

Models

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
- Hierachical Poisson-Normal model
 - Formulation
 - Implementation
 - Results
- Hierachical Poisson-Gamma model
 - Formulation
 - ullet Probability function for Y
 - Inference on individual group means
 - Implementation
 - Results

Data exploration VTEC / STEC

Date	ageGroup	y_{it}	x_{it}
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	635838
2022-12-01	5-14 years	5	634139
2022-12-01	15-24 years	1	721286
2022-12-01	25-64 years	10	3031374
2022-12-01	65+ years	12	1204892

Data exploration

VTEC / STEC

Data exploration

VTEC / STEC

Data exploration

DTU

VTEC / STEC

DTU

Formulation

The conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution with intensities λ_{it} . Also, we shall assume that the count is proportional to the population size, x_{it} , within each age group, i, at a given time point, t. Hence, in terms of the canonical link for the Poisson distribution the model for the fixed effect is

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) \tag{1}$$

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. The random effects u_{it} are assumed to be Gaussian.

$$u_{it} = \epsilon_{it} \tag{2}$$

where $\epsilon_{it} \sim N(0, \sigma^2)$ is a white noise process, and σ is a model parameter.

DTU

Fomulation

Henceforth, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}e^{u_{it}})$$
 (3a)

$$u_{it} \sim N(0, \sigma^2)$$
 (3b)

Implementation - Objective function in C++

```
#include <TMB.hpp>
                                // Links in the TMB libraries
template<class Type>
Type objective function Type :: operator() ()
 DATA VECTOR(v):
                                                // Data vector transmitted from R
 DATA_VECTOR(x);
                                        // Data vector transmitted from R
                                        // Design matrix transmitted from R
 DATA MATRIX(X):
 PARAMETER_VECTOR(u);
                                            // Random effects
 // Parameters
 PARAMETER_VECTOR(beta);
                                // Parameter value transmitted from R
                                        // Parameter value transmitted from R
 PARAMETER(log_sigma_u);
 vector<Type> lambda = exp(X*beta-log(x)+u);
 Type sigma_u = exp(log_sigma_u);
 int nobs = v.size();
 Type mean_ran = Type(0);
 int i;
 Type f = 0:
                                        // Declare the "objective function"
 for(int t=0: t < nobs: t++){
   f -= dnorm(u[t], mean_ran, sigma_u, true);
   f -= dpois(y[t],lambda[t],true);
 return f:
   DTU Compute
```


Implementation - Call from R

```
# Import libraries
library(readr); library(dplyr); library(TMB)
# Import the data
dat <- read rds(file = "../../data/processed/dat.rds")</pre>
# Only consider some of the data
v <- dat %>%
 filter(caseDef == "Shiga- og veratoxin producerende E. coli.") %>%
  group by(Date, ageGroup) %>% reframe(v = sum(cases), n = sum(n))
compile(file = "PoissonNormal.cpp") # Compile the C++ file
dyn.load(dynlib("PoissonNormal")) # Dynamically link the C++ code
# Make months into integers
v.design <- v %>% mutate(Month = as.integer(format(Date, "%m")))
# Construct the design matrix
designMatrix <- model.matrix(y ~ -1 + ageGroup, data = y.design)
# Construct initial parameters
beta <- rep(1, nlevels(y$ageGroup))
# Function and derivative
PoisLN <- MakeADFun(
  data = list(y = y$y, x = y$n, X = designMatrix),
 parameters = list(u = rep(1, length(y$y)), beta = beta, log_sigma_u = log(1)),
 random = "u", DLL = "PoissonNormal")
opt <- nlminb(start = PoisLN$par, PoisLN$fn, PoisLN$gr, lower = c(0.01, 0.01))
```

Results

Parameter	Estimate	Std. Error
$\beta_{<1year}$	10.83	0.11
$\beta_{1-4years}$	13.64	0.09
$\beta_{5-14years}$	13.94	0.10
$\beta_{15-24years}$	14.05	0.09
$\beta_{25-64years}$	16.61	0.08
$\beta_{65+years}$	14.83	0.09
σ	1.01	0.04

Hierachical Poisson-Normal model

Results

Hierachical Poisson-Normal model

DTU

Results

DTU

Formulation

Likewise, in the compound Poisson-Gamma model the conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution, but this time the intensities, λ_{it} , are defined as

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) \tag{4}$$

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. Additionally, the random effects u_{it} are assumed to be Gamma distributed.

