Introduction to Functional Analysis

Lecture notes, University of Technology, Graz based on the lecture by Martin Holler

Lukas Prokop

March 22, 2019

Contents

0	Introduction		1	
	0.1	Application examples	2	
	0.2	Our first problem	2	
1	Тор	ological and metric spaces	7	
0	Ir	ntroduction		
\downarrow This lecture took place on 2019/03/05.				

- Function Analysis, mostly Linear Functional Analysis
- Goal: Transfer objects and results for linear algebra and analysis to infinite-dimensional function spaces
- e.g. $\mathbb{R}^n, \mathbb{C}^n \mapsto \text{vector spaces } U, V$ matrices $A \in \mathcal{M}^{n \times m} \mapsto \text{operators } A \in \mathcal{L}(U, V)$ functions $f : \mathbb{R}^n \to \mathbb{R} \mapsto \text{functionals } f : U \to \mathbb{R}$
- $\bullet\,$ Furthermore we discuss inner products, orthogonality, connectedness, eigenvalues
- Fields of application

- basis of Applied Mathematics
- partial differential equations
- physical modelling
- inverse problems (operator A models some physical measurement process)
- Optimization and optimal control

A motivating example was presented with slides.

0.1 Application examples

Let $K: U \to \mathbb{R}^m$ with U as vector space describe a physical model. For example, K is a Fourier/Radon/X-ray transform (MR/CT/PET imaging) or Ku = y(1) where $y: [0,1] \to \mathbb{R}^m$ solves y'(t) = y(t) + u(t) and y(0) = 0.

Another example is the class of so-called *inverse problems*. Given d = ku, find u. Typically inversion of K is ill-constrained. Solution is typically non-unique.

Approach: Solve $\min_{u \in U} \lambda \|Ku - d\|_2 + \|u\|_k$ where $\|z\|_2 := \sqrt{\sum_{i=1}^n z_i^2}$ and $\|\cdot\|_u$ is a norm on U. Or alternatively, let $U = C^1([0,1]^2)$ and solve $\min_{u \in U} \lambda \|ku - d\|_2 + \sqrt{\int_{[0,1]^2} |\nabla u(x)|^2 dx}$.

Other examples are JPEG compression and upsampling of images.

0.2 Our first problem

Let $U := C^1([0,1]^2)$ be a normed space, $K: U \to \mathbb{R}^m$ linear. Solve $\min_{u \in U} \lambda \|Ku - d\| + \sqrt{\int_{[0,1]^2} \left|\nabla u(x)\right|^2 dx}$. The question is: does such a solution exist?

We have a background in finite-dimensional vector spaces. We consider a special case to apply the theories we already know.

So we consider a discrete setting. Let $U: \mathbb{R}^n$ and $\nabla: \mathbb{R}^n \to \mathbb{R}^k$ is a discrete gradient. In 1D, we have $u = (u_i)_i \in \mathbb{R}^m$ and $u_i = u(x_i) \implies u' \approx u(x_{i+1}) - u(x_i) = u_{i+1} - u_i$. Consider $\min_{u \in \mathbb{R}^n} ||\nabla u||_2 + \lambda ||Ku - d||_2$ as problem.

Does there exist a solution to this problem assuming $\lambda > 0$, $K : \mathbb{R}^n \to \mathbb{R}^m$ linear and $\nabla : \mathbb{R}^n \to \mathbb{R}^k$ linear.

Proof. Case 1 (trivial model) Let m = n. $K_n = u$

$$\min_{u \in \mathbb{R}^n} \|\nabla u\|_2 + \lambda \|u - d\|_2 \tag{1}$$

Take $(u_n)_{n\in\mathbb{N}}$ in \mathbb{R}^n such that $\lim_{n\to\infty} \|\nabla u_1\|_2 + \lambda \|u_n - d\|_2 = \inf_{u\in\mathbb{R}} \|\nabla u\|_2 + \lambda \|u - d\|_2$. It holds that $C = \lambda \|d\|_2 \ge \inf_{u\in\mathbb{R}} \|\nabla u\|_2 + \lambda \|d\|_2$. Without loss of generality, we can assume that $2C \ge \|\nabla u_n\|_2 + \lambda \|u_n - d\|_2 \forall n \in \mathbb{N}$

$$\implies \lambda \|u_1\|_2 \le \lambda \|u_n - d\|_2 + \lambda \|d\|_2 \le \|\nabla u_k\|_2 + \lambda \|u_n - d\|_2 - \lambda \|d\|_2 \le 2C + \lambda \|d\|_2$$

 $(\|u_n\|_2)_n$ is bounded. So the Bolzano-Weierstrass theorem applies and $(u_n)_{n\in\mathbb{N}}$ admits a convergent subsequence $(u_{n_i})_{i\in\mathbb{N}}$. Take $u\in\mathbb{R}^n$. $u_{n_i}\to u$ as $i\to\infty$.

Now: Show that u solves Problem (1). ∇ is continuous. $\|\cdot\|_2$ is continuous.

$$\inf_{u \in U} \left\| \nabla u \right\|_2 + \lambda \left\| u - d \right\|_2 = \lim_{i \to \infty} \left\| \nabla u_{n_i} \right\| + \lambda \left\| u_{n_i} - d \right\|_2 = \left\| \nabla \hat{u} \right\|_2 + \lambda \left\| \hat{u} - d \right\|_2$$

This implies that \hat{u} is the solution to the problem of this first case. Ingredients of this proof where:

- boundedness
- compactness
- continuity of ∇ , $\|\cdot\|_2$

Case 2 (*K* arbitrary) 1. *K* arbitrary does not provide boundedness anymore. Define $X := \text{kernel}(\nabla) \cap \text{kernel}(k)$ and

$$X^{\perp} := \left\{ x \in \mathbb{R}^n \mid (x, y) := \sum_{i=1}^n x_i y_i = 0 \forall y \in X \right\}$$

Then we apply results from linear algebra:

$$\mathbb{R}^n: X \oplus X^{\perp}$$
 i.e. $\forall u \in \mathbb{R}^n: \exists ! u_1 \in X, u_2 \in X^{\perp}: u = u_1 + u_2$

Recall, that X^{\perp} is called orthogonal complement.

Claim 0.1. If \hat{u} solves $\min_{u \in X^{\perp}} \|\nabla u\|_2 + \lambda \|Ku - d\|_2$. Then \hat{u} solves Problem (1).

