CTE - TD 3

Second principe – Bilans d'entropie

On rappelle l'expression de la fonction d'état entropie, où l'indice 0 désigne un état de référence

- pour une phase condensée incompressible indilatable $(pcii): S(n,T) = S_0 + C \ln \frac{T}{T_0};$
- pour un gaz parfait :

$$\begin{array}{lcl} S(n,T,V) & = & S_0 + \frac{nR}{\gamma-1} \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0} \\ S(n,T,P) & = & S_0 + \frac{\gamma nR}{\gamma-1} \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0} \\ S(n,P,V) & = & S_0 + \frac{nR}{\gamma-1} \ln \frac{P}{P_0} + \frac{\gamma nR}{\gamma-1} \ln \frac{V}{V_0} \end{array}$$

I - Bilan d'entropie

Considérons un solide de masse m, sorti d'un four à la température T_I et placé pour refroidissement à l'air libre à la température T_0 . Procéder au bilan entropique de la transformation. Commenter le signe de l'entropie créée.

II - Entropie créée lors de la méthode des mélanges

Une masse de 1 kg d'eau liquide à $T_A = 280 \,\mathrm{K}$ est mise en contact avec un thermostat à $T_C = 360 \,\mathrm{K}$. L'expérience se déroule sous pression atmosphérique. Le système : « eau + thermostat » est thermiquement isolé. Au bout d'un certain temps, l'eau atteint son état d'équilibre final.

Donnée : $c_{eau} = 4.18 \,\mathrm{kJ \cdot kg^{-1} \cdot K^{-1}}$ (indépendante de T).

- 1. Calculer ΔS_1 ; $S_1^{\text{éch}}$; $S_1^{\text{créée}}$ pour la masse d'eau au cours de cette transformation.
- 2. Calculer ΔS_2 ; $S_2^{\text{éch}}$; $S_2^{\text{créée}}$ pour le thermostat au cours de cette transformation.
- 3. En déduire ΔS ; $S^{\text{éch}}$; $S^{\text{créée}}$ pour le système au cours de cette transformation.
- 4. Retraiter la question 1 lorsque la transformation est atteinte en deux étapes : la masse d'eau est d'abord mise en contact avec un thermostat à $T_B=320\,\mathrm{K}$, jusqu'à ce qu'un équilibre soit atteint, puis avec un thermostat à $T_C=360\,\mathrm{K}$ où un nouvel état d'équilibre est atteint.

III - Compression d'un gaz parfait

Sur un piston de section $S=10\,\mathrm{cm}^2$, de masse négligeable, enfermant une mole d'hélium dans un cylindre à parois thermiquement conductrices (ou diathermanes), on dépose une masse $m=20\,\mathrm{kg}$.

Le gaz, initialement à la pression $P_1=1,0$ bar $=P_{atm}$ et à la température $T_1=3,0\cdot 10^2$ K, se comprime de façon monotherme et irréversible à la température du milieu extérieur $T_{ext}=3,0\cdot 10^2$ K. Le piston se stabilise à une certaine hauteur, lorsque sa pression est P_2 et son volume V_2 .

- 1. Calculer le rapport $x = \frac{P_2}{P_1}$, on prendra $g = 10 \,\mathrm{m \, s^{-2}}$
- 2. Effectuer le bilan énergétique. En déduire le travail et la chaleur reçus par le gaz en fonction de x et T. Application numérique.
- 3. Effectuer le bilan entropique et faire l'application numérique.

IV - Bilan d'entropie de la détente de Joule-Gay-Lussac

On considère ci-contre une masse de diazote $m=56\,\mathrm{g}$. Le diazote est considéré comme un gaz parfait. À l'instant initial, on casse la paroi de séparation et le gaz se détend dans le vide.

N₂(gaz) vide Récipient rigide adiabatique (parois athermanes)

Paroi de séparation

 $P_i = 2.0 \,\mathrm{bar}$; pression finale : $P_f = 1.0 \,\mathrm{bar}$

- 1. Faire un bilan énergétique de la transformation et conclure quant à Tf.
- 2. Déterminer la variation d'entropie du gaz dans les deux cas suivants :

- En imaginant un processus isotherme réversible que l'on décrira.
- En imaginant une détente adiabatique réversible jusqu'à l'état (P_f, T', V') , puis un échauffement réversible isobare jusqu'à l'état final (P_f, T_f, V_f) .
- 3. Ces deux transformations seront décrites et représentées dans un même diagramme P(V).

V - Transformation cyclique

Soit 0,08 mol d'un gaz parfait diatomique subissant les transformations successives réversibles suivantes :

- Diminution de volume isobare de l'état A ($P_A = 1$ bar, V_A , $T_A = 298$ K) jusqu'à l'état B ($V_B = 1$ L).
- Compression adiabatique de l'état B vers l'état C.
- Retour de l'état C vers l'état A par une détente isotherme.
- 1. Définir tous les états A, B et C en donnant pour chacun d'eux la pression, la température et le volume.
- 2. Calculer ΔU , W, Q pour chacune des transformations : AB, BC, CA.
- 3. Dessiner ces transformations dans le diagramme de Watt.
- 4. Calculer l'aire algébrique du cycle tel qu'il est décrit dans le plan P(V).

VI - Démonstration de la variation d'entropie d'un gaz parfait

- 1. Écrire le premier principe évolution entre deux états infiniment proches d'un système soumis aux seules forces de pression. Donner l'expression de dU dans le cas particulier d'un GP.
- 2. Déduire de ce qui précède, et du deuxième principe, une démonstration de l'expression de la variation finie d'entropie entre deux états I et F pour un GP, telle que donnée dans le cours CTE-C.