

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 01

Дисциплина: Моделирование

Студент	ИУ7И-66Б		Нгуен Ф. С.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Градов В. М.
			
		(Подпись, дата)	(И.О. Фамилия)

- **Чель работы:** Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (РунгеКутта).
- **У** Исходные данные.

$$\begin{cases}
 u'(x) = x^2 + u^2 \\
 u(0) = 0
\end{cases}$$
(1)

1. Метод Пикара

$$y_s(x) = u_0 + \int_{x_0}^{x} f(t, y_{s-1}(t))dt$$
(2)

$$\begin{aligned} y_1(x) &= 0 + \int_0^x f(t,0) dt = \int_0^x t^2 dt = \frac{x^3}{3} \\ y_2(x) &= 0 + \int_0^x f\left(t, \frac{x^3}{3}\right) dt = \int_0^x (t^2 + \frac{t^6}{9}) dt = \frac{x^3}{3} + \frac{x^7}{63} \\ y_3(x) &= 0 + \int_0^x f\left(t, \frac{x^3}{3} + \frac{x^7}{63}\right) dt \\ &= \int_0^x \left(t^2 + \frac{t^6}{9} + \frac{2t^{10}}{189} + \frac{t^{14}}{3969}\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} \\ y_4(x) &= 0 + \int_0^x f\left(t, \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}\right) dt \\ &= 0 + \int_0^x [t^2 + \left(\frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}\right)^2] dt \\ &= \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} + \frac{2x^{19}}{33555} + \frac{2x^{19}}{3393495} + \frac{2x^{19}}{2488563} \\ &+ \frac{2x^{23}}{86266215} + \frac{x^{23}}{99411543} + \frac{2x^{27}}{3341878155} + \frac{109876902975}{109876902975} \end{aligned}$$

2. Метод Эйлера:

$$y_{n+1} = y_n + h * f(x_n, y_n)$$
 (3)

$$y_{n+1} = y_n + h * (x_n^2 + y_n^2)$$

3. Метод РунгеКутта:

$$y_{n+1} = y_n + h[(1-\alpha)k_1 + \alpha k_2]$$
 (4) $k_1 = f(x_{n,}, y_n)$ $k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1)$ $\alpha = 1$ или $\frac{1}{2}$

4. Программа

```
1. # Эйлера
2. def euler(n, h, x, y):
3.
       y_out = []
4.
        for i in range(n):
5.
          try:
               y += h * f(x, y)
6.
7.
               y_out.append(y)
8.
               x += h
9.
           except OverflowError:
10.
               y_out.append('overflow')
                for j in range(i, n-1):
11.
12.
                 y_out.append('----')
13.
14.
       return y_out
15.
16. # РунгеКутта
17. def rungeKutta(n, h, x, y):
18.
       y_out = [y]
19.
       alpha = 1 / 2
       h1 = h / (2 * alpha)
21.
       for i in range(n):
22.
           try:
23.
                k1 = f(x, y)
                k2 = f(x + h1, y + h1 * k1)
24.
                y += h * ((1 - alpha) * k1 + alpha * k2)
25.
26.
               y_out.append(y)
27.
               x += h
28.
          except:
29.
               y_out.append('overflow')
30.
                for j in range(i, n-1):
                 y_out.append('----')
31.
32.
               break
33.
       return y_out
34.
35.
36. # Пикар
37. def picar(n, h, x, y0):
38.
     def f1(a):
39.
           return a ** 3 / 3
40.
       def f2(a):
         return f1(a) + a ** 7 / 63
41.
       def f3(a):
42.
43.
          return f2(a) + (a ** 11) * (2 / 2079) + (a ** 15) / 59535
        def f4(a):
45.
          return f3(a) + (a ** 15)*(2 / 93555) + (a ** 19)*(2 / 3393495) + (a ** 19)*(2 / 2488563) + \
46.
        (a ** 23)*(2 / 86266215) + (a ** 23)*(1 / 99411543) + (a ** 27)*(2 / 3341878155) + (a ** 31)*(1 /
    109876902975)
47.
48.
        y_{out} = [[y0, y0, y0, y0]]
49.
        for i in range(n-1):
50.
           x += h
51.
           y_f1 = f1(x)
52.
           y_f2 = f2(x)
53.
           y_f3 = f3(x)
           y_f4 = f4(x)
54.
55.
           y_out.append([y_f1, y_f2, y_f3, y_f4])
56.
       return y_out
57.
58.
59. def main():
60.
     h = 10 ** -5
61.
        x = 0
62.
        y0 = 0
63.
        end = 2.1
64.
65.
        n = ceil(abs(end - x)/h)+1
66.
```

```
67.
                                   x_{arr} = [x + h*i for i in range(n)]
 68.
                                   y_{picar} = picar(n, h, x, y0)
 69.
                                   y_{euler} = euler(n, h, x, y0)
 70.
                                    y_RungeKutta = rungeKutta(n, h, x, y0)
 71.
 72.
                                   print("|
                                                                                                            | Пикара 1 | Пикара 2 | Пикара 3 | Пикара 4 |
                                                                                                                                                                                                                                                                                                                                                                                                                                             Эйлер
                   РунгеКутт |")
                                      print("-"*75)
 73.
 74.
                                      output_step = int(n/h) # выводим только 100 значений в таблице
 75.
                                      for i in range(0, n, 10000):
 76.
                                                        print("|\{:^9.5f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|\{:^15.8f\}|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8f]|[:^15.8
                  y\_picar[i][0], \ y\_picar[i][1], \ y\_picar[i][1], \ output(y\_euler[i]), \ output(y\_RungeKutta[i])))
 77.
78.
79. main()
```