Proof. Let \hat{u} be a solution on X^{\perp} . Take $u \in \mathbb{R}^n$ arbitrary. We write $u = u_1 + u_2 \in X \times X^{\perp}$. Now we have:

$$\begin{split} \|\nabla u\|_{2} + \lambda \|ku - d\|_{2} &= \|\nabla (u_{1} + u_{2})\|_{2} + \lambda \|k(u_{1} + u_{2}) - d\|_{2} \\ &= \|\nabla u_{2}\|_{2} + \lambda \|ku_{2} - d\|_{2} \\ &\geq \|\nabla \hat{u}\|_{2} + \lambda \|K\hat{u} - d\|_{2} \end{split}$$

Thus \hat{u} solves our problem (1).

Take again $(u_n)_{n\in\mathbb{N}}$ be such that $u_n\in X^\perp\forall n$ and

$$\lim_{n \to \infty} \|\nabla u_n\|_2 + \lambda \|ku_n - d\|_2 = \inf_{u \in Y^{\perp}} \|\nabla_u\|_2 + \lambda \|ku - d\|_2$$

Write $u_1 = u_n^1 + u_n^2 \in \text{kernel}(\nabla) + \text{kernel}(\nabla)^{\perp}$. $\nabla : \text{kernel}(\nabla)^{\perp} \to \text{image}(\nabla)$ is bijective. Since $\nabla v = 0$ for $v \in \text{kernel}(\nabla)^{\perp} \Longrightarrow v \in \text{kernel}(\nabla) \Longrightarrow ||v_2|| = (v,v) = 0$. Thus, $\nabla^{-1} : \text{image}(\nabla) \to \text{kernel}(\nabla)^{\perp}$ exists and is continuous.

$$\implies \|u_{n}^{2}\|_{2} = \|\nabla^{-1}\nabla u_{n}^{2}\|_{2} = \|\nabla^{-1}\| \cdot \|\nabla u_{n}^{2}\|_{2} \le \|\nabla^{-1}\|$$

$$\le \|\nabla^{-1}\| \left(\|\nabla u_{n}^{2}\|_{2} + \lambda \|Ku_{n} - d\|_{2} \right)$$

$$= \|\nabla^{-1}\| \underbrace{\left(\|\nabla u_{n}\|_{2} + \lambda \|Ku_{n} - d\|_{2} \right)}_{= \|\nabla u_{n}\|_{2}}$$

Than $||u_n^2||_2$ bounded.

2. Show $(u_n^1)_n$ is bounded. $K: X^{\perp} \cap \ker(\nabla) \to \operatorname{image}(K)$ is bijective. Since Kv = 0 for $v \in X^{\perp} \cap \operatorname{kernel}(\nabla) \Longrightarrow v \in \operatorname{kernel}(K)$. Hence $v \in \operatorname{kernel}(K) \cap \operatorname{kernel}(\nabla) = X \Longrightarrow v \in X \cap X^{\perp} \Longrightarrow v = 0$. Hence $K^{-1}: \operatorname{image}(K) \to X^{\perp} \cap \operatorname{kernel}(\nabla)$ exists and is continuous.

$$\implies \|u_n^n\|_2 = \|K^{-1}Ku_n^n\|_2 \le \|K^{-1}\| \|Ku_n^n\|_2$$

$$= \frac{\|K\|}{\lambda} \left(\lambda \|K(u_1^n + u_2^n) - Ku_n^n\|_2 + \|\nabla u_n\|_2\right)$$

$$\le \frac{\|K\|}{\lambda} \left(\underbrace{\lambda \|Ku_1 - d\|_2}_{\text{bounded}} + \underbrace{\|\nabla u_n\|_2 + \lambda \|d - Ku_1^2\|}_{\text{bounded because } u_n^2 \text{ is bounded}}\right)$$

$$< D$$
 for some $D > 0$

$$\implies (u_n^n)_n$$
 bounded $\implies (u_n) = (u_n^n + u_n^n)_n$ is bounded

 $\implies (u_n)_n$ admits a subsequence converging to some \hat{u} . As in Case 1, \hat{u} is a solution to Problem (1).

In summary,

- 1. $\min_{u \in U} \lambda ||Ku d||_2 + \sqrt{\int_{[0,1]^2} |\nabla n|^2 dx}$ with $U = C^1([0,1]^2)$ relevant for application.
- 2. Discrete version: $\min_{u \in \mathbb{R}^n} \lambda ||Ku d|| + ||\nabla u||_2$. We have shown existence by using:
 - (a) complementary subspaces X^{\perp}
 - (b) boundedness and compactness
 - (c) continuity

(d) Next time: How does FA help to transfer the proof of the infinite dimensional setting?

About the existence of infinitely many dimensions

 \downarrow This lecture took place on 2019/03/07.

Define $U=C^1([0,1]^2)$. Let Y is some Banach space and $K:U\to Y$ is linear and continuous.

Consider the problem (P_{∞}) given by $\min_{u \in U} \|\nabla u\|_{2} + \lambda \|Ku - d\|_{Y}$ where $d \in Y$ and $\|\nabla u\|_{2} \coloneqq \sqrt{\int_{[0,1]^{2}} |\nabla u(x)|^{2}}$.

Proposition 0.2. There exists a solution of (P_{∞}) .

Proof. Take $(u_n)_{n\in\mathbb{N}}$ as a sequence in U such that $\lim_{n\to\infty} \|\nabla u_1\|_2 + \lambda \|Ku_n - d\|_n \to \inf_{u\in U}(\ldots)$. Now we want to show that $(u_n)_{n\in\mathbb{N}}$ is bounded.

Case 1 Assume that Ku = u, Y = U and $\|\cdot\|_Y = \|\cdot\|_2$.

$$\implies \lambda \|u_n\|_2 = \lambda \|u_n - d\|_2 + \lambda \|d\| \le \|\nabla u_n\|_2 + \lambda \|u_n - d\|_2 + \lambda \|d\| < C \text{ for } C > 0$$

$$\implies (u_n)_{n \in \mathbb{N}} \text{ is bounded}$$

So does $(u_n)_{n\in\mathbb{N}}$ admit a convergent subsequence? No. It requires the notion of weak convergence and particular spaces called reflexive spaces.

So we change U to $U = \left\{ u : [0,1]^2 \to \mathbb{R} \mid \sqrt{\int_{[0,1]^2}} < \infty \right\}$. Define, instead of $\|\nabla u\|_2$,

$$R(u) = \begin{cases} \|\nabla u\|_2 & \text{if } v \in C^2 \\ \infty & \text{else} \end{cases}$$

and consider $\min_{u \in U} R(u) + \lambda ||K_{u-d}||_2$ instead.

