Pesquisa Operacional

Lista de Exercícios

1

Conjuntos : P - produtos

 $V.D: x_p$ quantidade do produto p produzido em Kg.

F.O : $\sum_{p=1}^{P} x_p * c_p$, onde c_p é o custo de venda do produto p.

S.R:

(matéria prima) : $\sum_{p=1}^{P} Q_p * x_p \leq Q_m$, onde Q_p é a quantidade de matéria prima m necessária para produzir uma unidade do produto p, e Q_m é a quantidade disponível de matéria prima m.

(mão de obra) : $\sum_{p=1}^{P} t_p * x_p \le T_p$, onde t_p é o tempo necessário para produzir o produto p, e T_p é a quantidade de horas disponíveis para produzir o produto p.

(demanda) : $x_p \leq Dmax_p$, $\forall p \in P$, onde $Dmax_p$ é a demanda máxima para o produto x.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

2

Conjuntos: P - produtos, M - matéria prima

V.D: x_p quantidade do produto p produzido em toneladas.

F.O: $\max z = \sum_{p=1}^{P} x_p * c_p$, onde c_p é a contribuição do produto p.

SR

(produção) : $k_1 + x_1 \le T_1$, onde k_1 é a quantidade total de matéria prima a utilizada na produção do produto p, e T_1 é a produção mínima de 1.

 $x_p \leq p_p, \, \forall p \in P \in p \neq 1$, onde p_p é a capacidade máxima de produção do produto p.

(demanda) : $x_p \leq D_p$, $\forall p \in P$, onde D_p é a demanda do produto p.

(matéria prima) : $\sum_{p=1}^{p} kpm * x_p \leq K_m$, onde kpm é a quantidade de matéria prima m necessária para produzir uma unidade do produto p, e K_m é a quantidade disponível de matéria prima m.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

3

Conjuntos: P - produtos

 $V.D: x_p$ quantidade do produto p que é colocado à venda.

F.O: $\max z = \sum_{p=1}^{P} x_p * l_p$, onde l_p é o lucro obtido na venda do produto p.

S.R:

(demanda) : $x_p \leq Dmax_p$, $\forall p \in P$, onde $Dmax_p$ é a demanda máxima para o produto x.

(espaço) : $\sum_{p \in P} x_p * a_p \le A$, onde a_p é a área utilizada na prateleira do produto p, e A é a área total do supermercado.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

Conjuntos: P - produtos

 $V.D: x_p$ quantidade do produto p a ser produzida.

F.O: $\max z = \sum_{p=1}^{P} v_p * x_p$, onde v_p é o preço de venda do produto p.

S.R:

(demanda) : $x_p \ge 0, \forall p \in P$, onde $Dmax_p$ é a demanda máxima para o produto x.

(mão de obra) : $\sum_{p=1}^{P} x_p * a_p \leq A$, onde a_p é o tempo para acabamento do produto p, e A é o tempo total disponível para o acabamento.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

7

Conjuntos : P - produtos

 $V.D: x_p$ quantidade de acres plantados do produto p.

F.O : $\max_{p=1}^{P} z_p * c_p * v_p$, onde c_p é o rendimento do produto p por acre, e v_p é o valor do produto.

S.R:

(mão de obra) : $\sum_{p=1}^{P} t_p * x_p \le T_p$, onde t_p é o tempo necessário para produzir o produto p, e T_p é o tempo total disponível para o produzir o produto.

(demanda) : $x_p * c_p \ge D_p$, $\forall p \in P$, onde D_p é a demanda máxima para o produto x, e c_p é a produtividade de p.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

8

Conjuntos: P - produtos

 $V.D: x_p$ quantidade a ser produzida do produto p.

F.O: $\max z = \sum_{p=1}^{P} x_p * v_p$, onde v_p é o preço de venda do produto p.

S.R

(mão de obra) : $\sum_{p=1}^{P} t_p * x_p \le T_p$, onde t_p é o tempo necessário para produzir o produto p, e T_p é o tempo total disponível para o produzir o produto.

(matéria prima) : $\sum_{p=1}^{P} q_p * x_p \leq Q$, onde q_p é a quantidade de matéria prima necessária para produzir uma unidade do produto p, e Q é a quantidade de horas disponíveis para o produzir o produto.

(não negatividade) : $x_p \ge 0, \forall p \in P$.

