Differential equations

Computational practicum

Tasks

Week 06

Ivan V. Konyukhov

Doctor of Philosophy (Ph.D.), Physics and mathematics, Researcher

Task details

Textbook

Elementary Differential Equations by William F. Trench. Brooks/Cole Thomson Learning, 2001. http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_FREE_DIFFEQ_I.PDF

Reference Material

- Java: a beginner's guide. 6th edition.
 by Herbert Schildt.
 Oracle Press.
 https://doc.lagout.org/programmation/Java/Java
 %20A%20Beginner%27s%20Guide_%20Create%2C%2
 OCompile%2C%20and%20Run%20Java%20Programs%
 20Today%20%286th%20ed.%29%20%5BSchildt%2020
 14%5D%20%28badly%20formatted%29.pdf
- JavaFX. Getting Started with JavaFX. by Oracle. Release 8. https://docs.oracle.com/javase/8/javafx/JFXST.pdf.

Computer Resources

- Java compatible compiler & IDE (e.g. Netbeans & JavaFX Scene Builder)
- Spreadsheets editor (e.g. Google Sheets)

Grading criteria

software application and report - 30 points

Final date of submission and live-grading

End of 12th week

Grading scenario

- PDF-report (5-7 pages), containing your exact solution, source code and screenshots of numerical investigations, submitted to the Moodle.
- Live-session after the second practice test on 10th week

Additional rules

Students who did not submit a report or was not presence on livesession without legal excuse (e.g., documented medical) may try pass it **not later than in one week with 30% deduction** from the grade for this deliverable.

Task

Initial value problem (IVP) with an interesting interval:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \\ x \in [x_0; X] \end{cases}$$

- For your own variant of the task realize in your favorite programming language (e.g. Java)
 - Euler's method,
 - improved Euler's method,
 - Runge-Kutta method

in your own software application.

- Using this application construct corresponding approximation of the solution of a given initial value problem (provide the possibility of changing of the initial conditions).
- Realize the exact solution of an IVP in your application.
- Provide data visualization capability (charts plotting) in the user interface of your application (e.g. using the JavaFX).
- Investigate the convergence of these numerical methods on different grid sizes (provide the possibility of changing of the number of grid steps).
- Compare approximation errors of these methods plotting the corresponding chart for different grid sizes (provide the possibility of changing of the range of grid steps).

Variants

Var. Nº	f(x,y)	x_0	y_0	X
1	-y-x	0	1	10
2	-2y + 4x	0	0	3
3	$\frac{4}{x^2} - \frac{y}{x} - y^2$	1	3	4
4	$1 + y(2x-1)/x^2$	1	1	10
5	$\cos x - y$	1	1	9.5
6	$\sin x + y$	0	1	12/5
7	$-x + \frac{y(2x+1)}{x}$	1	3	18.2
8	$y^2/x^2 - 2$	1	1	10.2
9	$\frac{y}{x} + \frac{x}{y}$	1	1	2.3
10	$\frac{1}{2}\sin 2x - y\cos x$	0	1	5.2

•••

Var. №	f(x,y)	x_0	y_0	X
11	$e^{-\sin x} - y \cos x$	0	1	9.3
12	$xy^2 + 3xy$	0	3	5.5
13	$\sin^2 x + y \operatorname{ctg} x$	1	1	3
14	$y^4 \cos x + y \mathrm{t} g x$	0	0	9
15	$3xe^x - y(1 - \frac{1}{x})$	1	0	5
16	$2yx + 5 - x^2$	0	1	3
17	$(1 - 2y)e^x + y^2 + e^{2x}$	-5	2	0
18	$xy^{3/2} + xy$	1	4	7.8
19	$2y^{1/2} + 2y$	0	1	9
20	$x^3y^4 - y/x$	1	0.5	5
21	y^2e^x-2y	1	1	10
22	$y^4 cos(x) - ytg(x)$	0	1	8
23	$y^2e^x + 2y$	1	0.5	7
24	$y^4 cos(x) + ytg(x)$	0	1	9.5
25	$xy^2 - 3xy$	0	2	6.4