In this setting, $(u_n)_{n\in\mathbb{N}}$ admits a weakly convergent subsequence converging to some $\hat{u} \in U$ (denoted by $(u_{n_i})_{i\in\mathbb{N}}$).

Our next step is to use continuity to show that \hat{u} is a solution.

Problem: $u \mapsto ||u - d||_2$ is, in general, not continuous with respect to weak convergence.

But it is always true that $\|\hat{u} - d\|_2 \le \liminf_{i \to \infty} \|u_{n_i} - d\|_L$. Yes. We consider that as first property.

Is it also true that $R(\hat{u}) \leq \liminf_{i \to \infty} R(u_{n_i})$? No. So we apply some kind of adaption. Recall that

$$\int_0^1 \partial_x u \varphi = -\int_0^1 u \partial_x \varphi \forall \varphi \in C^{\infty}([0,1]^2)$$

 $\varphi=0 \text{ in } K\setminus [0,1]^2 \text{ for some } K \subseteq (0,1)^2.$

$$\implies \int_{[0,1]^2} \nabla u \varphi = -\int_{[0,1]^2} u \cdot (\partial_{x_i} \varphi_1 + \partial_{x_2} \varphi_2)$$

$$\forall \varphi : (\varphi_1, \varphi_2) = C^{\infty}([0,1]^2, \mathbb{R}^2) + \text{ zero on boundary}$$

We define $w:[0,1]^2 \to \mathbb{R}^2$ is called weak derivative of $u \in U$.

$$\iff \int_{[0,1]^2} w \varphi = - \int_{[0,1]^2} u(\partial_{x_1} \varphi_1 + \partial_{x_2} \varphi_2) \text{ holds } \forall \varphi$$

Then w is called weak gradient of u. We adjust:

$$R(u) = \begin{cases} ||\nabla u||_2 & \text{if } u \text{ is weakly differentiable} \\ \infty & \text{else} \end{cases}$$

Then $R(\hat{u}) \leq \liminf_{i \to \infty} R(u_{n_i})$. We consider this as second property. By the two properties,

$$R(\hat{u}) + \|\hat{u} - d\| \le \liminf_{i \to \infty} R(u_{n_i}) + \liminf_{i \to \infty} \lambda \|u_{n_i} - d\|_2$$

$$\le \liminf_{i \to \infty} \left(R(u_{n_i}) + \lambda \|u_{n_i} - d\|_2 \right)$$

$$= \inf R(u) + \lambda \|u - d\|_2$$

Case 2 Works as in the finite-dimensional setting using

• $X := \text{kernel}(A) \cap \text{kernel}(\nabla) \implies U = X \oplus X^{\perp}$ requires so-called *Hilbert spaces*

• $||u||_2 \le C ||\nabla u||_2 \forall u \in \text{kernel}(\nabla)^{\perp}$ is called *Poincare inequality*.

So this content so far was a motivation. Now, which topics are we going to cover in this course:

- 1. Topological and metric spaces
- 2. Normal spaces

- 3. Linear operator
- 4. The Hahn-Banach Theorem and consequences
- 5. Fundamental theorems for linear operators
- 6. Dual spaces and reflexivity
- 7. Contemplementary subspaces
- 8. Hilbert spaces

 \downarrow This lecture took place on 2019/03/12.

Remark. 1. Literature: UGU, in particular: Biezis, Werner

2. In this lecture: always $\mathcal{K} \in \{\mathbb{R}, \mathbb{C}\}\$ if not further specified

1 Topological and metric spaces

Remark (Motivation). Some concepts in Functional Analysis (e.g. weak convergence) cannot be associated with norms but rather with topologies

Definition 1.1 (Topology). Let X be a set and $\tau \subset \mathcal{P}(X) = \{\text{"set of subsets of } X^*\}$. We say that τ is a topology on X if

- 1. $X, \emptyset \in \tau$
- 2. $U, V \in \tau \implies U \cap V \in \tau$
- 3. For any collection of sets $(U_i)_{i \in I}$ with I as some index set. We have $U_i \in \tau \forall i \in I \implies \bigcup_{i \in I} U_i \in \tau$.

 (X, τ) is called topological space.

A set $U \subset X$ is called open if $U \in \tau$ and is called closed if $U^C \in \tau$.

Remark. By the third property of topologies, $\bigcap_{i \in I} V_i$ is closed for any collection $(V_i)_{i \in I}$ of closed sets.

Definition 1.2 (Metric). Let X be a set, $d: X \times X \to \mathbb{R}$ be such that $\forall x, y, z \in X$

- 1. $d(x, y) \ge 0, d(x, y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Then d is called a metric on X and (X,d) is called metric space.

Definition 1.3 (Norm). Let X be a vector space. A function $\|\cdot\|: X \to \mathbb{R}$ is called norm if $\forall x, y \in X, \lambda \in \mathbb{K}$

- 1. $||x|| \ge 0$, $||x|| = 0 \iff x = 0$
- 2. $||\lambda \cdot x|| = |\lambda| \cdot ||x||$
- 3. $||x + y|| \le ||x|| + ||y||$

Then $(X, \|\cdot\|)$ is called normed space.

Remark. If $\dim(x) < \infty$, all norms on X are equivalent.

Example. 1. Let X be a set then $\tau = \{\emptyset, X\}$ is a topology.

- 2. $(X, \mathcal{P}(X))$ is a topological space.
- 3. Define $S^{d-1} := \{x \in \mathbb{R}^d \mid \sum_{i=1}^d x_i^2 = 1\}$ and d(x,y) := r where r is the length of the shortest connection between x and y on S^{d-1} . Then d is a metric on S^{d-1}
- 4. $X := \{u : [0,1] \to \mathbb{R} \mid u \text{ is continuous}\} \text{ then } \|u\|_{\infty} := \sup_{x \in [0,1]} \left|u(x)\right| \text{ is a norm on } X$
- 5. $l^p := \{(X_i)_{i \in \mathbb{N}} \mid x_i \in \mathbb{K} \forall u \text{ and } \sum_{i=1}^{\infty} |x_i|^p < \infty \} \text{ with } p \in [1, \infty) \text{ and } \|(x_i)_{i \in \mathbb{N}}\|_p := (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}}$. Then $(l^p, \|\cdot\|_p)$ is a normed space (the proof will be done later).

