Reinforcement Learning

- Q Learning
 - Off-Policy Temporal-Difference Control
 - differentiate behavior-policy from learning-policy
 - SARSA (on policy)
 - ► $\langle s, a, r, s', a' \leftarrow \pi(s) \rangle =$ Learning
 - Q-Learning
 - ► $\langle s, a \leftarrow \pi(s), r, s' \rangle$ => Learning
 - Update rule

$$Q(S_t, A_t)_{new} = Q(S_t, A_t)_{old} + \alpha [R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a') - Q(S_t, A_t)_{old}]$$

Reinforcement Learning

- Function Approximation
 - Why function approximation?
 - Problem with large state spaces
 - Large memory for large table task
 - data should be accurate
 - Generalization
 - to generalize from previous encounters with different states that are in some sense similar to the current ones
 - Generalization => function approximation
 - to generalize desired functions (e.g value function, q function etc.)
 - utilize supervised learning