EP0632048

Publication	Title:	

Phosphonate-nucleotide ester derivatives.

Abstract:

Phosphonate-nucleotide ester derivatives of the present invention have excellent antiviral activity and activity. Further, it can be orally administered.

Data supplied from the esp@cenet database - http://ep.espacenet.com

11) Publication number:

0 632 048 A1

EUROPEAN PATENT APPLICATION

(21) Application number: 94109742.0

(51) Int. Cl.⁶: **C07F** 9/6561, A61K 31/675

2 Date of filing: 23.06.94

(3) Priority: 29.06.93 JP 159693/93

Date of publication of application: 04.01.95 Bulletin 95/01

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

Applicant: MITSUBISHI KASEI CORPORATION 5-2, Marunouchi 2-chome Chiyoda-ku Tokyo 100 (JP)

Inventor: Takashima, Hideaki 3-23-1-8 Tuchihashi, Miyamae-ku Kawasaki-shi, Kanagawa-ken (JP) Inventor: Inoue, Naoko 2-6-3-108 Tachibanadai, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Ubasawa, Masaru 2864-3-2-506 Naracho. Midori-ku Yokohama-shi. Kanagawa-ken (JP) Inventor: Sekiya, Kouichi 23-4 Tanamachi. Midori-ku Yokohama-shi. Kanagawa-ken (JP) Inventor: Yabuuchi, Shingo 5-1 Tutujigaoka, Midori-ku Yokohama-shi, Kanagawa-ken (JP)

- Representative: ter Meer, Nicolaus, Dipi.-Chem., Dr. Patentanwälte TER MEER-MÜLLER-STEINMEISTER & PARTNER Mauerkircherstrasse 45 D-81679 München (DE)
- Phosphonate-nucleotide ester derivatives.

Phosphonate-nucleotide ester derivatives of the present invention have excellent antiviral activity and activity. Further, it can be orally administered.

믑

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof. More particularly, it relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof which can be orally administered as antiviral agents.

2. Background of the Invention

10

5

Infectious viral diseases have been recognized as medically important problems. For treatment of such diseases, drugs having antiviral activity but no inhibitory activity on growth of normal cell lines have been developed. For example, 9-(2-phosphonylmethoxy)ethyladenine (PMEA), 9-(2-phosphonylmethoxy)ethyl-2,6-diaminopurine (PMDAP) etc. have been reported to be effective on herpes simplex viruses type-I and II (HSV-1 and HSV-2), human immunodeficiency virus (HIV), hepatitis B virus (Yokota et al., Antimicrob. Agents Chemother., 35, 394 (1991); Votruba et al., Mol. Pharmacol., 32, 524 (1987)].

The problems of these nucleotides and ionic organophosphate esters are their deficiency of oral absorptivity [see, De Clercq et al., Antimicrob. Agents Chemother., 33, 185 (1989)]. Therefore, these compounds should be parenterally administered, for example, by intravenous or intramuscular injection, to attain sufficient blood concentration to elicit their effect.

However, it is difficult to apply treatment utilizing parenteral administration unless the subject is in a hospital. Accordingly, it is not a preferred method to treat subjects suffering from altricious diseases such as AIDS and HBV diseases. Accordingly, there required development of drugs which have antiviral activity and can be parenterally administered. Up to date, no drugs have been put into practical use.

25

SUMMARY OF THE INVENTION

The present inventors have studied intensively to solve the above problems. As the results, we have found that the object can be attained using a certain kind of phosphonatenucleotide esters, and have attained the present invention.

That is, the point of the present invention resides in phosphonatenucleotide ester derivatives of the following general formula (I):

35

40

(wherein ring A represents

50

45

(wherein R^1 and R^2 independently represent hydrogen, halogen, hydroxyl, mercapto, C_6 - C_{10} arylthio or amino), R^3 represents C_1 - C_4 alkyl or ethyl having one or more substituents selected from the group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy; R^4 represents ethyl having one or more substituents selected from the group consisting of fluorine, C_1 - C_4 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy; X, Y and Z independently represent methyne or nitrogen atom); or pharmaceutically acceptable salts thereof.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be explained in detail.

Phosphonate-nucleotide ester derivatives of the present invention are represented by the above general formula (I). In the above general formula (I), halogen atoms in R¹ and R² include, for example, fluorine, chlorine, bromine, inodine; C₆-C₁₀ arylthio includes, for example, phenylthio, tolylthio, naphthylthio. C₁-C₄ alkylin R³ includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl. C₁-C₄ alkoxy as a substituent on ethyl in R³ includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy, butoxy. C₇-C₁₀ phenylalkoxy includes, for example, phenyl-C₁-C₄ alkoxy such as benzyloxy, phenethyloxy, phenyl-propoxy. C₂-C₅ acyloxy includes, for example, acetoxy, propionyloxy, butyryloxy, i-butyryloxy, valeryloxy. C₁-C₄ alkoxy, C₇-C₁₀ phenylalkoxy and C₂-C₅ acyloxy as substituents on ethyl in R³ include those on ethyl in R³.

A preferred ring A in the above general formula (I) includes:

(wherein R¹ and R² independently represent hydrogen, halogen, hydroxyl, mercapto, C₆-C₁₀ arylthio or 50 amino).

A particularly preferred A is

55

20

25

$$\bigcap_{N \to \mathbb{R}^2}^{\mathbb{R}^1}$$

(wherein R¹ represents hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R² represents hydrogen, o chlorine, iodine, hydroxyl or amino);

$$\bigcup_{N=\mathbb{R}^2}^{\mathbb{R}^1}$$

20 (wherein R1 represents amino; R2 represents hydrogen); or

$$\mathbb{R}^1$$
 \mathbb{N}
 \mathbb{R}^2

(wherein R¹ and R² represent amino).

 R^3 is preferably C_1 - C_3 alkyl, 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of C_1 - C_3 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy. Particularly, C_1 - C_3 alkyl or 2,2,2-trifluoroethyl is preferred.

 R^4 is preferably 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of C_1 - C_3 alkoxy, phenoxy, C_7 - C_{10} phenylalkoxy and C_2 - C_5 acyloxy. Particularly, 2,2,2-trifluoroethyl is preferred. When R^3 or R^4 represents a substituted ethyl group, such an ethyl group is preferably substituted at 2-position. Further, at least one of R^3 and R^4 is preferably 2,2,2-trifluoroethyl. X and Z are preferably nitrogen atoms.

Phosphonate-nucleotide ester derivatives of the present invention represented by the above general formula (I) can form pharmaceutically acceptable salts thereof. Examples of such salt include, for example, in the presence of acidic groups, metal salt such as lithium, sodium, potassium, magnesium, calcium salt, ammonium salt such as methylammonium, dimethylammonium, trimethylammonium, dicyclohexylammonium; in the presence of basic groups, mineral salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate, organic salts such as methanesulfonate, benzenesulfonate, paratoluenesulfonate, acetate, propionate, tartrate, fumarate, maleate, malate, oxalate, succinate, citrate, benzoate, mandelate, cinnamate, lactate.

Compounds of the present invention may form tautomers such as keto-enol tautomers depending on the substituents. Such tautomers are also included in the present invention.

Examples of the present compounds are shown in the following tables 1 to 7 (in the tables, P.S. indicates the position of the substituent:

55

50

5

15

25

30

35

$$\begin{array}{c} & O \\ & \parallel \\ & - (CH_2)_2 - O - CH_2 - P - OR^3 \\ & \mid OR^4 \end{array}$$

as X, Y or Z; and C for X, Y or Z represents -CH=).

Table 1

		(a U)	· • ·						
15	Comp. Na	R۱	R²	R³	R⁴	X	Y	Z	P. S.
	1	-Н	-H	−СН₃	-CF ₂ CF ₃	N	С	N	X
20	2	-н	-Н	—СH₃	−CF ₂ CF ₃	N	С	N	Z
	3	-H	-н	—CH₃ ··	-CH₂CF₃	N	С	N	X
	4	-H	-H	−СН₃	-CH₂CF₃	N	O	N	Z
25	5	-H	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	6	-н	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
	7	-H	-H	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	X
30	8	-H	-H	-CF ₂ CF ₃	−CH ₂ CF ₃	N	C	N	Z
	9	-Н	-Н	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	X
	1 0	-Н	-Н	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
35	1 1	-H	-Н	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	X
	1 2	-H	-Н	—CH₂CH₂OCH₃	−CH ₂ CF ₃	N	C	N	\overline{z}
	1 3	-H	-H	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	C	N	X
40	1 4	-H	-H	CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
	1 5	-H	-H	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	Ν	O	N	X
	1 6	-H	-Н	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	N	С	N	Z
45	17	-н	-H	-CH₂CH₂OC₃H₁	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	X
	1 8	-H	-H	-CH₂CH₂OC₃H₁	-CH ₂ CH ₂ OC ₃ H ₇	N	С	Ŋ	Z
	1 9	-H	-Н	—CH₂CH₂OC₅H₅	-CH ₂ CF ₃	N	С	N	Х
50	2 0	-Н	-H	-CH2CH2OC6H5	−CH₂CF₃	N	C	N	Z

Table 1 (Continued)

	<u> </u>	T		· · · · · · · · · · · · · · · · · · ·			Γ		
5	Comp. No.	R'	R²	R³	R ⁴	X	Y	Z	P. S.
	2 1	-н	-Н	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Х
10	2 2	-н	-н	-CH2CH2OC8H5	−CH₂CH₂OCH₃	N	С	N	Z
	2 3	-H	-Н	−CH ₂ CH ₂ OC ₆ H ₅	−CH2CH2OC6H5	N	С	N	Х
15	2 4	-н	-H	-CH2CH2OC6H5	-CH2CH2OC6H5	N	C	Ν	Z
	2 5	-H	-Н	—CH2CH2OCH2C6H5	-CH₂CF₃	N	С	Ŋ	Х
	2 6	-H	-H	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	Z	С	N	Z
20	2 7	-H	-н	—CH₂CH₂OCH₂C6H₅	-CH₂CH₂OCH₃	N	C	N	Х
	2 8	-H	-Н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	Z	Z
25	2 9	-H	-H	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H6	N	С	Z	X
	3 0	-H	-Н	—CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	N	С	N	Z
30	3 1	-H	-H	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C6H5	N	С	N	X
	3 2	-H	-H	-CH₂CH₂OCH₂C₄H₅	-CH2CH2OCH2C6H5	N	C	N	Z
35	3 3	-H	-H	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Z	Х
33	3 4	-Н	-H	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	С	N	Z
	3 5	-H	-н	-CH₂CH₂OC(O)CH₃	-CH₂CF₃	Z	С	N	Х
40	3 6	-H	-н	-CH2CH2OC(0)CH3	-CH ₂ CF ₂	N	С	N	Z
•	3 7	-Н	-H	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₃	N	С	N	X
45	3 8	-H	-Н	-CH₂CH₂OC(O)CH₃	−CH₂CH₂OCH₃	Z	С	Ŋ	Z
	3 9	-Н	-H	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC ₆ H ₅	Z	С	N	Х
50	4 0	-H	-H	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	Z

Table 1 (Continued)

5	Comp. Na.	R'	R²	R³	R ⁴	x	Y	z	P. S.
	4 1	-H	-н	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	C	Ν	X
10	4 2	-н	-н	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₂C₀H₅	N	С	N	Z
	4 3	-н	-Н	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	N	X
15	4 4	-Н	-н	—CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	N	С	N	Z
	4 5	-Н	-Н	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	N	X
20	4 6	-н	-н	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	N	Z
	4 7	-H	-н	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	Ν	С	N	X
25	4 8	-н	-н	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	Z
	4 9	-н	-н	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
	5 0	-н	-н	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z
30 '			· · · · · · · · · · · · · · · · · · ·						<u> </u>

•

Table 1 (Continued)

		labi		Continue					
5	Comp. No.	R¹	R²	R²	R4	x	Y	Z	P. S.
	5 1	-н	-он	−CH3	-CF ₂ CF ₃	N	С	N	Х
10	5 2	-н	-он	−СН₃	-CF ₂ CF ₃	N	С	Z	Z
	5 3	-H	-он	-СН3	−CH ₂ CF₃	Z	С	Ν	Х
15	5 4	-Н	-он	−СН₃	-CH₂CF₃	N	С	N	Z
	5 5	-н	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	N	C	N	X
20	5 6	-H	-OH	-CF ₂ CF ₃	-CF ₂ CF ₃	Z	C	N	Z
	5 7	-H	-OH	-CF ₂ CF _{.3.}	-CH₂CF₃	Z	С	N	X
	5 8	-н	-он	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	N	Z
25	5 9	_H	-он	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	Z	Х
	6 0	-H	-он	−CH ₂ CF ₃	-CH ₂ CF ₃	Ν	C	N	Z
30	6 1	-H	-OH	-CH₂CH₂OCH₃	-CH ₂ CF ₃	Ŋ	С	N	Х
	6 2	-н	-он	-CH₂CH₂OCH₃	−CH ₂ CF ₃	Ŋ	С	Ŋ	Z
35	6 3	-H	-он	-CH₂CH₂OCH₃	−CH₂CH₂OCH₃	N	C	N	Х
	6 4	-Н	-OH	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Ŋ	С	N	Z
40	6 5	-Н	-он	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	Х
	6 6	-н	-OH	—CH₂CH₂OC₂H₅	-CH₂CH₂OC₂H₅	N	С	N	Z
	6 7	-Н	-OH	—CH₂CH₂OC₃H₁	−CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Х
45	6 8	-Н	-он	—CH₂CH₂OC₃H₁	−CH₂CH₂OC₃H₁	N	ပ	N	Z
	6 9	-H	-он	-CH2CH2OC6H5	-CH₂CF₃	N	С	N	X
50	7 0	-н	-OH	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

5	Comp. No.	R۱	R²	R³	R ⁴	x	Y	Z	P. S.
	7 1	-н	-он	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	С	N	Х
10	7 2	-н	-он	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	Z
	7 3	-Н	-он	-CH2CH2OC6H5	-CH₂CH₂OC eH₅	N	С	N	х
15	7 4	-н	-он	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
	7 5	-н	-он	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	Ν	Х
	7 6	-H	-он	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	Z
20	77	-H	-он	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	Ν	С	N	Х
	7 8	-Н	-OH	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	Z	Z
25	7 9	-H	-OH	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	Z	Х
	8 0	-н	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	С	Z	Z
30	8 1	-н	-OH	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C6H5	N	С	N	Х
	8 2	-H	-он	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C₅H₅	Ν	С	Ν	Z
35	8 3	-Н	-OH	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	Z	X
33	8 4	-н	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	8 5	-Н	-он	-CH2CH2OC(0)CH3	−CH₂CF₃	Ν	С	Ν	Х
40	8 6	-Н	-OH	-CH ₂ CH ₂ OC(0)CH ₃	−CH ₂ CF ₃	N	U	Ν	Z
٠	8 7	-Н	-OH	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	U	N	Х
45	8 8	-Н	-OH	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	Ν	С	Ν	Z
	8 9	-H	-OH	-CH2CH2OC(0)CH3	-CH2CH2OC6H5	N	С	N	Х
50	9 0	-H	-он	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OC₀H₅	N	С	N	Z

Table 1 (Continued)

			(00111111111111111111111111111111111111	Y				
Comp. Na.	R'	R²	R³	R ⁴	x	Y	z	P. S.
9 1	-Н	-он	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	X
9 2	-Н	-он	-CH2CH2OC(0)CH2	-CH₂CH₂OCH₂C₅H₅	N	С	N	Z
9 3	-н	-он	-CH2CH2OC(0)CH3	-CH₂CH₂OC(0)CH₃	N	С	N	X
9 4.	-н	-OH	-CH2CH2OC(0)CH3	-CH₂CH₂OC(O)CH₃	N	С	N	Z
9 5	-Н	-он	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	N	X
9 6	-н	-он	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
9 7	-Н	-OH	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(O)C₃H₁	N	С	N	X
9 8	-н	-он	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	Z
9 9	-н	-он	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4Hs	N	С	N	X
100	-н	-он	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Z

Table 1 (Continued)

5	Comp. No.	R'	R²	R³	R4	X	Y	Z	P. S.
	1 0 1	-н	-NH ₂	−CH₃	-CF ₂ CF ₃	N	С	Ŋ	Х
10	102	-н	−NH₂	-CH₂	-CF ₂ CF ₃	N	С	N	Z
	103	-H	-NH ₂	−СН₃	−CH ₂ CF ₂	Ν	ပ	Ν	Х
15	104	-н	-NH ₂	−СН₃	-CH₂CF₃	Ν	С	N	Z
	105	-Н	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Х
20	106	-н	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	Z	С	N	z
	107	-н	-NH ₂	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	N	х
	108	-н	−NH₂	-CF ₂ CF ₃	−CH ₂ CF ₃	Ν	С	N	Z
25	109	-Н	-NH2	-CH₂CF₃	-CH ₂ CF ₃	Ν	С	N	X
	1 1 0	-Н	-NH2	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	Z
30	1 1 1	-H	−NH₂	CH₂CH₂OCH₃	-CH ₂ CF ₂	N.	С	N	Х
•	112	-H	-NH2	-CH₂CH₂OCH₃	-CH ₂ CF ₃	Ŋ	С	N	Z
35	113	-H	-NH2	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	Z	С	N	X
	114	-H	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
40	115	-н	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	X
	116	-H	-NH2	-CH2CH2OC2H5	−CH2CH2OC2H8	N	С	N	Z
	117	-н	−NH₂	-CH₂CH₂OC₃H7	-CH₂CH₂OC₃H₁	N	С	N	X
45	1 1 8	-н	-NH2	-CH2CH2OC3H7	-CH₂CH₂OC₃H7	N	С	N	Z
	119	-Н	-NH ₂	-CH2CH2OC8H5	−CH₂CF₃	N	С	N	Х
50	120	-н	-NH ₂	−CH2CH2OC6H5	-CH₂CF₃	N	С	N	Z

