- · SLR has one explanatory variable.
- MLR has multiple explanatory variables.

 $k \rightarrow$ number of explanatory variables in MLR

Multiple Linear Regression Model

• Observed values of Y are linearly related to the k explanatory variables as:

$$y=~eta_0~+~eta_1 X_1 + \ldots + eta_k X_k~+~\epsilon,$$
 where, ϵ - $\mathcal{N}(0,~\sigma^2_\epsilon)$

- We makes 3 assumptions about the error term:
 - 1. Independent
 - 2. Equal variance, $Var(\epsilon) = \sigma_{\epsilon}^2$
 - 3. Normal. $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$
- If you add explanatory variables to the model:
 - \circ \bar{R}^2 \uparrow and $s_e \downarrow$
- R
 - \circ In SLR, R represents the correlation between X and Y.
 - o In MLR, R represents the correlation between observed value(y) predicted value(\hat{y}).
- Calibration plot: Scatterplot between y and \hat{y} .

Adjusted R Squared Formula

$$ar{oldsymbol{R}}^2 = \mathbf{1} \; - \; \left[rac{\left(\mathbf{1} - oldsymbol{R}^2
ight) imes \left(oldsymbol{n} - \mathbf{1}
ight)}{\left(oldsymbol{n} - oldsymbol{k} - \mathbf{1}
ight)}
ight]$$

Slopes

- In SLR: $\beta_1 \rightarrow$ Marginal Slope.
 - $\circ \;\;$ Change in Y variable with one unit change in X variable.
- In MLR: $\beta_1 \rightarrow$ Partial Slope.
 - Change in Y variable with one unit change in X variable keeping all the other X variables constant.
- In MLR, if variables are independent of each other, *i.e.*, correlation = 0, then Marginal slope = Partial slope

Path Diagrams

Schematic drawing of the relationships among various *X*'s and *Y*.

Total effect = Direct effect + Indirect effect

$$Y = \beta_0 + aX_1 + cX_2$$

 $X_2 = \tilde{\beta}_0 + bX_1$

Total effect of X1 on $Y = a + b \times c$

Total effect of X_i on Y is represented in the Marginal Slope.

VIF (Variance Inflation Factor)

quantifies the amount of unique variation in each explanatory variable and measures the effect of collinearity.

$$V\!IF(X_j) = \ rac{1}{1-R_j^2}$$

- $R_i^2 \uparrow \Rightarrow VIF \uparrow$
- R_j^2 is the coefficient of determination on a regression where that particular j^{th} variable is the response variable and all the other explanatory variables are the explanatory variables.
- If explanatory variables are uncorrelated: $R_i^2 = 0$ and VIF = 1
- If they are correlated: VIF > 1
- Larger the *VIF* larger the collinearity.

Typically,

$$se(b_1) = rac{s_e}{\sqrt{n}} imes rac{1}{s_{X_1}}$$

With VIF,

$$se\left(b_{1}
ight)=\ rac{s_{e}}{\sqrt{n}}\ imes\ rac{1}{s_{X_{1}}}\ imes\ \sqrt{VIF\left(X_{1}
ight)}$$

- $s_e \rightarrow$ Standard error, estimate of σ_{ε}
- $ig| ullet \quad s_{X_1}
 ightarrow ext{Standard deviation in } X_1$
- As $VIF \uparrow \Rightarrow s_e(b_1) \uparrow$

Collinearity

Occurs when explanatory variables are highly correlated.

- Signs:
 - \circ R^2 does not increase as much on adding explanatory variables.
 - Value of Marginal slopes > Partial slopes
 - Standard errors for Partial slopes > Marginal slopes
 - o VIF increases
- Remedies
 - o Remove redundant explanatory variables
 - Re-express explanatory variables