Laboratory Test

DEPI

Information

- There are 6 subjects in all, shown below according to the laboratory they were done in.
- The test will last for 50 minutes (\sim 10 students in 1st hour, \sim 10 students in the second hour)
- Your schedule will be available in ProgramareTest.pdf.

Subjects

Lab 1

- 1. Create a Matlab function myPDF() that directly estimates the probability density function from a vector of data
 - the function requires three arguments and returns one value p = myPDF(v,x,epsilon)
 - v is a vector, x, epsilon and p are scalar numbers
 - the function computes how many elements from v are in the interval $[x-\epsilon, x+\epsilon]$, divided to the total number of elements of v, and also divided to 2*epsilon
- 2. Plot the probability density function estimated from a vector of data
 - generate a vector v with 10000 values from the normal distribution $\mathcal{N}(2,2)$ and plot the values
 - generate a vector n of 50 values uniformly spread between -5 to 15
 - apply myPDF() on v to estimate the probability density at every value from n (use epsilon = 0.3)
 - plot the results of the function against the values of n

Lab 2

- 1. Simulate threshold-based detection with a single sample, as follows:
 - Generate a vector of 100000 values 0 or A = 5, with equal probability (hint: use rand() and compare to 0.5);
 - Add over it a random noise with normal distribution $\mathcal{N}(0, \sigma^2 = 1)$;
 - Compare each element with T = A/2 to decide which sample is logical 0 or logical 1 (A);
 - Compare the decision result with the true original vector, and count how many correct rejections, falsa alarms, misses and correct detections have happened;
 - Estimate probability of correct rejection, false alarm, miss and correct detection (by dividing the above counters to the size of the vector).

Lab 3

- 1. Simulate the BPSK sender and channel
 - Generate a vector **x** of 1000 values 0 or 1, with equal probability (hint: use rand() and compare to 0.5).
 - Generate a vector **s** of 100000 values as follows:
 - for each bit 0 in x, put a 100-long sine $A\sin(2\pi f n)$ in s
 - for each bit 1 in x, put a 100-long inverted sine $-A\sin(2\pi f n)$ in s
 - Use A = 1, f = 1/100.
 - Plot s.
 - Generate a vector of white gaussian noise with distribution $\mathcal{N}(0, \sigma^2)$, the same length as \mathbf{s} , and $\sigma^2 = A/10$.
 - Add the noise to the signal, store result as **r**.
 - Plot the resulting signal r (do not overwrite the previous figure of s, we want to see both)

Lab 4

- 1. Implement a function [class] = myKNN(image, k) for performing k-NN classification of an image:
 - the function takes as input an image image
 - the function loads the training set from trainset.mat (will be provided)
 - the function computes the Euclidean distance between image and each image from the training set
 - the output ${\tt class}$ is defined by the majority of the k nearest neighbours of the image
- 2. Load the test image matrix I from 'testimage.mat' and call the function myKNN to determine its class. Use different values for k: k = 1, then k = 5, then k = 15.

Lab 5

- 1. Load the color image 'peppers.jpg' using imread(). Convert the image to double and display it (don't convert to grayscale, leave the colors).
- 2. Use Matlab's k-Means algorithm to cluster all the pixel values (each pixel = a group of three values R, G, B) into 4 groups.
- 3. Replace each pixel of the image with the *centroid* of its class. Display the image.

Lab 6

- 1. Generate a 500-samples long sinusoidal signal x with frequency $f_0 = 0.01$, and add over it normal noise with distribution $\mathcal{N}(0, \sigma^2 = 0.5)$. Name the resulting vector r. Plot the r vector.
- 2. Estimate the frequency \hat{f} of the signal via Maximum Likelihood estimation from the **r** vector:
 - Generate 1000 candidate frequencies f_k equally spaced from 0 to 0.5
 - \bullet Compute the Euclidean distance between r and the sine signal with each candidate frequency
 - Maximum Likelihood: choose \hat{f}_{ML} as the candidate frequency which minimizes the Euclidean distance
 - Display the estimate value $\hat{f}_M L$