Name:

Unit 1 Test: Function Operations

Answer on loose leaf paper in pen, or, for the graphs, on graph paper in pencil. Show working for all problems.

- 1. For the function f(x) = 2x + 3
 - (a) What is the value of f(-1)?
 - (b) Solve for x if f(x) = 0.
 - (c) Find f(3-2x).
 - (d) Find the inverse of f(x), $f^{-1}(x)$.
- 2. For the functions $f(x) = 1 x^2$ and g(x) = x 4
 - (a) What is the value of g(5)?
 - (b) Find $(f \circ g)(5)$.
 - (c) Find $(f \circ g)(x)$.
- 3. Find the inverse of $f(x) = \frac{2x-2}{3}$
- 4. For the functions defined by f(x) = 2x and g(x) = x + 4
 - (a) Find an expression for $(f \circ g)(x)$.
 - (b) Find an expression for $(g \circ f)(x)$.
 - (c) Solve $(f \circ g)(x) = (g \circ f)(x)$.
- 5. Write down the domain and range of $f(x) = x^2 6$
- 6. For the function shown in the graph below,
 - (a) Write down the equations for the asymptotes.
 - (b) Write down the domain and range of the function.
- 7. Using a GDC to analyze the function $f(x) = \frac{2x+1}{x+3}$
 - (a) Write down the equations for the asymptotes.
 - (b) Write down the domain and range of f(x).

- 8. Graph the function $f(x) = x^2 + 2x + 2$ over the domain $-1 \le x \le 1$.
 - (a) Mark points on the function representing f(-1) = 1 and f(1) = 5. Label them as coordinate pairs.
 - (b) Graph and label the inverse of f, $f^{-1}(x)$, on the same axes over the domain corresponding to the range of f graphed. Mark the inverses of the points named in part (a), labeling them as coordinate pairs.
 - (c) Write down the domain and range of $f^{-1}(x)$ in the space below.

