<pre>In [1]: In [2]: Out[2]:</pre>	import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns *** **mmatplotlib inline** data_df=pd.read_csv(r'C:\\Users\Mohd Shadab\\Downloads\\Projects\\CAPSTONE PROJECTS\\Project 2\\Healthcare - Diabetes\\health care diabetes.csv') data_df* Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 0 6 148 72 35 0 33.6 0.627 50 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1
<pre>In [3]: Out[3]: In [4]:</pre>	(768, 9) data_df.info()
In [5]:	<pre>cclass 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns): # Column</pre>
Out[5]: In [6]:	count 768.0000000 768.0000000 768.0000000 768.00000
Out[6]:	Pregnancies Glucose Blood/Pressure SkinThickness Insulin BM Diabetes/PedigreeFunction Age Outcome 0 6 148 72 35 0 33.6 0.627 50 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1 <
In [7]: In [9]:	#Statistical data above shows the presence of nulls in the columns Glucose, BloodPressure, SkinThickness, Insulin, BMI #Since the value 0 doesn't make any sense. data_df.hist(figsize=(18,10)); Pregnancies Glucose BloodPressure 250 200 150 150 150 150 150 150 150 150 150 1
	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0 0 25 50 75 100 12.5 150 175 200 0 20 40 60 80 100 120 SkinThickness Insulin BMI 250 200 150 150 150 150 150 150 150 150 150 1
In [10]: In [11]: In [12]:	#Histogram visualisation confirms the presence of @ values.The rows with @ in such columns shall be treated as null data_df['Glucose'].replace(@,np.nan,inplace=True) data_df['BloodPressure'].replace(@,np.nan,inplace=True) data_df['SkinThickness'].replace(@,np.nan,inplace=True) data_df['Insulin'].replace(@,np.nan,inplace=True) data_df['BMI'].replace(@,np.nan,inplace=True) data_df['BMI'].replace(@,np.nan,inplace=True)
n [13]: nut[13]:	Pregnancies 0 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
in [14]: in [15]: in [16]:	BMI 1.432292 DiabetesPedigreeFunction 0.000000 Age 0.000000 Outcome 0.000000 dtype: float64
Out[16]: In [17]:	Pregnancies 0
	75 50 40 60 80 100 120 140 160 180 200 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 180 180 180 180 180 180 180 180 18
n [18]:	300 250 200 150 100 50 0.0 0.5 1.0 1.5 2.0 2.5 020 30 40 50 60 70 80 0.0 0.2 0.4 0.6 0.8 1.0
n [19]:	Q1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action. data_df['Outcome'].value_counts()*100/len(data_df) 0 65.104167
ut[19]: n [20]: n [21]: ut[21]: ut[22]:	1 34.895833 Name: Outcome, dtype: float64 #The above percentage shows that the data is not imbalanced. data_df.columns Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'], dtype='object') Q2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings. sns.pairplot(data_df) <seaborn.axisgrid.pairgrid 0x2095b8b0df0="" at=""></seaborn.axisgrid.pairgrid>
	17.5 12
	120 100 100 100 100 100 100 100 100 100
	5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n [23]: ut[23]:	Q3. Perform correlation analysis. Visually explore it using a heat map. Plt. figure(figsize=(8,5)) data=data_df.corr() sns.heatmap(data=data_,annot=True) <axessubplot:></axessubplot:>
	Pregnancies - 1 0.13 0.21 0.082 0.025 0.013 0.034 0.54 0.22 Glucose - 0.13 1 0.22 0.19 0.42 0.064 0.14 0.27 0.49 BloodPressure - 0.21 0.22 1 0.19 0.045 0.17 0.0024 0.32 0.17 SkinThickness - 0.082 0.19 0.19 1 0.16 0.27 0.1 0.13 0.097 0.2 Insulin - 0.025 0.42 0.045 0.16 1 0.073 0.13 0.097 0.2 BMI - 0.013 0.064 0.17 0.27 0.073 1 0.069 0.011 0.13 0.097 0.2 DiabetesPedigreeFunction - 0.034 0.14 0.0024 0.1 0.13 0.069 1 0.034 0.17 Age - 0.54 0.27 0.32 0.13 0.097 0.011 0.034 1 0.24 Outcome - 0.22 0.49 0.17 0.21 0.2 0.13 0.17 0.24 1 -0.0
In [27]: In [28]: Out[29]: In [30]:	print(x_train.shape) print(x_train.shape) print(y_train.shape) print(y_t
Out[30]: In [31]: Out[31]: In [32]:	<pre>KNeighborsClassifier() #Predicting the test set result y_pred= KNN_classifier.predict(x_test) y_pred array([1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,</pre>
In [33]:	<pre>for i in range(1,7): for j in range(1,5): KNN_classifier= KNeighborsClassifier(n_neighbors=i, metric='minkowski', p=j) KNN_classifier.fit(x_train, y_train) y_pred= KNN_classifier.predict(x_test) print("Accuracy =",accuracy_score(y_test,y_pred),"n_neighbors =",i," p =",j) Accuracy = 0.6979166666666666 n_neighbors = 1</pre>
n [36]:	Accuracy = 0.713541666666666 n_neighbors = 2
ut[36]: n [37]: ut[37]: n [38]:	<pre>KNN_classifier= KNeighborsClassifier(n_neighbors=6, metric='minkowski', p=2) KNN_classifier.fit(x_train, y_train) y_pred= KNN_classifier.predict(x_test) KNN_Accuracy =accuracy_score(y_test,y_pred) KNN_Accuracy 0.7864583333333334 Logistic regression model from sklearn.linear_model import LogisticRegression LR_classifier= LogisticRegression(random_state=0) LR_classifier.fit(x_train, y_train) LogisticRegression(random_state=0)</pre>
n [38]: ut[38]: n [39]:	##Healting the test is tresh. y_pred array([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
n [40]: n [41]: ut[41]: n [42]:	[25 37]] Accuracy = 0.791666666666666 LR_Accuracy_accuracy_score(y_test,y_pred) Using Decision tree #Fitting Decision Tree classifier to the training set from sklearn.tree import DecisionTreeClassifier DT_classifier= DecisionTreeClassifier(criterion='entropy', random_state=0) DT_classifier.fit(x_train, y_train) DecisionTreeClassifier(criterion='entropy', random_state=0) #Predicting the test set result y_pred= DT_classifier.predict(x_test)
	<pre>y_pred = DT_classifier.predict(x_test) y_pred array([1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,</pre>
n [44]:	[25 37]] Accuracy = 0.713541666666666
n [45]: n [46]:	<pre>#Tuning hyperparameter increases the accuracy by around 5% Random Forest #Fitting Decision Tree classifier to the training set from sklearn.ensemble import RandomForestClassifier for i in range(5,15): RF_classifier= RandomForestClassifier(n_estimators= 10, criterion="entropy") RF_classifier= Riclassifier.fit(x_train, y_train) y_pred= RF_classifier.predict(x_test) cm= confusion_matrix(y_test, y_pred) print("Accuracy = ",accuracy_score(y_test,y_pred), "n_estimators = ",i) Accuracy = 0.76520833333333334</pre>
n [47]:	
n [48]: ut[48]: n [49]: ut[49]:	Accuracy KNN 0.786458 LR 0.791667
n [50]: n [51]: n [52]:	LR 0.791667 DT 0.760417 RF 0.776042 GB 0.776042 #Highest accuracy is given by Logistic Regression Using cross validation to avoid the data leakage effect on model and checking the accuracy #KNN #Testing on train dataset without exposing the test dataset from sklearn.model_selection import cross_val_score scores=cross_val_score(KNN_classifier,x_train,y_train,scoring='accuracy',cv=10)
