NGS introduction Joana Meier

Sequenting costs have decreased massively

History of Illumina sequencing

High Throughput Sequencing (=Next Generation Sequencing)

• Short-read sequencing technologies (2nd generation):

- Sequence millions of clonally amplified molecules
- E.g. Illumina, Ion Torrent, SOLiD

Long-read technologies (3rd generation):

- Single molecules are sequenced in real-time, fast but expensive and high error rates
- E.g. PacBio (bought by Illumina last month): ~12kb reads, single molecules are read multiple times to reduce error rate
- E.g. Oxford Nanopore: up to 900 kb reads, high sequencing error rate (5-15%) and non-random errors, each DNA fragment can only be read 2x

Sanger Sequencing

Illumina flowcell: millions of DNA sequences

Sequencing by synthesis by Illumina: Read1

- 1. DNA fragments bind to the P1 primer
- 2. polymerase makes it double-stranded
- 3. Template strand is washed away (denaturated)

- 4. DNA strand forms a bridge and binds to the P2 primer
- 5. Polymerase makes it doublestranded
- 6. Denaturation -> two single stranded DNA fragments
- Repeat many times to form clusters of thousands of identical DNA strands
 7. The reverse strands are cleaved and washed off
- 8. Primer annealing
 9. Complementary
 fluorescently tagged
 nucleotides are
 incorporated in each cycle
 10. Repeat step 9 150x

Sequencing by synthesis by Illumina

Sequencing by synthesis by Illumina: Read2

- 11. Denaturation
- 12. Primer index 1 is added and sequenced
- 13. The 3' end is deprotected

- 14. The DNA fragment forms a bridge to the reverse primer
- 15. Sequencing of index 2
- 16. Polymerase makes bridge double-stranded
- 14. Denaturation leads to single-stranded fragments bound to the flowcell15. Forward strands are cleaved and washed off
- 16. Second read is sequenced as the first read with sequencing-by-synthesis

Illumina HiSeq4000 and X Ten

Problem:
Illumina barcode switching
(Index hopping)

-> use double-indexing
Different P1 and P2 indices

Long read sequencing technologies

Nanopore

PacBio

DNA preparation methods

Whole-genome sequencing (shotgun sequencing)

RAD sequencing Restriction Associated DNA sequencing

Restriction enzyme

(e.g. *Sbf*l)

5'-TGCAGTGCGGTGGTCACCTGCA|GGCCGTGCGTGCTAGCAGTGCGGT...
3'-ACGTCACGCCACCAGTGG|ACGTCCGGCACGCACGATCGTCACGCCA...

fPCRprimer-IlluminaPrimer-barcode-TGCA fPCRprimer-IlluminaPrimer-barcode-P

5'-P1-barcode-TGCAGGTCCGTGCGTGCTAG...A P2-GAGAACAAC
3'-P1-barcode-ACGTCCAGGCACGCACGATC...T-P2-CACGATACGGCAGAAGACGAAC

PCR

complement to reverse PCR primer binding site

RAD sequencing

Restriction Associated DNA sequencing

Other «reduced-representation» techniques

- ddRAD sequencing (double-digest RAD restriction enzyme and size selection in:
- **GBS** (genotyping by sequencing): no she and PCR and sequencing select short fra
- UCE: Selection of DNA fragments througous based on ultraconserved elements (contaxa)

Other «reduced-representation» techniques

- CRoPs/ddRAD sequencing (double-digest RAD sequencing): uses second restriction enzyme and size selection instead of shearing
- **GBS** (genotyping by sequencing): no shearing, just one restriction site and PCR and sequencing select short fragments
- **UCE**: Selection of DNA fragments through sequence capture with baits based on ultraconserved elements (conserved across highly divergent taxa)
- Transcriptome sequencing: RNAseq, only coding regions of the genome, easy to annotate, depth informative on expression
- Targeted resequencing: Sequence capture or amplicons

Trade-offs: Splitting reads (i.e. costs) among:

- Number of sites to sequence
- Number of samples
- Depth of coverage
- Example: 1 Hiseq2500 flow cell (about 1000 Euro) ~250 mio read pairs of 125 bp each -> 75 Gb data
 - 5 whole-genomes of a species with 1 Gb genome size at 15x coverage
 - 50 whole-genomes of a species with 500 Mb genome size at 3x coverage
 - 30 Mbp sequenced for 100 samples with a reduced-representation technique at a sequencing depth of 25

Considerations in choosing the library preparation and sequencing techniques

- Research question and planned analyses
 Divergence between samples
- Genome size
- Availability & quality of reference genome (no ref genome -> not wgs)
- Available budget
- Number of samples to sequence (tradeoff with sequencing depth)
- Amounts of DNA available
- Sequencing depth aimed at

- Heterozygosity of samples
- Phase required
- Accuracy of each single position (if high needed, avoid PCR-based methods)
- Importance of annotations
- Neutral dataset or specific regions wanted

Fastq format

Quality scores

Phred = $-10 \log_{10} p$

p = Probability call is incorrect

ASCII encoding

Quality Score	Probability of incorrect base call	Base call accuracy
10	I in 10	90%
20	I in 100	99%
30	I in 1000	99.9%
40	I in 10000	99.99%

40:0	90 : Z	141 : a
41:A	91 : [142:b
42:B	92 : \	143:c
43:C	93:]	144:d
44:D	94:^	145 : e
45:E	95 : _	146 : f
•	:	:

Read header

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content

FastQC: Quality across bases (good example)

FastQC: Quality across bases (bad example)

Let's have a look at the first few sequences and check the sequencing quality with fastqc

Quality scores across bases: Whole genome sequencing (PCR free library prep)

forward reverse

Quality scores across bases: RAD datasets

RAD1

Quality scores across all bases (Sanger / Illumina 1.9 encoding) 16 12 This quality drop could be due to air bubbles passing through the flowcell or something else we will see later 1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 86-87 92-93 98-99 Position in read (bp)

RAD2

Per tile sequencing quality

Quality score distribution over all sequences

RAD1

RAD2

Per base sequence content

Sequence duplication level

Duplication level: = Percentage of reads that have x copies

Sequence duplication level

Example 1: 20 reads total

10 unique sequences + 5 sequences each present twice

Example 2: 20 reads total 10 unique sequences + 1 sequence present 10x

Deduplicated sequences (=number of distinct copies)

15 distinct sequences are distributed as 10 singletons and 5 duplicates, 10/15=66% and 5/15=33% is the slope of the red line. Thus 15/20=75% remaining after deduplication (distinct reads).

Deduplicated sequences (=number of distinct copies)

11 total groups where 10/11=91% are singletons and 1/11=9% of the groups form at duplication rate of 10x. Therefore, 11/20 = 55% distinct reads.

Per base sequence content

RAD/GBS

Each read: will start with the barcode, then the restriction site, then a variable sequence

Issues with cluster identification

Due to low complexity at the beginning of the sequence, Illumina cannot distinguish if a signal comes from one or two clusters

Phasing issues

"Out of Phase"

The first 12 nucleotides are also used for «phasing», i.e. correcting for reads that are out of phase. The algorithm expects random nucleotide distribution!

-> Barcodes of the same length may lead to low quality overall

Per base sequence content

How to minimize the problem

- Use barcodes of different lengths to shift the restriction enzyme cut site
- Add PhiX virus DNA to the RAD libraries to increase the complexity of reads ('spiking')
- Reduce loading concentrations of Illumina plates
- Potentially: filter out bad reads

GC distribution over all sequences

GC distribution over all sequences

GC distribution over all sequences

Excluding Ns from total count

Fastqc: Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence duplication level

Adapter content

In wgs datasets not even shown

Kmer content

Most common barcodes + cut site

How many SNPs will I get?

GBS

Species	Genome Size (Mb)	Enzyme	Sample Size	No. SNPs
Maize	2,600	ApeKI	33,000	1,200K
Rice	400	ApeKI	850	60K
Grape	500	ApeKI	1000	200K
Willow*	460	ApeKI	459	23K
Pine*	16,000	ApeKI	12	63K
Vole*	3,400	Pstl	283	53K
Fox*	2,400	EcoT22I	48	16K
Cow	3,000	Pstl	48	64K
Verticilliflorum (fungus isolates)	40	ApeKI	2	10K

^{*}No reference genome. UNEAK analysis pipeline used for analysis. To avoid homology/paralogy issues this pipeline calls SNPs very conservatively.