

ONDES ELECTROMAGNETIQUES

EXERCICE D' ORAL

-EXERCICE 29.8-

• ENONCE :

- « Onde électromagnétique plane dans un plasma »
- Un plasma neutre est constitué d'électrons libres et d'ions positifs considérés comme fixes dans le référentiel d'étude supposé galiléen.
- On note n la densité volumique des électrons de masse m et de charge -e.
- 1) On suppose qu'à l'intérieur du plasma, les électrons sont seulement soumis à un champ électrique **uniforme** s'écrivant : $\vec{\underline{E}}(t) = \vec{E}_0 \exp(-i\omega t)$

Montrer que l'on peut alors associer à ce plasma une conductivité complexe γ

(on se placera en régime sinusoïdal forcé).

Quelle est la signification physique d'une telle conductivité d'un point de vue énergétique ? D'un point de vue quantitatif, quelle est la différence entre ce modèle de plasma et un métal ? Quelle en est la conséquence en ce qui concerne la conductivité ?

2) On envisage la propagation dans ce plasma d'une onde électromagnétique plane, progressive et harmonique dont le vecteur champ électrique est de la forme :

 $\vec{E}(\vec{r},t) = \vec{E}_0 \exp[i(\vec{k}\cdot\vec{r} - \omega t)]$, où \vec{k} est le vecteur d'onde et \vec{r} le vecteur position.

Quelles hypothèses faut-il faire pour pouvoir utiliser la conductivité complexe de la première question ?

Dans ce cas, montrer que les équations vérifiées par les champs $\vec{\underline{E}}$ et $\vec{\underline{B}}$ dans le plasma sont analogues à celles du vide, à condition de remplacer la permittivité du vide ε_0 par une

permittivité du plasma ε , que l'on exprimera en fonction de ε_0 , ω et $\Omega = \sqrt{\frac{ne^2}{m\varepsilon_0}}$.

ONDES ELECTROMAGNETIQUES

EXERCICE D'ORAL

• CORRIGE: «Onde électromagnétique plane dans un plasma »

1) En RSF, on écrira respectivement pour la vitesse des électrons et pour la densité de courant :

$$\underline{\vec{v}}(t) = \underline{\vec{v}}_0 \exp(-i\omega t)$$
 et $\underline{\vec{j}}(t) = \underline{\vec{j}}_0 \exp(-i\omega t)$

 ${\bf Rq}: \ \ \vec{\underline{v}}_0 \ \ {\rm et} \ \ \vec{\underline{j}}_0 \ \ {\rm sont} \ \ {\rm a} \ \ {\rm priori} \ \ {\rm complexes} \ \ {\rm pour} \ \ {\rm tenir} \ \ {\rm compte} \ \ {\rm d} \ \ {\rm un} \ \ {\rm d} \ \ {\rm e} {\rm phasage} \ \ {\rm eventuel} \ \ {\rm avec} \ \ \vec{E}_0 \ .$

• En négligeant le poids, le PFD appliqué à chaque électron donne :

$$m\frac{d\vec{v}}{dt} = -i\omega m\vec{v} = -e\vec{E} \implies \vec{v} = -i\frac{e}{m\omega}\vec{E}$$

- Par ailleurs, on sait que la densité de courant est donnée par : $\underline{\vec{j}} = n(-e)\underline{\vec{v}} = i\frac{ne^2}{m\omega}\underline{\vec{E}}$
- En généralisant la notion de milieu ohmique aux complexes, on obtient :

$$\underline{\underline{\vec{j}} = \underline{\gamma} \times \underline{\vec{E}}} \qquad \text{avec} : \qquad \underline{\underline{\gamma}} = i \frac{ne^2}{m\omega}$$

• La puissance volumique **moyenne** cédée par le champ électromagnétique au plasma est donnée par :

$$\left\langle \frac{dP}{d\tau} \right\rangle_{t} = \frac{1}{2} \times \Re\{\vec{\underline{j}} \cdot \vec{\underline{E}}^{*}\} = \frac{1}{2} \times \Re\{i \frac{ne^{2}}{m\omega} \times E_{0}^{2}\} \Rightarrow \left[\left\langle \frac{dP}{d\tau} \right\rangle_{t} = 0 \right] \quad \text{(normal, } \vec{j} \text{ et } \vec{\underline{E}} \text{ \'etant en quadrature)}$$

- \Rightarrow ce modèle de plasma **ne dissipe pas** de puissance moyenne.
- La différence entre ce plasma et un métal porte sur la valeur de la densité volumique de charges libres : $n(cuivre) \simeq 10^{29} \, m^{-3}$, alors que pour un gaz (même fortement ionisé), il est rare de dépasser $n \simeq 10^{23} \, m^{-3} \Rightarrow$ le nombre de chocs par unité de temps est considérablement moins grand dans un plasma que dans un métal \Rightarrow il est, en général, légitime de ne pas les prendre en compte dans un plasma.
- Dans un métal, on peut (modèle de Drude) prendre en compte ces chocs par l'intermédiaire d'une force supplémentaire de type visqueux ($\vec{f} = -k\vec{v}$) qu'il faut rajouter dans le PFD : on peut montrer que pour les « basses » fréquences, la **conductivité** peut effectivement se ramener à une grandeur **réelle** et introduire un terme dissipatif dans les bilans énergétiques que l'on peut faire dans un métal.
- 2) Pour pouvoir utiliser la conductivité de la question précédente, il faut qu'à un instant donné le champ soit quasiment **uniforme** à l'échelle du déplacement d'un électron ; la distance caractéristique de l'onde étant sa longueur d'onde λ , on obtient la condition : $r_0 = |\vec{r}| \ll \lambda$

