
LLC Resonant Converter

Infineon Technologies

Content

■ LLC Topology

- Benefits and Drawbacks
- Basic Analysis of LLC Converter
- Modes of Operation
- Design

■ ICE2HS01G Resonant Mode Controller

- Key Features
- Protection
- Design

■ Reference Designs and Experimental Results

- Solar LLC Converter
- SMPS LLC Converter

³ LLC Benefits and Drawbacks vs. Phase Shift Full Bridge

LLC	Phase Shift Full Bridge
■ Benefits	
Full resonant → less EMI	Quasi resonant
Soft switching in primary and secondary sides → High efficiency	Secondary side is hard switching
Soft switching over a wide load range → High efficiency at light load	Soft switching is load dependent
No output inductor → Low BoM cost in magnetics	Needs one or two output inductors
Lower blocking voltage for secondary rectifiers → Lower cost, better FoM devices	Needs higher voltage devices
Half Bridge LLC and Full Bridge LLC covers wide power range applications.	More suitable for high power application
■ Drawbacks	
More Challenging control and design – knowledge intensive; integrated magnetics require sophisticated design approach	Easy control and straight forward design
Non trapezoidal current waveform → Higher conduction loss overcome by lower Ron FETs, with lower FOM	trapezoidal current waveform → Lower conduction loss
Variable frequency to regulate output voltage	Fixed frequency control

Concept of LLC Resonant Converter

Switching bridge generates square waveform to excite **resonant tank**, resonant sinusoidal current gets scaled and rectified by **transformer and rectifier**, **output capacitor** filters the ac current to output DC voltage

Basic Analysis of LLC Converter

Equivalent circuit

$$K(Q, m, Fx) = \frac{V_{o_ac}}{V_{in_ac}} = \frac{Fx^2(m-1)}{\sqrt{(m \cdot Fx^2 - 1)^2 + Fx^2 \cdot (Fx^2 - 1)^2 \cdot (m-1)^2 \cdot Q^2}}$$

$$G = \frac{V_o}{V_{in}} = \frac{1}{2} \cdot K(Q, m, Fx) \cdot \frac{N_s}{N_p}$$

$$Fx = \frac{f_s}{f_r} \quad f_r = \frac{1}{2\pi\sqrt{L_r C_r}} \quad Q = \frac{\sqrt{L_r / C_r}}{R_{ac}} \quad R_{ac} = \frac{8}{\pi^2} \cdot \frac{N_p^2}{N_s^2} \cdot R_o \quad m = \frac{L_r + L_m}{L_r}$$

Basic Analysis of LLC Converter

$$K(Q, m, Fx) = \frac{V_{o_ac}}{V_{in_ac}} = \frac{Fx^2(m-1)}{\sqrt{(m \cdot Fx^2 - 1)^2 + Fx^2 \cdot (Fx^2 - 1)^2 \cdot (m-1)^2 \cdot Q^2}}$$

Modes of Operation

- **At resonance operation $f_s = f_r$**
 - Unity gain
 - Optimal operational point
- **Below resonance operation $f_s < f_r$**
 - Boost gain
 - Increased primary side conduction losses
 - Has the risk of capacitive mode operation
- **Above resonance operation $f_s > f_r$**
 - Buck gain
 - Increased Primary side turn off losses
 - Reverse recovery for secondary side diodes
 - Gain is less sensitive to frequency modulation

At Resonance Operation $f_s = f_r$

Above Resonance Operation $f_s > f_r$

10

Below Resonance Operation $f_s < f_r$

Below Resonance Operation $fs < fr$

Design Guideline

- Converter's required maximum voltage gain.
- Find which Q curve have that gain at its peak
- The frequency at that peak is set to be the minimum switching frequency.
- Maximum frequency must be limited for high efficiency, pulse skipping is used for further step down gain.

- Limiting the minimum switching frequency guarantees operating in the inductive region for all load conditions, including and below maximum load.
- Operation beyond maximum load falls into capacitive region (not safe), which is possible during start up and transient conditions → design must allow some safety margin.

