SurveyRecommendersystem

Wednesday, June 15, 2016 8:37 PM

推荐系统是一个当前非常火热的领域,通过推荐系统,商家可以发掘客户的潜在需求,提高商铺的效率。尽管推荐系统和系统软件的关系不大,但是已经在一个非常火热的领域,文章

《When do Recommender Systems Work the Best? The Moderating Effects of Product Attributes and Consumer Reviews on Recommender Performance》第一次探讨了之前的文章中提出的各种推荐算法的效率,揭露了不同的算法不同的参数所造成的影响如何。思考问题的方式和实验验证的方法值得学习。

推荐系统的种类有很多,算法也有很多,参数也有很多。同时推荐系统已经无处不在,通过推荐系统的部署,普遍认为可以提高客户的转化率,即会有更多的客户购买东西。但是没有一个详细而系统的解释各个参数对算法效果的影响,那么到底如何调整推荐系统才能让系统达到最好的状态,即能够提高用户的转化率?

作者通过选取一个经典的推荐系统: "购买了这个产品的人同时也购买了..."来进行试验。首先作者通过对产品的属性进行分析,提出了六个假设:

1. 享乐型和实用型

享乐型的产品指的是他的主要作用是给客户快乐,如一个玩具娃娃。而实用型的产品则通常指一种产品在实际的生活中有明显的用处,例如扳手。基于作者的推测给出两个假设:

- a. 在线系统中,实用型的产品的转化率会变高
- b. 推荐系统下, 享乐型的物品的转化率要高于实用型的产品

2. 搜索型的和经验型的

搜索型即指一种产品可以通过一些非常明确的关键字来进行搜索,比如说显示器可以通过一个尺寸进行搜索,内存条可以通过内存的大小和带宽频率进行搜索。而经验型则相反,难以通过一两个确定的词汇找到自己想要的产品。基于这个属性,作者给出两个假设:

- a. 在在线系统中,搜索型的物品的转化率会变高
- b. 当推荐系统部署后,经验型的物品的转化率所受到的好处大于搜索型物品。
- 3. 客户的评论好坏,评论数量的多少

基于评论,作者得出两个假设:

- a. 有着高评论分的产品在在线系统中会得到更高的转换率
- b. 在推荐系统下,高评分带来的好处会被限制。

为了能够对上述假设进行假设检验,作者对产品属性进行建模。为了消除在线系统对推荐效果的影响,得出一个基础转化率,模型基于一个双重差分模型。

```
P(conversion)_{iu} = \beta_0 + \beta_1 PRICE_i + \beta_2 REC_u
```

- $+ \beta_3 UTILHEDO_i + \beta_4 SEARCHEXP_i$
- $+ \beta_5 DURABILITY_i + \beta_6 BRAND_i + \beta_7 DESLEN_i$
 - $+ \beta_8 AVGRATING_i + \beta_9 RATINGNUMB_i$
- $+ \beta_{10}PRICE_i \times REC_u + \beta_{10}UTILHEDO_i \times REC_u$
- $+ \beta_{11}SEARCHEXP_i \times REC_u + \beta_{10}DESLEN_i \times REC_u$
 - $+ \beta_{10}AVGRATING_i \times REC_u$
 - $+ \beta_{11}RATINGNUMB_i \times REC_u + \epsilon_u$

虽然作者采用了一个线性回归模型,但是由此带来的误差作者认为可以通过大数据基数消除,与此同时,线性模型的可解释性更好,效率更高。

以下是结果

Table 5: Main Results Table: * '= p-value < 0.05, ** '= p-value < 0.01, *** '= p-value < 0.001

= p-varue < 0.05 , $= p$ -var	ue < 0.01, =	p-value < 0
Variables	Estimate	Std Error
Constant	0.034771***	0.001175
PRICE	-0.000019***	0.000003
REC	0.002797***	0.001042
DESLEN	-0.000001	0.000001
AVGRATING	0.002013***	0.000153
RATINGNUMB	-0.000002	0.000003
UTILHEDO (UTIL=1)	0.005120***	0.000677
SEARCHEXP (SEA=1)	0.003207***	0.000677
BRAND	0.001941**	0.000681
DURABILITY	-0.004763***	0.00018
REC X PRICE	-0.000010*	0.000004
REC X DESLEN	0.000005^*	0.000002
REC X AVGRATING	-0.000772***	0.000215
REC X RATINGNUMB	0.000011*	0.000004
REC X UTILHEDO	-0.003064**	0.000944
REC X SEARCHEXP	0.000148	0.000945

通过对图中的P-value对原假设进行检验,结果如下

Table 7: Hypotheses and Results

Attribute Construct	Hypotheses	Supported
Hedonic-Utilitarian	The base conversion rate for utilitarian goods will be higher in online settings	YES
	The increase in conversion rate under the use of a recommender will be higher	
$Hedo-Util \times Rec$	for hedonic goods, compared to utilitarian goods	YES
Search-Experience	The base conversion rate for search goods will be higher in online settings	YES
	The increase in conversion rate under the use of a recommender will be higher	
$Sea-Exp \times Rec$	for experience goods, compared to search goods	NO
Avg Review Rating	The base conversion rate will be increased for products with higher average review ratings	
	The positive impact on conversion from high average review ratings will be	
Avg Review Rating \times Rec	lessened under the presence of a recommender system	YES

其中可以看到,大部分作者的假设都被验证为真,只有假设4失败。作者认为可能是因为推荐 系统提供的信息不足以说服客户进行购买,或者说在这种口口相传的基于经验的商品上,客户 并不一定相信别人的喜好。

个人总结,我觉得这篇survey很有意思,通过一系列的实验,对推荐系统的不同的参数进行 剖析。然而作者只用了一种推荐系统和两个推荐算法,可能还是不能完全消除其结果的片面 性。尽管如此,这篇文章的目的应该已经达到了。