Section 10: Case Studies

Section 10.1: Clustering for Iris Dataset

Iris Flower Dataset

Three types of iris flowers in dataset

See UnsupervisedML_Resources.pdf file for links Images reproduced here under Wikipedia Commons Copyright

Iris Dataset

- 50 samples each of 3 types of iris flower species: setosa, virginica, versicolor
- 4 features: sepal_length, sepal_width, petal_length, petal_width
- Species id and species columns give labels (typically used in Supervise Learning)
- Dataset available at UCI, Irvine, Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/iris
- File: Unsupervised/Clustering/Code/Data_Iris/Iris.csv

M14 • : × ✓ f _x									
4	Α	В	С	D	E	F	G	Н	
1		species_id	species	sepal_length	sepal_width	petal_length	petal_width		
2	0	1	setosa	5.1	3.5	1.4	0.2		
3	1	1	setosa	4.9	3	1.4	0.2		
4	2	1	setosa	4.7	3.2	1.3	0.2		
5	3	1	setosa	4.6	3.1	1.5	0.2		
6	4	1	setosa	5	3.6	1.4	0.2		
7	5	1	setosa	5.4	3.9	1.7	0.4		
8	6	1	setosa	4.6	3.4	1.4	0.3		
9	7	1	setosa	5	3.4	1.5	0.2		
10	8	1	setosa	4.4	2.9	1.4	0.2		
11	9	1	setosa	4.9	3.1	1.5	0.1		
12	10	1	setosa	5.4	3.7	1.5	0.2		
13	11	1	setosa	4.8	3.4	1.6	0.2		
14	12	1	setosa	4.8	3	1.4	0.1		
15	13	1	setosa	4.3	3	1.1	0.1		
16	14	1	setosa	5.8	4	1.2	0.2		
17	15	1	setosa	5.7	4.4	1.5	0.4		
18	16	1	setosa	5.4	3.9	1.3	0.4		
10	47	4		F 4	2.5	4.4	0.0		

Iris Dataset

Metrics for Measuring Quality

- Purity measures extent to which clusters contain a single class
- Useful for testing purposes if class labels are provided
 - M is number of data points, C is set of clusters, D is set of classes
 - For each cluster: determine maximum number of data points from any one class and sum over all clusters

$$P = \frac{1}{M} \sum_{c \in C} \max_{d \in D} |d \cap c|$$

• Purity satisfies $0 < P \le 1$

Example

- 20 data points and 3 clusters
- 3 Actual Classes: red, blue, green
- Max from any class:
 - Cluster 1: 4 red, Cluster 2: 4 blue, Cluster 3: 7 green

•
$$P = \frac{1}{20}(4+4+7) = 0.75$$

Clustering for Iris Dataset

• Algorithm: Hierarchical stopping at 3 clusters

• Metrics:

• Purity: 0.907

• Silhouette: 0.554

PCA for Iris Dataset

- Project data from 4 dimensions to 2 dimension using PCA
- Variance capture is 97.8%

 New features u0 and u1 do not correspond to actual measurable quantity, such as sepal width/length or petal width/length

Clustering for Iris Dataset

- Algorithm: Gaussian Mixture Model
 - Specify 3 clusters and use K Means++ for initialization
- Metrics:
 - Purity: 0.973
 - Silhouette: 0.537

Section 10.2: Clustering for MNIST Digits Dataset

MNIST Digits Dataset

- Thousands of handwritten digit images with 28x28 resolution
- Data Source: http://yann.lecun.com/exdb/mnist/
- Used extensively for testing machine learning algorithms

Collage of 160 individual digit images

By Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.ph p?curid=64810040">p?curid=64810040

K Means Clustering for MNIST Digits

- 60000 images
- Algorithm: K Means with 10 clusters and K Means ++ for initialization
- Metrics:
 - Purity: 0.596
 - Run Time: 319 seconds

K MNIST Digits Clustering Results

K Means Clustering for MNIST Digits with PCA

- Apply PCA with 90% variance capture (reduced from 784 to 87 dimensions)
- Algorithm: K Means with 10 clusters and K Means ++ for initialization
- Metrics:

• Purity: 0.596

• Run Time: 27 seconds

GMM Clustering for MNIST Digits with PCA

- Apply PCA with 90% variance capture (reduced from 784 to 87 dimensions)
- Algorithm: Gaussian MM with 10 clusters and K Means ++ for initialization
- Metrics:
 - Purity: 0.574
 - Run Time: 264 seconds

MNIST Clustering Results: Clusters

Section 10.3: Clustering for Text Documents

BBC News Text Dataset

- 2225 news articles
- 5 classes: sports, business, tech, entertainment, politics
- Dataset from Kaggle
- https://www.kaggle.com/yufengdev/bbc-fulltext-and-category
- File: Unsupervised/Clustering/Data_Text/bbc-text.csv
- Use Tfidf vectorizer in sklearn
- 12915 words in dictionary
- 12915 x 2225 feature matrix

K Means Clustering for BBC News Text with PCA

Algorithm: K Means with 5 clusters and K Means ++ for initialization

Metrics:

• Purity: 0.736

Fit Time: 42 seconds

Record most influential words for each cluster

Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4
people	film	england	mr	year
mobile	best	game	labour	mr
technology	year	club	election	government
users	awards	wales	blair	growth
software	won	chelsea	party	company
digital	award	rugby	brown	sales
music	world	players	howard	economy
net	champion	cup	government	new
games	festival	ireland	minister	bank
phone	films	team	tory	market

K Means Clustering for BBC News Text

- Apply PCA with 95% variance capture (reduced from 12915 to 1601 dimensions)
- Algorithm: K Means with 5 clusters and K Means ++ for initialization
- Metrics:

• Purity: 0.867

• Fit Time: 6 seconds

Record most influential words for each cluster

Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4
people mobile music technology mr software	game england win cup match team	mr labour election blair party brown	growth economy year bank company market	Film best awards award band festival
users digital new games	players injury play Club	government howard minister tory	mr sales oil shares	actor star album year

