K-means clustering Given N data points $\{x_n\}_{n=1}^N\subset\mathbb{R}^D$. Initialize K prototype vectors $\{\mu_k\}_{k=1}^K$. Each μ_k corresponds to the mean of the k^{th} cluster. Let r_{nk} be indicator variable with respect to x_n and μ_k .

$$r_{nk} = \begin{cases} \text{1if } k = \text{arg min} \parallel x_n - \mu_k \parallel \\ \text{0otherwise} \end{cases}$$

Then update μ_k ,

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

Keep this procedure until

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \parallel x_n - \mu_k \parallel^2$$

converge.