Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

- The Pigeonhole principle
 - The Erdős-Szekeres Theorem
 - The Dilworth Lemma for Posets
 - Mantel's Theorem
 - Turán's Theorem

The Pigeonhole Principle

(aka Dirichlet's principle)

If a set of size at least r is partitioned into s sets, then some class receives at least $\lceil r/s \rceil$ elements.

Proposition 1.

In any graph, there exist two vertices with the same degree.

- Let G = (V, E) be a graph with |V| = n.
- The degree of any vertex is between 0 and n-1.
 - If there is a vertex with degree 0, then there exists no vertex with degree n-1, and vice versa.
 - Hence, there are at most n-1 different values for the vertex degrees, while there are n vertices.
 - By the pigeonhole principle,
 at least two vertices have the same degree.

Independent Set & Chromatic Number

- Let G = (V, E) be a graph.
- Let
 - $\alpha(G)$ be the maximum size of any independent set for G.
 - χ(G) be the chromatic number of G,
 i.e., the minimum number of colors required to color V such that,
 - no adjacent vertices are colored the same.

Independent Set & Chromatic Number

- Let G = (V, E) be a graph.
 - Let $\alpha(G)$ denote the size of maximum independent set for G.
 - Let $\chi(G)$ denote the chromatic number of G.
- Consider a coloring of V that uses $\chi(G)$ colors.
 - Let $V_1, V_2, ..., V_{\chi(G)}$ be the partition of the vertices by their colors.
 - For any $1 \le i \le \chi(G)$, the set V_i is an independent set for G.

Proposition 2.

In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

- Proof 1.
 - Consider a coloring of V that uses $\chi(G)$ colors and $V_1, V_2, \dots, V_{\chi(G)}$ be the partition of the vertices by their colors.
 - Since V_i is an independent set, $|V_i| \le \alpha(G)$.
 - Hence, $n = \sum_{1 \leq i \leq \chi(G)} |V_i| \leq \alpha(G) \cdot \chi(G).$

Proposition 2.

In any graph G with n vertices, $n \leq \alpha(G) \cdot \chi(G)$.

■ Proof 2.

- Consider a coloring of V that uses $\chi(G)$ colors and let $V_1, V_2, \dots, V_{\chi(G)}$ be the partition of the vertices by their colors.
- By the pigeonhole principle, there exists some i with $|V_i| \ge \frac{n}{\chi(G)}$.
- Since V_i is an independent set, $\alpha(G) \ge |V_i|$.
- By the above two inequalities, $n \leq \alpha(G) \cdot \chi(G)$.

Proposition 3.

Let G be a graph with n vertices. If every vertex has a degree of at least (n-1)/2, then G is connected.

Proof.

- We prove that, for any pair of vertices, say, x and y,
 either x and y are <u>adjacent</u> or <u>have a common neighbor</u>.
- If x and y are not adjacent, then there are at least n-1 edges connecting them to the remaining vertices.
- Since there are only n-2 other vertices, at least two of these n-1 edges connect to the same vertex.

Some Remark.

- The statement from Proposition 3 is the best possible.
 - To see that, consider the graph that consists of two disjoint complete graphs, each having n/2 vertices.

Then every vertex has degree n/2-1, and the graph is disconnected.

Also note that, we also proved that, if every vertex has degree at least (n-1)/2, then the diameter of the graph is at most two.

The Erdős-Szekeres Theorem

Increasing / Decreasing Sequences

- Let $A = (a_1, a_2, ..., a_n)$ be a sequence of n distinct numbers.
 - A sequence of B with length k is called a <u>subsequence</u> of A,
 if the elements of B appear in the same order in which they appear in A, i.e.,

$$B = (a_{i_1}, a_{i_2}, ..., a_{i_k}), \text{ where } i_1 < i_2 < \cdots < i_k.$$

A sequence is said to be increasing if $a_1 < a_2 < \cdots < a_n$ and decreasing if $a_1 > a_2 > \cdots > a_n$.

Theorem 5 (Erdős-Szekeres 1935).

Let $A = (a_1, a_2, ..., a_n)$ be a sequence of n distinct numbers. If $n \ge sr + 1$, then A has either an increasing subsequence of length s + 1 or a decreasing subsequence of length r + 1.

■ Proof. (due to Seidenberg 1959).

For any $1 \le i \le n$, associate a_i with a pair (x_i, y_i) , where

- x_i is the length of the <u>longest increasing subsequence</u> ending at a_i .
- y_i is the length of the <u>longest decreasing subsequence</u> starting at a_i .

For any $1 \le i \le n$, associate a_i with a pair (x_i, y_i) , where

- x_i is the length of the <u>longest increasing subsequence</u> ending at a_i .
- y_i is the length of the <u>longest decreasing subsequence</u> starting at a_i .

- For $1 \le i < j \le n$, we have $(x_i, y_i) \ne (x_j, y_j)$.
 - If $a_i < a_j$, then $x_j \ge x_i + 1$.
 - If $a_i > a_j$, then $y_i \ge y_j + 1$.

One of the two conditions must hold, since the elements are distinct.

- For any $1 \le i < j \le n$, we have $(x_i, y_i) \ne (x_j, y_j)$.
 - If $a_i < a_j$, then $x_j \ge x_i + 1$.
 - If $a_i > a_j$, then $y_i \ge y_j + 1$.
- \blacksquare Consider the $n \times n$ grids.
 - By the above observation, all the elements a_i correspond to a distinct grid.

- \blacksquare Consider the $s \times r$ submatrix.
 - Since $n > s \cdot r$, for some i, the element a_i corresponds to some grid outside the $s \times r$ submatrix.
 - Hence, either $x_i > s$ or $y_i > r$.

The Dilworth Lemma

for Partially Ordered Sets (Posets)

Partial Order.

- A <u>partial order</u> on a set P is a <u>binary relation</u> \leq that is
 - (reflexive). $a \leq a$, for all $a \in P$,
 - (antisymmetric). If $a \le b$ and $b \le a$, then a = b.
 - (transitive). If $a \le b$ and $b \le c$, then $a \le c$.
- Two elements $a, b \in P$ are said to be <u>comparable</u> if either $a \le b$ or $b \le a$.

Chain and Antichain.

- Let P be a set with partial order \leq .
 - A subset C ⊆ P is called a <u>chain</u>,
 if every pair of elements in C is comparable.
 - Dually, a subset $C \subseteq P$ is called an <u>antichain</u>, if none of the pairs in C is comparable.

Chain and Antichain.

For example,

let $P = \{1, 2, 3, 4, 5, a, b, c, d\}$ and define the partial order \leq as

$$1 \le 2 \le 3 \le 4 \le 5$$
, and

$$a \leq b \leq c \leq d$$
.

- Then, $\{4,2,3\}$ and $\{c,d\}$ are two chains, and $\{2,c\}$ is an antichain.

Lemma 6 (Dilworth 1950).

Let P be a set with a partial order \leq .

If $|P| \ge sr + 1$, then there exists either a chain of size s + 1 or an antichain of size r + 1.

Proof.

- For any $a \in P$, let $\ell(a)$ denote the *length* of the *longest chain ending at a*.
- Suppose that there exists no chain of size s + 1.
 - Then $\ell(a) \leq s$ for all $a \in P$.
 - We will show that, there exists an antichain of size r + 1.

- For any $a \in P$, let $\ell(a)$ denote the length of the longest chain ending at a.
- For $1 \le i \le s$, let A_i be the set of elements a with $\ell(a) = i$.
 - Then, A_i must be an antichain, for all $1 \le i \le s$.
 - Consider any $a, b \in A_i$ with $a \neq b$. By assumption, we have $\ell(a) = \ell(b)$.
 - If a and b are comparable, say, a ≤ b,
 then, we add b to the longest chain ending at a.

This gives a chain ending at b with length $\ell(b) + 1$, a contradiction.

- Suppose that there exists no chain of size s + 1.
 - Then $\ell(a) \leq s$ for all $a \in P$.
- For $1 \le i \le s$, let A_i be the set of elements a with $\ell(a) = i$.
 - Then, A_i is an antichain, for all $1 \le i \le s$.
 - $\blacksquare A_i \cap A_j = \emptyset \text{ for all } i \neq j.$
 - \blacksquare $A_1, A_2, ..., A_s$ forms a partition of P.
- Since $|P| \ge sr + 1$, by the pigeonhole principle, $|A_i| \ge r + 1$ for some i.

Some Note.

- The proof given in the textbook is wrong.
 - The greatest elements chosen in different maximal chains can be identical, and hence, comparable.

For example, the two maximal chains, $\{a, c, d\}$ and $\{b, c, d\}$, share the same greatest element d.

The Mantel's Theorem

How many edges can a *triangle-free graph* have?

Alternatively,

how many edges can we add to a graph without creating a triangle?

The Maximum Number of Edges in a Triangle-free Graph.

■ A triangle is a complete graph of 3 vertices.

- We know that, bipartite graphs do not contain any triangle.
 - So, $n^2/4$ edges are possible, achieved by complete bipartite graphs with two n/2 partite sets.
 - It turns out that, $n^2/4$ is also the best possible.

Theorem 7 (Mantel 1907).

If an n-vertex graph has more than $n^2/4$ edges, then it contains a triangle.

■ Proof 1.

- Let G = (V, E) with |V| = n and |E| = m.
- Assume that G has no triangles.
 - Consider any $e = (x, y) \in E$.

|V| = n. If d(x) + d(y) > n, x and y must share a common neighbor and they form a triangle.

The pigeonhole principle guarantees that

$$d(x) + d(y) \le n$$
.

■ Proof 1.

- Let G = (V, E) with |V| = n and $|E| = m > n^2/4$.
- Assume that G has no triangles. Consider any $e = (x, y) \in E$.

