Assignment: ANN

63130500102 วงศกร แสงสุรศักดิ์

Link 2D Dataset: https://drive.google.com/file/d/1uvxB8O3hXM5Qqr29zAVwtgY0kZU6QyW9/view?usp=sharing

Link Image Dataset:

https://drive.google.com/drive/folders/17SWbfn0Egf4NQ6uccWcp6uretlYbY0SU?usp=sharing

2D Data

Generate 2D Data

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make blobs
from sklearn.model selection import train test split
from tensorflow import keras
from tensorflow.keras import layers
# Generate 2D data with 4 clusters
data , labels = make blobs(n samples = 100, n features = 2, centers =
4, cluster std = 1.0, random state = 42)
labels = (labels % 2 == 0).astype(int) # Convert labels to 2 classes
plt.scatter(data[labels == 0 , 0], data[labels == 0 , 1], c = 'red',
label = 'Class 0')
plt.scatter( data [ labels == 1 , 0], data[ labels == 1 , 1],
c='blue', label = 'Class 1')
plt.title("Generated Data with 4 Clusters in 2 Classes")
plt.legend()
plt.show()
```

Generated Data with 4 Clusters in 2 Classes

Create Model

```
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(data, labels,
test size=0.2, random state=42)
# Build a simple model using Keras
model = keras.Sequential ([
    layers.Dense(3, activation = relu', input_shape = (2 ,)),
    layers.Dense(2, activation ='softmax') # = จำนวนคลาส
1)
# Compile the model
model.compile(optimizer='adam', loss
='sparse categorical crossentropy', metrics =['accuracy'])
# Train the model
history = model.fit(X train, y train, epochs=2000,
validation split=0.2 ,verbose=0)
# Plot training history for accuracy
plt.subplot(2, 1, 1)
plt.plot(history.history['accuracy'], label ='Training Accuracy')
plt.plot(history.history['val_accuracy'], label ='Validation
Accuracy')
```

```
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# Plot training history for loss
plt.subplot(2 , 1 , 2 )
plt.plot(history.history['loss'], label ='Training Loss')
plt.plot(history.history['val_loss'], label ='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight layout()
plt.show()
```


Training Accuracy

Training and Validation Accuracy

Testing

0.8

0.7

0.5

0

250

Accuracy 0.6

```
X_test.shape
(20, 2)
```

```
prob pred = model.predict(X test)
prob pred
1/1 [======= ] - 0s 80ms/step
array([[5.1566845e-01, 4.8433149e-01],
       [5.5388646e-04, 9.9944603e-01],
       [9.9973822e-01, 2.6184111e-04],
       [2.5438407e-04, 9.9974573e-01],
       [5.1566845e-01, 4.8433149e-01],
       [9.9986243e-01, 1.3754587e-04],
       [5.1566845e-01, 4.8433149e-01],
       [9.9992245e-01, 7.7519850e-05],
       [5.1566845e-01, 4.8433149e-01],
       [4.6054476e-01, 5.3945518e-01],
       [5.1566845e-01, 4.8433149e-01],
       [2.5751907e-04, 9.9974251e-01],
       [5.1566845e-01, 4.8433149e-01],
       [5.1566845e-01, 4.8433149e-01],
       [9.9987954e-01, 1.2043148e-04],
       [5.1566845e-01, 4.8433149e-01],
       [2.3536349e-04, 9.9976462e-01],
       [5.1566845e-01, 4.8433149e-01],
       [4.5476068e-04, 9.9954516e-01],
       [9.9991965e-01, 8.0391241e-05]], dtype=float32)
y pred = np.argmax(model.predict(X test), axis=1)
y pred
1/1 [======= ] - 0s 20ms/step
array([0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])
```

Plotting Result

```
# Plot the training data
plt.scatter(X_train[y_train ==0 , 0], X_train [ y_train ==0 , 1],
c='orange', marker ='o', label ='Training Data - Class 0')
plt.scatter(X_train[y_train ==1 , 0], X_train [ y_train ==1 , 1],
c='green', marker ='o', label ='Training Data -Class 1')

# Plot the testing data with predicted labels
plt.scatter(X_test[y_test ==0 , 0], X_test [ y_test ==0 , 1],
c='darkorange', marker ='x', label ='Testing Data (Predicted) - Class
0')
plt.scatter(X_test[y_test ==1 , 0], X_test [ y_test ==1 , 1],
c='darkgreen', marker ='x', label ='Testing Data (Predicted) - Class
1')
plt.title("Training and Testing Data")
```

plt.legend()
plt.show()

Model Exploration

model.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 3)	9
dense_3 (Dense)	(None, 2)	8

Total params: 17 (68.00 Byte) Trainable params: 17 (68.00 Byte) Non-trainable params: 0 (0.00 Byte)

model.get_weights()

Tabular Table Data

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense
```

Read Data

```
df = pd.read csv('/content/drive/MyDrive/INT421/Dataset/drug200.csv')
df.head()
  Age Sex
               BP Cholesterol Na_to_K
                                        Drug
0
   23 F
             HIGH
                         HIGH
                              25.355
                                       DrugY
   47
1
        М
                         HIGH
                               13.093
                                       drugC
              LOW
2
   47
              LOW
                         HIGH
                               10.114
        М
                                       drugC
3
        F
                                7.798
   28
           NORMAL
                         HIGH
                                       drugX
        F
              LOW
                         HIGH 18.043
   61
                                       DrugY
df['Drug'].unique()
array(['DrugY', 'drugC', 'drugX', 'drugA', 'drugB'], dtype=object)
```

Preprocess Data

```
# Categorical Encoding
le sex = LabelEncoder().fit(df['Sex'])
le bp = LabelEncoder().fit(df['BP'])
le chol = LabelEncoder().fit(df['Cholesterol'])
le drug = LabelEncoder()
le drug.classes = np.array(['drugA', 'drugB', 'drugC', 'drugX',
'DrugY'])
df['Sex'] = le sex . transform( df['Sex'])
df['BP'] = le bp . transform( df['BP'])
df['Cholesterol'] = le chol.transform ( df['Cholesterol'])
df['Drug'] = le drug.transform ( df['Drug'])
X = df.drop('Drug', axis =1)
v = df['Drug']
# Split the data into training and testing sets
X_train , X_test , y_train , y_test = train_test_split (X , y ,
test size =0.2 , random state =42 )
# Standardize the data
scaler = StandardScaler ()
scaler.fit(X train)
X train = scaler.transform(X train)
X test = scaler.transform(X test)
```

Model Creation

```
# Build the neural network model
model = Sequential()
model.add(Dense (32 , input shape =(5,) , activation ='relu') )
model.add(Dense (16 , activation = 'relu') )
model.add(Dense (5 , activation ='softmax') )
# Compile the model
model.compile(loss='sparse categorical crossentropy', optimizer
='adam', metrics =['accuracy'])
# Train the model
history = model.fit(X train, y train, epochs=200
batch size=32 ,validation data =(X test , y test ) ,verbose =0 )
# Plot training history for accuracy
plt.subplot (2, 1, 1)
plt.plot (history.history ['accuracy'], label ='Training Accuracy')
plt.plot (history.history ['val accuracy'], label ='Validation
Accuracy')
plt.title ('Training and Validation Accuracy')
plt.xlabel ('Epoch')
plt.ylabel ('Accuracy')
plt.legend ()
```

```
# Plot training history for loss
plt.subplot (2 , 1 , 2 )
plt.plot (history.history ['loss'], label ='Training Loss')
plt.plot (history.history ['val_loss'], label ='Validation Loss')
plt.title ('Training and Validation Loss')
plt.xlabel ('Epoch')
plt.ylabel ('Loss')
plt.legend ()
plt.tight_layout ()
plt.show ()
```


Model Testing and Evaluation

```
y test.values
array([3, 4, 3, 2, 4, 4, 4, 3, 0, 3, 0, 3, 4, 0, 1, 4, 1, 3, 2, 4, 1,
       3, 4, 4, 4, 2, 3, 4, 3, 4, 2, 2, 4, 0, 4, 3, 0, 4, 0])
from sklearn . metrics import confusion matrix , classification report
# Confusion Matrix
cm = confusion_matrix ( y_test , y_pred )
print ("Confusion Matrix :")
print ( cm )
# Classification Report
class report = classification_report ( y_test , y_pred )
print ("Classification Report :")
print ( class report )
Confusion Matrix:
[[6 0 0 0 0]
 [ 0 3
         0 0 01
 [0 \ 0 \ 5 \ 0 \ 0]
 [0 0 0 11 0]
 [0 0 0 0 15]
Classification Report:
                           recall f1-score
              precision
                                              support
                   1.00
                             1.00
                                       1.00
                                                     6
           1
                             1.00
                                       1.00
                                                     3
                   1.00
           2
                                                    5
                   1.00
                             1.00
                                       1.00
           3
                   1.00
                             1.00
                                       1.00
                                                    11
           4
                   1.00
                             1.00
                                       1.00
                                                    15
                                       1.00
                                                    40
    accuracy
                   1.00
                             1.00
                                       1.00
                                                    40
   macro avg
weighted avg
                   1.00
                             1.00
                                       1.00
                                                    40
```

