Patrick Hall

Lecture 3: Discrimination Testing and Remediation

The George Washington University

June 3, 2021

^{*}This material is shared under a CC By 4.0 license which allows for editing and redistribution, even for commercial purposes. However, any derivative work should attribute the author.

Contents

Introduction

Bias and Discrimination

Testing for Discrimination in ML

Remediation

Acknowledgements

A Responsible Machine Learning Workflow[†]

[†]A Responsible Machine Learning Workflow

Introduction

Why Care About Discrimination in Machine Learning?

- Responsible practice of machine learning (ML): ML can affect millions of people! [7]
- Discrimination is often illegal (in the U.S.): Non-compliance fines and litigation costs.
- Reputational risk: Upon encountering a perceived unethical ML system, 34% of consumers are likely to, "stop interacting with the company."[‡]

[‡]See: Why addressing ethical questions in AI will benefit organizations.

What Is Bias?

- Almost *all* data, statistical models, and ML models encode different types of *bias*, i.e., systematic misrepresentations of reality.
- Sometimes, bias is helpful.
 - Shrunken and robust β_j coefficients in penalized linear models.
- Other types of bias can be unwanted, unhelpful, discriminatory, or illegal.
- Many instances of discrimination in ML arise from sociologically biased experimental design, data collection, labeling, or storage processes.

What is Discrimination in ML?

In many applications§, model predictions should *ideally* be independent of demographic group membership.

In these applications, a model exhibits discrimination if:

- 1. Demographic group membership is not independent of the likelihood of receiving a favorable or accurate model prediction.
- 2. Membership in a *subset* of a demographic group is not independent of the likelihood of receiving a favorable or accurate model prediction (i.e., *local or individual discrimination*).[3]

[§]e.g., Under the Equal Credit Opportunity Act (ECOA), as implemented by Regulation B, and the Fair Credit Reporting Act (FCRA)

What Kinds of Discrimination Occur in ML?

Several forms of discrimination may manifest in ML, including:

- Group disparities:
 - Overt discrimination against groups, i.e., disparate treatment (DT).
 - Unintentional discrimination against groups, i.e., disparate impact (DI).
 - Differing quality across demographic groups, i.e., differential validity.
- Local or individual discrimination.

How Does Discrimination Arise in ML?

Discrimination originates from poor experimental design:

- Asking biased questions, e.g., "can a face predict trustworthiness?", "can demographics predict creditworthiness?"
- Modeling biased phenomenon, e.g., healthcare spending vs. healthcare need.

Discrimination originates from training data:

- Incomplete or inaccurate data, e.g., under-representation of minorities. See Gender Shades [2].
- Accurate but differing patterns of causation, correlation, or dependency between demographic groups and past outcomes, e.g., traditional FICO credit scores.

[¶]See: https://shiftprocessing.com/credit-score/#race

How Does Discrimination Arise in ML?

ML models can perpetuate or exacerbate discrimination.

Group disparities, i.e., different or inaccurate treatment of entire demographic groups:

- Including direct or proxy identifiers for demographic group membership, i.e., DT.
- Learning different correlations between demographic groups and favorable model outcomes, i.e., *DI*.
- Exhibiting different accuracies across demographic groups, i.e., differential validity.

Locally, i.e., different or inaccurate treatment of similar individuals:

- Local response function or decision boundary form.
- Capacity to form local complex demographic proxies on a row-by-row basis.

Common Metrics of Discrimination in ML

Common metrics for DI and *group* disparities:

- Differential validity: $\frac{quality_p}{quality_r}$
- Adverse impact ratio: $\frac{\% \text{ accepted}_p}{\% \text{ accepted}_r}$
- Marginal effect: % accepted $_p$ % accepted $_r$
- Standardized mean difference: $\frac{\bar{\hat{y}}_p \bar{\hat{y}}_r}{\sigma_{\hat{y}}}$

where, $p \equiv$ protected group and $r \equiv$ reference group (often white males).

There are many other, sometimes conflicting, mathematical definitions of discrimination. See 21 Definitions of Fairness and Their Politics.

Additional Considerations for Discrimination Testing

- Local discrimination, i.e., the model treats a small number of similar people differently.
 - Constrain problematic interactions.
 - Search around probability thresholds.
 - Adversarial models.
- Post-hoc explanation to understand drivers of discrimination:
 - To be conducted after discrimination is confirmed by standard tests.
 - Be aware of:
 - No demographic features in model.
 - Fairwashing [1] and scaffolding [8].

How to Fix Discrimination in MI?

Fix organizational processes: Lecture 6 Fix the data

- Collect demographically representative training data.
- Label and annotate data carefully.
- Select features judiciously.
- Sample and reweigh training data to minimize discrimination.

How to Fix Discrimination in ML?

Fix the model:

- Consider fairness metrics when selecting hyperparameters and cutoff thresholds.
- Train fair models directly:
 - Learning fair representations (LFR) and adversarial de-biasing.[9], [10]
 - Use dual objective functions that consider both accuracy and fairness metrics.
- Edit model mechanisms to ensure less biased predictions, e.g., with GA2M/EBM models.

Fix the predictions:

- Balance model predictions, e.g., reject-option classification.[5]
- Correct or override predictions with model assertions or appeal mechansims.[3], [6]

How to Fix Discrimination in ML?

Consider discrimination measures during model selection.

How to Fix Discrimination in ML?

As part of a responsible ML workflow.

Acknowledgements

This presentation borrows heavily from the expertise of Nicholas Schmidt and Bryce Stephens of BLDS, LLC, a leading fair lending compliance firm.

Thanks to Lisa Song for her continued assistance in developing these course materials.

Some materials \odot Patrick Hall and the H2O.ai team 2017-2020.

References

Ulrich Aïvodji et al. "Fairwashing: the Risk of Rationalization." In: arXiv preprint arXiv:1901.09749 (2019). URL: https://arxiv.org/pdf/1901.09749.pdf.

Joy Buolamwini and Timnit Gebru. "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification." In: Conference on Fairness, Accountability and Transparency. URL: http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf. 2018, pp. 77–91.

Patrick Hall, Navdeep Gill, and Nicholas Schmidt. "Guidelines for the Responsible Use of Explainable Machine Learning." In: arXiv preprint arXiv:1906.03533 (2019). URL: https://arxiv.org/pdf/1906.03533.pdf.

Faisal Kamiran and Toon Calders. "Data Preprocessing Techniques for Classification Without Discrimination." In: Knowledge and Information Systems 33.1 (2012). URL: https://bit.ly/21H951Q, pp. 1–33.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. "Decision Theory for Discrimination-aware Classification." In: 2012 IEEE 12th International Conference on Data Mining. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.3030&rep=rep1&type=pdf. IEEE. 2012, pp. 924-929.

References

Daniel Kang et al. *Debugging Machine Learning Models via Model Assertions*. URL: https://www-cs.stanford.edu/~matei/papers/2018/mlsys_model_assertions.pdf. 2019.

Ziad Obermeyer et al. "Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations." In: Science 366.6464 (2019). URL: https://bit.ly/36XK6yk, pp. 447–453.

Dylan Slack et al. "How Can We Fool LIME and SHAP? Adversarial Attacks on Post-hoc Explanation Methods." In: arXiv preprint arXiv:1911.02508 (2019). URL: https://arxiv.org/pdf/1911.02508.pdf.

Rich Zemel et al. "Learning Fair Representations." In: International Conference on Machine Learning. URL: http://proceedings.mlr.press/v28/zemel13.pdf. 2013, pp. 325—333.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. "Mitigating Unwanted Biases with Adversarial Learning." In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. URL: https://arxiv.org/pdf/1801.07593.pdf. ACM. 2018, pp. 335—340.