(6)

15 In 1937 scientists at the University of California used high-speed particles from a cyclotron to produce an isotope of phosphorus. This isotope can be used in a treatment for cancer.

*(a)	Explain	the	role	of	electric	and	mag	netic	fields	in	the	production	of hig	gh-spe	ed
	charged	nart	ticles	by	v a cvcl	otroi	n.								

(b) The cyclotron could produce beams of alpha particles with kinetic energy up to 161	MeV.						
Calculate the magnetic flux density required by the cyclotron when alpha particles with kinetic energy of 16 MeV are produced.							
diameter of cyclotron = $0.94 \mathrm{m}$							
mass of alpha particle = $6.6 \times 10^{-27} \text{kg}$							
	(4)						
Magnetic flux density =	Magnetic flux density =						
(Total for Question $15 = 10 \text{ m}$	(Total for Question 15 = 10 marks)						
(10tai ioi Question 13 – 10 in	ai ixoj						