NAME	TEACHER	

Sydney Technical High School

2 Unit Mathematics

Year 11

Assessment task 2

August 2009

General Instructions

- Each question attempted is to be started on a NEW PAGE, clearly marked with the number of the question, your name and class on the top right hand side of the page
- Working time allowed 70 minutes
- Questions are of UNEQUAL value
- Write using black or blue pen
- APPROVED CALCULATORS may be used
- All necessary working should be shown. Marks may be deducted if working is poorly set out or difficult to read

Question I	Question 2	Question 3	Question 4	Question 5	Question 6	Question 7	Question 8	TOTAL
/ 8	/ 8	/7	/7	. /7	/8	/7	/7	/ 59

Question 1 (8 marks)

a) Factorise fully:
$$2x^3 - x^2 + 8x - 4$$
 (2)

b) Solve
$$-1 < 2x + 3 \le 5$$
 (2)

c) Find the domain and range of
$$y = \frac{1}{(2x+3)}$$
 (2)

d) Show that the points A(3,2), B(-2,1) and C(8,3) are collinear (2)

Question 2 (8 marks) (Start a new page)

a) Use the quadratic formula to solve the equation : $4x^2 + 5x - 2 = 0$ leaving your answers in the exact form (2)

b) Simplify
$$5\sqrt{3} + \sqrt{20} - 2\sqrt{12} + \sqrt{45}$$
 (2)

c) Simplify
$$\frac{\sin^2\theta + \cos^2\theta}{\tan^2\theta}$$
 (1)

d) Solve
$$\cos \theta = -\frac{1}{\sqrt{2}}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$ (2)

e) Is
$$f(x) = x^3 - x$$
 an odd function? Explain your answer. (1)

Question 3 (7 marks) (Start a new page)

a) The sum of the interior angles of a regular polygon is 2340°. Find the measure of each interior angle of the polygon. (1)

b) Prove that
$$(1 - \tan x)^2 + (1 + \tan x)^2 = 2 \sec^2 x$$
 (2)

c) (i) Find the length of BC to the nearest cm.

- (ii) Find the Area of \triangle ABC (in m² to 2 decimal places)
- d) Find the perpendicular distance from (-2, 2) to the line 6x + 3y 1 = 0 in the exact form (2)

Question 4 (7 Marks) (Start a new page) a) Find 'x' if $\sin 80^\circ = \cos (90 - x)^\circ$ (1)

- b Draw a neat sketch of the following curve showing all relevant points $y = (x + 2)^{2} + 2 \tag{2}$
- c) Evaluate 'x' and 'y'
 giving reasons

 (drawing not to scale)

Question 5 (7 Marks) (Start a new page)

a) Solve |2x + 1| = 3x - 2 and check solutions (3)

c) Find the equation of the straight line that makes an angle of 135° with the positive x - axis and passes through the point (2,6) (2)

Question 6 (8 marks)

(Start a new page)

Find the exact length of AC

a) AB is parallel to CD and AE = AC Let $\angle ACE = x$ Prove that $\angle ACE = \angle ECD$

(2)

b) Two yachts sail in a straight line from a buoy B. Yacht A sails 12 km in the direction 038° T and yacht C sails 16km in the direction 128° T. Copy the diagram into your books and show all the angles given .

- (i) How far apart are A and C? (2)
- (ii) What is the bearing of yacht A as seen from yacht C, to the nearest minute? (2)

(drawing not to scale)

c) Find the equation of the straight line passing through (3,7) and parallel to the line 5x - y - 2 = 0 (2)

Question 7 (7 Marks)

(Start a new page)

- a) AB and CD are two vertical buildings with their bases A and C on level ground. The height of AB is 50m. The angle of elevation of B from C is 20° and angle of elevation of D from A is 35° Calculate
 - (i) Horizontal distance AC between the two buildings, to 1 decimal place
 - (ii) The height of CD, to 1 decimal place
 - (i) The angle of elevation θ of D as seen from B, to the nearest minute.

(1)

- b) Find the equation of the straight line with gradient of -2 that passes through the midpoint of the line joining (5, -2) and (-3, 4) (2)
- c) Find the exact value of cos 225°

Question 8 (7 marks) (Start a new page)

a) If $\sin x = -\frac{3}{5}$ and $\cos x > 0$, find the values of (i) $\tan x$ (ii) $\sec x$ (2)

- b) Solve: $\sqrt{3} \tan \theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$ (2)
- c) Prove that A (1,5), B (4, -6) and C (-3, -2) are the vertices of a right angled triangle (3)

AUGUST 2009

Ovestion

a)
$$2x^3 - 3x^2 + 83x - 4$$

 $3x^2(23x - 1) + 4(23x - 1)$
 $= (23x - 1)(3x^2 + 4)$

b)
$$-1 < 20 < +3$$
 $+ 2x + 3 \le 5$
 $-4 < 2x$ $20 < \le 2$
 $-2 < 0 < x \le 1$

$$\frac{-2 < 3 \le 1}{23 \le -3}$$

$$23 \le -3$$

$$2 \le -3/2$$

:. Domain: all real x,
$$x \neq -3/2$$

Range: all real y, $y \neq 0$

$$m_{BC} = \frac{2-1}{3-2} = \frac{1}{5}$$

$$m_{BC} = \frac{1-3}{-2-8} = \frac{-2}{-10} = \frac{1}{5}$$

since gradient equal A,B, C collinear

wuestion 2

a)
$$x = -5 \stackrel{?}{=} \sqrt{25 - 4 \times 4 \times -2}$$

$$= -5 \stackrel{?}{=} \sqrt{57}$$

b)
$$5\sqrt{3} + \sqrt{20} - 2\sqrt{12} + \sqrt{45}$$

= $5\sqrt{3} + 2\sqrt{5} - 4\sqrt{3} + 3\sqrt{5}$
= $\sqrt{3} + 5\sqrt{5}$

c)
$$\frac{\sin^2 \theta + \cos^2 \theta}{\tan^2 \theta} = \frac{1}{\tan^2 \theta}$$
$$= \cot^2 \theta$$

d)
$$\cos \theta = -\frac{1}{\sqrt{2}} \frac{\sqrt{s/A}}{\sqrt{T/C}}$$

acute $\theta = 45^{\circ}$
 $\therefore 0 = 135^{\circ}, 225^{\circ}$

e)
$$f(x) = x^3 - x$$

 $f(-x) = -x^2 + x$
 $-f(-x) = 5c^2 - x$
... $f(x) = -f(-x)$... odd fn

Oucstion 3

a) intangle sum 2340
$$(n-2) \times 180 = 2340$$

$$180n - 360 = 2340$$

$$180n = 2700$$
no angles $n = 15$

$$\therefore each interior angle 156$$

b)
$$LHS = (1 - tanisc)^{2} + (1 + tanix)^{2}$$

= $1 - 2tanix + tanix + 1 + 2tanix + tanix$
= $2 + 2tan^{2}sc$
= $2(1 + tanisc)$
= $2sec^{2}sc$
= RHS

c) i)

$$BC^2 = 7^2 + 10^2 - 2 \times 7 \times 10 \times \cos 105^\circ$$
 $BC = 13.61 \text{ m}$
 $\therefore OR BC = 1361 \text{ cm}$

(ii)

$$area = \frac{1}{2} \times 7 \times 10 \times \sin 105^{\circ}$$

$$= \frac{33.81 \text{ m}^{2} (2 \text{ dec pi})}{}$$

d) Given point:
$$(-2,2)$$

Given line: $6x + 3y - 1 = 0$
Perp. dist.

$$d = \frac{|(6x-2)+(3x^2)-1|}{\sqrt{6^2+3^2}}$$

$$= \frac{7\sqrt{5}}{15} \text{ units}$$

Question 4

a)
$$\sin 80^{\circ} = \cos (90 - \pi)$$

 $80 + (90 - \pi) = 90$
 $\therefore \pi = 80^{\circ}$

43+59+21+y=180°

(cointerior angles AB||CD)

$$\frac{y=57^{\circ}}{}$$

$$59 + x + 57 = 180^{\circ}$$

(angle sum of $\triangle AEC$)
 $x = 64^{\circ}$

Question 5

a)
$$2x + 1 = 3x - 2 + 2x + 1 = -(3x - 2)$$

 $3 = x$
 $2x + 1 = -3x + 2$
 $5x = 1$
 $x = \frac{1}{5}$

check:
$$|6+1| = 9-2$$
, $|\frac{12}{5}| \neq -12$
 $| 7 = 7$
true false
 $| x = 3 \text{ only solution}$

b)
$$\frac{AC}{\sin 45^{\circ}} = \frac{5}{\sin 60^{\circ}}$$
 $AC = \frac{5 \sin 45^{\circ}}{\sin 60^{\circ}}$
 $= (5 \cdot \frac{1}{\sqrt{2}}) \div \frac{13}{2}$
 $= \frac{10}{\sqrt{6}} \text{ cm}$

Ovestion 6

A

B

C

Let AĈE = ol ... AÊ C = ol (base angles of Isosceles triangle) EĈD=x (alteinate angles AB || CD

Question7

a)
$$\tan 20^\circ = \frac{50}{AC}$$

i) $AC = \frac{50}{\tan 20}$

$$11)$$
 tan $35^{\circ} = CD$
 137.4

$$\frac{6}{137.4}$$

$$\frac{46.2}{137.4}$$

$$\frac{46.2}{137.4}$$

$$\frac{0}{18^{\circ}35}$$

b)
$$M(1,1)$$
 $m=-2$

$$y-1=-2(x-1)$$

 $y-1=-2x+2$
 $2x+y-3=0$

c)
$$(180^{\circ} + 45^{\circ})$$

= $(180^{\circ} + 45^{\circ})$
= $(180^{\circ} + 45^{\circ})$
= $(180^{\circ} + 45^{\circ})$
= $(180^{\circ} + 45^{\circ})$

a)
$$\frac{S}{VT}$$
 $\frac{A}{C}$ $\frac{5}{4}$ $\frac{3}{4}$

i)
$$\tan x = -\frac{3}{4}$$

ii)
$$\sec x = \frac{5}{4}$$

acute
$$\theta = 30^{\circ}$$

$$\theta = 30^{\circ}$$

c)

$$m_{AC} = \frac{7}{4}$$
 $B(4,-6)$

$$m_{CB} = -\frac{4}{7}$$
Since $m_{AC} \cdot m_{CB} = -1$
 $\therefore AC \perp CB$