Übung 1 Newton Interpolation

- a) Interpolieren Sie die Funktion $f(t) = \sqrt{t}$ mit Hilfe des Newton'schen Interpolationspolynoms vom Grad 2 $(p_2 \in P_2)$ zwischen den Stützstellen $t_0 = \frac{1}{4}$, $t_1 = 1$, und $t_2 = 4$.
- b) Nehmen sie die Stützstelle $t_3 = 9$ hinzu und berechnen Sie das Interpolationspolynom $p_3 \in P_3$.
- c) Skizzieren Sie die Graphen von f, p_2 und p_3 (per Hand oder mit Gnuplot).

(5 Punkte)

Übung 2 Schema von Neville-Aitken

Seien n+1 Wertepaare $(x_0,y_0),\ldots,(x_n,y_n)$ gegeben. Es bezeichne $p_{i,k}\in P_k$ das eindeutig bestimmte Interpolationspolynom vom Grad $k,k\in\mathbb{N}_0$, zu den Wertepaaren $(x_i,y_i),\ldots,(x_{i+k},y_{i+k})$.

a) Zeigen Sie, dass folgende Rekursionsformel gilt:

$$(i) \quad p_{i,0}(x) = y_i$$

$$f$$
ür $i = 0, ..., n$

$$(ii) \quad p_{i,k}(x) \quad = \quad \frac{(x-x_i)p_{i+1,k-1}(x) - (x-x_{i+k})p_{i,k-1}(x)}{x_{i+k}-x_i} \quad \text{ für } i=0,...,n-k.$$

b) Damit lässt sich das Interpolationspolynom $p_{0,n}(x)$ zu den Wertepaaren $(x_0, y_0), \dots, (x_n, y_n)$ an einem Punkt $x = \xi$ auswerten, ohne die Koeffizienten des Polynoms explizit zu berechnen.

Anmerkung: Unter der Annahme, dass $\xi \neq x_i \forall i$ gilt verwendet man aus Stabilitätsgründen bei der Implementierung die Darstellung

$$p_{i,k}(\xi) = p_{i,k-1}(\xi) + \frac{p_{i,k-1}(\xi) - p_{i+1,k-1}(\xi)}{\frac{\xi - x_{i+k}}{\xi - x_i} - 1}.$$

Für verschiedene Orte wurde an einem bestimmten Tag die Tageslänge gemessen:

Ort	Tageslänge	Lage
Α	17h 28m	55,7°
В	18h 00m	57,7°
C	18h 31m	59,3°
D	19h 56m	62,6°

Bestimmen Sie die Tageslänge am Ort E bei 61,7 $^{\circ}$ durch Auswertung des zugehörigen Interpolationspolyoms mit Hilfe der obigen Rekursionsformel. Es genügt auf 2 Nachkommastellen genau zu rechnen.

(5 Punkte)

Übung 3 Komplexität der Interpolation

Sei $p \in P_n$ das Interpolationspolynom zu den n+1 paarweise verschiedenen Stützstellen $t_0, ..., t_n$ mit den zugehörigen Werten $y_0, ..., y_n$. Bestimmen Sie die Anzahl der benötigten Operationen

- zur Berechnung der Koeffizienten von p
- und zur Auswertung von p an einer beliebigen Stelle $t = \xi$
- a) bezüglich der Lagrange-Basis,
- b) bezüglich der Newton-Basis und
- c) bezüglich der Monom-Basis.

Bestimmen Sie zum Vergleich auch die Anzahl der benötigten Operationen zur Auswertung von p(t) an einer beliebigen Stelle $t=\xi$ mit Hilfe des Neville-Aitken-Schemas.

Hinweis: Die sehr naive Auswertung des Polynoms $p(t) = a_0 + a_1 t + ... + a_n t^n$ (in der Monom-Basis) erfordert $O(n^2)$ Multiplikationen und n Additionen. Dagegen wird beim **Hornerschema**

$$p(t) = a_0 + (t \cdot (a_1 + t \cdot (\dots (a_{n-1} + t \cdot a_n) \dots)))$$

von innen nach außen ausgewertet. Wie viele Additionen und Multiplikationen sind dafür notwendig?

(5 Punkte)

Übung 4 Dividierte Differenzen

Beweisen Sie, dass die dividierten Differenzen invariant unter Permutation der Stützstellen sind: Gegeben seien n paarweise verschiedene Stützstellen $\{x_0, \ldots, x_{n-1}\}$ und eine Permutation derselben $\{\tilde{x}_0, \ldots, \tilde{x}_{n-1}\}$. Zeigen Sie

$$f[x_0,...x_{n-1}] = f[\tilde{x}_0,...,\tilde{x}_{n-1}].$$

(Bonus 5 Punkte)

Übung 5 Polynominterpolation (Praktische Übung)

Alle in dieser Aufgabe zu programmierende Funktionen sollen einen template Parameter akzeptieren, der es erlaubt den Typ zur näherungsweisen Repräsentation der reellen Zahlen zu setzen.

- a) Schreiben Sie eine Funktion, welche für gegebene Stützstellen $(x_i)_{i=1}^n \in \mathbb{R}$ und Werte $(y_i)_{i=1}^n$ einer eindimensionalen Funktion $f: \mathbb{R} \to \mathbb{R}$ das zugehörige Interpolationspolynom an der Stelle x auswertet.
- b) Schreiben Sie ein Programm, dass die Funktionen $f_1(x)=\frac{1}{1+x^2}$ und $f_2(x)=\sqrt{|x|}$ im Intervall I=[-1,1] mit äquidistanten Stützstellen $x_i=-1+ih,\ i=0,...,n$, mit h=2/n, für n=5,10,20 durch ein Polynom p_n vom Grad n interpoliert.

Werten Sie die Interpolationspolynome auf einem dichten Gitter (1000 Gitterpunkte) aus, stellen Sie die Ergebnisse graphisch dar und vergleichen Sie sie mit den richtigen Funktionsverläufen.

c) Beschreiben Sie Ihre Beobachtungen.

(Bonus 5 Punkte)