1. Handelt es sich bei den folgenden Funktionen um Dichtefunktionen? Begründen Sie Ihre Antwort.

(a)
$$f_1(x) = \begin{cases} \sin(x) & \text{für } -\pi/2 \le x \le \pi/2 \\ 0 & \text{sonst} \end{cases}$$

Lösung:

Offensichtlich ist $f_1(x) = \sin(x) \le 0$ für alle $x \le 0$.

Damit kann $f_1(x)$ keine Dichtefunktion sein.

(b)
$$f_2(x) = \begin{cases} e^{-x} & \text{für } x \ge 0\\ 0 & \text{sonst} \end{cases}$$

Lösung:

Es muss gelten:

- f₂ ist nichtnegativ √ (offensichtlich)
 f₂ ist integrierbar √ (offensichtlich)
- f_2 ist normiert:

$$\int_{-\infty}^{\infty} f_2(t) \, \mathrm{d} \, t = \int_{0}^{\infty} e^{-t} \, \mathrm{d} \, t = \left[-e^{-t} \right]_{0}^{\infty} = 0 + 1 = 1 \quad \checkmark$$

Damit ist $f_2(x)$ eine Dichtefunktion.