Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Introduction, Syllabus, Data Types

Class Logistics and Agenda

- Agenda:
 - Course Overview
 - Introductions/Cards
 - Syllabus
 - What is Machine Learning?
 - Types of Data
 - Numpy/Pandas Demo
- My approach to this course:
 - Programming
 - · Math
 - Applications and Analytics

Class Overview, by topic

Class Overview, by assignment

- Lab One: Visualize data and extract some features
- Lab Two: Analyze Images, Use dimensionality Reduction
- Lab Three: Program Logistic Regression in style of Sci-kit Learn
- Lab Four: Program NN Back propagation from Scratch, implement Adaptive Gradient Techniques
 - Use given dataset for this lab
- Lab Five: Wide and Deep networks
- Lab Six: Classify Images with Convolutional Networks
- Lab Seven: Classify Text with Recurrent Neural Networks

All Assignments posted on Canvas, with Rubric Everything is a team assignment except quizzes

Introductions & Course Syllabus

Richard Feynman @ProfFeynman · 12h Don't just teach your students to read.

- Teach them to question what they read, what they study.
- · Teach them to doubt.
- Teach them to think.
- Teach them to make mistakes and learn from them.
- Teach them how to understand something.
- . Teach them how to teach others.

Richard Feynman @ProfFeynman · 21h You cannot get educated by this selfpropagating system in which people study to pass exams, and teach others to pass exams, but nobody knows anything.

You learn something by doing it yourself, by asking questions, by thinking, and by experimenting.

Introductions

- Me
 - · Eric 👍
 - · Dr. Larson 👍
 - · Prof. Larson 👍
 - Other 👎
- You
 - Name Department
 - Grad/Undergrad
 - Something true or false

Limited Introduction because of Class Size

FAQ

- Text:
 - Recommended: Python Machine Learning, Raschka & Mirjalili, Third Edition
- Use Canvas for posted course material
- Prerequisites:
 - Linear algebra, calculus (multivariate)
 - Basic statistics and probability
 - Basic python programming
- Version of python: 3.X
 - Install through Anaconda
 - Use conda environments
 - JupyterLab (or notebook)
- Most Used Libraries: Numpy, Pandas, Scikit-Learn, Matplotlib, Seaborn, Tensorflow
- Use OIT Data Science Workshops

Canvas Syllabus

- Lab Assignments
- Flipped Assignments
- Grading Rubrics
- Participation
- Course Schedule
- Difference between 5000 and 7000

How will participation be graded?

- Participation will be graded in the course:
 - Distance students will answer these questions via canvas upload (same for Zoom)
 - upload "over" the last submission
 - · must upload the questions throughout semester for full credit
- In Class Students:
 - Live question answering (mostly attendance):
 - Do you think this will work?
 - A: Yes this is going to work
 - B: This is **not** going to work
 - C: My name was no on my card.
 - D: I added an Alias to my card

Is this plagiarism in this class?

- Copying code/text from another source without citing it
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code/text from another source, citing at the end of the assignment in a blanket statement (but not making it clear which part of the assignment was from another source)?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code, citing the source directly next to the code, and commenting on what parts were changed?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying text directly and citing the source with the text, but not placing the text in quotes.
 - A. Yes, plagiarism!
 - B. No, its fine!

Machine Learning Overview

What is Machine Learning?

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. **Machine learning** focuses on the development of computer programs that can change when exposed to new data.

What is machine learning? - Definition from WhatIs.com whatis.techtarget.com/definition/machine-learning

About this result • Feedback

• Beware of this definition:

- full of imprecise, loaded words:
 - intelligence, learning
- ignores social structures, ethics, deployment,
 and that all results are interpreted by a human

Machine Learning

Z

Prediction Methods

- Use some variables to predict unknown or future values of other variables
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining

- Classification
- Regression
- Deviation Detection
- Clustering
- Association Rule Discovery
- Sequential Pattern Discovery

section 1, manipulated from Tan et al. Introduction to Data Mining

Problem Types in Machine Learning

Classification and Regression

Supervised Learning Model

- Training Instances:
 Features + Labels
- Find a model mapping class from values of features.
- Goal: Assign guessed label to <u>previously</u> unseen instances

Example Classification: Malware

- Classify files as malware based on size and naming.
- Approach:
 - Use already classified malware files
 - Must translate name to set of features
 - {malware, not malware} decision forms the class attribute
 - Collect various malware examples and a number of safe files, providing labels for each and a set of features

Training Set

TID	Name	Size	Class
1	erte.dll	916 b	not
2	fufu.bin	1M	yes
3	exe.exe	1G	not
4	ex.py	113 b	not

Unknown

TID Name		Size
1	asdf.dll	11b

Example Regression: Housing Price

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting House Sales

Training Set

TI	# Rms	Sq Ft	Zip	Price
1	2	1125	74012	150K
2	2	2525	75155	200k
3	10	4678	90210	3M
4	4	2678	75154	350k

Unknown

TI	# Rms	Sq Ft	Zip
1	2	2200	75115

Example Classifying: Objects in Images

Image Net:

- 14 million images
- 200 Labeled Categories
- 1000 Location Labels

Attributes:

Images

Self Test

- A. Classification
 - **B.** Regression
 - C. Not Machine Learning
- Dividing up customers by potential profitability?
- Extracting frequency of sound?

Types of Data and Categorization

Table Data

 Table Data: Collection of data instances and their features

Python: Pandas Dataframe

R: Data.frame

Matlab: Table Class

C++: Trick Question

Objects, records, rows, points, samples, cases, entities, instances

Attributes, columns, variables, fields, characteristics, Features

	-			
TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Υ	23.3	31-40	positive
4	N	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	21-30	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Permutation of values only. one hot encoding or hash function	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	Order must be preserved new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	<pre>new_value =f(old_value) + b f is monotonic through origin float</pre>	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Col	Ratio	<pre>new_value = f(old_value) f is monotonic through origin float</pre>	Length can be measured in meters or feet, but zero is zero

Self Test

- Are these **A. ordinal, B. nominal, or C. binary**?
 - · military rank · ordinal
 - coat check numbernominal

Before Next Lecture

- Before next class:
 - install python on your laptop
 - install anaconda distribution of python
- Look at Python primer if you need review
 - I made ~4 hours of YouTube content…
 - https://www.youtube.com/playlist?
 list=PL7IPdRN5E0YKCnVI-fvx8j00CWVeGTsrV

Demo

Opening Demo: Jupyter Notebooks

01_Numpy and Pandas Intro.ipynb

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Introduction, Syllabus, Data Types