(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 April 2002 (18.04.2002)

PCT

(10) International Publication Number WO 02/31209 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US01/31932

(22) International Filing Date: 12 October 2001 (12.10.2001)

(25) Filing Language:

English

C12Q 1/68

(26) Publication Language:

English

(30) Priority Data:

60/240,585

13 October 2000 (13.10.2000) U

(71) Applicant (for all designated States except US): THE GOVERNMENT OF UNITED STATES OF AMERICA, as represented by the SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, THE NATIONAL INSTITUTES OF HEALTH [US/US];

Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852-3804 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MOUSSES, Spyro [CA/US]; 257 Congressional Lane, Apt. 417, Rockville, MD 20852 (US). KALLIONIEMI, Olli, P. [FI/US]; 1083 Grand Oak Way, Rockville, MD 20852 (US). BUBENDORF, Lukas [CH/CH]; Drosselstrasse 31, CH-4106 Therwil (CH).
- (74) Agent: HARDING, Tanya, M.; Klarquist, Sparkman, LLP, One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

[Continued on next page]

(54) Title: GENES RELATED TO DEVELOPMENT OF REFRACTORY PROSTATE CANCER

(57) Abstract: The present disclosure provides hormone-refractory prostate cancer (HPRC)-related nucleic acid molecules and proteins useful for the detection of neoplasms, particularly prostate and more specifically hormone-refractory prostate cancers. Also provided are methods of using these biological materials in the diagnosis, staging, detection, and treatment of neoplasia, and particularly hormone-refractory prostate cancer.

WO 02/31209 A2

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1

GENES RELATED TO DEVELOPMENT OF REFRACTORY PROSTATE CANCER

FIELD

The present disclosure is generally related to diagnosing, prognosing, staging, preventing, and treating disease, particularly hormone refractory prostate cancer.

5

10

15

20

25

30

35

BACKGROUND

About 40 years ago it was observed that prostate cancer, like normal prostate, is often androgen dependent and androgen withdrawal induces growth regression. Various modes of androgen ablation therapy have since been used as the major treatment of advanced prostate cancer. Generally, chemical or physical reduction in serum androgens, or chemical blockage of their action, effectively arrests growth of local and metastatic prostate cancer *in vivo*. Unfortunately, in almost all patients, the regressed tumors eventually develop resistance to hormonal therapy and recur as aggressive androgen independent tumors that are hormone refractory and currently incurable. Identification of the genes that regulate the therapeutically induced tumor regression, and the genes associated with resistance to therapy, are candidate targets that can be used for rational design of therapeutic interventions.

The clinical course of hormone therapy response and eventual recurrence can be modeled experimentally using CWR22 xenografts. CWR22 is an androgen dependent human prostate carcinoma that grows rapidly as a xenograft in male nude mice, regresses after castration, and eventually (in three to ten months) becomes recurrent and re-grows independently of androgens in castrated mice. Several groups have previously looked for differences in gene expression between the primary and recurrent CWR22 prostate cancer xenografts, and identified some candidate genes that can be used as biomarkers. It remains critical to make sure that findings from model systems are applicable in the clinical situation.

Molecular mechanisms involved in the regression of prostate cancer after androgen deprivation, as well as in the re-growth of androgen-independent tumors, remain poorly understood. There is a need to better understand patterns of gene expression that trigger prostate tumor regression and/or re-growth, as well as downstream genes that may serve as indicators of prostate cancer progression.

BRIEF SUMMARY OF THE DISCLOSURE

Embodiments of this disclosure provide a set of nucleic acid molecules the expression of which is altered in prostate cancer, more particularly nucleic acid molecules that show temporal expression changes during prostate cancer hormonal therapy and regression.

Provided herein in various embodiments are hormone-refractory prostate cancer (HPRC)related nucleic acid molecules and polypeptides useful for the detection/diagnosis/staging and
treatment of neoplasms, particularly prostate and more specifically hormone-refractory prostate

5

10

15

20

25

30

35

2

PCT/US01/31932

cancers. Also provided are methods of using these biological materials in the diagnosis, staging, detection, and treatment of neoplasia, and particularly hormone-refractory prostate cancer.

The foregoing and other features and advantages of these and other embodiments will become more apparent from the following detailed description of several embodiments, which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG 1A, 1B, 1C, and 1D are schematic diagrams that show relative expression and expression patterns of 2333 genes measured using cDNA microarray technology at various time points during prostate cancer development.

FIG 2 shows a scatter plot that was generated for one primary and one recurrent tumor. This plot demonstrates the correlation between the samples (low variance, as indicated by lack of scatter in the majority of the genes), and highlights the most differentially expressed genes (which are circled and named).

FIG 3 shows lists of genes that were differentially expressed between primary and recurrent xenografts, along with related relative expression information. A set of 30 genes were most consistently differentially expressed (out of a total of 164 genes that changed 2-fold or more) in two independent experiments.

FIG. 3A shows the 30 genes, ordered by degree of differential expression. The grey-shade coding reflects the relative gene expression ratio (normalized to the mean ratio for four primary tumors) for each of six different recurrent xenografts tumors (arranged in columns). For the six recurrent tumors, the mean expression ratio relative to the mean expression levels of the primary tumors is indicated in the "Mean" column. Additionally, the maximum ratio (Max.) for the upregulated genes, and the minimum ratio (Min.) for the downregulated genes is also indicated (left column). The "pool" column depicts the ratios of a direct cDNA microarray experiment where four primary tumors were pooled and compared to four recurrent tumors.

FIG. 3B shows eight PI3/AKT/FRAP pathway-related genes, the expression of which was associated with hormone-refractory cell growth (based on >two-fold induction of in the recurrent tumors relative to the primary level). Grey-shade-coded gene expression ratios as well as the mean are shown as in FIG. 3A. The criteria for selecting these genes were i) a >two-fold change in the average ratio between primary and recurrent tumors (or during therapy) and ii) evidence from the literature suggesting the interaction of these gene products with macrolide drugs or their involvement in a rapamycin-sensitive pathway.

FIG. 3C shows four FK506-binding protein genes, which were associated with hormone refractory tumor growth (based on at least a two-fold response to therapy and were restored to greater than 80 % of primary levels in the recurrent tumors). Grey-shade-coded gene expression ratios are shown for each of four primary (P) tumors, four tumors regressing following therapy (T), and six

5

10

15

20

25

30

3

PCT/US01/31932

recurrent tumors (R). The mean ratio of gene expression (relative to the primary tumors) is shown for tumors undergoing therapy.

FIG. 3D is a graph showing cell viability after treatment with Rapamycin (solid lines) and FK506 (dotted lines). The effects of these drugs on the viability of the hormone refractory CWR22R cell line (marked with a "C") and LNCap (marked with an "L") was tested *in vitro*. The recurrent CWR22R cell line was highly sensitive to rapamycin (IC₅₀ \sim 0.1 nM) and underwent cell death. In contrast, LNCap showed partial growth arrest without cell death, even at higher doses of rapamycin. FK506 did not have an effect on either cell line. ED₅₀ in CWR22R cells for rRapamycin was 0.3 μ M.

FIG 4 shows S100P mRNA levels measured by three different methods (cDNA microarray, mRNA ISH, and Northern hybridization analyses) in nine xenografts. The amount of S100P detected in each of these three methods was quantified and plotted in a line graph above the corresponding images. Absolute values were normalized to the three primary tumors with the lowest Northern hybridization levels.

FIG 5 is a bar graph showing the level of S100P protein expression in 440 human prostate cancer specimens at various stages of progression, measured by IHC staining. An S100P antibody was used to stain prostate tissue sections on a tissue microarray containing hundreds of prostate specimens from different steps of cancer development (from normal epithelium, BPH, and localized cancer to metastases and hormone refractory prostate cancer). The staining was scored by two pathologists, using a scale of 0 to 4. The results show the percentage of cancers at each progression stage that had strong (score of 3 or 4) IHC staining.

FIG 6 shows the results of analyses of specific gene targets involved in drug response. The top graphs (FIGs 6A and 6B) illustrate the dose response of CWR22R cell line viability in vitro with various emerging therapies (TSA, FR901464, rapamycin, RSD, FK506, and androgen withdrawal therapy); the levels of FKBP5 (FIG 6A) and VDUP1 (FIG 6B) are shown. A time course of treatment for each drug was analyzed by cDNA microarray and a database of the resulting data was mined to find genes that are involved in more than one therapeutic response. Specific examples are shown, including CRYM ATP1B2, OAT, QSCN6, GSN, PLU-1, GFPT2, ZCYTOR7, and VDUP1.

FIG 6C shows representative quantitative analyses for expression of the indicated genes at 0, 1, 3, 9, and 24 hours after treatment with the indicated drugs (0.3 μ M TSA, 10 mM FR901464, 1 μ M rapamycin, 1 μ M FK506, and 1 μ M RSD).

FIG 6D shows the expression levels for the same genes in primary, regressing, and recurrent tumors.

4

SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. In the accompanying sequence listing:

SEQ ID NOs: 1 and 2, also referred to as S100PF and S100PR respectively, are examples of oligonucleotides useful for amplifying an S100p probe sequence.

SEQ ID NOs: 3-10 (AntiS100P-A, -B, -C, -D, -E, -F, -G, and -H respectively, are examples of oligonucleotides useful for mRNA *in situ* hybridization.

DETAILED DESCRIPTION

I. Abbreviations

5

10

AR 15 androgen receptor **LNCap** prostate cancer cell line (developed by Dr. Leland Chung) HRPC hormoné refractory prostate cancer ED50 50% Effective Dose ISH in situ hybridization 20 IHC immunohistochemical (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) MTT TSA trichostatin A **PCNA** proliferating cell nuclear antigen

25 II. Terms

30

35

Unless otherwise noted, technical terms are used according to conventional usage.

Definitions of common terms in molecular biology may be found in Benjamin Lewin, *Genes V*, published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew *et al.* (eds.), *The Encyclopedia of Molecular Biology*, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), *Molecular Biology and Biotechnology: a Comprehensive Desk Reference*, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

In order to facilitate review of the various embodiments, the following explanations of certain terms are provided:

Analog, derivative or mimetic: An analog is a molecule that differs in chemical structure from a parent compound, for example a homolog (differing by an increment in the chemical structure, such as a difference in the length of an alkyl chain, though the change need not be an incremental change in length of a chain), a molecular fragment, a structure that differs by one or more functional groups, a change in ionization. Structural analogs are often found using quantitative structure activity

5

10

15

20

25

30

35

relationships (QSAR), with techniques such as those disclosed in Remington (*The Science and Practice of Pharmacology*, 19th Edition (1995), chapter 28). A derivative is a biologically active molecule derived from the base (parental) structure. A mimetic is a biomolecule that mimics the activity of another biologically active molecule.

Biologically active molecules can include chemical structures that mimic the biological activities of a compound, for instance rapamycin or more generally macrolides (the basic tri-cyclic structural group that includes rapamycin). Rapamycin derivatives (including metabolic derivatives), analogs, and mimetics are disclosed, for instance, in USPN 5,508,398; Kuhn et al., J. Med. Chem. 44:2027-2034, 2001; Dickman et al., Bioorg. Med. Chem. Lett 10:1405-1408, 2000; Streit et al., Drug Metab. Dispos. 24:1272-1278, 1996; and Wong et al., J. Antibiot. (Tokyo) 51:487-491, 1998.

Antisense, Sense, and Antigene: Double-stranded DNA (dsDNA) has two strands, a 5' -> 3' strand, referred to as the plus strand, and a 3' -> 5' strand (the reverse complement), referred to as the minus strand. Because RNA polymerase adds nucleic acids in a 5' -> 3' direction, the minus strand of the DNA serves as the template for the RNA during transcription. Thus, the RNA formed will have a sequence complementary to the minus strand and identical to the plus strand (except that U is substituted for T).

Antisense molecules are molecules that are specifically hybridizable or specifically complementary to either RNA or the plus strand of DNA. Sense molecules are molecules that are specifically hybridizable or specifically complementary to the minus strand of DNA. Antigene molecules are either antisense or sense molecules directed to a dsDNA target.

A gene-suppressive technology that is similar to antisense technology involves the use of small inhibitory RNA molecules (siRNAs) to inhibit a target gene. Methods of using siRNAs to inhibit eukaryotic and more particularly mammalian gene expression are known to those of ordinary skill in the art; see, for instance, Caplen et al., Proc. Natl. Acad. Sci. 98(17):9742-9747, 2001, and Elbashir et al., Nature 411:494-498, 2001.

Array: An arrangement of molecules, particularly biological macromolecules (such as polypeptides or nucleic acids) or cell or tissue samples, in addressable locations on or in a substrate. The array may be regular (arranged in uniform rows and columns, for instance) or irregular. The number of addressable locations on the array can vary, for example from a few (such as three) to more than 50, 100, 200, 500, 1000, 10,000, or more. A "microarray" is an array that is miniaturized so as to require or be aided by microscopic examination for evaluation or analysis.

Within an array, each arrayed sample (feature) is addressable, in that its location can be reliably and consistently determined within the at least two dimensions of the array. Thus, in ordered arrays the location of each sample is assigned to the sample at the time when it is applied to the array, and a key may be provided in order to correlate each location with the appropriate target or feature position. Often, ordered arrays are arranged in a symmetrical grid pattern, but samples could be arranged in other patterns (e.g., in radially distributed lines, spiral lines, or ordered clusters). Addressable arrays usually are computer readable, in that a computer can be programmed to correlate

6

a particular address on the array with information about the sample at that position (e.g., hybridization or binding data, including for instance signal intensity). In some examples of computer readable formats, the individual features in the array are arranged regularly, for instance in a Cartesian grid pattern, which can be correlated to address information by a computer.

The sample application location on an array (the "feature") may assume many different shapes. Thus, though the term "spot" may be used herein, it refers generally to a localized placement of molecules or tissue or cells, and is not limited to a round or substantially round region. For instance, substantially square regions of application can be used with arrays encompassed herein, as can be regions that are, for example substantially rectangular, triangular, oval, irregular, or another shape.

In certain example arrays, one or more features will occur on the array a plurality of times (e.g., twice) to provide internal controls.

10

15

20

25

30

35

Binding or stable binding: An oligonucleotide binds or stably binds to a target nucleic acid if a sufficient amount of the oligonucleotide forms base pairs or is hybridized to its target nucleic acid, to permit detection of that binding. Binding can be detected by either physical or functional properties of the target:oligonucleotide complex. Binding between a target and an oligonucleotide can be detected by any procedure known to one skilled in the art, including both functional and physical binding assays. Binding may be detected functionally by determining whether binding has an observable effect upon a biosynthetic process such as expression of a gene, DNA replication, transcription, translation, and the like.

Physical methods of detecting the binding of complementary strands of DNA or RNA are well known in the art, and include such methods as DNase I or chemical footprinting, gel shift and affinity cleavage assays, Northern blotting, dot blotting and light absorption detection procedures. For example, one method that is widely used, because it is so simple and reliable, involves observing a change in light absorption of a solution containing an oligonucleotide (or an analog) and a target nucleic acid at 220 to 300 nm as the temperature is slowly increased. If the oligonucleotide or analog has bound to its target, there is a sudden increase in absorption at a characteristic temperature as the oligonucleotide (or analog) and target disassociate from each other, or melt.

The binding between an oligomer and its target nucleic acid is frequently characterized by the temperature (T_m) at which 50% of the oligomer is melted from its target. A higher (T_m) means a stronger or more stable complex relative to a complex with a lower (T_m) .

Cancer: A cancer is a biological condition in which a malignant tumor or other neoplasm has undergone characteristic anaplasia with loss of differentiation, increased rate of growth, invasion of surrounding tissue, and which is capable of metastasis.

The term cancer includes prostate cancer, such as prostate adenocarcinoma, transitional cell carcinomas, squamous cell carcinomas, and sarcomas. However, about 95% of prostate cancers are adenocarcinomas. Also included are different stages of a single cancer, for instance both primary and recurrent (hormone-refractory) prostate cancer.

PCT/US01/31932

7

cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and transcriptional regulatory sequences. cDNA may also contain untranslated regions (UTRs) that are responsible for translational control in the corresponding RNA molecule. cDNA is usually synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells.

Comparative genomic hybridization: A technique of differential labeling of test DNA and normal reference DNA, which are hybridized simultaneously to chromosome spreads, as described in Kallioniemi *et al.* (*Science* 258:818-821, 1992), incorporated by reference.

Complementarity and percentage complementarity: Molecules with complementary nucleic acids form a stable duplex or triplex when the strands bind, (hybridize), to each other by forming Watson-Crick, Hoogsteen or reverse Hoogsteen base pairs. Stable binding occurs when an oligonucleotide remains detectably bound to a target nucleic acid sequence under the required conditions.

Complementarity is the degree to which bases in one nucleic acid strand base pair with the bases in a second nucleic acid strand. Complementarity is conveniently described by percentage, *i.e.* the proportion of nucleotides that form base pairs between two strands or within a specific region or domain of two strands. For example, if 10 nucleotides of a 15-nucleotide oligonucleotide form base pairs with a targeted region of a DNA molecule, that oligonucleotide is said to have 66.67% complementarity to the region of DNA targeted.

20

30

35

5

10

15

In the present disclosure, "sufficient complementarity" means that a sufficient number of base pairs exist between the oligonucleotide and the target sequence to achieve detectable binding. and in the case of the binding of an antigen, disrupt expression of gene products (such as cartilage glycoprotein-39 (CHI3L1), S-100P PROTEIN (S100P), CX3C chemokine/fractalkine (SCYD1), adenylate kinase 1 (AK1), forkhead transcription factor HFH-4 (HFH-4) (FKHL13), UDP glucuronosyltransferase precursor (UGT2B15), Pleiotrophin (heparin binding growth factor 8) (PTN), heat shock 27kD protein 2/Alpha-B-crystallin (HSP27), Proteasome (prosome, macropain) subunit, beta type, 5 (PSMB5), Inhibitor of NFKB (NFKBIA), interferon-induced 17 kD protein (ISG15), MAP kinase activated protein kinase 2 (MAPKAPK2), signal transduction protein (SH3 containing) (EFS2), hkf-1 Zinc finger protein (ZFP103), chromosome condensation 1 (CHC1), CDPdiacylglycerol synthase (CDS1), gap junction protein, alpha 1, 43kD (connexin 43) (GJA1), cyclin D1 (CCND1), Inhibitor of DNA binding 3, helix-loop-helix protein (ID3), H1 histone family, member2 (H1F2), Cytochrome B561 (CYB561), Cathepsin H (CTSH), calcineurin alpha (PPP3CA), 54 kDa progesterone receptor-associated immunophilin (FKBP5), translocation protein 1 (TLOC1), Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J) (CLU), Pulmonary surfactant-associated protein A (SFTPA1), protease inhibitor 12 (PI12; neuroserpin) (PI12), Thrombospondin 1 (THBS1), Ribophorin I (RPN1), A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 (ADAMTS1), Collagen, type IV, alpha 5 (Alport syndrome) (COL4A5), LIM domain only 4 / breast tumor autoantigen (LMO4),

10

15

20

25

30

35

8

PCT/US01/31932

bumetanide-sensitive Na-K-Cl cotransporter (NKCC1) (SLC12A2), Fibronectin (FN1), Crystallin Mu (CRYM) and "upregulated by 1,25-dihydroxyvitamin D-3" (VDUP1)). When expressed or measured by percentage of base pairs formed, the percentage complementarity that fulfills this goal can range from as little as about 50% complementarity to full (100%) complementary. In general, sufficient complementarity is at least about 50%, about 75% complementarity, about 90% or 95% complementarity, and or about 98% or even 100% complementarity.

A thorough treatment of the qualitative and quantitative considerations involved in establishing binding conditions that allow one skilled in the art to design appropriate oligonucleotides for use under the desired conditions is provided by Beltz et al. Methods Enzymol 100:266-285, 1983, and by Sambrook et al. (ed.), Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

DNA (deoxyribonucleic acid): DNA is a long chain polymer which comprises the genetic material of most living organisms (some viruses have genes comprising ribonucleic acid (RNA)). The repeating units in DNA polymers are four different nucleotides, each of which comprises one of the four bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached. Triplets of nucleotides (referred to as codons) code for each amino acid in a polypeptide, or for a stop signal. The term codon is also used for the corresponding (and complementary) sequences of three nucleotides in the mRNA into which the DNA sequence is transcribed.

Unless otherwise specified, any reference to a DNA molecule is intended to include the reverse complement of that DNA molecule. Except where single-strandedness is required by the text herein, DNA molecules, though written to depict only a single strand, encompass both strands of a double-stranded DNA molecule. Thus, a reference to the nucleic acid molecule that encodes a specific protein, or a fragment thereof, encompasses both the sense strand and its reverse complement. Thus, for instance, it is appropriate to generate probes or primers from the reverse complement sequence of the disclosed nucleic acid molecules.

Deletion: The removal of a sequence of DNA, the regions on either side of the removed sequence being joined together.

Gene amplification or genomic amplification: An increase in the copy number of a gene or a fragment or region of a gene or associated 5' or 3' region, as compared to the copy number in normal tissue. An example of a genomic amplification is an increase in the copy number of an oncogene. A "gene deletion" is a deletion of one or more nucleic acids normally present in a gene sequence and, in extreme examples, can include deletions of entire genes or even portions of chromosomes.

Gene expression fingerprint (or profile): A distinct or identifiable pattern of gene expression, for instance a pattern of high and low expression of a defined set of genes; in some instances, as few as one or two genes may provide a profile, but often more genes are used in a profile, for instance at least three, at least 5, at least 10, at least 20, at least 25, or at least 50 or more.

Gene expression fingerprints (also referred to as profiles) can be linked to a tissue or cell type, to a particular stage of normal tissue growth or disease progression, or to any other distinct or identifiable condition that influences gene expression in a predictable way. Gene expression fingerprints can include relative as well as absolute expression levels of specific genes, and often are best viewed in the context of a test sample compared to a baseline or control sample fingerprint. By way of example, a gene expression profile may be read on an array (e.g., a polynucleotide or polypeptide array). Arrays are now well known, and for instance gene expression arrays have been previously described in published PCT application number US99/06360 ("Hypoxia-Inducible Human Genes, Proteins, and Uses Thereof"), incorporated herein by reference in its entirety.

Genomic target sequence: A sequence of nucleotides located in a particular region in the human genome that corresponds to one or more specific genetic abnormalities, such as a nucleotide polymorphism, a deletion, or an amplification. The target can be for instance a coding sequence; it can also be the non-coding strand that corresponds to a coding sequence.

10

15

20

25

30

35

HRPC-related molecule: A molecule that is involved in, or influenced by, hormonerefractory prostate cancer. Such molecules include, for instance, nucleic acids (e.g., DNA, cDNA, or
mRNAs) and proteins. Specific examples of HRPC-related molecules include the nucleic acid
molecules listed in Table 1, and proteins or protein fragments encoded thereby. HRPC-related
molecules may be involved in or influenced by hormone-refractory prostate cancer in many different
ways, including causative (in that a change in an HRPC-related molecule leads to development of or
progression to hormone-refractory prostate cancer) or resultive (in that development of or progression
to hormone-refractory prostate cancer causes or results in a change in the HRPC-related molecule).

Hybridization: Oligonucleotides and their analogs hybridize by hydrogen bonding, which includes Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary bases. Generally, nucleic acid consists of nitrogenous bases that are either pyrimidines (cytosine (C), uracil (U), and thymine (T)) or purines (adenine (A) and guanine (G)). These nitrogenous bases form hydrogen bonds between a pyrimidine and a purine, and the bonding of the pyrimidine to the purine is referred to as "base pairing." More specifically, A will hydrogen bond to T or U, and G will bond to C. "Complementary" refers to the base pairing that occurs between to distinct nucleic acid sequences or two distinct regions of the same nucleic acid sequence.

"Specifically hybridizable" and "specifically complementary" are terms that indicate a sufficient degree of complementarity such that stable and specific binding occurs between the oligonucleotide (or its analog) and the DNA or RNA target. The oligonucleotide or oligonucleotide analog need not be 100% complementary to its target sequence to be specifically hybridizable. An oligonucleotide or analog is specifically hybridizable when binding of the oligonucleotide or analog to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide or analog to non-target sequences under conditions where specific binding is desired,

10

for example under physiological conditions in the case of *in vivo* assays or systems. Such binding is referred to as specific hybridization.

Hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybridization method of choice and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (especially the Na[†] concentration) of the hybridization buffer will determine the stringency of hybridization, though waste times also influence stringency. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed by Sambrook *et al.* (ed.), *Molecular Cloning: A Laboratory Manual*, 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989, chapters 9 and 11, herein incorporated by reference.

5

10

15

20

25

30

35

For purposes of the present disclosure, "stringent conditions" encompass conditions under which hybridization will only occur if there is less than 25% mismatch between the hybridization molecule and the target sequence. "Stringent conditions" may be broken down into particular levels of stringency for more precise definition. Thus, as used herein, "moderate stringency" conditions are those under which molecules with more than 25% sequence mismatch will not hybridize; conditions of "medium stringency" are those under which molecules with more than 15% mismatch will not hybridize, and conditions of "high stringency" are those under which sequences with more than 10% mismatch will not hybridize. Conditions of "very high stringency" are those under which sequences with more than 6% mismatch will not hybridize.

In vitro amplification: Techniques that increase the number of copies of a nucleic acid molecule in a sample or specimen. An example of amplification is the polymerase chain reaction, in which a biological sample collected from a subject is contacted with a pair of oligonucleotide primers, under conditions that allow for the hybridization of the primers to nucleic acid template in the sample. The primers are extended under suitable conditions, dissociated from the template, and then re-annealed, extended, and dissociated to amplify the number of copies of the nucleic acid. The product of in vitro amplification may be characterized by electrophoresis, restriction endonuclease cleavage patterns, oligonucleotide hybridization or ligation, and/or nucleic acid sequencing, using standard techniques. Other examples of in vitro amplification techniques include strand displacement amplification (see U.S. Patent No. 5,744,311); transcription-free isothermal amplification (see U.S. Patent No. 6,033,881); repair chain reaction amplification (see WO 90/01069); ligase chain reaction amplification (see EP-A-320 308); gap filling ligase chain reaction amplification (see U.S. Patent No. 5,427,930); coupled ligase detection and PCR (see U.S. Patent No. 6,027,889); and NASBATM RNA transcription-free amplification (see U.S. Patent No. 6,025,134).

Injectable composition: A pharmaceutically acceptable fluid composition including at least one active ingredient. The active ingredient is usually dissolved or suspended in a physiologically acceptable carrier, and the composition can additionally include minor amounts of one or more non-toxic auxiliary substances, such as emulsifying agents, preservatives, and pH buffering agents and the like. Such injectable compositions that are useful for use with the

nucleotides and proteins of this disclosure are conventional; appropriate formulations are well known in the art.

Isolated: An "isolated" biological component (such as a nucleic acid molecule, protein or organelle) has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, *i.e.*, other chromosomal and extrachromosomal DNA and RNA, proteins and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

5

10

15

20

25

30

35

Neoplasm: A new and abnormal growth, particularly a new growth of tissue or cells in which the growth is uncontrolled and progressive. A tumor is an example of a neoplasm.

Nucleotide: "Nucleotide" includes, but is not limited to, a monomer that includes a base linked to a sugar, such as a pyrimidine, purine or synthetic analogs thereof, or a base linked to an amino acid, as in a peptide nucleic acid (PNA). A nucleotide is one monomer in a polynucleotide. A nucleotide sequence refers to the sequence of bases in a polynucleotide.

Oligonucleotide: An oligonucleotide is a plurality of joined nucleotides joined by native phosphodiester bonds, between about 6 and about 300 nucleotides in length. An oligonucleotide analog refers to moieties that function similarly to oligonucleotides but have non-naturally occurring portions. For example, oligonucleotide analogs can contain non-naturally occurring portions, such as altered sugar moieties or inter-sugar linkages, such as a phosphorothioate oligodeoxynucleotide. Functional analogs of naturally occurring polynucleotides can bind to RNA or DNA, and include peptide nucleic acid (PNA) molecules.

Particular oligonucleotides and oligonucleotide analogs can include linear sequences up to about 200 nucleotides in length, for example a sequence (such as DNA or RNA) that is at least 6 bases, for example at least 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100 or even 200 bases long, or from about 6 to about 50 bases, for example about 10-25 bases, such as 12, 15 or 20 bases.

Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame.

Open reading frame: A series of nucleotide triplets (codons) coding for amino acids without any internal termination codons. These sequences are usually translatable into a peptide.

Ortholog: Two nucleic acid or amino acid sequences are orthologs of each other if they share a common ancestral sequence and diverged when a species carrying that ancestral sequence split into two species. Orthologous sequences are also homologous sequences.

Parenteral: Administered outside of the intestine, e.g., not via the alimentary tract. Generally, parenteral formulations are those that will be administered through any possible mode except ingestion. This term especially refers to injections, whether administered intravenously, intrathecally, intramuscularly, intraperitoneally, or subcutaneously, and various surface applications including intranasal, intradermal, and topical application, for instance.

5

10

15

20

25

30

35

Peptide Nucleic Acid (PNA): An oligonucleotide analog with a backbone comprised of monomers coupled by amide (peptide) bonds, such as amino acid monomers joined by peptide bonds.

Pharmaceutically acceptable carriers: The pharmaceutically acceptable carriers useful in this disclosure are conventional. Martin, *Remington's Pharmaceutical Sciences*, published by Mack Publishing Co., Easton, PA, 19th Edition, 1995, describes compositions and formulations suitable for pharmaceutical delivery of the nucleotides and proteins herein disclosed.

In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (e.g., powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.

Probes and primers: Nucleic acid probes and primers can be readily prepared based on the nucleic acid molecules provided in this disclosure as indicators of disease or disease progression. It is also appropriate to generate probes and primers based on fragments or portions of these nucleic acid molecules. Also appropriate are probes and primers specific for the reverse complement of these sequences, as well as probes and primers to 5' or 3' regions.

A probe comprises an isolated nucleic acid attached to a detectable label or other reporter molecule. Typical labels include radioactive isotopes, enzyme substrates, co-factors, ligands, chemiluminescent or fluorescent agents, haptens, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, CSHL, New York, 1989) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1998).

Primers are short nucleic acid molecules, for instance DNA oligonucleotides 10 nucleotides or more in length. Longer DNA oligonucleotides may be about 15, 20, 25, 30 or 50 nucleotides or more in length. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then the primer extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art.

Methods for preparing and using nucleic acid probes and primers are described, for example, in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, CSHL, New York, 1989), Ausubel et al. (ed.) (In Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1998), and Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, CA, 1990). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, MA). One of ordinary skill in the art will appreciate that the specificity of a particular probe or primer increases with its length. Thus, for example, a primer comprising 30 consecutive nucleotides of a HRPC-related protein encoding nucleotide will anneal to a target sequence, such as another homolog of the designated HRPC-related protein, with a higher specificity than a corresponding primer of only 15 nucleotides. Thus, in order to obtain greater specificity, probes and primers can be selected that comprise at least 20, 25, 30, 35, 40, 45, 50 or more consecutive nucleotides of a HRPC-related protein-encoding nucleotide sequences.

10

15

20

25

30

35

The disclosure thus includes isolated nucleic acid molecules that comprise specified lengths of the disclosed HRPC-related nucleotide sequences. Such molecules may comprise at least 10, 15, 20, 23, 25, 30, 35, 40, 45 or 50 consecutive nucleotides of these sequences or more, and may be obtained from any region of the disclosed sequences (e.g., a HRPC-related nucleic acid may be apportioned into halves or quarters based on sequence length, and isolated nucleic acid molecules may be derived from the first or second halves of the molecules, or any of the four quarters, etc.). A HRPC-related cDNA also can be divided into smaller regions, e.g. about eighths, sixteenths, twentieths, fiftieths and so forth, with similar effect.

Another mode of division is to select the 5' (upstream) and/or 3' (downstream) region associated with a HRPC-related gene.

Nucleic acid molecules may be selected that comprise at least 10, 15, 20, 25, 30, 35, 40, 50 or 100 or more consecutive nucleotides of any of these or other portions of a HRPC-related nucleic acid molecule, such as those disclosed herein, and associated flanking regions. Thus, representative nucleic acid molecules might comprise at least 10 consecutive nucleotides of a human coding sequence the expression of which is influenced by prostate cancer progression, such as those listed in Table 1.

Protein: A biological molecule expressed by a gene and comprised of amino acids.

Purified: The term "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified protein preparation is one in which the protein referred to is more pure than the protein in its natural environment within a cell or within a production reaction chamber (as appropriate).

Recombinant: A recombinant nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination can be accomplished by chemical synthesis or,

5

10

15

20

25

30

35

PCT/US01/31932

more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

14

Representational difference analysis: A PCR-based subtractive hybridization technique used to identify differences in the mRNA transcripts present in closely related cell lines.

Serial analysis of gene expression: The use of short diagnostic sequence tags to allow the quantitative and simultaneous analysis of a large number of transcripts in tissue, as described in Velculescu et al. (Science 270:484-487, 1995).

Sequence identity: The similarity between two nucleic acid sequences, or two amino acid sequences, is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. Homologs or orthologs of the HRPC-related protein, and the corresponding cDNA or gene sequence, will possess a relatively high degree of sequence identity when aligned using standard methods. This homology will be more significant when the orthologous proteins or genes or cDNAs are derived from species that are more closely related (e.g., human and chimpanzee sequences), compared to species more distantly related (e.g., human and C. elegans sequences).

Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith & Waterman Adv. Appl. Math. 2: 482, 1981; Needleman & Wunsch J. Mol. Biol. 48: 443, 1970; Pearson & Lipman Proc. Natl. Acad. Sci. USA 85: 2444, 1988; Higgins & Sharp Gene, 73: 237-244, 1988; Higgins & Sharp CABIOS 5: 151-153, 1989; Corpet et al. Nuc. Acids Res. 16, 10881-90, 1988; Huang et al. Computer Appls. in the Biosciences 8, 155-65, 1992; and Pearson et al. Meth. Mol. Bio. 24, 307-31, 1994. Altschul et al. (J. Mol. Biol. 215:403-410, 1990), presents a detailed consideration of sequence alignment methods and homology calculations.

The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. J. Mol. Biol. 215:403-410, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, MD) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. By way of example, for comparisons of amino acid sequences of greater than about 30 amino acids, the Blast 2 sequences function is employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 1). When aligning short peptides (fewer than around 30 amino acids), the alignment should be performed using the Blast 2 sequences function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties).

An alternative indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions. Stringent conditions are sequencedependent and are different under different environmental parameters. Generally, stringent conditions are selected to be about 5° C to 20° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength

15

and pH) at which 50% of the target sequence remains hybridized to a perfectly matched probe or complementary strand. Conditions for nucleic acid hybridization and calculation of stringencies can be found in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, CSHL, New York, 1989) and Tijssen (Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes Part I, Chapter 2, Elsevier, New York, 1993). Nucleic acid molecules that hybridize under stringent conditions to a specific human HRPC-related protein-encoding sequence will typically hybridize to a probe based on either an entire human HRPC-related protein-encoding sequence or selected portions of the encoding sequence under wash conditions of 2x SSC at 50° C.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences, due to the degeneracy of the genetic code. It is understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid molecules that all encode substantially the same protein.

10

15

20

25

30

35

Specific binding agent: An agent that binds substantially only to a defined target. Thus a protein-specific binding agent binds substantially only the specified protein. As used herein, the term "protein [X] specific binding agent" includes anti-[X] protein antibodies (and functional fragments thereof) and other agents (such as soluble receptors) that bind substantially only to the [X] protein. In this context, [X] refers to any specific or designated protein, for instance a HRPC-related protein such as those listed in Table 1.

Anti-[X] protein antibodies may be produced using standard procedures described in a number of texts, including Harlow and Lane (Antibodies, A Laboratory Manual, CSHL, New York, 1988). The determination that a particular agent binds substantially only to the specified protein may readily be made by using or adapting routine procedures. One suitable in vitro assay makes use of the Western blotting procedure (described in many standard texts, including Harlow and Lane (Antibodies, A Laboratory Manual, CSHL, New York, 1988)). Western blotting may be used to determine that a given protein binding agent, such as an anti-[X] protein monoclonal antibody, binds substantially only to the [X] protein.

Shorter fragments of antibodies can also serve as specific binding agents. For instance, Fabs, Fvs, and single-chain Fvs (SCFvs) that bind to a specified protein would be specific binding agents. These antibody fragments are defined as follows: (1) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; (2) Fab', the fragment of an antibody molecule obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule; (3) (Fab')2, the fragment of the antibody obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; (4) F(ab')2, a dimer of two Fab' fragments held together by two disulfide bonds; (5) Fv, a genetically engineered fragment containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and (6) single chain antibody ("SCA"), a genetically engineered molecule containing

5

10

15

20

25

30

35

16

PCT/US01/31932

the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule. Methods of making these fragments are routine.

Subject: Living multi-cellular vertebrate organisms, a category that includes both human and non-human mammals

Target sequence: "Target sequence" is a portion of ssDNA, dsDNA or RNA that, upon hybridization to a therapeutically effective oligonucleotide or oligonucleotide analog, results in the inhibition of expression of a specified protein, such as a HRPC-related protein. Either an antisense or a sense molecule can be used to target a portion of dsDNA, since both will interfere with the expression of that portion of the dsDNA. The antisense molecule can bind to the plus strand, and the sense molecule can bind to the minus strand. Thus, target sequences can be ssDNA, dsDNA, and RNA.

Tissue microarray ("tissue chip"): A tissue microarray is a microarray wherein the samples are samples of tissue, for instance animal tissue such as human tissue. Examples of tissue microarrays are assembled by aligning tissue cylinders (taken, for instance, from tissue blocks or biopsies) in a recipient block, such as a block of paraffin, to create a matrix of columns of sample within the block. Individual slices are cut from the surface of the block, substantially perpendicular to the axis of the cylinders, thereby yielding flat, thin arrays of tissue samples embedded in the block material. Such thin arrays are often transferred to a microscope slide or other supporting member. The construction of tissue microarrays is described in, for instance, Kononen et al., Nature Medicine, 4:844-847, 1998 and PCT International Patent Publication WO99/44063A2, both of which are incorporated herein by this reference.

Tissue samples contained in a tissue microarray may be any set of tissues, but often a tissue microarray has a theme so to speak, for instance containing samples from a collection of different tumors, tumors from different tissues, tumors from different stages of progression, or from different treatment regimens.

Transformed: A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.

Tumor: A neoplasm that may be either malignant or non-malignant. "Tumors of the same tissue type" refers to primary tumors originating in a particular organ (such as breast, prostate, bladder or lung). Tumors of the same tissue type may be divided into tumor of different sub-types (an example being prostate cancer, which can be an adenocarcinoma, transitional cell, squamous cell tumor, or sarcoma).

Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in a

17

host cell, such as an origin of replication. A vector may also include one or more selectable marker genes and other genetic elements known in the art.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the subject matter disclosed herein belongs. The singular terms "a", "an", and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

III. Description of several specific embodiments

5

10

15

20

25

30

35

Provided herein are methods of diagnosing or prognosing development or progression of prostate cancer in a subject, which methods involve detecting an abnormality in at least one HRPC-related molecule of the subject (e.g., an HRPC related nucleic acid molecule such as one listed in Table 1 or Table 4, or genes, cDNAs or other polynucleotide molecules comprising one of the listed sequences, or a fragment thereof, or an HRPC-related protein such as one encoded by such a nucleic acid molecule, or a fragment of such protein). In certain embodiments, abnormalities are detected in more than one HRPC-related molecule, for instance in at least 5, at least 10, 15, 25, 50, or 100 or more HRPC-related nucleic acid molecules listed in Table 1 or elsewhere herein, or encoded for by a nucleic acid molecule listed in Table 1 or lesewhere herein. In certain specific embodiments, no more than the molecules listed in Table 1 or Table 4, or corresponding to (represented by) those listed in Table 1 or Table 4, are included in such analysis. For instance, certain of the described methods employ detecting no more than 600, no more than 500, no more than 400, no more than 300, or no more than 200 of such molecules.

Also encompassed herein are arrays containing two or more HRPC-related molecules. Certain of such arrays are nucleic acid arrays, which contain at least one HRPC-related nucleic acid molecule, for instance at least one of the HRPC-related nucleic acid molecules listed in Table 1 or Table 4, or genes, cDNAs or other polynucleotide molecules comprising one of the listed sequences, or a fragment thereof. Other described arrays are protein (polypeptide) arrays, which contain at least one HRPC-related protein such as one encoded by a nucleic acid molecule listed in Table 1 or Table 4 (or genes, cDNAs or other polynucleotide molecules comprising one of the listed sequences, or a fragment thereof), or a fragment of such protein, or an antibody specific to such a protein or protein fragment. Such arrays can also contain any particular subset of the nucleic acids (or corresponding molecules) listed in Table 1 or Table 4. Certain of such arrays (as well as the methods described herein) also may include HRPC-related molecules that are not listed in Table 1 or Table 4.

Abnormalities detected by these methods for instance can be different for different HRPC-related molecules, and may include increases or decreases in the level (amount) or functional activity of such molecules, or in their localization or stability. As used herein, the term "HRPC-related molecule" includes HRPC-related nucleic acid molecules (such as DNA or RNA or cDNA) and HRPC-related proteins, though in specific embodiments the term may be specific for any one of these types of molecules. The term is not limited to those molecules listed in Table 1 or Table 4 (and molecules that correspond to those listed), but also includes other nucleic acids and/or proteins that are influenced (e.g., as to level, activity, localization) by or during prostate cancer progression, including all of such molecules listed herein.

Specific encompassed embodiments include diagnostic and/or prognostic methods in which a mutation, duplication or deletion of a HRPC-related nucleic acid in cells of the individual is detected.

10

In certain embodiments, HRPC-related molecules that can be examined for an abnormality include molecules represented by a subset of the sequences referred to in Table 1 or Table 4, such as 15 the more than 200 sequences represented by Image Clone ID numbers: 1475595, 1460110, 50794, 78294, 190491, 66731, 143287, 754600, 754509, 308041, 70827, 361974, 503097, 796646, 41650, 841641, 724615, 839101, 504226, 810711, 435330, 773567, 431296, 345232, 756405, 256907, 415817, 366541, 223350, 366067, 724831, 814353, 236034, 809910; 1470048, 1323448, 1456424, 453689, 135221, 340734, 180864, 768562, 179276, 44505, 293104, 243343, 66317, 812251, 245920, 265874, 770212, 784910, 839094, 712049, 669435, 841470, 782339, 297061, 429466, 300137, 20 487172, 343744, 795730, 268876, 742132, 755578, 502682, 510381, 140574, 135630, 278242, 742862, 1049033, 270136, 768260, 53039, 211813, 195051, 125769, 122955, 129342, 292392, 139331, 143995, 139250, 243360, 194307, 235040, 295483, 143756, 897768, 1456160, 34778, 810512, 753184, 200814, 470393, 23185, 128126, 42373, 511521, 810117, 950682, 783696, 815555, 897531, 713145, 502690, 469969, 309893, 725877, 343987, 49318, 42864, 193087, 162533, 25 1309620, 685801, 825740, 756708, 28469, 187147, 246304, 130280, 753587, 123980, 241985, 564621, 841507, 810703, 784772, 143306, 246722, 298417, 51582, 757222, 884783, 417424, 324891, 504791, 725877, 743230, 377048, 42627, 144797, 244955, 204735, 144747, 292749. 196109, 120375, 121981, 121715, 243403, 127409, 130053, 243291, 203514, 133130, 134495, 296552, 138601, 167076, 197323, 197637, 194906, 194985, 196125, 196303, 243784, 280122, 30 245235, 197856, 200604, 203400, 207448, 234469, 210548, 208940, 208434, 211951, 212098, 233399, 240138, 137396, 241097, 239835, 308231, 292312, 292391, 293421, 293306, 293785, 295044, 295590, 296102, 296602, 297110, 191572, 195132, 233274, 246546, 296562, 214331, 214043, 126230, 128245, 129616, 134312, 230613, 239711, 134537, 127646, 136984, 210610, 293457, 233299, 281125, 26184, 39093, 39884, and/or 2911545. Molecules represented by (or corresponding to) these Image Clone IDs include the nucleic acid fragments found in the respective clones (and variants thereof), complete nucleic acids (such as cDNAs, mRNAs, or genes)

19

encompassing such fragments, fragments and variants of these complete nucleic acid molecules, proteins encoded by such nucleic acids, and fragments and variants of such proteins.

Certain of the encompassed methods involve measuring an amount of the HRPC-related molecule in a sample (such as a serum or tissue sample) derived or taken from the subject, in which a difference (for instance, an increase or a decrease) in level of the HRPC-related molecule relative to that present in a sample derived or taken from the subject at an earlier time, is diagnostic or prognostic for development or progression of prostate cancer.

5

10

15

20

25

30

35

Abnormalities in HRPC-related nucleic acid molecules can be detected using, for instance, in vitro nucleic acid amplification and/or nucleic acid hybridization. The results of such detection methods can be quantified, for instance by determining the amount of hybridization or the amount of amplification.

Abnormalities in HRPC-related proteins can be detected using, for instance, a HRPC protein-specific binding agent, which in some instances will be detectably labeled. In certain embodiments, therefore, detecting an abnormality includes contacting a sample from the subject with a HRPC protein-specific binding agent; and detecting whether the binding agent is bound by the sample and thereby measuring the levels of the HRPC-related protein present in the sample, in which a difference in the level of HRPC-related protein in the sample, relative to the level of HRPC-related protein found an analogous sample from a subject not having the disease or disorder, or a standard HRPC-related protein level in analogous samples from a subject not having the disease or disorder or not having a predisposition for developing the disease or disorder, is an abnormality in that HRPC-related molecule.

In other embodiments, detecting the abnormality involves determining whether a HRPC-related gene expression profile from the subject indicates development or progression of prostate cancer, for instance by comparing the HRPC-related gene expression profile from the subject to at least one control gene expression fingerprint or profile for a specific stage of prostate cancer. In specific examples of such methods, at least one control gene expression profile is a fingerprint for a normal prostate tissue, a primary prostate cancer tissue, a prostate cancer tissue responding to androgen ablation therapy, or a hormone refractory prostate cancer tissue. Examples of such profiles (also referred to herein as fingerprints) can be in an array format, such as a nucleotide (e.g., polynucleotide) or protein array or microarray, or generated from such an array.

Specific embodiments of methods for detecting an abnormality in at least one HRPC-related molecule use the arrays disclosed herein. Such arrays are nucleotide (e.g., polynucleotide) or protein (e.g., peptide, polypeptide, or antibody) arrays. In such methods, an array may be contacted with polynucleotides or polypeptides (respectively) from (or derived from) a sample from a subject. The amount and/or position of binding of the subject's polynucleotides or polypeptides then can be determined, for instance to produce a gene expression profile for that subject. Such gene expression profile can be compared to another gene expression profile, for instance a control gene expression profile from a subject having a known prostate-related condition. Optionally, the subject's gene

20

expression profile (also known as a gene expression fingerprint) can be correlated with one or more appropriate treatments. Similarly, protein arrays can give rise to protein expression profiles. Both protein and gene expression profiles can more generally be referred to as expression profiles.

5

10

15

20

25

30

35

Other embodiments are methods that involve providing nucleic acids from the subject; amplifying the nucleic acids to form nucleic acid amplification products; contacting the nucleic acid amplification products with an oligonucleotide probe that will hybridize under stringent conditions with a nucleic acid encoding a HRPC-related protein; detecting the nucleic acid amplification products which hybridize with the probe; and quantifying the amount of the nucleic acid amplification products that hybridize with the probe. The sequence of such oligonucleotide probes may be selected to bind specifically to a nucleic acid molecule listed in Table 1 or Table 4, or a nucleic acid molecule represented by those listed in Table 1 or Table 4. In some embodiments, the probes are attached to a solid surface, such as an array. Likewise, the primers may be selected to amplify a nucleic acid molecule listed in Table 1 or Table 4, or represented by those listed in Table 1 or Table 4. In specific examples of such methods, the primers are selected to amplify a nucleic acid product encoding cartilage glycoprotein-39 (CHI3L1), S-100P PROTEIN (S100P), CX3C chemokine/fractalkine (SCYD1), adenylate kinase 1 (AK1), forkhead transcription factor HFH-4 (HFH-4) (FKHL13), UDP glucuronosyltransferase precursor (UGT2B15), Pleiotrophin (heparin binding growth factor 8) (PTN), heat shock 27kD protein 2/Alpha-B-crystallin (HSP27), Proteasome (prosome, macropain) subunit, beta type, 5 (PSMB5), Inhibitor of NFKB (NFKBIA), interferoninduced 17 kD protein (ISG15), MAP kinase activated protein kinase 2 (MAPKAPK2), signal transduction protein (SH3 containing) (EFS2), hkf-1 Zinc finger protein (ZFP103), chromosome condensation 1 (CHC1), CDP-diacylglycerol synthase (CDS1), gap junction protein, alpha 1, 43 kD (connexin 43) (GJA1), cyclin D1 (CCND1), Inhibitor of DNA binding 3, helix-loop-helix protein (ID3), H1 histone family, member2 (H1F2), Cytochrome B561 (CYB561), Cathepsin H (CTSH), calcineurin alpha (PPP3CA), 54 kDa progesterone receptor-associated immunophilin (FKBP5), translocation protein 1 (TLOC1), Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J) (CLU), Pulmonary surfactant-associated protein A (SFTPA1), protease inhibitor 12 (PI12; neuroserpin) (PI12), Thrombospondin 1 (THBS1), Ribophorin I (RPN1), A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 (ADAMTS1), Collagen, type IV, alpha 5 (Alport syndrome) (COL4A5), LIM domain only 4 / breast tumor autoantigen (LMO4), bumetanide-sensitive Na-K-Cl cotransporter (NKCC1) (SLC12A2), Fibronectin (FN1), Crystallin Mu (CRYM) or "upregulated by 1,25-dihydroxyvitamine D-3 (VDUPI).

