SYSC 4502 Assignment 3

Jessica Morris 100882290

March 24th, 2017

- 1. (a) Block 1 arrives on time. Block 2 is delayed, as it arrives at a time $t > t_1 + \Delta$. Blocks 4, 5 and 6 arrive on time. Block 3 arrives after $t_1 > 2\Delta$, so it is delayed. Block 7 arrives at time $t > t_1 + 6\Delta$, so it is delayed. So, four out of the seven blocks arrive on time.
 - (b) If the client begins playout at $t_1 + \Delta$, all blocks except for block 7 will have arrived on time to play. As determined in the previous question, blocks 2, 3, and 7 are delayed. Since the delay for blocks 2 and 3 is smaller than Δ , while they are late, they still arrive on time for playback. Since block 7 has a delay greater than Δ , it will be late.
 - (c) At $t_1 + \Delta$ to $t_1 + 2\Delta$, block 2 is buffered, while block 1 is playing. At $t_1 + 2\Delta$ to $t_1 + 3\Delta$, block 2 is played, while block 3 and block 4 are buffered. At $t_1 + 3\Delta$ to $t_1 + 4\Delta$, block 3 is played, while block 4 and block 5 are buffered. At $t_1 + 4\Delta$ to $t_1 + 5\Delta$, block 4 is played, while block 5 and block 6 are buffered. At $t_1 + 5\Delta$ to $t_1 + 6\Delta$, block 5 is played, while block 6 is buffered. At $t_1 + 6\Delta$ to $t_1 + 7\Delta$, block 6 is played. At $t_1 + 7\Delta$ to $t_1 + 9\Delta$, nothing is played. At $t_1 + 9\Delta$ to $t_1 + 10\Delta$, block 7 is played.

So, at most, 2 blocks are stored in the client buffer to await playout.

- (d) As per the previous question, an extra delay of 2Δ at the client's end will cover the gap from the delay in receiving block 7; i.e., the client should start playing at $t_1 + 3\Delta$ to achieve a smooth playback.
- 2. (a) For x < r, the client will consume all of the playable bits in the application buffer after $\frac{Q}{r-x}$ seconds. So, the playout period lasts $\frac{Q}{r-x}$ seconds.

The number of bits to buffer for playing, Q, will refill at a rate of x bits per second, and will take Q/x seconds to fill. So, the freezing period is Q/x seconds.

(b) The application will consume the first Q bits in the buffer at a rate of x. The remaining B-Q bits in the buffer are consumed at a rate of x-r. So, the time it will take to fill the client's application buffer is given by:

$$t_f = \frac{Q}{x} + \frac{B - Q}{x - r}$$

3. The second leaky bucket generates tokens at rate r = p, with bucket size b = 1. Placing this bucket in series with the first bucket means that the peak packet rate flowing from the first bucket will be controlled by the second bucket:

4. (a) For a FIFO queue service:

Packet	Arrive	Depart	Delay
1	0	1	0
2	0	2	1
3	1	3	1
4	1	4	2
5	3	6	2
6	2	5	2
7	3	7	3
8	5	8	2
9	5	9	3
10	7	10	2
11	8	11	2
12	8	12	3

The average delay for the 12 packets is 1.9167.

(b) For a priority queue service:

Packet	Arrive	Depart	Delay
1	0	1	0
2	0	3	2
3	1	2	0
4	1	7	5
5	3	4	0
6	2	8	5
7	3	5	1
8	5	10	4
9	5	6	0
10	7	11	3
11	8	9	0
12	8	12	3

The average delay for the 12 packets is 1.9167.

(c) For a round robin service:

Packet	Arrive	Depart	Delay
1	0	1	0
2	0	3	2
3	1	5	3
4	1	2	0
5	3	4	0
6	2	7	4
7	3	6	2
8	5	8	2
9	5	10	4
10	7	12	4
11	8	9	0
12	8	11	2

The average delay for the 12 packets is 1.9167.

(d) For a weighted fair queueing service:

Packet	Arrive	Depart	Delay
1	0	1	0
2	0	3	2
3	1	2	0
4	1	6	4
5	3	4	0
6	2	8	5
7	3	5	1
8	5	10	4
9	5	7	1
10	7	11	3
11	8	9	0
12	8	12	3

The average delay for the 12 packets is 1.9167.

(e) The average delay is the same for all four cases.