# Projekt 1: Dekoder na wyświetlacz 7-segmentowy

Paweł Plewa

Tymon Zadara

#### 20.04.2025

# Spis treści

| 1  | Cel projektu                                      | 1        |
|----|---------------------------------------------------|----------|
| 2  | Opis zadania                                      | 2        |
| 3  | Wyznaczenie wskaźnika                             | 2        |
| 4  | Minimalizacja funkcji logicznych                  | 2        |
| 5  | Metoda 1 - Karnaugh dla 1           5.1 Funkcja d | <b>2</b> |
| 6  | Metoda 2 - Karnaugh dla 0         6.1 Funkcja e   |          |
| 7  | Metoda 3 - ekspansja systematyczna 7.1 Funkcja g  |          |
| 8  | Metoda 4 - ekspansja heurystyczna  8.1 Funkcja b  |          |
| 9  | Układ Logisim9.1 Schematy9.2 Działanie Dekodera   |          |
| 10 | Wnioski                                           | 20       |

### 1 Cel projektu

Celem projektu było zaprojektowanie oraz zrealizowanie dekodera liczb binarnych 0–9 na wyświetlacz 7-segmentowy. Wyjściem dekodera jest zestaw siedmiu funkcji logicznych (a-g), których zadaniem jest aktywowanie odpowiednich segmentów wyświetlacza.

### 2 Opis zadania

Dla wejść binarnych  $x_3x_2x_1x_0$  (gdzie  $x_0$  to najmłodszy bit) należało stworzyć układ dekodujący liczby z zakresu 0.9 na odpowiednie segmenty wyświetlacza 7-segmentowego. Wartości od A do F w tablicy prawdy były traktowane jako "don't care".

Następnie należało zminimalizować funkcje logiczne a–g, zgodnie z przypisanym metodą wskaźnika. Końcowym krokiem było zrealizowanie układu w Logisim oraz przeprowadzenie testów poprawności działania.

### 3 Wyznaczenie wskaźnika

Indeksy studentów: 337086, 337077 Suma ostatnich cyfr: 6 + 7 = 13

Najmłodsza cyfra sumy: 3

Wskaźnik: 3 Zgodnie z tabelą:

• Metoda 1 (tablice Karnaugha dla 1): funkcja d

• Metoda 2 (tablice Karnaugha dla 0): funkcje e, f

• Metoda 3 (ekspansja systematyczna): funkcje g, a

• Metoda 4 (ekspansja heurystyczna): funkcje b, c

### 4 Minimalizacja funkcji logicznych

Poniżej w sekcjach 5,6,7,8 przedstawiono kolejne etapy wyznaczania zminimalizowanych funkcji a–g z podziałem na metody oraz ich obliczenia.

### 5 Metoda 1 - Karnaugh dla 1

#### 5.1 Funkcja d

$$D: = \sum (m_0, m_2, m_3, m_5, m_6, m_8, m_9)$$

$$x_1 x_0$$

$$00 \quad 01 \quad 11 \quad 10$$

| $x_3x_2$ | 00 | 1 | 0 | 1 | 1 |
|----------|----|---|---|---|---|
|          | 01 | 0 | 1 | 0 | 1 |
|          | 11 | - | - | - | - |
|          | 10 | 1 | 1 | - | - |

$$f = x_3 + x_1 x'_0 + x'_2 x_1 + x_2 x'_1 x_0 + x'_2 x'_1 x'_0$$
  
=  $x_3 + x_1 (x'_0 + x'_2) + x'_1 (x'_2 x'_0 + x_2 x_0)$   
=  $x_3 + x_1 (x'_0 + x'_2) + x'_1 (x_2 \oplus x_0)'$ 

# 6 Metoda 2 - Karnaugh dla 0

#### 6.1 Funkcja e

$$E: = \pi(M_1, M_3, M_4, M_5, M_7, M_9)$$

$$x_1x_0$$

$$00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 1 \quad 0 \quad 0 \quad 1$$

$$x_3x_2$$

$$11 \quad - \quad - \quad -$$

$$10 \quad 1 \quad 0 \quad - \quad -$$

$$f = (x_3 + x'_0)(x'_3 + x'_0)(x'_2 + x_1)$$

$$= (x_3x'_3 + x_3x'_0 + x'_3x'_0 + x'_0)(x'_2 + x_1)$$

$$= (0 + x_3x'_0 + x'_3x'_0 + x'_0)(x'_2 + x_1)$$

$$= x'_0(x_3 + x'_3 + 1)(x'_2 + x_1)$$

$$= x'_0(1 + 1)(x'_2 + x_1)$$

$$= x'_0(x'_2 + x_1)$$

#### 6.2 Funkcja f

$$F := \pi(M_1, M_2, M_3, M_7) \\ 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 1 \quad 0 \quad 0 \quad 0$$

$$01 \quad 1 \quad 1 \quad 0 \quad 1$$

$$x_3x_2 \quad 11 \quad - \quad - \quad -$$

$$10 \quad 1 \quad 1 \quad - \quad -$$

$$f = (x'_1 + x'_0)(x'_1 + x_2)(x_3 + x_2 + x'_0)$$

$$= (x'_1 + x'_1x_2 + x'_0x'_1 + x'_0x_2)(x_3 + x_2 + x'_0)$$

$$= x_3x'_1 + x_2x'_1 + x'_1x'_0 + x_3x_2x'_1 + x_2x'_1x_0 + x_3x'_1x'_0 + x_2x'_1x'_0 + x_3x_2x'_0 + x_2x'_0$$

$$= x_2x_1(x_0 + x'_0 + 1) + x_3x'_1(1 + x_2 + x'_0) + x_2x'_0(x_3 + 1) + x'_1x'_0$$

$$= x_2x'_1 + x_3x'_1 + x_2x'_0 + x'_1x'_0$$

### 7 Metoda 3 - ekspansja systematyczna

Wytłumaczenie oznaczeń:

F - zbiór on - set

R - zbiór off - set

L - minimalne pokrycie kolumnowe

 $L_{\boldsymbol{x}}$  - kolumna x

 $B(k_i, R)$  - Macierz blokująca

### 7.1 Funkcja g

G: F(2; 3; 4; 5; 6; 8; 9) R(0; 1; 7)

| F     |      |
|-------|------|
| $k_2$ | 0010 |
| $k_3$ | 0011 |
| $k_4$ | 0100 |
| $k_5$ | 0101 |
| $k_6$ | 0110 |
| $k_8$ | 1000 |
| $k_9$ | 1001 |

Tabela 1: Zbiór on-set funkcji g

| R                |      |
|------------------|------|
| $k_0$            | 0000 |
| $\overline{k_1}$ | 0001 |
| $\overline{k_7}$ | 0111 |

Tabela 2: Zbiór off-set funkcji g

| $\mathrm{B}(k_2;\mathrm{R})$ |          |       |           |  |  |
|------------------------------|----------|-------|-----------|--|--|
| $L_3$                        | $L_2$    | $L_1$ | $L_0$     |  |  |
| 0                            | 0        | 1     | 0         |  |  |
| 0                            | 0        | 1     | 0         |  |  |
| 0                            | 1        | 0     | 1         |  |  |
| *                            | 0        | 1     | *         |  |  |
| *                            | *        | 1     | 0         |  |  |
| $L = \{$                     | $2;1\},$ | L =   | $\{1;0\}$ |  |  |

Tabela 3: Macierz blokująca k2 funkcji g

| $\mathrm{B}(k_3;\mathrm{R})$ |       |           |       |  |  |  |
|------------------------------|-------|-----------|-------|--|--|--|
| $L_3$                        | $L_2$ | $L_1$     | $L_0$ |  |  |  |
| 0                            | 0     | 1         | 1     |  |  |  |
| 0                            | 0     | 1         | 0     |  |  |  |
| 0                            | 1     | 0         | 0     |  |  |  |
| *                            | 0     | 1         | *     |  |  |  |
| -                            | L = - | $\{2;1\}$ |       |  |  |  |

Tabela 4: Macierz blokująca k3 funkcji g

| $B(k_4;R)$                   |       |       |       |  |  |
|------------------------------|-------|-------|-------|--|--|
| $\overline{L_3}$             | $L_2$ | $L_1$ | $L_0$ |  |  |
| 0                            | 1     | 0     | 0     |  |  |
| 0                            | 1     | 0     | 1     |  |  |
| 0                            | 0     | 1     | 1     |  |  |
| *                            | 1     | 0     | *     |  |  |
| *                            | 1     | *     | 0     |  |  |
| $L = \{2; 1\}, L = \{2; 0\}$ |       |       |       |  |  |

Tabela 5: Macierz blokująca k4 funkcji g

| $B(k_5;R)$     |       |       |       |  |  |  |
|----------------|-------|-------|-------|--|--|--|
| $L_3$          | $L_2$ | $L_1$ | $L_0$ |  |  |  |
| 0              | 1     | 0     | 1     |  |  |  |
| 0              | 1     | 0     | 0     |  |  |  |
| 0              | 0     | 1     | 0     |  |  |  |
| *              | 1     | 0     | *     |  |  |  |
| $L = \{2; 1\}$ |       |       |       |  |  |  |

Tabela 6: Macierz blokująca k5 funkcji g

|                              | $B(k_6;R)$ |       |       |       |  |  |
|------------------------------|------------|-------|-------|-------|--|--|
|                              | $L_3$      | $L_2$ | $L_1$ | $L_0$ |  |  |
|                              | 0          | 1     | 1     | 0     |  |  |
|                              | 0          | 1     | 1     | 1     |  |  |
|                              | 0          | 0     | 0     | 1     |  |  |
|                              | *          | 1     | *     | 0     |  |  |
|                              | *          | *     | 1     | 0     |  |  |
| $L = \{2; 0\}, L = \{1; 0\}$ |            |       |       |       |  |  |

Tabela 7: Macierz blokująca k6 funkcji g

| $\mathrm{B}(k_8;\mathrm{R})$ |       |       |       |  |  |
|------------------------------|-------|-------|-------|--|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |  |
| 1                            | 0     | 0     | 0     |  |  |
| 1                            | 0     | 0     | 1     |  |  |
| 1                            | 1     | 1     | 1     |  |  |
| 1                            | *     | *     | *     |  |  |
| $L = \{3\}$                  |       |       |       |  |  |

Tabela 8: Macierz blokująca k8 funkcji g

| $\mathrm{B}(k_9;\mathrm{R})$ |       |       |       |  |  |
|------------------------------|-------|-------|-------|--|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |  |
| 1                            | 0     | 0     | 1     |  |  |
| 1                            | 0     | 0     | 0     |  |  |
| 1                            | 1     | 1     | 0     |  |  |
| 1                            | *     | *     | *     |  |  |
| $L = \{3\}$                  |       |       |       |  |  |

Tabela 9: Macierz blokująca k9 funkcji g

|      | *01* | **10 | *1*0 | *10* | **10 | 1*** |
|------|------|------|------|------|------|------|
| 0010 | 1    |      |      |      | 1    |      |
| 0011 | 1    |      |      |      |      |      |
| 0100 |      |      | 1    | 1    |      |      |
| 0101 |      |      |      | 1    |      |      |
| 0110 |      | 1    | 1    |      | 1    |      |
| 1000 |      |      |      |      |      | 1    |
| 1001 |      |      |      |      |      | 1    |

Tabela 10: Tabela implikantów prostych (OX) dla funkcji g

$$f = x_2'x_1 + x_2x_0' + x_2x_1' + x_3 = x_3 + x_1x_0' + x_2 \oplus x_1$$
 (1)

