Inhaltsverzeichnis 1

Rezepte zur Mathematik

Inhaltsverzeichnis

1	Analysis		1
	1.1	Ableitungen verifizieren	1
	1.2	Fixpunktiteration	1
		Konformität als Holomorphie	1
2	Wahrscheinlichkeitsrechnung		2
	2.1	Zufallsgrößen	2

1 Analysis

1.1 Ableitungen verifizieren

Die Ableitung einer reellen Funktion f ist definiert als

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Möchte man erfahren, ob sie unter Anwendung der Ableitungsregeln richtig ermittelt wurde, kann man die Probe machen, indem der Differenzenquotient

$$D_h f(x) = \frac{f(x+h) - f(x)}{h}$$

an einer konkreten Stelle x für ein kleines h numerisch berechnet und mit f'(x) verglichen wird.

Da dies recht umständlich ist, ist es sinnvoll, diese Aufgabe einem Funktionenplotter zu überlassen. Numerisch günstiger ist es, den Differenzenquotient nicht naiv gemäß der Definition zu berechnen, sondern als

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}.$$

Mit dem Plotter kann man schließlich

$$10^n (D_h f(x) - f'(x)) \approx 0$$

für n ∈ {0, 1, 2, . . .} prüfen.

Rezept. Es ist zuträglich, nach dem Bestimmen der Ableitung im Anschluss mit einem Plotter oder einem CAS die Probe durchzuführen.

1.2 Fixpunktiteration

Man kann sich die Frage stellen, welchen Wert der endlose Kettenbruch

$$a + \frac{b}{a + \frac{b}{a + \frac{b}{a + \dots}}}$$

für feste Zahlen a, b besitzt. Zunächst muss geklärt sein, was damit gemeint sein soll. Man beginnt bei einem Startwert x_0 und betrachtet die Rekurrenz

$$x_{n+1} = a + \frac{b}{x_n}.$$

Wir abstrahieren durch Einführung der Funktion φ , so dass

$$x_{n+1} = \varphi(x_n)$$

gilt. Wie man mühelos bestätigen kann, handelt es sich bei φ für a>0 und b>0 um eine stetige Selbstabbildung auf $\mathbb{R}_{>0}$. Nehmen wir nun an, die Folge (x_n) konvergiert gegen eine Zahl x. Dann muss gelten

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \varphi(x_n)$$
$$= \varphi(\lim_{n \to \infty} x_n) = \varphi(x),$$

wobei φ aufgrund der Stetigkeit aus der Grenzwertbildung herausgezogen werden durfte. Die Gleichung

$$x = \varphi(x)$$

bezeichnet man als Fixpunktgleichung. Ihre Lösungen bezeichnet man als Fixpunkte von φ . Speziell für den Kettenbruch ergibt sich die quadratische Gleichung

$$x^2 - ax - b = 0.$$

So erhält man $1 + \sqrt{2}$ für a = 2 und b = 1. Für a = 1 und b = 1 erhält man den goldenen Schnitt.

Rezept. Wann immer eine Rekurrenz der Form $x_{n+1} = \varphi(x_n)$ auftritt, betrachte man die Fixpunktgleichung $x = \varphi(x)$. Ob x_n gegen den Fixpunkt x konvergiert, hängt allerdings von den Eigenschaften von φ ab.

1.3 Konformität als Holomorphie

Jeder komplexen Zahl ist gemäß

$$\Phi(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

oder äquivalent

$$\Phi(re^{i\varphi}) = r \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

genau eine Matrix zugeordnet. Die Abbildung Φ ist ein Isomorphismus vom Körper der komplexen Zahlen in einen Körper, der eine Unterstruktur des Matrizenrings darstellt.

Diese Beziehung schafft eine Verbindung zwischen dem Rechnen mit komplexen Zahlen und Konzepten der linearen Algebra. Sie sagt aus, dass eine komplexe Zahl als eine als *Drehskalierung* bezeichnete lineare Abbildung betrachtet werden kann. Die Multiplikation von komplexen Zahlen entspricht der Verkettung der ihnen entsprechenden Abbildungen.

