Continuity over p-adic numbers

23 Nav. 2021

AAG Semmar

Continuity

Idea: small charge \rightarrow small charge in \times

austin: what is "smill change"?

Continuity

 \sim ontput in range $(f(x_0) - \xi, f(x_0) + \xi)$

3E 34

Measuring distance

Usual distance:

$$0$$
 | 2 | 3 | 4 | $1\times -\gamma$ | R
 $|\times -\gamma|$ R = "distance on number live"

$$p$$
-adic distance: p'' is "smaller" when n larger small varye = $(a - p'', a + p'') \times a$

p-adic distance

81 + k·27

-27 + k. 27

p-adic continuity

I den small change
$$\longrightarrow$$
 small change in \times :- $f(\times)$

Def
$$f(x)$$
 is pradic continuous at x_0
if $\forall x \in \{x_0 + kp^m\} = \}$ $f(x) \in \{f(x_0) + kp^m\}$

p-adic Continuity

Questra: 15

b-agic continues.

p-adic Continuity

Wursten! 15 x2+7x+5 prodic continuers?

res, finite

(es, finite

mult, -7

fixe

(Quishmi How can we decide p-adic continuity in general?

$$R$$
-continuous functions often have Taylor exposum $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$

Def. The Mahler expansion of
$$f(x) = c_0 + c_1(x) + c_2(x) + \cdots$$

$$= \sum_{k=1}^{\infty} c_k(x)^k$$

where
$$\begin{pmatrix} x \\ k \end{pmatrix} := \frac{1}{k!} \times (x-1)(x-2) \cdots (x-k+1)$$

"Falling Rectard" \times

Def. The Mahler expansion of
$$f(x) = c_0 + c_1(x) + c_2(x) + \cdots$$

$$= \sum_{k=1}^{\infty} c_k(x)^k$$

Ex.
$$3x^{2} + 5x + 1 = 1 + 8(x) + 6(x) + 6(x) + 0(x) + ...$$

$$3^{2} = (1+2)^{2} = 1 + 2(x) + 2^{2}(x) + 2^{3}(x) + ...$$
(coungs Way $x \in \mathbb{N}$

non ny. whoser

Def. The Mahler expansion of
$$f(x)$$
 is
$$f(x) = c_0 + c_1(x) + c_2(x) + \cdots = \sum_{k=1}^{\infty} c_k(x)$$

TR -ambgue: Smoothess (=> Honorer series)
decay

Thm (Mahler 1958)

$$f(x)$$
 is $p.adic$ (=) $|ck|p \rightarrow 0$ as $k \rightarrow \infty$

Pt shetch (=) Suppose | Culp ->0 00 K-500,

 $|f(x) - tn(x)|b = |\sum_{\infty} ck(x)|b$

$$\frac{Vpshot}{p-adiz} \quad (0) \quad (=) \quad |9| |p \rightarrow 0$$

$$f(x) = \sum_{k \geq 0} c_k {x \choose k} = f(0) = c_0 + 0.00...$$

$$\triangle f(x) = f(x+1) - f(x)$$

Feet:
$$\Delta \begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x+1 \\ k \end{pmatrix} - \begin{pmatrix} x \\ k \end{pmatrix} = \begin{pmatrix} x \\ k-1 \end{pmatrix}$$

$$\geq \Delta \left(\sum_{k \geq 0} c_k {x \choose k} \right) = \sum_{k \geq 1} c_k {x \choose N-1}$$

Mahler express

Q: 15 n! p-adre continuens?

=> what is it Mahler exposer?