

> Big Data Session 2: Storage Infrastructures

Last week

- Big Data Definitions and Systems
 - Scale-up vs scale-out
 - Batch processing vs streaming
 - Hadoop, Spark
- Big Data Use-Cases
 - Internet, Retail, and more
- Introduction to Hadoop

Big Data is processed using many different servers

Intended Learning Outcomes

At the end of this lecture, you will be able to:

- Explain challenges of distributed IT infrastructures
- Differentiate between different distributed file systems
- Describe current solutions for distributed data storage

Outline

- Distributed Infrastructures
- Google File System
- HDFS
- Apache Spark RDD

Distributed systems

[Wikipedia] A distributed system is a model in which components located on **networked computers** communicate and **coordinate their actions** by passing **messages**. The components interact with each other in order to achieve a **common goal**.

Distributed systems

- Large Data Volumes
- Store them over a distributed system

Databases are suitable for parallelism

- Data can be partitioned across multiple disks for parallel I/O.
- Data can be partitioned and each processor can work independently on its own partition.
- Concurrency control takes care of conflicts.

Parallel database architectures

Parallel database architectures

- Shared memory -- processors share a common memory
- Shared disk -- processors share a common disk
- Shared nothing -- processors share neither a common memory nor common disk
- Hierarchical -- hybrid of the above architectures

Shared Memory

- Extremely efficient communication between processors
- Downside –is not scalable beyond 32 or 64 processors
- Widely used for lower degrees of parallelism (4 to 8).

Shared Disk

- Examples: IBM Sysplex and DEC clusters running Rdb were early commercial users
- Downside: bottleneck at interconnection to the disk subsystem.
- Shared-disk systems can scale to a somewhat larger number of processors, but communication between processors is slower.

Shared Nothing

- Data accessed from local disks (and local memory accesses) do not pass through interconnection network, thereby minimizing the interference of resource sharing.
- Shared-nothing multiprocessors can be scaled up to thousands of processors without interference.
- Main drawback: cost of communication and non-local disk access; sending data involves software interaction at both ends.

Hierarchical

Combines characteristics of shared-memory, shared-disk, and shared-nothing architectures.

Distributed

- Databases having storage devices distributed over a network of connected computers
- Reasons for building distributed systems:
 - sharing data
 - autonomy
 - Availability

Which of these architectures is the most scalable?

Shared Nothing

- Most scalable architecture
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program and manage
 - Processor=server=node
 - P=number of nodes

CAP Theorem

- Conjectured by Prof. Eric Brewer at PODC (Principle of Distributed Computing) 2000 keynote talk
- Described the trade-offs involved in distributed system
- It is impossible for a web service to provide following three guarantees at the same time:
 - Consistency
 - Availability
 - Partition-tolerance

CAP Theorem

Source: https://www.youtube.com/watch?v=UXes4JwUG3w

CAP Theorem

- Consistency means that each client always has the same view of the data.
- Availability means that all clients can always read and write.
- Partition tolerance means that the system works well across physical network partitions.
- Only 2 out of 3 can be implemented

Details: Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

A gets updated from B

Why is this important?

- Big data analytics is based on distributed data storage
- CAP theorem describes the **trade-offs** involved in distributed systems
- A proper understanding of CAP theorem is essential to making decisions about the future of distributed database design
- Misunderstanding can lead to erroneous or inappropriate design choices

Outline

- Distributed Infrastructures
- Google File System
- HDFS
- Apache Spark RDD

File systems determine how data is stored and retrieved

Use Case Google (in 2003)

- Huge amounts of data to store and process
 - 20+ billion web pages x 20KB/page = 400+ TB
 - Reading from one disk 30-35 MB/s
 - Four months just to read the web
 - 1000 hard drives just to store the web
 - Even more complicated if we want to process data
- Scalable solution needed

Google's requirements

- A scalable distributed file system for large data-intensive applications running on inexpensive commodity hardware
- Distributed file system: Manage file storage across a network of machines
- A tool for processing large data sets in parallel on inexpensive commodity hardware
- Optimal performance

Google File System (GFS)

- Scalable distributed file system for large distributed data intensive applications
- Build on Linux operation system
- It delivers high aggregate performance to a large number of clients

Details: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. Google file system. In *Proceedings of the 19th ACM Symposium on Operating Systems Principles*, ACM, Bolton Landing, NY (2003), pp. 20-43.

GFS Assumption

- Hardware failures are common (commodity hardware)
- Files are large (GB/TB) and their number is limited (millions, not billions)
- Two main types of reads: large streaming reads and small random reads
- Workloads with sequential writes that append data to files
- Once written, files are seldom modified (!=append) again
 - Random modification in files possible, but not efficient in GFS

GFS is not good for...

- Low latency data access (in the milliseconds range)
- Many small files
- Constantly changing data

Files in GFS

- A single file can contain many objects
- Files are divided into fixed size chunks (64MB)
 - In Hadoop 128MB
- Chunkservers store chunks on local disk as "normal" files
- Files are replicated (by default 3 times) across all chunk servers
- master maintains all file system metadata
- To read/write data: client communicates with master (metadata)

GFS Architecture

Single master architecture

- Single master simplifies the design tremendously
 - Chunk placement and replication with global knowledge
- Single master in a large cluster can become a bottleneck

Outline

- Distributed Infrastructures
- Google File System
- HDFS
- Apache Spark RDD

Hadoop Distributed File System (HDFS)

- Inspired by Google File System
- Scalable, distributed, portable file system written in Java for Hadoop framework
- Primary distributed storage used by Hadoop applications
- HFDS can be part of a Hadoop cluster or can be a stand-alone general purpose distributed file system
- Reliability and fault tolerance ensured by replicating data across multiple hosts

Details: K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System. IEEE 26th Symposium on Mass Storage Systems and Technologies, 2010

Hadoop ecosystem

Few facts to remember

- Distributed file system designed to run on low cost commodity hardware
- Designed for batch processing rather than interactive use by users
- Write-once-read-many access model for files
- Applications that run on HDFS need streaming access to their data sets
- Supports huge data volume, data divided into 64MB (default) blocks, industry practice is 128 MB
- Highly fault-tolerant, each block replicated 3 times

GFS vs HDFS

GFS	HDFS
Master	NameNode
chunkserver	DataNode
operation log	journal, edit log
chunk	block
random file writes possible	only append is possible
multiple writer, multiple reader model	single writer, multiple reader model
chunk: 64KB data and 32bit checksum pieces	per HDFS block, two files created on a DataNode: data file & metadata file (checksums, timestamp)
default block size: 64MB	default block size: 128MB

HDFS

NameNode

- Master of HDFS, directs the slave DataNode daemons to perform lowlevel I/O tasks
- Keeps track of file splitting into blocks, replication, block location, etc.
- Secondary NameNode: takes snapshots of the NameNode
- DataNode: each slave machine hosts a DataNode daemon

NameNodes and DataNodes

Outline

- Distributed Infrastructures
- Google File System
- HDFS
- Apache Spark RDD

Hadoop ecosystem

What is Apache Spark?

- Apache Spark is a fast and general-purpose cluster computing system for large scale data processing
- Suitable for batch processing and real-time processing
- High-level APIs in Java, Scala, Python, and R

Standard libraries

- Spark SQL
 - Allows to query structured data
- Spark Streaming
 - Intended for real-time processing.
- MLlib
 - Suitable for machine learning tasks
- GraphX
 - Graph processing

Details: M. Zaharia et al. Apache Spark: A Unified Engine for Big Data Processing. *Communications of the ACM*, 59(11):56-65, 2016

Gray sort competition: Winner Spark-based

	Hadoop MR Record	Spark Record (2014)
Data Size	102.5 TB	100 TB Spark-base
Elapsed Time	72 mins	23 mins System
# Nodes	2100	206 3x faster
# Cores	50400 physical	6592 virtualiz # of nodes
Cluster disk throughput	3150 GB/s (est.)	618 GB/s
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)

Spark vs. Hadoop MapReduce

- Performance: Spark normally faster but with caveats
 - Spark can process data in-memory; Hadoop MapReduce persists back to the disk after a map or reduce action
 - Spark generally outperforms MapReduce, but it often needs lots of memory to do well; if there are other resource-demanding services or can't fit in memory, Spark degrades
 - MapReduce easily runs alongside other services with minor performance differences, & works well with the 1-pass jobs it was designed for
- Ease of use: Spark is easier to program
- Data processing: Spark more general
- Maturity: Spark maturing, Hadoop MapReduce mature

Spark Components

Spark Abstractions & Concepts

- RDD: Resilient Distributed Dataset
 - Management and processing of distributed data
- DAG: Direct Acyclic Graph
 - Constructs execution flow by constructing graph comprising of nodes and edges
- SparkContext
 - Manages orchestration within a Spark cluster
- Transformations
 - "Creation of new RDDs", e.g., by filtering data
- Actions
 - Operations that return something other than an RDD

Resilient Distributed Dataset (RDD) – key Spark construct

- RDDs represent data or transformations on data
- RDDs can be created from Hadoop InputFormats (such as HDFS files), "parallelize()" datasets, or by transforming other RDDs (you can stack RDDs)
- Actions can be applied to RDDs; actions force calculations and return values
- Lazy evaluation: Nothing computed until an action requires it
- RDDs are best suited for applications that apply the same operation to all elements of a dataset
 - Less suitable for applications that make asynchronous fine-grained updates to shared state

Spark RDDs

Source: https://www.youtube.com/watch?v=NRo8TluH7Kl

Spark RDDs (Ch.3, Spark book)

- Based on HDFS
- Resilient distributed dataset (RDD)
 - Distributed collection of elements
 - Immutable
 - Lazy evaluation
- Spark distributes data across the cluster
 - Partitions
- Operations
 - Transformations
 - Actions

Transformations

- Generates a new RDD partition
- Lazy evaluation (computed only when needed)
- Map, Filter, flatMap, Sample, Union, Intersection, Distinct, groupByKey, reduceByKey, sortByKey, Join, Cogroup, cartesian

Transformations

- Map(function): Return a new distributed dataset formed by passing each element of the source through a function
- FlatMap(function): each input item can be mapped to 0 or more output items (instead of one as for map)
- reduceByKey(function): When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function, which must be of type (V,V) => V.

Actions

- Return a final value
- Force the evaluation of transformation operations
- Reduce, Collect, Count, First, Take, takeSample, saveAsTextFile, foreach
- Collect(): Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.

Summary

- Distributed Infrastructures
- Google File System
- HDFS
- Apache Spark RDD

What's next - Column stores and Coordination

- Part 1:
 - Column stores
 - Big Table
 - HBase and Hive
- Part 2:
 - Job Scheduling
 - Coordination