The pigeonhole principle guarantees that

$$d(x) + d(y) \le n.$$

$$\sum_{x \in V} d(x)^2 = \sum_{(x,y) \in E} \left(d(x) + d(y) \right) \leq mn.$$

By the double counting principle.

- We obtain
$$\sum_{x \in V} d(x)^2 \leq mn.$$

For any vector $u, v \in \mathbb{R}^n$, $|u \cdot v| \leq ||u|| \cdot ||v||.$

- Apply the **Cauchy-Schwarz inequality** to lower-bound $\sum_{x \in V} d(x)^2$.

Define two vectors
$$\begin{cases} u = (1, 1, \dots, 1) \\ v = \left(d(v_1), d(v_2), \dots, d(v_n)\right) \end{cases} .$$

We have

$$|V| \cdot \sum_{x \in V} d(x)^2 \ge \left(\sum_{x \in V} d(x)\right) = 4m^2.$$

Hence, $m \leq n^2/4$.

 $\sum_{x \in V} d(x) = 2m$ by the double counting principle.

Theorem 7 (Mantel 1907).

If an n-vertex graph has more than $n^2/4$ edges, then it contains a triangle.

■ Proof 2.

- In the second proof, we count the number of edges using the property of the *maximum independent sets*.
- Let G = (V, E) with |V| = n.

Assume that *G* has no triangles.

■ We will show that $|E| \le n^2/4$.

Assume that G has no triangles.

- (*) If not, we get a triangle.
- For any $v \in V$, the neighbors of v form an independent set.
- Let $A \subseteq V$ be a maximum independent set (MIS) in G.
 - \blacksquare None of vertex pairs in A is connected by an edge.
 - Hence, *every edge in G* connects some vertex in $B := V \setminus A$.
 - We obtain

$$|E| \le \left[\sum_{x \in B} d(x) \le \sum_{x \in B} |A| \right] = \left[|A| \cdot |B| \le \left(\frac{|A| + |B|}{2} \right)^2 \right] = n^2/4$$
.

By (*) and A being an MIS for G.

Arithmetic and geometric mean inequality.

Turán's Theorem

How many edges can a K_{ℓ} -free graph have?

Alternatively,

how many edges can we add to a graph without creating a clique of size ℓ ?

The Maximum Number of Edges in a K_{ℓ} -free Graph.

■ A ℓ -clique, denoted K_{ℓ} , is a complete graph on ℓ vertices.

- The Mantel's theorem states that, any K_3 -free graph has at most $n^2/4$ edges.
 - What about k-cliques with k > 3?

Theorem 8 (Turán 1941).

If a graph G = (V, E) with n vertices contains no (k + 1)-cliques, where $k \ge 2$, then

 $|E| \le \left(1 - \frac{1}{k}\right) \cdot \frac{n^2}{2} .$

Proof.

- The case k = 2 is proved by the Mantel's theorem. Suppose that $k \ge 3$.
- Let's prove by induction on n. The case with n = 1 is trivial. Suppose that the inequality holds for graphs with at most n - 1 vertices.

- The case with n=1 is trivial. Suppose that the inequality holds for graphs with at most n-1 vertices.
- Let G = (V, E) be an n-vertex graph that has no (k + 1)-cliques and a maximal number of edges.

Hence,

- Adding any new edge to G will create a (k + 1)-clique.
- G contains at least one k-clique. Let A be a k-clique in G, and let $B \coloneqq V \setminus A$.
- Let e_A , e_B , $e_{A,B}$ denote the number of edges in A, in B, and that between A and B, respectively.

- Let G = (V, E) be an n-vertex graph with no (k + 1)-cliques and with a maximal number of edges.
 - Let A be a k-clique in G, and let $B := V \setminus A$.
 - Let e_A , e_B , $e_{A,B}$ denote the number of edges in A, in B, and that between A and B, respectively.
 - We have $e_A = \binom{k}{2} = k(k-1)/2$.

By the induction hypothesis, $e_B \leq \left(1 - \frac{1}{\nu}\right) \cdot \frac{(n-k)^2}{2}$.

$$e_B \le \left(1 - \frac{1}{k}\right) \cdot \frac{(n-k)^2}{2} .$$

Each $v \in B$ is adjacent to at most k-1 vertices in A.

Hence,
$$e_{A,B} \leq (k-1) \cdot (n-k)$$
.

G has no (k + 1)-cliques

• We have
$$e_A = \binom{k}{2} = k(k-1)/2$$
.

$$e_B \le \left(1 - \frac{1}{k}\right) \cdot \frac{(n-k)^2}{2}$$
. $e_{A,B} \le (k-1) \cdot (n-k)$.

$$e_{A,B} \leq (k-1) \cdot (n-k).$$

We obtain that

$$|E| = e_A + e_B + e_{A,B}$$

$$\leq \frac{k(k-1)}{2} + \left(1 - \frac{1}{k}\right) \cdot \frac{(n-k)^2}{2} + (k-1)(n-k)$$

$$= \left(1 - \frac{1}{k}\right) \cdot \frac{n^2}{2} .$$