

$$N_i|\lambda_i \sim \mathcal{P}(\lambda_i)$$

$$\lambda_i|z_i = 0 \sim \text{Gamma}(\alpha_0, \beta_0) \text{ et } \lambda_i|z_i = 1 \sim \text{Gamma}(\alpha_1, \beta_1)$$

$$\alpha_0, \alpha_1, \beta_0, \beta_1 \sim \text{Gamma}(\tau, \delta)$$

$$p \sim \beta(a, b)$$

Avec des hyperpriors:

Comment choisir les hyper-paramètres ?

L'hyperprior Gamma "lie" les deux groupes

 $z_i|p \sim \text{Bernoulli}(p)$

Ceci est un exemple de Modèle bayésien hiérarchique

Comment peut-on modéliser la variable z_i ?

On note $z_i = 1$ (bon) et $z_i = 0$ (mauvais)

Lois a priori des bons et des mauvais différentes:

Pourquoi Monte-Carlo?

Modèle bayésien hiérarchique

Modèle bayésien hiérarchique

$$N_i | \lambda_i \sim \mathcal{P}(\lambda_i)$$

On note $z_i = 1$ (bon) et $z_i = 0$ (mauvais)

Comment peut-on modéliser la variable z_i ?

 $z_i|p \sim \text{Bernoulli}(p)$

Lois a priori des bons et des mauvais différentes:

$$\lambda_i | z_i = 0 \sim \text{Gamma}(\alpha_0, \beta_0) \text{ et } \lambda_i | z_i = 1 \sim \text{Gamma}(\alpha_1, \beta_1)$$

Comment choisir les paramètres ?

Avec des hyperpriors:

L'hyperprior Gamma "lie" les deux groupes

Comment choisir les hyper-paramètres ?

Ceci est un exemple de Modèle bayésien hiérarchique

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

