МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ГЕОДЕЗИИ И АЭРОКОСМИЧЕСКИХ ГЕОТЕХНОЛОГИЙ

Методические указания к лабораторным работам

по дисциплине «ТМОГИ»

для студентов 2 курса специальности «Геодезия»

Составил: Ст.пр.каф.ГиАГ Будо А.Ю.

Минск 2017

Содержание

Порядок выполнения лабораторных работ	3
Лабораторная работа 1. Уравнивание нивелирной сети параметрическим	
способом	4
Лабораторная работа 2. Уравнивание нивелирной сети коррелатным способом	5
Список литературы	6
Приложения	
Приложение А. Правила оформления лабораторных работ	
Приложение Б. Исходные данные к ЛР1	
Приложение В. Односторонние и двусторонние критические значения	
коэффициента Стьюдента (t-критерий)	12
Приложение Г. Квантили распределения $\chi 2$ для различной доверительной	
вероятности Р и числа степеней свободы г	13
Приложение Д. Значения критерия Фишера (F-критерия) для уровня	
lpha значимости $lpha = 0.05$	14

Порядок выполнения лабораторных работ

Работы выполняются последовательно, начиная с первой. Исходные данные выбираются по вариантам, выдаваемым преподавателем. Также преподавателем устанавливаются крайние сроки сдачи работ на проверку (deadline). Правила оформления работ приведены в Приложение А.

Оценка Est(Estimate) за каждую лабораторную работу вычисляется по формуле

$$Est = T + D$$
,

где T(Test) – балл, полученный в ходе автоматизированной проверки;

D(Defense) – балл, полученный по результатам защиты работы;

Величина T рассчитывается на основе алгоритма Эвина Вильсона (1927 Γ), в котором используется формула для нижней границы доверительного интервала

$$T = \frac{p + \frac{z_{\alpha/2}^2}{2 \cdot n} - z_{\alpha/2} \cdot \sqrt{\frac{p(1-p) + \frac{z_{\alpha/2}^2}{4 \cdot n}}{n}}}{1 + \frac{z_{\alpha/2}^2}{n}},$$

где n = pos + WN – сумма правильных ответов и количества недель, прошедших с момента выдачи задания до момента его проверки (зависит от даты проверки работы);

p = pos/n - доля правильных ответов;

 $z_{\alpha/2}$ — квантиль стандартного нормального распределения для вероятности (1– α /2). Для доверительного уровня в 0.95 значение квантиля равно 1.96.

Величина *D* вычисляется на основе следующей таблицы

Таблица – Критерии оценки при защите работы

		На защите получены ответы на						
	Оформление	Оформление все вопросы - 2;						
Vauronuu	уникальное,	уникальное, Частично неправильные или						
Критерий	соответствует правилам	Сумма						
	оформления? (от 0 до 2)	Неправильные ответы или						
		работа не защищалась - 0						
Max	2	2	4					

Если работа защищается после даты крайнего срока сдачи, то оценка за защиту вычисляется по формуле D2=(WNd-WND)*(5-D)/10, где WNd – номер недели от начала года до даты deadline;

WND – номер недели защиты;

D – оценка полученная на защите.

Составил: ст.пр.каф.ГиАГ Будо А.Ю.

 $^{^{1}}$ *Кванти́ль* в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Лабораторная работа 1. Уравнивание нивелирной сети параметрическим способом

Цель: Уравнять нивелирную сеть параметрическим способом и выполнить оценку точности уравненных измерений и высот. Научиться составлять нормальные уравнения по схеме нивелирной сети.

Рисунок 1 – Схема нивелирной сети

Исходные данные для ЛР1 приведены в <u>Лабораторная работа 2.Приложение Б</u>

Список литературы

- 1. Большаков В.Д. Теория ошибок наблюдений: Учебник для вузов. 2-е изд., перераб. и доп. М., Недра, 1983. 223 с.
- 2. Большаков В.Д., Маркузе Ю.И. Практикум по теории математической обработки геодезических измерений: Учебное пособие для вузов. М.: Недра, 1984. 352 с.
- 3. Чеботарёв А.С. Способ наименьших квадратов с основами теории вероятностей. Издательство геодезической литературы, 1958. 610 с.
- 4. Leick A. Adjustment Computations. Department of Spatial Information Science and Engineering. University of Maine, 1980. 245 p.
- 5. Leick A., Humphrey D. Adjustments with examples. University of Maine, 1986. 450 p.
- 6. Дегтярёв А.М. Вероятностно-статистические методы в геодезии. Конспект лекций. Новополоцк: ПГУ, 2005. 208 с.
- 7. Михелев, Д.Ш. Геодезические измерения при изучении деформаций крупных инженерных сооружений / Д.Ш. Михелев, И.В. Рунов, А.И. Голубцов. М., «Недра», 1977, 152 с.

Приложения

Приложение А. Правила оформления лабораторных работ

Лабораторная работа должна быть выполнена на стандартной белой бумаге формата A4 по ГОСТ 2.301 с одной стороны листа.

Должны быть установлены стандартные поля по СТБ 6.38:

- левое поле 30 мм;
- правое поле 10 мм
- верхнее и нижнее поля 20 мм.

Лабораторная работа должна быть оформлена в соответствии с ГОСТ 2.105 одним из следующих способов:

- 1. С применением печатающих и графических устройств вывода Персонального Компьютера (ПК) ГОСТ 2.004 шрифтом Times New Roman чёрного цвета с высотой 14 пт, через полтора интервала, в обычном начертании, выравнивая по ширине (пункт единица, принятая в полиграфии: 1пт=1/72"=0.352мм).
- 2. Рукописным чертёжным шрифтом по ГОСТ 2.304 с высотой не менее 2.5 мм, чёрными чернилами (пастой, тушью) чётким почерком.

Абзацы в тексте начинают отступом 1.25 см, одинаковым по всему тексту.

Вписывать в отпечатанный текст отдельные слова, формулы, условные знаки, а также выполнять иллюстрации следует чёрными чернилами (пастой, тушью). Для выполнения иллюстраций разрешается использовать графические редакторы, фотографии, ксерокопии и т.п.

Для оформления формул используется встроенный в Microsoft Word стандартный текстовый редактор формул либо Microsoft Euqation (Вставка – Объект – Microsoft Euqation 3.0). Формулы и уравнения в тексте следует оформлять в соответствии с ГОСТ 2.105, раздел 4. Формула должна располагаться по центру страницы. Номер формулы указывается арабскими цифрами в круглых скобках в той же строке с выравниванием по правому краю. В формулах в качестве символов установленные обозначения, следует применять соответствующими государственными стандартами. Пояснения символов и числовых коэффициентов, входящих в формулу, если они не пояснены ранее в тексте, должны быть приведены непосредственно под формулой, при этом после формулы должна присутствовать запятая. В том случае, когда пояснения символов и численных коэффициентов, входящих в формулу пояснены ранее в тексте, после формулы должна ставиться точка. Пояснения каждого символа следует давать с новой строки в той последовательности, в которой символы приведены в формуле. Первая строка пояснения должна начинаться с новой строки (без абзацного отступа) со слова «где» и без двоеточия после него. Формулы, следующие одна за другой и не разделённые текстом, разделяют точкой с запятой. Ссылки в тексте на порядковые номера формул дают в скобках, например, «... в формуле (1.3)».

Иллюстрации следует располагать в работе непосредственно на странице с текстом после абзаца, в котором они упоминаются впервые, или отдельно на следующей странице. Иллюстрации обозначают словом «Рисунок» или «Рис.» и

нумеруют последовательно. Иллюстрации нумеруют последовательно в пределах работы, например:

«Рисунок 1. Общеземной эллипсоид» без кавычек. Слово «Рисунок», его номер и наименование печатают обычным шрифтом под рисунком посередине строки размером шрифта 14 пт.

На все иллюстрации и таблицы должны быть даны ссылки в тексте работы.

Опечатки и описки допускается исправлять подчисткой или закрашиванием белой краской и нанесением на том же месте исправлений машинным или рукописным способом чёрными чернилами (пастой, тушью). Повреждение листов, помарки и следы прежнего текста не допускаются. Допускается не более трёх исправлений на одной странице.

В тексте работы не допускается применять сокращения слов (кроме установленных правилами орфографии и соответствующими государственными стандартами).

Приложение Б. Исходные данные к ЛР1

Bap	ар Превышения, м									Расстояния, км							Рп1, м	Рп2, м
Nº	h_1	h_2	h_3	h_4	h ₅	h_6	h_7	h_8	L_1	L_2	L_3	L_4	L ₅	L_6	L_7	L_8	H_1	H_2
1	1.845	-1.832	-2.180	-0.450	7.063	-5.220	3.073	-2.648	4.5	2.7	5.3	5.4	4.0	2.8	5.2	3.7	164.142	161.562
2	1.313	-2.127	2.340	-1.394	2.012	0.109	2.208	-0.810	4.9	6.0	4.2	2.5	5.7	4.8	5.1	3.7	134.455	134.566
3	0.543	-1.418	2.336	-2.479	0.762	0.691	1.665	0.806	3.4	5.6	2.7	5.2	5.0	2.7	2.6	5.4	102.566	101.593
4	-0.481	-0.596	0.642	-1.516	1.260	-0.691	1.317	0.211	3.2	5.2	3.6	5.8	5.9	5.2	3.7	2.8	100.092	98.174
5	2.537	-2.244	-1.514	2.194	1.580	0.622	-2.179	-0.060	4.8	3.8	3.0	5.7	4.9	4.5	6.0	3.7	122.476	123.442
6	1.857	2.633	-0.073	0.477	-4.004	1.378	-1.411	0.950	6.0	3.9	3.9	5.8	2.7	6.0	4.8	3.6	199.790	204.689
7	-1.257	1.345	0.665	-1.015	1.569	-2.873	3.552	-2.528	5.7	3.5	4.1	3.9	3.3	5.4	3.9	3.4	127.271	126.973
8	2.966	2.046	2.979	2.320	-4.699	2.626	0.402	-2.729	4.3	3.8	5.3	5.4	5.0	4.2	4.8	6.0	138.693	148.972
9	-2.638	0.364	-2.108	0.575	1.987	-2.305	0.190	-0.784	4.2	4.8	5.9	3.2	3.1	6.0	2.8	5.3	167.207	163.406
10	1.663	-2.612	1.509	-0.148	-0.210	2.820	-1.319	1.449	5.7	4.0	3.5	3.7	3.3	2.8	2.9	3.5	116.538	116.914
11	-2.012	-0.030	0.979	1.281	-2.266	2.272	-1.248	-0.003	3.0	4.1	2.6	3.4	2.9	4.0	2.6	4.0	170.667	170.839
12	2.863	-0.198	0.897	-1.213	-0.600	0.764	0.173	1.050	4.8	2.8	3.9	5.9	5.2	5.9	4.4	4.3	198.840	201.226
13	-2.162	-2.145	0.273	1.074	1.755	0.424	-0.141	-0.945	3.1	4.1	4.9	3.1	3.5	3.3	5.3	5.6	159.212	156.237
14	2.996	1.376	-1.860	0.056	-1.144	-0.215	-1.595	1.562	5.3	5.4	5.6	5.8	2.5	5.9	4.3	2.9	102.391	104.926
15	1.015	-2.125	-2.560	-0.292	6.650	-4.519	1.928	-1.596	2.5	5.6	6.0	2.9	5.3	3.9	3.2	5.4	165.345	161.377
16	0.217	2.252	2.556	-1.798	-0.221	-2.048	4.576	-2.824	5.5	5.1	2.6	5.7	2.7	2.8	4.3	5.6	167.999	171.267
17	-1.065	-1.560	1.588	-0.516	1.108	0.437	1.122	-0.588	5.0	3.8	4.7	4.6	5.2	4.7	4.0	4.3	132.956	131.368
18	-2.256	-1.700	-2.477	-2.805	7.874	-6.169	3.711	-0.944	2.7	5.6	6.0	5.5	5.7	5.8	5.7	3.5	172.495	163.307
19	2.203	-1.073	-1.355	-1.469	4.010	-2.933	1.529	-0.038	3.8	5.5	5.0	3.0	5.1	2.8	3.5	3.5	137.864	136.154
20	0.047	1.994	0.615	-0.042	-3.353	1.332	-0.740	0.747	2.8	2.6	5.5	4.1	5.7	4.2	4.2	3.8	149.702	152.326
21	-1.029	0.004	-1.633	2.661	-2.658	2.686	-4.300	1.623	3.3	5.5	4.5	4.4	2.7	5.9	4.0	3.0	139.565	139.547
22	-1.666	-1.561	-1.440	-2.213	2.546	-0.939	-0.484	2.663	3.4	5.5	5.1	5.2	5.3	3.7	5.6	2.6	133.319	126.419
23	0.463	1.098	-0.811	-2.156	3.071	-4.185	3.334	-1.180	3.7	5.5	3.4	6.0	2.8	3.3	4.0	3.2	168.346	166.899
24	0.410	2.361	1.953	-1.886	-5.485	3.090	-1.106	2.963	4.3	4.5	2.8	4.4	2.6	3.7	5.5	5.6	179.098	181.896
25	-0.225	0.795	0.158	-1.772	1.284	-2.111	2.225	-0.471	5.2	5.5	3.7	4.2	4.1	5.1	3.4	4.7	103.809	102.765

26	-0.725	0.372	-2.938	-2.442	7.873	-8.294	5.342	-2.888	5.2	3.0	2.6	4.6	5.8	4.8	3.9	2.7	175.580	169.805
27	2.182	-0.038	-0.845	-2.892	2.077	-2.075	1.233	1.694	3.7	5.9	2.7	5.5	5.2	5.3	5.6	5.6	182.787	181.213
28	2.763	-0.727	0.608	-0.577	2.272	-1.567	2.174	-1.611	3.3	3.2	5.9	4.6	3.3	3.2	4.7	5.7	152.554	154.583
29	2.279	2.522	-0.033	-1.927	-1.901	-0.607	0.535	1.396	5.5	3.2	4.8	4.1	4.0	4.8	5.9	3.2	129.241	132.056
30	1.822	-0.734	0.326	2.889	-2.202	2.962	-2.626	-0.294	3.2	5.7	4.9	5.2	3.5	4.7	4.0	2.5	162.611	166.920
31	1.843	-1.829	-2.179	-0.445	7.058	-5.218	3.070	-2.646	5.4	2.1	5.9	6.0	3.1	4.2	5.2	2.3	176.487	173.907
32	1.314	-2.125	2.344	-1.396	2.010	0.104	2.208	-0.807	5.8	6.0	4.1	3.5	7.0	3.4	4.8	4.8	146.800	146.911
33	0.541	-1.419	2.339	-2.477	0.765	0.693	1.667	0.804	2.8	5.2	2.3	5.5	6.1	2.6	1.3	5.9	114.911	113.938
34	-0.480	-0.599	0.641	-1.512	1.255	-0.691	1.313	0.216	3.4	6.1	3.8	4.9	4.9	5.3	3.7	3.7	112.437	110.519
35	2.540	-2.244	-1.515	2.197	1.583	0.626	-2.181	-0.063	6.3	4.5	2.8	4.7	4.2	5.7	7.0	3.8	134.821	135.787
36	1.859	2.634	-0.071	0.472	-4.001	1.377	-1.407	0.954	4.7	2.9	2.9	5.4	3.0	7.5	5.3	4.9	212.135	217.034
37	-1.255	1.343	0.660	-1.013	1.571	-2.876	3.549	-2.525	6.9	2.5	3.3	5.3	3.9	4.8	2.4	3.2	139.616	139.318
38	2.964	2.046	2.984	2.322	-4.703	2.625	0.400	-2.731	3.7	2.7	5.3	5.5	5.6	5.1	6.1	5.2	151.038	161.317
39	-2.642	0.365	-2.112	0.579	1.987	-2.309	0.189	-0.785	4.6	5.9	7.0	1.7	2.1	5.7	2.2	5.0	179.552	175.751
40	1.665	-2.612	1.514	-0.145	-0.208	2.825	-1.315	1.448	4.3	3.2	3.6	3.4	4.6	2.5	3.1	2.8	128.883	129.259
41	-2.012	-0.031	0.982	1.277	-2.261	2.274	-1.249	-0.008	4.2	5.0	3.8	3.0	2.9	4.3	1.6	3.1	183.012	183.184
42	2.866	-0.197	0.896	-1.216	-0.599	0.763	0.176	1.049	4.5	3.8	2.6	4.9	4.3	4.8	3.4	4.1	211.185	213.571
43	-2.163	-2.146	0.276	1.076	1.759	0.426	-0.142	-0.948	1.6	4.5	4.3	2.1	2.8	1.8	6.0	5.4	171.557	168.582
44	2.993	1.381	-1.859	0.057	-1.140	-0.218	-1.600	1.557	5.0	6.6	6.6	6.4	3.6	5.1	3.5	2.2	114.736	117.271
45	1.016	-2.130	-2.561	-0.289	6.646	-4.520	1.932	-1.591	2.4	4.7	6.8	3.4	5.1	4.7	2.4	5.3	177.690	173.722
46	0.221	2.257	2.558	-1.798	-0.216	-2.045	4.580	-2.820	4.6	5.0	1.8	6.2	1.2	3.1	4.4	5.3	180.344	183.612
47	-1.060	-1.561	1.592	-0.512	1.104	0.435	1.121	-0.586	5.9	2.8	6.2	5.7	6.7	3.8	4.6	5.1	145.301	143.713
48	-2.257	-1.701	-2.473	-2.800	7.879	-6.164	3.707	-0.945	1.7	4.7	7.5	4.7	5.1	6.8	6.0	4.8	184.840	175.652
49	2.208	-1.069	-1.352	-1.470	4.010	-2.937	1.532	-0.042	4.4	5.9	5.6	2.9	6.6	2.8	4.9	4.6	150.209	148.499
50	0.046	1.996	0.610	-0.047	-3.353	1.335	-0.736	0.746	4.1	1.5	4.2	5.1	7.1	4.6	3.6	5.2	162.047	164.671

Приложение В. Односторонние и двусторонние критические значения коэффициента Стьюдента (t-критерий)

Односторонний	P=0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
Двусторонний	0.80	0.90	0.95	0.98	0.99	0.995	0.998	0.999
r = 1	3.0770	6.3130	12.7060	31.820	63.656	127.656	318.306	636.619
2	1.8850	2.9200	4.3020	6.964	9.924	14.089	22.327	31.599
3	1.6377	2.35340	3.182	4.540	5.840	7.458	10.214	12.924
4	1.5332	2.13180	2.776	3.746	4.604	5.597	7.173	8.610
5	1.4759	2.01500	2.570	3.649	4.0321	4.773	5.893	6.863
6	1.4390	1.943	2.4460	3.1420	3.7070	4.316	5.2070	5.958
7	1.4149	1.8946	2.3646	2.998	3.4995	4.2293	4.785	5.4079
8	1.3968	1.8596	2.3060	2.8965	3.3554	3.832	4.5008	5.0413
9	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897	4.2968	4.780
10	1.3720	1.8125	2.2281	2.7638	3.1693	3.5814	4.1437	4.5869
11	1.363	1.795	2.201	2.718	3.105	3.496	4.024	4.437
12	1.3562	1.7823	2.1788	2.6810	3.0845	3.4284	3.929	4.178
13	1.3502	1.7709	2.1604	2.6503	3.1123	3.3725	3.852	4.220
14	1.3450	1.7613	2.1448	2.6245	2.976	3.3257	3.787	4.140
15	1.3406	1.7530	2.1314	2.6025	2.9467	3.2860	3.732	4.072
16	1.3360	1.7350	2.1190	2.5830	2.9200	3.2520	3.6860	4.0150
17	1.3334	1.7396	2.1098	2.5668	2.8982	3.2224	3.6458	3.965
18	1.3304	1.7341	2.1098	2.5514	2.8784	3.1966	3.6105	3.9216
19	1.3277	1.7291	2.0930	2.5395	2.8609	3.1737	3.5794	3.8834
20	1.3253	1.7247	2.08600	2.5280	2.8453	3.1534	3.5518	3.8495
21	1.3233	1.7247	2.2.0790	2.5170	2.8310	3.1354	3.5270	3.8190
22		t	2.2.0790	2.5083				3.7921
23	1.3212	1.7117 1.7139	2.0687	2.4999	2.8188 2.8073	3.1188 3.1040	3.5050 3.4850	3.7676
24	1.3178	1.7139	2.0639	2.4999	2.7969	3.0905	3.4668	3.7454
	1.31/8	1.7081	2.0595	2.4922	2.7969	3.0782	3.4502	3.7251
25		t						
26	1.315	1.705	2.059	2.478	2.778	3.0660	3.4360	3.7060
27	1.3137	1.7033	2.0518	2.4727	2.7707	3.0565	3.4210	3.6896
28	1.3125	1.7011	2.0484	2.4671	2.7633	3.0469	3.4082	3.6739
29	1.3114	1.6991	2.0452	2.4620	2.7564	3.0360	3.3962	3.8494
30	1.3104	1.6973	2.0423	2.4573	2.7500	3.0298	3.3852	3.6460
32	1.3080	1.6930	2.0360	2.4480	2.7380	3.0140	3.3650	3.6210
34	1.3070	1.6909	2.0322	2.4411	2.7284	3.9520	3.3479	3.6007
36	1.3050	1.6883	2.0281	2.4345	2.7195	9.490	3.3326	3.5821
38	1.3042	1.6860	2.0244	2.4286	2.7116	3.9808	3.3190	3.5657
40	1.303	1.6839	2.0211	2.4233	2.7045	3.9712	3.3069	3.5510
42	1.320	1.682	2.018	2.418	2.6980	2.6930	3.2960	3.5370
44	1.301	1.6802	2.0154	2.4141	2.6923	3.9555	3.2861	3.5258
46	1.300	1.6767	2.0129	2.4102	2.6870	3.9488	3.2771	3.5150
48	1.299	1.6772	2.0106	2.4056	2.6822	3.9426	3.2689	3.5051
50	1.298	1.6759	2.0086	2.4033	2.6778	3.9370	3.2614	3.4060
55	1.2997	1.673	2.0040	2.3960	2.6680	2.9240	3.2560	3.4760
60	1.2958	1.6706	2.0003	2.3901	2.6603	3.9146	3.2317	3.4602
65	1.2947	1.6686	1.997	2.3851	2.6536	3.9060	3.2204	3.4466
70	1.2938	1.6689	1.9944	2.3808	2.6479	3.8987	3.2108	3.4350
80	1.2820	1.6640	1.9900	2.3730	2.6380	2.8870	3.1950	3.4160
90	1.2910	1.6620	1.9867	2.3885	2.6316	2.8779	3.1833	3.4019
100	1.2901	1.6602	1.9840	2.3642	2.6259	2.8707	3.1737	3.3905
120	1.2888	1.6577	1.9719	2.3578	2.6174	2.8598	3.1595	3.3735
150	1.2872	1.6551	1.9759	2.3515	2.6090	2.8482	3.1455	3.3566
200	1.2858	1.6525	1.9719	2.3451	2.6006	2.8385	3.1315	3.3398
250	1.2849	1.6510	1.9695	2.3414	2.5966	2.8222	3.1232	3.3299
300	1.2844	1.6499	1.9679	2.3388	2.5923	2.8279	3.1176	3.3233

Составил: ст.пр.каф.ГиАГ Будо А.Ю.

Приложение Γ . Квантили распределения χ^2 для различной доверительной вероятности P и числа степеней свободы r

								F)						
	0,99	0,975	0,95	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0,05	0,025	0,01
1	0,0002	0,0010	0,0039	0,0158	0,0642	0,1485	0,2750	0,4549	0,7083	1,0742	1,6424	2,7055	3,8415	5,0239	6,6349
2	0,0201	0,0506	0,1026	0,2107	0,4463	0,7133	1,0217	1,3863	1,8326	2,4079	3,2189	4,6052	5,9915	7,3778	9,2103
3	0,1148	0,2158	0,3518	0,5844	1,0052	1,4237	1,8692	2,3660	2,9462	3,6649	4,6416	6,2514	7,8147	9,3484	11,3449
4	0,2971	0,4844	0,7107	1,0636	1,6488	2,1947	2,7528	3,3567	4,0446	4,8784	5,9886	7,7794	9,4877	11,1433	13,2767
5	0,5543	0,8312	1,1455	1,6103	2,3425	2,9999	3,6555	4,3515	5,1319	6,0644	7,2893	9,2364	11,0705	12,8325	15,0863
6	0,8721	1,2373	1,6354	2,2041	3,0701	3,8276	4,5702	5,3481	6,2108	7,2311	8,5581	10,6446	12,5916	14,4494	16,8119
7	1,2390	1,6899	2,1673	2,8331	3,8223	4,6713	5,4932	6,3458	7,2832	8,3834	9,8032	12,0170	14,0671	16,0128	18,4753
8	1,6465	2,1797	2,7326	3,4895	4,5936	5,5274	6,4226	7,3441	8,3505	9,5245	11,0301	13,3616	15,5073	17,5345	20,0902
9	2,0879	2,7004	3,3251	4,1682	5,3801	6,3933	7,3570	8,3428	9,4136	10,6564	12,2421	14,6837	16,9190	19,0228	21,6660
10	2,5582	3,2470	3,9403	4,8652	6,1791	7,2672	8,2955	9,3418	10,4732	11,7807	13,4420	15,9872	18,3070	20,4832	23,2093
11	3,0535	3,8157	4,5748	5,5778	6,9887	8,1479	9,2373	10,3410	11,5298	12,8987	14,6314	17,2750	19,6751	21,9200	24,7250
12	3,5706	4,4038	5,2260	6,3038	7,8073	9,0343	10,1820	11,3403	12,5838	14,0111	15,8120	18,5493	21,0261	23,3367	26,2170
13	4,1069	5,0088	5,8919	7,0415	8,6339	9,9257	11,1291	12,3398	13,6356	15,1187	16,9848	19,8119	22,3620	24,7356	27,6882
14	4,6604	5,6287	6,5706	7,7895	9,4673	10,8215	12,0785	13,3393	14,6853	16,2221	18,1508	21,0641	23,6848	26,1189	29,1412
15	5,2293	6,2621	7,2609	8,5468	10,3070	11,7212	13,0297	14,3389	15,7332	17,3217	19,3107	22,3071	24,9958	27,4884	30,5779
16	5,8122	6,9077	7,9616	9,3122	11,1521	12,6243	13,9827	15,3385	16,7795	18,4179	20,4651	23,5418	26,2962	28,8454	31,9999
17	6,4078	7,5642	8,6718	10,0852	12,0023	13,5307	14,9373	16,3382	17,8244	19,5110	21,6146	24,7690	27,5871	30,1910	33,4087
18	7,0149	8,2307	9,3905	10,8649	12,8570	14,4399	15,8932	17,3379	18,8679	20,6014	22,7595	25,9894	28,8693	31,5264	34,8053
19	7,6327	8,9065	10,1170	11,6509	13,7158	15,3517	16,8504	18,3377	19,9102	21,6891	23,9004	27,2036	30,1435	32,8523	36,1909
20	8,2604	9,5908	10,8508	12,4426	14,5784	16,2659	17,8088	19,3374	20,9514	22,7745	25,0375	28,4120	31,4104	34,1696	37,5662
21	8,8972	10,2829	11,5913	13,2396	15,4446	17,1823	18,7683	20,3372	21,9915	23,8578	26,1711	29,6151	32,6706	35,4789	38,9322
22	9,5425	10,9823	12,3380	14,0415	16,3140	18,1007	19,7288	21,3370	23,0307	24,9390	27,3015	30,8133	33,9244	36,7807	40,2894
23	10,1957	11,6886	13,0905	14,8480	17,1865	19,0211	20,6902	22,3369	24,0689	26,0184	28,4288	32,0069	35,1725	38,0756	41,6384
24	10,8564	12,4012	13,8484	15,6587	18,0618	19,9432	21,6525	23,3367	25,1063	27,0960	29,5533	33,1962	36,4150	39,3641	42,9798
25	11,5240	13,1197	14,6114	16,4734	18,9398	20,8670	22,6156	24,3366	26,1430	28,1719	30,6752	34,3816	37,6525	40,6465	44,3141
26	12,1981	13,8439	15,3792	17,2919	19,8202	21,7924	23,5794	25,3365	27,1789	29,2463	31,7946	35,5632	38,8851	41,9232	45,6417
27	12,8785	14,5734	16,1514	18,1139	20,7030	22,7192	24,5440	26,3363	28,2141	30,3193	32,9117	36,7412	40,1133	43,1945	46,9629
28	13,5647	15,3079	16,9279	18,9392	21,5880	23,6475	25,5093	27,3362	29,2486	31,3909	34,0266	37,9159	41,3371	44,4608	48,2782
29	14,2565	16,0471	17,7084	19,7677	22,4751	24,5770	26,4751	28,3361	30,2825	32,4612	35,1394	39,0875	42,5570	45,7223	49,5879
30	14,9535	16,7908	18,4927	20,5992	23,3641	25,5078	27,4416	29,3360	31,3159	33,5302	36,2502	40,2560	43,7730	46,9792	50,8922
31	15,6555	17,5387	19,2806	21,4336	24,2551	26,4397	28,4087	30,3359	32,3486	34,5981	37,3591	41,4217	44,9853	48,2319	52,1914
32	16,3622	18,2908	20,0719	22,2706	25,1478	27,3728	29,3763	31,3359	33,3809	35,6649	38,4663	42,5847	46,1943	49,4804	53,4858
33	17,0735	19,0467	20,8665	23,1102	26,0422	28,3069	30,3444	32,3358	34,4126	36,7307	39,5718	43,7452	47,3999	50,7251	54,7755
34	17,7891	19,8063	21,6643	23,9523	26,9383	29,2421	31,3130	33,3357	35,4438	37,7954	40,6756	44,9032	48,6024	51,9660	56,0609
35	18,5089	20,5694	22,4650	24,7967	27,8359	30,1782	32,2821	34,3356	36,4746	38,8591	41,7780	46,0588	49,8018	53,2033	57,3421
36	19,2327	21,3359	23,2686	25,6433	28,7350	31,1152	33,2517	35,3356	37,5049	39,9220	42,8788	47,2122	50,9985	54,4373	58,6192
37	19,9602	22,1056	24,0749	26,4921	29,6355	32,0532	34,2216	36,3355	38,5348	40,9839	43,9782	48,3634	52,1923	55,6680	59,8925
