Final Team Project

Andrew Kim, Luis Perez, Renetta Nelson

October 17, 2022

Problem Statement

The purpose of this project is to automate the wine selection process in order to increase profit and build on the business's reputation. This will be done by implementing a model that predicts the quality of the wine. The profit margin of restaurants is approximately 70%. This means that over half the profit of these business types come from wine. On the other hand, there are also major expenses that pertain to wine as well. From vendors to sommeliers, there are dozens of additional expenses when it comes to finding and purchasing good quality wine. The profits of the business can no longer support the expenses of the wine selection process. Within a few months, the expenses will exceed the profits of the business and the business will have to close down. The automation of the wine selection process will reduce the expenses by approximately 25%, allowing the business to build its finances and stay in business.

```
In [128...
```

```
#Import Libraries
import pandas as pd
import numpy as np
import random
import statistics as stats
import scikitplot as skplt
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
import dmba
import warnings
warnings.filterwarnings("ignore")
from sklearn import preprocessing, datasets, linear model
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model selection import train test split, cross val score, KFold, GridSearchCV
from sklearn.metrics import accuracy score, r2 score, plot confusion matrix, classification
from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier
from sklearn.linear model import LogisticRegression, LogisticRegressionCV, LinearRegressi
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural network import MLPClassifier
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from dmba import classificationSummary, gainsChart, liftChart
from dmba.metric import AIC score
from sklearn import svm
from sklearn.svm import SVC
from dmba import regressionSummary, adjusted r2 score, AIC score, BIC score
```

```
redwine_data = pd.read_csv("winequality-red.csv")
redwine_df = pd.DataFrame(redwine_data)
#Display first five rows of dataframe to confirm
redwine_df.head()
```

Out[110...

•		fixed cidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Data Preprocessing

The uploaded wine dataset was preprocessed, which involved evaluating any necessary modifications needed, from outliers, correlations, or missing values, towards the dataset as a prepatory procedure for the final model. The shape of the dataset features 1,599 entries with 12 columns with no missing data detected. Since the objective is to develop a model that predicts the quality of the wine, the 'quality' predictor was designated as the target variable. There were six unique elements of an array (values 3 to 8) within the 'quality' predictor, and each element served as a scale to rate the quality of the wine. The next procedure made to the dataset was to detect any outliers within each predictor using the Z method, which also calculated the predictors' mean and standard deviation. The dataset contained many outliers, with 'total sulfur dioxide' predictor containing the most. Lastly, a heatmap was created to assess the correlations of the predictors. The 'density' predictor shared a strong positive correlation value of 0.67 with 'fixed acidity' and 'citric acid'. On the contrary, 'fixed acidity' and 'pH' shared a strong negative correlation value of -0.68.

```
In [49]:
```

```
# Check type of variables
redwine_df.info()
```

```
Data columns (total 12 columns):
# Column
                     Non-Null Count Dtype
--- -----
                     -----
0 fixed acidity
                     1599 non-null float64
                     1599 non-null float64
1 volatile acidity
  citric acid
                     1599 non-null float64
3 residual sugar
4 chlorides
                     1599 non-null float64
                     1599 non-null float64
5 free sulfur dioxide 1599 non-null float64
6 total sulfur dioxide 1599 non-null float64
7 density
                     1599 non-null float64
                     1599 non-null float64
Hq 8
   sulphates
                      1599 non-null float64
                     1599 non-null float64
10 alcohol
                 1599 non-null int64
11 quality
dtypes: float64(11), int64(1)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598

memory usage: 150.0 KB

