telefication by The Netherlands Chamber of Commerce 51565536 www.telefication.com

FCC and ISED Test Report for Parts 15.247, 15.207 and RSS-247, RSS Gen (DTS)

Product name : FLEXIDOME IP starlight 8000i

Applicant : Bosch Security Systems B.V.

FCC ID : 2ALVZ-NDE8000

ISED ID : **1249D**-NDE8000

Test report No.: 170100199 007 Ver 3.00

Laboratory information

Accreditation

Telefication is designated by the FCC as an Accredited Test Firm for compliance testing of equipment subject to Certification under Parts 15 & 18. The Designation number is: NL0001.

The Industry Canada registration number for the 3 meter test chamber of Telefication is: 4173A-1.

Documentation

Telefication complies with the accreditation criteria for test laboratories as laid down in ISO/IEC 17025:2005. The accreditation covers the quality system of the laboratory as well as the specific activities as described in the authorized annex bearing the accreditation number LO21 and is granted on 30 November 1990 by the Dutch Council For Accreditation (RvA: Raad voor Accreditatie).

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at Telefication Netherlands.

Testing Location

Test Site	Telefication BV
Test Site location	Edisonstraat 12a
	6902 PK Zevenaar
	The Netherlands
	Tel. +31889983600
	Fax. +31316583189
Test Site FCC	NL0001

Revision History

Version	Date	Remarks	Ву
v0.50	29-05-2017	First draft	RvB
v1.00	21-08-2018	Release version	RvB
v2.00	12-11-2018	Updated model naming	KR
v3.00	12-11-2018	Updated model naming	KR

Table of Contents

R	evision F	listory	2
Sι	ımmary	of Test results	5
1	Gene	ral Description	6
	1.1	Applicant	6
	1.2	Manufacturer	6
	1.3	Tested Equipment Under Test (EUT)	6
	1.4	Product specifications of Equipment under test	7
	1.5	Modification of the Equipment Under Test (EUT)	7
	1.6	Observations and remarks	8
	1.7	Environmental conditions	8
	1.8	Measurement Standards	8
	1.9	Applicable Standards	8
	1.10	Conclusions	9
2	Test	configuration of the Equipment Under Test	10
	2.1	Test mode	10
	2.2	Tested channels and Data rates	10
	2.3	Conducted Test setup	10
	2.4	Radiated Test setup	11
	2.5	Equipment used in the test configuration	12
	2.6	Explanation of the Measurement results for all conducted test items	12
	2.7	Sample calculation	12
3	Test	results	13
	3.1	6dB bandwidth Measurement	13
	3.1.1	Limit	13
	3.1.2	Measurement instruments	13
	3.1.3	Test setup	13
	3.1.4	Test procedure	13
	3.1.5	Test Results of the 6 dB bandwidth Measurement	13
	3.1.6	Plots of the 6 dB bandwidth Measurement	14
	3.2	99% Occupied Bandwidth	17
	3.2.1	Limit	17
	3.2.2	Measurement instruments	17
	3.2.3	Test setup	17
	3.2.4	Test procedure	17
	3.2.5	Test results of the 99% Occupied Bandwidth Measurement	17
	3.2.6	Plots of the 99% Occupied Bandwidth Measurement	18
	3.3	Output Power Measurement	21

3.3.1	Limit	21
3.3.2	Measurement instruments	21
3.3.3	Test setup	21
3.3.4	Test procedure	21
3.3.5	Test results of Output Power Measurement	22
3.3.6	Plots of Output Power Measurement	23
3.4	Power Spectral Density	26
3.4.1	Limit	26
3.4.2	Measurement instruments	26
3.4.3	Test setup	26
3.4.4	Test procedure	26
3.4.5	Test results of Power Spectral Density Measurement	26
3.4.6	Plots of the Power Spectral Density Measurements	27
3.5	Conducted Band edge and Spurious Emissions Measurement	30
3.5.1	Limit	30
3.5.2	Measurement instruments	30
3.5.3	Test setup	30
3.5.4	Test procedure	30
3.5.5	Test results of conducted Band Edge Measurements	30
3.5.6	Plots of the Conducted Spurious an Band edge Measurements	31
3.6	Radiated Spurious Emissions Measurement	41
3.6.1	Limit	41
3.6.2	Measurement instruments	41
3.6.3	Test setup	41
3.6.4	Test procedure	41
3.6.5	Note to the plots (next pages)	41
3.6.6	Plots of the Radiated Spurious Emissions Measurement	42
3.6.7	Measurement Uncertainty	57
3.7	AC conducted mains measurement	58
3.7.1	Limit	58
3.7.2	Measurement instruments	58
3.7.3	Test setup	58
3.7.4	Test procedure	58
3.7.5	Test results and plots of the AC conducted mains measurement	58
3.7.6	Measurement uncertainty	58
3.7.7	Plots of the AC conducted spurious measurement	59

Summary of Test results

FCC	ISED	Description	Section in report	Verdict
15.247(a)	RSS-247 5.2 (1)	6dB Bandwidth	3.1	Pass
	RSS-GEN 6.6	99% Bandwidth	3.2	Pass
15.247(b)	RSS-247 5.1 (2)	RF output power	3.3	Pass
15.247(e)	RSS-247 5.2 (2)	Power spectral density	3.4	Pass
15.247(d)	RSS-247 5.5	Conducted Spurious emissions	3.5	Pass
15.247(d)	RSS-247 5.5	Conducted Band edge	3.5	Pass
15.209 (a)	RSS-247 5.4	Radiated Spurious emissions	3.6	Pass
15.205 (a)	RSS Gen 8.10	Spurious emissions in the restricted bands	3.6	Pass
15.207 (a)	RSS-Gen 8.8	Conducted spurious on AC mains	3.7	Pass

1 General Description

1.1 Applicant

Client name: Bosch Security Systems B.V.

Address Torenallee 49, Eindhoven, The Netherlands

Zip code: 5617 BA

E-mail: Richard.greijmans@nl.bosch.com

Contact name: R. Greijmans

1.2 Manufacturer

Manufacturer name: Bosch Security Systems B.V.

Address: Torenallee 49, Eindhoven, The Netherlands

Zip code: 5617 BA

E-mail: Richard.greijmans@nl.bosch.com

Contact name: R. Greijmans

1.3 Tested Equipment Under Test (EUT)

Product name: FLEXIDOME IP starlight 8000i

Brand name: Bosch

Product type:Security cameraFCC ID:2ALZV-NDE8000ISED ID1249D-NDE8000

Model number: FLEXIDOME IP starlight 8000i

Variant Model(s): NDE-8502-R

NDE-8502-RT NDE-8503-R NDE-8503-RT NDE-8504-R

Software version: 6.50.0066

Hardware version: ----

 Date of receipt
 10-04-2017

 Tests started:
 18-04-2017

 Testing ended:
 11-04-2018

1.4 Product specifications of Equipment under test

TX Frequency range (MHz):	802.11b/g/n: 2400 – 2483.5
RX frequency range (MHz):	802.11b/g/n: 2400 – 2483.5
Maximum output power to antenna	IEEE 802.11b: 16.38
(dBm):	IEEE 802.11g: -8.21(AVG)
	IEEE 802.11n: -8.07(AVG)
Antenna type:	FPC (flexible printed circuit board)
Antenna gain(dBi):	802.11b/g/n: 1.61
Type of modulation:	Acc. to IEEE 802.11 b/g/n
Emission designator 802.11b:	13M5G1D
Emission designator 802.11g:	16M5G1D
Emission designator 802.11n:	17M6G1D

1.5 Modification of the Equipment Under Test (EUT)

The following modifications have been performed on the sample.

Atlantis changes 2 -> B2

• Power panel:

HW-507 PHY robustness improvement

HW-497 EMC: add contact area to housing

HW-512 Add extra 2 GDT's on Ethernet data lines

HW-513 Create space for Ethernet data lines at blindmate connector

• Installer panel:

Increase isolation distance

Atlantis changes C2 -> B2

• Wireless LAN antenna:

Wireless LAN range with internal antenna of the module was very poor. Solution is the use of an external antenna as can be seen on the image below

• Cable routing sensor and power cable improvement:

The height of the camera increased with 6mm to have more space above the PCB stack-up Redesign of the motor control panel,

Updated mechanical size

Update of flex foil connectors

Updated locations of connectors

Cable guide by the PCB bracket

• Radiated emission sensor cable routing:

Adding distance between SD-card traces and sensor cable (implemented and verified)

1.6 Observations and remarks

None.

1.7 Environmental conditions

Test date	18-04-2017	11-04-2018
Ambient temperature	24.6 °C	24 °C
Humidity	39.7 %	38.4 %

1.8 Measurement Standards

• FCC KDB Publication No. 558074 D01DTS Meas. Guidance V04

• ANSI C63.10:2013

1.9 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247, §15.207
- RSS-247 Issue 2, RSS-GEN Issue 4

1.10 Conclusions

The sample of the product showed **NO NON-COMPLIANCES** to the specifications stated in paragraph 1.9 of this report.

The results of the test as stated in this report, are exclusively applicable to the product items as identified in this report. Telefication accepts no responsibility for any properties of product items in this test report, which are not supported by the tests as specified in paragraph 1.9 "Applicable standards".

All tests are performed by:

Name : ing. R. van Barneveld

Review of test methods and report by:

Name : P. van Wanrooij, BASc

The above conclusions have been verified by the following signatory:

Date : 12-11-2018

Name : ing K.A. Roes

Function : Coordinator Radio Laboratory

Signature

2 Test configuration of the Equipment Under Test

2.1 Test mode

The applicant provided test mode firmware for the EUT, in which it was possible to configure the EUT into different test channels.

2.2 Tested channels and Data rates

Technology	Channels	Data rate	Frequency (MHz)
	1	11 Mbps	2412
802.11b	6	11 Mbps	2437
	11	11 Mbps	2462
	1	54 Mbps	2412
802.11g	6	54 Mbps	2437
	11	54 Mbps	2462
	1	MCS 7	2412
802.11n	6	MCS 7	2437
	11	MCS 7	2462

2.3 Conducted Test setup

RF tests at antenna connector

Emissions test at 24 Volt AC

2.4 Radiated Test setup

Radiated emissions test setup 30 MHz - 1 GHz

Radiated emissions test setup above 1 GHz

2.5 Equipment used in the test configuration

Description	Manufacturer	Model	ID	Used at Par.
Signal Generator	Hewlett Packard	83650B	TE00487	3.1 to 3.5
Spectrum Analyzer	Rohde & Schwarz	FSV	TE01269	3.1 to 3.5
Spectrum Analyzer	Rohde & Schwarz	FSP40	TE11125	3.6
Spectrum Analyzer	Rohde & Schwarz	ESR7	TE01220	3.6, 3.7
10 MHz distribution Amplifier	Stanford Research Systems	FS735/1	TE01278	3.1 to 3.5
USB to GPIB adapter	National Instruments	GPIB-USB-HS+	TE01283	3.1 to 3.5
Biconilog Antenna	Chase	CBL6112A	TE00967	3.6
Horn Antenna	EMCO The Electro – Mechanics Co	3115	TE00531	3.6
SAC Chamber	Comtest Engineering BV	-	TE00861	3.6
Artificial Mains Network (AMN)	Rohde & Schwarz	ESH3-Z5	TE00208	3.7
Pulse limiter	Rohde & Schwarz	ESH3-Z2	TE00756	3.7
High pass filter	Wainwright instruments	WHK3.0/18G-10EF	TE01140	3.6
Pre-amplifier	Hewlett Packard	8449B	TE00092	3.6
Software	D.A.R.E Instruments	Radimation 2016.2.8		3.6 - 3.7

2.6 Explanation of the Measurement results for all conducted test items

The path loss between the EUT and the spectrum analyser for the frequency range of 30 MHz to 40 GHz has been measured and stored in the transducer table of the spectrum analyser. This transducer table is used for level offset of the spectrum analyser. With this level offset the spectrum analysers reading will be exactly the RF output.

2.7 Sample calculation

Field Strength Measurement example:

Frequency (GHz)	Polarization	Height(m)	Peak (dBμV/m)
7,236	Horizontal	2	52.5

The following relation applies:

 $E (dB\mu V/m) = U(dB\mu V) + AF (dB/m) - G (dB) + CL (dB)$

Where:

E = Electric field strength

U = Measuring receiver voltage

AF = Antenna factor

G = Gain of the pre-amplifier

CL = Cable loss

(52.5 = 48.12 + 36.1 - 37.42 + 5.7)

3 Test results

3.1 6dB bandwidth Measurement

3.1.1 Limit

The minimum 6 dB Bandwidth shall be at least 500 kHz.

3.1.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.1.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.1.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04 IRN 017 - Occupied bandwidth (Hz), method 4.

3.1.5 Test Results of the 6 dB bandwidth Measurement

Technology Std.	Channel	Frequency (MHz)	Data rate	6dB bandwidth (kHz)
	1	2412	11 Mbps	9722
IEEE 802.11b	6	2437	11 Mbps	9722
	11	2462	11 Mbps	9722
IEEE 802.11g	1	2412	54 Mbps	16454
	6	2437	54 Mbps	16397
	11	2462	54 Mbps	16397
	1	2412	MCS7	17676
IEEE 802.11n	6	2437	MCS7	17676
	11	2462	MCS7	17676
Uncertainty	± 485 kHz			

3.1.6 Plots of the 6 dB bandwidth Measurement

3.2 99% Occupied Bandwidth

3.2.1 Limit

According to RSS-Gen 6.6.

