Part 3

CHAPTER 2

Computer Arithmetic and Digital Logic

Alan Clements

These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Music: "Corporate Success" by Scott Holmes, used under <u>Attribution-NonCommercial License</u>

Rounding and Errors

- ☐ Floating-point arithmetic can lead to an increase in the number of bits in the fractional part
- ☐ To keep the number of fractional bits constant, rounding is needed Error will be induced
- ☐ The rounding mechanisms include
 - o Truncation (i.e., dropping unwanted bits) by rounding towards zero; a.k.a., rounding down
 - o Rounding towards positive or negative infinity, the nearest valid floating-point number in the direction positive or negative infinity, respectively, is chosen to decide the rounding; a.k.a., rounding up.
 - o *Rounding to nearest*, the closest floating-point representation to the actual number is used.

Rounding and Errors

☐ Decimal rounding examples:

Rounding towards zero

- \circ +4.7 truncation, i.e., rounded towards zero \rightarrow +4
- \circ -4.7 truncation, i.e., rounded towards zero \rightarrow -4

In *truncation*, we just get rid of the extra digits (regardless the number is positive or negative). The end result is *rounding towards zero*.

Rounding towards \pm infinity (i.e., rounding up)

It is the opposite of rounding towards zero

- \circ +4.7 rounded towards \pm infinity \rightarrow +5
- \circ -4.7 rounded towards \pm infinity \rightarrow -5

Rounding to nearest

This slide is modif.

- \circ +4.7 rounded to nearest \rightarrow +5
- \circ -4.7 rounded to nearest \rightarrow -5
- \circ +4.3 rounded to nearest \rightarrow +4
- \circ -4.3 rounded to nearest \rightarrow -4

FIGURE 2.11 Rounding mechanisms

41

IR. El-Sakka.

Normalization

□ A number is normalized when it is written in *scientific notation* with a *single non-zero decimal digit before the decimal point* (i.e., *the integer part consists of a single non-zero digit*).

Example 1:

- The number 123.456₁₀ is not normalized, as the integer part is not a single non-zero digit.
- To normalize it, you need to move the decimal point two position to the left and to compensate this move by multiplying the number by 100, i.e.,

$$\checkmark 1.23456_{10} \times 10^2$$

Example 2:

- The number 0.00123₁₀ is not normalized, as the integer part is not a single non-zero digit.
- To normalize it, you need to move the decimal point three position to the right and to compensate this move by dividing the number by 1000, i.e.,

$$\checkmark 1.23_{10} \times 10^{-3}$$

□ In **base b**, a <u>normalized number</u> will have the form \pm **b**₀ . **b**₁ **b**₂ **b**₃... × **b**ⁿ where **b**₀ \neq **0**, and **b**₀, **b**₁, **b**₂, **b**₃ ... are integers between **0** and **b** -**1**

Floating-point Numbers

- ☐ Floating-point arithmetic lets you handle the very large and very small numbers found in scientific applications.
- □ Floating-point is also called *scientific notation*, because scientists use it to represent large numbers (e.g., 1.2345×10^{20}) and small numbers that are very close to zero, but not zero (e.g., $0.45679999 \times 10^{-50}$).
- ☐ A floating-point value is encoded as *two* components: *a number* and the *location of the radix point* within the number.
- □ A binary floating-point number is represented by

$mantissa \times 2^{exponent}$

- o for example, 101010.1111110_2 can be represented by $1.010101111110_2 \times 2^5$, where
 - the **significant d**igits (or simply **significand**) is 1.010101111110 and
 - the *exponent* is $5 (00000101_2 \text{ in 8-bit binary arithmetic})$.
- ☐ The term *mantissa* has been replaced by *significand* to indicate the number of *significant bits* in a floating-point number.
- Because a floating-point number is defined as the *product* of *two values*, a floating-point value is not unique; for example $10.110_2 \times 2^4 = 1.011_2 \times 2^5$.

