

Putting LTI Systems to Work

$$x \longrightarrow h \longrightarrow y$$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

$$Y(z) = H(z) X(z), \qquad Y(\omega) = H(\omega) X(\omega)$$

- Goal: Design a LTI system to perform a certain task in some application
- Key questions:
 - What is the range of tasks that an LTI system can perform?
 - What are the parameters under our control for design purposes?

What Do LTI Systems Do? Recall Eigenanalysis

- LTI system **eigenvectors**: $s_{\omega}[n] = e^{j\omega n}$
- LTI system eigenvalues: $\lambda_{\omega} = H(\omega) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$ (frequency response)

LTI Systems Filter Signals

■ Important interpretation of $Y(\omega) = H(\omega) X(\omega)$

$$x[n] = \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} \frac{d\omega}{2\pi} \longrightarrow h \longrightarrow y[n] = \int_{-\pi}^{\pi} H(\omega) X(\omega) e^{j\omega n} \frac{d\omega}{2\pi}$$

- An LTI system processes a signal x[n] by amplifying or attenuating the sinusoids in its Fourier representation (DTFT) $X(\omega)$ by the complex factor $H(\omega)$
- Inspires the terminology that $X(\omega)$ is **filtered** by $H(\omega)$ to produce $Y(\omega)$

Design Parameters of Discrete-Time Filters (LTI Systems)

$$x \longrightarrow \mathcal{H} \longrightarrow y$$

- Impulse response: h[n]
- Transfer function: H(z)
 - poles and zeros
- Frequency response: $H(\omega)$
- lacksquare Moving/recursive average parameters: $\{a_i\}$, $\{b_i\}$

Filters Archetypes: Low-Pass

■ Ideal low-pass filter

lacktriangle Example low-pass impulse response h[n]

Example frequency response $|H(\omega)|$

h[n]

Filters Archetypes: High-Pass

■ Ideal high-pass filter

 \blacksquare Example high-pass impulse response h[n]

Example frequency response $|H(\omega)|$

h[n]

Filters Archetypes: Band-Pass

■ Ideal band-pass filter

lacktriangle Example band-pass impulse response h[n]

Example frequency response $|H(\omega)|$

Filters Archetypes: Band-Stop

■ Ideal band-stop filter

lacktriangle Example band-stop impulse response h[n]

■ Example frequency response $|H(\omega)|$

Summary

- Now that we understand what LTI systems do, we can **design** them to accomplish certain tasks
- lacktriangle An LTI system processes a signal x[n] by amplifying or attenuating the sinusoids in its Fourier representation (DTFT)
- Equivalent design parameters of a discrete-time filter
 - Impulse response: h[n]
 - z-transform: H(z) (poles and zeros)
 - Frequency response: $H(\omega)$
 - Moving/recursive average parameters: $\{a_i\}$, $\{b_i\}$
- Archetype filters: Low-pass, high-pass, band-pass, band-stop
- We will emphasize infinite-length signals, but the situation is similar for finite-length signals

Recall Discrete-Time Filter

$$x \longrightarrow h \longrightarrow y$$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

$$Y(z) = H(z) X(z), \qquad Y(\omega) = H(\omega) X(\omega)$$

A discrete-time filter fiddles with a signal's Fourier representation

Recall the filter archetypes: ideal low-pass, high-pass, band-pass, band-stop filters

Ideal Lowpass Filter

Impulse response is the infamous "sinc" function $h[n] = 2\omega_c rac{\sin(\omega_c n)}{\omega_c n}$

- Problems:
 - System is not BIBO stable! $(\sum_{n} |h[n]| = \infty)$
 - Infinite computational complexity (H(z)) is not a rational function

Filter Specification

- Find a filter of minimum complexity that meets a given **specification**
- Example: Low-pass filter
 - Pass-band edge frequency: ω_p
 - Stop-band edge frequency: ω_s
 - Between pass- and stop-bands: transition band
 - Pass-band ripple ϵ_p (often expressed in dB)
 - Stop-band ripple ϵ_s (often expressed in dB)

