An Expressive Sub-language of OWL 2 Full for Domain Meta-modeling (Supplementary File)

Zhenzhen Gu¹, Cungen Cao¹, and Songmao Zhang²

¹ Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
² Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, China

guzhenzhen0720@163.com cgcao@ict.ac.cn smzhang@math.ac.cn

Appendix

Proof of Proposition 1.

Proof. \mathcal{K} is ν -satisfiable, so it has a ν -model \mathcal{V} . By \mathcal{V} , an interpretation \mathcal{I} of $\tau_{\mathsf{dl}}(\mathcal{K})$ can be constructed by setting (1) $\Delta^{\mathcal{I}} = \Delta^{\mathcal{V}}$; (2) $a^{\mathcal{I}} = a^{\mathcal{V}}$ for each $a \in \mathbb{N}$; (3) $\{o\}^{\mathcal{I}} = \{o^{\mathcal{I}}\}$ for each $o \in \mathbb{N}$ and $A^{\mathcal{I}} = \mathfrak{C}^{\mathcal{V}}(\mathbf{v}_c^-(A))$ for each $A \in \mathbb{C}$; and (4) $P^{\mathcal{I}} = \mathfrak{R}^{\mathcal{V}}(\mathbf{v}_r^-(P))$ for each $P \in \mathbb{R}^{-3}$. \mathcal{V} and \mathcal{I} follow the same way to interpret class and role constructors, so it holds trivially that $(\spadesuit) \mathfrak{C}^{\mathcal{V}}(C) = \tau_c(C)^{\mathcal{I}}$ for each $\mathrm{Hi}(\mathcal{S}\mathcal{ROIQ})$ class C and $\mathfrak{R}^{\mathcal{V}}(R) = \tau_r(R)^{\mathcal{I}}$ for each $\mathrm{Hi}(\mathcal{S}\mathcal{ROIQ})$ role R. By (\spadesuit) , it holds trivially that \mathcal{I} satisfies all the axioms and assertions in $\tau_{\mathsf{dl}}(\mathcal{K})$. So \mathcal{I} is a model of $\tau_{\mathsf{dl}}(\mathcal{K})$. Thus $\tau_{\mathsf{dl}}(\mathcal{K})$ is satisfiable.

Proof of Lemma 1.

Proof. By Proposition 1, we just need to show that if $\tau_{dl}(\mathcal{K})$ is satisfiable then \mathcal{K} is ν -satisfiable. Suppose $\tau_{\mathsf{dl}}(\mathcal{K})$ is satisfiable. So it has a model \mathcal{I} . We assume that (\spadesuit) for every two different names a and b occurring in \mathcal{K} , $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ holds. If \mathcal{I} does not satisfy (\spadesuit) , then for every two different names c and d occurring in K such that $c^{\mathcal{I}} = d^{\mathcal{I}}$, by the condition in this lemma, we can get that c or d is not used as an individual in $\tau_{dl}(\mathcal{K})$. Suppose d is not used as an individual in $\tau_{\rm dl}(\mathcal{K})$. Let e be an element in $\Delta^{\mathcal{I}}$ such that there does not exist a name a in K satisfying that $e = a^{\mathcal{I}}$. Then set $d^{\mathcal{I}} = e$. d is not used as an individual in $\tau_{\mathsf{dl}}(\mathcal{K})$. Thus \mathcal{I} is still a model of $\tau_{\mathsf{dl}}(\mathcal{K})$. From \mathcal{I} , we construct a ν -interpretation \mathcal{V} by setting (1) $\Delta^{\mathcal{V}} = \Delta^{\mathcal{I}}$; (2) $a^{\mathcal{V}} = a^{\mathcal{I}}$ for each $a \in \mathbb{N}$; (3) for each $e \in \Delta^{\mathcal{V}}$, if there exists a name a in K such that $a^{\mathcal{V}} = e$ then set $\mathfrak{C}^{\mathcal{V}}(e) = v_c(a)^{\mathcal{I}}$, else set $\mathfrak{C}^{\mathcal{V}}(e) = \emptyset$; and (4) for each $e \in \Delta^{\mathcal{V}}$, if there exists a name a in \mathcal{K} such that $a^{\mathcal{V}} = e$ then set $\mathfrak{R}^{\mathcal{V}}(e) = v_r(a)^{\mathcal{I}}$, else set $\mathfrak{R}^{\mathcal{V}}(e) = \emptyset$. By (\spadesuit) , we can get that \mathcal{V} is correctly defined, i.e., for every two different names a and b, if $a^{\mathcal{V}} = b^{\mathcal{V}}$ then $\mathfrak{C}^{\mathcal{V}}(a^{\mathcal{V}}) = \mathfrak{C}^{\mathcal{V}}(b^{\mathcal{V}})$ and $\mathfrak{R}^{\mathcal{V}}(a^{\mathcal{V}}) = \mathfrak{R}^{\mathcal{V}}(b^{\mathcal{V}})$ hold. \mathcal{V} and \mathcal{I} take the same way to interpret class and role constructors. So, we can further obtain that \mathcal{V} satisfies all the axioms and assertions in \mathcal{K} . Thus \mathcal{V} is a ν -model of \mathcal{K} . Hence \mathcal{K} is ν -satisfiable.

³ We use f^- to denote the inverse function of a bijective function f.

Proof of Theorem 1.

Proof. \mathcal{K} adopts the UNSRA, then based on the construction of $[\mathcal{K}E]$, we can get that for each $(a,b) \in \operatorname{ind}([\mathcal{K}E])^2$ and $a \neq b$, $[\mathcal{K}E]$ contains the assertion $a \not\approx b$. Then based on Lemma 1, we just need to show that \mathcal{K} is ν -satisfiable iff there exists a CIERF E of \mathcal{K} such that $[\mathcal{K}E]$ is ν -satisfiable.

- (⇒) \mathcal{K} is ν -satisfiable. So it has a ν -model \mathcal{V} . Let \mathcal{P} be a partition of $\operatorname{ind}(\mathcal{K}) \operatorname{nSR}(\mathcal{K})$ such that for each $(a,b) \in (\operatorname{ind}(\mathcal{K}) \operatorname{nSR}(\mathcal{K}))^2$ and $a \neq b$, a and b occur in a same set in \mathcal{P} iff $a^{\mathcal{V}} = b^{\mathcal{V}}$. Let E be a CIERF of \mathcal{K} satisfying that for each set $U \in \mathcal{P}$, there exists $a \in U$ such that E(b) = a holds for each $b \in U$. Next, we show that \mathcal{V} is also a ν -model of $[\mathcal{K}E]$. From the construction of E, we can get that (\spadesuit) $a^{\mathcal{V}} = (E(a))^{\mathcal{V}}$ holds for each $a \in \operatorname{dom}(E)$. For each axiom (assertion) α in \mathcal{K} , $\mathcal{V} \models_{\nu} \alpha$ holds, then by (\spadesuit) , $\mathcal{V} \models_{\nu} \alpha E$ holds. For each assertion $a \not\approx b$ occurring in $[\mathcal{K}E]$, by the construction of E, $a^{\mathcal{V}} \neq b^{\mathcal{V}}$ holds. So \mathcal{V} satisfies all the axioms and assertions in $[\mathcal{K}E]$. Thus \mathcal{V} is a ν -model of $[\mathcal{K}E]$. Hence $[\mathcal{K}E]$ is ν -satisfiable.
- (⇐) [KE] is ν-satisfiable. So it has a ν-model \mathcal{V} . From \mathcal{V} , we construct a ν-interpretation \mathcal{V}' by just setting $a^{\mathcal{V}} = (E(a))^{\mathcal{V}}$ for each $a \in \mathsf{dom}(E) \mathsf{ran}(E)$ while keeping the others unchanged. For each $a \in \mathsf{ran}(E) \cap \mathsf{ran}(E)$, E(a) = a holds. Thus (♠) $a^{\mathcal{V}'} = (E(a))^{\mathcal{V}'}$ holds for each $a \in \mathsf{dom}(E)$. All the names in $\mathsf{dom}(E) \mathsf{ran}(E)$ do not occur in [KE]. So we can easily obtain that \mathcal{V}' is still a ν-model of [KE]. Thus for each axiom or assertion α in \mathcal{K} , $\mathcal{V}' \models_{\nu} \alpha E$ holds. Then by (♠), we can further obtain that $\mathcal{V}' \models_{\nu} \alpha$ holds. Thus \mathcal{V}' is a ν-model of \mathcal{K} . Hence \mathcal{K} is ν-satisfiable.

Proof of Lemma 2.

Proof. By Lemma 1, we just need to show that $[KE_1]$ is ν -satisfiable iff $[KE_2]$ is satisfiable.

(⇒) KE_1 is ν -satisfiable, so it has a ν -model \mathcal{V}_1 . From \mathcal{V}_1 , next we construct a ν -model of KE_2 . By the condition in this lemma, we can get that E_1 and E_2 are constructed from a same partition $\{U_1, \dots, U_n\}$ of $\operatorname{ind}(K)$, i.e., (♦) for each U_i , there exist $a_i \in U_i$ and $b_i \in U_i$ such that $E_1(o) = a_i$ and $E_2(o) = b_i$ hold for each $o \in U_i$. Let \mathcal{V}_2 be a ν -interpretation constructed from \mathcal{V}_1 by just setting (♠) $b_i^{\mathcal{V}_1} = a_i^{\mathcal{V}_1}$ for each $1 \leq i \leq n$ while keeping the others unchanged. By the construction of $[KE_1]$, we can get that for each $1 \leq i \leq n$, either b_i is a name not occurring in $[KE_1]$ or $b_i = a_i$ holds. Thus, \mathcal{V}_2 is still a ν -model of $[KE_1]$. Let α be an arbitrary axiom (assertion) in $[KE_2]$. If α has the form $b_i \not\approx b_j$ where $i \neq j$, then $\mathcal{V}_2 \models_{\nu} \alpha$ holds since $a_i^{\mathcal{V}_1} \neq a_j^{\mathcal{V}_1}$ holds. Otherwise, there exists an axiom (assertion) α' in K such that $\alpha = \alpha'E_2$. $\alpha'E_1$ occurs in $[KE_1]$. So $\mathcal{V}_2 \models_{\nu} \alpha'E_1$ holds. Then by (♠) and (♠), $\mathcal{V}_2 \models_{\nu} \alpha E_2$ holds. Thus \mathcal{V}_2 is a ν -model of $[KE_2]$. Hence $[KE_2]$ is ν -satisfiable. The (⇐) direction can be proved similarly. Therefore this lemma holds.

Proof of Theorem 2.

Proof. For a CIERF E of \mathcal{K} , $\tau_{\mathsf{dl}}([\mathcal{K}E])$ can be obtained in liner time w.r.t. the size of \mathcal{K} . \mathcal{K} has no more than $2^{|\mathsf{ind}(\mathcal{K}) - \mathsf{nSR}(\mathcal{K})|^2}$ CIERFs. As stated in [18], satisfiability checking of a \mathcal{SROIQ} KB can be done in N2EXPTIME w.r.t. the size of the KB. Hence by Theorem 1 and Lemma 2, this theorem holds.

Proof of Lemma 3.

