SUMMER-2016

UNIT 1

Q1. a) What is well formed formula? What are the rules for generating well-formed formula? (6)

b) Show that the following equivalence:

$$(((Q \land A) \to C) \land (A \to (P \lor C))) \Leftrightarrow ((A \land (P \to Q)) \to C$$
 (7)

Q2. a) Show that

$$\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q)) \Leftrightarrow (\neg P \lor Q)$$
 (6)

b) Obtain the principle disjunctive normal form of

$$(P \wedge Q) \vee (\neg P \wedge Q) \vee (Q \wedge R). \tag{6}$$

UNIT 2

Q3. a) Show that $R \vee S$ follows logically from the premises:

$$C \vee D$$
, $(C \vee D) \rightarrow \sim H$, $\sim H \rightarrow (A \wedge \sim B)$ and $(A \wedge \sim B) \rightarrow (R \vee S)$.

(x)
$$(P(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x)) \Rightarrow (x) (P(x) \rightarrow R(x))$$

Q4. a) Determine whether the conclusion C follows logically from the premises H_1 and H_2 :

i.
$$H_1: P \rightarrow Q$$
 $H_2: \neg P$ $C: Q$
ii. $H_1: P \rightarrow Q$ $H_2: \neg (P \land Q)$ $C: \neg P$ (8)

- **b)** Symbolize the following statement:
- i) All cats are animal ii) Some real no. are rational (8)

UNIT 3

- **Q5. a)** Explain different properties of Binary Relation example. **(6)**
- **b)** Draw Venn diagram of
- i. $A \cup B = A \cup C$ but $B \neq C$ ii. $A \cap B = A \cap C$ but $B \not\subset C$.
- iii. $A \cup B \subset A \cup C$ but $B \not\subset C$ iv. $A \cap B = A \cap C$ but $B \neq C$.

Q6. a) Let $P = \{<1, 2>, <2, 4>, <3, 3>\}$ and $Q = \{<1, 3>, <2, 4>, <4, 2>\}$. Find $P \cup Q$, $P \cap Q$, D(P), D(Q), R(P), R(Q), $D(P) \cup Q$ and $R(P \cap Q)$.

Show that
$$D(P \cup Q) = D(P) \cup D(Q)$$
 (6)

b) Let, R and S be the relation given by:

R:
$$\{<1, 2><3, 4><2, 2>\}$$
 S: $\{<4, 2><2, 5><3, 1><1, 3>\}$

UNIT 4

Q.7 a) Explain : i. Group ii. Semi Group iii. Monoid iv. Subgroup (6)

b) Show that with every element in group is its own inverse then group must be abelian group. (6)

Q.8 a) Design composition table for algebraic system

i.
$$\langle z_6, +_6 \rangle$$
 and $\langle z_6, *_6 \rangle$. ii. $\langle z_7, +_7 \rangle$ and $\langle z_7, *_7 \rangle$ (6)

b) Find out left cosets of H in:
$$\langle z_4, +_4 \rangle = \{[0], [2]\}.$$
 (6)

UNIT 5

Q9. a) Draw the diagram of the lattice $\langle S_n, D \rangle$ for n = 4, 12, 15, 60.

b) Obtain the sum of product canonical form for the following Boolean expression:

$$F_1(w, x, y, z) = xy + w'yz$$

 $F_2(x, y, z) = xy' + y'z'$
(8)

Q10. a) Use K-map representation to find the minimal sum of products expression of each if the following functions:

iii.
$$f(a, b, c, d) = \Sigma(0, 5, 7, 8, 12, 14)$$
 (8)

- **b)** For the following function given: $F = \overline{W} + y(\overline{x} + \overline{z})$
- i) Circuit diagram representation
- ii) Truth table representation
- iii) K-map representation.

(7)

UNIT 6

- Q. 11 a) Define the following terms
- i. Graph
- ii. Degree of Graph
- iii. Tree

(6)

b) Find all indegree and outdegree of the node of the graph given below. Give all elementary cycle of graph: (7)

- **Q.12 a)** Give a directed tree representation of the formula $(P \lor (\sim P \land Q)) \land ((\sim P \lor Q) \land \sim R)$. From this representation obtain the corresponding prefix formula. **(6)**
- **b)** Transverse the following tree with preorder, postorder and inorder: (6)

