

دانشگاه صنعتی شریف دانشکدهی مهندسی هوافضا

پروژه کارشناسی ارشد مهندسی فضا

عنوان:

هدایت یادگیری تقویتی مقاوم مبتنی بر بازی دیفرانسیلی در محیطهای پویای چندجسمی با پیشران کم

نگارش:

علی بنی اسد

استاد راهنما:

دكتر هادى نوبهارى

دی ۳۰۳

به نام خدا

دانشگاه صنعتی شریف

دانشكدهي مهندسي هوافضا

پروژه کارشناسی ارشد

عنوان: هدایت یادگیری تقویتی مقاوم مبتنی بر بازی دیفرانسیلی در محیطهای پویای چندجسمی با پیشران کم

نگارش: على بنى اسد

كميتهى ممتحنين

استاد راهنما: دكتر هادى نوبهارى امضاء:

استاد مشاور: استاد مشاور

استاد مدعو: استاد ممتحن امضاء:

تاريخ:

سپاس

از استاد بزرگوارم جناب آقای دکتر نوبهاری که با کمکها و راهنماییهای بیدریغشان، بنده را در انجام این پروژه یاری دادهاند، تشکر و قدردانی میکنم. از پدر دلسوزم ممنونم که در انجام این پروژه مرا یاری نمود. در نهایت در کمال تواضع، با تمام وجود بر دستان مادرم بوسه میزنم که اگر حمایت بیدریغش، نگاه مهربانش و دستان گرمش نبود برگ برگ این دست نوشته و پروژه وجود نداشت.

چکیده

در این پژوهش، از یک روش مبتنی بر نظریه بازی به منظور کنترل وضعیت استند سه درجه آزادی چهار پره استفاده شده است. در این روش بازیکن اول سعی در ردگیری ورودی مطلوب می کند و بازیکن دوم با ایجاد اغتشاش سعی در ایجاد خطا در ردگیری بازیکن اول می کند. در این روش انتخاب حرکت با استفاده از تعادل نش که با فرض بدترین حرکت دیگر بازیکن است، انجام می شود. این روش نسبت به اغتشاش ورودی و همچنین نسبت به عدم قطعیت مدل سازی می تواند مقاوم باشد. برای ارزیابی عملکرد این روش ابتدا شبیه سازی هایی در محیط سیمولینک انجام شده است و سپس، با پیاده سازی روی استند سه درجه آزادی صحت عملکرد کنترل کننده تایید شده است.

کلیدواژهها: چهارپره، بازی دیفرانسیلی، نظریه بازی، تعادل نش، استند سه درجه آزادی، مدلمبنا، تنظیمکننده مربعی خطی

¹Game Theory

²Nash Equilibrium

فهرست مطالب

١	مه	مقده	١
١	۱ انگیزه پژوهش	1-1	
١	۱ تعریف مسئله	Y-1	
۲	۲ اهداف و نوآوری	۳-۱	
٢	۱ یادگیری تقویتی	4-1	
۲	۵ یادگیری تقویتی چند عاملی	۵-۱	
٢	۶ محتوای گزارش	۶-۱	
٣	ينه پژوهش ينه پروهش	پیشب	۲
٣	۱ ماموریتهای بین مداری	1-7	
۵	ا یادگیری تقویتی	7-7	
۵	۲ یادگیری تقویتی چندعاملی ۲۰۰۰، ۲۰۰۰، ۱۰۰۰، ۱۰۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰۰، ۲۰	٣-٢	
۶	یری تقویتی	یادگ	٣
۶	۱ مفاهیم اولیه	۱-۳	
٧	۳-۱-۱ حالت و مشاهدات		
٧	۳-۱-۳ فضای عمل ۲-۱۰۰۰ مضای عمل ۲-۱۰۰۰ د		
٧	۳-۱-۳ سیاست		
	νε (Ψ		

٨	۳-۱-۵ تابع پاداش و بازگشت	
٩	۳-۱-۶ ارزش در یادگیری تقویتی	
١.	۳-۱-۳ معادلات بلمن	
١١	۳-۱-۸ تابع مزیت	
١٢	عامل گرادیان سیاست عمیق قطعی ۲۰۰۰، ۲۰۰۰، ۵۰۰، میاست	۲-۳
١٢	۳-۲-۳ یادگیری Q در DDPG	
14	۲-۲-۳ سیاس <i>ت</i> در DDPG سیاس <i>ت</i> در	
14	۳-۲-۳ اکتشاف و بهرهبرداری در DDPG	
14	۴-۲-۳ شبه کد DDPG شبه کد	
18	عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه	٣-٣
١٧	۳-۳-۱ اکتشاف و بهرهبرداری در TD3	
١٧	۲-۳-۳ شبه کد TD3 شبه کد	
19	عامل عملگر نقاد نرم	4-4
۱۹	۳-۴-۱ یادگیری تقویتی تنظیم شده با آنتروپی	
۱۹	۲-۴-۳ سیاست در SAC سیاست در	
۲۰	۳-۴-۳ تابع ارزش در SAC تابع ارزش در ۳-۴-۳	
۲۰	۳-۴-۳ تابع Q در SAC در ۴-۴-۳	
۲۰	۵-۴-۳ معادله بلمن در SAC معادله بلمن در	
۲۱	۳-۴-۳ یادگیری Q	
۲۱	۳-۴-۳ سیاست در SAC سیاست در	
77	۳-۴-۳ اکتشاف و بهرهبرداری در SAC	
۲۳	۹-۴-۳ شبه کد SAC شبه کا ۹-۴-۳	
74	عامل بهینهسازی سیاست مجاور	۵-۳

	۳-۵-۳ اکتشاف و بهرهبرداری در PPO	48
	۳-۵-۳ شبه کد PPO شبه کد ۳-۵-۳	78
. c		ы.
۲	یادگیری تقویتی چند عاملی	۲۸
	۱-۴ تعاریف و مفاهیم اساسی	۲۸
	۲-۴ نظریه بازیها ۲-۲ نظریه بازی ها	79
	۱-۲-۴ تعادل نش	79
	۲-۲-۴ بازی مجموع صفر ۲۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰	٣٠
	۳-۴ ایمنی و مقاومت در یادگیری تقویتی چندعاملی ۲۰۰۰، ۲۰۰۰، منی	٣١
	۴-۴ الگوریتمهای یادگیری تقویتی چندعاملی	٣١
۵	مدلسازی محیط یادگیری سه جسمی	٣٢
		٣٣
	۱-۵ مسئله سهجسمی محدود دایرهای ۲۰۰۰، ۲۰۰۰، مسئله سهجسمی	11
۶	شبیهسازی عامل درمحیط سه جسمی	44
٧	سخت افزار در حلقه عملک د عامل در محبط	٣۵
	سحت افزار در حلفه عملک د عامل در محبط	70

فهرست جداول

فهرست تصاوير

٧	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	حلقه تعامل عامل و محيط	1-4
٣٣																									د	هندسه مسئله سه بدنه محده	۱-۵

فهرست الگوريتمها

۱۵	، قطعی ،	گرادیان سیاست عمیق	١
۱۸	، عمیق قطعی تاخیری دوگانه	عامل گرادیان سیاست	۲
۲۳	σ	عامل عملگرد نقاد نرم	٣
۲٧	جاور (PPO-Clip) جاور	بهینهسازی سیاست مح	۴

فصل ۱

مقدمه

۱-۱ انگیزه پژوهش

۲-۱ تعریف مسئله

در سالهای اخیر، پیشرفتهای فناوری در زمینههای مختلف، از جمله کنترل پرواز، پردازش سیگنال و هوش مصنوعی، به افزایش کاربردهای ماهواره با پیشران کم در منظومه زمین ماه کمک کرده است. ماهواره با پیشران کم میتواند برای تعقیب ماهوارهها، انتقال مداری و استقرار ماهوارهها استفاده شود. روشهای هدایت بهینه قدیمی جهت کنترل ماهوارهها اغلب نیازمند فرضیات ساده کننده، منابع محاسباتی فراوان و شرایط اولیه مناسب هستند. الگوریتمهای مبتنی بر یادگیری تقویتی این توانایی را دارند که بدون مشکلات اشاره شده هدایت ماهواره را انجام دهند. به همین دلیل، این الگوریتمها میتوانند امکان محاسبات درونی (On-board Computing) را فراهم میکنند.

- ۱-۳ اهداف و نوآوری
- ۱-۴ یادگیری تقویتی
- ۱-۵ یادگیری تقویتی چند عاملی
 - ۱-۶ محتوای گزارش

فصل ۲

پیشینه پژوهش

۱-۲ ماموریتهای بین مداری

هدایت فضاپیماها معمولاً با استفاده از ایستگاههای زمینی انجام میشود. با این حال، این تکنیکها دارای محدودیتهایی از جمله حساسیت به قطع ارتباطات، تاخیرهای زمانی، و محدودیتهای منابع محاسباتی هستند. الگوریتمهای یادگیری تقویتی و بازیهای دیفرانسیلی میتوانند برای بهبود قابلیتهای هدایت فضاپیماها، از جمله مقاومت در برابر تغییرات محیطی، کاهش تاخیرهای ناشی از ارتباطات زمینی، و افزایش کارایی محاسباتی، مورد استفاده قرار گیرند.

هدایت فضاپیماها معمولاً پیش از پرواز انجام میشود. این روشها میتوانند از تکنیکهای بهینهسازی فراگیر [۱] یا برنامهنویسی غیرخطی برای تولید مسیرها و فرمانهای کنترلی بهینه استفاده کنند. با این حال، این روشها معمولا حجم محاسباتی زیادی دارند و برای استفاده درونسفینه نامناسب هستند [۲]. یادگیری ماشین میتواند برای بهبود قابلیتهای هدایت فضاپیماها استفاده شود. کنترلکننده شبکه عصبی حلقهبسته میتواند برای محاسبه سریع و خودکار تاریخچه کنترل استفاده شود. یادگیری تقویتی نیز میتواند برای یادگیری رفتارهای هدایت بهینه استفاده شود.

روشهای هدایت و بهینهسازی مسیر فضاپیماها بهطور کلی به راهحلهای اولیه مناسب نیاز دارند. در مسائل چند جسمی، طراحان مسیر اغلب حدسهای اولیه کمهزینهای برای انتقالها با استفاده از نظریه سیستمهای دینامیکی و منیفولدهای ثابت [۳، ۴] ایجاد میکنند.

شبکههای عصبی ویژگیهای جذابی برای فعالسازی هدایت در فضاپیما دارند. بهعنوان مثال، شبکههای عصبی میتوانند بهطور مستقیم از تخمینهای وضعیت به دستورهای پیشران کنترلی که با محدودیتهای مأموریت

سازگار است، برسند. عملکرد هدایت شبکههای عصبی در مطالعاتی مانند فرود بر سیارات [۵]، عملیات نزدیکی به سیارات [۶] و کنترل فضاپیما با پیشران ازدسترفته [۷] نشان داده شده است. تازهترین پیشرفتهای تکنیکهای یادگیری ماشین در مسائل خودکارسازی درونی بهطور گستردهای مورد مطالعه قرار گرفتهاند؛ از پژوهشهای اولیه تا تواناییهای پیادهسازی. بهعنوان مثال، الگوریتمهای یادگیری ماشین ابتدایی در فضاپیماهای مریخی نبرد برای کمک به شناسایی ویژگیهای زمینشناسی تعبیه شدهاند. الگوریتم AEGIS توانایی انتخاب خودکار هدف توسط یک دوربین در داخل فضاپیماهای Opportunity ،Spirit را فعال دارد ارد کامپیوتر پرواز اصلی، فرآیند دقت افزایی (Refinement Process) نیاز به ۹۴ تا ۹۶ ثانیه دارد [۹]، که به طور قابل توجهی کمتر از زمان مورد نیاز برای ارسال تصاویر به زمین و انتظار برای انتخاب دستی توسط دانشمندان است. برنامههای آینده برای کاربردهای یادگیری ماشین درونسفینه شامل تواناییهای درباتیکی درونسفینه برای فضاپیمای یادگیری ماشین یادگیری ماشین یادگیری ماشین آینده دارند.

علاوه بر رباتیک سیارهای، پژوهشهای مختلفی به استفاده از تکنیکهای مختلف یادگیری ماشین در مسائل نجومی پرداختهاند. در طراحی مسیر عملکرد رگرسیون معمولاً مؤثرتر هست. به عنوان مثال، از یک شبکه عصبی (NN) در بهینهسازی مسیرهای رانشگر کمپیشران استفاده شده است [۱۳]. پژوهشهای جدید شامل شناسایی انتقالهای هتروکلینیک [۱۴]، اصلاح مسیر رانشگر کمپیشران [۱۵] و تجزیه و تحلیل مشکلات ازدسترفتن رانشگر [۷] میشود.

تکنیکهای یادگیری نظارتی میتوانند نتایج مطلوبی تولید کنند؛ اما، دارای محدودیتهای قابل توجهی هستند. یکی از این محدودیتها این است که این رویکردها بر وجود دانش پیش از فرآیند تصمیمگیری متکی هستند. این امر مستلزم دقیق بودن داده های تولیدشده توسط کاربر برای نتایج مطلوب و همچنین وجود تکنیکهای موجود برای حل مشکل کنونی و تولید داده است.

در سالهای اخیر، قابلیت یادگیری تقویتی (RL) در دستیابی به عملکرد بهینه در دامنههایی با ابهام محیطی قابل توجه، به اثبات رسیده است [۱۷،۱۶]. هدایت انجام شده توسط RL را میتوان به صورت گسترده بر اساس فاز پرواز دسته بندی کرد. مسائل فرود [۱۹،۱۸] و عملیات در نزدیکی اجسام کوچک [۶،۵]، از حوزههای پژوهشی هستند که از RL استفاده میکنند. تحقیقات دیگر شامل مواجهه تداخل خارجی جوی [۰۰]، نگهداری ایستگاهی [۲۱] و هدایت به صورت جلوگیری از شناسایی [۲۲] است. مطالعاتی که فضاپیماهای رانشگر کمپیشران را در یک چارچوب دینامیکی چند بدنی با استفاده از RL انجام شده است، شامل طراحی انتقال با استفاده از Proximal Policy Optimization [۲۳] و هدایت نزدیکی مدار [۲۵] است.

- ۲-۲ یادگیری تقویتی
- ۲-۳ یادگیری تقویتی چندعاملی

فصل ۳

يادگيري تقويتي

۱-۳ مفاهیم اولیه

دو بخش اصلی یادگیری تقویتی شامل عامل و محیط است. عامل در محیط قرار دارد و با آن تعامل دارد. در هر مرحله از تعامل بین عامل و محیط، عامل یک مشاهده جزئی از وضعیت محیط انجام می دهد و سپس در مورد اقدامی که باید انجام دهد تصمیم می گیرد. وقتی عامل بر روی محیط عمل می کند، محیط تغییر می کند، اما ممکن است محیط به تنهایی نیز تغییر کند. عامل همچنین یک سیگنال پاداش از محیط دریافت می کند، سیگنالی که به آن می گوید وضعیت تعامل فعلی عامل در محیط چقدر خوب یا بد است. هدف عامل به حداکثر رساندن پاداش انباشته خود است که بازگشت نام دارد. یادگیری تقویتی به روشهایی گفته می شود که در آنها عامل رفتارهای مناسب برای رسیدن به هدف خود را می آموزد. در شکل -1 تعامل بین محیط و عامل نشان داده شده است.

¹Reinforcement Learning (RL)

²Agent

³Environment

⁴Reward

⁵Return

شكل ٣-١: حلقه تعامل عامل و محيط

۳–۱–۱ حالت و مشاهدات

حالت 8 (s) توصیف کاملی از وضعیت محیط است. همه ی اطلاعات محیط در حالت وجود دارد. مشاهده (s) یک توصیف جزئی از حالت است که ممکن است شامل تمامی اطلاعات نباشد. در این پژوهش مشاهده توصیف کاملی از محیط هست در نتیجه حالت و مشاهده برابر هستند.

۳-۱-۳ فضای عمل

فضای عمل (a) در یادگیری تقویتی، مجموعهای از تمام اقداماتی است که یک عامل میتواند در محیط انجام دهد. این فضا میتواند گسسته A یا پیوسته B باشد. در این پژوهش فضای عمل پیوسته و محدود به یک بازه مشخص است.

۳-۱-۳ سیاست

یک سیاست^۱ قاعدهای است که یک عامل برای تصمیمگیری در مورد اقدامات خود استفاده میکند. در این پژوهش به تناسب الگوریتم پیادهسازی شده از سیاست قطعی^{۱۱} یا تصادفی^{۱۲} استفاده شدهاست، که به دو صورت

 $^{^6\}mathrm{State}$

⁷Observation

⁸Discrete

⁹Continuous

¹⁰Policy

¹¹Deterministic

 $^{^{12}} Stochastic \\$

زیر نشان داده می شود:

$$a_t = \mu(s_t) \tag{1-T}$$

$$a_t \sim \pi(\cdot|s_t)$$
 (Y-Y)

که زیروند t بیانگر زمان است. در یادگیری تقویتی عمیق از سیاستهای پارامتری شده استفاده می شود. خروجی این سیاستها تابعی از مجموعه ای از پارامترها (برای مثال وزنها و بایاسهای یک شبکه عصبی) هستند که می توان از الگوریتمهای بهینه سازی جهت تعیین پارامترها استفاده کرد. در این پژوهش پارامترهای سیاست با θ نشان داده شده است و سپس نماد آن به عنوان زیروند سیاست مانند معادله (T-T) نشان داده شده است.

$$a_t = \mu_{\theta}(s_t)$$

$$a_t \sim \pi_{\theta}(\cdot|s_t)$$
 (T-T)

٣-١-٣ مسير

یک مسیر۱۳ توالی از حالتها و عملها در محیط است.

$$\tau = (s_0, a_0, s_1, a_1, \cdots) \tag{\Upsilon-\Upsilon}$$

گذار حالت t+1 در حالت s_t در محیط بین زمان t در حالت s_t در حالت t+1 در حالت s_t رخ می دهد، گفته می شود. این گذارها توسط قوانین طبیعی محیط انجام می شوند و تنها به آخرین اقدام انجام شده توسط عامل می بستگی دارند. گذار حالت را می توان به صورت زیر تعریف کرد. (a_t)

$$s_{t+1} = f(s_t, a_t) \tag{2-7}$$

۳-۱-۳ تابع پاداش و بازگشت

تابع پاداش ۱۵ به حالت فعلی محیط، آخرین عمل انجام شده و حالت بعدی محیط بستگی دارد. تابع پاداش را میتوان به صورت زیر تعریف کرد.

$$r_t = R(s_t, a_t, s_{t+1}) \tag{ε-Υ}$$

 $^{^{13}}$ Trajectory

¹⁴State Transition

¹⁵Reward Function

در این پژوهش پاداش تنها تابعی از جفت حالت-عمل $(r_t = R(s_t, a_t))$ است. هدف عامل این است که مجموع پاداشهای به دستآمده در طول یک مسیر را به حداکثر برساند. در این پژوهش مجموع پاداشها در طول یک مسیر را با نماد $R(\tau)$ نشان داده شده است و به آن تابع بازگشت گفته می شود. یکی از انواع بازگشت، بازگشت بدون تنزیل $R(\tau)$ با افق محدود $R(\tau)$ است که مجموع پاداشهای به دست آمده در یک بازه زمانی ثابت و از مسیر τ است که در معادله $R(\tau)$ نشان داده شده است.

$$R(\tau) = \sum_{t=0}^{T} r_t \tag{Y-T}$$

نوع دیگری از بازگشت، بازگشت تنزیل شده با افق نامحدود ۱۹ است که مجموع همه پاداشهایی است که تا به حال توسط عامل به دست آمده است. اما، فاصله زمانی تا دریافت پاداش باعث تنزیل ارزش آن می شود. این معادله بازگشت (۸-۳) شامل یک فاکتور تنزیل ۲۰ با نماد γ است که عددی بین صفر و یک است.

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t \tag{A-T}$$

۳-۱-۶ ارزش در یادگیری تقویتی

در یادگیری تقویتی، دانستن ارزش^{۱۱} یک حالت یا جفت حالت-عمل ضروری است. منظور از ارزش، بازگشت مورد انتظار^{۱۲} است. یعنی اگر از آن حالت یا جفت حالت-عمل شروع شود و سپس برای همیشه طبق یک سیاست خاص عمل شود، به طور میانگین چه مقدار پاداش دریافت خواهد کرد. توابع ارزش تقریبا در تمام الگوریتمهای یادگیری تقویتی به کار میروند. در اینجا به چهار تابع مهم اشاره شده است.

