CSE 222 - SPRING 2022 HOMEWORK 2

Emircan Demirel 1901042674

1) a)
$$\log_{2} n^{2}$$
 's growth rate is slower than $O(n)$. It is not best informative statement but it's true.

b)
$$\sqrt{n(n+1)} =) \sqrt{n^2 + n} =) \sqrt{n^2} =) n$$

 $n = n - (n)$

True. Because growth rates of two sides of this equality are some.

$$C) n^{n-1} => n^n = O(n^n)$$

Growth rates of two sides of this equality are some so, we can say that is true.

$$\lim_{n\to\infty}\frac{n^3}{n^2}=\frac{3n^2}{2n}\Rightarrow\infty \quad \text{rg'rowth rate } n^3>n^2$$

$$\lim_{n\to\infty} \frac{n^2 \log n}{\log n} = \frac{2n \cdot \frac{1}{n}}{\frac{1}{n}} = 2n \Rightarrow \infty \quad \text{growth rate } n^2 \log n > \log n$$

$$\lim_{N\to\infty} \frac{3^{n}}{8^{\log_2 n}} = 0 \Rightarrow \text{ growth rate } 2^{n} > 8^{\log_2 n}$$

$$\lim_{n\to\infty} \frac{2^n}{\ln n} = \infty \Rightarrow \text{growth rate } n^2 \log n > \sqrt{n}$$

- 3) a) for loop: O(n)If condition $\Rightarrow O(1)$ Statement $\Rightarrow O(1)$ else statement $\Rightarrow O(1)$
 - b) for loop i Q(n)

 Other parts of function

 done its works in constant

 time: Q(1)
 - c) function returns the multiplication of numbers in given indexes of array. T(n) = Q(1)
 - d) The function make some initialization in times. T(n) = Q(n)
 - e) This function contains nested loop. The growth rate of the inner loop is (log n) and the outer loop's is $T(n) = O(n^{\frac{1}{2}} \log n)$
 - f) if condition: O(n)statement: O(n * log n)else statement: O(1) + O(n)so, T(n) = O(n * log n)
 - g) Inper loop's growth rate is n

 Inner loop: Q(n) > so, T(n) = Q(n * log n)

 Outer loop: Q(loy n)

- h) Inner loop's growth rate is depended to outer while loop and it's log n.

 So, Inner for loop: $O(\log n)$ $> T(n) = O(\log^2 n)$ Outer while loop: $O(\log n)$
- i) best ase O(1)worst case $O(n) \Rightarrow$ recursive call n times T(n) = O(n)
 - i) If statement: O(1)recursive call: O(n)while loop: O(n-1) and contains some constants. T(n) = O(n) + O(n-1) $= O(n^2)$
- a) Big Oh notation represents upper bounds for an algorithm, so this statement is false. Because it says $O(n^2)$ is lower bound. Correct statement should be "The running time of algorithm A is at most $O(n^2)$ ".
 - b) I. $f(n) = 2^n$, $2^{n+1} = 2 \cdot 2^n$, this contant value '2' doesn't affect the growth rate of algorithm. $Q(2^{n+1}) = Q(2^n) = True$

II. $f(n)=2^n$ $O(f(n)) = O(2^n) \neq O(2^{2n}), \text{ the coefficient value of n's affects the growth rate. <math>\Rightarrow$ False

III. $f(n) = O(n^2)$ $g(n) = O(n^2)$ If we multiply O and O result must be big Oh notation. $f(n) \times g(n) \neq O(n^4)$ $f(n) \times g(n) = O(n^4)$

5) a)
$$T(n) = 2T(n/2) + n$$
, $T(1) = 1$

$$T(n) = \begin{cases} 1, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \Rightarrow T(\frac{n}{2}) = 2T(\frac{n}{4}) + \frac{n}{2}$$

$$T(n) = 2 \cdot (2T(\frac{n}{4}) + \frac{n}{2}) + n$$

$$= 2^{2}T(\frac{n}{2^{2}}) + 2n \Rightarrow \text{if } n = n/4 \\ T(\frac{n}{4}) = 2T(\frac{n}{2^{2}}) + 7n$$

$$T(n) = 2^{3}T(\frac{n}{2^{3}}) + 3n$$

$$T(n) = 2^{4}T(\frac{n}{2^{4}}) + 4n \Rightarrow \frac{n}{2^{4}} = 1 \quad n = 2^{4}$$

$$\frac{n}{2^{4}} = 1 \quad$$

iterative algorithm to find pairs of numbers with the given sum

6) Running time:
outer loop iteration (n-1) times (n-1)
inner loop iteration (n-1) times
$$\frac{(n-1)}{x}$$
if condition of every step $\Rightarrow n^2 - 2n + 1$

$$T(n) = 2n^2 - 4n + 2$$

$$T(n) = O(n^2)$$

Array Size	T(n) runtime	O(n^2) time complexity
2	2	4
4	18	16
8	98	64
16	450	256
32	1922	1024
64	7938	4096
128	32258	16384
256	130050	65536

expected runtime tests with different size arrays

graphic of the expected runtime tests

actual runtime test results

```
7) first Index increases n-1 times

next Index increases n-1 times

we have 3 if conditions at every step

T(n) = 3. (n-1)^2
T(n) = 3. (n^2-2n+1)
T(n) = 3n^2-6n+3
T(n) = 0(n^2)
```

```
public static void Pair(int[] arr, int sum, int firstIndex, int next){
    if(firstIndex >= arr.length - 1)
        return;
    else if(next >= arr.length){
        Pair(arr, sum, firstIndex+1, firstIndex+2);
        return;
    }
    else if(arr[firstIndex] + arr[next] == sum){
        System.out.println(arr[firstIndex] + ", " + arr[next]);
    }
    Pair(arr, sum, firstIndex, next+1);
}
```

recursive algorithm to find pairs of numbers with the given sum