

HARNESSING CLEAN ENERGY FROM FALLING RAINWATER DROPLETS

DRIPVOLTS

Nimesha K.P.S. E/20/268 | Randeniya T.W. E/20/321 Subasinghe S.K. E/20/387 | Tennakoon T.M.S.H. E/20/391

Supervised by **Dr. I.W.Kularathne**

Department of Mechanical Engineering
Faculty of Engineering
University of Peradeniya

DripVolts | 2025.06.11 | ME325Mechanical Engineering Group Projects

Project Objectives

- Design a system capable of capturing the kinetic energy of raindrops.
- Integrate piezoelectric discs and electromagnetic coils to generate electricity from mechanical impact and motion.
- Develop an energy storage system using rechargeable batteries to store the harvested energy.
- Power low-voltage devices such as LED bulbs continuously using the stored energy.
- Ensure system portability and cost-effectiveness for application in both rural households and educational demonstrations.
- Contribute to sustainability goals by offering an alternative clean energy source suited to tropical, rain-heavy environments like Sri Lanka.

Progress

Milestone	Due	Status	Remarks
Project Title and Literature Review	April 21-May 2	100%	Completed background study on piezoelectric and electromagnetic energy harvesting.
Proposal Submission & Presentation	May 2- May 14	100%	Successfully presented proposal. Justified hybrid energy concept using raindrops.
System Design & Component Selection	May 14- May 20	90%	Selected pancake coil for simpler 1D implementation and higher EMF generation. Piezo configuration set to series to boost voltage.
Simulation and evaluating	May 21-June 10	75%	Simulating piezo and EM coil response. Confirmed direct raindrops insufficient; secondary mechanism using collected rainwater in progress
Mid- semester Progress Presentation	June 11	LIVE	Will include justification for pancake coil choice, series piezo layout, and boost circuit criteria (low input voltage, high efficiency).
Implementation & Optimization	June 12- July 15	-	-
• Final Report & Presentation	July 16-July 25	_	
• Final Demostration	To be announced	_	-

Justification of Achieved Results

Problem	Module Divisions	Justification
Selecting the Appropriate coil	1.Solenoid coil 2.Pancake coil	Both solenoid and pancake type coils have limitations in this scope. If a solenoid is used, to get the maximum EMF the coil has to have lo of rounds and the movement and mechanism to move it will be much more complicated. Hence, a spiral pancake coil is selected with higher number of rounds and it being 1-D make the implementation effective. Also, the equation below was considered. $\mathcal{E} = -N\frac{d\Phi_B}{dt} = -N\frac{d}{dt}(B\cdot A\cdot\cos\theta)$
Analyzing pancake coil for developed EMF		By taking the mirror image of the spiral, it was able to write the area of the loop La spirale d'Archimède

Justification of Achieved Results

Problem	Module Divisions	Justification	
 Direct rain drops are not sufficient for make a significant vibration in the piezo busser or electro- magnetic arrangement 	1. By using large panels with series and parallel busses which directly contact with rain droplets 2. Via secondary mechanism	By practically experimenting it was noted that direct droplets will not be sufficient enough to make a vibration that could induce an EMF. Hence, the collected water of the gutter is used from drainage pipeline undergoing a mechanism which will assure the frequent movement of piezo-bussers and pancake coil are achieved.	
Design methodology Oesign methodology		Considering all the factors such as,	

Justification of Achieved Results

Problem	Module Divisions	Justification
 Choosing appropriate configuration of the piezo- electric generators. 	1. Parallel 2. Series	We should connect piezo-electric generators in series in order to increase the generated current. And also, when connected in series, the generated voltage can be increased.
 Choosing Appropriate boost converter circuit. 		When choosing the boost circuit we should consider devices with a minimum input voltage and high efficiency.
Choosing the Bridge rectifier		We should consider a bridge rectifier with low voltage dropout .

Q&A