1. Estats de la matèria

Unitats de concentració	
Percentatge en massa	$\% \ massa = \frac{g \ solut}{g \ dissoluci\acute{0}} \cdot 100$
Percentatge en volum	$\% \ volum = \frac{mL \ solut}{mL \ dissoluci\acute{o}} \cdot 100$
Percentatge en pes/volum	$\% = \frac{g \; solut}{100 \; mL \; dissoluci\acute{0}} \cdot 100$
Molaritat o concentració molar	$M = \frac{mols\ solut}{L\ dissoluci\acute{0}}$
Molalitat o concentració molal	$m = \frac{mols\ solut}{kg\ dissolvent}$
Fracció molar X _i	$X_i = \frac{mols\ solut}{mols\ solut + mols\ dissolvent}$
Grams per litre de dissolució	$g/L = \frac{g \ solut}{L \ dissoluci\'o}$
Parts per milió₁	$ppm = \frac{mg \ solut}{L \ dissoluci\acute{0}}$
Parts per milió₂	$ppm = \frac{mg \ substancia}{kg \ total}$
Parts per milió₃	$ppm = rac{partícules de substància}{10^6 partícules totals}$
Dissolucions	
Densitat	$\rho = \frac{massa}{volum}$

2. Comportament dels gasos ideals

Unitats de la pressió	
$1 atm = 1,01325 bar = 1,01325 \cdot 10^5 Pa = 760 mm Hg$	
Equivalència ºC amb k	
$T(k) = T({}^{\circ}C) + 273,15$	
Llei dels gasos ideals	
Llei de Boyle (T, n, constants)	$V \alpha \frac{1}{P}$
Llei de Charles (P, n, constants)	VαT
Llei d'Avogadro (T, P, constants)	Vαn
Llei dels gasos ideals	PV = nRT
R (constant dels gasos)	$R = 0.08206 \cdot \frac{atm L}{mol k} = 8.314 \cdot \frac{Pa m^3}{mol k}$

Volum molar estàndard	1 mol (0 °C i 1 atm) = 22,414 L
Determinació de masses molars	
n (nombre de mols)	$n = \frac{m (massa real (g))}{M (massa molar (u))}$
Massa d'un gas	$M = \frac{mRT}{PV}$
Densitat d'un gas	$\rho = \frac{MP}{RT}$
Mescles de gasos. Pressions parcials	
Llei dels gasos ideals	$PV = n_{total}RT$
Pressió total	$P_{total} = P_1 + P_2 + \dots + P_n = \sum P_i$
Pressió parcial	$P_i = X_i P_{total}$
Llei d'efusió i difusió de Graham	
Velocitat d'efusió (mateixes condicions T i P)	$V_e \alpha \frac{1}{M}$
Per a dos gasos	$rac{V_{eA}}{V_{eB}} = \sqrt{rac{M_B}{M_A}}$
Velocitat mitjana	$rac{V_{mA}}{V_{mB}} = \sqrt{rac{M_B}{M_A}}$
Gasos reals. Equació d'estat	
Equació de Van der Waals a: constant relacionada amb atraccions moleculars b: relacionada amb el volum molecular	$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$

3. Estructura atòmica

Teoria quàntica de Planck	
Energia	$\mathcal{E} = hv$
Constat de Planck	$h = 6,626 \cdot 10^{-34} J \cdot s$
Teoria de Bohr	
Transició electrònica	$\mathcal{E}_{inicial} - \mathcal{E}_{final} = hv$
Mecànica quàntica	
Principi d'incertesa de Heisenberg	$\Delta x \Delta p \geq \frac{h}{4\pi}$
Equació de Schrödinger	$-\frac{h^2}{2m}\frac{d^2\Psi}{dx^2} + V(x)^{\Psi} = E^{\Psi}$

4. Propietats periòdiques dels elements químics

Periodicitat de les propietats atòmiques	
Càrrega nuclear efectiva	
Z: càrrega nuclear real (nombre atòmic) σ: constant d'apantallament	$Z_{eff} = Z - \sigma$

5. Enllaç químic

Estructures de Lewis	
Nombre d'enllaços (si es compleix l'octet)	$n_e = \frac{(8 \cdot n_{\text{à}toms} - n_{electrons})}{2}$
Càrrega formal	
Càrrega formal (càrrega total d'una molècula)	$C_f = e_{val\`encia}^ e_{no\ compartits}^ \frac{1}{2}e_{compartits}^-$

7. Propietats dels compostos químics

Moment dipolar	
Moment dipolar (μ)	$\mu = Qr \ (Debyes; \ 1 \ D = 3,336 \cdot 10^{-30} \ C \cdot m)$