PROPER MOTIONS

How Do The Faintest Of Stars Move

Prashansa Gupta

July 29,2015

Indian Institute of Science Education and Research, Mohali, India

PROBLEM STATEMENT

OBJECTIVE

We wish to look at the faintest of stars in the sky and investigate their kinematics.

MOTIVATION

Two Ways

There are two ways in which one can approach the problem.

1. Take high precision data over a short period of time

Two Ways

There are two ways in which one can approach the problem.

- 1. Take high precision data over a short period of time
- 2. Or wait long enough so that a compromise over precision can be made

· HIPPARCOS(HIgh Precision PARallax Collecting Satellite)

- · HIPPARCOS(HIgh Precision PARallax Collecting Satellite)
 - \cdot high precision data taken over 3 years

- · HIPPARCOS(HIgh Precision PARallax Collecting Satellite)
 - · high precision data taken over 3 years
 - \cdot a 100,000 stars were observed upto 12.4 magnitude

- · HIPPARCOS(HIgh Precision PARallax Collecting Satellite)
 - · high precision data taken over 3 years
 - a 100,000 stars were observed upto 12.4 magnitude
 - \cdot proper motion accuracy of 0.88 mas/yr in RA and 0.74 mas/yr in DEC with systematic errors < 0.1 mas.

- · HIPPARCOS(HIgh Precision PARallax Collecting Satellite)
 - · high precision data taken over 3 years
 - · a 100,000 stars were observed upto 12.4 magnitude
 - proper motion accuracy of 0.88mas/yr in RA and 0.74mas/yr in DEC with systematic errors < 0.1mas.
- · The GAIA mission

- · HIPPARCOS(HIgh Precision PARallax Collecting Satellite)
 - · high precision data taken over 3 years
 - · a 100,000 stars were observed upto 12.4 magnitude
 - proper motion accuracy of 0.88mas/yr in RA and 0.74mas/yr in DEC with systematic errors < 0.1mas.
- · The GAIA mission
 - · even fainter stars complete upto 20th magnitude

- · HIPPARCOS(HIgh Precision PARallax COllecting Satellite)
 - · high precision data taken over 3 years
 - a 100,000 stars were observed upto 12.4 magnitude
 - proper motion accuracy of 0.88mas/yr in RA and 0.74mas/yr in DEC with systematic errors < 0.1mas.
- · The GAIA mission
 - · even fainter stars complete upto 20th magnitude
 - \cdot a billion stars with an accuracy of about 20 μas at 15 mag, and 200 μas at 20 mag.

But their still remains one shortcoming, they do not give data for fainter stars beyond 20th magnitude.

There are quite a lot of stars even between 20 and 21 magnitude. Roughly estimated, for RR lyrae stars, these magnitudes translate to 92 and 120 kpc. One can easily see how big a volume of the sky are we missing out on!

SECOND WAY

· we use data that spans 60 years (PanStarrs+SDSS+POSS)

SECOND WAY

- · we use data that spans 60 years (PanStarrs+SDSS+POSS)
- different catalogs have different astrometric calibration we need to calibrate them to the same reference system defined by PS1 galaxies.

1. begin with the PanStarrs dataset

- 1. begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies : The Reference System

- 1. begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies: The Reference System
 - · The data does seem to suggest that the galaxies 'move'

- 1. begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies: The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - · four epochs,

- 1. begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies : The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - · four epochs, find a median value,

- 1. begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies : The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - · four epochs, find a median value, find offsets,

- 1. Begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies: The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - · four epochs, find a median value, find offsets, average using hundred galaxies.

<u>D</u>ETAIL

DETAIL

- 1. Begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies : The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - four epochs, find a median value, find offsets, average using hundred galaxies.
 - · for each pixel, update the original position by the offset epochwise average.

DETAIL

- 1. Begin with the PanStarrs dataset
- 2. Obtain a fixed background of galaxies: The Reference System
 - · The data does seem to suggest that the galaxies 'move'
 - four epochs, find a median value, find offsets, average using hundred galaxies.
 - · for each pixel, update the original position by the offset epochwise average.
- 3. Finally calibrate positions of stars

DETAIL

EDGE EFFECTS

PROGRESS

· We begin with the PanStarrs dataset. The other datasets are largely similar and would follow easily.

- · We begin with the PanStarrs dataset. The other datasets are largely similar and would follow easily.
- We download data using lsd and store it in h5 files. The downloading of data is done as and when the chunks of sky are loaded.

- · We begin with the PanStarrs dataset. The other datasets are largely similar and would follow easily.
- · We download data using lsd and store it in h5 files. The downloading of data is done as and when the chunks of sky are loaded.
- · The code for fixing galaxies as the background has been written.

- · We begin with the PanStarrs dataset. The other datasets are largely similar and would follow easily.
- We download data using lsd and store it in h5 files. The downloading of data is done as and when the chunks of sky are loaded.
- · The code for fixing galaxies as the background has been written.
- The code for calculating movement of stars given the fixed background has been written.

- · We begin with the PanStarrs dataset. The other datasets are largely similar and would follow easily.
- We download data using lsd and store it in h5 files. The downloading of data is done as and when the chunks of sky are loaded.
- · The code for fixing galaxies as the background has been written.
- The code for calculating movement of stars given the fixed background has been written.
- · The final data will be stored in database format.

BUGS

• numpy.in1d(ar1, ar2, assume_unique = False, invert = False) Test whether each element of a 1-D array is also present in a second array. Returns a boolean array the same length as 'ar1' that is True where an element of 'ar1' is in 'ar2' and False otherwise.

BUGS

- · numpy.in1d(ar1, ar2, assume_unique = False, invert = False) Test whether each element of a 1-D array is also present in a second array. Returns a boolean array the same length as 'ar1' that is True where an element of 'ar1' is in 'ar2' and False otherwise.
- fixed it using the python library 'pandas' *IndexError*: unsupported iterator index maybe not compatible with numpy:(

FUTURE GOALS

· Complete debugging of code and obtain the database for PanStarrs.

FUTURE GOALS

- Complete debugging of code and obtain the database for PanStarrs.
- · Move on to the other datasets and finally obtain proper motions of stars under consideration.

COLOPHON

This work is available at

github.com/prashansa/properMotions

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

