Bounded Reachability Problems are Decidable in FIFO Machines

Benedikt Bollig Alain Finkel Amrita Suresh

LSV - CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

August 16, 2020

Distributed processes such that

• Each process P_i is a finite state machine

Distributed processes such that

• Each process P_i is a finite state machine

• There are a fixed number of processes

$$P_1, ..., P_n$$

Distributed processes such that

• Each process P_i is a finite state machine

• There are a fixed number of processes

$$P_1, ..., P_n$$

• They communicate using FIFO queues

- Studied since the 1980s. Widely used in distributed settings.
- FIFO machines simulate TM, hence underapproximations.

¹Gouda et al., On deadlock detection in systems of communicating finite state machines. 1987.

²Esparza et al., Perfect Model for Bounded Verification, 2012

³Finkel and Praveen, Verification of Flat FIFO Systems, 2019

- Studied since the 1980s. Widely used in distributed settings.
- FIFO machines simulate TM, hence underapproximations.
- Letter-bounded FIFO machines. ¹

¹Gouda et al., On deadlock detection in systems of communicating finite state machines. 1987.

²Esparza et al., Perfect Model for Bounded Verification, 2012

³Finkel and Praveen, Verification of Flat FIFO Systems, 2019

- Studied since the 1980s. Widely used in distributed settings.
- FIFO machines simulate TM, hence underapproximations.
- Letter-bounded FIFO machines. ¹
- Flat FIFO systems. ^{2 3}

¹Gouda et al., On deadlock detection in systems of communicating finite state machines. 1987.

²Esparza et al., Perfect Model for Bounded Verification, 2012

³Finkel and Praveen, Verification of Flat FIFO Systems, 2019

- Studied since the 1980s. Widely used in distributed settings.
- FIFO machines simulate TM, hence underapproximations.
- Letter-bounded FIFO machines. ¹
- Flat FIFO systems. ^{2 3}
- (Input-)Bounded FIFO machines strictly contain these subclasses.

¹Gouda et al., On deadlock detection in systems of communicating finite state machines. 1987.

²Esparza et al., Perfect Model for Bounded Verification, 2012

³Finkel and Praveen, Verification of Flat FIFO Systems, 2019

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

 $\begin{array}{c|c} & & & \\ & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \\ & & \\ \\ & \\$

Initial configuration $(0,0;\varepsilon,\varepsilon)$

?e

Client

Server

!e

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

Client

Server

Run -
$$(0,0;\varepsilon,\varepsilon) \xrightarrow{!a} (1,0;a,\varepsilon)$$

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

Client

Server

$$(0,0;\varepsilon,\varepsilon) \xrightarrow{!a} (1,0;a,\varepsilon) \xrightarrow{?a} (1,1;\varepsilon,\varepsilon)$$

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

Client

$$(0,0;\varepsilon,\varepsilon) \xrightarrow{!a} (1,0;a,\varepsilon) \xrightarrow{?a} (1,1;\varepsilon,\varepsilon) \xrightarrow{!e} (1,0;\varepsilon,e)$$

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

Client

$$(0,0;\varepsilon,\varepsilon) \xrightarrow{!a} (1,0;a,\varepsilon) \xrightarrow{?a} (1,1;\varepsilon,\varepsilon) \xrightarrow{!e} (1,0;\varepsilon,e) \xrightarrow{!b} (0,0;b,e)$$

⁴Jéron, Testing for unboundedness of FIFO channels, 1991.

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

Q is a finite set of control-states.

$$Q = \{(0,0), (0,1), (1,0), (1,1)\}.$$

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

Ch is the number of channels.

$$Ch = \{c_1, c_2\}.$$

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

$$\Sigma = \bigcup_{c \in Ch} \Sigma_c$$
 is the alphabet.
 $\Sigma = \{a, b, e\}.$

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

 $T \subseteq Q \times A_M \times Q$ is the transition relation

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

 $T \subseteq Q \times A_M \times Q$ is the transition relation where $A_M = \{c! a \mid a \in \Sigma \text{ and } c \in Ch\} \cup \{c? a \mid a \in \Sigma \text{ and } c \in Ch\}$

A FIFO machine is a tuple $M = (Q, Ch, \Sigma, T, q_0)$ where

 q_0 is the initial state.

$$q_0 = (0,0).$$

• A configuration is (q, \mathbf{w}) where q is the control-state and \mathbf{w} is a tuple of the channel contents. The set of configurations is S_M .

- A configuration is (q, \mathbf{w}) where q is the control-state and \mathbf{w} is a tuple of the channel contents. The set of configurations is S_M .
- $Reach_M = \{ s \in S_M \mid (q_0, \varepsilon) \xrightarrow{\sigma} s \text{ for some } \sigma \in A_M^* \}.$

- A configuration is (q, \mathbf{w}) where q is the control-state and \mathbf{w} is a tuple of the channel contents. The set of configurations is S_M .
- $Reach_M = \{ s \in S_M \mid (q_0, \varepsilon) \xrightarrow{\sigma} s \text{ for some } \sigma \in A_M^* \}.$

Theorem

Testing the reachability of a configuration in a general FIFO system is undecidable. ^a

^aBrand and Zafiropulo, On Communicating Finite-State Machines, 1983.

• $Reach_M(\sigma) = \{s \in S_M \mid (q_0, \varepsilon) \xrightarrow{\sigma} s\}$ where $\sigma \in A_M^*$.

- $Reach_M(\sigma) = \{s \in S_M \mid (q_0, \varepsilon) \xrightarrow{\sigma} s\}$ where $\sigma \in A_M^*$.
- $Reach_M(L) = \bigcup_{\sigma \in I} Reach_M(\sigma)$.

We define the *send projection over c proj*_{c!} : $A_M^* \to \Sigma^*$

Example: $proj_{c!}(c!x.d!y.c?x.c!z.c!z) = xzz$

Let $w_1, ..., w_n \in \Sigma^+$ be non-empty words where $n \ge 1$. L is a **bounded language** over $(w_1, ..., w_n)$ if $L \subseteq w_1^* ... w_n^*$.

```
Let w_1,...,w_n \in \Sigma^+ be non-empty words where n \geq 1.
 L is a bounded language over (w_1,...,w_n) if L \subseteq w_1^*...w_n^*.
```

```
(ab)^*d(c)^* is a bounded language over (ab, d, c).
```

```
Let w_1, ..., w_n \in \Sigma^+ be non-empty words where n \ge 1.

L is a bounded language over (w_1, ..., w_n) if L \subseteq w_1^* ... w_n^*.

(ab)^* d(c)^* is a bounded language over (ab, d, c).

((ab)^* (cd)^*)^* is not a bounded language.
```

```
Let w_1,...,w_n \in \Sigma^+ be non-empty words where n \geq 1.
 L is a bounded language over (w_1,...,w_n) if L \subseteq w_1^*...w_n^*.
```

```
Let L = (L_c)_{c \in Ch} be non-empty regular bounded languages over \Sigma. L_! = \{w \in A_M^* \mid proj_{c!}(w) \in L_c \text{ for all } c \in Ch\}.
```

```
Let w_1,...,w_n \in \Sigma^+ be non-empty words where n \geq 1. L is a bounded language over (w_1,...,w_n) if L \subseteq w_1^*...w_n^*. Let L = (L_c)_{c \in Ch} be non-empty regular bounded languages over \Sigma. L_! = \{w \in A_M^* \mid proj_{c!}(w) \in L_c \text{ for all } c \in Ch\}. (We define L_? similarly.)
```

Rational relations

Let
$$\mathcal{R} \subseteq \prod_{c \in \mathit{Ch}} \Sigma_c^*$$
 and $\Theta = \prod_{c \in \mathit{Ch}} (\Sigma_c \cup \varepsilon)$.

Rational relations

Let $\mathcal{R} \subseteq \prod_{c \in Ch} \Sigma_c^*$ and $\Theta = \prod_{c \in Ch} (\Sigma_c \cup \varepsilon)$. We say that \mathcal{R} is rational if there is a regular word language $R \in \Theta^*$ such that

$$\mathcal{R} = \{ (\mathbf{a}_c^1 \cdot \ldots \cdot \mathbf{a}_c^n)_{c \in Ch} \mid \mathbf{a}^1 \ldots \mathbf{a}^n \in R \text{ with } n \in \mathbb{N} \text{ and } \mathbf{a}^i = (\mathbf{a}_c^i)_{c \in Ch} \in \Theta \text{ for } i \in \{1, \ldots, n\} \}.$$

Rational relations

Let $\mathcal{R} \subseteq \prod_{c \in Ch} \Sigma_c^*$ and $\Theta = \prod_{c \in Ch} (\Sigma_c \cup \varepsilon)$. We say that \mathcal{R} is rational if there is a regular word language $R \in \Theta^*$ such that

$$\mathcal{R} = \{ (\mathbf{a}_c^1 \cdot \ldots \cdot \mathbf{a}_c^n)_{c \in Ch} \mid \mathbf{a}^1 \ldots \mathbf{a}^n \in R \text{ with } n \in \mathbb{N} \text{ and } \mathbf{a}^i = (\mathbf{a}_c^i)_{c \in Ch} \in \Theta \text{ for } i \in \{1, \ldots, n\} \}.$$

Example: $\mathcal{R} = \{(a^m, b^n \mid m \ge n)\}$ is a rational relation, witnessed by $R = ((a, b) + (a, \epsilon))^*$.

