Tema 1 Espacios topológicos

Definición

Sea (X, τ) un espacio topológico, entonces $F \subseteq X$ se dice que es *cerrado* si $X - F \in \tau$.

Teorema

Sea X un conjunto y $\mathcal{F} = \{F_i : i \in I\}$ una familia de subconjuntos de X verificando:

(i) $\emptyset, X \in \mathcal{F}$

$$(ii) \ F_i \in \mathcal{F} \colon \forall i \in I \Longrightarrow \bigcap_{i \in I} \ F_i \in \mathcal{F}$$

$$(iii) \; F_1, F_2 \in \mathcal{F} \Longrightarrow F_1 \cup F_2 \in \mathcal{F}$$

Entonces existe una única topología τ sobre X donde \mathcal{F} es la familia de cerrados de τ .

$$\tau = \{X - F : F \in \mathcal{F}\}$$

Ejercicio 1

Sea $R[x_1, ..., x_n]$ polinomios con coeficientes reales y variables $x_1, ..., x_n$. Dado

$$E \subseteq R[x_1, ..., x_n] \neq \emptyset$$

Se define

$$F_E = \{a \in R^n : p(a) = 0 \ \forall p \in E\}$$

Demostrar que la familia $C_{\tau}=\{F_E: E\subseteq\in\}$ es una familia de cerrados de una única topología τ en R^n .

Definición

Sea (X, τ) un espacio topológico, entonces $B \subseteq P(X)$ se dice que es *una base* si

$$\forall \theta \in \tau : \theta = \bigcup_{i \in I} B_i \quad B_i \in \mathcal{B} \ \forall i \in I$$

Teorema (muy importante)

Sea X un conjunto no vacío y $B \subseteq P(X)$ tal que:

(i)
$$X = \bigcup_{i \in I} B_i$$
 $B_i \in \mathbb{B} \ \forall i \in I$

$$(ii) \forall \ B_1, B_2 \in B \ y \ \forall x \in B_1 \cap B_2 \ existe \ B_3 \in B \ tal \ que \ x \in B_3 \subseteq B_1 \cap B_2$$

Entonces existe una única topología $\tau(B)$ tal que B es su base.

Sea U_n el conjunto de los divisores de $n \in \mathit{N}$. Probar que

$$B = \{U_n/n \in N\}$$

es base de una única topología en ${\it N}$.

Probar que $\mathbf{B}=\left\{\left]x-\frac{1}{n},x+\frac{1}{n}\right[\cup]n,+\infty[:x\in R\;n\in N\right\}$ es base de una topología en R. Calcular el interior y la adherencia de los conjuntos $[2,+\infty[\;y\;]-\infty,2]$.

Sea X un conjunto y $A \subset X$, $A \neq \emptyset$. Probar que $\mathcal{B} = \big\{ \{x\} \cup A \colon x \in X \big\}$ es base de una topología τ en X. Calcular A y \overline{A} en (X, τ) .

Se considera $H_+=\{(x,y)\in R^2\colon y\geq 0\}$ y la familia

$$\mathcal{B} = \left\{ B\big((x,y),r\big) \cup A_r \colon (x,y) \in H_+ \ 0 < r \le y \right\}$$

Con $A_r=\emptyset$ salvo $A_y=\{(x,0)\}$. Probar que existe una única topología au_M en H_+ con base $\mathcal B$ (topología de Moore).

$$(i) \ H_+ = \bigcup_{(x,y)\in H_+ 0 < r \le y} \big[B\big((x,y),r\big) \cup A_r \big]$$

 $(ii) \forall \ B_1, B_2 \in \mathcal{B}$, $\forall (x,y) \in B_1 \cap B_2 \ existe \ B_3 \in \mathcal{B} \ tal \ que \ (x,y) \in B_3$ $\subseteq B_1 \cap B_2$

$$B_1 \in \mathcal{B} \Longrightarrow B_1 = B\big((x_1,y_1),r\big) \cup A_r \qquad (x_1,y_1) \in H_+ \ 0 < r \le y_1$$

$$B_2 \in \mathcal{B} \Longrightarrow B_2 = B((x_2, y_2), r') \cup A_{r'} \quad (x_2, y_2) \in H_+ \ 0 < r \le y_2$$

Probar que $\mathcal{B}=\{[x,y[:y>x] \text{ es base de una única topología } \tau_S \text{ en } R \text{ (topología de Sorgenfrey)}.$ Calcular en (R,τ_S) la clausura de N, Q, $\left\{\frac{1}{n}:n\in N\right\}$ y $\left\{-\frac{1}{n}:n\in N\right\}$.

