Calculus I, Chapter 1 Problems

Functions, domain and range

Q1. By applying the vertical line test, or otherwise, determine whether each of the following equations gives a function y(x)

(a)
$$x^2 + (y-1)^2 = 1$$

(b)
$$y = x^2 - 2x + 1$$

(c)
$$x + |y| = 1$$

(d)
$$|x| + y = 1$$

(e)
$$y^2 = 4x^2$$

Q2. State the domain and range of each of the following functions

(a)
$$f(x) = |x - 1| - 7$$

(b)
$$f(x) = 5 - \sqrt{2x}$$

(c)
$$f(x) = 2\sqrt{x^2 - 3}$$

(d)
$$f(x) = 2x^2/(x^2+4)$$

(e)
$$f(x) = -x/(x^2 - 16)$$

(f)
$$f(x) = e^{1/(x^2-4)}$$

Even and odd functions

 $\ensuremath{\mathsf{Q3}}.$ Are the following functions even, odd or neither? Justify your answers.

(a)
$$f(x) = (x-1)(x-2)$$

(b)
$$f(x) = \sum_{k=0}^{n} x^{2k+1}$$

(c)
$$f(x) = \sin(x^2)$$

(d)
$$f(x) = \frac{x}{(x^2+1)\cos x}$$

Q4. Are the following functions even, odd or neither? Justify your answers.

(a)
$$f(x) = e^x$$

(b)
$$g(x) = \tan x$$

(c)
$$h(x) = xe^{-\frac{1}{2}|\log x^2|}$$

(d)
$$k(x) = \log |x|$$

(e)
$$p(x) = (x^3 + x)/(x^3 - x)$$

$$(f) q(x) = \sin^2(4x)$$

(g)
$$r(x) = x^2 - 4\sin x$$

Q5. If $f: \mathbb{R} \to \mathbb{R}$ is an even function and $g: \mathbb{R} \to \mathbb{R}$ is an odd function then determine whether the following functions are even, odd or neither? Justify your answers.

(a)
$$f_1(x) = \begin{cases} f(x) & \text{if } x > 0 \\ -f(x) & \text{if } x < 0 \end{cases}$$

(b)
$$f_2(x) = f(x) + |f(x)|$$

(c)
$$f_3(x) = (g \circ f)(x)$$

(d)
$$f_4(x) = (f \circ g)(x)$$

(e)
$$f_5(x) = (g \circ g)(x)$$

Q6. Write each of the following functions as the sum of an even function $f_{even}(x)$ and an odd function $f_{odd}(x)$.

(a)
$$f(x) = x^3 - 5x + 4$$

(b)
$$f(x) = e^{x^3}$$

(c)
$$f(x) = \log |x + 2|$$

(d)
$$f(x) = x^3/(x^2 - 1)$$

Composition, inverse and injective functions

- Q7. Write a formula for the functions $f\circ g$ and $g\circ f$ and find the domain and range of each, where $f(x)=x^2$ and $g(x)=1-\sqrt{x}$.
- Q8. Given f(x) = x 1 and g(x) = 1/(1+x), find

(a)
$$(f \circ g)(\frac{1}{2})$$

(b)
$$(f \circ f)(2)$$

(c)
$$(g \circ f)(x)$$

(d)
$$(g \circ g)(2)$$

- Q9. Given $u(x)=2x-3,\ v(x)=x^4$ and f(x)=1/x, find $(f\circ (v\circ u))(x)$ and $(v\circ (f\circ u))(x)$
- Q10. For each f(x) given below, find the inverse function $f^{-1}(x)$ and identify its domain and range.

(a)
$$f(x) = x^5$$

(b)
$$f(x) = x^4, x \ge 0$$

(c)
$$f(x) = \frac{1}{2}x - \frac{7}{2}$$

(d)
$$f(x) = 1/x^3, x \neq 0$$

Q11. Which of the following functions are injective? Find the inverses of those which are and specify the domain of the inverse.

(a)
$$f(x) = (1-x)^2$$
 in [1,2]

(b)
$$f(x) = (x-1)/(x+2)$$
 in $\mathbb{R} \setminus \{-2\}$

(c)
$$f(x) = x^2 + 2x - 1$$
 in $[-1, 1]$

(d)
$$f(x) = x^2 + 2x - 1$$
 in $[-2, 2]$

Q12. Complete the table.

g(x)	f(x)	$(f \circ g)(x)$
1/x		x
$\frac{1}{x-1}$	x	
	$\frac{x-1}{x}$	$\frac{x}{x+1}$
	\sqrt{x}	x
\sqrt{x}		x

Q13. For $x \neq 0, 1$, define the following six functions

$$f_1(x) = x, \ f_2(x) = \frac{1}{x}, \ f_3(x) = 1 - x, \ f_4(x) = \frac{1}{1 - x}, \ f_5(x) = \frac{x - 1}{x}, \ f_6(x) = \frac{x}{x - 1}.$$

These have the property that the composition of any two of these functions is again one of these functions.

Complete the following table

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1						
f_2 f_3			f_4			
f_3						
f_4 f_5 f_6						
f_6						