Drugi međuispit

10. svibnja 2010.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obvezno predati s rješenjima nakon završetka testa.

1. zadatak (5 bodova)

- a) (1 bod) Nabrojite barem dva razloga zbog kojih je RLS metoda posebno pogodna za online identifikaciju?
- b) (1 bod) Kako se kod RLS metode računa procijenjena pogreška modela u (k+1) koraku?
- c) (2 boda) Koji je razlog uvođenja instrumentalnih varijabli u postupak estimacije parametara? Koje uvjete instrumentalne varijable moraju zadovoljiti da bi procjena parametara bila konzistentna?
- d) (1 bod) Koje prednosti u odnosu na standardnu RLS metodu ima metoda kod koje se koriste faktori zaboravljanja?

2. zadatak (5 bodova)

Broj vozila k koja u određenom vremenskom periodu prođu pored kontrolne točke na nekoj dionici puta mjeri se pomoću brojila prometa. Pokazuje se da se broj vozila k može u statističkom smislu opisati Poissonovom razdiobom:

$$f(k,\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}, \lambda > 0$$

pri čemu $f(k,\lambda)$ označava vjerojatnost da u određenom vremenskom intervalu pored kontrolne točke prođe upravo k vozila.

- a) (4 boda) Na temelju poznatih rezultata mjerenja broja vozila k_i odredite optimalni iznos parametra razdiobe λ primjenom metode maksimalne vjerojatnosti.
- b) (1 bod) Je li procjena pomoću metode maksimalne vjerojatnosti konzistentna? Objasnite!

3. zadatak (4 boda)

- a) (3 boda) Objasnite i matematički opišite kako se provodi test odnosa determinanata.
- b) (1 bod) Zašto matrica H u DR testu postaje približno singularna ako je pretpostavjeni red modela veći od stvarnoga reda modela?

4. zadatak (6 bodova)

Antena za praćenje satelita opisana je sljedećim matematičkim modelom:

$$J\ddot{\Theta} + B\dot{\Theta} = M_m + M_v$$
,

gdje je J moment inercije antene, B faktor prigušenja (uslijed trenja), M_m moment motora i M_v moment smetnje (uslijed naleta vjetra).

- a) (1 bod) Zadani sustav prikažite u prostoru stanja. U sustavu se mjeri kut Θ . Koristite oznake $a = \frac{B}{J}$ i $u = \frac{M_m}{B}$. Diskretizirajte sustav s kutom Θ i kutnom brzinom $\dot{\Theta}$ kao varijablama stanja i uz vrijeme diskretizacije T = 0.1s, koje je dovoljno malo za razmatrani sustav (a = 0.02).
- b) (3 boda) Projektirajte diskretni neprediktivni estimator stanja tako da u prvom slučaju svi polovi dinamike pogreške estimacije budu u nuli $(z_p = 0)$, a u drugom u 0.6 $(z_p = 0.6)$.
- c) (2 boda) Pretpostavimo da u sustavu postoji mjerni šum v_k očekivane vrijednosti nula i varijance R ($v_k \sim N(0, R)$). Obrazložite koji bi od dvaju projektiranih estimatora imao bolje vladanje s obzirom na šum. Napišite izraz za dinamiku pogreške estimacije uz postojanje mjernog šuma u sustavu.

5. zadatak (6 bodova)

U akvariju se nalaz x_p pirana i x_g akvarijskih ribica. Ribice hranite jednom tjedno hranom u. Također, svaki tjedan pirane pojedu nekoliko ribica. Natalitet pirana proporcionalan je populaciji ribica, a mortalitet je proporcionalan njihovoj vlastitoj populaciji (zbog prenapučenosti). Natalitet ribica proporcionalan je količini hrane u (uz konstantu proporcionalnosti 1), a mortalitet je proporcionalan populaciji pirana.

- a) (2 boda) Napišite model zadanog sustava u prostoru stanja. Uzmite da konstante proporcionalnosti (za koje nije drugačije rečeno) iznose $\frac{1}{2}$, a nesigurnost modela izrazite bijelim šumom jedinične varijance uz očekivanu vrijednost 0 ($w \sim N(0,1)$). Pirane zbog veličine možete točno prebrojiti, dok za ribice pretpostavljate mjerni šum jedinične varijance i nulte očekivane vrijednosti.
- b) (2 boda) U početnom trenutku imamo točan broj pirana i ribica $(x_{p0} \text{ i } x_{g0})$. Kalmanovim filtrom estimiramo populaciju ribica. Koliko iznosi varijanca estimiranog broja ribica nakon 2 tjedna?
- c) (2 boda) Koliko iznosi omjer populacija pirana i ribica u ustaljenom stanju? Za ovaj dio zadatka pretpostavite da nema procesnog šuma.