INDUCTIONFEST

Inductionfest was first held in 2004. It is always so successful that it is held the following year.

Instructions: Work the first problem. After working a problem, work the problem that follows it.

Example 1. Show that for every positive integer n, $1 \cdot 1! + 2 \cdot 2! + \cdots + n! = (n+1)! - 1$.

Example 2. Let h be a real number, $h \ge -1$. Show that for every positive integer n,

$$1 + nh \le (1+h)^n.$$

Example 3. Show that for every positive integer n, $21 \mid (4^{n+1} + 5^{2n-1})$.

Example 4. Consider the sequence $\{a_n\}$ defined by $a_0 = 2$, $a_1 = 1$, and $a_n = 3a_{n-1} + a_{n-2}$ when $n \ge 2$. First show that for all natural numbers n, $3 \nmid a_n$. As a second problem, show that a_n is even if and only if n is a multiple of 3.

Example 5. Show that every positive integer n can be written as a sum of Fibonacci numbers, such that no number is repeated and no pair of adjacent Fibonacci numbers are used (for example, 1 can't be repeated and 5 and 8 can't both be used).