

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br

UniCesumar

ÁLGEBRA ELEMENTAR

- Entender os conceitos, definições e propriedades de Matrizes, Determinantes e Sistemas lineares.
- Compreender o que significa um Determinante de uma Matriz.
- Como calcular o determinante de uma matriz de ordem 2 ou ordem 3.
- Como fazer a representação de um sistema linear na forma matricial.
- Como obter as soluções de um
- sistema linear.

Matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da engenharia. Várias operações realizadas por computadores são através de matrizes.

Peso e Altura de algumas pessoas

Nome	Peso (Kg)	Idade (anos)	Altura (m)
Ricardo	70	23	1,70
José	60	42	1,60
João	55	21	1,65
Pedro	50	18	1,72
Augusto	66	30	1,68

Fonte: os autores

O conjunto ordenado dos números que formam a tabela é denominado matriz e cada número é chamado elemento da matriz.

Nesse exemplo, temos uma matriz de ordem 5 x 3

(lê-se: cinco por três), isto é, uma matriz formada

por 5 linhas e 3 colunas..

Exemplo:

```
\begin{bmatrix} 2 & 3 & 1 \\ 7 & 6 & 8 \end{bmatrix}_{2x3} Duas linhas por três colunas \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}_{1x3} Uma linha por três colunas \begin{bmatrix} 0,4 \\ \frac{3}{5} \end{bmatrix}_{3x1} Três linhas por uma coluna
```


Representação Algébrica

Utilizamos letras maiúsculas para indicar matrizes genéricas e letras minúsculas correspondentes para os elementos.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} commen \in \mathbb{N}^*$$

Pode-se abreviadamente representar a matriz anterior por $A = (a_{ii})_{n \times m}$ em que:

- $a_{ij} = i linha$
- j coluna

Exemplo:

Encontrar os elementos da matriz $A = (a_{ij})_{3 \times 2}$ em que $a_{ij} = 3i - j$.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}_{3x2}$$

$$a_{ij} = 3i - j$$

$$a_{11} = 3 \cdot 1 - 1 = 2$$

$$a_{12} = 3 \cdot 1 - 2 = 1$$

$$a_{21} = 3 \cdot 2 - 1 = 5$$

$$a_{22} = 3 \cdot 2 - 2 = 4$$

$$a_{31} = 3 \cdot 3 - 1 = 8$$

$$a_{32} = 3 \cdot 3 - 2 = 7$$

$$\begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 8 & 7 \end{bmatrix}$$

Quando o número de linhas é igual ao número de colunas.

$$A = \begin{bmatrix} 3 & 4 \\ -1 & 0 \end{bmatrix}$$

Nesse caso, uma matriz 2x2.

Matriz quadrada em que os elementos da diagonal principal são iguais a 1.

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matriz Transposta

Se A é uma matriz de ordem m x n, denominamos transposta de A a matriz de ordem n x m obtida pela troca ordenada das linhas pelas colunas. Representase a matriz transposta de A por A^t.

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 4 \\ 8 & 7 \end{bmatrix} \qquad A^{t} = \begin{bmatrix} 2 & 5 & 8 \\ 1 & 4 & 7 \end{bmatrix}$$

$$A^t = \begin{bmatrix} 2 & 5 & 8 \\ 1 & 4 & 7 \end{bmatrix}$$

Igualdade de Matrizes

Iguala-se respectivamente elemento da linha e coluna entre as matrizes.

Exemplo.

Igualando as matrizes A e B a seguir, qual o valor de x e y?

$$A = \begin{pmatrix} 2 & 5 \\ 10 & 1 \end{pmatrix} e B = \begin{pmatrix} x & 5 \\ y & 1 \end{pmatrix}$$
$$x = 2$$
$$y = 10$$

Soma ou subtração de matrizes

Soma ou subtrai respectivamente, elementos da linha e coluna.

Exemplo.

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -2 & 0 \\ -3 & 1 & -1 \end{bmatrix}$$

Com as matrizes A e B acima, determine a soma entre elas.

Assim,

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 7 & 4 & -1 \\ 3 & -4 & 5 \end{bmatrix}$$

Já a subtração entre as matrizes A e B.

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -5 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

$$A - B = \begin{bmatrix} -1 & 0 & -1 \\ -3 & -6 & 3 \end{bmatrix}$$

Multiplicação de Matrizes

Para multiplicar matriz por matriz, é necessário que:

$$A_{m \times n} \cdot B_{n \times p} = AB_{m \times p}$$

Ou seja, número coluna da matriz A precisa ser igual ao número de linhas da matriz B.

Exemplo.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -2 \end{pmatrix}_{2x3} \qquad B = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 2 & -1 \end{pmatrix}_{3x2}$$

Logo,

$$C = \begin{pmatrix} 1.(2) + 2.(-1) + 1.(2) & 1.(3) + 2(4) + 1.(-1) \\ 2.(2) + 3.(-1) - 2.(2) & 2.(3) + 3.(4) - 2.(-1) \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 10 \\ -3 & 20 \end{pmatrix}_{2x2}$$

Dada uma matriz quadrada A, de ordem n, se X é uma matriz tal que $AX = I_n$ e $XA = I_n$, então, X é denominada matriz inversa de A e é indicada por A^{-1} .

Exemplo: verifique se existe e, em caso afirmativo, determine a matriz inversa de:

$$A = \begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix}$$

Usando a definição:

$$\begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 5a + 8c & 5b + 8d \\ 2a + 3c & 2b + 3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Pela igualdade de matrizes, temos os sistemas:

$$\begin{cases} 5a + 8c = 1 \\ 2a + 3c = 0 \end{cases} \Rightarrow a = -3 \ e \ c = 2$$

$$\begin{cases} 5b + 8d = 0 \\ 2b + 3d = 1 \end{cases} \Rightarrow b = 8 \ e \ d = -5.$$

Então:

$$X = \begin{bmatrix} -3 & 8 \\ 2 & -5 \end{bmatrix}$$

Determinante é uma função que se associa a um determinado número a uma matriz quadrada.

Dada a matriz de 2ª ordem
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

O determinante da matriz A será:

$$A = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Exemplo.

$$A = \begin{vmatrix} 2 & 4 \\ 3 & 1 \end{vmatrix}_{2x2}$$

Determinante da matiz A será:

$$\det A = 2.1 - 3.4 = 2 - 12$$

$$\det A = -10$$

Cálculo de Determinantes de ordem 3, Regra de Sarrus

Dada a matriz
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$

O determinante da matriz A é repetindo as duas primeiras colunas à direita e efetuamos as seis multiplicações em diagonal.

Os produtos obtidos da diagonal secundária mudam de sinal. O determinante é a soma dos valores obtidos.

Assim,

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 0 & 2 & 1 \\ 4 & 2 & 1 & 4 & 2 \end{vmatrix} \Leftrightarrow \det A = (1 \cdot 1 \cdot 1) + (2 \cdot 0 \cdot 4) + (3 \cdot 2 \cdot 2) - (3 \cdot 1 \cdot 4) - (1 \cdot 0 \cdot 2) - (2 \cdot 2 \cdot 1) = 1 + 0 + 12 - 12 - 0 - 4 = -3.$$

Sistemas Lineares

Denomina-se sistema linear de *m* equações nas *n* incógnitas:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

$$\rightarrow a_{11}, a_{12}, ..., a_{1n}, b_{1}, b_{2}, ..., b_{n}$$

Expressão Matricial de um Sistema de **Equações Lineares**

Utilizando matrizes, podemos representar este sistema da seguinte forma:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

Resolução de um Sistema Linear

Por Escalonamento.

Dado o sistema:

$$\begin{cases} x + 2y + z = 7 \\ 2x + 7y + z = 21 \\ -3x - 5y + 2z = -8 \end{cases}$$

Qual o valor das incógnitas x, y e z?

Por escalonamento:

$$\begin{cases} x + 2y + z = 7 & \cdot (-2) & \cdot 3 \\ 2x + 7y + z = 21 & \bot + & \downarrow \Rightarrow \begin{cases} x + 2y + z = 7 \\ 3y - z = 7 \Rightarrow \end{cases} \begin{cases} x + 2y + z = 7 \\ y + 5z = 13 & \cdot (-3) \\ 3y - z = 7 & \bot + \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$\begin{cases} x + 2y + z = 7 \\ y + 5z = 13 \end{cases}$$

$$-16z = -32.$$

O sistema obtido está escalonado e é equivalente ao sistema dado.

Podemos agora resolver:

$$z = \frac{-32}{-16} = 2$$

$$y + 5z = 13 \Rightarrow y + 5.2 = 13 \Rightarrow y = 13 - 10 = 3$$

$$x + 2y + z = 7 \Rightarrow x + 2.3 + 2 = 7 \Rightarrow x = 7 - 8 = -1$$

Sistema possível e determinado, com S={(-1,3,2)}.

Matemática Para Computação

Prof. Me. Edimar Izidoro Novaes edimar.novaes@unicesumar.edu.br