Análisis Matemático II

Tema 12: Integrales dependientes de un parámetro

Continuidad

2 Derivación

3 La función Gamma de Euler

Integrales que dependen de un parámetro

En todo lo que sigue, Ω es un subconjunto medible de \mathbb{R}^N

Si $f \in \mathcal{L}^+(\Omega)$, o bien $f \in \mathcal{L}_1(\Omega)$, escribiremos:

$$\int_{\Omega} f(y) \, dy \stackrel{\text{def}}{=} \int_{\Omega} f$$

Se suele decir que y es la variable de integración

y f puede depender de otras variables que llamamos parámetros

Ejemplos:
$$\int_{1}^{2} y^{x} dy, \qquad \int_{1}^{2} y^{x} dx$$

En general: X conjunto no vacío arbitrario, $\Phi: X \times \Omega \to \mathbb{R}$

Si, para cada $\ x \in X$, la función $\ y \mapsto \Phi(x,y)$ es integrable en Ω ,

Podemos definir:
$$\varphi:X\to\mathbb{R},\quad \varphi(x)=\int_{\Omega}\Phi(x,y)\,dy\quad \ \forall \,x\in X$$

Decimos que φ es una integral dependiente de un parámetro

Teorema de continuidad

Sea X un espacio métrico, $x_0 \in X$

y $\Phi: X \times \Omega \to \mathbb{R}$ una función verificando:

- (M) Para cada $x \in X$, la función $y \mapsto \Phi(x,y)$ es medible
- (C) Para cada $y\in\Omega$, la función $x\mapsto\Phi\left(x,y\right)$ es continua en el punto x_{0}
- (D) Existe $g \in \mathcal{L}_1(\Omega)$ tal que: $|\Phi(x,y)| \leq g(y) \quad \forall (x,y) \in X \times \Omega$

Entonces la función $\, \varphi : X \to \mathbb{R} \,$ definida por

$$\varphi(x) = \int_{\Omega} \Phi(x, y) \, dy \quad \forall x \in X$$

es continua en el punto x_0

Cálculo de límites

X subconjunto de un espacio métrico, $x_0 \in X'$

Si $\Phi: X \times \Omega$ verifica las condiciones (M) y (D) y suponemos que

(L) Para cada $y \in \Omega$ la función $x \to \Phi(x,y)$ tiene límite en x_0

Entonces:
$$\lim_{x \to x_0} \int_{\Omega} \Phi(x, y) dy = \int_{\Omega} \left(\lim_{x \to x_0} \Phi(x, y) \right) dy$$

Versión para límites en el infinito

X subconjunto no mayorado de $\,\mathbb{R}\,,\quad \Phi:X\times\Omega\,$ verificando $(M)\,,(D)$ y

(L) Para cada $y \in \Omega$ la función $x \to \Phi(x,y)$ tiene límite en $+\infty$

Entonces:
$$\lim_{x\to +\infty} \int_{\Omega} \Phi(x,y) \, dy = \int_{\Omega} \left(\lim_{x\to +\infty} \Phi(x,y) \right) dy$$

Hay un resultado análogo para límites en $-\infty$

Teorema de derivación

Dado un intervalo no trivial $J \subset \mathbb{R}$,

sea $\Phi: X \times \Omega \to \mathbb{R}$ una función verificando:

- (1) Para cada $x \in X$, la función $y \mapsto \Phi(x,y)$ es integrable en Ω
- (2) Para cada $y \in \Omega$, la función $x \mapsto \Phi(x,y)$ es derivable en J

Equivalentemente:
$$\exists \frac{\partial \Phi}{\partial x}(x,y) \quad \forall (x,y) \in J \times \Omega$$

(3) Existe $g \in \mathcal{L}_1(\Omega)$ tal que: $\left| \frac{\partial \Phi}{\partial x}(x,y) \right| \leqslant g(y) \quad \forall (x,y) \in J \times \Omega$

Entonces la función $\, \varphi : X \to \mathbb{R} \,$ definida por: $\, \varphi(x) = \int_{\Omega} \Phi(x,y) \, dy \quad \forall \, x \in X \,$

es derivable en $\, J\,$ y su derivada viene dada por:

$$\varphi'(x) = \int_{\Omega} \frac{\partial \Phi}{\partial x}(x, y) dy \quad \forall x \in J$$

Versión para derivadas parciales

G abierto de \mathbb{R}^M , $k \in \Delta_M$, $\Phi: X \times \Omega \to \mathbb{R}$ verificando:

- (1) Para cada $x \in G$, la función $y \mapsto \Phi(x,y)$ es integrable en Ω
- (2) Φ es parcialmente derivable con respecto a la k-ésima variable en $G \times \Omega$
- (3) Existe $g \in \mathcal{L}_1(\Omega)$ tal que: $\left| \frac{\partial \Phi}{\partial x_k}(x,y) \right| \leqslant g(y) \quad \forall (x,y) \in G \times \Omega$

Entonces la función $\ \varphi:X\to\mathbb{R}\$ dada por: $\ \ \varphi(x)=\int_\Omega\Phi(x,y)\,dy\quad\forall\,x\in X$

es derivable con respecto a la k-ésima variable en $G \times \Omega$ con:

$$\frac{\partial \varphi}{\partial x_k}(x,y) = \int_{\Omega} \frac{\partial \Phi}{\partial x_k}(x,y) \, dy \quad \forall (x,y) \in G \times \Omega$$

La función Gamma de Euler

Definición de Gamm

Para cada $x \in \mathbb{R}^+$ definimos $f_x(t) = t^{x-1}e^{-t} \quad \forall t \in \mathbb{R}^+$ y se tiene $f_x \in \mathcal{L}_1(\mathbb{R}^+)$, lo que permite definir:

$$\Gamma: \mathbb{R}^+ \to \mathbb{R}^+, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

La propiedad más atractiva

Se tiene: $\Gamma(1)=1$ y $\Gamma(x+1)=x\Gamma(x)$ $\forall x\in\mathbb{R}^+$ Por tanto $\Gamma(n+1)=n!$ $\forall n\in\mathbb{N}\cup\{0\}$

luego es coherente definir: $x! = \Gamma(x+1) \ \forall x \in]-1, +\infty[$

Derivabilidad y comportamiento en el origen

 Γ es una función de clase C^{∞} en \mathbb{R}^+ con

$$\Gamma^{(k)}(x) = \int_0^{+\infty} t^{x-1} e^{-t} (\log t)^k dt \qquad \forall x \in \mathbb{R}^+ \,, \quad \forall k \in \mathbb{N}$$
 Se tiene que
$$\Gamma(x) \to +\infty \quad (x \to 0)$$