43

Normalization of Floating-point Numbers

- ☐ In the IEEE-754 Standard for Floating-Point Arithmetic, the significand term is always <u>normalized</u> (<u>unless</u> it represents a <u>zero</u> or <u>underflow</u>)
- ☐ A <u>normalized</u> binary **significand** always has a leading **1** (i.e., **1** in the MSB)
- ☐ The <u>normalized</u> absolute <u>non-zero</u> value of the <u>IEEE-754</u> FP numbers are always in *the range* The book is missing the -ve sign here

The minimum

The maximum absolute value $0 hinspace 1.000...0_2 imes 2^{-\dot{e}} ext{ to } 1.111...1_2 imes 2^e hinspace 0$ absolute value

- ☐ The *floating-point* normalization leads to the highest available *precision*, as all significant bits are utilized.
 - o the un-normalized 8-bit significand 0.0000101 has only three significant bits, whereas
 - the normalized 8-bit significand 1.0100011 has eight significant bits.
 - If a floating-point calculation is to yield the value 0.110... $_2 \times 2^e$, the result would be normalized to give $1.10..._2 \times 2^{e-1}$.
 - Similarly, the result $10.1..._2 \times 2^e$ would be normalized to $1.01..._2 \times 2^{e+1}$

three

not four

Significand and Exponent Encoding

- ☐ The *significand* of an *IEEE-754* floating-point number is *represented in sign and magnitude* form.
- ☐ The exponent is represented in a biased form, by adding a constant to the true exponent.
- □ Suppose an 8-bit exponent is used and all exponents are biased by 127.
 - o If the *true exponent* is 0, it will be encoded as 0 + 127 = 127.
 - o If the *true exponent* is -2, it will be encoded as -2 + 127 = 125.
 - o If the *true exponent* is +2, it will be encoded as +2 + 127 = 129.
- \square A real number such as 1010.1111 is normalized to get +1.01011111 \times 2³.
 - o The *true exponent* is +3, which is encoded as a *biased exponent* of 3 + 127; that is 130_{10} or 10000010 in binary form.
- \square Likewise, if a *biased exponent* is 130_{10} , the *true exponent* is 130 127 = 3

i.e., excess-127 code

Significand and Exponent Encoding

□ A 32-bit single-precision *IEEE-754* floating-point number is represented by the bit sequence

- o S is the sign bit,
 - 0 means positive significand,
 - 1 means negative significand
- o *E* is an eight-bit *biased exponent* that tells you how to shift the binary point, and
- o F is a 23-bit <u>fractional</u> significand.
- The leading 1 in front of the significand is <u>omitted when the</u> <u>number is encoded</u>.
 In this case, B is 127,
- \square A floating-point number *X* is defined as:

$$1 \le E \le 254 \iff X = (-1)^S \times 2^{(E-B)} \times 1.F$$

FIGURE 2.7

Structure of a 32-bit IEEE floating-point number

When $1 \le E \le 254$, the significand = 1 + the fractional significand F

47

Significand and Exponent Encoding

- □ If the exponent EEEEEEEE > 0, the significand of an IEEE-754 floating-point number is normalized in the range 1.0000...00 to 1.1111...11,
- ☐ If the exponent EEEEEEE = 0, the significand is ••• Used when it is impossible to represented without normalization.
 - o In such case, the floating-point number *X* is defined as:

$$E = 0 \iff X = (-1)^{S} \times 2^{(0 - (B - 1))} \times 0.F$$

When E = 0, the

where, significand = the fractional significand where,

In this case, B – 1 is 126, i.e., excess-126 code

- o S is the sign bit,
 - 0 means positive significand,
 - 1 means negative significand
- $\circ E = 0$
 - the exponent was biased by B-1
- o *F* is the fractional significand
 - As E = 0, the significand was encoded <u>without normalization</u>, i.e., 0.F <u>without</u> an <u>implicit leading one</u>
- \square When E = 0, $F \neq 0 \implies \pm Denormalized underflow number$

Significand and Exponent Encoding

☐ The floating-point value of **zero** is represented by

 $0.00...00 \times 2^{\text{most negative exponent}}$

i.e., the **zero** is represented by

- o a **zero** significand and
- a **zero** exponent

as Figure 2.6 demonstrates.

In this floating-point representation, how many zeros do we have?

