Introduction

- Image Processing and Computer Vision
 - A computer vision system uses the image processing algorithms to try and perform emulation of vision at human scale.
 - Image Processing is the field of enhancing the images by tuning many parameter and features of the images.
 - -Image Processing is the subset of Computer Vision.

Evolution's Big Bang: Cambrian Explosion, 530-540million years, B.C.

This image is licensed under CC-BY 2.5

This image is licensed under CC-BY 2.5

 $\underline{\text{This image}} \text{ is licensed under } \underline{\text{CC-BY 3.0}}$

Camera Obscura

Gemma Frisius, 1545

This work is in the public

Leonardo da Vinci, 16th Century AD

Encyclopedia, 18th Century

Camera Obscura

Camera Obscura in San Francisco

What is an image?

- Image: a visual representation in form of a function f(x, y)
 - where f is related to the brightness (or color) at point (x, y)
 - Most images are defined over a rectangle
 - Continuous in amplitude and space

Digital Images and Pixels

- Digital image: discrete samples f[x,y] representing continuous image f(x,y)
- Each element of the 2-d array f [x,y] is called a pixel or pel (from "picture element")

Why do we process images?

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections
- Prepare for display or printing
 - Adjust image size
 - Color mapping, gamma-correction, halftoning
- Facilitate picture storage and transmission.
 - Efficiently store an image in a digital camera
 - Send an image from space
- Enhance and restore images
 - Touch up personal photos
 - Color enhancement for security screening
- Extract information from images
 - Read 2-d bar codes
 - Character recognition
 - Depth estimation
- Many more ... image processing is ubiquitous

4YCH428

4YCH428

Google Jump

facebook 360

light.c o

Face morphing

Source: Yi-Wen Liu and Yu-Li Hsueh, EE368 class project, spring 2000.

Face Detection

source: Henry Chang, Ulises Robles, EE368 class project, spring 2000.

source: Michael Bax, Chunlei Liu, and Ping Li, EE368 class project, spring 2003.

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

http://cs.stanford.edu/group/roadrunner/stanley.html

Image Processing Examples Visual Code Marker Recognition

Image Processing Examples Painting Recognition

Amazon Go

Vision-based interaction (and games)

Microsoft's Kinect

Sony EyeToy

Assistive technologies

Source: S. Seitz

Augmented Reality

Virtual Reality

Image Processing Examples: Style Transfer

Original photos

Style examples

Elias Wang, Nicholas Tan, EE368, 2016/17

Image Processing and Related Fields

References

- Slides available as pdf files on the class website (click on
- for source code and data)
 http://www.stanford.edu/class/ee368/handouts.html
 - Popular text books
 - William K. Pratt, "Introduction to Digital Image Processing," CRC Press, 2013.
 - R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 4th edition, Pearson, 2018.
 - Software-centric books
 - R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Gatesmark Publishing, 2009.
 - A. Kaehler, G. Bradski, "Learning OpenCV 3," O'Reilly Media, 2017.
 - Journals/Conference Proceedings
 - IEEE Transactions on Image Processing
 - IEEE International Conference on Image Processing (ICIP)
 - IEEE Computer Vision and Pattern Recognition (CVPR)