Inteligência Artificial Prof. Robson de Souza

Representação de conhecimento

Relembrando, a resolução de problemas envolve a descrição formal de um problema, juntamente com uma estratégia de busca que leve de um estado inicial a um estado objetivo em um conjunto de estados possíveis. Logo, podemos representar a solução de problemas como uma sequência de estados do mundo em questão (representados por vértices num grafo) que leva de um estado inicial até um estado final, onde cada estado é produzido a partir de um estado anterior através de uma mudança de estados admissível. Levando tudo isso em consideração, uma questão importante a ser feita é quanto do conhecimento sobre a solução do problema deve ser embutido nessas transições?

Além disso, é preciso definir como esse conhecimento sobre a solução do problema será embutido em um mecanismo de resolução.

Sistemas Baseados em Conhecimento (KBS)

Sistemas baseados em conhecimento são sistemas computacionais baseados na aquisição, representação e manipulação de conhecimento no nível simbólico. Nesse caso, é necessário utilizar a representação de conhecimento para o desenvolvimento de um sistema assim.

Representação de conhecimento → Mapeamento entre fatos no mundo e as representações desses fatos num determinado formalismo. São essas representações, internas ao sistema, que o programa irá manipular.

A representação de conhecimento possui dois níveis: **nível do conhecimento** e o **nível do simbólico**. Sendo que **o primeiro é o nível no qual os fatos são descritos**. Já o **nível simbólico é aquele no qual as representações dos objetos existentes no nível de conhecimento (símbolos) são manipuladas**. Como exemplo, considere o seguinte cenário:

Nível do conhecimento	Nível do simbólico	
Representação lingüística:	Representação em lógica:	
Sócrates é um homem. Todo homem é mortal. Sócrates é mortal.	HOMEM (Socrates) $(\forall X) (HOMEM (X) \rightarrow MORTAL (X))$ $MORTAL (Socrates)$	

A representação de conhecimento precisa dos chamados símbolos para funcionar, um **símbolo** é uma **estrutura física (a qual pode ser implementada como uma estrutura de dados)** que pode ser interpretada semanticamente independentemente, no nível do próprio símbolo. Além disso pode ser composta por outros símbolos, ou entrar na composição de outros símbolos e estar associada a processos que permitem a manipulação de símbolos.

Deseja-se que um sistema de representação de conhecimento seja:

- Adequado quanto à sua capacidade de representação;
- Adequado quanto à sua capacidade de inferência;
- Eficiente quanto à sua capacidade de inferência (que seja capaz de focar a atenção do(s) mecanismo(s) de inferência favoravelmente);
- Eficiente quanto à sua capacidade de adquirir conhecimento.

Formas de representação de conhecimento tradicionais não bastam, por exemplo, um **banco de dados relacional** tem boa capacidade de representação e tem alguma capacidade de adquirir conhecimento, mas tem uma **capacidade de inferência muito limitada**. Para resolver parte desse problema, é possível utilizar

bancos de dados dedutivos, que são extensões de um banco de dados relacional implementando um formalismo lógico.

Exemplo:

Nome	Cargo	Escolaridade	Salário	Tempo de firma
Luiz	Diretor	S	4000	10
Paulo	Engenheiro	S	2500	2
Estevão	Analista senior	S	2900	4
Alex	Encarregado de manutenção	M	1200	4
Cristina	Secretária	M	1000	5

Inferências a serem feitas:

O salário aumenta com o tempo de casa? Sim ou não? Isso está ligado à escolaridade de cada funcionário?

Questões centrais em representação de conhecimento

Quais atributos são tão gerais que eles devem ser representados em qualquer formalismo?

Quais são as relações mais importantes entre os atributos dos objetos?

A que nível de detalhe devemos representar o conhecimento? Existe um conjunto adequado de primitivas que devemos usar na representação?

Como podemos acessar **com eficiência** as partes relevantes do conhecimento representado na base de conhecimento?

Redes semânticas

Para entender o conceito de redes semânticas, e necessário compreender os conceitos de **ISA** e **INSTANCE**, que são dois atributos essenciais da representação de conhecimento. ISA representa uma subclasse de uma classe, já INSTANCE representa um elemento dessa classe, como pode ser visto na figura abaixo:

As redes semânticas permitem representar relações ISA (is a – é um / uma) e INSTANCE (instância – é um exemplo de) com facilidade. Permitem também efetuar **raciocínio baseado em herança monotônica** (o fato de que certas qualidades são herdadas de uma classe para uma subclasse da primeira). Além de tudo isso, permitem a **definição de valores típicos (default) para atributos**. A figura abaixo mostra um exemplo de rede semântica:

Por essa rede semântica, podemos concluir (**baseado em herança monotônica**) que Sócrates tem sangue quente. Também podemos raciocinar (**baseado em valores típicos**) que Sócrates deve ter aproximadamente 1,70m de altura. Isso é muito semelhante com o que existe em linguagens orientadas a objetos.

Redes semânticas também podem ser utilizadas para **representar sentenças da linguagem natural**. Por exemplo, a figura abaixo mostra uma rede semântica que representa a sentença: **"João deu o livro para Maria"**.

Frames (molduras)

Um **frame** é uma coleção de atributos (**slots**) e seus valores associados (**fillers**).

Por exemplo:

MAMÍFERO:

temperatura_do_sangue: quente alimento_do_filhote: leite habitat: terrestre

HOMEM:

isa: animal isa: mamífero

sexo: {masculino, feminino}

altura(m): [1.50, 1,95]

Sócrates:

instance: homem nacionalidade: grego altura(m): 1.65

Scripts (Roteiros)

Um **script (roteiro)** é uma estrutura que descreve uma sequência estereotipada de eventos dentro de um contexto particular. Por exemplo, um roteiro de uma ida a um restaurante:

Roteiro: Restaurante.

Trilha: Restaurante simples.

Acessórios: Mesas, cardápio, prato-principal, sobremesa, dinheiro. Papéis: Cliente (C), garçom (G), dono do restaurante (D).

Condições de entrada:

Cliente com fome e cliente tem dinheiro.

Resultados:

Cliente tem menos dinheiro e dono tem mais dinheiro e cliente sem fome e (opcional) cliente satisfeito.

Cena 1: Entrada

C entra no restaurante

C procura-e-acha mesa

C senta à mesa

Cena 2: Pedido

C pede cardápio a G

C escolhe prato-principal

C pede prato-principal a G

Cena 3: Refeição

G traz prato-principal

C come prato-principal

Opcional: Voltar à cena 2 na trilha – pedido(sobremesa)

Cena 4: Saída

C pede conta a G

G traz conta

C paga conta

C sai do restaurante

Referências bibliográficas:

RUSSELL, Stuart J.; NORVIG, Peter. Inteligência artificial. Elsevier, 2004.

RUSSELL, Stuart; NORVIG, Peter. Inteligência artificial. Rio de Janeiro: GEN LTC, 2013. ISBN 9788595156104.