# Linear Regression

## Contents

| 1 | Importing Libraries |                                                    |   |  |  |  |  |  |
|---|---------------------|----------------------------------------------------|---|--|--|--|--|--|
| 2 | Bas                 | ics                                                | 1 |  |  |  |  |  |
| 3 | Sim                 | ple Linear Regression                              | 4 |  |  |  |  |  |
| 4 | Mu                  | de Linear Regression  4  adding in the data        |   |  |  |  |  |  |
|   | 4.1                 | Reading in the data                                | 4 |  |  |  |  |  |
|   | 4.2                 | Exploring the data                                 | 6 |  |  |  |  |  |
|   | 4.3                 | Fitting the model                                  | 7 |  |  |  |  |  |
|   | 4.4                 | Likelihood ratio test null model versus full model | 7 |  |  |  |  |  |
|   | 4.5                 | Sequential building of the model                   | 8 |  |  |  |  |  |
|   | 4.6                 | Final Model                                        | 8 |  |  |  |  |  |
|   | 4.7                 | Predicting a new observation                       | 8 |  |  |  |  |  |
|   |                     |                                                    |   |  |  |  |  |  |

# 1 Importing Libraries

```
install.packages('pastecs')

## Installing package into '/home/james/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
```

## 2 Basics

Reading the data in R.

```
library(pastecs)
kalama = read.table("kalama.txt", header=T)
attach(kalama)
kalama
```

```
##
      age height
## 1
       18
            76.1
## 2
            77.0
       19
## 3
       20
            78.1
## 4
       21
            78.2
## 5
       22
            78.8
## 6
       23
            79.7
## 7
       24
            79.9
## 8
       25
            81.1
## 9
       26
            81.2
## 10
       27
            81.8
       28
            82.8
## 11
## 12
       29
            83.5
```

Descriptive statistics in R.

```
options(digits=2)
descrip.kalama = stat.desc(kalama[,c("age","height")],basic=TRUE, desc=TRUE)
descrip.kalama
```

```
##
                   age height
## nbr.val
                 12.00 12.000
## nbr.null
                  0.00
                         0.000
## nbr.na
                  0.00
                         0.000
                 18.00
                       76.100
## min
## max
                 29.00
                        83.500
                 11.00
## range
                         7.400
## sum
                282.00 958.200
## median
                 23.50 79.800
## mean
                 23.50 79.850
## SE.mean
                 1.04
                         0.665
## CI.mean.0.95
                  2.29
                         1.463
## var
                 13.00
                         5.301
## std.dev
                  3.61
                         2.302
## coef.var
                  0.15
                         0.029
```

Estimating Correlations in  ${\bf R}.$ 

```
cov.age.height = cov(age, height)
corr.age.height = cor(age, height)
cov.age.height
```

```
## [1] 8.3
```

```
corr.age.height
```

```
## [1] 0.99
```

Testing if the population correlation is zero.

```
corr.age.height.test = cor.test(age, height, alternative="two.sided", method="pearson")
corr.age.height.test
```

```
##
## Pearson's product-moment correlation
##
## data: age and height
## t = 30, df = 10, p-value = 4e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.98 1.00
## sample estimates:
## cor
## 0.99
```

Scatterplot with line.

```
plot(age, height, main="Age vs Height", xlab="Age", ylab="Height", pch=19)
abline(lm(height~age), col="red")
```

## Age vs Height



## 3 Simple Linear Regression

```
res = lm(height~age, data=kalama)
kalama.anova = anova(res)
kalama.summary = summary(res)
kalama.anova
## Analysis of Variance Table
##
## Response: height
            Df Sum Sq Mean Sq F value Pr(>F)
## age
             1 57.7
                         57.7
                                  880 4.4e-11 ***
## Residuals 10
                  0.7
                          0.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
kalama.summary
##
## Call:
## lm(formula = height ~ age, data = kalama)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -0.2724 -0.2425 -0.0276 0.1601 0.4724
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 64.9283
                          0.5084 127.7 < 2e-16 ***
                           0.0214
                                   29.7 4.4e-11 ***
                0.6350
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.26 on 10 degrees of freedom
## Multiple R-squared: 0.989, Adjusted R-squared: 0.988
## F-statistic: 880 on 1 and 10 DF, p-value: 4.43e-11
```

