(ii) In the above expansion, the (m + 1) – th term will be greatest if $\frac{(n+1)x}{a+x} = a + ve$ integer (m) + a proper fraction.

Determinant

General Form:-

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - a_3 c_2) + c_1 (a_2 b_3 - a_3 b_2)$$

Symbolic Form:-

Addition of Determinants:-

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} l_1 & m_1 & n_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 + l_1 & b_1 + m_1 & c_1 + n_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} l_1 & b_1 & c_1 \\ l_2 & b_2 & c_2 \\ l_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 + l_1 & b_1 & c_1 \\ a_2 + l_2 & b_2 & c_2 \\ a_3 + l_3 & b_3 & c_3 \end{vmatrix}$$

Properties of Determinants:-

- (1) If the rows & columns are interchanged then the value of the determinant remains same.
- (2) If two associated rows (or columns) are interchanged then the sign will be changed.
- (3) If there are two rows (or columns) are identical, then the value will be zero.
- (4) If each element of a row (or a column) of a determinant is multiplied by a constant k then the value of new determinant is k times the value of original determinant.
- (5) If all the elements in a row (or column) are zero, then the value will be zero.

Multiplication of Determinants:

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix} = \begin{vmatrix} a_1p_1 + b_1q_1 & a_1p_2 + b_1q_2 \\ a_2p_1 + b_2q_1 & a_2p_2 + b_2q_2 \end{vmatrix}$$
 (R × R)

To find the area of a triangle:-

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
 sq. units

Cramer's Rule:-

Let,
$$a_1x + b_1y + c_1z = k_1$$

$$a_2x + b_2y + c_2z = k_2$$

$$a_3x + b_3y + c_3z = k_3$$
Using cramer's rule, $x = \frac{D_1}{D}$, $y = \frac{D_2}{D}$, $z = \frac{D_3}{D}$