Theoretische Mechanik Sommersemester 2023

Prof. Dr. W. Strunz, Dr. R. Hartmann, Institut für Theoretische Physik, TU Dresden https://tu-dresden.de/mn/physik/itp/tqo/studium/lehre

6. Übung (Besprechung 15.5. - 19.5.)

1. Virial und Zeitmittelwerte

Für ein N-Teilchen-System ($\nu = 1, \dots, N$) ist das Virial

$$G(t) := \sum_{\nu=1}^{N} \vec{r}^{(\nu)}(t) \cdot \vec{p}^{(\nu)}(t)$$

für alle Zeiten t eine beschränkte Funktion, falls keines der Teilchen ins Unendliche entweicht und keines einen unendlichen Impuls gewinnt. In diesem Fall bleibt das Zeitmittel auch für $\tau \to \infty$ beschränkt,

$$\langle G \rangle_{\tau} := \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} \mathrm{d}t \, G(t) < \infty .$$

- a) Begründen Sie, warum dann das Zeitmittel der Zeitableitung des Virials $\langle \dot{G} \rangle$ verschwindet.
- b) Nehmen Sie an, dass die auf jedes einzelne Teilchen wirkenden Gesamtkräfte aus einem konservativen Anteil $\vec{F}_{\text{kon.}}^{(\nu)} = -\vec{\nabla}^{(\nu)}V$ und geschwindigkeitsproportionalen (nicht-konservativen) Reibungskräften $\vec{f}^{(\nu)}$ bestehen. Zeigen Sie, dass für ein solches System der Virialsatz in der Form gilt:

$$2 \langle T \rangle = - \left\langle \sum_{\nu=1}^{N} \vec{r}^{(\nu)} \cdot \vec{F}_{kon.}^{(\nu)} \right\rangle,$$

vorausgesetzt, die Bewegung des Gesamtsystems geht in einen stationären Zustand über und kommt nicht aufgrund der Reibung zum Erliegen.

c) Ein Satellit der Masse m befindet sich auf einem Orbit, charakterisiert durch die Energie E und den Drehimpuls $|\vec{L}|$, um einen Zentralkörper der Masse M. Geben Sie das Virial $G = m \, \vec{r} \cdot \dot{\vec{r}}$ für die Kepler-Ellipsen $r(\varphi)$ an:

$$r(\varphi) = \frac{p}{1+\epsilon\cos(\varphi)} \;, \quad p = \frac{|\vec{L}|^2}{\gamma M \, m^2} \;,$$

$$\epsilon = \sqrt{1+\frac{2E}{m^3} \left(\frac{|\vec{L}|}{\gamma M}\right)^2} \;, \quad \gamma = 6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2} \; \text{(Gravitationskonstante)}.$$

Was folgt für den zeitlichen Mittelwert $\langle G \rangle$?

2. Kugelkreisel

Der Eigendrehimpuls $\vec{L}_{\rm spin} = \Theta \vec{\Omega}$ und die Rotationsenergie $T_{\rm rot} = \frac{1}{2} \vec{\Omega}^T \Theta \vec{\Omega}$ eines starren Körpers werden von Trägheitstensor Θ und Drehvektor $\vec{\Omega}$ bestimmt.

- a) Berechnen Sie für einen Würfel mit Kantenlänge a und homogener Massendichte ϱ_0 sämtliche Komponenten Θ_{ij} des Trägheitstensors bzgl. eines im Schwerpunkt verankerten Dreibeins, dessen Achsen parallel zu den Würfelkanten liegen. Wie lauten die Komponenten des Trägheitstensors $\tilde{\Theta}_{ij}$ des Würfels bezüglich eines anders orientierten Dreibeins (mit Ursprung um Schwerpunkt)?
- b) Berechnen Sie zum Vergleich die Komponenten des Trägheitstensors einer Kugel mit Radius a und gleicher Massendichte ρ_0 .

3. Lösen der Eulerschen Gleichungen

Betrachten Sie einen Quader mit einem körperfesten Dreibein $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$, dessen Ursprung im Schwerpunkt liegt, und dessen Achsen parallel zu den Quaderachsen verlaufen. Die Kantenlängen des Quaders seien 2a in x_1 -Richtung, 4a in x_2 -Richtung und 6a in x_3 -Richtung. Demnach sind die Hauptträgheitsmomente $\Theta_1 = \frac{13}{3}ma^2$, $\Theta_2 = \frac{10}{3}ma^2$, $\Theta_3 = \frac{5}{3}ma^2$. Auf den Quader sollen keine Drehmomente wirken.

Zum Zeitpunkt t=0 drehe sich der Quader mit einer Winkelgeschwindigkeit ω_0 um eine Achse in Richtung $\vec{\omega}(t=0)$, die in der x_1 - x_3 -Ebene liegt, und die mit der x_1 -Achse den Winkel α mit $\cos \alpha = \frac{5}{8}$ einschließt. Für diesen Fall kann die Bewegung des Drehvektors $\vec{\omega}(t)$ im Körper explizit bestimmt werden. Gehen Sie dazu in den folgenden Schritten vor:

- a) Stellen Sie die drei Eulerschen Gleichungen auf.
- b) Zeigen Sie durch Zusammenfassen der 2. und 3. Eulerschen Gleichung ($\dot{\omega}_2$ und $\dot{\omega}_3$), dass die Projektion der Drehachse auf die x_2 - x_3 -Ebene eine Ellipse beschreibt, d.h. $3\omega_2^2 + 4\omega_3^2 = \text{konst.}$ Unter Verwendung der Anfangsbedingung können Sie deshalb schließen, dass man mit einem Winkel φ die Bewegung von ω_2 und ω_3 folgendermaßen beschreiben kann:

$$\omega_2 = \frac{\sqrt{13}}{4}\omega_0 \sin \varphi , \quad \omega_3 = \frac{\sqrt{39}}{8}\omega_0 \cos \varphi .$$

- c) Zeigen Sie mit den Eulerschen Gleichungen, dass dann gilt $\omega_1 = -\frac{5}{2\sqrt{3}}\dot{\varphi}$.
- d) Schließen Sie aus der bislang noch nicht verwendeten 1. Eulerschen Gleichung und den Anfangsbedingungen, dass φ die folgende Differentialgleichung erfüllt: $\dot{\varphi} = -\frac{\sqrt{3}}{4}\omega_0\cos\varphi$.
- e) Lösen Sie diese Differentialgleichung und geben Sie damit die Lösung $\vec{\omega}(t)$ in Komponenten $\omega_i(t)$ (i=1,2,3) an.

4. Billardkugel

Wie hoch muss die Bande (überstehende Kante) eines Billardtisches sein, damit eine senkrecht auf diese zurollende Billardkugel mit Radius R nach dem Stoß an der Bande reflektiert wird ohne zu rutschen?

Hinweis: Legen Sie den Ursprung des Koordinatensystems auf die Kante der Bande und bestimmen Sie (bezogen auf diese Wahl des Ursprungs) den Gesamtdrehimpuls $\vec{L}_{\rm tot}$ der Kugel vor und nach der Reflektion. Deuten Sie die Bedingung "ohne Rutschen" im Lichte von $\vec{L}_{\rm tot}$.