

United International University School of Science and Engineering

Final Examination Trimester: Fall 2019 Course Title: Fundamental Calculus (CSE)

Course Code: Math 1151 Marks: 40 Time: 2 hour

Answer all questions. Answer all the subparts of a question in one place.

1. (a) Evaluate the following integrals by any suitable methods:

[10]

i)
$$\int \sin^{-1}(x) dx$$

ii) $\int e^x \sin x \, dx$

iii)
$$\int \cos^3 x \, dx$$

iv) $\int x\sqrt{x-1}\,dx$

- 2. (a) Show that $\int_0^{\sqrt{2}} \sqrt{2-x^2} \, dx = \frac{\pi}{2}$ by considering $x = \sqrt{2} \cos \theta$.
 - (b) Evaluate: i) $\int t\sqrt{7t^2+12} \ dt$ ii) $\int \frac{\sin(\frac{5}{x})}{x^2} dx$ iii) $\int \frac{1}{\sqrt{1-4x^2}} dx$
- [6]
- 3. (a) Find the area between two curves $y^2 = 4x$ and y = 2x - 4 by i) integrating with respect to x, ii) integrating with respect to y. [5]
 - **(b)** In each part, evaluate the integral, given that $f(x) = \begin{cases} -x+1, & x>0 \\ |x+1|, & x\leq 0 \end{cases}$ [5] i) $\int_{-2}^{2} f(x) dx$ ii) $\int_{2}^{4} f(x) dx$
- (a) Find $\frac{dy}{dx}$ of the following functions

i)
$$y = \sqrt{3 - \sqrt{2x}}$$
 ii) $y = \sqrt{x} \sec(2x - 2)$ iii) $y = \sin(\sin(2x))$ [6]

(b) Find the equation of tangent line to the curve $y = x \cos(x^2 + 2x)$ at [4] $x=-\frac{\pi}{2}$.