데이터 엔지니어링 기초: Spark 설치와 기본 구조

1. Apache Spark의 필요성과 실행 구조 이해

1.1 기존 데이터 처리 방식의 한계점

1.1.1 단일 서버의 확장성 부족

- 확장성 문제: 기존 데이터 처리는 주로 단일 서버로 이루어졌습니다.
- 수직 확장(Scale-Up): 데이터가 증가하면 서버 성능을 높이는 방식으로 대응했습니다.
 - ㅇ 하지만 단일 서버는 하드웨어의 물리적 한계로 인해 무한정 성능 증가가 불가능합니다.

1.1.2 확장성 부족의 대안

• 수평 확장(Scale-Out): 서버를 여러 대로 부하를 나누는 방식으로, 분산 처리를 통해 확장성을 확보합니다.

1.1.3 실시간 분석의 어려움

- 배치 처리: 일정 시간 간격으로 데이터를 일괄 처리하는 방식으로, 실시간 분석에는 부적합합니다.
- 스트림 처리: 실시간 데이터 처리를 위해 별도의 시스템이 필요하며, 구현이 복잡합니다.

1.1.4 디스크 기반 처리로 인한 속도 문제

- 디스크 I/O 병목: 기존 기술은 데이터를 처리할 때 디스크 기반의 저장장치를 사용하여, 메모리(RAM)보다 데이터 읽기/쓰기 속도가 현저히 느립니다.
- 속도 저하: 이로 인해 데이터 처리 과정에서 속도 저하 현상이 발생합니다.

1.2 Apache Spark란?

1.2.1 정의

- Apache Spark: 오픈소스 클러스터 컴퓨팅 프레임워크로, 대규모 데이터를 빠르게 처리할 수 있도록 설계되었습니다.
- 지원 언어: Scala, Java, Python, R 등 다양한 언어를 지원합니다.
- 활용 분야: 데이터 과학, 머신러닝, 스트리밍 분석 등 다양한 분야에서 활용됩니다.

1.2.2 특징

- 메모리 기반 처리: 디스크 기반 처리보다 훨씬 빠른 성능을 제공합니다.
- Lazy Evaluation: 지연 평가를 통해 실행 계획을 최적화합니다.
- 다양한 데이터 처리 방식 지원: 배치 처리, 스트리밍 처리 등 다양한 방식의 데이터 처리를 지원합니다.

• 폭넓은 언어 지원: 고수준 API를 다양한 언어로 지원합니다.

1.2.3 활용 시 주의점

- 엄밀한 실시간 처리 불가: Micro-batch 기반으로, 완전한 실시간 처리는 어렵습니다.
- 작은 데이터 파일 처리의 비효율성: 작은 파일을 다수 처리할 경우 비효율이 발생할 수 있습니다.
- 자체 파일 관리 시스템 부재: 파일 저장소(HDFS, S3 등) 사용이 권장됩니다.
- 높은 메모리 비용: 메모리 기반 처리로 인해 메모리 사용량이 많을 수 있습니다.

1.3 Apache Spark의 구성 요소

```
graph LR
  subgraph 상위 모듈
    A1[Spark SQL
Structured Data] --> CORE
    A2[Spark Streaming
Real-time] --> CORE
    A3[MLlib
Machine Learning] --> CORE
    A4[GraphX
Graph Processing] --> CORE
  end
  CORE[Spark Core
기반 엔진
Task, 스케줄러, 분산처리]
  subgraph 실행 환경
    B1[Standalone Scheduler]
    B2 [YARN]
    B3[Mesos]
  end
  B1 --> CORE
  B2 --> CORE
  B3 --> CORE
```

구성 요소 상세 설명

컴포넌트	설명	특징
Spark Core	Spark의 기반이 되는 엔진	작업 스케줄링, 메모리 관리, 장애 복구
Spark SQL	구조화된 데이터 처리 (쿼리 기반)	SQL 언어 및 DataFrame API 지원
Spark Streaming	실시간 데이터 처리	마이크로 배치 처리 방식
MLlib	머신러닝 알고리즘 라이브러리	분류, 회귀, 군집, 추천 등 다양한 알고리즘 제공

컴포넌트 -	설명	특징
GraphX	그래프 기반 데이터 처리	소셜 네트워크 분석 등 그래프 처리 기능 제공

실행 환경 (Cluster Manager)

- Standalone Scheduler: Spark 자체 제공 스케줄러로, 간단한 설정으로 클러스터를 구성할 수 있습니다.
- YARN: Hadoop 환경에서 통합 리소스 관리를 제공하며, Hadoop과의 연동이 용이합니다.
- Mesos: 다양한 분산 시스템을 위한 범용 리소스 관리자로, 다양한 워크로드를 지원합니다.

2. Apache Spark의 실행 구조

2.1 Spark 애플리케이션 구성 요소

Apache Spark는 분산 데이터 처리 시스템으로, 다음과 같은 주요 구성 요소로 이루어져 있습니다:

- Driver: 애플리케이션의 실행 계획을 생성하고 작업을 분배하는 중앙 제어 노드입니다.
- Cluster Manager: 클러스터의 자원을 관리하며, 드라이버의 요청에 따라 실행기를 할당합니다.
- Executor: 실제 작업을 수행하는 워커 노드로, 드라이버로부터 할당받은 태스크를 실행합니다. Velog

2.2 클러스터 매니저

클러스터 매니저는 Spark 애플리케이션의 리소스를 관리하는 역할을 합니다:

- 리소스 할당: 드라이버의 요청에 따라 실행기 프로세스를 시작합니다.
- 프로세스 관리: 실행 중인 프로세스를 중지하거나 재시작할 수 있습니다.
- 리소스 제한: 실행기 프로세스가 사용할 수 있는 최대 CPU 코어 개수를 제한할 수 있습니다.Medium+1Apache Spark+1

지원되는 클러스터 매니저:

- Standalone: Spark 자체 제공 스케줄러입니다.
- Apache Mesos: 다양한 분산 시스템을 위한 범용 리소스 관리자입니다.
- Hadoop YARN: Hadoop 환경에서 통합 리소스 관리를 제공합니다.
- Kubernetes: 컨테이너 오케스트레이션 시스템으로, 최근 많이 사용됩니다.

2.3 드라이버(Driver)

드라이버는 Spark 애플리케이션의 실행을 관장하고 모니터링합니다:

- 리소스 요청: 클러스터 매니저에 메모리 및 CPU 리소스를 요청합니다.
- 작업 분할: 애플리케이션 로직을 스테이지와 태스크로 분할합니다.

- 태스크 전달: 여러 실행기에 태스크를 전달합니다.
- 결과 수집: 태스크 실행 결과를 수집합니다.

드라이버는 애플리케이션당 하나만 존재하며, 실행 위치에 따라 두 가지 모드로 구분됩니다:

- 클러스터 모드: 드라이버가 클러스터 내의 특정 노드에서 실행됩니다.
- 클라이언트 모드: 드라이버가 클러스터 외부에서 실행됩니다.

2.4 실행기(Executor)

실행기는 드라이버가 요청한 태스크를 받아 실행하고 결과를 반환합니다:

- JVM 프로세스: 각 실행기는 독립된 JVM 프로세스로 실행됩니다.
- 병렬 실행: 여러 태스크 슬롯(스레드)을 통해 태스크를 병렬로 실행합니다.

2.5 SparkSession

SparkSession은 Spark Core 기능들과 상호 작용할 수 있는 진입점을 제공합니다:

- API 제공: DataFrame 및 SQL API를 통해 데이터 처리를 수행할 수 있습니다.
- 세션 관리: 애플리케이션의 설정 및 리소스를 관리합니다.

```
from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .appName("MySparkApp") \
    .getOrCreate()
```

2.6 Job, Stage, Task

Spark의 실행 단위는 다음과 같이 구성됩니다:

- Job: 액션 연산에 의해 생성되며, 전체 작업 단위를 의미합니다.
- Stage: Job은 여러 개의 Stage로 나뉘며, 각 Stage는 연산 간의 셔플 유무에 따라 구분됩니다.
- Task: Stage는 여러 개의 Task로 구성되며, 각 Task는 데이터의 파티션 단위로 실행됩니다.

2.7 Spark 연산의 종류

Spark 연산은 크게 트랜스포메이션(Transformation)과 액션(Action)으로 구분됩니다:

- Transformation: 기존 RDD나 DataFrame을 변형하여 새로운 RDD나 DataFrame을 생성합니다.
 - o 예: map(), filter(), groupBy(), select()
- Action: 변형된 데이터를 기반으로 결과를 반환하거나 외부 저장소에 저장합니다.
 - o 예: count(), collect(), save()

Narrow vs. Wide Transformation

- Narrow Transformation: 하나의 파티션에서만 데이터를 처리하며, 셔플이 발생하지 않습니다.
 - o 예: map(), filter()
- Wide Transformation: 여러 파티션 간에 데이터를 이동시키며, 셔플이 발생합니다.
 - o 예: groupBy(), join()

2.8 Lazy Evaluation (지연 평가)

Apache Spark는 **지연 평가(Lazy Evaluation)** 전략을 통해 실행 계획을 최적화하고, 자원 사용을 효율화하며, 장애 복구를 용이하게 합니다.

개념 정리

- **트랜스포메이션(Transformation)**: map(), filter()와 같은 연산으로, 새로운 RDD나 DataFrame을 생성하지만 즉시 실행되지 않습니다.
- **액션(Action)**: count(), collect()와 같은 연산으로, 실제 결과를 반환하며 이때까지의 트랜스포메이션이 실행됩니다.

Lazy Evaluation의 작동 방식

- 1. 실행 계획 수립: 트랜스포메이션 연산이 호출되면, Spark는 이를 즉시 실행하지 않고 실행 계획으로 저장합니다.
- 2. **계보(Lineage) 생성**: 연속된 트랜스포메이션 연산들은 계보로 기록되며, 이는 Directed Acyclic Graph(DAG) 형태로 표현됩니다.
- 3. 액션 호출 시 실행: 액션 연산이 호출되면, Spark는 저장된 실행 계획을 기반으로 최적화된 실행을 수행합니다.

Lazy Evaluation의 장점

- 최적화 기회 제공: 전체 실행 계획을 분석하여, 불필요한 연산을 제거하거나 연산 순서를 재조정하여 성능을 향상시킬수 있습니다.
- 자원 효율성 향상: 필요한 연산만을 수행하므로, 메모리와 CPU 사용을 최소화할 수 있습니다.
- **장애 복구 용이성**: 계보 정보를 활용하여, 실패한 연산만을 재실행함으로써 전체 작업을 재실행하지 않고도 복구가 가능합니다.

예시 코드

```
from pyspark.sql import SparkSession

# Spark 세션 생성
spark =
SparkSession.builder.appName("LazyEvaluationExample").getOrCreate()
sc = spark.sparkContext

# 데이터 로드 (트랜스포메이션)
```

```
rdd = sc.textFile("data.txt")
filtered_rdd = rdd.filter(lambda line: "error" in line)
mapped_rdd = filtered_rdd.map(lambda line: line.upper())

# 액션 호출 전까지는 실제 실행되지 않음
# 액션 호출 시점에서 모든 트랜스포메이션이 실행됨
result = mapped_rdd.collect()

# 결과 출력
for line in result:
    print(line)
```

위 코드에서 filter와 map 연산은 트랜스포메이션으로, collect 액션이 호출되기 전까지는 실제 실행되지 않습니다. collect가 호출되는 시점에서 Spark는 전체 실행 계획을 최적화하여 실행합니다.

DAG 시각화

Spark의 실행 계획은 DAG(Directed Acyclic Graph) 형태로 표현됩니다. 아래는 간단한 DAG의 예시입니다. Medium+1codeinspark.com+1

```
graph LR
A[Load data.txt] --> B[Filter lines containing 'error']
B --> C[Convert lines to uppercase]
C --> D[Collect results]
```

이러한 DAG 구조를 통해 Spark는 연산 간의 의존성을 파악하고, 최적화된 실행 계획을 수립할 수 있습니다.

3. Spark 실행 흐름: Job, Stage, Task의 이해

Apache Spark의 실행 흐름은 사용자가 작성한 애플리케이션 코드가 어떻게 분산 환경에서 실행되는지를 이해하는 데 핵심적입니다. 이 흐름은 다음과 같은 단계로 구성됩니다:

- 3.1 애플리케이션 제출 및 드라이버 초기화
 - 애플리케이션 제출: 사용자는 spark-submit 명령어를 통해 애플리케이션을 클러스터에 제출합니다.
 - **드라이버 프로그램 시작**: 클러스터 매니저는 드라이버 프로그램을 시작하며, 이는 SparkContext 또는 SparkSession을 초기화하여 클러스터와의 연결을 설정합니다.

3.2 논리 및 물리 실행 계획 생성

- 논리 실행 계획: 사용자가 작성한 트랜스포메이션 연산들은 논리 실행 계획으로 구성됩니다.
- Catalyst Optimizer: 논리 실행 계획은 Catalyst Optimizer에 의해 최적화되어 물리 실행 계획으로 변환됩니다.
- **물리 실행 계획**: 최적화된 계획은 DAG(Directed Acyclic Graph) 형태로 표현되며, 이는 Stage와 Task로 구성됩니다.Medium

3.3 Stage 및 Task 스케줄링

- Stage 분할: DAG Scheduler는 셔플 경계를 기준으로 Job을 여러 Stage로 분할합니다.
- Task 생성: 각 Stage는 데이터 파티션 수에 따라 여러 Task로 나뉘며, 이는 병렬로 실행됩니다.
- TaskScheduler: TaskScheduler는 생성된 Task를 Executor에 할당하고 실행을 관리합니다.

3.4 Executor에서의 Task 실행

- Task 수신: Executor는 드라이버로부터 Task를 수신합니다.
- 데이터 처리: 각 Task는 할당된 데이터 파티션에 대해 연산을 수행합니다.
- 결과 반환: Task 실행 결과는 드라이버에 반환되며, 필요 시 중간 결과는 메모리에 캐시됩니다.

3.5 Job 완료 및 리소스 해제

- Job 완료: 모든 Task가 성공적으로 완료되면, 해당 Job은 완료 상태로 표시됩니다.
- 리소스 해제: 애플리케이션이 종료되면, 드라이버와 Executor는 사용한 리소스를 해제하고 종료됩니다.

4. Spark Web UI를 통한 실행 모니터링

Spark는 실행 중인 애플리케이션의 상태를 실시간으로 모니터링할 수 있는 Web UI를 제공합니다. 기본적으로 http://localhost:4040에서 접근할 수 있으며, 주요 탭은 다음과 같습니다:

4.1 Jobs 탭

- Job 목록: 현재 실행 중이거나 완료된 Job들의 목록과 상태를 확인할 수 있습니다.
- DAG 시각화: 각 Job의 실행 계획을 DAG 형태로 시각화하여 보여줍니다.

4.2 Stages 탭

- Stage 상세 정보: 각 Stage의 실행 시간, 입력 및 출력 데이터 크기, 셔플 읽기/쓰기 정보 등을 제공합니다.
- Task 진행 상황: Stage 내의 Task들의 진행 상황과 상태를 확인할 수 있습니다.

4.3 Storage 탭

• RDD 및 DataFrame 캐시 상태: 캐시된 데이터의 저장 위치와 크기 등을 확인할 수 있습니다.

4.4 Executors 탭

• Executor 상태: 각 Executor의 메모리 사용량, 디스크 I/O, Task 실행 수 등을 모니터링할 수 있습니다.

5. Spark의 최적화 전략

효율적인 Spark 애플리케이션을 개발하기 위해서는 다음과 같은 최적화 전략을 고려해야 합니다:

5.1 셔플 최소화

- Wide Transformation 최소화: groupByKey, join 등의 Wide Transformation은 셔플을 유발하므로, 가능한 한 Narrow Transformation으로 대체합니다.
- reduceByKey 사용: groupByKey 대신 reduceByKey를 사용하여 셔플 데이터를 줄일 수 있습니다.

5.2 데이터 파티셔닝 최적화

- 적절한 파티션 수 설정: 데이터의 크기와 클러스터의 리소스를 고려하여 적절한 파티션 수를 설정합니다.
- repartition과 coalesce 사용: 필요에 따라 파티션 수를 조정하여 작업 효율을 높입니다.

5.3 캐싱 전략

- 중간 결과 캐싱: 반복적으로 사용되는 중간 결과는 cache() 또는 persist()를 사용하여 메모리에 저장합니다.
- 캐시 해제: 사용이 끝난 캐시는 unpersist()를 통해 메모리에서 해제하여 리소스를 확보합니다.

6. Spark의 고급 기능: Catalyst Optimizer와 Adaptive Query Execution

Apache Spark는 성능 최적화를 위해 다양한 고급 기능을 제공합니다. 그 중에서도 Catalyst Optimizer와 Adaptive Query Execution(AQE)은 쿼리 실행 계획을 최적화하여 성능을 향상시키는 데 중요한 역할을 합니다.

6.1 Catalyst Optimizer

- **정의**: Catalyst Optimizer는 Spark SQL의 쿼리 최적화 엔진으로, 쿼리 실행 계획을 분석하고 최적화하여 효율적인 실행을 도모합니다.
- 기능:
 - o 논리 계획 최적화: 쿼리의 논리적 실행 계획을 분석하여 불필요한 연산을 제거하거나 재배치합니다.
 - o 물리 계획 생성: 최적화된 논리 계획을 기반으로 실제 실행 가능한 물리 계획을 생성합니다.
 - o **코스트 기반 최적화**: 다양한 실행 계획 중에서 비용이 가장 낮은 계획을 선택합니다.
- 장점:
 - o 자동 최적화: 사용자가 명시적으로 최적화하지 않아도 Catalyst가 자동으로 최적화를 수행합니다.
 - o 확장성: 다양한 데이터 소스와 연동하여 복잡한 쿼리도 효율적으로 처리할 수 있습니다.

6.2 Adaptive Query Execution (AQE)

- 정의: AQE는 실행 중에 수집된 통계를 기반으로 쿼리 계획을 동적으로 조정하여 성능을 향상시키는 기능입니다.
- 기능:
 - o **셔플 파티션 병합**: 실행 중에 파티션 크기를 분석하여 작은 파티션을 병합함으로써 셔플 오버헤드를 줄입니다.

- o **조인 전략 변경**: 실행 중에 조인 대상의 크기를 분석하여 브로드캐스트 조인 등 더 효율적인 조인 전략으로 변경합니다.
- o **스큐 조인 최적화**: 데이터 스큐가 발생하는 경우, 스큐된 파티션을 분할하여 병렬 처리를 향상시킵니다.

• 설정 방법:

```
spark.conf.set("spark.sql.adaptive.enabled", "true")
```

• 장점:

- o **동적 최적화**: 실행 중에 수집된 정보를 기반으로 최적화를 수행하므로, 사전에 예측하기 어려운 상황에서도 효율적인 실행이 가능합니다.
- o 성능 향상: 셔플 오버헤드 감소, 조인 전략 최적화 등을 통해 전체 쿼리 실행 시간을 단축할 수 있습니다.

7. 실전 예제: Spark를 활용한 데이터 처리

Apache Spark의 강력한 기능을 활용하여 실제 데이터를 처리하는 예제를 살펴보겠습니다.

7.1 데이터프레임 생성 및 기본 연산

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when
# Spark 세션 생성
spark =
SparkSession.builder.appName("DataProcessingExample").getOrCreate()
# 데이터프레임 생성
data = [("Alice", 29), ("Bob", 17), ("Charlie", 35), ("Diana", 12)]
columns = ["name", "age"]
df = spark.createDataFrame(data, columns)
# life_stage 컬럼 추가
df = df.withColumn(
    "life_stage",
    when(col("age") < 13, "child")
    .when(col("age").between(13, 19), "teenager")
    .otherwise("adult")
)
# 결과 출력
df.show()
```

출력 결과:

```
+----+
| name|age|life_stage|
+-----+
| Alice| 29| adult|
| Bob| 17| teenager|
|Charlie| 35| adult|
| Diana| 12| child|
+----+
```

7.2 데이터 저장 및 불러오기

```
# 데이터 저장 (Parquet 형식)
df.write.mode("overwrite").parquet("people.parquet")

# 저장된 데이터 불러오기
df_loaded = spark.read.parquet("people.parquet")
df_loaded.show()
```

7.3 SQL 쿼리 실행

```
# 뷰 생성
df.createOrReplaceTempView("people")

# SQL 쿼리 실행
result = spark.sql("SELECT name FROM people WHERE age >= 18")
result.show()
```

8. Spark Structured Streaming: 실시간 데이터 처리의 진화

Apache Spark는 실시간 데이터 처리의 요구에 대응하기 위해 Structured Streaming을 도입하였습니다. 이는 기존의 Spark Streaming의 한계를 극복하고, 더 강력하고 유연한 스트리밍 처리를 가능하게 합니다.

8.1 Structured Streaming의 개요

- 정의: Structured Streaming은 Spark SQL 엔진 위에 구축된 확장 가능한 스트리밍 처리 엔진으로, 배치 처리와 동일한 방식으로 스트리밍 데이터를 처리할 수 있습니다.
- 특징:
 - o 고수준 API: DataFrame과 Dataset API를 사용하여 스트리밍 쿼리를 작성할 수 있습니다.
 - o 지속적인 처리: 데이터가 도착함에 따라 결과를 지속적으로 업데이트합니다.
 - o **내결함성**: 체크포인팅과 Write-Ahead Logs를 통해 정확히 한 번 처리(Exactly-once semantics)를 보장합니다.

• 장점:

- **일관된 API**: 배치 및 스트리밍 처리를 동일한 API로 작성할 수 있어 코드 재사용성이 높습니다.
- o 다양한 소스 및 싱크 지원: Kafka, 파일 시스템, 소켓 등 다양한 데이터 소스와 싱크를 지원합니다.

8.2 Structured Streaming의 작동 방식

Structured Streaming은 내부적으로 마이크로 배치(micro-batch) 방식을 사용하여 데이터를 처리합니다. 이는 데이터 스트림을 작은 배치로 나누어 처리함으로써 낮은 지연 시간과 높은 처리량을 달성합니다.

```
graph LR
A[데이터 소스] --> B[입력 스트림]
B --> C[마이크로 배치 생성]
C --> D[쿼리 실행]
D --> E[결과 업데이트]
E --> F[데이터 싱크]
```

8.3 예제: TCP 소켓에서 실시간 단어 수 세기

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode, split

# Spark 세션 생성
spark =
SparkSession.builder.appName("StructuredNetworkWordCount").getOrCreate()

# 소켓에서 데이터 읽기
lines = spark.readStream.format("socket").option("host",
"localhost").option("port", 9999).load()

# 단어 분리 및 집계
words = lines.select(explode(split(lines.value, " ")).alias("word"))
word_counts = words.groupBy("word").count()

# 결과 출력
query =
word_counts.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()
```

이 예제는 TCP 소켓에서 수신한 텍스트 데이터를 실시간으로 처리하여 각 단어의 출현 횟수를 계산합니다.

9. MLlib: Spark의 머신러닝 라이브러리

Apache Spark는 대규모 데이터에 대한 머신러닝 작업을 지원하기 위해 MLlib을 제공합니다. MLlib은 다양한 알고리즘과 도구를 제공하여 확장 가능하고 효율적인 머신러닝 파이프라인을 구축할 수 있습니다.

9.1 MLlib의 주요 구성 요소

- 알고리즘: 분류, 회귀, 클러스터링, 협업 필터링 등 다양한 머신러닝 알고리즘을 제공합니다.
- 특징 처리: 특성 추출, 변환, 차원 축소 등의 기능을 지원합니다.
- 파이프라인: 머신러닝 워크플로우를 구성하고 관리할 수 있는 파이프라인 API를 제공합니다.
- 모델 저장 및 로드: 학습된 모델을 저장하고 재사용할 수 있습니다.

9.2 예제: 로지스틱 회귀를 통한 이진 분류

```
from pyspark.sql import SparkSession
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline
# Spark 세션 생성
spark =
SparkSession.builder.appName("LogisticRegressionExample").getOrCreate()
# 데이터 로드
data = spark.read.format("libsvm").load("sample_libsvm_data.txt")
# 로지스틱 회귀 모델 생성
lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
# 파이프라인 구성
pipeline = Pipeline(stages=[lr])
# 모델 학습
model = pipeline.fit(data)
# 예측 수행
predictions = model.transform(data)
predictions.select("features", "label", "prediction").show()
```

이 예제는 로지스틱 회귀를 사용하여 이진 분류를 수행하는 과정을 보여줍니다. MLlib의 파이프라인 API를 활용하여 모델 학습과 예측을 간단하게 구현할 수 있습니다.

10. GraphX: Apache Spark의 그래프 처리 API

Apache Spark의 GraphX는 대규모 그래프 데이터를 효율적으로 처리하기 위한 분산 그래프 처리 프레임워크입니다. GraphX는 RDD를 기반으로 하며, 그래프와 컬렉션 간의 통합된 API를 제공합니다.

10.1 GraphX의 주요 특징

- 속도: GraphX는 Spark의 분산 처리 능력을 활용하여 대규모 그래프 데이터를 빠르게 처리할 수 있습니다.
- 유연성: 그래프와 컬렉션 간의 변환이 용이하며, 다양한 그래프 알고리즘을 지원합니다.

• 확장성: 대규모 그래프 데이터를 클러스터 환경에서 효율적으로 처리할 수 있습니다.

10.2 GraphX의 구성 요소

- VertexRDD: 그래프의 정점 정보를 담고 있는 RDD입니다. 각 정점은 고유한 ID와 속성 값을 가집니다.
- EdgeRDD: 그래프의 간선 정보를 담고 있는 RDD입니다. 각 간선은 출발 정점 ID, 도착 정점 ID, 그리고 속성 값을 가 집니다.
- **Graph**: VertexRDD와 EdgeRDD를 기반으로 구성된 그래프 객체입니다.

10.3 GraphX의 주요 연산

- subgraph: 특정 조건을 만족하는 정점과 간선으로 구성된 부분 그래프를 추출합니다.
- mapVertices: 정점의 속성 값을 변환합니다.
- mapEdges: 간선의 속성 값을 변환합니다.
- joinVertices: 외부 데이터와 정점을 조인하여 속성 값을 확장합니다.
- aggregateMessages: 정점 간의 메시지 전달을 통해 정보를 집계합니다.

10.4 GraphX의 내장 알고리즘

GraphX는 다양한 그래프 알고리즘을 내장하고 있어, 복잡한 그래프 분석 작업을 간편하게 수행할 수 있습니다.

알고리즘	설명
PageRank	정점의 중요도를 계산하여 웹 페이지 순위 등을 평가합니다.
Connected Components	연결된 정점 집합을 식별하여 그래프의 구조를 분석합니다.
Triangle Count	정점이 포함된 삼각형의 개수를 계산하여 클러스터링 계수를 분석합니다.
Label Propagation	정점에 라벨을 전파하여 커뮤니티를 탐지합니다.
SVD++	추천 시스템에서 사용되는 행렬 분해 기법입니다.

10.5 예제: GraphX를 이용한 간단한 그래프 분석

```
(4L, "David")
))
// 간선 RDD 생성
val edges: RDD[Edge[String]] = sc.parallelize(Seg(
 Edge(1L, 2L, "friend"),
 Edge(2L, 3L, "follow"),
 Edge(3L, 4L, "follow"),
  Edge(4L, 1L, "friend")
))
// 그래프 생성
val graph = Graph(vertices, edges)
// 각 정점의 차수 출력
val degrees = graph.degrees.collect()
degrees.foreach { case (id, degree) =>
  println(s"Vertex $id has degree $degree")
}
```

이 예제는 간단한 소셜 네트워크 그래프를 생성하고, 각 정점의 차수를 계산하여 출력합니다.

11. Spark의 클러스터 매니저

Apache Spark는 다양한 클러스터 매니저를 지원하여, 분산 환경에서의 자원 관리를 효율적으로 수행할 수 있습니다.

11.1 클러스터 매니저의 역할

클러스터 매니저는 클러스터의 자원을 관리하고, Spark 애플리케이션에 필요한 자원을 할당합니다. 주요 역할은 다음과 같습니다:

- 자원 할당: 애플리케이션에 필요한 CPU, 메모리 등의 자원을 할당합니다.
- 작업 스케줄링: 작업을 적절한 노드에 분배하여 실행합니다.
- 모니터링: 클러스터의 상태를 모니터링하고, 장애 발생 시 복구를 지원합니다.

11.2 Spark에서 지원하는 클러스터 매니저

클러스터 매니저	설명
Standalone	Spark에 내장된 간단한 클러스터 매니저로, 설정이 간편하며 테스트 환경에 적합합니다.
Apache Mesos	다양한 분산 시스템을 위한 범용 리소스 관리자입니다.
Hadoop YARN	Hadoop 환경에서 통합 리소스 관리를 제공하는 클러스터 매니저입니다.
Kubernetes	컨테이너화된 애플리케이션의 배포, 확장, 관리를 자동화하는 오픈소스 시스템입니다.

11.3 클러스터 매니저 선택 시 고려사항

- 환경: 기존에 사용 중인 시스템과의 호환성을 고려해야 합니다.
- 확장성: 클러스터의 크기와 확장 계획에 따라 적합한 매니저를 선택해야 합니다.
- 복잡성: 설정과 관리의 복잡성을 고려하여 선택해야 합니다.

12. Apache Spark 성능 최적화 및 튜닝

Apache Spark는 대규모 데이터 처리를 위한 강력한 프레임워크이지만, 최적의 성능을 발휘하기 위해서는 적절한 튜닝과 최적화가 필요합니다. 아래에서는 Spark 애플리케이션의 성능을 향상시키기 위한 주요 기법과 모범 사례를 소개합니다.

12.1 데이터 구조 선택: DataFrame/Dataset vs. RDD

• DataFrame/Dataset 사용 권장: Spark는 기본적으로 RDD(Resilient Distributed Dataset)를 제공하지만, DataFrame과 Dataset은 내부적으로 Catalyst 옵티마이저와 Tungsten 실행 엔진을 활용하여 자동으로 실행 계획을 최적화합니다. 이를 통해 RDD보다 더 나은 성능을 제공합니다.ChaosGenius+1Medium+1

```
# DataFrame 예제
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.select("column_name").show()
```

위의 예제에서 DataFrame을 사용하여 CSV 파일을 읽고 특정 열을 선택하였습니다. 이는 RDD를 사용하는 것보다 간결하고 효율적입니다.

12.2 데이터 파티셔닝 최적화

• 적절한 파티션 수 설정: Spark는 데이터를 여러 파티션으로 나누어 병렬 처리를 수행합니다. 파티션 수는 클러스터의 코어 수와 데이터 크기에 따라 조정해야 합니다. 일반적으로 코어 수의 2~3배 정도의 파티션을 권장합니다.

```
# 파티션 수 조정 예제
df = df.repartition(100) # 파티션 수를 100개로 설정
```

• 데이터 스큐(Data Skew) 방지: 특정 파티션에 데이터가 집중되는 현상을 방지하기 위해 키를 고르게 분포시키는 것이 중요합니다. 필요 시 salting 기법을 사용하여 키에 임의의 값을 추가하여 분포를 개선할 수 있습니다.

12.3 셔플(Shuffle) 최소화

- **셔플이란?**: 셔플은 데이터가 파티션 간에 이동하는 과정으로, 네트워크 I/O와 디스크 I/O를 증가시켜 성능 저하를 유발할 수 있습니다.
- 셔플 최소화 전략:
 - 집계 시 reduceByKey 사용: groupByKey 대신 reduceByKey를 사용하면 셔플 전에 각 파티션 내에서
 로컬 집계를 수행하여 전송되는 데이터를 줄일 수 있습니다.ChaosGenius

```
# RDD에서 reduceByKey 사용 예제
rdd = sc.parallelize([("key1", 1), ("key2", 2), ("key1", 3)])
rdd.reduceByKey(lambda a, b: a + b).collect()
```

o **브로드캐스트 조인 활용**: 작은 데이터셋과의 조인 시 브로드캐스트 변수를 사용하여 셔플을 방지할 수 있습니다.

```
# DataFrame에서 브로드캐스트 조인 예제
from pyspark.sql.functions import broadcast

small_df = spark.read.csv("small_data.csv", header=True,
inferSchema=True)
large_df = spark.read.csv("large_data.csv", header=True,
inferSchema=True)

result = large_df.join(broadcast(small_df), "key_column")
```

12.4 사용자 정의 함수(UDF) 사용 시 주의사항

• 내장 함수 우선 사용: Spark의 내장 함수는 최적화되어 있어 UDF보다 빠릅니다. 가능하면 내장 함수를 사용하는 것이 좋습니다.

```
# 내장 함수 사용 예제
from pyspark.sql.functions import col

df = df.withColumn("new_column", col("existing_column") + 1)
```

• **UDF 사용 시 주의점**: UDF는 파이썬과 JVM 간의 데이터 변환이 필요하여 성능 저하를 유발할 수 있습니다. 따라서 사용을 최소화하고, 반드시 필요한 경우에만 사용해야 합니다.

12.5 데이터 캐싱과 퍼시스팅

• **캐싱(Caching)**: 반복적으로 사용되는 데이터셋은 메모리에 캐싱하여 재연산을 방지하고 성능을 향상시킬 수 있습니다.

```
# DataFrame 캐싱 예제
df.cache()
df.show()
```

• 퍼시스팅(Persisting): 캐싱과 유사하지만, 저장소 레벨을 지정하여 메모리 외에도 디스크 등에 데이터를 저장할 수 있습니다.

```
# RDD 퍼시스팅 예제
rdd.persist(StorageLevel.MEMORY_AND_DISK)
```

```
rdd.count()
```

캐싱과 퍼시스팅은 과도하게 사용하면 메모리 부족을 초래할 수 있으므로, 필요할 때만 사용하고 사용이 끝난 후에는 unpersist() 메서드를 통해 해제하는 것이 좋습니다.

12.6 실행 계획 확인과 튜닝

• 실행 계획 확인: explain() 메서드를 사용하여 DataFrame의 실행 계획을 확인하고, 비효율적인 부분을 찾아 최적 화할 수 있습니다.

```
# 실행 계획 확인 예제
df.explain()
```

• **코드 프로파일링**: Spark UI를 활용하여 작업의 실행 시간, 셔플 발생 여부, 파티션 크기 등을 모니터링하고 병목 지점을 파악하여 튜닝할 수 있습니다.

12.7 메모리 관리와 GC 튜닝

Apache Spark는 대규모 데이터를 메모리에서 처리하기 때문에, 효율적인 메모리 관리와 가비지 컬렉션(GC) 튜닝이 중요합니다. 적절한 설정을 통해 성능을 향상시키고, OutOfMemoryError와 같은 문제를 방지할 수 있습니다.

12.7.1 JVM 힙 메모리 설정

• Executor 및 Driver 메모리 설정: 작업의 특성과 클러스터 리소스를 고려하여 적절한 메모리 크기를 설정해야 합니다. 일반적으로 Executor당 4~8GB의 메모리를 권장합니다.

```
--executor-memory 4g
--driver-memory 2g
```

• 메모리 오버헤드 설정: JVM의 네이티브 메모리 사용량을 고려하여 오버헤드를 설정해야 합니다. 일반적으로 Executor 메모리의 10% 또는 최소 384MB를 권장합니다.

```
--conf spark.executor.memoryOverhead=512
```

12.7.2 가비지 컬렉션(GC) 튜닝

• **G1 GC 사용**: Spark에서는 G1 GC를 사용하는 것이 일반적으로 권장됩니다. G1 GC는 짧은 GC 정지 시간과 높은 처리량을 제공하며, 대규모 데이터 처리에 적합합니다.Apache Spark 소개+1community.cloudera.com+1

```
--conf spark.executor.extraJavaOptions="-XX:+UseG1GC"
--conf spark.driver.extraJavaOptions="-XX:+UseG1GC"
```

• GC 로그 활성화: GC 로그를 활성화하여 GC 동작을 모니터링하고, 성능 병목 지점을 파악할 수 있습니다.

```
--conf spark.executor.extraJavaOptions="-verbose:gc -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
```

• GC 튜닝 파라미터: GC 동작을 세밀하게 조정하기 위해 다양한 파라미터를 설정할 수 있습니다. 예를 들어, G1 GC의 경우 다음과 같은 설정이 있습니다.Microsoft Learn+2Apache Spark 소개+2community.cloudera.com+2

```
--conf spark.executor.extraJavaOptions="-XX:+UseG1GC -
XX:InitiatingHeapOccupancyPercent=35 -XX:ConcGCThreads=4"
```

- o InitiatingHeapOccupancyPercent: GC를 시작하는 힙 점유율을 설정합니다. 기본값은 45%이며, 낮출수록 GC가 더 자주 발생하지만, 정지 시간이 짧아집니다.Apache Spark 소개
- o ConcGCThreads: 동시 GC를 수행하는 스레드 수를 설정합니다. 스레드 수를 늘리면 GC 속도가 빨라지지 만, 다른 작업에 사용할 수 있는 스레드가 줄어듭니다.

12.7.3 오프 힙(Off-Heap) 메모리 사용

• 오프 힙 메모리 활성화: Spark에서는 오프 힙 메모리를 사용하여 GC 오버헤드를 줄이고, 메모리 사용 효율을 높일 수 있습니다.

```
--conf spark.memory.offHeap.enabled=true
--conf spark.memory.offHeap.size=2g
```

오프 힙 메모리는 JVM 힙 외부의 메모리를 사용하므로, GC의 영향을 받지 않습니다. 특히, 대규모 데이터를 처리할 때 유용합니다.

12.7.4 메모리 분할 조정

• 메모리 분할 비율 설정: Spark는 JVM 힙 메모리를 Execution과 Storage 영역으로 나누어 사용합니다. 이 비율을 조 정하여 작업의 특성에 맞게 메모리 사용을 최적화할 수 있습니다.

```
--conf spark.memory.fraction=0.6
--conf spark.memory.storageFraction=0.5
```

- o spark.memory.fraction: 전체 JVM 힙 메모리에서 Execution과 Storage에 사용할 비율을 설정합니다. 기본값은 0.6입니다.
- o spark.memory.storageFraction: spark.memory.fraction에서 Storage에 사용할 비율을 설정합니다. 기본값은 0.5입니다.Stack Overflow+1blogs.diggibyte.com+1

예를 들어, spark.memory.fraction=0.6이고 spark.memory.storageFraction=0.5이면, 전체 JVM 합의 30%를 Storage에 사용하게 됩니다.Stack Overflow

12.7.5 GC 모니터링 및 분석

- Spark UI 활용: Spark UI의 Executors 탭에서 각 Executor의 메모리 사용량과 GC 시간을 확인할 수 있습니다. 이를 통해 GC로 인한 성능 저하를 파악할 수 있습니다.
- **GC 로그 분석**: GC 로그를 수집하여 GC 발생 빈도, 정지 시간 등을 분석할 수 있습니다. 이를 통해 GC 튜닝의 효과를 평가하고, 추가적인 최적화 방안을 도출할 수 있습니다.