# RLumCarlo: Tedious features - fine examples

Sebastian Kreutzer, Johannes Friedrich, Vasilis Pagonis, Christoph Schmidt RLumCarlo: v0.1.0.9000.137 | Last modified: 2019-12-02



## 1 Scope

RLumCarlo is a collection of energy-band models to simulate luminescence signals in dosimeteric materials using Monte-Carlo (MC) methods for various stimulation modes. This document aims at supplementing the package documentation and it elaborates the package examples.

## 2 The models in RLumCarlo

The following table lists all models implemented in RLumCarlo along with the  $\mathbf{R}$  function call and the corresponding R (\*.R) and C++ (\*.cpp) files. The modelling takes place in the C++ functions which are wrapped by the R functions with a similar name. If you, however, want to cross-check the code, you should inspect files with the ending .cpp.

| MODEL_NAME           | R_CALL                      | CORRESPONDING_FILES                                     |
|----------------------|-----------------------------|---------------------------------------------------------|
| MC_CW_IRSL_LOC       | run_MC_CW_IRSL_LOC()        | R/run_MC_CW_IRSL_LOC.R<br>src/MC_C_MC_CW_IRSL_LOC.cpp   |
| $MC\_CW\_IRSL\_TUN$  | run_MC_CW_IRSL_TUN()        | R/run_MC_CW_IRSL_TUN.R<br>src/MC_C_MC_CW_IRSL_TUN.cpp   |
| MC_CW_OSL_DELOC      | $run\_MC\_CW\_OSL\_DELOC()$ | R/run_MC_CW_OSL_DELOC.R<br>src/MC_C_MC_CW_OSL_DELOC.cpp |
| MC_ISO_DELOC         | $run\_MC\_ISO\_DELOC()$     | R/run_MC_ISO_DELOC.R<br>src/MC_C_MC_ISO_DELOC.cpp       |
| MC_ISO_LOC           | $run\_MC\_ISO\_LOC()$       | R/run_MC_ISO_LOC.R<br>src/MC_C_MC_ISO_LOC.cpp           |
| MC_ISO_TUN           | $run\_MC\_ISO\_TUN()$       | R/run_MC_ISO_TUN.R<br>src/MC_C_MC_ISO_TUN.cpp           |
| $MC\_LM\_OSL\_DELOC$ | $run\_MC\_LM\_OSL\_DELOC()$ | R/run_MC_LM_OSL_DELOC.R<br>src/MC_C_MC_LM_OSL_DELOC.cpp |
| $MC\_LM\_OSL\_LOC$   | $run\_MC\_LM\_OSL\_LOC()$   | R/run_MC_LM_OSL_LOC.R<br>src/MC_C_MC_LM_OSL_LOC.cpp     |
| $MC\_LM\_OSL\_TUN$   | $run\_MC\_LM\_OSL\_TUN()$   | R/run_MC_LM_OSL_TUN.R<br>src/MC_C_MC_LM_OSL_TUN.cpp     |
| $MC\_TL\_DELOC$      | run_MC_TL_DELOC()           | R/run_MC_TL_DELOC.R<br>src/MC_C_MC_TL_DELOC.cpp         |
| $MC\_TL\_LOC$        | run_MC_TL_LOC()             | R/run_MC_TL_LOC.R<br>src/MC_C_MC_TL_LOC.cpp             |
| MC_TL_TUN            | run_MC_TL_TUN()             | R/run_MC_TL_TUN.R<br>src/MC_C_MC_TL_TUN.cpp             |

Each model is run by calling one of the **R** functions starting with run\_. Currently, three different model types (TUN: tunnelling, LOC: localised transition, DELOC: delocalised transition) are implemented for the stimulation types TL, IRSL, LM-OSL, and ISO (isothermal). Please note that each model has different parameters and requirements.

