Outline

- Core Concept and Goal
 - Expressiveness vs Representation
- Towards a Behavioral Dictionary
- Example Behavior: Fumbling
 - What is Fumbling?
 - Why Fumbling?
 - Who Fumbles?
- Current Study: ID Crawlers Via Fumbling

CORE CONCEPTS

Expressiveness Vs. Representation

- "If I just had TCPDUMP OF EVERYTHING all my problems would be solved"
- Most traffic, on a flow-by-flow basis is either garbage or uninteresting

Goal

- Develop narratives which describe activity between hosts in a more abstract fashion
 - "This is fumbly"
 - "This is chatty"
- Ideally, these attributes will be
 - Intuitive (an analyst can grasp them by looking at a log)
 - Rigorous (derived from some model of behavior)
- Partly identification applications by behavior

A Crude Picture

Attributes For Narratives...

- This is clustering, just on different axes
- Possible attributes:
 - Probability of connection failure
 - Locality
 - Probability of file transfer
 - Packet size

CASE STUDY: FUMBLING

What is Fumbling?

- Intuitively, fumbling is a consistent failure to connect with a host
 - Previously used to identify BitTorrent [Collins06,Bartlett07]
- Challenge: differentiating fumbling
 - From scanning, where clients probe 'a lot' [Jung04]
 - From normal surfing, where clients get bored and move on

What Fumbles?

- Routed/automated lookup
 - SMTP
 - P2P
 - NNTP
- Search bots

- Scanners don't fumble – they seek out everything
- Users don't fumble they lose patience

Why Care About Fumbling?

- Scanning false positives
 - Uncleanliness Data don't mark yahoo unclean
 - Differentiate scanners in a naturally noisy set SMTP
- Identify applications that require blind lookup
 - Internal p2p applications (unknown ports)
 - Google doesn't publish crawler IP addresses

CHARACTERIZING FUMBLING

Source Data

- Task: differentiate crawlers by quantifying fumbling
- 4 days of crawling data
- Crawlers identified by IP space
 - Cuil: Google "competitor", embarrassing launch last year
 - Yeti: Naver.com (Korean search engine)
 - "Twiceler": Some searchbots use twiceler as an ID, refers to twiceler from domains cuil says are not its domains
 - Voila: Voila.fr search engine (French)

Basic Numbers

Engine	ID#	Flows	IPs	Failed Flow	Failed IP
Cuil	1	3760	189	504	45
	2	4945	170	195	42
	3	3128	204	1033	43
Yeti	4	2635	247	84	28
"Twiceler"	5	5338	185	829	51
Voila	6	12808	680	2745	75
	7	12506	679	2306	73
"Twiceler"	8	2252	172	101	45

Consecutive Failure Rate

- Number of times that a failure occurs repeatedly
- Used in darkspace analysis scans are marked as such when > 3-5 consecutive failures [Jung, 2004]
- Fumblers are different because they have a nontrivial success rate

Visualizing Sequential Hypothesis Testing

Some Failure Plots

Why The Mountains?

- In the long run, high success rate:
 - 0.5% failure to 70% in the worst case
 - Vs. 99.95% failure rate for scanners
- However, failures are common mode
 - IP address X is down
 - IP address X is hit repeatedly

Engine	ID#	FPR (4 failures)	
Cuil	1	9.10%	
	2	1.50%	
	3	34.4%	
Yeti	4	10.3%	
"Twiceler"	5	17.9%	
Voila	6	13.9%	
	7	1.00%	
"Twiceler"	8	1.00%	

Permuting Addresses

Results of Permutation

- Drops expected values down
- "realtime" detection is no longer valid
- Fumbling requires both a presence and absence...

Engine	ID "	Norm	Random
	#	FPR	FPR
Cuil	1	9.10%	0.00%
	2	1.50%	0.00%
	3	34.4%	15.5%
Yeti	4	10.3%	0.00%
"Twiceler"	5	17.9%	0.00%
Voila	6	13.9%	0.00%
	7	1.00%	0.00%
"Twiceler"	8	1.00%	0.00%

Locality

- Propensity of users to sit around a set of common hosts [McHugh03]
- Modeled using a working set:
 - LRU stack, fixed size
 - Locality is then the probability, when an address is presented, of not replacing an address in the working set

Searchbots Are Local

- Searchbots are actually fairly local
 - Slightly more localized than humans, it turns out
 - CDNs? Single-page sites?
- Much more local than scanners

Start Classifying

Local?	Connects?		
	Yes	No	
Yes	Surfer	Searchbot	
No	Hitlist Scanner?	Scanner	

REDJACK Leading Us Back To This Picture...

Conclusions

- Combining locality with detection failure may provide an indicator of fumbling
 - Have to develop a suitable n (working set size)
 - N also changes over time
- A false positive is an indicator your IDS isn't done yet
 - We can differentiate searchbots from scanners with more information, but it may cost us 'realtime'
 - Whatever 'realtime scan detection' is worth...