Задание 11-1. Негармонические колебания

№	Содержание пункта				
Пункт	Критерии	Всего	Баллы	Оценки	АΠ
задачи		3a			
		пункт			
	Часть 1				
1.1	Записано, что движение шайбы будет представлять	6	1		
	собой незатухающие колебания				
	Записано, что движение шайбы будет равноускоренным		1		
	Записано уравнение (2)		1		
	Записано уравнение (3)		1		
	Записано уравнение (4)		l		
	Получено уравнение (5)	_	1		
1.2	Указан $\sin \alpha$ или $tg\alpha$ угла наклона желоба	5	1		
	Результаты измерений (оценивается по данным				
	занесённым в таблицу 1). В том числе:				
	За количество экспериментальных точек:		0/0.5/1/2		
	1 – Зточки / 4 – 6 точек / 7-9 точек/ 10 и более точек		0/0,5/1/2		
	За количество повторных измерений:		0/0.5/1		
	1 – 2 изм./3 – 4изм./ 5 и более измерений		0/0,5/1		
	Все экспериментальные значения указаны с верным		0,5		
	количеством значащих цифр		0.5		
1.3	Интервал значений A_0 : 10 – 45см и более	16	0,5		
1.3	Вычислены значения $\sqrt{A_0}$	10	1		
	Построен график зависимости $T(\sqrt{A_0})$ в том числе:				
	-указано наименование осей и единицы измерения, оси		0,5		
	масштабированы и оцифрованы		0,5		
	-нанесены эксперим. точки и нет «лишних» точек		0,5		
	-построена усредняющая прямая		1		
	- усредняющая прямая возрастающая.		1		
	(Таблица 3 не обязательна)		1		
	Определён угловой коэф. наклона усредняющей прямой		1/2		
	с верным колич. знач. цифр посредством ПГО/МНК*				
	Определена абсолютная погрешность углового коэф.		0,5/1		
	наклона усредняющей прямой с верным колич. знач.		-)-		
	цифр посредством ПГО/МНК*				
	Определено свободное слагаемое с верным колич. знач.		1/2		
	цифр посредством ПГО/МНК*				
	Определена абсолютная погрешность свободного		0,5/1		
	слагаемого с верным колич. знач. цифр посредством ПГО/МНК*				
	Указано, что если коэффициенты линеаризованной зависимости на основе эксперимента совпадут с		1		
	точностью до погрешности со значением				
	коэффициентов в уравнении (5), то модель движения				
	коэффициентов в уравнении (5), то модель движения шайбы по гладкой V-образной поверхности можно				
	применять к колебаниям шарика по V-образному				
	желобу, в противном случае – нельзя. (Может быть				
	приведён другой критерий применимости модели)				

	T	ı	ı	1	
	Определено среднее значение коэффициента пропорциональности в уравнении (5) $a_{(5)} = 4\sqrt{\frac{2}{g\sin\alpha}}$ с		1		
	верным количеством значащих цифр				
	Записано уравнение и вычислена относит. погр. $\mathcal{E}_{a_{(5)}}$		0,5+0,5 0,5+0,5		
	Записано уравнение и вычислена абсолют. погр. $\Delta a_{(5)}$				
	Сделан вывод о том, что модель движения шайбы по гладкой V-образной поверхности нельзя применять к		1		
	колебаниям шарика по V-образному желобу. Приведено обоснование вывода		1		
	Часть 2				
2.1	Результаты измерений (оценивается по данным занесённым в таблицу 4). В том числе:	4			
	За количество экспериментальных точек:				
	1 — Зточки / 4 — 6 точек / 7-9 точек/ 10 и более точек За количество повторных измерений:		0/0,5/1/2		
	1-2 изм./3 — 4изм./ 5 и более измерений		0/0,5/1		
	Все экспериментальные значения указаны с верным		0,5		
	количеством значащих цифр		0,5		
	Интервал значений амплитуд: 10 – 45см и более		0,5		
2.2	Записано уравнение (6)	11	1		
	Составлена таблица значений $A_i(A_{i+1})$.		1		
	V V V 2				
	Построен график зависимости $A_i(A_{i+1})$ в том числе:				
	-указано наименование осей и единицы измерения, оси		0,5		
	масштабированы и оцифрованы				
	-нанесены эксперим. точки и нет «лишних» точек		0,5		
	-построена усредняющая прямая		1		
	- усредняющая прямая возрастающая		1		
	Сделан вывод, что уравнение (1) применимо для колебаний шарика по V-образному желобу		1		
	Приведено обоснование вывода		1		
			1		
	Определён декремент затухания как угловой коэф.		1 /0		
	наклона усредняющей прямой с верным колич. знач.		1/2		
	цифр посредством ПГО/МНК*				
	Определена абсолютная погрешность декремента		0.5/1		
	затухания с верным колич. знач. цифр посредством ПГО/МНК*		0,5/1		
	III О/МНК" Таблица 5 не обязательна				
	Записано уравнение и вычислена относит. погр. \mathcal{E}_D		0,5+0,5		
2.3	Записано уравнение и вычислена относит. Погр. \mathcal{E}_D Записан результат $D = \langle D \rangle \pm \Delta D$, с верным	1	1		
2.5	округлением и количеством значащих цифр	1	1		
	Часть 3				
3.1	Получено уравнение (7) или аналогичное	7	3		
5.1	(в том числе приведён вывод уравнения (7) или	,	(2)		
	текстовое пояснение)		(-/		
	Составлено уравнение (8)		1		
<u></u>	1	<u> </u>	<u> </u>	<u> </u>	1

