July 21, 2021

1 Técnicas de análisis de circuitos doble sintonizados.

El modelo equivalente bajo estudio es el siguiente:

Los circuitos del primario y secundario son circuitos sintonizados, de allí el nombre de doble sintonizado. Existe una inductancia mutua entre los arrollamientos del transformador.

1.0.1 Resolviendo el el circuito acoplado.

La definición de la inductancia mutua de un transformador $M = k\sqrt{L_1L_2}$ siendo k el factor de acoplamiento comprendido numéricamente entre 0 y 1.

Donde podemos escribir las ecuaciones

$$v_1 = i_1 \cdot sL_1 + i_2 \cdot sM$$

$$v_2 = i_1 \cdot sM + i_2 \cdot sL_2$$

Donde podemos expresar a la impedancia como:

$$[Z] = \begin{bmatrix} sL_1 & sM \\ sM & sL_2 \end{bmatrix}$$

Dado que buscamos una relación en las tensiones, debemos encontrar la matriz admitancia. La matriz admitancia es la inverda de la matriz impedancia.

$$\mathbf{Y} = \mathbf{Z}^{-1} = \begin{bmatrix} sL_1 & sM \\ sM & sL_2 \end{bmatrix}^{-1}$$

$$\mathbf{Y} = \frac{1}{\det(\mathbf{Z})} \begin{bmatrix} sL_2 & -sM \\ -sM & sL_1 \end{bmatrix}$$

$$\mathbf{Y} = \frac{1}{s^2 L_1 L_2 - s^2 M^2} \begin{bmatrix} sL_2 & -sM \\ -sM & sL_1 \end{bmatrix}$$

Siendo $M = k\sqrt{L_1L_2}$

$$\mathbf{Y} = \frac{1}{s^2 L_1 L_2 - s^2 k^2 L_1 L_2} \begin{bmatrix} sL_2 & -sM \\ -sM & sL_1 \end{bmatrix}$$

Expresado como matrices.

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \frac{1}{s^2 L_1 L_2 (1-k^2)} \begin{bmatrix} s L_2 & -s M \\ -s M & s L_1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Resolviendo

$$i_1 = v_1 \frac{sL_2}{s^2L_1L_2(1-k^2)} - v_2 \frac{sM}{s^2L_1L_2(1-k^2)}$$

$$i_2 = v_1 \frac{-sM}{s^2 L_1 L_2 (1 - k^2)} + v_2 \frac{sL_1}{s^2 L_1 L_2 (1 - k^2)}$$

Quedando

$$i_1 = \frac{v_1}{sL_1(1-k^2)} - \frac{v_2M}{sL_1L_2(1-k^2)}$$

$$i_2 = -\frac{v_1 M}{s L_1 L_2 (1 - k^2)} + \frac{v_2}{s L_2 (1 - k^2)}$$

Simplificando $(1-k^2)$ respecto a las inductancias.

$$i_1 = \frac{v_1}{sL_1} - \frac{v_2M}{sL_1L_2}$$

$$i_2 = -\frac{v_1 M}{s L_1 L_2} + \frac{v_2}{s L_2}$$

1.0.2 Resolviendo el circuito

Sobre el primer sintonizado

$$g_m v_i + v_1 (\frac{1}{r_1} + sC_1) + i_1 = 0$$

Segundo sintonizado

$$i_2 + v_o(\frac{1}{r_2} + sC_2) = 0$$

Donde

$$i_1 = \frac{v_1}{sL_1} - \frac{v_o M}{sL_1 L_2}$$

$$i_2 = -\frac{v_1 M}{s L_1 L_2} + \frac{v_o}{s L_2}$$

Entonces

$$-g_m v_i = v_1 \left(\frac{1}{r_1} + sC_1 + \frac{1}{sL_1}\right) - v_o \frac{M}{sL_1L_2}$$

$$0 = -v_1 \frac{M}{sL_1L_2} + v_o(\frac{1}{sL_2} + \frac{1}{r_2} + sC_2)$$

Para resolver el sistema de ecuaciones

$$v_o = \frac{\Delta v_o}{\Delta}$$

Donde

$$\Delta v_o = (\frac{M}{sL_1L_2})(-g_m v_i)$$

$$\Delta = \left(\frac{1}{r_1} + sC_1 + \frac{1}{sL_1}\right)\left(\frac{1}{sL_2} + \frac{1}{r_2} + sC_2\right) - \left(\frac{M}{sL_1L_2}\right)^2$$

Por lo tanto

$$v_o = \frac{-g_m \cdot v_i \cdot M}{s^2 L_1 L_2 \left[\left(\frac{1}{r_1} + sC_1 + \frac{1}{sL_1} \right) \left(\frac{1}{sL_2} + \frac{1}{r_2} + sC_2 \right) - \left(\frac{M}{sL_1 L_2} \right)^2 \right]}$$

Multiplicando ambos terminos por s^2 y sancando C_1C_2 como denominador comun.

$$v_o = \frac{-g_m \cdot v_i \cdot M \cdot s^2}{L_1 L_2 C_1 C_2 \left[\left(s^2 + \frac{s}{r_1 C_1} + \frac{1}{L_1 C_1} \right) \left(s^2 + \frac{s}{r_2 C_2} + \frac{1}{L_2 C_2} \right) - \frac{M^2}{L_1^2 L_2^2 C_1 C_2} \right]}$$

Remplazando $\omega_o^2=\frac{1}{C_1L_1}$ y $\omega_o^2=\frac{1}{C_2L_2}$. También $Q_1=\frac{1}{\omega_oC_1r_1}$ y $Q_2=\frac{1}{\omega_oC_2r_2}$

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot s \cdot \omega_o^4}{\left(s^2 + s \cdot \frac{\omega_o}{Q_1} + \omega_o^2\right) \cdot \left(s^2 + s \cdot \frac{\omega_o}{Q_2} + \omega_o^2\right) - k^2 \omega_o^4}$$

Siendo $Q = Q_1 = Q_2$

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot s \cdot \omega_o^4}{(s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2) \cdot (s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2) - k^2 \omega_o^4}$$

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot s \cdot \omega_o^4}{(s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 + \omega_o^2 \cdot k) \cdot (s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 - \omega_o^2 \cdot k))}$$

1.0.3 Polos y ceros del doble sintonizado

La transferencia tambien puede escribirse como

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot s \cdot \omega_o^4}{(s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 \cdot (1+k)) \cdot (s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 \cdot (1-k))}$$

Donde las raices de $(s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 \cdot (1+k))$

$$s_{1,2} = -\frac{\omega_o}{2Q} \pm \sqrt{\frac{\omega_o^2}{4Q^2} - \omega_o^2(1+k)}$$

$$s_{1,2} = -\frac{\omega_o}{2Q} \pm j \cdot \omega_o \sqrt{-\frac{1}{4Q^2} + (1+k)}$$

Despreciando $\frac{1}{4Q^2}$

$$s_{1,2} = -\frac{\omega_o}{2Q} \pm j \cdot \omega_o \sqrt{1+k}$$

Donde podemos aproximar $\sqrt{1+k} \sim 1 + \frac{k}{2}$

$$s_{1,2} = -\frac{\omega_o}{2Q} \pm j \cdot \omega_o \cdot (1 + \frac{k}{2})$$

Y las raices de $(s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2 \cdot (1-k))$ de igual manera

$$s_{3,4} = -\frac{\omega_o}{2Q} \pm j \cdot \omega_o \cdot (1 - \frac{k}{2})$$

1.1 Aproximación banda angosta del doble sintonizado

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot s \cdot \omega_o^4}{(s - s_1)(s - s_2)(s - s_3)(s - s_4)}$$

Analizando la respuesta en frecuencia, siendo $s=j\cdot\omega.$

$$(s - s_1) = j\omega - \left[\frac{\omega_o}{2Q} + j\omega_o \cdot (1 + \frac{k}{2})\right]$$

$$(s - s_2) = j\omega - \left[\frac{\omega_o}{2Q} + j\omega_o \cdot (1 - \frac{k}{2})\right]$$

$$(s-s_3) \simeq 2 \cdot j\omega_o$$

$$(s - s_4) \simeq 2 \cdot j\omega_o$$

$$\frac{v_o}{v_i} = \frac{-g_m \cdot M \cdot \omega_o^4 \cdot j\omega_o}{[2 \cdot j\omega_o][2 \cdot j\omega_o][j\omega - (\frac{\omega_o}{2Q} + j\omega_o \cdot (1 + \frac{k}{2}))][j\omega - [\frac{\omega_o}{2Q} + j\omega_o \cdot (1 - \frac{k}{2}))]}$$

$$\frac{v_o}{v_i} = \frac{g_m \cdot M \cdot \omega_o^2 \cdot j\omega_o}{4} \frac{1}{\left[\frac{\omega_o}{2Q} + j(\omega - \omega_o \cdot (1 + \frac{k}{2}))\right]\left[\frac{\omega_o}{2Q} + j(\omega - \omega_o \cdot (1 - \frac{k}{2}))\right]}$$

Sacando factor comun $\frac{\omega_o}{2Q}$

$$\begin{split} \frac{v_o}{v_i} &= \frac{g_m \cdot M \cdot \omega_o^2 \cdot j\omega_o}{4} \frac{1}{\frac{\omega_o}{2Q} \frac{\omega_o}{2Q} [1 + j \frac{2Q}{\omega_o} (\omega - \omega_o \cdot (1 + \frac{k}{2}))] [1 + j \frac{2Q}{\omega_o} (\omega - \omega_o \cdot (1 - \frac{k}{2}))]} \\ & \frac{v_o}{v_i} = \frac{g_m \cdot M \cdot j\omega_o \cdot Q^2}{[1 + j2Q(\frac{\omega}{\omega_o} - 1 - \frac{k}{2}))] [1 + j2Q(\frac{\omega}{\omega_o} - 1 + \frac{k}{2}))]} \\ & \frac{v_o}{v_i} = \frac{g_m \cdot M \cdot j\omega_o \cdot Q^2}{[1 + j2Q(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega_o} - \frac{k}{2}))] [1 + j2Q(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega_o} + \frac{k}{2}))]} \end{split}$$

Podemos identificar de la expresión $\chi = 2.Q.\frac{\omega - \omega_o}{\omega_o}$, asi:

$$\frac{v_o}{v_i} = \frac{g_m \cdot M \cdot j\omega_o \cdot Q^2}{[1 + j(\chi - Q \cdot k))][1 + j(\chi + Q \cdot k)]}$$

Al término $Q \cdot k$ se lo llama h para normalizar la expresión, entonces resulta:

$$\frac{v_o}{v_i} = \frac{j \cdot g_m \cdot M \cdot \omega_o \cdot Q^2}{[1 + j(\chi - h))][1 + j(\chi + h)]}$$

Recordando $M = k\sqrt{L_1L_2}$

$$\frac{v_o}{v_i} = \frac{j \cdot g_m \cdot k \cdot \sqrt{L_1 L_2} \cdot \omega_o \cdot Q^2}{[1 + j(\chi - h))][1 + j(\chi + h)]}$$

$$\frac{v_o}{v_i} = j \cdot g_m \cdot \sqrt{L_1 L_2} \cdot \omega_o \cdot Q \frac{h}{[1 + j(\chi - h))][1 + j(\chi + h)]}$$

Si $L_1 = L_2 = L$

$$\frac{v_o}{v_i} = j \cdot g_m \cdot L \cdot \omega_o \cdot Q \frac{h}{[1 + j(\chi - h))][1 + j(\chi + h)]}$$

La expresión corresponde a $\frac{v_o}{v_i}$ en la aproximación de banda angosta.

1.1.1 Variación de la transferencia en función del coeficiente de acoplamiento k

Se recuerda que el diagrama de polos y ceros en un doble sintonizado con las hipótesis de: $L_1=L_2$, ambos circuitos sintonizados a ω_o , $Q_1=Q_2=Q$ es:

Haciendo uso de la aproximación de banda angosta para un punto $j\omega$ cercano a $j\omega_o$ se cumple que:

$$|A(jomega)| = K_{te} \frac{1}{d_1 d_3}$$

siendo K_{te} una constante.

Si se amplia la porción superior del eje j .

La superficie del triángulo sombreada resulta:

$$Sup\Delta = \frac{bh}{2}$$

La superficie del triángulo permanece constante aunque se modifique ω debido a que no modifica ni su base (ωk) ni su altura $(\frac{\omega}{2Q})$.

Buscaremos una relación entre b y h con d_1 y d_3 .

Recordando el teorema de los senos (https://es.wikipedia.org/wiki/Teorema_de_los_senos):

Si en un triángulo ''ABC'', las medidas de los lados opuestos a los ángulos''A'',''B" y ''C" son respectivamente ''a'',''b'',''c", entonces:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Entonces:

Para relacionar la base:

$$\frac{b}{\sin\Theta} = \frac{d_3}{\sin\beta} = \frac{d_1}{\sin\alpha}$$

$$b =$$

De igual manera con la altura, pero ahora teniendo en cuenta que la altura se relacionan con un vector perpendicular a la base:

$$\frac{h}{\sin\,\beta} = \frac{d_1}{\sin\,\pi}$$

$$h = d_1 \sin \beta$$

$$Sup\Delta = \frac{bh}{2}$$

$$Sup\Delta = \frac{1}{2} \frac{d_3 \sin \Theta}{\sin \beta} d_1 \sin \beta$$

Volviendo a la expresión de la transferencia

$$|A(jomega)| = K_{te} \frac{1}{d_1 d_3}$$

$$\frac{1}{d_1 d_3} = 2 \cdot Sup\Delta \sin \Theta$$

$$|A(j\omega)| = K_{te2} \sin \Theta$$

Esta expresión permite demostrar que la transferencia depende del seno del ángulo Θ , formado en el punto ω por los 2 vectores provenientes de los polos. La maxima transferencia entondes se logra cuando el angulo $\Theta = \pi$.

Se analiza la trasferencia en forma geométrica para distintos valores del coeficiente de acoplamiento que determina la longitud de la base del triángulo.

Factor de acoplamiento critico $k_c = \frac{1}{Q_c}$ (h = 1) La altura del triángulo es $h = \frac{\omega_o}{2Q_c}$.

La base del triángulo es $b = \omega k_c = \omega_o \frac{1}{Q_c}$, que al ser el doble que la altura, se tiene un máximo en $\omega = \omega_o$

Factor de acoplamiento subacoplado $k_c < \frac{1}{Q_c}$ En este caso los polos se juntan y Θ no llega a ser π .

Factor de acoplamiento sobreacoplado $k_c > \frac{1}{Q_c}$ Ahora los polos se separan más entre sí, es decir que la base se hace mucho mayor que la altura. Aparecen dos máximos.

1.2 Transferencia a frecuencia central de un doble sintonizado

La trasferencia a frecuencia central de un doble sintonizado la podemos calcular cuando $\chi=0$

$$A(\chi = 0) = g_m \cdot L \cdot \omega_o \cdot Q \frac{h}{(1 - jh)(1 + jh)}$$

A frecuencia central:

$$|A(\chi=0)| = g_m \cdot L \cdot \omega_o \cdot Q \frac{h}{(1+h^2)}$$

Normalizando:

$$\bar{A}(\chi) = \frac{A(\chi)}{A(\chi_o)} = \frac{1+h^2}{(1+j(\chi+h))(1+j(\chi-h))}$$
$$|\bar{A}(\chi)| = \frac{1+h^2}{\sqrt{\chi^4 + 2\chi^2(1-h^2) + (1+h^2)^2}}$$

1.2.1 Máxima transferencia a frecuencia central, factor de acoplamiento critico (h = 1).

$$\frac{\partial |A(\chi=0)|}{\partial h} = g_m \cdot L_1 \cdot \omega_o \cdot Q \frac{(1+h^2) - 2h \cdot h}{(1+h^2)^2} = 0$$

Entonces, con h=1 se obtiene el maximo acoplamiento.

Por lo tanto, se llama k_c (k critico) cuando $h = k \cdot Q = 1$, siendo entonces $k_c = \frac{1}{Q}$.

$$\left|\frac{v_o}{v_i}\right|(\chi=0)_{h=1} = \frac{g_m \cdot L_1 \cdot \omega_o \cdot Q}{2}$$

$$|\bar{A}(\chi)_{h=1}| = \frac{1}{\sqrt[2]{1 + \frac{\chi^4}{4}}}$$

1.2.2 Variacion de la trasferencia en funcion del coficiente de acoplamiento

El diagrama de polos y ceros en un doble sintonizado suponiendo $L_1 = L_2$, $Q_{c1} = Q_{c2}$ y ambos circuitos sintonizados a f_o es:

Haciendo uso de la aproximación de banda angosta para un punto $j\omega$ cercano a $j\omega_o$ se cumple que:

2 Topologia Butterworth

2.1 Tipo pasabajos

Para lograr maxima planicidad en la banda de paso, se debe emplear una topologia Butterwoth. Hasta la frecuencia de corte, la salida se mantiene constante casi, luego disminuye a razón de $20dB \cdot n$ por década (ó $6dB \cdot n$ por octava), donde n es el número de polos del filtro.

Si llamamos H a la transferencia, se debe cumplir que las 2N-1 primeras derivadas de $H(\omega)|^2$ sean cero para $\omega = 0$ y $\omega = \infty$. Únicamente posee polos y el cuadrado de la magnitud de la función de transferencia (para el filtro paso bajo de ganancia unitaria en la banda de paso) es:

$$|H(\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}}$$

donde "N" es el orden del filtro, ω_c es la frecuencia de corte (en la que la respuesta cae unos 3 dB por debajo de la banda pasante) y ω es la frecuencia angular.

La función de transferencia para dicho filtro pasabajos es:

$$H(s) = \frac{1}{\prod_{k=1}^{n} (S - s_k)/\omega_c}$$

siendo s_k los polos del filtro, cuya expresión es:

$$s_k = \omega_c e^{\frac{j(2k+n-1)\pi}{2n}}$$

$$k = 1, 2, 3, \dots, n$$

2.2 Tipo pasabanda

El diagrama de polos y ceros.

El simple sintonizado corresponde al polo que esta a frecuencia central, y los polos mas cercadon al eje $j\omega$ se logran con el doble sintonizado de la salida.

$$Q_{mB} = \frac{f_o}{BW} \frac{1}{\sin(\frac{2m-1}{2n}\pi)}$$

$$f_{mB} = f_o + \frac{BW}{2} cos(\frac{2m-1}{2n}\pi)$$

[]: