SPECTRUM DECODERS

<u>INTRODUCTION</u>

- Infrared (IR) Spectroscopy is crucial for molecular analysis, identifying vibrational modes and chemical interactions.
- Traditional quantum mechanical methods like Density Functional Theory (DFT) are accurate but computationally expensive.
- Machine Learning (ML) provides an alternative for predicting IR spectra efficiently while maintaining accuracy.

<u>SMART AI ACADEMY</u>

Interdisciplinary AI Applications

 Shows how AI can accelerate research and reduce computational costs in highperformance computing fields.

Applications in AI Research & Development

- Demonstrates multioutput regression models and clustering for spectral prediction.
- Uses TensorFlow and Random Forest models, relevant for AI and data science training programs.

AI-Driven Scientific Advancements

- The project integrates AI and quantum chemistry, making it a perfect fit for an AI-focused institution.
- Uses Machine Learning (ML) to solve real-world challenges in molecular spectroscopy and material science.

Educational & Training Potential

- Can be integrated into AI certification programs to teach real-world AI applications in science field.
- The project can be used as a case study in AI courses covering:
- Supervised learning (Random Forest, Multi-Output Regressors)
- Feature engineering and dataset optimization
- AI-driven scientific research and computational modeling

AI for Sustainability & Industry Applications

- AI-driven spectral analysis can optimize industrial processes (e.g., drug designing).
- Applications in environmental monitoring to detect pollutants using IR spectra.

Machine Learning Techniques <u>Used</u>

MULTI OUTPUT REGRESSOR

- Handles multiple target variables simultaneously for predicting vibrational frequencies and intensities.
- Enables efficient and indepentedent prediction of each target variables.

RANDOM FOREST REGRESSOR

 An ensemble method that builds multiple decision trees to enhance predictive accuracy and reduce overfitting.

Model Architecture and Design

Data Collection

Uses datasets
 from Gaussian 16
 software with
 molecular
 geometries,
 vibrational
 frequencies, and
 quantum
 properties.

<u>Data</u> <u>Preprocessing</u>

 Includes handling missing values, feature scaling, and label encoding.

<u>Feature</u> <u>Engineering</u>

 Extracts molecular descriptors such as atomic coordinates, bond lengths, dipole moments, and symmetry.

Model Training

Uses Random
 Forest with Multi Output Regressor
 to predict IR
 spectra.

Prediction & Visualization

 Generates IR spectra using Gaussian curves and compares actual vs.
 predicted results.

RESULTS

Model Performance:

- Smaller dataset: High accuracy (R² = 0.90, MAE
 = 7.53 cm⁻¹)
- Larger dataset: Accuracy drops (R² = 0.65) due to increased complexity.

<u>Clustering of Molecules:</u>

- Five clusters identified based on vibrational and structural properties.
- Clusters include simple hydrocarbons, halogenated molecules, and inorganic compounds.

FUTURE SCOPE:

- Larger and More Diverse
 Datasets
- National Biomedical Resource for Advanced ESR Spectroscopy

Sustainable Development Goals

GOAL 4: QUALITY EDUCATION

 This project can serve as an educational tool for teaching AI application in chemistry.

GOAL 9: INDUSTRY,INNOVATION & INFRASTRUCTURE

- Machine learning streamlines materials discovery,enhancing industries like chemical engineering, nanotechnology, and material sciences.
- Reduces reliance on highperformance computing (HPC), making scientific computations more accessible.

<u>CONCLUSION</u>

- ML significantly enhances IR spectral predictions, offering a cost-effective and scalable alternative to quantum chemistry methods.
- The integration of ML models with molecular spectroscopy paves the way for faster and more accurate molecular characterization.