Today's objectives:

- 1. Define segments related to triangles medians, altitudes, perpendicular bisectors and angle bisectors.
- 2. Identify all of these segments in triangles.

Geometry/Trigonometry II	Name	
4.7 Medians, Altitudes, & Perpendicular Bisectors		

New Terminology

▲ Median – A segment drawn from a vertex to the midpoint of the opposite side.

▲ Centroid

Altitude - A perpendicular segment drawn from a vertex to a line containing the opposite side. Altitudes in acute triangles: A Orthocenter Altitudes in right triangles:

▲ The legs of a right triangle are altitudes.

triangle are found outside of the triangle.

Perpendicular Bisector - A line, ray, or segment that is perpendicular to a segment at its midpoint.

* notes about a perpendicular bisector

- ▲ In equilateral triangles, medians and altitudes are the same segments - in other words, they are perpendicular bisectors.
- The median to the base of an isosceles triangle is also an altitude - this is also a perpendicular bisector.
- **▲** Perpendicular bisectors of scalene triangles do not intersect any of the vertices.

Theorem 4-5 If a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.

Theorem 4-6 If a point is equidistant from the endpoints of a segment, then the point lies on the perpendicular bisector of the segment.

▲ Distance from a point to a line (or plane) – The length of the perpendicular segment drawn from the point to the line.

(the shortest possible distance)

Theorem 4-7 If a point lies on the bisector of an angle, then the point is equidistant from the sides of the angle.

$$\overline{PX} = \overline{PY}$$

Theorem 4-8 If a point is equidistant from the sides of an angle, then the point lies on the bisector of the angle.

Fill in the blanks with sometimes, always, or never:

- 1. An altitude is _____ perpendicular to the line containing the opposite side.
- ▲ 2. A median is **sometimes** perpendicular to the opposite side.
- ▲ 3. An altitude is **sometimes** an angle bisector.
- 4. An angle bisector is **sometimes** perpendicular to the opposite side.
- 5. A point that lies on the perpendicular bisector of a segment is ______ equidistant from the endpoints of a segment.

What conclusion can you draw from the following information:

Suppose OG bisects ∠TOY. What can you deduce if you also know that:

b. A point K is such that the distance from K to \overrightarrow{OT} and to \overrightarrow{OY} is 13 cm.

- Kis on OG.

Classroom Exercises

Complete.

1. If K is the midpoint of \overline{ST} , then \overline{RK} is called $a(n) \longrightarrow of \triangle RST$.

2. If $\overline{RK} \perp \overline{ST}$, then \overline{RK} is called $a(n) \stackrel{\checkmark}{=} of \triangle RST$.

3. If K is the midpoint of \overline{ST} and $\overline{RK} \perp \overline{ST}$, then \overline{RK} is called a(n)

Prof ST. 1 bisecter

4. If \overline{RK} is both an altitude and a median of $\triangle RST$, then: a. $\triangle RSK \cong \triangle RTK$ by $\triangle RST$ is $\triangle RST$ is $\triangle RST$ is a(n) ______ triangle.

5. If R is on the perpendicular bisector of SD, then R is equidistant from 2 and 2. Thus 2 = 1

6 Refer to $\triangle ABC$ and name each of the following.

a. a median of $\triangle ABC$

b. an altitude of $\triangle ABC$

c. a bisector of an angle of $\triangle ABC$

- 7. Draw \overline{XY} . Label its midpoint Q.
 - a. Select a point P equidistant from X and Y. Draw \overline{PX} , \overline{PY} , and \overline{PQ} .
 - **b.** What postulate justifies the statement $\triangle PQX \cong \triangle PQY$?
 - c. What reason justifies the statement $\angle PQX \cong \angle PQY$?
 - **d.** What reason justifies the statement $\overrightarrow{PQ} \perp \overrightarrow{XY}$?
 - e. What name for \overrightarrow{PQ} best describes the relationship between \overrightarrow{PQ} and \overrightarrow{XY} ?

Hitvde median pg 155

- 8. Given: $\triangle DEF$ is isosceles with DF = EF; \overline{FX} bisects $\angle DFE$.
 - **a.** Would the median drawn from F to \overline{DE} be the same segment as \overline{FX} ?
 - **b.** Would the altitude drawn from F to \overline{DE} be the same segment as \overline{FX} ?

- 9. What kind of triangle has three angle bisectors that are also altitudes and medians?
- **10.** Given: \overrightarrow{NO} bisects $\angle N$.

What can you conclude from each of the following additional statements?

- a. P lies on NO.
- **b.** The distance from a point Q to each side of $\angle N$ is 13.

Complete each statement.

- 7. If X is on the bisector of $\angle SKN$, then X is equidistant from \bigcirc and \bigcirc .
- 8. If X is on the bisector of $\angle SNK$, then X is equidistant from X and X.
- 9. If X is equidistant from SK and SN, then X lies on the Sisector $\angle NSK$
- 10. If O is on the perpendicular bisector of \overline{LA} , then O is equidistant from $\frac{L^2}{A}$ and $\frac{L^2}{A}$.
- 11. If O is on the perpendicular bisector of \overline{AF} , then O is equidistant from A and A.
- **12.** If O is equidistant from L and F, then O lies on the $\frac{?}{}$.

The two triangles shown are congruent. Complete.

- 1. $\triangle STW \cong ?$
- 2. $\triangle PQR \cong \underline{}$?
- 3. $\angle R \cong \underline{}$?
- 4. = RP

Can you deduce from the given information that $\triangle RXY \cong \triangle SXY$? If so, what postulate can you use?

- 5. Given: $\overline{RX} \cong \overline{SX}$; $\overline{RY} \cong \overline{SY}$
- **6.** Given: $\overline{RY} \cong \overline{SY}$; $\angle R \cong \angle S$
- 7. Given: \overline{XY} bisects $\angle RXS$ and $\angle RYS$.

8. Given: $\angle RXY \cong \angle SXY$; $\overline{RX} \cong \overline{SX}$

Write proofs in two-column form.

- 9. Given: $\overline{JM} \cong \overline{LM}$; $\overline{JK} \cong \overline{LK}$ Prove: $\angle MJK \cong \angle MLK$
- **10.** Given: $\angle JMK \cong \angle LMK$; $MK \perp$ plane P

Prove: $\overline{JK} \cong \overline{LK}$

Complete.

- 11. If $\angle 3 \cong \angle 4$, then which segments must be congruent?
- 12. If $\triangle REV$ is an equiangular triangle, then $\triangle REV$ is also a(n) ? triangle.
- 13. If $ES \cong ET$, $m \angle 1 = 75$, and $m \angle 2 = 3x$, then x = ?
- **14.** If $\angle 1 \cong \angle 2$, ES = 3y + 5, and ET = 25 y, then $y = \frac{?}{}$.

Write proofs in two-column form.

15. Given: $\overline{GH} \perp \overline{HJ}$; $\overline{KJ} \perp \overline{HJ}$; $\angle G \cong \angle K$

Prove: $\triangle GHJ \cong \triangle KJH$

16. Given: $\overline{GH} \perp \overline{HJ}$; $\overline{KJ} \perp \overline{HJ}$; $\overline{GJ} \cong \overline{KH}$

Prove: $GH \cong KJ$

4-5

4-2

- **18.** Refer to $\triangle DEF$ and name each of the following:
 - a. an altitude
 - b. a median
 - **c.** the perpendicular bisector of a side of the triangle

11. In $\triangle TOP$, if OT > OP, then $m \angle P > \frac{?}{}$.

6-4

4-7

- 12. In $\triangle RED$, if $m \angle D < m \angle E$, then $RD > \frac{?}{}$.
- 13. Points X and Y are in plane M. If $\overline{PX} \perp$ plane M, then $PX \stackrel{?}{\longrightarrow} PY$.
- 14. Two sides of a triangle have lengths 6 and 8. The length of the third side must be greater than _?_ and less than _?_.