Clearly, the tighter the specs, the more complex the filter

Two Classes of Discrete-Time Filters

- Infinite impulse response (IIR) filters
 - Uses both moving and recursive averages
 - H(z) has both poles and zeros
 - Related to "analog" filter design using resistors, capacitors, and inductors
 - · Generally have the lowest complexity to meet a given spec
- Finite impulse response (FIR) filters
 - Uses only moving average
 - H(z) has only zeros
 - Unachievable in analog using resistors, capacitors, and inductors
 - Generally higher complexity (than IIR) to meet a given spec
 - But can have linear phase (big plus)

Summary

A discrete-time filter fiddles with a signal's Fourier representation

- "Ideal" filters are not practical
 - System is not BIBO stable!
 - Infinite computational complexity (H(z)) is not a rational function

Filter design: Find a filter of minimum complexity that meets a given spec

■ Two different types of filters (IIR, FIR) mean two different types of filter design

IIR Filters

- Use both moving and recursive averages
- Transfer function has both poles and zeros

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$
$$= z^{N-M} \frac{(z - \zeta_1)(z - \zeta_2) \cdots (z - \zeta_M)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

- lacktriangle We **design** an IIR filter by specifying the locations of its poles and zeros in the z-plane
- Generally can satisfy a spec with lower complexity than FIR filters

IIR Filters from Analog Filters

- In contrast to FIR filter design, IIR filters are typically designed by a two-step procedure that is slightly ad hoc
- Step 1: Design an analog filter (for resistors, capacitors, and inductors) using the Laplace transform $H_L(s)$ (this theory is well established but well beyond the scope of this course)
- Step 2: Transform the analog filter into a discrete-time filter using the bilinear transform
 (a conformal map from complex analysis)

$$s = c \frac{z-1}{z+1}$$

■ The discrete-time filter's transfer function is given by

$$H(z) = H_L(s)|_{s=c\frac{z-1}{z+1}}$$

Three Important Classes of IIR Filters

- Butterworth filters
 - butter command in Matlab
 - No ripples (oscillations) in $|H(\omega)|$
 - · Gentlest transition from pass-band to stop-band for a given order
- Chebyshev filters
 - cheby1 and cheby2 commands in Matlab
 - Ripples in either pass-band or stop-band
- Elliptic filters
 - ellip command in Matlab
 - Ripples in both pass-band and stop-band
 - Sharpest transition from pass-band to stop-band for a given order (use with caution!)

Butterworth IIR Filter

- "Maximally flat" frequency response
 - Largest number of derivatives of $|H(\omega)|$ equal to 0 at $\omega=0$ and π
- lacksquare N zeros and N poles
 - Zeros are all at z=-1
 - Poles are located on a circle inside the unit circle
- Example: N = 6 using butter command in Matlab

Chebyshev Type 1 IIR Filter

- Ripples/oscillations (of equal amplitude) in the pass-band and not in the stop-band
- $lue{N}$ zeros and N poles
 - Zeros are all at z=-1
 - Poles are located on an ellipse inside the unit circle
- Example: N = 6 using cheby1 command in Matlab

Chebyshev Type 2 IIR Filter

- Ripples/oscillations (of equal amplitude) in the stop-band and not in the pass-band
- $lue{N}$ zeros and N poles
 - Zeros are distributed on unit circle
 - Poles are located on an ellipse inside the unit circle
- Example: N = 6 using cheby2 command in Matlab

Elliptic IIR Filter

- Ripples/oscillations in both the stop-band and pass-band
- $lue{N}$ zeros and N poles
 - Zeros are clustered on unit circle near ω_p
 - Poles are clustered close to unit circle near ω_p
- Example: N = 6 using ellip command in Matlab

IIR Filter Comparison

■ Butterworth (black), Chebyshev 1 (blue), Chebyshev 2 (red), Elliptic (green)

Summary

■ IIR filters use use both moving and recursive averages and have both poles and zeros

■ Typically designed by transforming an analog filter design (for use with resistors, capacitors, and inductors) into discrete-time via the bilinear transform

■ Four families of IIR filters: Butterworth, Chebyshev (1,2), Elliptic

 \blacksquare Useful Matlab commands for choosing the filter order N that meets a given spec: butterord, cheby1ord, cheby2ord, ellipord

FIR Filters

- Use only a moving average
- Transfer function has only **zeros** (and trivial poles at z = 0)

$$H(z) = \frac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}$$
$$= z^{-M} (z - \zeta_1)(z - \zeta_2) \dots (z - \zeta_M)$$

- We **design** an FIR filter by specifying the values of the **taps** b_0, b_1, \ldots, b_M (this is equivalent to specifying the locations of the zeros in the z-plane)
- Generally require a higher complexity to meet a given spec than an IIR filter

FIR Filters Are Interesting

- FIR filters are specific to discrete-time;
 they cannot be built in analog using R, L, C
- FIR filters are always BIBO stable
- FIR filters can be designed to **optimally** meet a given spec
- Unlike IIR filters and all analog filters, FIR filters can have (generalized) linear phase
 - A nonlinear phase response $\angle H(\omega)$ distorts signals as they pass through the filter
 - Recall that a linear phase shift in the DTFT is equivalent to a simple time shift in the time domain

Impulse Response of an FIR Filter

■ Easy to see by inputting $x[n] = \delta[n]$ that the **impulse response** of an FIR filter consists of the taps weights

Note: Filter **order** = M; filter **length** = M + 1

Symmetric FIR Filters

- Unlike IIR filters, FIR filters can be causal and have (generalized) linear phase
- Linear phase filters must have a symmetric impulse response
 - Four cases: even/odd length, even/odd symmetry
 - Different symmetries can be useful for different filter types (low-pass, high-pass, etc.)
- We will focus here on low-pass filters with **odd-length**, **even-symmetric** impulse response
 - Odd length: M+1 is odd (M is even)
 - Even symmetric (around the center of the filter): $h[n] = h[M-n], n = 0, 1, \dots, M$
- **Example:** Length M+1=21

Frequency Response of a Symmetric FIR Filter (1)

lacktriangle Compute frequency response when h[n] is **odd-length** and **even-symmetric** (h[n] = h[M-n])

$$H(\omega) = \sum_{n=0}^{M} h[n] e^{-j\omega n} = \sum_{n=0}^{M/2-1} h[n] e^{-j\omega n} + h[M/2] e^{-j\omega M/2} + \sum_{n=M/2+1}^{M} h[n] e^{-j\omega n}$$

$$= \sum_{n=0}^{M/2-1} h[n] e^{-j\omega n} + h[M/2] e^{-j\omega M/2} + \sum_{n=M/2+1}^{M} h[M-n] e^{-j\omega n}$$

$$= \sum_{n=0}^{M/2-1} h[n] e^{-j\omega n} + h[M/2] e^{-j\omega M/2} + \sum_{r=0}^{M/2-1} h[r] e^{-j\omega (M-r)}$$

$$= h[M/2] e^{-j\omega M/2} + \sum_{n=0}^{M/2-1} h[n] \left(e^{-j\omega n} + e^{j\omega (n-M)} \right)$$

Frequency Response of a Symmetric FIR Filter (2)

lacktriangle Compute frequency response when h[n] is **odd-length** and **even-symmetric** (h[n] = h[M-n])

$$H(\omega) = h[M/2] e^{-j\omega M/2} + \sum_{n=0}^{M/2-1} h[n] \left(e^{-j\omega n} + e^{j\omega(n-M)} \right)$$

$$= h[M/2] e^{-j\omega M/2} + \sum_{n=0}^{M/2-1} h[n] e^{-j\omega M/2} \left(e^{-j\omega(n-M/2)} + e^{j\omega(n-M/2)} \right)$$

$$= \left(h[M/2] + \sum_{n=0}^{M/2-1} 2h[n] \cos(\omega(n-M/2)) \right) e^{-j\omega M/2}$$

$$= A(\omega) e^{-j\omega M/2}$$

Generalized Linear Phase FIR Filters

■ Frequency response when h[n] is **odd-length** and **even-symmetric** (h[n] = h[M-n])

$$H(\omega) = A(\omega) e^{-j\omega M/2}$$

with

$$A(\omega) = h[M/2] + \sum_{n=0}^{M/2-1} 2h[n]\cos(\omega(n-M/2))$$

■ $A(\omega)$ is called the **amplitude** of the filter; it plays a role like $|H(\omega)|$ since

$$|H(\omega)| = |A(\omega)|$$

However, $A(\omega)$ is not necessarily ≥ 0

ullet $e^{-j\omega M/2}$ is a **linear phase shift** $H(\omega)$ has linear phase except when $A(\omega)$ changes sign, in which case its phase jumps by π rad

FIR Filter Design

■ Frequency response when h[n] is **odd-length** and **even-symmetric** (h[n] = h[M-n])

$$H(\omega) = A(\omega) e^{-j\omega M/2}$$

with

$$A(\omega) = h[M/2] + \sum_{n=0}^{M/2-1} 2h[n]\cos(\omega(n-M/2))$$

- Design of $H(\omega)$ is equivalent to the design of $A(\omega)$; spec changes slightly
 - Stop-band spec now allows negative values in $A(\omega)$
 - For simplicity, same ϵ in both pass- and stop-band (this is easy to generalize)

 $\wedge A(\omega)$

Optimal FIR Filter Design

Goal: Find the **optimal** $A(\omega)$ (in terms of shortest length M+1) that meets the specs

$$A(\omega) = h[M/2] + \sum_{n=0}^{M/2-1} 2h[n]\cos(\omega(n-M/2))$$

- Parameters under our control: The M/2+1 filter taps h[n], $n=0,1,\ldots,M/2$
- Problem solved by James McClellan and Thomas Parks at Rice University (1971)
 "Parks-McClellan Filter Design"

Key Ingredients of Optimal FIR Filter Design

Goal: Find the **optimal** $A(\omega)$ (in terms of shortest length M+1) that meets the specs

$$A(\omega) = h[M/2] + \sum_{n=0}^{M/2-1} 2h[n]\cos(\omega(n-M/2))$$

- Ripples: $A(\omega)$ oscillates M/2 times in the interval $0 \le \omega \le \pi$
- **Equiripple property:** The oscillations of the optimal $A(\omega)$ are all the same size
- Alternation Theorem: The optimal $A(\omega)$ will touch the error bounds M/2+2 times in the interval $0<\omega<\pi$

Remez Exchange Algorithm for Optimal FIR Filter Design

Goal: Find the **optimal** $A(\omega)$ (in terms of shortest length M+1) that meets the specs

$$A(\omega) = h[M/2] + \sum_{n=0}^{M/2-1} 2h[n]\cos(\omega(n-M/2))$$

- Alternation Theorem: The optimal $A(\omega)$ will touch the error bounds M/2+2 times in the interval $0 < \omega < \pi$
- Parks and McClellan proposed the **Remez Exchange Algorithm** to find the h[n] such that $A(\omega)$ satisfies the alternation theorem
- Matlab command firpm and firpmord (be careful with the parameters)

Example 1: Optimal FIR Filter Design (1)

- Optimal low-pass filter of length M+1=21 with $\omega_p=0.30\pi$, $\omega_s=0.35\pi$
- Note the M/2 + 2 = 12 alternations

Example 1: Optimal FIR Filter Design (2)

- \blacksquare Optimal low-pass filter of length M+1=21 with $\omega_p=0.30\pi,~\omega_s=0.35\pi$
- Note the M/2 + 2 = 12 alternations

Example 2: Optimal FIR Filter Design (1)

- Optimal low-pass filter of length M+1=101 with $\omega_p=0.30\pi$, $\omega_s=0.35\pi$
- Note the M/2 + 2 = 52 alternations

Example 2: Optimal FIR Filter Design (2)

- Optimal low-pass filter of length M+1=101 with $\omega_p=0.30\pi$, $\omega_s=0.35\pi$
- Note the M/2 + 2 = 52 alternations

Matlab Example: Optimal FIR Filter Design

- Process a chirp signal through an optimal low-pass filter with
 - Length M + 1 = 101
 - $\omega_p = \pi/3$
 - $\omega_s = \pi/2$

Summary

- FIR filters correspond to a moving average and have **only zeros** (no poles)
- FIR filters are specific to discrete-time; they cannot be built in analog using R, L, C
- Symmetrical FIR filters have (generalized) linear phase, which is impossible with IIR or analog filters
- Design optimal FIR filters using the Parks-McClellan algorithm (Remez exchange algorithm)
- FIR filters are always BIBO stable and very numerically stable (to coefficient quantization, etc.)
- Generally require a higher complexity to meet a given spec than an IIR filter, but the benefits can outweigh the computational cost

LTI Signal Degradations

 $lue{}$ In many important applications, we do not observe the signal of interest x but rather a version y processed by an LTI system with impulse response g

- Examples:
 - Digital subscriber line (DSL) communication (long wires)
 - Echos in audio signals
 - Camera blur due to misfocus or motion (2D)
 - Medical imaging (CT scans), . . .
- Goal: Ameliorate the degradation by passing y through a second LTI system in the hopes that we can "cancel out" the effect of the first such that $\widehat{x} = x$

LTI Signal Degradations in the z-Transform Domain

■ Goal: Ameliorate the degradation by passing y through a second LTI system in the hopes that we can "cancel out" the effect of the first such that $\widehat{x} = x$

■ Easy to understand using z-transform

$$\widehat{X}(z) = H(z) Y(z) = H(z) G(z) X(z)$$

■ Therefore, in order to have $\widehat{x}=x$, and thus $\widehat{X}(z)=X(z)$, we need

$$H(z) G(z) = 1$$
 or $H(z) = \frac{1}{G(z)}$

■ $H(z) = \frac{1}{G(z)}$ is called the **inverse filter**, and this process is called **deconvolution**

Inverse Filter – Poles and Zeros

lacksquare If the degradation filter G(z) is a rational function with zeros $\{\zeta_i\}$ and poles $\{p_j\}$

$$G(z) = z^{N-M} \frac{(z - \zeta_1)(z - \zeta_2) \cdots (z - \zeta_M)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

then the inverse filter H(z) is a rational function with zeros $\{p_j\}$ and poles $\{\zeta_i\}$

$$H(z) = \frac{1}{G(z)} = z^{M-N} \frac{(z-p_1)(z-p_2)\cdots(z-p_N)}{(z-\zeta_1)(z-\zeta_2)\cdots(z-\zeta_M)}$$

- Assuming that G(z) and H(z) are <u>causal</u>, if any of the zeros of G(z) are outside the unit circle, then H(z) is **not BIBO stable**, which means that the inverse filter does not exist
- When G(z) is causal and all of its zeros are inside the unit circle, we say that it has **minimum** phase; in this case an exact inverse filter H(z) exists

Example: Exact Inverse Filter

Approximate Inverse Filter

- When G(z) is non-minimum phase, an exact inverse filter does not exist, because $\frac{1}{G(z)}$ has one or more poles outside the unit circle
- We can still find an **approximate** inverse filter by **regularizing** $\frac{1}{G(z)}$; for example

$$H_a(z) = \frac{1}{G(z) + r}$$

where r is a constant (technically this is called Tikhonov regularization)

- lacktriangleright Typically we try to choose the smallest r such that $H_a(z)$ is BIBO stable
- We no longer have $\widehat{x} = x$, but rather $\widehat{x} \approx x$

Example: Approximate Inverse Filter

Summary

Deconvolution: Ameliorate the degradation from an LTI system G by passing the degraded signal through a second LTI system H in the hopes that we can "cancel out" the effect of the first such that $\widehat{x} = x$

■ Inverse filter: Poles/zeros of G(z) become zeros/poles of H(z)

$$H(z) = \frac{1}{G(z)}$$

- Best case: When G(z) is causal and all of its zeros are inside the unit circle, we say that it has **minimum phase**; in this case an exact inverse filter H(z) exists
- Puzzler: What do we do when $N \neq M$ in G(z)?
- Advanced topics beyond the scope of this course: blind deconvolution, adaptive filters (LMS alg.)

Inner Product and Cauchy Schwarz Inequality

Recall the **inner product** (or dot product) between two signals x, y (whether finite- or infinite-length)

$$\langle y, x \rangle = \sum_{n} y[n] x[n]^*$$

Recall the Cauchy-Schwarz Inequality (CSI)

$$0 \leq |\langle y, x \rangle| \leq ||y||_2 ||x||_2$$

- Interpretation: The inner product $\langle y, x \rangle$ measures the **similarity** of y and x
 - Large value of $|\langle y, x \rangle| \Rightarrow y$ and x very similar
 - Small value of $|\langle y, x \rangle| \Rightarrow y$ and x very disimilar

Signal Detection Using Inner Product

lacktriangle We can determine if a **target signal** x of interest is present within a given signal y simply by computing the inner product and comparing it to a threshold t>0

$$|d| = |\langle y, x \rangle| \left\{ egin{array}{ll} \geq & t & {
m signal is present} \\ < & t & {
m signal is not present} \end{array}
ight.$$

(Aside: In certain useful cases, this is the optimal way to detect a signal)

■ Example: Detect the square pulse x in a noisy version y=x+e; we calculate $|d|=|\langle y,x\rangle|=4.92$

Signal Detection With Unknown Shift

lacktriangleright In many important applications, the target is **time-shifted** by some unknown amount ℓ

$$y[n] = x[n-\ell] + e[n]$$

 \blacksquare Example: Square pulse with shift $\ell=15$

Solution: Signal Detection With Unknown Shift

lacktriangle In many important applications, the target is **time-shifted** by some unknown amount ℓ

$$y[n] = x[n-\ell] + e[n]$$

■ Solution: Compute inner product between y and shifted target signal x[n-m] for all $m \in \mathbb{Z}$

$$|d[m]| = |\langle y[n], x[n-m]\rangle|$$

- In statistics, d[m] is called the **cross-correlation**; it provides both
 - ullet The detection statistic to compare against the threshold t for each value of shift m
 - An estimate for ℓ (the m the maximizes d[n])
- **Example:** Square pulse with shift $\ell = 15$ and m = 0, 7, 27

Matched Filter

• Useful interpretation of the cross correlation: Let $\widetilde{x}[n] = x^*[-n]$; then

$$d[m] = \langle y[n], x[n-m] \rangle = \sum_{n} y[n] \, x^*[n-m] = \sum_{n} y[n] \, \widetilde{x}[m-n]$$

■ In words, the cross-correlation d[m] equals the **convolution** of y[n] with the time-reversed and conjugated target signal $\widetilde{x}[n] = x^*[-n]$

 $\widetilde{x}[n] = x^*[-n]$ is the impulse response of the matched filter

Example: Matched Filter

 \blacksquare Square pulse shifted by $\ell=15$: y[n] = x[n-15] + e[n]

Application: Radar Imaging (1)

 \blacksquare In a radar system, the time delay ℓ is linearly proportional to $2\times$ the distance between the antenna and the target

Application: Radar Imaging (2)

 \blacksquare In a radar system, the time delay ℓ is linearly proportional to $2\times$ the distance between the antenna and the target

Summary

- \blacksquare Inner product and Cauchy Schwarz Inequality provide a natural way to detect a target signal x embedded in another signal y
 - Compare magnitude of inner product to a threshold
- When the target signal is time-shifted by an unknown time-shift ℓ , compute the **cross-correlation**: inner products at all possible time shifts
- $lue{}$ Cross-correlation can be interpreted as the convolution of the signal y with a time-reversed and conjugated version of x: the **matched filter**
- Matched filter is ubiquitous in signal processing: radar, sonar, communications, pattern recognition ("Where's Waldo?"), . . .

Acknowledgements

© 2014 Richard Baraniuk, All Rights Reserved