Lecture 3

Conditional Probability & Independence

STAT 330 - Iowa State University

1/20

Contingency Table

Contingency Table

Definition

A *contingency table* gives the distribution of 2 variables.

Example 1: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.

Define events: I = "owns Iphone", and M = "owns MacBook".

Computer	М	M	Total
1	300	?	650
Ī	?	?	?
Total	400	?	1000

2/20

Contingency Table

Computer	М	M	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

Marginal Probability

Marginal Probability

Definition

The *marginal probability* is the probability of a variable. It can be obtained from the *margins* of contingency table.

Computer	М	M	Total
	300	350	650
Total	400	250 600	350

What is the probability of owning a Mac? (ie marginal probability of owning a Mac)

$$P(M) = \frac{400}{1000} = 0.40$$

Conditional Probability

Conditional Probability

Does knowing someone owns an Iphone change the probability they own a Mac?

Informally, conditional probability is updating the probability of an event given information about another event.

If we *know* that someone owns an Iphone, then we can narrow our sample space to just the "owns Iphone" case (highlighted blue row) and ignore the rest!

Computer	М	M	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

Conditional Probability Cont.

What is the probability of owning a Mac given they own an Iphone?

Computer	М	M	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

$$P(M|I) = \frac{300}{650} = 0.46$$

6 / 20

Conditional Probability Cont.

Definition

The *conditional probability* of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided $P(B) \neq 0$.

It can be obtained from the *rows/columns* of contingency table.

Back to Example 1 ...

What is the probability of owning a Mac given they own an Iphone?

$$P(M|I) = \frac{P(I \cap M)}{P(I)} = \frac{0.3}{0.65} = 0.46$$

Consequences of Conditional Probability

The definition of conditional probability gives useful results:

1.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B) = P(B)P(A|B)$$

2.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \rightarrow P(A \cap B) = P(A)P(B|A)$$

This gives us two additional ways to calculate probability of intersections. Putting it together . . .

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

8 / 20

Probability Calculations

Probability Calculations

A contingency table can also be written with probabilities instead of counts. This is called a *probability table*.

Inner cells give "joint probabilities" \rightarrow probability of intersections

• $P(A \cap B), P(\overline{A} \cap B)$, etc

Margins give "marginal probabilities" \rightarrow probability of variables

• $P(A), P(B), P(\overline{A})$, etc

Computer	М	M	Total
<u> </u>	0.30	0.35 0.25	0.65
I	0.10	0.25	0.35
Total	0.40	0.60	1

9 / 20

Probability Calculations Cont.

Computer	М	M	Total
1	0.30	0.35	0.65
Ī	0.10	0.25	0.35
Total	0.40	0.60	1

$$P(\overline{I}) =$$

$$P(M) =$$

$$P(\overline{I}\cap M) =$$

$$P(M|\overline{I}) =$$

$$P(\bar{I}|M) =$$

Independence

Independence of Events

In Example 1, knowing an event occurred changed the probability of another event occurring.

However, sometimes knowing an event occurs *doesn't change* the probability of the other event.

In this case, we say the events are *independent*.

Definition

Events A and B are *independent* if ...

- 1. $P(A \cap B) = P(A)P(B)$ or equivalently
- 2. P(A|B) = P(A) if $P(B) \neq 0$

Independence of Events Cont.

Example 2: Check if events are independent

Is owning an Iphone and owning MacBook independent? Recall that P(I) = 0.65, P(M) = 0.4, $P(I \cap M) = 0.35$

12 / 20

Independence of Events Cont.

Example 3: Using independence to simplify calculations If A, B independent $\rightarrow P(A \cap B) = P(B)P(A|B) = P(B)P(A)$

Roll a die 4 times. Assuming that rolls are independent, what is the probability of obtaining at least one '6'?

P(at least 1 '6') = 1 - P(No '6's) $= 1 - P(\text{no '6' on roll 1} \cap \text{no '6' on roll 2} \cap \cdots \cap \text{no '6' on roll 4})$ =

Independent vs. Disjoint

$Independent \neq Disjoint!!!$

Completely different concepts!

Independent:

$$P(A \cap B) = P(A)P(B)$$

Disjoint:

$$P(A\cap B)=P(\emptyset)=0$$

14 / 20

System Reliability

Application: System Reliability

Parallel: A parallel system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if at least one of the k components functions properly.

Series: A series system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if ALL components function properly.

Reliability: Reliability of a system is the probability that the system works.

Reliability of Parallel System

Example 4:

Let c_1, \ldots, c_k denote the k components in a *parallel* system. Assume the k components operate independently, and $P(c_i \text{ works }) = p_i$. What is the reliability of the system?

$$P(\text{system works}) = P(\text{at least one component works})$$

$$= 1 - P(\text{all components fail})$$

$$= 1 - P(c_1 \text{ fails} \cap c_2 \text{ fails} \cap \cdots \cap c_k \text{ fails})$$

$$= 1 - \prod_{j=1}^k P(c_j \text{ fails})$$

$$= 1 - \prod_{j=1}^k (1 - p_j)$$

Reliability of Series System

Example 5:

Let c_1, \ldots, c_k denote the k components in a *series* system. Assume the k components operate independently, and $P(c_i \text{ works }) = p_i$. What is the reliability of the system?

$$P(\text{system works}) = P(\text{all components work})$$

$$= P(c_1 \text{ works} \cap c_2 \text{ works} \cap \cdots \cap c_k \text{ works})$$

$$= \prod_{j=1}^k P(c_j \text{ works})$$

$$= \prod_{i=1}^k p_i$$

17 / 20

Reliability Example

Example 6: Suppose a base is guarded by 3 radars (R_1, R_2, R_3) , and the radars are independent of each other. The detection probability are . . .

 $P(R_1 \text{ detects}) = 0.95$

 $P(R_2 \text{ detects}) = 0.98$

 $P(R_3 \text{ detects}) = 0.99$

Does a system in *parallel* or *series* have higher reliability for this scenario?

Reliability Example