מטלה 4

* שאלה 3: אלגוריתם הרשימה – יחס קירוב מדוייק יותר

הוכיחו: יחס הקירוב של אלגוריתם הרשימה בחלוקת מטלות ל-n שחקנים הוא לכל היותר:

2 - 1/n

הוכחה:

נשתמש בנרמול:

הוכחה. נסמן: OPT = העלות האגליטרית. נחלק את כל העלויות ב־OPT. לאחר החלוקה, סכום העלויות של כל שחקן בחלוקה האגליטרית ≤ 1 . לכן, העלות של כל מטלה ≤ 1 , וסכום העלויות של כל המטלות $\leq n$.

i פונקציה המחשבת את העלות של מטלה v(i) :נגדיר

.m ב שלילה שלאחר החלוקה $\max > 2 - \frac{1}{n}$ נניח בשלילה שלאחר החלוקה

לפי האלגוריתם קיים סיבוב בו השחקן m היה עם העלות המינימלית.

 $2 - \frac{1}{n}$ < ולאחריו העלות שלו הייתה

נחשב : (1): $\min + v(j) > 2 - \frac{1}{n}$ נחשב

$$\forall j: v(j) \le 1 \to min + 1 \ge min + v(j) > 2 - \frac{1}{n} \to min + 1 > 2 - \frac{1}{n} \to$$

(2): min >
$$1 - \frac{1}{n}$$

לכן:

מספר המטלות שחולקו. -K

t העלות של שחקן - $v(\hat{t})$

$$\begin{split} & \Sigma_{i=1}^k v(i) = \Sigma_{\hat{t}=1}^{n-1} v(\hat{t}) + \min + v(j) >^{(2)} \Sigma_{\hat{t}=1}^{n-1} \left(1 - \frac{1}{n} \right) + \min + v(j) \\ & >^{(1)} \Sigma_{t=1}^{n-1} \left(1 - \frac{1}{n} \right) + 2 - \frac{1}{n} = (n-1) \left(1 - \frac{1}{n} \right) + 2 - \frac{1}{n} = (n-1) \left(1 - \frac{1}{n} \right) + 1 + \left(1 - \frac{1}{n} \right) \\ & = n \left(1 - \frac{1}{n} \right) + 1 = n - 1 + 1 = n \end{split}$$

לכן: $\Sigma_{i=1}^k v(i) > n$ בסתירה לנרמול.