Cambridge (CIE) A Level Chemistry

Acids & Bases

Contents

- * Conjugate Acids & Bases
- * pH, Ka, pKa & Kw Calculations
- * pH & [H+] Calculations
- ***** Buffers
- * Buffer Calculations
- * Solubility Product
- * Solubility Product Calculations
- * The Common Ion Effect

Conjugate Acids & Bases

Conjugate Acids & Bases

- A **Brønsted-Lowry acid** is a species that can donate a proton
- A Brønsted-Lowry base is a species that can accept a proton
- In an equilibrium reaction, the products are formed at the same rate as the reactants are used

$$CH_3COOH(aq) + H_2O(l) = CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

acid base conjugate base conjugate acid

- The reactant CH₃COOH is linked to the product CH₃COO⁻ by the transfer of a **proton** from the acid to the base
 - Similarly, the H₂O molecule is linked to H₃O⁺ ion by the transfer of a proton
- These pairs are therefore called **conjugate acid-base pairs**
 - A conjugate acid-base pair is two species that are different from each other by a H⁺ ion
 - Conjugate here means related
 - In other words, the acid and base are related to each other by one proton difference

Worked Example

Identifying conjugate acid-base pairs

Identify the conjugate acid-base pairs in the following equilibrium reaction:

$$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(ag) + OH^-(ag)$$

- In the forward reaction:
 - NH₄⁺ is the conjugate acid of the base NH₃
 - OH⁻ is the conjugate base of the acid H₂O
- In the reverse reaction
 - NH₃ is the conjugate base of the acid NH₄⁺
 - H₂O is the conjugate acid of the base OH⁻

Worked Example

In the equilibrium reaction shown below, which species are a conjugate acid-base pair?

$$CH_3CH_2CH_2COOH(aq) + H_2O(I) \neq CH_3CH_2CH_2COO^-(aq) + H_3O^+(aq)$$

- A. CH₃CH₂CH₂COOH and H₂O
- **B**. H_2O and H_3O^+
- C. H₂O and CH₃CH₂CH₂COO⁻
- D. CH₃CH₂CH₂COO⁻ and H₃O⁺

- The correct option in **B**
 - A conjugate acid-base pair differ only by an H+ion

Calculating pH, Ka, pKA & Kw

pН

- The **pH** indicates the **acidity** or **basicity** of an acid or alkali
- The pH scale goes from 0.0 to 14.0
 - Acids have a pH below 7.0
 - Pure water is **neutral** with a pH of 7.0
 - Bases and alkalis have a pH above 7.0
- pH can be calculated using:

$$pH = -log_{10}[H^+]$$

- where [H+] = concentration of H+ ions (mol dm⁻³)
- The pH can also be used to calculate the concentration of H⁺ ions in solution by rearranging the equation to:

$$[H^+] = 10^{-pH}$$

Worked Example

Calculating the pH of acids

Calculate the pH of ethanoic acid, at 298K, when the hydrogen ion concentration is $1.32 \times 10^{-3} \, \text{mol dm}^{-3}$.

Answer

$$pH = -log [H^+]$$

 $pH = -log 1.32 \times 10^{-3}$
 $pH = 2.9$

K_a & pK_a

- The K_a is the acidic dissociation constant
 - It is the **equilibrium constant** for the dissociation of a **weak acid** at 298 K
- For the **partial ionisation** of a weak acid HA, the equilibrium expression to find K_a is:

$$HA(aq) \neq H^+(aq) + A^-(aq)$$

- When writing the equilibrium expression for weak acids, the following assumptions are made:
 - The concentration of hydrogen ions due to the ionisation of water is negligible
 - The dissociation of the weak acid is so small that the concentration of HA can be approximated by its initial value
 - This is calculated from the number of moles divided by the volume of solvent
- The value of K_a indicates the extent of dissociation
 - A high value of K_a means that:
 - The equilibrium position lies to the right
 - The acid is almost completely ionised
 - The acid is **strongly acidic**
 - A low value of K_a means that:
 - The equilibrium position lies to the left
 - The acid is **only slightly ionised** (there are mainly HA and only a few H⁺ and A⁻ ions)
 - The acid is weakly acidic
- Since K_a values of many weak acids are **very low**, p K_a values are used instead to compare the strengths of weak acids with each other

$$pK_a = -log_{10} K_a$$

• The less positive the pK_a value the more acidic the acid is

Worked Example

Calculating the K_a & p K_a of weak acids

Calculate the K_a and p K_a values of 0.100 mol dm⁻³ ethanoic acid at 298K which forms 1.32×10^{-3} of H⁺ ions in solution.

- Step 1: Write down the equation for the partial dissociation of ethanoic acid: $CH_3COOH(aq) = H^+(aq) + CH_3COO^-(aq)$
- Step 2: Write down the equilibrium expression to find K_a :

$$K_a = \frac{\text{[H^+][CH}_3\text{COO}^-]}{\text{[CH}_3\text{COOH]}}$$

Step 3: Simplify the expression:

The ratio of H+ to CH₃COO- is 1:1

The concentration of H⁺ and CH₃COO⁻ is, therefore, the same

The equilibrium expression can be simplified to:

$$K_a = \frac{[H^+]^2}{[CH_3COOH]}$$

• Step 4: Substitute the values into the expression to find K_a :

$$K_{a} = \frac{\left[1.32 \times 10^{-3}\right]^{2}}{\left[0.100\right]}$$

$$K_a = 1.74 \times 10^{-5}$$

• **Step 5:** Determine the units of K_a :

$$K_a = \frac{[\text{mol dm}^{-3}]^2}{[\text{mol dm}^{-3}]} = \text{mol dm}^{-3}$$

Therefore, K_a is 1.74×10^{-5} mol dm⁻³

• Step 6: Find pK_a :

$$pK_a = -\log_{10} K_a$$

$$pK_a = -\log_{10} (1.74 \times 10^{-5})$$

$$pK_a = 4.76$$

- The K_w is the ionic product of water
 - It is the **equilibrium constant** for the dissociation of **water** at 298 K
 - Its value is 1.00 x 10⁻¹⁴ mol² dm⁻⁶
- For the **ionisation** of water, the equilibrium expression to find K_w is:

$$H_2O(I) \Rightarrow H^+(aq) + OH^-(aq)$$

$$K_{w} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]}$$

- As the **extent of ionisation** is very low, only small amounts of H⁺ and OH⁻ ions are formed
- The concentration of H₂O can therefore be regarded as constant and removed from the K_w expression
- The equilibrium expression therefore becomes:

$$K_{w} = [H^{+}][OH^{-}]$$

■ As the [H+] = [OH+] in pure water, the equilibrium expression can be further simplified to:

$$K_{\rm W} = [{\rm H}^+]^2$$

Your notes

Your notes

Worked Example

Calculating the concentration of H+ of pure water

Calculate the concentration of H+ in pure water, using the ionic product of water

Answer

- **Step 1:** Write down the equation for the partial dissociation of water:
 - In pure water, the following equilibrium exists:

$$H_2O(I) \Rightarrow H^+(aq) + OH^-(aq)$$

• Step 2: Write down the equilibrium expression to find K_w :

$$K_{w} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]}$$

- Step 3: Simplify the expression:
 - Since the concentration of H₂O is constant, this expression can be simplified

$$K_{w} = [H^{+}][OH^{-}]$$

- **Step 4:** Further simplify the expression:
 - The ratio of H+ to OH- is 1:1
 - The concentration of H⁺ and OH⁻ is, therefore, the same and the equilibrium expression can be further simplified to:

$$K_{\rm W} = [{\rm H}^{+}]^{2}$$

■ **Step 5:** Rearrange the equation to find [H+]:

$$[H^+] = \sqrt{K_w}$$

• Step 6: Substitute the values into the expression to find K_w :

$$[H^+] = \sqrt{1.00 \times 10^{-14}}$$

$$[H^{+}] = 1.00 \times 10^{-7} \, \text{mol dm}^{-3}$$

Examiner Tips and Tricks

- The greater the K_a value, the **more strongly acidic** the acid is
- The greater the pK_a value, the **less strongly acidic** the acid is.
- Also, you should be able to rearrange the following expressions:

$$pH = -log_{10}[H^+] \Leftrightarrow [H^+] = 10^{-pH}$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \Leftrightarrow [H^{+}] = \frac{K_{a} \times [HA]}{[A^{-}]}$$

pH & [H+] Calculations

[H+] & pH Calculations

■ If the concentration of H⁺ of an acid or alkali is known, the **pH** can be calculated using the equation:

$$pH = -log[H^+]$$

■ Similarly, the **concentration of H**⁺ of a solution can be calculated if the pH is known by rearranging the above equation to:

$$[H^+] = 10^{-pH}$$

Strong acids

• Strong acids are completely ionised in solution

$$HA(aq) \rightarrow H^{+}(aq) + A^{-}(aq)$$

- Therefore, the concentration of hydrogen ions ([H+]) is **equal** to the concentration of acid ([HA])
- The number of hydrogen ions ([H+]) formed from the ionisation of water is **very small** relative to the [H+] due to the ionisation of the strong acid and can therefore be neglected
- The **total** [H+] is therefore the same as the [HA]

Worked Example

pH calculations of a strong acid

For a solution of hydrochloric acid, calculate the following:

- 1. The pH when the hydrogen ion concentration is 1.6×10^{-4} mol dm⁻³.
- 2. The hydrogen ion concentration when the pH is 3.1.

Answer

Hydrochloric acid is a strong monobasic acid

$$HCI(aq) \rightarrow H^+(aq) + CI^-(aq)$$

Answer 1

■ The pH of the solution is:

$$pH = -log[H^+]$$

$$pH = -log 1.6 \times 10^{-4}$$

$$pH = 3.80$$

• The hydrogen concentration can be calculated by rearranging the equation for рН:

$$pH = -log[H^+]$$

$$[H^+] = 10^{-pH}$$

$$[H^+] = 10^{-3.1}$$

$$[H^+] = 7.9 \times 10^{-4} \, \text{mol dm}^{-3}$$

Strong alkalis

• Strong alkalis are completely ionised in solution

$$BOH(aq) \rightarrow B^{+}(aq) + OH^{-}(aq)$$

- Therefore, the concentration of hydroxide ions ([OH-]) is equal to the concentration of base ([BOH])
 - Even strong alkalis have small amounts of H⁺ in solution which is due to the ionisation of water
- The concentration of OH⁻ in solution can be used to calculate the pH using the **ionic** product of water

$$K_{w} = [H^{+}][OH^{-}]$$

$$[\mathsf{H}^+] = \frac{\mathsf{K}_{\mathrm{w}}}{\big[\mathsf{OH}^-\big]}$$

• Since K_w is 1.00 x 10^{-14} mol² dm⁻⁶

$$[H^+] = \frac{1.00 \times 10^{-14}}{[OH^-]}$$

- Once the [H+] has been determined, the pH of the strong alkali can be found using pH = log[H+]
- Similarly, the ionic product of water can be used to find the concentration of OH⁻ ions in solution if [H+] is known

$$[OH_{-}] = \frac{1.00 \times 10^{-14}}{[H^{+}]}$$

Worked Example

pH calculations of a strong alkali

For a solution of sodium hydroxide, calculate the following:

- 1. The pH when the hydrogen ion concentration is 3.5×10^{-11} mol dm⁻³.
- 2. The hydroxide ion concentration when the pH is 12.3.

$$NaOH (aq) \rightarrow Na^+ (aq) + OH^- (aq)$$

Answer 1

■ The pH of the solution is:

$$pH = -log[H^+]$$

$$pH = -log 3.5 \times 10^{-11}$$

$$pH = 10.5$$

Answer 2

• **Step 1:** Calculate the hydrogen concentration by rearranging the equation for pH:

$$pH = -log[H^+]$$

$$[H^+] = 10^{-pH}$$

$$[H^+] = 10^{-12.3}$$

$$[H^{+}] = 5.01 \times 10^{-13} \, \text{mol dm}^{-3}$$

• Step 2: Rearrange the ionic product of water to find the concentration of hydroxide ions:

$$K_{W} = [H^{+}][OH^{-}]$$

$$[OH^-] = \frac{K_w}{[H^+]}$$

- Step 3: Substitute the values into the expression to find the concentration of hydroxide ions:
 - Since K_w is $1.00 \times 10^{-14} \, \text{mol}^2 \, \text{dm}^{-6}$

$$[OH^{-}] = \frac{1.00 \times 10^{-14}}{5.01 \times 10^{-13}}$$

$$[OH^{-}] = 0.0199 \, \text{mol dm}^{-3}$$

Weak acids

- The pH of **weak acids** can be calculated when the following is known:
 - The concentration of the acid
 - The K_a value of the acid

Worked Example

pH calculations of weak acids

Calculate the pH of 0.100 mol dm $^{-3}$ ethanoic acid at 298K with a K_a value of 1.74 x 10^{-5} $mol dm^{-3}$.

• Ethanoic acid is a weak acid which ionises as follows:

$$CH_3COOH(aq) \Rightarrow H^+(aq) + CH_3COO^-(aq)$$

• **Step 1:** Write down the equilibrium expression to find K_a :

$$K_a = \frac{\text{[H+]}\left[\text{CH}_3\text{COO}^-\right]}{\left[\text{CH}_3\text{COOH}\right]}$$

- The ratio of H+ to CH₃COO⁻ ions is 1:1
- Therefore the concentration of H⁺ and CH₃COO⁻ ions are the same
- So, the expression can be simplified to:

$$K_a = \frac{[H+]^2}{[CH_3COOH]}$$

• Step 3: Rearrange the expression to find [H+]:

$$[H^+] = \sqrt{K_a \times [CH_3COOH]}$$

• Step 4: Substitute the values into the expression to find [H+]:

$$[H^+] = \sqrt{(1.74 \times 10^{-5}) \times 0.100}$$

$$[H^+] = 1.32 \times 10^{-3} \, \text{mol dm}^{-3}$$

Step 5: Find the pH:

$$pH = -log_{10}[H^+]$$

$$pH = -log_{10} 1.32 \times 10^{-3}$$

$$pH = 2.88$$

Buffers

Buffers

- A buffer solution is a solution in which the pH does not change a lot when small amounts of acids or alkalis are added
 - A buffer solution is used to keep the pH almost constant
 - A buffer can consist of a weak acid conjugate base or a weak base conjugate acid

Ethanoic acid & sodium ethanoate as a buffer

- A common buffer solution is an aqueous mixture of ethanoic acid and sodium ethanoate
- Ethanoic acid, CH₃COOH, is a **weak acid** and partially ionises in solution to form a relatively low concentration of ethanoate ions, CH₃COO-

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$$

■ Sodium ethanoate, CH₃COONa, is a **salt** which fully ionises in solution to form a relatively high concentration of ethanoate ions, CH₃COO⁻

$$CH_3COONa(a) + aq \rightarrow Na^+(aq) + CH_3COO^-(aq)$$

- There are **reserve supplies** of the acid (CH₃COOH) and its conjugate base (CH₃COO⁻)
 - The buffer solution contains relatively high concentrations of CH₃COOH (due to the ionisation of ethanoic acid) and CH₃COO⁻ (due to the ionisation of sodium ethanoate)
- In the **buffer solution**, the ethanoic acid is **in equilibrium** with hydrogen and ethanoate ions

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$$

When H+ ions are added:

- The equilibrium position shifts to the **left** as H⁺ions react with CH₃COO⁻ions to form more CH₃COOH until equilibrium is re-established
- As there is a large reserve supply of CH₃COO⁻, the concentration of CH₃COO⁻ in solution doesn't change much as it reacts with the added H⁺ions
- As there is a large reserve supply of CH₃COOH, the concentration of CH₃COOH in solution doesn't change much as CH₃COOH is formed from the reaction of CH₃COO⁻
- As a result, the pH remains reasonably constant

When OH-ions are added:

■ The OH⁻ reacts with H⁺ to form water

$$OH^-(aq) + H^+(aq) \rightarrow H_2O(I)$$

- The H⁺ concentration **decreases**
- The equilibrium position shifts to the right and more CH₃COOH molecules ionise to form more H⁺ and CH₃COO⁻ until equilibrium is re-established

$$CH_3COOH(aq) \rightarrow H^+(aq) + CH_3COO^-(aq)$$

- As there is a large reserve supply of CH₃COOH the concentration of CH₃COOH in solution doesn't change much when CH₃COOH dissociates to form more H⁺ions
- As there is a large reserve supply of CH₃COO⁻ the concentration of CH₃COO⁻ in solution doesn't change much
- As a result, the pH remains reasonably constant

Uses of buffer solutions in controlling the pH of blood

- In humans, HCO_3^- ions act as a buffer to keep the blood pH between 7.35 and 7.45
- Body cells produce CO₂ during **aerobic respiration**
- This CO₂ will combine with water in the blood to form a solution containing H⁺ ions

$$CO_2(g) + H_2O(I) \Rightarrow H^+(aq) + HCO_3^-(aq)$$

- This equilibrium between CO₂ and HCO₃ is extremely important
- If the concentration of H+ions is not regulated, the blood pH would drop and cause 'acidosis'
 - Acidosis refers to a condition in which there is too much acid in the body fluids such as blood
 - This could cause body malfunctioning and eventually lead to coma
- If there is an increase in H⁺ ions
- The equilibrium position shifts to the left until equilibrium is restored

$$CO_2(g) + H_2O(I) \rightarrow H^+(aq) + HCO_3^-(aq)$$

- This reduces the concentration of H⁺ and keeps the pH of the blood **constant**
- If there is a decrease in H⁺ ions
 - The equilibrium position shifts to the **right** until equilibrium is restored

$$CO_2(g) + H_2O(I) \rightarrow H^+(aq) + HCO_3^-(aq)$$

■ This increases the concentration of H+ and keeps the pH of the blood constant

Examiner Tips and Tricks

Your notes

- Remember that buffer solutions cannot cope with **excessive addition** of acids or $alkalis\,as\,their\,pH\,will\,change\,significantly$
- The pH will only remain relatively constant if **small amounts** of acids or alkalis are added.

Buffer Calculations

Buffer Solution pH Calculations

- The pH of a **buffer solution** can be calculated using:
 - The K_a of the weak acid
 - The equilibrium concentration of the weak acid and its conjugate base (salt)
- To determine the pH, the concentration of **hydrogen ions** is needed which can be found using the equilibrium expression:

$$K_a = \frac{\text{[salt][H^+]}}{\text{[acid]}}$$

• This can be rearranged to determine the concentration of hydrogen ions:

$$[H^+] = K_a \times \frac{[\text{acid}]}{[\text{salt}]}$$

• To simplify the calculations, **logarithms** are used such that the expression becomes:

$$-\log_{10} [{\rm H^+}] = -\log_{10} K_{\rm a} \times -\log_{10} \frac{[{\rm acid}]}{[{\rm salt}]}$$

• Since $-\log_{10}[H^+] = pH$ and $-\log_{10}[K_a] = pK_a$, the expression can also be rewritten as:

$$pH = pK_a a + \log_{10} \frac{[\text{ salt }]}{[\text{ acid }]}$$

Worked Example

Calculating the pH of a buffer solution

Calculate the pH of a buffer solution containing $0.305 \, \text{mol dm}^{-3}$ ethanoic acid and 0.520 mol dm⁻³ sodium ethanoate.

The K_a of ethanoic acid = 1.43 x 10⁻⁵ mol dm⁻³.

Answer

• Ethanoic acid is a weak acid that ionises as follows:

$$CH_3COOH(aq) \Rightarrow H^+(aq) + CH_3COO^-(aq)$$

• Step 1: Write down the equilibrium expression to find K_a :

$$K_a = \frac{\left[\text{CH}_3\text{COO}^-\right]\left[\text{H}^+\right]}{\left[\text{CH}_3\text{COOH}\right]}$$

• Step 2: Rearrange the equation to find [H⁺]:

• **Step 3:** Substitute the values into the expression:

[H+] =
$$1.43 \times 10^{-5} \times \frac{[0.305]}{[0.520]}$$

$$[H^+] = 8.39 \times 10^{-6} \, \text{mol dm}^{-3}$$

• **Step 4:** Calculate the pH:

pH =
$$-\log_{10}[H^+]$$

pH = $-\log 8.39 \times 10^{-6}$
pH = 5.08

Solubility Product

The Solubility Product, Ksp

- Solubility is defined as the number of grams or moles of compound needed to saturate 100 g of water, or it can also be defined in terms of 1 kg of water, at a given temperature
 - For example, sodium chloride (NaCl) is considered to be a **soluble** salt as a saturated solution contains 36 g of NaCl per 100 g of water
 - Lead chloride (PbCl₂) on the other hand is an **insoluble** salt as a saturated solution only contains 0.99 g of PbCl₂ per 100 g of water

Solubility product

- The solubility product (K_{sp}) is:
 - The product of the concentrations of each ion in a saturated solution of a relatively soluble salt
 - At 298 K
 - Raised to the power of their relative concentrations

$$C(s) \rightleftharpoons aA^{x+}(aq) + bB^{y-}(aq)$$

$$K_{sp} = [A^{x+} (aq)]^a [B^{y-} (aq)]^b$$

- When an undissolved ionic compound is in contact with a saturated solution of its ions, an equilibrium is established
- The ions move from the solid to the saturated solution at the same rate as they move from the solution to the solid
 - For example, the undissolved magnesium chloride (MgCl₂) is in equilibrium with a saturated solution of its ions

$$MgCl_2(s) = Mg^{2+}(aq) + 2Cl^{-}(aq)$$

lons in a saturated solution

■ The **solubility product** for this equilibrium is:

$$K_{sp} = [Mg^{2+} (aq)] [Cl^{-} (aq)]^{2}$$

- The K_{sp} is only useful for **sparingly soluble salts**
- The smaller the value of K_{sp} , the lower the solubility of the salt

Ksp Expressions

• The general equilibrium expression for the **solubility product** (K_{sp}) is:

$$C(s) = aA^{x+}(aq) + bB^{y-}(aq)$$

$$K_{sp} = [A^{x+}(aq)]^a [B^{y-}(aq)]^b$$

Worked Example

Expressing K_{sp} of ionic compounds

- Give the equilibrium expressions, including units, for the solubility products of the following ionic compounds:
 - 1. Ca(OH)₂
 - 2. Fe₂O₃
 - 3. SnCO₃

Answer 1 – $Ca(OH)_2$:

• Step 1 - Write the balanced chemical equation:

$$Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2OH^-(aq)$$

• Step 2 - Write the K_{sp} expression:

$$K_{sp} = [Ca^{2+}(aq)][OH^{-}(aq)]^{2}$$

■ Step 3 - Deduce the units:

$$K_{\rm sp} = [\text{mol dm}^{-3}] \times [\text{mol dm}^{-3}]^2$$

$$K_{SD} = [\text{mol dm}^{-3}]^3$$

$$K_{sp} = \text{mol}^{3} \, \text{dm}^{-9}$$

Answer 2 - Fe_2O_3 :

• **Step 1** - Write the balanced chemical equation:

$$Fe_2O_3(s) \rightleftharpoons 2Fe^{3+}(aq) + 3O^{2-}(aq)$$

• **Step 2** - Write the K_{sp} expression:

$$K_{sp} = [Fe^{3+}(aq)]^2 [O^{2-}(aq)]^3$$

1. Step 3 - Deduce the units:

 $K_{sp} = [\text{mol dm}^{-3}]^2 \times [\text{mol dm}^{-3}]^3$

 $K_{sp} = [\text{mol dm}^{-3}]^5$

 $K_{sp} = \text{mol}^5 \, \text{dm}^{-15}$

Answer 3 - SnCO₃:

• **Step 1** - Write the balanced chemical equation:

$$SnCO_3(s) \rightleftharpoons Sn^{2+}(aq) + CO_3^{2-}(aq)$$

• **Step 2** - Write the K_{sp} expression:

$$K_{SD} = [Sn^{2+} (aq)] [CO_3^{2-} (aq)]$$

• Step 3 - Deduce the units:

$$K_{sp} = [\text{mol dm}^{-3}] \times [\text{mol dm}^{-3}]$$

$$K_{sp} = [\text{mol dm}^{-3}]^2$$

$$K_{\rm sp} = \rm mol^2 \, dm^{-6}$$

Solubility Product Calculations

Solubility Product Calculations

- Calculations involving the **solubility product** (K_{SD}) may include::
 - Calculating the solubility product of a compound from its solubility
 - Calculating the solubility of a compound from the solubility product

Worked Example

Calculating the solubility product of a compound from its solubility

Calculate the solubility product of a saturated solution of lead(II) bromide, PbBr2, with a solubility of 1.39×10^{-3} mol dm⁻³.

Answer

• **Step 1:** Write down the equilibrium equation:

$$PbBr_{2}(s) \neq Pb^{2+}(aq) + 2Br^{-}(aq)$$

• **Step 2:** Write down the equilibrium expression:

$$K_{sp} = [Pb^{2+}(aq)][Br^{-}(aq)]^{2}$$

- Step 3: Calculate the ion concentrations in the solution:
 - \blacksquare [PbBr₂(s)] = 1.39 x 10⁻³ mol dm⁻³
 - The ratio of PbBr₂ to Pb²⁺ is 1:1

$$[Pb^{2+}(aq)] = [PbBr_{2}(s)] = 1.39 \times 10^{-3} \text{ mol dm}^{-3}$$

■ The ratio of PbBr₂ to Br⁻ is 1:2

$$[Br^{-}(aq)] = 2 \times [PbBr_{2}(s)] = 2 \times 1.39 \times 10^{-3} \text{ mol dm}^{-3} = 2.78 \times 10^{-3} \text{ mol dm}^{-3}$$

• **Step 4:** Substitute the values into the expression to find the solubility product:

$$K_{\rm sp} = (1.39 \times 10^{-3}) \times (2.78 \times 10^{-3})^2$$

$$K_{SD} = 1.07 \times 10^{-8}$$

• Step 6: Determine the correct units of K_{sp} :

$$K_{\rm sp} = (\text{mol dm}^{-3}) \times (\text{mol dm}^{-3})^2$$

$$K_{\rm SD} = {\rm mol}^3\,{\rm dm}^{-9}$$

• Therefore, the solubility product is $1.07 \times 10^{-8} \text{ mol}^3 \text{ dm}^{-9}$

Worked Example

Calculating the solubility of a compound from its solubility product

Calculate the solubility of a saturated solution of copper(II) oxide, CuO, with a solubility product of $5.9 \times 10^{-36} \text{ mol}^2 \text{ dm}^{-6}$.

Your notes

Answer

• **Step 1:** Write down the equilibrium equation:

$$CuO(s) = Cu^{2+}(aq) + O^{2-}(aq)$$

Step 2: Write down the equilibrium expression:

$$K_{sp} = [Cu^{2+}(aq)][O^{2-}(aq)]$$

- **Step 3:** Simplify the equilibrium expression:
 - The ratio of Cu²⁺ to O²⁻ is 1:1
 - $[Cu^{2+}(aq)] = [O^{2-}(aq)]$ so the expression can be simplified to:

$$K_{sp} = [Cu^{2+}(aq)]^2$$

• **Step 4:** Substitute the value of K_{sp} into the expression to find the concentration:

$$5.9 \times 10^{-36} = [Cu^{2+}(aq)]^2$$

[Cu²⁺ (aq)] =
$$\sqrt{5.9 \times 10^{-36}}$$

$$[Cu^{2+} (aq)] = 2.4 \times 10^{-18} \, \text{mol dm}^{-3}$$

• Since $[CuO(s)] = [Cu^{2+}(aq)]$, the solubility of copper oxide is 2.4×10^{-18} mol dm⁻³

Examiner Tips and Tricks

Remember that the solubility product is only applicable to very slightly soluble salts and cannot be used for soluble salts such as:

- Group 1 element salts
- All nitrate salts
- All ammonium salts
- Many sulfate salts
- Many halide salts (except for lead(II) halides and silver halides)

The Common Ion Effect

The Solubility Product & the Common Ion Effect

- A saturated solution is a solution that contains the maximum amount of dissolved salt
- If a second compound, which has an ion in common with the dissolved salt, is added to the saturated solution, the solubility of the salt reduces, and a solid precipitate will be formed
- This is also known as the **common ion effect**
- For example, if a solution of **potassium chloride** (KCI) is added to a **saturated solution of** silver chloride (AgCl) a precipitate of silver chloride will be formed
 - The chloride ion is the common ion
- The solubility product can be used to predict whether a precipitate will form or not
 - A precipitate will form if the product of the ion concentrations is greater than the solubility product (K_{sp})

Common ion effect in silver chloride

- When a KCI solution is added to a saturated solution of AgCI, an AgCI precipitate forms
- In a saturated AgCl solution, the silver chloride is in equilibrium with its ions

$$AgCl(s) \Rightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

- When a solution of potassium chloride is added:
 - Both KCl and AgCl have the common Cl⁻ion
 - There is an increased Cl⁻ concentration so the equilibrium position shifts to the left
 - The increase in Cl⁻ concentration also means that [Ag⁺(aq)] [Cl⁻(aq)] is **greater** than the K_{sp} for AgCl
 - As a result, the AgCl is **precipitated**

The common ion effect with KCI (aq) and AgCI (aq)

The addition of potassium chloride to a saturated solution of silver chloride results in the precipitate of silver chloride

Worked Example

Calculations using the $K_{\rm sp}$ values and the concentration of the common ion

Predict whether a precipitate of $CaSO_4$ will form if a saturated solution of 1.0 x 10^{-3} mol dm⁻³ CaSO₄ is mixed with an equal volume of 1.0 x 10^{-3} mol dm⁻³ Na₂SO₄.

$$K_{\rm sp} \, {\rm CaSO_4} = 2.0 \, {\rm x} \, 10^{-5} \, {\rm mol^2} \, {\rm dm^{-6}}.$$

Answer

• **Step 1:** Determine the equilibrium reaction of CaSO₄:

$$CaSO_4(s) \neq Ca^{2+}(aq) + SO_4^{2-}(aq)$$

• Step 2: Write down the equilibrium expression for K_{sp} :

$$K_{SD} = [Ca^{2+}(aq)][SO_4^{2-}(aq)]$$

- Step 3: Determine the concentrations of the ions:
 - There are equal volumes of each solution
 - This means that the total solution was diluted by a factor of 2
 - The new concentration of the Ca²⁺ ion is **halved**:

$$Ca^{2+} = \frac{1.0 \times 10^{-3}}{2}$$

- \blacksquare [Ca²⁺] = 5.0 x 10⁻⁴ mol dm⁻³
- The sulfate ion concentration remains the same as it is a common ion and its concentration is the same in both solutions
- **Step 4:** Substitute the values into the expression:
 - Product of the ion concentrations = $[Ca^{2+}(aq)] \times [SO_4^{2-}(aq)]$
 - Product of the ion concentrations = $(5.0 \times 10^{-4}) \times (1.0 \times 10^{-3})$

- Product of the ion concentrations = $5.0 \times 10^{-7} \text{ mol}^2 \text{ dm}^{-6}$
- **Step 5:** Determine if a precipitate will form:

