XỬ LÝ THÔNG TIN MÒ TOK

MỞ ĐẦU

- Mục đích môn học: Trình bày các kiến thức cơ bản về lý thuyết tập mờ và ứng dụng xử lý các thông tin không chính xác, không đầy đủ, không chắc chắn.
- Nội dung môn học:
 - Tập mờ, quan hệ mờ, suy diễn mờ
 - Hệ mờ và ứng dụng
- Đánh giá:
 - Điểm giữa kỳ, bài tập lớn
 - Thi kết thúc môn học

TÀI LIỆU THAM KHẢO

- Hồ Thuần, Đặng Thanh Hà, Logic mờ và ứng dụng, Nhà xuất bản Đại học Quốc gia Hà Nội
- T.J. Ross, Zimmermann, ..., FSS ...

CHƯƠNG 1 - NHẬP MÔN

- Thông tin và xử lý thông tin
- Biến ngôn ngữ

THÔNG TIN VÀ XỬ LÝ THÔNG TIN

- Con người tư duy trên ngôn ngữ tự nhiên
 - Học, quy nạp
 - Diễn giải, chuẩn hóa
 - Suy luận
- Cần có các mô hình để biểu diễn và xử lý thông tin
- Thông tin:
 - Các yếu tố mơ hồ, không chính xác, không đầy đủ, không rõ ràng ... (khoảng, xấp xỉ, gần, hơn, ...)
 - Không gian tham chiếu ————→X
 - Các yếu tố không chắc chắn, độ tin cậy, nhiễu ...(có thể, hầu hết, ít nhất, ...)
 - Độ tin cậy (đúng, sai) [0,1] ↓ ↓
 - Có trường hợp không đúng, không sai

THÔNG TIN VÀ XỬ LÝ THÔNG TIN

- Ví dụ: cơ sở dữ liệu
 (Họtên, Tuổi, Lương)
 t1 = ("Nguyễn Văn A", 26, 3000000)
 t2 = ("Phạm Văn B", xấp xỉ 25, cao)
- Thêm thuộc tính: Độtincậy
 (Họtên, Tuổi, Lương, Độtincậy)
 t2 = ("Phạm Văn B", xấp xỉ 25, cao, 0.8)

BIÉN NGÔN NGỮ

- (V, T_V, X, G, M), trong đó:
 - V là tên của biến ngôn ngữ
 - T_V là tập giá trị của biến ngôn ngữ
 - X là không gian tham chiếu
 - G là cú pháp sản sinh ra các phần tử T_V
 - M là tập các luật ngữ nghĩa

VÍ DỤ BIẾN NGÔN NGỮ

- TUÓI
- {young, old, very old, moreorless young, not old and not young, ...}
- [0, 100]
- T ← A | T or A; A ← B | A and B;
 - $B \leftarrow C \mid \text{not } C; C \leftarrow (T) \mid D \mid E$
 - D ← very D | moreorless D | young
 - E ← very E | moreorless E | old
- M_{old}, M_{young}, M_{very}, M_{and}, ...

VÍ DỤ BIẾN NGÔN NGỮ

•
$$M_{old}(u) = 0$$
, với $u < 50$
 $(u-50) / 10$, với $50 \le u \le 60$
1, với $u > 60$

Hoặc

CHƯƠNG 2 - TẬP MỜ

- Tập mờ
- Các phép toán với tập mờ
- Nguyên lý mở rộng
- Các độ đo mờ

2.1. TẬP MÒ'

 Tập con (rõ): Cho không gian X, tập A ⊂ X được định nghĩa bởi hàm đặc trưng

$$\chi_A$$
: X \rightarrow {0,1}, với $\chi_A(u)$ =1, nếu u \in A, và $\chi_A(u)$ =0, nếu u \notin A

• **Tập (con) mở**: Cho không gian X, tập $A \subset X$ được biểu diễn bởi hàm thuộc $\mu_{\widetilde{A}}: X \to [0,1]$, với $\mu_{\widetilde{A}}(u)$ là độ thuộc của phần tử $u \in X$ vào \widetilde{A} **Biểu diễn**: $A = \{ (u, \mu_A(u)) \mid u \in X \text{ và } \mu_A: X \to [0,1] \}$ **Ví dụ**: $X = \{1,2,3,4,5,6,7,8,9,10\}$, nhỏ = $\{(1,1.0), (2,0.6), (3,0.2), (4,0.0), ..., (10,0.0) \}$

BIỂU DIỄN TẬP MÒ'

X hữu hạn

$$A = \frac{\mu_A(u_1)}{u_1} + \frac{\mu_A(u_2)}{u_2} + \dots + \frac{\mu_A(u_n)}{u_n} = \sum_{u_i \in X} \frac{\mu_A(u_i)}{u_i}$$

X không hữu hạn

$$A = \int_X \mu_A(u)/u$$

CÁC ĐẶC TRƯNG CỦA TẬP MỜ

- Giá đỡ: Supp(A) = $\{u \in X \mid \mu_A(u) > 0\}$
- Chiều cao: $h(A) = \sup_{u \in X} \mu_A(u)$
- Tập mờ chuẩn: nếu chiều cao =1
- Nhân: ker(A) = {u∈X | μ_A(u) = 1}
- Lực lượng: $|A| = \sum_{u \in X} \mu_A(u)$

α-CUT

Lát cắt α: A_α = {u∈X | μ_A(u) ≥ α, α∈[0,1]}
 còn gọi là tập rõ mức α của A

• Định lý: $\forall u \in X : \mu_A(u) = \sup_{\alpha \in [0,1]} \alpha \cdot \chi_{A\alpha}(u)$

VÍ DỤ

• $X = \{1,2,3,4,5,6,7,8,9,10\}$

$$A = \frac{0.2}{2} + \frac{0.5}{3} + \frac{0.8}{4} + \frac{1}{5} + \frac{0.8}{6} + \frac{0.5}{7} + \frac{0.2}{8}$$

- $A_{0.2} = \{2,3,4,5,6,7,8\}$
- $A_{0.5} = \{3,4,5,6,7\}$
- $A_{0.8} = \{4,5,6\}$
- $A_{1.0} = \{5\}$

2.2. CÁC PHÉP TOÁN VỚI TẬP MÒ

- Tập mờ là sự mở rộng của tập rõ, thêm 1 chiều biểu diễn độ thuộc --> cần xét hàm thuộc
- Các tập mờ trên cùng không gian tham chiếu
- Các tập mờ khác không gian tham chiếu

SO SÁNH CÁC TẬP MỜ

- Cho 2 tập mờ A, B xác định trên cùng không gian X, ta có A=B, nếu ∀u∈X: μ_A(u) = μ_B(u)
- Cho 2 tập mờ A, B xác định trên cùng không gian X, ta có A bao hàm trong B, nếu ∀u∈X: μ_A(u) ≤ μ_B(u), ký hiệu A⊂B (có thể viết A ⊂ X, cho "A xác định trên không gian X")

BIẾN ĐỔI TẬP MỜ

- very A = A^β, với β>1, thường lấy β=2
 Ta có very A ⊂ A
- mol A = A^β, với 1>β>0, thường lấy β=0.5
 Ta có A ⊂ mol A
- Họ M = {A^β, β>0} = {A, very A, mol A, very very A, very mol A, mol mol A, mol very A, ...}

MÒ HOÁ VÀ KHỬ MÒ

- Mò hoá: giá trị u∈X tương ứng tập mò đơn trị
- Từ một nhãn ngôn ngữ, có thể biểu diễn bằng các dạng tập mờ khác nhau: khoảng, tam giác, hình thang, hình chuông, ...
- Khử mờ: chuyển tập mờ về một giá trị rõ

$$x^* = \frac{\sum_{u \in X} \mu_A(u)^{\beta} . u}{\sum_{u \in X} \mu_A(u)^{\beta}}$$

Nếu β →∞: cực đại, β =1: trung bình

CÁC PHÉP TOÁN VỚI TẬP MỜ

- Cho A⊂X, B⊂X (A, B trên cùng không gian)
- Hợp: $A \cup B = \{(u, \max\{\mu_A(u), \mu_B(u)\}) \mid u \in X\}$ $\mu_{A \cup B}(u) = \max\{\mu_A(u), \mu_B(u)\}$
- Giao: $A \cap B = \{(u, \min\{\mu_A(u), \mu_B(u)\}) \mid u \in X\}$ $\mu_{A \cap B}(u) = \min\{\mu_A(u), \mu_B(u)\}$
- Phần bù: $A^{C} = \{(u, 1-\mu_{A}(u)) \mid u \in X\}$

VÍ DỤ

$$A = \frac{0.5}{x_1} + \frac{0.7}{x_2} + \frac{0.8}{x_3} + \frac{0.1}{x_4} \qquad B = \frac{0.4}{x_1} + \frac{1.0}{x_2} + \frac{0.3}{x_3} + \frac{0.3}{x_4}$$

$$A \cup B = \frac{0.5}{x_1} + \frac{1.0}{x_2} + \frac{0.8}{x_3} + \frac{0.3}{x_4}$$

$$A \cap B = \frac{0.4}{x_1} + \frac{0.7}{x_2} + \frac{0.3}{x_3} + \frac{0.1}{x_4}$$

$$B^C = \frac{0.6}{x_1} + \frac{0.7}{x_3} + \frac{0.7}{x_4}$$

HÌNH VỄ

AND, OR, NOT CỦA CÁC TẬP MÒ'

- Tổng quát hoá: các hàm f,g: $[0,1]x[0,1] \rightarrow [0,1]$ $\mu_{A \text{ and } B}(u) = f(\mu_{A}(u), \mu_{B}(u)), \quad \mu_{A \text{ or } B}(u) = g(\mu_{A}(u), \mu_{B}(u))$
- Các tiêu chuẩn cho f, g (Bellman, Giertz):
- (i) $f(a,b) \le min(a,b)$, $g(a,b) \ge max(a,b)$
- (ii) f(1,1)=1, g(0,0)=0
- (iii) f(a,a), g(a,a) đơn điệu tăng theo a
- (iv) Giao hoán: f(a,b)=f(b,a), g(a,b)=g(b,a)
- (v) f(a,b), g(a,b) không giảm và liên tục theo các đối số a,b

CÁC VÍ DỤ CHO AND, OR

- Zadeh: min(a,b), max(a,b)
- Giles: algebraic product a.b, sum a+b-ab
- Bonissone, Decker: drastic product, sum

```
(b=1: a, a=1: b, else 0), (b=0: a, a=0: b, else 1)
```

- Lukasiewicz: bounded difference, sum max(a+b-1,0), min(a+b,1)
- Einstein product, sum:
 ab / [2-(a+b-ab)], (a+b) / (1+ab)
- Hamacher: ab / (a+b-ab), (a+b-2ab) / (1-ab)

CHUẨN VÀ ĐỐI CHUẨN TAM GIÁC

- Chuẩn tam giác t: [0,1] × [0,1] → [0,1] thoả:
 giao hoán: t(a,b)=t(b,a), kết hợp: t(t(a,b),c) =
 t(a,t(b,c)), đơn điệu: t(a,c)≤t(b,d), nếu a≤b, c≤d,
 phần tử trung hoà =1: t(a,1)=a
- Đối chuẩn tam giác s: [0,1] × [0,1] → [0,1] thoả: giao hoán, kết hợp, đơn điệu, phần tử trung hoà = 0
- Phủ định: n: [0,1] → [0,1] thoả: n(0)=1, n(1)=0, n(a)≤n(b), nếu a≥b
- Tính đối ngẫu: n(t(a,b)) = s(n(a),n(b))

VÍ DỤ

- Zadeh (t₃,s₃): min(a,b), max(a,b), 1-a
- Hamacher (t_{2.5},s_{2.5}): ab / (a+b-ab),
 (a+b-2ab) / (1-ab), 1-a
- Algebraic (t₂,s₂): a.b, a+b-a.b, 1-a
- Bounded (t₁,s₁): max(a+b-1,0), min(a+b,1), 1-a
- Einstein (t_{1.5},s_{1.5}): ab / [2-(a+b-ab)],
 (a+b) / (1+ab), 1-a
- Cực biên (t₀,s₀): (b=1: a, a=1: b, else 0),
 (b=0: a, a=0: b, else 1), 1-u

MỘT SỐ HỌ t-CHUẨN, s-ĐỐI CHUẨN

- Họ Hamacher: $ab / [\gamma + (1-\gamma)(a+b-ab)]$ $[(\gamma'-1)ab + a + b] / [1 + \gamma'ab], với <math>\gamma \ge 0, \gamma' \ge -1$
- Họ Yager: 1 min(1, [(1-a)^p+1-b)^p]^{1/p})
 min(1, [a^p + b^p]^{1/p}), với p≥1
- Họ Dubois: ab / max(a,b,α)
 [a+b-ab min(a,b,1-α)] / max(1-a,1-b,α),
 với α∈[0,1]

PHÉP TÍCH ĐỀ CÁC

 Giả sử có nhiều không gian tham chiếu X₁, X₂, ..., X_r, không có tác động lẫn nhau, cho $A_1 \subset X_1$, $A_2 \subset X_2$, ..., $A_r \subset X_r$, thì Tích đề các A = $A_1 \times A_2 \times ... \times A_r$ là tập mờ xác định trên không gian $X_1 \times X_2 \times ... \times X_r$ với hàm thuộc $\mu_A(u_1, u_2, ..., u_r) =$ = min { $\mu_{A_1}(u_1)$, $\mu_{A_2}(u_2)$, ..., $\mu_{A_r}(u_r)$ }

Hình chiếu trên X₁ của tập mờ A⊂X₁×X₂ là:
 với u₁∈X₁: μ _{ProjX1(A)} (u₁) = sup _{u2∈X2} μ_A(u₁,u₂)

VÍ DỤ

$$A = \frac{0.5}{x_1} + \frac{0.7}{x_2}$$

$$B = \frac{0.4}{y_1} + \frac{1.0}{y_2} + \frac{0.3}{y_3}$$

$$A \times B = \frac{0.4}{(x_1, y_1)} + \frac{0.5}{(x_1, y_2)} + \frac{0.3}{(x_1, y_3)} + \frac{0.4}{(x_2, y_1)} + \frac{0.7}{(x_2, y_2)} + \frac{0.3}{(x_2, y_3)}$$

$$\Pr{oj_X(A \times B)} = \frac{\sup\{0.4, 0.5, 0.3\}}{x_1} + \frac{\sup\{0.4, 0.7, 0.3\}}{x_2}$$

2.3. NGUYÊN LÝ MỞ RỘNG

- Cho tập mờ A⊂X và ánh xạ φ: X→Y, thì có thể định nghĩa tập mờ B⊂Y thông qua A và φ như sau:
- Với $y \in Y$, $\mu_B(y) = \sup_{\{x \in X \text{ và } y = \phi(x)\}} \mu_A(x), \text{ nếu } \phi^{-1}(y) \neq \emptyset$ $\mu_B(y) = 0, \text{ nếu } \phi^{-1}(y) = \emptyset$
- Ví dụ: A = {(2, 0.4), (3, 0.7), (4, 0.2)}, $\phi(2) = n \hat{a}u, \ \phi(3) = n \hat{a}u, \ \phi(4) = \vec{d}\vec{o}$
 - → B = { (nâu, 0.7), (đỏ, 0.2) }
- ! Ý nghĩa: dẫn xuất thông tin

SỐ MÒ'

- Số mờ M là một tập mờ lồi, chuẩn trên R, thoả mãn: Tồn tại x_0 , với $\mu_M(x_0)=1$ và $\mu_M(x)$ liên tục
- Bằng nguyên lý mở rộng, có thế định nghĩa các phép toán đại số trên số mờ μ_{M⊗N}(z) = sup_{z=x×y} min {μ_M(x), μ_N(y)}
- M dương, âm, $\mu_{-M}(x) = \mu_{M}(-x)$, $\mu_{\lambda M}(x) = \mu_{M}(\lambda x)$, $\mu_{M-1}(x) = \mu_{M}(1/x)$, ...

TẬP MÒ KIỂU LR

- Số mờ M có kiểu LR nếu tồn tại hàm L (trái), R (phải), α>0 và β>0, với
 μ_M(x) = L((m-x)/α) với x≤m
 R((x-m)/β) với x≥m
- Ví dụ: $L(x)=1/(1+x^2)$, R(x)=1/(1+2|x|), $\alpha=2$, $\beta=3$, m=5

KHOẢNG MÒ'

- Với khoảng [m₁, m₂] ta có khoảng mờ
 μ_M(x) = L((m₁-x)/α) với x≤m
 R((x-m₂)/β) với x≥m
- Có thể dùng nguyên lý mở rộng để định nghĩa các phép toán trên khoảng mờ
- Các dạng tập mờ thường gặp: tập mờ tam giác, tập mờ hình thang, tập mờ Gauss,

. . .

2.4. ĐỘ ĐO MÒ'

- Cho F(X) là tập các tập mờ trên X, độ đo mờ g: F(X) → [0,1], thỏa mãn:
 - g(ø)=0, g(X)=1, nếu A⊂B thì g(A)≤g(B), nếu $A_1 \subset A_2 \subset ... \subset A_n$ thì $\lim_{n\to\infty} g(A_n)=g(\lim_{n\to\infty} A_n)$
- Độ đo khả năng: Cho P(X) là tập các tập con của X, Π: P(X) → [0,1], thỏa mãn
 Π(Ø)=0, Π(X)=1, nếu A⊂B thì Π(A)≤ Π(B),
 - $\Pi(\bigcup A_i) = \sup_i \Pi(A_i)$ với $i \in I$ là một tập chỉ số

VÍ DỤ – ĐỘ ĐO KHẢ NĂNG

- Cho X = $\{1,2,3,4,5,6,7,8,9,10\}$, có $\Pi(\{8\})=1, \Pi(\{7\})=\Pi(\{9\})=0.8, \Pi(\{5\})=0.1, \Pi(\{6\})=\Pi(\{10\})=0.5, \Pi(\{1\})=...=\Pi(\{4\})=0,$
- Với A = $\{2,5,9\}$ thì $\Pi(A) = \sup\{0,0.1,0.8\}$ = 0.8

ĐỘ ĐO TÍNH MÒ

- Cho các tập mờ A, B trên không gian X, độ đo tính mờ thường thỏa mãn:
 - (i) d(A)=0, nếu A là tập rõ
 - (ii) d(A) đạt cực đại, nếu $\mu_A(x)=0.5$, $\forall x \in X$
 - (iii) d(B) ≤ d(A) nếu B "rõ" hơn A, nghĩa là
 - $\mu_{B}(x) \le \mu_{A}(x) \le 0.5 \text{ hoặc } \mu_{B}(x) \ge \mu_{A}(x) \ge 0.5$
 - (iv) d(A) = d(A) với A là phần bù của A

ĐỊNH NGHĨA CỦA deLuca, Termini

- Cho tập mờ A trên không gian X, thì $d(A) = H(A) + H(\overline{A})$ với $H(A) = k \sum_i \mu_A(x_i).ln(\mu_A(x_i)), k>0$
- Ngắn gọn, gọi S(x) = -x.ln(x) (1-x).ln(1-x)thì $d(A) = k \sum_i S(\mu_A(x_i))$

VÍ DŲ

Cho

```
A = \{(2,0.1), (3,0.5), (4,0.8), (5,1), (6,0.8), (7,0.5), (8,0.1)\} số nguyên gần 5
B = \{(1,0.1), (2,0.3), (3,0.4), (4,0.7), (5,1), (6,0.8), (7,0.5), (8,0.3), (9,0.1)\}
```

Với k=1, có d(A)=0.325+0.693+0.501+0+0.501+0.693+0.325 = 3.308
d(B)=0.325+0.611+0.673+0.611+0+0.501+0.693+0.611+0.325 = 4.35

ĐỊNH NGHĨA CỦA Yager

- Khoảng cách giữa A và Phần bù của A càng lớn thì càng rõ, càng nhỏ thì càng mờ
- Cho $D_p(A, \overline{A}) = [\sum_i |2\mu_A(x_i)-1|^p]^{1/p},$ p=1,2,3,... $\| supp(A) \|$ là lực lượng của giá đỡ của A mũ 1/p, thì

$$f_p(A) = 1 - D_p(A, \overline{A}) / \| supp(A) \|$$

Ví dụ: Với A, B như ở ví dụ trước, có

$$f_1(A)=1-3.8/7=0.457, f_1(B)=1-4.6/9=0.489,$$

 $f_2(A)=1-1.73/2.65=0.347, f_2(B)=0.407$

TỔNG KẾT CHƯƠNG

- Thông tin rõ x thông tin mờ (x, .)
- Biến rõ (V,X,u) biến ngôn ngữ (V,X,U, ., .)
- Rõ -> mờ : tập mờ đơn trị; nguyên lý mở rộng
 Mờ -> rõ : khử mờ; lát cắt α
- Các phép toán với tập mờ:
 - phép toán tập hợp: hội, tuyển, phủ định, tích đề các ...
 - phép toán đại số: dùng nguyên lý mở rộng

CHƯƠNG 3 – QUAN HỆ MỜ

- Quan hệ mờ
- Phép hợp thành

QUAN HỆ MÒ'

- Cho các không gian X, Y, quan hệ mờ trên
 X×Y là R = {((x,y), μ_R(x,y)) | (x,y)∈X×Y}
- Ví dụ:

```
\mu_{R}(x,y) = 0, với x \le y;

1, với x > 11y

(x-y)/10y, với y < x \le 11y
```

• Ví dụ:

$$\mu_{R}(x,y) = 0$$
, với $x \le y$
1 / (1+(x-y)-2), với x>y

VÍ DỤ

R	y1	y2	y3	y4
x1	0.8	1	0.1	0.7
x2	0	8.0	0	0
x 3	y1 0.8 0 0.9	1	0.7	8.0

			у3	
x1	0.4	0	0.9	0.6
x2	0.9	0.4	0.9 0.5 0.8	0.7
x 3	0.3	0	8.0	0.5

CÁC PHÉP TOÁN

- Phép ∪, ∩, ... giống như với tập mờ
- Phép chiếu

$$\begin{split} R^{(1)} &= \{(x, \, max_y \; \mu_R(x,y)) \mid (x,y) \in X \times Y \;\} \subseteq X \\ R^{(2)} &= \{(y, \, max_x \; \mu_R(x,y)) \mid (x,y) \in X \times Y \;\} \subseteq Y \end{split}$$

- Lưu ý:
 - Có thể có nhiều quan hệ khác nhau nhưng có kết quả phép chiếu giống nhau
 - Có thể mở rộng quan hệ n-ngôi

PHÉP HỢP THÀNH

- Cho R⊆X×Y, S⊆Y×Z, có thể kết hợp R và S tạo thành quan hệ T=R∘S ⊆X×Z
 μ_T(x,z) = max_{y∈Y} min {μ_R(x,y), μ_S(y,z)}
- Lưu ý:
 - Có thể thay min bằng các t-chuẩn khác
 - Có thể giải thích bằng nguyên lý mở rộng

VÍ DỤ

\mathbb{R}	\	y1	y2	y3	y4	<u>y</u> 5
X	1	0.1	0.2	0	1	0.7
XZ	2	0.3	0.5	0	0.2	1
χЗ	3	8.0	0	1	0.4	0.3
R y1 y2 y3 y4 y5 x1 0.1 0.2 0 1 0.7 x2 0.3 0.5 0 0.2 1 x3 0.8 0 1 0.4 0.3						
	F	R∘S	y1	y2	у3	y4
	_F	R∘S x1	y1 0.4	y2 0.7	y3 0.3	y4 0.7
	F	R∘S x1 x2	y1 0.4 0.3	y2 0.7 1	y3 0.3 0.5	y4 0.7 0.8
	F	R°S x1 x2 x3	y1 0.4 0.3 0.8	y2 0.7 1 0.3	y3 0.3 0.5 0.7	y4 0.7 0.8 1

	z1			
<u>y1</u>	0.9 0.2 0.8 0.4	0	0.3	0.4
y2	0.2	1	0.8	0
у3	8.0	0	0.7	1
y4	0.4	0.2	0.3	0
у5	0	1	0	8.0

TÍNH CHẤT PHÉP HỢP THÀNH

- Phép hợp thành max-min thoả tính chất kết hợp (R1°R2)°R3 = R1°(R2°R3)
- Quan hệ mờ trên X×X
 - Phản xạ: μ_R(x,x)=1 ∀x∈X Nếu R, S phản xạ thì R₀S cũng phản xạ
 - Đối xứng: μ_R(x,y)=μ_R(y,x) ∀x,y∈X Nếu R, S đối xứng và R∘S=S∘R thì R∘S cũng đối xứng
 - Phản đối xứng: nếu μ_R(x,y)>0 và x≠y thì μ_R(y,x)=0 (Zadeh, *còn có các định nghĩa khác*)

TÍNH CHẤT PHÉP HỢP THÀNH

- Quan hệ mờ trên X×X (tiếp)
 - Bắc cầu: R bắc cầu, nếu R∘R ⊂ R Nếu R phản xạ và bắc cầu thì R∘R=R Nếu R và S bắc cầu, R∘S=S∘R thì R∘S cũng bắc cầu
- Các quan hệ đặc biệt trên X×X: quan hệ xấp xỉ, quan hệ tương tự, quan hệ ưu tiên, ...