Тестирование моделей

ВШЭ ФКН, Методы предобучения без учителя

Probing

 Нужен для того, чтобы узнать, какая скрытая информация содержится в представлениях обученной модели

king - queen = man - woman

• Используется чаще для текстовых моделей, потому что текст интереснее

Probing для текстов

```
3: first + 1: second + 1: third + 6: fourth 3: (0,3) + 1: (1,2) + 1: (2,1) + 6: fourth 3: L + 1: RLL + 1: RLL + 6: RR 6: (3,0) 3: fourth-to-last + 1: third-to-last 4: 1: 3.1 + 1: 3.1 + 1: 1.6 + 6: r<sub>0</sub> + 1: second-to-last + 6: last 6: 1_#
```

	3	1	1	6	5	2	3	1	9	7
Left-to-right	0	1	2	3	0	1	2	3	4	5
Right-to-left	3	2	1	0	5	4	3	2	1	0
Bidirectional	(0,3)	(1, 2)	(2, 1)	(3, 0)	(0,5)	(1, 4)	(2, 3)	(3, 2)	(4, 1)	(5, 0)
Wickelroles	#_1	3_1	1_6	1_#	#_2	5_3	2_{-1}	3_9	$1_{-}7$	9_#
Tree	L	RLL	RLR	RR	LL	LRLL	LRLR	LRRL	LRRR	R
Bag of words	$ \mathbf{r}_0 $	\mathbf{r}_0	\mathbf{r}_0	\mathbf{r}_0	$ \mathbf{r}_0 $	\mathbf{r}_0	\mathbf{r}_0	\mathbf{r}_0	\mathbf{r}_0	\mathbf{r}_0

Probing для текстов

3: first + 7: second + 6: third

 $\binom{6}{r_3}$

Probing для текстов

Как измерить качество модели?

- Попробовать поатаковать модель (добавление шума, маскирование и тд)
- Обучить голову на ImageNet и замерить точность
- Обучить голову на **подмножестве** ImageNet и замерить точность
- Обучить на downstream задачу (transfer learning)

Почему мерить качество на ImageNet не лучшая идея

Почему мерить качество на ImageNet не лучшая идея

Table 3: **Training in small batch setting.** Top-1 accuracy on ImageNet with a linear classifier trained on top of frozen features from a ResNet-50. All methods are trained with a batch size of 256. We also report the number of stored features, the type of cropping used and the number of epochs.

Method	Mom. Encoder	Stored Features	multi-crop	epoch	batch	Top-1
SimCLR		0	2×224	200	256	61.9
MoCov2	\checkmark	65,536	2×224	200	256	67.5
MoCov2	✓	65,536	$2\!\times\!224$	800	256	71.1
SwAV		3,840	$2 \times 160 + 4 \times 96$	200	256	72.0
SwAV		3,840	$2\times224 + 6\times96$	200	256	72.7
SwAV		3,840	$2\!\times\!224 + 6\!\times\!96$	400	256	74.3

Почему мерить качество на ImageNet не лучшая идея

Table 3: **Training in small batch setting.** Top-1 accuracy on ImageNet with a linear classifier trained on top of frozen features from a ResNet-50. All methods are trained with a batch size of 256. We also report the number of stored features, the type of cropping used and the number of epochs.

Method	Mom. Encoder	Stored Features	multi-crop	epoch	batch	Top-1
SimCLR		0	2×224	200	256	61.9
MoCov2	\checkmark	65,536	2×224	200	256	67.5
MoCov2	✓	65,536	2×224	800	256	71.1
SwAV		3,840	$2\times160 + 4\times96$	200	256	72.0
SwAV		3,840	$2\times224 + 6\times96$	200	256	72.7
SwAV		3,840	2×224 + 6×96	400	256	74.3

Relative percentage difference between average MoCov2 and SwAV Score

Учиться надо на наиболее похожем датасете

Как дообучать модели?

(a) Fine-tuning Randomly Backprop initialized head

(b) Linear probing

Как дообучать модели?

$$\widehat{L}(v,B) = ||XB^{\top}v - Y||_2^2$$

$$\nabla_B \widehat{L}(v,B) = 2v(Y - XB^\top v)^\top X$$

$$\nabla_B \widehat{L}(v, B)u = 0$$

$$B^{k+1}u = (B^k - \eta \nabla_{B^k} \hat{L}(v, B^k))u = B^k u$$

Linear Probing vs Fine-tuning

Linear Probing vs Fine-tuning

Average accuracies (10 distribution shifts)

Table 1: **ID** accuracies with 90% confidence intervals over 3 runs—fine-tuning does better than linear probing on all datasets except DomainNet (which could be because the version of the DomainNet training dataset from Tan et al. (2020) is fairly small, with around 20K examples). LP-FT does the best on all except FMoW where it is in between linear probing and fine-tuning.

	CIFAR-10	Ent-30	Liv-17	DomainNet	FMoW	ImageNet	Average
FT	97.3 (0.2)	93.6 (0.2)	97.1 (0.2)	84.5 (0.6)	56.5 (0.3)	81.7 (-)	85.1
LP	91.8 (0.0)	90.6 (0.2)	96.5 (0.2)	89.4 (0.1)	49.1 (0.0)	79.7 (-)	82.9
LP-FT	97.5 (0.1)	93.7 (0.1)	97.8 (0.2)	91.6 (0.0)	51.8 (0.2)	81.7 (-)	85.7

Table 2: **OOD** accuracies with 90% confidence intervals over 3 runs. Linear probing does better than fine-tuning on all datasets except CIFAR-10.1 and ImageNetV2, where the ID and OOD are similar (consistent with our theory). LP-FT does the best on all 10 datasets.

	STL	CIFAR-10.1	Ent-30	Liv-17	DomainNet	FMoW
FT	82.4 (0.4)	92.3 (0.4)	60.7 (0.2)	77.8 (0.7)	55.5 (2.2)	32.0 (3.5)
LP	85.1 (0.2)	82.7 (0.2)	63.2 (1.3)	82.2 (0.2)	79.7 (0.6)	36.6 (0.0)
LP-FT	90.7 (0.3)	93.5 (0.1)	62.3 (0.9)	82.6 (0.3)	80.7 (0.9)	36.8 (1.3)

	ImNetV2	ImNet-R	ImNet-Sk	ImNet-A	Average
FT	71.5 (-)	52.4 (-)	40.5 (-)	27.8 (-)	59.3
LP	69.7 (-)	70.6 (-)	46.4 (-)	45.7 (-)	66.2
LP-FT	71.6 (-)	72.9 (-)	48.4 (-)	49.1 (-)	68.9

Как дообучить лучше?