$$\text{Or}: \ \ \underline{\vec{v}} = \frac{d\,\vec{r}}{dt} = -i\omega\,\underline{\vec{r}} \ \Rightarrow \ \underline{\vec{r}} = i\,\frac{\vec{v}}{\omega} = \frac{e}{m\omega^2} \times \underline{\vec{E}} \ \Rightarrow \text{iI faut que}: \ \ \frac{e}{m\omega^2} \times E_0 \ll \lambda \ \Rightarrow \ \ \boxed{E_0 \ll \frac{m\omega^2\lambda}{e}}$$

- ⇒ il faut plutôt travailler avec des champs électriques « faibles ».
- Par ailleurs, il faut pouvoir négliger l'aspect « magnétique » de la force de Lorentz devant son aspect « électrique », d'où :

$$\left| \underline{\vec{v}} \wedge \underline{\vec{B}} \right| \leq v_0 \times B_0 = \frac{e}{m\omega} \times E_0 \times B_0 \ll E_0 \quad \Rightarrow \quad \left| B_0 \ll \frac{m\omega}{e} \right| \quad \text{(α faibles ω valeurs du champ magnétique)}$$

ONDES ELECTROMAGNETIQUES

EXERCICE D' ORAL

• Ecrivons alors l'équation de Maxwell-Ampère en notation complexe :

$$\overrightarrow{rot}\underline{\vec{B}} = i\vec{k} \wedge \underline{\vec{B}} = \mu_0 \left(\underline{\vec{j}} + \varepsilon_0 \frac{\partial \underline{\vec{E}}}{\partial t} \right) = \mu_0 \left(\underline{\gamma} \times \underline{\vec{E}} - i\varepsilon_0 \omega \underline{\vec{E}} \right) = \mu_0 (-i\omega) \times \left[\varepsilon_0 \left(1 - \frac{ne^2}{m\varepsilon_0 \omega^2} \right) \right] \underline{\vec{E}}$$
(1)

 $i\vec{k} \wedge \vec{B} = \mu_0 \varepsilon_0(-i\omega)\vec{E}$ Or, dans le vide, l'équation M.A s'écrit :

⇒ dans ce plasma, l'équation est analogue sous réserve de travailler avec une « permittivité de plasma »:

$$\varepsilon = \varepsilon_0 \left(1 - \frac{ne^2}{m\varepsilon_0 \omega^2} \right) = \varepsilon_0 \left(1 - \frac{\Omega^2}{\omega^2} \right)$$
 (Ω est appelée « pulsation de plasma »)

• On sait que $\vec{k} \cdot (\vec{k} \wedge \vec{B}) = 0 \implies \text{pour } \omega \neq \Omega$, l'équation (1) montre que l'on a aussi :

$$\vec{k} \cdot \vec{\underline{E}} = 0 \implies \vec{k} \perp \vec{E}$$
 (2); de plus : $i\vec{k} \cdot \vec{\underline{E}} = 0 = div\vec{\underline{E}} = \frac{\rho}{\varepsilon_0} \implies \boxed{\rho = 0}$ (comme dans le vide)

- Enfin, on a toujours $div\vec{B} = i\vec{k} \cdot \vec{B} = 0 \implies |\vec{k} \perp \vec{B}|$ (3)
- L'ensemble des relations (1), (2) et (3) montre que $(\vec{k}, \vec{E}, \vec{B})$ forme toujours un **trièdre** direct.

 $\underline{\vec{B}} = \frac{\vec{k} \wedge \underline{\vec{E}}}{\omega}$, mais, l'équation de Maxwell-Faraday fournirait, comme dans le vide Rq: **attention**, on n'a plus la relation de dispersion $k^2 = \mu_0 \varepsilon_0 \omega^2 = \frac{\omega^2}{\epsilon_0^2}$!

En reprenant la méthode « classique » (faire $i\vec{k} \wedge (1)$, puis utiliser M.F), on est conduit à :

$$k^{2} = \mu_{0} \varepsilon \omega^{2} = \mu_{0} \varepsilon_{0} (\omega^{2} - \Omega^{2}) = \frac{\omega^{2} - \Omega^{2}}{c^{2}}$$

 \Rightarrow il est intéressant d'étudier les propriétés de l'onde pour $\omega \prec \Omega$ et $\omega \succ \Omega$:

- k est en fait **imaginaire** \Rightarrow il n'y a plus propagation, il s'agit d'une **onde** évanescente (onde stationnaire exponentiellement amortie).
 - k est **réel** \Rightarrow il s'agit bien d'une **onde progressive**.
- $k=0 \implies$ les champs n'ont plus de dépendance spatiale \implies on parle alors « d' oscillations de plasma » (le champ électrique pouvant en outre être longitudinal).