D 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		1	C . 1	1 4 .	1	C 1	
Paths characteristic	C 111	determination	of ontimal	clustering	nrocedure	tor a dat	ta set
I dulls characteristic	O 111	actermination	or optima	Clustelling	procedure	IOI a da	iu sci

No.	Steps in a typical	Path's number									
	cluster analysis	1		2	3	4	5	6	7	8	9
I	Selection of objects and variables	data matrix $[x_{ij}]$									
II	Measurement scale of variables	ratio	ratio	interval or mixed ¹	ordinal ²	multi-state nominal ³	binary	ratio	interval or mixed ¹	ratio	interval or mixed ¹
	Selection of normalization formula ⁴	n6-n11 n1-n5		n1 – n5	N.A.	N.A.		without normalization		n6-n11/ n1-n5	n1-n5
	Transformed measurement scale of variables	ratio	interval	interval	ordinal	multi-state nominal	binary	ratio	interval or mixed ¹	ratio / interval	interval
III	Selection of distance measure ⁵	d1 – d7	d1 – d5	d1 – d5	d8	d9	b1-b10	d1 – d7	d1 – d5	N.A.	
IV	Selection of clustering method ⁶			m1 - m8						m9	
V	Maximal number of possible variants		$(6 \times 1 \times 3)$] + $(5 \times 1 \times 3)$] = 368	$(5 \times 5 \times 5) + (5 \times 1 \times 3) = 140$	$1 \times 5 = 5$	1 x 5 = 5	$10 \times 5 = 50$	$(7 \times 5) + (1 \times 3) = 38$	$(5 \times 5) + (1 \times 3) = 28$	11	5
		$LK = (\text{maxClusterNo} - \text{minClusterNo} + 1) \cdot LW_p$, where									
	sifications	minClusterNo minimal number of clusters, maxClusterNo maximal number of clusters, $LW_p - \text{number of variants for } p\text{-th path.}$									
	Internal cluster quality index	1. Calinski & Harabasz (G1) ⁷ 2. Baker & Hubert (G2) 3. Hubert & Levin (G3) 4. Silhouette (S) 5. Krzanowski & Lai (KL) ⁷			1. N.A. 2. G2 3. G3 4. S 5. N.A.		1. G1 2. G2 3. G3 4. S 5. KL		1. G1 2. N.A. 3. N.A. 4. N.A. 5. KL		

¹ Ratio & interval.

N.A. – Not Applicable.

Source: Walesiak, M., Dudek, A. (2006), Symulacyjna optymalizacja wyboru procedury klasyfikacyjnej dla danego typu danych – oprogramowanie komputerowe i wyniki badan, Prace Naukowe AE we Wroclawiu no. 1126, 120-129.

² We can use ratio, interval or mixed data (ratio, interval, ordinal), however these data are treated as ordinal because in the construction of the GDM2 distance measure only such relations as: "equal to", "higher than", "lower than" are taken into account.

³ We can use ratio, interval, ordinal or mixed data (ratio, interval, ordinal, nominal), however these data are treated as nominal because in the construction of the Sokal & Michener distance measure only such relations as: "equal to", "not equal to" are taken into account.

⁴ n1 – (x-mean)/sd, n2 – (x-Me)/MAD, n3 – (x-mean)/range, n4 – (x-min)/range, n5 – (x-mean)/max[abs(x-mean)], n6 – (x/sd), n7 – (x/range), n8 – (x/max), n9 – (x/mean), n10 – (x/sum), n11 – x/sqrt(SSQ).

⁵ d1 – Manhattan, d2 – Euclidean, d3 – Chebychev (max), d4 – squared Euclidean, d5 – GDM1, d6 – Canberra, d7 – Bray-Curtis; d8 – GDM2, d9 – Sokal & Michener; b1 – b10 (available in R dist.binary procedure): b1 = Jaccard; b2 = Sokal & Michener; b3 = Sokal & Sneath (1); b4 = Rogers & Tanimoto; b5 = Czekanowski; b6 = Gower & Legendre (1); b7 = Ochiai; b8 = Sokal & Sneath (2); b9 = Phi of Pearson; b10 = Gower & Legendre (2).

⁶ m1 – single link, m2 – complete link, m3 – average link, m4 – McQuitty, m5 – k-medoids (PAM), m6 – ward, m7 – centroid, m8 – median, m9 – k-means. For clustering methods m6– m8 squared Euclidean distance is used only.

⁷ with argument centrotypes="centroids".