ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

SÃO PAULO TECH SCHOOL

MONITORAMENTO E TRATAMENTO DE DADOS NO CULTIVO DE SOJA

SÃO PAULO ABRIL DE 2024

MONITORAMENTO E TRATAMENTO DE DADOS NO CULTIVO DE SOJA

Gustavo Gil

Giovanni Vitor

Ruth Fernandes

Pedro Henrique

Alejandro Castor

João Pedro Mori

"Só há duas opções nesta vida: se resignar ou se indignar.

E eu não vou me resignar nunca."

Darcy Ribeiro

CONTEXTO

O Brasil é atualmente o maior produtor de soja do mundo, desempenhando um papel vital no cenário internacional de exportação deste produto. **Em 2022, foram exportadas 78.730 milhões de toneladas de soja em grão,** evidenciando a relevância econômica deste produto.

Dada a importância desse setor, é fundamental que o cultivo da soja seja conduzido com extremo cuidado, visando garantir altos padrões de *produtividade e qualidade dos grãos.* Isso não apenas assegura maior índices de lucro aos agricultores, como também fortalece a posição agroexportadora do país.

Diante deste contexto, a ferrugem asiática emerge como uma das principais preocupações dos produtores de soja, devido ao seu potencial devastador. Segundo a Embrapa, quando não controlada, essa doença pode resultar em perdas de até 90% na produção de grãos. Originada no Brasil durante a safra 2001/2002, a ferrugem asiática agora é uma ameaça presente em lavouras por todo o país, devido à fácil disseminação de seus esporos pelo ar. É importante destacar que a ferrugem asiática prospera em temperaturas entre 18°C e 26°C, umidade maior ou igual a 80%, e molhamento foliar de ao menos seis horas (ideal entre 12h e 14h), fator que indica alta temperatura e alta umidade e que favorece a infecção e disseminação deste fungo. Além disso, a alta umidade e o prolongado período de molhamento foliar também são condições críticas para seu desenvolvimento. Chuvas frequentes e ambientes úmidos proporcionam as condições ideais para a proliferação desse fungo.

Essa doença fúngica pode surgir em diversas fases do cultivo, sendo mais comum durante o desenvolvimento vegetativo e reprodutivo da planta, especialmente em condições de clima úmido e quente. Assim, áreas em estágio vegetativo e até mesmo aquelas em fase de colheita podem ser afetadas, pois os esporos do fungo podem se dispersar rapidamente pelo ar e se depositar nas folhas da soja, onde germinam e infectam a planta.

O monitoramento contínuo das condições ambientais e do desenvolvimento das plantas é essencial para evitar a proliferação da ferrugem asiática. A utilização de sensores e tecnologias de monitoramento de dados permite aos agricultores identificarem rapidamente condições favoráveis para o surgimento da doença e implementar medidas preventivas. Assim, o monitoramento de dados por meio de sensores desempenha um papel crucial na proteção das plantações de soja contra perdas decorrentes da ferrugem asiática. Ao permitir uma intervenção proativa e direcionada, essas tecnologias ajudam a preservar a produtividade e a qualidade dos grãos, contribuindo para a sustentabilidade e competitividade do setor agrícola brasileiro.

É recomendável, de acordo com dados da EMBRAPA, que a colheita da soja quando as sementes atinjam umidade de 13% a 15%, que é uma faixa de umidade relativamente segura para minimizar injúrias mecânicas aos grãos pela colhedora. Essa etapa crítica do processo de colheita visa preservar a integridade dos grãos e garantir a qualidade do produto final. Além disso, durante o armazenamento pós-colheita, é essencial manter as condições ideais de temperatura e umidade para evitar o desenvolvimento de fungos e outras formas de deterioração.

Desse modo, ter locais de armazenamento adequados, equipados com sistemas de ventilação e controle de umidade, é fundamental para garantir a conservação dos grãos ao longo do tempo. Portanto, o uso de tecnologias e boas práticas agrícolas ao longo de todo o ciclo de produção da soja é essencial para garantir sua qualidade, segurança e competitividade tanto no mercado nacional, quanto no internacional. Assim, o investimento em inovação e sustentabilidade é fundamental para o desenvolvimento contínuo do setor agrícola brasileiro, fortalecendo sua posição como líder global na produção e na exportação de soja.

Diante deste cenário, cultivo da soja é uma atividade agrícola vital, que pode se beneficiar ainda mais através das tecnologias de monitoramento IoT. Desse modo, ao vincular a plantação de soja com os meios de avanços tecnológicos, aumenta-se também a produtividade. Reduzindo, assim, os custos operacionais. O promove práticas agrícolas sustentáveis. Dessa maneira, investir em tecnologias de monitoramento IoT é primordial para qualquer produtor de soja que deseja maximizar seus lucros e minimizar seu impacto ambiental.

