CS 555: DISTRIBUTED SYSTEMS [REPLICATION & CONSISTENCY]

Shrideep Pallickara Computer Science Colorado State University

October 29, 2019

CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.1

Frequently asked questions from the previous class survey

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture Replication Consistency Models Data centric consistency model Continuous consistency models Sequential consistency Cotober 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019] Dept. Of Computer Science, Colorado State University

What we will look at in our discussions Replication Consistency Models Client models Protocols Eventual Consistency Brewer's CAP Theorem CS555: Distributed Systems [Fall 2019] Professor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Rationale for replication: Reliability

- □ Replication as a safeguard against failures
- □ Protection against data corruptions
- □ File System example:
 - 3 copies
 - □ If one fails, process can choose from the other two
 - Read/write performed on each copy
 - At least 2 of the reads must concur
 - Protects against a failing write

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**9**

Rationale for replication: Increased Availability

- ☐ Users require services to be highly available
 - Proportion of time when service is accessible with reasonable response times should be close to 100%
- □ Factors relevant to high-availability
 - Delays due to pessimistic concurrency control
 - Server failures
 - Network partitions and disconnected operations

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Replication maintains availability despite server failures [1/2]

- □ Data is replicated at failure independent servers
- □ Client software should be able to access data at an alternative server if default server fails

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.11

Replication maintains availability despite server failures [2/2]

- \square If each of the n servers has an independent probability p of failing or becoming unreachable
- □ The availability of an object stored at each of these servers?
 - 1- probability(all servers fail or are unreachable)
 - $1-p^n$

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Replication maintains availability despite server failures: Example

- □ There is a 5% probability of independent server failures?
- □ There are two servers
 - \square Availability is $1 p^n$
 - $\square 1 (0.05)^2 = 1 0.0025 = 99.75\%$

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.13

Rationale for replication: Performance

- ☐ Ability to scale with numbers
 - Processes access data managed by a server
 - Replicate server; distribute work
- □ Ability to scale with **geographical area**
 - □ Place copy of data in *proximity* of processes using it
 - Time to access service decreases
 - Perceived performance improves

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

But replication exacts a price ...

- □ A client may perceive better performance but ...
 - More network bandwidth needed
 - To keep replicas in sync
- □ Consistency problems
 - When a copy is modified, it becomes different
 - Modifications have to be made on all copies

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**15**

Replication Costs: When and how modifications must be made to copies

- □ Fetching a page from a remote Web server
 - OBJECTIVE: Improving access times
- □ Web browsers locally cache a web page
 - If user requests the same page
 - Returned from cache
 - User is happy with the load times
 - What if user always wants the latest copy?

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Simple solutions to the stale copy problem

- 1 Don't cache web page
 - □ If there is no nearby replica, performance is poor
 - □ Also, what if the page does not change that often?
- (2) Let server invalidate/update caches
 - Server must track all caches
 - Degrades server performance

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**17**

Replication as a scaling technique

- □ Placing data copies close to processes
 - Improves access times
 - □ Distributes work
- □ Potential problems ...

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Replication for scaling: Network bandwidth

- □ Process **P** accesses a replica **N** times per second
- □ Replica is itself updated M times per second
- □ If N << M 3
 - Several updated versions of replica never accessed
 - Network traffic to install those versions: wasted!
 - Perhaps installing a replica was not a good idea?

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**19**

Replication for scaling: Consistency issues

- □ Consistency might itself be subject to scaling problems
- □ Collection of copies is consistent when all copies are the same
 - Read on any copy returns the same result
 - □ Updates propagated to all copies before the next operation?
 - Tight consistency

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Consistency issues in replication

- □ Update performed at all copies as an atomic operation
 - Transaction
- □ Implementing atomicity with large number of replicas is difficult
 - May be dispersed on a WAN
 - Operations cannot complete quickly

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**21**

Other things that replicas need to agree on ...

- □ Replicas must agree on when operation must be performed locally
- □ Replicas need to decide on **ordering**
 - Lamport timestamps
 - Coordinator assigned order

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

The Replication Dilemma Alleviating scalability issues Replication and caching: Improves performance Keeping copies consistent? Requires global synchronization Costly in terms of performance Time Network bandwidth Cotober 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019] Dept. Of Computer Science, Colorado State University

DATA CENTRIC CONSISTENCY MODELS CS555: Distributed Systems [Fall 2019] Dept. Of Computer Science, Colorado State University

Data centric consistency models

- Consistency is in the context of read/write operation on distributed,
 shared data
 - Memory
 - Database
 - □ File systems
- □ The broader term data store is more commonly used

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Consistency model

- Contract between processes and the data store
- □ If processes agree to obey certain rules
 - Data store works correctly

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.27

Consistency that we intuitively expect

- □ Process performing a read on a data item
 - Expects value to show results of *last write* operation on that item
- □ Without a global clock?
 - Difficult to define which write was the last one

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

We thus need to provide other definitions ... consistency models

- □ Each model restricts values that a read operation on a data item can return
- Models with the greatest restrictions
 - □ Easiest to use
- Models with minor restrictions
 - □ Difficult to use
- □ Easy-to-use models **do not** <u>perform</u> as well as difficult ones

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**29**

Loosening of consistency

- □ Needed for efficiency and performance
- □ No general rules however
 - Tolerance depends on the application

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Continuous consistency Three axes for defining inconsistencies Deviations between replicas in terms of Numerical values Staleness between replicas Ordering of update operations Deviations form continuous consistency ranges

