- 1. Write the following sets by using the notation $\{x: P(x)\}$.
 - a) The set of natural numbers strictly less than 6.
 - b) The set of integers whose square is less than 17.
 - c) [2, 6]
 - d) The set of rational numbers less than -1.
- 2. Let $X = \{x : P(x)\}$. Are the following statements true or false?
 - a) If $a \in X$, then P(a) is true.
 - b) If P(a), then $a \in X$.
 - c) If $\sim P(a)$, then $a \notin X$.
- 3. Prove that $\{x \in \mathbb{R} : x^2 2x 3 < 0\} = \{x \in \mathbb{R} : -1 < x < 3\}.$
- 4. List all the proper subsets of $\{\emptyset, \{\emptyset\}\}\$.
- 5. Let $A_n = (\frac{1}{2}, \frac{1}{2} + \frac{1}{n})$. Find $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.
- 6. Define the **set difference** of two sets A and B by $A \setminus B = \{x : x \in A \text{ but } x \notin B\}$. Show that $B \setminus (B \setminus A) = A \cap B$.
- 7. Problem 2.5.7 in the textbook.
- 8. Provide a counterexample for each of the following.
 - a) If $A \cup C \subseteq B \cup C$, then $A \subseteq B$.
 - b) If $(A \setminus B) \cap (A \setminus C) = \emptyset$, then $B \cap C = \emptyset$.
 - c) $P(A) \backslash P(B) \subseteq P(A \backslash B)$