计算机组成原理

方淼 计算机与通信工程学院

第3章系统总线

- * <u>3.1 总线的基本概念</u>
- * 3.2 总线的分类
- * 3.3 总线特性及性能指标
- * 3.4 总线结构
- * 3.5 总线控制

3.1 总线的基本概念

- * 1.为什么要用总线?
 - * 分散连接: 连线复杂, 不能随时增删设备。
- * 2.什么是总线?
 - * 总线是连接各个部件的信息传输线,
 - * 是各个部件共享的传输介质
- * 3.总线上编息的传送 ______

并行

4.总线结构的计算机举例

1. 面向 CPU 的双总线结构框图

2. 单总线结构框图

3. 以存储器为中心的双总线结构框图

3.2 总线的分类

1.片内总线 芯片内部的总线

2. 系统总线 计算机各部件之间的信息传输线

数据总线 双向 与机器字长、存储字长有关

地址总线 单向 与存储地址、I/O地址有关

控制总线 有出,有入

中断请求、总线请求

存储器读、存储器写总线允许、中断确认

3.通信总线

用于 计算机系统之间或 计算机系统

与其他系统(如控制仪表、移动通信等)

之间的通信

传输方式

特前方式

并行通信总线

3.3 总线特性及性能指标

一、总线物理实现

二、总线特性

1. 机械特性 尺寸、形状、管脚数 及 排列顺序

2. 电气特性 传输方向和有效的电平范围

3. 功能特性 每根传输线的功能 数据控制

4. 时间特性 信号的时序关系

三、总线的性能指标

- 1. 总线宽度 数据线的根数
- 2. 标准传输率 每秒传输的最大字节数 (MBps)
- 3. 时钟同步/异步同步、不同步
- 4. 总线复用 地址线与数据线复用
- 5. 信号线数 地址线、数据线和控制线的总和
- 6. 总线控制方式 并发、自动、仲裁、逻辑、计数
- 7. 其他指标 负载能力

四、总线标准

四、总线标准

总线标准	数据线	总线时钟	带宽
ISA	16	8MHz (独立)	16 MBps
EISA	32	8MHz (独立)	33 MBps
VESA (VL-BUS)	32	32 MHz (CPU)	133 MBps
PCI	32	33 MHz (独立)	132 MBps
	64	64 MHz(独立)	528 MBps
AGP	32	66.7 MHz(独立)	266 MBps
		133 MHz (独立)	533 MBps
RS-232	串行通信 总线标准	数据终端设备(计算机)和数据通信设备 (调制解调器)之间的标准接口	
USB	串行接口 总线标准	普通无屏蔽双绞线 带屏蔽双绞线 最高	1.5 Mbps (USB1.0) 12 Mbps (USB1.0) 480 Mbps (USB2.0)

3.4 总线结构

一、单总线结构

单总线 (系统总线)

二、多总线结构

1. 双总线结构

2. 三总线结构

3. 三总线结构的又一形式

4. 四总线结构

三、总线结构举例

1. 传统微型机总线结构

2. VL-BUS局部总线结构

3. PCI 总线结构

4. 多层 PCI 总线结构

3.5 总线控制

- 一、总线判优控制
 - 1. 基本概念
 - 主设备(模块) 对总线有控制权
 - 从设备(模块) 响应 从主设备发来的总线命令

• 总线判优控制

2. 链式查询方式

3. 计数器定时查询方式

4. 独立请求方式

二、总线通信控制

1. 目的 解决通信双方协调配合问题

2. 总线传输周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段 主模块向从模块 给出地址和 命令

传数阶段 主模块和从模块 交换数据

结束阶段 主模块 撤消有关信息

3. 总线通信的四种方式

同步通信 由统一时标控制数据传送

异步通信 采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合

分离式通信 充分挖掘系统总线每个瞬间的潜力

(1) 同步式数据输入

(2) 同步式数据输出

(2)同步方式

* 优点

* 规定明确、统一,模块间配合简单

* 缺点

- * 主从模块之间时间配合属于强制性同步,必须在规定时间完成。
- * 必须按照最慢部件的速度设计时钟,影响工作效率,给设计带来局限性,缺乏灵活性

* 适用场合

* 总线长度较短、各部件存取时间比较一致。

(2)同步方式

* 例题解析:假设总线时钟频率100MHZ,总 线传输周期为4个时钟周期,总线宽度为32 位,求总线的数据传输率。若想提高一倍 数据传输率,可采取什么措施?

