The Matrix Pt. 2

John Hohman and Micah Hanvich

Table of Contents

3	Dimensions	6	Scalar Matrix Multiplication
4	A Matrix	7	Matrix Multiplication
5	Matrix Addition	11	Next Week / Project

Cooler Matrix Martin linetics

Matrix Transpose

Original Matrix	Transpose Operation	Transposed Matrix
$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$	A^T	$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$
$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	v^T	$egin{bmatrix} x & y & z \end{bmatrix}$
$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	B^T	$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

Useful Matrices

Rotation Matrix

$$\begin{bmatrix} r\cos(\phi) & -r\sin(\phi) \\ -r\sin(\phi) & \cos(\phi) \end{bmatrix}$$

where r is the radius, and ϕ is radians rotated by (counter-clockwise)

Scaling Matrix

$$S(f_x, f_y) = \begin{bmatrix} f_x & 0 \\ 0 & f_y \end{bmatrix}$$

where f_x is the factor applied to the x dimension, and f_y is the factor applied to the y dimension.

Shearing Matrix

$$H_{xy}(\mathbf{s}) = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$
 or $H_{yx}(\mathbf{s}) = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$

Note that the first subscript of H refers to which coordinate is changed, and the second subscript refers to the coordinate that is used to scale by s and add to that first coordinate.

Matrix Properties

Theorem 6.1: Matrix Arithmetic Properties

In the following, we assume that the sizes of the matrices are such that the operations are defined.

(i)	$k(l\mathbf{A})=(kl)\mathbf{A}$	(associativity)
(ii)	$(k+l)\mathbf{A}=k\mathbf{A}+l\mathbf{A}$	(distributivity)
(iii)	$k(\mathbf{A}+\mathbf{B})=k\mathbf{A}+k\mathbf{B}$	(distributivity)
(iv)	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	(commutativity)
(v)	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$	(associativity)
(vi)	$\mathbf{A} + (-1)\mathbf{A} = \mathbf{O}$	(additive inverse)
(vii)	$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A}\mathbf{B}+\mathbf{A}\mathbf{C}$	(distributivity)
(viii)	$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$	(distributivity)
(ix)	$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$	(associativity)
(x)	IA = AI = A	(multiplicative one)
(xi)	$(k\mathbf{A})^{\mathrm{T}} = k\mathbf{A}^{\mathrm{T}}$	(transpose rule 1)
(xii)	$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$	(transpose rule 2)
(xiii)	$(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$	(transpose rule 3)
(xiv)	$(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$	$({\rm transpose\; rule}\; 4)$

(6.48)

In addition, we have the following trivial set of rules: 1A = A, 0A = O, kO = O, and A + O = A.

https://immersivemath.com/ila/ch06_matrices/ch06.html

Let's do some practice!

https://images.pexels.com/photos/796603/pexels-photo-796603.jpeg?cs=srgb&dl=hand-desk-notebook-796603.jpg &fm=jpg

Next Week -

Reinforcement Learning

Goal: Write a script to perform Gaussian Elimination automatically when provided a system of linear equations and notebook exercises.