Este trabalho pode ser realizado em equipes de no máximo 5 integrantes

Estudante: Clístenes Grizafis Bento

O que deve ser entregue:

- Um arquivo compactado com os documentos e arquivos
- A lista de comandos R que foi executada, com suas respectivas saídas
- Um texto com o resultado e justificativa do porque
- Outros arquivos pedidos (ex, modelo gerado)

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multi-espectrais de pixels em vizinhanças 3x3 em uma imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é prever esta classificação, dados os valores multi-espectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém 2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro valores espectrais para o pixel central são dados pelos atributos 17,

18, 19 e 20. Se você quiser, pode usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes).

Tarefas:

- Treine modelos RandomForest, SVM e RNA para predição destes dados.
- Escolha o melhor modelo com base em suas matrizes de confusão.
- Treine o modelo final com todos os dados e faça a predição na base completa.
- Analise o resultado.
- Salve este modelo final

In [2]: #Carregando os dados
 library("caret")
 library("mlbench")
 data(Satellite)

dataset <- Satellite
head(dataset)</pre>

x.1	x.2	x.3	x.4	x.5	х.6	x.7	x.8	x.9	x.10	•••	x.28	x.29	x.30	x.31	x.32	x.33	x.34	x.35	x.36	classes
92	115	120	94	84	102	106	79	84	102		104	88	121	128	100	84	107	113	87	grey soil
84	102	106	79	84	102	102	83	80	102		100	84	107	113	87	84	99	104	79	grey soil
84	102	102	83	80	102	102	79	84	94		87	84	99	104	79	84	99	104	79	grey soil
80	102	102	79	84	94	102	79	80	94		79	84	99	104	79	84	103	104	79	grey soil
84	94	102	79	80	94	98	76	80	102		79	84	103	104	79	79	107	109	87	grey soil
80	94	98	76	80	102	102	79	76	102		79	79	107	109	87	79	107	109	87	grey soil

In [3]: tail(dataset)

	x.1	x.2	x.3	x.4	x.5	х.6	x.7	8.x	x.9	x.10	•••	x.28	x.29	x.30	x.31	x.32	x.33	x.34	x.35	x.36	classes
6430	84	116	128	103	92	116	133	103	84	112		85	74	83	104	92	78	96	112	96	red soil
6431	60	83	96	85	64	87	100	88	64	83		92	66	87	108	89	63	83	104	85	red soil
6432	64	79	100	85	56	71	96	85	56	68		85	66	83	100	85	63	83	100	81	red soil
6433	56	68	91	81	56	64	91	81	53	64		81	59	87	96	81	63	83	92	74	vegetation stubble
6434	56	68	87	74	60	71	91	81	60	64		74	59	83	92	74	59	83	92	70	vegetation stubble
6435	60	71	91	81	60	64	104	99	56	64		74	59	83	92	70	63	79	108	92	vegetation stubble

```
In [4]: #Separando dados de treino e de teste
  indices <- createDataPartition(dataset$classes, p=0.8, list=F)
  treino <- dataset[indices,]
  teste <- dataset[-indices,]</pre>
```

Treinar e testar modelo com random forest

```
In [5]: # criando semente pseudo aleatória para verificação futura
    set.seed(1)
    # creinando o modelo
    rf <- train(classes ~ x.17 + x.18 + x.19 + x.20, data=treino, method="rf")

In [6]: # realizando predição com a base de teste
    predicao.rf <- predict(rf, teste)

In [8]: # Gerar matriz de confusão do modelo
    confusionMatrix(predicao.rf, teste$classes)</pre>
```

	Reference							
Prediction	red soil	cotton	crop	grey	soil	damp	grey	soil
red soil	298		0		5			3
cotton crop	0		129		0			1
grey soil	4		0		241			29
damp grey soil	0		2		19			51
vegetation stubble	4		8		1			0
very damp grey soil	. 0		1		5			41
	Reference							
B 11 ()			-					

vegetation stubble very damp grey soil Prediction red soil 11 1 2 cotton crop 6 grey soil 14 damp grey soil 30 vegetation stubble 113 very damp grey soil 246 11

Overall Statistics

Accuracy : 0.8396

95% CI: (0.8183, 0.8592)

No Information Rate : 0.2383 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8012

Mcnemar's Test P-Value : NA

Statistics by Class:

Sensitivity

Specificity

	Class:	red soil	Class:	cotton	crop	Class	grey	soil
Sensitivity		0.9739		0	.9214		0.	.8893
Specificity		0.9796		0	.9921		0.	9536
Pos Pred Value		0.9371		0	.9348		0.	8368
Neg Pred Value		0.9917		0	.9904		0.	9699
Prevalence		0.2383		0	.1090		0.	2111
Detection Rate		0.2321		0	.1005		0.	.1877
Detection Prevalence		0.2477		0	.1075		0.	2243
Balanced Accuracy		0.9767		0	.9568		0.	9215
	Class:	damp grey	/ soil	Class:	vegeta	ation s	stubble	5

0.40800

0.95600

0.80142 0.98163

Pos Pred Value		0.50000	0.84328
Neg Pred Value		0.93739	0.97565
Prevalence		0.09735	0.10981
Detection Rate		0.03972	0.08801
Detection Prevalence		0.07944	0.10436
Balanced Accuracy		0.68200	0.89152
	Class: ve	ery damp grey soil	
Sensitivity		0.8173	
Specificity		0.9410	
Pos Pred Value		0.8092	
Neg Pred Value		0.9439	
Prevalence		0.2344	
Detection Rate		0.1916	
Detection Prevalence		0.2368	
Balanced Accuracy		0.8791	

Avaliação do resultado: O modelo obteve acurácia de 83,96% o que é algo positivo pois indica que o modelo não está sofrendo de overfitting. O modelo encontrou dificuldade em reconhecer a classe damp grey soil.

Treinar e testar modelo com SVM

```
In [9]: # criando semente pseudo aleatória para verificação futura
set.seed(1)
# creinando o modelo
svm <- train(classes ~ x.17 + x.18 + x.19 + x.20, data=treino, method="svmRadial")

In [10]: # realizando predição com a base de teste
predicao.svm <- predict(svm, teste)

In [11]: # Gerar matriz de confusão do modelo
confusionMatrix(predicao.svm, teste$classes)</pre>
```

	Reference							
Prediction	red soil	cotton	crop	grey	soil	damp	grey	soil
red soil	300		1		4			2
cotton crop	0		129		0			1
grey soil	4		0		257			38
damp grey soil	0		2		9			53
vegetation stubble	2		7		0			0
very damp grey soil	L 0		1		1			31
	Reference							

Prediction	vegetation stubble	very damp grey soil
red soil	12	0
cotton crop	3	1
grey soil	0	14
damp grey soil	0	35
vegetation stubble	111	10
very damp grey soil	15	241

Overall Statistics

Accuracy : 0.8497

95% CI: (0.829, 0.8688)

No Information Rate : 0.2383 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8136

Mcnemar's Test P-Value : NA

Statistics by Class:

Sensitivity

Specificity

	Class:	red soil	Class:	cotton	crop	Class	grey	soil
Sensitivity		0.9804		6	.9214		0.	9483
Specificity		0.9806		6	.9956		0.	9447
Pos Pred Value		0.9404		6	.9627		0.	8211
Neg Pred Value		0.9938		6	.9904		0.	9856
Prevalence		0.2383		6	.1090		0.	2111
Detection Rate		0.2336		6	.1005		0.	2002
Detection Prevalence		0.2484		6	.1044		0.	2438
Balanced Accuracy		0.9805		6	.9585		0.	9465
	Class:	damp grey	/ soil	Class:	vegeta	ation s	stubble	5

0.42400

0.96031

0.78723

0.98338

Pos Pred Value	0.53535	0.85385
Neg Pred Value	0.93924	0.97400
Prevalence	0.09735	0.10981
Detection Rate	0.04128	0.08645
Detection Prevalence	0.07710	0.10125
Balanced Accuracy	0.69216	0.88531
	Class: very damp grey soil	
Sensitivity	0.8007	
Specificity	0.9512	
Pos Pred Value	0.8339	
Neg Pred Value	0.9397	
Prevalence	0.2344	
Detection Rate	0.1877	
Detection Prevalence	0.2251	
Balanced Accuracy	0.8759	

Avaliação do resultado: O modelo obteve acurácia de 84,97% o que é algo positivo pois indica que o modelo não está sofrendo de overfitting. O modelo encontrou menor dificuldade em reconhecer a classe damp grey soil.

