Course: DSP Lab

Session 5: Auto correlation and Cross Correlation

Dept.: Electrical & Electronics Engineering V1.3

1 Objectives/Outcome:

- 1) Learn Circular Auto Correlation of signals, its properties and interpret the results
- 2) Learn Circular Cross Correlation of signals, its properties and interpret the results
- Perform Circular Cross correlation on generated signals and speech signals as an application
- 4) Understand difference between Circular Correlation and Linear Correlation

2 Tasks

2.1 Task1: Signal preparation

- 1) Generate discretised samples $x_1[n]$ of $x_1(t) = \cos(2\pi f_i t)$ for a total time of 0.025s where f_i is input frequency say 400Hz at sampling frequency $f_s = 8000Hz$
- 2) Generate noisy sinusoidal signal $x_2[n]$ from:

$$x_2(t) = x_1(t) + randomised noise using randn()$$

3) Generate shifted noise sinusoidal signal $x_{2s}[n]$ from: (shiftvalue=30 for right shift by 30)

illitivalue=50 for right shift by 50)

$$x_{2s}[n] = [zeros(1, shiftvalue), x2];$$

4) Record two voice signals

 $x_3(n)$ – your recorded signal speaking say numbers 1, 2, 3, 4 in about 2s.

 $x_4(n)$ – your recorded signal speaking say only 4.

2.2 Task2: Circular Auto-correlation

- 1) Perform circular correlation on each of the signals: $x_2[n]$ and $x_3[n]$. Use FFT to perform the same in frequency domain.
- 2) Perform cross circular correlation of:
 - a. $x_1[n]$ with $x_2[n]$ (find sinusoidal in noise signal)
 - b. $x_{2s}[n]$ with $x_1[n]$
 - c. $x_3[n]$ with $x_4[n]$ (find match for saying 4 in another long speech)
- 3) Subplot in a figure all the signals as you can view them properly in figures as below: Interpret all the results.

$x_1[n]$	$x_2[n]$
$R_{x1x1}(l)$	$R_{x2x2}(l)$
$R_{x1x2}(l)$	

Page 1 of 2

x_1	x_{2s}
$R_{x1x2s}(l)$	

x_3	x_4	
$R_{x3x3}(lag)$	$R_{x4x4}(lag)$	
$R_{x3x4}(lag)$		