<Coding Club>

BUZZ WORDS

Artificial Intelligence > Machine Learning > Neural Networks

INSPIRED BY BIOLOGY

Neuron

BUT SIMPLER

BASIC PRINCIPLES

- 1. Weight inputs
- 2. Input Function
 - Sum the product of weights and inputs
- 3. Activation Function
 - Output a value based on a threshold

ACTIVATION FUNCTIONS

Activation Fu	ınction	Equation		Example	1D Graph
Linear		φ(z) = z	:	Adaline, linear regression	
Unit Step (Heaviside Function)	φ(z) =	$\begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	φ(z)=	{-1 0 1		Perceptron variant	
Piece-wise Linear		-	$z \le -\frac{1}{2}$ $-\frac{1}{2} \le z \le \frac{1}{2}$ $z \ge \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	φ(z))=	1 · e ^{-z}	Logistic regression, Multilayer NN	
Hyperbolic Tangent (tanh)	φ (z)= <u>e^z ·</u>	- e ^{-z} + e ^{-z}	Multilayer NN, RNNs	
ReLU	φ(z	$=\begin{cases}0\\z\end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	