Conversion analogique numérique

Le concept de « conversion analogique-numérique : du monde physique vers le monde numérique !

Pour faire une mesure, on a besoin:

- d'un phénomène physique à mesurer (une tension, une température, une vitesse,...)
- d'une échelle de mesure.
- d'une tension de référence (VREF).

Un convertisseur analogique - numérique transforme donc une grandeur physique (tension, courant,) en une valeur numérique.

Généralement, il possède:

- une entrée analogique (courant, tension,...)
- plusieurs sorties numériques constituant la valeur **N** en sortie. **N** dépend de la résolution du C.A.N (8 bits, 10 bits, ...) ainsi que de VREF (tension de référence).
- une entrée " début de conversion " qui permet de démarrer la conversion (Start)
- une sortie " fin de conversion " qui indique que la conversion est terminée (End)

La plupart des microcontrôleurs disposent en interne de ce que l'on appelle un module de conversion analogique / numérique avec une résolution de 8 bits, 10 bits, 12 bits, \dots . La relation entre le nombre N et la tension VCAN à convertir est donnée par :

$$N = \frac{VCAN}{VREF} * (2^n - 1) \text{ (n étant le nombre de bits du C.A.N : 8, 10, 12,...)}$$

Autrement dit, pour une résolution de 10 bits, on a une règle numérique de 1024 niveaux (de 0 à 1023) correspondant à une tension en entrée variant de 0V à VREF (ici de 0 à 5V)

Il suffit simplement d'appliquer en entrée une tension comprise entre 0 et 5V sur une des broches dite « analogique » pour obtenir une valeur c o m p r i s e entre 0 et 1023 correspondant au niveau de la tension présente sur la broche!

Dans notre exemple : VCAN = 1,7V, VREF = 5V et le nombre de bits est de 10.

$$N = \frac{VCAN}{VREF} * (2^n - 1)$$
 (n étant le nombre de bits, ici 10)

$$N = 1.7 * (2^{10} - 1) = 1.7 * 1023 = 347,82$$
 qu'on arrondit à 348 car N est un entier.

CAN DU PIC 16F887

FIGURE 9-1: ADC BLOCK DIAGRAM

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	
bit 7	1		4			7	bit 0	
Choix fréq	/ Juence CAN	Ch	oix entrée C	AN à conve	rtir	/ Start	Alimentation CAN	on du

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

(à droite ou à gauche)

FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT

REGISTER 9-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES9 | ADRES8 | ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 |
| bit 7 | | | | | | | bit 0 |

 Legend:

 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 9-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES1	ADRES0	_	_	_	_	_	_
bit 7 bit 0							

REGISTER 9-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x	R/W-x						
_	_	_	_	_	_	ADRES9	ADRES8
bit 7							bit 0

 Legend:
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 9-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |