

¿Qué es un Cluster?

- Agrupamiento de ordenadores
- Tipos de Cluster
 - Alto rendimiento
 - Balanceo de Carga
 - Escalabilidad
 - Alta disponibilidad

Alta Disponibilidad

- Las tres R de la Alta Disponibilidad
 - Redundancia
 - Redundancia
 - Redundancia

¿Cómo funciona este cluster?

- Alta disponibilidad de Servidores
 - En caso de fallo de hardware
 - En caso de fallo de conectividad
- Alta disponibilidad de Conexión a Internet
 - En caso de fallo de router
 - En caso de fallo de conexión

Hardware utilizado

Routers LINKSYS

- Servidores
 - Equipos antiguos
 - No es necesario el mismo hardware
 - Utilizado dos HD por equipo

Software Utilizado

- S.O LINUX
 - Debian Etch

- Software
 - Apache2
 - openssh-server
 - Heartbeat
 - Script propios
 - DRBD

Configuración de red

- Corman:
 - Interfaz eth0(principal)
 - ★ IP:192.168.2.5
 - Interfaz eth2
 - ★ IP:172.168.0.1
- Rabius:
 - Interfaz eth0(principal)
 - ★ IP:192.168.2.20
 - Interfaz eth2
 - ★ IP:172.168.0.2
- Ambas intefaces ETH1 desconectadas

Esquema de red

Más detalles...

- Configuración de routers
 - IP estática.
 - Conexión entre redes 192.168.1.0 y 192.168.2.0.
 - NAT para 192.168.2.10
- Configuración básica de Apache

Tres interfaces con la misma IP

Funcionamiento Normal

Funcionamiento Fallo Corman

Funcionamiento Fallo Router1

Heartbeat

- Significa Latido del Corazón
- Software encargado del cluster
- Cada equipo del sistema se llama Nodo
- Comunicación constante entre nodos
- Archivos de configuración

Archivos de configuración

- Estan en /etc/ha.d/
- Son tres:
 - authkeys
 - haresources
 - ha.cf

Idénticos en los dos servidores

authkeys

Se define la clave de comunicación

Si falla, la comuncación no existe.

- El código es:
 - * auth 1
 - 1 sha clavesupersecreta
 - 2 md5 clavemássecretaaún

haresources

- Contiene los recursos a compartir
 - Un recurso es todo lo que es manejado por el cluster que no es un nodo.
 - Los recursos deben estar en /etc/ha.d/resource.d
- La línea es:
 - Corman Ipaddr2::192.168.2.10/24/eth0:0 apache2

ha.cf

Es el archivo principal de configuración

- Las variables más importantes son:
 - Nodos del cluster
 - Tiempo entre latidos
 - Interfaces por las que funciona el latido
 - Devolver o no el control al nodo primario

¿Qué conseguimos con esto?

Alta disponibilidad

Respaldo de servicio web

Respaldo de red para la IP 192.168.2.10

Scripts

- Problema a solucionar
- Cinco scripts necesarios
 - pingcheck
 - failcase
 - Newdns
 - checkoldping
 - Backnormal
- Todos creados en /etc/ha.d/resource.d/
- Generan logs

pingcheck

Encargado de chequear internet

Lanzamiento de failcase

Este script estará en /usr/sbin

failcase

- Desconecta eth0
- Levanta eth1 con IP 192.168.2.10
- Añade puerta de enlace 192.168.2.2 para eth1
- Lanza newdns y checkoldping

newdns

Utilizando NO-IP

Dos configuraciones diferentes, una por cada interfaz

Utiliza parámetros

Recarga el script de no-ip

checkoldping

- Se encarga de comprobar la antigua puerta de enlace
- El método es chequear la IP externa del router 1
- Si el router 1 vuelve a funcionar, lanza backnormal

backnormal

- Se lanza al volver cuando vuelve a funcionar el router 1
- Desconecta la eth1 y reinicia los servicios de red
- Vuelve a levantar pingcheck para comprobar si falla de nuevo router1
- Lanza newdns con parámetro nuevo

Automatización de Scripts

Creación de nuevo script para control del demonio en /etc/init.d/

Añadirla al arranque del servidor principal Corman, pero no de Rabius

Añadirla al archivo haresources

¿Qué conseguimos con esto?

Alta disponibilidad de conexión a internet

Archivo de log de todo lo relacionado con las conexiones

Automatización de las tareas, ofreciendo respaldo de conexión

DRBD

Es un módulo para el kernel

Sistema distribuido de almacenamiento

Necesita una partición en cada servidor

DRBD

- Actúa en modo primario/secundario
- Se configura mediante /etc/drbd
 - Este archivo es idéntico en ambos servidores
 - Definimos sincronización por tiempo y megas
- Se monta en /data/
- Se añade a haresources:

corman IPaddr2::192.168.2.10/24/eth0:0 apache2 pingcheck drbddisk::data Filesystem::/dev/drbd0::/data::ext3

DRBD; Utilidad real

- Sirve para tener un volumen con los mismos datos en los dos servidores
- Utilizamos esto para montar un virtual host de apache
- Montamos una página web en /data/

Y ahora..

Comprobemos que funciona realmente.