Contents

1	Preliminary	•
2	Group Theory	5
	2.1 Introduction	ļ
	2.2 Subgroup	
	2.3 A counting principle	,

Chapter 1

Preliminary

 $R \subset A \times A$ is an equivalence relations if

Reflexive: $\forall a \in A, (a, a) \in R$.

Symmetric: $(a,b) \in R \implies (b,a) \in R$.

Transitive: $(a,b) \in R, (b,c) \in R \implies (a,c) \in R.$

A binary relations can be also denoted as aRb whenever $(a, b) \in R$.

If A is a set and if \sim is an equivalence relation on A, then the equivalence class of $a \in A$ is the set $\{x \in A \mid x \sim a\}$ denoted by cl(a).

Theorem 1.1. Equivalence classes partition the set into mutually disjoint subsets and conversely, mutually disjoint subsets give rise to equivalence classes.

If S and T are non-empty sets, then a mapping from S to T is a subset $M \subset S \times T$ such that for every $s \in S$ there is a unique $t \in T$ that $(s,t) \in M$. $\sigma: S \to T$ maybe denoted as $t = s\sigma$ or $t = \sigma(s)$.

1. Preliminary

Chapter 2

Group Theory

2.1 Introduction

Definition: A non-empty set of elements G together with a binary operation \circ are said to be a **group** if

Closure: $\forall a, b \in G, a \circ b \in G$.

Associative: $\forall a, b, c \in G, (a \circ b) \circ c = a \circ (b \circ c).$

Identity: $\exists e \in G$ such that $\forall a \in G, a \circ e = e \circ a = a$.

Inverse: $\forall a \in G \ \exists b \in G \ \text{such that} \ a \circ b = b \circ a = e.$

Definition: A group G is said to be **abelian** or **commutative** if for any two element a and b commute. i.e. $a \circ b = b \circ a$.

Definition: The number of elements in a group is called the **order** of the group and it is denoted by o(G).

Definition: Let $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. If for some choice of a, $G = \langle a \rangle$, then G is said to be a **cyclic group**. More generally, for a set $W \subset G$, $\langle W \rangle = \bigcap W \subset H \subset GH$ where H is a subgroup of G.

Lemma 2.1. Given $a, b \in G$ the equation ax = b and ya = b have unique solutions for $x, y \in G$.

2.2 Subgroup

Definition: A non-empty subset H of a group G is called a **subgroup** if under the product in G, H itself forms a group.

Lemma 2.2. H is a subgroup of G if and only if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $\forall a \in H, a^{-1} \in H$.

Proof. Add.

Lemma 2.3. If H is a non-empty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G.

Proof. Add.
$$\Box$$

Definition: Let G be a group and H a subgroup of G. For $a, b \in G$ we say that a is congruent to b mod H, written as $a \equiv b \mod H$ if $ab^{-1} \in H$.

Lemma 2.4. The relation $a \equiv b \mod H$ is an equivalence relation.

$$Proof.$$
 Add.

Definition: If H is a subgroup of G and $a \in G$, then $Ha = \{ha \mid h \in H\}$ is a **right coset** of H in G. Similarly, $aH = \{ah \mid h \in H\}$ is a **left coset** of H in G.

Lemma 2.5. For all $a \in G$,

$$Ha = \{x \in G \mid a \equiv x \mod H\}$$

Proof. Suppose $x \in G$ and $x \equiv a \mod H$. That is, $xa^{-1} = h$ for some $h \in H$. Then, x = ha. Suppose $h \in H$ and x = ha. Then, $xa^{-1} = h$ and hence $x \equiv a \mod H$.

This implies, two right/left coset of H are either identical or disjoint.

Lemma 2.6. There is a one-to-one correspondence between any two right/left cosets of H.

Theorem 2.7 (Lagrange's theorem). If G is a finite group and H is a subgroup of G, then $o(H) \mid o(G)$.

Definition: If H is a subgroup of G, the **index** of H in G is the number of distince right cosets of H, denoted by [G:H] or $i_G(H)$.

Definition: Let G be a group and $a \in G$, then the **order** or **period** of a is the least positive integer m such that $a^m = e$. If no such integer exists we say that a is of infinite order. The order of a is denoted by $\operatorname{ord}_G(a)$.

Corollary 2.8. If G is a finite group, then

- 1. $o(G) = i_G(H)o(H)$.
- 2. $\operatorname{ord}_G(a) \mid o(G)$.
- 3. $a^{o(G)} = e$.
- 4. If o(G) is a prime, then G is cyclic.

2.3 A counting principle

Let H and K be two subgroups of G, then

$$HK = \{hk \mid h \in H, k \in K\}$$

Lemma 2.9. HK is a subgroup of G if and only if HK = KH.

Corollary 2.10. If H and K are subgroups of an abelian group G, then HK is a subgroup of G.

Lemma 2.11. If H and K are finite subgroups G, then

$$|HK| = \frac{o(H)o(K)}{o(H \cap K)}$$

Proof. If $h_1 \in H \cap K$ then $hk = (hh_1)(h_1^{-1}k)$. Therefore, hk appears at least $o(H \cap K)$ times. If hk = h'k', then $h'^{-1}h = k'k^{-1} \in H \cap K$. Let $u = h'^{-1}h$ then $h' = hu^{-1}$ and k' = uk. Thus, all duplicates are accounted for.

Corollary 2.12. If H and K are subgroups of G and o(H), $o(K) > \sqrt{o(G)}$, then $H \cap K \neq \{e\}$.

Proof. $HK \subset G$ therefore, $|HK| \leq o(G)$ and

$$o(G) \ge |HK| = \frac{o(H)o(K)}{o(H \cap K)} > \frac{o(G)}{o(H \cap K)}$$

which implies that $o(H \cap K) > 1$.