Using Python for electronic structure calculations, nonlinear solvers, FEM and symbolic manipulation

Ondřej Čertík

Institute of Physics, Academy of Sciences of the Czech Republic

August 5, 2007

Introduction

I'll talk about

- Density Functional Theory calculations
- SciPy nonlinear solvers
- Finite Element Method using python-petsc and libmesh
- SymPy the symbolic manipulation package in Python

$$\hat{H}\ket{\Psi} = (\hat{T} + \hat{U} + \hat{V})\ket{\Psi} = E\ket{\Psi}$$

where

$$\hat{T} = \sum_{i=1}^{N} -\frac{1}{2} \nabla_{i}^{2}$$

$$\hat{U} = \sum_{i < j} U(\mathbf{r_{i}}, \mathbf{r_{j}}) = \frac{1}{2} \sum_{i,j} U(\mathbf{r_{i}}, \mathbf{r_{j}})$$

$$U(\mathbf{r_{i}}, \mathbf{r_{j}}) = U(\mathbf{r_{j}}, \mathbf{r_{i}}) = \frac{1}{|\mathbf{r_{i}} - \mathbf{r_{j}}|}$$

$$\hat{V} = \sum_{i}^{N} v(\mathbf{r_{i}})$$

$$v(\mathbf{r_{i}}) = \sum_{k} -\frac{Z_{k}}{|\mathbf{r_{i}} - \mathbf{R_{k}}|}$$

We solve the Kohn-Sham equations:

$$(-\frac{1}{2}\nabla^2 + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + v(\mathbf{r}))\psi_i(\mathbf{r}) = \epsilon_i \psi(\mathbf{r})$$

that yield the orbitals ψ_i that reproduce the density $n(\mathbf{r})$ of the original interacting system

$$n(\mathbf{r}) = \sum_{i}^{N} |\psi_{i}(\mathbf{r})|^{2}$$

$$V_{H}(\mathbf{r}) = \frac{\delta E_{H}}{\delta n(\mathbf{r})} = \frac{1}{2} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r'$$

$$E_{xc}[n] = (T + U)[n] - E_{H}[n] - T_{S}[n]$$

$$V_{xc}(\mathbf{r}) = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

$$v(\mathbf{r}) = \sum_{k} -\frac{Z_{k}}{|\mathbf{r} - \mathbf{R_{k}}|}$$

Atomic wavefunctions

Spherically symmetric potential:

$$V(\mathbf{x}) = V(r)$$

$$\psi_{nlm}(\mathbf{x}) = R_{nl}(r) Y_{lm}\left(\frac{\mathbf{x}}{r}\right)$$

Radial Schrödinger equation:

$$R''_{nl} + \frac{2}{r}R'_{nl} + \frac{2M}{\hbar^2}(E - V)R_{nl} - \frac{l(l+1)}{r^2}R_{nl} = 0$$

Relativistic atomic wavefunctions

Dirac equation:

$$(ic\gamma^{\mu}D_{\mu}-mc^{2})\psi=0$$
 $D_{\mu}=\partial_{\mu}+ieA_{\mu}$

Radial Dirac equation:

$$g_{\kappa}^{"} + \left(\frac{2}{r} + \frac{V^{\prime}}{2Mc^{2}}\right)g_{\kappa}^{\prime} + \left[\left(E - V\right) - \frac{\kappa(\kappa + 1)}{2Mr^{2}} + \frac{\kappa + 1}{4M^{2}c^{2}r}V^{\prime}\right]2Mg_{\kappa} = 0$$

$$f_{\kappa} = \frac{g_{\kappa}^{\prime}}{2Mc} + \frac{\kappa + 1}{r}\frac{g_{\kappa}}{2Mc}$$

$$R^{2} = f^{2} + \sigma^{2}$$

Radial Schrödinger equation:

$$R'' + \frac{2}{r}R' + \left[(E - V) - \frac{I(I+1)}{2Mr^2} \right] 2MR = 0$$

Code (300 lines in Python, 800 in Fortran)

```
from atom import atom, show
import radial
import utils
def do(Z):
    R = radial.create_log_grid(Z)
    s = atom(Z,alpha=0.3,iter=20,relat=0,grid=R)
    n5_lda = radial.KS_construct_density(s,R,Z)*R*R
    s = atom(Z,alpha=0.3,iter=20,relat=2,grid=R)
    n5_rlda = radial.KS_construct_density(s,R,Z)*R*R
    utils.makeplot(R,[
        (n5_lda, "b-", "non-relativistic"),
        (n5_rlda, "g-", "full relativistic"),
        ],title="Z=%d"%(Z),xleg="R",
        yleg="radial density * R^2")
do(5)
#do(82)
```