Image Data

Dataset: https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset

Load Image Data

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
train_ds = keras.utils.image_dataset_from_directory (
directory =
   '/content/drive/MyDrive/INT421/Dataset/Covid19-dataset/train',
labels = 'inferred',
label_mode ='categorical',
```

```
batch_size = 32,
image_size = (224, 224))
test_ds = keras.utils.image_dataset_from_directory(
directory =
   '/content/drive/MyDrive/INT421/Dataset/Covid19-dataset/test',
labels = 'inferred',
label_mode = 'categorical',
batch_size = 32,
image_size = (224, 224))

Found 251 files belonging to 3 classes.
Found 66 files belonging to 3 classes.
```

Convu2D and MaxPooling2D Concepts

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import convolve2d
from scipy.ndimage import maximum filter
from scipy import misc
# Load a sample image
image path =
'/content/drive/MyDrive/INT421/Dataset/Covid19-dataset/test/Covid/
0100.jpeg' # Replace with your image path
image = plt.imread(image path)
# Define a simple Conv2D filter
filter kernel = np.array ([[2, 0, -2], [2, 0, -2], [2, 0, -2]])
# Apply the Conv2D filter to the image
convolved image = convolve2d (image [:, :, 0], filter kernel , mode
='same',boundary ='symm')
# Apply MaxPooling2D to the convolved image
pooling size = 2
pooled image = maximum filter ( convolved image , size =
( pooling size , pooling size) )
# Visualize the original , convolved , and pooled images
plt.figure(figsize=( 15 , 5 ))
plt.subplot(1, 3, 1)
plt.imshow(image)
plt.title('Original Image')
plt.subplot(1 , 3 , 2 )
plt.imshow(convolved image , cmap ='gray')
plt.title('Conv2D Filtered Image')
plt.subplot(1, 3, 3)
plt.imshow(pooled image , cmap ='gray')
```

```
plt.title(' MaxPooling2D Image')
plt.show()
```


Model Creation

```
model = keras.Sequential([
layers.Conv2D(32,(3, 3 ), activation = 'relu', input_shape=(224, 224, 3 )),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64,(3,3),activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128,(3,3),activation = 'relu') ,
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(128, activation='relu') ,
layers.Dense(3, activation='softmax') # have 3 classes
])
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 222, 222, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 111, 111, 32)	0
conv2d_1 (Conv2D)	(None, 109, 109, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 54, 54, 64)	0
conv2d_2 (Conv2D)	(None, 52, 52, 128)	73856

```
max pooling2d 2 (MaxPoolin (None, 26, 26, 128)
                                         0
g2D)
flatten (Flatten)
                     (None, 86528)
                                         0
dense (Dense)
                     (None, 128)
                                         11075712
dense 1 (Dense)
                     (None, 3)
                                         387
Total params: 11169347 (42.61 MB)
Trainable params: 11169347 (42.61 MB)
Non-trainable params: 0 (0.00 Byte)
model.compile(optimizer = 'adam', loss = 'categorical crossentropy',
metrics = ['accuracy'])
history = model.fit(train ds, epochs =50, validation data = test ds)
Epoch 1/50
accuracy: 0.9960 - val loss: 3.2238 - val_accuracy: 0.8636
Epoch 2/50
accuracy: 0.9801 - val loss: 10.1922 - val accuracy: 0.7879
Epoch 3/50
8/8 [============ ] - 36s 4s/step - loss: 0.7377 -
accuracy: 0.9602 - val loss: 2.6341 - val accuracy: 0.8788
Epoch 4/50
accuracy: 0.9801 - val loss: 2.8157 - val accuracy: 0.9091
Epoch 5/50
accuracy: 0.9681 - val loss: 2.5061 - val_accuracy: 0.8788
Epoch 6/50
8/8 [=============== ] - 36s 4s/step - loss: 0.1283 -
accuracy: 0.9841 - val_loss: 4.7798 - val_accuracy: 0.8788
Epoch 7/50
- accuracy: 1.0000 - val loss: 5.5296 - val accuracy: 0.8636
Epoch 8/50
8/8 [============ ] - 36s 4s/step - loss: 0.2795 -
accuracy: 0.9920 - val loss: 3.1340 - val accuracy: 0.8939
Epoch 9/50
8/8 [============= ] - 38s 4s/step - loss: 0.0765 -
accuracy: 0.9920 - val loss: 2.3742 - val accuracy: 0.8485
Epoch 10/50
accuracy: 0.9960 - val_loss: 2.0645 - val_accuracy: 0.8939
Epoch 11/50
```

```
8/8 [============= ] - 39s 4s/step - loss: 0.0038 -
accuracy: 0.9960 - val loss: 2.4933 - val accuracy: 0.8485
Epoch 12/50
8/8 [============ ] - 36s 4s/step - loss: 0.0029 -
accuracy: 1.0000 - val loss: 2.4760 - val accuracy: 0.9091
Epoch 13/50
- accuracy: 1.0000 - val loss: 2.4928 - val accuracy: 0.9091
Epoch 14/50
8/8 [============= ] - 38s 4s/step - loss: 0.0054 -
accuracy: 0.9960 - val loss: 2.6985 - val accuracy: 0.9091
Epoch 15/50
8/8 [============= ] - 35s 4s/step - loss: 4.1033e-06
- accuracy: 1.0000 - val loss: 2.5153 - val accuracy: 0.8636
Epoch 16/50
8/8 [=========== ] - 39s 4s/step - loss: 0.0050 -
accuracy: 0.9960 - val loss: 2.8374 - val accuracy: 0.8788
Epoch 17/50
8/8 [============= ] - 35s 4s/step - loss: 0.0286 -
accuracy: 0.9960 - val loss: 2.9248 - val accuracy: 0.8939
Epoch 18/50
8/8 [=========== ] - 37s 4s/step - loss: 0.0149 -
accuracy: 0.9960 - val loss: 2.9789 - val accuracy: 0.8939
Epoch 19/50
8/8 [============ ] - 37s 4s/step - loss: 0.1079 -
accuracy: 0.9841 - val loss: 2.3607 - val accuracy: 0.8788
Epoch 20/50
8/8 [============= ] - 35s 4s/step - loss: 0.1603 -
accuracy: 0.9841 - val loss: 13.4417 - val accuracy: 0.7727
Epoch 21/50
accuracy: 0.9841 - val loss: 8.5220 - val accuracy: 0.8485
Epoch 22/50
8/8 [=========== ] - 36s 4s/step - loss: 1.6602 -
accuracy: 0.9721 - val loss: 4.2172 - val accuracy: 0.8788
Epoch 23/50
8/8 [============ ] - 35s 4s/step - loss: 3.2808 -
accuracy: 0.9323 - val loss: 3.3347 - val accuracy: 0.8636
Epoch 24/50
accuracy: 0.9641 - val loss: 9.3573 - val accuracy: 0.8030
Epoch 25/50
8/8 [============ ] - 35s 4s/step - loss: 0.6708 -
accuracy: 0.9880 - val loss: 11.4137 - val accuracy: 0.8333
Epoch 26/50
8/8 [============ ] - 36s 4s/step - loss: 0.2972 -
accuracy: 0.9960 - val loss: 8.2215 - val accuracy: 0.8182
Epoch 27/50
```

```
accuracy: 0.9920 - val loss: 16.5339 - val accuracy: 0.7424
Epoch 28/50
accuracy: 0.9841 - val loss: 7.3718 - val accuracy: 0.7576
Epoch 29/50
accuracy: 0.9960 - val loss: 5.6641 - val accuracy: 0.8939
Epoch 30/50
- accuracy: 1.0000 - val loss: 7.2020 - val accuracy: 0.8636
Epoch 31/50
- accuracy: 1.0000 - val loss: 8.0339 - val accuracy: 0.8636
Epoch 32/50
- accuracy: 1.0000 - val loss: 8.4259 - val accuracy: 0.8636
Epoch 33/50
- accuracy: 1.0000 - val loss: 8.6031 - val accuracy: 0.8636
Epoch 34/50
- accuracy: 1.0000 - val loss: 8.6818 - val accuracy: 0.8636
Epoch 35/50
8/8 [============= ] - 37s 4s/step - loss: 0.0000e+00
- accuracy: 1.0000 - val loss: 8.7166 - val accuracy: 0.8636
Epoch 36/50
8/8 [============== ] - 39s 5s/step - loss: 4.7494e-10
- accuracy: 1.0000 - val loss: 8.7319 - val accuracy: 0.8636
Epoch 37/50
- accuracy: 1.0000 - val loss: 8.7385 - val accuracy: 0.8636
Epoch 38/50
8/8 [============== ] - 35s 4s/step - loss: 4.7494e-10
- accuracy: 1.0000 - val loss: 8.7414 - val accuracy: 0.8636
Epoch 39/50
- accuracy: 1.0000 - val loss: 8.7426 - val accuracy: 0.8636
Epoch 40/50
- accuracy: 1.0000 - val loss: 8.7431 - val accuracy: 0.8636
Epoch 41/50
8/8 [============== ] - 40s 4s/step - loss: 4.7494e-10
- accuracy: 1.0000 - val loss: 8.7433 - val accuracy: 0.8636
Epoch 42/50
- accuracy: 1.0000 - val_loss: 8.7433 - val_accuracy: 0.8636
Epoch 43/50
- accuracy: 1.0000 - val loss: 8.7433 - val accuracy: 0.8636
```

```
Epoch 44/50
- accuracy: 1.0000 - val loss: 8.7432 - val accuracy: 0.8636
Epoch 45/50
- accuracy: 1.0000 - val loss: 8.7432 - val accuracy: 0.8636
Epoch 46/50
- accuracy: 1.0000 - val loss: 8.7431 - val accuracy: 0.8636
Epoch 47/50
- accuracy: 1.0000 - val loss: 8.7430 - val accuracy: 0.8636
Epoch 48/50
- accuracy: 1.0000 - val loss: 8.7429 - val accuracy: 0.8636
Epoch 49/50
           8/8 [======
- accuracy: 1.0000 - val loss: 8.7429 - val accuracy: 0.8636
Epoch 50/50
- accuracy: 1.0000 - val loss: 8.7428 - val accuracy: 0.8636
import matplotlib.pyplot as plt
# Plot training history for accuracy
plt.subplot(2, 1, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# Plot training history for loss
plt.subplot(2, 1, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight layout()
plt.show()
```


Training and Validation Loss Training Loss Validation Loss Validation Loss 5 0 10 20 30 40 50

Epoch

Prediction

```
from sklearn.metrics import confusion matrix, classification report,
accuracy score
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
# Convert the test dataset to numpy arrays
X \text{ test} = []
y_true = []
for images, labels in test ds:
    X test.append(images.numpy())
    y true.append(np.argmax(labels.numpy(), axis=1))
X test = np.vstack(X test)
y_true = np.concatenate(y_true)
# Make predictions
y pred probs = model.predict(X test)
y_pred = np.argmax(y_pred_probs, axis=1)
# Confusion Matrix
```

```
conf matrix = confusion matrix(y true, y pred)
print("Confusion Matrix:")
print(conf matrix)
# Plot Confusion Matrix as heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.show()
# Accuracy
accuracy = accuracy_score(y_true, y_pred)
print("Accuracy:", accuracy)
# Classification Report (Precision, Recall, F1 Score)
class report = classification report(y true, y pred,
target names=['Covid', 'Normal', 'Viral Pneumonia'])
print("Classification Report:")
print(class_report)
3/3 [======== ] - 2s 649ms/step
Confusion Matrix:
[[26 0 0]
[ 0 20 0]
 [ 1 8 11]]
```


Accuracy: 0.8636 Classification R	Report:			
	precision	recall	f1-score	support
Covid Normal Viral Pneumonia	0.96 0.71 1.00	1.00 1.00 0.55	0.98 0.83 0.71	26 20 20
accuracy macro avg weighted avg	0.89 0.90	0.85 0.86	0.86 0.84 0.85	66 66 66