Gaussian Processes

Arno Solin

Assistant Professor in Machine Learning Department of Computer Science Aalto University

PROBAI SUMMER SCHOOL

June 15, 2022

It's all about the tools you have in your toolbox

Structure

Pragmatic introduction to Gaussian processes

Challenges that break the beauty

Connections and approaches to GPs

.

Recap and Q&A

Gaussian processes and ML

Definitions

A random vector $\mathbf{x} = (x_1, x_2, \dots, x_d)$ is said to have the **multivariate Gaussian distribution** if all linear combinations of \mathbf{x} are Gaussian distributed:

$$y = a_1x_1 + a_2x_2 + \cdots + a_dx_d \sim N(m, v)$$

for all $\boldsymbol{a} \in \mathbb{R}^d$

A Gaussian process (GP) is a collection of random variables over space, such that any finite subset of them have a joint Gaussian distribution.

Characterization and notation

A Gaussian process can be considered as a distribution over functions $f: \mathcal{X} \to \mathbb{R}$ (the domain or index space \mathcal{X} is typically \mathbb{R}^d)

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$$

A Gaussian process is completely characterized by its mean function $\mu(\mathbf{x})$ and its covariance function $\kappa(\mathbf{x}, \mathbf{x}')$, which define

$$\mathbb{E}[f(\mathbf{x})] = \mu(\mathbf{x})$$
 and $\text{cov}[f(\mathbf{x}), f(\mathbf{x}')] = \kappa(\mathbf{x}, \mathbf{x}')$

Characterization and notation

The probability of any subset of function values $f = f(x_1), \dots, f(x_N)$ at any inputs x_1, \dots, x_N is

$$p(\mathbf{f}) = N(\mathbf{f} \mid \mathbf{m}, \mathbf{K})$$

where $\mathbf{m} = \mu(\mathbf{x}_1), \dots, \mu(\mathbf{x}_n)$ and $[\mathbf{K}]_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$

- If $\mathcal{X} = \mathbb{R}^d$, the GP prior describes infinitely many random variable $\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^d\}$, but in practice we only have to deal with a finite subset corresponding to the data set at hand, and where we want to evaluate ('test') the function
- ▶ This also gives rise to the *non-parametric* nature of GPs

Where the magic happens: The covariance function

- In the kernel representation of GPs, the covariance function κ(x, x') encodes prior beliefs of data-generating latent functions
- ► Typical choices are *continuity*, *differentiability* (smoothness), *periodicity*, *invariances*, *etc*.
- The RBF covariance function:

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') = \sigma^2 \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|^2}{2\ell^2}\right)$$

The covariance functions typically have hyperparameters that are learned from data

Examples of draws from GP priors

Anatomy of a GP model in ML

In machine learning the kernel (moment) representation is favoured

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$$
 GP prior $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{x}_i))$ likelihood

Example: GP regression

▶ GP regression problem with input–output training pairs $\{(x_i, y_i)\}_{i=1}^n$:

$$f(x) \sim \mathsf{GP}(0, \kappa(x, x')),$$

 $y_i = f(x_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma_\mathsf{n}^2)$

ightharpoonup The posterior mean and variance for an unseen test input x_* is given by:

$$\mathbb{E}[f_*] = \mathbf{k}_* (\mathbf{K} + \sigma_{\mathsf{n}}^2 \mathbf{I})^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_* (\mathbf{K} + \sigma_{\mathsf{n}}^2 \mathbf{I})^{-1} \mathbf{k}_*^{\mathsf{T}}$$

Learn hyperparamters θ by maximizing w.r.t. log marginal likelihood:

$$\log p(\mathbf{y} \mid \theta) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{K}_{\theta} + \sigma_{\mathsf{n}}^2 \mathbf{I}| - \frac{1}{2} \mathbf{y}^{\mathsf{T}} (\mathbf{K}_{\theta} + \sigma_{\mathsf{n}}^2 \mathbf{I})^{-1} \mathbf{y}$$

Note the inversion of the $n \times n$ matrix.

Example: GP regression [details]

Step 1: Write the joint model

$$p(\mathbf{y}, \mathbf{f}, f_*) = p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}, f_*) = N(\mathbf{y} \mid \mathbf{f}, \sigma_n^2 \mathbf{I}) N\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \mid \mathbf{0}, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{k}_{f_* f} \\ \mathbf{k}_{f_* f} & \mathbf{k}_{f_* f_*} \end{bmatrix}\right)$$

Step 2: Marginalize over f

$$\rho(\boldsymbol{y}, f_*) = \int \rho(\boldsymbol{y} \mid \boldsymbol{f}) \, \rho(\boldsymbol{f}, f_*) \, \mathrm{d}\boldsymbol{f} = \mathsf{N} \left(\begin{bmatrix} \boldsymbol{y} \\ f_* \end{bmatrix} \mid \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{ff} + \sigma_\mathsf{n}^2 \boldsymbol{I} & \boldsymbol{K}_{f_* f} \\ \boldsymbol{K}_{f_* f} & k_{f_* f_*} \end{bmatrix} \right)$$

Step 3: Compute conditional distribution $p(f_* \mid \mathbf{y})$

$$\begin{split} \rho(f_* \mid \boldsymbol{y}) &= \mathsf{N}\left(f_* \mid \mathbb{E}[f_*], \mathbb{V}[f_*]\right) \\ \mathbb{E}[f_*] &= \boldsymbol{k}_{f_*f} \left(\boldsymbol{K}_{ff} + \sigma_\mathsf{n}^2 \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\ \mathbb{V}[f_*] &= k_{f_*f_*} - \boldsymbol{k}_{f_*f} \left(\boldsymbol{K}_{ff} + \sigma_\mathsf{n}^2 \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_*f}^\mathsf{T} \end{split}$$

The input-output pairs

Draw from the GP posterior with a Matérn prior

Draws from the GP posterior

Draws from the GP posterior

The GP posterior marginals

The stationary prior is mean-reverting

with a non-stationary prior

with a non-stationary prior

with a non-stationary prior

with a periodic prior

with a periodic prior

with a periodic prior

Challenges that break the beauty

GPs have three challenges

Scaling to large data

A na \ddot{v} e solution to dealing with the expanded Gram (covariance) matrix requires $\mathcal{O}(n^3)$ compute and $\mathcal{O}(n^2)$ memory. Infeasible for n > 10,000.

• Dealing with non-conjugate likelihoods

For a Gaussian observation model the GP posterior is available in closed-form. For non-conjugate likelihood models one has to resort to approximate inference methods.

Representational power

Gaussian processes are ideal for problems where it is easy to specify *meaningful* priors. For applications such as image classification this is hard.

Scaling to large data

The naïve $\mathcal{O}(n^3)$ computational bottleneck ($\mathcal{O}(n^2)$ memory) can be tackled by

- Exploiting structure in the data (data on grid, inputs are in 1D, ...)
- Exploiting structure in the GP prior
 (GP prior is stationary, separable over input dimensions, ...)
- Solving the linear system approximately (conjugate-gradient solvers)
- Split problem into smaller chunks (local experts, subset of data, ...)
- Approximate the problem (Nyström, low-rank, inducing points, ...)
- Approximate the problem solution (SVGP = sparse (and stochastic) variational methods)

Arno Solin

Dealing with non-conjugate likelihood models

- MCMC (sampling) methods (accurate but generally heavy)
- ► Laplace approximation (LA) (fast and simple)
- Expectation propagation (EP) (efficient but tricky)
- Variational methods (VB/VI) (popular but not problem-free)

GP classification with a Bernoulli likelihood

Representational power

- GPs can be seen as shallow, but infinitely wide models (see also deep GPs)
- Thus as such they are not ideal for problems where the data resides on some low-dimensional manifold in a high-dimensional space
- Instead, they can play a role as a building black of a larger model

Connections and approaches to GPs

Connection to Neural Networks

- Radford Neal showed in the '90s that a random (untrained) single-layer feedforward network converges to a GP in the limit of infinite width.
- Let $\sigma(\cdot)$ be some non-linear (activation) function, and \boldsymbol{w} and \boldsymbol{b} be the network weights and biases.
- ▶ The associated kernel for the infinite-width network:

$$\kappa(\mathbf{x}, \mathbf{x}') = \int p(\mathbf{w}) p(b) \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x} + b) \, \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}' + b) \, d\mathbf{w} \, db$$

► The link can help analyze and understand NNs

Connection to signal processing / SDEs

Alternative representations of GPs:

- Moment representation
 Considering the statistical properties of the input data jointly over time
- Spectral (Fourier) representation
 Analyzing the frequency-space representation of the problem/data
- State space (path) representation
 Description of sample behaviour as a dynamic system over time

S. Särkkä and A. Solin. Applied Stochastic Differential Equations.

Example: Exact GP regression in O(n)

The state space representation enables efficient inference through Kalman filtering

Connection to physics

- First-principle models often written in terms of differential equations (ODEs, SDEs, PDEs, SPDEs)
- GPs used as structured priors ('latent forces') and for quantifying uncertainty
- GPs are preserved under linear operations (operating with linear operators)

Maxwell's equations induce a GP model for magnetic field variation

Connection to Bayesian optimization

- Sometimes the objective function in an optimization problem is expensive to evaluate
- In Bayesian optimization, a GP prior is used for cleverly guide where to observe the objective function next

R. Garnett. Bayesian Optimization Book. https://bayesoptbook.com/

Recap and Q&A

Recap

A shallow but infinitely wide introduction to GPs

- Gaussian processes provide a plug-and-play framework for probabilistic inference and learning
- Give an explicit way of injecting prior knowledge into a problem
- Provide meaningful uncertainty estimates and means for quantifying uncertainty

Old but gold: The GP book

Carl Edward Rasmussen and Christopher K.I. Williams
Gaussian Processes for Machine Learning
The MIT Press, 2006. http://gaussianprocess.org/gpml/

Tutorial on Machine Learning with Signal Processing

https://youtu.be/vTRD03_yReI

Software packages

There are several software packages for working with GP models.

No package contains *everything*

```
</> GPflow: https://www.gpflow.org/
</> GPyTorch: https://gpytorch.ai/
</> GPy: https://sheffieldml.github.io/GPy/
</> GPML: http://gaussianprocess.org/gpml/code
</> GPstuff: https://research.cs.aalto.fi/pml/software/gpstuff/
```

Gaussian Process Summer School

The next GPSS will be held in Sheffield, UK, September 12–15, 2022 http://gpss.cc/

> Arno Solin 32/32