QML (Angle Embedding) y DNN para b-Tagging en Jets de bajo momento

Juan

Instituto de Física

12 de agosto de 2025

Agenda

- Introducción
- Quantum Machine Learning
- 3 Circuito QML
- 4 Metodología
- 6 Resultados
- 6 Conclusiones
- Referencias

Contexto y Objetivo

• Que son los jets?

Contexto y Objetivo

• Jets de bajo momento (LowPt) en colisiones pp.

Contexto y Objetivo

Motivante

¿Qué es QML?

- Híbrido cuántico-clásico
- Se aprovecha superposición y entrelazamiento.
- Embedding de datos clásicos en qubits.

Angle Embedding

- Para un vector $\mathbf{x} = [x_1, \dots, x_n]$ normalizado en $[-\pi, \pi]$.
- Aplica rotaciones $RX(x_i)$ o $RY(x_i)$ en cada qubit.
- ullet n caracteristicas o n qubits.

Angle Embedding

Detalles del Circuito

- Dispositivo: lightning.gpu
- Embedding: qml.AngleEmbedding(inputs, wires=0..15)
- Capas: qml.StronglyEntanglingLayers(weights, wires=0..15)
- Salida: $\langle Z_0 \rangle \in [-1,1]$

StronglyEntanglingLayers: Correlaciones Cuánticas

Cada capa contiene:

- **1 Rotaciones locales:** $RX(\theta)$, $RY(\phi)$, $RZ(\lambda)$
 - Parámetros entrenables
 - Orientan cada qubit individualmente
- Puertas entrelazantes: CNOT, CZ
 - ▶ Conectan qubits → correlaciones no-clásicas
 - ightharpoonup Estado global \neq suma de estados individuales

Flujo de Trabajo

- Carga y preprocesamiento de histogramas ROOT
- Normalización (arctan)
- QML: 16 qubits, AngleEmbedding, 4 capas de StronglyEntanglingLayers, medida PauliZ
- **DNN**: arquitectura 16-64-32-1 con ReLU/tanh
- Entrenamiento (Adam, 10 epochs, batch=64)
- Evaluación: AUC y Tagging Power

Métricas Comparativas

- AUC y Tagging Power para cada dataset:
 - Zbb_LowPT, Zbb_HighPT, Zp_M30_LowPT, Zp_M100_LowPT
- Gráficas de:
 - Distribución de predicciones
 - Evolución de pérdida y accuracy

AUC Comparison: Low PT vs High PT

Principales Conclusiones: Rendimiento

- DNN vs QML: DNN mejor AUC (0.63 vs 0.52) y tagging en HighPT ($\epsilon \approx 0.12$); QML casi no etiqueta.
- HighPT < LowPT: DNN AUC 0.9 vs AUC 0.5; LowPt difícil de separar.
- Z normal < Z': las muestras con masas teóricas distorsionan la distribución y reducen la discriminación.

Principales Conclusiones: Limitaciones y Siguientes Pasos

- Muestra pequeña (1000 eventos)
- Explorar configuraciones distintas del cicuito.
- Explorar otras caracteristicas relevantes del jet.

- A. Gianelle et al., "First implementation of Quantum Machine Learning for b-jet tagging at LHCb", 2021. Link
- A. Gianelle et al., "Quantum Machine Learning for b-jet charge identification", 2022. Link
- Youtube chanel 'Blochh Sphere', "Quantum Neural Networks explained", 2024.

Video