Boron

Lead

Lead - nonrelativistic calculation

```
2p(6): -470.8777849
                           3s(2): -116.526852
                           3p(6): -107.950391
Iterations: 20
                           3d(10): -91.88992429
|F(x)| = 0.00003516
                           4s(2): -25.75333021
Agrees with NIST:
                           4p(6): -21.99056413
http://physics.nist.gov/
                           4d(10): -15.03002657
                           4f(14): -5.592531664
                           5s(2): -4.206797624
                           5p(6): -2.941656967
                           5d(10): -0.9023926829
                           6s(2): -0.3571868295
```

6p(2): -0.1418313263

1s(2): -2901.078061 2s(2): -488.8433352

Lead - relativistic calculation

```
4s(2) j=1+1/2: -31.15015728
Iterations: 20
                             4p(6) j=1-1/2: -26.73281564
|F(x)| = 0.00000584
                             4p(6) j=1+1/2: -22.38230707
                             4d(10) j=1-1/2: -15.1647618
1s(2) j=1+1/2: -3209.51946
                             4d(10) j=1+1/2: -14.3484973
2s(2) j=1+1/2: -574.1825655
                             5s(2) j=1+1/2: -5.225938506
2p(6) j=1-1/2: -551.7234408
                             4f(14) j=1-1/2: -4.960490099
2p(6) j=1+1/2: -472.3716103
                             4f(14) j=1+1/2: -4.775660273
3s(2) j=1+1/2: -137.8642241
                             5p(6) j=1-1/2: -3.710458943
3p(6) j=1-1/2: -127.6789451
                             5p(6) j=1+1/2: -2.889127431
3p(6) j=1+1/2: -109.9540395
                             5d(10) j=1-1/2: -0.8020049565
3d(10) j=1-1/2: -93.15817605
                             5d(10) j=1+1/2: -0.7070299184
3d(10) j=1+1/2: -89.36399096
                             6s(2) j=1+1/2: -0.4209603386
                             6p(2) j=1-1/2: -0.1549640727
```

Iteration to self-consistency

The problem:

$$F(x) = x$$

equivalently

$$\mathbf{R}(\mathbf{x}) = 0$$

for $\mathbf{R}(\mathbf{x}) = \mathbf{F}(\mathbf{x}) - \mathbf{x}$. We approximate

$$\mathsf{R}(\mathsf{x}_{M+1}) - \mathsf{R}(\mathsf{x}_M) pprox \mathsf{J} \cdot (\mathsf{x}_{M+1} - \mathsf{x}_M)$$

with the Jacobian

$$J_{ij} = \frac{\partial R_i}{\partial x_i}$$

We want $\mathbf{R}(\mathbf{x}_{M+1}) = 0$:

$$\mathbf{x}_{M+1} pprox \mathbf{x}_M - \mathbf{J}^{-1} \cdot \mathsf{R}(\mathbf{x}_M)$$

J is approximated by a sequence of J_0 , J_1 , J_2 , ...

Linear mixing

$$\mathbf{x}_{M+1} pprox \mathbf{x}_M - \mathbf{J}_M^{-1} \cdot \mathbf{R}(\mathbf{x}_M)$$

with

$$\mathbf{J}_{M}^{-1} = -\alpha \mathbb{1}$$

SO

$$\mathbf{x}_{M+1} = \mathbf{x}_M + \alpha \mathbf{R}(\mathbf{x}_M) = \mathbf{x}_M + \alpha (\mathbf{F}(\mathbf{x}_M) - \mathbf{x}_M)$$

SciPy

from scipy.optimize.nonlin import linearmixing

"exciting" mixing

Used in the FP-LAPW DFT code (http://exciting.sourceforge.net/)

$$\mathbf{x}_{M+1} pprox \mathbf{x}_M - \mathbf{J}_M^{-1} \cdot \mathbf{R}(\mathbf{x}_M)$$

with

$$\mathbf{J}_{M}^{-1} = -\mathrm{diag}(\beta_{1}, \beta_{2}, \beta_{3}, \dots)$$

start with $\beta_1 = \beta_2 = \beta_3 = \cdots = \alpha$ and at every iteration adjust the parameters β_i according to this very simple algorithm: if $R_i(\mathbf{x}_{M-1})R_i(\mathbf{x}_M) > 0$ then increase β_i by α otherwise set $\beta_i = \alpha$ (if $\beta_i > \alpha_{max}$, set $\beta_i = \alpha_{max}$).

SciPy

from scipy.optimize.nonlin import excitingmixing

Broyden update

The first Broyden method:

$$\mathbf{J}_{M+1} = \mathbf{J}_{M} - \frac{(\Delta \mathbf{R}(\mathbf{x}_{M}) + \mathbf{J}_{M} \cdot \Delta \mathbf{x}_{M}) \Delta \mathbf{x}_{M}^{T}}{|\Delta \mathbf{x}_{M}|^{2}}$$

The second Broyden method:

$$\mathbf{J}_{M+1}^{-1} = \mathbf{J}_{M}^{-1} + \frac{(\Delta \mathbf{x}_{M} - \mathbf{J}_{M}^{-1} \cdot \Delta \mathbf{R}(\mathbf{x}_{M})) \Delta \mathbf{R}(\mathbf{x}_{M})^{T}}{|\Delta \mathbf{R}(\mathbf{x}_{M})|^{2}}$$

starting with the linear mixing:

$$\mathbf{J}_0^{-1} = -\alpha \mathbb{1}$$

SciPy

from scipy.optimize import broyden1, broyden2

low memory second Broyden update

The second Broyden method

$$(\mathbf{J}_{M+1}^{-1} = \mathbf{J}_{M}^{-1} + \frac{(\Delta \mathbf{x}_{M} - \mathbf{J}_{M}^{-1} \cdot \Delta \mathbf{R}(\mathbf{x}_{M})) \Delta \mathbf{R}(\mathbf{x}_{M})^{\mathsf{T}}}{|\Delta \mathbf{R}(\mathbf{x}_{M})|^{2}})$$
 can be written as
$$\mathbf{J}_{M+1}^{-1} = \mathbf{J}_{M}^{-1} + \mathbf{u} \mathbf{v}^{\mathsf{T}}$$

with

$$\mathbf{u} = \Delta \mathbf{x}_M - \mathbf{J}_M^{-1} \cdot \Delta \mathbf{R}(\mathbf{x}_M)$$
 $\mathbf{v} = \frac{\Delta \mathbf{R}(\mathbf{x}_M)}{|\Delta \mathbf{R}(\mathbf{x}_M)|^2}$

so the whole inverse Jacobian can be written as

$$\mathbf{J}_{M}^{-1} = -\alpha \mathbb{1} + \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \mathbf{u}_{2} \mathbf{v}_{2}^{T} + \mathbf{u}_{3} \mathbf{v}_{3}^{T} + \cdots$$

$$\mathbf{J}_{M}^{-1} \cdot \mathbf{y} = -\alpha \mathbf{y} + \mathbf{u}_{1} (\mathbf{v}_{1}^{T} \mathbf{y}) + \mathbf{u}_{2} (\mathbf{v}_{2}^{T} \mathbf{y}) + \mathbf{u}_{3} (\mathbf{v}_{3}^{T} \mathbf{y}) + \cdots$$

SciPv

from scipy.optimize import broyden3

Other methods

The generalized Broyden method (modified Broyden method):

$$\sum_{p=M-k}^{M-1} (1 + \omega_0^2 \delta_{pn}) \Delta \mathbf{R}(\mathbf{x}_n)^T \Delta \mathbf{R}(\mathbf{x}_p) \gamma_p = \Delta \mathbf{R}(\mathbf{x}_n)^T \mathbf{R}(\mathbf{x}_M)$$

$$\mathbf{x}_{M+1} = \mathbf{x}_M + \beta_M \mathbf{R}(\mathbf{x}_M) - \sum_{p=M-k}^{M-1} \gamma_p (\Delta \mathbf{x}_p + \beta_M \Delta \mathbf{R}(\mathbf{x}_p))$$

other methods: Anderson, extended Anderson

SciPy

from scipy.optimize import broyden_generalized,
 anderson, anderson2

Finite element calculation

Tools I use (Debian package in parentheses):

- gmsh http://www.geuz.org/gmsh/ (gmsh)
- tetgen http://tetgen.berlios.de/ (non-free/tetgen)
- libmesh http://libmesh.sourceforge.net/ (libmesh0.6.0-pure-dev)
- petsc4py http://code.google.com/p/petsc4py/ (python-petsc)