Mediante o exposto, investir no monitoramento do plantio de soja é essencial, haja vista que, quem deseja exportar este produto estará sujeito a uma série de normas nacionais e internacionais. As normas internas são criadas pelo Governo Federal, seja pelo legislativo

ou então administrativamente, por meio da Secretaria de Comércio Exterior e pela Receita Federal do Brasil, e mediante dados desta instituição a qualidade da soja que será exportada é um aspecto crucial para garantir a satisfação do cliente e a conformidade com os padrões internacionais.

OBJETIVO

Vamos implementar um sistema de solução (IoT) que utiliza sensores de temperatura e umidade para monitorar continuamente as plantações de soja. Esses sensores irão **identificar e alertar** caso a temperatura ou umidade estejam propícios para o desenvolvimento da Ferrugem Asiática, contribuindo para reduzir as perdas em até 30%. Além disso, os dados coletados pelos sensores serão apresentados de forma gráfica em uma aplicação web, facilitando o acompanhamento e a tomada de decisões pelos agricultores. Esse monitoramento constante é essencial para **prevenir danos significativos às plantações**, garantindo uma produção mais estável e sustentável.

JUSTIFICATIVA

O Brasil é o maior produtor de soja do mundo, além disso também destaca-se na exportação desse produto. A exemplo disso, em 2022 foram exportadas 78.730 milhões de toneladas de soja, evidenciando, portanto, a importância econômica deste produto. No entanto, a ameaça da ferrugem asiática preocupa os produtores, podendo causar **perdas de até 90% na produção de grãos**. Assim, como forma de atenuar este ônus, é necessário investir no monitoramento constante das condições ambientais e do desenvolvimento das plantas. Desse modo, a utilização de sensores e tecnologias de monitoramento de dados permite aos agricultores identificarem rapidamente condições propícias para a proliferação

da doença e assim implementar medidas preventivas, visando preservar a produtividade e a qualidade dos grãos.

ESCOPO

Descrição do Projeto.

Vamos disponibilizar um sensor de temperatura e umidade que será implantado estrategicamente nos hectares de soja. Junto à entrega do sensor, é fornecido também o acesso a uma ferramenta de acompanhamento dos dados capturados pelo sensor, e algumas filtragem e análises de dados feitas através do dado central. Se trata de um modelo único contratado por assinatura (mensal, semestral e anual). Um serviço de manutenção do aparelho e reajustes de possíveis falhas será oferecido de acordo com cada plano contratado. A ideia é que sejam disponibilizadas funcionalidades para controle, monitoramento e acompanhamento dos dados de variação de temperatura e umidade, disparo de alarmes e notificações em tempo real e gestão de usuários de diferentes departamentos.

- Configuração dos sensores: Os sensores são uma das partes principais das soluções, pois são eles que farão a captura dos dados que irão gerar dados e valores aos clientes. Para que eles funcionem corretamente, eles precisam estar devidamente configurados;
- Banco de Dados: O banco de dados será responsável por armazenar os dados registrados pelos sensores, e dado cadastrados pelo próprio cliente, como por exemplo seu login de acesso, os hectares.
- Tela de boas-vindas ao usuário: Tela para que os clientes tenham sempre acesso aos propósitos da empresa e do projeto, podendo estar sempre alinhados aos nossos valores e ideias.
- Login/Cadastro: Cadastro e Login do acesso de empresa, feito pelo usuário administrador da empresa.

• Dashboard: A dashboard ficará disponível para os usuários "comuns" que serão criados pelo administrador. São estes usuários que ficarão responsáveis por analisar os dados detalhados fornecidos na dashboard. Nossa dashboard é composta por duas partes, sendo a primeira delas uma visão mais geral sobre tudo o que está disponível para ser monitorado e uma barra de pesquisa para que esse usuário tenha acesso à segunda parte que seria os indicadores de um hectare específico que esse usuário tenha escolhido ver.

2. Entregas do Projeto

- Entrega do site (Versão de acompanhamento para usuário).
- Treinamento de uso dos equipamentos e site para os funcionários e supervisores.
- Apresentação de termos e condições de uso dos equipamentos.
- Entrega dos sensores e liberação de acesso ao site.
- Agendamento de manutenções e/ou reposições de equipamentos (varia em cada plano).

3. Exclusões

- Entregas de equipamentos em quantidades que excedam àquelas oferecidas pelo plano contratado ou os termos acordados.
- Realização de manutenções e/ou reposições que diferem do plano contratado ou dos termos acordados.

