1 Adjoint situations

einleitender Satz

Proposition 1.1 Given two functors $A \xrightarrow{F} B$, $B \xrightarrow{G} A$, the following are equivalent:

(a) $\exists \eta \colon \mathrm{id}_B \to GF$ and $\epsilon \colon FG \to \mathrm{id}_A$ such that $\forall a \in Ob(A), b \in Ob(B)$ the following two diagrams commute:

$$A \xrightarrow{F(\eta_b)} B \qquad A \xrightarrow{F(\eta_b)} B$$

$$\downarrow^{\epsilon_{F(b)}} \text{ and } \downarrow^{\epsilon_{F(b)}} C$$

(b) $\forall a \in Ob(A), b \in Ob(B)$ there is a bijection

$$\phi_{a,b} \colon \text{hom}(F(b), a) \to \text{hom}(b, G(a))$$

which is natural in a and b, i.e. for $p: a \rightarrow a'$:

$$\begin{array}{ccc} \hom(F(b),a) & \longrightarrow & \hom(b,G(a)) \\ & & & \downarrow \\ \hom(F(b),a') & \longrightarrow & \hom(b,G(a')) \end{array}$$

and for $q \colon b \to b'$:

$$hom(F(b'), a) \longrightarrow hom(b', G(a))$$

$$\downarrow \qquad \qquad \downarrow$$

$$hom(F(b), a) \longrightarrow hom(b, G(a))$$

Proof: $(a) \implies (b)$: define

$$\phi_{a,b} \colon \operatorname{hom}(F(b), a) \to \operatorname{hom}(b, G(a))$$

by $q \mapsto G(q) \circ \eta_b$ for $q \colon F(b) \to a$

2 Monads and Comonads

2.1 Definition of Monads and Comonads

Definition 2.1 (Monad) A *Monad* (T, μ, η) in a Category X consists of

- an endofunctor $T: X \to X$
- a natural transformation η : $id_X \Rightarrow T$
- a natural transformation $\mu \colon T^2 \Rightarrow T$

such that the following diagrams commute:

Example 1 (preorder). Recall: A *preorder* (\mathcal{P}, \leq) is a category with \mathcal{P} as objects and a morphism between X and Y iff $X \leq Y$. A functor $T \colon \mathcal{P} \to \mathcal{P}$ is thus a monotonic function $\mathcal{P} \to \mathcal{P}$ $(x \leq y \implies Tx \leq Ty)$. The existence of the natural transformations η is equivalent to

$$x < Tx \ \forall x \in \mathcal{P}$$

and the existence of μ is equivalent to

$$T(Tx) \le Tx \ \forall x \in \mathcal{P}$$

because there is at most one morphism $x \to y$, so the neccessary diagrams commute trivially. Now suppose $\mathcal P$ is a *partial order*, i.e. $x \le y \le x \implies x = y \ \forall x, y \in \mathcal P$.

$$x \le Tx \implies Tx \le T(Tx)$$

 $T(Tx) \le Tx \implies Tx = T(Tx)$

so a Monad T in a partial order \mathcal{P} is a *closure operation* in \mathcal{P} , i.e. a monotonic function $T \colon \mathcal{P} \to \mathcal{P}$ with $x \leq Tx$ and $T(Tx) = Tx \ \forall x \in \mathcal{P}$.

Now every topological space X induces a partial order $\mathcal{P}=(\mathcal{P}(X),\subseteq)$. Here an example for a closure operation is taking the topological closure $A\mapsto \overline{A}$, since it holds for all $A\subseteq X$ that $A\subseteq \overline{A}$ and $\overline{\overline{A}}=\overline{A}$.

