2 MASK NMOS Process

D. W. Parent SJSU

Process Engineering is expensive to teach.

TCAD tools have a steep learning curve.

The process lab is expensive to run.

A 4 mask process can take all semester to finish.

TCAD tools have a steep learning curve

Creating a run deck from scratch is a very tedious process.

Modify a working run deck.

Use less masks

Design for high yield.

Our two mask process saves time and money.

Set the mesh and initial doping level

```
go athena
#DEFINE THE GRID
line x loc=0.00 spac=0.1
line x loc=2.89 spac=.05
line x loc=4.6 spac=.2
line x loc=10 spac=2
line y loc=0.00 spac=0.1
line y loc=3.0 spac=0.5
line y loc=5 spac=2
# THIS IS WHERE YOU SET THE TYPE OF WAFER YOU WILL USE init silicon boron resistivity=7 orientation=100
# THE PROPGRAM ASSUMES YOU HAVE CLEANED THE WAFERS AND DONE STEPS 1.0-1.10
```


#SCREENING OXIDE GROWTH STEP 2.0 ASSUMED Rethod fermi compress grid.ox=.003 gridinit.ox=.003 # STEP 2.0 IS ASSUMED # STEP 2.1 PUSH temp=400 t.final=700 nitro diffus time=15 # STEP 2.2 RAMP UP diffus time=13.3 temp=900 t.final=1000 nitro # STEP 2.2 STABILIZE diffus time=10 temp=900 nitro # STEP 2.2 SOAK diffus time=100 temp=900 dryo2 #STEP 2.2 PURGE temp=900 nitro press=1.00 diffus time=10 #STEP 2.2 RAMP DOWN #diffus time=30 temp=900 t.final=700 nitro #STEP 2.3 PULL diffus time=15 temp=700 t.final=400 nitro #STEP 3.0 MEASURE OXIDE THICKNESS extract name="SCREEN OX" thickness material="SiO~2" mat.occno=1 x.val=5 structure outfile=screen_oxide.str tonyplot -st screen_oxide.str

Grow Screening Oxide

#STEP 3.1 ASSUMED
#STEPS 3.2-3.4 APPLY SOG
#
deposit oxide thick=0.3 c.boron=1.0e20 divisions=10
structure outfile=deposit_b_sog.str
tonyplot -st deposit_b_sog.str

Apply B Doped SOG

#B DIFFUSION STEP 4.0 ASSUMED #STEP 4.1 PUSH IN diffus time=15 temp=400 t.final=900 nitro #STEP 4.2 RAMP UP diffus time=13.3 temp=900 t.final=1100 nitro #STEP 4.2 STABILIZE temp=1100 nitro press=1.0 diffus time=5 #STEP 4.2 SOAK temp=1100 nitro press=1.00 diffus time=180 #STEP 4.2 RAMP DOWN temp=1100 t.final=900 diffus time≕40 #STEP 4.3 PULL diffus time=15 temp=900 t.final=400 nitro structure outfile=substate_doping.str tonyplot -st substate_doping.str

Dope the substrate


```
#
# STEP 5.0 ETCH SCREEN OX AN B SOG
etch oxide all
structure outfile=substate_doping_no_oxide.str
tonyplot -st substate_doping_no_oxide.str
```

Strip screen oxide and B SOG


```
# STEP 5.2 ASSUMED
#GATE OXIDE GROWTH STEP 6.0 ASSUMED
#STEP 6.1 PSUH IN
diffus time=15 temp=400 t.fina =900 nitro
#STEP 6.2 RAMP UP
diffus time=13.3 temp=900 t.final=1100 nitro
#STEP 6.2 STABILIZE
diffus time=5 temp=1100 nitro press=1.00 hcl.pc=0
#STEP 6.2 SOAK
diffus time=90 temp=1100 dryo2 press=1.00 hcl.pc=0
#STEP 6.2 RAMP DOWN
diffus time=40 temp=1100 t.final=900 nitro
#STEP 6.3 PULL
                temp=900 t.final=400 nitro
diffus time=15
#STEP 6.4 MEASURE OXIDE
extract name="GATEOX" thickness material="SiO~2" mat.occno=1 x.val=!
structure outfile=gate_oxide.str
tonyplot -st gate_oxide.str
```

Gate Oxide

MASK 1 PL ALL of STEPS 7 AND 8 ARE ASSUMED
#
etch oxide left p1.x=3
structure outfile=source_drain_etch.str
tonyplot -st source_drain_etch.str

S/D MASK 1

P SOG

P S/D DIFFUSION STEP 10.0 ASSUMED #STEP 10.1 PUSH diffus time=15 temp=400 t.fina \$\infty\$900 nitro #STEP 10.2 RAMP UP diffus time=13.3 temp=900 t.final=1100 nitro #STEP 10.2 STABILIZE diffus time=5 temp=1100 nitro press=1.00 #STEP 10.2 SOAK temp=1100 nitro press=1.00 diffus time=100 #STEP 10.2 RAMP DOWN temp=1100 t.final=900 nitro diffus time=40 #STEP 10.3 PULL temp=900 t.final=400 nitro diffus time=15

Diffuse Source and Drain

Etch P SOG, and in the process much of the gate/field oxide

Coat with Al.

Etch AL and Flip Structure

VT is Negative!

Your Mission is to Make VT positive

Top view of Wafer

TOP View of Cell

Left or Right Bank of Devices

Current Mirrors and Inverters

MOSFETs with various W/L ratios

MOSFET

GATE

Venier scales in .5µm increments.

Resistance Extraction

Diodes

MOSCAP

Electrical Junction Depth Devices

This consist of two diffused resistors separated by a gap. If the depletion widths do not touch then no current should flow from A to C or D Current flow form a to B or C to D mean the probes are properly connected.

8.0 microns separation

Metal Serpentine test structure

Circuits

Inverters

Current Mirrors

Various Equations for resistance extraction

Device	Test	Set up	Equation	Notes
NSEL Greek Cross	Sheet Resistance Ω/square	Pass Current from pin A to B and measure voltage from D to C.	$R_S = \frac{\pi}{\ln 2} \times \frac{V_{DC}}{I_{AB}}$	
NSEL/METAL1 Contact	Contact Resistance Ω/cm^2	Pass Current from pin A to C and measure voltage from pin B to D.	$\rho_C = \frac{V_{BD}}{I_{AC}} \times l^2$	l=20x10 ⁻⁴ cm This will vary across chip. This is the as drawn length of the contact.
METAL1 Greek Cross	Sheet Resistance Ω/square	Pass Current from pin A to B and measure voltage from D to C.	$R_S = \frac{\pi}{\ln 2} \times \frac{V_{DC}}{I_{AB}}$	

Your Mission

- Develop a process to make the VT between .5 and 1 volt.
- Determine what is the optimum gate offset based on the SPC of the lithography