

Data Science for Business – Becoming a Data Science Expert (D)

Pilot Presentation: for participants of and use in the pilot only

Agenda week three

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Schedule week three

Week 3							
	Day 1 Monday, 13.09.2021		Day 2 Tuesday, 14.09.2021				
Start: 12:00	Recap	Start: 12:00	Recap				
	7 – DL: Image Recognition (Part 1)		8 – DL: NLP (Part 1)				
14:00 – 15:00	Break	14:00 – 15:00	Break				
	7 – DL: Image Recognition (Part 2)		8 – DL: NLP (Part 2)				
End: 18:00	Q&A and Feedback	End: 18:00	Q&A and Feedback				

We will also have several short coffee breaks in between.

Feedback for pilot training

We aim to provide a great training experience for you and are looking forward to receiving your feedback!

You will have three different ways to give us your feedback on each training day:

- 1. We will have an anonymized feedback collection after the last session of each day per Myforms.
- 2. We will have an open feedback round and discussion at the end of each training day.
- 3. Please also **take notes** regarding your ideas during the sessions: **locally or via the Mural Board** which you can reach via <u>LINK</u>.

Quiz: Recap Week Two

Please join at slido.com with #031 077.

Let's go through some questions together.

Let's see what you think. All answers will be anonymous.

Module 7

Deep Learning and Image Recognition

Agenda

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

What is deep learning?

- Deep learning is a specific subfield of machine learning
- It is a new take on learning representations from data that puts an emphasis on learning successive layers of increasingly meaningful representations.
- These layers are built on artificial neural networks with representation learning.
- Learning can be supervised, semisupervised or unsupervised.

Applications and achievements of deep learning

More mature and industrial applications

Near-human-level image classification

Improved machine learning

Near-human-level speech recognition

Near-human-level handwriting transcription

In active development and research

Autonomous driving

Is this a car in the image?

2

1

- Have a database of cars and match the images by pixel value
 - Just one pixel changes and the match doesn't happen
- → Use database as training data

- Build a car filter, e.g. for tires
 - How do we connect the different filters?
- → Detect shapes with features

- Create a histogram over the colors
 - But cars can have different colors
 - → Include the color as feature

- Use a machine learning model to combine the filter results
 - → Combine the results with a trained SVM

3

4

Applying filters

Part of the image

Original image: 5x5

Filter

Part of the image

Filter 3x3

Filtered image: 4x4

Convolutional layers and weight sharing

- A "small" image with 64x64 pixels and a neuronal network with a hidden layer size of 2000 neurons results in 8.2 million weights that need to be trained, for the first layer alone
- Instead use the filter approach from above. The filter weights are learned by backpropagation.
 - Which automates the feature extraction and engineering process
- Even if we use multiple filters per layer this reduces the number of weights drastically
 - E.g.: Using 64 3x3 filter results in 576 weights, that need to be trained
- Stacking multiple layers of filters allows the extraction of higher order features

Controlling the filtered size: Padding and stride

- For each layer the number of dimensions increases while size of the filtered image is decreasing.
- We can control the filtered image size the kernel size, the padding and stride
- The output image size can be calculated with: $n_{out} = \left[\frac{N_{in} + 2p k}{s}\right] + 1$
- Where n_{out} is the output size, n_{in} the image input size, p the padding, s the stride and k the filter size

Original image: 5x5

Filter 3x3

 $\left[\frac{5+2-3}{2}\right] + 1 = 3$

Reducing the filtered size: Max-pooling

- Using sliding window over the image results in overlapping filter results.
- The best matching filter will have the highest total result.
- We get the best matching result for a region by using another filter with stride=filter size that returns the maximum value

3	1	1	2	
1	0	7	3	3 7
2	3	5	1	4 5
1	4	1	2	

Convolutional Neural Networks

0

Dimensions

- Deep Neural Network are often built from repeated blocks
- This is done by repeatedly stacking convolution layers and max pooling layers
- The final layers are often fully connected and combine the filter results for the final classification
- In Computer vision the number of dimensions is often increased while the image size is reduced
- Pioneered by AlexNet

Increasing the depth: ResNet

O

Dimensions

- Increasing the depth of models by stacking more blocks had diminishing returns, because despite the changes from before the vanishing gradient is still a problem
- That's why the residual connections help transport the gradient unhindered through the network
- We can now stack hundreds of layers
- Pioneered by Res Net (Residual Neural Network)

Recap: Training Neural Networks

Input data

Training data used to train a deep learning model

Layers

• Each layer represents a data-processing module that takes input as one or more tensors and outputs to one or more tensors.