```
Out[50]:
                       fixed
                                 volatile
                                                         residual
                                                                               free sulfur
                                                                                           total sulfur
                                           citric acid
                                                                    chlorides
                                                                                                          density
                     acidity
                                  acidity
                                                                                  dioxide
                                                                                              dioxide
                                                           sugar
          count 1599.000000 1599.000000
                                         1599.000000
                                                     1599.000000
                                                                  1599.000000
                                                                              1599.000000
                                                                                          1599.000000 1599.000000
                                                                                                                  159
          mean
                    8.319637
                                0.527821
                                            0.270976
                                                         2.538806
                                                                     0.087467
                                                                                15.874922
                                                                                            46.467792
                                                                                                         0.996747
            std
                    1.741096
                                0.179060
                                            0.194801
                                                        1.409928
                                                                     0.047065
                                                                                10.460157
                                                                                            32.895324
                                                                                                         0.001887
            min
                    4.600000
                                0.120000
                                            0.000000
                                                        0.900000
                                                                     0.012000
                                                                                 1.000000
                                                                                             6.000000
                                                                                                         0.990070
           25%
                    7.100000
                                0.390000
                                            0.090000
                                                        1.900000
                                                                     0.070000
                                                                                 7.000000
                                                                                            22.000000
                                                                                                         0.995600
           50%
                    7.900000
                                0.520000
                                            0.260000
                                                        2.200000
                                                                     0.079000
                                                                                14.000000
                                                                                            38.000000
                                                                                                         0.996750
           75%
                    9.200000
                                0.640000
                                            0.420000
                                                         2.600000
                                                                     0.090000
                                                                                21.000000
                                                                                            62.000000
                                                                                                         0.997835
                                                                                           289.000000
           max
                   15.900000
                                1.580000
                                            1.000000
                                                        15.500000
                                                                     0.611000
                                                                                72.000000
                                                                                                         1.003690
In [51]:
           # Check for data size
           redwine df.shape
          (1599, 12)
Out[51]:
In [52]:
           redwine df['quality'].unique()
          array([5, 6, 7, 4, 8, 3], dtype=int64)
Out[52]:
In [53]:
           redwine df.isna().sum()
          fixed acidity
                                      0
Out[53]:
          volatile acidity
                                      0
          citric acid
                                      0
          residual sugar
          chlorides
          free sulfur dioxide
          total sulfur dioxide
                                      0
          density
                                      0
          рН
          sulphates
                                      0
          alcohol
                                      0
                                       0
          quality
          dtype: int64
In [54]:
           redwine df.dtypes
          fixed acidity
                                      float64
Out[54]:
          volatile acidity
                                      float64
          citric acid
                                      float64
          residual sugar
                                      float64
          chlorides
                                      float64
          free sulfur dioxide float64
          total sulfur dioxide
                                      float64
          density
                                      float64
                                      float64
          рН
          sulphates
                                      float64
          alcohol
                                      float64
                                         int64
          quality
          dtype: object
```

redwine_df.describe()

In [50]:

```
# Removing Outliers
In [55]:
         #based on the boxplots total sulfur dioxide has many outliers
         d1= redwine df['total sulfur dioxide']
         mean = np.mean(redwine df['total sulfur dioxide'])
         std = np.std(redwine df['total sulfur dioxide'])
         print('mean of the dataset is', mean)
         print('std. deviation is', std)
         #z method
         #total sulfur dioxide
         out=[]
         def Zscore_outlier(df):
             m = np.mean(df)
             sd = np.std(df)
             for i in df:
                 z = (i-m)/sd
                 if np.abs(z) > 3:
                     out.append(i)
             print("Outliers:",out)
         Zscore outlier(redwine df['total sulfur dioxide'])
         #z method
         #free sulfur dioxide
         out=[]
         def Zscore outlier(df):
             m = np.mean(df)
             sd = np.std(df)
             for i in df:
                 z = (i-m)/sd
                 if np.abs(z) > 3:
                     out.append(i)
             print("Outliers:",out)
         Zscore outlier(redwine df['free sulfur dioxide'])
        mean of the dataset is 46.46779237023139
        std. deviation is 32.88503665178374
        Outliers: [148.0, 153.0, 165.0, 151.0, 149.0, 147.0, 148.0, 155.0, 151.0, 152.0, 278.0, 28
        9.0, 160.0, 147.0, 147.0]
        Outliers: [52.0, 51.0, 50.0, 68.0, 68.0, 54.0, 53.0, 52.0, 51.0, 57.0, 50.0, 48.0, 48.0, 7
        2.0, 51.0, 51.0, 52.0, 55.0, 55.0, 48.0, 48.0, 66.0]
In [56]:
         plt.figure(figsize = (15, 8))
         sns.heatmap(redwine df.corr(), annot = True)
         <AxesSubplot:>
```

Out[56]:

Explanatory Data Analysis (EDA)

Explorory Data Analysis recap: Exploratory Data Analysis (EDA) was implemented to evaluate the qualities of each predictor within the dataset. This procedure involved generating a number of visualizations to identify certain trends of each predictor from the dataset, test hypotheses, and evaluate assumptions

```
In [57]: #Create histogram on 'quality' variable
    sns.set()
    redwine_df.quality.hist()
    plt.xlabel('Wine Quality')
    plt.ylabel('Count')
```

Out[57]: Text(0, 0.5, 'Count')

Explanation: Explanation: The first visualization made above was a histogram, which highlights the distributed quantity of the targeted predictor 'Wine Quality' since the objective is to create a model that predicts the quality of the wine as good or bad. It was found that the average quality-type wines (rated 5 or 6) generated the highest count, which also indicates that they were most distributed among businesses. The value count function above specifies the value of wines that fit each category, which they confirm the average-rated wines being distributed the most.

```
In [58]:
                   # Analyze the relationships between the predictors and the target variable ('quality').
                   fig, axes = plt.subplots(4, 3, figsize = (20,20), sharey = True)
                   sns.scatterplot(ax = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data = redwine df, y = "quality", x = "alcohol", color = axes[0,0], data =
                   axes[0,0].set title("Relationship Between Alcohol and Quality")
                   sns.scatterplot(ax = axes[0, 1], data = redwine df, y = "quality", x = "pH", color = "b")
                   axes[0,1].set title("Relationship Between pH and Quality")
                   sns.scatterplot(ax = axes[0, 2], data = redwine df, y = "quality", x = "sulphates", color
                   axes[0,2].set title("Relationship Between Sulphates and Quality")
                   sns.scatterplot(ax = axes[1,0], data = redwine_df, y = "quality", x = "density", color =
                   axes[1,0].set title("Relationship Between Density and Quality")
                   sns.scatterplot(ax = axes[1,1], data = redwine df, y = "quality", x = "total sulfur dioxide"
                   axes[1,1].set title("Relationship Between Total Sulfur Dioxide and Quality")
                   sns.scatterplot(ax = axes[1,2], data = redwine df, y = "quality", x = "free sulfur dioxide")
                   axes[1,2].set title("Relationship Between Free Sulfur Dioxide and Quality")
                   sns.scatterplot(ax = axes[2,0], data = redwine df, y = "quality", x = "chlorides", color =
                   axes[2,0].set title("Relationship Between Chlorides and Quality")
                   sns.scatterplot(ax = axes[2,1], data = redwine df, y = "quality", x = "residual sugar", co
                   axes[2,1].set title("Relationship Between Residual Sugar and Quality")
                   sns.scatterplot(ax = axes[2,2], data = redwine df, y = "quality", x = "citric acid", color
                   axes[2,2].set title("Relationship Between Citric Acid and Quality")
                   sns.scatterplot(ax = axes[3,0], data = redwine df, y = "quality", x = "volatile acidity",
                   axes[3,0].set title("Relationship Between Volatile Acidity and Quality")
                   sns.scatterplot(ax = axes[3,1], data = redwine df, y = "quality", x = "fixed acidity", col
                   axes[3,1].set title("Relationship Between Fixed Acidity and Quality")
```

Out[58]: Text(0.5, 1.0, 'Relationship Between Fixed Acidity and Quality')

Explanation: The next step was to analyze the relationships between the predictors and 'quality'. Using scatterplots to distribute a visual representation of each predictor versus 'quality', all predictors were found to have a strong relationship between the average-rated wine qualities. From the visualizations, the quality-type wines that were rated 5 or 6 garnered most of each predictor. The scatterplots also indicated a strong presence of outliers within certain predictors that includes 'sulfur dioxide', 'residual sugar', and 'chlorides'.

```
In [59]: # Histogram

fig, axs = plt.subplots(3, 4, figsize=(12, 12))
columns = redwine_df.columns[:12]
k=0
sns.set(font_scale=1)
for i in range(3):
    for j in range(4):
```

sns.histplot(data=redwine_df, x=columns[k], kde=True, color="skyblue", ax=axs[i,
k+=1

Explanation: Explanation: Based on the histograms above we can see each columns distribution. We can see that fixed acidity, density, and PH have normal distributions. While the other columns do not follow normal distributions. Volatile acidity, citric acid, and quality appear to have more of a bimodal or multimodial distribution. One of the columns that jumps out is quality as per our objective is to automate the wine selection we can transform the quality selection to better fit a normal distribution to have a better understandment of the what makes a wine be good quality

```
In [60]: fig, axes = plt.subplots(1, 2, figsize = (15, 5), sharey = True)
sns.scatterplot(ax = axes[0], data = redwine_df, y = "fixed acidity", x = "pH")
axes[0].set_title("Relationship Between Fixed Acidity and pH")
```

```
sns.boxplot(ax = axes[1], data = redwine_df, y = "fixed acidity", x = "quality")
axes[1].set_title("Fixed Acidity vs. Quality")
```

Out[60]: Text(0.5, 1.0, 'Fixed Acidity vs. Quality')

Explanation: The following visuals above assessed the relationship between 'fixed acidity' to 'pH' and 'quality'. For the scatterplot on the left, 'fixed acidity' and 'pH' share a strong negative correlation, where a decrease in 'fixed acidity' leads to an increse in 'pH'. For the boxplot, a majority of the wine qualities lean towards the distribution of 'fixed' acidity' and 'quality' being positively skewed. Outliers are clearly visualized for each wine quality type when assessing the relationship between 'fixed acidity' and 'quality'.

```
In [61]:
    fig, axes = plt.subplots(1, 2, figsize = (15, 5), sharey = True)
    sns.boxplot(ax = axes[0], data = redwine_df, y = "alcohol", x = "quality")
    axes[0].set_title("Alcohol vs. Quality")

sns.boxplot(ax = axes[1], data = redwine_df, y = "residual sugar", x = "quality")
    axes[1].set_title("Residual Sugar vs. Quality")
```

Out[61]: Text(0.5, 1.0, 'Residual Sugar vs. Quality')

Explanation: The visuals above feature boxplots that depicts the relationship of 'pH' to 'alcohol' and 'residual sugar'. The high-rated wine qualities that contain alcohol

feature a distribution that is normally distributed while the low-rated wine qualities with alcohol are more skewed to the left. Heavy presence of outliers were detected while evaluating the relationship between 'residual sugar' and 'quality'.

Data Splitting

The wines with a score quality below or equal to 5 were changed to 0, which indicated that they were not in good quality. The wines with a score quality that were greater than or equal to 6 were changed to 1, which indicated that they were in good quality. As a result, this changes the classification from multiclass to binary.

```
In [62]: redwine_df.head()
```

Out[62]:

fix acid		olatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3 1	1.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
In [111...
for idx in redwine_df.index:
    if redwine_df["quality"][idx] <=5:
        redwine_df["quality"][idx] = 0

if redwine_df["quality"][idx] >=6:
        redwine_df["quality"][idx] = 1

redwine_df.head()
```

Out[111...

•	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	0
	1 7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	0
	2 7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	0
	3 11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	1
	4 7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	0

```
In [112...
#Set target variable to y and the remaining predictors to x
y = redwine_df['quality'].to_numpy()
x = redwine_df.drop(columns=['quality'])
```

```
In [114... #Split the full dataframe into 60/40.
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.4, random_state=1)
train_x.shape, test_x.shape

Out[114... ((959, 11), (640, 11))
```

Data Modeling

LDA

One of the reasons we chose to include linear discriminant analysis as part of the models was the simplicity and effectiveness of the model. Although regarded as simple, Ida as a classification model is robust and interpretable. LDA can be used for dimensionality reducer, visualizer, and classifier. In our case, we focus on LDA as a classifying model in aims to automate wine selection. Based on our confusion matrix (below) our model's cross validation score is: 73.62%

```
In [115...
          # initializing the model with 2 components
         lda = LinearDiscriminantAnalysis(n components=1)
          # fitting the dataset
         X r2 = lda.fit(x, y).transform(x)
In [116...
         lda pred t = lda.predict(train x)
         lda pred v = lda.predict(test x)
         lda pred prob v = (lda.predict proba(test x))
          #Cross Validation Score of LDA
         lda score = cross val score(lda, train x, train y, cv=5)
         print(classification report(train y,lda pred t))
         print("Cross Val Score: ", stats.mean(cross val score(lda, train x, train y, cv=5)))
         #plot confusion matrix
         plot confusion matrix(lda,test x,test y)
         plt.grid(False)
```

	precision	recall	f1-score	support
0	0.71	0.73	0.72	446
1	0.76	0.74	0.75	513
accuracy			0.74	959
macro avg	0.74	0.74	0.74	959
weighted avg	0.74	0.74	0.74	959

Gradient Boosting

Gradient Boosting is a great model that can be used for regression, classification, and ranking. In our case, to automate the wine process we decided to classify wines into two categories as either high (1) or low (0) quality. Gradient boosting is an excellent choise as it has methods that can enhance the algorithm's performance. In our case, we performed grid search to know the best parameters for this model.

```
In [117...
         gradient booster = GradientBoostingClassifier()
         parameters = {
              "n estimators": [5,50,250,500],
              "max depth": [1,3,5,7,9],
              "learning rate": [0.01, 0.1, 1, 10, 100]
In [118...
          ## Print out the best Parameters.
         def display(results):
              print(f'Best parameters are: {results.best params }')
              print("\n")
              mean score = results.cv results ['mean test score']
              std score = results.cv_results_['std_test_score']
              params = results.cv results ['params']
              for mean, std, params in zip(mean score, std score, params):
                  print(f'{round(mean,3)} + or -{round(std,3)} for the {params}')
In [119...
         gb = GradientBoostingClassifier(learning rate=0.01, max depth=3, n estimators=250)
          ## Fit our model
         gb.fit(train x,train y)
Out[119...
                            GradientBoostingClassifier
```

```
In [120... gb_pred_t = gb.predict(train_x)
   gb_pred_v = gb.predict(test_x)
   gb_pred_prob_v = (gb.predict_proba(test_x))

#Cross Validation Score of LDA
   lda_score = cross_val_score(gb, train_x, train_y, cv=5)
```

GradientBoostingClassifier(learning_rate=0.01, n_estimators=250)

```
print(classification_report(train_y,gb_pred_t))
print("Cross Val Score: ", stats.mean(cross_val_score(gb, train_x, train_y, cv=5)))

#plot confusion matrix
plot_confusion_matrix(gb,test_x,test_y)
plt.grid(False)
```

	precision	recall	f1-score	support
0 1	0.81	0.82	0.82	446 513
accuracy macro avg	0.83	0.83	0.83	959 959
weighted avg	0.83	0.83	0.83	959

Cross Val Score: 0.7476712478184991

Logistic Regression

accuracy

macro avq

0.75

0.75

Another model that was chosen for this project was logistic regression. The main aspect that made this model relatable towards our project's goal was its ability to predict a binary outcome based on observations within a data set. It also has the ability to describe the data and to explain relationship between one dependent binary variable with additional independent variables. These aspects made the logistic regression model relatable towards our goal in predicting the wine types as either high (1) or low (0) quality. After fitting the data before making predictions with the test data set and plotting a classification report with confusion matrix, this model generated an accuracy score of 75% and a cross validation score of 73.83%.

```
In [121...
         logit reg = LogisticRegression().fit(train x, train y)
         y pred = logit reg.predict(test x)
         plot confusion matrix(logit reg, test x, test y)
         plt.grid(False)
         print(classification report(test y, y pred))
         print("Cross Val Score: ", stats.mean(cross val score(logit reg, train x, train y, cv = 5)
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.74
                                       0.73
                                                 0.73
                                                             298
                            0.77
                                       0.77
                                                 0.77
                                                             342
```

0.75

0.75

640

640

Cross Val Score: 0.7382744328097731

In []:

Random Forest

The random forest algorithm was chosen because of its ability to handle classification-type problems towards large datasets and to assess the features that contribute towards an objective. Since all the features contributed towards the objective of evaluating which wine type qualities were good or bad, they were all included to assess the accuracy level of the data set from this algorithm. The random forest algorithm generated the highest accuracy score of 80% and a cross validation score of 79.04%.

	precision	recall	f1-score	support
0	0.77	0.81	0.79	298 342
accuracy macro avg	0.80	0.80	0.80	640 640
weighted avg	0.80	0.80	0.80	640

