Problem1

$$L_i \text{ is } RE \Rightarrow L_1 \cup L_2 \dots \cup L_{i-1} \cup L_{i+1} \cup \dots \cup L_k \text{ is } RE \Rightarrow L^- \text{ is } RE \Rightarrow L_i \text{ is } R$$

Problem2

Let L 1 , L 2 be two recursive languages, give an informal, but clear, construction to show that the concatenation of two languages L 3 = {w 1 w 2 |w 1 \in L 1 \land w 2 \in L 2 } is also recursive.

If
$$s = s1s2 \in L3 \Rightarrow M1$$
 accepts $s1$ and $M2$ accepts $s2 \Rightarrow M3$ accepts $s1s2 \Rightarrow M3$ accepts s if $s = sisk \notin L3 \Rightarrow M1$ doesn't accept si or $M2$ doesn't accept sk (for any i and k) $\Rightarrow M3$ doesn't accept s M3 is a TM recognizing L3 $L3$ is RE

Problem3

$$X1=0, X2=1, X3=B, D1=L, D2=R$$

 $\delta(q0,0)=(q0,1,R)\Rightarrow\delta(q1,X1)=(q1,X2,D2)\Rightarrow101010100100$
 $\delta(q0,1)=(q0,0,R)\Rightarrow\delta(q1,X2)=(q1,X1,D2)\Rightarrow101001010100$
 $\delta(q0,B)=(q1,B,L)\Rightarrow\delta(q1,X3)=(q2,X3,D1)\Rightarrow101000100100$
 $\delta(q1,0)=(q2,0,L)\Rightarrow\delta(q2,X1)=(q3,X1,D1)\Rightarrow1001010001010$