Price Elasticity of Demand

Let j=1,...,M=88 denote each store, and $i=1,...,n_j$ the individual measurements within each store. Also, let $N=\sum_{j=1}^{M}n_j$. We will write the model as

$$y_{ij} = \beta_{1j} + \beta_{2j} x_{1,ij} + \beta_{3j} x_{2,ij} + \beta_{4j} (x_{1,ij} \times x_{2,ij}) + \varepsilon_{ij},$$

where y_{ij} is the log of the sales volume (in thousands of units sold), $x_{1,ij}$ is the log of the price (in USD), and $x_{2,ij}$ is an indicator denoting whether or not advertising was present in the store; i.e., $x_{2,ij} = 1$ if the ij^{th} observation was measured when an advertisement display was present, and 0 otherwise.

In words,

$$\log \text{Quantity}_{ij} = \beta_{1j} + \beta_{2j} \log \text{Price}_{ij} + \beta_{3j} \text{Display}_{ij} + \beta_{4j} \left(\log \text{Price}_{ij} \times \text{Display}_{ij} \right) + \varepsilon_{ij},$$

or

$$\log Q_{ij} = \beta_{1j} + \beta_{2j} \log P_{ij} + \beta_{3j} D_{ij} + \beta_{4j} \left(\log P_{ij} \times D_{ij}\right) + \varepsilon_{ij},$$

where $Q_{ij} = \text{Quantity}_{ij}$, $P_{ij} = \text{Price}_{ij}$, and $D_{ij} = \text{Display}_{ij}$.

Also, we assume the ε_{ij} are iid $N(0, \sigma^2)$. We will denote $\boldsymbol{\beta}_j = (\beta_{1j}, \beta_{2j}, \beta_{3j}, \beta_{4j})^T$ and $\boldsymbol{x}_{ij} = (1, x_{1,ij}, x_{2,ij}, x_{1,ij}, x_{2,ij})^T$, so that the model can also be written as

$$y_{ij} = \boldsymbol{\beta}_j^T \boldsymbol{x}_{ij} + \varepsilon_{ij}.$$

We further assume that β_j are random effects, deriving from a $\mathcal{N}(\theta, \Sigma)$ distribution. We then place (conditionally) conjugate prior distributions on θ , Σ , and $\lambda = \frac{1}{\sigma^2}$. The hierarchical nature of the model can thus be specified as:

$$y_{ij}|\boldsymbol{\beta}_{j}, \lambda \sim N\left(\boldsymbol{\beta}_{j}^{T}\boldsymbol{x}_{ij}, \frac{1}{\lambda}\right)$$
$$\boldsymbol{\beta}_{j}|\boldsymbol{\theta}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\mu}_{0}, \boldsymbol{\Lambda}_{0})$$
$$\boldsymbol{\Sigma} \sim \mathrm{IW}(\boldsymbol{\eta}_{0}, \boldsymbol{S}_{0})$$
$$\lambda \sim \mathrm{Gamma}(\boldsymbol{a}, \boldsymbol{b}).$$

We can represent the model graphically as follows:

The full posterior is then

$$p(\boldsymbol{\beta}_{1},...,\boldsymbol{\beta}_{M},\boldsymbol{\theta},\boldsymbol{\Sigma},\boldsymbol{\lambda}|\mathrm{Data}) \propto p(\mathrm{Data}|\boldsymbol{\beta}_{1},...,\boldsymbol{\beta}_{M},\boldsymbol{\theta},\boldsymbol{\Sigma},\boldsymbol{\lambda})p(\boldsymbol{\beta}_{1},...,\boldsymbol{\beta}_{M})p(\boldsymbol{\theta})p(\boldsymbol{\Sigma})p(\boldsymbol{\lambda})$$

$$= \left(\prod_{j=1}^{M}\prod_{i=1}^{n_{j}}N\left(y_{ij}\left|\boldsymbol{\beta}_{j}^{T}\boldsymbol{x}_{ij},\frac{1}{\boldsymbol{\lambda}}\right)\right)\left(\prod_{j=1}^{M}\mathcal{N}(\boldsymbol{\beta}_{j}|\boldsymbol{\theta},\boldsymbol{\Sigma})\right)\times\mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\mu}_{0},\boldsymbol{\Lambda}_{0})\times\mathrm{IW}(\boldsymbol{\Sigma}|\eta_{0},\boldsymbol{S}_{0})\times\mathrm{Gamma}(\boldsymbol{\lambda}|\boldsymbol{a},\boldsymbol{b})$$

$$\propto \left(\prod_{j=1}^{M}\prod_{i=1}^{n_{j}}\sqrt{\boldsymbol{\lambda}}\exp\left\{-\frac{\boldsymbol{\lambda}}{2}\left(y_{ij}-\boldsymbol{\beta}_{j}^{T}\boldsymbol{x}_{ij}\right)^{2}\right\}\right)\times\left(\prod_{j=1}^{M}|\boldsymbol{\Sigma}|^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\theta}\right)^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_{j}-\boldsymbol{\theta})\right\}\right)$$

$$\times\left(\exp\left\{-\frac{1}{2}(\boldsymbol{\theta}-\boldsymbol{\mu}_{0})^{T}\boldsymbol{\Lambda}_{0}^{-1}(\boldsymbol{\theta}-\boldsymbol{\mu}_{0})\right\}\right)\times|\boldsymbol{\Sigma}|^{-\frac{\eta_{0}+4+1}{2}}\exp\left\{-\frac{1}{2}\mathrm{tr}(\boldsymbol{S}_{0}\boldsymbol{\Sigma}^{-1})\right\}$$

$$\times\boldsymbol{\lambda}^{a-1}\exp\{-\boldsymbol{b}\boldsymbol{\lambda}\}$$

From here we can derive the full conditionals for the β_j , θ , Σ , and λ , so that we may then run a Gibbs sampler.

$$p(\boldsymbol{\beta}_{j}|-) \propto \left[\prod_{i=1}^{n_{j}} \exp \left\{ -\frac{\lambda}{2} (y_{ij} - \boldsymbol{\beta}_{j}^{T} \boldsymbol{x}_{ij})^{2} \right\} \right] \times \exp \left\{ -\frac{1}{2} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) \right\}$$

$$\propto \exp \left\{ -\frac{\lambda}{2} \sum_{i=1}^{n_{j}} (y_{ij} - \boldsymbol{\beta}_{j}^{T} \boldsymbol{x}_{ij})^{2} \right\} \exp \left\{ -\frac{1}{2} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) \right\}$$

$$= \exp \left\{ -\frac{\lambda}{2} \sum_{i=1}^{n_{j}} (y_{ij}^{2} - 2y_{ij} \boldsymbol{x}_{ij}^{T} \boldsymbol{\beta}_{j} + \boldsymbol{\beta}_{j}^{T} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{T} \boldsymbol{\beta}_{j}) - \frac{1}{2} (\boldsymbol{\beta}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}_{j} - 2\boldsymbol{\theta}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}_{j} + \boldsymbol{\theta}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\theta}) \right\}$$

$$\propto \exp \left\{ -\frac{1}{2} \left[\boldsymbol{\beta}_{j}^{T} \left(\lambda \sum_{i=1}^{n_{j}} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{T} + \boldsymbol{\Sigma}^{-1} \right) \boldsymbol{\beta}_{j}^{T} - 2 \left(\lambda \sum_{i=1}^{n_{j}} y_{ij} \boldsymbol{x}_{ij}^{T} + \boldsymbol{\theta}^{T} \boldsymbol{\Sigma}^{-1} \right) \boldsymbol{\beta}_{j} \right] \right\}$$

$$\propto \mathcal{N} \left(\boldsymbol{\beta}_{j} \left[\left(\lambda \sum_{i=1}^{n_{j}} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{T} + \boldsymbol{\Sigma}^{-1} \right)^{-1} \left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\theta} + \lambda \sum_{i=1}^{n_{j}} y_{ij} \boldsymbol{x}_{ij} \right) ; \left(\lambda \sum_{i=1}^{n_{j}} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{T} + \boldsymbol{\Sigma}^{-1} \right)^{-1} \right) \right]$$

$$\begin{split} p(\boldsymbol{\theta}|-) &\propto \left(\prod_{j=1}^{M} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) \right\} \right) \times \left(\exp\left\{ -\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Lambda}_{0}^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_{0}) \right\} \right) \\ &\propto \exp\left\{ -\frac{1}{2} \sum_{j=1}^{M} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Lambda}_{0}^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_{0}) \right\} \\ &\propto \exp\left\{ -\frac{1}{2} \sum_{j=1}^{M} (-2 \boldsymbol{\beta}_{j}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\theta} + \boldsymbol{\theta}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\theta}) - \frac{1}{2} (\boldsymbol{\theta}^{T} \boldsymbol{\Lambda}_{0}^{-1} \boldsymbol{\theta} - 2 \boldsymbol{\mu}_{0}^{T} \boldsymbol{\Lambda}_{0}^{-1} \boldsymbol{\theta}) \right\} \\ &= \exp\left\{ -\frac{1}{2} \left[\boldsymbol{\theta}^{T} (\boldsymbol{M} \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Lambda}_{0}^{-1}) \boldsymbol{\theta} - 2 \left(\boldsymbol{\mu}_{0}^{T} \boldsymbol{\Lambda}_{0}^{-1} + \sum_{j=1}^{M} \boldsymbol{\beta}_{j}^{T} \boldsymbol{\Sigma}^{-1} \right) \boldsymbol{\theta} \right] \right\} \\ &\propto \mathcal{N} \left(\boldsymbol{\theta} \left[(\boldsymbol{M} \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Lambda}_{0}^{-1})^{-1} \left(\boldsymbol{\Lambda}_{0}^{-1} \boldsymbol{\mu}_{0} + \boldsymbol{\Sigma}^{-1} \sum_{j=1}^{M} \boldsymbol{\beta}_{j} \right); (\boldsymbol{M} \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Lambda}_{0}^{-1})^{-1} \right) \end{split}$$

$$p(\mathbf{\Sigma}|-) \propto \left(\prod_{j=1}^{M} |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \mathbf{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) \right\} \right) \times |\mathbf{\Sigma}|^{-\frac{\eta_{0} + 4 + 1}{2}} \exp\left\{ -\frac{1}{2} \operatorname{tr} (\boldsymbol{S}_{0} \mathbf{\Sigma}^{-1}) \right\}$$

$$\propto |\mathbf{\Sigma}|^{-\frac{M + \eta_{0} + 4 + 1}{2}} \exp\left\{ -\frac{1}{2} \sum_{j=1}^{M} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \mathbf{\Sigma}^{-1} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) - \frac{1}{2} \operatorname{tr} (\boldsymbol{S}_{0} \mathbf{\Sigma}^{-1}) \right\}$$

$$\propto |\mathbf{\Sigma}|^{-\frac{M + \eta_{0} + 4 + 1}{2}} \exp\left\{ -\frac{1}{2} \operatorname{tr} \left[\sum_{j=1}^{m} ((\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \mathbf{\Sigma}^{-1}) \right] - \frac{1}{2} \operatorname{tr} (\boldsymbol{S}_{0} \mathbf{\Sigma}^{-1}) \right\}$$

$$\propto |\mathbf{\Sigma}|^{-\frac{M + \eta_{0} + 4 + 1}{2}} \exp\left\{ -\frac{1}{2} \operatorname{tr} \left[\left(\boldsymbol{S}_{0} + \sum_{j=1}^{M} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \mathbf{\Sigma}^{-1} \right] \right\}$$

$$\propto \operatorname{IW} \left(\mathbf{\Sigma} | \eta_{0} + M; \boldsymbol{S}_{0} + \sum_{j=1}^{M} (\boldsymbol{\beta}_{j} - \boldsymbol{\theta}) (\boldsymbol{\beta}_{j} - \boldsymbol{\theta})^{T} \right)$$

$$p(\lambda|-) \propto \left(\prod_{j=1}^{M} \prod_{i=1}^{n_j} \sqrt{\lambda} \exp\left\{ -\frac{\lambda}{2} \left(y_{ij} - \boldsymbol{\beta}_j^T \boldsymbol{x}_{ij} \right)^2 \right\} \right) \times \lambda^{a-1} \exp\left\{ -b\lambda \right\}$$

$$= \lambda^{N+a-1} \exp\left\{ -\frac{\lambda}{2} \sum_{j=1}^{M} \sum_{i=1}^{n_j} \left(y_{ij} - \boldsymbol{\beta}_j^T \boldsymbol{x}_{ij} \right)^2 - b\lambda \right\}$$

$$= \lambda^{N+a-1} \exp\left\{ -\lambda \left[b + \frac{1}{2} \sum_{j=1}^{M} \sum_{i=1}^{n_j} \left(y_{ij} - \boldsymbol{\beta}_j^T \boldsymbol{x}_{ij} \right)^2 \right] \right\}$$

$$\propto \operatorname{Gamma} \left(\lambda \middle| a + N; b + \frac{1}{2} \sum_{j=1}^{M} \sum_{i=1}^{n_j} \left(y_{ij} - \boldsymbol{\beta}_j^T \boldsymbol{x}_{ij} \right)^2 \right).$$

Summary Statistics

	$eta_{1,j}$					β	2, <i>j</i>		$eta_{3,j}$				$eta_{4,j}$			
Store j	Mean	mode	2.5%	97.5%	mean	mode	2.5%	97.5%	mean	mode	2.5%	97.5%	mean	mode	2.5%	97.5%
1	8.40	8.40	7.36	9.43	-1.74	-1.73	-2.70	-0.76	3.92	3.93	2.80	5.07	-3.58	-3.57	-4.69	-2.50
3	10.05 9.84	10.05 9.90	9.47 8.49	10.64 11.20	-1.56 -1.88	-1.55 -1.94	-2.09 -3.26	-1.03 -0.50	0.51 -0.39	0.51 -0.38	-0.26 -2.57	1.28 1.76	-0.44 0.30	-0.45 0.21	-1.18 -1.87	0.30 2.50
4	12.21	12.20	11.14	13.30	-2.90	-2.88	-3.73	-2.09	1.12	1.14	-0.25	2.49	-0.83	-0.82	-1.89	0.24
5	11.07	11.08	10.48	11.67	-2.10	-2.11	-2.54	-1.66	1.00	1.01	-0.08	2.08	-0.56	-0.56	-1.35	0.23
6	10.85	10.84	10.27	11.42	-2.84	-2.83	-3.29	-2.40	2.02	2.02	0.38	3.72	-1.19	-1.13	-2.53	0.10
7	10.57 8.40	10.57	8.81 7.91	12.33	-1.83 -1.00	-1.85	-3.49	-0.16 -0.44	0.18	0.16	-1.81 -0.48	2.17 1.10	0.05	-0.34	-1.81 -1.23	1.91 0.57
8	9.99	8.41 9.96	8.65	8.89 11.30	-1.00	-1.00 -1.92	-1.56 -3.46	-0.44	0.60	0.62	-0.48	2.00	-0.33 -0.45	-0.34	-2.06	1.14
10	10.14	10.12	8.77	11.59	-2.58	-2.53	-4.21	-1.04	0.57	0.61	-1.37	2.44	-0.23	-0.29	-2.23	1.84
11	11.06	11.05	10.47	11.66	-3.97	-3.97	-4.51	-3.44	-1.59	-1.58	-2.66	-0.52	2.14	2.16	1.17	3.12
12	11.19	11.20	10.62	11.76	-3.64	-3.64	-4.27	-3.01	-0.26	-0.31	-2.97	2.37	0.59	0.51	-1.77	3.01
13 14	8.90	8.94	7.71	10.05	-1.07	-1.12	-2.06 -4.10	-0.04	4.57	4.55	3.39	5.79	-3.83 -2.07	-3.83	-4.88	-2.81
15	10.92 8.67	10.90 8.73	9.16 7.23	12.67 10.07	-2.65 -1.55	-2.63 -1.52	-3.17	-1.19 0.11	2.67 0.54	2.66 0.50	0.91 -1.10	4.46 2.18	-0.41	-2.10 -0.38	-3.55 -2.30	-0.61 1.47
16	9.94	9.92	9.01	10.86	-1.73	-1.72	-2.64	-0.82	-0.32	-0.33	-1.39	0.75	0.38	0.37	-0.69	1.46
17	8.65	8.65	7.63	9.65	-1.34	-1.33	-2.44	-0.23	0.34	0.36	-1.06	1.76	-0.31	-0.35	-1.86	1.23
18	9.10	9.12	7.78	10.39	-1.49	-1.53	-2.98	0.02	0.07	0.03	-1.26	1.41	0.13	0.13	-1.41	1.65
19	11.15	11.15	9.97	12.33	-2.11	-2.09	-3.16	-1.07	1.20	1.23	0.00	2.39	-0.97	-0.99	-2.03	0.09
20	13.27 9.74	13.21 9.78	11.92 8.53	14.69 10.92	-3.23 -1.72	-3.19 -1.74	-4.44 -2.92	-2.09 -0.48	-0.89 3.54	-0.85 3.52	-2.33 2.28	0.47 4.84	1.01 -3.31	0.97 -3.30	-0.16 -4.64	2.25 -2.01
22	10.02	10.06	8.81	11.20	-1.72	-1.74	-2.53	-0.48	1.33	1.33	0.00	2.68	-1.27	-1.30	-2.62	0.05
23	10.04	10.02	9.06	11.04	-1.88	-1.86	-2.81	-0.95	0.03	0.04	-1.10	1.15	-0.02	0.01	-1.09	1.06
24	10.25	10.24	9.57	10.93	-2.53	-2.53	-3.10	-1.95	0.45	0.45	-0.33	1.22	-0.34	-0.35	-1.03	0.34
25	9.11	9.10	8.61	9.61	-1.06	-1.07	-1.58	-0.53	2.25	2.24	1.61	2.88	-2.04	-2.03	-2.70	-1.39
26 27	10.17 9.41	10.18 9.40	9.78 8.76	10.57 10.05	-1.79 -1.39	-1.80 -1.40	-2.16 -1.92	-1.43 -0.86	0.02 1.48	0.03 1.48	-1.10 0.73	1.13 2.24	0.17 -1.03	0.18 -1.02	-0.79 -1.69	1.14 -0.37
28	10.04	10.04	9.69	10.38	-1.77	-1.78	-2.08	-1.47	0.24	0.24	-0.23	0.71	-0.18	-0.18	-0.61	0.25
29	8.22	8.22	6.42	9.94	-1.81	-1.85	-3.58	0.02	3.07	3.06	1.22	5.00	-2.27	-2.25	-4.23	-0.37
30	10.76	10.74	9.23	12.28	-2.03	-2.05	-3.24	-0.82	0.99	1.03	-0.56	2.55	-0.58	-0.60	-1.83	0.65
31	11.00 10.37	11.00 10.37	9.48 9.87	12.54 10.87	-2.47 -1.96	-2.46 -1.95	-3.79 -2.44	-1.19 -1.49	1.44 0.43	1.43 0.43	-0.15 -0.53	3.00 1.39	-1.09 -0.19	-1.01 -0.16	-2.43 -1.14	0.27 0.75
33	8.91	8.94	7.34	10.87	-1.69	-1.95	-3.31	-0.06	0.43	0.43	-0.33	1.77	-0.19	-0.16	-1.14	1.59
34	11.83	11.82	11.49	12.17	-3.63	-3.63	-3.93	-3.34	-0.38	-0.33	-3.03	2.21	0.66	0.67	-1.65	3.03
35	9.67	9.73	8.38	10.88	-0.63	-0.67	-1.87	0.68	1.16	1.11	-0.14	2.52	-1.06	-1.00	-2.44	0.27
36	10.33	10.35	9.76	10.89	-1.77	-1.78	-2.24	-1.30	0.43	0.42	-0.24	1.11	-0.17	-0.16	-0.76	0.41
37	9.80 8.55	9.75 8.58	8.23 6.71	11.36 10.38	-1.65 -1.42	-1.66 -1.43	-3.07 -3.15	-0.23 0.32	0.14 -0.86	0.16 -0.86	-1.60 -2.80	1.86	-0.05 0.83	-0.02 0.76	-1.67 -0.99	1.57 2.65
39	9.34	9.33	8.53	10.15	-1.42	-1.45	-2.66	-1.13	0.11	0.13	-1.01	1.23	-0.09	-0.10	-1.17	1.00
40	9.54	9.57	8.88	10.20	-1.59	-1.61	-2.29	-0.89	0.57	0.55	-0.69	1.85	-0.51	-0.49	-1.90	0.87
41	10.48	10.47	9.36	11.65	-2.91	-2.93	-4.05	-1.83	-1.25	-1.22	-2.64	0.08	1.29	1.24	-0.02	2.66
42	11.35	11.36 10.69	9.55	13.15	-2.00	-1.95 -1.92	-3.69	-0.31 -0.22	0.63	0.65	-1.19 -1.41	2.46	-0.30 -0.10	-0.29 -0.05	-2.02 -1.78	1.41
44	10.70 12.24	12.22	8.94 11.61	12.46 12.87	-1.88 -2.75	-1.92	-3.52 -3.26	-0.22	0.36 0.17	0.35	-0.61	0.95	-0.10	-0.05	-0.73	1.56 0.55
45	9.86	9.87	8.53	11.17	-1.97	-2.00	-3.34	-0.58	1.60	1.56	0.19	3.04	-1.61	-1.58	-3.11	-0.15
46	8.77	8.77	7.53	9.97	-1.38	-1.46	-2.67	-0.07	0.93	0.91	-0.47	2.36	-0.90	-0.93	-2.44	0.60
47	10.78	10.75	9.01	12.55	-1.85	-1.88	-3.51	-0.18	0.16	0.22	-1.71	2.03	0.08	0.11	-1.67	1.83
48	10.52	10.55	9.14	11.86	-1.65	-1.67	-3.11	-0.15	0.34	0.39	-1.46	2.16	-0.31	-0.25	-2.28	1.64
49 50	9.66 9.72	9.68 9.74	8.57 8.10	10.75 11.32	-1.96 -1.62	-1.94 -1.66	-2.92 -3.18	-0.99 -0.05	0.55 -0.07	-0.04	-1.50 -1.71	2.58 1.57	-0.09 0.02	-0.05 0.01	-1.91 -1.58	1.74
51	10.29	10.28	9.48	11.11	-2.38	-2.37	-3.42	-1.36	0.34	0.37	-0.54	1.21	-0.04	-0.08	-1.14	1.09
52	10.70	10.70	9.95	11.45	-2.43	-2.42	-3.18	-1.67	-0.45	-0.45	-1.67	0.77	0.51	0.51	-0.77	1.80
53	10.64	10.64	10.32	10.97	-1.74	-1.74	-1.98	-1.50	-0.17	-0.17	-0.89	0.55	0.50	0.50	-0.06	1.07
54 55	11.95 10.33	11.96 10.33	10.49 9.87	13.42 10.78	-2.66 -1.97	-2.66 -1.98	-3.67 -2.29	-1.66 -1.66	1.32 1.40	1.32 1.35	-0.15 -0.73	2.78 3.56	-0.77 -0.88	-0.74 -0.85	-1.77 -2.97	0.25 1.18
56	9.33	9.36	7.61	11.03	-1.97	-1.98	-3.35	-0.39	0.72	0.71	-0.73	2.45	-0.88	-0.85	-2.97	1.18
57	8.42	8.39	7.21	9.64	-1.80	-1.80	-3.11	-0.52	-0.91	-0.88	-2.29	0.43	1.08	1.07	-0.36	2.56
58	10.24	10.22	9.24	11.23	-1.71	-1.72	-2.67	-0.74	0.31	0.32	-0.93	1.56	-0.28	-0.25	-1.51	0.94
59	9.71	9.72	8.38	11.01	-1.50	-1.55	-2.92	-0.04	0.12	0.15	-1.30	1.56	-0.01	-0.04	-1.58	1.54
60	11.25 11.18	11.22 11.18	9.78 10.75	12.75 11.62	-2.45 -2.92	-2.46 -2.92	-3.62 -3.29	-1.30 -2.56	1.54 0.78	1.56 0.80	-0.27	3.05 1.83	-1.17 -0.55	-1.16 -0.59	-2.35 -1.40	0.03
62	9.61	9.62	8.54	10.68	-2.92	-2.92	-3.29	-2.36	0.78	0.80	-0.27	1.68	-0.55	-0.59	-1.40	0.30
63	9.28	9.27	8.07	10.51	-1.89	-1.87	-2.94	-0.85	-0.85	-0.81	-2.15	0.43	0.95	0.95	-0.15	2.07
64	8.62	8.63	8.23	9.00	-0.67	-0.67	-1.05	-0.30	1.38	1.38	0.89	1.88	-1.05	-1.03	-1.52	-0.57
65	9.99	9.99	8.89	11.09	-1.64	-1.63	-2.72	-0.55	0.15	0.09	-1.08	1.38	-0.06	-0.04	-1.30	1.17
66	9.82 11.40	9.88 11.37	8.27 10.03	11.39 12.84	-2.13 -2.89	-2.15 -2.80	-3.75 -4.24	-0.51 -1.62	0.63 -1.01	0.67 -1.00	-1.00 -2.55	2.26 0.46	-0.70 1.03	-0.73 1.02	-2.39 -0.37	0.99 2.50
68	8.72	8.73	7.99	9.45	-2.89	-2.80	-4.24	-0.27	0.48	0.49	-2.33	1.33	-0.29	-0.26	-0.37	0.56
69	9.67	9.68	8.79	10.54	-1.78	-1.77	-2.63	-0.94	-0.19	-0.20	-1.19	0.81	0.30	0.30	-0.68	1.29
70	10.32	10.28	9.22	11.43	-2.01	-2.00	-3.18	-0.85	0.53	0.51	-0.77	1.84	-0.53	-0.49	-1.92	0.84
71	9.80	9.82	8.27	11.33	-1.88	-1.87	-3.06	-0.70	0.77	0.75	-0.78	2.32	-0.54	-0.50	-1.73	0.65
72	9.05	9.02	7.26	10.84	-1.52	-1.58	-3.21	0.17	-0.63	-0.61	-2.44	1.17	0.67	0.65	-1.04	2.37
73 74	11.54 10.46	11.51 10.44	9.73 8.76	13.36 12.14	-1.91 -1.87	-1.90 -1.88	-3.55 -3.30	-0.28 -0.43	0.33	0.34 1.07	-1.53 -0.58	2.18 2.84	-0.06 -0.88	-0.01 -0.90	-1.73 -2.34	1.61 0.57
75	9.87	9.85	8.35	11.44	-2.06	-2.06	-3.54	-0.61	-0.05	0.05	-1.63	1.50	0.11	0.05	-1.36	1.62
76	10.98	10.99	9.37	12.60	-1.92	-1.94	-3.21	-0.63	0.30	0.32	-1.33	1.93	-0.03	-0.02	-1.33	1.29
77	10.37	10.40	8.59	12.17	-1.73	-1.71	-3.43	0.01	-0.25	-0.22	-2.95	2.33	0.42	0.41	-1.97	2.92
78	9.67	9.65	8.78	10.56	-1.57	-1.53	-2.51	-0.63	-0.90	-0.91	-1.97	0.16	1.14	1.14	0.02	2.29

79	9.63	9.62	8.18	11.06	-1.87	-1.88	-3.52	-0.22	0.89	0.87	-0.73	2.53	-0.65	-0.63	-2.52	1.20
80	10.40	10.45	9.24	11.54	-2.24	-2.24	-3.14	-1.31	3.42	3.41	2.17	4.69	-2.63	-2.61	-3.66	-1.61
81	10.53	10.60	8.90	12.13	-1.79	-1.81	-3.16	-0.39	1.74	1.71	0.13	3.40	-1.44	-1.39	-2.87	-0.05
82	8.57	8.56	8.07	9.07	-1.67	-1.67	-2.12	-1.21	1.47	1.47	0.88	2.06	-1.00	-1.00	-1.55	-0.46
83	8.37	8.38	7.02	9.70	-2.25	-2.25	-3.51	-0.97	3.14	3.14	1.75	4.55	-2.44	-2.45	-3.79	-1.11
84	9.78	9.82	8.04	11.49	-2.73	-2.77	-4.13	-1.32	2.25	2.29	0.53	3.99	-1.59	-1.54	-3.02	-0.18
85	9.38	9.40	8.69	10.06	-1.11	-1.13	-1.76	-0.46	0.64	0.69	-0.48	1.77	-0.49	-0.54	-1.55	0.57
86	10.66	10.71	9.45	11.88	-2.07	-2.11	-3.25	-0.90	0.25	0.25	-1.11	1.60	-0.25	-0.22	-1.55	1.07
87	10.12	10.13	9.04	11.19	-1.70	-1.68	-2.78	-0.61	0.49	0.48	-0.95	1.94	-0.41	-0.40	-1.89	1.06
88	8.99	8.98	8.24	9.74	-1.57	-1.58	-2.18	-0.95	-0.08	-0.05	-1.14	0.97	0.15	0.17	-0.72	1.02

	Post Mean	Post Mode	95% Post CI
θ_1	9.884	9.896	(9.563,10.19)
θ_2	-1.858	-1.875	(-2.102, -1.599)
θ_3	0.711	0.706	(0.365, 1.064)
θ_4	-0.484	-0.486	(-0.813, -0.162)

	Post Mean	Post Mode	95% Post CI
σ_1^2	1.481	1.351	(0.917, 2.293)
σ_{12}	-0.818	-0.731	(-1.371, -0.438)
σ_{13}	-0.627	-0.522	(-1.343, -0.094)
σ_{14}	0.614	0.530	(0.129, 1.270)
σ_2^2	0.762	0.694	(0.460, 1.209)
σ_{23}	0.476	0.401	(0.0561, 1.032)
σ_{24}	-0.499	-0.440	(-1.018, -0.113)
σ_3^2	1.940	1.797	(1.192, 2.987)
σ_{34}	-1.735	-1.612	(-2.689, -1.054)
σ_4^2	1.621	1.499	(0.991, 2.507)