13

Selection of m value

$$m = (L_r + L_m)/L_r$$

- When choosing m , there is a compromise between input voltage range, efficiency, frequency modulation range, soft switching

Lower magnetizing circulating current \rightarrow Higher efficiency

Higher boost gain \rightarrow Wider input range
 \rightarrow Narrower frequency range

Bridge and Rectifier Selection

Primary Bridge: Half-Bridge compared to Full-Bridge

I_{rms}	I_{rms}^2	# of FETs	FETs conduction losses	N_p	R_{pri}	Transformer primary copper loss
$\times 2$	$\times 4$	$\div 2$	$\times 2$	$\div 2$	$\div 2$	$\times 2$

*Comparison assumes same FET and transformer core

Secondary Rectifier: Full-Wave compared to Full-Bridge

Diode voltage rating	# of diodes	Diode conduction losses	# of secondary windings	R_{sec}	Transformer secondary copper loss
$\times 2$	$\div 2$	$\div 2$	$\times 2$	$\times 2$	$\times 2$

*Comparison assumes same diode drop and transformer core

ICE2HS01G

Resonant Mode Controller

Key Features

- Flexible LLC operation
 - Adjustable frequency for Min, Max, OCP and SS → **Easy design**
 - Maximum switching frequency up to 1MHz → **High power density**
 - Adjustable and adaptive dead time control → **Easy design**
- Novel SR operation mode with various protections (**patent pending**)
 - Can be operated at boost region with SR → **Highest achievable efficiency**
 - Variable protections for SR operation → **Easy and Reliable design**
 - Control SR from primary controller → **No need of SR IC, low system cost**
- Accurate setting of switching frequency and dead time
 - **Simple system design**
 - **optimized system efficiency**
- Various protections
 - OTP, OLP, OCP, Latch-off Enable → **Easy system design**

Frequency Oscillator

- FREQ pin is regulated at 2V constantly, the current flowing out from FREQ pin is used to charge the internal oscillator capacitor. The higher output current, the higher switching frequency
- Minimum operation frequency $\rightarrow R_{FMIN}$
- Softstart frequency $\rightarrow R_{FMIN} // R_{OCP} // R_{SS1}$
- Switching frequency during over current protections $\rightarrow R_{FMIN} // R_{OCP}$
- Maximum switching frequency during no load operation $\rightarrow R_{FMIN} // R_{REG}$

Current Sense and Over Current Protection (OCP)

- ICE2HS01G increases the switching frequency once an OCP is detected via CS pin
- 3-level OCP protection is implemented
 - Level 1 → switching frequency increase
 - Level 2 → switching frequency rapid increase
 - Level 3 → IC enters into latch protection

SR Control Scheme

- On time prediction and adaptive control
 - Using primary switching frequency, input bus voltage information and preset on time period to determine the on time
 - Using current sensing information for adaptive on time adjustment

Over Load Protection (OLP)

- Over load protection is detected same as open loop protection, when feedback signal is high.
- After 20ms and after timer pin reaches V_{TH} , IC enters into OLP and stop all switches and stop the charging current on Timer pin as well.
- IC will wait until the voltage on Timer pin falls below than V_{TL} , then will restart with soft start.

Burst Mode Operation

- Light load is detected when feedback signal is low.
- ICE2HS01G has two options for light load operation
 - High switching frequency as normal operation (disabled burst)
 - Enter into burst mode operation (enabled burst, limited max frequency)

Pin Layout & Typical Application Circuit

Pin Number	Pin Name
1	Timer
2	EnA
3	SS
4	LOAD
5	FREQ
6	Delay
7	TD
8	V _{mc}
9	V _{ref}
10	V _{res}
11	V _{INS}
12	CS
13	CL
14	SRD
15	GND
16	SLG
17	SHG
18	LG
19	HG
20	VCC

Package → PG-DSO-20-45

Reference Design #1

Solar Micro-Inverter LLC DC-DC stage

Solar LLC DC-DC stage

Full-Bridge LLC w/ Full-Bridge rectifier

Vo	400V
Vin	16V - 36V
Vin_nom	33V
Po_max	250W @ Vin=36V
Output power derates linearly with input voltage Ex: Output power= 125W @ Vin=18V	
fr	110kHz
fmin	50kHz
fmax	190kHz
Transformer turns ratio	1:12
Cr	0.94uF
Lr	2.3uH
Lm	12.2uH

Bridge FETs

- BSC028N06NS 60V 2.8mΩ
- New Generation
- 55% reduction in Figure of Merit (Q_g)
- 37% reduction in Figure of Merit (Q_{oss})