Remark.

$$\begin{split} l^{\infty} &:= \left\{ (X_i)_{i \in \mathbb{N}} \mid \sup_{i \in \mathbb{N}} |x_i| < \infty \right\} \\ & \left\| (X_i)_{i \in \mathbb{N}} \right\| = \sup_{i} |X_i| \end{split}$$

Proposition 1.4. Let X be a set.

- 1. If (X,d) is a metric space, define for $\varepsilon > 0$, $x \in X$. $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$ and $\tau = \{U \in \mathcal{P}(x) \mid \forall x \in U \exists \varepsilon > 0 : B_{\varepsilon}(x) \in U\}$. Then (X,τ) is a topological space. We say that τ is the topology induced by d and we have that $B_{\varepsilon}(x) \in \tau \forall \varepsilon > 0, x \in X$
- 2. If $(X, \|\cdot\|)$ is a normed space, define $d: X \times X \to \mathbb{R}$ with $(x, y) \mapsto \|x y\|$. Then (X, d) is a metric space and d is called the metric induced by $\|\cdot\|$.

Remark (Consequence). Every concept introduced for topological and metric spaces transfers to metric and normed spaces, respectively. The proof is left as an exercise to the reader.

Definition 1.5. Let (X, τ) be a topological space. $U \subset X$. $x \in X$.

- 1. U is called a neighborhood of x if $\exists V \in \tau x \in X \subset U : \mathcal{U}(x)$ is defined as the set of all neighborhoods of x
- 2. x is called interior point of U if $U \in \mathcal{U}$
 - x is called adjacent point of U if $\forall V \in \tau$ such that $x \in V : V \cap U \neq \emptyset$
 - x is called cluster point of U if it is an adjacent point of $U \setminus \{x\}$.

The third property is stronger.

3. Notational conventions:

$$\mathring{U} \coloneqq \{x \in U \mid x \text{ is an interior point of } U\}$$

$$\overline{U} := \{x \in U \mid x \text{ is an adjacent point of } U\}$$

$$\partial U := \overline{U} \setminus \mathring{U}$$

Proposition 1.6. Let (X, τ) be a topological space, $U \in X$. Then

- 1. U is open $\iff \mathring{U} = U$
- 2. U is closed $\iff \overline{U} = U$
- 3. $\mathring{U} = \bigcup_{\substack{V \in \tau \\ V \subset U}} V$ and \mathring{U} is open [" \mathring{U} is the largest open set in U"]
- 4. $\overline{U} = \bigcap_{\substack{V closed \ U \subset V}} V$ and \overline{U} is closed [' \overline{U} is the smallest closed set containing U']
- *Proof.* 3. \subset Let $x \in \mathring{U} \implies \exists \hat{V} \in \tau \text{ s.t. } x \in \hat{V} \subset U \implies x \in \bigcup_{\substack{V \in \tau \\ V \subset U}} V \in \tau$

$$\supset \text{ Let } x \in \bigcup_{\substack{V \in \tau \\ V \in U}} V \implies x \in \hat{V} \text{ for some } \hat{V} \in \tau, \hat{V} \in U \implies x \in \mathring{U}$$

 \mathring{U} is open because it is the union of open sets.

- 1. \Longrightarrow $\mathring{U} \subset U$ by definition. U is open, so $U \subset \bigcup_{\substack{V \subset \tau \\ V \subset U}} V \stackrel{(3)}{=} \mathring{U}$
- 2. $\Longrightarrow V \subset \overline{U}$ by definition. Take $x_0 \in \overline{U}$. If $x \notin U \Longrightarrow x \in U^C \in \tau$ and $U \cap U^C = \emptyset$. This contradicts to $x \in \overline{U}$.
 - $\longleftarrow \quad \text{Take } x \in U^C = \overline{U}^C.$

$$\overset{(4)}{\Longrightarrow} \ \exists V \in \tau : x \in V \land V \cap \overline{U} = \emptyset$$

$$\implies V\cap U=\emptyset\implies V\subset U^C$$

$$\implies U^{\mathbb{C}} \text{ open } \implies U \text{ closed}$$

- 4. We prove the fourth property without the second.
 - \subset Take $x \in \overline{U}$. Take closed V such that $U \subset V$ if $x \notin V \Longrightarrow x \in V^C$ which is open and $V^C \cap U = \emptyset$. This contradicts to $x \in \overline{U}$.

- \supset Take $x \in \bigcap_{\substack{V \text{ closed} \\ U \subset V}}$. Suppose $x \notin \overline{U}$.
 - \implies $\exists Z$ open such that $x \in Z$ and $Z \cap U = \emptyset$
 - $\implies U \subset Z^C$, Z^C closed, $x \notin Z^C$. This contradicts to $x \in \bigcap_{\substack{V \text{ closed} \\ U \subseteq V}} V$

П

 \overline{U} closed follows since the intersection of closed sets is closed.

Definition 1.7 (Limit). Let (X, τ) be a topological space, $(X_n)_{n \in \mathbb{N}}$ be a sequence in X. Henceforth, we write $(X_n)_n$ for $(X_n)_{n \in \mathbb{N}}$ and $\hat{x} \in X$. We say $x_n \to x$ in τ as $n \to \infty$ (" x_n converges to x", " x_n is limit of x_n ") if

$$\forall U \in \tau \text{ such that } \hat{x} \in U \exists n_0 \ge 0 \forall n \ge n_0 : x_n \in U$$

Definition 1.8 (Proposition and definition). Let (X, τ) be a topological space. We say that (X, τ) is T_2 (or Hausdorff) if

$$\forall x, y \in X \text{ with } x \neq y \exists U, V \in \tau : x \in U, v \in V \text{ and } U \cap V = \emptyset$$

- In a T₂-sphere, the limit of any sequence is unique.
- If τ is induced by a metric, then (X, τ) is T_2 .

Proof. 1. Take $(x_n)_n$ to be a sequence and assume x_n converges to \hat{x} and \hat{y} with $\hat{x} \neq \hat{y}$. By T_2 , $\exists U, V \in \tau : \hat{x} \in U, \hat{y} \in V : U \cap V = \emptyset$. By convergenc, $\exists n_x, n_y$ such that $\forall n \geq n_x : x_n \in U$ and $\forall n \geq n_y : x_n \in V$.

$$\forall n \geq \max\{n_x, n_y\} : x_i \in U \cap V$$

This gives a contradiction.