Input-Bounded Rational Reachability Problem

Given

• a FIFO machine $M = (Q, Ch, \Sigma, T, q_0)$,

Given

- a FIFO machine $M = (Q, Ch, \Sigma, T, q_0)$,
- a control-state $q \in Q$,

Given

- a FIFO machine $M = (Q, Ch, \Sigma, T, q_0)$,
- a control-state $q \in Q$,
- a tuple $L=(L_c)_{c\in \mathit{Ch}}$ of non-empty regular bounded languages over Σ ,

Given

- a FIFO machine $M = (Q, Ch, \Sigma, T, q_0)$,
- a control-state $q \in Q$,
- a tuple $L=(L_c)_{c\in Ch}$ of non-empty regular bounded languages over Σ ,
- a rational relation $\mathcal{R} \subseteq \prod_{c \in Ch} \Sigma_c^*$.

Given

- a FIFO machine $M = (Q, Ch, \Sigma, T, q_0)$,
- a control-state $q \in Q$,
- a tuple $L=(L_c)_{c\in Ch}$ of non-empty regular bounded languages over Σ ,
- a rational relation $\mathcal{R} \subseteq \prod_{c \in Ch} \Sigma_c^*$.

Question: Do we have $(q, \mathbf{w}) \in Reach_M(L_!)$ for some $\mathbf{w} \in \mathcal{R}$?

Theorem

The Input-Bounded Rational Reachability Problem is decidable.

Theorem

The Input-Bounded Rational Reachability Problem is decidable.

Proof using counter machines...

Counter machines

A counter machine (with zero tests) is a tuple $C = (Q, Cnt, T, q_0)$

Counter machines with RESTRICTED zero tests

Once a counter has been tested for zero, it cannot be incremented or decremented anymore.

Counter machines with RESTRICTED zero tests

Counter machines with RESTRICTED zero tests

Theorem

The following problem is decidable: Given a counter machine $C = (Q, Cnt, T, q_0)$, a regular language $L \subseteq A_C^*$, a control state $q \in Q$, and counter valuation v, do we have $(q, v) \in Reach_C(L_{zero} \cap L)$?

Translation

Intuition: Given a bounded language L, which is bounded over (w_1, \ldots, w_n) , we construct a counter x_i for each w_i .

Translation

$$\hat{L}=(ab)^*bb^*$$

Step 1: Distinct letter property

$$L = (a_1 a_2)^* a_3 a_3^*$$

Step 2: Trace property

$$L = (a_1 a_2)^* a_3 a_3^*$$

Step 2: Trace property

$$L = (a_1 a_2)^* a_3 a_3^*$$

Step 3: Normal form

Step 4: Conversion to counter machine

Given the normal form and counter automata, is there a 1-1 equivalence between the configurations?

Given the normal form and counter automata, is there a 1-1 equivalence between the configurations?

NO!

Given a counter configuration (q; 3, 0) for some q, where $L = (ab)^*(c)^*$, what is the corresponding FIFO machine configuration?

Given the normal form and counter automata, is there a 1-1 equivalence between the configurations?

But we can keep track of the last message sent.

Given the normal form and counter automata, is there a 1-1 equivalence between the configurations?

 $L_a^{\mathsf{last}} \subseteq A_M^*$ be the set of words where a describes the **last sent** messages.

Given the normal form and counter automata, is there a 1-1 equivalence between the configurations?

 $L_a^{\text{last}} \subseteq A_M^*$ be the set of words where *a* describes the **last sent** messages. We can now conclude that runs in the FIFO machine are faithfully simulated by runs in the counter machine.

Other bounded problems

Table: Summary of key results. (D stands for Decidable)

	Letter-bounded	Bounded	Bounded
		Ch = 1	Ch > 1
UNBOUND	D	D	D ⁵
TERM	D	EXPTIME	D
REACH	D 6	EXPTIME	D, not ELEM
CS-REACH	D	EXPTIME	D

⁵Jéron and Jard, *Testing for unboundedness of FIFO channels*, 1993.

⁶Gouda et al., *On deadlock detection in systems of communicating finite state machines*, 1987.

Future work

- Precise complexity for termination and boundedness
- Upper bounds for single channel case
- Output bounded reachability problems