Weights

 Each layer is assigned a weight that represents its relative importance, which is calculated based on its stochastic gradient descent.

Predictions

 Predicted outputs which are normally compared against true targets for performance evaluation

Loss function and loss score

 A measure of how successful the model is at hand. Loss score is used to determine the quantity to be adjusted during training to improve performance.

Optimizer

 Determines how the network will be updated based on the loss function. It is calculated based on stochastic gradient descent (SGD).

Important takeaways

Deep Learning is a subfield of Artificial Intelligence and is used for Problem with large data, like

- Image recognition
- Natural language processing

Filter layers are used as edge detectors. By combining the output of the edge detectors, a prediction about the content of the image is made. Parameters controlling the filter process are **filter size**, **padding and stride**.

Convolutional Neural Networks (CNN) automate the feature engineering steps normally involved in image recognition. A CNN consists of layers of **Convolutional** and **Max-pooling layers**.

Try it yourself!

In the following exercises

Transfer-learning

Training a ResNet-50 takes 14 days

- The ResNet-50 has 25.5M parameters (one of the smaller models)
- The dataset is ImageNet
- The training is done on a single GPU

Training image recognition models yourself is not feasible

Instead, we want to reuse the learned model

Data-centric Al

Model-centric view

- Collect what data you can.
- Hold the data fixed and iteratively improve the code/model.

Data-centric view

- Use tools to improve the data quality.
- Hold the code fixed and iteratively improve the data.

Noisy labels

- Big data
 - Noisy labels

- Small data
- Clean (consistent) labels

Data-centric: Having high quality data leads to significant improvements in performance

Labeling for transfer-learning

For transfer learning, we need only a few high quality samples

We can use platforms and tools like "Labelimg" or Amazon Mechanical Turk for the labeling process

Data-centric approach: Iteratively improve the data

- Train a model
- Error analysis to identify the types of data the algorithm does poorly on
- Either get more of that data via data augmentation, data generation or data collection
- Make sure to cover different situations in lighting, backgrounds, angles and reflections
- Give more consistent definition for labels if they were found to be ambiguous

Tzutalin. Labellmg. Git code (2015). https://github.com/tzutalin/labellmg

CNN for object detection: (Faster) R-CNN

R-CNN: Region-based convolutional neural net

The model consists of three parts

- Backbone network which can be a pre-trained CNN
- Region proposal network (RPN) which finds and proposes regions of interest (Regions that contain an object)
- Classification network which performs a classification on each region of interest

For the R-CNN all models are combined into one Neural Network

The overall loss is the sum of the regression and the classification

Image segmentation: U-Net

Q

Developed for biomedical image segmentation

Data efficient and accurate

Algorithm

- With each max-pooling operation the image gets downsampled
 - Forces the model to generalize and reduce information
- The information is than upsampled again (reconstructs information)
 - The reason for the name U-Net
- Use skip-connection to reduce information loss and retain context information

Face Recognition with one-shot learning

Important takeaways

We can reuse state-of-the-art image recognition models by retraining them on a different dataset.

- Retraining reduces the data required
- Retraining reduces the compute power required

With a reduced number of training samples it is of high importance to choose the samples carefully and correct any inconsistencies in the labeling process. This is called **data-centric view**.

For many advanced use cases in image recognition, we can use pre-trained filters. The advanced cases of this session were:

- R-CNN
- U-Net
- Face Recognition

In most practical cases we reuse state-of-the-art models and architectures and make only small changes to it

Try it yourself!

In the following exercises

Agenda

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Thank you

If you would like any further information please contact
Werner, Dr., Fabian_Georg (BI X) BIX-DE-I
<fabian_georg.werner@boehringer-ingelheim.com>

This presentation contains information that may be priviledged or confidential and is the property of the Cappemini Group.

Copyright© 2021 Capgemini. All rights reserved.