## 4 Multiple Linear Regression

### 4.1 Reading in the data

```
satisfaction = read.table("satisfaction.txt", header=T)
attach(satisfaction)

## The following object is masked from kalama:
##
## age
```

| ## |    | satis | age | severity | anxiety |
|----|----|-------|-----|----------|---------|
| ## | 1  | 48    | 50  | 51       | 2.3     |
| ## | 2  | 57    | 36  | 46       | 2.3     |
| ## | 3  | 66    | 40  | 48       | 2.2     |
| ## | 4  | 70    | 41  | 44       | 1.8     |
| ## | 5  |       |     | 43       | 1.8     |
|    |    | 89    | 28  |          |         |
| ## | 6  | 36    | 49  | 54       | 2.9     |
| ## | 7  | 46    | 42  | 50       | 2.2     |
| ## | 8  | 54    | 45  | 48       | 2.4     |
| ## | 9  | 26    | 52  | 62       | 2.9     |
| ## | 10 | 77    | 29  | 50       | 2.1     |
| ## | 11 | 89    | 29  | 48       | 2.4     |
| ## | 12 | 67    | 43  | 53       | 2.4     |
| ## | 13 | 47    | 38  | 55       | 2.2     |
| ## | 14 | 51    | 34  | 51       | 2.3     |
| ## | 15 | 57    | 53  | 54       | 2.2     |
| ## | 16 | 66    | 36  | 49       | 2.0     |
| ## | 17 | 79    | 33  | 56       | 2.5     |
| ## | 18 | 88    | 29  | 46       | 1.9     |
| ## | 19 | 60    | 33  | 49       | 2.1     |
| ## | 20 | 49    | 55  | 51       | 2.4     |
| ## | 21 | 77    | 29  | 52       | 2.3     |
| ## | 22 | 52    | 44  | 58       | 2.9     |
| ## | 23 | 60    | 43  | 50       | 2.3     |
| ## | 24 | 86    | 23  | 41       | 1.8     |
| ## | 25 | 43    | 47  | 53       | 2.5     |
| ## | 26 | 34    | 55  | 54       | 2.5     |
| ## | 27 | 63    | 25  | 49       | 2.0     |
| ## | 28 | 72    | 32  | 46       | 2.6     |
| ## | 29 | 57    | 32  | 52       | 2.4     |
| ## | 30 | 55    | 42  | 51       | 2.7     |
| ## | 31 | 59    | 33  | 42       | 2.0     |
| ## | 32 | 83    | 36  | 49       | 1.8     |
| ## | 33 | 76    | 31  | 47       | 2.0     |
| ## | 34 | 47    | 40  | 48       | 2.2     |
| ## | 35 | 36    | 53  | 57       | 2.8     |
| ## | 36 | 80    | 34  | 49       | 2.2     |
| ## | 37 | 82    | 29  | 48       | 2.5     |
| ## | 38 | 64    | 30  | 51       | 2.4     |
| ## | 39 | 37    | 47  | 60       | 2.4     |
| ## | 40 | 42    | 47  | 50       | 2.6     |
| ## | 41 | 66    | 43  | 53       | 2.3     |
| ## | 42 | 83    | 22  | 51       | 2.0     |
| ## | 43 | 37    | 44  | 51       | 2.6     |
| ## | 44 | 68    | 45  | 51       | 2.2     |
| ## | 45 | 59    | 37  | 53       | 2.1     |
| ## | 46 | 92    | 28  | 46       | 1.8     |

## 4.2 Exploring the data

#### cor(satisfaction)

```
##
                    age severity anxiety
            satis
## satis
             1.00 -0.79
                            -0.60
                                    -0.64
            -0.79
                   1.00
                             0.57
                                     0.57
## age
## severity -0.60
                   0.57
                             1.00
                                     0.67
                             0.67
## anxiety -0.64
                   0.57
                                     1.00
```

plot(satisfaction)



