МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5
по дисциплине «Качество и метрология программного обеспечения»
Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студентка гр. 8304	Сани З.Б.
Преподаватель	Кирьянчиков В. А

Санкт-Петербург

2022

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\text{эксп}} = s_{\text{эксп}} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y >= 0, с параметром c = 8.0 и соответственно $m_{\rm pen} = c * sqrt(\pi/2),$ $s_{\rm pen} = c * sqrt(2 \pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.571	1.066	1.145	1.433	2.064	2.123	2.411	2.909	3.57	5.24
i	11	12	13	14	15	16	17	18	19	20
X_i	5.381	6.864	7.361	7.445	7.469	7.536	7.694	7.986	10.11	10.44
									6	1
i	21	22	23	24	25	26	27	28	29	30
X_i	13.53	14.66	14.78	15.11	15.61	15.95	17.00	17.38	19.67	19.70
	6	3	4	6	8	3	4	8	9	3

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 21.31127.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 21.31127 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

m	31	32	33	34
$f_n(m)$	3.99499	3.02725	2.5585	2.25546
g(m,A)	3.09638	2.8067	2.56658	2.3643
$ f_n(m) $	0.898605	0.22055	0.00808044	0.108839
-g(m,A)				

Минимум разности достигается при m = 33.

Первоначальное количество ошибок B = m - 1 = 32.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.00971.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 3.

Таблица 3 — Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

m	31	32
X_j (дней)	51.4828	102.966

80% входных данных.

Был сгенерирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

Таблица 4 — Равномерное распределение, n=24 (80%).

i	1	2	3	4	5	6	7	8
X_i	1.222	1.808	3.471	3.619	3.66	3.867	5.348	5.805
i	9	10	11	12	13	14	15	16
X_i	6.458	6.902	7.421	8.899	9.436	10.4	11.043	11.461
i	17	18	19	20	21	22	23	24
X_i	11.714	11.721	14.079	14.647	15.52	15.702	15.76	18.734

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.19580.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.19580 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 – Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28	29
$f_n(m)$	3.77596	2.81596	2.35442	2.05812	1.84384
g(m,A)	2.72597	2.44793	2.22136	2.03317	1.87438
$ f_n(m) $	1.04999	0.368029	0.133062	0.0249495	0.0305467
-g(m,A)					

Минимум разности достигается при m = 28.

Первоначальное количество ошибок B = m - 1 = 27.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.00930.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 6.

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

m	25	26	27
X_j (дней)	35.8548	53.7822	107.564

Было рассчитано время до завершения тестирования $t_k = 197.2012777777776$.

Было рассчитано общее время тестирования $t_{\text{общ}} = 415.8982777777776$.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 7.

i	1	2	3	4	5	6	7	8	9
X_i	0.412	0.734	1.328	2.062	2.868	4.241	5.34	6.176	7.172
i	10	11	12	13	14	15	16	17	18
X_i	8.233	8.866	8.939	9.824	10.951	17.194	17.246	18.547	19.259

Таблица 7 — Равномерное распределение, n = 18 (60%).

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.18137.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13.18137 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21
$f_n(m)$	3.49511	2.54774	2.09774
g(m,A)	3.09351	2.63983	2.30219
$ f_n(m) $	0.401597	0.0920862	0.204454
-g(m,A)			

Минимум разности достигается при m = 20.

Первоначальное количество ошибок B = m - 1 = 19.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.01767.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 9.

Таблица 9 — Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

m	19
X_j (дней)	56.5916

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0,1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=-ln(t)/b. Массив был упорядочен по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.08	0.44	0.46	0.976	1.065	2.046	2.157	2.157	2.917	2.917
i	11	12	13	14	15	16	17	18	19	20
X_i	5.924	6.501	6.578	6.636	7.679	8.142	8.795	9.808	9.97	12.10
										7
i	21	22	23	24	25	26	27	28	29	30
X_i	13.16	13.90	14.52	15.05	17.66	19.66	19.95	21.71	23.43	23.86
	8	3	4	1	1	1	1	6	4	

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 22.15180.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 22.15180 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11 — Расчёт значений функций для экспоненциального распределения (100%).

m	31	32	33
$f_n(m)$	3.99499	3.02725	2.5585
g(m,A)	3.39052	3.04624	2.76544
$ f_n(m)-g(m,A) $	0.604467	0.0189966	0.20694

Минимум разности достигается при m = 32.

