Examen Maths 3 (C1223 / S1224)

Sébastien Boisgérault, Mines ParisTech

28 Janvier 2016

Problème L

Soit f une fonction holomorphe sur $\mathbb{C}\setminus [0,\ell]$ où $\ell\geq 0$. Soit $r>\ell$; on note γ_r le lacet dont un représentant est

$$t \in [0, 2\pi] \mapsto re^{-it}$$
.

1. Montrer que pour tout $s \in \mathbb{C}$, l'intégrale curviligne

$$L[f](s) = \int_{\gamma_r} f(z)e^{-sz} dz$$

est bien définie et ne dépend pas du choix de $r > \ell$.

- 2. Donner (sans justification) la valeur de l'indice $j(0, \gamma_r)$. En déduire la valeur de $j(a, \gamma_r)$ pour tout $a \in [0, \ell]$.
- 3. Calculer L[g](s) pour tout $s \in \mathbb{C}$ lorsque $\ell = 0$ et

$$\forall z \in \mathbb{C}^*, \ g(z) = -\frac{1}{i2\pi} \frac{1}{z}.$$

- 4. Déterminer pour $s \in \mathbb{C}^*$ la valeur de L[f'](s) en fonction de L[f](s) (indication: on pourra justifier l'existence et calculer la dérivée de $z \mapsto f(z)e^{-sz}$).
- 5. Soit f_1 la fonction holomorphe sur $\mathbb{C} \setminus [0, \ell + 1]$ définie par

$$f_1(z) = f(z-1).$$

Déterminer $L[f_1](s)$ pour tout $s \in \mathbb{C}$.

6. Montrer que la fonction

$$h(z) = -\frac{1}{i2\pi} \log_{-\pi} \frac{z}{z-1}$$

est définie et holomorphe sur $\mathbb{C}\setminus [0,1]$. Déterminer sa dérivée et en déduire la valeur de L[h](s) pour $s\in\mathbb{C}^*$.

7. Montrer que la fonction

$$s \in \mathbb{C} \mapsto L[h](s)$$

est holomorphe (on pourra développer e^{-sz} en série entière).

8. Quelle est la valeur de L[h](0)?

Problème H

On s'intéresse à l'ensemble des fonctions qui peuvent s'écrire comme la somme d'une fonction holomorphe et d'une fonction antiholomorphe (c'est-à-dire conjuguée d'une fonction holomorphe). Pour tout sous-ensemble ouvert Ω de \mathbb{C} , on note $\operatorname{Har}(\Omega)$ l'ensemble des fonctions $\phi: \Omega \to \mathbb{C}$ telles que

$$\exists f \in \mathcal{H}(\Omega), \ \exists g \in \mathcal{H}(\Omega), \ \phi = f + \overline{g}.$$

- 1. 1. Montrer que la fonction $\phi:(x,y)\in\mathbb{C}\mapsto x^2-y^2$ n'est pas holomorphe.
 - 2. Montrer qu'elle est par contre la partie réelle d'une fonction holomorphe que l'on déterminera.
 - 3. En déduire qu'elle appartient à $Har(\mathbb{C})$.
- 2. 1. Montrer que si la fonction $\phi = f + \overline{g} \in \text{Har}(\Omega)$, alors elle est \mathbb{R} -différentiable.
 - 2. Déterminer cette différentielle $d\phi$ en fonction de f' et g'.
 - 3. En déduire pour tout $z = (x, y) \in \Omega$ les relations

$$f'(z) = \frac{1}{2} \left[\frac{\partial \phi}{\partial x}(x, y) - i \frac{\partial \phi}{\partial y}(x, y) \right]$$

 et

$$g'(z) = \overline{\frac{1}{2} \left[\frac{\partial \phi}{\partial x}(x,y) + i \frac{\partial \phi}{\partial y}(x,y) \right]},$$

- 4. Est-ce que la fonction $\phi:(x,y)\in\mathbb{C}\mapsto x^2+y^2$ appartient à $\mathrm{Har}(\Omega)$?
- 3. 1. Montrer que si $\phi = f + \overline{g}$ où f et g sont holomorphes, alors pour tout $\lambda \in \mathbb{C}$, on a également $\phi = h + \overline{k}$ avec les fonctions holomorphes $h = f + \lambda$ et $k = g \overline{\lambda}$.
 - 2. Réciproquement, prouver que si le domaine de définition de ϕ est connexe par arcs, toutes les décompositions possibles de ϕ comme somme d'une fonction holomorphe et antiholomorphe sont de cette forme.

- 3. Supposons que la fonction ϕ , définie sur un ouvert connexe par arcs, admette une décomposition comme somme de fonction holomorphe et antiholomorphe. Montrer qu'il existe parmi ces décompositions possibles $\phi = h + \overline{k}$ une seule telle que h(0) = 0.
- 4. Soit $\phi = f + \overline{g} \in \text{Har}(\Delta(0,1))$ avec g(0) = 0. Pour tout r > 0, γ_r désigne l'arc dont un représentant est $t \in [0,2\pi] \mapsto re^{it}$.
 - 1. Soit $p \in \mathbb{Z}$ et $r \in]0,1[$. Montrer que

$$\int_{\gamma_r} \overline{g(z)} z^p \, dz = -r^{2(p+1)} \overline{\int_{\gamma_r} g(z) z^{-p-2} \, dz}.$$

2. On note $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 1} b_n z^n$ les développements respectifs de f et g en série de Taylor dans $\Delta(0,1)$. Déduire de la question précédente la valeur de

$$\int_{\gamma_r} \phi(z) z^p \, dz$$

en fonction des coefficients (a_n) et (b_n) .

3. On suppose qu'il existe une fonction continue $\psi: \overline{\Delta(0,1)} \to \mathbb{C}$ dont la restriction à $\Delta(0,1)$ soit ϕ . Montrer que les valeurs de ψ sur le cercle S(0,1) déterminent de façon unique f et g (et par conséquent ϕ).

Problème L – Solution

Total: 13.0pt

1. (1pt) Pour tout $s \in \mathbb{C}$, la fonction $z \mapsto f(z)e^{-sz}$ est holomorphe (et donc continue) sur $\mathbb{C} \setminus [0,\ell]$. Par ailleurs, la condition $r > \ell$ nous garantit que l'intersection de l'image de γ_r et de $[0,\ell]$ soit vide ; γ_r est donc un arc de $\mathbb{C} \setminus [0,\ell]$. L'intégrale curviligne considérée est donc bien définie.

Les arcs γ_r associés à deux rayons distincts plus grand que ℓ sont homotopes dans $\mathbb{C} \setminus [0,\ell]$ (se baser par exemple sur une famille d'homothéties de centre 0 et de rapport variable). Par le théorème de Cauchy homotopique, les intégrales curvilignes associées sont égales.

- 2. (1pt) On a $j(0, \gamma_r) = -1$. On peut alors remarquer que tout $a \in [0, \ell]$ appartient à la même composante connexe par arcs de $\mathbb{C} \setminus \operatorname{Im} \gamma_r$ que 0 et en conclure que $j(a, \gamma_r) = -1$.
- 3. **(2pt)** La fonction $z \mapsto -\frac{1}{i2\pi} \frac{1}{z} e^{-sz}$ est holomorphe sur \mathbb{C}^* . L'origine est donc sa seule singularité (isolée) ; le lacet γ_r est homotope à zéro dans $\mathbb{C}^* \cup \{0\} = \mathbb{C}$ (qui est convexe) et $j(0, \gamma_r) = -1$. Le théorème des résidus nous fournit donc

$$L[g](s) = -\frac{1}{i2\pi} \int_{\gamma_r} \frac{e^{-sz}}{z} dz = R\acute{e}s \left(z \mapsto \frac{e^{-sz}}{z}, 0 \right).$$

Les fonctions $F(z) = e^{-sz}$ et G(z) = z sont holomorphes sur \mathbb{C} , F(0) = 1 et $G'(0) = 1 \neq 0$, par conséquent

$$L[g](s) = 1.$$

4. (1pt) Sur $\mathbb{C} \setminus [0,\ell]$, les fonctions f et $z \mapsto e^{-sz}$ sont holomorphes, et donc leur produit $p: z \mapsto f(z)e^{-sz}$. La règle de dérivée d'un produit fournit

$$p'(z) = f'(z)e^{-sz} - f(z)se^{-sz},$$

par conséquent,

$$L[f'](s) = sL[f](s) + \int_{\gamma_r} p'(z) dz.$$

L'intégrale de p' – qui est une fonction holomorphe – le long d'un lacet étant nulle, on en conclut que

$$L[f'](s) = sL[f](s).$$

5. (1.5pt) Si f est définie et holomorphe sur $\mathbb{C} \setminus [0,\ell]$, f_1 est définie et holomorphe sur $\mathbb{C} \setminus [0,\ell+1]$. Par conséquent, si γ_r a pour représentant $t \in [0,2\pi] \mapsto (\ell+2)e^{-it}$, on a

$$L[f_1](s) = \int_{\gamma_r} f(z-1)e^{-sz} dz = e^{-s} \left[\int_{\gamma_r} f(z-1)e^{-s(z-1)} (z-1)' dz \right].$$

Le changement de variable g(z) = z - 1 fournit donc

$$L[f_1](s) = e^{-s} \left[\int_{g(\gamma_r)} f(z) e^{-sz} dz \right]$$

et $g(\gamma_r) = \gamma_r - 1$ est homotope à γ_r dans $\mathbb{C} \setminus [0, \ell]$ (une famille de translations horizontales bien choisie fournit un exemple d'homotopie de γ_r sur $\gamma_r - 1$.). Par conséquent

$$L[f_1](s) = e^{-s} \left[\int_{\gamma_r} f(z) e^{-sz} dz \right] = e^{-s} \times L[f](s).$$

6. (2.5pt) La fonction composée

$$h(z) = -\frac{1}{i2\pi} \log_{-\pi} \frac{z}{z - 1}$$

est bien définie sur $\mathbb{C}\setminus[0,1]$. En effet, pour que l'expression du second membre ne soit pas définie il faut que z=1 – ce qui est exclu – ou que $z/(z-1)\in\mathbb{R}_-$. Dans ce second cas, on aurait $z/(z-1)=-\lambda$ avec $\lambda\geq 0$ et donc $z=\lambda/(1+\lambda)\in[0,1[$, ce qui est également exclu. La fonction h est par ailleurs holomorphe comme composée de fonctions holomorphes.

La dérivée de h en z vaut

$$h'(z) = -\frac{1}{i2\pi} \left[\frac{1}{z} - \frac{1}{z-1} \right].$$

Par conséquent, les résultats des questions précédentes nous fournissent pour tout $s\in\mathbb{C}$

$$s \times L[h](s) = 1 - e^{-s},$$

soit pour tout $s \in \mathbb{C}^*$

$$L[h](s) = \frac{1 - e^{-s}}{s}.$$

7. (3pt) Pour tout $s, z \in \mathbb{C}$, on a

$$e^{-sz} = \sum_{n=0}^{+\infty} \frac{1}{n!} (-sz)^n = \sum_{n=0}^{+\infty} \frac{(-s)^n}{n!} z^n.$$

Pour un $s \in \mathbb{C}$ fixé, ce développement converge, uniformément par rapport à la variable z quand elle décrit un ensemble compact dans \mathbb{C} . On a par conséquent

$$L[h](s) = \int_{\gamma_r} h(z) \left[\sum_{n=0}^{+\infty} \frac{(-s)^n}{n!} z^n \right] dz = \sum_{n=0}^{+\infty} \left[\int_{\gamma_r} h(z) \frac{(-z)^n}{n!} dz \right] s^n,$$

qui est un développement de Taylor de $s \mapsto \mathrm{L}[h](s)$ valable pour tout $s \in \mathbb{C}$, cette fonction est donc holomorphe sur \mathbb{C} .

8. (1pt) La fonction $s \in \mathbb{C} \mapsto L[h](s)$ est holomorphe, elle est donc continue en 0 et par conséquent

$$L[h](0) = \lim_{s \to 0} -\frac{e^{-s} - 1}{s} = -(s \mapsto e^{-s})'(0) = 1.$$

Problème H – Solution

Total: **16.5pt**

1. (1.0pt) La function $\phi:(x,y)\in\mathbb{C}\to x^2-y^2$ ne satisfait pas les conditions de Cauchy en tout point de \mathbb{C} et n'y est donc pas holomorphe. En effet, la fonction ϕ est à valeurs réelles – c'est-à-dire que $\Re\phi(x,y)=\phi(x,y)$ et $\Im\phi(x,y)=0$. Or

$$\frac{\partial}{\partial x}\phi(x,y)=2x,\;+\frac{\partial}{\partial y}0=0,\;\frac{\partial}{\partial y}\phi(x,y)=-2y,\;-\frac{\partial}{\partial x}0=0;$$

les conditions de Cauchy sont satisfaites si et seulement si 2x=0 et 2y=0, c'est-à-dire à l'origine uniquement.

2. (1.5pt) La function ϕ est la partie réelle de la fonction $h: z \in \mathbb{C} \mapsto z^2$ qui est holomorphe en tant que polynôme. En effet,

$$(x+iy) \times (x+iy) = (x^2 - y^2) + i(2xy).$$

Si l'on n'a pas cette intuition, on peut progresser en raisonnant par conditions nécessaires: si f est holomorphe de partie réelle ϕ , sa partie imaginaire ψ satisfait nécessairement les conditions de Cauchy:

$$\frac{\partial}{\partial x}\psi(x,y)=-\frac{\partial}{\partial y}\phi(x,y)=2y \ \text{ et } \ \frac{\partial}{\partial y}\psi(x,y)=+\frac{\partial}{\partial x}\phi(x,y)=2x.$$

Cela suggère de tester $\psi(x,y)=2xy$ et donc de vérifier que la fonction $h(x,y)=(x^2-y^2)+i(2xy)$ répond bien au problème¹.

3. (1pt) La function ϕ est la partie réelle de la fonction holomorphe $h: z \in \mathbb{C} \mapsto z^2$, c'est-à-dire que $\phi = (h + \overline{h})/2$, donc $\phi = f + \overline{g}$ avec f = g = h/2, holomorphe sur \mathbb{C} . Par conséquent, $\phi \in \text{Har}(\mathbb{C})$.

$$\psi(x,y) = \psi(0,0) + \int_0^1 (d/dt)\psi(tx,ty) dt.$$

La règle de dérivation d'une fonction composée fournit

$$\frac{d}{dt}\psi(tx,ty) = \frac{\partial \psi}{\partial x}(tx,ty) \times x + \frac{\partial \psi}{\partial x}(tx,ty) \times y = 4xy,$$

et par conséquent $\psi(x,y)=\psi(0,0)+2xy$. Cela réduit la recherche de candidats aux fonctions de la forme $h(x,y)=(x^2-y^2)+i(2xy+\lambda)=(x+iy)^2+i\lambda$ où $\lambda\in\mathbb{R}$. On peut aisément vérifier qu'elle sont bien toutes des solutions à notre problème.

Îsi toutefois l'on n'a pas l'idée de tester $\psi(x,y)=2xy$, il est possible de pousser le raisonnement plus loin: la fonction $t\in[0,1]\to\psi(tx,ty)$ étant continuement différentiable, on a nécessairement

- 2. 1. (1.5pt) Soient $f \in \mathcal{H}(\Omega)$ et $g \in \mathcal{H}(\Omega)$. La fonction f est \mathbb{R} -différentiable car \mathbb{C} -différentiable et la fonction \overline{g} est la composition de la fonction g, \mathbb{R} -différentiable car \mathbb{C} -différentiable, et de la fonction de conjugaison $c: z \mapsto \overline{z}$, \mathbb{R} -différentiable car \mathbb{R} -linéaire (et continue). Par conséquent, $\phi = f + \overline{g}$ est \mathbb{R} -différentiable.
 - 2. **(1.5pt)** Pour tout $z \in \Omega$, la règle de différentiation de fonctions composées fournit la relation $d\phi_z = df_z + dc_{g(z)} \circ dg_z$. Les fonctions f et g étant holomorphes, pour tout $h \in \mathbb{C}$, $df_z(h) = f'(z) \times h$ et $dg_z(h) = g'(z) \times h$. La function c étant \mathbb{R} -linéaire, $dc_{g(z)} = c$. Par conséquent,

$$d\phi_z(h) = f'(z) \times h + \overline{g'(z) \times h}$$

3. (1.0pt) L'utilisation pour z = (x, y) des identités

$$\frac{\partial \phi}{\partial x}(x,y) = d\phi_{(x,y)}(1)$$
 et $\frac{\partial \phi}{\partial y}(x,y) = d\phi_{(x,y)}(i)$,

fournit les relations

$$\frac{\partial \phi}{\partial x}(x,y) = f'(z) + \overline{g'(z)} \text{ et } \frac{\partial \phi}{\partial y}(x,y) = i(f'(z) - \overline{g'(z)}).$$

et leur combinaison mène à

$$f'(z) = \frac{1}{2} \left[\frac{\partial \phi}{\partial x}(x, y) - i \frac{\partial \phi}{\partial y}(x, y) \right] \text{ et } g'(z) = \overline{\frac{1}{2} \left[\frac{\partial \phi}{\partial x}(x, y) + i \frac{\partial \phi}{\partial y}(x, y) \right]}.$$

4. (1.5pt) La fonction $\phi:(x,y)\in\mathbb{C}\mapsto x^2+y^2$ n'appartient pas à $\operatorname{Har}(\mathbb{C})$. En, effet, si l'on avait la décomposition $\phi=f+\overline{g}$, les relations ci-dessus fourniraient l'expression de f':

$$f'(z) = \frac{1}{2} \left[\frac{\partial \phi}{\partial x}(x, y) - i \frac{\partial \phi}{\partial y}(x, y) \right] = x - iy = \overline{z}.$$

D'une part la fonction de conjugaison n'est pas holomorphe, d'autre part la fonction f' est nécessairement holomorphe comme dérivée de fonction holomorphe: on aboutirait donc à une contradiction.

3. 1. (0.5pt) Soit $\lambda \in \mathbb{C}$. Si $\phi = f + \overline{g}$ où f et g sont holomorphes, alors les fonctions $f + \lambda$ et $g - \overline{\lambda}$ le sont également et l'on a bien

$$(f+\lambda) + \overline{(g-\overline{\lambda})} = f + \overline{g} = \phi.$$

2. **(1.5pt)** Réciproquement, si $\phi \in \operatorname{Har}(\Omega)$ admet les deux décompositions $\phi = f + \overline{g} = h + \overline{k}$, d'après les résultats de la question précédente, on a h' = f' et k' = g'. L'ensemble Ω étant connexe, h et f diffèrent d'une constante $\lambda \in \mathbb{C}$ et k et g d'une constante $\mu \in \mathbb{C}$. Comme $\phi = f + \overline{g} = h + \overline{k} = f + \lambda + \overline{g + \mu} = \phi + (\lambda + \overline{\mu})$, il est nécessaire que l'on ait $\mu = -\overline{\lambda}$, et donc $(h, k) = (f + \lambda, g - \overline{\lambda})$.

- 3. (0.5pt) Le domaine de définition de ϕ étant connexe, d'après le résultat de la question précédente, si $\phi = f + \overline{g}$ est une décomposition de ϕ , toutes les autres sont de la forme $\phi = h + \overline{k}$ où $h = f + \lambda$ et $k = g \overline{\lambda}$. Il est clair que le choix de $\lambda = -f(0)$ permet d'obtenir h(0) = 0 et que c'est le seul qui ait cette propriété.
- 4. 1. **(1.5pt)** On a

$$I := \int_{\gamma_r} \overline{g(z)} z^p \, dz = \int_0^{2\pi} \overline{g(re^{it})} (re^{it})^p (ire^{it} \, dt)$$

et donc

$$I = \overline{\int_0^{2\pi} g(re^{it})(re^{-it})^p(-ire^{-it} dt)}$$

ou encore

$$I = -r^{2(p+1)} \overline{\int_0^{2\pi} \frac{g(re^{it})}{(re^{it})^{p+2}} (ire^{it} \, dt)} = -r^{2(p+1)} \overline{\int_{\gamma_r} g(z) z^{-p-2} dz}.$$

2. (1.5pt) Comme

$$\int_{\gamma_r} \phi(z) z^p \, dz = \int_{\gamma_r} f(z) z^p \, dz + \int_{\gamma_r} \overline{g(z)} z^p \, dz$$

on déduit du résultat que l'on vient d'établir que

$$\int_{\gamma_r} \phi(z) z^p \, dz = \int_{\gamma_r} f(z) z^p \, dz - r^{2(p+1)} \overline{\int_{\gamma_r} g(z) z^{-p-2} \, dz}.$$

Si l'on note (a_n) et (b_n) les coefficients du développement en série de Laurent de f et g dans $\Delta(0,1) \setminus \{0\}$ (ce qui revient à poser $a_n = 0$ pour n < 0 et $b_n = 0$ pour $n \le 0$), alors

$$\int_{\gamma_r} \phi(z) z^p \, dz = (i2\pi) [a_{-p-1} + r^{2(p+1)} \overline{b_{p+1}}].$$

3. (2pt) Si ϕ admet une extension continue ψ sur l'adhérence de $\Delta(0,1)$, alors en passant à la limite l'égalité précédente quand $r \to 1^-$, on obtient²

$$\int_{\gamma_1} \psi(z) z^p \, dz = (i2\pi) [a_{-p-1} + \overline{b_{p+1}}],$$

$$\int_{\gamma_r} \phi(z) z^p dz = \int_0^{2\pi} \psi(re^{it}) (re^{it})^p i re^{it} dt ;$$

par continuité (uniforme) de ψ sur $\overline{\Delta(0,1)}$, l'intégrande tend vers $\psi(e^{it})(e^{it})^p i e^{it}$ quand r tend vers 1^- , uniformément par rapport à t, ce qui justifie l'interversion des signes limite et intégrale et mène au résultat annoncé.

 $^{^2\}mathrm{pour}$ justifier le passage à la limite dans le membre de gauche de l'équation, notons que

autrement dit, pour $n \ge 0$,

$$a_n = \frac{1}{i2\pi} \int_{\gamma_1} \psi(z) z^{-n-1} dz,$$

et pour $n \ge 1$,

$$b_n = \frac{1}{i2\pi} \int_{\gamma_1} \psi(z) z^{n-1} \, dz,$$

les fonctions f et g sont donc déterminées de façon unique.