EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_V}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Notațiile fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. pentru mărimea fizică exprimată prin raportul $\frac{L}{\Delta V}$ este:

- d. N/m c. torr
 - 2. Dacă volumul molar al unui gaz în anumite condiții de presiune și temperatură este $V_{\mu}=0.6\,\ell/\text{mol}$, distanța medie d dintre moleculele gazului, în aceste condiții, are ordinul de mărime (se va considera numărul lui Avogadro $N_A \approx 6 \cdot 10^{23}$ molecule/mol):
 - **a.** $d \approx 10^{-8} \,\text{m}$
- **b.** $d \approx 10^{-9} \text{ m}$
- **c.** $d \approx 10^{-10}$ m
- **d.** $d \approx 10^{-11} \text{m}$ (3p)

3. O masă de gaz ideal aflată inițial într-o stare caracterizată de o anumită presiune și un anumit volum poate efectua o destindere până la aceeași valoare a volumului final prin două procese diferite, așa cum se vede în figură. Între lucrul mecanic efectat de gaz în procesul $1 \Rightarrow 2$ (L_{12}) şi lucrul mecanic efectat de gaz în procesul $1 \Rightarrow 3$ (L_{13}) există relatia:

- **a.** $L_{12} = L_{13}$
- **b.** $L_{12} \le L_{13}$
- **c.** $L_{12} < L_{13}$
- **d.** $L_{12} > L_{13}$. (5p)
- 4. Constanta universală a gazului ideal are aceeași unitate de măsură în S.I. ca și:
- a. capacitatea caloricăb. căldura molarăc. căldura specifică d. căldura
- (2p) 5. Într-o transformare izobară a unei cantități de gaz ideal se constată că lucrul mecanic efectuat de gaz este
- de 3 ori mai mic decât căldura primită. Dacă R este constanta universală a gazului ideal și μ masa molară a gazului, atunci căldura specifică izocoră are expresia:
- **a.** R/μ
- **b.** $3R/2\mu$
- c. $2R/\mu$
- **d.** $5R/2\mu$
- (3p)

(2p)