## EE23BTECH11054 - Sai Krishna Shanigarapu\*

## **GATE EE 2023**

54. In a circuit, there is a series connection of an ideal resistor and an ideal capacitor. The conduction current (in Amperes) through the resistor is  $2\sin\left(t+\frac{\pi}{2}\right)$ . The displacement current (in Amperes) through the capacitor is \_\_\_\_\_.

- (A)  $2\sin(t)$
- (B)  $2\sin\left(t+\pi\right)$ (C)  $2\sin\left(t+\frac{\pi}{2}\right)$
- (D) 0

(GATE EC 2022)

## **Solution:**

| Parameter | Description                  | Remarks                             |
|-----------|------------------------------|-------------------------------------|
| $i_c$     | Conduction Current           | $2\sin\left(t+\frac{\pi}{2}\right)$ |
| $i_d$     | Displacement current         | ?                                   |
| J         | Current density              | $\overline{J_c} + \overline{J_d}$   |
| $J_c$     | Conduction current density   |                                     |
| $J_d$     | Displacement current density |                                     |

TABLE I PARAMETERS



Fig. 2. Phasor plot

 $J_d$ 



Fig. 1. Circuit 1

From Table I

$$J = \overline{J_c} + \overline{J_d} \tag{1}$$

From figure 3,  $\overline{J_d}$  leads  $\overline{J_c}$  by  $\frac{\pi}{2}$   $\Longrightarrow$   $i_d$  leads  $i_c$  by  $\frac{\pi}{2}$ 

Hence,

$$i_d = 2\sin\left(t + \frac{\pi}{2} + \frac{\pi}{2}\right) \tag{2}$$

$$\implies i_d = 2\sin\left(t + \pi\right) \tag{3}$$

 $\therefore$  (B) is correct.



Fig. 3. Plot of  $i_c$  and  $i_d$  vs time