پروژه فصل ۲ مکانیک تحلیلی ۱

صالح شاملو، ارمیا اعتمادی ۲ آبان ۱۳۹۹

چكىدە

یک تقریب برای نیروی مقاومت هوا در برابر حرکت یک جسم در یک سیال به شکل زیر است:

$$f = \frac{1}{2}C_w \rho A v^2 \tag{1}$$

که v سرعت جسم، ρ چگالی سیال، A سطح مقطع عمود بر جهت سرعت و C_w ثابتی وابسته به شکل جسم است. در سرعتهای نزدیک به سرعت صوت و بیشتر از آن، مقدار C_w ثابت نیست. در این نوشته حرکت یک پرتابه با سرعت مافوق صوت را با استفاده از روشهای عددی بررسی میکنیم.

C_w تقریب ضریب

در کتاب دینامیک کلاسیک فرات و سیستمها نمودار تقریبی C_w برحسب سرعت برای یک گلوله داده شده. از نموداری مشابه استفاده می کنیم.

 C_w شکل 1: تقریب

۲ معادلات حرکت

$$\sum \mathbf{F} = m\mathbf{a} \tag{Y}$$

$$\mathbf{F_g} + \mathbf{f} = m\mathbf{a} \tag{7}$$

$$m\mathbf{g} - \frac{1}{2}C_w \rho A v^2 \hat{\mathbf{v}} = m\mathbf{a} \tag{(4)}$$

 $^{^1{\}rm Classical}$ Dynamics of Particles and Systems

$$\begin{cases} \ddot{x} = -\frac{C_w \rho A}{2m} v \dot{x} \\ \\ \ddot{y} = -\frac{C_w \rho A}{2m} v \dot{y} - g \end{cases} \tag{\$}$$

با استفاده از روش رونگه_کوتا معادلات دیفرانسیل را به صورت عددی حل میکنیم. تحلیل را برای یک گلوله با مقطع دایره به شعاع $10\,\mathrm{cm}$ انجام میدهیم. سه حالت را درنظر میگیریم:

- ١. بدون مقاومت هوا
- ۲. گلوله ۳۰ کیلوگرمی (وزن تقریبی گلوله کروی فولادی با شعاع ۱۰ سانتیمتر) در مقاومت هوا
- ۳. گلوله ۲ کیلوگرمی (وزن تقریبی گلوله کروی چوبی با شعاع ۱۰ سانتیمتر) در مقاومت هوا

۳ مسیر حرکت پرتابه

شكل ٢: مسير حركت پرتابهها

۱.۳ ئود

بدون مقاومت هوا :
$$R = 36732 \,\mathrm{m}$$

با مقاومت هوا
$$\begin{cases} R_{30\mathrm{kg}} = 7801.1\,\mathrm{m} \\ R_{2\mathrm{kg}} = 1107.7\,\mathrm{m} \end{cases}$$
 ($($

 $^{^2}$ Runge-Kutta

شکل ۳: مسیر حرکت پرتابه ۳۰ کیلوگرمی

۲.۳ ارتفاع بیشینه

بدون مقاومت هوا :
$$H=9183.7\,\mathrm{m}$$

با مقاومت هوا
$$H_{30\mathrm{kg}}=2948.1\,\mathrm{m}$$
 با مقاومت هوا $H_{2\mathrm{kg}}=575.92\,\mathrm{m}$ (۱۲)

۳.۳ زمان پرواز

بدون مقاومت هوا :
$$T=86.579\,\mathrm{s}$$

ابا مقاومت هوا
$$T_{30\mathrm{kg}} = 47.965\,\mathrm{s}$$
 با مقاومت هوا $T_{2\mathrm{kg}} = 21.122\,\mathrm{s}$ با مقاومت هوا

شکل ۴: مسیر حرکت پرتابهای ۱۰۰ گرمی. در این نمودار اثرات مقاومت هوا راحتتر دیده می شود.

x(t),y(t) \mathbf{f}