My code is at: http://code.google.com/p/grainmodel/

Geometry

Mesh

 $\mathsf{gmsh} \to \mathsf{converter} \to \mathsf{tetgen} \to \mathsf{converter} \to \mathsf{gmsh}, \ \mathsf{libmesh}$

Formulation

Continuity equation:

$$\nabla \cdot \mathbf{j} = -\frac{\partial \rho}{\partial t}$$

and using the Ohm's law ${\bf j}=\sigma{\bf E}=-\sigma\nabla\varphi$ and setting $\frac{\partial\rho}{\partial t}=0$ we get

$$\nabla \cdot \sigma \nabla \varphi = \mathbf{0}$$

Standard FEM procedure: weak formulation, global matrix assembly, solving the large sparse problem Ax = b, etc.

Solver

- main program in Python
- libmesh (C++), together with SWIG bindings, to assemble
- petsc (C), together with petsc4py (SWIG), to solve

Solution

solution+gradient

- A Python library for symbolic mathematics
- http://code.google.com/p/sympy/

Why symbolic mathematics? The same reasons people use Maple/Mathematica, but we want to use it from Python.

```
>>> from sympy import Symbol, limit, sin, oo
>>> x=Symbol("x")
>>> limit(sin(x)/x, x, 0)
1
>>> limit((5**x+3**x)**(1/x), x, oo)
5
```

What SymPy can do

- basics (expansion, complex numbers, differentiation, taylor (laurent) series, substitution, arbitrary precision integers, rationals and floats, pattern matching)
- noncommutative symbols
- limits and very simple integrals (so far)
- polynomials (division, gcd, square free decomposition, groebner bases, factorization)
- symbolic matrices (determinants, LU decomposition...)
- solvers (some algebraic and differential equations)
- 2D geometry module
- plotting (2D and 3D)

In his introduction to the book A=B Donald Knuth wrote:

Science is what we understand well enough to explain to a computer. Art is everything else we do. During the past several years an important part of mathematics has been transformed from an Art to a Science

- Being able to see the computer doing mathematics, I understand it better (symbolic limits, factorization, expansion, integration, ...)
- one example: epsilon delta gymnastics in limits

Other symbolic manipulation software: GiNaC, Giac, Qalculate, Yacas, Eigenmath, Axiom, PARI, Maxima, SAGE, Singular, Mathomatic, Octave, ...

Problems:

- all use their own language (except GiNac, Giac and SAGE)
- GiNac and Giac still too complicated (C++), difficult to extend

What we want

- Python library and that's it (no environment, no new language, nothing)
- Rich functionality
- Pure Python (non Python modules are only optional) works on Linux, Windows, Mac out of the box

SAGE

- aims to glue together every useful open source mathematics software package and provide a transparent interface to all of them
- http://www.sagemath.org/

```
sage: import sympy
sage: sympy.__version__
'0.4.2'
sage: x=sympy.Symbol("x")
sage: y=sympy.Symbol("y")
sage: ((x+y)**sympy.Rational("5")).expand()
5*x**4*y+y**5+x**5+10*x**3*y**2+5*x*y**4+10*y**3*x**2
```

the Schwarzschild solution in the General Relativity

```
spherically symmetric metric (diag(-e^{\nu(r)}, e^{\lambda(r)}, r^2, r^2 \sin^2 \theta)) \rightarrow
Christoffel symbols \rightarrow Riemann tensor \rightarrow Einstein equations \rightarrow
solver
ondra@pc232:~/sympy/examples$ time python relativity.py
[SKIP]
metric:
-C1 - C2/r 0 0 0
0 \frac{1}{C1} + \frac{C2}{r} = 0
0 0 r**2 0
0 \ 0 \ 0 \ r**2*sin(\theta)**2
real 0m1.092s
user 0m1.024s
svs 0m0.068s
```

How SymPy is developed

- I wrote first code 2 years ago, limits a year ago and then stopped working on it
- Fabian from Spain joined in February
- Google Summer of Code, SymPy is under the umbrella of Python Software Foundation, the Space Telescope Science Institute and Portland State University
- Now there are 8 regular contributors with svn access, other people send patches sometimes
- GSoC students wrote most of the modules, Pearu Peterson wrote a new core (10x to 100x faster than the old core), Fredrik wrote a fast floating point arithmetics in Python (faster than the Decimal module), Jurjen contributed pretty printing etc.