

Other actuators

KON-C2004 Mechatronics Basics Raine Viitala 19.11.2024

Feedback

These exercies were really fun and interesting. The difficulty was on point in my opinion.

Exercises were ok but I didn't like the Fourier Analysis assignment. Got a mental breakdown from that one but I guess I learned something which was good.

This weeks exercise was great. I especially appreciated the fourier transform exercise, it gave me a greeat intuition for what the fourier transform does and why it is useful. P.S. can there be a whole course about only lithography and ASML machines? I volunteer as TA.

reliant on correct completion of last exercise

The exercise are amazing and great to solve them but would like more sessions so we can get the help needed.

de good exercise

de good

fun and enjoyable

Very difficult but still doable

- More readable formating for the instructions, please. For example bullet points instead of wall of text.

This weeks exercises felt easier, i feel suspicious. Overall enjoyed the simulink exercise.

When do the hard exercises begin?

Sick

Mechatronic machine - subsystems

Other systems and machines

Lecture overview & learning outcome

Pneumatics

Linear motion with electromagnetic devices

- Conversion from rotary motion
- Solenoid
- Voice coil
- *Linear electric motors*

Active materials

- Piezoelectric actuators
- Magnetorheological fluid

MEMS actuators

> Know the operating principle of multiple "other actuators"

Pneumatics

Pneumatics

Cheap actuators Moderate forces Clean and safe

- Food industry
- Oil industry

Fast, repetitive motions

- Gripping, stamping, valve actuators etc.

Usually open loop because of compressibility

- Movements against a mechanical stop
- Servosystems also possible

Pneumatic example

024

Air supply

Supply pressure

- *Typical range 2-10 bars (0.2-1 MPa)*
- Usually 6-7 bars

Components

- Air compressor
- Filter, dryer
- Storage tank

Low system efficiency

- Heat produced by the compressor
- Leaks in piping

Pneumatic cylinders

http://en.wikipedia.org/wiki/Pneumatic_cylinder

Force = pressure * piston area Single or double acting Force usually < 10 kN Stroke 1-3000 mm Rodless

- Very long strokes

Telescope

- Long stroke, compact when retracted

Pneumatic grippers

"Cylinder" grippers

- Clamps or tooling jaws
- "Fingers"

Vacuum grippers

- Vacuum created with ejector

Single Stage Ejector

Vacuum

Pneumatic rotary actuators

Motors

- Used a lot in hand-held tools
 - Sanders, power wrenches, grinders etc.
- Starter motors for large electric or combustion motors
- Dental drill rpm up to 400 000

Semi-rotary devices

- Vane type
- Rack and pinion type

Pneumatic muscles and bellows

Single acting High force Short stroke Bellows

- Forces can be over 200 kN
- Short stroke <0,5 m

Muscles

- Maximum force up to a few kilonewtons
- Stroke ~25 % of nominal length

http://pneumatics-en.timmer-pneumatik.de/artikel/artbild/maxi/ZHO-SP2.jpg

http://www.boblan.de/pictures/FESTO-FluidicMuscleInflated.jpg

Pneumatic muscles

Linear motion with electric devices

Converting rotation to linear movement: Screws

http://www.roton.com/page.aspx?id=28

Lead screw

- Nut with internal thread
- Friction caused by sliding
 - Not for continuous use

Ball screw

- Nut with grooves and ball bearings
 - Larger size
- High force minimal friction
- High accuracy

Lead screw example

School of Engineering

Converting rotation to linear movement: Gears and belts

Rack & pinion

- Rack = linear gear
- Pinion = circular gear

Chain & sprocket Belt

- Timing belt
- Flat belt

Cam

http://en.wikipedia.org/wiki/Roller_chain

19.11.2024

Example: Ultimaker 3D printer

Electric linear actuator

http://machinedesign.com/linear-motion/what-s-difference-between-pneumatic-hydraulic-and-electrical-actuators

http://www.iai-gmbh.de/en/press-and-media/press-information/press-informationennewsreader/items/x-y-z-electric-cylinders-take-the-air-out-of-linear-motion.html

Solenoid

End to end linear movement

Larger movement -> smaller force Single acting

 Other direction with a return spring or another solenoid

Often used as actuators for hydraulic and pneumatic valves

Solenoid example

Voice coil

High force - up to kilonewtons
Stroke up to a few centimeters
Low moving mass – high dynamics
Accurate position control

- with internal or external position feedback sensors

Used for example in speakers and hard disks
Permanent magnet and coil

Voice coil example

Voice coil principle

Linear motors

Moving coils on a rail of magnets High speed – up to 6 m/s High accuracy

- Depending on feedback resolution
- No backlash
- Stiffness depends on driving current and control rate

High reliability Moderate force Expensive

Linear motor principle

Linear motor example

Active materials

Piezoelectric stack actuators

Very high force / size

- For example ø10 mm actuator -> 1 kN
- Comparable to hydraulics

Very low displacement

- *About 0,1 % of length 1 μm per 1 mm*
- Positioning resolution in nanometers
- Can be amplified -> reduced stiffness and dynamics

High dynamics

- Sub-millisecond response
- Frequencies up to 100 kHz

 $http://img.directindustry.com/images_di/photo-g/piezoelectric-actuators-linear-multilayer-13949-4710033.jpg$

Piezoelectric benders

Larger movement

- Up to a millimeter

Low force

- Benders < 2N
- $Ring\ benders < 20\ N$

Piezo example application: micro gripper

Handles small components

- 10-500 μm

2 double benders and 2 stacks6 degrees of freedom10 strain gagesfor position feedback

Aalto University http://autsys.aalto.fi/en/MicroNanoRoboticsResult School of Engineering s

Piezoelectric motor

"Piezoelectric stepping motor"

- Small steps -> high precision

Also known as ultrasonic motor

- Stepping frequency >20 kHz

Used widely as camera autofocus motor

Rotating or linear

Low cost, compact, high force/size

Miniature piezoelectric linear motor

Magnetorheological (MR) fluid

Hydraulic fluid (oil) with iron particles

Magnetic field controls the yield stress ("viscosity") of the fluid

Other active materials

Magnetostrictive materials

- Change in magnetic field 0.1-0.2 % strain in material
- High force

Electrostrictive materials

- Electric field

Shape memory alloys (SMA, memory metal)

- Change in temperature -> change in shape

(Ferro-) Magnetic shape memory alloys

- Change in magnetic field – up to 10 % change in dimensions

MEMS actuators

MEMS actuators

Electrostatic comb drive

- Displacement max few micrometers

Thermal actuators

Comb drive

MEMS stepper with integrated position sensor

MEMS example: Digital micromirror device

Digital micromirror device (DMD)

- 4k projector -> 8 million tiny rotatable mirrors

https://en.wikipedia.org/wiki/Digital_micromirror_device

Summary

Pneumatics is widely used in factories

- Cheap, safe and robust
- Energy inefficient

Solenoid vs voice coil
Ball/lead screws vs linear motors
Active materials have their niche applications
MEMS open new possibilities