Formulario di fisica

GIANLUCA MONDINI

Capitolo 1 Cinematica

$$x(t) = \int_0^t v(T) \, dT$$

$$R_x = \frac{m_1 \, r_{1x} + m_2 \, r_{2x} + \ldots + m_n \, r_{nx}}{M} = \frac{\sum_{i=1}^n \, m_i \, r_{ix}}{\sum_{i=1}^n \, m_i}$$

$$M(\Omega) = \int_{\Omega} \rho(r)_{\text{(densità)}} \, dV$$

$$K_{\text{centro di massa}} = \frac{1}{2} \, m \, v^2 \quad [J]$$

$$K_{\text{rotazione}} = \frac{1}{2} \, m \, v^2 = \frac{1}{2} \, m \, r^2 \, w^2$$
 a questo punto si pone $m \, r^2 = I$ e si ottiene
$$K_{\text{rotazione}} = \frac{1}{2} \, I \, w^2$$

$$K_{\text{centro di massa}} = \frac{p^2}{2 \, m}$$

$$p = \sqrt{2 \, m \, K_{\text{centro di massa}}}$$

$$U_{\text{vicino alla superficie}}(h) = m \, g \, h$$

1.1 Impulso

(da verificare)

$$F = m a$$
 $a = \frac{v_2 - v_1}{t_2 - t_1}$ $F(t_2 - t_1) = m v_2 - m v_1$ $q = m v$ $I = F(t_2 - t_1)$

dove I è l'impulso, che rappresenta il prodotto della forza applicata ad un corpo per l'intervallo di tempo in cui tale forza viene applicata.

 $U_{\text{distanza arbitraria}}(r) = -G \frac{Mm}{|r|}$

 $W = \Delta K_c = \frac{1}{2} m(v_f^2 - v_i^2)$

Si ha quindi che l'impulso è la variazione della quantità di moto

$$\Delta \vec{p} = \int_{t_0}^{t_1} \vec{F} \, \mathrm{dt} \quad [Ns]$$

Esempio dovendo calcolare l'impulso esercitato su di un perno A è sufficiente calcolare la differenza della quantità di moto finale ed iniziale del sistema (nel caso in cui A sia l'unica causa della riduzione della quantità di moto)

$$\Delta \vec{p} = \vec{F} \, \Delta t$$

1.2 Urti

1.2.1 Urto elastico

In generale, nella risoluzione di un problema d'urto completamente elastico, si parte dalla conservazione della quantità di moto e dell'energia cinetica prima e dopo l'urto.

- La quantità di moto del sistema si conserva per definizione di urto: durante un urto, infatti, è possibile considerare il sistema isolato a causa delle forze impulsive che i corpi che interagiscono si scambiano, e quindi è possibile trascurare le altre forze in gioco (es. gravitazionale);
- Per definizione di urto elastico, si deve conservare l'energia meccanica totale del sistema. Considerato però che il sistema è isolato durante l'urto, i potenziali delle forze esterne si trascurano e rimane unicamente l'energia cinetica dei corpi.

4 CINEMATICA

1.2.2 Urto anaelastico

La legge di conservazione della quantità di moto del sistema è:

$$P_t = \sum M \cdot v = \text{cost}$$

per gli urti anelastici totali, si può scrivere

$$m_1v_1+m_2v_2=(m_1+m_2)\cdot V$$

dove m_1v_1 e m_2 v_2 rappresentano le quantità di moto prima dell'urto rispettivamente del primo corpo di massa m_1 e del secondo corpo di massa m_2 , mentre $(m_1 + m_2) \cdot V$ è la quantità di moto dell'intero sistema dopo l'urto, cioè quando i due corpi si fondono in un unico corpo di massa pari alla somma delle precedenti, $m_1 + m_2$

V, ricavabile dalla precedente espressione, rappresenta la velocità con cui si muovono i due corpi insieme dopo l'urto.

Energia dissipata Se si suppone per semplicità che non vi siano variazioni di energia potenziale (caso più comune), allora la perdita di energia meccanica è dovuta alla sola variazione di energia cinetica. L'energia cinetica dissipata durante l'urto completamente anaelastico, è

 $-\Delta K = K_i - K_f = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2 - \frac{1}{2} (m_1 + m_2) V^2 = \frac{1}{2} m_r (v_1 - v_2)^2$ $m_r = \frac{m_1 m_2}{m_1 + m_2}$

dove

1.3 Conservazione

- La quantità di moto non si conserva nel caso in cui esista un vincolo che esercita una forza impulsiva
- Il momento angolare si conserva anche nel caso in cui esista un vincolo soltanto nel caso in cui questo abbia braccio nullo.

