LATENT PROJECTION BNNS: AVOIDING WEIGHT-SPACE PATHOLOGIES BY LEARNING LATENT REPRESENTATIONS OF NEURAL NETWORK WEIGHTS

Melanie F. Pradier¹ Weiwei Pan¹ Jiayu Yao¹

melanie@seas.harvard.edu

Soumya Ghosh²
Finale Doshi-Velez¹

¹Harvard University

²IBM Research

INTRODUCTION

- ► Deep neural networks provide high-predictive accuracy BUT:
 - tend to overfit with small number of samples
 - do not provide uncertainties
- ► Bayesian neural networks (BNN) provide uncertainty in network weights, but inference is hard:
 - high-dimensionality of network parameter space
 - correlation between these parameters
- ► Our contribution: novel inference framework for BNNs
 - a) we capture complex distributions in high-dim weight space via low-dimensional latent space
 - b) we do inference in low-dimensional representation
 - c) better estimation of uncertainty

BAYESIAN NEURAL NETWORK (BNN)

$$\mathbf{y} = f_{\mathbf{w}}(\mathbf{x}) + \epsilon$$
 $\mathbf{w} \sim p(\mathbf{w}),$

where $\epsilon \sim \mathcal{N}(0, \sigma_v^2 \mathbf{I})$ and typically, $w_{ij} \sim \mathcal{N}\left(0, \sigma_w^2\right)$.

- 1. input layer
- 2. hidden nodes
- 3. output layer

$$p(\mathbf{y}^{\star}|\mathbf{x}^{\star},\mathcal{D}) = \int p(\mathbf{y}^{\star}|\mathbf{x}^{\star},\mathbf{w})p(\mathbf{w}|\mathcal{D})d\mathbf{w}$$

How can we approximate posterior distribution $p(\mathbf{w}|\mathcal{D})$ of weights \mathbf{w} ?

VARIATIONAL INFERENCE

- ► Bayesian inference becomes an optimization problem
- Idea: choose variational distribution $q_{\lambda}(\mathbf{w})$ and minimize $D_{\mathrm{KL}}(q_{\lambda}(\mathbf{w})||p(\mathbf{w}|\mathcal{D}))$.
- Minimizing KL divergence is equivalent to maximizing an upper bound $\mathcal{L}(\lambda)$ on the marginal likelihood of the data.

$$egin{aligned} D_{\mathrm{KL}}ig(q_{m{\lambda}}(m{w})||p(m{w}|\mathcal{D})ig) &= q_{m{\lambda}}(m{w})[\log q_{m{\lambda}}(m{w}) - \log p(m{w}|\mathcal{D})] \ &= -\mathcal{H}(q) - \mathbb{E}_q[\log p(\mathcal{D},m{w})] + \log p(\mathcal{D}) \ &= -\mathcal{L}(m{\lambda}) + \log p(\mathcal{D}) \end{aligned}$$

LATENT PROJECTION BNN

- **w**: network weights
- **z**: low-dimensional latent representation
- $ightharpoonup \phi$: params of non-linear projection $g_{\phi}(\cdot)$
- ▶ We choose the following variational distribution $q_{\lambda}(\mathbf{w})$:

$$oldsymbol{z} \sim q_{\lambda_z}(oldsymbol{z})$$

$$\phi \sim q_{\lambda_\phi}(\phi)$$

$$oldsymbol{w} = g_\phi(oldsymbol{z})$$

- Novel inference framework:
 - 1. Characterize the space of plausible weights: we train an ensemble of (non-Bayesian) neural networks from R multiple restarts $\to \mathbf{w}_c$
 - 2. Learn projection parameters ϕ : we train an autoencoder with a prediction-constrained loss function:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \left\{ \frac{1}{R} \Big(\mathbf{w}_{\boldsymbol{c}} - \hat{\mathbf{w}}_{\boldsymbol{c}} + \gamma \Big)^2 + \beta \mathbb{E}_{(x, y) \sim \mathcal{D}} \Big[\log p \big(y | x, \hat{\mathbf{w}}_{\boldsymbol{c}} \big) \Big] \right\},$$

where $f_{\theta}(\cdot)$ is the encoder, $g_{\phi}(\cdot)$ is the decoder, and $\hat{\mathbf{w}}_{m{c}} = g_{\phi}(f_{ heta}(\mathbf{w}_{m{c}}))$.

3. Learn variational distribution $q(z, \phi)$: we perform BBVI with local reparametrization trick to maximize $\mathcal{L}(\lambda)$:

$$egin{aligned} \mathcal{L}(oldsymbol{\lambda}) &= \mathbb{E}_q \Big[\log p ig(\mathbf{y} | \mathbf{x}, g_{oldsymbol{\phi}}(oldsymbol{z}) \Big] - D_{\mathrm{KL}} ig(q_{oldsymbol{\lambda}_{o}}(oldsymbol{z}) || p(oldsymbol{z}) ig) \ - D_{\mathrm{KL}} ig(q_{oldsymbol{\lambda}_{o}}(oldsymbol{\phi}) || p(oldsymbol{\phi}) ig). \end{aligned}$$

PROOF-OF-CONCEPT

Toy data for regression is generated from a function with four modes. (left) weight space of BNN with three hidden nodes. (right) examples of functions corresponding to weights sampled from each weight cluster.

RESULTS

Baselines methods are: 1) BBB: mean field (Blundell, et.al 2015); 2) MNF: multiplicative normalizing flow (Louizos et.al, 2017); 3) MVG: multivariate Gaussian prior BNN (Louizos et.al, 2016).

Inferred predictive posterior distribution for a toy data set drawn from a NN with 1-hidden layer, 20 hidden nodes and RBF activation functions.

Test log-likelihood for UCI benchmark datasets for best dimensionality of z-space. Ablations of LP-BNN are: LP-BNN, LP-BNN with linear projections (linear), LP-BNN without training the autoencoder (1-stage), LP-BNN modeling uncertainty only in z (q(z)-only).

CONCLUSION

- LP-BNN provides better uncertainty estimations
- ► LP-BNN achieves performs better across datasets