

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

VII. Országos Magyar Matematikaolimpia

XXXIV. EMMV

megyei szakasz, 2025. február 1.

VII. osztály

1. feladat (10 pont). A hét törpe kártyajátékot játszik egy különleges 2025 kártyából álló paklival. A kártyákon egy 1 és 2025 közötti természetes szám szerepel a gyök alatt. Mindegyik kártyán pontosan egy szám van és egyetlen szám sem szerepel két kártyán. A megkevert pakliból a törpék egymás után húznak egy-egy kártyát, amíg a pakli el nem fogy.

Bizonyítsd, hogy amikor az összes kártyát kihúzták lesz legalább egy törpe, akinek a kártyáin egyetlen természetes szám négyzete sem szerepel!

Gergely Anna, Székelyudvarhely

Megoldás. Hivatalból

(1 pont)

A kártyákon tehát szerepelnek a $\sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{4}, \dots, \sqrt{2025}$ számok, valamilyen sorrendben. Ahhoz, hogy egy kártyán természetes szám szerepeljen, a kártyán lévő érték $\sqrt{k^2}$ alakú kell legyen, ahol $k \in \mathbb{N}$.

Észrevehetjük, hogy $2025 = 45^2$.

(1 pont)

Így a kártvákon szereplő természetes számok az

$$1 = \sqrt{1}, \quad 2 = \sqrt{4}, \quad 3 = \sqrt{9}, \quad \dots, \quad 45 = \sqrt{2025}.$$
 (2 pont)

Viszont ezek között csak az $1 = 1^2$, $4 = 2^2$, $9 = 3^2$,..., $36 = 6^2$ számok négyzetszámok. (2 pont) Mivel 7 törpe játszik, és összesen 6 darab négyzetszám szerepel a kártyákon, így a skatulya-elv alapján biztosan lesz legalább egy olyan törpe, akinek kártyáin nem szerepel egy természetes szám négyzete sem. (2 pont)

- **2. feladat (10 pont).** Az ABCD paralelogrammában $AD \equiv BD$, P a DC oldal egy olyan pontja, hogy $BP \perp DC$, továbbá $BP \cap AC = \{N\}$.
- a) Bizonyítsd, hogy $NC \equiv ND$ és $AN = 2 \cdot ND$.
- b) Bizonyítsd, hogy $\widehat{CAD}=30^\circ$ akkor és csakis akkor, ha ABCD rombusz!

Megoldás. Hivatalból

(1 pont)

a) Az ABCD paralelogramma, ezért $AD \equiv BC$, továbbá a megadott feltétel alapján $BD \equiv AD$. Tehát $BD \equiv BC$ és a BCD háromszög egyenlő szárú. A BCD egyenlő szárú háromszögben BP magasság egyben oldalfelező is. (1 pont)

Az N pont rajta van a DC szakasz BP odalfelező merőlegesén, ezért az NDC háromszög egyenlő szárú és $NC \equiv ND$. (1 pont)

Az ABCD paralelogrammában az AC és BD átló közös felezőpontja legyen O. Ekkor az N pont a BCD háromszög OC és BP oldalfelezőinek metszéspontja, tehát N a BCD háromszög súlypontja. (1 pont)

Az N súlypont harmadolja az OC oldalfelezőt, így $NC = \frac{2}{3} \cdot OC$, továbbá

$$AN = AC - NC = 2 \cdot OC - \frac{2}{3} \cdot OC = \frac{4}{3} \cdot OC = 2 \cdot NC.$$

Felhasználva, hogy $NC \equiv ND$, kapjuk, hogy $AN = 2 \cdot ND$.

(1 pont)

b) Először tegyük fel, hogy $\widehat{CAD}=30^\circ$. Az AND háromszögben $AN=2\cdot ND$ és $\widehat{CAD}=30^\circ$. Igazolni fogjuk, hogy $ND\perp DA$. Ha $\widehat{NDA}\neq 90^\circ$, akkor legyen M az N pontból az AD egyenesre bocsájtott merőleges talppontja, vagyis $M\in AD$ és $NM\perp AD$. Ekkor az NMA derékszögű háromszögben $\widehat{NAM}=30^\circ$, így ezzel a szöggel szembeni befogó hossza fele olyan hosszú, mint az átfogó, vagyis $AN=2\cdot NM$. Tehát $NM\equiv ND$, ezért az NMD háromszög egyenlős szárú, továbbá $\widehat{NMD}=90^\circ$. Ez ellentmondáshoz vezet, tehát D egybe kell essen az M ponttal, vagyis $ND\perp AD$. (1 pont)

Az $AD \parallel BC$ és $ND \perp AD$ alapján $ND \perp BC$, így ND a BCD háromszög magassága. Az N pont a BP és ND magasságok metszéspontja, tehát N a BCD háromszög magasságpontja, (1 pont) ahonnan következik, hogy $NC \perp BD$, így $CO \perp BD$. Az ABCD paralelogramma átlói merőlegesek egymásra, ezért ABCD rombusz. (1 pont)

Végül tételezzük fel, hogy ABCD rombusz. Ekkor $AD \equiv BD$, illetve a feltétel alapján $AD \equiv BD$. Innen következik, hogy az ABD háromszög egyenlő oldalú, sajátosan $\widehat{BAD} = 60^{\circ}$. (1 pont)

Az ABCD rombuszban az átlók felezik egymást és merőlegesek egymásra, így AO az ABD egyenlő oldalú háromszögben oldalfelező merőleges, ezért szögfelező is, ahonnan következik, hogy $\widehat{CAD} = \widehat{DAO} = 30^{\circ}$. (1 pont)

- 3. feladat (10 pont). a) Határozd meg azon $x \ge 0$ racionális számokat, amelyekre $\frac{10x+1}{x+1}$ négyzetszám!
- b) Oldd meg a következő egyenletet a racionális számok halmazán:

$$\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \dots + \frac{x+2024}{2028} = \frac{2024^2}{2023} \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{2023 \cdot 2024} \right) .$$

Matlap 10/A: 5017, 2024

Megoldás. Hivatalból

(1 pont)

a) Mivel $x \ge 0$, ezért $1 \le 10x + 1 < 10x + 10$, ahonnan következik, hogy

$$1 = \frac{x+1}{x+1} \le \frac{10x+1}{x+1} < \frac{10x+10}{x+1} = 10.$$

Ha $\frac{10x+1}{x+1}$ az n természetes szám négyzete, vagyis $\frac{10x+1}{x+1}=n^2$, akkor $1\leq n^2<10$, ahonnan kapjuk, hogy n^2 csak 1, 4 vagy 9 lehet. (2 pont)

Kipróbáljuk ezeket az eseteket.

• Ha $n^2 = 1$, akkor

$$\frac{10x+1}{x+1} = 1 \iff 10x+1 = x+1 \iff 9x = 0 \iff x = 0.$$

• Ha $n^2 = 4$, akkor

$$\frac{10x+1}{x+1} = 4 \iff 10x+1 = 4x+4 \iff 6x = 3 \iff x = \frac{1}{2}.$$

• Ha $n^2 = 9$, akkor

$$\frac{10x+1}{x+1} = 9 \iff 10x+1 = 9x+9 \iff x = 8.$$

Összegezve $x \in \{0, \frac{1}{2}, 8\}$.

(2 pont)

b) Minden k pozitív természetes szám esetén

$$\frac{1}{k \cdot (k+1)} = \frac{(k+1) - k}{k \cdot (k+1)} = \frac{k+1}{k \cdot (k+1)} - \frac{k}{k \cdot (k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

Ezt felhasználva az egyenlet jobb oldalán álló zárójel átírható a következőképpen:

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{2023 \cdot 2024} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{2023 \cdot 2024}$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2023} - \frac{1}{2024}\right)$$

$$= \frac{1}{1} + \left(-\frac{1}{2} + \frac{1}{2}\right) + \left(-\frac{1}{3} + \frac{1}{3}\right) + \left(-\frac{1}{4} + \frac{1}{4}\right) + \dots$$

$$\dots + \left(-\frac{1}{2023} + \frac{1}{2023}\right) - \frac{1}{2024}$$

$$= \frac{1}{1} - \frac{1}{2024}$$

$$= \frac{2023}{2024}.$$
(2 pont)

Ekkor az egyenlet a következő egyenértékű formákba írható át:

$$\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \dots + \frac{x+2024}{2028} = \frac{2024^2}{2023} \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{2023 \cdot 2024} \right),$$

$$\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \dots + \frac{x+2024}{2028} = \frac{2024^2}{2023} \cdot \frac{2023}{2024},$$

$$\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \dots + \frac{x+2024}{2028} = 2024.$$
 (1 pont)

Átrendezve a következőket kapjuk:

$$\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \dots + \frac{x+2024}{2028} - 2024 = 0,$$

$$\left(\frac{x+1}{5} - 1\right) + \left(\frac{x+2}{6} - 1\right) + \left(\frac{x+3}{7} - 1\right) + \dots + \left(\frac{x+2024}{2028} - 1\right) = 0,$$

$$\frac{x-4}{5} + \frac{x-4}{6} + \frac{x-4}{7} + \dots + \frac{x-4}{2028} = 0,$$

$$(x-4) \cdot \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots + \frac{1}{2028}\right) = 0.$$
(1 pont)

Viszont ebben az egyenletben az $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots + \frac{1}{2028} \neq 0$, ezért x - 4 = 0, azaz $x = 4 \in \mathbb{Q}$. (1 pont)

Megjegyzés. Az $\frac{x+1}{5} + \frac{x+2}{6} + \frac{x+3}{7} + \cdots + \frac{x+2024}{2028} = 2024$ egyenlet úgy is megoldható, hogy kitaláljuk és behelyettesítéssel ellenőrizzük, hogy x = 4 megoldás, illetve felhasználjuk, hogy az elsőfokú (ax = b alakú) egyenletnek egyetlen megoldása van, ha $a \neq 0$.

- **4. feladat (10 pont).** Az ABC háromszögben O a BC oldal felezőpontja, E és F pedig az AB és AC oldalaknak olyan belső pontjai, amelyekre $AE = 3 \cdot EB$ és $CF = 3 \cdot AF$. Az E és F pontokon keresztül az AO egyenessel húzott párhuzamosok a BC oldalt az M, illetve N pontokban metszik. Bizonyítsd be, hogy:
- a) EMNF trapéz és EM + FN = AO;

b)
$$\frac{T_{EMNF}}{T_{ABC}} = \frac{1}{2}$$
.

Simon József, Csíkszereda

Első megoldás. Hivatalból

(1 pont)

a) A feltevés alapján
$$EM \parallel AO$$
 és $FN \parallel AO$, tehát $EM \parallel FN$. (1 pont)

Igazoljuk, hogy $EF \not\parallel BC$. Legyen K és S az AB, illetve AC oldalak felezőpontjai. Illetve H az SC felezőpontja. A KS az ABC háromszög középvonala, így $KS \parallel BC$. Innen következik, hogy KSCB trapéz, illetve EH a középvonala, tehát $EH \parallel BC$. Mivel egy ponton át egy egyenessel csak egy párhuzamos húzható, ezért ha $EF \parallel BC$, akkor F = H, ami ellentmond annak, hogy $CF = \frac{3}{4}AC$ és $CH = \frac{1}{4}AC$. Tehát $EF \not\parallel BC$, így EMNF trapéz. (1 pont)

Legyenek L és T a BO és OC szakaszok felezőpontjai. Így KL és ST az AOB és AOC háromszögek középvonalai, tehát

$$KL = \frac{1}{2}AO$$
 és $ST = \frac{1}{2}AO$.

Az EM a BKL háromszög középvonala, vagyis

$$EM = \frac{KL}{2} = \frac{1}{4}AO. (1 \text{ pont})$$

Az FN a AOTS trapéz középvonala, vagyis

$$FN = \frac{AO + ST}{2}. ag{1 pont}$$

Mivel
$$ST = \frac{AO}{2}$$
, így $FN = \frac{AO + \frac{AO}{2}}{2} = \frac{3}{4}AO$, ahonnan pedig $EM + FN = AO$. (1 pont)

b) Mivel O a BC felezőpontja, ezért $T_{ABO_{\triangle}} = \frac{1}{2}T_{ABC_{\triangle}}$. Továbbá KL középvonal az ABO háromszögben, így $T_{BKL_{\triangle}} = \frac{1}{4}T_{ABO_{\triangle}}$, illetve EM középvonal az BKL háromszögben, így $T_{BEM_{\triangle}} = \frac{1}{4}T_{BKL_{\triangle}}$. Összegezve, azt kaptuk, hogy

$$T_{BEM\triangle} = \frac{1}{4} T_{BKL\triangle} = \frac{1}{16} T_{ABO\triangle} = \frac{1}{32} T_{ABC\triangle}.$$
 (1 pont)

Legyen AQ az ABC háromszög A csúcsából húzott magasság $(Q \in BC$ és $AQ \perp BC)$. Ha P a BC oldalon egy olyan pont, hogy $BP = k \cdot BC$, akkor

$$T_{ABP_{\triangle}} = \frac{BP \cdot AQ}{2} = \frac{k \cdot BC \cdot AQ}{2} = k \cdot \frac{BC \cdot AQ}{2} = k \cdot T_{ABC_{\triangle}}.$$
 (1 pont)

A $CF=3\cdot AF$ feltételből kapjuk, hogy $AF=\frac{1}{4}AC$ és $CF=\frac{3}{4}AC$. A fenti területek közti összefüggést alkalmazva az ABC háromszögre és az $F\in AC$ osztópontra kapjuk, hogy

$$T_{ABF_{\triangle}} = \frac{1}{4} \cdot T_{ABC_{\triangle}}, \quad \text{illetve} \quad T_{FBC_{\triangle}} = \frac{3}{4} \cdot T_{ABC_{\triangle}}.$$

Majd újra alkalmazva az ABF háromszögre és az $E \in AB$ osztópontra ($AE = \frac{3}{4}AB$ a megadott feltételek miatt) kapjuk, hogy

$$T_{AEF_{\triangle}} = \frac{3}{4} T_{ABF_{\triangle}} = \frac{3}{16} T_{ABC_{\triangle}}.$$
 (1 pont)

Az FN az ASTO trapéz középvonala és F az AS oldal felezőpontja, így N az OT oldal felezőpontja. Innen kapjuk, hogy

$$NC = NT + TC = \frac{1}{2}OT + TC = \frac{3}{2}TC = \frac{3}{4}OC = \frac{3}{8}BC.$$

A fenti területek közötti összefüggést alkalmazva a BFC háromszögben az $N \in BC$ osztópontra kapjuk, hogy

 $T_{FNC_{\triangle}} = \frac{3}{8} T_{FBC_{\triangle}} = \frac{9}{32} T_{ABC_{\triangle}}.$

Végül

$$\begin{split} T_{EFNM} &= T_{ABC_{\triangle}} - T_{AEF_{\triangle}} - T_{BEM_{\triangle}} - T_{FNC_{\triangle}} \\ &= T_{ABC_{\triangle}} - \frac{3}{16} T_{ABC_{\triangle}} - \frac{1}{32} T_{ABC_{\triangle}} - \frac{9}{32} T_{ABC_{\triangle}} \\ &= \left(1 - \frac{6}{32} - \frac{1}{32} - \frac{9}{32}\right) T_{ABC_{\triangle}} \\ &= \frac{1}{2} T_{ABC_{\triangle}}. \end{split} \tag{1 pont}$$

Második megoldás. Hivatalból

(1 pont)

a) A feltevés alapján
$$EM \parallel AO$$
 és $FN \parallel AO$, tehát $EM \parallel FN$. (1 pont)

Igazoljuk, hogy $EF \not\parallel BC$. Legyenek K és S az AB és AC oldalak felezőpontjai. Akkor $KS \parallel BC$, de KS és EF átlók az EKFS négyszögben, tehát metszik egymást, vagyis $EF \not\parallel BC$. Tehát EMNF trapéz. (1 pont)

Legyenek L és T a BO és OC szakaszok felezőpontjai. Így KL és ST az AOB és AOC háromszögek középvonalai.

Az
$$EM$$
 a BKL_{Δ} középvonala, vagyis $EM = \frac{KL}{2} = \frac{1}{4}AO$. (1 pont)

Az
$$FN$$
 az $AOTS$ trapéz középvonala, vagyis $FN = \frac{AO + ST}{2}$. (1 pont)

Mivel
$$ST = \frac{AO}{2}$$
, így $FN = \frac{AO + \frac{AO}{2}}{2} = \frac{3}{4}AO$, ahonnan pedig $EM + FN = AO$. (1 pont)

b) Legyenek $BB' \perp AO$, $CC' \perp AO$ és $FF' \perp AO$, ahol $B', C', F' \in AO$, valamint $EE' \perp FN$, ahol $E' \in FN$ és $EE' \cap AO = \{I\}$.

Ekkor $OBB'_{\Delta} \equiv OCC'_{\Delta}$, mivel mindkettő derékszögű, $BO \equiv OC$ (átfogók), illetve $\widehat{BOB'} \equiv \widehat{COC'}$ (csúcsszögek). Innen pedig BB' = CC'. (1 pont)

Megjegyzés. A BB' és CC' kongruenciája bizonyítható egyenlő területek felírásával is. Az AOB_{Δ} területe egyenlő az AOC_{Δ} területével, mert AO oldalfelező. Viszont $BB' \perp AO$, $CC' \perp AO$, így felírható, hogy

$$T_{AOB_{\Delta}} = \frac{AO \cdot BB'}{2} = T_{AOC_{\Delta}} = \frac{AO \cdot CC'}{2} \Longrightarrow BB' = CC'$$
.

Legyen $SS' \perp AO$, ahol $S' \in AO$. Az SS' az ACC'_{Δ} középvonala, ahonnan

$$SS' = \frac{CC'}{2} = \frac{BB'}{2} .$$

De FF' középvonal az ASS'_{Δ} -ben, így

$$FF' = \frac{SS'}{2} = \frac{CC'}{4} = \frac{BB'}{4} \,.$$
 (1)

(1 pont)

Legyen $KK' \perp AO$, ahol $K' \in AO$. A KK' az ABB_{Δ} középvonala, ahonnan $KK' = \frac{BB'}{2}$, de EI a BB'K'K trapéz középvonala, ahonnan

$$EI = \frac{BB' + KK'}{2} = \frac{BB' + \frac{BB'}{2}}{2} = \frac{3}{4}BB'.$$
 (2)

Így az (1) és (2) összefüggések alapján EE' = EI + FF' = BB'. (1 pont)

Tehát

$$T_{EMNF} = \frac{(NF + ME) \cdot EE'}{2} = \frac{AO \cdot BB'}{2} = T_{AOB} = \frac{T_{ABC}}{2}$$
,

azaz

$$\frac{T_{EMNF}}{T_{ABC}} = \frac{1}{2} .$$

(1 pont)