| Surname                                               | Other nam     | nes                      |
|-------------------------------------------------------|---------------|--------------------------|
| Pearson Edexcel International Advanced Level          | Centre Number | Candidate Number         |
| Core Math                                             | nematics      | s C34                    |
|                                                       |               |                          |
| Tuesday 19 January 2016 –<br>Time: 2 hours 30 minutes | •             | Paper Reference WMA02/01 |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

## Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
   there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

## Information

- The total mark for this paper is 125.
- The marks for each question are shown in brackets
   use this as a quide as to how much time to spend on each question.

## **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 9 5 8 A 0 1 4 4

Turn over ▶



**(4)** 

| $<\frac{3}{2}$ |
|----------------|
|                |

Find the binomial expansion of f(x), in ascending powers of x, up to and including the term in  $x^2$ , giving each coefficient as a simplified fraction.





| Question 1 continued | blank        |
|----------------------|--------------|
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      |              |
|                      | Q1           |
| (То                  | tal 4 marks) |
| (1)                  | ,            |



**2.** (a) Show that

$$\cot^2 x - \csc x - 11 = 0$$

may be expressed in the form  $\csc^2 x - \csc x + k = 0$ , where k is a constant.

**(1)** 

(b) Hence solve for  $0 \le x < 360^{\circ}$ 

$$\cot^2 x - \csc x - 11 = 0$$

Give each solution in degrees to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

**(5)** 

| Question 2 continued |                 | _ear<br>blar |
|----------------------|-----------------|--------------|
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      |                 |              |
|                      | Q               | 2            |
|                      |                 |              |
|                      | (Total 6 marks) |              |



**3.** A curve *C* has equation

$$3^x + 6y = \frac{3}{2}xy^2$$

Find the exact value of  $\frac{dy}{dx}$  at the point on C with coordinates (2, 3). Give your answer in the form  $\frac{a + \ln b}{8}$ , where a and b are integers.

| Question 3 continued |                 | blank |
|----------------------|-----------------|-------|
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 | Q3    |
|                      | (Total 7 marks) |       |



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



Figure 1

The curve C with equation  $y = \frac{2}{(4+3x)}$ ,  $x > -\frac{4}{3}$  is shown in Figure 1

The region bounded by the curve, the x-axis and the lines x = -1 and  $x = \frac{2}{3}$ , is shown shaded in Figure 1

This region is rotated through 360 degrees about the *x*-axis.

(a) Use calculus to find the exact value of the volume of the solid generated.

**(5)** 



Figure 2

Figure 2 shows a candle with axis of symmetry AB where AB = 15 cm. A is a point at the centre of the top surface of the candle and B is a point at the centre of the base of the candle. The candle is geometrically similar to the solid generated in part (a).

(b) Find the volume of this candle.

**(2)** 

| uestion 4 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



| estion 4 continued |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |

| Question 4 continued |                 | blank |
|----------------------|-----------------|-------|
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 | Q4    |
|                      | (Total 7 marks) |       |



5.

$$f(x) = -x^3 + 4x^2 - 6$$

- (a) Show that the equation f(x) = 0 has a root between x = 1 and x = 2 (2)
- (b) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{6}{4 - x}\right)}$$

**(2)** 

(c) Starting with  $x_1 = 1.5$  use the iteration  $x_{n+1} = \sqrt{\frac{6}{4 - x_n}}$  to calculate the values of  $x_2$ ,  $x_3$  and  $x_4$  giving all your answers to 4 decimal places.

**(3)** 

(d) Using a suitable interval, show that 1.572 is a root of f(x) = 0 correct to 3 decimal places.

**(2)** 



12

|                      |     | Leave |
|----------------------|-----|-------|
|                      |     | blank |
| Question 5 continued |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      |     |       |
|                      | - 1 |       |



| Question 5 continued |   |
|----------------------|---|
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      |   |
|                      | _ |
|                      |   |
|                      |   |
|                      |   |

| Question 5 continued | Leave<br>blank |
|----------------------|----------------|
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
| (Total 9 marks)      | Q5             |



6. A hot piece of metal is dropped into a cool liquid. As the metal cools, its temperature T degrees Celsius, t minutes after it enters the liquid, is modelled by

$$T = 300e^{-0.04t} + 20, \quad t \geqslant 0$$

(a) Find the temperature of the piece of metal as it enters the liquid.

**(1)** 

(b) Find the value of t for which T = 180, giving your answer to 3 significant figures.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

**(4)** 

(c) Show, by differentiation, that the rate, in degrees Celsius per minute, at which the temperature of the metal is changing, is given by the expression

$$\frac{20 - T}{25}$$

| (3 | 1 |
|----|---|
| J  | , |

| Question 6 continued |                 | blank |
|----------------------|-----------------|-------|
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 |       |
|                      |                 | 06    |
|                      |                 | Q6    |
|                      | (Total 8 marks) |       |



DO NOT WRITE IN THIS AREA



Figure 3

Figure 3 shows part of the curve C with equation

$$y = \frac{3\ln(x^2 + 1)}{(x^2 + 1)}, \quad x \in \mathbb{R}$$

(a) Find  $\frac{dy}{dx}$ 

(b) Using your answer to (a), find the exact coordinates of the stationary point on the curve C for which x > 0. Write each coordinate in its simplest form.

**(5)** 

The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x-axis and the line x = 3

(c) Complete the table below with the value of y corresponding to x = 1

| х | 0 | 1 | 2                  | 3                    |
|---|---|---|--------------------|----------------------|
| у | 0 |   | $\frac{3}{5}\ln 5$ | $\frac{3}{10}\ln 10$ |

**(1)** 

(d) Use the trapezium rule with all the y values in the completed table to find an approximate value for the area of R, giving your answer to 4 significant figures.

| 1 | 1 | 1 |  |
|---|---|---|--|
| ı | 1 | ı |  |
|   |   |   |  |

|                      | Leave<br>blank |
|----------------------|----------------|
| Question 7 continued | Otalik         |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |



| Question 7 continued |  |
|----------------------|--|
| action / continued   |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 7 continued | blank |
|----------------------|-------|
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      | Q7    |
| (Total 11 marks)     |       |
| ( : ee :             |       |



(a) Show that  $f(\theta) = a + b\cos 2\theta$ , where a and b are integers which should be found.

**(3)** 

(b) Using your answer to part (a) and integration by parts, find the exact value of

$$\int_0^{\frac{\pi}{2}} \theta^2 f(\theta) d\theta$$

**(6)** 

|                      | Leave<br>blank |
|----------------------|----------------|
| Question 8 continued | Olalik         |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |



| Question 8 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 8 continued | blank     |
|----------------------|-----------|
|                      |           |
|                      | .         |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      | _         |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      |           |
|                      | <b>Q8</b> |
| (Total 9 marks)      |           |
| (Total 9 marks)      |           |



9. (a) Express  $\frac{3x^2-4}{x^2(3x-2)}$  in partial fractions.

(b) Given that  $x > \frac{2}{3}$ , find the general solution of the differential equation

$$x^2(3x-2) \frac{dy}{dx} = y(3x^2-4)$$

Give your answer in the form y = f(x).

| - ( | 6 | ١ |
|-----|---|---|
| •   | v | 1 |
|     |   |   |

**(4)** 

| uestion 9 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |



| Question 9 continued |  |  |
|----------------------|--|--|
| Question 7 continued |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |

| Question 9 continued |                  | blank      |
|----------------------|------------------|------------|
| Question 5 continued |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  |            |
|                      |                  | <b>Q</b> 9 |
|                      | (T) 112          |            |
|                      | (Total 10 marks) |            |



**10.** (a) Express  $3\sin 2x + 5\cos 2x$  in the form  $R\sin(2x + \alpha)$ , where R > 0 and  $0 < \alpha < \frac{\pi}{2}$  Give the exact value of R and give the value of  $\alpha$  to 3 significant figures.

**(3)** 

(b) Solve, for  $0 < x < \pi$ ,

$$3\sin 2x + 5\cos 2x = 4$$

(Solutions based entirely on graphical or numerical methods are not acceptable.) (5)

 $g(x) = 4(3\sin 2x + 5\cos 2x)^2 + 3$ 

- (c) Using your answer to part (a) and showing your working,
  - (i) find the greatest value of g(x),
  - (ii) find the least value of g(x).

(4)

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |

|                       | Leave |
|-----------------------|-------|
| Question 10 continued | blank |
| Anomon to community   |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |



| estion 10 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |

|                       |                  | Leave |
|-----------------------|------------------|-------|
| Question 10 continued |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  |       |
|                       |                  | Q10   |
|                       | (Total 12 marks) |       |
|                       | , ,              |       |



11.



Figure 4

Figure 4 shows a sketch of part of the curve with equation y = f(x),  $x \in \mathbb{R}$ 

The curve meets the coordinate axes at the points A(0, -3) and  $B(-\frac{1}{3}\ln 4, 0)$  and the curve has an asymptote with equation y = -4

In separate diagrams, sketch the graph with equation

(a) 
$$y = |f(x)|$$

(b) 
$$y = 2f(x) + 6$$
 (3)

On each sketch, give the exact coordinates of the points where the curve crosses or meets the coordinate axes and the equation of any asymptote.

Given that

$$f(x) = e^{-3x} - 4, x \in \mathbb{R}$$
$$g(x) = \ln\left(\frac{1}{x+2}\right), x > -2$$

(c) state the range of f,

(1)

(d) find  $f^{-1}(x)$ ,

(3)

(e) express fg(x) as a polynomial in x.

(3)

| Question 11 continued | blank |
|-----------------------|-------|
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |



|                       | Leave<br>blank |
|-----------------------|----------------|
| Question 11 continued | Ulalik         |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |
|                       |                |

| Question 11 continued | blank |
|-----------------------|-------|
| Question 11 continued |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       |       |
|                       | Q11   |
| (Total 14 marks)      |       |



**(1)** 

12. With respect to a fixed origin O, the lines  $l_1$  and  $l_2$  are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 12 \\ -4 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -4 \\ 2 \end{pmatrix}, \qquad l_2: \mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 6 \\ 3 \end{pmatrix}$$

where  $\lambda$  and  $\mu$  are scalar parameters.

- (a) Show that  $l_1$  and  $l_2$  meet, and find the position vector of their point of intersection A. **(6)**
- (b) Find, to the nearest  $0.1^{\circ}$ , the acute angle between  $l_1$  and  $l_2$ **(3)**

The point B has position vector  $\begin{bmatrix} 7 \\ 0 \\ 3 \end{bmatrix}$ .

(c) Show that B lies on  $l_1$ 

(d) Find the shortest distance from B to the line  $l_2$ , giving your answer to 3 significant figures.



|                        | Leave | e |
|------------------------|-------|---|
|                        | blank | K |
| Question 12 continued  |       |   |
| Question 12 constitues |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |
|                        |       |   |



| Question 12 continued |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |

| Question 12 continued | blank                                             |
|-----------------------|---------------------------------------------------|
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       | _                                                 |
|                       | _                                                 |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       | _                                                 |
|                       | _                                                 |
|                       | _                                                 |
|                       | _                                                 |
|                       | _                                                 |
|                       |                                                   |
|                       |                                                   |
|                       |                                                   |
|                       | _                                                 |
|                       |                                                   |
|                       | Q12                                               |
| (Total 14 marks       |                                                   |
| (Total 14 mai ks      | <del>"                                     </del> |



**13.** A curve *C* has parametric equations

$$x = 6\cos 2t$$
,  $y = 2\sin t$ ,  $-\frac{\pi}{2} < t < \frac{\pi}{2}$ 

(a) Show that  $\frac{dy}{dx} = \lambda \csc t$ , giving the exact value of the constant  $\lambda$ .

**(4)** 

(b) Find an equation of the normal to C at the point where  $t = \frac{\pi}{3}$ 

Give your answer in the form y = mx + c, where m and c are simplified surds.

**(6)** 

The cartesian equation for the curve C can be written in the form

$$x = f(y), \quad -k < y < k$$

where f(y) is a polynomial in y and k is a constant.

(c) Find f(y).

**(3)** 

(d) State the value of k.

**(1)** 



|                        | Leave |
|------------------------|-------|
|                        | blank |
| Question 13 continued  |       |
| Question 10 constitues |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |
|                        |       |



| Question 13 continued      | blank |
|----------------------------|-------|
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            |       |
|                            | Q13   |
| (Total 14 marks)           |       |
| TOTAL FOR PAPER: 125 MARKS |       |
|                            |       |