FIGURE 2.6

Representing the value zero in floating-point arithmetic

48

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

Significand and Exponent Encoding

TABLE 2.7

IEEE Floating-Point Formats

float type in Java and C

	Single Precision •	Double Precision ••• double type in Java and C (Single Extended)
Field width in bits		The L value =1, if and only if $E \neq 0$
S = sign	1	The L value =0, if and only if E = 0
E = exponent	8	11
L = leading bit	1 (not stored)	1 (not stored)
F = fraction	23	If $E \neq 0$, True exponent =
Total width	32	biased exponent – bias
Exponent Bias value		If E = 0, True exponent =
Maximum E	255	2047 $0 - (bias - 1)$
Minimum E	0	0
Bias	127	1023
E _{max} values	127	1023
E_{\min}	-126	-1022
		e book flipped the meaning of S. It is S=0 for +ve and =1 for

S = sign bit (0 for a negative number, 1 for a positive number)

L = leading bit (always 1 in a normalized, non-zero significand)

F = fractional part of the significand

→ 254 for

The range of exponents is from the minimum E + 1 to the maximum E

The number is represented by $-1^{5} \times 2^{E-exponent} \times L.F$

Zero is represented by the minimum exponent, L=0, and F=0

The maximum exponent, $E_{max} + 1$ represents signed infinity

This slide is modified from the original slide

When E = 255

In the IEEE single precision representation,

the *largest normalized* absolute number is $2^{+127} \times 1.111...1_2 \approx 2^{+128} = 10^{+38.5318394} \approx 3.4 \times 10^{+38}$

the *smallest normalized* absolute number is $2^{-126} \times 1.000...0_{2} = 2^{-126} = 10^{-37.9297794} \approx 1.17 \times 10^{-38}$

Significand and Exponent Encoding

FIGURE 2.8

IEEE floating-point number space for a single-precision number

$$E = 0 \iff X = (-1)^{S} \times 2^{(0 - (B - 1))} \times 0.F$$

- □ *Underflow* occurs when the result of a calculation is a smaller number (in magnitude) than the smallest value representable as a *normalized* floating point number in the target data type.
- □ Replacing an *underflow* case by a **zero** might be *ok* from the *addition* point of view, but it is *not ok* from the *multiplication* point of view.
- □ NaN means *Not a Number*, e.g., $\mathbf{0} \div \mathbf{0}$, $\infty \div \infty$, $\mathbf{0} \times \infty$, or $\infty \infty$
- \square In NaN, the value of \mathbf{F} is ignored by applications.

50

From Binary to 32-bit IEEE-754 FP

 \square Example 1(a):

Convert -111100001111100.001111100001111₂ into a 32-bit single-precision IEEE-754 FP value.

- o The number is negative $\rightarrow S = 1$
- o The *significand* is 11110000111100.00111100001111₂
- The normalized significand is
 1.1110000111110000111110000111112 × 2¹³
- o To encode the *F* value, we will <u>ignore</u> the leading 1 and we will only consider the first 23 bits after the binary point, i.e., 111000011110000111100001111₂
- o The ignored part of the *significand* is *rounded to the nearest*, hence the value of $F = 11100001111000011110001_2$
- o The *biased exponent* is the *true exponent* plus 127; that is, $13+127=140_{10}=1000\ 1100_2$ Hence, $\textit{E}=1000\ 1100_2$
- o The final number is $1100\ 0110\ 0111\ 0000\ 1111\ 0000\ 1111\ 0001_2$, or $C670F0F1_{16}$.

0 = 0000 1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111

Rounding and Errors

- When the number to be rounded is midway between two points on the floating-point line, IEEE rounding to the nearest selects the value whose least-significant digit is zero (i.e., rounding to an even binary significand).
 - \square For example:
 - \square 0.1110000111100001111000010002 will be rounded to 0.1110000111100001111000002
 - \square 0.1110000111100001111000110002 will be rounded to 0.111000011110000111100102

From 32-bit IEEE-754 FP to Binary

- Example 1(b): Convert C670F0F1₁₆ from a 32-bit single-precision IEEE-754 FP value into a binary value
 ---This is the same value as in example 1(a)
 - Unpack the number into sign bit, biased exponent, and fractional significand:

 $C670F0F1_{16} \rightarrow 1100\ 0110\ 0111\ 0000\ 1111\ 0000\ 1111\ 0001_{2}$

- \blacksquare S = 1
- \bullet E = 100 0110 0
- F =111 0000 1111 0000 1111 0001
- o As the sign bit is 1, the number is negative.
- o Subtract 127 from the *biased exponent* 100 0110 0_2 to get the *true exponent* \rightarrow 1000 $1100_2 0111 1111_2 = 0000 1101_2 = 13_{10}$.
- o The fractional significand is .111 0000 1111 0000 1111 0001₂.
- o Reinserting the *leading one* gives 1.111 0000 1111 0000 1111 0001₂.
- o The number is $-1.111\ 0000\ 1111\ 0000\ 1111\ 0001_2 \times 2^{13} = -1111\ 0000\ 1111\ 00.00\ 1111\ 0001_2$

Note that the correct answer is: $-1111\ 0000\ 1111\ 00.00\ 1111\ 00001_2$ not $-1111\ 0000\ 1111\ 00.00\ 1111\ 00001111_2$ This is due to the rounding error.