Also encompassed are methods of prostate cancer therapy, in which an abnormality in at least one HRPC-related molecule of a subject is detected using a method described herein, and; if such abnormality is identified, a treatment is selected to prevent or reduce hormone-refractory prostate cancer or to delay the onset of hormone-refractory prostate cancer. The subject then can be treated in accordance with this selection. In some examples, the treatment selected in specific and

10

15

20

25

30

35

21

tailored for the subject, based on the analysis of that subject's profile for one or more HRPC-related molecules.

A further embodiment is a method of modifying a level of expression or function of a HRPC-related protein in a subject. Such methods may involve expressing in the subject a recombinant genetic construct that includes a promoter operably linked to a nucleic acid molecule, and wherein expression of the nucleic acid molecule changes expression of the HRPC-related protein. The nucleic acid molecule may, for instance, include at least 10 consecutive nucleotides of a HRPC-related nucleic acid sequence. In specific examples of such methods, the nucleic acid molecule is in antisense orientation relative to the promoter; in other examples, the nucleic acid molecule is in sense orientation relative to the promoter.

Other embodiments are kits for measuring the level or function of one or more HRPC-related molecules, which kits may include a binding molecule that selectively binds to the HRPC-related molecule that is the target of the kit. In some examples of such kits where the HRPC-related molecule level is a HRPC-related protein level, the binding molecule provided in the kit may be an antibody or antibody fragment that selectively binds to the target HRPC-related protein. In other examples of such kits where the HRPC-related molecule level is a HRPC-related nucleic acid molecule level, the binding molecule provided in the kit may be an oligonucleotide capable of hybridizing to the HRPC-related nucleic acid molecule.

Further embodiments are methods of screening for a compound useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer. Such methods involve determining if application of a test compound alters a HRPC-related gene expression profile so that the profile more closely resembles a prostate-linked profile than it did prior to such treatment, and selecting a compound that so alters the HRPC-related gene expression profile. In specific examples of such methods, the test compound is applied to a test cell. In some of such methods, the profile is determined or measured in an array format.

Also encompassed are compounds selected using the methods described herein, which are useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer.

Examples of disclosed methods involve contacting test cells with a test compound, then measuring at least one HRPC-related molecule level and/or activity in the test cells. In such methods, a difference in HRPC-related molecule (e.g., a HRPC-related nucleic acid molecule listed in Table 1, or a molecule encoded for by a nucleic acid molecule listed in Table 1) level and/or activity in the test cells, relative to the analogous HRPC-related molecule level and/or activity found in analogous cells not contacted with the test compound, indicates that the test compound is useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer. Measuring the HRPC-related molecule(s) level and/or activity may include creating a HRPC-related gene expression profile for the test cell after contacting the cell with the test compound, and comparing the test cell HRPC-related gene expression profile to at least one control gene expression profile for a specific

5

10

15

20

25

30

35

stage of prostate cancer. Representative control gene expression profile can include a profile for a normal prostate tissue, a primary prostate cancer tissue, a prostate cancer tissue responding to androgen ablation therapy, and/or a hormone refractory prostate cancer tissue.

Also disclosed herein are use of identified target HRPC-related molecules for the development of antibodies, including therapeutic antibodies that affect an HRPC-related pathway. It is also envisioned that the disclosed HRPC-related molecules can be used as vaccines, for instance as "cancer vaccines" to elicit an immune response from a subject that renders the subject more resistant to developing or progressing through a stage of prostate cancer.

IV. Temporal gene expression changes during prostate cancer hormonal therapy

The present disclosure concerns gene expression profiling of the regression and progression of the CWR22 human prostate cancer xenografts using cDNA microarrays. Highly quantitative two-color fluorescent microarray technology was used to examine differences in gene expression between primary and recurrent CWR22 prostate cancer xenografts. cDNA microarrays containing 6605 gene fragments were constructed and applied to analyze the mRNA expression profile of thirteen CWR22 xenografts at different stages in the time course of treatment and progression. New statistical tools (including template-based gene clustering) were then used to mine this data (e.g., to differentiate temporal gene expression profiles associated with *in vivo* therapy response from the noise in the data), enabling a comprehensive genomics-based analysis of the temporal mRNA expression profiles during the entire course of CWR22 treatment and progression.

For instance, a large set of genes and other encoding sequences (e.g., expressed sequence tags, ESTs) have been identified (Table 1), the expression of which varies during prostate cancer progression. The Image Clone ID numbers of these sequences are: 843249, 796904, 399604, 788205, 260303, 287745, 796542, 243653, 486787, 134495, 796680, 448386, 298417, 124578, 141562, 713145, 815284, 51408, 22012, 344589, 839101, 511091, 365515, 144042, 153411, 853809, 884783, 75254, 109314, 293925, 949938, 132835, 773567, 415529, 809910, 142326, 139660, 435855, 243816, 489839, 130895, 258120, 39920, 343867, 142139, 1472735, 503083, 796147, 813179, 741891, 461727, 756968, 814636, 897667, 297392, 322723, 66322, 295729, 265645, 143756, 195340, 78294, 296880, 713922, 203772, 383188, 431296, 842939, 347434, 308041, 202535, 66582, 795730, 292770, 788107, 128143, 214162, 298231, 453183, 502518, 755054, 415978, 630013, 813678, 236034, 257162, 813841, 770074, 266146, 377692, 755952, 297063, 840511, 415084, 841695, 183462, 731051, 80221, 758222, 71116, 137139, 136557, 205239, 509731, 208718, 840460, 111750, 711918, 809998, 784296, 813266, 257422, 82734, 811161, 322160, 844725, 276091, 177772, 461804, 898258, 248412, 344139, 796689, 223350, 78353, 502832, 250654, 214990, 813611, 140806, 1469234, 781362, 813698, 377731, 79782, 768644, 772425, 150702, 246430, 210494, 120681, 132140, 431501, 366966, 35105, 201393, 137096, 453005, 131050, 897485, 781233, 768246, 897906, 246765, 1412481, 111150, 124071, 42070, 1455976, 66982, 362483, 382195, 196992, 564621, 814409, 504763, 143519, 82903, 234736, 812246, 125685, 436155, 898219, 773637, 269878, 427812, 868368, 81475, 784910, 859359, 809353, 753069,

377320, 1472775, 130826, 46284, 586685, 811162, 50680, 840990, 1461664, 796613, 68977, 796198, 80338, 770394, 138936, 784593, 768299, 232772, 32493, 432210, 126858, 245936, 1161775, 840942, 361974, 51406, 41650, 77728, 278570, 271670, 26249, 810331, 811088, 627306, 179890, 121454, 289447, 810104, 774471, 377252, 949928, 294881, 292364, 142788, 246619, 345935, 854899, 770059, 49630, 773301, 781139, 854338, 785967, 770388, 810960, 383175, 128460, 279970, 139217, 283023, 813823, 242062, 461327, 756595, 826142, 841008, 134229, 1323448, 300137, 843098, 51582, 128785, 839991, 783998, 130276, 214006, 840687, 66731, 272327, 197054, 814240, 121792, 809456, 145001, 685371, 345626, 136954, 143887, 120964, 842784, 1374571, 152453, 842836, 233583, 346552, 51293, 360885, 815774, 852829, 35077, 10 488956, 31143, 741067, 725877, 345858, 35828, 34849, 431397, 203469, 713782, 296754, 768370, 246546, 66686, 547058, 144924, 767475, 591281, 1474337, 823691, 812955, 1416782, 232670, 183602, 1343468, 289818, 486186, 784772, 491565, 897781, 1472150, 745343, 788256, 1461138, 742798, 214965, 842968, 490778, 842863, 415102, 825606, 196303, 490995, 564803, 292933, 841507, 415089, 785707, 1492304, 884867, 774446, 781047, 811046, 727526, 126650, 233274, 15 838802, 232837, 45544, 280934, 294487, 795936, 141818, 131316, 700792, 969748, 340558, 34778, 28469, 795498, 293569, 47853, 200402, 47853, 852520, 825295, 26184, 1456160, 491001, 757489, 321661, 592359, 51448, 725284, 46182, 324891, 811015, 36393, 207288, 744417, 813648, 745138, 612274, 785616, 214614, 869538, 71101, 204257, 853368, 769921, 320509, 249603, 207358, 435076, 242578, 139705, 299360, 753457, 810899, 34355, 291057, 43550, 826211, 789147, 295483, 20 797016, 309288, 44975, 416833, 897567, 809588, 772304, 323404, 809603, 295986, 725188, 744047, 783697, 814615, 814701, 898286, 950690, 66564, 454339, 204214, 796646, 129865, 756401, 66406, 451907, 827144, 25584, 365641, 840894, 782679, 711768, 234237, 416833, 884718, 788185, 453107, 204148, 509887, 289551, 740554, 211747, 66728, 789204, 362926, 878676, 611150, 50506, 162775, 743230, 626716, 47833, 796278, 128243, 80946, 149013, 531319, 950482, 950473, 789182, 856427, 725454, 951142, 878130, 49352, 322914, 1472643, 293727, 273546, 25 772220, 53316, 42059, 810854, 768260, 626531, 471598, 44537, 769603, 376785, 760344, 840364, 856489, 490772, 46171, 855487, 281003, 509495, 43231, 487348, 898062, 795738, 24145, 40017, 429182, 825677, 755239, 971367, 129146, 825312, 384081, 26578, 814287, 787938, 857264, 813675, 134719, 626206, 684655, 29063, 433666, 42096, 325641, 246120, 80410, 1160558, 45233, 30 214884, 824906, 814117, 810057, 1455641, 545403, 773383, 840702, 810552, 739511, 145503, 135449, 724387, 283315, 897177, 866874, 502669, 324618, 897774, 73381, 41452, 321389, 949971, 785778, 50359, 813280, 308682, 531957, 486175, 40026, 28823, 487425, 42880, 416316, 32875, 753862, 795543, 263727, 824568, 366156, 1492412, 840567, 51666, 72050, 47647, 809535, 810725, 842825, 767817, 80500, 856454, 811150, 470930, 242698, 83279, 884993, 211275, 741958, 433474, 196650, 782439, 843121, 28410, 378502, 214906, 43241, 47542, 109863, 814765, 384015, 489823, 83011, 134544, 711552, 195051, 268727, 742132, 108265, 280837, 770837, 241988, 66555, 208413, 399532, 291880, 814731, 42313, 433350, 415145, and 2911545. These Image ID Clones can be obtained from Research Genetics (2130 Memorial Parkway, Huntsville, AL 35801, US or Canada: 1-

5

10

15

20

25

30

24

800-533-4363). The sequences of these Image ID Clones are hereby expressly incorporated by reference, and are clearly identified based on their multiple identification listings given in Table 1.

Up to 231 (3.5%) of the 6605 coding sequences assayed were differentially expressed between primary and recurrent xenografts. Using data from the direct hybridization of mRNA from a pool of four primary CWR22 xenografts against a pool of four CWR22R recurrent xenografts, the data was filtered for an intensity of at least greater than the mean in the maximum between the cy5 and cy3 signals. The mean intensity was 3058, which was used as a cut-off to ensure that the data was of high quality, however other intensities may be used. This intensity cut-off resulted in 2276 genes with sufficient expression. Based on the 99.9% confidence level, 231 of these 2276 coding sequences were considered differentially expressed though prostate progression. These include a set of 90 sequences that display reduced cDNA production after hormone therapy with an increase (are up-regulated) during tumor recurrence (Image ID Clones: 1475595, 1460110, 50794, 78294, 190491, 66731, 143287, 754600, 754509, 308041, 70827, 361974, 503097, 796646, 41650, 841641, 724615, 839101, 504226, 810711, 435330, 773567, 431296, 345232, 756405, 256907, 415817, 366541, 223350, 366067, 724831, 814353, 236034, 809910, 1470048, 1323448, 1456424, 453689, 135221, 340734, 180864, 768562, 179276, 44505, 293104, 243343, 66317, 812251, 245920, 265874, 770212. 784910, 839094, 712049, 669435, 841470, 782339, 297061, 429466, 300137, 487172, 343744, 795730, 268876, 742132, 755578, 502682, 510381, 140574, 135630, 278242, 742862, 1049033, 270136, 768260, 53039, 211813, 195051, 125769, 122955, 129342, 292392, 139331, 143995, 139250, 243360, 194307, 235040, 295483, and 143756), and a set of 131 sequences that display increased cDNA production after hormone therapy with a decrease (are down-regulated) during tumor recurrence (Image ID Clones: 897768, 1456160, 34778, 810512, 753184, 200814, 470393, 23185, 128126, 42373, 511521, 810117, 950682, 783696, 815555, 897531, 713145, 502690, 469969, 309893, 725877, 343987, 49318, 42864, 193087, 162533, 1309620, 685801, 825740, 756708, 28469, 187147, 246304, 130280, 753587, 123980, 241985, 564621, 841507, 810703, 784772, 143306, 246722, 298417, 51582, 757222, 884783, 417424, 324891, 504791, 725877, 743230, 377048, 42627, 144797, 244955, 204735, 144747, 292749, 196109, 120375, 121981, 121715, 243403, 127409, 130053, 243291, 203514, 133130, 134495, 296552, 138601, 167076, 197323, 197637, 194906, 194985, 196125, 196303, 243784, 280122, 245235, 197856, 200604, 203400, 207448, 234469, 210548, 208940, 208434, 211951, 212098, 233399, 240138, 137396, 241097, 239835, 308231, 292312, 292391, 293421, 293306, 293785, 295044, 295590, 296102, 296602, 297110, 191572. 195132, 233274, 246546, 296562, 214331, 214043, 126230, 128245, 129616, 134312, 230613, 239711, 134537, 127646, 136984, 210610, 293457, 233299, 281125, 26184, 39093, and 39884). Other confidence levels could be used to select HRPC-related molecules, such as 98%, 95%, 90%, 85%, and so forth. Higher confidence levels, such as 99.99%, could also be used. Molecules identified as being linked to prostate cancer (referred to generally herein as HRPC-related molecules) using the methods described herein can be arranged on arrays for use in diagnostic and prognostic

25

methods. Specific arrays are contemplated that are constructed using molecules identified at such different confidence levels.

In particular, the techniques disclosed herein have uncovered many genes not previously associated with prostate cancer progression, and particularly not previously associated with HRPC. These newly correlated genes include those represented by the following Image ID Clones: 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, and 897774.

Of the 59 androgen-dependent sequences whose expression decreased most after castration (labeled "Decreasing" in Table 2), 58 (98.3%) displayed restored transcript levels in the recurrent tumors, indicating re-activation of androgen-dependent genes in the absence of a ligand.

10

15

20

25

30

35

Tissue microarrays consisting of 50 xenografts and 440 clinical specimens from all stages of prostate cancer progression were utilized to validate potential drug target genes using mRNA in situ hybridization and protein immunohistochemistry. Measured by cDNA microarrays, S100P (encoding a calcium-binding protein) was among the most highly overexpressed genes in the CWR22R recurrent tumors; this gene was also highly expressed in the majority of hormone-refractory clinical prostate cancers, but rarely (<10%) in benign prostate lesions.

The temporal gene expression changes identified herein facilitate identification of candidate drugs for hormone-refractory prostate cancer. FKBP5 for example was identified and its utility as a therapeutic target was validated using tissue microarray analysis (see Example 3). Based on such leads, Rapamycin, MS-275, and TSA were tested for their effectiveness in influencing prostate cancer cell growth. These drugs target some of the candidate genes described herein. As described in Example 4, the inventors found that these drugs inhibit CWR22R prostate cancer cell growth *in vitro*. Thus, incorporating cDNA microarray technologies for genomics-based discovery of therapy response genes, with high throughput tissue microarray analysis, provides a new paradigm to identify, prioritize, and validate novel diagnostic and drug targets, as herein described for hormone-refractory prostate cancer.

The identified HRPC-related genes represent putative mediators of hormone therapy response and resistance, and as such are candidate targets for the development of novel therapeutics to maintain prostate cancer in regression following hormone ablation therapy. The utility of these genes as candidate drug targets and biomarkers is demonstrated herein by first using tissue microarrays for high throughput translation to clinical samples, and then selecting drugs that might target these genes. Analysis of cDNA microarray data with template based gene clustering and high throughput translation using tissue microarrays introduces a new, generally applicable paradigm for applying functional genomics to identify genetic programs that mediate a responses to a variety of *in vivo* therapies.

26

It is contemplated that certain of the HRPC-related genes identified herein encode or correspond to soluble proteins, while other encode or correspond to membrane associated or membrane integral proteins, some of which are exposed at least to a certain extent on the exterior of a cell in which they are expressed. In some embodiments, those HRPC-related molecules that are expressed at or on the surface of a cell are selected as therapeutic targets, for instance for targeting with an antibody-based therapy, which is facilitated by the access of the HRPC-related molecule to the extracellular matrix. These HRPC-related molecules may be described as being "drug accessible."

The disclosure is further illustrated by the following non-limiting Examples.

10

15

20

25

30

35

5

EXAMPLE 1

Identification of Genes with Altered Expression in Hormone Refractory Prostate Cancer

This example provides a description of how the disclosed HRPC-related nucleic acid molecules were identified. These HRPC-related nucleic acid molecules show differences in expression during prostate cancer development, and particularly during hormone ablation therapy and subsequent progression to a hormone-refractory condition.

Methods and Material:

Xenografts and Cell Line: CWR22 is a serially transplantable, prostate cancer xenograft that was derived from a Gleason score 9 primary human prostate cancer with osseous metastasis (Wainstein et al., Cancer Res. 54:6049-6052, 1994). CWR22 is highly responsive to androgen deprivation, with marked tumor regression after castration (Cheng et al., J. Natl. Cancer Inst. 88:607-611, 1996; Nagabhushan et al., Cancer Res. 56:3042-3046, 1996; Myers et al., J Urol. 161:945-949, 1999). About half of the treated animals develop recurrent tumors (CWR22R) over a time frame of from a few weeks to several months. CWR22R is not dependent on androgen and is able to grow in castrated animals.

Thirteen fresh-frozen human prostate xenograft tissues were recovered from mice at different stages of hormonal therapy (four primary untreated CWR22, CWR22 after 0.5 days, 2 days, 4 days, 8 days and 16 days after castration, and four independent hormone-refractory CWR22R strains). LNCap (ATCC) and CWR22R (established from recurrent CWR22R xenografts) cell lines were cultured in RPMI1640 (BibcoBRL) with 10% Fetal Bovine Serum (GibcoBRL) at 37 °C and 5% CO₂. The tumors were flash frozen and stored at -70 °C. RNA was extracted by crushing the tumors in liquid nitrogen and used directly for mRNA isolation with the FastTrack 2.0 Kit (Invitrogen Corp., Carlsbad, CA).

cDNA Microarrays: The cDNA microarrays consisted of 6605 elements representing different (non-redundant) genes. PCR products from sequence-verified clones (Research Genetics, Huntsville AB) were prepared and printed at high density onto glass slides according to previously described protocols (Mousses et al., "Gene Expression Analysis by cDNA Microarrays," in

5

10

15

20

25

30

27

PCT/US01/31932

Differential Gene Expression: A practical approach, Livesey and Hunt (eds.), Oxford University Press, 2000).

Labeled cDNA was made with 4-16 µg of mRNA in an oligo(dT)-primed polymerization using SuperScript II reverse transcriptase (LifeTechnologies, Rockville, MD) in the presence of either Cy3 or Cy5 labeled dUTP (Amersham Pharmacia, Piscataway, NJ) as described (Mousses et al., "Gene Expression Analysis by cDNA Microarrays," in Differential Gene Expression: A practical approach, Livesey and Hunt (eds.), Oxford University Press, 2000). The standard reference cDNA (Cy5 labeled LNCap cDNA) and the Cy3 labeled test cDNA from a xenograft mRNA were simultaneously hybridized to the microarray according to the protocol described previously (Mousses et al., "Gene Expression Analysis by cDNA Microarrays," in Differential Gene Expression: A practical approach, Livesey and Hunt (eds.), Oxford University Press, 2000).

Imaging and Image Analysis: Fluorescence intensities at the immobilized targets were measured by using a custom-designed laser con-focal microscope scanner, with intensity data integrated over 15-micron square pixels and recorded at 16 bits. Image analysis was performed by using DEARRAY software. Details of the fabrication of the microarray slides, and image generation and analysis are available on the Internet at the NHGRI Microarray Website, and software is currently and freely available for Sybase/UNIX and is in the process of being ported to Oracle/UNIX. Detailed information about the program itself can be found on the ArrayDB Web site at the NHGRI. A complete description of the gene clustering used is also described at the NHGRI Microarray Website.

In brief, clustering analysis is a powerful tool that partitions biological samples or genes into well-separated and homogeneous groups based on their statistical behaviors. The main objective of clustering analysis is to find out the similarities between experiments or between each genes, given their expression ratios across all genes or samples, respectively, and then group the similar samples or genes together for the convenience of understanding and visualization. The clustering methods have been heavily studied for many years and widely applied in many areas.

Hierarchical Clustering methods: Assume there are m expression experiments containing n genes in each every experiment. After performing microarray image analysis and data integration, a $m \times n$ matrix of gene expression ratios is obtained, where each column of ratios represents the result from one expression experiment comparing the test sample to a common reference sample of choice. To simplify the discussion, the algorithm is considered only in terms of the sample clustering.

To achieve the objective of clustering, all pair-wise similarities between samples are evaluated first, and then an "average linkage algorithm" is employed to group similar samples. Typically, a Pearson correlation coefficient or Euclidean distance is used to quantify the similarity. Under certain normalization condition, these two similarity measurements are equivalent. After evaluating similarities from all pairs of samples, a distance matrix can be constructed as shown below (Table 3a). The hierarchical algorithm proceeds as follows: First a pair of experiments with shortest distance or most similarity in gene expression pattern are identified (Exp1 and Exp2 in Table 3a). A

5

10

15

20

30

"composite experiment" is then constructed by averaging (thus the term average-linkage algorithm) all gene expression ratios (log-transformed) from two experiments. This is referred to as Exp1-2 in the example. All distances from this composite experiment to all other experiments are then examined, and used to construct a smaller matrix, as shown in Table 3b. This procedure is repeated until the distance matrix is reduced to single element.

TABLE 3a

Exp 1	Exp 2	Exp 3	
Exp 1	0		
Exp 2	0.1	0	
Exp 2	0.7	0.4	0.6

TABLE 3b				
	Exp 1-2	Exp 3		
Exp 1-2	0	ď		
Exp 3	0.55	0		
-				

The graphical visualization of the hierarchical algorithm is illustrated by a dendrogram, where each merger is represented by a binary tree, and the length of each branch is indicative of the distance between two samples, such as those given in Table 3a and 3b.

Template Based Gene Clustering algorithm:

To fully exploit the characteristics of temporal response of gene expression to a given treatment, either an instantaneous stimulation or a continuously increasing/decreasing excitation, a sequence of pre-ordered templates which reflect all possible gene expression responses for a given stimulation was employed. The objective of the template-based algorithm is, given the kth gene's temporal expression profile, to evaluate the similarities to all of ordered templates, and then based on the similarities of all templates, to produce a template index and a best similarity measure based on the Pearson correlation coefficient. Let the temporal expression profile for kth gene is $g_k(t_n)$ (log₁₀-transformed expression ratios), and the ith response template to be $T_i(t_n)$, n = 1, ..., N. The similarity between the kth gene expression profile and ith template is defined by,

$$\rho_{k,i} = \frac{\sum_{n} \left(g_k(t_n) - \mu_{g_k} \right) \left(T_i(t_n) - \mu_{T_i} \right)}{N \sigma_{g_k} \sigma_{T_i}}$$

where μ and σ are means and standard deviations, respectively, for kth gene expression profile and ith template pattern across N time points. For a given gene k, the best similarity ρ_k from all templates is

$$\rho_{k} = \max_{i} \left\{ \rho_{k,i} \right\}$$

and let the I^* to be the template that satisfies $\rho_{kI^*} = \rho_{k}$ the template index is α_k for gene k,

$$\alpha_{k} = \frac{\sum_{i=1^{*}-2}^{j^{*}+2} i \rho_{kj}}{\sum_{i=1^{*}-2}^{j^{*}+2} \rho_{k,i}}.$$

Usually, α_k indexes to somewhere near the best-fit template index I^* , but adjusted according to the similarity of its neighboring templates given the pre-defined order. The predicted fold-change of gene expression profile is also defined based on the best-fitted template I^* to be $F_k = 10^{bk}$ where b_k is the slope of the regression line.

Typically, the aforementioned template-based algorithm provides three parameters for each gene for a given order of template sequence. They are α_k , ρ_k , I^* , and F_k for template index, best Pearson's similarity measure, the best fit template, and the predicted fold-change derived from the best fitted template, respectively. Given the characteristics of these parameters, we can easily perform following data analysis: 1) sorting the α_k to order the gene expression profiles; 2) eliminating genes with small ρ_k or small F_k since their temporal expression profiles do not resemble close enough to any of the templates, and/or simply do not respond to the stimulation; and 3) studying the template given by I^* for the property of gene functions.

5

10

15

20

25

30

35

A data-mining tool was developed to investigate the experimental model of hormone tumor therapy in vivo. This model consists of independent clones of the same tumor undergoing different fates. A method for comparing the cDNA microarray data across the independent clones that undergo different fates was therefore needed to identify genes with temporal expression profiles associated with the response / phenotype of therapy in vivo. Filtering variables at different stringencies was used to mine the data to identify the genes that change most significantly in a manner that best reflects the temporal nature of the phenotypic changes observed during androgen ablation therapy.

Three criteria were used to mine the data to find genes that are associated with the phenotype: Variables assigned to each profile to facilitate data mining and clustering: the maximum correlation coefficient; the cluster location; and the fold change in ratio.

The link to phenotype was accomplished by filtering the "maximum correlation coefficient" to templates that best describe the temporal profile of the phenotype. This also allows noise to be filtered out.

Clustering was accomplished by sorting the "cluster location". This organized the genes/templates so genes with similar profiles are clustered together. The cluster position was calculated by the weighted average of the three template positions that had the best correlation. For example, two different gene-expression profiles may have a maximum correlation coefficient for template number 5, but have different cluster locations such as 4.6 and 5.4, allowing for a continuum of locations between the templates.

The data can be mined further by filtering the data for "Fold Change" and "Fold Change to Recurrence." In this way, the amplitude of the change can be used to increase the stringency of the filter and identify genes that change most significantly. By filtering for Fold Change to Recurrence, genes were isolated that not only have a kinetic that fits the regression phenotype, but that are also restored in recurrent tumors.

Northern Analysis Xenograft and cell line mRNA (4 µg) was subjected to electrophoresis in a formamide containing agarose gel and blotted onto a nylon membrane (Hybond-N from Amersham) and probed according to the manufacturers protocol. An 342 bp S100P-specific DNA probe was PCR amplified with S100P specific primers (SEQ ID NO: 1, also referred to as S100PF, and SEQ ID NO: 2, also referred to as S100PR) from cDNA made with Superscript II reverse transcriptases using the

5

10

15

20

25

30

30

PCT/US01/31932

manufacturers protocol (LifeTechnologies, Rockville, MD). The probe was radiolabeled with ³²P (NEN) using the Oligolabelling Kit (Pharmacia Biotechemicals Piscataway, NJ) according to the manufacturers specifications.

IHC and mRNA in situ using Tissue Microarray The prostate tissue microarray was constructed from paraffin embedded tumor tissue and benign control specimens. The tissue microarray permits analysis of up to 600 specimens simultaneously, greatly facilitating high throughput analysis of molecular markers in cancer tissue. The prostate tissue specimens were obtained from the Institutes of Pathology, University of Basal (Switzerland) and Tampere University Hospital (Finland). One pathologist (L. Bubendorf) reviewed all original tissue sections. The tissue microarray representing prostate neoplasm progression was constructed with 0.6 mm tissue cores and precisely arranged on a standard glass slide as described by Kononen et al. (Nat. Med. 4:844-847, 1998). The microarray tissue samples represented 45 Benign Prostate Hypertrophy (BPH), 60 prostate intraepithelial neoplasia (PIN), 264 primary tumors, 134 hormone refractory tumors, and 41 metastatic tumors. Additionally, the tissue microarray contained 28 xenograft CRW tumor specimens and several other xenografts. Protocols for preparing prostate tissue microarrays are provided for instance in Bubendorf et al., J Natl Cancer Inst 91:1758-1764, 1999 and Bubendorf et al., Cancer Res. 59:803-806, 1999.

The tissue microarray facilitates simultaneous application of molecular diagnostic techniques, such as immunohistochemistry. Antigen retrieval was performed by treatment in a pressure cooker for 30 minutes. Standard indirect immunoperoxidase procedures were used for immunohistochemistry (Envision Plus, DAKO). A monoclonal mouse antibody (1:1000, Transduction Laboratories, Lexington, KY) was used for detection of \$100P. The reactions were visualized with diaminobenzidine as a chromagen. The nuclear and cytoplasm staining intensity were classified into three groups (negative, weak and strong staining) in duplicate by two pathologists (Hostetter, G. and Ferhle, W.). Other antibodies used for IHC on tissue arrays included Ki67, \$100P, FKBP5, PCNA, PSA, AR.

Representative primers used for \$100P mRNA in situ hybridization were as follows:

Anti\$100P-A: C ATGCCCATGGCTGTCTCTAGTTCCGTCATGGTGCTAG (SEQ ID NO: 3);

Anti\$100P-B: CGTGCTGCCCTGCCCGAATATCGGGAAAAGACGTCTATGAT (SEQ ID NO: 4);

AntiS100P-C: TTATCCACGGCATCCTTGTCTTTTCCACTCTGCAGG (SEQ ID NO: 5);
AntiS100P-D: TCCACCTGGGCATCTCCATTGGCGTCCAGGTCCTTGAGCA (SEQ ID NO: 6);
AntiS100P-E: AGACGTGATTGCAGCCACGAACACGATGAACTCACTGAAG (SEQ ID NO:7);
AntiS100P-F: CATTTGAGTCCTGCCTTCTCAAAGTACTTGTGACAGGC (SEQ ID NO: 8);
AntiS100P-G: GGGACCATGGCTCTGCAGGAATCTGTGACATCTCCAGGGC (SEQ ID NO: 9);
and AntiS100P-H: GCTCAGCCTAGGGGAATAATTGCCAACAAACACTTTTGGGAAGCC (SEQ ID NO: 10).

PCT/US01/31932 WO 02/31209

31

The scatter plot shown in FIG 2 was generated for one primary and one recurrent tumor, to demonstrate the correlation between the samples (low variance as indicated by lack of scatter) and to highlight the most differentially expressed genes.

Results

Therapy-associated phenotype: The CWR22 xenografts were serially passed in nude mice. Tumor material was harvested from mice at (1) primary, (2) androgen withdrawal therapy induced regression, and (3) recurrent stages. Ki67 staining of these tissues indicated that the number of cells that were proliferating (Ki67 staining positive) decreased gradually, reaching a minimum at day eight, where almost all cells were negative for Ki67 staining (FIG 1D). All the recurrent tumors had Ki67 staining that was higher than the primary tumors and approached 100% of the cells. Similar results were seen with PCNA (Myers et al., J Urol. 161:945-949, 1999), indicating that proliferation was shut off in the recurrent tumors but the entire tumor did not respond fully to the therapy until four to eight days. Androgen receptor (AR) immunohistochemical (IHC) staining (as described above), and northern analysis (as described herein) showed only a small increase in AR mRNA and protein after castration. In general, AR protein levels were about two-fold higher in the recurrent tumors.

cDNA Microarray Analysis with Template Based Gene Clustering

5

10

15

20

25

30

35

For these analyses, cDNA microarrays containing sequence-verified clones that represent 6605 unique genes were constructed. Fluorescence intensity ratios relative to the standard reference (LNCap) were generated for all the genes for each experiment. Only genes that were expressed at a significant level above the background in all the experiments were used in the analysis. This intensity cutoff across all the samples (4 primary tumors, 7 time points, and 4 recurrent tumors) resulted in 2648 genes that were expressed at a sufficient level to give reliable data.

Differences in gene expression between primary CWR22 and recurrent CWR22R xenografts were measured in four separate experiments. Direct comparisons of a pool of four primary xenografts and four recurrent tumors were done by labeling one pool with Cy 5 and the other with Cy 3 and hybridizing them together (Direct P/R column). The experiment was repeated with the Cy 3 and Cy 5 dyes reversed. Each of the four primary and four recurrent xenografts were also hybridized individually against the standard reference cell line (LNCap) in eight independent experiments on a different microarray print of the same clones. In Table 4, the average of the four recurrent ratios relative to LNCap is divided by the average of the four primary recurrent ratio relative to LNCap, to give the column labeled Avg(4xL)/Avg(4xL). Finally, the pools were also hybridized separately on two different cDNA microarray slides against a standard reference (LNCap) to give the last column in Table 2, labeled Direct 4x4 Pooled. Table 2 shows genes that were selected based on consistency across all the pooled experiments and a significant difference in the average of four primary to four recurrent in the eight independent experiments. (Significance was considered at the 99 % confidence level).

Table 4

Name	Y	F = ·-		
Tiumo	Image	Direct	Avg(4xL)/	Direct 4x4
	Clone ID	R/P	Avg(4xL)	Pooled
S100 calcium-binding protein P	135221	16.08	4.84	8.70
inhibitor of DNA binding 3, dominant negative helix- loop-helix protein	756405	14.53	2.16	2.48
mitogen-activated protein kinase-activated protein kinase 2	812251	5.86	2.16	2.91
ESTs	139331	4.66	1.91	2.41
cysteine-rich protein 1 (intestinal)	1323448	4.60	1.68	2.19
zinc finger protein homologous to Zfp103 in mouse	768562	3.77	2.53	2.81
forkhead (Drosophila)-like 13	811600	3.11	1.76	3.67
signal transduction protein (SH3 containing)	795730	3.34	2.38	2.90
thyroid hormone receptor, alpha (avian erythroblastic leukemia viral (v-erb-a) oncogene homolog)	795330	3.16	1.63	1.57
enigma (LIM domain protein)	502682	3.05	1.76	1.89
CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1	135630	2.35	2.32	2.77
Phosphoribosyl pyrophosphate synthetase 2	503097	2.33	2.11	2.52
proliferating cell nuclear antigen	789182	2.50	2.09	1.67
ESTs	108351	2.47	1.96	1.93
Human insulin-like growth factor binding protein 5 (IGFBP5) mRNA	45542	0.36	0.43	0.45
EST .	866702	0.34	0.35	0.41
potassium intermediate/small conductance calcium- activated channel, subfamily N, member 4	756708	0.39	0.33	0.47
ESTs	470279	0.33	0.42	0.73
MUF1 protein	738900	0.50	0.32	0.69
thrombospondin 1	810512	0.31	0.54	0.39
dipeptidylpeptidase IV (CD26, adenosine deaminase complexing protein 2)	343987	0.43	0.38	0.29
diacylglycerol kinase, alpha (80kD)	815555	0.29	0.59	0.53
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	757222	0.29	0.69	0.35
protease inhibitor 12 (neuroserpin)	564621	0.27	0.69	0.42
EST, collagen, type IV, alpha 5 (Alport syndrome)	42864	0.25	0.28	0.32
crystallin, mu	42373	0.35	0.42	0.20
nuclear VCP-like	416390	0.19	0.61	0.58
Homo sapiens clone 23568, 23621, 23795, 23873 and 23874 mRNA sequences	144747	0.19	0.47	0.50
Human isolate JuSo MUC18 glycoprotein mRNA (3' variant), complete cds, fibronectin 1	897531	0.18	0.17	0.18
surfactant, pulmonary-associated protein A1	841507	0.17	0.41	0.43
solute carrier family 12 (sodium/potassium/chloride transporters), member 2	685801	0.14	0.48	0.23
membrane fatty acid (lipid) desaturase	324891	0.13	0.35	0.45
Homo sapiens eIF-2-associated p67 homolog mRNA, complete cds	39093	0.04	0.48	0.42

5

10

15

20

25

30

35

PCT/US01/31932

A hierarchical, unsupervised approach was first used to cluster the data. Although it was difficult to identify clusters with the small number of samples in the time course, a cluster containing 135 genes that decreased in gene expression after therapy and then were re-expressed after recurrence was identified (listed in Table 5; 143 sequences are listed, eight of which are duplicates). Other genes that decreased and were subsequently re-expressed were also observed, but did not cluster together because of differences in kinetics.

33

Template clustering (as described above) was developed and used to organize the cDNA microarray data according to expression kinetics during the course of therapy from primary to 16 days following castration. This is a supervised clustering approach, in which a correlation of each gene to a set of templates selected to reflect the temporal nature of the phenotype is calculated. Templates with the best (maximum) expression profile were then utilized to calculate a ranking (cluster location), to sort the genes based on their kinetics. The recurrent (R) time point was not used to calculate correlation to the templates. Color-coding was used to reflect the change that occurs in expression (not ratio) during the therapy, red being the maximum point and green the minimum point.

A database of the gene identification information and template clustering parameters such as cluster location (sorting rank), maximum correlation coefficient, and calculated fold change from lowest to highest point of expression during the first six time points was constructed. This database facilitates mining for HRPC-related genes by variable stringency query-based searches based on (1) amplitude of change during therapy, (2) specifics of kinetics such as early or late increase or decrease, and (3) extents of correlation to the phenotype templates. Filtering for higher "maximum correlation coefficient" allows the (1) selection of profiles that are more strongly associated with the therapy and (2) the elimination of noise in the data generated by large expression ratio differences due to tumor differences or experimental artifact. The genes were sorted and plotted according to the template that their expression most closely resembled. Since the order of each gene is not dependent of the order of other genes, filtering of the data and re-clustering does not require new calculations.

Unsupervised gene clustering was first used to find genes with similar gene expression profiles. The plot shown in FIG 1A illustrates all 2648 genes that showed sufficiently high expression levels to be used in this analysis, organized in hierarchical clusters, as demonstrated by the dendogram on the left. Therapy time points are (from left to right) numbered 1 through 7 and represent primary (P), 0.5 days, 2 days, 4 days, 8 days, 16 days post castration and recurrent (R), respectively; genes are stacked vertically. A group of 139 genes that decrease after castration and then are re-expressed in the recurrent tumors forms a definable cluster (as indicated by the close branching in the dendogram); this group is outlined by a rectangle. Grey-coding/shading in FIG 1A reflects actual ratio to the reference as indicated by the key below the cluster.

Template clustering followed by filtering for greater than two-fold ratio difference during therapy response and for profiles that have at least a 0.7 maximum correlation coefficient to any of the 12 templates resulted in 604 genes (listed in Table 1). The plot in FIG 1B illustrates supervisedtemplate based clustering of these 604 genes. The order of sorting is determined by the template for 5

10

15

20

25

WO 02/31209 PCT/US01/31932

which each genes' expression is best correlated to, as indicated on the left of the cluster and described in the methods. Color-coding is usually used to represent the relative transcript expression ratio, as measured by cDNA microarray analysis. Red customarily indicates the maximum point in gene expression, green the minimum, and levels closer to the mean approach black. These colors have been converted to shades of grey, as shown in the key below the cluster. The 604 genes are stacked/clustered vertically for each of the time points in the experiment, organized from left to right and labeled 1 through 7 as for FIG 1A. For each of the first six time points, a correlation coefficient to each of the 12 templates was calculated for the expression profiles of the 2648 sufficiently expressed genes. The average of the three maximum correlation coefficients was used to calculate a precise cluster location that reflects the association of that gene to a particular profile, represented by a continuum of templates guided by the 12 shown in FIB 1B.

34

Temporal Gene Expression Program Associated with the Response to, and Failure of, Hormone Therapy

Filtering data from the microarray analyses at the level of a three-fold difference in the regressing time points yielded a set of 131 genes (Table 2), 59 of which clustered together due to their correlation (>0.8) to decreasing templates (labeled "Decreasing" in Table 2; Image ID Clone numbers: 788256, 196303, 415089, 785707, 774446, 781047, 126650, 795936, 131316, 700792, 324891, 811015, 207288, 204257, 769921, 249603, 207358, 435076, 43550, 416833, 814701, 898286, 204214, 796646, 129865, 66406, 451907, 711768, 416833, 453107, 509887, 66728, 789204, 626716, 47833, 149013, 531319, 789182, 856427, 725454, 49352, 293727, 273546, 53316, 42059, 855487, 281003, 898062, 24145, 134719, 684655, 29063, 45233, 814117, 283315, 785778, 840567, 767817, 742132) and FIG 1C, and 72 of which clustered together due to their correlation to increasing templates (labeled "Increasing" in Table 2; Image ID Clone numbers: 843249, 298417, 815284, 839101, 153411, 243816, 489839, 39920, 343867, 503083, 897667, 66322, 195340, 78294, 630013, 257162, 813841, 266146, 840511, 415084, 841695, 137139, 136557, 509731, 840460, 111750, 711918, 809998, 784296, 82734, 322160, 177772, 223350, 502832, 813611, 140806, 772425, 246430, 132140, 137096, 768246, 897906, 1412481, 124071, 42070, 362483, 382195, 130826, 811162, 796613, 138936, 811088, 142788, 345935, 773301, 781139, 810960, 813823, 242062, 843098, 51582, 839991, 840687, 66731, 272327, 121792, 120964, 1374571, 842836, 360885, 815774, 35828). On the right of each gene expression profile color plot is a number that corresponds to the fold change (Δ) in ratio between the first six time points. The gene cluster order was determined by the order of templates and cluster location, as described. Gene identifiers shown in FIG 1C include IMAGE clone ID and the current unigene cluster number, name and description. Genes that have previously been reported to be direct targets of the androgen receptor are shown in bold text, and include the following: malate dehydrogenase 1, NAD (soluble) (MDH1), proliferating cell nuclear antigen (PCNA), brain-specific alpha tubulin (TUBA3), ornithine decarboxylase 1

WO 02/31209

10

15

20

25

30

35

PCT/US01/31932

(ODC1), lactate dehydrogenase A (LDHA), a disintegrin and metalloproteinase domain (ADAM9), v-fos FBJ murine osteosarcoma viral (FOS), and andromedulin (ADM).

The template based, supervised cluster of 59 genes (filtered for greater than three-fold change; greater than 0.8 maximum correlation coefficient; only decreasing templates) (listed in Table 2, and labeled "Decreasing"), representing the genes with the largest decrease after castration, had extensive overlap (51 of 59 genes in common, Image Clone ID numbers 767817, 840567, 785778, 283315, 814117, 45233, 29063, 684655, 134719, 24145, 898062, 855487, 42059, 53316, 273546, 293727, 49352, 725454, 856427, 789182, 531319, 149013, 47833, 626716, 789204, 453107, 416833, 711768, 451907, 66406, 129865, 796646, 204214, 898286, 814701, 416833, 43550, 435076, 207358, 769921, 204257, 207288, 811015, 700792, 131316, 795936, 126650, 781047, 774446, 785707, 415089) with the hierarchical (unsupervised) cluster of 139 genes (Table 5). However, the unsupervised cluster was not inclusive of all the genes that responded to the therapy (since it only contained 139 of the 305 genes with a profile that fit a decreasing template with a minimum two-fold difference and >0.7 max. correlation coefficient). Furthermore, although supervised clustering did identify that at least 74 genes increased by more than three-fold and that fit an increasing template with more than 0.8 correlation coefficient, it was difficult to identify a coherent unsupervised cluster of increasing genes.

By template based clustering and filtering the data, a temporal gene expression program (fingerprint), or cluster of genes, was identified that had the largest expression decrease after castration and the best correlation to a decreasing temporal template (FIG 2). The genes are plotted from early repressed genes on the top, and gradually being repressed at later time points down the list to the bottom genes that had a late onset repression. Investigation of the genes in this list of 59 revealed at least eight genes previously known to be stimulated by androgens, and probably direct targets of the AR. The identification of these AR responsive genes in this cluster further substantiates the utility of template based gene clustering in identifying therapy response associated genes and suggests that other genes in this list may be previously unknown AR responsive genes.

Further examination of the genes in this cluster revealed that it is very rich in several important cell cycle regulators. These include genes known to be associated with cell growth of prostate cancer including PCNA, ornithine decarboxylase 1, c-fos, and tubulin. Most of the genes in this cluster however, are novel cell cycle regulators that were not previously associated with androgen ablation in prostate cancer. These include the following (Image ID Clone numbers in parentheses):

two BUB (budding uninhibited by benzimidazoles) genes, which regulate the cell cycle at the mitotic checkpoint by controlling chromosome segregation and responding to spindle disruption (781047, 785778, 842968);

UBCH10, a cyclin-selective ubiquitin carrier that regulates the destruction of mitotic cyclins (769921);

36

CDKN3, a CDK-2 associated dual phosphatase (700792);

CDC2 delta T which regulates entry into S-phase and mitosis (898286);

CDC18L, which initiates replication (204214);

CKS2, a kinase that activates CDC28 (725454);

5

10

15

20

25

30

35

MAD2L1, which regulates mitotic checkpoints especially sensitive to kinetochore and spindle loss (814701);

CENPF, a centromere/kinetichore cell cycle protein (435076);

STK12, a chromosome associated kinase that plays an important role in centrosome duplication regulation, aneuploidy, and amplification (531319);

NEK2 a protein kinase that regulates G2-M transition (415089);

CDC20, responsible for nuclear movement prior to anaphase and chromosome separation (898062); and

CDC45L, required for the initiation of DNA replication (453107).

The abundance of growth regulatory genes in this cluster, and of genes known to be direct targets of the androgen receptor, provides further supports that genes in this cluster are dependent on androgens and are mediating the AR dependent growth arrest following androgen ablation.

Transcript levels of the genes in this cluster are restored when therapy fails, suggesting that these are also the genes that mediate the androgen-independent growth in recurrent tumors. These observations are also consistent with the hypothesis that resistance to therapy occurs through an androgen independent activation of the AR.

In addition, several genes were repressed that have never previously been associated with cellular proliferation. FKBP5, for example, was repressed by as much as 5.8-fold after castration. This may be a direct effect of decreased androgen receptor transcriptional activation. FKBP5 has been associated with the glucocorticoid receptor, and targeting of FKBP proteins has been shown to lead to deregulation of several signal transduction pathways.

Another gene that showed a large amplitude change after castration, with unknown consequence, is transmembrane 4 superfamily member 1 (7.1 fold decrease). Conversely, transmembrane 4 superfamily member 3 increased after castration (3.2 fold). Putative signaling molecule serine/threonine kinase 12 (7.0 fold decrease) and insulin induced gene 1 (8.1 fold decrease) also showed substantial expression level changes after castration. Like the known cell cycle regulators, the expression of all these other genes is restored in the recurrent tumors. It is likely that these genes mediate growth arrest after therapy, and tumor re-growth after development of therapy resistance, and therefore these genes are ideal drug target candidates.

In addition, some important genes that changed but did not make the top 59 list include S100P, ID3, PSA and c-myc mRNA, which decreased by 5.2, 2.85, 2.77 and 3.01 fold respectfully during regression (FIG 2). These were not included in the primary list either because they did not meet the 3 fold cut-off, or because the maximum correlation coefficients were less than 0.8 (0.51).

0.67, 0.71 and 0.50). Of this group, S100P and ID3 are especially good candidate drug targets because they are also over-expressed in recurrent CWR22R relative to their primary counterparts (Table 2).

37

Most, but not all, of the genes that show increased expression following therapy response generally remained elevated in the recurrent tumors. This is contrary to the repressed genes, whose transcript levels were largely restored. Some genes, however, increased during therapy and then were restored in the recurrents. This group includes: the UDP glycosyltransferase 2 family, polypeptide B15 and UGT2B4, sialyltransferase 1 (beta-galactoside alpha-2,6-sialytransferase), fatty-acid-Coenzyme A ligase, human metallothionein (MT)I-F gene, tumor suppressor PTEN, cadherin 3, placental-cadherin, gelsolin (amyloidosis, Finnish type), TAP binding protein (tapasin), and several other transcripts. The increase in PTEN indicates that the AKT S6 kinase pathway may be inhibited following castration, suggesting that therapeutic intervention with rapamycin may mimic this inhibition in recurrent tumors.

15

20

25

30

35

10

5

EXAMPLE 2

Identification of Further Genes with Altered Expression in Hormone Refractory Prostate Cancer

Using different microarrays, and methods essentially similar to those described above in Example 1, additional HRPC-related nucleic acid molecules were identified and further characterized. These HRPC-related nucleic acid molecules also show differences in expression during prostate cancer development, and particularly during hormone ablation therapy and subsequent progression to a hormone-refractory condition.

Methods and Material:

Methods and materials were essentially as described in Example 1, except that additional custom cDNA microarrays were used, constituting 6605 to 8000 elements (sequence verified clones from Research Genetics, Huntsville, Alabama), representing different (non-redundant) transcripts including 4032 to 7700 known (named) genes (Mousses et al., Funtional Genomics: Gene Expression Analysis by cDNA Microarrays Livesey and Hunt (eds). Oxford University Press: Oxford, pp. 113-137, 2000.). All xenografts were analyzed at least twice. Either LNCap or CWR22R were used as a reference and labeled with Cy5. The reference cDNA was simultaneously hybridized with Cy3 labeled test specimens on a cDNA microarray as previously described (Mousses et al., Funtional Genomics: Gene Expression Analysis by cDNA Microarrays Livesey FJ and Hunt SP (eds). Oxford University Press: Oxford, pp. 113-137, 2000.). Fabrication of the microarrays slides, image generation, and the software used for the ratio analysis, and bioinformatics were as described above. Mousses et al., Funtional Genomics: Gene Expression Analysis by cDNA Microarrays Livesey and Hunt (eds). Oxford University Press: Oxford, pp. 113-137, 2000.

Template-based clustering was performed as described above.

38

Most Systematically Altered Genes

5

10

15

20

25

35

Another set of genes was identified that showed differential expression between primary and recurrent tumors. Based on the mean gene expression ratios from six recurrent and four primary tumors, expression levels of 104 of the 3495 informative genes (3.0%) were significantly (2-fold or more) increased, and those of 60 genes (1.7%) decreased in the recurrent tumors. FIG 3A shows 30 genes (out of a total of 164 differentially expressed genes) that were most systematically altered in the recurrent tumors. These genes include SCYD1, S100P, CCND1, CRIP1, ISG15, SCNN1A, ZFP103, MAPKAPK2, UTG2B15, RABGGTA, NFKBIA, SLCYA5, AP3B2, PTPN2, FOXJ1, and APOC1 (all upregulated) and FLJ23538, OXCT, PFKP, TNRC3, HXB, PFKP, OAT, PFKP, RFP, THBS1, LMO4, MLD, CRYM, MME, HMGCS2, and SLC12A2 (all downregulated).

Among the 164 genes were several genes coding for proteins that either converged on the PI3K/AKT/FRAP pathway or represented direct targets of macrolide drugs (such as rapamycin and FK506). As highlighted in FIG 3B, several genes that were androgen-responsive and re-expressed in the recurrent tumors (CCND1, ODC1, EIF1EBP1, MAPKAPK2, NFKBIA, CDS1, FKBP4, and FOXJ1) met these criteria and suggested involvement of rapamycin-sensitive signaling in hormone-refractory tumors.

These findings appeared to indicate that rapamycin-sensitive gene products and signaling pathways play a role in androgen independent growth in the recurrent tumors. To further evaluate this hypothesis, the effects of rapamycin and FK506 on the growth and viability of a cell line established from the recurrent CWR22R xenografts were studied. Rapamycin is a known inhibitor of the PI₃K/AKT/FRAP pathway (Kunz et al., Cell, 73:585-596, 1993; Brunn et al., EMBO J., 15:5256-5267, 1996; Sekulic et al., Cancer Res., 60:3504-3513, 2000), and FK506 targets many of the same intracellular proteins as rapamycin. Death of the hormone-independent CWR22R cells was observed at very low doses of rapamycin (IC50 ~ 0.1 nM) (FIG 3D), whereas hormone-responsive LNCap prostate cancer cell lines exhibited partial inhibition, even at high doses (FIG 3D). FK506 treatment did not have an inhibitory effect on either the CWR22R or LNCap cells even at the highest doses tested (greater than 80% cell survival at a dose of 10 mM). The results are based on two different cell lines that are not isogenic and may have other differences contributing to the observed effects. However, both these results of the global-scale gene expression studies and the data from the in vitro sensitivity testing, indicate that further studies are warranted to explore rapamycin as a candidate drug for the treatment of hormone refractory prostate cancers.

Cancer cells exhibit greater than a 1000-fold (IC₅₀ ranging from <1 nM to >10 mM) variability in their sensitivity to rapamycin, possibly reflecting mechanisms of intrinsic resistance (Hosoi *et al.*, *Mol. Pharmacol.*, 54:815-824, 1998). Cancer cells that have activated genes and pathways that signal through the PI3K/AKT/FRAP pathway may be particularly sensitive. For example, IGF-1 receptor activation is associated with the efficacy of rapamycin treatment in childhood sarcomas (Dilling *et al.*, *Cancer Res.* 54:903-907, 1994). Several growth factors and related genes that we observed to be overexpressed in the recurrent prostate cancers relative to the

39

primary tumors (such as HGF, VEGFC, FGF2, IGFBP3, PDGFA, LTBP4, GFR, PGF, ITPKB, CDS1, and FKHL13) could have similarly contributed to the activation of the PI3K/AKT/FRAP pathway and alterations in the rapamycin target expression.

Finally, the two macrolide drugs rapamycin and FK506 bind similar intracellular targets but have different biological effects in hormone-refractory prostate cancer. These differences may be informative in elucidating those molecular pathways that are most critical for progression of prostate cancer. Rapamycin and FK506 both bind to FKBP12 (FK506-binding protein 12) (Sabers et al., J. Biol. Chem., 270:815-822, 1995; Liu et al., Cell 66:807-815, 1991). Rapamycin-FKBP12, but not the FK-506-FKBP12 complex, inhibits FRAP (FKBP-Rapamycin Associated Protein), a member of the phosphoinositide-3-kinase related kinases that regulate translation following mitogenic activation of the PI3K/AKT/FRAP pathway. In contrast, FK506, but not rapamycin, inhibits calcineurin activity (Liu et al., Cell 66:807-815, 1991). This suggests that, of the many known and unknown targets of rapamycin and FK506, FRAP and the activity of the PI3K/AKT pathway is a more likely candidate than calcineurin as a drug target in hormone-refractory prostate cancer.

This example clearly illustrates that transcriptional profiling can be used to identify candidate drugs for treatment of prostate cancer, and this approach generally, as well as the present findings more specifically, can be used for a basis of such treatment decisions.

EXAMPLE 3

20

25

35

5

10

15

Analysis of Specific Genes

A direct comparison of a pool of four primary CWR22 xenografts and four recurrent CWR22R xenografts was done by labeling one pool with Cy5 and the other with Cy3 and hybridizing them together (Direct P/R column in Table 2). This resulted in 251 genes (3.8% of the 6605 genes assayed; listed in Table 6) that were differentially expressed at the 99 % confidence level. This analysis was also done against the standard reference for each tumor individually and in pools with the most consistently differentially expressed genes shown in Table 4.

One of the most highly differentially expressed genes is a calcium binding protein, S100P. It was found to be expressed 16 times (by cDNA microarray analysis) to 100 times (by Northern hybridization analysis) higher in one recurrent xenograft compared to the primary. The S100P protein has been reported to be associated with increased survival and loss of senescence in breast cancer cells. This data indicates that S100P expression may be androgen dependent, as would be expected if it is involved in prostate cancer progression.

Several immunophilin-like proteins were also identified as being differentially expressed. FKBP5, in addition to being overexpressed by about two-fold on average, is one of the most repressed genes after castration. During recurrence, its expression is restored to higher levels than in the primary. FKBP5 is a member of the large immunophilin chaperone proteins, which have been shown to interact with HSP90 and several steroid receptors. The expression of this protein not only appears to be regulated by the androgen receptor function, but also may affect androgen receptor

40

activity by protein folding of the nascent receptor or by modulating its binding affinity to ligands. There are several inhibitors (e.g., FK506 and rapamycin) that bind to immunophilins, resulting in either calcineurin inactivation and or the inhibition the phosphotidylinositol 3-kinase/PTEN/AKT/FRAP pathway (Zhong et al., Cancer Res. 60:1541-1545, 2000).

The phosphorylated substrates of this pathway include calcineurin and ties into the calcium signaling pathway. In addition, IkB (which regulates NFkB), NFAT, and BAD are each substrates for this pathway and are all involved in regulation of cell survival. Decreased expression of PTEN, and increased expression of CDP-DG synthase, IkB, PHYH, and several other changes also converge on, and possibly alter activity of, this pathway. Drugs that target immunophilins such as FK506 and rapamycin have been shown to inhibit this pathway at the level of FRAP, leading to (1) loss of activity for kinases with mitogen activated protein kinase (MAPK) like substrates and (2) inactivation of calcineurin. Differential gene expression data disclosed herein indicate that such drugs such as rapamycin and FK506 could have a dual role in preventing androgen independent progression of prostate cancer, by both (1) blocking signal transduction from the phosphotidylinositol 3-kinase/PTEN/AKT/FRAP pathway and (2) interfering with androgen receptor protein folding and assembly. This is an example of the differential gene expression discussed herein, to assist in selecting new therapies for treatment of primary and recurrent (hormone-refractory) prostate cancer.

EXAMPLE 4

20 Tissue Microarray Analysis of Candidate Biomarkers

This example provides in-depth analysis of several HRPC-related genes, including illustrations of the clinical relevance of these genes in prostate cancer progression and staging. High throughput molecular validation of candidate genes in clinical specimens was accomplished by using tissue microarray technology to assess the utility of these HRPC-related genes as biomarkers and drug targets. Using a tissue microarray in this fashion represents an important method to cross-validate data from experimental systems and human cancer specimens.

Tissue microarray methods were carried out essentially as described above, and as known in the art; see, for instance, Kononen et al., Nat Med. 4(7):844-847, 1998) Clinical translation of novel gene products where an antibody does not exist can be detected on tissue microarrays using isotopic in situ hybridization (ISH) (Kononen et al. Nat Med. 4(7):844-847, 1998; Frantz et al., J Pathol. 195(1):87-96, 2001)

S100P

5

10

15

25

30

35

The prevalence of S100P protein overexpression was investigated by immunohistochemistry, in 440 human prostate cancer specimens at various stages of progression. These specimens were arrayed in a prostate cancer progression tissue microarray (Bubendorf et al., J Natl Cancer Inst 91:1758-1764, 1999 and Bubendorf et al., Cancer Res. 59:803-806, 1999). This

41

array also contained about 50 different prostate cancer xenograft samples, including those used in the cDNA microarray experiments.

S100P mRNA was measured by three different methods in nine xenografts. cDNA microarray ratios measure the expression of S100P transcript by the amount of cDNA hybridized relative to the standard reference. Northern analysis with a PCR amplified fragment of the S100P against a blot of the same RNA used in the cDNA microarray analysis produced a fragment of expected size (~0.5 kb). Northern hybridization bands were quantified using ImageQuant software from a scanned autoradiogram. An mRNA in situ hybridization (ISH) was performed by radio-labeling eight non-overlapping oligonucleotide (~45 bp) that span the coding region and hybridizing them to tissue microarrays containing hundreds of sections (including xenografts) described in the methods and materials. The signal was quantified using a Fuji phosphoimager and scanner and Bos software. The quantification of each of these there methods is plotted above the images for each of the nine xenografts. The absolute values are normalized to three of the primary tumors with the lowest Northern hybridization levels. For each of the xenograft tumors, the S100P protein expression is shown by IHC staining is shown below the graph (FIG 4).

FIG 4 shows that in at least the xenograft samples there is good concordance between Northern hybridization, cDNA microarray, and mRNA in situ on tissue microarray quantitation of S100P transcript levels. These mostly but not always correlate with immunohistochemical staining. In at least a few cases, higher protein expression was observed with moderate levels of mRNA, indicating possible post-transcriptional regulation.

In situ mRNA hybridization was also used to quantitatively measure transcript levels on tissue microarray sections. Immunohistochemical analysis of S100P protein expression in 440 human prostate cancer specimens at various stages of progression is shown in FIG 5. An S100P-specific antibody was used to stain prostate tissue sections on a tissue microarray. The staining intensity was scored by two pathologists, using a scale of from 0 to 4. The results in FIG 5 show the percentage of cancers at each stage of prostate cancer progression that had strong staining (score of 3 or 4). FIG 5 shows that the high expression of S100P protein is associated with progression in clinical prostate cancers, with increasing expression in refractory and metastatic disease.

FKBP5

10

15

20

25

30

35

Translation of the observations on FKBP5 to clinical specimens is of interest because of this protein is associated with therapeutic response, and is over-expressed in recurrent tumors. Until now, it was thought that FKBP5 was only expressed in T-cells, and that it would make a good drug target for specific immunosuppression through the inhibition of glucocorticoid receptor transcriptional activation. Using prostate cancer progression tissue microarrays, FKBP5 was found to be expressed specifically in secretory cells of the normal prostate and in prostate cancer cells, but not in supporting stromal cells. Analysis of FKBP5 protein expression by IHC on the same prostate cancer tissue microarray as discussed above indicated that FKBP5 is expressed in the majority of prostate cancers,

42

but an association with progression was not observed. Many of the primary and early lesions had common expression of this protein, thereby indicating that FKBP5 would not make a good biomarker for prostate cancer progression or the development of hormone refractory or metastatic disease. However, FKBP5 down-regulation does appear to be associated with therapeutic response, making it a candidate for therapeutic targeting in a large percentage of clinical tumors.

LMO4 and CRYM

10

20

25

30

35

LMO4 and CRYM genes were substantially down-regulated in the CWR22R tumors relative to primary CWR22, for mRNA ISH studies. In both cases, mRNA ISH on TMAs validated the relative expression levels seen by cDNA microarrays in the CWR22 xenograft specimens. This analysis revealed a lower level of LMO4 and CRYM expression in 17 recurrent CWR22R xenografts (p<0.001) as compared to 19 primary CWR22 xenografts. In addition to permitting us to validate our observations, the xenografts on the tissue microarrays were also used to compare the measurement of mRNA by cDNA microarray and mRNA ISH on a tissue microarray. As an example, there is a high correlation (r=0.96, n=16) between the levels of LMO4 mRNA measured by mRNA ISH on a tissue microarray and data from cDNA microarrays.

A significant decrease (p<0.001) of mRNA levels was observed for both LMO4 and CRYM during tumor progression in cancer patients by mRNA ISH on the TMA. The mean intensity of actin mRNA was used as a negative control in the mRNA ISH. Comparison of mRNA ISH levels between primary and hormone refractory tumors on the same array revealed no significant differences between the two groups (P = 0.927).

Since antibodies are often not available for gene products discovered from cDNA microarray surveys, it remains essential to detect these transcripts on tissue microarrays using mRNA ISH. We validated here mRNA ISH-based detection of transcripts by inserting into the TMAs specimens that were originally used in the cDNA microarray analyses. There was an excellent correlation between mRNA ISH and cDNA microarray results, indicating that this method can be used to accurately measure mRNA levels in samples on a tissue microarray format. mRNA ISH was performed with several radioactively labeled oligonucleotide probes for different regions of the target genes. The use of short probes to different regions of the genes made it possible to obtain a signal even from degraded mRNAs that inevitably exist in clinical specimens. CRYM and LMO4 were down-regulated in clinical specimens from hormone-refractory tumors, which is in line with the cDNA microarray results in the CWR22 xenograft model system.

LMO4 is a member of the LIM-only (LMO) subfamily of LIM domain-containing transcription factors that is expressed during embryonic development (Kenny et al., Proc. Natl. Acad. Sci. 95:11257-11262, 1998) and Crystallin mu (CRYM) codes for a thyroid hormone binding protein (Kim et al., Proc. Natl. Acad. Sci. 89:9292-9296, 1992; Aoki et al., J. Invest. Dermatol. 115:402-405, 2000). Both had transcript levels that were negatively associated with clinical progression. A role in prostate cancer progression has previously not been reported for either of these genes. It is believed

43

that the observations presented herein indicate that perturbation of these genes has a functional role in clinical prostate cancer progression and pathogenesis.

This example illustrates tissue microarray technology validation of the *in vivo* involvement of four new prostate cancer related genes. Alterations in S100P, FKBP5, CRYM and LMO4 genes are not only involved in the acquisition of androgen-independent growth and failure of therapy in prostate cancer xenografts but also with the progression of cancer in patients.

EXAMPLE 5

Targeting Candidate Genes with Known Drugs

This example demonstrates the clinical effectiveness of selecting drug targets and genetic markers, indeed entire metabolic pathways, using the herein-disclosed HRPC-related genes. Several drugs were identified based on their known interaction with one or more of the HRPC-related genes or implicated pathways, and the activities of these drugs in controlling prostate cancer cell growth was examined.

15

20

25

30

35

10

5

Cell viability and Drug Treatment

Exponentially growing LNCaP or CWR22R cells were trypsinized and plated at 0.5×10^5 cell/ml or 1×10^5 cell/ml respectively in 96-well culture plates. After 24 hours, cells were treated for 72 hours with serial twofold dilutions of compound. DMSO was added to the control wells. Cell viability was measured by the WST-8 assay (Dojindo Molecular Technologies Inc.). The WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfonyl)-2H tetrazolium, monosodium salt] assay is based on the conversion of the tetrazolium salt WST-8 to highly water soluble formazan by viable cells (Tominaga *et al.*, *Anal. Commun.* 36, 47-50, 1999). The WST-8 reagent solution was added to each well. After incubation for three hours at 37 °C, the absorbance was measured at 450 nm with a reference wavelength at 630 nm. The experiments were performed in triplicate. The data are representative of three separate experiment.

MS-275 and TSA

A literature search, coupled with a search of previous drug treatment data, was used to identify known compounds that could be used to target one or more of the 604 genes that changed at least two-fold following therapy response (FIG 1 and Table 1), or one or more of the 251 genes that were differentially expressed between primary and recurrent tumors (Table 6).

ID3 (clone: 756405) has recently been shown to be required for angiogenesis (Lyden *et al.*, *Nature* 401:670-677, 1999). The inventors have also observed a decreased in thrombospondin (clone: 810512) (an angiogenesis inhibitor) during prostate cancer progression, suggesting that the expression of these two genes is changed in opposite directions in recurrence to achieve the same biological outcome, increased angiogenesis. Currently, there are no known inhibitors of ID3 (clone:

44

756405), but the inventors have observed in an independent set of cDNA microarray experiments that TSA, induced thrombospondin (clone: 810512) by as much as 8.6 fold in PC3M cells in vitro.

TSA works by an unknown mechanism, possibly by histone deacetylase inhibition resulting in altering transcription of a large number of genes. TSA treated PC3M cells revealed targets that were similarly affected in the direction of the growth arrested xenografts. Both drugs reduced kallikrein 3 (prostate specific antigen) (clone 824568) by two-fold, possibly reflecting an inhibition of AR-dependent transcriptional activation. Histone acetyltransferase 1 (clone: 745360) and acetyl-Coenzyme A acyltransferase (clone: 27848) are both decreased by about two-fold after castration, indicating that histone deacetylase inhibition might mimic this effect (growth suppression).

Cyclin D1 (clone 841641) mRNA levels dropped to about 50 % only slightly after castration but the CWR22R recurrent tumors overexpressed it relative to the primary. Similarly chromosome condensation 1 (clone 724615) was 2.8 times higher (pooled experiment) in recurrent tumors. Both Cyclin D1(clone 841641) and chromosome condensation 1 (clone 724615) were repressed by about three-fold by TSA treatment. The recurrent to primary ratio for protease inhibitor 12 (neuroserpin) (clone 564621) was 0.27, but TSA induced it by 8.67 fold.

Gene expression changes in response to treatment with these two drugs indicated that they might restore the expression of several genes that are associated with therapy resistance in CWR22R xenografts. TSA effectively inhibited growth of CWR22R, as indicated in FIG 3D. It is not known which of the above mentioned targets were affected, or by which mechanisms these two drugs caused growth arrest. It is possible that these drugs had a more global gene expression effect, which simultaneously restored multiple androgen responsive genes that are required for growth in the recurrent tumors.

Rapamycin and FK506

5

10

15

20

25

30

35

Sirolimus (Rapamycin) and Tacrolimus (FK506) are bacterial macrolides that are produced by fungi to suppress the growth of competing organisms. These drugs are immunosuppressants used extensively to prevent organ rejection. Although the two drugs are very similar both in structure and in their cellular targets, known as immunophilins (also called FKBP for FK506 binding proteins), the mechanism by which they cause immunosuppression is different. FK506 binds to immunophilins and the complex inhibits calcineurin in T-cells. In contrast, rapamycin-immunophilin complex inhibits signaling of the S6-kinase (clone: 204148, which also responds to castration) causing cell cycle arrest in T-cells. In addition, there are "macro" immunophilins that have been found to interact with steroid receptors, which may work though yet another mechanism to inhibit growth when complexed with these drugs.

Several drug targets identified in this study are involved in immunophilin pathways, suggesting that either FK506 or rapamycin may cause a growth inhibition of hormone refractory prostate cancer. The first such candidate is a macroimmunophilin called FKBP5 (clone: 416833), one of the most strongly repressed genes in primary prostate CWR22 tumors after castration (FIG 2). The

45

expression of FKBP5 (clone: 416833) is restored in hormone refractory CWR22R prostate cancer. In some tumors, FKBP5 mRNA expression (determined using cDNA microarray and RT-PCR quantitation) is restored to levels higher than found in the primary tumors. The availability of FKBP5 as a drug target was also confirmed using tissue microarray analysis. It is not clear if FKBP5 is required for the proliferation of CWR22R cells, but the expression of the FKBP5 transcript is associated with the proliferation phenotype. FKBP5 is a large protein that associates with steroid receptors, such as the glucocorticoid receptor, through binding to HSP90. It is also possible that FKBP5 interacts with the AR.

10

15

20

25

30

35

Cyclin D mRNA was 2.5-fold higher in a pool of four recurrent tumors compared to a pool of four recurrent tumors. Rapamycin has been shown to target and down-regulate cyclin D protein at both a transcriptional and post-transcriptional level (Hashemolhosseini et al., J. Biol. Chem. 273:14424-14429, 1998). Also, p27 had increased after castration by about 2-fold by day 8, and then went back down in the recurrent tumor. Rapamycin can increase p27 levels, making it a candidate for reversing the decrease seen in the recurrent CWR22R. These rapamycin effects on both cyclin D and p27 may be direct, but also may be mediated by inhibition of the phosphotidylinositol 3kinase/PTEN/AKT/FRAP pathway. Several gene expression changes have been identified herein that could converge to activate this pathway in recurrent tumors, further suggesting that this is a pathway necessary for androgen independent growth. For example, an increased was observed in expression of CDP-diacylglycerol synthase 1 (levels up to 2.77-fold higher in recurrent tumors). CDPdiacylglycerol synthase 1 is a rate limiting enzyme in phosphotidylinositol 3 (PI3) production that has been shown to increase the amplitude and duration of PI3 signaling when overexpressed in model systems. PTEN, which is an inhibitor of this pathway, is increased during regression and reexpressed in the recurrent tumors further illustrating the importance of this pathway for proliferation of recurrent tumors.

It has also been shown that rapamycin inhibits the translation of ornithine decarboxylase (ODC) transcripts by about 50% in epithelial cells. In this study, ODC was repressed (3.8 fold) during CWR22 regression, but then re-expressed in the recurrent CWR22R (FIG 2). Interestingly, FK506 has no effect on ODC transcript levels. Both ODC and cyclin D are important stimulators of proliferation, indicating that rapamycin can be used to target these molecules and cause growth arrest in androgen independent CWR22R cells.

Rapamycin effectively arrested the CWR22R cells *in vitro*, however a complete inhibition was not accomplished at the highest concentration of FK506 (10µM) (FIG 3D). It is believed that the interaction of rapamycin with FKBP5 and its other cellular receptor immunophilins blocks a pathway necessary for growth, while the interaction of FK506 and FKBP5 does not. It is difficult to predict the mechanism by which these drugs exert an effect on a cell, because they bind multiple cellular targets. In this case, several putative cellular targets are known for these two macrolide drugs and at least one, FKBP5, was both associated with the HRPC phenotype, and available in the relevant cells

5

10

15

20

30

35

(FKBP5 protein is expressed in most clinical recurrent tumors). More specific inhibitors of FKBP5 activity can be used to elucidate the role FKBP5 plays in the growth of hormone refractory tumors.

EXAMPLE 6

Pharmacogenomics Analysis

This example illustrates the involvement of gene targets in pharmacological response to various emerging therapies.

Xenografts and Cell lines: Fresh frozen tissue from CWR22 human prostate cancer xenografts (Pretlow et al., J. Natl. Cancer Inst. 85:394-398, 199)) was obtained from thirteen different mice at different stages of hormonal therapy and tumor progression (four primary untreated CWR22, five CWR22 therapy time points after 0.5 days, 2 days, 4 days, 8 days and 16 days after castration, and four independent hormone-refractory CWR22R strains). LNCaP (ATCC) and CWR22R (kindly provided by Dr. Jim Jacobberger's Laboratory at Case Western University) cell lines were cultured in RPMI1640 10% fetal bovine serum (Life Technologies Rockville, MD) at 37 °C and 5% CO₂. mRNA was extracted with the FastTrack 2.0 Kit (Invitrogen Corporation; Carlsbad, California).

Drug Treatment and Cell viability: Exponentially growing LNCaP or CWR22R cells were trypsinized and plated at 0.5 x 10⁵ cells/ml or 1 x 10⁵ cells/ml respectively in 96-well culture plates. After 24 hours, cells were treated for 72 hours with serial two-fold dilutions of either FK-506 (Tacrolimus, Calbiochem Inc., San Diego, California), Rapamycin (Sirolimus) (Sigma Chemical co. St. Louis, Missouri), FR901464 (Fujisawa Pharmaceutical Co., Ltd., Ibaraki, Japan), Trichostatin A - TSA (a histone deacetylase inhibitor; Sigma Chemical co. St. Louis, Missouri) or DMSO as a control. The structure of FR901464 is as follows:

Cell viability was measured (triplicate experiments) by the WST-8 assay (Dojindo Molecular Technologies Inc., Gaithersburg, Maryland). CWR22R cells were treated with various drugs at effective doses for 1, 3, 9 and 24 hours followed by mRNA isolated for cDNA microarray experiments.

Analysis of mRNA expression by cDNA Microarrays: Custom cDNA microarrays were constructed consisting of 6605 to 8000 elements (sequence verified clones from Research Genetics, Huntsville, Alabama), representing different (non-redundant) transcripts including 4032 to 7700 known (named) genes (Mousses et al. in Functional Genomics, (eds. Livesey & Hunt) 113-137,

47

Oxford University Press, Oxford, 2000). All xenografts were analyzed at least twice using either LNCap or CWR22R Cy 5 labeled reference cDNA simultaneously hybridized with Cy 3 labeled CWR22 xenograft or CWR22R cell line cDNA on a cDNA microarray according to a previously described protocol (Mousses *et al.* in *Functional Genomics*, (eds. Livesey & Hunt) 113-137, Oxford University Press, Oxford, 2000). Fabrication of the microarray slides, image generation, and the software used for the ratio analysis, and bioinformatics was carried out essentially as described above.

Results:

5

10

15

20

25

30

Trichostatin A (TSA) and FR901464 (an experimental drug found to inhibit the growth of a human solid tumor grown in mice and murine solid tumors; Nakajima et al., J. Antibiot. 49:1204-1211, 1996) were selected for in vitro testing in CWR22R cells based on previous pharmacogenomics analysis on PC3M cells, which suggested targeting of androgen independent growth associated genes. Rapamycin and FK506 were selected as drugs that also might target some of these candidates. To prioritize candidate gene targets that were not only associated with androgen independent growth but also involved in eliciting an effective drug response, cDNA microarray analysis of CWR22R gene expression was conducted during a time course of drug treatment in vitro.

Functional analysis of the dose response of each of these four drugs was carried out using a viability assay on CWR22R cells in vitro (FIG 6). A strong inhibition of growth and survival was seen for CWR22R cells with rapamycin, TSA, and FR901464, but not with FK506. Neither FK506 nor rapamycin were as effective at inhibiting the hormone-dependent LNCap prostate cancer cells. The global gene expression profiles indicate mechanisms of drug action that are distinctly different from androgen withdrawal response related signaling (FIG 6A and 6B). Despite this, some candidate genes that were associated with androgen independent growth of CWR22R were also involved in eliciting a response to some of these drug treatments including FKBP5, CRYM, and several others (FIG 6C and 6D; ATP1B2, OAT, QSCN6, GSN, PLU-1, GFPT2, ZCYTOR7, and VDUP1).

Pharmacogenomic analysis revealed that the two drugs TSA and FR901464 work by distinct mechanisms, which do appear not to involve androgen signaling (SM unpublished data). Although some commonly repressed genes were identified across experiments, VDUP1 (upregulated by 1,25-dihydroxyvitamin D-3; accession number XM_002093) was the only transcript that was up-regulated in response to therapy *in vivo* (maximum of 18 fold) and *in vitro* to Rapamycin, TSA and FR901464 (maximum of 73 fold). Based on these results, this gene acts as suppressor of tumor growth and survival.

35

EXAMPLE 7

Expression of HRPC-related Polypeptides

The disclosed HRPC-related proteins (and fragments thereof) can be expressed by standard laboratory technique. After expression, the purified HRPC-related protein or polypeptide may be

5

10

15

20

25

30

35

48

used for functional analyses, antibody production, diagnostics, prognostics, and patient therapy, e.g., for prevention or treatment of prostate cancer (including hormone-refractory or metastatic prostate cancer). Furthermore, the DNA sequences encoding the disclosed HRPC-related proteins can be manipulated in studies to understand the expression of these genes and the function of their products. in particular how these HRPC-related proteins function in the control of or response to hormonerefractory prostate cancer. Mutant forms of human HRPC-related proteins (and corresponding encoding sequences) may be isolated based upon information contained herein, and may be studied in order to detect alteration in expression patterns in terms of relative quantities, tissue specificity and functional properties of the encoded mutant HRPC-related protein. Partial or full-length cDNA sequences, which encode the subject protein, may be ligated into bacterial expression vectors. Methods for expressing large amounts of protein from a cloned gene introduced into Escherichia coli (E. coli) or other prokaryotes may be utilized for the purification, localization, and functional analysis of proteins. For example, fusion proteins consisting of amino terminal peptides encoded by a portion of the E. coli lacZ or trpE gene linked to an HRPC-related protein may be used to prepare polyclonal and monoclonal antibodies against these proteins. Thereafter, these antibodies may be used to purify proteins by immunoaffinity chromatography, in diagnostic assays to quantitate the levels of protein and to localize proteins in tissues and individual cells by immunofluorescence.

Intact native protein may also be produced in E. coli in large amounts for functional studies. Methods and plasmid vectors for producing fusion proteins and intact native proteins in bacteria are described in Sambrook et al. (Sambrook et al., In Molecular Cloning: A Laboratory Manual, Ch. 17, CSHL, New York, 1989). Such fusion proteins may be made in large amounts, are easy to purify, and can be used to elicit antibody response. Native proteins can be produced in bacteria by placing a strong, regulated promoter and an efficient ribosome-binding site upstream of the cloned gene. If low levels of protein are produced, additional steps may be taken to increase protein production; if high levels of protein are produced, purification is relatively easy. Suitable methods are presented in Sambrook et al. (In Molecular Cloning: A Laboratory Manual, CSHL, New York, 1989) and are well known in the art. Often, proteins expressed at high levels are found in insoluble inclusion bodies. Methods for extracting proteins from these aggregates are described by Sambrook et al. (In Molecular Cloning: A Laboratory Manual, Ch. 17, CSHL, New York, 1989). Vector systems suitable for the expression of lacZ fusion genes include the pUR series of vectors (Ruther and Muller-Hill, EMBO J. 2:1791, 1983), pEX1-3 (Stanley and Luzio, EMBO J. 3:1429, 1984) and pMR100 (Gray et al., Proc. Natl. Acad. Sci. USA 79:6598, 1982). Vectors suitable for the production of intact native proteins include pKC30 (Shimatake and Rosenberg, Nature 292:128, 1981), pKK177-3 (Amann and Brosius, Gene 40:183, 1985) and pET-3 (Studiar and Moffatt, J. Mol. Biol. 189:113. 1986). Fusion proteins, for instance fusions that incorporate a portion of a HRPC-related protein, may be isolated from protein gels, lyophilized, ground into a powder and used as an antigen. The DNA sequence can also be transferred from its existing context to other cloning vehicles, such as other plasmids, bacteriophages, cosmids, animal viruses and yeast artificial chromosomes (YACs)

49

(Burke et al., Science 236:806-812, 1987). These vectors may then be introduced into a variety of hosts including somatic cells, and simple or complex organisms, such as bacteria, fungi (Timberlake and Marshall, Science 244:1313-1317, 1989), invertebrates, plants (Gasser and Fraley, Science 244:1293, 1989), and animals (Pursel et al., Science 244:1281-1288, 1989), which cell or organisms are rendered transgenic by the introduction of the heterologous HRPC-related cDNA.

5

10

15

20

25

35

For expression in mammalian cells, the cDNA sequence may be ligated to heterologous promoters, such as the simian virus (SV) 40 promoter in the pSV2 vector (Mulligan and Berg, *Proc. Natl. Acad. Sci. USA* 78:2072-2076, 1981), and introduced into cells, such as monkey COS-1 cells (Gluzman, *Cell* 23:175-182, 1981), to achieve transient or long-term expression. The stable integration of the chimeric gene construct may be maintained in mammalian cells by biochemical selection, for example with neomycin (Southern and Berg, *J. Mol. Appl. Genet.* 1:327-341, 1982) or mycophenolic acid (Mulligan and Berg, *Proc. Natl. Acad. Sci. USA* 78:2072-2076, 1981).

DNA sequences can be manipulated with standard procedures such as restriction enzyme digestion, fill-in with DNA polymerase, deletion by exonuclease, extension by terminal deoxynucleotide transferase, ligation of synthetic or cloned DNA sequences, site-directed sequence-alteration via single-stranded bacteriophage intermediate or with the use of specific oligonucleotides in combination with PCR.

The cDNA sequence (or portions derived from it) or a mini gene (a cDNA with an intron and its own promoter) may be introduced into eukaryotic expression vectors by conventional techniques. These vectors are designed to permit the transcription of the cDNA in eukaryotic cells by providing regulatory sequences that initiate and enhance the transcription of the cDNA and ensure its proper splicing and polyadenylation. Vectors containing the promoter and enhancer regions of the SV40 or long terminal repeat (LTR) of the Rous Sarcoma virus and polyadenylation and splicing signal from SV40 are readily available (Mulligan et al., Proc. Natl. Acad. Sci. USA 78:1078-2076, 1981; Gorman et al., Proc. Natl. Acad. Sci. USA 78:6777-6781, 1982). The level of expression of the cDNA can be manipulated with this type of vector, either by using promoters that have different activities (for example, the baculovirus pAC373 can express cDNAs at high levels in S. frugiperda cells (Summers and Smith, In Genetically Altered Viruses and the Environment, Fields et al. (Eds.) 22:319-328, CSHL Press, Cold Spring Harbor, New York, 1985) or by using vectors that contain promoters amenable to modulation, for example, the glucocorticoid-responsive promoter from the mouse mammary tumor virus (Lee et al., Nature 294:228, 1982). The expression of the cDNA can be monitored in the recipient cells 24 to 72 hours after introduction (transient expression).

In addition, some vectors contain selectable markers such as the *gpt* (Mulligan and Berg, *Proc. Natl. Acad. Sci. USA* 78:2072-2076, 1981) or *neo* (Southern and Berg, *J. Mol. Appl. Genet.* 1:327-341, 1982) bacterial genes. These selectable markers permit selection of transfected cells that exhibit stable, long-term expression of the vectors (and therefore the cDNA). The vectors can be maintained in the cells as episomal, freely replicating entities by using regulatory elements of viruses such as papilloma (Sarver *et al., Mol. Cell Biol.* 1:486, 1981) or Epstein-Barr (Sugden *et al., Mol.*

Cell Biol. 5:410, 1985). Alternatively, one can also produce cell lines that have integrated the vector into genomic DNA. Both of these types of cell lines produce the gene product on a continuous basis. One can also produce cell lines that have amplified the number of copies of the vector (and therefore of the cDNA as well) to create cell lines that can produce high levels of the gene product (Alt et al., J. Biol. Chem. 253:1357, 1978).

5

10

15

20

25

30

35

The transfer of DNA into eukaryotic, in particular human or other mammalian cells, is now a conventional technique. The vectors are introduced into the recipient cells as pure DNA (transfection) by, for example, precipitation with calcium phosphate (Graham and vander Eb, Virology 52:466, 1973) or strontium phosphate (Brash et al., Mol. Cell Biol. 7:2013, 1987), electroporation (Neumann et al., EMBO J 1:841, 1982), lipofection (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413, 1987), DEAE dextran (McCuthan et al., J. Natl. Cancer Inst. 41:351, 1968), microinjection (Mueller et al., Cell 15:579, 1978), protoplast fusion (Schafner, Proc. Natl. Acad. Sci. USA 77:2163-2167, 1980), or pellet guns (Klein et al., Nature 327:70, 1987). Alternatively, the cDNA, or fragments thereof, can be introduced by infection with virus vectors. Systems are developed that use, for example, retroviruses (Bernstein et al., Gen. Engr'g 7:235, 1985), adenoviruses (Ahmad et al., J. Virol. 57:267, 1986), or Herpes virus (Spaete et al., Cell 30:295, 1982). MB1 encoding sequences can also be delivered to target cells in vitro via non-infectious systems, for instance liposomes.

These eukaryotic expression systems can be used for studies of HRPC-related nucleic acids (such as those listed in Table 1) and mutant forms of these molecules, as well as HRPC-related proteins and mutant forms of these protein. Such uses include, for example, the identification of regulatory elements located in the 5' region of HRPC-related genes on genomic clones that can be isolated from human genomic DNA libraries. The eukaryotic expression systems may also be used to study the function of the normal HRPC-related proteins, specific portions of these proteins, or of naturally occurring or artificially produced mutant versions of HRPC-related proteins.

Using the above techniques, the expression vectors containing HRPC-related gene sequence or cDNA, or fragments or variants or mutants thereof, can be introduced into human cells, mammalian cells from other species or non-mammalian cells as desired. The choice of cell is determined by the purpose of the treatment. For example, monkey COS cells (Gluzman, Cell 23:175-182, 1981) that produce high levels of the SV40 T antigen and permit the replication of vectors containing the SV40 origin of replication may be used. Similarly, Chinese hamster ovary (CHO), mouse NIH 3T3 fibroblasts or human fibroblasts or lymphoblasts may be used.

The present disclosure thus encompasses recombinant vectors that comprise all or part of a HRPC-related gene or cDNA sequence, for expression in a suitable host. The HRPC-related nucleic acid sequence is operatively linked in the vector to an expression control sequence to form a recombinant DNA molecule, so that the HRPC-related polypeptide can be expressed. The expression control sequence may be selected from the group consisting of sequences that control the expression of genes of prokaryotic or eukaryotic cells and their viruses and combinations thereof. The

WO 02/31209

5

10

15

20

25

30

35

PCT/US01/31932

expression control sequence may be specifically selected from the group consisting of the *lac* system, the *trp* system, the *trc* system, major operator and promoter regions of phage lambda, the control region of fd coat protein, the early and late promoters of SV40, promoters derived from polyoma, adenovirus, retrovirus, baculovirus and simian virus, the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, the promoter of the yeast alpha-mating factors and combinations thereof.

The host cell, which may be transfected with the vector of this disclosure, may be selected from the group consisting of *E. coli*, *Pseudomonas*, *Bacillus subtilis*, *B. stearothermophilus* or other bacilli; other bacteria; yeast; fungi; insect; mouse or other animal; or plant hosts; or human tissue cells.

It is appreciated that for mutant or variant HRPC-related DNA sequences, similar systems are employed to express and produce the mutant product. In addition, fragments of a HRPC-related protein can be expressed essentially as detailed above. Such fragments include individual HRPC-related protein domains or sub-domains, as well as shorter fragments such as peptides. HRPC-related protein fragments having therapeutic properties may be expressed in this manner also.

EXAMPLE 8

Suppression of HRPC-related Gene Expression

A reduction of HRPC-related protein expression in a transgenic cell may be obtained by introducing into cells an antisense construct based on a HRPC-related protein encoding sequence, such as a cDNA or gene sequence or flanking regions thereof of any one of the proteins listed in Table 1, Table 4, or elsewhere herein. For antisense suppression, a nucleotide sequence encoding a HRPC-related protein, e.g. all or a portion of the cartilage glycoprotein-39 (CHI3L1), S-100P PROTEIN (S100P), CX3C chemokine/fractalkine (SCYD1), adenylate kinase 1 (AK1), forkhead transcription factor HFH-4 (HFH-4) (FKHL13), UDP glucuronosyltransferase precursor (UGT2B15), Pleiotrophin (heparin binding growth factor 8) (PTN), heat shock 27kD protein 2/Alpha-B-crystallin (HSP27), Proteasome (prosome, macropain) subunit, beta type, 5 (PSMB5), Inhibitor of NFKB (NFKBIA), interferon-induced 17 kD protein (ISG15), MAP kinase activated protein kinase 2 (MAPKAPK2), signal transduction protein (SH3 containing) (EFS2), hkf-1 Zinc finger protein (ZFP103), chromosome condensation 1 (CHC1), CDP-diacylglycerol synthase (CDS1), gap junction protein, alpha 1, 43kD (connexin 43) (GJA1), cyclin D1 (CCND1), Inhibitor of DNA binding 3, helix-loop-helix protein (ID3), H1 histone family, member (H1F2), Cytochrome B561 (CYB561). Cathepsin H (CTSH), calcineurin alpha (PPP3CA), 54 kDa progesterone receptor-associated immunophilin (FKBP5), translocation protein 1 (TLOC1), Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J) (CLU), Pulmonary surfactant-associated protein A (SFTPA1), protease inhibitor 12 (PI12; neuroserpin) (PI12), Thrombospondin 1 (THBS1), Ribophorin I (RPN1), A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 (ADAMTS1), Collagen, type IV, alpha 5 (Alport syndrome) (COL4A5), LIM domain

WO 02/31209

5

10

15

20

25

30

35

52

PCT/US01/31932

only 4 / breast tumor autoantigen (LMO4), bumetanide-sensitive Na-K-Cl cotransporter (NKCCl) (SLC12A2), Fibronectin (FN1), Crystallin Mu (CRYM) or "upregulated by 1,25-dihydroxyvitamin D-3" (VDUP1) cDNA or gene, is arranged in reverse orientation relative to the promoter sequence in the transformation vector. Other aspects of the vector may be chosen as for any other expression vector (see, e.g., Example 7).

The introduced sequence need not be a full-length human HRPC-related cDNA or gene, and need not be exactly homologous to the equivalent sequence found in the cell type to be transformed. Generally, however, where the introduced sequence is of shorter length, a higher degree of homology to the HRPC-related sequence likely will be needed for effective antisense suppression. The introduced antisense sequence in the vector may be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. The length of the antisense sequence in the vector advantageously may be greater than 100 nucleotides.

Although the exact mechanism by which antisense RNA molecules interfere with gene expression has not been elucidated, it is believed that antisense RNA molecules bind to the endogenous mRNA molecules and thereby inhibit translation of the endogenous mRNA.

Suppression of endogenous HRPC-related gene expression can also be achieved using ribozymes. Ribozymes are synthetic RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 to Cech and U.S. Patent No. 5,543,508 to Haselhoff. The inclusion of ribozyme sequences within antisense RNAs may be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that bind to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

In addition, dominant negative mutant forms of the disclosed HRPC-related sequences may be used to block endogenous activity of the corresponding gene products.

Suppression can also be achieved using small inhibitory RNA molecules (siRNAs) (see, for instance, Caplen et al., Proc. Natl. Acad. Sci. 98(17):9742-9747, 2001, and Elbashir et al., Nature 411:494-498, 2001). Thus, this disclosure also encompasses siRNAs that correspond to an HRPC-related nucleic acid, which siRNA is capable of suppressing the expression or function of its cognate (target) HRPC-related protein. Also encompassed are methods of suppressing the expression or activity of an HRPC-related molecule using an siRNA.

Suppression of expression of an HRPC-related gene can be used, for instance, to treat, reduce, or prevent cell proliferative and other disorders caused by over-expression or unregulated expression of the corresponding HRPC-related gene. In particular, suppression of expression of sequences disclosed herein as being up-regulated in hormone-refractory prostate cancer can be used to treat, reduce, or prevent progression to hormone-refractory prostate cancer.

53

EXAMPLE 9

Production of Protein Specific Binding Agents

Monoclonal or polyclonal antibodies may be produced to any of the disclosed HRPC-related proteins, or mutant forms of these proteins. Optimally, antibodies raised against these proteins, or peptides from within such proteins, would specifically detect the protein or peptide with which the antibodies are generated. That is, an antibody generated to the S100P protein (or another specified protein) or a fragment thereof would recognize and bind that protein and would not substantially recognize or bind to other proteins found in human cells.

10

15

20

25

30

35

The determination that an antibody specifically detects a designated protein (e.g., a HRPCrelated protein as disclosed herein) can be made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., In Molecular Cloning: A Laboratory Manual, CSHL, New York, 1989). To determine that a given antibody preparation (such as one produced in a mouse) specifically detects a designated protein by Western blotting, total cellular proteins are extracted from cells (for example, human prostate) and electrophoresed on a sodium dodecyl sulfate-polyacrylamide gel. The proteins are then transferred to a membrane (for example, nitrocellulose) by Western blotting, and the antibody preparation is incubated with the membrane. After washing the membrane to remove non-specifically bound antibodies, the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase. Application of an alkaline phosphatase substrate 5-bromo-4chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immunolocalized alkaline phosphatase. Antibodies that specifically detect the designated protein will, by this technique, be shown to bind to the designated protein band (which will be localized at a given position on the gel determined by its molecular weight). Non-specific binding of the antibody to other proteins may occur and may be detectable as a weak signal on the Western blot. The nonspecific nature of this binding will be recognized by one skilled in the art by the weak signal obtained on the Western blot relative to the strong primary signal arising from the specific antibody-protein binding.

Substantially pure HRPC-related protein or protein fragment (peptide) suitable for use as an immunogen may be isolated from transfected or transformed cells, as described above.

Concentration of protein or peptide in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms per milliliter. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

A. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of a designated protein (such as a HRPC-related protein, including any one of those listed in Table 1) identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein (*Nature* 256:495-497, 1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few

micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess un-fused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (*Meth. Enzymol.* 70:419-439, 1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Harlow and Lane (*Antibodies, A Laboratory Manual*, CSHL, New York, 1988).

B. Polyclonal Antibody Production by Immunization

10

20

25

30

35

Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein (Example 7), which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with either inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appear to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis et al. (J. Clin. Endocrinol. Metab. 33:988-991, 1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony *et al.* (In *Handbook of Experimental Immunology*, Wier (ed.) chapter 19. Blackwell, 1973). Plateau concentration of antibody is usually in the range of about 0.1 to 0.2 mg/ml of serum (about 12 μM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher (*Manual of Clinical Immunology*, Ch. 42, 1980).

C. Antibodies Raised against Synthetic Peptides

A third approach to raising antibodies against the subject HRPC-related proteins or peptides is to use one or more synthetic peptides synthesized on a commercially available peptide synthesizer based upon the predicted amino acid sequence of the desired HRPC-related protein or peptide.

D. Antibodies Raised by Injection of Protein Encoding Sequence

Antibodies also may be raised against proteins and peptides related to HRPC as described herein by subcutaneous injection of a DNA vector that expresses the desired HRPC-related protein, or a fragment thereof, into laboratory animals, such as mice. Delivery of the recombinant vector into the animals may be achieved using a hand-held form of the Biolistic system (Sanford et al., Particulate Sci. Technol. 5:27-37, 1987) as described by Tang et al. (Nature 356:152-154, 1992).

55

Expression vectors suitable for this purpose may include those that express the HRPC-related sequence under the transcriptional control of either the human β -actin promoter or the cytomegalovirus (CMV) promoter.

Antibody preparations prepared according to these protocols are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they also can be used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample; or for immunolocalization of the corresponding HRPC-related protein.

For administration to human patients, antibodies, e.g., HRPC-related protein specific monoclonal antibodies (such as antibodies to the proteins encoded by the encoding sequences referred to in Table 1), can be humanized by methods known in the art. Antibodies with a desired binding specificity can be commercially humanized (Scotgene, Scotland, UK; Oxford Molecular, Palo Alto, CA). Alternatively, human antibodies can be produced. Methods for producing human antibodies are known in the art; see, for instance, Canevari et al., Int J Biol Markers 8:147-150, 1993 and Green, J Immunol Methods 231:11-23, 1999, for instance.

15

20

25

30

35

10

5

EXAMPLE 10

Nucleic Acid-Based Analysis

The HRPC-related nucleic acid molecules provided herein can be used in methods of genetic testing for neoplasms (e.g., prostate or other cancers) or predisposition to neoplasms owing to HRPC-related nucleic acid molecule deletion, genomic amplification or mutation, or over- or under-expression in comparison to a control or baseline. For such procedures, a biological sample of the subject, which biological sample contains either DNA or RNA derived from the subject, is assayed for a mutated, amplified or deleted HRPC-related nucleic acid molecule, or for over- or under expression of a HRPC-related nucleic acid molecule. Suitable biological samples include samples containing genomic DNA or RNA (including mRNA), obtained from body cells of a subject, such as those present in peripheral blood, urine, saliva, tissue biopsy, surgical specimen, amniocentesis samples and autopsy material.

The detection in the biological sample of a mutant HRPC-related nucleic acid molecule, a mutant HRPC-related RNA, an amplified or homozygously or heterozygously deleted HRPC-related nucleic acid molecule, or over- or under-expression of a HRPC-related nucleic acid molecule, may be performed by a number of methodologies.

