

Parallel Programming Models and Architectures

lecture 01 (2025-03-10)

Master in Computer Science and Engineering

- Concurrency and Parallelism / 2024-25 -

Outline

- Parallel Programming Models
- Parallel Architectures

- Bibliography:
 - Chapters 1 and 2 of book

McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

Why Concurrency & Parallelism?

1. Efficient Resource Utilization

 Modern CPUs have multiple cores;
 Concurrent/parallel programs make better use of CPU cores, GPUs, and distributed systems.

2. Responsiveness in UI & Applications

- Concurrency is crucial for applications requiring real-time interactions (e.g., mobile apps, games, real-time analytics).
- Prevents UI freezing when executing background operations (e.g., downloading files, fetching API data).

3. Emerging Technologies Rely on It

- AI, ML, blockchain, and IoT demand parallel processing for real-time computations.
- Edge computing and real-time analytics rely on concurrency for quick decision-making.

4. Performance and Speedup

 Parallelism allows multiple computations to run simultaneously, reducing execution time for large tasks (e.g., data processing, simulations, Al training).

5. Scalability in Distributed Systems

- Cloud computing, microservices, and large-scale data processing rely on concurrency and parallelism to scale efficiently.
- Technologies like Kubernetes, Apache Spark, and serverless architectures leverage parallel execution.

6. Better Software Design

- Understanding concurrency helps in designing correct thread-safe applications.
- Avoids issues like race conditions, deadlocks, and inconsistent states.

Remember...

Even if you're not building high-performance applications today, understanding concurrency and parallelism makes you a better software engineer, helping you write efficient, scalable, and future-proof software.

Reason 1: Modern Processor Architecture

Reason 2: Software Regu

Media similarity

Highly complex problems
 and/or

Lots of data to process

Complex image rendering

Parallel Architectures

Flynn's taxonomy

	Single Data	Multiple Data
Single Instruction	SISD	SIMD
Multiple Instruction	MISD	MIMD

Flynn's Taxonomy

- Single Instruction, Single Data (SISD) architecture
 - A hardware thread in a modern CPU

- May implement several kinds of instruction level

parallelism

Flynn's Taxonomy

- Single Instruction, Multiple Data (SIMD) architect
 - Available in the processor's instruction set
 - Available in all GPUs and other specialized hardware

SISD vs. SIMD - example

Four summations (instructions)

SIMD one summation (instruction)

VS.

CRAY-1 Vector Machine (1976)

3D rendering of two Cray-1 with a figure as scale

 Manufacturer
 Cray Research

 Designer
 Seymour Cray

 Release date
 1975

 Units sold
 Over 80

Price US\$7.9 million in 1977 (equivalent to \$33.3 million in

2019)

Casing

 Dimensions
 Height: 196 cm (77 in)^[1]

 Dia. (base): 263 cm (104 in)^[1]

 Dia. (columns): 145 cm (57 in)^[1]

5.5 tons (Cray-1A)

Power 115 kW @ 208 V 400 Hz^[1]

System

Front-end Data General Eclipse

Operating COS & UNICOS

system

Weight

CPU 64-bit processor @ 80 MHz^[1]

Memory 8.39 Megabytes (up to 1 048

576 words)^[1]

Storage 303 Megabytes (DD19 Unit)^[1]

FLOPS 160 MFLOPS

Successor Cray X-MP

Search Twitter

Jason Huggins

@hugs · Dec 17, 2014

If a car's power is measured in horsepower, a computer's power should be measured in crays. youtu.be/atIKUEfW-Vw (iPhone 6 = 1440 Cray-1s)

 \bigcirc 2

[] 3

♡ 3

Jason Huggins

@hugs · Dec 17, 2014

Cray-1: 80 MFLOPS Cray-2: 1.9 GFLOPS

Iphone 14 Pro: 2 TFlops

Sources:

en.wikipedia.org/wiki/Cray-1 en.wikipedia.org/wiki/Cray-2 en.wikipedia.org/wiki/Apple_sys...

 \bigcirc

17 6

 \bigcirc 7

₾

Vector Processing Today: Intel AVX

Vector Machines Today: GPUs

Flynn's Taxonomy

Multiple Instruction, Single Data (MISD)

Flynn's Taxonomy

- Multiple Instruction, Multiple Data (MIMD) archit.
 - Multicore processor
 - Cluster of computers (MPI, Spark, ...)

Parallel Architectures — MIMD Shared Memory Architectures

- The Symmetric Multiprocessor (SMP) architecture
 - Typical personal computers, phones, TVs, ...

