Medians and Order Statistics

Given a set of n elements, the ithorder statistic is the ith smallest element in the set.

minimum - first order statistic (i=1) maximum - nth order statistic (i=n)

Median

on is odd

the median is the ith order statistic for $i = \frac{n+1}{2}$

example
$$N=5$$
 $C = \frac{5+1}{2} = 3$

the median = 3rd order statistic = 6

n is even

the lower median is the ithorder statistic for $i = \frac{\Omega}{2}$ the upper median is the ithorder statistic for $i = \frac{\Omega}{2} + 1$ example

the lower median = 3rd order statistic = 6 the upper median = 4th order statistic = 9

The selection problem

Input: A set A of n (distinct) numbers and an integer i with 1 in Output: The ith order statistic element of A.

Minimum and maximum
- we can compute minimum (or maximum) using n-1 comparisons
MINIMUM (A) min= A CI]
for i = 2 to A. length
if min > A [i]
min = A CiJ
return min
- used n-1 comparisons, where n= A.length
Simultaneous minimum and maximum
a using the previous method requires 2n-2 comparisons
· solution that requires at most 3/2] comparisons
-maintain the minimum and maximum elements seen thurs far - process the elements in pairs:
"compare the two elements with each other max=9 min=3 min=3 max=10 "compare the smaller with the min so far "compare the larger with the max so far
o compare the smaller with the min so far
(" compare the larger with the max so far
3 comparisons - initialization
- initialization
on is even
L comparison { - compare Alij and Alij -assign { min = the smaller value max = the larger value
-assign min = the smaller value
- then process elements in pairs

on is odd nin = max = A (17) A (17)
min = max = A [1] then process elements in pairs
- number of comparisons • n is even $1 + (\frac{n-2}{2}) \cdot 3 = 1 + 3\frac{1}{2} - 3 = 3\frac{1}{2} - 2 < 3 \cdot \lfloor \frac{1}{2} \rfloor$
" n is odd $\left(\frac{n-1}{2}\right) \cdot 3 = 3 \left\lfloor \frac{\Lambda}{2} \right\rfloor$
In both cases the total number of comparisons is at most 3/21.
The selection problem The selection problem seeks to find the ith orderstatistic in a set A of n distinct numbers, where $1 \le i \le n$.
· Simple solution with RT = O(n.lgn) [-sort the numbers using heapsortor merge sort in O(negn) - return A [i]
· Solution in expected linear time -the algorithm is similar to zwicksort, but it recurses
on only one side of the partition
-uses divide-and-conquer

general problem: find the ithorder A E statistic in A [p., r]

