优化模型与软件工具

主讲教师: 董庆兴

华中师范大学 信息管理学院 qxdong@mail.ccnu.edu.cn

2017年11月21日

大纲

- 1. 最小元与极小元
- 2. 极值和驻点
- 3. 图解法
- 4. 下降方向
- 5. 下降算法

最小元的对偶性质

- 我们可以用对偶广义不等式来刻画集合 $S \subseteq \mathbb{R}^m$ (可能非凸)关于正常锥 K 导出的广义不等式的最小元和极小元
- $\mathbf{x} \in S$ 上关于广义不等式 \preceq_K 的最小元的充要条件是,对于所有的 $\lambda \succ_{K^*} 0, \mathbf{x} \in \mathbf{z} \in S$ 上极小化 $\lambda^T \mathbf{z}$ 的唯一最优解
- 几何上看,这意味着对于任意的 $\lambda \succ_{K^*} 0$ 超平面 $\{\mathbf{z}|\lambda^{\mathrm{T}}(\mathbf{z}-\mathbf{x})=0\}$ 是 \mathbf{x} 处对 S 的 一个严格支撑超平面(所谓严格就 是与 S 只相交于 \mathbf{x})
- 上述结论对 S 是不是凸集无要求

图: 最小元的对偶性质: 点 \mathbf{x} 是集合 S 中关于 \mathbb{R}^2_+ 的最小元 \iff 对于任意的 $\lambda \succ_{K^*}$ 0 超平面 $\{\mathbf{z}|\lambda^T(\mathbf{z}-\mathbf{x})=0\}$ 在 \mathbf{x} 处对 S 的一个严格支撑,即超平面规定的一个半空间包含了 S,且只在 \mathbf{x} 处与 S 接触

最小元的对偶性质说明

• 设 \mathbf{x} 是 S 的最小元,即对于任意 $\mathbf{z} \in S$ 有 $\mathbf{x} \preceq_K \mathbf{z}$,同时令 $\lambda \succ_{K^*} 0$,而 $\mathbf{z} \in S, \mathbf{z} \neq \mathbf{x}$ 。因为 x 是最小元,我们有 $\mathbf{z} - \mathbf{x} \succeq_K 0$

- 根据 $\lambda \succ_{K^*} 0, \mathbf{z} \mathbf{x} \neq 0$,可以得 到 $\lambda^{\mathrm{T}}(\mathbf{z} - \mathbf{x}) > 0$ 。因为 \mathbf{z} 是 S 上 任意一个不等于 \mathbf{x} 的元素,所以 \mathbf{x} 是在 $\mathbf{z} \in S$ 上极小化 $\lambda^{\mathrm{T}}\mathbf{z}$ 的唯 一解
- 反之,假设对于所有 $\lambda \succ_{K^*} 0$,x 是在 $\mathbf{z} \in S$ 上极小化 $\lambda^T \mathbf{z}$ 的唯一 解,但 \mathbf{x} 不是 S 的最小元,那么 存在 $\mathbf{z} \in S$ 满足 $\mathbf{z} \not\succeq_K \mathbf{x}$ 。 因为 $\mathbf{z} - \mathbf{x} \not\succeq_K 0$,存在 $\tilde{\lambda} \succ_{K^*} 0$ 且 $\tilde{\lambda}^T (\mathbf{z} - \mathbf{x}) < 0$ 。这与 \mathbf{x} 是 S 上极 小化 $\lambda^T \mathbf{z}$ 的唯一解矛盾

极小元的对偶性质

- 如果 $\lambda \succ_{K^*} 0$, \mathbf{x} 在 $\mathbf{z} \in S$ 上极 小化 $\lambda^{\mathsf{T}} \mathbf{z}$, 那么 \mathbf{x} 是极小点
- 为说明这一点,假设 $\lambda \succ_{K^*} 0$ 并且 \mathbf{x} 在 $\mathbf{z} \in S$ 上极小化 $\lambda^T \mathbf{z}$,但 \mathbf{x} 不是极小元。也就是存在 $\mathbf{z} \in S$ 满足 $\mathbf{z} \neq x, \mathbf{z} \preceq_K \mathbf{x}$,那 么有 $\lambda^T (\mathbf{x} \mathbf{z}) > 0$,这与我们的假设 \mathbf{x} 在 $\mathbf{z} \in S$ 上极小化 $\lambda^T \mathbf{z}$ 矛盾

图: 集合 $S \subseteq \mathbb{R}^2$ 。其中关于 \mathbb{R}^2_+ 的极小点集合由其边界的(左下)的深色部分所示。S 上极小化 $\lambda_1^T \mathbf{z}$ 的解为 \mathbf{x}_1 ,因为 $\lambda_1 \succ 0$,所以 \mathbf{x}_1 是极小的。S 上极小化 $\lambda_2^T \mathbf{z}$ 的解为 \mathbf{x}_2 ,因为 $\lambda_2 \succ 0$,所以它是另外一个极小点

极小元的对偶性质逆命题

- 极小元对偶性质的逆命题一般 不成立: S 上的极小元 \mathbf{x} 可以 对于任何 λ 都不是 $\mathbf{z} \in S$ 上极 小化 $\lambda^{\mathsf{T}}\mathbf{z}$ 的解
- 当凸性成立的时候,该逆定理 是成立的。假设 S 是凸集,那 么对于任意极小元 \mathbf{x} ,存在非 零 $\lambda \succeq_{K^*} 0$ 使得 \mathbf{x} 在 $\mathbf{z} \in S$ 上 极小化 $\lambda^T \mathbf{z}$

图: 点 \mathbf{x} 是 $S \subseteq \mathbb{R}^2$ 关于 \mathbb{R}^2_+ 的极小元。但是不存在 λ 使得 \mathbf{x} 在 $\mathbf{z} \in S$ 上极小化 $\lambda^T \mathbf{z}$

凸集极小元对偶性质逆命题 1

• 设 \mathbf{x} 是 S 的极小元,也就是 说 $[(\mathbf{x} - K) \setminus \{\mathbf{x}\}] \cap S = \emptyset$

图: 点 $\mathbf{x}_1 \in S_1$ 是极小的,但对于任意 $\lambda \succ 0$,它都没有在 S_1 上极小化 $\lambda^T z$ 。但是对于 $\lambda = (1,0)$ 它确实在所有 $\mathbf{z} \in S_1$ 中极小化了 $\lambda^T \mathbf{z}$

- 对凸集 $(\mathbf{x} K) \setminus \{\mathbf{x}\}$ 和 S 应用超平面分离定理,我们可以得出:存在 $\lambda \neq 0$ 和 μ ,使得对于所有 $\mathbf{y} \in K$ 有 $\lambda^{\mathrm{T}}(\mathbf{x} \mathbf{y}) \leq \mu$,对于所有 $\mathbf{z} \in S$ 有 $\lambda^{\mathrm{T}}\mathbf{z} \geq \mu$
- 根据第一个不等式,可知 $\lambda \succeq_{K^*} 0$ (广义不等式对偶性质得到)。由于 $\mathbf{x} \in S$ 和 $\mathbf{x} \in \mathbf{x} K$,我们有 $\lambda^{\mathsf{T}} \mathbf{x} = \mu$,所以第二个不等式表明 $\mu \in S \perp \lambda^{\mathsf{T}} \mathbf{z}$ 的最小值。因此 $\mathbf{x} \in S \perp \lambda^{\mathsf{T}} \mathbf{z}$ 的最小值,因此 $\mathbf{x} \in S \perp \lambda \in S$
- 上述逆定理无法加强为 $\lambda \succ_{K^*} 0$ 反例表明,凸集 S 上的极小元 \mathbf{x} 可以对于任意 $\lambda \succ_{K^*} 0$ 都不是极小化 $\lambda^{\mathrm{T}}\mathbf{z}$ 的解

凸集极小元对偶性质逆命题 2

图: 点 $\mathbf{x}_2 \in S_2$ 不是极小的,但是对于 $\lambda = (1,0)$ 它确实在所有 $\mathbf{z} \in S_2$ 中极小化了 $\lambda^{\mathrm{T}}\mathbf{z}$

● 同时,并不是对于任意 $\lambda \succeq_{K^*} 0$,在 $\mathbf{z} \in S$ 上极小化 $\lambda^{\mathrm{T}} \mathbf{z}$ 的解都一 定是极小的

