MATH2022 Take Home Quiz 2

Student ID: 480048691

April 29, 2020

Question 1 Answer: B.

We have \mathbb{Z} , \mathbb{Z}_5 , and \mathbb{Z}_6 are cyclic groups under addition since 1 and -1 always generate \mathbb{Z} and \mathbb{Z}_n with respect to addition.

We have $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(a,b) | a \in \mathbb{Z}_2, b \in \mathbb{Z}_3\} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$ and that $\langle (1,1) \rangle$ generates everything in $\mathbb{Z}_2 \times \mathbb{Z}_3$ which makes this group cyclic under addition.

Lastly, we have $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(a,b)|a,b \in \mathbb{Z}_2\} = \{(0,0),(0,1),(1,0),(1,1)\}.$ Each of the elements generate themselves and the identity element:

$$\langle (0,0) \rangle = \{(0,0)\}$$
$$\langle (0,1) \rangle = \{(0,1),(0,0)\}$$
$$\langle (1,0) \rangle = \{(1,0),(0,0)\}$$
$$\langle (1,1) \rangle = \{(1,1),(0,0)\}$$

None of the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$ generates $\mathbb{Z}_2 \times \mathbb{Z}_2$. Therefore, $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic under addition.

Page 2 480048691

Question 2 Answer: C.

Consider the group G of symmetries of a regular pentagon, generated by a rotation $\alpha = (1\ 2\ 3\ 4\ 5)$ and a reflection along the vertical axis $\beta = (2\ 5)(3\ 4)$.

We have the facts that $\alpha^5 = \beta^2 = 1$ and $\alpha\beta = \beta\alpha^{-1} = \beta\alpha^4$. Furthermore, $\beta^{-1}\alpha^i\beta = \alpha^{-i}$ for all i and $\beta^{-1} = \beta$,

$$\beta \alpha^3 \beta^3 \alpha^{-3} \beta \alpha^7 = \beta \alpha^3 \beta^3 \beta^{-1} \alpha^3 \beta \beta \alpha^7$$

$$= \beta \alpha^3 \alpha^3 \alpha^7$$

$$= \beta \alpha^{13}$$

$$= \beta \alpha^3$$

$$= \beta \alpha^4 \alpha^{-1}$$

$$= \alpha \beta \alpha^{-1}$$

$$= \alpha \alpha \beta$$

$$= \alpha^2 \beta.$$

Question 3 Answer: E.

Write the system of linear equations as an augmented matrix and work over $\mathbb{Z}_3 = \{0, 1, 2\}$:

It appears that the system is inconsistent over \mathbb{Z}_3 . Therefore, there is no solutions for (x, y, z, w).

Question 4 Answer: A.

We have
$$R_{\pi/3}^6 = R_{6\pi/3} = R_{2\pi} = I$$
 while $T_{\pi/3}^6 = (T_{\pi/3}^3)^2 = I$.

Question 5 Answer: A.

Performing row reduction on matrix M over \mathbb{R} :

$$\begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \text{ row operation corresponds to } N_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \text{ row operation corresponds to } N_2 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

Page 3 480048691

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ row operation corresponds to } N_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

We have $I=N_3N_2N_1M=M^{-1}M$. It turns out that $N_3=E_2,N_2=E_1,N_1=E_3$.

Therefore, $I = N_3 N_2 N_1 M = E_2 E_1 E_3 M$.

Question 6 Answer: C.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
. Observe that
$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4)$$
 yielding eigenvalues -1 and 4 over \mathbb{R} , which is 6 and 4 (respectively) over \mathbb{Z}_7 .

Question 7 Answer: E.

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
 with entries from $\mathbb{Z}_3 = \{0, 1, 2\}$. Observe that
$$\det(\lambda I - M) = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) \text{ yielding eigenvalues 1 and 2.}$$

Eigenspace for $\lambda = 1$

$$I - M = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, yielding $\left\{ \begin{bmatrix} t \\ 0 \end{bmatrix} \middle| t \in \mathbb{Z}_3 \right\}$.

Eigenspace for $\lambda = 2$

$$2I - M = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$
, yielding $\left\{ \begin{bmatrix} t \\ t \end{bmatrix} \middle| t \in \mathbb{Z}_3 \right\}$.

We choose eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ corresponding to eigenvalues 2 and 1 respectively. So $M = PDP^{-1}$ with $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Page 4 480048691

Question 8 Answer: A.

We have
$$M = PDP^{-1}$$
 with $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $P = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.

Observe that $P^{-1} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$. Thus, for all positive k,

$$M^{k} = PD^{k}P^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{k} & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 3^{k} \\ 2^{k} & 3^{k} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 3^{k} & 0 \\ 3^{k} - 2^{k} & 2^{k} \end{bmatrix}.$$

Question 9 Answer: B.

We have matrix $M=\begin{bmatrix}0&0&1\\0&1&0\\1&0&1\end{bmatrix}$. The characteristic polynomial of M is:

$$det(\lambda I - M) = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda \begin{vmatrix} \lambda - 1 & 0 \\ 0 & \lambda - 1 \end{vmatrix} - 1 \begin{vmatrix} 0 & -1 \\ \lambda - 1 & 0 \end{vmatrix}$$
$$= \lambda(\lambda - 1)(\lambda - 1) - (\lambda - 1)$$
$$= (\lambda - 1)(\lambda^2 - \lambda - 1)$$
$$= \lambda^3 - 2\lambda^2 + 1$$

By the Cayley-Hamilton Theorem, $\chi(M)=M^3-2M^2+I=0$. That is, $M^3-2M^2=-I\iff M^2(M-2I)=-I\iff M^2(2I-M)=I$ which implies

$$M^{-1} = M(2I - M) = -M^2 + 2M.$$

Question 10 Answer: D.

Consider matrix $D = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$. Observe that $det(\lambda I - D) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda - 2 \end{vmatrix} = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 \text{ yielding two non-distinct}$

Page 5 480048691

eigenvalues $\lambda_1 = \lambda_2 = 1$.

Eigenspace for $\lambda = 1$:

$$I - D = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, yielding $\left\{ \begin{bmatrix} -t \\ t \end{bmatrix} \middle| t \in \mathbb{C} \right\}$.

Possible eigenvectors are $\begin{bmatrix} -1\\1 \end{bmatrix}$, $\begin{bmatrix} -2\\2 \end{bmatrix}$, etc. However, if we attempt to form

matrix P with these two eigenvectors then $P = \begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix}$ has zero determinant.

This implies P^{-1} does not exist and D is not diagonalisable over \mathbb{C} .

Question 11 Answer: D.

Consider the function f(x,y) = (y-x, x-y)Let $\mathbf{v_1} = (x_1, y_1)$ and $\mathbf{v_2} = (x_2, y_2)$

$$f(\mathbf{v_1} + \mathbf{v_2}) = f((x_1, y_1) + (x_2, y_2))$$

$$= f(x_1 + x_2, y_1 + y_2)$$

$$= ((y_1 + y_2) - (x_1 + x_2), (x_1 + x_2) - (y_1 + y_2))$$

$$= (-x_1 - x_2 + y_1 + y_2, x_1 + x_2 - y_1 - y_2)$$

$$= (-x_1 + y_1 - x_2 + y_2, x_1 - y_1 + x_2 - y_2)$$

$$= (-x_1 + y_1, x_1 - y_1) + (-x_2 + y_2, x_2 - y_2)$$

$$= f(x_1, y_1) + f(x_2, y_2)$$

$$= f(\mathbf{v_1}) + f(\mathbf{v_2})$$

which verifies f preserves addition. Furthermore, let $\mathbf{v} = (x, y)$ and $\lambda \in \mathbb{R}$:

$$f(\lambda \mathbf{v}) = f(\lambda(x, y))$$

$$= f(\lambda x, \lambda y)$$

$$= (\lambda y - \lambda x, \lambda x - \lambda y)$$

$$= (\lambda(y - x), \lambda(x - y))$$

$$= \lambda(y - x, x - y)$$

$$= \lambda f(x, y)$$

$$= \lambda f(\mathbf{v})$$

which verifies f preserves scalar multiplication. Therefore, f(x,y) = (y - x, x - y) defines a linear combination.

Page 6 480048691

Question 12 Answer: C.

We have the effect of f(x,y)=(5x-y,2x+y,y-x) on standard basis vector is as follows:

$$f(1,0) = (5,2,-1)$$
 and $f(0,1) = (-1,1,1)$

transposing into columns, we get the matrix corresponding to the linear trans-

formation $\begin{bmatrix} 5 & -1 \\ 2 & 1 \\ -1 & 1 \end{bmatrix}.$

Question 13 Answer: E.

Question 14 Answer: B.

Given $\alpha = (1\ 3\ 2)(4\ 6\ 5)(7\ 8)$ and $\beta = \gamma^{-1}\alpha\gamma = (1\ 4\ 2)(8\ 5\ 6)(3\ 7)$, our goal is to find the permutation γ such that β is the conjugate of α by γ .

Consider $\gamma = (5 \ 8 \ 3 \ 4)$, for the first cycle of α , we have:

The image of 1 under γ is 1.

The image of 3 under γ is 4.

The image of 2 under γ is 2.

For the second cycle of α :

The image of 4 under γ is 5.

The image of 6 under γ is 6.

The image of 5 under γ is 8.

For the third cycle of α :

The image of 7 under γ is 7.

The image of 8 under γ is 3.

Thus, $\alpha^{\gamma} = (1 \ 4 \ 2)(5 \ 6 \ 8)(7 \ 3) = (1 \ 4 \ 2)(8 \ 5 \ 6)(3 \ 7) = \beta$.

Page 7 480048691

Question 15 Answer: D. We have the configuration D

	3	8	15
5	2	10	6
13	7	11	12
9	4	1	14

can be transformed into

3	8	15	6
5	2	10	12
13	7	11	14
9	4	1	

corresponds to $(1\ 15\ 3)(2\ 6\ 4\ 14\ 12\ 8)(7\ 10)(13\ 9)$ which is a product of an odd number of transpositions (2+5+1+1=9). Hence the configuration of D is impossible to reach from the 15-puzzle square.