К514ИД1, КР514ИД1, 514ИД1

Дешифраторы 4-разрядного двоичного кода в сигиалы 7-сегментиого кода. Выпускаются: К514ИД1 и 514ИД1—в металлостеклянном, а КР514ИД1—в пластмассовом корпусе.

Предназначены для управления полупроводниковыми цифро-буквенными индикаторами на основе светоизлучающих днодных структур с разъединенными анодами. Графическое обозначение микросхемы приведено ниже.

Назначение выводов: D0-D3— информационные входы; Γ — вход гашения; A, B, C, D, E, F, G— выходы, подключаемые к сегментам индикатора; $16-U_{\text{пит}}$; 8— общий.

Дешифрирование входных сигналов происходит при установлении высокого логического уровня на входе F. При этом входной информации (на выводах D3, D2, D1, D0) 0000 будет соответствовать выходиая (на выводах A, B, C, D, E, F, G) 1111110, что обусловливает возбуждение на индикаторе символа $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Дальнейшие логические соответствия входной и выходной информации и отображаемого символа следующие:

```
0001-0110000 ( / ), 0010-1101101 ( / ), 0011-1111001 ( / ), 0100-0110011 ( / ), 0101-1011011 ( / ), 0110-1011111 ( / ), 0111-1110000 ( / ), 1000-1111111 ( / ), 1001-1111011 ( / ), 1010-0001101 ( / ) знак меньше), 1011-0011001 ( / ) знак больше), 1100-0100011 ( / / ), 1101-1001011 ( / ) знак меньше или равно), 1110-0001111 ( / ) знак переполнения), 1111-0000000 (символ не отображается).
```

Сигнал низкого логического уровия, поступающий на вход Γ (гашение), переводит все выводы дещифратора в состояния логических нулей (независимо от входной информации), при этом ии один сегмент индикатора не возбуждается.

1

Микросхемы К514ИД1, 514ИД1:

a — функциональная схема; b — принципиальная электрическая схема входных каскадов, b — схема выходов; b — условное графическое обозначение

Электрические параметры при $T_{\text{окр}} = 25\,^{\circ}\text{C}$

Входной ток в состоянии логического при $U_{\rm Bx} \! = \! 0.4$ В, не	
более	-1,6 MA
Входной ток в состоянии логической 1 при $U_{\rm Bx}{=}2.4$ В, не более	70 мкА
Выходной ток в состоянии логического 0 при $U_{\rm вых} =$	0,3 мА
=0.8 В, не более	0,5 MA
K514ИД1, KP514ИД1	2,5—4,6 mA 2,7—4,2 mA
514ИД1	2,7—4,2 MA 50 MA
To not people in the confect of the	OO MIZE

Предельные эксплуатационные даиные

Напряжение питания: К514ИД1, КР514ИД1 (5±0,25) В

514ИД1	l												(5±0,5) B
Входиой то	ЭK				•					,			1 мА
Входное напряжение:													
К 514ИД	Ιĺ,	KP.	5141	1Д1						,			$-0.3 \div +5.25 \mathrm{B}$
514ИД1	1												$-0.3 \div +5.5 \text{ B}$
Выходиой т	OK												7,5 мА
Диапазон рабочей температуры окружающей среды:													
К514ИД	Į1			·									60÷+70 °G
514ИД1													-60÷+85 °C
KP5141	1Д1			_									-10÷+70°C
•				-	-							-	

Типовые зависимости входиого тока в состоянии логического 0 от напряжения питания при различных значениях температуры окружающей среды

Тиловые зависимости входного тока в состоянии логической 1 от напряжения питания при различных значениях температуры окружающей среды