FMI, Mate, Anul I Logică matematică

Examen

Nume:	
Prenume:	

Grupa: _____

P1	P2	P3	P4	P5	P6	P7	P8	P9	Oficiu	TOTAL
/1	/2	/1	/1	/1	/1,5	/1,5	/3	/2	1	/15

1 Teoria mulţimilor

(P1) [1 punct] Fie α un cardinal infinit și β un cardinal nenul astfel încât $\beta \leq \alpha$. Demonstrați că $\alpha \cdot \beta = \alpha$.

(P2) [2 puncte] Fie α un cardinal infinit şi β un cardinal astfel încât $2 \leq \beta \leq 2^{\alpha}$. Demonstrați că $\beta^{\alpha} = 2^{\alpha}$.

(P3) [1 punct] Fie $a, b \in \mathbb{R}, a < b$. Demonstrați că

$$|(a,b)| = |[a,b)| = |(a,b]| = |[a,b]| = \mathfrak{c}.$$

2 Logica propozițională

(P4) [1 punct] Reamintim că $V=\{v_n\mid n\in\mathbb{N}\}$ este mulțimea variabilelor din logica propozițională. Fie $W:=\{v_{2n}\mid n\in\mathbb{N}\}$. Să se demonstreze că W este numărabilă.

(P5) [1 punct] Arătați că pentru orice formule φ , ψ , χ , avem:

$$\varphi \to (\psi \lor \chi) \sim (\varphi \to \psi) \lor (\varphi \to \chi).$$

(P6) [1,5 puncte] Fie φ , $\psi \in Form$. Să se arate sintactic:

$$\vdash (\varphi \land \psi) \to (\psi \land \varphi).$$

(P7) [1,5 puncte] Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule. Demonstrați următoarele:

(i) Pentru orice formulă ψ ,

$$\Gamma \vdash \psi$$
 dacă și numai dacă $\vdash \varphi_1 \land \ldots \land \varphi_n \to \psi$ dacă și numai dacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.

- (ii) Γ este consistentă dacă și numai dacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.
- **(P8)** [3 puncte]
 - (i) Să se aducă formula $\varphi := (v_3 \wedge v_1) \to ((\neg v_1 \to v_2) \wedge (v_3 \to \neg v_4))$ la FND şi FNC folosind transformări sintactice.
 - (ii) Să se aducă formula $\psi:=v_3\to (\neg v_1\leftrightarrow v_2)$ la FND și FNC folosind funcția booleană asociată.

3 Logica de ordinul întâi

- (P9) [2 puncte] Să se arate că pentru orice limbaj \mathcal{L} de ordinul I şi orice formule φ , ψ ale lui \mathcal{L} , avem:
 - (i) $\exists x(\varphi \land \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
 - (ii) $\exists x (\varphi \land \psi) \vDash \varphi \land \exists x \psi$, pentru orice variabilă $x \not\in FV(\varphi)$.