

hello, I am Nikitha

Start

A binary unit is also known as a "bit." It is the smallest unit of digital information that a computer can understand. It is stored in a series of zeros and ones. A computer thinks by relying on zeros and ones for all information.

Computers can compute the meaning of binary strings very quickly and translate them into numbers or letters. Text, images, sound, and video are converted into binary before being processed by the computer.

Think of the numbers like a light switch

While a bit is the smallest unit of information that a computer can understand, a byte is a string of 8 bits. A byte is also known as a unit of memory size.

DECIMAL	BINARY
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010

Binary Code Example: 101001100

	2^8	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
	256	128	64	32	16	8	4	2	0
Is this on or off?	1=on	0=off	1=on	0=off	0=off	1=on	1=on	0=off	0=off
Total:	256	0	64	0	0	8	4	0	0
Add it up	256 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 0								
Computer reads it as:	332								

FROM DECIMAL NUMBER TO BINARY

Example Number: 296

Look at your number. Subtract the largest power of 2 that is able to be subtracted from your number. In this example, we can subtract 256 so we can put a 1 in that column to indicate it is "on".

Now look at what is left, in this case 40. You would put a "0" in the 128 and 64 columns because they cannot be subtracted. 32 CAN be subtracted so you would put a 1. Continue this until your result is zero when you subtract.

then...
$$8 - 8 = 0$$

256	128	64	32	16	8	4	2	0
1	0	0	1	0	1	0	0	0

296 in binary is 100101000

Divide your number by 2 and write the remainder until you get zero as the answer. Write the remainders starting from the last one first.

Example number: 296

Remainders written backwards:

100101000

296 divided by 2 = 148 remainder 0
148 divided by 2 = 74 remainder 0
74 divided by 2 = 37 remainder 0
37 divided by 2 = 18 remainder 1
18 divided by 2 = 9 remainder 0
9 divided by 2 = 4 remainder 1
4 divided by 2 = 2 remainder 0
2 divided by 2 = 1 remainder 0
1 divided by 2 = 0 remainder 1

UNITS				
1 bit (b)	Binary digit			
4 bits	1 Nibble			
8 bits	1 Byte			
1024 bytes (B)	1KiloByte(KB)			
1024 KB	1MegaByte(MB)			
1024 MB	1GigaByte(GB)			
1024 GB	1TeraByte(TB)			
1024 TB	1PetaByte(PB)			
1024 PB	1ExaByte(EB)			
1024 EB	1Zettabyte (ZB)			
1024 ZB	1Yottabyte (YB)			

Binary code is the basis for all computer languages.

Ancient Egyptians discovered binary code.

A byte is a collection of 8 binary digits.

If the last digit of a binary number is 1, it will be odd. If it is 0, it will be even.

IN HEX DECIMAL

- TV*5
 - o nun, hin, full hin, uk, ak etc
- DIGITAL CAMERA
- PRINTERS
 - O DPI [1440 DPI, 2400 DPI]
- PHONE, TABLETS, LAPTOPS
 - o ppz (72 ppz. 144 ppz. 350 ppz)

- PPI PIXEL PER INCH
- DPI DOTS PER INCH

Pixels Per Inch PPI

A close up of a Bitmap image shows the individual pixels.

Dots Per Inch DPI

A close up of a print shows the overlay of ink drops to form the image.

All are Okay!! but When will web development starts sirrrr.....??//

What is Web?

Web simply is a interconnected webpages through which u get the data

Internet is a interconnection of computers across Web is simply built on top of it.

Phases of web

web 1.0 - Read access

web 2.0 - Read & Write access

web 3.0 - Read, write and execute or own that

	Web 1.0	Web 2.0	Web 3.0
Knowas	Read-only web	Read-write or social web	Read-write-own
Timeline	From 1989 to 2005	From 2005 to present	Upcoming
□ Content	Content is owned by the creator only	Content is shared by creators and users	Content is consolidated by creators and users
Focus	More focus on companies	More focus on community	More focus on individuals
Earnings	Earning is through page views	Earning is through cost per click	Earnings are obtained through user engagement
Advertise	Advertising is banner based	Advertising is interactive	Advertising is behavioral
User Data	User data was not focused	User data is controlled by central authorities	User data is personalized and decentralized without the use of central authority
☆ Usage	Mostly visual, static web with no user-to-server communication	Mostly programmable web with improved user interaction	Linked data web with intelligent, web- based functionalities and applications
Examples	Examples are home pages and WebForms	Examples are blogs, wikis, and web applications	Examples are live streams, waves, and smart applications

"Read Only", Decentralized

Web 2.0

Participatory, Centralized

Web 3

No Intermediaries, Decentralized