UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/577,288	01/15/2007	Michael Goessel	1431.135.101/FIN516PCT/US 2861	
25281 DICKE, BILLIO	7590 09/11/200 G & CZAJA	EXAMINER		
FIFTH STREE	ΓTOWERS	MCMAHON, DANIEL F		
MINNEAPOLI	FTH STREET, SUITE S, MN 55402	. 2250	ART UNIT	PAPER NUMBER
			2117	
			MAIL DATE	DELIVERY MODE
			09/11/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)				
Office Action Comments	10/577,288	GOESSEL ET AL.				
Office Action Summary	Examiner	Art Unit				
	DANIEL F. MCMAHON	2117				
The MAILING DATE of this communication app Period for Reply	ears on the cover sheet with the c	orrespondence address				
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 16(a). In no event, however, may a reply be tim 11 apply and will expire SIX (6) MONTHS from 12 cause the application to become ABANDONEI	Lely filed the mailing date of this communication. (35 U.S.C. § 133).				
Status						
1) Responsive to communication(s) filed on 24 Ap	oril 2008.					
	action is non-final.					
	/ 					
	closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.					
Disposition of Claims	, , , , , , , , , , , , , , , , , , ,					
	Claim(s) <u>30-63</u> is/are pending in the application.					
4a) Of the above claim(s) is/are withdrawn from consideration.						
5) Claim(s) is/are allowed.						
6) Claim(s) <u>30-63</u> is/are rejected.						
7) Claim(s) is/are objected to.						
8) Claim(s) are subject to restriction and/or election requirement.						
Application Papers						
9)☐ The specification is objected to by the Examiner.						
10)⊠ The drawing(s) filed on <u>24 April 2008</u> is/are: a)⊠ accepted or b) objected to by the Examiner.						
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).						
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).						
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.						
Priority under 35 U.S.C. § 119						
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 						
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ite				

DETAILED ACTION

Claims 1 - 29 are cancelled

Claims 30 – 63 are presented for examination

Priority

Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Claim Objections

- 1. Claims 34, 39, 41 44, 46 48, 54 58 are objected to because of the following informalities: The language "one of" should be removed.
- 2. Claim 39 is objected to under 37 CFR 1.75 as being a substantial duplicate of claim 37. When two claims in an application are duplicates or else are so close in content that they both cover the same thing, despite a slight difference in wording, it is proper after allowing one claim to object to the other as being a substantial duplicate of the allowed claim. See MPEP § 706.03(k). The difference in claim 37 and claim 39 is a first and second coder. However, both claims are dependant on claim 35, and therefor both claim 37 and claim 39 only contain one coder, called 'first coder' in claim 37 and called 'second coder' in claim 39.

Art Unit: 2117

3. Claim 45 is objected to because of the following informalities: coderare should

be corrected.

4. Claim 54 is objected to under 37 CFR 1.75(c) as being in improper form because

a multiple dependent claim. Claim 54 is dependent on claim 35 and 53 See MPEP

§ 608.01(n).

Appropriate correction is required.

Claim Rejections - 35 USC § 112

5. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

The following claims are rejected under 35 U.S.C. 112, second paragraph:

6. Claims 32 – 34, and 37 - 47 are rejected under 35 U.S.C. 112, second

paragraph, as being indefinite for failing to particularly point out and distinctly claim the

subject matter which applicant regards as the invention. Coded, coding, and codes are

ambiguous as to the action being performed. Examiner suggests encoded, encoding, or

encodes to maintain consistency with the disclosure.

7. Claim 32 recites "the data word". There is insufficient antecedent basis for this

limitation in the claim.

Art Unit: 2117

8. Claim 41 recites "the second coder". There is insufficient antecedent basis for this limitation in the claim.

- 9. Claims 41, 42, 43, 44, and 47 recite "the second coder". There is insufficient antecedent basis for this limitation in the claim.
- 10. Claim 51 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The language "and/or" is ambiguous and failing to particularly point out and distinctly claim the subject matter of the disclosure.
- 11. Claim 51 recites "K1" and "K2". There is insufficient antecedent basis for this limitation in the claim.
- 12. Claim 52 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The language "register/ registers" and "has/ have" is ambiguous and failing to particularly point out and distinctly claim the subject matter of the disclosure.
- 13. Claim 53 recites "k", "the first coder" and "t". There is insufficient antecedent basis for this limitation in the claim.

Art Unit: 2117

14. Claim 56 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The language "and/or" is ambiguous and failing to particularly

point out and distinctly claim the subject matter of the disclosure.

15. Claim 63 recites "computer program" and "data network". There is insufficient antecedent basis for this limitation in the claim.

Claim Rejections - 35 USC § 101

16. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

- 17. Claims 53 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. "A computer program product" is non-statutory subject matter. Independent claim 53 fails to recite a tangible element for the product. Under a broadest reasonable interpretation, the product disclosed may reasonably be implemented as software routines, and is therefor rejected as software per se.
- 18. Claim 54 provides for the use of claim 35, but, since the claim does not set forth any steps involved in the method/process, it is unclear what method/process applicant is intending to encompass. A claim is indefinite where it merely recites a use without any active, positive steps delimiting how this use is actually practiced.

Claim 54, is rejected under 35 U.S.C. 101 because the claimed recitation of a use, without setting forth any steps involved in the process, results in an improper definition of a process, i.e., results in a claim which is not a proper process claim under 35 U.S.C. 101. See for example *Ex parte Dunki*, 153 USPQ 678 (Bd.App. 1967) and *Clinical Products, Ltd.* v. *Brenner*, 255 F. Supp. 131, 149 USPQ 475 (D.D.C. 1966).

- 19. Claims 59 63 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. "A computer program product" is non-statutory subject matter. Applicant has failed to recite a physical media for the computer program. Therefor the claim is not directed at a useful process, machine, manufacture, or composition of matter, or improvement thereof. MPEP 2106.01
- 20. Claim 63 provides for the use of claim 57, but, since the claim does not set forth any steps involved in the method/process, it is unclear what method/process applicant is intending to encompass. A claim is indefinite where it merely recites a use without any active, positive steps delimiting how this use is actually practiced.

Claim 54, is rejected under 35 U.S.C. 101 because the claimed recitation of a use, without setting forth any steps involved in the process, results in an improper definition of a process, i.e., results in a claim which is not a proper process claim under 35 U.S.C. 101. See for example *Ex parte Dunki*, 153 USPQ 678 (Bd.App. 1967) and *Clinical Products, Ltd.* v. *Brenner*, 255 F. Supp. 131, 149 USPQ 475 (D.D.C. 1966).

Art Unit: 2117

Prior Art Rejections

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claim Rejections - 35 USC § 102

21. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

Claim 30 is rejected under 35 U.S.C. 102(a) as being anticipated by Hasegawa et al. U.S. Publication 2004/0246337 (herein Hasegawa).

22. Regarding claim 30, Hasegawa discloses an evaluation circuit (figure 4) comprising: a first linear automation circuit (figure 4, element 16); a second linear automation circuit connected in parallel with the first linear automation circuit (figure 4, element 2), each having a set of states, which have a common input line for receiving a

data stream, wherein the first linear automaton circuit and the second linear automation circuit are configured such that a first signature and a second signature can be calculated (paragraph 0066, page 5, lines 15 - 17); a first logic combination gate (figure 4, element 4) and a second logic combination gate (figure 4, element 6) that compare the first signature and the second signature, respectively, with a predeterminable good signature and an output comparison value (paragraph 65, lines 35 - 38; paragraph 66, lines 32 - 35).

Claim Rejections - 35 USC § 103

- 23. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 24. Claims 31, 32, 35 37, 39, 41 45, 48 52, and 55 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hasegawa et al. U.S. Publication 2004/0246337 (herein Hasegawa), in view of Meaney, U.S. Patent 6,055,660 (herein Meaney).
- 25. Regarding claim 31, Hasegawa teaches the limitations of the parent claim, claim 30. Hasegawa does not explicitly teach: a first logic combination gate and the second combination logic gate are exclusive-OR gates having first inputs, respectively, connected to the outputs of the associated first and second linear automaton circuit and to whose second inputs good signatures can be applied.

Meaney teaches: a first logic combination gate and the second combination logic gate are exclusive-OR gates having first inputs, respectively, connected to the outputs of the associated first and second linear automaton circuit and to whose second inputs good signatures can be applied (figure 2, element 13, element 22).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, a first and second logic combination gate, with the teaching of Meaney, a first and second logic combination gate as an XOR gate. The use of XOR logic gates for comparison is well known in the art (column 4, line 13, element 22) and the combination would yield a predictable result.

26. Regarding claim 32, Hasegawa teaches the limitations of the parent claim, claim 30. Hasegawa does not explicitly teach: upstream of the first linear automaton circuit is a first coder, that codes the data word having the data word length of k bits into a coded data word $u^1(i)$, $u^1(i)$ =Cod1 having the word width of K1 bits, for i = 1, ..., n, and where Cod1 represents the coding function of the first coder.

Meaney teaches: upstream of the first linear automaton circuit is a first coder, that codes the data word having the data word length of k bits into a coded data word $u^{1}(i)$, $u^{1}(i)$ =Cod1 having the word width of K1 bits, for i = 1, ..., n, and where Cod1 represents the coding function of the first coder (figure 2, element 21).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: a first coder upstream of the first linear automation circuit

Art Unit: 2117

for the purpose of detection of errors introduced independent of the design under test. Data coders are a well known technique in the art for detecting errors in data. One of ordinary skill in the art, at the time of the invention, would have recognized the application of the known technique would have yielded predicable results.

27. Regarding claim 35, Hasegawa teaches: an evaluation circuit for detecting and/or locating faulty data words in a data stream Tn (abstract) comprising: a first linear automaton circuit and a second linear automaton circuit connected in parallel (figure 4, element 2, element 16), each having a set of states, wherein the first linear automaton circuit and the second linear automaton circuit have a common input line for receiving a data stream Tn comprising n successive data words y(1), ..., y(n) each having a width of k bits, (figure 4); a first logic combination gates arranged downstream of the first linear automaton circuit and also a second logic combination gates arranged downstream of the second linear automaton circuit, (figure 4, element 4, element 6); the logic combination gates are designed such that the signature respectively calculated by the linear automaton circuit can be compared with a predeterminable good signature and a comparison value can be output (paragraph 65, lines 35 – 38; paragraph 66, lines 32 – 35); and the first linear automaton circuit and the second linear automaton circuit are designed such that a first signature and a second signature, respectively, can be calculated (paragraph 0066, page 5, lines 15 – 17).

Hasegawa does not explicitly teach: the first linear automaton circuit can be described by the following equation z(t + 1) = Az(t) XOR y(t); the second linear

automaton circuit can be described by the following equation z(t+1) = Bz(t) XOR y(t); and where A and B represent the state matrices of the linear automaton circuits, where the state matrices A and B can be inverted, and where the dimension L of the state vectors is $\geq k$.