1.4 Moto oscillatorio

$$x(t) = A\cos(\omega t + \Phi)$$
$$\omega = \sqrt{\frac{k}{m}}$$

1.4.1 Energia cinetica e potenziale

$$\begin{split} K = & \frac{1}{2} \, m \, v^2 = \frac{1}{2} \, m \, \omega^2 \, A^2 \sin^2(\omega \, t + \Phi) \\ U = & \frac{1}{2} \, k \, x^2 = \frac{1}{2} \, k \, A^2 \cos^2(\omega \, t + \Phi) \\ E = & K + U = \frac{1}{2} \, k \, A^2 \end{split}$$

1.4.2 Forza frenante

Se un oscillatore è sottoposto alla forza frenante $\vec{R} = -b \vec{v}$, il suo spostamento per piccoli smorzamenti è descritto da

$$x = A \cdot e^{-\frac{b}{2m}t} \cdot \cos(\omega t + \Phi)$$
$$\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

1.5 Pendolo

$$T_{\rm pendolo\,semplice} = \frac{2\,\pi}{\omega} = 2\,\pi\,\sqrt{\frac{l}{g}}$$

$$T_{\rm pendolo\,fisico} = 2\,\pi\,\sqrt{\frac{l}{m\,q\,d}}$$

1.10 MOMENTO ANGOLARE 5

1.6 Molla

$$F_{\text{hooke}} = -k x$$

$$U_{\rm elastica}(x) = \frac{1}{2} k x^2$$

1.7 Moto circolare

$$|F_{\text{centripeta}}| = m \frac{v_t^2}{r}$$

$$\vec{F}_{\text{centripeta}} = m \, w^2 \, r$$

1.8 Accelerazione angolare

$$\sum \, \tau = I \, \alpha$$

1.9 Momento di una forza

Il momento $\vec{\tau}$ di una forza \vec{F} , calcolato rispetto ad un asse passante per l'origine di un sistema di riferimento inerziale, è definito come

$$\vec{\tau} = \vec{r} \times \vec{F}$$

1.10 Momento angolare

Un punto materiale di quantità di moto $\vec{p} = m \, \vec{v}$ possiede, rispetto ad un asse passante per l'origine, un momento angolare \vec{L} dato dall'espressione

$$\vec{L} = \vec{r} \times \vec{p}$$

dove \vec{r} è il vettore posizione del punto materiale relativo all'origine.

Si ha anche che

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt}$$

Se il corpo ruota attorno ad un asse fisso z, la componente lungo tale asse del momento angolare è

$$L_z = I \omega$$

dove I è il momento di inerzia del corpo rispetto all'asse di rotazione e ω la sua velocità angolare

$$P_{\text{otenza angolare}} = \frac{dW}{dt} = \tau \omega$$

Campo elettrico

"Definizione": Forza per unità di carica che una carica sonda percepisce per la presenza delle cariche sorgenti

2.1 Forza di Coulomb

$$|F_e| = k_e \cdot \frac{|q_1| \cdot |q_2|}{r^2}$$

$$U_{\rm coulomb}(r) = \frac{1}{4 \, \pi \, \varepsilon_0} \frac{Q_{\rm (carica\,generatrice\,del\,campo)} \, q}{|r|}$$

La quantità totale di carica che scorre in un circuito in un instante di tempo è pari a

$$Q = \int_0^{t_1} I(t) \, \mathrm{dt} \quad [C]$$

2.1.1 Vettore campo elettrico

$$\vec{E} \equiv \frac{\vec{F_e}}{q_0} \quad \left[\frac{N}{C}\right]$$

Da questo ricaviamo che, presa una carica q_0 immersa in un campo elettrico \vec{E} , la forza che spinge la carica è uguale a

$$\vec{F}_e = q_0 \vec{E}$$

2.1.2 Lavoro per spostare una carica

Il lavoro necessario per spostare una carica dalla posizione r_A alla posizione r_B è pari a

$$W = \int_{r_A}^{r_B} F_t \, d\, r$$

dove F_t è la forza tangente che compie lo spostamento. Siccome F_t è sempre tangente, abbiamo

 $W = \int_{r_A}^{r_B} q E dr$

Sostituendo e semplificando otteniamo

$$W = \frac{q_1 \, q_2}{4 \, \pi \, \varepsilon_0} \bigg(\frac{1}{r_A} - \frac{1}{r_B} \bigg)$$

2.1.3 Energia potenziale di un elettrone

(da verificare)

La differenza di energia potenziale dell'elettrone tra quando è in A e quando si trova in A è data da:

$$\Delta U = q_e V(A) - q_e V(B)$$

2.1.4 Energia potenziale elettrica

Un campo conservativo ammette energia potenziale.

