Recitation Hour (13.07.2020)

- 1) You independently draw 100 data points from a normal distribution.
 - distribution.

 a) Suppose you know the distribution is $N(\mu, 4)(4=0^2)$ and you wont to test the null hypothesis to: $\mu_0=3$ against the alternative hypothesis that $\mu_0=3$ of you want a significance level of $\alpha=0.07$.

 What's your rejection region?
 - 6) Suppose the 100 data points have sample mean 5. What's the p-value for this Jata?

Soln.

a). Ho: No=3

$$z = \frac{X - Y^{\circ}}{\sigma / \sqrt{n}} = \frac{X - 3}{2/10} = 5(X - 3)$$

0 = P[Type I error]: the probability of rejection to

Therefore
$$P(\frac{1}{4} < \frac{1}{4}) = P(\frac{1}{4} < \frac{1}{4}) = \frac{1}{2} = 0.027$$

from the 2-table

At X=0,007 we reject to if

7 6/196 or 7>1196.

b)
$$V=5$$
 for 100 samples
$$2=\frac{5-3}{2/10}=10$$

$$P = P(2 > 2) = P(2 > 10) = 0 //$$

since P(X) we-should reject to.

	Area		
	0	Z	

						0	Z			
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	
- 1		0.0000	0.0040	0.0044	0.00.10		0.0040	0.0040	0 00 10	

2) Suppose that XI, XZI - - IXN are identically independent distributed MYS and drawn from N(Y102).

Suppose that a data set is taken and we have n=4.9 samples with T=921 sample mean (and $\overline{\sigma}=0.75$ standard deviation.

Find a 97% confidence interval for y.

01015

$$2 = X - 92 = X - 92$$

$$0.75/\pi$$

$$0.75/7$$

from the 7-table

$$2 = \frac{17(x-92)}{150.75} = 2.17$$

$$P\left(-2117 \angle \frac{(x-92)}{0175|_{7}} \angle 2117\right) = 0.97$$

$$\left(92 - 0.75 \cdot 2117 \angle \times \angle 92 + \frac{0.75}{7} \cdot 2117\right)$$

$$\left[91.7675; 92.2325\right]$$

- 3) The monufacturer of the postest medicine claimed that it was 90% affective in relieving on allergy for a period of & hours. In a sample of 200 people who had the atterpy, the medicine provided relief for 160 people.
 - a) Determine whether the manufacturer's claim is legitimate by using 0.01 as the level of significance.
 - B) Find the P-value of the test

soln

Jet P Lenote the probability of obtaining relief by wing medicine.

Ho: P=0,9 and the claim is correct

Hii Plois and the claim is false

cortical representation of the second represe
--

one-tailed test 0.0 0.5000

0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.

p(262)=1-p(2(2)= d=0,01

from the 2 table

$$2 = 2133$$

¥ 2<-2133, we reject

$$y = nP = 200.0.9 = 180$$

 $y = nP = \sqrt{200.0.9.0.1} = 4123$

$$2.3 \quad 0.9893 \quad 0.9896 \quad 0.9898 \quad 0.9901 \quad 0.9902 \quad 0.9923 \quad 0.9925 \quad 0.99$$

36) P-value of the test is

P(74-4173)=0 1 > from the 7-table.

which shows that the claim is almost certainly false.

If the were true, it is almost certain that a rendom sample of 200 patrents who used the medicine would include more than 160 people who found relief.