Treinar e testar modelo com RNA

```
In [13]: # criando semente pseudo aleatória para verificação futura
    set.seed(1)
# creinando o modelo
    rna <- train(classes ~ x.17 + x.18 + x.19 + x.20, data=treino, method="nnet")

In [14]: # realizando predição com a base de teste
    predicao.rna <- predict(rna, teste)

In [15]: # Gerar matriz de confusão do modelo
    confusionMatrix(predicao.rna, teste$classes)</pre>
```

	Reference				
Prediction	red soil	cotton cro	p grey so:	il damp gre	y soil
red soil	296		2	7	3
cotton crop	0	12	7	0	0
grey soil	6		0 2!	54	45
damp grey soil	0		0	8	17
vegetation stubble	4		7	0	0
very damp grey soil	0		4	2	60
	Reference				
Prediction	vegetatio	n stubble	very damp	grey soil	
red soil		21		1	
cotton crop		2		0	
grey soil		0		17	

101

17

11

12

260

Overall Statistics

damp grey soil

vegetation stubble

very damp grey soil

Accuracy : 0.8217

95% CI: (0.7996, 0.8422)

No Information Rate : 0.2383 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7768

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: red soil	Class: cotton crop	Class: grey soil
Sensitivity	0.9673	0.90714	0.9373
Specificity	0.9652	0.99825	0.9329
Pos Pred Value	0.8970	0.98450	0.7888
Neg Pred Value	0.9895	0.98874	0.9823
Prevalence	0.2383	0.10903	0.2111
Detection Rate	0.2305	0.09891	0.1978
Detection Prevalence	0.2570	0.10047	0.2508
Balanced Accuracy	0.9663	0.95270	0.9351
	Class: damp grey	/ soil Class: vegeta	ation stubble
Sensitivity	0.	13600	0.71631
Specificity	0.	.98361	0.97988

0.47222	0.81452
0.91346	0.96552
0.09735	0.10981
0.01324	0.07866
0.02804	0.09657
0.55980	0.84809
Class: very damp grey soil	
0.8638	
0.9156	
0.7580	
0.9564	
0.2344	
0.2025	
0.2671	
0.8897	
	0.91346 0.09735 0.01324 0.02804 0.55980 Class: very damp grey soil 0.8638 0.9156 0.7580 0.9564 0.2344 0.2025 0.2671

Avaliação do resultado: O modelo obteve acurácia de 82,17% o que é algo positivo pois indica que o modelo não está sofrendo de overfitting. O modelo encontrou maior dificuldade em reconhecer a classe damp grey soil.

O modelo escolhido com base na matriz de confusão foi o SVM devido a sua acurácia

Treinando o modelo final com todos os dados e fazendo a predição na base completa

```
In [34]: # identificando sigma e C de svm
print(svm)
```

```
5151 samples
            4 predictor
            6 classes: 'red soil', 'cotton crop', 'grey soil', 'damp grey soil', 'vegetation stubble', 'very damp grey soil'
         No pre-processing
         Resampling: Bootstrapped (25 reps)
         Summary of sample sizes: 5151, 5151, 5151, 5151, 5151, 5151, ...
         Resampling results across tuning parameters:
           C
                 Accuracy Kappa
           0.25 0.8601569 0.8265153
           0.50 0.8628120 0.8298780
           1.00 0.8651450 0.8328261
         Tuning parameter 'sigma' was held constant at a value of 0.8788543
         Accuracy was used to select the optimal model using the largest value.
         The final values used for the model were sigma = 0.8788543 and C = 1.
In [35]: # Treinando o modelo final
         library(kernlab)
         modelo final <- ksvm(classes~x.17+x.18+x.19+x.20,
                              data=dataset,
                              type="C-svc",
                              kernel="rbfdot",
                              C=1.0,
                              kpar=list(sigma=0.8788543)
In [36]: # Realizando predição do modelo final com toda base
         predicao final.svm <- predict(modelo final, dataset)</pre>
         # Exibindo a matrix de confusão
         confusionMatrix(predicao final.svm, dataset$classes)
```

Support Vector Machines with Radial Basis Function Kernel

	Reference							
Prediction	red soil	cotton	crop	grey	soil	damp	grey	soil
red soil	1499		2		10			5
cotton crop	2		637		0			1
grey soil	19		0		1302			161
damp grey soil	0		6		41			309
vegetation stubble	12		48		0			4
very damp grey soil	. 1		10		5			146
	Reference							
			-					

vegetation stubble very damp grey soil Prediction red soil 48 0 9 cotton crop 2 3 grey soil 49 damp grey soil 4 165 vegetation stubble 571 29 very damp grey soil 72 1263

Overall Statistics

Accuracy : 0.8673

95% CI: (0.8588, 0.8755)

No Information Rate: 0.2382 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8355

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: red soil	Class: cotton crop	Class: grey soil
0.9778	0.90612	0.9588
0.9867	0.99756	0.9543
0.9584	0.97849	0.8488
0.9930	0.98859	0.9886
0.2382	0.10925	0.2110
0.2329	0.09899	0.2023
0.2430	0.10117	0.2384
0.9823	0.95184	0.9565
	0.9778 0.9867 0.9584 0.9930 0.2382 0.2329 0.2430	0.9867 0.99756 0.9584 0.97849 0.9930 0.98859 0.2382 0.10925 0.2329 0.09899 0.2430 0.10117

Class: damp grey soil Class: vegetation stubble Sensitivity 0.49361 0.80764 Specificity 0.98376 0.96282

Pos Pred Value	0.58857	0.85994
Neg Pred Value	0.94636	0.97643
Prevalence	0.09728	0.10987
Detection Rate	0.04802	0.08873
Detection Prevalence	0.08159	0.10319
Balanced Accuracy	0.72821	0.89570
	Class: very damp grey soil	
Sensitivity	0.8375	
Specificity	0.9525	
Pos Pred Value	0.8437	
Neg Pred Value	0.9504	
Prevalence	0.2343	
Detection Rate	0.1963	
Detection Prevalence	0.2326	
Balanced Accuracy	0.8950	

Avaliação do resultado: O modelo obteve acurácia de 86,73% o que é algo positivo pois indica que o modelo não está sofrendo de overfitting. Foi o melhor modelo obtido até o momento, mas isso deve ser devido a utilizar toda a base para treino e teste.

Salvando o modelo

```
In [38]: saveRDS(modelo_final, "satelites_svm.rds")
```

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal (mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados **alométricos**, são usados na área há muitos anos e são baseados em regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo de Spurr é dado por:

Volume = b0 + b1 * dap2 * Ht

Onde **dap** é o diâmetro na altura do peito (1,3metros), **Ht** é a altura total. Tem-se vários modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo **Volumes.csv**, que contém os dados de observação, escolha um modelo de aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas:

- Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
- Eliminar a coluna NR, que só apresenta um número sequencial
- Criar partição de dados: treinamento 80%, teste 20%
- Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes Neurais (neuralnet) e o modelo alométrico de SPURR
- O modelo alométrico é dado por: Volume = b0 + b1 dap2 Ht

```
alom <- nls(VOL ~ b0 + b1DAPDAP*HT, dados, start=list(b0=0.5, b1=0.5))
```

- Efetue as predições nos dados de teste
- Crie funções e calcule as seguintes métricas entre a predição e os dados observados
 - Coeficiente de determinação: R2
 - Erro padrão da estimativa: Syx
 - Svx%
- Escolha o melhor modelo

```
In [11]: #Carregando os dados
library("caret")

#carregando arquivo Volumes.csv e removendo a coluna NR
df <- read.csv("http://www.razer.net.br/datasets/Volumes.csv",sep=";", dec=",")
df$NR <- NULL
head(df)</pre>
```

DAP	НТ	HP	VOL
34.0	27.00	1.80	0.8971441
41.5	27.95	2.75	1.6204441
29.6	26.35	1.15	0.8008181
34.3	27.15	1.95	1.0791682
34.5	26.20	1.00	0.9801112
29.9	27.10	1.90	0.9067022

In [12]: tail(df)

	DAP	НТ	HP	VOL
95	31.5	23.50	2.50	0.9221653
96	33.1	25.75	2.65	1.0966956
97	31.0	25.70	2.60	1.0514350
98	43.0	27.90	2.70	2.0090605
99	40.0	24.20	1.10	1.7411209
100	38.0	27.65	2.45	1.5336724

```
In [13]: # Repartir is dadis em 80% e 20%
  indices_reg <- createDataPartition(df$VOL, p=0.8, list=F)
  treino_reg <- df[indices_reg,]
  teste_reg <- df[-indices_reg,]</pre>
```

