OX/OY Series

Ceramic Composition 10% Tolerance

FEATURES

- · Replaces 1 and 2 watt carbon composition resistors
- Meets high energy density demands
- · High peak power
- 10% Tolerance

SPECIFICATIONS

Material

Terminals: Pb-free solder-coated

axial

Coating: Silicone ceramic Derating: Linear from 100% @ +70°C to 0% @ +200°C

Operating Temp. Range: -40°C to +220°C

Electrical

Tolerance: ±10% standard Power Rating: Based on 70°C

0Y

free air rating.

Temperature Coefficient:

-1300 ±300ppm/°C.

	Dimensions (in. / mm)											
Series			stance max.	Length L ±.039 <i>(±1.0)</i>	Length C max.	Diameter D ±.039 (±1.0)	Joules max.**	Working volts	per reel			
OX	1	3.3	100K	0.65 / <i>16.5</i>	0.748 / 19.0	0.217 / <i>5.5</i>	50	300	1000			
OY	2	3.3	1M	0.748 / 19.0	0.886 / 22.5	0.276 / <i>7.0</i>	80	400	500			
* at 70°C. **For a single impulse.												

The OX/OY Series of fixed ceramic resistors are ideal for circuitry associated with surges, high peak power or high energy. They offer enhanced performance in high voltage power supplies. R-C ofte

to s RE

	Max Pulse Voltage* 14KV 2UKV	4007			
,		Dielectric Strength	500V	700V	
	sition resistors which can be difficult	Max Overload Voltage	600V	800V	
o source.		Max Pulse Voltage ¹	14KV	20KV	
RESISTANCE TO F	TOPULSE DC 20KV See circuit for DC 20KV See circ				
0.80%	DO 2010/J	Test	Condition	Maximum ∆R	
OY Series	see circuit for	Life Test	MIL-STD-202, Method	108 ±5%	
	test conditions	01 1 7 0 1 1	0 1 11/15 011 0 1	7000 (00) 0.05)	

Test

Test	Condition	Maximum ∆R		
Life Test	MIL-STD-202, Method 108	±5%		
Short Time Overload	2x rated V, 5 sec ON @ 70°C	±(2% + 0.05ohm)		
Resistance to Pulse ¹ 20,000 cycles	see circuit for test conditions	±5%		
Thermal Shock	MIL-STD-202, Method 107	$\pm (2\% \pm 0.05 \text{ ohm})$		
Moisture Resistance	1000 hrs @ 40°C, 90 - 95% RH	±5%		

PERFORMANCE CHARACTERISTICS

0X

0.60% 10 Kohms 0.40% 0.20% 1 Kohm 100 ohms 0.00% 1,000 10,000 20,000 Cycles 0.80%

TAPE DIMENSIONS

REEL DIMENSIONS

STANDARD PART NUMBERS FOR OX/OY SERIES																							
c value	Part No.	Wat	tage ~	c value	Part No.	Wat	tage ~	c value	Part No.	Wat	tage ∾	c value	Part No.	Wat	tage ~	c value	Part No.		tage ~	c value	Part No.	Watta	ige %
Ohmic	Prefix ➤ Suffix ▼	_X0	-\Д	Ohmic	Prefix ➤ Suffix ▼	_X0	-γ0	Ohmic	Prefix ➤ Suffix ▼	-X0	-λ0	Ohmic	Prefix ➤ Suffix ▼	-X0	_Y0	Ohmic Ohmic	Prefix ➤ Suffix ▼	-X0	-\Д	Ohmic Ohmic	Prefix ➤ Suffix ▼	× 8	_Y0
3.3	—33GKE	~	~	27	—270KE	V	~	220	—221KE	~	~	1800	—182KE	V	V	15000	—153KE	V	V	120000	—124KE		~
3.9	—39GKE	~	~	33	—330KE	~	~	270	—271KE	~	~	2200	-222KE	~	1	18000	—183KE	~	~	150000	—154KE	(~
4.7	-47GKE	~	~	39	-390KE	~	~	330	331KE	~	~	2700	272KE	V	~	22000	—223KE	~	~	180000	—184KE	(V
5.6	-56GKE	~	~	47	-470KE	~	~	390	—391KE	~	~	3300	-332KE	V	~	27000	—273KE	~	~	220000	—224KE	(/
6.8	-68GKE	~	~	56	—560KE	~	~	470	—471KE	~	~	3900	-392KE	V	~	33000	—333KE	~	~	270000	—274KE	(/
8.2	-82GKE	~	~	68	680KE	~	~	560	561KE	~	~	4700	-472KE	V	~	39000	—393KE	~	~	330000	334KE	(V
10	—100KE	~	~	82	-820KE	~	~	680	681KE	~	~	5600	562KE	V	~	47000	-473KE	~	~	390000	394KE	(~
12	—120KE	~	~	100	—101KE	~	~	820	821KE	~	~	6800	682KE	V	~	56000	—563KE	~	~	470000	474KE	(V
15	—150KE	~	~	120	—121KE	~	~	1000	—102KE	~	~	8200	-822KE	V	~	68000	683KE	~	~	560000	564KE	(V
18	—180KE	~	~	150	—151KE	~	~	1200	—122KE	~	~	10000	—103KE	V	1	82000	823KE	~	~	680000	684KE		V
22	-220KE	~	~	180	—181KE	~	~	1500	—152KE	~	1	12000	—123KE	V	~	100000	—104KE	~	~	820000	-824KE		V
																				1 MEG	—105KE	(~

¹See figures, left