Contact timing in telemarketing campaigns Machine Learning for econometrics

Eléa Bordais, Jade Sillere, Eliott Von-Pine, Patryk Wiśniewski

Tuesday, April 1, 2025

Methodology

Results

Interest Rates

Conclusion

Research question

rable of contents

Introduction

Exploratory analysis

Exploratory analysis

Research question

Methodology

Results

Interest Rates

Conclusion

ロト 4周ト 4 章 ト 4 章 ト 章 の9で

Introduction

Objectives: Identify the factors that influence a customer's likelihood of subscribing to term deposits during a marketing campaign.

Contribution: Identify the impact of the time of the call on the likelihood of subscribing.

Dataset: Marketing dataset from a Portuguese banking institution of a marketing campaign from May 2008 to November 2010

Methods: Compare traditional causal inference methods with modern machine-learning based approaches

Data overview

Figure: Campaign process and observed data

- ► Two types of contact : Inbound calls and outbound calls
- Most follow-up calls are at the request of the client

Overview of Variables

00

- **Outcome:** client subscribed to term deposit? (Yes or No)
- Client variables: age, job, marital status, education, loans, etc.
- Contact variables: communication type, month and day of last call, duration, number of contacts, info about previous campaign
- State of the economy variables: employment rate, consumer price index, consumer confidence index, 12-month euribor rate, etc.

Outcome and Campaign Organization

Outcome variable: Imbalance of "no" (88.7%)

Macroeconomic context

previous

campaign

duration

age

y

self-strategraphical strategraphical str

Figure: Euribor 12mo rates

Figure: Correlation

A priori negative relation between interest rates and outcome, why?

Time of Week: Naive approach

Share	Monday	Tuesday	Wednesday	Thursday	Friday
Failure	0.901	0.882	0.883	0.879	0.892
Success	0.099	0.118	0.117	0.121	0.108
Count	8514	8090	8134	8623	7823

Table: Share of successful calls

- ► Calls close to uniformly distributed across days
- ▶ Higher success probabilities in the middle

Timing of contact

- ► Hypotheses:
 - ► Calls in the middle of the week are more successful
 - ► Calls at the end of the month are more successful
- ► Idea:
 - ► Leisure/Business mindset: in the middle of the week people are more rational, planning financials
 - ► Catching-up/deadlines on Mondays/Fridays
 - ► Employees receive wage at the end month

Timing of contact - PICO Formulation

Component	Description
Population	Customers from a Portuguese bank, contacted as part of a telemarketing campaign for a term deposit product
Intervention	Receiving a call during the middle of the week (Tue, Wed, Thur) $/$ at the end of the month (> 16th)
Comparison	Customers contacted another day
Outcome	Subscribing or not to the term deposit (probability)

Directed Acyclic Graph

Figure 6: Relation Between Call-Time and Take-Up

- **Post-treatment:** *duration*
- Unconfoundedness: Bank calls uniformly across days
- Overlap: Treated and control have comparable characteristics

Data pre-processing and imputation

- ► Recoded missing values
- Filtered for clients only contacted a single time during the campaign
- Converted the numeric pdays value to 3 categories (never contacted, contacted within a week and contacted beyond a week)
- Imputation using the MICE approach

Imputation Method: mice Package

Assuming missing values are MAR (Missing At Random), I used the mice package with default imputation functions to generate 5 imputed datasets:

- ▶ pmm: Predictive Mean Matching (numeric data)
- ▶ logreg: Logistic Regression (binary data, 2 levels)
- polyreg: Polytomous Regression (unordered categorical, > 2 levels)
- polr: Proportional Odds Model (ordered categorical, > 2 levels)

The number of imputations is supported by literature (Bennet, 2001; Hawthorne and Eliott, 2005 and Royston et al.).

Estimators

- ► Simple Logit
- ▶ Double Machine Learning PLM and IRM
 - ► Random forest + tuning hyperparameters
 - Ensemble (for PLM only) using the following estimators for the classifiers/regressors:
 - Random Forest, Logit (classifier only), Neural Net, linear model (regressor only), XGBoost (regressor only)
- Causal Random Forest

Moment of the week

Table 3: Change in take-up in middle of the week

Statistic	C-FOREST	MLPLR	MLPLR-ENS	MLIRM	LOGIT
Estimate	0.0125	0.0122	0.0087	0.0103	0.0151
Std Errors	0.0047	0.0047	0.0041	0.0048	0.0048
p-value	0.0079	0.0101	0.0314	0.0309	0.0015
CI 95%	0.0033-0.0217	0.0029-0.0215	0.0008-0.0167	0.0009-0.0196	0.0057-0.0244

- ► Statistically significant results in all models
- Largest coefficient with logit, smallest with PLR-ENS

Moment of the Month

Table 4: Change in take-up end of month

Statistic	C-FOREST	MLPLR	MLPLR-ENS	MLIRM	LOGIT
Estimate	0.0117	0.0136	0.0079	0.0139	0.0148
Std Errors	0.0061	0.0060	0.0054	0.0061	0.0050
p-value	0.0533	0.0242	0.1447	0.0223	0.0032
CI 95%	-0.0002-0.0237	0.0018-0.0255	-0.0027-0.0186	0.0020-0.0259	0.0050-0.0246

- ► Coefficients not always significant
- ► Again, largest coefficient with logit, smallest with PLR-ENS

Moment of the Week (Heterogeneity)

Model Type → Causal Forest → Logit

Group level analysis, PT, 2008-2010

Figure 7: Change in take-up in middle of the week

Moment of the Month (Heterogeneity)

Figure 8: Change in take-up at the end of the month

DAG, PICO and Macro

Interest rates are prices, so they relate both to demand and supply.

Interest Rate Effects

Table 5: Results from IV estimation

Statistic	LPM2SLS-IV	DML-IV	Probit-IV
Estimate	0.0473	0.0327	0.0185
Std Errors	0.0051	0.0028	0.0046
p-value	0.0000	0.0000	0.0001
Compute (s)	0.0577	39.5599	0.2065

- LPM likely over-estimating the effects
- DML-IV less rigid than Probit-IV

Conclusion

Take home message:

- ▶ Timing in marketing matters not only who? but when?
- ► Careful about endogeneity when working with prices

Some of the limits of what we've shown:

- Individuals that do not pickup are not observed
- Simulation exercise needed to better compare methods
- External validity not guaranteed
- Instrument validity

