

EDA Methodology and IC Design IC Design Flows

Chun-Zhang Chen, Ph.D.

June 28 - July 2, 2021

SoC Design Flow

Al to Chip vs System/RTL to Chip

- RTL-to-GDSII (R2G)
- System to Chip (C-to-Silicon, C2S)
 - High-Level Synthesis
- ML deployment from Cloud to Edge to End Node
 - Cloud (CC/IMP) to Edge (EC) to End Node (IMC)
 - For Edge-Al (python script or pull-down menu) to become a mainstream reality
 - Software 2.0, to utilize CNN/ML libraries in SW (which determines weights and parameters, or training models)

Defining a SoC Design

- CPU
 - GPU/DSP
 - AP/MCU
- Custom Logic
- COT Block
- I/Os
- IPs

Memory IP

EDA and IC Design

ESL and High Level Synthesis

Catapult C [M→ Calypto]

High Level Synthesis (HLS)

- Catapult C Synthesis from MENT
- C2Silicon from CDNS
- C-Compiler from SNPS


```
/* ---- Programmable 4-bit up/down counter ---- */
MODULE COUNTER (COUNTIN: IN, UP: IN, COUNT: IN,
                COUNTOUT: OUT);
EXTERNAL COUNTER:
  DCL COUNTIN BIT(4), /* programming input
         BIT(1), /* 1=up, 0=down
                                             * /
      UP
      COUNT BIT(1), /* 1=count, 0=program */
      COUNTOUT BIT(4); /* counter output
INTERNAL COUNTER:
              BIT(4); /* counting variable
  DCL I
BODY COUNTER;
 DO INFINITE LOOP
    COUNTOUT:=I;
    IF COUNT
      THEN IF UP THEN I:=I+1;
                 ELSE I:=I-1;
           ENDIF;
      ELSE I=COUNTIN;
    ENDIF:
  ENDDO;
END COUNTER;
```


Integrated TLM Design & Verification

Verification Plan Algorithm

- Input interface
- Output interface
- Core black box

Architecture

- Input protocol
- Output protocol
- Core white box

Micro-architecture

- User-constrained features
- HLS-generated features

Implementation

- Equivalence
- Timing

UVM and **DVcon**

MARCH 2-5, 2015

DoubleTree, San Jose

Accellera Systems Initiative
EDA and IP Design Standards and Initiatives

DVCon is Heading to Europe!

November 11-12, 2015 Location Coming Soon!

FIND OUT MORE >

DVCon is Heading to India!

More Information Coming Soon!

VIEW DVCON 2014 INDIA PHOTO GALLERY >

Sponsored By

cadence°

FORTE DESIGN SYSTEMS

SYNOPSYS.

System-to-GDSII Low-Power Methods

- System Design
 - Chip Planning
 - ESL Design
 - Logic Design
 - Analog/Custom Design
 - Digital Implementation
 - Package Design

- Design Verification
 - System-level Verification

- Functional Verification
- System Design Manager
- Low-Power Conformal

- Design Implementation
 - RTL Compiler
 - DPA w/ Emulator
 - LP Analysis System
 - Signoff

Front-End Flow

- Management
- Complexity

Physical implementation

ESD, System Design and Verification

- ESD
- SDV
- SoC Design and IP Integration

EDA and IC Design

ASIC & FPGA design implementation verification

Encounter Conformal Equivalence Checker

Logic Synthesis

Synthesis Example

• 4-bit Up/Down Counter

```
4-bit input "countin"
4-bit output "countout"
up/down control "up"
count control "count"
internal state "i"
implied clock
```

Behavior

up = 1 => count up
up = 0 => count down
count = 1 => count
count = 0 => load

Digital Standard Cell Design Flow

Simplified flow

Physical Design Flow for LP-SoC

Hierarchical Flow with Low Power

Digital Design and Implementation

- RTL (Verilog) Synthesis to GLN
- Data preparation (GLN, .lib, LEF, SDC ...)
- SoC Design Implementation
 - FP, PP, Place, CTS, Route, ... Sign-off

