Training and evaluating dependency parsers

(added to the course by popular demand)

Arianna Masciolini LT2214 Computational Syntax

Today's topic

Parsing

Parsing 3/28

A structured prediction task

Sequence \rightarrow structure, e.g.

- natural language sentence → syntax tree
- lacktriangle code o AST
- lacktriangle argumentative essay ightarrow argumentative structure

. . . .

Parsing 4/28

Example (argmining)

Språkbanken has better fika than CLASP: every fika, someone bakes. Sure, CLASP has a better coffee machine. On the other hand, there are more important things than coffee. In fact, most people drink tea in the afternoon.

Parsing 5/28

Example (argmining)

From "A gentle introduction to argumentation mining" (Lindahl et al., 2022)

Parsing 6/28

Syntactic parsing

Syntactic parsing 7/28

From sentence to tree

From chapter 18 of *Speech and Language Processing*, (Jurafsky & Martin, January 2024 draft):

Syntactic parsing is the task of assigning a syntactic structure to a sentence

- the structure is usually a syntax tree
- two main classes of approaches:
 - constituency parsing (e.g. GF)
 - dependency parsing (e.g. UD)

Syntactic parsing 8/28

Example (GF)


```
MicroLang> i MicroLangEng.gf
linking ... OK

Languages: MicroLangEng
7 msec
```

MicroLang> p "the black cat sees us now"
PredVPS (DetCN the_Det (AdjCN (PositA black_A)
(UseN cat_N))) (AdvVP (ComplV2 see_V2 (UsePron
we Pron)) now_Adv)

Syntactic parsing 9/28

Example (GF)


```
PredVPS

(DetCN

the_Det

(AdjCN (PositA black_A) (UseN cat_N))
)

(AdvVP

(ComplV2 see_V2 (UsePron we_Pron))

now_Adv
)
```

Syntactic parsing 10/28

Example (GF)

Syntactic parsing 11/28

Dependency parsing

Dependency parsing 12/28

Example (UD)

6

now

ADV

Dependency parsing 13/28

advmod

Two paradigms

- **graph-based algorithms**: find the optimal tree from the set of all possible candidate solutions (or a subset of it)
- transition-based algorithms: incrementally build a tree by solving a sequence of classification problems

Dependency parsing 14/28

Graph-based approaches

$$\hat{t} = \underset{t \in T(s)}{\operatorname{argmax}} \operatorname{score}(s, t)$$

- t: candidate tree
- t: predicted tree
- **s**: input sentence
- T(s): set of candidate trees for s

Dependency parsing 15/28

Complexity

Depends on:

- choice of T (upper bound: n^{n-1} , where n is the number of words in s)
- scoring function (in the arc-factor model, the score of a tree is the sum of the score of each edge, scored individually by a NN)

In practice: $O(n^3)$ complexity

Dependency parsing 16/28

Transition-based approaches

- trees are built through a sequence of steps, called transitions
- training requires:
 - a gold-standard treebank (as for graph-based approaches)
 - an oracle i.e. an algorithm that converts each tree into a a gold-standard sequence of transitions

ightharpoonup much more efficient: O(n)

Dependency parsing 17/28

Evaluation

2 main metrics:

- **UAS** (Unlabelled Attachment Score): what's the fraction of nodes are attached to the correct dependency head?
- LAS (Labelled Attachment Score): what's the fraction of nodes are attached to the correct dependency head with an arc labelled with the correct relation type¹?

Dependency parsing 18/28

¹ in UD: the DEPREL column

Specifics of UD parsing

Specifics of UD parsing 19/28

Not just parsing per se

UD "parsers" typically do a lot more than dependency parsing:

- sentence segmentation
- tokenization
- lemmatization (LEMMA column)
- POS tagging (UPOS + XPOS)
- morphological tagging (FEATS)
- **>** ...

Sometimes, some of these tasks are performed **jointly** to achieve better performance.

Specifics of UD parsing 20/28

Evaluation (UD-specific)

Some more specific metrics:

- **CLAS** (Content-word LAS): LAS limited to content words
- MLAS (Morphology-Aware LAS): CLAS that also uses the FEATS column
- **▶ BLEX** (Bi-Lexical dependency score): CLAS that also uses the LEMMA column

Specifics of UD parsing 21/28

Evaluation script output

Metric	I	Precision	1	Recall	I	F1 Score	1	AligndAcc
Tokens	-+ 	100.00	-+-	100.00	-+- 	100.00	1	
							1	
Sentences	ı	100.00	ı	100.00	ı	100.00	ı	
Words		100.00		100.00		100.00		
UPOS		98.36	-	98.36	1	98.36	1	98.36
XPOS		100.00	-	100.00	1	100.00	1	100.00
UFeats		100.00	-	100.00	1	100.00	1	100.00
AllTags		98.36	-	98.36	1	98.36	1	98.36
Lemmas		100.00	-	100.00	1	100.00	1	100.00
UAS		92.73	-	92.73	1	92.73	1	92.73
LAS		90.30	-	90.30	1	90.30	1	90.30
CLAS	1	88.50	-	88.34	1	88.42		88.34
MLAS	1	86.72	-	86.56	1	86.64		86.56
BLEX	1	88.50		88.34	1	88.42	1	88.34

Specifics of UD parsing 22/28

Three generations of parsers

(all transition-based)

- 1. **MaltParser** (Nivre et al. 2006): "classic" transition-based parser, data-driven but not NN-based
- 2. UDPipe: neural parser, personal favorite
 - v1 (Straka et al. 2016): fast, solid software, easy to install and available anywhere
 - v2 (Straka et al. 2018): much better results but slower and only available through an API/via the web GUI
- 3. MaChAmp (van der Goot et al. 2021): transformer-based toolkit for multi-task learning, works on all CoNNL-like data, close to the SOTA, relatively easy to install and train

Specifics of UD parsing 23/28

MaChAmp config example


```
{"compsyn": {
    "train_data_path": "PATH-TO-YOUR-TRAIN-SPLIT",
    "dev data path": "PATH-TO-YOUR-DEV-SPLIT",
    "word idx": 1,
    "tasks": {
        "upos": {
            "task_type": "seq",
            "column idx": 3
        },
        "dependency": {
            "task_type": "dependency",
            "column idx": 6}}}
```

Specifics of UD parsing 24/28

Your task (lab 3)

- annotate a small treebank for your language of choice (started yesterday)
- 2. train a parser-tagger on a reference UD treebank (tomorrow, or maybe even today: installation)

3. evaluate it on your treebank

Specifics of UD parsing 25/28

Sources/further reading

Sources/further reading 26/28

Main sources

- chapters 18-19 of the January 2024 draft of Speech and Language Processing (Jurafsky & Martin) (full text available here)
- unit 3-2 of Johansson & Kuhlmann's course "Deep Learning for Natural Language Processing" (slides and videos available here)
- section 10.9.2 on parser evaluation from Aarne's course notes (on Canvas or here)

Sources/further reading 27/28

Papers describing the parsers

- MaltParser: A Data-Driven Parser-Generator for Dependency Parsing (Nivre et al. 2006) (PDF here)
- ▶ UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing (Straka et al. 2016) (PDF here)
- ► UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task (Straka et al. 2018) (PDF here)
- Massive Choice, Ample Tasks (MACHAMP): A Toolkit for Multi-task Learning in NLP (van der Goot et al., 2021) (PDF here)

Sources/further reading 28/28