Titanic

2022-11

$\begin{tabular}{ll} \bf Titanic \\ \bf Trabajaremos con el Dataset \bf Titanic \\ \end{tabular}$

Table 1: Primeros registros de la base de datos Titanic

Passenge Sd rvive & class Name				Sex	Sex Age SibSpParchTicket			Fare CabinEmbarked		
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500 NA	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	e38	1	0	PC 17599	71.2833C85	C
3	1	3	Heikkinen, Miss. Laina	female	e26	0	0	STON/O2. 3101282	7.9250 NA	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	e35	1	0	113803	53.1000C12	3 S
5	0	3	Allen, Mr. William Henry	$_{\mathrm{male}}$	35	0	0	373450	8.0500 NA	\mathbf{S}
6	0	3	Moran, Mr. James	$_{\mathrm{male}}$	NA	0	0	330877	8.4583 NA	Q

Data Frame Summary

 $\textbf{TitanicT} \quad \textbf{Dimensions:} \ 891 \ge 12$

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing
1	PassengerId [numeric]	Mean (sd): 446 (257.4) min < med < max: 1 < 446 < 891 IQR (CV): 445 (0.6)	891 distinct values	891 (100.0%)	0 (0.0%)
2	Survived [numeric]	Min: 0 Mean: 0.4 Max: 1	0:549 (61.6%) 1:342 (38.4%)	891 (100.0%)	$0 \\ (0.0\%)$
3	Pclass [numeric]	Mean (sd): 2.3 (0.8) min < med < max: 1 < 3 < 3 IQR (CV): 1 (0.4)	1: 216 (24.2%) 2: 184 (20.7%) 3: 491 (55.1%)	891 (100.0%)	0 (0.0%)

No	Variable	Stats / Values	Freqs (% of Valid)	Valid	Missing	
$\overline{4}$	Name	1. Abbing, Mr. Anthony	1 (0.1%)	891	0	
	[character]	2. Abbott, Mr. Rossmore	1 (0.1%)	(100.0%)	(0.0%)	
		Edwa	1 (0.1%)			
		3. Abbott, Mrs. Stanton (Ros	1 (0.1%)			
		4. Abelson, Mr. Samuel	1 (0.1%)			
		5. Abelson, Mrs. Samuel (Han	886 (99.4%)			
		[886 others]				
5	Sex	1. female	314 (35.2%)	891	0	
	[character]	2. male	577 (64.8%)	(100.0%)	(0.0%)	
6	Age	Mean (sd): $29.7 (14.5)$	88 distinct values	714	177	
	[numeric]	$\min < \max < \max$:		(80.1%)	(19.9%)	
		0.4 < 28 < 80				
		IQR (CV) : 17.9 (0.5)				
7	SibSp	Mean (sd): $0.5 (1.1)$	7 distinct values	891	0	
	[numeric]	$\min < \max < \max$:		(100.0%)	(0.0%)	
		0 < 0 < 8				
		IQR (CV) : 1 (2.1)				
8	Parch	Mean (sd): $0.4 (0.8)$	7 distinct values	891	0	
	[numeric]	$\min < \max < \max$:		(100.0%)	(0.0%)	
		0 < 0 < 6				
		IQR (CV) : 0 (2.1)				
9	Ticket	1. 1601	7 (0.8%)	891	0	
	[character]	2. 347082	7 (0.8%)	(100.0%)	(0.0%)	
		3. CA. 2343	7 (0.8%)			
		4. 3101295	6 (0.7%)			
		5. 347088	6 (0.7%)			
		[676 others]	$858 \ (96.3\%)$			
10	Fare	Mean (sd) : 32.2 (49.7)	248 distinct values	891	0	
	[numeric]	$\min < \max :$		(100.0%)	(0.0%)	
		0 < 14.5 < 512.3				
		IQR (CV) : 23.1 (1.5)				
11	Cabin	1. B96 B98	4 (2.0%)	204	687	
	[character]	2. C23 C25 C27	4 (2.0%)	(22.9%)	(77.1%)	
		3. G6	4 (2.0%)			
		4. C22 C26	3~(~1.5%)			
		5. D	3 (1.5%)			
		[142 others]	186 (91.2%)			
12	Embarked	1. C	168 (18.9%)	889	2	
	[character]	2. Q	77 (8.7%)	(99.8%)	(0.2%)	
		3. S	$644 \ (72.4\%)$			

^{1. ¿}La varianza de las edades de quienes sobrevivieron es diferente para ambos grupos?

```
TitanicT %>% ggplot(aes(x=Age,colour=as.factor(Survived),group=Survived)) +
  geom_density()
```

^{2.} Con base en la respuesta anterior, prueba si las edades promedio son iguales o diferentes para quienes sobrevivieron o no?

^{##} Warning: Removed 177 rows containing non-finite values ('stat_density()').


```
TitanicT %>% ggplot(aes(x=as.factor(Survived), y=Age)) +
geom_boxplot()
```

Warning: Removed 177 rows containing non-finite values ('stat_boxplot()').

stats::var.test(Age ~ as.factor(Survived), data = TitanicT, conf.level = 0.95)

```
##
## F test to compare two variances
##
## data: Age by as.factor(Survived)
## F = 0.89853, num df = 423, denom df = 289, p-value = 0.317
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7253979 1.1082231
## sample estimates:
## ratio of variances
## 0.8985274
```

```
t.test(Age ~ Survived, data = TitanicT, conf.level = 0.95)
##
##
   Welch Two Sample t-test
## data: Age by Survived
## t = 2.046, df = 598.84, p-value = 0.04119
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.09158472 4.47339446
## sample estimates:
## mean in group 0 mean in group 1
          30.62618
                          28.34369
TitanicT %>% t_test(Age ~ Survived)
## Warning: The statistic is based on a difference or ratio; by default, for
## difference-based statistics, the explanatory variable is subtracted in the
## order "0" - "1", or divided in the order "0" / "1" for ratio-based statistics.
## To specify this order yourself, supply 'order = c("0", "1")'.
## # A tibble: 1 x 7
    statistic t_df p_value alternative estimate lower_ci upper_ci
##
         <dbl> <dbl> <dbl> <chr>
                                             <dbl>
                                                      <dbl>
                                                               <dbl>
## 1
          2.05 599. 0.0412 two.sided
                                             2.28
                                                     0.0916
                                                                4.47
Se dice que aproximadamente una tercera parte de la gente sobrevivió en el Titanic, estos datos respaldan
esta afirmación
prop.test(sum(TitanicT$Survived),891,p=1/3)
##
   1-sample proportions test with continuity correction
## data: sum(TitanicT$Survived) out of 891, null probability 1/3
## X-squared = 10.001, df = 1, p-value = 0.001564
## alternative hypothesis: true p is not equal to 0.3333333
## 95 percent confidence interval:
## 0.3519194 0.4167722
## sample estimates:
##
## 0.3838384
TitanicT %>% mutate(Survived=as.factor(Survived)) %>% prop_test(Survived ~ NULL,p=1/3)
## # A tibble: 1 x 4
     statistic chisq_df p_value alternative
         <dbl>
                  <int>
                           <dbl> <chr>
          319.
                      1 1.90e-71 two.sided
## 1
```

¿Sobrevivió la misma proporción de hombres y de mujeres o se aplicó lo de "mujeres y niños primero"?

```
prop.test(sum(TitanicT$Sex=="female"),891,p=.5)
##
## 1-sample proportions test with continuity correction
## data: sum(TitanicT$Sex == "female") out of 891, null probability 0.5
## X-squared = 77.042, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.3211923 0.3849235
## sample estimates:
## 0.352413
TitanicT %>% prop_test(Sex ~ NULL,p=.5, order = c("female","male"))
## # A tibble: 1 x 4
   statistic chisq_df p_value alternative
                         <dbl> <chr>
##
         <dbl>
               <int>
         77.0
                     1 1.67e-18 two.sided
## 1
TitanicT %>% prop_test(Sex ~ NULL,p=.5, success = "male", z=TRUE)
## # A tibble: 1 x 3
   statistic p_value alternative
        <dbl>
                <dbl> <chr>
         8.81 1.24e-18 two.sided
## 1
(tabla<- with(TitanicT,addmargins(table(Sex,Survived))))</pre>
##
          Survived
## Sex
             0 1 Sum
    female 81 233 314
##
##
    male 468 109 577
##
    Sum
           549 342 891
with(TitanicT,prop.table(table(Sex,Survived),margin = 1))
##
          Survived
## Sex
##
     female 0.2579618 0.7420382
          0.8110919 0.1889081
prop.test(x=c(233,109),n=c(314,577),alternative = "greater")
##
## 2-sample test for equality of proportions with continuity correction
## data: c(233, 109) out of c(314, 577)
```

```
## X-squared = 260.72, df = 1, p-value < 2.2e-16
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.5020113 1.0000000
## sample estimates:
## prop 1
             prop 2
## 0.7420382 0.1889081
TitanicT %>%
 group_by(Sex) %>%
 summarise(
  p hat=mean(Survived),
   n=n()
)
## # A tibble: 2 x 3
## Sex p_hat
## <chr> <dbl> <int>
## 1 female 0.742 314
## 2 male 0.189 577
TitanicT %>% mutate(Survived=as.factor(Survived)) %>%
 prop_test(Survived ~ Sex,
          order = c("female", "male"),
           success = "1",
           alternative = "greater",
          correct = F)
## # A tibble: 1 x 6
## statistic chisq_df p_value alternative lower_ci upper_ci
##
        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
        263.
                1 1.86e-59 greater
                                            0.485
(tabla<- with(TitanicT,addmargins(table(Pclass,Survived))))</pre>
##
       Survived
## Pclass 0 1 Sum
## 1 80 136 216
##
   2 97 87 184
   3 372 119 491
##
##
     Sum 549 342 891
TitanicT %>%
 mutate(Survived=as.factor(Survived),
       Pclass = as.factor(Pclass)) %>%
 chisq_test(Survived ~ Pclass)
## # A tibble: 1 x 3
## statistic chisq_df p_value
       <dbl> <int> <dbl>
##
## 1
       103. 2 4.55e-23
```

```
TitanicT %>%
  mutate(Survived=as.factor(Survived),
         Pclass = as.factor(Pclass)) %>%
  chisq_test(Pclass ~ Survived)
## # A tibble: 1 x 3
     statistic chisq_df p_value
         <dbl>
##
                  <int>
                           <dbl>
## 1
         103.
                      2 4.55e-23
TitanicT %>%
  ggplot(aes(x=as.factor(Pclass), y = Age)) +
  geom_boxplot()
```

Warning: Removed 177 rows containing non-finite values ('stat_boxplot()').

TitanicT %>% group_by(Pclass) %>% summarise(meanAge = mean(Age,na.rm = T))

```
mdl_Age_Pclass <- lm(Age ~ Pclass, data = TitanicT) # variable_num ~ variable_cat
anova(mdl_Age_Pclass)
## Analysis of Variance Table
## Response: Age
##
             Df Sum Sq Mean Sq F value
                                         Pr(>F)
## Pclass
             1 20511 20511.4 112.39 < 2.2e-16 ***
## Residuals 712 129945
                        182.5
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
pairwise.t.test(TitanicT$Age,TitanicT$Pclass, p.adjust.method = "none")
##
## Pairwise comparisons using t tests with pooled SD
##
## data: TitanicT$Age and TitanicT$Pclass
##
##
   1
## 2 7e-09
## 3 < 2e-16 0.00017
##
## P value adjustment method: none
TitanicT %>%
 ggplot(aes(Pclass,fill = as.factor(Survived)))+
 geom_bar(position = "fill")+
 ylab("proporcion")
```



```
TitanicT %>% group_by(Pclass) %>% summarise(meanSurv = mean(Survived,na.rm = T))
```

ggplot(aes(Pclass,fill = Sex))+

pairwise.t.test(TitanicT\$Survived,TitanicT\$Pclass, p.adjust.method = "none")

```
1.00 -
   0.75 -
proporcion
- 0200
                                                                                     Sex
                                                                                         female
                                                                                         male
   0.25 -
   0.00 -
                                                                   3
                                         Pclass
TitanicT %>% mutate(Sex=(Sex=="female")) %>% group_by(Pclass) %>% summarise(meanSex = mean(Sex,na.rm
## # A tibble: 3 x 2
##
     Pclass meanSex
##
      <dbl>
               <dbl>
## 1
               0.435
          1
          2
               0.413
               0.293
## 3
          3
```

TitanicT %>% mutate(Sex=(Sex=="female")) %>% with(pairwise.t.test(Sex,Pclass, p.adjust.method = "none")

geom_bar(position = "fill")+

ylab("proporcion")

##

##

1 ## 2 0.64156 -## 3 0.00026 0.00355

data: Sex and Pclass

2

P value adjustment method: none

Pairwise comparisons using t tests with pooled SD