2. Take $x,y \in X: x \neq y$. Define $\varepsilon \coloneqq d(x,y)$ and consider $B_{\frac{\varepsilon}{2}}(x)$ and $B_{\frac{\tau}{2}}(y)$ which are open in the induced topology τ . Also $x \in B_{\frac{\varepsilon}{2}}(x)$ and $y \in B_{\frac{\varepsilon}{2}}(y)$. Assume that $z \in B_{\frac{\varepsilon}{2}}(x) \cap B_{\frac{\tau}{2}}(y)$.

$$\varepsilon = d(x,y) \le d(x,z) + d(z,y) > \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This gives a contradiction.

Definition 1.9. Let (X, τ) be a topological space, $U \subset V \subset X$. We say that U is dense in V, if $V \subset \overline{U}$. We say that X is separable if there exists a countable, dense subset.

Definition 1.10. Let $(X, \tau_X), (Y, \tau_Y)$ be topological spaces and $f: X \to Y$ a function. We say f is continuous at $x \in X$ if $\forall V \in \mathcal{U}(f(x)) \exists U \in \mathcal{U}(x) : f(U) \subset V$. f is called continuous if it is continuous at any $x \in X$.

Proposition 1.11. With (X, τ_X) , (Y, τ_Y) and f as above, f is continuous $\iff f^{-1}(V) \in \tau_X \forall V \in \tau_Y$

Proof. Left as an exercise to the reader.

Definition 1.12. Let (X, τ) be a T_2 topological space, $M \subset X$ called compact if for any family $(U_i)_{i \in I}$ with $U_i \in \tau$ s.t. $M \subset \bigcup_{i \in I} U_i$ (" $(U_i)_{i \in I}$ is an open covering of M"), there exists U_{i_1}, \ldots, U_{i_n} such that $M \subset \bigcup_{k=1}^n U_{i_k}$ ("there exists a finite subcover").

Remark. Compactness can also be defined without T_2 , this is also referred to as quasi-compact.

Remark (Exercise). Reconsider the previous results for metric and normed spaces.

 \downarrow This lecture took place on 2019/03/14.

Definition 1.13. Let (X,d) be a metric space, $V \subset X$ and $(x_n)_n$ a sequence in X. Then we say,

- 1. V is bounded if $\exists x \in X, r > 0$ such that $U \in B_r(x)$
- 2. $(x_n)_n$ is a Cauchy sequence if $\forall \varepsilon>0 \exists n_0\in \mathbb{N}$ such that $\forall n,m\geq n_0:d(x_n,x_m)<\varepsilon$
- 3. X is complete if any Cauchy sequence in X admits a limit point
- 4. X is a Banach space if it is a normed space and complete

Proposition 1.14. Let (X,d) be a metric space. $(x_n)_n$ be a sequence in X. Then

- 1. $x_n \to x$ in the induced topology $\iff \forall \varepsilon > 0 \exists n_0 \ge 0 \forall n \ge n_0 : d(x_n, x) < \varepsilon$
- 2. If $x_n \to x$, then $(x_n)_n$ is bounded as subset of X and $(x_n)_n$ is Cauchy.
- 3. If $U \subset X$ is closed and X is complete. Then (U,d) is a complete metric space.

Proof. 1. We prove both directions:

- \implies True, since $B_{\varepsilon}(x)$ is open $\forall \varepsilon 0$

2. Using the first property, we get $\exists n_0 \forall n \geq n_0: d(x_n,x) < 1$. Let $r:=\max_{i=1,\dots,n_0} d(x,x_i)+1$. Then

$$\forall n \in \mathbb{N} : d(x, x_n) < \begin{cases} 1 & \text{if } n \ge n_0 \\ r & \text{if } n < n_0 \end{cases} \le r$$

$$\implies y_n \in B_r(x) \forall n \in \mathbb{N}$$

3. Take $(y_n)_n$ to be a Cauchy sequence in U, then $(y_n)_n$ is a Cauchy sequence in $X \Longrightarrow \exists x \in X : y_n \to x$ as $n \to x$ if $x \notin U \Longrightarrow x \in U^C \Longrightarrow \exists n_0 \in N$ such that $y_{n_0} \in U^C$ due to U^C open. This is a contradiction to $(y_n)_n$ in U

Proposition 1.15. Let (X, d_X) and (Y, d_Y) be metric spaces. $f: X \to Y$. The following are equivalent (TFAE):

- f is continuous (with respect to the induced topology)
- $\forall (X_n)_n \text{ such that } x_n \to x \implies f(x_n) \to f(x)$

Proof. Firstly, we prove that the first statement implies the second statement. Take $(x_n)_n$ converging to x. Take $V \in \tau_y$ such that $f(x) \in V \implies V \in \mathcal{U}(f(x))$

$$\implies \exists U \in \mathcal{U} : f(U) \subset V \implies \exists \hat{U} \in \tau_X \text{ such that } x \in \hat{U} \subset U$$

$$\implies \exists n_0 \ge 0 \forall n \ge n_0 : x_n \in \hat{U} \implies \forall n > n_0 : f(x_n) \in V \implies f(x_0) \to f(x)$$

Remark. 1. \implies 2. holds true in any topological space

$$2. \implies 1. Not.$$

Secondly, we prove that the second statement implies the first statement.

Suppose f is not continuous, find $x_n \to x$ such that $f(x_n) \to f(x)$ is wrong. If f is not continuous, then $\exists x \in X : \exists V \in \mathcal{U}(f(x))$ such that $f(u) \not\subset V \forall U \in \mathcal{U}(x)$

$$\implies \exists \hat{V} \in \tau_Y \text{ such that } f(u) \not\subset \hat{V} \forall U \in U(x), f(x) \in \hat{V}$$

$$\implies \forall n \in \mathbb{N} \exists x_n \in B_{\frac{1}{n}}(x) : f(x_n) \notin \hat{V}$$

 $\implies (x_n)_n$ converges to x but $f(x_n) \notin \hat{V} \implies f(x_n) \not\to f(x)$. This gives a contradiction.

Definition 1.16. Let (X, d_X) and (Y, d_Y) be metric spaces. Let $f: X \to Y$. f is uniformly continuous iff

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in X : d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon$$

Proposition 1.17. Let (X, d_X) , (Y, d_Y) be metric spaces. $M \subset X$, $f : M \to Y$. If M is dense in X, Y is complete and f is uniformly continuous.

$$\implies \exists ! \hat{f} : X \rightarrow Y \text{ such that } \hat{f} \text{ continuous and } \hat{f}|_{M} = f$$

Proof. Take $x \in X$. By the practicals (and since $\overline{M} = X$), $\exists (x_n)_n$ such that $x_n \to x$ and $x_n \in M$.