4. Critérios de Aceitação

- 100% dos funcionários com contato direto aos equipamentos e/ou plataforma devem realizar o treinamento disponibilizado.
- Todas as manutenções fora de contrato devem ser discutidas com 10 dias de antecedente
- A plataforma deverá ser capaz de processar, registrar e alertar temperaturas irregulares em uma margem de tempo curta, que não exceda os 15seg.

PREMISSAS:

- Um sensor para cada hectare;
- Faixa de temperatura e umidade aceitável;
- Sensores precisos para medir corretamente a temperatura e umidade da soja;
- Conectividade confiável dos sensores para transmitir os dados;
- Inspeção e manutenção preventiva dos sensores a cada 4 meses;
- Alertas e notificações dos sensores para que medidas corretivas possam ser tomadas;

RESTRIÇÕES:

- Haverá somente o sensor de temperatura e umidade;
- Os sensores de temperatura e umidade serão instalados apenas em locais que possuam infraestrutura adequada para sua operação, como acesso à energia elétrica e conexão Wi-Fi de no mínimo 600 megabytes.
- O projeto deve operar dentro de limites ambientais estabelecidos para garantir a sustentabilidade a longo prazo e evitar impactos negativos no meio ambiente;
- O projeto vai ser exclusivo ao plantio de soja.

DIAGRAMA DE NEGÓCIO

DIAGRAMA DE SOLUÇÃO

PLANILHA DE BACKLOG

BACKLOG								
Entregável	Tamanho	FIB	Prioridade	SP	Responsável	Status		
Calculadora Protótipo	M	8	1	SP1	Gustavo	Done		
Calculadora_HTML	Р	5	2	SP1	João	Done		
Calculadora_JS	М	8	2	SP1	João	Done		
Calculadora_CSS	M	8	2	SP1	João	Done		
Site Home Protótipo	M	8	1	SP1	Gustavo	Done		
Site Sobre_nós Protótipo	M	8	1	SP1	Gustavo	Done		
Site Como_funcionamos Protótipo	M	8	1	SP1	Gustavo	Done		
Site Feedbacks Protótipo	M	8	1	SP1	Gustavo	Done		
Ferramenta de Gestão	P	5	1	SP1	Todos	Done		
GitHub Configurado	Р	5	1	SP1	Todos	Done		
BD_Individual	M	8	1	SP1	Todos	Done		
Arduino IDE	M	8	1	SP1	Todos	Done		
Arduino_Código	M	8	1	SP1	João	Done		
Arduino Gráfico	M	8	1	SP1	João	Done		
Arduino_Hardware	M	8	1	SP1	João	Done		
Arduino_Teste	Р	5	1	SP1	Todos	Done		
VM Instalação	Р	5	1	SP1	Todos	Done		
VM_Setup Cliente	М	8	2	SP1	Todos	Done		
Dashboard_Protótipo	M	8	2	SP2	Alejandro	Done		
Dashboard HTML	М	8	2	SP2	Alejandro	Done		
Dashboard_JS	M	8	2	SP2	Alejandro	Done		
Dashboard_CSS	М	8	2	SP2	Alejandro	Done		
Dashboard_NODE	M	8	2	SP2	Alejandro	Done		
Dashboard_Especificação	М	8	1	SP2	Alejandro	Done		
Site Home_HTML	М	8	2	SP2	Alejandro Pedro	Done		
Site Home_JS	G	13	2	SP2	Alejandro Pedro	Done		
Site Home_CSS	G	13	2	SP2	Alejandro Pedro	Done		
Diagrama de Solução	М	8	4	SP2	Ruth Giovanni	Done		
Analytics / Métricas	G	13	2	SP2	Ruth Alejandro	Done		
Planiha de Riscos	М	8	4	SP2	Todos	Done		
Solução_Validada	М	8	3	SP2	Ruth	Done		
Visão de Negócio	М	8	3	SP2	Ruth	Done		
BD_Consulta	Р	5	2	SP2	Ruth Giovanni	Done		
BD_Inserção	Р	5	2	SP2	Ruth Giovanni	Done		
BD_Modelagem	М	8	2	SP2	Ruth Giovanni	Done		
BD_VM	М	8	3	SP2	Ruth Giovanni	Done		
Arduino_BD	М	8	3	SP2	Gustavo Ruth	Done		
Arduino_VM	М	8	3	SP2	João	Done		
Login_Protótipo	М	8	1	SP2	Gustavo	Done		
Login_HTML	Р	5	2	SP2	João	Done		
Login_JS	Р	5	2	SP2	João	Done		
Login_CSS	М	8	2	SP2	João	Done		

GRÁFICO DE BURDOWN

GMUD (Gestão de Mudanças)

Nome do projeto:	Ferazzian										
Nome da instuição	SPTech										
Ordem de mudanças	Mudança	Tempo de conclusão	Rollback	Tempo máximo estipulado	Data máxima estipulada	Data em que foi concluida	Descrição detalhada da alteração	Mudança solitada por:	Impactos	Prioridade	Status
1	Implementação dashboard	5 dias	10/15 minutos	1 semana	20/abr	20/abr	Implementar a funcionalidade de Dashboard para o cliente ter uma visão macro de seus hectares	Prof. Fernanda Caramico	O cliente ter uma noção visual sobre a situação de seus hectares	Alta	Concluído
2	Regra de negócios sobre modelagem	5 dias	2 horas	1 semana	15/abr	14/abr	Mudança da regra de negócios sobre o cadastro de empresa em nosso site	Integrantes da equipe Ferazzian	O cliente saber como deve ser seu cadastro no site e como cadastrar funcionários	Média	Concluído
3	Implementação dat-aqu-ino	1 semana	1 hora	1 semana e 5 dias	08/jun	08/jun	Implementação de ferramentas da API dat-aqu-ino para a captura de dados e exibição no site	Prof. Fernanda Caramico	Os dados serem capturados em tempo real pelo arduino e exibição em uma dashboard com KPIs	Alta	Concluído
4	Implentação da API web- data-viz	2 semanas	1 dia	2 semanas	07fabr	07/abr	Ao implementar a web-data-viz podemos enviar e receber dados do banco de dados em tempo real	Prof. Fernanda Caramico	O cliente ter a opção de cadastro e login em nosso site	Alta	Concluído
5	Manuais de instrução funcionario e cliente	1 dia	10 minutos	1 semana e 3 dias	21/abr	21/abr	Manuais de instruções tanto para o cliente quanto para os funcionários conseguirem implementar o software corretamente	Prof. Fernanda Caramico	O cliente e o funcionários não cometerem erros por não saber como funciona a instalação do software	Alta	Concluído
6	impiementação da ferramenta de Help-Desk Jira como chamados de	3 dias	1 hora	5 dias	08/abr	08/abr	Ao termos uma feramente de Help-Desk como um suporte que o cliente pode fazer chamados e os integrantes da equipe podem realizá-los	Prof. Marcos Antônio	Os integrantes terem uma noção ampla dos erros que os clientes estão tendo, como uma forma de comunicação mais limpa	Média	Concluído
7	Implementação Bob-IA funcionando como suporte N3 de forma prática	1 semana	1 semana	1 semana e 3 dias	07/jun	07/jun	O Bob-IA é uma api de inteligência artifical que nos auxiliará como uma forma de suporte para o nosso projeto, sendo um ajuda para o suporte auxiliar o cliente	Prof. Fernanda Caramico	Os integrantes conseguirem auxiliar os cliente na parte do suporte com a Bob-IA	Alta	Concluído

FLUXOGRAMA

GitHub

O GitHub é uma plataforma de hospedagem de código-fonte e controle de versão. É amplamente usada por desenvolvedores e equipes de software para colaborar no desenvolvimento de projetos.

https://github.com/Ferazzian/projeto-ferazzian

MANUAL DE INSTALAÇÃO E DE INSTRUÇÃO

O manual de instalação e de instruções são documentos cruciais para garantir o uso eficaz e seguro de produtos da empresa.

REFERÊNCIAS BIBLIOGRÁFICAS:

- https://digifarmz.com/ferrugem-asiatica-da-soja-o-que-e-e-como-fazer-o-manejo/#:~:text=O%20pat%C3%B3geno%20%C3%A9%20favorecido%20em,(acima%20de%20120%20dias).
- https://agriculture.basf.com/br/pt/conteudos/cultivos-e-sementes/soja/perspectivas-da-ferrugem-na-soja-safra-19-20.html
- https://www.embrapa.br/busca-de-publicacoes/-/publicacao/926758/avaliacao-de-regimes-de-temperatura-no-desenvolvimento-da-ferrugem-asiatica-da-soja#:~:text=O%20regime%20de%20temperatura%20mais,%2F%2020o C%20(m%C3%A9dia%2024oC).
- https://www.iagro.ms.gov.br/condicoes-climaticas-favorecem-incidenciade-ferrugem/
- https://agriculture.basf.com/br/pt/conteudos/cultivos-e-sementes/soja/ferrugem-o-que-e.html#:~:text=A%20ferrugem%20asi%C3%A1tica%20%C3%A9%20uma,de%20Pesquisa%20Agropecu%C3%A1ria%20(Embrapa).
- https://www.embrapa.br/soja/ferrugem
- https://digifarmz.com/ferrugem-asiatica-da-soja-o-que-e-e-como-fazer-o-manejo/
- https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-evegetal/sanidade-vegetal/Ferrugem_Asiatica_da_Soja