Proof. Suppose there exists $(a,b) \in (\operatorname{ind}(\mathcal{K}) - \operatorname{nSR}(\mathcal{K}))^2$ such that E(a) = E(b) and $\tau_{\operatorname{dl}}(\mathcal{K}) \models a \not\approx b$. By Definition 7, we can get that $\tau_{\operatorname{dl}}(\mathcal{K})$ contains the assertion $E(a) \not\approx E(b)$. Obviously, $\tau_{\operatorname{dl}}(\mathcal{K})$ is not satisfiable. On the other hand, suppose there exists $(a,b) \in (\operatorname{ind}(\mathcal{K}) - \operatorname{nSR}(\mathcal{K}))^2$ such that $E(a) \neq E(b)$ and $\tau_{\operatorname{dl}}(\mathcal{K}) \models a \approx b$. Again by Definition 7, we know that $\tau_{\operatorname{dl}}(\mathcal{K})$ contains the assertions $E(a) \approx E(b)$ and $E(a) \not\approx E(b)$ at the same time. Obviously, $\tau_{\operatorname{dl}}(\mathcal{K})$ is not satisfiable.

Proof of Proposition 2.

Proof. Let $\mathbf{u} \in \operatorname{answer}(\tau_{\operatorname{dl}}(Q), \tau_{\operatorname{dl}}(\mathcal{K}))$. Let \mathcal{V} be an arbitrary ν -model of \mathcal{K} . According to the proof of Proposition 1, a model \mathcal{I} of $\tau_{\operatorname{dl}}(\mathcal{K})$ can be constructed. Then there exists a binding π of $\tau_{\operatorname{dl}}(Q(\mathbf{u}))$ over \mathcal{I} such that $\mathcal{I}, \pi \models \tau_{\operatorname{dl}}(Q(\mathbf{u}))$ holds. From π , a binding π' of $Q(\mathbf{u})$ over \mathcal{V} can be constructed by setting $\pi'(x) = \pi(x)$ for each variable x in $Q(\mathbf{u})$ and $\pi'(a) = a^{\mathcal{V}}$ for each name a in $Q(\mathbf{u})$. By (\spadesuit) in the proof of Proposition 1, it holds that $\mathcal{V}, \pi' \models_{\mathcal{V}} Q(\mathbf{u})$. So $\mathbf{u} \in \operatorname{answer}_{\mathcal{V}}(Q, \mathcal{K})$ holds. Thus $\operatorname{answer}(\tau_{\operatorname{dl}}(Q), \tau_{\operatorname{dl}}(\mathcal{K})) \subseteq \operatorname{answer}_{\mathcal{V}}(Q, \mathcal{K})$ holds.

Proof of Lemma 4.

Proof. (\subseteq) Let $u \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$. Let \mathcal{I} be an arbitrary model of $\tau_{\operatorname{dl}}(\mathcal{K})$. By the proof of Lemma 1, a ν -model \mathcal{V} of \mathcal{K} can be constructed. Thus there exists a binding π of Q(u) over \mathcal{V} such that $\mathcal{V}, \pi \models_{\nu} Q(u)$ holds. From π , we can construct a binding π of $\tau_{\operatorname{dl}}(Q(u))$ over \mathcal{I} by setting $\pi'(x) = \pi(x)$ for each variable x in $\tau_{\operatorname{dl}}(Q(u))$ and $\pi'(a) = a^{\mathcal{I}}$ for each individual a in $\tau_{\operatorname{dl}}(Q(u))$. By the construction of \mathcal{V} , we can get that for each name n occurring in \mathcal{K} , $\mathfrak{C}^{\mathcal{V}}(a) = v_c(a)^{\mathcal{I}}$ and $\mathfrak{R}^{\mathcal{V}}(a) = v_r(a)^{\mathcal{I}}$ hold. So $\mathcal{I}, \pi' \models \tau_{\operatorname{dl}}(Q(u))$ holds. Thus $u \in \operatorname{answer}(\tau_{\operatorname{dl}}(Q), \tau_{\operatorname{dl}}(\mathcal{K}))$ holds. Hence $\operatorname{answer}_{\nu}(Q, \mathcal{K}) \subseteq \operatorname{answer}(\tau_{\operatorname{dl}}(Q), \tau_{\operatorname{dl}}(\mathcal{K}))$ holds. By Proposition 2, the (\supseteq) direction holds. Thus this lemma holds.

