AMENDMENTS TO THE CLAIMS

This Listing of the Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A method for treating a mammal infected with <u>respiratory</u> syncytial virus (RSV) viruses of a *Pneumovirinae* sub-family, which comprises administering to the mammal a therapeutically effective amount of one or more compounds of formula I:

Formula I

or pharmaceutically acceptable salts or derivatives thereof, wherein

A, together with the atoms to which it is attached, forms an optionally substituted pyridylaromatic ring;

linker –B–C–, together with the atoms to which it is attached, forms an optionally substituted heterocyclic ring having from 5 to 8 ring atoms;

 R_1 is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_nC_{3-7}$ cycloalkyl, $-(CH_2)_nC_{4-7}$ cycloalkenyl, $-(CH_2)_n$ aryl, $-(CH_2)_n$ aryl C_{1-12} alkyl, $-(CH_2)_n$ aryl C_{2-12} alkenyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$, $-C(Y)CH_2N(R_4)R_3$, $-C(Y)CH_2SR_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkynyl and $-(CH_2)_m$ heterocyclyl; and when R_2 is $-CH_2R_3$ or $-C(Y)R_3$, R_3 is further selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; w is 0, 1 or 2; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X and Y are independently selected from O[[,]] or S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy.

2. (Previously Presented) The method according to claim 1, wherein R_2 is not an unsubstituted $-C_{1-6}$ alkyl or unsubstituted $-C(O)-C_{1-6}$ alkyl.

- 3-8. (Cancelled).
- 9. (Currently Amended) The method according to claim 1, wherein ring A is optionally substituted with one or more substituents independently selected from halo, $-NH_2$, $-NO_2$, C_{1-6} alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C_{1-6} alkyl or halo substituted C_{1-6} alkyl, and, when ring A contains one or more ring nitrogens, the optional substituents are further selected from an N-oxide[[s]] of one or more of the pyridyl ring nitrogen[[s]] and pyridinium salts thereof.
- 10. (Currently Amended) The method according to claim 9, wherein ring A is optionally substituted with a substituent selected from halo, alkyl, C_6H_5 –, CH_3 – C_6H_4 –, CF_3 – C_6H_4 –, pyridyl and – NO_2 , and when ring A contains one or more ring nitrogens, the optional substituent is further selected from an N-oxide form of [[a]] the ring nitrogen, and [[a]] pyridinium salts thereof.
- 11. (Previously Presented) The method according to claim 1, wherein ring A is not substituted.
- 12. (Currently Amended) The method according to claim 1, wherein the compound of formula I is a compound of the formula IV

Formula IV

or an N-oxide[[s]] or pharmaceutically acceptable salt[[s]] or derivative[[s]] thereof.

13. (Previously Presented) The method according to claim 1, wherein R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$, $-C(Y)CH_2N(R_4)R_3$, $-C(Y)CH_2SR_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, $-C_{1-12}$ alkyl, $-C_{2-12}$ alkenyl, $-C_{2-12}$ alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl $-(CH_2)_m$ a

–CH₂R₃ or –C(Y)R₃, R₃ is further selected from –S–R₅ and –O–R₅; m is 0-6; R₄ is hydrogen or is C₁₋₆ alkyl; R₅ is selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₄₋₇ cycloalkenyl, aryl and heterocyclyl; w is 0, 1 or 2; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo–C₁₋₆ alkyl, CF₃, hydroxy, mercapto, nitro, cyano, NH₂, mono and di(C₁₋₆ alkyl)amino, phenyl, benzyl and heterocyclyl.

- 14. (Previously Presented) The method according to claim 1, wherein R_2 is $-CH_2-R_3$, and R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heterocyclyl; and m is 0 to 3; and the aryl or heterocyclyl ring is optionally substituted.
- 15. (Previously Presented) The method according to claim 1, wherein R₂ is –COR₃; and R₃ is optionally substituted aryl or optionally substituted heterocyclyl.
- 16. (Previously Presented) The method according to claim 14 or 15, wherein R₃ is optionally substituted and is selected from phenyl, naphthyl, furyl, thienyl, pyrrolyl, *H*-pyrrolyl, pyrrolinyl, pyrrolidinyl, oxazolyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, thiazolyl, isoxazolyl, furazanyl, isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, tetrazolyl, thiadiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyranyl, pyrazinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, triazinyl, 1*H*-thieno[2,3-c]pyrazolyl, thieno[2,3-b]furyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzisoxazolyl, benzisoxazolyl, benzisothiazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, uridinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl and pteridinyl.
- 17. (Previously Presented) The method according to claim 16, wherein R₃ is optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo–C₁₋₆ alkyl, CF₃, hydroxy, mercapto, nitro, cyano, NH₂, mono and di(C₁₋₆ alkyl) amino, phenyl, benzyl and heterocyclyl.
- 18. (Previously Presented) The method according to claim 1, wherein R_2 is $-CON(H)R_3$, R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heteroaryl; m is 0 to 2; and the aryl or heteroaryl