Первоначальное количество ошибок B = m - 1 = 31.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.01086.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j = n+1, n+2 \dots, n+k$. Результат представлен в таблице 12.

Таблица 12 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (100%).

m	31
X_j (дней)	92.0098

Было рассчитано время до завершения тестирования $t_k = 92.009766666666672$. Было рассчитано общее время тестирования $t_{\text{обш}} = 372.2937666666668$.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b = 0,1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 13.

2 4 7 i 1 3 5 8 6 X_i 0.523 1.143 1.578 2.395 2.472 2.771 2.89 3.653 i 9 10 11 12 13 14 15 16 X_i 4.51 5.108 5.586 5.674 6.051 6.872 8.675 9.039 i 17 18 19 20 21 22 23 24 X_i 10.244 13.243 37.723 9.702 9.702 17.838 18.452 22.828

Таблица 13 – Экспоненциальное распределение, n=24 (80%).

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 18.09726.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 18.09726 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 14.

Таблица 14 — Расчёт значений функций для экспоненциального распределения (80%).

m	25	26	27
$f_n(m)$	3.77596	2.81596	2.35442
g(m,A)	3.47688	3.03692	2.6958
$ f_n(m) $	0.299079	0.220962	0.341379
-g(m,A)			

Минимум разности достигается при m = 26.

Первоначальное количество ошибок B = m - 1 = 25.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.01455.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 15.

Таблица 15 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (80%).

m	25
X_j (дней)	68.7117

Было рассчитано время до завершения тестирования $t_k=68.7117083333333$. Было рассчитано общее время тестирования $t_{\rm oбщ}=277.3837083333333$.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0,1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 16.

Таблица 16 – Экспоненциальное распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.121	0.171	2.231	3.271	4.323	5.447	5.569	6.675	6.872
i	10	11	12	13	14	15	16	17	18
X_i	7.215	8.723	10.385	11.27	12.174	12.344	14.313	15.512	18.839

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.75591.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12.75591 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 17.

Таблица 17 – Расчёт значений функций для экспоненциального распределения (60%).

m	19	20	21
$f_n(m)$	3.49511	2.54774	2.09774
g(m,A)	2.88273	2.48478	2.18338
$ f_n(m) $	0.612382	0.0629552	0.0856428
-g(m,A)			

Минимум разности достигается при m=20.

Первоначальное количество ошибок B = m - 1 = 19.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.01708.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j = n+1, n+2 \dots, n+k$. Результат представлен в таблице 15.

Таблица 18 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (80%).

m	19
X_j (дней)	58.5383

Было рассчитано время до завершения тестирования $t_k=58.53827777777765$. Было рассчитано общее время тестирования $t_{\rm общ}=203.9932777777773$.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c=8. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)). Массив был упорядочен по возрастанию. Результаты представлены в таблице 19.

Таблица 19 – Релеевское распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.62	2.166	4.594	4.962	5.025	5.344	6.25	6.264	6.932	6.946
i	11	12	13	14	15	16	17	18	19	20
X_i	7.12	7.306	7.505	8.297	10.13	10.74	10.99	11.43	11.70	12.67
					8	1	3	6	3	6
i	21	22	23	24	25	26	27	28	29	30
X_i	13.83	13.92	14.62	14.98	15.11	15.21	16.84	17.43	18.30	21.97
	8	2	6	6		2	3	6	3	4

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.70107.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.70107 > 15,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 20.

Таблица 20 – Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35	36	37	38
$f_n(m)$	3.994	3.0272	2.5585	2.2554	2.03488	1.86345	1.72456	1.60873
	99	5		6				
g(m,A)	2.655	2.4392	2.2558	2.0980	1.96092	1.84061	1.73421	1.63944
	12	4	2	6				
$ f_n(m) $	1.339	0.5880	0.3026	0.1574	0.07395	0.02283	0.009651	0.03071
-g(m,A)	87	09	75	06	54	67	94	09

Минимум разности достигается при m = 37.

Первоначальное количество ошибок B = m - 1 = 36.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.00561.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 21.

Таблица 21 — Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

m	31	32	33	34	35	36
X_j (дней)	29.7223	35.6667	44.5834	59.4445	89.1668	178.334

Было рассчитано время до завершения тестирования $t_k = 436.91715666666636$. Было рассчитано общее время тестирования $t_{\text{общ}} = 746.1851566666662$.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8. Массив был упорядочен по возрастанию. Результаты представлены в таблице 22.

Таблица 22 – Релеевское распределение, n=24 (80%).

i	1	2	3	4	5	6	7	8
X_i	0.878	2.536	2.666	3.115	3.495	3.555	4.868	6.012
i	9	10	11	12	13	14	15	16
X_i	6.026	6.166	6.959	8.509	9.109	9.942	10.152	11.929
i	17	18	19	20	21	22	23	24
X_i	12.605	12.783	13.359	13.818	15.187	19.033	22.103	22.837

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.74276.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.74276 > 12,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 23.

Таблица 23 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28
$f_n(m)$	3.77596	2.81596	2.35442	2.05812
g(m,A)	2.90654	2.59256	2.33981	2.13196
$ f_n(m) $	0.869419	0.223393	0.0146094	0.0738376
-g(m,A)				

Минимум разности достигается при m = 27.

Первоначальное количество ошибок B = m - 1 = 26.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.01028.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j = n+1, n+2 \dots, n+k$. Результат представлен в таблице 24.

Таблица 24 — Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

m	25	26
X_j (дней)	48.6454	97.2908

Было рассчитано время до завершения тестирования $t_k=145.93618750000007$. Было рассчитано общее время тестирования $t_{\rm общ}=373.5781875000001$.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8. Массив был упорядочен по возрастанию. Результаты представлены в таблице 25.

Таблица 25 – Релеевское распределение, n=18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	2.227	3.474	4.117	4.291	6.374	7.12	7.624	9.46	9.474
i	10	11	12	13	14	15	16	17	18
X_i	9.474	9.706	10.365	10.698	10.712	11.389	14.155	14.673	15.085

Формула коэффициента: $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.59975.$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 11.59975 > 9,5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 26.

Таблица 26 – Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22	23	24	25
$f_n(m)$	3.4951	2.54774	2.09774	1.81203	1.60748	1.45096	1.32596
	1						
g(m,A)	2.4323	2.14279	1.91484	1.73073	1.57891	1.45158	1.34326
	5						
$ f_n(m) $	1.0627	0.40494	0.18289	0.081298	0.028567	0.00062495	0.017299
-g(m,A)	6	7	8	5	8	2	9

Минимум разности достигается при m = 24.

Первоначальное количество ошибок B = m - 1 = 23.

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.00905.$$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j)}$, где $j=n+1, n+2 \dots, n+k$. Результат представлен в таблице 27.

Таблица 27 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

m	19	20	21	22	23
X_j (дней)	22.1025	27.6281	36.8375	55.2562	110.512

Было рассчитано время до завершения тестирования $t_k=252.3367481481482$. Было рассчитано общее время тестирования $t_{\rm общ}=412.7547481481482$.

4. Результаты расчетов.

В таблицах 28 и 29 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 28 – Оценка первоначального числа ошибок.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	32	31	36		
24	80	27	25	26		
18	60	19	19	23		

Таблица 29 – Оценка полного времени проведения тестирования.

n	Входные	Распределение					
	данные, %	Равномерное	Экспоненциальное	Релеевское			
30	100	418.7173999999999	372.2937666666668	746.1851566666662			
24	80	415.8982777777776	277.3837083333333	373.5781875000001			
18	60	205.98361111111112	203.9932777777773	412.7547481481482			

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Это связано с тем, что модель Джелинского-Моранды основана на предположении о том, что время до следующего отказа программы распределено экспоненциально. Относительно релеевского распределения, равномерное показывает лучшие результаты при входных данных равных 60% и 100%.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.