Formulation

Subsequently, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}u_{it})$$
 (5a)

$$u_{it} \sim G(1/\phi_i, \phi_i)$$
 (5b)

Probability function for *Y*

$$P[Y = y_i] = g_Y(y; \lambda, \phi)$$

$$= \frac{\lambda^y}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y, \text{ for } y = 0, 1, 2, \dots$$
(6)

where we have used the convention

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB(1/\phi, 1/(\lambda \phi + 1))$

Proof

The probability function for the conditional distribution of Y for given \boldsymbol{u}

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(8)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi)$$
 (9)

DTU

Proof

Given (8) and (9), the probability function for the marginal distribution of Y is determined from

$$g_Y(y;\lambda,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_u(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^y}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du \qquad (10)$$

$$= \frac{\lambda^y}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$

In (10) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\phi,\phi/(\lambda\phi+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/\left(\phi/(\lambda\phi+1)\right)\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$
(11)

and then (6) follows

Inference on individual group means

Consider the hierarchical Poisson-Gamma model in (5), and assume that a value Y=y has been observed. Then the conditional distribution of u for given Y = y is a Gamma distribution,

$$u|Y = y \sim G\left(y + 1/\phi, \phi/(\lambda\phi + 1)\right) \tag{12}$$

with mean

$$E[u|Y=y] = \frac{y\phi + 1}{\lambda\phi + 1} \tag{13}$$

and variance

$$V[u|Y = y] = \frac{(y\phi^2 + \phi)}{(\lambda\phi + 1)^2}$$
 (14)

Proof

The conditional distribution is found using Bayes Theorem

$$g_{u}(u|Y=y) = \frac{f_{y,u}(y,u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{f_{y|u}(y;u)g_{u}(u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{1}{g_{Y}(y;\lambda,\phi)} \left(\frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi-1} \exp(-u/\phi)\right)$$

$$\propto u^{y+1/\phi-1} \exp\left(-u(\lambda\phi+1)/\phi\right)$$
(15)

We identify the *kernel* of the probability density function

$$u^{y+1/\phi-1}\exp(-u(\lambda\phi+1)/\phi) \tag{16}$$

as the kernel of a Gamma distribution, $G(y+1/\phi,\phi/(\lambda\phi+1))$

Implementation - Define negative likelihood function in R

```
# Define the negative likelihood function for the marginal distribution of Y
nll.age <- function(theta, data){
 # Extract counts
 v <- data$v
 # Extract agegroups
 ageGroup <- data$ageGroup
 # Extract number of agegroups
 n.ageGroup <- n_distinct(data$ageGroup)
 # Define parameters
 lambda <- theta[1:n.ageGroup]</pre>
 beta <- theta[(n.ageGroup+1):(n.ageGroup*2)]
 # Construct the size and probability for the negative binomial distribution
 r <- 1/beta
 p <- 1/(lambda*beta+1)
 # Initilize the log-likelihood
 11 <- 0
 for(i in 1:nrow(data)){
   11 = 11 + dnbinom(x = y[i],
                      size = r[ageGroup[i]],
                      prob = p[ageGroup[i]],
                      log = TRUE)
 # Return the negative log-likelihood
 -11
```

Results

Parameter	Estimate	Std. Error
$\beta_{<1year}$	11.23	0.08
$\beta_{1-4years}$	13.94	0.06
$\beta_{5-14years}$	14.30	0.07
$\beta_{15-24years}$	14.42	0.07
$\beta_{25-64years}$	16.87	0.06
$\beta_{65+years}$	15.24	0.06
ϕ	0.45	0.03

Hierachical Poisson-Gamma model

DTU

Results

Hierachical Poisson-Gamma model

DTU

Results