Total length 32 bits

31 30 23 22 0

S E F

8-bit exponent 23-bit fractional significand Sign bit

Structure of a 32-bit IEEE floating-point number

- - o Unpack the number into sign bit, biased exponent, and fractional significand.
 - \blacksquare S = 1
 - $\mathbf{E} = 1111 \ 1100$
 - $\mathbf{F} = 110\ 0000\ 0000\ 0000\ 0000\ 0000$
 - o As the sign bit is 1, the number is negative.
 - o Subtract 127 from the *biased exponent* 1111 1100₂ to get the *true exponent* \rightarrow 1111 1100₂ 0111 1111₂ = 0111 1101₂ = 125₁₀.
 - o The fractional significand is $.110\ 0000\ 0000\ 0000\ 0000\ 0000_2$.
 - o Reinserting the *leading one* gives 1.110 0000 0000 0000 0000 0000₂.
 - o The number is $-1.11_2 \times 2^{125} = -1.75_{10} \times 2^{125}$

```
2^{125} = 10^z \rightarrow \log_{10}(2^{125}) = z \rightarrow z = 125 \times 0.30103 = 37.62875 2^{125} = 10^{37.62875} = 10^{37} \times 10^{0.62875} = 10^{37} \times 4.253535 -1.75 \times 2^{125} = -1.75 \times 10^{37} \times 4.253535 = -7.44368625 \times 10^{37}
```

- - Unpack the number into sign bit, biased exponent, and fractional significand.
 - \blacksquare S = 1
 - $\mathbf{E} = 000000000$
 - F =110 0000 0000 0000 0000 0000
 - o As the sign bit is 1, the number is negative.
 - o As E = 0 \rightarrow true exponent = 0 (127 1) = -126
- The fractional significand is .110 0000 0000 0000 0000 0000₂.
 - o As E = 0, the fractional significand is <u>not normalized</u>. ••• The L value = 0, as E = 0
 - o As E = 0 and $F \neq 0$, it means that this is an *underflow* case.
 - o The number is $-0.11_9 \times 2^{-126} = -0.75 \times 2^{-126}$

```
2^{-126} = 10^z \rightarrow \log_{10}(2^{-126}) = z \rightarrow z = -126 \times 0.30103 = -37.92978 2^{-126} = 10^{-37.92978} = 10^{-37} \times 10^{-0.92978} = 10^{-37} \times 0.11755
                                                                                                                                     55
-0.75 \times 2^{-126} = -0.75 \times 10^{-37} \times 0.11755 = -0.0881625 \times 10^{-37}
                         = -8.81625 \times 10^{-39} < the smallest normalized value (1.17×10<sup>-38</sup>)
```

- - o Unpack the number into sign bit, biased exponent, and fractional significand.
 - $\mathbf{S} = 0$
 - E = 1111111111
 - $\mathbf{F} = 000\ 0000\ 0000\ 0000\ 0000\ 0000$
 - o As the sign bit is 0, the number is positive.
 - o As $E = 255 \rightarrow$ either an infinity case or a NaN case
 - o The fractional significand is $000\ 0000\ 0000\ 0000\ 0000\ 0000_2$.
 - o As the *bias exponent* is 255 and the F value is **zero**, it means that this is an **+infinity** case, e.g., a number that is larger than $3.4028235 \times 10^{+38}$

- - o Unpack the number into sign bit, biased exponent, and fractional significand.
 - \blacksquare S = 1
 - $\mathbf{E} = 1111 \ 1111$
 - F =110 0000 0000 0000 0000 0000
 - o As the sign bit is 1, the number is negative.
 - o As $E = 255 \rightarrow$ either an infinity case or a NaN case
 - o The fractional significand is $.110\ 0000\ 0000\ 0000\ 0000\ 0000_2$.
 - o As the *bias exponent* is 255 and the F value is *NOT zero*, it means that this is a NaN case (*Not a Number*), e.g., the result of a $0 \div 0$, $\infty \div \infty$, $0 \times \infty$, or $\infty \infty$ operation.
 - o In NaN cases, the value of F is ignored.
 - o The value -NaN

- □ <u>Example 6:</u> Convert C46C0000₁₆ from 32-bit single-precision IEEE-754 FP value into a decimal value.
 - o Convert the hexadecimal number into binary form $C46C0000_{16} = 1100\ 0100\ 0110\ 1100\ 0000\ 0000\ 0000\ 0000_2$.
 - o Unpack the number into sign bit, biased exponent, and fractional significand.
 - \blacksquare S = 1
 - $E = 1000 \ 1000$
 - F = 110 1100 0000 0000 0000 0000
 - As the sign bit is 1, the number is negative.
 - We subtract 127 from the *biased exponent* $1000 \ 1000_2$ to get the *true exponent* \rightarrow $1000 \ 1000_2 0111 \ 1111_2 = 0000 \ 1001_2 = 9_{10}$
 - o The fractional significand is $.110\ 1100\ 0000\ 0000\ 0000\ 0000_2$.
 - o Reinserting the leading one gives $1.110 \ 1100 \ 0000 \ 0000 \ 0000 \ 0000_2$.
 - o The number is $-1.110\ 1100\ 0000\ 0000\ 0000\ 0000_2 \times 2^9$, or $-1110\ 1100\ 00.00\ 0000\ 0000\ 0000_2$ (i.e., -944.0_{10}).

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101 6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010 B = 1100 D = 1101

it is 9

not 7

= 0000

58

From Binary to 32-bit IEEE-754 FP

- □ <u>Example 7:</u> Convert $0.0000100000000000000000000111_2 \times 2^{-124}$ into a 32-bit single-precision IEEE-754 FP value.
 - o The number is positive $\rightarrow S = 0$
 - o The *fractional* part is $0.0000\,1000\,0000\,0000\,0000\,0000\,0001\,11_2$ The normalized *fractional* part is $1.000\,000\,000\,000\,000\,000\,000\,1\,11_2 \times 2^{-5}$
 - o Hence the number will be 1.000 0000 0000 0000 0000 0001 11 $_2$ × 2 -129
 - o As the *exponent* is less than -126, the *fractional* part *can NOT be* represented as a *normalized* number (the number is *too small*)
 - o Instead, we will attempt to represent it as an $\underline{un-normalized}$ $\underline{underflow\ number}$ with $\underline{exponent} = -126$
 - o The number = 0.001 0000 0000 0000 0000 0000 0011 $1_2 \times 2^{-126}$
 - o The encoded *F* value (23 bits) will be *001 0000 0000 0000 0000 0000*
 - o As F is <u>un-normalized</u> the <u>biased exponent</u> will be the <u>true exponent</u> plus 127 1; that is, -126 + 127 1 = 0; Hence, $E = 0000 \ 0000_9$
 - o The final number is $0000\ 0000\ 0001\ 0000\ 0000\ 0000\ 0000\ 0000_2$, or 00100000_{16} .

59

rounded

From Binary to 32-bit IEEE-754 FP

- □ <u>Example 8:</u> Convert $0.0000000000000000000000000111_2 \times 2^{-124}$ into a 32-bit single-precision IEEE-754 FP value.
 - o The number is positive $\rightarrow S = 0$
 - o The fractional part is $0.0000000000000000000000000111_2$ The normalized fractional part is $1.11_2 \times 2^{-28}$
 - o Hence the number will be $1.11_2 \times 2^{-152}$
 - o As the *exponent* is less than -126, the *fractional* part *can NOT be* represented as a *normalized* number (the number is *too small*)
 - o Instead, we will attempt to represent it as an $\underline{un-normalized}$ $\underline{underflow}$ \underline{number} with $\underline{exponent} = -126$
 - o The number = 0.000 0000 0000 0000 0000 0000 0011 $1_2 \times 2^{-126}$
 - The encoded *F* value (23 bits) will be *000 0000 0000 0000 0000 0000*
 - o As F is <u>un-normalized</u> the <u>biased exponent</u> will be the <u>true exponent</u> plus 127 1; that is, -126 + 127 1 = 0; Hence, $E = 0000 \ 0000_2$
 - o The final number is $0000\ 0000\$

