#### Geometría Computacional

#### Melanie Sclar

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Problemas, Algoritmos y Programación

#### Contenidos

- Introducción
- 2 Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
  - El α-β
- Área de un polígono
- Teorema de Pick
- Point in polygon
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

Generalmente, los problemas de geometría de ACM requieren calcular alguna cantidad (por ej., una distancia, un área, etc) relacionada con elementos geométricos como puntos, líneas, círculos, etc. Para resolverlos, debemos poder ser capaces de:

- 1. Representar los objetos geométricos involucrados en el problema, para poder operar con ellos.
- 2. Desarrollar un algoritmo para buscar la respuesta deseada.

Entonces, para poder llegar a la segunda parte (la más interesante), primero tenemos que ser capaces de llevar a cabo la primera.

**Aclaración:** Nos referiremos siempre a problemas en  $\mathbb{R}^2$ , va que son los más comunes.

Un punto en el plano (o un vector desde el origen hasta dicho punto) se puede representar con un par ordenado de coordenadas en un sistema cartesiano:

$$\vec{P} = (x, y) \text{ con } x, y \in \mathbb{R}$$

Se puede representar como pair<double, double>, pero es poco declarativo. Mejor hacer un struct:

```
struct Punto {
double x;
double y;
// double z; para problemas en el espacio, etc.
};
```

#### Contenidos

- Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
- Área de un polígono
- Teorema de Pick
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

 La suma y resta de vectores se realiza componente a componente:

$$\vec{P} = \vec{P}_1 \pm \vec{P}_2 \qquad \Longleftrightarrow \qquad (x, y) = (x_1 \pm x_2, y_1 \pm y_2)$$

- La longitud o *norma* de un vector es  $|\vec{P}| = \sqrt{x^2 + y^2}$ .
- La distancia euclídea entre dos puntos  $\vec{P}_1$  y  $\vec{P}_2$  es  $|\vec{P}_1 \vec{P}_2|$

#### Producto escalar entre vectores

#### Producto escalar

El producto escalar de dos vectores  $u = (x_1, y_1)$  y  $v = (x_2, y_2)$  es un número, y se define como

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 = |\vec{u}||\vec{v}| \cos \theta$$

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{u}||\vec{v}|\cos\theta$$
 (en 3D)

- El valor del producto escalar es la proyección ortogonal de u sobre v, expresada con signo y multiplicada por |v|. Notar que como es conmutativo, lo mismo vale al revés.
- Observar que en particular si  $\theta = 90^{\circ}$  el producto escalar se anula. Es decir, dos vectores son perpendiculares si v sólo si su producto escalar da 0.

#### Producto cruz entre vectores

El producto vectorial (o producto cruz) de dos vectores es un *vector* en la dirección normal al plano generado por ellos (¡esto puede ser muy útil para problemas en  $\mathbb{R}^3$ !).

Si  $u, v \in \mathbb{R}^2$  ( $u = (x_1, y_1)$  y  $v = (x_2, y_2)$ ), se define  $u \times v$  como:

$$\vec{u} \times \vec{v} = (0, 0, x_1 y_2 - x_2 y_1)$$

Luego, es fácil deducir que:

$$|\vec{u}\times\vec{v}|=x_1y_2-x_2y_1$$

y se puede demostrar que:

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}| \sin \theta,$$

y que además  $|u \times v|$  es el área del paralelogramo determinado por los dos vectores.

#### Producto cruz entre vectores

El signo del producto indica la orientación de los vectores.



Además, notemos que aquí  $u \times v = 0$  significa que los dos vectores tienen igual dirección (¡no confundir con el producto escalar!).

#### Contenidos

- Introducción
- Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
  - ΕΙ α-β
- Área de un polígono
- Teorema de Pick
- Point in polygon
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

## ¿Cómo represento una recta?

Una recta puede ser representada de más de una forma: las dos más usuales son:

- L(x) = mx + b, siendo m la pendiente de la recta y b la ordenada al origen.
- $L(t) = \mathbf{p} + t\mathbf{v}$ , siendo  $\mathbf{v} \in \mathbb{R}^2$  el vector dirección y  $\mathbf{p}$  un punto en la recta.  $t \in \mathbb{R}$  es un escalar que representa cuánto se dilata o contrae el vector  $\mathbf{v}$ .

El primer enfoque tiene una posible desventaja, ¿cuál es?

## ¿Cómo represento una recta?

Una recta puede ser representada de más de una forma: las dos más usuales son:

- L(x) = mx + b, siendo m la pendiente de la recta y b la ordenada al origen.
- $L(t) = \mathbf{p} + t\mathbf{v}$ , siendo  $\mathbf{v} \in \mathbb{R}^2$  el vector dirección y  $\mathbf{p}$  un punto en la recta.  $t \in \mathbb{R}$  es un escalar que representa cuánto se dilata o contrae el vector  $\mathbf{v}$ .

El primer enfoque tiene una posible desventaja, ¿cuál es?

La pendiente de una recta es un cociente entre dos números, y por ende debemos asegurarnos que no se indefina dicho cociente. Así, si se quiere representar la recta vertical x = c, se la deberá tratar como un caso especial en el código (¡Oh no, un if!).

Entonces, utilizaremos la representación L(t) = p + tv. ¿Cómo la obtenemos a partir de dos puntos que pasen por la recta L?

Entonces, utilizaremos la representación L(t) = p + tv. ¿Cómo la obtenemos a partir de dos puntos que pasen por la recta L?

Si a y b se encuentran sobre L, el vector v = b - a representa la dirección de la recta. Un punto p posible será el p = a. Así, la recta se escribirá como:

$$L(t) = a + t(b - a) \operatorname{con} t \in \mathbb{R}.$$

A partir de esto, podemos representar fácilmente un **segmento de recta** (por ejemplo, la sección de *L* entre *a* y *b*). ¿Cómo?

A partir de esto, podemos representar fácilmente un **segmento de recta** (por ejemplo, la sección de *L* entre *a* y *b*). ¿Cómo?

¡Aprovechándonos de t!

- Si t = 0, L(0) = a.
- Si t = 1, L(1) = b.
- Si 0 < t < 1, L(t) es parte del segmento determinado por a y b.
- Si t < 0 o t > 1, L(t) no será parte del segmento.

Entonces, L(t) pertenece al segmento ya dicho si y sólo si  $t \in [0, 1]$ .

#### Contenidos

- Introducción
- Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
  - El α-β
- Área de un polígono
- Teorema de Pick
- Point in polygon
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

#### Intersección de dos rectas

- ¿Qué pasa si tenemos que calcular el punto de intersección de dos rectas en el plano?
- Dependerá de la representación usada, pero concentrémonos en la representación que recomendamos, p + tv.

Vamos a ver una forma de hallar la intersección de dos rectas de manera tal de que la implementación sea sencilla. Esta técnica es invención de Agustín Gutiérrez.

#### El $\alpha$ - $\beta$

$$p_1 + \alpha v_1 = p_2 + \beta v_2$$

Queremos eliminar una de las dos variables desconocidas( $\alpha$  y  $\beta$ ). Hagamos entonces de ambos lados producto cruz con  $v_2$ :

$$p_1 \times v_2 + \alpha v_1 \times v_2 = p_2 \times v_2$$

$$\alpha v_1 \times v_2 = (p_2 - p_1) \times v_2$$

$$\alpha = \frac{(p_2 - p_1) \times v_2}{v_1 \times v_2}$$

 $(\mathbf{p_1} + \alpha \mathbf{v_1}) \times \mathbf{v_2} = (\mathbf{p_2} + \beta \mathbf{v_2}) \times \mathbf{v_2}$ 

Una vez que tenemos  $\alpha$ , el punto buscado es claramente  $p_1 + \alpha v_1$ 

## El $\alpha$ - $\beta$ (observaciones)

- Notar que el denominador es  $v_1 \times v_2$ , y por lo tanto se anula exactamente cuando las rectas son paralelas (vectores  $v_1$  y  $v_2$  alineados).
- Si todas las coordenadas con las que trabajamos son enteras, la única operación que se sale de los enteros es la división para obtener α. Esto prueba de paso que las intersecciones de rectas en estos casos tendrán coordenadas racionales.

## Distancia entre un punto y una línea

Para hallar la distancia entre un punto y una recta, utilizamos la proyección ortogonal vista en álgebra (la recalcularemos en el pizarrón). Esto nos dará no sólo la distancia sino el punto que la realiza (lo cual veremos que será altamente útil).

$$proy_{v}(u) = \frac{\langle u, v \rangle}{|v|} \cdot v$$

Si quisiéramos hallar solamente la distancia existen otras formas de hacerlo utilizando el área de un triángulo (queremos calcular la altura del triángulo).

Dada la fórmula de la proyección, veamos cómo calcular el punto de menor distancia entre el punto X y la recta AB.

#### Distancia entre un punto y una línea

Dada la fórmula de la proyección, veamos cómo calcular el punto de menor distancia entre el punto X y la recta AB.

### Distancia entre un punto y una línea

Dada la fórmula de la proyección, veamos cómo calcular el punto de menor distancia entre el punto X y la recta AB.



¿Cuál es el punto destino del vector d? Como el origen es A, será d + A.

# Encontrar centro de circunferencia a partir de tres puntos

Supongamos que tenemos tres puntos cualquiera sobre una circunferencia. ¿Cómo puedo hallar el centro y radio de la circunferencia?

## Encontrar centro de circunferencia a partir de tres puntos

Supongamos que tenemos tres puntos cualquiera sobre una circunferencia. ¿Cómo puedo hallar el centro y radio de la circunferencia?



Debemos hallar la intersección de las dos rectas perpendiculares a XY e YZ respectivamente. Dicha intersección es el centro de la circunferencia. Luego, OX será el radio.

## Área de un triángulo

Como podrán imaginar, hallar el área de un polígono es de vital relevancia en geometría computacional. ¿Cómo podemos hallarla?

## Área de un triángulo

Como podrán imaginar, hallar el área de un polígono es de vital relevancia en geometría computacional. ¿Cómo podemos hallarla?

Comencemos de lo más sencillo: primero pensemos cómo sacaríamos el área de un triángulo.

## Área de un triángulo

Como podrán imaginar, hallar el área de un polígono es de vital relevancia en geometría computacional. ¿Cómo podemos hallarla?

Comencemos de lo más sencillo: primero pensemos cómo sacaríamos el área de un triángulo.

Recordemos lo que vimos hace un rato: si u y v son dos vectores que forman un ángulo  $\theta$ ,  $|u \times v|$  es igual al área del paralelogramo que forman.





Así, el área del triángulo marcado es  $\frac{|u \times v|}{2}$ .

Así, el área del triángulo marcado es  $\frac{|u \times v|}{2}$ .

¿Cómo podemos aplicar lo ya visto para sacar el área de un polígono?

Así, el área del triángulo marcado es  $\frac{|u \times v|}{2}$ .

¿Cómo podemos aplicar lo ya visto para sacar el área de un polígono?

¡Triangulando! Veámoslo.

# Área de un polígono

Se triangula desde un vértice cualquiera y se suman **en orden** los productos cruz. La superficie del polígono es la mitad del valor absoluto de este número.



Si el polígono es cóncavo, sigue valiendo el mismo algoritmo.

# Área de un polígono

Se triangula desde un vértice cualquiera y se suman **en orden** los productos cruz. La superficie del polígono es la mitad del valor absoluto de este número.



Si el polígono es cóncavo, sigue valiendo el mismo algoritmo.

Complejidad: O(n) si n es la cantidad de vértices del polígono.

Veamos por qué sigue funcionando el mismo algoritmo para polígonos cóncavos. Lo haremos a través de un ejemplo, pero vale en general.



Como la cuenta del área con producto cruz es con signo (puede ser negativa o positiva según el orden de los puntos), cuando contamos un triángulo que no está realmente en el polígono, como se invierte el orden de los puntos se invierte el signo del área: así, se cancela lo ya sumado por otros triángulos.

Por ejemplo, triangulando desde A se tiene: AreaProdCruz(ABC) + AreaProdCruz(ACD) + AreaProdCruz(ADE) =Area(ABC) + Area(ACD) - Area(ADE)

O depende el orden como se tomen los puntos será lo mismo pero con signo inverso. Es por eso que tomamos valor absoluto.

AreaPoligono toma un arreglo listando los vértices del polígono en orden (ya sea horario o antihorario) y calcula el área.

```
AreaPoligono (vector<punto> p) {
    // Triangularemos el poligono en triangulos formados
    // por los puntos p[0], p[i], p[i+1]
    area = 0
    N = cantidad de puntos en p
    for i = [1..N-1):
        x1 = p[i].x - p[0].x
        y1 = p[i].y - p[0].y
        x2 = p[i+1].x - p[0].x
        v2 = p[i+1].v - p[0].v
        area += x1 * y2 - x2 * y1
    devolver larea / 2.01
```

Notar que si las coordenadas son enteras, el área es un semientero.

## Problema: City blocks

La ciudad donde vivimos tiene forma de grilla cuadriculada. Hay N calles corriendo en sentido sur-norte y M calles corriendo en sentido este-oeste. Un helicóptero salió de la esquina más al suroeste y voló en línea recta hasta la esquina ubicada más al noreste. ¿Por cuántas manzanas voló el helicóptero?



Fuente: http://acm.timus.ru/problem.aspx?space=1&num=1139

### Teorema de Pick

- A es el área del polígono.
- I es la cantidad de puntos interiores sobre la grilla.
- B es la cantidad de puntos del borde que se encuentran sobre la grilla. Se pueden calcular usando el MCD de la longitud en x y en y de cada lado.

$$A=I+\frac{B}{2}-1$$



### Hallar la cantidad de puntos dentro de un polígono

Dado un polígono con todos sus vértices sobre la grilla, queremos ver cuántos puntos de la grilla se encuentran en su interior. ¿Cómo lo podemos hacer?

### Hallar la cantidad de puntos dentro de un polígono

Dado un polígono con todos sus vértices sobre la grilla, queremos ver cuántos puntos de la grilla se encuentran en su interior. ¿Cómo lo podemos hacer?

A ya lo sabemos calcular (área de un polígono).

## Hallar la cantidad de puntos dentro de un polígono

Dado un polígono con todos sus vértices sobre la grilla, queremos ver cuántos puntos de la grilla se encuentran en su interior. ¿Cómo lo podemos hacer?

A ya lo sabemos calcular (área de un polígono).

*B* lo podemos calcular usando la técnica del problema anterior (MCD). Así, despejamos *I*:

$$A-\frac{B}{2}+1=I$$

# Ver si un punto está dentro de un polígono

Supongamos que nos dan un polígono (potencialmente cóncavo). Queremos saber si un cierto punto se encuentra dentro del polígono o fuera de él. ¿Cómo podemos saberlo?

En general, esta tarea es fácil para un humano pero no lo es para la computadora. Este problema es conocido como *Point in polygon*.

Si queremos saber si X está dentro del polígono o no, podemos buscar un punto P que sabemos que seguro está fuera del polígono y tirar un rayo en dirección PX. Contaremos la cantidad de cruces con el borde del polígono, y eso determinará si el punto cayó dentro o fuera. Gráficamente,



### Contenidos

- Introducción
- 2 Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
  - El α-β
- Área de un polígono
- Teorema de Pick
- Point in polygon
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

## ¿Qué es sweep line?

- La técnica de sweep line se caracteriza por tener una línea (vertical u horizontal generalmente, pero no necesariamente) que va barriendo todo el plano y recolectando información sobre puntos de él.
- Si se recuerdan ciertos eventos que van sucediendo a lo largo del barrido y se los analiza, se pueden obtener soluciones de una complejidad mejor que con otras técnicas.
- Los eventos serán instantes del barrido en los que sucede algo relevante para el problema.

En algún sentido, la técnica de sweep line es como la programación dinámica: uno aprende la idea general, pero luego en cada problema se aplica y se utiliza de manera diferente, adaptando la idea general ya vista.

Es por eso que creemos que la mejor manera de aprender esta técnica es viendo algunos ejemplos de problemas relevantes en los que se la utiliza.

#### Problema

Dados *n* puntos en el plano, queremos encontrar dos tales que la distancia entre ellos sea la mínima posible (o sea, el par más cercano)

¿Ideas?

#### Problema

Dados *n* puntos en el plano, queremos encontrar dos tales que la distancia entre ellos sea la mínima posible (o sea, el par más cercano)

¿Ideas? ¿Cómo sé qué idea puede funcionar y cuál no, si no sé cuánto vale n? Si  $n \le 1000$ , el problema a resolver es muy distinto que si n < 1000000.

- Existe una solución trivial en  $O(n^2)$ , que es simplemente mirar cada par y elegir el de menor distancia entre todos los posibles.
- Es una solución muy fácil de implementar, así que si el problema es con n < 1000 definitivamente deberíamos programar esa.
- ¿Pero y si  $n \le 1000000$ ? Utilizaremos sweep line para encontrar una solución de mejor complejidad.

- El problema con el enfoque  $O(n^2)$  es que a cada punto lo comparamos con **todos** los demás. Tal vez podemos aprovecharnos de la posición en el plano de cada uno para no tener que hacer esto cada vez.
- Barreremos el plano con una recta vertical, de izquierda a derecha.
- Para ser coherentes con este barrido, ordenaremos los puntos crecientemente según su coordenada x. Esto tendrá una complejidad de O(n lg n).

- Llamemos h a la menor distancia entre dos puntos encontrada hasta el momento. La inicializaremos en  $\infty$  (en la práctica, un valor tan grande tal que sea imposible que haya un par de puntos tan lejanos).
- Supongamos que ya pasamos por primeros i-1 puntos con la línea vertical, y ahora chocamos al *i*-ésimo punto.

Mantendremos un set con los puntos (ya procesados) cuya coordenada x esté a una distancia menor a h. Estos puntos son los únicos candidatos a estar a distancia menor que h del punto i-ésimo, y por ende a ser una mejor solución que la actual.



También fijémonos que no cualquier punto cuya coordenada x esté a distancia menor a h es un candidato real a ser una mejor solución. Si la coordenada y de un punto está a una distancia mayor a h, tampoco será un candidato.



Así, sólo deberíamos quedarnos con los puntos cuya coordenada y esté en el intervalo ( $y_i - h, y_i + h$ ).

¿Cómo descartamos los puntos con coordenada x mayor a h, si tenemos a los candidatos en un set?

Así, sólo deberíamos quedarnos con los puntos cuya coordenada y esté en el intervalo ( $y_i - h, y_i + h$ ).

¿Cómo descartamos los puntos con coordenada x mayor a h, si tenemos a los candidatos en un set?

¡Manteniendo el set ordenado por su coordenada y! Así, quitar los puntos cuya coordenada y está demasiado lejos de  $p_i$  se reduce simplemente a no mirar los puntos fuera de un intervalo.

Y ahora, para todos los puntos que quedaron en el set calculamos su distancia con  $p_i$  y actualizamos h. ¡¿Pero cómo?! Potencialmente, hay muchos puntos en el set.

Y ahora, para todos los puntos que quedaron en el set calculamos su distancia con  $p_i$  y actualizamos h. ¿Pero cómo?! Potencialmente, hay muchos puntos en el set.

Esto no es tan así. Veamos que quedaron a lo sumo 6 candidatos (6 elementos en el set).

La observación importante es que todos los puntos anteriores están a una distancia mayor o igual a *h* entre sí, pues si no, la mínima distancia ya habría sido actualizada anteriormente.



No puede haber 2 puntos en el mismo cuadradito, pues luego esos 2 estarían a una distancia menor que *h*. Así, hay a lo sumo 6 puntos para mirar.

### Resumen

### El algoritmo consta de 3 pasos importantes:

- 1. Ordenar los puntos por su coordenada x (para poder hacer el barrido con una línea vertical). Esto toma  $O(n \lg n)$ .
- 2. Insertar y remover cada punto una vez del set ordenado por coordenada y, que toma  $O(n \lg n)$  (insertar y remover un elemento toma  $O(\lg n)$  usando un set, y hay n puntos en total).
- 3. Comparar cada punto con una cantidad constante de candidatos  $(\leq 6)$ , lo que toma O(n) en total.

Así, en total el algoritmo es  $O(n \lg n)!$ 

### Problema para pensar

http://www.spoj.com/problems/CLOSEST/

#### **Problema**

Dados *n* segmentos en el plano (horizontales o verticales), queremos hallar todas las intersecciones entre dos segmentos.

Nuevamente, si entra en tiempo la solución trivial  $O(n^2)$ , hay que programar esa.

Si no, como es por ejemplo el caso n = 1000000, tenemos que pensar otra manera de resolverlo. Utilizaremos sweep line.

- De nuevo utilizaremos un barrido con una línea vertical, pero aquí la situación es distinta: no serán puntos los que crucen la línea, sino segmentos.
- Para representarlos, utilizaremos eventos. Los eventos serán coordenadas x en los que pasa algo relevante:
  - Por cada segmento horizontal, habrá un evento de apertura (cuando comienza el segmento) y uno de clausura (cuando pasamos por el final del mismo).
  - Por cada segmento vertical, habrá un evento (la aparición del segmento en una cierta coordenada x).

# Pseudocódigo del algoritmo

```
lista = la lista de todos los eventos posibles
   ordeno lista por las coordenadas x de sus elementos
2
3
   S = set de segmentos ordenado por la coordenada y de sus elementos
4
        (inicialmente vacio)
6
   para cada event en lista
7
        if ( event = horizontal de apertura )
            inserto el segmento en el set S
        if ( event = horizontal de clausura )
10
            quito el segmento del set S
11
        if (event = vertical (segmento de y1 a y2, con y1 < y2) )
12
            itero los segmentos de S en el rango (y1,y2)
13
            imprimo las intersecciones halladas
14
```

**Detaile:** en un set se puede hallar el rango (y1,y2) en  $O(\lg n)$ , utilizando las funciones lowerbound y upperbound.

