AC-CCTV

Identificación de Actividades Inusuales a partir de Técnicas de Procesamiento de Imágenes

Autor: Eder Mauricio Abello Rodríguez

Director: Enrique González Guerrero

Trabajo de Grado - Maestría en Ingeniería de Sistemas y Computación Pontificia Universidad Javeriana Noviembre, 2018

Tabla de Contenido

- 1. Contextualización de la problemática
- 2. Formulación de Objetivos
- 3. Metodología
- 4. Descripción del caso de estudio seleccionado
- 5. Diseño del Modelo de Agentes
- 6. Diseño del Modelo de Inteligencia
- 7. Desarrollo del protocolo experimental
- 8. Resultados
- Conclusiones

Inseguridad Ciudadana

➤ El 11.3% de las personas de 15 años o más fueron víctimas de hurto en el año 2015 [DAN2015]

Delitos Frecuentes

- Hurto de celulares (71%)
- > Hurto de dinero en efectivo, tarjetas (45,2%)
- Artículos de uso personal (21%)

Ingresos Operacionales (en millones)

Fuente: Área de sistemas, Superintendencia de Vigilancia y Seguridad Privada. Junio de 2015

Inversión en empresas de seguridad y vigilancia privada [SUP2015]

Sistemas CCTV

Ventajas

- ✓ Optimiza la operación de los vigilantes
- ✓ Ayuda a efectuar una detección oportuna de las acciones criminales [CAR2008]

Desventajas

- ✓ Gran cantidad de cámaras a monitorear por el vigilante, especialmente en recintos cerrados.
- ✓ Falta de atención del personal ocasionado por largas jornadas laborales [HER2010].
- ✓ Desempeño de múltiples funciones que generan distracción

Componentes de los sistemas CCTV

Operación normal del personal de seguridad y vigilancia

Actividades Inusuales – Artículos Relacionados

	[TUN,	[SUR,	[EJA,	[CHA,	[CRIS,	[KOO,
	2011]	2013]	2012]	2013]	2012]	2016]
Procesamiento Bajo Nivel	X	X	X			
Procesamiento Alto Nivel				X	X	X
Espacios Cerrados		X	X			
Espacios Abiertos	X			X	X	X
Arquitectura Centralizada	X	X		X	X	X
Arquitectura Semi-Centralizada			X			
Arquitectura Distribuida						
Arquitectura Orientada a Agentes			X			

Formulación de Objetivos

Objetivo General

Desarrollar un sistema para la identificación de actividades inusuales, a partir de imágenes pre-procesadas, mediante del uso de técnicas de inteligencia artificial y agentes racionales, que pueda ser aplicado a sistemas CCTV instalados en recintos cerrados.

Objetivos Específicos

- Analizar las técnicas actuales de identificación de actividades inusuales para profundizar la problemática y priorizar las oportunidades y requerimientos del sistema.
- 2. Diseñar un modelo basado en agentes racionales que permita la identificación de actividades inusuales a partir de imágenes pre-procesadas.
- 3. Probar la aplicabilidad del modelo para la identificación de eventos sospechosos en el contexto de seguridad y vigilancia.

Metodología

Caso de Estudio

Investigación y análisis

Diseño

Implementación y validación

Bajo Nivel

- Identificar herramientas preexistentes.
- Ejecutar pruebas de las herramientas.
- > Selección de herramientas.

Alto Nivel

- Identificar técnicas.
- Selección y profundización.

Modelo de Agentes

- Identificación de metas del sistema.
- Identificación de recursos, habilidades.
- Identificación de roles y mecanismos de cooperación.

Modelo de Inteligencia

- Identificación de requerimientos, restricciones.
- Desarrollo iterativo del modelo de inteligencia.

Implementación

- Definir alcance de la implementación.
- Identificar objetivos incrementales.
- > Ejecutar la implementación.

Validación

- Elaboración y ejecución Protocolo experimental.
- Análisis de resultados.

Caso de estudio seleccionado

CCTV – Centro Comercial Oviedo

Características

- ✓ Número aproximado de cámaras: 1000
- ✓ Resolución: 640 x 480
- ✓ Cuadros por segundo: 2
- √ Tipo de parqueadero: Cerrado

Caso de estudio seleccionado

Requerimientos Funcionales y no Funcionales del Sistema

Número	Nombre	Prioridad	Actores
RF01	Distinción de Peatones	Alta	Objeto, peatón
RF02	Detección de actividades inusuales	Media	Peatón
RFo ₃	Procesamiento multicámara	Alta	Peatón
RFo4	Reconstrucción de la escena	Alta	Peatón
RF05	RFo5 Control de oclusiones		Peatón, Vigilante
RFo6	Emisión de alertas	Media	Vigilante
RNF01	Escalabilidad en entornos multicámara (100 – 1000 cámaras)	Alta	Objeto, peatón

¿Sistema Orientado a Agentes?

- ✓ Control de recursos distribuidos (cámaras, procesamiento, comunicación).
- ✓ Uso de mecanismos de cooperación para la reconstrucción de la escena.
- ✓ Creación de agentes racionales a partir de técnicas de inteligencia artificial.

Investigación y Análisis

Modelo de clasificación de Actividades de Cristiani et al [CRIS, 2012] Ventajas

- ✓ Organización de módulos a partir de niveles de abstracción.
- ✓ Separa la parte de procesamiento de imágenes del procesamiento de datos.

Investigación y Análisis Bajo Nivel

Responsabilidades

- ✓ Captura del video
- ✓ Preprocesamiento
- ✓ Detección de personas dentro de la escena

Investigación y Análisis Bajo Nivel – Estado del Arte

Autor	Categoría	Técnica Utilizada	Velocidad de Respuesta	Framework de Desarrollo	Uso de Cámaras
Fauziah et al	Extracción de Fondo	Extracción de Fondo estática	Alta	No Reporta	Si
Kaewtrakulpong et al	Extracción de Fondo	Extracción de Fondo GMM	Alta	No Reporta	Si
Chateau et al	Extracción de Fondo	Detección de tonos de piel en la imagen	Alta	No Reporta	Si
Angelova et al	lmagen única	Deep Learning	Alta	No Reporta	Si
Qiao et al	lmagen única	Deep Learning, Mapas de Calor	Baja	OpenPose	Si
Lee et al	lmagen única	Visión estereoscópica	Media	Kinect	No

Investigación y Análisis Alto Nivel

Responsabilidades

- ✓ Rastreo de la persona
- ✓ Identificación de actividades

Retos

- ✓ Oclusiones
- ✓ Rastreo multicámara
- ✓ Complejidad de las actividades

Investigación y Análisis

Alto Nivel – Estado del Arte

Autor	Categoría	Técnica de IA Utilizada	Descriptores Utilizados
Ng et al	Trayectoria	Árbol de decisión	Detección de eventos en la escena
Chaaraoui et al	Siluetas	K-NN	Parámetros de la silueta de la persona
Gedat et al	Poses	HMM	Ángulo de articulaciones
Du et al	Poses	CNN	Posición de las articulaciones
Xia et al	Poses	HMM	Histograma de posición de articulaciones
Liu et al	Acciones	Bag of Words (BoW)	Uso de n-gramas. N=1, 2, 3

Modelo de clasificación de Actividades de Cristiani et al [CRIS, 2012]

Desventajas

- > Orientado a sistemas mono cámara.
- Los algoritmos de rastreo no operan en entornos distribuidos.

Modelo Extendido de Clasificación de Actividades

- ✓ Detección de Personas
- ✓ Rastreo y reidentificación
- ✓ Detección de actividades

Metodología AOPOA para el desarrollo de SMA [GON2006]

- ✓ Enfoque organizacional
- ✓ Optimización de la definición de roles a partir de la agrupación de tareas.
- ✓ Abarca desde la definición de requerimientos hasta la definición de los protocolos de comunicación.

Modelo Extendido de Clasificación de Actividades

Código	Nombre	Agente
1.1.1.1	Capturar imágenes de las cámaras dentro del sistema	A1. Agente Captura
1.1.1.2	Identificar el esqueleto de la persona	A2. Agente Pose
1.1.1.3.1	Extracción de descriptores de la persona	A ₃ . Agente Descriptores
1.1.1.3.3	Aplicar algoritmos de reidentificación de personas	A4. Agente Reidentificación
1.1.1.3.4	Separación de la actividad en acciones	A5. Agente Organizador
1.1.1.4	Clasificación de acciones	A6. Agente clasificación
1.1.1.3.2	Clasificación de pose de la persona	A6. Agente clasificación
1.1.1.5	Clasificación de actividades	A6. Agente clasificación
1.1.1.6	Ejecución de técnicas de ensamble	A7. Agente Ensamble
1.1.2	Identificar actividades como usuales o inusuales	A8. Agente Interfaz
1.2	Gestionar la Interfaz de usuario	A8. Agente Interfaz

Agente Pose

Características

- ✓ Identifica las personas que se encuentran en la escena.
- ✓ Almacena una lista de descriptores por cada una de las personas identificadas en la escena.
- ✓ Reidentificación de la persona a partir de técnicas de comparación de color y posición.

Detección de personas – Estado del Arte

Autor	Categoría	Técnica Utilizada	Velocidad de Respuesta	Framework de Desarrollo	Resultados Experimentales
Kaewtrakulpong	Extracción de Fondo	Mezcla de Gaussianas (MOG)	Alta	No Reporta	Si
et al [2001] Bloisi et al [2015]	Extracción de Fondo	Adaptación de filtros GMM (MOG2)	Alta	OpenCV	Si
Bloisi et al [2015]	Extracción de Fondo	Filtros KNN	Alta	OpenCV	Si
Marcomini et al [2018]	Extracción de Fondo	Modelos estadísticos (GMG)	Alta	OpenCV	Si
Zeevi [2016]	Extracción de Fondo	Conteo de Pixeles (CNT)	Muy Alta	OpenCV	No
Qiao et al [2017]	o et al [2017] Imagen única Deep Learning		Baja	OpenPose	Si

Detección de personas – Resultados Experimentales

Extracción de Fondo

- √ Tiempo de respuesta rápido
- ✓ Mala adaptación frente a cambios de iluminación
- ✓ Dificultad en la extracción de la silueta de la persona

Extracción de Pose - OpenPose

- ✓ Detección de silueta en entornos de poca iluminación
- ✓ Robusto frente a oclusiones
- ✓ Tiempo de respuesta mayores a la extracción de fondo

Detección de personas – Análisis Cualitativo

	MOG	MOG ₂	KNN	GMG	CNT	OPENPOSE
Siluetas (3)	2	3	3	3	3	5
Ruido Generado (2)	4	2	2	1	2	4
Tolerancia - Cambios de Iluminación (1)	4	2	2	1	2	5
Manejo de Sombras (2)	3	2	2	2	1	5
TOTAL (PONDERADO)	24	19	19	16	17	38

Agente Descriptores

Características

- ✓ Filtra las poses incompletas, generadas por oclusiones o falta de iluminación.
- ✓ Extrae el vector de descriptores de la persona
 - ✓ Color
 - ✓ Articulaciones
- ✓ Extracción de la posición global de la persona

Agente Descriptores

Descriptores de Posición

- > La posición global permite obtener la trayectoria de la persona en la escena.
- Uso de homografía: Transformación proyectiva para el cálculo de la posición global, a partir de la posición local.

Posición local – Técnica de la plomada

- ✓ Los pies no generan un descriptor confiable.
- ✓ Se traza una línea desde el punto de la cadera, basado en la distancia del fémur.
- ✓ No aplica si la persona se encuentra agachada

Agente Descriptores

Posición Global – Transformación Proyectiva

- > Cálculo de la posición global a partir de la posición local de la persona.
- > Se establece a partir de un proceso de calibración de 4 puntos

Agente Reidentificación

Características

- ✓ Realiza el rastreo de la persona, desde su aparición en escena hasta su desaparición.
- ✓ Almacena una lista de descriptores por cada una de las personas identificadas en la escena.
- ✓ Reidentificación de la persona a partir de técnicas de comparación de color y posición.

Estado del Arte – Técnicas de Nivel Medio

Autor	Categoría	Técnica Utilizada	Robustez frente al ángulo de visión	Uso de información topológica
Jang et al	Cámaras no sobrelapadas	Comparación de Histogramas de color	Si	No
Aziz et al	Cámaras no sobrelapadas Comparación de descriptores SURF y SIFT		No	Si
Eshel et al	Cámaras sobrelapadas	Trayectoria, Homografía	Si	Si
Khan et al	Cámara sobrelapadas	Trayectoria, Homografía	Si	Si

Comparación de Color [JAN, 2014]

- ✓ Comparación de color por secciones (torso, piernas).
- ✓ Extracción de colores dominantes.
- ✓ Mala respuesta por el uso del espacio de color HSV frente a tonos grises.
- ✓ Mala respuesta frente a variaciones en la iluminación.

Ajustes

- ✓ Uso de la región del torso para la extracción de color.
- ✓ Uso del algoritmo K-Means para la extracción de colores dominantes.
- ✓ Comparación de color a partir del Algoritmo CIEDE2000.

Pruebas – Ajustes del Modelo de Comparación de Color

CLASIFICACIÓN

	PREDICCION							
		0	1	2	3	4	5	6
1	0	9	0	1	2	0	7	0
	1	0	3	2	3	6	7	7
, }	2	2	3	2	2	6	7	7
	3	0	3	2	5	7	6	5
)	4	3	2	2	5	6	7	7
))	5	8	1	2	5	2	7	0
	6	1	2	2	1	2	0	6
	Total Ejemplos	9	3	2	5	7	7	7

DREDICCIÓN

Clase 5

Pruebas – Ajustes del Modelo de Reidentificación

Reidentificación de color y posición

- > El uso de descriptores de color no es suficiente para realizar la reidentificación.
- > La proximidad entre una persona en el instante

Score de similitud de poses

$$D = \alpha * D_{Score} + (1 - \alpha) * C_{Score}$$

 D_{Score} : Score de lejanía entre los objetos [0, 1]

 C_{Score} : Score de diferencia de color entre los objetos [0, 1]

∝: Factor de ponderación [0, 1]

Clasificación de Actividades

Modelo de Saad et al

- Modelo de alto nivel para la identificación de actividades.
- El comportamiento de la persona (usual, inusual), depende de la naturaleza de la actividad.
- La actividad de una persona se define en función de:
 - Acciones
 - Poses

Detección de Poses – Estado del Arte

Autor	Categoría	Técnica de IA Utilizada	Descriptores Utilizados
Gedat et al	Poses	NN	Ángulo de articulaciones
Du et al	Poses, Acciones	CNN	Posición de las articulaciones
Xia et al	Poses	KNN	Posición de las articulaciones
Hassan et al	Poses	SVM	Contorno de la silueta de la persona
-	-	-	Ángulos + Posición de las articulaciones

Definición de Poses Clave

Id	Nombre	Subcategoría	Ejemplo
1		Frente	M
2	De Pie	Detrás	1)
3	Derie	Izquierda	Λ
4		Derecha	711
5	Brazos al frente	Izquierda	4
6		Derecha	
7	Agacharco	Izquierda	\checkmark
8	Agacharse	Derecha	
9	Brazo Estirado	Izquierda	
10	2.020 20000	Derecha	

Selección del Descriptor de Pose

- ✓ Tipo de clasificador: Red Neuronal
- ✓ Total de clases: 10
- ✓ Total ejemplos de entrenamiento: 8o por pose
- √ Total ejemplos de validación: 20 por pose

Tipo de Descriptor	Loss	Precisión
Ángulos	0.4668	82.30%
Transformación de ángulos	0.347	86.60%
Posición de articulaciones	0.424	90.50%
Posición de articulaciones + Ángulos	0.4025	88.40%
Posición de articulaciones + Transformación de ángulos	0.3732	89.70%

Detección de Acciones

- El estado del arte no muestra una clara limitación entre el concepto de acción y actividad [CIP2016].
- > Acción: secuencia de poses ejecutada por un actor, que contiene una implicación significativa [SAA2012]
- > Implicación: identificada a partir de la información del movimiento de la persona [CRI2012]

Segmentación de Acciones

Objetivo

- Separar la secuencia de descriptores (actividad) identificada para una persona, en acciones identificando su naturaleza:
 - > Estática
 - Con Movimiento

Segmentación de Acciones

Actividad Acción Pose

Acciones con Movimiento

- Los cambios de direcciones en la trayectoria indican la intención de la actividad.
- El agente separa las acciones de movimiento de acuerdo a los cambios de trayectoria.

Clasificador de Acciones con Movimiento

- Sobre cada acción identificada se adiciona la información del contexto.
- ➤ La información del contexto depende del caso de estudio seleccionado.
- Para el CCTV del centro comercial, el contexto está determinado por la cercanía a un vehículo

ID	Nombre	Categoría
1	Acercarse al lado del vehículo	Desplazamiento
2	Alejarse del lado del vehículo	Desplazamiento
	Desplazarse entre zonas sin	
3	vehículo	Desplazamiento
	Desplazarse entre zonas con	
4	vehículo	Desplazamiento

Región de cercanía

Clasificación de Acciones – Estado del Arte

Autor	Descriptor	Técnica de IA Utilizada	Resultado de la clasificación	Resultado de la clasificación
Gedat et al	Poses	HMM	Acciones	N/A
Du et al	Posición Articulaciones	CNN	Acciones	Redimensión de descriptores
Xia et al	Poses	Poses HMM Accid		N/A
-	Poses	NN	Acciones	Redimensión de descriptores

Clasificación de Acciones – CNN [DU, 2017]

Características

- Codificación del vector de descriptores sobre una imagen.
 - Columnas: Características espaciales Posición de articulaciones por Pose
 - Filas: Características temporales Evolución de los descriptores en el tiempo
- > Tamaño de las imágenes: 28 x 28
- > Las poses se encuentran embebidas en los descriptores de posición.

Actividad Acción Pose

Clasificadores de Acciones

- > La información del contexto es adicionada a la acción.
- > Se identifica si la acción es ejecutada en la región de cercanía.

ID	Nombre
5	Agacharse, Sin Vehículo
6	Agacharse, Con Vehículo
7	Manipular, Sin Vehículo
8	Manipular, Con Vehículo
9	Estirar Brazos, Sin Vehículo
10	Estirar Brazos, Con Vehículo
11	Actividad Nula, Sin Vehículo
12	Actividad Nula, Con Vehículo

Región de cercanía

Clasificación de Actividades – Estado del Arte

Autor	Dependencia	Técnica de IA Utilizada	Descriptores Utilizados
Ng et al	Trayectoria	Árboles de Decisión	Cambios de zona
Liu et al	Acciones	Bag of Words (BoW)	Uso de n-gramas. N=1, 2, 3
-	-	НММ	Secuencia de acciones

Clasificación de Actividades

Definición de Actividades

ID	Nombre	Comportamiento
1	Subirse Vehículo	Usual
2	Bajarse Vehículo	Usual
3	Caminar	Usual
4	Forcejear Puerta	Sospechoso
5	Forcejear Llanta	Sospechoso
6	Forcejear Plumillas	Sospechoso
7	Merodear	Sospechoso

Técnicas de Ensamble – Estado del Arte

Autor	Método de Ensamble	(-eneración de Modelos	
Panda et al [2009]	Votación	Bagging, Boosting	Si
Dietterich et al [2000]	Votación	Bagging	No
Daghistani [2016]	Votación	Boosting	Si
-	Votación	Combinación de Métodos de IA	Si

Protocolo Experimental

Captura de videos

- > Ejecutados por 3 actores.
- Cada actividad fue ejecutada por cada actor un máximo de 30 veces.
- Las acciones fueron ejecutadas modificando los puntos de entrada, salida y trayectoria.
- Uso de una sección de 6 cámaras del CCTV.
- Agrupación de videos
 - > Entrenamiento: 60%
 - Validación: 20%
 - Pruebas: 20%

Protocolo Experimental

Implementación del Modelo

- > Herramientas Utilizadas
 - > Lenguaje de programación: Python
 - Librerías de IA
 - OpenCV, TensorFlow, OpenPose, scikit-learn

- Procesador: Intel Core 17 6500U
- Memoria RAM: 8GB
- Sistema Operativo: Linux
- Tarjeta Gráfica: NVIDIA 940MX

Protocolo Experimental

Variables Independientes (12 experimentos)

- > Tipo de clasificador:
 - Nivel Bajo: SVM, NN
 - Nivel Medio: CNN, HMM, NN
 - ➤ Nivel Alto: BoW; HMM
- Uso de técnicas de ensamble

Variables Dependientes

- > Precisión del clasificador de actividades
- Matriz de confusión

Variables Intervinientes

- > Condiciones de luz en la escena
- Características intrínsecas de las cámaras

Resultados – Clasificación de Actividades

Experimento	Modelo Poses	Modelo Acciones	Modelo Actividades	Precisión
1		NN	HMM	68.10%
2	NN	ININ	BoW	88.90%
3	ININ	LINANA	HMM	68.10%
4		HMM	BoW	87.93%
5		NN	HMM	69.80%
6	SVM	ININ	BoW	90.51%
7	2 A IAI	НММ	HMM	64.65%
8			BoW	83.86%
9	CNN		HMM	72.40%
10	CI	VIV	BoW	93.10%
11		91.37%		

Clasificación de Actividades

	FΡυ	BV	ME	FPI	L	SV	CA	Precisión
Forcejear Puerta (FPu)	16	0	O	0	1	0	0	94.12%
Bajarse vehículo (BV)	1	12	0	0	0	4	0	70.59%
Merodear (ME)	0	0	16	0	0	0	0	100.00%
Forcejear Plumillas (FPI)	0	0	0	17	0	0	0	100.00%
Forcejear Llantas (FL)	0	0	0	0	15	0	0	100.00%
Subirse al vehículo (SV)	0	0	0	0	0	16	1	94.12%
Caminar (CA)	0	1	0	0	0	0	16	94.12%

Desempeño Individual de los Clasificadores

Poses			Acciones			Actividades		
Clasificador	Media	Desviación	Clasificador	Media	Desviación	Clasificador	Media	Desviación
NN	78.26%	11.74%	NN	79.33%	12.02%	HMM	68.61%	2.83%
SVM	77.21%	12.02%	HMM	76.14%	11.48%	BoW	88.86%	3.41%
			CNN	82.75%	14.64%	Ensamble	91.37%	0.00%

Tiempos de respuesta de los módulos

Módulo	Poses (ms)	Descriptores (ms)	Re identificación (ms)	NN Poses (ms)	SVM-Poses (ms)	HMM- Acciones (ms)	CNN- Acciones (ms)
Media	433.2	10.9	157-5	0.6	0.1	0.9	7-3
Desviación	5.28	2.5	14.4	0.3	0.0	0.3	1.5

Conclusiones

Uso de Sistemas Orientados a Agentes

> Las arquitecturas distribuidas de los CCTV hacen que los modelos de Agentes sean idóneos para la implementación de sistemas de clasificación de actividades.

Nivel Bajo

- > El uso de algoritmos de extracción de fondo en la identificación de personas no genera resultados favorables en:
 - > Entonos con alto movimiento
 - > Condiciones cambiantes de iluminación.

Nivel Medio

- > La componente H en el espacio de color HSV genera ambigüedad al realizar la comparación en escala de grises.
- Los descriptores de color no son suficientes para realizar la reidentificación de personas.

Conclusiones

Nivel Alto

- El uso de técnicas CNN en la etapa de identificación de actividades, permite omitir el nivel de identificación de pose del modelo de Saad et al.
- > La separación de acciones a partir del movimiento de la persona elimina la ambigüedad al momento de realizar su separación dentro de una actividad.

Técnicas de ensamble

El éxito de las técnicas de ensamble en el desarrollo de los modelos de clasificación no está garantizado y depende de las características intrínsecas de cada clasificador.

¿Preguntas?

Referencias

[BBC2016] BBC Mundo. Cuáles son los 6 países de América Latina que están entre los 13 peores índices de criminalidad en el mundo. http://www.bbc.com/mundo/noticias-america-latina-38171437, abril 2017.

[BRA2017] Bravo, Flor Ángela. Interactive Robot Drama for Educational Purposes. Ph.D. Research Proposal. Universidad Javeriana.

[CAR2013] Cardozo M. Mercado de seguridad electrónica en Colombia como una oportunidad de trabajo y emprendimiento. Ensayo de grado. Universidad Militar Nueva Granada, 2013.

[CAV2003] Caviar. Test Case Scenarios. http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, abril 2017.

[CHA2013] Chaquet, J. A survey of video datasets for human action and activity recognition. Computer Vision and Image Understanding. 2013.

[CRIS2012] Cristiani, M. Human Behavior Analysis in Video Surveillance: A Social Signal Processing Perspective. Neurocomputing Journal. 2012

[DAN2015] Departamento Administrativo Nacional de Estadística (DANE). Encuesta de convivencia y seguridad ciudadana (ECSC). Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/seguridad-y-defensa/encuesta-de-convivencia-y-seguridad-ciudadana-ecsc

[DIN2016] Revista Dinero. El oscuro y lucrativo mercado de los celulares en Colombia. Abril 2017. Disponible en: http://www.dinero.com/actualidad/articulo/cifras-de-celulares-robados-en-colombia-y-como-registrar-telefono-ante-mintic/219104,

[EJ2012] Ejaz, N. A collaborative multi-agent framework for abnormal activity detection in crowded areas. ICI International, 2012.

[FER2012] Ferenbok, J et al. Hidden Changes: From CCTV to "Smart" video surveillance. Devon William Publishing, 2012.

[YON2017] Yong, Du et al. Skeleton Based Action Recognition with Convolutional Neural Network. Center for Research on Intelligent Perception and Computing, CRIPAC. 2017.

Referencias

[KOO2016] Kooij, J. F. P. Multi-modal human aggression detection. Computer visión and image understanding. 2016.

[NIL2009] Nilson F. Intelligent Network Video. Understanding modern video surveillance systems. Auerbach Publications, 2009.

[ORE2010] O'Regan G. Introduction to software process improvement Springer Science & Business Media.

[RCN2013] Noticias RCN. Aumenta en un 20% los robos en los centros comerciales. http://www.noticiasrcn.com/nacional-pais/aumenta-un-20-los-robos-los-centros-comerciales, abril 2017.

[SCH2002] Schwaber K, Beedle M. Agile Software Development with Scrum. Prentice Hall.

[SUP2015] Superintendencia de vigilancia y seguridad privada. Estado del sector de vigilancia y seguridad en el país. http://www.supervigilancia.gov.co/?idcategoria=6846423&download=Y, abril 2017.

[SUR2013] Suriani, N. Sudden Event Recognition. A Survey. Sensors, 2013.

[TUN2011] Tung, F. Goal-Based trajectory analysis for unusual behavior detection in intelligent surveillance. Image vison and computing, 2011.

[UNI2015] Uniderecho. ¿Cómo debe ser la jornada laboral en celadores y vigilantes? http://www.uniderecho.com/como-debe-ser-la-jornada-laboral-en-celadores-y-vigilantes.html

[OPE2017] Action Recognition. OpenCV. http://docs.opencv.org/trunk/d4/d8b/group_datasets_ar.html, abril 2017.