LINEAR REGRESSION

TWO CONTINUOUS VARIABLES

BRIAN STOCK 03.27.17

LINEAR REGRESSION

• Predicts Y from X (both continuous) $Y = \alpha + \beta X$

REGRESSION ASSUMES...

- 1. Random sample
- 2. The relationship between X and Y can be described by a line: $Y = \alpha + \beta X$

REGRESSION ASSUMES...

- 1. Random sample
- 2. The relationship between X and Y can be described by a line: $Y = \alpha + \beta X$
- 3. Y is normally distributed with equal variance for all values of X

2 PARAMETERS $Y = \alpha + \beta X$

$$Y = \alpha + \beta X$$

$$\beta = 0$$

"RESIDUAL"

$$Y_i - \hat{Y}_i$$

RESIDUAL PLOTS

- I. Normal (no pattern)
- 2. Equal variance

FINDING THE "LEAST SQUARES" REGRESSION LINE

Minimize:

$$SS_{residual} = \mathop{a}_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Your computer does this for you...

EX: AGE ~ TOOTH RADIOACTIVITY

Many above ground nuclear bomb tests in the '50s and '60s may have left a radioactive signal in developing teeth.

Is it possible to predict a person's age based on dental C¹⁴?

EX: AGE ~ TOOTH RADIOACTIVITY

$$\hat{Y} = 1992.2 - 0.053X$$

PREDICTING Y FROM X

If a cadaver has a tooth with $\Delta^{14}C = 200$, what does the linear model predict its year of birth to be?

$$\hat{Y} = 1992.2 - 0.053X$$
$$= 1992.2 - 0.053(200)$$
$$= 1981.6$$

P2 predicts the amount of variance in Y explained by the linear model

CAUTION: IT IS UNWISE TO EXTRAPOLATE BEYOND THE RANGE OF THE DATA.

Number of species of fish as predicted by the area of a desert pool

If we were to extrapolate to ask how many species might be in a pool of 50000m², we would guess about 20.

MORE DATA ON FISH IN DESERT POOLS

REGRESSION HYPOTHESES

$$H_0$$
: $\beta = 0$

 $H_A: \beta \neq 0$

HYPOTHESIS TEST: β

$$H_0$$
: $\beta = 0$
 H_A : $\beta \neq 0$

$$\mathsf{H}_{\mathsf{A}}:\beta\neq\mathbf{0}$$

$$t = \frac{b - b_0}{SE_b}$$

$$t = \frac{-0.053 - 0}{0.004} = 13.25$$

$$t_{0.0001(2),14} = \pm 5.36$$

So we can reject H_0 , P < 0.0001

CONFIDENCE INTERVALS FOR PREDICTIONS OF:

MEAN Y

INDIVIDUAL Y

TRANSFORMATIONS

If $Y = ab^X$ then $\ln Y = \ln a + X \ln b$.

If
$$Y = a + \frac{b}{X}$$
 then set $X^{\emptyset} = \frac{1}{X}$, and calculate $Y = a + bX^{\emptyset}$.

All of the equations on the right have the form Y=a+bX.

POLYNOMIAL REGRESSION

Number of species = 0.046 + 0.185 Biomass - 0.00044 Biomass²