(3) 异步通信

(3)异步串行通信

* 串口通信的规范如下:

- * 1、空闲状态(没有数据传输的状态)下,串行传输线上为高电平1
- * 2、发送方发送低电平O表示数据传输开始,这个低电平表示传输的起始 位
- * 3、8-bit的数据位(1 Byte)是从最低位开始发送,最高位最后发送
- * 5、最后 学位 是 中止 () 用高电平1表示停止 () 空 下一字符 () 发展位 () 发展设 () 发展

(3)异步串行通信

0x13的波形

(3)异步串行通信

- * 串口传输的速度用波特率(baudrate)来指定。
- * 波特率表示的是每秒发送的比特数,单位是bps(bits-per-seconds),例如,1000 bauds表示1秒钟发送了1000个比特,或者说每个比特持续的时间是1ms。
- * 常用的波特率标准有:
 - * 1, 1200 bps
 - * 2、9600 bps (常用)
 - * 3、38400 bps
 - * 4、115200 bps (常用, 而且通常情况下是我们能用的最快的波特率)

UART设计

例题解析

* 异步传输系统中,假设每秒传输120个数据帧,其字符格式规定包含1个起始位,7个数据位,1个奇校验位,一个终止位,试计算波特率。

(4) 半同步通信(同步、异步结合)

同步 发送方用系统 时钟前沿 发信号接收方用系统 时钟后沿 判断、识别

异步 允许不同速度的模块和谐工作

增加一条 "等待"响应信号WAIT

以输入数据为例的半同步通信时序

- T_1 主模块发地址
- T_2 主模块发命令
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个 T
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个 T
 - •
- T_3 从模块提供数据
- T_4 从模块撤销数据,主模块撤销命令

(4) 半同步通信(同步、异步结合)

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

• 主模块发地址、命令 占用总线

• 从模块准备数据 不占用总线 总线空闲

• 从模块向主模块发数据 占用总线

(5) 分离式通信

充分挖掘系统总线每个瞬间的潜力

一个总线传输周期

子周期1 主模块申请占用总线,使用完后

即放弃总线的使用权

子周期2

从模块申请占用总线,将各种信

息送至总线上

主模块

分离式通信特点

- 1. 各模块有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时, 不占用总线
- 4. 总线被占用时,无空闲

充分提高了总线的有效占用

总结

思考题

- * USB总线工作原理及发展?
- * 计算机系统内的各种频率都是什么意义, 例如CPU
- 时钟频率、主频、倍频、外频、前端总线频率?

练习题

- *【2015年统考真题】下列有关总线定时的 叙述中,错误的是()
 - * A、异步通信方式中,全互锁协议的速度最慢
 - * B、异步通信方式中, 非互锁协议的可靠性最差
 - * C、同步通信方式中, 同步时钟信号可由各设备提供
 - * D、半同步通信方式中,握手信号的采样由同步时钟 控制

练习题

- *【2016年统考真题】下列关于总线设计的 叙述中,错误的是()
 - * A.并行总线传输比串行总线传输速度快
 - * B.采用信号线复用技术可减少信号线数量
 - * C.采用突发传输方式可提高总线数据传输率
 - * D.采用分离事务通信方式可提高总线利用率

练习题

* 假定一台计算机采用3通道存储器总线,配套的内存条型号为DDR3-1333,即内存条所接插的存储器总线的工作频率为1333MHz、总线宽度为64位,则存储器总线的总带宽大约是()

- * A.10.66GB/s
- * B.32GB/s
- * C.64GB/s
- * D.96GB/s