보충 자료

And, Or 증명

And				
X1	X2	Υ		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

And				
X1	X2	Y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

And				
X1	X2	Y		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

And, Or 증명

$$[0, 0][w1+w2]+b^{0.5} => b^{0.5} ... ***$$

$$[1, 1][w1+w2]+b`<0.5 => [1, 1] \begin{bmatrix} w1\\ w2 \end{bmatrix}+b`<0.5$$

$$[w1+w2] => \begin{bmatrix} w1 \\ w2 \end{bmatrix}$$
 => $w1 + w2 < 0.5 - b ... *$

$$\begin{bmatrix} 1, \ 0 \end{bmatrix}$$
 $[w1+w2]+b^{\circ} > 0.5$ => $w1^{\circ}+w2^{\circ} > 1-2b ... **$

*, ** =>
$$2(0.5 - b) < w1'+w2' < 0.5 - b$$

Sigmoid Function Xor Sigmoid Function Classification 증명_1 X_1 w, bw,b X_2

Sigmoid Function Xor Sigmoid Function Classification 증명_1 X_1 *y*^ w,b X_2

Chain Rule

$$\frac{\partial g}{\partial w} \times \frac{\partial f}{\partial g} \times \frac{\partial L}{\partial f} \times \frac{\partial L}{\partial L} = x*2L = 2x(f - f) = 2x(H(x) - y)$$

$$Cost \Rightarrow 2x(wx - y)$$

1.
$$g = x * w$$

2.
$$f = g + b$$

3.
$$f - f' = L'$$

$$4. L^2 = L$$

$$1. \frac{\partial g}{\partial w} = x$$

$$2. \frac{\partial f}{\partial a} = 1, \ \frac{\partial f}{\partial b} = 1$$

3.
$$\frac{\partial L}{\partial f} = 1$$
, $\frac{\partial L}{\partial f} = 1$

$$4. \frac{\partial L}{\partial L} = 2L$$

Sigmoid

Sigmoid(x) =>
$$\frac{d}{dx}(1 + e^{-x})^{-1}$$

= $(-1)\frac{1}{(1+e^{-x})^2}(1 + e^{-x})$
= $(-1)\frac{1}{(1+e^{-x})^2}(0 + e^{-x})\frac{d}{dx}(-x)$
= $(-1)\frac{1}{(1+e^{-x})^2}(e^{-x})(-1)$
= $\frac{e^{-x}}{(1+e^{-x})^2} = \frac{1+e^{-x}-1}{(1+e^{-x})^2} = \frac{1+e^{-x}}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2}$
= $\frac{1+e^{-x}}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2} = \frac{1}{1+e^{-x}}(1 - \frac{1}{1+e^{-x}})$
 $\Rightarrow Sig(x)(1 - Sig(x))$

Xor 증명_1

$$W := W - \alpha \frac{\partial}{\partial W} Cost(w)$$

$$W := W - \alpha \frac{\partial}{\partial W} \frac{1}{m} \sum_{x} (H(x) - y)^2$$

$$W := W - \alpha \frac{1}{m} \sum_{x} 2(H(x) - y)H(x) \qquad W = W'+W''+W'''$$

$$H`(x) = \frac{\partial y}{\partial w`} + \frac{\partial y}{\partial w``} + \frac{\partial y}{\partial w```}$$

$$\frac{\partial y}{\partial h^{`}} \times \frac{\partial h^{`}}{\partial f^{`}} \times \frac{\partial f^{`}}{\partial g^{`}} \times \frac{\partial g^{`}}{\partial w^{`}} = \frac{\partial y}{\partial w^{`}} = xSig(f^{`})(1 - Sig(f^{`}))$$

$$\frac{\partial y}{\partial h} \times \frac{\partial h}{\partial f} \times \frac{\partial f}{\partial g} \times \frac{\partial g}{\partial w} \times \frac{\partial g}{\partial w} = \frac{\partial y}{\partial w} = xSig(f)(1 - Sig(f))$$

$$\frac{\partial y}{\partial h} \times \frac{\partial h}{\partial f} \times \frac{\partial f}{\partial g} \times \frac{\partial g}{\partial w} \times \frac{\partial g}{\partial w} = \frac{\partial y}{\partial w} = xSig(f''')(1 - Sig(f'''))$$

Thank You