In []:

Decision Trees

One of the aspects of decision trees that was relatable to our project goal was its ability to effectively choose between various actions. For this project, supervised learning would be the best route to go. The objective is to predict which wines are low quality (0) and high quality (1). Part of the process in determining the output is understanding how the output was chosen. By using decision tree, we can examine the choices made in the process and what role the predictors played. After fitting the data, predictions were made with the testing data. A confusion matrix was plotted along with a classification report showing how well the model performed. The accuracy score for this model is 73% and the cross validation score is 71.84%. Recall gives a general overview saying of the total amount of actual good quality values, which were correctly predicted as good quality. Precision notes the number of predicted good quality values that contained a true value of 6 or higher. F1-score focuses on recall and precision simultaneously, and it also comapres the performance of the two metrics.

```
In [123...
         decisiontree = DecisionTreeClassifier().fit(train x, train y)
         dt pred = decisiontree.predict(test x)
         plot confusion matrix(decisiontree, test x, test y)
         plt.grid(False)
         print(classification report(test y, dt pred))
         print("Cross Val Score: ", stats.mean(cross val score(decisiontree, train x, train y, cv =
                       precision
                                    recall
                                            f1-score
                                                        support
                    0
                            0.69
                                       0.76
                                                 0.72
                                                             298
                            0.77
                                       0.70
                                                 0.74
                                                             342
```

0 0.69 0.76 0.72 298 1 0.77 0.70 0.74 342 accuracy 0.73 640 weighted avg 0.73 0.73 0.73 640

Neural Network

When looking into which wines have good or poor quality, the balance of the components play a huge role. It is not solely about if a wine was high in pH or low in sweetness, thus making it bitter. It is about the combination of each ingredient and how they complement each other. This is one of the reasons why wine tastes better with age because it gives the components time to mix and balance each other out. When creating a model to predict which wine has good or bad quality, part of the process is to determine the relationship between each predictors (the components of the wine). Neural networks meets this task.

	precision	recarr	II-SCOLE	support
0	0.71 0.77	0.75 0.73	0.73 0.75	298 342
accuracy macro avg weighted avg	0.74	0.74	0.74 0.74 0.74	640 640 640

K-Nearest Neighbors (KNN)

The K-Nearest Neighbors model was used as our baseline model for this project. This model, however, generated the lowest accuracy score (64%) and the lowest cross validation score (65.28%).

```
In [126... kneighbors = KNeighborsClassifier().fit(train_x, train_y)
    knn_pred = kneighbors.predict(test_x)

plot_confusion_matrix(kneighbors, test_x, test_y)
    plt.grid(False)

print(classification_report(test_y, knn_pred))

print("Cross Val Score: ", stats.mean(cross_val_score(kneighbors, train_x, train_y, cv=5))
```

	precision	recall	f1-score	support
0 1	0.61 0.66	0.62	0.61	298 342
accuracy macro avg weighted avg	0.64 0.64	0.64 0.64	0.64 0.64 0.64	640 640 640

Cross Val Score: 0.6527814136125655

Model Selection

The final procedure that was implemented was selecting our ideal model for our objective. Based on comparing the results from each model and plotting them in a line graph, the random forest algorithm serves as the ideal model that can distinguish between good and bad quality-type wines. This model generated both the highest accuracy score (80%) and cross validation score (79.04%).

```
In [134...
    plt.figure(figsize = (10, 10))
    plt.plot([0,1],[0,1], 'k--')
    plt.plot(fpr_lda, tpr_lda, label = 'LDA')
    plt.plot(fpr_gb, tpr_gb, label = 'GB')
    plt.plot(fpr_lr, tpr_lr, label = 'LR')
    plt.plot(fpr_rf, tpr_rf, label = 'RF')
    plt.plot(fpr_dt, tpr_dt, label = 'DT')
    plt.plot(fpr_nn, tpr_nn, label = 'NN')
    plt.plot(fpr_knn, tpr_knn, label = 'KNN')
    plt.legend()
    plt.xlabel("FPR")
    plt.ylabel("TPR")
    plt.title('Wine Predictor Characteristics')
    plt.show()
```


In []: