

SEGUNDO TRANSFORMADOR HINCAPIÉ 66/13,8 kV 13 MVA

ESTUDIO DE COORDINACIÓN DE PROTECCIONES

DOCUMENTO IEB-G004-23-13

REVISIÓN 0 VERSIÓN a

Medellín, junio de 2024

CONTROL DE DISTRIBUCIÓN

Copias de este documento han sido entregadas a:

Nombre	Dependencia	Empresa	Copias
		TRELEC	1
Gestión Documental Proyecto	Director	Ingeniería Especializada S.A.	1

Las observaciones que resulten de su revisión y aplicación deben ser informadas a *Ingeniería Especializada S.A*.

CONTROL DE REVISIONES

Revisión	Versión	Fecha	Descripción	Elaboró	Revisó	Aprobó
0		13/06/2024	Primera emisión	LGE	AMR	LFG
0	а	13/00/2024	Fillileia elliisioli	11/06/2024	12/06/2024	12/06/2024

Participaron en la elaboración de este informe:

LGE	Leidy García Esparza	LFG	Luis Felipe Gaitán	AMR	Ana María Restrepo

TABLA DE CONTENIDO

1.	OB	JETC)	. 12
2.	DES	SCRI	PCIÓN DEL PROYECTO	. 12
3.	ALC	CANC	CE DEL ESTUDIO	. 12
4.	PAF	RÁME	ETROS TÉCNICOS DEL SISTEMA DE POTENCIA	. 13
	4.1.	PAF	RÁMETROS DE LÍNEAS Y TRANSFORMADORES DE POTENCIA	. 13
	4.2.	TRA	ANSFORMADORES DE INSTRUMENTACIÓN	. 15
5.	MET	ΓOD	OLOGÍA	. 16
6.	FILC	oso	FÍA DEL SISTEMA DE PROTECCIONES	. 17
7.	ESC	CENA	ARIOS DE OPERACIÓN	. 17
8.	CRI	TER	IOS DE AJUSTE PARA LAS FUNCIONES DE PROTECCIÓN	. 18
	3.1.	PRO	OTECCIONES DE LÍNEA	. 18
	8.1.	1.	Criterios de Ajuste para la Función Diferencial de Línea (ANSI 87L)	. 18
	8.1.	2.	Criterios de ajuste Función Distancia (ANSI 21/21N)	. 26
	8.1.	3.	Criterios de Ajuste Funciones de Sobrecorriente Direccional (ANSI 67/67)	7N)
	8.1.	4.	Criterios de Ajuste Función Oscilación de Potencia (ANSI 68)	. 34
	8.1.	5.	Criterios de Ajuste para la Función de Cierre en Falla (SOTF)	. 37
	8.1.	6.	Criterios de Ajuste para la Función de Sobretensión (ANSI 59)	. 39
	8.1.	7.	Criterios de Ajuste para la Función de Baja Tensión (ANSI 27)	
	8.1.	8.	Criterios de Ajuste Función de Falla Interruptor (ANSI 50BF)	. 41
	8.1.9 Sind		Criterios de Ajuste para las Funciones de Recierre y Verificación smo (ANSI 79 y ANSI 25)	
	8.1.	10.	Criterios de Ajuste del Esquema de Teleprotección	. 47
	3.2.	PRO	OTECCIONES DE TRANSFORMADOR	. 51
	8.2.	1.	Protección Diferencial de Transformador (ANSI 87T)	. 51
	8.2.: 51/5		Protecciones de sobrecorriente de fases y de tierra (ANSI 50/50N/50051G)	. 54
	8.2.	3.	Protección de falla interruptor (ANSI 50BF)	. 55
	8.2. prot		Metodología para la evaluación del desempeño de los CTs asociados cor ón diferencial	
	3.3.	CIR	CUITOS DE MEDIA TENSIÓN	. 58
	8.3.	1.	Criterios de ajuste para la función de sobrecorriente en reconectadores	. 58
9.	CÁL	CUL	O DE LOS AJUSTES DE LAS FUNCIONES DE PROTECCIONES	. 60
,	9.1.	SUE	BESTACIÓN HINCAPIÉ 69 kV	. 60

9.1.1.	Línea Hincapié - Guadalupe, extremo Hincapié 69 kV	60
9.1.2.	Línea Hincapié – Sector Industrial Petapa, extremo Hincapié 69 kV	70
9.1.3.	Línea Hincapié – Bombeo Hincapié, extremo Hincapié 69 kV	79
9.1.4.	Transformador 1 Hincapié 28 MVA 66/13,8 kV	86
9.1.5.	Transformador 2 Hincapié 13 MVA 66/13,8 kV	89
9.1.6.	Protección de sobrecorriente de reconectadores10	00
9.1.7.	Función de Falla Interruptor (ANSI 50BF)10	02
9.2. SUE	BESTACIÓN GUADALUPE 69 kV10	03
9.2.1.	Línea Guadalupe - Hincapié, extremo Guadalupe 69 kV10	03
9.3. SUE	BESTACIÓN SECTOR INDUSTRIAL PETAPA 69 kV1	13
9.3.1. 69 kV	Línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 113	ра
9.4. SUE	BESTACIÓN BOMBEO HINCAPIÉ 69 kV1	22
10. VERIF	FICACIÓN DEL DESEMPEÑO DE LAS FUNCIONES DE PROTECCIÓN 1:	22
10.1. V	ERIFICACIÓN DE LAS PROTECCIONES DEL TRANSFORMADOR1	22
10.1.1. 66/13,8	Verificación protección diferencial del Transformador 2 Hincap kV 13 MVA1	
10.1.2.	Verificación de saturación de CTs asociados a las protecciones ANSI 87	7T
10.1.3.	Verificación de la función de sobrecorrientes1	27
	ERIFICACIÓN DE LAS OPERACIÓN DE LAS PROTECCIONES DE LÍNE 28	ΞA
10.2.1.	Verificación de la protección distancia 21/21N1	28
11. CONC	CLUSIONES1	29
12. REFE	RENCIAS1	29
	LISTA DE TABLAS	
Tabla 1. Par	rámetros técnicos líneas del área de influencia proyecto	13
	rámetros técnicos transformadores de potencia del área de influencia d	
	nsformadores de corriente del proyecto Transformador 2 Hincapié 66/13,8	
	tos técnicos de las protecciones del Transformador 2 Hincapié 66/13,8	
Tabla 5. Ajus	stes característica MHO y cuadrilateral de los relés SEL	26
Tabla 6. Crit	terios de ajustes generales para la función oscilación de potencia (ANSI 6	8)
OIT OF TOIC OL		<i>_</i>

el relé SEL 311L
Tabla 8. Criterios de ajustes generales para la función de cierre en falla (SOTF) en el relé SEL 311L
Tabla 9. Criterios de ajustes generales para la función de recierre en el relé SEL 311L42
Tabla 10. Criterios de ajustes generales para la función de recierre en el relé SEL 311L 46
Tabla 11. Criterios de ajuste sobrecorriente transformador de potencia54
Tabla 12. Criterio para verificar el desempeño de los CTs58
Tabla 13. Criterios de ajuste para la función sobrecorriente en reconectadores59
Tabla 14. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV60
Tabla 15. Cálculo del SIR Iínea Hincapié - Guadalupe, extremo Hincapié 69 kV61
Tabla 16. Parámetros de la línea Hincapié - Guadalupe61
Tabla 17. Ajustes actuales y recomendados función ANSI 87L Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV62
Tabla 18. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié - Guadalupe, extremo Hincapié 69 kV63
Tabla 19. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Guadalupe, extremo Hincapié 69 kV63
Tabla 20. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV63
Tabla 21. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV65
Tabla 22. Corrientes de falla y corriente de arranque función 50BF SE Hincapié 69 kV, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 23. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV66
Tabla 24. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 25. Calculo función 50HS Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV66
Tabla 26. Ajustes actuales y recomendados función 50PxP Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 27. Ajustes actuales y recomendados función SOTF Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 28. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 29. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Tabla 30. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 31. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 32. Esquema de Teleprotección – POTT relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV70
Tabla 33. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV
Tabla 34. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV
Tabla 35. Cálculo del SIR línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV71
Tabla 36. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV72
Tabla 37. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV72
Tabla 38. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV73
Tabla 39. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV74
Tabla 40. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV75
Tabla 41. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV75
Tabla 42. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV75
Tabla 43. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV76
Tabla 44. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV76
Tabla 45. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV77
Tabla 46. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV77
Tabla 47. Esquema de Teleprotección – POTT relé SEL 311L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV
Tabla 48. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV79
Tabla 49. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV
Tabla 50. Cálculo del SIR Iínea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV 80

Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV80
Tabla 52. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV
Tabla 53. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV
Tabla 54. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV
Tabla 55. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV83
Tabla 56. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV83
Tabla 57. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV84
Tabla 58. Calculo función 50HS Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV84
Tabla 59. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV84
Tabla 60. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV85
Tabla 61. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV85
Tabla 62. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV86
63. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV
Tabla 64. Ajustes Generales actuales y recomendados SEL 387, Transformador 1 Hincapié 28 MVA87
Tabla 65. Ajustes actuales y recomendados función sobrecorriente no direccional ANSI $50-51/51\mathrm{N}$ devanado de 69 kV, Transformador 1 Hincapié 28 MVA87
Tabla 66. Ajustes actuales y recomendados función sobrecorriente no direccional ANSI $50-51/51\mathrm{N}$ devanado de 13,8 kV, Transformador 1 Hincapié 28 MVA88
Tabla 67. Parámetros de CTs asociados a la función ANSI 87T Transformador 2 Hincapié 66/13,8 kV 13 MVA89
Tabla 68. Corrientes diferenciales en condiciones normales de operación Transformador 2 Hincapié 66/13,8 kV 13 MVA91
Tabla 69. Máximas corrientes de cortocircuito de componente DC Transformador 2 Hincapié 66/13,8 kV 13 MVA92
Tabla 70. Información de cortocircuitos para el cálculo de la máxima corriente diferencial Transformador 2 Hincapié 66/13,8 kV 13 MVA92

Tabla 71. Ajustes recomendados función ANSI 87T Relé SIEMENS 7UT8 Transformador 2 Hincapié 66/13,8 kV 13 MVA
Tabla 72. Información de entrada para los cálculos de los ajustes de la protección ANSI 87TN para el Transformador 2 Hincapié 66/13,8 kV 13 MVA94
Tabla 73. Resumen de ajustes para la característica diferencial de falla a tierra restringida (ANSI 87TN) Relé SIEMENS 7UT8 Transformador 2 Hincapié 66/13,8 kV 13 MVA 96
Tabla 74. Corriente de cortocircuito en devanado de 69 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA
Tabla 75. Ajustes actuales y recomendados funciones sobrecorriente devanado 69 kV relé SIEMENS 7UT85 Transformador 2 Hincapié 66/13,8 kV 13 MVA98
Tabla 76. Ajustes actuales y recomendados funciones sobrecorriente devanado de 13,8 kV Relé SIEMENS 7UT85 F003 y F004 Transformador 2 Hincapié 66/13,8 kV 13 MVA
Tabla 77. Ajustes actuales y recomendados para la protección de sobrecorriente de los reconectadores asociados al Transformador Hincapié 1 69/13,8 kV 28 MVA 100
Tabla 78. Ajustes actuales y recomendados para la protección de sobrecorriente de los reconectadores asociados al Transformador Hincapié 2 66/13,8 kV 13 MVA 101
Tabla 79. Calculo función 50HS Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV
Tabla 80. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV
Tabla 81. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV101
Tabla 82. Ajustes recomendados función ANSI 50BF relé SIEMENS 7UT85 F003 y F004 Transformador Hincapié 2 66/13,8 kV 13 MVA102
Tabla 83. Ajustes Generales actuales y recomendados SEL 311 L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 84. Cálculo del SIR Iínea Guadalupe - Hincapié, extremo Guadalupe 69 kV 104
Tabla 85. Parámetros de la línea Hincapié - Guadalupe104
Tabla 86. Ajustes actuales y recomendados función ANSI 87L Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 87. Parámetros requeridos para el ajuste de la función distancia en la línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 88. Cálculos de ajustes protección ANSI 21/21N línea Guadalupe - Hincapié, extremo Guadalupe 69 kV106
Tabla 89. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 90. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 91. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Tabla 92. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 93. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 94. Calculo función 50HS Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 95. Ajustes actuales y recomendados función 50PxP Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 96. Ajustes actuales y recomendados función SOTF Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 97. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 98. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 99. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 100. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 101. Esquema de Teleprotección – POTT relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 102. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV
Tabla 103. Ajustes Generales actuales y recomendados SEL 311 C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 104. Cálculo del SIR línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 105. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 106. Cálculos de ajustes protección ANSI 21/21N línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 107. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 108. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 109. Calculo función 50HS Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 110. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 111. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Tabla 112. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV119
Tabla 113. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 114. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 115. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV
Tabla 116. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 66kV
Tabla 117. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 66kV
Tabla 118. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 13,8kV
Tabla 119. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 13,8kV
Tabla 120. Resultados de verificación de desempeño de los CTs asociados a la función ANSI 87T Transformador 2 Hincapié 66/13,8 kV 13 MVA126
Tabla 121. Verificación de la función de sobrecorriente
LISTA DE FIGURAS
Figura 1. Diagrama unifilar del área de influencia del proyecto
Figura 2. Placa de características del Transformador 2 Hincapié 66/13,8 kV 13 MVA 15
Figura 3. Diagrama unifilar de protecciones Transformador 2 Hincapié 66/13,8 kV 13 MVA
Figura 4. Corrientes locales y remotas para configuración multiterminal19
Figura 5. Característica diferencial de corriente SEL 311L
Figura 6. Protección diferencial para una línea con dos extremos
Figura 7. Característica de operación de la protección SIEMENS 7SL824
Figura 8. Ajuste de la protección distancia con esquemas de sobre alcance permisivo 29
Figura 9. Configuración de referencia para la línea multi-terminal31
Figura 10. Característica de la función OOS (ANSI 68) en el relé SEL 311L35
Figura 11. Característica función oscilación de potencia del relé SIEMENS37
Figura 12. Lógica para la función ANSI 59 - Relé SEL 311
Figura 13. Retardo de la función ANSI 59 -Relé SEL 311
Figura 14. Lógica para la función ANSI 50BF -Relé SEL 311
Figura 15. Esquema de teleprotección por Comparación Direccional (67NCD) SEL 311L

Figura 16. Esquema de disparo transferido permisivo por comparación direccional 51
Figura 17. Protección diferencial de transformador ante falla externa53
Figura 18. Protección diferencial de transformador ante falla interna53
Figura 19. Característica de operación típica de la protección diferencial – relé 7UT8554
Figura 20
Figura 21. Característica de operación función ANSI 87T Relé SIEMENS 7UT8 Transformador 2 Hincapié 69/13,8 kV 13 MVA94
Figura 22. Característica de operación función ANSI 87TN Relé SIEMENS 7UT85 Transformador 2 Hincapié 66/13,8 kV 13 MVA97
Figura 23. Diagrama unifilar Bombeo Hincapié
Figura 24. Verificación Protección 87T ante fallas en el devanado de 69 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA124
Figura 25. Verificación Protección 87T ante fallas en el devanado de 13,8 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA

1. OBJETO

Presentar el estudio de coordinación de protecciones para la conexión del segundo transformador de Hincapié 66/13,8 kV 13 MVA, analizando el estado actual de la coordinación del área de influencia y realizando las respectivas recomendaciones para garantizar la adecuada operación de las protecciones ante eventos que alteren de alguna manera el sistema. El proyecto contempla la verificación de los ajustes, las líneas de transmisión a 69 kV, y la verificación de los dispositivos de protección adyacentes al proyecto.

2. DESCRIPCIÓN DEL PROYECTO

La subestación Hincapié 69 kV es una subestación de transformación con una capacidad actual de 28 MVA en una configuración barra simple seccionada, la cual cuenta con tres campos de líneas equipados a 69 kV, un campo de transformación 69/13,8 kV 28 MVA y un nuevo campo de transformación 69/13,8 kV 13 MVA:

- Un campo equipado de 69 kV que se utiliza para recibir la línea de transmisión proveniente de la subestación Sector Industrial Petapa 69 kV, para conformar la línea Hincapié – Sector Industrial Petapa 69 kV.
- Un campo equipado de 69 kV que se utiliza para recibir la línea de transmisión proveniente de la subestación Guadalupe 69 kV para conformar la línea Hincapié – Guadalupe 69 kV.
- Un campo equipado de 69 kV que se utiliza para recibir la línea de transmisión proveniente de la subestación Planta de Bombeo Hincapié 69 kV para conformar la línea Hincapié – Planta de Bombeo Hincapié 69 kV.
- Un campo de transformación para el transformador existente 69/13,8 kV 28 MVA.
- Un nuevo campo de transformación para el segundo transformador 66/13,8 kV 13 MVA

A nivel de 13,8 kV la subestación Hincapié 69/13,8 kV cuenta con:

- 4 circuitos, asociados al transformador de 28 MVA: Circuito 46, 47, nuevo circuito 5 y nuevo circuito 6.
- 2 circuitos, asociados al transformador de 13 MVA: Circuito 44 y 45.

3. ALCANCE DEL ESTUDIO

Para la realización del estudio de coordinación de protecciones del proyecto conexión del segundo transformador de Hincapié 66/13,8 kV 13 MVA se cumple con el siguiente alcance:

- a) Coordinación de protecciones del sistema de 69 kV, incluyendo los extremos del área de influencia:
 - Ajuste y verificación de la línea Hincapié Sector Industrial Petapa 69 kV.
 - Ajuste y verificación de la línea Hincapié Guadalupe 69 kV.
 - Ajuste y verificación de la línea Hincapié Planta de Bombeo Hincapié 69 kV.
 - Ajuste y verificación del transformador existente Hincapié 69/13,8 kV 28 MVA.
 - Ajuste y verificación del nuevo transformador Hincapié 66/13,8 kV 13 MVA.
- b) Verificación de coordinación de protecciones del proyecto con respecto a las protecciones del área de influencia. Esta validación comprende funciones de sobrecorriente direccional en las líneas a 69 kV. La función distancia se valida verificando que no se presenten traslapes de zona 2 de las protecciones ubicadas en extremos remotos al proyecto.

En la siguiente figura se presenta el diagrama unifilar del área de influencia considerada en el estudio de protecciones.

Figura 1. Diagrama unifilar del área de influencia del proyecto

4. PARÁMETROS TÉCNICOS DEL SISTEMA DE POTENCIA

En las siguientes tablas se presentan los parámetros técnicos de las líneas de transmisión, los transformadores de potencia y de instrumentación que fueron utilizados para la realización del estudio de ajuste y coordinación de protecciones para el proyecto nuevo transformador Hincapié 69 kV.

4.1. PARÁMETROS DE LÍNEAS Y TRANSFORMADORES DE POTENCIA

Tabla 1. Parámetros técnicos líneas del área de influencia proyecto

Línea	Long.	I _{Lim} térmico	R1	X1	R0	X0	B1	В0
	[km]	[A]	[Ω]	[Ω]	[uS]	[Ω]	[Ω]	[uS]
Hincapié - Guadalupe (1)	3,32	1188,00	0,38	1,43	1,41	4,57	12,81	7,12
Hincapié - Sector Industrial Petapa (1)	3,63	659,00	0,39	1,51	1,60	4,95	14,57	6,96
Hincapié - Bombeo Hincapié (1)	0,95	210,00	0,67	0,46	0,17	1,63	3,99	1,47
Guadalupe - Guatemala Este (2)	3,59	790	0,33	1,54	1,44	4,87	15,44	9,02
Guadalupe - Cambray ⁽²⁾	2,87	790	0,26	1,20	1,19	3,90	13,82	7,84
Guadalupe - Proceres (2)	3,31	475	0,71	1,47	1,78	4,61	12,32	6,31
Guadalupe - Ciudad Vieja (2)	2,96	475	0,63	1,31	1,60	4,09	12,12	6,39
Guadalupe - Rodríguez Briones (2)	1,73	790	0,16	0,71	0,70	2,38	7,06	3,88
SIP - GUATE SUR ⁽³⁾	5,86	1188,0	0,66	2,52	2,04	9,96	22,65	11,72
SIP - VILLALOBOS ⁽³⁾	2,86	1188,0	0,33	1,20	1,27	1,27	11,35	5,65
SIP-AURORA ⁽³⁾	5,66	790,0	0,52	2,33	2,41	7,69	23,284	11,015
SIP - San Miguel Petapa ⁽³⁾	7,8	532,0	0,90	3,28	3,52	10,62	30,591	14,586

Línea	Long.	I _{Lim} térmico	R1	X1	R0	X0	B1	В0
	[km]	[A]	[Ω]	[Ω]	[uS]	[Ω]	[Ω]	[uS]
SIP - Alamo ⁽³⁾	9,1	663,0	0,95	3,80	4,00	12,39	17,19	17,328
SIP - Guatemala Este ⁽³⁾	13,8	790,0	1,55	5,92	5,98	18,90	53,769	27,867
SIP-CLIENTES INDUSTRIALES(3)	4,1	242,0	0,71	1,79	2,07	5,73	26,211	12,835

Nota:

- 1) Información suministrada por TRELEC como información de entrada para ECP Hicapié.
- 2) Información tomada del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].
- 3) Información tomada del documento IEB-G014-20-020 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Sector industrial Petapa 69/13,8 kV Versión 8

Tabla 2. Parámetros técnicos transformadores de potencia del área de influencia del proyecto

Transformador	V _H [kV]	V _M [kV]	V _L [kV]	Grupo de Conexión	Сар _{нм} [MVA]	Cap _H ∟ [MVA]	Cap _M ∟ [MVA]	Z _{HM} [%]	Z _{HL} [%]	Z _{ML} [%]
Transformador 1 Hincapié 69/13,8 kV 28 MVA ⁽¹⁾	69		13,8			28			13,06	
Transformador 2 Hincapié 66/13,8 kV 13 MVA ⁽²⁾	66		13,8	Dyn1		13			7,25@10MVA	-

Nota:

- 1) Información tomada de la base de datos de la AMM.
- 2) Placa de características suministrada por TRELEC.

Figura 2. Placa de características del Transformador 2 Hincapié 66/13,8 kV 13 MVA 4.2. TRANSFORMADORES DE INSTRUMENTACIÓN

En las siguientes tablas se presentan las características técnicas de los transformadores de instrumentación asociados al proyecto.

Tabla 3. Transformadores de corriente del proyecto Transformador 2 Hincapié 66/13,8 kV 13 MVA

Subestación	Bahía	Nivel de tensión [kV]	Relación de Transformación [A]	Potencia [VA]	Clase
Hincapié 69 kV	Transformador Hincapié 2 66/13,8kV 13MVA	66	300/1 ⁽¹⁾	20	5P20
Hincapié 13,8 kV	Transformador Hincapié 2	13,8	Fases 1200/1 ⁽¹⁾	50	C200
	66/13,8kV 13MVA		Neutro 600/5 ⁽²⁾	25	C100

Nota:

- 1) Información suministrada por TRELEC en el diagrama unifilar de protecciones, ver Figura 3.
- Información suministrada por TRELEC en la placa de características del transformador Figura 2.

METODOLOGÍA

En el estudio de coordinación de protecciones se realiza la validación de las características de operación de los dispositivos de protección involucrados, de tal manera que la operación de los mismos se efectúe organizada y selectivamente, en un orden específico y con el mínimo tiempo de operación, para minimizar la interrupción del servicio y aislar adecuadamente la menor porción posible del sistema de potencia como consecuencia de una falla.

Sin embargo, para llegar a ese punto se requiere seguir una metodología que, como mínimo, conste de los siguientes pasos:

- Recolección de la información: Se requieren tanto los parámetros de los elementos de la red que se deben modelar, como los tipos de relés que van a proteger dichos elementos y los transformadores de medida asociados a éstos. Es también muy importante disponer del diagrama unifilar de la subestación y los diagramas de control y protección de cada uno de los elementos a proteger, los cuales definen las funciones que están ajustadas en cada relé y las relaciones de transformación de CT's y PT's, asociados.
- Procesamiento de la información: Para este estudio se parte de la base de datos suministrada por TRELEC en PSSE, las cuales fueron importadas al programa DIgSILENT Power Factory. Se realiza el modelamiento de los elementos de la red eléctrica del área de influencia del proyecto, incluyendo transformadores, unidades de generación y líneas de transmisión existentes y reconfiguradas. A continuación, se incorporaron los relés existentes con sus respectivos ajustes y las protecciones nuevas con los ajustes calculados. Finalmente, se establecen los escenarios de operación del sistema bajos los cuales se realizó el estudio de las protecciones.
- Análisis de resultados: Una vez ingresados los ajustes de los relés a la base de datos del DigSILENT Power Factory 2024, se procedió con la simulación de diferentes tipos de fallas y se verificó la coordinación de las protecciones de los elementos existentes con las protecciones de los elementos nuevos.
- **Conclusiones y recomendaciones:** Con el análisis de resultados realizado, se recomiendan ajustes para las protecciones nuevas y reajustes para las protecciones existentes, en caso de ser necesario, y se determinó cómo será el comportamiento de las protecciones del área de influencia ante diferentes tipos de fallas.

6. FILOSOFÍA DEL SISTEMA DE PROTECCIONES

En las siguientes tablas se presentan las protecciones que actualmente están implementadas en el área de influencia del proyecto y en el mismo proyecto.

Tabla 4. Datos técnicos de las protecciones del Transformador 2 Hincapié 66/13,8 kV 13 MVA

Subestación	Bahía	RPT	DCT [A]	Datos de	Nota			
Subestacion	Dallia	[kV]	RCT [A]	Marca	Modelo	Función	Nota	
Hincapié 69 kV	Transformador 2 Hincapié 66/13,8kV 13MVA		300/1	SIEMENS	7UT85	87T-51/51N	1,2	
Hincapié 13,8 kV	Transformador 2	2	Fases 1200/1	SIEMENS	7UT85	87T	1,2	
	Hincapié 66/13,8kV			1 4363 1200/1	SIEMENS	7SJ85	51/51N	1,2
	13MVA		Neutro 600/5	SIEMENS	7UT85	87TN	1,2,3	

Nota:

- Información suministrada por TRELEC en el diagrama unifilar de protecciones, ver Figura 3.
- 2) Funciones sujetas a cambios y verificaciones.
- 3) Información tomada de la placa de características del trasformador, ver Figura 2

Figura 3. Diagrama unifilar de protecciones Transformador 2 Hincapié 66/13,8 kV 13 MVA

7. ESCENARIOS DE OPERACIÓN

En el desarrollo del estudio de coordinación de protecciones del proyecto y subestaciones adyacentes existentes, se consideraron dos (2) escenarios de operación para el análisis de flujo de carga y cortocircuito, los cuales fueron obtenidos de acuerdo a la base de

datos recibida por parte de TRELEC. Para la Subestación Rodríguez Briones, el acople de barras se encuentra cerrado. Los escenarios son descritos a continuación:

Escenario 1:

En este escenario se presenta la demanda y generación máxima del área de influencia, con lo cual, también se presenta el mayor nivel de cortocircuito en las barras de las subestaciones y terminales.

• Escenario 2:

En este escenario se presenta la demanda y generación mínima del área de influencia, con lo cual, también se presenta el menor nivel de cortocircuito en las barras de las subestaciones y terminales.

Es importante aclarar que los escenarios descritos conformarán la base para los análisis de sensibilidad a ser considerados en las verificaciones de las protecciones del área de influencia, tanto nuevas como existentes.

En dichos análisis, se considerarán variaciones en la generación de la sub-área, así como contingencias N-1 en los diferentes elementos del sistema, los cuales quedarán consignados en las secciones correspondientes. Para las verificaciones de las funciones de protección, se realizaron modificaciones topológicas con el fin de evaluar los ajustes propuestos para los extremos que están normalmente abiertos.

8. CRITERIOS DE AJUSTE PARA LAS FUNCIONES DE PROTECCIÓN

A continuación, se presentan los criterios que se emplearán para calcular los parámetros de ajuste de las protecciones de las líneas en los circuitos existentes (solo en el caso de requerirse modificaciones a los ajustes actuales).

8.1. PROTECCIONES DE LÍNEA

8.1.1. Criterios de Ajuste para la Función Diferencial de Línea (ANSI 87L)

La protección diferencial se basa en la comparación de la corriente de los extremos del objeto protegido. Se aprovecha el hecho de que un tramo de línea conduce en estado normal de funcionamiento, sin interferencias, la misma corriente en ambos extremos. Esta corriente circula, en un lado hacia la línea que se toma en consideración y sale en el otro, si hay una diferencia de corriente, es seguro que hay una falla dentro del objeto protegido.

8.1.1.1. Relé SEL 311L

8.1.1.1.1. Algoritmo y Características de Operación para el SEL 311L

La función diferencial de línea detecta fallas trifásicas, a través de sus elementos de fase y fallas internas desbalanceadas por medio de los elementos de secuencia negativa y secuencia cero. El esquema de protección utiliza dos dispositivos de protección localizados en cada extremo de la línea, cada uno mide la corriente local y envía la información al relé del extremo remoto. Las corrientes medidas son sumadas y procesadas por cada dispositivo.

Cada dispositivo involucrado en el esquema de protección diferencial, realiza la lectura de corrientes en el extremo local y recibe las señales de corriente de los demás extremos para procesar las señales remotas, como se puede observar en la siguiente figura. Así, la suma de las corrientes de todas las terminales, dará como resultado la corriente diferencial total; igualmente, la suma de las magnitudes de corrientes de todas las terminales asociadas, dará como resultado la corriente de restricción total.

$$i_{LOC} + i_{REM1} + i_{REM2} = i_{CT1} + ... + i_{CT6} = i_{DIF}$$

$$I_{RST\ LOC} + I_{RST\ REM1} + I_{RST\ REM2} = I_{CT1\ MAG} + \dots + I_{CT6\ MAG} = I_{RST}$$

Figura 4. Corrientes locales y remotas para configuración multiterminal

Los valores de corriente diferencial (I_{DIF}) y de corriente de restricción (I_{RST}) equivalentes no se utilizan para generar disparo directamente, sino que son utilizadas en el algoritmo del plano alfa (Alpha Plane) generalizado, calculando las corrientes I_L e I_R equivalentes, corriente equivalente en extremo local y corriente equivalente en extremo remoto, respectivamente.

Esta protección compara las fases y las componentes de secuencia en cada uno de los extremos de la línea, luego cada dispositivo involucrado realiza la verificación y el cálculo de la siguiente relación:

 $\frac{I_R^{'}}{\overrightarrow{I_L}}$

Dónde:

 $\overrightarrow{I_R}$: Corriente extremo remoto.

 $\overrightarrow{I_L}$: Corriente extremo local.

Una vez se obtiene esta relación, la misma se ubica en un plano complejo, denominado ALFA. En caso de operación normal o fallas externas, dicha ecuación arrojará como resultado un valor aproximado de 1∠180°. Sin embargo, las condiciones de saturación de los transformadores de corriente, líneas no homogéneas y asimetrías del canal de comunicaciones, ocasionan que el vector resultante, aparezca en posiciones diferentes a la esperada, por lo tanto, se define un área de restricción o de bloqueo en la cual la protección no opera, y un área de disparo en la cual la protección actúa para despejar la falla (ver siguiente figura).

Figura 5. Característica diferencial de corriente SEL 311L

La relación entre la corriente remota I_R y local I_L en estado de operación normal tiene un valor de $1 \angle 180^\circ$, durante una falla externa a los relés, la corriente interna vista por ambos extremos es de igual magnitud, pero ángulo opuesto, por lo que la relación I_R/I_L se mantiene como $1 \angle 180^\circ$. El relé SEL-311L rodea el punto $1 \angle 180^\circ$ con una zona de restricción, fuera de la cual se produce un disparo cuando la corriente supera el valor ajustado.

La región de restricción se describe mediante el ángulo de extensión 87LANG, radio externo 87LR, radio interno definido como el recíproco del radio externo $(^1/_{87LR})$ y el disparo de la diferencial por secuencia negativa y cero 87L2P y 87LGP, respectivamente. El criterio de ajuste a utilizar para el ángulo máximo de operación se toma como la suma de los siguientes ángulos: diferencia angular de las impedancias de la fuente, error debido a tiempos de espera distintos para la transmisión y recepción de información y el error debido a la saturación. La diferencia angular de las impedancias de la fuente puede ser de 10°, siendo 20° la diferencia angular entre las corrientes remota y local. En un caso extremo, los relés pueden tener un tiempo de retraso de 1 ms en una dirección, por lo que los relés deben trabajar con información local de 1 ms anterior para que coincida con la información remota, lo anterior causa un error de 22° para un sistema de 60 Hz. Finalmente, la saturación de los transformadores de corriente en un caso extremo puede llegar a producir que la corriente secundaria adelante a la corriente primaria en un ángulo de 40°. Por lo que la diferencia angular total puede tener un valor máximo de \pm 82°.

Los ajustes de la función 87L son comunes para todos los elementos diferenciales por lo que el fabricante establece un parámetro, considerando lo establecido en el párrafo anterior. $87LANG = 360^{\circ} - (2 \times 82^{\circ}) = 196^{\circ}$, se establece un valor de fábrica de $87LANG = 195^{\circ}$. Para el radio externo e interno de la zona de restricción, el fabricante establece un valor de 6 y 1/6, respectivamente. Ambos valores permiten que las fallas trifásicas internas y las condiciones de zero-infeed sean excluidas de la zona. La corriente diferencial se ajusta a la corriente de carga máxima esperada, por lo que el fabricante ajusta este valor 20% mayor de la corriente nominal secundaria, para prevenir

operaciones incorrectas cuando se realizan pruebas al relé de un extremo. Los parámetros $87L_{2P}$ y $87L_{GP}$ se ajustan para fallas desbalanceadas internas, que superen el desbalance máximo de corriente de carga en la línea. El fabricante recomienda ajustar estos parámetros al 10% de la corriente nominal del transformador de corriente.

8.1.1.1.2. Criterios de Ajuste para el SEL 311L

Los criterios de ajuste para cada uno de los elementos de la característica de operación de la función **ANSI 87L**, son los siguientes:

- *E87L:* Selecciona el número de terminales para la zona de protección de la 87L. Se ajustará en "2".
- **EHST:** Disparo de alta velocidad, no se necesita cuando los elementos de sobrecorriente están controlados por torque con carga en derivación. Se ajustará en "**N**".
- EHSDTT: Habilita el disparo directo transferido de alta velocidad. Cuando se ajusta en N, los elementos de la 87L son usados solamente por elementos de sobrecorriente controlados por torque con carga en derivación. Se ajustará en "N".
- **EDD:** Habilita las detecciones por disturbios. Cuando los elementos de la 87L son elementos de sobrecorriente controlados por torque, no es necesario detectar los disturbios, de manera que se ajustará en "**N**".
- **ETAP:** Coordinación de los elementos con carga en derivación. Se ajustará en "N" porque no se tiene una línea con carga en derivación.
- CTR_X: Relación de transformación utilizada en la bahía de línea de la subestación remota.
- 87LPP: Es posible la existencia de valores de corriente diferencial diferentes de cero bajo condiciones normales del sistema, debido a la precisión en las medidas de los transformadores de corriente y a la corriente de carga de la línea generada por su efecto capacitivo, por lo tanto, este parámetro debe ajustarse por encima de esta corriente de carga. En el plano de secuencia positiva este parámetro se ajusta entre "2" y "3" veces la corriente de carga de la línea. El ajuste se da en amperios secundarios, en un rango de 1 a 10 Asec.

Si se activa la compensación por corriente de carga, este parámetro se ajustará con base en la corriente nominal del circuito.

Para los planos de secuencia negativa (87L2P) y secuencia cero (87LGP) se tomará como base un 40% de la corriente nominal del circuito, tanto de secuencia positiva como de secuencia cero, que corresponde al máximo desbalance esperado en la línea. El ajuste se da en amperios secundarios, en un rango de 0,5 a 5 Asec.

Es importante verificar que la corriente mínima de falla para fallas internas sea mayor que las corrientes de ajuste 87LPP, 87L2P y 87LGP.

 CTALRM: Pickup de alarma para la corriente diferencial de fases. El ajuste se da en amperios secundarios, en un rango de 0,5 a 10 Asec. Este ajuste se pone por encima de la máxima corriente de carga más la corriente de carga de la línea, es decir:

$$(M\acute{a}x.corriente\ de\ carga + Corriente\ de\ carga) imes rac{1,1}{CTR}$$

- 87LR: El radio exterior, y por consiguiente el radio interior (recíproco del radio exterior) se ajustan con el fin de excluir de esta zona todas las fallas internas. Se partirá del ajuste recomendado por el fabricante, con un valor de "6" en todos los planos, verificando que queden excluidas de la zona de restricción, todas las fallas trifásicas que se presenten dentro de la línea, incluyendo las que no tengan infeed de alguno de los extremos.
- 87LANG: La extensión angular, se define como el mayor error que puede ser causado por la saturación de los transformadores de corriente y los desfases en la comunicación de los relés y la diferencia en los ángulos de las redes existentes en los extremos de la línea. Un valor angular adecuado para la mayoría de eventos será de "195" en todos los planos. Deberá validarse que las fallas trifásicas fuera de la línea, sean vistas por el relé en la zona de bloqueo, verificando si existe saturación de los CTs de acuerdo a su burden real y a las condiciones el sistema bajo estudio.

8.1.1.2. Relé SEL 411L

8.1.1.2.1. Criterios de Ajuste para el SEL 411L

Los criterios de ajuste para cada uno de los elementos de la característica de operación de la función *E87L*, son los siguientes:

- E87L: Habilita la función de protección diferencial de línea. Se ajustará en "Y".
- 87LPA: La extensión angular, se define como el mayor error que puede ser causado por la saturación de los transformadores de corriente y los desfases en la comunicación de los relés y la diferencia en los ángulos de las redes existentes en los extremos de la línea. Un valor angular adecuado para la mayoría de eventos será de "190°" en todos los planos. Deberá validarse que las fallas trifásicas fuera de la línea, sean vistas por el relé en la zona de bloqueo, verificando si existe saturación de los CTs de acuerdo a su burden real y a las condiciones el sistema bajo estudio.
- 87LPR: El radio exterior, y por consiguiente el radio interior (recíproco del radio exterior) se ajustan con el fin de excluir de esta zona todas las fallas internas. Se partirá del ajuste recomendado por el fabricante, con un valor de "6" en todos los planos, verificando que queden excluidas de la zona de restricción, todas las fallas trifásicas que se presenten dentro de la línea, incluyendo las que no tengan infeed de alguno de los extremos.
- 87LPP: Es posible la existencia de valores de corriente diferencial diferentes de cero bajo condiciones normales del sistema, debido a la precisión en las medidas de los transformadores de corriente y a la corriente de carga de la línea generada por su efecto capacitivo, por lo tanto, este parámetro debe ajustarse por encima de esta corriente de carga. En el plano de secuencia positiva este parámetro se ajusta entre "2" y "3" veces la corriente de carga de la línea.

Si se activa la compensación por corriente de carga, este parámetro se ajustará con base en la corriente nominal del circuito.

Para los planos de secuencia negativa (87LQP) y secuencia cero (87LGP) se tomará como base un 40% de la corriente nominal del circuito, tanto de secuencia positiva como de secuencia cero, que corresponde al máximo desbalance esperado en la línea.

Es importante verificar que la corriente mínima de falla para fallas internas sea mayor que las corrientes de ajuste 87LPP, 87LQP y 87LGP.

8.1.1.3. Relé SIEMENS 7SL8

8.1.1.3.1. Algoritmo y Características de Operación para el SIEMENS 7SL8

La protección diferencial se basa en la comparación de la corriente de los extremos del objeto protegido. Se aprovecha el hecho de que un tramo de línea conduce en estado normal de funcionamiento, sin interferencias, la misma corriente en ambos extremos. Esta corriente circula, en un lado hacia la línea que se toma en consideración y sale en el otro, si hay una diferencia de corriente superior al umbral de ajuste, es seguro que hay una falla dentro del objeto protegido.

El esquema de protección del relé diferencial de línea utiliza dos dispositivos de protección localizados a cada extremo de la línea, cada uno de los cuales miden la corriente local y envía la información al relé del extremo remoto. Como resultado, las corrientes medidas son sumadas y procesadas por cada uno de los dispositivos. En la siguiente figura se ilustra el esquema de protección diferencial típico para una línea de transmisión.

Figura 6. Protección diferencial para una línea con dos extremos

En particular, el relé 7SL8 no cuenta con pendientes ajustables, ya que su característica de disparo corresponde a una pendiente de 45°, resultante de la característica de estabilización $I_{diff} = I_{stab}$, donde se cumple la ecuación:

$$I_{stab} = Threshold + \sum (error \ del \ CT + otros \ errores \ de \ medida)$$

Si la corriente diferencial calculada sobrepasa el umbral de arranque y el error de medida máximo posible, se trata de una falla interna, la cual se ubica sobre la zona gris (zona de disparo) de la característica de operación de la protección diferencial mostrada en la siguiente figura.

Figura 7. Característica de operación de la protección SIEMENS 7SL8

La protección diferencial cuenta con dos escalones *Idiff* e *Idiff fast*, los cuales operan en paralelo y, según el tipo de falla, tienen una operación con alta sensibilidad o con un disparo rápido.

El escalón *Idiff fast* es un elemento optimizado para disparos rápidos ante corrientes de falla de alta magnitud. Cada relé ubicado en los extremos de la línea determina por fase una corriente diferencial como la suma de los valores instantáneos filtrados que son calculados en cada extremo del objeto protegido y transmitidos al otro extremo. Idealmente, el valor absoluto corresponde al valor de la corriente de falla vista por el sistema de protección diferencial. Durante la operación normal, en ausencia de falla, este valor es mínimo y corresponde, en el caso de líneas, a la corriente de carga capacitiva.

La corriente de estabilización resulta de la suma de los errores de medida máxima en los extremos del objeto a proteger y se calcula a partir de los valores medidos actuales. Para esto, se multiplica el error máximo de los transformadores de corriente, en el rango nominal o en el rango de cortocircuito, por la corriente instantánea que fluye en cada extremo y se transmite al otro extremo junto con los errores internos que se determinaron. De esta manera, la corriente de estabilización es siempre una imagen del error de medida máximo admisible del sistema de protección diferencial.

La compensación por corrientes de carga capacitiva "*lc-Compensation*" es una función opcional asociada exclusivamente al escalón *ldiff*, cuya sensibilidad está garantizada con altas corrientes de carga capacitivas.

8.1.1.3.2. Ajustes Generales

Min. current for release:

Este parámetro especifica la corriente mínima requerida para la autorización de la señal de disparo. Este parámetro se ajusta como *0.0 A*.

Supervision Idiff:

En este parámetro se determina si la función diferencial de línea debe operar con o sin la supervisión de la corriente diferencial. Este parámetro se ajusta como **yes:block diff. prot.** lo cual indica que la corriente diferencial es supervisada: si la corriente diferencial excede el umbral de supervisión sin que exista un real falla en

el sistema, se bloquea la protección diferencial de línea y se señaliza el aviso de *Alarm: Idiff too high*.

8.1.1.3.3. Ajustes para el Escalón Idiff>

Blk. W. Inrush curr. detect.

Con este parámetro se establece si durante la detección de una corriente Inrush de cierre se debe bloquear el disparo de la función diferencial. Este parámetro se ajusta como **No**.

Threshold (Umbral mínimo de corriente diferencial, Idiff>)

Para definir el ajuste de la corriente de pick-up (o valor de la corriente mínima diferencial para la operación de esta función) se debe calcular la máxima corriente diferencial esperada en condiciones normales de operación.

Para evitar una actuación indebida de la protección, se considera que esta máxima corriente diferencial puede ser originada por:

- ✓ Error provocado por las diferencias en las relaciones de transformación de los transformadores de corriente. Este error es corregido automáticamente por el relé.
- ✓ Errores en la precisión de los equipos de medida.
- ✓ Corriente de vacío producida por las capacitancias de la línea.
- ✓ Derivaciones al interior de la zona de protección

Estos últimos dos errores son los que se deben tener en cuenta para determinar la máxima corriente diferencial que se puede presentar en condiciones normales de operación. El ajuste del umbral mínimo de corriente diferencial deberá ser superior a este valor. En caso de que se tenga activa la función de compensación por corrientes de carga capacitivas, el ajuste del umbral mínimo de corriente diferencial sólo considerará la suma de los errores descritos, diferente al asociado a las capacitancias de la línea.

El fabricante recomienda ajustar este elemento en un valor igual a la corriente máxima de vacío capacitiva calculada, en caso de disponer de la función de compensación de corrientes de vacío capacitivas. De no ser así, se recomienda ajustar el umbral mínimo en un valor de 2 a 3 veces la corriente de carga capacitiva calculada. Finalmente, el valor ajustado no debe ser menor al 15% de la corriente nominal de la línea.

Threshold switch onto fault

Este umbral es activado cuando cualquiera de los dispositivos en los extremos de la línea reconoce la condición de línea muerta en su respectiva terminal. Su función consiste en evitar disparos indeseados de la protección diferencial de línea al momento de energizar la línea en vacío, ya que en esta condición se presentan corrientes de vacío transitorias por la capacitancia asociada a la línea, tan grandes como larga sea la línea. Entonces, durante un tiempo predefinido de 1,50 segundos, los dispositivos instalados en los extremos de la línea protegida cambian del umbral mínimo de ajuste general (ldiff>) al umbral mínimo durante la energización de la línea.

Por recomendación del fabricante, este parámetro se debe ajustar entre 3 y 4 veces la magnitud de la corriente de carga capacitiva de estado estable de la línea.

Operate delay

En este parámetro, en el relé 7SL8 se ajusta la temporización del disparo de la protección diferencial. Se ajustará en 0,0 s.

8.1.1.3.4. Ajustes para el Escalón Idiff> fast

Threshold (Umbral mínimo de corriente diferencial, Idiff> fast)

El arranque de corriente diferencial no restringida se ajusta en el elemento ldiffs fast threshold. Lo determinante aquí es el valor eficaz de la intensidad de corriente. Un ajuste aproximado de la intensidad de corriente nominal de servicio suele ser normalmente razonable. El ajuste está relacionado con los valores nominales operacionales, que deben ser iguales en los dos extremos de la línea. De eta manera, se recomienda un ajuste entre 1,2 y 2,0 veces la corriente de carga máxima de la línea. Para este caso, el umbral mínimo de ldiff> fast se ajustará en el 130% de la capacidad nominal de la línea.

Threshold switch onto fault

Este elemento se utiliza sólo cuando existen transformadores de potencia conformando la zona de protección de la protección diferencial de línea, siendo mayor el riesgo para el uso de CTs tipo buje en dichos transformadores. En aquellos casos donde se tiene la conexión de transformadores, este parámetro deberá ser ajustado con un valor entre 2 y 3 veces el valor ajustado en el parámetro ldiff>>.

8.1.2. Criterios de ajuste Función Distancia (ANSI 21/21N)

Los criterios utilizados como base para calcular los ajustes de las protecciones de distancia del proyecto se resumen a continuación.

8.1.2.1. Relé SEL 311L y SEL 411L

Para los relés marca SEL, se utilizaran los criterios relacionados a continuación:

Tabla 5. Ajustes característica MHO y cuadrilateral de los relés SEL

Zona	Parámetros	Mho	Cuadrilateral					
		$Z_1 = K \times Z_L$	$Z_1 = K \times X_L$					
	Alcance	K: Se recomienda un factor del 80%. Esto busca						
1 ⁽¹⁾	711001100	instantáneos ante fallas						
'		Para líneas cortas o doble circuito puede	,					
	Tiempo	0 Cio						
	Dirección	Forw	<i>r</i> ard					
		Se calcula como	Se calcula como					
		Mínimo entre $ \begin{cases} Z_2 = X_L + (0.5 \times Z_{LAC}) \\ Z_2 = Z_L + (0.8 \times Z_{TSR}) \end{cases} $	Mínimo entre $ \begin{cases} Z_2 = X_L + (0.5 \times X_{LAC}) \\ Z_2 = Z_L + (0.8 \times X_{TSR}) \end{cases} $					
(4)	Alcance							
2 ⁽¹⁾		siempre que este sea mayor al	siempre que este sea mayor al					
		$Z_2 = 1,20 \times Z_L$	$Z_2 = 1,20 \times X_L$					
	Tiempo	18 Ciclos (líneas de 69 kV) – 64 ciclos (líneas de 230 kV)						
	Dirección	Forw ard						
4 ⁽¹⁾	Alcance	Mínimo entre $ \begin{cases} Z_4 = Z_L + (0.8 \times Z_{TL}) \\ Z_4 = Z_L + (1.20 \times Z_{LAL}) \end{cases} $	Mínimo entre $ \begin{cases} Z_4 = X_L + (0.8 \times X_{TL}) \\ Z_4 = X_L + (1.20 \times X_{LAL}) \end{cases} $					
4`	Tiempo	36 Ciclos (líneas de 69 kV) – 128 ciclos (líneas de 230 kV)						
	Dirección	Forw ard						
		Mínimo entre $ \begin{cases} Z_3 = 0.20 \times Z_{TS} \\ Z_3 = 0.20 \times Z_{LRVC} \end{cases} $	Mínimo entre $ \begin{cases} Z_3 = 0.20 \times X_{TS} \\ Z_3 = 0.20 \times X_{LRVC} \end{cases} $					
	Alcance	siempre que este sea mayor al sobrealcance	siempre que este sea mayor al sobrealcance					
3 ⁽¹⁾⁽²⁾		de zona 2 del extremo remoto	de zona 2 del extremo remoto					
		$Z_2 = 1,20 \times \left(Z_L - Z_{2_remota} \right)$	$Z_2 = 1,20 \times \left(X_L - X_{2_remota} \right)$					
	Tiempo	48-60 Ciclos (líneas de 69 kV) -	- 160 ciclos (líneas de 230 kV)					
	Dirección	Reverse						

Nota:

1) Z_L =Impedancia de la línea protegida, X_L =reactancia de la línea protegida, Z_{LAC} =Impedancia de línea adyacente más corta en SE remota, X_{LAC} = Reactancia de línea adyacente más corta en la subestación remota, Z_{TSR} =impedancia o paralelo de los transformadores de la SE remota, X_{TSR} =reactancia o paralelo de los transformadores de la s/e remota, Z_{TS} = impedancia o paralelo de transformadores en SE local, Z_{LRvC} = impedancia de línea reversa más corta en SE local, X_{LRvC} =reactancia de línea reversa más corta en SE local.

8.1.2.1.1. Alcance Resistivo

Para el ajuste del alcance resistivo de las diferentes zonas, se tiene como criterio general seleccionar un único valor para todas las diferentes zonas de la protección distancia, permitiendo establecer la coordinación a través de los tiempos de disparo de cada zona y logrando selectividad por medio de la impedancia de la línea vista por el relé hasta el sitio de la falla de alta impedancia. Los valores típicos resistivos son calculados como el 45% de la impedancia mínima de carga o de máxima transferencia del circuito en cuestión.

Este valor de impedancia mínima de carga es calculado a través de la siguiente expresión:

$$Z_{MIN.CARGA} = \left(\frac{V_L}{\sqrt{3} \times MCC}\right)$$

Donde:

V_L: Tensión nominal mínima línea − línea.

MCC: Máxima Corriente de Carga.

La Máxima Corriente de Carga se selecciona como el menor valor entre los siguientes cálculos:

- La CT_{MÁX}: Es la máxima corriente que soporta el transformador de corriente y que normalmente corresponde al 120% de I_{MÁX} primaria del CT.
- La corriente máxima de carga, es decir, el 130% de I_{MÁX} del conductor, la cual corresponde al límite térmico del circuito o el límite que imponga cualquiera de los equipos de potencia asociados.
- La máxima corriente operativa de la línea I_{MAX}: Este valor debe darlo el propietario de la línea.

8.1.2.1.2. Factor de Compensación de Secuencia cero K0

Las fallas que involucren contacto a tierra son compensadas por el factor k0, el cual es calculado de acuerdo con la siguiente expresión:

$$k_0 = \frac{Z_0 - Z_1}{3Z_1}$$

Donde:

Z0: Impedancia de secuencia cero de la línea a proteger.

Z1: Impedancia de secuencia positiva de la línea a proteger.

Sin embargo, la expresión sólo aplica para líneas sencillas, en las cuales no se tiene acople mutuo con circuitos con los cuales se comparte estructura o servidumbre (ver referencia [1]).

8.1.2.2. Relé SIEMENS 7SL8

Los criterios utilizados como base para calcular los ajustes de las protecciones de distancia del proyecto se resumen a continuación:

8.1.2.2.1. Características de las Zonas

Con los equipos SIEMENS suministrados para el proyecto es posible utilizar la característica cuadrilateral para todos los loops de impedancia, tanto de fases como de tierra, lo cual proporciona un mayor alcance de las zonas de protección para fallas de alta impedancia entre fases.

8.1.2.2.2. Ajuste de la Zona 1 (zona adelante)

Alcance en ohmios:

Para el ajuste de la zona 1 de la función distancia se emplea la ecuación:

$$Z_1 = K \times Z_L$$

Dónde:

 Z_1 : Ajuste de Zona 1 (Ω sec)

K: Se recomienda un factor del 80%. Esto busca eliminar la posibilidad de disparos indeseados instantáneos ante fallas al exterior del circuito. Para líneas cortas o doble circuito puede ser menor este factor (hasta un 65%).

 \mathbb{Z} : Impedancia de secuencia positiva de la línea (Ω sec).

Tiempo de Zona 1

El tiempo de operación de Zona 1 será de 0,0 ms.

8.1.2.2.3. Ajuste de la zona 2 (zona adelante)

El propósito de esta zona es proveer un respaldo a la protección de línea, falla interruptor, barras de la subestación remota.

Alcance en ohmios:

Se selecciona el menor valor entre:

$$Z_2 = 1.2 \times Z_L$$

 $Z_2 = Z_L + (0.5 \times Z_{LAC})$, donde Z_{LAC} es la impedancia de la línea adyacente más corta.

 $Z_2 = Z_L + (0.5 \times Z_{TSR})$, donde Z_{TSR} es la impedancia equivalente de los transformadores existentes en la subestación remota.

Nota: Si el valor mínimo es el 120% de la impedancia de la línea, se escoge el menor de los otros dos criterios.

Tiempo de zona 2:

Para la selección del tiempo de disparo de la Zona 2 se debe tener en cuenta la existencia o no de un esquema de teleprotección en la línea. Si la línea cuenta con esquema de teleprotección se puede seleccionar un tiempo de 400 ms para esta zona; sin embargo, para conservar los esquemas de tiempo del área de influencia, la temporización de la Zona 2 que se utilizará para las líneas del proyecto a nivel de 69 kV será de 300 ms.

Nota: Solo en el caso de que se comprueben traslapes entre las zonas 2 de relés adyacentes, se propondrá un ajuste diferente para estas zonas de tal forma que se garantice selectividad de las protecciones.

8.1.2.2.4. Ajuste de la zona 3 (zona reversa)

Alcance en ohmios:

El propósito de esta zona es proveer un respaldo a la protección diferencial de barras de la subestación local.

El ajuste de zona reversa puede ser requerido como entrada para algunas lógicas adicionales que traen los relés multifuncionales tales como: lógica de terminal débil, eco y bloqueo por inversión de corriente.

El ajuste de la Zona Reversa para este fin, se realiza tomando el menor valor de los dos cálculos siguientes:

- 20% de la impedancia de la línea reversa con menor impedancia.
- 20% de la impedancia equivalente de los transformadores de la subestación local.

Por recomendación expresa del fabricante (SIEMENS), para todas las aplicaciones de los esquemas de teleprotección (excepto PUTT) debe asegurarse que la detección de fallas en la dirección reversa tenga un mayor alcance que la zona de sobre alcance permisivo de la subestación remota de la línea (ver áreas sombreadas en la siguiente Figura). Durante una falla en el área sombreada (en la parte izquierda de la siguiente Figura), la protección distancia en la Subestación A no arrancaría, y dado que para la Subestación B la falla es detectada en la zona de sobre alcance que emite permisivo, esta condición de falla sería considerada como de sólo alimentación desde la Subestación B, lo cual significa que la subestación A emitiría un comando eco hacia B (en caso de estar habilitado el esquema de weak infeed), o no emitiría señal de bloqueo para la Subestación A (para los demás esquemas de teleprotección), lo cual podría resultar en un disparo indeseado.

Figura 8. Ajuste de la protección distancia con esquemas de sobre alcance permisivo

Tiempo de zona reversa:

Para respaldo de la protección diferencial de barras, se recomienda ajustar el tiempo de la Zona Reversa en 800 ms para 69 kV, con el fin de permitir la actuación de las zonas de respaldo de la barra remota.

8.1.2.2.5. Ajuste de la zona 4 (zona adelante)

El propósito de esta zona es proveer un respaldo a la protección de falla interruptor de la subestación remota.

Alcance en ohmios:

Se selecciona el menor valor entre:

 $Z_3 = Z_L + (0.8 \times Z_{EQTRAFO})$, donde $Z_{EQTRAFO}$ es la impedancia equivalente de los transformadores en la barra remota.

 $Z_3 = 1,20 \times (Z_L + Z_{LAL})$, donde Z_{LAL} es la impedancia de la línea adyacente más larga.

Tiempo de zona 4:

El tiempo de esta zona se ajustará en 600 ms para las líneas a 69 kV.

8.1.2.2.6. Alcance resistivo

Para el ajuste del alcance resistivo de las diferentes zonas, se tiene como criterio general seleccionar un único valor para todas las diferentes zonas de la protección distancia, permitiendo establecer la coordinación a través de los tiempos de disparo de cada zona y logrando selectividad por medio de la impedancia de la línea vista por el relé hasta el sitio de la falla de alta impedancia. Los valores típicos resistivos son calculados como el 45% de la impedancia mínima de carga o de máxima transferencia del circuito en cuestión.

Este valor de impedancia mínima de carga es calculado a través de la siguiente expresión:

$$Z_{MIN.CARGA} = \left(\frac{V_L}{\sqrt{3} \times MCC}\right)$$

Dónde:

V_L: Tensión nominal mínima línea - línea

MCC: Máxima Corriente de Carga

La Máxima Corriente de Carga se selecciona como el menor valor entre los siguientes cálculos:

- La CT_{MÁX}: Es la máxima corriente del transformador de corriente y que normalmente corresponde al 120% de I_{MÁX} primaria del CT.
- La corriente máxima de carga, es decir el 130% de I_{MÁX} del conductor la cual corresponde al límite térmico del circuito o el límite que imponga cualquiera de los equipos de potencia asociados.
- La máxima corriente operativa de la línea I_{MAX}: Este valor debe darlo el propietario de la línea.

8.1.2.2.7. Fallas bifásicas a tierra

Ante la ocurrencia de fallas bifásicas a tierra, la detección de fallas de la protección distancia inicia dos loops de medida fase-tierra y un loop de medida fase-fase. Dadas las condiciones de este tipo de falla, es muy probable que la impedancia aparente vista por uno de los loops fase-tierra presente un comportamiento que cause operación indeseada de la protección distancia por sobre alcance de alguna de sus zonas, especialmente de la zona 1.

Los relés SIEMENS disponen de un elemento que permite restringir la detección de fallas a loops específicos ante la ocurrencia de fallas bifásicas a tierra. Por recomendación del fabricante, el parámetro *Loop select. with ph-ph-g* se ajustará en *ph-ph only*, con lo cual se garantiza que ante fallas bifásicas a tierra, el relé opere sólo bajo los loops fasefase. Esto asegura la máxima precisión de la protección ante las fallas bifásicas a tierra, al reducir las probabilidades de operación indeseada por sobre alcance.

8.1.2.3. Criterios de ajuste para la función de distancia en líneas multiterminales (ANSI 21/21N)

Los principales problemas asociados con la operación de los sistemas de protección en líneas multiterminales son los siguientes:

- 1) Disparar tan rápido como sea posible todas las terminales en caso de falla interna en cualquier ubicación de la línea protegida para cualquier distribución de corrientes.
- 2) Permanecer estable ante condiciones de falla externa a la línea protegida en cualquier ubicación y para cualquier distribución de corrientes.

Es por esto que los criterios varían con respecto a los utilizados en líneas simples de dos terminales, pues el efecto infeed tiene aquí un impacto mucho mayor.

Para efectos del análisis de desempeño de las protecciones de la línea resultante de la ejecución del proyecto del alcance, se considerarán los criterios de ajuste, los cuales se describen a continuación, para una línea de tres terminales, como la mostrada en la siguiente Figura.

Figura 9. Configuración de referencia para la línea multi-terminal

Al igual que para las líneas convencionales, los criterios a continuación tienen como condiciones comunes las descritas a continuación:

- 1) Las impedancias, resistencias y reactancias corresponden a las de secuencia positiva de las líneas.
- 2) Para la característica MHO, los cálculos se realizan con la impedancia de la línea. Para la característica cuadrilateral, el criterio aplica para el alcance reactivo y se calculará con la reactancia de la línea.
- 3) El alcance resistivo aplica para todas las zonas. El factor recomendado permite la máxima transferencia de carga en la línea.
- 4) Los ajustes resultantes deben ser verificados de forma detallada a través de un análisis de selectividad y sensibilidad, considerando el efecto infeed resultante de las diferentes condiciones operativas incluidas en este análisis.

8.1.2.3.1. Ajuste de la zona 1 (zona adelante)

Para el ajuste del alcance de zona 1 se toma el 85% de la suma de los tramos de línea más cortos (70% para líneas cortas). Es decir, si se ajusta la zona 1 del extremo de A, se tomarían las impedancias Z_{AC} y Z_{CD} . De esta forma se garantiza que la protección de distancia no presente problemas de selectividad con los elementos de protección adyacentes.

 $Z_1 = 0.85 \times (Z_{AC} + Z_{CD})$, para líneas medianas y largas

$$Z_1 = 0.7 \times (Z_{AC} + Z_{CD})$$
, para líneas cortas

Sin embargo, este ajuste presentará problemas de sensibilidad cuando se presenten fallas en el tramo BC, siendo el caso más crítico el conjunto formado por altos niveles de cortocircuito en A y D comparados con B, y la longitud del tramo BC mucho mayor que la de los tramos AC y CD. Para nuestro caso, no se cumple ninguna de estas condiciones, dado que las líneas del proyecto siempre serán alimentadas sólo desde un extremo.

De forma general, el criterio para calcular el alcance de zona 1 puede expresarse de la siguiente manera:

$$Z_1 = 0.85 \times (Z_X + Z_C)$$
, para líneas medianas y largas

$$Z_1 = 0.7 \times (Z_X + Z_C)$$
, para líneas cortas

Donde:

 Z_X : Impedancia desde el relé hasta el punto de derivación (C).

 Z_C : Impedancia desde el punto de derivación (C) hasta la terminal más cercana.

El tiempo de retardo para zona 1 será instantáneo (0,0 ms). En algunos relés es posible implementar un ajuste superior del tiempo de disparo para esta zona, solo en caso de requerirse para la coordinación con otros circuitos.

8.1.2.3.2. Ajuste de la zona 2 (zona adelante)

El ajuste para el alcance de la zona 2 debe ser tal que la protección de distancia detecte fallas en la terminal más alejada de la línea de múltiples terminales.

Por ejemplo, una falla en B debería ser vista por los relés de distancia ubicados en los extremos A y D. Si uno de los relés da disparo, el otro relé también verá la falla y dará disparo dado que el infeed en el punto de derivación C desaparece.

Ante una falla en el extremo B, los elementos de distancia ubicados en los extremos A y D medirán las siguientes impedancias aparentes

$$Z_{mA} = Z_{AC} + \frac{I_A + I_D}{I_A} \cdot Z_{BC} = Z_{AC} + Z_{BC} + \frac{I_D}{I_A} \cdot Z_{BC}$$

$$Z_{mD} = Z_{CD} + \frac{I_A + I_D}{I_D} \cdot Z_{BC} = Z_{CD} + Z_{BC} + \frac{I_A}{I_D} \cdot Z_{BC}$$

Los términos $\frac{I_D}{I_A} \cdot Z_{BC}$ y $\frac{I_A}{I_D} \cdot Z_{BC}$ son los errores introducidos por el infeed de las terminales alrededor de la derivación C para los elementos de distancia ubicados en las terminales A y D, respectivamente. Estos errores no pueden ser mayores que Z_{BC} al mismo tiempo, pues cualquiera de las relaciones I_A/I_D o I_D/I_A es menor a 1. El peor caso se presenta cuando I_A e I_D son iguales. En este caso, el error es Z_{BC} para ambos relés. Entonces, para garantizar que al menos uno de los relés detecte la falla en B, el alcance de zona 2 debe ser del siguiente orden:

$$Z_2 = 1.2 \times (Z_X + 2 \times Z_Y)$$

O, para una línea de cuatro terminales:

$$Z_2 = 1.2 \times (Z_X + 3 \times Z_Y)$$

Donde:

 Z_X : Impedancia desde el relé hasta el punto de derivación (C)

Z_v: Impedancia desde el punto de derivación (C) hasta la terminal más alejada

Finalmente, se debe verificar que el alcance propuesto no detecte fallas en otros niveles de tensión.

Para el caso de las líneas, que no tienen infeed intermedio, pues todos los extremos remotos son de carga, se aplicaría el siguiente criterio:

$$Z_2 = 1.2 \times (Z_X + Z_Y)$$

Para la selección del tiempo de disparo de la Zona 2 se debe tener en cuenta la existencia o no de un esquema de teleprotección en la línea. Si la línea cuenta con esquema de teleprotección se puede seleccionar un tiempo de 400 ms para esta zona; si no se dispone de teleprotección, este tiempo se determina mediante un análisis de estabilidad del sistema ante contingencias en el circuito en consideración. Este tiempo (tiempo crítico de despeje de fallas ubicadas en Zona 2) puede oscilar entre 150 ms y 250 ms, dependiendo de la longitud de la línea y de las condiciones de estabilidad del sistema.

En caso de presentarse solapamiento de Zona 2 con los elementos de distancia de las líneas adyacentes, se recomienda utilizar una temporización de entre 150 ms y 200 ms más alta que la temporización de Zona 2 de la línea con la cual se presenta el solapamiento. Adicionalmente, debe evaluarse cuidadosamente el grado de selectividad entre esta protección y los elementos de protección de los transformadores ubicados en los extremos de la línea multiterminal.

8.1.2.3.3. Ajuste de la zona 3 (zona reversa)

Esta zona sirve de respaldo (hacia atrás) de las protecciones en la propia subestación, en caso de fallo de las mismas, especialmente de la protección diferencial de barras. Adicionalmente, esta zona es complemento en esquemas de teleprotección, generando bloqueos con arranque, evitando operaciones instantáneas ante fallas externas "hacia atrás". Para su arranque, se toma el menor valor de los dos criterios presentados, y se debe comprobar siempre que su alcance efectivo sea superior, por un margen de al menos el 20%, con respecto al de la zona 2 del extremo remoto.

$$Z_3 = 0.2 \times Z_{LT \, Remota \, Corta}$$

 $Z_3 = 0.2 \times Z_{TR \, Eq. \, Local}$

El tiempo de operación de la Zona reversa es normalmente de 1200 ms a 1500 ms.

8.1.2.3.4. Ajuste de la zona 4 (zona adelante)

El ajuste para el alcance de la zona 4 conlleva los mismos problemas que el alcance de la zona 2. Por esta razón, se recomienda como criterio para el caso de líneas multi-terminales con doble alimentación, el menor valor entre:

$$Z_4 = 1.2 \times (Z_X + 2 \times (Z_Y + Z_{LAL}))$$

 $Z_4 = (Z_X + Z_Y) + 0.8 \times Z_{EO,TRAFO}$

Para líneas radiales, como las del proyecto, con alimentación sólo desde un extremo, se consideran el menor valor entre:

$$Z_4 = 1.2 \times (Z_X + (Z_Y + Z_{LAL}))$$

 $Z_4 = (Z_X + Z_Y) + 0.8 \times Z_{EO,TRAFO}$

Donde:

 Z_X : Impedancia desde el relé hasta el punto de derivación (C)

 Z_{LAL} : Impedancia de la línea más larga, adyacente al tramo de línea más largo

 Z_Y : Impedancia desde el punto de derivación (C) hasta la terminal más alejada

 $Z_{EO,TRAFO}$: Impedancia equivalente más baja de los transformadores

Para el ajuste del tiempo de retardo de esta zona, se debe garantizar coordinación con Zona 2, por lo que tiempos entre 800 ms y 1000 ms son comúnmente utilizados.

8.1.3. Criterios de Ajuste Funciones de Sobrecorriente Direccional (ANSI 67/67N)

8.1.3.1. Sobrecorriente Direccional de Fases (ANSI 67)

Esta protección se ajustará para que detecte la menor corriente de falla en su área de influencia, y permita la operación normal y en contingencia. El criterio para el valor de arranque será el 130% de la corriente nominal o el 120% de la corriente nominal del CT con el fin de evitar sobrecargas del mismo. El dial de la curva y el tipo de curva se selecciona de tal forma que haya coordinación con los relés de sobrecorriente del área de influencia.

8.1.3.2. Sobrecorriente Direccional de Tierra (ANSI 67N)

Para el ajuste de esta función se puede utilizar uno de los siguientes criterios:

- 20 a 40% de la corriente máxima de carga.
- 20 a 40% de la corriente nominal del CT.
- 20 a 40% de la corriente nominal de la línea.

El dial de la curva y el tipo de curva se selecciona de tal forma que haya coordinación con los relés de sobrecorriente del área de influencia. Se debe considerar que cualquier falla dentro de la línea será despejada instantáneamente por el esquema del 67N en comparación direccional (67N+CD).

8.1.4. Criterios de Ajuste Función Oscilación de Potencia (ANSI 68)

Luego de la ocurrencia de eventos dinámicos en el sistema, como saltos de carga, cortocircuitos, tiempos muertos de ciclos de recierre o energizaciones, es posible que los generadores deban realinearse a sí mismos, de manera oscilatoria, con el nuevo balance de carga del sistema. Estas oscilaciones de potencia se caracterizan por la presencia de grandes corrientes y caídas de tensión en las barras de la zona de influencia; por consiguiente, la impedancia característica vista por los relés distancia podría desplazarse hasta las zonas de operación de la característica de dichos relés, y provocar disparos indeseados. Por lo anterior, es necesario que los relés distancia bloqueen su operación ante la detección de una oscilación de potencia. De manera que esta función solo se recomienda, en una línea cercana a generación; de resto, no es recomendable ajustarla.

8.1.4.1. Relé SEL 311L

La función "Out of Step - OOS", en el relé SEL, detecta oscilaciones de potencia estables e inestables. En este se implementan dos zonas adicionales a las de la función distancia, Zona 5 y Zona 6 las cuales monitorean el comportamiento de la impedancia de secuencia positiva.

Si la impedancia de secuencia positiva vista por el relé entra en la Zona 6, y se cumple el tiempo de retardo de bloqueo, OSBD, antes que dicha impedancia entre a la Zona 5, el

relé toma la decisión de bloquear las zonas que se hayan seleccionado. Adicionalmente el relé permite generar disparos una vez se cumpla el tiempo de retardo de disparo, OSTD y la impedancia entre a la Zona 5, pero esta función se implementara únicamente para generar bloqueos de las zonas hacia adelante de la función distancia.

Los alcances de las zonas mencionadas está compuesto de valores de ajuste más grandes para R y X que todas las zonas efectivas de la función distancia que se deseen bloquear.

Los parámetros generales de la función de oscilación de potencia se presentan en la siguiente tabla.

Tabla 6. Criterios de ajustes generales para la función oscilación de potencia (ANSI 68) en el relé SEL 311L

Zona	Parámetro	Observación	Criterio
	EOOS	Habilita la función de oscilación de potencia.	Y
	OSB1	Habilita el bloqueo de Zona 1 de la función distancia.	Y
	OSB2	Habilita el bloqueo de Zona 2 de la función distancia.	Y
	OSB3	Habilita el bloqueo de Zona 4 (Forward) de la función distancia.	N
Gen	OSB4	Habilita el bloqueo de Zona 3 (Reverse) de la función distancia. Esta zona no se bloquea para evitar disparos por oscilación de potencia cuando dicha oscilación sea vista en reversa y se reciba permisivo del extremo remoto por arranque de Zona 2.	N
	EOOST	Habilita el retardo del disparo de la protección de oscilación de potencia. Esta función no emitirá disparo.	N

En la siguiente figura se presenta la característica de la función oscilación de potencia del relé SEL 311L.

Figura 10. Característica de la función OOS (ANSI 68) en el relé SEL 311L

En la siguiente figura se muestran las impedancias a utilizar en el cálculo de los alcances de las zonas de la función oscilación de potencia del relé SEL 311L, además de los alcances calculados de la función distancia. Las ecuaciones se presentan en la siguiente tabla.

Tabla 7. Criterios de ajustes de zonas para la función oscilación de potencia (ANSI 68) en el relé SEL 311L

Zona	Parámetro	Observación	Criterio
Gen	OSBD	Tiempo de retardo de bloqueo de la protección distancia, se ajusta en ciclos. Para esta temporización se debe tener	$OSBD = \frac{(Ang_R5 - Ang_R6) \times f_{nom}}{\frac{360^{\circ}}{Cycle}} \times fslip$ Donde,

Zona	Parámetro	Observación	Criterio
		en cuenta la impedancia de transferencia total: suma de la impedancia local, remota y de la línea a proteger,	$Ang _R5 = 2 \times Atan \left(\frac{ZT/_2}{R1R5} \right)$ (ZT/_)
		la línea a proteger, considerando una frecuencia de oscilaciones estables	$Ang _R6 = 2 \times Atan \left(\frac{ZT/2}{R1R6} \right)$
		(fslip) de 5 Hz, valor típico recomendado por el fabricante.	ZT = Z1S + Z1L1 + Z1R Z1S: Impedancia equivalente en la subestación local. Z1L1: Impedancia de la línea a proteger. Z1R: Impedancia equivalente en la subestación remota.
	50ABCP	Corresponde al umbral de supervisión de la corriente de secuencia positiva. Este umbral determina el arranque de la lógica de oscilación de potencia convencional.	$$< I_{1MIN}$$ Tiene un rango de ajuste entre 0,1 y 20 A _{secundarios} , por tener transformadores de corriente con secundario de 1 A. Se recomienda ajustarlo en valor mínimo permitido por el relé (0,1 A _{secundarios}) con el fin de garantizar el arranque de la función.
	X1T5	Límite superior	$X1T5 = 1.2 \times Z3T$ Z3T: Alcance de la zona 3 calculado para la línea protegida.
Z5	Z5 R1R5	Límite derecho	$R1R5 = 1,2 \times \frac{Z3T}{2 \times Sin\left(Z_{LANG}\right)}$ Dónde: Z3T: Alcance de la zona 3 calculado para la línea protegida. Z_{LANG} : Ángulo de la impedancia de la línea protegida.
		Si R1R5 <r3< td=""><td>R1R5 = 1,1 × R3 R3: Alcance resistivo de la zona 3 calculado para la línea protegida.</td></r3<>	R1R5 = 1,1 × R3 R3: Alcance resistivo de la zona 3 calculado para la línea protegida.
	X1B5	Límite inferior	-X1T5
	R1L5	Límite izquierdo	-R1R5
	X1T6	Límite superior	X1T6 = X1T5 + (R1R6 - R1R5)
Z6	R1R6	Límite derecho	$R1R6 = (0.9 \times Z \min carga) \times Cos(45^{\circ} + (90^{\circ} - ZlANG))$ Dónde: Zmin carga: Impedancia mínima de carga. ZIANG: Ángulo de la impedancia de la línea protegida.
		Si R1R5>R3	$R1R6 = 1,15 \times R1R5$
	X1B6	Límite inferior	-X1T6
	R1L6	Límite izquierdo	− <i>R</i> 1 <i>R</i> 6

8.1.4.2. Relé SIEMENS 7SL8

La función de bloqueo por oscilación potencia bloquea las zonas de la función distancia seleccionadas en el ajuste, se activa solamente cuando la función distancia se encuentra activa y no genera disparo por oscilación de potencia. Para garantizar que todas las funciones de la detección de oscilación de potencia son estables y seguras, ante cortocircuitos, este relé utiliza los siguientes criterios de medida:

- Trajectory monotony: Durante una oscilación de potencia, la impedancia medida indica una ruta direccional de movimiento. Si dentro de la ventana de medida, uno de los componentes ΔR y ΔX indica un cambio de dirección, lo más seguro es que se trate de un cortocircuito.
- Trajectory continuity: Durante una oscilación de potencia, el espaciamiento de dos valores de impedancia indicará claramente un cambio de ΔR o ΔX. Cuando se presenta un cortocircuito, el vector de impedancia salta a la impedancia de falla y permanece inmóvil.

 Trajectory uniformity: Durante una oscilación de potencia la relación entre dos cambios consecutivos de ΔR y ΔX, no sobrepasan un umbral. Si se presenta un cortocircuito, éste causará un movimiento errático ya que el fasor de impedancia saltará abruptamente desde la impedancia de carga hasta la impedancia de falla.

El relé indica que hay una oscilación de potencia si el fasor de impedancia entra al polígono APOL y el criterio para detección de oscilación de potencia se ha mantenido. El rango de arranque de dicha característica está compuesto de los valores de ajuste más grandes para R y X de todas las zonas efectivas.

Figura 11. Característica función oscilación de potencia del relé SIEMENS

8.1.5. Criterios de Ajuste para la Función de Cierre en Falla (SOTF)

La función de cierre en falla tiene como objetivo la desconexión de forma inmediata y sin retardos de los alimentadores que cierren bajo condición de falla. Se utiliza principalmente como una protección rápida ante el evento de energizar el alimentador mientras la cuchilla de puesta a tierra se encuentra cerrada, pero también puede ser utilizada cada vez que se energice la línea bajo cualquier condición, como la de recierre automático. La función de cierre en falla puede hacerse por dos métodos: mediante una etapa de sobrecorriente no direccional y mediante uno de los elementos de la protección de distancia.

La lógica de cierre en falla debe estar habilitada por cambios de estado en el interruptor, mostrando su posición tan pronto ha cerrado o por activación de la señal de entrada de cierre al relé desde el comando del interruptor.

El criterio para ajustar la lógica de cierre en falla con el elemento no direccional de sobrecorriente consiste en la simulación de una falla trifásica de 0,001 Ω al 1% de la línea y para el ajuste de esta función se toma el 50% del aporte de corriente de falla a través de la línea a proteger.

Para el cálculo de la corriente de arranque de esta función se deben tener en cuenta las mínimas condiciones operativas de cortocircuito y las condiciones de restablecimiento del circuito, es decir, cuando se presenta una falla al 99% de la línea y ocurre un recierre no exitoso. En este caso, se obtendría la mínima corriente de falla que circularía por el interruptor, y para garantizar que la función de cierre en falla arranca, se ajusta entre el 50% y el 80% de dicho valor.

Es importante verificar que el valor calculado anteriormente se encuentre por encima de la máxima corriente de carga del circuito, para evitar acciones incorrectas de esta función ante condiciones normales de operación del sistema. En caso que el valor del 50% de la corriente de falla sea menor que la máxima corriente de carga, la función SOTF se debe ajustar al 110% de la máxima corriente de carga.

El esquema SOTF debe operar por el arranque de la zona 2 del relé distancia o por la operación de una función de sobrecorriente rápida. Después del cierre de un interruptor el esquema SOTF debe ser activado por un tiempo corto (1 s), en caso de encontrar falla durante este periodo de tiempo, el interruptor abrirá por la activación de la función. Adicionalmente, el elemento de sobrecorriente rápido tendrá un retardo intencional de 50 ms, para evitar disparos ante transitorios de energización y recierre de la línea protegida, o el efecto de estas maniobras en los elementos adyacentes.

8.1.5.1. Relé SEL 311L

En los relés SEL 311L, el arranque de corriente para esta función se ajusta en el elemento de sobrecorriente de fase instantáneo 50P1P, el cual se ajusta de acuerdo con el criterio arriba mencionado.

En la siguiente Tabla se presentan los criterios de ajuste de los parámetros de la función SOTF.

Tabla 8. Criterios de ajustes generales para la función de cierre en falla (SOTF) en el relé SEL 311L

Parámetro	Observación	Criterio
ESOTF	Habilita la función de Cierre en Falla.	Y
CLOEND	Permite la habilitación de la función una vez se reciba orden de cierre de interruptor. este temporizador opera cuando se detecta la apertura de uno o tres polos del interruptor; se debe seleccionar un valor menor que el recierre más corto	10 ciclos
52AEND	Tiempo de retardo para operación de función de cierre en falla. Se recomienda una operación instantánea de manera que la apertura de un cierre en falla sea inmediata, aunque se permite una temporización baja para evitar operaciones tras energización de transformadores, por corrientes Inrush.	10 ciclos
SOTFD	Especifica el tiempo en el que se mantendrá habilitada la función de cierre en falla luego de detectarse que el interruptor cambia de posición abierta a cerrada.	0.5 cyc < SOTFD < 30 cyc
TRSOTF	Define las funciones que darán orden de disparo mientras la función de cierre en falla se encuentre activa. En este caso la protección de cierre en falla se activará por sobrecorriente instantánea que corresponde al elemento 50P1, además de considerar la zona 2 de la protección distancia con los elementos Z2P y Z2G, que corresponden a los elementos de fase y de tierra.	Z2P+Z2G+50P1
E50P	Habilita el número de elementos de sobrecorriente instantáneos deseado	1
50P1P	Corresponde a la corriente de arranque de la función SOFT	Se simula una falla trifásica de 0,001 Ω al 1% de la línea y para el ajuste de esta función se toma el 50% del aporte de corriente de falla a través de la línea a proteger; ajustes dados en p.u.

8.1.5.2. Relé SIEMENS 7SL8

En los relés SIEMENS 7SL8, el arranque de corriente para esta función se ajusta en el elemento de sobrecorriente de fase instantáneo 50HS, el cual se ajusta de acuerdo con el criterio arriba mencionado.

La función se habilita en la dirección 124 SOTF Overcurr. y se activa en la dirección 2401 FCT SOTF-O/C.

Adicionalmente, la función de cierre en falla también puede asociarse a la función de distancia. Para habilitar esta característica, se selecciona la opción with Zone Z1B en la dirección 1232 SOTF zone.

8.1.6. Criterios de Ajuste para la Función de Sobretensión (ANSI 59)

La protección contra sobretensión se ajusta de tal forma que se garantice no superar la máxima tensión permitida por el sistema, con el fin de proteger los equipos y su aislamiento contra sobretensiones. Se propone una etapa de 1,05 p.u (Alarma) con una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

8.1.6.1. Relé SEL 311L

Dado que no es posible implementar la función de sobretensión para la detección de dicha condición de forma simultánea en las tres fases con la función que ofrece el SEL 311, es necesario utilizar el módulo SELogic para la implementación de funciones no disponibles en el mismo, considerando los criterios arriba mencionados. Esta lógica se detallará en el numeral de ajuste de esta función.

Para la implementación de esta lógica se hará uso de los elementos de arranque de la función de sobretensión disponible en el relé para lo cual se deberán ajustar los siguientes parámetros:

- EVOLT: este parámetro habilita las protecciones de tensión.
- **59P:** este parámetro es el valor pickup de la función de sobretensión (voltaje fasetierra) y se ajusta en V secundarios.

La lógica que ofrece el relé se muestra en la siguiente figura, teniendo en cuenta que la detección de la condición de sobretensión deberá realizarse cuando las tres fases cumplan con las condiciones de arranque establecidas para cada etapa.

Figura 12. Lógica para la función ANSI 59 -Relé SEL 311

El ajuste de tiempo se debe programar utilizando alguno de los temporizadores que ofrece el relé (SV1PU a SV16PU) en el SELogic Control Equation Variable Timers y luego se establece la ecuación respectiva en el SELogic Control Equation Variable, así:

Figura 13. Retardo de la función ANSI 59 - Relé SEL 311

8.1.6.2. Relé SIEMENS 7SL8

La parametrización de esta función en el relé SIEMENS se realiza ajustando los siguientes parámetros:

Dado que se pretende emplear una etapa de tiempo definido, se activa el parámetro: 181:1 Definite – T1: Mode. Adicionalmente, se escoge como método de medida el valor fase-tierra de la componente fundamental. De igual modo, para determinar que la sobretensión se da en las tres fases, mediante el parámetro 181:101 Definite – T1 Pickup mode se selecciona la opción 3 out of 3.

8.1.7. Criterios de Ajuste para la Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

8.1.8. Criterios de Ajuste Función de Falla Interruptor (ANSI 50BF)

Esta función detecta fallas del interruptor, ya sea en el evento de cortocircuito en un alimentador o cortocircuito en el barraje protegido por la función. El relé actúa como respaldo de las demás protecciones, garantizando la eliminación de una falla ante la eventualidad de que el interruptor no opere correctamente. En el evento de una falla en un alimentador, la protección aísla localmente la zona de la barra en la cual se encuentra el interruptor fallado (en caso de contar con varias zonas).

Su ajuste se realiza con el valor de la mínima corriente de falla en la subestación remota de la línea, esto con el fin de garantizar que la función falla interruptor cubra fallas en la línea y no opere ante una orden de apertura y prevenir operaciones indeseadas ante condiciones de mantenimiento o durante la operación normal.

Para calcular el ajuste de la corriente de arranque de la función de falla interruptor en bahías de línea, se simulan fallas 1F, 2F y 3F en la subestación remota con una resistencia de falla de 10 Ω para las fallas entre fases y de 50 Ω para fallas a tierra, en un escenario de demanda mínima, para determinar la mínima corriente de falla vista por el relé en la subestación local y se toma el 60% del menor valor obtenido.

Para la función de falla interruptor se ajustan 2 etapas definidas, cada una con la misma corriente de arranque pero con tiempos de disparo independientes. La finalidad de la etapa 1 es ejecutar un re-disparo trifásico definitivo al propio interruptor, para lo cual se recomienda un valor de ajuste de 120 ms, dependiendo de la aplicación. En la etapa 2, el objetivo es proveer disparo trifásico definitivo a todos los interruptores asociados con la barra; en este caso, tendrá una temporización inicial de 200 ms.

Esto implica que la etapa 1 operará normalmente por cualquier comando de disparo al interruptor por protecciones, lo que convierte esta etapa en una operación normal del sistema de protecciones que da redisparo al interruptor (no una etapa de falla interruptor) y por ende pierde su significado como indicador de falla o mala operación del interruptor.

8.1.8.1. Relé SEL 311L

Para implementar la función falla interruptor es necesario utilizar el módulo SELogic para la implementación de funciones no disponibles en el mismo, considerando los criterios arriba mencionados. La lógica y las ecuaciones que se deben implementar se muestran en la siguiente figura.

Figura 14. Lógica para la función ANSI 50BF -Relé SEL 311

El ajuste de tiempo se debe programar utilizando alguno de los temporizadores que ofrece el relé (SV1PU a SV16PU) en el SELogic Control Equation Variable Timers y luego se

establece la ecuación respectiva en el SELogic Control Equation Variable. El arranque de corriente para esta función en los relés SEL se recomienda ajustar en el elemento de sobrecorriente de fase instantáneo *50P2P y 50G2P*, el cual se ajusta de acuerdo con el criterio arriba mencionado.

8.1.8.2. Relé SIEMENS 7SL8

El arranque de la función de sobrecorriente se ajusta mediante los parámetros: 102 50BF CB fail.#: threshold phase current y 101 50BF CB fail..#: threshold sensitive.

Adicionalmente, los temporizadores son respectivamente, los parámetros 111 50BF CB fail.#: Delay T1 y 112 50BF CB fail.#: Delay T2.

8.1.9. Criterios de Ajuste para las Funciones de Recierre y Verificación de Sincronismo (ANSI 79 y ANSI 25)

La elección del tipo de recierre a usar depende del nivel de voltaje, de requerimientos del sistema, de consideraciones de estabilidad y de la proximidad de generadores.

La verificación de sincronismo es una operación necesaria una vez se ha perdido la condición de sincronismo por disparos trifásicos de los interruptores, debidos a fenómenos transitorios que son producidos por la dinámica del sistema.

Ante esta condición, se debe determinar cuál de las dos subestaciones debe recerrar en forma inmediata con esquema de recierre barra viva - línea muerta, y cuál debe implementar la verificación de sincronismo en esquema de barra viva - línea viva.

El análisis consiste en determinar, de acuerdo con los resultados de estudios eléctricos, cuál es el lugar más favorable para energizar el circuito y en cuál realizar la sincronización con el fin de restablecer la línea de transmisión, bajo las condiciones de demanda más críticas o las que se derivan de los estudios eléctricos. Los criterios para seleccionar la subestación más adecuada para hacer el recierre con verificación de sincronismo, se fundamentan en el análisis de las diferencias de tensión, frecuencia y ángulo que se presentan en cada una de las subestaciones al simular un cortocircuito en la línea, seleccionándose la subestación en la cual dichas diferencias sean menores. Desde el punto de vista de la sobretensión, la sincronización se debe realizar en la barra donde ésta no exista o donde sea menor.

Los criterios de ajuste que normalmente se utilizan para la función de sincronismo de las líneas son:

Diferencia de Tensión: 10% Unom.

• Diferencia de Frecuencia: 0,1 Hz.

• Diferencia de Angulo: 20 a 30°.

8.1.9.1. Función de Recierre ANSI 79

8.1.9.1.1. Relé SEL 311L

Los parámetros para ajustar el recierre son los siguientes:

Tabla 9. Criterios de ajustes generales para la función de recierre en el relé SEL 311L

Parámetro	Ajuste	Descripción
E79	1	Habilita la lógica de recierre. Se ajusta en 1 para indicar que solo se ejecutará un ciclo de recierre
79OI1	30/42 Cycles	Tiempo muerto para el recierre
79RSD	10800 Cycles	Tiempo de reclamo: Corresponde al tiempo en el cual se

Parámetro	Ajuste	Descripción
		decide si el ciclo de recierre en proceso ha sido efectuado con éxito o no. Se ajusta un valor de 3 minutos, de acuerdo con la característica de los interruptores de TRELEC
79RSLD	10800 Cycles	Indica el tiempo para pasar del estado de bloqueo al de reposición, en el cual queda habilitado un nuevo ciclo de recierre. Esta temporización se inicia con comandos de cierre manual en la línea luego de la ejecución de un ciclo de recierre no exitoso, si bien también se utiliza como retardo para habilitar el relé luego de encenderse, o de un cambio de grupo de ajustes. Según recomendaciones del fabricante, este tiempo se ajusta usualmente por debajo del tiempo de reclamo (79RSD), dado que se utiliza para emular características de reposición mecánicas de los relés antiguos.
79CLSD	OFF	Tiempo de retardo para la supervisión de recierre del interruptor. La configuración de este tiempo depende de la forma en la cual se supervisa el recierre; si las condiciones que permiten el recierre no se cumplen dentro de este tiempo, el interruptor se bloquea. Se recomienda ajustarlo en OFF para que el elemento realice el chequeo de las condiciones sin límite de tiempo
CFD	60 Cycles	Tiempo máximo en ciclos para la detección de falla en el cierre del interruptor.
ULCL	TRIP + TRIP87	Desenganche del cierre para el Interruptor, a través de una ecuación lógica
79RI	TRPA87+TRPB87+TRPC87 +TRPA21+TRPB21+TRPC21 +TRIP*COMMT	Ecuación lógica para la iniciación del recierre tripolar. El inicio del recierre se hace por fallas monofásicas a tierra detectadas por zona 1 o por la protección diferencial. Esta configuración es válida para los relés 311L.
	TRIP*(Z1G+COMMT)	Para los relés 311C se habilita el recierre para fallas en zona 1 del elemento de tierra.
79RIS	52A + 79CY	Supervisión inicio del Recierre
79DTL	Z2T or Z3T or Z4T +TRP3P87+TRP3P21	Ecuación lógica mediante la cual se le indican las funciones que darán bloqueo al recierre
79DLS	79LO	Ultimo disparo. Cuando la ecuación lógica 79DLS toma el valor de 1, la función de recierre va hasta el último intento si el contador de recierres no ha llegado a este valor.
79SKP	0	Ecuación lógica para saltarse el ciclo de recierre. Sólo es válida cuando se tienen varios ciclos de recierre y se quiere saltar uno de ellos por una condición particular, la cual se programaría la lógica. Para el caso general donde sólo se tiene un ciclo de recierre, este elemento no aplica.
79STL	TRIP+TRIP87	Después de iniciarse el recierre exitoso, si existe un condición de disparo activa (79STL=1 lógico), no se inicia el tiempo muerto de la función hasta que el parámetro 79STL= 0 lógico.
79BRS	(51P+51G)*79CY	Ecuación lógica para el bloqueo del reset cuando el relé está en un ciclo de recierre. Este ajuste previene ciclos repetitivos de recierre.
79CLS	25A1*25A2+ 3P27*59S + 59P*27S	Ecuación lógica para la supervisión del recierre tripolar. Aquí se configuran las condiciones que permiten el recierre tripolar

8.1.9.1.2. Relé SIEMENS 7SL8

La función de recierre en el los relés 7SL87 cuenta con tres variantes funcionales. En el recierre automático cíclico se pueden ajustar hasta 8 intentos de recierre con diferentes ajustes individuales. En el recierre automático con tiempo de pausa adaptativo, la función decide cuándo es conveniente y admisible un recierre y cuando no. El criterio básico es la tensión fase-tierra vista por el PT local después de un recierre desde el extremo remoto de la línea. En el recierre automático externo hay un equipo externo que interactúa con el relé de protección originando los comandos de cierre, a través de las entradas binarias del equipo de protección.

A continuación, se indican los parámetros básicos de la variante funcional de recierre automático cíclico que se recomiendan ajustar bajo la dirección **General**.

- 6601:101: 79 operating mode: Se selecciona el criterio de arranque de la función de recierre automático. Este parámetro se ajusta como "with op., with act. time" donde los ciclos de recierre dependen de los tiempos de disparo de las funciones de protección ajustadas. Este esquema se utiliza en aplicaciones con disparo monopolar y tripolar, y para aplicaciones con disparo tripolar, si se requiere de un tiempo muerto en el ciclo de recierre independiente del tipo de cortocircuito.
- 6601:102: CB ready check bef. start: Parámetro para determinar la disponibilidad del interruptor antes del inicio del ciclo de recierre compuesto por disparo-recierredisparo. Si el interruptor está disponible, se puede iniciar el recierre; de lo contrario, la función señaliza un bloqueo estático. Por lo tanto, este parámetro se ajusta como Yes.
- 6601:103: Reclai. time aft. succ.cyc: Corresponde al tiempo en el cual se decide si el ciclo de recierre en proceso ha sido efectuado con éxito o no. Se ajusta un valor de 180 s, para asegurar que ésta no se active durante los tiempos máximos de arranque de las funciones de protección, y durante el tiempo que toma la des-ionización del aire alrededor del punto de ocurrencia de la falla.
- 6601:104: Block time aft.man.close: Tiempo por el cual los recierres automáticos deben ser bloqueados después de un cierre manual del interruptor. Se ajusta en un valor de 20 s, para permitir a las funciones de protección más rápidas del circuito detectar condición de falla en el mismo, y en tal caso, emitir una orden de disparo final tripolar.
- **6601:105: Start signal supervis.time**: Se ajusta el tiempo máximo después del cual el interruptor debe estar abierto después de una orden de disparo. Si transcurrido este tiempo, el interruptor permanece cerrado, se considera una falla en el interruptor y por tanto la función de recierre se bloquea dinámicamente. Este parámetro se ajusta en 0.25 s.
- 6601:108: Evolving-fault detection: Determina con qué criterio de detecta una falla evolutiva en el Sistema (fallas producidas después de la desconexión de un cortocircuito durante el tiempo muerto). Este parámetro se ajusta como "with trip" indicando que una falla evolutiva se realizará por emisión de orden de disparo de las funciones de protección. Esto quiere decir que una falla ocurrida durante el tiempo muerto solo es interpretada como evolutiva si ha producido orden de disparo sobre el interruptor por alguna de las funciones de protección de la línea.
- 6601:109: Response to evolv.faults: Configura la respuesta de la función de recierre ante la detección de una falla evolutiva. Como el interruptor tiene capacidad de

recierre monopolar, ésta se configura en "Blocks 79", con lo cual la función de recierre se bloquea ante la detección de una falla evolutiva.

- 6601:111: Max. Dead-time extension: Configura la prolongación máxima del tiempo muerto antes del bloqueo dinámico del recierre automático. Este parámetro se ajusta en infinito (□).
- 6571:102: Start from idle state allow.: Determina si el tiempo activo del ciclo de recierre automático debe ser iniciado cuando el recierre, en la aparición de un arranque general, se encuentra en estado de reposo. Este parámetro se ajusta en Yes.
- 6571:103: Action time: Se configura el tiempo dentro el cual debe aparecer una orden de disparo para iniciar el recierre. Si la orden de disparo se presenta después de transcurrir el tiempo activo, no se efectúa ningún reenganche en el ciclo de recierre activo. Este parámetro se ajusta en 0.2 s, ya que para este tiempo (a partir de la detección de la condición de falla) la zona instantánea Z1 de la función distancia, los esquemas de teleprotección o la función diferencial de línea, han despejado la falla.
- 6571:108: Dead time aft. 3-pole trip: Configura el tiempo muerto después del cual la función de recierre automático tripolar será ejecutada. Se recomienda un ajuste entre 500 y 600 ms en el extremo donde se energiza la línea y entre 700 y 800 ms en el extremo que hace el recierre con verificación de sincronismo, si bien estos tiempos serán reevaluados con el análisis de estabilidad que soportará esta función.
- 6571:109: Dead time aft. 1-pole trip: Configura el tiempo muerto después del cual la función de recierre automático monopolar será ejecutada. Dado que TRELEC sólo cuenta con esquemas de disparo y recierre tripolar, estos tiempos no se considerarán en la lógica de operación de la función de recierre.
- **6571:104: Dead time aft. 1ph.pickup:** Tiempo muerto para el recierre monopolar. Este parámetro se ajusta como infinito () para deshabilitarlo.
- **6571:105: Dead time aft. 2ph.pickup:** Tiempo muerto para el recierre bipolar. Este parámetro se ajusta como infinito (□) para deshabilitarlo.
- **6571:106: Dead time aft. 3ph.pickup:** Tiempo muerto para el recierre tripolar. Este parámetro se ajusta como infinito (□) para deshabilitarlo.
- 6571:111: CB ready check bef.close: Configura si después de transcurrido el tiempo muerto, se debe verificar la disponibilidad del interruptor antes de emitir la orden de cierre. Se ajusta en la opción Yes.
- 6571:110: Synchroch. aft. 3-pole d.t.: Configura si para cada ciclo de recierre se deben verificar condiciones de sincronismo. Este parámetro se ajusta como "internal" para que se realice una verificación de sincronismo después del tiempo muerto y antes de la orden de cierre al interruptor.

De acuerdo con las recomendaciones para esta función en proyectos similares, el tiempo muerto se establece en 500 ms para el extremo que energiza la línea y en 750 ms para el extremo donde se verifica el cierre con verificación de sincronismo.

8.1.9.2. Verificación de Sincronismo ANSI 25

8.1.9.2.1. Relé SEL 311L

Los parámetros para ajustar la función de verificación de sincronismo son los siguientes:

Tabla 10. Criterios de ajustes generales para la función de recierre en el relé SEL 311L

Parámetro	Ajuste	Descripción	
E25	Y		
25VLO	0,90 × V _{L-N} Secundarios	Límite inferior para definir la ventana de estado saludable de la tensión para sincronismo	
25VHI	1,1 × V _{L-N} Secundarios	Límite superior para definir la ventana de estado saludable de la tensión para sincronismo	
25SF	0,1 Hz	Máxima diferencia de frecuencia	
25ANG1	25	Máximo ángulo del elemento 1 para el chequeo del sincronismo	
25ANG2	25	Máximo ángulo del elemento 2 para el chequeo del sincronism	
SYNCP	VB	Tensión con la que se realiza el sincronismo. Se debe verificar de acuerdo con los diseños de ingeniería	
TCLOSD	3	Tiempo de cierre del interruptor	
BSYNCH	IN101+TRIP	Ecuación para el bloqueo del sincronismo. En este caso se bloque con la posición cerrada del interruptor o por la existencia de algún disparo.	

8.1.9.2.2. Relé SIEMENS 7SL8

En los relés 7SL8, esta función utiliza las tensiones V1 y V2 para realizar la verificación de las condiciones de sincronismo. V1 se considerará como la tensión de la barra, la cual es tomada desde el transformador de tensión de la barra (*Sync. Voltaje 1*. V2 se considerará como la tensión del lado de la línea, la cual es tomada desde el transformador de tensión de la línea (*Sync. Voltaje 2*).

En términos generales, los parámetros a ser ajustados en la función de verificación de sincronismo de los relés suministrados, son:

General:

- 2311:127: Angle adjust. (transform.): Corresponde al ángulo de rotación definido por transformadores de potencia entre puntos de medida. Como en el proyecto no se tiene esta condición, este parámetro se ajusta como 0°.
- **5071:1 Synchrocheck 1: Mode**: Parámetro donde se activa la función de sincronismo. Se ajusta en *On*.
- 5071:101: Synchrocheck 1:Min.operating limit Vmin: Define el valor mínimo del rango de tensión para la sincronización. Este parámetro se ajusta en 89% de la tensión nominal.
- 5071:102: Synchrocheck 1:Max.operating limit Vmin: Define el valor máximo del rango de tensión para la sincronización. Este parámetro se ajusta en 111% de la tensión nominal.
- 5071:103: Synchrocheck 1: V1, V2 without voltage: Se calcula como el 40% de la tensión nominal.
- 5071:104: Synchrocheck 1: V1, V2 with voltage: Se calcula como el 80% de la tensión nominal.
- 5071:110: Synchrocheck 1:Max.durat.sync.process: Configura el tiempo máximo en el cual se deben cumplir las condiciones de sincronización. Si tales condiciones no están cumplidas dentro de este tiempo, no se autoriza el comando de cierre y se detiene la sincronización. Este parámetro se ajusta en "∞", de tal manera que la función permita la operación del recierre automático cuando se cumplan las condiciones de sincronismo requeridas.

• 5071:126: Synchrocheck 1: Voltage adjustment: Define la corrección para posibles errores de amplitud de la señal de tensión. La relación de transformación de los transformadores de medida está ajustada en los puntos de medida y son tomadas por la función de forma automática. Este parámetro se ajusta como 1,0.

De-en.gized switch:

Todos los parámetros asociados con esta opción, se ajustan en NO y se deja el valor por "default" recomendado por el fabricante.

Synchr. conditions:

- 5071:122: Max. voltage diff. V2>V1: Corresponde a la máxima diferencia de tensión positiva entre la tensión presente en la línea (V2) y la tensión de la barra (V1). Este parámetro se ajusta en 10% de la tensión nominal secundaria del PT.
- 5071:123: Max. voltage diff. V2<V1: Corresponde a la máxima diferencia de tensión positiva entre la tensión de la barra (V1) y la tensión presente en la línea (V2). Este parámetro se ajusta en 10% de la tensión nominal secundaria del PT.
- 5071:117: Max. frequency diff. f2>f1: Corresponde a la máxima diferencia de frecuencia positiva entre la tensión presente en la línea (V2) y la tensión de la barra (V1). Este parámetro se ajusta en 0,10 Hz.
- 5071:118: Max. frequency diff. f2<f1: Corresponde a la máxima diferencia de frecuencia positiva entre la tensión de la barra (V1) y la tensión presente en la línea (V2). Este parámetro se ajusta en 0,10 Hz.
- 5071:124: Max. angle diff. $\alpha_2 > \alpha_1$: Corresponde a la máxima diferencia angular entre la tensión presente en la línea (V2) y la tensión de la barra (V1). Este parámetro se ajusta en 20°, por criterio de TRELEC.
- 5071:125: Max. angle diff. $\alpha_2 < \alpha_1$: Corresponde a la máxima diferencia angular entre la tensión de la barra (V1) y la tensión presente en la línea (V2). Este parámetro se ajusta en 20°, por criterio de TRELEC.

8.1.10. Criterios de Ajuste del Esquema de Teleprotección

Los esquemas de teleprotección se utilizan como complemento a las protecciones de línea para acelerar el disparo cuando hay una falla dentro de la línea. Los esquemas de teleprotección pueden ser permisivos o de bloqueo. Estos esquemas se enumeran a continuación, con base en las definiciones de la norma IEEE Std. C37-113 de 1999.

- DUTT: Disparo transferido en Sub alcance (Direct Underreaching Transfer Trip).
- PUTT: Disparo permisivo transferido en Sub alcance (Permissive Underreaching Transfer Trip).
- POTT: Disparo Permisivo transferido en Sobre Alcance (Permisive Overreaching Transfer Trip).
- Aceleración de Zona (Zone acceleration).
- CD: Disparo permisivo transferido por Comparación Direccional (Permissive Directional Comparision Transfer Trip).
- Comparación Direccional Híbrida o Desbloqueo con lógica Eco (Unblocking with Echo Logic).

En las líneas del área de influencia del proyecto se implementará un esquema permisivo de comparación direccional y uno de sobre-alcance permisivo (POTT), aprovechando las funciones de sobrecorriente direccional a tierra (67N) y distancia (21) habilitadas en ambos extremos de la línea.

Se recomienda el esquema de sobre-alcance permisivo (POTT) en vez del esquema subalcance permisivo (PUTT), teniendo en cuenta que el primero actúa considerando fallas hasta Zona 2 y el segundo actúa considerando fallas en Zona 1.

8.1.10.1. Relé SEL 311L

En las líneas del proyecto se implementará el esquema POTT, el cual se implementa de la siguiente manera en la función *Trip Scheme*:

ECOMM: Esquema de teleprotección a implementar, se ajusta en **POTT**.

Es necesario ajustar la zona 3 como reversa para los esquemas disponibles en la protección SEL 311.

Z3RBD: Retardo de tiempo para bloqueo, se ajusta en 5 ciclos.

EWFC: Habilita la lógica Weak – InFeed, se ajusta en **N**, para deshabilitar esta funcionalidad.

El esquema de disparo POTT consta de 4 secciones:

- Lógica de guarda por corriente reversa (Current reversal guard logic).
- Función Echo (Echo).
- Lógica de fuente débil (Weak Infeed Logic).
- Permisivo a la recepción del disparo (Permission to Trip Received).

8.1.10.1.1. Lógica de Guarda por Corriente Reversa

La lógica de guarda por corriente reversa aplica para líneas paralelas. Cuando un elemento de direccionalidad reversa detecta una falla externa, el relé no habilita el transmisor e ignora la señal permisiva emitida desde el extremo remoto. El retardo de tiempo de bloqueo de la zona 3 reversa (Z3RBD) extiende estas dos condiciones luego de la detección de un flujo de corriente en dirección reversa y el drop-out de los elementos de direccionalidad reversa.

El fabricante del relé recomienda ajustar el temporizador Z3RBD teniendo en cuenta las siguientes consideraciones:

- El tiempo máximo de apertura del interruptor del extremo remoto.
- Tiempo máximo de reposición del canal de comunicaciones.
- Tiempo máximo de reposición de la zona 2 de la protección en la terminal remota

Como valor conservador para el ajuste del temporizador Z3RBD, el fabricante recomienda 5 ciclos, considerando un tiempo máximo de apertura del interruptor remoto de 3 ciclos, y tiempos de reposición de 1 ciclo para el canal de comunicaciones y la zona 2 de la protección distancia de la terminal remota. Así que, **Z3RBD** = 5 ciclos

8.1.10.1.2. Función Echo

Si el interruptor local se encuentra abierto, o se detecta una condición de fuente débil (weak infeed), la señal permisiva recibida puede emitirse nuevamente al extremo remoto

permitiendo un disparo rápido en el relé del mismo, para fallas ocurridas más allá del alcance de zona 1 de dicha protección. La lógica eco incluye temporizadores para clasificar la señal permisiva, así como para bloquearse ante condiciones específicas.

El elemento EBLKD (Echo Block Time Delay) se activa para bloquear la lógica eco después del dropout de los elementos permisivos. El ajuste recomendado para el elemento EBLKD es la suma de lo siguiente:

- Tiempo de apertura del interruptor del extremo remoto.
- Tiempo de disparo a través del canal de comunicaciones.
- Margen de seguridad.

Considerando el primer tiempo de 3 ciclos, el segundo de 2 ciclos y el tercero de 5 ciclos, se obtiene un valor conservador de 10 ciclos para el ajuste del elemento EBLKD; así que **EBKLD = 10 ciclos**

El temporizador ETDPU (Echo Time Delay Pickup) garantiza que los elementos de direccionalidad reversa dispongan de suficiente tiempo para operar y bloquear la señal eco recibida para fallas externas en zona reversa de la terminal remota. Este retardo también evita que las lógicas eco y weak infeed operen de forma incorrecta ante ruido que pueda presentarse en el canal de comunicaciones por fallas externas cercanas. El elemento ETDPU establece el tiempo que la señal permisiva debe estar presente para emitir la misma señal como eco al extremo remoto. El ajuste de este elemento depende del equipo de comunicaciones, sin embargo, se recomienda un ajuste de 2 ciclos como valor conservador; así que *ETDPU* = 2 ciclos

Finalmente, el elemento EDURD (Echo Duration Time Delay) limita la duración de la señal permisiva emitida como eco. Una vez que la señal eco inicia, debe permanecer por un mínimo periodo de tiempo y luego detenerse, incluso si la terminal recibe una señal permisiva continua. Esta limitación a la señal eco previene que la señal de disparo se enganche entre ambas terminales. Considerando un tiempo de apertura de 3 ciclos en el interruptor de la terminal remota, y un retardo de 1 ciclo en el canal de comunicaciones, se recomienda un valor de ajuste de 4 ciclos para este elemento; así que **EDURD = 4** ciclos.

8.1.10.1.3. Lógica de Weak-Infeed

La lógica de disparo por condición de fuente débil (Weak-Infeed) se activa en el elemento EWFC. Si se ajusta EWFC = Y, se activan los elementos 27PPW y 59NW, que son detectores de voltaje fase-fase y residual para baja-tensión de fases y sobretensión residual, respectivamente, y con los cuales se detecta condición de fuente débil (Weak-Infeed). Así que, EDURD = 4 ciclos.

8.1.10.1.4. Disparo Directo Transferido – DDT

Se deberá programar en la lógica de los relés 311L, el disparo directo transferido (DDT) por etapa 2 de la función de falla interruptor.

8.1.10.1.5. Comparación Direccional (67NCD)

En el relé SEL 311L el esquema de teleprotección por comparación direccional (67NCD) no tiene manera de ser ajustado directamente cuando ya se tiene habilitado el POTT; por tal motivo es necesario construir una lógica, tal y como se muestra en la siguiente figura:

Figura 15. Esquema de teleprotección por Comparación Direccional (67NCD) SEL 311L

Para el esquema presentado en la figura anterior se tiene las siguientes entradas:

32GF: Wordbit de salida que indica detección de falla a tierra hacia adelante.

INxxx: Entrada que corresponde al permisivo enviado por el relé del extremo remoto. Esta señal deberá ser implementada en campo, de acuerdo con lo dispuesto en la ingeniería de detalle, y que puede corresponder a una entrada binaria del relé o a una señal de comunicación.

Si se cumple la condición de que la falla a tierra es vista por ambos relés hacia adelante, la señal *TRIP* dará disparo a los interruptores que protegen cada extremo de la línea.

8.1.10.2. Relé SIEMENS 7SL8

En el esquema POTT, los relés en cada subestación envían señal permisiva de teleprotección al relé de la subestación remota cuando detecta fallas en zona 1B, y para que se produzca disparo acelerado en cualquiera de los extremos de la línea se debe cumplir que ambos relés vean la falla en la zona de sobre alcance (Z1B) y reciban señal permisiva de teleprotección del relé del extremo remoto.

Nota: Se aclara que la Zona 1B, en caso de ser utilizada como función independiente para dar arranque a la función de teleprotección se debe utilizar un tiempo infinito ($t_{Z1B} = \infty$).

8.1.10.2.1. Esquema de Teleprotección por Comparación Direccional (67NCD)

En este esquema sólo se compara la dirección de la corriente, es decir, si hay una falla dentro de la línea, los dos relés asociados verán la falla hacia adelante. Cada relé que ve la falla hacia el frente envía una señal permisiva al otro extremo. Este esquema se ilustra en la siguiente figura.

Normalmente, este esquema se implementa con relés de sobrecorriente direccionales, los cuales son muy usados para detectar fallas de alta impedancia.

Este esquema requiere función de eco en el canal, cuando el interruptor está abierto o hay condiciones de fuente débil en uno de los extremos.

Figura 16. Esquema de disparo transferido permisivo por comparación direccional

Este esquema se implementará en el proyecto en consideración, a través de los elementos de sobrecorriente de tierra direccional, función 67N. La lógica envía señal de teleprotección si se activa la función y acelera el disparo si además recibe señal del extremo remoto.

8.2. PROTECCIONES DE TRANSFORMADOR

8.2.1. Protección Diferencial de Transformador (ANSI 87T)

8.2.1.1. Relé SIEMENS 7UT8

8.2.1.1.1. Corriente inicial de magnetización o corriente de "Inrush"

Esta corriente puede ser vista por el relé principal como una corriente de falla interna y causar la desconexión del transformador, dado que esta corriente es del orden de ocho (8) a doce (12) veces la corriente nominal con un tiempo de duración de 100 ms o más. Los factores que controlan la duración y la magnitud de esta corriente son el tamaño y la localización del transformador, la impedancia del sistema desde la fuente al transformador, las dimensiones internas del núcleo del transformador y su densidad de saturación, el nivel de flujo residual y la forma como el transformador se energice.

Para evitar este problema, la protección diferencial de los transformadores debe ser ajustada con sensibilidad reducida al transitorio, usando los armónicos de la corriente "Inrush" para desensibilizar momentáneamente la operación durante el tiempo de energización, lo cual se puede hacer debido a que la corriente inicial de magnetización tiene un alto contenido de armónicos, particularmente de segundo y cuarto orden, las cuales se pueden utilizar, filtrándolas y haciéndolas pasar por la función de restricción para así insensibilizar al relé durante la energización del transformador.

8.2.1.1.2. Diferencia en la magnitud de la corriente en cada lado del transformador

Debido a los diferentes niveles de tensión, incluidas las diferentes posiciones de los tomas de los transformadores, las corrientes a uno y otro lado del transformador son de diferente magnitud; esto se compensa con la adecuada selección de la relación de los transformadores de corriente asociados con la protección diferencial y de un relé del tipo porcentual o con bobina de restricción.

Los transformadores de corriente, al emplear relaciones de transformación distintas, no compensan la diferencia que se presenta entre las corrientes del lado de alta y baja del transformador, es decir, puede presentarse un posible desequilibrio de relación de

transformación en los diferentes transformadores de corriente. Esto se compensa con los factores de "Matching" que tenga el relé.