Partendo dalla relazione

$$W_{\rm cons} = -\Delta U_E = U_{\rm finale} - U_{\rm iniziale}$$

Abbiamo che l'energia potenziale associata al campo elettrico è uguale a

$$U_E = \frac{q_1 \, q_2}{4 \, \pi \, \varepsilon_0} \, \frac{1}{r}$$

8 CAMPO ELETTRICO

dove r è la distanza tra le due cariche

2.1.5 Momento di dipolo elettrico

Dato un sistema di cariche, il momento elettrico (o momento di dipolo) è una grandezza vettoriale che quantifica la separazione tra le cariche positive e negative, ovvero la polarità del sistema, e si misura in Coulomb per metro.

Date due cariche di segno opposto e uguale modulo q, il momento elettrico p è definito come

$$\vec{p} = q \cdot \vec{d}$$

dove \vec{d} è il vettore spostamento dell'uno rispetto all'altro, orientato dalla carica negativa alla carica positiva.

2.1.6 Flusso elettrico

È proporzionale al numero di linee di campo elettrico che attraversano una superficie. Se il campo elettrico è uniforme e forma un angolo con la normale ad una superficie di area A, il flusso elettrico attraverso la superficie è

$$\Phi_E = E A \cos(\theta) \left[\frac{N m^2}{C} \right]$$

2.2 Legge di Gauss

Data una superficie chiusa

$$\Phi_S(\vec{E}) = \oint \vec{E} \cdot d\vec{A} = \frac{\sum q_{\text{interne}}}{\varepsilon_0}$$

È fondamentale che la superficie chiusa E soddisfi una o più delle seguenti condizioni:

- 1. Da considerazioni di simmetria si può arguire che il valore del campo elettrico deve essere costante sulla porzione di superficie
- 2. Il prodotto scalare E dA che compare nella formula può essere espresso come un semplice prodotto algebrico E dA in quanto \vec{E} e \vec{dA} sono paralleli.
- 3. Il prodotto scalare E dA che compare nella formula è nullo, in quanto \vec{E} e \vec{dA} sono perpendicolari.
- 4. Il campo elettrico è nullo sulla porzione di superficie.

Un campo magnetico variabile genera un campo elettrico

$$\oint_L (\vec{E}) = -\frac{d}{dt} \Phi_S(\vec{B})$$

Un conduttore in equilibrio elettrostatico ha le seguenti proprietà:

- 1. Il campo elettrico all'interno del conduttore è ovunque nullo sia che il conduttore sia pieno sia che sia cavo
- 2. Un qualunque eccesso di carica su un conduttore isolato deve risiedere interamente sulla sua superficie
- 3. Il campo elettrico in un punto nelle immediate vicinanze del conduttore è perpendicolare alla sua superficie ed ha intensità σ/ε_0 , dove σ è la densità di carica superficiale in quel punto
- 4. Su un conduttore di forma irregolare la densità di carica è massima dove il raggio di curvatura della superficie è minimo.

2.3 Potenziale

Se definiamo V=0 per $r=+\infty$, il pot. el. che una carica punt. genera a dist. r

$$V=k_e\,\frac{q}{r}$$

$$d\,V=k_e\,\frac{d\,q}{r}$$

$$V_{\rm distribuzione\,continua\,di\,carica}=k_e\,\int\,\frac{d\,q}{r}$$

Il potenziale elettrico dovuto ad un insieme di cariche puntiformi si ottiene sommando i potenziali dovuti alle singole cariche

.4 Condensatore

2.3.1 Superficie di un coduttore carico

La superficie di un qualsiasi conduttore carico in equilibrio elettrostatico è una superficie equipotenziale. Inoltre, poiché il campo elettrico all'interno del conduttore è nullo, il potenziale elettrico all'interno del conduttore è costante ovunque ed uguale al suo valore sulla superficie.

2.3.2 Differenza di potenziale

$$\Delta V \equiv \frac{\Delta U}{q_0} = -\int_A^B \, \vec{E} \cdot d\vec{s} \quad \left[\, V = \frac{J}{C} \, \right] \label{eq:deltaV}$$

Se il campo elettrico è uniforme, preso \vec{s} diretto da A a B si ha che

(da verificare)

$$\Delta V = -E \int_{A}^{B} ds = -E d$$

$$\Delta V_{AB} = \frac{q_1}{4 \pi \, \varepsilon_0} \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$$

Ponendo, per convenzione, potenziale nullo all'infinito, abbiamo che

$$V = \frac{q_1}{4\pi \,\varepsilon_0} \, \frac{1}{r} \left[V = \frac{J}{C} \right]$$
$$E_x = -\frac{dV}{dx}$$

2.3.3 Variazione di energia potenziale

Quando una carica di prova positiva q_0 si sposta dal punto (A) al punto (B) in un campo elettrico \vec{E} , la variazione di energia potenziale del sistema carica-campo è

$$\Delta U = -q_0 \int_{(A)}^{(B)} \vec{E} \cdot d\vec{s}$$

2.4 Condensatore

$$C = \frac{Q}{\Delta V} \left[\frac{C}{v} = F \right]$$

dove Q è la carica (per convenzione quella positiva) depositata sul condensatore.