We show: $(f(x_n))_n$ is Cauchy. Take $\varepsilon > 0 \implies \exists \delta > 0$ such that

$$\forall x_1, x_2 \in X : d_X(x_1, x_2) < \delta \implies d_Y(f(y_1), f(y_2)) < \varepsilon$$

Now, $(x_n)_n$ is Cauchy (why?) $\implies \exists n_0 \forall n, m \ge n_0 : d_X(x_n, x_m) < \delta$

$$\implies d_Y(f(y_n), f(x_n)) < \varepsilon \implies (f(x_n))_n$$
 is Cauchy implies convergence

Now we observe: $\forall \hat{x} \in X$, there exists $(\hat{x}_n)_n$ in $M, \hat{y} \in Y$ such that $f(\hat{x}_n) \to \hat{y}$.

Now: for any $\varepsilon > 0 \exists \delta > 0 : d_Y(x_n, \hat{x}_n) < \delta \implies d_Y(f(x_n), f(\hat{x}_n)) < \varepsilon$ with $x \in X, (x_n)_n$ is a sequence in M such that $x_n \to x, f(x_n) \to y$. Now if $d(x, \hat{x}) < \delta \implies \exists n_0 \forall n \geq n_0$:

$$d(x_n, \hat{x}_n) < \delta \implies d(f(x_n), f(\hat{x}_n)) < \varepsilon \forall n \ge n_0$$

$$\implies d_Y(\hat{y}, y) < d_Y(\hat{y}, f(\hat{x}_n)) + d_Y(f(\hat{x}_n), f(x_n)) + d(f(x_n), f(x)) < 3\varepsilon$$

- 1. If $x = \hat{x} \implies y = \hat{y} \implies \hat{f}(x) := y$ is well-defined.
- 2. \hat{f} is uniformly continuous.

 \downarrow This lecture took place on 2019/03/19.

Proposition 1.18. *Let* (X,d) *be a metric space,* $M \subset X$.

1. M is compact, so $\forall (X_i)_{i \in I}$ with X_i a closed set $\forall i$ such that $\bigcap_{i \in I} X_i \cap M = \emptyset$.

$$\implies \exists X_{i_1}, \dots, X_{i_n} \text{ such that } \bigcap_{i=1}^n X_{ij} \cap M = \emptyset$$

- 2. M is compact, so M is closed and bounded.
- *Proof.* 1. We note that $\forall (X_i)_{i \in I}$ is a family of closed sets. $(X_i^C)_{i \in I}$ is a family of open sets and $\bigcap_{i \in I} X_i \cap M = \emptyset \iff M \subset \bigcup_{i \in I} X_i^C$

2. Is a special case of the next proposition.

Proposition 1.19. *Let* (X,d) *be a metric space,* $M \subset X$. *TFAE:*

- 1. M is compact.
- 2. Every infinite subset of M admits a cluster point.
- 3. Every sequence of M admits a convergent subsequence.
- 4. M is complete and totally bounded, where totally bounded is defined as

$$\forall \varepsilon > 0 : \exists (x_1, \dots, x_n) \ in \ M : M \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i)$$

Remark. 1. totally bounded \implies bounded (proof is left as an exercise)

- 2. If $\dim(x) < \infty$, then compact \iff complete and bounded (see course Analysis I)
- 3. $\dim(x) < \infty \iff \overline{B_1}(0)$ is compact

where the last two items imply that X is a normed space.

Proof. 1 → 2 If M is finite, (2) always holds true. So assume that M is infinite. Now assume that (2) does not hold. Then there is $C \subset M$ infinite which does not admit a cluster point. $[\forall x \in C \exists \varepsilon_x > 0 : B_{\varepsilon_x}(x) \text{ contains at most one element of } C]$. If not, $\exists xinC$ such that $\forall n \in \mathbb{N} \exists x_n \in B_{\frac{1}{n}}(x) \cap C$ such that $(X_n)_n$ is a sequence of distinct points and $x_n \to x$. This implies that x is a cluster point of C. This gives a contradiction.

Now $M \subset \bigcup_{x \in M} B_{\varepsilon_x}(x)$. If M is compact, then

$$\implies \exists x_1, \ldots, x_n : M \subset \bigcup_{i=1}^n B_{\varepsilon_{x_i}}(x_i)$$

$$\implies C \subset M \subset \bigcup_{i=1}^n B_{\varepsilon_{x_i}}(x_i)$$

$$\implies$$
 C is finite

This is a contradiction.

 $2 \to 3$ Let $(x_n)_n$ be a sequence in M.

Case 1 $\{x_n \mid n \in \mathbb{N}\}\$ is finite $\implies (x_n)_n$ admits a convergent sequence.

Case 2 $\{x_n \mid n \in \mathbb{N}\}$ is infinite. By the second property, there is a cluster point of $\{x_n \mid x \in \mathbb{N}\}$. Thus $(x_n)_n$ is a convergent subsequence to some $x \in M$.

- $3 \to 4$ Suppose that M is not totally bounded. $\exists \varepsilon > 0 \forall x_1, \ldots, x_n \in M \exists y \in M : y \notin \bigcup_{i=1}^n B_{\varepsilon}(x_i)$. Construct a sequence $(x_n)_n$ in M as follows: Given x_1, \ldots, x_n , choose $x_1 \in M$ arbitrary and $x_{i+1} \in M \setminus \bigcup_{j=1}^i B_{\varepsilon}(x_j)$ arbitrary. Then $(x_i)_i$ is a sequence in M and $d(x_i, x_j) > \frac{\varepsilon}{2}$ for $i \neq j$. Hence, $(x_i)_i$ cannot admit a convenient subsequence. $G \Longrightarrow M$ totally bounded.
 - Completeness can be shown the following way: Let $(x_n)_n$ be Cauchy in M, then there exists a subsequence $(x_{n_i})_i$ and $x \in M$ such that $x_{n_i} \to x$ as $i \to \infty$. Since $(x_n)_n$ is Cauchy, $x_n \to x$ as $n \to \infty$ [left as an exercise]. Thus M is complete.
- $4 \to 1$ Let $(U_i)_{i \in I}$ be an open covering of M and assume that $(U_i)_{i \in I}$ does not admit a finite subsequence. For $n \in \mathbb{N}$ let $E_n \subset M$ be a finite set such that $M \subset \bigcup_{a \in E_n} B_{\frac{1}{2^n}(a)}$. Define $\Omega := \{ \tilde{M} \subset M \mid \tilde{M} \text{ is not covered by finitely many } (U_i)_i \}$. We recursively define a sequence $(a_n)_n$ in M such that

$$\forall n \in \mathbb{N} : a_n \subset E_n, M \cap B_{\frac{1}{2^n}}(a_n) \in \Omega, B_{\frac{1}{2^n} \cap B_{\frac{1}{2^{n-1}}}}(a_{n-1}) \neq \emptyset$$

Goal: Show $(a_n)_n \to a$ and then $B_{\frac{1}{2^{n_0}}}(a_{n_0}) \subset U_{i_0}$.

