Probabilité et statistiques L2 prépa

William Hodonou

Novembre 2020

Outline

Caractéristiques d'une variable aléatoire

Une variable aléatoire est un résultat numérique d'une expérience aléatoire. S'il est possible de répéter l'expérience plusieurs fois, les résultats numériques fluctueront d'une expérience à l'autre en raison de la variabilité inhérente au comportement d'une variable aléatoire.

Bien que les résultats numériques successifs des variables aléatoires fluctuent, à mesure que de plus en plus de résultats aléatoires sont observés, la moyenne numérique de ces résultats aura tendance à se stabiliser.

En termes concrets, l'espérance de X est la moyenne pondérée des valeurs que X peut prendre, les poids étant les probabilités que ces valeurs soient prises.

Cas d'une v.a. discrète

On va considérer une v.a. discrète avec P(X = x) connues.

$$E(X) = \sum_{x} x \times P(X = x) = x_1 \times p(x_1) + x_2 \times p(x_2)...$$

Cas d'une v.a. continue

Soit X est une v.a. continue sur un intervalle. On définit sa densité de probabilité f(X). Par analogie par rapport au cas précédent :

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Propriétés de l'Espérance mathématique

Cas des v.a. discrètes

$$E[h(x)] = \sum_{x} h(x).P(X = x)$$

Cas de v.a. continues

$$E[h(x)] = \int_{-\infty}^{\infty} h(x)f(x)dx$$

$$E(aX + b) = aE(x) + b$$

Variances et moments

$$Var(X) = E[(X - E[x])^2] = E(X^2) - (E(x))^2$$

La variance permet de quantifier la dispersion des valeurs de la variable aléatoire autour de l'espérance.

Propriété:

$$V(ax + b) = a^2 Var(x)$$

Moments d'une v.a.

Définition:

Moment d'ordre n d'une v.a. X vaut $E(X^n)$.

Avec: $E(X^n) = \sum_{x} x^n P(X = x)$ si X est discret et

 $E(X^n) = \int_a^b x^n f(x).dx$

Moment d'ordre 1 : $E(X^1) = E(X) = \text{espérance de X}.$

Moment d'ordre 2 : variance de X si E(X) est nulle.

D'autres caractéristiques d'une variable aléatoire

L'écart-type est la racine carrée de la variance : $\sigma(X) = \sqrt{Var(x)}$

Les quantiles

On appelle quantile ou fractile d'ordre α (0 < α < 1) d'une variable aléatoire X dont la fonction de répartition est F(x), la valeur x_{α} telle que $F(x_{\alpha}) = \alpha$.

 x_{α} s'appelle quantile d'ordre α .

Nous énumérons ici quelques quantiles particuliers.

La médiane

La médiane est le quantile d'ordre $\alpha=1/2$, en d'autres termes la médiane M_e est définie par $\int_{-\infty}^{M_e} f(x) dx = 0.5$. La médiane partage en deux parties égales la population, c'est une caractéristique de tendance centrale.

Le mode

On appelle mode (valeur dominante, valeur la plus probable) d'une variable aléatoire, la valeur M_o pour laquelle l'histogramme de fréquence présente son maximum.

Lorsque la variable aléatoire X est continue, avec une fonction de densité pourvue d'une dérivée première et d'une dérivée seconde, le mode M_o satisfait à $f'(M_o)=0$ et $f''(M_o)<0$). Dans le cas des variables discrètes, Mo est la valeur de X associée à la plus grande probabilité, d'où l'appellation valeur la plus probable.

Variable aléatoire centrée réduite

La v. a. centrée réduite définie à partir de la variable aléatoire X (supposée non constante et admettant un écart type fini) est la variable

$$Y = \frac{X - E(X)}{\sigma(X)}$$

Intérêt

- Facilite la comparaison de variables aléatoires.
- La connaissance de la loi centrée réduite permet d'obtenir la loi d'autres variables.

Fonction génératrice des moments

Définition

Soit une variable réelle t, on appelle fonction génératrice des moments de X correspondant à t la quantité :

On définit pour tout réel t, la fonction génératrice des moments M de la variable aléatoire X par

$$M_X(t) = E[e^{tx}]$$

Elle génère les moments non-centrés.

$$M_X(0) = 1$$

 $M'_X(0) = E[X]$
 $M''_X(0) = E[X^2]$
 $M_X^{(n)}(0) = E[X^n]$