۱. تابع ارزش تحت سیاست $(V^\pi(s))^{(r)}$: خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود و همیشه طبق سیاست π عمل شود و بهصورت زیر بیان می شود:

$$V^{\pi}(s) = \underset{\tau \sim \pi}{\mathbb{E}} [R(\tau)|s_0 = s] \tag{9-T}$$

۲۰ تابع ارزش-عمل تحت سیاست $^{\gamma\gamma}$ ($Q^{\pi}(s,a)$): خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود، یک اقدام دلخواه a (که ممکن است از سیاست π نباشد) انجام شود و سپس که از حالت s

¹⁶Return

¹⁷Discount

 $^{^{18}}$ Finite-Horizon Undiscounted Return

 $^{^{19} {\}rm Infinite\text{-}Horizon}$ Discounted Return

²⁰Discount Factor

 $^{^{21}}$ Value

²²Expected Return

²³On-Policy Value Function

²⁴On-Policy Action-Value Function

برای همیشه طبق سیاست π عمل شود و بهصورت زیر بیان می π

$$Q^{\pi}(s,a) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|s_0 = s, a_0 = a]$$
 (10-T)

s تابع ارزش بهینه $(V^*(s))$: خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت v. شروع شود و همیشه طبق سیاست بهینه در محیط عمل شود و به صورت زیر بیان می شود:

$$V^*(s) = \max_{\pi}(V^{\pi}(s)) \tag{11-T}$$

۴. تابع ارزش—عمل بهینه $(Q^*(s,a))^{7}$: خروجی این تابع بازگشت مورد انتظار است در صورتی که از حالت s شروع شود، یک اقدام دلخواه a انجام شود و سپس برای همیشه طبق سیاست بهینه در محیط عمل شود و بهصورت زیر بیان می شود:

$$Q^*(s,a) = \max_{\pi} (Q^{\pi}(s,a)) \tag{1Y-Y}$$

۳-۱-۳ معادلات بلمن

توابع ارزش اشاره شده از معادلات خاصی که به آنها معادلات بلمن گفته میشود، پیروی میکنند. ایده اصلی پشت معادلات بلمن است که ارزش نقطه شروع برابر است با پاداشی است که انتظار دارید از آنجا دریافت کنید، به علاوه ارزش مکانی که بعداً به آنجا میرسید. معادلات بلمن برای توابع ارزش سیاست محور به شرح زیر هستند:

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{\substack{a \sim \pi \\ s' \sim P}} \left[r(s, a) + \gamma V^{\pi}(s') \right] \tag{1T-T}$$

$$Q^{\pi}(s,a) = \mathop{\mathbf{E}}_{s' \sim P} \left[r(s,a) + \gamma \mathop{\mathbf{E}}_{a' \sim \pi} \left[Q^{\pi}(s',a') \right] \right] \tag{1Y-Y}$$

که در آن $V^{\pi}(s)$ تابع ارزش حالت s تحت سیاست π است؛ $Q^{\pi}(s,a)$ تابع ارزش عمل s در حالت s تحت سیاست s است؛ g فریب تخفیف است که سیاست g است؛ g فریب تخفیف است که ارزش پاداشهای آینده را کاهش می دهد؛ g(s,a) نشان می دهد که حالت بعدی g از توزیع انتقال محیط g با شرطهای g و نمونه برداری می شود؛ و g نشان می دهد که عمل بعدی g از سیاست محیط g با شرطهای g و نمونه برداری می شود؛ و g نمونه برداری می شود؛ و نمونه برداری می شود؛ و نمونه برداری می نمونه برداری می شود؛ و نمونه برداری می نمونه برد

²⁵Optimal Value Function

²⁶Optimal Action-Value Function

 π با شرط حالت جدید s' نمونهبرداری می شود. این معادلات بیانگر این هستند که ارزش یک حالت یا عمل، مجموع پاداش مورد انتظار آن و ارزش حالت بعدی است که بر اساس سیاست فعلی تعیین می شود. معادلات بلمن برای توابع ارزش بهینه به شرح زیر هستند:

$$V^*(s) = \max_{\substack{a \leq s' \sim P}} \left[r(s, a) + \gamma V^*(s') \right] \tag{10-T}$$

$$Q^*(s,a) = \mathop{\mathbf{E}}_{s' \sim P} \left[r(s,a) + \gamma \max_{a'} Q^*(s',a') \right] \tag{19-T}$$

تفاوت حیاتی بین معادلات بلمن برای توابع ارزش سیاست محور و توابع ارزش بهینه، عدم حضور یا حضور عملگر max بر روی اعمال است. حضور آن منعکسکننده این است که هرگاه عامل بتواند عمل خود را انتخاب کند، برای عمل بهینه، باید هر عملی را که منجر به بالاترین ارزش می شود انتخاب کند.

۳-۱-۳ تابع مزیت

گاهی در یادگیری تقویتی، نیازی به توصیف میزان خوبی یک عمل به صورت مطلق نیست، بلکه تنها میخواهیم بدانیم که چه مقدار بهتر از سایر اعمال به طور متوسط است. به عبارت دیگر، مزیت نسبی آن عمل مورد بررسی قرار میگیرد. این مفهوم با تابع مزیت^{۲۷} توضیح داده میشود.

تابع مزیت $A^{\pi}(s,a)$ که مربوط به سیاست π است، توصیف میکند که انجام یک عمل خاص a در حالت تابع مزیت a در بهتر از انتخاب تصادفی یک عمل بر اساس $\pi(\cdot|s)$ است، با فرض اینکه شما برای همیشه پس از آن مطابق با a عمل میکنید. به صورت ریاضی، تابع مزیت به صورت زیر تعریف می شود:

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

که در آن $A^{\pi}(s,a)$ تابع مزیت برای عمل a در حالت s است. $Q^{\pi}(s,a)$ تابع ارزش عمل a در حالت a تابع مزیت نشان می دهد که انجام سیاست a است. این تابع مزیت نشان می دهد که انجام سیاست a است. این تابع مزیت نشان می دهد که انجام عمل a در حالت a نسبت به میانگین اعمال تحت سیاست a چقدر مزیت دارد. اگر a مثبت باشد، نشان دهنده این است که عمل a بهتر از میانگین اعمال است و اگر منفی باشد، نشان دهنده کمتر بودن عملکرد آن نسبت به میانگین است.

²⁷Advantage Function

۲-۳ عامل گرادیان سیاست عمیق قطعی

گرادیان سیاست عمیق قطعی 7 الگوریتمی است که همزمان یک تابع Q و یک سیاست را یاد میگیرد. این الگوریتم برای الگوریتم برای یادگیری تابع Q از دادههای غیرسیاست محور 7 و معادله بلمن استفاده میکند. این الگوریتم برای یادگیری سیاست نیز از تابع Q استفاده میکند.

این رویکرد وابستگی نزدیکی به یادگیری Q دارد. اگر تابع ارزش Q عمل بهینه مشخص باشد، در هر حالت داده شده عمل بهینه را میتوان با حل معادله Q معادله Q به دست آورد.

$$a^*(s) = \arg\max_{a} Q^*(s, a) \tag{1V-T}$$

الگوریتم DDPG ترکیبی از یادگیری تقریبی برای $Q^*(s,a)$ و یادگیری تقریبی برای $a^*(s)$ است و به صورتی DDPG طراحی شده است که برای محیطهایی با فضاهای عمل پیوسته مناسب باشد. آنچه این الگوریتم را برای فضای عمل پیوسته مناسب می کند، روش محاسبه $a^*(s)$ است. فرض می شود که تابع $Q^*(s,a)$ نسبت به آرگومان عمل مشتق پذیر است. مشتق پذیری این امکان را می دهد که یک روش یادگیری مبتنی بر گرادیان برای سیاست عمل مشتق پذیر است. مشتق پذیری این امکان را می دهد که یک روش یادگیری مبتنی بر گرادیان برای سیاست $\mu(s)$ استفاده شود. سپس، به جای اجرای یک بهینه سازی زمان بر در هر بار محاسبه $\max_a Q(s,a) \approx Q(s,\mu(s))$ آن را با رابطه $\max_a Q(s,a) \approx Q(s,\mu(s))$ تقریب زد.

۱-۲-۳ یادگیری Q در DDPG

معادله بلمن که تابع ارزش عمل بهینه $(Q^*(s,a))$ را توصیف میکند، در پایین آورده شدهاست.

$$Q^*(s,a) = \mathop{\mathbf{E}}_{s'\sim P} \left[r(s,a) + \gamma \max_{a'} Q^*(s',a') \right] \tag{1A-T}$$

عبارت $P(\cdot|s,a)$ به این معنی است که وضعیت بعدی یعنی s' از توزیع احتمال $P(\cdot|s,a)$ نمونه گرفته می شود. در معادله بلمن نقطه شروع برای یادگیری $Q^*(s,a)$ یک مقداردهی تقریبی است. پارامترهای شبکه عصبی $Q^*(s,a)$ با علامت ϕ نشان داده شده است. مجموعه D شامل اطلاعات جمع آوری شده تغییر از یک حالت به حالت دیگر (s,a,r,s',d) (که b نشان می دهد که آیا وضعیت s' پایانی است یا خیر) است. در بهینه سازی از تابع خطای میانگین مربعات بلمن S(s,a,r,s',d) استفاده شده است که معیاری برای نزدیکی S(s,a,r,s',d) به حالت بهینه برای برآورده کردن معادله بلمن است.

²⁸Deep Deterministic Policy Gradient (DDPG)

²⁹Off-Policy

³⁰Mean Squared Bellman Error

$$L(\phi, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[\left(Q_{\phi}(s, a) - \left(r + \gamma (1 - d) \max_{a'} Q_{\phi}(s', a') \right) \right)^{2} \right]$$
 (19-7)

در الگوریتم DDPG دو ترفند برای عمکرد بهتر استفاده شدهاست که در ادامه به بررسی آن پرداخته شدهاست.

• بافرهای تکرار بازی

الگوریتمهای یادگیری تقویتی جهت آموزش یک شبکه عصبی عمیق برای تقریب $Q^*(s,a)$ از بافرهای تکرار بازی T تجربه شده استفاده میکنند. این مجموعه D شامل تجربیات قبلی عامل است. برای داشتن رفتار پایدار در الگوریتم، بافر تکرار بازی باید به اندازه کافی بزرگ باشد تا شامل یک دامنه گسترده از تجربیات شود. انتخاب دادههای بافر به دقت انجام شده است چرا که اگر فقط از دادههای بسیار جدید استفاده شود، بیش برازش T رخ می دهید و اگر از تجربه بیش از حد استفاده شود، ممکن است فرآیند یادگیری کند شود.

• شبكههای هدف

الگوریتمهای یادگیری Q از شبکههای هدف استفاده میکنند. اصطلاح زیر به عنوان هدف شناخته می شود.

$$r + \gamma(1 - d) \max_{a'} Q_{\phi}(s', a') \tag{Y \circ -Y}$$

در هنگام کمینه کردن تابع خطای میانگین مربعات بلمن، سعی شده است تا تابع Q شبیه تر به هدف یعنی رابطه Q سود. اما مشکل این است که هدف بستگی به پارامترهای در حال آموزش Q دارد. این باعث ایجاد ناپایداری در کمینه کردن تابع خطای میانگین مربعات بلمن می شود. راه حل آن استفاده از یک مجموعه پارامترهایی است که با تأخیر زمانی به Q نزدیک می شوند. به عبارت دیگر، یک شبکه دوم ایجاد می شود که به آن شبکه هدف گفته می شود. شبکه هدف با تاخیر پارامترهای شبکه اول را دنبال می کند. پارامترهای شبکه هدف با نشان Q نشان داده می شوند. در الگوریتم Q شبکه هدف در هر به روزرسانی شبکه اصلی، با میانگین گیری پولیاک Q به صورت زیر به روزرسانی می شود.

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho)\phi$$
 (۲۱-۳)

در رابطه بالا ρ یک ابرپارامتر 77 است که بین صفر و یک انتخاب می شود. در این پژوهش این مقدار نزدیک به یک در نظرگرفته شده است.

³¹Replay Buffers

³²Overfit

³³Polyak Averaging

³⁴Hyperparameter

الگوریتم DDPG نیاز به یک شبکه سیاست هدف $(\mu_{\theta_{targ}})$ برای محاسبه عملهایی که بهطور تقریبی بیشینه DDPG نیاز به یک شبکه سیاست هدف از همان روشی که تابع Q به دست می آید یعنی با میانگین گیری پولیاک از پارامترهای سیاست در طول زمان آموزش استفاده می شود.

با درنظرگرفتن موارد اشارهشده، یادگیری Q در DDPG با کمینه کردن تابع خطای میانگین مربعات بلمن (MSBE) یعنی معادله (Υ - Υ) با استفاده از کاهش گرادیان تصادفی (MSBE)

$$L(\phi, \mathcal{D}) = \underset{(s, a, r, s', d) \sim \mathcal{D}}{\mathrm{E}} \left[\left(Q_{\phi}(s, a) - \left(r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s')) \right) \right)^{2} \right]$$
 (**YY-Y**)

۳-۲-۳ ساست در DDPG

در این بخش یک سیاست تعیینشده $\mu_{\theta}(s)$ یاد گرفته می شود تا عملی را انجام می دهد که بیشینه $Q_{\phi}(s,a)$ رخ دهد. از آنجا که فضای عمل پیوسته است و فرض شده است که تابع Q نسبت به عمل مشتق پذیر است، رابطه زیر با استفاده از صعود گرادیان 79 (تنها نسبت به پارامترهای سیاست) بیشینه می شود.

$$\max_{\theta} \mathop{\mathbb{E}}_{s \sim \mathcal{D}} \left[Q_{\phi}(s, \mu_{\theta}(s)) \right] \tag{7T-T}$$

۳-۲-۳ اکتشاف و بهرهبر داری در DDPG

برای بهبود اکتشاف^{۳۷} در سیاستهای DDPG، در زمان آموزش نویز به عملها اضافه میشود. نویسندگان مقاله DDPG [۲۶] توصیه کردهاند که نویز ^{۳۸}OU با همبندی زمانی^{۳۹} اضافه شود. در زمان بهرهبرداری^{۴۰} سیاست، از آنچه یاد گرفته است، نویز به عملها اضافه نمیشود.

۳-۲-۳ شبه *کد* DDPG

در این بخش، شبه کد الگوریتم DDPG پیاده سازی شده آورده شده است. در این پژوهش الگوریتم ۱ در محیط یایتون با استفاده از کتابخانه TensorFlow پیاده سازی شده است.

³⁵Stochastic Gradient Descent

³⁶Gradient Ascent

³⁷Exploration

³⁸Ornstein–Uhlenbeck

 $^{^{39}}$ Time-Correlated

⁴⁰Exploitation

الكوريتم ١ كراديان سياست عميق قطعى

ورودی: پارامترهای اولیه سیاست (θ) ، پارامترهای تابع \mathbb{Q} بافر تکرار بازی خالی (\mathcal{D})

 $\phi_{\mathrm{targ}} \leftarrow \phi$ ، $\theta_{\mathrm{targ}} \leftarrow \theta$ دهید قرار دهید ایرامترهای با پارامترهای دا: پارامترهای هدف و با پارامترهای

۲: تا وقتی همگرایی رخ دهد:

وضعیت s را انتخاب کنید بهطوری که $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$ را انتخاب کنید بهطوری که $\epsilon\sim\mathcal{N}$

عمل a را در محیط اجرا کنید. *

ه نانی است یا s' و سیگنال پایان s' و سیگنال پایان s' و سیگنال پایان s' در مشاهده کنید تا نشان دهد آیا s' پایانی است یا خبر.

s' اگر s' یایانی است، وضعیت محیط را بازنشانی کنید.

۷: اگر زمان بهروزرسانی فرا رسیده است:

۸: به ازای هر تعداد بهروزرسانی:

 \mathcal{D} از $B = \{(s,a,r,s',d)\}$ ، از $B = \{$

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

۱۲: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

۱۳: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho)\phi$$

$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho)\theta$$

۳-۳ عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه

عامل گرادیان سیاست عمیق قطعی تاخیری دوگانه 4 یکی از الگوریتم های یادگیری تقویتی است که برای حل مسائل کنترل در محیطهای پیوسته طراحی شده است. این الگوریتم بر اساس الگوریتم DDPG توسعه یافته و با استفاده از تکنیکهای مختلف، پایداری و کارایی یادگیری را بهبود می بخشد. در حالی که DDPG گاهی اوقات می تواند عملکرد بسیار خوبی داشته باشد، اما اغلب نسبت به ابرپارامترها و سایر انواع تنظیمات یادگیری حساس است. یک حالت رایج شکست عامل DDPG در یادگیری این است که تابع Q یادگرفته شده شروع به بیش برآورد مقادیر Q می کند که منجر به واگرایی سیاست می شود. واگرایی به این دلیل رخ می دهد که در فرایند یادگیری سیاست از تخمین تابع Q استفاده می شود که افزایش خطای تابع Q منجر به ناپایداری در یادگیری سیاست می شود.

الگوریتم (Twin Delayed DDPG) از دو ترفند زیر جهت بهبود مشکلات اشاره شده استفاده میکند.

• یادگیری دوگانه ی محدود شده Q_{ϕ_1} : الگوریتم TD3 به جای یک تابع Q، دو تابع Q_{ϕ_2} و را یاد می گیرد (از این رو دوگانه Q_{ϕ_2} نامیده می شود) و از کوچک ترین مقدار این دو Q_{ϕ_2} و Q_{ϕ_2} در تابع بلمن استفاده می شود. نحوه محاسبه هدف بر اساس دو تابع Q اشاره شده در رابطه (۲۴-۳) آورده شده است.

$$y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{i,\text{targ}}}(s', a'(s'))$$
 (YY-Y)

سپس، در هر دو تابع Q_{ϕ_1} و Q_{ϕ_2} یادگیری انجام میشود.

$$L(\phi_1, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left(Q_{\phi_1}(s, a) - y(r, s', d) \right)^2$$
 (Ya-Y)

$$L(\phi_2, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left(Q_{\phi_2}(s, a) - y(r, s', d) \right)^2 \tag{75-T}$$

• بهروزرسانیهای تاخیری سیاست^{۴۴}: الگوریتم TD3 سیاست را با تاخیر بیشتری نسبت به تابع Q بهروزرسانی میکند. در مرجع [۲۸] توصیه شدهاست که برای هر دو بهروزرسانی تابع Q، یک بهروزرسانی سیاست انجام شود.

⁴¹Twin Delayed Deep Deterministic Policy Gradient (TD3)

⁴²Clipped Double-Q Learning

 $^{^{43}}$ twin

⁴⁴Delayed Policy Updates

این دو ترفند منجر به بهبود قابل توجه عملکرد TD3 نسبت به DDPG پایه می شوند. در نهایت سیاست با به حداکثر رساندن Q_{ϕ_1} آموخته می شود:

$$\max_{\theta} \mathop{\mathbf{E}}_{s \sim \mathcal{D}} \left[Q_{\phi_1}(s, \mu_{\theta}(s)) \right] \tag{YV-Y}$$

۳-۳-۲ اکتشاف و بهرهبرداری در TD3

الگوریتم TD3 یک سیاست قطعی را بهصورت غیر سیاست محور آموزش میدهد. از آنجایی که سیاست قطعی است، در ابتدا عامل تنوع کافی از اعمال را برای یافتن روشهای مفید امتحان نمیکند. برای بهبود اکتشاف سیاستهای TD3، در زمان آموزش نویز به عملها اضافه میشود، در این پژوهش نویز گاوسی با میانگین صفر بدون همبندی زمانی اعمال شدهاست. شدت نویز جهت بهرهبرداری بهتر در طول زمان کاهش مییابد.

TD3 شبه کد TD3

در این بخش الگوریتم TD3 پیادهسازی شده آورده شدهاست. در این پژوهش الگوریتم ۴ در محیط پایتون با استفاده از کتابخانه ۲۹] پیادهسازی شدهاست.

الگوريتم ٢ عامل گراديان سياست عميق قطعي تاخيري دوگانه

 (\mathcal{D}) ورودی: پارامترهای اولیه سیاست (θ) ، پارامترهای تابع (ϕ_1,ϕ_2) بافر بازی خالی

 $\phi_{\mathrm{targ},2} \leftarrow \phi_2$ ، $\phi_{\mathrm{targ},1} \leftarrow \phi_1$ ، $\theta_{\mathrm{targ}} \leftarrow \theta$ مید قرار دهید اصلی قرار دهید نازیر با پارامترهای هدف دا برابر با

۲: تا وقتی همگرایی رخ دهد:

را انتخاب کنید، بهطوری $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$ و عمل ره و عمل ره و عمل $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$ د ده و عمل $a=\mathrm{clip}(\mu_{\theta}(s)+\epsilon,a_{\mathrm{Low}},a_{\mathrm{High}})$ د ده و عمل ره عمل روحه و عمل دوری در ده و عمل روحه در ده و عمل روحه در ده و عمل در ده و عمل روحه در ده و دم در ده و عمل روحه در ده و دم در ده در ده و دم در ده و دم در ده و دم در ده و دم در دم در

عمل a را در محیط اجرا کنید. *

ه وضعیت بعدی s'، پاداش r و سیگنال پایان d را مشاهده کنید تا نشان دهد آیا s' پایانی است یا خیر.

s' اگر s' پایانی است، وضعیت محیط را بازنشانی کنید.

۷: اگر زمان بهروزرسانی فرا رسیده است:

به ازای j در هر تعداد بهروزرسانی: λ

 \mathcal{D} از $B = \{(s,a,r,s',d)\}$ ، از $B = \{$

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{targ,i}}(s', a'(s'))$$

۱۱: تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for $i = 1, 2$

اگر باقیمانده j بر تاخیر سیاست برابر 0 باشد :

۱۳: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi_1}(s, \mu_{\theta}(s))$$

۱۴: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\mathrm{targ},i} \leftarrow \rho \phi_{\mathrm{targ},i} + (1-\rho)\phi_i \quad \text{for } i = 1, 2$$

$$\theta_{\mathrm{targ}} \leftarrow \rho \theta_{\mathrm{targ}} + (1-\rho)\theta$$

۴-۳ عامل عملگر نقاد نرم

عملگرد نقاد نرم ۱۵ الگوریتمی است که یک سیاست تصادفی را بهصورت سیاست محور بهینه میکند و پلی بین بهینهسازی سیاست تصادفی و رویکردهای مانند DDPG ایجاد میکند. این الگوریتم جانشین مستقیم TD3 نیست (زیرا تقریباً همزمان منتشر شده است)، اما ترفند یادگیری دوگانه محدود شده را در خود جای داده است و به دلیل سیاست تصادفی SAC، از چیزی روشی به نام صاف کردن سیاست هدف ۱۶ استفاده شدهاست. یکی از ویژگی های اصلی SAC، تنظیم آنتروپی است. آنتروپی معیاری از تصادفی بودن انتخاب عمل در سیاست است. سیاست به گونه ای آموزش داده میشود که حداکثر سازی تعادل بین بازده مورد انتظار و آنتروپی را بهینه کند. این شرایط ارتباط نزدیکی با تعادل اکتشاف—بهرهبرداری دارد. افزایش آنتروپی منجر به اکتشاف بیشتر میشود که میتواند یادگیری را در مراحل بعدی تسریع کند. همچنین میتواند از همگرایی زودهنگام سیاست به یک بهینه محلی بد جلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی ۷۲ بهینه محلی بد جلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی ۷۲ بهینه محلی بد جلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی ۷۲ بهینه محلی بد حلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی ۷۲ بهینه محلی بد حلوگیری کند. برای توضیح SAC، ابتدا باید بررسی یادگیری تقویتی تنظیم شده با آنتروپی ۷۲ بهینه محلی بد حلوگیری کند. برای توضیح کمدی روابط تابع ارزش کمی متفاوت است.

۳-۴-۲ یادگیری تقویتی تنظیمشده با آنتروپی

آنتروپی کمیتی است که به طور کلی می گوید که یک متغیر تصادفی چقدر تصادفی است. اگر وزن یک سکه به گونه ای باشد که تقریباً همیشه نتیجه یک سمت آن باشد، آنتروپی پایینی دارد. اگر به طور مساوی وزن داشته باشد و شانس هر طرف سکه نصف باشد، آنتروپی بالایی دارد. فرض کنید x یک متغیر تصادفی با تابع چگالی احتمال P باشد. آنتروپی P متغیر P از توزیع آن P مطابق با رابطه زیر محاسبه می شود:

$$H(P) = \mathop{\mathbf{E}}_{x \sim P} \left[-\log P(x) \right] \tag{YA-Y}$$

۳-۴-۳ سیاست در SAC

در یادگیری تقویتی تنظیمشده با آنتروپی، عامل در هر مرحله زمانی متناسب با آنتروپی سیاست در آن مرحله زمانی پاداش دریافت میکند. بر اساس توضیحات اشاره شده روابط یادگیری تقویتی بهصورت زیر میشود.

⁴⁵Soft Actor Critic (SAC)

⁴⁶Target Policy Smoothing

⁴⁷Entropy-Regularized Reinforcement Learning

$$\pi^* = \arg\max_{\pi} \mathop{\mathbf{E}}_{t=0} \sum_{t=0}^{\infty} \gamma^t \bigg(R(s_t, a_t, s_{t+1}) + \alpha H\left(\pi(\cdot | s_t)\right) \bigg)$$
 (۲۹-۳)

که در آن $(\alpha > 0)$ ضریب مبادله $^{\dagger \Lambda}$ است.

۳-۴-۳ تابع ارزش در SAC

اکنون میتوان تابع ارزش کمی متفاوت را بر اساس این مفهموم تعریف کرد. V^{π} به گونهای تغییر میکند که پاداشهای آنتروپی را از هر مرحله زمانی شامل میشود.

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(R(s_{t}, a_{t}, s_{t+1}) + \alpha H\left(\pi(\cdot|s_{t})\right) \right) \middle| s_{0} = s \right]$$
 (Y\cdot -\mathbf{Y})

۳-۴-۳ تابع Q در SAC

تابع Q^{π} به گونه ای تغییر میکند که پاداش های آنتروپی را از هر مرحله زمانی به جز مرحله اول شامل میشود.

$$Q^{\pi}(s,a) = \mathop{\mathbb{E}}_{\tau \sim \pi} \left[\left. \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) + \alpha \sum_{t=1}^{\infty} \gamma^{t} H\left(\pi(\cdot | s_{t})\right) \right| s_{0} = s, a_{0} = a \right]$$
 (TY-T)

با این تعاریف رابطه V^{π} و Q^{π} بهصورت زیر است.

$$V^{\pi}(s) = \mathop{\mathbf{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) \right] + \alpha H\left(\pi(\cdot | s) \right) \tag{TT-T}$$

۳-۴-۳ معادله بلمن در SAC

معادله بلمن در حالت تنظیمشده با آنتروپی بهصورت زیر ارائه میشود.

$$Q^{\pi}(s, a) = \underset{\substack{s' \sim P \\ a' \sim \pi}}{\mathbb{E}} \left[R(s, a, s') + \gamma \left(Q^{\pi}(s', a') + \alpha H\left(\pi(\cdot | s')\right) \right) \right] \tag{TT-T}$$

$$= \mathop{\mathbf{E}}_{s' \sim P} [R(s, a, s') + \gamma V^{\pi}(s')] \tag{\Upsilon\Upsilon-\Upsilon}$$

⁴⁸Trade-Off

۳-۴-۳ یادگیری Q

با درنظرگرفتن موارد اشارهشده، یادگیری Q در AC با کمینه کردن تابع خطای میانگین مربعات بلمن (MSBE) یعنی معادله (AC) با استفاده از کاهش گرادیان انجام می شود.

$$L(\phi_i, \mathcal{D}) = \mathop{\mathbf{E}}_{(s, a, r, s', d) \sim \mathcal{D}} \left[\left(Q_{\phi_i}(s, a) - y(r, s', d) \right)^2 \right]$$
 (TA-T)

در معادله (۳۵-۳) تابع هدف برای روش یادگیری تقویتی SAC به صورت زیر تعریف میشود.

$$y(r, s', d) = r + \gamma (1 - d) \left(\min_{j=1,2} Q_{\phi_{\mathsf{targ}, j}}(s', \tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s') \quad (\texttt{TS-T})$$

نماد عمل بعدی را به جای a' به a' به a' تغییر داده شده تا مشخص شود که عملهای بعدی باید آخرین سیاست نمونهبرداری شوند در حالی که a' و a' باید از بافر تکرار بازی آمده باشند.

۳-۴-۳ ساست در SAC

سیاست باید در هر وضعیت برای به حداکثر رساندن بازگشت مورد انتظار آینده به همراه آنتروپی مورد انتظار آینده عمل کند. یعنی باید $V^{\pi}(s)$ را به حداکثر برساند، بسط تابع ارزش در ادامه آمده است.

$$V^{\pi}(s) = \mathop{\mathbf{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) \right] + \alpha H \left(\pi(\cdot | s) \right) \tag{TV-T}$$

$$= \mathop{\mathbf{E}}_{a \circ \pi} [Q^{\pi}(s, a) - \alpha \log \pi(a|s)] \tag{TA-T}$$

روش بهینهسازی سیاست از ترفند پارامترسازی مجدد 49 استفاده میکند، که در آن نمونه ای از (s) با محاسبه یک تابع قطعی از وضعیت، پارامترهای سیاست و نویز مستقل استخراج می شود. در این پژوهش مانند نویسندگان مقاله SAC [80]، از یک سیاست گاوسی 60 فشرده استفاده شده است. بر اساس این روش نمونهها مطابق با رابطه زیر بدست می آیند:

$$\tilde{a}_{\theta}(s,\xi) = \tanh\left(\mu_{\theta}(s) + \sigma_{\theta}(s) \odot \xi\right), \quad \xi \sim \mathcal{N}(0,I)$$
 (٣٩-٣)

تابع tanh در سیاست SAC تضمین میکند که اعمال در یک محدوده متناهی محدود شوند. این مورد در سیاستهای TRPO، VPG و جود ندارد. همچنین اعمال این تابع توزیع را از حالت گاوسی تغییر میدهد.

⁴⁹Reparameterization

⁵⁰Squashed Gaussian Policy

در الگوریتم SAC با استفاده از ترفند پارامتریسازی مجدد، عملها از یک توزیع نرمال بهوسیله نویز تصادفی تولید شده و به این ترتیب امکان محاسبه مشتقها بهطور مستقیم از طریق تابع توزیع فراهم میشود، که باعث ثبات و کارایی بیشتر در آموزش میشود. اما در حالت بدون پارامتریسازی مجدد، عملها مستقیماً از توزیع سیاست نمونهبرداری میشوند و محاسبه گرادیان نیازمند استفاده از ترفند نسبت احتمال ۱۵ است که معمولاً باعث افزایش واریانس و ناپایداری در آموزش میشود.

$$\underset{a \sim \pi_{\theta}}{\mathrm{E}} \left[Q^{\pi_{\theta}}(s, a) - \alpha \log \pi_{\theta}(a|s) \right] = \underset{\xi \sim \mathcal{N}}{\mathrm{E}} \left[Q^{\pi_{\theta}}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi)|s) \right] \qquad (\mathbf{Y} \circ - \mathbf{Y})$$

برای بهدست آوردن تابع هزینه سیاست، گام نهایی این است که باید $Q^{\pi\theta}$ را با یکی از تخمینزنندههای SAC برای بهدست آوردن تابع هزینه سیاست، گام نهایی این است که باید Q_{ϕ_1} رفقط اولین تخمینزننده Q_{ϕ_1} استفاده میکند، برخلاف TD3 که از Q_{ϕ_1} استفاده میکند، بنابراین، سیاست طبق رابطه زیر بهینهسازی می شود:

$$\max_{\substack{\theta \\ s \sim \mathcal{D} \\ \xi \sim \mathcal{N}}} \left[\min_{j=1,2} Q_{\phi_j}(s, \tilde{a}_{\theta}(s, \xi)) - \alpha \log \pi_{\theta}(\tilde{a}_{\theta}(s, \xi)|s) \right]$$
 (*\-\mathbf{Y})

که تقریباً مشابه بهینهسازی سیاست در DDPG و TD3 است، به جز ترفند min-double-Q، تصادفی بودن و عبارت آنتروپی.

SAC اکتشاف و بهرهبرداری در Λ

الگوریتم SAC یک سیاست تصادفی با تنظیمسازی آنتروپی آموزش میدهد و به صورت سیاست محور به اکتشاف میپردازد. ضریب تنظیم آنتروپی α به طور صریح تعادل بین اکتشاف و بهرهبرداری را کنترل میکند، به به بهروری مقادیر بالاتر α به اکتشاف بیشتر و مقادیر پایین α به بهرهبرداری بیشتر منجر میشود. مقدار بهینه α (که به یادگیری پایدارتر و پاداش بالاتر منجر میشود) ممکن است در محیطهای مختلف متفاوت باشد و نیاز به تنظیم دقیق داشته باشد. در زمان آزمایش، برای ارزیابی میزان بهرهبرداری سیاست از آنچه یاد گرفته است، تصادفی بودن را حذف کرده و از عمل میانگین به جای نمونهبرداری از توزیع استفاده میکنیم. این روش معمولاً عملکرد را نسبت به سیاست تصادفی بهبود می بخشد.

⁵¹Likelihood Ratio Trick

۹-۴-۳ شبه کد SAC

در این بخش الگوریتم SAC پیادهسازی شده آورده شده است. در این پژوهش الگوریتم ۲ در محیط پایتون با استفاده از کتابخانه PyTorch پیادهسازی شده است.

الگوريتم ۳ عامل عملگرد نقاد نرم

 (\mathcal{D}) ورودی: پارامترهای اولیه سیاست (heta)، پارامترهای تابع (ϕ_1,ϕ_2) ، بافر بازی خالی

 $\phi_{\mathrm{targ},2} \leftarrow \phi_2$ ، $\phi_{\mathrm{targ},1} \leftarrow \phi_1$ ، $\theta_{\mathrm{targ}} \leftarrow \theta$ عاد خرار دهید اصلی قرار دهید اصلی بازامترهای هدف را برابر با پارامترهای اصلی قرار دهید

۲: تا وقتی همگرایی رخ دهد:

... وضعیت (s) را مشاهده کرده و عمل $a\sim\pi_{\theta}(\cdot|s)$ را انتخاب کنید.

عمل a را در محیط اجرا کنید. *

ه وضعیت بعدی s'، پاداش r و سیگنال پایان d را مشاهده کنید تا نشان دهد آیا s' پایانی است یا خبر.

s' اگر s' پایانی است، وضعیت محیط را بازنشانی کنید.

٧: اگر زمان بهروزرسانی فرا رسیده است:

به ازای j در هر تعداد بهروزرسانی: λ

 \mathcal{D} از $B = \{(s,a,r,s',d)\}$ ، از $B = \{$

۱۰: هدف را محاسبه کنید:

$$y(r, s', d) = r + \gamma(1 - d) \left(\min_{i=1,2} Q_{\phi_{\text{targ},i}}(s', \tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

۱۱: تابع Q را با یک مرحله از نزول گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for $i = 1, 2$

۱۲: سیاست را با یک مرحله از صعود گرادیان با استفاده از رابطه زیر بهروزرسانی کنید:

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(\min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left(\tilde{a}_{\theta}(s) | s \right) \right)$$

۱۳: شبکههای هدف را با استفاده از معادلات زیر بهروزرسانی کنید:

$$\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1-\rho)\phi_i \quad \text{for } i = 1, 2$$

۵-۳ عامل بهینهسازی سیاست مجاور

الگوریتم بهینهسازی سیاست مجاور^{۵۲} یک الگوریتم بهینهسازی سیاست مبتنی بر گرادیان است که برای حل مسائل کنترل مسئلههای یادگیری تقویتی استفاده می شود. این الگوریتم از الگوریتم از الگوریتم الهام گرفته شده است و با اعمال تغییراتی بر روی آن، سرعت و کارایی آن را افزایش داده است. در این بخش به بررسی این الگوریتم و نحوه عملکرد آن می پردازیم. الگوریتم PPO همانند سایر الگوریتمهای یادگیری تقویتی، به دنبال یافتن بهترین گام ممکن برای بهبود عملکرد سیاست با استفاده از دادههای موجود است. این الگوریتم تلاش می کند تا از گامهای بزرگ که می توانند منجر به افت ناگهانی عملکرد شوند، اجتناب کند. برخلاف روشهای پیچیده تر مرتبه دوم مانند PPO ،TRPO از مجموعهای از روشهای مرتبه اول ساده تر برای حفظ نزدیکی سیاستهای جدید به سیاستهای قبلی استفاده می کند. این سادگی در پیادهسازی، PPO را به روشی کارآمدتر تبدیل می کند، در حالی که از نظر تجربی نشان داده شده است که عملکردی حداقل به اندازه TRPO دارد. از جمله ویژگیهای مهم این الگوریتم می توان به سیاست محور بودن آن اشاره کرد. این الگوریتم برای عاملهای یادگیری تقویتی که سیاستهای پیوسته و گسسته دارند، مناسب است.

الگوریتم PPO داری دو گونه اصلی PPO-Clip و PPO-Penalty است. در ادامه به بررسی هر یک از این دو گونه یرداخته شده است.

- روش PPO-Penalty: با این حال، واگرایی کولباک لیبلر^{۵۴} است، مشابه روشی که در الگوریتم PPO-Penalty: با این حال، به جای اعمال یک محدودیت سخت^{۵۵}، PPO-Penalty واگرایی KL را در تابع هدف جریمه میکند. این جریمه به طور خودکار در طول آموزش تنظیم میشود تا از افت ناگهانی عملکرد جلوگیری کند.
- روش PPO-Clip: در این روش، هیچ عبارت واگرایی KL در تابع هدف وجود ندارد و هیچ محدودیتی اعمال نمی شود. در عوض، PPO-Clip از یک عملیات بریدن ۵۶ خاص در تابع هدف استفاده می کند تا انگیزه سیاست جدید برای دور شدن از سیاست قبلی را از بین ببرد.

در این پژوهش از روش PPO-Clip برای آموزش عاملهای یادگیری تقویتی استفاده شده است.

⁵²Proximal Policy Optimization (PPO)

⁵³Trust Region Policy Optimization

⁵⁴Kullback-Leibler (KL) Divergence

⁵⁵Hard Constraint

⁵⁶Clipping

۳-۵-۳ سیاست در الگوریتم PPO

تابع سیاست در الگوریتم PPO به صورت یک شبکه عصبی پیچیده پیادهسازی شده است. این شبکه عصبی ورودی محیط را دریافت کرده و اقدامی را که باید عامل انجام دهد را تولید میکند. این شبکه عصبی میتواند شامل چندین لایه پنهان با توابع فعالسازی مختلف باشد. در این پژوهش از یک شبکه عصبی با سه لایه پنهان و تابع فعالسازی tanh استفاده شده است. تابع سیاست در الگوریتم PPO به صورت زیر بهروزرسانی می شود:

$$\theta_{k+1} = \arg\max_{\theta} \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} [L(s, a, \theta_k, \theta)] \tag{*Y-Y}$$

در این پژوهش برای به حداکثر رساندن تابع هدف، چندین گام بهینهسازی گرادیان کاهشی تصادفی $^{\Delta V}$ اجرا شده است. در معادله بالا L به صورت زیر تعریف شده است:

(44-4)

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \text{ clip}\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)\right)$$

که در آن ϵ یک فراپامتر است که مقدار آن معمولا کوچک است. این فراپامتر مشخص میکند که چقدر اندازه گام بهینه سازی باید محدود شود. در این پژوهش مقدار $\epsilon=0.2$ انتخاب شده است. جهت سادگی در پیاده سازی معادله (۲۳–۳) به معادله تغیر داده شده است.

$$L(s, a, \theta_k, \theta) = \min \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \quad g(\epsilon, A^{\pi_{\theta_k}}(s, a)) \right) \tag{FY-Y}$$

که تابع g به صورت زیر تعریف شده است.

$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0 \end{cases}$$
 (46-47)

در حالی که این نوع محدود کردن (PPO-Clip) تا حد زیادی به اطمینان از بهروزرسانیهای معقول سیاست کمک میکند، همچنان ممکن است با سیاست بهدست آید که بیش از حد از سیاست قدیمی دور باشد. برای جلوگیری از این امر، پیادهسازیهای مختلف PPO از مجموعهای از ترفندها استفاده میکنند. در پیادهسازی این پژوهش، از روشی ساده به نام توقف زودهنگام ۱۵ استفاده شده است. اگر میانگین واگرایی کولباک لیبلر (للی) خطمشی جدید از خطمشی قدیمی از یک آستانه فراتر رود، گامهای گرادیان (بهینهسازی) را متوقف میشوند.

⁵⁷Stochastic Gradient Descent (SGD)

⁵⁸Early Stopping

۳-۵-۲ اکتشاف و بهرهبرداری در PPO

الگوریتم PPO از یک سیاست تصادفی به صورت سیاست محور برای آموزش استفاده می کند. این به این معنی است که اکتشاف محیط با نمونه گیری عمل ها بر اساس آخرین نسخه از این سیاست تصادفی انجام می شود. میزان تصادفی بودن انتخاب عمل به شرایط اولیه و فرآیند آموزش بستگی دارد.

در طول آموزش، سیاست به طور کلی به تدریج کمتر تصادفی میشود، زیرا قانون بهروزرسانی آن را تشویق میکند تا از پاداشهایی که قبلاً پیدا کرده است، بهرهبرداری کند. البته این موضوع میتواند منجر به گیر افتادن خطمشی در بهینههای محلی^{۵۹} شود.

۳-۵-۳ شبه کد PPO

در این بخش الگوریتم PPO پیادهسازی شده آورده شده است. در این پژوهش الگوریتم ۲ در محیط پایتون با استفاده از کتابخانه PyTorch پیادهسازی شده است.

⁵⁹Local Optima

الگوريتم ۴ بهينهسازي سياست مجاور (PPO-Clip)

 (ϕ_0) ورودی: پارامترهای اولیه سیاست (θ_0) ، پارامترهای تابع ارزش

 $k = 0, 1, 2, \dots$: \(\text{:} \)

در محیط جمع آوری شود. $\pi_k = \pi(\theta_k)$ با اجرای سیاست $\pi_k = \pi(\theta_k)$ در محیط جمع آوری شود. ۲:

۳: پاداشهای باقیمانده (\hat{R}_t) محاسبه شود.

بر آوردهای مزیت را محاسبه کنید، \hat{A}_t (با استفاده از هر روش تخمین مزیت) بر اساس تابع ارزش $\cdot V_{\phi_t}$ فعلی $\cdot V_{\phi_t}$

۵: سیاست را با به حداکثر رساندن تابع هدف PPO-Clip بهروزرسانی کنید:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_t} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right)$$

معمولاً از طریق گرادیان افزایشی تصادفی Adam.

جرازش تابع ارزش با رگرسیون بر روی میانگین مربعات خطا:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2$$

معمولاً از طریق برخی از الگوریتمهای کاهشی گرادیان.

یادگیری تقویتی چند عاملی

کاربردهای پیچیده در یادگیری تقویتی نیازمند اضافه کردن چندین عامل برای انجام همزمان وظایف مختلف هستند. با این حال، افزایش تعداد عاملها چالشهایی در مدیریت تعاملات میان آنها به همراه دارد. در این فصل، بر اساس مسئله بهینهسازی برای هر عامل، مفهوم تعادل معرفی شده تا رفتارهای توزیعی چندعاملی را تنظیم کند. رابطه رقابت میان عاملها در سناریوهای مختلف تحلیل شده و آنها با الگوریتمهای معمول یادگیری تقویتی چندعاملی ترکیب شدهاند. بر اساس انواع تعاملات، یک چارچوب نظریه بازی برای مدلسازی عمومی در سناریوهای چندعاملی استفاده شده است. با تحلیل بهینهسازی و وضعیت تعادل برای هر بخش از چارچوب، سیاست بهینه یادگیری تقویتی چندعاملی برای هر عامل بررسی شده است.

۱-۴ تعاریف و مفاهیم اساسی

یادگیری تقویتی چندعاملی به بررسی چگونگی یادگیری و تصمیم گیری چندین عامل مستقل در یک محیط مشترک پرداخته می شود. برای تحلیل دقیق و درک بهتر این حوزه، اجزای اصلی آن شامل عامل، سیاست و مطلوبیت در نظر گرفته می شوند که در ادامه به صورت مختصر و منسجم تشریح می گردند.

• عامل: یک موجودیت مستقل به عنوان عامل تعریف می شود که به صورت خودمختار با محیط تعامل کرده و بر اساس مشاهدات رفتار سایر عاملها، سیاستهایش انتخاب می گردند تا سود حداکثر یا ضرر حداقل حاصل شود. در سناریوهای مورد بررسی، چندین عامل به صورت مستقل عمل می کنند؛ اما اگر

¹Multi-Agent

²Equilibrium

³Multi-Agent Reinforcement Learning (MARL)

⁴Utility

تعداد عاملها به یک کاهش یابد، MARL به یادگیری تقویتی معمولی تبدیل می شود.

- سیاست: برای هر عامل در MARL، سیاستی خاص در نظر گرفته می شود که به عنوان روشی برای انتخاب اقدامات بر اساس وضعیت محیط و رفتار سایر عاملها تعریف می گردد. این سیاستها با هدف به حداکثر رساندن سود و به حداقل رساندن هزینه طراحی شده و تحت تأثیر محیط و سیاستهای دیگر عاملها قرار می گیرند.
- مطلوبیت: مطلوبیت هر عامل بر اساس نیازها و وابستگیهایش به محیط و سایر عاملها تعریف شده و به صورت سود منهای هزینه، با توجه به اهداف مختلف محاسبه می شود. در سناریوهای چندعاملی، از طریق یادگیری از محیط و تعامل با دیگران، مطلوبیت هر عامل بهینه می گردد.

در این چارچوب، برای هر عامل در MARL تابع مطلوبیت خاصی در نظر گرفته شده و بر اساس مشاهدات و تجربیات حاصل از تعاملات، یادگیری سیاست به صورت مستقل انجام می شود تا ارزش مطلوبیت به حداکثر برسد، بدون اینکه مستقیماً به مطلوبیت سایر عاملها توجه شود. این فرآیند ممکن است به رقابت یا همکاری میان عاملها منجر گردد. با توجه به پیچیدگی تعاملات میان چندین عامل، تحلیل نظریه بازی ها به عنوان ابزاری مؤثر برای تصمیم گیری در این حوزه به کار گرفته می شود. بسته به سناریوهای مختلف، این بازی ها در سته بندی های متفاوتی قرار داده شده که در بخش های بعدی بررسی خواهند شد.

۲-۴ نظریه بازیها

نظریه بازیها شاخهای از ریاضیات است که به مطالعه تصمیمگیری در موقعیتهایی میپردازد که نتیجه انتخابهای هر فرد به تصمیمات دیگران وابسته است. این نظریه چارچوبی برای تحلیل تعاملات میان بازیکنان ارائه می دهد و در حوزههای مختلفی مانند اقتصاد، علوم سیاسی، زیست شناسی و علوم کامپیوتر کاربرد دارد. در این فصل، دو مفهوم کلیدی نظریه بازی ها یعنی تعادل نش و بازی های مجموع صفر بررسی شده است.

۴-۲-۴ تعادل نش

تعادل نش^۵ یکی از بنیادی ترین مفاهیم در نظریه بازی ها است که توسط جان نش در سال ۱۹۵۰ معرفی شد. این مفهوم به مجموعه ای از ها اشاره دارد که در آن هیچ بازیکنی نمی تواند با تغییر یک جانبه سیاست خود، سود بیشتری به دست آورد، به شرطی که سیاست های سایر بازیکنان ثابت بماند.

⁵Nash Equilibrium

 Π_i تعریف تعادل نش: فرض کنید یک بازی با n بازیکن داریم. هر بازیکن i دارای مجموعه سیاستهای $\pi^* = (\pi_1^*, \pi_2^*, \dots, \pi_n^*)$ است. یک مجموعه سیاست $u_i : \Pi_1 \times \Pi_2 \times \dots \times \Pi_n \to \mathbb{R}$ و تابع مطلوبیت $u_i : \Pi_1 \times \Pi_2 \times \dots \times \Pi_n \to \mathbb{R}$ داشته باشیم: تعادل نش نامیده می شود اگر برای هر بازیکن i و هر سیاست $u_i \in \Pi_i$ در وضعیت $u_i \in \Pi_i$ داشته باشیم:

$$u_i(\pi_i^*, \pi_{-i}^*, s) \geqslant u_i(\pi_i, \pi_{-i}^*, s)$$
 (1-4)

در اینجا، π_{-i}^* نشاندهنده سیاستهای همه بازیکنان به جز بازیکن i است. در ادامه پژوهش جهت استفاده از چارچوب نظریه بازی در یادگیری تقویتی تابع مطلوبیت به گونه ای تعریف شده است که برابر با تابع ارزش $u_i(\pi_i,\pi_{-i},s)=V_i^{\pi_i,\pi_{-i}}(s)$ باشد.

• اهمیت تعادل نش: تعادل نش نقطه ای را در بازی مشخص می کند که هر بازیکن بهترین پاسخ را نسبت به انتخابهای دیگران ارائه داده است. این مفهوم به ویژه در بازی های غیرهمکارانه، به عنوان پیشبینی رفتار منطقی بازیکنان استفاده می شود و در زمینه هایی مانند یادگیری تقویتی چند عامله کاربرد گسترده ای دارد.

۲-۲-۴ بازی مجموع صفر

بازیهای مجموع صفر گوسته ای از بازیها هستند که در آنها تابع ارزش یک بازیکن دقیقاً برابر با ضرر بازیکن دیگر است. دیگر، مجموع ارزشهای همه بازیکنان در هر مرحله صفر است.

• تعریف بازی مجموع صفر: در یک بازی دو نفره، اگر تابع ارزش بازیکن اول $(V_1^{(\pi_1,\pi_2)}(s))$ و بازیکن دو مروحه بازی مجموع صفر: در یک بازی دو نفره، اگر تابع ارزش بازیکن اول $(V_2^{(\pi_1,\pi_2)}(s))$ به صورت زیر باشد را یک بازی مجموع صفر نامیده می شود.

$$V_1^{(\pi_1,\pi_2)}(s) + V_2^{(\pi_1,\pi_2)}(s) = 0 \to V_1^{(\pi_1,\pi_2)}(s) = -V_2^{(\pi_1,\pi_2)}(s) \tag{Y-Y}$$

• سیاست بهینه در بازی مجموع صفر: در بازیهای مجموع صفر، سیاست بهینه هر بازیکن، انتخابی است که تابع ارزش خود را در برابر بهترین پاسخ حریف به حداکثر برساند. این سیاست اغلب به تعادل نش منجر میشود. سیاست بهینه دو بازیکن در بازی مجموع صفر با تابع ارزش معادله (۲-۲) به صورت زیر است.

⁶Zero-Sum Games

$$V_1^*(s) = \max_{\pi_1} \min_{\pi_2} V_1^{(\pi_1, \pi_2)}(s)$$
 (Y-Y)

$$V_2^*(s) = \max_{\pi_2} \min_{\pi_1} V_2^{(\pi_1, \pi_2)}(s)$$
 (Y-Y)

مدلسازی محیط یادگیری سه جسمی

مسیرهای فضایی سنتی تحت تأثیر گرانش یک جسم مرکزی (خورشید، زمین یا سیارهای دیگر) شکل میگیرند و توسط اجسام سوم تحت تأثیر قرار میگیرند. تحلیلهای مخروطی پیوسته نشان میدهند که چگونه می توان طراحی را از یک جسم مرکزی به جسم دیگر منتقل کرد، هنگامی که فضاپیما از حوزه تأثیر یک جسم عبور میکند. در برخی موارد، مأموریت فضاپیما آن را در ناحیهای از فضا قرار میدهد که به طور همزمان تحت تأثیر دو جسم بزرگ است. این مسیرها نمی توانند از تحلیل دو جسم با اختلالات جسم سوم استفاده کنند، بلکه باید تأثیرات هر دو جسم به طور همزمان در نظر گرفته شوند. برای درک این مسئله، ابتدا به مطالعه مسئله عمومی سه جسمی خواهیم پرداخت و چگونگی اعمال آن به سیستمهای واقعی را بررسی خواهیم کرد. سپس، برخی از مسیرها و تحلیلهای جالبی که توسط فضاپیماهای مدرن استفاده می شوند، ارائه خواهیم داد.

