Задание по алгоритмической теории игр

Дмитрий Иващенко

7 июня 2018 г.

Задача 1

(а) Заметим, что парадокс нового штата в таком правиле невозможен, так как функции $h_i = round\left(\frac{p_i}{d}\right)$ монотонны по d, в силу монотонности округления. При добавлении нового штата d либо увеличивается, либо уменьшается (либо не меняется), поэтому все h_i либо неувеличивается, либо неуменьшается. Значит перераспределения мест быть не может, так как для этого нужно, чтобы где-то мест стало меньше, а где-то больше. Точно также невозможен парадокс Алабамы: если H увеличилось, то d должно было строго уменьшиться, значит все h_i неуменьшились.

Парадокс населения вполне возможен: штаты с населениями $p_1=45, p_2=9, p_3=22, p_4=24$ делят 8 мандатов. Если выбран знаменатель d=10 с округлением вниз, то они получают 4,0,2,2 соответственно. Если же ко всем добавить 12 человек, а к первому штату 14, то $p_1=59, p_2=21, p_3=34, p_4=36$ и со знаменателем d=15 они получают по 3,1,2,2 мандатов. Видно, что для первых двух штатов наблюдается парадокс населения.

(b) Пример: деление 3 мандатов между штатами с населениями $p_1=33, p_2=22, p_4, \ldots, p_7=9$. При знаменателе d=20 распределение мандатов получается $2,1,0,\ldots,0$. Однако $\frac{p_1}{P}\cdot H=0.33\cdot 3=0.99<1=2-1$. Ясно, что при увеличении числа штатов с населением 9 можно добиться еще большего значения P и разность приблизится к 2.

Задача 2

Действуем по алгоритму. Составляем две системы неравенств:

$$\begin{cases} 9x_1 + 10x_2 + 9x_3 \leqslant 1, \\ 8x_1 + 12x_2 + 6x_3 \leqslant 1, \\ 12x_1 + 4x_2 + 12x_3 \leqslant 1. \end{cases} \begin{cases} 3x_4 + 6x_5 + 6x_6 \leqslant 1, \\ 2x_4 + 4x_5 + 12x_6 \leqslant 1, \\ x_4 + 12x_5 + 3x_6 \leqslant 1. \end{cases} x_i \geqslant 0$$

Нарисуем соответствующие многогранники.

Грани, нарисованные синим, зелёным, фиолетовым цветом соответствуют первому, второму и третьему неравенству каждой системы. Теперь проделаем алгоритм Лемке-Хоусона для одной из вершин.

P_1	P_2	метки P_1	метки P_2	удаляемая метка
В	A	1 2 3	$4\ 5\ 6$	2
D	A	1 3 4	4 5 6	4
D	В	1 3 4	1 5 6	1
G	В	3 4 5 6	1 5 6	6
G	D	3 4 5 6	1 2 5	×

Таким образом, точка $(G,D) \sim (\frac{2}{3},\frac{1}{3},0\mid \frac{1}{7},0,\frac{6}{7})$ есть одно из смешанных равновесий.

Задача 4

Убедимся, что эти задачи лежат в **TFNP**. Пусть v — вершина из первой задачи со степенью $\deg(v)$, не делящейся на p. Если сумма степеней вершин в левой доле делится на p, то в левой доле существует другая вершина q, такая что $\deg(q)$ не делится на p (иначе вся сумма была бы сравнима с $\deg(v)$). Если же сумма не сравнима с нулём, то аналогичным рассуждением заключаем, что такая вершина существует справа.

Для задачи с ориентированным графом сумма балансов равна 0, поэтому по модулю p существование одной ненулевой вершины гарантирует существование другой.

Покажем, что они сводятся друг к другу. Сведем задачу в ориентированном графе к задаче в двудольном. Для этого раздвоим вершины, сформировав две доли. Нам нужно добиться, чтобы степени вершин слева совпадали с балансом вершин в исходном графе. Для этого мы можем провести ребро между i-й вершиной левой доли и j-й вершиной правой доли если (i,j) есть ребро в орграфе. Теперь степень i-й ш вершины слева равна $\operatorname{outdeg}(i)$, а справа $\operatorname{indeg}(i)$. Тогда, если мы проведем $p-\operatorname{indeg}(v)$ mod p между i вершиной слева и справа, то слева степени вершины станут сравнивыми по модулю p с балансами, а справа сравнивыми с 0. Легко видеть, что все сведение является полиномиальным преобразованием: по имеющейся полиномиальной функции f, перечисляющей входящие и исходящие вершины

в орграфе, строится соответствующая полиномиальная функция для двудольного графа.

Преобразование в обратную сторону проще: просто ориентируем рёбра слева направо. Тогда балансы вершин слева такие же, как были степени, а балансы вершин справа стали минус степенями. Поскольку минус на сравнимость с нулём не влияет, то все хорошо.

Задача 5

Понятно, что схемы выше эквивалентны. В силу симметрии по рёбрам из истока будет проходить одинаковое количество потока равное $\frac{1}{2}$. Чтобы все пути имели одинаковый вес, нужно, чтобы поток на развилке делился в отношении 1:2, поэтому по центральных рёбрам будет течь $\frac{1}{6}$, а по побочным $\frac{1}{3}$. Стоимость этого потока равна $4\cdot\frac{1}{4}+4\cdot\frac{2}{36}+2\cdot\frac{2}{9}=1+\frac{6}{9}=\frac{5}{3}$. Найдём теперь оптимальный поток: он равен равновесному потоку в сети, где все стоимости рёбер умножены на 2 (так как $(cx\cdot x)'=2cx$), то есть равновесный поток совпадает с оптимальным.

Задача 7

Пусть природа играет так: на i-м ходу нужно сыграть стратегию i mod 3+1, чтобы получить потери 0, все остальные ходы дают потери 1. Тогда если игрок «перепутал» стратегии 1 и 2, то он получает потери $\frac{2T}{3}$. Сожаление второго рода при этом равно $\frac{2T}{3}$, так как одна транспозиция даёт верную стратегию. Но сожаление первого рода равно 0 (стационарная стратегия имеет такие же потери), поэтому нам надо немного «ухудпить» его стратегию, чтобы сожаление первого рода стало положительным, но небольшим. Для этого просто каких-то моментах, когда игрок правильно угадывает (это происходит на ходах вида 3k+1), изменим его стратегию. Пусть мы изменили его решение в k=k(T) моментах. От этого сожаление второго рода уменьшится на O(k), а сожаление первого рода станет

ровно k. Тогда выбрав, например, $k=\sqrt{T}$, получим отношение, равное $\frac{2T}{3}-O(k) \over k} \sim \frac{2}{3}\sqrt{T} \to \infty.$

Задача 9

Будем искать симметричное равновесие в классе абсолютно непрерывных распределений. Также попробуем найти распределение с носителем плотности supp $f(x) \supset (0;1)$ и функцией распределения $F(x) = \int_0^x f(x) dx$.

Так как смешиваются все «чистые» стратегии, то они должны приносить одинаковый ожидаемый доход. Доход от чистой стратегии сыграть x, если все остальные играют распределение F равен $F(x)^{n-1} \cdot 1 - x = const$. Однако, эта константа равна 0, так как доход стратегии сыграть 0 равен 0. Стало быть $F(x) = x^{\frac{1}{n-1}}$.

Рассмотрим теперь какое-то другое распределение G(x) с плотностью g(x) (не обязательно с носителем, содержащим (0;1)). Ожидаемый выигрыш этого распределения равен:

$$\int_0^1 F(x)^{n-1} g(x) dx - \int_0^1 x g(x) = \int_0^1 x g(x) - \int_0^1 x g(x) = 0.$$

Рассуждение можно обобщить: если мы отклоняемся в распределение, не являющееся абсолютно непрерывным, мы можем приблизить его случайной величиной с конечным числом значений, как в определении матожидания. Для них верно аналогичное равенство, значит в пределе матожидание выигрыша при отклонении все равно равно 0.

Задача 10

а) Пусть оценки упорядочились как $V_{(1)} > \ldots > V_{(n)}$. Тогда в механизме VCG одноместная комната достается обладателю наибольшей оценки, следующие двое по величине занимают двухместную комнату. Назовём этих игроков условно «первый», «второй» и «третий». Также будем считать, что есть «четвёртый» игрок, если его нет, то добавим фиктивного человека с опенкой 0.

Посчитаем платёж первого: он равен полезности, если бы первого игрока вообще не было минус полезность, если бы не было его и одноместной комнаты:

$$V_{(2)} + \frac{2}{3}(V_{(3)} + V_{(4)}) - \frac{2}{3}(V_{(2)} + V_{(3)}) = \frac{1}{3}V_{(2)} + \frac{2}{3}V_{(4)}.$$

Платежи второго и третьего рассчитываются по тому же принципу:

$$V_{(1)} + \frac{2}{3}(V_{(i)} + V_{(4)}) - V_{(1)} - \frac{2}{3}V_{(i)} = \frac{2}{3}V_{(4)}.$$

Ожидаемый доход тогда равен $EX = EV_{(2)} + 3\frac{2}{3}EV_{(4)}$. Из статистики знаем, что плотность $V_{(k)}$ равна:

$$f_{V_{(k)}} = \frac{n!}{(k-1)!(n-k)!} F^{n-k}(x) (1 - F(x))^{k-1} f(x) = \frac{n! \cdot x^{n-k} (1-x)^{k-1}}{(k-1)!(n-k)!}.$$

Для равномерных величин это бета-распределение с матожиданием $\frac{n-k+1}{n+1}$. Поэтому доход от механизма равен (в случае, если $n\geqslant 4$):

$$R = \frac{n-1}{n+1} + 2 \cdot \frac{n-3}{n+1} = \frac{3n-7}{n+1}.$$

Видим, что случай n=3 в эту формулу вписывается.