3.2.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.2.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.2.4 Test procedure

IRN 017_10 Occupied bandwidth (Hz), method 1.

- 1 Set the centre frequency to the nominal EUT channel centre frequency.
- 2 Set span = 1.5 times to 0.5 times the Occupied Bandwidth.
- 3 Set VBW \geq 3 x RBW.
- 4 Video averaging is not permitted. Where practical detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode(until the trace stabilizes) shall be used.

3.2.5 Test results of the 99% Occupied Bandwidth Measurement

Technology Std.	Channel	Frequency (MHz)	Data rate	99% bandwidth (kHz)
	1	2412	11 Mbps	13415
IEEE 802.11b	6	2437	11 Mbps	13415
	11	2462	11 Mbps	13459
IEEE 802.11g	1	2412	54 Mbps	16454
	6	2437	54 Mbps	16498
	11	2462	54 Mbps	16498
	1	2412	MCS7	17627
IEEE 802.11n	6	2437	MCS7	17627
	11	2462	MCS7	17627
Uncertainty	± 370 kHz			

3.2.6 Plots of the 99% Occupied Bandwidth Measurement

802.11n 99% Occupied Bandwidth (Channel 6)

802.11n 99% Occupied Bandwidth (Channel 11)

3.3 Output Power Measurement

3.3.1 Limit

For systems using digital modulation in the 2400-2483.5 MHz, the limit for the peak output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point to point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.3.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.3.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04. IRN 014_14 RF Power (W), method 1.

3.3.5 Test results of Output Power Measurement

Duty cycle

Technology Std.	Channel	Frequency (MHz)	Data rate	Duty cycle (%)
	1	2412	11 Mbps	96.67
IEEE 802.11b	6	2437	11 Mbps	96.67
	11	2462	11 Mbps	96.55
IEEE 802.11g	1	2412	54 Mbps	77.42
	6	2437	54 Mbps	80.00
	11	2462	54 Mbps	76.67
IEEE 802.11n	1	2412	MCS7	75.86
	6	2437	MCS7	75.86
	11	2462	MCS7	75.86

Peak method

Technology Std.	Channel	annel Frequency Data rate Pe		Peak output power (dBm)	
IEEE 802.11b	1	2412	11 Mbps	17.20	
	6	2437	11 Mbps	18.00	
	11	11 2462 11 Mbps 18.00			
Uncertainty	±0.63 dB				

Average method

Technology Std.	Channel	Frequency (MHz)	Data rate	Average output power (dBm)
IEEE 802.11g	1	2412	54 Mbps	-9.08
	6	2437	54 Mbps	-8.00
	11	2462	54 Mbps	-7.91
Uncertainty	±0.63 dB			

Average method

Technology Std.	Channel	Frequency (MHz)	Data rate	Average output power (dBm)
IEEE 802.11n	1	2412	MCS7	-7.65
	6	2437	MCS7	-6.47
	11	2462	MCS7	-6.79
Uncertainty	±0.63 dB			

Note: Output power (dBm) =Conducted output power(dBm) + antenna gain (dBi)

3.3.6 Plots of Output Power Measurement

802.11b Peak Output Power (Channel 6)

802.11b Peak Output Power (Channel 11)

3.4 Power Spectral Density

3.4.1 Limit

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.4.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.4.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.4.4 Test procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04. IRN 030_14 Power Spectral Density (W vs. Hz), method 6.

3.4.5 Test results of Power Spectral Density Measurement

Peak Power spectral density

Technology Std.	Channel	Frequency (MHz)	Data rate	PSD/3 kHz (dBm)
IEEE 802.11b	1	2412	11 Mbps	-9.06
	6	2437	11 Mbps	-9.06
	11	2462	11 Mbps	-8.80
Uncertainty	±0.63 dB			

Average Power spectral density

Technology Std.	Channels	Frequency (MHz)	Data rate	PSD/100 kHz (dBm)
IEEE 802.11g	1	2412	54 Mbps	-20.24
	6	2437	54 Mbps	-19.80
	11	2462	54 Mbps	-19.38
Uncertainty	±0.63 dB			

Average Power spectral density

Technology Std.	Channels	Frequency (MHz)	Data rate	PSD/100 kHz (dBm)
IEEE 802.11n	1	2412	MCS7	-23.49
	6	2437	MCS7	-21.23
	11	2462	MCS7	-23.02
Uncertainty			±0.63 dB	