Pareto 最优制造前沿

- 考虑安排一个产品的生产,需要 n 种资源,有多种制造方式。用资源向量 $\mathbf{x} \in \mathbb{R}^n$ 表示各种制造方法,其中 $x_i \geq 0$ 表示制造产品时消耗资源 i 的数量并且越少越好,生产集合 $P \subseteq \mathbb{R}^n$ 定义为所有资源向量 \mathbf{x} 的集合,P 上的极小元(在分量不等式的意义下)对应的制造方法称为 \mathbf{P} areto 最优(有效),P 的极小元构成的集合叫做有效制造前沿
- 资源向量 \mathbf{x} 比与资源向量 \mathbf{y} 更好意味 着 $\forall i, x_i \leq y_i$ 并且存在某些 $i, x_i < y_i$, 即 $\mathbf{x} \preceq \mathbf{y}, \mathbf{x} \neq \mathbf{y}$
- 我们可以通过在 P 上对任意满足
 λ > 0 的 λ 极小化 λ^Tx 来得到 Pareto
 最优制造方法。这里 λ 有一个简单解
 释: λ_i 是资源 i 的价格

图: 制造集合 P 如阴影所示,表示制造产品所需要的劳动力和燃料。两端深色曲线表示了有效制造前沿。点 $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$ 是有效的。点 $\mathbf{x}_4,\mathbf{x}_5$ 不是(\mathbf{x}_2 对应了更少燃料更少人力的方法)。点 \mathbf{x}_1 是对应于(正的)价格向量 λ 的最小成本制造方法。点 \mathbf{x}_2 是有效的,但是对于任意价格向量 $\lambda \succeq 0$ 都无法通过极小化总成本 $\lambda^T \mathbf{x}$ 找到 \mathbf{x}_2

极小值定义

局部极小值

假设 $f: \mathbb{R}^n \to \mathbb{R}$,对于 $\mathbf{x}^* \in \mathbf{dom}\ f$,如果存在某个 $\epsilon > 0$ 。使得所有与 \mathbf{x}^* 距离小于 ϵ (即 $\|\mathbf{x} - \mathbf{x}^*\| \le \epsilon$)的 $\mathbf{x} \in \mathbf{dom}\ f$,均满足不等式 $f(\mathbf{x}) \ge f(\mathbf{x}^*)$,则称 \mathbf{x}^* 为局部极小点, $f(\mathbf{x}^*)$ 为局部极小值

全局极小值

假设 $f: \mathbb{R}^n \to \mathbb{R}$,对于 $\mathbf{x}^* \in \mathbf{dom} \ f$,如果对于所有的的 $\mathbf{x} \neq \mathbf{x}^* \in \mathbf{dom} \ f$,均满足不等式 $f(\mathbf{x}) \geq f(\mathbf{x}^*)$,则称 \mathbf{x}^* 为全局极小点, $f(\mathbf{x}^*)$ 为全局极小值

必要条件 $\nabla f(\mathbf{x}) = \mathbf{0}$,此点被称为平稳点或者驻点,极小则需 $\mathbf{H}(\mathbf{x})$ 半正定。不充分: $f(x) = x^3$, f'(x) = 0, f''(x) = 0 但不是极值点

充分条件 $\nabla f(\mathbf{x}) = \mathbf{0}$ 且 $\mathbf{H}(\mathbf{X})$ 正定,则为严格局部极小点。不必要: $f(x) = x^4, \bar{x} = 0$ 是极值点,但是 f''(x) = 0

凸函数的极值

凸函数的局部极值即全局极值

假设 $f: \mathbb{R}^n \to \mathbb{R}$ 为凸函数,对于 $\mathbf{x}^* \in \mathbf{dom}\ f$,如果 \mathbf{x}^* 为 f 的局部极小点,则它就是 f 的全局极小点

证明: 设 \mathbf{x}^* 为 f 的局部极小点,则对于充分小的邻域 $N_{\delta}(\mathbf{x}^*)$ 中的一切 \mathbf{x} ,均 有 $f(\mathbf{x}) \geq f(\mathbf{x}^*)$. \forall $\mathbf{y} \in$ **dom** f,对于充分小的 $\lambda \in (0,1)$,有

$$[(1-\lambda)\mathbf{x}^* + \lambda\mathbf{y}] \in N_{\delta}(\mathbf{x}^*)$$

从而有

$$f[(1-\lambda)\mathbf{x}^* + \lambda\mathbf{y}] \ge f(\mathbf{x}^*)$$

由函数凸性可得

$$(1 - \lambda)f(\mathbf{x}^*) + \lambda f(\mathbf{y}) \ge f[(1 - \lambda)\mathbf{x}^* + \lambda \mathbf{y}] \ge f(\mathbf{x}^*)$$