5. Результат

5.	Результат									
x	Пикара 1	- 1	Пикара 2	Ī	Пикара 3	- 1	Пикара 4	Эйлер	РунгеКут	P
0.00000	0.00000000		0.00000000	1	0.00000000	1	0.00000000	0.00000000	1 0	1
0.00001	0.00000000	- 1	0.00000000	- 1	0.00000000	- 1	0.00000000	0.00000000	0.00000000) [
0.00002	0.00000000	i i	0.00000000	i i	0.00000000	i i	0.00000000	0.00000000	0.00000000) j
0.00003	0.00000000	i i	0.00000000	i i	0.00000000	- i	0.00000000	0.00000000	0.00000000) į
0.00004	0.00000000	i i	0.00000000	i i	0.00000000	i.	0.00000000	0.00000000	0.00000000) į
0.00005	1 0.00000000	- 1	0.00000000	- 1	0.00000000	-1	0.00000000	0.00000000	0.00000000) [
•••										
1.99982	2.66594673		4.69641311	- 1	4.69641311	- 1	4.69641311	296.38485376	300.5328374	0
1.99983	2.66598672		4.69652418	- 1	4.69652418	- 1	4.69652418	297.26333357	301.4387958	7
1.99984	2.66602672		4.69663524	- 1	4.69663524	- 1	4.69663524	298.14702846	302.3502326	2
1.99985	2.66606671		4.69674632	- 1	4.69674632	- 1	4.69674632	299.03598496	303.2671975	0
1.99986	2.66610671		4.69685739	- 1	4.69685739	- 1	4.69685739	299.93025016	304.1897409	5
1.99987	2.66614670		4.69696847	- 1	4.69696847	- 1	4.69696847	300.82987170	305.1179140	5
1.99988	2.66618670		4.69707955	- 1	4.69707955	- 1	4.69707955	301.73489781	306.0517684	7
1.99989	2.66622669		4.69719063	- 1	4.69719063	- 1	4.69719063	302.64537730	306.9913565	4
1.99990	2.66626669		4.69730171	- 1	4.69730171	- 1	4.69730171	303.56135954	307.9367312	3
1.99991	2.66630668		4.69741280	- 1	4.69741280	- 1	4.69741280	304.48289452	308.8879461	6
1.99992	2.66634668		4.69752389	- 1	4.69752389	- 1	4.69752389	305.41003285	309.8450556	2
1.99993	2.66638668		4.69763498	- 1	4.69763498	- 1	4.69763498	306.34282573	310.8081145	7
1.99994	2.66642667		4.69774608	- 1	4.69774608	- 1	4.69774608	307.28132499	311.7771786	6
1.99995	2.66646667		4.69785717	- 1	4.69785717	- 1	4.69785717	308.22558312	312.7523042	2
1.99996	2.66650667		4.69796827	- 1	4.69796827	- 1	4.69796827	309.17565322	313.7335483	3
1.99997	2.66654667		4.69807938	- 1	4.69807938	- 1	4.69807938	310.13158906	314.7209687	3
1.99998	2.66658667		4.69819048	- 1	4.69819048	- 1	4.69819048	311.09344509	315.7146239	3
1.99999	2.66662667		4.69830159	- 1	4.69830159	- 1	4.69830159	312.06127640	316.7145731	7
1 2.00000	2.66666667		4.69841270		4.69841270	- 1	4.69841270	313.03513881	317.7208764	4
2.00001	2.66670667		4.69852381	- 1	4.69852381	- 1	4.69852381	314.01508879	318.7335945	0
2.00002	2.66674667		4.69863493		4.69863493	- 1	4.69863493	315.00118355	319.7527888	8