Solución

(i)
$$R = \bigcup_{x,y \in R} \sum_{y>x} [x, y]$$

Sea
$$x, y \in R$$
 $y > x$: $[x, y] \subset R \implies \bigcup_{x,y \in R} \bigvee_{y > x} [x, y] \subset R$

Sea
$$x \in R \implies x \in [x, x+1] \subset \bigcup_{x,y \in R} \bigvee_{y>x} [x,y] \implies R \subset \bigcup_{x,y \in R} \bigvee_{y>x} [x,y]$$

Por lo tanto, $R = \bigcup_{x,y \in R} \sum_{y>x} [x,y]$.

 $(ii) \forall B_1, B_2 \in \mathcal{B}$, $\forall x \in B_1 \cap B_2$ existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subseteq B_1 \cap B_2$

$$B_1 \in \mathcal{B} \Longrightarrow B_1 = [x_1, y_1] \quad y_1 > x_1 \ x_1, y_1 \in R$$

$$B_2 \in \mathcal{B} \Longrightarrow B_2 = [x_2, y_2] \quad y_2 > x_2, x_2, y_2 \in R$$

Sea $x \in B_1 \cap B_2 \Longrightarrow x \in [x_1, y_1[\quad x_1 \le x < y_1 \quad x \in [x_2, y_2[\quad x_2 \le x < y_2]$

Sea $x_0 = m \acute{a} x \{x_1, x_2\}$ $y_0 = min\{y_1, y_2\}$:

$$x\in \left[x_0,y_0\right[=B_3\subseteq B_1\cap B_2$$

Por lo tanto, $\mathcal{B} = \{[x, y[: y > x] \text{ es base de una única topología } \tau_S \text{ en } R.$

La clausura de A = N, $A \subseteq \bar{A}$.

Sea $x \in R - N$: Si x < 1: $[x, 1] \cap A = \emptyset$ no son adherentes.

Si
$$x \ge 1$$
: $\exists n \in \mathbb{N}: n \le x < n+1$ y sea $\varepsilon = min\left\{\frac{x-n}{2}, \frac{n+1-x}{2}\right\}$:

$$x \in [x - \varepsilon, x + \varepsilon] \Longrightarrow [x - \varepsilon, x + \varepsilon] \cap A = \emptyset$$

Por lo tanto, tampoco son adherentes. Es decir, $\bar{A}=N.$

La clausura de A = Q, $A \subseteq \bar{A}$.

Sea $z \in R - Q$: para cualquier abierto que contenga a z se verifica:

$$z \in [x, y[: y > x \Longrightarrow [x, y[\cap Q \neq \emptyset$$

porque entre dos números cualquiera siempre hay un racional Es decir, $\bar{A}=R$, es un conjunto denso.

La clausura de $A = \left\{\frac{1}{n} : n \in N\right\}$, $A \subseteq \bar{A}$. Veamos 0 es punto adherente.

Sea un abierto cualquiera que contiene al cero.

$$0 \in [x, y] \ y > x \implies x \le 0 < y$$

 $\mathsf{Como}\left\{\tfrac{1}{n}\right\} \xrightarrow{n \to \infty} 0 \quad \forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geq m \quad \tfrac{1}{n} < \varepsilon \text{, si se toma } \varepsilon = y \text{:}$

$$\exists m \in N : n \ge m \ 0 < \frac{1}{n} < y$$

$$[x, y[\cap \left\{\frac{1}{n} : n \in N\right\} \neq \emptyset$$

Por lo tanto, 0 es un punto adherente. $\bar{A} = \left\{\frac{1}{n} : n \in N\right\} \cup \{0\}.$

La clausura de $A = \left\{-\frac{1}{n} : n \in N\right\}$, $A \subseteq \bar{A}$. Veamos 0 es punto adherente.

Sea un abierto que contiene al cero.

$$0 \in [0,1[\in \tau_S \implies [0,1[\cap \left\{ -\frac{1}{n} : n \in N \right\} = \emptyset]]$$

Por lo tanto, 0 no es un punto adherente. $\bar{A} = \left\{-\frac{1}{n} : n \in N\right\}$.

