



## Boosting adversarial training in safety-critical systems through boundary data selection

Yifan Jia, Christopher M. Poskitt, **Peixin Zhang**, Jingyi Wang, Jun Sun, and Sudipta Chattopadhyay











#### **Background**

Al models are increasingly integrated into robotics





Picture from: https://rsl.ethz.ch/robots-media/dynaarm.html





#### **Background**

Al models are vulnerable to adversarial examples<sup>1</sup>



**1.** Y. Jia, C. M. Poskitt, J. Sun, and S. Chattopadhyay. "Physical Adversarial Attack on a Robotic Arm," IEEE Robotics and Automation Letters, vol. 7 p. 9334—9341, 2022.





#### **Background**

- One improvement method is adversarial training
  - Training with a mixture of adversarial and clean data to improve the model robustness
  - Adversarial data can be pre-generated or generated during training
- However, it is costly and time-consuming
- Data labeling is also costly and time-consuming

How to improve the robustness of the model with less cost while maintaining accuracy?







#### **RAST**

- Intuition
  - Boundary data has a significant impact on the training results (model)
- Methodology
  - Select those boundary data and their adversarial examples to form training data for adversarial training

# Adversarial training









#### **Empirical Selection**

We select the data x that:

$$x \in D \text{ s. t. } f(x_{adv}) \neq f(x)$$
  
where  $x_{adv} = x + \epsilon \cdot \text{sign}(\nabla_x J(x, y^*))$ 

- x: Selected data
- D: Clean dataset
- x<sub>adv</sub>: Adversarial example
- *ϵ*: Perturbation step size
- $sign(\nabla_x)$ : Sign of the gradient
- $J(x, y^*)$ : Loss function
- y\*: Ground-truth label





Experiments on common image datasets



RAST can successfully reduce the training time to more than half while remain a similar accuracy.





Compare with existing adversarial training

| Method  | Time (s) | Test Acc | FGSM<br>Robustness | PGD<br>Robustness |
|---------|----------|----------|--------------------|-------------------|
| PGD-AT  | 149.00   | 0.83     | 0.59               | 0.56              |
| FGSM-AT | 86.48    | 0.79     | 0.72               | 0.74              |
| RAST-AT | 68.52    | 0.79     | 0.72               | 0.75              |

RAST is faster than existing adversarial training methods while providing similar or better performance on accuracy and robustness.





Experiment with different model architecture



The selected boundary data works for a different model with the same task.





#### Baselines

- BSS1:  $P_{max} / P_{2nd-max} < 7$
- SALT<sup>2</sup>: |f(x + 0.01) f(x)| > 0.44
- RAST:  $\epsilon = 0.01$

#### Conclusion

- Significant overlap between the BSS and SALT selections, While RAST selects an amount of different data
- RAST has the best testing accuracy





- 1. BSS: Boundary Sample Selection: W. Shen, Y. Li, Y. Han, L. Chen, D. Wu, Y. Zhou, and B. Xu, "Boundary sampling to boost mutation testing for deep learning models," Information and Software Technology, vol. 130, p. 106413, 2021.
- 2. SALT: Adversarial Active Learning: B. Miller, A. Kantchelian, S. Afroz, R. Bachwani, E. Dauber, L. Huang, M. C. Tschantz, A. D. Joseph, and J. D. Tygar, "Adversarial active learning," in *Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop*, 2014, pp. 3–14.





#### **Practical Evaluation**

Defense against adversarial samples on AI models of robotic arms



RAST can reduce the training size and improve the robustness of Al models of robotic arms.





#### Demo

Defense against adversarial samples on AI models of robotic arms







#### Contribution

- We propose an adversarial training method based on boundary data to improve model (and model-based robotic system) robustness more efficiently while maintaining model accuracy.
- We propose an attack-based boundary data selection that can effectively filter out boundary samples.
- We demonstrate that RAST can improve model robustness while reducing training time through experiments, including a real system.





### Thank you