Triton CPU backend

Goals and non-goals

Goals

- Portable, easy-to-use solution
 - Users don't need to modify their kernels
 - Parameters tuning may be required to achieve the best performance
- Provide performance on par with Inductor's generated code on torchbench
- Support multiple architectures
- Non-goals
 - Provide debugging functionality
 - Interpreter mode is used for that
 - Efficient GEMM lowering (at least short-term)
 - Use external solutions

Threading and SIMD parallelism

```
tt.Func public @triton kernel(...) {
triton kernel[grid](*args)
                                                               scf.for (%i) = (%start) to (%end) step (%tile_size) {
                                                                 %tile 0 = vector.load %arg0[%i]
                                                                 %tile 1 = vector.load %arg1[%i]
#pragma omp for [schedule(static, N)]
                                                                 %tmp = arith.addf %tile 0, %tile 1
for (auto [x, y, z] : grid) {
                                                                vector.store %tmp, %arg2[%i]
  triton kernel[grid](args..., {x, y, z})
                      OMP tasks
                                    CPU
                                                                                             Data blocks split to
  Data split between
                                                                                                 tiles
                                                    reg1
      kernels
                                    Core
                                                     reg2
                                    Core
                                                     reg3
                                                    reg4
                                    Core
                                                     reg5
                                    Core
                                                     reg6
```

Block size != Tile size != Vector size

- Efficient tile size is defined by platform capabilities
 - Registers count and sizes
 - Specialized ISA (e.g. VNNI)
 - Tile is usually one or several native vector registers
- Efficient block size can far exceed tile
 - Thread task spawning has its cost
 - Data locality and prefetch are better for bigger blocks
 - Block size can be defined by input size
 - Reductions in the kernel, e.g. softmax

Block size. Vector-add example

```
@triton.jit
def kernel(a, b, c, BLOCK:tl.constexpr):
 index = tl.arange(0, BLOCK)
 tmp0 = tl.load(a + index)
 tmp1 = tl.load(b + index)
 tl.store(c + index, tmp0 + tmp1)
#pragma omp for [schedule(static, N)]
 for(long i0 = 0; i0 < SIZE; i0 += 16) {
 for (long il = 0; il < 16; ++il) {
  out_ptr0[i0 + i1] = in_ptr0[i0 + i1] + in_ptr1[i0 + i1];
 }//Translated into a single vector add instruction
 3
```

Execution time by block size (4096x4096 inputs)

Required transformations

- Memory accesses
 - Move from indirect accesses to contiguous ones
 - Can use memref and/or block pointers
- Tiling and fusion
 - To minimize operations with memory tensor operations needs to be tiled and fused
- Vectorization
 - Prefer vectorization in MLIR to LLVM auto-vectorizer

Memory access analysis

- Avoiding gathers/scatters whenever possible is crucial for performance
- Existing alignment analysis pass might be used/extended for Triton CPU
- Can also transform tensors of pointers to block pointers on Triton dialect
 - Can benefit GPU backends
- How to represent masked load/store?
 - Vector dialect
 - Triton dialect loads/stores on memrefs
 - New ops (TritonCPU dialect)

Tiling and fusion options

- Use MLIR upstream transformations vs own passes
- There are existing upstream transformations to lower ops into tiled scf.for/scf.parallel loop
 - Transformation is based on TilingInterface and PartialReductionOpInterface
 - Linalg operations implement those interfaces
- Two ways to re-use transfromations
 - Translate Triton ops to linalg dialect
 - Implement tiling interface for Triton ops
- We can write our own transformations working on Triton dialects

Which dialects to use?

- Use existing Triton dialect(s) when possible
- Prefer upstream dialects when it fits?
 - Linalg
 - Vector
 - Memref
- Use new dialect (TritonCPU) when it helps with analysis and transformations

Linalg on tensors as a midlayer dialect

- Upstream dialect used in ML/AI compilation flows, provides useful transformations
 - Tiling
 - Fusions
 - Vectorization
 - Bufferization
 - ...
- Can simplify lowering to LLVM IR
- Triton ops on tensors map nicely to linalg ops

Vectors as a midlayer dialect

- Provide masked operations
- Closer to hardware capabilities, can express algorithms more precisely
- Vector dialect doesn't provide generic forms for scans and reductions
 - Vector versions can be quite complex
 - It's better to perform tiling before moving to vectors
- Vectorization is not always profitable need a way to fall back to a scalar code

Using OpenMP threading runtime

Pros:

- Easy-to-use portable solution
- Accessible from MLIR through omp dialect
- Provides composability to avoid oversubscriptions in multiple scenarios
 - Run multiple kernels
 - Parallelize kernels
 - Run external parallel kernels (e.g. GEMM)

Cons:

Introduces additional dependency

External dependencies

- Math functions
 - Would need scalar and vector variants (VML, DNN)
- GEMM and other kernels
 - MKL/DNN/XSMM
- Bytecode libraries vs native binaries
 - Might want to use vendor-specific libraries, so better not having all runtimes in Triton repo