Progetto per il corso Algoritmi e modelli per l'ottimizzazione discreta

Sara Malaspina, Silvia Perelli

Problema

L'obiettivo del progetto è risolvere un problema di scheduling con due giocatori, ciascuno dei quali possiede un insieme di job da svolgere su una singola macchina.

Ciascun giocatore ha una funzione obiettivo che è influenzata dalla posizione dei job dell'altro giocatore ed entrambi vorrebbero cercare di minimizzare la somma dei tempi di completamento dei propri job.

Tuttavia, il problema è NP hard.

Modelli

Abbiamo modellato il problema di scheduling come un problema di programmazione lineare intera, considerando tre varianti:

- Soluzioni Min-Max
- Soluzioni di Kalai-Smorodinsky
- Soluzioni pesate con parametro α

Input:

- J_1 : insieme di job del giocatore 1
- J_2 : insieme di job del giocatore 2
- *n*: numero di job totali
- p: vettore di durate dei job

Soluzioni Min-Max (1)

Variabili temporali (continue)

- s[i]: tempo di inizio del job i $\forall i \in \{1, ..., n\}$
- c[i]: tempo di completamento del job i $\forall i \in \{1, ..., n\}$

Variabili di precedenza (binarie)

•
$$x[i,j] = \begin{cases} 1 \text{ se il job i precede il job j} \\ 0 \text{ altrimenti} \end{cases} \quad \forall \ 1 \le i < j \le n$$

Variabile objettivo

• z: somma dei tempi di completamento massima tra i due giocatori

Soluzioni Min-Max (2)

Funzione Obiettivo

• min z

Vincoli sul tempo di completamento

•
$$c[i] = s[i] + p[i]$$

$$\forall i \in \{1, ..., n\}$$

- $z \ge \sum_{i \in I_1} c[i]$
- $z \ge \sum_{i \in I_2} c[i]$

Vincoli di precedenza

•
$$s[j] \ge c[i] - M * (1 - x[i,j])$$
 $\forall 1 \le i < j \le n$

$$\forall \ 1 \le i < j \le n$$

•
$$s[i] \ge c[j] - M * x[i,j]$$

$$\forall \ 1 \le i < j \le n$$

Soluzioni di Kalai-Smorodinsky (1)

Variabili temporali (continue)

- s[i]: tempo di inizio del job i $\forall i \in \{1, ..., n\}$
- c[i]: tempo di completamento del job i $\forall i \in \{1, ..., n\}$

Variabili di precedenza (binarie)

•
$$x[i,j] = \begin{cases} 1 \text{ se il job i precede il job j} \\ 0 \text{ altrimenti} \end{cases} \quad \forall \ 1 \le i < j \le n$$

Variabile objettivo

• z: somma dei tempi di completamento massima (normalizzata) tra i due giocatori

Soluzioni di Kalai-Smorodinsky (2)

Funzione Obiettivo

• min z

Vincoli sul tempo di completamento

•
$$c[i] = s[i] + p[i]$$

$$\forall i \in \{1, ..., n\}$$

•
$$z \ge \frac{\sum_{i \in J_1} c[i]}{worst_1 - best_1}$$

•
$$z \ge \frac{\sum_{i \in J_2} c[i]}{worst_2 - best_2}$$

Vincoli di precedenza

•
$$s[j] \ge c[i] - M * (1 - x[i,j])$$
 $\forall 1 \le i < j \le n$

$$\forall \ 1 \le i < j \le n$$

•
$$s[i] \ge c[j] - M * x[i,j]$$

$$\forall \ 1 \leq i < j \leq n$$

Soluzioni di Kalai-Smorodinsky (3)

Calcolo $best_1$ e $worst_1$ (analogo per il giocatore 2)

- $best_1$: somma dei tempi di completamento dei job del giocatore 1 disposti prima dei job del giocatore 2 e in ordine Shortest Processing Time
- $worst_1$: somma dei tempi di completamento dei job del giocatore 1 disposti dopo i job del giocatore 2 e in ordine Shortest Processing Time (anche i job del giocatore 2 sono disposti in ordine Shortest Processing Time)

Soluzioni di Kalai-Smorodinsky (4)

Questo modello normalizza le funzioni obiettivo dei singoli giocatori, tenendo conto dei valori minimi e massimi che ciascuno di essi può ottenere.

Tale strategia risulta più equa nei casi in cui i job di un giocatore durano molto meno dei job dell'altro, poiché utilizzando una soluzione Min-Max andremmo a favorire il giocatore con i job che durano di più.

Soluzioni pesate (1)

Variabili temporali (continue)

- s[i]: tempo di inizio del job i
- c[i]: tempo di completamento del job i

$$\forall i \in \{1, ..., n\}$$

 $\forall i \in \{1, \dots, n\}$

Variabili di precedenza (binarie)

•
$$x[i,j] = \begin{cases} 1 \text{ se il job i precede il job j} \\ 0 \text{ altrimenti} \end{cases}$$

$$\forall \ 1 \le i < j \le n$$

 $\alpha \in [0,1]$

Funzione obiettivo

•
$$\min \alpha * \sum_{i \in J_1} c[i] + (1 - \alpha) * \sum_{i \in J_2} c[i]$$

Soluzioni pesate (2)

Vincolo sul tempo di completamento

•
$$c[i] = s[i] + p[i]$$

$$\forall i \in \{1, \dots, n\}$$

Vincoli di precedenza

•
$$s[j] \ge c[i] - M * (1 - x[i,j])$$
 $\forall 1 \le i < j \le n$

•
$$s[i] \ge c[i] - M * x[i,j]$$

$$\forall \ 1 \leq i < j \leq n$$

$$\forall \ 1 \le i < j \le n$$

Soluzioni pesate (3)

Questo modello restituisce, al variare del parametro α , soluzioni che non sono dominate tra loro, ossia non riesco a migliorare la soluzione di uno dei due giocatori se non peggioro quella dell'altro.

Tali soluzioni appartengono al fronte di Pareto.

Implementazione (1)

Abbiamo utilizzato il solver Gurobi tramite la libreria di Python gurobipy.

Il main del programma realizzato permette all'utente di scegliere tra 5 gruppi di istanze:

- Istanze simmetriche
- Istanze con pochi job (da 4 a 8) e bassa varianza tra le durate
- Istanze con molti job (da 8 a 12) e bassa varianza tra le durate
- Istanze con pochi job (da 4 a 8) e alta varianza tra le durate
- Istanze con molti job (da 8 a 12) e alta varianza tra le durate

Per istanze con più di 12 job il solver non riesce a trovare la soluzione ottima in un tempo massimo di 5 minuti per ciascun modello.

Implementazione (2)

Per ciascuna istanza all'interno del gruppo selezionato viene calcolata la soluzione ottima per i tre modelli proposti.

In particolare, nel caso delle soluzioni pesate, vengono calcolate 11 soluzioni ottime, facendo variare il parametro α con passo 0.1.

Ogni modello restituisce anche la somma dei tempi di completamento dei job di ciascun giocatore e lo scheduling proposto.

Output Modelli

```
Istanza n° 1:
Soluzione ottima trovata:
Valore di z: 101.0
Job 0: inizio = 10.0, completamento = 32.0
Job 1: inizio = 32.0, completamento = 65.0
Job 2: inizio = 65.0, completamento = 91.0
Job 3: inizio = 0.0, completamento = 10.0
x_0_1 = 1.0
x 0 2 = 1.0
x_0_3 = 0.0
x 1 2 = 1.0
x_1_3 = 0.0
x_2 = 0.0
Scheduling trovato:
Posizione 1: Job 3
Posizione 2: Job 0
Posizione 3: Job 1
Posizione 4: Job 2
Payoff giocatore 1: 97.0
Payoff giocatore 2: 101.0
```

```
Istanza n° 1:
Soluzione ottima trovata:
Valore di z: 1.2
Job 0: inizio = 0.0, completamento = 22.0
Job 1: inizio = 32.0, completamento = 65.0
Job 2: inizio = 65.0, completamento = 91.0
Job 3: inizio = 22.0, completamento = 32.0
x_0_1 = 1.0
x 0 2 = 1.0
x_0_3 = 1.0
x_1_2 = 1.0
x 1 3 = 0.0
x_2_3 = 0.0
Scheduling trovato:
Posizione 1: Job 0
Posizione 2: Job 3
Posizione 3: Job 1
Posizione 4: Job 2
Payoff giocatore 1: 87.0
Payoff giocatore 2: 123.0
```

```
Istanza n° 1:
Soluzione ottima trovata:
Valore di obj: 95.5 per alpha 0.5
Job 0: inizio = 10.0, completamento = 32.0
Job 1: inizio = 58.0, completamento = 91.0
Job 2: inizio = 32.0, completamento = 58.0
Job 3: inizio = 0.0, completamento = 10.0
x_0_1 = 1.0
x_0_2 = 1.0
x_0_3 = 0.0
x 1 2 = 0.0
x_1_3 = 0.0
x_2_3 = 0.0
Scheduling trovato:
Posizione 1: Job 3
Posizione 2: Job 0
Posizione 3: Job 2
Posizione 4: Job 1
Payoff giocatore 1: 123.0
Payoff giocatore 2: 68.0
```

Min-Max

Kalai-Smorodinsky

Pesata per $\alpha = 0.5$

Implementazione (3)

Abbiamo confrontato le soluzioni dei diversi modelli per via grafica riportando, per ogni istanza, la somma dei tempi di completamento del primo giocatore sulle ascisse e la somma dei tempi di completamento del secondo giocatore sulle ordinate.

Sul grafico sono state evidenziate la soluzione di Kalai-Smorodinsky, la soluzione Min-Max e le soluzioni pesate per ogni valore di α .

È possibile notare che per alcune istanze, la soluzione Min-Max o di Kalai-Smorodinsky coincidono con una delle soluzioni ottime per uno o più valori di α .

Grafici (1)

Grafici (2)

Grafici (3)

