Direct Detection Constraints on a Magnetic Fluffy WIMP

Kunal Kumar

Northwestern University

in collaboration with Arjun Menon and Tim Tait

Motivation

- The nature of Dark Matter is one of the fundamental questions we are trying to find the answer to
- One approach to resolving the tension between different direct detection experiments has been to exploit differences in kinematics and couplings introduced by using different target nuclei
- This has been done for example in the inelastic Dark Matter (iDM) and Magnetic inelastic Dark Matter (MiDM) models

```
D. Smith, N. Weiner, arXiv: 0101138, S. Chang, N. Weiner, I. Yavin PRD82, 125011 (2010)
```

• iDM typically has a small splitting ($\delta \sim$ 100 keV) relative to the WIMP mass ($m_\chi \sim$ 100 GeV)

Motivation

 This splittings can be generated in extra dimensional models with a large compactification radius

This leads to higher Kaluza Klein modes that a WIMP can scatter to

 Can this scenario make it easier to resolve the tension between current data from Direct Detection Experiments?

Fluffy WIMP

- A simple generalization of iDM where an incoming WIMP can scatter off of a nucleus to a tower of states
- To be excited to each state there is a minimum velocity the WIMP

$$v_{\min}^{j} = \sqrt{\frac{1}{2m_{N}E_{R}}\left(\frac{m_{N}E_{R}}{\mu} + \delta^{j}\right)}$$

• For simplicity we assumed that $\delta^j = j\delta$ and σ_n is a constant for excitations to each state in the tower

Fluffy WIMP

The differential rate of scattering is given by

$$\begin{array}{lcl} \frac{dR}{dE_R d\cos\gamma} & = & \frac{\kappa F^2(E_R)}{n(v_0,v_{\rm esc})} \pi v_0^2 \Big[\exp\left(-\frac{(\vec{v}_E \cdot \hat{v}_R + v_{\rm min})}{v_0^2}\right) \\ & - & \exp\frac{v_{\rm esc}^2}{v_0^2} \Big] \Theta(v_{\rm esc} - |\vec{v}_E \cdot \hat{v}_R + v_{\rm min}|) \end{array}$$

D.P. Finkbeiner, T. Lin, N. Weiner, arXiv: 0906.0002

• γ is the angle between the earth's velocity and the recoil velocity of the WIMP in the earth's frame

$$\kappa = N_T \frac{\rho_{\chi}}{m_{\chi}} \frac{\sigma_n m_N}{2\mu_n} \frac{(f_p Z + A - Z)f_n)^2}{f_n^2}$$

• The scattering rate is proportional to σ_n

General Procedure for Parameter Space scans

- Fit 12 bins (2-8 keVee) DAMA annual modulation amplitude spectrum
- There are three free parameters m_{χ} , δ and σ_n
- As σ_n is an overall constant in the rate we can scale this to find the best fit for a fixed m_χ and δ
- We plot contours for a χ^2 of 1,1.5 and 2 per degree of freedom
- This is what a sample plot for the DAMA fit would look like

• The corresponding plot for the σ_n scaling factor values that minimized χ^2

• $\sigma_n = \text{scaling factor} \times 10^{-40} \text{ cm}^2$

 Next we mark out regions of the DAMA allowed space that are excluded at 90% CL by each relevant Direct Detection experiment

- XENON100 '09: 161 kg days , 7.4 29.1 keV
- XENON100 '10 : 48x100.9 kg days, 8.4 44.6 keV
- CDMS II: 194.1 kg days, 10-100 keV

• For a given m_{χ} the region of high δ corresponds to iDM.

 This is consistent with iDM being ruled out by the latest XENON100 results.

