Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 3

$L\"{o}sungshinweise$

Aufgabe 1 (8 + 2 Punkte): Es sei $n \in \mathbb{N}$. Wir setzen $[n] := \{1, 2, ..., n\}$ und $S_n := \{\sigma \colon [n] \to [n] \mid \sigma \text{ ist bijektiv}\}.$

Die Elemente von S_n nennen wir *Permutationen* von [n].

Bemerkung: Dies ist mit der Definition der Vorlesung verträglich, da durch $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ für jedes $\sigma \in S_n$ eine andere Anordnung der Elemente von [n] gegeben ist und umgekehrt jede Anordnung von [n] von dieser Form ist. Die Menge S_n hat also genau n! viele Elemente.

(a) Zeigen Sie, dass S_n versehen mit der Verkettung

$$\circ: S_n \times S_n \to S_n, \quad (\sigma, \tau) \mapsto \sigma \circ \tau$$

als Verknüpfung eine Gruppe ist. Man nennt (S_n, \circ) die n-te symmetrische Gruppe.

(b) Für welche $n \in \mathbb{N}$ ist (S_n, \circ) Abelsch?

Lösung:

- (a) Wir verifizieren die definierenden Eigenschaften einer Gruppe für (S_n, \circ) .
 - Die Verkettung definiert in der Tat eine Verknüpfung $\circ: S_n \times S_n \to S_n$, da mit $\sigma, \tau \in S_n$ auch die Verkettung $\sigma \circ \tau: [n] \to [n]$ bijektiv ist, d. h. wir haben $\sigma \circ \tau \in S_n$.
 - Es bezeichne id := $\mathrm{id}_{[n]}$: $[n] \to [n]$ die *identische Abbildung* auf [n], d.h. $\mathrm{id}(k) := k$ für alle $k \in [n]$. Dann ist id offensichtlich bijektiv, gehört also zu S_n , und es gilt id $\circ \sigma = \mathrm{id} = \sigma \circ \mathrm{id}$ für alle $\sigma \in S_n$. Somit ist id das neutrale Element von S_n .
 - Gegeben sei $\sigma \in S_n$. Da σ nach Definition eine Bijektion $\sigma : [n] \to [n]$ darstellt, können wir die Umkehrabbildung $\sigma^{-1} : [n] \to [n]$ betrachten. Diese ist ebenfalls bijektiv, gehört also zu S_n , und erfüllt $\sigma \circ \sigma^{-1} = \mathrm{id} = \sigma^{-1} \circ \sigma$. Somit ist σ^{-1} in S_n das inverse Element zu σ .
 - Nach Definition der Verkettung gilt das Assoziativgesetz $\pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$ für alle $\pi, \sigma, \tau \in S_n$, denn für alle $k \in [n]$ haben wir

$$\big(\pi\circ(\sigma\circ\tau)\big)(k)=\pi\big((\sigma\circ\tau)(k)\big)=\pi\big(\sigma(\tau(k))\big)=(\pi\circ\sigma)\big(\tau(k)\big)=\big((\pi\circ\sigma)\circ\tau\big)(k).$$

- (b) Die Gruppe (S_n, \circ) ist für n = 1 und n = 2 Abelsch. Man beachte, dass
 - $S_1 = \{id_{[1]}\}$ die *triviale Gruppe* ist (da die einzige bijektive Abbildung der Menge $[1] = \{1\}$ auf sich die Identität ist) und somit trivialerweise Abelsch ist;
 - $S_2 = \{ \mathrm{id}_{[2]}, \sigma \}$ mit der durch $\sigma(1) = 2$ und $\sigma(2) = 1$ definierten Bijektion $\sigma : [2] \to [2]$ wegen $\sigma \circ \mathrm{id}_{[2]} = \mathrm{id}_{[2]} \circ \sigma$ ebenfalls Abelsch ist.

Für n > 2 findet man die Elemente

$$\sigma: [n] \to [n], \qquad k \mapsto \begin{cases} 2, & \text{falls } k = 1 \\ 1, & \text{falls } k \ge 2 \\ k, & \text{falls } k \ge 3 \end{cases} \quad \text{und}$$

$$\tau: [n] \to [n], \qquad k \mapsto \begin{cases} 1, & \text{falls } k = 1 \\ 3, & \text{falls } k = 2 \\ 2, & \text{falls } k = 3 \\ k, & \text{falls } k \ge 4 \end{cases}$$

in S_n , für die $\sigma \circ \tau \neq \tau \circ \sigma$ gilt, denn beispielsweise ist $(\sigma \circ \tau)(2) = 3$ während $(\tau \circ \sigma)(2) = 1$.

Aufgabe 2 (4 + (3 + 3)) Punkte):

- (a) Beim Zahlenlotto (ohne Zusatzzahl o. ä.) sind 6 Zahlen aus 1 bis 49 zu tippen. Wie viele Tippmöglichkeiten mit 4 falschen und 2 richtigen Zahlen gibt es?
- (b) Aus 10 Karten mit den Zahlen 1 bis 10 erhält von drei Spielern $A,\,B$ und C jeder eine Karte.
 - (i) In wie vielen Möglichkeiten hat der Spieler A die Karte mit der Nummer 5 und diese ist gleichzeitig niedriger als die Karten der anderen Spieler.
 - (ii) In wie vielen Möglichkeiten hat der Spieler A die Karte mit der Nummer 5 und mindestens einer der anderen Spieler hat eine niedrigere Karte.

Lösung:

(a) Nach einer Ziehung stehen 6 "richtige Zahlen" fest; dementsprechend sind die 43 restlichen Zahlen "falsche Zahlen". Für einen Lottoschein mit 4 falschen und 2 richtigen Zahlen gibt es somit

$$\binom{43}{4} \cdot \binom{6}{2} = \frac{43!}{39! \cdot 4!} \cdot \frac{6!}{4! \cdot 2!} = \frac{43 \cdot 42 \cdot 41 \cdot 40}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{6 \cdot 5}{1 \cdot 2} = 1851150$$

Möglichkeiten.

- (b) (Insgesamt gibt es $10 \cdot 9 \cdot 8 = 720$ verschiedene Möglichkeiten, 3 der 10 Karten an die Spieler A, B und C zu verteilen.) Wenn der Spieler A die Karte mit der Nummer 5 erhält, dann . . .
 - (i) ... bleiben für die Spieler B und C noch insgesamt 5 Karten mit höheren Nummern übrig. Dies ergibt $5 \cdot 4 = 20$ Verteilungen, in denen A die Karte mit der Nummer 5 und zugleich B und C höhere Karten als A erhalten.

(ii) ... bleiben für die Spieler B und C noch insgesamt 5 Karten mit höheren Nummern und 4 Karten mit niedrigeren Nummern übrig. Es gibt somit $4 \cdot 3 = 12$ Möglichkeiten, dass beide niedrigere Karten haben, $5 \cdot 4 = 20$ Möglichkeiten, dass B eine höhere und C eine niedrigere Karte haben, und ebenso $4 \cdot 5 = 20$ Möglichkeiten, dass umgekehrt B eine niedrigere und C eine höhere Karte haben. Zusammen ergibt dies 12 + 20 + 20 = 52 Verteilungen, in denen A die Karte mit der Nummer 5 und mindestens einer der anderen Spieler B und C eine niedrigere Karte hat.

Alternativ: Es bleiben für B und C insgesamt $9 \cdot 8 = 72$ Möglichkeiten. Davon erfüllen nur die bereits in (i) gezählten Möglichkeiten nicht die Bedingung, dass mindestens einer der anderen Spieler B und C eine niedrigere Karte hat. Also gibt es 72 - 20 = 52 Verteilungen, in denen A die Karte mit der Nummer 5 und mindestens einer der anderen Spieler B und C eine niedrigere Karte hat.

Aufgabe 3 (5 Punkte): Es sei \mathbb{F}_2 die Menge $\mathbb{F}_2 = \{0, 1\}$ versehen mit den Verknüpfungen + und \cdot , die über die Verknüpfungstabellen

+	0	1		•	0	1
0	0	1	und	0	0	0
1	1	0		1	0	1

definiert sind. Verifizieren Sie anhand der Tabellen, dass $(\mathbb{F}_2, +, \cdot)$ ein Körper ist.

Lösung: Wir rechnen die Körperaxiome nach:

• (\mathbb{F}_2 , +) ist eine kommutative Gruppe mit neutralem Element 0. Dass (\mathbb{F}_2 , +) kommutativ ist, sieht man an der Symmetrie der Tabelle bezüglich ihrer Diagonalen. Ebenso ist klar, dass 0 als neutrales Element bezüglich + wirkt, denn wir haben 0+0=0 und 1+0=1=0+1. Ferner besitzt jedes Element in \mathbb{F}_2 ein Inverses bezüglich +, da 0+0=0 und 1+1=0 gilt. Wir müssen also lediglich zeigen, dass + assoziativ ist; dies wird durch einen Vergleich der fünften und siebten Spalte der folgenden Tabelle bestätigt:

a	b	c	a+b	(a+b)+c	b+c	a + (b+c)
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

- $(\mathbb{F}_2 \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe mit neutralem Element 1. Dies ist klar weil $\mathbb{F}_2 \setminus \{0\} = \{1\}$ wegen $1 \cdot 1 = 1$ die triviale Gruppe darstellt.
- $F\ddot{u}r + und$ · gelten die Distributivgesetze. Wegen der Kommutativität genügt der Nachweis, dass $a \cdot (b+c) = a \cdot b + a \cdot c$ für alle $a, b, c \in \mathbb{F}_2$ gilt. Diesen erbringen mit

der folgenden Tabelle:

a	b	c	b+c	$a \cdot (b+c)$	$a \cdot b$	$a \cdot c$	$a \cdot b + a \cdot c$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	0	0	1	1	0

Aufgabe 4 (5+5+5 Punkte):

(a) Rechnen Sie nach, dass

$$x \sim y$$
 : \iff $x - y$ ist durch 3 teilbar

eine Äquivalenzrelation auf der Menge $\mathbb Z$ der ganzen Zahlen definiert. Bestimmen Sie anschließend die Äquivalenzklassen bezüglich \sim .

(b) Es sei \mathbb{F}_3 die Menge $\mathbb{F}_3 = \{0, 1, 2\}$ versehen mit den Verknüpfungen + und ·, die über die Verknüpfungstabellen

+	0	1	2	und		0	1	2
0	0	1	2		0	0	0	0
1	1	2	0		1	0	1	2
2	2	0	1		2	0	2	1

definiert sind. Verifizieren Sie anhand der Tabellen, dass $(\mathbb{F}_3, +, \cdot)$ ein Körper ist.

(c) Wir betrachten erneut die Menge \mathbb{F}_3 . Es seien + und · Verknüpfungen auf \mathbb{F}_3 , sodass $(\mathbb{F}_3, +, \cdot)$ ein Körper ist. Folgern Sie aus den Körperaxiomen, dass dann 2 + 1 = 0, 2 + 2 = 1 und $2 \cdot 2 = 1$ gelten muss.

Lösung:

- (a) Wir überprüfen die definierenden Eigenschaften einer Äquivalenzrelation:
 - Reflexivität: Für $x \in \mathbb{Z}$ ist x x = 0 trivialerweise durch 3 teilbar; also gilt $x \sim x$.
 - Symmetrie: Gilt $x \sim y$ für $x, y \in \mathbb{Z}$, dann ist definitionsgemäß x y durch 3 teilbar. Demnach ist auch y x = -(x y) durch 3 teilbar; also gilt $y \sim x$.
 - Transitivität: Es gelte $x \sim y$ und $y \sim z$ für $x, y, z \in \mathbb{Z}$. Also sind x y und y z beide durch 3 teilbar. Folglich ist auch x z = (x y) + (y z) durch 3 teilbar; also gilt $x \sim z$.

Für eine beliebige ganze Zahl $x \in \mathbb{Z}$ können bei der Division mit 3 nur die Reste 0, 1 und 2 auftreten. Mit anderen Worten: Jedes $x \in \mathbb{Z}$ ist von der Form x = 3k + r mit $k \in \mathbb{Z}$ und $r \in \{0,1,2\}$; also ist x - r = 3k durch 3 teilbar und somit $x \sim r$, d.h. die Äquivalenzklasse von $x \in \mathbb{Z}$ entspricht gerade der von r. Folglich gibt es bezüglich \sim nur drei Äquivalenzklassen, nämlich die von 0, 1 und 2.

- (b) Wir rechnen die Körperaxiome nach:
 - (\mathbb{F}_3 , +) ist eine kommutative Gruppe mit neutralem Element 0. Dass (\mathbb{F}_3 , +) kommutativ ist, sieht man wieder an der Symmetrie der Tabelle bezüglich ihrer Diagonalen. Ebenso ist klar, dass 0 als neutrales Element bezüglich + wirkt, denn wir haben 0 + 0 = 0, 1 + 0 = 1 = 0 + 1 und 0 + 2 = 2 = 2 + 0. Ferner erkennt man, das jedes Element $a \in \mathbb{F}_3$ ein Inverses bezüglich + besitzt, denn in jeder Zeile und Spalte taucht (genau) einmal der Eintrag 0 auf. Wir müssen also lediglich zeigen, dass + assoziativ ist; dies wird durch einen Vergleich der fünften und siebten Spalte der folgenden Tabelle bestätigt:

a	b	c	a+b	(a+b)+c	b+c	a + (b+c)
1	1	1	2	0	2	0
1	1	2	2	1	0	1
1	2	1	0	1	0	1
1	2	2	0	2	1	2
2	1	1	0	1	2	1
2	1	2	0	2	0	2
2	2	1	1	2	0	2
2	2	2	1	0	1	0

Bemerkung: Wir haben in der Tabelle oben alle Kombinationen ausgelassen, in denen mindestens eine der Größen a, b und c den Wert 0 annimmt; in diesen Fällen ist die Aussage trivialerweise richtig, da wir 0 bereits als das neutrale Element bezüglich + identifiziert haben.

- $(\mathbb{F}_3 \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe mit neutralem Element 1. Beachte $\mathbb{F}_3 \setminus \{0\} = \{1, 2\}$. Klarerweise ist 1 das neutrale Element und die Kommutativität ist wieder an der Symmetrie der Tabelle zu erkennen. Wegen $1 \cdot 1 = 1$ und $2 \cdot 2 = 1$ ist auch klar, dass jedes Element in $\mathbb{F}_3 \setminus \{0\}$ ein Inverses bezüglich besitzt. Wir müssen also lediglich noch zeigen, dass \cdot assoziativ ist; dies wird wie für $(\mathbb{F}_2, +)$ in Aufgabe 3 gemacht oder man überlegt sich zunächst, dass wieder nur der Fall interessant ist, in dem unter a, b und c der Wert 1 nicht auftaucht; zu prüfen ist dann nur, dass $2 \cdot (2 \cdot 2) = 2 \cdot 1 = 2 = 1 \cdot 2 = (2 \cdot 2) \cdot 2$.
- $F\ddot{u}r + und \cdot gelten \ die \ Distributivgesetze$. Wegen der Kommutativität genügt der Nachweis, dass $a \cdot (b+c) = a \cdot b + a \cdot c$ für alle $a,b,c \in \mathbb{F}_2$ gilt. Diesen erbringen wie mit der folgenden Tabelle:

a	b	c	b+c	$a \cdot (b+c)$	$a \cdot b$	$a \cdot c$	$a \cdot b + a \cdot c$
1	1	1	2	2	1	1	2
1	1	2	0	0	1	2	0
1	2	1	0	0	2	1	0
1	2	2	1	1	2	2	1
2	1	1	2	1	2	2	1
2	1	2	0	0	2	1	0
2	2	1	0	0	1	2	0
2	2	2	1	2	1	1	2

Bemerkung: Wir haben in der Tabelle oben erneut alle Kombinationen ausgelassen, in denen mindestens eine der Größen a, b und c den Wert 0 annimmt; in diesen Fällen ist die Aussage wieder trivialerweise richtig, da wir 0 bereits

als das neutrale Element bezüglich + identifiziert haben und $0 \cdot a = 0$ für alle $a \in \mathbb{F}_3$ gilt.

- (c) Wir zeigen zunächst, dass 2+1=0 gilt. Hierfür schließen wir die beiden anderen Möglichkeiten 2+1=1 und 2+1=2 aus.
 - Wäre 2 + 1 = 1, dann würden wir wegen

$$0 = 1 + (-1) = (2 + 1) + (-1) = 2 + (1 + (-1)) = 2 + 0 = 2$$

einen Widerspruch dazu erhalten, dass \mathbb{F}_3 drei verschiedene Elemente hat.

• Wäre hingegen 2 + 1 = 2, dann würde sich wegen

$$0 = (-2) + 2 = (-2) + (2 + 1) = ((-2) + 2) + 1 = 0 + 1 = 1$$

auch hier ein Widerspruch ergeben.

Als nächstes zeigen wir, dass 2+2=1 gelten muss. Hierfür schließen wir wieder die beiden anderen Möglichkeiten 2+2=0 und 2+2=2 aus.

• Wäre 2+2=0, so würde sich wegen 2+1=0 mit

$$1 = 0 + 1 = (2 + 2) + 1 = 2 + (2 + 1) = 2 + 0 = 2$$

ein Widerspruch ergeben.

• Hätten wir 2 + 2 = 2, so würde sich wegen

$$0 = (-2) + 2 = (-2) + (2 + 2) = ((-2) + 2) + 2 = 0 + 2 = 2$$

erneut ein Widerspruch ergeben.

Schließlich zeigen wir noch, dass $2 \cdot 2 = 1$ sein muss. Hierfür müssen wir lediglich die einzig andere Möglichkeit $2 \cdot 2 = 2$ ausschließen. (Beachte, dass $2 \cdot 2 = 0$ nicht möglich ist, weil nach unserer Annahme, dass $(\mathbb{F}_3, +, \cdot)$ ein Körper ist, $\mathbb{F}_3 \setminus \{0\} = \{1, 2\}$ unter \cdot abgeschlossen sein muss, also $2 \cdot 2 \in \mathbb{F}_3 \setminus \{0\}$.) Wäre $2 \cdot 2 = 2$, so hätten wir

$$1 = 2 \cdot 2^{-1} = (2 \cdot 2) \cdot 2^{-1} = 2 \cdot (2 \cdot 2^{-1}) = 2 \cdot 1 = 2$$

im Widerspruch zu $1 \neq 2$.