Model Engineering – Dropout Layers

Explainable Machine Learning - Deep Learning Life Cycle

Jonas Amling Baptiste Bony Benedikt Marsiske January 12, 2023

University of Bamberg

Table of contents

Research Question

Model Engineering Process

Looking back at Data Engineering

Further Considerations

Research Question

Research Question and Introduction

Our main Model Engineering challenges:

- Accuracy performance
- Prevent overfitting for the model to be generalizable to new data

Research Question: Do dropout layers prevent overfitting and what's the ideal position for them in the model?

Model Engineering Process

Dataset Overview

Figure 1: Labeled Training Data from the Green Background Dataset

Our Convolutional Neural Network

Figure 2: Visualization of the Convolutional Neural Network without Dropout Layers

Problem Description: Overfitting

Figure 3: Model Performance without Dropout Layers

Potential Solution: Dropout Layers

Figure 4: Scheme explaining the principle of Dropout Layers

Our Convolutional Neural Network with Dropout Layers

Figure 5: Visualization of the Convolutional Neural Network with Dropout Layers

Model Performance with Dropout

Figure 6: Model Performance with Dropout Rate = 0.4

Model Performance with Dropout

Figure 7: Model Performance with Dropout Rate = 0.2

Dropout Limitations: Underfitting

Figure 8: Model Performance with Dropout Rate = 0.6

Looking back at Data Engineering

Research Question

A look back at the previous Research Question regarding Data Engineering

Does removing the background during the image preprocessing phase benefit the image classification task at hand?

Raw Dataset

Figure 9: Labeled Training Raw Data from the Webcam Dataset

Model Performance without Preprocessing

Figure 10: Model Performance without Preprocessing & Dropout Rate = 0.2

Model Performance without Preprocessing

Figure 11: Model Performance without Preprocessing & Dropout Rate = 0.4

Preprocessed Dataset

Figure 12: Labeled Training Preprocessed Data from the Webcam Dataset

Model Performance with Preprocessing

Figure 13: Model Performance with Preprocessing & Dropout Rate = 0.2

Model Performance with Preprocessing

Figure 14: Model Performance with Preprocessing & Dropout Rate = 0.4

Further Considerations

Discussion

Issues we have not address yet:

- What influence does the optimizer have on the efficiency of the dropout?
- Is it necessary to use batch normalization in addition to dropout?
- How about considering the number of epochs as a parameter and explore early stopping?

Thank you for your attention!

Do you have any questions?