DOUBLEROOT

Truth Tables

Laws

Conjunction: p ∧ q

p	q	p ∧ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Double Negation Law

$$\sim$$
(\sim p) \equiv p

Identity Laws

p	٧	F	≡	p
p	Λ	T	≡	p

Disjunction: p V q

р	q	p ∨ q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Idempotent Laws

$$p \lor p \equiv p$$
$$p \land p \equiv p$$

Negation: ∼p

р	~p
Т	F
F	Т

Annihilation Laws

$$p \lor T \equiv T$$
$$p \land F \equiv F$$

Implication: $p \Rightarrow q$

р	q	$\mathbf{p}\Rightarrow\mathbf{q}$
T	T	T
Т	F	F
F	Т	T
F	F	Т

Commutative Laws

Related:

Converse: $q \Rightarrow p$ Inverse: $\sim p \Rightarrow \sim q$ Contrapositive: $\sim q \Rightarrow \sim p$

Associative Laws

$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

 $p \land (q \land r) \equiv (p \land q) \land r$

Biconditional: $p \Leftrightarrow q$

р	q	p ∨ q
Т	Т	T
Т	F	F
F	Т	F
F	F	Т

Distributive Laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Exclusive Or: $p \oplus q$

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Absorption Laws

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

De Morgan's Laws

$$\sim (p \lor q) \equiv \sim p \land \sim q$$

 $\sim (p \land q) \equiv \sim p \lor \sim q$