Peer to peer network

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Our friend Gilfoyle is currently working on a peer to peer network problem. He cleverly reduces the problem to a simple problem in 2-D geometry. He now has a set of n points in a 2-D plane with integer coordinates. The i_{th} point is located at (x_i, y_i) . He wants to know the number of pairs (i, j) such that the Euclidean distance between the points i and j is equal to the Manhattan distance between the same two points, i.e. Euclidean distance (i, j) = Manhattan distance (i, j). Help him with this task.

Input

First line contains n, number of points in the plane $(1 \le n \le 2 * 10^5)$.

Each of the following n lines contains two integers $x_i, y_i \mid x_i \mid 10^9$

Output

Print the total number of such pairs.

Examples

standard input	standard output
3	2
1 1	
7 5	
1 5	
6	11
0 0	
0 1	
0 2	
-1 1	
0 1	
1 1	

Note

All the n points given are considered different, even if they share the same coordinates.

Euclidean distance $(i, j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Manhattan distance $(i, j) = |x_i - x_j| + |y_i - y_j|$