Homework 1

- 1. A router processes the Network, Link, and Physical layers. A link-layer switch processes the Link and Physical layers. A host processes all layers of an IP Stack.
- 2. a. Over 30 hops maximum from home to mail.uwf.edu it times out after 12
 - b. Over 30 hops maximum for www.amazon.com it times out after 8

$$dp = (N + P - 1) \left(\frac{L}{R}\right)$$

3.4. The maximum number of connections is 16. There are 8 possible simultaneous connections from A to C. Yes it is possible.

- 6. a. T = L/R, 8000 kbps / 2000 kbps = 4 seconds from host to first switch. 3 hops x 4 sec/hop = total 12 seconds
 - b. 10 kbps per packet / 2000 kbps = .005 seconds from hos to first switch. (.005) seconds x 2 for the second packet to reach the first switch = .01 seconds or 10msec.
 - c. # of hops x time per hop = 3 hops x .005 sec/hop = .015 seconds or 15 msec.
- 7. a. d_{prop} = Distance / Prop Speed, so 150 km / 100 km per hour = 1.5 hrs.

 d_{trans} = # of cars x seconds per car = 10 x 12 = 120 seconds. Then, 3 tollbooths x 2 mins per car (120 sec.) = 6 minutes.

 $d_{end-to-end} = d_{prop} + d_{trans} = 1.5 \text{ hrs} + 6 \text{ mins} = 1 \text{ hr}. 36 \text{ mins}$

- b. 8 cars x 12 sec per car = 96 sec. 3 tollbooths x 96 sec = 288 sec (4 min 48 sec.). $d_{end-to-end}$ = 1.5 hrs + 4 mins 48 secs = 1 hr 34 mins 48 sec.
- 8. a. d_{prop} = distance / speed = m/s seconds
 - b. d_{trans} = Length / Rate = L/R
 - c. $d_{end-to-end} = (L/R)+(m/s)$ seconds
 - d. transmitted or pushed onto the link
 - e. on the first packet
 - f. the first bit has reached destination B
 - g. $d_{prop} = d_{trans}$ so $(m/s) = (L/R) = (m/2.5 \times 10^8) = (120 \text{ bits } / 56 \text{ kbps})$ $m = (120 \text{ bits } / 56 \text{ kbps}) \times 2.5 \times 10^8 = 30 \times 10^9 / 56 \times 10^3 = 535.714 \text{ km}$
- 9. LAB:
 - a. Internet Protocol, Transmission Control Protocol, and Hypertext Transfer Protocol
 - b. Roughly 4 seconds
 - c. 128.119.245.12 and 192.168.0.67