APPLIED CRYPTOGRAPHY

LECTURE NOTE

Spring 2023

Cao, Ganyuan

Contents

1	Security Proof		
	1.1	Game-based Security Proof Framework	2
	1.2	Advantage Rewriting Lemma	2
	1.3	The Difference Lemma	3
2	Syn	metric Encryption	4
	2.1	Pseudorandom Permutation/Function	4
		2.1.1 PRP Security	4
		2.1.2 PRF Security	4
	2.2	Ciphertext Indistinguishability	5
		2.2.1 LoR-CPA Security	5
		2.2.2 RoR-CPA Security	6
		2.2.3 LoR-CCA Security	7
		2.2.4 RoR-CCA Security	7
	2.3	Message Integrity	7
		2.3.1 INT-CTXT Security	7
		2.3.2 INT-PTXT Security	9
3	Has	1 Function 1	.0
	3.1	Collision Resistance	0
		3.1.1 Second Pre-image Resistance	0
		3.1.2 Pre-image Resistance	0
		3.1.3 One-wayness	1
		3.1.4 Universal Hashing	1
		3.1.5 Difference Unpredictable Hashing	12
4	Mes	sage Authentication Code 1	.3
	4.1	<u> </u>	13
	4.2	SUF-CMA Security	13

1 Security Proof

1.1 Game-based Security Proof Framework

To prove the statment: "If a scheme F_1 is S_1 secure, then a scheme F_2 is S_2 secure", we follow the steps:

- 1. Suppose by contraposition that there is an adversary \mathcal{A} against \mathcal{S}_2 security of F_2 s.t. $\mathbf{Adv}_{\mathsf{F}_2}^{\mathcal{S}_2}(\mathcal{A})$ is not negligible.
- 2. Construct the adversary \mathcal{B} against \mathcal{S}_1 security of F_1 with \mathcal{A} as subroutine.
- 3. Deduce that $\mathbf{Adv}_{\mathsf{F}_1}^{\mathcal{S}_1}(\mathcal{B})$ is not negligible.

Remarks:

- 1. Assume that \mathcal{B} is given an oracle $O_{\mathcal{B}}$, we use $O_{\mathcal{B}}$ to simulate the pre-defined oracle for $O_{\mathcal{A}}$. In the adversary \mathcal{B} , the adversary \mathcal{A} instead calls the simulation oracle $OSIM_{\mathcal{A}}$.
- 2. The adversary \mathcal{B} together with the oracle $OSim_{\mathcal{A}}$ simulates the \mathcal{S}_2 security game of F_2 .
- 3. The framework also works for problem reduction. If we want to prove a problem \mathcal{P}_1 reduces to a problem \mathcal{P}_2 , it is equivalent to prove "if there is an adversary that break the problem \mathcal{P}_2 with non-negligible advantage, then there is an adversary \mathcal{B} that break \mathcal{P}_1 with non-negligible advantage."
- 4. In the case that the primitive S_1 is too "far" from S_2 , and distinguishibility game in involved, it is better to use "game-chaining" method by decomposing the distinguishibility game into sub-games and chain the sub-games to prove the advantage. Note that the framework proposed by Ballare can be used to write the games for better readability.

1.2 Advantage Rewriting Lemma

Let b be a uniformly random bit, b' be the output of some algorithm. Then

$$2\left|\Pr[b'=b] - \frac{1}{2}\right| = \left|\Pr[b'=1|b=1] - \Pr[b'=1|b=0]\right|$$
$$= \left|\Pr[b'=0|b=0] - \Pr[b'=0|b=1]\right|$$

Proof.

$$\Pr[b' = b] - \frac{1}{2} = \Pr[b' = b \mid b = 1] \cdot \Pr[b = 1] + \Pr[b' = b \mid b = 0] \cdot \Pr[b = 0] - \frac{1}{2}$$

$$= \Pr[b' = b \mid b = 1] \cdot \frac{1}{2} + \Pr[b' = b \mid b = 0] \cdot \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] + \Pr[b' = 0 \mid b = 0] - 1)$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] - (1 - \Pr[b' = 0 \mid b = 0]))$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] - \Pr[b' = 1 \mid b = 0])$$

1.3 The Difference Lemma

Let Z, W_1, W_2 be (any) events defined over some probability space. Suppose that $\Pr[W_1 \land \neg Z] = \Pr[W_2 \land \neg Z]$. Then we have $|\Pr[W_2] - \Pr[W_1] \leq \Pr[Z]|$. (In typical uses, we have that $(W_1 \land \neg Z)$ occurs if and only if $(W_2 \land Z)$ occurs)

Proof.