n [53]: ut[53]: n [54]: ut[54]: n [55]:	scores=cross_val_score(KNN_classifier,x_train,y_train, scoring='accuracy',cv=10) scores.mean() 0.7045674531155475 #fitting the model KNN_classifier.fit(x_train,y_train) KNeighborsClassifier(n_neighbors=6) y_final_pred=KNN_classifier.predict(x_test) accuracy_score(y_test,y_final_pred) 0.7864583333333334
ut[55]: n [56]: n [57]: ut[57]: ut[58]:	#Logistic Regression from sklearn.model_selection import cross_val_score scores=cross_val_score(LR_classifier,x_train,y_train,scoring='accuracy',cv=10) scores.mean() 0.7447368421052631 LR_classifier.fit(x_train,y_train) y_final_pred=LR_classifier.predict(x_test) accuracy_score(y_test,y_final_pred) 0.791666666666666666666666666666666666666
ut[58]: n [59]: n [60]: ut[60]: ut[61]:	#Decision Tree from sklearn.model_selection import cross_val_score scores=cross_val_score(DT_classifier,x_train,y_train,scoring='accuracy',cv=10) scores.mean() DT_classifier.fit(x_train,y_train) y_final_pred=DT_classifier.predict(x_test) accuracy_score(y_test,y_final_pred) 0.76041666666666666
n [62]: n [63]: ut[63]: n [64]:	#Random Forest from sklearn.model_selection import cross_val_score scores=cross_val_score(RF_classifier,x_train,y_train,scoring='accuracy',cv=10) scores.mean() 0.7290683605565638 RF_classifier.fit(x_train,y_train) y_final_pred=RF_classifier.predict(x_test) accuracy_score(y_test,y_final_pred) 0.7760416666666666
Out[64]: In [65]: In [66]: Out[66]: Out[67]:	<pre>#Gradient Boosting from sklearn.model_selection import cross_val_score scores=cross_val_score(GB_classifier,x_train,y_train,scoring='accuracy',cv=10) scores.mean() 0.7394736842105264 GB_classifier.fit(x_train,y_train) y_final_pred=GB_classifier.predict(x_test) accuracy_score(y_test,y_final_pred) 0.7864583333333334</pre>
In [68]:	#After cross validation, Logistic regression still gives the highest accuracy. Prediction def diabetes_prediction (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age): pr=int(Pregnancies) gluc=float(Glucose) bp=float(BluoodPressure) st=float(SkinThickness) ins=float(Insulin) bmi=float(BMI) dpf=float(DiabetesPedigreeFunction) age=int(Age)
in [71]: in [72]:	<pre>age=int(Age) x=[[pr,gluc,bp,st,ins,bmi,dpf,age]] x=st_x.transform(x) return LR_classifier.predict(x) #Providing random values to the parameters to check our model #Prediction 1 pred=diabetes_prediction(2,80,73,16,75,31.1,0.555,25)[0] if pred: print("You have diabetes.") else: print("You don't have diabetes")</pre>
n [73]:	<pre>You don't have diabetes #Prediction 2 pred=diabetes_prediction(1,140,92,30,145,35,0.555,70)[0] if pred: print("You have diabetes.") else: print("You don't have diabetes") You have diabetes.</pre>

Diabetic vs Non-Diabet-

ic

% of Total Count of
Outcome and
Dia/Non-Dia. Color
shows details about
Dia/Non-Dia. The
marks are labeled by
% of Total Count of
Outcome and
Dia/Non-Dia.

Age vs Glucose -Scatter Plots

Variable 1 vs. Variable 2.

The trend of count of Variable 1 for Variable 1 (bin).

Age vs Outcome - Bubble Charts

Variable 1 (bin) 2. Color shows details about Variable 1 (bin). Size shows sum of Outcome. The marks are labeled by Variable 1 (bin) 2.

Variable 1

Variable 2

Glucose

Age

Age vs Outcome - Bubble Charts