

PADRE CONCEIÇÃO COLLEGE OF ENGINEERING VERNA-GOA

	Roll No:			
Assignment- (Unit-II)				

Date: 13 /06/2022

Due Date: 20/06/2022

Semester & Scheme: IV (RC 2019) Course: FE210 Mathematics-II

Course Instructors: 1. Adarsh Kumar Handa

2. Komal Paroolkar

Q1. Find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$	<u>CO</u> FE210.3	CL3
Q2. Find the volume of the solid generated by revolving the area bounded by $y^2 = 4x$ and $x = 1$ about x-axis	FE210.3	CL3
Q3. Evaluate $\iiint \frac{dx dy dz}{(1+x+y+z)^3}$ over the region bounded by $x = 0$, $y = 0$, $z = 0$ and $x + y + z = 1$	FE210.3	CL3
Q4. If \mathcal{R} is the region bounded between the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, $a > b$ evaluate $\iiint_{\mathcal{R}} \frac{\mathbf{dxdydz}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$ using spherical polar coordinates.	FE10.3	CL3

Q5. If \mathcal{R} is the region bounded by the cylinder $x^2 + y^2 = 1$ and the plane z = 2 and z = 0. **Evaluate** $\iiint_{\mathcal{R}} z(x^2 + y^2) dx dy dz$, using cylindrical polar coordinates.