Step 1 $(a_n)_n$ is well defined.

n=1 Since $M\in\Omega$ and $M\subset\bigcup_{a\in C_1}B_{\frac{1}{2}}(a)$, we can pick $a_1\in E_1$ such that $M\cap B_{\frac{1}{2}}(a_1)\in\Omega$.

 $n \to n+1$ Let $a_n \in E_n$ such that $M \cap B_{\frac{1}{2^n}}(a_n) \in \Omega$ be given. Let $\tilde{E}_{n+1} = \left\{ a \in E_{n+1} \mid B_{\frac{1}{2^n}}(a_n) \cap B_{\frac{1}{2^{n+1}}}(a) \neq \emptyset \right\}.$

Since $M \cap B_{\frac{1}{2^n}}(a_n) \subset \bigcup_{a \in \tilde{E}_{n+1}} B_{\frac{1}{2^{n+1}}}(a)$. [Take $x \in M \cap B_{\frac{1}{2^n}}(a_n) \implies x \in B_{\frac{1}{2^{n+1}}}(\hat{a})$, but if $B_{\frac{1}{2^{n-1}}}(\hat{a}) \cap B_{\frac{1}{2^n}}(a_n) = \emptyset$

$$\implies \hat{a} \in \tilde{E}_{n+1} \implies x \in \bigcup_{a \in \tilde{E}_{n+1}} B_{\frac{1}{a^{n+1}}}(a)$$

Hence there exists a_{n+1} such that $M \cap B_{\frac{1}{2^{n+1}}}(a_{n+1}) \in \Omega$ and $B_{\frac{1}{2^n}}(a_n) \cap B_{\frac{1}{2^{n-1}}}(a_{n+1}) \neq \emptyset$. Thus $(a_n)_n$ is well-defined.

Step 2 Show that $(a_n)_n$ converges. Take $n \in \mathbb{N}$ and $z \in B_{\frac{1}{2^n}}(a_n) \cap B_{\frac{1}{3n+1}}(a_{n+1})$.

$$\implies d(a_n, a_{n+1}) \le d(a_n, z) + d(z, a_{n+1}) \le \frac{1}{2^n} + \frac{1}{2^{n+1}} = \frac{3}{2^{n+1}}$$

$$\forall k \ge n : d(a_k, a_n) \le \sum_{i=n}^{k-1} d(a_{i+1}, a_i) < \sum_{i=n}^{k-1} \frac{3}{2^{i+1}} = \frac{3}{2^{n+1}} \sum_{i=0}^{k-n-1} \frac{1}{2^i} \le \frac{3}{2^n}$$

thus, $(a_n)_n$ is Cauchy. M is complete, so $\exists a\in M: a_n\xrightarrow{n\to\infty}a$

$$\implies \exists U_{i_0}: a \in U_{i_0} and \exists i > 0: B_r(a) \subset U_{i_0}$$

Hence, for n sufficiently large such that $d(a,a_n)<\frac{r}{2}$ and $\frac{1}{2^n}<\frac{r}{2}$. We take $x\in B_{\frac{1}{2^n}}(a_n)$ and estimate

$$d(x,a) \le d(x,a_n) + d(a_n,a) < \frac{r}{2} + \frac{r}{2} = r$$

$$\implies B_{\frac{1}{2n}}(a_n) \subset U_{i_0}$$

is a contradiction to $M \cap B_{\frac{1}{2^n}}(a_n) \in \Omega$.

Proposition 1.20. Let $(X, d_X), (Y, d_Y)$ be metric spaces. $M \subset X$ compact. Let $f: X \to Y$ be continuous. Then

- 1. f(M) is compact
- 2. $f|_M: M \to Y$ is uniformly continuous.

Proof. 1. Let $(U_i)_{i \in I}$ be an open covering of f(M)

- $\implies (f^{-1}(U_i))_{i \in I}$ is an open covering of M [why!]
- $\implies \exists c_1, \dots, c_n \text{ such that } M \subset \bigcup_{i=1}^n f^{-1}(U_{i_i}) \implies f(M) \subset \bigcup_{i=1}^n U_{i_i}$
- 2. If $f|_M$ is not uniformly continuous, then $\exists \varepsilon \in \mathbb{N} \exists x,y \in M: d(x,y) < \frac{1}{n}$ and $d(f(x),f(y)) > \varepsilon$ (*). Now take $(x_n)_n,(y_n)_n$ sequences in M satisfying condition (*). M is compact, so $\exists (x_{n_i})_i$ subsequence converging to some $x \in M$.

$$d(y_{n_i}, x) < d(y_{n_i}, x_{n_i}) + d(x_{n_i}, x) \le \frac{1}{n_i} + d(x_{n_i}, x) \xrightarrow{i \to \infty} 0$$

 \downarrow This lecture took place on 2019/03/21.

Proposition 1.21 (Proposition and definition). Let (X, d_X) and (Y, d_Y) be metric spaces. $g: X \to Y$ is a function. g is called Lipschitz continuous if $\exists L > 0$ such that $d_Y(\varphi(x), \varphi(y)) \leq Ld_X(x, y) \forall x, y \in X$. Any Lipschitz continuous function is uniformly continuous.

Proof. Left as an exercise to the reader.