Farina et al, arXiv:1104.3572)

• We look at lower m_χ and δ values to see if this region of parameter space is allowed

• CDMS (low threshold): 241 kg days, 2 - 5 keV window considered

Magnetic Fluffy WIMP

 As was done in the Magnetic inelastic Dark Matter model one way of suppressing rates relative to DAMA is to consider WIMPs with a magnetic dipole moment

 This allows for dipole-dipole interactions as well as dipole-charge interactions

$$\frac{d\sigma}{dE_R} = \frac{d\sigma_{DD}}{dE_R} + \frac{d\sigma_{DZ}}{dE_R}$$

The DZ term has a smaller contribution due to destructive interference

$$\frac{d\sigma_{DZ}}{dE_R} = \frac{4\pi Z^2 \alpha^2}{E_R} \left(\frac{\mu_{\chi}}{e}\right)^2 \left[1 - \frac{E_R}{v^2} \left(\frac{1}{2m_N} + \frac{1}{m_{\chi}}\right) - \frac{\delta}{v^2} \left(\frac{1}{\mu_{N\chi}} + \frac{\delta}{2m_N E_R}\right)\right] \left(\frac{S_{\chi} + 1}{3S_{\chi}}\right) F^2[E_R]$$

• The DD term is proportional to $\mu_{\it nuc}$ and so one would expect a suppression when going from Iodine as a target to Xenon

$$\frac{d\sigma_{DD}}{dE_{R}} = \frac{16\pi\alpha^{2}m_{N}}{v^{2}}\left(\frac{\mu_{nuc}}{e}\right)^{2}\left(\frac{\mu_{\chi}}{e}\right)^{2}\left(\frac{S_{\chi}+1}{3S_{\chi}}\right)\left(\frac{S_{N}+1}{3S_{N}}\right)F_{D}^{2}[E_{R}]$$

Chang, Weiner, Yavin PRD82, 125011 (2010)

- The overall rate is proportional to μ_χ^2
- Again we have three free parameters m_χ , δ and μ_χ and we follow the same procedure as earlier, except we scale μ_χ this time
- μ_{χ} =(scaling factor) $^{\frac{1}{2}} \times$ (0.001) μ_{N}

- The constraints from KIMS is expected to be strong as the target is CsI and both Cs and I have high magnetic moments
- KIMS: 3409 kg days, 20 100 keV
- XENON100 excludes this entire region despite having a low magnetic moment

• We look at lower m_χ and δ and include scattering from Na which also has a high magnetic moment

 Other experiments considered which do not exclude any part of the allowed parameter space were - ZEPLIN III, CRESST II (W) and CDMS with a low threshold The strongest constraints are from XENON100 '10. However, there is still an allowed region from 10-12 GeV.

CRESST oxygen channel does not exclude the allowed region. A
definitive signal at CRESST would most likely be hard to explain with
Magnetic Fluffy WIMPs as the magnetic moment of Ge is small.

Conclusions

- Fluffy WIMPS are excluded by the latest XENON100 data and low threshold CDMS bounds
- Magnetic Fluffy WIMPS with $m_\chi \sim$ 10 12 GeV and $\delta <$ 15keV are allowed
- CDMS with its low threshold of 2 keV should be very sensitive to this region with more exposure as the recoil energies

Backup slides

Backup slides

Experiment CDMS II	Element Ref Ge	Effective Exposure	Period of run Jul 1st '07 - Sep 1st '08	Signal Window 10 - 100 keV	Obs Events	Exp background	Nsig(fiDM) 4.42
CDMS low th	Ge	241?	our rat or - dep rat ou	2 - 5 keV	324	281	67
XENON10	Xe	0.3x316.4	Oct 6 '06 - Feb 14 '07	4.5 - 75 keV	13		18.96
XENON100 XENON100	Xe	16	1 Oct 20 '09 - Nov 12 '09	7.4 - 29.1	0		2.3
recent	Xe 1104	4 48*100.9	Jan 13- Jun 8 2010	8.4 - 44.6 keV	3	1.8+-0.6	4.88
ZEPLIN III	Xe	0.5x63.3	Feb 27 - May 20, 2008	17.5-78.8 keV	5		
CRESST II	W	0.59x0.9x48	Mar 27 '07 - Jul 23 '07	12-100 keV	7 32 + 2 triple		
CRESST latest	0?	56	4 Jul 11 '09 - May 17 '10 Aug 11 - Oct 6 2010	~10 - 40 keV ~10-40 keV	coincidences		
KIMS	CsI	340	9 not mentioned	20-100		0.28+-0.16	0.6