Charles Hwang – CJC 206

	=	
1.	a.	H_0 : There is no association between job type and minority status.
	b.	H _A : There is an association between job type and minority status.
	C.	I would use a chi-squared test. There are four subsets created by two factors each of two variables to compare with each other. The chi-squared test also tests for association.
2.	a.	H_0 : $\mu_{SO} = \mu_{OP}$
	b.	H_A : $\mu_{SO} \neq \mu_{OP}$
	C.	I would use an independent t-test. There are two groups measuring the same variable to be compared to each other.
3.] _	U . There is no relationship between crime rates in Chicago
3.	a.	H_0 : There is no relationship between crime rates in Chicago neighborhoods and the number of guns confiscated by police.
	b.	H _A : There is a relationship between crime rates in Chicago neighborhoods and the number of guns confiscated by police.
	C.	I would use a chi-squared test. There are $2n$ groups created by a list of n neighborhoods and two variables to compare (where n is the number of Chicago neighborhoods) with each other. The chi-squared test also tests for association.
	1	
4.	a.	Inferential statistics would be used in this situation. The pollster is trying to analyze how the candidate will perform.
5.	a.	H_0 : $\mu_E = \mu_{UE}$
	b.	H_A : $\mu_E \neq \mu_{UE}$
	C.	I would use an independent t-test. There are two groups

measuring the same variable to be compared to each other.

6.

a. H_0 : $\mu_{Min.} = \mu_{Med.} = \mu_{Max.} = \mu_{C}$

b. H_A: At least one of the means is different

c. I would use a one-way analysis of variance (ANOVA). There are more than two groups measuring the same single variable to be compared to each other.

7.

a. H_0 : $\mu_{Before} = \mu_{After}$

b. H_A : $\mu_{Before} \neq \mu_{After}$

c. I would use a paired t-test. The same students are being sampled before and after the presentation, creating equal sample sizes and dependent samples.