An introduction to boson-sampling

In no particular order, Peter P. Rohde, **, ** Bryan Gard, Keith R. Motes, and Jonathan P. Dowling

**Centre for Engineered Quantum Systems, Department of Physics and Astronomy,

Macquarie University, Sydney NSW 2113, Australia

(Dated: April 10, 2014)

I. INTROD	UCTION
-----------	--------

- II. MOTIVATION FOR LINEAR OPTICS QUANTUM COMPUTING
- III. INTRODUCTION TO LINEAR OPTICAS QUANTUM COMPUTING
- IV. WHY IS LINEAR OPTICS QUANTUM COMPUTING HARD?
- V. INTRODUCTION TO BOSON-SAMPLING
 - A. The model
 - B. Sampling problems vs. decision problems
- C. Why is boson-sampling so much easier than linear optics quantum computing?
 - VI. WHY IS BOSON-SAMPLING COMPUTATIONALLY HARD?
- A. The connection with matrix permanents
- B. The complexity of matrix permanents
 - C. Errors in boson-sampling

Discuss the 1/poly(n) bound

VII. BOSON-SAMPLING AND THE EXTENDED CHURCH-TURING THESIS

Why experimental boson-sampling will not elucidate the ECT thesis

VIII. BOSON-SAMPLING WITH OTHER CLASSES OF QUANTUM OPTICAL STATES

IX. HOW TO BUILD A BOSON-SAMPLING DEVICE

A. Photon sources

SDPC

B. Linear optics networks

Reck et al. Waveguides Discrete elements

C. Photo-detection

don?t need to be number resolving

X. CONCLUSION

Acknowledgments

This research was conducted by the Australian Research Council Centre of Excellence for Engineered Quantum Systems (Project number CE110001013).