SRN							

PES UNIVERSITY, BANGALORE-85 (Established under Karnataka Act 16 of 2013)

UE18MA251

Model Question Paper B.Tech, IV SEMESTER, LINEAR ALGEBRA

(Common for All Branches)

Sub Code: UE18MA251

	e: 3 Hrs	Answer All Questions Max Marks: 100	
1.	a)	Solve the system equations $u+2v+2w=10, 2u+3v-4w=3$ and $u+v+w=7$ using Gaussian elimination.	7
	b)		7
		$\begin{bmatrix} 1-2 & 2 \end{bmatrix}$	
		$A = \begin{bmatrix} 1-2 & 2 \\ 2 & -4 & 5 \\ -2 & 5 & -4 \end{bmatrix}.$ Factorize either A=LDU or PA=LDU for	
	c)	$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ Find A^{-1} using Gauss-Iordan method, where	6
		$A = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	
2.	a)	Find the special solutions to $Ax = 0$ where $A = \begin{bmatrix} 0 & 2 & 4 & 6 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 1 & 4 \end{bmatrix}$ Identify the pivots and the	7
		$A = \begin{bmatrix} 0 & 1 & 3 & 2 \end{bmatrix}$	
		Find the special solutions to $Ax = 0$ where $\begin{bmatrix} 0 & 1 & 1 & 4 \end{bmatrix}$. Identify the pivots and the	
		vectors perpendicular to special solutions of $Ax = 0$.	
	b)	For what value of λ will the vectors (1, 3, -5), (0, 5, λ) and (-2, -1, 0) span a two	7
		dimensional subspace? For this value of λ , find the basis for $C(A)$ and $N(A^T)$ where A	
		is the matrix with these vectors as columns.	
	c)	Check whether the set $\{u+v, u+2v+3w, u+v-2w\}$ is linearly independent or not, if the	6
		set $\{u, v, w\}$ is linearly independent.	
3.	a)		7
],	(a)	Determine the Kernel and range of the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equation	
		$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2y-2 \\ y+z \end{pmatrix}$	
		$\begin{bmatrix} 1 \\ z \end{bmatrix} = \begin{bmatrix} y + z \\ y + y = 2z \end{bmatrix}$	
		What is the dimension of the null space and column space of the	
	b)	Determine the Kerner and range of the linear operator T and defined by the equation $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+2y-z \\ y+z \\ x+y-2z \end{pmatrix}$. What is the dimension of the null space and column space of the matrix of the transformation T ?	7
		$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$ Find the projection of b onto the column space of	
		$\begin{bmatrix} -2 & 4 \end{bmatrix}$	
		Find the projection of b onto the column space of with p in the column space and q perpendicular to that space.	
		with p in the column space and q perpendicular to that space.	
	c)	Find the best straight line fit (least squares) to the measurements $b = 4$ at $t = -2$, $b = 3$ at	6
		t = -1, $b = 1$ at $t = 0$, $b = 0$ at $t = 2$.	
		P.T.O.	

		SRN				
4.		[4 0 1]	7			
		Find Eigen vectors and Eigen values of $A = \begin{bmatrix} -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.				
	b)	Using Gram-schmidt orthogonalization process find an orthonormal set of vectors q_1, q_2, q_3				
			7			
		for which q_1, q_2 span the column space of $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Factorize $A = QR$	/			
		for which q_1, q_2 span the column space of $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$. Factorize $A = QR$				
	c)	Diagonalize $A = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$ and hence prove that $A^k = \begin{pmatrix} 2^k & 5^k - 2^k \\ 0 & 5^k \end{pmatrix}$.	6			
5.	a)	Find the 3×3 matrices A and B for $\delta_1: x^2 + y^2 + 2xz + 4yz + 3z^2$				
		$\delta_2: x^2 + 2y^2 - 4xz - 4yz + 7z^2$				
		By Pivots of A and B decide whether they are positive definite or not.				
	b)	Find the SVD of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.	12			
