Rapport de projet OS13 Analyse de politique de maintenance

TRAN QUOC NHAT HAN & ADRIEN WARTELLE

3 janvier 2019

Sommaire

Maintenance basée sur l'âge 1 Rappel...... 1 Maintenance basée sur dégradation Rappel...... 6 2.26 7 Annexe 3.1Le premier histogramme de distribution de pannes Estimer le mixage de la loi Exponentielle et Gamma Optimiser le coût moyenne sur une durée de temps 3.5

Résumé

Soient des données liées à la fonctionnement de système, nous déterminons un modèle approprié et puis choisir une politique de maintenance optimal.

1 Maintenance basée sur l'âge

1.1 Rappel

Considérons un système non maintenu. En l'observant, nous obtenons un liste des dates de panne, grâce auquel nous construirerons une politique de remplacement systématique basée sur l'âge : Nous remplaçons lorsque le système tombe en panne ou qu'il survit une durée t_0 .

Le but est de minimiser le coût moyen cumulé.

$$\mathbb{E}(C) = \frac{\mathbb{E}(C(S))}{\mathbb{E}(S)} \tag{1}$$

Où S est la variable aléatoire représentant la date de remplacement et C(S) est le coût de maintenance cumulé à l'instant S (sachant que C(S) est $c_c (= 1200)$ si une maintenance corrective et $c_p (= 800)$ si préventive).

1.2 Modéliser la durée de vie du système

L'importation de données de FailureTimes_5.csv (l'annexe 3.1) expose les dates de pannes de l'ordre grandement variée (300 à 27000) (l'annexe 3.2).

Exponentiel des valeurs extrèmes résulteront Inf, ce qui est indésirable. Alors nous devons forcément les réduire en les divisant par un scalaire scale, prenons par example 1000. (Figure 1)

Premier histogramme

FIGURE 1 – Le premier histogramme de distribution de pannes

Les pannes se concentrent autour de 2 sommets, l'un à [0;0,5] et l'autre à [4,5;5]. Ceci nous fait penser naturellement à un mixage de deux lois.

Comme les valeurs sont positives, et que l'un sommet se situe auprès de zéro et l'autre à une valeur non nulle, nous essayons d'estimer un mixage de loi Exponentielle et Gamma.

La fonction de densité avec le paramètre $\theta = (p_1, p_2, \lambda, \alpha, \beta)$:

$$f_{\theta}(x) = p_1 f_1(x) + p_2 f_2(x)$$

$$= p_1 \lambda e^{-\lambda x} + p_2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
(2)

Où f_1, f_2 désignent réspectivement $exp(\lambda)$ et $\Gamma(\alpha, \beta)$; $p_1, p_2 > 0$: $p_1 + p_2 = 1$. Nous allons utiliser l'algorithme EM, la méthode la plus efficace pour estimer le MLE de mixage fini.

Soit X la variable aléatoire de durée de vie du système. Soient $(x_1,...,x_N)$ les observations.

Soit la matrice de probabilité d'appartenance (ζ_{ki}) : ζ_{ki} vaut la probabilité que x_i suive la loi f_k .

$$\zeta_{ki} = \frac{p_k f_k(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \forall k = \overline{1, 2} \forall i = \overline{1, N}$$
(3)

La fonction de vraisemblance :

$$\ln \Lambda = \sum_{i=1}^{N} \ln f_{\theta}(x_i) = \sum_{i=1}^{N} \ln (p_1 f_1(x_i) + p_2 f_2(x_i))$$
 (4)

Nous cherchons à maximiser $\ln \Lambda$ en la dérivant selon λ, α, β . Pour λ :

$$\frac{\partial}{\partial \lambda} \ln \Lambda = \sum_{i=1}^{N} \frac{p_1 e^{-\lambda x_i} - p_1 \lambda x_i e^{-\lambda x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_1 f_1(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{1}{\lambda} - x_i\right)$$

$$= \frac{1}{\lambda} \sum_{i=1}^{N} \zeta_{1i} - \sum_{i=1}^{N} \zeta_{1i} x_i = 0$$

$$\Leftrightarrow \lambda = \frac{\sum_{i=1}^{N} \zeta_{1i}}{\sum_{i=1}^{N} \zeta_{1i} x_i}$$
(5)

Pour β :

$$\frac{\partial}{\partial \beta} \ln \Lambda = \sum_{i=1}^{N} \frac{p_2 x_i^{\alpha - 1}}{\Gamma(\alpha)} \frac{\alpha \beta^{\alpha - 1} e^{-\beta x_i} - \beta^{\alpha} x_i e^{-\beta x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_2 f_2(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{\alpha}{\beta} - x_i\right)$$

$$= \frac{\alpha}{\beta} \sum_{i=1}^{N} \zeta_{2i} - \sum_{i=1}^{N} \zeta_{2i} x_i = 0$$

$$\Leftrightarrow \beta = \alpha \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} x_i}$$
(6)

$$\frac{\partial}{\partial \alpha} \ln \Lambda = \sum_{i=1}^{N} \frac{p_2 e^{-\beta x_i}}{p_1 f_1(x) + p_2 f_2(x)} \left(\frac{\beta (\ln \beta + \ln x_i) (\beta x_i)^{\alpha - 1}}{\Gamma(\alpha)} - \beta^{\alpha} x^{\alpha - 1} \frac{\Psi(\alpha)}{\Gamma(\alpha)} \right)$$

$$= \sum_{i=1}^{N} \frac{p_2 f_2(x_i)}{p_1 f_1(x) + p_2 f_2(x)} (\ln \beta + \ln x_i - \Psi(\alpha))$$

$$= \left(\sum_{i=1}^{N} \zeta_{2i} \right) \ln \beta + \sum_{i=1}^{N} \zeta_{2i} \ln x_i - \Psi(\alpha) \left(\sum_{i=1}^{N} \zeta_{2i} \right) = 0$$

$$\Leftrightarrow 0 = \ln \alpha + \ln \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} x_i} + \frac{\sum_{i=1}^{N} \zeta_{2i} \ln x_i}{\sum_{i=1}^{N} \zeta_{2i}} - \Psi(\alpha) \text{ (substitué par (6))}$$

$$\Leftrightarrow 0 = \ln \alpha + \ln \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i}} + \frac{\sum_{i=1}^{N} \zeta_{2i} \ln x_i}{\sum_{i=1}^{N} \zeta_{2i}} - \Psi(\alpha) \text{ (substitué par (6))}$$

$$\Leftrightarrow 0 = \ln \alpha - \Psi (\alpha) - c$$

Où
$$c = \ln \left(\frac{\sum\limits_{i=1}^{N} \zeta_{2i} x_i}{\sum\limits_{i=1}^{N} \zeta_{2i}} \right) - \frac{\sum\limits_{i=1}^{N} \zeta_{2i} \ln(x_i)}{\sum\limits_{i=1}^{N} \zeta_{2i}}$$
; Ψ est la fonction digamma.

Selon la méthode de Newton-Rashphon, nous pouvons résoudre α numériquement avec ce formul itératif:

$$\alpha_{r+1} = \alpha_r - \frac{\ln \alpha_r + \Psi\left(\alpha_r\right) - c}{\frac{1}{\alpha_r} - \Psi'\left(\alpha_r\right)}$$

[1] propose un autre formule convergeant plus vite:

$$\frac{1}{\alpha_{r+1}} = \frac{1}{\alpha_r} + \frac{\ln(\alpha_r) - \Psi(\alpha_r) - c}{a_r^2 \left(\frac{1}{\alpha_r} - \Psi'(\alpha_r)\right)}$$
(7)

Avec Ψ' la fonction trigamma. L'itération part avec $\alpha_0 = \frac{0.5}{c}$. Au final, pour p_k :

$$p_k = \frac{\sum_{i=1}^{N} \zeta_{ki}}{N} \forall k = \overline{1,2}$$
(8)

Etant donné (3), (5), (6), (7) et (8), nous définissons l'algorithme EM:

- 1. Initialisation: Choisir un θ_{vieux} .
- 2. Etape E : Evaluer (ζ_{ki}) sachant θ_{vieux} en utilisant (3).
- 3. Etape M : Calculer $\theta_{nouveau}$ à l'aide des équations (5), (6), (7) et (8). Note: Pour α , l'itération se termine quand $|\alpha_{r+1} - \alpha_r| < \varepsilon_{\alpha}$ où ε_{α} est un réel positif fixé à l'initialisation.
- 4. Evaluation : Si $\|\theta_{c+1} \theta_c\| < \varepsilon_{\theta}$ (ε_{θ} est un réel positif fixé à l'initialisation), l'algorithme s'arrête et $\theta = \theta_{vieux}$. Sinon, reviens à l'étape E avec $\theta_{vieux} \leftarrow \theta_{nouveau}$

Le résultat obtenu :

$$(p_1, p_2, \lambda, \alpha, \beta) = (0.2194518; 0.7805482; 1.56738; 1.665659; 0.2332427)$$

D'où nous traçons la fonction de densité f_{θ} trouvé (figure 2) et réalisons un test de Kolmogorov-Smirnov qui donne p-value=0,9663111 signifiant 96,63%de nous tromper si nous rejetons ce modèle. Nous l'acceptons alors, quoiqu'il ne génère pas 2 sommets comme la remarque initiale. Le code est trouvable à l'annexe 3.3.

Mixage de la loi Exponentielle and Gamma

Figure 2 – Mixage de la loi Exponentielle et Gamma

La politique de maintenance basée sur l'âge

Avec la fonction f_{θ} trouvée, nous construirerons la politique optimale.

Nous avons par définition : $S = \min(X, t_0)$.

Autrement dit, $S = X \mathbb{I}_{\{X < t_0\}} + t_0 \mathbb{I}_{\{X \geqslant t_0\}}$. Traduit au coût : $C(S) = C_c \mathbb{I}_{\{X < t_0\}} + C_p \mathbb{I}_{\{X \geqslant t_0\}}$, avec C_c, C_p les coûts de maintenances correctives et préventives réspectivement.

Le coût moyen:

$$\mathbb{E}\left(C\left(S\right)\right) = c_{c}\mathbb{E}\left(\mathbb{I}_{\left\{X < t_{0}\right\}}\right) + c_{p}\mathbb{E}\left(\mathbb{I}_{\left\{X \geqslant t_{0}\right\}}\right)$$

$$= c_{c}P\left(X < t_{0}\right) + c_{p}P\left(X \geqslant t_{0}\right)$$

$$= c_{c}F_{\theta}\left(t_{0}\right) + c_{p}\left(1 - F_{\theta}\left(t_{0}\right)\right)$$

$$= \left(c_{c} - c_{p}\right)F_{\theta}\left(t_{0}\right) + c_{p}$$

$$(9)$$

La durée moyenne :

$$\mathbb{E}(S) = \mathbb{E}(X\mathbb{I}_{\{X < t_0\}}) + t_0 \mathbb{E}(\mathbb{I}_{\{X \ge t_0\}})$$

$$= \int_0^{t_0} x f_{\theta}(x) dx + t_0 P(X \ge t_0)$$

$$= x F_{\theta}(x) \Big|_0^{t_0} - \int_0^{t_0} F_{\theta}(x) dx + t_0 (1 - F_{\theta}(t_0))$$

$$= t_0 - \int_0^{t_0} F_{\theta}(x) dx$$
(10)

De (9) et (10), nous détaillons le coût moyen sur une durée de temps (1) :

$$\mathbb{E}\left(C\right) = \frac{\mathbb{E}\left(C\left(S\right)\right)}{\mathbb{E}\left(S\right)} = \frac{\left(c_c - c_p\right)F_{\theta}\left(t_0\right) + c_p}{t_0 - \int_0^{t_0} F_{\theta}\left(x\right)dx}$$
(11)

L'annexe (3.4) montrer comment chercher l'optimum numériquement. La valeur minimum est $t_0=27,29639$ (mille heures), correspondant à un coût moyen de 210,6402. Nous constatons que t_0^{min} est très proche du maximum de durée de vie, indiquant que l'optimisation de t_0 est inutile car le système ne viellit pas.

2 Maintenance basée sur dégradation

2.1 Rappel

En observant multiples systèmes identiques, nous effectuons des mesures de dégradation sur des intervalles de temps réguliers tout au long de leurs durée de vie.

La valeur limite de dégradation est L=20. C'est-à-dire lorsque le niveau de dégradation dépasse L, le système tombe en panne et nous ne pourrons plus le mesurer.

On souhaite de mettre en place une politique de maintenance conditionnelle, basée sur un seuil M inférieur à L et l'intervalle de temps ΔT entre les inspections. Appellons X_t le niveau de dégradation à l'instant t (instant d'une inspection).

- Si $X_t < M$, nous laissons le système tel quel.
- Si $M \leq X_t < L$, un remplacement préventif est réalisé au coût c_p . Et puis X_t est remis à 0.
- Si $X_t \ge L$, un remplacement correctif est fait au coût c_c . Et puis X_t est remis à 0.

Le but est minimiser le coût moyen sur une durée de temps (1) en bien choissisant le seuil M et l'intervalle d'inspection ΔT .

2.2 Modéliser la dégradation du système

Soient les données de DegradLevel_2.csv, nous traçons leurs processus de dégrader. (Les annexes (3.5) et (3.6))

3 Annexe

3.1 L'importation de données de pannes

```
1  pannes = read.csv(
2     file = "FailureTimes_5.csv",
3     header = TRUE,
4     sep = ",",
5     dec = ".",
6     colClasses = c("NULL", NA)
7  )
8     scale = 1000
9     data = pannes$Heures / scale
10  N = length(data)
```

3.2 Le premier histogramme de distribution de pannes

```
hist(
    data,
    breaks = 40,
    probability = TRUE,
    xlab = "Date de pannnes (mille heures)",
    ylab = "Densité",
    main = "Premier histogramme"
)
```

3.3 Estimer le mixage de la loi Exponentielle et Gamma

```
1 # Fitting mixture of Exp and Gamma
    # Algorithm EM
    # Initialisation
   k = 2 # number of components
p = c(0.5, 0.5)
   lambda = 1
alpha = 5
beta = 1
f = list(
 6
7
10
         '1' = function(x) {
11
              dexp(x, rate = lambda)
12
         '2' = function(x) {
13
               dgamma(x, shape = alpha, rate = beta)
14
16
    epsilon = list(
alpha = 1e-4,
theta = 1e-4
17
18
19
20
    zeta = matrix(
         Ο,
         nrow = k,
23
         ncol = N
24
25
26
    # Norm
    normVec = function(x) sqrt(sum(x^2))
28
    # New value
   p_new = p
alpha_new = alpha
beta_new = beta
lambda_new = lambda
29
30
31
32
    repeat {
    ## E Step
33
         # Calculate each proba
for (1 in 1:k) {
    zeta[1,] = p[[1]] * f[[1]](data)
35
36
37
38
```

```
# Normalize proba
zeta = t(t(zeta) / rowSums(t(zeta)))
## M step
39
 40
41
         # Lambda
 43
         lambda_new = sum(zeta[1,]) / sum(zeta[1,] * data)
 44
         c = log(sum(zeta[2,] * data) / sum(zeta[2,])) - sum(zeta[2,] * log(data))
45
         / sum(zeta[2,])
alpha_new = 0.5 / c
 46
         alpha_temp = 0
         repeat {
             alpha_temp = 1 / (1 / alpha_new + (log(alpha_new) - digamma(alpha_new
) - c) / (alpha_new^2 * (1 / alpha_new - trigamma(alpha_new))))
if (abs(alpha_temp - alpha_new) < epsilon$alpha) {</pre>
 49
50
51
                  break
              } else {
52
                 alpha_new = alpha_temp
54
55
         alpha_new = alpha_temp
56
57
         beta_new = alpha_new * sum(zeta[2,]) / sum(zeta[2,] * data)
58
60
         for (1 in 1:k) {
61
             p_new[[1]] = mean(zeta[1,])
62
         ## Evaluation
63
         64
 65
              break
 66
         } else {
67
             alpha = alpha_new
             beta = beta_new
lambda = lambda_new
68
69
 70
             p = p_n ew
71
72 }
73  # Final value update
74 alpha = alpha_new
    beta = beta_new
75
76 lambda = lambda_new
    p = p_new
79 # Illustration
80 | f_theta = function(x) {
81 | p[[1]] * f[[1]](x) + p[[2]] * f[[2]](x)
83 h_theta = hist(
        data,
breaks = 40,
85
         probability = TRUE,
86
        main = "Mixage de la loi Exponentielle et Gamma",
xlab = "Dates de panne (mille d'heures)",
ylab = "Densité"
87
88
90 )
91
       f_theta(x),
92
        add = TRUE,
col = "violet",
93
94
        from = min(h_theta$mids),
95
96
        to = max(h_theta$mids)
97
98 # Kolmogorov - Smirnov test
100
102 test = ks.test(data, F_theta, exact = TRUE)
```

3.4 Optimiser le coût moyenne sur une durée de temps

```
1  # Finding optimal t_0
2  # Given F_theta
3  c_c = 1200
   c_p = 800
E_C_S = function(x) {
   (c_c - c_p) * F_theta(x) + c_p
   E_S = function(x) {
    x - integrate(F_theta,0,x)$value
 8
10 }
11 \mid E_C = function(x)  {
12
          E_C_S(x) / E_S(x)
13 }
14
15
    o = optimize(
E_C,
          c(min(data),max(data)),
16
17
           tol = 1e-5
18
19
20
    d = seq(
                10,
                 30,
21
22
23
24
25
26
27
28
          lapply(
                 d,
E_C
29
          main = "Coût moyenne sur une durée de temps",
xlab = "t_0",
ylab = "",
type = "l"
30
31
32
33
34
```

3.5 Importer les valeurs de dégradation

```
1  # Import degradation
2  table = read.csv(
3     file = "DegradLevel_2.csv",
4     header = TRUE,
5     sep = ",",
6     dec = "."
7  )
8   time = table$Temps
nbProcess = length(table) - 2
10   process = vector("list", nbProcess)
11   for (i in 1:nbProcess) {
12     process[[i]] = table[[i + 2]]
13 }
```

3.6 Premiers traçes de dégradation

```
1 # Plot process curves
```

Références

[1] Minka, Thomas P. (2002). "Estimating a Gamma distribution" https://tminka.github.io/papers/minka-gamma.pdf