Modeling the Deformation of a Golf Ball A Ball-Spring Simulation

Kar Epker

University of Michigan

April 12, 2012

Introduction

- What is a force?
- Deformations

A United States Golf Association (USGA) video of a golf ball hitting steel at 150 mph

Simulation

Two difficulties in simulating:

- 1. Making the model
- 2. Adding the physics

Making the Model

- Geodesic spheres
- Layers
- Connections of particles

The final model

Adding the Physics

- Springs
- Revised momentum principle

My model being compressed by a "club"

My model flying shortly after being hit

Results

Graphs of velocity of edge getting hit, the center of mass, the difference

Results

Graphs of velocity of edge getting hit, the center of mass, the difference

The good parts:

- Spin
- Speed relative to each other

Results

Graphs of velocity of edge getting hit, the center of mass, the difference

The good parts:

- Spin
- Speed relative to each other

The bad parts:

- Speed quantitatively
- Acceleration

- ✓ Deformation
- ✓ Spin

- ✓ Deformation
- ✓ Spin
- Verification/Validation
- X Stability

- ✓ Deformation
- ✓ Spin
- Verification/Validation
- X Stability

Flattening

- ✓ Deformation
- ✓ Spin
- Verification/Validation
- X Stability

Flattening

Collapsing

The ultimate question: How do we debug nature?