Theorem 1.22 (Arzelà-Ascoli theorem). Let (X, d_X) and (Y, d_Y) be metric spaces and assume that X is compact. Define $C(X, Y) := \{f : X \to Y \mid f \text{ continuous}\}$ and $d_C(f, g) = \sup_{x \in X} d_Y(f(x), g(x))$. Then

- 1. d_C is well-defined and $(C(X,Y),d_C)$ is a complete metric space
- 2. A set $M \subset C(X,Y)$ is compact iff
 - (a) $\forall x \in X \text{ the set } M_X := \{f(x) \mid f \in M\} \text{ is compact }$
 - (b) M is equicontinuous, i.e. $\forall \varepsilon > 0 \exists \delta > 0$

$$\forall x, y \in X \forall f \in M : d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \varepsilon$$

Proof. 1. Show that: $d_C(f,g) < \infty$.

Pick $f,g \in C(X,Y)$. Because X is compact, f(X),g(X) compact \Longrightarrow f(X),g(X) bounded. Thus, $\exists x_1,x_2,D_1,D_2:f(X)\subset B_{D_1}(x_1),g(X)\subset B_{D_2}(x_2)$. Now for $x\in X$,

$$\begin{split} d(f(X), g(x)) &\leq d(f(x), x_1) + d(x_1, x_2) + d(x_2, g(x)) \\ &\leq D_1 + d(x_1, x_2) + D_2 < \infty \\ &\implies \sup_{x \in X} d(f(x), g(x)) \end{split}$$

Showing that $d_{\mathbb{C}}$ is a metric is left as an exercise.

Show that $(C(X,Y),d_C)$ is a complete metric space.

Take $(f_n)_n$ be Cauchy in $C(X,Y) \implies (f_n(x))_n$ is Cauchy in $Y \forall x \in X$. Because Y is complete, $(f_n(x))_n$ is convergent and we can define $f(x) := \lim_{n \to \infty} f_n(x)$. Convergence of $(f_n)_n$ with respect to d_C : Take $\varepsilon > 0$, show

$$\exists n_0 \forall n \ge n_0 : \sup_{x} d(f(x), f_n(x)) < \varepsilon$$

Because it is Cauchy, $\exists n_0 \forall n, m \geq n_0 : d_C(f_n, f_m) < \varepsilon$. Consider $x \in X, n \geq n_0 : d(f(x), f_n(x)) = \lim_{m \to \infty} d(f_m(x), f_n(x)) \leq \lim_{m \to \infty} d(f_m, f_n) < \infty$ (the proof follows below)

$$\implies \sup_{x \in X} d(f(x), f_n(x)) < \varepsilon$$

Thus, if $f \in C(X,Y) \implies f_n \to f$ with respect to d_C . Show that $f \in C(X,Y)$. Take $\varepsilon > 0$. Let n_0 such that $\sup_{x \in X} d(f(x), f_{n_0}(x)) < \frac{\varepsilon}{3}$. Take $\delta > 0$ such that $d(x,y) < \delta \implies d(f_{n_0}(x), f_{n_0}(y)) < \frac{\varepsilon}{3} \forall x, y$. Then $\forall x, y : d(x,y) < \delta$

$$d(f(x), f(y)) \le d(f(x), f_{n_0}(x)) + d(f_{n_0}(x), f_{n_0}(y)) + d(f_{n_0}(y), f(y))$$

$$\le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

It remains to show: $\forall x \in X, n \ge n_0 : d(f(x), f_n(x)) = \lim_{m \to \infty} d(f_m(x), f_n(x))$. In general, we have $\forall x, y, z \in (Z, d_Z)$ with d_Z as a metric.

$$|d(x,z) - d(y,z)| \le d(x,y)$$

Proof.

=

$$d(x,z) \le d(x,y) + d(y,z) \implies d(x,z) - d(y,z) \le d(x,y) \tag{2}$$

$$d(y,z) \le d(y,x) + d(x,z) \implies d(y,z) - d(x,z) \le d(x,y) \tag{3}$$

(2) and (3)
$$\Longrightarrow |d(x,z) - d(y,z)| \le d(x,y)$$
 (4)

Consequently, $\forall z \in Z, x_n \to x \text{ in } Z \colon d(x_n, z) \to d(x, z) \text{ since } \left| d(x_n, z) - d(x, z) \right| \le d(x_n, x) \to 0.$

- 2. We need to prove both directions.
 - \Rightarrow (a) For $x \in X$ fixed, define $g_X : M \to Y$ with $f \mapsto f(x)$. Then $d_Y(g(f_1), g(f_2)) = d_Y(f_1(x), f_2(x)) \le d_C(f_1, f_2)$
 - $\implies g_X$ is Lipschitz continuous, in particular continuous
 - $\implies M_X = g_X(M)$ compact
 - (b) Take $\varepsilon > 0$. M is totally bounded, so $\exists f_1, \ldots, f_n \in M : M \subset \bigcup_{i=1}^n B_{\frac{\varepsilon}{3}}(f_i)$. $\forall i \in \{1, \ldots, n\} \exists \delta_i : \forall x, y \in X : d(x, y) < \delta_i \Longrightarrow d_Y(f_i(x), f_i(y)) < \frac{\varepsilon}{3}$. Define $\delta := \min_i \delta_i > 0$. Then $\forall x, y \in X : d(x, y) < \delta$ and $\forall f \in M \exists f_{i_0} : f \in B_{\frac{\varepsilon}{3}}(f_{i_0})$

$$\implies d(f(x),f(y)) \leq \underbrace{d(f(x),f_{i_0}(x))}_{\leq d_C(f,f_{i_0})\leq \frac{\varepsilon}{3}} + \underbrace{d(f_{i_0}(x),f_{i_0}(y))}_{\leq \frac{\varepsilon}{3}} + \underbrace{d(f_{i_0}(y),f(y))}_{\leq d_C(f_{i_0},f)\leq \frac{\varepsilon}{3}} < \varepsilon$$

Index

Adjacent point, 9

Banach space, 11 Bounded sequence, 11

Cauchy sequence, 11 Cluster point, 9 Compactness, 11 Complete space, 11 Continuity, 10 Continuous function, 10 Convergent sequence, 10

Dense space, 10

Equicontinuous set, 17

Hausdorff space, 10 Hilbert spaces, 6

Interior point, 9 Inverse problems, 2

Limit, 10 Lipschitz continuity, 16

Metric, 8 Metric space, 8

Norm, 8

Normed space, 8

Orthogonal complement, 3

Quasicompactness, 11

Reflexive space, 5

Separable space, 10

 T_2 space, 10

Topological space, 7, 8

Topology, 7

Uniform continuity, 12

Weak convergence, 5

Weak derivative, 6

Weak gradient, 6