#### Descriptive statistics

```
options(digits=2)
descrip.satisfaction = stat.desc(satisfaction,basic=TRUE, desc=TRUE)
descrip.satisfaction
```

```
##
                  satis
                            age severity anxiety
## nbr.val
                  46.00
                          46.00 4.6e+01 46.000
                                           0.000
## nbr.null
                   0.00
                           0.00
                                 0.0e+00
## nbr.na
                   0.00
                           0.00
                                 0.0e+00
                                           0.000
## min
                  26.00
                          22.00
                                 4.1e+01
                                           1.800
## max
                  92.00
                          55.00 6.2e+01
                                           2.900
```

```
66.00 33.00 2.1e+01
## range
               2832.00 1766.00 2.3e+03 105.200
## sum
                60.00
## median
                        37.50 5.0e+01
                                        2.300
## mean
                61.57
                        38.39 5.0e+01
                                        2.287
## SE.mean
                 2.54
                         1.31
                              6.4e-01
                                       0.044
## CI.mean.0.95
                 5.12
                         2.65 1.3e+00 0.089
                       79.53 1.9e+01 0.090
               297.10
## std.dev
                17.24
                        8.92 4.3e+00
                                        0.299
## coef.var
                 0.28
                         0.23 8.6e-02
                                        0.131
```

## 4.3 Fitting the model

## Model 1: satis ~ 1

```
satisfaction.lm = lm(satis~age+severity+anxiety, data=satisfaction)
satisfaction.summary = summary(satisfaction.lm)
satisfaction.summary
##
## Call:
## lm(formula = satis ~ age + severity + anxiety, data = satisfaction)
## Residuals:
##
     Min
             1Q Median
                            3Q
                                 Max
## -18.35 -6.42
                 0.52
                         8.37 17.16
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 158.491
                           18.126
                                     8.74 5.3e-11 ***
## age
                -1.142
                            0.215
                                     -5.31 3.8e-06 ***
                -0.442
                            0.492
                                    -0.90
                                              0.374
## severity
## anxiety
               -13.470
                            7.100
                                    -1.90
                                              0.065 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10 on 42 degrees of freedom
## Multiple R-squared: 0.682, Adjusted R-squared: 0.659
## F-statistic: 30.1 on 3 and 42 DF, p-value: 1.54e-10
```

#### 4.4 Likelihood ratio test null model versus full model

```
satisfaction.lm.int = lm(satis~1, data=satisfaction) # Null model
anova(satisfaction.lm.int,satisfaction.lm) # Null versus full
## Analysis of Variance Table
##
```

```
## Model 2: satis ~ age + severity + anxiety
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1    45 13369
## 2    42 4249 3    9120 30.1 1.5e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

### 4.5 Sequential building of the model

```
satisfaction.anova = anova(satisfaction.lm)
satisfaction.anova
## Analysis of Variance Table
## Response: satis
            Df Sum Sq Mean Sq F value Pr(>F)
## age
             1
                 8275
                         8275
                               81.80 2.1e-11 ***
## severity
            1
                  481
                          481
                                4.75 0.035 *
## anxiety
             1
                  364
                          364
                                 3.60 0.065 .
## Residuals 42
                 4249
                          101
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### 4.6 Final Model

```
satisfaction.lm.final = lm(satis~age+anxiety, data=satisfaction)
satisfaction.final.summary = summary(satisfaction.lm.final)
satisfaction.final.summary
```

```
##
## Call:
## lm(formula = satis ~ age + anxiety, data = satisfaction)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -19.445 -7.328 0.673 8.513 18.053
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                         11.525 12.66 4.2e-16 ***
## (Intercept) 145.941
                -1.200
                           0.204
                                   -5.88 5.4e-07 ***
## age
               -16.742
                           6.081
                                  -2.75 0.0086 **
## anxiety
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10 on 43 degrees of freedom
## Multiple R-squared: 0.676, Adjusted R-squared: 0.661
## F-statistic: 44.9 on 2 and 43 DF, p-value: 2.98e-11
```

#### 4.7 Predicting a new observation

```
newdata = data.frame(age=43, anxiety=2.7)
pred.w.plim = predict(satisfaction.lm.final, newdata, interval="predict")
pred.w.clim = predict(satisfaction.lm.final, newdata, interval = "confidence")
pred.w.plim
```

```
## fit lwr upr
## 1 49 28 70
```

pred.w.clim

## fit lwr upr ## 1 49 44 54