

Univerza v Mariboru Fakulteta za elektrotehniko, računalništvo in informatiko

Univerza v Mariboru

Odkrivanje vožnje v zavetrju na triatlonskih tekmovanjih

Iztok Fister, ml.

Vsebina

- Motivacija
- Triatlonska tekmovanja
- Vožnja v zavetrju
- Sistem za odkrivanje vožnje v zavetrju
- Poskusi in rezultati
- Zaključek

Vsebina

- Motivacija
- Triatlonska tekmovanja
- Vožnja v zavetrju
- Sistem za odkrivanje vožnje v zavetrju
- Poskusi in rezultati
- Zaključek

Motivacija

- Ugotoviti:
 - ali lahko uporabimo današnjo tehnologijo GPS (Garmin, Polar, pametni telefon) v realnih aplikacijah?
 - Kako precizna je današnja tehnologija GPS?
- Uporabiti tehnologijo GPS pri razvoju sistema za odkrivanje vožnje v zavetrju.

Triatlon IRONMAN

Vožnja v zavetrju na Ironman-ih

- Vožnja v zavetrju ni dovoljena
- Tekmovalci morajo držati razdaljo min 7 m
- Prehitevanje tekmovalca traja max 20 sekund
- Prehiteni tekmovalec se mora oddaljiti na 7 m

Problemi pri odkrivanju vožnje v zavetrju

- Avtomatizirana rešitev ne obstaja
- Kršitve odkrivajo sodniki na motorjih
- Problemi:
 - razdalje sodniki ocenjujejo po občutku,
 - podobno je s časom vožnje v zavetrju,
 - istočasno so sodniki lahko samo na enem mestu in
 - obravnavanje skupine kolesarjev.

Sistem za odkrivanje vožnje v zavetrju

- Predlog avtomatizirane rešitve
- Sistem je sestavljen iz:
 - sistema GPS,
 - brezžičnega modema GPRS,
 - spletnega strežnika in
 - mobilnega vseprisotnega odjemalca.
- Mobilne naprave (pametni telefoni) združujejo GPS in GPRS.

Odkrivanje vožnje v zavetrju

Transformacija geografskih koordinat v UTM

- Geografske koordinate neprimerne za računanje razdalj med 2 točkama
- Uporabimo koordinatni sistem UTM (Universal Transverse Mercator system)
- Pozicije so predstavljene kot:
 <lon_cona, lat_cona, vzhod, sever>
- Uporabimo transformacijo avtorja Salkosua v Javi s spleta

Poskusi in rezultati 1/5

- Izvedeni trije poskusi:
 - primerjava natančnosti različnih naprav GPS pri pozicioniranju referenčne točke na zemlji,
 - primerjava referenčnih razdalj na zemlji z razdaljami, ki jih izračuna strežnik s podatki iz naprav GPS,
 - simulacija vožnje v zavetrju.

Poskusi in rezultati 2/5

- Uporabljene naprave:
 - smartphone Samsung Galaxy,
 - smartphone HTC Wildfire,
 - naprava GPS z vmesnikom USB in
 - športna ura Garmin Forerunner 110.

Poskusi in rezultati 3/5

- Natančnost različnih naprav GPS:
 - vsaka naprava isto točko pozicionira drugače,
 - najbolj natančna je naprava Garmin (nad. višina).

Naprava	Longituda	St.odst.lon.	Latituda	St.odst.lat.	Nad.višina	St.odst.n.v.	Evk.r.
Gallaxy	16.1487511296	1.30E-05	46.6159992529	6.99E-06	247.18	1.82	59.18
HTC	16.1487811983	3.10E-07	46.6160398901	2.53E-06	238.00	0.00	50.00
USB GPS	16.1487606067	2.24E-05	46.6160476200	1.97E-05	247.23	4.02	59.23
Garmin	16.1488530133	0.00E+00	46.6160676442	0.00E+00	188.00	0.00	0.00
Average	16.1487864870	4.61E-05	46.6160386018	2.87E-05	230.10	28.40	42.10

Poskusi in rezultati 4/5

- Merjenje pozicij z napravo HTC:
 - 11 ko-linearnih točk med seboj oddaljenih 1m.

Dej.r.	Nad.v.	Vzhod	Sever	Evk.r.	Rel.n.
0.00	238.0	587962.0	5163137.4	0.00	0.00
1.00	238.0	587963.0	5163142.0	4.71	3.71
2.00	244.0	587949.8	5163115.8	24.81	11.40
3.00	234.8	587961.8	5163152.8	15.40	4.13
4.00	237.4	587959.4	5163158.2	20.96	4.24
5.00	240.2	587959.0	5163162.8	25.58	4.11
6.00	241.0	587954.0	5163130.2	10.76	0.79
7.00	240.0	587952.0	5163132.4	11.18	0.59
8.00	240.0	587954.0	5163131.0	10.24	0.28
9.00	240.0	587954.0	5163137.0	8.01	0.11
10.00	235.0	587951.4	5163136.6	10.63	0.06

Poskusi in rezultati 5/5

- Merjenje pozicij z napravo HTC:
 - 41 kolinearnih točk med seboj oddaljenih 0.25m.

Zaključek

- Klasični GPS (angl. Stand-alone GPS) ni dovolj natančen za odkrivanje vožnje v zavetrju
- Diferenčni GPS (angl. Differential GPS) meri pozicije že do 3 metre natančno
- Natančnost naprav GPS se z izgradnjo navigacijskega sistema Galileo še povečuje
- Mobilna tehnologija vstopa v generacijo 4G
- Ali je sistem za odkrivanje vožnje v zavetrju iluzoren?

Ne. Razvoj tehnologij namreč kaže ravno obratno.