```
1 import numpy as np  #NUMPY IS USED FOR NUMERICAL OPERATIONS
2 import pandas as pd # PANDAS FOR IMPORTING THE DATASET
3 from sklearn.model_selection import train_test_split  #TO SPLIT DATA INTO TRAINING AND TESTING DATA
4 from sklearn.tree import DecisionTreeClassifier  #FOR DECSION TREE CLASSIFIER
5 from sklearn.metrics import accuracy_score  #TO CHECK ACCURACY
6 import matplotlib.pyplot as plt  # FOR DATA VISUALIZATION PURPOSE
7 from sklearn import tree  # TO VISUALIZE THE TREE
8 import seaborn as sns  # FOR DATA VISUALIZATION
9
10 from sklearn.preprocessing import StandardScaler
11 from sklearn.neighbors import KNeighborsClassifier
```

LOADING THE DATASET:

1 df = pd.read_csv("/content/index.csv") # using the Pandas library's read_csv function. The dataset is st
2 df

5							
\rightarrow		date	datetime	cash_type	card	money	coffee_name
	0	2024-03-01	2024-03-01 10:15:50.520	card	ANON-0000-0000-0001	38.70	Latte
	1	2024-03-01	2024-03-01 12:19:22.539	card	ANON-0000-0000-0002	38.70	Hot Chocolate
	2	2024-03-01	2024-03-01 12:20:18.089	card	ANON-0000-0000-0002	38.70	Hot Chocolate
	3	2024-03-01	2024-03-01 13:46:33.006	card	ANON-0000-0000-0003	28.90	Americano
	4	2024-03-01	2024-03-01 13:48:14.626	card	ANON-0000-0000-0004	38.70	Latte
	1128	2024-07-31	2024-07-31 20:53:35.077	card	ANON-0000-0000-0443	23.02	Cortado
	1129	2024-07-31	2024-07-31 20:59:25.013	card	ANON-0000-0000-0040	27.92	Americano with Milk
	1130	2024-07-31	2024-07-31 21:26:26.000	card	ANON-0000-0000-0444	32.82	Latte
	1131	2024-07-31	2024-07-31 21:54:11.824	card	ANON-0000-0000-0445	32.82	Latte
	1132	2024-07-31	2024-07-31 21:55:16.570	card	ANON-0000-0000-0446	32.82	Latte
	1133 rd	ws × 6 colum	ns				

12 from sklearn.metrics import classification_report, confusion_matrix

1 df.head(10)

							
ٽ	date		datetime	cash_type	card	money	coffee_name
	0	2024-03-01	2024-03-01 10:15:50.520	card	ANON-0000-0000-0001	38.7	Latte
	1	2024-03-01	2024-03-01 12:19:22.539	card	ANON-0000-0000-0002	38.7	Hot Chocolate
	2	2024-03-01	2024-03-01 12:20:18.089	card	ANON-0000-0000-0002	38.7	Hot Chocolate
	3	2024-03-01	2024-03-01 13:46:33.006	card	ANON-0000-0000-0003	28.9	Americano
	4	2024-03-01	2024-03-01 13:48:14.626	card	ANON-0000-0000-0004	38.7	Latte
	5	2024-03-01	2024-03-01 15:39:47.726	card	ANON-0000-0000-0005	33.8	Americano with Milk
	6	2024-03-01	2024-03-01 16:19:02.756	card	ANON-0000-0000-0006	38.7	Hot Chocolate
	7	2024-03-01	2024-03-01 18:39:03.580	card	ANON-0000-0000-0007	33.8	Americano with Milk
	8	2024-03-01	2024-03-01 19:22:01.762	card	ANON-0000-0000-0008	38.7	Cocoa
	9	2024-03-01	2024-03-01 19:23:15.887	card	ANON-0000-0000-0008	33.8	Americano with Milk

1 df.info()

\rightarrow			re.frame.DataFra	
	Range	eIndex: 1133	entries, 0 to 11	32
	Data	columns (tota	al 6 columns):	
	#	Column	Non-Null Count	Dtype
	0	date	1133 non-null	object

```
datetime
                      1133 non-null
                                      object
                      1133 non-null
         cash_type
                                       object
                      1044 non-null
                                       object
         card
         monev
                      1133 non-null
                                       float64
        coffee_name 1133 non-null
                                      object
    dtypes: float64(1), object(5)
    memory usage: 53.2+ KB
 1 df.shape
<u>→</u> (1133, 6)
 1 df.describe()
<del>_</del>
                 money
     count 1133.000000
              33.105808
     mean
               5.035366
      std
              18.120000
      min
      25%
              28.900000
      50%
              32.820000
              37.720000
      75%
              40.000000
      max
 1 df.isnull().sum()
\overline{\Rightarrow}
                   0
         date
                   0
       datetime
                   0
      cash_type
                   0
                  89
         card
                   0
        money
     coffee_name
 1 df.columns
Index(['date', 'datetime', 'cash_type', 'card', 'money', 'coffee_name'], dtype='object')
 1 df.dropna(inplace=True)
 1 df.isnull().sum()
→
                  0
         date
       datetime
      cash_type
                  0
         card
        money
                  0
     coffee_name 0
 1 df['date']
```


1 df.dtypes

1 df.head()

₹		date	datetime	cash_type	card	money	coffee_name
	0	2024-03-01	2024-03-01 10:15:50.520	card	ANON-0000-0000-0001	38.7	Latte
	1	2024-03-01	2024-03-01 12:19:22.539	card	ANON-0000-0000-0002	38.7	Hot Chocolate
	2	2024-03-01	2024-03-01 12:20:18.089	card	ANON-0000-0000-0002	38.7	Hot Chocolate
	3	2024-03-01	2024-03-01 13:46:33.006	card	ANON-0000-0000-0003	28.9	Americano
	4	2024-03-01	2024-03-01 13:48:14.626	card	ANON-0000-0000-0004	38.7	Latte

11/13/24, 2:59 PM

1 df.loc[:,['cash_type','card','coffee_name']].describe().T

- 1 Start coding or generate with AI.
- There are 1044 transactions in the data.
- 1 unique value of 'cash_type' and that is -> 'card'
- Americano with milk is the most popular product
- 1 Start coding or generate with AI.
- 1 df['cash_type'].hist()

1 Start coding or generate with AI.

Almost all transactions are made from card payment

- 1 Start coding or generate with AI.
- $\label{localize} \mbox{1 df['coffee_name'].value_counts(normalize=True).sort_values(ascending=False).round(4)*100} \\ \mbox{1 df['coffee_name'].value_counts(normalize=True).sort_values(ascending=False).round(4)*100} \\ \mbox{2 def['coffee_name'].value_counts(normalize=True).sort_values(ascending=False).round(4)*100} \\ \mbox{3 def['coffee_name'].value_counts(normalize=True).sort_values(ascending=False).round(4)*100} \\ \mbox{3 def['coffee_name'].value_counts(normalize=True).sort_values(ascending=False).sort_values(ascending=Fal$

proportion coffee_name Americano with Milk 24.23 20.88 Cappuccino 17.34 Americano 14.85 Cortado 9.00 **Hot Chocolate** 6.51 Espresso 4.21 2.97 Cocoa

- · In this we can see the most popular products which are arranged in descending order
- · Americano with Milk is at the top where as the second place belongs to Latte followed by other coffees

1 Start coding or generate with AI.

```
#Convert date and datetime to datetme format
2 df['date']=pd.to_datetime(df['date'])
3 df['datetime']=pd.to_datetime(df['datetime'])
5
6
1 #Create column of Month, Weekdays, and Hours
2 df['month']=df['date'].dt.strftime('%Y-%m')
3 df['day']=df['date'].dt.strftime('%w')
4 df['hour']=df['datetime'].dt.strftime('%H')
1 df.info()
```

```
<<class 'pandas.core.frame.DataFrame'>
    Index: 1044 entries, 0 to 1132
    Data columns (total 9 columns):
    # Column
                    Non-Null Count Dtype
    0 date
                    1044 non-null
                                   datetime64[ns]
                    1044 non-null datetime64[ns]
    1 datetime
                    1044 non-null object
    2 cash_type
       card
                    1044 non-null
                                  object
                    1044 non-null float64
        coffee_name
                    1044 non-null
                                   obiect
       month
                    1044 non-null
                                   object
                    1044 non-null
       day
                                   object
    8 hour
                    1044 non-null
                                   object
    dtypes: datetime64[ns](2), float64(1), object(6)
    memory usage: 113.9+ KB
```

1 df.head()

$\overline{\Rightarrow}$		date	datetime	cash_type	card	money	coffee_name	month	day	hour
	0	2024-03-01	2024-03-01 10:15:50.520	card	ANON-0000-0000-0001	38.7	Latte	2024-03	5	10
	1	2024-03-01	2024-03-01 12:19:22.539	card	ANON-0000-0000-0002	38.7	Hot Chocolate	2024-03	5	12
	2	2024-03-01	2024-03-01 12:20:18.089	card	ANON-0000-0000-0002	38.7	Hot Chocolate	2024-03	5	12
	3	2024-03-01	2024-03-01 13:46:33.006	card	ANON-0000-0000-0003	28.9	Americano	2024-03	5	13
	4	2024-03-01	2024-03-01 13:48:14.626	card	ANON-0000-0000-0004	38.7	Latte	2024-03	5	13

1 # Let's first check the overal revenue by products.

```
1 revenue = df.groupby(['coffee_name']).sum(['money']).sort_values(by='money', ascending=False)
2 revenue
```

```
<del>____</del>
                              money
             coffee_name
      Americano with Milk
                            8083.94
                            8018.14
             Latte
          Cappuccino
                            6738.14
           Americano
                            4232.54
            Cortado
                            2595.08
         Hot Chocolate
                            2539.48
             Cocoa
                            1138.94
                             976.62
           Espresso
```

```
1 plt.figure(figsize=(10,4))
```

2 ax = sns.barplot(data=revenue, x='money', y='coffee_name', color='steelblue')

⁴ plt.xlabel("Revenue")

The product with the highest revenue is Americano with Milk whereas Espresso is at the bottom

1 Start coding or generate with AI.

1 monthly_sales = df.groupby(['coffee_name','month']).count()['date'].reset_index().rename(columns={'date':'
2 monthly sales

$\overline{\Rightarrow}$	coffee_name	month	Americano	Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate	Latte
	0	2024-03	32	30	15	6	28	9	20	35
	1	2024-04	33	38	36	4	16	4	10	27
	2	2024-05	40	54	52	8	17	7	13	50
	3	2024-06	14	66	46	4	19	10	14	50
	4	2024-07	36	65	32	9	14	14	11	56
	4									

1 monthly_sales.describe().T.loc[:,['min','max']]

³ ax.bar_label(ax.containers[0], fontsize=6)

```
→
                          min max
            coffee_name
         Americano
                         14.0 40.0
     Americano with Milk
                         30.0 66.0
         Cappuccino
                          15.0 52.0
           Cocoa
                          4.0
                               9.0
           Cortado
                         14.0 28.0
          Espresso
                          4.0 14.0
        Hot Chocolate
                         10.0 20.0
            Latte
                         27.0 56.0
```

```
1 plt.figure(figsize=(12,6))
2 sns.lineplot(data=monthly_sales)
3 plt.legend(loc='upper left')
4 plt.title("Monthly Sales")
5 plt.xticks(range(len(monthly_sales['month'])),monthly_sales['month'],size='small')
6 plt.show()
```


As shown in the line chart above, Americano with Milk and Latte, and Cappuccino are top selling coffee types, while Cocoa and Expresso have lowest sales. Additionally, Americano with Milk and Latte show an upward trending.

```
1 Start coding or generate with AI.
```

```
1 weekday_sales = df.groupby(['day']).count()['date'].reset_index().rename(columns={'date':'count'})
2 weekday_sales
```

```
day count

0 0 136

1 1 134

2 2 172

3 3 155

4 4 154

5 5 151

6 6 142
```

```
1 plt.figure(figsize=(12,6))
2 sns.barplot(data=weekday_sales, x='day' , y='count', color='steelblue')
3 plt.legend(loc='upper left')
4 plt.title("Weekday Sales")
5 plt.xticks(range(len(weekday_sales['day'])),['Sun','Mon','Tue','Wed','Thur','Fri','Sat'],size='small')
6 plt.show()
```

🕁 WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are igr

The bar chart reveals that Tuesday has the highest sales of the week, while sales on the other days are relatively similar.

```
1 daily_sales = df.groupby(['coffee_name','date']).count()['datetime'].reset_index().reset_index().rename(cc
2 daily_sales
```

•				Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate	Latte
	0	2024-03-01	1.0	4.0	0.0	1.0	0.0	0.0	3.0	2.0
	1	2024-03-02	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	2024-03-03	1.0	2.0	0.0	1.0	2.0	0.0	2.0	1.0
	3	2024-03-04	0.0	1.0	0.0	0.0	0.0	1.0	0.0	2.0
	4	2024-03-05	0.0	0.0	0.0	1.0	1.0	0.0	4.0	3.0
	145	2024-07-27	0.0	5.0	4.0	0.0	0.0	2.0	0.0	2.0
	146	2024-07-28	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0
	147	2024-07-29	3.0	2.0	2.0	1.0	0.0	0.0	2.0	1.0
	148	2024-07-30	2.0	12.0	2.0	0.0	3.0	2.0	0.0	3.0
	149	2024-07-31	2.0	6.0	1.0	2.0	4.0	0.0	0.0	7.0
	50 rows × 9 co	lumns								

1 daily_sales.iloc[:,1:].describe().T.loc[:,['min','max']]


```
1 hourly_sales = df.groupby(['hour']).count()['date'].reset_index().rename(columns={'date':'count'})
2 hourly_sales
```

```
hour
0
      07
              10
1
      08
             44
2
      09
             45
3
      10
             112
4
      11
              92
5
      12
              79
      13
              76
7
      14
              73
8
      15
              56
9
      16
              73
10
      17
              69
11
      18
              73
12
      19
              90
13
      20
              52
      21
              68
14
              32
```

1 sns.barplot(data=hourly_sales,x='hour',y='count',color='steelblue')

Overall, two peak hours within each day can be observed: 10:00am and 7:00pm. Then, let's check if any difference for different products.

```
1 hourly_sales_by_coffee = df.groupby(['hour','coffee_name']).count()['date'].reset_index().rename(columns={
2 hourly_sales_by_coffee
```

_										
}	coffee_name	hour	Americano	Americano with Milk	Cappuccino	Cocoa	Cortado	Espresso	Hot Chocolate	Latte
	0	07	3.0	3.0	1.0	0.0	1.0	0.0	0.0	2.0
	1	08	10.0	7.0	8.0	1.0	6.0	0.0	0.0	12.0
	2	09	7.0	15.0	6.0	0.0	5.0	2.0	0.0	10.0
	3	10	19.0	30.0	8.0	4.0	7.0	1.0	7.0	36.0
	4	11	19.0	23.0	14.0	1.0	12.0	6.0	7.0	10.0
	5	12	13.0	24.0	15.0	3.0	5.0	4.0	3.0	12.0
	6	13	18.0	18.0	8.0	2.0	12.0	3.0	4.0	11.0
	7	14	13.0	17.0	13.0	4.0	6.0	5.0	2.0	13.0
	8	15	11.0	14.0	7.0	0.0	2.0	4.0	4.0	14.0
	9	16	10.0	17.0	10.0	2.0	12.0	5.0	4.0	13.0
	10	17	8.0	10.0	15.0	3.0	6.0	4.0	6.0	17.0
	11	18	9.0	15.0	12.0	2.0	5.0	5.0	10.0	15.0
	12	19	4.0	18.0	33.0	2.0	5.0	0.0	8.0	20.0
	13	20	1.0	12.0	12.0	5.0	5.0	3.0	6.0	8.0
	14	21	5.0	23.0	13.0	1.0	3.0	1.0	3.0	19.0
	15	22	5.0	7.0	6.0	1.0	2.0	1.0	4.0	6.0
	4									

```
1 fig, axs = plt.subplots(2, 4, figsize=(20, 10))
2  # Flatten the array of subplots for easy iteration
3 axs = axs.flatten()
4  # Loop through each column in the DataFrame, skipping the 'Index' column
5 for i, column in enumerate(hourly_sales_by_coffee.columns[1:]):
6   axs[i].bar(hourly_sales_by_coffee['hour'], hourly_sales_by_coffee[column])
7   axs[i].set_title(f'{column}')
8   axs[i].set_xlabel('Hour')
9
10 #axs[i].set_ylabel('Sales')
11 plt.tight_layout()
12  # Show the plot
13 plt.show()
```