38	20,6914	22,8785	24,8839	27,3430	30,5373	32,9919	35,1920	37,3355	39,5643	42,0451	45,0763	49,5126	53,3835	56,8955	61,1621
39	21,4262	23,6543	25,6954	28,1958	31,4405	33,9315	36,1628	38,3354	40,5935	43,1053	46,1730	50,6598	54,5722	58,1201	62,4281
40	22,1643	24,4330	26,5093	29,0505	32,3450	34,8719	37,1340	39,3353	41,6222	44,1649	47,2685	51,8051	55,7585	59,3417	63,6907
41	22,9056	25,2145	27,3256	29,9071	33,2506	35,8131	38,1055	40,3353	42,6506	45,2236	48,3628	52,9485	56,9424	60,5606	64,9501
42	23,6501	25,9987	28,1440	30,7654	34,1574	36,7550	39,0774	41,3352	43,6786	46,2817	49,4560	54,0902	58,1240	61,7768	66,2062
43	24,3976	26,7854	28,9647	31,6255	35,0653	37,6975	40,0496	42,3352	44,7063	47,3390	50,5480	55,2302	59,3035	62,9904	67,4593
44	25,1480	27,5746	29,7875	32,4871	35,9743	38,6408	41,0222	43,3352	45,7336	48,3957	51,6389	56,3685	60,4809	64,2015	68,7095
45	25,9013	28,3662	30,6123	33,3504	36,8844	39,5847	41,9950	44,3351	46,7607	49,4517	52,7288	57,5053	61,6562	65,4102	69,9568
46	26,6572	29,1601	31,4390	34,2152	37,7955	40,5292	42,9682	45,3351	47,7874	50,5071	53,8177	58,6405	62,8296	66,6165	71,2014
47	27,4158	29,9562	32,2676	35,0814	38,7075	41,4744	43,9417	46,3350	48,8139	51,5619	54,9056	59,7743	64,0011	67,8206	72,4433
48	28,1770	30,7545	33,0981	35,9491	39,6205	42,4201	44,9154	47,3350	49,8401	52,6161	55,9926	60,9066	65,1708	69,0226	73,6826
49	28,9406	31,5549	33,9303	36,8182	40,5344	43,3664	45,8895	48,3350	50,8660	53,6697	57,0786	62,0375	66,3386	70,2224	74,9195
50	29,7067	32,3574	34,7643	37,6886	41,4492	44,3133	46,8638	49,3349	51,8916	54,7228	58,1638	63,1671	67,5048	71,4202	76,1539

Составил: ст.пр.каф.ГиАГ Будо А.Ю.

Приложение Д. Значения критерия Фишера (F-критерия) для уровня значимости $\alpha = 0.05$

 r_{l} - число степеней свободы большей дисперсии,

 r_2 - число степеней свободы меньшей дисперсии.

						r_1					
r_2	1	2	3	4	5	6	7	8	9	10	15
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	245.95
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.72
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.62
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.53
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.46
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.27
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20