从而可得 $f(\mathbf{y}) \geq f(\mathbf{x})$

主讲教师:董庆兴

凸函数的极值判定

凸函数全局极值判定条件

假设 $f: \mathbb{R}^n \to \mathbb{R}$ 为凸函数,对于 $\mathbf{x}^* \in \mathbf{dom}\ f$,使得对于任意 $\mathbf{x} \in \mathbf{dom}\ f$,有

$$\nabla f(\mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*) \ge 0$$

则 \mathbf{x}^* 为 f 的全局极小点

证明: 由凸函数的一阶判定条件可知

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$$

因此如果有 $\nabla f(\mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*) \geq 0$, 则有

$$f(\mathbf{x}) \ge f(\mathbf{x}^*), \forall \mathbf{x} \in \mathbf{dom} \ f$$

当 $\mathbf{x}^* \in \mathbf{dom} \ f$ 是内点时,意味着 $\nabla f(\mathbf{x}^*)^{\mathrm{T}} = 0$

F讲教师: 黄庆兴 优化模型与软件工具 12/2

利用极值条件求解极值点

例题

利用极值条件求解: $\min f(\mathbf{x}) = \frac{1}{3}x_1^3 + \frac{1}{3}x_2^3 - x_1^2 - x_2$

解: 直接计算,

$$\nabla f(\mathbf{x}) = \begin{pmatrix} x_1^2 - 2x_1 \\ x_2^2 - 1 \end{pmatrix} \quad \nabla^2 f(\mathbf{x}) = \begin{pmatrix} 2x_1 - 2 & 0 \\ 0 & 2x_2 \end{pmatrix}$$

由一阶必要条件 $\nabla f(\mathbf{x}) = 0$ 可得驻点

 $\mathbf{x}^{(1)}=(0,1)^{\mathrm{T}}, \mathbf{x}^{(2)}=(0,-1)^{\mathrm{T}}, \mathbf{x}^{(3)}=(2,1)^{\mathrm{T}}, \mathbf{x}^{(4)}=(2,-1)^{\mathrm{T}}$,对应的 Hessian 矩阵为

$$\nabla^2 f(\mathbf{x}^{(1)}) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}, \nabla^2 f(\mathbf{x}^{(2)}) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix},$$
$$\nabla^2 f(\mathbf{x}^{(3)}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \nabla^2 f(\mathbf{x}^{(4)}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

 $abla^2 f(\mathbf{x}^{(3)})$ 正定,因此 $\mathbf{x}^{(3)}$ 是一个严格局部最优解,其余点的 Hesse 矩阵都不是半正定的

E讲教师: 董庆兴 优化模型与软件工具 13/22

微积分方法的局限性

- 实际问题中,函数可能是不连续或者不可微的
- 需要解复杂的方程组,而方程组到目前仍没有有效的算法
- 实际的问题可能含有不等式约束,微积分的方法不易处理

主讲教师:董庆兴

图解法

例题

minimize
$$f_0(\mathbf{x}) = (x_1 - 2)^2 + (x_2 - 2)^2$$

subject to $f_1(\mathbf{x}) = x_1 + x_2 - 6 = 0$

下降方向

下降方向

假设 $f: \mathbb{R}^n \to \mathbb{R}$, 对于 $\mathbf{x} \in \mathbf{dom}$ f, 使得对于任意 $\bar{\alpha} > 0, \mathbf{d} \in \mathbb{R}^n$, 有 $f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x}), \alpha \in (0, \bar{\alpha})$ 则 \mathbf{d} 为 f 的一个下降方向

由泰勒展开可知 $f(\mathbf{x} + \alpha \mathbf{d}) = f(\mathbf{x}) + \alpha \nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{d} + o(\alpha)$,因此满足 $\nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{d} < 0$ 的 \mathbf{d} 为 f 的一个下降方向

可行方向

假设 $f: \mathbb{R}^n \to \mathbb{R}$,对于 $\mathbf{x} \in \mathbf{dom} \ f$,若存在 $\alpha > 0, \mathbf{d} \in \mathbb{R}^n$,使得 $f(\mathbf{x} + \alpha \mathbf{d}) \in \mathbf{dom} \ f$ 则 \mathbf{d} 为 f 的一个可行方向

主讲教师: 董庆兴 优化模型与软件工具 16/2

下降方向

梯度方向

- 由微积分的基本知识可知, $\nabla f(\mathbf{x})$ 的方向是 $f(\mathbf{x})$ 的等值面(等值 线)在点 \mathbf{x} 处的法线方向
- 例: $f(x, y, z) = a_1x + a_2y + a_3z$ 的梯度为 $\nabla f(x, y, z) = (a_1, a_2, a_3)^{\mathrm{T}}$, 恰好是 w 的一个等值面 $c = a_1x + a_2y + a_3z$ 的法线
- 梯度方向是函数具有最大变化率的方向(负梯度方向也叫最速下降方向)

数值最优化方法的基本思路

- 从某个初始点 $\overline{\mathbf{x}^{(0)}}$ 出发,按某种算法找出点列 $\{\mathbf{x}^{(k)}\}$,对于最小值问题来讲满足 $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}), \forall k = 0, 1, \cdots$
- 如果 $\{\mathbf{x}^{(k)}\}$ 是有限的,则 $\{\mathbf{x}^{(k)}\}$ 最后一点为最优解
- 如果 $\{\mathbf{x}^{(k)}\}$ 是无限的且收敛于 \mathbf{x}^* ,即 $\lim_{k\to\infty} \|\mathbf{x}^{(k)} \mathbf{x}^*\| = 0$,则以 此极限点为最优解(近似最优解)

主讲教师:董庆兴 优化模型与软件工具 19/

下降算法

- 假定已经迭代到 $\mathbf{x}^{(k)}$,如果此时没有下降方向(沿任何方向移动都无法使目标函数值减小),则 $\mathbf{x}^{(k)}$ 是一个局部极小点,迭代停止
- 如果从 $\mathbf{x}^{(k)}$ 出发至少有一个方向是下降方向 $\mathbf{p}^{(k)}$,则沿该方向迈进适当一步,得到下一个迭代点 $\mathbf{x}^{(k+1)}$ 并使得 $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$
- 相当于在射线 $\mathbf{x} = \mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)}$ 上选定新点 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \lambda_k \mathbf{p}^{(k)}$, 其中 λ_k 叫做步长因子, $\mathbf{p}^{(k)}$ 为搜索方向

主讲教师: 董庆兴 优化模型与软件工具 20/2

下降迭代算法步骤

- **1**. 给出初始点 $\mathbf{x}^{(0)}$, $k \leftarrow 0$
- 2. 判断 $\mathbf{x}^{(k)}$ 是否为极小点或者近似极小点,是则停止,否则转第 3 步
- 3. 按照某种规则确定搜索方向 $\mathbf{p}^{(k)}$
- 4. 按照某种规则确定搜索步长 λ_k , 得到 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \lambda_k \mathbf{p}^{(k)}$, 使得 $f(\mathbf{x}^{(k)} + \lambda_k \mathbf{p}^{(k)}) < f(\mathbf{x}^{(k)})$, 转第 2 步

由上述步骤可知,确定搜索方向和搜索步长是非常关键的步骤,遵循不同的规则,就可以得到不同的算法

线性搜索

- 确定步长的一种符合直觉的做法是求使得目标函数值下降最多的 λ_k ,也就是 $\lambda_k = \arg\min f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})$
- 由于这一过程是求解以 λ 为变量的一元函数 $f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})$ 的极小点 λ_k ,因此本方法被称作线性搜索或者一维搜索,这样确定的步长即为最优步长
- 线性搜索性质:在搜索方向上所得最优点处的梯度与搜索方向正交,即 $\nabla f(\mathbf{x}^{(k+1)})^{\mathrm{T}}\mathbf{p}^{(k)}=0$

证明: 构造函数 $\phi(\lambda) = f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})$, 从而由最优解的一阶条件可得 $\phi'(\lambda) = \nabla f(\mathbf{x}^{(k)} + \lambda \mathbf{p}^{(k)})^{\mathrm{T}} \mathbf{p}^{(k)} = \nabla f(\mathbf{x}^{(k+1)})^{\mathrm{T}} \mathbf{p}^{(k)} = 0$