东南大学学生会

Students' Union of Southeast University

04高A期中试卷

一. 填空题(每小题4分, 共24分)

- 1. 设 $e^z 1 \sqrt{3}i = 0$. 则 z =
- 3. 设 L 为圆锥螺线 $x = t\cos t$, $y = t\sin t$, $z = t \ (0 \le t \le 1)$, 则 $\int_{L} z ds =$ ____.
- 4.由方程 $xyz+\sqrt{x^2+y^2+z^2}=\sqrt{2}$ 所确定的函数 z=z(x,y)在点(1,0,-1)处的全微分 dz
- 5. $u=\ln(\sqrt{x^2-y^2}+z)$ 在点 M(1,0,2)沿方向 $\vec{l}=$ _______方向导数取最大值
- 6. $\operatorname{div}[x^2 \vec{i} + y \sin(y + 2z) \vec{j} + 2\vec{k}]_{(1,0,\frac{\pi}{2})} = \underline{\hspace{1cm}}$

二. 单项选择题(每小题 4 分,共 16 分)

- 1. 若二元函数 z = f(x, y)在点 $P_0(x_0, y_0)$ 处的两个偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 都存在,则[].
 - (A) f(x, y)在点 P₀处连续,
- (B) $f(x, y_0)$ 在点 $x = x_0$ 处连续,
- (C) $dz = \frac{\partial z}{\partial y}\Big|_{P_0} dx + \frac{\partial z}{\partial y}\Big|_{P_0} dy$,
- (D) A, B, C 都不对.
- 2. 曲线 $\begin{cases} z = \frac{x^2 + y^2}{4} & \text{在点}(2, 4, 5) \text{处的切线与 } x \text{轴的正向所成的角度是[].} \\ y = 4 & \text{(A) } \frac{\pi}{2}, & \text{(B) } \frac{\pi}{3}, & \text{(C) } \frac{\pi}{4}, & \text{(D) } \frac{\pi}{6}. \end{cases}$

- 3. 设函数 f(x, y)为连续函数,则 $\int_{-1}^{1} dx \int_{0}^{1} yf(x^{2}, y^{2}) dy = []$.
 - (A) $2\int_{0}^{1} dx \int_{0}^{1} y f(x^{2}, y^{2}) dy$, (B) $4\int_{0}^{1} dx \int_{0}^{x} y f(x^{2}, y^{2}) dy$,
 - (C) $2\int_{0}^{1} dy \int_{-x}^{y} y f(x^{2}, y^{2}) dx$, (D) 0.
- 4. 圆柱面 $x^2+z^2=a^2$ 被圆柱面 $x^2+y^2=a^2$ 所截部分的面积为[]. (A) $8a^2$, (B) $4a^2$, (C) $2a^2$, (D) a^2 .

三. (每小题 7分,共 21分)

- 1. 设 $z = xf(xy, e^{xy})$, 其中 f(u, v)有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial^2 z}{\partial y \partial x}$
- 2. 已知解析函数 f(z)的虚部 v(x, y) = 2xy y, 且 f(0) = 0, 求 f(z)的表达式, 并用 z 表示.
- 3. 求原点到曲面 $(x-y)^2-z^2=1$ 的最短距离.

东南大学学生会 Students' Union of Southeast University

四. (第1题7分,其余每小题8分,共39分)

1. 计算
$$\iint_{(\sigma)} \frac{x+y}{x^2+y^2} d\sigma$$
, 其中(σ)={ $(x, y) | x^2 + y^2 \le 1, x+y \ge 1$ }.

- 2. 计算 $\iint_{\Omega} (z+2xy) dv$,其中 Ω 为由半椭球面 $x^2+4y^2+z^2=1$ (z>0)与锥面 $z=\sqrt{x^2+y^2}$ 所围成的区域.
- 3. 计算 $\int_{C} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$, 其中 C 为摆线 $x = t \sin t \pi$, $y = 1 \cos t$, 从 t = 0 到 $t = \pi$ 的一段.

4. 设计算
$$\iint_{\Sigma} \frac{(z^2+4) dy \wedge dz + yz dz \wedge dx}{\sqrt{x^2+y^2+z^2}}, \quad 其中 \Sigma 为 半球面 z = \sqrt{9-x^2-y^2} \text{ 的上侧}.$$

5. 设计算
$$\oint_C (y-z) dx + (z-x) dy + (x-y) dz$$
,其中 C 是曲线 $\begin{cases} x^2 + y^2 = 1 \\ x - y + z = 2 \end{cases}$,从 z 轴正向往

z 轴负向看去, C 的方向是逆时针方向。