Game theory

A course for the MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia@gmail.com

Dynamic games

Game development over time

Dynamic games

- A dynamic game involves some players moving first, others moving later
- □ **Complete** information everyone knows the payoff, and knows everybody knows...
- However, a further distinction appears:
 - **perfect information** means that every player can make a decision with full awareness
 - imperfect information means that some decisions are "simultaneous" or Nature plays

Battle of the sexes, revisited

- Ann and Brian agreed to meet at either the romance (R) or the sci-fi (S) movie
 - (lower-case for Brian's actions for better clarity)

D_--

	r Brian s	
R E	2, 1	0,0
Ann	0,0	1,2

- To frame this as a normal form game, they must act unbeknownst of each other
 - which is not very realistic...

Battle of the sexes, revisited

- Let's add a more sensible time sequence
- Assume Ann decides (before Brian does)
 which movie to see, and calls Brian to tell him
 - What should she decide? R or S?
 - Ann knows (being completely informed) that whatever she chooses, Brian's best response is to play along and choose the same thing
 - Since Ann prefers R over S, Ann chooses R (no uncertainty on this outcome, we will see why)

Extensive form

- To unfold the time dimension, we may want more than just the bi-matrix of payoffs
- We need to connect possible choices to the knowledge of what happened before
 - (or not: Brian may not receive Ann's call!)
 - such a knowledge conditions the development of the game, as per the previous example
- Normal form replaced by the extensive form
 - Graphically, we use a decision tree

Extensive form: ingredients

- 1. Set of players
- 2. Their payoff functions
- 3. Order of their move turns
- 4. Actions allowed to players when they can move
- 5. Information they have when they can move
- 6. Probability of external events
- 7. All of this: common knowledge

also true for normal form

added time dimension

<u>complete</u> information

Sequential Battle of Sexes

Dummy players

 An extensive form game may omit some of the players, e.g. if they have a single action

- \square Players = A,B,C,D
 - (see the outcomes)
- C never moves
- Also B and D may not have choices

- At these points, B is aware of A's choice
- Information is captured by different nodes

- We can use a precedence relation (parent)
- □ Either terminal (→ payoffs) or parent node
 - (use this heavy notation only when needed)

- Nodes go beyond denoting the game stage
- They also describe the **information set** h_i available to the player i that is to move
- □ If the information set is a singleton $\{x_j\}$ then the node is fully aware of the previous moves
- What if a node does not know?
 - In the original Battle of the Sexes, Brian does not know whether Ann chose R or S
 - \blacksquare Brian does not know whether he is at x_1 or x_2

In this case, we say that the information set of player B is $\{x_1, x_2\}$ (not a singleton)

- Every player i has a collection of information sets H_i , such that $h_i(x_i) \in H_i$ is associated to a node x_i where it is i's turn to move
 - It makes sense to assume that $x_j \in h_i(x_j)$
 - If $h_i(x_j)$ is a singleton $\{x_j\}$, then player i can move knowing for sure he/she is at node x_i

 - In the latter case, it must be $A(x_j) = A(x_k)$ where A(x) contains the actions available at node x

Set of available actions

- It can actually be made the same
 - exploit "forbidden moves"

- where $-M = -\infty$, or -10^{100} , or min(payoff)-1
- **not** the same game but every strategy choosing f at x_2 becomes strictly dominated, so...

Perfect/imperfect info. (repr'd)

- In dynamic games with perfect information,
 - (1) all information sets are singletons and
 - (2) there is no choice of Nature
- Instead, we have <u>imperfect information</u> if information sets contains multiple nodes or there is a choice of Nature

exogenous uncertainty

(single-person decision problems with lotteries)

endogenous uncertainty

(simultaneous moves)

In these two cases, players form beliefs

- Action vs. strategy: In static games of complete information, pure strategy = action
- Then we saw mixed strategies = Prob(action)
- In a <u>dynamic game</u>, additional role by the history of play (through information sets)
- A player's pure strategy specifies an action according to what happened in the game
- Think of it as a program: a countermove for any possible case happened up to now

- For the Battle of the Sexes with Ann moving first, both players choose a move within set $A = \{R,S\}$
- Brian has 2 actions, but more strategies
- A strategy is now a pair of elements of A

$$(a_R, (a_S))$$

what to do if A played R what to do if A played S

- \square (s,s) = "I go to S no matter what"
- \Box (r,s) = "I do what Ann says"
- \Box (s,r) = "I avoid Ann"

