# CSC236 Notes

### Induction

**Predicate:** A logical statement  $P: \mathbb{N} \to \{\text{True}, \text{False}\}\$  based on the value of a variable, usually n.

|                | Simple Induction                                | Strong/Complete Induction                                                     |
|----------------|-------------------------------------------------|-------------------------------------------------------------------------------|
| Base Case      | $P(\alpha)$                                     | $P(\alpha_1), \dots P(\alpha_n)$                                              |
| Inductive Step | $\forall k \ge \alpha, P(k) \Rightarrow P(k+1)$ | $\forall k > \alpha_n, \left( \forall k' < k, P(k') \right) \Rightarrow P(k)$ |

Well-Ordering Principle (WOP/PWO): Every non-empty subset of  $\mathbb{N}$  contains a minimum.

$$\forall S \subseteq \mathbb{N}, S \neq \emptyset \Rightarrow \exists m \in S, \forall s \in S, m \leq s$$

- Simple induction, Strong induction, and WOP are equivalent definitions!
- WOP proofs involve assuming the opposite, defining  $S = \{\text{items where contadiction holds}\}$ , dividing m (usually into m-1), proving  $m-1 \notin S$ , and connecting it to  $m \in S$  to show  $m \notin S$ .
- In CSC236, I guess we don't have to rigorously prove the set we're using is a bijection of a subset of  $\mathbb{N}$ .

### **Recursively-Defined Set:** A set defined by its simplest elements and all possible combinations of them.

Let E be defined as the smallest such that:

- $\forall i \in \mathbb{N}, \quad x_i \in E$
- $\forall e_1, e_2 \in E, (e_1 + e_2) \in E \text{ and } (e_1 \times e_2) \in E$

Structural Induction: Induction based on a recursively-defined set.

```
Base Case: P(\text{simplest element})
```

Inductive Step:  $P(\text{simple elements}) \Rightarrow P(\text{combinations of simple elements}) (eg. <math>P(x), P(y) \Rightarrow P(x+y), P(x \times y)$ 

```
\begin{aligned} \text{Define } P(e) \colon & \text{OperatorCount}(e) = \text{VariableCount}(e) - 1 \\ \text{Show } \forall e \in E, P(e) \\ & \textit{Base Case: Show } \forall i \in \mathbb{N}, P(x_i) \colon & \text{OperatorCount}(x_i) = \text{VariableCount}(x_i) - 1 \\ & \text{Let } i \in \mathbb{N} \\ & \text{OperatorCount}(x_i) = 0 = 1 - 1 = \text{VariableCount}(x_i) - 1 \\ & \textit{Inductive Step: Show } \forall e_1, e_2 \in E, P(e_1) \land P(e_2) \Rightarrow P\big((e_1 + e_2)\big) \land P((e_1 \times e_2)) \\ & \text{Let } e_1, e_2 \in E \\ & \text{Assume } P(e_1) \colon & \text{OperatorCount}(e_1) = \text{VariableCount}(e_1) - 1 \\ & \text{Assume } P(e_2) \colon & \text{OperatorCount}(e_2) = \text{VariableCount}(e_2) - 1 \\ & \text{Show } P\big((e_1 + e_2)\big) \colon & \text{OperatorCount}((e_1 + e_2)\big) = \text{VariableCount}((e_1 + e_2)) - 1 \\ & \text{OperatorCount}((e_1 + e_2)) = \text{OperatorCount}(e_1) + 1 + \text{OperatorCount}(e_2) \\ & = (\text{VariableCount}(e_1) - 1) + 1 + (\text{VariableCount}(e_2) - 1) \\ & = \text{VariableCount}(e_1) + \text{VariableCount}(e_2) - 1 \end{aligned}
```

 $\textbf{Show}\ P(e_1\times e_2) \colon \mathbf{OperatorCount}(e_1\times e_2) = \mathbf{VariableCount}(e_1\times e_2) - 1$ 

= VariableCount $((e_1 + e_2)) - 1$ 

By literally the same steps as above, you can show this.

### Correctness

**Preconditions:** A predicate that's true before a function executes. Ideally, weak constraints.

**Postconditions:** A predicate that's true after a function executes. Ideally, strong constraints.

**Loop Invariant (LI):** A predicate that's true for every iteration of a loop before that iteration executes

- Must be separately claimed & proven via induction on iteration number
- Might need expressed as  $LI_k$  or LI(k) in terms of k, the iteration number.

Partially Correct: A program where, if preconditions hold and the program terminates, postconditions hold

> *To Prove It:* Assume preconditions, assume termination, show postconditions

**Totally Correct:** A partially correct program that terminates.

> *To Prove It:* Show partial correctness, show termination

```
pow(x, y):
Precondition:
                             x \in \mathbb{R}, y \in \mathbb{N}
                                                                                                    1.
                                                                                                              z = 1
                             x \in \mathbb{R}, y \in \mathbb{N}, z = 1, m = 0
Loop Precondition:
                                                                     (simple explanation)
                                                                                                    2.
                                                                                                              m = 0
Loop Invariant:
                             z = x^m, m \le y, m \in \mathbb{N}
                                                                     (prove this)
                                                                                                    3.
                                                                                                              while m < y:</pre>
Loop Condition:
                             x < y
                                                                                                    4.
Loop Postcondition:
                             z = x^m, m \le y, m \in \mathbb{N}, m \ge y
                                                                     (simple explanation)
                                                                                                    5.
                                                                                                    6.
                                                                                                              return z
Postcondition:
                                                                     (prove this)
                             return x^y
```

| Proof  | Tech    | niques: |
|--------|---------|---------|
| 1 1001 | 1 ((11) | myucs.  |

| No recursion/loops | Analyze code line-by-line.                                                                         |  |  |
|--------------------|----------------------------------------------------------------------------------------------------|--|--|
| Recursion          | Show preconditions hold on recursive call                                                          |  |  |
|                    | Proceed via induction (even if there are loops inside)                                             |  |  |
|                    | Show input size of recursive call is smaller than that of original call                            |  |  |
|                    | Thus postconditions for the recursive call hold                                                    |  |  |
| Loops              | Prove a LI exists (For nested loops, outer, inner LIs. For consecutive loops, multiple LIs)        |  |  |
|                    | Show LI holds before loop executes                                                                 |  |  |
|                    | • Assume LI holds at iteration start, show LI holds before next iteration (via induction)          |  |  |
|                    | Assume LI holds at loop end, show LI postconditions hold                                           |  |  |
|                    | Prove loop termination (when proving termination)                                                  |  |  |
|                    | • While Loop: Find a decreasing sequence $E_k \subseteq \mathbb{N}$ where $k=$ iteration count and |  |  |
|                    | $E_k =$ upper bound on remaining iterations. By WOP, $E_k$ has a minimum, therefore                |  |  |
|                    | it is finite, so the loop has finitely many iterations and terminates                              |  |  |
|                    | • For Loop: By definition, for loops terminate. Can be written as a while loop.                    |  |  |
|                    | $\circ$ For a loop from $a$ to $b$ , choose $E = b + 1 - x$ to prove termination                   |  |  |
|                    | (since $b, x \in \mathbb{N}, x \le b+1$ )                                                          |  |  |
|                    | <ul> <li>Element-based for loops can be written as looping over indices.</li> </ul>                |  |  |
|                    | Thus postconditions for loop hold                                                                  |  |  |

```
Show pow(x, y) is partially correct
          Assume preconditions, x \in \mathbb{R}, y \in \mathbb{N}
          Assume program terminates
          Show postcondition, x^y is returned
                    Claim LI: z = x^m \land m \le y \land m \in \mathbb{N}
                              Show \forall k \in \mathbb{N}, \text{LI}_k holds
                                         Let k \in \mathbb{N}
                                         Base Case: Show LI<sub>0</sub>: z = x^m \land m \le y \land m \in \mathbb{N}
                                                   At line 3, before the loop starts, we know z = 1, m = 0
                                                                                 z = 1 = x^0 = x^m
                                                                      m = 0 \in \mathbb{N} and 0 < y (since y \in \mathbb{N})
                                         Inductive Step: Show LI_k \Rightarrow LI_{k+1}
                                                   Assume at least k + 1 iterations (otherwise, LI_{k+1} = LI_k via the IH,
                                                   a trivial result), therefore loop condition is true, m_k < y
                                                   Assume LI_k: z_k = x^{m_k} \wedge m_k \leq y \wedge m \in \mathbb{N}
                                                   Show \text{LI}_{k+1}: z_{k+1} = x^{m_{k+1}} \wedge m_{k+1} \leq y \wedge m + 1 \in \mathbb{N}
                                                             By line 5,
                                                                                                     m_{k+1} = m_k + 1 \in \mathbb{N}.
                                                             Since m_k < y, and m_k, y \in \mathbb{N}, m_k + 1 \le y
                                                             By line 4,
                                                                                                      z_{k+1} = z_k x
                                                                                                      z_{k+1} = x^{m_k} x = x^{m_k+1}
                                                             Since z_k = x^{m_k},
                                        Then by induction, LI_k holds for all k \in \mathbb{N}.
                    Since the program terminates, the loop terminates.
                    At loop termination, the LI is true and the loop condition is false, so z = x^m, m \le y, m \ge y.
                    Since m \le y and m \ge y, then m = y.
                    Then z = x^m = x^y is returned, as required by the postcondition.
Show pow(x, y) terminates
          Let k \in \mathbb{N} be the number of iterations of the while loop
          Pick E_k = y - m_k
          Show E is finite
                    By preconditions, m, y \in \mathbb{N},
                                                            we know E \in \mathbb{Z}
                    By LI, which has m \leq y,
                                                             we know E = y - m \ge 0
                    Case 1: There're at most k iterations
                               Then E is finite, as E_k is the last value.
                    Case 2: There're at least k + 1 iterations
                                                                E_{k+1} = y - m_{k+1}
                                                                      =y-(m_k+1)
                                                                      = (y - m_k) - 1= E_k - 1
                              E is decreasing and E \subseteq \mathbb{N}, so by PWO, E has a minimum.
                               Then E is finite.
          Since E_k is finite, then there are finitely many iterations, meaning the loop terminates.
          The rest of the code terminates trivially.
          Then the function as a whole terminates.
```

- Variables that don't change throughout iterations shouldn't have subscripts.
- You can just say "assume there are k+1" iterations in proving partial correctness and termination.
- You can move the LI claim outside of the partial correctness proof for clearness

```
select_sort(lst: list):
Precondition:
                       lst is a sortable list
                                                                            1.
                                                                                         for i in range(0, len(lst) - 1):
                       lst[0:i] is sorted, lst[0:i] \le lst[i:]
Outer LI:
                                                                            2.
                       (and i \in \mathbb{N}, 0 \le i \le \text{len(lst)} - 1)
                                                                            3.
                                                                                              for j in range(i + 1, len(lst) - 1):
Inner LI:
                       lst[m] = \min(lst[i:j])
                                                                            4.
                                                                                                    if lst[j] < lst[m]:</pre>
                       (and j \in \mathbb{N}, 1 + i \le j \le \operatorname{len}(\operatorname{lst}) - 1)
                                                                            5.
                                                                                                          m = j
                                                                                              lst[i], lst[m] = lst[m], lst[i]
                                                                            6.
                       lst is sorted in nondecreasing order
Postcondition:
                       (and contains the same elements)
Claim ILI: lst[m] = min(lst[i:j])
           Show \forall k \in \mathbb{N}, \mathrm{ILI}_k holds
                       Let k \in \mathbb{N}
                       Base Case: Show LI<sub>0</sub>: lst[m_0] = min(lst[i:j_0])
                                   At line 2, before the loop starts, we know m_0 = i.
                                   At line 3, the first value of j is j_0 = i + 1
                                                 \min(\operatorname{lst}[i:j_0]) = \min(\operatorname{lst}[i:i+1]) = \min(\operatorname{lst}[i]) = \operatorname{lst}[i] = \operatorname{lst}[m_0]
                       Inductive Step: Show LI_k \Rightarrow LI_{k+1}
                                   Assume at least k + 1 iterations (otherwise, LI_{k+1} = LI_k via the IH, a trivial result)
                                   Assume LI_k: lst[m_k] = min(lst[i:j_k])
                                   Show LI_{k+1}: lst[m_{k+1}] = min(lst[i:j_{k+1}])
                                               Case 1: \operatorname{lst}[j_{k+1}] \geq \operatorname{lst}[m_k]
                                                          Lines 4-5 don't activate, so m_{k+1}=m_k
                                                          Then \min(\operatorname{lst}[i:j_{k+1}]) = \min(\operatorname{lst}[i:j_k]) = \operatorname{lst}[m_k] = \operatorname{lst}[m_{k+1}]
                                               Case 2: lst[j_{k+1}] < lst[m_k]
                                                          Lines 4-5 activate, so m_{k+1} = j_{k+1}
                                                          Since lst[m_{k+1}] = lst[j_{k+1}] < lst[m_k] = min(lst[i:j_k]),
                                                          Then \operatorname{lst}[m_{k+1}] = \min(\operatorname{lst}[i:j_{k+1}])
                       Then by induction, LI_k holds for all k \in \mathbb{N}.
Claim OLI: lst[0:i] is sorted \land lst[0:i] \le lst[i:]
           Show \forall k \in \mathbb{N}, LI_k holds
                       Let k \in \mathbb{N}
                       Base Case: Show LI<sub>0</sub>: lst[0:i_0] is sorted \land lst[0:i_0] \le lst[i_0:]
                                   The loop starts at i_0 = 0, making both statements vacuously true.
                       Inductive Step: Show LI_k \Rightarrow LI_{k+1}
                                   Assume at least k + 1 iterations (otherwise, LI_{k+1} = LI_k via the IH, a trivial result)
                                   Assume LI_k: lst[0: i_k] is sorted \land lst[0: i_k] \le lst[i_k:]
                                   Show LI_{k+1}: lst[0: i_{k+1}] is sorted \land lst[0: i_{k+1}] \le lst[i_{k+1}:]
                                               By line 2, m_{k+1} = i_{k+1}
                                              Since the program terminates, the inner loop terminates at j = \text{len}(\text{lst}) - 1
                                               By ILI,
                                                                      lst[m_{k+1}] = \min(lst[i_{k+1}:j]) = \min(lst[i_{k+1}:j])
                                               After line 6,
                                                                      lst[i_{k+1}] = lst[m_{k+1}]
                                                                      \operatorname{lst}[i_{k+1}] = \min(\operatorname{lst}[i_{k+1}:]), \text{ so } \operatorname{lst}[i_{k+1}] \leq \operatorname{lst}[i_{k+1}:]
                                                                      \operatorname{lst}[0:i_k] \leq \operatorname{lst}[i_{k+1}] and \operatorname{lst}[0:i_k] is sorted
                                               Then lst[0:i_{k+1}] is sorted
                       Then by induction, LI_k holds for all k \in \mathbb{N}.
```

```
Show SelectSort(lst) is partially correct
```

Assume precondition, lst is a sortable list

Assume program terminates

Show postcondition, lst is sorted in nondecreasing order, elements are the same

Since the program terminates, both loops terminate. Outer loop terminates at i = len(lst) - 1.

Since OLI is true, lst[0:len(lst) - 1] is sorted  $\land lst[0:len(lst) - 1] \le lst[len(lst) - 1:]$ 

Since  $lst[0: len(lst) - 1] \le lst[len(lst) - 1:] = lst[len(lst) - 1]$ ,

Then lst[0: len(lst)] = lst is sorted.

Line 6 is the only mutating operation, and it switches the positions of two list items

Then list returns all of its original elements.

#### Show SelectSort(lst) terminates

Let  $k \in \mathbb{N}$  be the number of iterations of the inner loop

$$Pick E_k = len(lst) - 1 - j_k$$

Show E is finite

(We need the LI that I put in brackets; they're easy to prove, just time-taking and annoying)

Since 
$$i + 1 \le j_k \le \text{len}(\text{lst}) - 1$$
, we know  $E \ge 0$ 

Since 
$$i, j_k \in \mathbb{N}$$
, we know  $E = \text{len}(\text{lst}) - 1 - j_k \in \mathbb{Z}$ 

*Case 1:* There're at most k iterations

Then E is finite, as  $E_k$  is the last value.

*Case 2:* There're at least k + 1 iterations

$$\begin{split} E_{k+1} &= \operatorname{len}(\operatorname{lst}) - 1 - j_{k+1} \\ &= \operatorname{len}(\operatorname{lst}) - 1 - (j_k + 1) \text{ (as inner for loop steps by 1)} \\ &= (\operatorname{len}(\operatorname{lst}) - 1 - j_k) - 1 \\ &= E_k - 1 \end{split}$$

E is decreasing and by PWO, E has a minimum.

Then E is finite.

Since  $E_k$  is finite, then there are finitely many iterations, meaning the loop terminates.

The same thing can be done to show the outer loop terminates. (Usually, if you're not specifically told to prove a for loop terminates, you can just say it terminates)

The rest of the code terminates trivially.

Then the function as a whole terminates.

```
Preconditions: b, e \in \mathbb{N}

A's elements comparable with x

A[b:e] is sorted
0 \le b < e \le \text{len}(A)

Postconditions: Returns p \in \mathbb{Z} such that
b \le p \le e
p > b \Rightarrow A[p-1] < x
p < e \Rightarrow A[p] \ge x

Show RecBinSearch(x, A, b, e) is correct

Let P(x). For all inputs of size x = e, be estimating preconditions. Besides:

A's elements comparable with x

2.

3.

4.

4.

5.

6.

7.

8.
```

```
RECBINSEARCH(x, A, b, e):

1.  if e == b + 1:

2.  if x ≤ A[b]:

3.  return b
  else:

4.  return e
  else:

5.  m = [(b + e)/2]

6.  if x ≤ A[m - 1]:

7.  return RECBINSEARCH(x, A, b, m)
  else:

8.  return RECBINSEARCH(x, A, m, e)
```

Let P(n): For all inputs of size n=e-b satisfying preconditions,  $\operatorname{RecBinSearch}(x,A,b,e)$  terminates and satisfies postconditions

Show  $\forall n \in \mathbb{N}, P(n)$  holds

Let  $n \in \mathbb{N}$ 

**Base Case:** Show P(1)

Assume n = e - b = 1, so e = b + 1

Assume all input satisfy preconditions

Show RecBinSearch(x, A, b, e) terminates and satisfies postconditions

Since e = b + 1, we pass into the if branch of line 1.

Then either b or e is returned, terminating the program.

Then for  $p \in \{b, e\}$ ,  $b \le p \le e$  holds; other 2 postconditions vacuously true.

*Inductive Step:* Show  $(\forall k \in \mathbb{N}, k < n \Rightarrow P(k)) \Rightarrow P(n)$  (assume  $n \geq 2$ )

Assume  $\forall k \in \mathbb{N}, k < n \Rightarrow P(k)$ 

Show P(n)

Since  $n=e-b\geq 2$ , then  $e\neq b+1$ , so we pass into the else branch of line 1.

By line 5,  $m = \lfloor \frac{b+e}{2} \rfloor$ 

Since b < e, then  $m = \lfloor \frac{b+e}{2} \rfloor \le \frac{b+e}{2} < \frac{2e}{2} = e$ 

Since e > b, then  $m = \lfloor \frac{b+e}{2} \rfloor > \lfloor \frac{2b}{2} \rfloor = \lfloor b \rfloor = b$ 

**Case 1:**  $x \leq A[m-1]$ 

The if branch of line 6 activates.

Since  $\left|\frac{b+e}{2}\right| \in \mathbb{N}$ , then  $m = \left|\frac{b+e}{2}\right| \in \mathbb{N}$ 

Since b < m < e and A[b:e] is sorted, then A[b:m] is sorted

Since  $0 \le b < m < e \le \text{len}(A)$ , then  $0 \le b < m \le \text{len}(A)$ 

Since b < m < e, then n = e - b > m - b > 0

Then by IH, for P(m-b), since preconditions are satisfied, then recursive call will terminate and its postconditions will hold.

| Recursive Call                 | Want to Show                   |
|--------------------------------|--------------------------------|
| $b \le p \le m$                | $b \le p \le e$                |
| $p > b \Rightarrow A[p-1] < x$ | $p > b \Rightarrow A[p-1] < x$ |
| $p < m \Rightarrow A[p] \ge x$ | $p < e \Rightarrow A[p] \ge x$ |

#1 is true as  $b \le p \le m < e$ , while #2 is true trivially. #3 is also true:

If p < m, then conditional holds and  $A[p] \ge x$ .

If p = m, then  $x \le A[m-1] \le A[m] = A[p]$  (as A sorted)

By #1, p > m is impossible

Then all postconditions are satisfied

**Case 2:** x > A[m-1]

The else branch of line 6 activates.

Since  $\lfloor \frac{m+e}{2} \rfloor \in \mathbb{N}$ , then  $m = \lfloor \frac{b+e}{2} \rfloor \in \mathbb{N}$ 

Since b < m < e and A[b:e] is sorted, then A[m:e] is sorted

Since  $0 \le b < m < e \le \text{len}(A)$ , then  $0 \le m < e \le \text{len}(A)$ 

Since b < m < e, then n = e - b > e - m > 0

Then by IH, for P(e-m), since preconditions are satisfied, then recursive call will terminate and its postconditions will hold.

| Recursive Call                 | Want to Show                   |
|--------------------------------|--------------------------------|
| $m \le p \le e$                | $b \le p \le e$                |
| $p > m \Rightarrow A[p-1] < x$ | $p > b \Rightarrow A[p-1] < x$ |
| $p < e \Rightarrow A[p] \ge x$ | $p < e \Rightarrow A[p] \ge x$ |

#1 is true as  $b < m \leq p \leq e$ , while #3 is true trivially. #2 is also true:

If p > m, then conditional holds and A[p-1] < x.

If p = m, then x > A[m-1] = A[p-1]

By #1, p < m is impossible

Then all postconditions are satisfied

# **Running-Time Analysis**

**Step:** A sequence of code that execute in constant time

Running-Time Analysis: Analyzing number of steps as a function of input size

- Focus on worst-case measure, T(n).
- Often, no simple expression for T(n), prove bounds using asymptotic notation

**Big-O:** A running-time has an upper bound,  $T(n) \in \mathcal{O}\big(f(n)\big) \Leftrightarrow \exists n_0, c \in \mathbb{R}^+, \forall n \geq n_0, T(n) \leq c \cdot f(n)$  **Omega:** A running-time has a lower bound,  $T(n) \in \Omega\big(f(n)\big) \Leftrightarrow \exists n_0, c \in \mathbb{R}^+, \forall n \geq n_0, T(n) \geq c \cdot f(n)$  **Theta:** A running-time has a tight bound,  $T(n) \in \Omega\big(f(n)\big) \Leftrightarrow T(n) \in \mathcal{O}\big(f(n)\big) \text{ and } T(n) \in \Omega\big(f(n)\big)$ 

**Master Theorem:** For  $a, n_0 \in \mathbb{Z}^+, b, k \in \mathbb{R}, b > 1, k \ge 0$ , we can solve recurrences relations of the form

$$T(n) = \begin{cases} 1 & n \leq n_0 \\ aT\left(\frac{n}{b}\right) + n^k & n > n_0 \end{cases} = \begin{cases} \Theta(n^k) & a < b^k \; (\log_b a < k) \\ \Theta(n^k \log n) & a = b^k \; (\log_b a = k) \\ \Theta(n^{\log_b a}) & a > b^k \; (\log_b a > k) \end{cases}$$

Requires recursive call input sizes to be roughly  $T(\frac{n}{b})$ , but we can ignore floors/ceilings and small constants.

Repeated Substitution: Technique to guess a tight bound before formally proving it.

Find worst-case running-time T(n) recursively, where  $\,n\,$  is the input size.

**Base Case:** n < 1

Then line 1 (constant-time) and 2 (constant-time) run. Thus there is 1 step.

**Recursive Case:** n > 1

Then lines 1 (constant-time, 1 step) and 3 run. Then input size for line 3 is n-1, so there are T(n-1) steps.

Find a tight bound for T(n). Use **repeated substitution.** 

$$T(n) = 1 + T(n-1)$$
 Make  $T(n) = k + T(n-k)$  not a recurrence relation by getting rid of  $T(n-k)$  with a value of  $k$ . Try  $k = n-1$ : 
$$= 2 + \left(1 + T(n-3)\right) = 3 + T(n-3)$$
 
$$= \cdots$$
 
$$= k + T(n-k)$$
 
$$= k + T(n-k)$$
 
$$= n$$

We can then formally prove T(n) = n using induction on  $n \in \mathbb{N}$ .

Let  $n \in \mathbb{N}$  Inductive Step: Show P

**Base Case:** Show P(1):

T(1) = 1 by definition so this is trivial.

*Inductive Step:* Show  $P(n) \Rightarrow P(n+1)$ Assume T(n) = n

Show 
$$T(n+1) = n+1$$
  
 $T(n+1) = 1 + T((n+1) - 1)$   
 $= T(n) + 1$   
 $= n + 1$ 

Therefore,  $T(n) = n \in \Theta(n)$ 

```
First, let's show \max\{T(\lfloor \frac{n}{2} \rfloor), T(\lceil \frac{n}{2} \rceil)\} = T(\lceil \frac{n}{2} \rceil). This is true if T is non-decreasing,
Show T is non-decreasing, meaning \forall n_0, n_1 \in \mathbb{N}, n_0 < n_1 \Rightarrow T(n_0) \leq T(n_1)
                 Let n_1 \in \mathbb{N}
                 Let P(n_1): \forall n_0 \in \mathbb{N}, n_0 < n_1 \Rightarrow T(n_0) \leq T(n_1)
                 Base Cases: P(1), P(2)
                                 Show P(1): \forall n_0 \in \mathbb{N}, n_0 < 1 \Rightarrow T(n_0) \leq T(1)
                                                                                                                                     Vacuously true; n_0 \in \mathbb{N}, n_0 < 1 impossible
                                 Show P(2): \forall n_0 \in \mathbb{N}, n_0 < 2 \Rightarrow T(n_0) \leq T(2)
                                                  Let n_0 \in \mathbb{N}
                                                  Assume n_0 < 2, so n_0 = 1
                                                                                                                    T(1) = 1 \le 1 + \max\{T(|\frac{2}{2}|), T([\frac{2}{2}])\} = T(2)
                                                  Show T(n_0) \leq T(2)
                Inductive Step: Show \forall k > 2, (\forall k' < k, P(k')) \Rightarrow P(k)
                                 Let k > 2
                                 Assume \forall k' < k, P(k'): \forall n_0 \in \mathbb{N}, n_0 < k' \Rightarrow T(n_0) \leq T(k')
                                 Show P(k): \forall n_0 \in \mathbb{N}, n_0 < k \Rightarrow T(n_0) \leq T(k)
                                                  Let n_0 \in \mathbb{N}
                                                  Assume n_0 < k
                                                  Show T(n_0) \leq T(k)
                                                                 \begin{array}{c} (n_0) \leq T(n) \\ \text{Since } \lfloor \frac{n_0}{2} \rfloor < \lceil \frac{k}{2} \rceil < k, \text{ by IH, } T(\lfloor \frac{n_0}{2} \rfloor) \leq T(\lceil \frac{k}{2} \rceil) \\ T(n_0) = 1 + \max \left\{ T\left( \left\lfloor \frac{n_0}{2} \right\rfloor \right), T\left( \left\lceil \frac{n_0}{2} \right\rceil \right) \right\} \end{array}
                                                                                                                  \leq 1 + \max\left\{T\left(\left\lceil \frac{\bar{k}}{2} \right\rceil\right), T\left(\left\lceil \frac{\bar{k}}{2} \right\rceil\right)\right\}
                                                                                                                  =1+T\left(\left\lceil\frac{k}{2}\right\rceil\right)
```

=T(k)

Now, we simplify the expression and apply repeat substitution.

$$T(n) \approx \begin{cases} 1 & n = 1 \\ 1 + T\left(\frac{n}{2}\right) & n > 1 \end{cases}$$

$$T(n) \approx 1 + T\left(\frac{n}{2}\right)$$

$$= 1 + \left(1 + T\left(\frac{n}{4}\right)\right) = 2 + T\left(\frac{n}{4}\right)$$

$$= 2 + \left(1 + T\left(\frac{n}{8}\right)\right) = 3 + T\left(\frac{n}{8}\right)$$

$$= \cdots$$

$$= k + T\left(\frac{n}{2k}\right)$$

To remove  $T(\frac{n}{2^k})$ , we can set  $2^k=n$  or  $k=\log_2 n$ .  $T(n)\approx k+T\left(\frac{n}{2^k}\right)$   $=\log_2 n+T(1)$   $=\log_2 n+1$ 

While the answer is not necessarily true, our tight bound is probably  $\Theta(\log n)$ , which we will now prove formally.

```
Show T(n) \in \mathcal{O}(\log_2(n-1)+2), meaning \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow T(n) \leq \log_2(n-1)+2
            Pick n_0 = 2
            Let n \in \mathbb{N}
            Let P(n): n \ge 2 \Rightarrow T(n) \le \log_2(n-1) + 2
                                                              T(2) = 1 + T(1) = 2 = \log_2(2 - 1) + 2
             Base Case: Show P(2)
             Inductive Step: Show \forall k > 2, (\forall k' < k, P(k')) \Rightarrow P(k)
                         Let k > 2
                         Assume \forall k' < k, P(k') : k' \ge 2 \Rightarrow T(k') \le \log_2(k'-1) + 2
                         Show P(k): k \ge 2 \Rightarrow T(k) \le \log_2(k-1) + 2
                                                                              T(k) = 1 + T\left(\left|\frac{\kappa}{2}\right|\right)
                                                                                      \leq 1 + \log_2\left(\left\lceil\frac{k}{2}\right\rceil - 1\right) + 2
                                                                                      \leq 3 + \log_2\left(\frac{k+1}{2} - 1\right)
                                                                                      = 3 + \log_2\left(\frac{k-1}{2}\right)
= 3 + \log_2(k-1) - 1
                                                                                       = 2 + \log_2(k-1)
Show T(n) \in \Omega(\log_2 n), meaning \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow T(n) \geq \log_2 n
            Pick c = 1
            Pick n_0 = 1
            Let n \in \mathbb{N}
            Let P(n): n \ge 1 \Rightarrow T(n) \ge \log_2 n
                                                               T(1) = 1 \ge 0 = \log_2 1
             Base Case: Show P(1)
             Inductive Step: Show \forall k > 1, (\forall k' < k, P(k')) \Rightarrow P(k)
                         Assume \forall k' < k, P(k'): k' \ge 1 \Rightarrow T(k') \ge \log_2 k'
                         Show P(k): k \ge 1 \Rightarrow T(k) \ge \log_2 k
                                             T(k) = 1 + T\left(\left\lceil \frac{k}{2} \right\rceil\right) \ge 1 + \log_2\left\lceil \frac{k}{2} \right\rceil \ge 1 + \log_2\frac{k}{2} = 1 + \log_2 k - 1 = \log_2 k
We know T(n) \in \Omega(\log_2 n) = \Omega(\log n)
We know T(n) \in \mathcal{O}(\log_2(n-1) + 2) = \mathcal{O}(\log n)
Therefore T(n) \in \Theta(\log n)
```

```
MergeSort(A):
 Find worst-case running-time T(n), n = len(A) is input size.
                                                                                                  if len(A) > 1:
 Base Case: T(1)
                                                                                                      F = A[: len(A)//2]
                                                                                                      S = A[len(A)//2:]
 Then nothing happens, 1 step.
                                                                                                      MergeSort(F)
                                      T(1) = 1
                                                                                                      MERGESORT(S)
 Recursive Case: T(n) for n > 1
                                                                                                      Merge(F, S, A)
 Line 1 is 1 step.
                                                                                              Merge(F, S, A):
 Lines 2, 4 are a recursive call of input size \lfloor \frac{n}{2} \rfloor
                                                                                             1. i = j = 0
                                                                                                 while i + j < \text{len}(A):
 Lines 3, 5 are a recursive call of input size \lceil \frac{n}{2} \rceil
                                                                                                      if i == len(F) or (j < len(S) and S[j] < F[i]):
 Line 6 is n steps (since in Merge, k = i + j increases by 1 each
                                                                                                          A[i+j] = S[j]
 iteration until k \geq n)
                                                                                                          j = j + 1
                                                                                                      else: \# i < len(F) and (j == len(S) \text{ or } S[j] \ge F[i])
                  \therefore T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n + 1
                                                                                                          A[i+j] = F[i]
                                                                                                          i = i + 1
Now, we apply repeated substitution...
                    T(n) \approx 2T\left(\frac{n}{2}\right) + n + 1
```

$$\begin{split} &=2\left(2T\left(\frac{n}{2^2}\right)+\frac{n}{2}+1\right)+n+1=2^2T\left(\frac{n}{2^2}\right)+2n+(1+2)\\ &=2^2\left(2T\left(\frac{n}{2^3}\right)+\frac{n}{2^2}+1\right)+2n+(1+2)=2^3T\left(\frac{n}{2^3}\right)+3n+(1+2+2^2)\\ &=\cdots\\ &=2^kT\left(\frac{n}{2^k}\right)+kn+\sum_{i=0}^{k-1}2^i \end{split}$$

Set  $k = \log_2 n$ , then

$$= nT(1) + n\log_2 n + \sum_{i=0}^{\log_2 n - 1} 2^i$$
 
$$= n\log_2 n + n + (2^{\log_2 n} - 1)$$
 
$$= n\log_2 n + 2n - 1$$

We can alternatively visualize  $T(n) = 2T(\frac{n}{2}) + n + 1$  like:



| Nodes         | RT/Node         | Total RT          |
|---------------|-----------------|-------------------|
| 1             | n+1             | n+1               |
| 2             | $\frac{n}{2}+1$ | n+2               |
| 4             | $\frac{n}{4}+1$ | n+4               |
| :             | :               | :                 |
| $\frac{n}{2}$ | 2 + 1           | $n + \frac{n}{2}$ |
| n             | 1               | n                 |

Height is  $n = 2^h$ , or  $h = \log_2 n$ Thus RT is  $hn + \sum_{i=0}^{h-1} 2^i = n \log_2 n + 2n - 1$ 

eg. Integer multiplication,  $X \times Y$ , treat X, Y as lists of base 2 numbers, add 0s in front to equalize list lengths.

**Iterative Approach:** We multiply each digit of X with each digit of Y, multiply by 10, collect results:  $\Theta(n^2)$ 

#### Divide-and-Conquer Approach:

If X, Y are not oddly-lengthed, pad them with a 0 in front. 1. **if** n == 1: Bisect X into  $X_0 = \begin{bmatrix} x_0, \dots, x_{\frac{n}{2}-1} \end{bmatrix}, X_1 = \begin{bmatrix} x_{\frac{n}{2}}, \dots, x_{n-1} \end{bmatrix}$ Bisect Y into  $Y_0 = \begin{bmatrix} y_0, \dots, y_{\frac{n}{2}-1} \end{bmatrix}, Y_1 = \begin{bmatrix} x_{\frac{n}{2}}, \dots, x_{n-1} \end{bmatrix}$ 2. return XY # product of 1-bit numbers split X, Y into  $X_1, X_0, Y_1, Y_0$  as described above  $Y_1 = X_1, Y_1, Y_2 = X_1, Y_3 = X_2, Y_4, Y_5 = X_4, Y_6 = X_1, Y_7 = X_1, Y_8 = X_1,$ Note that

$$XY = \left(X_1\left(2^{\frac{n}{2}}\right) + X_0\right)\left(Y_1\left(2^{\frac{n}{2}}\right) + Y_0\right)$$
  
=  $X_1Y_1(2^n) + (X_0Y_1 + X_1Y_0)\left(2^{\frac{n}{2}}\right) + X_0Y_0$ 

MULT(X, Y, n):

- 5.  $P_2 = MULT(X_1, Y_0, \lceil n/2 \rceil) \# ... the extra 0 added...$
- 6.  $P_3 = MULT(X_0, Y_1, \lceil n/2 \rceil) \# ... when n is odd$
- 7.  $P_4 = MULT(X_0, Y_0, \lceil n/2 \rceil)$
- 8. **return**  $2^{2\lceil n/2 \rceil} \cdot P_1 + 2^{\lceil n/2 \rceil} \cdot P_2 + 2^{\lceil n/2 \rceil} \cdot P_3 + P_4$

Running-time of such an algorithm is  $T(n) = \begin{cases} 1 & n=1\\ 4T(\lceil \frac{n}{2} \rceil) + n & n>1 \end{cases}$ 

By Master Theorem, a=4,b=2,k=1, since  $4>2^1$ , we have  $T(n)\in\Theta(n^{\log_2 4})=\Theta(n^2)$ , no better? But wait, realize that

$$\begin{split} XY &= (X_0 + X_1)(Y_0 + Y_1) \\ &= X_0Y_0 + X_0Y_1 + X_1Y_0 + X_1Y_1 \\ X_0Y_1 + X_1Y_0 &= (X_0 + X_1)(Y_0 + Y_1) - X_0Y_0 - X_1Y_1 \\ & \therefore XY &= X_1Y_1(2^n) - \left((X_0 + X_1)(Y_0 + Y_1) - X_0Y_0 - X_1Y_1\right)\left(2^{\frac{n}{2}}\right) - X_0Y_0 \end{split}$$

We have to compute  $(X_0 + X_1)(Y_0 + Y_1)$ , but we don't need to find  $X_0Y_1$  and  $X_1Y_0$  anymore.

# Running-time is now

$$T(n) = \begin{cases} 1 & n = 1 \\ 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) + n & n > 1 \end{cases}$$

(I don't know why there's the +1)

Accept that  $T(\lceil \frac{n}{2} \rceil + 1) \approx T(\lceil \frac{n}{2} \rceil)$  from the POV of 4. Master Theorem, then a = 3, b = 2, k = 1.

Since 
$$4 > 2^1$$
, then  $T(n) \in \Theta(n^{\log_2 3}) \approx \Theta(n^{1.58})$ 

```
Mult2(X, Y, n):
```

- **if** n == 1: 1.
- 2. **return** XY # product of 1-bit numbers
- 3. split X, Y into  $X_1$ ,  $X_0$ ,  $Y_1$ ,  $Y_0$  as described above
- $P_1 = Mult2(X_1, Y_1, \lceil n/2 \rceil)$
- 5.  $P_2 = MULT2(X_1 + X_0, Y_1 + Y_0, \lceil n/2 \rceil + 1)$
- 7.
- $P_4 = \text{MULT2}(X_0, Y_0, \lceil n/2 \rceil)$ return  $2^{2\lceil n/2 \rceil} \cdot P_1 + 2^{\lceil n/2 \rceil} \cdot (P_2 P_1 P_4) + P_4$

## Formal Language Theory

```
Alphabet (\Sigma): Finite set of symbols
                                                                                                                 Length: Of string s, number of symbols in s, denoted |s|
                                                                                                                                \Sigma^n = \{ s \text{ over } \Sigma : |s| = n \}
String: Over alphabet \Sigma, finite sequence of symbols from \Sigma.
                                                                                                                         • \Sigma^* = \{s \text{ over } \Sigma\} = \bigcup_{i=0}^{\infty} \Sigma^i
               Empty String: The string of length 0, denoted \epsilon
Language (L): Over alphabet \Sigma, a set L \subseteq \Sigma^*.
        \begin{array}{ll} \blacktriangleright & L_1 + L_2 = L_1 \cup L_2 \\ \blacktriangleright & L_1 - L_2 = L_1 \setminus L_2 \\ \blacktriangleright & L_1 \times L_2 = L_1 \cdot L_2 = L_1 L_2 \\ & = \{s_1 s_2 \in \Sigma^* \colon s_1 \in L_1, s_2 \in L_2\} \end{array} 
                                                                                                              \begin{array}{ll} \blacktriangleright & L^k = \{s_1 \cdots s_k \in \Sigma^* \colon \! s_1, \ldots, s_k \in L\} \\ \blacktriangleright & L^* = \bigcup_{k=0}^{\infty} L^k \text{ ("Kleene Star")} \\ \blacktriangleright & L^+ = \bigcup_{k=1}^{\infty} L^k \end{array}

ightharpoonup \overline{L} = \Sigma^* - L ("Complement")
Regular Expression (\mathcal{R}_{\Sigma}, "regex"): Over alphabet \Sigma, the smallest set containing
                                                                            \triangleright (R)^*,
                                                                                                                  for all R \in \mathcal{R}_{\Sigma}
       \triangleright \epsilon
                                                                            (R_1R_2)^*,
                                                                                                                  for all R_1, R_2 \in \mathcal{R}_{\Sigma}
        \triangleright x, for all x \in \Sigma

ightharpoonup (R_1 + R_2)^*, for all R_1, R_2 \in \mathcal{R}_{\Sigma}
Matched Language (\mathcal{L}): A language \mathcal{L}(\mathcal{R}_{\Sigma}) matched by a regular expression \mathcal{R}_{\Sigma}
        \triangleright \mathcal{L}(\emptyset) = \emptyset
                                                                            \mathcal{L}(R^*) = (\mathcal{L}(R))^*,
                                                                                                                                                  for all R \in \mathcal{R}_{\Sigma}
        \triangleright \mathcal{L}(\epsilon) = \{\epsilon\}
                                                                             \mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \times \mathcal{L}(R_2), 
                                                                                                                                                 for all R_1, R_2 \in \mathcal{R}_{\Sigma}

ightharpoonup \mathcal{L}(x)=\{x\}, 	ext{ for all } x\in\Sigma
                                                                            \triangleright \mathcal{L}(R_1 + R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2), for all R_1, R_2 \in \mathcal{R}_{\Sigma}
eg. Prove b^*a(a+b)^* \equiv (a+b)^*ab^*
Show \mathcal{L}(b^*a(a+b)^*) \subseteq \mathcal{L}((a+b)^*ab^*)
               Let s \in \mathcal{L}(b^*a(a+b)^*)
               Thus s = s_1 \cdot s_2 \cdot s_3 for some s_1 \in \mathcal{L}(b^*), s_2 \in \mathcal{L}(a), s_3 \in \mathcal{L}((a+b)^*)
               Thus s = b^k \cdot a \cdot u for some k \in \mathbb{N}, u \in \{a, b\}^*
               Case 1: u contains a
                               Thus u contains a last a, so u = u' \cdot a \cdot b^l for some u' \in \{a, b\}^*, l \in \mathbb{N}
                              Thus s = b^k \cdot a \cdot (u' \cdot a \cdot b^l)
                               We know b^k \cdot a \cdot u' \in \mathcal{L}((a+b)^*), a \in \mathcal{L}(a), b^l \in \mathcal{L}(b^*)
                               Then s \in \mathcal{L}((a+b)^*ab^*)
               Case 2: u has no a
                               Thus s = b^k \cdot a \cdot b^l for some k, l \in \mathbb{N}
                               We know b^k \in \mathcal{L}((a+b)^*), a \in \mathcal{L}(a), b^l \in \mathcal{L}(b^*)
                              Then s \in \mathcal{L}((a+b)^*ab^*)
Show \mathcal{L}((a+b)^*ab^*) \subseteq \mathcal{L}(b^*a(a+b)^*)
               Let s \in \mathcal{L}((a+b)^*ab^*)
               Thus s = s_1 \cdot s_2 \cdot s_3 for some s_1 \in \mathcal{L}((a+b)^*), s_2 \in \mathcal{L}(a), s_3 \in \mathcal{L}(b^*)
               Thus s = u \cdot a \cdot b^k for some k \in \mathbb{N}, u \in \{a, b\}^*
               Case 1: u contains a
                              Thus u contains a first a, so u = b^l \cdot a \cdot u' for some u' \in \{a, b\}^*, l \in \mathbb{N}
                              Thus s = (b^l \cdot a \cdot u') \cdot a \cdot b^k
                               We know b^l \in \mathcal{L}(b^*), a \in \mathcal{L}(a), u' \cdot a \cdot b^k \in \mathcal{L}((a+b)^*)
                               Then s \in \mathcal{L}(b^*a(a+b)^*)
               Case 2: u has no a
                              Thus s = b^l \cdot a \cdot b^k for some k, l \in \mathbb{N}
                               We know b^l \in \mathcal{L}(b^*), a \in \mathcal{L}(a), b^k \in \mathcal{L}((a+b)^*)
                               Then s \in \mathcal{L}(b^*a(a+b)^*)
```

## **Deterministic Finite-State Automaton (DFSA):** A flow-chart of "states". Formally, a tuple $\mathcal{D} = (Q, \Sigma, \delta, s, F)$

- ightharpoonup Q is a set of all states in  $\mathcal{D}$
- $\triangleright$   $\Sigma$  is the alphabet of symbols used by  $\mathcal{D}$
- $\delta$ : Q ×  $\Sigma$  → Q where is a transition function between states
  - o  $\delta(q_1, x) = q_2$  means start with state  $q_1$ , after processing x, move to state  $q_2$
  - o  $\delta^*(q_1,x)=q_2$  means do  $\delta(q_1,x)$  for every character of x one-by-one

$$\delta^*(q,x) = \begin{cases} q & \text{if } x = \epsilon \\ \delta(\delta^*(q,x_1),x_2) & \text{if } x = x_1x_2 \text{ for some } x_1 \in \Sigma^*, x_2 \in \Sigma \end{cases}$$

- $\blacktriangleright \quad s \in Q$  is the initial/start state
- $ightharpoonup F\subseteq Q$  is a set of accepting/final states



eg. DFSA on the left. 
$$\begin{aligned} Q &= \{q_0,q_1\} & \delta(q_0,a) = q_1 & \delta^*(q_1,ab) = \delta(\delta^*(q_1,a),b) \\ \Sigma &= \{a,b\} & \delta(q_0,b) = q_0 & = \delta(\delta(\delta^*(q_1,\epsilon),a),b) \\ s &= q_0 & \delta(q_1,a) = q_0 & = \delta(\delta(q_1,a),b) \\ F &= \{q_1\} & \delta(q_1,b) = q_1 & = q_0 \end{aligned}$$

\*In diagrams, we omit dead states, "dead end" states that can't reach an accepting state

\*In diagrams, if  $\delta(q, a) = \delta(q, b)$ , we use one arrow with a, b instead of two arrows.

**Accepts:** For a DFSA  $\mathcal{D}$ , string s if  $\delta^*(s, x) \in F$ 

**Rejects:** For a DFSA  $\mathcal{D}$ , string s if  $\delta^*(s,x) \notin F$ 

**Language:** Accepted/recognized by a DFSA  $\mathcal{D}$ , the language  $\mathcal{L}(\mathcal{D}) = \{x \in \Sigma^* : \delta^*(s, x) \in F\}$ 

**State Invariant:** Predicate for a state,  $P_q(x)$ :  $\delta^*(s,x) = q$ 

- To prove state invariants, use a variant of induction
  - $\circ$  Show  $P_{\epsilon}(\epsilon)$
  - $\hspace{0.5cm} \circ \hspace{0.5cm} \text{Show } P_{a}(x) \Rightarrow P_{a}(xx') \text{ for all } x' \in \Sigma$

eg. Show for the DFSA above,  $\mathcal{L}(\mathcal{D}) = \{x : x \text{ has odd } a's\}.$ 

**Basis:**  $P_s(\epsilon)$ 

 $\epsilon$  has 0 (even) a's,

By definition, 
$$\delta^*(s, \epsilon) = s = q_0$$
.

**Recursive Case:**  $P_{q_0}(x) \Rightarrow P_{q_0}(xx')$  for all  $x' \in \Sigma$ 

Assume 
$$P_{q_0}(x)$$

Let 
$$x' \in \Sigma$$

Show 
$$P_{q_0}(xx')$$



$$\begin{aligned} \textit{\textbf{Case 2:}} & x' = b \\ & \delta^*(q_0, xb) = \delta(\delta^*(q_0, x), b) \\ & = \begin{cases} \delta(q_0, b) & x \text{ has even } a's \\ \delta(q_1, b) & x \text{ has odd } a's \end{cases} & \text{(from IH)} \\ & = \begin{cases} \delta(q_0, b) & xb \text{ has even } a's \\ \delta(q_1, b) & xb \text{ has odd } a's \end{cases} \\ & = \begin{cases} q_0 & xb \text{ has even } a's \\ q_1 & xb \text{ has odd } a's \end{cases} & \text{(from $\delta$ def.)} \end{aligned}$$

```
 \begin{array}{l} \textbf{Show} \ \mathcal{L}(\mathcal{D}) \subseteq \{x : x \text{ has odd } a' \mathbf{s} \} \\ \textbf{Let} \ x \in \mathcal{L}(\mathcal{D}) \\ \textbf{Since} \ F = \{q_1\}, \text{ then } \delta^*(s,x) = \delta^*(q_0,x) = q_1 \\ \textbf{Recall the state invariant, } \delta^*(q_0,x) = \begin{cases} q_0 & x \text{ has even } a' \mathbf{s} \\ q_1 & x \text{ has odd } a' \mathbf{s} \end{cases} \\ \textbf{Since} \ \delta^*(q_0,x) = q_1, \text{ then } x \text{ has odd number of } a\mathbf{s} \\ \textbf{Then } x \in \{x : x \text{ has odd } a' \mathbf{s} \} \\ \textbf{Show} \ \{x : x \text{ has odd } a' \mathbf{s} \} \subseteq \mathcal{L}(\mathcal{D}) \\ \textbf{Let} \ x \in \{x : x \text{ has odd } a' \mathbf{s} \}, \text{ so } x \text{ has odd } a' \mathbf{s} \\ \textbf{By state invariant, } \delta^*(q_0,x) = q_1, \text{ and } q_1 \in F \\ \textbf{Then } x \in \mathcal{L}(\mathcal{D}) \\ \end{array}
```

# **Non-Deterministic Finite-State Automaton (NFSA):** A DSFA that redefines $\delta: Q \times \Sigma \to 2^Q$ (all subsets of Q)

- In other words,  $\delta(q, x)$  can have multiple results; NSFAs can be in any number of states simultaneously
- NSFAs accept if some choice of transitions leads to an accepting state



### $\epsilon$ -Transition: Transitions of the form $\delta(q, \epsilon)$ , allowing multiple states without a new symbol

 $\triangleright$   $\epsilon$  is notational, don't treat it like an empty string (eg. do not do  $0 \cdot 1 \cdot 1 = 0 \cdot \epsilon \cdot 1 \cdot 1$ )



## Converting Regex to NFSA



## Converting Regex to DFSA



### Converting DFSA to RE

Add  $\epsilon$  transitions and modify the DFSA such that:

- 1) Nothing points to the initial state
- 2) There is 1 accepting state
- 3) The accepting state does not point anywhere

Remove states one-by-one, turning them into regex. The Regex to DFSA table can also help here



**Regular:** Language L, if (three equivalent definitions)

$$\blacktriangleright$$
  $L = \mathcal{L}(\mathcal{D})$  for some DFSA  $\mathcal{D}$ 

$$ightharpoonup L = \mathcal{L}(\mathcal{D})$$
 for some NFSA  $\mathcal{D}$ 

$$\blacktriangleright \quad L = \mathcal{L}(\mathcal{R}_{\Sigma}) \text{ for some regex } \mathcal{R}_{\Sigma}$$

Regular languages over alphabet  $\Sigma$  include:

$$\{\epsilon\}$$

$$\blacktriangleright$$
  $\{x\}$ , for any  $x \in \Sigma$ 

$$\{x\}$$
, for ally  $x \in \mathbb{Z}$ 

$$\blacktriangleright \quad L_1 \cup L_2, L_1L_2, L^*, \overline{L} \text{ for regular languages } L_1, L_2$$

**Closed:** An operation  $\star$  such that if  $L_1, L_2$  are regular, then  $L_1 \star L_2$  is also regular

Closure: Property of set to be closed under certain operations (eg. intersection, Kleene star, prefix, reversal)

$$ightharpoonup L_1 \cap L_2, L_1 \cup L_2, L_1 \setminus L_2, L_1 \times L_2, L^*, \overline{L}$$

eg. Let  $L \subseteq \{0,1,2\}^*$  be regular, let  $L' = \{x \in \{0,1,2\}^* : x = 1x' \text{ for some } x' \in L \text{ or } x = 0x' \text{ for some } x' \in \overline{L} \}$ . Show L' is regular.

#### Method 1: DFSAs

Since 
$$L$$
 is regular,

$$\exists \mathcal{D}_1 = (Q_1, \{0,\!1,\!2\}, \delta_1, s_1, F_1), \mathcal{L}(\mathcal{D}_1) = L$$

Since 
$$L$$
 is regular,  $\overline{L}$  is regular, so  $\exists \mathcal{D}_2 = (Q_2, \{0,1,2\}, \delta_2, s_2, F_2), \mathcal{L}(\mathcal{D}_2) = \overline{L}$ 

Define the DFA  $\mathcal{D} = (Q, \{0,1,2\}, \delta, s, F)$  such that

$$\begin{array}{ll} \blacktriangleright & Q = \{s\} \cup Q_1 \cup Q_2 \\ \blacktriangleright & F = F_1 \cup F_2 \end{array}$$

$$\begin{tabular}{ll} \blacktriangleright & \delta(q,x) = \begin{cases} s_1 & q=s, x=1 \\ s_2 & q=s, x=0 \\ \delta_1(q,x) & q \in Q_1, x \in \{0,1,2\} \\ \delta_2(q,x) & q \in Q_2, x \in \{0,1,2\} \end{cases}$$



$$A_1$$

If 
$$x = 1x'$$
 where  $x' \in L$ , then

$$\delta^*(s,1x') = \delta^*(\delta(s,1),x') = \delta^*(s_1,x') = \delta_1^*(s_1,x')$$

Since 
$$x' \in L$$
,  $x'$  is accepted by  $\mathcal{D}_1$ ,

Then  $S^*(x, x')$  will return an acception

Then  $\delta_1^*(s_1, x')$  will return an accepting state.

If x = 0x' where  $x' \in \overline{L}$ , then

$$\delta^*(s,0x') = \delta^*(\delta(s,0),x') = \delta^*(s_2,x') = \delta_2^*(s_2,x')$$

Since  $x' \in \overline{L}$ , x' is accepted by  $\mathcal{D}_2$ ,

Then  $\delta_2^*(s_2,x')$  will return an accepting state.

$$\therefore \mathcal{L}(\mathcal{D}) = L$$

#### Method 2: Regexes

Since 
$$L$$
 is regular,  $\exists R_1 \text{ over } \{0,1,2\}, \mathcal{L}(R_1) = L$   
Since  $L$  is regular,  $\overline{L}$  is regular, so  $\exists R_2 \text{ over } \{0,1,2\}, \mathcal{L}(R_2) = \overline{L}$   
Define  $R = 1R_1 + 0R_2 \text{ over } \{0,1,2\}, \text{ so}\dots$ 

$$\begin{array}{ll} \exists R_1 \text{ over } \{0,1,2\}, \mathcal{L}(R_1) = L & \qquad \therefore \mathcal{L}(R) = \mathcal{L}(1R_1) \cup \mathcal{L}(0R_2) \\ \exists R_2 \text{ over } \{0,1,2\}, \mathcal{L}(R_2) = \overline{L} & \qquad = \left(1 \cdot \mathcal{L}(R_1)\right) \cup \left(0 \cdot \mathcal{L}(R_2)\right) \\ 2\}, \text{ so} \dots & \qquad = \left(1 \cdot L\right) \cup \left(0 \cdot \overline{L}\right) \end{array}$$

eg. Find DFSA for  $L_1 \cap L_2$  with  $L_1 = \{x \in \{a,b\}^* : x \text{ contains } aaa\}, L_2 = \{x \in \{a,b\}^* : x \text{ contains even } b's\}$ 

$$\begin{array}{l} \text{Consider } x = babaa \text{ for the two DFSAs } \mathcal{D}_1, \mathcal{D}_2 \text{ on the right} \\ \hline q_0 \overset{b}{\rightarrow} q_0 \overset{a}{\rightarrow} q_1 \overset{b}{\rightarrow} q_0 \overset{a}{\rightarrow} q_1 \overset{a}{\rightarrow} q_2 & \mathsf{X} \\ r_0 \overset{b}{\rightarrow} r_1 \overset{a}{\rightarrow} r_1 \overset{b}{\rightarrow} r_0 \overset{a}{\rightarrow} r_0 \overset{a}{\rightarrow} r_0 & \mathsf{Y} \\ \end{array} \end{array}$$

Consider the DFA  $\mathcal{D} = (Q, \overline{\Sigma, \delta, s}, F)$  with

$$\begin{array}{ll} \blacktriangleright & Q = Q_1 \times Q_2 \\ \blacktriangleright & \Sigma = \{a,b\} \end{array}$$

$$> s \in (s_1, s_2) = (q_0, r_0)$$

$$\Sigma = \{a, b\}$$

$$F = F_1 \cap F_2 = (q_3, r_0)$$

$$\delta: Q \times \Sigma \to Q \text{ where } \delta((q,r),x) = (\delta_1(q,x), \delta_2(r,x))$$

Show  $\mathcal{L}(\mathcal{D}) = L_1 \cap L_2$ 

$$\delta_1^*(q,x) = q_3 \Leftrightarrow x \text{ contains } aaa \Leftrightarrow x \in L_1 \text{ (to be proved)}$$

$$\delta_2^*(r,x) = r_0 \Leftrightarrow x \text{ contains even } b'\mathbf{s} \Leftrightarrow x \in L_2 \text{ (to be proved)}$$

$$\div \delta^* \big( (q,r), x \big) = (q_3, r_0) \Leftrightarrow x \in L_1 \cap L_2$$

$$\therefore \mathcal{L}(\mathcal{D}) = L_1 \cap L_2$$





**Pumping Lemma:** For all regular languages  $L \subseteq \Sigma^*, \exists p \in \mathbb{Z}^+, \forall x \in L \text{ with } |x| \geq p, \exists i, j, k \in \Sigma^*,$ 

 $ightharpoonup x=ijk \qquad 
ightharpoonup |ij| \leq 1 \qquad 
ightharpoonup ij^nk \in L ext{ for all } n \in \mathbb{N}$ 

eg. Show  $L=\{a^nb^n\colon n\in\mathbb{N}\}=\{ab,aabb,aaabbb,aaaabbb,\dots\}$  is not regular.

**Method 1:** Proof by contradiction

Suppose L is regular, then  $\exists \mathcal{D} = (Q, \Sigma, \delta, s, F)$  where  $\mathcal{L}(\mathcal{D}) = L$ 

Consider  $x = a^{|Q|+1}b^{|Q|+1} \in L$ .

As |x| > |Q|, then the path for processing  $a^{|Q|+1}$  has a loop passing some state q twice.

Thus  $x = a^i a^j a^k b^{|Q|+1}$ , where  $\delta^*(s, a^i) = q = \delta^*(q, a^j)$ 

Thus  $\delta^*(s, a^i a^k b^{|Q|+1}) = \delta^*(s, a^i a^j a^k b^{|Q|+1})$  even though  $a^i a^k b^{|Q|+1} \notin L, a^i a^j a^k b^{|Q|+1} \in L$ , a contradiction.

Therefore, L is not regular.

Method 2: Proof by contradiction, pumping lemma

Suppose L is regular

Show pumping lemma is false,  $\forall p \in \mathbb{Z}^+, \exists x \in L, |x| \geq p, \forall i, j, k \in \Sigma^*, x \neq ijk \lor |ij| > p \lor |j| < 1 \lor ij^nk \notin L$  Let  $p \in \mathbb{Z}^+$ 

Pick  $x = a^p b^p \in L$ , then |x| = 2p > p

Let  $i, j, k \in \Sigma^*$ 

Assume  $x = ijk, |ij| \le p, |j| \ge 1$  (ie. assume first three premises false, show last premise true)

Since  $x = a^p b^p$  and  $|ij| \le p$ , then  $i = a^{|i|}, j = a^{|j|}$ , meaning  $k = a^{p-|ij|}b^p$ 

Therefore for n=1,  $ijk=a^{|i|}a^{|j|}a^{p-|ij|}b^p=a^pb^p=x\in L$ , a contradiction.