rounded

rounded

From Binary to 32-bit IEEE-754 FP

- - o The number is positive $\rightarrow S = 0$
 - o The fractional part is $0.000000000000000000000000011111_2$ The normalized fractional part is $1.1111_2 \times 2^{-26}$
 - o Hence the number will be $1.1111_2 \times 2^{-150}$
 - o As the *exponent* is less than -126, the *fractional* part *can NOT be* represented as a *normalized* number (the number is *too small*)
 - o Instead, we will attempt to represent it as an $\underline{un-normalized}$ $\underline{underflow}$ \underline{number} with $\underline{exponent} = -126$
 - o The number = 0.000 0000 0000 0000 0000 0000 1111 $1_2 \times 2^{-126}$
 - o The encoded *F* value (23 bits) will be *000 0000 0000 0000 0000 0001*
 - o As F is <u>un-normalized</u> the <u>biased exponent</u> will be the <u>true exponent</u> plus 127 1; that is, -126 + 127 1 = 0; Hence, $E = 0000 \ 0000_2$

From Binary to 32-bit IEEE-754 FP

- - o The number is positive $\rightarrow S = 0$

 - o The *biased exponent* is the *true exponent* plus 127; that is, 127 + 127 = 254; Hence, $E = 1111 \ 1110_2$

 - This number is the *largest absolute* normalized number (3.4028235×10⁺³⁸)

From Binary to 32-bit IEEE-754 FP

- - o The number is positive $\rightarrow S = 0$

 - o To encode the *F* value, we will only consider the first 23 bits after the binary point
 - o Note that, the rounding here will add 1 to the fraction to make it $10.000~0000~0000~0000~0000~2 \times 2^{127}$
 - o As a result of this, the number needs to renormalized again 1.0000 0000 0000 0000 0000 0000 $_2$ × 2^{128}
 - o The true exponent of the normalized number is > 127, hence the number will be encoded as **+infinity**, i.e.,
 - > the *F* value will be 000 0000 0000 0000 0000
 - ➤ the *E* value will be 1111 1111₂
 - o The final number is $0111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_2$, i.e., +infinity $(7F800000_{16})$

From Decimal to 32-bit IEEE-754 FP

- \blacksquare <u>Example 12:</u> Convert 4100.125₁₀ into a 32-bit single-precision IEEE-754 FP value.
 - o Convert 4100.125₁₀ into a fixed-point binary
 - $4100_{10} = 1\ 0000\ 0000\ 0100_2$ and
 - $0.125_{10} = 0.001_2.$
 - Therefore, $4100.125_{10} = 1000\ 0000\ 0010\ 0.001_2$.
 - o Normalize 1000 0000 0010 0.001_2 to $1.000 0000 0010 0001_2 \times 2^{12}$.
 - o The sign bit, S, is 0 because the number is positive
 - o The *biased exponent* is the *true exponent* plus 127; that is, $12_{10} + 127_{10} = 139_{10} = 1000 \ 1011_2$
 - o The fractional significand is 000 0000 0010 0001 **0000 0000**
 - *the leading 1 is stripped* and
 - the significand is **expanded** to 23 bits.
 - o The final number is 0100 0101 1000 0000 0010 0001 0000 0000₂, or 45802100_{16} .

= 0000 $= 000^{\circ}$ = 0010= 0.011= 0100 $5 = 010^{\circ}$ = 0.110= 1000 $9 = 100^{\circ}$ = 1100

- □ Consider an example using an *unsigned normalized 8-bit* (1 + 7 *bits*) *significand* and an *unbiased exponent* with $A = 1.010 \ 1001_2 \times 2^4$ and $B = 1.100 \ 1100_2 \times 2^3$
- ☐ To multiply these numbers,
 - you multiply the significands and
 - *add* the exponents

$$\Box \ \mathbf{A} \times \mathbf{B} = 1.010 \ 1001_2 \times 2^4 \times 1.100 \ 1100_2 \times 2^3$$

$$= 1.010 \ 1001_2 \quad \times \quad 1.100 \ 1100_2 \times 2^{3+4}$$

$$= 10.00 \ 0110 \ 1010 \ 1100_2 \times 2^7$$

After normalization:

$$= 1.000\ 0110\ 1010\ 1100_2 \times 2^8.$$

After rounding using:

truncation, i.e., rounding towards zero:

$$\rightarrow 1.000\ 0110_2 \times 2^8 = (268_{10})$$

<u>rounding up</u>, i.e., <u>rounding toward infinity</u>:

$$\rightarrow$$
 1.000 0111₂ × 2⁸ = (270₁₀)