A. Detection of Unknown Mutations:

Unknown mutations in HRPC-related nucleic acid molecules can be identified through polymerase chain reaction amplification of reverse transcribed RNA (RT-PCR) or DNA isolated from breast or other tissue, followed by direct DNA sequence determination of the products; single-strand conformational polymorphism analysis (SSCP) (for instance, see Hongyo et al., Nucleic Acids Res. 21:3637-3642, 1993); chemical cleavage (including HOT cleavage) (Bateman et al., Am. J. Med. Genet. 45:233-240, 1993; reviewed in Ellis et al., Hum. Mutat. 11:345-353, 1998); denaturing

56

gradient gel electrophoresis (DGGE), ligation amplification mismatch protection (LAMP); or enzymatic mutation scanning (Taylor and Deeble, *Genet. Anal.* 14:181-186, 1999), followed by direct sequencing of amplicons with putative sequence variations.

B. Detection of Known Mutations:

5

10

15

20

25

30

35

The detection of specific known DNA mutations in HRPC-related nucleic acid molecules may be achieved by methods such as hybridization using allele specific oligonucleotides (ASOs) (Wallace et al., CSHL Symp. Quant. Biol. 51:257-261, 1986), direct DNA sequencing (Church and Gilbert, Proc. Natl. Acad. Sci. USA 81:1991-1995, 1988), the use of restriction enzymes (Flavell et al., Cell 15:25, 1978; Geever et al., 1981), discrimination on the basis of electrophoretic mobility in gels with denaturing reagent (Myers and Maniatis, Cold Spring Harbor Symp. Quant. Biol. 51:275-284, 1986), RNase protection (Myers et al., Science 230:1242, 1985), chemical cleavage (Cotton et al., Proc. Natl. Acad. Sci. USA 85:4397-4401, 1985), and the ligase-mediated detection procedure (Landegren et al., Science 241:1077, 1988). Oligonucleotides specific to normal or mutant MB1 sequences can be chemically synthesized using commercially available machines. These oligonucleotides can then be labeled radioactively with isotopes (such as ³²P) or non-radioactively. with tags such as biotin (Ward and Langer et al., Proc. Natl. Acad. Sci. USA 78:6633-6657, 1981), and hybridized to individual DNA samples immobilized on membranes or other solid supports by dot-blot or transfer from gels after electrophoresis. These specific sequences are visualized by methods such as autoradiography or fluorometric (Landegren et al., Science 242:229-237, 1989) or colorimetric reactions (Gebeyehu et al., Nucleic Acids Res. 15:4513-4534, 1987). Using an ASO specific for a normal allele, the absence of hybridization would indicate a mutation in the particular region of the gene, or deleted MB1 gene. In contrast, if an ASO specific for a mutant allele hybridizes to a clinical sample then that would indicate the presence of a mutation in the region defined by the ASO.

C. Detection of Genomic Amplification or Deletion

Gene dosage (copy number) can be important in neoplasms; it is therefore advantageous to determine the number of copies of HRPC-related nucleic acids in biological samples of a subject, e.g., serum or prostate samples. Probes generated from the disclosed encoding sequence of in HRPC-related nucleic acid molecules can be used to investigate and measure genomic dosage of the corresponding HRPC-related genomic sequence.

Appropriate techniques for measuring gene dosage are known in the art; see for instance, US Patent No. 5,569,753 ("Cancer Detection Probes") and Pinkel et al. (Nat. Genet. 20:207-211, 1998) ("High Resolution Analysis of DNA Copy Number Variation using Comparative Genomic Hybridization to Microarrays").

Determination of gene copy number in cells of a patient-derived sample using other techniques is known in the art. For example, amplification of a HRPC-related nucleic acid sequence in cancer-derived cell lines as well as uncultured prostate cancer or other cells can be carried out using bicolor FISH analysis. By way of example, interphase FISH analysis of breast cancer cell lines

57

can be carried out as previously described (Barlund et al., Genes Chromo. Cancer 20:372-376, 1997). The hybridizations can be evaluated using a Zeiss fluorescence microscope.

For tissue microarrays, the FISH can be performed as described in Kononen et al., Nat. Med. 4:844-847, 1998. Briefly, consecutive sections of the array are deparaffinized, dehydrated in ethanol, denatured at 74° C for 5 minutes in 70% formamide/2 x SSC, and hybridized with test and reference probes. The specimens containing tight clusters of signals or >3-fold increase in the number of test probe as compared to chromosome 17 centromere in at least 10% of the tumor cells may be considered as amplified. Microarrays can be constructed as described in WO99/44063A2 and WO99/44062A1.

C. Detection of mRNA Expression Levels

Over- or under-expression of a HRPC-related molecule can also be detected by measuring the cellular level of HRPC-related nucleic acid molecule-specific mRNA. mRNA can be measured using techniques well known in the art, including for instance Northern analysis, RT-PCR and mRNA in situ hybridization. Details of such procedures can be found, for instance, in Examples 1 and 3.

The nucleic acid-based diagnostic methods of this disclosure are predictive of proliferation, metastatic potential, cancer progression, and response to treatment in patients suffering from prostate carcinomas including hormone-refractory prostate carcinomas, and other solid tumors, carcinomas, sarcomas, and cancers. Cells of any tumors that demonstrate abnormal levels (e.g., through genomic amplification, deletion, mutation, or other over- or under-expression) of nucleotide sequences that share homology with the HRPC-related nucleic acids disclosed herein are aggressive tumor cells, and result in decreased survival, increased metastasis, increased rates of clinical recurrence (such as recurrence after hormone ablation therapy), and overall worsened prognosis.

25

30

35

5

10

15

20

EXAMPLE 11

Protein-Based Analysis

An alternative method of diagnosing, staging, detecting, or predicting hormone-related prostate cancer is to quantitate the level of one or more HRPC-related proteins in a subject, for instance in the cells of the subject. This diagnostic tool is useful for detecting reduced or increased levels of HRPC-related proteins. Localization and/or coordinated expression (temporally or spatially) of HRPC-related proteins can also be examined using well known techniques. The determination of reduced or increased HRPC-related protein levels, in comparison to such expression in a normal subject (e.g., a subject not having hormone-related prostate cancer or not having a predisposition developing this condition, disease or disorder, would be an alternative or supplemental approach to the direct determination of HRPC-related nucleic acid levels by the methods outlined above and equivalents. The availability of antibodies specific to specific HRPC-related protein(s) will facilitate the detection and quantitation of cellular HRPC-related protein(s) by one of a number of immunoassay methods which are well known in the art and are presented in Harlow and Lane

(Antibodies, A Laboratory Manual, CSHL, New York, 1988). Methods of constructing such antibodies are discussed above, in Example 9.

Any standard immunoassay format (e.g., ELISA, Western blot, or RIA assay) can be used to measure HRPC-related polypeptide or protein levels; comparison is to wild-type (normal) HRPC-related protein levels, and a difference in HRPC-related polypeptide levels is indicative of an abnormal biological condition such as neoplasia. Whether the key difference is an increase or a decrease is dependent on the specific HRPC-related protein under examination, as discussed herein. Immunohistochemical techniques may also be utilized for HRPC-related polypeptide or protein detection and quantification. For example, a tissue sample may be obtained from a subject, and a section stained for the presence of a HRPC-related protein using the appropriate HRPC-related protein specific binding agent and any standard detection system (e.g., one which includes a secondary antibody conjugated to horseradish peroxidase). General guidance regarding such techniques can be found in, e.g., Bancroft and Stevens (Theory and Practice of Histological Techniques, Churchill Livingstone, 1982) and Ausubel et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1998).

For the purposes of quantitating a HRPC-related protein, a biological sample of the subject, which sample includes cellular proteins, is required. Such a biological sample may be obtained from body cells, such as those present in peripheral blood, urine, saliva, tissue biopsy, amniocentesis samples, surgical specimens and autopsy material, particularly breast cells. Quantitation of a HRPC-related protein can be achieved by immunoassay and the amount compared to levels of the protein found in healthy cells. A significant difference (either increase or decrease) in the amount of HRPC-related protein in the cells of a subject compared to the amount of the same HRPC-related protein found in normal human cells is usually about a 30% or greater difference. Substantial under- or over-expression of one or more HRPC-related protein(s), may be indicative of neoplasia or a predilection to neoplasia or metastasis, and especially hormone-refractory prostate cancer.

The protein-based diagnostic methods as described herein are predictive of proliferation, metastatic potential, cancer progression, and response to treatment in patients suffering from prostate carcinomas including hormone-refractory prostate carcinomas, and other solid tumors, carcinomas, sarcomas, and cancers. Cells of any tumors that demonstrate abnormal levels (e.g., through genomic amplification, deletion, mutation, or other over- or under-expression) of nucleotide sequences that share homology with the HRPC-related nucleic acids disclosed herein are aggressive tumor cells, and result in decreased survival, increased metastasis, increased rates of clinical recurrence (such as recurrence after hormone ablation therapy), and overall worsened prognosis.

35

30

5

10

15

20

25

EXAMPLE 12:

Gene Therapy

Gene therapy approaches for combating neoplasia (particularly prostate cancer, including hormone-refractory prostate cancer) in subjects are made possible by the present disclosure.

59

Retroviruses have been considered a preferred vector for experiments in gene therapy, with a high efficiency of infection and stable integration and expression (Orkin et al., Prog. Med. Genet. 7:130-142, 1988). A full-length HRPC-related gene or cDNA can be cloned into a retroviral vector and driven from either its endogenous promoter or from the retroviral LTR (long terminal repeat). Other viral transfection systems may also be utilized for this type of approach, including adenovirus, adeno-associated virus (AAV) (McLaughlin et al., J. Virol. 62:1963-1973, 1988), Vaccinia virus (Moss et al., Annu. Rev. Immunol. 5:305-324, 1987), Bovine Papilloma virus (Rasmussen et al., Methods Enzymol. 139:642-654, 1987) or members of the herpesvirus group such as Epstein-Barr virus (Margolskee et al., Mol. Cell. Biol. 8:2837-2847, 1988).

Recent developments in gene therapy techniques include the use of RNA-DNA hybrid oligonucleotides, as described by Cole-Strauss, *et al.* (*Science* 273:1386-1389, 1996). This technique may allow for site-specific integration of cloned sequences, thereby permitting accurately targeted gene replacement.

10

15

20

25

30

35

In addition to delivery of HRPC-related protein encoding sequences to cells using viral vectors, it is possible to use non-infectious methods of delivery. For instance, lipidic and liposome-mediated gene delivery has recently been used successfully for transfection with various genes (for reviews, see Templeton and Lasic, *Mol. Biotechnol.* 11:175-180, 1999; Lee and Huang, *Crit. Rev. Ther. Drug Carrier Syst.* 14:173-206; and Cooper, *Semin. Oncol.* 23:172-187, 1996). For instance, cationic liposomes have been analyzed for their ability to transfect monocytic leukemia cells, and shown to be a viable alternative to using viral vectors (de Lima *et al.*, *Mol. Membr. Biol.* 16:103-109, 1999). Such cationic liposomes can also be targeted to specific cells through the inclusion of, for instance, monoclonal antibodies or other appropriate targeting ligands (Kao *et al.*, *Cancer Gene Ther.* 3:250-256, 1996).

To reduce the level of HRPC-related gene expression, gene therapy can be carried out using antisense or other suppressive constructs, the construction of which is discussed above (Example 8).

EXAMPLE 13

Kit

Kits are provided to determine the level (or relative level) of expression of one or more species of HRPC-related mRNA (i.e., kits containing probes) or one or more HRPC-related protein (i.e., kits containing antibodies or other HRPC-related protein specific binding agents). Kits are also provided that contain the necessary reagents for determining gene copy number (genomic amplification or deletion), such as probes or primers specific for a HRPC-related nucleic acid sequence. These kits can each include instructions, for instance instructions that provide calibration curves or charts to compare with the determined (e.g., experimentally measured) values.

60

A. Kits for Detection of HRPC-related Genomic Amplification or Deletion

5

10

15

20

25

30

35

The nucleotide sequence of HRPC-related nucleic acid molecules disclosed herein, and fragments thereof, can be supplied in the form of a kit for use in detection of HRPC-related genomic amplification/deletion and/or diagnosis of progression to or predilection to progress to hormone-refractory prostate cancer. In such a kit, an appropriate amount of one or more oligonucleotide primer specific for an HRPC-related-sequence is provided in one or more containers. The oligonucleotide primers may be provided suspended in an aqueous solution or as a freeze-dried or lyophilized powder, for instance. The container(s) in which the oligonucleotide(s) are supplied can be any conventional container that is capable of holding the supplied form, for instance, microfuge tubes, ampoules, or bottles. In some applications, pairs of primers may be provided in pre-measured single use amounts in individual, typically disposable, tubes, or equivalent containers. With such an arrangement, the sample to be tested for the presence of HRPC-related genomic amplification/deletion can be added to the individual tubes and *in vitro* amplification carried out directly.

The amount of each oligonucleotide primer supplied in the kit can be any amount, depending for instance on the market to which the product is directed. For instance, if the kit is adapted for research or clinical use, the amount of each oligonucleotide primer provided likely would be an amount sufficient to prime several *in vitro* amplification reactions. Those of ordinary skill in the art know the amount of oligonucleotide primer that is appropriate for use in a single amplification reaction. General guidelines may for instance be found in Innis *et al.* (*PCR Protocols, A Guide to Methods and Applications*, Academic Press, Inc., San Diego, CA, 1990), Sambrook *et al.* (In *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor, New York, 1989), and Ausubel *et al.* (In *Current Protocols in Molecular Biology*, John Wiley & Sons, New York, 1998).

A kit may include more than two primers, in order to facilitate the *in vitro* amplification of HRPC-related genomic sequences, for instance a HRPC-related nucleic acid listed in Table 1, or the 5' or 3' flanking region thereof.

In some embodiments, kits may also include the reagents necessary to carry out *in vitro* amplification reactions, including, for instance, DNA sample preparation reagents, appropriate buffers (e.g., polymerase buffer), salts (e.g., magnesium chloride), and deoxyribonucleotides (dNTPs). Written instructions may also be included.

Kits may in addition include either labeled or unlabeled oligonucleotide probes for use in detection of the *in vitro* amplified sequences. The appropriate sequences for such a probe will be any sequence that falls between the annealing sites of two provided oligonucleotide primers, such that the sequence the probe is complementary to is amplified during the *in vitro* amplification reaction (if it is present in the sample).

61

It may also be advantageous to provided in the kit one or more control sequences for use in the *in vitro* amplification reactions. The design of appropriate positive control sequences is well known to one of ordinary skill in the appropriate art.

B. Kits for Detection of mRNA Expression

5

10

15

20

25

30

35

Kits similar to those disclosed above for the detection of HRPC-related genomic amplification/deletion can be used to detect HRPC-related mRNA expression levels (including over-or under-expression, in comparison to the expression level in a control sample). Such kits include an appropriate amount of one or more of the oligonucleotide primers for use in, for instance, reverse transcription PCR reactions, similarly to those provided above, with art-obvious modifications for use with RNA.

In some embodiments, kits for detection of HRPC-related mRNA expression may also include reagents necessary to carry out RT-PCR or other *in vitro* amplification reactions, including, for instance, RNA sample preparation reagents (including e.g., an RNAse inhibitor), appropriate buffers (e.g., polymerase buffer), salts (e.g., magnesium chloride), and deoxyribonucleotides (dNTPs). Written instructions may also be included.

Kits may in addition include either labeled or unlabeled oligonucleotide probes for use in detection of an *in vitro* amplified target sequence. The appropriate sequences for such a probe will be any sequence that falls between the annealing sites of the two provided oligonucleotide primers, such that the sequence the probe is complementary to is amplified during the PCR reaction.

It may also be advantageous to provided in the kit one or more control sequences for use in the *in vitro* amplification reactions. The design of appropriate positive control sequences is well known to one of ordinary skill in the appropriate art.

Alternatively, kits may be provided with the necessary reagents to carry out quantitative or semi-quantitative Northern analysis of HRPC-related mRNA. Such kits include, for instance, at least one HRPC-related sequence-specific oligonucleotide for use as a probe. This oligonucleotide may be labeled in any conventional way, including with a selected radioactive isotope, enzyme substrate, co-factor, ligand, chemiluminescent or fluorescent agent, hapten, or enzyme.

C. Kits For Detection of HRPC-linked Protein or Peptide Expression

Kits for the detection of HRPC-linked protein expression, for instance abnormal (over or under) expression of a protein encoded for by a nucleic acid molecule listed in Table 1, are also encompassed herein. Such kits will include at least one target (HRPC-linked) protein (e.g., cartilage glycoprotein-39 (CHI3L1), S-100P PROTEIN (S100P), CX3C chemokine/fractalkine (SCYD1), adenylate kinase 1 (AK1), forkhead transcription factor HFH-4 (HFH-4) (FKHL13), UDP glucuronosyltransferase precursor (UGT2B15), Pleiotrophin (heparin binding growth factor 8) (PTN), heat shock 27kD protein 2/Alpha-B-crystallin (HSP27), Proteasome (prosome, macropain) subunit, beta type, 5 (PSMB5), Inhibitor of NFKB (NFKBIA), interferon-induced 17 kD protein (ISG15), MAP kinase activated protein kinase 2 (MAPKAPK2), signal transduction protein (SH3

62

containing) (EFS2), hkf-1 Zinc finger protein (ZFP103), chromosome condensation 1 (CHC1), CDPdiacylglycerol synthase (CDS1), gap junction protein, alpha 1, 43kD (connexin 43) (GJA1), cyclin D1 (CCND1), Inhibitor of DNA binding 3, helix-loop-helix protein (ID3), H1 histone family, member2 (H1F2), Cytochrome B561 (CYB561), Cathepsin H (CTSH), calcineurin alpha (PPP3CA), 54 kDa progesterone receptor-associated immunophilin (FKBP5), translocation protein 1 (TLOC1), Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J) (CLU), Pulmonary surfactant-associated protein A (SFTPA1), protease inhibitor 12 (PI12; neuroserpin) (PI12), Thrombospondin 1 (THBS1), Ribophorin I (RPN1), A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 (ADAMTS1), Collagen, type IV, alpha 5 (Alport syndrome) (COLAA5), LIM domain only 4 / breast tumor autoantigen (LMO4), bumetanide-sensitive Na-K-Cl cotransporter (NKCC1) (SLC12A2), Fibronectin (FN1), or Crystallin Mu (CRYM)) specific binding agent (e.g., a polyclonal or monoclonal antibody or antibody fragment), and may include at least one control. The HRPC-linked protein specific binding agent and control may be contained in separate containers. The kits may also include a means for detecting HRPC-related protein:agent complexes, for instance the agent may be detectably labeled. If the detectable agent is not labeled, it may be detected by second antibodies or protein A, for example, either of both of which also may be provided in some kits in one or more separate containers. Such techniques are well known.

Additional components in some kits include instructions for carrying out the assay.

Instructions will allow the tester to determine whether HRPC-linked expression levels are elevated or reduced in comparison to a control sample. Reaction vessels and auxiliary reagents such as chromogens, buffers, enzymes, etc. may also be included in the kits.

EXAMPLE 14

25

30

35

5

10

15

20

Identification of Therapeutic Compounds

The HRPC-related molecules disclosed herein, and more particularly the linkage of these molecules to cancer and cancer progression, can be used to identify compounds that are useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer. These molecules can be used alone or in combination, for instance in sets of two or more that are linked to cancer or cancer progression.

By way of example, a test compound is applied to a cell, for instance a test cell, and at least one HRPC-related molecule level and/or activity in the cell is measured and compared to the equivalent measurement from a test cell (or from the same cell prior to application of the test compound). If application of the compound alters the level and/or activity of a HRPC-related molecule (for instance by increasing or decreasing that level), then that compound is selected as a likely candidate for further characterization. In particular examples, a test agent that opposes or inhibits an HRPC-related change is selected for further study, for example by exposing the agent to a hormone refractory prostate cancer cell in vitro, to determine whether in vitro growth is inhibited.

5

10

. 15

20

25

30

35

Such identified compounds may be useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer. In particular embodiments, the compound isolated will inhibit or inactivate a HRPC-related molecule, for instance those represented by the nucleic acids listed in Table 1.

Methods for identifying such compounds optionally can include the generation of a HRPC-related gene expression profile, as described herein. Control gene expression profiles useful for comparison in such methods may be constructed from normal prostate tissue, primary prostate cancer tissue, prostate cancer tissue responding to androgen ablation therapy, and/or a hormone refractory prostate cancer tissue.

By way of specific example, rapamycin has been herein identified as a compound that influences the levels of HRPC-related molecules, in particular certain of the nucleic acid molecules listed in for instance Table 1 (as discussed in more detail above). With the provision herein of this identification, the use of rapamycin as a treatment for HRPC is now enabled, as is the use of rapamycin derivatives or rapamycin-like compounds. It is believed that rapamycin can be used on its own as such a treatment, or can be used in combination with known or newly identified treatments for HRPC.

EXAMPLE 15

Gene Expression Profiles (Fingerprints)

With the provision herein of methods for determining molecules that are linked to HRPC, and the provision of a large collection of such HRPC-linked molecules (as represented for instance by those listed in Table 1), gene expression profiles that provide information on the prostate cancer-state of a subject are now enabled.

HRPC-related expression profiles comprise the distinct and identifiable pattern of expression (or level) of sets of HRPC-related genes, for instance a pattern of high and low expression of a defined set of genes, or molecules that can be correlated to such genes, such as mRNA levels or protein levels or activities. The set of molecules in a particular profile will usually include at least one that is represented by (or correlated to) the following Image ID Clones: 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, and 897774. In other examples of HRPC-related gene expression profiles, more than one molecule corresponding to the Image ID Clones listed in Table 1 are included in the profile. By way of example, any subset of the molecules listed in Table 1 (or corresponding to the molecules in this list) may be included in a single gene expression profile. Specific examples of such subsets include those molecules that show an increasing expression profile during prostate cancer progression, those that show a decreasing expression profile, those that are most highly correlated to a particular stage of prostate cancer progression, and so forth. Alternatively, gene expression profiles may be further

64

broken down by the manner of molecules included in the profile. Thus, certain examples of profiles may include a specific class of HRPC-related molecules, such as those molecules involved in cell cycle control.

Particular profiles are specific for a particular stage of normal tissue (e.g., prostate tissue) growth or disease progression (e.g., progression of prostate cancer). Thus, gene expression profiles can be established for a pre-prostate cancer tissue (i.e., normal prostate tissue), a primary prostate cancer tissue, a prostate cancer tissue responding to androgen ablation therapy, and a hormone refractory prostate cancer tissue. Each of these profiles includes information on the expression level of at least one, but usually two or more, genes that are linked to prostate cancer (e.g., HRPC-related genes). Such information can include relative as well as absolute expression levels of specific genes. Likewise, the value measured may be the relative or absolute level of protein expression, which can be correlated with a "gene expression level." Results from the gene expression profiles of an individual subject are often viewed in the context of a test sample compared to a baseline or control sample fingerprint.

The levels of molecules that make up a gene expression profile can be measured in any of various known ways, which may be specific for the type of molecule being measured. Thus, nucleic acid levels (such as direct gene expression levels, such as the level of mRNA expression) can be measured using specific nucleic acid hybridization reactions. Protein levels may be measured using standard protein assays, using immunologic-based assays (such as ELISAs and related techniques), or using activity assays, for instance. Examples for measuring nucleic acid and protein levels are provided herein; other methods are well known to those of ordinary skill in the art.

Examples of HRPC-related gene expression profiles can be in array format, such as a nucleotide (e.g., polynucleotide) or protein array or microarray. The use of arrays to determine the presence and/or level of a collection of biological macromolecules is now well known (see, for example, methods described in published PCT application number US99/06860, describing hyproxia-related gene expression arrays). In array-based measurement methods, an array may be contacted with polynucleotides (in the case of a nucleic acid-based array) or polypeptides (in the case of a protein-based array) from a sample from a subject. The amount and/or position of binding of the subject's polynucleotides or polypeptides then can be determined, for instance to produce a gene expression profile for that subject. Such gene expression profile can be compared to another gene expression profile, for instance a control gene expression profile from a subject having a known prostate-related condition. Optionally, the subject's gene expression profile can be correlated with one or more appropriate treatments, which may be correlated with a control (or set of control) expression profiles for stages of prostate cancer progression, for instance.

35

30

5

10

15

20

25

This disclosure provides the identification of HRPC-related molecules that exhibit alterations in expression during development of refractory prostate cancer, and expression fingerprints (profiles) specific for prostate cancer stages. It further provides methods of using these

65

identified nucleic acid molecules, and proteins encoded thereby, and expression fingerprints or profiles, to predict and/or diagnose hormone-refractory prostate cancer, and to elect treatments for instance based on likely response. These identified HRPC-related molecules also can serve as therapeutic targets, and can be used in methods for identifying, developing and testing therapeutic compounds, including for instance rapamycin derivatives, analogs, and mimetics. It will be apparent that the precise details of the methods described may be varied or modified without departing from the spirit of the described invention. We claim all such modifications and variations that fall within the scope and spirit of the claims below.

Table

	T	Ι	1			T	ſ	T	\top	T	T	T]	T
Sene Symbol	NAB1	PLAGL1	HEXA	SOX4	ETS2	H 000 0 4 100 0 4 100 0 4 100 0 4 100 0 10			201010			PBX3		
al susol	4664	5325	3073	699	2114	7089	2119					5090		
elit eli	NGFI-A binding protein 1 (ERG1 binding protein 1)	pleomorphic adenoma gene-like 1	hexosaminidase A (alpha polypeptide)	SRY (sex determining region Y)-box	v-ets avian erythroblastosis virus E26 oncogene homolog 2	TAR (HIV) RNA-hinding protein 4	ets variant gene 5 (ets-related molecule)	ESTs solute carrier family 18 (vesicular monoamine) member 2	ESTs	ESTs	Homo sapiens mRNA for CMP-sialic acid transporter, complete cds	pre-B-cell leukemla transcription factor 3	Human secretory protein (P1.B)	ESTS
Unigene Onigene	Hs.107474	Hs.75825	Hs.119403	Hs.83484	Hs.85146	Hs. 151518	Hs. 43697	Hs.46981 Hs.1813	Hs.5318	Hs.205929 Hs.206066	Hs.82921	Hs.171680	Hs.82961	Hs.91226
Direction	_	_	-	-	-	_	-	-	F	-	_	-	_	-
Ratio change	3.18	2.38	2.01	2.27	2.61	2.66	2.08	3.31	3.35	2.04	2.00	2.33	6.13	000
Conelation template max	. 1	-	-	-	·	-	-	-	-	-	-	4-	-	-
Conn	0.85	0.87	0.71	0.82	0.78	0.73	0.82	0.75	0.71	0.75	0.83	0.92	0.95	8
Cluster location	1.01	1.02	1.04	8	1.07	1.07		1.09	1.15	1.16	1.17	1.17	1.24	124 0 90
Cl ^{one Name}	Human transcriptional repressor (NAB1) NAB1 843249 mRNA, complete cds	nan LOT1 mRNA	BETA-HEXOSAMINIDASE 399604 ALPHA CHAIN PRECURSOR	SRY (sex determining region 788205 Y)-box 4	V-ets avian erythroblastosis 260303 virus E26 oncogene homolog 2	Human TAR RNA loop binding protein (TRP-185) mRNA, 287745 complete cds	ETS-RELATED PROTEIN ERM	ESTs	486787 Calponin 3, acidic		Human mRNA for CMP-sialic 796680 acid transporter, complete cds		INTESTINAL TREFOIL 298417 FACTOR PRECURSOR	ESTs
enolo egenil al	843249	Hun 796904 cds	399604	788205	260303	287745	ETS- 796542 ERM	243653 ESTs	486787	134495 ESTs	796680	448386	298417	124578 ESTs
GenB ^{ank} ID	AA486027	AA463204	AA733203	AA453926	H96235	N62244	AA460265	N49899 N50002	AA043228	R27712 R27711	AA460679	AA778198	N74131	R02295 R02294

rage Table

ı				-	T	Т-			1		1	Т	1			
	Gene Symbol	9122 SLC16A4	CD44	PEPD PEPD	10231 ZAKI-4	ARF3		GJA1			5057				RGS5	9411 PARG1
	Toche ID	9122	960		10231	377		2697			2252	2022			8490	9411
		s transporters),	function and stem)	٥	onsive (skin	r3		lpha 1, 43kD	o-reactive with	ntibodies	r 7	, and		-chain mRNA	signalling 5	oGAP 1
	ebit em	solute carrier family 16 (monocarboxylic acid transporters), member 4	CD44 antigen (homing function and Indian blood group system)	peptidase D peptidase D	thyroid hormone-responsive (skin fibroblasts)	ADP-ribosylation factor 3	ESTs	gap junction protein, alpha 1, 43kD (connexin 43)	Human protein immuno-reactive with	anti-PTH polyclonal antibodies mRNA, partial cds	fibroblast growth factor 7	ESTS		Human HLA-DR alpha-chain mRNA	regulator of G-protein signalling 5	PTPL1-associated RhoGAP 1
	Unigene	so (m Hs.23590 me	CE Hs.169610 Inc	1	th) Hs.156007 fib	Hs.119177 AC	Hs.76506 ES	ga Hs.74471 (α	로	an Hs.44566 mF	fib He 184568 //c	T		Hs.76807 Hu		
	Direction	<u>_</u>	<u>_</u> _	<u> </u>	<u> </u>	<u> </u>		<u>_</u>		<u>_</u>	_	-		<u>_</u>	_ =	
	Patho change	2.41	3.45	3.11	2.96	2.51	2.66	4.53		2.39	2.43	2.10		12.08	2.65	3.05
	xew əşeldwəş uorr	7-	-	1	1	1	1	-		-	7-	-	-	~	-	-
	Conrelation Connelation	0.98	0.72	0.95	0.91	0.75	0.75	0.95		0.90	0.82	0.81		0.89	0.78	0.78
	Cluster Pocation	1.27	1.29	1.31		1.32		1.34		1.35	1.35	_		1.38	1.40	1.40
		Human putative monocarboxylate transporter 141562 (MCT) mRNA, complete cds	CD44 antigen (cell adhesion 713145 molecule)	815284 Peptidase D	ZAKI-4 mRNA in human skin 51408 fibroblast, complete cds	22012 Human ETS2 gene	Lymphocyte cytosolic protein 1 344589 (L-plastin)	839101 Cardiac gap junction protein	Human protein immuno- reactive with anti-PTH	polyclonal antibodies mRNA, 511091 partial cds	Fibroblast growth factor 7 365515 (Keratinocyte growth factor)		HLA CLASS II HISTOCOMPATIBILITY	ANTIGEN, DR ALPHA CHAIN 153411 PRECURSOR	Homo sapiens mRNA for 853809 RGS5, complete cds	Human PTPL1-associated 884783 RhoGAP mRNA, complete cds
	Inage Clone	141562	713145	815284	51408	22012	344589	839101		511091	365515	144042 ESTs		153411	853809	884783
	GenB ^{ank} ID	R73608	AA283090	AA481543 AA481608	H19440	T66053	W73144	AA487623		AA088258	AA009609	R77126		R47979	AA668470	AA629603

Page Table

	T	Т	Т	T	Т	1			T		Т	Т	T	_	Ι		Т		T	Т	_	Т		Т	_
lodmy2 snoe) (88)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z.X.1	e Fac			PIPNZ									CD38	232	FNPFP			COX7B		PGY3	AIF1	
al supp	1486	3	4069 LYZ	7.		ļi	5771			10410						948		2028	200					199	
əhll sh	cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle)	ESTS	lysozyme (renal amyloidosis)	cystatin C (amyloid anglopathy and	ESTs	protein tyrosine phosphatase, non-	receptor type z	Human BRCAZ region, mRNA sequence CG006	Human 1-8U gene from interferon-	inducible gene family	ESTs	ESTs		H.sapiens mRNA for hcgVili protein	CD38 antition (collaboration)	receptor, thrombospondin receptor)	glutamyl aminopeptidase	(aminopeptidase A)	ESTS	ESTs cytochrome c oxidase subunit	Viib	ESTs P glycoprotein 3	multiple drug resistance 3	allograft inflammatory factor 1	ESTs
Unigene	1 2	Hs.143654	Hs.177746	Hs 135084	Hs.114055	00000	15.02028	Hs.110630		Hs.182241	Hs.23282	Hs.28456		Hs.153618		Hs.75613		Hs.291	Hs.90790	Hs:43936	Hs.75752	Hs.172769	Hs.73812	Hs.76364	Hs.7905
Direction		-	-	-	-	-	-			_	<u> </u>	-		-		<u>+</u>		<u> </u>	-	F	<u>-</u>	_	<u></u>	-	<u>н</u>
Asilo change		2.18	2.43	2.20	3.29	2 63	70.7	2.28		2.18	2.48	2.21		2.48		4.46		5.15	2.08		4.67		3.05	3.49	2.47
no ^{Dbi-}	-	-	-	-	-	,	1	7		7	7	7	,	7		7		7	2		2		7	2	7
ASM Confeletion notice	0.80	0.72	0.81	0.81	0.77	2 0	2	0.80		0.78	0.72	0.82	8	0.83		0.88		0.82	0.85		0.79		0.88	0.83	0.95
Cluster location	1.42	1.42	1.43	4	1.45	9		1.94			1.96	1.98		88.		2.00	-	2.03	2.04		2.04			_	2.07
Clone Name	sapiens e-rich pr compl			Cystatin C (amyloid angiopathy 949938 and cerebral hemorrhage)		Protein tyrosine phosphatase, 773567 non-recentor type 2	MDNIA	<u> </u>	INTERFERON-INDUCIBLE	EIN 1-8U			H.saplens mRNA for hcgVIII		CU36 antigen (collagen type i		Glutamyl aminopeptidase	opeptidase A)		chrome c oxidase subunit			83	aft inflammatory factor 1	
iniage Clone	75254	109314 ESTs	293925	949938	132835 ESTs	773567		415529		809910	142326 ESTs	139660 ESTs	435855	22022		243816		489839	130895 ESTs		GIIV 021862		39920	343867	142139 ES18
GenBank ID			N63943		R27432	AA428893	╀	W80632		5	-	R63900	AA701554	+		N39161	_	<u>_</u>	-		+	K53835	1		1/7ROW

rage 4 Table 1

					,					_		_	,		_			_			_		_
Joquing Buage			MEIS2	PIGH		5	HKE1.5		PAH		EFNB1		:	SMARCA1	MT1L			CD3G		10247 UK114			
QI SNOOT	4483		4212	5283	3470		9264		5053		1947			6594	4500 MT1		3	917		10247			
eht eh	metallothionein 1E (functional)		Meis (mouse) homolog 2	phosphatidylinositol glycan, class H ESTs	Insulin-like growth factor 1		GDS-related protein		phenylalanine hydroxylase		ephrin-B1	ESTs	SWI/SNF related, matrix associated, actin dependent regulator of	chromatin, subfamily a, member 1	metallothionein 1L	ESTs	CD3G antigen, gamma polypeptide	(III3 complex)		translational inhibitor protein p14.5	EST Human histamine N-	methyltransferase (HNMT) mRNA,	complete cds
no _{enegin} u	8.7		Hs.104105	Hs.177 Hs.205655	He 85112		Hs.170160		Hs.1870		Hs.144700	Hs.199211		Hs.152292	Hs.94360	Hs.93231	0	BC77'SH		Hs.18426		Hs.161090	H8.81182
Direction	_		-	_	_		-		_		_	-		_	_	-	-	-		_		_	_
Ratio change			3.99	2.08	277		2.24		2.77		2.05	2.17		3.73	.2.80	2.28	50	0.33		2.55		i	2.05
nour xem edelqmed	7		7	2	^	ļ .	7		8		~	2		7	2	5	,	7		7			7
Max Conelation ferring	0.79		0.94	0.71	0.89		0.75		0.98		0.94	0.71		0.97	98.0	0.85	8	3		0.79		_	0.70
Cluster location	2.07	_	2.08	2.09	2 09		2.09		2.11		2.11	2.12		2.13 0	2.13 (2.13	5			2.14 0			Z.15 C
Clone Name	metallothionein-le gene	lens homeobox IS2 (MEIS2) mRNA,		Human GPI-H mRNA, 796147 complete cds	Insulin-like growth factor 1	like 2 (RGL2)		Homo sapiens phenylalanine		Human placenta LERK-2	lete cds	Н	SNF2 (sucrose nonfermenting,	-like 1	othionein 1L		CD3G antigen, gamma	†	translational inhibitor protein		ż	nyitransterase, complete	
image Clone al		- 	503083	796147	813179	3	/41891	_ _	461727		756968	814636		897667	297392	322723 EST8	66300	2700	- 	295729 p14.5		70000	202042 CUS
GenB ^{ank} ID	AA872383		AA148641	AA460986 AA461293	AA456321	00000	AA401972		AA682293		AA428778	AA481026		AA496809	N80129	W39618	168799	2000		N72715	000	N25338 N34452	3041CN

Page (

	Т-					_	_	Т					_				
lodrinyê eneê		·	UGT2B15	UGT2B15	4354 MDD1	2944 GSTM1		RCV1		DDD3CA	5	ADARR4			t IEI ING		4495 MT1G
ol snoot					4354	2944		5957		5530		ξ			5413		4495
ehit eh	ESTs	ESTs Vitamin D binding protein (Alu sequence, exon 9, Intron 8) [human, blood cells, Genomic, 469 nt]	UDP glycosyltransferase 2 family, polypeptide B15 UDP glycosyltransferase 2 family,	polypeptide B15	membrane protein, palmitoylated 1 (55kD)	glutathione S-transferase M1	ESTs	recoverin	protein phosphatase 3 (formerly 2B).	catalytic subunit, alpha isoform (calcineurin A alpha)		adenosine deaminase, RNA-specific, B1 (homolog of rat RED1)		Homo sapiens nucleolar autoantigen No55 mRNA complete cds	peanut (Drosophia)-like 1		metallothionein 1G
Unigene	8	Hş.174319 H <u>ş</u> .34212	Hs.203276	Hs.150207	Hs.1861	Hs.154159	Hs.34498	Hs.80539		Hs 92		Hs.85302		Hs.121927	Hs.3847		Hs.173451
Direction		<u> </u>	<u></u> .			-	-	<u>-</u>							_	 	<u> </u>
Redio change		3.77		6.32	2.92	2.85	2.87	2.11		2.57		2.11		2.59	2.77		2.01
nolber Xem edelqmed	2	2		2	2	2	7	7		7		. ~		0	8		7
Max. Corelation folialion	96.0	0.93	00	0.88 86.0	0.97	0.95	96.0	0.70		0.97		0.74		0.82	0.76	-	0.93
Cluster location	2.16	2.18		2.19	2.19	2.20		2.22		2.22		2.23		2.24	2.25		2.25
Clone Name	ESTs	Group-specific component 195340 (vitamin D binding protein)	sferase	(2)	Membrane protein, 296880 palmitoylated 1 (55kD)	ase M4			Protein phosphatase 3 (formerly 2B), catalytic subunit,	alpha isoform (calcineurin A 431296 alpha) (alternative products)	Human dsRNA adenosine deaminase DRADA2b	ADA2b) mRNA, complete	Homo sapiens nucleolar	autoantigen No55 mRNA, 347434 complete cds	b (platelet), beta	Human (clone 14VS)	<u> </u>
	143756 ESTs	195340	7000	b870/	296880	713922	203772 ESTs	383188		431296		(DR 842939 cds		347434	308041		202535
GenBank ID	R76498	R89567 R88884	T50788	Cenci	N74236	AA290738	H56088	AA074224		AA682631		AA489331		W81191	N92319		H53340

Page 6 Table 1

		\neg	_	Т	7	Т	\top		$\overline{}$		_		Γ-		-	_			_				,
	Odens Symbol)o	DI02	40070	0 Er 32					1406	LI IM	2550 GABBR1			3013 1 AMBO	7000		1L18R1		, T.	¥	MSH2	SLC1A3
	-13(ارر		1007	3		_			9077	3	2550		, 1,0,7	3013	3		8809		101	13/4	4436	6507
	ebit 2	ESTs delodinase	iodothyronine, type II	signal transduction protein (SH3 containing)	ESTs	Homo sapiens box-dependent myc- interacting protein Isoform BIN1-10- 13 (BIN1) mRNA, commiste cde.	ESTs	71. Sapiens serum paraoxonase (PON)	ilikiwa, 3 end	metallothionein 1H	gamma-aminobutyric acid (GABA) B	receptor, 1 "confirmed"	Vineyin help (SU3) clay nixeliu	molecule-1)	laminin, beta 2 (laminin S)			Interieukin 18 receptor 1		carnitine palmitovitransferase 1 111.00	mutS (E. coli) homolog 2 (colon	cancer, nonpolyposis type 1)	solute carrier family 1 (glial high affinity glutamate transporter),
Table 1	nobsenic อกอยเกร	17	Hs.154424	Hs.24587	Hs.172084	Hs.206051	He 406820	Hs 194738	113.134130	Hs.2667		HS.16/017	•	Hs.33787	Hs.90291		U2 450204	ns. Iosaul		Hs.29331		HS. /8934	Hs.75379
-	96n-	<u>'L</u>	1	_	-			_		_		-		-	-		-	-		-	-	-	-
	Refio change		2.68	2.37	2.10	3.49		6.22		2.70	6	4.3		2.38	2.70		3 27	13.5		2.17	60 1	3	2.53
	xemelation femplate max	,	7	2	7	2		7		7	·	1		2	2		~	+		2	~~~	,	8
	Max Sorrei	8	00.0	0.70	8	0.78		0.77	-	0.78	- C	3		0.82	0.82		0.76	+		0.79	0 83	1	0.87
	Cluster location	202	_	2.28	2.30 0.80	2.31		2.34		2.35	235			_	2.37 0		2.41 0	+		2.42	2 00 0	_	2.90 0.
	Clone Name		s mRNA for Efs1,	ete cds		Homo sapiens amphiphysin II 788107 mRNA, complete cds			H.sapiens mRNA for	27 4740	ror	ontaining	cule-1 mRNA,	1	Human putative	transmembrane receptor IL-		-	palmitoyltransferase I (CPTI)	4 13978 mRNA, complete cds	H2	AINO ACID	813678 TRANSPORTER 1
	Inage Clone	66582 ESTs		795730 comp		788107 г		128143 F	214162 1		298231 G	<u> </u>	8 453400	502518		<u> </u>	755054 11	Ι	D.	4159/8 III	630013 D	ω	813678 TF
	GenBank 1D	T67093		AA460282 N63646		AA453175	R12373	RUB/61	H77597		N70841		AAZOOSS	AA156802			AA482637		10/85710	1	AA219061		AA453742

Page 7

			· · · ·	Γ			Г	_		1	Т	<u> </u>	T		
Sene Symbol	UCP2	PSG4	PLAT	PRRG2			000		oi YNS		VIM				
9/ Snoo7	7351	5672	5327	5639			87.08	2	5364	3	7431 VIM				
_{भिर्म} ि होंग	uncoupling protein 2 (mitochondrial, proton carrier)	pregnancy specific beta-1- glycoprotein 4	plasminogen activator, tissue	proline-rich Gla (G-carboxglutamic acid) polypeptide 2		ESTs	Mirrofihri accordated attraverstein 9	הומסווסים אלוסים היים היים היים היים היים היים היים ה	nlavin 5	ESTs	vimentin	ESTs	Human BRCA2 region, mRNA sequence CG018	Homo sapiens alpha mannosidase	6A8B (6a8b) mRNA, complete cds
Unigene	8.	Hs.206128	Hs.173736	Hs.35101		Hs.198092		70000	He 200480	Hs.90638	Hs.2064	Hs.167418	Hs.22174		Hs.26232
Direction	_	_	_	_		_		-	_		_	_	_	Ì	_
Retio change	2.23	3.30	3.10	2.20		3.88	2 54			2.18	3.02	4.09	5.06		2.05
Semelation Semple max	3	ო	က	ო		က	~	,	ď	6	3	က	က		ო
XeM Xemoo	0.85	0.89	0.84	0.71	18 44 /	0.89	ă		78.0	0.89	0.84	0.96	0.93		0.76
Cluster location	2.90	2.91	2.92	2.92		2.92	2 82		2 93	2.93	2.94	2.95	2.95		2.95
	Uncoupling protein 2 236034 (mitochondrial, proton carrier)	Pregnancy-specific beta-1 257162 glycoprotein 4	Plasminogen activator, tissue type (t-PA)	Homo sapiens proline-rich Gla protein 2 (PRGP2) mRNA, 770074 complete cds	Human mitochondrial 1,25- dihydroxyvitamin D3 24-	cds	Human microfibril-associated glycoprotein-2 MAGP-2 mRNA, 377692 complete cds	Homo sapiens microsomal	glutathione S-transferase 3 755952 (MGST3) mRNA. complete cds	STS	mentin	Cholinergic receptor, nicotinic, 415084 alpha polypeptide 7	Human BRCA2 region, mRNA 841695 sequence CG018	Homo sapiens alpha- mannosidase (6A8) mRNA,	183462 complete cds
Image Clone	Ur 236034 (m	Pr 257162 gly	Plasminog 813841 type (t-PA)	Hc pro 770074 co	<u> </u>	266146 cds	HL gly 377692 co	1	glt 755952 (M	297063 ESTs	840511 Vimentin	415084 alp	H. 841695 se	Ĭ Ĕ	183462 co
GenBank Ib	H61243	N30553	AA447797	AA430552		N21576	AA056042		AA496565	W03787	AA486321	W93369	AA487590	i i	H45455

 		_			_	-,	_	_	-	_	_				
Gene Symbol		CPA3	HSD17B3					TM4SF3	ANX1	IL7R				a E	
al susol		1359	3283	7035	3			7103	304	3575				4306	2773
ett ett	Homo sapiens clone 23619 phosphoprotein mRNA, partial cds	carboxypeptidase A3 (mast cell)	hydroxysteroid (17-beta) dehydrogenase 3	tissue factor pathway inhibitor (lipoprotein-associated coagulation	ESTS	ESTs ESTs	ESTs	transmembrane 4 superfamily member 3	annexin I (lipocortin I)	interleukin 7 receptor	ESTs	H.sapiens mRNA for glutamine cyclotransferase	ESTs	mineralocorticold receptor (aldosterone receptor)	four and a half LIM domains 1
Unigene	1 5.	Hs.646	Hs.477	Hs 170279	Hs.64065	Hs.24822 Hs.198609	Hs.195553 Hs.196882	Hs.84072	Hs.78225	Hs.109703	Hs.15702	Hs.79033	Hs.75733	Hs.1790	
Direction	_	-	_	-	-	_	_	_	=	-	_	_	-	_	_
Apr. Open		2.53	6.52	2.41	5.53	3.30	7.36	3.17	2.90	4.56	4.55	3.13	4.88	3.31	2.26
no ^{Der} no ^{Der}	ო	ო	က	က	3	က	3	က	က	က	က	က	6	ო	က
Max Correlation semes	0.91	0.92	0.80	0.73	0.81	0.87	0.74	0.98	0.92	0.84	26.	0.80	0.87	0.98	0.82
Cluster location Men	2.96 0	2.96 0	2.97 0	2.97 0	2.97 0	2.97 0	2.98 0	2.98 0			2.98 0	2.98	2.98 0	2.98 0	2.89 0
Cl ^{one Name}	no sapiens clone 23619 sphoprotein mRNA, partial	ooxypeptidase A3 (mast	Hydroxysteroid (17-beta) 758222 dehydrogenase 3	TISSUE FACTOR PATHWAY 71116 INHIBITOR PRECURSOR			EIN KINASE C, THETA	٥		ukin 7 receptor		r glutamine	E 28	Mineralocorticoid receptor 784296 (aldosterone receptor) 2	Homo sapiens skeletal muscle LIM-protein FHL1 mRNA, 813266 complete cds
inage Clone di	Hon pho 731051 cds	Cart 80221 cell)	758222	71116	137139 ESTs	136557 ESTs	PROT 205239 TYPE	509731	208718,	840460	111750 ESTS	711918	809998	784296	813266
Gengank la	AA421284	T64223	AA437291	T50282	R36006	R34604 R34603	H60824 H60910	AA045699	H63161	AA485865	191100	AA282134	AA454854	AA447079	AA455925

rage y

		1	т	F				_	-					_	_
Sene Symbol	BST1	FACL 1	ABC50		7 EN	TPKB		5774 PTPN3	CHN1	P14 RP1.37				8620 FMRFAL	G B
QI SNOOT	683	_	23		27.67	3707		5774	1123 CHN1	5267				8620	1356 CP
euit e ^h	bone marrow stromal cell antigen 1	fatty-acid-Coenzyme A ligase, long- chain 1	ATP-binding cassette 50 (TNF-alpha stimulated)	phosphatase and tensin homolog (mutated in multiple advanced	cancers 1)	inositol 1,4,5-trisphosphate 3-kinase B	Human cadherin-associated protein- related (cap-r) mRNA, complete cds	protein tyrosine phosphatase, non- receptor type 3	chimerin (chimaerin) 1	protease inhibitor 4 (kallistatin) ribosomal protein L37	Human ovarian cancer downregulated myosin heavy chain	homolog (Doc1) mRNA, complete cds	FMFRamide-related peptide	precursor	ceruloplasmin (ferroxidase)
en _{ep} inU	1.5	Hs. 154890	Hs.9573	07207	Hs 118174	Hs.78877	Hs.150917	Hs.153932	Hs.169965	Hs.159628 Hs.179779		Hs.15432		Hs.104555	Hs.204819
Direction	_	_	_	-	-	_	_	_	-	_		_		-	<u> </u>
Per change		3.27	2.02	6	2.00	2.51	3.34	5.06	2.05	3.37		3.43		2.41	8.30
nous Xem edelqmed	က	ო	е		n 6	8	ო	m	က	က		ო		2	ლ
Max. Contelation fem.	0.79	0.87	0.85	Š	16.0	0.83	0.86	0.75	0.97	0.78		0.73		0.95	0.95
Cluster location	2.99	2.99	2.89	9			2.99	3.00	3.00	3.00		3.00 (3.01
Clone Name	γ̈́	thain fatty acid acyl-coA	sapiens TNF-alpha ated ABC protein 0) mRNA, complete cds	sin nultiple	RD,	trisphosphate 3-	Human cadherin-associated protein-related (cap-r) mRNA, 17772 complete cds	ne phosphatase, type 3		Homo sapiens kallistatin (PI4) 248412 mRNA, complete cds	Human ovarian cancer downregulated myosin heavy chain homolog (Doc1) mRNA,		s FMRFamide- opeptide mRNA,		223350 Ceruloplasmin (terroxidase)
Inage Clone		Long c 82734 ligase	811161	322460	844725	276091 k	177772	461804	898258	248412	- 5 5	344139) REGGE/	22335011
GenBank ID	N27179	773556	AA486482	W37864	AA670134	R94153	H45976	AA682684	AA598668	N58558 N78159		W69790	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A4400000	H80004