### 7.2 Funkcja a

A: F(0; 2; 3; 5; 6; 7; 8; 9) R(1; 4)

| $\mathbf{F}$     |      |
|------------------|------|
| $k_0$            | 0000 |
| $k_2$            | 0010 |
| $k_3$            | 0101 |
| $\overline{k_5}$ | 0101 |
| $k_6$            | 0110 |
| $k_7$            | 0111 |
| $\overline{k_8}$ | 1000 |
| $k_9$            | 1001 |

Tabela 11: Zbiór on-set funkcji a

$$\begin{array}{c|cc}
R & & \\
\hline
k_1 & 0001 \\
\hline
k_4 & 0100 \\
\end{array}$$

Tabela 12: Zbiór off-set funkcji a

| $B(k_0;R)$     |       |       |       |  |
|----------------|-------|-------|-------|--|
| $L_3$          | $L_2$ | $L_1$ | $L_0$ |  |
| 0              | 0     | 0     | 1     |  |
| 0              | 1     | 0     | 0     |  |
| *              | 0     | *     | 0     |  |
| $L = \{2; 0\}$ |       |       |       |  |

Tabela 13: Macierz blokująca k0 funkcji a

| $B(k_2;R)$  |       |       |       |  |
|-------------|-------|-------|-------|--|
| $L_3$       | $L_2$ | $L_1$ | $L_0$ |  |
| 0           | 0     | 1     | 0     |  |
| 0           | 1     | 1     | 0     |  |
| *           | *     | 1     | *     |  |
| $L = \{1\}$ |       |       |       |  |

Tabela 14: Macierz blokująca k2 funkcji a

| $\mathrm{B}(k_3;\mathrm{R})$ |       |       |       |  |
|------------------------------|-------|-------|-------|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |
| 0                            | 0     | 1     | 0     |  |
| 0                            | 1     | 1     | 1     |  |
| *                            | *     | 1     | *     |  |
| $L = \{1\}$                  |       |       |       |  |

Tabela 15: Macierz blokująca k3 funkcji a

| $\mathrm{B}(k_5; \mathrm{R})$ |       |       |       |  |
|-------------------------------|-------|-------|-------|--|
| $L_3$                         | $L_2$ | $L_1$ | $L_0$ |  |
| 0                             | 1     | 0     | 0     |  |
| 0                             | 0     | 0     | 1     |  |
| *                             | 1     | *     | 1     |  |
| $L = \{2, 0\}$                |       |       |       |  |

Tabela 16: Macierz blokująca k5 funkcji a

| $B(k_6;R)$  |       |       |       |  |
|-------------|-------|-------|-------|--|
| $L_3$       | $L_2$ | $L_1$ | $L_0$ |  |
| 0           | 1     | 1     | 1     |  |
| 0           | 0     | 1     | 0     |  |
| *           | *     | 1     | *     |  |
| $L = \{1\}$ |       |       |       |  |

Tabela 17: Macierz blokująca k6 funkcji a

| $\mathrm{B}(k_7;\mathrm{R})$ |       |       |       |  |
|------------------------------|-------|-------|-------|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |
| 0                            | 1     | 1     | 0     |  |
| 0                            | 0     | 1     | 1     |  |
| *                            | *     | 1     | *     |  |
| $L = \{1\}$                  |       |       |       |  |

Tabela 18: Macierz blokująca k7 funkcji a

| $\mathrm{B}(k_8;\mathrm{R})$ |       |       |       |  |
|------------------------------|-------|-------|-------|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |
| 1                            | 0     | 0     | 1     |  |
| 1                            | 1     | 0     | 0     |  |
| 1                            | *     | *     | *     |  |
| $L = \{3\}$                  |       |       |       |  |

Tabela 19: Macierz blokująca k8 funkcji a

| $\mathrm{B}(k_9;\mathrm{R})$ |       |       |       |  |
|------------------------------|-------|-------|-------|--|
| $L_3$                        | $L_2$ | $L_1$ | $L_0$ |  |
| 1                            | 0     | 0     | 0     |  |
| 1                            | 1     | 0     | 1     |  |
| 1                            | *     | *     | *     |  |
| $L = \{3\}$                  |       |       |       |  |

Tabela 20: Macierz blokująca k9 funkcji a

|      | *0*0 | **1* | *1*1 | 1*** |
|------|------|------|------|------|
| 0000 | 1    |      |      |      |
| 0010 | 1    | 1    |      |      |
| 0011 |      | 1    |      |      |
| 0101 |      |      | 1    |      |
| 0110 |      | 1    |      |      |
| 0111 |      | 1    | 1    |      |
| 1000 | 1    |      |      | 1    |
| 1001 |      |      |      | 1    |

Tabela 21: Tabela implikantów prostych (OX) dla funkcji a

$$f = x_2'x_0' + x_1 + x_2x_0 + x_3 = = x_3 + x_1 + \overline{(x_2 \oplus x_0)}$$
 (2)

## 8 Metoda 4 - ekspansja heurystyczna

#### 8.1 Funkcja b

B:  $\sum (m_0; m_1; m_2; m_3; m_4; m_7; m_8; m_9)$ F = (0; 1; 2; 3; 4; 7; 8; 9) R = (5; 6)

| $\mathbf{F}$     |      |
|------------------|------|
| $\overline{k_0}$ | 0000 |
| $k_1$            | 0001 |
| $k_2$            | 0010 |
| $\overline{k_3}$ | 0011 |
| $k_4$            | 0100 |
| $k_7$            | 0111 |
| $\overline{k_8}$ | 1000 |
| $k_9$            | 1001 |

Tabela 22: Zbiór on-set funkcji b

$$\begin{array}{c|cc}
R & \\
\hline
k_5 & 0101 \\
\hline
k_6 & 0110
\end{array}$$

Tabela 23: Zbiór off-set funkcji b

| $B(k_1;R)$  |       |       |       |  |
|-------------|-------|-------|-------|--|
| $L_3$       | $L_2$ | $L_1$ | $L_0$ |  |
| 0           | 1     | 0     | 0     |  |
| 0           | 1     | 1     | 1     |  |
| $L = \{2\}$ |       |       |       |  |

Implikant prosty - \*0\*\* Wykreślone -  $k_0$ ;  $k_1$ ;  $k_2$ ;  $k_3$ ;  $k_8$ ;  $k_9$ 

Tabela 24: Macierz blokująca k1 funkcji b

Implikant prosty - \*\*00

Tabela 25: Macierz blokująca k4 funkcji b

Implikant prosty - \*\*11

Tabela 26: Macierz blokująca k7 funkcji b

|      | *0** | **00 | **11 |
|------|------|------|------|
| 0000 | 1    | 1    |      |
| 0001 | 1    |      |      |
| 0010 | 1    |      |      |
| 0011 | 1    |      | 1    |
| 0100 |      | 1    |      |
| 0111 |      |      | 1    |
| 1000 | 1    | 1    |      |
| 1001 | 1    |      |      |

Tabela 27: Tabela implikantów prostych (OX) dla funkcji b

$$f = x_2' + x_1' x_0' + x_1 x_0 = = x_2' + \overline{x_2 \oplus x_0}$$
 (3)

#### 8.2 Funkcja c

C: F = (0; 1; 3; 4; 5; 6; 7; 8; 9) R = (2)

| F                |      |
|------------------|------|
| $k_0$            | 0000 |
| $k_1$            | 0001 |
| $\overline{k_3}$ | 0011 |
| $\overline{k_4}$ | 0100 |
| $\overline{k_5}$ | 0101 |
| $\overline{k_6}$ | 0110 |
| $k_7$            | 0111 |
| $k_8$            | 1000 |
| $\overline{k_9}$ | 1001 |

Tabela 28: Zbiór on-set funkcji c

$$\begin{array}{c|c} R & \\ \hline k_2 & 0010 \\ \end{array}$$

Tabela 29: Zbiór off-set funkcji c

$$\begin{array}{c|c|c}
B(k_0; \mathbf{R}) \\
\hline
L_3 & L_2 & L_1 & L_0 \\
\hline
0 & 0 & 1 & 0 \\
L = \{1\}
\end{array}$$

Implikant prosty - \*\*0\* Wykreślone -  $k_0$ ;  $k_1$ ;  $k_4$ ;  $k_5$ ;  $k_8$ ;  $k_9$ 

Tabela 30: Macierz blokująca k<br/>0 funkcji c

$$\begin{array}{c|c|c}
B(k_3;R) \\
\hline
L_3 & L_2 & L_1 & L_0 \\
\hline
0 & 0 & 0 & 1 \\
L = \{0\}
\end{array}$$

Implikant prosty - \*\*\*1 Wykreślone -  $k_3$ ;  $k_1$ 

Tabela 31: Macierz blokująca k3 funkcji c

$$\frac{B(k_6; \mathbf{R})}{\begin{array}{c|c|c|c} L_3 & L_2 & L_1 & L_0 \\ \hline 0 & 1 & 0 & 0 \\ L = \{2\} \\ \text{Implikant prosty - *1**} \end{array}$$

Tabela 32: Macierz blokująca k6 funkcji c

|      | **0* | ***1 | *1** |
|------|------|------|------|
| 0000 | 1    |      |      |
| 0001 | 1    | 1    |      |
| 0011 |      | 1    |      |
| 0100 | 1    |      | 1    |
| 0101 | 1    | 1    |      |
| 0110 |      |      | 1    |
| 0111 |      | 1    |      |
| 1000 | 1    |      |      |
| 1001 | 1    | 1    |      |

Tabela 33: Tabela implikantów prostych (OX) dla funkcji c

$$C = x_2 + x_1' + x_0 (4)$$

# 9 Układ Logisim

## 9.1 Schematy



Rysunek 1: Schemat układu dekodera w Logisim

| x[30] | a | b | c | d | е | f | g |
|-------|---|---|---|---|---|---|---|
| 0000  | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0001  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0010  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0011  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0100  | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0101  | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0110  | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0111  | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1000  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1001  | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1010  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1011  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1100  | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1101  | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1110  | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1111  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |

Tabela 34: Tabela Prawdy dla Dekodera

a 
$$x_3 + x_1 + \overline{x_2 \oplus x_0}$$
  
b  $\overline{x_2} + \overline{x_1 \oplus x_0}$   
c  $\overline{x_1} + x_2 + x_0$   
d  $x_3 + x_1(\overline{x_0} + \overline{x_2}) + \overline{x_1}(\overline{x_2 \oplus x_1})$   
e  $\overline{x_0}(\overline{x_2} + x_1)$   
f  $x_2\overline{x_1} + x_3\overline{x_1} + x_2\overline{x_0} + \overline{x_1x_0}$   
g  $x_1\overline{x_0} + x_2 \oplus x_1 + x_3$ 

Tabela 35: Tabela wyrażeń wyjściowych dla dekodera



Rysunek 2: Schemat układu dekodera z wyświetlaczem w Logisim

#### 9.2 Działanie Dekodera

Dla wejściowych wartości 0–9 wykonano testy poprawności działania, sprawdzając czy zapalają się odpowiednie segmenty.



Rysunek 3: Schemat układu dekodera wyświetlający 0



Rysunek 4: Schemat układu dekodera wyświetlający 1



Rysunek 5: Schemat układu dekodera wyświetlający 2



Rysunek 6: Schemat układu dekodera wyświetlający 3



Rysunek 7: Schemat układu dekodera wyświetlający 4



Rysunek 8: Schemat układu dekodera wyświetlający  $5\,$ 



Rysunek 9: Schemat układu dekodera wyświetlający 6



Rysunek 10: Schemat układu dekodera wyświetlający 7



Rysunek 11: Schemat układu dekodera wyświetlający  $8\,$ 



Rysunek 12: Schemat układu dekodera wyświetlający 9

#### 10 Wnioski

Projekt pozwolił zrozumieć proces minimalizacji funkcji logicznych i ich implementację w układzie cyfrowym. Zastosowanie różnych metod pozwoliło porównać efektywność poszczególnych podejść. Układ działa poprawnie i spełnia założenia.

# Spis rysunków

| 1    | Schemat układu dekodera w Logisim                 |
|------|---------------------------------------------------|
| 2    | Schemat układu dekodera z wyświetlaczem w Logisim |
| 3    | Schemat układu dekodera wyświetlający 0           |
| 4    | Schemat układu dekodera wyświetlający 1           |
| 5    | Schemat układu dekodera wyświetlający 2           |
| 6    | Schemat układu dekodera wyświetlający 3           |
| 7    | Schemat układu dekodera wyświetlający 4           |
| 8    | Schemat układu dekodera wyświetlający 5           |
| 9    | Schemat układu dekodera wyświetlający 6           |
| 10   | Schemat układu dekodera wyświetlający 7           |
| 11   | Schemat układu dekodera wyświetlający 8           |
| 12   | Schemat układu dekodera wyświetlający 9           |
|      |                                                   |
| Spic | tabel                                             |
| phis | tabel                                             |
| 1    | Zbiór on-set funkcji g                            |
| 2    | Zbiór off-set funkcji g                           |
| 3    | Macierz blokująca k2 funkcji g                    |
| 4    | Macierz blokująca k3 funkcji g                    |
| 5    | Macierz blokująca k4 funkcji g                    |
| 6    | Macierz blokująca k5 funkcji g                    |
| 7    | Macierz blokująca k6 funkcji g                    |
| 8    | Macierz blokująca k8 funkcji g                    |
| 9    | Macierz blokująca k9 funkcji g                    |
| 10   | Tabela implikantów prostych (OX) dla funkcji g    |
| 11   | Zbiór on-set funkcji a                            |
| 12   | Zbiór off-set funkcji a                           |
| 13   | Macierz blokująca k0 funkcji a                    |
| 14   | Macierz blokująca k2 funkcji a                    |
| 15   | Macierz blokująca k3 funkcji a                    |
| 16   | Macierz blokująca k5 funkcji a                    |
| 17   | Macierz blokująca k6 funkcji a                    |
| 18   | Macierz blokująca k7 funkcji a                    |
| 19   | Macierz blokująca k8 funkcji a                    |
| 20   | Macierz blokująca k9 funkcji a                    |
| 21   | Tabela implikantów prostych (OX) dla funkcji a    |
| 22   | Zbiór on-set funkcji b                            |
| 23   | Zbiór off-set funkcji b                           |
| 24   | Macierz blokująca k1 funkcji b                    |

#### Projekt 1 — Dekoder 7 segmenetowy dara 20.04.2025

|              | v            |           |
|--------------|--------------|-----------|
| Paweł Plewa. | Tymon Zadara | 20.04.202 |

| 25 | Macierz blokująca k4 funkcji b                 | 11 |
|----|------------------------------------------------|----|
| 26 | Macierz blokująca k7 funkcji b                 | 11 |
| 27 | Tabela implikantów prostych (OX) dla funkcji b | 11 |
| 28 | Zbiór on-set funkcji c                         | 12 |
| 29 | Zbiór off-set funkcji c                        | 12 |
| 30 | Macierz blokująca k0 funkcji c                 | 12 |
| 31 | Macierz blokująca k3 funkcji c                 | 13 |
| 32 | Macierz blokująca k6 funkcji c                 | 13 |
| 33 | Tabela implikantów prostych (OX) dla funkcji c | 13 |
| 34 | Tabela Prawdy dla Dekodera                     | 15 |
| 35 | Tabela wyrażeń wyjściowych dla dekodera        | 15 |
|    |                                                |    |