Treinar e testar modelo com random forest

```
In [14]: # criando semente pseudo aleatória para verificação futura
set.seed(1)
# treinando o modelo
rf_reg <- train(VOL ~ ., data=treino_reg, method="rf")</pre>
```

note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .

```
In [26]: # realizando predição com a base de teste
         predicao reg.rf <- predict(rf reg, teste reg)</pre>
In [31]: summary(predicao reg.rf)
            Min. 1st Qu. Median
                                    Mean 3rd Qu.
                                                    Max.
          0.7527 1.1287 1.3114 1.3478 1.4095 2.2681
         Treinar e testar modelo com SVM
In [16]: # criando semente pseudo aleatória para verificação futura
         set.seed(1)
         # treinando o modelo
         svm reg <- train(VOL ~ ., data=treino reg, method="svmRadial")</pre>
In [17]: # realizando predição com a base de teste
         predicao reg.svm <- predict(svm reg, teste reg)</pre>
         Treinar e testar modelo com redes neurais
In [138... # criando semente pseudo aleatória para verificação futura
         set.seed(1)
         # treinando o modelo
         library(neuralnet)
         rna reg <- neuralnet(VOL ~ ., data=treino reg, hidden=c(2,1), linear.output=FALSE, threshold=0.01)
In [140... # realizando predição com a base de teste
         predicao reg.rna <- predict(rna reg, teste reg)</pre>
         Treinar e testar modelo com modelo alométrico de SPURR
In [28]: # criando semente pseudo aleatória para verificação futura
         set.seed(1)
         # treinando o modelo
         alom reg <- nls(VOL ~ b0 + b1*DAP*HT, data=treino reg, start=list(b0 = 0.5, b1=0.5))
In [29]: # realizando predição com a base de teste
         predicao reg.alom <- predict(alom reg, teste reg)</pre>
```

Criando funções para calcular métricas entre as predições dos dados observados

Coeficinete de determinação: \mathbb{R}^2

```
In [116... r2 <- function (valor observado, valor predito){
              return(1-(sum((valor observado-valor predito)^2)/sum((valor observado-mean(valor observado))^2)))
In [121... #Testando a função
          x = c(1,2,3)
         y = c(1.5, 2.5, 3.5)
          r2(x, y)
         0.625
          Erro padrão da estimativa: S_u x
In [99]: syx <- function(valor observado, valor predito){</pre>
              return(sqrt(sum((valor_observado-valor_predito)^2)/(length(valor_observado)-2)))
In [122... #Testando a função
          x = c(1,2,3)
          y = c(1.5, 2.5, 3.5)
          syx(x, y)
         0.866025403784439
          Erro padrão da estimativa em %: S_u x\%
In [110... syx_porc <- function(valor_observado, valor_predito){</pre>
              return(syx(valor observado, valor predito)/mean(valor observado)*100)
In [123... #Testando a função
          x = c(1,2,3)
          y = c(1.5, 2.5, 3.5)
          syx_porc(x, y)
```

Utilizando funções criadas para calcular métricas entre as predições dos dados observados

Coeficinete de determinação: \mathbb{R}^2

```
In [117... # Random forest r2(teste_reg$VOL, predicao_reg.rf)

0.889632210301559

In [118... # SVM r2(teste_reg$VOL, predicao_reg.svm)

0.597887498177314

In [142... # rna r2(teste_reg$VOL, predicao_reg.rna)

-0.663964969377359

In [125... # modelo Alometrico r2(teste_reg$VOL, predicao_reg.alom)

0.901891629360885
```

Avaliação: O modelo alométrico se saiu melhor que os outros modelos, pois está mais próximo de 1. Nota: ainda não consegui interpretar o sinal negativo em RNA.

Erro padrão da estimativa: $S_y x$

```
0.338444582805524
```

0.167173259699492

11.8372894312925

Avaliação: O modelo alométrico se saiu melhor que os outros modelos, pois está mais próximo de 0. Nota: RNA parece ter tido o pior resultado.

Erro padrão da estimativa em %: $S_{y}x\%$

```
In [130... # Random forest
syx_porc(teste_reg$VOL, predicao_reg.rf)

12.5551066908747

In [131... # SVM
syx_porc(teste_reg$VOL, predicao_reg.svm)
23.9647566262908

In [144... # rna
syx_porc(teste_reg$VOL, predicao_reg.rna)
48.749630082152

In [133... # modelo Alometrico
syx_porc(teste_reg$VOL, predicao_reg.alom)
```

Avaliação: O modelo alométrico se saiu melhor que os outros modelos, pois está mais próximo de 0. RNA indica ser a pior.

Após avaliar os resultados obtidos foi escolhido o modelo Alométrico de SPURR