Page 1

				,		,				,					
lodmy2 ana2		RBBP1	SPARC	NSS		PAM	OA1		10253 SPRY2	2949 GSTM5				FAP	3215 HOXB5
Ol snool	<u>'</u>	5926	6678	2934		5066	4935		10253	2949				2191 FAP	3215
elit e ^{it}	Human metallothionein (MT)I-F gene	retinoblastoma-binding protein 1	secreted protein, acidic, cysteine-rich (osteonectin)	gelsolin (amyloidosis, Finnish type)	ESTs	peptidylglycine alpha-amidating monooxygenase	ocular albinism 1 (Nettleship-Falls)	ESTs	sprouty (Drosophila) homolog 2	glutathione S-transferase M5	ESTs	Human POM-ZP3 mRNA, complete	spo	fibroblast activation protein, alpha	homeo box B5
onegin ^U	1.8	Hs.91797	Hs.111779	Hs.80562	Hs.197863	Hs.83920	Hs.74124	Hs.194860	Hs.18676	Hs.75652	Hs.6557		Hs.144645	Hs.418	Hs.22554
Direction	_	_	_	_	_	_	_	-	_	_	_		-	-	_
Retto change		4.08	2.92	2.57	8.69	3.54	2.20	2.64	2.40	2.30	2.15		2.13	3.00	2.07
Contelation femplate max	က	3	က	ო	က	ო	ო	ო	ო	က	ო		e	က	3
Max	0.99	0.91	0.94	0.93	0.80	0.95	0.94	0.93	0.99	0.95	0.88		0.81	0.91	0.88
Cluster location	3.01	3.01	3.01	3.01	3.01	3.01	3.01	3.01	3.01	3.01	3.02		3.02	3.02	3.02
Cl ^{one} Name	ın metali	Retinoblastoma-binding protein 502832 1{alternative products}	250654 SPARC/osteonectin	GELSOLIN PRECURSOR, PLASMA	Human homeobox gene (clone HHO.c13)	Peptidylglycine alpha- 140806 amidating monooxygenase	H.sapiens mRNA (ocular 1469234 albinism type 1 related)	Human plectin (PLEC1) mRNA, 781362 complete cds	Homo sapiens Sprouty 2 813698 (SPRY2) mRNA, complete cds	377731 Glutathione S-transferase M5	Human mRNA for DB1, 79782 complete cds	ZONA PELLUCIDA SPERM- BINDING PROTEIN 3A	188844 PRECURSUR	s	150702 Homeo box B5 (2.1 protein)
· · ·		Ret 1{al	SP/	GE 7	로포	Per 3 ami	H.s.	Hur con	Hor (SP	핑	Hur Con	N N	ž	Hur S prof	된
enolo egenil al	Hums 78353 gene	502832	250654	GELSOL 214990 PLASMA	Human ho 813611 HHO.c13)	140806	1469234	781362	813698	377731	79782	-	10004	772425	150702
GenBank ID	T56221	AA128328	H95859	H72028	AA447692	R66310	AA865729	AA448400	AA453759	AA056232	T64057	2000	24420242	AA405569	H02340

rage 1 Table 1

			T	Γ			T	T						_	•					Γ					-
Gene Symbol						200	SSIU ACOAS			SAS									DYRK1						
al susor						0.040	3			6302 SAS															
euit eh	Homo sapiens UDP glucuronosyltransferase 2B4 precursor (UGT2B4) mRNA,	UGT2B4*L109, L396 variant allele, complete cds	ESTs	ESTs	ESTs	acyl-Coenzyme A oxidase 3,	FSTs (3' of PTEN)		sarcoma amplified sequence	ESTs	ESTs	EST			ESTs	ESTs	Homo Sapiens mRNA, partial cDNA	DCR1-16.0 dual-specificity tyrosine-	(M-phosphorylation regulated kinase	ESTs	proopiomelanocortin	(adrenocorticotropin/ beta-lipotropin/	alpha-melanocyte stimulating	hormone/ beta-melanocyte	
Unigene	,	Hs.89691	Hs.38327	Hs.194292	Hs.93961	По 49773	Hs.27865		Hs.50984	Hs. 146261	Hs.36069	Hs.25056			Hs.177743	Hs.23479		Hs.66185	Hs.75842					Hs.191622	
Direction		_	-	-	-	-	- -			-	_	-			1	_		•••	_						
Ratio change		3.91	2.34	2.28	4.53	2 20	2.26			2.38	2.41	3.29			2.80	2.71			2.83						
Confeletion (emplate max		ო	က	က	က	~	, e			က	3	3		,	က	3			က						•
Max Conei		0.99	0.97	0.83	0.81	8	0.82			0.83	0.76	0.93			0.84	0.97		•	0.94						
Cluster location M		3.03	3.04	_	3.04	2				3.05	3.05	3.05				3.05			3.05						100
Cl ^{one Name}	UDP. GLUCURONOSYLTRANSFER	ASE 2B4 PRECURSOR, 246430 MICROSOMAL	ESTs	ESTs	ESTs	H.sapiens mRNA for pristanoyl-	ESTs	Human transmembrane 4	superfamily protein (SAS)	35105 mRNA, complete cds	ESTs	ESTs	-	like protein 4 mKNA, complete	cds	ESTs	Dual-specificity tyrosine-(Y)-	phosphorylation regulated		Proopiomelanocortin	(adrenocorticotropin/ beta-	lipotropin/ alpha-melanocyte	stimulating hormone/ beta-	melanocyte stimulating	20000000000000000000000000000000000000
Ola Beaning Chone		246430	210494 ESTs	120681 ESTs	132140 ESTs	431501	366966 ESTs		•	35105	201393 ESTs	137096 ESTs		-	453005 cds	131050 ESTs			897485 kinase						11000108
GenB ^{ank} ID		N53031	H64888	T95657	R26163	AA676223	AA026470		R45413	R25074	R99084	R35979		-	AA7/9165	R23227		AA496916	AA497079					AA446316	

Fage 1

		т-		Т	<u> </u>				т-	_		т-	_		_			Τ			T		Τ-			 	_
lodmy ² ene	2539 G6PD		6480 SIAT1	345 APOC3		SPINK1			NT5			PLG		6711 SPTBN1			4647 MYO7A			200	ANKICI	P112			PBX2		6385 SDC4
Cocus ID	2539		6480	345		0699			4907 NT5			5340 PLG		6711			4647			,	<u> </u>	5274			5089		6385
ehit eh	glucose-6-phosphate dehydrogenase	eialvitraneferasea 1 (hota nalantheida	alpha-2,6-sialytransferase)	apolipoprotein C-III		serine protease inhibitor, Kazal type 1	ESTs	ESTs	5' nucleotidase (CD73)	Human 1-8D gene from interferon-	inducible gene family	plasminogen		spectrin, beta, non-erythrocytic 1		myosin VIIA (Usher syndrome 1B	(autosomal recessive, severe))	aldo-keto reductase family 1, member	C1 (dihydrodiol dehydrogenase 1; 20-	alpha (3-alpha)-hydroxysteroid	deriyarogenase)	protease inhibitor 12 (neurosemin)		pre-B-cell leukemia transcription	factor 2		syndecan 4 (amphiglycan, ryudocan)
Unigene eneginU	8.8		Hs.2554	Hs.73849	£	Hs.181286	Hs.205999	Hs.19404	Hs.153952		Hs.174195	Hs.75576		Hs.107164			Hs.95361			100 204 0E 7	113.201307	Hs.78589			Hs.93728		Hs.72082
Direction	T -		_	-		_	-	-	_		_	-		_	Γ		_		-	_	┰		T		_		_
Ratio change			3.78	2.71		3.77	2.56	3.41	3.37		2.46	2.54		4.63			3.43			29 0	3	2.27			2.04		2.82
nove Xem edelqmed	က		က	က	,	က	က	က	က		ო	က		ო			က				,	ო			4		4
Max Confelation tem	0.99		0.92	96.0		0.95	98.0	0.97	0.97		0.94	0.94		06.0			0.82			2	<u> </u>	0.86	l		0.70		0.71
Cluster location	3.06		3.06	3.06		3.06	3.06	3.06 (3.06	 	3.06	3.07		3.08	-		3.09			3 10		3.10			3.54 (3.55
Clone Name		Sialyltransferase 1 (beta- galactoside alpha-2.6-		-111	e protease Inhibitor, Kazal					INTERFERON-INDUCIBLE	1455976 PROTEIN 1-8D	66982 Plasminogen-like protein	Spectrin, beta, non-enythrocytic		Myosin VIIA (Usher syndrome	1B (autosomal recessive,				196999 Nihydrodiol dehydrogenese	ا	_	Human lysophosphatidic acid	acyltransferase-alpha mRNA,	814409 complete cds	4 (amphiglycan,	504763 ryudocan) 3
anolo egenil	58246	U	97906	46765,		1412481 type 1	111150 ESTs	124071 ESTs	42070	_	55976	56982		362483 1	F	<u>. </u>	82195			1 66666		34621 i			14409	-	0476311
GenBank ID	AA424938 76		52	N53169 2		8	+		R60343		7	T67549 (AA018780 36			AA062993 38			R93124 18	\dagger	AA115877 56			AA458922 8		AA148737 50

Page 13 Table 1

	F		<u> </u>	Τ-			1	_			_		_	_			_	_		$\overline{}$			_		_
lodring graps	2286 FKBP2	6892 TAPBP	GATA6			HLCS				9128 HPRP4P		4232 MEST		8569 MKNK1		25	SEA3 INSP		7114 TMSB4X						2823 GPM6A
al susol	2286	6892	2627			3141				9128		4232		8569			3643	2	7114						2823
_{əbī} t e ^h	FK506-binding protein 2 (13kD)	TAP binding protein (tapasin)	GATA-binding protein 6		holocarboxylase synthetase (biotin- proprionyl-Coenzyme A-carboxylase	(ATP-hydrolysing)] ligase)	ESTs			PRP4/STK/WD splicing factor	mesoderm specific transcript (mouse)	homolog	MAP kinase-interacting	serine/threonine kinase 1	ESTs	Cytochrome c oxidase subunit X	insulin recentor		thymosin. beta 4. X chromosome						glycoprotein M6A
Unigene	2,5	Hs.179600	Hs.50924	i.		Hs.79375	Hs.172620		_	Hs.8551		Hs.79284		Hs.5591		HS.138660	Hs 89695		Hs.75968					•	Hs.75819
Direction	_	_	-			_	_			_		_		_		_	-	$\cdot \Gamma$	_			_			_
Retio change		2.73	2.15			2.58	2.17			2.01		2.01		2.60		. 190	253		2.38			2.24			2.22
xem alalqmal	4	. 4	4			4	4			4		4	-	4		_	4		4			4			4
Nex	0.74	0.80	0.81			0.80	0.78			0:78		0.73		0.84		72.0	0.87		0.76			0.79			0.91
Cluster location	3.60	3.60	3.62			3.63	3.66			3.66		3.67 (0		3.67 (0		2 70	371	_	3.71			3.71			3.72
	TEIN	Homo sapiens tapasin (NGS-82903 17) mRNA, complete cds	actor plete cds	Holocarboxylase synthetase	(blotin-[proprionyl-Coenzyme A-carboxylase (ATP-hydrolysing)]	. (Homo sapiens U4/U6 small	nuclear ribonucleoprotein	436155 hPrp4 mRNA, complete cds	Mesoderm specific transcript		Human mRNA for MNK1,	773637 complete cds		Oggaza A. famecultransferace		n beta-4		Homo sapiens Notch3	(NOTCH3) mRNA, complete		Human fetus brain mRNA for	/coprotein M6,	/84910 complete cds
		903 17	736 hC	Ĭ	6 8	246 lig	125685 ESTs	ヹ	<u> </u>	155 h	2	219 (n	ヹ	637 CC		2 × C	812 In	트	368 m	ヹ	<u> </u>	81475 cds	Í	E	91010
inage Clone al	143	82	234			812	125			436		888		73		280	427		868			20		-	\$
G _{enBank} Ib	R75820	T69304	H77652			AA455043	R07594			AA703250		AA598610		AA431885	0007014	N24660	AA001614		AA634103 .						AA44/632

Page 1 Table

	· · · · · · ·			,									_	_			
lodmy2 onoE	Piga	IRF3	10461 MERTK		COL 8A1		10129 13CDNA73	3960 LGALS4	2331 FMOD			2948 GSTM4	590 BCHE	1290 COL5A2	070700	Powero	EFNB2
al suso	9540 PIG3	3661	10461		1295		10129	3960	2331			2948	290	1290		RADO	
evit et	auinone oxidoreductase homolog	interferon regulatory factor 3	c-mer proto-oncogene tyrosine kinase	ESTs Human zinc-finger protein mRNA, complete cds	collagen, type VIII, alpha 1	ESTs NO HOMOLOGY TO	putative gene product	lectin, galactoside-binding, soluble, 4 (galectin 4)	fibromodulin		ESTs	glutathione S-transferase M4	butyrylcholinesterase	collagen, type V, alpha 2	proteasome (prosome, macropain)	ESTs	ephrin-B2
on ^{gene}	3.5	Hs.75254	Hs.78941	Hs.173067 Hs.204377	Hs.114599	Hs.23349	Hs.181304	Hs.5302	Hs.230		Hs.171374	Hs.82891	Hs.1327	Hs.82985	Le 0864	Hs.206183	Hs.30942
Direction	_	-	_	_	_	-	-	_	-		-	- -	-	_	_	-	-
Apple Change		2.33	2.35	2.13	2.88	3.29	2.04	2.23	4.10		2.01	2.30	27.7	3.65	2.44		2.08
Sonelation femplate max	4	4	4	4	4	4	4	4	4		4	4	4	4	4	-	4
Max	0.85	0.76	0.77	0.80	0.72	0.95	0.94	0.92	0.89		0.97	0.94	0.98	0.88	77		0.97
Cluster location	3.73	3.74	3.74	3.75	3.75	3.75	3.78	3.76	3.77				-+	3.81	3.82		3.82
Cl ^{one Name}	Homo saplens Pig3 (PIG3) mRNA, complete cds	r interferon	Human cellular proto-oncogene 753069 (c-mer) mRNA, complete cds	Human zino-finger protein 377320 mRNA, complete cds			ri,	tin-4 (GAL4) lete cds		nan Smg GDS-associated eln SMAP mRNA, complete	\dashv	96 M4	0		PROTEASOME COMPONENT 68977 MECL-1 PRECURSOR	osine	796198 kinase ligand 5
Anolo egemi	859359	809353	753069	377320	1472775	130826 ESTs	46284	586685	811162		50680 cds	484664	1401041	/80013	68977		796198
GenBank ID	AA668595	AA456570	AA436564	AA055504 AA055503	20	R22189	H09111	AA130579	AA485748		H16824	+	1,	AA401430	T54166	AA461108	AA461424

rage 15 Table 1

				_		_				_		_			_			_	· ·	_		_		
loquing eues		8991 SELENBP1	2217 FCGRT		FPR72	i			BRF1					CPN4			6646 SOAT1				3115 HLA-DPB1			PTN
Ol susol		8991	2217		2040				677				L	1369			6646				3115			5764 PTN
əbit e ^{it}		selenium binding protein 1	Fc fragment of IgG, receptor, transporter, alpha	endhronde membrene protein band	7.2 (stomatin)	ESTS	E218	butyrate response factor 1 (EGF-	ESTs		ESTs	ESTs	carboxypeptidase N, polypeptide 1,	50KD	sterol O-acyltransferase (acyl-	Coenzyme A: cholesterol	acyltransferase) 1	ESTs	ESTs	major histocompatibility complex.	class II, DP beta 1	pleiotrophin (heparin binding growth	factor 8, neurite growth-promoting	factor 1)
nor eneginU		Hs.7833	Hs.160741		Hs.160483	Hs.6838	HS.200100	Hs 85155	Hs.33905		Hs.36102	Hs.200466		Hs.2246			Hs.14553	Hs.47962	Hs.3046		Hs.814			Hs.44
Direction		-	_		_	_	-		_		_	-		_			-	-	_		_			-
Radio change		2.42	2.93		3.10	6	4.04		2.43		2.06	2.05		3.06			2.10	2.65	2.67		2.07			2.02
Contelation female in the state of the state		4	4		4	,	+		4		4	4		4		_	4	4	4		4			4
Max		9.3	0.95		0.82	8	8		0.86		0.91	0.93		0.77			0.81	98.0	0.77		0.93			0.98
Cluster location		3.83	3.84		3.84	206	-+		3.85	_	3.86	3.86		3.87 (3.87 (3.87		3.88 (3.88
Clone Name		80338 complete cds	Human IgG Fc receptor hFcRn 770394 mRNA, complete cds	ERYTHROCYTE BAND 7 INTEGRAL MEMBRANE	138936 PROTEIN	RhoE	10151		768299 H.saplens ERF-1 mRNA 3' end	Human metallothionein I-B		32493 Integrin, alpha 6	Arginine carboxypeptidase	432210 (carboxypeptidase N)	Sterol O-acyltransferase (acyl-	Coenzyme A: cholesterol	126858 acytransferase)	ESTs		Major histocompatibility	beta 1	Pleiotrophin (heparin binding	growth factor 8, neurite growth-	361974 promoting factor 1)
image Clone		80338	770394		138936	784593 RhoE	2		768299		232772 gene	32493		432210			126858	245936 ESTs	1161775 VILLIN		840942			361974
G _e nB ^{ank} IĎ	001301	105/30	AA430668		R62817	AA443302 AA443435	3	AA424743	AA495759		H72722	R43483		AA679422			KU/296	ᅥ	AA876039	-	AA486627		0,700	AA001449

Fage 1

			Т			T			,	_	1	_	
lodiny & enes	HNF4G				MITF	TNFSF12	SH3GL2	QSCN6 AKT1	1949 EFNB3	1415 CRYBB2	ALOX5	ALOX12	5463 POU6F1
GI SNOOT		3082		_		8742	6456	QSCI 5768 AKT1	1949	1415	240	239	5463
ell sh	ESTs hepatocyte nuclear factor 4. gamma	hepatocyte growth factor (hepapoletin A; scatter factor)	Human leukemia virus receptor 2 (GLVR2) mRNA, complete cds	Homo sapiens mRNA for A-type microphthalmia associated transcription factor, complete cds	microphthalmia-associated transcription factor	tumor necrosis factor (ligand) superfamily, member 12	SH3-domain GRB2-like 2	quiescin Q6 v-akt murine thymoma viral oncogene homolog 1	ephrin-B3	crystallin, beta B2	arachidonate 5-lipoxygenase	arachidonate 12-lipoxygenase	POU domain, class 6, transcription factor 1
no. _{Onebla} n	5.1	Hs.809	Hs.75867		Hs.82000 Hs.166017	Hs.26401	Hs.75149	Hs.77266 Hs.71816	Hs.26988	Hs.169286	Hs.89499	Hs.1200	Hs.2815
Direction	_	_	_		_	_	_	_	_	-	_	_	1
Ratio change		2.97	2.23		2.71	2.30	2.36	2.10	3.43	2.08	2.29	2.34	2.22
Sonielation templation sem alalamax	4	4	4		4	4	4	4	4	4	4	4	4
Max	0.87	0.89	0.73		0.79	0.87	0.91	0.91	0.89	0.88	98.0	0.92	0.83
Cluster location	3.89	3.90	3.90		3.90	3.91	3.92	3.92	3.92	3.93	3.93	3.93	3.94
Clone Name	H.saplens mRNA for hepatocyte nuclear factor 4 gamma	cyte growth factor bletin A; scatter factor)	nan leukemia virus receptor tLVR2) mRNA, complete				Homo sapiens EEN-B1 mRNA, 26249 complete cds	Homo saplens quiescin (Q6) 810331 mRNA, complete cds	related ERK-8 lete cds	\vdash	Н	121454 Arachidonate 12-lipoxygenase	289447 POU homeobox protein
Inage Clone		41650	Hun 2 (G 77728 cds		278570 t	271670	26249	810331	811088	627306	1798907	121454,	289447
GenBank ID	H18950 H19393	R52798	T55870		N66177 N99168	N35070	R20729	AA464152 AA464217	AA485665	AA191518	H51574	T97276	N63968

Page 17 Table 1

		7		T	Τ	T -		Г	ТТ		Т		_	_	_	_			_					
	loquing ou	^{/9} 9	DI CBO	3912 LAMB1	ADORA2B					600	Cort		1558 CYP2C8					DUSP6					CACNAID	DH3
	al sus	7	5330	3912	136					273			1558					1848						1001 CDH3
	ett ?		phospholipase C, beta 2	laminin, beta 1	adenosine A2b receptor	Human monocytic leukaemia zinc finger protein (MOZ) mRNA, complete	COS	E018	ESIS	collagen-binding protein 2 (collinen 2)	cytochrome P450, subfamily IIC	(mephenytoin 4-hydroxylase),	polypeptide 8		ESTS			dual specificity phosphatase 6		101	FOTO	calcium channel voltage-denerations	L type, alpha 1D subunit	olacental)
Table 1	nobaeli Pilgene	ſ	Hs.994	Hs.82124	HS.45743	11.0000	He 17713	10.101.00	US.46202	Hs.9930		Lio 474000	IIS. 174220		Hs.198008		Lis 100000	TS. 100383		Hs 75578	01001:01:	Hs.203672	82	Hs.2877
•	eenens olies		-	7	1		-	#	1		_	_	-		_		_	1		~				
	XEM C.	y	4.25	2.75	2.00	203	222	2 13	1	3.28		2 63	2017		5.65		2.94			2.02			2.88	4.07
	yen nobeleno nobelene xem elekane		4	4 4	1	4	4	4	1	4		4	+		4		4	+		4	-		4	4
- 1	UOD	1	0.70	0.75	3	0.81	0.86	0.94		0.92	_	0.95			0.94		0.78		_	0.75			0.80	3
	Cluster 1938UIO		3.94			3.96	_	3.97	_	3.97		3.97	+		3.88		3.98	+		3.98	-		2 5 5	31
	Clone Name	PHAT PHOS HODIE	810104 BETA 2 774471 Laminin B1 chain	377252 Adenosine A2b receptor	Human monocytic leukaemia	nger protein (M		ESIS	n mRNA for collagen	Cytochrome P450 subfamily	IIC (mephenytoin 4-		otein		AIA Gos	tyrosine-phosphatase (tissue		0	proteoglycan (HSPG2) mRNA,		Human neuroendocrine/beta-	49630 1 Subunit menu channel alpha		
	Intage Clone		774471	377252		949928	294881 ESTs	292364 ES 18	42788			246619	=_	45935		<u>. e</u>	54899 t	<u>. T.</u>	α	O BCM/	<u> </u>	19630 1	73301 C	
	GenBank lb		+	AA055350		2	NECEON NECEON	+	R71093	1		N53136 2		W77839 3	+		AA630374 8;		4437850 F	+	H29256		AA425217 77	

Page 1

Fig. 2 Fig. 3 F	-							١				
Stance-molog State Stance-molog State Stance		Ologe Clone	Clone N _{eme}	Cluster	400	Aple.		Direction as		eurt e ^{tt}	Locus ID	lodmile Symbol
aircds 4.03 0.95 4 4.84 i Hs.90786 cancerdal intrasponder Organic anion and 4.03 0.95 4 2.12 i Hs.154138 chiltinase 3-like 2 1117			Human muttidrug res associated protein ho						l	renier of multipopolitic process	<u>'</u>	
4.03 0.95 4 2.12 1 Hs.154138 chitinase 3-like 2 1117 R mRNA HOA 4.04 0.92 4 2.04 1 Hs.7857 4.1-like 2 1364 Applete cds 4.05 0.81 4 2.05 1 Hs.5372 claudin 4 1364 Applete cds 4.05 0.81 4 2.05 1 Hs.18440 EST 1364 APANA, A.05 0.85 4 2.05 1 Hs.1840 EST 1364 AFOS SART- A.08 0.71 4 2.11 1 Hs.18413 recording de receptor 13 1364 A.10 0.89 4 2.06 1 Hs.20552 ESTs 135 Ilke 1 4.13 0.77 4 2.12 1 Hs.23294 ESTs Los 6 0.86 5 2.51 1 Hs.78913 G protein-coupled receptor 13 2.836 Los 6 0.87 5 2.51 1 Hs.78913		81139	(MRP3) mRNA, partial cds	4.03			4.84		Hs.90786	transporter	8714	CMOAT2
Hearth		54338	Chitinase 1	4.03		<u> </u>	2.12	-	Hs.154138	chitinase 3-like 2	1117	CHI3L2
Remain 4.04 0.92 4 2.04 1 Hs.7857 4.1-like 2 2037 Proteesse			Homo sapiens protein 4.1-G							erythrocyte membrane protein band		
Protein Protein Protein Protein Protein Protein Protein Protesse Prote	κi	785967	mRNA, complete cds	4.04			2.04	_	Hs.7857	4.1-like 2	2037	EPB41[2
Heart Same		70388	Homo sapiens hCPE-R mRNA for CPE-recentor complete cds	4.05	2	4	30.0		Lo 5070	4 - ibc	100,	
Figure F	. 1		Lomo conject confect of the		3		3	-	118.3372	Cauuii 4	1304	CLUN4
4.05 0.85 4 3.69 1 Hs.198440 ESTS EST			nomo sapiens serine protease- like protease (nes1) mRNA,									
Figure F	άοl	310960	complete cds	4.05	0.85		3.69	_	Hs.198440	ESTs		
1 for SART - 4.08 0.71										EST		
4.08 0.71 4 2.11 1 Hs.18813 recognised by T cells 4.10 0.89 4 2.06 1 Hs.20552 ESTs 135 4.12 0.84 4 2.15 1 Hs.1613 adenosine AZa receptor 135 Ike 1 4.54 0.88 5 2.51 1 Hs.78913 G protein-coupled receptor 13 2836 uding 4.55 0.87 5 2.51 1 Hs.78914 lumican 4060 uding 4.55 0.86 5 2.51 1 Hs.78914 lumican 4060 uding 4.55 0.86 5 3.41 1 Hs.585 antigen) 338 nesse 4.56 0.82 5 2.92 1 Hs.11334 ferritin, light polypeptide (p11) 2512 iprotein 4.56 0.71 5 3.16 1 Hs.118301 polypeptide (p11) 2512 in 4.57 0.88			Ϋ́						Hs.177426	squamous cell carcinoma antigen		
4.10 0.89 4 2.06 1 His.20552 ESTs 4.12 0.84 4 2.15 1 His.1613 adenosine AZa receptor 135 Ilke 1 4.54 0.88 5 2.51 1 His.78913 G protein-coupled receptor 13 2836 uding 4.55 0.87 5 2.51 1 His.78914 Iumican 4060 uding 4.55 0.86 5 2.51 1 His.78914 Iumican 4060 uding 4.55 0.86 5 3.41 1 His.585 antigen) 338 nesse 4.56 0.82 5 2.92 1 His.111334 ferritin, light polypeptide 2512 iprotein 4.56 0.71 5 3.16 1 His.119301 polypeptide (p11)) 6281 inh 4.57 0.88 5 2.43 1 His.178502 ESTs atein 1, 4.59 0.85	ത്	383175	1, complete cds	4.08		4	2.11	_	Hs.18813	recognised by T cells		SART1
135 12 0.84 4 2.15 1 Hs.1613 adenosine A2a receptor 135 136 1 4.54 0.88 5 2.51 1 Hs.78913 G protein-coupled receptor 13 2836 137 4 2.12 1 Hs.78914 ESTs 2836 138 2.55 1 Hs.78914 lumican 4060 14.55 0.86 5 3.41 1 Hs.585 antigen 3.38 150 150 150 150 150 251 150 150 150 251 251 251 150 150 251 251 251 251 150 251 251 251 251 251 150 251 251 251 251 251 150 251 251 251 251 251 150 251 251 251 251 251 150 251 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 251 150 251 251 251 150 251 251 251 150 251 251 251 150 251 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 251 150 251 150 251 251 150 251 251 150 251 251 150 251 150 251 251 150 251 251 150 251	-1	28460		4.10	0.89	4	2.06	_	Hs.20552	ESTs		
like 1 4.54 0.88 5 2.51 i Hs.78913 G protein-coupled receptor 13 2836 uding 4.55 0.87 5 5.25 i Hs.79914 lumican apolipoprotein B (including Ag(x) 338 4.55 0.86 5 3.41 i Hs.585 antigen) antigen) 338 including Ag(x) 338 includin	N	79970	A2	4.12	0.84	4	2.15	_	Hs.1613	adenosine A2a receptor	135	ADORA2A
uding 4.54 0.88 5 2.51 1 Hs.78913 G protein-coupled receptor 13 2836 uding 4.55 0.87 5 5.25 1 Hs.79914 Iumican apolipoprotein B (including Ag(x)) 4060 uding 4.55 0.86 5 3.41 1 Hs.585 antigen) antigen) 338 nase 4.56 0.82 5 2.92 1 Hs.111334 ferritin, light polypeptide 2512 protein 3.16 1 Hs.119301 polypeptide (p11) 2512 in 4.57 0.88 5 2.43 1 Hs.178502 ESTs ESTs 3tein 1, 4.59 0.85 5 2.73 1 Hs.62661 interferon-Inducible, 67kD 2633	÷	39217	ESTs	4.13		4	2.12	E	Hs.23294	ESTs		
uding 4.55 0.87 5 5.25 I Hs.79914 Iumican 4060 uding 4.55 0.86 5 3.41 I Hs.585 antigen) 338 nase 4.56 0.82 5 2.92 I Hs.111334 ferritin, light polypeptide 2512 protein 1, S100 calcium-binding protein A10 (annexin II ligand, calpactin I, light 6281 rin 4.56 0.71 5 3.16 I Hs.119301 polypeptide (p11) 6281 rin 4.57 0.88 5 2.43 I Hs.178502 ESTs stein 1, 4.59 0.85 5 2.73 I Hs.62661 interferon-inducible, 67kD 2633	ล	83023	Chemokine receptor-like 1	4.54	0.88		2.51	_	Hs.78913	G protein-coupled receptor 13	2836	GPR13
uding 4.55 0.86 5 3.41 I Hs.585 antigen) antigen) 338 nase 4.56 0.82 5 2.92 I Hs.111334 ferritin, light polypeptide 2512 protein 1, eptide 4.56 0.71 5 3.16 I Hs.119301 polypeptide (p11) 6281 rin 4.57 0.88 5 2.43 I Hs.178502 ESTs stein 1, stein 1, stein 2, stein 3, stein 3, stein 3, stein 4, stein 3, stein 4, stein	άO	13823	Lumican	4.55	0.87	ည	5.25	E	Hs.79914	lumican	4060	LUM
nase 4.56 0.82 5 2.92 1 Hs. 111334 ferritin, light polypeptide 2512 I protein 3.16 1 Hs. 111334 ferritin, light polypeptide 2512 I protein 3.16 1 Hs. 119301 polypeptide (p11) 6281 rin 4.57 0.88 5 2.43 1 Hs. 178502 ESTs stein 1, 4.59 0.85 5 2.73 1 Hs. 62661 interferon-inducible, 67kD 2633			B (inc							apolipoprotein B (including Ag(x)		
nase 4.56 0.82 5 2.92 1 Hs.111334 ferritin, light polypeptide 2512 1, septide 4.56 0.71 5 3.16 1 Hs.119301 polypeptide (p11) 6281 rin 4.57 0.88 5 2.43 1 Hs.178502 ESTs stein 1, 4.59 0.85 5 2.73 1 Hs.62661 interferon-inducible, 67kD 2633	ผ	42062	Ag(x) antigen)	4.55		ນ	3.41	_	Hs.585	antigen)		APOB
nase 4.56 0.82 5 2.92 1 Hs.111334 ferritin, light polypeptide 2512 1 protein 4.56 0.71 5 3.16 1 Hs.119301 polypeptide (p11) 6281 rin 4.57 0.88 5 2.43 1 Hs.178502 ESTs stein 1, 4.59 0.85 5 2.73 1 Hs.62661 interferon-inducible, 67kD 2633			H.sapiens mRNA for									
Protein	4	61327	phosphoinositide 3-kinase	4.58		വ	2.92	_	Hs.111334	ferritin, light polypeptide	2512	FL
1, 1, 1, 1, 1, 1, 1, 1,			S100 calcium-binding protein							S100 calcium-binding protein A10		
in 4.56 0.71 5 3.16 I Hs.119301 polypeptide (p11)) 6281 4.57 0.88 5 2.43 I Hs.178502 ESTs guanylate binding protein 1, 14.59 0.85 5 2.73 I Hs.62661 interferon-inducible, 67kD 2633			A10 (annexin II ligand,							(annexin Il ligand, calpactin I. light		
rin 4.57 0.88 5 2.43 I Hs.178502 ESTs guanylate binding protein 1, guanylate binding protein 1, guanylate binding protein 1, guanylate binding protein 1, 2633	ド	56595	calpactin I, light polypeptide	4.56		2	3.16	-	Hs.119301	polypeptide (p11))	6281	S100A10
4.57 0.88 5 2.43 1 Hs.178502 ESTs stein 1, guanylate binding protein 1, guanylate binding protein 1, i7KD 4.59 0.85 5 2.73 I Hs.62661 interferon-inducible, 67kD			Human beta2-chimaerin									
rotein 1, guanylate binding protein 1, 67kD 4.59 0.85 5 2.73 I Hs.62661 interferon-inducible, 67kD	ωď	26142	mRNA, complete cds	4.57	0.88	5	2.43	_	Hs.178502	ESTs		
67kD 4.59 0.85 5 2.73 1 Hs.62661 Interferon-Inducible, 67kD			rotein 1,							guanylate binding protein 1,		
	∞	801	67kD	4.59		2	2.73	_	Hs.62661	interferon-Inducible, 67kD	2633	GBP1

Fage 15

	Т	 	_	_		1		_	Т			_	1	<u> </u>	-	$\overline{}$	Т		Г	_				
Cene Symbol			1396 CRIP1		5565 PRKAB2						LM07		1278 COL1A2		4300 MI T3	ווורווס		HZBFL	4582 MUC1		PITX2		MLANA	
q _{I snoo7}			1396		5565			10409			4008		1278		7300	3			4582		5308		2315	
e ^M	ESTs		cysteine-rich protein 1 (intestinal)	C eted betevitzectivated beta 2	non-catalytic subunit	Homo sapiens neuronal tissue-	enriched acidic protein (NAP-22)	mRNA, complete cds			LIM domain only 7	ESTs	collagen, type I, alpha 2	myeloid/lymphoid or mixed-lineage	leukemia (trithorax (Drosophila) homolog): franciscated to 3	EST8	ESTs	H2B histone family, member L	mucin 1, transmembrane	paired-like homeodomain	transcription factor 2		melan-A	Homo saplens mRNA for KIAA0553 protein, partial cds
nove eneginU	IS.		Hs.17409		Hs.50732			Hs.79516			Hs.5978	Hs.19479	Hs.179573		He 404	Hs.203911	Hs.146228	Hs.182278	Hs.89603		Hs.92282		Hs.154069	Hs.105749
Olrection	-		-		_			_			-	-	-		-	- -		-			-		_	-
Xein oules			2.17		2.69			3.35			6.46	2.63	5.22		2 67	2.09	İ	2.07	3.13		32.26		5.16	2.54
Xem element Xem	ഹ		2		ນ			ໝ			ເນ	2	2		ĸ	ည		S	5		2		2	5
Corps.	0.79		0.85		0.82			0.95			0.92	0.72	0.86		9	0.85	Г	0.75	0.87		0.92		0.81	0.93
Cluster location	4.61		4.62		4.63			4.63 (4.64	4.64	4.65		4 65			4.67 (0	4.67 (4.71		4.71	4.73
Clone Name		ne-rich heart IP) mRNA,		Homo sapiens mRNA for AMP- activated protein kinase beta 2		Homo sapiens neuronal tissue-	enriched acidic protein (NAP-		Human zinc-finger domain-	containing protein mRNA,	51582 partial cds		839991 Collagen, type I, alpha-2		783998 AF-9 PROTEIN			•	840687 Mucin 1, transmembrane		lurshin)	Human melanoma antigen recognized by T-cells (MART-	272327 1) mRNA	
Innage Clone	134229 ESTs		323448(<u></u> W	300137 subunit			843098	_	<u> </u>	51582	1287851	839991 (783998	130276 ESTs		2140061	8406871	1	66731	1-	272327	197054 ESTs
Ol Ansor	R31918		AA873604 1		N78582			AA488676				-	AA490172		AA443284	╀		\dashv	AA486365		164905		N32189	R93149

Page 2

					_			_		_		1				
loduly on or	FKHRL1		IRF7	SOS1	4221 MEN1		FABP7				PHC		PACE		10265 RX-2A	ELANH2
al suson	2309		3665		4221		2173				5250		5045		10265	1992
euit eh	forkhead (Drosophila) homolog (rhabdomyosarcoma) like 1	ESTs ESTs	interferon regulatory factor 7	ESTs son of sevenless (Drosophila) homolog 1	multiple endocrine neoplasia I		fatty acid binding protein 7, brain	ESTs	Homo saplens serine protease mRNA, complete cds	ESTs	phosphate carrier, mitochondrial	paired basic amino acid cleaving	enzyme (mm, membrane associated receptor protein)		iroquois-class homeodomain protein	protease inhibitor 2 (anti-elastase), monocyte/neutrophil
_{enegin} u	1 4	Hs.18252 Hs.106960	Hs.200390	Hs.186533 Hs.21371	Hs.24297	,	Hs.26770	Hs.25119	Hs.154737	Hs.17749	Hs.78713		Hs.59242		Hs.25351	Hs.183583
Direction	_	_	-		-		_	_	-	-	-				_	
Xelio change		4.67	2.13	2.23	2.56		2.03	2.00	2.48	5.04	2.08		3.25		2.19	3.85
Correlation femplate max	ro	ည	5	5	5		5	5	5	5	5		Ŋ		2	3
UOD	o	0.99	0.94	72.0	0.94		0.83	0.93	0.73	66.0	0.98		0.90		0.82	0.81
Cluster locas:	4.75	4.77	4.77	4.79	4.80		4.81	4.82	4.84	4.84	4.86		4.91		4.91	4.93
	Homo sapiens (FKHRL1) mR cds	ESTs	Human Interferon regulatory factor 7 (humirf7) mRNA, 809456 complete cds	Human guanine nucleotide exchange factor mRNA, 145001 complete cds	685371 Multiple endocrine neoplasia I	Homo sapiens mRNA for fatty acid binding protein, complete	cds	ESTs	ESTs	ESTs	Phosphate carrier, 842784 mitochondrial	Paired basic amino acid cleaving enzyme (furin,	protein)	Human Iroquois-class homeodomain protein IRX-2a	152453 mRNA, complete cds	LEUKOCYTE ELASTASE 842836 INHIBITOR
Innage Clone		121792 ESTs	809456	145001	685371		345626 cds	136954 ESTs	143887 ESTs	120964 ESTs	842784	<u> </u>	1374571 protein)		1524531	842836
GenBank ID	AA465236	T98195 T98194	AA443080	R78735 R78734	AA243439		W72051	R36669	R76732	T96123	AA486200		AA856874		R46202	AA486275

Page 21 Table 1

				$\overline{}$	_	_	7		_									_					
	OJ ST	^W ∂Đ	7850 IL1R2		SYM		¥CY1	ARF6				3839 KPNA3			10290 APEG1		MAB21L1			KPLP0			SMARCIN
		ادمو	 785(9417		8	382				3839			10290		4081		,	07/20			
	नम्		interleukin 1 receptor, type II		symplekin	aminoacviase 1	ADP-ribosylation factor 6	ESTs	Human Src-like adapter protein	InklyA, complete cds	karyopherin alpha 3 (importin alpha	4)	nuclear protein, marker for differentiated agric smooth missing	and down-regulated with vascular		mak-21 (C. clossos) in .			ribosomal protein Jarre Do	ESTs	SWI/SNF related, matrix associated,	actin dependent regulator of chromatin subfamily of months of the chromatin subfamily of the chromatin	Gilding audiamity d, member 2
able i	noùzeñ enegh		Hs.25333	He 107040	8000	Hs.79	Hs.89474	HS.180///	He 75367	13.13001	9000	0000.8L			HS.21639	Hs.82321			Hs.73742		He BADEA	2	7
-	e6 _{Up}	0	1		_			1		1		-		_	-	_			-			_	1
	xem edelami xem edelami egnera obe	2	2.96	2.11		2.93	3 36	3	5.26		244			200	6.63	2.47			2.09			2.39	
	"Hela"	P)	2	2		2	ĸ	,	ß		rO	T		ч	,	2			2			2	
1	UOn.	1	0.98	0.85		9.79	0.82		0.95		0.72	T		0.87		0.79			0.81			0.85	
	rateoc	2	4.94	4.94	- 3	4.90	4.96		4.97		4.99			4.99		5.04			5.06			5.07 0	
	Clone Name	INTERLEUKIN-1 RECEPTOR,	Human symplekin mRNA,	346552 complete cds	51293 (ACY1) mRNA completed	SDO BIBLION CONTROL	360885 ADP-ribosylation factor 6	Human Src-like adapter protein	613//4 mKNA, complete cds	nomo saplens importin-alpha			Human APEG-1 mRNA		otein Etr-		phosphoropic no man		1	Human SWI/SNF complex 60	KDa subunit (BAF60b) mRNA,	/+ius/complete cds 5	
	Image Clone	33583		46552	51293		60885		10//4		52829			5077 c	T 2208			1143 0		I	<u>Z</u> 2	2	
	GenBank ID	H78386	1470404	\dagger	H18938	-	AA012866 36	44485141	+		AA668178 85			R43778 3	AA047257 48	+-		R42581 31			AA4/8436 AA402352 744	-	

Table 1

				1						
Lodmy Symbol		כרת		DTR	EEF2	GALNT1	8751 ADAM15		ARHB FKHL7	
GI SNOOT				1839	1938	2589	8751		388	
. OULL SH	Creatine transporter [human, brainstem/spinal cord, mRNA, 2283 nt] clusterin (complement lysis inhibitor, SP-40,40, sulfated	glycoprotein 2, testosterone- repressed prostate message 2, apolipoprotein J)	Human cisplatin resistance associated beta protein (hCRA beta)	diphtheria toxin receptor (heparin- binding epidermal growth factor-like growth factor)	eukaryotic translation elongation factor 2	UDP-N-acety-alpha-D- galactosamine:polypeptide N- acetylgalactosaminyltransferase 1 (GalNAc-T1)	ESTs a disintegrin and metalloproteinase domain 15 (metaraldin)	ESTs ESTs	ras homolog gene family, member B forkhead (Drosophila)-like 7	ESTs
_{en^{ggin}U}		Hs.204412 Hs.75106	He 186066	Hs.799	Hs.75309	Hs.80120	Hs.12329 Hs.92208	Hs.204700 Hs.49111	Hs.204354 Hs.93468	Hs.77365
Direction		<u> </u>			_			_		-
Ratio change		2.36	908	3.16	2.37	2.12	2.04	2.40	2.55	2.05
nower xem elektrosi xem elektrosi		ເດ	ıc	ဟ	ည	က	တ တ	စ	တ	9
nobelemon nobelemon nobelemon		0.77	0.75	0.89	0.90	0.74	0.71	0.88	0.79	0.77
Cluster location Men		5.07	5 08	+	5.12	5.21	5.52	5.70	5.72	5.76 0.77
Clone Name	Clusterin (complement lysis	repressed prostate message 2; 725877 apolipoprotein J)	Human cisplatin resistance associated alpha protein (hCRA alpha) mRNA, complete	Diphtheria toxin receptor (heparin-binding epidermal 35828 growth factor-like growth factor)	Eukaryotic translation 34849 elongation factor 2	H.sapiens mRNA for UDP-GallNAc:polypeptide N-acetylgalactosaminyitransferas e (T1)	203469 ESTs Human metargidin precursor 713782 mRNA, complete cds	ESTs	TRANSFORMING PROTEIN RHOB	ESTs
enolo egemi Qi		725877	Hun ass (hC 345858 cds	35828	34849	H.sap GallN/ acetyl 431397 e (T1)	203469 ESTs Huma 713782 mRN/	296754 ESTs	TRANS 768370 RHOB	246546 ESTs
GenBank ID		AA292226 AA292410	W72697	R45640	R43766	AA706987	H55953 AA292676	N70280 W04208	AA495790 AA495846	N53061

Page 23 Table 1

		_			_			_			_	_		_		_	т
loquifs eues	DXS648F	CCNG1						LRP	PYGB	CUNGO			000	3014 MISST	CKB		3861 KRT14
OI SNOOT	8264	8						9961	5834	Š				3014	1152		3861
ehit eh	DNA segment on chromosome X	cyclin G1	Human DNA sequence from PAC 487J7 on chromosome 6q21-22.1. Contains an unknown gene coding for three cliented and the sequence of the coding for three cliented and the sequence of the coding and the coding and the coding and the sequence of the coding and the codin	Contains ESTs, STSs, a BAC endsequence (GSS) and a CA repeat	ESTs	Human cartilage-specific	homeodomain protein Cart-1 mRNA,	lung resistance-related protein	phosphorylase, alveoden: brain	cyclin G2			7 002	NISS-1 INGRASIASIS-SUPPLESSOR	creatine kinase, brain	ESTs	keratin 14 (epidermolysis bullosa simplex, Dowling-Meara, Koebner)
no. eneginU	200	Hs.79101		Hs.7446			Hs.27495 He 41683	Hs.80680	Hs.75658	Hs. 79069			90000	0000090	Hs.173724	Hs.82389	Hs.117729
Direction	_	_		_			-	- -	_					اد	۵	۵	۵
Ratio change	2.50	2.27		2.05			2,48	2.01	2.15	2.38			,	2.20	2.18	2.12	2.12
Semplation stem to the semination of the sem of the semination of	ဖ	9		ဖ			ď	9	φ	ဖ				-	_	7	7
Kennax	0.78	0.77		0.94	_		2,8	0.87	0.87	0.77			- 2	2 2	0.89	0.94	0.80
Cluster Odeodion	5.84	_		5.95		···-	5.98		6.20	6.27	-		- 60			6.96 0	6.97
Clone Name	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN	547058 H.sapiens mRNA for cyclin G1	·			Human cartilage-specific	nomeddomain protein Cart-1 767475 mRNA. complete cds		lase B	ins cyclin G2 plete cds		Human malignant melanoma	metastasis-suppressor (KiSS-8129551) rene mBNA complete add	2000	ne kinase B		KERATIN, TYPE I 183602 CYTOSKELETAL 14
Inage Clone		547058		144924 ESTs			767475	591281	1474337	823691		-	812955	446700	1416/82	232670 ESTs	183602
GenBank ID	167271	AA082943		R78558		00000	AA418120	AA158991	AA922705	AA489647			AA464595	1	Š	H73501	H44127

Page 24 Table 1

				_		_						_
loquing duago	4685 NCAM2	4329 MMSDH	8106 PABP2	GRAVIN	10370 CITED2	KRT8		ATP50	470	A S	8364 H4FG	
al susol	4685	4329	8106	9590	10370	3856 KRT8		539	7002	280/	8364	
ebit eH	neural cell adhesion molecule 2	methylmalonate-semialdehyde dehydrogenase	poly(A)-binding protein-2	kinase scaffold protein gravin	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	keratin 8	ATP synthase, H+ transporting, mitochondrial F1 complex. O subunit	(ollgomycin sensitivity conferring protein)	regenerating islet-derived 1 alpha (pancreatic stone protein, pancreatic	FSTs	H4 histone family, member G	Homo sapiens mitotic centromere- associated kinesin mRNA, complete cds
Unigene eneginU	7-	Hs.170008	Hs.117176	Hs.788	Hs.82071	Hs.78271		Hs.76572	1032	Hs. 196172	Hs.46423	Hs.69360
Direction	۵	۵	۵	۵	Ω	۵		۵		1	۵	٥
Ratio change	2.23	3.00	2.31	2.54	2.07	2.23		2.36	5	4.43	4.73	2.48
no ^{UP}	7	2	^	7	7	-					_	7
Max. Consistion	0.90	0.70	0.89	0.72	0.79	0.76		0.74	97.0	0.83	0.72	0.81
Clusier location	7.07	7.08	7.10	7.13 (7.14	7.20		7.29	7 33		7.36	7.36
Cl ^{one Name}	Human neural cell adhesion protein (NCAM21) mRNA, 1343468 complete cds	Human methylmalonate semialdehyde dehydrogenase 289818 gene, complete cds	A) binding ene,	784772 GRAVIN	Human msg1-related gene 1 491565(mrg1) mRNA, complete cds		ATP synthase, H+ transporting, mitochondrial F1 complex, O		Regenerating islet-derived 1 alpha (pancreatic stone 745343 protein pancreatic thread	KE	ns H4/g gene for H4	Human mitotic centromere- associated kinesin mRNA, 742798 complete cds
Insage Clone	1343468	289818	486186	784772	491565	897781	<u></u>	1472150	745343	788256	H.saple 1461138 histone	742798
GenBank ID	AA709271	N77107	AA040742	AA478543	AA115076	AA598517		AA873577	AA625655	AA454098	AA868008	AA400450

Page 25 Table 1

					_			7			-			т-		
Cene Symbol	6671	BUB1B		RTP	CDC25C		KNSL1		200	PLOD2		FKHL16	KNSL2		SFTPA1	4751 NEK2
OI SNOOT	2678	701		10397 RTP	995		3832		_			2305			6435	4751
obit ^{eh}	gamma-glutamyltransferase 1	budding uninhibited by benzimidazoles 1 (yeast homolog), beta	Homo saplens mRNA for low molecular mass ubiquinone-binding protein, complete cds	differentiation-related gene 1 (nickelspecific induction protein)	cell division cycle 25C		Kinesin-like 1	E018	procollagen-lysine, 2-oxoglutarate 5- dioxygenase (lysine hydroxylase)	dioxygenase (lysine hydroxylase) 2		forkhead (Drosophila)-like 16	ESTs kinesin-like 2	surfactant pulmonary-associated	protein A1	NIMA (never in mitosis gene a)- related kinase
Unigene	1.5	Hs.36708	Hs.3709	Hs.75789	Hs.656		HS.8878 Hs 34584	10.01001	Us 44270	Hs.41270		Hs.239	Hs.205205 Hs.20830		Hs.177582	Hs.153704
Direction	0	٥	٥	Ω	۵		ے د	1		۵		Ω	٥		۵	۵
Retto change		3.28	2.30	2.66	2.68		405	3	•	2.51		2.46	2.05		2.49	4.51
Xem noùslanoo kemelanes xemelanes	2	7	. ^-	80	8	•	ρα	,		ω	,	ω	80		æ	8
XeW	0.74	0.74	0.88	0.85	0.76		0.85	3	-	0.93		0.92	0.95		0.78	1.00
Cluster location	7.42	7.44	7.45	7.89	7.91		7 00	-		8.00		8.03	8.05		8.06	8.06
Clone Name	Human gamma-glutamyl transpeptidase (GGT) protein 214965 mRNA, complete cds	Homo sapiens mitotic checkpoint kinase Mad3L 842968 (MAD3L) mRNA, complete cds	Homo sapiens mRNA for low molecular mass ubiquinone- 490778 binding protein, complete cds	Human mRNA for RTP, 842863 complete cds	415102 Cell division cycle 25C	Human kinesin-like spindle protein HKSP (HKSP) mRNA,	ozpovo complete cas 196303 ESTs	200	Homo sapiens lysyl hydroxylase isoform 2 (PI OD2)	490995 mRNA, complete cds	Human putative M phase phosphoprotein 2 (MPP2)	564803 mRNA, complete cds	Human mRNA for kinesin- 292933 related protein, partial cds	PULMONARY SURFACTANT- ASSOCIATED PROTEIN A	841507 PRECURSOR	H.sapiens nek2 mRNA for 415089 protein kinase
Image Clone	214965	842968	490778	842863	415102		196303 ESTs			490995		564803	292933	•	841507	415089
GenBank ID	H72018	AA488324	AA133191	AA486403	W95001		R92435			AA136707		AA136566	N69491 N90985		AA487267	W93379

		_		т	T	1	_	Т-				_	
lodinie Symbol			EIF5	ADM	BUB1	1397 CRIP2	1062 CENPE			P4HA1	FLS353	8407 TAGLN2	MVD
QI SNOOT		10528	1983	133	. 669	1397	1062			5033		8407	4597 MVD
ebit eh	Hs.5101 ESTs, Highly similar to protein regulating cytokinesis 1	Homo sapiens mRNA for nucleolar protein hNop56	eukaryotic translation initiation factor 5	adrenomedullin	budding uninhibited by benzimidazoles 1 (veast homoloa)	cvsteine-rich protein 2	centromere protein E (312kD)	ESTs	Homo sapiens mRNA for KIAA0483 protein, partial cds	procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide 1	ESTs Preferentially expressed in colorectal cancer ESTs	transgelin 2	mevalonate (diphospho) decarboxylase
unigene	5.5	Hs.5092	Hs.184242	Hs.394	Hs.98658	Hs.70327	Hs.75573	Hs.132959	Hs.64691	Hs.76768	Hs.173318 Hs.189975	Hs.75725	Hs.3828
Direction		۵	_	۵	۵	۵	0	_	۵	۵	۵	<u> </u>	٥
Retio chenge	4.53	2.09	2.66	3.44	4.14	2.21	2.08	3.74	2.01	2.51	7.90	2.09	2.11
no ^{Ube}	æ	80	80	ω	80	80	8	ھ	∞	8	8	8	8
Max. Confeletion	0.90	96.0	0.98	0.86	0.97	0.87	0.89	98.0	0.86	0.98	0.79	0.91	0.84
Cluster location	8.08	8.09	8.10	8.10	8.11	8.11	8.11	8.12 (8.13	8.14		8.17 (0	8.17
Glone Name	spo		slation initiation	ADRENOMEDULLIN 774446 PRECURSOR		SP1/CRP2,	rotein E (312kD)			Procollagen-proline, 2- oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 838802 polypeptide		000	Human mevalonate pyrophosphate decarboxylase 280934 (MPD) mRNA, complete cds
Ingge Clone	785707	492304	884867	774446	781047	811046	727526	126650 ESTs	233274 ESTs	838802	232837 ESTs	45544	280934
GenBank ID	AA449336	AA894577	AA669443	AA446120	AA446462	AA485427	20	R06900	H77486	AA464908		H08564	N50834

Page 27 Table 1

				т		_																		
	İ	o suppor	eues noo7			TSN		SEMASE	SNRPA			1033 CDKN3	2000	AK2			10092 ARC16	Ĺ	VEGF		OXCT		•	
			'' ³ 07			7247			9723			1033		204			1982		1		5019			
			l sh	Homo sapiens nuclear antigen H731-	like protein mRNA, complete cds	Semo domoi:	domain (lg), short basic domain,	decreted, de small nuclear	ESTS NO HOMOLOGY LITES	cyclin-dependent kingse inhibitor 3	(CDK2-associated dual specificity	phosphatase)		auenylate Kinase 2		Arp2/3 protein complex gubunitation	7	vascular endothelial growth factor		3-oxoacid CoA transfers	JAR.	homologous to membrane receptor	Foreins	ESTs
Table 1		uo _{lige} ue	- 1	Lo 400401	\neg	3	Hs 18004	Hs.173255	Hs.23448			Hs.84113	H8.171811	\top			Γ	Hs.206658		Hs.177584	T	Hs. 99364	T	
—	6	Payer.	0		0			۵	٥		•	2	۵	Т						Δ		۵	Γ	퓌
	*:	nour em elekari en elekari eneka oùf	8	2.85	3.59			2.05	4.01		5.03	200	3.17			2.03	i	2.74	•	2.13		2.50		2.55
		rela.	93	00	80			80	8		œ	·	8			»	<u>a</u>	•		8		æ		8
		400	1	0.81	0.94			8.18 0.81	6.9		0.98	_	0.74		5	7	0 88	3		0.92		0.83		0.82
		Jajen C		8.17	8.18			8.18	8.19		8.19		8.19		000		8.20			8.20		8.23 (-32	0.23
		Clove N ^{gu}	Homo sapiens nuclear antigen	294487 complete cds 795938 H confidence	Sapiens mknA for translin		141818 RIBONI CLEAR	ESTS		Human protein phosphatase	(UU/92 (KAP1) mRNA, complete cds	Methylmalonyl Coenzyme A	Homo saniene Am2/2	Complex subunit 249 A	340558 (ARC16) mRNA, complete cds	ascular endothelial growth	actor	Human succinyl CoA:3-oxoacid		CACI IIININA, complete cds		193498 PROTEIN PHPS1-2	-	
	θŲ	O) Segeni		294487 795936			141818	131316 ESTs		1002002	100/87	Methyln 869748 mutece		<u> </u>	40558 (<u> </u>	34778 factor	<u> </u>	28469/r	1	- 2	1 2486	293569 ESTs	
	Q);	An _E an ₉ D		N71003 AA460927				R22949		AA284072	+	AA663792 8	╀		1	_	90881		R40897		AA454208 75	+-	N94106 28	

rage z Table

	_				Т	1			_	Τ-	_	Т-		Т	_		Т	T		Т	_		Т		Т	_			Т
lodmyê eneê											HBA1		LDLR			5214 PFKP	AZGP1					7278 TUBA2							ATF3
al suson											3039		3949			5214	583					7278				_			467
elist et	Human pyrroline-5-carboxylate	dehydrogenase (P5CDh) mRNA,	short form, complete cds	ESTs	ESTs	Human pyrroline-5-carboxylate	dehydrogenase (P5CDh) mRNA,	short form, complete cds	ESTs		hemoglobin, alpha 1	low density lipoprotein receptor	(familial hypercholesterolemia)			phosphofructokinase, platelet	alpha-2-glycoprotein 1, zinc	Human mRNA for lactoyl glutathione	lyase		tubulin, alpha 2	ESTs	Human mRNA for KIAA0044 gene.	partial cds		Homo sapiens mRNA for membrane	protein with histidine rich charge	clusters, complete cds	activating transcription factor 3
_{en9gin} U			Hs.194828	Hs.93842	Hs.70704			Hs.194828	Hs.93842		Hs.75792		Hs.153468			Hs.99910	Hs.71		Hs.75207		Hs.98102	Hs.19193	-	Hs.171734				Hs.66776	Hs.460
Direction	一			<u></u>	٥				ᅀ	H	<u></u>	┢	<u>-</u>	t	_	۵		\vdash	<u>+</u>		<u>-4-</u>	<u>+</u>	\vdash	۵	\vdash		_	۵	D
Ratio change				2.57	2.72				2.25		2.11		2.72			2.76	5.48		2.38			2.48		2.02					2.89
yew. Contelation Semelation xem eletines				∞	æ				ω		œ		œ		•	8	80		∞			œ		æ			•	œ	8
Max			-	0.84	0.95				0.80	Г	0.86	Ė	0.81			0.74	0.78		0.71		_	0.93		0.83				02:	0.75
Cluster location					8.25 0				8.25 0		8.25 0		8.26	H		8.26 0	8.26 0	┢	8.29 0			8.30 0	\vdash	8.30	H			8.32 0.70	8.32 0
~~//s				<u>ω</u>	\vdash				8	L	_			L	_		8	_	8.			<u>κ</u>	L	ω̈́	_	_			
Clone Name		denydrogenase (P5CDh)	mkina, long torm, complete	cds	200402 ESTs	Human pyrroline-5-carboxylate	dehydrogenase (P5CDh)	mRNA, long form, complete	cds	Ubiquinol-cytochrome c	852520 reductase core protein II	LOW-DENSITY LIPOPROTEIN	825295 RECEPTOR PRECURSOR	Human mRNA for platelet-type	phosphofructokinase, complete		1456160 Zinc-alpha-2-glycoprotein 1	LACTOYLGLUTATHIONE	491001/LYASE	Homo sapiens (clone	ch13lambda7) alpha-tubulin	757489 mRNA, complete cds	Protein phosphatase 2A,	321661 regulatory subunit B' alpha-1	Human kidney mRNA for	putative membrane protein with	histidine rich charge clusters,	592359 complete cds	51448 Activating transcription factor 3
Ologe Clone disconding				47853 cds	7 02				47853 cds		2520		5295			26184 cds	3160		9			7489		1661				2359	<u>8</u>
				4	7 7				4,		85,		825			7	1456		\$			75,		32,				297	5
al ^{Ans} an ^e D		111376	17,1990	H11369	R96998			H11346	H11369		AA663058		AA504461			R38433	AA862465		AA136710		AA426374	AA436990		W35378				AA146655	H21042

Page 29 Table 1

		\neg		7	7		<u> </u>	_		т—		_			_				_										
	logwas ou	ච			3 CTPS		Z Z		3 FOS	-	ACAT2			3638 INSIG1	1384 CRAT						DLD		7278 TUBA2	TUBA1		6745 SSR1	8723 SNX4		4697 NDUFA4
		°۲			1503		8560		2353		39			3638	1384						1738		7278	7277		6745	8723		4697
	ent s		ESTs	CTP synthaga	Similare Communication	membrane fattv acid (linid)	desaturase	v-fos FBJ murine osteosarcoma viral	oncogene homolog	acetyl-Coenzyme A acetyltransferase	4 (accidadety) Coenzyme A thiolase)	-		Insulin Induced gene 1	carniune acetyltransferase	and the second s	unityul biilpoamide dehydrogenase (E3)	component of pyruvate	denydrogenase complex, 2-oxo-	glutarate complex, branched chain	veto acid denydrogenase complex)		moulin, alpha 2	tubulin, alpha 1 (testis specific)	signal sequence receptor, alpha	(uansiocon-associated protein alpha)	sorting nextin 4	NADH dehvdrogenase (ribiguingan)	alpha subcomplex, 4 (9kD, MLRQ)
l able 1	u _{op} ,		Hs.196177	Hs.204665			Hs.185973		HS.25647	Hs 4112			He 5820E	He 42060	113.12000					Ho 7462E	2004	He 98102	He 75340	27.0010	He 205072	10.0000	118.2U302b		Hs.108661
	eer no ^{ùserio} n	0	۵	٥	L		٥	-	2	۵				ء اد	,						+		\top	1		7	\top		
	yew change	y	2.49	2.79			3.72		4.00	2.40			8.07	237						2.13		2.33	208		2.65	257			2.09
	yen nobelenon nobelenos yem edelemes		æ	æ			8	α	•	8			8	· ~	1	_					\dagger		8	1		α	+		6
	Max	,	0.72	0.83			0.82	283	3	0.70	-		0.87	0.83						0.83	\dagger	0.84	0.78	-	0.79	0.75	-	-	0.96
	Cluster location M.	Ί		8.32			8.33	33		8.34			8.35	8.35						8.37		8.38	8.39 0	\vdash	8.40 0	8.42 0	+		8.91
	Clone Name	Phosphorylas	723264 Z (Testis)	TO TO SYNTHETESE	Homo sapiens putative fatty	acid desaturase MLD mRNA,	P55-C-FOS PROTO.		1-		Homo sapiens insulin induced	IG1) ge		Insferase	Dihydrolipoamide	dehydrogenase (E3 component	of pyruvate dehydrogenase	complex, 2-oxo-glutarate	complex, branched chain keto	complex)	Human alpha-tubulin isotype		2	Signal sequence receptor,			one	unit	
<u> </u>	inage Clone	70000	48767	70104		324801		811015		36393 /	<u>-</u>	<u>a</u>	20/2880	744417	<u> </u>	Ð	<u>o</u>	<u></u>	<u></u>	813648 a	I	/45138 H	612274 T	Ø	785616 alpha	214614 ESTs	Ī	869538 m	111
_	GenBank ID	44204722	H09614			W48667		AA485377		K46821		LEOGES	100000	AM021218						AA447748	0.000000	A4402038	AM (80/42	-	AA450360	17,3334	_	AA680322	+

Page 30 Table 1

· · · · · · · · · · · · · · · · · · ·		1								1	
lodinivê eneê		8754 ADAM9		UBCH10				1063 CENPF	10024 TASTIN		FUBP
Ol snoot	10544	8754						1063	10024		8880 FUBP
ett ett	Homo sapiens endothelial cell protein C/APC receptor (EPCR) mRNA, complete cds	a disintegrin and metalloproteinase domain 9 (meltrin gamma)	Homo sapiens gene for thymidylate synthase, exons 1, 2, 3, 4, 5, 6, 7, complete cds	Human cyclin-selective ubiquitin carrier protein mRNA, complete cds ubiquitin carrier protein E2-C 20	ESTs Homo saplens mRNA for cytochrome b5, partial cds	ESTs ESTs	Human (HepG2) glucose transporter gene mRNA, complete cds	centromere protein F (400kD)	trophinin-assisting protein (tastin)	ESTs ESTs	far upstream element binding protein
noz eneginU	80	Hs.2442	Hs.196351	Hs.93002	Hs.31086 Hs.206068	Hs.199263 Hs.206211	Hs.169902	Hs.77204	Hs.171955	Hs.28465 Hs.206257	Hs.118962
Direction	۵	٥	D	۵	٥	Δ	۵	۵	۵	Δ	۵
Retto change		3.23	2.40	5.22	2.60	3.11	3.47	5.16	2.16	2.38	2.01
Somelation femplate max	6	6	60	6	6	a	00	თ	တ	တ	6
New Coner	0.92	0.89	0.89	0.97	0.83	0.94	0.99	0.90	0.88	0.89	0.76
Cluster location	8.91	8.94	8.95	8.95	8.96	8.86	8.96	8.96	8.97	8.97	8.97
Clone Name	Homo sapiens endothelial cell protein C/APC receptor 71101 (EPCR) mRNA, complete cds	Human metalloprotease/disintegrin/cys teine-rich protein precursor 204257 (MDC9) mRNA, complete cds	853368 Thymidylate synthase	Human cyclin-selective ublquitin carrier protein mRNA, 769921 complete cds	Homo sapiens mRNA for 320509 cytochrome b5, partial cds	Homo sapiens DCHT mRNA, 249603 complete cds	Human (HepG2) glucose transporter gene mRNA, 207358 complete cds	Human CENP-F kinetochore 435076 protein mRNA, complete cds	Human tastin mRNA, complete cds	ESTs	Human FUSE binding protein 299360 mRNA, complete cds
enolo egenil Gl	71101	204257	853368	769921	320509	249603	207358	435076	Hun 242578 cds	139705 ESTs	299360
GenBank ID	T47443	H59231	AA663310	AA430504	W04674 W31775	H84871 H85277	H58873	AA701455	H94949	R63929 R64020	N75581

Page 3

			1	т-	т	_		-	_		_			_		_			т-				-		1		_
loquing auag		4719 NDUFS1	CKS1	8347 H2BFL	1034 CDKNDC	COLUME	:	LUHA	5134 PDCD2					6390 SDHB		RFC4		<u>[]</u>				FKBP5		LDHA			66 H
al susol		4719	1163	8347	1034	3	Š	3938	5134					6390		5984		3422				2289		3939			8836 GGH
ebit eH	NADH dehydroge Fe-S protein 1 (7)	coenzyme Q reductase)	CDC28 protein kinase 1	H2B histone family, member L	cyclin-dependent kinase inhibitor 2C (018 inhibits CDK4)	/		iactate denyarogenase A	programmed cell death 2	H.spaiens 3' mRNA for neurone- specific enolase (EC 4.2.1.11)	ESTS	ESTs	succinate dehydrogenase complex,	subunit B, iron sulfur (Ip)	replication factor C (activator 1) 4	(3/KU)	isopentenyl-diphosphate delta	Isomerase				FK506-binding protein 5		lactate dehydrogenase A	gamma-glutamyl hydrolase	(conjugase, folylpolygammaglutamyl	(hydrolase)
Unigene		Hs.8248	Hs.77550	Hs.182278	Hs.4854		3020	15.44000	HS.41639	Hs.196837	Hs. 49853	Hs.187111		Hs.64	. 00710	HS.33120		Hs.76038				Hs.7557		Hs.2795			Hs.78619
Direction		٥	0	۵				\neg	2	<u> </u>	Т	٥		۵		5		<u> </u>				۵		_			<u>=</u>
Apr. Change		5.69	2.59	2.54	2.09		07	9	2.00	2.18		2.24		2.48		6.30		2.60				5.84		3.08			4.33
no ^{Uber} ABIN edibliques		0	တ	6	۵		d		P	6		6	,	6	c	P		6				o		6			6
Max. Correlation terms	<u> </u>	0.86	0.93	02.0	0.90		78.0	3 6	0.0	0.89	T	0.78	i	C8.0	3	5		0.98				0.96		0.78		- 1	0.73
Cluster location			8.97	8.97	8.98		80			8.98		8.99		8.89	- 6		_	8.99			_	9.00		9.00			9.00
Clone Mame	NADH-UBIQUINONE OXIDOREDUCTASE 75 KD		9.1	lin	Human CDK6 inhibitor p18 291057 mRNA, complete cds	ate	dehydrogenase-A (LDH-A, EC	mod cell death 2		789147 Enolase 2, (gamma, neuronal) 8				1970 Io II on Sulphur (ip) Subunit		001 t	Tolog of yeast IPP		Human 54 kDa progesterone		Immunophilin FKBP54 mRNA,		L-LACTATE	A CHAIN	Homo sapiens human gamma-	E E	onegool minny, complete cas
image Clone		753457	810899	34355	291057		43550	826244	020211	789147		295483 ESTs	20707	010/8/	309288	2000	,	449/5		•		416833		897567		00000	002200
al ^{Ang} an ^g		AA406536	AA459292	R44288	N72115		H05914	AA521466	200	AA450123	N70382	W05026	00463640	21000	N93924		000001	HU582U				W86653		AA497029		A A 45 C C 2 4	17000

Page 3, Table 1

GenBank ID	Inage Clone	Clone Name	Cluster location	Max	xem alekanas xem alekanas xem alekanas	Retto change	Direction	_{ensein} U	_{əlil} t ə ^H	GI ENDO7	Sene Symbol
AA404486	772304	Adenine nucle translocator 2	9.00	0.98	6		D	Hs.79172	adenine nucleotide translocator 2 (fibroblast)	292	ANT2
W45531 W45393	323404 ESTs	ESTs	9.00	0.93	6	2.47	1 0	Hş.94642 Hs.55888	ESTs Human mRNA for ATF-a transcription factor		
AA458483 AA442991	809603	809603 Prothymosin alpha	9.00	0.75	6	2.35	1 0	Hs.44222 Hs.182371	ESTs prothymosin, alpha (gene sequence 28)		РТМА
N67038	295986	H.saplens mRNA for phenylalkylamine binding protein	9.00	0.89	G	2.51	۵	Hs.75105	H.sapiens mRNA for phenylalkylamine binding protein		
AA403295	725188	MALATE DEHYDROGENASE, 725188 CYTOPLASMIC	9.00	0.88	တ	2.54	۵	Hs.75375	malate dehydrogenase 1, NAD (soluble)	4190	MDH1
AA629262	Hun 744047 cds	Α, P	9.01	0.85	တ	2.37	۵	Hs.77597	polo (Drosophia)-like kinase	5347	PLK
AA446839	Hon bind nucl mitc 783697 cds	Homo saplens E1B 19K/Bcl-2- binding protein Nip3 mRNA, nuclear gene encoding mitochondrial protein, complete cds	9.01	0.75	6	2.86	۵	Hs.79428	BCL2/adenovirus E1B 19kD-interacting protein 3	664	BNIP3
AA480895	814615	NAD-DEPENDENT METHYLENETETRAHYDROF 814615 OLATE DEHYDROGENASE	9.02	0.85	0	2.67	۵	Hs.154672	Human mRNA for NAD-dependent methylene tetrahydrofolate dehydrogenase cyclohydrolase (EC 1.5.1.15)		
AA481076	814701	Homo sapiens mitotic feedback control protein Madp2 homolog 814701 mRNA, complete cds	9.02	96.0	6	5.45	Q	Hs.79078	MAD2 (mitotic arrest deficient, yeast, homolog)-like 1	4085	4085 MAD2L1
AA598974	898286	Cell division cycle 2, G1 to S 898286 and G2 to M	9.02	0.95	6	8.47	٥	Hs.206503 Hs.184572	Homo sapiens mRNA for CDC2 delta T, complete cds cell division cycle 2, G1 to S and G2 to M		CDC2 CDC2

Page 3

	Т	1	T	Т	Т	т		Т		1	т-			_		π_		
lodinvê eneê	CCNA2	BDH		CDC181	00001		STK15		DHERO				9801 KIAA0104		3030 HBA4		PRIM1	1000
· Ol suson	890	622		066	4953				9008	3			9801		3030	3	5557	1001
elit eli	cyclin A2	3-hydroxybutyrate dehydrogenase (heart, mitochondria)	Human thiopurine methyltransferase (TPMT) gene	CDC18 (cell division cycle 18, S.pombe, homolog)-like	omithine decarboxylase 1		ESTs serine/threonine kinase 15	Ras homolog enriched in brain 2	Human thiopurine methyltransferase	ESTs Blast hits genomic clone	Homo sapiens ZW10 interactor Zwint	mkikk, compiete cas	KIAA0104 gene product		hemodohin alpha 1		primase, polypeptide 1 (49kD)	cytochrome c oxidase subunit VIa
no _e neginU	8.	Hs.76893	Hs.208376	Hs.69563	Hs.75212	Hs.199147	Hs.48915		Hs.177507 Hs 206376	Up 404860	15. 400.50	US.42000	Hs.75574		Hs. 75792		Hs.82741	78774
Direction	Ω	۵	۵	۵	Δ		Δ		_	ء ا) (2	۵		٥		۵	٥
Kein change		2.38	2.08	4.70	3.84		4.68		2.28	5,7	2	100	2.27		2.81		2.04	254
nows and notice that the state of the state	6	6	6	o	6		တ		σ.	0	, ,	P	6		6		6	σ
Max. Corelation tenres	0.92	0.86	0.77	0.92	0.89		0.94		0.86	80	6)6.0	0.75		0.96	İ	0.97	0.87
Cluster location	9.02	9.03	9.03	9.03	9.04 0.89		9.04		9.04			_	9.04		90.6	_	9.07	206
Clone Name	Cyclin A	D-BETA- HYDROXYBUTYRATE 66564 DEHYDROGENASE	ansferase	.⊑ <u>o</u>	796646 Ornithine decarboxylase 1	Homo sapiens mRNA for aurora/IPL1-related kinase,	129865 complete cds		H. saptens mKNA for ras- 756401 related GTP-binding protein		1	PUTATIVE 60S RIBOSOMAL		tochrome b	complex core protein II mKNA, 25584 complete cds	imase polypeptide 1		CYTOCHROME C OXIDASE POLYPEPTIDE VIA-LIVER 840894 PRECURSOR
		66564	454339	Hun (Hs/ 204214 cds	796646		129865 (756401	66406 FSTs	451907		827144		25584 0	1	365641 (49KD)	840894
GenB ^{ank} ID	AA608568	T67057	AA677257	H59204	AA461467		R19158	7 7 7 600 4 7	AA48211/ AA482441	T66935	AAZOBBBB		AA521243		R12802		AA025937	AA482243

Page 34 Table 1

Gene Symbol	DBY .		PIR	FKBP5		TNFRSF10B	CDC45L	RPS6KA3	MLL17	FXR1	RDX
. Poche IP	8653		8544	2289		8795	8318	6197	4303	8087	5962 (RDX
ebit eH	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide, Y chromosome	ESTs	pirin	FK508-binding protein 5	H.saplens mRNA histone RNA hairpin-binding protein	tumor necrosis factor receptor superfamily, member 10b	CDC45 (cell division cycle 45, S.cerevisiae, homolog)-like	ribosomal protein S6 kinase, 90kD, polypeptide 3	myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 7	fragile X mental retardation, autosomal homolog 1	radixin
Unige _{ne}	Hs.99120	Hs.76057	Hs.38842	Hs.7557	Hs.75257	Hs.51233	Hs.114311	Hs.173965	Hs.172207	Hs.82712	Hs.203914
Oirection	Q	۵	۵		۵	۵	٥	٥	۵	1	۵
eguedo obes		3.07	2.29	3.69	2.19	2.95	3.05	2.27	3.93	2.55	2.28
no ^{Ub-}	6	0.	8	6	6	5	5	5	5	5	5
New Consistion noticities	0.78	0.86	0.92	0.89	0.89	0.82	0.85	0.72	0.84	0.80	0.84
Cluster location	9.07	80.6	9.09	9.10	9.11	9.65	9.66	9.68	9.66	9.67	9.68
Clone Name	Homo sapiens isoform (DBY) alternative tra complete cds	GALE)	H.sapiens mRNA for Pirin, 234237 isolate 1	Human 54 kDa progesterone receptor-associated immunophilin FKBP54 mRNA, 416833 partial cds	Human histone stem-loop binding protein (SLBP) mRNA, 884718 complete cds	Homo sapiens TRAIL receptor 788185 2 mRNA, complete cds	Homo sapiens Porc-Pl gene 453107 similar to yeast CDC45	Human insulin-stimulated protein kinase 1 (ISPK-1) 204148 mRNA, complete cds	Human 54 kDa protein mRNA, 509887 complete cds	Human fragile X mental retardation protein 1 homolog 289551 FXR1 mRNA, complete cds	740554 Radixin
image Clone		711768	234237	416833	884718	788185	453107	204148	509887	289551	740554
GenBank ID	AA447588	AA280832	H69335	W86653	AA629558	AA453410	AA700904	H55921	AA056465	N62761	AA479781

Page 3

		_	_	т			_			_					1	_	-		_			_			т	
	lodmv ^{& ono©}		FECH		TLOC1	PRKACB			7520 XBCC5	2000				ATP5G3		DDKMA		DDX5			smrt					7846 TUBA3
	Ol Snoo7		2235		7095	5567			7520	1050						5507		1655								7846
	ebiT ^{eH}	ESTs	ferrochelatase (protoporphyria)		translocation protein 1	protein kinase, cAMP-dependent, catalytic, beta	X-ray repair complementing defective	repair in Chinese hamster cells 5	(double-strand-break rejoining; Ku	caroairagan, conc)	ESTs	ATP synthase, H+ transporting.	mitochondrial F0 complex, subunit c	(subunit 9) isoform 3	protein kinase, mitogen-activated 6	(extracellular signal-regulated kinase,	DEÁD/H (Asp-Glu-Ala-Asp/His) box	polypeptide 5 (RNA helicase, 68kD)		T3 receptor-associating cofactor-1	[human, fetal liver, mRNA, 2930 nt]	ESTs	Human RNA polymerase II elongation	factor ELL2, complete cds		Tubulin, alpha, brain-specific
	no Unigene	3.3	Hs.26	07.70	HS.8146	Hs.87773			Hs.84981		٠		Hs.22893	Hs.429		Hs.75465		Hs.76053			Hs.120980		Hs.61933	Hs.173334		Hs.50144
ı	Direction	6	۵	l	5	۵			۵	T				D		۵		۵	Г		۵	Ī		۵		۵
	Ratio change		6.31	, i	3.31	2.24			2.36					2.58		2.21		0.00			2.89			3.29		3.40
	Confelation femplate max	10	10	ç	2	10			9					9		9		9			9			9		읟
ĺ	XeW Const	0.91	0.85	9	3	0.91			0.89		•			0.4		0.80		0.73			0.71			0.89		0.83
	Cluster location	9.68	9.68	090		9.69			9.71	+				9.71		9.71		9.71			9.73			9.74 (9.75 (
	Cl ^{one} Nam _e	ESTs	66728 Ferrochelatase	Human mRNA for translocation	protein-1, complete cas	Protein Kinase, cAMP- 362926 dependent, catalytic, beta		ATP_DEPENDENT ONA	BUNIT	IATP	synthase subunit 9, P3 gene	copy, mRNA, nuclear gene	encoding mitochondrial protein,	611150 complete cds		50506 H.sapiens ERK3 mRNA		162775 P68 PROTEIN	T3 receptor-associating	cofactor-1 [human, fetal liver,		yme	elongation factor ELL2,		sapiens endothelin-1	
	Intage Clone	211747 ESTs	667281	789204		362926			878676		· vi	<u> </u>	9	611150		50506 F		162775	_	<u> </u>	743230 n	<u></u>	Ð	626716 c		47833 (EDN1
	Qj _{Yueeu} ,	\dashv	T64893	AA450205	+	AA018980			AA775355				_	AA1/3369		H17504		H27646			AA400234	_		AA191245 . (H11622

Page 3

	т	_				1	_		_			T	_		_	_	_	_		-	_	_	_	_
lodmyê eneê	GTF2H3	ADK		RNASELI	AMD1	STK12		SNRPB			SMARCE1					CKS2	FEN1			ANX7	ACP1		RPS15A	
al susol	2967	132		6029	262	9212		6628			6605	5111				1164	2237			310	52	1	6210	
ebit et	general transcript polypeptide 3 (34	adenosine kinase	ribonuclease L (2',5'- oligoisoadenylate synthetase-	dependent) inhibitor	S-adenosylmethionine decarboxylase	serine/threonine kinase 12	small nuclear ribonucleoprotein	polypeptides B and B1	SWI/SNF related, matrix associated,	actin dependent regulator of	chromatin, subfamily e, member 1	proliferating cell nuclear antigen		Homo sapiens HPV16 E1 protein	binding protein mRNA, complete cds	CDC28 protein kinase 2	flap structure-specific endonuclease		H.sapiens mRNA for SMT3B protein	annexin VII (synexin)	acid phosphatase 1, soluble		ribosomal protein S15a	ESTs
Unigene	0.	Hs.94382		Hs.12013	Hs.205111	Hs.180655		Hs.83753			Hs.3404	Hs.78996			Hs.6566	Hs.83758	Hs.4756		Hs.180139	Hs.78637	Hs.75393		Hs.2953	Hs.49738
Direction	٥	۵		_	۵	٥		۵			Ω	۵			_	۵	0		۵	۵	0		_	Δ
Retio change	2.53	2.16		2.27	3.97	7.01		2.38			2.17	3.09		· ·	5.10	6.18	2.92		2.01	3.02	2.11		2.63	4.07
Semester of the second	5	10		10	10	5		10			6	5			9	10	10		9	10	10		10	10
Max Sone	0.90	0.89		0.79	0.92	0.87		0.92			0.92	96.0		-	0.91	0.94	0.92		0.83	0.85	0.80	-	0.87	0.87
Cluster location	9.76	9.76	_	9.77	9.77	9.77		9.78			9.78	9.79			9.79	9.80	9.80		9.81	9.82	9.82			9.83
Cl ^{one} N ^{gure}	H.saplens mRNA for basic transcription factor 2, 34 kD 796278 subunit	128243 Adenosine kinase	Ribonuclease L (2',5'- oligoisoadenylate synthetase-	80946 dependent) inhibitor	S-adenosylmethlonine 149013 decarboxylase 1	Homo sapiens protein kinase 531319 mRNA, complete cds	Small nuclear	950482 ribonucleoprotein polypeptides		Homo sapiens BAF57 (BAF57)	950473 gene, complete cds	Proliferating cell nuclear 789182 antigen	Homo sapiens HPV16 E1	protein binding protein mRNA,	856427 complete cds	725454 CDC28 protein kinase 2	951142 FLAP ENDONUCLEASE-1	H.saplens mRNA for SMT3B	protein	49352 Annexin VII (synexin)	322914 Acid phosphatase 1, soluble	40S RIBOSOMAL PROTEIN	S15A	ESTs
onoige Clone di	796278	128243		80946	149013	531319		950482			950473	789182			856427	725454	951142		878130 protein	49352	322914		1472643 S15A	293727 ESTs
Genegank ID	AA460838	R12473		170056	R82300	AA071486		AA599116			AA599120	AA450265			AA630784	AA397813	AA620553		AA775415	H15446	W45148	_	2	N69694

rage 3

r	i		1		T T		· · · · ·		
lodmyê eneê			4190 MDH1	0.10		E2F1	10492 NSAP1	SDHD	6628 SNRPB
QI SNOOT			4190	1738		1869	10492	6392	6628
न्ध्रा हम	H.saplens ADE2H1 mRNA showing homologies to SAICAR synthetase and AIR carboxylase of the purine pathway (EC 6.3.2.6, EC 4.1.1.21)	Homo sapiens mRNA for protein disulfide isomerase-related protein (PDIR), complete cds	malate dehydrogenase 1, NAD (soluble)	dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex, 2-oxoglutarate complex, branched chain keto acid dehydrogenase complex)	Human RNaseP protein p30 (RPP30) mRNA, complete cds	E2F transcription factor 1	NS1-associated protein 1	succinate dehydrogenase complex, subunit D, integral membrane protein	small nuclear ribonucleoprotein polypeptides B and B1
no eneginU	Hs.117950	Hs.76901	Hs.75375	Hs.74635	Hs.139120	Hs.96055	Hs.155489	Hs.168289	Hs.83753
Direction	٥	۵	٥	۵	Δ	۵	۵	O	D
eguero oues	3.33	2.20	3.28	3.44	2.35	2.52	2.68	2.08	2.67
Considion templation semelation	10	5	9	10	5	5	10	9	10
Max.	0.80	0.91	0.83	0.91	0.85	0.86	0.89	0.87	0.98
Cluster location	9.83	9.83	9.84	9.84	9.84	9.85	9.85	9.85	9.85
Cl ^{one Name}	MULTIFUNCTIONAL 273546 PROTEIN ADE2	or protein ase-related complete cds	Human malate dehydrogenase 53316 (MDHA) mRNA, complete cds		Human RNaseP protein p30 810854 (RPP30) mRNA, complete cds RETINOBLASTOMA BINDING			Homo sapiens mRNA for small subunit of cytochrome b in succinate dehydrogenase 471598 complex, complete cds	44537 Unknown EST
Innage Clone	73546	72220	3316	12059	10854	38260	16531	1598	4537
Gentank ID	N33274 27	AA404387 77	R15814 · 5	R60317 4	AA458957 81	AA424950 76	AA186327 62	AA035384 47	H06853 4

Page 3

			г		·	1			_			
lodunye ense			SAMO	AHCY	RRM1	SNRPA1	-	ASAH	6965 TCRG	PSMA6	PSMD2	10059 DYMPLE
q _{I snoo7}		10424	7372	191	6240	6627		427	6965	5687	5708	10059
न्धेरा थे	ESTs	Homo sapiens mRNA for putative progesterone binding protein	uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'-decarboxylase)	S-adenosylhomocysteine hydrolase	ribonucleotide reductase M1 polypeptide	small nuclear ribonucleoprotein polypeptide A'	Human clone 23933 mRNA sequence	N-acylsphingosine amidohydrolase (acid ceramidase)	T-cell receptor, gamma cluster	proteasome (prosome, macropain) subunit, alpha type, 6	proteasome (prosome, macropain) 26S subunit, non-ATPase, 2	dynamin-like protein
eneele ^U	2.5	Hs.9071	Hs.2057	Hs.172673	Hs.2934	Hs.80506	Hs.159554	Hs.75811	Hs.112259	Hs.74077	Hs.74619	Hs.180628
Direction	٥	۵	۵	۵	۵	۵	۵	۵	۵	۵	۵	٥
Paguedo change		2.31	2.10	2.04	2.14	2.02	2.72	3.49	5.05	2.32	2.48	2.97
noller- xem elelamel	5	5	5	5	5	5	2	5	10	5	5	5
Max Conteletion temps	0.80	0.70	0.82	0.92	0.89	0.89	0.97	0.93	0.82	0.90	0.75	0.95
Cluster location	9.85	9.85	9.86	9.86	9.86	98.6	9.86	9.87	9.87	9.87	9.88	9.88
Clone Name	ative RNA,	Homo sapiens mRNA for putative progesterone binding protein	Uridine monophosphate synthetase (orotate phosphoribosyl transferase and 760344 orotidine-5'-decarboxylase)	S-adenosylhomocysteine 840364 hydrolase	RIBONUCLEOSIDE- DIPHOSPHATE REDUCTASE 856489 M1 CHAIN	U2 SMALL NUCLEAR 490772 RIBONUCLEOPROTEIN A'	Human mRNA for eukaryotic 46171 initiation factor 4AI	Human putative 32kDa heart protein PHP32 mRNA, 855487 complete cds	281003 T cell receptor gamma chain	509495 PROTEASOME IOTA CHAIN	Human mRNA for 26S 43231 proteasome subunit p97	Homo sapiens dynamin-like 487348 protein mRNA, complete cds
Inage Clone		Homo s putative 376785 protein	760344	840364	856489	490772	46171	855487	281003	509495	43231	487348
GenBank ID	AA425908	AA047567	AA426227	AA485626	AA633549	AA122272	H09590	AA664155	N50880	AA047319	E6850H	AA045529

Page 3

		$\overline{}$	Т	_	т-		$\overline{}$	_	-			Т			Т			$\overline{}$	_		т-		Τ-		Т		_		
loquins	S eues	0000	2000	GNG10		2	1000				DPM1			ASNA1		METTL1		RPS8		COX7RP		ATP5.1		PIGS					7517 XRCC3
Q ₁	Snoo7	ğ	3	2790		40704	1537				8813			439			4234	6202		9167		522		9538					7517
	int eH	cell division cycle	D	guanine nucleotide binding protein 10		adamin'i juniaca-assanian hatain	cytochrome c-1		dolichvLphosphate	mannosvitransferase polypeptide 1.	catalytic subunit		arsA (bacterial) arsenite transporter.	ATP-binding, homolog 1	methyltransferase-like 1 non-	metastatic cells 2, protein (NM23B)	expressed in	ribosomal protein S8	cytochrome c oxidase subunit VII-	related protein	ATP synthase, H+ transporting,	mitochondrial F0 complex. subunit F6		etoposide-induced mRNA	Homo sapiens pescadillo mRNA.	complete cds		X-ray repair complementing defective	repair in Chinese hamster cells 3
1	_{leBin} U	8		Hs.79126		Hs 104125	Hs.697				Hs.5085			Hs.165439		Hs.42957	Hs.75663	Hs.118690		Hs.30888		Hs.73851		Hs.8141		Hs.13501			Hs.99742
'0'	Di _{rect}	۵		Δ		_					۵			Ω			۵	0		۵		Ω	Γ	Ω		۵	Γ		۵
egueus Xen				2.22		3.18	3.00				2.01			2.51			2.45	2.65		2.54		2.57		2.15		3.70			3.02
no ^{l) fi}	ignio Signios	5		10		- 6	2				9			10			5	9		10		9		9		9			10
30	W Con	0.93		0.99		0.84	0.97				0.80			0.79			0.93	0.88		0.87	-	0.84	T	0.86		0.78			0.70
19	Senia Desol	9.88	-	9.89		9.89					9.89			9.89			9.90	9.91		9.92		9.92		9.92	+	9.82	_		9.92 0.70
eweN €	^{euo} lo	Human p55CDC mRNA, 898062 complete cds	Human G protein gamma-10	795/38 subunit mRNA, complete cds	Homo sapiens adenylyl cyclase	24145 mRNA, complete cds	40017 Cytochrome c-1	Homo sapiens dolichol	monophosphate mannose	synthase (DPM1) mRNA,	429182 partial cds	Homo saplens arsenite	translocating ATPase (ASNA1)	825677 mRNA, complete cds		H.sapiens mRNA for D1075-	755239 like gene	971367 40S RIBOSOMAL PROTEIN	Homo sapiens mRNA for	129146 COX7RP, complete cds	ATP synthase, H+ transporting,	825312 mitochondrial	Homo saplens Pig8 (PIG8)	384081 mRNA, complete cds	Homo sapiens pescadillo	26578 mRNA, complete cds	Homo sapiens X-ray repair	cross-complementing protein 3	814287 (XRCC3) mRNA, complete cds
Clone		898062	-) A2/38/	<u> </u>	24145	40017 (_		S	429182 F	_		825677 n	•	<u>+</u> _	755239	9713674		129146C	4	825312 n	٠.	384081 n		26578 n	<u>-L</u>	0 !	814287[(
QI YUE	gu _ə g	AA598776	00000	AA450286		R37953	R53311				AA004759			AA504809	0.000.4	AA422058	AA422139	AA683050		R10947		AA504540		AA702548		R37665			AA459013

Page 40

	_		γ		_	T							,			
lodanye enes	8671 SLC4A4	ME1				5701 PSMC2			SPOCK	TRICS		PSG5	HRMT1L2			2224 FDPS
Coche ID	8671	4199 ME1				5701			6695	7203			3276			2224
eth str	solute carrier family 4, sodium bicarbonate cotransporter, member 4	malic enzyme 1, soluble	Human D9 splice variant B mRNA,	ESTs ESTs	ESTS	proteasome (prosome, macropain) 26S subunit, ATPase, 2	Homo sapiens clone 23620 mRNA	ESTS	sparc/osteonectin, cwcv and kazal- like domains proteoglycan (testican)	TCP1 (t-complex-1) ring complex, polypeptide 5	Human pregnancy-specific beta- glycoprotein e mRNA, complete cds pregnancy specific beta-1-	glycoprotein 5	HMT1 (hnRNP methyltransferase, S. cerevisiae)-like 2	farnesyl diphosphate synthase	(farnesyl pyrophosphate synthetase, dimethylallyltranstransferase,	geranyltranstransferase)
Unigene eneginU	5.5	Hs.14732	He 37818	Hs.205702	Hs.198574	Hs.61153	Hs. 90797	Hs.119007	Hs.93029	Hs.1708	Hs.204503	Hs.206127	Hs.20521		•	Hs.77393
Direction	٥	۵	_		T	1		Δ	Ω	 		۵	_			٥
Ratio change	2.16	2.62	2 64	89	2.21	3.20		3.14	2.44	2.19		2.70	2.37			2.12
no ^{dbi-} Xem ^e delqmeð	9	10	10	5	: 2	9		5	5	9		10	5			5
Max. Conelation feman	0.92	0.79	80 0	8	0.85	0.87		0.90	0.98	0.81		0.90	0.89			0.81
Cluster location	9.93	9.93	9 93	700		9.85		9.82	9.95	9.88		9.86	9.98			9.96
Cl ^{one} Name	Homo sapiens sodium bicarbonate cotranspo (HNBC1) mRNA, com	857264 MALATE OXIDOREDUCTASE	Human D9 splice variant A 813675 mRNA, complete cds	ESTs	626206 DNA polymerase gamma	26S PROTEASE 684655 REGULATORY SUBUNIT 7		29063 ESTs	433666 H.sapiens mRNA for testican	Human cytoplasmic chaperonin 42096 hTRIC5 mRNA, partial cds	Pregnancy specific beta-1	325641 glycoprotein 5	Human mRNA for suppressor 246120 for yeast mutant, complete cds	Farnesyl diphosphate synthase (farnesyl pyrophosphate	synmetase, dimethylallyltranstransferase,	80410[geranyltranstransferase)
in _{age} Clo _{ne}	787938	857264	813675	134719 ESTs	626206	684655		29063	433666	42096		325641	246120			80410
GenBank ID	AA452278	AA669689	AA453750	R28287 R28071	AA188761	AA251770	R40970	R14475	AA699317	R60933	W51985	W52627	N55480			T65790

rage 41 Table 1

	r	\neg		_			т		-	_		_	ı -	-		Т	_	_		Г		Т				
lodany enso	, i	212	aTJ									CSDA			PSMA7		TXNL									9088 PKMYT1
9/8/1007	, ,	2080	Š	3								8531			5688		9352		10301							8806
भ्रोत थे		o-pyruvoyitetranydroptenn syntnase	chaperonin containing T-complex		Human Sec61-complex beta-subunit	mRNA, complete cds			ESTS		ESTs	cold shock domain protein A		proteasome (prosome, macropain)	subunit, alpha type, 7		thioredoxin-like, 32kD	Homo sapiens mRNA for leukemia	associated gene 1	Human selenium donor protein (selD)	mRNA, complete cds		Human B-cell receptor associated	protein (hBAP) mRNA, partial cds	membrane-associated tyrosine- and	uneomine-specific cacz-innibitory kinase
Unigene	1 9	HS.300	He 82016	21020		Hs.77028			Hs.196326		Hs.5122	Hs.1139			Hs.119502		Hs.18792		Hs.20149		Hs.124027			Hs.7771	l	Hs.77783
Direction		2		\top		Ω			Ω		۵	Δ			۵		۵		۵		۵			۵		۵
Ratio change		6.3	2			2.37			2.04		4.00	2.24			2.33		2.60		2.38		2.70			2.78		2.7 [†]
no ^{No:} Xem alelqmat	Ş	2	Ç	:		9			9		9	9			9		9		9		10			9		9
Max Conteletion notice	2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2			0.95			0.93		0.82	0.73			0.98		0.77	-	0.82		0.81			0.90		0.95
Cluster Cluster	0.03	_	0 07	_		9.87			9.97		8.97	9.97			9.98		9.38		9.99		9.99			9.39		10.00 0.95
Clone Name	6-PYRUVOYL TETRAHYDR	SINIMASE	Human chaperonin protein (Tcn20) gene complete cds	PROTEIN TRANSPORT	PROTEIN SEC61 BETA	214884 SUBUNIT	Homo sapiens thyroid receptor	interactor (TRIP3) mRNA, 3'	824906 end of cds	Human Gu protein mRNA,	814117 partial cds	810057 DNA-BINDING PROTEIN A	Homo sapiens proteasome	subunit XAPC7 mRNA,	1455641 complete cds	Homo sapiens thioredoxin-like	545403 protein mRNA, complete cds	Homo saplens mRNA for	773383 leukemia associated gene 1	Human selenium donor protein	840702 (seID) mRNA, complete cds	Human B-cell receptor	associated protein (hBAP)	810552 mRNA, partial cds	Limon binger & Add Adday	739511 mRNA, complete cds
Inage Clone	940	10000	45233			214884	_		824906		814117	810057			1455641		545403		773383		840702			810552		739511
GenBank ID	276428VV	7407 / OH	H07880			H73928			AA489011		AA465386	AA465019			AA863149		AA079059		AA425755		AA488081			AA464567		AA479030

Page 4

				Γ	_	1			т -			1	_	_		_		Т.	
Sene Symbol	CDKN2D	EWSR1	SNRPC	5224 PGAM2	5223 PGAM1			HDAC2		TSFM	APRT		GTF2A1		i	2850 GS1P1	KDT8		ATF4
a _{l snoo7}	1032	2130	6631	5224	5223			3066		10102 TSFM	353		2957			2920	2858		468
ebit 2 ^H	cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)	Ewing sarcoma breakpoint region 1	small nuclear ribonucleoprotein polypeptide C	phosphoglycerate mutase 2 (muscle)	phosphoglycerate mutase 1 (brain)	Human BTK region clone ftp-3 mRNA		histone deacetylase 2	Ts translation elongation factor	mitochondrial	adenine phosphoribosyltransferase	general transcription factor IIA, 1	(37kD and 19kD subunits)			giutatnione S-transferase pi	ke in in	activating transcription factor 4 (tax-	responsive enhancer element B67)
Unigene Gundani	22	Hs.129953	Hs.1063	Hs.46039	Hs.181013	Hs.75927		Hs.3352		Hs.3273	Hs 28914		Hs.76362			UZCAL'SH	Hs 78271		Hs.181243
Olrection	۵	٥	۵	٥	۵	٥		۵		۵		\top	Ω			5		1-	۵
Aprilo change		2.03	2.00	3.68	2.01	2.22		2.02		2.18	3.31		2.44			7.3/	2 85		2.07
Kem elemel	10	10	5	5	5	5		9		9	9		5			2	10		5
yeM Conelation Reference	0.88	0.78	0.89	0.94	82	83		98		0.84	72.0	-	85			9	80		62
400	00	10.01	9	10.01	10.01	10.01		10.03 0.96		10.03 0.	10.04	-	10.04 0.85	-	- 10	07.0	10.08 0.80	-	10.06 0.79
Cluster Sezol	10.00	10.	10.01	5	5	5	<u></u>	10.		6		_	10		,	2	10	+	-
Glone Name	Human CDK inhibitor 145503 p19INK4d mRNA, complete	Ewing sarcoma breakpoint 135449 region 1	Human mRNA for U1 small 724387 nuclear RNP-specific C protein	Phosphoglycerate mutase 2 283315 (muscle)	Phosphoglycerate mutase 1 (brain)	Human BTK region clone ftp-3 mRNA	Human transcriptional regulator homolog RPD3 mRNA,	502669 complete cds	MITOCHONDRIAL ELONGATION FACTOR TS		Human APRT gene for adenine 897774 phosphoribosyltransferase	Human TFIIA gamma subunit	73381 mRNA, complete cds	Spermidine/spermine N1-	acetyltransferase mRNA,	History college cus	321389 complete cds	CAMP-dependent transcription	949971 factor ATF-4 (CREB2)
Inage Clone	5503	5449	4387 r	3315(Phosp 897177 (brain)	Humar 866874 mRNA	<u></u>	2669 c	س ح	4618	7774	Ī	3381	-/	4452	77	1389		9971
	4	13	72	28	88	- 8		20		32	89		_		_		32	_	8
GenB ^{ank} ID	R77517	R32755	AA253448	N54768	AA676970	AA679345		AA127093		W47014	AA598510		T55801		D58004	10000	W44860		AA600217

Page 43

			_	_															_		_					_	
Gene Symbol	BUB3	BUB3	MPI	ADSL				7326 UBE2G1			6566 SLC16A1			ANT1				CETN3		CDK8		10169 SERF2			7818 DAP3		RPS29
al susol			4351	158				7326			6566			291				1070				10169			7818		
e ^{bi} T e ^H	Homo sapiens mRNA for 6.2 kd protein BUB3 (budding uninhibited by	benzimidazoles 3, yeast) homolog	mannose phosphate isomerase	adenylosuccinate lyase	Homo saplens mRNA for putative	ABC transporter, partial	uhlanitin confination anyme E2G 4	(homologous to C. elegans 118C7)	solute carrier family 16	(monocarboxylic acid transporters),	member 1		adenine nucleotide translocator 1	(skeletal muscle)	Human mRNA for clathrin-like	protein, complete cds	centrin, EF-hand protein, 3 (CDC31	yeast homolog)	ESTs	cyclin-dependent kinase 8		small EDRK-rich factor 2			Death associated protein 3	Cytoplasmic antiproteinase	ribosomal protein S29
Unige _{ne}	Hs.112318	Hs.40323	Hs.75694	Hs.75527		Hs.153612		Hs 78563			Hs.75231			Hs.2043		Hs.77770		Hs.29463	Hs.25283	Hs.206758		Hs.44499			Hs.159627	Hs.41072	Hs.539
Direction		۵	۵	Δ		۵			_		_			۵		Ω		۵		۵		۵			۵		۵
Ratio change		3.03	2.38	2.39	,	2.11		2.07			2.46			2.21		2.36		2.60		2.04		2.03			2.13		2.46
u _{ODb} .		9	10	9	,	2		9	:		9			9		9		9		5		10			9		E
yeM YeMOO noWelenoO		78.	0.70	0.92	1	7.72		06.0			78.0			0.92		0.70		0.87		0.80		.83			7.81		8
Cluster location		10.06 0.87	10.06 0.70	10.07		10.07		10.09 0.90			10.09 0.87			10.09		10.09 C		10.11		10.12	_	10.14 0.83			10.15 0.81		10.54 0.80
Clone Name	Homo sapiens spleen mitotic checkpoint BUB3 (BUB3)			813280 Adenylosuccinate lyase		7	Human mRNA for ubiquitin-		ute carrier family 16	(monocarboxylic acid	486175 transporters), member 1	Human mitochondrial	ADP/ADT translocator mRNA,	40026 complete cds	Human mRNA for clathrin-like	28823 protein, complete cds	H.saplens mRNA for centrin		CELL DIVISION PROTEIN		H.sapiens mRNA for nuclear	416316 protein SDK3, partial	Human ionizing radiation	resistance conferring protein			753862 Cytoplasmic antiproteinase
enolg egeml al		785778	50359	813280	00000	308682		531957 cds			486175			40026		28823		487425 gene		42880		416316			32875		753862
GenB ^{ank} ID	AA449693	AA448967	H17096	AA455931	A105400	7040EN		AA113903			AA043133			R53942		R40767		AA046590	R59697	R59807		W86139			R43325	AA410517	AA411343

Fage 4

		T				_	_		_			_			_		_	_	_	_		1				7	_
Ioquing auas			7905 D5S346	KLK3					PSMA7		TM4SF1					ERCC3		CLNS1A			DPYSL3		SFRS2		1	AIPGF	2935 GSPT1
al shoo7	10549		7905	354					5688		4071					2071		1207			1809		6427		000	533	2935
abit eH	Human antioxidant enzyme AOE37-2 mRNA, complete cds	DNA segment, single copy probe	LNS-CAI/LNS-CAII (deleted in	kallikrein 3, (prostate specific antigen)	ESTs	ESTs		proteasome (prosome, macropain)	subunit, alpha type, 7	transmembrane 4 superfamily	member 1	excision repair cross-complementing	rodent repair deficiency,	complementation group 3 (xeroderma	pigmentosum group B	complementing)	chloride channel, nucleotide-	sensitive, 1A			dihydropyrimidinase-like 3		splicing factor, arginine/serine-rich 2		A I Pase, H+ transporting, lysosomal	(vacuolar proton pump) Z1kD	G1 to S phase transition 1
Unigene	Hs.83383		Hs.178112	Hs.171995	Hs.205357	Hs.177530			Hs.119502		Hs.3337					Hs.77929		Hs.84974			Hs.74566		Hs.73965			Hs.7476	Hs.2707
Direction	۵		۵	Δ		۵			٥		۵			_	•	Δ		Ω			Ω		۵				Ω
eguedo outes	2.58		2.13	2.77		2.34			2.00		7.10					2.09		2.27			2.14		2.39		-	2.03	2.05
no ^{Vb} . Xem edelqmed	=		÷	11		Ξ			11		7					÷		-			Ξ		F		,	-	11
XeM nobelenoo	787	r	0.80	0.71		0.75			0.87		0.94	r	_		•	0.76		0.85			0.81		98.0		-	0.75	0.91
Cluster location	10.56 0.84	T	10.59 0.80	10.60 0.71		10.62			10.64 0.87		10.64 0.94					10.64 0.76		10.66			10.68 0.81		10.69 0.86		ì	10.71 0.75	10.72 0.91
Clone Name	Human antioxidant enzyme AOE37-2 mRNA, complete cds	POLYPOSIS LOCUS		824568 Prostate specific antigen			Ubiquitin A-52 residue	l protein fusion		TUMOR-ASSOCIATED	840567 ANTIGEN L6		• .		Human DNA repair helicase	51666 (ERCC3) mRNA, complete cds	H.sapiens mRNA for Ich	72050 protein	Human mRNA for	dihydropyrimidinase related	47647 protein-3, complete cds	Splicing factor, arginine/serine-		Human mRNA for proton-	ase-like protein, complete		842825 G1 to S phase transition 1
Image Clone	795543		263727	824568		366156 ESTs			1492412	-	840567					51666		72050			47647		809535 rich 2			810725 cds	842825
GenBank ID	AA459663		H99681	AA490981	AA062814	AA082419			AA878561		AA487893					H20856		T52362			H16256		AA456478			AA45//17	AA486233

Page 45 Table 1

				1	Γ	T	1	Γ	
Gene Symbol		ESD		5905 RANGAP1	DDX11				TR2
Cocus ID		2098		5905	1663		10431	·	7181 TR2
eh out	H.Sapiens gene for RNA polymerase II subunit 14.4 kD	esterase D/formylglutathione hydrolase	Homo sapiens clone 24551 mRNA sequence	Ran GTPase activating protein 1	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (S.cerevisiae CHL1-like helicase) ARP2 (actin-related protein 2, veast) homolog	ESTs ESTs	Homo sapiens Inner mitochondrial membrane translocase Tim23 (TIM23) mRNA, nuclear gene encoding mitochondrial protein, complete cds	Homo sapiens mRNA for smallest subunit of ublquinol-cytochrome c reductase, complete cds	TR2 nuclear hormone receptor
Unigene ensein	Hs.46405	Hs.82193	Hs.79748	Hs.183800	Hs.27424 Hs.62461	Hs.41958 Hs.28669	Hs.11866	Hs.8372	Hs.108301
Direction	۵	۵	۵	۵			. 0	Ω	Δ
Ratio change		2.05	2.09	2.16	2.41	2.42	2.04	2.03	2.20
nower and and and and and and and and and and	=	=	=	=	- =	=	=	11	11
nozeM SeM nobelenos	.95	16.0	77.0	8	98.0	88.	.99	.89	0.90
Cluster location	10.72 0.95	10.72 0.91	10.73 0.77	10.74 0.90	10.75	10.76 0.80	10.76 0.99	10.77 0.89	10.77
Clone Name	DNA-DIRECTED RNA POLYMERASE II 14.4 KD POLYPEPTIDE	Esterase D/formylglutathione 80500 hydrolase	Antigen identified by monoclonal antibodies 4F2, 858454 TRA1.10, TROP4, and T43	g protein			no saplens inner chondrial membrane slocase Tim23 (TIM23) NA, nuclear gene encoding chondrial protein, complete	r for piquinol- ise,	211275 ORPHAN RECEPTOR TR2
e ^{lojo} olo Oj		80500	856454	811150	470930	242698 ESTs	Hon mitc tran mRI mRI mitc	884993	211275
GenBank Ib	AA418689	T64482	AA630794	AA485734	AA032090 AA034103	H94262 H94162	T68317	AA629862	H68838

Fage 46

		_	_	_		_	_	_			_	_					γ-	_		_			_					_
Joquing Bulbol	İ	ENT2	0834 SURF1							1192 CLIC1						5438 POLR2I			EIF4A2					EMP2		8165 AKAP149		1644 DDC
al susol		3177	300							1192						5438			1974					2013		8165	_	464
न्धार थम	rative nucle	ESIS	Surreit 1	,		Homo sapiens mRNA for ATP	synthase subunit e, complete cds			chloride intracellular channel 1	Human AMP deaminase isoform L	(AMPD2) mRNA, exons 6-18, partial	cds		polymerase (RNA) II (DNA directed)	polypeptide I (14.5kD)	ESTs	eukaryotic translation initiation factor	4A, isoform 2	Human autoantigen small nuclear	ribonucleoprotein Sm-D mRNA,	complete cds		epithelial membrane protein 2		A kinase anchor protein, 149kD	dopa decarboxylase (aromatic L-	amino acid decarboxylase)
en ^{ggin} U	6.3	H8.12152	18.5.180				Hs.85539			Hs.74276			Hs.82927			Hs.47062	Hs.184245		Hs.173912			Hs.86948		Hs.29191		Hs.78921		Hs.150403
Direction		\neg	┱	Ω			۵			۵			۵			۵	۵		Ω	Γ	-	۵	Γ	۵		Ω	$\overline{}$	۵
Ratio change		2.20	70.7	2.06			2.38		-	2.03			2.52			5.09	2.30		2.32			2.11		2.82		2.21		3.94
nous Aside May	;	=	= ;	11			7			=			11			=	11		=			7		7		7	-	1
ASM Nobelenco nobelences	i	4 8	8 8	E3:			.74	-	_	7.			.87			88.	08.	 	8.			.97	\vdash	<u>ه</u>		0.99		.70
Cluster location		10.82 0.74	\$ 6	10.84 0.93			10.85 0.74			10.85 0.74			10.86 0.87			10.88 0.89	10.88 0.80	-	10.89 0.80			10.90 0.97		10.90 0.81	-	10.91 0	_	10.91 0.70
"/o		2 5	2 5	ᅥ			9	_		2			5			10	12	L	9	_		9	_	9	_	19	_	9
		741856 complete cos	Surial (Homo sapiens mRNA for ATP	synthase subunit e, complete	cds	Human nuclear chloride ion	channel protein (NCC27)	843121 mRNA, complete cds		Human AMP deaminase	28410 (AMPD2) mRNA	DNA-DIRECTED RNA	POLYMERASE II 14.5 KD	378502 POLYPEPTIDE	ESTs	Human mRNA for eukaryotic	43241 initiation factor 4Aii	SMALL NUCLEAR	RIBONUCLEOPROTEIN SM	01	Human XMP mRNA, complete	cds	H.saplens mRNA for kinase A	814765 anchor protein	Dopa decarboxylase (aromatic	384015 L-amino acid decarboxylase)
Integer Clone		741838	40000	196650 ES 18			782439 cds			843121			28410			378502	214906 ESTs		43241			47542 D1		109863 cds		814765		384015
GenBank ID	AA40289	AA699560	2000000			_	AA431433		_	AA486518			R40634			AA777192	H74133		H05919			H16255		T84249		AA454947		AA702640

Page 4

		Т	Γ	т-	Т	Τ	1	_	1	Τ-	_	_	_	ī	Τ		т-	_	Τ	_	
Cene Symbol	10063 COX17	6192 RPS4Y	PSMA1	CBR1			1004							ZQI		9533 RPA40		4237 MFAP2	QIA		踞
q _{l snoo7}	10063	6192	5682	873			2020	220						3249 HPN		9533		4237	0040	2010	
ebit et	human homolog c mitochondrial cop	ribosomal protein S4, Y-linked	proteasome (prosome, macropain) subunit. alpha type. 1	carbonyl reductase 1	ESTs	Human mutY homolog (hMYH) gene,	inforfaron etimilated acceptain 15 U.S.	ESTs	Human Chromosome 16 BAC clone CIT9875K-A-101F10	Human serine/threonine kinase	mRNA, partial cds	ESTs	ESTs	hepsin (transmembrane protease, serine 1)		RNA polymerase I subunit		microfibrillar-associated protein 2	aryl hydrocarbon receptor-interacting	ESTS	prohibitin
enaginU	1.5	Hs.180911	Hs.82159	Hs.88778	Hs.7420	Hs. 78489	He 833	Hs.13740	Hs.5320		Hs.79337	Hs.8737	Hs.13011	Hs.823		Hs.5409		Hs.83551	Hs 75305	Hs.205821	Hs.75323
Direction	۵	_	۵	Δ	Δ		1	_	٥	1			۵	۵		۵	1	_	٥	1	۵
xen oney		2.10	2.04	2.44	2.88	2.21	3.78	2.08	2.74		2.47	2.76	2.00	2.19		2.33		2.15	2.28		2.27
noab:	11	÷	7	F	Ξ	=	=	=	7	:	=	7	11	11		=		11	7		12
Max. Corelation	0.71	0.87	98.0	12.0	0.70	0.78	83	97.0	0.87		1	7.73	93	9.78		080	-	0.76	0.73		87.
Cluster location	10.92	10.93	10.93 0.89	11.01 0.77	11.02 0.70	11.03	11 06 0 83	11.07 0.76	11.10		11.10 0.77	11.14 0.73	11.18 0.83	11.26 0.78		11.27 0.80		11.30	11.32		11.56 0.78
Clone Manne	Homo sapiens COX17 mRNA, 489823 complete cds	83011 Ribosomal protein S4, Y-linked	134544 Proteasome component C2			Human mutY homolog (hMYH) 268727 gene, complete cds	JCED 17			onine kinase	A, partial cds			208413 Hepsin .	Homo sapiens RNA		ed protein		Human HBV-X associated 814731 (XAP2) mRNA, complete cds		42313 Prohibitin
Inage Clone	489823	83011	134544	711552	195051 ESTs	268727	742132	108265 ESTs	280837 ESTs	7.70007.4	110837	241988 ES IS	66555 ESTs	208413	-	399532		291880 2	814731		42313
GenBank ID	AA099855	T69468	R27585	AA280846	R91137	N24004	AA406020	T70541	N50686	-	9	+	T67069	H62163		AA733038		N6/48/	AA454926	_	R61067

	eth eth	sorbitol dehydrogenase		COTA
Page 48 Table 1	nor _{enegin} U	s.878		He 106726 CETE
Pag Tal	Olrection	۵		c
	Ratio change	2.12		2 33
	Contelation femplation xem alalquax	12		12
	XEW	0.77		73
	Cluster location	11.77 (12 24 0 73
·	Clone _{Name}	Sorbitol dehydrogenase	Hydroxysteroid (11-beta)	415145 dehydrogenese 2
	Inage Clone	3350		5145
	Imani	433		415

Gengank ID

Table

Table

Max Corr. Fold diff IMAGE Ace	Accession		Effect of
Clone ID #	Clone Name	name	castration
840460 AA485865	Interleukin 7 receptor	IL7R	INCREASING
111750 T91100			INCREASING
₹			INCREASING
₹	809998 A4454854 ALPHA-AMYLASE 2B PRECURSOR		INCREASING
Š	Mineralocorticoid receptor (aldosterone receptor)	MLR	INCREASING
82734 T73556	Long chain fatty acid acyl-coA ligase	FACL1	INCREASING
322160 W37864	Phosphatase and tensin homolog (mutated in multiple advanced cancers 1	PTEN	INCREASING
2 H45976	76 Human cadherin-associated protein-related (cap-r) mRNA, complete cds		INCREASING
223350 H86554		SP	INCREASING
\$	2 AA128328 Retinoblastoma-binding protein 1{alternative products}	RBBP1	INCREASING
₹	1 AA447692 Human homeobox gene (clone HHO.c13)		INCREASING
6 R66310	Peptidylglycine alpha-amidating monooxygenase	PAM	INCREASING
Š	69 Human fibroblast activation protein mRNA, complete cds	FAP	INCREASING
က်			INCREASING
2			INCREASING
ઌ૽	137096 R35979 ESTs		INCREASING
₹I	Glucose-6-phosphate dehydrogenase	GePD	INCREASING
₹١	Sialyltransferase 1 (beta-galactoside alpha-2,6-sialytransferase)	SIAT1	INCREASING
₹	1412481 AA845156 Serine protease inhibitor, Kazal type 1	SPINK1	INCREASING
2			INCREASING
0 R60343	5' nucleotidase (CD73)	NT5	INCREASING
₹	362483 AA018780 Spectrin, beta, non-erythrocytic 1	SPTBN1	INCREASING
₹	Myosin VIIA (Usher syndrome 1B (autosomal recessive, severe))	MY07A	INCREASING
22			INCREASING
₹	811162 AA485748 Fibromodulin	FMOD	INCREASING
₹		COL5A2	INCREASING
R6	ERYTHROCYTE BAND 7 INTEGRAL MEMBRANE PROTEIN	EPB72	INCREASING
	Human putative EPH-related PTK receptor ligand LERK-8 (Epig8) mRNA,		
₹	811088 AA485685 complete cds	EFNB3	INCREASING
<u>\</u>	Human mRNA for collagen binding protein 2, complete cds	CBP2	INCREASING
345935 W77839	39 Homo sapiens mad protein homolog (hMAD-3) mRNA, complete cds		INCREASING

Table

Template cluster	Max Corr. Fold diff	Fold diff	IMAGE	Accession			Effect of
order	Coef.	in ratio	Clone ID	#	Clone Name	name	castration
4.022205	4.022205 0.934825	4.06889		773301 AA425217	Cadherin 3 (P-cadherin)	СБНЗ	INCREASING
					Human multidrug resistance-associated protein homolog (MRP3) mRNA,		
4.030049	9			781139 AA429895	partial cds	CMOAT2	INCREASING
4.05323	0.85222	3.68583		810960 AA459401	Homo sapiens serine protease-like protease (nes1) mRNA, complete cds		INCREASING
4.548312	0.865246	5.25408	813823	813823 AA447781	Lumican	LUM	INCREASING
4.550752	4.550752 0.861665	3.40597	242062	242062 H93837	Apolipoprotein B (including Ag(x) antigen)	APOB	INCREASING
4.633368	0.945709	3.34724		843098 44488676	Homo sapiens neuronal tissue-enriched acidic protein (NAP-22) mRNA,		CNISPERSING
4.638356		1		51582 H22826	Human zinc-finger domain-containing protein mRNA, partial cds	LMO7	INCREASING
4.646712	4.646712 0.858117	5.22275	839991	839991 AA490172	Collagen, type I, alpha-2	COL1A2	INCREASING
4.672971				840687 AA486365	Mucin 1, transmembrane	MUC1	INCREASING
4.705173		32.2623		66731 T64905	Rieger syndrome (solurshin)	PITX2	INCREASING
4.709465	6 0.809699	5.16377	272327	272327 N32199	Human melanoma antigen recognized by T-cells (MART-1) mRNA	MLANA	INCREASING
				T98195			
4.767416				121792 T98194	ESTs		INCREASING
4.838693	0.98735	5.03913		120964 T96123	ESTs		INCREASING
					Paired basic amino acid cleaving enzyme (furin, membrane associated		
4.906635	- 1	3.25058		1 AA856874	receptor protein)	PACE	INCREASING
4.925617	0.808944	3.8469	842836	842836 AA486275	LEUKOCYTE ELASTASE INHIBITOR	ELANH2	INCREASING
				AA012867			
4.963333		_	36088	5 AA012866	ADP-ribosylation factor 6	ARF6	INCREASING
4.974443	0.953264	5.25845	81577	4 AA485141	Human Src-like adapter protein mRNA, complete cds		INCREASING
					Diphtheria toxin receptor (heparin-binding epidermal growth factor-like		
5.089222	0.889221	3.16243		35828 R45640	growth factor)	DTR	INCREASING
7.328666	0.827299	4.43384	788256	788256 AA454098	MITOTIC KINESIN-LIKE PROTEIN-1		DECREASING
7.993284	0.857269	4.04703	196303	196303 R92435	ESTs		DECREASING
8.064665	0.995443	4.51081	415089	415089 W93379	H.sapiens nek2 mRNA for protein kinase	NEK2	DECREASING
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				00007744	Homo sapiens protein regulating cytokinesIs 1 (PRC1) mRNA, complete		
0.078700				/85/U/ AA448335	COS		DECKEASING
8.100987	0.859291	3.44151	774446	774446 AA446120	ADRENOMEDULLIN PRECURSOR	ADM	DECREASING

rage 4 Table 2

000000							
l'empiate Direter	(
ciusier	Max Corr. Fold diff IMAGE	Fold diff	IMAGE	Accession			i
Japio	Coer.	In ratio	Clone ID	#	Clone Name	9	Effect of
700000					Homo saplens mitotic checkpoint protein kinase (RI IB1) mBNA	-1-	castration
8.106229			78104	7 AA446462	cds	_	
8.121724	$\overline{}$	3.73717	126650	126650 R06900	ESTS	BUB1	DECREASING
8.179322	0.943909	3.58877	795936	795936 AA460927	H sapiens mON for terral		DECREASING
8.187876		4.01118	131316	6 R22949	FSTs	TSN	DECREASING
8.189608	0.977735	5.06859	700792	700792 AA284072	Himse profess after the factor of the factor		DECREASING
8.326993	0.816127	3.72208	324891	324891 W49667	Home coning and the first of th	CDKN3	DECREASING
8.327641	0.833943	4.80419	811015	5 AA485377	PER C EOS PROTO ANOS EL DESALVASE MLD MRNA, complete cds	MLD	DECREASING
8.348061	0.87199	8.07032	207288	8 H59663	Homo cariota in the care PROTEIN	FOS	DECREASING
					Home saprens insulin induced protein 1 (INSIG1) gene, complete cds	INSIG1	DECREASING
8.942278	0.891594	3.23034	204257	7 H59231	m PNA complete (MDC9)		
8.950645	0.970041	5.22441		AA430504	Himon giveling cas	ADAM9	DECREASING
				100001 100001	The main cyclin-selective upiquitin carrier protein mRNA, complete cds	UBCH10	DECREASING
8.958193		3.11138	249603	249603 H85277	Homo sanians DCut mBNA contraction		
8.962524		3.46928	207358	H58873	Himan (Hence) Alices t		DECREASING
8.964165	0.899619	5.15807	435076	435076 AA701455	Himan CEND E Line Complete cds		DECREASING
8.981223	0.872284	3.47898	43550	H05914	Himan CENT-F Kinetochore protein mRNA, complete cds	CENPF	DECREASING
					Limital IIIIANA for lactate denydrogenase-A (LDH-A, EC 1.1.1.27)	LDHA	DECREASING
8.995491	0.963459	5.83672	416833	W86653	Human 54 KDa progesterone receptor-associated immunophilin FKBP54	·	
			_		Homo sopland mitalic & all	FKBP5	DECREASING
9.017789	0.96145	5.45155	814701	AA481076	Complete cds		
9.020971	_	8.47047	898286	AA598974	VOB 2 G1 to S and C3 to 14	MAD2L1	DECREASING
\rightarrow		4.69588	204214	H59204		CDC2 CDC2	DECREASING
	0.887974	3.84445	796646 /	AA461467		CDC18L	DECREASING
9.037286	0.937001	4.68027		R19158		ODC1	DECREASING
9.042828	- 1	5.1197		T66935	ESTR	STK15	DECREASING
9.043928	0.972186	3.11063	451907	AA706968	H saniens mBNA for M mhood at		DECREASING
9.077777	0.863953	3.07375	711768	AA280832	Homo sapiers (100 colories		DECREASING
					Himan 54 kha processors (GALE) mRNA, complete cds		DECREASING
		3.68512	416833	W86653	mRNA, partial cds		
9.656433	0.853914	3.05463	453107	AA700904	C-Pl gene similar to yeast CDC45		DECREASING
						CUCASI	DECREASING

Page (

Template							
cluster	Max Corr.	Max Corr. Fold diff IMAGE	IMAGE	Accession			
order	∽	In ratio	Clone ID	*	Clone Name	name	castration
9.663644		3.93424		509887 AA056465	Human 54 kDa protein mRNA, complete cds	MI 1.77	DECREASING
9.682765		6.3141	66728	66728 T64893	Ferrochelatase (protoporphyria)	HCH	DECREASING
9.682844	0.898914	3.51149	789204	789204 AA450205	Human mRNA for translocation protein-1, complete cds	- FOO IE	DECREASING
				AA191548		201	DECINE SOUND
9.742508		1	626716	6 AA191245	Human RNA polymerase II elongation factor ELL2, complete cds	-	DECREASING
9.746844		"	47833	3 H11622	Homo saplens endothelin-1 (EDN1)	TUBA3	DECREASING
9.767257		3.9671	149013	3 R82300	S-adenosylmethionine decarboxylase 1	AMD1	DECEMBING
9.774444		7.01222	531319	531319 AA071486	Homo sapiens protein kinase mRNA, complete cds	STK12	DECREASING
9.789542	0.980464	3.0914	789182	2 AA450265	Proliferating cell nuclear antigen	DONA	DECREASING
9.791251	0.906944	5.10124	856427	7 AA630784	Homo sabiens HPV16 E1 protein hinding protein mRNA complete cds	5	CCCCCASING
9.795647	0.941355	6.1827	725454	725454 AA397813	CDC28 protein kinasa 2	00/10	DECREASING
9.819214	0.85287	3.01659	49352	49352 H15446	Annexin VII (synexin)	CRSZ	DECKEASING
9.82745	0.865398	4.0672	293727	7 N69694	ESTe	AINA	DECKEASING
9 82892			272540	100001			DECREASING
0.02032		3.5255	2/3540	D N332/4	MULIFUNCTIONAL PROTEIN ADE2		DECREASING
9.03/101	0.82697	3.2/589	53316	6 R15814	Human malate dehydrogenase (MDHA) mRNA, complete cds	MDH1	DECREASING
9.838391		3.43685	42059	42059 R60317	Human dihydrolipoamide dehydrogenase mRNA, complete cds	סרם	DECREASING
9.86/489	_1	3.48858	855487	7 AA664155	Human putative 32kDa heart protein PHP32 mRNA, complete cds	ASAH	DECREASING
9.870099	0.819685	5.05212	281003	3 N50880	T cell receptor gamma chain	TCRG	DECREASING
9.884679	0.925499	3.43577	898062	2 AA598776	Human p55CDC mRNA, complete cds	0200	DECDEACING
					Home carians adomited mislans consisted that I will a series of the seri	0000	DECKERSING
9.886957	0.842022	3.17901	24145	5 R37953	complete cds	CAP	DECREASING
				R28287			
9.942197	0.894898	3.67595	134719	134719 R28071	ESTs		DECREASING
9.945983	0.86581	3.20405	684655	684655 AA251770	26S PROTEASE REGULATORY SUBUNIT 7	PSMC3	DECPEASING
2	_			R40970		70110	פרטוריט
9.954306			28083	3 R14475	ESTs		DECREASING
9.808233	- 1	3.0064	45233	45233 H07880	Human chaperonin protein (Tcp20) gene complete cds	ССТВ	DECREASING
8.971725	- 1	4.00407	814117	AA465386	Human Gu protein mRNA, partial cds		DECREASING
10.012323	0.942758	3.67632	283315	283315 N54768	Phosphoglycerate mutase 2 (muscle)	PGAM2	DECREASING
40.000454		000	-	AA449693	no sapiens spleen mitotic checkpoint BUB3 (BUB3) mRNA, complete	BUB3	
10.052454	0.866873	3.02895	785778	B AA448967		BUB3	DECREASING

Table 2

Template cluster order	Max Corr.	Max Corr. Fold diff IMAGE Coef. In ratio Clone ID	IMAGE Clone ID	Accession #	Clone Name	o E	Effect of
	ı	200				Hallic	casuation
10.642527	10.642527 0.938567 7.09894	7.09894	1	AA487893	TUMOR-ASSOCIATED ANTIGEN L6	TM4SF1	DECREASING
10.720656	0.948241	3.096	I	AA418689	DNA-DIRECTED RNA POLYMERASE II 14.4 KD POLYPEPTIDE		DECREASING
11.056153	0.828701	3.7635	742132	AA408020	INTERFERON-INDUCED 17 KD PROTEIN	18G15	DECREASING

Hierarchical					
<u>cluster</u>	Ratio Fold	Clone		unigene	
position	<u>Change</u>	<u>index</u>	clone name	name	accession
			Human mRNA for ubiquitin-conjugating		
1	2.068256	531957	enzyme, complete cds	UBE2G1	AA113903
			Homo sapiens UDP-galactose-4-		
2	3.073747	711768	epimerase (GALE) mRNA, complete cds		AA280832
3	2.645818	971367	40S RIBOSOMAL PROTEIN S8	RPS8	AA683050
			Homo sapiens mRNA for COX7RP,		
4	2.539682	129146	complete cds	COX7RP	R10947
			Homo sapiens arsenite translocating		
5	2.505608	825677	ATPase (ASNA1) mRNA, complete cds	ASNA1	AA504809
7	2.628698		40S RIBOSOMAL PROTEIN S15A	RPS15A	AA872341
			Homo sapiens adenylyl cyclase-associated		
8	3 179007	24145	protein (CAP) mRNA, complete cds	CAP	R37953
9	3 20405	684655	26S PROTEASE REGULATORY SUBUNIT		AA251770
10			Annexin VII (synexin)	ANX7	H15446
11			P68 PROTEIN	DDX5	H27646
12	2.2082		Tubulin, gamma polypeptide	TUBG	T77732
12	2.2002		V-myc avian myelocytomatosis viral	1000	1177702
40	2 042564			MYC	AA464600
13			oncogene homolog	MIC	N52450
14	2.839618	244154			1432450
	. ======		Human protein tyrosine kinase t-Ror1	NTDVD4	A 400005
. 15	1.772225	781097	(Ror1) mRNA, complete cds	NTRKR1	AA430035
1					W47576
16	3.198344	324342			W47597
			Human mRNA for 26S proteasome subunit		
17	2.480446	43231		PSMD2	H05893
			Homo sapiens thioredoxin-like protein		
20			mRNA, complete cds	TXNL	AA079059
23			Prostate specific antigen	KLK3	AA490981
24	2.235154	810057	DNA-BINDING PROTEIN A	CSDA	AA465019
			Human APRT gene for adenine		
25	3.313153	897774	phosphoribosyltransferase	APRT	AA598510
			Human chaperonin protein (Tcp20) gene		
26	3.006397	45233	complete cds	ССТ6	H07880
			Human selenium donor protein (selD)		
27	2.700649	840702	mRNA, complete cds		AA488081
			Homo sapiens mRNA for putative		
28	2.306756	376785	progesterone binding protein		AA047567
30	4.00407	814117	Human Gu protein mRNA, partial cds		AA465386
31			H.saplens mRNA for SMT3B protein		AA775415
			H.sapiens mRNA for rat HREV107-like		
32	4.62198	785293			AA476438
34					AA001819
			Homo sapiens EB1 mRNA, complete cds HMM Homo sapiens dynamin-like protein mRNA,		
36	2 973092	487348	Homo sapiens dynamin-like protein mRNA, complete cds		AA045529
37			FLAP ENDONUCLEASE-1	FEN1	AA620553
38	2.819821			CCNA2	AA608568
	4.010021	333330	Human (HepG2) glucose transporter gene	30.00	
20	2 460276	207250			H58873
39	3,4092/6	207308	mRNA, complete cds		1100073
45	0.000004	004007	Eukaryotic translation initiation factor 5	CICE	A A G G D 4 4 2
40	2.660381			EIF5	AA669443
42	4.510814	415089	H.sapiens nek2 mRNA for protein kinase	NEK2	W93379
		705-5-	Homo saplens protein regulating		
44	4.52618	/85707	cytokinesis 1 (PRC1) mRNA, complete cds	L	AA449336

maniki	Ratio F	old Clo	ne				
position	Change	Ind		clone name		unige	
						name	
	16 2.2404	431 29	5483	BESTs			N70:
4	7 1.9634	196 86	B308	40S RIBOSOMAL PROTEIN S23		DDCC	W05
	1			H.Sapiens mRNA for rae related CTD		RPS23	
4	8 2.2787	726 756	3401	Dinding protein		RHEB2	AA48
4	1			Human D9 splice variant A mRNA,		MICOZ	2 AA48
5	9 2.6393	37 813	3675	complete cds		1	10045
	0 2.6659	81 44		Unknown EST		SNRPE	AA45 H068
5	1 2 2220	40/ -0-		Human G protein gamma-10 subunit		10,0,0	1 1000
	2.2239	12 /95	/38	mRNA, complete cds		GNG10	AA46
52	2 4500	22 755	220			METTL	
54	2.4003	06 224	239	H.sapiens mRNA for D1075-like gene		NME2	AA42
	2.2015	234	23/	n.sapiens mRNA for Pirin, isolate 1		PIR	H693
55	2.53371	15 772	أاء	Adenine nucleotide translocator 2 (fibroblast)			- 1
		172.	304	(librobiast)		ANT2	AA404
56	5.06858	700	702	Human protein phosphatase (KAP1) mRNA, complete cds			
57			2687	Chymidd de la complete cds		CDKN3	AA284
		1000	200	Thymidylate synthase			AA663
58	2.36369	5 8786	76 k	ATP-DEPENDENT DNA HELICASE II, 8 KD SUBUNIT			
59	3.96709	6 1490	13.5	adenosylmethionine decarboxylase 1		XRCC5	AA775
		1	H	fomo saniens (clans shall and shall and shall and shall and shall and shall and shall and shall and shall and shall and shall and shall and shall and shall and shall are shall and shall are shall and shall are shall and shall are shall	1	AMD1	R8230
60	2.47874	7 7574	89 tı	domo sapiens (clone ch13lambda7) alph ubulin mRNA, complete cds			AA426
		1	H	luman	_[TUBA2	AA436
[1		netalloprotease/disintegrin/cysteine-rich	- 1		
1		1	IDI	OTEIN DIECUISOR (MDCO) mONA			
61	3.230339	2042	37 I CX	18			1
62	3.081688	89756	37 L-	LACTATE DEHYDROGENASE M CHAI	/	ADAM9	H59231
		i	12.14	unidit (IIKNA tor lactate debudrogonose	\	DHA	AA4970
63	3.47898	4355	ייוועני	DH-A, EC 1.1.1.27)		.DHA	
0.1		ſ	M	ALATE DEHYDROGENASE	-15	DHA	H05914
64	2.54226	72518	8 C)	YTOPLASMIC		IDH1	
65	3.844452	79664	6 Or	mithine decarboxylase 1		DC1	AA4032
00	2.00400-		(Ho	mo sapiens Porr-Pl gene cimilante	۲		AA4614
66	3.054629	45310	/ yea	ast CDC45	c	DC45L	AA7009
68	2 000500		NA	ADH-UBIQUINONE OXIDOREDUCTASE	╁	DOIDE	747009
	2.000069	75345	///5	KD SUBUNIT PRECURSOR		DUFS1	AA40653
			Hu	man malate dehydrogenase (MDHA)	+	30.0.	7440000
	3 276000	F0044		> goridoc (IVIDI IA)			
	3.276888	53316		(NA, complete cds	М	DH1	R15814
69			Ho	MO saniens protein kings and Date	М	DH1	R15814
69			Hoi	riva, complete cds mo sapiens protein kinase mRNA, nplete cds	Γ		
69 70	7.012224	531319	Hoi con Hur	riva, complete cds mo sapiens protein kinase mRNA, nplete cds man dihydrolipoamide dehydrogenase	Γ		R15814 AA07148
69 70		531319	Hoi con Hur mR	mo sapiens protein kinase mRNA, nplete cds man dihydrolipoamide dehydrogenase NA, complete cds	Γ	K12	AA07148
70 71 3	7.012224 3.436845	531319 42059	Hor Con Hur mR	mo sapiens protein kinase mRNA, mplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E4 protein blief	ST	K12	
70 71 3 72 5	7.012224 3.436845 5.101236	531319 42059 856427	Horn Horn prot	mo sapiens protein kinase mRNA, mplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E1 protein binding tein mRNA, complete cds	ST	TK12	AA07148 R60317
70 71 3 72 5	7.012224 3.436845	531319 42059 856427 47833	Hor Con Hur mR Hor prot	mo sapiens protein kinase mRNA, nplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E1 protein binding tein mRNA, complete cds mo sapiens endothelin-1 (EDN1)	ST	TK12	AA07148 R60317 AA63078
70 71 3 72 5 73 3	7.012224 3.436845 5.101236 3.395189	531319 42059 856427 47833	Hon Hon Hon Hon Hon	mo sapiens protein kinase mRNA, mplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E1 protein binding tein mRNA, complete cds mo sapiens endothelin-1 (EDN1)	ST	TK12	AA07148 R60317
69 70 71 3 72 5 73 3 75 4	7.012224 3.436845 5.101236 3.395189	531319 42059 856427 47833	Hon Hon Hon Hon Hon	mo sapiens protein kinase mRNA, mplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E1 protein binding tein mRNA, complete cds mo sapiens endothelin-1 (EDN1) mo sapiens human gamma-glutamy) mo sapiens (hGH) mRNA, complete cds	ST	TK12 D BA3 H	AA07148 R60317 AA63078 H11622
69 70 71 3 72 5 73 3 75 4	7.012224 3.436845 5.101236 3.395189	531319 42059 856427 47833 809588 273546	Hon Hon Hon Hon Hon Hon Hon MUL	mo sapiens protein kinase mRNA, mplete cds man dihydrolipoamide dehydrogenase NA, complete cds mo sapiens HPV16 E1 protein binding tein mRNA, complete cds mo sapiens endothelin-1 (EDN1)	ST DL TU	TK12 D BA3 H	AA07148 R60317 AA63078

PCT/US01/31932 WO 02/31209 122

Hierarchical					
cluster	Ratio Fold			unigene	
position	<u>Change</u>	Index	clone name	name	accession
			NAD-DEPENDENT		
			METHYLENETETRAHYDROFOLATE		
78	2.674778	814615	DEHYDROGENASE	1	AA48099
			Human mRNA for translocation protein-1,		
80	3.511485	789204	complete cds	TLOC1	AA450205
			Human Cdc6-related protein (HsCDC6)		
81	4.695879	204214	mRNA, complete cds	CDC18L	H59204
			Human 54 kDa progesterone receptor-		
			associated immunophilin FKBP54 mRNA,		
82	5.836716	416833	partial cds	FKBP5	W86653
			Human 54 kDa progesterone receptor-		
			associated immunophilin FKBP54 mRNA,		
82			partial cds	FKBP5	W86653
83	3.091404	789182	Proliferating cell nuclear antigen	PCNA	AA450265
			H.sapiens mRNA for M-phase		
84		451907	phosphoprotein, mpp5		AA706968
85	2.600775	44975	Human homolog of yeast IPP isomerase	IDI1	H08820
			Homo sapiens mitotic feedback control		
			protein Madp2 homolog mRNA, complete		
86	5.451547	814701		MAD2L1	AA481076
			Human cyclin-selective ubiquitin carrier		
87			protein mRNA, complete cds	UBCH10	AA430504
89	6.182703	725454	CDC28 protein kinase 2	CKS2	AA397813
				CDC2 CD	
90	8.470467	898286	Cell division cycle 2, G1 to S and G2 to M	C2	AA598974
	1		Dihydrolipoamide S-acetyltransferase (E2		
			component of pyruvate dehydrogenase		
93	1.943555	271006		DLAT	N42953
			H.sapiens mRNA for phenylalkylamine	i	
95			binding protein		N67038
96	4.011178				R22949
97	3.588767		H.saplens mRNA for translin TSN		AA460927
	0.070047		Homo sapiens insulin induced protein 1		
98	8.070317		(INSIG1) gene, complete cds		H59663
00	0.000450		Human alpha-tubulin isotype H2-alpha		
99	2.330458	745138	gene, last exon	TUBA2	AA626698
100	2.71733				R96998
			Dihydrolipoamide dehydrogenase (E3		
ł	l		component of pyruvate dehydrogenase	i i	
			complex, 2-oxo-glutarate complex,	1	
404	0.400040		branched chain keto acid dehydrogenase		
101	2.130216				AA447748
103	2.035546		S-adenosylhomocysteine hydrolase	AHCY	AA485626
40.	0.440000		RIBONUCLEOSIDE-DIPHOSPHATE		
104			REDUCTASE M1 CHAIN		AA633549
105			Human p55CDC mRNA, complete cds		AA598776
107			DNA polymerase gamma		AA188761
108	2.30/246		Adenylosuccinate lyase	ADSL	AA455931
400	2 005005		DNA-DIRECTED RNA POLYMERASE II		
109			14.4 KD POLYPEPTIDE		AA418689
111			H.sapiens mRNA for testican		AA699317
112	7.098935	04056/	TUMOR-ASSOCIATED ANTIGEN L6	TM4SF1	AA487893

Hierarchical				 	T
cluster	Ratio Fold	Clone		unigene	
position	Change	Index	clone name	name	accession
			Human kinase Myt1 (Myt1) mRNA,	 	
113	2.711239	739511	complete cds	PKMYT1	AA479030
			Human B-cell receptor associated protein		
114	2.780629	810552	(hBAP) mRNA, partial cds		AA464567
115	3.676315		Phosphoglycerate mutase 2 (muscle)	PGAM2	N54768
116	1.924043		CYTOCHROME C	CYC1	R53311
116	2.996875		Cytochrome c-1	CYC1	R53311
			Human mRNA for eukaryotic initiation		
117	2.71995	46171	factor 4AI		H09590
			Human putative 32kDa heart protein		
118	3.488577	855487	PHP32 mRNA, complete cds	ASAH	AA664155
			6-PYRUVOYL TETRAHYDROBIOPTERIN		
120	2.556136	1160558	SYNTHASE	PTS	AA877347
			Homo sapiens spleen mitotic checkpoint	BUB3 BU	AA449693
121	3.028945	785778	BUB3 (BUB3) mRNA, complete cds	B3	AA448967
			Human mRNA for suppressor for yeast		
122	2.366766	246120	mutant, complete cds	HRMT1L2	N55480
					W51985
123	2.702014	325641	Pregnancy specific beta-1 glycoprotein 5	PSG5	W52627
			Human placental equilibrative nucleoside		
125	1.975916	586650	transporter 1 (hENT1) mRNA, complete	ENT1	AA129135
			MITOCHONDRIAL ELONGATION	,	
126	2.175796	324618	FACTOR TS PRECURSOR	TSFM	W47014
			ATP synthase, H+ transporting,		
			mitochondrial F0 complex, subunit b,		
127	1.92211	813712	isoform 1	ATP5F1	AA453765
			Succinate dehydrogenase 1, iron sulphur		
128	2.481154	797016	(lp) subunit	SDHB	AA463510
			Homo sapiens mRNA for putative ABC		
140	2.114314	308682	transporter, partial		N95462
			Ribonuclease L (2',5'-oligoisoadenylate		
141	2.266048		synthetase-dependent) inhibitor	RNASELI	T70056
142	3.19801				R77213
143	2.113186	322914	Acid phosphatase 1, soluble	ACP1	W45148
			Human mitochondrial ATP synthase		
			subunit 9, P3 gene copy, mRNA, nuclear		
			gene encoding mitochondrial protein,		AA173109
144	2.582853	611150	complete cds	ATP5G3	AA173369
			Human guanosine 5'-monophosphate		
145			synthase mRNA, complete cds	GMPS	N59764
. 147	2.369768		Human pLK mRNA, complete cds	PLK	AA629262
			Protein kinase, cAMP-dependent, catalytic,		
149	2.239031	362926	beta	PRKACB	AA018980
					AA457700
151	3.734653		Cytochrome B561	CYB561	AA480809
			Human RNA polymerase II elongation		AA191548
153	3.292291		factor ELL2, complete cds		AA191245
			Homo sapiens E1B 19K/Bcl-2-binding		
			protein Nip3 mRNA, nuclear gene		
157			encoding mitochondrial protein, complete		AA446839
160	1.882036		CDC46 HOMOLOG	MCM5	AA285155
			Human mRNA for mitochondrial short-		
165	1.795108	32898	chain enoyl-CoA hydratase, complet	ECHS1	R43558

Hierarchical				Γ	
	Ratio Fold	Clone		unigene	
position			clone name	name	accession
			Protein phosphatase 2A, regulatory subunit		
166	2.021158	321661	B' aipha-1		W35378
167			CTP synthetase	CTPS	H09614
168			Programmed cell death 2	PDCD2	AA521466
			Human NADH:ubiquinone oxidoreductase		
169	2.088606	869538	MLRQ subunit mRNA, complete cds	NDUFA4	AA680322
171	2.093819	45544	SM22-ALPHA HOMOLOG	TAGLN2	H08564
172	2.382227	309288	Replication factor C, 37-kD subunit	RF,C4	N93924
			Human ribosomal protein L35 mRNA,		
173	1.55836	877835	complete cds		AA625634
			Human mRNA for PIMT isozyme I,		
174	1.688785	83363	complete cds	PCMT1	T68453
			Homo sapiens pescadillo mRNA, complete		
177	3.698942	26578	cds		R37665
179	2.324977	509495	PROTEASOME IOTA CHAIN	PSMA6	AA047319
180	1.880246	1033708	GAMMA CRYSTALLIN A		AA780079
			Human putative splice factor transformer2-		H11720
181	1.99955	47681	beta mRNA, complete cds		H11792
	•		Homo sapiens BAF57 (BAF57) gene,	SMARCE	
182	2.167164	950473	complete cds 1		AA599120
			Homo sapiens RRM RNA binding protein		
183			Gry-rbp (GRY-RBP) mRNA, complete cds NSAP1		AA186327
184	2.417391	845363	NUCLEOSIDE DIPHOSPHATE KINASE A NME1		AA644092
			Homo sapiens splicing factor Sip1 mRNA,		
187	2.152056	234562	complete cds	SRRP129	H78241
			Hypoxanthine phosphoribosyltransferase 1		
188	1.962195	280507	(Lesch-Nyhan syndrome)	HPRT1	N47312
			Procollagen-proline, 2-oxoglutarate 4-		
			dioxygenase (proline 4-hydroxylase), alpha		
189	2.510673	838802	polypeptide	P4HA1	AA464908
					R45059
190			Vascular endothelial growth factor	VEGF	R19956
192	2.647888		Signal sequence receptor, alpha	SSR1	AA450360
]			Homo sapiens mRNA for cytochrome b5,		W04674
193			partial cds	1000	W31775
194			Activating transcription factor 3	ATF3	H21042
197			Phosphorylase kinase, gamma 2 (testis)		AA291732
198	2.08295	612274	TUBULIN ALPHA-4 CHAIN	TUBA1	AA180742