Intel Alder Lake-S (2021)

Apple M1 Pro

Apple A16 (iPhone 14)

- 6 CPU Cores:
 - 2 performance (everest)
 - 4 efficiency (sawtooth)
- 5 GPU Cores

GPUS NVidia Turing Architecture

At Symmetric
Multiprocessor (SM)
level, the execution is
SIMD, but the overall
execution, that
includes multiple SMs,
is MIMD

Parallel Architectures — MIMD Shared Memory Architectures

- Nonuniform memory access (NUMA) architect
 - Example: each node of DI's cluster

Parallel Architectures — MIMD Distributed Memory Architectures

- Nonuniform memory access (NUMA) architect.
 - Example: all the node of DI's cluster

Typical Distributed Memory MIMD Architecture of Today

- Multiple nodes connected via high-speed local networks
- Each node is a NUMA node with multiple multicore processors
- Each node may also have 1 or more GPUs
- Examples
 - DI cluster: http://cluster.di.fct.un.pt
 - Top 500: https://www.top500.org/lists/top500/2024/11/

Parallel Architectures — MIMD Distributed Memory Architectures

- Nonuniform memory access (NUMA) architect.
 - Example: all the node of DI's cluster

Cluster @

-	Cluster	Nodes	СРИ	Total Cores/Threads	Memory	Network	Main Disk (/, /tmp)	Extra Disks (/mnt/localhddX)	Graphics
	charmander	5	AMD EPYC 7281	16/32	128 GIB DDR4 2666 MHz	2 x 10 Gbps	1.8 TB HDD	-	-
	squirtle	4	2 x Intel Xeon E5-2620 v2	12/24	64 GIB DDR3 1600 MHz	2 x 1 Gbps	100 GB SSD	-	-
	g psyduck	3	Intel Xeon X3450	4/8	8 GIB DDR3 1333 MHz	2 x 1 Gbps	230 GB HDD	[1,3] 230 GB HDD [2]-	-
	S shelder	1	4 x AMD Opteron 6272	³² / ₆₄	64 GIB DDR3 1600 MHz	2 x 1 Gbps	120 GB SSD	2x 460 GB HDD	-
magikarp	magikarp	1	8 x AMD Opteron 8220	¹⁶ ⁄16	27 GiB	2 x 1 Gbps	130 GB HDD	-	-
	oddish	1	Intel Xeon E5- 2603 v2	4/4	16 GiB DDR3 1333 MHz	2 x 1 Gbps	930 GB HDD	-	NVIDIA GeForce GTX 1050 Ti
	bulbasaur	3	2 x Intel Xeon E5-2609 v4	¹⁶ /16	32 GiB DDR4 2400 MHz	2 x 1 Gbps	110 GB SSD	-	NVIDIA Quadro M2000
gengar sudowoodo	gengar	5	2 x AMD Opteron 2376	8/8	16 GiB DDR2 667 MHz	2 x 1 Gbps	150 GB HDD	-	-
	1	Intel i7 10700	⁸ /16	16 GiB DDR4 2933 MHz	1 Gbps	500 GB SSD	-	NVIDIA GeForce RTX 3070	
	lugia	5	2 x Intel Xeon Gold 6346	³² / ₆₄	128 GiB DDR4 3200 MHz	2x10 Gbps	440 GB SSD	-	-
	moltres	10	2 x AMD EPYC 7343	32/64	128 GiB DDR4 3200 MHz	2x10 Gbps	450 GB SSD	-	-

Example Top 500 (Nov 2024)

- Total: 11,039,616 cores
- 43,808 AMD 4th Gen EPYC 24C "Genoa"
 24-core 1.8 GHz CPUs (1,051,392 cores)
- 43,808 AMD Instinct MI300A GPUs (9,988,224 cores)

Rank	System	Cores	Rmax (PFIop/s)	Rpeak (PFIop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE DOE/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
4	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
5	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9, HPE Eni S.p.A. Italy	3,143,520	477.90	606.97	8,461
6	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
7	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray CS, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	2,121,600	434.90	574.84	7,124
8	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107
9	Leonardo - Bull Sequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	241.20	306.31	7,494
10	Tuolumne - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	1,161,216	208.10	288.88	3,387
elisi	m 2024-25				30

Parallel Computing in current architectures

· Superscalar:

- Exploits Instruction-Level Parallelism (ILP) within an instruction stream
- Concurrently processes different instructions from the same instruction stream within a hardware thread
- Parallelism is automatically discovered by the hardware during execution
- Transparent to the programmer, studied in the Computer Architecture course (<= AC)

• SIMD (Single Instruction, Multiple Data):

- Make use of SIMD hardware
- Particularly efficient for data-parallel workloads that may be distributed among many ALUs
- Vectorization can occur either through explicit SIMD instructions by the compiler or dynamically at runtime by the hardware
- The absence of dependencies is typically declared by the programmer or inferred by compiler loop analysis before execution.
- Transparent to the programmer (compiler optimizations) or explicit (GPU programming <= CAD)

Make use of several hardware threads:

- Involves the use of several hardware threads in one or more multi-processors across one or more computing nodes
- Software determines the creation of software threads, often through parallel computing libraries, such as OpenMP
- These software threads operate independently and communicate as needed
- This topic will be the subject of the upcoming lectures in the course (<= CP)

Conclusion

- To leverage the computing power of today's processors sequential programming by itself is not enough anymore
- Writing parallel programs can be challenging
 - Identify what to parallelize, partition the problem, synchronize/communicate
 - Many solutions are architecture dependent

The END