

Inteligencia Artificial

Unidad 2: Redes Neuronales

TEMA 3: Algoritmos de IA Moderna-I

Módulo 2: Desde el Perceptrón a las Redes Neuronales

Unidad 2

Redes Neuronales

TEMA 3: Algoritmos de IA Moderna-I

Sesión 11-12

MÓDULO 2: Desde el Perceptrón a las Redes Neuronales

- 1. Perceptrón vs. Red Neuronal Artificial
- 2. Estructura de una Red Neuronal Artificial
- 3. Modelo Estándar de una Red Neuronal Artificial
- 4. El Perceptrón Simple
- 5. Redes ADALINE
- 6. Ventajas / Limitaciones

Modelo Biológico: una neurona

De alguna forma, una neurona es un procesador de información muy simple:

Canal de entrada: dendritas.

Procesador: soma.

Canal de salida: axón.

Las <u>neuronas son las células del sistema nervioso</u> encargadas de transmitir información mediante impulsos nerviosos.

Modelo Biológico: Una Red Neuronal

Una **red neuronal** es la unión entre **dos o más neuronas**, estas se relacionan entre si y pueden transmitir la información de manera eficaz.

Neurona Artificial

- Es la emulación a través de algoritmos del comportamiento de las neuronas humanas.
- A una sola neurona artificial se le conoce como Perceptrón.

- Un solo **perceptrón** (<u>o neurona artificial</u>) se puede imaginar como una <u>regresión logística</u>.
- Una **regresión logística** es un método estadístico utilizado para predecir clases binarias (o dicotómicas).

Estructura de un Perceptrón (neurona artificial)

Red Neuronal Artificial

- Las redes neuronales artificiales son un modelo inspirado en el funcionamiento del cerebro humano.
- Una RNA (o ANN por sus siglas en ingles) esta formada por un conjunto de nodos conocidos como neuronas artificiales o
 perceptrones que están conectadas y transmiten señales entre sí (están agrupadas en capas y conectadas mediante vínculos
 ponderados.
- Estas señales se transmiten desde la entrada hasta generar una salida.

Sistema global de proceso de una Red Neuronal Artificial

2. Estructura de una Red Neuronal Artificial

Red Neuronal Artificial: Cómo aprenden los perceptrones? El proceso de toma de decisiones

Enlace: https://youtu.be/T-zSe44XCEk (Duración: 10 min.)

2. Estructura de una Red Neuronal Artificial

Red Neuronal Artificial

OBJETIVO:

El objetivo principal de este modelo es **APRENDER** modificándose automáticamente a si mismo de forma que puede llegar a realizar tareas complejas que no podrían ser realizadas mediante la clásica programación basada en reglas.

¿Cómo funciona?

• ANN también se conoce como una red neuronal Feed-Forward porque las entradas se procesan solo en la dirección de avance:

- ANN consta de 3 capas: Entrada, Oculta y Salida.
 - La capa de entrada: acepta los valores de los datos iniciales
 - La capa oculta: procesa las entradas
 - La capa salida: produce el resultado
 - Esencialmente, cada capa intenta aprender ciertos pesos.

3. Modelo Estándar de una Red Neuronal Artificial

- El denominado modelo estándar de neurona artificial (modelo conexionista) se desarrolló según los principios descritos en Rumelhart y McClelland (1986).
- Siguiendo dichos principios, la i-ésima neurona artificial estándar consiste en:
 - 1. Un *conjunto de entradas* x_i y unos pesos sinápticos (fuerza de una conexión entre dos neuronas) $w_{i,j}$, con j=1,...,n
 - 2. Una **regla de propagación** h_i definida a partir del conjunto de entradas y los pesos sinápticos. Es decir:

$$h_i(x_1, ..., x_n, w_{i,1}, ..., w_{i,n})$$

La regla de propagación más comúnmente utilizada consiste en combinar linealmente las entradas y los pesos sinápticos,
 obteniéndose:

$$h_i(x_1, ..., x_n, w_{i,1}, ..., w_{i,n}) = \sum_{j=1}^n w_{i,j} x_j$$

Suele ser habitual añadir al conjunto de pesos de la neurona un parámetro adicional θ_i , que se denomina umbral (bias), el cual se acostumbra a restar al potencial pos-sináptico. Es decir:

$$h_i(x_1, ..., x_n, w_{i,1}, ..., w_{i,n}) = \sum_{j=1}^n w_{i,j} x_j - \theta_i$$

3. Modelo Estándar de una Red Neuronal Artificial

3. Una **función de activación**, la cual representa simultáneamente la salida de la neurona y su estado de activación. Si denotamos por y_i dicha función de activación, se tiene:

$$y_i = f(h_i) = f\left(\sum_{j=1}^n w_{i,j} x_j - \theta_i\right)$$

Funciones de activación de neurona artificial

Nombre	Relación Entrada /Salida	Icono
Limitador	$a = 0 \ n < 0$	Г
Fuerte	$a = 1 n \ge 0$	
Limitador		
Fuerte	$a = -1 n < 0$ $a = +1 n \ge 0$	手
Simétrico	a 11 n = 0	
Lineal	$a = 0 \ n < 0$	1
Positiva	$a = n \ 0 \le n$	
Lineal	a = n	
	u = n	
Lineal	$a = 0 \ n < 0$	
Saturado	$a = n \ 0 \le n < 1$ $a = 1 \ n > 1$	
-	l	

Nombre	Relación Entrada /Salida	Icono
Lineal Saturado	$a = -1 n < -1$ $a = n - 1 \le n \le 1$	+
Simétrico	a = +1 n > 1	
Sigmoidal	1	
Logarítmico	$a = \frac{1}{1 + e^{-n}}$	
Tangente		
Sigmoidal	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	+
Hiperbólica	$e^{n} + e^{-n}$	
Competitiva	a	
	= 1 Neurona con n max a	$ \mathbf{C} $
	= 0 el resto de neuronas	

3. Modelo Estándar de una Red Neuronal Artificial

- ❖ Fue introducido por Frank Rosenblatt en 1962.
- ❖ Se concibió como un sistema capaz de realizar tareas de clasificación de forma automática.
- ❖ A partir de un número de <u>elementos etiquetados</u>, el sistema determina la ecuación del hiperplano discriminante.

Frank Rosenblatt

ARQUITECTURA DEL PERCEPTRON SIMPLE

❖ Es un modelo unidireccional compuesto por dos capas de neuronas, una de entrada y otra de salida.

ARQUITECTURA DEL PERCEPTRON SIMPLE

- \clubsuit El perceptrón equivale a un hiperplano de dimensión n-1 capaz de **separar las clases (es dicotómica).**
 - Si la salida del perceptrón es +1, la entrada pertenecerá a una clase (estará situada a un lado del hiperplano)
 - Si la salida es -1, la entrada pertenecerá a la clase contraria (estará situada al otro lado del hiperplano)
- ❖ La ecuación del hiperplano es:

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + \theta = 0$$

Ejemplo: Perceptrón Simple 2 dimensiones

$$y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$$

La ecuación del hiperplano es:

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

$$x_2 = -\frac{w_1}{w_2}x_1 - \frac{\theta}{w_2}$$

APRENDIZAJE DE UN PERCEPTRON

- Se dispone de un conjunto de observaciones (patrones, ejemplos, datos) de los que se sabe su categoría o clase (etiqueta).
- Los ejemplos o datos son puntos en un espacio multidimensional:

$$\Re^n$$
: (x_1, \dots, x_n)

- ♣ Hay que determinar la ecuación del hiperplano que deja a un lado los ejemplos de una clase y al otro lado los de la otra clase.
- ❖ La ecuación del hiperplano se deduce a partir de los ejemplos (características o datos).
- * El aprendizaje es un proceso iterativo supervisado.

APRENDIZAJE

❖ <u>Dado</u>:

- Conjunto de patrones (características)
- Vector de entrada: $(x_1, ..., x_n)$
- \circ Salida: d(x)

$$d(x) = +1$$
 $si x \in A$

$$d(x) = -1$$
 si $x \in B$

Hiperplano discriminante:

 $(w_1, \dots, w_n, \theta)$ tales que

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + \theta = 0$$

Separa las clases *A* y *B*.

EJEMPLO: Función lógica AND

Datos:

Paso #1: Asignamos valores aleatorios para pesos de las entradas y umbral

Datos y Etiqueta

Resultado (proceso para encontrar y)

$$y = f(w_1x_1 + w_2x_2 + \theta) = ?$$

$$y = f(1*-1) + (1*-1) + 0.5 = ?$$

$$y = f(1*-1) + (1*-1) + 0.5 = ?$$

$$y = f(-2+0.5) = -1.5 \le 0 ?$$

$$y = d(x)$$

$$-1 = -1$$

$$y = f(-1.5) = -1$$

$$y = -1$$

Resultado (v)= Etiqueta d(x)

$$y = d(x)$$

$$-1 = -1$$

(evaluamos la sgte. entrada)

EJEMPLO: Función lógica AND

Datos:

Paso #2: Evaluamos la siguiente entrada.

Datos y Etiqueta

Resultado (proceso para encontrar y)

$y = f(w_1x_1 + w_2x_2 + \theta) = ?$

$$y = f((1 * 1) + (1 * -1) + 0.5) = ?$$

$$y = f(0.5) = 0.5 > 0$$
?

$$y = f(0.5) = 1$$

$$y = 1$$

Resultado (v)= Etiqueta d(x)

iMal Clasificado!

(modificamos pesos y umbral)

EJEMPLO: Función lógica AND

Datos:

		d(x)
X_1	X ₂	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1

Paso #2.1: Modificamos pesos y umbral hasta encontrar una buena clasificación (para la misma entrada).

Se conoce:
$$w_1 = 1$$
, $w_2 = 1$, $\theta = 0.5$

Calculamos nuevos pesos y umbral

$$w_1 = w_1 + d(x) * x_1 = 1 - 1 = 0$$

$$w_2 = w_2 + d(x) * x_2 = 1 + 1 = 2$$

$$\theta = \theta + d(x) = 0.5 - 1 = -0.5$$

$$y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$$

Datos y Etiqueta

Resultado

$y = f(w_1x_1 + w_2x_2 + \theta) = ?$

$$y = f(0*1) + (2*-1) - 0.5 = ?$$
 $y = f(0*1) + (2*-1) - 0.5 = ?$
 $y = d(x)$
 $y = f(-2.5) = -2.5 \le 0 ?$

$$y = f(-2.5) = -1$$

$$y = -1$$

Resultado = Etiqueta

(evaluamos la sgte. entrada)

EJEMPLO: Función lógica AND

Datos:

		d(x)
X_1	X ₂	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1

Paso #3: Evaluamos la siguiente entrada.

Datos y Etiqueta

Resultado (proceso para encontrar y)

$$y = f(w_1x_1 + w_2x_2 + \theta) = ?$$

$$y = f(0*-1) + (2*1) - 0.5 = ?$$
 $y = f(1.5) = 1.5 > 0?$
 $y = d(x)$
 $y = d(x)$
 $y = d(x)$

$$y = f(1.5) = 1$$

$$y = 1$$

Resultado (v)= Etiqueta d(x)

iMal Clasificado!

(modificamos pesos y umbral)

EJEMPLO: Función lógica AND

Datos:

		d(x)
X_1	X ₂	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1

Paso #3.1: Modificamos pesos y umbral hasta encontrar una buena clasificación (para la misma entrada).

Se conoce:
$$w_1 = 0, w_2 = 2, \theta = -0.5$$

Calculamos nuevos pesos y umbral

$$w_1 = w_1 + d(x) * x_1 = 0 + (-1 * -1) = 1$$

$$w_2 = w_2 + d(x) * x_2 = 2 + (-1 * 1) = 1$$

$$\theta = \theta + d(x) = -0.5 - 1 = -1.5$$

$$y = \begin{cases} +1, & si \ w_1 x_1 + w_2 x_2 + \theta > 0 \\ -1, & si \ w_1 x_1 + w_2 x_2 + \theta \le 0 \end{cases}$$

Datos y Etiqueta

Resultado

$$y = f(w_1x_1 + w_2x_2 + \theta) = ?$$

$$y = f((1*-1) + (1*1) - 1.5) = ?$$

$$y = f((1*-1) + (1*1) - 1.5) = ?$$

$$y = d(x)$$

$$y = f(-1.5) = -1.5 \le 0 ?$$

$$y = f(-1.5) = -1$$

$$y = -1$$

Resultado = Etiqueta

(evaluamos la sgte. entrada)

EJEMPLO: Función lógica AND

Datos:

d(x)**AND**

Paso #4: Evaluamos la siguiente entrada.

Datos y Etiqueta

Resultado (proceso para encontrar y)

$$y = f(w_1x_1 + w_2x_2 + \theta) = ?$$

$$y = f((1*1) + (1*1) - 1.5) = ?$$

$$y = f(0.5) = 0.5 > 0.7$$

$$y = d(x)$$

$$1 = 1$$

$$y = f(0.5) = 1$$

Resultado (v)= Etiqueta d(x)

$$y = d(x)$$

iBien Clasificado!

Un hiperplano solución es:
$$x_1 + x_2 - 1.5 = 0$$

$$x_1 + x_2 - 1.5 = 0$$

EJEMPLO: Función lógica AND

El hiperplano se mueve de una iteración a otra para clasificar correctamente los patrones (características).

SEUDOCODIGO

- 1. Comenzar con valores aleatorios para pesos y umbral
- 2. Modificación de los pesos y umbral hasta encontrar el hiperplano discriminante
 - a. Seleccionar un ejemplo x del conjunto de entrenamiento
 - b. Se calcula la salida de la red: $y = f(w_1x_1 + w_2x_2, ..., w_nx_n + \theta)$
 - c. Si $y \neq d(x)$ (clasificación incorrecta) se modifican los pesos y el umbral:

$$w_i(t+1) = w_i(t) + d(x) * x_i$$

$$\theta(t+1) = \theta(t) + d(x)$$

d. Repetir desde el paso 2.a hasta completar el conjunto de patrones de entrenamiento o hasta alcanzar el criterio de parada.

ADALINE (ADAptive Linear NEuron) fue desarrollado en 1960 por Widrow y Hoff.

Dr. Bernard Widrow

PhD. Marcian Hoff

• Las <u>entradas pueden ser continuas</u> y se <u>utiliza una neurona similar a la del Perceptrón Simple</u>, igualmente, resulta un caso de respuesta lineal.

$$y = w_1 x_1 + \dots + w_n x_n + \theta$$

APRENDIZAJE: DIFERENCIAS ENTRE PERCEPTRON Y REDES ADALINE

PERCEPTRON

- Utiliza la salida de la función umbral (binaria) para el aprendizaje.
- Sólo se tiene en cuenta si se ha equivocado o no (no cuanto se equivocó).
- Valores de respuesta no continuos.

ADALINE

- Utiliza directamente la salida de la red (real) teniendo en cuenta cuánto se ha equivocado.
- <u>Considera el error</u> entre la salida lograda y versus la salida deseada d (etiqueta):

$$|d^p - y^p|$$

• Esta regla se conoce como **REGLA DELTA**. La constante α se denomina **TASA DE APRENDIZAJE**.

$$\Delta w_i = \alpha |d^p - y^p| x_i$$

- Valores de <u>respuesta continuos</u>.
- Se busca minimizar la desviación de la red para todos los patrones (características) de entrada, eligiendo una medida del error global.
- Normalmente se utiliza el error cuadrático medio:

$$E = rac{1}{2} \sum_{p=1}^m (d^p - y^p)^2$$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	х ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #1: Asignamos valores aleatorios para pesos de las entradas y umbral

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 0, x_2 = 0, x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 0 + 0.394 * 0 + 0.783 * 1 = 0.783$$

 $E = |d^p - v^p| = |1 - 0.783| = 0.217$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 0.217 * 0 = \mathbf{0.840}$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.394 + 0.3 * 0.217 * 0 = \mathbf{0.394}$
 $w_3 = w_3 + \alpha * E * x_3 = 0.783 + 0.3 * 0.217 * 1 = \mathbf{0.8481}$

EJEMPLO: Decodificador binario a decimal

Datos

Paso #5: Modificar los pesos y el umbral y repetimos desde el paso #2 hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 0, x_2 = 1, x_3 = 0$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 0 + 0.394 * 1 + 0.8481 * 0 = 0.394$$

 $E = |d^p - v^p| = |2 - 0.394| = 1.606$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 1.606 * 0 = 0.840$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.394 + 0.3 * 1.606 * 1 = 0.876$
 $w_3 = w_3 + \alpha * E * x_3 = 0.8481 + 0.3 * 1.606 * 0 = 0.8481$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el **paso #2** hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 0, x_2 = 1, x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 0 + 0.876 * 1 + 0.8481 * 1 = 1.7241$$

 $E = |d^p - v^p| = |3 - 1.7241| = 1.2759$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 1.2759 * 0 = 0.840$$

 $w_2 = w_2 + \alpha * E * x_2 = 0.876 + 0.3 * 1.2759 * 1 = 1.259$
 $w_3 = w_3 + \alpha * E * x_3 = 0.8481 + 0.3 * 1.2759 * 1 = 1.231$

EJEMPLO: Decodificador binario a decimal

Datos

X ₁	x ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el **paso #2** hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1, x_2 = 0, x_3 = 0$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 0.84 * 1 + 0.876 * 0 + 0.8481 * 0 = 0.84$$

$$E = |d^p - y^p| = |4 - 0.84| = 3.16$$

$$w_1 = w_1 + \alpha * E * x_1 = 0.84 + 0.3 * 3.16 * 1 = 1.788$$

$$w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 3.16 * 0 = 1.259$$

$$w_3 = w_3 + \alpha * E * x_3 = 1.231 + 0.3 * 3.16 * \mathbf{0} = \mathbf{1}.231$$

EJEMPLO: Decodificador binario a decimal

Datos

X ₁	X ₂	X ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el **paso #2** hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1, x_2 = 0, x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 1.788 * 1 + 1.259 * 0 + 1.231 * 1 = 3.019$$

 $E = |d^p - v^p| = |5 - 3.019| = 1.981$

$$w_1 = w_1 + \alpha * E * x_1 = 1.788 + 0.3 * 1.981 * 1 = 2.382$$

 $w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 1.981 * 0 = 1.259$
 $w_3 = w_3 + \alpha * E * x_3 = 1.231 + 0.3 * 1.981 * 1 = 1.825$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	Х ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el **paso #2** hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1, x_2 = 1, x_3 = 0$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 2.382 * 1 + 1.259 * 1 + 1.825 * 0 = 3.641$$

 $E = |d^p - y^p| = |6 - 3.641| = 2.359$

$$w_1 = w_1 + \alpha * E * x_1 = 2.382 + 0.3 * 2.359 * 1 = 3.09$$

 $w_2 = w_2 + \alpha * E * x_2 = 1.259 + 0.3 * 2.359 * 1 = 1.967$
 $w_3 = w_3 + \alpha * E * x_3 = 1.825 + 0.3 * 2.359 * 0 = 1.825$

EJEMPLO: Decodificador binario a decimal

Datos

x ₁	X ₂	х ₃	d(X)
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Paso #5: Modificar los pesos y el umbral y repetimos desde el **paso #2** hasta cumplir el criterio de parada.

Paso #2: Seleccionar un ejemplo x del conjunto de entrenamiento: $x_1 = 1, x_2 = 1, x_3 = 1$

Paso #3: Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.

$$y = 3.09 * 1 + 1.967 * 1 + 1.825 * 1 = 6.882$$

 $E = |d^p - y^p| = |7 - 6.882| = 0.118$

EJEMPLO: Decodificador binario a decimal

Visualización de los pesos según iteraciones

Iteració	n w1	w2	w3
1	3.13	2.00	1.86
2	3.61	1.98	1.42
3	3.82	1.98	1.2
4	3.92	1.98	1.1
5	3.96	1.99	1.02
6	3.99	2.00	1.01
7	4.00	2.00	1.00
8	4.00	2.00	1.00
9	4.00	2.00	1.00
10	4.00	2.00	1.00

- La tasa de aprendizaje α también puede ser adaptativa.
- Por ejemplo al inicio, el valor puede ser alto, para dar "grandes pasos" de corrección del error y para salir de mínimos locales.
- Sin embargo al final del entrenamiento debe disminuir para hacer correcciones finas.

APRENDIZAJE: Seudocódigo

- 1. Inicializar los pesos y umbral de forma aleatoria.
- 2. Seleccionar un ejemplo x del conjunto de entrenamiento.
- 3. Calcular la salida de la red: $y = f(w_1x_1 + \cdots + w_nx_n + \theta)$ y obtener la diferencia.
- 4. Para todos los pesos y para el umbral, calcular:

$$\Delta w_i = \alpha |d^p - y^p| x_i$$
 $\Delta \theta_i = \alpha |d^p - y^p|$

5. Modificar los pesos y el umbral del siguiente modo:

$$w_i(t+1) = w_i(t) + \Delta w_i$$

$$\theta(t+1) = \theta(t) + \Delta \theta_i$$

6. Repetir para todos los patrones de entrenamiento hasta cumplir el criterio de parada.

6. Ventajas / Limitaciones

VENTAJAS

- El uso del Perceptrón o de las redes ADALINE permite aproximar de manera fácil, cualquier tipo de función o sistemas, sólo conociendo un conjunto de ejemplos (características o entradas).
- El uso del Perceptrón o de las redes ADALINE permite que cualquier sistema (caja negra), se puede representar por una red.

LIMITACIONES

- Estas técnicas poseen grandes limitaciones.
- Sólo pueden resolver sistemas donde los ejemplos o características (entradas) son linealmente separables (por ejemplo no resolverá el XOR Exclusivo para el cual no existe un hiperplano).

X ₁	X ₂	d(x)	(44)	(1,1)
-1	-1	1	(-1,1)□	
-1	1	-1		
1	-1	-1	(-1,-1) [©]	
1	1	1	(-1,-1)	(1,-1)

Solución: Combinar varios Perceptrones

PREGUNTAS

Dudas y opiniones