En R sea $\tau=\{\mathbf{0}\subseteq R: \mathbf{0}=U-B \ con\ U\in\tau_u\ y\ B\subseteq]0,1]\}$ demostrar que τ es un topología en R. Calcular en interior y la clausura de los conjuntos $]^1/2,^3/4],[-1,^1/2[\ y\]0,1].$

Calcular en interior y la adherencia de los siguientes conjuntos:

(a)
$$A = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1\}$$
 en \mathbb{R}^2 .

(b)
$$B = \{(x, y) \in R^2 : y < x^2\}$$
 en R^2 .

(c)
$$A = \left\{\frac{1}{n} : n \in N\right\}$$
 en R .

Se considera en N la topología $au=\{m{O}_n\colon n\in N\}\cup\{\emptyset,N\}$ con $m{O}_n=\{1,2,,\ldots,n\}$. Probar que $m{\beta}_n=\{m{O}_n\}$ es una base de entornos de n. Si $A=\{2,3,4\}$, hallar el interior y adherencia del conjunto $\{2,4\}$ en $m{A}$, $\{1,1\}$.

Se considera la recta semienlazada (R, τ) , esto es, τ es la topología con bases de entornos

$$m{eta}_0 = \{]-r, r[\ \cup\]n, +\infty[: r > 0\ n \in N\}$$
 $m{eta}_x = \{]x-r, x+r[: r > 0\ \} \ \forall x \in R-\{0\}$

- (a) Encontrar razonadamente dos bases distintas de τ .
- (b) Calcular la frontera de $]-\infty,3[y]3,+\infty[$ en (R,τ) .
- (c) Estudiar si $]-\infty$, 3[y]3, $+\infty[$ son cerrados en $(R-\{3\}, au_{R-\{3\}})$.
- (*d*) Probar que si $[-3,+\infty[$ $\subset \bigcup_{\alpha\in A} O_{\alpha}$ $con\ O_{\alpha}\in \tau \ \forall \alpha\in A$, entonces

$$\exists \alpha' \in A: [-3, +\infty[-0_{\alpha'} \subset [-3, +\varepsilon[para algún \varepsilon > 0.$$

Un conjunto no vacío $U\subseteq R$ es simétrico si para cada $x\in U$ se cumple que $-x\in U$. Consideremos la familia:

$$\tau = \{U \subseteq R : U \text{ es sim} \in trico\} \cup \{\emptyset\}$$

- 1.- Probar que au es una topología en R y que $C_{ au}= au$.
- 2.- Analizar si (R, τ) es o no un espacio de Hausdorff.
- 3.- Para cada $x \in R$, encontrar una base de entornos de x en (R, τ) formada por un único entorno de x.
- 4.- En (R, au) calcular la clausura, el interior y la frontera de [-1,0]

Se considera $A = [0,1[\ \cup\]1,3[\ \cup\ \{5\}$ con la topología inducia por la topología usual de R.

- 1.- Razonar si los conjuntos $\{5\}$ y]1,3[son abiertos o cerrados en $(A, au_{u/A}).$
- 2.- Calcular la adherencia de [0,1[.
- 3.- Comprobar si $\left[0, \frac{1}{2}\right]$ es entorno de 0.

Soluciones

Consideramos la familia de subconjuntos de $\it R$ dada por

$$\mathfrak{B} = \{]a,b[:a,b \in R \ a < b \} \cup \{ \{q\}: q \in Q \}$$

Probar que:

- (a) ${\mathfrak B}$ es base de una (única) topología au en R.
- (b) (R, τ) satisface el II Axioma de Numerabilidad.
- (c) (R, τ) es T_2 (Hausdorff)
- $(d) \ D \subseteq R$ es denso en $(R, \tau) \Leftrightarrow Q \subseteq D$
- (e) Calcula el cierre y el interior de $\left]0,\sqrt{2}\right]$ en (R, au).

En (R, au_u) se considera el subconjunto

$$A = \{-1, 3\} \cup \left\{\frac{4n-1}{n} : n \in N\right\} \cup \left(\left[4, \sqrt{18}\right] - Q\right)$$

- (a) Hallar el interior y adherencia de A en (R, au_u) .
- (b) Si $B=\left]4,\sqrt{18}
 ight]-Q$, determinar el interior y la adherencia de B en el espacio topológico $\left(A, au_{u/A}
 ight)$.

