Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Lecture 03

Frequency Domain & Transforms

Majid Mirmehdi | majid@cs.bris.ac.uk

Signals as Functions

Frequency - allows us to characterise signals:

- Repeats over regular intervals with Frequency $u = \frac{1}{T}$ cycles/sec (Hz)
- Amplitude a (peak value)
- the Phase θ (shift in degrees)

Example: sine function

$$f(t) = a \sin 2\pi u t$$

Fourier's Theorem

$$f(x) = \int a_n \cos(nx) + b_n \sin(nx) \ \delta n$$

Jean-Baptiste Joseph Fourier

- The sines and cosines are the Basis Functions of this representation. a_n and b_n are the Fourier Coefficients.
- The sinusoids are harmonically related: each one's frequency is an integer multiple of the fundamental frequency of the input signal.

Intuition I: Simple 1D example

time domain

frequency domain

time domain

frequency domain

time domain

frequency domain

time domain

frequency domain

Intuition II: Simple 1D example

Animation by Lucas V Barbosa

Intuition III: Concept of Frequency in Images

Rate of change of intensity along the two dimensions

Intuition IV: Images as waves!?

Take a single row or column of pixels from an image → a 1D signal

From ImageNagik

2D Fourier Transform: Continuous Form

The Fourier Transform of a continuous function of two variables f(x,y) is:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dxdy$$

Conversely, given F(u,v), we can obtain f(x,y) by means of the *inverse* Fourier Transform:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} dudv$$

These two equations are also known as the Fourier Transform Pair. Note, they constitute a lossless representation of data.

2D Fourier Transform: Discrete Form

• The FT of a discrete function of two variables, f(x,y), is:

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-i2\pi(\frac{ux+vy}{N})}$$
 for $u,v=0,1,2,\ldots,N-1$.

• Conversely, given F(u,v), we can obtain f(x,y) by means of the inverse FT:

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{i2\pi (\frac{ux+vy}{N})}$$
 for $x, y = 0,1,2,...,N-1$.

These two equations are also known as the Fourier Transform Pair.

Note, they constitute a lossless representation of data.

Euler's Formula

The kernel is associated with a complex number (r, θ) in polar coordinates or R(u, v), I(u, v) in standard complex notation.

2D Fourier Transforms

Euler's Formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Thus, each term of the Fourier Transform is composed of the sum of all values of the image function f(x,y) multiplied by a particular kernel at a particular frequency and orientation specified by (u,v):

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \left[\cos \left(\frac{2\pi (ux + vy)}{N} \right) - i \sin \left(\frac{2\pi (ux + vy)}{N} \right) \right]$$
for $u, v = 0, 1, 2, \dots, N-1$.

All kernels together form a new orthogonal basis for our image.

2D Fourier Transforms

Euler's Formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Thus, each term of the Fourier Transform is composed of the sum of all values of the image function f(x,y) multiplied by a particular kernel at a particular frequency and orientation specified by (u,v):

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \left[\cos \left(\frac{2\pi(ux+vy)}{N} \right) - i \sin \left(\frac{2\pi(ux+vy)}{N} \right) \right]$$
for $u,v = 0,1,2,...,N-1$.

The slowest varying frequency component, i.e. when $u=0, v=0 \rightarrow$ average image graylevel

All kernels together form a new orthogonal basis for our image.

'Fabric' of the 2D Fourier Space (as kernels)

Power Spectrum and Phase Spectrum

Low to Low-ish frequencies

Mid-range frequencies

High frequencies

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

$$\theta(u,v) = \tan^{-1} \left[I(u,v) / R(u,v) \right]$$

Example: Relating Frequencies to Images

 $\angle F(I)$

The Frequency Domain

• F(u,v) is a complex number and has real and imaginary parts:

$$F(u,v) = R(u,v) + iI(u,v)$$

Magnitudes (forming the Magnitude Spectrum):

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

 Phase Angles (forming the Phase Spectrum):

$$\theta(u,v) = \tan^{-1} \left[I(u,v) / R(u,v) \right]$$

Expressing F(u,v) in polar coordinates (r, θ) :

$$F(u,v) = |F(u,v)|e^{i\theta(u,v)} = re^{i\theta}$$

Spatial Domain Frequency Domain

Spatial Domain Frequency Domain

Perpendicular relationship

Ideal edge and line structures have a concentration along a line passing through the origin in the frequency domain and in a **direction**perpendicular to their orientation - they are 'constructed' by adding together all 2D sinusoidal waves that 'travel' perpendicular to the edge or line.

Relating Frequencies to Images

Example: Relating Frequencies to Images

Fourier Space **5**%

back to image Space Inverse Transform

Example: Manipulating the FS

Lunar orbital image (1966)

|F(u,v)|

Mask used to remove peaks

iFFT(F(u,v))

Importance of Phase

ifft(mag only)

ifft(phase only)

ifft(mag(Peter) and Phase(Andrew))

ifft(mag(Andrew) and Phase(Peter))

Separability

- Important property of the FT: Separability
- If a 2D transform is separable, the result can be found by successive application of two 1D transforms. This is a principle aspect of the Fast Fourier Transform (FFT).

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) \quad e^{\frac{-j2\pi ux}{N}} \text{ where } F(x,v) = \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) \quad e^{\frac{-j2\pi vy}{N}}$$

Recall: 2D Discrete Convolution

The discrete version of 2D convolution is defined as:

$$g(x,y) = \sum_{m} \sum_{n} f(x-m, y-n)h(m,n)$$

$$f(x+1, y+1)h(-1,-1)$$

$$+ f(x+1, y)h(-1,0)$$

$$+ f(x+1, y-1)h(-1,1)$$

$$+ f(x, y+1)h(0,-1)$$

$$+ f(x, y)h(0,0)$$

$$+ f(x, y-1)h(0,1)$$

$$+ f(x-1, y+1)h(1,-1)$$

$$+ f(x-1, y)h(1,0)$$

$$= + f(x-1, y-1)h(1,1)$$

Convolution in the Spatial/Frequency Domain

Convolution Theorem:

Deriving the Convolution Theorem

$$h(x) = f(x) * g(x) = \sum_{y} f(x - y)g(y)$$

$$H(u) = \sum_{x} \left(\sum_{y} f(x - y)g(y) \right) e^{(-iux2\pi/N)}$$

$$H(u) = \sum_{y} g(y) \left(\sum_{x} f(x - y) e^{(-iux2\pi/N)} \right)$$

$$H(u) = \sum_{y} g(y) \left(F(u) e^{(-iuy2\pi/N)} \right)$$

$$H(u) = \sum_{y} g(y) e^{(-iuy2\pi/N)} F(u) = G(u) \cdot F(u) = F(u) \cdot G(u)$$

Fast Filtering using the Convolution Theorem

1D:
$$H(u) = F(u)G(u)$$
 2D: $H(u,v) = F(u,v)G(u,v)$

Recall: Spatial Low/High Pass Filtering

Frequency Domain Low/High Pass Filtering

a c b d

(a) A 1-D Gaussian lowpass filter in the frequency domain. (b) Spatial lowpass filter corresponding to (a). (c) Gaussian highpass filter in the frequency domain. (d) Spatial highpass filter

Ideal Low Pass Filter

- 1D: turning the "treble" down on audio equipment!
- 2D: smooth image

$$H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases}$$

 $r(u,v) = \sqrt{u^2 + v^2}$, r_0 is the filter radius

Butterworth's Low Pass Filter

$$H(u,v) = \frac{1}{1 + [r(u,v)/r_0]^{2n}}$$
 of order n

Butterworth's High Pass Filter

Input image

$$H(u,v) = \frac{1}{1 + [r_0 / r(u,v)]^{2n}}$$
 of order n

After filtering

Order of n=3

Other Custom/Example filters

Other Custom/Example filters

Fourier space, with origin at z=(u=0, v=0).

$$a \le u \le b$$
$$c \le v \le d$$

box

$$-r_b \le u \le r_b$$

$$\pm \sqrt{r_a^2 - u^2} \le v \le \pm \sqrt{r_b^2 - u^2}$$

ring

$$u^{2} + v^{2} = r^{2}$$

$$\theta_{1} \le \tan^{-1} \frac{v}{u} \le \theta_{2}$$

sector

Periodic Spectrum

Self-Study: Effects of Rotation/Translation Illustrated

Translation or shift in **Spatial Domain**

Spatial shifts result in a linear phase change in the frequency domain, but no change in the magnitude spectrum. Hence, the magnitude spectrum of a line or dot, for example, looks the same wherever it is in the image.

Rotation in Spatial Domain

Rotation of an image in the spatial domain results in a corresponding rotation in the Fourier domain.

Self-Study: Summary of Filter Definitions

Notation notice! Using *D* instead of *r*

Lowpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal	Butterworth	Gaussian
$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \leq D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$	$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$	$H(u, v) = e^{-D^2(u, v)/2D_0^2}$

Highpass filters. D_0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal	Butterworth	Gaussian
$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \leq D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$	$H(u, v) = \frac{1}{1 + [D_0/D(u, v)]^{2n}}$	$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$

Next Lecture

Edge Detection

Hough Transform