Fiche méthode: Généralités sur les fonctions (Calculs)

I. Image et antécédent(s)

Application 1:

Soit f la fonction définie sur \mathbb{R} par f(x) = 2x - 1.

1. Calculer l'image de 2 par la fonction f.

$$f(2) = 2 \times 2 - 1$$

 $f(2) = 4 - 1$

2. Calculer f(-1)

f(2) = 3

$$f(-1) = 2 \times (-1) - 1$$

 $f(-1) = -2 - 1$
 $f(-1) = -3$

3. Résoudre f(x) = 0. Interpréter le résultat.

$$f(x) = 0$$

$$2x - 1 = 0$$

$$2x = 1$$

$$x = \frac{1}{2}$$

$$S = \left\{\frac{1}{2}\right\}$$

$$\frac{1}{2}$$
 est l'antécédent de 0 par la fonction f .

4. Donner les éventuels antécédents de 2 par la fonction f.

$$f(x) = 2$$

$$2x - 1 = 2$$

$$2x = 3$$

$$x = \frac{3}{2}$$

$$\frac{3}{2}$$
 est l'antécédent de 2 par la fonction f .

5. Donner l'ensemble de définition de la fonction g définie par :

$$g(x) = \frac{5x + 9}{2x - 1}$$

On cherche les valeurs interdites en résolvant 2x - 1 = 0.

D'après la question 3, la valeur interdite est $\frac{1}{2}$.

$$D_g = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

6. Donner l'ensemble de définition de la fonction g définie par :

$$h(x) = \sqrt{2x - 1}$$

On résout l'inéquation :

$$2x - 1 \ge 0$$
$$2x \ge 1$$
$$x \ge \frac{1}{2}$$

$$D_h = \left[\frac{1}{2} ; +\infty\right[$$

Image:

Pour trouver l'image de a, on calcule f(a).

Méthode:

On remplace « x » par la valeur de a (en faisant attention que 2x signifie $2 \times x$).

Antécédent(s):

Chercher **des antécédents** de k par la fonction f revient à résoudre l'équation f(x) = k.

Méthode:

On résout l'équation en remplaçant f(x) par son expression. On peut remarquer que résoudre une équation revient à chercher des antécédents.

Ensemble de définition et quotient :

Pour déterminer l'ensemble de définition d'une fonction qui comporte un quotient, on cherche les **valeurs interdites** en résolvant l'équation « dénominateur = 0 », puis on donne l'ensemble de définition : $D_f = \mathbb{R} \setminus \{ \text{ valeurs interdites} \}.$

Autrement dit :

 $\frac{A}{B}$ est définie si, et seulement si, $B \neq 0$.

Ensemble de définition et racine carrée

Pour déterminer l'ensemble de définition d'une fonction qui comporte une racine carrée, on cherche la valeur de x pour laquelle l'intérieur de la racine carré est supérieur ou égale à 0.

Autrement dit:

 \sqrt{A} est définie si, et seulement si, $A \ge 0$.

II. Tableau de valeur

Application 2 : Utiliser un tableau de valeurs

On définit la fonction g par le tableau suivant :

х	-2,5	-0.5	0	2	5
g(x)	1	-5	0,5	4	1

1. Quel est l'ensemble de définition de la fonction g?

$$D_a = [-2,5;5]$$

2. Quelles sont les images par g de -2.5; 0 et de 2?

-		
g(-2,5) = 1	g(0) = 0.5	g(2) = 4

3. Quels sont les éventuels antécédents de 1?

g(-2,5) = 1 et g(5) = 1 ainsi -2,5 et 5 sont les antécédents de 1 par f.

III. Appartenance d'un point à une courbe

Application 3:

Soit f la fonction définie sur \mathbb{R} par f(x) = 2x - 1.

1. Le point A(2;3) appartient-il à la courbe représentative de f?

$$f(2) = 2 \times 2 - 1$$

 $f(2) = 3$
 $f(2) = y_A$
Donc $A \in C_f$

2. Le point B(-1;3) appartient-il à la courbe représentative de f ?

$$f(-1) = 2 \times (-1) - 1$$

$$f(-1) = -3$$

$$f(-1) \neq y_B$$
Donc $B \notin C_f$

Appartenance d'un point à une courbe :

Pour vérifier qu'un point $M(x_M; y_M)$ appartient à C_f on vérifie d'abord que $x_M \in D_f$ puis on calcule $f(x_M)$.

- si $f(x_M) = y_M$ alors $M \in C_f$.
- si $f(x_M) \neq y_M$ alors $M \notin C_f$.

Méthode:

On remplace, dans f(x), le «x» par l'abscisse ($1^{\rm er}$ nombre), et après calcul on vérifie si le résultat est égal à l'ordonnée ($2^{\rm ème}$ nombre)

IV. Parité

Application 4 : Fonction paire

Soit f la fonction carré définie sur \mathbb{R} par $f(x) = x^2$

 \mathbb{R} est symétrique par rapport à zéro. $f(-x) = (-x)^2 = x^2 = f(x)$ Ainsi la fonction carré est paire.

Application 5: Fonction impaire

Soit f la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

 \mathbb{R}^* est symétrique par rapport à zéro.

$$f(-x) = \frac{1}{-x} = -\frac{1}{x}$$
$$-f(x) = -\frac{1}{x} = f(-x)$$

Ainsi la fonction inverse est impaire.

Parité :

Pour montrer la parité d'une fonction :

- On vérifie que l'ensemble de définition est symétrique par rapport à 0 : ∀x ∈ D : -x ∈ D.
- On calcule f(-x):
 - Si f(-x) = f(x) alors la fonction est paire.
 - o Sinon on calcule -f(x):
 - si f(-x) = -f(x) alors la fonction est **impaire**.
 - Sinon la fonction n'est ni paire ni impaire

Représentation graphique et parité :

- La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.