

哈爾濱ノ業大学(深圳) HARBIN INSTITUTE OF TECHNOLOGY

实验作业

开课学期:	2022 春季
课程名称:	计算机组成原理(实验)
实验名称:	直接映射 Cache 设计
实验性质:	综合设计型
实验学时:	
学生班级:	20级08班
学生学号:	200210231
学生姓名:	
作业成绩:	

实验与创新实践教育中心制 2022 年 5 月

一、 Cache 模块设计

(画出读、写的状态转移图,并描述状态之间的转移关系和转移条件、以及每个状态需要完成什么操作。

读操作:

- 1. 置位 reset 后,状态初始化为 READY。
- 2. READY: 此状态下, Cache 等待 CPU 的读请求。①若 CPU 请求读 Cache,即r_req=1,状态转移到 TAG_CHECK,判断是否命中;②若 CPU 未请求读 Cache,状态仍为 READY,继续等待 CPU 发出读请求。
- 3. TAG_CHECK: 此状态下, Cache 判断是 否读命中。①若读命中,即 hit=1, CPU 成功从 Cache 中读出数据,状态转移到 READY,等待 CPU 发出下一个读请求;②若读缺失,即 miss=1(或 hit=0),状态转移到 REFILL,从主存中读取数据,重新装填 Cache。
- 4. REFILL: 此状态下, Cache 从主存中重新读取数据, 此时主存读使能设置为 1, 主存读取地址设置为 CPU 传来的地址。 之后将从主存读取到的数据连同标志位有效位重新写入 Cache 对应位置, 此时需将 Cache 写使能置为 1。①若完成装填, get_data=1,状态转移到 TAG_CHECK, 再

READY hit r_req TAG_CHECK get_data

reset

次比较是否命中; ②若未完成装填, 状态不变, 直至装填完成。

写操作

- 1. 置位 reset 后,状态初始化为 READY。
- READY:此状态下,Cache 等待 CPU 的写请求。①若 CPU 请求写 Cache,即 w_req=1,状态转移到 TAG_CHECK,进入标志位检查; ②若 CPU 未请求读 Cache,状态 仍为 READY,继续等待 CPU 发出 写请求。
- 3. TAG_CHECK: 此状态下, Cache 进行标志位比较, 判断是否写命中。①若写命中,即 hit=1,状态转移到 W_DATA,写直达法入数据;②若写缺失,即 hit=0(或miss=1),状态转移到 READY,等待下一个写信号(实验未要求处理写缺失的情况)

4. W_DATA: 此状态下,写直达法同时修改 Cache 和主存中对应位置的数据。需要将主存读使能置为 1,同时传入修改的数据和数据地址;此外,Cache 写使能置为 1,修改 Cache 中的对应值。①当完成修改,w_done=1,状态转移到 READY,等待下一个写信号;②若未完成修改,状态不变,直至完成修改。(实际中,在 W_DATA 一个周期中,即可完成修改,回到 READY。)

二、调试报告

(仿真截图及时序分析,要求包含读命中、读缺失、写命中及写缺失共四种情况的分析, 且每种情况需列举 2 个测试用例进行分析。)

注:本次实验,分别设计了读、写两个状态机。分别设置的两组状态变量,currrent_state 和 next_state 为读状态机的变量;currrent_state_w 和 next_state_w 为写状态机的变量。两个状态机共用部分状态参数。

状态参数表:

状态	值
READY	0
TAG_CHECK	2
REFILL	1
W_DATA	3

用例对照表:

用例编号	对应情况
#1-1-1/2	读缺失
#1-2-1/2	读命中
#2-1-1/2	写缺失
#2-2-1/2	写命中

时间 (ns)	当前状态	操作及备注
130-150	READY	CPU 发出读请求, rreq_from_cpu=1,欲读取主存
		地址为0000的数据,状态转移到TAG_CHECK
150-170	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出位
		置 00 的数据, cache_index=00。由于有效位为
		0, 读缺失, hit=0。状态转移到 REFILL。
170-510	REFILL	此状态下, Cache 从主存相应位置 0000 读取数
		据 (rreq_to_mem=1), 重新写入 Cache(wea=1)。
		当成功从主存读出数据,写入 Cache 后,
		rvalid_from_mem=1,状态转移到 TAG_CHECK
510-530	TAG_CHECK	此状态下,判断是否命中。此时有效位为1,cpu
		和 cache 标志位相同,读命中,hit=1,成功输
		出数据 rdata_to_cpu=1a,状态转移到 READY
530~	READY	等待 CPU 发出下一读请求

用例 #1-1-2 读缺失, 读取地址 0100 44,074.786 ns 43, 650.<mark>43, 690. 000 ns</mark> 44, 44, 0<mark>50, 000 ns</mark> Name Value 44,000 ns 43,700 ns 43,800 ns |43,900 ns 44, 100 ns 44,200 ns ₩ clk 0 reset 0101 addr_from_cpu[12:0] 0100 0101 0102 0103 Image: Imag 0 hit_to_cpu 00000000 > 👹 rdata_from_mem[31:0] 0000000 Ivalid_from_mem 0 0 0000 > Mraddr_to_mem[12:0] 0000 0100 0000 c7 > W rdata_to_cpu[7:0] (af) c6 > W current_state[3:0] 0 2 2 $\chi_2\chi$ 2)(0 > 🐶 next_state[3:0] 0 2 X 2 0 2 X X 2 0 > 😽 cache_line_r[37:0] 000000000 00000000000 0100000000 000000000 21c9c8c7c > W cache_line[37:0] 20 X 200e0c0bla 0100000000 21c9c8c7c6 > W cache_index[5:0] 00 00 > 😽 tag_from_cpu[4:0] 01 01 > **W** tag_from_cache[4:0] 0 01 > **W** offset[1:0] valid_bit 0 hit 0 🌡 miss 0 > W READY[3:0] > *** TAG_CHECK**[3:0] 2 > 🐯 REFILL[3:0] > W W_DATA[3:0] 340 360. <mark>384. 786 ns</mark>

时间 (ns)	当前状态	操作及备注
43650-43670	READY	CPU 发出读请求, rreq_from_cpu=1,欲读取主存
		地址为0100的数据,状态转移到TAG_CHECK
43670-43690	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出位
		置 00 的数据, cache_index=00。有效位为 1 但
		tag_from_cpu=01,tag_from_cache=00,读缺失,
		hit=0。状态转移到 REFILL。
43690-44030	REFILL	此状态下, Cache 从主存相应位置 0100 读取数
		据 (rreq_to_mem=1), 重新写入 Cache(wea=1)。
		当成功从主存读出数据,写入 Cache 后,
		rvalid_from_mem=1,状态转移到 TAG_CHECK
44030-44050	TAG_CHECK	此状态下,判断是否命中。此时有效位为1,
		cpu 和 cache 标志位相同,读命中,hit=1,成功
		输出数据 rdata_to_cpu=1a,状态转移到 READY
44050~	READY	等待 CPU 发出下一读请求

(读命中的两个用例写在一起)

1	_	Ţ
时间 (ns)	当前状态	操作及备注
用例 #1-2-1 i		读命中,读取地址 0001
570-590	READY CPU 发出读请求, rreq_from_cpu=1, 欲读取自	
		地址为 0001 的数据,状态转移到 TAG_CHECK
590-610	TAG_CHECK	此状态下,判断是否命中。此时有效位为1,
		cpu 和 cache 标志位相同(都为 00,由于 vivado
		显示缘故,截图波形上看不到),读命中,hit=1,
		成功输出数据 rdata_to_cpu=0b,状态转移到
READY		READY
610-650	READY	等待 CPU 发出下一读请求
	用例 #1-2-2	读命中,读取地址 0002
650-670	READY	CPU 发出读请求, rreq_from_cpu=1,欲读取主存
		地址为 0002 的数据,状态转移到 TAG_CHECK
670-690	TAG_CHECK	此状态下,判断是否命中。此时有效位为1,
		cpu 和 cache 标志位相同(都为 00,由于 vivado
		显示缘故,截图波形上看不到),读命中,hit=1,
		成功输出数据 rdata_to_cpu=0c,状态转移到
		READY
690~	READY	等待 CPU 发出下一读请求

用例 #2-1-1 写缺失, 写地址 0000

时间 (ns)	当前状态	操作及备注
1392690-1392710	READY	CPU 发出写请求, wreq_from_cpu=1,欲写主存
		地址为0000的数据,状态转移到
		TAG_CHECK
1392710-1392730	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出
		位置 00 的数据, cache_index=00。有效位为 1
		但 tag_from_cpu=00,tag_from_cache=1f, 写缺
		失, miss=1, hit=0。状态转移到 READY。(实
		验不要求处理写缺失)
1392730~	READY	等待 CPU 发出下一写请求
1392/30~	KEADY	青付 CPU 及出↑一与펶水

用例	#2-1-2	写缺失,	写地址	1f00
ניט נדת	#2-1-2	一, 叫, 八,	— <i>[]</i> [[[], []],	1100

时间 (ns)	当前状态	操作及备注
1393230-1393250	READY	CPU 发出写请求, wreq_from_cpu=1,欲写主存
		地址为 1f00 的数据, 状态转移到
		TAG_CHECK
1393250-1393270	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出
		位置 00 的数据, cache_index=00。有效位为 1
		但 tag_from_cpu=1f,tag_from_cache=00,写缺
		失,miss=1,hit=0。状态转移到 READY。(实
		验不要求处理写缺失)
1393270~	READY	等待 CPU 发出下一写请求

用例 #2-2-1 写命中, 写地址 1f04

时间 (ns)	当前状态	操作及备注
1393770-1393790	READY	CPU 发出写请求,wreq_from_cpu=1,欲写主存
		地址为 1f04 的数据为 ff, 状态转移到
		TAG_CHECK
1393790-1393810	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出
		位置 01 的数据, cache_index=01。有效位为 1,
		tag_from_cpu=tag_from_cache=1f,写命中,
		hit=1,miss=0。状态转移到 W_DATA。
1393810-1393830	W_DATA	此状态下,写直达法,同时修改 Cache 和主
		存中的的数据。①修改 Cache,写地址
		cache_index 不变,写入新的数据
		cache_line_r=3f2c21ffff,写使能 wea=1; ②修
		改主存,写地址 waddr_to_mem=1f04,写入数
		据 wdata_to_mem=ff,主存写请求
		wreq_to_mem=1.写完成后,状态转移到
		READY
1393830~	READY	等待 CPU 发出下一写请求

用例 #2-2-2 写命中,写地址

时间 (ns)	当前状态	操作及备注
1394650-1394670	READY	CPU 发出写请求, wreq_from_cpu=1,欲写主存
		地址为 1f08 的数据为 ff, 状态转移到
		TAG_CHECK
1394670-1394690	TAG_CHECK	此状态下,判断是否命中。此时 Cache 读出
		位置 02 的数据, cache_index=02。有效位为 1,
		tag_from_cpu=tag_from_cache=1f,写命中,
		hit=1,miss=0。状态转移到 W_DATA。
1394690-1394710	W_DATA	此状态下,写直达法,同时修改 Cache 和主
		存中的的数据。①修改 Cache,写地址
		cache_index 不变,写入新的数据
		cache_line_r=3f0a1c3aff,写使能 wea=1; ②修
		改主存,写地址 waddr_to_mem=1f08,写入数
		据 wdata_to_mem=ff,主存写请求
		wreq_to_mem=1.写完成后,状态转移到
		READY
1394710~	READY	等待 CPU 发出下一写请求