Definition 2.2 (Comonad) A Comonad (L, ε, ω) in a Category \mathcal{A} consists of

- an endofunctor $L \colon \mathcal{A} \to \mathcal{A}$
- a natural transformation $\varepsilon \colon L \Rightarrow \mathrm{id}_{\mathcal{A}}$
- a natural transformation $\omega \colon L \Rightarrow L^2$

such that the following diagrams commute:

(a)
$$L \xrightarrow{L\omega} L^{2} \qquad \qquad L \xleftarrow{\varepsilon L} L^{2} \xrightarrow{L\varepsilon} L$$

$$L \xleftarrow{\varepsilon L} L^{2} \xrightarrow{L\varepsilon} L$$

$$L \xrightarrow{id_{L}} \uparrow \omega \xrightarrow{id_{L}} L$$

Definition 2.3 (Morphism of monads) Let X be a category, let (T, η, μ) and (T', η', μ') be monads in X. We say that a natural transformation $\delta \colon T \implies T'$ is a *morphism of monads* if it preserves the unit and the multiplication, i.e. the following diagrams commute:

3 Witt vectors

Construction of the witt vectors

Definition 3.1 (truncation set) Let \mathbb{N} be the set of positive integers and let $S \subseteq \mathbb{N}$ be a subset with the property that $\forall n \in \mathbb{N}$: if d is a divisor of n, then $d \in S$. We then say that S is a *truncation set*.

As a set, we define the *big Witt ring* $W_S(A)$ to be A^S , we will give it a unique ring structure, such that the *ghost map* is a ring homomorphism.

Definition 3.2 (ghost map) We define $w \colon \mathbb{W}_S(A) \to A^S$ by $(a_n)_{n \in S} \mapsto (w_n)_{n \in S}$ where

$$w_n = \sum_{d|n} da_d^{n/d}$$

Lemma 3.3 (Dwork) Suppose that for every prime number p there exists a ring homomorphism $\phi_p \colon A \to A$ with the property that $\phi_p(a) \equiv a^p$ modulo pA. Then for every sequence $x = (x_n)_{n \in S}$, the following are equivalent:

- (i) The sequence x is in the image of the ghost map $w \colon \mathbb{W}_S(A) \to A^S$.
- (ii) For every prime number p and every $n \in S$ with $v_p(n) \ge 1$,

$$x_n \equiv \phi_p(x_{n/p})$$
 modulo $p^{v_p(n)}A$.

PROOF: (\Rightarrow) Suppose x is in the image of the ghost map, that means there is a sequence $a = (a_n)_{n \in S}$ such that $x_n = w_n(a)$ for all $n \in S$. We calculate:

$$\phi(x_{n/p}) = \phi(w_{n/p}(a)) = \phi(\sum_{d|n/p} da_d^{n/pd}) = \sum_{d|n/p} d \cdot \phi(a_d^{n/pd})$$

since ϕ is a ring homomorphism and $d \in \mathbb{N}$.

Claim 1. $\sum_{d|n/p} d \cdot \phi(a_d^{n/pd}) \equiv \sum_{d|n/p} d \cdot a_d^{n/d} \mod p^{v_p(n)} A$.

PROOF (Proof of claim 1):

Claim 2. $\sum_{d|n/p} d \cdot a_d^{n/d} \equiv \sum_{d|n} d \cdot a_d^{n/d} \mod p^{v_p(n)} A$

PROOF (Proof of claim 2):

so we get

$$\phi(x_{n/p}) \equiv \sum_{d|n} d \cdot a_d^{n/d} = w_n(a) = x_n \quad \text{mod } p^{v_p(n)} A.$$

(\Leftarrow) Let $(x_n)_{n\in S}$ be a sequence such that $x_n\equiv\phi_p(x_{n/p})\mod p^{v_p(n)}A\ \forall p$ prime, $n\in S, v_p(n)\geqslant 1$. Define $(a_n)_{n\in S}$ with $w_n(a)=x_n$ as follows:

$$a_1 \coloneqq x_1$$

//

and if a_d has been chosen for all $d \mid n$ such that $w_d(a) = x_d$ we see that

$$x_n \equiv \phi_p(x_{n/p}) \mod p^{v_p(n)} A$$

$$= \phi_p(\sum_{d|n/p} d \cdot a_d^{n/pd})$$

$$= \sum_{d|n/p} d \cdot \phi(a_d^{n/pd})$$

finish proof

We will often need the following

Lemma 3.4 if *A* is a torsion-free ring, the ghost map is injective.