Meaney teaches: the first linear automaton circuit can be described by the following equation z(t + 1) = Az(t) XOR y(t) (column 3, lines 23 - 33, table 2); the second linear automaton circuit can be described by the following equation z(t + 1) = Bz(t) XOR y(t) (column 3, lines 23 - 33, table 2); and where A and B represent the state matrices of the linear automaton circuits, where the state matrices A and B can be inverted, and where the dimension L of the state vectors is $\geq k$ (column 3, lines 23 - 33; table 2).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa: a first linear automaton circuit and a second linear automaton circuit connected in parallel, and a first logic combination gates arranged downstream of the first linear automaton circuit and a second logic combination gates arranged downstream of the second linear automaton circuit, with the teaching of Meaney: a linear automaton circuit can be described by the following equation z(t + 1) = Az(t) XOR y(t) and A can be inverted, for the purpose of creating a test vector signature for comparison purposes (abstract, lines 4 - 7). A first linear automaton circuit, also known as a Multiple-input Shift Register (MISR) with the function z(t + 1) = Az(t) XOR y(t) is a well known design choice in the art, and the use of the well known design choice would yield predictable results.

Art Unit: 2117

28. Regarding claim 36, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: the logic combination gates are present as exclusive-OR gates whose first inputs are respectively connected to the outputs of the associated linear automaton circuit and to whose second inputs good signatures can be applied.

Meaney teaches: the logic combination gates are present as exclusive-OR gates whose first inputs are respectively connected to the outputs of the associated linear automaton circuit and to whose second inputs good signatures can be applied. (figure 2, element 13, element 22)

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, a first and second logic combination gate, with the teaching of Meaney, a first and second logic combination gate as an XOR gate. The use of XOR logic gates for comparison is well known in the art (column 4, line 13, element 22) and the combination would yield a predictable result.

29. Regarding claim 37, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: arranged upstream of the first linear automaton circuit is a first coder, that codes the data word y(i) having the data word length of k bits into a coded data word ul(i), ul(i)=Cod1 having the word width of K1 bits, for i=1, ..., n, and where Cod1 represents the coding function of the first coder.

Art Unit: 2117

Meaney teaches: arranged upstream of the first linear automaton circuit is a first coder, that codes the data word y(i) having the data word length of k bits into a coded data word ul(i), ul(i)=Cod1 having the word width of K1 bits, for i=l, ..., n, and where Cod1 represents the coding function of the first coder (figure 2, element 21).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: a first coder upstream of the first linear automation circuit for the purpose of detection of errors introduced independent of the design under test. Data coders are a well known technique in the art for detecting errors in data. One of ordinary skill in the art, at the time of the invention, would have recognized the application of the known technique would have yielded predicable results.

30. Regarding claim 39, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: arranged upstream of the second linear automaton circuit is a second coder, which codes the data word y(i) having the data word length of k bits into a coded data word u2(i), u2(i)=Cod2(y(i)) having the word width of K2 bits, for i=1, ..., n, and where Cod2 represents the coding function of the second coder.

Meaney teaches: arranged upstream of the second linear automaton circuit is a second coder (figure 2, element 21'), which codes the data word y(i) having the data word length of k bits into a coded data word u2(i), u2(i)=Cod2(y(i)) having the word

width of K2 bits, for i=1, ..., n, and where Cod2 represents the coding function of the second coder (figure 2, element 21').

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: a second coder upstream of the second linear automation circuit for the purpose of detection of errors introduced independent of the design under test. Data coders are a well known technique in the art for detecting errors in data.

One of ordinary skill in the art, at the time of the invention, would have recognized the application of the known technique would have yielded predicable results.

31. Regarding claim 41, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the word width K1 of the data words u1(i) coded by the first coder is equal to the word width K2 of the data words u2(i) coded by the second coder.

Meaney teaches: the word width K1 of the data words u1(i) coded by the first coder is equal to the word width K2 of the data words u2(i) coded by the second coder (figure 2, element 23, element 23').

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: the first coder and second coder having the same data output width for the purpose of providing symmetric data protection for the first and second path. It is a well known design technique to replicate logic units to minimize

design and test of logic elements. One of ordinary skill in the art at the time of the invention would recognize that applying the known technique would yield predictable results.

32. Regarding claim 42, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the first coder matching the second coder with regard to its construction and its function.

