Lab 1

Instructions

Your solutions must be written in an R Markdown (Rmd) file called lab-01.Rmd. This file must include your code and write up for each question. Your "submission" will be whatever is in your exam repository at the deadline. In order to receive full credit, your notebook must knit to HTML without any errors.

This lab is open book, open internet, closed other people. You may use any online or book based resource you would like, but you must include citations for any code that you use. You may not consult with anyone else about this lab other than the Professor or TA for this course.

You have until 11:59pm on Sunday, October 31 to complete this lab and turn it in via your personal GitHub repo - late work will not be accepted. Technical difficulties are not an excuse for late work - do not wait until the last minute to knit / commit / push.

On questions asking you to produce a graph, be sure to include an appropriate title and labels. Graphs should include a brief (one or two sentence) narrative describing the graph and what it reveals about the data. For this lab, you can only use base R (do not use any third-party libraries such as ggplot, dplyr, etc.).

Getting help

You are not allowed to post any questions on the Canvas Discussion board. Any questions about the exam must be asked during office hours or via email to the Professor or the TA.

Grading and feedback

The total points for the questions add up to 90 points. The remaining 10 points are allocated to code style, overall organization, spelling, grammar, etc. There is also an extra credit question that is worth 5 points. You will receive feedback as an issue posted to your repository, and your grade will also be recorded on Canvas.

The data

The data can be found inside the data folder in the main directory. ppauto_pos contains information on private passenger auto liability/medical claims for various property-casualty insurers that write business in the US. A description of each field is below:

- GRCODE NAIC company code (including insurer groups and single insurers)
- GRNAME NAIC company name (including insurer groups and single insurers)
- AccidentYear Accident year(1988 to 1997)
- DevelopmentYear Development year (1988 to 1997)
- DevelopmentLag Development year (AY-1987 + DY-1987 1)
- IncurLoss_B Incurred losses and allocated expenses reported at year end
- CumPaidLoss_B Cumulative paid losses and allocated expenses at year end

- BulkLoss_B Bulk and IBNR reserves on net losses and defense and cost containment expenses reported at year end
- PostedReserve97_B Posted reserves in year 1997 taken from the Underwriting and Investment Exhibit
 Part 2A, including net losses unpaid and unpaid loss adjustment expenses
- EarnedPremDIR_B Premiums earned at incurral year direct and assumed
- EarnedPremCeded_B Premiums earned at incurral year ceded
- EarnedPremNet B Premiums earned at incurral year net
- Single 1 indicates a single entity, 0 indicates a group insurer

Questions

Question 1 (5 points): Load the data/ppauto_pos.csv into R and assign it to a variable ppauto.

Question 2 (20 points): Create a bar plot showing paid losses (CumPaidLoss_B) for State Farm Mut Grp by accident year at development lag 10.

Question 3 (10 points): Create a function, incurred_loss_ratio, which takes two parameters, incurred_loss and earned_premium. If earned_premium equals 0, the function should return NaN, otherwise it should return the ratio of incurred_loss to earned_premium.

Question 4 (15 points): Using the function created in Question 3, add a new column, IncurredLossRatio, to ppauto which contains the ratio of incurred losses (IncurLoss_B) to net earned premiums (EarnedPremNet_B).

Question 5 (10 points): Which insurer (GRNAME) has the maximum, non-NaN, incurred loss ratio?

Question 6 (20 points): Create a boxpolot showing the distribution of IncurredLossRatio by accident year at development lag 10. TIP: when creating your plot try setting outline = FALSE to prevent showing outliers

Question 7 (10 points): What's the difference between [, [[, and \$ when applied to a list?

[selects sub-lists: it always returns a list. [[selects an element within a list. \$\$ is a convenient shorthand for [[.

Extra Credit (5 points): Insurance claims are often presented in the form of a triangle structure, showing the development of claims over time for each accident year (see example below).

##		1	2	3	4	5	6	7	8	9	10
##	1988	2439272	4722902	5705646	6238289	6519491	6677426	6750431	6787444	6808809	6815646
##	1989	2828267	5368026	6494597	7096377	7417869	7575814	7655217	7693240	7712077	NA
##	1990	3186948	5913490	7140613	7774615	8096374	8251086	8325184	8364955	NA	NA
##	1991	3192619	5878000	7075254	7698459	7996404	8140065	8215810	NA	NA	NA
##	1992	3561950	6474291	7763969	8404713	8716926	8876813	NA	NA	NA	NA
##	1993	3895076	7024867	8343417	9003120	9337099	NA	NA	NA	NA	NA
##	1994	4323103	7590944	8924062	9640098	NA	NA	NA	NA	NA	NA
##	1995	4491070	7664190	9006113	NA						
##	1996	4444088	7486113	NA							
##	1997	4344144	NA								

The most established method for predicting future claim payments (i.e. the NAs in the triangle above) is known as the chain-ladder algorithm. The first step of the chain ladder algorithm is to calculate the development ratios, f_k , from the loss development triangle from one lag period to the next. The formula to calculate f_k is below.

$$f_k = \frac{\sum_{i=1}^{n-k} C_{i,k+1}}{\sum_{i=1}^{n-k} C_{i,k}}$$

Where C is an $n \times n$ claim development triangle (matrix). For example, using the claim development triangle above, the development ratio from development lag 1 to development lag 2, f_1 , is

```
f1 <- sum(C[1:9, 2]) / sum(C[1:9, 1])
f1
```

[1] 1.795999

Create a function development_ratios, which takes a $n \times n$ matrix parameter, C, and returns a vector of the development ratios calculated using the formula above.