

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to induce the proliferation and/or redifferentiation of chondrocytes in culture. PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of various bone and/or cartilage disorders such as, for example, sports injuries and arthritis.

Porcine chondrocytes are isolated by overnight collagenase digestion of articular cartilage of the metacarpophalangeal joint of 4-6 month old female pigs. The isolated cells are then seeded at 25,000 cells/cm² in Ham F-12 containing 10% FBS and 4 µg/ml gentamycin. The culture media is changed every third day and the cells are reseeded to 25,000 cells/cm² every five days. On day 12, the cells are seeded in 96 well plates at 5,000 cells/well in 100µl of the same media without serum and 100 µl of either serum-free medium (negative control), staurosporin (final concentration of 5 nM; positive control) or the test PRO polypeptide are added to give a final volume of 200 µl/well. After 5 days at 37°C, 20 µl of Alamar blue is added to each well and the plates are incubated for an additional 3 hours at 37°C. The fluorescence is then measured in each well (Ex:530 nm; Em: 590 nm). The fluorescence of a plate containing 200 µl of the serum-free medium is measured to obtain the background. A positive result in the assay is obtained when the fluorescence of the PRO polypeptide treated sample is more like that of the positive control than the negative control.

The following PRO polypeptides tested positive in this assay: PRO219, PRO222, PRO317, PRO257, PRO265, PRO287, PRO272 and PRO533.

EXAMPLE 100: Inhibition of Heart Neonatal Hypertrophy Induced by LIF+ET-1 (Assay 74)

This assay is designed to determine whether PRO polypeptides of the present invention show the ability to inhibit neonatal heart hypertrophy induced by LIF and endothelin-1 (ET-1). A test compound that provides a positive response in the present assay would be useful for the therapeutic treatment of cardiac insufficiency diseases or disorders characterized or associated with an undesired hypertrophy of the cardiac muscle.

Cardiac myocytes from 1-day old Harlan Sprague Dawley rats (180 µl at 7.5 x 10⁴/ml, serum <0.1, freshly isolated) are introduced on day 1 to 96-well plates previously coated with DMEM/F12 + 4%FCS. Test PRO polypeptide samples or growth medium alone (negative control) are then added directly to the wells on day 2 in 20 µl volume. LIF + ET-1 are then added to the wells on day 3. The cells are stained after an additional 2 days in culture and are then scored visually the next day. A positive in the assay occurs when the PRO polypeptide treated myocytes are visually smaller on the average or less numerous than the untreated myocytes.

The following PRO polypeptides tested positive in this assay: PRO238.

EXAMPLE 101: Tissue Expression Distribution

Oligonucleotide probes were constructed from some of the PRO polypeptide-encoding nucleotide sequences shown in the accompanying figures for use in quantitative PCR amplification reactions. The oligonucleotide probes were chosen so as to give an approximately 200-600 base pair amplified fragment from the 3' end of its associated template in a standard PCR reaction. The oligonucleotide probes were employed in standard quantitative PCR amplification reactions with cDNA libraries isolated from different human adult and/or fetal tissue sources and analyzed by agarose gel electrophoresis so as to obtain a quantitative determination of the level of expression of the PRO polypeptide-encoding nucleic acid in the various tissues tested. Knowledge

of the expression pattern or the differential expression of the PRO polypeptide-encoding nucleic acid in various different human tissue types provides a diagnostic marker useful for tissue typing, with or without other tissue-specific markers, for determining the primary tissue source of a metastatic tumor, and the like. These assays provided the following results.

	<u>DNA Molecule</u>	<u>Tissues With Significant Expression</u>	<u>Tissues Lacking Significant Expression</u>
5	DNA34436-1238	lung, placenta, brain	testis
	DNA35557-1137	lung, kidney, brain	placenta
	DNA35599-1168	kidney, brain	liver, placenta
	DNA35668-1171	liver, lung, kidney	placenta, brain
	DNA36992-1168	liver, lung, kidney, brain	placenta
10	DNA39423-1182	kidney, brain	liver
	DNA40603-1232	liver	brain, kidney, lung
	DNA40604-1187	liver	brain, kidney, lung
	DNA41379-1236	lung, brain	liver
	DNA33206-1165	heart, spleen, dendrocytes	substantia nigra, hippocampus, cartilage, prostate, HUVEC
15	DNA34431-1177	spleen, HUVEC, cartilage, heart, uterus	brain, colon tumor, prostate, THP-1 macrophages
	DNA41225-1217	HUVEC, uterus, colon tumor, cartilage, prostate	spleen, brain, heart, IM-9 lymphoblasts

EXAMPLE 102: *In situ* Hybridization

In situ hybridization is a powerful and versatile technique for the detection and localization of nucleic acid sequences within cell or tissue preparations. It may be useful, for example, to identify sites of gene expression, analyze the tissue distribution of transcription, identify and localize viral infection, follow changes in specific mRNA synthesis and aid in chromosome mapping.

5 *In situ* hybridization was performed following an optimized version of the protocol by Lu and Gillett, *Cell Vision* 1:169-176 (1994), using PCR-generated ^{33}P -labeled riboprobes. Briefly, formalin-fixed, paraffin-embedded human tissues were sectioned, deparaffinized, deproteinized in proteinase K (20 g/ml) for 15 minutes at 37°C, and further processed for *in situ* hybridization as described by Lu and Gillett, *supra*. A [^{33}P] UTP-labeled antisense riboprobe was generated from a PCR product and hybridized at 55°C overnight. The slides
10 were dipped in Kodak NTB2 nuclear track emulsion and exposed for 4 weeks.

^{33}P -Riboprobe synthesis

6.0 μl (125 mCi) of ^{33}P -UTP (Amersham BF 1002, SA < 2000 Ci/mmol) were speed vac dried. To each tube containing dried ^{33}P -UTP, the following ingredients were added:

15 2.0 μl 5x transcription buffer

16 1.0 μl DTT (100 mM)

17 2.0 μl NTP mix (2.5 mM : 10 μl ; each of 10 mM GTP, CTP & ATP + 10 μl H₂O)

18 1.0 μl UTP (50 μM)

19 1.0 μl Rnasin

20 1.0 μl DNA template (1 μg)

21 1.0 μl H₂O

22 1.0 μl RNA polymerase (for PCR products T3 = AS, T7 = S, usually)

The tubes were incubated at 37°C for one hour. 1.0 μl RQ1 DNase were added, followed by incubation at 37°C for 15 minutes. 90 μl TE (10 mM Tris pH 7.6/1mM EDTA pH 8.0) were added, and the mixture was pipetted onto DE81 paper. The remaining solution was loaded in a Microcon-50 ultrafiltration unit, and spun
25 using program 10 (6 minutes). The filtration unit was inverted over a second tube and spun using program 2 (3 minutes). After the final recovery spin, 100 μl TE were added. 1 μl of the final product was pipetted on DE81 paper and counted in 6 ml of Biofluor II.

The probe was run on a TBE/urea gel. 1-3 μl of the probe or 5 μl of RNA Mrk III were added to 3 μl of loading buffer. After heating on a 95°C heat block for three minutes, the gel was immediately placed on
30 ice. The wells of gel were flushed, the sample loaded, and run at 180-250 volts for 45 minutes. The gel was wrapped in saran wrap and exposed to XAR film with an intensifying screen in -70°C freezer one hour to overnight.

^{33}P -Hybridization

35 A. Pretreatment of frozen sections

The slides were removed from the freezer, placed on aluminium trays and thawed at room temperature for 5 minutes. The trays were placed in 55°C incubator for five minutes to reduce condensation. The slides were fixed for 10 minutes in 4% paraformaldehyde on ice in the fume hood, and washed in 0.5 x SSC for 5

minutes, at room temperature (25 ml 20 x SSC + 975 ml SQ H₂O). After deproteination in 0.5 µg/ml proteinase K for 10 minutes at 37°C (12.5 µl of 10 mg/ml stock in 250 ml prewarmed RNase-free RNase buffer), the sections were washed in 0.5 x SSC for 10 minutes at room temperature. The sections were dehydrated in 70%, 95%, 100% ethanol, 2 minutes each.

5 B. Pretreatment of paraffin-embedded sections

The slides were deparaffinized, placed in SQ H₂O, and rinsed twice in 2 x SSC at room temperature, for 5 minutes each time. The sections were deproteinated in 20 µg/ml proteinase K (500 µl of 10 mg/ml in 250 ml RNase-free RNase buffer; 37°C, 15 minutes) - human embryo, or 8 x proteinase K (100 µl in 250 ml Rnase buffer, 37°C, 30 minutes) - formalin tissues. Subsequent rinsing in 0.5 x SSC and dehydration were performed as described above.

10 C. Prehybridization

The slides were laid out in a plastic box lined with Box buffer (4 x SSC, 50% formamide) - saturated filter paper. The tissue was covered with 50 µl of hybridization buffer (3.75g Dextran Sulfate + 6 ml SQ H₂O), vortexed and heated in the microwave for 2 minutes with the cap loosened. After cooling on ice, 18.75 ml formamide, 3.75 ml 20 x SSC and 9 ml SQ H₂O were added, the tissue was vortexed well, and incubated at 15 42°C for 1-4 hours.

D. Hybridization

1.0 x 10⁶ cpm probe and 1.0 µl tRNA (50 mg/ml stock) per slide were heated at 95°C for 3 minutes. The slides were cooled on ice, and 48 µl hybridization buffer were added per slide. After vortexing, 50 µl ³³P mix were added to 50 µl prehybridization on slide. The slides were incubated overnight at 55°C.

20 E. Washes

Washing was done 2 x 10 minutes with 2xSSC, EDTA at room temperature (400 ml 20 x SSC + 16 ml 0.25M EDTA, V_f=4L), followed by RNaseA treatment at 37°C for 30 minutes (500 µl of 10 mg/ml in 250 ml Rnase buffer = 20 µg/ml). The slides were washed 2 x 10 minutes with 2 x SSC, EDTA at room temperature. The stringency wash conditions were as follows: 2 hours at 55°C, 0.1 x SSC, EDTA (20 ml 20 25 x SSC + 16 ml EDTA, V_f=4L).

F. Oligonucleotides

In situ analysis was performed on a variety of DNA sequences disclosed herein. The oligonucleotides employed for these analyses are as follows.

(1) DNA33094-1131 (PRO217)

30 p1 5'-GGATTCTAACGACTCACTATAGGGCTCAGAAAAGCGAACAGAGAA-3' (SEQ ID NO:348)

p2 5'-CTATGAAATTAACCCTCACTAAAGGGATGTCTTCCATGCCAACCTTC-3' (SEQ ID NO:349)

35

(2) DNA33223-1136 (PRO230)

p1 5'-GGATTCTAACGACTCACTATAGGGCGGCGATGTCCACTGGGGCTAC-3' (SEQ ID

NO:350)

p2 5'-CTATGAAATTAAACCCTCACTAAAGGGACGAGGAAGATGGCGGATGGT-3' (SEQ ID NO:351)

(3) DNA34435-1140 (PRO232)

5 p1 5'-GGATTCTAATACGACTCACTATAAGGGCACCCACGCGTCCGGCTGCTT-3' (SEQ ID NO:352)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGACGGGGACACCACGGACCAGA-3' (SEQ ID NO:353)

(4) DNA35639-1172 (PRO246)

10 p1 5'-GGATTCTAATACGACTCACTATAAGGGCTTGCTGCGGTTTTGTTCCCTG-3' (SEQ ID NO:354)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGAGCTGCCATCCCCTGGTATT-3' (SEQ ID NO:355)

(5) DNA49435-1219 (PRO533)

15 p1 5'-GGATTCTAATACGACTCACTATAAGGGCGGATCCTGGCCGGCCTCTG-3' (SEQ ID NO:356)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGAGCCCGGGCATGGTCTCAGTTA-3' (SEQ ID NO:357)

(6) DNA35638-1141 (PRO245)

20 p1 5'-GGATTCTAATACGACTCACTATAAGGGCGGAAAGATGGCGAGGAGGAG-3' (SEQ ID NO:358)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGACCAAGGCCACAAACGGAAATC-3' (SEQ ID NO:359)

(7) DNA33089-1132 (PRO221)

25 p1 5'-GGATTCTAATACGACTCACTATAAGGGCTGTGCTTCAATTCTGCCAGTA-3' (SEQ ID NO:360)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGAGGGTACAATTAAAGGGTGGAT-3' (SEQ ID NO:361)

(8) DNA35918-1174 (PRO258)

30 p1 5'-GGATTCTAATACGACTCACTATAAGGGCCCGCCTCGCTCCTGCTCCTG-3' (SEQ ID NO:362)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGAGGATTGCCCGACCCCTCACAG-3' (SEQ ID NO:363)

(9) DNA32286-1191 (PRO214)

35 p1 5'-GGATTCTAATACGACTCACTATAAGGGCCCGCCTGCCTCCCTGTCC-3' (SEQ ID NO:364)
p2 5'-CTATGAAATTAAACCCTCACTAAAGGGAGTGGTGGCCCGATTATCTGC-3' (SEQ ID NO:365)

(10) DNA33221-1133 (PRO224)
p1 5'-GGATTCTAATACGACTCACTATAGGGCGCAGCGATGGCAGCGATGAGG-3' (SEQ ID NO:366)
p2 5'-CTATGAAATTAACCCTCACTAAAGGGACAGACGGGCAGAGGGAGTG-3' (SEQ ID NO:367)

5 (11) DNA35557-1137 (PRO234)
p1 5'-GGATTCTAATACGACTCACTATAGGCCAGGAGCGTGAGGAGAAC-3' (SEQ ID NO:368)
p2 5'-CTATGAAATTAACCCTCACTAAAGGGAAAGACATGTCATCGGGAGTGG-3' (SEQ ID NO:369)

10 (12) DNA33100-1159 (PRO229)
p1 5'-GGATTCTAATACGACTCACTATAGGCCGGGTGGAGGTGGAACAGAAA-3' (SEQ ID NO:370)
p2 5'-CTATGAAATTAACCCTCACTAAAGGGACACAGACAGAGCCCCATACGC-3' (SEQ ID NO:371)

15 (13) DNA34431-1177 (PRO263)
p1 5'-GGATTCTAATACGACTCACTATAGGCCAGGGAAATCCGGATGTCTC-3' (SEQ ID NO:372)
p2 5'-CTATGAAATTAACCCTCACTAAAGGGAGTAAGGGATGCCACCGAGTA-3' (SEQ ID NO:373)

20 (14) DNA38268-1188 (PRO295)
p1 5'-GGATTCTAATACGACTCACTATAGGCCAGCTACCGCAGGAGGAGG-3' (SEQ ID NO:374)
p2 5'-CTATGAAATTAACCCTCACTAAAGGGATCCCAGGTGATGAGGTCCAGA-3' (SEQ ID NO:375)

25 G. Results

In situ analysis was performed on a variety of DNA sequences disclosed herein. The results from these analyses are as follows.

30 (1) DNA33094-1131 (PRO217)
Highly distinctive expression pattern, that does not indicate an obvious biological function. In the human embryo it was expressed in outer smooth muscle layer of the GI tract, respiratory cartilage, branching respiratory epithelium, osteoblasts, tendons, gonad, in the optic nerve head and developing dermis. In the adult expression was observed in the epidermal pegs of the chimp tongue, the basal epithelial/myoepithelial cells of the prostate
35 and urinary bladder. Also expressed in the alveolar lining cells of the adult lung, mesenchymal cells juxtaposed to erectile tissue in the penis and the cerebral cortex (probably glial cells). In the kidney, expression was only seen in disease, in cells surrounding thyroidized renal tubules.

Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals,

thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, myocardium, aorta, spleen, lymph node, gall bladder, pancreas, lung, skin, eye (inc. retina), prostate, bladder, liver (normal, cirrhotic, acute failure).

5 Non-human primate tissues examined:

- (a) Chimp Tissues: Salivary gland, stomach, thyroid, parathyroid, skin, thymus, ovary, lymph node.
- (b) Rhesus Monkey Tissues: Cerebral cortex, hippocampus, cerebellum, penis.

10 (2) DNA33223-1136 (PRO230)

Sections show an intense signal associated with arterial and venous vessels in the fetus. In arteries the signal appeared to be confined to smooth-muscle/pericytic cells. The signal is also seen in capillary vessels and in glomeruli. It is not clear whether or not endothelial cells are expressing this mRNA. Expression is also observed in epithelial cells in the fetal lens. Strong expression was also seen in cells within placental trophoblastic villi, these cells lie between the trophoblast and the fibroblast-like cells that express HGF - uncertain histogenesis. In the adult, there was no evidence of expression and the wall of the aorta and most vessels appear to be negative. However, expression was seen over vascular channels in the normal prostate and in the epithelium lining the gallbladder. Insurers expression was seen in the vessels of the soft-tissue sarcoma and a renal cell carcinoma. In summary, this is a molecule that shows relatively specific vascular expression in the fetus as well as in some adult organs. Expression was also observed in the fetal lens and the adult gallbladder.

In a secondary screen, vascular expression was observed, similar to that observed above, seen in fetal blocks. Expression is on vascular smooth muscle, rather than endothelium. Expression also seen in smooth muscle of the developing oesophagus, so as reported previously, this molecule is not vascular specific.

25 Expression was examined in 4 lung and 4 breast carcinomas. Substantial expression was seen in vascular smooth muscle of at least 3/4 lung cancers and 2/4 breast cancers. In addition, in one breast carcinoma, expression was observed in peritumoral stromal cells of uncertain histogenesis (possibly myofibroblasts). No endothelial cell expression was observed in this study.

30 (3) DNA34435-1140 (PRO232)

Strong expression in prostatic epithelium and bladder epithelium, lower level of expression in bronchial epithelium. High background / low level expression seen in a number of sites, including among others, bone, blood, chondrosarcoma, adult heart and fetal liver. It is felt that this level of signal represents background, partly because signal at this level was seen over the blood. All other tissues negative.

35 Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis, testis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, spleen, lymph node, pancreas, lung,

eye (inc. retina), bladder, liver (normal, cirrhotic, acute failure).

Non-human primate tissues examined:

Chimp Tissues: adrenal

Rhesus Monkey Tissues: Cerebral cortex, hippocampus

In a secondary screen, expression was observed in the epithelium of the prostate, the superficial layers

- 5 of the urethelium of the urinary bladder, the urethelium lining the renal pelvis and the urethelium of the ureter
(1 out of 2 experiments). The urethra of a rhesus monkey was negative; it is unclear whether this represents a
true lack of expression by the urethra, or if it is the result of a failure of the probe to cross react with rhesus
tissue. The findings in the prostate and bladder are similar to those previously described using an isotopic
detection technique. Expression of the mRNA for this antigen is NOT prostate epithelial specific. The antigen
10 may serve as a useful marker for urethelial derived tissues. Expression in the superficial, post-mitotic cells, of
the urinary tract epithelium also suggest that it is unlikely to represent a specific stem cell marker, as this would
be expected to be expressed specifically in basal epithelium.

(4) DNA35639-1172 (PRO246)

- 15 Strongly expressed in fetal vascular endothelium, including tissues of the CNS. Lower level of
expression in adult vasculature, including the CNS. Not obviously expressed at higher levels in tumor vascular
endothelium. Signal also seen over bone matrix and adult spleen, not obviously cell associated, probably related
to non-specific background at these sites.

Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals,
20 thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye,
spinal cord, body wall, pelvis, testis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, spleen, lymph node, pancreas, lung,
eye (inc. retina), bladder, liver (normal, cirrhotic, acute failure).

Non-human primate tissues examined:

Chimp Tissues: adrenal

Rhesus Monkey Tissues: Cerebral cortex, hippocampus

(5) DNA49435-1219 (PRO533)

- 30 Moderate expression over cortical neurones in the fetal brain. Expression over the inner aspect of the
fetal retina, possible expression in the developing lens. Expression over fetal skin, cartilage, small intestine,
placental villi and umbilical cord. In adult tissues there is an extremely high level of expression over the
gallbladder epithelium. Moderate expression over the adult kidney, gastric and colonic epithelia. Low-level
expression was observed over many cell types in many tissues, this may be related to stickiness of the probe,
35 these data should therefore be interpreted with a degree of caution.

Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals,
thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye,
spinal cord, body wall, pelvis, testis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, spleen, lymph node, pancreas, lung, eye (inc. retina), bladder, liver (normal, cirrhotic, acute failure).

Non-human primate tissues examined:

Chimp Tissues: adrenal

Rhesus Monkey Tissues: Cerebral cortex, hippocampus, cerebellum.

5

(6) DNA35638-1141 (PRO245)

Expression observed in the endothelium lining a subset of fetal and placental vessels. Endothelial expression was confined to these tissue blocks. Expression also observed over intermediate trophoblast cells of placenta. Expression also observed tumor vasculature but not in the vasculature of normal tissues of the same type. All other tissues negative.

10

Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

15

Adult tissues examined: Liver, kidney, adrenal, myocardium, aorta, spleen, lymph node, pancreas, lung, skin, cerebral cortex (rm), hippocampus(rm), cerebellum(rm), penis, eye, bladder, stomach, gastric carcinoma, colon, colonic carcinoma, thyroid (chimp), parathyroid (chimp) ovary (chimp) and chondrosarcoma. Acetominophen induced liver injury and hepatic cirrhosis

20

(7) DNA33089-1132 (PRO221)

Specific expression over fetal cerebral white and grey matter, as well as over neurones in the spinal cord. Probe appears to cross react with rat. Low level of expression over cerebellar neurones in adult rhesus brain. All other tissues negative.

25

Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

30

Adult tissues examined: Liver, kidney, adrenal, myocardium, aorta, spleen, lymph node, pancreas, lung, skin, cerebral cortex (rm), hippocampus(rm), cerebellum(rm), penis, eye, bladder, stomach, gastric carcinoma, colon, colonic carcinoma and chondrosarcoma. Acetominophen induced liver injury and hepatic cirrhosis

(8) DNA35918-1174 (PRO258)

Strong expression in the nervous system. In the rhesus monkey brain expression is observed in cortical, hippocampal and cerebellar neurones. Expression over spinal neurones in the fetal spinal cord, the developing brain and the inner aspects of the fetal retina. Expression over developing dorsal root and autonomic ganglia as well as enteric nerves. Expression observed over ganglion cells in the adult prostate. In the rat, there is strong expression over the developing hind brain and spinal cord. Strong expression over interstitial cells in the

placental villi. All other tissues were negative.

Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

Adult tissues examined: Liver, kidney, renal cell carcinoma, adrenal, aorta, spleen, lymph

- 5 node, pancreas, lung, myocardium, skin, cerebral cortex (rm), hippocampus(rm), cerebellum(rm), bladder, prostate, stomach, gastric carcinoma, colon, colonic carcinoma, thyroid (chimp), parathyroid (chimp) ovary (chimp) and chondrosarcoma. Acetaminophen induced liver injury and hepatic cirrhosis.

(9) DNA32286-1191 (PRO214)

- 10 Fetal tissue: Low level throughout mesenchyme. Moderate expression in placental stromal cells in membranous tissues and in thyroid. Low level expression in cortical neurones. Adult tissue: all negative.

Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

- 15 Adult tissues examined include: Liver, kidney, adrenal, myocardium, aorta, spleen, lymph node, pancreas, lung and skin.

(10) DNA33221-1133 (PRO224)

- 20 Expression limited to vascular endothelium in fetal spleen, adult spleen, fetal liver, adult thyroid and adult lymph node (chimp). Additional site of expression is the developing spinal ganglia. All other tissues negative.

Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

- 25 Adult human tissues examined: Kidney (normal and end-stage), adrenal, myocardium, aorta, spleen, lymph node, pancreas, lung, skin, eye (inc. retina), bladder, liver (normal, cirrhotic, acute failure).

Non-human primate tissues examined:

Chimp Tissues: Salivary gland, stomach, thyroid, parathyroid, skin, thymus, ovary, lymph node.

Rhesus Monkey Tissues: Cerebral cortex, hippocampus, cerebellum, penis.

30

(11) DNA35557-1137 (PRO234)

Specific expression over developing motor neurones in ventral aspect of the fetal spinal cord (will develop into ventral horns of spinal cord). All other tissues negative. Possible role in growth, differentiation and/or development of spinal motor neurons.

- 35 Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

Adult tissues examined: Liver, kidney, adrenal, myocardium, aorta, spleen, lymph node,

pancreas, lung, skin, cerebral cortex (rm), hippocampus(rm), cerebellum(rm), penis, eye, bladder, stomach, gastric carcinoma, colon, colonic carcinoma and chondrosarcoma. Acetominophen induced liver injury and hepatic cirrhosis

(12) DNA33100-1159 (PRO229)

5 Striking expression in mononuclear phagocytes (macrophages) of fetal and adult spleen, liver, lymph node and adult thymus (in tingible body macrophages). The highest expression is in the spleen. All other tissues negative. Localisation and homology are entirely consistent with a role as a scavenger receptor for cells of the reticuloendothelial system. Expression also observed in placental mononuclear cells.

10 Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, myocardium, aorta, spleen, lymph node, gall bladder, pancreas, lung, skin, eye (inc. retina), prostate, bladder, liver (normal, cirrhotic, acute failure).

15 Non-human primate tissues examined:

Chimp Tissues: Salivary gland, stomach, thyroid, parathyroid, skin, thymus, ovary, lymph node.

Rhesus Monkey Tissues: Cerebral cortex, hippocampus, cerebellum, penis.

(13) DNA34431-1177 (PRO263)

20 Widespread expression in human fetal tissues and placenta over mononuclear cells, probably macrophages +/- lymphocytes. The cellular distribution follows a perivascular pattern in many tissues. Strong expression also seen in epithelial cells of the fetal adrenal cortex. All adult tissues were negative.

Fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, heart, great vessels, oesophagus, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body wall, pelvis and lower limb.

Adult tissues examined: Liver, kidney, adrenal, spleen, lymph node, pancreas, lung, skin, cerebral cortex (rm), hippocampus(rm), cerebellum(rm), bladder, stomach, colon and colonic carcinoma. Acetaminophen induced liver injury and hepatic cirrhosis.

A secondary screen evidenced expression over stromal mononuclear cells probably histiocytes.

30

(14) DNA38268-1188 (PRO295)

High expression over ganglion cells in human fetal spinal ganglia and over large neurones in the anterior horns of the developing spinal cord. In the adult there is expression in the chimp adrenal medulla (neural), neurones of the rhesus monkey brain (hippocampus [+ + +] and cerebral cortex) and neurones in ganglia in the normal 35 adult human prostate (the only section that contains ganglion cells, ie expression in this cell type is presumed NOT to be confined to the prostate). All other tissues negative.

Human fetal tissues examined (E12-E16 weeks) include: Placenta, umbilical cord, liver, kidney, adrenals, thyroid, lungs, great vessels, stomach, small intestine, spleen, thymus, pancreas, brain, eye, spinal cord, body

wall, pelvis, testis and lower limb.

Adult human tissues examined: Kidney (normal and end-stage), adrenal, spleen, lymph node, pancreas, lung, eye (inc. retina), bladder, liver (normal, cirrhotic, acute failure).

Non-human primate tissues examined:

Chimp Tissues: adrenal

5 Rhesus Monkey Tissues: Cerebral cortex, hippocampus, cerebellum.

EXAMPLE 103: Isolation of cDNA clones Encoding Human PRO1868

A consensus DNA sequence was assembled relative to other EST sequences using phrap as described in Example 1 above. This consensus sequence is herein designated DNA49803. Based up an observed

10 homology between the DNA49803 consensus sequence and an EST sequence contained within the Incyte EST clone no. 2994689, Incyte EST clone no. 2994689 was purchased and its insert obtained and sequenced. The sequence of that insert is shown in Figure 123 and is herein designated DNA77624-2515.

The entire nucleotide sequence of DNA77624-2515 is shown in Figure 123 (SEQ ID NO:422). Clone

15 DNA77624-2515 contains a single open reading frame with an apparent translational initiation site at nucleotide positions 51-53 and ending at the stop codon at nucleotide positions 981-983 (Figure 123). The predicted polypeptide precursor is 310 amino acids long (Figure 124). The full-length PRO1868 protein shown in Figure 124 has an estimated molecular weight of about 35,020 daltons and a pI of about 7.90. Analysis of the full-length PRO1868 sequence shown in Figure 124 (SEQ ID NO:423) evidences the presence of the following:

20 a signal peptide from about amino acid 1 to about amino acid 30, a transmembrane domain from about amino acid 243 to about amino acid 263, potential N-glycosylation sites from about amino acid 104 to about amino acid 107 and from about amino acid 192 to about amino acid 195, a cAMP- and cGMP-dependent protein kinase phosphorylation site from about amino acid 107 to about amino acid 110, casein kinase II phosphorylation sites from about amino acid 106 to about amino acid 109 and from about amino acid 296 to about amino acid 299, a tyrosine kinase phosphorylation site from about amino acid 69 to about amino acid 77 and potential N-myristylation sites from about amino acid 26 to about amino acid 31, from about amino acid 215 to about amino acid 220, from about amino acid 226 to about amino acid 231, from about amino acid 243 to about amino acid 248, from about amino acid 244 to about amino acid 249 and from about amino acid 262 to about amino acid 267. Clone DNA77624-2515 has been deposited with ATCC on December 22, 1998 and is assigned ATCC deposit no. 203553.

25 An analysis of the Dayhoff database (version 35.45 SwissProt 35), using a WU-BLAST2 sequence alignment analysis of the full-length sequence shown in Figure 124 (SEQ ID NO:423), evidenced significant homology between the PRO1868 amino acid sequence and the following Dayhoff sequences: HGS_RC75, P_W61379, A33_HUMAN, P_W14146, P_W14158, AMAL_DROME, P_R77437, I38346, NCM2_HUMAN and PTPD_HUMAN.

30

EXAMPLE 104: Identification of Receptor/Ligand Interactions

In this assay, various PRO polypeptides are tested for ability to bind to a panel of potential receptor molecules for the purpose of identifying receptor/ligand interactions. The identification of a ligand for a known

receptor, a receptor for a known ligand or a novel receptor/ligand pair is useful for a variety of indications including, for example, targeting bioactive molecules (linked to the ligand or receptor) to a cell known to express the receptor or ligand, use of the receptor or ligand as a reagent to detect the presence of the ligand or receptor in a composition suspected of containing the same, wherein the composition may comprise cells suspected of expressing the ligand or receptor, modulating the growth of or another biological or immunological activity of a cell known to express or respond to the receptor or ligand, modulating the immune response of cells or toward cells that express the receptor or ligand, allowing the preparation of agonists, antagonists and/or antibodies directed against the receptor or ligand which will modulate the growth of or a biological or immunological activity of a cell expressing the receptor or ligand, and various other indications which will be readily apparent to the ordinarily skilled artisan.

10 The assay is performed as follows. A PRO polypeptide of the present invention suspected of being a ligand for a receptor is expressed as a fusion protein containing the Fc domain of human IgG (an immunoadhesin). Receptor-ligand binding is detected by allowing interaction of the immunoadhesin polypeptide with cells (e.g. Cos cells) expressing candidate PRO polypeptide receptors and visualization of bound immunoadhesin with fluorescent reagents directed toward the Fc fusion domain and examination by microscope.

15 Cells expressing candidate receptors are produced by transient transfection, in parallel, of defined subsets of a library of cDNA expression vectors encoding PRO polypeptides that may function as receptor molecules. Cells are then incubated for 1 hour in the presence of the PRO polypeptide immunoadhesin being tested for possible receptor binding. The cells are then washed and fixed with paraformaldehyde. The cells are then incubated with fluorescent conjugated antibody directed against the Fc portion of the PRO polypeptide immunoadhesin (e.g.

20 FITC conjugated goat anti-human-Fc antibody). The cells are then washed again and examined by microscope. A positive interaction is judged by the presence of fluorescent labeling of cells transfected with cDNA encoding a particular PRO polypeptide receptor or pool of receptors and an absence of similar fluorescent labeling of similarly prepared cells that have been transfected with other cDNA or pools of cDNA. If a defined pool of cDNA expression vectors is judged to be positive for interaction with a PRO polypeptide immunoadhesin, the

25 individual cDNA species that comprise the pool are tested individually (the pool is "broken down") to determine the specific cDNA that encodes a receptor able to interact with the PRO polypeptide immunoadhesin.

In another embodiment of this assay, an epitope-tagged potential ligand PRO polypeptide (e.g. 8 histidine "His" tag) is allowed to interact with a panel of potential receptor PRO polypeptide molecules that have been expressed as fusions with the Fc domain of human IgG (immunoadhesins). Following a 1 hour co-incubation with the epitope tagged PRO polypeptide, the candidate receptors are each immunoprecipitated with protein A beads and the beads are washed. Potential ligand interaction is determined by western blot analysis of the immunoprecipitated complexes with antibody directed towards the epitope tag. An interaction is judged to occur if a band of the anticipated molecular weight of the epitope tagged protein is observed in the western blot analysis with a candidate receptor, but is not observed to occur with the other members of the panel of potential receptors.

Using these assays, the following receptor/ligand interactions have been herein identified: PRO245 binds to PRO1868.

Deposit of Material

The following materials have been deposited with the American Type Culture Collection, 12301

Parklawn Drive, Rockville, MD, USA (ATCC):

	<u>Material</u>	<u>ATCC Dep. No.</u>	<u>Deposit Date</u>
5	DNA32292-1131	ATCC 209258	September 16, 1997
	DNA33094-1131	ATCC 209256	September 16, 1997
	DNA33223-1136	ATCC 209264	September 16, 1997
	DNA34435-1140	ATCC 209250	September 16, 1997
	DNA27864-1155	ATCC 209375	October 16, 1997
	DNA36350-1158	ATCC 209378	October 16, 1997
10	DNA32290-1164	ATCC 209384	October 16, 1997
	DNA35639-1172	ATCC 209396	October 17, 1997
	DNA33092-1202	ATCC 209420	October 28, 1997
	DNA49435-1219	ATCC 209480	November 21, 1997
	DNA35638-1141	ATCC 209265	September 16, 1997
	DNA32298-1132	ATCC 209257	September 16, 1997
15	DNA33089-1132	ATCC 209262	September 16, 1997
	DNA33786-1132	ATCC 209253	September 16, 1997
	DNA35918-1174	ATCC 209402	October 17, 1997
	DNA37150-1178	ATCC 209401	October 17, 1997
	DNA38260-1180	ATCC 209397	October 17, 1997
	DNA39969-1185	ATCC 209400	October 17, 1997
20	DNA32286-1191	ATCC 209385	October 16, 1997
	DNA33461-1199	ATCC 209367	October 15, 1997
	DNA40628-1216	ATCC 209432	November 7, 1997
	DNA33221-1133	ATCC 209263	September 16, 1997
	DNA33107-1135	ATCC 209251	September 16, 1997
	DNA35557-1137	ATCC 209255	September 16, 1997
25	DNA34434-1139	ATCC 209252	September 16, 1997
	DNA33100-1159	ATCC 209373	October 16, 1997
	DNA35600-1162	ATCC 209370	October 16, 1997
	DNA34436-1238	ATCC 209523	December 10, 1997
	DNA33206-1165	ATCC 209372	October 16, 1997
	DNA35558-1167	ATCC 209374	October 16, 1997
30	DNA35599-1168	ATCC 209373	October 16, 1997
	DNA36992-1168	ATCC 209382	October 16, 1997
	DNA34407-1169	ATCC 209383	October 16, 1997
	DNA35841-1173	ATCC 209403	October 17, 1997
	DNA33470-1175	ATCC 209398	October 17, 1997
	DNA34431-1177	ATCC 209399	October 17, 1997
35	DNA39510-1181	ATCC 209392	October 17, 1997
	DNA39423-1182	ATCC 209387	October 17, 1997
	DNA40620-1183	ATCC 209388	October 17, 1997
	DNA40604-1187	ATCC 209394	October 17, 1997
	DNA38268-1188	ATCC 209421	October 28, 1997
	DNA37151-1193	ATCC 209393	October 17, 1997
40	DNA35673-1201	ATCC 209418	October 28, 1997
	DNA40370-1217	ATCC 209485	November 21, 1997
	DNA42551-1217	ATCC 209483	November 21, 1997
	DNA39520-1217	ATCC 209482	November 21, 1997
	DNA41225-1217	ATCC 209491	November 21, 1997
	DNA43318-1217	ATCC 209481	November 21, 1997
45	DNA40587-1231	ATCC 209438	November 7, 1997
	DNA41338-1234	ATCC 209927	June 2, 1998
	DNA40981-1234	ATCC 209439	November 7, 1997
	DNA37140-1234	ATCC 209489	November 21, 1997

DNA40982-1235	ATCC 209433	November 7, 1997
DNA41379-1236	ATCC 209488	November 21, 1997
DNA44167-1243	ATCC 209434	November 7, 1997
DNA39427-1179	ATCC 209395	October 17, 1997
DNA40603-1232	ATCC 209486	November 21, 1997
5 DNA43466-1225	ATCC 209490	November 21, 1997
DNA43046-1225	ATCC 209484	November 21, 1997
DNA35668-1171	ATCC 209371	October 16, 1997
DNA77624-2515	ATCC 203553	December 22, 1998

10 These deposit were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of
15 the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638).

20 The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

25 The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not
30 constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.