COMPUTER ORGANIZATION Unit-IV PPT Slides

Text Books: (1) Computer Systems Architecture by M. Morris Mano

(2) Computer Organization by Carl Hamacher

COMPUTER ARITHMETIC

INDEX

UNIT-VI PPT SLIDES

Sl. No	Module as per Session planner	Lecture No
1.	Algorithm for Addition	<u>L1</u>
2.	Algorithm for Subtraction	<u>L2</u>
3.	Algorithm for Multiplication	<u>L3</u>
4.	Algorithm for Division	<u>L4</u>
5.	Floating – point Arithmetic operations	<u>L5</u>
6.	Decimal Arithmetic unit	<u>L6</u>
7.	Decimal Arithmetic operations	<u>L7</u>

ARITHMETIC OPERATIONS

- Arithmetic operations involve adding, subtracting, multiplying and dividing.
- We can apply these operations to integers and floating-point numbers.

Arithmetic operations on integers

All arithmetic operations such as addition,
subtraction, multiplication and division can be
applied to integers.
Although multiplication (division) of integers can be
implemented using repeated addition (subtraction),
the procedure is not efficient.
There are more efficient procedures for
multiplication and division, such as Booth procedures,
but these are beyond the scope of this book.
For this reason, we only discuss addition and
subtraction of integers here.

Two's complement integers

When the subtraction operation is encountered, the computer simply changes it to an addition operation, but makes two's complement of the second number. In other words:

$$A - B \leftrightarrow A + (B + 1)$$

Where \overline{B} is the one's complement of B and $(\overline{B} + 1)$ means the two's complement of B

- We should remember that we add integers column by column.
- ☐ The following table shows the sum and carry (C).

Column	Carry	Sum
Zero 1s	0	0
One 1	0	1
Two 1s	1	0
Three 1s	1	1

Sign-and-magnitude integers

- Addition and subtraction for integers in sign-andmagnitude representation looks very complex.
- We have four different combinations of signs (two signs, each of two values) for addition and four different conditions for subtraction.
- ☐ This means that we need to consider eight different situations.

☐ Eight situations for sign-and-magnitude addition/subtraction

Onevation	ADD	SUBTRACT Magnitudes							
Operation	Magnitudes	$A_{M} > B_{M}$	$A_{M} < B_{M}$	$A_{M} = B_{M}$					
(+A) + (+B)	$+ (\mathbf{A}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}})$								
(+A) + (-B)		$+(A_M-B_M)$	$-(\mathbf{B}_{\mathbf{M}}-\mathbf{A}_{\mathbf{M}})$	$+(\mathbf{A}_{\mathbf{M}}-\mathbf{B}_{\mathbf{M}})$					
(-A) + (+B)		$-(A_{M}-B_{M})$	$+(\mathbf{B}_{\mathbf{M}}-\mathbf{A}_{\mathbf{M}})$	$+(\mathbf{A}_{\mathbf{M}}-\mathbf{B}_{\mathbf{M}})$					
(-A) + (-B)	$-(A_{M}+B_{M})$								
(+A) - (+B)		$+(A_M-B_M)$	$-(\mathbf{B}_{\mathbf{M}}-\mathbf{A}_{\mathbf{M}})$	$+(A_M-B_M)$					
(+A) - (-B)	$+ (\mathbf{A}_{\mathbf{M}} + \mathbf{B}_{\mathbf{M}})$								
(-A) - (+B)	$-(A_{M}+B_{M})$								
(-A) - (-B)		$-(A_{\rm M}-B_{\rm M})$	$+(B_M-A_M)$	$+(A_M-B_M)$					

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$-$$
 i.e. $a - b = a + (-b)$

So we only need addition and complement circuits

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Figure 4.6 Addition and subtraction of integers in two's complement format

Two integers A and B are stored in two's complement format. Show how B is added to A.

$$A = (00010001)_2$$
 $B = (00010110)_2$

- The operation is adding.
- ☐ A is added to B and the result is stored in R.
- \Box (+17) + (+22) = (+39).

			1						Carry
	0	0	0	1	0	0	0	1	Α
+	0	0	0	1	0	1	1	0	В
	0	0	1	0	0	1	1	1	R

Two integers A and B are stored in two's complement format. Show how B is added to A.

$$A = (00011000)_2$$
 $B = (11101111)_2$

- ☐ The operation is adding.
- ☐ A is added to B and the result is stored in R.
- \Box (+24) + (-17) = (+7).

1	1	1	1	1					Carry
	0	0	0	1	1	0	0	0	Α
+	1	1	1	0	1	1	1	1	В
	0	0	0	0	0	1	1	1	R

Two integers A and B are stored in two's complement format. Show how B is subtracted from A.

$$A = (00011000)_2$$
 $B = (11101111)_2$

- The operation is subtracting.
- \Box A is added to (B + 1) and the result is stored in R.
- \Box (+24) (-17) = (+41).

			1						Carry
	0	0	0	1	1	0	0	0	А
+	0	0	0	1	0	0	0	1	(B + 1)
	0	0	1	0	1	0	0	1	R

Two integers A and B are stored in two's complement format. Show how B is subtracted from A.

$$A = (11011101)_2$$
 $B = (00010100)_2$

- ☐ The operation is subtracting.
- \Box A is added to (B + 1) and the result is stored in R.
- \Box (-35) (+20) = (-55).

1	1	1	1	1	1				Carry
	1	1	0	1	1	1	0	1	Α
+	1	1	1	0	1	1	0	0	(B + 1)
	1	1	0	0	1	0	0	1	R

Two integers A and B are stored in two's complement format. Show how B is added to A.

$$A = (011111111)_2$$
 $B = (00000011)_2$

- ☐ The operation is adding.
- ☐ A is added to B and the result is stored in R.

		1	1	1	1	1	1	1		Carry
		0	1	1	1	1	1	1	1	А
	+	0	0	0	0	0	0	1	1	В
Ī		1	0	0	0	0	0	1	0	R

- We expect the result to be 127 + 3 = 130, but the answer is -126.
- □ The error is due to overflow, because the expected answer (+130) is not in the range −128 to +127.

Two integers A and B are stored in sign-and-magnitude format. Show how B is added to A.

$$A = (0\ 0010001)_2$$
 $B = (1\ 0010110)_2$

- ☐ The operation is adding: the sign of B is not changed.
- \Box S = A_S XOR B_S = 1; R_M = A_M + $\overline{(B_M + 1)}$.
- \square Since there is no overflow, we need to take the two's complement of R_M .
- ☐ The sign of R is the sign of B.
- \Box (+17) + (-22) = (-5).

Two integers A and B are stored in sign-and-magnitude format. Show how B is subtracted from A.

$$A = (1\ 1010001)_2$$
 $B = (1\ 0010110)_2$

- \Box The operation is subtracting: $S_B = \overline{S_B}$.
- \square S = A_S XOR B_S = 1, R_M = A_M + $\overline{(B_M + 1)}$.
- \square Since there is an overflow, the value of R_M is final.
- ☐ The sign of R is the sign of A.
- \bigcirc (-81) (-22) = (-59).

		Overflow \rightarrow	1								Carry
A_S	1			1	0	1	0	0	0	1	A_{M}
B_S	1		+	1	1	0	1	0	1	0	$(\overline{B}_{M} + 1)$
R_S	1			0	1	1	1	0	1	1	R _M

Overflow detection in two's complement addition

- Overflow: When the signs of the addends are the same, and the sign of the result is different
- You will never get overflow when adding 2 numbers of opposite signs

When we do arithmetic operations on numbers in a computer, we should remember that each number and the result should be in the range defined by the bit allocation.

•

Multiplication

- Complex
- · Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

```
1011 Multiplicand (11 dec)
x 1101 Multiplier (13 dec)
1011 Partial products
0000 Note: if multiplier bit is 1 copy
1011 multiplicand (place value)
1011 otherwise zero
10001111 Product (143 dec)
```

Note: need double length result

Unsigned Binary Multiplication

Multiplication of Unsigned Binary Integers

Flowchart for Unsigned Binary Multiplication

Execution of Example

C 0	A 0000	Q 1101	M 1011	Initia:	1 '	Values
0	1011 0101	1101 1110	1011 1011	Add Shift	}	First Cycle
0	0010	1111	1011	Shift	}	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	}	Third Cycle
1	0001 1000	1111 1111	1011 1011	Add Shift	}	Fourth Cycle

Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result

1011	
×1101	
00001011	$1011 \times 1 \times 2^{\circ}$
00000000	$1011 \times 0 \times 2^{1}$
00101100	$1011 \times 1 \times 2^{2}$
01011000	$1011 \times 1 \times 2^{3}$
10001111	

Comparison of Multiplication of Unsigned and Twos Complement Integers

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1001 (9) x0011 (3) 00001001 1001 x 2° 00010010 1001 x 2¹	$ \begin{array}{r} 1001 & (-7) \\ $
---	---	--

(a) Unsigned integers

(b) Twos complement integers

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - Convert to positive if required
 - Multiply as above
 - If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M } First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift } Second Cycle
0101	0100	1	0111	A A + M Third Cycle
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Examples Using Booth's Algorithm

0111		0111	
×0011	(0)	<u>×1101</u>	(0)
11111001	1-0	11111001	1-0
0000000	1-1	0000111	0-1
000111	0-1	111001	1-0
00010101	(21)	11101011	(-21)

(a)
$$(7) \times (3) = (21)$$

(b)
$$(7) \times (-3) = (-21)$$

1001	1001
<u>×0011</u> (0)	<u>×1101</u> (0)
00000111 1-0	00000111 1-0
0000000 1-1	1111001 0-1
111001 0-1	000111 1-0
11101011 (-21)	00010101 (21)

(c)
$$(-7) \times (3) = (-21)$$

(d)
$$(-7) \times (-3) = (21)$$

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Unsigned Binary Division

Examples of Twos Complement Division

A	Q	M = 0011	A	Q	M = 1101
0000	0111	Initial value	0000	0111	Initial value
0000 1101	1110	shift subtract	0000 1101	1110	shift add
0000	1110	restore	0000	1110	restore
0001 1110	1100	shift subtract	0001 1110	1100	shift add
0001	1100	restore	0001	1100	restore
0011 0000	1000	shift subtract	0011 0000	1000	shift add
0000	1001	$set Q_0 = 1$	0000	1001	$set Q_0 = 1$
0001 1110	0010	shift subtract	0001 1110	0010	shift add
0001	0010	restore	0001	0010	restore

(a) (7)/(3) (b) (7)/(-3)

A	Q	M = 0011	A	Q	M = 1101
1111	1001	Initial value	1111	1001	Initial value
1111 0010 1111	0010 0010	shift add restore	1111 0010 1111	0010 0010	shift subtract restore
1110 0001 1110	0100 0100	shift add restore	1110 0001 1110	0100 0100	shift subtract restore
1100 1111 1111	1000	shift add set Q ₀ = 1	1100 1111 1111	1000	shift subtract set $Q_0 = 1$
1111 0010 1111	0010	shift add restore	1111 0010 1111	0010	shift subtract restore

(c) (-7)/(3) (d) (-7)/(-3)

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - $-1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - Very limited
- Moving?
 - How do you show where it is?

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(a) Format

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - e.g. Excess (bias) 128 means
 - 8 bit exponent field
 - Pure value range 0-255
 - Subtract 128 to get correct value
 - Range -128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123 x 10³)

FP Ranges

- For a 32 bit number
 - 8 bit exponent
 - $+/- 2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
 - The effect of changing lsb of mantissa
 - -23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

(a) Single format

(b) Double format

IEEE 754 Format Parameters

		2011		
Parameter	Single	Single Extended	Double	Double Extended
Word width (bits)	32	≥ 43	64	≥ 79
Exponent width (bits)	8	≥11	11	≥ 15
Exponent bias	127	unspecified	1023	unspecified
Maximum exponent	127	≥ 1023	1023	≥ 16383
Minimum exponent	-126	≤ −1022	-1022	≤-16382
Number range (base 10)	10 ⁻³⁸ , 10 ⁺³⁸	unspecified	10-308, 10+308	unspecified
Significand width (bits)*	23	≥31	52	≥ 63
Number of exponents	254	unspecified	2046	unspecified
Number of fractions	2 ²³	unspecified	2 ⁵²	unspecified
Number of values	1.98×2^{31}	unspecified	1.99×2^{63}	unspecified

^{*} not including implied bit

Interpretation of IEEE 754 Floating-Point Numbers

	Single Precision (32 bits)				Double Precision (64 bits)			
	Sign	Biased exponent	Fraction	Value	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0	0	0	0	0
negative zero	1	0	0	9	1	0	0	-0
plus infinity	0	255 (all 1s)	0	8	0	2047 (all 1s)	0	00
minus infinity	1	255 (all 1s)	0	_8	1	2047 (all 1s)	0	_∞
quiet NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{←1023} (1.f)
negative normalized nonzero	1	0 < e < 255	f	-2 ^{e-127} (1.f)	1	0 < e < 2047	f	-2 ^{e-1023} (1.f)
positive denormalized	0	0	f≠0	2←126(0.f)	0	0	f≠0	2 e-1022 (0. f)
negative denormalized	1	0	f≠0	-2e-126(0.f)	1	0	f≠0	-2 ^{e-1022} (0.f)

Floating-Point Numbers and Arithmetic Operations

Floating Point Numbers	Arithmetic Operations
$X = X_{S} \times B^{X_{E}}$ $Y = Y_{S} \times B^{Y_{E}}$	$X + Y = \left(X_s \times B^{X_E - Y_E} + Y_s\right) \times B^{Y_E}$ $X - Y = \left(X_s \times B^{X_E - Y_E} - Y_s\right) \times B^{Y_E}$ $X = X_E \leq Y_E$
	$X \times Y = (X_{s} \times Y_{s}) \times B^{X_{E} + Y_{E}}$
	$\frac{X}{Y} = \left(\frac{X_s}{Y_s}\right) \times B^{X_E - Y_E}$

Examples:

$$X = 0.3 \times 10^2 = 30$$

$$Y = 0.2 \times 10^3 = 200$$

$$X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^3 = 0.23 \times 10^3 = 230$$

$$X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^3 = (-0.17) \times 10^3 = -170$$

$$X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^5 = 6000$$

$$X \div Y = (0.3 \div 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15$$

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition & Subtraction Flowchart

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Arithmetic operations on reals

- All arithmetic operations such as addition, subtraction, multiplication and division can be applied to reals stored in floating-point format.
- Multiplication of two reals involves multiplication of two integers in sign-and-magnitude representation.
- Division of two reals involves division of two integers in sign-and-magnitude representations.
- Since we did not discuss the multiplication or division of integers in sign-and magnitude representation, we will not discuss the multiplication and division of reals, and only show addition and subtractions for reals.

Addition and subtraction of reals

- Addition and subtraction of real numbers stored in floating-point numbers is reduced to addition and subtraction of two integers stored in sign-andmagnitude (combination of sign and mantissa) after the alignment of decimal points.
- Figure 4.8 shows a simplified version of the procedure (there are some special cases that we have ignored).

⁴ Figure 4.8 Addition and subtraction of reals in floating-point format

Example 4.24

Show how the computer finds the result of (+5.75) + (+161.875) = (+167.625).

Solution

As we saw in Chapter 3, these two numbers are stored in floating-point format, as shown below, but we need to remember that each number has a hidden 1 (which is not stored, but assumed).

	S	E	M
Α	0	10000001	01110000000000000000000
В	0	10000110	01000011110000000000000

4

- ☐ The first few steps in the UML diagram (Figure 4.8) are not needed.
- We de-normalize the numbers by adding the hidden 1s to the mantissa and incrementing the exponent.
- Now both de-normalized mantissas are 24 bits and include the hidden 1s.
 - They should be stored in a location that can hold all 24 bits.
 - Each exponent is incremented.

	S	E	Denormalized M
Α	0	10000010	1 011100000000000000000000000000000000
В	0	10000111	1 010000111100000000000000

- ☐ Align the mantissa
 - Increment the exponent of the first number five times
 - Shift the first mantissa to the right by five positions

	S	E	Denormalized M
Α	0	10000111	000001011100000000000000
В	0	10000111	1 010000111100000000000000

Now we do sign-and-magnitude addition, treating the sign and the mantissa of each number as one integer stored in sign-and-magnitude representation.

	S	E	Denormalized M
R	0	10000111	101001111010000000000000

☐ There is no overflow in the mantissa, so we normalize.

	S	E	M
R	0	10000110	01001111010000000000000

- ☐ The mantissa is only 23 bits, no rounding is needed.
- \blacksquare E = $(10000110)_2$ = 134, M = 0100111101.
- In other words, the result is $(1.0100111101)_2 \times 2^{134-127} = (10100111.101)_2 = 167.625$.

Example 4.25

Show how the computer finds the result of (+5.75) + (-7.0234375) = -1.2734375.

Solution

☐ These two numbers can be stored in floating-point format, as shown below:

	S	E	M
Α	0	10000001	01110000000000000000000
В	1	10000001	11000001100000000000000

□De-normalization results in:

	S	E	Denormalized M
Α	0	10000010	1 01110000000000000000000
В	1	10000010	1 11000001100000000000000

- ☐ Alignment is not needed (both exponents are the same)
- ☐ We apply addition operation on the combinations of sign and mantissa.
- ☐ The result is shown below, in which the sign of the result is negative:

	S	E	Denormalized M
R	1	10000010	001010001100000000000000

- Now we need to normalize.
 - We decrement the exponent three times
 - Shift the de-normalized mantissa to the left three positions:

	S	E	M
R	1	01111111	0100011000000000000000000

☐ The mantissa is now 24 bits, so we round it to 23 bits.

□ The result is $R = -2^{127-127} \times 1.0100011 = -1.2734375$, as expected.

•

Example 4.21

Two integers A and B are stored in sign-and-magnitude format (we have separated the magnitude for clarity). Show how B is added to A.

$$A = (0\ 0010001)_2$$
 $B = (0\ 0010110)_2$

Solution

- ☐ The operation is adding.
- ☐ A is added to B and the result is stored in R.

	1	1	1	1	1	1	1		Carry
	0	1	1	1	1	1	1	1	А
+	0	0	0	0	0	0	1	1	В
	1	0	0	0	0	0	1	0	R

- ☐ The error is due to overflow, because the expected answer (+130) is not in the range −128 to +127.

Addition and Subtraction with Signed-Magnitude Data Hardware Design

☐ Flowchart of addition and subtraction of integers in sign-and-magnitude format

