Parte I (6 valores)

Cada uma das questões de escolha múltipla que se seguem pode ter mais do que uma resposta correcta. As respostas têm que ser <u>sucintamente justificadas</u>.

1. [1.5 val.] Considere um campo \vec{F} com a mesma direcção em todos os pontos do espaço e cujo módulo varia linearmente ao longo de uma direcção normal à direcção do campo, como se ilustra na figura.

Pode-se afirmar que:

- A. \vec{F} é um campo conservativo
- B. \vec{F} pode ser um campo electrostático no vazio
- C. \vec{F} não pode ser um campo electrostático no vazio
- D. \vec{F} deriva de uma função potencial V de acordo com $\vec{F} = -\vec{\nabla}V$.
- E. $\vec{\nabla} \times \vec{F} = 0$
- **2.** [1.5 val.] Considere o circuito da figura seguinte e os sentidos das correntes nela arbitrados. A análise deste circuito permite concluir que:

A.
$$I_a = I_b + I_c$$

B.
$$\mathcal{E}_1 = R_1 I_a + I_c R_4 + R_5 I_e$$

C.
$$I_a = I_b + I_d + I_e$$

D.
$$R_5I_e = R_3I_f$$

3. [1.5 val.] Quatro fios paralelos de comprimento infinito, todos percorridos por correntes contínuas de intensidade I, dispõem-se como se ilustra na figura. As correntes A e D apontam para fora da página e as correntes B e C apontam para dentro. O módulo do campo magnético \vec{B} no ponto P, situado no centro do quadrado, vale:

B.
$$2\sqrt{2}\mu_0 I/(\pi a)$$

C.
$$8\sqrt{2}\mu_0 I /(\pi a)$$

D.
$$\mu_0 I / (2\pi a)$$

E.
$$2\mu_0 I / (\pi a)$$

4. [1.5 val.] Considere um circuito RLC série, em que a fonte fornece uma tensão alternada $V = V_0 \cos(\alpha t)$.

São válidas as seguintes afirmações:

- A. O módulo da impedância do circuito vale $R + \omega L + (\omega C)^{-1}$
- B. O módulo da impedância do circuito vale $[R^2 + (\omega L (\omega C)^{-1})^2]^{1/2}$
- C. A corrente e a tensão na resistência estão em fase.
- D. A corrente e a tensão na bobina estão em fase.
- E. A corrente e a tensão no condensador estão em fase.

Parte II (14 valores)

Identifique todos os símbolos que utilizar e justifique cuidadosamente as suas respostas.

5. [4.0 val.]

- a) Considere uma distribuição superficial de carga eléctrica (estática), sobre uma superfície regular S. Utilizando o teorema de Gauss da electrostática analise a continuidade do campo eléctrico quando se atravessa S num ponto P, no qual a densidade superficial de carga é $\sigma(P)$, no que diz respeito à componente normal a S.
- b) Numa certa região do espaço (vazio) encontra-se uma superfície esférica de raio R com carga total q, uniformemente distribuída. Sabendo que o campo no interior dessa superfície é nulo, utilize as propriedades de continuidade/descontinuidade do campo eléctrico ao atravessar a superfície carregada para determinar o campo eléctrico fora da esfera.
- c) Determine a energia electrostática da distribuição de carga que dá origem ao campo considerado na alínea anterior.
- **6.** [4.0 val] Considere o condensador de placas circulares paralelas esquematizado na figura. A área de cada uma das placas é $A = 10 \text{ cm}^2$ e a separação entre as placas é 2d = 5.0 mm. O condensador está preenchido com dois materiais de constantes dieléctricas relativas diferentes: $\varepsilon_1 = 3.0 \text{ na}$ metade superior e $\varepsilon_2 = 6.0 \text{ na}$ metade inferior. Os dois materiais têm permeabilidade magnética relativa $\mu_r = 1$. Admita que o campo eléctrico no interior do condensador é uniforme.
- a) Determine a capacidade do condensador.
- b) Num certo instante o condensador tem carga $Q = 1.0 \times 10^{-5}$ C na armadura superior e carga igual e de sinal contrário na armadura inferior. Determine o campo eléctrico no interior das armaduras e no interior dos dois dieléctricos.

- c) Suponha que se liga o condensador a uma fonte e se aplica uma tensão que varia no tempo a uma taxa constante de 3.0 V/s. Determine o campo magnético \vec{B} induzido a uma distância de 1.0 cm do eixo central do condensador, nas duas regiões preenchidas com dieléctricos (metade superior e metade inferior).
- **7.** [3.0 val.] Uma barra metálica de peso P e comprimento l está suspensa por dois fios flexíveis, de massa deprezável, de modo a fechar um circuito de corrente contínua e ficar sob acção de um campo magnético \vec{B} uniforme e estacionário, como se ilustra na figura. O campo \vec{B} aponta para fora da página e está estabelecido numa região de secção circular.
- a) Sabendo que a tensão mecânica nos fios é nula, determine a intensidade e sentido da corrente no circuito.
- b) Suponha agora que num certo intervalo de tempo se faz descer a barra (e todo o circuito) com velocidade constante, mas mantendo-se a barra totalmente imersa na região onde está estabelecido
- \vec{B} . Durante esse intervalo de tempo a tensão mecânica nos fios permanece nula? Justifique.

8. [3.0 val.]

- a) Determine, usando a Lei de Biot-Savart, o campo de indução magnética \vec{B} no centro de uma espira circular de raio a percorrida por uma corrente contínua de intensidade I.
- b Uma espira circular de raio a é colocada no interior de uma bobina (de raio R > a e comprimento l >> R e com n espiras por unidade de comprimento), perpendicularmente ao eixo da bobina. Determine o coeficiente de indução mútua entre a bobina e a espira.