中 国 科 学 技 术 大 学 2015 - 2016学年第二学期期终考试试卷(A)

						020.13.(2)	-)
	考试科目:	线性代数与解析几何 姓名:			得分:学号:		
	所在院、系:						
	题号 — 得分 复查	=	Ξ	四	五	六	总分
5	一、【共 25 分】: 1. 设 R^3 上的线性变换为 $\beta_1 = (-1, 1)$ 阵为	E变换 A 把版 A, A , A , B	空间 V 的 - 角为 司阶单位 P	<i>P</i> 3 = (0, - 一组标准正 年,则 det(1, 2) ^T ,则 交基,则向 ——· I + A) =	A 在基 α ₁	, α ₂ , α ₃ 下的矩 +α ₂ +α ₃ +α ₄

- 二、【共20分】判断题:判断下列命题是否正确,并简要说明理由或举出人
- 1. 设 A 是线性空间 V 上的线性变换, λ 是 A 的特征值. 则对应 λ 的特征向 (加上零向量),即集合 $V_A(\lambda) := \{\alpha \in V \mid A\alpha = \lambda\alpha\}$ 是 V 的子空间.

- 2. 设 $\alpha_1,\alpha_2,\ldots,\alpha_m$ 是欧氏空间 V 的一组非零正交向量组。则 $\alpha_1,\alpha_2,\ldots,\alpha_m$ 线性无 关。
 - 3. 设 A 是实对称方阵, I 是同阶单位阵,则当t为正实数时,方阵 A+tI 正定.
 - 4. 设 $A \in \mathbf{R}^{m \times n}$,则齐次线性方程组 $A\mathbf{x} = 0$ 与 $A^T A\mathbf{x} = 0$ 同解。

三、【15分】设
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

- (1) 求可逆矩阵 T 使得 $T^{-1}AT$ 为对角阵;
- (2) 求 A^n . 这里n为正整数。

四、【17分】在三维欧氏空间 \mathbf{R}^3 中,给定向量组 $\alpha_1=(1,1,1),\ \alpha_2=(0,1,1),$ $\alpha_3=(0,0,1),$ 其向量顺序固定。

- 1. 将向量组 $\alpha_1, \alpha_2, \alpha_3$ 经过Schmidt正交化为一组标准正交基 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 。
- 2. 令A是以 e_1 , e_2 , e_3 为行构成的三阶方阵。定义 R^3 上的线性变换Ax := Ax, $x \in R^3$ 。证明:A 是绕某一轴线的旋转变换,并求该旋转轴。

五、【15分】给定直角坐标系中二次曲面的方程

$$xy + 2xz + 2y + 2z - 1 = 0$$

通过变量的线性变换及坐标系的平移将其化为标准型,并确定该二次曲面的类型。

六、【8分】设n阶实对称方阵A满足 $A^2 = I$,证明:

- 1. 存在正交方阵P使得 $A = P \operatorname{diag}(I_r, -I_{n-r})P^{-1}$, 这里 $0 \le r \le n$.
- 2. 存在实对称方阵 B 使得 $I + A = B^2$ 。

