1.

Q must be inverse of a

100

SR Q' Active low SR 00 notallowed latch. 01 1 S=0 set late S=0 set lutch R= 0 reset latch

S=R=1 no change S=R=O not allowed as Q=Q=1

SR latch can be used to eliminate 'contact bounce' in a switch. Any bounce will be back to the 'unchanged' state.

See lecture notes for complete explanation.

For active high inputs USE NOR

SR	Q
00	unchanged
01	0
10	1
11	not allowed

Problem Sheet 7 - Solutions

States

A => No 1's found (reset state)

B => first 1 found

C => two ones found

D => three ones found (at least)

	present state	Next State		
	Q, Q.	I	Q,Q.	7
A	00	0	0 0	00
B	01	10	00	0
\subset	10	0	001	0
0	11	0	00	1

$$Q'_{1} = \overline{Q}_{1}Q_{0}T + Q_{1}\overline{Q}_{0}T + Q_{1}Q_{0}T$$

$$= \overline{Q}_{1}Q_{0}T + Q_{1}T$$

$$= (\overline{Q}_{1}Q_{0} + Q_{1})T$$

$$= (Q_{1} + Q_{0})T *$$

$$Q'_{0} = \overline{Q}_{1}\overline{Q}_{0}T + Q_{1}\overline{Q}_{0}T + Q_{1}Q_{0}T$$

$$= \overline{Q}_{1}\overline{Q}_{0}T + Q_{1}T(\overline{Q}_{0} + Q_{0})$$

$$= \overline{Q}_{1}\overline{Q}_{0}T + Q_{1}T$$

$$= (\overline{Q}_{1}\overline{Q}_{0} + Q_{1})T$$

= (Q, +Q,) I *

Z = Q,Q

*Final steps make Use of simplification theorem.

EEE119 Digital Systems – N.J.Powell

Problem Sheet 7 - Solutions

4.

The rule for producing army code tells us to copy down the MSB (same in Gray and Binary)

The hint' tells you how to do this in the circuit. Load the register as shown initially.

6. b. bz 0

1 92 b. b. bz

1 92 b. b. b.

1 92 b. b.

1 92 b.

1 92 b.

1 92 b.

Three clocks later, the binary has been replaced with Gray Code.

5.

	Present State	Ingut I	NEXT STUTE	OUTRT
A	00	0	00	0
В	0 [0	01	<u> ၁</u>
C	10	0	100	00
0	[[0	(10	C

Several circuit solutions are possible depending on your simplification of the equations.

$$Q_{s}' = \overline{Q_{s}}Q_{s}T + \overline{Q_{s}}Q_{s}T + \overline{Q_{s}}Q_{s}T$$

$$= \overline{Q_{s}}T + \overline{Q_{s}}Q_{s}T$$

$$= \overline{T(\overline{Q_{s}} + \overline{Q_{s}}Q_{s})}$$

$$= \overline{T(\overline{Q_{s}} + \overline{Q_{s}}Q_{s})}$$

$$= \overline{T(\overline{Q_{s}} + \overline{Q_{s}}Q_{s})} = \overline{IQ_{s}} + \overline{IQ_{s}}$$

$$[as x + \overline{x}y = x + y]$$

$$Q_{s}' = \overline{Q_{s}}Q_{s}T + \overline{Q_{s}}Q_{s}T + \overline{Q_{s}}Q_{s}T$$

$$y_{s} = \overline{Q_{s}}T + \overline{Q_{s}}Q_{s}T$$