Meaney teaches: the first coder matching the second coder with regard to its construction and its function. (figure 2, element 23, element 23')

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: the first coder and second coder having the same construction and function. It is a well known design technique to replicate logic units to minimize design and test of logic elements. One of ordinary skill in the art at the time of the invention would recognize that applying the known technique would yield predictable results.

33. Regarding claim 43, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the word width K1 of the data words $u^1(i)$ coded by the first coder and the word width K2 of the data words $u^2(i)$ coded by the second coder are in each case equal to the word width k of the data words y(1), ..., y(n) of the data stream Tn.

Meaney teaches: the word width K1 of the data words u¹(i) coded by the first coder and the word width K2 of the data words u²(i) coded by the second coder are in each case equal to the word width k of the data words y(1), ..., y(n) of the data stream Tn. (figure 2, element 25, element 22, element 23, element 25', element 22', element 23')

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: the first coder and second coder having the same data width of u¹(i) and u²(i) as y(i). It is a well known design technique to replicate logic units to minimize design and test of logic elements. One of ordinary skill in the art at the time of the invention would recognize that applying the known technique would yield predictable results.

34. Regarding claim 44, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the coding functions Cod1 and Cod2 of the first coder and of the second coder are designed as follows:

Cod1(
$$y_1(i)$$
, $y_2(i)$, ..., $y_k(i)$) = PI($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ..., 0)

$$Cod2(y_1(i), y_2(i), ..., y_k(i)) = P2(y_1(i), y_2(i), ..., y_k(i), 0, ..., 0)$$

For i, 1, ..., n where the number of zeros situated at the end of P1($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ..., 0) is equal to (K1-k), where the number at the end of P2($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ..., 0) is equal to (K2-k), and where P 1 represents an arbitrary permutation of the K1 components of ($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ...,0) and P2 represents an arbitrary permutation

of the K2 components of $(y_1(i), y_2(i), ..., y_k(i), 0, ..., 0)$ (figure 2, element 23, element 24, element 23', element 24').

Meaney teaches: the coding functions Cod1 and Cod2 of the first coder and of the second coder are designed as follows:

Cod1(
$$y_1(i), y_2(i), ..., y_k(i)$$
) = PI($y_1(i), y_2(i), ..., y_k(i), 0, ..., 0$)

$$Cod2(y_1(i), y_2(i), ..., y_k(i)) = P2(y_1(i), y_2(i), ..., y_k(i), 0, ..., 0)$$

For i, 1, ..., n where the number of zeros situated at the end of P1($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ..., 0) is equal to (K1-k), where the number at the end of P2($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ..., 0) is equal to (K2-k), and where P 1 represents an arbitrary permutation of the K1 components of ($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ...,0) and P2 represents an arbitrary permutation of the K2 components of ($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, 0, ...,0) (figure 2, element 23, element 24, element 23', element 24').

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Meaney, zero padding of code words. Zero padding of code words in a known technique in the art, and the combination would yield predictable results.

35. Regarding claim 45, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the coding functions Cod1 and Cod2 of the first coder and of the second coder are designed as follows:

Cod1(
$$y_1(i)$$
, $y_2(i)$, ..., $y_k(i)$) = P1($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, b_1^1 ..., $b_{K1}^1_k$)

Art Unit: 2117

Cod2(
$$y_1(i)$$
, $y_2(i)$, ..., $y_k(i)$) = P2($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, b_1^2 ..., b_{K1}^2 _K)

and where P1 and P2 represent arbitrary permutations.

Meaney teaches: the coding functions Cod1 and Cod2 of the first coder and of the second coder are designed as follows:

Cod1(
$$y_1(i), y_2(i), ..., y_k(i)$$
) = P1($y_1(i), y_2(i), ..., y_k(i), b_1^1 ..., b_{K1}^1 k$)

Cod2(
$$y_1(i)$$
, $y_2(i)$, ..., $y_k(i)$) = P2($y_1(i)$, $y_2(i)$, ..., $y_k(i)$, b_1^2 ..., b_{K1}^2 _K)

and where P1 and P2 represent arbitrary permutations (figure 2, element 23, element 24, element 23', element 24').

