Linear Algebra Test

X

2019年12月15日

1. 计算

$$D_n = \begin{vmatrix} 0 & a_1 + a_2 & \cdots & a_1 + a_n \\ a_2 + a_1 & 0 & \cdots & a_2 + a_n \\ \vdots & \vdots & & \vdots \\ a_n + a_1 & a_n + a_2 & \cdots & 0 \end{vmatrix} a_i \neq 0 \ (1 \leq i \leq n)$$

- 2. 设整系数多项式 f(x) 满足 f(1) = f(2) = f(3) = p, p 为素数,证明不存在整数 m 使得 f(m) = 2p.
- 3. 设 n 为奇数, A, B 为两个实 n 阶方阵,且 BA = 0.记 $A + J_A$ 的特征值集合为 S_1 , $B + J_B$ 的特征值集合为 S_2 ,其中 J_A , J_B 分别表示 A 和 B 的Jordan标准型.求证 $0 \in S_1 \cup S_2$.
- 4. 设 $A = (a_{ij})_{n \times n}$ 满足
 - (a) $a_{11} = a_{22} = \cdots = a_{nn} = a > 0$;
 - (b) 对于每个 $i (1 \le i \le n)$,有 $\sum_{j=1}^{n} |a_{ij}| + \sum_{j=1}^{n} |a_{ji}| < 4a$.

求 $f(x_1, \dots, x_n) = X'AX$ 的规范形,其中 $X = (x_1, \dots, x_n)'$.

- 5. 设 σ 是有理数域上的线性空间 V 的线性变换, $g(x)=x(x^2+x-1)$.证明:若 $g(\sigma)=0$,则 $V={\rm Im}\ \sigma\oplus {\rm Ker}\ \sigma$.
- 6. 设 A_1, \dots, A_{2019} 为 2018 阶实方阵.证明关于 x_1, \dots, x_{2019} 的方程 $\det(x_1 A_1 + \dots + x_{2019} A_{2019}) = 0$ 至少有一组非零实数解,其中 \det 表示行列式.