# Parametric Pseudo-Manifolds

Daniel Krupka and Gabe Naghi

### Surface Approximation

- Space is continuous, data is discrete
- Approximations can be made
  - Meshes more triangles
  - Parametric surfaces control points
- 'Good' approximation is problem-specific
- Some problems are just that big

## PPMs - A Hybrid Approach

- Method of gluing approximations<sup>1</sup>
- Assemble Bezier patches into full surface
- Bonus features
  - Not iterative, re. Subsurf
  - Random access
  - Separate topology from data

#### PPMs Illustrated



#### Inherent Parallelism

- Geometry is variable but local, math is per-patch
- Topology is constant
- Split into topology pre-processing + tight nondivergent geometry loop

#### PPM Calculation Stages



## Demo

#### Backup - PPM Examples



#### **Next Milestones**

- Milestone 2: Optimize violently
- Milestone 3: Bugfixing + profiling
- Final: Maybe extra features?
  - Deformation
  - Normal interpolation

#### Sources

1. Siquiera, Xu, Gallier, "Construction of C<sup>∞</sup> Surfaces from Triangular Meshes Using Parametric Pseudo-Manifolds", SEAS Technical Report 877, April 2008, http://repository.upenn.edu/cis\_reports/877/