Mathematical Methods Exam 1: Solutions

Question 1

a. $f(x) = \frac{2}{x-3} + 4$ Let $y = \frac{2}{x-3} + 4$

Inverse: swap *x* and *y*.

$$x = \frac{2}{y-3} + 4$$

$$(x-4)(y-3) = 2$$
1M

$$y = \frac{2}{x - 4} + 3$$
 1A

$$f^{-1}: R \setminus \{4\} \rightarrow R$$
, where

$$f^{-1}(x) = \frac{2}{x - 4} + 3$$
 1A

b. Equating f to f^{-1} or f to x,

$$x = \frac{2}{x-3} + 4$$
 1M (alternatively, $\frac{2}{x-3} + 4 = \frac{2}{x-4} + 3$)

$$(x-4)(x-3) = 2$$

$$x^{2}-7x+10 = 0$$

$$(x-5)(x-2) = 0$$

$$x = 5 \text{ or } x = 2$$

$$(5,5) \text{ and } (2,2)$$
1A

Question 2

$$2\sin^2(x) = 1$$

$$\sin^2(x) = \frac{1}{2}$$

$$\sin(x) = \pm \frac{1}{\sqrt{2}}$$
1A

$$x = \frac{-3\pi}{4}, \frac{-\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}$$
 (i.e. $4 \times \frac{1}{2}A$)

Question 3

a. Correct Endpoints
Correct Intersections
Correct Shape
1A
1A

b. Correct shape and open circles for endpoints1A

c.
$$2\int_{2}^{3} ((x-2)^{\frac{1}{5}} - (x-2)^{\frac{1}{3}}) dx$$
 1M

$$= 2\left[\frac{5}{6}(x-2)^{\frac{6}{5}} - \frac{3}{4}(x-2)^{\frac{4}{3}}\right]_{2}^{3}$$
 1A

$$= 2\left(\left(\frac{5}{6}(3-2)^{\frac{6}{5}} - \frac{3}{4}(3-2)^{\frac{4}{3}}\right) - \frac{3}{4}(3-2)^{\frac{4}{3}}\right) - \frac{3}{4}(3-2)^{\frac{4}{3}}$$

Ouestion 4

a. Rule: $f(g(x)) = \log_e(|2x + 5|)$ **1A** Domain: $R^{-1}\left\{-\frac{5}{2}\right\}$ or $(-\infty,0)\setminus\left\{-\frac{5}{2}\right\}$

$$f(g(x)):(-\infty,0)\setminus\{-\frac{5}{2}\}\to R$$
, where
$$f(g(x)) = \log_e(|2x+5|)$$

b. $\frac{d}{dx}[f(g(x))] = \frac{2}{2x+5}$ **1M** $\frac{d}{dx}[f(g(-4))] = \frac{2}{-8+5}$ $= \frac{-2}{3}$ $f(g(-4)) = \log_e(3)$ **1M** $y - \log_e(3) = \frac{3}{2}(x+4)$ $y = \frac{3}{2}x + 6 + \log_e(3)$

Question 5

- **a.** h = 2r $V = \pi r^2 h$ $=\frac{\pi h^3}{4}$ **1M**
- **b.** $\frac{dV}{dh} = \frac{3\pi h^2}{4}$ **1M** $\frac{dh}{dt} = \frac{dV}{dt} \frac{dh}{dv}$ $=8\times\frac{4}{3\pi h^2}$ **1M**

When h = 2 cm

$$\frac{dh}{dt} = \frac{8}{3\pi} \,\text{cm/s}$$

Question 6

a.
$$f(x) = \frac{2e^{3x}}{\sqrt{x+1}}$$
 1M

$$f'(x) = \frac{6e^{3x}\sqrt{(x+1)} - \frac{1}{2\sqrt{(x+1)}}2e^{3x}}{x+1}$$

$$= \frac{6e^{3x}(x+1) - e^{3x}}{(x+1)^{\frac{3}{2}}}$$

$$= \frac{e^{3x}(6x+5)}{(x+1)^{\frac{3}{2}}}$$
1A

b.
$$f'(x) = \frac{e^{3x} (6x + 5)}{(x + 1)^{\frac{3}{2}}} = 0$$

 $6x + 5 = 0$
 $x = -\frac{5}{6}$

1M

X	-0.9	$-\frac{5}{6}$	0
f'(x)	-ve	0	+ve

Local minimum stationary point at **1A** $\left(-\frac{5}{6}, 2\sqrt{6}e^{-\frac{5}{2}}\right)$ **1A**

Question 7

1A

Let U denote the purchase of unleaded and E denote the purchase of ethanol blend.

Question 8

a.
$$\int_{0}^{\pi} \cos\left(\frac{x}{2}\right) dx$$

$$= \left[2\sin\left(\frac{x}{2}\right)\right]_{0}^{\pi}$$

$$= 2\sin\left(\frac{\pi}{2}\right) - 0$$

$$= 2$$
1A

b.
$$k \int_{0}^{\pi} \cos\left(\frac{x}{2}\right) dx = 1$$
$$2k = 1$$
$$k = \frac{1}{2}$$
1A

c.
$$\frac{d}{dx}\left(x\sin\left(\frac{x}{2}\right) + 2\cos\left(\frac{x}{2}\right)\right)$$
$$= \sin\left(\frac{x}{2}\right) + \frac{1}{2}x\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)$$
$$= \frac{1}{2}x\cos\left(\frac{x}{2}\right)$$
1A

d.
$$\int_{0}^{\pi} x \cos\left(\frac{x}{2}\right) dx = 2 \left[x \sin\left(\frac{x}{2}\right) + 2 \cos\left(\frac{x}{2}\right) \right]_{0}^{\pi}$$
$$= 2 (\pi - 2)$$
$$= 2\pi - 4$$
1A

e.
$$E(X) = \int_{0}^{\pi} \left(x \times \frac{1}{2} \cos\left(\frac{x}{2}\right) \right) dx$$
$$= \frac{1}{2} (2\pi - 4)$$
$$= \pi - 2$$
 1A