$$n_1(t+1) = \sum_{k=1}^{\omega} f_k n_k(t)$$

Ahora pueden combinarse todos los términos $n_i(t)$ en un vector de columna $\mathbf{n}(t)$ de tamaño ω . A esto se le llama el **vector de población**, y describe al número de individuos en cada categoría de edad en el tiempo t.

Matriz de Leslie/Matriz de proyección

La matriz de proyección, a menudo llamada la matriz de Leslie, en honor de Patrick Holt Leslie, combina la información de fertilidad y supervivencia para una población estructurada por edad. Basada en datos empíricos de la tabla de vida del grupo de edad, la matriz de Leslie se construye con valores de fertilidad (f_i) en el primer renglón, y las probabilidades de supervivencia (p_i) a lo largo de la subdiagonal, con ceros en todas las demás posiciones. Por lo tanto, la matriz de Leslie puede anotarse.

$$L = \begin{pmatrix} f_1 & f_2 & f_3 & \cdots & f_{\omega-1} & f_{\omega} \\ p_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & p_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & p_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p_{\omega-1} & 0 \end{pmatrix}$$

Ahora se tiene la matriz de Leslie L, y el vector de columna $\mathbf{n}(t)$ representando a la población actual; esta notación permite describir el crecimiento poblacional como una multiplicación de matriz entre la matriz L y el vector de columna $\mathbf{n}(t)$. Ahora puede verse que

$$Ln(t) = \begin{pmatrix} f_1 & f_2 & f_3 & \cdots & f_{\omega-1} & f_{\omega} \\ p_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & p_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p_{\omega-1} & 0 \end{pmatrix} \begin{pmatrix} n_1(t) \\ n_2(t) \\ n_3(t) \\ \vdots \\ n_{\omega}(t) \end{pmatrix}$$

$$= \begin{pmatrix} f_1(n_1(t)) + f_2(n_2(t)) + f_3(n_3(t)) + \cdots + f_{\omega-1}(n_{\omega-1}(t)) + f_{\omega}(n_{\omega}(t)) \\ p_1(n_1(t)) + 0(n_2(t)) + 0(n_3(t)) + \cdots + 0(n_{\omega-1}(t)) + 0(n_{\omega}(t)) \\ 0(n_1(t)) + p_2(n_2(t)) + 0(n_3(t)) + \cdots + 0(n_{\omega-1}(t)) + 0(n_{\omega}(t)) \\ 0(n_1(t)) + 0(n_2(t)) + p_3(n_3(t)) + \cdots + 0(n_{\omega-1}(t)) + 0(n_{\omega}(t)) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0(n_1(t)) + 0(n_2(t)) + 0(n_3(t)) + \cdots + p_{\omega-1}(n_{\omega-1}(t)) + f_{\omega}(n_{\omega}(t)) \end{pmatrix}$$

$$= \begin{pmatrix} f_1(n_1(t)) + f_2(n_2(t)) + f_3(n_3(t)) + \cdots + f_{\omega-1}(n_{\omega-1}(t)) + f_{\omega}(n_{\omega}(t)) \\ p_1(n_1(t)) + 0 + 0 + 0 + \cdots + 0 + 0 \\ 0 + p_2(n_2(t)) + 0 + \cdots + 0 + 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 + 0 + 0 + \cdots + p_{\omega-1}(n_{\omega-1}(t)) + 0 \end{pmatrix}$$