EDA and IC Design

Standard Cell Design From Schematic to Layout

Digital IC Design and Characterization vs Circuit Design and Simulation

Mixed-Signal Implementation Flows

	A A/d	A/D	D/A	D/a D
Methodology	Schematic-driven		Netlist-driven	
	Analog/Custom	AoT	MSoT	DoT
Design	Analog; might have very small number of std. cells placed and routed without digital P&R tools	Top level is analog; standard cell digital contained inside block designed using digital flow.	Analog and standard cell digital mixed at same level.	Predominantly digital design with analog integrated as hard macro
Top level connectivity	Schematic	Schematic	Verilog	Verilog
Floorplanning	VFP	VFP and EDI	VFP and EDI	EDI
Analog content	Main/Top	Main/Top	Co-designed	Black-boxed
Digital content	Custom digital	Black-boxed	Co-designed	Main/Top
Routing	All routing done by VSR	Top level and analog block by VSR; routing within digital block by NR	Analog block by VSR; Digital block by NR; Top: analog by VSR, standard cell by NR	Top level analog by VSR; all other routing by NR.
Chip Integration	Virtuoso	Virtuoso	EDI	EDI
Signoff	SPICE Simulation	MSPS	STA	STA
Chip Finishing	Virtuoso	Virtuoso	Virtuoso	Virtuoso/EDI

Note: "Analog" covers transistor level design including Analog, RF and Custom Digital

Physical Verification and DFM

View Products -

Calibre 3DSTACK

Calibre nmDRC

Calibre nml VS

Calibre Interactive

Calibre DESIGNrev

Calibre RealTime

Calibre RVE

Calibre Pattern Matching

Calibre Automatic Waivers

Physical Verification

Calibre nmDRC

Calibre nml VS

Calibre Pattern Matching

Calibre Auto-Waivers

Calibre Interactive

Calibre RVE

Calibre DESIGNrev

Calibre RealTime

Calibre 3DSTACK

Calibre InRoute

Circuit Verification

Design for Manufacturing

Calibre Interfaces

Custom IC Design

Physical Verification with Calibre®

Calibre's physical verification capabilities are the industry

leader for accuracy, reliability, and performance

Calibre Pattern Matching

Pattern-driven design correction, analysis and verification. Streamline and simplify complex checks, integrate

2.5D / 3D-IC

Pattern Match

RDR / On-grid /

On-pitch checks

Dummy / SmartFill

Litho checks:

IP / full chip

ADP

IVS

Multi-dimension PV

2010

40/28 nm

Critical Area

Recommended

Rule / CFA / MAS

Spot Reliability

DFM Analysis Service

PV. CV. DFM G0 / Double Patterning (DP) Delta-Voltage

FinFet:

DRC/PERC checks

2.5D / 3D-IC

Pattern Match

RDR / On-grid / On-pitch checks

SmartFill / DP

Litho checks: IP / full chip (DP)

ADP / DP

LVS / Hyper Compare

Multi-dimension PV

2012 20/14 nm

Critical Area

Recommended Rule / CFA / MAS

Comprehensive Reliability checks

AMS Design and Simulation

- AMS and RF design
- Circuit design and simulation
- Custom layout design and verification
- DFM

EDA and IC Design

What is Silicon/Package Co-Design

 "A Design Environment That Will Enable The Co-Design and Optimization of Chip I/O FloorPlanning and IC Packaging"

"An integrated design methodology for the Co-Design and Optimization of silicon I/O placement, Bump Matrix assignment, RDL and package feasibility"

Team Design Across Fabrics

University of Chinese Academy of Science

Co-design enabled collaborative convergence

- Delivers optimal package and chip (size, cost, performance, power)
- Validates device-level timing and power performance
- Minimizes board complexity and cost
- Reduces ECO risk providing schedule predictability

System Interconnect Plan/Design

- Digital | Analog SoC Data
- Package Data
- PCB Data

Packaging and PCB Design

- Packaging
- PCB Design
- Testing

EDA and IC Design

Thank you!

(Anecdote)