## 3 RLumCarlo model parameters and variables

The following table summarises the parameters used in the implemented MC models along with their physical meaning, units and the range of realistic values. This range represents just a rough guideline and might be exceeded for particular cases.

```
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
## EOF within quoted string
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
## number of items read is not a multiple of the number of columns
```

| Stimulation mode       | Parameter | Parameter description                                                     | Unit                 | Realistic values |
|------------------------|-----------|---------------------------------------------------------------------------|----------------------|------------------|
| Delocalized TL         | E         | Thermal activation energy of the trap                                     | eV                   | 0.5–3,           |
|                        | s         | Frequency factor of the trap                                              | 1/s                  | 1E8-1E16,        |
|                        | times     | Sequence of time steps for simulation (heating rate is 1 $\mathrm{K/s}$ ) | s                    | 0-700,           |
|                        | clusters  | Number of MC runs                                                         | 1                    | 1E1-1E4,         |
|                        | N_e       | Total number of electron traps available                                  | 1                    | 2-1E5,           |
|                        | n_filled  | Number of filled electron traps at the beginning of the simulation        | 1                    | 1-1E5,           |
|                        | R         | Delocalized retrapping ratio                                              | 1                    | 0–1,             |
| Delocalized<br>CW-IRSL | A         | Optical excitation rate from trap to conduction band                      | 1/s                  | 1E-3–1,          |
|                        | times     | Sequence of time steps for simulation                                     | s                    | 0-500,           |
|                        | clusters  | Number of MC runs                                                         | 1                    | 1E1-1E4,         |
|                        | $N_e$     | Total number of electron traps available                                  | 1                    | 2-1E5,           |
|                        | n_filled  | Number of filled electron traps at the beginning of the simulation        | 1                    | 1-1E5,           |
|                        | R         | Delocalized retrapping ratio                                              | 1                    | 0–1,             |
| Delocalized ISO        | E         | Thermal activation energy of the trap                                     | eV                   | 0.5 - 3,         |
|                        | s         | Frequency factor of the trap                                              | 1/s                  | 1E8–1E16,        |
|                        | Т         | Temperature of the isothermal process                                     | $^{\circ}\mathrm{C}$ | 20-300,          |
|                        | times     | Sequence of time steps for simulation                                     | s                    | 0–1000,          |
|                        | clusters  | Number of MC runs                                                         | 1                    | 1E1-1E4,         |
|                        | $N_e$     | Number of electrons                                                       | 1                    | 2-1E5,           |
|                        | n_filled  | Number of filled electron traps at the beginning of the simulation        | 1                    | 1-1E5,           |
|                        | R         | Delocalized retrapping ratio                                              | 1                    | 0-1,             |
| Delocalized LM-OSL     | A         | Optical excitation rate from trap to conduction band                      | 1/s                  | 1E-3-1,          |
|                        | times     | Sequence of time steps for simulation                                     | s                    | 0-3000,          |
|                        | clusters  | Number of MC runs                                                         | 1                    | 1E1-1E4,         |
|                        | N_e       | Total number of electron traps available                                  | 1                    | 2-1E5,           |

