ADAPTIVE SIGNAL PROCESSING (EQ2401) PROJECT ASSIGNMENT II, SPRING 2023

Robin Abrahamse - robinab@kth.se Shashang Murali - shashang@kth.se

KTH Royal Institute of Technology

February 5, 2023

PROBLEM FORMULATION

This audio signal can be modeled as a combination of a clean speech signal and additive noise components:

$$y(n) = x(n) + e(n)$$

- y(n) distorted audio signal
- x(n) clean speech signal (to be retrieved)
- e(n) background noise (obtained from microphone 2 recording)

Where x(n) and e(n) are uncorrelated; this is a valid assumption given that the speech signal and noise do not influence each other.

WIENER FILTER PERFORMANCE

Attempted filtering with order 30 Wiener solutions from the previous project:

Figure. Wiener filter frequency responses

Generally poor performance: limited noise attenuation and fluctuating noise disturbance.

APPROACH

Algorithms

- ► LMS
- ► NLMS
- ► RLS

Approach

- Use microphone 2 recording as noise source (v(n))
- Estimate noise in input with algorithm $(e(n) \approx F(n)v(n))$
- Output difference between input and noise estimate $(x(n) = y(n) e(n) \approx y(n) F(n)v(n) = \hat{x}(n))$

PARAMETER OPTIMIZATION

Parameter choice

- ► Estimate MSE at every point in time $((y(n) F(n)v(n))^2 = \hat{x}(n)^2)$
- ▶ Sum MSE estimates to obtain scalar error metric
- Sweep parameters
- ► Minimize error metric

PARAMETER OPTIMIZATION RESULTS (1)

(a) LMS parameter sweep

(b) NLMS parameter sweep

PARAMETER OPTIMIZATION RESULTS (2)

(a) RLS parameter sweep

(b) RLS parameter sweep (extended)

PARAMETERS

LMS

Parameters

- **▶** *order* = 12
- $\mu = 0.08$

NLMS

Parameters

- *▶ order* = 12
- $\mu = 0.05$

RLS

Parameters

- *▶ order* = 12
- $\lambda = 0.999$
- ightharpoonup P(0) = 1000I (error metric insensitive)

RESULTS

Figure. Input and filtered spectra

SOLUTIONS FILTER RESPONSES

Figure. Effective frequency response $(\frac{\phi_{\mathit{filt}}}{\phi_{\mathit{mic2}}})$ vs noise spectrum

COMPARISON WITH WIENER

Figure. Effective filter frequency response $(\frac{\phi_{filt}}{\phi_{mir}})$ vs Wiener vs noise spectrum

SLIDING WINDOW OPTIMIZATION

Conventional RLS

$$g = \frac{P(n-1)Y(n)}{\lambda + Y(n)^T P(n-1)Y(n)}$$

$$P(n) = \frac{P(n-1) - gY(n)^T P(n-1)}{\lambda}$$

$$\theta(n) = \theta(n-1) + P(n)Y(n)(x(n) - \theta(n-1)^T Y(n))$$

Sliding window RLS¹

Additionally 'downdate' to remove effects outside sliding window (with *k* block length)

$$g = \frac{P(n)\lambda^k Y(n-k)}{1 - Y(n-k)^T P(n)\lambda^k Y(n-k)}$$

$$P(n) = P(n) + gY(n-k)^T P(n)$$

$$\theta(n) = \theta(n) - P(n)Y(n-k)(x(n-k) - \theta(n)^T Y(n-k))$$

¹Zhang, Q. (2000). Some implementation aspects of sliding window least squares algorithms.

SLIDING WINDOW OPTIMIZATION

(a) RLS sliding window block length sweep

(b) RLS sliding window block length sweep (extended)