Sea $K \subset R$ el subconjunto : $K = \{1/n : n \in N\}$.

$$\mathfrak{B} = \{]a, b[: a, b \in R \ a < b \} \cup \{]a, b[\setminus K: a, b \in R \ a < b \}$$

- (a)¿Es $\mathfrak B$ base de una topología τ en R?
- (b) Sea τ_K la topología generada por $\mathfrak B$. Probar que τ_K es estrictamente más fina que la topología usual, τ_u , de R. $(\tau_u \subset \tau_K \ \tau_u \neq \tau_K)$
- (c) ¿Es (R, au_k) un espacio Hausdorff?
- (d) Calcular la clausura de]0,1[en (R,τ_k) .
- (e) Dar un ejemplo de una sucesión convergente con la topología usual au_u que no converge con la topología au_K .

Estudia de forma razonada las siguientes cuestiones:

a.- ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto? ¿Y si el espacio es metrizable?

Se considera el espacio topológico (X, τ) con $X = [1, 2] \cup]3, 4[$ y τ la topología con base de entornos:

$$\mathfrak{B}_1 = \{[1, 1+\varepsilon[\ \cup\]3, 3+\varepsilon[: 0<\varepsilon<1\}\ \mathfrak{B}_2 = \{]2-\varepsilon, 2]\cup]4-\varepsilon, 4[: 0<\varepsilon<1\}$$

$$\mathfrak{B}_x = \{[x-\varepsilon, x+\varepsilon[\ \subset X: 0<\varepsilon\}\ \ \forall x\in X-\{1,2\}$$

a.- Razonar si $\mathfrak{B} = \{[1, 1 + \varepsilon[: 0 < \varepsilon < 1] \text{ es una base de entornos de 1 en } (X, \tau).$

b.- Comparar τ con la topología usual inducida en X.

c.- Estudiar si [1, 2] es abierto o cerrado en (X, τ) .

d.- Calcular la frontera de]3,4[en (X,τ) .

e.- Probar que si

$$X = \bigcup_{\lambda \in \Lambda} O_{\lambda} \quad O_{\lambda} \in \tau \ \forall \lambda \in \Lambda$$

Entonces existen $\alpha, \beta \in \Lambda: X-\left(\mathbf{0}_{\alpha}\cup\mathbf{0}_{\beta}\right) \subset [1+r,2-r]\cup[3+r,4-r]$, para algún r>0.

Se considera el espacio topológico (X, τ) con $X = [1, 2[\ \cup\]3, 4]$ y τ la topología con base de entornos:

$$\mathfrak{B}_1 = \{[1, 1+\varepsilon[\ \cup\]3, 3+\varepsilon[: 0<\varepsilon<1\}\ \mathfrak{B}_4 = \{]2-\varepsilon, 2[\ \cup\]4-\varepsilon, 4]: 0<\varepsilon<1\}$$

$$\mathfrak{B}_x = \{[x-\varepsilon, x+\varepsilon[\ \subset X: 0<\varepsilon\}\ \ \forall x\in X-\{1,4\}$$

a.- Razonar si $\mathfrak{B}=\{]4-arepsilon,4]$: $0<arepsilon<1\}$ es una base de entornos de 4 en (X, au).

b.- Comparar τ con la topología usual inducida en X.

c.- Estudiar si [1, 2] es abierto o cerrado en (X, τ) .

d.- Calcular la frontera de]3,4] en (X,τ) .

e.- Probar que si

$$X = \bigcup_{\lambda \in \Lambda} O_{\lambda} \quad O_{\lambda} \in \tau \ \forall \lambda \in \Lambda$$

Entonces existen $\alpha, \beta \in \Lambda$: X $-\left(\mathbf{0}_{\alpha} \cup \mathbf{0}_{\beta}\right) \subset [1+r, 2-r] \cup [3+r, 4-r]$, para algún r>0.

En N se considera $\tau=\{A_n:n\}\cup\{\emptyset\}$, con $A_n=\{n,n+1,...\}$. Probar que es una topología. Hallar el interior y adherencia de $A=\{n\'umeros\ pares\}$ y $B=\{4,6\}$.

En R se considera la topología τ que tiene por base $\beta=\{[a,+\infty[:a\in R\}.$ Probar que para cada $x\in R$, $\beta_x=\{[x,+\infty[\}$ es una base de entornos de x. Hallar la adherencia de $\{-1,1\}.$

En R se considera la topología au del punto incluido para p=0. Sean A=[0,2] y B=]0,2[. Hallar Fr(A). Probar que $au_{/B}$ es la topología discreta.