|                                 | n_filled     | Number of filled electron traps at the beginning of the simulation                                                                                                             | 1                    | 1-1E5,     |
|---------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
|                                 | R            | Delocalized retrapping ratio                                                                                                                                                   | 1                    | 0–1,       |
|                                 |              |                                                                                                                                                                                |                      | ,          |
| Localized TL                    | E            | Thermal activation energy of the trap                                                                                                                                          | eV                   | 0.5 - 3,   |
|                                 | s            | Frequency factor of the trap                                                                                                                                                   | 1/s                  | 1E8-1E16,  |
|                                 | times        | Sequence of time steps for simulation (heating rate 1 $\mathrm{K/s}$ )                                                                                                         | s                    | 0-700,     |
|                                 | clusters     | Number of MC runs                                                                                                                                                              | 1                    | 1E1-1E4,   |
|                                 | n_filled     | Number of filled electron traps at the beginning of the simulation                                                                                                             | 1                    | 1–1E5,     |
|                                 | r            | Localized retrapping ratio                                                                                                                                                     | 1                    | 0-1E5,     |
| Localized CW-IRSL               | A            | Optical excitation rate from ground state of the trap to the excited state                                                                                                     | 1/s                  | 1E-3–1,    |
|                                 | times        | Sequence of time steps for simulation                                                                                                                                          | s                    | 0-500,     |
|                                 | clusters     | Number of MC runs                                                                                                                                                              | 1                    | 1E1-1E4,   |
|                                 | n_filled     | Number of filled electron traps at the beginning of the simulation                                                                                                             | 1                    | 1–1E5,     |
|                                 | r            | Localized retrapping ratio                                                                                                                                                     | 1                    | 0-1E5,     |
| Localized ISO                   | E            | Thermal activation energy of the trap                                                                                                                                          | $\mathrm{eV}$        | 0.5 - 3,   |
|                                 | $\mathbf{s}$ | Frequency factor of the trap                                                                                                                                                   | 1/s                  | 1E8-1E16,  |
|                                 | Т            | Temperature of the isothermal process                                                                                                                                          | $^{\circ}\mathrm{C}$ | 20-300,    |
|                                 | times        | Sequence of time steps for simulation                                                                                                                                          | s                    | 0-1000,    |
|                                 | clusters     | Number of MC runs                                                                                                                                                              | 1                    | 1E1-1E4,   |
|                                 | n_filled     | Number of filled electron traps at the beginning of the simulation                                                                                                             | 1                    | 1–1E5,     |
|                                 | r            | Localized retrapping ratio                                                                                                                                                     | 1                    | 0–1E5,     |
| Localized LM-OSL                | A            | Optical excitation rate from ground state of the trap to the excited state                                                                                                     | 1/s                  | 1E-3–1,    |
|                                 | times        | Sequence of time steps for simulation                                                                                                                                          | s                    | 0-3000,    |
|                                 | clusters     | Number of MC runs                                                                                                                                                              | 1                    | 1E1-1E4,   |
|                                 | n_filled     | Number of filled electron traps at the beginning of the simulation                                                                                                             | 1                    | 1-1E5,     |
|                                 | r            | Localized retrapping ratio                                                                                                                                                     | 1                    | 0–1E5,     |
|                                 |              |                                                                                                                                                                                |                      | ,          |
| TL with tunneling recombination | Е            | Thermal activation energy of the trap                                                                                                                                          | eV                   | 0.5 – 3,   |
|                                 | s            | Effective frequency factor of the tunneling process                                                                                                                            | 1/s                  | 1E8-1E16,  |
|                                 | rho          | Dimensionless density of recombination centers (defined as $\rho'$ in Huntley 2006)                                                                                            | 1                    | 1E-7–1E-4, |
|                                 | r_c          | Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined | 1                    | 0–2        |
|                                 | times        | Sequence of time steps for simulation (heating rate 1 K/s)                                                                                                                     | s                    | 0-700,     |
|                                 | clusters     | Number of MC runs                                                                                                                                                              | 1                    | 1E1–1E4,   |
|                                 | N_e          | Total number of electron traps available                                                                                                                                       | 1                    | 2–1E5,     |
|                                 |              | <del>-</del>                                                                                                                                                                   |                      | ,          |