PCT/US01/31932 WO 02/31209 125

No.	Clone ID	Cal.	Recur. Intensity	Primary Intensity	. Description
1	179276	9.612	16375.6	1513.5	Human breast carcinoma fatty acid synthase mRNA, complete cds
2	770212	9.354	3499.5		CARTILAGE GLYCOPROTEIN-39 PRECURSOR
3	135221	8.871	46969.3		S-100P PROTEIN
	133221	0.071	10503.5	1,03.7	Human CX3C chemokine precursor, mRNA, alternatively
4	140574	7.388	19367.4	2328.9	spliced, complete cds
5	297061	5.173	3159	542.5	Homo sapiens mRNA for dihydropyrimidinase, complete cds
6	129342	4.887	19608.4	3564.8	ESTs
7	180864	4.067	3943.5	861.5	Human telencephalin precursor mRNA, complete cds
8	839094	3.956	3130	702.9	Human beta-A3/A1 crystallin (CYRBA3/A1) mRNA, partial cds
9	295483	3.903	23246.8	5291.6	ESTs
					Homo sapiens chondroitin-6-sulfotransferase mRNA,
10	53039	3.829	4303.4	998.5	complete cds
11	78294	3.612	11393.9	2802.2	UDP glucuronosyltransferase precursor (UGT2B15)
12	361974	3.611	8046	1070 7	Pleiotrophin (heparin binding growth factor 8, neurite growth- promoting factor 1)
13	194307	3.532	3434.1	863.9	
14	1460110	3.441	6511		Proteasome (prosome, macropain) subunit, beta type, 5
15	212640	3.424	2895.7		H.sapiens partial C1 mRNA
	212010	3.424	2075.7		Homo sapiens mRNA for rab geranylgeranyl transferase,
16	453689	3.274	14395.4		alpha-subunit
17	340734	3.227	4565.1		MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER BINDING PROTEIN MAD3
18	742132	3.159	17358.3	4882.1	INTERFERON-INDUCED 17 KD PROTEIN
19	41650	3.156	4626.4	1302.3	Hepatocyte growth factor (hepapoietin A; scatter factor)
20	812251	2.967	25336.8	7587.3	H.sapiens mRNA for MAP kinase activated protein kinase
21	795730	2.958	4436.9	1332.5	Homo sapiens mRNA for Efs1, complete cds
22	1472689	2.946	2891.3	872	Apolipoprotein CI
23	768562	2.866	27406.3	8494.7	Human hkf-1 mRNA, complete cds
24	724615	2.848	14876.5	4640.8	Chromosome condensation 1
25	322723	2.836	3054.3	956.8	
26	135630	2.82	24116.9	7598.1	Human CDP-diacylglycerol synthase (CDS) mRNA, complete cds
27	839101	2.769	22037	7071.1	Cardiac gap junction protein
28	50794	2.705	4548.9	1494	Zinc finger protein 133 (clone pHZ-13)
29	712049	2.659	3577.3	1195.3	Human MDA-7 (mda-7) mRNA, complete cds
30	366067	2.636	3097.1	1043.7	Cerebellar degeneration-related protein (62kD)
31	256907	2.621	3579	1213.3	Glutathione S-transferase A3
32	122955	2.612	6652.3	2262.5	ESTs
33	429466	2.594	3672.6	1258	Homo sapiens mRNA for synaptogyrin 1a
34	841641	2.58	7321.5	2521.4	Cyclin D1 (PRAD1; parathyroid adenomatosis 1)
35	503097	2.572	8971.3	3098.8	Phosphoribosyl pyrophosphate synthetase 2
36	754600	2.545	4929.8	1721.1	Nuclear factor I/X (CCAAT-binding transcription factor)

No.	Clone ID	Cal. Ratio	Recur. Intensity	Primary Intensity	Description
37	756405	2.524	13892.6	4889.5	Inhibitor of DNA binding 3, dominant negative helix-loop- helix protein
38	139250		3846.5	1355.6	
39			4175		Alkaline phosphatase, liver/bone/kidney
40	66317		10365.6		HISTONE HID
41	139331	2.458	4342.2	1569.6	
42	810873		3001.4		Solute carrier family 9 (sodium/hydrogen exchanger), isoform 1 (antiporter, Na+/H+, amiloride sens
43	796475	2.448	2929.5	1062.9	Homo sapiens skeletal muscle LIM-protein FHL3 mRNA, complete cds
44	810711	2.432	15015.7	5486.1	Cytochrome B561
45	755578	2.412	9607.2	3538.7	INTEGRAL MEMBRANE PROTEIN E16
46	150702	2.372	2994.7	1121.6	Homeo box B5 (2.1 protein)
47	293104	2.326	5386.5	2057.7	Homo sapiens peroxisomal phytanoyl-CoA alpha-hydroxylass (PAHX) mRNA, complete cds
48	143995	2.31	3737.3	1437.2	
49	487172	2.3	3648.5		N-ACETYLLACTOSAMINE SYNTHASE
50	270136	2.286	3109.7		Homo sapiens mRNA for leukemia associated gene 2
51	504226	2.282	4037.8		CD53 antigen
52	292392	2.251	5437.2		ESTs
53	687820	2.246	2886.2	1141.8	ATPase, Cu++ transporting, alpha polypeptide (Menkes syndrome)
54	300137	2.245	3066.1		Homo sapiens mRNA for AMP-activated protein kinase beta 2 subunit
55	1323448	2.23	3092.1	1231.9	Human cysteine-rich heart protein (hCRHP) mRNA, complete cds
56	1049033	2.225	4576.6	1827.7	Homo sapiens mRNA for calmegin, complete cds
57	510381	2.224	5238.7	2092.7	Human DNA-binding protein CPBP (CPBP) mRNA, partial cds
58	296032	2.213	2978.5	1195.9	Type 3 iodothyronine deiodinase
59	143287	2.209	3246.7	1305.6	Pregnancy-specific beta-1 glycoprotein 13
60	278242	2.207	3221.6		Homo sapiens pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) mRNA, complete cds
61	727147	2.161	2983	1226.4	SQUAMOUS CELL CARCINOMA ANTIGEN 1
62	773567	2.15	4990.7	2062.1	Protein tyrosine phosphatase, non-receptor type 2
63	143756	2.149	6502.1	2687.6	ESTs
64	236034	2.14	3534.1	1467.2	Uncoupling protein 2 (mitochondrial, proton carrier)
65	841470	2.131	10862.9	4529.2	CATHEPSIN H PRECURSOR
66	768260	2.123	10965.2	4589.3	RETINOBLASTOMA BINDING PROTEIN 3
67	308041	2.116	5624.2	2360.9	Glycoprotein Ib (platelet), beta polypeptide
68	243360	2.105	3422.1	1444.6	
69	504774	2.092	2952.2		GAMMA-GLUTAMYLTRANSPEPTIDASE 5 PRECURSOR
70	280371	2.076	3017.7	1291.2	5-hydroxytryptamine (serotonin) receptor 2C
71	345232	2.072	4821.6	2067	Lymphotoxin alpha (formerly tumor necrosis factor beta)

No.	Clone ID	Cal. Ratio	Recur. Intensity	Primary Intensity	Description
72	174627	2.065	2858.9	1230.1	SECRETOGRANIN II PRECURSOR
73	703581	2.064	2971.6	1279.1	Hematopoetic proteoglycan core protein
74	223350	2.062	6154.5	2651.7	Ceruloplasmin (ferroxidase) Homo sapiens mknA for AMP-activated protein kinase beta-
75	782339	2.051	3228.5	1398.8	· · · · · · · · · · · · · · · · · · ·
13	70233	2.031	3220.3	1330.0	Amiloride binding protein 1 (amine oxidase (copper-
76	70827	2.044	10586.3	4600.7	containing))
77	796646	2.038	36042.8	15710	Ornithine decarboxylase 1
78	415817	2.034	4452.1	1944.8	Cytochrome P450, subfamily IVA, polypeptide 11
79	235040	2.029	5949.2	2605.2	ESTs .
80	1456424	2.015	3683.9	1624.1	Human mRNA for alanine aminotransferase
81	195051	2.011	18861.8	8332.7	
90	44505	2 000	4400.1	1040.0	Human NAD+-dependent succinate-semialdehyde dehydrogenase (SSADH) mRNA, 3' end
82	44505	2.009	4409.1	2579.5	· · · · · · · · · · · · · · · · · · ·
83	211813	1.979	5745.4		
84	754509	1.977	5203.7		Met proto-oncogene (hepatocyte growth factor receptor) Rieger syndrome (solurshin)
85	66731	1.977	5147		
86	245920	1.965	4117.5		Glycogen synthase [human, liver, mRNA, 2912 nt]
87	669435	1.963	3596.8	1628	Human C-1 mRNA, complete cds Homo sapiens chaperonin containing t-complex polypeptide
88	243343	1.955	3370.3	1531.7	1, beta subunit (Cctb) mRNA, complete cds
89	343744	1.943	11043.4	5049.6	Homo sapiens adenosine triphosphatase mRNA, complete cds
90	366541	1.933	3417.2		Chymotrypsin-like
91	502682	1.932	16161.3	7432.1	Human enigma gene, complete cds
					Syntrophin, alpha (dystrophin-associated protein A1, 59kD,
92	435330	1.92	5590.1		acidic component)
93	1470048	1.917	3098.9		Human retinoic acid induced RIG-E precursor (E) mRNA, complete cds
94	724831	1.916	12664	5871.4	B cell lymphoma protein 7B
95	814353	1.916	4458.1	2067.7	ATL-derived PMA-responsive (APR) peptide
96	809910	1.894	7020.9	3293.1	INTERFERON-INDUCIBLE PROTEIN 1-8U
97	265874	1.884	8309.3	3917.7	CCAAT BOX-BINDING TRANSCRIPTION FACTOR 1
					Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha
98	431296	1.878	4298		isoform (calcineurin A alpha){altern Homo sapiens imprinted multi-membrane spanning
99	742862	1.87	4533.3		polyspecific transporter-related protein (IMPT1) mR
$\neg \uparrow$					Human fetus brain mRNA for membrane glycoprotein M6,
100	784910	1.867	8274.7		complete cds
101	268876	1.851	4638.6		Homo sapiens survival of motor neuron protein interacting protein 1 (SIP1) mRNA, complete cds
102	713886	1.839	5032.9		Human adult heart mRNA for neutral calponin, complete cds
	5000				Inhibitor of DNA binding 2, dominant negative helix-loop-
103	240151	1.83	3906.4	1896.5	helix protein
	200225	1 000	1252		Dihydrolipoamide S-acetyltransferase (E2 component of
104	292222	1.822	4259.1		pyruvate dehydrogenase complex)
105	281978	1.82	3770.9	1841	Homo sapiens Rac3 (RAC3) mRNA, complete cds

					
		Cal.	Recur.	Primary	
No.	Clone ID	Ratio	Intensity	Intensity	Description
106	434833	1.817	2838.9	1388.4	PROTEIN 4.1
107	628336	1.812	12578.9	6166.8	Myosin, light polypeptide 1, alkali; skeletal, fast
100	246606	1 011	5000 0	0562.1	Human transcription factor RTEF-1 (RTEF1) mRNA,
108	346696		5223.8		complete cds
109	141316	1.808	3158.6		ESTs
110	143919	1.803	2803	1381.5	
111	853809	1.801	4476.4	2208.1	Homo sapiens mRNA for RGS5, complete cds Human zinc-finger domain-containing protein mRNA, partial
112	51582	0.554	4764.1	7639.7	,
113	143306	0.553	15321.3	24624.5	LYMPHOCYTE-SPECIFIC PROTEIN LSP1
114	246304	0.553	7493.4	12048.6	Human mRNA for tob family, complete cds
115	123980	0.552	4907.9		Homo sapiens mRNA for HYA22, complete cds
116	810117	0.549	10136.8		Annexin XI (56kD autoantigen)
117	245235	0.546	4105.3	6685.5	
118	241985	0.543	3190.3		Homo sapiens IPW mRNA sequence
119	815555	0.543	2673.3		Diacylglycerol kinase, alpha (80kD)
					Decay accelerating factor for complement (CD55, Cromer
120	128126	0.54	4585.3	7547.8	blood group system)
121	195132	0.539	3233	5329.6	ESTs
122	470393	0.536	2150.3	3561.4	Matrix metalloproteinase 7 (matrilysin, uterine)
123	810703	0.529	21355.6	25062 1	Human high density lipoprotein binding protein (HBP) mRNA, complete cds
124	511521	0.526	15060.2		Calnexin
125		0.523	1933.3	3282.4	
123	133130	0,323	1933.3	3262.4	Integrin, alpha V (vitronectin receptor, alpha polypeptide,
126	469969	0.522	11975.6	20384	antigen CD51)
127	233274	0.518	6950.7	11925.5	ESTs
					SRY (sex-determining region Y)-box 9 (campomelic
128	753184	0.518	5394.2		dysplasia, autosomal sex-reversal)
129	196303	0.512	6504.3	11295.4	
130	725877	0.511	17254.5		Homo sapiens creatine transporter mRNA, complete cds Homo sapiens glutathione transferase (GSTA4) mRNA,
131	504791	0.508	21272.1		complete cds
$\neg \uparrow$					Clusterin (complement lysis inhibitor; testosterone-repressed
132	725877	0.507	8767.1	15376	prostate message 2; apolipoprotein J)
133	144747	0.505	20340.4	35757.7	
134	234469	0.501	3372.6	5975.1	ESTs
135	1309620	0.501	1929.3	3421.5	Homo sapiens Tax interaction protein 33 mRNA, partial cds
136	897768	0.49	3657.3	6625.4	Alpha-1 type VII collagen
137	784772	0.489	3730.6	6780.1	GRAVIN
138	243291	0.487	4138	7549.1	ESTs
				1	Homo sapiens intermediate conductance calcium-activated
139	756708	0.481	1722		potassium channel (hKCa4) mRNA, complete c
140	34778	0.477	8673.5		Vascular endothelial growth factor
141	417424	0.473	4977.9	9344.7	Human DNA-binding protein ABP/ZF mRNA, complete cds

152						
142 298417 0.473 2870. 5393 INTESTINAL TREFOIL FACTOR PRECURSOR Homo sepiens putative fatty acid desaturase MLD mRNA, 20064 1484. 23336. 44772. 6complete cds 2970. 1484. 160485 0.463 1484. 2848. ESTS 130280 0.459 2840. 5493. ESTS 130280 0.458 3691. 1515. 1539. 1575. 130280 0.458 3691. 1515. 1539.				Recur.	-	
Homo sapiens putative fatty acid desaturase MLD mRNA, 144 160485 0.463 1484.5 22843.5 ESTS 1469.5 12843.5 ESTS 1300004 0.459 2840.9 5493.1 ESTS 130200 0.459 7584.5 14695.1 2930 nt] Human cAMP responsive element binding protein beta Human succiny CaA:3 Postponsive Postponsive element binding protein beta Human protein Postponsive element binding protein beta Human succiny CaA:3 Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Postponsive Po	_	Clone ID	Ratio		<u> </u>	
143 324891 0.463 23336.5 44772.6 complete cds 144 160485 0.463 1484.5 2848.3 ESTs 145 200604 0.459 2840.9 5493.1 ESTs 146 743230 0.459 7584.5 14695.1 2930 nt] Human cAMP responsive element binding protein beta 147 130280 0.458 3691.6 7157.8 subunit (CREBPA) mRNA, complete cds 148 811162 0.456 1554.3 3025.7 Fibromodulin 149 203514 0.451 2398.4 4720 ESTs 150 950682 0.45 1629.4 3217.4 Phosphofructokinase, platelet 151 224955 0.448 4631.4 9181 ESTs 152 841507 0.442 4261.5 8568.6 PRECURSOR 153 120375 0.441 2738 5511.1 ESTs 154 187147 0.44 2031.8 4101 Human ras inhibitor mRNA, 3' end Human succinyl CoA:3-exoacid CoA transferase precursor 155 28469 0.439 4604.9 9329.4 ESTs 157 884783 0.433 34604.9 9329.4 ESTs 158 753587 0.433 3422.7 6647.3 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3422.7 6647.3 Human PTPL1-associated RhoGAP mRNA, complete cds 160 39093 0.429 4070.6 8426.8 Human elf-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 162 246722 0.411 2591.9 5662.5 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 168 26184 0.377 8637.2 20366.5 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog 171 193087 0.342 13115.4 311	142	298417	0.473	2870.1	5393	
144	142	224901	0.462	22226.5	44777 6	
145 200604 0.459 2840.9 5493.1 ESTS T3 receptor-associating cofactor-1 [human, fetal liver, mRNA 1466 743230 0.459 7584.5 14695.1 2930 nt] Human cAMP responsive element binding protein beta submit (CREBPA) mRNA, complete cds 148 811162 0.456 1554.3 3025.7 Fibromodulin 149 203514 0.451 2398.4 4720 ESTS ESTS 150 595682 0.45 1629.4 3217.4 Phosphofructokinase, platelet 151 244955 0.448 4631.4 9181 ESTS FULMONARY SURFACTANT-ASSOCIATED PROTEIN A 153 120375 0.441 2738 5511.1 ESTS FULMONARY SURFACTANT-ASSOCIATED PROTEIN A 153 120375 0.441 2738 5511.1 ESTS EST	 					
T3 receptor-associating cofactor-1 [human, fetal liver, mRNA 130280 0.458 3691.6 7157.8 subunit (CREBPA) mRNA, complete cds 148 811162 0.456 1554.3 3025.7 Fibromodulin 150 203514 0.451 2398.4 4720 EST\$ 150 950682 0.45 1629.4 3217.4 Phosphofructokinase, platelet 151 244955 0.448 4631.4 918 EST\$ PULMONARY SURFACTANT-ASSOCIATED PROTEIN A	 					
146	145	200604	0.459	2840.9	5493.1	
Human cAMP responsive element binding protein beta subunit (CREBPA) mRNA, complete cds	146	743230	0.459	7584.5	14695.1	
148				755.11		L
149 203514 0.451 2398.4 4720 ESTs 150 950682 0.45 1629.4 3217.4 Phosphofructokinase, platelet 151 244955 0.448 4631.4 9181 ESTs PULMONARY SURFACTANT-ASSOCIATED PROTEIN A PRECURSOR 152 841507 0.442 4261.5 8568.6 PRECURSOR 153 120375 0.441 2738 5511.1 ESTs 154 187147 0.44 2031.8 4101 Human ras inhibitor mRNA, 3' end Human succinyl CoA:3-oxoacid CoA transferase precursor 155 28469 0.439 12401.6 25095.9 (OXCT) mRNA, complete cds 156 292749 0.439 4604.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human PTPL1-associated RhoGAP mRNA, complete cds 159 564621 0.432 2325.9 4786.5 neuroscrpin) 160 39093 0.429 4070.6 8426.8 Human elf-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Omithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog 171 193087 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 172 308231 0.366 3954 9590.9 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA	147	130280	0.458	3691.6	7157.8	subunit (CREBPA) mRNA, complete cds
150 950682 0.44 1629.4 3217.4 Phosphofructokinase, platelet	148	811162	0.456	1554.3	3025.7	Fibromodulin
151 244955 0.448 4631.4 9181 ESTs PULMONARY SURFACTANT-ASSOCIATED PROTEIN A 152 841507 0.442 4261.5 8568.6 PRECURSOR 153 120375 0.441 2738 5511.1 ESTs 187147 0.44 2031.8 4101 Human ras inhibitor mRNA, 3' end Human succinyl CoA:3-oxoacid CoA transferase precursor (OXCT) mRNA, complete cds 155 28469 0.439 12401.6 25095.9 (OXCT) mRNA, complete cds 156 292749 0.439 4604.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human PTPL1-associated PATALIGATEN A Complete cds Human PTPL1-associated PATALIGATEN A COMPLET OF A	149	203514	0.451	2398.4	4720	ESTs
PULMONARY SURFACTANT-ASSOCIATED PROTEIN A	150	950682	0.45	1629.4	3217.4	Phosphofructokinase, platelet
152	151	244955	0.448	4631.4	9181	ESTs
153 120375 0.441 2738 5511.1 ESTs 154 187147 0.44 2031.8 4101 Human ras inhibitor mRNA, 3' end Human succinyl CoA:3-oxoacid CoA transferase precursor 155 28469 0.439 12401.6 25095.9 (OXCT) mRNA, complete cds 156 292749 0.439 4664.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human PTPL1-associated RhoGAP mRNA, complete cds 159 564621 0.432 2325.9 4786.5 neuroserpin) 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTS						PULMONARY SURFACTANT-ASSOCIATED PROTEIN A
154 187147 0.44 2031.8 4101 Human ras inhibitor mRNA, 3' end Human succinyl CoA:3-oxoacid CoA transferase precursor 156 292749 0.439 4604.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human properties (PTriglam RNA) (pragnial cds) 159 564621 0.432 2325.9 4786.5 neuroserpin) 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	152	841507	0.442	4261.5	8568.6	PRECURSOR
Human succinyl CoA:3-oxoacid CoA transferase precursor	153	120375	0.441	2738	5511.1	ESTs
155 28469 0.439 12401.6 25095.9 (OXCT) mRNA, complete cds 156 292749 0.439 4604.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human hutyrophilita.ppdicias.fBTaia3.mRNA, complete cds 159 564621 0.432 2325.9 4786.5 neuroserpin) 160 39093 0.429 4070.6 8426.8 Human elf-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	154	187147	0.44	2031.8	4101	· · · · · · · · · · · · · · · · · · ·
156 292749 0.439 4604.9 9329.4 ESTs 157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human PTPL1-associated RhoGAP mRNA, complete cds 159 564621 0.432 2325.9 4786.5 neuroserpin) 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20365.5 CD44 antigen (cell adhesion molecule) 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTS 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 175 197323 0.351 1477.2 3737.3 ESTs	155	29460	0.430	12401 6	25005.0	
157 884783 0.437 2668.5 5421 Human PTPL1-associated RhoGAP mRNA, complete cds 158 753587 0.433 3242.7 6647.3 Human putrophilia protein (PTP1d) mRNA, complete cds 159 564621 0.432 2325.9 4786.5 neuroserpin 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
158 753587 0.433 3242.7 6647.3 Human hutstenshilian protein (BT3) NRNA practial cds 159 564621 0.432 2325.9 4786.5 neuroserpin 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
159 564621 0.432 2325.9 4786.5 neuroserpin) 160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 <	-					
160 39093 0.429 4070.6 8426.8 Human eIF-2-associated p67 homolog mRNA, complete cds 161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs		753587	0.433			
Human protein tyrosine phosphatase 1E (PTP1E) mRNA, complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTS 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	159	564621	0.432	2325.9		
161 866702 0.417 1383 2944.9 complete cds 162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359	160	39093	0.429	4070.6	8426.8	
162 246722 0.411 2591.9 5602.5 Homo sapiens CAGH3 mRNA, complete cds 163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog Human hepatocyte growth factor-like protein homolog 171 193087 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174	161	866702	0.417	1383	2011 0	
163 23185 0.41 4533.1 9832.5 Hexabrachion (tenascin C, cytotactin) 164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog (D1F15S1A) gene, complete cds 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
164 377048 0.405 3374.1 7395.6 myosin class I, myh-1c 165 825740 0.404 12627.7 27781.2 Human terminal transferase mRNA, complete cds 166 810512 0.399 3213.9 7147.3 Thrombospondin I 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	103	23103	0.41	4333.1		
166 810512 0.399 3213.9 7147.3 Thrombospondin 1 167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	164	377048	0.405	3374.1		, -
167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	165	825740	0.404	12627.7	27781.2	Human terminal transferase mRNA, complete cds
167 783696 0.385 17731.1 40947.4 Ornithine aminotransferase (gyrate atrophy) 168 26184 0.377 8637.2 20366.5 complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	166	810512	0.399	3213.9	7147.3	Thrombospondin 1
Human mRNA for platelet-type phosphofructokinase, complete cds 169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) Human hepatocyte growth factor-like protein homolog (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	167	783696	0.385	17731.1		
169 502690 0.376 1821.2 4308.3 Ribophorin I 170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
170 713145 0.375 10364.8 24538.6 CD44 antigen (cell adhesion molecule) 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	168	26184	0.377	8637.2	20366.5	complete cds
Human hepatocyte growth factor-like protein homolog 171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	169	502690	0.376	1821.2	4308.3	Ribophorin I
171 193087 0.374 13115.4 31189.5 (D1F15S1A) gene, complete cds 172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs	170	713145	0.375	10364.8		
172 308231 0.366 3954 9590.9 ESTs 173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs		405.55				
173 42627 0.362 3476.8 8527.4 Homo sapiens Coch-5B2 mRNA, complete cds 174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
174 757222 0.359 21821.8 53929.5 Human clone HSH1 HMG CoA synthase mRNA, partial cds 175 197323 0.351 1477.2 3737.3 ESTs						
175 197323 0.351 1477.2 3737.3 ESTs	173	42627	0.362	3476.8	8527.4	Homo sapiens Coch-5B2 mRNA, complete cds
~ ~	174	757222	0.359	21821.8	53929.5	Human clone HSH1 HMG CoA synthase mRNA, partial cds
~ ~	175	197323	0.351	1477.2	3737.3	ESTs
	177	204735	0.345	2220.5		

WO 02/31209 PCT/US01/31932 130

		Cal.	Recur.	Primary	
No.	Clone ID	Ratio	Intensity	Intensity	
178	194906	0.34	3263.3	8518.9	ESTs
179	292312	0.34	2212.4	5777.5	ESTs
180	233299	0.334	4134.7	10998.2	ESTs
181	200814	0.331	7705	20660.7	Membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)
182	144797	0.33	1394.1	3749	ESTs
183	167076	0.33	3076	8292.9	ESTs
184	42864	0.328	3816.2	10341.4	Collagen, type IV, alpha 5 (Alport syndrome)
185	134495	0.326	6353.2	17303.3	ESTs
186	239835	0.323	3322.4	9151.9	ESTs
187	343987	0.3	1809.5	5353.9	Dipeptidylpeptidase IV (CD26, adenosine deaminase complexing protein 2)
188	292391	0.273	5736.5	18695.5	
189	162533	0.262	5633		Human breast tumor autoantigen mRNA, complete sequence
190	126230	0.261	2759.8	9403.3	ESTs
191	208434	0.261	5915.4	20171	ESTs
					Hormone receptor (growth factor-inducible nuclear protein
192	309893	0.259	4439.5	15220.2	
193	39884	0.258	2625.3		Unknown EST
194	210548	0.257	1521.3	5261.7	
195	196109	0.257	1818	6289.1	
196	293078	0.256	814.4	2827.2	
197	129616	0.248	5062.1	18165.2	
198	128245	0.242	5468.9	20059.2	ESTs
199		0.239	1411.9	5244.8	Illumon human da ida annolalus No W Ol ashuran da
200	685801	0.237	11696.4	43864.3	Human bumetanide-sensitive Na-K-Cl cotransporter (NKCC1) mRNA, complete cds
201	296562	0.236	3666.6	13822.4	ESTs
202		0.229	1253.2	4867.3	
203	207448	0.228	4361.6	16967.1	ESTs
204		0.227	827.9	3239.1	
205	134537	0.226	3677.9	14446.5	ESTs
206	mpty	0.225	1224.8	4839.3	empty
207	296552	0.222	2173	8697.9	ESTs
208	295590	0.214	6921.8	28670	ESTs
209	281125	0.214	1987.3	8255.2	ESTs ·
210	214331	0.213	6458.1	26924.2	ESTs
211	127646	0.211	2769.5	11654.1	ESTs
212	208940	0.21	2744.3	11626.8	ESTs
213	197856	0.209	2680.6	11401.8	ESTs .
214		0.202	3014.1	13268.2	
215	197637	0.201	3230.3	14255.6	ESTs
216	42373	0.2	1375.3	6120.6	Crystallin Mu

Γ					<u> </u>
No.	Clone ID	Cal. Ratio	Recur. Intensity	Primary Intensity	
217		0.197	6574.1	29716.3	
218		0.196	1094.5	4973	
219		0.195	1242.5	5655.7	
220		0.191	2538.1	11804.5	
221	27.0.0	0.188	1109.4	5231.6	· · · · · · · · · · · · · · · · · · ·
222		0.188	2335.2	11018	
223		0.182	980.4	4781	
224		0.182	2486	12136.9	
225	196125	0.181	3092.1	15215.2	<u> </u>
226	897531	0.18	689.9		Fibronectin 1
227	239711	0.18	8520.1	42094.2	
228	293457	0.179	6499.4	32266.6	
229		0.175	1180.1	5974.5	
230	293785	0.175	5652.5	28719.3	
231	210610	0.173	7021.7	35999.1	
232		0.17	3461.3	18134.2	
233	130053	0.169	2243.8	11786.8	ESTs
234		0.168	1317.8	6987.6	
235	121981	0.167	2203.3	11749.7	ESTs
236	203400	0.165	2815	15167.5	ESTs
237	230613	0.164	2593.4	14035.1	ESTs
238		0.164	1016.5	5502.8	
239		0.161	1346.2	7423.3	
240	empty	0.159	755.2	4226	empty
241	243403	0.157	2169.8	12277.6	ESTs
242	137396	0.157	3718.8	21081.7	ESTs
243	empty	0.151	2764.8	16304.7	empty
244	295044	0.148	1753.4	10522.5	ESTs
245		0.146	2720	16582	
246	211951	0.142	4429.6	27655.7	ESTs
247		0.139	3244.3	20772.1	
248	138601	0.138	2613.6	16778.8	ESTs
249	293306	0.122	2773.6	20221.8	ESTs
250	240138	0.116	3188.1	24440.5	ESTs .
251	212098	0.107	3165.6	26193.8	ESTs

20

25

30

35

CLAIMS

- 1. A method of diagnosing or prognosing development or progression of prostate cancer in a subject, comprising detecting an abnormality in at least one HRPC-related molecule of the subject, wherein at least one such molecule is represented by Image ID Clone: 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, 897774 or 2911545 (VDUP1).
- 2. The method of claim 1, comprising detecting abnormalities in more than one 10 HRPC-related molecule.
 - 3. The method of claim 2, wherein at least a second HRPC-related molecule is represented by a molecule listed in Table 1 or Table 4.
 - 4. The method of claim 2, further comprising detecting an abnormality in at least one HRPC-related molecule not listed in Table 1 or Table 4.
- The method of claim 1, comprising detecting an increase or decrease in expression or activity level of S100P, FKBP5, LMO4, CRYM, or a combination of two or more thereof.
 - 6. A method of diagnosing or prognosing development or progression of prostate. cancer in a subject, comprising detecting an abnormality in at least 5, at least 10, at least 15, at least 25, at least 50, or at least 100 HRPC-related nucleic acid molecules listed in Table 1 or Table 4 or encoded for by a nucleic acid molecule listed in Table 1 or Table 4.
 - 7. The method of claim 2, wherein an abnormality is detected in at least 5, 10, 15, 25, 50, or 100 HRPC-related nucleic acid molecules listed in Table 1 or Table 4 or encoded for by a nucleic acid molecule listed in Table 1 or Table 4.
 - 8. The method of claim 1 or claim 6, where an abnormality comprises over- or underexpression of the HRPC-related molecule.
 - 9. The method of claims 8, wherein an abnormality is over-expression.
 - 10. The method of claim 9, where at least one HRPC-related molecule is represented by Image Clone ID number: 1475595, 1460110, 50794, 78294, 190491, 66731, 143287, 754600, 754509, 308041, 70827, 361974, 503097, 796646, 41650, 841641, 724615, 839101, 504226, 810711, 435330, 773567, 431296, 345232, 756405, 256907, 415817, 366541, 223350, 366067, 724831, 814353, 236034, 809910, 1470048, 1323448, 1456424, 453689, 135221, 340734, 180864, 768562, 179276, 44505, 293104, 243343, 66317, 812251, 245920, 265874, 770212, 784910, 839094, 712049, 669435, 841470, 782339, 297061, 429466, 300137, 487172, 343744, 795730, 268876, 742132, 755578, 502682, 510381, 140574, 135630, 278242, 742862, 1049033, 270136, 768260, 53039, 211813, 195051, 125769, 122955, 129342, 292392, 139331, 143995, 139250, 243360, 194307, 235040, 295483, or 143756.
 - 11. The method of claim 8, wherein an abnormality is underexpression.

10

15

20

25

30

- 12. The method of claim 11, where at least one HRPC-related molecule is represented by Image Clone ID number: 897768, 1456160, 34778, 810512, 753184, 200814, 470393, 23185, 128126, 42373, 511521, 810117, 950682, 783696, 815555, 897531, 713145, 502690, 469969, 309893, 725877, 343987, 49318, 42864, 193087, 162533, 1309620, 685801, 825740, 756708, 28469, 187147, 246304, 130280, 753587, 123980, 241985, 564621, 841507, 810703, 784772, 143306, 246722, 298417, 51582, 757222, 884783, 417424, 324891, 504791, 725877, 743230, 377048, 42627, 144797, 244955, 204735, 144747, 292749, 196109, 120375, 121981, 121715, 243403, 127409, 130053, 243291, 203514, 133130, 134495, 296552, 138601, 167076, 197323, 197637, 194906, 194985, 196125, 196303, 243784, 280122, 245235, 197856, 200604, 203400, 207448, 234469, 210548, 208940, 208434, 211951, 212098, 233399, 240138, 137396, 241097, 239835, 308231, 292312, 292391, 293421, 293306, 293785, 295044, 295590, 296102, 296602, 297110, 191572, 195132, 233274, 246546, 296562, 214331, 214043, 126230, 128245, 129616, 134312, 230613, 239711, 134537, 127646, 136984, 210610, 293457, 233299, 281125, 26184, 39093, or 39884.
- 13. The method of claim 1 or claim 6, comprising: measuring an amount of the HRPC-related molecule in a sample derived from the subject, in which a difference in level of the HRPC-related molecule relative to that present in a sample derived from the subject at an earlier time, is diagnostic or prognostic for development or progression of prostate cancer.
- 14. The method of claim 1 or claim 6, wherein detecting an abnormality comprises:
 measuring a HRPC-related molecule level in a sample derived from the subject, in which a
 difference in the HRPC-related molecule level in the sample, relative to the HRPC-related molecule
 level found in an analogous sample from a subject not having the disease or disorder, or a standard
 HRPC-related molecule level in analogous samples from a subject not having the disease or disorder
 or not having a predisposition developing the disease or disorder, is an abnormality in that HRPCrelated molecule.
- 15. The method of claim 1 or claim 6, wherein detecting an abnormality comprises: measuring a level of HRPC-related protein functional activity in a sample derived from the subject, in which a difference in the level of HRPC-related protein functional activity in the sample, relative to the level of HRPC-related protein functional activity found an analogous sample from a subject not having the disease or disorder or a standard HRPC-related protein functional activity level in analogous samples from a subject not having the disease or disorder or not having a predisposition for developing the disease or disorder, is an abnormality in that HRPC-related molecule.
- 16. The method of claim 1 or claim 6, where the HRPC-related molecule is a HRPC-related nucleic acid molecule (DNA or RNA or cDNA) or a HRPC-related protein.
- 17. The method of claim 16, wherein at least one HRPC-related molecule is a HRPC-related nucleic acid.
 - 18. The method of claim 17, comprising in vitro nucleic acid amplification.
 - 19. The method of claim 17, comprising nucleic acid hybridization.

10

- 20. The method of claim 19, further comprising determining the amount of hybridization.
- 21. The method of claim 16, wherein at least one HRPC-related molecule is a HRPC-related protein.
- 22. The method of claim 21, wherein detecting the abnormality comprises:

 contacting a sample from the subject with a HRPC protein-specific binding agent; and
 detecting whether the binding agent is bound by the sample and thereby measuring the levels
 of the HRPC-related protein present in the sample, in which a difference in the level of HRPC-related
 protein in the sample, relative to the level of HRPC-related protein found an analogous sample from a
 subject not having the disease or disorder, or a standard HRPC-related protein level in analogous
 samples from a subject not having the disease or disorder or not having a predisposition for
 developing the disease or disorder, is an abnormality in that HRPC-related molecule.
- 23. The method according to claim 23, wherein the specific binding agent is detectably labeled.
- 24. The method of claim 1 or claim 6, wherein the abnormality is detected in a sample from the subject, and the sample comprises serum.
 - 25. The method of claim 1 or claim 6, wherein the abnormality is detected in a sample from the subject, and the sample comprises prostate tissue.
- 26. The method of claim 17, comprising:

 providing nucleic acids from the subject;

 amplifying the nucleic acids to form nucleic acid amplification products;

 contacting the nucleic acid amplification products with an oligonucleotide probe that will hybridize under stringent conditions with a nucleic acid encoding a HRPC-related protein;

 detecting the nucleic acid amplification products which hybridize with the probe; and quantifying the amount of the nucleic acid amplification products that hybridize with the probe.
 - 27. The method of claim 26, where the sequence of the oligonucleotide probe is selected to bind specifically to a nucleic acid molecule listed in Table 1 or Table 4.
- 28. The method of claim 26, where the primers are selected to amplify a nucleic acid molecule listed in Table 1.
- 29. The method of claim 26, where the primers are selected to amplify a nucleic acid product encoding cartilage glycoprotein-39 (CHI3L1), S-100P PROTEIN (S100P), CX3C chemokine/fractalkine (SCYD1), adenylate kinase 1 (AK1), forkhead transcription factor HFH-4 (HFH-4) (FKHL13), UDP glucuronosyltransferase precursor (UGT2B15), Pleiotrophin (heparin binding growth factor 8) (PTN), heat shock 27kD protein 2/Alpha-B-crystallin (HSP27), Proteasome (prosome, macropain) subunit, beta type, 5 (PSMB5), Inhibitor of NFKB (NFKBIA), interferoninduced 17 kD protein (ISG15), MAP kinase activated protein kinase 2 (MAPKAPK2), signal transduction protein (SH3 containing) (EFS2), hkf-1 Zinc finger protein (ZFP103), chromosome

10

20

25

30

35

condensation 1 (CHC1), CDP-diacylglycerol synthase (CDS1), gap junction protein, alpha 1, 43kD (connexin 43) (GJA1), cyclin D1 (CCND1), Inhibitor of DNA binding 3, helix-loop-helix protein (ID3), H1 histone family, member2 (H1F2), Cytochrome B561 (CYB561), Cathepsin H (CTSH), calcineurin alpha (PPP3CA), 54 kDa progesterone receptor-associated immunophilin (FKBP5), translocation protein 1 (TLOC1), Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J) (CLU), Pulmonary surfactant-associated protein A (SFTPA1), protease inhibitor 12 (PI12; neuroserpin) (PI12), Thrombospondin 1 (THBS1), Ribophorin I (RPN1), A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 (ADAMTS1), Collagen, type IV, alpha 5 (Alport syndrome) (COL4A5), LIM domain only 4 / breast tumor autoantigen (LMO4), bumetanide-sensitive Na-K-Cl cotransporter (NKCC1) (SLC12A2), Fibronectin (FN1), Crystallin Mu (CRYM) or "upregulated by 1,25-dihydroxyvitamin D-3" (VDUP1).

- 30. The method of claim 1 or claim 6, comprising detecting a mutation, duplication or deletion of a HRPC-related nucleic acid in cells of the individual.
- 15 31. The method of claim 1 or claim 6, comprising detecting decreased, increased, or mutant HRPC-related protein in cells of the individual.
 - 32. A method of selecting a prostate cancer therapy, comprising: detecting an abnormality in at least one HRPC-related molecule of a subject; and if such abnormality is identified, selecting a treatment to prevent or reduce hormonerefractory prostate cancer or to delay the onset of hormone-refractory prostate cancer.
 - 33. The method of claim 32, wherein the at least one HRPC-related molecule is SCYD1, S100P, CCND1, CRIP1, ISG15, SCNN1A, ZFP103, MAPKAPK2, UTG2B15, RABGGTA, NFKBIA, SLCYA5, AP3B2, PTPN2, FOXJ1, APOC1, FLJ23538, OXCT, PFKP, TNRC3, HXB, PFKP, OAT, PFKP, RFP, THBS1, LMO4, MLD, CRYM, MME, HMGCS2, SLC12A2, ODC1, EIF4EBP1, CDS1, FKBP4, VDUP1, or FKBP5.
 - 34. The method of claim 32, comprising detecting an abnormality in more than one HRPC-related molecule of a subject, wherein the more than one HRPC-related molecules are two or more of SCYD1, S100P, CCND1, CRIP1, ISG15, SCNN1A, ZFP103, MAPKAPK2, UTG2B15, RABGGTA, NFKBIA, SLCYA5, AP3B2, PTPN2, FOXJ1, APOC1, FLJ23538, OXCT, PFKP, TNRC3, HXB, PFKP, OAT, PFKP, RFP, THBS1, LMO4, MLD, CRYM, MME, HMGCS2, SLC12A2, ODC1, EIF4EBP1, CDS1, FKBP4, VDUP1, or FKBP5.
 - 35. The method of claim 32, wherein the at least one HRPC-related molecule is S100P, FKBP5, LMO4, CRYM, or a combination of two or more thereof.
 - 36. The method of claim 32, further comprising treating the subject with the selected treatment.
 - 37. The method of claim 36, wherein the selected treatment comprises treating the subject with rapamycin, or a derivative, mimetic, or analog of rapamycin.

- 38. The method of claim 32, wherein detecting an abnormality in at least one HRPC-related molecule of a subject comprises quantitatively or qualitatively analyzing a DNA, mRNA, cDNA, protein, or protein modification.
- 39. A method of modifying a level of expression of a HRPC-related protein in a subject, comprising:

10

15

20

30

35

expressing in the subject a recombinant genetic construct comprising a promoter operably linked to a nucleic acid molecule, wherein the nucleic acid molecule comprises at least 10 consecutive nucleotides of a HRPC-related nucleic acid sequence, wherein expression of the nucleic acid molecule changes expression of the HRPC-related protein, and wherein the HRPC-related nucleic acid sequence is represented by Image ID Clone number 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, or 897774.

- 40. The method of claim 39 wherein the nucleic acid molecule is in antisense orientation relative to the promoter.
 - 41. The method of claim 39 wherein the nucleic acid molecule is in sense orientation relative to the promoter.
- 42. The method of claim 39, wherein the recombinant genetic construct expresses a siRNA corresponding to a HRPC-related nucleic acid sequence.
 - 43. A kit for measuring a HRPC-related molecule level, comprising a binding molecule that selectively binds to the HRPC-related molecule, wherein the HRPC-related molecule is represented by Image ID Clone number 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, or 897774.
 - 44. The kit of claim 43, wherein the levels of a plurality of HRPC-related molecules are measured.
 - 45. The kit of claim 44, comprising an array.
 - 46. The kit of claim 43, wherein the HRPC-related molecule level is a HRPC-related protein level, and the binding molecule is an antibody or antibody fragment that selectively binds a HRPC-related protein.
 - 47. The kit of claim 43, wherein the HRPC-related molecule level is a HRPC-related nucleic acid molecule level, and the binding molecule is an oligonucleotide capable of hybridizing to the HRPC-related nucleic acid molecule.
 - 48. The method of claim 1 or claim 6, wherein detecting the abnormality comprises: determining whether a HRPC-related gene expression profile from the subject indicates development or progression of prostate cancer.

WO 02/31209 PCT/US01/31932

- 49. The method of claim 48, wherein the gene expression profile comprises an array.
- 50. The method of claim 48, comprising:

5

15

20

25

30

35

comparing the HRPC-related gene expression profile from the subject to at least one control gene expression fingerprint for a specific stage of prostate cancer.

- 51. The method of claim 50, where the at least one control gene expression profile is a fingerprint for a normal prostate tissue, a primary prostate cancer tissue, a prostate cancer tissue responding to androgen ablation therapy, or a hormone refractory prostate cancer tissue.
- 52. A method of screening for a compound useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer, comprising determining if application of a test compound alters a HRPC-related gene expression profile so that the profile more closely resembles a prostate-linked profile than it did prior to such treatment, and selecting a compound that so alters the HRPC-related gene expression profile, wherein the HRPC-related gene expression profile includes at least one molecule represented by Image ID Clone number 781047, 785778, 842968, 769921, 898286, 204214, 814701, 435076, 531319, 415089, 898062, 453107, 785707, 795936, 700792, 34778, 46182, 769921, 783697, 451907, 711768, 416833, 810711, 789204, 789182, 725454, 951142, 49352, 273546, 46717, 855487, 41117, 26578, 684655, 45233, 814117, 810552, 739511, 283315, 897774, or 2911545.
- 53. The method of claim 52, wherein the compound inhibits or inactivates a molecule represented by those listed in Table 1 or Table 4.
 - 54. The method of claim 52, wherein the test compound is applied to a test cell.
 - 55. The method of claim 52, comprising:

contacting test cells with a test compound; and

measuring at least one HRPC-related molecule level and/or activity in the test cells, in which a difference in HRPC-related molecule level and/or activity in the test cells, relative to the analogous HRPC-related molecule level and/or activity found in analogous cells not contacted with the test compound, indicates that the test compound is useful in treating, reducing, or preventing prostate cancer or development or progression of prostate cancer.

- 56. The method of claim 55, wherein at least one HRPC-related molecule is a nucleic acid molecule listed in Table 1 or Table 4, or is encoded for by a nucleic acid molecule listed in Table 1 or Table 4.
- 57. The method of claim 55, in which measuring at least one HRPC-related molecule level and/or activity comprises:

creating a HRPC-related gene expression profile for the test cell after contacting the cell with the test compound; and

comparing the test cell HRPC-related gene expression profile to at least one control gene expression profile for a specific stage of prostate cancer.

- 58. The method of claim 57, where the control gene expression profile is a profile for a normal prostate tissue, a primary prostate cancer tissue, a prostate cancer tissue responding to androgen ablation therapy, or a hormone refractory prostate cancer tissue.
 - 59. The method of claim 52, wherein the profile comprises an array.
- 60. A compound selected by the method of claim 52.
 - 61. The method of claim 36, wherein the selected treatment comprises treating the subject with FR901464, or a derivative, mimetic, or analog of FR901464.

PCT/US01/31932 WO 02/31209

FIG 1A 1/8

BEST AVAILABLE COPY

1/5

2333 Genes

FIG 1D

FIG 2

FIG 4

FIG 5

WO 02/31209

PCT/US01/31932

8/8

FIG 6C

WO 02/31209 PCT/US01/31932

SEQUENCE LISTING

<110>	Mousses, et al.					
<120>	GENES RELATED TO DEVELOPMENT OF REFRACTORY PROSTATE CANCER					
<130>	4239-60803					
<150> <151>	60/240,585 2000-10-13					
<160>	10					
<170>	PatentIn version 3.1					
<210> <211> <212> <213>						
<400> 1 tgggtctgaa tctagcacca t						
<210> <211> <212> <213>	20					
<400> 2 atggctctgc aggaatctgt						
<210> <211> <212> <213>						
<400> 3 catgeccatg getgteteta gtteegteat ggtgetag						
<210> <211> <212> <213>	4 45 DNA synthetic oligonucleotide					
<400> 4 cgtgctgccc tcgctgcccg aatatcggga aaagacgtct atgat						
<210> <211> <212> <213>	36 .					
<400> ttatcca	5 acgg catecttgte ttttecacte tgeagg	36				
<210>	6					

WO 02/31209	PCT/US01/3193		
<211> 40 <212> DNA <213> synthetic oligonucleotide			
<400> 6 tccacctggg catctccatt ggcgtccagg tccttgagca	40		
<210> 7 <211> 40 <212> DNA <213> synthetic oligonucleotide			
<400> 7 agacgtgatt gcagccacga acacgatgaa ctcactgaag	40		
<210> 8 <211> 38 <212> DNA <213> synthetic oligonucleotide			
<400> 8 catttgagtc ctgccttctc aaagtacttg tgacaggc	38		
<210> 9			
<400> 9 gggaccatgg ctctgcagga atctgtgaca tctccagggc	40		
<210> 10 <211> 45 <212> DNA <213> synthetic oligonucleotide			
<400> 10 gctcagccta ggggaataat tgccaacaaa cacttttggg aagcc	45		

PCT/US01/31932

WO 02/31209 PCT/US01/31932

STATEMENT ACCOMPANYING SEQUENCE LISTING

The sequence listing does not include matter that goes beyond the disclosure in the international application.

The printout of the attached Sequence Listing is identical to the computer readable sequence listing on the enclosed computer disk.