

ACADEMIA

RESOLUCIÓN DE LA PRÁCTICA DIRIGIDA

Se define la operación matemática * en A={1; 2; 3; 4; 5} mediante la siguiente tabla:

*	5	4	3	1 5 3 2 4	1
1	2	1	4	1	5
2	4	2	3	5	1
3	1	3	2	3	4
4	5	4	3	2	1
5	3	5	1	4	2

Si a^{-1} es el elemento inverso de a, determine verdadero (V) o falso (F) según corresponda y elija la secuencia correcta en A.

- La operación es cerrada. (V)
- II. La operación es conmutativa. (V)
- III. La operación posee elemento neutro..... (V)

IV.
$$3^{-1} * 1^{-1} = 2$$
 (F)

V.
$$5^{-1}=2$$
 (**V**

A) VFVVF

- B) VVVFV
- C) VFVVV

D) VVVVF

E) FVVVF

Resolución:

Nos piden: determinar el valor de verdad de las proposiciones.

- I. La operación es cerrada.
- II. La operación es conmutativa.

Ordenamos la tabla:

			2	1
	1		1	5
4	2	3	5	1
1	3	2	3	4
5	4	3	2	1
	5	1	4	2

*	1	2	3	4	5
1	5	1	4	1	2
2	1	5	3	2	4
3	4	3	2	3	1
4	1	2	3	4	5
5	2	4	1	5	13/

Hay simetría

III. La operación posee elemento neutro Si e=4

IV.
$$3^{-1} * 1^{-1} = 2$$

1 3 \rightarrow 1*3=

V.
$$5^{-1} = 2$$

5

.. La secuencia correcta es: VVVFV

Se define en el conjunto d ellos números reales positivos la siguiente operación matemática:

$$a\Delta b = 2(a+b)\sqrt{(a^b + b^a)}$$

Calcule el valor de E

$$E = \frac{(2\Delta 5)}{(5\Delta 2)} + \frac{(2\Delta 3) - (3\Delta 2)}{(50\Delta 100) + (3\Delta 6)}$$

B) 2

C) 3

E) 5

Resolución:

Nos piden: El valor de E

$$a\Delta b = 2(a+b)\sqrt{(a^b + b^a)}$$

Hallando: $b\Delta a$

$$b\Delta a = 2(b+a)\sqrt{(b^a+a^b)}$$

Se observa que:

$$a\Delta b = b\Delta a$$

En el problema

0

$$E = \frac{(2\Delta 5)}{(5\Delta 2)} + \frac{(2\Delta 3) - (3\Delta 2)}{(50\Delta 100) + (3\Delta 6)}$$

1

) = 1

: El valor de E es: 1

Para la operación f definida en el conjunto a A={1; 2; 3; 5} mediante la siguiente tabla:

ф	1	2	3	5
5	1	2	3	5
3	2	1	0	3
2	3	0	1	2
1	5	3	2	1

Se afirma:

- Es cerrada en el conjunto A.
- Es conmutativa.
- III. Posee elemento neutro.

Son ciertas:

- Solo I
- B) Iyll
- II y III
- l y III
- E) I, II y III

Resolución:

Nos piden: indicar las proposiciones ciertas.

I. Es cerrada en el conjunto A. (F) III. Posee elemento neutro. (V)

*	1	2	3	5	
5	1	2	3	5	_ ∉ A
3	2	1	0	3	V A
2	3	0	1	2	
1	5	3	2	1	

La operación no es cerrada en A.

II. Es conmutativa. (V)

Ordenamos la tabla:

	*	1	2	3	5	
A	1	5	3	2	1	
	2	3	0	1	2	Hay
	3	2	1	0	3	simetría
	5	1	2	3	3	
₹	,					

La operación es conmutativa.

Son correctas II y III.

Se define en Z la siguiente operación matemática:

$$a # b = a + b + 8$$

Calcule el valor de x en la siguiente expresión:

$$(12^{-1} \# (8 \# x^{-1})) = ((-16)^{-1} \# (-20)^{-1}) \# (-8)^{-1}$$

Considere que a⁻¹ es el elemento inverso de a.

B)
$$-16$$

$$97 - 32$$

D) 32

E) 16

Resolución:

Nos piden: Calcular el valor de x.

Tenemos:
$$a \# b = a + b + 8$$

Cálculo del elemento neutro (e):

$$a#e = a$$

$$\alpha + e + 8 = \alpha$$

El neutro es: e = -8

$$e = -8$$

Cálculo del elemento inverso (a^{-1}) :

$$\underline{a\#a^{-1}} = e$$

$$a + a^{-1} + 8 = -8$$

$$a^{-1} = -16 - a$$

$$12^{-1} = -16 - 12 = -28$$

$$x^{-1} = -16 - x$$

$$(-16)^{-1} = -16 - (-16) = 0$$

$$(-20)^{-1} = -16 - (-20) = 4$$

$$(-8)^{-1} = -16 - (-8) = -8$$

Luego:

$$(12^{-1} \# (8 \# x^{-1})) = ((-16)^{-1} \# (-20)^{-1}) \# (-8)^{-1}$$

$$(-28 \# (8 \# (-16 - x))) = (0 \# 4) \# -8$$

$$(-28 \# (8 + (-16-x) + 8)) = (0 + 4 + 8) \# -8$$

$$(-28 + (8 + (-16-x) + 8)) + 8 = (0 + 4 + 8) + 8 + 8$$

$$28 - x = 0 + 4 \rightarrow x = -32$$

Le l valor de x es: -32

Se define define

$$a \oplus b = \frac{1}{\frac{1}{a} + \frac{1}{b} - 2}$$

En dicha operación, ¿el inverso de qué número es la unidad?

X) 1/3

- B) 0
- C) 2
- D) 3
- E) 4

Resolución:

Nos piden determinar el inverso de qué número es la unidad

$$a \oplus b = \frac{1}{\frac{1}{a} + \frac{1}{b} - 2}$$

Hallemos el elemento neutro e.

Por definición

$$\frac{1}{\frac{1}{a} + \frac{1}{e} - 2} = a$$

$$\chi = \chi + \frac{a}{e} - 2a$$

$$0 = a(\frac{1}{e} - 2)$$

$$0 \rightarrow e = \frac{1}{2}$$

Por definición:

$$X \oplus X^{-1} = e$$

Dato:
$$X^{-1} = 1 \rightarrow X \oplus 1 = 0$$

$$\frac{1}{\frac{1}{x} + \frac{1}{1} - 2} = \frac{1}{2}$$

$$\frac{1}{x} - 1 = 2$$

$$\therefore x = \frac{1}{3}$$

Se define en R la operación matemática

$$m * n = \frac{mn}{2\sqrt{2}}$$

¿El inverso de qué número es la unidad?

- A) 1
- B) 2
- C) 4
- D) 8
- E) 16

Resolución:

Nos piden determinar el inverso de qué número es la unidad

$$m * n = \frac{mn}{2\sqrt{2}}$$

Hallemos el elemento neutro e.

Por definición

$$\frac{me}{2\sqrt{2}} = m$$

$$\frac{me}{2\sqrt{2}} - m = 0$$

$$m\left(\frac{e}{2\sqrt{2}} - 1\right) = 0$$

$$0 \rightarrow e = 2\sqrt{2}$$

Por definición:

$$X * X^{-1} = e$$

Dato:
$$X^{-1} = 1 \rightarrow X * 1 = \epsilon$$

$$\frac{X \cdot 1}{2\sqrt{2}} = 2\sqrt{2}$$

$$X = \left(2\sqrt{2}\right)^2$$

La operación matemática es definida mediante la siguiente tabla:

Halle
$$E = \frac{(d^{-1}\#c)\#(d^{-1}\#c)}{(b^{-1}\#a)\#(a^{-1}\#d)}$$

,siendo x^{-1} el elemento inverso de x

A)
$$\frac{a}{b}$$

$$\frac{a}{d}$$

D)
$$\frac{c}{a}$$

$$E)\frac{d}{c}$$

Resolución:

Nos piden:
$$E = \frac{(d^{-1}\#c)\#(d^{-1}\#c)}{(b^{-1}\#a)\#(a^{-1}\#d)}$$

Por definición de inversas

$$d * d^{-1} = d$$

$$\downarrow$$

$$d$$

Reemplacemos en lo que nos piden:

$$E = \frac{(d^{-1}\#c)\#(d^{-1}\#c)}{(b^{-1}\#a)\#(a^{-1}\#d)} = \frac{(d\#c)\#(d\#c)}{(b\#a)\#(c\#d)} = \frac{(c)\#(c)}{(c)\#(c)} = 1$$

Le l'union de lo que nos piden es 1

En el conjunto $Q = \{1; 3; 5; 7\}$ se define la operación ∇ según la siguiente tabla.

∇	5	7	3	1
7	7	1	5	3
3	3	5	1	7
1	1	3	7	5
5	5	7	3	1

Luego, sea x^{-1} el elemento inverso de $x \in Q$, según la operación ∇ , halle:

$$E = \frac{3^{-1} + 5^{-1}}{7^{-1} + 1^{-1}}$$

- A) $\frac{31}{53}$
- D) $\frac{5}{3}$

B) 2

C) 1

E) 3

Resolución:

Nos piden: El valor de E.

						_		
4	∇		5		7	3		1
	7	\parallel	7		1	5		3
	3	H	3		5	1		7
	1		1	4;	3	7		5
	5		5		7	3		1

Primero procedemos a calcular el elemento neutro (e):

$$\rightarrow$$
 e = 5

5 7 3 1 Ahora procedemos a calcular los elementos inversos:

- $1^{-1} = 1$
- $3^{-1} = 7$
- $5^{-1} = 5$
- $7^{-1} = 3$

Reemplazando en lo pedido obtenemos:

$$E = \frac{3^{-1} + 5^{-1}}{7^{-1} + 1^{-1}} = \frac{7 + 5}{3 + 1} = \frac{12}{4} = 3$$

En la tabla, se define la operación # en el conjunto $\{a; b; c\}$ Según esto se afirma

I.
$$b^{-1} = a$$
.

II.
$$b \# b^{-1} = c$$
.

III.
$$c^{-1} \# b^{-1} = c$$
.

Son verdaderas

#	а	b	с
a	с	с	а
b	с	а	b
С	а	b	С

- A) solo I
- B) solo II
- C) solo III
- D) I y II
- E) I y III

Resolución:

Nos piden: Las proposiciones verdaderas.

Primero procedemos a calcular el elemento neutro (e):

$$\rightarrow$$
 e = c (II)

Ahora procedemos a calcular los elementos inversos:

- $a^{-1} = a \circ b$
- $b^{-1} = a$ (I)
- $c^{-1} = c$

Analizando cada proposición obtenemos:

II.
$$b \# b^{-1} = c$$
..... (**V**)

III.
$$c^{-1} \# b^{-1} = ... (F)$$

$$c. c # a = a$$

Son verdaderas: I y II

Se define en A={a; b; c; d} la siguiente operación matemática mediante el operador asterisco (*) que cumple la propiedad conmutativa y tiene <u>elemento neutro c.</u>

Determine x si se cumple además que $(a^{-1} * x^{-1})^{-1} * c^{-1} = b^{-1} * a^{-1}$ donde a^{-1} es el elemento inverso de a.

- A) a B) b

- D) d
 - E) e

Resolución:

Nos piden: El valor de x:

Ordenando la tabla:

*	а	b	С	d	e = c
а	b	d	а	O	$a^{-1} = \mathbf{d}$
b	đ	(G)	b	а	$b^{-1} = {\bf b}$
С	а	b	E	d	$c^{-1} = \mathbf{c}$
d	<u>(</u> မ	а	d	, pd	$d^{-1} = \mathbf{a}$
					¥

$$(a^{-1} * x^{-1})^{-1} * c^{-1} = b^{-1} * a^{-1}$$

$$\underbrace{(d * x^{-1})^{-1}}_{a} * c = \underbrace{b * d}_{a}$$

$$(\underline{d * x^{-1}})^{-1} = a$$

$$\rightarrow$$
 $x = c$

La operación matemática representada por el operador * y definida en A={1; 2; 3; 4; 5} tiene elemento neutro "e" y $\forall a \in A$ existe un a^{-1} que es el elemento inverso de a. Complete la tabla e indique el valor de verdad de las proposiciones.

*	3	1	5	2	4
5	2-1	5-1	4-1	-	1-1
2	_	-	-	2^{-1}	-
1	5	3^{-1}	5^{-1}	-	-
3	4-1	1-1	-	-	5
4	3-1	5 ⁻¹ - 3 ⁻¹ 1 ⁻¹	4	-	5^{-1}

- I. La operación matemática cumple la propiedad conmutativa
- II. El elemento neutro de la operación matemática es 4

III.
$$(3^{-1}*4)*1^{-1}=(1*2)*3^{-1}$$

A) FVV

D) FFV

B) VVF

- C) VFV
- E) FFF

Resolución

Nos piden: Indicar el valor de verdad de las proposiciones

Por definición: $n * n^{-1} = e \longrightarrow e * e^{-1} = e \longrightarrow e * e = e^{-1} \longrightarrow 2^{-1} = 2$

Ordenamos la tabla:

*	3	1	5	2	4
3	Α	4	2	3	5
1	5	25	3	1	2
5	2	3	4	5	4
2	3	1	5	Α	4
4	5	2	4	4	83

I. Es conmutativa (F)

II.
$$e=4$$
 (F)

La secuencia correcta es FFV

Se define en R la operación matemática * que posee una única regla de definición. En la siguiente tabla se muestran algunos de sus resultados:

*	7	11	15
2	28	44	60
5	70	110	150
7	98	154	210

Calcule 8⁻¹ si a⁻¹ es el elemento inverso de a.

- A) 1/2
- B) 1/4
- C) 1/8
- D) 1/16

F/ 1/32

Resolución:

Nos piden determinar el valor de 8⁻¹.

De la tabla:

$$2*7 = 28 = 2(2)(7)$$
 $2*11 = 44 = 2(2)(11)$
 $5*7 = 70 = 2(5)(7)$
 $5*15 = 150 = 2(5)(15)$

a*b = 2ab

Cálculo del elemento neutro:

Cálculo del elemento inverso:

$$a * a^{-1} = e$$

 $2a.a^{-1} = 1/2$

Se tiene la siguiente tabla definida en R:

\downarrow	3	1	6
$\overline{2}$	3	1	6
4	5	3	8
5	6	4	9

Halle $7^{-1} \downarrow 2^{-1}$ si se cumple que a^{-1} es el elemento inverso de a.

Resolución:

Nos piden el valor de $7^{-1} \downarrow 2^{-1}$

De la tabla:

$$a \downarrow b = a + b - 2$$

1er paso,

calculamos el elemento neutro.

$$a \downarrow e = a$$

$$a + e - 2 = a$$

$$e = 2$$

2do paso,

calculamos el elemento inverso.

$$a \downarrow a^{-1} = e$$

3er paso, reemplazamos

$$7^{-1} \quad \downarrow \quad 2^{-1}$$

$$(4-7) \quad \downarrow \quad (4-2)$$

$$(-3) \quad \downarrow \quad (2)$$

$$-3+2-2=-3$$

: El valor de
$$7^{-1} \downarrow 2^{-1} = -3$$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe