به نام ایزد بخشاینده مهربان

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

دانشكده مهندسي كامپيوتر

گزارش تمرین دوم

درس مبانی رایانش ابری

استاد: دکتر سید احمد جوادی

اعضای گروه:

على شفيعي – ٩٥٣١٨٠١

سید سجاد پیشوائیان – ۹۵۳۱۰۱۵

دی ۱۳۹۹

لازم به ذکر است که تمامی بخشها با همکاری هر دو عضو با استفاده از skpye زده شده است و پیادهسازی کاملا در هر بخش دو نفره و اشتراکی بوده است.

بخش اول:

سوال اول: از آنجا که اجرای عملیات روی I/O زمانبر است و Hadoop map-reduce نیز وابستگی زیادی به دیسک دارد، از طرف دیگر در اجرا به صورت map-reduce، ابتدا عملیات map باید کامل انجام شود و سپس عملیات reduce اجرا می شود که در صورتی که حجم دادهها بالا باشد، با توجه به اینکه map-reduce روی دیسک انجام می شود، بنابراین زمان قابل ملاحظهای در این نوع اجرا تلف می شود.

سوال دوم: Apache Spark طبق گفته خود سازنده "یک موتور تجزیه و تحلیل متحد برای پردازش داده در مقیاس بزرگ" است. Spark توسط بنیاد غیرانتفاعی نرم افزار Apache که صدها پروژه نرم افزاری منبع باز منتشر کرده است ، نگهداری می شود. بیش از ۱۲۰۰ توسعه دهنده از زمان شروع پروژه در Spark مشارکت داشته اند.

Spark که ابتدا در AMPLab UC Berkeley توسعه یافته بود ، برای اولین بار در سال ۲۰۱۰ Hadoop به عنوان یک پروژه منبع باز منتشر شد. Spark از چارچوب محاسبات توزیع شده MapReduce به عنوان پایه و اساس خود استفاده می کند. Spark با هدف حفظ بسیاری از مزایای MapReduce برای بهبود جنبه های مختلف پروژه MapReduce مانند عملکرد و سهولت استفاده در نظر گرفته شد.

Spark شامل یک موتور پردازش اطلاعات اصلی و همچنین کتابخانه هایی برای SQL ، یادگیری ماشین و پردازش جریان است. با استفاده از API برای جاوا ، اسکالا ، پایتون و R، Spark از جذابیت گسترده ای در بین توسعه دهندگان برخوردار است – به این ترتیب شهرت "چاقوی ارتش سوئیس" در پردازش داده های بزرگ را بدست آورد.

Apache Spark داده ها را در حافظه دسترسی تصادفی (RAM) پردازش می کند ، در حالی که Hadoop MapReduce داده ها را پس از نقشه بر روی دیسک ادامه می دهد یا عملکرد را کاهش می دهد. بنابراین ، از نظر تئوری ، اسپارک از Hadoop MapReduce پیشی می گیرد.

با این وجود Spark به حافظه زیادی احتیاج دارد. Spark ، دقیقاً مانند پایگاه های داده استاندارد، فرایندی را در حافظه بارگذاری می کند و آن را تا اطلاع ثانوی به دلیل ذخیره سازی در آن نگه می دارد. اگر Spark در Hadoop YARN اجرا شود یا اگر داده ها خیلی بزرگ باشند و نتوانند کاملاً در حافظه جا بگیرند ، Spark ممکن است دچار افت شدید عملکرد شود.

از طرف دیگر ، MapReduce به محض انجام کار فرایندهای خود را از بین می برد ، بنابراین می تواند به راحتی در کنار سایر سرویس ها با اختلاف عملکرد جزئی کار کند.

Spark برای محاسبات تکراری که باید چندین بار از داده های مشابه عبور کند ، حرف اول را می زند. اما وقتی صحبت از مشاغل ETL یک مرحله ای - مثلاً تغییر شکل داده ها یا یکپارچه سازی داده ها - می شود، این دقیقاً همان چیزی است که MapReduce برای آن طراحی شده است. هنگامی که تمام داده ها در حافظه قرار می گیرند ، به ویژه در خوشه های اختصاصی ، Spark عملکرد بهتری دارد. Hadoop MapReduce برای داده هایی طراحی شده است که در حافظه جای نمی گیرند و می توانند در کنار سایر سرویس ها به خوبی اجرا شوند.

مقایسه spark و Hadoop map-reduce:

Apache Spark می تواند داده های real-time را پردازش کند ، یعنی	real-time تجزیه و تحلیل
داده هایی که از جریان های رویداد در زمان واقعی می آیند ، با نرخ میلیون	
ها رویداد در ثانیه ، به عنوان مثال. داده های توییتر. قدرت Spark توانایی	
پردازش موثر جریانهای زنده است اما MapReduce با شکست مواجه می	
شود، زیرا برای انجام پردازش دسته ای بر روی حجم زیاد داده ها طراحی	
شده است.	
Spark محاسبات کم تاخیر را فراهم می کند اما MapReduce یک	تاخير
چارچوب محاسباتی با تأخیر زیاد است.	
برنامه Spark آسان است زیرا دارای اپراتورهای سطح بالا با RDD - مجموعه	استفاده
داده های توزیع شده انعطاف پذیر(Resilient Distributed Dataset)	
است اما در MapReduce ، توسعه دهندگان باید هر عملیات را دستی کد	
کنند که کار در آن را بسیار دشوار می کند.	
Apache Spark می تواند داده ها را به صورت تعاملی پردازش کند اما	حالت تعاملي
MapReduce حالت تعاملي ندارد.	

بخش دوم: ۲-۱- پیکربندی (WM1(Master):

:VM1(Master) -Y-Y

```
h-user@master:~$ ifconfig
enpos3: flags=41652NP.SROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.20.10.3 netmask 255.255.255.240 broadcast 172.20.10.15
inet6 fe80::a00:27ff:fe57:e733 prefixlen 64 scopeid 0x20ether 08:00:27:57:e7:33 txqueuelen 1000 (Ethernet)
RX packets 16833 bytes 24335338 (24,3 MB)
RX errors 0 dropped 0 overruns 0 frame 0
IX packets 5991 bytes 441862 (441.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.00.0
inet6:il prefixlen 128 scopeid 0x10</br>
loop txqueuelen 1000 (Local Loopback)
RX packets 100 bytes 7812 (7.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
IX packets 100 bytes 7812 (7.8 KB)
RX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

h-user@master:~$ start-all.sh
MARNING: Attempting to start all Apache Hadoop daemons as h-user in 10 seconds.
MARNING: This is not a recommended production deployment configuration.
MARNING: Use CTRL-C to abort.
Starting namenodes on [master]
starting datanodes
starting secondary namenodes [master]
starting resourcemanager
starting nodemanagers
h-user@master:~$ js
1634 ResourceManager
1465 SecondaryNameNode
1211 NameNode
1917 Jps
h-user@master:~$ _
```

:VM3(Slave2) 9 VM2(Slave1)

```
enpOs3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.20.10.5 netmask 255.255.255.240 broadcast 172.20.10.15
inet6 fe80::a00:27ff:fef5:5249 prefixlen 64 scopeid 0x20<link>
ether 08:00:27:f5:52:49 txqueuelen 1000 (Ethernet)
           RX packets 17 bytes 4054 (4.0 KB)
           RX errors 0 dropped 0 overruns 0
                                                                frame O
           TX packets 17 bytes 1882 (1.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
           loop txqueuelen 1000 (Local Loopback)
           RX packets 84 bytes 6324 (6.3 KB)
           RX errors O dropped O overruns O frame O
TX packets 84 bytes 6324 (6.3 KB)
           TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
n–user@slave1:~$ jps
1041 DataNode
1299 Jps
1210 NodeManager
n–user@slave1:~$ 
ali@slave2:~$ su – h–user
Password:
h–user@slave2:~$ jps
2036 NodeManager
1866 DataNode
2125 Jps
 n–user@slave2:~$
```

۳-۲- آدرس IP ماشینهای مجازی ما به صورت زیر هستند:

Master 172.20.10.3

Slave1 172.20.10.5

Slave2 172.20.10.8

در اینجا HDFS و Hadoop NameNodes با از طریق پورت ۹۸۷۰ با مرورگر قابل دسترسی

هستند:

DataNode نیز با همین آدرس و پورت ۹۸۶۴ از طریق مرورگر قابل دسترسی است:

ResourceManager نیز با آدرس قبل و پورت ۸۰۸۸ از طریق مرورگر قابل دسترسی است:

۲-۴- با دستور Hadoop fs -mkdir /user/Hadoop پوشه /user/Hadoop را در HDFS ساختیم و فایل test.txt را ایجاد کرده و با دستور زیر در HDFS کپی کردیم: Hadoop fs -copyFromLocal /home/ali/test.txt /user/Hadoop/input

```
n–user@master:~$ hadoop fs –copyFromLocal /home/ali/test.txt /user/hadoop/input
2020–12–26 15:27:40,038 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
h–user@master:~$ hadoop fs –ls –R /
drwxr–xr–x – h–user supergroup 0 2020–12–26 15:07 /user
drwxr–xr–x – h–user supergroup 0 2020–12–26 15:27 /user/hadoop
drwxr–xr–x – h–user supergroup 0 2020–12–26 15:27 /user/hadoop/input
–rw–r–-- 2 h–user supergroup 82 2020–12–26 15:27 /user/hadoop/input/test.txt
drwxr–xr–x – h–user supergroup 0 2020–12–26 15:27 /user/hadoop/output
```

محتواي فايل test.txt:

```
master [Running] - Oracle VM VirtualBox
                                                                                                  File Machine View Input Devices Help
ali@master:~$ cat test.txt
ali
sajjad
sajjad
ali
javadi
javadi
ali
sajjad
feat
ali
cloud
computing
ali@master:~$
```

فایل بارگذاری شده در HDFS:

```
'$ hadoop fs −cat /user/hadoop/input/test.tx1
2020–12–26 17:46:25,813 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
ali
sajjad
sajjad
ali
javadi
javadi
ali
sajjad
feat
ali
cloud
computing
fall
fall
 -user@master:~$
```

فایل و پوشه ایجاد شده از طریق مرورگر نیز قابل مشاهده و دسترسی است:

۵-۲- اجرای برنامه WordCount: فایل WordCount.java را با طبق لینک موجود در صورت تمرین در کامپیوتر شخصی ایجاد کردیم و آن را روی سایت https://uupload.ir آپلود کردیم و در Hadoop با دستور wget آن را دانلود و اکسترکت کردیم (لینک دانلود):

```
h—user@master:~$ wget https://uupload.ir/filelink/FGgtzAVlqwnJ/iows_wordcount.zip
--2020-12-26 15:18:24-- https://uupload.ir/filelink/FGgtzAVlqwnJ/iows_wordcount.zip
Resolving uupload.ir (uupload.ir)... 212.33.193.82
Connecting to uupload.ir (uupload.ir)|212.33.193.82|:443... connected.
HTTP request sent, awaiting response... 200 OK
_ength: 873 [application/octet-stream]
Saving to: 'iows_wordcount.zip.1'

iows_wordcount.zip.1    100%[=================================]]    873 --.-KB/s in Os

2020-12-26 15:18:24 (39.2 MB/s) - 'iows_wordcount.zip.1' saved [873/873]

h—user@master:~$ unzip iows_wordcount.zip.1
Archive: iows_wordcount.zip.1
    inflating: WordCount.java
h-user@master:~$ ls
iows_wordcount.zip iows_wordcount.zip.1    iow_wordcount.zip WordCount.java
```

سپس دستورات زیر را قدم به قدم اجرا کردیم: (اسکرین)

```
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
export PATH=${JAVA_HOME}/bin:${PATH}
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar
```

با دستورات زیر نیز فایل jar برنامه را ایجاد کردیم: (اسکرین)

```
$ hadoop com.sun.tools.javac.Main WordCount.java
$ jar cf wc.jar WordCount*.class
```

```
n-user@master:~$ hadoop com.sun.tools.javac.Main WordCount.java
/usr/local/hadoop/bin/../libexec/hadoop–functions.sh: line 2366: HADOOP_COM.SUN.TOOLS.JAVAC.MAIN_USE
R: invalid variable name
/usr/local/hadoop/bin/../libexec/hadoop–functions.sh: line 2461: HADOOP_COM.SUN.TOOLS.JAVAC.MAIN_OPT
B: invalid variable name
n-user@master:~$ jar
```

با دستور hadoop jar wc.jar WordCount /user/Hadoop/input با دستور /user/Hadoop/output

بررسی صحت اجرا:

```
user@master:~$ hadoop fs −ls
lrwxr-xr-x
                h-user supergroup
                                               0 2020-12-26 15:07 /user
                                               0 2020-12-26 15:31 /user/hadoop
lrwxr−xr−x
                h-user supergroup
                                               0 2020-12-26 15:27 /user/hadoop/input
รานะกระเบาน
                h-user supergroup
                                              82 2020–12–26 15:27 /user/hadoop/input/test.txt
              2 h–user supergroup
                                              0 2020–12–26 15:31 /user/hadoop/output
rwxr-xr-x
                h-user supergroup
                                             0 2020–12–26 15:31 /user/hadoop/output/_SUCCESS
58 2020–12–26 15:31 /user/hadoop/output/part-r-00000
                h-user supergroup
                h-user supergroup
```

مشاهده میشود برنامه به درستی اجرا شده است.

خروجی برنامه:

```
n–user@master:~$ hadoop fs −cat /user/hadoop/output/part−r−00000
2020−12−26 17:45:19,061 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
ali 4
cloud 1
computing 1
fall 2
feat 1
javadi 2
sajjad 3
```

:HDFS web gui

Browse Directory

N = 1 ایجاد کردیم و با دستور زیر در N = 1 ایجاد کردیم و با دستور زیر در Hadoop قرار دادیم:

Hadoop fs -copyFromLocal /home/ali/M.txt /Matrix Hadoop fs -copyFromLocal /home/ali/N.txt /Matrix

```
h-user@master:~$ hadoop fs -cat /Matrix/M.txt

2020–12–30 14:47:53,914 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
M,0,0,1
M,0,1,2
M,1,0,3
M,1,1,4
h-user@master:~$ hadoop fs -cat /Matrix/N.txt

2020–12–30 14:48:03,515 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
N,0,0,5
N,0,1,6
N,0,1,6
N,1,0,7
N,1.1.8
```

برنامه ضرب ماتریس ما شامل سه فایل Map.java، سامل سه فایل Reduce.java و Map.java و MatrixMultiply.java بود که مطابق روش گفته فایل jar را ساختیم و دو ماتریس را در یکدیگر ضرب کردیم:

```
$ hadoop com.sun.tools.javac.Main Map.java Reduce.java MatrixMultiply.java
$ jar cf myp.jar Map.class Reduce.class MatrixMultiply.class
```

با دستور hadoop jar myp.jar MatrixMultiply /Matrix /Matoutput برنامه را اجرا کر دیم.

بررسی صحت اجرا:

```
'$ hadoop fs −1s −R
drwxr-xr-x

    h-user supergroup

                                                 0 2020-12-30 14:45 /MatOutput
                                               0 2020–12–30 14:45 /MatOutput/_SUCCESS
36 2020–12–30 14:45 /MatOutput/part-r-00000
              2 h-user supergroup
                h-user supergroup
                                                0 2020-12-30 13:37 /Matrix
drwxr-xr-x
                 h-user supergroup
                                               32 2020-12-30 13:36 /Matrix/M.txt
              2 h-user supergroup
              2 h-user supergroup
                                               32 2020-12-30 13:37 /Matrix/N.txt
                                                0 2020–12–30 14:01 /operation
                h-user supergroup
driiixr-xr-x
                                                0 2020-12-26 15:07 /user
                 h-user
                         supergroup
                                                0 2020-12-26 15:31 /user/hadoop
                 h-user supergroup
drwxr-xr-x
                                                0 2020-12-26 15:27 /user/hadoop/input
                 h-user supergroup
                                               82 2020–12–26 15:27 /user/hadoop/input/test.txt
0 2020–12–26 15:31 /user/hadoop/output
              2 h-user supergroup
-rw-r--r--
                 h-user supergroup
              2 h-user supergroup
                                                0 2020-12-26 15:31 /user/hadoop/output/_SUCCESS
              2 h-user supergroup
                                               58 2020-12-26 15:31 /user/hadoop/output/part-r-00000
h–user@master:~$ hadoop fs –cat /MatOutput/part–r–00000
2020–12–30 14:46:19,563 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrus
ted = false, remoteHostTrusted = false
0,0,19.0
 ,1,22.0
 ,0,43.0
```

مشاهده در webgui:

در ادامه ماتریس ۴۰۰*(۱۰۰ ماتریس ۵۰۰*۵۰۰ تا ۸۴ درصد عملیات map را انجام میداد) را امتحان کردیم(فایل ماتریس ها ضمیمه شده اند). دستورات مانند ماتریس ۲*۲ بود فقط نحوه ورودی دادن آن به شکل زیر بود:

hadoop jar myp.jar MatrixMultiply /mat400 /output400

بررسی صحت اجرا:

```
-user@master:~$ hadoop fs −ls −R /
                                              0 2020-12-30 14:45 /MatDutput
0 2020-12-30 14:45 /MatDutput
drwxr-xr-x

    h-user supergroup

rw-r--r--
              2 h–user supergroup
                                                             14:45 /MatOutput/_SUCCESS
                                              36 2020-12-30 14:45 /MatOutput/part-r-00000
rw-r--r--
              2 h-user supergroup
drwxr-xr-x

    h-user supergroup

                                              0 2020-12-30 22:03 /mat300
                                        1104000 2020-12-30 22:03 /mat300/M300.txt
              2 h-user supergroup
                                        1104000 2020-12-30 22:03 /mat300/N300.txt
-rw-r--r--
              2 h-user supergroup
                                              0 2021-01-04 19:04 /mat400
drwxr-xr-x

    h-user supergroup

              2 h-user supergroup
                                        1992000 2021-01-04 19:03 /mat400/M400.txt
                                        1992000 2021-01-04 19:04 /mat400/N400.txt
              2 h-user supergroup
                                              0 2020–12–30 14:01 /operation
0 2021–01–04 19:30 /output400
druxr-xr-x
              – h–user supergroup
              – h–user supergroup
2 h–user supergroup
drwxr-xr-x
                                              0 2021-01-04 19:30 /output400/_SUCCESS
-rw-r--r--
              2 h-user supergroup
                                        2312002 2021-01-04 19:30 /output400/part-r-00000
                                              0 2020-12-26 15:07 /user
drwxr-xr-x
              - h-user supergroup
                                              0 2020–12–26 15:31 /user/hadoop
0 2020–12–26 15:27 /user/hadoop/input
drwxr-xr-x
              – h–user supergroup
              - h-user supergroup
drwxr-xr-x
              2 h-user supergroup
-rw-r--r--
                                              82 2020-12-26 15:27 /user/hadoop/input/test.txt
                                              0 2020-12-26 15:31 /user/hadoop/output
drwxr−xr−x

    h-user supergroup

                                              0 2020-12-26 15:31 /user/hadoop/output/_SUCCESS
              2 h-user supergroup
              2 h-user supergroup
                                              58 2020-12-26 15:31 /user/hadoop/output/part-r-00000
 ⊔user@master:~$
```

Hadoop fs -cat /output400/part-r-00000:

```
349,258,8119.0
349,259,7560.0
349,26,8220.0
349,260,8116.0
349,261,7617.0
349,262,7375.0
349,263,8111.0
349,264,8775.0
349,265,8088.0
349,266,7641.0
349,267,7679.0
349,268,8724.0
349,269,7587.0
349,27,7948.0
349,270,7795.0
349,271,7909.0
349,272,8385.0
349,273,7813.0
349,274,7872.0
349,275,7830.0
349,276,8325.0
349,277,8217.0
349,278,7789.0
349,279,8601.0
349,28,7511.0
349,280,8237.0
349,280,8237.0
349,281,7977.0
349,282,7847.0
349,283,8126.0
349,284,8062.0
349,285,7277.0
349,286,7631.0
349,287,8457.0
349,288,7801.0
349,289,7805.0
349,29,8151.0
```

مشاهده در webgui:

زمان اجرای برنامه برای ما با سیستم با مشخصات زیر در حدود ۲۵ دقیقه بود و مصرف پردازنده و حافظه ما طبق عکس زیر بود:

