CS 276: Homework 6

Due Date: Friday November 1st, 2024 at 8:59pm via Gradescope

1 The OR of Two Hash Proof Systems

We will present a hash proof system for the language of DDH tuples and then build a hash proof system for the OR of two such proof systems.

Definition 1.1 (Hash Proof System) A hash proof system (HPS) is a tuple of algorithms (Gen, SKHash, PKHash) with the following syntax:

- Gen takes a security parameter 1^{λ} and outputs a public key pk and a secret key sk.
- SKHash: Takes sk and an instance $x \in \mathcal{X}$ and outputs $y \in \mathcal{Y}$.
- PKHash: Takes pk, an instance $x \in \mathcal{X}$, and a witness w and outputs $y \in \mathcal{Y}$.

Note that \mathcal{X} is the input space, and \mathcal{Y} is the output space.

The HPS satisfies the following properties:

- Correctness: If $x \in L$ and w is a valid witness for x, then SKHash(sk, x) = PKHash(pk, x, w).
- Smoothness: For any $x \notin L$, the following distributions are identical:

$$\{(\mathsf{pk},y): (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \leftarrow \mathsf{SKHash}(\mathsf{sk},x)\}$$
$$\{(\mathsf{pk},y): (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), y \overset{\$}{\leftarrow} \mathcal{Y}\}$$

1.1 HPS for DDH tuples

We will present an HPS for the language of DDH tuples.

Let \mathbb{G} be a cyclic group of order p, where p is a large prime. Let g, h be two generators of \mathbb{G} . Let the DDH language L be the following:

$$L = \{ (g^w, h^w) \in \mathbb{G}^2 : w \in \mathbb{Z}_p \}$$

1

Let $\mathcal{X} = \mathbb{G}^2$, let $x = (a, b) \in \mathcal{X}$, and let $\mathcal{Y} = \mathbb{G}$. For any tuple $x = (g^w, h^w) \in L$, let w serve as the witness. Then we can construct a hash proof system for L as follows:

Definition 1.2 (HPS For The DDH Language L)

- Gen(1 $^{\lambda}$): Sample sk = $(r,s) \leftarrow \mathbb{Z}_p^2$. Let pk = $g^r \cdot h^s$. Then output (pk, sk).
- SKHash(sk, x): Output $y = a^r \cdot b^s$.
- PKHash(pk, x, w): Output $y = pk^w$.

¹Note that the DDH problem asks an adversary to distinguish (g, h, g^w, h^w) from (g, h, g^w, h^v) , for $h \stackrel{\$}{\leftarrow} \mathbb{G}$ and $(w, v) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, so the ability to decide whether a given tuple belongs to L is sufficient to solve DDH.

CS 276, Fall 2024 Prof. Sanjam Garg

Question 1: Prove that the HPS constructed above satisfies correctness and smoothness.

Solution TBD

1.2 HPS for the OR of two languages

Now we will construct a HPS for the OR of two DDH languages, with the help of a bilinear map.

Let \mathbb{G}_0 and \mathbb{G}_1 be cyclic groups of order p, where p is a large prime. Let (g_0, h_0) be generators of \mathbb{G}_0 , and let (q_1, h_1) be generators of \mathbb{G}_1 . Let us define the following languages:

$$L_0 = \{ (g_0^w, h_0^w) \in \mathbb{G}_0^2 : w \in \mathbb{Z}_p \}$$

$$L_1 = \{ (g_1^w, h_1^w) \in \mathbb{G}_1^2 : w \in \mathbb{Z}_p \}$$

$$L_{\vee} = \{ (a_0, b_0, a_1, b_1) \in \mathbb{G}_0^2 \times \mathbb{G}_1^2 : (a_0, b_0) \in L_0 \vee (a_1, b_1) \in L_1 \}$$

Let $x = (a_0, b_0, a_1, b_1)$, and let the witness for $x \in L_{\vee}$ be a value $w \in \mathbb{Z}_p$ such that either (1) $a_0 = g_0^w$ and $b_0 = h_0^w$ or (2) $a_1 = g_1^w$ and $b_1 = h_1^w$.

Furthermore, let $e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ be an efficiently computable pairing function that satisfies:

$$e(g_0^r, g_1^s) = e(g_0, g_1)^{r \cdot s}$$

for any $r, s \in \mathbb{Z}_p$.

Question 2: Construct a HPS for L_{\vee} , and prove that it satisfies correctness and smoothness.

Solution TBD

$\mathbf{2}$ Identity-Based Encryption from LWE

We will construct identity-based encryption (IBE) and prove security from the decisional LWE assumption.

Parameters and Notation: Let n be the security parameter. Let $q \in \left[\frac{n^4}{2}, n^4\right]$ be a large prime modulus. Let $m = 20n \log n$, $\alpha = \frac{1}{m^4 \cdot \log^2 m}$, $L = m^{2.5}$, $s = m^{2.5} \cdot \log m$. Let χ be a Gaussian-weighted probability distribution over \mathbb{Z}_q with mean 0 and standard

deviation $\frac{q \cdot \alpha}{\sqrt{2\pi}}$. Let $H : \{0,1\}^* \to \mathbb{Z}_q^n$ be a random oracle.

Definition 2.1 (Decisional LWE Assumption) For any $m' \geq m$, the following two distributions are computationally indistinguishable:

$$\begin{split} &\{(\mathbf{A}, \mathbf{u}): \mathbf{A} \xleftarrow{\$} \mathbb{Z}_q^{n \times m'}, \mathbf{s} \xleftarrow{\$} \mathbb{Z}_q^n, \mathbf{e} \xleftarrow{\$} \chi^{m'}, \mathbf{u} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{e}\} \\ &\{(\mathbf{A}, \mathbf{u}): \mathbf{A} \xleftarrow{\$} \mathbb{Z}_q^{n \times m'}, \mathbf{u} \xleftarrow{\$} \mathbb{Z}_q^{m'}\} \end{split}$$

CS 276, Fall 2024 Prof. Sanjam Garg

Helper Functions: Our construction will use the following helper functions:

• TrapdoorSample(1ⁿ) \to **A**, **T**: Samples two matrices **A** $\leftarrow \mathbb{Z}_q^{n \times m}$ and **T** $\leftarrow \mathbb{Z}_q^{m \times m}$ such that **A** is statistically close to uniformly random, $\ker(\mathbf{A}) = \operatorname{column-span}(\mathbf{T})$, and every column of **T** is short: $\|\mathbf{T} \cdot \hat{e}_i\| \leq L$ for all $i \in [m]$. In other words, **T** is a short basis of $\ker(\mathbf{A})$.

• PreimageSample($\mathbf{A}, \mathbf{T}, \mathbf{v}$): Samples \mathbf{e} such that $\mathbf{A} \cdot \mathbf{e} = \mathbf{v} \mod q$ from a distribution proportional to a discrete Gaussian with mean $\mathbf{0}$ and standard deviation s. In other words, \mathbf{e} is a short vector in the preimage of \mathbf{v} .

The following lemma will be useful.

Lemma 2.2 For $\mathbf{v} \in \mathbb{Z}_q^m$ sampled from a discrete Gaussian distribution with mean $\mathbf{0}$ and a sufficiently large standard deviation s, $\Pr[\|\mathbf{v}\| > s\sqrt{m}] \leq \mathsf{negl}(m)$.

Construction:

• Setup (1^n) : Sample

$$\mathbf{A}, \mathbf{T} \leftarrow \mathsf{TrapdoorSample}(1^n)$$

Finally output mpk = A and msk = T.

• Gen(msk, ID): Compute $\mathbf{v} = H(ID)$. Then sample a short vector

$$e \leftarrow \mathsf{PreimageSample}(\mathbf{A}, \mathbf{T}, \mathbf{v})$$

Note that $\mathbf{A} \cdot \mathbf{e} = \mathbf{v} \mod q$. Finally, output $\mathsf{sk}_{ID} = \mathbf{e}$.

• Enc(mpk, ID, m): Let $m \in \{0,1\}$. Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{x} \leftarrow \chi^m$ and $x \leftarrow \chi$. Then compute $\mathbf{v} = H(ID)$, and

$$\mathbf{p} = \mathbf{A}^T \cdot \mathbf{s} + \mathbf{x}$$
$$c = \mathbf{v}^T \cdot \mathbf{s} + x + m \cdot |q/2|$$

Output $ct = (\mathbf{p}, c)$.

• Dec(sk_{ID} , ct): Parse $\mathsf{sk}_{ID} = \mathbf{e}$ and $\mathsf{ct} = (\mathbf{p}, c)$. Compute

$$\mu = c - \mathbf{e}^T \cdot \mathbf{p}$$

If $|\mu - q/2| \le q/4$, then output m' = 1. Otherwise, output m' = 0.

Question: Prove that the IBE construction given above is correct (except with negligible probability) and secure assuming decisional LWE (def. 2.1).

Solution TBD