# Architecture Matérielle en Mécatronique

TD N°1 portant sur la partie Électronique Analogique du CM

## Exercice N°1

Calculer la résistance équivalente de ce montage , soit  $R_{AB}\,$ 



#### Exercice N°2

Pour chacun de ces cas, déterminer la valeur manquante



#### Exercice N°3

Soit R1=6k $\Omega$ , R2=3k $\Omega$ , R3=6k $\Omega$ E1=6V , E2=12V

Calculer V aux bornes de R3

# Exercice N°4

Calculer le courant circulant à travers la résistance r  $R=6\Omega$ , I=8A, E=4V,  $r=2\Omega$ 



#### Exercice N°5

On considère la diode comme étant semi-idéale et Vd=0.6V.  $R1=220\Omega$  ;  $R2=560\Omega$ 

- a) Pour quelle valeur de V<sub>E</sub> la diode est passante?
- b) Soit  $V_E$ =6V, calculer le courant circulant dans la diode ainsi que les tensions  $V_{R1}$  et  $V_{R2}$









Pour le circuit suivant et pour une diode présentant une tension de seuil de 0,7V et une résistance interne nulle, tracer la tension de sortie Vs sur ce même graphe.

#### Exercice N°7



La tension de seuil de chaque diode est supposée égale à 0,6V.

#### Calculer Vout si:

- Vin = 15V
- Vin = 3V
- Vin = 0V
- Vin = -10V

## Exercice N°8



Ce transistor a un gain  $\beta$ =100. Sa tension de seuil  $V_{BE}$ =0,7V

- a) On souhaite un courant dans R<sub>C</sub> de 100mA. Calculer RB
- b) On souhaite maintenant saturer complètement ce transistor. Quelle valeur minimale devra prendre  $R_{\rm B}$ ?
- c) On considère maintenant que  $\beta$ =80, et désire que ce montage fonctionne en amplification uniquement. Son point de fonctionnement se situera approximativement aux coordonnées ( $V_{CE0}$ =6V et  $I_{C0}$ =3,6mA). Sachant que vous ne disposez que de résistances de la série E12, déterminer la valeur de  $R_B$  et de  $R_C$

#### Exercice N°9



On suppose que les 2 amplificateurs sont identiques.  $R_C=2k\Omega$ ,  $Z_E=2k\Omega$ ,  $Z_S=1k\Omega$  et  $A_{V0}=20$  ( $A_{V0}$  étant le gain à vide)

Si Ve a une amplitude de 20mV, quelle sera celle de Vs aux bornes de Rc ? Eventuellement, justifier la réponse par un schéma.



On suppose que la tension d'entrée Ve est telle qu'illustrée ci-dessus, où T1 et T2 sont des constantes avec T=T1+T2 et T1≠T2.

À l'instant t=kT (k $\in$ N), le courant qui traverse le circuit est supposé connu et noté  $i_{kT} \neq 0$ .

- 1) Trouver l'équation décrivant l'évolution du courant dans le dipôle en fonction des paramètres du circuit lorsque  $kT \le t \le (kT+T_1)$
- 2) Trouver l'équation décrivant l'évolution du courant dans le dipôle en fonction des paramètres du circuit lorsque  $kT+T_1 \le t \le (k+1)T$
- 3) Donner l'expression du courant  $i_{kT}$  si l'on suppose que la valeur du courant à l'instant t=(k+1)T est aussi  $i_{kT}$ , c'est à dire que  $i_{kT}=i_{(k+1)T}$ .