DAT650 Lecture

Attacks on bitcoin mining

Attacks

51% Attack

- If the attacker owns $\alpha > 51 \%$ of the mining power in the network, he
 - Can grow a private chain faster than the public chain.

Private chain:

Fork with blocks that are not broadcast through the network.

51% Attack

- If the attacker owns $\alpha > 51 \%$ of the mining power in the network, he
 - Can grow a private chain faster than the public chain.

- Attacker can:
 - Double spend
 - Get all minig rewards

Attacks Attacks on bitcoin mining

• Longest chain rule is not enforced.

Attacks

Attacks on bitcoin mining

• Longest chain rule is not enforced.

Switch to longest chain!

Attacks

Attacks on bitcoin mining

• Longest chain rule is not enforced.

Switch to longest chain!

But want to safe my block!

- Let α be the percentage of the systems mining power, that the attacker controls.
- Assume:
 - $p = \alpha$, attacker mines next block
 - $p=1-\alpha=\beta$, not-attacker mines next block

- $p = \alpha$, attacker mines next block
- $p=1-\alpha=\beta$, not-attacker mines next block
- First: Run attack for the next two blocks:

Р	Outcome attack	Outcome no attack
αα	3	2
ββ	0	0
$\alpha \beta$	0	1
eta lpha	1	1

- $p = \alpha$, attacker mines next block
- $p=1-\alpha=\beta$, not-attacker mines next block
- First: Run attack for the next two blocks:

Р	Outcome attack	Outcome no attack
αα	3	2
ββ	0	0
$\alpha \beta$	0	1
eta lpha	1	1

- $p = \alpha$, attacker mines next block
- $p=1-\alpha=\beta$, not-attacker mines next block
- First: Run attack for the next two blocks:

Profitable if
$$E[\text{attack}] \geq E[\text{no attack}]$$

$$3\alpha^2 + \alpha\beta \geq 2\alpha^2 + 2\alpha\beta$$

$$\alpha^2 \geq \alpha\beta$$

$$\alpha \geq 0.5$$

P	Outcome attack	Outcome no attack
αα	3	2
ββ	0	0
lphaeta	0	1
$eta \alpha$	1	1

- Run attack for 2 blocks: profitable for $\alpha \ge 0.5$
- Run attack for 4 blocks: profitable for $\alpha \ge 0.455$
- Run attack without early stop: profitable for $\alpha \ge 0.42$

• Running the attack forever, can be analysed using Markov models:

Figure 3.4: Stubborn mining states and transitions.

51% Attack

- If the attacker owns $\alpha > 51 \%$ of the mining power in the network, he
 - Can grow a private chain faster than the public chain.

Private chain:

Fork with blocks that are not broadcast through the network.

51% Attack

- If the attacker owns $\alpha > 51 \%$ of the mining power in the network, he
 - Can grow a private chain faster than the public chain.

- Attacker can:
 - Double spend
 - Get all minig rewards

Selfish mining Attack

- Attacker does not violate longest chain rule
- Attacker does create secret chain

```
Algorithm 3 Selfish mining

Idea: Mine secretly, without immediately publishing newly found blocks

Let l_p be length of the public chain

Let l_s be length of the secret chain

if a new block b_p is published, i.e. l_p has increased by 1 then

if l_p > l_s then

Start mining on b_p

else if l_p = l_s then

Publish secretly mined block b_s

Mine on b_s and immediately publish new block

else if l_p = l_s - 1 then

Push all secretly mined blocks

end if

end if
```

Selfish mining When is an attack profitable

Attack profitable if

- 1. Attacker gets more blocks.
- 2. Attacker gets a larger fraction of the blocks on the longest chain.
 - Selfish mining is profitable under the second variant.

When is an attack profitable

Theorem:

Using selfish mining, the attacker receives this fraction of blocks:

$$F(\alpha, \gamma) = \frac{\alpha(1 - \alpha)^{2}(4\alpha + \gamma(1 - 2\alpha)) - \alpha^{3}}{1 - \alpha(1 + (2 - \alpha)\alpha)}$$

• γ is share of honest mining power ($\beta=1-\alpha$) that the attacker can reach first. (See Example 1 below)

When is an attack profitable

• γ is the attackers networking power. $F(\alpha, \gamma)$

$$F(\alpha,0) > \alpha \text{ if } \alpha > \frac{1}{3}$$

$$F(\alpha,0.5) > \alpha \text{ if } \alpha > \frac{1}{4}$$

$$F(\alpha,1) > \alpha \text{ if } \alpha > 0$$

• $\gamma = 1$ means attacker can delay any message in the network.

Selfish mining Example 1

Selfish mining Example 1.0

i) The attacker finds a block and keeps it secret

Example 1.1

- i) The attacker finds a block and keeps it secret
- ii) The honest miners find a block

Selfish mining Example 1.2

- i) The attacker finds a block and keeps it secret
- ii) The honest miners find a block
- iii) The attacker publishes his block

Example 1.3

- i) The attacker finds a block and keeps it secret
- ii) The honest miners find a block
- iii) The attacker publishes his block
- iv) Honest miners mine on the block they see first.

Attacker tries to publish his block faster.

Example 1.3

- iv) The attacker mines on top of his block.

 Honest miners mine on the block they see first.
 - i) Honest miners with power $\gamma\beta$ mine on the attackers block
 - ii) Honest miners with power $(1 \gamma)\beta$ mine on the honest chain

Selfish mining Example 1.4

iv) The honest miners chain is extended the attackers block is discareded

Example 2

Selfish mining Example 2.0

i) The attacker finds a block and keeps it secret

- i) The attacker finds a block and keeps it secret
- ii) The attacker finds another block and keeps it secret

- i) The attacker finds a block and keeps it secret
- ii) The attacker finds another block and keeps it secret
- iii) The honest miners find a block

- i) The attacker finds a block and keeps it secret
- ii) The attacker finds another block and keeps it secret
- iii) The honest miners find a block
- iv) The attacker publishes both his blocks

- i) The attacker finds a block and keeps it secret
- ii) The attacker finds another block and keeps it secret
- iii) The honest miners find a block
- iv) The attacker publishes both his blocks
- v) The honest miners block is discarded