$$\begin{aligned} |\Pr[W_2] - \Pr[W_1]| &= |\Pr[(W_1 \wedge Z) \vee (W_1 \wedge \neg Z)] - \Pr[(W_2 \wedge Z) \vee (W_2 \wedge \neg Z)]| \\ &= |\Pr[W_1 \wedge Z] + \Pr[W_1 \wedge \neg Z] - \Pr[W_2 \wedge Z] - \Pr[W_2 \wedge \neg Z]| \\ &= |\Pr[W_1 \wedge Z] - \Pr[W_2 \wedge Z]| \\ &\leq \Pr[Z] \end{aligned}$$

2 Symmetric Encryption

2.1 Pseudorandom Permutation/Function

2.1.1 PRP Security

Let games be defined as in Figure 1 (or Figure 2), a block cipher E is defined to be (q, t, ε) secure as a pseudorandom permutation (PRP), if for any adversary \mathcal{A} running in time at most t and making at most q queries to the oracle Enc, the advantage $\mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{A}) \leq \varepsilon$ where

$$\begin{aligned} \mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{A}) &= 2 \cdot \left| \Pr[\mathbf{G}^{\mathrm{PRP}}(\mathcal{A}) \Rightarrow \mathsf{true}] - \frac{1}{2} \right| \\ &= \left| \Pr[\mathbf{G}^{\mathrm{PRP-0}}(\mathcal{A})] - \Pr[\mathbf{G}^{\mathrm{PRP-1}}(\mathcal{A})] \right| \end{aligned}$$

Figure 1: PRP game for a block cipher E in the first style. Here \mathcal{P}_n represents the set of permutations on length n.

Figure 2: PRP game for a block cipher E in the second style.

2.1.2 PRF Security

Let games be defined as in Figure 3 (or Figure 4), a block cipher E is defined to be (q, t, ε) secure as a pseudorandom function (PRF), if for any adversary \mathcal{A} running in time at most tand making at most q queries to ENC, the advantage $\mathbf{Adv}_E^{\mathrm{PRF}}(\mathcal{A}) \leq \varepsilon$ where

$$\begin{split} \mathbf{Adv}_E^{\mathrm{PRF}}(\mathcal{A}) &= 2 \cdot \left| \Pr[\mathbf{G}^{\mathrm{PRF}}(\mathcal{A}) \Rightarrow \mathsf{true}] - \frac{1}{2} \right| \\ &= \left| \Pr[\mathbf{G}^{\mathrm{PRF-0}}(\mathcal{A})] - \Pr[\mathbf{G}^{\mathrm{PRF-1}}(\mathcal{A})] \right| \end{split}$$

Figure 3: PRF game for a block cipher E in the first style.

Figure 4: PRF games for a block cipher E in the second style.

2.2 Ciphertext Indistinguishability

2.2.1 LoR-CPA Security

A symmetric encryption scheme SE is said to have (q, t, ε) -indistinguishibility under chosen plaintext attack with left-or-right oracle (LoR-CPA), if for any adversaries \mathcal{A} running in time at most t and making at most q encryption queries, the advantage $\mathbf{Adv}^{\text{LoR-CPA}}_{\mathsf{SE}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\text{LoR-CPA}}_{\mathsf{SE}}(\mathcal{A}) = 2 \cdot |\Pr[G^{\text{LoR-CPA}}(\mathcal{A}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Figure 5: LoR-CPA Game for a SE scheme Π .

2.2.2 RoR-CPA Security

A symmetric encryption scheme SE is said to have (q, t, ε) -indistinguishibility under chosen plaintext attack with real-or-random oracle (RoR-CPA), if for any adversaries \mathcal{A} running in time at most t and making at most q encryption queries, the advantage $\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{RoR-CPA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{RoR\text{-}CPA}}(\mathcal{A}) = \left| \Pr[G^{\mathsf{RoR\text{-}CPA\text{-}0}}(\mathcal{A})] - \Pr[G^{\mathsf{RoR\text{-}CPA\text{-}1}}(\mathcal{A})] \right|$$

Figure 6: RoR-CPA game for a SE scheme Π

Remarks:

- 1. IND-CPA security imples decryption security.
- 2. IND-CPA security implies key recovery (TKR) security.
- 3. IND-CPA security ensures that every bit of the plaintext is hidden.
- 4. One-time Pad is IND-CPA is 1-query IND-CPA secure.

- 5. Here oracle LoR refers to "left or right".
- 6. A special form of IND-CPA security, which formalize the indistinguishability of a symmetric encryption scheme from random bits, named IND\$-CPA, is defined as in Figure 5.

