mo15 *
$^{282}\text{Ed}(\alpha)^{278}\text{Rg}$	10783.2	81.2	1017011	20011	10.1	14			Dba		07Og02
$*^{282}$ Rg(α) ²⁷⁸ Mt ^p	also observed E_0		0) leaV			17			Doa		14Kh04 **
* $Rg(\alpha)$ Mit* * $^{282}Cn(\alpha)^{278}Ds$	F : non tracable										
****Cn(α)***Ds	F: non tracable	ınıormanı	on								GAu **
283 Cn(α) 279 Ds p	9677	70	9660	50	-0.4	o			Dba		04Og07
()	9677.0	60.9			-0.4	0			Dba		04Og12
	9677.0	60.9			-0.4	15			Dba		06Og05
	9606.0	60.9			1.0	15			Dou		07Ei02
	9656.7	15.2			0.0	15			GSa		07Ho18
	9788.6	100.			-2.7	U			Bka		09St21
$^{283}\text{Ed}(\alpha)^{279}\text{Rg}^p$	10265.4	90.	10380	50	2.2	U			Dba		
$\operatorname{Eu}(\alpha)$ Kg^{i}			10360	30	2.2						04Og03
	10376.9	10.1				12			GSa		13Ru11
284 Cn(α) 280 Ds	9301.3	50.	9600#	200#	6.0	F			Dba		01Og01 *
	9269.0	100.			3.3	F			Dba		04Mo15 *
284 Ed(α) 280 Rg	10254.6	20.3	10280	50	0.5	11			GSa		13Ru11 *
Zu(W) Tig	10305.3	20.	10200	20	-0.5	11			Bka		15Ga24 *
$*^{284}$ Cn(α) ²⁸⁰ Ds	F: no α observe		work by ear	ma group: ra					DKu		04Og07 **
$*^{284}Cn(\alpha)^{280}Ds$	F: non tracable			ine group, re-	-assigned to	CII					
$*^{284}Ed(\alpha)^{280}Rg$				1							
	Highest E_{α} =101		rror increase	ea							13Ru11 **
$*^{284}\mathrm{Ed}(\alpha)^{280}\mathrm{Rg}$	Highest E_{α} =101	.60(20)									15Ga24 **
285 Cn(α) 281 Ds	8793.7	50.	9320	50	10.5	F			Dba		99Og10 *
	8793.7	100.			10.5	F			Dba		04Mo15 *
	9290.6	60.9			0.5	o			Dba		04Og07
	9280.5	50.			0.7	6			Dba		07Og01
	9341.3	30.4			-0.5	o			GSt		10Du06
	9341.3	30.4			-0.5	6			GSt		11Ga19
	9314.9	15.			0.0	6			GSa		12Ho12
285 Cn ^m (α) 281 Ds ^m	9845.4	15.2			0.0	6			GSa		12Ho12 *
$^{285}\text{Ed}(\alpha)^{281}\text{Rg}$	9878.9	81.1	10010	50	2.6	В			Dba		11Og04 *
Eu(a) Kg	10026.9	62.	10010	30	-0.4				Dba		
	9767.3				4.8	0 D			Dba		
	10031.0	183.			-0.4	В					12Og06
		162.				0			Dba		13Og01
	9990.4	41.			0.4	0			Dba		13Og04
285 EU 281 G	10008.7	20.3				11			Dba		16Fo16 *
285 Fl(α) 281 Cn	10558.4	50.7				12			Dba		15Ut02
$*^{285}$ Cn(α) ²⁸¹ Ds	F: one event at			elds much sh	orter half-liv	res					GAu **
$*^{285}$ Cn(α) ²⁸¹ Ds	F: non tracable	informatio	on								GAu **
$*^{285}$ Cn ^m (α) ²⁸¹ Ds ^m	Assignment of 2	93 Lv m - 28	89 Fl m $-^{285}$ C	$2n^m - 281 Ds^m$	$-^{277} Hs^{m}$ cha	ain is tent	tative				12Ho12 **
$*^{285}$ Ed $(\alpha)^{281}$ Rg	And $E_{\alpha} = 9480(1$	10) keV									11Og04 **
$*^{285}$ Ed(α) ²⁸¹ Rg	Also E_{α} =9740(8		180(110) ke	V							12Og02 **
$*^{285}$ Ed(α) ²⁸¹ Rg	reanalyzed data				Og01 and 13	Og04					16Fo16 **
*	unweighted ave										GAu **
