

第四章

二維平面繪圖

本章學習目標

學習Matlab的基本繪圖函數plot 編修函數的圖形 學習簡單易用的fplot與ezplot函數 學習如何利用Property editor來編修圖形

4.1 簡單的繪圖函數

4.1.1 基本的二維繪圖函數

o 在Matlab裡,最常使用的二維繪圖函數是plot函數:

表 4.1.1 plot 函數的使用

函 數	說 明
plot(x,y)	以 x 為資料點的橫座標所組成的向量, y 為縱座標所組成的向量, 描點繪出 (x,y) 的曲線圖
plot(y)	x的間距為 1 ,描點繪出 (x,y) 的曲線圖

下圖是由資料點擷取出橫座標與縱座標的示意圖:

② 取出所有資料點的縱座標,並 把它組成一個向量

4.1.2 二維圖形的編修

o 利用下面的語法可編修二維函數的圖形:

表 4.1.2 修飾 plot 函數所繪出的圖形

函 數	說 明
plot(x,y,'str')	以字串str所指定的格式繪出二維圖形
plot($x_1, y_1, 'str_1', x_2, y_2, 'str_2', \cdots$)	以字串 str_1 所指定的格式繪出 (x_1, y_1) 的圖形,以 str_2 所指定的格式繪出 (x_2, y_2) 的圖形,以此類推
$plot(x_1, y_1, 'str', 'p_str', property, \cdots)$	根據繪圖性質 p_str 來繪圖,其中 p_str 可為:
	LineWidth — 設定線條寬度
	MarkerFaceColor — 設定標記的顏色
	MarkerEdgeColor — 設定標記的邊框顏色
	MarkerSize — 設定標記的大小

o 下表列出了字串str可使用的控制碼,以及它們所 代表的意義:

表 4.1.3 plot 函數的控制碼(一),控制資料點的顯示符號

符號	說 明	符號	說 明
	繪點	^	繪出「^」符號
*	繪出星號	V	繪出「v」符號(小寫 v)
0	繪出小圓(小寫字母 o)	s或square	繪出正方形
+	繪出加號	d或diamond	繪出菱形
x	繪出打叉符號(小寫字母 x)	p或pentagram	繪出五角形
<	繪出「<」符號	h或hexagram	繪出六角形
>	繪出「>」符號	none	不繪出任何形狀(預設)

表 4.1.4 plot 函數的控制碼(二),控制線條樣式

線條樣式	說 明	線條樣式	說 明
- (減號)	實線(預設)	:	由點連成的線段
	虚線	none	不繪出線段
	虛線和點連成的線段		

表 4.1.5 plot 函數的控制碼(三),控制線條顏色

線條顏色	說 明	線條顏色	說 明
g	綠色 (green)	W	白色(white)
m	紫色 (magmata)	r	紅色(red)
b	藍色(blue)(預設)	k	黑色(black)
C	青藍色(cyan)	У	黄色 (yellow)

○ 簡單的範例:

```
>> x=linspace(1,8,36);
>> y1=sin(2*x)./x;
>> plot(x,y1,'-sb')
```


4.2 繪圖區域的控制

4.2.1 更改繪圖的範圍與顯示方式

o 如果想自行設定函數圖形顯示的範圍時, 則可利用axis函數:

表 4.2.1 設定繪圖的範圍

函數說明

axis([xmin, xmax, ymin, ymax]) 指定繪圖的範圍,x 方向從 xmin 到 xmax,y 方向從 ymin 到 ymax

```
>> x=linspace(0,10,64);
>> y=x.*cos(4*x)./12;
                                 0.6
>> plot(x,y,'-ro')
                                 0.4
                                0.2
                                -0.6
>> axis([0,6,-0.6,0.6])
```

o 利用 box 和 grid 指令可設定設定格線與外框:

表 4.2.2 設定是否顯示圖形的格線與外框

指令	說 明
grid	設定是否顯示格線,設定 on 為顯示,設定 off 則不顯示
box	設定是否顯示圖形的外框,設定 on 顯示,設定 off 不顯示

>> grid on

4.2.2 修改x與y軸的顯示比例

o 設定座標軸顯示的比例所用的指令:

表 4.2.3 設定座標軸顯示的比例

指令	說 明
axis normal	使用 Matlab 預設的寬高比,且拉動視窗即可調整其比例
axis square	圖形輸出的寬與高比例為 1:1
axis equal	圖形座標軸的比例為 1:1
axis tight	圖形的繪圖區域緊貼著視窗

>> axis square

>> axis equal tight

>> axis equal

4.2.3 於已存在的圖中加入新圖

o 利用hold on 可將新繪的圖形附加於原有圖形之上:

表 4.2.4 設定圖形產生的方式

指令說明

hold 設定 hold 為 on 時,則新產生的圖形會疊加在原有圖形的上面,若是設定 off,則原有的圖形會被新產生的圖形覆蓋掉。

```
>> plot(x,y1,'-rs')
>> hold on
>> plot(x,y2,'-bo')
```


4.2.4 建立一個新的繪圖視窗來繪圖

o figure指令可另起一個新的視窗來容納新的圖形:

表 4.2.5 設定圖形產生的方式

指令	說 明
figure	建立一個新的繪圖視窗,視窗的標題為 Matlab 自動設定
figure(n)	建立一個新的繪圖視窗,視窗的標題為 Figure n 。若 Figure n 為已 經存在的視窗,則 figure(n) 會把此視窗變成作用中視窗

4.2.5 將數張圖合併成一張大圖

o 利用subplot可在一個繪圖視窗內呈現數張小圖:

表 4.2.6 subplot 函數的用法

函 數	說 明
subplot(m,n,p)	把繪圖視窗分成 $m \times n$ 個區域,並在第 p 個位置建立一個子繪圖區。位置 p 的計算方式是由左而右,由上而下來排列
<pre>subplot(m,n,p,'replace')</pre>	於第 p 個位置建立一個子繪圖區,若此繪圖區內已有其它 圖形存在,則新繪的圖會取代掉原有的圖

4.3 於圖形內加入文字

下表面的函數可設定圖形的標題文字,以及每一個 繪圖軸的解說文字:

表 4.3.1 於圖形內加入文字

函 數	說 明
title('text')	設定圖形的標題文字為 text
xlabel('text')	設定 x 軸的解說文字為 text
ylabel('text')	設定y軸的解說文字為 text
zlabel('text')	設定 z 軸的解說文字為 text

>> title('plot of sin(x^2)')

>> xlabel('time');ylabel('value');

o 下面的函數可在圖形內加入註解:

表 4.3.2 加入圖形的註解

函 數	說 明
$legend(str_1, str_2,)$	設定圖例標記的字串
$legend(str_1, str_2, \ldots, pos)$	設定圖例標記的位置,1代表將圖例放在右上角,2 是左上角,3是左下角,4則是放在右下角
legend off	清除圖例標記
text(x,y,'text')	在圖形中位置為(x,y)之處加入註解文字
gtext('text')	利用滑鼠來設定文字輸入的位置

>> legend('x*cos(x)','x*sin(x)',2)

>> text(2,2.5,'x*sin(x)'); text(5.5,3,'x*cos(x)')

4.4 更簡潔的繪圖函數

- o fplot函數只要給予一個函數字串即可繪圖
- o fplot可依據圖形陡峭的程度,自動調整樣點數的多 寡以繪出平滑的曲線

表 4.4.1 繪圖函數 fplot 的用法

函 數	說 明
<pre>fplot('f_str',[xmin,xmax])</pre>	繪出函數 f_str 的圖形, x 軸的範圍取 $xmin$ 到
	xmax
<pre>fplot('f_str',[xmin,xmax,ymin,ymax])</pre>	繪出函數 f_str 的圖形, x 軸的範圍取 $xmin$ 到
	xmax,y軸的範圍取 ymin 到 ymax

>> fplot('x-cos(x^3)-sin(2*x^2)',[-3,3])

o ezplot可繪出隱函數圖,以及參數繪圖等:

表 4.4.2 繪圖函數 ezplot 的用法

函 數	說 明
$ezplot('f_str',[xmin,xmax])$	繪出函數 f_str 的圖形,繪圖範圍在 x 與 y 方均取 $xmin$ 到 $xmax$
ezplot('f_str',[xmin,xmax,ymin,ymax])	繪出函數 f_str 的圖形,繪圖範圍在 x 方向 $xmin$ 到 $xmax$ 在 y 方向均取 $ymin$ 到 $ymax$
ezplot('fx','fy',[tmin,tmax])	參數繪圖,繪出 $(fx(t), fy(t))$, t 從取 $tmin$ 到 tm 的參數圖

>> ezplot('x^3+4*x^2-3*x+1-y^2')

$>> ezplot('x^2*sin(x^2)/exp(x)',[0,10,-0.7,0.7])$

4.5 利用Property Editor來編修圖形

o 利用Property Editor對話方塊可編修圖形的性質:

