

Boolean Model Disadvantages

- Similarity function is boolean
 - · Exact-match only, no partial matches
 - · Retrieved documents not ranked
- All terms are equally important
 - Boolean operator usage has much more influence than a critical word
- Query language is expressive but complicated

Lecture 7

Information Retrieval

The Vector Space Model

Documents and queries are both vectors

$$\vec{d}_i = (w_{i,1}, w_{i,2} \dots w_{i,t})$$

- each $w_{i,j}$ is a weight for term j in document i
- · "bag-of-words representation"
- Similarity of a document vector to a query
 vector = cosine of the angle between
 them

Lecture 7

Information Retrieval

Cosine Similarity Measure

$$sim(d_i, q) = \cos \theta$$

$$(x \cdot y = |x||y|\cos\theta)$$

$$= \frac{d_{i} \cdot q}{|d_{i}||q|} = \frac{\sum_{j} w_{i,j} \times w_{q,j}}{\sqrt{\sum_{j} w_{i,j}^{2}} \sqrt{\sum_{j} w_{q,j}^{2}}}$$

- Cosine is a normalized dot product
- Documents ranked by decreasing cosine value
 - \cdot sim(d,q) = 1 when d = q
 - · sim(d,q) = 0 when d and q share no terms

Lecture 7

Information Retrieval

- Higher weight = greater impact on cosine
- Want to give more weight to the more "important" or useful terms
- What is an important term?
 - If we see it in a query, then its presence in a document means that the document is relevant to the query.
 - How can we model this?

Lecture 7

Information Retrieval

- Documents are collection of C objects
- Query is a vague description of a subset A of C
- □ Problem: partition C into A and ~A
- We want to determine
 - · which object features best describe members of A
 - which object features best differentiate A from ~A
- For documents,
 - · frequency of a term in a document
 - · sequency of a term across the collection

Lecture 7

Information Retrieval

Term Frequency (tf) factor

- How well does a term describe its document?
 - if a term t appears often in a document,
 then a query containing t should retrieve that document
 - frequent (non-stop) words are thematic
 flow, boundary, pressure, layer, mach

$$tf_{i,j} = \frac{f_{i,j}}{\max_{j} f_{i,j}}$$

$$tf_{i,j} = 1 + \log f_{i,j}$$

$$tf_{i,j} = K + \frac{(1 - K) \times f_{i,j}}{\max_{j} f_{i,j}}$$

Lecture 7

Information Retrieval

inverse Document Frequency (idf) factor

- A term's scarcity across the collection is a measure of its importance
 - Zipf's law: term frequency ≈ 1/rank
 - importance is inversely proportional to frequency of occurrence

 $idf_t = \log(1 + \frac{N}{n_t})$ N - n

$$idf_t = \log(\frac{N - n_t}{n_t})$$

N = # documents in coll $n_t = \#$ documents containing term t

Lecture 7

Information Retrieval

tf-idf weighting

A weighting scheme where

$$W_{d,t} = tf_{d,t} \times idf_t$$

is called a tf-idf scheme

- tf-idf weighting is the most common term weighting approach for VSM retrieval
- · There are many variations...

Lecture 7

Information Retrieval

tf-idf Monotonicity

- "A term that appears in many documents should *not* be regarded as *more important* than one that appears in few documents."
- "A document with many occurrences of a term should *not* be regarded as *less important* than a document with few occurrences of the term."

Lecture 7

Information Retrieval

Length Normalization

$$\frac{d_i \cdot q}{|d_i||q|}$$

- Why normalize by document length?
- Long documents have
 - Higher term frequencies: the same term appears more often
 - More terms: increases the number of matches between a document and a query
- Long documents are more likely to be retrieved
- The "cosine normalization" lessens the impact of long documents

Lecture 7

Information Retrieval

VSM Example

d	Document vectors <tf<sub>d,t></tf<sub>										W_d
	col	day	eat	hot	lot	nin	old	pea	por	pot	
1	1.0			1.0				1.7	1.7		2.78
- 2								1.0	1.0	1.0	1.73
3		1.0				1.0	1.0				1.73
_ 4	1.0			1.0						1.7	2.21
5								1.7	1.7		2.40
- 6			1.0		1.0						1.41
idf _t	1.39	1.95	1.95	1.39	1.95	1.95	1.95	1.1	1.1	1.39	
	· q1	l = ea	t								
	· q2	2 = pc	rridge	9							
	· q3	3 = hc	t porr	idge							
	· q∠	1 = ea	t nine	day	old po	orridge	9				

Vector Space Model

Advantages

Disadvantages

- Ranked retrieval
- Terms are weighted by importance
- Partial matches

- Assumes terms are independent
- Weighting is intuitive, but not very formal

Lecture 7

Information Retrieval

Implementing VSM

$$sim(q,d) = \frac{1}{W_q W_d} \sum_{t} w_{q,t} \times w_{d,t}, W_d = \sqrt{\sum_{t} w_{d,t}^2}$$

- Need within-document frequencies in the inverted list
- W_a is the same for all documents
- w_{q,t} and w_{d,t} can be accumulated as we process the inverted lists
- W_d can be precomputed

Lecture 7

Information Retrieval

Cosine algorithm

- 1. A = {} (set of accumulators for documents)
- 2. For each query term t
 - · Get term, f, and address of I, from lexicon
 - \cdot set idf, = log(1 + N/f,)
 - Read inverted list I,
 - For each <d, f_{d,t} > in I_t
 - If A_d ∉ A, initialize A_d to 0 and add it to A
 - $\cdot A_d = A_d + (1 + \log(f_{d,t})) \times idf_t$
- 3. For each A_d in A, $A_d = A_d/W_d$
- 4. Fetch and return top r documents to user

Lecture 7

Information Retrieval

- How to store accumulators?
 - · static array, 1 per document
 - · grow as needed with a hash table
- How many accumulators?
 - can impose a fixed limit
 - · quit processing I,'s after limit reached
 - · continue processing, but add no new Ad's

Lecture 7

Information Retrieval

Managing Accumulators (2)

- To make this work, we want to process the query terms in order of decreasing idf,
- Also want to process I_t in decreasing tf_{d,t} order
 - · sort I, when we read it in
 - · or, store inverted lists in f_{d,t}-sorted order

$$<5$$
; (1,2) (2,2) (3,5) (4,1) (5,2)> $< f_t$; (d, $f_{d,t}$)...>

$$<5$$
; (3,5) (1,2) (2,2) (5,2) (4,1)> sorted by $f_{d,t}$

$$<5$$
; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> $< f_t$; ($f_{d,t}$, $c:d,...$)...>

This can actually compress better, but makes
 Boolean queries harder to process

Lecture 7

Information Retrieval

Getting the top documents

- Naïve: sort the accumulator set at end
- Or, use a heap and pull top r documents
 - much faster if r << N
- Or better yet, as accumulators are processed to add the length norm (W_d):
 - · make first r accumulators into a min-heap
 - for each next accumulator
 - if A_d < heap-min, just drop it
 - · if A_d > heap-min, drop the heap-min, and put A_d in

Lecture 7

Information Retrieval