Derivation of Outage Probability:

Pout =
$$\Pr[\log_2[1+\gamma) < R_3]$$
= $\Pr\{\gamma < 2^R - 1\}$ wininum auguized data Rata of $\gamma - SNR$.

 $\gamma_0 = 2^R - 1$.

Pout = $\Pr\{\gamma < \gamma_0\}$
= $\Pr\{\gamma < \gamma_0\}$

$$= \Pr\{\gamma < \gamma_0\}$$

=
$$1 - C_f \int \frac{A_f Y_0}{S} + B_f Y_0 k_1 \left(\int \frac{A_f Y_0}{S} + B_f Y_0 \right)$$
 $\times k_0 \left(\sqrt{2C_f \frac{1}{5}} \right) d\frac{5}{5}$
 $V = e^{-\frac{5}{5}}$

Plant = $1 - C_f \int \frac{A_f Y_0}{Inv} + B_f Y_0 k_1 \cdot \left(\int \frac{A_f Y_0}{-Inv} + B_f Y_0 \right)$
 $\times k_0 \left(\sqrt{-2C_f Inv} \right) \frac{dv}{v}$

Applying Gaussian-Gebselev Guadrature.

Plant = $1 - \frac{\pi}{2M} \int \frac{M}{m=1} \int \frac{A_f Y_0}{Inz} + B_f Y_0 \cdot \int$

Scanned with CamScanner

Gy =
$$\int_{d_{R}^{-\infty}}^{1} \frac{1}{\sqrt{1.9.7}} \frac{1}{\sqrt{1.9$$

SFR: Analytical

SFR: Analytical

SFR:
$$\frac{a \, J_{6}}{2^{1} \, J_{2}} = \frac{a \, J_{6}}{\sqrt{\pi}} = \frac$$

Substitute (3) and (4) in (2), we get

SERY =
$$\frac{a \sqrt{b}}{2\sqrt{2\pi}} \left[\sqrt{\frac{2\pi}{b}} - \frac{7}{7} \left(\frac{b}{b} \right) \frac{M}{2} \sqrt{\frac{Ab}{b}} + \frac{Bb}{b} \right]$$

× ko $\sqrt{-2} \frac{1}{6} \ln 2$) exp $\left(\frac{1}{11} \frac{Ab}{b} + \frac{Bb}{b} \right)$

× $\left(\frac{312}{112} \right) \Gamma \left(\frac{112}{112} \right) \frac{1}{2} \sqrt{\frac{1}{2}} \left(\frac{Ab}{112} + \frac{Bb}{b} \right)$

× $\left(\frac{Ab}{2} + \frac{Bb}{b} \right)$

SER $V = \frac{a \sqrt{b}}{2\sqrt{2\pi}} \left[\int_{0}^{\infty} \frac{e^{-bx/2}}{\sqrt{2}} dx - \int_{0}^{\infty} \frac{e^{-bx/2}}{\sqrt{2}} \frac{\pi}{2} \frac{Cv}{2M} \frac{M}{m^{2}1} \frac{1-\phi_{m}^{2}}{2} \right]$

× $\left(\sqrt{\frac{Av(x^{2}+x)}{-l_{n}z}} + \frac{Bv}{2}x \log dx - \frac{\pi}{2} \frac{Cv}{2M} \frac{M}{m^{2}1} \frac{1-\phi_{m}^{2}}{2} \right)$

× $k_{1} \left(\sqrt{\frac{Av(x^{2}+x)}{-l_{n}z}} + \frac{Bv}{2}x \log dx - \frac{\pi}{2} \frac{Cv}{2M} \frac{M}{m^{2}1} \frac{1-\phi_{m}^{2}}{2} \right)$

× $e^{-bx/2} \frac{Av(x+1)}{-l_{n}z} + \frac{Bv}{2}v \log dx - \frac{\pi}{2} \frac{Cv}{2M} \frac{M}{m^{2}1} \frac{1-\phi_{m}^{2}}{2} \right)$

× $e^{-bx/2} \frac{Av(x+1)}{-l_{n}z} + \frac{Bv}{2}v \log dx - \frac{6}{2}$

for the second entegral we set $x = e^{-bx/2}$. Thus, $x = -\frac{2}{2} \ln x$, substituting an (6) .

$$\begin{array}{ll}
& \int_{0}^{\infty} e^{-bx/\lambda} \frac{A_{v}(x+1)}{-l_{n}z} + B_{v} k_{o}(\sqrt{-\lambda C_{v} l_{n}z} + D_{v} x) \\
& \times k_{o} \left(\sqrt{\frac{A_{v}(x^{2}+x)}{-l_{n}z}} + B_{v} k_{o}(\sqrt{-\lambda C_{v} l_{n}z} - \frac{2D_{v} l_{n} x}{b}) \\
& = \frac{2}{b} \int_{0}^{1} \sqrt{\frac{A_{v}(b-\lambda l_{n}x)}{-b l_{n}z}} + B_{v} k_{o}(\sqrt{-\lambda C_{v} l_{n}z} - \frac{2D_{v} l_{n} x}{b}) \\
& \times k_{o} \left(\sqrt{-\frac{2}{b} \left(\frac{A_{v}(b-\lambda l_{n}x)}{-b l_{n}z} + B_{v} \right) l_{n} x} \right) dx
\end{array}$$