Proof of Theorem 3.

Proof. (\Rightarrow) Let $\mathbf{u} \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$. Let E be an arbitrary function in \mathcal{E} . Next, we show $\mathbf{u}E \in \operatorname{answer}_{\nu}(QE, [\mathcal{K}E])$. Let \mathcal{V} be an arbitrary ν -model of $[\mathcal{K}E]$. Based on \mathcal{V} , a ν -model \mathcal{V}' of \mathcal{K} can be constructed using the way illustrated in (\Leftarrow) in the proof of Theorem 1. So there exists a binding π of $Q(\mathbf{u})$ over \mathcal{V}' such that $\mathcal{V}', \pi \models_{\nu} Q(\mathbf{u})$ holds. From π , we construct a binding π' of $Q(\mathbf{u})E$ over \mathcal{V} by setting $\pi'(x) = \pi(x)$ for each variable x in $Q(\mathbf{u})E$ and $\pi'(a) = a^{\mathcal{V}}$ for each name

a in $Q(\boldsymbol{u})E$. By (\blacklozenge) in (\Leftarrow) in the proof of Theorem 1 and $\mathcal{V}', \pi \models_{\nu} Q(\boldsymbol{u})$, it holds trivially that $\mathcal{V}, \pi' \models_{\nu} Q(\boldsymbol{u})E$. $Q(\boldsymbol{u})E = (QE)(\boldsymbol{u}E)$ holds. Thus $\mathcal{V}, \pi' \models_{\nu} (QE)(\boldsymbol{u}E)$ holds. By \mathcal{V} being arbitrary, we can get that $\boldsymbol{u}E \in \mathsf{answer}_{\nu}(QE, [\mathcal{K}E])$. By Lemma 4, $\boldsymbol{u}E \in \mathsf{answer}(\tau_{\mathsf{dl}}(QE), \tau_{\mathsf{dl}}([\mathcal{K}E]))$ holds. Then by E being arbitrary, we can further obtain that \boldsymbol{u} belongs to the set in the right hand side of the equation in this theorem.

(\Leftarrow) Let $u \in \cap_{E \in \mathcal{E}} \{u' \mid u'E \in \operatorname{answer}(\tau_{\operatorname{dl}}(QE), \tau_{\operatorname{dl}}([\mathcal{K}E]))\}$. By Lemma 4, we can get $u \in \cap_{E \in \mathcal{E}} \{u' \mid u'E \in \operatorname{answer}_{\nu}(QE, [\mathcal{K}E])\}$. Next, we show $u \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$. Let \mathcal{V} be an arbitrary ν -model of \mathcal{K} . By the proof of Theorem 1, we know that there exists a CIERF E of \mathcal{K} such that \mathcal{V} is also a ν -model of $[\mathcal{K}E]$ and (♠) $a^{\mathcal{V}} = E(a)^{\mathcal{V}}$ holds for each $a \in \operatorname{dom}(E)$. For u, uE answer_{ν}(QE, $[\mathcal{K}E]$) holds. Thus there exists a binding π of (QE)(uE) over \mathcal{V} such that (♠) \mathcal{V} , $\pi \models_{\nu} (QE)(uE)$ holds. Based on π , we construct a binding π' of Q(u) over \mathcal{V} by setting $\pi'(x) = \pi(x)$ for each x in Q(u) and $\pi'(a) = a^{\mathcal{V}}$ for each name a in Q(u). The equation (QE)(uE) = Q(u)E holds. Then by (♠) and (♠), it holds trivially that \mathcal{V} , $\pi \models_{\nu} Q(u)$. By \mathcal{V} being arbitrary, $u \in \operatorname{answer}_{\nu}(Q, \mathcal{K})$ holds. □

Proof of Lemma 5.

Proof. By Lemma 4, we just need to prove the equation $\operatorname{answer}_{\nu}(QE_1, [\mathcal{K}E_1]) = \operatorname{answer}_{\nu}(QE_2, [\mathcal{K}E_2])$ holds.

