STAT 500

Inference about Means for Several Populations

Scenario

- Observational Studies
 - More than Two Populations
- Experiments
 - One Factor with more than two levels
- Compare observations of variable (quantitative) for multiple treatment groups or populations.

Notation

- Population or Treatment Group Parameters
 - Number: $i=1,2,\ldots,r$
 - Population or Treatment means $=\mu_1,\mu_2,\ldots,\mu_r$
 - Population or Treatment Variances $=\sigma_1^2,\sigma_2^2,\ldots,\sigma_r^2$
 - Population or Treatment Std. Dev. $= \sigma_1, \sigma_2, \ldots, \sigma_r$

Notation

- Data and Summary Statistics
 - $n_i=$ sample size for ith sample or treatment group
 - $-\ Y_{ij}=j$ th observation in the ith sample or treatment group, where $j=1,2,\ldots,n_i$
 - Mean for ith sample or treatment group $ar{Y}_i = ar{Y}_i. = rac{1}{n_i} \sum\limits_{i=1}^{n_i} Y_{ij}$
 - Variance for *i*th sample or treatment group $1 \quad n_i \quad \quad 2$

$$S_i^2 = rac{1}{n_i-1}\sum\limits_{j=1}^{n_i}(Y_{ij}-ar{Y}_{i\cdot})^2$$

Notation

- Summary Statistics
 - Total number of observations: $N = \sum\limits_{i=1}^{r} n_i$
 - Overall mean: $ar{Y} = ar{Y}_{\cdot \cdot \cdot} = rac{1}{N} \sum_{i=1}^r \sum_{j=1}^{n_i} Y_{ij}$
 - Pooled variance estimate:

$$S_p^2 = rac{\Sigma_{i=1}^r (n_i-1) S_i^2}{N-r}$$
 with df $=\sum\limits_{i=1}^r (n_i-1) = N-r$

Inference about Means for Several Populations

- Basic linear model
- Analysis of Variance (ANOVA)
 - F-tests
 - Contrasts
- Model diagnostics
- Nonparametric tests

Research Question

- Do the populations or treatment groups have the same mean values for the variable?
- Two sources of variation
 - Variability among observations within each treatment group (or within each population)
 - Variability among mean responses for treatments (or between populations)
- Question:
 - Are differences among group means large relative to variation within groups?
 - Do all populations have the same mean?

Cell Means Model

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

- ullet Each observation Y_{ij} can be described by two components:
 - Fixed mean value μ_i
 - Random error term ϵ_{ij}
- ullet Gives an equation for each of the $N=\Sigma_{i=1}^r\,n_i$ observations

Cell Means Model in Matrix Notation

We can write this system of N equations in matrix notation

$$\begin{pmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ \vdots \\ Y_{2n_2} \\ Y_{31} \\ \vdots \\ Y_{rn_r} \end{pmatrix} = \begin{pmatrix} \mu_1 + \epsilon_{11} \\ \mu_1 + \epsilon_{12} \\ \vdots \\ \mu_1 + \epsilon_{1n_1} \\ \mu_2 + \epsilon_{21} \\ \vdots \\ \mu_2 + \epsilon_{2n_2} \\ \mu_3 + \epsilon_{31} \\ \vdots \\ \mu_r + \epsilon_{rn_r} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_r \end{pmatrix} + \begin{pmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \vdots \\ \epsilon_{1n_1} \\ \epsilon_{21} \\ \vdots \\ \epsilon_{2n_2} \\ \epsilon_{31} \\ \vdots \\ \epsilon_{rn_r} \end{pmatrix}$$

Cell Means Model in Matrix Notation

Let

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ \vdots \\ Y_{2n_2} \\ Y_{31} \\ \vdots \\ Y_{rn_r} \end{bmatrix}, \mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_r \end{bmatrix}, \quad \text{and } \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \vdots \\ \epsilon_{1n_1} \\ \epsilon_{21} \\ \vdots \\ \epsilon_{2n_2} \\ \epsilon_{31} \\ \vdots \\ \epsilon_{rn_r} \end{bmatrix}$$

Linear Model

Cell Means Model is an example of a **linear model** in matrix form:

$$Y = X\beta + \epsilon$$

- ullet The vector Y is length N and is the vector of observations.
- The matrix X is size $N \times r$ and is called the design matrix. It relates the observations to the parameters according to the model. It is fixed (non-random).
- ullet The vector eta is length $oldsymbol{r}$ and is the vector of parameter values.
- ullet The vector ϵ is length N and is the vector of random error terms.

Expected Values: Linear Model

ullet Assuming $E(\epsilon)=0$, we have

$$egin{array}{lll} E(\mathrm{Y}) &=& E(Xeta+\epsilon) \ &=& Xeta+E(\epsilon) \ &=& Xeta+0 \ &=& Xeta \end{array}$$

Cell Means Model

Expected Value for the cell means model:

$$E(\mathbf{Y}) = egin{pmatrix} 1 & 0 & 0 & \cdots & 0 \ 1 & 0 & 0 & \cdots & 0 \ \vdots & \vdots & \vdots & \vdots & \vdots \ 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ \vdots & \vdots & \vdots & \vdots & \vdots \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ \vdots & \vdots & \vdots & \vdots & \vdots \ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} egin{pmatrix} \mu_1 \ \mu_2 \ \mu_3 \ \vdots \ \mu_r \end{pmatrix} = egin{pmatrix} \mu_1 \ \mu_1 \ \mu_2 \ \vdots \ \mu_2 \ \vdots \ \mu_r \end{pmatrix}$$

Least Squares Estimation

- ullet Using our data, we will estimate the parameters in the eta vector using the method of least squares.
- Least squares estimation: Find the estimates of the population parameters that minimize the sum of squared deviations between the observed outcomes and the estimates of the expected outcomes. For cell means model, find $\hat{\mu}_1$, $\hat{\mu}_2$, \cdots $\hat{\mu}_r$ that minimize

$$\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{n_i}(Y_{ij}-\hat{\mu}_i)^2$$

or, equivalently,

$$(\mathbf{Y} - X\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - X\hat{\boldsymbol{\beta}})$$

Least Squares Estimation

- ullet If the design matrix $oldsymbol{X}$ is of full column rank, then
 - value of the parameter vector $oldsymbol{eta}$ that minimizes the squared errors is

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

- value $\hat{\beta}$ is unique since $(X^TX)^{-1}$ is unique.

Cell Means Model

- ullet Design matrix $oldsymbol{X}$ has full column rank.
- Unique least squares estimator for the parameter vector β is:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$=egin{bmatrix} n_1 & 0 & 0 & \cdots & 0 \ 0 & n_2 & 0 & \cdots & 0 \ 0 & 0 & n_3 & \cdots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & n_r \end{bmatrix}^{-1} egin{pmatrix} \Sigma_{j=1}^{n_1} Y_{1j} \ \Sigma_{j=1}^{n_2} Y_{2j} \ dots \ \Sigma_{j=1}^{n_r} Y_{rj} \end{pmatrix} = egin{pmatrix} ar{Y}_1. \ ar{Y}_2. \ dots \ ar{Y}_r. \end{pmatrix}$$

 This is the least squares estimator for the population parameters (population means)

Predicted Values: Linear Model

Using the least squares estimator $\hat{\beta}$, the predicted value for Y is:

$$\hat{\mathbf{Y}} = X\hat{\boldsymbol{\beta}}$$

$$= X(X^TX)^{-1}X^TY$$

$$= P_XY$$

where $P_X = X(X^TX)^{-1}X^T$ is the orthogonal projection operator onto the column space of matrix X.