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Meaney, padding of code words with b_1^n ..., b_{K1}^n . Padding of code words in a known technique in the art, and the combination would yield predictable results.

36. Regarding claim 48, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: the state matrix A of the first linear automaton circuit and the state matrix B of the second linear automaton circuit are related to one another as follows: $B = A^n$ where $n \ne 1$.

Meaney teaches: the state matrix A of the first linear automaton circuit and the state matrix B of the second linear automaton circuit are related to one another as follows: $B = A^n$ where $n \ne 1$ (table 2)

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Meaney, matrix $B = A^n$ where $n \ne 1$. Inverted matrices are a well known design choice in MISR design is well known in the art, and combination would yield predictable results.

37. Regarding claim 49, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: the state matrix B of the second linear automaton circuit is equal to the inverted state matrix A⁻¹ of the first linear automaton circuit.

Meaney teaches: the state matrix B of the second linear automaton circuit is equal to the inverted state matrix A⁻¹ of the first linear automaton circuit (table 2).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Meaney, matrix $B = A^{-1}$. Inverted matrices are a well known design choice in MISR design is well known in the art, and combination would yield predictable results.

38. Regarding claim 50, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: the first linear automaton circuit is designed as a linear feedback shift register and the second linear automaton circuit is

designed as an inverse linear feedback shift register, both linear automaton circuits having a parallel input.

Meaney teaches: the first linear automaton circuit is designed as a linear feedback shift register and the second linear automaton circuit is designed as an inverse linear feedback shift register, both linear automaton circuits having a parallel input (table 2).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Meaney, the linear automaton circuits as linear feedback shift registers. Implementation of a linear automaton circuit as a linear feedback shift register is a well known design choice in the art and the combination would yield a predictable result.

- 39. Regarding claim 51, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa additionally teaches: the first linear automaton circuit is designed as a linear feedback, K1-dimensional multi-input shift register and/or the second linear automaton circuit is designed as a linear feedback, K2-dimensional multi-input shift register. (figure 4, element 16, element 2)
- 40. Regarding claim 52, Hasegawa and Meaney teach the limitations of the parent claim, claim 52. Hasegawa additionally teaches: the multi- input shift register/registers has/have a primitive feedback polynomial of maximum length (paragraph 0081).

Art Unit: 2117

41. Regarding claim 55, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa additionally teaches: the evaluation circuit is monolithically integrated on an integrated circuit (abstract).

- 42. Claims 33, 34, 38, 40, 46, and 47 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hasegawa and Meaney, in view of Applicant Admitted Prior Art (herein AAPA).
- 43. Regarding claim 33, Hasegawa and Meaney teach the limitations of the parent claim, claim 32. Hasegawa does not explicitly teach: the coding function of the first coder as:

Cod1
$$(y'(i)) = u1(i) XOR f1(e(i)), or$$

Cod1
$$(y'(i))$$
 = Cod1 $(y(i) XOR e(i))$ = Cod1 $(y(i) XOR f_1(e(i)))$

where a function f_1 by f_1 (0) = 0, exists for y'(i) = y(i) XOR e(i), and where a function f_1^{-1} where f_1^{-1} (f_1 (e)) = e, exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn.

AAPA teaches: the coding function of the first coder as:

Cod1
$$(y'(i)) = u1(i) XOR f1(e(i)), or$$

Cod1
$$(y'(i))$$
 = Cod1 $(y(i) XOR e(i))$ = Cod1 $(y(i) XOR f_1(e(i)))$

where a function f_1 by f_1 (0) = 0, exists for y'(i) = y(i) XOR e(i), and where a function f_1^{-1} where f_1^{-1} (f_1 (e)) = e, exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn (page 6, lines 14 – 18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a first coder upstream of a first linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

44. Regarding claim 34, Hasegawa teaches the limitations of the parent claim, claim 30. Hasegawa does not explicitly teach: arranged upstream of the second linear automaton circuit is a second coder, which codes the data word y(i) having the data word length of k bits into a coded data word u2(i), u2(i)=Cod2(y(i)) having the word width of K.2 bits, for i=l, ..., n, and where Cod2 represents the coding function of the second coder.

Meaney teaches: arranged upstream of the second linear automaton circuit is a second coder (Meaney: figure 2, element 21'),

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa, an evaluation circuit, as cited above, with the teaching of Meaney: a second coder upstream of the second linear automation

Art Unit: 2117

circuit for the purpose of detection of errors introduced independent of the design under test. Data coders are a well known technique in the art for detecting errors in data.

One of ordinary skill in the art, at the time of the invention, would have recognized the application of the known technique would have yielded predicable results.

Meaney does not explicitly teach: which codes the data word y(i) having the data word length of k bits into a coded data word u2(i), u2(i)=Cod2(y(i)) having the word width of K.2 bits, for i=I, ..., n, and where Cod2 represents the coding function of the second coder.

AAPA teaches: which codes the data word y(i) having the data word length of k bits into a coded data word u2(i), u2(i)=Cod2(y(i)) having the word width of K.2 bits, for i=I, ..., n, and where Cod2 represents the coding function of the second coder (page 6, lines 14 – 18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a second coder upstream of the second linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

Art Unit: 2117

45. Regarding claim 38, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: the following holds true for the coding function of the first coder:

Codl
$$(y'(i)) = ul(i)$$
 (D $f_1(e(i))$, or

Cod1
$$(y'(i))$$
 = Cod1 $(y(i) XOR e(i))$ = Cod1 $(y(i) XOR f_1(e(i)))$

where a function f_1 by $f_1(0) = 0$ exists for y'(i) = y(i) XOR e(i), and where a function f_1^{-1} where $f_1^{-1}(f_1(e)) = e$ exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn,

AAPA teaches: the following holds true for the coding function of the first coder:

Codl
$$(y'(i)) = ul(i) (D f_1(e(i)), or$$

Cod1
$$(y'(i))$$
 = Cod1 $(y(i) XOR e(i))$ = Cod1 $(y(i) XOR f_1(e(i)))$

where a function f_1 by $f_1(0) = 0$ exists for y'(i) = y(i) XOR e(i), and where a function f_1^{-1} where $f_1^{-1}(f_1(e)) = e$ exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn (page 6, lines 14 - 18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a first coder upstream of a first linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

Art Unit: 2117

46. Regarding claim 40, Hasegawa and Meaney teach the limitations of the parent claim, claim 39. Hasegawa does not explicitly teach: the following holds true for the coding function of the second coder:

$$Cod2(y'(i)) = u2(i) \sim f2(e(i)), or$$

$$Cod2(y'(i)) = Cod2(y(i) \cdot e(i)) = Cod2(y(i)) \cdot f2(e(i))$$

where a function f_2^{-1} where $f_2^{-1}(f_2(e)) = e$ exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn.

AAPA teaches: the following holds true for the coding function of the second coder:

$$Cod2(y'(i)) = u2(i) \sim f2(e(i)), or$$

$$Cod2(y'(i)) = Cod2(y(i) \cdot e(i)) = Cod2(y(i)) \cdot f2(e(i))$$

where a function f_2^{-1} where $f_2^{-1}(f_2(e)) = e$ exists for all binary data words e having the word width k which may occur as errors of a data word, where e denotes a faulty data word of the data stream Tn (page 6, lines 14 - 18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a first coder upstream of a first linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

47. Regarding claim 46, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the coding function Cod1 of the first coder is designed such that it realizes a linear block code, f1=Cod1.

AAPA teaches: the coding function Cod1 of the first coder is designed such that it realizes a linear block code, f1=Cod1 (page 6, lines 14-18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a first coder upstream of a first linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

48. Regarding claim 47, Hasegawa and Meaney teach the limitations of the parent claim, claim 37. Hasegawa does not explicitly teach: the coding function Cod2 of the second coder is designed such that it realizes a linear block code, f2=Cod2.

AAPA teaches: the coding function Cod2 of the second coder is designed such that it realizes a linear block code, f2=Cod2 (page 6, lines 14 – 18).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, with a first coder upstream of a first linear automation circuit, with the teaching of AAPA:, as cited above. Linear block codes, as defined above, are well known technique in the art

Art Unit: 2117

for error detection correction. One of ordinary skill, at the time of the invention, would have recognized that application of the known technique would yield predictable results.

- 49. Claims 56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hasegawa and Meaney, in view of Eldridge et al., U.S. Publication 2001/0052786 (herein Eldridge).
- 50. Regarding claim 56, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: A load board for receiving at least one needle card for testing integrated circuits and/or having at least one test socket for testing integrated circuits and/or for connecting a handler to a tester of integrated circuits, the load board having an evaluation circuit.

Eldridge teaches: A load board for receiving at least one needle card for testing integrated circuits (paragraph 0075).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Eldridge, a load board for receiving a needle card. A load board from receiving a needle card is well known in the art and one of ordinary skill in the art, at the time of invention, would recognize the combination would yield predictable results.

- 51. Claim 57 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hasegawa and Meaney, in view of Beer, U.S. Publication 2002/0153918 (herein Beer).
- 52. Regarding claim 57, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: a needle card for testing integrated circuits.

Beer teaches: a needle card for testing integrated circuits (abstract).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Beer, a needle card. A needle card is well known in the art and one of ordinary skill in the art, at the time of invention, would recognize the combination would yield predictable results.

- 53. Claim 58 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hasegawa, Meaney, and Eldridge, in view of Davis et al., U.S. Patent 6,194,910 (herein Davis).
- 54. Regarding claim 58, Hasegawa and Meaney teach the limitations of the parent claim, claim 35. Hasegawa does not explicitly teach: a tester for testing integrated circuits having the following features: the tester is provided with a plurality of instruments for generating signals or data streams and with a plurality of measuring sensors, in particular for currents and voltages; the tester has a load board which is

provided for receiving at least one needle card for testing integrated circuits and/or for connecting a handler to a tester of integrated circuits and/or which is equipped with at least one test socket for testing integrated circuits.

Eldridge teaches: the tester has a load board which is provided for receiving at least one needle card for testing integrated circuits and/or for connecting a handler to a tester of integrated circuits and/or which is equipped with at least one test socket for testing integrated circuits (paragraph 0075).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Eldridge, a load board for receiving a needle card. A load board from receiving a needle card is well known in the art and one of ordinary skill in the art, at the time of invention, would recognize the combination would yield predictable results.

Eldridge does not explicitly teach: the tester is provided with a plurality of instruments for generating signals or data streams and with a plurality of measuring sensors, in particular for currents and voltages.

Davis teaches: the tester is provided with a plurality of instruments for generating signals or data streams and with a plurality of measuring sensors, in particular for currents and voltages (abstract).

A person of ordinary skill in the art, at the time of the invention, would find it obvious to combine the teachings of Hasegawa and Meaney, an evaluation circuit, as cited above, with the teaching of Davis, a tester for measurement of voltage and

current. A tester for measurement of voltage and current is well known in the art and one of ordinary skill in the art, at the time of invention, would recognize the combination would yield predictable results.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DANIEL F. MCMAHON whose telephone number is (571)270-3232. The examiner can normally be reached on M-Th 8am-5pm(EST).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jacques Louis-Jacques can be reached on (571)272-6962. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Cynthia Britt/

Art Unit: 2117

Primary Examiner, Art Unit 2117

Dfm 09/05/08