HD Map Generation for Autonomous Racing

Matthew Sivaprakasam & Andrew Saba

Motivation

- Autonomous Racing Vehicles (ARVs)
 need HD maps of racetracks
- USGS has high quality point clouds of many cities but not internationally
- Noisy sensor data (GPS + LiDAR) is available from ARV
- Goal: using *noisy* sensor data:
 - Build registered cloud of track
 - Extract HD map features, including:
 - Bounds of drivable areas
 - Wall locations
 - Bank angle map

Fig. 1: ARV planner makes use of track boundaries (red) to plan safe trajectories (blue)

Fig. 2: ARV with available sensors

Prior Works

- Video game companies mapped tracks using survey-grade equipment & very high precision measurement tools
- Autonomous Vehicle (AV) companies invest heavily in generating HD maps
- Companies, such as [1], sell payloads & tools, utilizing SLAM and other algorithms, to generate rich, registered point clouds

ICP Before ICP After ICP Bank Angles Track Detection

Track

Boundary

Detection

Method

- Step One: Build Global Map
 - GPS provides initial guess for iterative closest point (ICP) optimization
 - Registration refined using LiDAR points
 - Scans accumulated into registered global cloud based on refined pose
- Step Two: Extract Track Features
 - Track Bounds:
 - Color pointcloud based on intensity similarity to intensity of pavement
 - Project cloud to birds eye view (BEV)
 - Take gradient of BEV image and fit lines to track edges
 - Bank Angle Map:
 - Given a track boundary and global cloud, segment track surface
 - Calculate normals to track surface
 - Orient normals to consistent plane
 - Take arccos of *z* component
 - Wall Boundaries:
 - Slice cloud horizontally to remove ground & anything above walls
 - Apply filters to remove noise
 - Fit line to remaining points

Results

- Global map registration produces high quality cloud to extract track features
- Bank angle mapping produces bank angles that align with expected output
- Originally, SVD features were going to be used for track detection; however, hand crafted features were not robust enough
 - o Future work: using learned features
 - Intensity feature worked much better
- Cloud is well registered, so wall detection is made easier, with reduced noise

[1] Mach9 Robotics https://www.mach9.io/