SEAT No.:	
-----------	--

P3366

[Total No. of Pages: 3

[5353] - 557

T.E. (E & TC)

INFORMATION THEORY, CODING AND COMMUNICA-TION NETWORKS

(2015 Pattern)

Time: 2½ Hours

[Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.
- Q1) a) A source emits 1000 symbols per second from a range of 5 symbols, with probabilities $\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right]$. Find entropy and information rate.
 - b) For a systematic (6,3) LBC, the parity matrix is given by [7]

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- i) Find all possible code vectors
- ii) Find error detecting & correcting capabilities.
- Obtain generator matrix and parity check matrix for (7,4) cyclic code using generator polynomial $g(x) = x^3 + x + 1$ [7]

OR

Q2) a) What is mutual information? Calculate all the entropies & mutual information for the channel with channel matrix given as P[y/x] = [0.9,0.1,0;0,0.8,0.2;0,0.3,0.7] [7]

Given
$$P(x_1) = 0.3$$
 and $P(x_2) = 0.25$

$$P(x_3) = 0.45$$

	b)	State & Explain	
		i) Shannon's channel coding theorem	
		ii) Shannon's Information capacity theorem	
	c)	Explain the cyclic property of cyclic code. Generate a systematic (7,4 cyclic code for the messages [7]	
		i) 1010	
		ii) 1000	
Q3)	a)	For a 1/3 rate convolutional encoder using three generators [10]	
		$g_1 = [1 0 \ 0]$	
		$g_2 = [1 \ 0 \ 1]$	
		$g_3 = [1 \ 1 \ 1]$	
		i) Sketch the encoder configuration.	
		ii) Draw state and Terllies diagram	
		iii) Find output code sequence for the input sequence 10110	
	b)		
		Use primitive polynomial $p(x) = x^4 + x + 1$, over GF (2 ⁴) [8	
		OR	
over GF (2 ³), $x^3 + x + 1$. Find systematic RS code for the message $\{\alpha, \alpha^3, \alpha^5\}$		Design (7,3) RS double error correcting code. Use primitive polynomia over GF (2^3), $x^3 + x + 1$.	
		Find systematic RS code for the message $\{\alpha, \alpha^3, \alpha^5\}$ [10]	
		Define the following terms related to convolutional code with example	
		i) Constraint length	
		ii) Code rate	
		iii) Free length	
		iv) Coding gain [8	

Draw & Explain OSI network model. What is peer to peer process? [8] **Q5)** a) What is network? Explain different types of network topologies. b) [8] OR Draw & explain TCP/IP reference model. Explain functionality of each **Q6)** a) layer. [8] Compare coaxial cable, Twisted pair cable and fibre optic cable. b) [8] Draw the HDLC frame format. Explain the control field used in HDLC **Q7**) a) for different frame types. [8] Explain functions of data link layor. [8] b) OR List different framing methods. Explain character stuffing and bit stuffing **Q8)** a) in DLL [8] What is ARQ? Explain Go back N and selective repeat ARQ protocols. b) [8]