 (\subseteq) Let $\mathbf{u} \in \operatorname{answer}_{\nu}(QE_1, [\mathcal{K}E_1])$. Next, we show $\mathbf{u} \in \operatorname{answer}_{\nu}(QE_2, [\mathcal{K}E_2])$. By the condition in this lemma, we can get that there exists a partition $\{U_1, \cdots, U_n\}$ of $\operatorname{ind}(\mathcal{K}) - \operatorname{nSR}(\mathcal{K})$ satisfying that (\clubsuit) for each U_i , there exist $a_i, b_i \in U_i$ such that $E_1(o) = a_i$ and $E_2(o) = b_i$ hold for each $o \in U_i$. Let \mathcal{V}_2 be an arbitrary model of $[\mathcal{K}E_2]$. Based on the proof of Lemma 2, a ν -model \mathcal{V}_1 of $[\mathcal{K}E_1]$ can be constructed from \mathcal{V}_2 by just setting (\spadesuit) $a_i^{\mathcal{V}_1} = b_i^{\mathcal{V}_1}$ while keeping the others unchanged. Thus there exists a binding π_1 of $(QE_1)(\mathbf{u})$ over \mathcal{V}_1 such that $\mathcal{V}_1, \pi_1 \models_{\nu} (QE_1)(\mathbf{u})$. Let π_2 be a binding of QE_2 over \mathcal{V}_2 such that $\pi_2(x) = \pi_1(x)$ for each variable x in $(QE_2)(\mathbf{u})$ and $\pi_2(a) = a^{\mathcal{V}_2}$ for each name a in $(QE_2)(\mathbf{u})$. Then it holds that $((QE_1)(\mathbf{u}))\pi_1 = ((QE_2)(\mathbf{u}))\pi_2$. So $\mathcal{V}_2, \pi_2 \models_{\nu} QE_2(\mathbf{u})$ holds. So $\mathbf{u} \in \operatorname{answer}_{\nu}(QE_2, [\mathcal{K}E_2])$ holds. The (\supseteq) direction can be proved similarly. Thus this lemma holds.

Proof of Theorem 4.

Proof. Without non-distinguished variables, conjunctive query answering can be reduced to individual assertion entailment checking which can be eventually reduced to satisfiability checking. Then by Theorem 2, this theorem holds. \Box

Proof of Theorem 5.

Proof. The (\supseteq) direction holds trivially. Next, we show the (\subseteq) direction. Let $u \in \mathsf{answer}_{\nu}(Q, \mathcal{K})$. Each class (resp. role) variable of Q occurs in $\mathsf{head}(Q)$. Thus, from u, a CRV-Binding ξ of Q over \mathcal{K} can be constructed by setting $\xi(x) = \mathsf{constructed}(Q)$.

head(Q)[i], where i is the position of x in head(Q), for each class (role) variable x of Q. Let \mathcal{V} be an arbitrary ν -model of \mathcal{K} . For \mathbf{u} , there exists a binding π of $Q(\mathbf{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\nu} Q(\mathbf{u})$. From π , a binding π' of $Q\xi(\mathbf{u})$ over \mathcal{V} can be constructed by setting $\pi'(x) = \pi(x)$ for each variable x in $Q\xi(\mathbf{u})$ and $\pi'(a) = a^{\mathcal{V}}$ for each name a in $Q\xi(\mathbf{u})$. By the construction of ξ , it holds trivially that $\mathcal{V}, \pi' \models_{\nu} Q\xi(\mathbf{u})$. Thus $\mathbf{u} \in \mathsf{answer}_{\nu}(Q\xi, \mathcal{K})$.

Proof of Theorem 6.

Proof. Suppose \mathcal{K} has n different names. Then Q has no more than $n^{|Q|}$ CRV-bindings. n is linear with the size of \mathcal{K} . By Theorems 4–5, this theorem holds. \square