Odpovídejte celou větou (na každou otázku) a každé své tvrzení řádně zdůvodněte. Dodržujte a ve svém řešení vyznačte dělení jednotlivých úloh na podúlohy.

Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Ať \mathbf{A} a \mathbf{B} jsou matice, pro které má smysl součin $\mathbf{A} \cdot \mathbf{B}$. Pak *nutně* platí:
 - (a) $rank(\mathbf{A} \cdot \mathbf{B}) > rank(\mathbf{A})$.
 - (b) Každý sloupec $\mathbf{A} \cdot \mathbf{B}$ je lineární kombinací sloupců \mathbf{A} .
 - (c) Pokud je $\mathbf{A} \cdot \mathbf{B}$ čtvecová a \mathbf{B} má lineárně nezávislé sloupce, pak $\det(\mathbf{A} \cdot \mathbf{B}) \neq 0$.
 - (d) Pokud má smysl i součin $\mathbf{B} \cdot \mathbf{A}$, pak $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A} = \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{B}$.
- 2. Ať $(\mathbf{v}_1, \mathbf{v}_2)$ je uspořádaná ortogonální báze podprostoru $\mathsf{span}(\mathbf{v}_1, \mathbf{v}_2)$ v prostoru \mathbb{R}^3 nad \mathbb{R} se standardním skalárním součinem. Pak $\mathit{nutn}\check{e}$ platí:
 - (a) Pro libovolné $\mathbf{v}_3 \in \mathbb{R}^3$, kde $\langle \mathbf{v}_1 \mid \mathbf{v}_3 \rangle = \langle \mathbf{v}_2 \mid \mathbf{v}_3 \rangle = 0$, je $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ uspořádaná ortogonální báze lineárního podprostoru $\mathsf{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.
 - Platí $\langle \mathbf{v}_1 \mid \mathbf{v}_2 \rangle = \langle \mathbf{v}_1 \mid \mathbf{v}_1 \rangle = \langle \mathbf{v}_2 \mid \mathbf{v}_2 \rangle = 0$
 - (c) Seznam $(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 \mathbf{v}_1)$ je uspořádaná báze prostoru $\mathsf{span}(\mathbf{v}_1, \mathbf{v}_2)$.
 - Pro libovolný vektor $\mathbf{b} \notin \mathsf{span}(\mathbf{v}_1, \mathbf{v}_2)$ takový, že $\langle \mathbf{b} \mid \mathbf{v}_1 \rangle = 0$, platí $\mathbf{b} = \mathbf{o}$.
- 3. Ať \mathbf{A} je matice typu 2×2 , ať $\mathbf{A} \cdot \mathbf{x} = \mathbf{e}_1$ ani $\mathbf{A} \cdot \mathbf{x} = \mathbf{e}_2$ nemá řešení. Pak *nutně* platí:
- A je regulární.
- A je nulová matice. nap matice: nap matice: nap matice: $\mathbf{A} \cdot \mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ nemá řešení.

 - (d) Sloupce matice **A** jsou lineárně závislé.
- 4. Mějme tři čtvercové matice **A**, **B** a **C** rozměrů $n \times n$, **O** je nulová matice $n \times n$.
 - $\det\left(\left(\frac{\mathbf{A} \mid \mathbf{B}}{\mathbf{O} \mid \mathbf{C}}\right)\right) \neq \det(\mathbf{A}) \cdot \det(\mathbf{B}) \cdot \det(\mathbf{C}). = \mathcal{M} \left(\mathcal{A}\right) \cdot \mathcal{M} \left(\mathcal{L}\right)$ $(b) \det((\mathbf{A} \mathbf{A}) \cdot \mathbf{B}) = (\det(\mathbf{A}) \det(\mathbf{A})) \cdot \det(\mathbf{B}) \cdot \det(\mathbf{B}) \cdot \det(\mathbf{C})$ $5 \cdot \det(\mathbf{B}) + \det(\mathbf{C}) \neq \det(5 \cdot \mathbf{B}) + \det(\mathbf{C}). = 5 \cdot \mathcal{M} \left(\mathbf{B}\right) + \mathcal{L}$ $\det(\mathbf{E}_n) \cdot \det(\mathbf{E}_n^{-1}) \neq -1. = 7$

Cást B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Dokažte, že pokud má reálná matice ${\bf A}$ typu 2×2 vlastní vektory ${\bf v}_1$ a ${\bf v}_2$ příslušné různým nenulovým vlastním číslům a_1 a a_2 , pak je $(\mathbf{v}_1, \mathbf{v}_2)$ lineárně nezávislý seznam vektorů v \mathbb{R}^2 nad \mathbb{R} .

Cást C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

Lineární zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ je zadáno přiřazeními

$$\mathbf{f}(\left(\begin{array}{c}1\\0\end{array}\right))=\left(\begin{array}{c}-4\\3\end{array}\right)\qquad \mathbf{f}(\left(\begin{array}{c}1\\1\end{array}\right))=\left(\begin{array}{c}-10\\8\end{array}\right).$$

Nalezněte hodnotu $\mathbf{f}(\begin{pmatrix} 0 \\ 1 \end{pmatrix})$. Nalezněte matici \mathbf{A} zobrazení \mathbf{f} vzhledem ke kanonické bázi K_2 prostoru \mathbb{R}^2 . Diagonalisujte A. Závěrečnou odpověď zapište celou větou.