- If Ann and Brian repeat the original (static)
 battle for two consecutive nights
- □ A strategy is now a quintuple of moves:

first move $(a_1, a_{2Rr}, a_{2Rs}, a_{2Sr}, a_{2Ss})$ answer to Ss

answer to Rr

answer to Rs

answer to Sr

- Always go to R for both nights = (r, r, r, r, r)
- Go to R the 1^{st} night. If 1^{st} night outcome is Rr, then go to S the 2^{nd} night, else go to R = (r, s, r, r, r)

- In principle, we may describe an "algorithm" for of all possible strategies
- Tet, even a simple game with 2 sequential moves and $|A_1| = |A_2| = 3$ has 27 possible strategies for player 2, since strategy $\in (A_2)^3$
- Therefore, we will often rely to some implicit description apart from very simple cases
 - Implementation: "left as a simple exercise"

What about mixed strategies?

- Previous definition: mixed strategies are probability distributions over the strategy set
- \square Now S = all possible plans of actions
 - \rightarrow m $\in \Delta S = \{ \text{prob}(\text{plan 1}), \text{prob}(\text{plan 2}) \dots \}$
- This does not look very "dynamic"
 - Probabilities are drawn at the beginning only, so that the player chooses a plan and sticks to it
 - Can we draw probabilities as the game unfolds?

Behavioral strategies

- A behavioral strategy specifies for any information set $h_i(x_i) \in H_i$ an independent probability distribution over $A_i(h_i)$
- □ Denote this as σ_i : $H_i \rightarrow \Delta A_i(h_i)$
 - Then $\sigma_i(a_i | h_i)$ is the probability that i plays action $a_i \in A_i(h_i)$ given information set $h_i = h_i(x_i)$, i.e., when he/she is at any x_i belonging to it
 - Note: the destination set cannot depend on h_i but we can use ΔA_i and set σ_i (a)=0 if $\mathbf{a} \notin A_i$ (h_i)

Mixed ↔ behavioral

- By the analogy strategy = plan of action,
 think of it as a handbook (set of instructions)
 - a mixed strategy = take N handbooks, and select one of them at random
 - a behavioral strategy = a single handbook,
 which gives random instructions at any page
- Are these two descriptions equivalent?
- Luckily, yes (under some mild conditions)

Mixed ↔ behavioral

- \square A behavioral strategy is defined by $\sigma_i(a_i | h_i)$
 - Equal if: $\sigma_{B}(\mathbf{r}|x_1) = p_{rr} + p_{rs}$; $\sigma_{B}(\mathbf{r}|x_2) = p_{rr} + p_{sr}$
 - 4 equations in 4 unknowns (also $\sigma_B(r) + \sigma_B(s) = 1$)

Perfect recall

- The previous reasoning can be generalized
 - This can be extended also for the case with non-singleton information sets
- behavioral=mixed if this property holds
- Perfect recall: no player forgets information that he/she previously knew
 - This seems quite legitimate, and it is true for almost every game studied in the literature

Counter-example

- (Absent-minded driver) Andrew is driving on the highway and is now close to home
 - \blacksquare first exit: to a bad neighborhood \rightarrow payoff 0
 - second exit: direct way home → payoff 4
 - third exit /road end: long route home → payoff 1

But Andrew is tired and when he passes an exit he is unsure of which is it

Information set = $\{x_0, x_1\}$

Counter-example

- □ Mixed strategy. Set p = Prob[e] $\mathbb{E}[u_A] = -3p^2 + 2p + 1 \rightarrow \text{Optimal } p^* = \frac{1}{3}$
- Behavioral strategy. Set $q = \text{Prob}[x_0]$ $\mathbb{E}[u_A] = -3qp^2 - qp + 3p + 1 \rightarrow \text{same } p^* \text{ only if } q = 1$

Leonardo Badia – leonardo.badia@gmail.com

 The enumeration of strategies allows us to switch between extensive and normal form

 Similar equivalence for the simultaneous-play original version of the Battle of the Sexes

- Multiple equivalences are possible
 - e.g. when terminal nodes have identical payoffs

