

OPERATING SYSTEMS (SEOS-225)

I. Course Details

3 (2+1)		
Data Structures and Algorithms		
Dr. Jaweria Kanwal		
S) Operating system by Albert shilberschatz, Latest Edition, 2021		
1. Modern Operating Systems, Andrew Tanenbaum, Thirteen Edition,		
Prentice Hall, 2021		
2. Operating System by William Stalling, Latest Edition, 2021		

II. Course Learning Outcomes (CLOs)

CLOs	Description	Domain	Taxonomy Level	PLOs	Assessment Artifacts
CLO-1	Explain the characteristics and services of different structures of operating systems to state its main ideas.	Cognitive	2	2	A1, Q1, Mid term
CLO-2	Demonstrate basic structures, functions, and algorithms of OS to perform comparative analysis of algorithms.	Cognitive	2	2	A2, Q2, Midterm, Final Term
CLO-3	Examine algorithms of system resource management to select appropriate algorithms for resource management.	Cognitive	4	3	A3/Project, Q3, Final Term

III. Course Assessment

Evaluation Methods	Weight (%)
Quizzes	10
Assignments	10
Presentation/Project	5
Midterm	25
Final Term	50
Total	100

IV. Grading Policy

For students admitted in Fall 2021 and onwards

Grade	A+	A	B+	В	C +	C	D+	D	F
%age	>=90	80-89	75-79	70-74	65-69	60-64	55-59	50-54	< 50
GPA	4.00	4.00	3.50-3.99	3.00-3.49	2.50-2.99	2.00-2.49	1.50-1.99	1.00-1.49	0.00

V. Course Contents

Introduction to Operating Systems, What is an OS, Single User Systems, Batch Systems, Multi programmed Systems, Time Sharing Systems, Multiprocessor Systems, Real Time Systems Computer System Structures (Computer System Operation, I/O Structure, Storage Structure, Storage Hierarchy, Hardware Protection) Operating System Structures (Operating Systems Concepts, System Calls) Processes & Threads (Process Concept, Process Scheduling, Operation on Processes, Cooperating Processes, Threads) CPU Scheduling (Introduction to Scheduling, Scheduling Criteria, Scheduling Algorithms) Process Synchronization (The Critical Section Problem, Synchronization Hardware, Semaphores, Classical Problems of Synchronization) Deadlocks (Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Avoidance and Detection) Memory Management (Logical vs. Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging) Virtual Memory (Demand Paging, Page Replacement, Page Replacement Algorithms, Allocation of frames, Thrashing) File System Interface and Implementation (File Concept, Access Methods, Directory Structure, Protection, File System Structure, Allocation Methods, Free Space Management, Directory Implementation)

VI. Weekly Breakdown

Week	CLOs	Topics	References
No.			
1	CLO-1	Types of software, Application Software and System software, Application software categories, System software categories.	Chapter 1
2		Introduction to OS, Single user, Multi user and Network OS, H/W dependent and independent OS, Important OS components, Kernel, Shell, Shell types	Chapter 1
3		Type of services provided by OS, Uni- programming and Multi-programming, Uni-tasking and Multi-tasking, Uni- processing and Multi-processing.	Chapter 2
4		Distributed systems and its types, Reason for building distributed systems,	Chapter 2
5		SPOOLing, Buffering, Real-Time systems, Booting mechanism.	Chapter 3
6	CLO-2	Process and process states. Process Control Block, Independent and Cooperating processes, Process and Threads, Hierarchy of processes.	Chapter 3
7		Inter Process Communication, Process Synchronization, Race condition, Mutual exclusion, Critical section, Achieving process synchronization.	Chapter 3
8		Scheduler and scheduling queues, Types of schedulers, CPU and I/O bound processes, Context switching, Criteria for comparing CPU scheduling algorithms.	Chapter 4
9		Midterm Exams	
10	CLO-2	Multi-level queue scheduling, Multi-level feedback queue (MLFBQ) scheduler, Multi-processor scheduling, and CPU Scheduling Algorithm evaluation.	Chapter 5
11		Introduction to Deadlocks, Deadlock characterization, Deadlock prevention, Deadlock avoidance.	Chapter 5

Introduction to Banker's Algorithm and Deadlock detection in single resource of		Chapter 6
T Deadlock defection in single resource of	each resource type.	
Deadlock detection in multiple resource	ces of each resource type,	Chapter 6
Deadlock Recovery, Techniques used		1
	to recover processes from	
deadlock.		
14 CLO-3 Introduction of memory management,	Swapping, Single partition	Chapter 7
allocation and Multiple partition alloca		r
schemes. Multiprogramming with Fixed	partition.	
Multiprogramming with Variable partition	on, First-Fit, Best-Fit, Next-	Chapter 7
Fit and Worst-Fit algorithms. External f		1
	ragmentation, compaction,	
Paging, Segmentation.		
Virtual Memory, Demand Paging,	Page Replacement, Page	Chapter 8
Replacement algorithms, Thrashing, In	troduction to File System,	
Directory structure, Single and Two leve	el directory, Tree structured	
directory, Acyclic graph directories, Ger	neral graph directories, File	
protection.		

OPERATING SYSTEMS (SEOS-225) – LAB

I. Course Details

Credit Hours	3 (2+1)		
Pre-requisites	Data Structures and Algorithms		
Course Leader	Dr. Jaweria Kanwal		
Recommended Textbook(s)	(s) Operating system by Albert shilberschatz, Latest Edition, 2021		
Recommended Reference	1. Modern Operating Systems, Andrew Tanenbaum, Thirteen Edition,		
(Books/Websites/Articles)	Prentice Hall, 2021		
	2. Operating System by William Stalling, Latest Edition, 2021		

II. Lab Learning Outcomes (CLOs)

CLOs	Description	Domain	Taxonomy level	PLOs	Assessment Artifacts
CLO-1	Demonstrate the task by interpreting, summarizing, and explaining key concepts/ principles / relationships within the domain, enabling them to apply acquired knowledge effectively in diverse contexts.	Cognitive	2	2	Lab Task, Lab Report, Final Exam, Semester Project
CLO-2	Practice theoretical concepts for conducting the experiments / projects of varying complexities to achieve desired outcomes.	Psychomotor	3	4	Lab Task, Lab Report, Final Exam, Semester Project
CLO-3	Practice underlying theoretical concepts through modern tool usage to achieve desired outcomes.	Psychomotor	3	5	Lab Task, Final Exam, Semester Project
CLO-4	Contribute actively and responsibly individually or in teams during laboratory activities, demonstrating a positive attitude and willingness to participate.	Affective	2	6	Lab Task, Final Exam, Semester Project

III. Lab Assessment

Evaluation Methods	Weight (%)
Internal Evaluation (Lab Report/Lab Task/Lab Project)	60
Open Ended Lab	15
Final Term Exam	25
Total	100

IV. Weekly Breakdown (All CLOs shall be assessed in every lab)

Week No.	Topics
1	Introduction to Linux. Advantages of Linux and different versions of UNIX. Tutorial on installation of Linux. Getting started with your Linux and general overview of the OS
2	A brief introduction to a few of the basic commands of Linux.
3	Exploring the Linux file system, including the basic concepts of files and directories and their organization in a hierarchical tree structure.
4	Overview of The Bourne Again Shell
5	Performing Basic File Management (copy command (cp), move command (mv), rm, touch). Directory utilities (mkdir, rmdir) and wildcard patterns.
6	An introduction to Processing of Text Streams using Text Processing Filters.
7	Parameters passing in Linux.
8	Use of Unix Streams, Pipes and Redirects.
9	Midterm Exams
10	Implementation of Environment variables in Linux, Searching Text Files Using Regular Expressions (grep)
11	Programming Fundamentals, if-else, for, While, do while loop shell scripts.
12	Implementing Switch case structure, functions and Various Programming related exercises in Linux. fork (), getpid(), getppid(), wait(), opendir(), readdir(), closedir() system calls implementation using Linux.
13	File handling in Linux using System calls, Implementation of System calls using GCC Compiler in Linux.
14	Open Ended Lab
15	Implementation of various CPU scheduling algorithms
16	Final Lab Exam