در فصل اول معادلات عمومی حرکت اجسام متعدد را معرفی کردیم. علیرغم وجود ده ثابت حرکت، هیچکس نتوانسته است مسئله عمومی سهجسمی را بهصورت تحلیلی بسته حل کند— ممکن است که این کار غیرممکن باشد. بنابراین، تحقیقات بر روی ساده سازی مسئله عمومی متمرکز شده است. ساندمن در سال ۱۹۱۲ یک راه حل سری توانی یافت. زمانی که این راه حل با شرایط اولیه ترکیب شود، ارزیابی های عددی از مسیرها را در یک بازه زمانی محدود ارائه می دهد. برای مطالعه کامل مسئله، به کتاب Szebehely (۱۹۶۷) مراجعه کنید. یکی از راه حل های تحلیلی خاص— مسئله سهجسمی محدود — از زمان اویلر و لاگرانژ شناخته شده است. اخیراً، از تکنیک های عددی برای تولید راه حل ها استفاده شده است.

دانشمندان برای صدها سال مسئله سهجسمی را مطالعه کردهاند، اگرچه بیشتر تحقیقات از دهه ۱۹۶۰، با استفاده از فناوری محاسباتی مدرن، انجام شده است. تحلیلهای آنها انواع مختلفی از مدارهای سهجسمی را کشف کرده است که بسیاری از آنها برای فضاپیماها بسیار مفید هستند. در این بخش، چندین گزینه مدار سهجسمی را بررسی خواهیم کرد.

$\lambda - 0$ مسئله سهجسمی محدود دایرهای

مسئله عمومی سه جسمی مسیرهای سه جسم پر جرم دلخواه را بررسی میکند که تحت تأثیر جاذبه متقابل قرار دارند. با این حال، این مسئله به مراتب عمومی تر از آن چیزی است که طراحان مأموریتهای عملیاتی نیاز دارند. دو ساده سازی رایج و جود دارد که برای قابل دسترس تر و کاربردی تر کردن این مسئله در مسیرهای واقعی معمولاً انجام می شود. این ساده سازی ها عبار تند از:

۱. جرم جسم سوم (ماهواره) در مقایسه با اجسام اصلی ناچیز است.

۲. اجسام اصلی و ثانویه در مدارهای دایرهای حول مرکز جرم که بین دو جسم قرار دارد حرکت میکنند.

مسئله بهدستآمده معمولاً به نام مسئله سهجسمی محدود دایرهای (CRTBP) شناخته می شود. گاهی اوقات، فرض دیگری نیاز به حرکت فقط در صفحه مداری اجسام اصلی و ثانویه دارد. برای این مسئله سهجسمی محدود دایرهای در صفحه، مؤلفه z معادلات صفر می شود. پیدا کردن معادلات ساده برای بیان راه حلها در مسئله سهجسمی دشوار است. کتابهای کامل در این زمینه وجود دارد ،۱۹۶۷ (Szebehely). هدف ما در اینجا توصیف حرکات کیفی و برجسته کردن چندین راه حل کلاسیکی است که شناخته شده هستند.

ابتدا، بیایید از یک چارچوب مختصات همزمان برای مسئله سهجسمی استفاده کنیم، همانطور که در شکل 17-17 نشان داده شده است.* معادلاتی برای یک چارچوب باریکنانه (ثابت) به زودی معرفی خواهیم کرد. این چارچوب از نمادهای کوچک x و y برای اجزای فردی استفاده میکند. زیرنویس x با محورها نشان میدهد که مبدأ در مرکز جرم (مرکز سیستم) است و چارچوب با سرعت زاویهای x میچرخد.

شكل ۵-۱: هندسه مسئله سه بدنه محدود

شبیهسازی عامل درمحیط سه جسمی

سخت افزار در حلقه عملکرد عامل در محیط

Bibliography

- M. A. Vavrina, J. A. Englander, S. M. Phillips, and K. M. Hughes. Global, multiobjective trajectory optimization with parametric spreading. In AAS AIAA Astrodynamics Specialist Conference 2017, 2017. Tech. No. GSFC-E-DAA-TN45282.
- [2] C. Ocampo. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system. *Annals of the New York Academy of Sciences*, 1017:210–233, 2004.
- [3] B. G. Marchand, S. K. Scarritt, T. A. Pavlak, and K. C. Howell. A dynamical approach to precision entry in multi-body regimes: Dispersion manifolds. *Acta Astronautica*, 89:107–120, 2013.
- [4] A. F. Haapala and K. C. Howell. A framework for constructing transfers linking periodic libration point orbits in the spatial circular restricted three-body problem. *International Journal of Bifurcation and Chaos*, 26(05):1630013, 2016.
- [5] B. Gaudet, R. Linares, and R. Furfaro. Six degree-of-freedom hovering over an asteroid with unknown environmental dynamics via reinforcement learning. In 20th AIAA Scitech Forum, Orlando, Florida, 2020.
- [6] B. Gaudet, R. Linares, and R. Furfaro. Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations. Acta Astronautica, 171:1–13, 2020.
- [7] A. Rubinsztejn, R. Sood, and F. E. Laipert. Neural network optimal control in astrodynamics: Application to the missed thrust problem. *Acta Astronautica*, 176:192–203, 2020.
- [8] T. A. Estlin, B. J. Bornstein, D. M. Gaines, R. C. Anderson, D. R. Thompson, M. Burl, R. Castaño, and M. Judd. Aegis automated science targeting for the mer opportunity rover. ACM Transactions on Intelligent Systems and Technology (TIST), 3:1–19, 2012.

- [9] R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montano, R. Wiens, S. Schaffer, O. Gasnault, L. Deflores, D. Blaney, and B. Bornstein. Aegis autonomous targeting for chemcam on mars science laboratory: Deployment and results of initial science team use. *Science Robotics*, 2, 2017.
- [10] S. Higa, Y. Iwashita, K. Otsu, M. Ono, O. Lamarre, A. Didier, and M. Hoffmann. Vision-based estimation of driving energy for planetary rovers using deep learning and terramechanics. *IEEE Robotics and Automation Letters*, 4:3876–3883, 2019.
- [11] B. Rothrock, J. Papon, R. Kennedy, M. Ono, M. Heverly, and C. Cunningham. Spoc: Deep learning-based terrain classification for mars rover missions. In AIAA Space and Astronautics Forum and Exposition, SPACE 2016. American Institute of Aeronautics and Astronautics Inc, AIAA, 2016.
- [12] K. L. Wagstaff, G. Doran, A. Davies, S. Anwar, S. Chakraborty, M. Cameron, I. Daubar, and C. Phillips. Enabling onboard detection of events of scientific interest for the europa clipper spacecraft. In 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2191–2201, Anchorage, Alaska, 2019.
- [13] B. Dachwald. Evolutionary neurocontrol: A smart method for global optimization of low-thrust trajectories. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages 1–16, Providence, Rhode Island, 2004.
- [14] S. D. Smet and D. J. Scheeres. Identifying heteroclinic connections using artificial neural networks. *Acta Astronautica*, 161:192–199, 2019.
- [15] N. L. O. Parrish. Low Thrust Trajectory Optimization in Cislunar and Translunar Space. PhD thesis, University of Colorado Boulder, 2018.
- [16] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and D. Silver. Emergence of locomotion behaviours in rich environments. *CoRR*, abs/1707.02286, 2017.
- [17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of go without human knowledge. *Nature*, 550, 2017.

- [18] R. Furfaro, A. Scorsoglio, R. Linares, and M. Massari. Adaptive generalized zemzev feedback guidance for planetary landing via a deep reinforcement learning approach. *Acta Astronautica*, 171:156–171, 2020.
- [19] B. Gaudet, R. Linares, and R. Furfaro. Deep reinforcement learning for six degrees of freedom planetary landing. *Advances in Space Research*, 65:1723–1741, 2020.
- [20] B. Gaudet, R. Furfaro, and R. Linares. Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerospace Science and Technology, 99, 2020.
- [21] D. Guzzetti. Reinforcement learning and topology of orbit manifolds for station-keeping of unstable symmetric periodic orbits. In AAS/AIAA Astrodynamics Specialist Conference, Portland, Maine, 2019.
- [22] J. A. Reiter and D. B. Spencer. Augmenting spacecraft maneuver strategy optimization for detection avoidance with competitive coevolution. In 20th AIAA Scitech Forum, Orlando, Florida, 2020.
- [23] A. Das-Stuart, K. C. Howell, and D. C. Folta. Rapid trajectory design in complex environments enabled by reinforcement learning and graph search strategies. Acta Astronautica, 171:172–195, 2020.
- [24] D. Miller and R. Linares. Low-thrust optimal control via reinforcement learning. In 29th AAS/AIAA Space Flight Mechanics Meeting, Ka'anapali, Hawaii, 2019.
- [25] C. J. Sullivan and N. Bosanac. Using reinforcement learning to design a low-thrust approach into a periodic orbit in a multi-body system. In 20th AIAA Scitech Forum, Orlando, Florida, 2020.
- [26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms. In *International conference on machine learning*, pages 387–395. Pmlr, 2014.
- [27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

- [28] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic methods, 2018.
- [29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.
- [30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018.

Abstract

In this study, a quadcopter stand with three degrees of freedom was controlled using game theory-based control. The first player tracks a desired input, and the second player creates a disturbance in the tracking of the first player to cause an error in the tracking. The move is chosen using the Nash equilibrium, which presupposes that the other player made the worst move. In addition to being resistant to input interruptions, this method may also be resilient to modeling system uncertainty. This method evaluated the performance through simulation in the Simulink environment and implementation on a three-degree-of-freedom stand.

Keywords: Quadcopter, Differential Game, Game Theory, Nash Equilibrium, Three Degree of Freedom Stand, Model Base Design, Linear Quadratic Regulator

Sharif University of Technology Department of Aerospace Engineering

Master Thesis

Robust Reinforcement Learning Differential Game Guidance in Low-Thrust, Multi-Body Dynamical Environments

By:

Ali BaniAsad

Supervisor:

Dr.Hadi Nobahari

December 2024