Ji-Cuadrada Perla Sosa Bautista & Miriam Yareth Garga Fernández

Es un método de prueba de hipótesis. Esto implica que dos pruebas de ji cuadrado habituales implican comprobar si las frecuencias observadas de una o más categorías se ajustan a las esperadas

χ es la letra griega Ji.

Tipos de prueba de ji cuadrado

Prueba de ji cuadrado de bondad de ajuste

Prueba de independencia de ji cuadrado

Prueba de ji cuadrado de bondad de ajuste

Numero de variables: 1 Objetivo de la prueba:

Determinar si es probable que una variable venga o no de una distribución dada

Ejemplo:

Decidir si varias bolsas de caramelos tienen o no el mismo número de unidades de cada sabor

Hipótesis:

Ho: la proporción de sabores es la misma
Ha: la proporción de sabores es diferente

Distribución

Número de categorías menos 1

Grados de libertad En nuestro ejemplo, número de sabores de caramelo menos 1

Prueba de independencia de ji cuadrado

Numero de variables: 2 Objetivo de la prueba:

Decidir si dos variables pueden o no estar relacionadas

Ejemplo:

Decidir si el consumo de snacks de un espectador tiene relación con el tipo de película que va a ver al cine **Hipótesis:**

Ho: la proporción de gente que compra snacks es independiente del tipo de película

Ha: la proporción de gente que compra snacks es distinta para distintos tipos de película

Distribución

Grados de libertad Número de categorías de la primera variable menos 1, multiplicado por el número de categorías de la segunda variable menos 1

 En nuestro ejemplo, número de tipos de película menos 1, multiplicado por 1 (porque la compra de snacks es sí/no y 2-1 = 1)

• • • ¿Cómo hacer una prueba de Ji cuadrado?

1

Defina su hipótesis nula y su hipótesis alternativa antes de recopilar los datos.

3

Revise posibles errores de datos.

4

Revise las suposiciones de la prueba. (Visite la página de cada tipo de prueba para más detalles sobre sus suposiciones).

2

Decida el valor alfa. Esto implica decidir el riesgo que desea correr de llegar a una conclusión errónea. Por ejemplo, digamos que define α =0,05 en su prueba de independencia. En este caso decide correr un riesgo del 5 % de concluir que ambas variables son independientes cuando no lo son.

5

Haga la prueba y saque sus conclusiones.

