

(https://databricks.com)

# Let's start with a business problem:

# Building a Customer 360 database and reducing customer churn with the Databricks Lakehouse

In this demo, we'll step in the shoes of a retail company selling goods with a recurring business.

The business has determined that the focus must be placed on churn. We're asked to:

- Analyse and explain current customer churn: quantify churn, trends and the impact for the business
- Build a proactive system to forecast and reduce churn by taking automated action: targeted email, phoning etc.

#### What we'll build

To do so, we'll build an end-to-end solution with the Lakehouse. To be able to properly analyse and predict our customer churn, we need information coming from different external systems: Customer profiles coming from our website, order details from our ERP system and mobile application clickstream to analyse our customers activity.

At a very high level, this is the flow we'll implement:



- 1. Ingest and create our Customer 360 database, with tables easy to query in SQL
- 2. Secure data and grant read access to the Data Analyst and Data Science teams.
- 3. Run BI queries to analyse existing churn
- 4. Build ML model to predict which customer is going to churn and why

As a result, we will have all the information required to trigger custom actions to increase retention (email personalized, special offers, phone call...)

## Raw data generation

For this demonstration we will not be using real data or an existing dataset, but will rather generate them.

The cell below will execute a notebook that will generate the data and store them on DBFS. If you want to see the actual code click here to open it on a different tab (\$./includes/CreateRawData)

```
%run ./includes/CreateRawData

Python interpreter will be restarted.

Requirement already satisfied: Faker in /local_disk0/.ephemeral_nfs/envs/pythonEnv-6265a51b-ede1-4a6b-a2b5-75e2ffaddd18/lib/python3.9/site-packages (23.2.1)

Requirement already satisfied: python-dateutil>=2.4 in /databricks/python3/lib/python3.9/site-packages (from Faker) (2.8.2)

Requirement already satisfied: six>=1.5 in /databricks/python3/lib/python3.9/site-packages (from python-dateutil>=2.4->Faker) (1.16.0)

Python interpreter will be restarted.

Raw data already exists
```

## The raw data on DBFS

```
ordersFolder = rawDataDirectory + '/orders'
usersFolder = rawDataDirectory + '/users'
eventsFolder = rawDataDirectory + '/events'
print('Order raw data stored under the DBFS folder "' + ordersFolder + '"')
print('User raw data stored under the DBFS folder "' + usersFolder + '"')
print('Website event raw data stored under the DBFS folder "' + eventsFolder + '"')
Order raw data stored under the DBFS folder "/cloud_lakehouse_labs/retail/raw/orders"
User raw data stored under the DBFS folder "/cloud_lakehouse_labs/retail/raw/users"
Website event raw data stored under the DBFS folder "/cloud_lakehouse_labs/retail/raw/events"
```

## What we are going to implement

We will initially load the raw data with the autoloader, perform some cleaning and enrichment operations, develop and load a model from MLFlow to predict our customer churn, and finally use this information to build our DBSQL dashboard to track customer behavior and churn.

Bronze layer: Data close to source. Silver: QA. Gold: Highest grain.



#### Let's start with

Data Engineering with Delta (\$./01%20-%20Data%20Engineering%20with%20Delta)