

OBJECTIVE

With 1.5 years of customers' behavior data from Santander Bank, as well as demographic data, we are to predict what kind of product customers would purchase.

Products ranged from payroll accounts to longterm deposits to loans and credit/debit cards.

FIRST LOOK AT OUR DATA...

	fecha_dato	ncodpers	ind_empleado	pais_residencia	sexo	age	fecha_alta	ind_nuevo	antiguedad	indrel	 ind_hip_fin_ult1
0	2015-01-28	1375586	N	ES	Н	35	2015-01- 12	0.0	6	1.0	 0
1	2015-01-28	1050611	N	ES	V	23	2012-08- 10	0.0	35	1.0	 0
2	2015-01-28	1050612	N	ES	V	23	2012-08- 10	0.0	35	1.0	 0
3	2015-01-28	1050613	N	ES	Н	22	2012-08- 10	0.0	35	1.0	 0
4	2015-01-28	1050614	N	ES	V	23	2012-08- 10	0.0	35	1.0	 0
99994	2015-01-28	890570	N	ES	٧	24	2010-09- 02	0.0	58	1.0	 0
99995	2015-01-28	890561	N	ES	Н	25	2010-09- 02	0.0	58	1.0	 0
99996	2015-01-28	890559	N	ES	Н	48	2010-09- 03	0.0	58	1.0	 0
99997	2015-01-28	890557	N	ES	V	53	2010-09- 02	0.0	58	1.0	 0
99998	2015-01-28	890498	N	ES	V	47	2010-09- 02	0.0	58	1.0	 0
99999 ro	ows × 48 colu	ımns									

d_pres_fin_ult1	ind_reca_fin_ult1	ind_tjcr_fin_ult1	ind_valo_fin_ult1	ind_viv_fin_ult1	ind_nomina_ult1	ind_nom_pens_ult1	ind_recibo_ult1
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	1
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	1
0	0	0	0	0	0.0	0.0	0
0	0	0	0	0	0.0	0.0	0

UNDERSTANDING THE DATA

```
In [2]:

df.dtypes
```

```
In [3]:
# Let's check if our values corresponds with the data type
for i in df.columns:
    print(f"{i}\n", df[i].unique(), "\n", f"Values = {df[i].unique().size}\n")
```

Column Name	Description	Data Type
fecha_dato FIXED	Data starts at 01/28/2015	object DATETIME
ncodpers	Customer code	int64
ind_empleado	0 = A = active 1 = B = ex employed 2= F = subsidiary 3 = N = not employee 4 = P = passive (?)	object
pais_residencia	Customer's Country residence 114 different countries 0 = 'BO' 1 = 'DE' 2 = 'ES' 3 = 'PY'	object
sexo	0 = H = Male 1 = V = Female	object
age FIXED	Age 115 different ages	object FLOAT64
fecha_alta FIXED	The date in which the customer became as the first holder of a contract in the bank	object DATE/TIME
ind_nuevo FIXED	New customer Index. 0 = Old customer 1 = New customer if the customer registered in the last 6 months.	float64 OBJECT
antiguedad	Customer seniority (in months) ??? Does this mean how long they've had it? 249 different numbers	object INT64 ?
indrel	Indicador de Relación (Relationship Indicator) 1 (First/Primary) 99 (Primary customer during the month but not at the end of the month)	float64 OBJECT
ult_fec_cli_1t FIXED	Last date as primary customer (if heisn't at the end of the month)	object DATE TIME
indrel_1mes FIXED	Customer type at the beginning of the month, 1 (First/Primary customer), 2 (co-owner),	float64 OBJECT

	P (former customer), R (Potential)	
ndresi	Residence index 1 = 5 (Yes) or 0 = N (No) if the residence country is the same than the bank country)	object
ndext	Foreigner index 1 = (S (Yes) or 0 = N (No) if the customer's birth country is different than the bank country)	object
Conyuemp	Spouse index. N No 5 Yes if the customer is spouse of an employee	object
canal_entrada	channel used by the customer to join There are 157 different categories	object
ndfall	Deceased index. N/S 0 = N 1 = S	object
ipodom	Address type. 1, primary address Everyone put a primary address	float64 OBJECT
cod_prov	Province code (customer's address) 53 different province codes	float64
nomprov	Province name 53 different province names	object
nd_actividad_cliente FIXED	Activity index 1, active customer 0, inactive customer	float64 OBJECT
enta	Gross income of the household mean = \$139,646,2 sd = 2.389858e+05 min = 1.202730e+03 max = 2.889440e+07	float64
segmento	segmentation: 0 - VIP, 1 - Individuals / Particulares 2 - college graduated nan	object

ind_ahor_fin_ult1	Saving Account	object
ind_aval_fin_ult1	Guarantees	object
ind_cco_fin_ult1	Current Accounts	object
ind_cder_fin_ult1	Derivada Account	object
ind_cno_fin_ult1	Payroll Account	object
ind_ctju_fin_ult1	Junior Account	object
ind_ctma_fin_ult1	Más particular Account	object
ind_ctop_fin_ult1	particular Account	object
ind_ctpp_fin_ult1	particular Plus Account	object
ind_deco_fin_ult1	Short-term deposits	object
ind_deme_fin_ult1	Medium-term deposits	object
ind_dela_fin_ult1	Long-term deposits	object
ind_ecue_fin_ult1	e-account	object
ind_fond_fin_ult1	Funds	object
ind_hip_fin_ult1	Mortgage	object
ind_plan_fin_ult1	Pensions	object
ind_pres_fin_ult1	Loans	object
ind_reca_fin_ult1	Taxes	object
ind_tjcr_fin_ult1	Credit Card	object
ind_valo_fin_ult1	Securities	object
ind_viv_fin_ult1	Home Account	object
ind_nomina_ult1	Payroll	object
	** nan values	
ind_nom_pens_ult1	Pensions	object
	** nan values	
ind_recibo_ult1	Direct Debit	object

ON TO DATA PREPROCESSING!

FIRST STEP, CHANGING DATA TYPES:

```
# CHANGING DATA TYPES

# Dates
df["fecha_alta"]=pd.to_datetime(df["fecha_alta"])
df["ult_fec_cli_1t"]=pd.to_datetime(df["ult_fec_cli_1t"])

# Numeric
df.loc[df['antiguedad']==' NA','antiguedad']=None
df["antiguedad"]=pd.to_numeric(df["antiguedad"])
df.loc[df['age']==' NA','age']=None
df["age"]=pd.to_numeric(df["age"])
```

NEXT - MISSING DATA!

In [6]: # MISSING DATA
missing_data=df.isnull().sum()
print("Missing_data:\n", missing_data)

Missing data:	
ind_empleado	683
pais_residencia	683
sexo	683
age	683
fecha_alta	683
ind_nuevo	683
antiguedad	683
indrel	683
ult_fec_cli_1t	99871
indrel 1mes	683
tiprel 1mes	683
indresi	683
indext	683
canal_entrada	688
indfall	683
cod prov	769
nomprov	769
ind actividad cliente	683
renta	18283
segmento	691
ind cco fin ult1	0
ind_cder_fin_ult1	0
ind_cno_fin_ult1	9
ind_ctju_fin_ult1	0
ind_ctma_fin_ult1	9
ind_ctop_fin_ult1	9
ind_ctpp_fin_ult1	0
ind deco fin ult1	0
ind_deme_fin_ult1	0
ind dela fin ult1	9
ind ecue fin ult1	9
ind fond fin ult1	0
ind hip fin ult1	9
ind plan fin ult1	9
ind_pran_fin_uit1	9
ind_pres_fin_ult1	9
ind_reca_fin_ult1 ind_tjcr_fin_ult1	9
ind_cjcr_fin_uiti	0
	9
ind_viv_fin_ult1 ind nomina ult1	210
ind_nomina_uiti ind nom pens ult1	210
	210
ind_recibo_ult1	Ø
dtype: int64	

In [8]:
 df.drop('ult_fec_cli_1t', axis=1, inplace=True)

Did not delete missing rows of 'renta', instead used implementation with median:

```
In [11]:
# Let's replace renta's missing with its median
median_renta = df['renta'].median()

df['renta'].fillna(median_renta, inplace=True)
```

DEALING WITH DUPLICATES:

INVALID ENTRIES AND OUTLIERS:

[15]:		age	fecha_alta	ind_nuevo	antiguedad	indrel	indrel_1mes	cod_prov	ind_actividad_cliente	renta
	count	96495.000000	96495	96495.000000	96495.000000	96495.000000	96495.0	96 95.000000	96495.000000	9.649500e+04
	mean	29.492481	2012-06-30 21:50:33.446292736	0.000114	36.378776	1.126950	1.0	25.039038	0.417027	1.115668e+05
	min	4.000000	2002-06-14 00:00:00	0.000000	1.000000	1.000000	1.0	1.000000	0.000000	2.539800e+03
	25%	23.000000	2012-06-18 00:00:00	0.000000	33.000000	1.000000	1.0	11.000000	0.000000	6.683498e+04
	50%	25.000000	2012-09-06 00:00:00	0.000000	34.000000	1.000000	1.0	28.000000	0.000000	8.961030e+04
	75%	31.000000	2012-10-25 00:00:00	0.000000	37.000000	1.000000	1.0	36.000000	1.000000	1.222534e+05
	max	106.000000	2015-01-26 00:00:00	1.000000	157.000000	99.000000	1.0	52.000000	1.000000	2.425324e+07
	std	10.649402	NaN	0.010676	6.602483	3.524922	0.0	13.656111	0.493070	1.469700e+05

Indrel_1mes had only 1 value after cleaning, so I dropped this column

OUTLIERS


```
def detect_outliers(column):
    Q1 = column.quantile(0.25)
    Q3 = column.quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - (1.5 * IQR)
    upper_bound = Q3 + (1.5 * IQR)
    return (column < lower_bound) | (column > upper_bound)

indep_n = ['age', 'antiguedad', 'renta']

for col in indep_n:
    outliers = detect_outliers(df[col])
    num_outliers = outliers.sum()
    total_values = len(df[col])
    percentage_outliers = (num_outliers / total_values) * 100
    print(f"(col) Outliers: (num_outliers) ((percentage_outliers:.2f}%)\n")
```

age Outliers: 10387 (10.76%)

antiguedad Outliers: 21906 (22.70%)

renta Outliers: 7638 (7.92%)

OUTLIERS

```
[25]: def handle_outliers(col):
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - (1.5 * IQR)
    upper_bound = Q3 + (1.5 * IQR)

    df.loc[df[col]>upper_bound, col] = Q3
    df.loc[df[col]<lower_bound, col] = Q1

for col in indep_n:
    handle_outliers(col)

for col in indep_n:
    d = detect_outliers(df[col]).sum()
    print(f"{col} Outliers: {d}\n")</pre>
```

age Outliers: 0

antiguedad Outliers: 0

renta Outliers: 0

DATA VISUALIZATION

CHECKING TO SEE HOW MANY PRODUCTS WERE BOUGHT:

ind_cco_fin_ult1	87193.0
ind_recibo_ult1	9695.0
ind_ecue_fin_ult1	7053.0
ind_cno_fin_ult1	5355.0
ind_nom_pens_ult1	3522.0
ind_nomina_ult1	3268.0
ind_dela_fin_ult1	2087.0
ind_tjcr_fin_ult1	1851.0
ind_reca_fin_ult1	1827.0
ind_ctma_fin_ult1	1576.0
ind_ctju_fin_ult1	925.0
ind_valo_fin_ult1	456.0
ind_fond_fin_ult1	370.0
ind_plan_fin_ult1	126.0
ind_deme_fin_ult1	34.0
ind_pres_fin_ult1	19.0
ind_deco_fin_ult1	18.0
ind_hip_fin_ult1	11.0
ind_ctpp_fin_ult1	10.0
ind_ctop_fin_ult1	6.0
ind_viv_fin_ult1	6.0
ind_cder_fin_ult1	4.0
dtype: float64	

Then chose to focus on products that had > 1000 counts.

CHECKING FREQUENCY OF NUMERICAL COLUMNS:

CATEGORICAL COLUMNS:

VISUALIZING RELATIONSHIPS

CORRELATION WITH NUMERICAL VARIABLES

CORRELATION WITH ENCODED CATEGORICAL VARIABLES

MACHINE LEARNING

SELECTED FEATURES AND TARGET VARIABLES

- 'sexo_encoded' = Gender of the customer (categorical: 0 for male, 1 for female)
- 'age' = age of customer
- 'antiguedad' = seniority/tenure of customer in months
- 'tiprel_1mes' = customer relation type ate beginning of month (
 0 = active, 1 = inactive)
- 'cod_prov' = province code of customer's residence
- 'ind_actividad_cliente' = indicator if customer is active or not (0 = ACTIVE, 1 = inactive)
- 'renta' = gross income of household the customer resides

SELECTED FEATURES AND TARGET VARIABLES

- 'ind_cco_fin_ult1' = Current accounts
- 'ind_recibo_ult1' = Direct debits
- 'ind_ecue_fin_ult1' = e-account
- 'ind_cno_fin_ult1' = Payroll account
- 'ind_nom_pens_ult1' = Pensions
- 'ind_nomina_ult1' = Payroll
- 'ind_dela_fin_ult1' = Taxes
- 'ind_tjcr_fin_ult1' = Credit Cards
- 'ind_reca_fin_ult1' = Taxes
- 'ind_ctma_fin_ult1' = Long-term deposits

PERFORMANCE METRICS

I'll be using evaluation metrics suitable for multi-label classification tasks, such as:

- Hamming loss
- Jaccard similarity score
- Precision, recall, and F1-score for each product
- Micro/macro averaged metrics

MODEL SELECTION

I've decided to try two different models for this task:

- K-Nearest Neighbors (KNN) Model
 - I chose this due to its ease of interpretation in robustness to outliers.
 - KNN works by classifying instances based on the majority class among their k nearest neighbors
- Random Forest Model
 - I chose this for its ability to handle outliers and complex relationships in the data.
 - RF builds multiple decision trees and combines their predictions through voting to make the final prediction.

KNN

```
[111]: X = df[features]
       y = df[new_targets]
       # Splitting the dataset
       X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=470)
       # Preprocessing for numerical variables
       numerical_features = ['age', 'antiguedad', 'renta']
       numerical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                               ('scaler', StandardScaler())])
[113]: # Preprocessing for categorical variables
       categorical features = ['sexo encoded', 'tiprel 1mes encoded', 'cod prov', 'ind actividad cliente']
       categorical_transformer = Pipeline(steps = [('imputer', SimpleImputer(strategy='most_frequent')),
                                                   ('onehot', OneHotEncoder(handle_unknown='ignore'))])
[114]: # Combining Preprocessing
       preprocessor = ColumnTransformer(transformers=[('num', numerical transformer, numerical features),
                                                      ('cat', categorical_transformer, categorical_features)])
       knn_pipeline=Pipeline(steps=[('preprocessor', preprocessor),
                                   ('classifier', KNeighborsClassifier(n_neighbors=4))])
       # Train
[116]:
       knn pipeline.fit(X train,y train)
```

Classific	ation N	Report For	KNN:		
	рі	recision	recall	f1-score	support
	0	0.92	0.93	0.93	17367
	1	0.37	0.12	0.18	1944
	2	0.46	0.15	0.22	1426
	3	0.20	0.03	0.05	1100
	4	0.19	0.01	0.03	711
	5	0.18	0.01	0.03	669
	6	0.35	0.04	0.07	447
	7	0.12	0.00	0.01	391
	8	0.14	0.00	0.01	360
	9	0.21	0.06	0.09	288
micro	avg	0.88	0.68	0.77	24703
macro	avg	0.31	0.14	0.16	24703
weighted	avg	0.74	0.68	0.69	24703
samples	avg	0.84	0.81	0.81	24703
Accuracy	Score:	0.75770765	32462822		

RANDOM FOREST

```
from sklearn.preprocessing import LabelEncoder
      label encoder = LabelEncoder()
      df['sexo_encoded'] = label_encoder.fit_transform(df['sexo'])
[94]: label encoder = LabelEncoder()
      df['tiprel_1mes_encoded'] = label_encoder.fit_transform(df['tiprel_1mes'])
      features = ['sexo encoded', 'age', 'antiguedad', 'tiprel 1mes encoded', 'cod prov',
                  'ind_actividad_cliente', 'renta']
      from sklearn.ensemble import RandomForestClassifier
      X = df[features]
      Y = df[new_targets]
      clf = RandomForestClassifier(n_estimators=10)
      clf = clf.fit(X, Y)
[98]: # Split
      X train, X test, y train, y test = train test split(X, Y, test size=0.2, random state=42)
      # Initialize
      rf classifier = RandomForestClassifier(n estimators=100, random state=42)
      rf_classifier.fit(X_train, y_train)
```

Accuracy: 0.7688481268459506

Hamming Loss: 0.05405461422871651

Jaccard Similarity Score: 0.8225817276493478

Precision: 0.8698946281450557

Recall: 0.843348779482776

F1 Score: 0.8448592325166241

CONCLUSION

Overall, the Random Forest model demonstrates stronger predictive performance and is better suited for predicting customer product purchases.

In summary, the Random Forest model shows promise in accurately predicting customer product purchases, and efforts should be focused on refining this model for deployment in real-world applications.