*	the evaluator: s	-	-			-					GAu **

286 Ed $(\alpha)^{282}$ Rg	9766.9	100.	9790	50	0.5	10			Dba		11Og04
286 Ed $(\alpha)^{282}$ Rg	9766.9 9817.5	100. 111.6	9790	50	$0.5 \\ -0.6$	10 10			Dba Dba		11Og04 12Og06

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input val			usted value	v_i	Dg	Signf.	Main infl.	Lab F	Reference
286 Fl $(\alpha)^{282}$ Cn	10142.1 1	00.	10370	30	2.3	F			Dba	04Mo15 *
()		314.4			0.6	0			Dba	04Og07
		60			0.4	0			Dba	04Og12
		60.9			0.6	11			Dba	06Og05
		40.			-0.1	11			Bka	09St21
		100.			-0.8	11			Bka	10El06
$*^{286}$ Fl $(\alpha)^{282}$ Cn	F : non tracable int		n		0.0	11			DKu	GAu **
287 Fl $(\alpha)^{283}$ Cn	10435.7	20.3	10160	50	-5.5	F			Dba	99Og07 *
	10182.2	70.			-0.4	O			Dba	04Og07
		60.8			0.0	o			Dba	04Og12
		60.8				16			Dba	06Og05
287 Ef(α) 283 Ed		90	10760	50	0.5	O			Dba	04Og03
	10740	60			0.5	13			Dba	12St.A
		50.7			-0.3	13			GSa	13Ru11
$*^{287}$ Fl $(\alpha)^{283}$ Cn	F: 2 evts at 1.32 s,	, 14.4 s, l	later wor	k yields T=1.	.7 s					GAu **
200										
288 Fl $(\alpha)^{284}$ Cn		50.	10072	13	2.1	F			Dba	01Og01 *
		100.			1.1	F			Dba	04Mo15 *
		80.			-0.2	o			Dba	04Og07
	10090.3	70.			-0.3	o			Dba	04Og12
		60.8			-0.1	11			Dba	07Og01
	10090.3	30.			-0.6	O			GSt	10Du06
	10090.3	30.			-0.6	11			GSt	11Ga19
	10067.0	15.			0.3	11			GSa	12Ho12
288 Ef(α) 284 Ed	10607.6	60.8	10750	50	2.9	В			Dba	04Og03
	10627.8	60.			2.5	В			Dba	12Og02
	10727.2	82.1			0.5	U			Dba	13Og01 *
	10698.8	10.1			1.1	В			GSa	13Ru11 *
	10754.6	20.3				12			Bka	15Ga24 *
$*^{288}$ Fl(α) ²⁸⁴ Cn	F: T=1800(+2100	–600) m	s, later w	ork yields sh	orter half-liv	es				GAu **
*	re-assigned to 289	'Fl		-						04Og07 **
$*^{288}$ Fl(α) ²⁸⁴ Cn	F: non tracable inf	formatio	n							GAu **
$*^{288}$ Ef(α) ²⁸⁴ Ed	Highest E_{α} =10578	3(81); av	erage 24	events would	l vield $E_{\alpha}=1$	$0480 O_{\alpha} =$	10627.8			13Og01 **
$*^{288}$ Ef(α) ²⁸⁴ Ed	Average of 2 highe				,	~~				13Ru11 **
$*^{288}$ Ef(α) ²⁸⁴ Ed	Average of 2 higher									15Ga24 **
289 Fl $(\alpha)^{285}$ Cn		50.7	9970	50	2.4	F			Dba	99Og10 *
		01.4			2.4	F			Dba	04Mo15 *
		60.			0.2	0			Dba	04Og07
		50.			0.2	7			Dba	07Og01
		30.			-0.9	0			GSt	10Du06
		30.			-0.9	7			GSt	11Ga19
290	9956.0	15.2			0.2	7			GSa	12Ho12
$^{289}\text{Fl}^{m}(\alpha)^{285}\text{Cn}^{m}$		15.				7			GSa	12Ho12 *
289 Ef(α) 285 Ed		90.	10510	50	1.1	O			Dba	11Og04
		62.			-0.2	O			Dba	12Og02 *
		71.			2.1	o			Dba	12Og06
		81.			-0.7	o			Dba	13Og01
		52.			-1.9	0			Dba	13Og04
200 207		20.3				12			Dba	16Fo16 *
$*^{289}$ Fl(α) ²⁸⁵ Cn	F: one event at 30		-	ields much sh	orter half-liv	/es				GAu **
$*^{289}$ Fl $(\alpha)^{285}$ Cn	F: non tracable inf	formatio	n	_						GAu **
$*^{289}$ Fl ^m $(\alpha)^{285}$ Cn ^m	Assignment of ²⁹³ l	$Lv^m - ^{289}$	9 Fl m $-^{285}$	$Cn^m - {}^{281}Ds^m$	n $-^{277}$ Hs m cl	nain is tent	ative			12Ho12 **
$*^{289}$ Ef(α) ²⁸⁵ Ed	Also $E_{\alpha} = 10310(90)$	0) keV								12Og02 **
$*^{289}$ Ef(α) ²⁸⁵ Ed	reanalyzed data of	11Og04	, 12Og02	2, 12Og06, 13	3Og01 and 1	3Og04				16Fo16 **
*	unweighted avera									GAu **
*	the evaluator: s06	5=10370	s12=103	364 s14=1036	2 in Table 2					GAu **

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-50)

Item	Input	value	Adju	sted value	v_i	Dg	Signf.	Main infl.	Lab	F	Referenc
290 Ef(α) 286 Ed	10454.4	40.6				11			GSa		14Kh04
290 Lv(α) 286 Fl	10434.4		11000	70	1.6						
°Lν(α) °FI		100.	11000	70		F			Dba		04Mo15
	11002.0	81.1			0.0	0			Dba		04Og07
	10991.8	81.1			0.1	0			Dba		06Og05
200- ()286	10999.9	65.9				12			Dba		12Og06
$*^{290}$ Lv(α) ²⁸⁶ Fl	F : non tracable	informatio	on								GAu
291 Lv(α) 287 Fl	10890	70	10890	50	0.0	0			Dba		04Og07
	10890	70				17			Dba		06Og05
292 Lv(α) 288 Fl	10707.0	50.	10774	15	1.3	F			Dba		01Og01
	10676.5	100.			1.0	F			Dba		04Mo15
	10808.3	71.0			-0.5	12			Dba		04Og12
	10772.8	15.2			0.1	12			GSa		12Ho12
$*^{292}$ Lv(α) ²⁸⁸ Fl	F: daughter and	grand-da	ughter re-as	signed to ²⁸⁹	Fl and ²⁸⁵ Cı	ı					GAu
$*^{292}$ Lv(α) ²⁸⁸ Fl	F : non tracable										GAu
293 Lv(α) 289 Fl	10676	60	10680	50	0.1	o			Dba		04Og07
	10686.1	60.8			-0.1	8			Dba		07Og01
	10679.0	15.2			0.0	8			GSa		12Ho12
293 Lv ^{m} (α) 289 Fl m	10647.6	15.2				8			GSa		12Ho12
293 Eh(α) 289 Ef	11182.9	81.1	11290	50	2.2	o			Dba		11Og04
	10949.7	71.			6.9	В			Dba		12Og06
	11253.9	91.2			0.8	o			Dba		13Og04
	11293.4	20.3				13			Dba		16Fo16
$*^{293}Lv^{m}(\alpha)^{289}Fl^{m}$	Assignment of 29	93 Lv m - 28	$^{9}\text{Fl}^{m} - ^{285}\text{C}$	$n^{m}-^{281}Ds^{m}-$	$-^{277}$ Hs ^m cha	in is tenta	ative				12Ho12
$*^{293}$ Eh(α) ²⁸⁹ Ef	reanalyzed data										16Fo16
*	unweighted ave										GAu
*	the evaluator: s						33				GAu
*	s13=11203 s14										GAu
294 Eh(α) 290 Ef	11202 (10.6				12			CSa		1417504
	11202.6	40.6	11040	70	0.4	12			GSa		14Kh04
$^{294}\text{Ei}(\alpha)^{290}\text{Lv}$	11800.9	100.	11840	70	0.4	F			Dba		04Mo15
	11810.9	60.			0.5	O			Dba		04Og12
	11810.9	60.			0.5	0			Dba		06Og05
204	11840.3	65.9				13			Dba		12Og06
$*^{294}$ Ei $(\alpha)^{290}$ Lv	F: non tracable	informatio	on								GAu
$^{295}\text{Ei}(\alpha)^{291}\text{Lv}$	11810.4	71.0	11700#	200#	-2.2	F			Dba		04Og05