 $x_1, x_2 \ge 0$

$$max(z) = 8x_1 + 4x_2 \qquad Z - 8x_1 + 4x_2 (0)$$
 S.R:
$$4x_1 + 2x_2 \le 16 \qquad 4x_1 + 2x_2 + S_1 \le 16 (1)$$

$$x_1 + x_2 \le 6 \qquad x_1 + x_2 + S_2 \le 6$$

var. bas	Eq	Z	$ x_1 $	$ x_2 $	S_1	S_2	const
Z	0	1	-8	-4	0	0	0
S_1	1	0	4	2	1	0	16
S_2	2	0	1	1	0	1	6

Nova linha pivô = $\frac{linha\ atual\ pivô}{n^{\circ}\ do\ pivô}$

Nova linha pivô = (0 4 2 1 0 16)/4 = (0 1 $\frac{1}{2}$ $\frac{1}{4}$ 0 4)

Nova linha Z = (1 -8 -4 0 0 0) - (-8)*(0 1 $\frac{1}{2}$ $\frac{1}{4}$ 0 4) = (1 0 0 2 0 32)

Nova linha $S_2=(0\ 1\ 1\ 0\ 1\ 6)$ - 1*(0 1 $\frac{1}{2}\ \frac{1}{4}\ 0\ 4)=(0\ 0\ \frac{1}{2}\ -\frac{1}{4}\ 0\ 12)$

var. bas	Eq	Z	x_1	$ x_2 $	$ S_1 $	S_2	const
Z	0	1	0	0	2	0	32
S_1	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
S_2	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	12

Solução $(x_1, x_2, S_1, S_2) = (4, 0, 0, 12)$

2

$$max(z) = 3x_1 + 5x_2 \qquad \qquad Z - 3x_1 + 5x_2 \text{ (0)}$$
 S.R:
$$x_1 \le 4 \qquad \qquad x_1 + S_1 \le 4 \text{ (1)}$$

$$2x_2 \le 12 \qquad \qquad 2x_2 + S_2 \le 12 \text{ (2)}$$

$$3x_1 + 2x_2 \le 18 \qquad \qquad 3x_1 + 2x_2 + S_3 \le 6 \text{ (3)}$$

$$x_1, x_2 \ge 0$$

var. bas	$ Eq Z x_1 x_2 S_1 S_2 S_3 const$
Z	0 1 -3 -5 0 0 0 -
S_1	
S_2	2 0 0 2 0 1 0 12
S_3	3 0 3 2 0 0 1 18

Nova linha pivô = $\frac{linha\ atual\ pivô}{n^{\circ}\ do\ pivô}$

Nova linha pivô = $(0\ 0\ 2\ 0\ 1\ 0\ 12)/2 = (0\ 0\ 1\ 0\ \frac{1}{2}\ 0\ 6)$

Nova linha Z = (1 -3 -5 0 0 0) - (-5)*(0 0 1 0 $\frac{1}{2}$ 0 6) = (1 2 0 0 $\frac{5}{2}$ 0 30)

Nova linha $S_1 = (0\ 1\ 0\ 1\ 0\ 0\ 4)$ - 0*(0 0 1 $\frac{1}{2}$ $\frac{1}{4}$ 0 6) = (0 1 0 1 0 0 4)

Nova linha $S_3 = (0\ 3\ 2\ 0\ 0\ 1\ 18)$ - 2*(0 0 1 0 $\frac{1}{2}$ 0 6) = (0 3 2 -2 0 0 4)

var. bas	$\mid \text{Eq} \mid \text{Z} \mid x_1 \mid x_2 \mid S_1 \mid S_2 \mid S_3 \mid \text{const}$
Z	$ \ 0 \ \ 1 \ \ 2 \ \ 0 \ \ 0 \ \ \frac{5}{2} \ \ 0 \ \ 30$
S_1	
S_2	$ \mid \ 2 \ \mid \ 0 \ \mid \ 0 \ \mid \ 1 \ \mid \ 0 \ \mid \ \frac{1}{2} \ \mid \ 0 \ \mid \ \ 6 $
S_3	3 0 3 2 -2 0 0 4

Solução $(x_1, x_2, S_1, S_2, S_3) = (0, 6, 4, 0, 4)$

3

$$max(z) = 5x_1 + 4x_2 Z - 5x_1 + 4x_2 (0)$$

S.R:

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$6x_1 + 4x_2 + S_1 \le 24 (1)$$

$$x_1 + 2x_2 + S_2 \le 6 (2)$$

$$-x_1 + x_2 + S_3 \le 1 (3)$$

$$x_2 + S_4 \le 2 (4)$$

var. bas	Eq	$ Z x_1$	$ x_2 $	$ S_1 $	$ S_2 $	S_3	$ S_4 $	const
Z	0	1 -5	-4	0	0	0	0	_
S_1	1	0 6	4	1	0	0	0	4
S_2	2	0 1	2	0	1	0	0	6
S_3	3	0 -1	1	0	0	1	0	-1
S_4	4	0 0	1	0	0	0	0	_

Nova linha pivô = $\frac{linha\ atual\ pivô}{n^{\circ}\ do\ pivô}$

Nova linha pivô = (0 6 4 1 0 0 0 24)/6 = (0 1 $\frac{2}{3}$ $\frac{1}{6}$ 0 0 0 4)

Nova linha Z = (1 -5 -4 0 0 0 0 0) - (-5)*(0 1 $\frac{2}{3}$ $\frac{1}{6}$ 0 0 0 4) = (1 0 - $\frac{2}{3}$ $\frac{5}{6}$ 0 0 0 20)

Nova linha $S_2 = (0\ 1\ 2\ 0\ 1\ 0\ 0\ 6) - 1*(0\ 1\ \frac{2}{3}\ \frac{1}{6}\ 0\ 0\ 0\ 4) = (0\ 0\ \frac{4}{3}\ -\frac{1}{6}\ 1\ 0\ 0\ 2)$

Nova linha $S_3 = (0 - 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1) - (-1)*(0 \ 1 \ \frac{2}{3} \ \frac{1}{6} \ 0 \ 0 \ 0 \ 4) = (0 \ 0 \ \frac{5}{3} \ \frac{1}{6} \ 0 \ 1 \ 0 \ 5)$

Nova linha $S_4 = (0\ 0\ 1\ 0\ 0\ 1\ 2)$ - 0*(0 1 $\frac{2}{3}\ \frac{1}{6}$ 0 0 0 4) = (0 0 1 0 0 0 1 2)

var. bas	Eq	$ Z x_1$	$ x_2 $	$ S_1 $	$ S_2 $	S_3	$ S_4 $	const
Z	0	1 0	$-\frac{2}{3}$	$\frac{5}{3}$	0	0	0	30
S_1	1	0 1	$\frac{2}{3}$	$\frac{1}{6}$	0	0	0	6
S_2	2	0 0	$\frac{4}{3}$	$-\frac{1}{6}$	1	0	0	$\frac{3}{2}$
S_3	3	0 0	$\frac{5}{3}$	$\frac{1}{6}$	0	1	0	3
S_4	4	0 0	1	0	0	0	1	2

Nova linha pivô = (0 0 $\frac{4}{3}$ - $\frac{1}{6}$ 1 0 0 2)/ $\frac{4}{3}$ = (0 0 1 - $\frac{1}{8}$ $\frac{3}{4}$ 0 0 $\frac{3}{2}$)

Nova linha Z =
$$(1\ 0\ -\frac{2}{3}\ \frac{5}{6}\ 0\ 0\ 0\ 20) + (\frac{2}{3})*(0\ 0\ 1\ -\frac{1}{8}\ \frac{3}{4}\ 0\ 0\ \frac{3}{2}) = (1\ 0\ 0\ \frac{3}{4}\ \frac{1}{2}\ 0\ 0\ 21)$$

Nova linha
$$x_1=(0\ 1\ \frac{2}{3}\ \frac{1}{6}\ 0\ 0\ 0\ 4)$$
 - $(\frac{2}{3})^*(0\ 0\ 1\ -\frac{1}{8}\ \frac{3}{4}\ 0\ 0\ \frac{3}{2})=(0\ 0\ 0\ \frac{1}{4}\ -\frac{1}{2}\ 0\ 0\ 3)$

Nova linha
$$S_3 = (0\ 0\ \frac{5}{3}\ \frac{1}{6}\ 0\ 1\ 0\ 5) - (\frac{5}{3})^*(0\ 0\ 1\ -\frac{1}{8}\ \frac{3}{4}\ 0\ 0\ \frac{3}{2}) = (0\ 0\ 0\ \frac{5}{8}\ -\frac{5}{4}\ 1\ 0\ \frac{5}{2})$$

