خمش خالص برای عضوهای که در معرض کوپلهای (جفت نیرو) برابر و مخالف واقع در یک صفحه طولی قرار دارند.

خمش ناشی از بار عرضی

نوع بار: خمشي

چنانچه نیرویی در جسم ایجاد ممان خمشی (M_b) کند، باعث ایجاد تنش خمشی σ_b در جسم می گردد که این تنش یک نوع تنش محوری (عمودی) است.

حداکثر ممان خمشی $M_{b\;max}=F_*\,l$ است.

تنش عمودی ناشی از خمش

$$\frac{1}{\rho} = \frac{M}{EI}$$

$$\sigma_m = rac{Mc}{I}$$

$$\sigma_{x} = -\frac{My}{I}$$

ρ : شعاع انحنا

نثی اوله از محور خنثی ${f y}$

تنش حاصل	نوع بارگذاری
تنش عمودی	کششی – فشاری
تنش برشی	پیچش
تنش عمودی	خمش

مثال ۱:

لوله مستطیل شکل نشان داده شده از آلیاژ آلومینیوم می باشد. اگر حداکثر تنش مجاز قابل اعمال بر آن $20~\mathrm{ksi}$ باشد. مطلوب است: الف) گشتاور خمشی قابل اعمال بر آن

حل :

$$I = \frac{1}{12}(3.25)(5)^3 - \frac{1}{12}(2.75)(4.5)^3$$
 $I = 12.97 \text{ in}^4$

$$c = \frac{1}{2}(5 \text{ in.}) = 2.5 \text{ in.},$$

$$\sigma_{\rm all} = \frac{Mc}{I}$$
 $M = \frac{\rm I}{c} \sigma_{\rm all} = \frac{12.97 \text{ in}^4}{2.5 \text{ in.}} (20 \text{ ksi})$ $M = 103.8 \text{ kip} \cdot \text{in.}$

مثال ۱:

$$E = 10.6 \times 10^6 \text{ psi,}$$

$$\frac{1}{\rho} = \frac{M}{EI} = \frac{103.8 \times 10^3 \,\mathrm{lb \cdot in.}}{(10.6 \times 10^6 \,\mathrm{psi})(12.97 \,\mathrm{in}^4)} = 0.755 \times 10^{-3} \,\mathrm{in}^{-1}$$

$$\rho = 1325 \text{ in.}$$
 $\rho = 110.4 \text{ ft}$

تمرین ۱:

کوپل ۳ کیلونیوتن _متر بر تیری با مقطع متقارن روبرو وارد می شود.

 $^\circ$ مطلوب است مقدار تنش در نقاط نمایش داده شده $^\circ$ و $^\circ$