Table 1 (Continued)

		, , , , , , , , , , , , , , , , , , , 							
5	Comp. No.	R¹	R²	R³	R4	х	Y	Z	P. S.
	121	-н	-NH ₂	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	X
10	122	-н	-NH ₂	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	Z
	1 2 3	-н	−NH₂	-CH2CH2OC6H5	CH2CH2OC6H5	N	C	N	Х
	124	-н	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	Ν	Z
15	1 2 5	-Н	-NH2	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	Х
	126	-Н	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	Z
20	127	-H	-NH ₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	Ν	С	N	Х
	128	-Н	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Z
25	129	-н	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	С	N	Х
	1 3 0	-н	-NH ₂	-CH2CH2OCH2C6H6	-CH2CH2OC6H5	N	С	N	Z
30	1 3 1	-Н	-NH ₂	-CH2CH2OCH2C8H5	—CH₂CH₂OCH₂C6H5	Ν	С	Ν	X
	1 3 2	-н	-NH2	-CH₂CH₂OCH₂C₅H₅	—CH₂CH₂OCH₂C6H5	N	С	N	Z
	1 3 3	-Н	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	U	Z	Х
35	1 3 4	-н	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	U	Z	Z
	1 3 5	-н	-NH2	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	Ν	С	Z	Х
40	1 3 6	-Н	-NH2	-CH₂CH₂OC(0)CH₂	-CH ₂ CF ₃	N	С	N	Z
٠	1 3 7	-н	−NH₂	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	Х
45	1 3 8	-н	-NH ₂	-CH₂CH₂OC(O)CH₃	−CH₂CH₂OCH₃	Ŋ	C	N	Z
	1 3 9	-н	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	С	N	Х
50	1 4 0	-Н	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	z

Table 1 (Continued)

5	Comp. No.	R¹	R²	R³	R ⁴	х	Y	Z	P. S.
	141	-н	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	X
10	1 4 2	-н	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH2C6H5	N	С	N	Z
	1 4 3	-н	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(O)CH₃	Ν	С	N	Х
15	1 4 4	-Н	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
	1 4 5	-н	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	С	N	Х
20	1 4 6	-Н	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	С	Ν	Z
	147	-н	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Х
25	1 4 8	-н	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
	1 4 9	-н	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H4	N	С	N	Х
30	150	-н	−NH₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Z

Table 1 (Continued)

5	Comp.	R¹	R²	R [‡]	R4	х	Y	z	P. S.
	151	-он	-н	−CH₃	−CF ₂ CF ₃	N	С	N	X
10	152	-он	-Н	—CH ₃	−CF ₂ CF ₃	N	С	N	Z
	153	-он	-Н	—СН₃	-CH ₂ CF ₂	N	С	N	Х
15	154	-он	-Н	−СН₃	−CH₂CF₃	N	С	N	Z
	155	-OH	-Н	-CF ₂ CF ₃	−CF ₂ CF ₃	N	С	N	X
20	156	-он	-н	-CF ₂ CF ₃	-CF ₂ CF ₃	Z	C	N	Z
	157	-он	-H	-CF ₂ CF ₃	-CH₂CF₃	N	U	Ν	Х
	158	-он	-Н	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	Ν	Z
25	159	-OH	-Н	-CH₂CF₃	−CH ₂ CF ₃	N	С	N	Х
	160	-он	-Н	-CH ₂ CF ₂	-CH₂CF₃	N	С	N	. Z
30	161	-он	-H	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Х
	162	-он	-Н	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
35	163	-OH	-Н	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	X
	164	-он	-Н	—CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
40	165	-он	-Н	-CH2CH2OC2H5	−CH ₂ CH ₂ OC ₂ H ₅	N	С	N	X
	166	-он	-н	-CH2CH2OC2H5	−CH ₂ CH ₂ OC ₂ H ₅	N	С	N	Z
	167	-он	-н	-CH₂CH₂OC₃H7	−CH₂CH₂OC₃H7	N	С	N	X
45	168	-он	-н	-CH₂CH₂OC₃H7	-CH₂CH₂OC₃H₁	N	С	N	Z
	169	-он	-н	—CH2CH2OC6H5	−CH₂CF₃	N	С	N	Х
50	170	-он	-н	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

5	Comp. \	R'	R²	R³	R4	х	Y	z	P. S.
	171	-он	-н	-CH2CH2OC6H5	-CH₂CH₂OCH₃	Ν	С	N	Х
10	172	-он	-Н	-CH2CH2OC6H5	-CH₂CH₂OCH₃	Z	С	N	Z
	173	-он	-Н	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	Ν	С	N	Х
15	174	-он	-Н	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
15	175	-он	-н	-CH₂CH₂OCH₂C6H5	−CH ₂ CF ₃	N	С	N	Х
	176	-он	-н	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	C	Ν	Z
20	177	-он	-н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	U	N	Х
	178	-он	-Н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	С	N	Z
25	179	-он	-Н	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	С	Ν	Х
	180	-он	-H	—CH2CH2OCH2C6H5	-CH₂CH₂OC 6H5	N	C	Ν	Z
30	181	-он	-н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂C6H5	Ν	С	N	Х
	182	-он	-н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C₀H₅	Ν	U	N	Z
	183	-он	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Z	C	Z	Х
35	184	-OH	-н	-CH₂CH₂OC₂H₄C∉H₅	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	C	Ŋ	Z
	185	-он	-н	-CH₂CH₂OC(O)CH₃	−CH ₂ CF ₃	N	C	Ŋ	Х
40	186	-он	-н	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	Z	C	Ŋ	Z
	187	-он	-н	-CH ₂ CH ₂ OC(0)CH ₃	CH₂CH₂OCH₃	N	С	N	X
45	188	-он	-н	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	Z
	189	-он	-н	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC ₆ H ₅	Ν	С	N	Х
50	1 9 0	-OH	-н	-CH2CH2OC(0)CH2	−CH ₂ CH ₂ OC ₆ H ₅	N	С	N	Z

Table 1 (Continued)

		r	(Continued)	T	, —			r —
Comp.	R'	R²	R³	R ⁴	x	Y	z	P. S.
191	-он	-H	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Х
192	-он	-н	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
193	-он	-н	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	X
194	-он	-н	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
195	-он	-H	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	С	N	Х
196	-он	-H	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
197	-он	-н	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(0)C₃H₁	N	С	N	X
198	-он	-н	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(O)C₃H₁	N	С	N	Z
199	-он	-н	-CH2CH2OC(O)C4H9	-CH2CH2OC(0)C4H9	N	С	N	X
200	-он	-H	-CH2CH2OC(O)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	C.	N	Z

Table 1 (Continued)

5	Comp. No.	יא	R²	R³	R4	x	Y	z	P. S.
	201	-он	-он	−сн₃	-CF ₂ CF ₃	N	С	N	Х
10 .	202	-он	-он	−CH ₃	-CF ₂ CF ₃	N	С	N	Z
	203	-он	-он	—CH ₃	−CH₂CF₃	N	С	N	X
15	204	-он	-он	−СН₃	-CH ₂ CF ₃	N	С	N	Z
	205	-он	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	С	N	Х
20	206	-он	-OH	-CF ₂ CF ₃	-CF ₂ CF ₃	Ν	.C	N	Z
20	207	-он	-он	-CF ₂ CF ₃	-CH₂CF₃	Ν	С	N	Х
	208	-он	-он	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	Z
25	209	-OH	-он	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	Х
	210	-он	-он	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	N	Z
30	2 1 1	-он	-он	-CH₂CH₂OCH₃	-CH ₂ CF ₂	N	С	N	Х
	212	-он	-он	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
35	2 1 3	-он	-он	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Х
	214	-он	-он	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
40	2 1 5	-он	-он	-CH2CH2OC2H5	-CH2CH2OC2H5	N	O	N	Х
	216	-он	-OH	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	С	N	Z
	217	-он	-он	−CH ₂ CH ₂ OC ₂ H ₇	−CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Х
45	2 1 8	-он	-он	-CH2CH2OC3H7	-CH₂CH₂OC₃H ₇	N	С	N	Z
	219	-он	-он	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Х
50	2 2 0	-он	-он	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

5	Comp. Na	R¹	R²	R³	R4	x	Y	z	P. S.
	221	-он	-он	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Х
10	2 2 2	-он	-он	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	C	N	Z
	2 2 3	-он	-он	-CH2CH2OC6H5	−CH ₂ CH ₂ OC ₅ H ₅	N	С	N	Х
15	224	-он	-он	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
	2 2 5	-он	-он	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	Ν	Х
	226	-он	-он	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	Ν	Z
20	227	-он	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	С	Ν	Х
	228	-он	-он	-CH2CH2OCH2C8H5	-CH₂CH₂OCH₃	Ν	С	N	Z
25	2 2 9	-он	-он	-CH2CH2OCH2C8H5	-CH2CH2OC6H5	N	С	N	Х
·	2 3 0	-он	-он	-CH₂CH₂OCH₂C6H5	-CH2CH2OC6H5	N	С	N	Z
30	2 3 1	-он	-он	-CH₂CH₂OCH₂C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
	2 3 2	-он	-он	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
35	2 3 3	-он	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
i	2 3 4	-он	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ŋ	Z
40	2 3 5	-он	-он	-CH2CH2OC(0)CH3	−CH ₂ CF ₃	Ŋ	С	N	X
	2 3 6	-он	-OH	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	N	С	Z	Z
	237	-он	-он	-CH ₂ CH ₂ OC(0)CH ₂	−CH₂CH₂OCH₃	N	С	N	X
45	2 3 8	-он	-он	-CH₂CH₂OC(O)CH₂	-CH₂CH₂OCH₂	N	С	N	Z
	2 3 9	-он	-он	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	С	N	X
50	240	-он	-он	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H6	N	С	N	Z

Table 1 (Continued)

5	Comp.	R¹	R²	R³	R ⁴	x	Y	z	P. S.
	241	-он	-OH	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	х
10	242	-он	-он	-CH2CH2OC(0)CH3	—CH₂CH₂OCH₂C₅H₅	N	С	N	Z
	2 4 3	-он	-он	-CH2CH2OC(0)CH3	-CH₂CH₂OC(O)CH₃	N	С	N	Х
15	2 4 4	-он	-он	-CH₂CH₂OC(O)CH₃	-CH2CH2OC(O)CH3	N	С	N	Z
	2 4 5	-он	-он	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	N	С	N	Х
20	2 4 6	-он	-OH	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
20	247	-он	-он	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	С	N	X
	2 4 8	-он	-он	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	U	N	Z
25	249	-он	-он	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Х
	250	-он	-он	-CH2CH2OC(O)C4H9	-CH2CH2OC(O)C4H0	N	С	N	Z

Table 1 (Continued)

5	Comp. No.	R¹	R²	R³	R4	x	Y	z	P. S.
	251	-он	-NH2	−CH ₂	-CF ₂ CF ₂	N	С	N	Х
10	252	-он	-NH₂	−СН₃	-CF ₂ CF ₃	N	С	N	Z
	253	-он	-NH ₂	—СН₃	−CH₂CF₃	N	С	N	Х
15	254	-он	-NH ₂	-CH₃	-CH ₂ CP ₃	N	С	N	Z
	255	-он	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Х
20	256	-он	−NH₂	-CF ₂ CF ₃	-CF ₂ CF ₂	N	С	N	Z
	257	-OH	-NH ₂	-CF2CF3	-CH ₂ CP ₃	N	С	Z	Х
	258	-OH	-NH ₂	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	Z
25	259	-он	-NH2	-CH ₂ CF ₃	-CH₂CF₃	N	С	N	Х
	260	-он	-NH ₂	−CH ₂ CF ₃	−CH ₂ CF ₃	N	С	N	Z
30	261	-он	-NH ₂	-CH2CH2OCH3	-CH₂CF₃	N	С	N	Х
	262	-OH	-NH2	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	Z
35	263	-он	-NH ₂	-CH2CH2OCH3	-CH2CH2OCH3	N	С	N	Х
	264	-OH	−NH₂	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	С	N	Z
40	265	-он	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	X
	266	-он	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	Z
	267	-он	-NH2	-CH2CH2OC3H7	-CH₂CH₂OC₃H₁	N	С	N	Х
45	268	-он	-NH2	-CH₂CH₂OC₃H7	-CH₂CH₂OC₃H7	N	С	N	Z
	269	-он	-NH ₂	-CH2CH2OC6H5	−CH ₂ CP ₃	N	С	N	Х
50	270	-он	−NH₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	С	N	Z

Table 1 (Continued)

5	Comp. Na	R¹	R²	R³	R4	x	Y	z	P. S.
	271	-он	-NH2	-CH2CH2OC6H5	-CH2CH2OCH2	N	С	N	Х
10	272	-он	-NH2	-CH2CH2OC6H5	-CH2CH2OCH3	N	С	N	Z
	273	-он	-NH ₂	-CH2CH2OC8H5	-CH2CH2OC.H5	N	С	N	Х
	274	-он	-NH2	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
15	275	-он	-NH ₂	-CH₂CH₂OCH₂C6H5	-CH ₂ CF ₃	N	С	N	Х
	276	-он	-NH2	-CH₂CH₂OCH₂C6H5	-CH ₂ CF ₃	N	С	Ν	Z
20	277	-он	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂	N	С	N	х
	278	-он	-NH2	-CH₂CH₂OCH₂C6H5	-CH₂CH₂OCH₃	N	С	Ν	Z
25	279	-он	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OC₀H₅	N	С	N	X
	280	-он	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OC eH5	N	С	Z	Z
30	281	-он	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	X
	282	-он	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
	283	-он	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
35	284	-он	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	285	-он	-NH ₂	-CH₂CH₂OC(0)CH₃	−CH ₂ CF ₃	N	С	Ν	X
40	286	-он	-NH2	-CH₂CH₂OC(0)CH₃	−CH₂CF₃	N	С	Ν	Z
	287	-он	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2	N	С	N	X
45	288	-он	-NH2	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₃	N	С	N	Z
	289	-он	-NH2	-CH2CH20C(0)CH3	-CH₂CH₂OC₀H₅	N	C	N	X
50	290	-он	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC eH5	N	С	N	Z

Table 1 (Continued)

Comp. Na	R'	R²	R³	R ⁴	x	Y	z	P. S.
2 9 1	-он	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Х
2 9 2	-он	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH2C0H5	N	С	N	Z
293	-он	−NH₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Х
2 9 4	-он	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	Ν	С	Ν	z
2 9 5	-он	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Z	С	N	X
296	-он	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
297	-ОН	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Ŋ	С	N	X
298	-он	−NH₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Ν	С	N	Z
299	-он	−NH₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Х
3 0 0	-он	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(O)C4H9	N	С	N	Z

Table 1 (Continued)

5	Comp. No.	R¹	R²	R³	R4	x	Y	z	P. S.
	3 0 1	-NH ₂	-н	−СН₃	-CF ₂ CF ₃	N	С	N	Х
10	302	-NH ₂	-н	−СН₃	-CF ₂ CF ₃	Ν	С	N	Z
	3 0 3	-NH ₂	-Н	−СН₃	-CH ₂ CF ₃	Ν	С	N	Х
15	3 0 4	-NH ₂	-Н	−CH₃	-CH ₂ CF ₃	N	С	N	Z
	3 0 5	-NH2	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Х
20	306	-NH2	-Н	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
20	307	-NH2	-н	-CF ₂ CF ₃	-CH ₂ CF ₃	Ν	С	N	Х
	3 0 8	−NH₂	-Н	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	309	-NH2	-н	−CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Х
	3 1 0	-NH ₂	-н	-CH₂CF₃	−CH ₂ CF ₃	N	С	N	Z
30	3 1 1	-NH ₂	-Н	-CH₂CH₂OCH₃	-CH₂CF₃	N	С	N	Х
	3 1 2	-NH ₂	-H	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	N	Z
35	3 1 3	-NH ₂	-н	-CH₂CH₂OCH₂	-CH₂CH₂OCH₃	N	С	N	X
	314	-NH2	-Н	−CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
40	3 1 5	-NH2	-н	-CH2CH2OC2H5	−CH2CH2OC2H5	N	С	N	X
	316	−NH₂	-Н	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	Z
	317	-NH2	-H	−CH₂CH₂OC₃H7	-CH2CH2OC3H7	N	С	N	Х
45	3 1 8	-NH2	-H	−CH₂CH₂OC₃H7	−CH2CH2OC3H7	N	С	N	Z
	3 1 9	-NH2	-Н	-CH2CH2OC6H5	−CH ₂ CF ₃	N	С	N	Х
50	3 2 0	−NH₂	-н	-CH2CH2OC6H5	−CH ₂ CF ₃	N	С	N	z

Table 1 (Continued)

5	Comp. No.	R'	R²	R²	R4	X	Y	z	P. S.
	3 2 1	-NH2	-н	-CH₂CH₂OC₅H₅	-CH₂CH₂OCH₃	N	С	N	Х
10	3 2 2	-NH ₂	-Н	-CH₂CH₂OC₀H₅	-CH₂CH₂OCH₃	N	С	N	Z
	3 2 3	-NH2	-н	-CH2CH2OC6H5	-CH₂CH₂OC₀H₅	N	С	N	X
15	3 2 4	−NH₂	-н	-CH₂CH₂OC₀H₅	-CH2CH2OC6H6	N	С	N	Z
	3 2 5	-NH2	-Н	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	Ν	X
20	3 2 6	-NH2	-н	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z .
20	3 2 7	−NH₂	-Н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
	3 2 8	-NH ₂	-н	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	С	N	Z
25	3 2 9	-NH2	-н	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	3 3 0	-NH ₂	-H	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	3 3 1	-NH ₂	-н	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH2CH2OCH2C6H5	N	С	N	Х
	3 3 2	-NH ₂	-Н	-CH₂CH₂OCH₂C₀H₅	-CH2CH2OCH2C6H5	Ν	С	N	Z
35	`3 3 3	−NH₂	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	N	х
	3 3 4	-NH2	-Н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	Ν	С	N	Z
40	3 3 5	-NH2	-H	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	Ν	С	N	X
10	3 3 6	−NH₂	-н	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	С	N	Z
	3 3 7	−NH₂	-Н	-CH₂CH₂OC(0)CH₃	−CH₂CH₂OCH₃	N	С	N	Х
45	3 3 8	−NH₂	-H	-CH₂CH₂OC(0)CH₃	-CH₂CH₂OCH₃	N	С	N	Z
	3 3 9	−NH₂	-H	-CH2CH2OC(0)CH3	-CH₂CH₂OC₅H₅	N	С	N	х
50	3 4 0	-NH _{2.}	-H	-CH2CH2OC(0)CH2	-CH2CH2OC6H5	N	С	N	Z

Table 1 (Continued)

Comp.	R'	R²	R³	R4 .	x	Y	z	P. S.
3 4 1	−NH₂	-н	-CH2CH2OC(0)CH2	-CH2CH2OCH2C8H5	N	С	N	X
3 4 2	-NH ₂	-н	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5	N	С	N	Z
3 4 3	-NH ₂	-Н	-CH2CH2OC(O)CH3	-CH₂CH₂OC(0)CH₃	N	С	N	X
3 4 4	-NH ₂	-Н	-CH2CH2OC(0)CH3	-CH₂CH₂OC(O)CH₃	Ń	С	N	Z
3 4 5	-NH ₂	-н	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	X
3 4 6	-NH ₂	-н	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
3 4 7	-NH2	-Н	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
3 4 8	-NH2	-н	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
3 4 9	-NH ₂	-H	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
350	−NH₂	-Н	-CH2CH2OC(O)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N.	C	Ν	Z

Table 1 (Continued)

	1	abic	•						
5	Comp. No.	R¹	R²	R³	R4	x	Y	z	P. S.
	3 5 1	-NH2	- I	−CH ₃	-CF ₂ CF ₃	N	С	N	Х
10	3 5 2	-NH2	- I	−СН₃	-CF ₂ CF ₃	N	С	N	Z
70	353	-NH2	- I	−CH₃	-CH ₂ CF ₂	N	С	N	Х
	3 5 4	-NH2	- I	—CH₃	−CH ₂ CF ₃	N	С	N	Z
15	3 5 5	-NH2	- I	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	Х
	3 5 6	-NH2	- I	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	Ν	Z
20	3 5 7	-NH2	- I	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X
	3 5 8	-NH ₂	- I	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	3 5 9	-NH2	- I	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	Х
	360	-NH ₂	- I	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
20	3 6 1	-NH₂	- 1	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	X
30	3 6 2	-NH ₂	- I	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	С	N	Z
	3 6 3	-NH ₂	- I	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	С	N	X
35	3 6 4	-NH ₂	- I	-CH₂CH₂OCH₃	−CH ₂ CH ₂ OCH ₃	N	С	N	Z
	3 6 5	-NH2	- I	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	N	C	N	X
40	3 6 6	-NH ₂	- I	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	Z
	3 6 7	-NH ₂	- I	-CH2CH2OC3H7	-CH2CH2OC3H7	N	C	N	X
4 5	3 6 8	-NH ₂	– I	-CH2CH2OC2H7	-CH₂CH₂OC₃H₁	N	C	N	Z
	3 6 9	-NH ₂	- I	-CH ₂ CH ₂ OC ₆ H ₅	-CH₂CF₃	N		N	X
	370	-NH ₂	- I	-CH2CH2OC6H5	-CH ₂ CF ₃	N	ı C	N	I Z
50					· ·				

Table 1 (Continued)

Comp. Na	R۱	R²	R³	R4	x	Y	z	P. S.
3 7 1	-NH2	- I	-CH₂CH₂OC₀H₅	-CH₂CH₂OCH₃	N	С	N	Х
3 7 2	−NH₂	- I	-CH₂CH₂OC₀H₅	-CH₂CH₂OCH₃	N	С	N	Z
373	−NH₂	- I	-CH2CH2OC6H5	-CH₂CH₂OC₀H₅	N	С	N	Х
374	-NH2	- I	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
3 7 5	-NH ₂	- I	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	Х
376	-NH2	- I	-CH2CH2OCH2C6H6	-CH ₂ CF ₃	N	С	N	Z
377	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
378	−NH₂	- I	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₂	N	С	N	Z
379	−NH₂	- I	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
380	-NH2	– I	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	Ν	С	N	Z
3 8 1	-NH ₂	- I	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
382	-NH2	- I	-CH₂CH₂OCH₂C₅H₅	-CH2CH2OCH2C6H5	N	С	N	Z
383	-NH ₂	- I	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
3 8 4	-NH2	– I	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
3 8 5	-NH2	- I	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	С	N	Х
3 8 6	-NH2	- I	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃	N	С	N	Z
387	-NH ₂	- I	-CH2CH2OC(0)CH2	-CH₂CH₂OCH₂	N	С	N	Х
388	-NH:	- I	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	С	N	Z
3 8 9	-NH2	- I	-CH2CH2OC(0)CH2	-CH2CH2OC6H6	N	Ċ	N	Х
390	-NH ₂	<u> </u>	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	С	N	Z
	No. 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387	Na R' 3 7 1 -NH2 3 7 2 -NH2 3 7 3 -NH2 3 7 4 -NH2 3 7 5 -NH2 3 7 6 -NH2 3 7 7 -NH2 3 7 8 -NH2 3 7 9 -NH2 3 8 1 -NH2 3 8 2 -NH2 3 8 3 -NH2 3 8 4 -NH2 3 8 5 -NH2 3 8 7 -NH2 3 8 8 -NH2 3 8 9 -NH2	Na R¹ R² 3 7 1 -NH₂ - I 3 7 2 -NH₂ - I 3 7 3 -NH₂ - I 3 7 4 -NH₂ - I 3 7 5 -NH₂ - I 3 7 6 -NH₂ - I 3 7 7 -NH₂ - I 3 7 8 -NH₂ - I 3 8 0 -NH₂ - I 3 8 1 -NH₂ - I 3 8 2 -NH₂ - I 3 8 3 -NH₂ - I 3 8 4 -NH₂ - I 3 8 5 -NH₂ - I 3 8 6 -NH₂ - I 3 8 7 -NH₂ - I 3 8 8 -NH₂ - I 3 8 9 -NH₂ - I	No. R¹ R² R³ 3 7 1 -NH₂ - I -CH₂CH₂OC₅H₅ 3 7 2 -NH₂ - I -CH₂CH₂OC₅H₅ 3 7 3 -NH₂ - I -CH₂CH₂OC₅H₅ 3 7 4 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 7 5 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 7 6 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 7 7 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 7 8 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 7 9 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 8 0 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 8 1 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 8 2 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 8 3 -NH₂ - I -CH₂CH₂OCH₂C₆H₅ 3 8 4 -NH₂ - I -CH₂CH₂OCC₂H₄C₆H₅ 3 8 5 -NH₂ - I -CH₂CH₂OC(O)CH₃ 3 8 6 -NH₂ - I -CH₂CH₂OC(O)CH₂ 3 8 7 -NH₂ - I -CH₂CH₂OC(O)CH₂ 3 8 8 -NH₂ - I	R	No. R¹ R² R³ R⁴ X 3 7 1 -NH₂ -I -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₂ N 3 7 2 -NH₂ -I -CH₂CH₂OC₀H₅ -CH₂CH₂OC₀H₅ N 3 7 3 -NH₂ -I -CH₂CH₂OC₀H₅ -CH₂CH₂OC₀H₅ N 3 7 4 -NH₂ -I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OC₀H₅ N 3 7 5 -NH₂ -I -CH₂CH₂OCH₂C₀H₅ -CH₂CF₂ N 3 7 6 -NH₂ -I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N 3 7 7 -NH₂ -I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N 3 7 8 -NH₂ -I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N 3 7 9 -NH₂ -I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OCH₃ N 3 8 1 -NH₂ -I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OC₀H₃ N 3 8 2 -NH₂ -I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OCH₂C₀H₃ N 3 8 3 -NH₂ -I -CH₂CH₂O	No. R¹ R² R³ R⁴ X Y 3 7 1 -NH₂ - I -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₂ N C 3 7 2 -NH₂ - I -CH₂CH₂OC₀H₅ -CH₂CH₂OCH₂ N C 3 7 3 -NH₂ - I -CH₂CH₂OC₀H₅ -CH₂CH₂OC႕₀C₀H₅ N C 3 7 4 -NH₂ - I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂ N C 3 7 5 -NH₂ - I -CH₂CH₂OCH₂C₀H₅ -CH₂CF₂ N C 3 7 6 -NH₂ - I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂ N C 3 7 7 -NH₂ - I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₂ N C 3 7 8 -NH₂ - I -CH₂CH₂OCH₂C₀H₅ -CH₂CH₂OCH₃ N C 3 8 0 -NH₂ - I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OC႕₂C₀H₅ N C 3 8 1 -NH₂ - I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OCH₂C₀H₃ N C 3 8 2 -	No. R¹ R² R³ R⁴ X Y Z 3 7 1 -NH₂ - I -CH₂CH₂OC₀H₂ -CH₂CH₂OCH₂ N C N 3 7 2 -NH₂ - I -CH₂CH₂OC₀H₂ -CH₂CH₂OCH₂ N C N 3 7 3 -NH₂ - I -CH₂CH₂OC₀H₂ -CH₂CH₂OC₀H₂ N C N 3 7 4 -NH₂ - I -CH₂CH₂OCH₂C₀H₂ -CH₂CH₂OC₀H₂ N C N 3 7 5 -NH₂ - I -CH₂CH₂OCH₂C₀H₂ -CH₂CF₂ N C N 3 7 6 -NH₂ - I -CH₂CH₂OCH₂C₀H₂ -CH₂CH₂OCH₃ N C N 3 7 7 -NH₂ - I -CH₂CH₂OCH₂C₀H₂ -CH₂CH₂OCH₃ N C N 3 7 8 -NH₂ - I -CH₂CH₂OCH₂C₀H₂ -CH₂CH₂OCH₃ N C N 3 8 1 -NH₂ - I -CH₂CH₂OCH₂C₀H₃ -CH₂CH₂OC₀H₂C₀H₃ N C N 3 8 2

Table 1 (Continued)

14010		• ''	Jon t Inded,					
Comp. No.	R'	R²	R³	R ⁴	x	Y	z	P. S.
3 9 1	−NH₂	- I	-CH₂CH₂OC(0)CH₂	-CH2CH2OCH2C6H5	N	С	N	X
3 9 2	−NH₂	- I	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
3 9 3	-NH2	- I	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Х
3 9 4	-NH2	- I	-CH₂CH₂OC(O)CH₃	-CH2CH2OC(0)CH3	N	С	N	Z
3 9 5	−NH₂	- I	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
3 9 6	-NH₂	– I	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
397	-NH ₂	– I	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
3 9 8	-NH2	- I	-CH₂CH₂OC(O)C₃H₁	-CH2CH2OC(0)C3H7	N	С	N	Z
399	−NH₂	- I	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
400	-NH2	- I	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H8	N	С	N	Z

Table 1	(Contir	ued)
---------	---------	------

	_	abic	•			$\neg \tau$	- 1	-		i
5	Comp. No.	R¹	R²	R³	R4	x	Y	z	P. S.	
	401	-NH2	-он	−CH₃	-CF ₂ CF ₂	N	С	N	Х	
10	402	-NH2	-он	-CH3	-CF ₂ CF ₃	N	С	N	Z	
	403	-NH2	-он	-CH ₃	-CH₂CF₃	N	С	N	X	
15	404	-NH2	-он	−CH ₃	-CH ₂ CF ₃	N	С	N	Z	
	405	-NH2	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X	
	406	-NH2	-он	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z	
20	407	-NH2	-OH	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X	
	408	−NH₂	-он	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z].
25	409	-NH2	-он	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X	
	4 1 0	-NH ₂	-он	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z	
30	411	-NH ₂	-он	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	С	N	X	
	412	-NH ₂	-он	-CH₂CH₂OCH₃	−CH ₂ CF ₃	N	С	N	Z	
35	4 1 3	-NH ₂	-OH	-CH2CH2OCH3	-CH2CH2OCH3	N	C	N	X	
	414	-NH2	-он	-CH2CH2OCH2	—CH₂CH₂OCH₃	N	С	N	Z	
	415	-NH ₂	-он	-CH₂CH₂OC₂H₅	-CH2CH2OC2H5	N	C	N	X	
40	4 1 6	-NH2	-он	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	Z	4
	417	-NH ₂	-он	-CH₂CH₂OC₃H₁	-CH ₂ CH ₂ OC ₃ H ₇	N	C	N	X	
45	4 1 8	-NH ₂	-он	-CH ₂ CH ₂ OC ₂ H ₇	-CH2CH2OC3H7	N	C	N	Z	
	4 1 9	-NH ₂	-он	-CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CF ₃	N	C	N	X	
50	4 2 0	-NH ₂	-он	-CH ₂ CH ₂ OC ₆ H ₅	-CH₂CF₃	N		N	I Z	
	L									

Table 1 (Continued)

	1 4	Die 1	(00	II t I II d e d /					
5	Comp. No.	R¹	R²	R*	R4	х	Y	z	P. S.
	421	-NH ₂	-он	-CH2CH2OCeH5	-CH₂CH₂OCH₃	N	С	Ν	X
10	4 2 2	−NH₂	-он	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
	423	-NH ₂	-он	-CH2CH2OC6H5	-CH2CH2OC6H5	Ν	С	N	Х
	4 2 4	-NH2	-он	-CH2CH2OC6H5	—CH2CH2OC€H5	N	С	N	Z
15	4 2 5	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Х
	426	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z
20	427	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	X
	4 2 8	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Z
25	4 2 9	-NH2	-он	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	4 3 0	-NH2	-он	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	4 3 1	-NH ₂	-он	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
00	4 3 2	-NH ₂	-он	-CH2CH2OCH2C8H5	-CH2CH2OCH2C6H5	N	C	N	Z
	4 3 3	-NH ₂	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	C	N	X
35	4 3 4	-NH ₂	-он	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	4 3 5	-NH2	-он	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	c	N	X
40	4 3 6	−NH₂	-он	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	c	N	Z
	437	-NH ₂	-он	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	C	N	X
45	4 3 8	-NH ₂	-он	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	C	N	Z
	4 3 9	-NH ₂	-он	-CH2CH2OC(O)CH3	-CH2CH2OC6H5	N	C	N	X
6 0	4 4 0	-NH ₂	-он	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	N		N	I Z
50	4 4 0	-NH ₂	-он	-CH2CH2UC(U)CH3	-CH2CH2UCeN5	<u> </u>		' '	

Table 1 (Continued)

		• •					$\overline{}$	
Comp.	R¹	R²	R³	R*	х	Y	z	P. S.
4 4 1	-NH ₂	-он	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	X
4 4 2	-NH ₂	-он	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
4 4 3	-NH ₂	-OH	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	X
4 4 4	-NH ₂	-он	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
4 4 5	-NH ₂	-он	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
4 4 6	-NH ₂	-он	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
447	-NH2	-он	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
4 4 8	-NH2	-он	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
4 4 9	-NH ₂	-он	-CH ₂ CH ₂ OC(0)C ₄ H ₈	-CH2CH2OC(0)C4H9	N	С	N	X
450	-NH ₂	-он	-CH2CH2OC(0)C4H8	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

Table	1 (Cont	i	nued)	
-------	-----	------	---	-------	--

	1	aure	1 (00	H t I H d o d)					
5	Comp. Na.	R¹	R²	R³	R4	X	Y	z	P. S.
	4 5 1	-NH2	-NH ₂	−CH₃	-CF ₂ CF ₃	N	С	N	X
10	452	-NH2	−NH₂	−CH₂	-CF2CF3	N	С	Ν	Z
	453	-NH ₂	-NH2	−CH ₃	-CH₂CF₃	N	С	N	Х
15	454	-NH2	−NH₂	−CH₃	−CH ₂ CF ₃	N	С	N	Z
	455	-NH2	−NH₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	456	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
20	457	-NH2	-NH₂	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	Х
	4 5 8	-NH2	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	459	-NH ₂	-NH2	-CH ₂ CF ₃	−CH ₂ CF ₃	N	С	N	X
	460	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
30	4 6 1	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	С	N	X
	462	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	C	N	Z
35	463	-NH ₂	-NH ₂	-CH2CH2OCH3	-CH₂CH₂OCH₃	N	C	N	X
	4 6 4	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	C	N	Z
	465	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	X
40	4 6 6	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	Z
	4 6 7	-NH ₂	-NH ₂	-CH2CH2OC3H7	-CH2CH2OC3H7	N	C	N	X
45	4 6 8	-NH ₂	-NH ₂	-CH₂CH₂OC₃H ₇	-CH2CH2OC3H7	N	C	N	Z
	4 6 9	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CF ₂	N		1	X
50	470	-NH ₂	-NH ₂	-CH₂CH₂OC₅H₅	-CH ₂ CF ₃	N		: N	I Z
	L				· _				

Table 1 (Continued)

	ı	able	1 (00	ntinuedy					
5	Comp. Na.	R¹	R²	R³	R4	X	Y	z	P. S.
	471	-NH2	-NH2	—CH₂CH₂OC₅H₅	-CH₂CH₂OCH₃	N	С	N	Х
10	472	-NH2	-NH ₂	-CH2CH2OC6H5	-CH2CH2OCH3	Ν	С	N	Z
70	473	-NH2	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC8H5	N	С	N	Х
	474	-NH2	-NH ₂	-CH2CH2OC6H5	—CH2CH2OC6H5	И	С	N	Z
15	475	−NH₂	-NH ₂	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	N	Х
	476	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	N	Z
20	477	-NH2	-NH2	-CH2CH2OCH2CeH5	-CH₂CH₂OCH₃	N	С	N	X
	478	−NH₂	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Z
25	479	-NH ₂	-NH2	-CH2CH2OCH2CeH5	-CH2CH2OC6H5	N	С	N	Х
20	480	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
	481	−NH₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	X
30	482	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
	483	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	X
35	484	-NH2	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	4 8 5	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	С	N	X
40	486	-NH2	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	Z
	487	-NH ₂	-NH ₂	-CH2CH2OC(0)CH2	-CH₂CH₂OCH₃	N	С	N	X
	4 8 8	-NH ₂	-NH ₂	-CH ₂ CH ₂ 0C(0)CH ₂	-CH₂CH₂OCH₃	N	C	N	Z
45	489	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	N	С	N	X
	490	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCeH5	N	C	N	Z

55

Table 1 (Continued)

	able	1 (00	n t i n d d d z					
Comp.	R¹	R²	R³	R'	х	Y	Z	P. S.
4 9 1	−NH₂	-NH ₂	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	X
492	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
493	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC(0)CH ₃	N	С	N	X
494	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH2	N	С	N	z
495	-NH2	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	X
496	-NH2	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
497	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
498	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
499	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Х
500	-NH2	-NH2	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	Č	N	Z

Table 1 (Continued)

5 No. R.	Z P.S N X N Z	
5 0 1 -C 1 -NH ₂ -CH ₂ -CF ₂ CF ₃ N C 1		\dashv
TOO CI NIL CH -CF-CF- N C I	N Z	_
10 5 0 2 -C 1 -NH ₂ -CH ₃ -CF ₂ CF ₃ N C 1		
	X N	
504 -C1 -Nn2 -Giis - Giizo - G	N Z	Z
5 0 5 -C 1 -NH ₂ -CF ₂ CF ₃ -CF ₂ CF ₃ N C	N 3	X
5 0 6 -C 1 -NH ₂ -CF ₂ CF ₃ -CF ₂ CF ₃ N C	N Z	Z
20 5 0 7 -C 1 -NH ₂ -CF ₂ CF ₃ -CH ₂ CF ₂ N C	N Z	X
5 0 8 -C 1 -NH ₂ -CF ₂ CF ₃ -CH ₂ CF ₃ N C	N 3	Z
25 5 0 9 -C 1 -NH ₂ -CH ₂ CF ₃ -CH ₂ CF ₃ N C	N :	X
5 1 0 -C 1 -NH ₂ -CH ₂ CF ₃ -CH ₂ CF ₃ N C	N :	Z
5 1 1 -C 1 -NH ₂ -CH ₂ CH ₂ OCH ₂ -CH ₂ CF ₃ N C	N	X
5 1 2 -C 1 -NH ₂ -CH ₂ CH ₂ OCH ₃ -CH ₂ CF ₃ N C	N	Z
5 1 3 -C 1 -NH ₂ -CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OCH ₂ N C	N	X
5 1 4 -C 1 -NH ₂ -CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OCH ₃ N C	N	Z
5 1 5 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₂ H ₅ -CH ₂ CH ₂ OC ₂ H ₅ N C	N	X
40 5 1 6 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₂ H ₅ -CH ₂ CH ₂ OC ₂ H ₅ N C	N	Z
5 1 7 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₃ H ₇ -CH ₂ CH ₂ OC ₃ H ₇ N C	N	X
5 1 8 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₂ H ₇ -CH ₂ CH ₂ OC ₃ H ₇ N C	N	Z
5 1 9 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₆ H ₅ -CH ₂ CF ₃ N C	N	X
5 2 0 -C 1 -NH ₂ -CH ₂ CH ₂ OC ₆ H ₅ -CH ₂ CF ₃ N C	N	Z

Table 1 (Continued)

	1 a	bie	1 (00	ii t i ii d c d /		$\overline{}$		$\neg \tau$	
5	Comp.	R¹	R²	. R³	R ⁴	x	Y	z	P. S.
	5 2 1	-C1	-NH ₂	-CH2CH2OC6H5	-CH2CH2OCH2	N	С	N	Х
10	5 2 2	-C1	-NH ₂	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	С	N	Z
70	5 2 3	-C1	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	Ν	С	N	X
	524	-C1	-NH2	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	N	Z
15	5 2 5	-C1	-NH ₂	-CH2CH2OCH2C6Hs	-CH ₂ CF ₃	N	С	N	X
	5 2 6	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z
20	527	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
	5 2 8	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Z
25	5 2 9	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	5 3 0	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6Hs	N	С	N	Z
	5 3 1	-C1	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	X
30	5 3 2	-C1	-NH ₂	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH2CH2OCH2C6H5	N	C	N	Z
	5 3 3	-C1	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	C	N	X
35	5 3 4	-C1	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H6	N	C	N	Z
	5 3 5	-C1	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	C	N	X
40	5 3 6	-C 1	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	C	N	Z
	5 3 7	7 -C1	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	C	N	X
45	5 3 8	3 -C1	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH3	N		N	Z
45	5 3	9 -C	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OC6H5	N	I C	; N	ı X
	5 4	0 -C	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC4H5	N	1 C	1	I Z

Table 1 (Continued)

1 0	DIE	1 (00	THE THE CO.					$\neg \neg$
Comp.	R'	R²	R³	. R4	х	Y	z	P. S.
5 4 1	-C1	-NH2	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Х
5 4 2	-C1	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
5 4 3	-C1	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	X
5 4 4	-C1	-NH ₂	-CH2CH2OC(0)CH2	-CH2CH2OC(0)CH3	N	С	N	Z
5 4 5	-C1	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
5 4 6	-C1	−NH₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
5 4 7	-C1	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
5 4 8	-C1	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C2H7	N	С	N	Z
5 4 9	-C1	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Х
5 5 0	-C1	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₈	N	С	N	Z

Table 1 (Continued)

5	Comp.	R¹	R²	R³	R4	х	Y	z	P. S.	
	551	-C1	-C1	-CH₃	-CF ₂ CF ₃	N	С	N	X	
10	552	-C1	-C1	−CH ₃	-CF ₂ CF ₃	N	С	N	Z	
	553	-C1	-C1	-CH ₃	−CH ₂ CF ₃	Ν	С	N	X	
15	5 5 4	-C1	-C1	−CH₃	-CH ₂ CF ₃	N	С	N	Z	
75	5 5 5	-C1	-C1	-CF ₂ CF ₂	-CF ₂ CF ₃	N	С	N	Х	
	5 5 6	-C1	-C1	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z	
20	5 5 7	-C1	-C1	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Х	
	5 5 8	-C1	-C1	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z	
25	5 5 9	-C1	-C1	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X	
	5 6 0	-C1	-C1	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z	
30	5 6 1	-C1	-C1	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	C	N	X	
	562	-C1	-C1	-CH2CH2OCH3	-CH ₂ CF ₃	N	C	N	Z	
05	563	-C1	-C1	-CH ₂ CH ₂ OCH ₃	-CH2CH2OCH3	N	С	N	Х	
35	5 6 4	-C1	-C1	-CH2CH2OCH3	—CH₂CH₂OCH₃	N	С	N	Z	
	5 6 5	-C1	-C1	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	X	
40	5 6 6	-C1	-C1	-CH ₂ CH ₂ OC ₂ H ₅	-CH ₂ CH ₂ OC ₂ H ₅	N	С	N	Z	
	5 6 7	-C1	-C1	−CH₂CH₂OC₃H ₇	-CH ₂ CH ₂ OC ₃ H ₇	N	C	N	X	
45	5 6 8	-C1	-C1	-CH2CH2OC2H7	-CH ₂ CH ₂ OC ₃ H ₇	N	C	N	Z	
	5 6 9	-C1	-C1	-CH2CH2OC6H5	-CH ₂ CF ₂	N	C	N	X	
50	570	-C1	-C1	-CH2CH2OC6H5	-CH ₂ CF ₃	N	C	N	Z	

Table 1 (Continued)

	ı a	ble	1 (0	Ontinuedy					
5	Comp.	R¹	R²	R³	R⁴	x	Y	z	P. S.
	571	-C1	-C1	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	X
10	572	-C1	-C1	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	Z
	573	-C1	-C1	-CH2CH2OC6H5	-CH2CH2OC6H5	N	С	Ν	Х
	574	-C1	-C1	-CH2CH2OC6H6	—CH2CH2OC6H6	N	С	N	Z
15	575	-C1	-C1	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	X
	5 7 6	-C1	-C1	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	N	Z
20	577	-C1	-C1	-CH2CH2OCH2C8H5	-CH₂CH₂OCH₃	N	С	N	X
	5 7 8	-C1	-C1	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Z
25	579	-C1	-C1	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	X
	580	-C 1	-C1	-CH2CH2OCH2CeH5	-CH2CH2OC6H5	N	С	N	Z
30	5 8 1	-C1	-ci	-CH2CH2OCH2C6H5	-CH2CH2OCH2C5H5	N	С	N	X
	582	-C1	=C1	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Z
	583	-C1	-C1	-CH2CH2OC2H4C6H8	-CH2CH2OC2H4C6H5	N	Ċ	Ñ	X
35	5 8 4	-C1	-C1	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	C	N	Z
	585	-C1	-C1	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	X
40	5 8 6	-C1	-C1	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	Z
	587	-C1	-C1	-CH ₂ CH ₂ OC(0)CH ₂	-CH₂CH₂OCH₃	N	C	N	X
45	5 8 8	-C1	-C1	-CH ₂ CH ₂ OC(0)CH ₂	-CH₂CH₂OCH₃	N	C	N	Z
	5 8 9	-C1	-C1	-CH2CH2OC(0)CH2	-CH2CH2OC6H5	N	C	N	X
50	5 9 0	-C1	-C1	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	N	C	N	Z

Table 1 (Continued)

Comp.	1016							
No.	R¹	R²	R³	R'	X	Y	Z	P. S.
			err err eo(e)(#1	מז מו ממו פי ע	N	С	N	X
591	-C1	-C1	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	14		.,	
592	-C1	-C1	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C6H5	N	С	N	Z
593	-C1	-C1	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	X
5 9 4	-C1	-C1	-CH2CH2OC(O)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
5 9 5	-C1	-C1	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
596	-C1	-C1	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
5 9 7	-C1	-C1	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	X
5 9 8	-C1	-C1	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	N	Z
5 9 9	-C1	-C1	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Х
600	-C1	-C1	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	Z

Table 1 (Continued)

	1	abic					- 1			i
5	Comp. No.	R¹	R²	R³	R4	x	Y	Z	P. S.	
	601	-SH	-NH2	-CH ₃	-CF ₂ CF ₃	N	С	N	X	
	602	-sH	-NH ₂	−CH₃	-CF ₂ CF ₃	N	С	N	Z	
10	603	-SH	-NH ₂	−CH³	-CH₂CF₃	N	С	N	X	
	604	-SH	-NH ₂	−CH₃	-CH ₂ CF ₃	N	С	N	Z	
15	605	-SH	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X	
	606	-SH	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	z	
20	607	-SH	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Х	
	608	-SH	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z	
	609	-SH	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	С	N	X	
25	610	-SH	-NH ₂	-CH₂CF₃	-CH ₂ CF ₃	N	С	N	Z	
	6 1 1	-ѕн	-NH ₂	−CH₂CH₂OCH₃	-CH ₂ CF ₃	N	c	N	X	
30	612	-SH	-NH ₂	-CH2CH2OCH3	-CH ₂ CF ₃	N	С	N	Z	
	6 1 3	-SH	-NH ₂	-CH₂CH₂OCH₃	−CH ₂ CH ₂ OCH ₃	N	C	N	X	
35	614	-SH	-NH ₂	−CH₂CH₂OCH₃	-CH2CH2OCH3	N	C	N	Z	
	615	-SH	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	X	
40	6 1 6	-SH	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	C	N	Z	
40	617	-SH	-NH ₂	-CH2CH2OC3H7	-CH2CH2OC3H7	N	C	N	X	
	6 1 8	-SH	I −NH₂	-CH2CH2OC3H7	-CH2CH2OC3H7	N	ı C	1	ı z	_
45	619	-SF	I -NH2	-CH2CH2OC6H5	-CH ₂ CF ₃	N	1 C	: N	1 X	
,	6 2 0	-SF	I −NH₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	1 C	: N	ı z	
	L									

55

Table 1 (Continued)

	Тa	ble	1 (Co	ntinued)				—т	
5	Comp.	R'	R²	R³	R4	x	Y	z	P. S.
	621	-SH	-NH ₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	С	N	X
10	622	-SH	-NH ₂	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	С	N	Z
	623	-SH	-NH2	-CH2CH2OC6H5	-CH2CH2OC4H5	N	С	N	X
	6 2 4	-SH	−NH₂	-CH2CH2OCsH5	-CH2CH2OC6H5	Ν	С	N	Z
15	6 2 5	-SH	-NH ₂	-CH2CH2OCH2C6H5	−CH ₂ CF ₃	N	С	N	X
	6 2 6	-SH	-NH2	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	N	Z
20	627	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	С	N	X
•	628	-SH	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	С	N	Z
25	629	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	C	N	Х
	630	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	6 3 1	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	X
30	6 3 2	-SH	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	C	N	Z
	6 3 3	-SH	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	C	N	X
35	6 3 4	-SH	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	C	N	Z
	6 3 5	-SH	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	C	N	X
40	6 3 6	-SH	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N		N	Z
	6 3 7	-SF	I -NH ₂	-CH ₂ CH ₂ OC(0)CH ₂	-CH2CH2OCH3	N		N	X
45	6 3 8	-SF	I -NH2	-CH2CH2OC(0)CH2	-CH₂CH₂OCH₃	\\rangle	1 C	1	Z
	6 3 9	-SF	I -NH2	-CH ₂ CH ₂ OC(0)CH ₂	-CH₂CH₂OC₀H₅	N	1 0	1	X
	6 4 0	O -SF	I -NH2	-CH2CH2OC(0)CH3	-CH2CH2OC 8H5	N	1 0		I Z
50	L								

Table 1 (Continued)

1 0						$\overline{}$	$\neg \neg$	
Comp.	R¹	R²	R³	R4	х	Y	Z	P. S.
6 4 1	-SH	−NH₂	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5	N	С	N	X
6 4 2	-SH	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	С	N	Z
6 4 3	-SH	-NH ₂	-CH2CH2OC(0)CH3	-CH₂CH₂OC(0)CH₃	N	С	N	X
6 4 4	-SH	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
6 4 5	-SH	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
6 4 6	-SH	-NH ₂	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH2CH2OC(0)C2H5	N	С	N	Z
647	-SH	-NH ₂	-CH2CH2OC(0)C2H7	-CH2CH2OC(0)C3H7	N	С	N	Х
6 4 8	-SH	-NH ₂	-CH2CH2OC(0)C2H7	-CH ₂ CH ₂ OC(0)C ₂ H ₇	N	С	N	Z
6 4 9	-SH	-NH ₂	-CH2CH2OC(0)C4H8	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
650	-SH	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₈	N	С	N	Z

Table 1	(Continued)	
---------	-------------	--

	1	abie	1 (00	ii t i ii a c a y			—т			\neg
5	Comp.	R¹	R²	R³	R4	х	Y	Z	P.S	
•	651	-NH2	-NH2	−CH₃	-CF ₂ CF ₃	N	N	N	X	
10 -	652	-NH ₂	-NH ₂	−СН₃	-CF ₂ CF ₃	N	N	N	Y	
	653	-NH ₂	-NH2	-CH ₃	-CF ₂ CF ₃	N	N	N	Z	
15	6 5 4	-NH2	-NH ₂	−CH ₃	-CH ₂ CF ₃	N	N	N	X	
	655	-NH2	-NH ₂	−CH₃	-CH ₂ CF ₃	N	N	N	Y	
20	6 5 6	-NH2	-NH ₂	-СН3	-CH₂CF₃	N	N	N	2	<u>'</u>
	657	-NH2	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	7	
	658	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	1 3	Y
25	6 5 9	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	1 2	Z
	660	-NH2	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	1	1 3	X
30	6 6 1	-NH2	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	I	1	Y
	662	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	1	1	Z
35	6.63	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	N	1 1	1	X
	6 6 4	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	N	1 1	1	Y
	665	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₂	N	I	1 1	N	Z
40	666	-NH ₂	-NH2	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	I	1]	N	X
	66	7 -NH ₂	-NH₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	1 1	1	N	Y
45	6 6	8 −NH₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	1	1 1	1	N	Z
	6 6	9 -NH ₂	-NH	-CH ₂ CH ₂ OCH ₃	-CH₂CH₂OCH₃	1	1 1	1	N	X
50	67	0 -NH ₂	-NH	-CH ₂ CH ₂ OCH ₃	—CH₂CH₂OCH₃	1	1 1	N	N	Y

Table 1 (Continued)

•		Table	1 (0	ontinuedi		 -			
	Comp. Na.	R¹	R¹	R³	R ⁴	x	Y	z	P. S.
	671	-NH2	-NH:	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	N	N	Z
	672	-NH2	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	N	Х
	673	-NH2	−NH₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	Ν	N	Y
	674	-NH ₂	-NH:	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	N	Z
	675	-NH2	-NH2	-CH2CH2OC3H7	-CH2CH2OC3H7	N	N	Ν	Х
	676	-NH2	-NH2	-CH2CH2OC3H7	-CH2CH2OC3H7	N	N	N	Υ.
	677	-NH ₂	-NH2	-CH2CH2OC3H7	-CH2CH2OC3H7	N	N	N	Z
	678	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	N	N	Х
	679	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	N	N	Y
	680	-NH2	-NH ₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	N	N	Z
	681	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OCH3	N	N	N	X
	682	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OCH3	N	N	N	Y
	683	-NH ₂	-NH ₂	-CH2CH2OCeH5	-CH₂CH₂OCH₃	N	N	N	Z
	684	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC6H5	N	N	N	X
	685	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N	N	N	Y
	686	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N	N	I N	Z
	687	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	I	X
	6 8 8	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	I V	Y
	689	-NH ₂	-NH ₂	-CH2CH2OCH2CeH5	-CH ₂ CF ₂	N	I	1 1	ı z
	690	NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	IN	1 1	1 X

Table 1 (Continued)

		labie	1 (0	On this coup					
5	Comp.	R¹	R²	R³	R4	x	Y	z	P. S.
-	691	-NH ₂	-NH ₂	-CH₂CH₂OCH₂C¢H₅	-CH₂CH₂OCH₃	N	N	N	Y
	692	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2	N	N	N	Z
10	693	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	N	N	х
	694	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Y
15	695	-NH ₂	−NH₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	N	Z
	696	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	N	х
20	697	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	N	Y
	698	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅	-CH2CH2OCH2C5H5	N	N	N	Z
	699	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C8H5	N	N	N	X
25	700	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	N	N	Y
	701	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	N	Z
30	702	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₂	N	N	N	X
	703	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	N	N	Y
35	704	-NH2	-NH ₂	-CH2CH2OC(0)CH2	-CH ₂ CF ₃	N	N	N	Z
	705	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	N	IN	ı X
	706	-NH ₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	I	I	Y
40	707	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OCH₃	N	1 1	1 1	I Z
	708	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC6H5	1	I	1 1	1 X
45	709	-NH ₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC eH5	1	1 1	1 1	1 X
	7 1 0	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC4H5	1	1 1	1 1	1 Z

50

Table 1 (Continued)

1	able	1 (00	ntinueu					
Comp. No.	R۱	R²	R³	R4	х	Y	z	P. S.
711	-NH2	-NH2	-CH2CH2OC(0)CH2	-CH2CH2OCH2C4H5	N	N	N	X
712	-NH ₂	-NH2	-CH2CH2OC(O)CH3	-CH2CH2OCH2C6H5	N	N	N	Y
713	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	N	N	z
714	-NH2	-NH2	-CH2CH2OC(0)CH2	-CH2CH2OC(0)CH3	N	N	N	Х
715	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH2	N	N	N	Y
716	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	N	N	Z
717	-NH₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	N	Х
718	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	N	Y
719	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	N	Z
720	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	N	N	Х
721	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	N	N	Y
722	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇	N	N	N	Z
723	-NH2	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ 0C(0)C ₄ H ₉	N	N	N	X
724	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	N	N	Y
725	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	N	N	2

Table 1 (Continued)

	1	able	1 (00	II (I II d c d)						
5	Comp.	R¹	R²	R³	R'	X	Y	z	P. S.	
	726	-NH2	-NH ₂	−CH₃	-CF ₂ CF ₃	N	N	С	Х	
10	727	-NH2	-NH2	−CH₃	-CF ₂ CF ₃	N	N	C	Y	
	728	-NH ₂	-NH2	—СН₃	−CH₂CF₃	N	N	С	X	
	729	-NH2	-NH2	−CH₃	-CH ₂ CF ₃	N	N	С	Y	
15	7 3 0	-NH2	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Х	
	7 3 1	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Y	
20	7 3 2	-NH2	−NH₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	С	X	
	7 3 3	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	С	Y	
25	7 3 4	-NH ₂	-NH2	−CH₂CF₃	-CH ₂ CF ₃	N	N	C	X	
	7 3 5	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH₂CF₃	N	N	С	·Y	
30	7 3 6	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	N	C	X	
	7 3 7	-NH ₂	-NH ₂	−CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	C	Y	
	7 3 8	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH2CH2OCH3	N	N	C	X	
35	7.3 9	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH2CH2OCH2	N	N	C	Y	_
	740	-NH ₂	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	C	X	
40	741	-NH ₂	-NH ₂	-CH2CH2OC2H5	-CH ₂ CH ₂ OC ₂ H ₅	N	N	C	Y	_
	743	2 -NH ₂	-NH ₂	-CH2CH2OC3H7	-CH ₂ CH ₂ OC ₃ H ₇	N	I N		X	
45	74	3 -NH ₂	-NH2	-CH2CH2OC3H7	-CH ₂ CH ₂ OC ₃ H ₇	1	I		Y	
	7 4	4 -NH ₂	-NH2	-CH2CH2OC6H5	-CH ₂ CF ₃	1	I	1 (X	
50	7 4	5 -NH ₂	-NH2	-CH2CH2OC6H6	-CH ₂ CF ₃	N	1 1	1 (Y	

Table 1 (Continued)

	Т	able	1 (00	ntinuedi		т			
5	Comp. Na.	R¹	R²	R³	R4	Х	Y	z	P. S.
	746	-NH2	−NH₂	-CH2CH2OC6H5	-CH₂CH₂OCH₃	N	N	С	х
10	747	-NH2	-NH2	-CH2CH2OC6H5	-CH₂CH₂OCH₂	N	N	С	Y
,,	748	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC6H5	N	N	C	X
	749	-NH2	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC4H5	N	Ν	С	Y
15	750	-NH:	-NH2	-CH2CH2OCH2C6H5	−CH₂CF₃	N	N	С	Х
	751	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	−CH₂CF₃	N	N	С	Y
20	752	-NH ₂	-NH ₂	-CH2CH2OCH2C6H6	-CH2CH2OCH3	N	N	С	X
	753	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	N	С	Y
25	754	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	С	Х
25	755	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC4H5	N	N	С	Y
	756	-NH2	-NH ₂	-CH₂CH₂OCH₂C₅H₅	-CH2CH2OCH2C6H5	N	N	С	X
30	757	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	N	С	Y
	758	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	-CH2CH2OC2H4C6H5	N	N	С	X
35	759	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H6	-CH2CH2OC2H4C6H5	N	N	C	Y
	760	-NH ₂	-NH ₂	-CH2CH2OC(0)CH2	-CH ₂ CF ₃	N	N	C	X
40	761	-NH ₂	-NH ₂	-CH₂CH₂OC(0)CH₃	-CH₂CF₃	N	N	c	Y
40	7 6 2	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	N	C	X
	763	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	N	C	Y
45	7 6 4	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OC4H5	N	N	C	X
	7 6 5	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC ₆ H ₅	N	N	С	Y

55

7	[able	1 (Cc	ntinued)					
Comp. Na.	R'	R²	R³	R ⁴	x	Y	z	P. S.
766	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	N	N	С	X.
767	−NH₂	−NH₂	-CH2CH2OC(O)CH3	-CH2CH2OCH2C6H5	N	N	С	Y
768	−NH₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	N	С	X
769	-NH₂	-NH ₂	-CH2CH2OC(O)CH2	-CH2CH2OC(0)CH3	N	N	С	Y
770	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	С	X
771	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	С	Y
772	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	N	С	X
773	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	N	С	Y
774	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	N	С	X
775	-NH,	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4He	N	N	С	Y

Table 2

Comp.	R³	R ⁴
7 7 6	—CH ₃	-CF ₂ CF ₂
777	-CH ₃	-CH ₂ CF ₃
778	-CF ₂ CF ₃	-CF ₂ CF ₃
779	-CF ₂ CF ₃	-CH ₂ CF ₃
780	−CH ₂ CF ₃	-CH ₂ CF ₃
781	-CH₂CH₂OCH₃	-CH ₂ CF ₃
782	-CH₂CH₂OCH₃	−CH₂CH₂OCH₃
783	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅
784	-CH₂CH₂OC₃H₁	−CH₂CH₂OC₃H ₇
785	-CH2CH2OC6H5	-CH ₂ CF ₃
786	-CH2CH2OC6H5	-CH ₂ CH ₂ OCH ₃
787	-CH2CH2OC6H5	−CH ₂ CH ₂ OC ₆ H ₅
788	—CH2CH2OCH2C6H5	−CH ₂ CF₃
789	-CH2CH2OCH2C0H5	-CH ₂ CH ₂ OCH ₃
790	-CH2CH2OCH2C6H5	-CH2CH2OC6H5
791	—CH₂CH₂OCH₂C₅H₅	-CH2CH2OCH2C6H5
792	-CH2CH2OC2H4C8H5	-CH2CH2OC2H4C6H5
793	-CH₂CH₂OC(O)CH₃	-CH ₂ CF ₃
794	-CH₂CH₂OC(0)CH₂	-CH2CH2OC6H5
795	-CH2CH2OC(0)CH2	−CH ₂ CH ₂ OCH ₂ C ₆ H ₆

Table 2 (Continued)

Comp.	R³	R ⁴
796	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5
79.7	-CH ₂ CH ₂ OC(0)CH ₃	-CH₂CH₂OC(O)CH₃
798	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5
799	-CH2CH2OC(0)C3H7	-CH ₂ CH ₂ OC(0)C ₃ H ₇
800	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₈

Table 3

Comp.	R³	R ⁴
No.	All .	-CF ₂ CF ₂
801	−CH ₃	-CH ₂ CF ₃
802	−CH₃	
803	-CF ₂ CF ₃	-CF ₂ CF ₃
804	-CF ₂ CF ₃	-CH ₂ CF ₃
805	-CH ₂ CF ₃	-CH ₂ CF ₃
806	−CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₂
807	-CH ₂ CH ₂ OCH ₃	—CH₂CH₂OCH₃
808	-CH2CH2OC2H5	−CH ₂ CH ₂ OC ₂ H ₅
809	-CH2CH2OC3H7	—CH₂CH₂OC₃H₁
810	-CH2CH2OC6H5	−CH₂CF₃
8 1 1	-CH2CH2OC6H5	CH ₂ CH ₂ OCH ₃
812	-CH2CH2OC6H5	-CH2CH2OC6H5
813	-CH2CH2OCH2C6H5	-CH ₂ CF ₃
814	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OCH ₃
8 1 5	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OC ₆ H ₅
8 1 6	-CH2CH2OCH2CeH5	-CH ₂ CH ₂ OCH ₂ C ₆ H ₅
817	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅
818	-CH2CH2OC(0)CH2	-CH ₂ CF ₃
819	-CH2CH2OC(0)CH3	-CH2CH2OC6H5
820	-CH2CH2OC(0)CH3	—CH2CH2OCH2C6H6

Table 3 (Continued)

Comp.	R³	R'
8 2 1	-CH₂CH₂OC(O)CH₂	−CH ₂ CH ₂ OCH ₂ C ₆ H ₅
8 2 2	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(0)CH₃
823	—CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5
8 2 4	—CH₂CH₂OC(O)C₃H₁	-CH₂CH₂0C(0)C₃H₁
8 2 5	-CH ₂ CH ₂ OC(0)C ₄ H ₉	—CH2CH2OC(0)C4H8

ne.

Table 4

,	lable	4						
Comp.	R¹	R²	R³	R4	x	Y	z	P. S.
8 2 6	-NH ₂	−NH₂	−CH₃	-CF ₂ CF ₃	N	N	N	X
827	-NH ₂	−NH₂	−CH₃	-CF ₂ CF ₃	N	N	N	Y
828	-NH ₂	−NH₂	—СН₃	-CF ₂ CF ₃	N	N	N	Z
829	-NH ₂	-NH ₂	−СН₃	−CH ₂ CF ₃	N	N	N	X
8 3 0	-NH ₂	-NH ₂	−CH₃	-CH ₂ CF ₃	N	N	N	Y
8 3 1	−NH₂	-NH ₂	—СН₃	−CH ₂ CF ₃	N	N	N	Z
8 3 2	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	X
8 3 3	-NH ₂	-NH2	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	Y
8 3 4	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	N	Z
8 3 5	−NH₂	-NH ₂	-CF ₂ CF ₃	-CH ₂ CF ₃	N	N	N	X
8 3 6	-NH ₂	-NH ₂	-CF ₂ CF ₃	−CH ₂ CF ₃	N	N	N	Y
8 3 7	-NH ₂	-NH ₂	-CF ₂ CF ₃	−CH ₂ CF ₃	N	N	N	Z
8 3 8	-NH ₂	−NH₂	-CH ₂ CF ₃	-CH ₂ CF ₃	N	N	N	X
8 3 9	-NH ₂	-NH ₂	−CH ₂ CF ₃	-CH ₂ CF ₃	N	N	N	Y
8 4 0	-NH ₂	-NH ₂	−CH ₂ CF ₃	-CH ₂ CF ₂	N	N	N	Z
8 4 1	-NH ₂	-NH ₂	—CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	N	X
8 4 2	-NH ₂	-NH ₂	-CH2CH2OCH3	-CH ₂ CF ₃	N	N	N	Y
8 4 3	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH ₂ CF ₃	N	N	N	Z
8 4 4	-NH ₂	-NH ₂	-CH2CH2OCH3	−CH₂CH₂OCH₃	N	N	N	X
8 4 5	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH2CH2OCH3	N	N	N	Y

Table 4 (continued)

	1	able	4 (00	H t l li d c d /					
5	Comp.	R¹	R²	R³	R4	x	Y	z	P. S.
	8 4 6	-NH2	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	N	N	Z
10	847	-NH2	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	N	N	X
	8 4 8	-NH2	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	Ν	N	Y
	8 4 9	-NH2	-NH2	-CH2CH2OC2H5	-CH2CH2OC2H5	N	Ν	N	Z
15	8 5 0	-NH2	−NH₂	-CH2CH2OC3H7	-CH2CH2OC3H7	N	N	N	X
	8 5 1	-NH2	-NH2	-CH2CH2OC3H7	-CH2CH2OC3H7	N	Ν	N	Y
20	8 5 2	-NH2	-NH₂	-CH2CH2OC3H7	-CH2CH2OC3H7	N	N	N	Z
	853	-NH2	-NH₂	-CH2CH2OC6H5	−CH ₂ CF ₃	N	N	N	X
25	854	-NH ₂	-NH ₂	-CH2CH2OC6H5	−CH ₂ CF ₃	N	N	N	Y
	855	-NH ₂	-NH ₂	-CH2CH2OC6H5	−CH ₂ CF ₃	N	N	N	Z
30	856	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OCH3	N	N	N	X
	857	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OCH3	N	N	N	Y
	8 5 8	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OCH3	N	N	N	Z
35	8 5 9	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	N	N	X
	860	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N	N	N	Y
40	8 6 1	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH2CH2OC6H5	N	N	N	Z
	862	-NH ₂	-NH ₂	-CH2CH2OCH2CeH8	-CH ₂ CF ₃	N	N	N	X
45	863	NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	I	Y
	864	1 -NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	1 1	Z
50	86	5 -NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH3	N	I	1 V	1 X
	<u> </u>								

Table 4 (continued)

	Y	~	١	- 1
		Z	P. S	S.
1	Ν	Z	Y	7
1	N	N	2	z
4	N	N	3	X
1	N	N	1	Y
N	N	N		z
N	N	N		X
N	N	N	1	Y
N	N	1	1	Z
N	N	1	1	X
N	N	N	1	<u>Y</u>
N	N	1	1	Z
N	N	1	1	X
N	N	1	1	Y
N	N	1 1	1	Z
N	N	1 1	N	X
N	N	1 1	N	Y
N	I	1	N	Z
N	i n	1	N	X
Ν	1 1	1	N	Y
N	1 1	1	N	Z
	N N N N N N N N N N N N N N N N N N N	1	N	N N 2 N N N N N N N N

Table 4 (continued)

	•	abie	4 (00	on triued)					
5	Comp. Na	R¹	R²	R³	R'	x	Y	z	P. S.
	886	-NH2	−NH₂	-CH2CH2OC(O)CH3	-CH2CH2OCH2C6H5	N	N	N	X
10	887	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H6	Ν	Z	Ŋ	Y
	888	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OCH2C6H5	Ν	Ν	N	Z
15	889	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	N	N	Х
	890	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	Z	Ν	N	Y
20	8 9 1	-NH ₂	-NH2	-CH2CH2OC(0)CH2	-CH2CH2OC(0)CH3	Z	Z	Z	Z
20	892	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅	Z	Z	Z	X
	893	-NH ₂	-NH2	-CH ₂ CH ₂ OC(0)C ₂ H ₅	-CH ₂ CH ₂ OC(0)C ₂ H ₅	Z	N	Z	Y
25	8 9 4	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	Ν	N	N	Z
	895	-NH ₂	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C2H7	Z	N	Z	X
30	8 9 6	-NH ₂	-NH ₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Z	N	N	Y
	897	-NH2	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	Z	N	N	Z
35	898	−NH₂	−NH₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	N	N	X
	8 9 9	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	N	N	Y
40	900	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	N	N	Z

Table 4 (continued)

	1	aure							$\overline{}$
5	Comp. No.	R۱	R²	R³	R4	x	Y	z	P. S.
	901	-NH ₂	-NH ₂	−CH₃	-CF ₂ CF ₃	N	N	С	Х
10	902	-NH ₂	-NH2	−СН₃	-CF ₂ CF ₃	N	N	С	Y
	903	-NH2	-NH2	−CH ₃	-CH₂CF₃	N	N	С	X
	904	−NḤ₂	-NH2	—CH₃	-CH ₂ CF ₃	N	N	С	Y
15	905	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	X
	906	-NH2	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	N	С	Y
20	907	−NH₂	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₂	N	N	С	Х
	908	-NH ₂	-NH2	-CF ₂ CF ₃	−CH ₂ CF ₃	N	N	С	Y
25	909	-NH ₂	-NH2	-CH ₂ CF ₃	−CH ₂ CF ₃	N	N	С	X
	9 1 0	-NH ₂	-NH ₂	-CH ₂ CF ₃	-CH ₂ CF ₂	N	N	С	Y.
30	9 1 1	-NH ₂	-NH ₂	-CH2CH2OCH3	-CH ₂ CF ₂	N	N	С	X
	912	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CF ₃	N	N	С	Y
	913	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH2CH2OCH3	N	N	С	X
35	9 1 4	-NH ₂	-NH ₂	-CH ₂ CH ₂ OCH ₃	-CH ₂ CH ₂ OCH ₃	N	N	С	Y
	9 1 5	-NH2	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	N	C	X
40	9 1 6	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₂ H ₅	-CH2CH2OC2H5	N	N	C	Y
	917	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₃ H ₇	-CH ₂ CH ₂ OC ₃ H ₇	N	N	c	X
45	9 1 8	-NH2	-NH ₂	−CH₂CH₂OC₃H₁	-CH2CH2OC3H7	N	N	C	Y
	9 1 9	-NH ₂	-NH ₂	-CH2CH2OC6H5	−CH ₂ CF ₃	N	N	C	X
50	920	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CF ₃	N	N	С	Y
				•					

Table 4 (continued)

Co							- 1		
3	mp. No.	R¹	R²	R³	R ⁴	x	Y	z	P. S.
9	2 1	-NH ₂	−NH₂	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	N	С	Х
10 9	22	-NH ₂	-NH ₂	-CH2CH2OC6H5	−CH₂CH₂OCH₃	N	N	С	Y
9	23	-NH2	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	−CH2CH2OC6H5	N	N	С	Х
15 9	24	-NH ₂	-NH ₂	-CH2CH2OC6H5	-CH ₂ CH ₂ OC ₆ H ₅	N	N	С	Y
9	2 5	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	N	С	X
	26	-NH2	-NH ₂	-CH2CH2OCH2C6H6	−CH₂CF₃	N	Ν	С	Y
20 9	9 2 7	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N-	N	С	Х
9	9 2 8	-NH ₂	-NH2	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	Ν	N	С	Y
25	929	-NH2	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	N	С	X
8	9 3 0	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OC⋅6H₅	N	N	С	Y
30 8	9 3 1	-NH ₂	−NH₂	-CH2CH2OCH2C6H6	-CH2CH2OCH2C4H5	N	N	С	X
	932	-NH2	−NH₂	-CH2CH2OCH2CeH5	-CH2CH2OCH2C6H5	N	N	С	Y
35	9 3 3	-NH2	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	C	X
	9 3 4	-NH ₂	-NH2	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	N	C	Y
l .	935	-NH ₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	N	c	X
40	9 3 6	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	N	C	Y
	937	-NH ₂	-NH ₂	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₃	N	N	C	X
45	9 3 8	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	N	C	Y
<u> -</u>	9 3 9	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₂	-CH2CH2OC6H5	N	N	C	X
50	9 4 0	-NH ₂	-NH₂	-CH₂CH₂OC(0)CH₃	-CH2CH2OC6H5	N	N	C	Y

Table 4 (continued)

		abic					-		
5	Comp. No.	R¹	R²	R³	R4	x	Y	z	P.S.
9	9 4 1	−NH₂	-NH2	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH2C6H5	N	N	С	Х
10	9 4 2	-NH2	-NH2	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5	N	N	С	Y
	9 4 3	-NH2	-NH2	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC(0)CH ₂	N	N	С	X
15	9 4 4	-NH ₂	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OC(O)CH3	N	N	С	Y
"	9 4 5	-NH ₂	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	N	С	X
20	9 4 6	-NH ₂	-NH2	-CH2CH2OC(0)C2H6	-CH ₂ CH ₂ OC(0)C ₂ H ₅	N	N	С	Y
20	9 4 7	-NH2	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	N	С	X
	9 4 8	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₃ H ₇	-CH2CH2OC(0)C3H7	N	N	С	Y
25	9 4 9	-NH ₂	-NH ₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	N	С	X
	950	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	N	.c	Y
	1								

Table 4 (continued)

	•	able	4 (00	intinueu,					
5	Comp. Na.	· R¹	R²	R³	R4	х	Y	z	P. S.
	951	-NH ₂	-NH2	−СН₃	-CF ₂ CF ₃	Ν	С	N	X
10	952	-NH ₂	-NH ₂	-СН3	-CF ₂ CF ₃	N	С	N	Z
	953	-NH2	−NH₂	−CH₃	−CH ₂ CF ₃	N	С	Ν	Х
	954	−NH₂	-NH2	—СН₃	−CH ₂ CF ₂	N	С	N	Z
15	955	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	X
	956	-NH ₂	−NH₂	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
20	957	-NH ₂	-NH ₂	-CF ₂ CF ₃	-CH₂CF₃	N	С	N	X
	958	-NH ₂	-NH2	-CF ₂ CF ₃	-CH ₂ CF ₃	N	С	N	Z
25	959	-NH2	−NH₂	-CH₂CF₃	-CH₂CF₃	N	С	N	X
	960	−NH₂	-NH2	-CH ₂ CF ₃	-CH₂CF₃	N	С	N	Z
30	961	-NH ₂	-NH ₂	-CH2CH2OCH3	-CH ₂ CF ₂	N	С	N	Х
	962	-NH2	-NH2	CH2CH2OCH3	−CH ₂ CF ₃	N	С	N	Z
•	963	−NH₂	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Х
35	9 6 4	-NH ₂	-NH ₂	-CH₂CH₂OCH₃	-CH₂CH₂OCH₃	N	С	N	Z
	965	-NH2	−NH₂	-CH2CH2OC2H5	-CH2CH2OC2Hs	N	С	N	Х
40	966	-NH2	-NH ₂	-CH2CH2OC2H5	-CH2CH2OC2H5	N	С	N	Z
	967	-NH2	−NH₂	-CH₂CH₂OC₃H₁	—CH₂CH₂OC₂H7	N	С	N	X
45	968	-NH ₂	−NH₂	-CH₂CH₂OC₃H₁	-CH ₂ CH ₂ OC ₃ H ₇	N	С	N	Z
	969	−NH₂	−NH₂	—CH₂CH₂OC₅H₅	−CH ₂ CF ₃	N	С	N	X
50	970	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH ₂ CF ₂	N	С	N	Z

Table 4 (continued)

5	Comp.	R¹	R²	R³	R4	x	Y	z	P. S.
:	971	-NH2	-NH2	-CH2CH2OCeHs	−CH₂CH₂OCH₂	N	С	N	X
10	9 7.2	-NH ₂	-NH₂	-CH ₂ CH ₂ OC ₆ H ₅	−CH₂CH₂OCH₂	N	С	N	Z
	973	−NH₂	-NH2	-CH₂CH₂OC₅H₅	-CH2CH2OC6H5	N	С	N	X
15	974	−NH₂	-NH ₂	-CH ₂ CH ₂ OC ₆ H ₅	-CH2CH2OC6H5	N	С	N	Z
	975	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	Ν	X
20	976	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH ₂ CF ₃	N	С	Ν	Z
20	977	-NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	N	Х
	978	-NH2	-NH2	-CH2CH2OCH2C6H6	-CH2CH2OCH3	N	С	N	Z
25	979	-NH2	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Х
	980	−NH₂	-NH2	-CH2CH2OCH2C6H5	-CH2CH2OC6H5	N	С	N	Z
30	981	−NH ₂	-NH ₂	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5	N	С	N	Х
	982	-NH ₂	−NH₂	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C₃H₅	N	С	N	Z
35	983	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Х
	984	-NH ₂	-NH ₂	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	N	Z
	985	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH ₂ CF ₃	N	С	N	X
40	986	-NH2	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	С	N	Z
	987	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	-CH2CH2OCH3	N	С	N	X
45	988	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₃	—CH₂CH₂OCH₃	N	c	N	Z
	989	-NH ₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₂	—CH₂CH₂OC₅H₅	N	С	N	X
50	990	−NH₂	-NH ₂	-CH ₂ CH ₂ OC(0)CH ₂	-CH2CH2OC6H5	N	С	N	Z

Table 4 (continued)

Comp.	R¹	R²	R³	R ⁴	X	Y	z	P. S.
991	−NH₂	-NH2	-CH2CH2OC(0)CH3	-CH2CH2OCH2C9H5	N	С	N	Х
992	-NH2	-NH ₂	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5	N	С	N	Z
993	−NH₂	-NH ₂	-CH2CH2OC(0)CH3	-CH ₂ CH ₂ OC(0)CH ₃	N	C	N	Х
994	−NH₂	-NH ₂	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH3	N	С	N	Z
9 9 5	−NH₂	-NH2	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Х
996	-NH2	-NH ₂	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5	N	С	N	Z
.997	−NH₂	−NH₂	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C2H7	N	С	N	Х
998	-NH2	-NH2	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7	N	С	Ν	Z
999	-NH ₂	−NH₂	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉	N	С	N	X
1000	-NH ₂	-NH2	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H9	N	С	N	Z

Table 5

5

10

		able 3				
15	Comp. No.	R³	R4			
	1001	−CH₃	-CF ₂ CF ₃			
	1002	−CH ₃	-CH ₂ CF ₃			
20 .	1003	-CF ₂ CF ₃	-CF ₂ CF ₃			
	1004	-CF ₂ CF ₃	−CH₂CF₃			
	1005	−CH₂CF₃	-CH ₂ CF ₃			
25	1006	-CH₂CH₂OCH₃	-CH ₂ CP ₃			
	1007	−CH₂CH₂OCH₃	-CH2CH2OCH2			
	1008	—CH₂CH₂OC₂H₅	-CH2CH2OC2H5			
30	1009	—CH2CH2OC3H7	-CH₂CH₂OC₃H₁			
	1010	-CH2CH2OC6H5	∸CH₂CF₃			
35	1011	-CH2CH2OC8H5	-CH₂CH₂OCH₃			
•	1012	-CH2CH2OC6H5	—CH₂CH₂OC₅H₅			
	1013	-CH2CH2OCH2C6H5	-CH ₂ CF ₃			
40	1014	-CH2CH2OCH2C6H5	-CH2CH2OCH3			
	1015	-CH2CH2OCH2C6H5	-CH2CH2OC6H5			
	1016	-CH2CH2OCH2C6H5	-CH2CH2OCH2C6H5			
45	1017	-CH2CH2OC2H4C8H8	-CH2CH2OC2H4C6H5			
	1018	-CH₂CH₂OC(O)CH₃	−CH₂CF₃			
	1019	-CH₂CH₂OC(O)CH₃	-CH ₂ CH ₂ OC ₆ H ₅			
50	1020	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6Hs			

. 55

Table 5 (Continued)

Comp.	R³	R*
1021	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OCH₂C₀H₅
1022	-CH₂CH₂OC(O)CH₃	-CH₂CH₂OC(0)CH₃
1023	-CH2CH2OC(0)C2H5	-CH ₂ CH ₂ OC(0)C ₂ H ₅
1024	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(0)C₃H ₇
1025	-CH2CH2OC(0)C4H9	-CH ₂ CH ₂ OC(0)C ₄ H ₉

CH₃

Table 6

	I .
	i i

Comp. No.	R³	R4
1026	−CH₃	-CF ₂ CF ₃
1027	-CH ₃	-CH ₂ CF ₃
1028	-CF ₂ CF ₃	-CF ₂ CF ₃
1029	-CF ₂ CF ₃	-CH ₂ CF ₃
1030	-CH ₂ CF ₃	-CH ₂ CF ₃
1031	−CH2CH2OCH3	-CH ₂ CF ₃
1032	-CH₂CH₂OCH₂	—CH₂CH₂OCH₂
1033	-CH2CH2OC2H5	-CH2CH2OC2H5
1034	-CH2CH2OC3H7	−CH₂CH₂OC₃H₁
1035	-CH2CH2OCeH5	-CH ₂ CF ₃
1036	-CH2CH2OC6H5	-CH₂CH₂OCH₃
1037	-CH2CH2OC6H5	-CH₂CH₂OC₅H₅
1038	-CH2CH2OCH2C6H6	CH ₂ CF ₃
1039	-CH2CH2OCH2C6H5	-CH ₂ CH ₂ OCH ₂
1040	—CH₂CH₂OCH₂C₀H₅	-CH₂CH₂OC 6H5
1041	—CH₂CH₂OCH₂C₀H₅	-CH2CH2OCH2C6H5
1042	—CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5
1043	-CH₂CH₂OC(0)CH₃	-CH ₂ CF ₃
1044	-CH2CH2OC(0)CH3	-CH2CH2OCeH5
1045	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5

Table 6 (Continued)

Comp.	R [‡]	R ⁴
1046	-CH₂CH₂OC(0)CH₃	—CH2CH2OCH2C8H5
1047	-CH2CH2OC(0)CH3	-CH2CH2OC(0)CH2
1048	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5
1049	-CH2CH2OC(0)C3H7	-CH2CH2OC(0)C3H7
1050	-CH ₂ CH ₂ OC(0)C ₄ H ₉	-CH2CH2OC(0)C4H9

CH,
N O P-OR'

Table 7

Comp.	R³	R ⁴
1051	—CH ₂	CF ₂ CF ₃
1052	-CH₂	-CH ₂ CP ₃
1053	-CF ₂ CF ₃	-CF ₂ CF ₃
1054	-CF ₂ CF ₂	-CH ₂ CF ₃
1055	−CH₂CF₃	-CH ₂ CF ₃
1056	−CH2CH2OCH3	-CH ₂ CF ₃
1057	−CH₂CH₂OCH₂	−CH2CH2OCH3
1058	-CH2CH2OC2H5	—CH₂CH₂OC₂H₅
1059	-CH₂CH₂OC₃H₁	−CH₂CH₂OC₃H₁
1060	−CH ₂ CH ₂ OC ₆ H ₅	−CH₂CF₃
1061	-CH2CH2OC6H5	—CH₂CH₂OCH₃
1062	-CH2CH2OC8H5	—CH₂CH₂OC₀H₅
1063	-CH2CH2OCH2C6H5	—CH₂CF₃
1064	—CH₂CH₂OCH₂C₅H₅	—CH₂CH₂OCH₃
1065	-CH2CH2OCH2C6H5	−CH ₂ CH ₂ OC ₆ H ₆
1066	-CH2CH2OCH2C6H5	—CH2CH2OCH2C6H8
1067	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5
1068	-CH ₂ CH ₂ OC(0)CH ₂	-CH2CF3
1069	-CH₂CH₂OC(0)CH₃	-CH ₂ CH ₂ OC ₆ H ₅
1070	-CH₂CH₂OC(O)CH₃	-CH2CH2OCH2C4H5

Table 7 (Continued)

Comp.	R³	R ⁴
1071	-CH₂CH₂0C(0)CH₃	-CH2CH2OCH2C6H5
1072	-CH₂CH₂0C(0)CH₃	-CH₂CH₂OC(0)CH₃
1073	-CH2CH2OC(0)C2H5	-CH2CH2OC(0)C2H5
1074	-CH₂CH₂0C(0)C₃H₁	-CH ₂ CH ₂ OC(0)C ₃ H ₇
1075	-CH₂CH₂OC(0)C₄H₀	-CH₂CH₂OC(O)C₄H₃

•

Table 1

15	Comp. Na	R۱	R²	R³	R4	x	Y	z	P. S.
	1076	-C1	-H	−CH₃	-CF ₂ CF ₃	N	С	N	X
20	1077	-C1	-H	−CH³	-CF ₂ CF ₃	N	С	N	Z
	1078	-C1	-H	−CH³	-CH ₂ CF ₃	Z	С	N	X
	1079	-C1	-Н	−CH₃	-CH ₂ CF ₃	N	С	N	Z
25	1080	-C1	-H	-CF ₂ CF ₂	-CF ₂ CF ₃	N	С	N	X
	1081	-C1	-H	-CF ₂ CF ₃	-CF ₂ CF ₃	N	С	N	Z
	1082	-C1	-H	-CF ₂ CF ₃	−CH ₂ CF ₃	N	С	N	X
30	1083	-C1	-H	-CF ₂ CF ₃	−CH₂CF₃	N	С	N	Z
	1084	-C1	-H	−CH₂CF₃	-CH ₂ CF ₃	Z	C	N	X
	1085	-C1	-H	-CH ₂ CF ₃	-CH₂CF₃	Z	С	N	Z
35	1086	-C1	-H	-CH₂CH₂OCH₃	-CH₂CF₃	Z	C	Z	X
	1087	-C1	-н	-CH₂CH₂OCH₃	-CH₂CF₃	Z	С	N	Z
	1088	-C1	-н	-CH₂CH₂OCH₃	−CH₂CH₂OCH₃	N	C	N	X
40	1089	-C1	-H	-CH₂CH₂OCH₂	—CH₂CH₂OCH₃	Z	С	N	Z
	1090	-C1	-н	-CH₂CH₂OC₂H₅	-CH2CH2OC2H5	N	С	N	X
	1091	-C1	-н	-CH₂CH₂OC₂H₅	-CH ₂ CH ₂ OC ₂ H ₅	N	C	N	Z
45	1092	-C1	-н	-CH₂CH₂OC₃H₁	−CH₂CH₂OC₃H ₇	N	С	N	X
	1093	-C1	-н	-CH₂CH₂OC₃H ₇	-CH₂CH₂OC₃H7	N	С	N	z
	1094	-C1	-н	-CH2CH2OC6H5	-CH₂CF₃	N	С	N	Х
50	1095	-C1	-н	−CH2CH2OC6H5	−CH₂CF₃	N	С	N	Z

Table 1 (Continued)

			•	(Oon t Indea)	·				
5	Comp. No.	R¹	R²	R²	R4	x	Y	Z	P. S.
	1096	-C1	-н	-CH2CH2OC8H5	—CH₂CH₂OCH₃	N	С	N	Х
10	109.7	-C1	-н	-CH2CH2OC6H5	—CH₂CH₂OCH₃	N	С	N	Z
	1098	-C1	-н	-CH2CH2OC6H5	—CH₂CH₂OC₅H₅	N	С	N	Х
15	1099	-C1	-н	-CH2CH2OC6H5	-CH₂CH₂OC₅H₅	N	С	N	Z
15	1100	-C1	-н	-CH2CH2OCH2C6H5	−CH₂CF₃	N	С	N	Х
	1101	-C1	-н	-CH2CH2OCH2C6H5	-CH₂CF₃	N	С	Ν	Z
20	1102	-C1	-н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₃	N	С	N	Х
	1103	-C1	-н	-CH2CH2OCH2C6H5	-CH₂CH₂OCH₃	N	С	Ν	Z
25	1104	-C1	-н	-CH2CH2OCH2C6H5	-CH₂CH₂OC₀H₅	N	С	N	Х
	1105	-C1	-н	-CH2CH2OCH2C6H5	-CH₂CH₂OC₅H₅	N	С	Ν	Z
30	1106	-C1	-Н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C вН в	N	С	N	Х
-	11.07	-C1	-н	-CH2CH2OCH2C6H5	—CH₂CH₂OCH₂C₅H₅	N	C	N	Z
	1108	-C1	-н	-CH2CH2OC2H4C6H5	-CH2CH2OC2H4C6H5	N	С	Ŋ	X
35	1109	-C1	-Н	-CH2CH2OC2H4C6H5	-CH ₂ CH ₂ OC ₂ H ₄ C ₆ H ₅	N	С	N	Z
	1110	-C1	-H	-CH2CH2OC(0)CH3	-CH ₂ CF ₃	N	С	N	X
40	1111	-C1	-н	-CH2CH2OC(0)CH2	-CH ₂ CF ₃	N	С	N	Z
	1112	-C1	-н	-CH2CH2OC(0)CH3	-CH₂CH₂OCH₃	N	С	N	X
45	1113	-C1	-н	-CH₂CH₂OC(0)CH₃	−CH₂CH₂OCH₃	N	С	N	Z
	1114	-C1	-н	-CH2CH2OC(0)CH3	-CH2CH2OC6H5	N	С	N	Х
50	1115	-C1	-н	-CH₂CH₂OC(O)CH₃	-CH2CH2OC6H5	N	С	N	Z
30				-					

Table 1 (Continued)

5	Comp. Na.	R'	R²	R³	R ⁴	x	Y	Z	P. S.
	1116	-C1	-н	-CH₂CH₂OC(0)CH₃	-CH2CH2OCH2C6H5	N	С	N	X
10	11-17	-C1	-H	-CH2CH2OC(0)CH2	-CH2CH2OCH2C6H5	N	С	N	Z
	1118	-C1	-н	-CH₂CH₂OC(0)CH₃	—CH₂CH₂OC(0)CH₃	N	С	N	X
15	1119	-C1	-н	-CH2CH2OC(0)CH3	-CH₂CH₂OC(0)CH₃	N	С	N	Z
	1120	-C1	-н	-CH2CH2OC(0)C2H5	-CH₂CH₂OC(0)C₂H₅	N	С	N	X
20	1121	-C1	-н	-CH2CH2OC(0)C2H5	-CH₂CH₂OC(0)C₂H₅	N	С	N	Z
	1122	-C1	-н	-CH2CH2OC(0)C3H7	-CH₂CH₂OC(0)C₃H₁	N	С	Ν	X
25	1123	-C1	-н	-CH2CH2OC(0)C2H7	-CH₂CH₂OC(0)C₃H₁	N	С	N	Z
25	1124	-C1	-н	-CH2CH2OC(0)C4H9	-CH₂CH₂OC(0)C₄H₃	N	С	Ŋ	·X
	1125	-C1	-н	-CH2CH2OC(0)C4H9	-CH2CH2OC(0)C4H.	N	С	N	Z
30					•				

The compound of the present invention may be synthesized according to the following reaction scheme (1) or (2):

Reaction Scheme (I):

30

35

40

45

50

55

(wherein, R¹ to R⁴, and a ring A are as defined above; R⁵ is an ethyl group having one or more substituents selected from a group consisting of fluorine, C₁-C₄ alkoxy, phenoxy, C₂-C₁₀ phenylalkoxy, C₂-C₅ acyloxy, C₁-C₄ acylamino and hydroxyl; W is a leaving group such as halogen, paratoluenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy).

A compound of Formula (II) is reacted with a compound of Formula (III) at 10 - 250 °C, preferably at 130 - 180 °C for 0.1 - 20 hours, preferably for 3 - 15 hours.

A compound of Formula (IV) may be separated and purified, as needed, by the conventional means for separation and purification, for example, by distillation, adsorption, partition chromatography. A compound of Formula (IV) may be separated and purified as described above, but may be directly used in the subsequent reaction without purification.

Subsequently, a compound of Formula (IV) is reacted with a compound of Formula (V) in the presence of a base, for example, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydride, potassium hydride, triethylamine, diazabicycloundecene in a solvent such as acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, methylpyrrolidone at 10 - 200 °C, preferably at 50 - 150 °C, for 0.1 to 100 hours, preferably for 5 - 20 hours to give a compound (I).

Reaction Scheme (2):

30

(wherein, R1 to R4, and a ring A are as defined above; Me is methyl and Et is ethyl)

A compound of Formula (VI) is reacted with trimethylsilyldiethylamine in a solvent, for example, in a chlorinated solvent such as dichloromethane, dichloroethane, chloroform at the temperature around room temperature for about an hour. In this case, two moles or more trimethylsilyldiethylamine is used based on one mole of a compound of Formula (VI).

Subsequently, after the reaction mixture is concentrated to dryness, the residue is dissolved in a chlorinated solvent such as dichloromethane, and two mole or more oxalyl chloride is added to 1 mole of the compound of Formula (VI), and the reaction is carried out in the presence of a catalytic amount of dimethylformamide under ice cooling for about an hour, then at the temperature around room temperature for about an hour.

After a solvent is distilled off, thus obtained compound of Formula (VII) without purification is usually reacted with R³OH, R⁴OH in a solvent, for example, a chlorinated solvent such as dichloromethane or pyridine, acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, methylpyrrolidone, etc. at 10 - 100 °C, preferably at 20 - 30 °C for 0.1 - 100 hours, preferably for 5 - 24 hours to give a compound (I).

A compound of Formula (I) which may be obtained according to the above reaction scheme (1) or (2) may be separated and purified by properly selecting conventional means for separation and purification for nucleotide, for example, recrystallization, adsorption, ion-exchange, partition chromatography or the like, as needed. Various base derivatives may be derived from thus obtained compound of Formula (I) according to the known methods, as needed.

As the compound of Formula (II), (III) or (VI) in the above reaction schemes, those commercially available reagents may be purchased and used. Alternatively, those synthesized according to the known methods may be suitably used.

As shown in the following experimental examples, the compound of the present invention may be expected as antiviral agents which can be orally administered, and further expected to possess antineoplastic activity like other ionic phosphonate-nucleotide analogs. The viruses of interest may not be particularly limited, but include, for example, RNA viruses such as human immunodeficiency virus, influenza virus, hepatitis C virus; DNA viruses such as herpes simplex virus type-I, herpes simplex virus type-II, cytomegalovirus, herpes zoster, hepatitis B virus. More preferably, it is hepatitis B virus.

The compound of the present invention can be orally administered to a human patient. The dose is appropriately determined depending on, for example, the age, the conditions, the weight of the subject. Generally, 1 - 1,000 mg/kg, preferably 5 - 50 mg/kg is administered once or more daily.

The compound of the present invention is preferably used as a composition comprising pharmaceutically acceptable carrier such as conventional pharmaceutical carrier, excipient, etc. Such carrier may be either solid or liquid. Solid carrier includes, for example, lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride; and liquid carrier includes, for example, glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, physiological saline, water, etc.

Various dosage form may be employed, including tablets, powders, granules, troches, etc. when a solid carrier is used; and syrups, soft gelatin capsules, gels, pastes, etc. when a liquid carrier is used.

Example

15

The present invention will be explained in detail in the following examples, which are not a limitation of the scope of the invention.

Example 1

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine (compound No. 309 in Table
 1)

2-Chloroethylchloromethylether (1.96 g, 15.2 mmol) was reacted with tris(2,2,2-trifluoroethyl)phosphite (5 g, 15.2 mmol) at 160 °C for 14 hours to quantitatively obtain 5.15 g of 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxylethyl chloride.

Adenine (2.07 g, 15.3 mmol) was suspended in dimethylformamide (30 ml) and reacted with sodium hydride (60 % in mineral oil, 0.61 g) at 100 °C for an hour. Subsequently, 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl chloride (5.15 g) was added to the above reaction solution and reacted at 100 °C for 5 hours. After reaction was over, the product was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on silica gel column and eluted with 5 % methanol/chloroform to give the title compound (2.77 g, 42 %).

m.p.: 111 - 113 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.91 (d, J=8.0Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.30-4.39 (m, 6H) 6.00 (br, 2H) 7.83 (s, 1H) 8.31 (s. 1H)

Example 2

35

40

45

55

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 459 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 108 °C (ether)

1H-NMR (CDCl3, δ): 3.91-3.95 (m, 4H) 4.24 (t, J=5.1Hz, 2H) 4.30-4.42 (m, 4H) 4.68 (br, 2H) 5.32 (br, 2H) 7.57 (s, 1H)

Example 3

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 509 in Table 1)

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: 132 °C (ether)

1H-NMR (CDCI3, δ) : 3.91 (t, J=4.7Hz, 2H) 3.94 (d, J=7.6Hz, 2H) 4.30 (t, J=4.7Hz, 2H) 4.35-4.49 (m, 4H) 5.16 (br, 2H) 7.83 (s, 1H)

Example 4

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 510 in Table 1)

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: amorphous 1H-NMR (CDCl3, δ):

3.93 (t, J=5.1Hz, 2H) 3.94 (d, J=7.7Hz, 2H) 4.24 (t, J=5.1Hz, 2H) 4.31-4.42 (m, 4H) 4.66 (br, 2H) 5.27 (br, 2H) 7.56 (s, 1H)

10

20

Example 5

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound 15 No. 663 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 169 °C (ethanol)

3.98 (t, J = 5.1Hz, 2H) 4.11 (d, J = 7.8Hz, 2H) 4.46-4.86 (m, 6H) 6.38 (br, 2H) ¹H-NMR (Me₂SO-d₆, δ): 7.18-8.00 (m, 2H)

Example 6

25 Production of 8-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound No. 664 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 128 °C (diisopropyl ether)

4.03-4.15 (m, 4H) 4.55-4.71 (m, 4H) 6.05 (br, 2H) 7.50 (br, 2H) 1H-NMR (Me2 SO-d6, δ):

Example 7

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]theophylline (compound No. 805 in Ta-

The procedure in Example 1 was repeated, except that theophylline was used instead of adenine, to obtain the title compound.

m.p.: 77 °C (hexane)

3.41 (s, 3H) 3.60 (s, 3H) 3.93 (d, J=8.1Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.31-4.481H-NMR (CDCl3, δ): (m, 4H) 4.52 (t, J=5.0Hz, 2H) 7.60 (s, 1H)

Example 8

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-dichloropurine (compound No. 559 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-dichloropurine was used instead of adenine, to obtain the title compound.

m.p.: 71-72 °C (ethyl acetate/hexane)

3.90-4.08 (m, 4H) 4.32-4.52 (m, 6H) 8.19 (s, 1H) 1H-NMR (CDCl3, δ):

Example 9

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-3-deaza-8-aza-2,6-diaminopurine (compound No. 838 in Table 4)

5

The procedure in Example 1 was repeated, except that 3-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 116 - 122 °C (ether)

¹H-NMR (Me₂ SO-d₆, δ):

3.94 (t, J = 5.2Hz, 2H) 4.09 (d, J = 7.7Hz, 2H) 4.46-4.78 (m, 6H) 5.55 (s, 2H) 5.57 (s, 1H) 6.66 (s, 2H)

10

20

Example 10

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-7-deaza-8-aza-2,6-diaminopurine (compound No. 734 in Table 1)

The procedure in Example 1 was repeated, except that 7-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 54 - 64 *C (ether)

¹H-NMR (Me₂ SO-d₆, δ):

3.91 (t, J=5.3Hz, 2H) 4.07 (d, J=8.0Hz, 2H) 4.27 (t, J=5.3Hz, 2H) 4.52-4.78 (m, 4H) 8.00 (s, 1H)

4.70 (

Example 11

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-chloropurine (compound No. 1,084 in Table 1)

The procedure in Example 1 was repeated, except that 6-chloropurine was used instead of adenine, to obtain the title compound.

80 m.p.: oil

¹H-NMR (CDCl₃, δ):

2H) 8.20 (s, 1H) 8.75 (s, 1H)

Example 12

35

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]adenine (compound No. 303 in Table 1)

The compound obtained in Example 1 (1 g, 2.3 mmol) was dissolved in methanol (10 ml), to which was added silica gel (5 g). After reaction at 50 °C for 7 hours, the product was concentrated to dryness. The residue was eluted with 5 % methanol/chloroform to obtain the title compound (0.75 g, 88%).

m.p.: 107 - 110 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.74 (d, J=11.1Hz, 3H) 3.83 (d, J=8.3Hz, 2H) 3.93 (t, J=4.1Hz, 2H) 4.30-4.39 (m, 4H) 5.65 (br, 2H) 7.86 (s, 1H) 8.33 (s. 1H)

45

Example 13

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 453 in Table 1)

50

The procedure in Example 9 was repeated, except that the compound obtained from Example 2 was used instead of that obtained from Example 1, to obtain the title compound.

m.p.: amorphous

1 H-NMR (CDCl3, δ): 3.77 (d, J=11.0Hz, 3H) 3.86 (d, J=8.2Hz, 2H) 3.91 (t, J=5.0Hz, 2H) 4.24 (t, J=4.1Hz, 2H) 4.25-4.42 (m, 2H) 4.69 (br, 2H) 5.35 (br, 2H) 7.60 (s. 1H)

Example 14

5

15

25

30

35

Production of 9-[[2-[bis(2-methoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 313 in Table 1)

9-[(2-Phosphonylmethoxy)ethyl]adenine (1 g, 3.5 mmol) was suspended in dichloromethane (10 ml) and reacted with trimethylsilyldiethylamine (3 ml) at room temperature for an hour and concentrated to dryness. The residue was dissolved in dichloromethane (10 ml), to which were added dimethylformamide (0.05 ml) and oxalyl chloride (0.9 ml). The mixture was reacted under ice-cooling for an hour, then at room temperature for an hour. After solvent was distilled off, the residue was dissolved in pyridine (20 ml) and reacted with 2-methoxyethanol (0.76 g) at room temperature for 12 hours. After concentration to dryness, the residue was dissolve in chloroform, adsorbed on silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.3 g, 22%).

m.p.: 90 - 93 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ): 3.35 (s, 6H) 3.55. (d, J=4.6Hz, 4H) 3.86 (d, J=8.2Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.16-4.19 (m, 4H) 4.40 (t, J=4.9Hz, 2H) 5.67 (br, 2H) 7.98 (s, 1H) 8.35 (s. 1H)

Example 15

Production of 9-[[2-bis(2-phenoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 323 in Table 1)

The procedure in Example 11 was repeated, except that 2-phenoxyethanol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: 112 - 115 °C (hexane)

1H-NMR (CDCl3, δ): 3.88 (t, J=4.8Hz, 2H) 3.95 (d, J=8.0Hz, 2H) 4.07 (t, J=4.4Hz, 4H) 4.21-4.26 (m, 4H) 4.30 (t, J=4.8Hz, 2H) 5.55 (br, 2H) 6.85-6.92 (m, 6H) 7.26 (t, J=7.4Hz, 4H) 8.06 (s, 1H) 8.12 (s. 1H)

Example 16

Production of 9-[[2-bis(2-benzyloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 331 in Table 1)

The procedure in Example 11 was repeated, except that 2-benzyloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: 45 - 48 °C (hexane)

1H-NMR (CDCl3, δ): 3.61 (d, J=4.6Hz, 4H) 3.81 (d, J=8.1Hz, 2H) 3.84 (t, J=5.0Hz, 2H) 4.17-4.23 (m, 4H) 4.30 (t, J=5.0Hz, 2H) 4.51 (s, 4H) 5.49 (br, 2H) 7.29-7.33 (m, 10H) 7.91 (s, 1H) 8.35 (s. 1H)

40 Example 17

Production of 9-[[2-bis(2-acetoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 343 in Table 1)

The procedure in Example 11 was repeated, except that 2-acetoxyethanol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: 68 - 70 °C (ethyl acetate/hexane)

1H-NMR (CDCl3, δ) : 2.08 (s, 6H) 3.84 (d, J=8.3Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.22-4.26 (m, 8H) 4.42 (t, J=4.9Hz, 2H) 5.63 (br, 2H) 7.94 (s, 1H) 8.36 (s. 1H)

so Example 18

Production of 9-[[2-bis(2-valeryloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 349 in Table 1)

The procedure in Example 11 was repeated, except that 2-valeryloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: oil

1H-NMR (CDCI3, δ): 0.91 (t, J=7.5Hz, 6H) 1.36 (qt, J=7.5Hz, 4H) 1.60 (tt, J=7.5Hz, 4H) 2.33 (t, J=7.5Hz, 4H) 3.83 (d, J=8.1Hz, 2H) 3.95 (t, J=5.0Hz, 2H) 4.21-4.25 (m, 8H)

4.41 (t, J=5.0Hz, 2H) 5.73 (br, 2H) 7.94 (s, 1H) 8.35 (s. 1H)

Example 19

5 Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-iodoadenine (compound No. 359 in Table 1)

The procedure in Example 11 was repeated, except that 2,2,2-trifluoroethanol and 9-[(2-phosphonyl-methoxy)ethyl]-2-iodoadenine were used instead of 2-methoxyethanol and 9-[(2-phosphonylmethoxy)ethyl]-adenine, respectively, to obtain the title compound.

m.p.: 179 °C (CHCl₃)

1H-NMR (Me2 SO-d6, δ): 3.88 (t, J=5.0Hz, 2H) 4.13 (d, J=8.0Hz, 2H) 4.28 (t, J=5.0Hz, 2H) 4.56-4.70 (m, 4H) 7.63 (br, 2H) 7.99 (s, 1H)

15 Example 20

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 259 in Table 1)

The procedure in Example 1 was repeated, except that 6-O-benzylguanine, which can be synthesized by the known method, was used instead of adenine, to obtain 9-[2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl]-6-O-benzylguanine.

The compound (2.21 g, 4.07 mmol) was dissolved in ethanol (20 ml), to which were added cyclohexene (20 ml) and 20 % palladium hydroxide carbon (1.5 g), and the mixture was reacted under reflux for 2 hours. After palladium hydroxide carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to obtain the title compound (1.01 g, 55 %).

m.p.: 214 °C (ethanol)

1H-NMR (Me2 SO-d6, δ): 3.86 (t, J=5.1Hz, 2H) 4.13 (d, J=8.1Hz, 2H) 4.17 (t, J=5.0Hz, 2H) 4.58-4.70 (m, 4H) 6.61 (br, 2H) 8.06 (s, 1H) 10.88 (br, 1H)

30

Example 21

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 260 in Table 1)

35

Guanosine (1 g, 3.53 mmol) was suspended in dimethylacetaminde (10 ml), to which was added 2-[bis-(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl iodide (1.7 g), and the reaction was carried out at 100 °C for 2 hours. The reaction solution was concentrated to dryness, and the residue was dissolved in 30 % methanol/water, adsorbed on an octadecyl silica gel column, eluted with 30 % methanol/water to give the title compound (0.1 g, 6.3 %).

m.p.: 255 °C (H₂O)

1H-NMR (Me2 SO-d6, δ): 3.89 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.40 (t, J=5.0Hz, 2H) 4.57-4.70 (m, 4H) 6.34 (br, 2H) 8.09 (s, 1H) 10.95 (br, 1H)

45 Example 22

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine-1-N-oxide (compound No. 780 in Table 2)

The compound in Example 1 (8.12 g, 18.6 mmol) was dissolved in chloroform (150 ml), to which was added m-chloroperbenzoic acid (15 g), and reacted at 50 °C for 2 hours. The separated precipitate was removed by filtration, then adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (3.42 g, 42 %).

m.p.: 186 °C (ethyl acetate)

55 1H-NMR (Me2 SO-d6, δ): 3.88 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.36 (t, J=5.0Hz, 2H) 4.52-4.66 (m, 4H) 8.18 (s, 1H) 8.56 (s, 1H)

Example 23

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-thioguanine (compound No. 609 in Table 1)

5

10

The compound in Example 3 (800 mg, 1.7 mmol) was dissolved in ethanol (15 ml), to which was added thiourea (157 mg) and reacted under reflux for 4 hours. After reaction was over, the mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (252 mg, 32 %).

m.p.: 144 °C (ethanol)

3.80 (t, J = 5.1Hz, 2H) 4.06-4.16 (m, 4H) 4.49-4.68 (m, 4H) 6.73 (br, 2H) 1H-NMR (Me2 SO-d6, δ): 7.76 (s, 1H)

Example 24

15

25

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-p-toluylthiopurine pound No. 1,030 in Table 6)

The compound in Example 3 (9.4 mg, 20 mmol) was dissolved in DMF (90 ml). p-Thiocresol (5.23 g) and triethylamine (2.8 ml) were added at room temperature, and the mixture was reacted at 100 °C for 4 hours. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with chloroform to give the title compound (9.8 g, 88 %).

m.p.: oil

2.40 (s, 3H) 3.89-3.96 (m, 4H) 4.26 (d, J=5.1Hz, 2H) 4.39-4.47 (m, 4H) 4.79 (br, 1H-NMR (CDCl3, δ): 2H) 7.23 (d, J=9.8Hz, 2H) 7.31 (d, J=9.8Hz, 2H) 7.71 (s, 1H)

Example 25

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-hydroxy-6-p-toluylthiopurine (compound No. 1,055 in Table 7)

The compound in Example 21 (6.9 mg, 12.3 mmol) was dissolved in 50 % aqueous acetic acid (120 ml). Sodium nitrite (12 g) was added thereto, and the mixture was reacted at 50 °C for 1 hour. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was partitioned between chloroform and aqueous sodium bicarbonate, and the chloroform layer was dried on magnesium sulfate and filtered. The filtrate was concentrated to dryness, crystallized from ether to give the title compound (2.31 g, 34 %).

m.p.: 176 °C (ether)

1H-NMR (Me2 SO-d6, δ):

2.33 (s, 3H) 3.85 (t, J=5.1Hz, 2H) 4.01 (d, J=8.0Hz, 2H) 4.25 (d, J = 5.1Hz, 2H) 4.53-4.69 (m, 4H) 7.24 (d, J = 8.1Hz, 2H) 7.43 (d, J = 8.1Hz, 2H) 8.05 (s, 1H) 11.58 (br, 1H)

Example 26

45

55

40

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-1-methylguanine (compound No. 1,005 in Table 5)

The compound in Example 20 (500 mg, 1.1 mmol) was dissolved in DMF (7 ml), and reacted with potassium carbonate (150 mg), molecular sieves (0.4 nm, 100 mg) and methyl iodide (203 mg) at room temperature for 2 hours. The reaction solution was filtered and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (30 mg, 5.8 %).

3.27 (s, 3H) 3.80 (d, J=5.0Hz, 2H) 4.05-4.11 (m, 4H) 4.52-4.68 (m, 4H) 6.98 'H-NMR (Me₂ SO-d₆, δ): (br, 2H) 7.59 (s, 1H)

Reference Example 1

Production of 9-[[2-bis(2-acetamidethyl)phosphonylmethoxy]ethyl]adenine

5

10

15

20

The procedure in Example 11 was repeated, except that 2-acetamide etahnol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: oil

1H-NMR (CDCI3, δ):

2.02 (s, 6H) 3.41-3.53 (m, 4H) 3.81 (d, J=8.5Hz, 2H) 3.94 (t, J=4.9Hz, 2H) 3.97-4.21 (m, 4H) 4.43 (t, J=4.9Hz, 2H) 6.18 (br, 2H) 6.77 (br, 2H) 8.00 (s, 1H) 8.34 (s. 1H)

25 Reference Example 2

Production of 9-[[2-bis(2-hydroxyethyl)phosphonylmethoxy]ethyl]adenine

30

35

$$\begin{array}{c|c}
N & H_2 \\
N & N \\
N & N \\
N & O \\
N & O \\
P & (OCH_2CH_2OH)_2
\end{array}$$

40

The compound obtained from Example 13 (1 g, 1.9 mmol) was dissolved in ethanol, 10 % palladium-carbon (0.1 g) was added and reacted at 60 °C for 7 hours under hydrogen atmosphere. After palladium-carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.38 g, 55 %).

m.p.: 102 - 104 °C (ethyl acetate)

1H-NMR (Me2 SO-d6, δ): 3.50 (q, J=3.9Hz, 4H) 3.86-3.96 (m, 8H) 4.32 (t, J=5.1Hz, 2H) 4.85 (t, J=5.6Hz, 2H) 7.21 (br, 2H) 8.09 (s, 1H) 8.13 (s. 1H)

Experiment 1

Inhibition of HBV growth

55

50

HB611 cells (recombinant human lever cancer cell producing HBV, 2x10⁴) was incubated on Dulbecco ME medium containing bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then the media

containing specimens at final concentration of 10 mM were substituted on the 8th, 11th and 14th days. On 17 days of cultivation, DNA of the cell was recovered. The amount of HBV-DNA was measured by southern blotting, and inhibition of HBV-DNA synthesis in the cell was determined. In addition, the concentration of the compound required for 50 % death of the HB611 cells was determined. The results are shown in the following Table 8.

Table 8

	Compound	Inhibition of HBV-DNA Synthesis(%)	LD ₅₀ of HB611 cell (μM)
10	Example 1	91.5	>1000
	1 1	99.9	840
	Example 2	99.9	399
	Example 3	97.2	-
	Example 5	86.3	>1000
15	Example 12	= - :	>1000
•	Example 13	100	>1000
	Example 14	55.0	
	Example 15	59.7	174
	Example 16	57.8	178
20	Example 17	66.2	>1000
20	Example 18	73.4	47
	Example 20	99.9	-
		71.3	- 1
	Example 21	76.2	1 -
	Example 22	86.1	-
25	Example 23		_
	Example 24	99.9	_
	Example 25	99.9	
	Example 26	99.9	1000
	Reference Example 1	- '	>1000
30	Reference Example 2	31.0	>1000

Experiment 2

Inhibition of HBV growth in rat or mouse serum upon oral administration

Groups of rats (3 rats per group) were received single oral dose of specimen (1 g/kg or 0.5 g/kg), bled at 1 hour after administration and serum was prepared. Separately, groups of mice (3 mice per group) were received single oral dose of specimen (0.3 g/kg), bled at 30 minutes after administration and serum was prepared.

HB611 cells (2x10⁴) were incubated on Dulbecco ME medium containing 10 % bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then substituted with a medium containing 5 % of the above serum (rat or mouse serum after oral administration of the specimen) on the 8th, 11th and 14th day, and DNA of the cell was recovered on the 17th days of cultivation. The amount of HBV-DNA was measured by southern blotting, and intracellular HBV-DNA synthesis inhibition was determined. For reference, the same experiment was conducted on PMEA. The results are shown in the following Table 9.

50

Table 9

	Compound	Subject	Oral Dosage (g/kg)	HBV-DNA Synthesis Inhibition(%)
5	Example 1	Rat	1	89.9
	Example 2	Rat	1	71.9
	Example 3	Mouse	0.3	99.9
	Example 4	Mouse	0.3	36.3
	Example 5	Mouse	0.3	87.2
10	Example 12	Rat	1	92.9
	Example 13	Rat	1	77.7
	Example 14	Rat	0.5	25.4
	Example 15	Rat	0.5	38.5
	Example 16	Rat	0.5	43.6
15	Example 18	Rat	0.5	61.4
	Example 20	Mouse	0.3	99.9
	Example 22	Mouse	0.3	15.2
	Reference Example 1	Rat	0.5	0
	Referemce Example 2	Rat	0.5	0
20	PMEA	Rat	1	35.5

Claims

55

1. A phosphonate-nucleotide ester derivative of the following general formula (I):

wherein ring A represents

40
$$R^{1} \qquad R^{1} \qquad R^{1} \qquad R^{1}$$

$$N \qquad N \qquad R^{2} \qquad N \qquad R^{2} \qquad R^{2}$$

$$C \qquad H_{3} \qquad C \qquad H_{3}$$

$$N \qquad N \qquad N \qquad C \qquad N \qquad C \qquad H_{3}$$

wherein R¹ and R² independently represent hydrogen, halogen, hydroxyl, mercapto, C₆-C₁₀ arylthio or amino; R³ represents C₁-C₄ alkyl or ethyl having one or more substituents selected from the group consisting of fluorine, C₁-C₄ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-C₅ acyloxy; R⁴ represents ethyl having one or more substituents selected from the group consisting of fluorine, C₁-C₄ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-C₅ acyloxy; X, Y and Z independently represent methyne or

nitrogen atom; or a pharmaceutically acceptable salt thereof.

2. A compound according to Claim 1, wherein the ring A is

R¹

or

- wherein R¹ and R² are as defined in Claim 1.
 - 3. A compound according to Claim 1, wherein the ring A is

20

5

10

$$R^1$$
 N
 R^2

25

wherein R¹ is hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R² is hydrogen, chlorine, iodine, hydroxyl or amino.

30 4. A compound according to Claim 1, wherein the ring A is

35

$$\begin{bmatrix} R^1 \\ N \end{bmatrix} = 0$$

40

wherein R1 is amino; R2 is hydrogen.

5. A compound according to Claim 1, wherein the ring A is

45

55

- wherein R1 and R2 are amino.
- A compound according to Claim 1, wherein R³ is C₁-C₃ alkyl, 2,2,2-trifluoroethyl or ethyl having a substituent selected from the group consisting of C₁-C₃ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-

C₅ acyloxy.

15

20

25

30

35

40

45

50

55

- 7. A compound according to Claim 1, wherein R³ is C1-C3 alkyl or 2,2,2-trifluoroethyl.
- 8. A compound according to claim 1, wherein R⁴ is 2,2,2-trifluoroethyl or ethyl having a substituent selected from a group consisting of C₁-C₃ alkoxy, phenoxy, C₇-C₁₀ phenylalkoxy and C₂-C₅ acyloxy.
 - 9. A compound according to Claim 1, wherein R4 is 2,2,2-trifluoroethyl.
- 10. A compound according to Claim 1, wherein X and Z are nitrogen atoms, X and Y are nitrogen atoms, or X, Y and Z are nitrogen atoms.
 - 11. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 12. An antiviral agent containing a compound of Claim 1 as an active ingredient.
 - 13. A method for treatment of viral infection which comprises administering a compound of Claim 1 to a patient infected with a virus.
 - 14. A method for treatment of Claim 13, wherein the virus is hepatitis B virus.

EUROPEAN SEARCH REPORT

Application Number EP 94 10 9742

		DERED TO BE RELEVAN		or received to the total control of the total contr		
Category	Citation of document with in of relevant pas	dication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)		
Y	EP-A-0 481 214 (BRIS * the whole document	,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1-14	C07F9/6561 A61K31/675		
Y	WO-A-92 09611 (BEEC * the whole document	HAM GROUP PLC)	1-14			
	,			TECHNICAL FIELDS SEARCHED (Int.Cl.6)		
				C07F A61K		
	The precent count cannot have be	en drawn un for all claims	1			
	The present search report has be	Date of completion of the search	<u> </u>	Franter		
	THE HAGUE	22 September 199	4 Be	slier, L		
X : pai Y : pai doc	CATEGORY OF CITED DOCUMEN ricularly relevant if taken alone ricularly relevant if combined with ano cument of the same category	T: theory or princip E: earlier patent do after the filing d ther D: 40cument cited L: 40cument cited	le underlying th cument, but pub ate in the applicatio or other reasons	e invention disbed on, or on		
O : no	hnological background n-written disclosure ermediate document		& : member of the same patent family, corresponding document			