3.4.6 Plots of the Power Spectral Density Measurements

802.11b Power Spectral Density 3 kHz (channel 6)

802.11b Power Spectral Density 3 kHz (channel 11)

802.11g Power Spectral Density 100 kHz (channel 6)

802.11g Power Spectral Density 100 kHz (channel 11)

802.11n Power Spectral Density 100 kHz (channel 6)

802.11n Power Spectral Density 100 kHz (channel 11)

3.5 Conducted Band edge and Spurious Emissions Measurement

3.5.1 Limit

Spurious Emissions:

In any 100 kHz bandwidth outside the operating frequency band, the RF power shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either a RF conducted or a radiated measurement.

Band edge:

At the edge of the authorized band the RF power shall be at least 20 dB down.

3.5.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.5.3 Test setup

The test setup is as shown in chapter 2.3 of this report.

3.5.4 Test procedure

According to KDB Publication 558074 V04, sections 11.3 and 12.1. IRN 016_10 Spurious emission (W), method 14.

3.5.5 Test results of conducted Band Edge Measurements

Band edge

Technology Std.	Channels	Frequency (MHz)	Data rate	Band edge (dBm)	Limit (dBm)
IEEE 802.11b	1	2412	11 Mbps	-20.69	-8.310
IEEE 802.11g	1	2412	54 Mbps	-27.41	-14.410
IEEE 802.11n	1	2412	MCS7	-30.40	-18.760
Uncertainty			±0.63 dB		_

3.5.6 Plots of the Conducted Spurious an Band edge Measurements

IEEE 802.11g Conducted Lower band edge(Channel 1)

IEEE 802.11n Conducted Lower band edge(Channel 1)

As channel 11 is more than 20 MHz away from the band edge, no measurements were performed for channel

3.6 Radiated Spurious Emissions Measurement

3.6.1 Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

15.209

Frequency (MHz)	Field strength (μV/m)	Measurement distance(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30	30	30
30 -88	100	3
88 - 216	150	3
216-960	200	3
Above 960	500	3

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz.

Radiated emission limits in these three bands are based on measurements employing an average detector.

3.6.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.6.3 Test setup

The test setup is as shown in chapter 2.4 of this report.

3.6.4 Test procedure

The procedure follows KDB Publication 558074 V04, sections 11.3 and 12.1 IRN 026 14 Radiated electrical disturbance (V per m), methods 1, 2 and 3.

3.6.5 Note to the plots (next pages)

• In the frequency range of 1 – 18 GHz the green trace is measured using a peak detector and the red trace is measured using an average detector. The top limit line represent the peak limit and the bottom limit represents the average limit.

In general, the peak measurement has been omitted, except for the first two plots which show that the peak results are well below the peak limit (15 dB or more).

3.6.6 Plots of the Radiated Spurious Emissions Measurement

30 – 1000 MHz

1 – 18 GHz

18 GHz to 26.5 GHz

3.6.7 Measurement Uncertainty

Measurement uncertainty Radiated emissions below 1 GHz

Wedsarement uncertainty Radiated emissions below 1 GHz				
Horizontal	Horizontal polarization			
30 – 200 MHz	4.5 dB			
200 – 1000 MHz	3.6 dB			
Vertical polarization				
30 – 200 MHz	5.4 dB			
200 – 1000 MHz	4.6 dB			

Measurement uncertainty Radiated emissions above 1 GHz

1000- 18000 MHZ	5.7 dB
18000 – 26000 MHZ	3.9 dB

3.7 AC conducted mains measurement

3.7.1 Limit

According to 15.207 (c).

Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits

Frequency of emis- sion (MHz)	Conducted limit (dBµV)	
sion (MHz)	Quasi-peak	Average
0.15-0.5 0.5-5 5-30		56 to 46* 46 50

^{*}Decreases with the logarithm of the frequency.

3.7.2 Measurement instruments

The measurement instruments are listed in chapter 2.5 of this report.

3.7.3 Test setup

The test setup is as shown in chapter 2.4 of this report.

3.7.4 Test procedure

According to ANSI C63.4: 2014, section 13.3. IRN 029_07 Conducted disturbance (V), method 1.

3.7.5 Test results and plots of the AC conducted mains measurement

See next page.

3.7.6 Measurement uncertainty

+/- 3.6 dB.

3.7.7 Plots of the AC conducted spurious measurement

Phase

Neutral