ring is optionally substituted with one or more substituents independently selected from halo, lower alkyl, hydroxy, lower alkoxy and phenyl.

- 19. (Previously Presented) The method according to claim 1, wherein linker -B-C- is an optionally substituted linker of the formula $-CH_2-(CH_2)_z$, where z is 1-4.
 - 20. (Previously Presented) The method according to claim 19, wherein z is 1 or 2.
- 21. (Previously Presented) The method according to claim 1, wherein -B-C- is a linker of the formula $-CH_2CH_2-$.
- 22. (Previously Presented) The method according to claim 1, wherein linker –B–C– is optionally substituted with no more than three optional substituents, the substituents selected from halo, lower alkyl, hydroxy, lower alkoxy, phenyl and benzyl.
- 23. (Previously Presented) The method according to claim 1, wherein linker –B–C– is not substituted.
- 24. (Currently Amended) The method according to claim 1, wherein X is oxygen-or sulphur.
- 25. (Previously Presented) The method according to claim 1, wherein R₁ is an optionally substituted aryl or heterocyclyl group.
- 26. (Previously Presented) The method according to claim 1, wherein R_1 represents phenyl, thienyl, pyrrolyl, pyridyl or $-C_{1-6}$ alkylphenyl, each optionally substituted with halo, hydroxy, nitro, -NR'R", C_{1-12} alkyl, phenyl or $-O-R_a$, where R' and R" are independently selected from hydrogen, lower alkyl and -C(O)R, where R is C_{1-6} alkyl, phenyl or heterocyclyl; R_a is $-C_{1-12}$ alkyl, $-C_{3-7}$ cycloalkyl, $-C_{1-12}$ alkyl C_{3-7} cycloalkyl, phenyl or $-C_{1-12}$ alkylphenyl; and the C_{1-12} alkyl, phenyl or R_a group is optionally substituted with halo, -CN, $-NR^{10}R^{11}$, $-CO_2R^{12}$ or $-CONR^{10}R^{11}$, where R^{10} , R^{11} and R^{12} are independently selected from hydrogen and lower alkyl.
- 27. (Previously Presented) The method according to claim 1, wherein R₁ is phenyl optionally substituted with a substituent selected from halo, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkylhalo, $-C_{1-6}$ alkylCN, $-OC_{1-6}$ alkyl, $-OC_{1-6}$ alkylCO₂NH₂, $-OC_{1-6}$ alkylCN, $-OC_{1-6}$ alkylCO₃₋₇ cycloalkyl, $-OC_{1-6}$ alkylC₆H₅, $-OC_{1-6}$ alkylCO₄, $-OC_{6}$ H₄halo, $-CF_{3}$, $-OC_{7-6}$ alkylCO₇, $-OC_{7-6}$ alkylCO₇

 $-NR'R'', -CO_2H, -CO_2C_{1-6} \ alkyl, -NO_2, -OH, -C_6H_5, -C_6H_4C_{1-6} \ alkyl, -C_6H_4halo \ and \\ -OC(O)C_{1-6} \ alkyl; \ where \ R' \ and \ R'' \ are independently selected from hydrogen, -C(O)C_{1-6} \ alkyl, -C(O)C_{1-6} \ alkylCO_2H, -C(O)C_{1-6} \ alkylCO_2H_3, -C(O)C_{1-6} \ alkylCO_2C_4, -C(O)C_1C_4, -$

- 28. (Previously Presented) The method according to claim 1, wherein R_1 is phenyl substituted with halo, $-OC_{1-6}$ alkyl, $-OC_{1-6}$ alkylhalo, $-OC_{1-6}$ alkyl CO_2NH_2 , $-OC_{1-6}$ alkyl CO_2NH_2 , $-OC_{1-6}$ alkyl CO_2NH_2 , alkyl CO_2NH_2 , alkyl CO_2NH_2 , alkyl CO_2NH_2 .
- 29. (Previously Presented) The method according to claim 1, wherein R_1 is 4-chlorophenyl.
- 30. (Currently Amended) A method for the treatment of infections involving <u>RSV</u> viruses of a *Pneumovirinae* sub-family by the inhibition of virus fusion processes, comprising administering a therapeutically effective amount of a compound of formula I as defined in claim 1, or a pharmaceutically acceptable salt or derivative thereof, to a patient in need of treatment.
- 31. (Previously Presented) A pharmaceutical formulation, comprising a compound of formula I as defined in claim 1, or a pharmaceutically acceptable salt or derivative thereof, and a pharmaceutically acceptable carrier or excipient.
 - 32-36. (Cancelled).
- 37. (Currently Amended) The method of claim 1 for the treatment of human RSV-or human metapneumovirus.
 - 38. (Currently Amended) A compound of formula I

Formula I

or a salt or pharmaceutically acceptable derivative thereof, wherein:

A, together with the atoms to which it is attached, represents an optionally substituted pyridyl, optionally substituted pyridyl, optionally substituted pyrimidinyl or optionally

substituted pyrazinyl ring;

–B-C– is an optionally substituted linker of the formula – CH_2 –(CH_2)_z–, where z is 1-4; R_1 is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, –(CH_2)_n C_{3-7} cycloalkyl, –(CH_2)_n C_{4-7} cycloalkenyl, –(CH_2)_n aryl, –(CH_2)_n aryl C_{1-12} alkyl, –(CH_2)_n aryl C_{2-12} alkenyl, alkenyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkenyl, aryl C_{2-12} alkynyl and $-(CH_2)_m$ heterocyclyl; and when R_2 is $-CH_2R_3$ or $-C(Y)R_3$, R_3 is further selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; w is 0, 1 or 2; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; with the proviso that R_2 is not unsubstituted $-C_{1-6}$ alkyl; and

X and Y are independently selected from O, S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy; with the provisos that when A is pyridyl and R₁ is $3\text{-CH}_3\text{-}4\text{-CH}_3\text{CH}_2\text{CH}_2\text{NHC}(O)\text{CH}_2\text{O-phenyl}$, R₂ is not CH₃; and when A is pyridyl, X is O, R₁ is $-(\text{CH}_2)_n$ aryl, n is 0, and R₂ is $-\text{CH}_2\text{R}_3$, then (i) R₃ is not methyl when R₁ is 4-chlorophenyl and z is 1, and (ii) R₃ is not ethyl when R₁ is phenyl and z is 2.

- 39. (Currently Amended) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, with the proviso <u>that</u> R₂ is not –CH₃ when A is pyridyl.
 - 40. (Cancelled).
- 41. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is optionally substituted with one or more substituents independently selected from halo, $-NH_2$, $-NO_2$, C_{1-6} alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C_{1-6} alkyl or halo substituted C_{1-6} alkyl, and, when ring A contains one or more ring nitrogens, the optional substituents are also selected from N-oxides of one or more of the ring nitrogens.

42. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is optionally substituted with a substituent selected from halo, alkyl, C₆H₅-, CH₃-C₆H₄-, CF₃-C₆H₄-, pyridyl and -NO₂, and when ring A contains one or more ring nitrogens, the optional substituent is also selected from N-oxide forms of ring nitrogens.

- 43. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein ring A is not substituted.
- 44. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R₂ is selected from –CH₂R₃, –C(Y)R₃, –C(Y)OR₃, –C(Y)N(R₄)R₃, –C(Y)CH₂N(R₄)R₃, –C(Y)CH₂SR₃ and –S(O)_wR₅, where R₃ is selected from hydrogen, –C₁₋₁₂ alkyl, –C₂₋₁₂ alkenyl, –C₂₋₁₂ alkynyl, –(CH₂)_mC₃₋₇ cycloalkyl, –(CH₂)_mC₄₋₇ cycloalkenyl, –(CH₂)_m aryl, –(CH₂)_m arylC₁₋₁₂ alkyl, –(CH₂)_m arylC₂₋₁₂ alkenyl, –(CH₂)_m arylC₂₋₁₂ alkynyl and –(CH₂)_m heterocyclyl, and when R₂ is –CH₂R₃ or –C(Y)R₃, R₃ is further selected from –S–R₅ and –O–R₅; m is 0-6, R₄ is hydrogen or C₁₋₆ alkyl, R₅ is selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₄₋₇ cycloalkenyl, benzyl, aryl and heterocyclyl; w is 0, 1 or 2, and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted with one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halo, halo–C₁₋₆ alkyl, CF₃, hydroxy, mercapto, nitro, cyano, NH₂, mono and di(C₁₋₆ alkyl) amino, phenyl, benzyl and heterocyclyl, the substituents being optionally substituted.
- 45. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_2 is $-CH_2-R_3$; and R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heterocyclyl; m is 0 to 3; and the aryl or heterocyclyl ring is optionally substituted.
- 46. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R₂ is –COR₃, and R₃ is optionally substituted aryl or optionally substituted heterocyclyl.
- 47. (Previously Presented) The compound according to claim 46, or a salt or pharmaceutically acceptable derivative thereof, wherein R₃ is optionally substituted and is selected from phenyl, naphthyl, furyl, thienyl, pyrrolyl, *H*-pyrrolyl, pyrrolinyl, pyrrolidinyl, oxazolyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, thiazolyl, isoxazolyl, furazanyl,

isothiazolyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, imidazolyl, imidazolyl, triazolyl, 1,2,3-triazolyl, 1,3,4-triazolyl, tetrazolyl, thiadiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyranyl, pyrazinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, triazinyl, 1*H*-thieno[2,3-c]pyrazolyl, thieno[2,3-b]furyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, uridinyl, purinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, benzotriazinyl, naphthyridinyl and pteridinyl.

- 48. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_3 is optionally substituted with one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, C_{2-6} alkenyl, C_{2-6} alkynyl, halo, halo– C_{1-6} alkyl, CF_3 , hydroxy, mercapto, nitro, cyano, NH_2 , mono and di(C_{1-6} alkyl) amino, phenyl, benzyl and heterocyclyl, where the phenyl, benzyl and heterocyclyl groups are optionally substituted.
- 49. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_2 is $-CON(H)R_3$; R_3 is $-(CH_2)_m$ aryl or $-(CH_2)_m$ heteroaryl; m is 0 to 2; and the aryl or heteroaryl ring is optionally substituted with one or more substituents independently selected from halo, lower alkyl, hydroxy, lower alkoxy and phenyl.
- 50. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein z is 1 or 2.
- 51. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein -B-C- is a linker of the formula -CH₂CH₂-.
- 52. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein the linker –B–C– is optionally substituted no more than three optional substituents, the substituents selected from halo, lower alkyl, hydroxy, lower alkoxy, phenyl and benzyl.
- 53. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein the linker -B-C- is not substituted.

54. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein X is oxygen or sulphur.

