Speech Intelligibility Assessment of Dysarthric Speech by using Goodness of Pronunciation with Uncertainty Quantification

Eun Jung Yeo*, Kwanghee Choi*, Sunhee Kim, Minhwa Chung Interspeech 2023

Contents

- 1. Motivation & Our method
- 2. Datasets
- 3. Results & Analyses
- 4. Takeaways

Motivation

What is dysarthric speech?

- Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- People with dysarthria suffer from degraded speech intelligibility.
- Accurate and reliable speech assessment is essential in the clinical field.

Two approaches of automatic dysarthric speech assessment

- Hand-crafted features provide interpretability with medical implications.
- Neural network-based approaches achieves better performances.

Can we enjoy both interpretability & better performance?

Motivation: Why use Goodness-of-Pronunciation?

What is Goodness-of-Pronunciation (GoP)?

- Degree of similarity between produced and correct pronunciation of phonemes.
- Often used in non-native (L2) speech pronunciation assessment

Advantages of GoP

- Interpretability by showing which phonemes are mispronounced and to what extent each phoneme is atypical.
- Do not need parallel datasets for training and test.
 - → Will be covered in the following slides!

Motivation: Why use Goodness-of-Pronunciation?

Figure 1: Example of GoP scores for each phone within an utterance. Higher values indicate greater deviation from the correct pronunciation. GoP scores allow easy identification of mispronounced phonemes.

Pre-trained self-supervised model [1]

Train a phoneme recognition model using **healthy speech**

Infer the trained model on dysarthric speech dataset

Calculate GoP scores by comparing phone predictions with ground truth phones

Motivation: Why use Uncertainty Quantification?

What is Uncertainty Quantification (UQ)?

- Modern NNs are reported to be overconfident; often generate probabilities close to 1.0 even when their predictions are incorrect [2].
- NN suffers especially when the model encounters out-of-distribution (OOD) inputs; data that differ significantly from the training data.
 - → UQ techniques directly combat the above problem.

We use UQ on phoneme probabilities to improve the GoP scores!

 Dysarthric speech is OOD for the phoneme predictor, as it is trained with healthy speech only.

Our method: Apply conventional UQ approaches

Baselines

- **[GMM-GoP]** [3] directly uses the phoneme predictions, i.e. P(p|x).
- [NN-GoP] [4] and [DNN-GoP] [5] leveraged the development of NNs + UQ

UQ #1. Normalizing the predictions

- [Scale] reduces the peakiness by temperature scaling.
- [Prior] removes the influence of prior phoneme distribution.

UQ #2. Modifying the scoring function

- **[Entropy]** or **[Margin]** also leverages the prediction of other phonemes.
- [MaxLogit] and [LogitMargin] utilizes the pre-softmax logits.

Datasets

Train the phone predictor using:

- [Common Phone] is a gender-balanced, multilingual corpus.
- **[L2-ARCTIC]** contains non-native English speakers for L2 research.

Evaluate our method using:

- **[UASpeech]** is an English dataset with 15 patients & 13 healthy speakers.
- [QoLT] is a Korean dataset with 70 patients & 10 healthy speakers.
- **[SSNCE]** is a Tamil dataset with 20 patients & 10 healthy speakers.

All the datasets are publicly available / available upon request!

- We measure correlations between GoP scores and intelligibility scores.
- Best score: MaxLogit

Table 1: Kendall's rank coefficient between GoP & intelligibility severity levels. A higher absolute value indicates a stronger correlation between the two variables.

Method	Norm.	Scoring Func.	English	Korean	Tamil
Baseline	None	GMM [18,39]	-0.2049	-0.5237	-0.3571
	None	NN [21]	-0.1536	-0.4687	-0.4003
	Prior	DNN-GoP [21]	-0.1836	-0.4237	-0.4681
		Entropy	-0.1831	-0.2643	-0.3251
	None	Margin	-0.1628	-0.4434	-0.4445
	None	MaxLogit	-0.2164	-0.5440	-0.3571 -0.4003 -0.4681 -0.3251 -0.4445 -0.5786 -0.5158 -0.2263 -0.4210 -0.5786 -0.5158 -0.3254 -0.4447 -0.5788
		LogitMargin	-0.1732	-0.4753	
		Entropy	-0.1755	-0.1974	-0.2263
Proposed	Scale	Margin	-0.1260	-0.4444	-0.4210
Proposed	Scale	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1833	-0.2645	-0.3254
	Prior	Margin	-0.1630	-0.4432	-0.4447
		MaxLogit	-0.2165	-0.5442	-0.5788
		LogitMargin	-0.1733	-0.4753	-0.5160

 Experiments without normalization [None] generally showed lower performance than the baseline, except for MaxLogit-based GoP.

Table 1: Kendall's rank coefficient between GoP & intelligibility severity levels. A higher absolute value indicates a stronger correlation between the two variables.

Method	Norm.	Scoring Func.	English	Korean	Tamil
Baseline	None	GMM [18,39]	-0.2049	-0.5237	-0.3571
	None	NN [21]	-0.1536	-0.4687	-0.4003
	Prior	DNN-GoP [21]	-0.1836	-0.4237	-0.4681
		Entropy	-0.1831	-0.2643	-0.3251
	None	Margin	-0.1628	-0.4434	-0.4445
	None	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	
		Entropy	-0.1755	-0.1974	-0.2263
Droposad	Scale	Margin	-0.1260	-0.4444	-0.4210
Proposed	Scale	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1833	-0.2645	-0.3254
	Prior	Margin	-0.1630	-0.4432	-0.4447
		MaxLogit	-0.2165	-0.5442	-0.5788
		LogitMargin	-0.1733	-0.4753	-0.5160

 Experiments with scaling normalization [scale], has minimal impact on improvements.

Table 1: Kendall's rank coefficient between GoP & intelligibility severity levels. A higher absolute value indicates a stronger correlation between the two variables.

Method	Norm.	Scoring Func.	English	Korean	Tamil
Baseline	None	GMM [18,39]	-0.2049	-0.5237	-0.3571
	None	NN [21]	-0.1536	-0.4687	-0.4003
	Prior	DNN-GoP [21]	-0.1836	-0.4237	-0.4681
	2	Entropy	-0.1831	-0.2643	-0.3251
	None	Margin	-0.1628	-0.4434	-0.4445
	None	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1755	-0.1974	-0.2263
Proposed	Scale	Margin	-0.1260	-0.4444	-0.4210
Froposed	Scale	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1833	-0.2645	-0.3254
	Prior	Margin	-0.1630	-0.4432	-0.4447
		MaxLogit	-0.2165	-0.5442	-0.5788
		LogitMargin	-0.1733	-0.4753	-0.5160

 Experiments with prior normalization [prior], has minimal impact on improvements.

Table 1: Kendall's rank coefficient between GoP & intelligibility severity levels. A higher absolute value indicates a stronger correlation between the two variables.

Method	Norm.	Scoring Func.	English	Korean	Tamil
Baseline	None	GMM [18,39]	-0.2049	-0.5237	-0.3571
	None	NN [21]	-0.1536	-0.4687	-0.4003
	Prior	DNN-GoP [21]	-0.1836	-0.4237	-0.4681
		Entropy	-0.1831	-0.2643	-0.3251
	None	Margin	-0.1628	-0.4434	-0.4445
	None	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1755	-0.1974	-0.2263
Droposad	Scale	Margin	-0.1260	-0.4444	-0.4210
Proposed	Scale	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1833	-0.2645	-0.3254
	Prior	Margin	-0.1630	-0.4432	-0.4447
		MaxLogit	-0.2165	-0.5442	-0.5788
		LogitMargin	-0.1733	-0.4753	-0.5160

- **[Entropy]** generally showed the lowest performance.
- [MaxLogit] and [LogitMargin] showed the highest correlation to the intelligibility scores.

Table 1: Kendall's rank coefficient between GoP & intelligibility severity levels. A higher absolute value indicates a stronger correlation between the two variables.

Method	Norm.	Scoring Func.	English	Korean	Tamil
Baseline	None	GMM [18,39]	-0.2049	-0.5237	-0.3571
	None	NN [21]	-0.1536	-0.4687	-0.4003
	Prior	DNN-GoP [21]	-0.1836	-0.4237	-0.4681
		Entropy	-0.1831	-0.2643	-0.3251
	None	Margin	-0.1628	-0.4434	-0.4681 -0.3251 -0.4445 -0.5786 -0.5158 -0.2263 -0.4210 -0.5786 -0.5158
	None	MaxLogit	-0.2164	-0.5440	
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1755	-0.1974	-0.2263
Droposad	Scale	Margin	-0.1260	-0.4444	-0.4210
Proposed	Scale	MaxLogit	-0.2164	-0.5440	-0.5786
		LogitMargin	-0.1732	-0.4753	-0.5158
		Entropy	-0.1833	-0.2645	-0.3571 -0.4003 -0.4681 -0.3251 -0.4445 -0.5786 -0.5158 -0.2263 -0.4210 -0.5786
	Prior	Margin	-0.1630	-0.4432	-0.4447
		MaxLogit	-0.2165	-0.5442	-0.5788
		LogitMargin	-0.1733	-0.4753	-0.5160

Analyses on phonemes

- Certain phones have more impact on intelligibility scores [5].
- While the distribution of /i/ differs significantly, the distribution of /m/ is similar across all severity.

Figure 3: Kendall's τ distributions for two phonemes by severity. 0:healthy, 1:mild, 2:mild-to-mod., 3:mod.-to-sev., 4:severe.

Analyses on phonemes

- Fricatives, Affricates and diphthongs for English and Tamil: possibly due to their complexity leading to difficulties.
- Fricative, Nasal and monophthongs for Korean: possibly related to the movement of the articulators.

Top-5 Phonemes English /aI/,/J/,av/,/z/,/ds/Korean $/i/,/s/,/n/,a/,/\Lambda/$ Tamil /s/,/h/,/tf/,/z/,/aI/

Takeaways

1. Improved GoP for dysarthric speech intelligibility assessment

- → Dysarthric speech is very different from healthy speech!
- → Uncertainty Quantification (UQ) techniques

2. **UQ Techniques**

- → Normalization of phoneme prediction
- → Modification of the scoring function

3. Usefulness of GoP

- → Quantify how distinct each phoneme is from healthy phonemes.
- → Quantify the impact of each phoneme on speech intelligibility.

Selected References

- [1] Xu, X., Kang, Y., Cao, S., Lin, B., & Ma, L. (2021, August). Explore wav2vec 2.0 for Mispronunciation Detection. *In Interspeech* (pp. 4428-4432).
- [2] Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On calibration of modern neural networks. *In International conference on machine learning* (pp. 1321-1330).
- [3] Witt, S. M., & Young, S. J. (2000). Phone-level pronunciation scoring and assessment for interactive language learning. *Speech communication*, 30(2-3), 95-108.
- [4] Hu, W., Qian, Y., Soong, F. K., & Wang, Y. (2015). Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regression classifiers. *Speech Communication*, 67, 154-166.
- [5] Quintas, S., Mauclair, J., Woisard, V., & Pinquier, J. (2022, September). Automatic assessment of speech intelligibility using consonant similarity for head and neck cancer. *In Interspeech*.

Thank you for your attention!

Q & A

• Source code: https://github.com/juice500ml/dysarthria-gop