Now we can finish the construction of the Witt vectors:

Theorem 3.5 There exists a unique ring structure such that the ghost map

$$w: \mathbb{W}_S(A) \to A^s$$

is a natural transformation of functors from rings to rings.

Proof:

Corollary 3.6 $w_n : W_S(A) \to A$ is a natural transformation for all $n \in S$.

Proposition 3.7 W_S is a functor CRing \rightarrow CRing.

The Verschiebung, Frobenius and Teichmüller maps

Definition 3.8 (Restriction map) If $T \subseteq S$ are two truncation sets, the *restriction from S to T*

$$R_T^S \colon \mathbb{W}_S(A) \to \mathbb{W}_T(A)$$

is a natural ring homomorphism.

If $S \subseteq \mathbb{N}$ is a truncation set, then

$$S/n := \{d \in \mathbb{N} \mid nd \in S\}$$

is again a truncation set.

Definition 3.9 (Verschiebung) Define

$$V_n \colon \mathbb{W}_{S/n} \to \mathbb{W}_S(A); \ V_n((a_d)_{d \in S/n})_m := \begin{cases} a_d, & \text{if } m = n \cdot d \\ 0, & \text{else} \end{cases}$$

which is called the *n-th Verschiebung map*. Furthermore define

$$\widetilde{V_n} : A^{S/n} \to A^S; \ \widetilde{V_n}((x_d)_{d \in S/n})_m := \begin{cases} n \cdot x_d, & \text{if } m = n \cdot d \\ 0, & \text{else} \end{cases}$$

Lemma 3.10 The Verschiebung map V_n is additive.

Proof:

 $\begin{array}{ccc} \mathbb{W}_{S/n}(A) & \stackrel{w}{\longrightarrow} A^{S/n} \\ & & \downarrow_{V_n} & & \downarrow_{\widetilde{V_n}} \ commutes. \\ \mathbb{W}_S(A) & \stackrel{w}{\longrightarrow} A^S \end{array}$

PROOF (Proof of claim):

//

//

The comonad structure of witt vectors

We will need the following lemma:

Lemma 3.11 Let $m \in \mathbb{Z}$. If m is a non-zero divisor in A, then it is a non-zero divisor in $\mathbb{W}_{S}(A)$ as well.

PROOF (Proof of claim):

$$0 \longrightarrow A \xrightarrow{V_n} \mathbb{W}_S(A) \xrightarrow{R_T^S} W_T(A) \longrightarrow 0$$

which we can extend to the following commutative diagram:

$$0 \longrightarrow A \longrightarrow \mathbb{W}_{S}(A) \longrightarrow \mathbb{W}_{T}(A) \longrightarrow 0$$

$$\downarrow \cdot m \qquad \qquad \downarrow \cdot m \qquad \qquad \downarrow \cdot m$$

$$0 \longrightarrow A \longrightarrow \mathbb{W}_{S}(A) \longrightarrow \mathbb{W}_{T}(A) \longrightarrow 0$$

finish

Definition 3.12 $W(A) := W_N(A)$

For the construction of a natural transformation $W(A) \to W(W(A))$ we want to use Lemma 3.3 again. Hence we first show:

Lemma 3.13 Let p be a prime number, let A be any ring. Then the ring homomorphism $F_p \colon \mathbb{W}(A) \to \mathbb{W}(A)$ satisfies $F_p(a) \equiv a^p \mod pA$.

Proposition 3.14 There exists a unique natural transformation

$$\Delta \colon \mathbb{W}(A) \to \mathbb{W}(\mathbb{W}(A))$$

such that $w_n(\Delta(a)) = F_n(A)$ for all $a \in A, n \in \mathbb{N}$.

