theorem there exists an outer automorphism of S_6 .

lemma let \mathbf{F} be a field, $\mathbf{P} = \mathbf{F} \cup \{\infty\}$ the projective line over \mathbf{F} . then $\text{M\"ob}(\mathbf{F})$ acts sharply three transitively on \mathbf{P} .

proof let $\mathbf{P} = \mathbf{F}_5 \cup \{\infty\} = \{0, 1, 2, 3, 4, \infty\}$ be our six element set. we have an inclusion Möb(\mathbf{F}_5) ≤ $S_{\mathbf{P}}$ of index 6! $(5^2 - 1)(5^2 - 5)/(5 - 1) = 6$. therefore the coset space $C = S_{\mathbf{P}}/\text{M\"ob}(\mathbf{F}_5)$ is another six element set on which $S_{\mathbf{P}}$ naturally acts. we have thus defined a homomorphism $\rho : S_{\mathbf{P}} \to S_C$. we'll show it is bijective by showing ker ρ is trivial. indeed, ker ρ is a normal subgroup of $S_{\mathbf{P}}$, so if it were not trivial it would be either the whole $S_{\mathbf{P}}$ or the alternating group of index two. however, when G acts on G/H, the kernel of the action is a subgroup of H and so has index at least [G:H]. now we claim id, (12), (13), (23), (132) is a set of representatives for the coset space C. indeed, if $g, h \in S_{\mathbf{P}}$ fix each of $0, 4, \infty$ then so does $g^{-1}h$, and so gMöb(\mathbf{F}_5) = hMöb(\mathbf{F}_5) implies g = h. now, consider the action of the three cycle g = (123) on C via these representatives. we have

which as a permutation of C decomposes as two three cycles. thus

$$S_{\mathbf{P}} \stackrel{\rho}{\longrightarrow} S_C \stackrel{C \cong P}{\longrightarrow} S_{\mathbf{P}}$$

gives an automorphism of $S_{\mathbf{P}}$ where (123) gets sent to $(0,4,\infty)(123)$ - but any inner automorphism of S_n preserves the cycle decomposition structure of permutations, and so such an automorphism must be outer.