

Keep Learning

grade 90.9%

Lesson 3.2-3.3

LATEST SUBMISSION GRADE

90.9%

1. If continuous random variable X has probability density function (PDF) f(x), what is the interpretation of the following integral: $\int_{-5}^{5} f(x) dx$?

1 / 1 point

- $\bigcirc P(X \le -2 \cap X \ge 5)$
- $\bigcirc P(X \ge -2 \cup X \le 5)$
- $\bigcirc \ P(X \le -2 \cap X \le 5)$
- (a) $P(X \ge -2 \cap X \le 5)$

This could also be written $P(-2 \le X \le 5)$.

2. If $X \sim \text{Uniform}(0,1)$, then what is the value of P(-3 < X < 0.2)?

1/1 point

0.2

Correct

 $\int_{-3}^{0.2} f(x) dx = \int_{-3}^{0.2} I_{\{0 < x < 1\}}(x) dx = \int_{0}^{0.2} 1 dx = 0.2.$

3. If $X \sim \text{Exponential}(5)$, find the expected value E(X). (Round your answer to one decimal place.)

1 / 1 point

0.2

✓ Correct

With $X \sim \operatorname{Exponential}(\lambda)$, we have $E(X) = 1/\lambda$.

4. Which of the following scenarios could we most appropriately model using an exponentially distributed random variable?

- The probability of a light bulb failure before 100 hours in service
- The number of failed lightbulbs in a batch of 5000 after 100 hours in service
- The lifetime in hours of a particular lightbulb
- The hours of service until all light bulbs in a batch of 5000 fail

This is a positive, continuous quantity.

5. If $X \sim \text{Uniform}(2,6)$, which of the following is the PDF of X?

1 / 1 point

Option:

Option:

Option:

Option:

Option:

✓ Correct

This PDF has uniform value (1/4) over the interval $\left[2,6\right]$ and is 0 everywhere else.

6. If $X \sim \mathrm{Uniform}(2,6)$, what is $P(2 < X \leq 3)$? Round your answer to two decimal places.

1 / 1 point

0.25

✓ Correct

This is $\int_2^3 1/4 dx$.

7. If $X \sim \mathrm{N}(0,1)$, which of the following is the PDF of X?

1 / 1 point

Option:

Option:

Option:

Option:

Option:

✓ Correct

This is the standard normal distribution.

8. If $X \sim {\rm N}(2,1)$, what is the expected value of -5X ? This is denoted as E(-5X).

1 / 1 point

-10

✓ Correct

For any number c and any random variable with expectation E(X), we have E(cX)=cE(X).

9. Let $X \sim N(1, 1)$ and $Y \sim N(4, 3^2)$. What is the value of E(X + Y)?

1 / 1 point

5

✓ Correct

0.	The normal distribution is also linear in the sense that if $X\sim \mathrm{N}(\mu,\sigma^2)$, then for any real constants $a\neq 0$ and b , the distribution of $Y=aX+b$ is distributed $\mathrm{N}(a\mu+b,a^2\sigma^2)$.	1/1 point
	Using this fact, what is the distribution of $Z=rac{X-\mu}{\sigma}$?	
	$\bigcirc \ \mathrm{N}(\mu/\sigma,1)$	
	$\bigcirc \ \mathrm{N}(\mu,\sigma^2)$	
	\bigcirc N (μ,σ)	
	$\bigcirc \ \mathrm{N}(1,\sigma^2)$	
	\checkmark Correct Here $a=1/\sigma$ and $b=-\mu/\sigma$. Subtracting the mean and dividing by the standard deviation is referred to as standardizing a random variable.	
1.	Which of the following random variables would yield the highest value of $P(-1 < X < 1)$?	0 / 1 point
	Hint: Random variables with larger variance are more dispersed.	
	$\bigcirc X \sim N(0, 0.1)$	
	$\bigcirc X \sim N(0,1)$	
	$\bigcirc X \sim N(0, 10)$	
	(a) $X \sim N(0, 100)$	
	! Incorrect $ \hbox{ Of the four options, this is the most dispersed, and will yield the smallest value of } \\ P(-1 < X < 1). $	
	Coursera suggests this material BETA Was this material helpful? Yes No	
	Lesson 3.2 Uniform distribution Video • 5 min	