Colle 1A: Complexes, logique, ensembles et applications

Question de cours : Rappeler et démontrer la formule du binôme de Newton.

Exercice 1:

Soit
$$z \in \mathbb{C} \setminus \{1\}$$
. Montrer que $\frac{1+z}{1-z} \in i\mathbb{R} \iff |z|=1$.

Exercice 2:

Soit
$$n \in \mathbb{N} \setminus \{0,1\}$$
 et $z \in \mathbb{C}$. On note $\omega = e^{\frac{2i\pi}{n}}$. Calculer $\sum_{k=0}^{n-1} (z + \omega^k)^n$.

Exercice 3:

Soit
$$n \in \mathbb{N}^*$$
. Résoudre l'équation $1 + 2z + 2z^2 + ... + 2z^{n-1} + z^n = 0$, d'inconnue $z \in \mathbb{C}$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 1B: Complexes, logique, ensembles et applications

Question de cours : Soit $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}^*$. Rappeler et démontrer la formule de factorisation de $a^n - b^n$.

Exercice 1:

Soit
$$n \in \mathbb{N}^*$$
. Résoudre l'équation $\Re(z^n) = \Im(z^n)$, d'inconnue $z \in \mathbb{C}$.

Exercice 2:

Soit
$$n \in \mathbb{N}^*$$
. On note $\omega = e^{\frac{2i\pi}{n}}$. Calculer $\sum_{p=0}^{n-1} \sum_{q=p}^{n-1} \binom{q}{p} \omega^{p+q}$.

Exercice 3:

Soit A une partie d'un ensemble E. On appelle fonction caractéristique, ou fonction indicatrice, de A l'application $\chi_A: E \to \{0,1\}$ définie par $\chi_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A \end{cases}$.

Soit A et B deux parties de E et χ_A et χ_B leurs fonctions caractéristiques. Montrer que les fonctions suivantes sont les fonctions caractéristiques d'ensembles que l'on déterminera :

- 1. $1 \chi_A$
- 2. $\chi_A \chi_B$
- 3. $\chi_A + \chi_B \chi_A \chi_B$

Colle 1C: Complexes, logique, ensembles et applications

Question de cours : Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer $\sum_{k=0}^{n} \cos(k\theta)$.

Exercice 1:

Résoudre l'équation $\bar{z}=z^3$ d'inconnue $z\in\mathbb{C}.$

Exercice 2:

Soit $(a, b) \in \mathbb{C}^2$ tel que |a| < 1 et |b| < 1. Montrer que $\left| \frac{a - b}{1 - \bar{a}b} \right| < 1$.

Exercice 3:

On définit l'application suivante $f: \mathbb{N}^2 \longrightarrow \mathbb{N}^*$, démontrer que f est bijective et en $(n,p) \longmapsto 2^n(2p+1)$ déduire une bijection de \mathbb{N}^2 sur \mathbb{N} .