Konstrukcje i programowanie robotów Temat: FANUC		
L.p.	Nazwisko i Imię	Zespół: 2
1.	Szczypek Jakub	
2.	Sztefko Mateusz	
3.	Szwarnowski Paweł	
4.	Złocki Adam	
5.	Zoń Julia	
Data '	wykonania: 2 1.11.2022	

1. Wstęp

Naszym zadaniem było utworzenie programu sterującego dla robota przemysłowego typu FANUC w programie "ROBOGUIDE". Dostępny na stanowisku robot ARC Mate 100iC miał na podstawie naszego programu dokonać depaletyzacji pudełek.

2. Wykonanie zadania

Ćwiczenie rozpoczęliśmy od utworzenia nowej Celi za pomocą oferowanego przez program okna "Workcell Creation Wizard", w którym można wybrać: nazwę celi, metodę tworzenia robota, wersję oprogramowania zastosowanego w robocie, rodzaj wykonywanej pracy, model robota i opcje dla jego programowania, a także można dodać zewnetrzne osie robota. Do naszego projektu dodaliśmy użytego w ćwiczeniu robota, obiekty do przenoszenia, oraz obiekty otoczenia w celu symulacji rzeczywistego środowiska pracy widocznego na rysunku 1. Kiedy wszystkie konieczne elementy były już dodane, przystapiliśmy do programowania ruchu robota, poprzez zadawanie kolejnych punktów, w których miał się znaleźć, oraz ewentualnych czynności jakie miał wykonać w określonych punktach (chwycenie, bądź puszczenie pudełka). Podczas ich dodawania określaliśmy ich współrzedne, rodzaj instrukcji ruchu oraz sposób zachowania się ramienia przy ich osiąganiu. Ruch do zadanego punktu mógł się odbywać w dwojaki sposób: "J" (Joint) - w trybie złączowym z prędkością ustalaną w procentach wartości maksymalnej lub "L" (Linear) - w linii prostej (interpolacja liniowa) z prędkością określaną w mm/s. Sposób zachowania ramienia przy osiąganiu punktów w przestrzeni wybieraliśmy natomiast spośród opcji: "FINE" - zatrzymanie się robota na krótką chwilę po osiągnięciu punktu, "CNT 0-100" - przechodzenie w pobliżu zadanego punktu bez zatrzymywania się (wartość zbliżenia określana w zakresie 0-100) lub "ACC" - określenie czasu przyspieszania do prędkości zadanej. Po zaprogramowaniu całego procesu, którego kod w postaci kolejnych punktów widoczny jest na rysunkach 2. – 4., przetestowaliśmy nasz program w aplikacji "ROBOGUIDE" poprzez uruchomienie symulacji i sprawdziliśmy, czy nie zgłasza błędów. Po upewnieniu się, że działa poprawnie, eksportowaliśmy go do rzeczywistego kontrolera robota i uruchomiliśmy obserwując działanie napisanego programu na żywo.

Rysunek 1. Widok celi robota wraz z zaznaczonymi ruchami robota

Rysunek 2. Fragment utworzonego przez nas programu, punkty 1-26

Rysunek 3. Fragment utworzonego przez nas programu, punkty 27-58

Rysunek 4. Fragment utworzonego przez nas programu, punkty 59-79

3. Wnioski

Dzięki wykonanemu ćwiczeniu zapoznaliśmy się ze środowiskiem "ROBOGUIDE" stworzonym w celu ułatwienia programowania robotów przemysłowych firmy FANUC. Pierwszy raz pracowaliśmy z tego typu programem – w poprzednim semestrze na przedmiocie "Podstawy robotyki z kinematyką" sterowaliśmy tym samym robotem ręcznie za pomocą Teach Pedanta. Była to świetna okazja do porównania dwóch sposobów programowania robota. Uznaliśmy, że programy tworzone w specjalnym do tego środowisku są bardziej dokładne niż w przypadku ręcznego zadawania pozycji, a tworzenie specjalnej Celi dostosowanej do sterowanego procesu znacznie ułatwia zadanie i pozwala na dokładne odwzorowanie rzeczywistych warunków i otoczenia robota. Dodatkowo programy te mogą być sprawdzone w bezpieczny sposób przed uruchomieniem robota za pomocą symulacji i analizy danych w oprogramowaniu "ROBOGUIDE" - w przypadku błędu użytkownika rzeczywiste urządzenia nie zostaną uszkodzone. Dodatkowymi zaletami korzystania z tego typu środowiska jest dokładne oszacowanie trwania cyklu , a także zmniejszenie trwania przerw w produkcji, które mogą być bardzo kosztowne.