Dynamical Decoupling of Nitrogen-Vacancy Electron Spins in Diamond and Nanodiamond

Richard Kullmann

26. Februar 2018

1/19

Richard Kullmann 26. Februar 2018

Motivation

magnetic imaging of a hard disk using NV centers, taken from ¹

wide-field image of magnetotactic bacteria, obtained with NV magnetometer, taken from ¹

¹L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond," *Rep. Prog. Phys.* 77, 2014.

Motivation

- magnetometry: usage of single spins as quantum sensors
- ► sensitivity ¹:

$$\eta = \frac{\pi\hbar}{2g\mu_B C\sqrt{N\cdot T_2}}$$

- \rightarrow large T_2 time necessary for good resolution
- ► *T*₂ affected by interactions with surrounding spins
- Dynamical decoupling sequences

sensor spin in magnetic environment

¹L. M. Pham, *Magnetic Field Sensing with Nitrogen-Vacancy Color Centers in Diamond*. PhD thesis, The School of Engineering and Applied Sciences, 2013.

Richard Kullmann 26. Februar 2018 3 / 19

NV center

4/19

structure of an NV center, taken from ¹ NV energy level scheme, taken from ²

- $m_s = 0$ and $m_s = \pm 1$ sublevels separated by D=2.87GHz
- ▶ fluorescence with ZPL at 637 nm
- $ightharpoonup m_s = 0$: bright state, $m_s = \pm 1$: dark state

 1 L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond," *Rep. Prog. Phys.* 77, 2014.

²R. Hanson et al., "Room-temperature manipulation and decoherence of a single spin in diamond," *Physical Review B* 74, 2006.

Richard Kullmann 26. Februar 2018

Rabi oscillations

- two level system with AC magnetic field
- Rabi's formula for resonant excitation:

Rabi oscillations under resonant excitation

\uparrow π and $\pi/2$ pulses

rotations on the Bloch sphere

5/19

Richard Kullmann 26. Februar 2018

Dynamical decoupling sequences

Hahn Echo

cancels slowly varying inhomogeneities

CPMG

- ► single axis rotations
- higher decoupling efficiency than Hahn Echo

CPMG-4 pulse sequence

Richard Kullmann 26. Februar 2018

Dynamical decoupling sequences

XY

- CPMG pulse spacing
- ightharpoonup alternating π_x and π_y pulses perform 3D decoupling

XY-8 sequence: red pulses are π_{V} and blue pulses are π_{X}

UDD

no equidistant spacings

Richard Kullmann

Setup

Resonance scan and Hahn Echo

Resonance scan and Hahn Echo

Resonance scan and Hahn Echo

Richard Kullmann

CPMG

Comparison of CPMG-sequences with different numbers of pulses

Richard Kullmann 26. Februar 2018

Comparison of XY-sequences with different numbers of pulses

UDD

Performance of UDD on nanodiamond

Richard Kullmann

Different NVs

CPMG-8 for different NVs

	T_2 [ns]	$T_2/T_{2,H}$
NV 1	12900 ± 1100	5.35
NV 2	5000 ± 200	3.45
NV 3	12900 ± 1100 5000 ± 200 14700 ± 1400	16.63

XY-8 for different NVs

	T ₂ [ns]	$T_2/T_{2,H}$
NV 1	10700 ± 1000	4.42
NV 2	4600 + 200	3 18
NV 3	17000 ± 2000	19.42

Comparison of XY and CPMG

Richard Kullmann 26. Februar 2018 14 / 19

Dynamical decoupling sequences

Hahn Echo: $T_2(t \le 600 \text{ns}) = (302 \pm 25) \text{ns}$

- T₂ improvement up to factor 200 for CPMG
- T₂ increased by factor of about 90 for all XY
- CPMG outperforms XY

CPMG on the bulk diamond

Free precession time [µs]

Spectral decomposition

loss of coherence can be described using

$$C(t) = e^{-\chi(t)}$$

 $with^1$

$$\chi(t) = \frac{1}{\pi} \int_0^\infty d\omega S(\omega) \frac{F(\omega t)}{\omega^2}$$

 $F(\omega t)$ filter function, $S(\omega)$ spectral density function

▶ $S(\omega)$ assumed to have Lorentzian shape¹:

$$S(\omega) = \frac{\Delta^2 \tau_c}{\pi} \frac{1}{1 + (\omega \tau_c)^2}$$

 Δ average coupling strength of spin bath to the probed NVs, τ_c correlation time of N bath spins with each other

¹N. Bar-Gill et al., "Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems," *Nature Communications 3, Article number:* ₹858, ₹2012 ₹

Spectral decomposition

calculation for CPMG-32

- ightharpoonup correlation between Δ and au_c
- for $\omega \ll \tau_c^{-1}$:

$$S(\omega) = \frac{\Delta^2 \tau_c}{\pi}$$

spectral densities for all sequences

sequence	$ au_c[ext{ns}]$	$\Delta [\text{MHz}]$
Hahn	66	18
CPMG-8	89	8
CPMG-16	10	18
CPMG-32	32	7
CPMG-64	125	4

4 ロ ト 4 同 ト 4 目 ト 4 目 ト 9 Q (や

17 / 19

Richard Kullmann 26. Februar 2018

Spectral decomposition

calculation for Hahn

▶ similar experiments¹ :
$$1 \text{MHz} \le \Delta \le 10 \text{MHz}$$
 and $1 \mu \text{s} \le \tau_c \le 15 \mu \text{s}$

Spectrum $S(\omega)[s^{-1}]$	— CPMG-4 — CPMG-8 — CPMG-16 — CPMG-32 — Hahn Echo	
U)	10 ⁻³ 10 ¹	10 ⁵ 10 ⁹
	Frequency ω)[s ⁻¹]

spectral densities for all sequences

sequence	$ au_c[extsf{ns}]$	$\Delta [MHz]$
Hahn	69	95
CPMG-4	700	2.2
CPMG-8	650	2.3
CPMG-16	250	2.5
CPMG-32	370	1.7

¹N. Bar-Gill et al., "Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems," *Nature Communications 3, Article number:* ₹858, ₹2012 ₹

Conclusion and Outlook

- successful implementation of DD protocols
- CPMG outperforms XY
- improvement of factor 50 in nanodiamond and 200 in bulk diamond $\rightarrow T_2 = 50 \mu s$
- spectral density analysis provided information about the surrounding magnetic environment
- sensitivity:

$$\eta = \frac{\pi\hbar}{2g\mu_B C\sqrt{N\cdot T_2}}$$

$$ightarrow \eta_{ND} pprox 10$$
nT $/\sqrt{Hz}$, $\eta_{BD} pprox (6-18)$ nT $/\sqrt{Hz}$

- error sources: BPG (pulse errors), MW splitter, AOM
- future:
 - better time and phase control
 - implementation of other decoupling protocols