|                                           | delta.r  | Increments of the unitless distance parameter r;1;1E-3–1E-1, CW-IRSL with tunneling recombination;A ;Effective optical excitation rate of the tunneling process;1/s;1E-3–1, ;rho;Dimensionless density of recombination centers (defined as $\rho'$ in Huntley 2006);1;1E-7–1E-4, ;times;Sequence of time steps for simulation;s;0–500, ;clusters;Number of MC runs;1;1E1–1E4, ;N_e;Total number of electron traps available;1;2–1E5, ;r_c ;Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined;1;0–2 ;delta.r;Increments of the unitless distance parameter r;1;1E-3–1E-1, ISO with tunneling recombination;E;Thermal activation energy of the trap;eV;0.5–3, ;s;Effective frequency factor of the tunneling process;1/s;1E8–1E16, ;T;Temperature of the isothermal process;°C;20–300, ;rho;Dimensionless density of recombination centers (defined as $\rho'$ in Huntley 2006);1;1E-7–1E-4, ;times;Sequence of time steps for simulation;s;0–1000, ;clusters;Number of MC runs;1;1E1–1E4, ;N_e;Total number of electron traps available;1;2–1E5, ;r_c ;Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined;1;0–2 ;delta.r;Increments of the unitless distance parameter r | 1   | 1E-3-1E-1, |
|-------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| LM-OSL with<br>tunneling<br>recombination | A        | Effective optical excitation rate of the tunneling process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/s | 1E-3-1,    |
|                                           | rho      | Dimensionless density of recombination centers (defined as $\rho'$ in Huntley 2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   | 1E-7–1E-4, |
|                                           | times    | Sequence of time steps for simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s   | 0-3000,    |
|                                           | clusters | Number of MC runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   | 1E1–1E4,   |
|                                           | N_e      | Total number of electron traps available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | 2-1E5,     |
|                                           | r_c      | Critical distance (>0) that is to be inserted if the sample has been thermally and/or optically pretreated, so that the electron-hole pairs within r_c have already recombined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   | 0–2        |
|                                           | delta.r  | Increments of the unitless distance parameter r;1;1E-3–1E-1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |            |

# 4 Examples

The following examples illustrate the capacity of RLumCarlo, by using code-snippets deploying longer simulation times than allowed for the standard package examples, which aim at a functionality test.

#### 4.1 Example 1: A first example

The first examples an iso-thermal curve using the tunnelling model (other models work similar). Returned are either the simulated signal or the estimated remaining charges. The Function plot\_RLumCarlo() provides an easy way to visualise the modelling results and is here called using the tee operator %T> from the package magrittr (which is imported by RLumCarlo). Simulation results are stored in the object results while, at the same time, piped to the function plot\_RLumCarlo() for the output visualisation.

#### 4.1.1 Model the signal

The most obvious modelling output is the luminescence signal itself, our example below simulates an isothermal (ITL) signal for a temperature (T) of 200 °C over 5,000 s using a tunnelling transition model. Trap parameters are E = 1.2 eV for the trap depth and a frequency factor for  $1 \times 10^{10}$  (1/s). The parameter rho ( $\rho'$ ) defines the recombination centre density.

```
results <- run_MC_ISO_TUN(
    E = 1.2,
    s = 1e10,
    T = 200,
    rho = 0.007,
    times = seq(0, 5000)
) %T>%
    plot_RLumCarlo(norm = TRUE, legend = TRUE)
```



#### 4.1.2 Model remaining charges

The first example can be slightly altered to provide alternative insight. Instead of the luminescence signal, the variant below returns the number of remaining electrons in the trap.

```
results <- run_MC_ISO_TUN(
    E = 1.2,
    s = 1e10,
    T = 200,
    rho = 0.007,
    times = seq(0, 5000),
    output = "remaining_e"
) %T>%
    plot_RLumCarlo(
    legend = TRUE,
        ylab = "Remaining electrons"
    )
```



#### 4.1.3 Understanding the numerical output

In both cases the modelling output is an object of class RLumCarlo\_Model\_Output, which is basically a list consisting of an array and a numeric (vector).

#### str(results)

```
## List of 2
## $ signal: num [1:5001, 1:21, 1:10] 200 199 199 199 199 199 199 199 197 197 ...
## .. - attr(*, "dimnames")=List of 3
## .. .$ : NULL
## $ time : int [1:5001] 0 1 2 3 4 5 6 7 8 9 ...
## - attr(*, "class")= chr "RLumCarlo_Model_Output"
## - attr(*, "model")= chr "run_MC_ISO_TUN"
```

While this represents the full modelling output results, its interpretation might be less straight forward, and the user may want to condense the information via summary(). The function summary() is also used internally by the function plot\_RLumCarlo() to simplify the data before there are plotted.