Theorem 3.15 The functor $\mathbb{W}(\cdot)$: $\mathbb{C}Ring \to \mathbb{C}Ring$ together with the natural transformations $\Delta \colon \mathbb{W} \to \mathbb{W}^2$, $w_1 \colon \mathbb{W} \to \mathrm{id}_{\mathbb{C}Ring}$ form a comonad.

PROOF:

PROOF (Proof of claim): evaluating the ghost coordinates leads to:

which simplifies to

$$\begin{array}{ccc}
\mathbb{W}(A) & \xrightarrow{F_A} & \mathbb{W}(A)^{\mathbb{N}} \\
\downarrow^{\Delta_A} & & \downarrow^{\Delta_A^{\mathbb{N}}} \\
\mathbb{W}(\mathbb{W}(A)) & \xrightarrow{F_{\mathbb{W}(A)}} & \mathbb{W}(\mathbb{W}(A))^{\mathbb{N}}
\end{array}$$

now it suffices to show for an arbitrary n that the following diagram commutes:

$$\begin{array}{c} \mathbb{W}(A) & \stackrel{F_{n_A}}{\longrightarrow} \mathbb{W}(A) \\ \downarrow^{\Delta_A} & \downarrow^{\Delta_A} \\ \mathbb{W}(\mathbb{W}(A)) & \stackrel{F_{n_{\mathbb{W}(A)}}}{\longrightarrow} \mathbb{W}(\mathbb{W}(A)) \end{array}$$

evaluating the ghost coordinates again, keeping in mind that by Lemma 9, $w \colon \mathbb{W}(\mathbb{W}(A)) \to \mathbb{W}(A)^{\mathbb{N}}$ is injective as well, we get

$$\begin{array}{ccc}
\mathbb{W}(A) & \xrightarrow{F_{n_A}} & \mathbb{W}(A) \\
\downarrow^{\Delta_A} & & \downarrow^{\Delta_A} \\
\mathbb{W}(\mathbb{W}(A)) & \xrightarrow{F_{n_{\mathbb{W}(A)}}} & \mathbb{W}(\mathbb{W}(A)) & F_A \\
\downarrow^{w} & & \downarrow^{w} \\
\mathbb{W}(A)^{\mathbb{N}} & \xrightarrow{\widetilde{F}_{n_{\mathbb{W}(A)}}} & \mathbb{W}(A)^{\mathbb{N}}
\end{array}$$

using the fact that

$$w$$
 w_{nm} commutes, we can simplify the situation to $\widetilde{F_{nW(A)}}$ $W(A)$ $\widetilde{F_{nW(A)}}$

$$\begin{array}{ccc}
\mathbb{W}(A) & \xrightarrow{F_n} & \mathbb{W}(A) \\
\downarrow^{\Delta_A} & \xrightarrow{F_{nm}} & \downarrow^{F_m} \\
\mathbb{W}(\mathbb{W}(A)) & \xrightarrow{w_{nm}} & \mathbb{W}(A)
\end{array}$$

which can again be simplified to

$$\mathbb{W}(A) \xrightarrow{F_n} \mathbb{W}(A)$$

$$\downarrow^{F_m}$$

$$\mathbb{W}(A)$$

now this commutes by ???, hence we are finished.

PROOF (Proof of claim): evaluate the ghost coordinates:

we can then simplify to

$$\begin{array}{ccc}
\mathbb{W}(A) & & & \\
\downarrow & & & & \\
\mathbb{W}(A)^{\mathbb{N}} & \xrightarrow[\varepsilon_A^{\mathbb{N}}]{} & A^{\mathbb{N}}
\end{array}$$

now it suffices to show for all n that

$$\begin{array}{c|c}
\mathbb{W}(A) \\
F_n \downarrow & & \\
\mathbb{W}(A) \xrightarrow{\varepsilon_A} A
\end{array}$$

commutes, which is true by ??? ($\varepsilon = w_1$).