- б) Заметим снова, что комнаты будут расрпделены между людьми с тремя наибольшими оценками (если их оценка больше, чем C). Докажем, что мы отдадим одноместную комнату человеку с максимальной оценкой. Если $V_{(1)} < C$, то никто никуда не селится. Если $V_{(1)} > V_{(2)} > 1.5C$, то полезность равна старой минус 2C, поэтому выгодно все оставить так. Если же теперь $V_{(1)} > C$, но $C < V_{(2)} < 1.5C$, то общая полезность равна либо $V_{(1)} C$, либо $V_{(2)} + \frac{2}{3}V_{(1)} 2C \leqslant \frac{2}{3}V_{(2)} + V_{(1)} 2C \leqslant V_{(1)} C$. Второе меньше. Далее, нужно сложить следующие случаи:
 - $V_{(1)} < C, R = 0$. Далее везде $V_{(1)} > C$
 - $V_{(2)} < C$. Платёж первого тогда 0, остальные не селятся, а доход R = -C
 - $C < V_{(2)} < 1.5C$. Платёж первого теперь $V_{(2)} C$, остальные не селятся, $R = V_{(2)} 2C$
 - $V_{(2)}>1.5C$, но $V_{(3)}<1.5C$. Селятся первые двое, первый платит $V_{(2)}-C-\frac23V_{(2)}+C=\frac13V_{(2)}$, второй платит 0. Доход получается $\frac13V_{(2)}-2C$
 - $V_{(3)}>1.5C$, но $V_{(4)}<1.5C$. Селятся первые трое, первый платит $\frac{1}{3}V_{(2)}$, второй и третий платят 0. Доход получается $\frac{1}{3}V_{(2)}-3C$
 - $V_{(4)} > 1.5C$. Тогда платежи будут как в пункте а), доход $R = \frac{1}{3}V_{(2)} + 2V_{(4)} 3C$

Задача 12

Течение игры для автоматов (M, M):

состояние M_1	вывод M_1	вывод M_2	состояние M_2	выигрыши
S_0	D	D	S_0	(1, 1)
S_1	D	D	S_1	(1, 1)
S_2	D	D	S_2	(1, 1)
S_3	D	D	S_3	(1, 1)
S_4	С	С	S_4	(2, 2)
S_3	D	D	S_3	(1, 1)

Если первый игрок однократно отклонится в какой-то момент и сыграет C вместо D, то ход игры будет следующим:

состояние M_1	вывод M_1	вывод M_2	состояние M_2	выигрыши	изменение M_1
S_i	С	D	S_i	(0, 3)	-1
S_{i+1}	D	D	S_0	(1, 1)	0
S_4	С	D	S_{3-i}	(0, 3)	$-\delta^{4-i}$
S_0	D	D	S_0	(1, 1)	0

Видно что тут и далее на несколько нерасписанных шагов все изменения отрицательны. Остался вариант отклонения в D, когда нам говорят C. Тогда ход игры будет таким:

состояние M_1	вывод M_1	вывод M_2	состояние M_2	выигрыши	изменение M_1
S_4	D	С	S_4	(3, 0)	+1
S_3	D	D	S_0	(1, 1)	0
S_4	С	D	S_1	(0, 3)	$-2\delta^2$
S_0	D	D	S_0	(1, 1)	0
S_1	D	D	S_1	(1, 1)	$-\delta^4$
S_2	D	С	S_2	(1, 1)	0
S_3	D	С	S_3	(1, 1)	$-\delta^6$
S_4	С	С	S_4	(2, 2)	$+\delta^7$
S_3	D	D	S_3	(1, 1)	$-\delta^8$
S_4	С	С	S_4	(2, 2)	$+\delta^9$

То есть нас интересует, когда $1-2\delta^2-\delta^4-\delta^6(1-\delta+\delta^2+\ldots)=1-2\delta^2-\delta^4-\delta^6\frac{1}{1+\delta}<0.$ Единственный положительный корень этого уравнения равен ≈ 0.63266 , то есть $\delta \geqslant \approx 0.63266$.

Рассмотрим теперь игру M' vs M':

состояние M'_1	вывод M_1'	вывод M_2'	состояние M_2'	выигрыши
S_0	D	D	S_0	(1, 1)
S_1	D	D	S_1	(1, 1)
S_2	D	D	S_2	(1, 1)
S_4	С	С	S_4	(2, 2)
S_3	D	D	S_3	(1, 1)
S_4	С	С	S_4	(2, 2)

А теперь допустим первый игрок решил поменять свой автомат на M:

состояние M_1	вывод M_1	вывод M_2'	состояние M_2'	выигрыши	изменение
S_0	D	D	S_0	(1, 1)	0
S_1	D	D	S_1	(1, 1)	0
S_2	D	D	S_2	(1, 1)	0
S_3	D	С	S_4	(3, 0)	$+\delta^3$
S_0	D	D	S_0	(1, 1)	0
S_1	D	D	S_1	(1, 1)	$-\delta^5$
S_2	D	D	S_2	(1, 1)	0
S_3	D	С	S_4	(3, 0)	$+\delta^7$
S_0	D	D	S_0	(1, 1)	0

Видно, что изменение такой стратегии образуют знакопеременную убывающую геометрическую прогрессию, сумма у неё, конечно, положительна, поэтому первый отклонится.