1.- Sea $X=([0,2],\tau)$ donde $\tau=\{{\bf 0}\subset X:]0,1[\subset {\bf 0}\}\cup\{\emptyset\}$. Hallar el interior y adherencia de A=[0,1]. Probar que A es compacto pero no \overline{A} .

Sea X un conjunto $A \subset X$ un subconjunto fijo.

a.- Probar que $\tau = \{ {\bf 0} \subset {\it X} : {\it A} \subset {\it O} \} \cup \{ \emptyset \}$ es una topología en ${\it X}$.

b.- Para cada $x \in X$, probar que $\beta_x = \big\{\{x\} \cup A\big\}$ es una base de entornos de x en (X,τ) .

c.- Dado $C \subset X$, caracterizar el interior y adherencia de C.

En (R^2, au_u) hallar el interior y la adherencia de

$$A = B_1((0,0)) - \{(0,0)\}$$
 $B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$

En R^2 , consideramos la familia $\beta = \{]a, b[x\{c\}: a < b, a, b, c \in R\}$.

a.- Probar que $oldsymbol{eta}$ es base de abiertos de una topología au en R^2 .

b.- Comparar au con au_u .

c.- Dado $\emph{\textbf{C}} = \{\mathbf{0}\}x\emph{\textbf{R}}$, estudiar cuál es la topología relativa $au_{/\emph{\textbf{C}}}$ y si es conocida.

Probar si en un espacio topológico todo punto tiene una base de entornos cerrados entonces es regular.

En R^2 se considera la topología au que tiene por base $oldsymbol{eta}=\{B_a \colon a \in R\}$ y

$$B_a = \{(x, y) \in R^2 : x \ge a\}$$

Estudiar si (R^2, τ) es normal.

Estudiar los axiomas de numerabilidad en ${\it R}$ con la topología

$$\boldsymbol{\tau} = \{\emptyset\} \cup \{\boldsymbol{0} \subset \boldsymbol{R} : \boldsymbol{Q} \subset \boldsymbol{0}\}$$

Estudiar la propiedad Hausdorff y regular en (X, au), X=]0,1[,

$$\tau = \left\{ \left| 0, 1 - \frac{1}{n} \right| : n \in N \right\} \cup \{\emptyset, X\}$$

En R se define la siguiente familia de subconjuntos:

$$\tau = \{ \textbf{0} \subseteq \textbf{R} \colon \textbf{R} - \textbf{0} \ \textit{es compacto en} \ (\textbf{R}, \tau_u) \} \cup \{\emptyset\}$$

- a.- Demostrar que au es una topología sobre R.
- b.- Comparar au con la topología usual au_u .
- c.- Calcular interior, adherencia y frontera de $A=[0,1]\cup[2,3]$ y $B=]0,+\infty[$ en (R, au).

En (R, au_u) consideramos el subconjunto

$$A =]-1,3[\cup \left\{ \frac{4n-1}{n} : n \in N \right\} \cup \left(]4,\sqrt{18} \right] - Q)$$

a.- Hallar intA y \overline{A} en (R, au_u) .

b.- Si $B=\left]4,\sqrt{18}\right]-Q$, determinad el interior y la adherencia de B en el espacio topológico $\left(A, au_{/_A}\right)$.

Probar que $m{\beta}=\{[a,b[:a\in Q\;b\in R-Q,a< b\}$ es base de una topología en R. Hallar el interior y la adherencia de Q y [0,1].

Hallar el interior y la adherencia de los siguientes conjuntos:

a.-
$$A = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1\}$$
 en \mathbb{R}^2 .

b.-
$$B = \{(x, y) \in R^2 : y < x^2\} \text{ en } R^2.$$

c.-
$$\mathit{C} = \{ ^1\!/_n \colon \! n \in \mathit{N} \}$$
 en R .

Se considera en N la topología $au=\{{\bf 0}_n:n\in N\}\cup\{\emptyset,N\}$, con ${\bf 0}_n=\{1,\dots,n\}$. Probar que ${\bf \beta}_n=\{{\bf 0}_n\}$ es una base de entornos de n. Si $A=\{2,3,4\}$, hallar el interior y adherencia del conjunto $\{2,4\}$ en $\left(A, au_{/A}\right)$.