How about rounding to the nearest?

$$A = 1.010 \ 1001_2 \times 2^4$$

= 1010 1.001₂
= 21.125₁₀

$$B = 1.100 \ 1100_2 \times 2^3$$

= 1100. 1100₂
= 12.75₁₀

$$A \times B = 269.34375_{10}$$

$$269_{10} = 1\ 0000\ 1101_2$$

 $0.34375_{10} = 0.010\ 1100_2$

$$A \times B = 66$$

1000 0110 1.010 11002

Why is not it rounded to 269₁₀?

- □ Now let's look at the addition.
- ☐ If these two floating-point numbers $(A = 1.010\ 1001_2 \times 2^4 \text{ and } B = 1.100\ 1100_2 \times 2^3)$ were to be added *by hand*, we would *automatically align the binary points* of A and B as follows.

 $10101.001_2 \\ + 1100.1100_2 \\ 100001.1110_2$

```
A = 1.010 \ 1001_2 \times 2^4
   = 1010 \ 1.001_2
   = 21.125_{10}
B = 1.100 \ 1100_{2} \times 2^{3}
   = 1100. 1100_{2}
   = 12.75_{10}
A + B = 33.875_{10}
33_{10} = 100001_2
0.875_{10} = 0.111_2
   100001.1112
```

☐ However, as these numbers are held in a *normalized* floating-point format the computer has to carry out the following steps to *equalize exponents*:

$$\begin{array}{lll} \mathtt{A} &=& 1.0101001_2 \times 2^4 \\ \mathtt{B} &=& \underline{+1.1001100}_2 \times 2^3 \end{array}$$

- 1. *Identify* the number with *the smaller exponent*.
- 2. Make the smaller exponent equal to the larger exponent by dividing the significand of the smaller number by the same factor by which its exponent was increased, i.e., un-normalizing the small number to have the same exponent value as the large number.

 (1.100 $1100_2 \times 2^3 \rightarrow 0.110 \ 0110 \ 0_2 \times 2^4 \rightarrow 0.110 \ 0110_2 \times 2^4$).
- 3. Add (or subtract) the significands.
- 4. If necessary, normalize the result.
- \square We can now add A to the denormalized B.

A =
$$1.010 \ 1001_2 \times 2^4$$

B = $\frac{+ \ 0.110 \ 0110_2 \times 2^4}{10.000 \ 1111_2 \times 2^4}$ \rightarrow $1.000 \ 01111_2 \times 2^5 = 33.875_{10}$

 \square After rounding using <u>truncation</u>, i.e., <u>rounding towards zero</u>:

$$\rightarrow$$
 1.000 0111₂ × 2⁵ = (33.75₁₀)

<u>rounding up</u>, i.e., <u>rounding toward infinity</u>:

→
$$1.000 \ 1000_2 \times 2^5 = (34_{10})$$

68

□ Consider another example using an *unsigned normalized 8-bit* (<u>1+7 bits</u>) significand and an *unbiased exponent* with $A=1.010\ 1001_2\times 2^4$ & $C=1.100\ 1100_2\times 2^{13}$

$$A = 1.0101001_2 \times 2^4$$

$$C = \pm 1.1001100_2 \times 2^{13}$$

- 1. *Identify* the number with *the smaller exponent*.
- 2. Make the smaller exponent equal to the larger exponent by dividing the significand of the smaller number by the same factor by which its exponent was increased, i.e., un-normalizing the small number to have the same exponent value as the large number.

 (1.010 $1001_2 \times 2^4 \rightarrow 0.000 0000 010101001_2 \times 2^{13} \rightarrow 0.000 0000_2 \times 2^{13}$)
- 3. Add (or subtract) the significands.
- \square We can now add C to the un-normalized A.

A =
$$0.000\ 0000_2 \times 2^{13}$$

C = $\frac{+\ 1.100\ 1100_2}{1.100\ 1100_2} \times 2^{13}$
 $\frac{}{}$ C

□ If the difference between the two exponents of the <u>normalized</u> two numbers is <u>greater than</u> the number of significant bits (i.e., 7 + 1) → the addition result of these two numbers will be the larger of them.

