Wärme und Elektrizität, PHB2

$R = 8.31 \frac{J}{\text{mol}*K}; N_A = 6.0$				••			57 kJ/kg, $h_{s,m}$ = 334 kJ/kg $\mu_0 = 4\pi \times 10^{-7} VsA^{-1} m^{-1}$
Thermische Ausdehnung:			$\Delta l = l_0 \cdot \alpha$		$V \approx V_0 (1 + 3\alpha \Delta T_C);$		$\gamma = \frac{1}{V_0} \frac{\partial V}{\partial T} \Big _{T} = 3\alpha$
Verteilungsdichte $f(x)$: $\int_{-\infty}^{\infty} f(x) dx$ Gerichtete Verteilung, (R	••	$f_{MB} = \sqrt{\frac{m}{2\pi \cdot k \cdot T}} e^{-\frac{m \cdot v^2}{2 \cdot k \cdot T}}$			$\overline{v_x} = \int_{-\infty}^{\infty} v_x f(v_x) dv_x$	dv_x	$\overline{v_x^2} = \int_{-\infty}^{\infty} v_x^2 f(v_x) dv_x$
Ungerichtete 3D-Verteil	ung	f_{M}	$=4\pi v^2 \left(\frac{m}{2\pi \cdot k}\right)$	$\left(\frac{1}{c \cdot T}\right)^{\frac{3}{2}} e^{-\frac{m \cdot v^2}{2 \cdot k \cdot T}}$	$\overline{v} = \int_0^\infty v f_M(v) dv = \sqrt{\frac{8}{3\pi}} v_{rms}$		$\overline{v^2} = v_{rms}^2 = \int_0^\infty v^2 f_M(v) dv = \frac{3kT}{m}$
Boltzmann-Verteilung $\frac{n(E)}{n(E_0)} = e^{-\frac{\Delta E}{k*T}}$			$f_B = \frac{e^{-1}}{\int_0^\infty e^{-1}}$	$\frac{\frac{E}{kT}}{\frac{E}{kT}}dE$	$ \Lambda = 1/(\sqrt{2}\sigma n) \sigma = \pi(r_1 + r_2)^2 $		$n = \frac{N}{V} = \frac{p}{kT}$
Transporteffekte,		Diff	usion; <i>j</i>	$m = -D \frac{d\varphi}{dz}$	Innere Reibung; $\tau = -\eta \frac{du}{dz}$		Wärmeleitung; $\dot{q} = -\lambda \frac{dT}{dz}$
$V rac{dn}{dt} = j_0 A - j_1 A$ Bilanzgleichung:			$D = \frac{1}{3}$	**-	$\eta = \frac{1}{3}\rho \bar{v}\Lambda$		$\lambda = \frac{1}{3} \overline{v_z} nmc_V \Lambda$ Strahlung, Planck: $\frac{dI}{df} =$
Wärmetransport,		Wärmeleitung:		$\dot{Q} = -\frac{\Delta T}{R_{cb}}$	Konvektion $\dot{q}_{\scriptscriptstyle K}=k_{\scriptscriptstyle K}\Delta T$, $R_{\scriptscriptstyle k}=\frac{1}{k_{\scriptscriptstyle k}A}$ Wärmestrom [J/m²]		Strahlung, Planck: $\frac{dI}{dI} = \frac{dI}{dI}$
Wärmebilanz		$\dot{\vec{q}} = -\lambda \vec{\nabla} T$		R_{th}			
$\frac{dU}{dt} = \dot{Q}_1 - \dot{Q}_2$		Wärme-		$R = \frac{\Delta x}{1}$			$\frac{\frac{2\pi hf^3}{c^2} \frac{1}{\frac{hf}{e^{KT}-1}} \operatorname{oder} \frac{dI}{d\lambda}}{\frac{2\pi hc^2}{\lambda^5} \frac{1}{\frac{hc}{e^{2KT}-1}}}, I_S = \varepsilon \sigma T_S^4$
at		widerstand		$R_{th} = \frac{\Delta x}{\lambda A}$	$\dot{Q}_m = vAu = vA$	$\alpha c \Lambda T$	$2\pi hc^2$ 1
		Kont	akt-	$R_{c} = \frac{\left \Delta T\right }{\dot{Q}}$		m	$\frac{1}{\lambda^5} \frac{hc}{\frac{hc}{\lambda kT} - 1}$, $I_s = \varepsilon \sigma T_s^4$
		widerstand		$R_C = \frac{1}{\dot{Q}_{\kappa}}$	$\dot{q}_{m} = vu = v \rho c_{m}$	ΔT	$[W/m^2]$ $1 = \alpha + r + \tau$
				٠,			$\lambda_{\text{max}} = 2897.8 \mu m K / T$
							$\Phi = EA\sigma(T_1^4 - T_2^4)$
							$E = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$
Ideales Gas: $PV = \nu RT$		$C_V = \left(\frac{dU}{dT}\right)_V$		$C_p = \left(\frac{dH}{dT}\right)_n$	$c_V = \frac{f}{2}R$, $c_P = c_V + R$, $\varkappa = \frac{c_P}{c_V}$;		$\Delta Q = c \cdot m \cdot \Delta T = c_{mol} \cdot v \cdot \Delta T$
Der erste Hauptsatz: ΔU	$=\Delta Q + \Delta W$, re	versib	le: $\Delta Q = \Delta U$	$+\int_{1}^{2} PdV$, E_{ki}	$\frac{1}{in} = U = \frac{f}{2}\nu RT = 1$	$c_V T$	
Reale Gase: (a), ,	dn	2	1	((2 2 2	.))	
$p + \frac{u}{V_m}$	$(V_m - b) = RT$	$\frac{dp}{dT}$	$\frac{1}{T} = \frac{\lambda_V}{T(v_{gas} - v_{fl})}$	$\overline{)}$, $p(T) = p_0$	$\exp\left(-\left(\frac{\lambda_{V,mol}}{RT} - \frac{\lambda_{V,n}}{RT}\right)\right)$	$\left(\frac{1}{2} \right) $, $T_0 = 373 \text{ K}$,P ₀ = 10 ⁵ Pa
	Anfangs- u			Arbeit			Wärme
Prozess	_			Volumenar	beit		
	Endzustar	ıa	dW (-PdV)			$\Delta U = \Delta Q + \Delta W$	
						$\Delta Q = vC_V \Delta T + PdV$	
Isochor (V = const.)	$V_1 = V_2$ $\frac{T_2}{T_1} = \frac{p_2}{p_1}$		dW = 0			$vC_V(T_2-T_1)$	
Isobar	P ₁ = P ₂		$P(V_1 - V_2)$ oder $vR(T_1 - T_2)$			$\Delta Q = \upsilon C_p \Delta T + V dP$ $= \upsilon C_p (T_2 - T_1)$	
$(p = const.) \qquad \frac{T_2}{T_1} = \frac{V_2}{V_1}$						•	
Isotherm	nerm $T_1 = T_2$		$PV = vRT, \qquad dW = -PdV$			d(PV) = 0 $PdV + VdP = 0$	
(T = const.)	$P_1V_1 = P_2V_1$	2	$dW = -vRT\frac{dV}{V}, \Delta W = -vRT \cdot \ln \frac{V_2}{V}$			PaV + VaP = 0 $\Delta O = -\Delta W$	

Prozess	Anfangs- und	Volumenarbeit	vvarme	
F102E33	Endzustand	dW (-PdV)	$\Delta U = \Delta Q + \Delta W$ $\Delta Q = vC_V \Delta T + PdV$	
Isochor (V = const.)	$V_1 = V_2$ $\frac{T_2}{T_1} = \frac{p_2}{p_1}$	dW = 0	$vC_V(T_2-T_1)$	
Isobar (p = const.)	$ \frac{P_1 = P_2}{\frac{T_2}{T_1}} = \frac{V_2}{V_1} $	$P(V_1-V_2)$ oder $vR(T_1-T_2)$	$\Delta Q = vC_p\Delta T + VdP$ $= vC_p(T_2 - T_1)$	
Isotherm (T = const.)	$T_1 = T_2$ $P_1V_1 = P_2V_2$	$PV = vRT, dW = -PdV$ $dW = -vRT \frac{dV}{V}, \Delta W = -vRT \cdot \ln \frac{V_2}{V_1}$	$d(PV) = 0$ $PdV + VdP = 0$ $\Delta Q = -\Delta W$	
Adiabatisch (isentrop) $PV^k = const.$	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\kappa}$ $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\kappa-1}$ $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\kappa-1}{\kappa}}$	$VdP + PdV = vRdT$ $PdV = vRdT + \kappa PdV$ $(\kappa - 1)PdV = -vRdT$ $-PdV = \frac{vR}{\kappa - 1}dT$ $\Delta W = \frac{vR}{\kappa - 1}(T_2 - T_1) = vC_V(T_2 - T_1)$	dQ = 0	
Polytrop $pV^n = const.$	$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^n$ $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{n-1}$ $\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$	$PdV + VdP = vRdT$ $VdP = -nPdV$ $-(n-1)PdV = vRdT$ $\Delta W = \frac{vR}{n-1}(T_2 - T_1)$	$\Delta U = \Delta Q + \Delta W$ $\Delta Q = vC_V(T_2 - T_1) + \frac{-vR}{n - 1}(T_2 - T_1)$ $\Delta Q = vC_V(T_2 - T_1)\left(\frac{n - \kappa}{n - 1}\right)$	
Inner	e Energie En	thalnie Entron	nie Streduzierte Wärme	

		Innere Energie $U = \frac{f}{2} \nu RT$	Enthalpie H = U + PV	Entropie S: reduzierte Wärme $\Delta S = \Delta Q/T, \ S = k \ln \Omega$
Diffe	rential	$dU = \nu C_v dT$	$dH = \nu C_p dT$	$dS = \nu C_p \frac{dT}{T} - \nu R \frac{dP}{P} = \nu C_v \frac{dT}{T} + \nu R \frac{dV}{V} = \nu C_v \frac{dP}{P} + \nu C_p \frac{dV}{V}$
Änd	erung	$\Delta U = \nu C_{\nu} \Delta T$	$\Delta H = \nu C_p \Delta T$	$\Delta S = \nu C_p ln \frac{T_2}{T_1} - \nu R ln \frac{P_2}{P_1} = \nu C_v ln \frac{T_2}{T_1} + \nu R ln \frac{V_2}{V_1} = \nu C_v ln \frac{P_2}{P_1} + \nu C_p ln \frac{V_2}{V_1}$