Man nennt $f: \mathbb{R}^2 \to \mathbb{R}^2$ eine *konforme* Abbildung, wenn sie differenzierbar ist und ihre Ableitung Df an jeder Stelle eine nichtverschwindende Drehskalierung ist. Nun ist die Ableitung von f(x,y)=(u(x,y),v(x,y)) ja genau dann eine Drehskalierung, wenn

$$Df = \begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix} = \begin{pmatrix} \partial_x u & -\partial_x v \\ \partial_x v & \partial_x u \end{pmatrix}.$$

Diese Gleichung zwischen Matrizen beschreibt aber nichts anderes als die Cauchy-Rieman-Gleichungen. Wir setzen daher z := x + yi und f(z) := u + vi. Das heißt, f ist genau dann eine konforme Abbidlung, wenn f holomorph ist und ihre Ableitung keine Nullstellen besitzt.

Rezept. Zur Konstruktion konformer Abbildungen der Ebene nutze man holomorphe Funktionen.

2 Wahrscheinlichkeitsrechnung

2.1 Zufallsgrößen

Eine Zufallsgröße, was ist das? Eine Zufallsgröße kann man sich zunächst einfach als eine Abbildung $X \colon \Omega \to \Omega'$ zwischen Ergebnismengen vorstellen. Sei bspw.

$$\Omega := \{(w_1, w_2) \mid w_1, w_2 \in \{1, \dots, 6\}\}$$

die Menge der Ergebnisse des Wurfs zweier gewöhnlicher Würfel. Das heißt, wurde mit dem ersten Würfel eine Drei gewürfelt, und mit dem zweiten eine Fünf, ist das Ergebnis (3,5). Jedes elementare Ereignis $\{(w_1,w_2)\}$ besitzt offenbar die gleiche Wahrscheinlichkeit

$$P(\{(w_1, w_2)\}) = \frac{1}{|\Omega|} = \frac{1}{36}.$$

Für ein beliebiges Ereignis A gilt daher

$$P(A) = \frac{|A|}{|\Omega|}.$$

Ein gutes Beispiel für eine Zufallsgröße ist die Summe der Augenzahlen, also

$$X((w_1, w_2)) := w_1 + w_2.$$

Des Pudels Kern liegt nun in der Beantwortung der Frage, wie wahrscheinlich ein aus Funktionswerten von X bestehendes Ereignis ist.

Ein elementares Ereignis $\{x\}$ tritt doch genau dann ein, wenn x der Funktionswert $x=X(\omega)$ zum Ergebnis ω ist. Wurde bspw. das Ergebnis $\omega=(3,5)$ gewürfelt, ist das elementare Ereignis

$${X(\omega)} = {3 + 5} = {8}$$

eingetreten. Ein elementares Ereignis $\{x\}$ tritt also genau dann ein, wenn das Ergebnis ω im Urbild $X^{-1}(x)$ liegt, für das sich die Schreibweise

$$X^{-1}(x) = \{X = x\}$$

eingebürgert hat. Demnach stimmt die Wahrscheinlichkeit von $\{x\}$ mit der des Urbildereignisses $\{X=x\}$ überein. Das heißt, es gilt

$$P_X(\{x\}) = P(X^{-1}(x)) = P(\{X = x\}) = P(X = x).$$

Beispielsweise ist

$${X = 8} = {(2,6), (6,2), (3,5), (5,3), (4,4)}.$$

Damit ergibt sich

$$P(X=8) = \frac{|\{X=8\}|}{|\Omega|} = \frac{5}{36}$$

als Wahrscheinlichkeit der Augensumme acht.

Rezept. Eine Zufallsgröße $X \colon \Omega \to \Omega'$ schafft eine kausale Verbindung, dergestalt dass ein Ergbnis $\omega \in \Omega$ zum Ergebnis $X(\omega)$ wird. Ein Ereignis $A' \subseteq \Omega'$ tritt daher genau dann ein, wenn das Urbild $X^{-1}(A')$ eintritt. Dieser Umstand induziert die Definition

$$P_X(A') := P(X^{-1}(A')) = P(X \in A').$$

Dieses Heft steht unter der Lizenz Creative Commons CC0 1.0.