2.2.3 LoR-CCA Security

A symmetric encryption scheme SE is defined to be $(q_e, q_d, t, \varepsilon)$ -indistinguishibility under chosen ciphertext attack secure (IND-CCA), if for any adversaries \mathcal{A} running in time at most t and making at most q_e encryption queries to oracle LoR and at most q_d decryption queries to oracle ODEC, the advantage $\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{IND-CPA}}(\mathcal{A}) \leq \varepsilon$.

$$\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{LoR\text{-}CCA}}(\mathcal{A}) = 2 \cdot |G^{\mathsf{LoR\text{-}CCA}}(\mathcal{A}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Figure 7: LoR-CPA Game for a SE scheme Π .

2.2.4 RoR-CCA Security

A symmetric encryption scheme SE is said to have (q, t, ε) -indistinguishibility under chosen plaintext attack with real-or-random oracle (RoR-CPA), if for any adversaries \mathcal{A} running in time at most t and making at most q encryption queries, the advantage $\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{RoR-CPA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathsf{SE}}^{\mathrm{RoR\text{-}CPA}}(\mathcal{A}) = \left| \Pr[G^{\mathrm{RoR\text{-}CPA\text{-}0}}(\mathcal{A})] - \Pr[G^{\mathrm{RoR\text{-}CPA\text{-}1}}(\mathcal{A})] \right|$$

2.3 Message Integrity

2.3.1 INT-CTXT Security

A symmetric encryption scheme SE is said to have $(q_e, q_d, t, \varepsilon)$ -ciphertext integrity (INT-CTXT) secure, if for any adversary \mathcal{A} running in time t and making at most q_e encryption

procedure Init procedure Init 1: $K \leftarrow \$ \mathcal{K}$ 1: $Q_e, Q_d \leftarrow \emptyset$ 2: $Q_e, Q_d \leftarrow \emptyset$ **procedure** Enc(N, M)**procedure** Enc(N, M)1: **if** $(N, M) \in \mathcal{Q}_e$ **then** 1: if $(N, M) \in \mathcal{Q}_e$ then | return \perp 2: return \perp $3: C \leftarrow \$ \{0,1\}^{|M|}$ $3: \quad C \leftarrow \mathcal{E}^N_K(M)$ 4: **return** C4: $Q_e \leftarrow Q_e \cup \{(N,M)\}$ procedure Dec(N, C)5: $Q_d \leftarrow Q_d \cup \{(N,C)\}$ 1: $C \leftarrow \mathcal{D}_K^N(N,C)$ $6: \mathbf{return} \ C$ 2: return C $\mathbf{procedure}\ \mathrm{Dec}(N,C)$ 1: **if** $(N,C) \in \mathcal{Q}_d$ **then** 2: return \perp $3: M \leftarrow \mathcal{D}_K^N(C)$ $4: \mathbf{return} \ C$

Figure 8: RoR-CPA game for a SE scheme Π

oracle queries and exact one try query to oracle OTRY, the advantage $\mathbf{Adv}_{\mathsf{SE}}^{\mathsf{INT-CTXT}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathsf{SF}}^{\mathrm{INT-CTXT}}(\mathcal{A}) = \Pr[G^{\mathrm{INT-CTXT}}(\mathcal{A}) \Rightarrow 1]$$

Figure 9: INT-CTXT game for a LPSE scheme Π

2.3.2 INT-PTXT Security

A symmetric encryption scheme Π is said to be (q_e, t, ε) -plaintext integrity (INT-PTXT) secure if for all adversary \mathcal{A} running in time t and making at most q_e encryption oracle queries with $\mathbf{Adv}_{\Pi}^{\mathrm{INT-PTXT}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\Pi}^{\mathrm{INT-PTXT}}(\mathcal{A}) = \Pr[G^{\mathrm{INT-PTXT}}(\mathcal{A}) \Rightarrow 1]$$

Figure 10: INT-PTXT game for a LPSE scheme Π

Theorem 1. If a symmetric encryption scheme Π is INT-CTXT secure, then it is also INT-PTXT secure.

Proof. We prove by contraposition that if is not INT-CTXT, then it is not INT-PTXT. Let \mathcal{A} be a INT-CTXT adversary against, we construct an adversary \mathcal{B} against INT-PTXT of such that \mathcal{B} runs \mathcal{A} and replys \mathcal{A} 's queries to \mathcal{B} 's OENC and OTRY.

We have that \mathcal{B} simulates the INT-CTXT game of \mathcal{A} since \mathcal{B} makes the exact the same number of queries as \mathcal{A} and \mathcal{B} returns the same c^* as \mathcal{A} .

