Syntax Analyzer (Parser) Input: list of tokens produced by scanner Output: tree which shows structure of program

Recap: Overview

temp1 := inttoreal(60) temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Code optimization

temp1 := id3 * 60.0

id1 := id2 + temp1

Code generator

MOVF ID3, R2 MULF #60.0, R2 MOVF ID3, R1 ADDF R2, R1 MOVF R1, ID1

Introduction

A program
represented by a sequence of tokens

Parser

Parser

If it is a legal program, then output some abstract representation of the program

- Abstract representations of the input program:
- abstract-syntax tree + symbol table
- intermediate code
- object code
- Context free grammar (CFG) is used to specify the structure of legal programs

From text to abstract syntax

Goals of parsing

- Programming language has syntactic rules
 - Context-Free Grammars
- Decide whether program satisfies syntactic structure
 - Error detection
 - Error recovery
 - Simplification: rules on tokens
- Build Abstract Syntax Tree

Classes of Grammars (The Chomsky Hierarchy)

- Type-0: Phrase structured (unrestricted) grammars
 - generate recursively enumerable (unrestricted) languages
 - include all formal grammars
 - implemented with Turing machines
- Type-1 : Context-sensitive grammars
 - generate context-sensitive languages
 - implemented with linear-bounded automata
- Type-2 : Context-free grammars
 - generate context-free languages
 - single non-terminal on left
 - non-terminals & terminals on right
 - implemented with pushdown automata
- Type-3 : Regular grammars
 - generate regular languages
 - no terminals or non-terminals here
 - implemented with finite state automata

Classes of Grammars (The Chomsky Hierarchy)

Type 0, Phrase Structure (same as basic grammar definition)

Type 1, Context Sensitive

- (1) $\alpha \rightarrow \beta$ where α is in (N U Σ)* N (N U Σ)*, β is in (N U Σ)+, and length(α) \leq length(β)
- (2) γ A δ -> γ β δ where A is in N, β is in (N U Σ)⁺, and γ and δ are in (N U Σ)*

Type 2, Context Free

A -> β where A is in N, β is in (N U Σ)*

Linear

A-> x or A -> x B y, where A and B are in N and x and y are in Σ^* Type 3, Regular Expressions

- (1) left linear A -> B a or A -> a, where A and B are in N and a is in Σ
- (2) right linear A -> a B or A -> a, where A and B are in N and a is in Σ

The Chomsky Hierarchy and the Block Diagram of a Compiler

CFG vs. Regular Expressions

- CFG is more expressive than RE
 - Every language that can be described by regular expressions can also be described by a CFG
- Example : languages that are CFG but not RE
 - if-then-else statement, $\{a^nb^n \mid n \ge 1\}$
- Non-CFG
 - $-L1=\{wcw \mid w \text{ is in } (a|b)^*\}$
 - $-L2=\{a^nb^mc^nd^m \mid n>=1 \text{ and } m>=1\}$

Context Free Grammars

- CFGs
 - Add recursion to regular expressions
 - Nested constructions
 - Notation

```
expression \rightarrow identifier \mid number \mid -expression \mid
\mid (expression) \mid
\mid expression \ operator \ expression
operator \rightarrow + \mid - \mid * \mid /
```

- Terminal symbols
- Non-terminal symbols
- Production rule (i.e. substitution rule)
 terminal symbol → terminal and non-terminal symbols

Backus-Naur Form

- Backus-Naur Form (BNF)
 - Equivalent to CFGs in power
 - CFG

```
expression \rightarrow identifier \mid number \mid -expression
\mid (expression)
\mid expression \ operator \ expression
operator \rightarrow + \mid - \mid * \mid /
```

- BNF

```
\begin{split} \langle expression \rangle &\to \langle identifier \rangle \mid \langle number \rangle \mid - \langle expression \rangle \\ & \quad \mid (\langle expression \rangle ) \\ & \quad \mid \langle expression \rangle \langle operator \rangle \langle expression \rangle \\ \langle operator \rangle &\to + \mid - \mid * \mid / \end{split}
```

Extended Backus-Naur Form

- Extended Backus-Naur Form (EBNF)
 - Adds some convenient symbols
 - Union
 Kleene star
 Meta-level parentheses
 - It has the same expressive power

Extended Backus-Naur Form

- Extended Backus-Naur Form (EBNF)
 - It has the same expressive power

BNF

```
\begin{split} &\langle \text{digit} \rangle \to 0 \\ &\langle \text{digit} \rangle \to 1 \\ & \dots \\ &\langle \text{digit} \rangle \to 9 \\ &\langle \text{unsigned\_integer} \rangle \to \langle \text{digit} \rangle \\ &\langle \text{unsigned\_integer} \rangle \to \langle \text{digit} \rangle \, \langle \text{unsigned\_integer} \rangle \end{split}
```

EBNF

$$\langle \text{digit} \rangle \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

\(\tau\text{nsigned_integer}\rangle \rightarrow \langle\text{digit}\rangle \langle\text{digit}\rangle*

Derivations

- A derivation shows how to generate a syntactically valid string
 - Given a CFG
 - Example:
 - CFG

```
expression \rightarrow identifier
| number |
| - expression |
| (expression )
| expression operator expression operator <math>\rightarrow + | - | * | /
```

• Derivation of

```
slope * x + intercept
```

Derivation Example

• Derivation of slope * x + intercept

```
expression \Rightarrow expression \ operator \ expression
\Rightarrow expression \ operator \ intercept
\Rightarrow expression \ operator \ expression \ + intercept
\Rightarrow expression \ operator \ x \ + intercept
\Rightarrow expression \ * x \ + intercept
\Rightarrow slope * x \ + intercept
expression \Rightarrow * slope * x \ + intercept
```

• Identifiers were not derived for simplicity

Parse Trees

- A parse tree is any tree in which
 - The root is labeled with S
 - Each leaf is labeled with a token a or ε
 - Each interior node is labeled by a nonterminal
 - If an interior node is labeled A and has children labeled X1,...Xn, then A := X1...Xn is a production.

Parse Trees and Derivations

$$E := E + E \mid E * E \mid E - E \mid - E \mid (E) \mid id$$

Parse Trees

- A parse is graphical representation of a derivation
- Example

Ambiguous Grammars

- Alternative parse tree
 - same expression
 - same grammar

This grammar is ambiguous

Ambiguity

• A grammar that produces more than one parse tree for some sentence is said to be *ambiguous*.

Eliminating Ambiguity

- There is no deterministic way of finding out whether a grammar is ambiguous and how to fix it. In order to remove ambiguity, we follow some heuristics.
- There are three parts to this:
- 1. Add a non-terminal for each precedence level
- 2. Isolate the corresponding part of the grammar
- 3. Force the parser to recognize the high-precedence sub expressions first

Eliminating Left-Recursion

• Direct left-recursion

$$A ::= A\alpha \mid \beta$$

$$\downarrow$$

$$A ::= \beta A'$$

$$A' ::= \alpha A' \mid \epsilon$$

$$A ::= A\alpha 1 \mid ... \mid A\alpha m \mid \beta 1 \mid ... \mid \beta n$$

$$\downarrow$$

$$A ::= \beta 1 A' \mid ... \mid \beta n A'$$

$$A' ::= \alpha 1 A' \mid ... \mid \alpha n A' \mid \epsilon$$

Eliminating Indirect Left-Recursion

- Indirect left-recursion
- Algorithm

$$S := Aa \mid b$$

 $A := Ac \mid Sd \mid \varepsilon$

```
Arrange the nonterminals in some order A_1,...,A_n. for (i in 1..n) { for (j in 1..i-1) { replace each production of the form A_i ::= A_j \gamma by the productions A_i ::= \delta_1 \gamma \mid \delta_2 \gamma \mid ... \mid \delta_k \gamma where A_j ::= \delta_1 \mid \delta_2 \mid ... \mid \delta_k eliminate the immediate left recursion among A_i productions }
```

Left Factoring

$$A ::= \alpha \beta 1 \mid ... \mid \alpha \beta n \mid \gamma$$

 $A ::= \alpha A' \mid \gamma$

 $A' ::= \beta 1 \mid ... \mid \beta n$

Types of Parsers

Top-Down Parsing

- Start from the start symbol and build the parse tree top-down
- Apply a production to a nonterminal. The right-hand of the production will be the children of the nonterminal
- Match terminal symbols with the input
- May require backtracking
- Some grammars are backtrack-free (predictive)

TDP

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Construct Parse Trees Top-Down

- Start with the tree of one node labeled with the start symbol and repeat the following steps until the fringe of the parse tree matches the input string
 - 1. At a node labeled A, select a production with A on its LHS and for each symbol on its RHS, construct the appropriate child
 - 2. When a terminal is added to the fringe that doesn't match the input string, backtrack
 - 3. Find the next node to be expanded
- Minimize the number of backtracks

Example

x - 2 * y

Left-recursive

$$E ::= T \\ |E + T \\ |E - T |$$

$$T ::= F \\ |T * F \\ |T / F |$$

$$F ::= id \\ |number \\ |(E)$$

Right-recursive

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed.
- It tries to find the left-most derivation.
- Grammar rule of a non-terminal "A" is viewed as a definition of a procedure that will recognize "A".

$$S \rightarrow cAd$$

 $A \rightarrow ab \mid a$

input: cad

Recursive Descent Parser- Example

• A separate recursive procedure is written for every non-terminals

```
Procedure S()
   if input = 'c'
   Advance();
                  //procedure that is written to advance the input pointer to next position
   A();
   if input = 'd'
   Advance();
   return true;
   else return false;
   else return false;
```

Cont.

```
Procedure A()
isave=in-ptr;
                         // i-save saves the input pointer position before each alternate to facilitate
    backtracking
If input ='a'
    Advance();
    if input = 'b'
          Advance();
          return true;
In-ptr=isave
If input ='a'
    Advance();
    return true;
return false;
return false;
```

Cont.

- Problems??
- Left recursion ambiguity as how many times to call? Solution eliminate it
- Backtracking when more than one alternative in the rule. Solution left factoring
- Very difficult to identify the position of the errors

• To eliminate left recursion:

Ex. A-> $A\alpha|\beta$

Soln: $A -> \beta A'$

A'-> α A'|€

Predictive Parser

a grammar \rightarrow a grammar suitable for predictive eliminate left parsing (a LL(1) grammar)

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

 $A \rightarrow \alpha_1 \mid ... \mid \alpha_n$ input: ... a current token

Predictive Parser (example)

```
stmt → if ......
while ......
begin ......
for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
  case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
            - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ε -production. For example, if the current token is not a or b, we may apply the ε -production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \epsilon
C \rightarrow f
proc A {
    case of the current token {
        a: - match the current token with a,
                                                            proc B {
             and move to the next token;
            - call B:
            - match the current token with e,
             and move to the next token;
       c: - match the current token with c,
                                                                         - call B
             and move to the next token;
            - call B;
            - match the current token with d,
             and move to the next token;
        f: - call C
                   first set of C
```

Non-Recursive Predictive Parsing - LL(1) Parser

- An **LL parser** is a top-down parser for a subset of the context-free grammars. It parses the input from **L**eft to right, and constructs a **L**eftmost derivation of the sentence
- Non-Recursive predictive parsing is a table-driven parser.
- It is a top-down parser.
- It is also known as LL(1) Parser

An LL parser is called an LL(*k*) parser if it uses *k* tokens of lookahead when parsing a sentence

LL(1) Parser

input buffer

- our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol \$.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

```
set ip to point to the first symbol of w$;
repeat
      let X be the top stack symbol and a the symbol pointed to by ip;
     if X is a terminal or $ then
          if X = a then
               pop X from the stack and advance ip
          else error()
                                                         parsing table
               /* X is a nonterminal */
     else
          if M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k then begin
               pop X from the stack;
               push Y_k, Y_{k-1}, ..., Y_1 onto the stack, with Y_1 on top;
               output the production X \to Y_1 Y_2 \cdots Y_k
          end
          else error()
until X = $ /* stack is empty */
```

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ → parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$a <mark>B</mark>	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$a <mark>B</mark>	a\$	$B \to \epsilon$
\$ <mark>a</mark>	a\$	
\$	\$	accept, suc

 $B \rightarrow \epsilon$ accept, successful completion

LL(1) Parser – Example1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abbBa⇒abba

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT$			$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>
\$E	id+id\$	$E \rightarrow TE'$
\$E'T	id+id\$	$T \rightarrow FT$
\$E' T' F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T \rightarrow \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept

Constructing LL(1) Parsing Tables

- 1. Eliminate left recursion in grammar G
- 2. Perform left factoring on the grammar G
- 3. Find FIRST and FOLLOW on the symbols in grammar G
- 4. Construct the predictive parse table
- 5. Check if the given input string can be accepted by the parser

*

Compute FIRST

- If α is a terminal symbol 'a' then FIRST(α)={a} For example, for gramamr rule A -> a, FIRST(a)={a}
- If α is a non-terminal symbol 'X' and X -> $a\alpha$, then FIRST(X)={a}

For example for grammar rule A->aBC, $FIRST(A) = FIRST(aBC) = \{a\}$

- If α is a non-terminal 'X' and X-> ξ , then FIRST(X)= $\{\xi\}$ For example for grammer rule A-> ξ , FIRST(A)= $\{\xi\}$
- If $X \to Y_1, Y_2, ... Y_n$ then add to FIRST($Y_1, Y_2, ... Y_n$) all the non- $\boldsymbol{\xi}$ symbols of FIRST(Y_1). Also add the non- $\boldsymbol{\xi}$ symbols of FIRST(Y_2) if $\boldsymbol{\xi}$ is in FIRST(Y_1), the non- $\boldsymbol{\xi}$ symbols of FIRST(Y_3) if $\boldsymbol{\xi}$ is in both FIRST(Y_1) and in FIRST(Y_2), and so on. Finally add $\boldsymbol{\xi}$ to FIRST($Y_1, Y_2, ... Y_n$) if, for all i, FIRST(Y_1) contains $\boldsymbol{\xi}$.

For example for rules: $X \rightarrow Yb$ and $Y \rightarrow a \mid \xi$ FIRST(X)=FIRST(Yb)=FIRST(Y)= $\{a, b\}$

FIRST Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

FIRST(TE') = {(,id}
FIRST(+TE') = {+}
FIRST(
$$\epsilon$$
) = { ϵ }
FIRST(FT') = {(,id}
FIRST(*FT') = {*}
FIRST(ϵ) = { ϵ }
FIRST(ϵ) = { ϵ }
FIRST((E)) = {()}
FIRST(id) = {id}

Compute FOLLOW (for non-terminals)

FOLLOW of a non-terminal A is a set of terminals that follow or occur to the right of A

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B \beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
 - → everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in FIRST(α)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α) and \$ in FOLLOW(A)
 - \rightarrow add A $\rightarrow \alpha$ to M[A,\$]
- All other undefined entries of the parsing table are error entries.

Constructing LL(1) Parsing Table -- Example

 $E \rightarrow TE'$

 $FIRST(TE') = \{(,id)\}$

 \rightarrow E \rightarrow TE' into M[E,(] and M[E,id]

 $E' \rightarrow +TE'$

FIRST(+TE')={+}

 \rightarrow E' \rightarrow +TE' into M[E',+]

 $E' \rightarrow \epsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

→ none

but since ε in FIRST(ε)

and $FOLLOW(E')=\{\$,\}$

 \rightarrow E' $\rightarrow \varepsilon$ into M[E',\$] and M[E',)]

 $T \rightarrow FT$

 $FIRST(FT') = \{(i, id)\}$

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

 $T' \rightarrow *FT'$

FIRST(*FT')={*}

 \rightarrow T' \rightarrow *FT' into M[T',*]

 $T' \rightarrow \epsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

→ none

but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,\}$ + $\}$ $\rightarrow \epsilon$ into M[T',\$], M[T',)] and

M[T',+]

 $F \rightarrow (E)$

FIRST((E))={(}

 \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$

 $FIRST(id) = \{id\}$

 \rightarrow F \rightarrow id into M[F,id]

LL(1) Grammars

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

one input symbol used as a look-head symbol to determine parser action

LL(1) left most derivation input scanned from left to right

• The parsing table of a grammar may contain more than one production rule. In this case, we say that it is not a LL(1) grammar.

A Grammar which is not LL(1)

$$S \rightarrow i C t S E \mid a$$

 $E \rightarrow e S \mid \epsilon$
 $C \rightarrow b$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \to e S$ $E \to \epsilon$			$E \rightarrow \epsilon$
			$E \rightarrow \varepsilon$			
C		$C \rightarrow b$				

/two production rules for M[E,e]

Problem → ambiguity

A Grammar which is not LL(1) (cont.)

- What do we have to do if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.
- A left recursive grammar cannot be a LL(1) grammar.
 - $-A \rightarrow A\alpha \mid \beta$
 - \rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \rightarrow If β is ε , any terminal that appears in FIRST(α) also appears in FIRST($A\alpha$) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Properties of LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$
 - 1. Both α and β cannot derive strings starting with same terminals.
 - 2. At most one of α and β can derive to ϵ .
 - 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).

Example

• Construct predictive parse table for the following grammar. Also show parser actions for the input string - (a,a)

S->a
$$|\uparrow|(T)$$

T->T,S $|S|$

- Eliminate left recursion
- No left factor
- First
- Follow
- Construct parsing table check multiple entries
- Show Actions

Cont.

• Eliminate left recursion

S->
$$a \mid \uparrow \mid (T)$$

T-> ST'
T'-> ,ST' $\mid \xi$

- Its not needed to left factor
- FIRST

FOLLOW

• Is following grammar LL(1)? Also trace input string - ibtaea

$$C \rightarrow b$$

Motivation Behind First & Follow

First:

Is used to help find the appropriate production to follow given the top-of-the-stack non-terminal and the current input symbol.

Example: If $A \to \alpha$, and a is in First(α), then when a=input, replace A with α (in the stack).

(a is one of first symbols of α , so when A is on the stack and a is input, POP A and PUSH α .

Follow: Is used when First has a conflict, to resolve choices, or when First gives no suggestion. When $\alpha \to \in$ or $\alpha \stackrel{*}{\Rightarrow} \in$, then what follows A dictates the next choice to be made.

Example: If $A \to \alpha$, and b is in Follow(A), then when $\alpha \stackrel{*}{\Rightarrow} \in \text{and}$ b is an input character, then we expand A with α , which will eventually expand to \in , of which b follows!

 $(\alpha \stackrel{*}{\Rightarrow} \in : i.e., First(\alpha) contains \in .)$

Error Recovery Techniques

Panic-Mode Error Recovery

- Skipping the input symbols until a synchronizing token is found.

Phrase-Level Error Recovery

 Each empty entry in the parsing table is filled with a pointer to a specific error routine to take care that error case.

Error-Productions

- If we have a good idea of the common errors that might be encountered, we can augment the grammar with productions that generate erroneous constructs.
- When an error production is used by the parser, we can generate appropriate error diagnostics.
- Since it is almost impossible to know all the errors that can be made by the programmers, this method is not practical.

Global-Correction

- Ideally, we we would like a compiler to make as few change as possible in processing incorrect inputs.
- We have to globally analyze the input to find the error.
- This is an expensive method, and it is not in practice.

Panic-Mode Recovery

Assume a non-terminal on the top of the stack.

1. Idea:

skip symbols on the input until a token in a selected set of synchronizing tokens is found.

2. The choice for a synchronizing set is important.

Some ideas:

- a. Define the synchronizing set of A to be FOLLOW(A). then skip input until a token in FOLLOW(A) appears and then pop A from the stack. Resume parsing...
- b. Add symbols of FIRST(A) into synchronizing set. In this case we skip input and once we find a token in FIRST(A) we resume parsing from A.
- c. Productions that lead to \in if available might be used.
- 3. If a terminal appears on top of the stack and does not match to the input => pop it and continue parsing (issuing an error message saying that the terminal was inserted).

General Approach: Modify the empty cells of the Parsing Table.

1. if $M[A,a] = \{empty\}$ and a belongs to Follow(A) then we set M[A,a] = "synch"

Error-recovery Strategy:

If A=top-of-the-stack and a=current-input,

- 1. If A is NT and $M[A,a] = \{empty\}$ then skip a from the input.
- 2. If A is NT and $M[A,a] = \{synch\}$ then pop A.
- 3. If A is a terminal and A!=a then pop token (essentially inserting it).

Revised Parsing Table / Example

Non-	INPUT SYMBOL						
terminal	id	+	*	()	\$	
E	E→TE'			E→TE'			
E '		E'→+TE'			E' → ∈	E' → ∈	
T	T→FT'			T→FT'			
Т'		T' → ∈	T'→*FT'		T'→ ∈	T' → ∈	
F	F→id			$F \rightarrow (E)$			

From Follow sets. Pop top of stack NT

Skip input symbol

"synch" action

Revised Parsing Table / Example

STACK	INPUT	Remark
\$E	+ id * + id\$	error, skip +
\$E	id * + id\$	
\$E'T	id * + id \$	
\$E'T'F	id * + id \$	
\$E'T'id	id * + id\$	
\$E'T'	* + id\$	
\$E'T'F*	* + id\$	
\$E'T'F	+ id \$	error, M[F,+] = synch
\$E'T'	+ id\$	F has been popped
\$E'	+ id \$	
\$E'T+	+ id \$	
\$E'T	id\$	
\$E'T'F	id\$	
\$E'T'id	id\$	
\$E'T'	\$	
\$E'	\$	
\$	\$	

Phrase-Level Error Recovery

- Each empty entry in the parsing table is filled with a pointer to a special error routine which will take care that error case.
- These error routines may:
 - change, insert, or delete input symbols.
 - issue appropriate error messages
 - pop items from the stack.
- We should be careful when we design these error routines, because we may put the parser into an infinite loop.

How to Implement TD Parser

- Stack Easy to handle.
- Input Stream Responsibility of lexical analyzer
- Key Issue How is parsing table implemented?

One approach: Assign unique IDS

Non-	INPUT SYMBOL						
terminal	id	+	*	()	\$	
E	E→TE'			E→TE'	synch	synch	
Ε'		E'→+TE'		K	E' → ∈	E' →∈	
T	<u>T→FT</u> '	synch		T→FT'	synch	synch	
Т'		T'→∈	T'→*FT'	K	T '→∈	T'→∈	
F	<u>F→id</u>	synch	<u>synch</u>	F →(E)	synch	synch	
All rules h		syr	nch actions		Also for which herrors		

Revised Parsing Table:

Non- terminal	INPUT SYMBOL						
	id	+	*	()	\$	
E	1	18	19	1	9	10	
Ε'	20	2	21	22	3	3	
T	4	11	23	4	12	13	
Т'	24	6	5	25	6	6	
F	8	14	15	7	16	17	

$$2 E' \rightarrow +TE'$$

$$5 \text{ T'} \rightarrow *FT'$$

$$7 \text{ F} \rightarrow \text{(E)}$$

$$8 F$$
→id

9 - 17:

Sync

Actions

18 – 25:

Error

Handlers

How is Parser Constructed?

```
One large CASE statement:
state = M[ top(s), current_token ]
switch (state)
   case 1: proc_E_TE'();
                                                        Combine \rightarrow put in
           break;
                                                        another switch
   case 8: proc_F_id();
           break;
   case 9: proc_sync_9();
                                                          Some sync actions
           break;
                                                          may be same
   case 17: proc_sync_17();
           break;
   case 18:
                                                          Some error
                      Procs to handle errors
                                                          handlers may be
   case 25:
                                                          similar
```