NOTES ON ROA PROJECT

HENRY O. JACOBS

1. Constraint equation

Let $\psi(t), \nu(t) \in L^2(M)$ for $t \in [0, T]$. Then observe that

$$\langle \psi(T), \nu(T) \rangle_{L^{2}} = \langle \psi(0), \nu(0) \rangle_{L^{2}} + \int_{0}^{T} \frac{d}{dt} \langle \psi(t), \nu(t) \rangle dt$$
$$= \langle \psi(0), \nu(0) \rangle_{L^{2}} + \int_{0}^{T} \langle \partial_{t} \psi, \nu \rangle_{L^{2}} + \langle \psi, \partial_{t} \nu \rangle_{L^{2}} dt$$

Let A be an anti-symmetric operator on $L^2(M)$. Then $\psi(t)$ satisfies

$$\partial_t \psi + A[\psi] = 0$$

if and only if

$$\langle \partial_t \psi + A[\psi], \nu \rangle_{L^2} = 0$$

for all $\nu \in L^2(M)$. Invoking the anti-symmetry of A we find that the above equation holds if and only if

$$\langle \partial_t \psi, \nu \rangle = \langle \psi, A[\nu] \rangle_{L^2}$$

for all ν .

Thus ψ satisfies (1) if and only if

$$\langle \psi(T), \nu(T) \rangle_{L^2} = \langle \psi(0), \nu(0) \rangle_{L^2} + \int_0^T \langle \psi, \partial_t \nu + A[\nu] \rangle_{L^2} dt$$

for all $\nu(t) \in L^2(M)$ with $t \in [0, 1]$.

In our case $A[\psi](x) := X^i(x)\partial_i\psi(x) + \frac{1}{2}\partial_iX^i(x)\psi(x)$ and we use weak-derivatives if needed.

2. Controls

We wish to solve for the region of attraction under the controlled dynamics

$$\dot{x} = X_0(x) + \sum_{k=1}^{c} u^k X_k(x).$$

Date: 4th of June, 2015.

where X_0, X_1, \ldots, X_c are vector fields. Define the unbounded Hermetian operators $\hat{H}_i \in \text{Herm}(L^2(M))$ by

$$\hat{H}_i \cdot \psi := i \sum_{\alpha=1}^d \frac{1}{2} \partial_{\alpha} X_i^{\alpha} \psi + X_i^{\alpha} \partial_{\alpha} \psi,$$

for i = 0, 1, ..., c. Then the dynamics of a half-density evolve under the controlled Schrödinger equation

$$\dot{\psi} = i\hat{H} \cdot \psi + i\sum_{k=1}^{c} u^{k}\hat{H}_{k} \cdot \psi = i\hat{H}(u) \cdot \psi.$$

where $\hat{H}(u) = \hat{H}_0 + u^k \hat{H}_k$. Let $\pi_M : U \times M \to M$ be the cartesian projection onto M. We can define the operator $\hat{J} : L^2(M) \to L^2(M \times U)$ given by $(\hat{J} \cdot \psi)(x, u) = (\hat{H}(u) \cdot \psi)(x)\sqrt{du}$ or more concisely $\hat{J} = \hat{H}(\cdot) \otimes \sqrt{u}$. From here we may compute the dual operator $\hat{J}^{\dagger} : L^2(U \times M) \to L^2(M)$. Explicitly \hat{J}^{\dagger} takes the form

$$(\hat{J}^{\dagger} \cdot \phi)(x) := \int_{U} \hat{H}(u)\phi(x,u)du$$

Inspired by Henrion-Korda we should be able to obtain the ROA by solving the primal QP

$$p^* = \sup_{\substack{\delta_T \otimes \psi_T - \delta_0 \otimes \psi_0 = \int_0^T \hat{J}^{\dagger} \cdot \phi dt \\ -1 < \psi_T < 1}} \|\psi\|_{L^2(M)}^2$$

where the decision variables are $\phi \in H^1([0,T]; L^2(U \times M))$, and $\psi_T \in L^2(M)$.

3. Discretization of vector-fields as operators

Let $X(x,t) = f^{\alpha}(x,t) \frac{\partial}{\partial x^{\alpha}}$. We wish to discretize the operator

$$\rho(X)[\psi] = \frac{1}{2} \left(\partial_{\alpha} (f^{\alpha} \cdot \psi) + f^{\alpha} \partial_{\alpha} \psi \right)$$

To do this, let us note that

$$\rho(f\cdot X) = \frac{1}{2}\left(\widehat{f}\cdot\rho(X) + \widehat{X[f]}\right) = \frac{1}{2}\left(\widehat{f}\cdot\rho(X) + [\widehat{f},\rho(X)]\right) = \widehat{f}\rho(X) - \frac{1}{2}\rho(X)\widehat{f}$$

What we could do is construct the operator $\widehat{\partial}_{\alpha}$ and the multiplication operator $\widehat{f}^{\alpha}: \psi(\cdot) \mapsto f^{\alpha}(\cdot) \cdot \psi(\cdot)$ given in matrix form by

$$[\hat{f}^{\alpha}]^{i}_{j} = \langle w_i \mid \hat{f}^{\alpha} \mid w_j \rangle.$$

My hope is that the operator $\frac{1}{2}(\widehat{[f^{\alpha}]_n} \cdot \widehat{[\partial_{\alpha}]_n} + \widehat{[\partial_{\alpha}]_n} \cdot \widehat{[f^{\alpha}]_n})$ is a good approximation of $\rho(X)$ when $\widehat{[f^{\alpha}]_n}$ a least squares projection of $\widehat{f^{\alpha}}$ and $\widehat{[\partial_{\alpha}]_n}$ is a least squares projection of $\widehat{\partial_{\alpha}}$ onto some finite-dimensional subspace V_n . The following two (yet to be proven) lemmas would give us this result.

Lemma 3.1. Let $f \in L^{\infty}$, $n \in \mathbb{N}$, and $\{e_0, e_1, \dots\}$ a Hilbert basis for L^2 . Let $V_n = \operatorname{span}(e_0, e_1, \dots, e_n)$ and let $\pi_N : L^2 \to V_n$ be the orthogonal projection. Then the operator $[\hat{f}]_n = \pi_n \circ \hat{f} \circ \pi_n$ satisfies the error bound

$$\|\hat{f} - [\hat{f}]_n\|_{L^2} = \epsilon_1(n)$$

for some function $\epsilon_1(n)$ which vanishes at infinity.

Lemma 3.2. The operator $[\widehat{\partial}_{\alpha}]_n = \pi_n \circ \widehat{\partial}_{\alpha} \circ \pi_n$ satisfies the error bound

$$\|\widehat{\partial_{\alpha}}|_{H^1} - [\widehat{\partial_{\alpha}}]_n\|_{L^2} = \epsilon_2(n)$$

for some function $\epsilon_1(n)$ which vanishes at infinity.

Proposition 3.3. The operator $\frac{1}{2}(\widehat{[f^{\alpha}]_n} \cdot \widehat{[\partial_{\alpha}]_n} + \widehat{[\partial_{\alpha}]_n} \cdot \widehat{[f^{\alpha}]_n})$ approximates the operator $\rho(X) = \frac{1}{2}(\widehat{f^{\alpha}\partial_{\alpha}} + \widehat{\partial_{\alpha}\widehat{f^{\alpha}}})$ on H^1 with an error bound proportional to $\epsilon(n) = \max(\epsilon_1(n), \epsilon_2(n))$.

Proof. The proof comes down to the following computation for any two operators A and B with approximations A_n and B_n .

$$||AB - A_n B_n|| = ||AB - A_n B + A_n B - A_n B_n||$$

$$\leq ||AB - A_n B|| + ||A_n B - A_n B_n||$$

$$\leq ||B|| ||A - A_n|| + ||A_n|| ||B - B_n||.$$

APPENDIX A. CONSTRUCTION OF OPERATORS

Let $\{e_0, e_1, \dots\}$ be a Hilbert basis for $L^2(\mathbb{R})$ and compute the coefficients

