

Three-body problem involved Jupiter

Xiaoyu He Dec. 15, 2016

Sun-Earth-Jupiter

The simplest three-body problem

Kirkwood gap

Example of resonances in the solar system

12/14/2016

The Sun-Earth-Jupiter

$$F_{E,J} = \frac{G M_J M_E}{r_{EJ}^2}$$

$$F_{EJ,x} = -\frac{G M_J M_E}{r_{EJ}^2} \cos \theta_{EJ} = -\frac{G M_J M_E (x_e - x_j)}{r_{EJ}^3}$$

$$\frac{dv_{x,e}}{dt} = -\frac{G M_S x_e}{r^3} - \frac{G M_J (x_e - x_j)}{r_{EJ}^3}$$

12/14/2016

Euler-Cromer Method (Semi-implicit Euler Method)

$$\begin{array}{lll} v_{n+1} & = & v_n + a_n \Delta t, \\ & & & \\ x_{n+1} & = & x_n + v_{n+1} \Delta t. \end{array}$$

$$v_E = \frac{2\pi r}{T} = \frac{2\pi * 1AU}{1 \ year} = 2\pi \frac{AU}{year}$$

$$\frac{M_E v_E^2}{r} = F_G = \frac{GM_SM_E}{r^2}$$

$$GM_S = v_E^2 r = 4\pi^2$$

For Earth:

$$v_{Ex,i+1} = v_{Ex,i} - \frac{4\pi^2 x_{Ei}}{r_{Ei}^3} \Delta t - \frac{4\pi^2 \frac{M_J}{M_S} (x_{Ei} - x_{Ji})}{r_{EJ,i}^3} \Delta t$$

$$x_{Ei+1} = x_{Ei} + v_{Ex,i+1} \Delta t$$

$$v_{Ey,i+1} = v_{Ey,i} - \frac{4\pi^2 y_{Ei}}{r_{Ei}^3} \Delta t - \frac{4\pi^2 \frac{M_J}{M_S} (y_{Ei} - y_{Ji})}{r_{EJ,i}^3} \Delta t$$

$$y_{Ei+1} = y_{Ei} + v_{Ey,i+1} \Delta t$$

The orbits of Jupiter and Earth

Fig a. Jupiter has its true mass

Fig b. Jupiter has 10 times its true mass

Fig c. Jupiter has 100 times its true mass

- ➤ mass of Jupiter is quite large → Earth's orbit completely unstable
- > Trajectory is very sensitive to the initial conditions

Jupiter has 1000 times its mass (different initial conditions)

12/15/2016 6

Kirkwood gap

The orbit radius of gap is in resonance with Jupiter

12/14/2016

Asteroids in the vicinity of 2/1 Kirkwood gap

Object	Radius (AU)	Velocity (AU/yr)
Asteroid number 1	3.000	3.628
Asteroid number 2	3.276	3.471
Asteroid number 3	3.700	3.267
Jupiter	5.200	2.755

Note:

The mass of asteroid is quite small compared to the mass of Jupiter, thus we can neglect the gravitational force of each asteroid when computing the motion of Jupiter. (And ignore the interactions between asteroids.)

The asteroid in the 2/1 gap is the one affected most strongly by Jupiter

Fig a. The orbit of asteroid number 2

Fig b. The orbit of asteroid number 1 and 3

The table of Kirkwood gap

Number of asteroids

Resonance	Orbital Period(yr)	Orbital Radius(AU)	Orbital Velocity
3:1	3.95	2.5	3.977
5:2	4.74	2.825	3.745
7:3	5.08	2.95	3.649
2:1	5.925	3.276	3.471

The orbital period of Jupiter=11.85 year $v = \frac{2\pi r}{r}$

Fig a. The orbits of Jupiter and asteroids in Kirkwood gap

Fig b. The orbits of asteroids in Kirkwood gap

Thank you!