CLAIM. $\begin{array}{c} \mathbb{W}(A) \\ \downarrow^{\Delta_A} \text{ commutes.} \\ \mathbb{W}(\mathbb{W}(A)) \xleftarrow{\varepsilon_{\mathbb{W}(A)}} \mathbb{W}(A) \end{array}$

PROOF (Proof of claim): Let $a \in W(A)$. $\varepsilon(\Delta_A(a)) = w_1(\Delta_A(a)) = F_1(a) = a$, since $F_1 = \mathrm{id}_{W(A)}$.

This concludes the proof.

The Teichmüller map induces a morphism of comonads

We now consider another example of a comonad; the *free monoid comonad*.

//

//

//

Definition 3.16 (monoid ring) Let R be a ring and let G be a monoid. The *monoid ring* of G over R, denoted R[G] or RG is the set of formal finite sums $\sum_{g \in G} r_g \cdot g$ with addition and multiplication defined by:

$$\begin{split} \sum_{g \in G} r_g \cdot g + \sum_{g \in G} s_g \cdot g &\coloneqq \sum_{g \in G} (r_g + s_g) \cdot g \\ \sum_{g \in G} r_g \cdot g \cdot \sum_{g \in G} s_g \cdot g &\coloneqq \sum_{g \in G} (\sum_{k \cdot l = q} r_k \cdot s_l) \cdot g \end{split}$$

Example 2. $R = \mathbb{R}, G = \{x^n \mid n \in \mathbb{N}\} \implies RG = \mathbb{R}[X]$

Proposition 3.17 R[G] together with the ring homomorphism $\alpha \colon R \to R[G]$; $r \mapsto r \cdot 1$ and the monoid homomorphism $\beta \colon G \to R[G]$; $g \mapsto 1 \cdot g$ enjoys the following universal property:

$$\alpha(r) \cdot \beta(q) = \beta(q) \cdot \alpha(r) \quad \forall r \in R, q \in G$$

and if (S, α', β') is another such triple with $\alpha'(r) \cdot \beta'(g) = \beta'(g) \cdot \alpha'(r) \quad \forall r \in R, g \in G$, there is a unique monoid homomorphism $\gamma \colon R[G] \to S$ such that the following diagram commutes:

$$R \xrightarrow{\alpha'} R[G] \xleftarrow{\beta'} G$$

Here, γ is defined by $\sum_{q \in G} r_q \cdot g \mapsto \sum_{q \in G} \alpha'(r_q) \cdot \beta'(g)$.

Example 3. Let *S* be a ring, *G* be a monoid. Since there is a unique ring homomorphism $\mathbb{Z} \to S$, each monoid homomorphism $G \to S$ induces a unique ring homomorphism $\mathbb{Z}G \to S$ such that the following commutes:

Now if H is another monoid and $f \colon G \to H$ a monoid morphism, $G \xrightarrow{f} H \to \mathbb{Z}H$ is a monoid homomorphism, hence it extends uniquely to $f \colon \mathbb{Z}G \to \mathbb{Z}H$, $\sum_{g \in G} r_g \cdot g \mapsto \sum_{g \in G} r_g \cdot f(g)$. In this way, the free monoid ring construction over \mathbb{Z} is functorial.

Let $G: \mathbf{CRing} \to \mathbf{CMon}, (R, +, \cdot) \mapsto (R, \cdot)$ be the forgetful functor and let $F: \mathbf{CMon} \to \mathbf{CRing}$ be the *free monoid ring functor*, $G \mapsto \mathbb{Z}G$.

Proposition 3.18 There is an adjoint situation $CMon \underbrace{\bot}_{G}$ CRing

Now consider the *teichmüller map* $\tau: A \to W(A)$. τ is multiplicative and preserves the unit, hence it extends uniquely to a ring homomorphism

$$\tau \colon \mathbb{Z}A \to \mathbb{W}(A)$$

Theorem 3.19 $\tau: \mathbb{Z}A \to \mathbb{W}(A)$ is a morphism of comonads.