8.2.1.1.3. Grupo de conexión

El grupo de conexión del transformador de potencia introduce un desfase entre las corrientes primaria y secundaria. Esto se compensa con la adecuada conexión de los transformadores de corriente, es decir, si el transformador de potencia está conectado en delta - estrella (Δ -Y), la corriente trifásica balanceada sufre un cambio angular de 30°, el cual deberá ser corregido conectando el transformador de corriente en estrella – delta (Y- Δ). Los relés numéricos compensan el ángulo en la parametrización del grupo de conexión.

8.2.1.1.4. Análisis de estabilidad de la protección ante falla externa

En este análisis se determinan las máximas corrientes a través de los transformadores de corriente simulando fallas externas, tanto en el lado de alta como en el lado de baja del transformador.

Normalmente, la gran mayoría de los relés diferenciales aplican una ecuación con la cual se verifica la estabilidad de la protección ante falla externa y esta expresión varía de acuerdo con el diseño mismo del relé diferencial.

8.2.1.1.5. Cálculo de los factores de compensación

Para el caso en el cual las relaciones de transformación de los CTs asociados con la protección diferencial no sean iguales, es necesario compensar mediante factores o CTs de interposición auxiliares, de tal manera que en estado estable la corriente diferencial que circula por la bobina del relé, aún sin falla interna, sea minimizada.

La pendiente del relé diferencial, en la mayoría de los casos debe tener componentes que consideren los siguientes factores:

$$P = \%T + \%eCT + \%er + MS$$

Donde:

P: Pendiente porcentual del relé.

%T: Máxima franja de variación del cambiador de tomas (arriba o abajo).

%eCT: Máximo error de los CT para la clase de exactitud especificada.

%er: Máximo error esperado de relación de transformación entre la relación de

transformación del transformador y la de los CT.

MS: Margen de seguridad: Mínimo 5%.

8.2.1.1.6. Selección del umbral de corriente diferencial

Para elegir el umbral de ajuste más adecuado para la protección diferencial del transformador, se realizan fallas externas monofásicas y trifásicas y se determinan las corrientes diferenciales que circularán por el relé para cada una de ellas.

La corriente diferencial de umbral se ajusta a un valor por encima de la máxima corriente obtenida en las simulaciones con un margen de seguridad que garantice su estabilidad ante fallas externas.

Figura 17. Protección diferencial de transformador ante falla externa

8.2.1.1.6.1. Verificación de la sensibilidad de la protección diferencial ante falla interna

Se simulan fallas internas en el elemento protegido y el valor de corriente obtenido debe ser mucho mayor que la corriente de umbral seleccionada, para garantizar una alta sensibilidad en el relé.

Figura 18. Protección diferencial de transformador ante falla interna

El transformador protegido por relés diferenciales SIEMENS 7UT85, cuya característica de operación diferencial se ajusta en cuatro etapas.

La primera etapa es el umbral mínimo de la diferencial, y su ajuste debe ser superior a la máxima corriente diferencial esperada en el transformador durante operación normal, de tal forma que no se presenten disparos indeseados bajo dicha condición. El cálculo de las corrientes diferenciales y de restricción, que definen la característica de operación de la protección diferencial, depende del equipo en el cual se implementa dicha función. Adicionalmente, para los cálculos se debe permitir el funcionamiento estable de la característica diferencial en los límites del cambiador de tomas, y considerar el desbalance producido por los errores asociados a la medida de los transformadores de corriente.

La segunda etapa inicia en la intersección del umbral mínimo con una recta con una pendiente 1 y va hasta la intersección con la recta de pendiente 2; la pendiente 1 se ajusta de tal forma que asegure la sensibilidad de la protección ante cortocircuitos al interior de la zona de protección delimitada por los transformadores de corriente.

La tercera etapa inicia en la intersección de la recta de pendiente 1 con la recta de pendiente 2; cuya pendiente se selecciona de tal forma que se asegure que no existan disparos indeseados ante fallas externas a la zona de protección.

La cuarta etapa es el máximo umbral de la corriente diferencial, la cual ofrece un rápido despeje de fallas internas y que no es bloqueado por la corriente de restricción, ni para

condiciones de magnetización, ni de sobreflujo transitorio. El ajuste debe ser superior al valor pico estimado de la corriente de Inrush ante energización del transformador resultante de las simulaciones correspondientes y a la máxima corriente de cortocircuito que se produce al simular falla franca en lado de 69 kV; se escoge el mayor de los dos valores.

Para el ajuste del relé diferencial se ingresan los parámetros "Intersection 1 Irest" y "Intersection 2 Irest", los cuales corresponden al intercepto con el eje de las abscisas. El primero coincide con el intercepto de la recta con pendiente 1, la cual es calculada para ofrecer sensibilidad a la protección ante cortocircuitos internos y a los máximos errores de los transformadores de corriente, para estas condiciones se considera una sobrecarga del transformador de potencia del 125% y el error compuesto de los transformadores de corriente.

El segundo coincide con el intercepto de la recta con pendiente 2, la cual es calculada para que no existan disparos indeseados ante fallas externas, el cortocircuito se considera en el secundario con el 50% de la impedancia mínima entre primario/secundario considerando las posiciones mínima, máxima y neutra del cambiador de tomas.

Figura 19. Característica de operación típica de la protección diferencial – relé 7UT85

8.2.2. Protecciones de sobrecorriente de fases y de tierra (ANSI 50/50N/50G – 51/51N/51G)

En la siguiente Tabla se presentan los criterios para el ajuste de los relés de sobrecorriente de transformadores de potencia.

Tabla 11. Criterios de ajuste sobrecorriente transformador de potencia

Sobrecorriente de Fases Primario	Criterio	
Corriente de arranque	125% de la corriente nominal del transformador ONAFII	

Tipo de curva	IEC – Normal Inverse (se considerarán otras curvas de operación según los requerimientos de coordinación con las protecciones adyacentes)		
Valor de la curva	Se selecciona para que opere al aporte de cortocircuito monofásico o trifásico (el menor de los dos, teniendo en cuenta el grupo de conexión para la falla monofásica). Para fallas en el borne secundario del transformador de potencia, la protección debe actuar en un tiempo máximo de 750 ms, con este tiempo se asegura la coordinación con las protecciones del lado secundario del transformador.		
Tiempo definido	La corriente de arranque del transformador se ajusta entre el 50 y el 80% de corriente de falla trifásica en bornes del transformador bajo un escenario de demanda mínima y generación mínima en el área. El temporizador se ajusta entre 100 y 250 ms. Se debe cumplir que la corriente de arranque sea mayo la corriente de energización Inrush del transformador. Verificar, en un escenario de demanda máxima, con máxima generación en área, que fallas en el lado de baja del transformador no lleven al enganche función de tiempo definido, en caso contrario, modificar el ajuste hasta evita arranque de la función para esta falla. Si esta es la condición limitante del ajuste, fijar el ajuste en el 150% de la corriente vista en la ubicación del relé ante falla en los demás devanados del transformador protegido.		
Sobrecorriente de Tierra Primario	Criterio		
Corriente de arranque	20-40% de la corriente nominal del transformador ONA FII		
Tipo de curva	IEC – Normal Inverse (se considerarán otras curvas de operación según los requerimientos de coordinación con las protecciones adyacentes)		
Valor de la curva	Para fallas en el borne secundario del transformador de potencia, la protección debe actuar en un tiempo máximo de 750 ms.		
Tiempo definido	No se habilita		
Sobrecorriente de Fases Secundario	Criterio		
Corriente de arranque	125% de la corriente nominal del transformador ONAF		
Tipo de curva	IEC – Normal Inverse (se considerarán otras curvas de operación según los requerimientos de coordinación con las protecciones adyacentes)		
Valor de la curva	Para fallas en el borne secundario del transformador, la protección debe actuar en un tiempo máximo de 500 ms.		
Tiempo definido	No se habilita		
Sobrecorriente de Tierra Secundario	Criterio		
Corriente de arranque	20-40% de la corriente nominal del transformador		
Tipo de curva	IEC – Normal Inverse (se considerarán otras curvas de operación según los requerimientos de coordinación con las protecciones adyacentes)		
Valor de la curva	Para fallas en el borne secundario del transformador, la protección debe actua en un tiempo máximo de 500 ms.		
Tiempo definido	No se habilita		
Sobrecorriente de Fases Terciario			
Corriente de arranque	125% de la corriente nominal del transformador ONAF		
Tipo de curva	IEC - Normal Inverse		
Valor de la curva	Para fallas en el terciario del transformador, la protección debe actuar en un tiempo máximo de 500 ms.		

8.2.3. Protección de falla interruptor (ANSI 50BF)

En el caso de derivaciones de transformador, reactor y condensadores, se considera como ajuste la mínima corriente permitida por el relé, con el fin de lograr la sensibilidad adecuada ante fallas que podrían ser detectadas por la protección diferencial y/o las protecciones mecánicas. Se espera que el 50BF siempre esté arrancado por la corriente nominal de estado estable, quedando sujeta su operación al disparo de las otras protecciones y a la temporización establecida.

Para la función de falla interruptor se ajustan dos (2) etapas definidas, cada una con la misma corriente de arranque pero con tiempos de disparo independientes. La finalidad de la etapa 1 es ejecutar un re-disparo trifásico definitivo al propio interruptor (se recomienda un valor de ajuste de 120 ms). En la etapa 2, el objetivo es proveer disparo trifásico definitivo a todos los interruptores asociados con la barra (la temporización recomendada es de 200 ms).

8.2.4. Metodología para la evaluación del desempeño de los CTs asociados con la protección diferencial

La evaluación de los núcleos de protección asociados a los transformadores de corriente se plantea a partir de su desempeño ante corrientes de cortocircuito simétricas y asimétricas (con máxima componente DC), bajo las condiciones más severas, según su aplicación. Se presenta a continuación la metodología de evaluación de desempeño de los CTs del proyecto utilizados para el esquema diferencial de transformador (ANSI 87T).

8.2.4.1. Evaluación de desempeño de los CTs bajo corrientes de cortocircuito simétricas

Con el burden real conectado al secundario del CT, en el núcleo asociado a la protección diferencial se determina si el CT se saturará, considerando solo la componente simétrica de la corriente de cortocircuito. Esto se realiza calculando el factor límite de precisión al burden real (k_r) .

El cálculo del factor límite de precisión se realiza con base en la British Standard BS 3938, según la cual, en los transformadores de corriente se puede recalcular el factor de precisión real (k_r), el cual se define como la relación entre la corriente límite hasta la cual se garantiza la clase de precisión del CT y la corriente nominal del CT, cuando el burden real es diferente al burden nominal.

Para el cálculo de k_r se considera el circuito equivalente del CT, mostrado en la siguiente figura:

Donde:

I_n: Corriente primaria del CT

I_s: Corriente secundaria del CT

R_i: Resistencia secundaria del CT

I₂: Corriente del burden conectado al CT

I₀: Corriente de excitación del CT

R: Resistencia del burden conectado al CT

V: Voltaje de excitación del CT

Aplicando la ley de ohm:

$$V = I_2 \times (R_i + R)$$

Ahora, asumiendo que se tiene el burden nominal conectado en el secundario, y considerando el factor límite de precisión asignado al CT, se tiene lo siguiente:

$$I_2 = k_n \times I_n, y R = R_n = P_n/I_n^2$$

 $V_n = k_n \times I_n \times (R_i + R_n)$ (1)

Donde:

 P_n : Consumo del burden a la corriente nominal

I_n: Corriente nominal del CT

 $R_{n:}$ Resistencia del burden

k_n: Factor límite de precisión asignado al CT

 V_n : Voltaje límite secundario al burden nominal

Luego, asumiendo el burden real conectado en el secundario, y considerando nuevamente el factor límite de precisión asignado al CT, se tiene lo siguiente:

$$I_2 = k_n \times I_n$$
, y $R = R_r = P_r/I_r^2$
 $V_r = k_n \times I_n \times (R_i + R_r)$

Si k_r se obtiene cuando se alcance la tensión límite secundaria (V_n) , producida por la corriente límite de precisión, entonces:

$$V_n = k_r \times I_n \times (R_i + R_r) \tag{2}$$

Si R_r es menor que R_n, k_r es mayor que k_n.

Combinando las ecuaciones (1) y (2), se tiene lo siguiente:

$$k_r = k_n \times \frac{R_i + R_n}{R_i + R_r}$$

Igualmente, para las potencias consumidas por cada elemento del circuito equivalente:

$$k_r = k_n \times \frac{P_i + P_n}{P_i + P_r}$$

Se considera entonces que el CT presentará un desempeño adecuado si la relación entre la máxima corriente de cortocircuito simétrica, ante las condiciones más críticas de falla, y la corriente nominal del CT, es menor o igual al valor de k_r calculado, según lo definido anteriormente. A continuación se resume el criterio para juzgar el correcto desempeño del CT ante corrientes de cortocircuito simétricas.

$$\frac{I_{cc,max}}{I_n} \le k_r$$

8.2.4.2. Evaluación de desempeño de los CTs de protección bajo corrientes de cortocircuito asimétricas

El flujo máximo que permite el núcleo de un CT para garantizar la precisión especificada en sus características técnicas se indica a través del voltaje de saturación, el cual, según las definiciones de la norma IEC 61869, se determina a través de la inyección en terminales del secundario de un voltaje sinusoidal, en conjunto con el cual se mediría la corriente de excitación para determinar la característica de magnetización del núcleo del CT, y de ésta tomar el valor del voltaje de saturación. Por esta razón, se puede escribir:

$$N \cdot \phi_{max} = N \cdot B \cdot A = MAX \left(\int_{0}^{t} V_{sat} \cdot \cos(\omega t) \cdot dt \right)$$

$$N \cdot B \cdot A = MAX \left(V_{sat} \cdot \frac{1}{\omega} sen(\omega t) \right)$$

$$N \cdot B \cdot A = \frac{V_{sat}}{\omega}$$

$$N \cdot B \cdot A \cdot \omega = V_{sat}$$

Igualando las expresiones para el flujo máximo en el núcleo, superior al cual se presentaría saturación, se tiene:

$$V_{sat} = V_S \cdot \left(1 + \frac{X}{R}\right)$$

Por lo tanto, para validar los resultados de los análisis de desempeño a ser realizados, se utilizará el siguiente criterio para determinar si el CT se saturará o no:

Tabla 12. Criterio para verificar el desempeño de los CTs

Criterio	Resultado	
$\frac{V_{\text{sat}}}{V_{\text{S}}} \ge 1 + \frac{X}{R}$	No saturación	
$\frac{V_{sat}}{V_S} < 1 + \frac{X}{R}$	Saturación	

8.3. CIRCUITOS DE MEDIA TENSIÓN

8.3.1. Criterios de ajuste para la función de sobrecorriente en reconectadores

El reconectador permite seleccionar su tiempo de operación ante una corriente de falla mediante el uso de dos curvas de protección: una rápida y una lenta. Estas permiten la coordinación mediante dos esquemas de protección esenciales: "Fuse Saving" y "Fuse Clearing". En el primer esquema se permite salvar fusibles ubicados aguas abajo; en el segundo, siempre actuará, en primer lugar, el fusible.

La curva rápida del reconectador (similar a las curvas ANSI 50 y 50N) es la que cumple la función de salvamento del fusible ya que ésta tiene tiempos de operación inferiores al tiempo de fusión del fusible, permitiendo que en el caso de una falla autoextinguible, ésta sea despejada sin la necesidad de atención en sitio.

El ajuste propuesto para las curvas lentas (similar a las curvas ANSI 51 de fase y 51 de neutro) es una característica IEC Extremadamente Inversa de modo que permita coordinar con el máximo fusible instalado sobre las redes de distribución, que la curva de fases permita la máxima demanda pronosticada para el circuito en cuestión y la curva de neutro se ajuste para el menor corto monofásico presente en la red o que se ajuste de modo que se controle el desbalance máximo que se pretende tener en la red, considerando además el desbalance que pueda presentarse durante los momentos en que el circuito pueda estar involucrado en alguna contingencia y reciba carga transferida de otros circuitos.

Para la coordinación se debe garantizar una diferencia en tiempos de operación entre curvas adyacentes, para la máxima corriente de falla inmediatamente adelante del dispositivo aguas abajo, de 150 ms para etapas instantáneas y de 200 ms para curvas de tiempo inverso.

Tabla 13. Criterios de ajuste para la función sobrecorriente en reconectadores

Función	Parámetro	Criterio		
	Corriente de arranque	Se estableció en el valor de 560 A.		
TCC1	Tipo de curva	Curve 101		
Fases	Dial	Mínimo posible en caso de coordinar con Fusibles o 100 ms en caso de requerir coordinación con reconectadores aguas abajo.		
	Corriente de arranque	Igual arranque que la curva TCC1 de Fases.		
TCC2 Fases	Tipo de curva	Curve 133		
	Dial	lgual a 1		
HC Corriente de arrar (solo etapa de fas		Se estableció el valor de 4000 A para todos los transformadores, condicionado al comportamiento de cada subestación, en los casos donde este valor no aplique, se calcula como el 80% de la corriente de cortocircuito trifásica en barra de la subestación. Debe habilitarse para todos los disparos programados.		
	Retardo	lgual a 0.01 s		
	Corriente de arranque	Se estableció en el valor de 100A.		
TCC1	Tipo de curva	Curve 102.		
Neutro	Dial	Verificar mediante coordinación con transformador aguas arriba y co fusibles o reconectadores aguas abajo.		
	Corriente de arranque	Igual arranque que la curva TCC1 de Fases.		
TCC2 Neutro	Tipo de curva	Curve 140.		
	Dial	lgual a 1		
	Corriente de arranque	Las características de CLPU sólo se habilitarán en los circuitos donde		
Cold Load Phase	Tipo de curva	sea indicado por EEGSA, en caso de los circuitos tengan esta función		
	Dial	actualmente habilitada, se procederá a deshabilitarla.		
	Corriente de arranque	Las características de CLPU sólo se habilitarán en los circuitos donde		
Cold Load Ground	Tipo de curva	sea indicado por EEGSA, en caso de los circuitos tengan esta función		
	Dial	actualmente habilitada, se procederá a deshabilitarla.		

Notas:

- En todas las subestaciones se agregó un time adder de tierras debido al disparo solidario y en fases se agregó en los casos donde se confirmó que habían reconectadores agua abajo.
- Las verificaciones se hicieron evaluando las diferentes fallas en los circuitos de las subestaciones. El circuito de análisis corresponde al de menor demanda, este escogido desde los valores suministrados por EEGSA, ya que las fallas en este circuito corresponden el escenario más crítico.
- En todas las subestaciones se realizaron verificaciones con fallas francas, de alta impedancia y con el circuito escogido en vacío evaluando diferentes valores de impedancia con el fin de garantizar selectividad y cumpliendo con los criterios definidos a lo largo de la curva de fases lenta del reconectador.

9. CÁLCULO DE LOS AJUSTES DE LAS FUNCIONES DE PROTECCIONES

9.1. SUBESTACIÓN HINCAPIÉ 69 kV

9.1.1. Línea Hincapié - Guadalupe, extremo Hincapié 69 kV

La línea Hincapié - Guadalupe, extremo Hincapié 69 kV, es protegida por un relé marca SEL referencia 311L como dispositivo principal.

Relación PT: 69000/115 Relación CT: 1200/5

Corriente de límite térmica: 1188 A

9.1.1.1. SEL 311L

9.1.1.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros de la línea, de acuerdo con la siguiente tabla.

Tabla 14. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	CTR		240	240
General Settings	APP		311L	311L
	EADVS		Y	Y
	CTRP		240	240
	PTR		600	600
	PTRS		600	600
Backup Protection	Z1MAG	Ω_{SEC}	0,593	0,593
and Line	Z1ANG	deg	75,275	75,275
Parameters	Z0MAG	Ω_{SEC}	1,914	1,914
	Z0ANG	deg	72,831	72,831
	LL	km	3,323	3,323
	EFLOC		Y	Y
Other Settings	TDURD	сус	0	0
Trip/Comm. Assisted Trip Logic ^{(1) (2)}	TR		TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6	TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6

Notas:

- Los disparos en la ecuación de disparo, TR, deberán agruparse de manera adecuada en caso de poseer límite de caracteres en la escritura. Estos se agrupan, como se observa a continuación, so lo de manera indicativa por tipo o grupos de funciones: TRIP_1: M1P+Z1G+Z1T; TRIP_2: M2PT+Z2GT+Z2T; TRIP_3: M3PT+Z3GT+Z3T;
- 2) TRIP_4: M4PT+Z4GT+Z4T; TRIP_5: 51PT+51GT; TRIP_6: SVxT+SVyT (la SVx corresponde a apertura remota o disparos adiciónales (50BF E2, DDT, etc)); la SVy, corresponde a disparo por 85.67N el cual se define en la 67NCD)
- 3) Las funciones SOTF y POTT no se direccionan manualmente a la ecuación de disparo o al contacto de salida, dado que estas activan internamente, en paralelo con la Wordbit TR, el disparo del relé o Wordbit TRIP.
- El símbolo "--" significa que no se tienen ajustes actuales, debido a que es proyecto nuevo.
- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 6) No se recomiendan ajustes.

9.1.1.1.2. SIR de la Línea

Siguiendo los lineamientos de la referencia [2] se realiza el cálculo del SIR para ambos extremos de la línea, con el objetivo de terminar el esquema más adecuado para la protección de la línea. Los resultados del Cálculo del SIR de la línea se presentan en la siguiente tabla:

Tabla 15. Cálculo del SIR línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Parámetro	Unidad	Hincapié	Guadalupe
Longitud	km	3	3,32
Z1L	Ω	1	1,43
ZSSLG	Ω	246,86	1,11
ZS3PH	Ω	1556139,40 4,68	
SIR3PH		1085173,92 3,26	
SIRSLG		172,15 0,77	
Resultado		Carga Corta	

De acuerdo con los resultados obtenidos para esta línea, el esquema de protección propuesto para la bahía de línea permite garantizar un despeje de falla totalmente selectivo, ya que se considera como protección principal la función diferencial de línea ANSI 87L.

9.1.1.1.3. Función Diferencial de Línea (ANSI 87L)

Los datos de entrada para los cálculos de la función diferencial de línea se indican en la siguiente tabla.

Tabla 16. Parámetros de la línea Hincapié - Guadalupe

Longitud	Susceptancia	Límite térmico
Km	μS/km	A
3,323	3,854	1188

- 87LPA: El ángulo de bloqueo del elemento 87LP se ajustará en 190°.
- 87LPR: El radio exterior, y por consiguiente el radio interior (recíproco del radio exterior) se ajustan con un valor de 6.
- 87LPP: Como se indicó en los criterios de ajustes el umbral mínimo de corriente diferencial debe ser el mayor valor entre:
 - 2 a 3 veces la corriente de carga capacitiva, más los errores asociados a las medidas del transformador de corriente.
 - 30% de la corriente nominal de la línea para cuando se tengan CTs con errores del 10% o 15 % de la corriente nominal para cuando los CTs asociados a la 87L tengan un error en la medida del 5%

Se procede a hallar la corriente de carga capacitiva con la siguiente ecuación:

$$I_c = \frac{V_n}{\sqrt{3} \times \frac{1}{B \times l}}$$

Donde:

 I_c : Corriente de carga capacitiva.

 V_n : Tensión nominal de la línea.

B: Susceptancia por unidad de longitud de la línea.

l: Longitud de la línea.

$$I_c = \frac{69kV}{\sqrt{3} \times \frac{1}{3,854 \frac{\mu S}{km} \times 3,323 \ km}} = 0,510 \ A$$

$$I_c = 3 * 0.510 \ A_{PRIM} = 1.53 \ A_{PRIM} = 1.53 * \frac{5}{1200} = 0.00638 \ Asec$$

 $0.3 * In = 0.3 * 1188 \ A_{prim} = 356 * \frac{5}{1200} \ Asec = 1.485 Asec$

 87LGP (87LQP): El arranque se ajustará con base en el desbalance presente en el sistema en condiciones de operación normal, debido a las características propias del sistema y a errores en las medidas de los transformadores de corrientes.

$$87LGP~(87LQP) = 50\% \times I_{Max_{carga}} = 0.5 \times 1188 = 594~A_{PRIM}$$
 $87LGP~(87LQP) = 594~A_{PRIM} * \frac{5}{1200} = 2,475Asec$

CTALRM: Pickup de alarma para la corriente diferencial de fases. Se obtiene:

$$CTALARM = \left(I_{Max_{carga}} + I_{C}\right) \times \frac{1,1}{CTR} = (1188 + 1,53) \times \frac{1,1}{240} = 5,45 \, Asec$$

De acuerdo con los valores calculados anteriormente, en la siguiente tabla se resumen los parámetros a modificar para la protección diferencial de línea.

Tabla 17. Ajustes actuales y recomendados función ANSI 87L Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E87L		2	2
	EHST (1)		(1)	(1)
	EHSDTT		N	N
Line Current	EDD		N	N
Differential Settings	ETAP		N	N
Dillerential Settings	EOCTL		N	N
	PCHAN		Х	X
	EHSC		N	N
	CTR_X (2)		240	240
	87LPP	Asec	1,485	1,485
	87L2P	Asec	2,48	2,48
87L Settings	87LGP	Asec	2,48	2,48
or L Sellings	CTALARM	Asec	5,45	5,45
	87LR		6	6
	87LANG	deg	195	195
87L Torque Control Equations	87LTC		1	1

Nota:

- 1) Validar en campo la disponibilidad de salidas rápidas y ajustar este parámetro
- 2) Relación de transformación del extremo remoto
- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 4) No se recomiendan ajustes.

9.1.1.1.4. Función distancia (ANSI 21/21N)

Según lo descrito en la filosofía de protecciones, la función distancia (ANSI 21/21N) se habilita en el relé SEL 311L. En la siguiente tabla se presentan los parámetros a partir de los cuales se realizaron los cálculos de los alcances de zona para la protección distancia.

Tabla 18. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Elemento	Longitud	R1	X1	R0	X0	Observaciones
Elemento	km	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Observaciones
Hincapie - Guadalupe	3,323	0,377	1,434	1,413	4,572	Línea a proteger
Guadalupe - Proceres	1,758	0,167	0,724	0,751	2,396	Línea adyacente más corta
Guadalupe - Guatemala Este	7,719	0,876	3,362	3,274	10,570	Línea adyacente más larga
Hincapie - Bombeo Hincapie	0,950	0,670	0,457	0,169	1,630	Línea reversa más corta
TRF Guadalupe 1			13,322			Ajuste zona 2 y zona 3 SE remota
TRF Hincapie 2			26,552			Ajuste zona reversa SE local

En la siguiente tabla se presentan los cálculos de los alcances de zona para la protección distancia de esta línea, teniendo en cuenta que las relaciones de transformación son:

$$RCT = \frac{1200}{5} = 240$$
 $RPT = \frac{69000}{115} = 600$ $\frac{RPT}{RCT} = 2,5$

Tabla 19. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Guadalupe, extremo Hincapié 69 kV

ZONA	CDITEDIOS		Z)	(
ZONA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
Ajuste Zona 1 (Forward)	0,70 x Z línea protegida	1,186	0,474	1,147	0,459
Ajuste Zona i (Forward)	Ajuste Seleccionado para Zona 1	1,186	0,474	1,147	0,459
	1,2* Z línea	1,779		1,721	
Ajuste Zona 2 (Forward)	Z línea + 0,5 *Z línea adyacente más corta	1,854		1,796	
Ajuste Zona z (Forward)	Z línea + 0,8 *Z equiv, Trafo S/E remota	12,098		12,092	
	Ajuste Seleccionado para Zona 2		0,742	1,796	0,718
	Z línea + 0,8 *Z equiv, Trafos S/E remota	12,098		12,092	
Ajuste Zona 4 (Forward)	Z línea + 1,2*(Z línea adyacente más larga)	5,652		5,468	
	Ajuste Seleccionado para Zona 4	5,652	2,261	5,468	2,187
	0,2*Zequiv, Trafos S/E local	5,310		5,310	
Airesta Zana 2 (Barraras)	0,2*Z línea local más corta	0,162		0,091	
Ajuste Zona 3 (Reverse)	>Z2 Extremo Remoto	0,356		0,344	
	Ajuste Seleccionado para Zona 3	0,356	0,142	0,344	0,138
Z mínima de Carga	(V línea)/(√3 * l max carga) (1)	33,533	13,413		
Rc : Alcance Resistivo	0,45* Z mínima de Carga (2)	15,090	6,036		

Nota:

En la siguiente tabla se presentan los ajustes recomendados para la función distancia.

Tabla 20. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	E21P		4	4
	ECCVT		N	N
	Z1P	$\Omega_{ ext{SEC}}$	0,415	0,474
Phase Distance	Z2P	$\Omega_{ ext{SEC}}$	1,288	0,742
	Z3P	$\Omega_{ ext{SEC}}$	0,372	0,142
	Z4P	Ω_{SEC}	2,26	2,261
	50PP1	Asec	(1)	(1)

¹⁾ La corriente máxima de carga se toma como la corriente límite térmica para esta línea que corresponde a 1188 A.

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	50PP2	Asec	(1)	(1)
	50PP3	Asec	(1)	(1)
	50PP4	Asec	(1)	(1)
	E21MG		4	4
	Z1MG	Ω_{SEC}	0,415	0,474
	Z2MG	Ω_{SEC}	1,288	0,742
	Z3MG	Ω_{SEC}	0,372	0,142
	Z4MG	Ω_{SEC}	2,26	2,26
	E21XG		4	4
	XG1	Ω_{SEC}	0,401	0,459
	XG2	Ω_{SEC}	1,246	0,718
	XG3	Ω_{SEC}	0,353	0,138
	XG4	Ω_{SEC}	2,187	2,187
	RG1	Ω_{SEC}	6,036	6,036
	RG2	Ω_{SEC}	6,036	6,036
	RG3	Ω_{SEC}	6,036	6,036
	RG4	Ω_{SEC}	6,036	6,036
	XGPOL		IG	IG
Ground Distance	TANG	deg	0	0
Ground Distance	50L1	Asec	(1)	(1)
	50L2	Asec	(1)	(1)
	50L3	Asec	(1)	(1)
	50L4	Asec	(1)	(1)
	50GZ1	Asec	(1)	(1)
	50GZ2	Asec	(1)	(1)
	50GZ3	Asec	(1)	(1)
	50GZ4	Asec	(1)	(1)
	k0M1		0,743	0,743
	k0A1	deg	-3,541	-3,541
	k0M		0,743	0,743
	k0A	deg	-3,541	-3,541
	Z1PD, Z1GD, Z1D	сус	0	0
	Z2PD, Z2GD, Z2D	сус	18	18
	Z3PD, Z3GD, Z3D	сус	48	48
	Z4PD, Z4GD, Z4D	сус	36	36
Directional Elements	DIR 3 Level 3 Direction		R	R
Directional Elements	DIR 3 Level 4 Direction		F	F

Nota:

- 1) Ajustar en el mínimo valor permitido por el relé.
- 2) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 3) En rojo se presentan los ajustes recomendados.

9.1.1.1.5. Funciones de sobrecorriente direccional (ANSI 67/67N)

9.1.1.1.5.1. Sobrecorriente direccional de fase (ANSI 67)

La función ANSI 67 se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 120% de la corriente nominal del CT = 120% × 1200 = 1440 A
- 130% de la corriente nominal de la línea = $130\% \times 1188 = 1544 A$

Por tanto, se recomienda ajustar esta función en 1140 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

9.1.1.1.5.2. Sobrecorriente direccional de tierra (ANSI 67N)

La función ANSI 67N se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 20% de la corriente nominal del CT = $20\% \times 1200 = 240 A$
- 20-40% de la corriente nominal de la línea = $20\% \times 1188 = 238 A$

Sin embargo, se recomienda ajustar esta función en 238 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

En la siguiente tabla se presentan los ajustes propuestos para las funciones 67/67N a implementar

Tabla 21. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E51P		Υ	Y
	51PP	Asec	3,8 Asec (912 Aprim)	3,8 Asec (912 Aprim)
Phase Time Overcurrent	51PC		U5	U5
	51PTD		1,08	1,08
	51PRS		N	N
	E51G		Y	Y
D : 1 10 1 T	51GP	Asec	0,99 Asec (237,6 Aprim)	0,99 Asec (237,6 Aprim)
Residual Ground Time Overcurrent	51GC		U1	U1
Overcurrent	51GTD		1,08	1,08
	51GRS		N	N
	51PTC		M2P+32GF+F32Q	M2P+32GF+F32Q
Torque Control Equations	51GTC		Z2G+32GF+F32Q	Z2G+32GF+F32Q
	67P1TC		M2P+32GF+F32Q	M2P+32GF+F32Q
	67P2TC		Z2G+32GF+F32Q	Z2G+32GF+F32Q

Nota:

9.1.1.1.6. Función de Falla Interruptor (ANSI 50BF)

De acuerdo con los criterios descritos en los criterios se muestran los valores de corrientes de cortocircuito para diferentes tipos de falla y el ajuste de la corriente de arranque de la función 50BF.

Tabla 22. Corrientes de falla y corriente de arranque función 50BF SE Hincapié 69 kV, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Fallas al 99% de la línea			Corriente de Falla [A _{pri}]				Ajuste Pickup Fases		Ajuste Pickup Tierras	
Hincapié -	RCT	Trifásica	Bifásica		Monofásica	 	<u> </u>	<u></u>	<u> </u>	
Guadalupe 69 kV desde		$R_f=10 \Omega$	aislada R_f =10 Ω	a Tierra R _f =50 Ω	$R_f=50 \Omega$	A _{pri}	A _{sec}	A _{pri}	A _{sec}	
Hincapié	1200/5	247	288	317	308	148,20	0,62	184,8	0,77	

Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e [1]. Estos ajustes, a su vez, fueron tomados de las recomendaciones dadas en el Estudio de Coordinación de Protecciones de la Subestación Sector Industrial Petapa IEB G014-20-20 R8.

Tabla 23. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P		(1)	(1)
Overcurrent	50PxP ⁽²⁾	A _{SEC}	0,25	0,62
Residual Ground	E50G		(1)	(1)
Instantaneous Overcurrent	50GxP ⁽²⁾	A _{SEC}	0,25	0,77

Nota:

- 1) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- El valor "x" hace referencia al elemento de sobre corriente seleccionado para la función ANSI 50BF.
- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- En rojo se presentan los ajustes recomendados.

Tabla 24. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311L línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control	SVx		(TRIP)*(50Px+50Gx)	(TRIP)*(50Px+50Gx)
Equation Variables	SVy		(SVy+TRIP)*(50Px+50Gx)	(SVy+TRIP)*(50Px+50Gx)
051 0 1	SVxPU	сус	7,2	7,2
SELogic Control Equation Variables	SVxDO	сус	0	0
Timers	SVyPU	сус	12	12
1111013	SVyDO	сус	0	0

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e [1].
- 2) Se implementa la función mediante las variables "x" y "y" ante la indisponibilidad de las variables recomendadas por el fabricante.
- 3) Se debe verificar en sitio si estas variables "x" y "y" están disponibles.
- 4) El elemento 50Px es el asociado a la función ANSI 50BF.

9.1.1.1.7. Función de cierre en falla (SOTF)

Teniendo en cuenta que se debe ajustar un elemento de sobrecorriente para habilitar esta función, a continuación, se presenta el cálculo de arranque de sobrecorriente del elemento *50HS* (Sobrecorriente instantánea de fases de alta velocidad).

Tabla 25. Calculo función 50HS Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Línea	RCT	Corriente máxima de carga A _{PRIM}	1,4 x Corriente máxima de carga A _{PRIM}	Ajuste A _{SEC}
Hincapié - Guadalupe, extremo Hincapié	1200/5	1188	1663	6,93

En las siguientes tablas se presentan los ajustes de la función sobrecorriente y SOTF respectivamente, como base en los parámetros del relé SEL 311L.

Tabla 26. Ajustes actuales y recomendados función 50PxP Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P	NA	(1)	(1)
Overcurrent	50PxP ⁽⁴⁾	Asec	6,93	6,93
Phase Definite-Time Overcurrent Elements	67PxD ⁽⁴⁾	сус	3	3

Notas:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 2) El elemento de sobrecorriente a ajustar depende de la disponibilidad en campo.
- La cantidad de elementos se deben ajustar acorde a los requerimientos de campo, para la función es necesario solo un elemento
- 4) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF

Teniendo en cuenta esto y las recomendaciones dadas por el fabricante, se recomienda ajustar los siguientes parámetros:

Tabla 27. Ajustes actuales y recomendados función SOTF Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ESOTF	NA	Υ	Υ
Switch Onto Fault	CLOEND	Ciclos	10	10
Switch Onto Fault	52AEND	Ciclos	10	10
	SOTFD	Ciclos	30	30
Trip/Comm, Assisted Trip Logic	TRSOTF	NA	M2P + Z2G + 50Px	M2P + Z2G + 50Px

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 2) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF

9.1.1.1.8. Función de sobretensión (ANSI 59/27)

9.1.1.1.8.1. Función de Sobretensión (ANSI 59)

Teniendo en cuenta los criterios definidos, se calcula la función de sobretensión al 105% y una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

$$59P = 59SP = \frac{115 V}{\sqrt{3}} \times 1,05 = 69,71 V_{SEC}$$
$$59PP = 115 V \times 1,05 = 120,75 V_{SEC}$$

Tabla 28. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	59P	V _{sec}	69,71	69,71
Voltage Liements	59SP	V _{sec}	69,71	69,71
	59PP	V _{sec}	120,75	120,75
CEL a mia Camataal	SVx	NA	3P59	3P59
SELogic Control Equation Variables	SVy	NA	59S	59S
Equation variables	SVz	NA	59AB + 59BC + 59CA	59AB + 59BC + 59CA
	SVxPU	ciclos	3600	3600
051 : 0	SVxDO	ciclos	0	0
SELogic Control Equation Variable	SVyPU	ciclos	3600	3600
Timers	SVyDO	ciclos	0	0
11111613	SVzPU	ciclos	3600	3600
	SVzDO	ciclos	0	0

Notas:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 2) Se ajusta como una función de alarma y por lo tanto no se debe incluir en la matriz de disparos.
- 3) El elemento 59P (SVx) se utiliza para dar disparo al interruptor, pero por requerimientos de TRELEC, este se excluye de la lógica de disparo, el 59PP (SVz) se utiliza para generar alarma, por tanto, este deberá programarse

acorde a lo requerido por TRELEC para señalización o envío al centro de control y el 59S (SVy) se utiliza para bloquear el recierre por sobretensión en la línea.

 Las variables "x", "y" y "z" corresponden a las variables lógicas del SEL 311L, pero estas deberán ser validadas en campo.

9.1.1.1.8.2. Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

$$27P = 27SP = 10\% V_{nominal} = 0, 1 \times \frac{115 V}{\sqrt{3}} = 6,64 Vsec$$

$$27PP = 10\% V_{nominal} = 0, 1 \times 115 V = 11, 5 V sec$$

Tabla 29. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	27P	V _{SEC}	6,64	6,64
Voltage Lientents	27SP	V _{SEC}	6,64	6,64
	27PP	V_{SEC}	11,5	11,5

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 2) Se ajusta como una función de alarma y por lo tanto no debe dar disparos.
- 3) El elemento 27P se utiliza en la lógica de recierre.

9.1.1.1.9. Función de Verificación de Sincronismo (ANSI 25)

En primera instancia se presentan los cálculos de los parámetros 25VL y 25VH.

$$25VLO = 0,90 \times \frac{V_{Nominal}}{\sqrt{3}} = 0,90 \times \frac{115 V}{\sqrt{3}} = 59,76 V$$

$$25VHI = 1,10 \times \frac{V_{Nominal}}{\sqrt{3}} = 1,10 \times \frac{115 V}{\sqrt{3}} = 73,03 V$$

Tabla 30. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E25		Y	Y
	25VLO	V _{SEC}	59,76	Y Y 59,76 59,76 73,03 73,03 0,1 0,1 25 25 30 30 (1) (1) 1 1 52A (contacto 52A (contacto auxiliar) +
	25VHI	V _{SEC}	73,03	73,03
Synchronism Check	25SF	Hz	0,1	0,1
Sylicilionisiii Check	25ANG1	deg	25	25
	25ANG2	deg	30	30
	SYNCP		(1)	(1)
	TCLOSD	сус	1	1
Other Equations	BSYNCH		52A (contacto auxiliar) + TRIP	52A (contacto auxiliar) + TRIP

Nota:

- 1) Validar en la ingeniería la tensión usada para sincronismo
- 2) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.

9.1.1.1.10. Función de Recierre (ANSI 79)

Teniendo en cuenta los niveles de cortocircuito, se establece que en el extremo Hincapié se efectúa el cierre con verificación de sincronismo en 500 ms, mientras que el extremo de Guadalupe realiza el recierre barra viva – línea muerta en 700 ms.

Tabla 31. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados	
	E79		1	1	
	79Ol1 ⁽³⁾	сус	30	30	
Reclosing Relay	79RSD	сус	10800	10800	
	79RSLD	сус	10800	10800	
	79CLSD	сус	0	0	
Other Settings	CFD	Ciclos	60	60	
	SVx		COMM*(M2P + Z2G)	COMM*(M2P + Z2G)	
	SVxPU	сус	0	0	
	SVxDO	сус	0	0	
	SVy		51G * R2X * !Z3RB * !LOP	51G * R2X * !Z3RB * !LOP	
	SVyPU	сус	0	0	
SELogic Control	SVyDO	сус	0	1 1 30 30 30 10800 10800 10800 10800 0 0 0 0 0 0 0	
Equation Variables	SVz		87LA*87LB*87LC + M2P) *	87LA*87LB*87LC + M2P) *	
	SVzPU	сус	0	0	
	SVzDO	сус	0	0	
	ULCL		TRIP	TRIP	
	79RI		TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87	TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87	
	79RIS		52A + 79CY	52A + 79CY	
	79DTL		Z2T+Z3T+Z4T + 51GT + 51PT + SOTF + !RB4 + !LB1 + SVzT + SVpT + SVqT	51PT + SOTF + !RB4 + !LB1	
Close/Reclose	79DLS		79LO	79LO	
Logic	79SKP	Ciclos	0	0	
	79STL		TRIP	TRIP	
	79BRS	1	(51P+51G)*79CY	(51P+51G)*79CY	
	79SEQ		_	0	
	79CLS		25A1 + 25A2 + (27S*3P27*!LOP) (59VS*3P27*!LOP) + (59VP*27S*!LOP)	(27S*3P27*!LOP) (59VS*3P27*!LOP) +	

Notas:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.
- 2) Las variables "x", "z" corresponde a la variable lógica del SEL 311L disponible.
- 3) SVx: ANSI 85-21 (POTT); SVz: bloqueo por fallas bifásicas y trifásicas por ANSI 87L (87L...) y, de igual manera, bloqueo por fallas bifásicas y trifásicas por ANSI 21 (M2P).
- 4) La variable n corresponde a la LB del SEL 311L disponible. A esta LBn en la SVz, se le asigna el "Recierre ante Falla Trifásica Habilitado". Solo se implementa localmente dado que no se conoce un Remote Bit designado para esto.
- La SVy corresponde al disparo por 67NCD y esta definido en la tabla de dicha función.
- 6) Las Wordbits RB4 y LB1 en la ecuación del 79DLT, corresponden a los bloqueos de recierre Remoto y Local, respectivamente. Importante: nótese que se implementa el bloqueo local y remoto general de la función ANSI 79 y, además, se implementa el bloqueo local del recierre ante fallas trifásicas, por tanto, el bloqueo general funciona tanto para fallas monofásicas como para fallas trifásicas.

- 7) Las variables "p" y "q" corresponde a la variable lógica del SEL 311L disponible. Estas variables se utilizan para bloqueo por sobretensión en línea y por sobretensión en barra, utilizando SV's con el fin de implementar retardos.
- 8) Las Wordbits 25A1 y 25A2 controlan condiciones "Vivo Vivo"; la lógica (27S*3P27*!LOP) controla condición "Muerto Muerto"; la lógica (59VS*3P27*!LOP) controla condición "Vivo Muerto", verificando tensión monofásica "Sana" a través del 59VS y baja tensión trifásica a través del 3P27; la lógica (27S*59VP*!LOP) controla condición "Muerto Vivo", verificando baja tensión monofásica a través del 27S y tensión trifásica "Sana" a través del 59VP. No se especifica Barra o Línea dado que dependerá a qué PT corresponda cada entrada (monofásica o trifásica) y esto es particular de cada subestación.

9.1.1.1.11. Ajustes Generales Esquemas de Teleprotección

Adicionalmente, según lo establecido en los criterios se recomienda habilitar el esquema permisivo de comparación direccional, aprovechando la función 67N habilitada en ambos extremos de la línea. En la siguiente tabla se muestran los ajustes recomendados.

Tabla 32. Esquema de Teleprotección – POTT relé SEL 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ECOMM		POTT	POTT
	Z3RBD	сус	5	5
	EBLKD	сус	10	10
Comm. Assisted	ETDPU	сус	2	2
Trip Schemes	EDURD	сус	4	4
The ochemes	EWFC		N	N
	27PWI	Vsec	53,1	53,1
	27PPW	V _{SEC}	92	92
	59NW	V _{SEC}	5	5
Trip Logic	TRCOMM		M2P+Z2G	M2P+Z2G
87L Transmit Equations ⁽¹⁾	T1X		KEY	KEY

Nota:

- 1) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo.
- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.

Tabla 33. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Hincapié - Guadalupe, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control Equation Variables	SVy		51G * R2X * !Z3RB * !LOP	51G * R2X * !Z3RB * !LOP
	SVyPU	сус	0	0
	SVyDO	сус	0	0
87L Transmit Equations ⁽¹⁾	T2X	-	51G * !Z3RB * !LOP	51G * !Z3RB * !LOP

Notas:

- 1) Las variables "y" corresponde a la variable lógica del SEL 311L disponible.
- 2) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo.
- 3) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.

9.1.2. Línea Hincapié – Sector Industrial Petapa, extremo Hincapié 69 kV

La línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV, es protegida por un relé marca SEL referencia 311L como dispositivo principal.

Relación PT: 69000/115 Relación CT: 1200/5

Corriente de límite térmica: 659 A

9.1.2.1. SEL 311L

9.1.2.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros de la línea, de acuerdo con la siguiente tabla.

Tabla 34. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados	
	CTR		240	240	
General Settings	APP		311L	311L	
	EADVS		Y	Y	
	CTRP		240	240	
	PTR		600	600	
	PTRS		600	600	
Backup Protection	Z1MAG	Ω_{SEC}	0,60	0,624	
and Line	Z1ANG	deg	81,88	75,412	
Parameters	Z0MAG	Ω_{SEC}	2,49	2,081	
	Z0ANG	deg	84,09	72,039	
	LL	km	3,60	3,630	
	EFLOC		Y	Y	
Other Settings	TDURD	сус	9	0	
Trip/Comm. Assisted Trip Logic (1) (2)	TR		M1P+Z1G+Z1T+M2PT+Z2GT +Z2T+M3PT+Z3GT+Z3T+51 GT+51PT+SV3+LB3+67P1T	TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6	

Notas:

- Los disparos en la ecuación de disparo, TR, deberán agruparse de manera adecuada en caso de poseer límite de caracteres en la escritura. Estos se agrupan, como se observa a continuación, solo de manera indicativa por tipo o grupos de funciones: TRIP_1: M1P+Z1G+Z1T; TRIP_2: M2PT+Z2GT+Z2T; TRIP_3: M3PT+Z3GT+Z3T;
- 2) TRIP_4: M4PT+Z4GT+Z4T; TRIP_5: 51PT+51GT; TRIP_6: SVxT + SVyT (la SVx corresponde a apertura remota o disparos adiciónales (50BF E2, DDT, etc)); la SVy, corresponde a disparo por 85.67N el cual se define en la 67NCD).
- 3) Las funciones SOTF y POTT no se direccionan manualmente a la ecuación de disparo o al contacto de salida, dado que estas activan internamente, en paralelo con la Wordbit TR, el disparo del relé o Wordbit TRIP.
- 4) El símbolo "--" significa que no se tienen ajustes actuales, debido a que es proyecto nuevo.
- 5) Ajustes actuales tomados del archivo de ajustes del relé.
- 6) Én rojo se presentan los ajustes recomendados.

9.1.2.1.2. SIR de la Línea

Siguiendo los lineamientos de la referencia [2] se realiza el cálculo del SIR para ambos extremos de la línea, con el objetivo de terminar el esquema más adecuado para la protección de la línea. Los resultados del Cálculo del SIR de la línea se presentan en la siguiente tabla:

Tabla 35. Cálculo del SIR línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Parámetro	Unidad	Hincapié	Sector Industrial Petapa		
Longitud	km	3,63			
Z1L	Ω	1	,51		
ZSSLG	Ω	5,96	5,28		
ZS3PH	Ω	6,12	4,39		
SIR3PH		4,05	2,91		
SIRSLG		3,94	3,50		
Resultado		5,96	5,28		

De acuerdo con los resultados obtenidos para esta línea, el esquema de protección propuesto para la bahía de línea permite garantizar un despeje de falla totalmente selectivo, ya que se considera como protección principal la función diferencial de línea ANSI 87L.

9.1.2.1.3. Función Diferencial de Línea (ANSI 87L)

Dado que en la línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV opera un relé SEL modelo 311L, y en el extremo de Sector Industrial Petapa 69 kV opera un relé SEL modelo 311C, no es posible ajustar esta función de protección. Se sugiere evaluar la implementación de relés que permitan realizar este ajuste, ya que, según los resultados del análisis de la relación selectividad interna (SIR) de la línea, el esquema de protección propuesto para la bahía de línea garantiza un despeje de falla totalmente selectivo si se considera la función diferencial de línea ANSI 87L como la protección principal.

9.1.2.1.4. Función distancia (ANSI 21/21N)

Según lo descrito en la filosofía de protecciones, la función distancia (ANSI 21/21N) se habilita en el relé SEL 311L. En la siguiente tabla se presentan los parámetros a partir de los cuales se realizaron los cálculos de los alcances de zona para la protección distancia.

Tabla 36. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Elemento	Longitud km	R1 Ω _{PRI}	X1 Ω _{PRI}	R0 Ω _{PRI}	X0 Ω _{PRI}	Observaciones
Llinganiá Castar	KIII	12PRI	12PRI	12PRI	12PRI	
Hincapié - Sector Industrial Petapa	3,630	0,393	1,510	1,604	4,948	Línea a proteger
SIP - Villalobos	2,860	0,330	1,200	1,270	1,270	Línea adyacente más corta
Palestina - San Gaspar	15,191	1,417	6,592	6,571	19,751	Línea adyacente más larga
Hincapié - Bombeo Hincapié	0,950	0,670	0,457	0,169	1,630	Línea reversa más corta
TRF SIP			22,360			Ajuste zona 2 y zona 3 SE remota
TRF Hincapié 2			26,552			Ajuste zona reversa SE local

En la siguiente tabla se presentan los cálculos de los alcances de zona para la protección distancia de esta línea, teniendo en cuenta que las relaciones de transformación son:

$$RCT = \frac{1200}{5} = 240$$
 $RPT = \frac{69000}{115} = 600$ $\frac{RPT}{RCT} = 2,5$

Tabla 37. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

ZONA	CRITERIOS		Z	X	
ZONA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
Aiusto Zono 1 (Forward)	0,70 x Z línea protegida	1,092	0,437	1,057	0,423
Ajuste Zona 1 (Forward)	Ajuste Seleccionado para Zona 1	1,092	0,437	1,057	0,423
	1,2* Z línea	1,872		1,812	
Ajuste Zona 2 (Forward)	Z línea + 0,5 *Z línea adyacente más corta	2,183		2,110	
Ajuste Zona z (Forward)	Z linea + 0,6 Z equiv, Italo 5/E remota	19,402		19,398	
	Ajuste Seleccionado para Zona 2	2,183	0,873	2,110	0,844
	Z línea + 0,8 *Z equiv, Trafos S/E remota	19,402		19,398	
Ajuste Zona 4 (Forward)	Z línea + 1,2*(Z línea adyacente más larga)	9,651		9,421	
	Ajuste Seleccionado para Zona 4	9,651	3,860	9,421	3,768

ZONA	CRITERIOS		Z	X	
ZONA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
	0,2*Zequiv, Trafos S/E local	5,310		5,310	
Ajuste Zona 3 (Reverse)	0,2*Z línea local más corta			0,091	
	>Z2 Extremo Remoto	0,374		0,362	
	Ajuste Seleccionado para Zona 3	0,374	0,150	0,362	0,145
Z mínima de Carga	(V línea)/(√3 * l max carga) (1)	60,451	24,180		
Rc : Alcance Resistivo	0,45* Z mínima de Carga (2)	27,203	10,881		

Nota:

En la siguiente tabla se presentan los ajustes recomendados para la función distancia.

Tabla 38. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	E21P		4	4
	ECCVT		N	N
	Z1P	Ω_{SEC}	0,437	0,474
	Z2P	Ω_{SEC}	1,408	0,742
D. D	Z3P	Ω_{SEC}	0,332	0,142
Phase Distance	Z4P	Ω_{SEC}	3,562	2,261
	50PP1	Asec	0,5	(1)
	50PP2	Asec	0,5	(1)
	50PP3	Asec	0,5	(1)
	50PP4	Asec	0,5	(1)
	E21MG		4	4
	Z1MG	Ω_{SEC}	0,437	0,474
	Z2MG	Ω_{SEC}	1,408	0,742
	Z3MG	Ω_{SEC}	0,332	0,142
	Z4MG	Ω_{SEC}	3,562	2,261
	E21XG		4	4
	XG1	Ω_{SEC}	0,423	0,459
	XG2	Ω_{SEC}	1,364	0,718
	XG3	Ω_{SEC}	0,330	0,138
	XG4	Ω_{SEC}	3,446	2,187
	RG1	Ω_{SEC}	2,114	6,036
	RG2	Ω_{SEC}	6,821	6,036
	RG3	Ω_{SEC}	1,650	6,036
	RG4	Ω_{SEC}	10,881	6,036
Ground Distance	XGPOL		IG	IG
	TANG	deg	0	0
	50L1	Asec	0,5	(1)
	50L2	Asec	0,5	(1)
	50L3	Asec	0,5	(1)
	50L4	Asec	0,5	(1)
	50GZ1	Asec	0,5	(1)
	50GZ2	Asec	0,5	(1)
	50GZ3	Asec	0,5	(1)
	50GZ4	Asec	0,5	(1)
	k0M1		0,779	0,743
	k0A1	deg	-4,816	-3,541
	k0M		0,779	0,743
	k0A	deg	-4,816	-3,541
	Z1PD, Z1GD, Z1D	сус	0	0

⁷⁾ La corriente máxima de carga se toma como la corriente límite térmica para esta línea que corresponde a 659 A.

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
Z2PD, Z2GD, Z		сус	18	18
	Z3PD, Z3GD, Z3D	сус	48	48
	Z4PD, Z4GD, Z4D	сус	36	36
Directional Elements	DIR 3 Level 3 Direction		R	R
Directional Elements	DIR 3 Level 4 Direction		F	F

Nota:

- 1) Ajustar en el mínimo valor permitido por el relé.
- 2) Ajustes actuales tomados del documento IEB-G014-20-020.R8 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Sector Industrial Petapa 69 kV Versión 8 del 30 de septiembre de 2022.
- 3) En rojo se presentan los ajustes recomendados.

9.1.2.1.5. Funciones de sobrecorriente direccional (ANSI 67/67N)

9.1.2.1.5.1. Sobrecorriente direccional de fase (ANSI 67)

La función ANSI 67 se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 120% de la corriente nominal del CT = $120\% \times 1200 = 1440 A$
- 130% de la corriente nominal de la línea = $130\% \times 659 = 857 A$

Por tanto, se recomienda ajustar esta función en 857 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

9.1.2.1.5.2. Sobrecorriente direccional de tierra (ANSI 67N)

La función ANSI 67N se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 20% de la corriente nominal del CT = $20\% \times 1200 = 240 A$
- 20-40% de la corriente nominal de la línea = $20\% \times 659 = 132 A$

Sin embargo, se recomienda ajustar esta función en 132 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

En la siguiente tabla se presentan los ajustes propuestos para las funciones 67/67N a implementar

Tabla 39. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E51P		Y	
Phase Time	51PP	A _{SEC}	3,3 A _{SEC} (792 A _{PRIM})	3,57 A _{SEC} (857 A _{PRIM})
Overcurrent	51PC		U1	U1
	51PTD		0,82	0,50
	51PRS		N	N
	E51G		Y	Y
Residual Ground	51GP	A _{SEC}	0,99 A _{SEC} (237,6 A _{PRIM})	0,55 A _{SEC} (132A _{PRIM})
Time Overcurrent	51GC		U1	U1
	51GTD		1,13	0,90
	51GRS		N	N

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	51PTC		LOP+(M2P+32GF+32QF+F32Q) *!(M3P+Z3G)	M2P+32GF+F32Q
Torque Control Equations	51GTC		(LOP+32GF+32QF+F32Q) *!LT1*!(M3P+Z3G)	Z2G+32GF+F32Q
	67P1TC		32GF+F32Q+F32V	
	67P2TC		32GR+R32Q+R32V	-

Nota:

- Ajustes actuales tomados del documento IEB-G014-20-020.R8 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Sector Industrial Petapa 69 kV Versión 8 del 30 de septiembre de 2022.
- 2) En rojo se presentan los ajustes recomendados.

9.1.2.1.6. Función de Falla Interruptor (ANSI 50BF)

De acuerdo con los criterios descritos en 8.1.8 se muestran los valores de corrientes de cortocircuito para diferentes tipos de falla y el ajuste de la corriente de arranque de la función 50BF.

Tabla 40. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Fallas al 99% de la línea		Corriente de Falla [A _{pri}]				Ajuste Pickup Fases		Ajuste Pickup Tierras	
Hincapié -						l>	l>	 >	✓
Sector Industrial Petapa 69 kV desde	R-10 O	a Tierra R _f =50 Ω	Monofásica R _f =50 Ω	A _{pri}	A _{sec}	A _{pri}	A _{sec}		
Hincapié	1200/5	2597	3022	676	712	1558,20	6,49	405,6	1,69

Tabla 41. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P			(1)
Overcurrent	50PxP ⁽²⁾	Asec		6,49
Residual Ground	E50G			(1)
Instantaneous Overcurrent	50GxP ⁽²⁾	Asec		1,69

Nota:

- 1) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- 2) El valor "x" hace referencia al elemento de sobre corriente seleccionado para la función ANSI 50BF.
- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- En rojo se presentan los ajustes recomendados.

Tabla 42. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control	SVx			(TRIP)*(50Px+50Gx)
Equation Variables	SVy			(SVy+TRIP)*(50Px+50Gx)
051 0 41	SVxPU	сус		7,2
SELogic Control	SVxDO	сус		0
Equation Variables Timers	SVyPU	сус		12
	SVyDO	сус		0

Nota:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- Śe implementa la función mediante las variábles "x" y "y" ante la indisponibilidad de las variables recomendadas por el fabricante.
- 3) Se debe verificar en sitio si estas variables "x" y "y" están disponibles.
- 4) El elemento 50Px es el asociado a la función ANSI 50BF.

9.1.2.1.7. Función de sobretensión (ANSI 59/27)

9.1.2.1.7.1. Función de Sobretensión (ANSI 59)

Teniendo en cuenta los criterios definidos, se calcula la función de sobretensión al 105% y una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

$$59P = 59SP = \frac{115 \text{ V}}{\sqrt{3}} \times 1,05 = 69,71 \text{ V}_{SEC}$$
$$59PP = 115 \text{ V} \times 1,05 = 120,75 \text{ V}_{SEC}$$

Tabla 43. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Υ	Y
Voltage Elements (3)	59P	V _{sec}	73,70	69,71
voltage Elements	59SP	V _{sec}	73,70	69,71
	59PP	V _{sec}	126,50	120,75
CEL a sia Camtral	SVx	NA		3P59
SELogic Control Equation Variables	SVy	NA		59S
Equation variables	SVz	NA		59AB + 59BC + 59CA
	SVxPU	ciclos		3600
051 : 0	SVxDO	ciclos		0
SELogic Control Equation Variable	SVyPU	ciclos		3600
Timers	SVyDO	ciclos		0
	SVzPU	ciclos		3600
	SVzDO	ciclos	1	0

Notas:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Se ajusta como una función de alarma y por lo tanto no se debe incluir en la matriz de disparos.
- 3) El elemento 59P (SVx) se utiliza para dar disparo al interruptor, pero por requerimientos de TRELEC, este se excluye de la lógica de disparo, el 59PP (SVz) se utiliza para generar alarma, por tanto, este deberá programarse acorde a lo requerido por TRELEC para señalización o envío al centro de control y el 59S (SVy) se utiliza para bloquear el recierre por sobretensión en la línea.
- 4) Las variables "x", "y" y "z" corresponden a las variables lógicas del SEL 311, pero estas deberán ser validadas en campo
- 5) En rojo se presentan los ajustes recomendados.

9.1.2.1.7.2. Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

$$27P = 27SP = 10\% V_{nominal} = 0.1 \times \frac{115 \text{ V}}{\sqrt{3}} = 6.64 \text{ Vsec}$$

$$27PP = 10\% V_{nominal} = 0.1 \times 115 V = 11.5 Vsec$$

Tabla 44. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Voltage Elements (3)	EVOLT	Y or N	Y	Y
	27P	V _{SEC}	40,00	6,64
voltage Elements	27SP	V _{SEC}	57,00	6,64
	27PP	V_{SEC}	60,00	11,5

Nota:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Se ajusta como una función de alarma y por lo tanto no debe dar disparos.
- El elemento 27P se utiliza en la lógica de recierre.
- 4) En rojo se presentan los parámetros recomendados

9.1.2.1.8. Función de Verificación de Sincronismo (ANSI 25)

En primera instancia se presentan los cálculos de los parámetros 25VL y 25VH.

$$25VLO = 0.90 \times \frac{V_{Nominal}}{\sqrt{3}} = 0.90 \times \frac{115 V}{\sqrt{3}} = 59.76 V$$

$$25VHI = 1{,}10 \times \frac{V_{Nominal}}{\sqrt{3}} = 1{,}10 \times \frac{115 V}{\sqrt{3}} = 73{,}03 V$$

Tabla 45. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E25		Y	Y
	25VLO	V _{SEC}	57,00	59,76
	25VHI	V _{SEC}	73,70	73,03
Synchronism Check	25SF	Hz	25,00	0,1
Synchionism Check	25ANG1	deg	25,00	25
	25ANG2	deg	40,00	30
	SYNCP		VB	(1)
	TCLOSD	сус	3,00	1
Other Equations	BSYNCH		RB1+TRIP	52A(contacto auxiliar) + TRIP

Nota:

- 1) Validar en la ingeniería la tensión usada para sincronismo
- 2) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 3) En rojo se presentan los parámetros recomendados

9.1.2.1.9. Función de Recierre (ANSI 79)

Teniendo en cuenta los niveles de cortocircuito, se establece que en el extremo Sector Industrial Petapa se efectúa el cierre con verificación de sincronismo en 500 ms, mientras que el extremo de Hincapié realiza el recierre barra viva – línea muerta en 700 ms.

Tabla 46. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E79		1	1
	79OI1 ⁽³⁾	сус	30	45
Reclosing Relay	79RSD	сус	1800	10800
	79RSLD	сус	300	10800
	79CLSD	сус	1	0
Other Settings	CFD	Ciclos	60	60
	SVx			COMM*(M2P + Z2G)
051 : 0 : 1	SVxPU	сус		0
SELogic Control	SVxDO	сус		0
Equation Variables	SVy			51G * R2X * !Z3RB * !LOP
	SVyPU	сус		0
	SVyDO	сус		0

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	SVz			(87LA*87LB + 87LB*87LC + 87LC*87LA + 87LA*87LB*87LC + M2P) * !LBn
	SVzPU	сус		0
	SVzDO	сус		0
	ULCL		TRIP	TRIP
	79RI		TRIP*(M1P+Z1G)	TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87
	79RIS		52A+79CY	52A + 79CY
Close/Reclose	79DTL		LT2+SV3T+!LB1	Z2T+Z3T+Z4T + 51GT + 51PT + SOTF + !RB4 + !LB1 + SVzT + SVpT + SVqT
Logic	79DLS		79LO	79LO
	79SKP	Ciclos	0	0
	79STL		TRIP	TRIP
	79BRS		(51P+51G)*79CY	(51P+51G)*79CY
	79SEQ		0	0
	79CLS		!3P59*!3P27*27S+ 25A1+25A2	25A1 + 25A2 + (27S*3P27*!LOP)

Notas:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- Las variables "x", "z" corresponde a la variable lógica del SEL 311C disponible. SVx: ANSI 85-21 (POTT); SVz: bloqueo por fallas bifásicas y trifásicas por ANSI 87L (87L...) y, de igual manera, bloqueo por fallas bifásicas y trifásicas por ANSI 21 (M2P).
- La variable n corresponde a la LB del SEL 311L disponible. A esta LBn en la SVz, se le asigna el "Recierre ante Falla Trifásica Habilitado". Solo se implementa localmente dado que no se conoce un Remote Bit designado para
- La SVy corresponde al disparo por 67NCD y esta definido en la tabla de dicha función.
- Las Wordbits RB4 y LB1 en la ecuación del 79DLT, corresponden a los bloqueos de recierre Remoto y Local, respectivamente. Importante: nótese que se implementa el bloqueo local y remoto general de la función ANSI 79 y, además, se implementa el bloqueo local del recierre ante fallas trifásicas, por tanto, el bloqueo general funciona tanto para fallas monofásicas como para fallas trifásicas.
- Las variables "p" y "q" corresponde a la variable l ógica del SEL 311L disponible. Estas variables se utilizan para bloqueo por sobretensión en línea y por sobretensión en barra, utilizando SV's con el fin de implementar retardos.
- Las Wordbits 25A1 y 25A2 controlan condiciones "Vivo Vivo"; la lógica (27S*3P27*!LOP) controla condición "Muerto Muerto", la lógica (59VS*3P27*ILOP) controla condición "Vivo Muerto", verificando tensión monofásica "Sana" a través del 59VS y baja tensión trifásica a través del 3P27; la lógica (27S*59VP*!LOP) controla condición "Muerto Vivo", verificando baja tensión monofásica a través del 27S y tensión trifásica "Sana" a través del 59VP. No se especifica Barra o Línea dado que dependerá a qué PT corresponda cada entrada (monofásica o trifásica) y esto es particular de cada subestación.
- En rojo se presentan los parámetros recomendados.

9.1.2.1.10. Ajustes Generales Esquemas de Teleprotección

Adicionalmente, según lo establecido en los criterios se recomienda habilitar el esquema permisivo de comparación direccional, aprovechando la función 67N habilitada en ambos extremos de la línea. En la siguiente tabla se muestran los ajustes recomendados.

Tabla 47. Esquema de Teleprotección – POTT relé SEL 311L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ECOMM		N	POTT
	Z3RBD	сус		5
Comm. Assisted	EBLKD	сус		10
Trip Schemes	ETDPU	сус		2
The ochemes	EDURD	сус		4
	EWFC			Y
	27PWI	Vsec		53,1

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	27PPW	V _{SEC}		92
	59NW	V _{SEC}		5
Trip Logic	TRCOMM			M2P+Z2G
87L Transmit	R1X			R1X
Equations (1)	T1X			ECTT + KEY

Nota:

1) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo.

Tabla 48. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control	SVy			51G * R2X * !Z3RB * !LOP
Equation Variables (1)	SVyPU	сус		0
	SVyDO	сус		0
87L Transmit Equations ⁽¹⁾	T2X			51G * !Z3RB * !LOP

Notas:

- Las variables "y" corresponde a la variable lógica del SEL 311L disponible.
- 2) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo

9.1.3. Línea Hincapié – Bombeo Hincapié, extremo Hincapié 69 kV

La línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV, es protegida por un relé marca SEL referencia 311L como dispositivo principal.

Relación PT: 69000/115

Relación CT: 600/5

Corriente de límite térmica: 210 A

9.1.3.1. SEL 311L

9.1.3.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros de la línea, de acuerdo con la siguiente tabla.

Tabla 49. Ajustes Generales actuales y recomendados SEL 311 L, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	CTR		120	120
General Settings	APP		311L	311L
	EADVS		Y	Y
	CTRP		120	120
	PTR		600	600
	PTRS		600	600
Backup Protection	Z1MAG	Ω_{SEC}	0,16	0,162
and Line	Z1ANG	deg	34,05	34,280
Parameters	Z0MAG	Ω_{SEC}	0,33	0,33
	Z0ANG	deg	84,09	84,09
	LL	km	0,95	0,95
	EFLOC		Y	Y
Other Settings	TDURD	сус	9	9
Trip/Comm. Assisted Trip	TR		M1P+Z1G+Z1T+M2PT+Z2GT +Z2T+M3PT+Z3GT+Z3T+51	TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 +

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Logic (1) (2)			GT+51PT+SV3+LB3+67P1T	TRIP_5 + TRIP_6

Notas:

- Los disparos en la ecuación de disparo, TR, deberán agruparse de manera adecuada en caso de poseer límite de caracteres en la escritura. Estos se agrupan, como se observa a continuación, solo de manera indicativa por tipo o grupos de funciones: TRIP_1: M1P+Z1G+Z1T; TRIP_2: M2PT+Z2GT+Z2T; TRIP_3: M3PT+Z3GT+Z3T;
- 2) TŘIP_4: M4PT+Z4GT+Z4T; TRIP_5: 51PT+51GT; TRIP_6: SVxT+SVyT (la SVx corresponde a apertura remota o disparos adiciónales (50BF E2, DDT, etc)); la SVy, corresponde a disparo por 85.67N el cual se define en la 67NCD).
- 3) Las funciones SOTF y POTT no se direccionan manualmente a la ecuación de disparo o al contacto de salida, dado que estas activan internamente, en paralelo con la Wordbit TR, el disparo del relé o Wordbit TRIP.
- 4) El símbolo "--" significa que no se tienen ajustes actuales, debido a que es proyecto nuevo.
- 5) Ajustes actuales tomados del archivo de ajustes del relé.
- 6) En rojo se presentan los ajustes recomendados.

9.1.3.1.2. SIR de la Línea

Siguiendo los lineamientos de la referencia [2] se realiza el cálculo del SIR para ambos extremos de la línea, con el objetivo de terminar el esquema más adecuado para la protección de la línea. Los resultados del Cálculo del SIR de la línea se presentan en la siguiente tabla:

Tabla 50. Cálculo del SIR línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Parámetro	Unidad	Hincapié	Bombeo Hincapié		
Longitud	km	0	,95		
Z1L	Ω	0,46			
ZSSLG	Ω	35,70	6,15		
ZS3PH	Ω	24,89	12,50		
SIR3PH		54,51	27,37		
SIRSLG		78,16	13,46		
Resultado		35,70	6,15		

De acuerdo con los resultados obtenidos para esta línea, el esquema de protección propuesto para la bahía de línea permite garantizar un despeje de falla totalmente selectivo, ya que se considera como protección principal la función diferencial de línea ANSI 87L.

9.1.3.1.3. Función Diferencial de Línea (ANSI 87L)

Debido que el extremo Bombeo Hincapié no cuenta con un relé de protección , no se recomienda ajustes para esta función.

9.1.3.1.4. Función distancia (ANSI 21/21N)

Según lo descrito en la filosofía de protecciones, la función distancia (ANSI 21/21N) se habilita en el relé SEL 311L. En la siguiente tabla se presentan los parámetros a partir de los cuales se realizaron los cálculos de los alcances de zona para la protección distancia.

Tabla 51. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Elemento	Longitud	R1	X1	R0	X0	Observaciones
Elemento	km	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Observaciones
Hincapie - Bombeo Hincapie	0,950	0,670	0,457	0,169	1,630	Línea a proteger
NA	NA	NA	NA	NA	NA	Línea adyacente más corta
NA	NA	NA	NA	NA	NA	Línea adyacente más larga

Elemento	Longitud	R1	X1	R0	X0	Observaciones
Lientento	km	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Observaciones
Hincapie - Sector Industrial Petapa	3,630	0,393	1,510	1,604	4,948	Línea reversa más corta
NA	1		NA			Ajuste zona 2 y zona 3 SE remota
TRF Hincapie 1	-		22,207			Ajuste zona reversa SE local

En la siguiente tabla se presentan los cálculos de los alcances de zona para la protección distancia de esta línea, teniendo en cuenta que las relaciones de transformación son:

$$RCT = \frac{600}{5} = 120$$
 $RPT = \frac{69000}{115} = 600$ $\frac{RPT}{RCT} = 5$

Tabla 52. Cálculos de ajustes protección ANSI 21/21N línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

ZONA	CRITERIOS	2	<u> </u>	X	
ZUNA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
Ajuste Zona 1 (Forward)	0,70 x Z línea protegida	0,568	0,114	0,320	0,064
Ajuste Zona i (Forward)	Ajuste Seleccionado para Zona 1	0,568	0,114	0,320	0,064
	1,2* Z línea	0,973		0,548	
Ajuste Zona 2 (Forward)	Z línea + 0,5 *Z línea adyacente más corta	NA		NA	
Ajuste Zona z (Forward)	Z línea + 0,8 *Z equiv, Trafo S/E remota	NA		NA	
	Ajuste Seleccionado para Zona 2	0,973	0,195	0,548	0,110
	Z línea + 0,8 *Z equiv, Trafos S/E remota	NA		NA	
Ajuste Zona 4 (Forward)	Z línea + 1,2*(Z línea adyacente más larga)	NA		NA	
	Ajuste Seleccionado para Zona 4	0,973	0,195	0,548	0,110
	0,2*Zequiv, Trafos S/E local	4,441		4,441	
Airesta Zana 2 (Daversa)	0,2*Z línea local más corta	0,312		0,302	
Ajuste Zona 3 (Reverse)	>Z2 Extremo Remoto	0,890		0,860	
	Ajuste Seleccionado para Zona 3	0,890	0,178	0,860	0,172
Z mínima de Carga	(V línea)/(√3 * l max carga) (1)	189,701	37,940		
Rc : Alcance Resistivo	0,45* Z mínima de Carga (2)	85,365	17,073		

Nota:

Tabla 53. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	E21P		4	4
	ECCVT		N	N
	Z1P	Ω_{SEC}	0,14	0,114
	<i>Z</i> 2P	Ω_{SEC}	0,18	0,195
Phase Distance	Z3P	Ω_{SEC}	0,20	0,178
Phase distance	Z4P	Ω_{SEC}	0,57	0,195
	50PP1	Asec	0,5	(1)
	50PP2	Asec	0,5	(1)
	50PP3	Asec	0,5	(1)
	50PP4	Asec	0,5	(1)
	E21MG		4	4
Ground Distance	Z1MG	Ω_{SEC}	0,14	0,114
Glound Distance	Z2MG	Ω_{SEC}	0,18	0,195
	Z3MG	Ω_{SEC}	0,20	0,178

¹⁾ La corriente máxima de carga se toma como la corriente límite térmica para esta línea que corresponde a 210 A. En la siguiente tabla se presentan los ajustes recomendados para la función distancia.

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	Z4MG	Ω_{SEC}	0,57	0,195
	E21XG		4	4
	XG1	Ω_{SEC}	0,08	0,064
	XG2	Ω_{SEC}	0,10	0,110
	XG3	Ω_{SEC}	0,11	0,172
	XG4	Ω_{SEC}	0,32	0,110
	RG1	Ω_{SEC}	4,11	17,073
	RG2	Ω_{SEC}	4,15	17,073
	RG3	Ω_{SEC}	4,17	17,073
	RG4	Ω_{SEC}	4,47	17,073
	XGPOL		IG	IG
	TANG	deg	0,0	0,0
	50L1	Asec	0,50	(1)
	50L2	Asec	0,50	(1)
	50L3	Asec	0,50	(1)
	50L4	Asec	0,50	(1)
	50GZ1	Asec	0,50	(1)
	50GZ2	Asec	0,50	(1)
	50GZ3	Asec	0,50	(1)
	50GZ4	Asec	0,50	(1)
	k0M1		0,522	0,525
	k0A1	deg	79,3	78,849
	k0M		0,522	0,525
	k0A	deg	79,30	78,849
	Z1PD, Z1GD, Z1D	сус	0,00	0
	Z2PD, Z2GD, Z2D	сус	18,00	18
	Z3PD, Z3GD, Z3D	сус	36,00	48
	Z4PD, Z4GD, Z4D	сус	60,00	36
Directional Elements	DIR 3 Level 3 Direction		F	R
Directional Elements	DIR 3 Level 4 Direction		F	F

Nota:

- 1) Ajustes actuales tomados del archivo de ajustes del relé.
- 2) En rojo se presentan los ajustes recomendados.

9.1.3.1.5. Funciones de sobrecorriente direccional (ANSI 67/67N)

9.1.3.1.5.1. Sobrecorriente direccional de fase (ANSI 67)

La función ANSI 67 se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 120% de la corriente nominal del CT = $120\% \times 600 = 720 A$
- 130% de la corriente nominal de la línea = $130\% \times 210 = 273 A$

Por tanto, se recomienda ajustar esta función en 273 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

9.1.3.1.5.2. Sobrecorriente direccional de tierra (ANSI 67N)

La función ANSI 67N se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 20% de la corriente nominal del CT = $20\% \times 600 = 120 A$
- 20-40% de la corriente nominal de la línea = $20\% \times 210 = 42 A$

Sin embargo, se recomienda ajustar esta función en 60 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

En la siguiente tabla se presentan los ajustes propuestos para las funciones 67/67N a implementar

Tabla 54. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E51P		Y	Y
Phase Time	51PP	A _{SEC}	2,52 A _{SEC} (302,4 A _{PRIM})	2,28 A _{SEC} (273 A _{PRIM})
Overcurrent	51PC		U1	U1
	51PTD		0,70	0,70
	51PRS		N	N
	E51G		Y	Y
Residual Ground	51GP	Asec	0,61 A _{SEC} (73,2 A _{PRIM})	0,50 A _{SEC} ⁽³⁾ (60 A _{PRIM})
Time Overcurrent	51GC		U1	U1
	51GTD		1,50	1,50
	51GRS		N	N
	51PTC		LOP+(M2P+32GF+32QF+F32Q) *!(M3P+Z3G)	M2P+32GF+F32Q
Torque Control Equations	51GTC		(LOP+32GF+32QF+F32Q) *!LT1*!(M3P+Z3G)	Z2G+32GF+F32Q
	67P1TC		32GF+F32Q+F32V	M2P+32GF+F32Q
	67P2TC		32GR+R32Q+R32V	Z2G+32GF+F32Q

Nota:

- 1) Ajustes actuales tomados del archivo de ajustes del relé.
- 2) En rojo se presentan los ajustes recomendados.
- 3) Minimo valor permitido por el relé

9.1.3.1.6. Función de Falla Interruptor (ANSI 50BF)

De acuerdo con los criterios descritos en 8.1.8 se muestran los valores de corrientes de cortocircuito para diferentes tipos de falla y el ajuste de la corriente de arranque de la función 50BF.

Tabla 55. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Fallas al 99% de la línea		Corriente de Falla [A _{pri}]				Ajuste Pickup Fases		Ajuste Pickup Tierras	
Hincapié -	RCT		Bifásica	Bifásica		⋖	l>		<u> </u> >
Bombeo Hincapié 69 kV desde		Trifásica R _f =10 Ω	aislada a Tie	a Tierra R _f =50 Ω	R-50 O	A _{pri}	A _{sec}	A _{pri}	A _{sec}
Hincapié	600/5	2662	3188	690	718	1597,20	13,31	414	3,45

Tabla 56. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P			(1)
Overcurrent	50PxP ⁽²⁾	A _{SEC}		13,31
Residual Ground	E50G			(1)

Instantaneous	50CvP ⁽²⁾	Λ	 2.45
Overcurrent	50GXP\	ASEC	3,45

Nota:

- 1) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- El valor "x" hace referencia al elemento de sobre corriente seleccionado para la función ANSI 50BF.
- 3) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.

Tabla 57. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control	SVx			(TRIP)*(50Px+50Gx)
Equation Variables	SVy			(SVy+TRIP)*(50Px+50Gx)
051 : 0 . 1	SVxPU	сус		7,2
SELogic Control	SVxDO	сус		0
Equation Variables Timers	SVyPU	сус		12
	SVyDO	сус		0

Nota:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- Se implementa la función mediante las variables "x" y "y" ante la indisponibilidad de las variables recomendadas por el fabricante.
- 3) Se debe verificar en sitio si estas variables "x" y "y" están disponibles.
- 4) El elemento 50Px es el asociado a la función ANSI 50BF.

9.1.3.1.7. Función de cierre en falla (SOTF)

Teniendo en cuenta que se debe ajustar un elemento de sobrecorriente para habilitar esta función, a continuación, se presenta el cálculo de arranque de sobrecorriente del elemento *50HS* (Sobrecorriente instantánea de fases de alta velocidad).

Tabla 58. Calculo función 50HS Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Línea	RCT	Corriente máxima de carga	1,4 x Corriente máxima de carga	Ajuste
		APRIM	APRIM	A _{SEC}
Hincapié - Bombeo Hincapié, extremo Hincapié	600/5	210	294	2,45

En las siguientes tablas se presentan los ajustes de la función sobrecorriente y SOTF respectivamente, como base en los parámetros del relé SEL 311L.

Tabla 59. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P	NA	3	3
Overcurrent	50PxP ⁽⁴⁾	A _{SEC}		2,45
Phase Definite-Time Overcurrent Elements	67PxD ⁽⁴⁾	сус		3

Notas:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- La cantidad de elementos se deben ajustar acorde a los requerimientos de campo, para la función es necesario solo un elemento
- 4) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF
- 5) En rojo se presentan los ajustes recomendados.

Teniendo en cuenta esto y las recomendaciones dadas por el fabricante, se recomienda ajustar los siguientes parámetros:

CLOEND: Se recomienda activar este parámetro para implementar el cierre en falla.

52AEND: Para la lógica de falla interruptor se recomienda activar este temporizador.

Tabla 60. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ESOTF	NA	Υ	Υ
Switch Onto Fault	CLOEND	Ciclos	OFF	10
Switch Onto Fault	52AEND	Ciclos	OFF	10
	SOTFD	Ciclos	30	30
Trip/Comm, Assisted Trip Logic	TRSOTF	NA	M2P+Z2G+50P1	M2P + Z2G + 50Px

Nota:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF
- 3) En rojo se presentan los parámetros recomendados

9.1.3.1.8. Función de sobretensión (ANSI 59/27)

9.1.3.1.8.1. Función de Sobretensión (ANSI 59)

Teniendo en cuenta los criterios definidos, se calcula la función de sobretensión al 105% y una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

$$59P = 59SP = \frac{115 \text{ V}}{\sqrt{3}} \times 1,05 = 69,71 \text{ V}_{SEC}$$

$$59PP = 115 \text{ V} \times 1,05 = 120,75 \text{ V}_{SEC}$$

Tabla 61. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	59P	V _{sec}	73,70	69,71
Voltage Liements	59SP	V _{sec}	73,70	69,71
	59PP	V _{sec}	126,50	120,75
CEL agia Cantral	SVx	NA		3P59
SELogic Control Equation Variables	SVy	NA		598
Equation variables	SVz	NA		59AB + 59BC + 59CA
	SVxPU	ciclos		3600
051:- 0 ()	SVxDO	ciclos		0
SELogic Control Equation Variable	SVyPU	ciclos		3600
Timers	SVyDO	ciclos		0
Tilliels	SVzPU	ciclos		3600
	SVzDO	ciclos		0

Notas:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- Se ajusta como una función de alarma y por lo tanto no se debe incluir en la matriz de disparos.
- Si) El elemento 59P (SVx) se utiliza para dar disparo al interruptor, pero por requerimientos de TRELEC, este se excluye de la lógica de disparo, el 59PP (SVz) se utiliza para generar alarma, por tanto, este deberá programarse acorde a lo requerido por TRELEC para señalización o envío al centro de control y el 59S (SVy) se utiliza para bloquear el recierre por sobretensión en la línea.
- Las variables "x", "y" y "z" corresponden a las variables lógicas del SEL 311, pero estas deberán ser validadas en campo.
- 5) En rojo se presentan los ajustes recomendados.

9.1.3.1.8.2. Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

$$27P = 27SP = 10\% V_{nominal} = 0.1 \times \frac{115 \text{ V}}{\sqrt{3}} = 6.64 \text{ Vsec}$$

 $27PP = 10\% V_{nominal} = 0.1 \times 115 \text{ V} = 11.5 \text{ Vsec}$

Tabla 62. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Voltage Elements ⁽³⁾	EVOLT	Y or N	Υ	Y
	27P	V_{SEC}	40,00	6,64
	27SP	V _{SEC}	57,00	6,64
	27PP	V_{SEC}	60,00	11,5

Nota:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Se ajusta como una función de alarma y por lo tanto no debe dar disparos.
- 3) El elemento 27P se utiliza en la lógica de recierre.
- 4) En rojo se presentan los parámetros recomendados

9.1.3.1.9. Función de Verificación de Sincronismo (ANSI 25)

En primera instancia se presentan los cálculos de los parámetros 25VL y 25VH.

$$25VLO = 0.90 \times \frac{V_{Nominal}}{\sqrt{3}} = 0.90 \times \frac{115 V}{\sqrt{3}} = 59.76 V$$
$$25VHI = 1.10 \times \frac{V_{Nominal}}{\sqrt{3}} = 1.10 \times \frac{115 V}{\sqrt{3}} = 73.03 V$$

63. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié - Bombeo Hincapié, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E25		Y	Y
	25VLO	V _{SEC}	57,00	59,76
	25VHI	V _{SEC}	73,70	73,03
Synchronism Check	25SF	Hz	0,042	0,1
Synchionism Check	25ANG1	deg	25,00	25
	25ANG2	deg	40,00	30
	SYNCP		VB	-1
	TCLOSD	сус	3,00	1
Other Equations	BSYNCH		RB1+TRIP	52A(contacto auxiliar) + TRIP

Nota:

- 1) Validar en la ingeniería la tensión usada para sincronismo
- 2) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 3) En rojo se presentan los parámetros recomendados

9.1.4. Transformador 1 Hincapié 28 MVA 66/13,8 kV

9.1.4.1. SEL 387E

El transformador Hincapié 69/13,8 kV 28 MVA es protegido por una protección marca SEL 387E (ANSI 50 – 51/51N) como protección principal.

Relación PT Devanado de 66 kV: 66000/110.

Relación CT Devanado de 66 kV: 400/5.

Relación CT de fases Devanado de 13,8 kV: 1200/5. Relación CT de neutro Devanado de 13,8 kV: 600/5.

9.1.4.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros del transformador, de acuerdo con la siguiente tabla.

Tabla 64. Ajustes Generales actuales y recomendados SEL 387, Transformador 1 Hincapié 28 MVA

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	W1CT		Y	Y
	W2CT		Y	Y
	W3CT		Y	Y
	CTR1		80	80
	CTR2		240	400
	CTR3		120	120
	MVA		28	28
	ICOM		Y	Y
General Data	W1CTC		0	0
General Data	W2CTC		1	1
	W3CTC			
	WDG1		66	66
	WDG2		13,8	13,8
	WDG3			
	PTR		600	600
	COMPANG		0	0
	VIWDG		1	1
	TPVI		Y	Y

Notas

9.1.4.1.2. Funciones de sobrecorriente no direccional (ANSI 50 – 51/51N)

9.1.4.1.2.1. Funciones de sobrecorriente no direccional devanado de 69 kV

A continuación, se relacionan los valores de las funciones de sobrecorriente no direccional devanado de 69 kV tomados del archivo de ajustes del relé.

Tabla 65. Ajustes actuales y recomendados función sobrecorriente no direccional ANSI 50 – 51/51N devanado de 69 kV, Transformador 1 Hincapié 28 MVA

Sección	Parámetro	Unidad	Ajuste Actual	Ajuste Recomendado
	50P11P	Asec	19,30 A _{SEC}	19,30 A _{SEC}
	301 111	ASEC	(1544 A _{PRIM})	(1544 A _{PRIM})
	50P11D	сус	12,00	12,00
	50P12P	A _{SEC}	21,70 A _{SEC}	21,70 A _{SEC}
	301 121	/ GEC	(1736 A _{PRIM})	(1736 A _{PRIM})
Winding 1	51P1P	Asec	3,50 A _{SEC}	3,50 A _{SEC}
Overcurrent			(280 A _{PRIM})	(280 A _{PRIM})
	51P1C		U4	U4
	51P1TD		1,20	1,20
	51P1RS		N	N
	50Q11P	A _{SEC}	OFF	OFF
	50Q11D	сус		

¹⁾ Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.

Sección	Parámetro	Unidad	Ajuste Actual	Ajuste Recomendado
	50Q12P	Asec	OFF	OFF
	51Q1P	Asec	OFF	OFF
	51Q1C			
	51Q1TD	сус		
	50N11P	Asec	OFF	OFF
	50N11D	сус		
	50N12P	Asec	OFF	OFF
	51N1P	Asec	1,00 A _{SEC} (80 A _{PRIM})	1,00 A _{SEC} (80 A _{PRIM})
	51N1C		U2	U2
	51N1TD		3,00	3,00
	51N1RS		N	N

Notas

9.1.4.1.2.2. Funciones de sobrecorriente no direccional devanado de 13,8 kV

De acuerdo con lo anterior, en la siguiente tabla se subrayan los cambios a aplicar en el relé de protección del transformador.

Tabla 66. Ajustes actuales y recomendados función sobrecorriente no direccional ANSI 50 – 51/51N devanado de 13,8 kV, Transformador 1 Hincapié 28 MVA

Sección	Parámetro	Unidad	Ajuste Actual	Ajuste Recomendado
	50P21P	A _{SEC}	13,00 A _{SEC} (3120 A _{PRIM})	13,00 A _{SEC} (3120 A _{PRIM})
	50P21D	сус	6,00	6,00
	50P22P	Asec	15,60 A _{SEC} (3744 A _{PRIM})	15,60 A _{SEC} (3744 A _{PRIM})
	51P2P	Asec	3,60 A _{SEC} (864 A _{PRIM})	3,60 A _{SEC} (864 A _{PRIM})
	51P2C		U4	U4
	51P2TD		2,00	2,00
	51P2RS		N	N
	50Q21P	A _{SEC}	OFF	OFF
14" "	50Q21D	сус		
Winding 2 Overcurrent	50Q22P	Asec	OFF	OFF
Overcurrent	51Q2P	Asec	OFF	OFF
	51Q2C			
	51Q2TD	сус		
	50N21P	Asec	0,90 A _{SEC} (216 A _{PRIM})	0,90 A _{SEC} (216 A _{PRIM})
	50N21D	сус	10800	10800
	50N22P	Asec	OFF	OFF
	51N2P	Asec	0,90 A _{SEC} (216 A _{PRIM})	0,90 A _{SEC} (216 A _{PRIM})
	51N2C		U2	U2
	51N2TD		6,00	6,00
	51N2RS		N	N
	50P31P	Asec	3,00 A _{SEC} (360 A _{PRIM})	3,00 A _{SEC} (360 A _{PRIM})
	50P31D	сус	10800,00	10800,00
Winding 3	50P32P	Asec	OFF	OFF
Overcurrent	51P3P	Asec	3,00 A _{SEC} (360 A _{PRIM})	3,00 A _{SEC} (360 A _{PRIM})
	51P3C		U2	U2
	51P3TD		6,00	6,00

Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.

Sección	Parámetro	Unidad	Ajuste Actual	Ajuste Recomendado
	51P3RS		N	N
	50Q31P	Asec	OFF	OFF
	50Q31D	сус		
	50Q32P	Asec	OFF	OFF
	51Q3P	Asec	OFF	OFF
	51Q3C			
	51Q3TD	сус		
	50N31P	Asec	OFF	OFF
	50N31D	сус		
	50N32P	A _{SEC}	OFF	OFF
	51N3P	Asec	OFF	OFF
	51N3C			
	51N3TD			
	51N3RS			

Notas

Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.

9.1.5. Transformador 2 Hincapié 13 MVA 66/13,8 kV

El transformador 2 Hincapié 66/13,8 kV 13 MVA es protegido por un relé marca SIEMENS referencia 7UT85 como protección principal (ANSI 87T), un 7UT85 (ANSI 50 – 51/51N) como protección de respaldo para el devanado de 69 kV y un 7SJ85 (51/51N) como protección de respaldo para el devanado de 13,8 kV.

Relación CT Devanado de 66 kV: 300/1

Relación CT Devanado de 13,8 kV fases: 1200/1 Relación CT Devanado de 13,8 kV neutro: 600/5

9.1.5.1. SIEMENS 7UT85

9.1.5.1.1. Cálculo función diferencial de transformador (ANSI 87T)

En la siguiente tabla se muestran las características de los transformadores de corriente asociados a la protección diferencial del transformador Hincapié 13 MVA.

Tabla 67. Parámetros de CTs asociados a la función ANSI 87T Transformador 2 Hincapié 66/13,8 kV 13 MVA

Transformadores de corriente	Clase	Burden	Relación
Lado de 66 kV	5P20	20 VA	300/1 A
Lado de 13,8 kV	C200	50	1200/1 A
Neutro	C100	25	600/5 A

9.1.5.1.1.1. Corrientes nominales

A continuación, se presentan los cálculos de los taps para cada devanado, a partir de la potencia del devanado de mayor potencia, en este caso el de alta que es de 13 MVA.

$$I_{H} = \frac{S_{N}}{\sqrt{3} \times V_{N}} \times RCT = \frac{13 \text{ MVA}}{\sqrt{3} \times 66 \text{kV}} \times RCT = 113,72 \times \frac{1}{300} = 0,38 \text{ A}_{sec}$$

$$I_{M} = \frac{S_{N}}{\sqrt{3} \times V_{N}} \times RCT = \frac{13 \text{ MVA}}{\sqrt{3} \times 13.8 \text{kV}} \times RCT = 544 \times \frac{1}{1200} = 0,45 \text{ A}_{sec}$$

9.1.5.1.1.2. Ajuste de Idiff> ó Threshold

Para el cálculo de las corrientes de ajuste, se consideran las posiciones del cambiador de tomas que emularán el comportamiento de los perfiles de tensión en la red, por encima y por debajo, que corresponden a 69,3 kV y 62,7 kV.

Para el cálculo del ajuste de umbral inferior de la característica diferencial del transformador (ldiff> ó Threshold), se calcula la corriente diferencial en condiciones normales de operación, teniendo en cuenta la condición más crítica para el error asociado a los núcleos de protección de los CTs.

En la siguiente tabla se presenta el resumen de cálculos para el flujo de potencia entre los devanados del transformador en condiciones normales de operación, aplicando las ecuaciones 1 a 11 que se relacionan a continuación.

Para hallar la corriente diferencial se realizan los siguientes cálculos:

$$I_{HV_prim} = \frac{S_{MAX}}{\sqrt{3} \times V_{HV}} (1) \qquad I_{LV_prim} = \frac{S_{MAX}}{\sqrt{3} \times V_{LV}} (2)$$

Para el cálculo de las corrientes secundarias se involucra el error en la transformación de los CT´s. Los máximos errores asociados a los transformadores de corriente se consideran de 10 % por debajo para el lado de 69 kV y del 10% por encima para el lado de 13,8 kV. Con estos porcentajes de error se calcula la máxima corriente diferencial

$$I_{HV \text{ sec}} = I_{HV \text{ prim}} \times R_{CTHV} \times 0.90 (3)$$

$$I_{LV \text{ sec}} = I_{LV \text{ prim}} \times R_{CTLV} \times 1.10 (4)$$

Para realizar el cálculo de la corriente diferencial se tienen las ecuaciones (5), (6) y (7).

$$I_{mh} = I_{HV \text{ sec}} \times k_{HV}$$
 (5) $I_{mh} = I_{LV \text{ sec}} \times k_{LV}$ (6)

Dónde:

K1: Matching 1 lado de 66 kV=
$$\frac{I_{NCT-HV}}{I_{NTRF-HV}}$$

K2: Matching 2 lado de 13,8 kV=
$$\frac{I_{NCT-LV}}{I_{NTRF-LV}}$$

La corriente diferencial para este relé es la suma fasorial de las corrientes por los tres devanados:

$$I_{dif} = |I_{mH} + I_{mL}|$$
 (7)

La corriente de restricción corresponde a la máxima corriente que circula por el transformador en cualquier nivel de tensión, es decir:

$$I_{rest} = Máx \{I_{mH}, I_{mL}\}$$
 (8)

Para el cálculo de la corriente diferencial, se considera que el flujo de potencia por el transformador es de 13 MVA por el lado de 66 kV hacia el lado de 13,8 kV. De acuerdo con estos valores de potencia, se hacen los cálculos de la corriente diferencial.

Tabla 68. Corrientes diferenciales en condiciones normales de operación Transformador 2 Hincapié 66/13,8 kV 13 MVA

V W1 [kV]	V W2 [kV]	In CT W1 [Aprim]	In CT W2 [Aprim]	In CT W1 [Asec]	In CT W2 [Asec]	I W1 [Aprim]	I W2 [Aprim]	I W1 [Asec]	I W2 [Asec]
69,3	13,8	300	1200	1	1	108,31	543,88	0,361	0,453
66	13,8	300	1200	1	1	113,72	543,88	0,379	0,453
62,7	13,8	300	1200	1	1	119,71	543,88	0,399	0,453

V W1 [kV]	V W2 [kV]	Factor Error CT W1	Factor Error CT W2	K W1	K W2	Icomp*CT W1 [p.u]	Icomp*CT W2 [p.u]	ldiff*CT [p.u]	Irest*CT [p.u]	Slope 1 [%]
69,3	13,8	0,900	1,000	2,638	2,206	0,857	1,000	0,143	1,000	14,286
66	13,8	1,000	0,900	2,638	2,206	1,000	0,900	0,100	1,000	10,000
62,7	13,8	1,000	0,900	2,638	2,206	1,053	0,900	0,153	1,053	14,500

Con base en los resultados anteriores, la corriente diferencial que se puede presentar si se dan las condiciones más críticas (que el transformador esté trabajando en el Tap de 69,3kV y que se tengan los máximos errores en los CT's) puede ser del orden de 0,18 l/lrObj.

$$I - DIFF Thresh = 0.18 I/Ir Obj$$

9.1.5.1.1.3. Ajuste de la pendiente 1 (%slope1)

La primera pendiente de la característica de la protección diferencial se calcula de la siguiente manera:

Slope 1 =
$$\frac{I_{Diff}}{I_{Rest}}$$

De los resultados de la anterior tabla la pendiente 1 es la máxima de las tres que se calcularon para las posiciones del variador de tomas, multiplicada por un factor de seguridad de 1,15.

Slope
$$1 = 1.15 \times 0.145 = 0.17$$

9.1.5.1.1.4. Ajuste de Intersection 1 Irest

Este punto es la intercepción entre dos rectas, la recta ldiff>, que es una constante con la recta de la pendiente 1, la cual es una recta que comienza en el origen de coordenadas de la gráfica lrest vs ldiff, así se tiene:

Recta 1
$$(y_1) = 0.18 \left[\frac{I}{I_n}\right]$$

Recta 2 (y₂) =
$$0.17 \times Irest \left[\frac{I}{I_n}\right]$$

Igualando estas dos ecuaciones se obtiene el punto "Intersection 1 Irest"

$$0.18 = 0.17 \times Irest1$$

Irest1 = 1,08
$$\left[\frac{I}{I_n}\right]$$

9.1.5.1.1.5. Ajuste de la pendiente 2 (Slope 2)

La pendiente 2 (Slope 2) se ajustará en 70% ya que es un valor adecuado para brindar tolerancia a la saturación de los transformadores de corriente para altas corrientes de falla.

Slope
$$2 = 0.70$$

9.1.5.1.1.6. Ajuste "Intersection 2 Irest"

Este segundo punto coincide con el intercepto de la recta pendiente 2 y la recta pendiente 1, dicho punto se calcula considerando la mínima corriente que produce saturación en los CTs (Valor de corriente de restricción).

Tabla 69. Máximas corrientes de cortocircuito de componente DC Transformador 2 Hincapié 66/13,8 kV 13 MVA

Iccmax (DC)	[A]	[p.u]
W1 falla 3F	17,453	46,043
W2 falla 3F	9,071	20,013
W1 falla 1F	43,058	113,590
W2 falla 1F	6,009	13,257

El punto "Intersection 2 Irest" es la mínima corriente en p.u, multiplicada por un factor de 0,9.

Irest2 = 0,9 × 13,25 = 11,93
$$\left[\frac{I}{I_n}\right]$$

9.1.5.1.1.7. Ajuste de I-DIFF fast Threshold

De acuerdo con los criterios de ajuste definidos, el valor del umbral máximo de corriente diferencial debe ser mayor que la máxima corriente de energización esperada y adicionalmente debe ser superior a la corriente de falla más crítica externa. En los dos lados del transformador, se simulan fallas trifásicas francas, y se toma como base la máxima corriente en p.u pasante.

Tabla 70. Información de cortocircuitos para el cálculo de la máxima corriente diferencial Transformador 2 Hincapié 66/13,8 kV 13 MVA

Devanado		cortocircuito nfinito	Falla trifásica	lado de 66 kV	Falla trifásica lado de 13,8 kV		
	[A]	[p.u]	[A]	[p.u]	[A]	[p.u]	
Icc W1	1568,559	13,793	0,000	0,000	584,000	5,135	
Icc W2	7501,803	13,793	0,000	0,000	5042,000	9,270	

La máxima corriente es de 13,79 [p.u].

$$I_{\text{Diff}\gg} = 13,79 \left[\frac{I}{I_{\text{n}}} \right]$$

9.1.5.1.1.8. Bloqueo por 2do y 5to armónico

Los ajustes por bloqueo de segundo y quinto armónico se ajustan de la siguiente manera:

Bloqueo por segundo armónico: 15%Bloqueo por quinto armónico: 30%

Tabla 71. Ajustes recomendados función ANSI 87T Relé SIEMENS 7UT8 Transformador 2 Hincapié 66/13,8 kV 13 MVA

Dirección	Parámetro	Unidad	Ajustes Actuales	Ajuste Recomendado
_:11041:3	I-DIFF:Threshold	l/lrObj		0,18
_:11041:100	I-DIFF:Slope 1			0,17
_:11041:101	I-DIFF:Intersection 1 Irest	l/IrObj		1,08
_:11041:102	I-DIFF:Slope 2			0,70
_:11041:103	I-DIFF:Intersection 2 Irest	l/lrObj		11,93
_:11041:106	I-DIFF:Starting detection			no
_:11041:107	I-DIFF:Thresh. startup detection	l/lrObj		0,1
_:11041:108	I-DIFF:Factor increasing char.			1,0
_:11041:109	I-DIFF:Max. perm. Start. time	S		5,0
_:11041:110	I-DIFF: Factor increasing char. DC			2,0
_:11041:115	I-DIFF:Blocking with 2. harmonic			yes
_:11041:116	I-DIFF:2nd harmonic content	%		15
_:11041:117	I-DIFF:Crossblock. time 2nd har.	S		0,05
_:11041:118	I-DIFF:Blocking with CWA			yes
_:11041:121	I-DIFF:Blocking with 3rd harm.			no
_:11041:122	I-DIFF:3rd harmonics content	%		30
_:11041:123	I-DIFF:Crossblock. time 3rd har.			0,0
_:11041:124	I-DIFF:Blocking with 5th harm.			yes
_:11041:125	I-DIFF:5th harmonics content	%		30
_:11041:126	I-DIFF:Crossblock. time 5th har.	S		0,5
_:11041:127	I-DIFF:Limit Idiff 3., 5. harmonics	l/lrObj		1,50
_:11041:128	I-DIFF:Additional stabilization threshold value	l/lrObj		2,00 l/lrObj
_:11041:129	I-DIFF:Time of add-on stabiliz.	S		0,30
_:11041:130	I-DIFF:Cross-blk. time add-on st.	S		0,30
_:11071:1	I-DIFF fast:Mode			on
_:11071:3	I-DIFF fast:Threshold	l/lrObj		13,80
_:11071:6	I-DIFF fast:Operate delay	S		0,00
_:11071:100	I-DIFF fast:Operate & flt.rec. blocked			no

Nota: 1)

1) En rojo se presentan los ajustes recomendados.

En la siguiente figura se muestra la característica ajustada de la protección diferencial. En la sección de verificación se muestra el funcionamiento de la protección con los ajustes recomendados y su respuesta ante condiciones normales de operación, falla externa y falla interna.

Figura 21. Característica de operación función ANSI 87T Relé SIEMENS 7UT8

Transformador 2 Hincapié 69/13,8 kV 13 MVA

9.1.5.1.2. Cálculo función diferencial de Neutro en el transformador (ANSI 87TN)

Es importante resaltar que para ajustar esta función se deberá revisar en campo la polaridad de los CTs y confirmar que sea tal cual como lo requiere el relé. Adicionalmente, se deberá verificar que no se tengan corrientes residuales antes de ponerla en servicio.

La función diferencial de falla a tierra restringida (ANSI 87TN - REF) se ajusta en el relé SIEMENS 7UT85 para el neutro del transformador Hincapié 13 MVA.

Los datos de entrada que se tienen en cuenta para los cálculos de los ajustes de esta función se muestran en la siguiente tabla:

Tabla 72. Información de entrada para los cálculos de los ajustes de la protección ANSI 87TN para el Transformador 2 Hincapié 66/13,8 kV 13 MVA

Características	Unidad	Valor
V Nominal	kV	13,8
S Nominal	MVA	13
CT Fases 13,8 kV TC's bujes ¹		1200/1 A – C100
CT Neutro TC's bujes ²		600/5 A

Nota:

Teniendo en cuenta la información relacionada en la tabla anterior se procede a calcular los ajustes de la función diferencial del autotransformador como se muestra a continuación:

9.1.5.1.2.1. Cálculo de corriente de fases

Se tiene la corriente nominal del transformador así:

Información tomada de la placa del transformador y corroborada por TRELEC.

$$I_{n TRF} = \frac{S_{Nominal}}{\sqrt{3} V_n}$$

$$I_{n TRF} = \frac{13 MVA}{\sqrt{3} 13.8 kV} = 544$$

Cálculo de la corriente de fases, sin considerar desbalances en el sistema, teniendo en cuenta los errores asociados a los transformadores de corriente, que para estos CTs es del 5%.

Se asume falla externa en el lado del neutro del transformador y para este caso la corriente que circula hacia la falla en lado del neutro, corresponde a la corriente que viene del devanado de 13,8 kV, por lo tanto, se asume el siguiente flujo:

$$3I_{0, FASES \ 13,8 \ kV} = 1_{p.u.}$$

 $3I_{0, Neutro} = 1_{p.u.}$

Teniendo en cuenta que todos los CT's asociados presentan una clase de precisión 5P, se asume el siguiente escenario con errores incluidos:

$$3I_{0, FASES \ 13,8 \ kV+Error} = 1_{p.u.} \cdot 0,90 = 0,95 \ p.u.$$

 $3I_{0, Neutro+error} = 1_{p.u.} \cdot 1 = 1,0 \ p.u.$

9.1.5.1.2.2. Cálculo de la corriente de diferencial

$$I_{Diff} = \left| 3I_{0,neutro\,kV+error} - 3I_{0,fases\,13,8\,kV+error} \right|$$

 $I_{Diff} = \left| 1 - 0.90 \right| = 0.1\,p.\,u.$

9.1.5.1.2.3. Cálculo de la corriente de restricción

$$I_{Rest} = \left| 3I_{0,neutro \, kV+error} \right| + \left| 3I_{0,f \, ases \, 13,8 \, kV+error} \right|$$

$$I_{Rest} = \left| 1,0 \right| + \left| 0,90 \right| = 1,90 \, p. \, u.$$

El valor de Threshold se calcula teniendo en cuenta la corriente diferencial calculada anteriormente. Se toma la I_{Diff} y se le multiplica un factor de seguridad del 1.5, de manera que brinde seguridad ante posibles desbalances en el sistema.

$$Threshold = I_{Diff} \cdot Factor \ Seguridad$$

$$Threshold = 0,10 \ p. \ u. \ \cdot 1,5$$

$$Threshold = 0,15 \left[\frac{I}{I_n}\right] \approx 0,15 \left[\frac{I}{I_n}\right]$$

9.1.5.1.2.4. Slope

Teniendo calculadas las corrientes diferenciales (ldiff) y de restricción (lrest), se procede a calcular la pendiente o Slope 1 de la siguiente manera:

Slope
$$1 = \frac{I_{Diff}}{I_{Rest}} = \frac{0.10}{1.90} = 0.053$$

Este resultado se multiplica por un factor de seguridad de 1.5, quedando finalmente como se presenta a continuación:

Slope
$$1 = 0.053 \times 1.5 = 0.039 \approx 0.08$$

9.1.5.1.2.5. Intersection 1 Irest

Este parámetro se calcula a continuación teniendo en cuenta que el valor para la SLOPE 1 es de 4%.

Para hallar el Intersection 1 lrest: Este punto es la intercepción entre dos rectas, la recta ldiff> (Threshold), que es una constante con la recta de la pendiente 1, la cual es una recta que comienza en el origen de coordenadas de la gráfica lrest vs ldiff, así se tiene:

Recta 1
$$(y_1)$$
 = Threshold $\left[\frac{I}{I_{r\,Obj}}\right]$ = 0,15 $\left[\frac{I}{I_{r\,Obj}}\right]$

$$Recta~2~(y_2) = Slope~1~\cdot Intersection~1~Irest~\left[\frac{I}{I_{r~Obj}}\right] = 0.08~\cdot Intersection~1~Irest~\left[\frac{I}{I_{r~Obj}}\right]$$

Igualando estas dos ecuaciones se obtiene el punto Intersection 1 Irest:

$$0.15 = 0.08 \cdot Intersection 1 Irest$$

$$Intersection 1 I rest = 1,90 \left[\frac{I}{I_{r \, Obj}} \right]$$

En la siguiente tabla se muestran los ajustes recomendados para la función diferencial de falla a tierra restringida (ANSI 87TN) del Transformador Hincapié 69/13,8 kV 13 MVA, que se conecta en el neutro del devanado de 13,8 kV.

Tabla 73. Resumen de ajustes para la característica diferencial de falla a tierra restringida (ANSI 87TN) Relé SIEMENS 7UT8 Transformador 2 Hincapié 66/13,8 kV 13 MVA

Dirección	Parámetro	Unidad	Ajustes Actuales	Ajuste Recomendado
_:1 87N REF#	Mode			On
_:2 87N REF#	Operate&flt.rec.blocked			No
_:103 87N REF#	Threshold	l/lrObj		0,15
_:105 87N REF#	Slope			0,08
_:191 87N REF#	Reference side is			(1)

Nota:

- 1) El lado de referencia es el correspondiente al devanado de 13,8 kV, por lo tanto, se debe corroborar en campo que este ajuste corresponda al nivel de tensión de 13,8 kV.
- 2) És importante resaltar que para ajustar esta función se deberá revisar en campo la polaridad de los CTs y que sea tal cual como lo requiere el relé. Adicionalmente, se deberá verificar que no se tengan corrientes residuales antes de ponerla en servicio.
- 3) En rojo se presentan los ajustes recomendados.

En la siguiente figura se muestra la característica ajustada de la protección diferencial. En la sección de verificación se muestra el funcionamiento de la protección con los ajustes recomendados y su respuesta ante condiciones de falla interna.

Figura 22. Característica de operación función ANSI 87TN Relé SIEMENS 7UT85 Transformador 2 Hincapié 66/13,8 kV 13 MVA

9.1.5.1.3. Función de sobrecorriente no direccional (ANSI 50 – 51/51N)

9.1.5.1.3.1. Devanado de 66 kV

9.1.5.1.3.1.1. Sobrecorriente de fases de tiempo definido (ANSI 50)

Para evitar disparos de esta función por fallas en el sistema de baja tensión, se realizan fallas francas en la barra de baja tensión y como criterio se toma el 150% de la mayor corriente de falla que circula por el devanado de alta; estas simulaciones se consignan en la siguiente tabla.

Tabla 74. Corriente de cortocircuito en devanado de 69 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA

Falla en barra de 13,8 kV	Corriente [kA]	Corriente [A]
Trifásica	1,008	1008,0
Bifásica aislada	1,009	1009,0
Bifásica a tierra	1,009	1009,0
Monofásica a tierra	0,573	573,0

Adicionalmente, esta corriente debe ser superior a la corriente Inrush esperada. En este caso, se espera una corriente inrush máxima de 6 veces la corriente nominal, es decir:

$$\begin{split} \mathrm{I}_{Nominal} &= \frac{S_{Tranformador}}{\sqrt{3} \times V_{Dev\ Primario}} \\ \mathrm{I}_{Nominal} &= \frac{13\ MVA}{\sqrt{3} \times 66\ kV} = 113,721\ A \\ I_{INRUSH\ ESPERADA} &= 6 \times \mathrm{I}_{Nominal} = 6 \times 113,72 \end{split}$$

$$I_{INRUSH\ ESPERADA} = 682,32 \text{ A}$$

De acuerdo con los resultados obtenidos, la corriente de arranque se calcula como:

I pickup,
$$50 = 1,50 \times 1009 \text{ A} \cong 1513,5 \text{ A}_{PRIM}$$

Teniendo en cuenta el cambio recomendado de relación de transformación de los CTs para este devanado, el ajuste es el siguiente:

I pickup,
$$50 = 1513.5 \text{ A}_{PRIM} \times \frac{1}{300} = 5.045 \text{ A}_{SEC}$$

9.1.5.1.3.1.2. Sobrecorriente de fases de tiempo inverso (ANSI 51)

La corriente de arranque de esta función se debe ajustar con base en la máxima transferencia de potencia esperada por el transformador que corresponde a 13 MVA y una sobrecarga del 25%, según los criterios definidos.

$$\begin{split} \text{ANSI}_{51} &= 1{,}25 \times \frac{S_{Tranformador}}{\sqrt{3} \times V_{Dev\,Primario} \times RCT} \\ \text{ANSI}_{51} &= 1{,}25 \times \frac{13 \; MVA}{\sqrt{3} \times 66 \; kV \times \frac{300}{1}} = 0{,}474 \; \text{A}_{SEC} \end{split}$$

9.1.5.1.3.1.3. Sobrecorriente de tierras de tiempo definido (ANSI 50N)

Se recomienda no habilitar la protección de tiempo definido para evitar la operación ante fallas en los circuitos de distribución.

9.1.5.1.3.1.4. Sobrecorriente de fases de tiempo inverso (ANSI 51N)

La corriente de arranque se ajusta con el 40% de la corriente nominal del transformador, de acuerdo con lo indicado en los criterios.

$$\begin{split} \text{ANSI}_{51N} = \ 0.40 \ \ \frac{S_{Tranformador}}{\sqrt{3} \times V_{Dev\,Primario} \times RCT} \\ \text{ANSI}_{51N} = \ 0.40 \times \frac{13 \ MVA}{\sqrt{3} \times 66 \ kV \times \frac{300}{1}} = 0.152 \ \text{A}_{SEC} \end{split}$$

Tabla 75. Ajustes actuales y recomendados funciones sobrecorriente devanado 69 kV relé SIEMENS 7UT85 Transformador 2 Hincapié 66/13,8 kV 13 MVA

Parámetro	Unidad	Ajustes Actuales	Ajuste Recomendados
_:661:1 Definite-T 1:Mode			On
_:661:3 Definite-T 1:Threshold	Asec		5,045 Asec (1513,5 Aprim)
_:661:6 Definite-T 1:Pickup delay			0,10
_:691:1 Inverse-T 1:Mode			On
_:691:3 Inverse-T 1:Threshold	Asec		0,474 Asec (142,15 Aprim)
_:691:130 Inverse-T 1: Type of character. curve			ANSI EI
_:691:101 Inverse-T 1:Time dial			1,03
_:751:1 Definite-T 1:Mode			Off
_:781:1 Inverse-T 1:Mode			On
_:781:3 Inverse-T 1:Threshold	Asec		0,150 Asec (45 Aprim)
_:781:108 Inverse-T 1: Type of character. curve			ANSI EI

Parámetro	Unidad	Ajustes Actuales	Ajuste Recomendados
_:781:101 Inverse-T 1:Time dial			1,04

Notas:

- 1) Por ser un relé nuevo, no cuenta con ajustes actuales.
- 2) En rojo se presentan los ajustes recomendados.

9.1.5.1.3.2. Devanado de 13,8 kV

9.1.5.1.3.2.1. Sobrecorriente de fases de tiempo definido (ANSI 50)

Se recomienda no habilitar la protección de tiempo definido para evitar la operación ante fallas en los circuitos de distribución.

9.1.5.1.3.2.2. Sobrecorriente de fases de tiempo inverso (ANSI 51)

La corriente de arranque de esta función se debe ajustar con base en la máxima transferencia de potencia esperada por el transformador que corresponde a 13 MVA y una sobrecarga del 25%, según los criterios definidos.

$$\begin{aligned} \text{ANSI}_{51} &= 1,25 \times \frac{S_{Tranformador}}{\sqrt{3} \times V_{Dev\,Primario} \times RCT} \\ \text{ANSI}_{51} &= 1,25 \times \frac{13 \, MVA}{\sqrt{3} \times 13,8 \, kV \times \frac{1200}{1}} = 0,567 \, \text{A}_{SEC} \end{aligned}$$

9.1.5.1.3.2.3. Sobrecorriente de tierras de tiempo definido (ANSI 50N)

Se recomienda no habilitar la protección de tiempo definido para evitar la operación ante fallas en los circuitos de distribución.

9.1.5.1.3.2.4. Sobrecorriente de fases de tiempo inverso (ANSI 51N)

La corriente de arranque se ajusta con el 25% de la corriente nominal del transformador, de acuerdo con lo indicado en los criterios.

$$\begin{split} \text{ANSI}_{51N} &= 0.25 \ \frac{S_{Tranformador}}{\sqrt{3} \times V_{DevPrimario} \times RCT} \\ \text{ANSI}_{51N} &= 0.25 \times \frac{13 \ MVA}{\sqrt{3} \times 13.8 \ kV \times \frac{1200}{1}} = 0.113 \ \text{A}_{SEC} \end{split}$$

9.1.5.1.3.2.5. Sobrecorriente de neutro de tiempo inverso ANSI 51G

La corriente de arranque se ajusta con el 25% de la corriente nominal del transformador, de acuerdo con lo indicado en los criterios.

$$\begin{aligned} \text{ANSI}_{51G} = \ 0.25 \ \frac{S_{Tranformador}}{\sqrt{3} \times V_{Dev\,Primario} \times RCT} \\ \text{ANSI}_{51G} = \ 0.25 \times \frac{13 \ MVA}{\sqrt{3} \times 13.8 \ kV \times \frac{600}{5}} = \ 1.133 \ \text{A}_{SEC} \end{aligned}$$

Tabla 76. Ajustes actuales y recomendados funciones sobrecorriente devanado de 13,8 kV Relé SIEMENS 7UT85 F003 y F004 Transformador 2 Hincapié 66/13,8 kV 13 MVA

Dirección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
_:661:1	Definite-T 1:Mode			Off

Dirección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
_:691:1	Inverse-T 1:Mode	A _{sec}		On
_:691:3	Inverse-T 1:Threshold			0,57 Asec (679,85 Aprim)
_:691:130	Inverse-T 1: Type of character. Curve			ANSI EI
_:691:101	Inverse-T 1:Time dial			0,70
_:751:1	Definite-T 1:Mode			Off
_:781:1	Inverse-T 1:Mode			On
_:781:3	Inverse-T 1:Threshold	A _{sec}		0,113 Asec (135,97 Aprim)
_:781:108	Inverse-T 1: Type of character. curve			ANSI VI
_:781:101	Inverse-T 1:Time dial			2,37
_:12661:1	Definite-T 1:Mode			Off
_:781:1	Inverse-T 1:Mode			On ⁽²⁾
_:781:3	Inverse-T 1:Threshold	A _{sec}		1,113 Asec (135,97 Aprim)
_:781:108	Inverse-T 1: Type of character. curve			ANSI VI
_:781:101	Inverse-T 1:Time dial			2,37

Notas:

- 1) Por ser un relé nuevo, no cuenta con ajustes actuales.
- La función ANSI 51G deberá estar asociada a un grupo funcional que tenga como entrada la corriente monofásica del CT de neutro.
- 3) En rojo se presentan los ajustes recomendados.

9.1.6. Protección de sobrecorriente de reconectadores

Tabla 77. Ajustes actuales y recomendados para la protección de sobrecorriente de los reconectadores asociados al Transformador Hincapié 1 69/13,8 kV 28 MVA

		RCT		RCT Arrangue A		High Current			TCC1		TCC2	
Alimentador	Relé	Función	[A]			Pickup [Apri]	Pickup [Asec]	T [s]	Curva	Dial	Curva	Dial
EATON CTO 46 COOPER –	EATON COOPER -	Fases	1000/1	560	0,56	4000	4	0,01	101	1	133	1
C 1O 46	Forma 6	Tierra	1000/1	100	0,1	NA	NA	NA	102	1	140	1
CTO NVO 6 (517)	Fases	4000/4	560	0,56	4000	4	0,01	101	1	133	1	
		Tierra	1000/1	100	0,1	NA	NA	NA	102	1	140	1

BOT				ANSI 50/50N			ANSI 51/51N							
Alimentador	Relé	Función	ınción RCT [A]	Pickup [Apri]	Pickup [Asec]	Delay [cyc]	Pickup [Apri]	Pickup [Asec]	Curva	Dial	Pickup [Apri]	Pickup [Apri]	Curva	Dial
CTO 47	SEL-	Fases	1000/1	4000	4	0,01	560	0,56	101	1	560	0,56	133	1
01047	JCL-	Tierra	1000/1	NA	NA	NA	100	0,1	102	1	100	0,1	140	1
CTO NVO 5	SEL-	Fases		4000	4	0,01	560	0,56	101	1	560	0,56	133	1
(516)	651R	Tierra	1000/1	NA	NA	NA	100	0,1	102	1	100	0,1	140	1

Notas:

- 1) Ajustes actuales fueron tomados del proyecto Plan de Choque [4].
- 2) En rojo se presentan los ajustes recomendados para los dos nuevos circuitos.

Tabla 78. Ajustes actuales y recomendados para la protección de sobrecorriente de los reconectadores asociados al Transformador Hincapié 2 66/13,8 kV 13 MVA

		RCT	T Arrangue Ar	Arrangue	High Current			TCC1		TCC2		
Alimentador	Relé	Función	[A]		[Asec]	Pickup [Apri]	Pickup [Asec]	T [s]	Curva	Dial	Curva	Dial
CTO 44	EATON COOPER -	Fases	1000/1	560	0,56	4000	4	0,01	101	1	133	1
C1O 44	Forma 6	Tierra	1000/1	100	0,1	NA	NA	NA	102	1	140	1
CTO 45	EATON CTO 45 COOPER –	Fases	1000/1	560	0,56	4000	4	0,01	101	1	133	1
Forma 6	Tierra	1000/1	100	0,1	NA	NA	NA	102	1	140	1	

Notas:

1) Ajustes actuales fueron tomados del proyecto Plan de Choque [4].

9.1.6.1.1. Función de cierre en falla (SOTF)

Teniendo en cuenta que se debe ajustar un elemento de sobrecorriente para habilitar esta función, a continuación, se presenta el cálculo de arranque de sobrecorriente del elemento **50HS** (Sobrecorriente instantánea de fases de alta velocidad).

Tabla 79. Calculo función 50HS Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Línea	RCT	Corriente máxima de carga A _{PRIM}	1,4 x Corriente máxima de carga Aprim	Ajuste A _{SEC}
Hincapié - Sector Industrial Petapa, extremo Hincapié	1200/5	659	923	3,84

En las siguientes tablas se presentan los ajustes de la función sobrecorriente y SOTF respectivamente, como base en los parámetros del relé SEL 311L.

Tabla 80. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P	NA	3	3
Overcurrent	50PxP ⁽⁴⁾	A _{SEC}		3,84
Phase Definite-Time Overcurrent Elements	67PxD ⁽⁴⁾	сус		3

Notas:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- 3) La cantidad de elementos se deben ajustar acorde a los requerimientos de campo, para la función es necesario solo un elemento
- 4) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF

Teniendo en cuenta esto y las recomendaciones dadas por el fabricante, se recomienda ajustar los siguientes parámetros:

- **CLOEND:** Se recomienda activar este parámetro para implementar el cierre en falla.
- 52AEND: Para la lógica de falla interruptor se recomienda activar este temporizador.

Tabla 81. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ESOTF	NA	Υ	Y
Switch Onto Fault	CLOEND	Ciclos	OFF	10
Switch Onto Fault	52AEND	Ciclos	OFF	10
	SOTFD	Ciclos	30	30
Trip/Comm, Assisted Trip Logic	TRSOTF	NA	M2P+Z2G+50P1	M2P + Z2G + 50Px

Nota:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Él valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF
- 3) En rojo se presentan los parámetros recomendados

9.1.7. Función de Falla Interruptor (ANSI 50BF)

Como la subestación Hincapié 69 kV tiene un relé diferencial de barras de alta impedancia, donde no es posible ajustar esta función, la ANSI 50BF se deberá ajustar en el relé del segundo transformador.

De acuerdo con los criterios definidos, en la siguiente tabla se muestran los ajustes para esta función.

Tabla 82. Ajustes recomendados función ANSI 50BF relé SIEMENS 7UT85 F003 y F004 Transformador Hincapié 2 66/13,8 kV 13 MVA

Dirección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
_:1	Mode			On
_:105	Holding int. start signal			Yes
_:107	Start via binary input			De acuerdo con ingeniería
_:106	Holding ext- start signal			No
_:103	CB aux.cont. crit. Allowed			No
_:104	50BF Ad.CBF #:Dropout			w. aux.c. and curr.crit.
_:108	Retrip after t1			Parallel start T2, T1
_:102	Threshold phase current	Asec		(1)
_:101	Threshold sensitive	Asec		(1)
_:109	Delay T1 for 3-pole retrip	S		0,12
_:110	Delay T2 for 3-pole trip	S		0,20
_:112	Minimum operate time	S		0,10
_:120	3I0 criterion			Plausibility Check
_:121	I2 criterion			Plausibility Check
_:122	Threshold 310 dir. release	Asec		1,25
_:123	Threshold I2 dir. release	A _{SEC}		1,25

Notas:

- 1) Ajustar al mínimo permitido por el relé.
- 2) El símbolo "--" significa que no se tienen ajustes actuales, debido a que es un transformador nuevo.
- 3) En rojo se presentan los ajustes recomendados.

9.2. SUBESTACIÓN GUADALUPE 69 kV

9.2.1. Línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

La línea Guadalupe - Hincapié, extremo Guadalupe 69 kV, es protegida por un relé marca SEL referencia 311L como dispositivo principal.

Relación PT: 69000/115 Relación CT: 1200/5

Corriente de límite térmica: 1188A

9.2.1.1. SEL 311L

9.2.1.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros de la línea, de acuerdo con la siguiente tabla.

Tabla 83. Ajustes Generales actuales y recomendados SEL 311 L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	CTR		240	240
General Settings	APP		311L	311L
	EADVS		Y	Y
	CTRP		240	240
	PTR		600	600
	PTRS		600	600
Backup Protection	Z1MAG	Ω_{SEC}	0,593	0,593
and Line	Z1ANG	deg	75,275	75,270
Parameters	Z0MAG	Ω_{SEC}	1,914	1,914
	Z0ANG	deg	72,831	72,826
	LL	km	3,323	3,323
	EFLOC		Y	Y
Other Settings	TDURD	сус	0	0
Trip/Comm. Assisted Trip Logic (1) (2)	TR		TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6	TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6

Notas:

- Los disparos en la ecuación de disparo, TR, deberán agruparse de manera adecuada en caso de poseer lí mite de caracteres en la escritura. Estos se agrupan, como se observa a continuación, solo de manera indicativa por tipo o grupos de funciones: TRIP_1: M1P+Z1G+Z1T; TRIP_2: M2PT+Z2GT+Z2T; TRIP_3: M3PT+Z3GT+Z3T;
- 2) TŘIP_4: M4PT+Z4GT+Z4T; TRIP_5: 51PT+51GT; TRIP_6: SVxT+SVyT (la SVx corresponde a apertura remota o disparos adiciónales (50BF E2, DDT, etc)); la SVy, corresponde a disparo por 85.67N el cual se define en la 67NCD).
- 3) Las funciones SOTF y POTT no se direccionan manualmente a la ecuación de disparo o al contacto de salida, dado que estas activan internamente, en paralelo con la Wordbit TR, el disparo del relé o Wordbit TRIP.
- 4) El símbolo "--" significa que no se tienen ajustes actuales, debido a que es proyecto nuevo.
- 5) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV V Versión 0e.

9.2.1.1.2. SIR de la Línea

Siguiendo los lineamientos de la referencia [2] se realiza el cálculo del SIR para ambos extremos de la línea, con el objetivo de terminar el esquema más adecuado para la protección de la línea. Los resultados del Cálculo del SIR de la línea se presentan en la siguiente tabla:

Tabla 84. Cálculo del SIR línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Parámetro	Unidad	Hincapié	Guadalupe
Longitud	km	3	3,32
Z1L	Ω	1	,43
ZSSLG	Ω	4,43	246,86
ZS3PH	Ω	4,68	1556139,40
SIR3PH		3,26	1085173,92
SIRSLG		3,09	172,15
Resultado		Corta	Carga

De acuerdo con los resultados obtenidos para esta línea, el esquema de protección propuesto para la bahía de línea permite garantizar un despeje de falla totalmente selectivo, ya que se considera como protección principal la función diferencial de línea ANSI 87L.

9.2.1.1.3. Función Diferencial de Línea (ANSI 87L)

Los datos de entrada para los cálculos de la función diferencial de línea se indican en la siguiente tabla.

Tabla 85. Parámetros de la línea Hincapié - Guadalupe

Longitud	Susceptancia	Límite térmico
Km	μS/km	A
3,323	3,854	1188,000

- 87LPA: El ángulo de bloqueo del elemento 87LP se ajustará en 190°.
- 87LPR: El radio exterior, y por consiguiente el radio interior (recíproco del radio exterior) se ajustan con un valor de 6.
- 87LPP: Como se indicó en los criterios de ajustes el umbral mínimo de corriente diferencial debe ser el mayor valor entre:
 - 2 a 3 veces la corriente de carga capacitiva, más los errores asociados a las medidas del transformador de corriente.
 - 30% de la corriente nominal de la línea para cuando se tengan CTs con errores del 10% o 15 % de la corriente nominal para cuando los CTs asociados a la 87L tengan un error en la medida del 5%

Se procede a hallar la corriente de carga capacitiva con la siguiente ecuación:

$$I_c = \frac{V_n}{\sqrt{3} \times \frac{1}{B \times l}}$$

Donde:

 I_c : Corriente de carga capacitiva.

 V_n : Tensión nominal de la línea.

B: Susceptancia por unidad de longitud de la línea.

l: Longitud de la línea.

$$I_c = 3 * \frac{69 \text{ kV}}{\sqrt{3} \times \frac{1}{3,854 \frac{\mu S}{km} \times 3,323 \text{ km}}} = 1,53A$$

$$I_c = 1,53 A_{PRIM} = 1,53 * \frac{5}{1200} = 0,0064 Asec$$

 $0,3 * In = 356 A_{prim} = 356 * \frac{5}{1200} Asec = 1,485 Asec$

 87LGP (87LQP): El arranque se ajustará con base en el desbalance presente en el sistema en condiciones de operación normal, debido a las características propias del sistema y a errores en las medidas de los transformadores de corrientes.

$$87LGP~(87LQP) = 50\% \times I_{Max_{carga}} = 0.5 \times 1188 = 594~A_{PRIM}$$
 $87LGP~(87LQP) = 594~A_{PRIM} * \frac{5}{1200} = 2.48Asec$

CTALRM: Pickup de alarma para la corriente diferencial de fases. Se obtiene:

$$CTALARM = \left(I_{Max_{carga}} + I_{C}\right) \times \frac{1,1}{CTR} = (1188 + 1,53) \times \frac{1,1}{240} = 5,45 \, Asec$$

De acuerdo con los valores calculados anteriormente, en la siguiente tabla se resumen los parámetros a modificar para la protección diferencial de línea.

Tabla 86. Ajustes actuales y recomendados función ANSI 87L Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados	
	E87L		2	2	
	EHST (1)		(1)	(1)	
	EHSDTT		N	N	
Line Current	EDD		N	N	
Differential Settings	ETAP		N	N	
Dillerential Settings	EOCTL		N	N	
	PCHAN		Х	X	
	EHSC		N	N	
	CTR_X (2)		240	240	
	87LPP	Asec	1,485	1,485	
	87L2P	Asec	2,48	2,48	
071 Cottings	87LGP	Asec	2,48	2,48	
87L Settings	CTALARM	A _{SEC}	5,45	5,45	
	87LR		6	6	
	87LANG	deg	195	195	
87L Torque Control Equations	87LTC		1	1	

Nota:

- 1) Validar en campo la disponibilidad de salidas rápidas y ajustar este parámetro
- 2) Relación de transformación del extremo remoto
- 3) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.

9.2.1.1.4. Función distancia (ANSI 21/21N)

Según lo descrito en la filosofía de protecciones, la función distancia (ANSI 21/21N) se habilita en el relé SEL 311L. En la siguiente tabla se presentan los parámetros a partir de los cuales se realizaron los cálculos de los alcances de zona para la protección distancia.

Tabla 87. Parámetros requeridos para el ajuste de la función distancia en la línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Elemento	Longitud	R1	X1	R0	X0	Observaciones
Elemento	km	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Observaciones
Hincapie - Guadalupe	3,323	0,377	1,434	1,413	4,572	Línea a proteger
Hincapie - Bombeo Hincapie	0,950	0,670	0,457	0,169	1,630	Línea adyacente más corta
Hincapie - Sector Industrial Petapa	3,630	0,393	1,510	1,604	4,948	Línea adyacente más larga
Guadalupe - Proceres	1,758	0,167	0,724	0,751	2,396	Línea reversa más corta
TRF Hincapie 2			26,552		-	Ajuste zona 2 y zona 3 SE remota
TRF Guadalupe 1			13,322			Ajuste zona reversa SE local

En la siguiente tabla se presentan los cálculos de los alcances de zona para la protección distancia de esta línea, teniendo en cuenta que las relaciones de transformación son:

$$RCT = \frac{1200}{5} = 240$$
 $RPT = \frac{69000}{115} = 600$ $\frac{RPT}{RCT} = 2,5$

Tabla 88. Cálculos de ajustes protección ANSI 21/21N línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

ZONA	CRITERIOS		Z	Х	
ZONA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
Aiusto Zono 1 (Forward)	0,70 x Z línea protegida	1,038	0,415	1,004	0,402
Ajuste Zona 1 (Forward)	Ajuste Seleccionado para Zona 1	1,038	0,415	1,004	0,402
	1,2* Z línea	1,779		1,721	
Ajuste Zona 2 (Forward)	Z línea + 0,5 *Z línea adyacente más corta	1,808		1,662	
	Z línea + 0,8 *Z equiv, Trafo S/E remota	22,679		22,675	
	Ajuste Seleccionado para Zona 2	1,779	0,712	1,721	0,688
	Z línea + 0,8 *Z equiv, Trafos S/E remota	22,679		22,675	
Ajuste Zona 4 (Forward)	Z línea + 1,2*(Z línea adyacente más larga)	3,355		3,246	
	Ajuste Seleccionado para Zona 4	3,355	1,342	3,246	1,298
	0,2*Zequiv, Trafos S/E local	2,664		2,664	
Ajuste Zona 3 (Reverse)	0,2*Z línea local más corta	0,149		0,145	
Ajuste Zona 3 (Reverse)	>Z2 Extremo Remoto	0,446		0,434	
	Ajuste Seleccionado para Zona 3	0,446	0,178	0,434	0,174
Z mínima de Carga	(V línea)/(√3 * l max carga) (1)	33,533	13,413		
Rc : Alcance Resistivo	0,45* Z mínima de Carga (2)	15,090	6,036		

Nota:

En la siguiente tabla se presentan los ajustes recomendados para la función distancia.

Tabla 89. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	E21P		4	4
	ECCVT		N	N
	Z1P	Ω_{SEC}	0,415	0,415
Phase Distance	Z2P	Ω_{SEC}	0,902	0,712
	Z3P	Ω_{SEC}	0,834	0,178
	Z4P	Ω_{SEC}	1,336	1,342
	50PP1	Asec	0,5	(1)

¹⁾ La corriente máxima de carga se toma como la corriente límite térmica para esta línea que corresponde a 1188 A.

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	50PP2	Asec	0,5	(1)
	50PP3	Asec	0,5	(1)
	50PP4	Asec	0,5	(1)
	E21MG		4	4
	Z1MG	Ω_{SEC}	0,415	0,415
	Z2MG	Ω_{SEC}	0,902	0,712
	Z3MG	Ω_{SEC}	0,834	0,178
	Z4MG	Ω_{SEC}	1,336	1,342
	E21XG		4	4
	XG1	Ω_{SEC}	0,401	0,402
	XG2	Ω_{SEC}	0,868	0,688
	XG3	Ω_{SEC}	0,807	0,174
	XG4	Ω_{SEC}	1,28	1,298
	RG1	Ω_{SEC}	6,036	6,036
	RG2	Ω_{SEC}	6,036	6,036
	RG3	Ω_{SEC}	6,036	6,036
	RG4	Ω_{SEC}	6,036	6,036
	XGPOL		IG	IG
Ground Distance	TANG	deg	0	0
Giodila Distance	50L1	Asec	0,5	(1)
	50L2	Asec	0,5	(1)
	50L3	Asec	0,5	(1)
	50L4	Asec	0,5	(1)
	50GZ1	Asec	0,5	(1)
	50GZ2	Asec	0,5	(1)
	50GZ3	Asec	0,5	(1)
	50GZ4	Asec	0,5	(1)
	k0M1		0,743	0,743
	k0A1	deg	-3,541	-3,541
	k0M		0,743	0,743
	k0A	deg	-3,541	-3,541
	Z1PD, Z1GD, Z1D	сус	0	0
	Z2PD, Z2GD, Z2D	сус	24	24
	Z3PD, Z3GD, Z3D	сус	48	48
	Z4PD, Z4GD, Z4D	сус	36	36
Directional Elements	DIR 3 Level 3 Direction		R	R
Directional Elements	DIR 3 Level 4 Direction		F	F

Nota:

- 1) Ajustar en el mínimo valor permitido por el relé.
- Ájustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.
- 3) En rojo se presentan los ajustes recomendados.

9.2.1.1.5. Funciones de sobrecorriente direccional (ANSI 67/67N)

9.2.1.1.5.1. Sobrecorriente direccional de fase (ANSI 67)

La función ANSI 67 se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 120% de la corriente nominal del CT = 120% × 1200 = 1440 A
- 130% de la corriente nominal de la línea = $130\% \times 1188 = 1544 A$

Por tanto, se recomienda ajustar esta función en 1140 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

9.2.1.1.5.2. Sobrecorriente direccional de tierra (ANSI 67N)

La función ANSI 67N se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 20% de la corriente nominal del CT = $20\% \times 1200 = 240 A$
- 20-40% de la corriente nominal de la línea = $20\% \times 1188 = 238 A$

Sin embargo, se recomienda ajustar esta función en 238 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

En la siguiente tabla se presentan los ajustes propuestos para las funciones 67/67N a implementar

Tabla 90. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E51P		Υ	Y
D. T. O.	51PP	A _{SEC}	6,19 Asec (1485,6 Aprim)	6, Asec (1485,6 Aprim)
Phase Time Overcurrent	51PC		U1	U1
	51PTD		0,99	0,99
	51PRS		N	N
	E51G		Υ	Y
Residual Ground Time	51GP	Asec	1,49 Asec (357,6 Aprim)	0,99 A _{SEC} (238 A _{PRIM})
Overcurrent	51GC		U1	U1
	51GTD		1,65	1,65
	51GRS		N	N
	51PTC		M2P+32GF+F32Q	M2P+32GF+F32Q
Torque Control Equations	51GTC		Z2G+32GF+F32Q	Z2G+32GF+F32Q
	67P1TC			
	67P2TC			

Nota:

9.2.1.1.6. Función de Falla Interruptor (ANSI 50BF)

Los ajustes actuales son tomados de las recomendaciones del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].

De acuerdo con los criterios descritos en 8.1.8 se muestran los valores de corrientes de cortocircuito para diferentes tipos de falla y el ajuste de la corriente de arranque de la función 50BF.

Tabla 91. Corrientes de falla y corriente de arranque función 50BF SE Palín 69 kV, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Fallas al 99% de la línea	RCT		Corriente de Falla [A _{pri}]		Ajuste Fas	•	Ajuste Tier	Pickup ras	
Hincapié -		Trifásica	Bifásica	Bifásica	Monofásica	 >	△	_	△

Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.

²⁾ En rojo se presentan los ajustes recomendados.

Guadalupe 69 kV desde				a Tierra R _f =50 Ω	$R_f=50 \Omega$	A _{pri}	A _{sec}	A _{pri}	A _{sec}
Guadalupe	1200/5	1824,60	7,60	608,4	2,54	0,12	0,2	1824,60	7,60

Tabla 92. Ajustes actuales y recomendados función funciones 50PxP y 50GxP Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P		(1)	(1)
Overcurrent	50PxP ⁽²⁾	Asec	7,26	7,60
Residual Ground	E50G		(1)	(1)
Instantaneous Overcurrent	50GxP ⁽²⁾	Asec	2,02	2,54

Nota:

- 1) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- 2) El valor "x" hace referencia al elemento de sobre corriente seleccionado para la función ANSI 50BF.
- 3) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.

Tabla 93. Ajuste actuales y recomendados función ANSI 50BF relé SEL 311C línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control	SVx		(TRIP)*(50Px+50Gx)	(TRIP)*(50Px+50Gx)
Equation Variables	SVy	-	(SVy+TRIP)*(50Px+50Gx)	(SVy+TRIP)*(50Px+50Gx)
CEL a mia Camatanal	SVxPU	сус	7,2	7,2
SELogic Control Equation Variables	SVxDO	cyc	0	0
Timers	SVyPU	сус	12	12
1111613	SVyDO	сус	0	0

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].
- 2) Se implementa la función mediante las variables "x" y "y" ante la indisponibilidad de las variables recomendadas por el fabricante.
- 3) Se debe verificar en sitio si estas variables "x" y "y" están disponibles.
- 4) El elemento 50Px es el asociado a la función ANSI 50BF.

9.2.1.1.7. Función de cierre en falla (SOTF)

Teniendo en cuenta que se debe ajustar un elemento de sobrecorriente para habilitar esta función, a continuación, se presenta el cálculo de arranque de sobrecorriente del elemento *50HS* (Sobrecorriente instantánea de fases de alta velocidad).

Tabla 94. Calculo función 50HS Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Línea	RCT	Corriente máxima de carga	1,4 x Corriente máxima de carga	Ajuste	
		A _{PRIM}	A _{PRIM}	A _{SEC}	
Hincapié - Guadalupe, extremo Hincapié	1200/5	1188	1663,2	6,93	

En las siguientes tablas se presentan los ajustes de la función sobrecorriente y SOTF respectivamente, como base en los parámetros del relé SEL 311L.

Tabla 95. Ajustes actuales y recomendados función 50PxP Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P	NA	(1)	(1)
Overcurrent	50PxP ⁽⁴⁾	Asec	6,93	6,93
Phase Definite-Time	67PxD ⁽⁴⁾	сус	3	3

			_
Overcurrent Elements			

Notas:

-) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.
- 2) El elemento de sobrecorriente a ajustar depende de la disponibilidad en campo.
- La cantidad de elementos se deben ajustar acorde a los requerimientos de campo, para la función es necesario solo un elemento
- 4) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF

Teniendo en cuenta esto y las recomendaciones dadas por el fabricante, se recomienda ajustar los siguientes parámetros:

- CLOEND: Se recomienda activar este parámetro para implementar el cierre en falla.
- 52AEND: Para la lógica de falla interruptor se recomienda activar este temporizador.

Tabla 96. Ajustes actuales y recomendados función SOTF Relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ESOTF	NA	Υ	Υ
Switch Onto Fault	CLOEND	Ciclos	10	10
Switch Onto Fault	52AEND	Ciclos	10	10
	SOTFD	Ciclos	30	30
Trip/Comm, Assisted Trip Logic	TRSOTF	NA	M2P+Z2G+50P1	M2P + Z2G + 50Px

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.
- 2) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF

9.2.1.1.8. Función de sobretensión (ANSI 59/27)

9.2.1.1.8.1. Función de Sobretensión (ANSI 59)

Teniendo en cuenta los criterios definidos, se calcula la función de sobretensión al 105% y una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

$$59P = 59SP = \frac{115 \text{ V}}{\sqrt{3}} \times 1,05 = 69,71 \text{ V}_{SEC}$$

$$59PP = 115 \text{ V} \times 1,05 = 120,75 \text{ V}_{SEC}$$

Tabla 97. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	59P	V_{sec}	69,71	69,71
voltage Liements	59SP	V_{sec}	69,71	69,71
	59PP	V _{sec}	120,75	120,75
CEL agia Cantral	SVx	NA	3P59	3P59
SELogic Control Equation Variables	SVy	NA	59S	59S
Equation variables	SVz	NA	59AB + 59BC + 59CA	59AB + 59BC + 59CA
	SVxPU	ciclos	3600	3600
CEL a mia Cameral	SVxDO	ciclos	0	0
SELogic Control Equation Variable	SVyPU	ciclos	3600	3600
Timers	SVyDO	ciclos	0	0
	SVzPU	ciclos	3600	3600
	SVzDO	ciclos	0	0

Notas:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].
- Se ajusta como una función de alarma y por lo tanto no se debe incluir en la matriz de disparos.
- 3) El elemento 59P (SVx) se utiliza para dar disparo al interruptor, pero por requerimientos de TRELEC, este se excluye de la lógica de disparo, el 59PP (SVz) se utiliza para generar alarma, por tanto, este deberá programarse acorde a lo requerido por TRELEC para señalización o envío al centro de control y el 59S (SVy) se utiliza para bloquear el recierre por sobretensión en la línea.
- Las variables "x", "y"y "z" corresponden a las variables lógicas del SEL 311, pero estas deberán ser validadas en campo.

9.2.1.1.8.2. Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

$$27P = 27SP = \frac{115 V}{\sqrt{3}} \cdot 0.1 = 6.64 V_{SEC}$$
$$27PP = 0.1 \cdot 115 V = 11.5 V_{SEC}$$

Tabla 98. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Υ	Y
Voltage Elements (3)	27P	V _{SEC}	6,64	6,64
Voltage Liements	27SP	V _{SEC}	6,64	6,64
	27PP	V _{SEC}	11,5	11,5

Nota:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].
- 2) Se ajusta como una función de alarma y por lo tanto no debe dar disparos.
- 3) El elemento 27P se utiliza en la lógica de recierre.

9.2.1.1.9. Función de Verificación de Sincronismo (ANSI 25)

En primera instancia se presentan los cálculos de los parámetros 25VL y 25VH.

$$25VL = 0.90 \times 69 \ kV \times \frac{1}{RPT} = 62.1 \ kV \times \frac{115}{69000} = 59.76 \ V_{SEC}$$
$$25VH = 1.10 \times 69 \ kV \times \frac{1}{RPT} = 75.9 \ kV \times \frac{115}{69000} = 73.03 \ V_{SEC}$$

Tabla 99. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E25		Y	Y
	25VLO	V _{SEC}	59,76	59,76
	25VHI	V _{SEC}	73,03	73,03
Synchronism Check	25SF	Hz	0,1	0,1
Synchionism Check	25ANG1	deg	25	25
	25ANG2	deg	30	30
	SYNCP		(1)	(1)
	TCLOSD	сус	1	1
Other Equations	BSYNCH		52A(contacto auxiliar) + TRIP	52A(contacto auxiliar) + TRIP

Nota:

1) Validar en la ingeniería la tensión usada para sincronismo

 Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.

9.2.1.1.10. Función de Recierre (ANSI 79)

Teniendo en cuenta los niveles de cortocircuito, se establece que en el extremo Hincapie se efectúa el cierre con verificación de sincronismo en 500 ms, mientras que el extremo de Guadalupe realiza el recierre barra viva – línea muerta en 700 ms.

Tabla 100. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E79		1	1
	79OI1 ⁽³⁾	сус	45	45
Reclosing Relay	79RSD	сус	10800	10800
	79RSLD	сус	10800	10800
	79CLSD	сус	0	0
Other Settings	CFD	Ciclos	60	60
	SVx		COMM*(M2P + Z2G)	COMM*(M2P + Z2G)
	SVxPU	сус	0	0
	SVxDO	сус	0	0
	SVy		51G * R2X * !Z3RB * !LOP	51G * R2X * !Z3RB * !LOP
SELogic Control	SVyPU	сус	0	0
Equation Variables	SVyDO	сус	0	0
(1)(2)(3)	SVz		(87LA*87LB + 87LB*87LC + 87LC*87LA + 87LA*87LB*87LC + M2P) * !LBn	(87LA*87LB + 87LB*87LC + 87LC*87LA + 87LA*87LB*87LC + M2P) * !LBn
	SVzPU	сус	0	0
	SVzDO	сус	0	0
	ULCL		TRIP	TRIP
	79RI		TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87	TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87
	79RIS		52A + 79CY	52A + 79CY
Close/Reclose	79DTL		Z2T+Z3T+Z4T + 51GT + 51PT + SOTF + !RB4 + !LB1 + SVzT + SVpT + SVqT	Z2T+Z3T+Z4T + 51GT + 51PT + SOTF + !RB4 + !LB1 + SVzT + SVpT + SVqT
Logic	79DLS		79LO	79LO
	79SKP	Ciclos	0	0
	79STL		TRIP	TRIP
	79BRS		(51P+51G)*79CY	(51P+51G)*79CY
	79SEQ		0	0
	79CLS		25A1 + 25A2 + (27S*3P27*!LOP)	25A1 + 25A2 + (27S*3P27*!LOP)

Notas:

- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e [1].
- 2) Las variables "x", "z" corresponde a la variable lógica del SEL 311C disponible.
- 3) SVx: ANSI 85-21 (POTT); SVz: bloqueo por fallas bifásicas y trifásicas por ANSI 87L (87L...) y, de igual manera, bloqueo por fallas bifásicas y trifásicas por ANSI 21 (M2P).
- 4) La variable n corresponde a la LB del SEL 311L disponible. A esta LBn en la SVz, se le asigna el "Recierre ante Falla Trifásica Habilitado". Solo se implementa localmente dado que no se conoce un Remote Bit designado para esto.
- 5) La SVy corresponde al disparo por 67NCD y esta definido en la tabla de dicha función.
- 6) Las Wordbits RB4 y LB1 en la ecuación del 79DLT, corresponden a los bloqueos de recierre Remoto y Local, respectivamente. Importante: nótese que se implementa el bloqueo local y remoto general de la función ANSI 79

- y, además, se implementa el bloqueo local del recierre ante fallas trifásicas, por tanto, el bloqueo general funciona tanto para fallas monofásicas como para fallas trifásicas.
- 7) Las variables "p" y "q" corresponde a la variable lógica del SEL 311L disponible. Estas variables se utilizan para bloqueo por sobretensión en línea y por sobretensión en barra, utilizando SV's con el fin de implementar retardo s.
- 8) Las Wordbits 25A1 y 25A2 controlan condiciones "Vivo Vivo"; la lógica (27S*3P27*!LOP) controla condición "Muerto Muerto"; la lógica (59VS*3P27*!LOP) controla condición "Vivo Muerto", verificando tensión monofásica "Sana" a través del 59VS y baja tensión trifásica a través del 3P27; la lógica (27S*59VP*!LOP) controla condición "Muerto Vivo", verificando baja tensión monofásica a través del 27S y tensión trifásica "Sana" a través del 59VP. No se especifica Barra o Línea dado que dependerá a qué PT corresponda cada entrada (monofásica o trifásica) y esto es particular de cada subestación.

9.2.1.1.11. Ajustes Generales Esquemas de Teleprotección

Adicionalmente, según lo establecido en los criterios se recomienda habilitar el esquema permisivo de comparación direccional, aprovechando la función 67N habilitada en ambos extremos de la línea. En la siguiente tabla se muestran los ajustes recomendados.

Tabla 101. Esquema de Teleprotección – POTT relé SEL 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	ECOMM		POTT	POTT
	Z3RBD	сус	5	5
	EBLKD	сус	10	10
Comm. Assisted	ETDPU	сус	2	2
Trip Schemes	EDURD	сус	4	4
The ochemes	EWFC		N	N
	27PWI	Vsec	53,1	53,1
	27PPW	V _{SEC}	92	92
	59NW	V _{SEC}	5	5
Trip Logic	TRCOMM		M2P+Z2G	M2P+Z2G
87L Transmit Equations ⁽¹⁾	T1X		KEY	KEY

Nota:

- 1) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo.
- Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e.

Tabla 102. Esquema de Teleprotección – ANSI 67NCD, relé 311L, línea Guadalupe - Hincapié, extremo Guadalupe 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
SELogic Control Equation Variables	SVy		51G * R2X * !Z3RB * !LOP	51G * R2X * !Z3RB * !LOP
Equation variables (1)	SVyPU	сус	0	0
	SVyDO	сус	0	0
87L Transmit Equations ⁽¹⁾	T2X		51G * !Z3RB * !LOP	51G * !Z3RB * !LOP

Notas:

- 1) Las variables "y" corresponde a la variable lógica del SEL 311L disponible.
- 2) Usar los canales de comunicación disponibles para la transmisión y recepción del comando permisivo
- 3) Ajustes actuales tomados del documento IEB-G021-19-00 Informe Definitivo Estudio de Coordinación de Protecciones Subestación Guadalupe 69/13,8 kV Versión 0e .

9.3. SUBESTACION SECTOR INDUSTRIAL PETAPA 69 kV

9.3.1. Línea Hincapié - Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

La línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV, es protegida por un relé marca SEL referencia 311C como dispositivo principal.

Relación PT: 69000/115

Relación CT: 800/5

Corriente de límite térmica: 659 A

9.3.1.1. SEL 311C

Los ajustes actuales son tomados de las recomendaciones del documento IEB-G014-20-020 Estudio de Coordinación de Protecciones Proyecto Ampliación de la Subestación Sector Industrial Petapa 69/13,8 kV Versión 8 [3], específicamente para las funciones Distancia (ANSI 21/21N) y Sobrecorriente Direccional (ANSI 67/67N). las demás funciones son tomadas del archivo de ajustes compartido por TRELEC

9.3.1.1.1. Ajustes generales

Para la correcta operación de la protección, se deben configurar los parámetros de la línea, de acuerdo con la siguiente tabla.

Tabla 103. Ajustes Generales actuales y recomendados SEL 311 C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	CTR		160	160
General Settings	APP		311C	311C
	EADVS		Y	Y
	CTRP		160	160
	PTR		600	600
	PTRS		600	600
Backup Protection	Z1 MAG	Ω_{SEC}	1,73	0,416
and Line	Z1ANG	deg	66,64	75,412
Parameters	ZOMAG	Ω_{SEC}	8,68	1,387
	Z0ANG	deg	79,47	72,039
	LL	km	13,11	3,630
	EFLOC		Y	Y
Other Settings	TDURD	сус	9	9
Trip/Comm. Assisted Trip Logic (1) (2)	TR		M1P+Z1G+Z1T+M2PT+Z2GT +Z2T+M3PT+Z3GT+Z3T+51 GT+51PT+OC+LB3+SV2T	TRIP_1 + TRIP_2 + TRIP_3 + TRIP_4 + TRIP_5 + TRIP_6

Notas:

- Los disparos en la ecuación de disparo, TR, deberán agruparse de manera adecuada en caso de poseer límite de caracteres en la escritura. Estos se agrupan, como se observa a continuación, solo de manera indicativa por tipo o grupos de funciones: TRIP_1: M1P+Z1G+Z1T; TRIP_2: M2PT+Z2GT+Z2T; TRIP_3: M3PT+Z3GT+Z3T;
- 2) TRIP_4: M4PT+Z4GT+Z4T; TRIP_5: 51PT+51GT; TRIP_6: SVxT+SVyT (la SVx corresponde a apertura remota o disparos adiciónales (50BF E2, DDT, etc)); la SVy, corresponde a disparo por 85.67N el cual se define en la 67NCD).
- 3) Las funciones SOTF y POTT no se direccionan manualmente a la ecuación de disparo o al contacto de salida, dado que estas activan internamente, en paralelo con la Wordbit TR, el disparo del relé o Wordbit TRIP.
- 4) El símbolo "--" significa que no se tienen ajustes actuales, debido a que es proyecto nuevo.
- 5) Ajustes actuales tomados del archivo de ajustes del relé.
- En rojo se presentan los ajustes recomendados.

9.3.1.1.2. SIR de la Línea

Siguiendo los lineamientos de la referencia [2] se realiza el cálculo del SIR para ambos extremos de la línea, con el objetivo de terminar el esquema más adecuado para la protección de la línea. Los resultados del Cálculo del SIR de la línea se presentan en la siguiente tabla:

Tabla 104. Cálculo del SIR línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Parámetro	Unidad	Hincapié	Guadalupe		
Longitud	km	3	3,63		
Z1L	Ω	1,51			
ZSSLG	Ω	49,72	5,96		
ZS3PH	Ω	6,44	6,12		
SIR3PH		4,26	4,05		
SIRSLG		32,93	3,94		
Resultado		Carga	Carga		

De acuerdo con los resultados obtenidos para esta línea, el esquema de protección propuesto para la bahía de línea permite garantizar un despeje de falla totalmente selectivo, ya que se considera como protección principal la función diferencial de línea ANSI 87L.

9.3.1.1.3. Función Diferencial de Línea (ANSI 87L)

Dado que en la línea Hincapié - Sector Industrial Petapa, extremo Hincapié 69 kV opera un relé SEL modelo 311L, y en el extremo de Sector Industrial Petapa 69 kV opera un relé SEL modelo 311C, no es posible ajustar esta función de protección. Se sugiere evaluar la implementación de relés que permitan realizar este ajuste, ya que, según los resultados del análisis de la relación selectividad interna (SIR) de la línea, el esquema de protección propuesto para la bahía de línea garantiza un despeje de falla totalmente selectivo si se considera la función diferencial de línea ANSI 87L como la protección principal.

9.3.1.1.4. Función distancia (ANSI 21/21N)

Según lo descrito en la filosofía de protecciones, la función distancia (ANSI 21/21N) se habilita en el relé SEL 311L. En la siguiente tabla se presentan los parámetros a partir de los cuales se realizaron los cálculos de los alcances de zona para la protección distancia.

Tabla 105. Parámetros requeridos para el ajuste de la función distancia en la línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Elemento	Longitud	R1	X1	R0	X0	Observaciones
Elemento	km	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Ω_{PRI}	Observaciones
Hincapie - Sector Industrial Petapa	3,630	0,393	1,510	1,604	4,948	Línea a proteger
Hincapie - Bombeo Hincapie	0,950	0,670	0,457	0,169	1,630	Línea adyacente más corta
Hincapie - Guadalupe	3,323	0,377	1,434	1,413	4,572	Línea adyacente más larga
SIP - Villalibos	2,860	0,330	1,200	1,270	1,270	Línea reversa más corta
TRF Hincapie 2			26,552			Ajuste zona 2 y zona 3 SE remota
TRF SIP			22,360			Ajuste zona reversa SE local

En la siguiente tabla se presentan los cálculos de los alcances de zona para la protección distancia de esta línea, teniendo en cuenta que las relaciones de transformación son:

$$RCT = \frac{1200}{5} = 240$$
 $RPT = \frac{69000}{115} = 600$ $\frac{RPT}{RCT} = 2,5$

Tabla 106. Cálculos de ajustes protección ANSI 21/21N línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

ZONA	CRITERIOS		Z	X	
ZONA	CRITERIOS	Ω_{PRI}	Ω_{SEC}	Ω_{PRI}	Ω_{SEC}
Ajuste Zona 1 (Forward)	0,70 x Z línea protegida	1,092	0,291	1,057	0,282
Ajuste Zona i (Forward)	Ajuste Seleccionado para Zona 1	1,092	0,291	1,057	0,282
	1,2* Z línea	1,872		1,812	
Airrata Zana 2 (Farragard)	Z línea + 0,5 *Z línea adyacente más corta	1,885		1,738	
Ajuste Zona 2 (Forward)	Z línea + 0,8 *Z equiv, Trafo S/E remota	22,755		22,751	
	Ajuste Seleccionado para Zona 2	1,872	0,499	1,812	0,483
	Z línea + 0,8 *Z equiv, Trafos S/E remota	22,755		22,751	
Ajuste Zona 4 (Forward)	Z línea + 1,2*(Z línea adyacente más larga)	3,340		3,231	
	Ajuste Seleccionado para Zona 4	3,340	0,891	3,231	0,862
	0,2*Zequiv, Trafos S/E local	4,472		4,472	
Ajuste Zona 3 (Reverse)	0,2*Z línea local más corta	0,249		0,240	
Ajuste Zona 3 (Neverse)	>Z2 Extremo Remoto	0,747		0,720	
	Ajuste Seleccionado para Zona 3	0,747	0,199	0,720	0,192
Z mínima de Carga	(V línea)/(√3 * l max carga) (1)	60,451	16,120		
Rc : Alcance Resistivo	0,45* Z mínima de Carga (2)	27,203	7,254		

En la siguiente tabla se presentan los ajustes recomendados para la función distancia.

Tabla 107. Ajustes actuales y recomendados función ANSI 21/21N Relé SEL 311L línea Hincapié - Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	E21P		4	4
	ECCVT		N	N
	Z1P	Ω_{SEC}	0,333	0,291
	Z2P	Ω_{SEC}	0,599	0,499
Phase Distance	Z3P	Ω_{SEC}	0,627	0,199
Filase Distance	Z4P	Ω_{SEC}	0,856	0,891
	50PP1	Asec	0,5	(1)
	50PP2	Asec	0,5	(1)
	50PP3	Asec	0,5	(1)
	50PP4	Asec	0,5	(1)
	E21MG		4	4
	Z1MG	Ω_{SEC}	0,333	0,291
	Z2MG	Ω_{SEC}	0,599	0,499
	Z3MG	Ω_{SEC}	0,627	0,199
	Z4MG	Ω_{SEC}	0,856	0,891
	E21XG		4	4
	XG1	Ω_{SEC}	0,322	0,282
	XG2	Ω_{SEC}	0,586	0,483
Ground Distance	XG3	Ω_{SEC}	0,608	0,192
	XG4	Ω_{SEC}	0,843	0,862
	RG1	Ω_{SEC}	1,611	7,254
	RG2	Ω_{SEC}	2,93	7,254
	RG3	Ω_{SEC}	3,041	7,254
	RG4	Ω_{SEC}	4,213	7,254
	XGPOL		IG	IG
	TANG	deg	0	0
	50L1	Asec	0,5	(1)

Nota:
1) La corriente máxima de carga se toma como la corriente límite térmica para esta línea que corresponde a 659 A.

Sección	Parámetro	Unidad	Ajuste Actuales	Ajuste Recomendados
	50L2	Asec	0,5	(1)
	50L3	Asec	0,5	(1)
	50L4	Asec	0,5	(1)
	50GZ1	Asec	0,5	(1)
	50GZ2	Asec	0,5	(1)
	50GZ3	Asec	0,5	(1)
	50GZ4	Asec	0,5	(1)
	k0M1		0,779	0,779
	k0A1	deg	-4,816	-4,816
	k0M		0,779	0,779
	k0A	deg	-4,816	-4,816
	Z1PD, Z1GD, Z1D	сус	0	0
	Z2PD, Z2GD, Z2D	сус	12	24
	Z3PD, Z3GD, Z3D	сус	48	48
	Z4PD, Z4GD, Z4D	сус	36	36
Directional Elements	DIR 3 Level 3 Direction		Reverse	R
Directional Elements	DIR 3 Level 4 Direction		Forward	F

Nota:

- Ajustar en el mínimo valor permitido por el relé.
- 2) Los ajustes actuales son tomados de las recomendaciones del documento IEB-G014-20-020 Estudio de Coordinación de Protecciones Proyecto Ampliación de la Subestación Sector Industrial Petapa 69/13,8 kV Versión 8
- 3) En rojo se presentan los ajustes recomendados.

9.3.1.1.5. Funciones de sobrecorriente direccional (ANSI 67/67N)

9.3.1.1.5.1. Sobrecorriente direccional de fase (ANSI 67)

La función ANSI 67 se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 120% de la corriente nominal del CT = $120\% \times 1200 = 1440 A$
- 130% de la corriente nominal de la línea = $130\% \times 659 = 857 A$

Por tanto, se recomienda ajustar esta función en 857 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

9.3.1.1.5.2. Sobrecorriente direccional de tierra (ANSI 67N)

La función ANSI 67N se ajusta de acuerdo a los criterios presentados en los criterios de ajustes; de manera que se selecciona el menor valor entre los siguientes criterios:

- 20% de la corriente nominal del CT = $20\% \times 1200 = 240 A$
- 20-40% de la corriente nominal de la línea = $20\% \times 659 = 132 A$

Sin embargo, se recomienda ajustar esta función en 132 A, con el objetivo de lograr un margen de coordinación adecuado acorde con los ajustes de los relés en el área de influencia

En la siguiente tabla se presentan los ajustes propuestos para las funciones 67/67N a implementar

Tabla 108. Ajustes actuales y recomendados función ANSI 67/67N Relé SEL 311L línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E51P		Υ	Υ
Discos Time Our constitution	51PP	A _{SEC}	4,95 A _{SEC} (790 A _{PRIM})	5,35 A _{SEC} (857 A _{PRIM})
Phase Time Overcurrent	51PC		U5	U5
	51PTD		2,32	2,32
	51PRS		N	N
	E51G		Y	Y
Residual Ground Time	51GP	A _{SEC}	0,85 A _{SEC} (136 A _{PRIM})	0,85A _{SEC} (132 A _{PRIM})
Overcurrent	51GC		U1	U1
	51GTD		2,32	2,32
	51GRS		N	N
	51PTC		M2P+32GF+F32Q	M2P+32GF+F32Q
Torque Control Equations	51GTC		Z2G+32GF+F32Q	Z2G+32GF+F32Q
	67P1TC			M2P+32GF+F32Q
	67P2TC			Z2G+32GF+F32Q

Nota:

9.3.1.1.6. Función de Falla Interruptor (ANSI 50BF)

Según el documento IEB-G014-20-020 Estudio de Coordinación de Protecciones Proyecto Ampliación de la Subestación Sector Industrial Petapa 69/13,8 kV Versión 8 [3], esta función se ajustará en el relé SEL 587Z destinado para la protección de barra.

9.3.1.1.7. Función de cierre en falla (SOTF)

Teniendo en cuenta que se debe ajustar un elemento de sobrecorriente para habilitar esta función, a continuación, se presenta el cálculo de arranque de sobrecorriente del elemento *50HS* (Sobrecorriente instantánea de fases de alta velocidad).

Tabla 109. Calculo función 50HS Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Línea	RCT	Corriente máxima de carga	1,4 x Corriente máxima de carga	Ajuste
		A _{PRIM}	A _{PRIM}	A _{SEC}
Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa	800/5	659	923	5,77

En las siguientes tablas se presentan los ajustes de la función sobrecorriente y SOTF respectivamente, como base en los parámetros del relé SEL 311L.

Tabla 110. Ajustes actuales y recomendados función 50PxP Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Phase Instantaneous	E50P	NA	3	3
Overcurrent	50PxP ⁽⁴⁾	A _{SEC}		5,77
Phase Definite-Time Overcurrent Elements	67PxD ⁽⁴⁾	сус		3

Los ajustes actuales son tomados de las recomendaciones del documento IEB-G014-20-020 Estudio de Coordinación de Protecciones Proyecto Ampliación de la Subestación Sector Industrial Petapa 69/13,8 kV Versión 8.

²⁾ En rojo se presentan los ajustes recomendados.

Notas:

- 1) Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) El elemento de sobre corriente a ajustar depende de la disponibilidad en campo.
- La cantidad de elementos se deben ajustar acorde a los requerimientos de campo, para la función es necesario solo un elemento
- 4) El valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF
- 5) En rojo se presentan los ajustes recomendados.

Teniendo en cuenta esto y las recomendaciones dadas por el fabricante, se recomienda ajustar los siguientes parámetros:

- **CLOEND**: Se recomienda activar este parámetro para implementar el cierre en falla.
- 52AEND: Para la lógica de falla interruptor se recomienda activar este temporizador.

Tabla 111. Ajustes actuales y recomendados función SOTF Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
Switch Onto Fault	ESOTF	NA	Υ	Y
	CLOEND	Ciclos	OFF	10
	52AEND	Ciclos	10	10
	SOTFD	Ciclos	30	30
Trip/Comm, Assisted Trip Logic	TRSOTF	NA	M2P+Z2G+50P1	M2P + Z2G + 50Px

Nota:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Él valor x hace referencia al elemento de sobre corriente seleccionado para la función SOTF
- 3) En rojo se presentan los ajustes recomendados

9.3.1.1.8. Función de sobretensión (ANSI 59/27)

9.3.1.1.8.1. Función de Sobretensión (ANSI 59)

Teniendo en cuenta los criterios definidos, se calcula la función de sobretensión al 105% y una temporización de 60 s. Este ajuste deberá ser verificado de acuerdo con la curva de soportabilidad de los equipos.

$$59P = 59SP = \frac{115 \text{ V}}{\sqrt{3}} \times 1,05 = 69,71 \text{ V}_{SEC}$$

$$59PP = 115 \text{ V} \times 1,05 = 120,75 \text{ V}_{SEC}$$

Tabla 112. Ajustes actuales y recomendados función ANSI 59 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	59P	V _{sec}	73,70	69,72
voltage Elements	59SP	V _{sec}	73,70	69,72
	59PP	V _{sec}	126,50	120,75
SEL agia Cantral	SVx	NA		3P59
SELogic Control Equation Variables	SVy	NA		59S
Equation variables	SVz	NA		59AB + 59BC + 59CA
	SVxPU	ciclos		3600
CEL a sia Camtral	SVxDO	ciclos		0
SELogic Control Equation Variable	SVyPU	ciclos		3600
Timers	SVyDO	ciclos		0
	SVzPU	ciclos		3600
	SVzDO	ciclos		0

Notas:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Se ajusta como una función de alarma y por lo tanto no se debe incluir en la matriz de disparos.

- 3) El elemento 59P (SVx) se utiliza para dar disparo al interruptor, pero por requerimientos de TRELEC, este se excluye de la lógica de disparo, el 59PP (SVz) se utiliza para generar alarma, por tanto, este deberá programarse acorde a lo requerido por TRELEC para señalización o envío al centro de control y el 59S (SVy) se utiliza para bloquear el recierre por sobretensión en la línea.
- 4) Las variables "x", "y" y "z" corresponden a las variables lógicas del SEL 311, pero estas deberán ser validadas en campo.

9.3.1.1.8.2. Función de Baja Tensión (ANSI 27)

Para este caso la función de baja tensión (ANSI 27) supervisará el cierre de la cuchilla de puesta a tierra y estará ajustado a un valor del 10% de la tensión nominal, sin temporización.

$$27P = 27SP = 10\% V_{nominal} = 0.1 \times \frac{115 \text{ V}}{\sqrt{3}} = 6.64 \text{ Vsec}$$
$$27PP = 10\% V_{nominal} = 0.1 \times 115 \text{ V} = 11.5 \text{ Vsec}$$

Tabla 113. Ajustes actuales y recomendados función ANSI 27 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	EVOLT	Y or N	Y	Y
Voltage Elements (3)	27P	V _{SEC}	40,00	6,64
voltage Elements	27SP	V _{SEC}	40,00	6,64
	27PP	V _{SEC}	60,00	11,5

Nota:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Se ajusta como una función de alarma y por lo tanto no debe dar disparos.
- 3) El elemento 27P se utiliza en la lógica de recierre.
- 4) En rojo se presentan los ajustes recomendados

9.3.1.1.9. Función de Verificación de Sincronismo (ANSI 25)

En primera instancia se presentan los cálculos de los parámetros 25VL y 25VH.

$$25VLO = 0.90 \times \frac{V_{Nominal}}{\sqrt{3}} = 0.90 \times \frac{115 V}{\sqrt{3}} = 59.76 V$$
$$25VHI = 1.10 \times \frac{V_{Nominal}}{\sqrt{3}} = 1.10 \times \frac{115 V}{\sqrt{3}} = 73.03 V$$

Tabla 114. Ajustes actuales y recomendados función ANSI 25 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E25		Y	Y
	25VLO	V _{SEC}	57,00	59,76
	25VHI	V _{SEC}	73,70	73,03
Synchronism Check	25SF	Hz	0,042	0,1
Sylicilionism Check -	25ANG1	deg	25,00	25
	25ANG2	deg	40,00	30
	SYNCP		VB	(1)
	TCLOSD	сус	3,00	1
Other Equations	BSYNCH		IN101+TRIP	52A(contacto auxiliar) + TRIP

Nota:

- 1) Validar en la ingeniería la tensión usada para sincronismo
- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- En rojo se presentan los parámetros recomendados

9.3.1.1.10. Función de Recierre (ANSI 79)

Teniendo en cuenta los niveles de cortocircuito, se establece que en el extremo Sector Industrial Petapa se efectúa el cierre con verificación de sincronismo en 500 ms, mientras que el extremo de Hincapié realiza el recierre barra viva – línea muerta en 700 ms..

Tabla 115. Ajustes actuales y recomendados función ANSI 79 Relé SEL 311C, línea Hincapié – Sector Industrial Petapa, extremo Sector Industrial Petapa 69 kV

Sección	Parámetro	Unidad	Ajustes Actuales	Ajustes Recomendados
	E79		1	1
	79OI1 ⁽³⁾	сус	30	30
Reclosing Relay	79RSD	сус	1800	10800
	79RSLD	сус	300	10800
	79CLSD	сус	1	0
Other Settings	CFD	Ciclos	60	60
	SVx			COMM*(M2P + Z2G)
	SVxPU	сус		0
	SVxDO	сус		0
	SVy			51G * R2X * !Z3RB * !LOP
SELogic Control	SVyPU	сус		0
Equation Variables	SVyDO	сус		0
(1)(2)(3)	SVz			(87LA*87LB + 87LB*87LC + 87LC*87LA + 87LA*87LB*87LC + M2P) * !LBn
	SVzPU	сус		0
	SVzDO	сус		0
	ULCL		TRIP	TRIP
	79RI		TRIP*(M1P+Z1G)	TRIP*(M1P + Z1G + SVxT + SVyT) + TRIP87
	79RIS		52A + 79CY	52A + 79CY
Close/Reclose	79DTL		!IN102+OC+LB3+!LB1	Z2T+Z3T+Z4T + 51GT + 51PT + SOTF + !RB4 + !LB1 + SVzT + SVpT + SVqT
Logic	79DLS		79LO	79LO
	79SKP	Ciclos	0	0
	79STL		TRIP	TRIP
	79BRS		(51P+51G)*79CY	(51P+51G)*79CY
	79SEQ		0	0
	79CLS		!3P59*!3P27*27S+25A1+25A2	25A1+25A2+(27S*3P27*!LOP)

Notas:

- Ajustes actuales tomados del archivo de ajustes compartido por TRELEC.
- 2) Las variables "x", "z" corresponde a la variable lógica del SEL 311C disponible.
- SVx: ANSI 85-21 (POTT); SVz: bloqueo por fallas bifásicas y trifásicas por ANSI 87L (87L...) y, de igual manera, bloqueo por fallas bifásicas y trifásicas por ANSI 21 (M2P).
- 4) La variable n corresponde a la LB del SEL 311L disponible. A esta LBn en la SVz, se le asigna el "Recierre ante Falla Trifásica Habilitado". Solo se implementa localmente dado que no se conoce un Remote Bit designado para esto.
- 5) La SVy corresponde al disparo por 67NCD y esta definido en la tabla de dicha función.
- 6) Las Wordbits RB4 y LB1 en la ecuación del 79DLT, corresponden a los bloqueos de recierre Remoto y Local, respectivamente. Importante: nótese que se implementa el bloqueo local y remoto general de la función ANSI 79 y, además, se implementa el bloqueo local del recierre ante fallas trifásicas, por tanto, el bloqueo general funciona tanto para fallas monofásicas como para fallas trifásicas.
- 7) Las variables "p" y "q" corresponde a la variable lógica del SEL 311L disponible. Estas variables se utilizan para bloqueo por sobretensión en línea y por sobretensión en barra, utilizando SV's con el fin de implementar retardos.
- 3) Las Wordbits 25A1 y 25A2 controlan condiciones "Vivo Vivo"; la lógica (27S*3P27*!LOP) controla condición "Muerto Muerto"; la lógica (59VS*3P27*!LOP) controla condición "Vivo Muerto", verificando tensión monofásica "Sana" a través del 59VS y baja tensión trifásica a través del 3P27; la lógica (27S*59VP*!LOP) controla condición "Muerto Vivo", verificando baja tensión monofásica a través del 27S y tensión trifásica "Sana" a través del 59VP.

No se especifica Barra o Línea dado que dependerá a qué PT corresponda cada entrada (monofásica o trifásica) y esto es particular de cada subestación.

9) En rojo se presentan los parámetros recomendados.

9.4. SUBESTACIÓN BOMBEO HINCAPIÉ 69 kV

Para la subestación Bombeo Hincapié no se incluye cálculos debido a que cuenta con un seccionador como equipo de maniobra para la desconexión del circuito a 69 kV, y los transformadores con nivel de tensión 69/4,160 kV cuentan con Fusible como protección.

Figura 23. Diagrama unifilar Bombeo Hincapié

10. VERIFICACIÓN DEL DESEMPEÑO DE LAS FUNCIONES DE PROTECCIÓN

10.1. VERIFICACIÓN DE LAS PROTECCIONES DEL TRANSFORMADOR

10.1.1. Verificación protección diferencial del Transformador 2 Hincapié 66/13,8 kV 13 MVA

En la siguiente figura se representa la corriente diferencial y la corriente de restricción, obtenidas de las simulaciones, graficadas sobre la característica de operación ajustada de la función diferencial de transformador, donde se observa que, la característica de operación de la función ANSI 87T del transformador de la subestación es estable, ya que no se presenta incursión en la zona de operación. Se concluye entonces, que los ajustes propuestos para esta función son adecuados.

Tabla 116. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 66kV

Caso	Resistencia de falla [Ω]	I W1 [Aprim]	I W2 [Aprim]	In CT W1 [Aprim]	In CT W2 [Aprim]	In CT W1 [Asec]	In CT W2 [Asec]	I W1 [Asec]	I W2 [Asec]
Α	0	300	1200	1	1	18,347	0,000	300	1200
В	5	300	1200	1	1	13,420	0,207	300	1200
С	10	300	1200	1	1	9,623	0,293	300	1200
D	0	300	1200	1	1	12,873	0,277	300	1200
Е	10	300	1200	1	1	8,293	0,377	300	1200
F	50	300	1200	1	1	2,747	0,385	300	1200

Tabla 117. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 66kV

Caso	Factor Error CT W1	Factor Error CT W2	K W1	K W2	Icomp*CT W1 [p.u]	Icomp*CT W2 [p.u]	ldiff*CT [p.u]	Irest*CT [p.u]
Α	0,900	1,000	2,638	2,206	43,559	0,000	43,559	43,559
В	1,000	0,900	2,638	2,206	35,403	0,410	35,813	35,403
С	1,000	0,900	2,638	2,206	25,387	0,582	25,969	25,387
D	0,900	1,000	2,638	2,206	30,564	0,610	31,175	30,564
Е	1,000	0,900	2,638	2,206	21,878	0,748	22,626	21,878
F	1,000	0,900	2,638	2,206	7,246	0,765	8,010	7,246

Tabla 118. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 13,8kV

Caso	Resistencia de falla [Ω]	I W1 [Aprim]	I W2 [Aprim]	In CT W1 [Aprim]	In CT W2 [Aprim]	In CT W1 [Asec]	In CT W2 [Asec]	I W1 [Asec]	I W2 [Asec]
Α	0	1025	4903	300	1200	1	1	3,417	4,086
В	5	395	1887	300	1200	1	1	1,317	1,573
С	10	258	1234	300	1200	1	1	0,860	1,028
D	0	584	5214	300	1200	1	1	1,947	4,345
Е	10	185	1248	300	1200	1	1	0,617	1,040
F	50	119	644	300	1200	1	1	0,397	0,537

Tabla 119. Corrientes diferenciales ante fallas internas del Transformador 2 Hincapié 66/13,8 kV 13 MVA en el lado de 13,8kV

Caso	Factor Error CT W1	Factor Error CT W2	K W1	K W2	lcomp*CT W1 [p.u]	lcomp*CT W2 [p.u]	ldiff*CT [p.u]	Irest*CT [p.u]
А	0,900	1,000	2,638	2,206	8,112	9,015	17,127	9,015
В	1,000	0,900	2,638	2,206	3,473	3,123	6,596	3,473
С	1,000	0,900	2,638	2,206	2,269	2,042	4,311	2,269
D	0,900	1,000	2,638	2,206	4,622	9,587	14,209	9,587
E	1,000	0,900	2,638	2,206	1,627	2,065	3,692	2,065

Caso	Factor Error CT	Factor Error CT	K W1	K W2		Icomp*CT W2 [p.u]	ldiff*CT [p.u]	Irest*CT [p.u]
F	1,000	0,900	2,638	2,206	1,046	1,066	2,112	1,066

Figura 24. Verificación Protección 87T ante fallas en el devanado de 69 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA

Figura 25. Verificación Protección 87T ante fallas en el devanado de 13,8 kV Transformador 2 Hincapié 66/13,8 kV 13 MVA

10.1.2. Verificación de saturación de CTs asociados a las protecciones ANSI 87T Se realiza la verificación de cargabilidad de los CTs con relaciones de 300/1 (lado de alta) y 1200/ (lado de baja) para el Transformador 2 Hincapié 66/13,8 kV 13 MVA,

obteniendo los resultados que se consignan en la siguiente tabla. En esa tabla se muestra el comportamiento de las corrientes diferenciales y de restricción ante condición de operación normal. A partir de los resultados obtenidos se evidencia la ausencia de una posible saturación, por lo que no se pondría en riesgo la estabilidad de la protección ANSI 87T ante una falla considerando la componente DC.

Tabla 120. Resultados de verificación de desempeño de los CTs asociados a la función ANSI 87T Transformador 2 Hincapié 66/13,8 kV 13 MVA

CT lado	Unidad de bahía 87T		Cable			VA Tota	In CT [A]		Clase límite de	Factor límite de precisió	límite de Carga	Resistenci a CT	Resistenci a Burden	Tensión de saturació	Tipo de	X/R	Cargabilida	lk"ma	lcc/lp	Factor límite de precisió	Validació n Estado	
de	Referenci a	VA	L (m)	Tipo	R (Ω/km)	VA	l	Prim ,	Sec ,	n	n asignad o (kn)	(VA)	(Ohms)	real (Ohms)	n real Vsat (Vrms)	Falla	AIK	(%)	(kA)	(K _{ssc}	n real (kr)	Estable
CO 144	SIEMENS	0,24	60	10	3,344	0,2 0	0,45	300	4	5P	20	20	1.150	0,4456	250,0	Trifásica	12,93 1	2,23%	1,025	3,42	265,10	NO SATURA
	7UT85	5	60	AWG	3,344	0,4	0,65	300	•	35	20	20	1,150	0,6463	200,0	Monofásic a	14,87 7	3,23%	0,584	1,95	235,49	NO SATURA
13,8 kV	SIEMENS	0,24	60	10AW	2 244	0,2 0	0,45	1200	1	C200	20	50	2 270	0,4456	E00.0	Trifásica	12,93 1	0,89%	4,90	4,09	371,00	NO SATURA
Fase 7UT85	7UT85		60	G	3,344	0,4 0	0,65	0,65	-	C200	20	50	2,378	0,6463	500,0	Monofásic a	14,87 7	1,29%	5,21	4,35	346,38	NO SATURA

CT lado de	Unidad de 87T	Unidad de bahía 87T		In CT [A]		Factor límite de precisión	Carga nominal	Tensión de saturación real	Vsat Teórico	Voltaje secundario máximo	(1+X/R)	Vsat/Vs,max	Validación considerando					
	Referencia	VA	Prim,	Sec,	precisión	asignado (kn)	(VA)	Vsat (Vpico)	(Vrms)	simétrico Vs (Vrms)	(I+A/K)		componente DC					
69 kV SIEMENS 7UT85	SIEMENS	0,245	300	1	5P	20	20	353,55	423,00	5,45	13,93	45,86	NO SATURA					
	7UT85	0,243	300	·	51	20	20	353,55	423,00	3,50	15,88	71,49	NO SATURA					
13,8 kV	SIEMENS	0.245	1200	1	C300	20	50	707,11	1047,56	11,54	13,93	43,34	NO SATURA					
	7UT85						0,245	1200	1	C200	20	50	707,11	1047,56	13,14	15,88	38,05	NO SATURA

Nota:

1) En rojo se presentan los valores que se seleccionaron de CTs con características similares al del proyecto, porque no se contaban con las pruebas real es.

10.1.3. Verificación de la función de sobrecorrientes

En la siguiente Tabla se presentan los tiempos de operación de las funciones de sobrecorriente de fases y tierra del área de influencia para una falla trifásica y monofásica franca en la línea.

En las columnas de delta de tiempo, en verde se presentan los márgenes de coordinación mayor a 150 ms, en amarillo los márgenes de coordinación iguales a 150 ms y en rojo los márgenes de coordinación que son menores a 150 ms.

Tabla 121. Verificación de la función de sobrecorriente

				COORDINA	CIÓN SO	BRECORRIE	NTES	
# Ruta	Protección Principal	Protección Respaldo	(ntre Fases 3F)	21	Γierra (1F ό F-G)	dtF - Fases	dtT - Tierra
rtata	Trinoipai		Tiempo PP [ms]	Tiempo PR [ms]	Tiempo PP [ms]	Tiempo PR [ms]	[ms]	[ms]
1	CTO 45	TRF 2 HIN Devanado 13,8kV	20	473	400	929	453	529
2	TRF 2 HIN Devanado 13,8kV	TRF 2 HIN Devanado 69kV	473	695	427	1455	222	1028
3	TRF 2 HIN Devanado 69kV	SE GDA LN HIN 69kV	120	411	171	774	291	603
	Devariado 09KV	SE SIP LN HIN 69kV	120	9999	171	9999	9879	9828
4	SE HIN LN GDA	TRF 1 HIN 69kV	278	9999	226	9999	9835	9577
_	69kV	TRF 2 HIN 69kV	278	9999	226	9999	9835	9577
5	SE HIN LN BHI	TRF 1 HIN 69kV	119	9999	131	9999	9880	9868
	69kV	TRF 2 HIN 69kV	119	9999	131	9999	9880	9868
6	SE HIN LN SIP	TRF 1 HIN 69kV	150	9999	156	9999	9849	9843
"	69kV	TRF 2 HIN 69kV	150	9999	156	9999	9849	9843
7	SE GDA LN GES 69 kV	SE HIN LN GDA 69kV	338	214	530	477	-124	-53
8	TRF 1 GDA 69 kV	SE HIN LN GDA 69kV	36	213	66	475	177	409
9	TRF 2 GDA 69 kV	SE HIN LN GDA 69kV	100	213	100	475	113	375
10	SE GDA LN HIN	SE GES LN GDA 69kV	435	568	355	292	133	-63
10	69kV	TRF 1 GDA 69 kV	435	9999	355	9999	9564	9644
		TRF 2 GDA 69 kV	435	9999	355	9999	9564	9644

Comentarios:

Ruta 7 – En esta ruta se presenta un bajo margen de coordinación tanto para fallas trifásicas como monofásicas, pero debido a que cada uno de los extremos de las subestaciones subestaciones Guadalupe e Hincapié, cuentan con protección diferencial de línea ANSI 87L está actuaría primero realizando el despeje de la falla. Ruta 8 – En esta ruta se presenta un bajo margen de coordinación para fallas trifásicas, pero debido a que el transformador de Guadalupe 1, cuentan con protección diferencial ANSI 87T está actuaría primero realizando el despeje de la falla.

Ruta 10 – En esta ruta se presenta un bajo margen de coordinación tanto para fallas trifásicas como monofásicas, pero debido a que cada uno de los extremos de las subestaciones subestaciones Guadalupe, Hincapié y Guatemala Este, cuentan con protección diferencial de línea ANSI 87L está actuaría primero realizando el despeje de la falla.

10.2. VERIFICACIÓN DE LAS OPERACIÓN DE LAS PROTECCIONES DE LÍNEA

10.2.1. Verificación de la protección distancia 21/21N

La Verificación de la función distancia se presenta en el Anexo 2 del ECP Hincapié para cada uno de los escenarios descritos en el numeral 7

11. CONCLUSIONES

- Los ajustes recomendados para las funciones de sobrecorriente para el segundo transformador Hincapié 66/13,8 kV 13 MVA, presentan un correcto desempeño bajo las condiciones de fallas evaluadas.
- 2) Teniendo en cuenta los resultados obtenidos durante la verificación de las funciones de sobrecorriente 67/67N se debe considerar:
 - En la Ruta 7 ruta se presenta un bajo margen de coordinación tanto para fallas trifásicas como monofásicas, pero debido a que cada uno de los extremos de las subestaciones subestaciones Guadalupe e Hincapié, cuentan con protección diferencial de línea ANSI 87L está actuaría primero realizando el despeje de la falla
 - En la Ruta 8 se presenta un bajo margen de coordinación para fallas trifásicas, pero debido a que el transformador de Guadalupe 1, cuentan con protección diferencial ANSI 87T está actuaría primero realizando el despeje de la falla.
 - En la Ruta 10 se presenta un bajo margen de coordinación tanto para fallas trifásicas como monofásicas, pero debido a que cada uno de los extremos de las subestaciones subestaciones Guadalupe, Hincapié y Guatemala Este, cuentan con protección diferencial de línea ANSI 87L está actuaría primero realizando el despeje de la falla.
- 3) En las verificaciones de la función diferencial de transformador ANSI 87T y ANSI 87TN, y en las de sobrecorriente, se puede observar un correcto desempeño ante fallas internas y en la coordinación de protecciones, respectivamente.
- 4) Para la función distancia ajustada en las Líneas de la subestación Hincapié 69 kV bajo los escenarios descritos se encontró un correcto desempeño de la función con los ajustes recomendados.

12. REFERENCIAS

- [1] ALSTOM GRID. Network Protection & Automation Guide, Protective Relays, Measurement & Control, Edition May 2011. ISBN: 978-0-9568678-0-3.
- [2] Estudio de Coordinación de Protecciones IEB-G021-19-00 Setor Industrial Petapa Rev 0e, abril 2024.
- [3] Estudio de Coordinación de Protecciones IEB-G021-19-00 Guadalupe Rev 8, septiembre 2022.
- [4] Estudio de coordinación de protecciones Plan de choque documento IEB-G30-21_Plan_de_choque_ACT_Versión 0 Revisión 0, diciembre de 2021 realizado por IEB para TRELEC.