

planetmath.org

Math for the people, by the people.

Tutte theorem

Canonical name TutteTheorem

Date of creation 2013-03-22 14:06:04 Last modified on 2013-03-22 14:06:04 Owner scineram (4030)

Last modified by scineram (4030)

Numerical id 11

Author scineram (4030)

Entry type Theorem Classification msc 05C70

Let G(V, E) be any finite graph. G has a complete matching if and only if for all $X \subseteq V(G)$ the inequality $c_p(G - X) \leq |X|$ holds, where $c_p(H)$ is the number of the components of the H graph with odd number of vertices. This is called the Tutte condition.

Proof. In a complete matching there is at least one edge between X and the odd components of G - X, and different edges have distinct endvertices. So $c_p(G - X) \leq |X|$. This proves the necessity.

The sufficiency is proved in a few steps indirectly.

- 1. It is very easy to see that if |V(G)| is even, then $c_p(G-X) \neq |X|-1$ and $c_p(G-X) \neq |X|+1$. This will be used later. And if the Tutte condition holds, applying it to $X = \emptyset$ gives |V(G)| is even.
- 2. Now assume there exists a graph satisfying the Tutte condition but without complete matching ,and let G be such a counterexample with the lowest number of vertices. There exist a set $Y \subseteq V(G)$ such that $c_p(G-Y) = |Y|$, examples are the empty set and every vertex. Let Y_0 be such set with the highest number of vertices.
- 3. If G_s is an even component in $G Y_0$, then adding its vertex t to Y_0 gives $c_p(G Y_0 \{t\}) \ge |Y_0| + 1$, because it creates at least one odd component. But this with the Tutte condition gives $c_p(G Y_0 \{t\}) = |Y_0 \cup \{t\}|$, which contradicts the maximality of Y_0 . So there are no even components in $G Y_0$.
- 4. Let G_p be an odd component of $G-Y_0$, and let t any of its vertices. Assume there is no complete matching in $G_p \{t\}$. Since G is minimal counterexample, there exits a set $X \subseteq G_p \{t\}$ such that $c_p(G_p \{t\} X) > |X|$, but because of (1) it is at least |X| + 2. Then $c_p(G X Y_0 \{t\}) \ge |Y_0| 1 + |X| + 2 = |X \cup Y_0 \cup \{t\}|$, which contradicts the maximality of Y_0 . So by removing any vertex from an odd component the remaining part has a complete matching.
- 5. Represent each odd components by one vertex, and remove the edges in Y_0 . From the definition of Y_0 this is a bipartite graph. If we choose p vertices from the representatives of the odd components, they are together adjacent to at least p vertices in Y_0 , otherwise we could remove less than p vertices from Y_0 thus from V(G), and still get p odd

- component, which violates the Tutte condition. So there is complete matching in this reduced graph because of Hall's marriage theorem.
- 6. The complete matching in the reduced graph covers Y_0 and exactly one vertex in each odd component. But there is also a matching in the rest of each odd component covering the rest as proven in (4), and from (3) there are no even components. Combining these gives a complete matching of G, which is a contradiction.