Rectifier diodes

- IDH05G65C5 SiC 650V 5A
- Low voltage drop
- Low capacitive charge
- High surge current capability
- Improved thermal performance

LLC analog controller
ICE2HS01G

Resonant capacitor
Film MKP

Transformer/
Resonant inductor
E41/17/12

Solar LLC DC-DC stage

Solar LLC DC-DC stage

Experimental Waveforms At Resonance Operation $f_s=fr$

$V_{in} = 33V$

Red: Primary FET V_{gs}

Yellow: Primary FET V_{ds}

Green: Resonant current I_{Lr}

Blue: Rectifier output current $I_{D1}+I_{D3}$

Experimental Waveforms Below Resonance Operation $fs < fr$

$V_{in} = 16V$

$V_{in} = 24V$

Red: Primary FET V_{gs}

Yellow: Primary FET V_{ds}

Green: Resonant current I_{Lr}

Blue: Rectifier output current $I_{D1} + I_{D3}$

ZVS@16V

ZVS@24V

Experimental Waveforms

Above Resonance Operation $f_s > f_r$

$V_{in} = 36V$

Light Load Missing Cycle Mode

- Red:** Primary FET V_{gs}
- Yellow:** Primary FET V_{ds}
- Green:** Resonant current I_{Lr}
- Blue:** Rectifier output current $I_{D1} + I_{D3}$

Efficiency

Input Voltage	Output Power (% of 250W)				
	20%	40%	60%	80%	100%
36V	97.1% **	97.1% **	97.1%	97.1%	97.1%
33V	96.0%	97.2%	97.6%	97.6%	97.4%
24V	94.5%	96.8%	97.1%	97.0%	
16V	94.0%	96.3%	96.2%		

** Missing cycle mode / Burst mode operation

Reference Design Example #2

SMPS LLC DC-DC stage

SMPS LLC DC-DC stage

Full-Bridge LLC w/ Full-Bridge rectifier

Vo	12V/25A
Vin	315Vdc~420Vdc
Vin_nom	400V
Po_max	300W
fr	85kHz
fmin	30kHz
fmax	180kHz
Transformer turns ratio	16:1
Cr	66nF
Lr	53uH
Lm	690uH

Primary MOSFET: IPA60R199CP

Secondary SR MOSFET: SPP015N04N G

Main Tran.: PQ3230 PC95

Resonant Choke: RM10 PC95

Pulse Tran.: EE13 PC44

SMPS LLC DC-DC stage

SMPS LLC DC-DC stage

Soft Start

Full load

No load

Burst Mode Operation at No Load

SR Soft Start at Full Load

Efficiency

V_{out}(V)	I_{out}(A)	P_{out}(W)	Load(%)	V_{in}(V)	I_{in}(A)	P_{in}(W)	V_{cc}(V)	I_{vcc}(A)	P_{vcc}(W)	Eff.(%)
12.17	1.25	15.21	5%	399.99	0.04	17.06	15.00	0.03	0.375	87.2
12.17	2.49	30.31	10%	399.89	0.08	32.17	15.00	0.03	0.375	93.1
12.17	4.98	60.59	20%	399.77	0.16	62.70	15.00	0.03	0.375	96.1
12.16	12.41	150.95	50%	399.34	0.39	154.46	15.00	0.03	0.375	97.5
12.16	24.87	302.42	101%	399.22	0.78	310.84	15.00	0.03	0.375	97.2

References

1. [300W LLC Evaluation Board with LLC controller ICE2HS01G.](#) Application Note.
2. [Resonant LLC Converter: Operation and Design.](#) Application Note.
3. [Design Guide for LLC Converter with ICE2HS01G.](#) Application Note.
4. [LLC Converter Design Note.](#)
5. [High Performance Resonant Mode Controller. ICE2HS01G](#) datasheet.

Application Note, V1.1, August 2011

EVAL-2HS01G-300W
300W LLC Evaluation Board with LLC controller ICE2HS01G

Power Management & Supply

infineon

Never stop thinking.

Application Note AN 2012-09
V1.0 September 2012

Resonant LLC Converter: Operation and Design
250W 33Vin 400Vout Design Example

Sam Abdel-Rahman
Infineon Technologies North America (IFNA) Corp.

www.infineon.com

Thank You

For More Information:

Existing Arrow Customers: 800 777 2776

New Customers: 800 833 3557

www.arrownac.com/powermanagement

Power Management

Five Years Out