	Post Mean	Post Mode	95% Post CI
λ	30.46	30.45	(29.65, 31.27)

Trace Plots

Graphs with Fitted Lines Log Quantity vs. Log Price Per Store Display in Blue, Non-Display in Red

$$\log \hat{Q}_{ij} = \hat{\beta}_{1j} + \hat{\beta}_{2j} \log P_{ij} \log \hat{Q}_{ij} = (\hat{\beta}_{1j} + \hat{\beta}_{3j}) + (\hat{\beta}_{2j} + \hat{\beta}_{4j}) \log P_{ij}$$


```
# Problem 2: Price Elasticity of Demand
# Packages
library(lattice)
library (MASS)
library(MCMCpack)
# Load data
cheese <- read.csv("C:\\Users\\trlil\\Google Drive\\UT Austin\\SDS 383D</pre>
Statistical Modeling II\\Homework\\Exercises 4\\cheese.csv", header = T)
# Add log-transformed variables
cheese <- cbind(cheese, logv = log(cheese$vol), logp = log(cheese$price))</pre>
# Number of groups
M <- length(table(cheese$store))</pre>
# Total observations
N <- dim(cheese)[1]
# Observations per group
n <- as.vector(table(cheese$store))</pre>
# Group indicator
grp <- rep(1:M, n)
# Design matrix:
# Column of 1's for intercept
# Main effect of Log Price
# Main effect of Display
# Interaction of Price and Display
X <- cbind(1, cheese$logp,</pre>
               cheese$disp,
               cheese$logp*cheese$disp)
# Number of predictors
p \leftarrow dim(X)[2]
# Response
y <- cheese$logv
# Number of Gibbs samples
T <- 10<sup>6</sup>
# Prior parameters
Lambda0 <- diag(1, p)</pre>
Mu0 \leftarrow rep(0, p)
eta0 <- 1
S0 <- diag(1, p)
a <- 1
b <- 1
# Objects to hold parameters
Beta \leftarrow array (NA, dim = c(M, p, T))
Theta <- matrix (NA, nrow = T, ncol = p)
Sigma \leftarrow array (NA, dim = c(p, p, T))
lambda <- rep(NA, T)
```

```
# Initialize
Beta[, , 1] <- cbind(1,
                tapply(X[, 2], grp, mean),
                tapply(X[, 3], grp, mean),
                tapply(X[, 4], grp, mean))
Theta[1, ] <- colMeans(Beta[, , 1])</pre>
Sigma[, , 1] \leftarrow cov(Beta[, , 1])
Sigma[1, 1, 1] <- 1
lambda[1] <- 1/var(tapply(y, grp, mean))</pre>
###############################
##### Gibbs sampler #####
##########################
for(t in 1:(T-1)){
    # Track loop progress
    if(t %% (T/100) == 0){print(t)}
    # Update Betas
    for(j in 1:M){
        Xj <- X[grp == j, ]
        S1 <- t(Xj) %*% Xj
        S2 \leftarrow t(Xj) %*% y[grp == j]
        m star <- solve(lambda[t]*S1 + solve(Sigma[,,t])) %*%</pre>
                 (solve(Sigma[,,t]) %*% Theta[t,] + lambda[t]*S2)
        s star <- solve(lambda[t]*S1 + solve(Sigma[,,t]))</pre>
        Beta[j,,t+1] <- mvrnorm(1, m star, s star)</pre>
    }
    # Update Theta
    m star <- solve(M*solve(Sigma[,,t])+solve(Lambda0)) %*%
             (solve(Lambda0) %*% Mu0 + solve(Sigma[,,t]) %*%
              apply(Beta[,,t+1], 2, sum))
    s star <- solve(M*solve(Sigma[,,t])+solve(Lambda0))</pre>
    Theta[t+1,] <- mvrnorm(1, m star, s star)</pre>
    # Update Sigma
    S3 <- 0
    for(j in 1:M){
        S3 <- S3 + (Beta[j,,t+1]-Theta[t+1,]) %*%
                  t (Beta[j,,t+1]-Theta[t+1,])
    Sigma[,,t+1] \leftarrow riwish(eta0 + M, S0 + S3)
    # Update lambda
    SSR <- 0
```

```
for(j in 1:M){
        SSR <- SSR +
              sum((y[grp==j] - X[grp==j,] %*% Beta[j,,t+1])^2)
    }
    lambda[t+1] \leftarrow rgamma(1, a+N, b+1/2*SSR)
# Burn-in 10%
Beta <- Beta[,,(T/10):T]</pre>
Theta \leftarrow Theta[(T/10):T,]
Sigma \leftarrow Sigma[,,(T/10):T]
lambda \leftarrow lambda [(T/10):T]
###########################
##### Examine results #####
#############################
##### Beta #####
# Trace plots of last 10,000 samples
par(mfrow = c(4, 4))
par(mai = rep(0.25, 4))
tt <- (9*T/10)
for(j in 1:M){
    for(k in 1:p){
        plot(Beta[j, k, (tt-10000):tt],
              main = bquote(beta[.(k)\sim","\sim.(j)]),
              xlab = NULL,
              ylab = NULL,
              typ = "1")
        abline(h = mean(Beta[j, k, ]),
              col = "red")
    par(ask = T)
# Graphs of posteriors
par(mfrow = c(4, 4))
par(mai = rep(0.25, 4))
for(j in 1:M){
    for(k in 1:p){
        hist(Beta[j, k, ],
              breaks = 100,
              prob = T,
              main = bquote(beta[.(k)\sim","\sim.(j)]),
              xlab = NULL)
    }
    par(ask = T)
# Make table to output summary stats
Beta out <- matrix (NA, nrow = M, ncol = p)
md <- NULL
for ( j in 1:M) {
```

```
for(k in 4:4){
        md <- c (md,
              density(Beta[j,k,])$x[which.max(density(Beta[j,k,])$y)])
    }
}
Beta out <- rbind(mean = apply(Beta[, 4, ], 1, mean),</pre>
            apply(Beta[, 4, ], 1, quantile, c(0.025, 0.975)),
            mode = md)
write.csv(Beta out, "C:\\Users\\trlil\\Google Drive\\UT Austin\\SDS 383D
Statistical Modeling II\\Homework\\Exercises 4\\out.csv")
##### Theta #####
# Trace Plots
par(mfrow = c(2, 2))
for(k in 1:p){
    plot(Theta[(tt-10000):tt, k],
         main = bquote(theta[~.(k)]),
         xlab = "",
         ylab = "",
         typ = "1")
    abline(h = mean(Theta[, k]),
        col = "red")
}
# Posteriors
par(mfrow = c(2, 2))
for(k in 1:p){
    hist(Theta[, k],
         breaks = 100,
         prob = T,
         main = bquote(theta[~.(k)]),
         xlab = "")
}
# Summary statistics
apply (Theta, 2, mean)
apply (Theta, 2, quantile, c(0.025, 0.975))
for(k in 1:p){
    print(density(Theta[, k])$x[which.max(density(Theta[, k])$y)])
##### Sigma #####
# Trace plots
par(mfrow = c(2, 5))
for(i in 1:p){
    for(j in 1:p){
        if(j \ge i){
            plot(Sigma[i, j, (tt-10000):tt],
                 main = bquote(sigma[~.(i)~""~.(j)]),
                 xlab = "",
                 ylab = "",
                 typ = "1")
```

```
abline(h = mean(Sigma[i, j, ]),
                 col = "red")
        }
    }
}
# Posteriors
par(mfrow = c(2, 5))
for(i in 1:p){
    for(j in 1:p){
        if(j \ge i){
            hist(Sigma[i, j, (tt-10000):tt],
                 main = bquote(sigma[~.(i)~""~.(j)]),
                 breaks = 100,
                 prob = T,
                 xlab = "")
        }
    }
}
# Summary statistics
for(i in 1:p){
    for(j in 1:p){
        if(j \ge i){
            print(mean(Sigma[i, j, ]))
            print(quantile(Sigma[i, j, ], c(0.025, 0.975)))
            print(density(Sigma[i, j, ])$
                  x[which.max(density(Sigma[i, j, ])$y)])
        }
    }
}
##### Lambda #####
# Trace plot
plot(lambda[(tt-10000):tt],
     typ = "1",
     main = bquote(lambda),
     xlab = "",
     vlab = "")
abline(h = mean(lambda),
     col = "red")
# Posterior
hist (lambda,
    prob = T,
    breaks = 100,
     main = bquote(lambda),
     xlab = "",
     ylab = "")
# Summary statistics
mean(lambda)
quantile(lambda, c(0.025, 0.975))
density(lambda) $x[which.max(density(lambda) $y)]
```

```
##### Graphs with fitted lines #####
##### For each store, plot the log quantity
##### vs. log price. Distinguish between the
##### points with display and not display.
##### Plot lines using posterior means of
##### beta coefficients with display in blue,
##### and without display in red.
# 5x5 panel of graphs
par(mfrow = c(5, 5))
# Narrow margins
par(mai = c(0.25, 0.25, 0.25, 0.25))
# Make plot for each store
for(j in 1:M){
    # Blue points are display
   clr <- rep("red", sum(grp == j))</pre>
   clr[which(X[qrp == j, 3] == 1)] \leftarrow "blue"
   # Plot points and indicate
    # which are display
   plot(X[grp == j, 2], y[grp == j],
        col = clr.
        pch = 20,
        xlab = ""
        ylab = "",
        main = bquote("Store "~.(j)),
        cex.main = .9)
    # Fitted line for no display
   abline(a = mean(Beta[j, 1, ]),
        b = mean(Beta[i, 2, 1),
        col = "red")
    # Fitted line for display
    abline (a = mean (Beta[j, 1, ]) + mean (Beta[j, 3, ]),
          b = mean(Beta[j, 2, ]) + mean(Beta[j, 4, ]),
          col = "blue")
    # Pause before next graph
   par(ask = T)
}
```