Формула (2) только обозначениями отличается от формулы (1). Забыв на миг о геометрическом смысле $f(\xi_i)$, Δx_i и считая x временем, а f(x) скоростью, найдем первообразную F(x) функции f(x) и тогда по формуле (1) получим, что $\sigma = F(1) - F(0)$.

В нашем случае $f(x) = x^2$, поэтому $F(x) = \frac{1}{3}x^3 + c$ и $\sigma = F(1) - F(0) = \frac{1}{3}$. Это и есть результат Архимеда, который он получил прямым вычислением предела в (2).

Предел интегральных сумм называется *интегралом*. Таким образом, формула (1) Ньютона – Лейбница связывает интеграл и первообразную.

Перейдем теперь к точным формулировкам и проверке того, что на эвристическом уровне было получено выше из общих соображений.

2. Определение интеграла Римана

а. Разбиения

Определение 1. Разбиением P отрезка $[a,b],\ a < b,$ называется такая конечная система точек $x_0,...,x_n$ этого отрезка, что $a=x_0 < x_1 < ... < x_n = b.$

Отрезки $[x_{i-1}, x_i]$ (i = 1, ..., n) называются отрезками разбиения P.

Максимум $\lambda(P)$ из длин отрезков разбиения называется *параметром* разбиения P.

Определение 2. Говорят, что имеется разбиение (P,ξ) с отмеченными от отрезка [a,b], если имеется разбиение P отрезка [a,b] и в каждом из отрезков $[x_{i-1},x_i]$ разбиения P выбрано по точке $\xi_i \in [x_{i-1},x_i]$ (i=1,...,n).

Набор $(\xi_1,...,\xi_n)$ обозначается одним символом ξ .

b. База в множестве разбиений. В множестве P разбиений с отмеченными точками данного отрезка [a,b] рассмотрим следующую базу $B = \{B_d\}$. Элемент $B_d, d > 0$, базы B есть совокупность всех тех разбиений (P,ξ) с отмеченными точками отрезка [a,b], для которых $\lambda(P) < d$.

Проверим, что $\{B_d\}$,d>0, - действительно база в Р.

Во-первых, $B_d \neq \emptyset$. В самом деле, каким бы ни было число d < 0, очевидно, существует разбиение P отрезка [a,b] с параметром $\lambda(P) < d$ (например, разбиение на n конгруэнтных отрезков). Но тогда существует и разбиение (P,ξ) с отмеченными точками, для которого $\lambda(P) < d$.

Во-вторых, если $d_1>0, d_2>0$ и $d=min\{d_1,d_2\}$, то, очевидно, $B_{d_1}\cap B_{d_2}=B_d\in B.$

Итак, $B = \{B_d\}$ - действительно база в Р.

с. Интегральная сумма

Определение 3. Если функция f определена на отрезке [a,b], а (P,ξ) — разбиение с отмеченными точками этого отрезка, то сумма

$$\sigma(f; P; \xi) := \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

где $\Delta x_i = x_i - x_{i-1}$, называется *интегральной суммой* функции f, соответствующей разбиению (P, ξ) с отмеченными точками отрезка [a, b].

Таким образом, при фиксированной функции f интегральная сумма $\sigma(f; P, \xi)$ оказывается функцией $\Phi(p) = \sigma(f; p)$ на множестве P разбиений $p = (P, \xi)$ с отмеченными точками отрезка [a, b].

Поскольку в P имеется база B, то можно ставить вопрос о пределе функции $\Phi(p)$ по этой базе.

d. Интеграл Римана. Пусть f - функция, заданная на отрезке [a,b].

Определение 4. Говорят, что число I является интегралом Pимана от функции f на отрезке [a,b], если для любого $\epsilon>0$ найдется число $\delta>0$ такое, что для любого разбиения (P,ξ) с отмеченными точками отрезка [a,b], параметр которого $\lambda(P)<\delta$, имеет место соотношение

$$\left| I - \sum_{i=1}^{n} f(\xi_i) \Delta x_i \right| < \epsilon.$$

Поскольку разбиения $p=(P,\xi)$, для которых $\lambda(P)<\delta$, составляют элемент B_{δ} введенной выше базы B в множестве P разбиений с отмеченными точками, то определение 4 равносильно тому, что

$$I = \lim_{B} \Phi(p),$$

т. е. интеграл I есть предел по базе B значений интегральных сумм функции f, отвечающих разбиению с отмеченными точками отрезка [a,b].

Базу B естественно обозначить символом $\lambda(P) \to 0$, и тогда определение интеграла можно переписать в виде

$$I = \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Интеграл от функции f(x) по отрезку [a,b] обозначается символом

$$\int_{a}^{b} f(x)dx,$$

в котором числа a, b называются нижним и верхним пределом интегрирования соответственно; f — подынтегральная функция, f(x)dx — подынтегральное выражение, x—переменная интегрирования.

Итак,

$$\int_{a}^{b} f(x)dx := \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Определение 5. Функция f называется интегрируемой по Риману на отрезке [a,b], если для нее существует указанный в (5) предел интегральных сумм при $\lambda(P) \to 0$ (т. е. если для нее определен интеграл Римана).

Множество всех функций, интегрируемых по Риману на отрезке [a,b], будет обозначаться через R[a,b].

Поскольку пока мы не будем рассматривать другого интеграла, кроме интеграла Римана, условимся для краткости вместо терминов «интеграл Римана» и «функция, интегрируемая по Риману» говорить соответственно «интеграл» и «интегрируемая функция».