Nova linha
$$S_4=(0\ 0\ 1\ 0\ 0\ 1\ 2)$$
 - 1*(0 0 1 - $\frac{1}{8}\ \frac{3}{4}\ 0\ 0\ \frac{3}{2})=(0\ 0\ 0\ \frac{1}{8}\ -\frac{3}{4}\ 0\ 1\ \frac{1}{2})$

var. bas	Eq Z	$ x_1 x_2$	$ S_1 S_2$	$ S_3 S_4$	const
Z	0 1	0 0	$\left \begin{array}{cc} \frac{3}{4} & \left \begin{array}{cc} \frac{1}{2} \end{array}\right $	0 0	21
S_1	1 0	1 0	$\frac{1}{4} - \frac{1}{2}$	0 0	3
S_2	2 0	0 1	$ -\frac{1}{8} \frac{3}{4}$	0 0	$\frac{3}{2}$
S_3	3 0	0 0	$\frac{5}{8} - \frac{5}{4}$	1 0	$\frac{5}{2}$
S_4	4 0	0 0	$\frac{1}{8} - \frac{3}{4}$	0 1	$\frac{1}{2}$

Solução $(x_1, x_2, S_1, S_2, S_3, S_4) = (3, \frac{3}{2}, 0, 0, \frac{5}{2}, \frac{1}{2})$

Z = 21.

 $max(z) = x_1 + x_2$

6 a)

S.R:
$$x_1 - x_2 = 1 \qquad x_1 - x_2 + S_1 = 1 (1)$$
$$-x_1 + x_2 = 1 \qquad x_1 + x_2 + S_2 = 1 (2)$$
$$x_1, x_2 \ge 0$$

var. bas	Eq	Z	$ x_1 $	$ x_2 $	S_1	$ S_2 $	const
Z	0	1	-1	-1	0	0	-
S_1	1	0	1	-1	1	0	1
S_2	2	0	1	0	0	-1	1

 $Z - x_1 - x_2$ (0)

Na segunda iteração foi obtido que as divisões resultaram em número negativos ou não resulta em um número. Portanto, o sistema é insolucionável.

var. bas	Eq	Z	x_1	$ x_2 $	$ S_1 $	S_2	const
Z	0	1	0	-2	1	0	$-\frac{1}{2}$
x_1	1	0	1	-1	1	0	-1
S_2	2	0	0	0	-1	1	$\frac{2}{0}$

6 b)

$$\max(z) = y_1 + y_2 \qquad \qquad Z - y_1 - y_2 \ (0)$$
 S.R:
$$y_1 - y_2 \ge 1 \qquad \qquad y_1 - y_2 + S_1 = 1 \ (1) - y_1 + y_2 \ge 1 \qquad \qquad -y_1 + y_2 + S_2 = 1 \ (2)$$
 $y_1, y_2 \ge 0$

var. bas	Eq	Z	y_1	y_2	S_1	S_2	const
Z	0	1	-1	-1	0	0	-
S_1	1	0	1	1	1	0	1
S_2	2	0	-1	1	0	1	1

Assim como ocorreu no item a, após a primeira iteração, as divisões resultaram em número negativos ou não resulta em um número. Portanto, o sistema é insolucionável.

var. bas	Eq	Z	y_1	$ y_2 $	S_1	S_2	const
Z	0	1	0	-2	1	0	$-\frac{1}{2}$
x_1	1	0	1	-1	1	0	-1
S_2	2	0	0	0	-1	1	$\frac{2}{0}$

Cálculo das linhas

Nova linha pivô
$$(x_1,y_1)=(0\ 1\ \mbox{-1}\ 1\ 0\ 1)/1=(0\ 1\ \mbox{-1}\ 1\ 0\ 1)$$

Novas linhas Z
$$(x,y)$$
= $(1$ -1 -1 0 0 0) + 1* $(0$ 1 -1 1 0 1) = $(1$ 0 -2 1 0 1)

Novas linhas
$$S_1, S_2 = (0 -1 \ 1 \ 0 \ 1 \ 1) + 1*(0 \ 1 -1 \ 1 \ 0 \ 1) = (0 \ 0 \ 0 \ 1 \ 1 \ 2)$$