Exempel, Nätverksformulering

Roghayeh Hajizadeh

- I ett produktions-distributionssystem ingår två fabriker och två varuhus.
- A) Uppgiften är att för en tidsperiod på två månader bestämma en plan för produktion, lagring och transporter som minimerar kostnaderna med hänsyn till följande data, givet att efterfrågan måste uppfyllas
 - Lagerkostnaden antas uppstå på allt som lagras i slutet av en månad

	Tillv. Kostn (tkr/st)		
	Mån 1	Mån 2	
Fabrik 1	6	7	
Fabrik 2	7	8	

Kapacitet	(st)
Mån 1	Mån 2
73	66
29	24

Lagerkostnad
(tkr/mån,st)
1
2

Transp.kostn.		
(tkr\st)	Till Varuhus 1	Till Varuhus 2
Från Fabrik 1	1	0
Från Fabrik 2	2	4

Į	Efterfrågan	(st)
	Mån 1	Mån 2
Varuhus 1	62	65
Varuhus 2	14	44

- Modifiera nu nätverket under vid följande förändringar
 - B) I månad 2 tillkommer en alternativ transportväg mellan Fabrik 2 & Varuhus 2, till en kostnad av 3 tkr/st. Kapaciteten är dock begränsad till 10 enheter.
 - C) Antag nu att efterfrågan inte måste uppfyllas, utan att bara lönsam efterfrågan uppfylls. Intäkten för produkterna är 10 tkr/st, för varje levererad produkt (oavsett varuhus).
 - D) Antag nu att förutom den månadsvisa kapaciteten i fabrik 1, så måste man producera totalt minst 100 enheter (även om dessa inte leder till vinst) över de 2 månaderna.
 - Dvs t.ex. 40 i månad 1 och 60 i månad 2.

Initial reflektion

• Vi börjar med att identifiera "problomstrukturen", i en skiss

Initial reflektion

• Vi börjar med att identifiera "problomstrukturen", i en skiss

Hur hantera månaderna?

- Eftersom vi har olika situationer varje månad, behöver vi "dubblera" nätverket
 - Ett nätverk för varje tidsperiod
- Med kopplingar mellan tidsperioderna
 - Lagerhållningsmöjligheten

Utvidgat nätverk

• Inför tranportdata

Utvidgat med transportdata

Hänsyn till produktion

- Men nu har inte med data om produktion
- Vet vi hur mycket som produceras?
 - Ja, total efterfrågan=62+65+14+44=185
 - (Och kapaciteten är 73+66+29+24=192, så det skal gå)
 - Men vi vet inte VAR det skall produceras...
 - Vi gör en Superkälla!

Hänsyn till produktion

• Vi kan nu lägga till nodstyrkor!

Hänsyn till Lager

• Men vi har inte behandlat lagret ännu!

Slutlig lösning (alternativ finns!)

- Modifiera nu nätverket under vid följande förändringar
 - B) I månad 2 tillkommer en alternativ transportväg mellan Fabrik 2 & Varuhus 2, till en kostnad av 3 tkr/st. Kapaciteten är dock begränsad till 10 enheter.

B) Alternativ transportör

B) Alternativ transportör, lösning

- Vi kan inte ha parallella bågar
 - (Kan inte ha $x_{F22,V22}$ 2 gånger)

- Modifiera nu nätverket under vid följande förändringar
 - C) Antag nu att efterfrågan inte måste uppfyllas, utan att bara lönsam efterfrågan uppfylls. Intäkten för produkterna är 10 tkr/st, för varje levererad produkt (oavsett varuhus).

C) Intäktsdrivet

Min kostnad

Max intäkt ⇔ Min (-intäkt)

C) Intäktsdrivet

Min kostnad

Max intäkt ⇔ Min (-intäkt)

C) Intäktsdrivet

- Hmm. Nu MÅSTE ju 185 säljas, i alla fall
 - Gör en alternativ väg som ger kostnad=0, intäkt=0

C) Intäktsdrivet, lösning

C) Alternativ lösning

• Efterfrågan, eller kapacitet, ligger bara på ett ställe

- Modifiera nu nätverket under vid följande förändringar
 - D) Antag nu att förutom den månadsvisa kapaciteten i fabrik 1, så måste man producera totalt minst 100 enheter (även om dessa inte leder till vinst) över de 2 månaderna.
 - Dvs t.ex. 40 i månad 1 och 60 i månad 2.

D) Minproduktion

• Vi vet inte hur minproduktion (totalt 100) fördelar sig över månaderna

D) Minproduktion

• Vi vet inte hur minproduktion (totalt 100) fördelar sig över månaderna

D) Minproduktion, lösning

• Vi vet inte hur minproduktion (totalt 100) fördelar sig över månaderna