	Записано уравнение (9)		1		
	Записано уравнение (10)		1		
	Получено уравнение (11)		1		
3.2	Результаты измерений (оценивается по данным	4			
	занесённым в таблицу 6). В том числе:				
	За количество экспериментальных точек:				
	1 - 3точки / $4 - 6$ точек / 7 - 9 точек/ 10 и более точек		0/0,5/1/2		
	За количество повторных измерений:				
	1-2 изм./ $3-4$ изм./ 5 и более измерений		0/0,5/1		
	Все экспериментальные значения указаны с верным		0,5		
	количеством значащих цифр				
	Интервал значен. высоты желоба <i>h</i> : 20 – 160мм и более		0,5		
3.3	Вычислены значения $\frac{1}{\sqrt{\sin \alpha}}$	6	1		
	Построен график зависимости $T\left(\frac{1}{\sqrt{\sin\alpha}}\right)$ в том числе:				
	-указано наименование осей и единицы измерения, оси		0,5		
	масштабированы и оцифрованы				
	-нанесены эксперим. точки и нет «лишних» точек		0,5		
	-построена усредняющая прямая		1		
	- усредняющая прямая экстраполируется в начало		1		
	координат				
	Указан интервал углов (или интервал $\sin \alpha$) для		1		
	которых выполняется уравнение (11)				
	Приведено обоснование вывода		1		
	Всего зазадачу	60			
<u> </u>	1	L	1	l	l

^{*)} Оценка за применение МНК выставляется только, если для вычисления соответствующих величин указаны необходимые уравнения (уравнения достаточно указать только один раз, к примеру, в п. 1.3).

⁻ Оценка за вычисление значений физических величин (в том числе абсолютных погрешностей), запись окончательного результата снижается на 50%, если не указаны или неверно указаны единицы измерения

