

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions:

Listing of Claims:

1. (currently amended) A method of treating myelodysplastic syndromes, lymphomas and leukemias , and solid tumors comprising cells that express constitutively active mutant FLT-3 in a mammal which comprises treating the mammal in need of such treatment simultaneously, concurrently, separately or sequentially with pharmaceutically effective amounts of (a) a FLT-3 inhibitor, or a pharmaceutically acceptable salt or a prodrug thereof, and (b) a histone deacetylase inhibitor (HDAI), or a pharmaceutically acceptable salt or a prodrug thereof.
2. (original) The method according to claim 1 for treating acute myeloid leukemia (AML) .
3. (cancelled)
4. (currently amended) The method according to claim 1, wherein the FLT-3 inhibitor is a staurosporine derivative is-selected from the compounds of formula,

or

or

or

or

wherein R₁ and R₂, are, independently of one another, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;

n and m are, independently of one another, a number from 0 to 4:

n' and m' are, independently of one another, a number from 1 to 4:

R_3 , R_4 , R_8 and R_{10} are, independently of one another, hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, an acyl with up to 30 carbon atoms, wherein R_4 may also be absent;

or R_3 is acyl with up to 30 carbon atoms and R_4 not an acyl;

p is 0 if R_4 is absent, or is 1 if R_3 and R_4 are both present and in each case are one of the aforementioned radicals:

R_5 is hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, or a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, or acyl with up to 30 carbon atoms;

R_7 , R_6 and R_9 are acyl or -(lower alkyl) -acyl, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, carbonyl, carbonyldioxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;

X stands for 2 hydrogen atoms; for 1 hydrogen atom and hydroxy; for O; or for hydrogen and lower alkoxy;

Z stands for hydrogen or lower alkyl;

and either the two bonds characterised by wavy lines are absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;

or the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;

or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;

or a salt thereof, if at least one salt-forming group is present.

5. (currently amended) The method according to claim 4 3, wherein the staurosporine derivative is a staurosporin derivative of formula I,

wherein

m and n are each 0;

R_3 and R_4 are independently of each other

hydrogen,

lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxy carbonyl; and cyano;
or

R_4 is hydrogen or $-CH_3$, and

R_3 is acyl of the subformula $R^\circ-CO$, wherein R° is lower alkyl; amino-lower alkyl, wherein the amino group is present in unprotected form or is protected by lower alkoxy carbonyl; tetrahydropyranloxy-lower alkyl; phenyl; imidazolyl-lower alkoxyphenyl; carboxyphenyl; lower alkoxy carbonylphenyl; halogen-lower alkylphenyl; imidazol-1-ylphenyl; pyrrolidino-lower alkylphenyl; piperazino-lower alkylphenyl; (4-lower alkylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl; piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl;

or is acyl of the subformula $R^\circ-O-CO-$, wherein R° is lower alkyl;

or is acyl of the subformula $R^\circ HN-C(=W)-$, wherein W is oxygen and R° has the following meanings: morpholino-lower alkyl, phenyl, lower alkoxyphenyl, carboxyphenyl, or lower alkoxy carbonylphenyl;

or R_3 is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;

R_5 is hydrogen or lower alkyl,

X stands for 2 hydrogen atoms or for O;

Z is methyl or hydrogen;

or a salt thereof, if at least one salt-forming group is present.

6. (currently amended) The method according to claim 4 3, wherein the staurosporine derivative is *N*-(9*S*,10*R*,11*R*,13*R*)-2,3,10,11,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13-

epoxy-1*H*,9*H*-diindolo[1,2,3-*gh*:3',2',1'-*lm*]pyrrolo[3,4-*j*][1,7]benzodiazonin-11-yl]-*N*-methylbenzamide of the formula (VII):

or a salt thereof.

7. (original) The method according to claim 1, wherein the HDAI compound is a histone deacetylase inhibitor of formula (X)

wherein

R₁ is H, halo, or a straight chain C₁-C₆ alkyl;

R₂ is selected from H, C₁-C₁₀ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, C₄ – C₉ heterocycloalkylalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH₂)_nC(O)R₆, -(CH₂)_nOC(O)R₆, amino acyl, HON-C(O)-CH=C(R₁)-aryl-alkyl- and -(CH₂)_nR₇;

R₃ and R₄ are the same or different and independently H, C₁-C₆ alkyl, acyl or acylamino, or R₃ and R₄ together with the carbon to which they are bound represent C=O, C=S, or C=NR₈, or R₂ together with the nitrogen to which it is bound and R₃ together with the carbon to which it is bound can form a C₄ – C₉ heterocycloalkyl, a heteroaryl, a

polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring;

R₅ is selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle;

n, n₁, n₂ and n₃ are the same or different and independently selected from 0 – 6, when n₁ is 1-6, each carbon atom can be optionally and independently substituted with R₃ and/or R₄;

X and Y are the same or different and independently selected from H, halo, C₁-C₄ alkyl, NO₂, C(O)R₁, OR₉, SR₉, CN, and NR₁₀R₁₁;

R₆ is selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, OR₁₂, and NR₁₃R₁₄;

R₇ is selected from OR₁₅, SR₁₅, S(O)R₁₆, SO₂R₁₇, NR₁₃R₁₄, and NR₁₂SO₂R₆;

R₈ is selected from H, OR₁₅, NR₁₃R₁₄, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl;

R₉ is selected from C₁ – C₄ alkyl and C(O)-alkyl;

R₁₀ and R₁₁ are the same or different and independently selected from H, C₁-C₄ alkyl, and -C(O)-alkyl;

R₁₂ is selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, C₄ – C₉ heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl;

R₁₃ and R₁₄ are the same or different and independently selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or R₁₃ and R₁₄ together with the nitrogen to which they are bound are C₄ – C₉ heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle;

R₁₅ is selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and (CH₂)_mZR₁₂;

R₁₆ is selected from C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and (CH₂)_mZR₁₂;

R₁₇ is selected from C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, aryl, aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and NR₁₃R₁₄;

m is an integer selected from 0 to 6; and

Z is selected from O, NR₁₃, S and S(O);

or a pharmaceutically acceptable salt thereof.

8. (original) The method according to claim 7, wherein each of R₁, X, Y, R₃, and R₄ is H.

9. (original) The method according to claim 8, wherein one of n_2 and n_3 is zero and the other is 1.

10. (original) The method according to claim 9, wherein one of n_2 and n_3 is zero and the other is 1.

11. (original) The method according to claim 1, wherein the histone deacetylase inhibitor is a compound of the formula (Xa)

wherein

n_4 is 0-3,

R_2 is selected from H, C₁-C₆ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, alkylcycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH₂)_nC(O)R₆, amino acyl and -(CH₂)_nR₇;

R_5' is heteroaryl, heteroarylalkyl, an aromatic polycycle, a non-aromatic polycycle, a mixed aryl and non-aryl polycycle, polyheteroaryl, or a mixed aryl and non-aryl polyheterocycle or a pharmaceutically acceptable salt thereof.

12. (original) The method according to claim 1, wherein the histone deacetylase inhibitor is a compound of the formula (Xb):

wherein

R_2' is selected from H, C₁-C₆ alkyl, C₄-C₆ cycloalkyl, alkylcycloalkyl, and (CH₂)₂₋₄OR₂₁ where R₂₁ is H, methyl, ethyl, propyl, or isopropyl, and

R_5'' is unsubstituted or substituted 1*H*-indol-3-yl, benzofuran-3-yl or quinolin-3-yl or a pharmaceutically acceptable salt thereof.

13. (original) The method according to claim 1, wherein the histone deacetylase inhibitor is a compound of the formula

(Xe)

or a pharmaceutically acceptable salt thereof.

14. (currently amended) The method according to ~~any one of~~ claim 1, wherein the histone deacetylase inhibitor is selected from the group consisting of N-hydroxy-3-[4-[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide, N-hydroxy-3-[[[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide and N-hydroxy-3-[4-[[2-(2-methyl-1H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or, in each case a pharmaceutically acceptable salt thereof.

Claims 15-20 (cancelled).

21. (withdrawn) A pharmaceutical composition comprising (a) a FLT-3 inhibitor and (b) a histone deacetylase inhibitor for the treatment of myelodysplastic syndromes, lymphomas and leukemias and solid tumors.

22. (withdrawn) A pharmaceutical composition according to claim 21 for treating acute myeloid leukemia (AML), colorectal cancer (CRC) or non-small cell lung cancer (NSCLC).

23. (withdrawn) A pharmaceutical composition according to claim 21, wherein the FLT-3 inhibitor is -[(9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13-epoxy-1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-N-methylbenzamide of the formula (VII):

24. (new) The method according to claim 2, wherein the staurosporine derivative is N-[(9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13-epoxy-1H,9H-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-N-methylbenzamide of the formula (VII):

(VII)

or a salt thereof and the HDAI is selected from the group consisting of N-hydroxy-3-[4-[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide, N-hydroxy-3-[4-[[[2-(1H-indol-3-yl)ethyl]-amino]methyl]phenyl]-2E-2-propenamide and N-hydroxy-3-[4-[[[2-(2-methyl-1H-indol-3-yl)-ethyl]-amino]methyl]phenyl]-2E-2-propenamide, or, in each case a pharmaceutically acceptable salt thereof.