Small Rmarkdown example with opticut and knitr

November 03, 2016

Introduction

This is a small example demonstrating how to include opticut results into Rmarkdown (Rmd) documents.

```
library(opticut)

## Loading required package: pbapply

## opticut 0.0-9 2016-10-30

library(knitr)
ocoptions(cut=-Inf)
```

Analysis

Data set

We have the following data set:

```
## community data
y <- cbind(
    Sp1=c(4,6,3,5, 5,6,3,4, 4,1,3,2),
    Sp2=c(0,0,0,0, 1,0,0,1, 4,2,3,4),
    Sp3=c(0,0,3,0, 2,3,0,5, 5,6,3,4))

## stratification
g <- c(1,1,1,1, 2,2,2,2, 3,3,3,3)</pre>
```

Finding optimal partitions

2 binary splits

oc\$species[[1]]

The opticut object and its summary are lists, thus the relevant information need to be coerced into data frame using the as.data.frame method:

kable(as.data.frame(oc))

	split	assoc	I	mu0	mu1	logLR	w
Sp1	1 2	+	0.2857143	2.50	4.50	1.497895	0.7611396
Sp3	2 3	++	0.6470588	0.75	3.50	4.792820	0.6962116
Sp2	3	+++	0.8571429	0.25	3.25	9.202773	0.9577425

Single species result is a data frame:

kable(oc\$species[[1]], digits=3)

	assoc	I	null	mu0	mu1	beta0	beta1	logL	logLR	w
1	1	0.125	3.833	3.5	4.5	1.253	0.251	-22.185	0.339	0.239
1 2	1	0.286	3.833	2.5	4.5	0.916	0.588	-21.026	1.498	0.761

Plots

Visualizing the results:

plot(oc)

Quantifying uncertainty

The opticut object and its summary are lists, thus the relevant information need to be coerced into data frame using the as.data.frame method:

kable(as.data.frame(uc))

	split	R	I	Lower	Upper
$\operatorname{Sp1}$	1 2	1	0.2762632	0.0226478	0.5481693
Sp3	2 3	1	0.6144909	0.1786442	0.8732539
Sp2	3	1	0.8189637	0.5004027	0.9664116