	BRS & EIGEN	decom	POSITI	101	
BIGENVECT	BINATIONS & SPI	64		· · · · · ·	
LINEAR HOE	PENDANC				
Al	SEE OF ALL VEC	TORS R	BAChal	re sam	9 liver (unbil)
SPAN, #	SER OF ALL VEC	5W			* 100,1
of car					
raisa 1		CONV	isall	veelvo	in 20 space
case 1.	111	SPA			Spale
	W				
		 	· · · ·		
case 2:					
		W			· · · · · · · · · · ·
		7	PAN 1	s all vec	ws on Line
	1				• • • • • • • • • • • • • •
					· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			
· · · · · · ·	* * * * * * * * *				
A	* * * * * * * * * * * * *				
1	SPAN 1	€ , Q.+ ,			
	SPAN 13	\$ \$			
	SPAN 13	\$ \$ \$			
	SPAN 13	\$ \$			

LINBAR DEPENDENCE & INDEPENDENCE

when you have multiple rectors and one needer is in the span of another vector when you can remove a vector from a set and span is the same

LINEAR INDEPENDENCE IS OPPOSITE OF above

LINEAR TRANSFORMATIONS

Modifying a vector given a transformation matrix

E.g. Given $\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ | x = any rect and multiplying by transform majorix dells you what happress to a veet offer a 900 rotaling

LINEAR Transformations let you more around space