

$$I_{2} = I_{6}$$

$$= 2A$$

$$I_{4} = 10A$$

$$I_{4} = 10A$$

$$I_{7} = -I_{1}$$

$$Kel at N_{2} : I_{3} + I_{1} = 0$$

$$I_{7} = -I_{1}$$

$$Kel at N_{6} : I = I_{5} + I_{6}$$

$$I = I_{7} + I_{7}$$

$$I_{1} = I_{4} + I_{7}$$

$$I_{1} = I_{4} + I_{7}$$

$$I_{2} = I_{3} + I_{5}$$

$$I_{3} = I_{4} + I_{7}$$

$$I_{4} = I_{7} + I_{7}$$

$$I_{5} = I_{7} + I_{7}$$

$$I_{7} = I_{7} + I_{7}$$

$$I_{8} = I_{7} + I_{7}$$

$$I_{1} = I_{4} + I_{7}$$

$$I_{1} = I_{4} + I_{7}$$

$$I_{2} = I_{2} + I_{5}$$

$$I_{3} = I_{4} + I_{7}$$

$$I_{4} = I_{7} + I_{7}$$

$$I_{5} = I_{7} + I_{7}$$

$$I_{7} = I_{7} + I_{7}$$

$$I_{8} = I_{7} + I_{7}$$

$$I_{1} = I_{1} + I_{1}$$

$$I_{1} = I_{2} + I_{3}$$

$$I_{2} = I_{3} + I_{4}$$

$$I_{3} = I_{1} + I_{1}$$

$$I_{4} = I_{1} + I_{2}$$

$$I_{5} = I_{7} + I_{7}$$

$$I_{7} = I_{7} + I_{7}$$

$$I_{8} = I_{1} + I_{1}$$

$$I_{1} = I_{1} + I_{2}$$

$$I_{1} = I_{2} + I_{3}$$

$$I_{2} = I_{2} + I_{3}$$

$$I_{3} = I_{1} + I_{2} + I_{3}$$

$$I_{4} = I_{1} + I_{2} + I_{3}$$

$$I_{5} = I_{7} + I_{7} + I_{7} + I_{7}$$

$$I_{1} = I_{1} + I_{1}$$

$$I_{1} = I_{2} + I_{3}$$

$$I_{2} = I_{3} + I_{4} + I_{7}$$

$$I_{3} = I_{4} + I_{7} + I_{7} + I_{7}$$

$$I_{4} = I_{1} + I_{1} + I_{1}$$

$$I_{5} = I_{1} + I_{2} + I_{3}$$

$$I_{7} = I_{1} + I_{2} + I_{3}$$

$$I_{8} = I_{1} + I_{1} + I_{1}$$

$$I_{1} = I_{1} + I_{2} + I_{3}$$

$$I_{2} = I_{3} + I_{4} + I_{1}$$

$$I_{3} = I_{4} + I_{4} + I_{4}$$

$$I_{4} = I_{4} + I_{4} + I_{4}$$

$$I_{5} = I_{4} + I_{4} + I_{4}$$

$$I_{7} = I_{8} + I_{8}$$

$$I_{8} = I_{8} + I_{8}$$

$$I$$

$$10I_{s} + 20I - 5 - 10I_{3} = 0$$
 $10I_{s} + 20(I_{s} + 2) - 5 - 10(-12 - I_{s}) = 0$
 $2I_{s} + 4(I_{s} + 2) - 1 - 2(-12 - I_{s}) = 0$
 $2I_{s} + 4I_{s} + 8 - 1 + 24 + 2I_{s} = 0$
 $8I_{s} = -31$
 $I_{s} = -3.97S$

Solve for $I_{s} = -1.87SA$

Solve for $V_{A} = 0 - 5 - 10I_{3}$
 $= -5 - 10(-12 + I_{s})$
 $= 76.2SV$

Solve for $V_{s} = -1.87SA$

$\frac{V_b - V_2}{I_{10}} = \frac{O - V_b}{I_{10}}$	V ₂ = 12 v
10 5	V ₅ = -3 _V
Vb-(12)=-2Vb	V _{lo} = 4 V
$3V_b = 12$	Ver = - IV
V _b = 4	Va-TIV
Kol at N4: I1 = I2	
$\frac{V_a - V_s}{30} = \frac{0 - V_a}{15}$	
$V_a - V_s = -2V_a$	
$3V_a = V_s$	
$\sqrt{a^2} = \frac{-3}{3}$	
= - [V	
Solve to Vx	
Vx=Vb-Va	
= 5 _V	

NVA: 6 Wodes - 1 ref - 3	voltage sources = 2 unknemus
Solve for Voltages	Known Voltages
Kcl at Na: I = I,	$V_1 = C_V$
$\frac{V_5 - V_A}{30} = \frac{V_A - V_6}{10}$	V ₅ = V _s
Vs-VA = 3 (VA + 6)	V ₆ = -6 v
Vs - VA = 3VA + 18	$V_{A} = \frac{V_{S} - 18}{4}$ $V_{A} = 0$
-4VA = 18-Vs	$V_3 = O_V$ $V_3 = -3_V$
$V_{A} = \frac{V_{S} - 18}{4}$	
Kcl at V2 ID=ID	
$0 = \frac{V_1 - V_2}{50}$	
O = O-V2	
V ₂ = 0	
V ₃ = V ₂ - 3	

Selve for
$$V_D > V_y$$

$$V_D = V_3 - V_A$$

$$V_D = -3 - \frac{V_3 - 18}{4}$$

$$V_D = -3 - \frac{V_5 - 18}{4}$$

$$V_D = -3 - \frac{V_5 - 18}{4} > 1$$

$$V_D = -3 - \frac{V_5 - 18}{4} > 1$$

$$V_D = -3 - \frac{V_5 - 18}{4} > 1$$

$$V_D = -3 - \frac{V_5 - 18}{4} > 1$$

$$V_D = -3 - \frac{V_5 - 18}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D = -3 - \frac{V_5 - V_A}{4} > 1$$

$$V_D =$$

Find Valtages	Voltuses
$kel at N_2$ $C = I_3 + I_2 + I_5$	V, = 0 v
$C = 2 + \frac{V_X - V_A}{S} + \frac{V_X - V_I}{10}$	$V_{A} = 2V$ $V_{A} = 3V$
$C = 20 + 2(v_{x} - 3) + (v_{x} - V_{1})$ $C = 20 + 2V_{x} - 6 + V_{x}$	V _x = - 3
$-3V_{\star}=14$	
Vx = - 14 3 Sclve for ID	
Kel at N,: Ip + Is + I = 0	
$I_{D} + \frac{V_{A} - V_{I}}{10} + \frac{V_{A} - V_{I}}{2} = 3$	
$ CI_0 + (-\frac{14}{3} - 0) + 5(3 - 0) = 0$ $ OI_0 = -15 + \frac{14}{3}$	= 0
$I_{D} = -\frac{31}{30} A$	

Dicde is CFF	
Solve assuming diche is CFF	
BCA: 2 backgoods - 1 cowent source = 1 unknown	
NVA: 4 Nodos - 1 Ref - Ivoltose same = 2 un buenns	
Use Branch Cornent Analysis	
Selve for coments Coments	
Kalat N.: Is = -I	
$ \begin{array}{c c} T_5 = T \\ Kcl & CA & N_2: \\ T_3 + T_2 + T_5 = 0 \end{array} $ $ \begin{array}{c c} T_3 = 2A \end{array} $	
$2 + \overline{\Gamma}_2 - \overline{\Gamma} = 0$ $\overline{\Gamma}_2 = \overline{\Gamma} - 2$	
$I_2 = I - 2$ $I_4 = 2A$	
F = F =	
$I_A + I^{-2} = I$	

$$I_{4} = 2$$

$$|V| cn L_{1}:$$

$$2I + 5I_{2} - 10I_{5} = 0$$

$$2I + 5(I - 2) - 10(-I) = 0$$

$$2I + 5I - 10 + 10I = 0$$

$$|V| = |V|$$

$$I_{2} = |V|$$

$$|V| = |V|$$