Лекция 8

Прямая на плоскости

1. Уравнение прямой с угловым коэффициентом

2. Общее уравнение прямой

$$Ax + By + C = 0, \tag{4.3}$$

A, B, C — произвольные числа такие, что A и B не равны нулю одновременно, x, y — текущие координаты.

Расположение прямой на плоскости в случае равенства нулю некоторых из коэффициентов A, B, C:

Значения коэффициентов	Уравнение прямой	Расположение прямой на плоскости
$C=0, B=0, A\neq 0$	Ax = 0, то есть $x = 0$	ось Оу
$C=0, A=0, B\neq 0$	By = 0, то есть $y = 0$	ось Ох
A – любое, $C = 0$, $B \neq 0$	$y = -\frac{A}{B}x$	проходит через начало координат
C – любое, $A = 0$, $B \neq 0$	$y = -\frac{C}{B}$	прямая $\parallel Ox \left(\perp Oy \right)$
C – любое, $B = 0$, $A \neq 0$	$x = -\frac{C}{A}$	прямая $\parallel Oy \left(\perp Ox \right)$

3. Уравнение прямой, проходящей через данную точку

в данном направлении

Пусть прямая проходит через точку $M(x_1; y_1)$ и ее направление характеризуется угловым коэффициентом k.

Уравнение этой прямой: y = kx + b, где b -пока неизвестная величина. Так как прямая проходит через точку $M(x_1; y_1)$, то координаты точки удовлетворяют уравнению прямой: $y_1 = kx_1 + b$. Отсюда $b = y_1 - kx_1$. Подставляя значение b в уравнение y = kx + b, получим искомое уравнение прямой $y = kx + y_1 - kx_1$, то есть

$$y - y_1 = k(x - x_1), \tag{4.6}$$

называемое уравнением прямой, проходящей через данную точку в заданном направлении.

Данное уравнение с различными значениями к называют также **уравнением пучка прямых** с центром в точке $M(x_1; y_1)$.

4. Уравнение прямой, проходящей через две точки

Пусть прямая проходит через две точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$. Ее угловой коэффициент (рис. 4.4)

$$k = tg\alpha = \frac{y_2 - y_1}{x_2 - x_1}$$

Puc. 4.4

Подставив коэффициент и координаты точки $M_1(x_1; y_1)$ в уравнение (4.6), выведем уравнение

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$
 или $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$, (4.7)

называемое уравнением прямой, проходящей через две точки.

Если $x_1 = x_2$, то есть точки M_1 и M_2 лежат на одной вертикальной линии, то уравнение (4.7) теряет смысл. В этом случае прямая задается уравнением $x = x_1$. Если $y_1 = y_2$, то прямая задается уравнением $y = y_1$.

Уравнение прямой в отрезках

Пусть задана прямая ,отсекающая на оси абсцисс отрезок, равный ,а на оси ординат – от резок, равный .Точки пересечения прямой с осями координат: A(a;0) и B(0;b) .Составим уравнение прямой, проходящей через эти две точки:

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}; \frac{x-a}{-a} = \frac{y}{b}; \frac{x}{-a} + 1 = \frac{y}{b};$$

Итак, искомое уравнение имеет вид:

$$\frac{x}{a} + \frac{y}{b} = 1$$

MyShared

6. Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору

4) Уравнение прямой, проходящей через данную точку $M_o(x_o, y_o)$ и перпендикулярно данному вектору $\vec{n} = (A, B)$

$$\overline{M_0M} = (x - x_0, y - y_0), \quad l \quad y$$

$$\overrightarrow{M_0M} \perp \vec{n}$$

$$\overrightarrow{M_0M} \cdot \vec{n} = 0$$

$$\vec{i} = 0$$

$$M(x,y)$$

$$\vec{i}$$

$$A(x-x_0) + B(y-y_0) = 0$$

7. Полярное уравнение прямой

 $M(\rho, \phi)$ – произвольн ая точка прямой

$$\Pi p_{OK} \overline{OM} = p = \left| \overline{OM} \right| \cos(\varphi - \alpha) = \rho \cos(\varphi - \alpha)$$

$$\rho \cos(\varphi - \alpha) = p$$

8. Нормальное уравнение прямой

Рассмотрим полярное уравнение прямой

$$\rho\cos(\varphi - \alpha) = p$$

$$\rho\cos\varphi\cos\alpha + \rho\sin\varphi\sin\alpha - p = 0$$

$$x\cos\alpha + y\sin\alpha - p = 0$$

Полученное уравнение есть уравнение прямой в прямоугольной системе координат.

Пусть общее уравнение прямой Ax + By + C = 0

И уравнение той же прямой в нормальном виде $x\cos\alpha + y\sin\alpha - p = 0$

T.e.
$$A\lambda x + B\lambda y + C\lambda = 0$$
$$A\lambda = \cos \alpha \quad B\lambda = \sin \alpha \quad C\lambda = -p$$

Из первых двух равенств определим λ

$$\lambda^2 A^2 + \lambda^2 B^2 = \cos^2 \alpha + \sin^2 \alpha = 1$$

 $\lambda = \pm \frac{1}{\sqrt{A^2 + B^2}}$ –нормирующий множитель. Умножается на общее уравнение

для перехода к нормальному

 λ и с должны иметь противоположные знаки т.к. p— это длина, положительное число, $C\lambda = -p \implies C\lambda < 0$

Если с=0, то выбор знака произволен

9. Угловые соотношения между прямыми

1. Если даны уравнения двух прямых l_1 и l_2 вида $y=k_1x+b_1$ и $y=k_2x+b_2$, то о взаимном расположении этих прямых на плоскости можно судить по их угловым коэффициентам k_1 и k_2 .

Найдем тангенс угла φ ($\varphi \neq \frac{\pi}{2}$), на который надо повернуть прямую l_1 до совпадения с прямой l_2 относительно точки их пересечения (рис. 4.5) по формуле $\varphi = \alpha_2 - \alpha_1$.

По формуле тангенса разности

$$tg\varphi = tg(\alpha_2 - \alpha_1) = \frac{tg\alpha_2 - tg\alpha_1}{1 + tg\alpha_1 tg\alpha_2}.$$

Так как $tg\alpha_1=k_1$ и $tg\alpha_2=k_2$, то

$$dg\varphi = \frac{k_2 - k_1}{1 + k_1 k_2},$$

является формулой угла между прямыми.

Выведем из (4.8) условия параллельности и перпендикулярности прямых.

Если $l_1 \parallel l_2$, то $tg \varphi = 0$, следовательно, условие параллельности прямых:

$$\boxed{k_1 = k_2.} \tag{4.9}$$

Если $l_1 \perp l_2$, то $\varphi = 90^o$, то есть $tg\varphi$ – не существует (равен ∞). Следовательно, условие перпендикулярности прямых:

$$k_1 k_2 = -1$$
 или $k_1 = -\frac{1}{k_2}$. (4.10)

10. Расстояние от точки до прямой

Расстояние **d** от точки $M_0(x_0; y_0)$ до прямой Ax + By + C = 0

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

$$M_0(x_0; y_0)$$