- 55. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein X is oxygen.
- 56. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R₁ is an optionally substituted aryl or heterocyclyl group.
- 57. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_1 represents phenyl, thienyl, pyrrolyl, pyridyl or $-C_{1-6}$ alkylphenyl, each optionally substituted with halo, hydroxy, nitro, -NR'R'', C_{1-12} alkyl, phenyl or $-O-R_a$, where R' and R" are independently selected from hydrogen, lower alkyl and -C(O)R, where R is C_{1-6} alkyl, phenyl or heterocyclyl; R_a is $-C_{1-12}$ alkyl, $-C_{3-7}$ cycloalkyl, $-C_{1-12}$ alkyl C_{3-7} cycloalkyl, phenyl or $-C_{1-12}$ alkylphenyl; and the C_{1-12} alkyl, phenyl or R_a group is optionally substituted with halo, -CN, $-NR^{10}R^{11}$, $-CO_2R^{12}$ or $-CONR^{10}R^{11}$, where R^{10} , R^{11} and R^{12} are independently selected from hydrogen and lower alkyl.
- 58. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_1 is phenyl optionally substituted with a substituent selected from halo, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkylhalo, $-C_{1-6}$ alkylCN, $-OC_{1-6}$ alkylCN, $-OC_{1-6}$ alkylCO₂NH₂, $-OC_{1-6}$ alkylCN, $-OC_{1-6}$ alkylC3-7 cycloalkyl, $-OC_{1-6}$ alkylC₆H₅, $-OC_{1-6}$ alkylOCH₃, $-OC_{6}$ H₅, $-OC_{6}$ H₄halo, $-CF_{3}$, $-OCF_{3}$, -NR'R'', $-CO_{2}$ H, $-CO_{2}$ C₁₋₆ alkyl, $-NO_{2}$, -OH, $-C_{6}$ H₅, $-C_{6}$ H₄C₁₋₆ alkyl, $-C_{6}$ H₄halo and $-OC(O)C_{1-6}$ alkyl; where R' and R'' are independently selected from hydrogen, $-C(O)C_{1-6}$ alkyl, $-C(O)C_{6}$ H₅, $-C(O)C_{1-6}$ alkylCO₂H, $-C(O)C_{1-6}$ alkylCO₂CH₃, $-C(O)C_{1-6}$ alkylC₆H₅, $-C(O)C_{1-6}$ alkylC₆H₄CH₃, $-C(O)C_{1-6}$ alkylC₆H₄OCH₃ and $-C(O)C_{1-6}$ alkylC₆H₄halo.
- 59. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R₁ is halo-phenyl.
- 60. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R₁ is 4-chlorophenyl.
 - 61. (Cancelled).

62. (Previously Presented) The compound according to claim 38, or a salt or pharmaceutically acceptable derivative thereof, wherein R_2 is $-C(O)-R_3$ and R_3 is $-(CH_2)_m$ -aryl or $-(CH_2)_m$ -heteroaryl, where m is 0 to 6, and the aryl or heteroaryl group is optionally substituted.

63. (Currently Amended) The compound according to claim 38 of the formula IV

Formula IV

or an N-oxide form or pyridinium [[pyridium]] salt thereof.

- 64. (Previously Presented) The compound according to claim 63, or an N-oxide form or pyridium salt thereof, wherein R_2 is $-C(O)R_3$ and R_3 is $-(CH_2)_m$ -aryl or $-(CH_2)_m$ -heteroaryl, where m is 0 to 6, and the aryl or heteroaryl group is optionally substituted.
 - 65. (Previously Presented) A compound disclosed in table 2 or 3.
- 66. (Previously Presented) A pharmaceutical formulation comprising a compound of formula I according to claim 38, or a pharmaceutically acceptable salt or derivative thereof, and a pharmaceutically acceptable carrier or excipient.
 - 67. (Withdrawn) A compound of formula

or a salt thereof, wherein:

the pyridyl ring is optionally substituted;

-B-C- is an optionally substituted linker of the formula -CH₂-(CH₂)_z-, where z is 1-4; R₁ is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, -(CH₂)_n C_{3-7} cycloalkyl, -(CH₂)_n C_{4-7} cycloalkenyl, -(CH₂)_n aryl, -(CH₂)_n aryl C_{1-12} alkyl, -(CH₂)_n aryl C_{2-12} alkenyl, -(CH₂)_n aryl C_{2-12} alkynyl and -(CH₂)_n heterocyclyl; where n is 0-6, and the alkyl, alkenyl,

alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted; and

X is selected from O, S and NR_{6} , where R_{6} is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy;

with the proviso that when -B-C- is $-CH_2CH(CH(CH_3)_2)$ -, R_1 is not 3-CH₃-4-CH₃CH₂CH₂NHC(O)CH₂O-phenyl-.

- 68. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein the pyridyl ring is optionally substituted with one or more substituents independently selected from halo, $-NH_2$, $-NO_2$, $-C_{1-6}$ alkyl, aryl and heterocyclyl, where the aryl and heterocyclyl groups are optionally substituted with halo, C_{1-6} alkyl or halo substituted C_{1-6} alkyl, and the ring nitrogen of the pyridyl ring may optionally be an N-oxide.
- 69. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein the pyridyl ring is optionally substituted with a substituent selected from halo, alkyl, C₆H₅-, CH₃-C₆H₄-, CF₃-C₆H₄-, pyridyl and -NO₂, and the ring nitrogen of the pyridyl ring may optionally be an N-oxide.
- 70. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein the pyridyl ring is not substituted.
- 71. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein –B–C– is a linker of the formula –CH₂CH₂–.
- 72. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein X is oxygen or sulphur.
- 73. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein X is oxygen.
- 74. (Withdrawn and Currently Amended) The compound according to claim[[s]] 67 or a salt thereof, wherein R₁ is an optionally substituted aryl or heterocyclyl group.
 - 75. (Withdrawn) A compound of the formula

or a salt thereof, wherein the pyridyl ring is optionally substituted and R_1 and X are as defined in claim 67, with the proviso that R_1 is not 4-chlorophenyl.

76. (Withdrawn) A compound of the formula

or a salt thereof, wherein the fused pyridazinyl ring is optionally substituted and R_1 and X are as defined in claim 67, with the proviso that R_1 is not phenyl, 4-chlorophenyl or 4-methoxyphenyl.

77. (Withdrawn and Currently Amended) A compound of any one of the formula

and salts thereof, wherein the fused pyridyl, pyrazinyl, pyridazinyl or pyrimidinyl ring is optionally substituted and R_1 and X are as defined in [[C]]claim 67.

78. (Withdrawn) A method for the production of a compound of formula I according to claim 38, comprising the step of reacting a compound of formula III:

Formula III

or a salt thereof, with an acylating agent, an isocyanate or an isothiocyanate.

- 79. (Withdrawn) A method of separating the enantiomers of a compound of formula III, comprising forming diastereomeric salts of the compounds using an enantiomerically enriched chiral hydrogen phosphate.
- 80. (Withdrawn) A method of separating the enantiomers of a compound according to claim 67, comprising forming diastereomeric salts of the compound using an enantiomerically enriched chiral hydrogen phosphate.
- 81. (Previously Presented) The compound according to claim 38 in a substantially pure optically active form.
- 82. (Withdrawn) The compound according to claim 67 in a substantially pure optically active form.
- 83. (Withdrawn) The compound according to claim 75 in a substantially pure optically active form.
- 84. (Withdrawn) The compound according to claim 76 in a substantially pure optically active form.
- 85. (Withdrawn) The compound according to claim 77 in a substantially pure optically active form.
 - 86. (Currently Amended) A compound of formula I

Formula I

or a salt or pharmaceutically acceptable derivative thereof, wherein:

A, together with the atoms to which it is attached, represents an optionally substituted pyridyl, optionally substituted pyridazinyl, optionally substituted pyrimidinyl or optionally substituted pyrazinyl ring;

–B–C– is an optionally substituted linker of the formula – CH_2 –(CH_2)_z–, where z is 1-4; R_1 is selected from C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, – $(CH_2)_nC_{3-7}$ cycloalkyl, – $(CH_2)_nC_{4-7}$ cycloalkenyl, – $(CH_2)_n$ aryl C_{1-12} alkyl, – $(CH_2)_n$ aryl C_{2-12} alkenyl, alkenyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted;

 R_2 is selected from $-CH_2R_3$, $-C(Y)R_3$, $-C(Y)OR_3$, $-C(Y)N(R_4)R_3$ and $-S(O)_wR_5$, where R_3 is selected from hydrogen, C_{2-12} alkenyl, C_{2-12} alkynyl, $-(CH_2)_mC_{3-7}$ cycloalkyl, $-(CH_2)_mC_{4-7}$ cycloalkenyl, $-(CH_2)_m$ aryl, $-(CH_2)_m$ aryl C_{1-12} alkyl, $-(CH_2)_m$ aryl C_{2-12} alkenyl, aryl C_{2-12} alkynyl and $-(CH_2)_m$ heterocyclyl; and when R_2 is $-CH_2R_3$ or $-C(Y)R_3$, R_3 is further selected from $-S-R_5$ and $-O-R_5$; m is 0-6; R_4 is hydrogen or C_{1-6} alkyl; R_5 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{4-7} cycloalkenyl, benzyl, aryl or heterocyclyl; $[[m]]\underline{w}$ is 0, 1 or 2; and the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups are optionally substituted, with the proviso that R_2 is not unsubstituted $-C_{1-6}$ alkyl; and

X and Y are independently selected from O, S and NR₆, where R₆ is independently selected from hydrogen, lower alkyl, hydroxy and lower alkoxy.