### Problema para pensar

http://goo.gl/UT0O2U (A Safe Bet - WF 2012)

### Contenidos

- Introducción
- 2 Los elementos más básicos: puntos, vectores y rectas
  - Algunas operaciones importantes entre vectores
  - Representación de recta y segmento
  - ΕΙ α-β
- Área de un polígono
- Teorema de Pick
- Point in polygon
- Técnicas de barrido
  - Técnicas de barrido
    - Par de puntos más cercano
    - Intersección de segmentos
  - Sweep ray (o semirrecta)

# Cápsula convexa (Convex Hull)

### Problema

Se tiene un millón vacas en un campo. Se quieren encerrar todas las vacas con una cerca, de manera tal que se minimice la cantidad de alambre utilizado (las vacas deben quedar en el borde o dentro de la cerca).

¿Ideas?

## Cápsula convexa (Convex Hull)

#### Problema

Se tiene un millón vacas en un campo. Se quieren encerrar todas las vacas con una cerca, de manera tal que se minimice la cantidad de alambre utilizado (las vacas deben quedar en el borde o dentro de la cerca).

¿Ideas?

Para resolver el problema, tendremos que introducir dos conceptos antes.

## Polígonos convexos

### Polígono convexo

Un polígono es convexo si cumple que dados dos puntos cualesquiera en su interior, el segmento que los une está completamente contenido en él.



Equivalentemente, un polígono es convexo si los todos sus ángulos interiores son menores que 180°.

## Polígonos convexos

### Polígono convexo

Un polígono es convexo si cumple que dados dos puntos cualesquiera en su interior, el segmento que los une está completamente contenido en él.



Equivalentemente, un polígono es convexo si los todos sus ángulos interiores son menores que 180°.

Notar que el polígono que será solución al problema debe ser convexo.

### Cápsula convexa

Dados *n* puntos, la *cápsula convexa* es el menor polígono convexo que contiene a todos los puntos en su interior. Se puede probar que es única.



### Cápsula convexa

Dados *n* puntos, la *cápsula convexa* es el menor polígono convexo que contiene a todos los puntos en su interior. Se puede probar que es única.



Entonces, podemos ver que el problema se reduce a hallar la cápsula convexa. ¿Pero cómo lo hacemos?

## Algoritmo de Graham Scan

Se elige el punto de más abajo (con menor y), y en caso de haber más de un punto con la misma y se elige el punto de más a la izquierda (o sea, con menor x). A este punto lo llamaremos P. Elegirlo tiene una complejidad O(n).



Iremos barriendo el plano con una semirrecta que parta desde *P*. Esta semirrecta no será vertical ni horizontal, como veníamos viendo, sino que **girará en sentido antihorario**.

Iremos barriendo el plano con una semirrecta que parta desde *P*. Esta semirrecta no será vertical ni horizontal, como veníamos viendo, sino que **girará en sentido antihorario**.

Para poder hacerlo, tenemos que ordenar los puntos por su ángulo respecto a P y al eje x. Si dos puntos tienen el mismo ángulo, desempatamos por el más cercano primero.



Ahora veamos cómo manejamos los eventos (en este caso, será simplemente la aparición de un punto en el barrido).

El próximo punto siempre está en la Convex Hull. En este caso,  $u \times v > 0$ .



Mientras que  $u \times v < 0$ , sacamos el punto anterior (¡forma un ángulo mayor que 180°!).



# Pseudocódigo del Graham Scan

```
vector<Punto> ConvexHull ( vector<Punto>& lista ) {
        if( |lista| < 3 ) devolver lista
       p = el punto de mas abajo y mas a la izquierda
       Ordenar todos los puntos por angulo respecto a p
4
            (desempatando por distancia a p. los mas cercanos primero)
        pila = stack de puntos vacio
6
        pila.push(lista[0]) // lista[0] == p
        pila.push(lista[1])
        i = 2
        while (i < N)
10
           sea a el tope de pila, b el anteultimo de la pila (si existen)
11
            if (pila.size > 1 \& pcruz(lista[i] - a, b - a) \le 0)
12
                pila.pop()
13
            else
14
                pila.push(lista[i])
15
                i = i + 1
16
       devolver pila
17
18
```

# ¡Hasta la semana que viene!

