Q: Show that the variance of a sum is $\mathrm{var}[X+Y] = \mathrm{var}[X] + \mathrm{var}[Y] + 2\mathrm{cov}[X,Y].$

A: From the definition of variance

$$\begin{aligned} \operatorname{var}[X+Y] = & \operatorname{E}[(X+Y-\operatorname{E}[X+Y])^2] \\ = & \operatorname{E}[X^2+Y^2+2XY-\operatorname{E}^2[X]-\operatorname{E}^2[Y]-2\operatorname{E}[X]\operatorname{E}[Y]] \\ = & \operatorname{E}[X^2-\operatorname{E}^2[X]]+\operatorname{E}[Y^2-\operatorname{E}^2[Y]]+2(\operatorname{E}[XY]-\operatorname{E}[X]\operatorname{E}[Y]) \\ = & \operatorname{var}[X]+\operatorname{var}[Y]+2\operatorname{cov}[X,Y]. \end{aligned}$$

Q: Assume $\theta \sim Beta(\alpha, \beta)$, derive the mean, mode and variance.

A: The probability density function (pdf) of θ is

$$f(heta;lpha,eta)=rac{1}{B(lpha,eta)} heta^{lpha-1}(1- heta)^{eta-1},$$

then the mean is

$$\begin{split} \mathrm{E}[\theta] &= \int_0^1 \theta f(\theta; \alpha, \beta) \mathrm{d}\theta \\ &= \frac{B(\alpha + 1, \beta)}{B(\alpha, \beta)} \int_0^1 \frac{\theta^{\alpha} (1 - \theta)^{\beta - 1}}{B(\alpha + 1, \beta)} \mathrm{d}\theta \\ &= \frac{\alpha}{\alpha + \beta}, \end{split}$$

and the variance is

$$\begin{aligned} \operatorname{var}[\theta] = & \operatorname{E}[\theta^2] - \operatorname{E}^2[\theta] \\ = & \frac{(\alpha+1)\alpha}{\alpha+\beta+1} - \frac{\alpha^2}{(\alpha+\beta)^2} \\ = & \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}. \end{aligned}$$

For the mode, because the derivative is

$$f'(heta;lpha,eta)=rac{1}{B(lpha,eta)} heta^{lpha-2}(1- heta)^{eta-2}[(lpha-1)(1- heta)-(eta-1) heta],$$

when f'=0, it has $\theta=(\alpha-1)/(\alpha+\beta-2)$, which exists when $\alpha>1$ and $\beta>1$.

Q: show that a necessary and sufficient condition for Σ to be positive definite is that all the eigenvalues λ_i of Λ are positive.

A: Because $\Sigma=U^T\Lambda U$, if x is a real vector with the same dimension as Σ , then $x^T\Sigma x=(Ux)^T\Lambda(Ux)$.

Necessity: If Σ is a positive-definite matrix, then

$$x^T \Sigma x = (Ux)^T \Lambda(Ux) > 0$$
 holds for any $x \neq 0$.

then $\lambda_i > 0$, otherwise there exist x s.t. $(Ux)^T \Lambda(Ux) \leq 0$.

Sufficiency: If $\lambda_i>0$, then

$$(Ux)^T \Lambda(Ux) = (Ux)^T QAQ^{-1}(Ux)$$

= $\det A \cdot (Ux)^T (Ux) > 0$,

where QAQ^{-1} is the eigenvalue-decomposition of $\Lambda.$ So Σ is a positive-definite matrix,

Q: Derive the maximum likelihood solutions for the mean and the variance of a univariate Gaussian.

A: The likelihood function is

$$L(\mu,\sigma^2;x_1,\cdots,x_n) = (2\pi\sigma^2)^{-rac{n}{2}} \exp(-rac{1}{2\sigma^2} \sum_{i=1}^n (x-\mu)^2).$$

So the log likelihood is

$$\ln L = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

MLE for μ :

$$rac{\partial \ln L}{\partial \mu} = 0
ightarrow \mu = rac{1}{n} \sum_{i=1}^n x_i.$$

MLE for σ^2 :

$$rac{\partial \ln L}{\partial \sigma^2} = 0
ightarrow \sigma^2 = rac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2,$$

where $\hat{\mu}$ is the MLE for μ .

Q: Plot Gaussian likelihoods with unknown means, conjugate priors of the means, and their corresponding posterior distributions...

A: The conjugate prior $N(\mu \mid 0,6)$,

The likelihood $p(D \mid \mu, \sigma^2)$ is as the answer in the above question. Specifically, here it is

$$p(D \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-10} \exp(-rac{1}{2\sigma^2} \cdot 20s^2 + 20(\hat{x} - \mu)^2),$$

where s^2 is the empirical variance, $\sigma^2=10$, and the sample number is 20 in D.

The posterior is a Gaussian distribution with

$$\sigma_N^2 = rac{\sigma^2 \sigma_0^2}{\sigma^2 + N \sigma_0^2} = rac{6}{13} ext{ and } \mu_N = rac{N \sigma_0^2}{\sigma^2 + N \sigma_0^2} \hat{x} + rac{\sigma_0^2}{\sigma^2 + N \sigma_0^2} \mu_0 = rac{12}{13} imes 2.9390 = 2.7130.$$

The three plots are shown below:

The posterior predictive is given by $N(\mu_N, \sigma_N^2 + \sigma^2)$, so the probability of $x^* = 2.4$ is $N(2.4 \mid 2.7130, 6/13 + 10) = 0.0381$.

Q: Scalar QDA...

A: Denote the two classes "m" and "f" by 0 and 1. The conditional likelihood of the of each class is

$$p(x|y=0) = N(x|\mu_0,\sigma_0) = \left|\sigma_0
ight|^{-1/2} \exp(-1/2(x-\mu_0)^T \sigma_0^{-1}(x-\mu_0)) \ p(x|y=1) = N(x|\mu_1,\sigma_1) = \left|\sigma_1
ight|^{-1/2} \exp(-1/2(x-\mu_1)^T \sigma_1^{-1}(x-\mu_1)),$$

where $\mu_0=217/3$, $\sigma_0\simeq 24.8889$, $\mu_1=65$, $\sigma_0\simeq 12.6667$.

The prior of each class is $\pi_0=\pi_1=1/2$.

For the predictive likelihood, the shared covariance is need, which is $\sigma=32.2222$; then

$$p(y=0|x=72,\hat{ heta})=rac{p_0}{p_{01}},$$

where

$$egin{aligned} p_0 = &|\sigma|^{-1/2} \exp(-rac{1}{2}(x-\mu_0)^T \sigma^{-1}(x-\mu_0))\pi_0 \ &p_{01} = &p_0 + |\sigma|^{-1/2} \exp(-rac{1}{2}(x-\mu_1)^T \sigma^{-1}(x-\mu_1))\pi_1. \end{aligned}$$

The result is $p(y=0|x=72,\hat{ heta})=0.6811.$