2.4.1 Capacità di condensatori salienti

$$C = \varepsilon_r \varepsilon_0 \frac{S}{d}$$

• Condensatore cilindrico di lunghezza h, raggio esterno R_1 e raggio interno R_2

$$C = 2\pi \varepsilon_r \varepsilon_0 \frac{h}{\ln\left(\frac{R_1}{R_2}\right)}$$

Condensatore sferico

$$C = 4 \pi \, \varepsilon_r \, \varepsilon_0 \, \frac{R_1 \, R_2}{R_1 - R_2}$$

$$I = \frac{dQ}{dt}$$

$$I = C \frac{dV}{dt}$$

$$U_{\text{condensatore}} = \frac{Q^2}{2C} = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2$$

Campo magnetico

Il campo magnetico è costituito da linee chiuse

$$\Phi_B = \vec{S} \cdot \vec{B}$$

Per conoscere il valore di B(t) per $t=t_1$ se questo è dato sotto forma di derivata, è necessario integrarlo dall'inizio al tempo t_1

$$B(t_1) = \int_0^{t_1} \frac{dB}{dt} \quad [T]$$

Il flusso magnetico Φ_B attraverso una superficie è definito dall'integrale di superficie

$$\Phi_B = \int \vec{B} \cdot d\vec{A}$$

3.1 Teorema di Ampere

$$\oint_{\gamma} B \cdot d \, l = \mu_0 \sum_{i} I_i$$

3.2 Legge di Biot-Savart

Il campo magnetico \overrightarrow{dB} prodotto, in un punto P, da un elemento \overrightarrow{ds} percorso da una corrente continua I è

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{s} \times \hat{r}}{r^2}$$

dove r è la distanza del punto P dall'elemento di corrente e \hat{r} è il versore orientato da \vec{ds} verso il punto P. Per calcolare il campo risultante nel punto P è necessario integrare questa espressione vettoriale su tutta la distribuzione di corrente.

3.2.1 Fili paralleli

Il modulo della forza magnetica per unità di lunghezza che si esercita tra due fili paralleli distanti a fra loro e percorsi dalle correnti I_1 e I_2 è

$$\frac{F_b}{\ell} = \frac{\mu_0 I_1 I_2}{2 \pi a}$$

3.2.2 Alcuni campi magnetici salienti

3.2.2.1 Filo rettilineo uniforme

Si applica nel caso di un filo rettilineo indefinito percorso da corrente stazionaria I.

$$B_{(\rm nel\,vuoto)} = \mu_0 \cdot \frac{I}{2 \,\pi \, r}$$

$$B_{\text{toroide}} = \frac{\mu_0 \, NI}{2 \, \pi \, r}$$

$$B_{\rm solenoide} = \mu_0 \, \frac{N_{\rm (totale\,di\,spire)}}{\ell} I = \mu_0 \, n_{\rm (spire\,per\,unit\`{a}\,di\,lunghezza)} \, I \quad [T]$$

3.2.3 Alcuni flussi magnetici salienti

3.2.3.1 Solenoide

$$\Phi_{\text{solenoide}} = B \cdot S_{\text{(sezione)}} \cdot N$$

CAMPO MAGNETICO

3.2.4 Teorema di Ampère-Maxwell

Rispetto al teorema di Ampère tiene conto anche delle variazioni di campo elettrico

$$\oint_{\gamma} B = \mu_0 \left(I_{\text{conc}} + \varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t} \right)$$

La superficie S ha come bordo γ

Il termine $\varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t}$ prende il nome di **corrente di spostamento**

3.2.5 Legge di Gauss per il campo magnetico

Il flusso magnetico totale che attraversa una superficie chiusa è sempre nullo.

$$\Phi_S(\vec{B}) = 0$$

Ovvero non è possibile isolare un monopolo magnetico. Un ulteriore conseguenza è che il campo magnetico \vec{B} è solenoidale, ovvero è composto da linee chiuse.

3.2.6 Particella in movimento in un campo magnetico uniforme

(da verificare)

La traiettoria della particella è circolare, ed il piano del cerchio è perpendicolare al campo magnetico. Il raggio r della traiettoria circolare è

$$r = \frac{m \, i}{a \, B}$$

dove m è la massa della particella e q la sua carica. La velocità angolare della particella carica è

$$\omega = \frac{q B}{m}$$

Esempio Il raggio di curvatura nella prima regione si calcola da

$$|F| = q \, V B \quad F = m \, a = m \, V^2 / R \quad \Longrightarrow \quad q \, V B = m \, V^2 / R$$

$$R = \frac{q \, B}{m \, V} \, [m]$$

3.2.6.1 Tipologie di sostanze magnetiche

Dimagnetiche. Il momento magnetico è debole ed opposto rispetto al campo magnetico applicato.

Paramagnetiche. Il momento magnetico è debole e nello stesso verso del campo applicato

Ferromagnetiche. Le interazioni tra atomi provocano l'allineamento dei momenti magnetici e generano una forte magnetizzazione che permane anche rimuovendo il campo magnetico esterno.

3.2.7 Energia potenziale magnetica

L'energia potenziale del sistema formato da un momento di dipolo magnetico in un campo magnetico è

$$U = -\vec{\mu} \cdot \vec{B}$$

$$U_{\rm solenoide} = \frac{1}{2} L \, i^2 \, [J]$$

3.3 Legge di Faraday dell'induzione

Stabilisce che la f.e.m indotta lungo una linea chiusa è direttamente proporzionale alla derivata temporale del flusso magnetico che attraversa la linea chiusa, cioè

$$\varepsilon = -\frac{d\,\Phi_B}{d\,t}$$

dove $\Phi_B = \oint \vec{B} \cdot \vec{d} \vec{A}$

Ci sono diversi modi con cui una forza elettromotrice può essere indotta in un circuito:

- quando il modulo di \vec{B} varia nel tempo;
- quando varia la superficie racchiusa dal circuito;
- quando varia l'angolo θ fra \vec{B} e la normale alla superficie del circuito;
- quando si verifica una qualsiasi combinazione dei casi precedenti.

3.0 EQUAZIONI DI IMAXWELL 13

3.3.0.1 Forma generale

$$\oint \vec{E} \cdot \vec{d} \, \vec{s} = -\frac{d \, \Phi_B}{d \, t}$$

dove \vec{E} è il campo elettrico non conservativo che è prodotto dalla variazione di flusso magnetico.

$$\varepsilon_{\rm bobina} \! = \! -N \, \frac{d\Phi_B}{d\,t}$$

$$\Delta V = E \,\ell = B \,\ell \,v$$

3.4 Legge di Lenz

La legge di Lenz stabilisce che la f.e.m. e la corrente indotte in un conduttore hanno direzioni tali da produrre un campo magnetico che si oppone alla variazione che le ha prodotte.

3.5 Forza su una carica/forza di Lorentz

$$\vec{F}_B = q \left(\vec{v} \times \vec{B} \right)$$

Per determinare la direzione: pugno chiuso con pollice diretto verso $\vec{F_B}$, esterno della mano verso \vec{v} e l'interno verso \vec{B}

$$\begin{split} \vec{F} &= \vec{F}_E + \vec{F}_B = q \, \vec{E} + q \left(\vec{v} \times \vec{B} \right) \\ |F_B| &= |q| \, v \, B \sin \left(\theta_{\text{angolo più piccolo tra } \vec{v} \, e \, \vec{B}} \right) \\ \vec{F}_B &= I \left(\vec{d} \times \vec{B} \right) \end{split}$$

3.5.1 Forza agente su un conduttore rettilineo

Se un conduttore rettilineo di lunghezza L è percorso da una corrente I, la forza che agisce sul conduttore immerso in un campo magnetico uniforme \vec{B} è

$$\overrightarrow{F_B} = I \vec{L} \times \vec{B}$$

 \vec{L} è orientato nel verso della corrente I

3.5.2 Forza agente su un filo di forma arbitraria

Se un filo di forma arbitraria, percorso da una corrente I, è immerso in un campo magnetico, la forza che agisce su un elemento infinitesimo \overrightarrow{ds} è

$$d\vec{F_B} = I \, \vec{ds} \times \vec{B}$$

Per determinare la forza totale agente sul filo si deve integrare l'equazione precedente, ricordando che sia \vec{B} che \vec{ds} possono variare da punto a punto

3.5.3 Momento meccanico

Il momento meccanico $\vec{\tau}$ delle forze magnetiche esercitato su una spira percorsa da corrente immersa in un campo magnetico uniforme \vec{B} è

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

3.6 Equazioni di Maxwell

$$\begin{split} \oint \vec{E} \cdot d\vec{A} &= \frac{q}{\varepsilon_0} \\ \oint \vec{B} \cdot d\vec{A} &= 0 \\ \oint \vec{E} \cdot d\vec{s} &= -\frac{d\Phi_B}{dt} \\ \oint \vec{B} \cdot d\vec{s} &= \mu_0 \, I + \varepsilon_0 \, \mu_0 \, \frac{d \, \Phi_E}{d \, t} \end{split}$$

14 CAMPO MAGNETICO

3.7 Corrente di spostamento

In una regione dello spazio dove si ha una variazione del campo elettrico nel tempo, c'è una corrente di spostamento che è definita come

$$I_d = \varepsilon_0 \frac{d\Phi_E}{dt}$$

dove $\Phi_E = \int \vec{E} \cdot d\vec{A}$ è il flusso del campo elettrico

3.7.1 Vettore di Poynting

Il flusso di energia della radiazione elettromagnetica per unità di area e per unità di tempo è descritto dal **vettore di** Poynting \vec{S}

$$\vec{S} \equiv \frac{1}{\mu_0} \left(\vec{E} \times \vec{B} \right)$$

3.7.2 Momento di dipolo magnetico

Il momento magnetico di un magnete è una grandezza che quantifica la forza che l'oggetto esercita su una corrente elettrica e la torsione che il campo magnetico produce interagendo con esso.

$$\vec{\mu} \equiv I\vec{A}$$
 $[A \cdot m^2 = J/T = \text{Joule/Tesla}]$

La direzione è data dalla direzione positiva di attraversamento di S, che viene individuata tramite la regola della mano destra (ponendo il pollice nella direzione della corrente I che scorre lungo il "contorno" di S)

3.7.3 Forza magnetica su di una particella

La forza magnetica che agisce su una carica q che si muove con velocità \vec{v} in un campo \vec{B} è

$$\vec{F_B} = q \vec{v} \times \vec{B}$$

La forza magnetica è perpendicolare sia alla velocità della particella che al campo magnetico. Il modulo della forza magnetica è

$$|F_B| = |q| v B \sin(\theta)$$

dove θ è l'angolo più piccolo tra \vec{v} e \vec{B}

3.8 Induttanza

$$\Phi = \mu \frac{N^2 S}{\ell} I$$

$$L = \mu \, N^2 \, S \, \frac{1}{\ell}$$

$$U = \frac{1}{2} L i^2 \quad [J]$$

$$v(t) = L \frac{d \, i(t)}{d \, t}$$

Circuiti elettrici

4.1 Conduttore

$$I_{\text{corrente}} \!=\! \frac{d\,Q}{d\,t}$$

$$J_{\text{(densit\`a\,di corrente)}} \!=\! \frac{I}{A}$$

$$J = \sigma E = \frac{1}{\rho}E$$

4.1.1 Potenza

$$\mathcal{P} = I \, \Delta V = I^2 \, R = \frac{(\Delta V)^2}{R}$$

4.2 Circuiti in corrente continua

$$P_{\text{su una resistenza}} = \int_0^t R I(t)^2 dt$$

4.2.1 Valore della resistenza

$$R = \frac{\rho \, L_{\text{(lunghezza del conduttore)}}}{S_{\text{(sezione del conduttore)}}}$$

Se non si trascurano gli effetti termici si ha che

$$\rho = \rho_0 \left[1 + \alpha (T - T_0) \right]$$

4.2.2 F.e.m. autoindotta

Quando in un circuito la corrente varia nel tempo in accordo alla legge di Faraday, viene indotta una f.e.m.. La f.e.m. autoindotta è

$$E_L = -L \frac{dI}{dt}$$

dove L è l'induttanza del circuito.

4.2.3 Induttanze salienti

$$\begin{split} L_{\rm bobina} = & \frac{N \, \Phi_B}{I} \quad \left[\, H = & \frac{V \cdot s}{A} \, \right] \\ L_{\rm solenoide} = & \, \mu_0 \, \frac{N^2}{\ell} \, A \end{split}$$

4.2.4 Mutua induttanza

La mutua induttanza di un sistema di due bobine è

$$M_{1\,2} = \frac{N_2\,\Phi_{1\,2}}{I_1} = M_{2\,1} = \frac{N_1\,\Phi_{2\,1}}{I_2} = M$$

La mutua induttanza permette di legare la f.e.m. indotta in una bobina alla derivata delal corrente che scorre nella bobina vicina, facendo uso delle espressioni

$$\varepsilon_2\!=\!-M_{12}\frac{d\,I_1}{d\,t}\quad\varepsilon_1\!=\!-M_{21}\frac{d\,I_2}{d\,t}$$

O CIRCUITI ELETTRICI

4.2.5 Densità di energia

La densità di energia in un punto in cui il campo magnetico è B è

$$u_B = \frac{B^2}{2 \,\mu_0}$$

4.3 Circuito RC

4.3.1 Condensatore (carica)

$$v(t) = v_0 \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$q(t) = Q\left(1 - e^{-\frac{t}{\text{RC}}}\right)$$