Example of using continuous consistency models: Stock prices

- □ Two copies of a stock should not deviate by more than 2 cents.
 - □ **Absolute** numerical deviation
- □ Two copies do not deviate by more than 0.5%
 - Relative numerical deviation
- □ If stock goes up and one replica is updated
 - If change does not violate specified deviations?
 - Replicas are considered consistent

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**33**

Numerical and Staleness deviations

- Numerical deviation can also be expressed in terms of number of updates
 - Applied at a replica, but not seen by other replicas
- Staleness deviations
 - Last time a replica was updated
 - Replica can provide old data as long as it is not too old
 - Weather reports

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Ordering of updates may also be allowed to be different

- □ Within a certain bound
- Updates applied tentatively at local copy
 - □ Need global agreement with all replicas
- □ Before an update becomes *permanent* it
 - □ Might be rolled back
 - Applied in a different order

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**35**

CONSISTENCY UNIT (CONIT)

October 29, 2019

CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Consistency Unit: conit

- Specifies unit over which consistency is to be measured
- Examples
 - Record representing a stock
 - Weather report

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.37

Looking at the conit a little closer: Example with 2 replicas

- □ Each replica maintains a 2D vector clock
- \square Operation carried out by replica i at (its) logical time t: $\langle t, i \rangle$
- $\ \square$ Example conit contains data items x and y

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Numerical deviations in our example

- Numerical deviation here is the number of unseen updates from the other replica
- □ Weight of this deviation at replica A is the maximum difference between
 - □ Committed values of conit at A
 - Result from operations at **B** not seen by **A**

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Before we put conits to practical use two things need to happen

- □ Protocols to enforce consistency
- □ Developers **specify** consistency requirements
 - □ Difficult!

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.45

Conits are declared alongside updates

AffectsConit(ConitQ, 1, 1) append message m to queue Q

□ Appending message M to queue Q belongs to a conit named ConitQ

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Conits are declared alongside reads

DependsOnConit(ConitQ, 4, 0, 60)
 read message m from the head of queue Q

- □ Numerical deviation: 4
 - At most 4 unseen updates at other replicas
- □ Ordering deviation: 0
 - No tentative local updates
- □ Staleness deviation: 60 seconds
 - Check Q for staleness periodically

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**47**

CONSISTENT ORDERING OF OPERATIONS

October 29, 2019

CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Consistent ordering of operations

- □ Class of models from concurrent programming
- We will look at
 - Sequential consistency
 - Causal consistency

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.49

Sequential consistency: Notations

- $\hfill\Box$ Operations of processes depicted along time axis
- \square Write by a process P_i to data item x with value a
 - $W_i(x)a$
- lacksquare Read by a process P_i of data item x that returns the value b
 - $R_i(x)b$
- □ All items are initially NIL

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Time —>

P1: W(x)a

P2: R(x)NIL R(x)a

Time to propagate update of x to P2 is acceptable

October 29, 2019
Professor: SHRIDEEP PALLICKARA

CS555: Distributed Systems [Foil 2019]
Dept. Of Computer Science, Colorado State University

Sequential consistency

- □ Defined by Lamport
 - □ Context: Shared memory in multiprocessor setting
- □ When processes run concurrently
 - Any valid interleaving of read/write is acceptable
 - But all processes must see the same interleaving

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Sequential Consistency: Another example

Process 1	Process 2	Process 3
<pre>x = 1 print(y,z)</pre>	y = 1 Print(x,z)	z = 1 Print(x,y)

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**55**

Multiple interleaved sequences are possible

- □ With 6 statements there are
 - □ 6! possibilities = 720
 - Some of these violate program order
- □ 120 (5!) sequences begin with X=1
 - □ Half print(x,z) before y=1
 - Half print(x,y) before z=1
 - Only 1/4 or 30 are valid
- \square Similarly, there are 30 that start with y=1, z=1
 - Total of 90 valid execution sequences

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Different, but valid interleaving of the statements

Signature is the concatenation of the outputs of P1, P2 and P3

```
x = 1
                             y = 1
                                             y = 1
                                             x = 1
print(y,z)
              y = 1
                             z = 1
              print(x,z)
                                             z = 1
y = 1
                             print(x,y)
                                             print(x,z)
print(x,z)
              print(y,z)
                             print(x,z)
z = 1
              z = 1
                                             print(y,z)
                             x = 1
print(x,y)
              print(x,y)
                                             print(x,y)
                             print(y,z)
```

 Prints:
 001011
 Prints:
 101011
 Prints:
 010111
 Prints:
 111111

 Signature:
 001011
 Signature:
 101011
 Signature:
 111111

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**57**

Contract between processes and shared data store

- □ Processes must accept all valid results
- Must work if any of them occurs

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

Invalid sequences in signature patterns

- 0000003
 - Print statements ran before assignments
 - Violates program order
- □ 001001³
 - \square {00} y and z were 0 when **P1** did its printing
 - P1 executes its statements before P2 and P3 start
 - {10} P2 ran after P1 started, but before P3 started
 - □ {01} P3 must complete before P1 starts
 - Not possible!

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University

L19.**59**

The contents of this slide-set are based on the following references

- Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
 [Chapter 6, 7]
- Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273. [Chapter 4, 18]

October 29, 2019 Professor: SHRIDEEP PALLICKARA CS555: Distributed Systems [Fall 2019]
Dept. Of Computer Science, Colorado State University