№	Содержание пункта				
Пункт	Критерии	Всего	Баллы	Оценки	АΠ
задачи		3a			
		пункт			
	Часть 1				
1.1	Сделан рисунок	3	1		
	Получено уравнение (1)		1		
	Получено уравнение (2)	_	1		
1.2	Результаты измерений (оценивается по данным	7			
	занесённым в таблицу 1). В том числе:				
	За количество экспериментальных точек:		0/0.5/1/2		
	1 – Зточки / 4 – 6 точек / 7-9 точек/ 10 и более точек		0/0,5/1/2		
	Все экспериментальные значения указаны с верным количеством значащих цифр		0,5		
	Интервал расстояния l_I : $10 - 50$ см и более		0,5		
	Указано, что уравнение (2) является линеаризованным		1		
	Построен график зависимости $D(l_I)$ в том числе:				
	-указано наименование осей и единицы измерения, оси		0,5		
	масштабированы и оцифрованы				
	-нанесены эксперим. точки и нет «лишних» точек		0,5		
	-построена усредняющая прямая		l		
	- усредняющая прямая возростающая.		l		
1.3	Записано уравнение (3)	12	1		
	Определён угловой коэф. наклона усредняющей прямой		1/2		
	с верным колич. знач. цифр посредством ПГО/МНК*				
	Определена абсолютная погрешность углового коэф.		0,5/1		
	наклона усредняющей прямой с верным колич. знач. цифр посредством ПГО/МНК*				
	Определено свободное слагаемое с верным колич. знач. цифр посредством ПГО/МНК*		1/2		
	Определена абсолютная погрешность свободного		0,5/1		
	слагаемого с верным колич. знач. цифр посредством ПГО/МНК*				
	Записано уравнение (4) и вычислено $\langle F_{\rm p} \rangle$		0,5+0,5		
	Записано уравнение (5) и вычислено значение		0,5+0,5		
	Записано уравнение (6) и вычислено значение		0,5+0,5		
	Записан результат $F_{\rm p}=\langle F_{\rm p}\rangle\pm\Delta F_{\rm p},\ \delta=\langle\delta\rangle\pm\Delta\delta$ с		1+1		
	верным округлением и количеством значащих цифр				
	Часть 2				
2.1	Сделан рисунок	3	1		
	Записано уравнение (8)		1		
	Получено уравнение (9)		1		
2.2	Результаты измерений (оценивается по данным	7			
	занесённым в таблицу 2). В том числе:				
	За количество экспериментальных точек:				
	1-3точки / $4-6$ точек / 7-9 точек/ 10 и более точек		0/0,5/1/2		

	D		0.5		
	Все экспериментальные значения указаны с верным		0,5		
	количеством значащих цифр		0.5		
	Интервал расстояния l_2 : 10 – 50см и более		0,5		
	Указано, что уравнение (9) является линеаризованным		1		
	Построен график зависимости $f_1(l_2)$ в том числе:				
	-указано наименование осей и единицы измерения, оси		0,5		
	масштабированы и оцифрованы				
	-нанесены эксперим. точки и нет «лишних» точек		0,5		
	-построена усредняющая прямая		1		
	- усредняющая прямая убывающая.		1		
2.3	Записано уравнение (10)	8	1		
	Определено свободное слагаемое с верным колич. знач.		1/2		
	цифр посредством ПГО/МНК*				
	Определена абсолютная погрешность свободного		0,5/1		
	слагаемого с верным колич. знач. цифр посредством		-)= -		
	ПГО/МНК*				
	Записано уравнение (11) и вычислено $\langle F_c \rangle$		0,5+0,5		
	Записано уравнение (12) и вычислено значение		0,5+0,5		
	Записано уравнение (13) и вычислено значение		0,5+0,5		
	Summounts ypublishing (15) if bbs messens sha terms		0,2 - 0,2		
	Записан результат $F_{\rm c} = \langle F_{\rm c} \rangle \pm \Delta F_{\rm c}$, с верным		1		
	округлением и количеством значащих цифр				
	Часть 3				
3.1	Сделан рисунок 3	1	1		
3.2	Сделан рисунок 4	2	1		
0.2	Получено уравнение (15)	_	1		
3.3	Записано значение $F_{\rm c}$ с указанием абсолютной погр.	1	0,5+0,5		
3.4	Записано значение f_3 с указанием абсолютной погр.	1,5	0,5+0,5		
	Значение $f_3 < F_c$		0,5		
3.5	Указано, что в соответствии с п. 3.2 должно быть	4,5	1		
	$f_3 > F_{\rm c}$, а в действительности получено $f_3 < F_{\rm c}$.,.			
	Дано объяснение результатов на основе свойств		1		
	параксиальных лучей		1		
	Указано, что для верного построения хода лучей				
	необходимо учитывать параметры:				
	-диаметр пучка		0,5		
	-радиусы поверхностей линзы		0,5		
	-радиусы поверхностей линзы -толщину линзы в центре		0,5		
	-показатель преломления линзы		0,5		
	- угол падения лучей на поверхность линзы		0,5		
	•		0,5		
	Могут быть указаны другие параметры влияющие на				
	ход лучей	5 0			
	Всего зазадачу	50			
L	K) O	I .	I.	l	

^{*)} Оценка за применение МНК выставляется только, если для вычисления соответствующих величин указаны необходимые уравнения (уравнения достаточно указать только один раз, к примеру, в п. 1.3).

⁻ Оценка за вычисление значений физических величин (в том числе абсолютных погрешностей), запись окончательного результата снижается на 50%, если не указаны или неверно указаны единицы измерения