La corrente nel circuito è

$$I(t) = \frac{E}{R} e^{-\frac{t}{RC}}$$

4.3.2 Condensatore (scarica)

$$q(t) = Q e^{-\frac{t}{RC}}$$

$$I(t) = -I_i e^{-\frac{t}{RC}}$$

dove $I_i = I_{\text{iniziale}} = Q/RC$

4.4 Circuito RL

$$I_{\text{circuito}} = \frac{\varepsilon}{R} (1 - e^{-t/\tau})$$

dove $\tau = L/R$. Se la batteria che generava ε viene sostituita con un filo di resistenza trascurabile, la corrente diminuisce esponenzialmente nel tempo con la legge

$$I_{\rm circuito} = \frac{\varepsilon}{R} e^{-t/\tau}$$

4.5 Circuito LC

4.5.0.1 Frequenza di oscillazione

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

L'energia in un circuito LC è continuamente convertita tra energia immagazzinata nel condesantore ed energia immagazzinata nell'induttore.

4.6 Circuito RLC

$$\begin{split} Q_{\rm condensatore} &= Q_{\rm max} \cdot e^{-R \cdot t/2L} \cdot \cos(\omega_d \, t) \\ \omega_d &= \left[\frac{1}{L\,C} - \left(\frac{R}{2\,L}\right)^2\right]^{1\!/2} \\ I_{\rm eff} &= \frac{\Delta V_{\rm eff}}{\sqrt{R^2 + (X_L - X_C)^2}} \\ Z_{\rm (impedenza)} &\equiv \sqrt{R^2 + (X_L - X_C)^2} \\ \Phi_{\rm (fase \, tra \, corrente \, e \, tensione)} &= \tan^{-1}\!\left(\frac{X_L - X_C}{R}\right) \end{split}$$

4.7 Circuiti in corrente alternata

4.7.1 Frequenza di risonanza

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

se la frequenza del generatore è uguale a ω_0 , la corrente raggiunge il suo valore massimo

$$X_{L \, (\text{reattanza induttiva})} = \omega \, L \quad [\Omega]$$

$$X_{C\,({\rm reattanza\,capacitiva})}\!=\!\frac{1}{\omega\,C}\quad [\Omega]$$

$$I_{\mathrm{eff}}\!=\!\frac{I_{\mathrm{max}}}{\sqrt{2}}\!=\!0.707\cdot I_{\mathrm{max}}$$

$$\Delta V_{\rm eff} = \frac{\Delta V_{\rm max}}{\sqrt{2}} = 0.707 \cdot \Delta V_{\rm max}$$

La potenza media fornita da un generatore ad un circuito RLC è

$$P_{\text{media}} = I_{\text{eff}} \Delta V_{\text{eff}} \cos(\Phi)$$

un espressione equivalente è

$$P_{\mathrm{media}} = I_{\mathrm{eff}}^2 R$$

4.7.2 Transformatore

$$\Delta v_2 = \frac{N_2}{N_1} \, \Delta v_1$$

Costanti

• Costante dielettrica (o permittività) del vuoto

$$\varepsilon_0 = 8.8542 \times 10^{-12} \, C^2 / N \cdot m^2$$

• Permeabilità magnetica del vuoto

$$\mu_0 = 4 \pi \times 10^{-7} H/m$$

$$\mu_0 \cong 1.25663706144 \times 10^{-6} \, H/m$$

si può anche esprimere in $T \cdot m \, / \, A$

• Costante di Coulomb

Massa dell'elettrone

$$k_e = 8.9876 \times 10^9 \, N \cdot m^2 / C^2$$

si può indicare anche come $\frac{1}{4\,\pi\,\varepsilon_0}$

 $m_e \cong 9.1093826 \times 10^{-31} \,\mathrm{kg}$

• Massa della terra

$$5.98\times10^{24}\,\mathrm{kg}$$

Formule geometriche

6.1 Sfera

- Superficie
 - $S = 4 \pi r^2$

6.2 Piramide

• Volume

 $V = \frac{S_{\text{base}} \cdot h}{3}$

Momenti d'inerzia

7.1 Massa puntiforme

Una massa puntiforme non ha momento di inerzia intorno al proprio asse. Nel caso in cui l'asse di rotazione sia ad una distanza r dal centro di massa si ha

$$I = m r^2$$

7.2 Asta

Se un asta (infinitamente sottile ma rigida) di lunghezza L e di massa m ruota attorno ad una sua estremità si ha che

$$I_{\rm estremità} = \frac{m L^2}{3}$$

altrimenti, se l'asse di rotazione è al centro

$$I_{\rm centrale} = \frac{m L^2}{12}$$

7.3 Circonferenza

Circonferenza sottile (quindi anche un toro sottile) di raggio r e di massa m che ruota attorno all'asse z ha

$$I_z = m r^2$$

$$I_x = I_y = \frac{m \, r^2}{2}$$

7.4 Disco

Disco solido e sottile (in pratica è un cilindro spiaccicato) di raggio r e di massa m che ruota attorno all'asse z

$$I_z = \frac{m \, r^2}{2}$$

$$I_x = I_y = \frac{m \, r^2}{4}$$

7.5 Cilindro

Superficie cilindrica sottile con estremità aperte, di raggio r e di massa m

$$I = m r^2$$

Cilindro solido di raggio r, altezza h e massa m

$$I_z = \frac{m r^2}{2}$$

$$I_x = I_y = \frac{1}{12} m (3 r^2 + h^2)$$

Tubo cilindrico con pareti spesse ed estremità aperte, di raggio interno r_1 , raggio esterno r_2 , lunghezza h e massa m

$$I_z = \frac{1}{2} \, m \, (r_1^2 + r_2^2)$$

$$I_{x} = I_{y} = \frac{1}{12} m \left[3 \left(r_{2}^{2} + r_{1}^{2} \right) + h^{2} \right]$$

VIOMENTI D'INERZIA

7.6 Sfera

Sfera cava di raggio r e massa m

$$I = \frac{2 m r^2}{3}$$

(una sfera cava può essere considerata come costituita da due pile di cerchi infinitamente sottili, uno sopra l'altro, con i raggi che aumentano da 0 a r)

Sfera piene di raggio r e massa m

$$I = \frac{2 m r^2}{5}$$

7.7 Cono

Cono cavo circolare retto con raggio r, altezza h e massa m

$$I_z = \frac{3}{10} m r^2$$

$$I_x = I_y = \frac{3}{5} m \left(\frac{r^2}{4} + h^2 \right)$$

7.8 Toro

Toro con raggio del tubo a, distanza dal centro del tubo al centro del toro b e massa m.

Il momento di inerzia intorno al diametro vale

$$I_{\text{diametro}} = \frac{1}{8} (4 a^2 + 5 b^2) m$$

mentre quello attorno all'asse verticale

$$I_{\text{verticale}} = \left(a^2 + \frac{3}{4}b^2\right)m$$

7.9 Ellissoide

Ellissoide solido di semiassi α, β e ς con asse di rotazione a e massa m

$$I_{\alpha} = \frac{m(\beta^2 + \varsigma^2)}{5}$$

7.10 Piastra

Piastra rettangolare sottile di altezza h, larghezza w e massa m.

Con asse di rotazione all'estremità della piastra

$$I_{\rm estremit\`{a}}\!=\!\frac{m\,h^2}{3}\!+\!\frac{m\,w^2}{12}$$

Con asse di rotazione centrale

$$I_{\text{centrale}} = \frac{m \left(h^2 + w^2\right)}{12}$$

7.11 Parallelepipedo

Parallelepipedo solido di altezza h, larghezza w, profondità d e massa m

$$I_h = \frac{1}{12} m \left(w^2 + d^2 \right)$$

$$I_w = \frac{1}{12} m (h^2 + d^2)$$

$$I_d = \frac{1}{12} m (h^2 + w^2)$$

se fosse stato un cubo di lato s

$$I = \frac{m s^2}{6}$$

Parallelepipedo solido di altezza D, larghezza W, lunghezza L e massa m lungo la diagonale più lunga.

$$I_{\rm diagonale\,più\,lunga} = \!\! \frac{m \left(W^2 \, D^2 + L^2 \, D^2 + L^2 \, W^2\right)}{6 \left(L^2 + W^2 + D^2\right)}$$

se fosse stato un cubo di lato \boldsymbol{s}

$$I = \frac{m \, s^2}{6}$$

7.12 Sistema punti materiali

$$I_z = \sum_{i=1}^n m_1 r_1^2$$

7.13 Corpo rigido

$$I_z = \int_V \rho \, r^2 \, dV$$

7.14 Teorema degli assi paralleli

Il momento di inerzia rispetto ad un asse a, parallelo ad un altro c passante per il centro di massa, si ottiene sommando al momento di inerzia iniziale rispettto a c il prodotto tra la massa del corpo stesso e il quadrato della distanza tra gli assi c ed a

Misto

8.1 Prodotto vettore

Il prodotto vettoriale $\vec{A} \times \vec{B}$ è il vettore \vec{C} avente modulo $C = A B \sin \theta$. Il vettore ha direzione perpendicolare al piano formato da A e B e il suo verso è determinato dalla regola della mano destra