We have that \mathcal{B} wins if \mathcal{A} wins. Let c^* be the ciphertext query \mathcal{A} makes to OTRY. Since \mathcal{A} wins, we have that $c^* \notin \mathcal{Q}_c$, which implies $m^* \notin \mathcal{Q}_m$ where $m^* = \text{Dec}(K, c^*)$. Thus \mathcal{B} wins if \mathcal{A} wins.

3 Hash Function

3.1 Collision Resistance

Let $H : \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) collision resistance (CR) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{\mathrm{CR}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{CR}} \Rightarrow 1] = \varepsilon$$

Figure 11: Collision Resistance (CR) Game

Remarks:

- 1. Collision must exist because $|\mathcal{D}| \gg |\mathcal{R}|$.
- 2. Fix a hash function H, there must be an efficient algorithm \mathcal{A} that outputs collisions.
- 3. Thus we cannot have a security definition for collision resistance that quantifies over all efficient algorithms \mathcal{A} .

3.1.1 Second Pre-image Resistance

Let $H: \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) second preimage (2PRE) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{\mathrm{2PRE}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{2PRE}} \Rightarrow 1] = \varepsilon$$

3.1.2 Pre-image Resistance

Let $H: \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) preimage resistance (PRE) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{\mathrm{PRE}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{PRE}}(\mathcal{A}) \Rightarrow 1] = \varepsilon$$

procedure 1: $m \leftarrow \mathcal{D}$ 2: $h \leftarrow H(m)$ 3: $m' \leftarrow \mathcal{A}(m,h)$ 4: if $m \neq m' \land H(m') = h$ then 5: | return 1 6: else 7: | return 0

$\begin{array}{c|c} \hline \textbf{procedure} \\ \hline 1: & h \leftarrow \$ \mathcal{R} \\ 2: & m \leftarrow \$ \mathcal{A}(h) \\ 3: & \textbf{if } H(m) = h \textbf{ then} \\ 4: & | \textbf{return } 1 \\ 5: & \textbf{else} \\ 6: & | \textbf{return } 0 \end{array}$

Figure 12: **Left**: Second Preimage Resistance (2PRE) Game. **Right**: Preimage Resistance (PRE) Game

3.1.3 One-wayness

Let $H : \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) one-wayness (OWF) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{\mathrm{OWF}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{OWF}}(\mathcal{A}) \Rightarrow 1] = \varepsilon$$

Figure 13: One-wayness (OWF) Game

3.1.4 Universal Hashing

A keyed hash function H is an ε -bounded universal hash function (ε -UHF) if for any adversary A, the advantage $\mathbf{Adv}_H^{\mathrm{UHF}}(A) \leq \varepsilon$ where

$$\mathbf{Adv}_{H}^{\mathrm{UHF}}(\mathcal{A}) = \Pr[G^{\mathrm{UHF}}(\mathcal{A}) \Rightarrow 1]$$

Figure 14: UHF Game

3.1.5 Difference Unpredictable Hashing

A keyed hash function H with digest space \mathcal{T} equipped with a group operation "+", is an ε -bounded difference unpredictable hashing function if for any adversary \mathcal{A} , the advantage $\mathbf{Adv}_H^{\mathrm{DUHF}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_H^{\mathrm{DUHF}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{DUHF}}(\mathcal{A}) \Rightarrow 1]$$

```
procedure

1: K \leftarrow \$ \mathcal{K}

2: (m_0, m_1, \delta) \leftarrow \$ \mathcal{A}(\cdot)

3: if H(K, m_0) - H(K, m_1) = \delta

4: | \land m_0 \neq m_1 \text{ then}

5: | \text{return } 1

6: else

7: | \text{return } 0
```

Figure 15: DUHF Game

4 Message Authentication Code

4.1 EUF-CMA Security

A MAC scheme is $(q_t, q_v, t, \varepsilon)$ -existential unforgeability under chosen message attack (EUF-CMA) secure, if for any adversaries making q_t queries to tagging oracle OTAG, q_v queries to verification OVFY, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{EUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{EUF\text{-}CMA}}_{\mathrm{MAC}}(\mathcal{A}) = \Pr[\mathbf{G}^{\mathrm{EUF\text{-}CMA}}(\mathcal{A}) \Rightarrow 1]$$

4.2 SUF-CMA Security

A MAC scheme is $(q_t, q_v, t, \varepsilon)$ -strong existential unforgeability under chosen message attack (SUF-CMA) secure, if for any adversaries making q_t queries to tagging oracle OTAG, q_v queries to verification oracle OVFY, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF\text{-}CMA}}(\mathcal{A}) = \Pr[G^{\mathrm{SUF\text{-}CMA}}(\mathcal{A}) \Rightarrow 1]$$

Figure 16: EUF-CMA and SUF-CMA Game for a MAC scheme. The dox-boxed code is exclusive for G^{SUF-CMA}.