2.00003	2.66678667		4.69874604	- 1	4.69874604	- 1	4.69874604	315.99348101	320.7785219	1
2.00004	2.66682667		4.69885716		4.69885716	- 1	4.69885716	316.99203981	321.8108567	1
2.00005	2.66686667		4.69896829	- 1	4.69896829	- 1	4.69896829	317.99691934	322.8498572	2
2.00006	2.66690667		4.69907941	- 1	4.69907941	- 1	4.69907941	319.00817975	323.8955882	2
2.00007	2.66694668		4.69919054		4.69919054	- 1	4.69919054	320.02588194	324.9481153	1
2.00008	2.66698668		4.69930167	- 1	4.69930167	- 1	4.69930167	321.05008760	326.0075049	6
2.00009	2.66702668		4.69941280		4.69941280	- 1	4.69941280	322.08085919	327.0738245	1
2.00010	2.66706669		4.69952394	- 1	4.69952394	- 1	4.69952394	323.11825999	328.1471421	.8
2.00011	2.66710669		4.69963507	- 1	4.69963507	- 1	4.69963507	324.16235409	329.2275270	9
2.00012	2.66714670		4.69974621	- 1	4.69974621	- 1	4.69974621	325.21320642	330.3150492	7
2.00013	2.66718670		4.69985736	- 1	4.69985736	- 1	4.69985736	326.27088272	331.4097796	8
2.00014	2.66722671		4.69996850	- 1	4.69996850	- 1	4.69996850	327.33544961	332.5117902	3
2.00015	2.66726671		4.70007965	- 1	4.70007965	- 1	4.70007965	328.40697458	333.6211537	7
2.00016	2.66730672	- 1	4.70019080	- 1	4.70019080	- 1	4.70019080	329.48552600	334.7379441	5
2.00017	2.66734672	- 1	4.70030195	- 1	4.70030195	- 1	4.70030195	330.57117313	335.8622362	1
2.00018	2.66738673	- 1	4.70041311	- 1	4.70041311	- 1	4.70041311	331.66398614	336.9941057	7
2.00019	2.66742674	- 1	4.70052427	- 1	4.70052427	- 1	4.70052427	332.76403614	338.1336297	1
2.00020	2.66746675	- 1	4.70063543	- 1	4.70063543	- 1	4.70063543	333.87139519	339.2808859	3
2.00021	2.66750675	- 1	4.70074659	- 1	4.70074659	-1	4.70074659	334.98613628	340.4359534	1

•••

6. Ответы на вопросы:

- 1) Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.
 - Разница меньше 0.005 в интервал (0, 0.85):

$$\frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} + \dots < 0.005$$

- ⇒ В интервал (0, 0.85) можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара.
- 2) Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.
 - У Численные методы тем точнее, чем меньше шаг
 - **Мы** сравниваем значения Эйлера при разном шаге (x = 2):
 - При шаге = 10^{-4} , получаем ≈ 270
 - При шаге = 10^{-5} , получаем ≈ 313
 - ⇒ Погрешность при шаге 10-4 была большая.
 - Далее, при шаге = 10^{-6} , получаем ≈ 317 .
 - При шаге = 10^{-7} , получаем ≈ 317 .
 - ⇒ Можно считать, что результат около 317
- 3) Каково значение функции при x=2, т.е. Привести значение u(2).
 - \triangleright U(2) \approx 317