RESEARCH OF BOOSTING ALGORITHMS VERSUS TRADITIONAL METHODS IN CREDIT CARD FRAUD DETECTION ACROSS VARIED DATASETS

Justs Viduss

Transport and Telecommunication Institute

Why This Research Matters

- Addressing a Major Challenge: Credit card fraud poses a significant financial threat.
- Advanced Solutions: Tests boosting algorithms known for superior performance.
- Practical Impact: Provides data-driven insights to enhance fraud detection systems, adapting to evolving fraud tactics.

Objectives

- Goal: Evaluate and compare the effectiveness of boosting algorithms
- Objective: Assess multiple machine learning approaches across three distinct datasets: synthetic, balanced, and highly unbalanced
- Key insights: Determine the best-performing algorithms based on F1 score, accuracy, precision, recall to optimize fraud detection strategies

Outline

- Algorithms tested
- Datasets
- Implementation
- Algorithm performance analysis
- Conclusions

Algorithms tested

6

Datasets

• Unballanced dataset: 284k rows, 30 features, 492 fraud cases

(0.17%). All features exept time and transaction amount are anonymized using

PCA. Source: Kaggle (2018) transactions made by European cardholders in

Time September 2013 10 175000 15 2500 15 150000 10 2000 10 125000 100000 8 2 \$ 2 75000 -10 -5 50000 -10 -15 500 -10 25000 -15 Distribution of Amount 140000 10 10 10 -10 120000 100000 80000 5 60000 -5 -5 -5 -5 40000 -10 -10-10 20000 -10 -10 500 1000 2000 2500 1500

Amount

8

Ballanced dataset: 568k rows, 29 features, 280k fraud cases (50%).

Source: Kaggle (2023). Transactions made by European cardholders in 2023

Amount

Synthetic data: Generated with python script, 1.7m rows, 5

features, 14k fraud cases (0.84%)

Implementation

- Tools: Python notebooks, Excel
- Preprocessing: Data cleaning and preparation for modeling
- Parameter tuning: In total 900 semi-automated tests were done
- Testing environment: Laptop
 - 10 Core 12th gen Intel CPU
 - 16 GB RAM

Algorithm performance analysis

Why each metric was chosen for tests:

- Recall when it is critical to catch as many frauds as possible (minimizing false negatives)
- Precision when it is crucial to be as accurate as possible in your fraud predictions (minimizing false positives)
- F1 Score when you need a balance between precision and recall, and both types of errors are similarly costly
- Accuracy only when the classes are somewhat balanced or when you
 want a general idea of the model's performance across all predictions

Recall

Unballanced data max Recall

Ballanced data max Recall

Recall

Synthetic data max Recall

Accuracy

	Max of Accuracy				
	Unballanced		Ballanced	Synthetic	
XGBoost		99,96%	99,99%	99,26%	
AdaBoostDT	Z↓	99,96%	99,98%	99,50%	
Random Forest	ΑΨ.	99,96%	99,99%	99,38%	
K-Nearest Neighbors (KNN)		99,95%	99,93%	99,36%	
AdaBoost		99,95%	97,62%	99,37%	
Gradient Boosting Machine		99,95%	99,96%	99,60%	
SVM (Support Vector Machines)		99,94%	96,39%	99,19%	
Logistic Regression		99,92%	96,53%	99,27%	
Linear Regression		99,91%	94,84%	99,19%	

F1 Score

	Max of F1 Score				
	Unballanced		Ballanced	Synthetic	
XGBoost		88,27%	99,99%	26,86%	
AdaBoostDT	Z	87,64%	99,98%	57,55%	
Random Forest	ΑΨ	85,55%	99,99%	38,74%	
K-Nearest Neighbors (KNN)		85,39%	99,93%	36,02%	
AdaBoost		85,08%	97,61%	36,72%	
Gradient Boosting Machine		82,76%	99,96%	72,04%	
SVM (Support Vector Machines)		82,16%	96,34%	0,21%	
Logistic Regression		72,62%	96,49%	18,47%	
Linear Regression		67,48%	94,67%	0,07%	

Precision

	Max of Precision				
	Unballanced		Ballanced	Synthetic	
Random Forest		100,0%	100,0%	99,6%	
Gradient Boosting Machine	Z	100,0%	99,9%	100,0%	
XGBoost	ΑΨ	98,7%	100,0%	100,0%	
AdaBoostDT		98,7%	100,0%	100,0%	
K-Nearest Neighbors (KNN)		95,0%	99,9%	99,2%	
AdaBoost		92,8%	98,5%	100,0%	
SVM (Support Vector Machines)		89,2%	98,1%	100,0%	
Logistic Regression		87,1%	98,2%	100,0%	
Linear Regression		84,6%	98,2%	100,0%	

Conclusions

- For Fraud detection in real world scenarious AdaBoost has best performance from tested algorithms, and outperforms other Boosting and classical algorithms
- Other algorithms perform better in different situations which is interesting for other industries where Accuracy, F1 Score or Precision would be more important
- Gradient Boosting Machine might be go to algorithm with uncertain or changing data, as it performed well on both, real and synthetic data

18

Acknowledgements

The research was supervised by Dr.sc.ing., Professor Nadezda
 Spiridovska, whose insights and guidance were invaluable
 throughout the study

Thank you

Justs Viduss

 $viduss.justs @\ gmail.com$