## df <- summary(results)</pre>

```
##
          time
                          mean
                                          y_min
                                                          y_max
                                                                             sd
##
    {\tt Min.}
            :
                             :3083
                                             :3058
                                                                              : 0.4216
                0
                    Min.
                                     Min.
                                                      Min.
                                                              :3118
                                                                      Min.
    1st Qu.:1250
                     1st Qu.:3191
                                     1st Qu.:3151
                                                      1st Qu.:3230
                                                                      1st Qu.:11.9671
##
                                     Median:3323
                                                      Median:3358
                                                                      Median :13.6561
##
    Median:2500
                     Median:3343
                                             :3400
                                                              :3451
##
    Mean
            :2500
                     Mean
                             :3425
                                     Mean
                                                      Mean
                                                                      Mean
                                                                               :15.6721
##
    3rd Qu.:3750
                     3rd Qu.:3602
                                     3rd Qu.:3587
                                                      3rd Qu.:3617
                                                                      3rd Qu.:20.0953
##
    Max.
            :5000
                     Max.
                            :4200
                                     Max.
                                             :4199
                                                      Max.
                                                              :4200
                                                                      Max.
                                                                               :24.8068
##
          var
##
    Min.
            : 0.1778
##
    1st Qu.:143.2111
##
    Median: 186.4889
##
    Mean
            :267.7090
##
    3rd Qu.:403.8222
    Max.
            :615.3778
```

#### head(df)

```
##
            mean y_min y_max
## 1
        0 4199.8
                  4199
                        4200 0.4216370 0.1777778
## 2
                         4200 1.0749677 1.1555556
        1 4198.6
                  4197
## 3
        2 4197.9
                         4199 1.1005049 1.2111111
                  4196
## 4
        3 4197.5
                  4196
                         4199 1.1785113 1.3888889
## 5
        4 4196.8
                  4196
                         4198 0.7888106 0.6222222
## 6
        5 4196.0
                         4198 1.3333333 1.7777778
                  4193
```

The call summarises the modelling results and returns a terminal output and a data.frame with, e.g., the mean or the standard deviation, which can be used to create plots for further insight. For instance, the stimulation time against coefficient of variation (CV in %):

```
plot(
    x = df$time,
    y = (df$sd / df$mean) * 100,
    pch = 20,
    col = rgb(0,0,0,1),
    xlab = "Stimulation time [s]",
    ylab = "CV [%]"
)
```



#### 4.2 Example 2: Combining two plots

The following examples use again the tunnelling model but for continuous wave (CW) infrared light stimulation (IRSL), and they combine two plots in one single plot window.

```
## set time vector
times <- seq(0, 1000)

## Run MC simulation
run_MC_CW_IRSL_TUN(A = 0.12, rho = 0.003, times = times) %>%
    plot_RLumCarlo(norm = TRUE, legend = TRUE)

run_MC_CW_IRSL_TUN(A = 0.21, rho = 0.003, times = times) %>%
```





## 4.3 Example 3: Testing different parameters

The example above can be further extended to test the effect of different parameters. Contrary to the example above, here the results are stored in a list and plot\_RLumCarlo() is called only one time and it will then iterate automatically over the results to create a combined plot.

```
s <- 3.5e12
rho <- 0.015
E <- 1.45
r_c <- c(0,0.7,0.77,0.86, 0.97)
times <- seq(100, 450) # here time = temperature
results <- lapply(r_c, function(x) {
    run_MC_TL_TUN(
        s = s,
        E = E,
        rho = rho,
        r_c = x,
        times = times
)
})</pre>
```

The plot output can be highly customised to provide a better visual experience, e.g., the manual setting of the colours and the legend.

```
## plot curves, but without legend
plot_RLumCarlo(
  object = results,
  ylab = "normalised TL signal",
  xlab = "Temperature [\u00b0C]",
  plot_uncertainty = "range",
  col = khroma::colour("bright")(length(r_c)),
  legend = FALSE,
  norm = TRUE
```

```
## add legend manually
legend(
  "topleft",
  bty = "n",
  legend = paste0("r_c: ", r_c),
  lty = 1,
  col = khroma::colour("bright")(length(r_c))
)
```