$$a_{j}^{i} = \int_{\mathbb{R}} e_{i}(x) \frac{de_{j}}{dx}(x) dx$$

In *n*-dimensions we may consider the basis elements for $L^2(\mathbb{R}^n)$ computed as tensor products of the one-dimensional case. That is to say, we use a basis of the form $e_{\mathbf{i}}(\mathbf{x}) := e_{i_1}(x^1)e_{i_2}(x^2)\cdots e_{i_n}(x^n)$ where $\mathbf{i} = (i_1, i_2, \dots, i_n)$ and $\mathbf{x} = (x^1, \dots, x^n)$. In this bases the operator $\widehat{\partial}_{\alpha}$ is computed entry-wise to be

$$\widehat{\partial_{\alpha}}\Big]_{\mathbf{j}}^{\mathbf{i}} = \langle e_{\mathbf{i}} \mid \widehat{\partial_{\alpha}} \mid e_{\mathbf{j}} \rangle = \int_{\mathbb{R}^{n}} e_{\mathbf{i}}(\mathbf{x}) \frac{\partial e_{\mathbf{j}}}{\partial x^{\alpha}} d\mathbf{x}$$

$$= \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \left(\prod_{\beta \neq \alpha} e_{i_{\beta}}(x^{\beta}) e_{j_{\beta}}(x^{\beta}) \right) \cdot e_{i_{\alpha}}(x^{\alpha}) \frac{de_{j_{\alpha}}}{dx}(x^{\alpha}) dx^{1} \cdots dx^{n}$$

$$= \left(\prod_{\beta \neq \alpha} \delta^{i_{\beta}}_{j_{\beta}} \right) a^{i_{\alpha}}_{j_{\alpha}}$$

where the indices are $\mathbf{i} = (i_1, \dots, i_n)$ and $\mathbf{j} = (j_1, \dots, j_n)$. Similarly, for a L^{∞} function f the operator \hat{f} is given entry-wise by

$$\left[\hat{f}\right]_{\mathbf{j}}^{\mathbf{i}} = \langle e_{\mathbf{i}} \mid \hat{f} \mid e_{\mathbf{j}} \rangle = \int_{\mathbb{R}^n} e_{\mathbf{i}}(\mathbf{x}) f(\mathbf{x}) e_{\mathbf{j}}(\mathbf{x}) d\mathbf{x}$$

You can probably compute this using your existing code by first decomposing $f(\mathbf{x})$ into a wavelet basis as $f(\mathbf{x}) = \sum_{\mathbf{k}} f_{\mathbf{k}} e_{\mathbf{k}}(\mathbf{x})$ for some real coefficients $f_{\mathbf{k}}$. Then we'd find

$$\left[\hat{f}\right]_{\mathbf{j}}^{\mathbf{i}} = \sum_{\mathbf{k}} f_{\mathbf{k}} \int_{\mathbb{R}^n} e_{\mathbf{i}}(\mathbf{x}) e_{\mathbf{k}}(\mathbf{x}) e_{\mathbf{j}}(\mathbf{x}) d\mathbf{x}$$

and we can use your pre-computation of integrals of the above form.

In the case of a vector-field $X = f^{\alpha}\partial_{\alpha}$, the corresponding operator on halfdensities is given by $(f^{\alpha} \cdot \partial_{\alpha} + \partial_{\alpha} \circ f^{\alpha})/2$ and so we are going to use the operator

$$\rho(X) = \frac{1}{2} \left(\widehat{f}^{\alpha} \cdot \widehat{\partial}_{\alpha} + \widehat{\partial}_{\alpha} \cdot \widehat{f}^{\alpha} \right)$$

given entry-wise by

$$\left[\rho(X)\right]_{\mathbf{j}}^{\mathbf{i}} = \frac{1}{2} \sum_{\mathbf{k}} \left(\left[\widehat{f^{\alpha}} \right]_{\mathbf{k}}^{\mathbf{i}} \left[\widehat{\partial_{\alpha}} \right]_{\mathbf{j}}^{\mathbf{k}} + \left[\widehat{\partial_{\alpha}} \right]_{\mathbf{k}}^{\mathbf{i}} \left[\widehat{f^{\alpha}} \right]_{\mathbf{j}}^{\mathbf{k}} \right)$$