Data Flow Testing

Why to we need Data Flow Testing?

Statements interact through data flow

- Value computed in one statement, used in another
- Bad value computation revealed only when it is used

Basic idea

Program paths along which variables are defined and then used should be covered

Data flow concept

- Value of x at 6 could be computed at 1 or at 4
- Bad computation at 1 or 4 could be revealed only if they are used at 6
- (1,6) and (4,6) are def-use (DU) pairs
 - defs at 1,4
 - use at 6

Variable Definition

A program variable is **DEFINED** when it appears:

On the *left* hand side of an assignment statement *eg* y =
 17

- in an input statement eg read(y)
- z=&x

•••

Variable Use

A program variable is **USED** when it appears:

on the right hand side of an assignment statement

$$eg y = x+17$$

as an call-by-value parameter in a subroutine or function call

$$eg y = sqrt(x)$$

in the predicate of a branch statement

$$eg \ if (x > 0) {...}$$

Variable Use

A variable can also be used and then redefined in a single statement when it appears:

on both sides of an assignment statement

$$eg y = y + 1 (y++)$$

Variable Use: p-use and c-use

- Use in the predicate of a branch statement is a predicate-use or "p-use"
- Any other use is a computation-use or "c-use"
- For example, in the program fragment:

```
if ( x > 0 ) {
      print(y);
    }
```

there is a p-use of x and a c-use of y

Definition-Clear path (DU path)

- 1,2,3,5,6 is a definitionclear path from 1 to 6
 - x is not re-assigned between 1 and 6
- 1,2,4,5,6 is not a definitionclear path from 1 to 6
 - the value of x is "killed" (reassigned) at node 4
- (1,6) is a DU pair because 1,2,3,5,6 is a definition-clear path

More Dataflow Terms and Definitions

- A path is *definition clear* ("def-clear") with respect to a variable **v** if it has no variable **re**-definition of **v** on the path.
- A definition-use pair ("du-pair") with respect to a variable v is a double (d,u) such that
 - d is a node in the program's flow graph at which v is defined,
 - $-\mathbf{u}$ is a node or edge at which \mathbf{v} is used and
 - there is a def-clear path with respect to v from d to u

Adequacy criteria

- All DU pairs: Each DU pair is exercised by at least one test case
- All DU paths: Each simple (non looping) DU path is exercised by at least one test case
- All definitions: For each definition, there is at least one test case which exercises a DU pair containing it

All DU pairs

- Requires to cover all the following pairs:
 - · def at 1 use at 6
 - def at 1 use at 7
 - def at 4 use at 6
 - def at 4 use at 7

All DU paths

- Requires to cover all the following pairs:
 - def at 1 use at 9 (through 7)
 - def at 1 use at 9 (through 8)
 - def at 4 use at 9 (through 7)
 - def at 4 use at 9 (through 8)

All definitions

- Requires to cover 2 pairs:
 - def at 1 use at 6
 - def at 1 use at 7

- def at 4 use at 6OR
- def at 4 use at 7
- For y def at 6
- For z def at 7

Ex#3:Program to find Largest of 3 numbers

```
#include<stdio.h>
             #include<conio.h>
             void main()
2.
             float A.B.C:
             clrscr();
              printf("Enter number 1:\n");
6.
              scanf("%f", &A):
             printf("Enter number 2:\n");
8.
              scanf("%f", &B);
              printf("Enter number 3:\n");
10.
              scanf("%f", &C);
              /*Check for greatest of three numbers*/
11.
              if(A>B) {
12.
              if(A>C) {
13.
                       printf("The largest number is: %f\n*,A);
14.
15.
              else (
16.
                       printf("The largest number is: %f\n",C);
17.
 18.
 19.
              else (
 20.
              if(C>B) {
 21
                       printf("The largest number is: %f\n",C);
 22.
```

```
23. else {
24. printf("The largest number is: %f\n",B);
25. }
26. }
27. getch();
28. }
```

Program Flow graph

Define/ Use nodes and DU pairs

S No	Variab le	Defined at node	Used at node
1	А	6	11,12,13
2	В	8	11,20,24
3	С	10	12,16,20,21

Variable	All possible pairs
А	6,11
	6,12
	6,13
В	8,11
	8,20
	8,24
С	10,12
	10,16
	10,20
	10,21

DU paths

All possible pairs	Definition Clear?	DU Path
6,11	Yes	6-11
6,12	Yes	6-12
6,13	Yes	6-13
8,11	Yes	8-11
8,20	Yes	8-11,19,20
8,24	Yes	8-11,19,20,23,24
10,12	Yes	10-12
10,16	Yes	10-12, 15,16
10,20	Yes	10,11,19,20
10,21	Yes	10,11,19-21

Test cases

Test ail d	u-paths	Inputs		Expected	-
5. No.	A	В	c	Output	Remarks
1	9	8	7	9	6-11
2	9	8	7	9	6-12
3.	9	8	7	9	6-13
4.	7	9	8	9	8-11
5.	7	9	8	9	8-11, 19, 20
6.	7	9	8	9	8-11, 19, 20, 23, 24
7.	8	7	9	9	10-12
8.	8	7	9	9	10-12, ,15, 16
9.	7	8	9	9	10, 11, 19, 20
10.	7	8	9	9	10, 11, 19-21

Example#4

```
int max = 0;
                                              A definition of i
Definitions of max
                 int i = s.nextInt();
                 while (i > 0) {
                                                  P-uses of i
                  if (i > max) {
                    max = i;
                                                 A C-use of i
                  i = s.nextInt();
                 System.out.println(max);
```


Example#5

```
1 Main
2 float A,B,C,D, x1, x2
3 boolean is_complex
4 input(A,B,C)
5 D = B*B - 4*A*C
6 \text{ if } D < 0.0
7 then is_complex = true
8 else is_complex=false
9 end if
10 if not is_complex
11 then x1 = (-B + sqrt(D))/(2.0*A)
          x2 = (-B - sqrt(D))/(2.0*A)
12
13 end if
14 output(x1,x2)
15 end
```

var A B C D x1 x2 is_comp	olex	def use 2,4 5,11,12 2,4 5,11,12 2,4 5 2,5 6,11,12 2,11 14 2,12 14 3,7,8 10	
var A,B	all pairs (2,5) (2,11) (2,12) (4,5) (4,11)	def-clear du-path N N N Y Y	4,5 4,5,6,7,9,10,11 4,5,6,8,9,10,11 4,5,6,7,9,10,11,12
С	(2,5) (4,5)	N Y	4,5,6,8,9,10,11,12 4,5

```
14
       int cgi_decode(char *encoded, char *decoded) {
          char *eptr = encoded; K
   15
   16
          char *dptr = decoded;
  17
         int ok=0;
  18
         while (*eptr) {
  19
            char c;
  20
           c = *eptr;
  21
  22
           if (c == ' +') { /* Case 1: '+' maps to blank */
  23
              *dptr = ' ':
  24
           } else if (c == ' %') { /* Case 2: '%xx' is hex for character xx */
             int digit_high = Hex_Values[*(++eptr)];
 25
 26
                  digit_low = Hex_Values[*(++eptr)];
             int
 27
                    digit_high == -1 || digit_low == -1 ) {
             if (
 28
               /* *dptr='?': */
 29
               ok=1; /* Bad return code */
 30
             } else {
 31
               *dptr = 16* digit_high + digit_low;
32
          } else { /* Case 3: All other characters map to themselves */
33
34
            *dptr = *eptr;
35
36
          ++dptr; <
37
          ++eptr:
38
39
       *dptr = '\0';
                                          /* Null terminator for string */
40
       return ok:
41
```

Example 2-CGI decode

Definitions and Uses

Variable	Definitions	Uses
encoded	14	15
decoded	14	16
*eptr	15, 25, 26, 37	18, 20, 25, 26, 34
eptr	15, 25, 26, 37	15, 18, 20, 25, 26, 34, 37
*dptr	16, 23, 31, 34, 36, 39	ad to egick twentow for
dptr	16 36	16, 23, 31, 34, 36, 39
ok	17, 29	40
C riom office r	20	22, 24
digit_high	25	27, 31
digit_low	26	27, 31
Hex_Values	niffying those few signif	25, 26

DU Pairs

Variable	DU Pairs the pairs that may remain uncovered after statement and prior
*eptr	$\langle 15, 18 \rangle, \langle 15, 20 \rangle, \langle 15, 25 \rangle, \langle 15, 34 \rangle$ (25,25) (26,26)
"epir cuit b	$\langle 37, 18 \rangle, \langle 37, 20 \rangle, \langle 37, 25 \rangle, \langle 37, 34 \rangle$
eptr	$\langle 15, 15 \rangle, \langle 15, 18 \rangle, \langle 15, 20 \rangle, \langle 15, 25 \rangle, \langle 15, 34 \rangle, \langle 15, 37 \rangle, (25,25)$
d bonistdo.	$\langle 25, 26 \rangle$, $\langle 26, 37 \rangle \langle 37, 18 \rangle$, $\langle 37, 20 \rangle$, $\langle 37, 25 \rangle$, $\langle 37, 34 \rangle$, $\langle 37, 37 \rangle$
*dptr	adding the test case TCpupping to the test suite Thursdalishin.
dptr	$\langle 16, 16 \rangle, \langle 16, 23 \rangle, \langle 16, 31 \rangle, \langle 16, 34 \rangle, \langle 16, 36 \rangle, \langle 16, 39 \rangle$
	(36, 23), (36, 31), (36, 34), (36, 36), (36, 39)
ok	(17, 40), (29, 40) mentalis your of project strong ties and
c min	(20, 22), (20 24) many zing U.I. ila adi abasiya najirang ang uni
digit_high	(25, 27), (25, 31) and some tasks have been and of this and (grigorial)
digit_low	(26, 27), (26, 31)
encoded	definition of a variable should have appeared but was omitted. (14, 15)
decoded	(14, 16) he setting (1G He add saffeting & managing a no) Watting test A

Data flow diagrams

Refer Notes

