AD-A015 801

LOW-SPEED AERODYNAMIC FORCES AND MOMENTS ACTING ON THE HUMAN BODY

Peter R. Payne

Payne, Incorporated

Prepared for:

Aerospace Medical Research Laboratory

July 1975

DISTRIBUTED BY:

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

i di Califor

250 450

NATIONAL TECHNICAL INFORMATION SERVICE

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Covernment procurement operation, the Covernment thereby incurs no responsibility not any obliganou white or and the fact that the Government may have formulated, furnished, or is any way supplied the said distribut, executionis, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the bolder or the other person or corporation, or conveying any rights or permission to manufacture, use, or sell say stented invention that may in any way be related thereto.

Ory initiations and individuals receiving aunouncements or reports via the Aerospace Medical Research Lekomiory automatic mailing lists should submit the addressograph plate stamp on the report envelope or refer to the code number when corresponding about change of address or cancellation.

Do not return this copy. Retain or destroy.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

> National Technical Information Service 5285 Port Reyal Road Springfield, Virginia 22151

This report has been reviewed and cleared for open publication and/or public release by the appropriate Office of Information (OI) in accordance with AFR 190-17 and DODD 5230.0. There is no objection to unlimited distribution of thiz report to the public at large, or by DDC to the National Technical Information Service (NTIS).

This tecanical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Heig E. ma Ciri HENNINGE/VON GIERKE

Director

Rodynamics and Ronics Division

Aerospace Medical Research Laboratory

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date	z Entered)	20.73 A.P. 20.4	
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. NEPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG	NUMBER
AMRITR-75-6			
4. TITLE (end Subtitle)		s type of REPORT & PERIOD COVERED Final Report	
LOW-SPEED AERODYNAMIC FORCES AND	MOMENTS	Nov. 1, 1973 - Jan. 31, 1975	
ACTING ON THE HUMAN BODY		6. PERFORMING ORG. REPORT NUMBER Working Paper No. 119-3	
		8. CONTRACT OR GRANT NUMBER(5)	
Peter R. Payne		F33615-74-C-4015	
9. PEPFORMING ORGANIZATION NAME AND ADDRE	SS	10. PROGRAM ELEMENT, PROJECT, FASK AREA & WORK UNIT NUMBERS	
PAYNE, INC.			
1910 Forest Drive		62202F, 7231-06-37	
Annapolis, Maryland 21401			
11. CONTROLLING OFFICE NAME AND ADDRESS Aerospace Medical Research Labor	atomic Aomochago	July 1975	
Medical Division, Air Force Syst		13. NUMBER OF PAGES	
Wright-Patterson Air Force Base,		DEC	165
14 MONITORING AGENCY NAME & ADDRESS(If dille	rent from Controlling Office)	15. SECURITY CLASS. (al	this toport)
		UNCLASSIFIED	
		150. DECLASSIFICATION	DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; distribution unlimited			
17. DISTRIBUTION STATEMENT (of the abatract onle	red in Block 20, if different fro	D D C ncT 16 19	
18. SUPPLEMENTARY NOTES		1111 OCT 16 19	(5)
		10)	TITI!
			م السالما لما
19. KEY WORDS (Continue on reverse side if necessar	y and identify by block number	1)	
Human Body Aerodynamics Aerodynamic Force Measurements			
Information on the aerodynamic forces acting on the human body is sparse, and scattered in various hard-to-find reports. A primary purpose of this report is to collect the available data in one volume, and to present it in the most useful form. The aerodynamic force and moment data originally reported by Schmitt ³ for three body positions is reported, together with additional data which he did not publish. This data is presented in a new			
i.			

Stocker and the second of the

430 100 - 100 - 10

PREFACE

This report was prepared in partial fulfillment of Contract No. F33615-74-C-4015. The research was accomplished by Payne, Inc., 1910 Forest Drive, Annapolis, Maryland 21401. Peter R. Payne was the Principal Investigator.

The Air Force Technical Monitor was James W. Brinkley of the Impact Branch, Biodynamics and Bionics Division of the Aerospace Medical Research Laboratory. The work was performed in support of Project 7231, "Biodynamics of Aerospace Operations," Task 723106, "Impact Exposure Limits and Personnel Protection Criteria."

on the contractions of the contraction of the contr

STEERING TO STEERING TO STEERING THE STEERING STEERING STEERING STEERING STEERING STEERING STEERING STEERING S

TABLE OF CONTENTS

	Page
SUMMARY	5
INTRODUCTION	6
THE DATA OF SCHMITT ³	10
OTHER SOURCES OF DATA	27
CONCLUSIONS	37
APPENDIX I: THE SCHMITT DATA IN TABULAR FORM	38
APPENDIX II: THE WEBER DATA IN TABULAR FORM	137
REFERENCES	162

LIST OF FIGURES

Figure No.	<u>Title</u>			
1	Variations of Height and Weight with Aircrew Population, from Hertzberg. 2			
2	Relationship Between Measured Body Surface Area and VWL Based on Measurements by Schmitt ³	9		
3	Geometry Definition for Schmitt ³ Measurements of Prone Human Body Aerodynamic Forces and Moments	il		
4	Definition of Schmitt's Sitting and Standing Positions	13		
5	Mean Lift of Fourteen Clothed and Naked Subjects as a function of Yaw Angle	14		
6	Mean Drag of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle	15		
7	Mean Side Force of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle	16		
8	Mean Pitching Moment of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle	17		
9	Mean Yawing Moment of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle	18		
16	Mean Rolling Moment of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle	19		
11	Standard Deviation as a Function of Yaw Angle for $\mathbf{C}_{\mathbf{L}}$ Clothed and Nude Values	20		
12	Standard Deviations as a Function of Yaw Angle for $\mathbf{C}_{\mathbf{D}}$ Clothed and Naked Values	21		
13	Standard Deviation as a Function of Yaw Angle for the $C_{_{\mathbf{V}}}$ (Side Force) Clothed and Naked Values	22		
14	Standard Deviation as a Function for C _M (Pitching Moment Coefficient) Clothed and Naked Values	23		
15	Standard Deviation as a Function of Yaw Angle for C _N (Yawing Moment Coefficient) Clothed and Noticed Values	24		
16	Standard Deviation as a Function of Yaw Angle for Company (Rolling Moment Coefficient) Clothed and Naked	25		

LIST OF FIGURES (CONTINUED)

Figure No.	<u>Title</u>			
17	Effect of Light Clothing (Shirt and Slacks) on Drag	26		
18	A Summary of Available Drag Data for the Human Form in an Erect Position, Normal to the Flow			
19	Average Drag Area for 180 lb. Pummies Dropped from Aircraft, as a Function of Maximum Spin Rate (From Cobb and Waters) 4	29		
20	Elemental Forces on a Falling, Spinning Rod	27		
21	The Effect of Rotational Speed on the Axial Drag of a Rotating Rod	31		
22	Apparent Drag Area of an Object Dropped from 30,000 feet	33		
23	Comparison Between Standing Dummy Drag ⁴ , and the Schmitt ³ Live Subject Data, as a Function of Yaw Angle	34		
24	Comparison Between Prone Dummy Drag ⁴ and the Schmitt ³ Live Subject Data, as a Function of Yaw Angle	35		

The companies of the control of the

SUMMARY

Knowledge of the aerodynamic forces acting on the human body is a basic requirement for many purposes. Surprisingly, the literature on the subject is very sparse, and data are scattered in various hard-to-find reports, and when found, are not always in a readily usable form. A primary purpose of this report is to collect the available data in one volume, and to present it in the most useful form. To do this, we document the aerodynamic force and moment data originally reported by Schmitt³ for three body positions and present additional data which he did not publish. The raw data is analyzed and presented in a new form to (hopefully) maximize its usefulness.

The drag portion of the data is then compared with all other available drag data, represented by

- · Wind nunnel tests with volunteer subjects.
- · Wind tunnel tests with anthropomorphic dummies.
- · Instrumented free falls of parachutists.
- · Instrumented free falls of anthropomorphic dummies.

or some and the second of the solution of the second secon

Most of these drag data are for the subject facing into the flow in a quasierect position and for this case, the Schmitt data average appears to be about 25% higher than the other data. For other body attitudes, it generally agrees with the two wind tunnel dummy tests which constitute the only comparative data available.

INTRODUCTION

Knowledge of the aerodynamic forces acting on the human body is a basic requirement for many purposes. Surprisingly, the literature on the subject is very sparse, and data are scattered in various hard-to-find reports, and when found, is not always in a readily usable form. A primary purpose of this report is to collect the available data in one volume, and to present it in the most useful form.

Adult humans are available in only one basic size range. They may be nude, or clothed more or less bulkily. It is foolish, therefore, to spend a great deal of time and effort attempting to measure lengths and frontal areas (which change with the clothing put on) in order to express aerodynamic forces and moments in coefficient form. The user of such data only has to go to a corresponding amount of effort to get back to the original data, which is what he needs; namely

$$\frac{\text{Force}}{\text{Dynamic Pressure}} = \frac{F}{q}$$

and

$$\frac{\text{Moment}}{\text{Dynamic Pressure}} = \frac{M}{q}$$

Yet it would be desirable to cancel out, as much as possible, those variations in the data that are attributable to subject size. If all people were geometrically similar, we could do this by noting that their density ρ_S varies very little, so that their weight (W) and frontal area (A), in terms of a characteristic dimension L, can be expressed as

$$W = k_1 L^3 \qquad A = k_2 L^2$$

$$\therefore A = \left(\frac{k_2}{k_1^{2/3}}\right) W^{2/3} = KW^{2/3} \qquad (1)$$

WEST STATES OF THE PROPERTY OF

Force data could then be correlated with $W^{2/3}$, and moments with W.

Unfortunately, instead of being geometrically similar, some people are tall and thin, while others are short and fat. They are only affinely similar. The writer has shown! that in this case

This leads to the following "coefficients."

Force
$$C_{F_n} = \frac{F_n}{q / WL} = \frac{A_n}{\sqrt{WL}}$$

Moment:
$$C_{M_{\Omega}} = \frac{M_{\Omega}}{qL\sqrt{WL}} = \frac{V_{\Omega}}{L\sqrt{WL}}$$

where
$$A_n = \frac{F_n}{q}$$
 (A "force area")

The second of the second secon

 $(= C_F S$ in conventional notation)

$$V_n = \frac{if_n}{q}$$
 (A "moment volume")

(= $LC_{M}S$ in conventional notation)

If W is in 1b, and L in feet, the "coefficients" are not nondimensional, but since we are interested only in the "full size" scale, this is not material.

The percentile relationship between W, L, \sqrt{WL} and $L\sqrt{WL}$, obtained from Reference 2, is plotted in Figure 1. An empirical justification for this approach is presented in Figure 2.

The rest of this report is concerned with presenting the available data in this format.

<u>Performantionantionantionantionantional services de la mariantique de la maritade de la maritade de la maritade de la formación de la formaci</u>

Figure 1. Variations of Height and Weight with Aircrew Population, from Hertzberg.

Figure 2. Relationship Between Measured Body, Surface Area and WL, Based on Measurements by Schmitt.

THE DATA OF SCHMITT³

Schmitt made measurements with volunteer subjects, lightly clothed and seminude, in five positions

- Standing
- Sitting

Reproduced in this report

- Supine
- Two "squat" positions (Not considered here)

Yaw angle was varied from 0 to 180° . All three forces and all three moments were measured. In the present report, all moments are expressed with respect to an arbitrary axis system defined in Figures 3 and 4, in relation to an "average" CG location, determined from four of the 14 subjects* employed. The general equations for transferring the moments to the CG (or any other location, x,y) are as follows; the symbols being defined in Figure 3:

$$M_{CG} = M_{CR} + (x \cos \Psi) L - yD$$

$$N_{CG} = N_{CR} + (x \sin \Psi) D + (x \cos \Psi) Y$$

$$L_{CG} = L_{CR} - yY - (x \sin \Psi) L$$

The specific transfer equations for the three postures and CG positions of Figures 3 and 4 are as follows:

Supine Position

$$M_{CG} = M_{CR} + (0.17 \cos \Psi) L - 0.40 D$$
 $N_{CG} = N_{CR} + (0.17 \sin \Psi) D + (0.17 \cos \Psi) Y$
 $\ell_{CG} = \ell_{CR} - 0.40 Y - (0.17 \sin \Psi) L$

Sitting Position

$$M_{CG} = M_{CR} + (1.03 \cos \Psi) L - 0.53 D$$
 $N_{CG} = N_{CR} + (1.03 \sin \Psi) D + (0.17 \cos \Psi) Y$
 $L_{CG} = L_{CR} - 0.40 Y - (0.17 \sin \Psi) L$

Kompoliterin alla establica establica establica de la composita de la composito de la composito de la composit

^{*} Reference 3 reported wind tunnel data for eight subjects only. Raw data for the additional six subjects were included in the present analysis.

AXES POSITIVE FORCES AND MOMENTS ARE INDICATED BY ARROWS

SIDE VIEW

Axis	Force	Force Coefficient	Moment	Moment Coefficient
D	D(drag)	$C_{D_{\sqrt{WL}}} = D/(q_{O}^{\sqrt{WL}})$	L(Rolling)	$C_{\ell \sqrt{WL}} = \ell / (q_0 h \sqrt{WL})$
Y	Y(side)	$C_{Y_{\sqrt{WL}}} = Y/(q_{O}\sqrt{WL})$	M(pitching)	$C_{M\sqrt{WL}} = M/(q_0 h\sqrt{WL})$
L	L(lift)	$C_{L_{\sqrt{WL}}} = L/(Q_{O}^{\sqrt{WL}})$	N(yawing)	$C_{N_{\sqrt{WL}}} = N/(q_o h \sqrt{WL})$

Siese Water versen in Principal Marian Bennation that the principal in the Control of Marian States of States and States of States and States of S

Figure 3. Geometry Definition for Schmitt³ Measurements of Supine Human Body Aerodynamic Forces and Moments.

Standing Position

$$M_{CG} = M_{CR} - (0.03 \cos \Psi) L - 0.74 D$$
 $N_{CG} = N_{CR} - (0.03 \sin \Psi) D - (0.03 \cos \Psi) Y$
 $\ell_{CG} = \ell_{CR} - 0.74 Y + (0.03 \sin \Psi) L$

Prostoco existente de la completa del la completa de la completa del la completa de la completa del la completa de la completa del la completa della della

The reference 3 data were presented as coefficients based on

$$\frac{\text{VL}}{\text{s}} = \frac{\text{Volume x Height}}{\text{Surface Area}}$$

for both forces and moments. This is just as valid as our WL criterion, but not as easily discoverable. The close proximity of many Reference 3 data points, compounded by the poor quality of available reproductions effectively prevents converting to force area and moment volume data. Accordingly, arrangements were made (through Dr. Harvey R. Chaplin, Head, Aviation and Surface Effects Department, NSRDC) to obtain the original data and computation sheets and this raw data was analyzed, as described in Appendix I, using the WL parameter to correct for size. The results are summarized in Figures 5 - 10 (means) and Figures 11 - 16 (standard deviations).

Lift and drag force data are expected to be the most accurate. There was some sideways shift of the subjects, as they were yawed, and this degraded the side force and moment readings, due to nonreproducibility of tares. It is interesting to note that forces were generally increased when light clothing is worn. Figure 17 gives the mean drag variation due to clothing, as a function of yaw angle. No trend with yaw angle is discernible for sitting and standing, but that the clothing drag increase in the prone position is a minimum when the subject is "end on" to the flow.

Figure 4. Definition of Schmitt's Sitting and Standing Positions

MANAGER AND SERVICE OF THE PROPERTY OF THE PRO

THE PROPERTY OF THE PROPERTY O

Figure 6. Mean Drag of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle. $C_{D_{\sqrt{WL}}} = D/(q_0\sqrt{WL})$ where W = Subject Weight and <math>L = Subject Height.

donariosetements and encourable e

Figure 7. Mean Side Force of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle. $C_{y\sqrt{WL}} = Y/q_{0}\sqrt{WL}$ Where W = Subject Weight and L = Subject Height

Parkershinder as for basis of the state of the

- Standing
- Sitting
- **△** Supine

Figure 8. Mean Pitching Moment of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle. $C_{M\sqrt{WL}} = M/(q_0L\sqrt{WL})$ where W = Subject Weight and L = Subject Height.

- O Standing
- Sitting
- ▲ Supine

Yaw Angle in Degrees

Figure 10. Mean Rolling Moment of Fourteen Clothed and Naked Subjects as a Function of Yaw Angle. $C_{2\sqrt{WL}} = ^{2}/(q_{0}^{L/WL}) \text{ where } W = \text{Subject Weight and } L = \text{Subject Height.}$

en de production de la compaction de la

Figure 11. Standard Deviation as a Function of Yaw Angle for $\mathbf{C}_{\mathbf{L}}$ Clothed and Nude Values.

Paricementalistic concept contraction constructions and contractions of the contraction o

er biska her die besteht de fer besteht de fer besteht de de fer besteht de fer besteht de fer besteht de fer

Figure 12. Standard Deviation as a Function of Yaw Angle for C Clothed and Naked Values.

Figure 13. Standard Deviation as a Function of Yaw Angle for the C_y (Side Force) Clothed and Naked Values.

inne it angressionesis esconsos is esconsisting in a superior of the superior of the superior of the superior of

Figure 14. Standard Deviation as a Function of Yaw Angle for ${\rm C_M}$ (Pitching Moment Coefficient) Clothed and Naked Values.

Commence of the second

Figure 15. Standard Deviation as a Function of Yaw Angle for C_{N} (Yawing Moment Coefficient) Clothed and Naked Values.

THE STATES OF LANDS AND SECTION OF THE SECTION OF T

Figure 16. Standard Deviation as a Function of Yaw Angle for C (Rolling Moment Coefficient) Clothed and Naked Values.

Figure 17. Effect of Light Clothing (Shirt and Slacks) on Drag.

OTHER SOURCES OF DATA

The only other direct measurements of the forces on a live subject are due to Payne¹, and some (as yet) unpublished whole body and segment drag by Hawker and Euler. Additionally, there is some free-fall parachutist data in the literature, some free fall data obtained with anthropometric dummies, and a series of wind tunnel tests of a dummy by Rickards and Collins.⁴ Except for the latter, all data relates to drag force only, usually with the subject more or less normal to the flow - the "standing" position.

These drag data are summarized in Figure 18.

The published and unpublished Payne Inc. data was obtained with subjects suspended in a wind tunnel. The Puddycomb free-fall data is also for live human subjects. We have so far failed to locate a copy of this reference, but his results are summarized by Haak and Thompson for two stable positions - flat and stable delta - with the data for both lumped together. As Figure 18 shows, the Puddycomb data is in fair agreement with the Payne data, although somewhat lower than the Schmitt averages. (To compute WL, it was assumed, after Haak and Thompson, that the parachutists equipment weight was 50 lb)

The dummy free-fall data of Cobb and Waters presents some difficulties, because in most of their tests, the dummy was spinning, and the authors indicate that the drag area varied with spin rate. Yet a plot of their average drag area against maximum rotation rate (Figure 19) does not substantiate this relationship. In fact, the highest spin rate (Drop #40) corresponds to the lowest average drag area.

Some light can be thrown on this disagreement by calculating the drag of a rotating rod, using the geometry of Figure 20 below.

Figure 20. Elemental Forces on a Falling, Spinning Rod

Figure 19. Average Drag Area for 180 lb. Dummies Dropped from Aircraft, as a Function of Maximum Spin Rate (From Cobb and Waters).

English Construction of the second second

The resultant velocity seen by an elemental radial slice dr of the rod is

$$U = \sqrt{u^2 + w^2 r^2}$$

Thus

$$\frac{dF}{dr} = \delta C_D \frac{1}{2} \rho U^2$$

The force opposing the descent is

$$\frac{dD}{d\mathbf{r}} = \frac{dF}{d\mathbf{r}} \cos \phi = \frac{dF}{d\mathbf{r}} \frac{\mathbf{u}}{\mathbf{U}}$$
$$= \delta C_{\mathbf{D}} \frac{1}{2} \rho \mathbf{u} \sqrt{\mathbf{u}^2 + \mathbf{w}^2 \mathbf{r}^2}$$

Thus

$$D = \delta C_{D} \frac{1}{2} \rho u w \int_{0}^{R} \sqrt{(u/w)^{2} + r^{2}} dr$$

$$= \delta C_{D} \frac{1}{4} \rho u w \left\{ r \sqrt{(u/w)^{2} + r^{2}} + (u/w)^{2} \log \left[r + \sqrt{(u/w)^{2} + r^{2}} \right] \right\}_{0}^{R}$$

$$= \delta C_{D} \frac{1}{4} \rho u w \left\{ R \sqrt{(u/w)^{2} + R^{2}} + (u/w)^{2} \log \left[\frac{R + \sqrt{(u/w)^{2} + R^{2}}}{u/w} \right] \right\}$$

Let $\lambda = wR/u$

Then

$$D = \delta C_{D} \frac{1}{4} \rho (u^{3}/w) \left[\lambda \sqrt{1 + \lambda^{2}} + \log(\lambda + \sqrt{1 + \lambda^{2}}) \right]$$
$$= \frac{1}{4} C_{D} \rho u^{2} \delta R \left[\sqrt{1 + \lambda^{2}} + \frac{1}{\lambda} \log(\lambda + \sqrt{1 + \lambda^{2}}) \right]$$

In the limit $\lambda \to 0$, the bracket tends to 2.0, to give the conventional result for a non-spinning rod. The equation is plotted as a ratio of this non-spinning value in Figure 21, and it can be seen that in the range of spin rates observed with the dummy drops, we would expect no measurable drag increase due to spin. We conclude that the deduced drag area of a dummy in a flat, stable spin should be comparable with the drag of a standing dummy facing the airflow in a wind tunnel.

The average Cobb and Waters value of $C_DS = 6.3$ (from Figure 19) is thus plotted in Figure 18, and is seen to be in fair agreement; a little low relative to the other data, and only 68% of the Schmitt average.

SSB de ektendektive ezononik e ebannekaskö diskonokörbazionekandi musik aktoritikaning Kodia

The Effect of Rotational Speed on the Axial Figure 21. Drag of a Rotating Rod.

The Webster 8 data in Figure 18 is obtained from his "variation of K with jumper weight," where

$$K (= u\sqrt{\rho}) = \sqrt{2W/C_DS}$$

Since his value of K is based on measurements with freely tumbling subjects, it is not surprising that it yields values of C_DS much lower than for the rest of the data in Figure 18. The data was presented by assuming that the jumpers had 30 lb of equipment; their height was computed from Hertzberg's data, assuming a weight of (W - 30) lb.

In calculating drag during free fall, all investigators assume that, in the equation of motion ${\bf r}$

$$\frac{W}{g} \frac{d^2h}{dt^2} = -W + (C_DS) \frac{1}{2} \rho \left(\frac{dh}{dt}\right)^2$$

the value of the density ρ can be treated as constant. In fact, ρ is a function of h and this innocuous-looking equation is more complex than it appears to be at first sight. As a check on this effect, the equation was programmed on the computer, taking the density variation as

$$\rho = 23.78 \times 10^{-4} (1 - 6.88h \times 10^{-6})^{4.256}$$

An object weighing 200 lb, with $C_D^S = 7.0 \ {\rm ft}^2$, was then "dropped" at 30,000 ft, and its motion calculated. Then, using the known density at each attitude, C_D^S was calculated from the equation

$$C_D S = \frac{\text{Weight}}{\frac{1}{2} \rho \left(\frac{dh}{dt}\right)^2}$$

As can be seen from Figure 22, this calculation underestimates the actual drag by a maximum of 2.9%. This error is small enough to be neglected in the present comparison of data.*

The wind tunnel dummy drag data of Rickards and Collins is also plotted in Figure 18, and is in reasonable agreement with the other data - perhaps a little on the low side - but again, substantially lower than the Schmitt averages. This may be due to the fact that their dummies hands were clasped in front, as if holding a D-ring. Figures 23 and 24 give some weight to this supposition, since the dummy drag is shown to be higher than the Schmitt averages, except, when facing the flow. From Reference 1, a typical wrist drag area is 1.0 ft, and this would explain at least half of the discrepancy. During the same tests, a drag area increase of nearly 2.5 ft was experienced when subject #2,

^{*} This density variation effect would be substantially grea er at high altitudes, or with lower drag or high density bodies; bombs, or example.

on kolketaan on eessi historiiseessa kasusta kasusta kasusta kasusta ka

Figure 23. Comparison Between Standing Dummy Drag⁴, and the Schmitt Live Subject Data, as a Function of Yaw Angle.

Figure 24. Comparison Between Prone Dummy Drag⁴ and the Schmitt³ Live Subject Data, as a Function of Yaw Angle.

<u>and and server shooth contractions and server servers and servers</u>

in an ejection seat, allowed her elbows to "spread out" from the face curtain position under the influence of the aerodynamic forces acting on them. Such a discrepancy would completely explain the differences between the Schmitt average and the Rickards and Collins dummy data. But it would not explain the fact that the rest of the data presented in Figure 18 is also lower than the Schmitt averages.

The common terms in the contraction of the Contract

CONCLUSIONS

Available drag data for the human body is scattered between force areas of 5.4 $\rm ft^2$ and 8.0 $\rm ft^2$, with the Schmitt averages going as high as 10.0 $\rm ft^2$ in the same size range. Correlation against

reduces the scatter to some extent.

All aerodynamic forces and moments which vary with yaw were measured by Schmitt 3 and these are presented as averages and standard deviations, based on the $\sqrt{\text{WL}}$ correlation.

RECOMMENDATION

A more detailed comparison between the Schmitt data and the dummy data of Reference 1, involving forces other than drag, and the aerodynamic moments, should be carried out, in the interests of (hopefully) validating both sets of data.

APPENDIX I

The Schmitt Data in Tabular Form

bу

Fred W. Hawker

<u>Programment in the contraction of the contraction </u>

The Schmitt force and moment coefficients were transformed to coefficients as derived by Payne, Ref. 1. The Payne coefficient data was used as the data base for the elementary statistical analysis. An example of a force coefficient transformation follows:

Schmitt coefficient:

$$C_y = \frac{YS}{qVH}$$
 side force coefficient (I-1)

Payne coefficient:

$$c_{y_{\sqrt{WL}}} = \frac{Y}{q(WL)^{1/2}}$$
 (I-2)

Transformation of Schmitt Coefficient:

$$C_{y} = C_{y} \times \frac{VH}{S(WL)^{1/2}} \qquad \text{NOTE:} \quad L = H$$
 (I-3)

$$C_{y} = \frac{Y}{q(WL)^{1/2}}$$
 (1-4)

STATES ST

Each coefficient in the form of equation (I-4) for individual subjects is tabulated at varying yaw angles. A statistical analysis of all available subjects at a given yaw angle was performed and the results are shown in Tables 3 thru 8.

Figures 5 to 10 are mean values of the coefficients at dynamic pressures of 9 and 26 pounds per square foot (Table 9). It should be noted that the subjects used to calculate the various coefficients are not always the same. This anomaly is noted for each coefficient in the table.

TABLE I-1

LIST OF SYMBOLS

D - Drag Coefficient -
$$C_{D\sqrt{WL}}$$

L - Lift Coefficient -
$$C_{L\sqrt{W_L}}$$

Y - Side Force Coefficient -
$$C_{Y\sqrt{WL}}$$

M - Pitching Moment Coefficient -
$$C_{M_{L}\sqrt{WL}}$$

N - Yaw Moment Coefficient -
$$C_{N_L\sqrt{WL}}$$

$$\ell$$
 - Roll Moment Coefficient - $C_{L\sqrt{WL}}$

- 9 Dynamic Pressure in Pounds Per Square Foot
- 26 Dynamic Pressure in Pounds Per Square Foot

- SU Supine Position
- ST Standing Position
- C Clothed
- N Nude

- Cl 0° Yaw Angle
- C2 30° Yaw Angle
- C3 60° Yaw Angle
- C4 90° Yaw Angle
- C5 120° Yaw Angle
- C6 150° Yaw Angle
- C7 180° Yaw Angle

TABLE I-

TEST SUBJECTS

			W WILLIAM	L TOSTAN	NI JON	NT WATSWALL	CITDEACT ADDA
SUB	SUBJECT NAME	AGE	1b	ft	ft3	1b/ft ³	IN ft ²
ä	1. King	47	185	9.00	3.022	61.22	22.17
2.	Swear	38	155	5.67	2.458	63.06	19.69
њ	Cooper	24	196	5.96	3.027	64.75	22.70
4.	Brad	38	154	6.17	2.285	67.40	20.98
5.	Stovall	16	160	5.92	2.559	62.52	20.66
9	Dalbow	36	165	5.33	2.571	64.18	19.37
7.	Zeckman	24	160	5.67	2.496	64.10	20.01
œ	Quimby	37	165	5.75	2.771	59.55	20.44
9.	Moore	22	158	5.83	2.422	65.24	20.34
10.	LeBlanc	20	165	5.75	2.541	96.99	20.44
11.	Ohm	27	145	5.75	2.199	65.94	19.37
12.	Wagoner	25	169	5.46	2.636	64.11	20.23
13.	Novotney	43	160	5.67	2.580	62.02	20.01
14.	Garner	32	156	5.42	2.480	62.90	19.05
15.	Wilcox	31	155	5.83	2.571	60.29	20.12
Meau	ι (μ)	30.667	163.2	5.74	2.57	63.48	20.37
Std.	, Dev. (σ)	9.005	12.69	.226	.228	2.14	686*
π/ρ		.294	.078	.039	680.	29.66	.049

TABLE I-3

STATISTICAL ANALYSIS OF DRAG COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

TITL	E- D9510	;						
	CI	CS	С3	C4	C5	C6	C7	
1#	• 17745	• 17036	• 13231	•11611	• 13611	.15514	.15956	King
2₽	• 17859	• 16856	.13227	.09622	.12367	·16808	• 17906	Swear
3#	•17602	• 16133	• 12649	.09324	•11905	.15277	.16044	Cooper
4#	• 18552	• 17614	•13581	• 10486	.12382	.16437	.17287	Brad
5#	•17773	• 17059	•13318	·10078	.13485	.15057	.15867	Stovall
6#	• 18440	• 17009	13049	·10472	.13454	.15720	.16734	Dalbow
7#	• 19184	• 17657	.13666	•10613	•13995	15568	•17094	Zechman
8#	• 19157	17740	• 13969	•10857	•13134	• 15716	•17057	Quimby
9#	18006	.17025	• 13259	.11217	.13065	.16231	.16542	Moore
10#	• 18595	• 17675	.13401	.10028	.13725	.15727	.17260	LeBlanc
11#	.18470	18990	·15065	•11063	.14526	-16354	• 16989	Ohm
12#	•16919	• 16592	.13397	10402	12552	• 14958	.16265	Wagoner

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MUMIKIM	RANGE
Cl	.182	•663E-02	•191E-02	•192	• 169	.227E-01
C2	-173	.717E-02	.207E-02	•190	•162	.281E-01
C3	• 135	.594E-02	.172E-02	•151	.126	.242E-01
C4	• 105	.558E-02	·190E-02	•116	.932E-01	.229E-01
C5	.132	•766E-02	.221E-02	•145	.119	.262E-01
C6	• 158	•572E-02	·165E-02	-168	• 150	.185E-01
C7	• 158	.628E-02	.181E-02	•179	• 159	.204E-01

AND THE COME SECTION OF THE PROPERTY OF THE PR

TIT	LE- D2651	C						
	CI	C2	C3	C4	C5	C6	C7	
1#	13092	• 17576	-14201	-11906	• 14238	-16545	•16742	King
2#	• 18981	• 18169	-14361	.10290	.12964	.17429	•19196	_
3#	• 18299	•17299	-13881	-10800	-12417	15672		Swear
4#	• 18813	-17680	• 13996	.11249	13538	17048	• 16788	Cooper
5#	- 18631	.17964	• 14033	10650	.14224	16689	•17723	Brad
6#	• 19084	-18034	.13979	-11641	13979	•16961	• 16678	Stovall
7#	18397	· 18479	.14793	• 10778	13666	16625	•17748	Dalbow
8#	• 19664	.18702	.15323	-12033	• 13691	• 16703	-17411	Zechman
9#	• 18110	17654	.14176	•11718	.14657	16998	• 17487	Quimby
10#	19111	• 18330	14428	-11481	• 14659		• 16862	Moore
11#	• 19427	-19630	-15860	• 13639	• 15164	• 17418	• 17968	LeBlanc
12#	• 17588	.17349	• 14342	-11210	12938	•17762	• 17658	Ohm
			10 40	-11210	• 12330	• 16363	·17129	Wagoner

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1 C2 C3 C4 C5 C6	• 187 • 181 • 144 • 114 • 138 • 169 • 174	.609E-02 .659E-02 .599E-02 .874E-02 .807E-02 .554E-02	•176E-02 •190E-02 •173E-02 •252E-02 •233E-02 •160E-02 •204E-02	•197 •196 •159 •136 •152 •178 •192	• 176 • 173 • 139 • 103 • 124 • 157 • 167	.208E-01 .233E-01 .198E-01 .335E-01 .275E-01 .209E-01

BANG CHARLAND AND AND AND SECOND SECO

TITL	E- D9SUC	;						
	Cl	C2	С3	64	C5	C6	C7	
1#	.03412	-05818	.10629	.12249	.10408	.05523	.03142	King
2#	•03534	.05897	-10147	.12200	.10601	• 05745	.03438	Swear
3#	.03279	.05557	• 09882	· 10859	.09859	.05557	• 03093	Cooper
4#	.03314	.05799	-09810	.11554	.10290	•05886	.03532	Brad
5#	.03407	•05623	.09721	.11293	.09768	.05575	-03407	Stoval1
6#	•03340	.05582	.09470	·10735	.09470	.05344	03364	Dalbow
7#	.03381	.05776	.10426	.11694	.10473	.05354	-03193	Zechman
8#	.03467	.05770	.09971	.11236	.09996	.05517	.03391	Quimby
9#	.03513	.06148	-10101	.12095	.10869	.05819	.03293	Moore
10#	.03408	.05717	.09793	.11146	.09865	.05573	.03210	LeBlanc

RANGE	MINIMUM	MAXIMUM	STD ERR	STD DEV	MEAN	VARIABLE
.255E-02	-328E-01	.353E-01	.261E-03	-824E-03	.341E-01	CI
.591E-02	.556E-01	.615E-01	•545E-03	-172E-02	.577E-01	C2
.116E-01	.947E-01	-106	.109E-02	-343E-02	.999E-01	C3
.151E-01	.107	.122	.173E-02	•546E-02	-115	C4
.140E-01	.947E-01	•109	·138E-02	.436E-02	.102	C5
.542E-02	.534E-01	-589E-01	.569E-03	-180E-02	.559E-01	C6
.439E-02	.309E-01	.353E-01	.452E-03	.143E-02	.331E-01	C7

SONTO SOLVENIES EN SOLVENIES EN

THE PROPERTY OF THE PROPERTY O

	C1	C2	C3	C4	C5	C6	C7	
1#	•03535	.06260	.11218	.12790	.10899	.05941	.03142	King
2#	.03772	•06136	.10624	12630	-11006	.06004	•03390	Swear
3#	•03325	.05813	.10394	•11626	· 10556	.05766	•03023	Cooper
4#	•03335	•05951	.10726	-12557	•10573	.05973	•03292	Brad
5#	-03478	•06051	.10328	.11817	.10817	.05932	• 03526	Stovall
6#	.03387	• 05821	•10353	.12619	·10759	•05630	•03483	Dalbow
7#	• 03569	•05870	.10332	·12069	.10519	• 05635	03064	Zechman
8#	•03695	•05770	•0997i	-11996	.10249	• 05669	.03442	Quimby
9#	• 03629	•06264	.10920	.12421	•11186	.05929	.03211	Moore
10#	• 03477	•05800	• 10114	•11768	.10157	.05650	•03165	LeBlanc

VARIA	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	-352E-01	.150E-02	.474E-03	.377E-01	.332E-01	-447E-02
C2	•597E-01	.192E-02	•606E-03	•626E-01	.577E-01	-494E-02
C3	-105	.377E-02	·119E-02	.112	.997E-01	-125E-01
C4	.122	.421E-02	·133E-02	•128	-116	-116E-01
C5	-107	.324E-02	· 103E-02	.112	.102	.103E-01
C6	.581E-01	.157E-02	•495E-03	.600E-01	.563E-0!	-374E-02
C7	-327E-01	.179E-02	•567E-03	• 353E-01	-302E-01	•503E-02

。 第一次表示,由于中心,中心,他们是他们的,他们是他们的,他们是他们的,他们是他们的,他们是他们的是一个,他们的一个,他们的一个,他们的一个,他们的一个,他们的一个

TITL	.E- D9STC	;						
	Cl	C2	C3	C4	C5	C6	C7	
1#	.27125	.25014	.17355	.12176	.16128	.23529	. 26861	King
2#	•27743	24663	•15853	•11102	• 16354	.23039	-26454	Swear
3#	26898	.23147	•16183	.11277	·16253	. 22229	.25089	Cooper
4#	-28874	. 24536	16088	.12164	•17908	.22988	·24485	Brad
5#	27565	-24802	17345	-11936	.17201	-23658	.26124	Stovall
6#	-28017	24523	.17915	.12262	•17056	•23366	.26670	Dalbow
7#	. 28259	25853	· 17705	.12821	17035	.24397	.26745	Zechman
8#	• 284 83	-25117	17563	.12274	.17917	-24573	-26851	Quimby
9#	-27878	25369	18034	.12583	•16513	.23321	·26051	Novotney
10#	•27979	·24654	·18270	.12804	• 17544	.24367	.27444	Garner
11#	• 28859	·24923	.17459	.12341	• 16702	.22836	.25847	Wilcox

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	•280	•636E-02	•192E-02	- 289	• 269	•198E-01
CS	- 248	.672E-02	-202E-02	• 259	.231	.271E-01
C3	.173	.831E-02	-251E-02	.183	• 159	.242E-01
C4	.122	•551E-02	·166E-02	.128	• 111	.172E-01
C5	• 170	•637E-02	-192E-02	.179	-161	.179E-01
C6	•235	•729E-02	-220E-02	.246	. 222	-234E-01
C7	.262	-855E-02	.258E-02	.274	.245	.296E-01

TITL	E- D26ST	C						
	CI	C2	C3	C4	C5	C6	C7	
1#	-28451	. 25444	-18091	-12176	.17282	-24180	-26487	King
2#	-28005	→25594	· 16975	·12033	·17668	.24149	-26596	Swear
3#	.27356	-24798	• 16509	.11765	.16741	.22671	-24798	Cooper
4#	• 29909	.25637	·17026	.13756	.19271	.23315	-24383	Brad
5#	•27899	-25326	•18130	.12127	.18857	.25207	.27446	Stovall
6#	-29413	-25966	-18416	.12977	- 18655	.25942	.27552	Dalbow
7#	28259	.25617	18632	-12445	.18784	-25606	-27003	Zechman
8#	-29306	.26117	.18702	-12982	.18778	.25421	.26775	Quimby
9#	-29237	· 26232	· 18604	.13367	.17428	-24830	.27312	Novotney
10#	-30216	-26339	· 19059	.13026	· 19959	.26389	.27556	Garner
11#	·28869	.25818	.18834	·13065	. 16998	.23643	.25959	Wilcox

TO THE PARTY OF THE PROPERTY O

12>ELEMENTARY

VARIABLE	MEAN	STD DEV	STD ERR	MUMIXAM	MINIMUM	RANGE
CI	- 288	.895E-02	-270E-02	• 302	.274	-286E-01
C2	.257	,446E-02	-134E-02	• 263	- 248	• 154E-G1
C3	- 181	.861E-02	-260E-02	-191	- 165	.255E-01
C4	-127	•628E-02	·189E-02	• 138	-118	•199E-01
C5	. 182	-104E-01	.314E-02	• 200	.167	.322E-01
C6	.247	•117E-01	-353E-02	-264	.227	.372E-01
C7	.265	•109E-01	-327E-02	•276	.244	-317E-01

TIT	LE- D9SIN	;						
1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11#	C1 ·15171 ·15758 ·15091 ·15456 ·15510 ·15625 ·14887 ·16981 ·15902 ·15853 ·14822 ·16027	C2 • 14729 • 15256 • 14556 • 15456 • 15010 • 14993 • 15216 • 16400 • 15316 • 16034 • 15049 • 15950	C3 •11808 •11365 •12207 •11881 •11484 •12500 •12492 •12982 •12846 •12950 •12271 •12660	C4 • 10605 • 08452 • 09138 • 09614 • 08768 • 09828 • 08664 • 10200 • 07832 • 09054 • 08604 • 09331	C5 .12102 .11269 .11161 .12077 .12508 .12235 .11600 .13160 .12535 .12607 .11908 .13141	C6 •13354 •15376 •14184 •15543 •13938 •14241 •14276 •14703 •14182 •14916 •13632 •15103	C7 •13379 •15996 •15067 •15587 •14867 •14671 •14957 •15159 •14273 •15150 •14704	King Swear Cooper Brad Scovall Dalbow Zechman Quimby Moore LeBlanc Wagoner Ohm
								CATOM.

Control of the first of the control of the control

23>ELEMENTARY

C1	VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	•
•149 •676E-02 •195E-02 •155 •134 •219E-0	C2 C3 C4 C5	•153 •123 •917E-01 •122 •145	•549E-02 •552E-02 •788E-02 •647E-02 •681E-02	•158E-02 •159E-02 •228E-02 •187E-02 •197E-02	•170 •164 •130 •106 •132 •155	•148 •146 •114 •783E-01 •112 •134	RANGE -216E-01 -184E-01 -162E-01 -277E-01 -200E-01 -219E-01

When we were an every most reast tribe of the level being the second which with the contract of the second will be second with the second will be second wi

TITL	E- D26SI	N						
	C1	C2	C3	C4	C5	C6	C7	
1#	- 15845	· 15355	-12666	-11587	.12912	-14631	-14716	King
2#	.17166	-16474	.12296	.09192	-11961	.16522	-18097	Swear
3#	-16741	-15613	.13022	.09603	•11835	.15195	. 15811	Cooper
4#	-17200	.16721	.12361	.09832	.12797	.16132	·16295	Brad
5 <i>£</i>	-16415	.15927	-12079	.09935	.13318	.15701	-15844	Stovall
6#	.17247	.16341	-13478	·10258	.13216	» 15506	-16245	Dalbow
7#	•16073	.16343	.12997	.09815	.12234	• ! 3028	· 15579	Zechman
8#	·18019	.17208	-13615	.10983	-13463	·15584	-16158	Quimby
9#	· 16627	.16627	.13391	-10781	-12820	.15145	. 15114	Moore
10#	.17225	-17119	.13529	.10145	.13229	-16014	-15876	LeBlanc
11#	• 15747	.15778	•12900	•09966	.12322	-14723	· 15452	Wagoner
12#	• 17036	-16969	• 13306	.10083	.13313	•15631	16063	Ohm

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	• 168	.670E-02	-193E-02	- 180	.157	.227E-01
CS CS	. 164	-601E-02	-174E-02	.172	.154	.185E-01
C3	• 130	.522E-02	.151E-02	• 136	.121	.154L-01
C4	.102	.652E-02	.188E-02	-116	.919E-01	.240E-01
C5	.128	.566E-02	-163E-02	• 135	- 118	.163E-01
CS	• 155	.570E-02	.164E~02	.165	.146	.189E-01
C7	.159	.826E-02	.239E-02	.181	.147	.338E-01

TITL	.E- D9SUN	1						
	Ci	C2	C3	C4	C5	C6	C7	
1#	•03388	.05401	•08445	• 09696	• 08935	•05204	•03265	King
2#	•03462	• 05420	08977	•10028	•08977	• 05396	.03414	Swear
3#	• 02976	•05301	•08208	• 09580	•08650	.04976	.03023	Cooper
4#	•03161	• 05232	•08328	•09483	• 08589	•04970	.03226	Brad
5#	•03312	• 05456	• 08529	• 09435	•08339	.05242	.03431	Stova11
6#	•03220	• 05773	• 09089	• 10353	.09447	•05081	.03173	Dalbow
7#	•03287	• 05448	•08923	•09815	•09087	.04884	.03217	Zechman
8#	.03214	•05163	.08124	• 08984	.08149	•04935	.03062	Quimby
9#	• 03476	, 05526	•08545	• 09643	.08582	.05233	•03202	Moore
10#	•03318	• 05428	• 08206	• 09415	08441	.05266	.03084	LeBlanc

VARIA	BLE MEAN	STD DEV	STD ERR	NUMIXAM	MINIMUM	RANGE
Cl	· 328E-01	·149E-02	-472E-03	•348E-01	.298E-01	• 500E-02
C2	•541E-01	•168E-02	•531E-03	•577E-01	•516E-01	.610E-02
C3	.854E-01	· 348E-02	·110E-02	.909E-01	.812E-01	.965E-02
C4	•964E-01	.372E-02	•118E-02	•104	.898E-01	·137E-01
C5	.872E-01	-390E-02	·123E-02	•945E-01	.815E-01	•130E-01
C6	•512E-01	.172E-02	• 545E-03	•540E-01	•488E-01	•512E-02
C7	.321E-01	.137E-02	.432E-03	•343E-01	.3C2E-01	.408E-02

TITL	E- D26SU	N						
	CI	C2	C3	C4	C5	C6	C7	
1#	• 03486	• 05695	•09549	·10985	.09782	•05450	.03535	King
2#	• 03390	• 05587	.09741	•11150	.09813	.05491	.03319	Swear
3#	• 03069	• 05418	•09022	.10487	• 08952	.05103	.02767	Cooper
4#	•03096	• 05450	•09047	• 1052 9	• 09069	.05319	.03161	Brad
5#	.03312	• 05956	• 09089	•10590	• 09 3 3 9	•05766	.03193	Stoval1
6#	• 03578	• 06274	•09876	• 11641	· 10496	.05797	.03077	Dalbow
7#	•03311	• 05377	• 09064	.10191	• 09257	.05412	-03193	Zechman
8#	.03214	•05163	.08124	• 08984	.08149	, 04935	.03062	Quimby
9#	•03477	• 0,5656	-09216	·10622	.09710	• 05529	.03103	Moore
10#	.03234	.05612	•08796	.10314	• 09227	•05238	.02965	LeBlanc

VARIAB	LE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Ci	-332E-01	·168E-02	•533E~03	-358E-01	-307E-01	•509E-02
C2	•562E-01	.314E-02	。992E-03	.627E-01	•516E-01	-111E-01
C3	•915E-01	.501E-02	· 158E-02	-988E-01	-812E-01	.175E-01
C4	•105	• 698E-05	.221E-02	-116	.898E-01	.266E-01
C5	•938E-01	.627E-02	·198E-02	• 105	.815E-01	.235E-01
C6	•540E-01	.270E-02	。854E-03	-580E-01	-494E-01	.862E-02
C7	~ 314E-01	• 204E-02	•646E-03	-354E-01	.277E-01	.768E-02

A STATE OF THE STA

TITL	E- D9STN	Ī						
	61	C2	C3	64	C 5	C6	C7	
1#	.24008	.20719	.13796	·10040	.14017	•19638	.21725	King
2#	-23946	.21475	· 14540	•09502	14039	20055	23386	Swear
3#	-23694	-20311	.13707	• 09766	.13626	.19229	.21926	Cooper
46	.24231	.21582	-14453	•09832	.15478	•19773	.21495	Brad
5#	.25159	.21943	-15081	•09077	-14104	.20382	.23206	Stovall
6#	.25096	- 222 56	.15196	· 10043	.14301	·20778	.22615	Dalbow
7#	.24948	.21250	.15497	•09557	.15474	.21320	.22753	Zechman
8#	.25901	.22751	.15210	.09515	· 15347	.21220	·24016	Quimby
9#	· 25369	.22066	• 15359	.10184	-11014	.20387	.23210	Novotney
10#	.25810	.21634	15948	·11103	。15938	.20927	.23010	Garner
11#	.25736	.22207	15427	• 09903	.14374	•18956	.22078	Wilcox

	VARI C1 C2 C3 C4 C5 C6 C7	1# 2# 3# 4# 5# 6# 7# 8# 9# 10#	in all
	ABLE •987	E- D9 STN	
	MEAN .249 .217 .149 7E-01 .143 .202 .227	C2 .20719 .21475 .20311 .21582 .21943 .22256 .21250 .22751 .22066 .21634 .22207	
	STD DEV .804E-02 .707E-02 .716E-02 .518E-02 .134E-01 .788E-02 .788E-02	.13796 .14540 .13707 .14453 .15081 .15196 .15497 .15210 .15359 .15948	and the second
53	\$TD ERI .242E-0: .213E-0: .216E-0: .156E-0: .404E-0: .238E-0: .238E-0	C4 •10040 •09502 •09766 •09832 •09077 •10043 •09557 •09515 •10184 •11103 •09903	
	2 2 2 2 2 2	C5 • 14017 • 14039 • 13626 • 15478 • 14104 • 14301 • 15347 • 11014 • 15938 • 14374	
	259 •228 •159 •111 •159 •213 •240	C6 • 19638 • 20055 • 19229 • 19773 • 20382 • 20778 • 21320 • 21320 • 20387 • 20927	
	MINIMUM	.21725 .23386 .21926 .21495 .23206 .22615 .22753 .24016 .23210 .23010	
	RANGE .221E-01 .244E-01 .224E-01 .203E-01 .492E-01 .236E-01	King Swear Cooper Brad Stovall Dalbow Zechman Quimby Novotney Garner Wilcox	
	AN LEAST AND STRAIN STRAINS AND STRAINS AN		

TITL	.E- D26ST	N						
	C1	C2	C3	C4	C5	C6	C7	
1#	. 24928	.21909	.15195	• 10605	.14974	.21332	.22977	King
2#	.25952	. 23254	.15232	.09932	•15352	.21129	.23803	Swear
3#	. 24252	.21252	.14974	•10696	•14788	.20241	.21857	Cooper
4#	• 26509	.23347	.15914	.10791	• 15815	20274 ء	.22062	Brad
5#	.26732	. 23444	.16177	.09840	• 16451	. 22729	.24969	Stovall
6#	.26240	.23092	.16484	.10973	·16269	22352 ء	.24499	Dalbow
7#	·26087	. 22765	• 15498	10543	.16390	.22143	.23199	Zechman
8#	.27939	.23751	.16045	.10148	.17285	.22809	.24953	Quimby
9#	·26402	.22975	.16164	.11412	•15353	.22404	.24416	Novotney
10#	. 26875	. 22648	•16075	•11643	• 18179	.23783	.24444	Garner
11#	.26272	.23186	.15777	.10532	.15285	.20216	.23157	Wilcox

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Ci	•262	•969E-02	-292E-02	•279	.243	.369E-01
CS	. 229	.724E-02	.218E-02	-238	.213	.250E-01
C3	-158	-484E-02	-146E-02	• 165	•150	.151E-01
C4	•106	•561E-02	-169E-02	.115	.984E-01	.180E-01
C5	• 160	•104E-01	.312E-02	.182	• 148	-339E-01
C6	.218	-121E-01	.363E-02	.238	.202	.357E-01
C7	.237	-110E-01	.331E-02	•250	. ?19	.311E-01

TABLE I-4

STATISTICAL ANALYSIS OF LIFT COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

 $c_{L_{\sqrt{WL}}}$

```
TITLE- L9SIC
         YAWO
                 YAW30
                           YAW60
                                   YAW120
                                            YAW150
                                                     YAW180
1#
     -.05941
               -.05842
                         -.02381
                                   .01571
                                            .02848
                                                     .03584
                                                              King
2#
     -.06327
               -.05324
                         -.03008
                                   .01265
                                            .03414
                                                     .03820
                                                              Swear
3#
     -.05394
               -.05208
                         -.02534
                                   .01070
                                            .02418
                                                     .02674
                                                              Cooper
4#
     -.05821
               -.04883
                         -.02725
                                   .00676
                                            .01940
                                                     .03030
                                                              Brad
5#
     --05789
               -.05289
                         -.03193
                                   .01334
                                            .02263
                                                     .03026
                                                              Stoval1
6#
     -.06131
               -.05844
                         -.03053
                                   .02171
                                            .04079
                                                     .04723
                                                              Dalbow
7#
     -.06598
               -.05753
                         -.03099
                                   .02583
                                            .03311
                                                     .04203
                                                              Zechman
8#
     -.06301
               -.05897
                         -.03884
                                   .01898
                                            .02936
                                                     .03189
                                                              Quimby
     -.00548
9#
               --00439
                         -.00292
                                   .00109
                                            .00329
                                                     .00329
                                                              Moore
10#
     -.05807
               -.05266
                         -.02344
                                   .01731
                                            .02921
                                                     .03426
                                                              LeBlanc
11#
     -.05772
               -.05310
                         -.03078
                                   .01962
                                            .02847
                                                     .02962
                                                              Ohm
12#
     -- 05809
               -.05373
                         -.02178
                                   .00871
                                            .03195
                                                     •03884
                                                              Wagoner
```

10>ELEMENTARY

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
YAW3056 YAW6026 YAW120 .14 YAW150 .27	52E-01 04E-01 55E-01 44E-01 71E-01	.160E-01 .148E-01 .877E-02 .693E-02 .936E-02 .109E-01	.461E-02 .428E-02 .253E-02 .200E-02 .270E-02 .314E-02	548E-02 439E-02 292E-02 .258E-01 .408E-01	660E-01 590E-01 388E-01 .109E-02 .329E-02	.605E-01 .546E-01 .359E-01 .247E-01 .375E-01

TITLE- L951C YAW90 .00025 1# King 2# -.00814 Cooper 3# .00065 Brad 4, -.00143 Stoyal1 5# .00525 Dalbow 6# 7# .00305 Zechman .00228 Quimby 8# -.00036 Moore 9# -.00072 LeBlanc 10# .00153 Ohm -.00072 Wagoner

50>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE YAW90 .149E-03 .338E-02 .102E-02 .525E-02 -.814E-02 .134E-01 Mentioners a von Anteres access to the Contract of the Contrac

TITI	LE- L26510	:						
TITI 1# 2# 3# 4# 5# 6# 7# 8# 10#	LE- L26SI(C205867060170572004970058370617806082066300159605594	C302037031990365102376032280368504297045550044303083	C4 00147 00334 01302 00523 00142 01217 00352 00278 00101 00486	C5 ·00577 ·01289 ·00535 ·00218 ·00762 ·01813 ·01244 ·01923 ·00202 ·01673	C6 ·02234 ·02602 ·01975 ·01286 ·02287 ·04198 ·02841 ·03113 ·00570 ·02934	07 •03130 •03605 •02465 •03008 •02597 •03865 •03331 •03037 •00886 •02360	King Swear Cooper Brad Stovall Dalbow Zechman Quimby Moore LeBlanc
11#	-•06247 -•06158	-•05754 -•05793	03090 02714	00146 00578	•01518 •00603	• 02624 • 03053	•02360 •02477 •03481	LeBlar Ohm Wagone

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 - C3 - C4 - C5 C6 - C6	592E-01 550E-01 303E-01 467E-02 103E-01 248E-01 286E-01	• 129E-01 • 129E-01 • 109E-01 • 403E-02 • 620E-02 • 928E-02 • 790E-02	.373E-02 .373E-02 .314E-02 .116E-02 .179E-02 .268E-02	190E-01 160E-01 443E-02 101E-02 .192E-01 .420E-01	678E-01 663E-01 456E-01 130E-01 .202E-02 .570E-02	.488E-01 .503E-01 .411E-01 .120E-01 .172E-01 .363E-01

TITL	E- L9SUC							
	C1	C2	C3	C4	C5	C6	C7	
10	.00196	• v0540	00393	02798	00442	.01178	00196	King
2#	.00525	.01433	.01958	.00263	•00382	。01433	00215	Swear
3#	• 00558	.02302	.01953	.01104	.01209	.01860	06419	Cooper
4#	00065	.01155	.01875	.01657	•00676	.01831	00109	Brad
5#	- 00286	.02120	.01048	00762	•00.;58	.01549	00357	Stovall
6#	00215	.01384	•00835	.00787	.00787	.01193	.00119	Dalbow
7#	.00657	.01432	.02512	.00470	.01362	-01080	~.00446	Zechman
8#	•00785	.01012	.00785	.00785	•00860	.00709	00582	Quimby
9#	• 00365	.01720	.01573	00402	•01024	.01720	. 20109	Moore
10#	.00432	.02020	.02452	.00144	.00216	•00793	00432	LeBlanc

VARIA	ABLE MEAN STD DEV ST		STD ERR	MAXIMUM	MINIMUM	RANGE	
Cl	•352E-02	.313E-02	.991E-03	.785E-02	-,215E-02	.100E-01	
C2	.151E-01	.542E-02	.171E-02	.230E-01	•540E-02	.176E-01	
C3	.146E-01	.895E-02	-283E-02	.251E-01	393E-02	.291E-01	
C4	.125E-02	.124E-01	-393E-02	.166E-01	-,280E-01	.445E-01	
C5	•693E-02	.527E-02	.167E-02	.136E-01	442E-U2	.180E-01	
C6	•133E-01	.411E-02	-130E-02	.186E-01	•709E-02	.115E-01	
C7	275E-02	.210E-02	.663E-03	.119E-02	582E-02	.701E-02	

THE PROPERTY OF THE PARTY OF TH

```
TITLE- L26SUC
                                  YAW120
                                           YAW150
                                                     YAW180
      YAW30
                YAW60
                         YAW90
             --01399
                        -.02479
                                 -.00712
                                           .00810
                                                    -.00196
                                                               King
     .00245
1#
                                                    -.00143
                                 -.00454
                                           .01074
                                                               Swear
2#
     .01361
               .00895
                        -.01194
                                 -.00023
                                           .01604
                                                    -.00395
                                                               Cooper
3#
     .01883
               .01069
                        -.01604
     .01025
               .01025
                                  .00501
                                            .01286
                                                     .00392
                                                               Brad
                         .01286
4#
                                   .00238
                                           .01501
                                                    -. 0C214
                                                               Stoval1
     .02216
               .01072
                         .01370
5#
                                 -.01145
                                           .00716
                                                     .00310
                                                               Dalbow
     .01193
              -.00477
                        -.01479
6#
                                   .01080
                                           .00986
                                                    -.00235
                                                               Zechman
               .01573
                         .00611
     .01503
7#
                                   .00734
                                           .00456
                                                    -.00506
                                                               Quimby
8#
     .01645
               .01620
                         .00658
     .01190
               .00354
                        -.00443
                                   .00696
                                           .01634
                                                      .00075
                                                               Moore
9#
               .00224
                        -.01148
                                 -.00174
                                            .00799
                                                    -.00287
                                                               LeBlanc
10#
     .01448
```

RAN GE	MINIMUM	MAXIMUM	STD ERR	STD DEV	E MEAN	VARIABLE
.197E-01	-245E-02	-222E-01	-168E-02	•530E-02	•137E-01	YAW30
.302E-01	- • 140E-01	.162E-01	-299E-02	.946E-02	.596E-02	YAW60
.385E-01	248E-01	-137E-01	-425E-02	.134E-01	442E-02	YAW90 -
.222E-01	115E-01	-108E-01	.224E-02	.707E-02	.741E-03	YAW120
.118E-01	.456E-02	.163E-01	.128E-02	.406E-02	.109E-01	YAW150
.398E-02	506E-02	.392E-02	.923E-03	.292E-02	120E-02	

THE STATE OF THE S

TITLE- L26SUC YAWO .00597 Swear 1# Cooper 2# .00558 3# Brad •00022 Stoval1 4 .00334 Dalbow 5# -.00119 .00564 Zechman 7# Quimby •00709 8# Moore .00303 9# -00424 LeBlanc

88>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAWO .377E-02 .276E-02 .919E-03 .709E-02 -.119E-02 .828E-02

```
TITLE- L9STC
                 YAW30
                          YAW60
         YAWO
                                  YAW120
                                            YAW180
      .00098
                .01497
                         .00761
                                  .00025
                                           -.01325
                                                       King
1#
                                           -.00322
2#
      .00931
                .C0931
                         .01194
                                  .00406
                                                       Swear
3#
      .00953
                .00814
                         .00349
                                  .00070
                                           -.00512
                                                       Cooper
45
      .01548
                .01286
                         .00894
                                  .00458
                                            .00109
                                                       Brad
5#
      .00477
                .00524
                         ,00262
                                  .00548
                                            .00047
                                                       Stova11
6#
      .01503
                .01622
                         .01240
                                  .00859
                                           -.00644
                                                       Dalbow
7#
      .00587
                .00469
                         .00657
                                  .00845
                                            .00012
                                                       Zechman
8#
     -.00228
                ,00329
                         .00582
                                  .01038
                                           -.00278
                                                       Quimby
9#
      .00811
                .00701
                         .00959
                                  .00627
                                           -.00627
                                                       Novotney
10#
     -- 00076
                .00458
                         .00802
                                  .00573
                                           -.00630
                                                       Garner
      .00147
                .00147
                         .00812
                                  .00812
                                           -.00369
11#
                                                       Wilcox
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
YAW30 YAW60 YAW120	•614E-02 •798E-02 •774E-02 •569E-02 •413E-02	.600E-02 .487E-02 .306E-02 .320E-02 .410E-02	• 181E-02 • 147E-02 • 923E-03 • 966E-03 • 124E-02	.155E-01 .162E-01 .124E-01 .104E-01 .109E-02	228E-02 .147E-02 .262E-02 .250E-03 133E-01	.178E-01 .148E-01 .978E-02 .101E-C1 .143E-01

NONE SERVICE CONTRACTOR OF THE SERVICE OF THE SERVI

TITLE- L9STC YAW90 1# -00098 King 20 -.00310 Swear 3# -.00628 Cooper 4# -.00153 Brad 5# -.00119 Stovall 6# .09072 Dalbow 7# - 00329 Zechman 8# -.00221 Novotney 9# -00152 Garner 10# --00036 Wilcox

38>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAW90 -.816E-03 .270E-02 .855E-03 .329E-02 -.628E-02 .957E-02

TITLE- L9STC YAW150 -.00270 King 1# Cooper -.00302 2# Brad 3# -.00044 Stova11 -. 99286 4# Dalbow 56 .00119 Zechman 6# .00117 Quimby 7# .00151 Novotney 8# .00147 Garner 9# -.00019 Wilcox -.00628 10#

44>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAW150 -.102E-02 .261E-02 .824E-03 .151E-02 -.628E-02 .779E-02

TITL	E- L26STO	;						
	C 1	C 2	C3	C4	C5	C6	C7	
1#	• 00429	•01154	•00380	00172	00540	01350	02001	King
2#	• 00430	•00310	• 90716	00239	֥00095	00406	~• 00668	Swear
3#	00791	•00023	• 00070	00419	00047	00535	00977	Couper
4#	•00589	•00795	•00807	00022	.00131	00458	00480	Brad
5#	01191	00727	.00214	00619	•00023	00334	00774	Stoval1
6#	•00513	•01056	•00954	.00072	00095	01312	01503	Dalbow
7#	•00258	•00164	•00493	.00047	00070	00564	00352	Zechman
8#	00037	.00127	.00025	.00177	.00202	01063	01786	Quimby
9#	• 00651	•00561	• 00574	00319	.00114	00102	01673	Novotney
10#	00621	00026	•00595	00198	00264	00767	01415	Garner
11#	• 00000	•00799	• 00754	00076	.00232	00741	.01215	Wilcox

RAN GE	MINIMUM	MAXIMUM	STD ERR	STD DEV	MEAN	VARIABLE	VA
•184E-01 •188E-01 •929E-02 •796E-02	119E-01 727E-02 -250E-03 619E-02	.651E-02 .115E-01 .954E-02 .177E-02	.188E-02 .167E-02 .921E-03 .705E-03	.624E-02 .553E-02 .305E-02 .234E-02	209E-03 385E-02 507E-02 161E-02	C2 .: C3 .! C4	C2 C3 C4
.772E-02 .125E-01 .322E-01	540E-02 135E-01 200E-01	.232E-02 102E-02 .122E-01	•672E-03 •121E-02 •273E-02	.223E-02 .402E-02 .907E-02	373E-03 694E-02 947E-02	C6	

Pariones and an incompanies and and companies are an experience and an experience an

TITL	E- L95IN							
	C1	C2	C3	C4	C5	C6	C7	
1#	05131	04468	01276	00736	.00761	· 01694	.02111	King
2#	05205	04417	02101	30406	-015:26	•03677	.03605	Swear
3#	04720	04209	02627	00628	• 00791	.01883	.02511	Coope c
4#	04316	03750	02267	.00153	.00719	•01591	.01591	Brad
5#	05289	04527	01835	00191	.01644	.02192	.02907	Stoval1
6#	05272	05057	02481	00477	-01837	• 03626	.03531	Dalbow
7#	04673	~.04673	02137	-05258	.01174	.01996	•G3381	Zechman
8#	05618	05719	03265	00405	.01620	.02227	.02708	Quimby
9#	00439	00439	00439	.00036	• 00256	,00329	.00219	Moore
10.7	04725	04400	02308	00036	.01551	.02741	.02994	LeBlanc
11#	05046	04611	01924	•00036	.01851	.02650	.03703	Wagoner
12#	94579	04232	02000	•00038	-01654	.02539	.03347	Ohm

VARIA	BLE M	EAN	STD DEV	STD EXR	MAXIMUM	MINIMUM	RANGE
CI	458E	-01	.136E-01	. 392E-02	439E-02	562E-01	•518E-01
C5	421E		.128E-01	.370E-02	439E-02	572E-01	.528E-01
C3	20 HE	20-	.699E-02	.202E-02	439E-02	327E-01	.283E-01
C4	197E	-02	.325E-C2	.938E-03	.258E-02	736E-02	.994E-02
C5	. 128E		.526E-02	.152E-02	.185E-01	.256E-02	-160E-01
C6	• 226E		.907E-02	.262E-02	.368E-01	.329E-02	-335E-01
C7	. 272E		.101E-01	. 292E-02	.370E-01	.219E-02	.348E-01

on and the control of the control of

VARIA C1 C2 C3 C4 C5	508E-01 474E-01 241E-01 327E-02 866E-02	STD DEV •117E-01 •117E-01 •759E-02 •279E-02 •399E-02	.339E-02 .338E-02 .219E-02 .807E-03	154E-01 138E-01 608E-02 470E-03	MINIMUM600E-01615E-01358E-01744E-02	RANGE • 445E-01 • 477E-01 • 297E-01
C5 C6 C7		• 399E-02 • 760E-02 • 860E-02	•807E-03 •115E-02 •219E-02 •248E-02	470E-03 -177E-01 -346E-01 -348E-01	744E-02 -392E-02 -532E-02 -671E-02	.297E-01 .697E-02 .137E-01 .288E-01 .281E-01

· Charles of The State of the

TITL	E- L9SUN						
	YAWO	YAW30	YAW60	YAW90	YAW120	YAW150	
1#	• 00393	.01497	.01694	.01436	.00601	.01424	King
2#	.00645	.01982	.02244	.01051	.01265	.01265	Swear
3#	.00395	.01767	.01883	.00581	.00628	.01465	Cooper
<i>5π</i> 4#	• 00654	.01984	.02485	.01700	.01918	.01046	Brad
5#	.00786	.02525	.02525	.01811	.01334	.00929	Stovall.
5# 6#	.00310	.01574	.01121	.00906	.00573	.00453	Dalbow
0# 7#	.00517	.01620	0:291	00822	.01338	.01104	Zechman
8#	00152	.01797	.01C38	.00582	.00860	.01038	Quimby
	• 00439	.02122	.01756	.00548	.01244	.01244	Moore
9# 10#	.00649	.02092	.01442	.00613	.01478	.01118	LeB1anc

VARIABL	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
YAVO YAW30 YAW60 YAW90 YAW120 YAW150	.464E-02 .190E-01 .175E-01 .841E-02 .112E-01	.263E-02 .310E-02 .532E-02 .754E-02 .444E-02 .287E-02	.832E-03 .961E-03 .168E-02 .238E-02 .140E-02	.786E-02 .253E-01 .253E-01 .181E-01 .192E-01	152E-02 .150E-01 .109E-01 822E-02 .573E-02 .453E-02	.938E-02 .103E-01 .144E-01 .263E-01 .135E-01

TITLE- L9SUN **YAW180** -.00196 King 1# Swear 2# -.00334 Cooper 3# -.00419 Brad 4# -.00174 Stoval1 5# -.00071 Dalbow -.00143 6# Zechman 7# -.00070 -.00073 Moore 8# -.00432 LeBlanc

60>ELEMENTARY

VARIABLE MEAN STD LEV STD ERR MAXIMUM MINIMUM RANGE
YAW180 --212E-02 .1.7E-02 .489E-03 --700E-03 --432E-02 .362E-02

TITL	E- L26SU	N				
TITL 1# 2# 3# 4# 5# 6# 7# 8#	YAW0 .00393 .00573 .00349 .00632 .00715 .00477 .00423	YAW30 •01203 •01767 •01790 •01984 •02311 •00787 •01832	YAW60 •00982 •01456 •01418 •02398 •01370 •00906 •01338	YAW120 •00110 •00382 •00372 •01679 •00882 -•00072 •01432	YAW150 .01718 .00931 .00907 .00894 .01191 .01193 .01385	King Swear Cooper Brad Stovall Dalbow Zechman
9# 10#	.00127 .00430 .00599	.01645 .01722 .02197	.01797 .02077 .01579	00127 .00835 .01873	•00443 •00785 •00911	Quimby Moore

RANGE	MINIMUM	MAXIMUM	STD ERR	STD DEV	E MEAN	VARIABL
.588E-02 .152E-01 .149E-01 .200E-01	•127E-02 •787E-02 •906E-02 •127E-02 •443E-02	.715E-02 .231E-01 .240E-01 .187E-01	.533E-03 .142E-02 .145E-02 .230E-02	•169E-02 •445E-02 •459E-02 •726E-02 •352E-02	• 472E-02 • 172E-01 • 153E-01 • 737E-02 • 104E-01	YAWO YAW30 YAW60 YAW120 YAW150

TITLE- L26SUN YAW90 1# -.00215 Swear 2# -.00209 Cooper Brad 3# •00577 4# .00548 Stoya11 5# .00215 Dalbow 6# .00293 Zechman 7# .00456 Quimby 8# .00795 Moore 9# .00392 LeBlanc

70>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAW90 .372E-02 .394E-02 .131E-02 .892E-02 -.215E-02 .111E-01

There execuses and a continue continue of the continue of the

TITLE- L26SUN YAW180 1# .00221 King 2# • 00203 Swear 3# •00256 Cooper 4# --00131 Brad 5# -.00119 Stoval1 6# .00282 Zechman 7# -.00025 Quimby 8# -.00012 Moore -.00324 LeBlanc

80>ELEMENTARY

VARIABLE MEAN STD DEV SID ERR MAXIMUM MINIMUM RANGE YAW180 .390E-03 .212E-02 .706E-03 .282E-02 -.324E-02 .606E-02

TIT	LE- L9STN				
	YAWO	YAW90	YAW120	YAW180	
1#	• 00098	00172	.00295	00663	King
2#	• 00525	•00131	•00131	•00573	Swear
3#	•00814	00349	•00326	.00163	Cooper
4# 5#	• 00458	00545	•00283	00218	Brad
5# 6#	-•00477	,00191	• 00548	00143	Stoval1
7#	•00131	• 00453	•01050	• 00525	Dalbow
8#	-•00188	•00070	.01033	•00211	Zechman
9#	• 00658	00076	• 00658	• 00582	Quimby
10#	• 00369	•00110	• 00922	• 00369	Novotney
11#	•00382 ••00665	• 00267	•01146	00114	Garner
	-• 00005	•00000	•00812	00554	Wilcox

VARIABL	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
YAWO YAW120 YAW180	•191E-02 •727E-04 •655E-02 •665E-03	•468E-02 •283E-02 •360E-02 •439E-02	•141E-02 •853E-03 •109E-02 •132E-02	•814E-02 •453F-02 •115E-01 •582E-02	665E-02 545E-02 -131E-02	.148E-01 .998E-02 .102E-01

TITLE- L9STN YAW30 1# •00835 King 2# .00657 Swear 3# • 00674 Cooper 45 -00665 Brad 5# -.00119 Stoval1 6# • 00668 Dalbow 7# -00228 Quimby 8# .00738 Novotney 9# •00535 Garner 10# • 00480 Wilcox

14>ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAW30 .536E-02 .284E-02 .898E-03 .835E-02 -.119E-02 .954E-02

TITLE- L9STN YAW60 10 -00393 King 2# •00597 Swear 3# .00070 Cooper 4# .00458 Brad 5# •00859 Dalbow 6# .00822 Zechman 7# .00430 Quimby 8# .00774 Novotney 9# .00688 Garner 10# • 00406 Wilcox

6 ELEMENTARY

VARIABLE MEAN STD DEV STD ERR MAXIMUM MINIMUM RANGE
YAW60 .550E-02 .245E-02 .774E-03 .859E-02 .700E-03 .789E-02

Processor and the content of the con

TITL	E- L9STN	
	YAW150	
1# 2# 3#	00025 -00716 -00256	King Swear Cooper
4# 5# 6#	00153 .00357 .00668	Brad Stovall Dalbow
7# 8# 9# 10#	• 00634 • 00258 • 00420	Zechman Novotney Garner
10#	00110	Wilcox

 VARIABLE
 MEAN
 STD DEV
 STD ERR
 MAXIMUM
 MINIMUM
 RANGE

 YAW150
 .302E-02
 .320E-02
 .101E-02
 .716E-02
 -.153E-02
 .869E-02

TITI	E- L26STN	Ī						
1#	C1	CS	C3	C4	C5	C6	C7	
2#	00650	•00442	• 00025	00147	.01375	00638	00221	King
3#	00465	• 00263	• 00478	00501	•00573	00358	00215	Swear
4#	•00151	00011	• 00093	00488	•00256	.00011	00465	Cooper
5#	-00044	• 00371	• 00632	00458	00044	00349	00349	Brad
6#	00596	00477	-•00167	00142	00369	00643	00786	Stovall Stovall
7#	00119	-00012	• 00692	• 00191	•00620	00178	00942	Dalbow
8#	•00681	•00622	• 00634	00352	• 00564	00023	00598	Zechman
9#	-•00962 -•00447	-•00835	• 00025	-•00076	00329	01063	01721	Quimby
10#	00251	• 00344	• 00370	-•00039	-00421	00498	00600	Novotney
11#	60716	-00125	• 00582	•00052	• 00449	00039	00754	Garner
***	00/10	-• 00498	•00191	00153	•00332	00728	01208	Wilcox

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 .3 C3 .3 C41 C5 .3 C64	03E-02 25E-03 23E-02 97E-02 50E-02 10E-02	.468E-02 .457E-02 .302E-02 .227E-02 .487E-02 .342E-02	•141E-02 •138E-02 •909E-03 •685E-03 •147E-02 •103E-02 •136E-02	.681E-02 .622E-02 .692E-02 .1915-02 .138E-01 .110E-03	962E-02 835E-02 167E-02 501E-02 369E-02 106E-01 172E-01	.164E-01 .146E-01 .859E-02 .692E-02 .174E-01 .107E-01

TABLE I-5

STATISTICAL ANALYSIS OF SIDE FORCE COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

 $^{\mathrm{C}}_{\mathrm{Y}_{\sqrt{\mathrm{WL}}}}$

```
TITLE- Y9SIC
          CI
                    C2
                              СЗ
                                        C4
                                                  C5
    -.00638
                                                           C6
              -.02209
                                                                     C7
                        -.01399
                                   .02013
                                              .01509
2#
                                                       . 2800 •
     .00143
                                                                         King
                                                                 .00343
              -.01313
                        -.02316
                                  -.01122
                                             .02220
3#
     .00674
                                                      .04346
                                                                 .00716
              -.02092
                                                                         Swear
                        -.02255
                                  -.01929
                                             -.02301
4#
    --00109
                                                      .03115
              -.02604
                                                                 ·00488
                                                                         Cooper
                        -.03597
                                   .01700
                                             .01983
5#
    -.00262
                                                      .02310
                                                               ~ • 00545
              -.02119
                                                                         Brad
                        -.03191
                                  -.01286
                                             •01834
6#
                                                      .00619
     .00214
                                                               -.00119
                                                                         Stoval1
              -.03219
                        -.02933
                                   .00787
7#
                                             .01645
     .00187
                                                      .01717
              -.01925
                                                               --00453
                                                                         Dalbow
                        -.03545
                                  --00399
8#
                                             .02841
                                                      .01408
     •00329
              -.03442
                                                               -.00399
                                                                         Zechman
                        -.03998
                                   .02124
                                             .01822
                                                      •00683
                                                               -.00253
                                                                         Quimby
```

VARIAE	BLE MEA	N STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1 C2 C3 C4 C5 C6 C7	•673E-0 •237E-0 •290E-0 •236E-0 •144E-0 •188E-0	1	•141E-02 •247E-02 •305E-02 •574E-02 •554E-02 •465E-02 •169E-02	.674E-02 131E-01 140E-01 .212E-01 .284E-01 .435E-01 .716E-02	638E-02 344E-01 400E-01 893E-01 230E-01 -619E-02 545E-02	.131E-01 .213E-01 .260E-01 .405E-01 .514E-01 .373E-01

and the second of the second of the second s

```
TITLE- Y2651C
         CI
                   C2
                             C3
                                      C4
                                               C5
                                                         C6
                                                                   C7
1#
    -.00220
             -.02945
                       -.01178
                                  .00601
                                           .00270
                                                    -.00196
                                                             -.00429 King
2#
     .00214
             -.01743
                       -.02125
                                 -.00883
                                           .02256
                                                    .03414
                                                              .00130 Swear
3#
     • 00650
             -.01883
                       -.02278
                                 -.01836
                                           .01743
                                                     -02534
                                                              .00348
                                                                      Cooper
45
    -.00174
             -.02158
                       -.02964
                                           • 00991
                                  .02332
                                                    .01569
                                                             -.00175 Brad
5#
    -.00881
             --0.964
                       -.02429
                                 -.01274
                                           •01524
                                                     .00833
                                                             -.00166
                                                                      Stova11
6#
    -.00024
             -.03732
                       -.03768
                                 -.00119
                                           .01335
                                                    .01240
                                                                      Dalbow
                                                             -.00047
7#
     .00117
             -.01995
                       -.03979
                                 -.01150
                                           .01526
                                                    .01643
                                                             -.00163 Zechman
     •00329
8#
             -.03695
                       -.04226
                                  .01075
                                           .02075
                                                    .00354
                                                              .00202 Quimby
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
C2 2 C3 2 C4 1 C5 . 1 C6 . 1	137E-04 251E-01 287E-01 157E-02 146E-01 42E-0; 375E-03	.454E-02 .824E-02 .106E-01 .141E-01 .627E-02 .116E-01 .250E-02	•161E-02 •291E-02 •374E-02 •498E-02 •222E-02 •410E-02 •885[\(\) 3	.650E-02 174E-01 118E-01 .233E-01 .226E-01 .341E-01 .348E-02	881E-02 373E-01 423E-01 184E-01 -270E-02 196E-02 429E-02	• 153E-01 • 199E-01 • 305E-01 • 417E-01 • 199E-01 • 361E-01 • 777E-02

TIT	LE- Y9SUC							
	CI	P C2	(C3	C4	C5	C6	C7	
1#	00024	•01939	.02675	.00662	04443	03093	00122	King
2#	00071	.01647	.02316	.01050	04011	02746	00071	Swear
	: :	.01860	.02604	.00558	04161	02999	00302	Cooper
3#	00023	.01765	.02659	.00610	03858	02594	00065	Brad
4#	00065		.02239	.00476	04073	02477	00190	Stoval1
5#	00119	.01548		.00381	03816	02957	00381	Dalbow
6 #	• 00047	.01884	.02695		03991	02864	00305	Zechman
7#	• 00000	.01761	.02958	.00727		02700	00258	Quimby
8#	- 00000	.01807	.02207	.00258	03733	02/00	00230	darma

VARIABLI	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
C1 C2 C3 C4 C5 C6	319E-03 .178E-01 .254E-01 .590E-02 401E-01 280E-01	.516E-03 .128E-02 .264E-02 .240E-02 .224E-02	.182E-03 .454E-03 .932E-03 .849E-03 .793E-03	.470E-03 .194E-01 .296E-01 .105E-01 373E-01 248E-01	119E-02 .155E-01 .221E-01 .258E-02 444E-01 309E-01	.166E-02 .391E-02 .751E-02 .792E-02 .710E-02 .616E-02
C7 ·	212E-02	.118E-02	•417E-03	0205-03	381E-0E	

TIT	LE- Y26SU	С						
•••	Cl	C2	C3	C4	C5	C6	C7	
1#	.00000	.00662	.00932	.00220	01546	01080	00049	King
• •		.01695	.02292	.00931	04179	02817	00119	Swear
2#	00023		.02557	.00488	04557	03185	00209	Cooper
3#	• 00000	•01999			03902	02725	00218	Brad
4#	00065	.01962	.02746	• 00457		02906	00357	Stoval1
5#	00119	-01905	。02763	.01286	04549			Dalbow
6#	00023	01884	.02671	.00190	04793	03243	00119	
7#	00234	.01995	.02723	•00633	04085	02958	00164	Zechman
84	.00075	.01797	.02353	.00315	04049	02910	-,00253	Quimby

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 C3 C4 C5 C6	486E-03 174E-01 238E-01 565E-02 396E-01 273E-01 186E-02	.933E-03 .447E-02 .612E-02 .378E-02 .102E-01 .688E-02 .953E-03	.330E-03 .158E-02 .216E-02 .134E-02 .361E-02 .243E-02 .337E-03	.750E-03 .200E-01 .276E-01 .129E-01 155E-01 108E-01 490E-03	234E-02 .662E-02 .932E-02 .190E-02 479E-01 324E-01	.309E-02 .134E-01 .183E-01 .110E-01 .325E-01 .216E-01 .308E-02

r
11
W
an
y
ī

VARIA	BLE MEAN	STD DEV	SID ERR	MAXIMUM	MINIMUM	RANGE
C1 C2 C3 C4 C5	.364E-03 706E-01 714E-01 142E-01	.254E-02 .133E-01 .114E-01 .249E-01	.897E-03 .469E-02 .402E-02 .881E-02	.382E-02 486E-01 595E-01 .266E-01 .703E-01	501E-02 909E-01 892E-01 518E-01 457E-01	.883E-02 .422E-01 .296E-01 .783E-01
C6 C7	.412E-01 174E-02	.102E-01 .829E-02	.362E-02 .293E-02	.486E-01 .136E-01	.177E-01 157E-01	.309E-01 .293E-01

TIT	LE- Y26ST	·C						
	C1	C2	C3	C4	C5	C6	C7	
1#	•00551	06972	08175	02283	•04283	.04173	00589	King
2#	-•00286	09599	07641	00286	.05121	.04346	00095	Swear
3#	00093	07091	06393	02859	•06231	.04452	00023	Cooper
4#	00228	-•08599	10561	• 03095	• 04578	.01503	• 00283	Brad
5#	•00262	06371	07240	03954	• 05621	.04251	• 00595	Stoval1
6 #	•00202	06177	07452	04733	.08227	• 04555	00297	Dalbow
7#	00516	07924	08734	.01725	•05564	.03146	00633	Zechman
8#	00556	-•08858	08529	02416	•05046	.02353	01062	Quimby

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MUNIMUM	RANGE
C277 C386 C414 C5 .55 C6 .36	30E-03 70E-01 19E-01 16E-01 58E-01 58E-01	• 392E-02 • 124E-01 • 125E-01 • 275E-01 • 123E-01 • 114E-01 • 534E-02	.139E-02 .439E-02 .442E-02 .97!E-02 .435E-02 .403E-02	.551E-02 618E-01 639E-01 .309E-01 .823E-01 .456E-01 .595E-02	556E-02 960E-01 106 473E-01 .428E-01 .150E-01	.111E-01 .342E-01 .417E-01 .783E-01 .394E-01 .305E-01

TIT	LE- Y9SIN							
	C1	Ç2	C3	C4	C5	C6	C7	
1#	00270	02013	00859	00392	.02013	.00343	.00073	King
2#	· GO119	01910	02889	02173	.02925	• 04465	00310	Swear
3#	•00395	01790	03022	01092	.02325	.02301	•00255	Coopei
4#	•00261	01177	03597	01046	.02158	.02376	00392	Brad
5#	.00142	01834	01476	02048	.02417	~00643	00857	Stoval1
6#	• 00405	02647	02289	01120	•01454	.00930	• 00524	Dalbow
7#	.00140	02606	02864	01761	.02183	.01103	00140	Zechman
8#	• 00455	02758	02758	00025	.02075	.00101	•00253	Quimby

VARIA	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
C1	.206E-02	.234E-02	.827E-03	.455E-02	270E-02	.725E-02
C2	209E-01	•541E-02	•191E-02	118E-01	276E-01	.158E-01
C3	247E-01	.895E-02	·316E-02	859E-02	360E-01	.274E-01
C4	121E-01	.761E-02	.269E-02	250E-03	217E-01	.215E-01
C5	-219E-01	.414E-02	·146E-02	.293E-01	•145E-01	.147E-01
C6	•153E-01	•145E-01	.512E-02	.447E-01	-101E-02	.436E-01
C7	743E-03	.442E-02	•156E-02	•524E-02	857E-02	.138E-01

om op det de som de som de serviciones de servicion

```
TITLE- Y26SIN
          Cl
                   C2
                             C3
                                       C4
                                                C5
                                                          C6
                                                                   C7
1#
    -. 00343
              -.00932
                       --00453
                                   .00957
                                           .01227
                                                    -.00343
                                                              -.00147
                                                                       King
2#
    -.00049
              -.01350
                       -.02552
                                 --0 196
                                           .02111
                                                     .02808
                                                              -.00478
                                                                       Swear
3#
     .00441
              -.01069
                        -.02511
                                 -.01441
                                           .01697
                                                     .01976
    -.00131
                                                              •00139
                                                                       Cooper
4#
              -.01635
                       -.03531
                                 -.00806
                                           .02208
                                                     .01765
                                                              -.00457
                                                                       Brad
5#
     •00595
              -.02048
                       -.01845
                                 -.00476
                                           .01167
                                                     .00225
                                                              -.00571
6#
                                                                       Stoval1
     .00143
             -.03672
                       -.03076
                                 -.00357
                                           .00810
                                                     .00787
                                                               .00285
7#
     .00305
                                                                       Dalbow
             -.02254
                       -.03310
                                 -.01643
                                           .00997
                                                     .01361
                                                               •00070
8#
     • 00354
                                                                       Zechman
             -.03264
                       --03644
                                 -.00531
                                           .00986
                                                    -.00177
                                                              -.00177
```

"ARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C226 C326 C481 C5 -14 C6 -10	64E-02 03E-01 62E-01 2E-02 00E-01 05E-01 07E-02	.318E-02 .100E-01(.106E-01 .966E-02 .536E-02 .112E-01 .316E-02	.112E-02 .354E-02 .375E-02 .341E-02 .190E-02 .395E-02	.595E-02 932E-02 453E-02 .957E-02 .221E-01 .281E-01 .285E-02	343E-02 367E-01 364E-01 220E-01 .810E-02 343E-02 571E-02	.938E-02 .274E-01 .319E-01 .315E-C; .140E-01 .315E-01

TEVEL KANLE BEHENALAK SAKAK KAN SEBENINGEN ERBANGEN KAN KANLEN KANLEN KANLEN KANLEN KANLEN KANLEN KANLEN

TIT	LE- Y9SUN							
	Cl	C2	C3	C4	C5	C6	C7	
1#	•00073	.01546	.01669	•00761	03707	02970	00270	King
2#	.00071	.01623	•01958	.00835	03271	02483	00191	Swear
3#	• 00069	.01557	.01929	.00976	03510	02418	00139	Cooper
4#	• 00000	•01504	.01722	.00610	02812	01940	00043	Brad
5#	00071	.01286	.01643	.00571	03048	02167	00357	Stoval1
6#	• 00000	.01979	· 02504	.00262	04269	02765	00381	Dalbow
7#	• 00211	.01620	.02207	.00821	03545	02441	00117	Zechman
8#	.00278	.01442	.01797	.00455	• 0308 ?	02075	00177	Quimby

	The second of the second of the second of		- ASS			
The state of the s	TITLE- Y9SUN C1 1# •00073	C2 C3	C4 •00761	C5 03707	C6 C 02970 -•0027	
The state of the s	2# .00071 3# .00069 4# .00000 5#00071 6# .00000 7# .00211 8# .00278	.01623 .01958 .01557 .01929 .01504 .01722 .01286 .01643 .01979 .02504 .01620 .02207 .01442 .01797	.00835 .00976 .00610 .00571 .00262 .00821	0327103510028120304804269	024830019 024180013 019400004 021670035 027660038 024410011 020750017	Swear Coope Brad Stova Dalbo Zechm
adere, circ etazetar d'una	7>ELEMENTARY	,				
And the state of t	VARIABLE	MEAN STD DEV	STD ERR	NUMIXAM	MUMINIM	RANGE
inger - and the standard and a second and the secon	C2 .157 C3 .193 C4 .661 C5341 C6241	E-03	.406E-03 .700E-03 .105E-02 .821E-03 .162E-02 .122E-02 .417E-03	.278E-02 .198E-01 .250E-01 .976E-02 281E-01 194E-01 430E-03	710E-03 -129E-01 -164E-01 -262E-02 427E-01 297E-01 381E-02	.349E-02 .693E-02 .861E-02 .714E-02 .146E-01 .103E-01 .338E-02
			87			

e de la company de la comp

1# 2# 3# 4# 5# 6# 7# 8#	TLE- Y2650 C1 00024 -00122 -00046 00065 00071 00023 -00025	01743 01693 01534 01635 01715 01860 01526 01493	C3 •02283 •02173 •01929 •01983 •02119 •02528 •02230 •01999	C4 • 00540 • 00668 • 00558 • 00479 • 00690 • 00321 • 00845 • 00379	C50422203796036500313903453043880352203644	C60259402817029400235402477031240248802303	C7003190023800162(5560011700075	King Swear Cooper Brad Stovall Dalbow Zechman Quimby
--	--	--	--	--	--	--	----------------------------------	---

VARIA	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	PANCE
C1 C2 C3 C4 C5 C6 C7	106E-03 -165E-01 -216E-01 -560E-02 373E-01 269E-01 173E-02	•718E-03 •127E-02 •196E-02 •172E-02 •407E-02 •318E-02 •968E-03	.254E-03 .448E-03 .691E-03 .607E-03 .144E-02 .112E-02 .342E-03	• 122E-02 • 186E-01 • 253E-01 • 345E-02 • 314E-01 • 230E-01 • 650E-03		RANGE • 21 7E-02 • 36 7E-02 • 599E-02 • 524E-02 • 125E-01 • 821E-02 • 254E-02

TIT	LE- Y9STN							
• • • •	CI	C2	C3	C4	C5	C6	C7	
	00441	06849	07021	01669	.05376	.04639	00392	King
1#	•00298	06483	07104	00597	.06184	.05277	.00143	Swear
2#		05835	06184	01604	.05928	.05115	.00302	Cooper
3#	•00000		07804	•01046	.04992	.03052	00359	Brad
4#	00763	08349		.00178	.05359	.04168	•00357	Stovall
5#	.00214	07407	09682		.05437	.04221	• 00000	Dalbow
6#	•00119	06511	06105	02241		.03874	.00140	Zechman
7#	00187	06550	06550	01220	•06339		.00177	Ouimby
24	•00075	07959	08731	•00000	.05213	.02948	• 001//	darma

VARIA	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Cl	856E-03	.360E-02	.127E-02	.298E-02	763E-02 835E-01	.106E-01
C2 C3	699E-01 740E-01	.845E-02 .127E-01	•299E-01 •448E-02	584E-01 611E-01	968E-01	.358E-01
C4 C5	763E-02 .560E-01	•111E-01 •485E-02	.394E-02	•105E-01 •634E-01	224E-01 .499E-01	.329E-01
C6 C7	•416E-01 •460E-03	.860E-02	.304E-02	•528E-01 •357E-02	.295E-01 392E-02	.233E-01 .749E-02

TIT	LE- Y2651	N						
1# 2# 3# 4# 5# 6# 7#	C100073 -0029800058 -00446 -00023 -00047 -0037500202	C206873075090590507608076400224107067	C307131070560651008937088360209807231	C4010310076/02185 -00457001660078702030	C5 • 05302 • 05038 • 05544 • 04621 • 04549 • 01884 • 05446	C6 •04787 •04584 •04859 •02910 •03155 •01454 •03639	C70019600071 -00348 -0030500262 -00000	King Swear Cooper Brad Stovall Dalbow Zechman
0#	00202	-• 08352	-•07668	00202	-05162	02340	00303	Quimby

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 (C3 (C4 (C5 (C6	107E-02 665E-01 693E-01 839E-02 469E-01 347E-01 605E-03	.236E-02 .192E-01 .213E-01 .911E-02 .119E-01 .124E-01 .262E-02	.833E-03 .678E-02 .754E-02 .322E-02 .421E-02 .437E-02	.446E-02 224E-01 210E-01 .457E-02 .554E-01 .486E-01	202E-02 835E-01 894E-01 218E-01 .188E-01 .145E-01	.648E-02 .611E-01 .684E-01 .264E-01 .366E-01

TABLE 1-6

STATISTICAL ANALYSIS OF PITCHING MOMENT COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

CML/WI

TITL	TITLE- M9SIC											
	C1	C2	C3	C4	C5	C6	C 7					
1#	.01984	.01726	.01072	•01301	•01661	.01890	.01980	King				
2#	.02193	.01718	.01023	• 00846	.01204	.02703	.02715	Swear				
3#	•02263	.01982	.01295	•01069	.01514	.02017	.02181	Cooper				
4#	.02247	.01802	.01290	.01078	.01353	.01929	.02145	Brad				
5#	•01481	.01312	.01022	•00893	.01598	.01718	.01803	Stoval1				
6 #	.01615	.01222	.00886	.01119	.01709	.02345	.02434	Dalbow				
7#	-01985	.01552	•00977	.01052	.01540	.01807	.02017	Zeckman				
8#	.02042	.01752	.01146	•01444	.01875	.02334	.02473	Quimby				
9#	.02277	•01869	·01210	•01091	.01443	.01769	.02007	Moore				
10#	•01940	.01927	.01385	.01130	.01619	.01887	.02355	Ohm				
11#	•01860	.01618	•01081	.01048	.01238	.01672	.02227	Wagoner				

VARI ABL	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
Cl	• 199E-01	.262E-02	•790E-03	-228E-01	-148E-01	•796E-02
CS	• 168E-01	-240E-02	•724E-03	.198E-01	.122E-01	.760E-02
C3	•113E-01	•154E-02	.463E-03	.138E-01	.886E-02	.499E-02
C4	• 110E-01	•165E-02	.499E-03	.144E-01	.846E-02	.598E-02
C5	· 152E-01	.203E-02	.611E-03	.187E-01	.120E-01	.671E-02
C6	.201E-01	-321E-02	.969E-03	.270E-01	.167E-01	.103E-01
C7	.221E-01	.264E-02	•796E-03	.272E-01	.180E-01	.912E-02

TIT	LE- M2651	C						
1# 2# 3# 4# 5# 6# 7# 8# 9# 10#	C1	C2	C3 .01141 .01155 .0:416 .01339 .01038 .01164 .01242 .01397 .01385 .01413 .01186	C4 .01293 .00926 .01283 .01293 .01078 .01257 .01064 .01511 .01274 .01350 .01245	C5 •01620 •01242 •01443 •01424 •01469 •01705 •01453 •01800 •01518 •01526 •01288	C6 •01925 •02966 •01880 •02233 •01783 •02372 •01880 •02262 •01782 •01874	07 •01992 •02972 •02114 •02102 •01867 •02059 •02027 •02330 •01856 •02048 •02103	King Swear Cooper Brad Stovall Dalbow Zeckman Quimby Moore Ohm
							- 0 - 1 0 0	Wagoner

3>ELEMENIC-HAI

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 . 1 C3 . 1 C4 . 1 C5 . 1 C6 . 2	214E-01 189E-01 126E-01 123E-01 150E-01 1208E-01	.203E-02 .171E-02 .133E-02 .158E-02 .165E-02 .360E-02	.611E-03 .515E-03 .402E-03 .477E-03 .496E-03 .108E-02	.238E-01 .213E-01 .142E-01 .151E-01 .180E-01 .297E-01	• 187E-01 • 159E-01 • 104E-01 • 926E-02 • 124E-01 • 178E-01 • 186E-01	.510E-02 .533E-02 .378E-02 .585E-02 .558E-02

	NEW STREET, ST		and the second second	and the second second	SOLD BUT STORY	र्द्धारमञ्जूषा । इत्यास	A SECTION AND PROPERTY.	STORY RENT TO
	Charles Sept Serve By sugar and the same of the server	Care at the second of the seco						
,								
	TITLE- M9	CHC						
		:1 C2	C3	C4	C5	C6	C7	
	1# • 0083		.01174	•01309	.01342	.00970	•00736	King
	2# •0088		•01145	.01360	.01255	•01069	•00825	Swear
	3# ∙0073		• 01174	.01244	•01307	.01092	•00712	Cooper
	4# •0078		•01463	.01678 .01348	.01318	.01049 .01119	•00809 •00801	Brad Stovall
	5# •0078 6# •0087		•01147 •01074	.01280	.01332	•01034	• 00864	Dalbow
	7# •0086		01165	.01400	.01445	•01006	•00663	Zeckman
	8# •0073		.01052	.01175	.01144	• 00999	.00607	Quimby
	9# •0080	00853	•01160	•01430	•01486	-01219	•00934	Moore
	39>ELEMEN	ITARY						
	WART ARE S	Man	Can nou	CMD D	77 V	. U T 541 114		541
	VARIABLE	MEAN	STD DEV	STD E	KK MP	XIMUM	MINIMUM	RAN
		813E-02	•559E-03	.186E-	03 •88	4E-02	.737E-02	-147E-
•		861E-02	•443E-03	•148E-		8E-02	•775E-02	•133E-0
		117E-01	•117E-02	•391E-		6E-01	•105E-01	•411E-
		136E-01 132E-01	• 143E-02 • 104E-02	•478E- •348E-		8E-01 19E-01	•118E-01 •114E-01	• 503E- • 342E-
ğ. C		106E-01	• 753E-03			2E-01	•970E-02	• 249E-
		772E-02	•102E-02			34E-02	.607E-02	.327E-
Š								
£.								
Keekly								
da.								
R 3								

VARI ABL	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Cl	.813E-02	•559E-03	-186E-03	.884E-02	.737E-02	-147E-02
CS	.861E-02	-443E-03	.148E-03	.908E-02	•775E-02	·133E-02
C3	•117E-01	·117E-02	-391E-03	·146E-01	•105E-01	.411E-02
C4	•136E-01	•143E-02	-478E-03	.168E-01	·118E-01	.503E-02
C5	·132E-01	•104E-02	.348E-03	.149E-01	•114E-01	.342E-02
C6	• 106E-01	•753E-03	.251E-03	.122E-01	•970E-02	.249E-02
C7	•772E-02	• 102E-02	•341E-03	.934E-02	.607E-02	.327E-02

TIT	TITLE- M26SUC												
	C1	C2	C3	C4	C5	30	C7						
1#	.00847	.00982	.01346	.01444	.01415	.01076	.00790	King					
2#	•00884	•00888	.01227	.01427	.01288	.01033	· 00871	Swear					
3#	•00753	•00854	.01272	.01369	-01356	•01104	.00765	Cooper					
4#	• 00802	.00972	.01265	•01473	.01438	.01240	• 00989	Brad					
5#	•00773	• 00909	.01173	•01553	.01598	.01237	.00917	Stova11					
6#	00864	.01016	.01177	.01334	•01105	•00935	.00926	Dalbow					
7#	.00783	.00787	-01197	.01499	.01474	.01103	.00774	Zeckman					
8#	.00726	.00876	.01263	-01364	.01276	.01021	.00647	Quimby					
9#	•00797	•00854	.01231	.01537	.01507	.01198	.01020	Moore					

VARIABLE	MEAN STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 .905 C3 .124 C4 .144 C5 .139 C6 .111	3E-02	•242E-03 •182E-03 •260E-03 •489E-03 •346E-03	.884E-02 .102E-01 .135E-01 .155E-01 .160E-01 .124E-01	.726E-02 .787E-02 .117E-01 .133E-01 .111E-01 .935E-02	.158E-02 .229E-02 .173E-02 .219E-02 .493E-02 .305E-02

TITL	.E- M9STC							
	Cl	C2	C3	C4	C5	C6	C7	
10	.02109	.02099	.01084	.00892	•01109	.01552	.01869	King
2#	.01911	.01806	.01036	.00762	.00918	.01204	.01566	Swear
3#	.02022	.01734	.01092	.00847	.01108	.01283	•01599	Cooper
4#	• 02395	•01906	.01141	.00979	.00931	•00959	.01323	Brad
5#	.02557	-02122	•01348	.00909	.01195	.01467	•01869	Stoval1
6#	.02624	.02228	•01510	.00810	.00982	.01257	.01687	Dalbow
7#	.02886	.02269	.01292	.01019	.01089	.01540	.02072	Zeckman
8#	.03243	.02799	.01818	.01149	.01637	.01888	.02849	Quimby
9#	.02331	.02018	•01396	.00820	.01315	.01771	01894	Novotney
10#	.02212	.01968	.01361	.00938	.01164	.01569	.02053	Garner
11#	.02432	.02089	.01526	.01070	•01431	-01640	•01830	Wilcox

VARIABL	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Cl	-243E-01	-390E-02	.118E-02	-324E-01	•191E-01	.133E-01
C2	.209E-01	.286E-02	.861E-03	.280E-01	•173E-01	.107E-01
C3	•133E-01	.236E-02	.711E-03	.182E-01	.104E-01	.782E-02
C4	•927E-02	.119E-02	.358E-03	•115E-01	.762E-02	.387E-02
C5	•117E-01	.219E-02	.659E-03	•164E-01	.918E-02	.719E-02
C 6	.147E-01	.270E-02	.813E-03	·189E-0.	•959E-02	.929E-02
C7	•167E-01	•392E-02	·118E-02	.285E-01	•132E-01	.153E-01

TITL	TITLE- M26STC											
	C1	C2	C3	C4	C5	C6	C7					
1#	.02074	•01998	.01282	.00920	.01225	.01632	.01878	King				
2#	.01808	•01395	.01143	.00880	•00905	.01181	.01555	Swear				
3#	.01810	.01246	.01155	•00911	.01018	.01143	.01353	Cooper				
4#	.02164	•01791	.01084	.00936	•00936	.00860	•00950	Brad				
5#	•01903	.01762	.01119	.00974	.01!45	.01356	.01722	Stovall				
6#	• 02291	.01897	.01172	• 00949	•01043	.01347	.01709	Dalbow				
7#	.02495	.02163	.01317	•00982	.01199	.01457	.02012	Zeckman				
8#	.02900	• 02685	.01787	.01109	•01554	.01708	.02333	Quimby				
9#	• 02539	.02113	.01435	•01100	.01238	.01339	.01856	Novotney				
10#	.02160	.01791	.01285	•01111	.01267	•01553	-02113	Garner				
11#	•02502	.02227	•01596	•00986	.01329	•01609	.01936	Wilcox				

VARIABL	e mean	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
Cl	-224E-01	•344E-02	• 104E-02	•290E-01	•181E-01	•109E-01
C2	-191E-01	.397E-02	.120E-02	-268E-01	.124E-01	.145E-01
C3	•131E-01	.220E-02	.664E-03	.179E-01	.108E-01	.703E-02
C4	.987E-02	.831E-03	.250E-03	•111E-01	.880E-02	.231E-02
C5	•117E-01	•189E-02	•568E-03	• 155E-01	.905E-02	•649E-02
C6	-138E-01	-251E-02	•756E-03	•171E-01	.860E-02	.848E-02
C7	.177E-01	.379E-02	·114E-02	.233E-01	.950E-02	.138E-01

TITL	TITLE- M9SIN										
	C1	CS	С3	C4	C 5	C6	C7				
1#	.01792	.01452	.00974	.01162	·01440	.01465	.01579	King			
2#	•01659	.01301	.00905	.00728	.01191	.02113	.02361	Swear			
3#	•01869	.01502	.01092	.00983	.01365	.01802	.01923	Cooper			
4#	•01936	-01678	.01039	.01060	.01417	.02035	.02000	Brad			
5#	•01585	.01485	.00845	.00917	.01420	.01775	.01903	Stovall			
6#	.01432	.01263	.00801	.01181	.01539	.01875	.01786	Dalbow			
7#	.01462	.01246	•00932	.00870	.01321	.01669	.01811	Zeckman			
8#	•02073	.01857	.01369	-01488	.01681	.01743	.02011	Quimby			
9#	.01800	•01587	.01079	.00941	-01505	.01775	.01697	Moore			
10#	.01480	.01454	.00936	• 00864	.01585	.01621	.02103	Wagoner			
11#	.01813	•01539	.01070	• 00950	.01090	.01786	.01934	Ohm			

VARIABLE MEA	N STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1 .172E-0 C2 .i49E-0 C3 .100E-0 C4 .101E-0 C5 .141E-0 C6 .179E-0 C7 .192E-0	1 .181E-02 1 .155E-02 1 .205E-02 1 .171E-02 1 .180E-02	.634E-03 .547E-03 .466E-03 .619E-03 .514E-03 .542E-03	.207E-01 .186E-01 .137E-01 .149E-01 .168E-01 .211E-01	.143E-01 .125E-01 .801E-02 .728E-02 .109E-01 .147E-01	.641E-02 .611E-02 .568E-02 .760E-02 .591E-02 .643E-02

TIT	LE- M265	UN						
4	Cl	C2	C3	C4	C5	C6	C7	
1#	• 00749	-00761	.01129	.01327	.01272	-01010	.01117	King
2#	•00775	•00766	•01145	•01269	.01246	.01107	•01023	Swear
3#	•00722	• 00722	•01069	.01182	•01135	.01067	.00827	Cooper
4#	•00671	•00876	•01018	•01176	.01237	-01074	.00919	Brad
5# 6#	•00676	•00821	•01378	.01247	.01268	.01244	• 00869	Stoval1
70	• 00814	• 00904	.01248	•01546	.01449	.01242	•00819	Dalbow
8#	•07708	•00712	• 00958	.01172	01259	-01043	.01033	Zeckman
9#	• 00757	•00783	•01032	•01162	•00937	• 00959	.00867	Quimby
7.	• 00686	• 00803	•01392	•01565	-01424	.01285	-01044	Moore

And the contraction of the contr

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 .7(C3 .1 C4 .1; C5 .1; C6 .1	29E-02 94E-02 15E-01 29E-01 25E-01 11E-01 46E-02	.488E-03 .647E-03 .156E-02 .158E-02 .151E-02 .115E-02	.163E-03 .216E-03 .521E-03 .527E-03 .503E-03 .384E-03	.814E-02 .904E-02 .139E-01 .157E-01 .145E-01 .129E-01	.671E-02 .712E-02 .958E-02 .116E-01 .937E-02 .959E-02	.143E-02 .192E-02 .434E-02 .403E-02 .512E-02 .326E-02 .298E-02

TIT	LE- M9ST	1						
1# 2# 3# 4# 5# 6# 7# 8# 9# 10#	C1 ·01976 ·01574 ·02157 ·01667 ·02306 ·02318 ·02195 ·02673 ·01979 ·02642 ·02147	C2	C3 .01137 .01284 .01182 .00869 .01356 .01146 .01225 .01307 .01272 .01453	C4 · 00957 · 00846 · 00967 · 00851 · 00825 · 00899 · 00774 · 00898 · 00937 · 01030 · 00924	05 •01346 •01103 •01147 •01237 •01032 •00882 •01064 •01210 •01107 •00973 •01241	C6 .01663 .01425 .01315 .01159 .01550 .01383 .01501 .01674 .01634 .01425	C7 •01881 •01861 •01611 •01234 •01863 •01835 •01756 •02407 •01784 •01651	King Swear Cooper Brad Stovall Dalbow Zeckman Quimby Novotney Garner
							• 41 / 50	Wilcox

VARIAB	LE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	Davan
C1 C2 C3 C4 C5 C6 C7	.215E-0; .189E-01 .124E-01 .901E-02 .112E-01 .148E-01	.346E-02 .280E-02 .161E-02 .731E-03 .133E-02 .157E-02 .276E-02	• 104E-02 • 845E-03 • 485E-03 • 220E-03 • 402E-03 • 475E-03 • 833E-03	.267E-01 .241E-01 .145E-01 .103E-01 .135E-01 .167E-01 .241E-01	•157E-01 •139E-01 •869E-02 •774E-02 •882E-02 •116E-01 •123E-01	RANGE .110E-01 .102E-01 .584E-02 .256E-02 .464E-02 .515E-02

TITLE- M26SIN									
	C1	C2	C3	C4	C5	C6	C 7		
1#	•01896	.01606	.01111	.01272	.01509	•01651	-01724	King	
2#	.02139	•01705	•00989	.00838	.01271	.02088	-02387	Swear	
3#	• 02223	•01761	.01293	01024	.01404	.01989	-02064	Cooper	
4#	• 02265	.01918	-01162	.01028	.01537	•02095	•01946	Brad	
5∌	.01785	•01561	.00962	.01127	.01264	.01758	.01795	Stovall	
6#	•01839	•01553	.01020	.01257	.01647	.02112	.02090	Dalbou	
7#	•01629	•01453	.01041	.01035	.01379	.01768	.01648	Zeckman	
8#	•05180	•01993	.01457	.01476	.01690	.01987	.02044	Quimby	
9#	• 02028	.01928	.01279	.01196	.01483	.01774	-01726	Moore	
10#	•01748	•01682	.01143	.01074	.01403	.01796	.02011	Wagoner	
11#	•01894	.01744	.01125	.01016	•01378	.01763	.01839	Ohm	

VARIABLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1	•173E-02 •149E-02 •171E-02 •138E-02 •167E-02	.643E-03 .521E-03 .451E-03 .515E-03 .415E-03 .502E-03	.226F-01 .199E-01 .146E-01 .148E-01 .169E-01 .211E-01	.163£-01 .145E-01 .962E-02 .838E-02 .126E-01 .165E-01	.636E-02 .540E-02 .495E-02 .638E-02 .426E-02 .461E-02

							N	LE- M9SU	TIT
1# .00790 .00761 .01006 .01117 .01190 .01006 .00930		CZ	C6	C5	C4	C3	C2	-	
3# .00701 .00616 .00928 .01069 .01151 .01070 .00882 Swear .00643 .00832 .00832 .00928	Fine	• •		•	.01117	•01006		•	
4# .00643 .00827 .00827 .01069 .01151 .01077 .00913 Cooper	_			.01111	•01149				
	Cooper		-91077	.01151					-
5# .00712 .00751 00097 .01092 .01174 .01074 .00943 Brad	Brad	•00943		.01174	.01092	• 00897			
00732 00732 00733 01107 01159 00926 Stoval	Stoval1	•00926							
7# .00787 .00658 .00969 01007 01284 .01034 .00729 Dalbow	Dalbow							- · · · -	7#
8# .00761 .00665 00091 01077 .01201 .00911 .00899 Zeckma	Zeckman								8#
9# .00721 .00727 .01091 .01210 .01273 .01173 .01003 Moore	Quimby							.00721	9#

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	DANCE
C2 C3 C4 C5 C6	745E-02 716E-02 992E-02 114E-01 117E-01 107E-01 905E-02	•539E-03 •641E-03 •618E-03 •817E-03 •879E-03 •829E-03 •741E-03	•180E-03 •214E-03 •206E-03 •272E-03 •293E-03 •276E-03	.800E-02 .827E-02 .109E-01 .132E-01 .128E-01	.643E-02 .616E-02 .897E-02 .105E-01 .999E-02	RANGE . 157E-02 . 211E-02 . 194E-02 . 264E-02 . 285E-02 . 262E-02
		· / - 12-03	· 24 / E= U3	• 100E-01	• 729E-02	.274E-02

TIT	LE- M2657	M						
1# 2# 3# 4# 5# 6# 7# 8# 9# 10#	C1 • 02258 • 02067 • 02072 • 01816 • 02092 • 02193 • 02385 • 02437 • 02107 • 02169 • 02311	C2 .02049 .01957 .01938 .01719 .01859 .01700 .01886 .02227 .01812 .01917	C3 •01419 •01372 •01459 •01114 •01260 •01230 •01110 •01395 •01242 •01475 •01423	01086 00939 01092 00890 00859 01056 00787 01065 01093 01060	C5 • 01339 • 01229 • 01225 • 00947 • 01197 • 01087 • 01106 • 01518 • 01064 • 01243 • 01348	C6 .01685 .01393 .01353 .00975 .01652 .01419 .01337 .01663 .01587 .01560	C7 •01980 •01701 •01590 •01160 •02090 •01694 •01731 •02513 •01803 •01939 •02033	King Swear Cooper Brad Stovall Palbow Zeckman Quimby Novotney Garner Wilcox

VARIABI	LE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	PANCE
C1 C2 C3 C4 C5 C6 C7	.217E-01 .193E-01 .132E-01 .993E-02 .121E-01 .147E-01	•174E-02 •160E-02 •133E-02 •107E-02 •156E-02 •207E-02 •341E-02	.523E-03 .482E-03 .400E-03 .321E-03 .470E-03 .624E-03 .103E-02	•244E-01 •223E-01 •147E-01 •109E-01 •152E-01 •168E-01 •251E-01	• 182E-01 • 170E-01 • 111E-01 • 787E-02 • 947E-02 • 975E-02 • 116E-01	RANGE .621E-02 .527E-02 .365E-02 .306E-02 .571E-02 .710E-02 .135E-01

TABLE 1-7

STATISTICAL ANALYSIS OF YAWING MOMENT COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

A STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PROPERTY OF THE PR

 $^{\rm C}_{
m N_{L}/\overline{WL}}$

```
TITLE- N9SIC
        Cl
                 C2
                         C3
                                  C4
                                          C5
    -00090 --00708
                                                   C6
                    -.01072 -.01264 -.01256
                                                            C7
                                              -.00863 -.00061 King
   -.00017 -.01031
2#
                    -.01405 -.01388 -.01147
                                              -.00464 .00000 Swear
3#
   --00113 --00955
                    -.01361 -.01267
                                     -.00979
4#
                                              -.00507
                                                      •00070 Cooper
    • 00169
           -•00759
                    -.01159
                            -.01258
                                              -.00788 -.00261 Brad
                                     -.01060
5#
    .00000
           -.00832
                    --01094
                            -.01235
                                     -.01158
6#
           -.00823 -.01284 -.01468
                                              -.00808
    •00074
                                                        00072 Stovall
                                     --01441
                                              -.00958 - 00195 Dalbow
7#
   -.00012
           --00975 --01246
                            -.01345
                                     -.01279
    .00136
           -.00768 -.01320 -.01430
                                                      -.00170 Zeckman
8#
                                              -.00898
                                     -.01320
                                                      -.00020 Quimby
                                              -.00924
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 8 C3 1 C4 1 C5 1 C6 7	09E-03 56E-02 24E-01 33E-01 21E-01 76E-02 86E-03	.929E-03 .117E-02 .123E-02 .888E-03 .149E-02 .188E-02	• 329 E-03 • 413E-03 • 436E-03 • 314E-03 • 526E-03 • 666E-03 • 393E-03	.169E-02 708E-02 107E-01 124E-01 979E-02 464E-02 .700E-03	113E-02 103E-01 140E-01 147E-01 144E-01 958E-02 261E-02	.282E-02 .323E-02 .333E-02 .233E-02 .462E-02 .494E-02

```
TITLE- N26SIC
            CI
                     C2
                              СЗ
                                       C4
                                               C5
                                                        C6
                                                                 C7
   5.70000E-04 -.09560
                        --01149
                                 -.01362
                                          ·01493 -·01149
                                                             .00159 King
2# 6.00000E-04 -.01059
                        -.01463
                                 -. C1478
                                          -.01173
                                                            -.00088 Swear
3# -2.30000E-04 -.00920 -.01382
                                                   -.00737
                                 -.01505
                                                            -.00033 Cooper
                                          -.01158
                                                   -.00749
4#
   1.77000E-03
               -.00763
                        -.01219
                                 -.01410
                                           -.01346
                                                   -.01049
                                                            -.00198 Brad
   1.00000E-03
5#
               -.00792 -.01130
                                -.01271
                                           -.01412
                                                   -.00977
                                                            -.00179 Stovall
6#
   1.36000E-03
               -.00770 -.01275
                                 -.01615
                                          -.01571
                                                   -.01235
                                                            -.00107 Dalbow
7# -5.00000E-04
                -.00919 -.0!316
                                 -.01509
                                          -.01420
                                                   -.01027
                                                            -.00124 Zeckman
  4.00000E-05
                -.00750 -.01267
                                 -.01630
                                          -.01390 -.01148
                                                            -.00116 Quimby
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
C28 C31 C41 C59 C61	76E-03 17E-02 28E-01 47E-01 97E-02 01E-01 58E-03	.785E-03 .149E-02 .112E-02 .122E-02 .102E-01 .183E-02	•278E-03 •528E-03 •398E-03 •431E-03 •359E-02 •647E-03 •394E-03	.177E-02 560E-02 113E-01 127E-01 .149E-01 737E-02 .159E-02	500E-03 106E-01 146E-01 163E-01 157E-01 124E-01 198E-02	.227E-02 .499E-02 .333E-02 .359E-02 .306E-01 .498E-02

```
TITLE- N9SUC
         Cl
                  C2
                          СЗ
                                                  C5
                                                            C6
                      .00556
                                             -.00560
                                                       -.00303
                                                                  .00098
                                                                         King
    -.00016
             .00376
                               4.00000E-05
                                             -.00391
                                                       -.00118
                                                                  .00060
                                                                          Swear
   -.00021
             .00296
                      .00447
                               7.30000E-04
2#
             .00279
                                                                  .00000
                                                                          Cooper
    -.00078
                      .00343 -4.70000E-04
                                             -.00632
                                                       -.00179
3#
              .00343
                      .00586
                                                                  .00028
                                                                          Brad
4#
    -.00010
                              3.48000E-03
                                             -.00258
                                                       -.00116
                                                                          Stovall
                                                                  .00092
5#
              .00163
                      .00454 -2.4 000E-04
                                             -.00330
                                                       -.00104
    --00034
             .00268
                                                                  .00098
                                                                          Dalbow
    -.00040
                      .00430
                               .00000E+00
                                             -.00421
                                                       -.00268
6#
                                                                 /00033
                                                                          Zeckman
7#
    -.00054
             .00383
                      .00559
                               8.30000E-04
                                             -.00401
                                                       -.00228
                                                                -.00013
                                                                          Quimby
    -.00132
                      .00361 -1.82000E-03
                                             -.00726
                                                      -.00374
             .00369
```

VARIABI	LE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1	544E-03	.418E-03	•148E-03	100E-03	132E-02 -163E-02	.122E-02
C2 C3	•310E-02 •467E-02	.744E-03	•263E-03 •325E-03	.586E-02	.163E-02	.243E-02
C4 C5	•319E-03 -•465E-02	•152E-02 •159E-02	•53€E-03 •563Æ-03	• 348E-02 -•258E-02	182E-02 726E-02	.530E-02
C6	211E-02	•991E-03	•350E-03	104E-02	374E-02	.270E-02
C7	•495E-03	•443E-03	• 156E-03	•980E-03	130E-03	.111E-02

TIT	LE- N26SU	IC						
	Cl	C2	C3	C4	C5	C6	C7	
۱#	00018	.00419	.00562	00035	00654	00339	• 00090	King
2#	00032	•00324	•00490	.00137	00389	00125	.00039	Swear
3#	00086	•00289	.00423	00039	00684	00250	.00016	Cooper
4#	00026	.00307	.00609	.00212	00366	00231	00085	Brad
5#	00100	.00253	•00591	.00113	00466	00209	.00062	Stovall
6#	00088	.00318	•00470	00063	00702	00349	.00107	Dalbow
7#	•00099	•00350	• 00608	.00062	00505	00288	00060	Zeckman
8≢	00053	•00299	.00257	00325	00897	00457	00035	Quimby

VARIABLI	E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 C3 C4 C5	- 298E-03 - 321E-02 - 501E-02 - 775E-04 - 583E-02 - 281E-02 - 167E-03	.603E-03 .500E-03 .120E-02 .166E-02 .182E-02 .101E-02 .707E-03	.213E-03 .177E-03 .426E-03 .586E-03 .644E-03 .359E-03	.990E-03 .419E-02 .609E-02 .212E-02 366E-02 125E-02 .107E-02	100E-02 .253E 02 .257E-02 325E-02 897E-02 457E-02 850E-03	.199E-02 .166E-02 .352E-02 .537E-02 .531E-02 .332E-02

TITLE- N9STC C1 C2 C3 C4 C7 C5 **C6** 1# 2.60000E-04 -.00182 -.00329 King .00221 .00736 .00536 -.00016 2# 8.20000E-04 -.00236 -.00236 Swear .00292 .00756 .00541 -.00056 3# -4.00000E-05 -.00222 -.00195 .00273 .00774 .00632 -.00027 Cooper 4# -7.00000E-05 -.00291 -.00152 .00576 .00708 .00540 -.00071 Brad -.00310 5# ·00000E+00 -.00318 .00229 -.00096 .00776 .00571 Stoval1 6# -2.20000E-04 -.00219 -.00309 .00125 .00942 .00678 -.00089 Dalbow 7# -3.70000E-04 .00546 -.00083 -.00323 -.00286 .00294 .00733 Zeckman 8# 4.00000E-05 -.00268 -.00281 .00189 .00761 .00554 -.00061 Quimby

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C225 C326 C4 .27 C5 .77 C6 .57	5E-04 7E-02 2E-02 5E-02 3E-02 5E-02 4E-03	.361E-03 .508E-03 .623E-03 .134E-02 .719E-03 .522E-03	.128E-03 .180E-03 .220E-03 .475E-03 .254E-03 .184E-03	.820E-03 182E-02 152E-02 .576E-02 .942E-02 .678E-02 160E-03	370E-03 323E-02 329E-02 .125E-02 .708E-02 .536E-02	.119E-02 .141E-02 .177E-02 .451E-02 .234E-02 .142E-02

```
TITLE- N26STC
         CI
                  C2
                           C3
                                   C4
                                                    С6
                                           C5
                                                             C7
    .00055
            -.00249
                     -.00233
                               .00360
                                       .00777
                                               .00544
                                                        -.00029
                                                                King
2#
    .00094 -.00215
                      -.00155
                               .00324
                                       .00735
                                               .00597
                                                        -.00069
                                                                Swear
3#
   ~.00019
            -.00175
                      -.00212
                               .00257
                                       .00757
                                               .00589
                                                        -.00019
                                                                Cooper
4#
    .00018 -.00178
                      -.00131
                               .00519
                                       .00678
                                               .00519
                                                        -.00109
                                                                Brad
5#
   -.00024
            -.00283
                      -.00356
                               .00060
                                       .00788
                                               .00615
                                                        -.00078 Stovall
   -.00022 -.00237
6#
                      -.00318
                               .00215
                                       .00864
                                               .00600
                                                        -.00067 Dalbow
7#
   --00021
            -.00290
                     -.00283
                               .00302
                                       .00741
                                               .00522
                                                        -.00058 Zeckman
    .00000 -.00262
8#
                     --00277
                               -00189
                                       .00765
                                               .00541
                                                        -. 00101 Quimby
```

TO THE PROPERTY OF THE PROPERT

VARIA	BLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	. 1	01E-03	.435E-03	-154E-03	-940E-03	240E-03	.118E-02
C2	2	36E-02	.439E-03	·155E-03	175E-02	290E-02	·115E-02
C3	2	46E-02	•779E-03	.275E-03	131E-02	356E-02	-225E-02
C4	• 5	78E-02	.135E-02	.477E-03	.519E-02	•600E-03	.459E-02
C5	• 7	63E-02	•529E-03	•187E-03	.864E-02	.678E-02	-186E-02
C6	• 5	66E-02	.384E-03	-136E-03	.615E-02	.519E-02	.960E-03
C7	6	63E-03	•313E-03	•111E-03	190E-03	109E-02	•900E-03

```
TITLE- N9SIN
         C!
                  C2
                          СЗ
                                    C4
                                            C5
                                                      C6
                                                               C7
1#
    •00077
            -.00710
                     -.01125
                              -.01274
                                       -.01092
                                               -.00834
                                                         -.00049
                                                                   King
2#
    • 00034
            -.00838
                     -.01182
                              -.01264
                                                -.00400
                                       -.00911
                                                         -.00120
                                                                   Swear
    .00027 -.00776
                     -.01147
                              -.01236
                                       -.00928
                                                -.00601
                                                          -.00016
                                                                   Cooper
    .00028 -.00827
                     -.01032
                              --01173
                                                -.00666
                                       -.00904
                                                          --00169
                                                                   Brad
    •00056
            -.00595
                     -.00917
                              -.01062
                                      -.01144
                                                -.00869
                                                          -.00378
                                                                   Stoval1
   -.00042
           -.00778
                     -.01280
                              -.01383
                                       -.01293
                                                -.00926
                                                          --00161
                                                                   Dalbow
7#
    • 90037
            -.00695
                     -.01172
                              --01143
                                       -.01072
                                                -.00898
                                                          -.00108
                                                                  Zeckman
8#
    .00013 -.00743
                     -.01210
                              -.01368
                                       -.01236
                                                -,00924
                                                          -.00105
                                                                  Quimby
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C27 C31 C41 C51 C67	89E-03 45E-02 13E-01 24E-01 07E-01 65E-02 38E-02	• 349E-03 • 790E-03 • 112E-02 • 110E-02 • 149E-02 • 191E-02 • 110E-02	• 123E-03 • 279E-03 • 398E-03 • 363E-03 • 528E-03 • 674E-03 • 388E-03	.780E-03 595E-02 917E-02 106E-01 904E-02 400E-02 160E-03	420E-03 838E-02 128E-01 138E-01 129E-01 926E-02 378E-02	.120E-02 .243E-02 .363E-02 .321E-02 .389E-02 .526E-02

TIT	LE- N265	IN						
	C1	¢2	C3	C4	C5	C6	C7	
1#	•00065	00683	01194	01415	01325	0i035	-•00082	King
2#	•00107	-·u0978	01264	01362	01178	00838	00226	Swear
3#	• 00031	00870	01275	~.01279	01146	00766	00062	Cooper
4#	•00081	-•008i6	01039	01187	01040	00897	00235	Brad
5#	•00032	00609	00973	01255	01343	01034	002:9	Stovall
6#	• 00031	00613	01289	01450	01562	01114	00195	Dalbow
7#	•00016	00782	01136	01350	01271	00954	00178	Zeckman
8#	•00028	00695	01216	01526	01452	01111	00048	Quimby

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C275 C311 C415 C512 C696	39E-03 56E-02 17E-0! 35E-01 29E-01 69E-02	.319E-03 .130E-02 .116E-02 .111E-02 .169E-02 .127E-02 .785E-03	•113E-03 •458E-03 •409E-03 •392E-03 •598E-03 •450E-03 •277E-03	.107E-02 609E-02 973E-02 119E-01 104E-01 766E-02 480E-03	.160E-03 978E-02 129E-01 153E-01 156E-01 111E-01 235E-02	.910E-03 .369E-02 .316E-02 .339E-02 .522E-02 .348E-02

TIT	LE- N95TN	ľ						
	CI	C2	C3	C4	C5	C6	C7	
1#	00022	00221	00333	•00307	• 00691	•00519	00033	King
2#	•00060	00245	00176	•00215	•00756	.00567	00056	Swear
3# 4#	•00000 ••00046	00175	00232	•00214	• 00679	• 00487	.00027	Cooper
5#	•00046	00327 00229	00159	• 00466	•00601	• 00484	00046	Brad
6#	•00058	-•00229 -•00157	00422	• 00265	•00670	• 00547	• 00000	Stovall
7#	• 00000	00273	00206 00261	• 00206	•00680	•00519	00049	Dalbow
8#	•00013	00229	00261	•00149 •00299	• 00716	• 00493	00037	Zeckman
			-00317	• 00299	•00737	• 00550	00031	Quimby

VARIABL	.E MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C3 C4 C5 C6	• 194E-03 • 232E-02 • 263E-02 • 265E-02 • 691E-02 • 521E-02 • 281E-03	.466E-03 .533E-03 .892E-03 .966E-03 .475E-03 .315E-03	•165E-03 •188E-03 •315E-03 •342E-03 •168E-03 •111E-03 •989E-04	.920E-03 157E-02 159E-02 .466E-02 .756E-02 .567E-02	460E-03 327E-02 422E-02 .149E-02 .601E-02 .484E-02	.138E-02 .170E-02 .263E-02 .317E-02 .155E-02 .830E-03

```
TITLE- N26STN
         CI
                  C2
                           C3
                                  C4
                                          C5
                                                  Cõ
   1.6E-04
            -.00182
                     -.00286
                              .00380
                                      .00679
                                              .00499 -3.70000E-04 King
2#
   1.2E-03
            -.00202 -.00150
                               -00314
                                      .00739
                                              .00546 -3.40000E-04
           --00134
                                                                   Swear
3# 1.9E-04
                     --00189
                               .00207
                                      -00694
                                              .00495 -4.70000E-04
                                                                   Cooper
4# -2.0E-05
            --00208
                     -.00:84
                               .00364
                                      .00648
                                              .00489 -6.70000E-04
5# 4.0E-04 -.00265
                                                                   Brad
                     -.00354
                               .00197
                                              .00507 -1.40000E-04
                                      .00649
                                                                   Stoval1
6# 7.6E-C4
           -.00121
                     -.00197
                               .00080
                                      .00783
                                              .00515 -4.50000E-04
                                                                   Dalbow
7# -4.0E-05 -.00265 -.00296
                                      .00683
                               .00141
                                              .00476 -8.00000E-05
                                                                   Zeckman
8# 2.2E-04 -.00273 -.00246
                              .00303
                                      .00752
                                              .00581 2.60000E-04
                                                                   Quimby
```

Çan Galanda ya karan ana karan k

ELEME N7>TARY

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C22 C32 C4 -2 C5 -7 C6 -5	59E-03 06E-02 38E-02 48E-02 03E-02 13E-02 83E-03	.424E-03 .591E-03 .696E-03 .108E-02 .494E-03 .343E-03	.150E-03 .209E-03 .246E-03 .383E-03 .175E-03 .121E-03	.120E-02 121E-02 150E-02 .380E-02 .783E-02 .581E-02 .260E-03	400E-04 273E-02 354E-02 800E-03 648E-02 670E-03	.124E-02 .152E-02 .204E-02 .300E-02 .135E-02

TI	TL1- N9SUN							
	CI	cs	C3	64	C5	C6	C7	
14	-4.50000E-04	-00098	.00180	~•00065	-•00630	-2.17000E-03	-00090	King
2	8.00000E-05	.00198	.00296	00082	00432	-1.42000E-03	.00026	Swear
34	-7.80000E-04	-00191	.00257	00101	00581	-1.79000E-03	-•00086	Cooper
41	-7.00000E-05	.00092	.00413	•00099	00291	.00000E+00	• 00046	Brad
54	8.40000E-04	• 00094	.00370	.00010	00233	8.000002-05	• 00036	Stovall
6	-4-90000E-04	• 00268	.00582	.00183	-•° 367	-1.34000E-03	000:3	Dalbow
74	1.20000E-04	.00215	.00364	.00012	00505	-4-50000E-04	00064	Zeckman
84	-4.80000E-04	-00145	•00308	00176	00563	-2.04000E-03	.00017	Quimby

VARIA	ARI E	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
AWULI	HDLE	MEAN	SID DEV	JID EM	MALMON	17214 217 017	na oc
CI	1	54E-03	.510E-03	-180E-03	.840E-03	780E-03	.166E-02
œ	• 1	63E-02	.656E-03	.232E-03	.268E-02	.920E-03	.176E-02
СЗ	. 3	46E-02	-120E-02	-424E-03	.582E-02	·180E-02	.402E-02
C4	1	44E-03	.117E-02	-414E-03	.188E-02	176E-02	.364E-02
C5	4	50E-02	.144E-02	.509E-03	233E-02	630E-02	-397E-02
C6	1	14E-02	.900E-03	·318E-03	.800E-04	217E-02	.225E-02
C7	• 6	50E-04	•583E-03	-206E-03	•900E-03	~-860E-03	-176E-02

```
TITLE- V26SUV
                       C2
                                C3
                                              C4
                                                        C5
1# -6.10000E-04
                                                                  C6
                           .00215 -1.78000E-03 -.00706
                  .00121
                                                            -.00323 King
2# -4.00000E-05
                           .00348 -2.10000E-04 -.00520
.00232 -1.66000E-03 -.00380
                  •00223
                                                            -.00215 Swear
3# -7.40000E-04
                  .00189
                                                            --00187 Cooper
4# -1.80000E-04
                  .00134
                           .00381 1.16000E-03 -.00272
                                                            -.00191 Brad
5# 1.00000E-03
                  .00024
                           .00378 1.60000E-04
                           .00378 1.60000E-04 -.00388
.00606 1.01000E-03 -.00523
                                                            -.00151 Stovall
6# -6.70000E-04
                  .00219
                                                            -.00170 Dalhow
7# -5.00000E-04
                           .00375 -2.00000E-05 -.00476
                  .00199
                                                            -.00087 Zeckman
8# 6-10000E-04
                           .00286 -2.57000E-03 -.00682 -.00273 Quimby
                  .00119
```

TITLE- N26SUN

	C7	
1#	9.40000E-04	King
2#	-8.00000E-05	Swear
3#	-2.30000E-04	Cooper
40	3.90000E-04	Brad
5#	4.20000E-04	Steval1
6#	-4.00000E-05	Dalbow
7#	-4.30000E-04	Zeckman
8#	4.4C000E-04	Ouimby

VARIABLE	MEAN	STD DEV	STD ERR	MUMIXAM	MINIMUM	RAN GE
C2 .15 C3 .3° C448 C549 C620	41E-03 53E-02 53E-02 89E-03 93E-02 90E-02	•640E-03 •675E-03 •122E-02 •137E-02 •149E-02 •727E-03 •448E-03	.226E-03 .238E-03 .431E-03 .483E-03 .527E-03 .257E-03	.100E-02 .223E-02 .506E-02 .!16E-02 272E-02 870E-03 .940E-03	740E-03 .240E-03 .215E-02 257E-02 706E-02 323E-02 430E-03	.174E-02 .199E-02 .391E-02 .373E-02 .434E-02 .236E-02

TABLE I-8

STATISTICAL ANALYSIS OF ROLLING MOMENT COEFFICIENT AS A FUNCTION OF YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

C LVWL

LE- Z9SIC							
C100082 -00069 -0016000035 -00044000580001200163	C20053800559002890065000263004560031900818	C30031100696005400092200700005120074900961	00155 00606 00741 00064 .00060 .00255 00182 .00240	C5 .00274 .00318 .00273 .00307 .00643 .00430 .00294 .00550	06 00073 00587 00328 00228 00104 00134 00056	C700045 -00034 -0009800216 -00000002100014500018	King Swear Cooper Brad Stovall Dalbow Zeckman Ouimby
	C100082 .00069 .0016000035 .000440005800012	0008200538 .0006900559 .0016000289 0003500650 .0004400263 0005800456 0001200319	C1 C2 C3000820053800311 .000690055900696 .001600028900540000350065000922 .000440026300700000580045600512000120031900749	C1 C2 C3 C4000820053800311 .00155 .00069005590069600606 .0016000289005400074100035006500092200064000440026300700 .00060000580045600512 .0025500012003190074900182	C1 C2 C3 C4 C5000820053800311 .00155 .00274 .00069005590069600606 .0031800160002890054000741 .0027300035006500092200064 .00307000440026300700 .00060 .00643000580045600512 .00255 .0043000012003190074900182 .00294	C1	C1

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 48 C3 67 C4 11 C5 38 C6 16	3E-04 7E-02 4E-02 0E-02 6E-02 8E-02 8E-03	.997E-03 .194E-02 .216E-02 .379E-02 .141E-02 .221E-02	• 352E-03 • 685E-03 • 764E-03 • 134E-02 • 499E-03 • 781E-03 • 408E-03	.160E-02 263E-02 311E-02 .255E-02 .643E-02 .587E-02 .980E-03	163E-02 818E-02 961E-02 741E-02 -273E-02 163E-02	.323E-02 .555E-02 .650E-02 .996E-02 .370E-02

```
TITLE- Z26SIC
         CI
                  CS
                            C3
                                      C4
                                                          С6
                                                C5
    -.00079
             -.00722
                                -.00163
                       -.00082
                                          -.00119
                                                    -.00159 -1.24000E-03 King
    .00013
             -.00602
                       -.00808
                                -.00628
                                            .00320
                                                     .00434 -3.80000E-04 Swear
3#
    •00050
             -.00460
                       -.00729
                                            .00031
                                 -.00955
                                                     .00133 2.00000E-05 Cooper
4#
   -.00120
             -.00696
                       -.00904
                                 .06025
                                            .00025
                                                    -.00039 -8.40000E-04 Brad
   -.00056
             -.00557
                                -.00422
                       -.00861
                                                    -.00028 -4.80000E-04 Stovall
                                            .00109
6#
    -.00138
             -.00687
                       -.00940
                                -.00264
                                           .00242
                                                     .00054 -3.10000E-04 Dalbow
.00097 -6.80000E-04 Zeckman
7#
    .00012
             -.00592
                       -.00966
                                -.00443
                                           .00207
   -.00031
             -.00968
                       -.01139
                                -.00134
                                                   -.00189 -2.11000E-03 Quimby
                                           .00594
```

VARIABLE	MEAN	STD DEV	STD ERR	MUMIXAM	MINIMUM	RANGE
C2 66 C3 80 C4 37 C5 17 C6 37	36E-03 51E-02 04E-02 73E-02 76E-02 79E-03 53E-03	.669E-03 .151E-02 .316E-02 .312E-02 .219E-02 .196E-02	.237E-03 .533E-03 .112E-02 .110E-02 .775E-03 .695E-03 .235E-03	.500E-03 460E-02 820E-03 .250E-03 .594E-02 .434E-02 .200E-04	138E-02 968E-02 114E-01 955E-02 119E-02 189E-02 211E-02	.188E-02 .509E-02 .106E-01 .980E-02 .713E-02 .623E-02

```
TITLE- Z9SUC
             Cl
                     C2
                              C3
                                       C4
                                                 C5
                                                          C6
                                                                    C7
                 .00045
     .00000E+00
                         .00250
                                                              -.00033 King
1#
                                   .00352
                                           -.00200
                                                    -.00184
                         .00426
                                                    -.00168
     .00000E+00
                 .00196
                                   .00460
                                           -.00335
                                                                       Swear
                                                              -.00026
3# -6.60000E-04
                 .00176
                         .00222
                                   .00378
                                           -.00296
                                                    -.00176
                                                              ~.00070
                                                                       Cooper
40
    .00000E+00
                 .00088
                         .00420
                                   .00177
                                           -.00258
                                                    -.00042
                                                              -.00046 Brad
                         .00382
5#
   8.00000E-05
                 .00145
                                   .00418
                                           -.00330
                                                    -.00133
                                                              -.00012 Stovall
6#
   2.20000E-04
                 .00175
                         .00541
                                  -.00121
                                           -.00331
                                                     -.00237
                                                              -.00022 Dalbow
7#
   2.10000E-04
                 .00170
                         .00596
                                   • 00468
                                           -.00054
                                                     -.00174
                                                              -.00058
                                                                       Zeckman
8# -4.00000E-05
                          .00427
                 .00180
                                   .00286
                                           -.00251
                                                     -.00106
                                                              -.00057
```

VARIAE	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1	238E-04	.276E-03	.974E-04	.220E-03	660E-03	-880E-03
CS	•147E-02	•528E-03	.187E-03	•196E-02	•450E-03	•151E-02
C3	•408E-02	·128E-02	.451E-03	•596E-02	• 222E-0S	.374E-02
C4	.302E-02	.196E-02	•693E-03	•468E-02	121E-02	.589E-02
C5	257E-02	•948E-03	• 335E-03	540E-03	335E-02	.281E-02
C6	153E-02	•587E-03	.208E-03	420E-03	237E-02	.195E-02
C7	405E-03	.204E-03	.720E-04	i20E-03	700E-03	.580E-03

```
TITLE- Z26SUC
            Cl
                    C2
                            C3
                                   C4
                                             C5
                                                      C6
                                                                   C7
                                                -.00270 -4.10000E-04King
1# -1-60000E-04
               .00172
                       .00168
                                .00151
                                       -.00356
  4.00000E-05
                .00161
                        •00383
                               .00292
                                       -.00456
                                                -.00236 -4.70000E-04Swear
3# -8.00000E-05
                .00179
                        .00254
                               .00222
                                       -.00468 -.00250 -3.50000E-04Cooper
                                                -.00092 -3.20000E-04Brad
    .00000E+00
                .00078
                        .00290
                               •00463
                                       -.00216
5#
  4.00000E-05
                .00197
                        .00446
                               .00471
                                        -.00302 -.00193 -5.20000E-04Stoval1
6#
  9.00000E-05
                .00076
                        .00313
                               .00425
                                       --00685 --00273 -4-00000E-05 Dalbow
7# -2.10000E-04
                .00219
                        .00518
                               .00385
                                                -.00224 -3.30000E-04Zeckman
                                       -.00257
                                       -.00318 -.00180 -7.00000E-04Quimby
  4.00000E-05
                .00079
                        .00063
                               .00090
```

VARIA	BLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	30	0E-04	•108E-03	-382E-04	.900E-04	210E-03	-300E-03
C2	• 14º	5E-02	•585E-03	.207E-03	.219E-02	.760E-03	-143E-02
C3	• 304	4E-02	• 147 02	.520E-03	.5182-02	.630E-03	.455E-02
C4	.31	SE-05	·146E-02	•517E-03	.471E-02	•900E-03	.381E-02
C5	38	2E-02	.151E-02	•533E-03	216E-02	685E-02	.469E-02
C6	21	5E-02	•597E-03	.211E-03	920E-03	273E-02	.181E-02
C7	-•39	3E-03	•190E-03	.671E-04	- 400E-04	700E-03	.660E-03

```
TITLE- Z9STC
         CI
                       C2
                                 C3
                                           C4
                                                     C5
                                                               C6
     .00245 -4.01000E-03
1#
                                     -.00376
                           ~.00311
                                                .00458
                                                                   King
                                                          .00307
2#
   -.00047 -3.31000E-03
                                     -.00213
                           -.00129
                                                .00041
                                                          .00086
                                                                   Swear
3#
    .00058 4.00000E-05
                            .00043
                                     -.00355
                                                .00185
                                                          .00133
                                                                   Cooper
4#
   -.00314 -6.71000E-G3
                            -.00654
                                      .00290
                                               -.00353
                                                         -.00332
                                                                   Brad
5#
   -.00169 -4.42000E-03
                           -.00571
                                     -.00599
                                                .00112
                                                          .00247
                                                                   Stoval1
   -.00085 8.50000E-04
ó#
                           -.00087
                                     -.01060
                                                .00414
                                                          .00479
                                                                   Dalbow
7#
   --00066 -4-55000E-03
                           -.00493
                                     -.00716
                                                .00306
                                                          .00571
                                                                   Zeckman
8#
     .00242 -4.27000E-03
                           -.00801
                                     -.00818
                                                .00906
                                                          .00620
                                                                   Quimby
```

TITLE- Z9STC

C7

1# -5.17000E-03 King

2# -1.03000E-03 Swear

3# -1.33000E-03 Cooper

4# -2.61000E-03 Brad

5# 4.60000E-04 Stoval1

6# -8.90000E-04 Dalbow

7# -2.36000E-03 Zeckman

8# 4.00000E-05 Quimby

3> WELEMENTARY

COMMAND NOT RECOGNIZED.

VARIAE	BLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RAN GE
Cl	170E-03	•193E-02	-682E-03	•245E-02	314E-02	•559E-02
C2	330E-02	.251E-02	.889E-03	.850E-03	671E-02	•756E-02
C3	375E-02	•301E-02	·106E-02	•430E-03	801E-02	.844E-02
C4	481E-02	•416E-02	· 147E-02	•290E-02	106E-01	•135E-01
C5 C6	• 259 2- 02	•365E-02	•129E-02	•906E-02	353E-02	.126E-01
C7	•264E-02	•310E-02	•110E-02	•620E-02	332E-02	•952E-02
C1	161E-02	•178E-02	•629E-03	•460E-03	517E-02	•563E-02

```
TITLE- Z26STC
                      C2
                                СЗ
                                         C4
                                                  C5
    7.10000E-04
                                                            C6
                                                                     C7
                -.00503
                          -.00524
                                   -.00311
                                              .00229
                                                        .00049
2#
                                                               -.00155 King
    8.40000E-04
                -.00387
                           -.00238
                                    -.00153
                                             -.00262
                                                     -.00120
   8.70000E-04
                                                               -.00163 Swear
                  •00037
                           -.00017
                                    -.00626
                                              •00116
4# -1.41000E-03
                                                      .00119
                                                                -.00059 Cooper
                  .00491
                          -.00530
                                    •00413
                                             -.00364
5# -1.60000E-04
                                                      -.00489
                                                                •00106 Brad
                 -.00105
                          -.00286
                                    -.01399
                                              .00225
6# -1.10000E-04
                                                       .00267
                                                                -. 00113 Stoval1
                 -.00031
                          -.00232
                                   -.01087
                                              .00756
7# 6.00000E-05
                                                       .00550
                                                               -.00219 Dalbow
                 -.00480
                          -.00803
                                   -.00635
                                              .00252
                                                       .00406
   1.45000E-03
                                                               -.00138 Zeckman
                -.00805
                          -.01060
                                   -.00860
                                              .00547
                                                       .00255
                                                               -.00156 Ouimby
```

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C222 C346 C458 C5 .!8 C6 .!3	31E-03 23E-02 1E-02 2E-02 7E-02 0E-02 2E-02	.884E-03 .403E-02 .341E-02 .567E-02 .372E-02 .325E-02	.312E-03 .143E-02 .121E-02 .201E-02 .132E-02 .115E-02 .351E-03	.145E-02 .491E-02 170E-03 .413E-02 .756E-02 .550E-02	141E-02 805E-02 106E-01 140E-01 364E-02 489E-02 219E-02	.286E-02 .130E-01 .104E-01 .181E-01 .112E-01 .104E-01

```
TITLE- Z9SIN
        CI
                          C3
                                   C4
                                                    C6
                                                                 C7
    .00094
            -.00360
                     -.00536
                                                .00012 7.80000E-04 King
                                       .00454
                             -.00221
2#
   -.00039
            -.00494
                     -.00872
                              -.00528
                                                .00666 9.00000E-05 Swear
                                       .00640
30
   -.00039
            -.00355
                     -.00725
                              -.00458
                                       .00503
                                                .00339 -5.00000E-04 Cooper
   -.00053
            -.00424
                     -.01007
                              -.00523
                                       .00572
                                               .00385 -7.40000E-04 Brad
    .00080
            -.00523
                     -.00652
                              -.00607
                                       .00488
                                               -.00153 -1.93000E-03 Stovall
6#
    .00197
            -.00430
                     - • 00591
                              -.00233
                                       .00385
                                               -.00177 -3.22000E-03 Dalbow
7#
   -.00153
            -.00546
                     -.00468
                             -.00356
                                       .00511
                                               -.00054 -1.12000E-03 Zeckman
   -.00123
            -.00867
                     -.01025
                             -.00299
                                      .00464 -- 00123 -1.36000E-03 Quimby
```

VARI	ABLE	MEAN	STD DEV	STD ERR	MUMIXAM	MUMINIM	RANGE
C1 C2 C3 C4 C5 C6	-•50 -•73 -•41	50E-04 00E-02 35E-02 16E-02 02E-02	.118E-02 .164E-02 .212E-02 .162E-02 .771E-03	.419E-03 .580E-03 .751E-03 .572E-03 .273E-03	.197E-02 355E-02 468E-02 221E-02 .640E-02	153E-02 867E-02 102E-01 628E-02 .385E-02	.350E-C2 .512E-02 .557E-02 .407E-02 .255E-02
C7	-•10	0E-02	-123E-02	.435E-03	.780E-03	322E-02	.400E-02

TITLE- Z26SIN							
Cl	C2	C3	C4	C5	C6	C7	
1# -9.00000E-04	00344	00290	00074	.00200	00180	-8.00000E-05	King
2# -5.20000E-04	00567	00917	00748	.00223	.00284	-1.80000E-03	Swear
3# 1.20000E-04	00250	00764	00702	.00207	.00211	-3.90000E-04	Cooper
4# -6.10000E-04	00618	01010	00477	.00472	.00173	-9.50000E-04	Brad
5# 4.40000E-04	00684	00820	00374	.00024	00135	-8.00000E-04	Stovall
6# 4.00000E-05	00743	00967	00251	.00166	00192	-2.43000E-03	Dalbow
7# -7.00000E-04	00613	00706	-•00373	.00200	00043	3.39000E-03	Zeckman
8# -6.20000E-04	00792	01038	00374	.00273	00147	-2.20000E-04	Quimby

VARIA	BLE	MEAV	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
CI	34	44E-03	.477E-03	•169E-03	.440E-03	900E-03	.134E-02
C2	5	76E-02	.189E-02	.668E-03	250E-02	792E-02	.542E-02
C3	- • 8	14E-02	.242E-02	.857E-03	290E-02	104E-01	.748E-02
C4	48	225-02	.222E-02	.785E-03	740E-03	748E-02	.674E-02
C5	. 22	21E-02	.125E-02	.440E-03	.472E-02	.240E-03	.448E-02
C6	36	53E-04	·195E-02	.689E-03	.284E-02	192E-02	.476E-02
C7	4	10E-03	.173E-02	-613E-03	.339E-02	243E-02	.582E-02

```
TITLE- Z9SUN
                                                                       C 7
                                                C5
                                                         C6
             CI
                              C3
                                      C4
                                                    -.00245 -1.60000E-04King
                 .00139
                          .00266
                                  .00695
                                          -.00205
1# 1.60000E-04
                 .00228
                          .00464
                                  .00696
                                          -.00292
                                                    -.00082 -1.30000E-C4 Swear
2# -2.60000E-04
                 .00222
                          .00339
3# -4.00000E-05
                                  .00573
                                          -.00167
                                                    -.00113 -1.60000E-64 Cooper
                                                     .00025 2.80000E-04 Brad
                          .00307
                                           -.00057
4# -1.10000E-04
                 .00081
                                  .00707
                                          -.00253
                                                    -.00044
                                                              .00000E+00 Stovall
                          .00229
                                  .00454
5# -2.00000E-04
                 .00169
6# -2.90000E-04
                 .00246
                          .00492
                                  .00233
                                          -.00385
                                                    -.00134 -5.80000E-04 Dalbow
                          .00422
                                                    -.00128 8.00000E-05 Zeckman
7# 2.10000E-04
                 .00253
                                  .00368
                                          -.00157
                                                    -.00039 -2.60000E-04 Quimby
                                          -.00312
   6.20000E-04
                 .00136
                          .00180
                                  .00242
```

en de de la composition della composition de la composition de la composition della composition della

VARIABLE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	PANGE
C1 .11?E-04 C2 .184E-02 C3 .337E-02 C4 .496E-02 C5229E-02 C6950E-03 C7116E-03	.307E-03 .623E-03 .113E-02 .201E-02 .103E-02 .808E-03	.108E-03 .220E-03 .400E-03 .709E-03 .366E-03 .286E-03	.620E-03 .253E-02 .492E-02 .707E-02 570E-03 .250E-03	290E-03 .810E-03 .180E-02 .233E-02 385E-02 245E-02 580E-03	.910E-03 .172E-02 .312E-02 .474E-02 .328E-02 .270E-02 .860E-03

```
TITLE- Z26SUN
             CI
                     C2
                             C3
                                     C4
    4.00000E-05
                                              C5
                -00163
                                                       C6
                                                                C7
                        .00217
                                 -00548
                                        -•00348
   1.30000E-04
2#
                                                  --00270
                                                           -.00057 King
                •00198
                        • 00340
                                 .04779
                                        --00378 --00172
3# 4.00000E-05
                                                           -.00039 Swear
                .00148
                        .00207
                                 .00429
4# -1.10000E-04
                                         --00344
                                                  -.00132
                                                           -.00031
                .00870
                                                                    Cooper
                        • 02580
                                 •04800
                                         --01170
5# -1.60000E-04
                                                  -.00630
                 .00217
                                                           --00090
                                                                    Brad
                         .00201
                                 .00523
6# -3.10000E-04
                                         -.00290
                                                  -.00098
                                                           --00040
                                                                    Stoval1
                 .00157
                         .00416
                                • 00311
7# -8.00000E-05
                                                  -.00251
                                         -.00568
                                                           -.00027
                 .00186
                         .00431
                                                                    Dalbow
                                .00476
8# -1.30000E-04
                                         -.00203
                                                  -.00153
                                                           --00021 Zeckman
                .00097
                         .00257
                                 .00103
                                          .00620
                                                  --00128
                                                           -.00013 Quimby
```

VARIAE	BLE	MEAN	STD DEV	STD ERR	MAXIMUM	M TRY TAKENA	
C1 C2 C3 C4 C5 C6 C7		E-02 E-02 E-01 E-02 E-02	.139E-03 .251E-02 .813E-02 .204E-01 .491E-02 .173E-02 .243E-03	.491E-04 .889E-03 .287E-02 .720E-02 .173E-02 .611E-03 .859E-04	.130E-03 .870E-02 .258E-01 .480E-01 .620E-02 980E-03 130E-03	MINIMUM310E-03 -970E-03 -201E-02 -103E-02117E-01630E-02900E-03	RANGE -440E-03 -773E-02 -238E-01 -470E-01 -179E-01 -532E-02

```
TITLE- Z9STN
             CI
                       CS
                                C3
                                          C4
                                                  C5
                                                            С6
                                                                     C7
                 -.00438
1 -2.04000E-03
                          -.00635
                                    -.00288
                                              .00437
                                                       .00090
                                                                -.00200 King
2# 2.00000E-05
                 -.00365
                          -.00269
                                    -.00189
                                              .00511
                                                       .00344
                                                               -.00013 Swear
3# -2.70000E-04
                 -.00027
                          -.00253
                                    -.00400
                                              .00546
                                                       .00277
                                                                -.00023 Cooper
4# -2.86000E-03
                 -.00583
                                     .00484
                                             .00297
                          -.00512
                                                       -.00215
                                                                -.00139 Brad
5# 8.00000E-04
                 -.00579
                           -.01047
                                    -.00241
                                              .00275
                                                       .00223
                                                               -.00141 Stovall
6# -4.00000E-04
                 -.00295
                           -.00676
                                    -.00738
                                             .00653
                                                       .00555
                                                               -.00063 Dalbow
7# -1.61000E-03
8# 7.50000E-04
                                    -.00683
                                              .00708
                 -.00397
                           -.00298
                                                       .00559
                                                               -.00157 Zeckman
                 -.00587
                           -.01194
                                    -.00132
                                              .00704
                                                       .00537
                                                                 .00145 Quimby
```

THE STATE OF THE S

VARIABLE	MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C2 4 C3 6 C4 2 C5 . 5	701E-03 409E-02 511E-02 273E-02 523E-02	.133E-02 .190E-02 .356E-02 .378E-02 .168E-02 .269E-02	.471E-03 .672E-03 .126E-02 .134E-02 .595E-03	.800E-03 270E-03 253E-02 .484E-02 .708E-02	286E-02 587E-02 119E-01 738E-02 .275E-02 215E-02	.366F-02 .560E-02 .941E-02 .122E-01 .433E-02 .774E-02
C7 -• 7	739E-33	•111E-02	-392E-03	•145E-02	200E-02	•345E-02

TIT	TITLE- Z26STN									
	Cl	C2	C3	C4	C5	C6	C7			
1#	00051	00423	00593	00125	.00272	•00196	00127	King		
2#	.00273	00501	00361	00176	•00198	.00021	00150	Swear		
3#	00025	00019	00347	00760	.00177	.00310	•00070	Cooper		
4#	00159	00450	00765	.00101	• 00044	00154	.00124	Brad		
5#	00108	00555	00790	00312	• 00048	•00056	00201	Stoval1		
6#	00058	00273	00506	01007	•00546	.00389	00139	Dalbow		
7#	•00031	00445	00617	00892	.00350	• 00406	00079	Zeckman		
8#	00035	00658	00761	00369	.00402	.00187	00013	Quimby		

VARIAB	LE MEAN	STD DEV	STD ERR	MAXIMUM	MINIMUM	RANGE
C1 C2 C3 C4 C5	165E-03 416E-02 593E-02 443E-02 .255E-02	.130E-02 .195E-02 .177E-02 .398E-02 .174E-02	.459E-03 .688E-03 .625E-03 .141E-02 .616E-03	.273E-02 190E-03 347E-02 .101E-02 .546E-02	159E-02 658E-02 790E-02 101E-01 .440E-03	.432E-02 .639E-02 .443E-02 .111E-01 .502E-02
C7	644E-03	·115E-02	-405E-03	•124E-02	201E-02	.325E-02

1ABLE I-9

AVERAGE OF MEANS AND STANDARD DEVIATIONS FOR FORCE AND MOMENT COEFFICIENTS FOR DYNAMIC PRESSURES OF 9 AND 26 POUNDS PER SQUARE FOOT YAW ANGLE FOR AVAILABLE HUMAN SUBJECT DATA

DRAG

CONFIGURATION	YAW ANGLE	AVERAGE OF THE TWO MEANS	AVERAGE STD DEV
DCIC	0°		
DSIC		.1845	.00636
	30°	.177	.00688
	60°	.1395	.005965
	90°	.1095	.00766
	120°	.135	.007865
	150°	.1635	.00563
	180°	.171	.07668
DSUC	0°	.03465	.001162
	30°	.0587	.00182
	60°	.10245	.0036
	90°	.1185	.004835
	120°	.1045	.0038
	150°	.057	.001685
	180°	.0329	.00161
DSTC	0°	.284	.007655
	30°	.2525	.00559
	60°	.177	.00337
	90°	.1245	.005895
	120°	.176	.008385
	150°	.241	.009495
	180°	.2635	.009493
DSIN	0°	.162	006.21
5521	30°	.1585	.00631
	60°	.1265	.00575
	90°	.09685	.00537
	120°		.0072
	150°	.125	.006065
	180°	.150	.006255
	100	.154	.00751
DSTN	0°	.2555	.008865
	30°	.223	.007155
	60°	.1535	.006
	90°	.10235	.005395
	120°	.1515	.0119
	150°	.21	.00999
	180°	.232	.00944
DSUN	0°	.033	.001585
	30°	.05515	.00241
	60°	.08845	.004245
	90°	.1007	.00535
	120°	.0905	.005085
	150°	.0526	.00221
	180°	.03175	.001705

		AVERAGE OF THE	AVERAGE
CONFIGURATION	YAW ANGLE	TWO MEANS	STD DEV
LSIN	0°	0483	.01265
20 271	30°	04475	.01225
	60°	02235	.00729
	90°	00262	.00302
	120°	.01073	.004625
	150°	.0216	.004025
	180°	.0256	.00935
	100	.0250	.00733
LSUC	0°	.003645	.002945
	30°	.0144	.00536
	60°	.01028	.009205
	90°	001585	.0129
	120°	.0038355	.00617
	150°	.0121	.004085
	180°	.001975	.00251
LSIC	0°	0572	.01445
	30°	0527	.01385
	60°	0284	.009835
	90°	00226	.003705
	120°	.01235	.006565
	150°	.02595	.00932
	180°	.0305	.0094
LSTC	0°	.003174	.00612
2010	30°	.005915	.0052
	60°	.006405	.003055
	90°	001213	.00252
	120°	.0026585	.002715
	150°	00398	.003315
	180°	0068	.006585
_	100	0000	.000363
LSTN	0°	00056	.00468
	30°	.00284	.003705
	60°	.004365	.002735
	90°	000949	.00255
	120°	.005025	.004235
	150°	00054	.00331
	180°	0032375	.00445
LSUN	0°	.00468	.00216
	30°	.0181	.00379
	60°	.0164	.004955
	90°	.006065	.006175
	120°	.009285	.00585
	150°	.01075	.003195
	180°	000865	.001795

CONFIGURATION	YAW ANGLE	AVERAGE OF THE TWO MEANS	AVERAGE
Vouc			STD DEV
YSUC	0°	0004025	.0007245
	30°	.0176	.002875
	60°	.0246	.002373
	90°	.005775	.00309
	120°	03985	
	150°	02765	.00622
	180°	00199	.0045 .0010665
YSIÇ	0°		.0010100
1010		.0003433	.004265
	30°	0244	.00761
	60°	02885	.00961
	90°	.000395	.01515
	120°	.0145	.010985
	150°	.0165	.0124
	180°	000326	.00364
YSTN	0°		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	30°	.000107	.00298
	60°	0682	.013825
	90°	07165	.017
		00801	.010105
	120°	.05145	.008375
	150°	.03815	.0105
	180°	0000725	.00272
YSIN	0°	001.05	
	30°	.00185	.00276
	60°	0206	.007705
	90°	~.02545	.009775
	120°	01011	.008635
	150°	.01795	.00475
	180°	.0129	.01285
	100	0012065	.00379
YSUN	0°	.0003415	000001
	30°	.0161	.000934
	60°	.02045	.001625
	90°	.006105	.002465
	120°	0357	.00202
	150°	0255	.004325
	180°		.00332
••••		00191	.001074
YSTC	0°	000233	.00323
	30°	0738	.01285
	60°	07615	.01285
	90°	0144	
	120°	.05	.0262
	150°	.0386	.0251
	180°	00201	.0108
		.00201	.006815

CONFIGURATION	VALL ANGLE	AVERAGE OF THE	AVERAGE
John Loudin Tolk	YAW ANGLE	TWO MEANS	STD DEV
MSUN	0°	.00737	0007445
	30°	.00755	.0005135
	60°	.01071	.000644
	90°	.01215	.001089
	120°		.0011985
	150°	.0121	.0011945
	180°	.0109	.0009895
	100	.009255	.0009155
MSTC	0°	.02335	.00367
	30 <i>°</i>	.02	
	60°	.0132	.003415
	90°	.00957	.00228
	120°	.0117	.0010105
	150°	.01425	.00204
	180°	.01425	.002605
		.0102	.003855
MSUC	0°	.00808	.0005415
	30°	.00883	.000584
	60°	.01205	.000384
	90°	.014	.0011055
	120°	.0135	.0011035
	150°	.01085	.001255
	180°	.008135	.001115
MSIN	0.0		
110111	0°	.01845	.002115
	30°	.01605	.00177
	60°	.0107	.00152
	90°	.01.065	.00188
	120°	.0143	.001545
	150°	.0184	.001735
	180°	.01925	.002125
MSTN	0°	.0216	0001
	30°	.0191	.0026
	60°	.0128	.0022
	90°	.0126	.00147
	120°	.01165	.0009005
	150°	.01475	.001445
	180°	.01473	.00182
		•01013	.003085
MSIC	0°	.02065	.002325
	30°	.01785	.002325
	60°	.01195	.001435
	90°	.01165	.001433
	120°	.0151	.001813
	150°	.02045	.00184
	180°	.0217	.003403
			100203

CONFIGURATION	YAW ANGLE	AVERAGE OF THE	AVERAGE
MCHC			STD DEV
NSUC	0°	000421	.0005105
	30°	.003155	.000622
	60°	.00484	.0010595
	90°	.0001982	.0010333
	120°	00524	.001705
	150°	00246	.001703
	1°0°	.000331	.000575
NSTN	0°	00007.	
	30°	.0002765	.000445
	60°	00219	.000562
	40°	002505	.000794
	1500	.002565	.001.023
	150°	.00697	.0004845
	180°	.00517	.000329
	100	000282	.000284
NSIC	0°	.0004925	000057
	30°	008365	.000857
	60°	0126	.00132
	90°	014	.001175
	120°	011035	.001054
	150°	00893	.0058'5
	180°	000872	.001855
		1000072	.00111
NSTC	0°	.0000767	000000
	30°	002465	.000398
	60°	00254	.0004735
	90°	.002765	.000701
	120°	.00768	.001345
	150°	.005705	.000624
	180°	0006435	.000453
Maria		.0000433	.0003
nsun	0°	0001475	.000575
	30°	.00158	.0006655
	60°	.003495	.00121
	90°	0003165	.00121
	120°	004715	.00127
	1.50°	00157	.0008135
	180°	.0001205	.0008133
NSIN	2.0		• 0 (1) 1.3 3
MOTA	0°	.000389	.000334
	30°	007505	.001045
	60°	0115	.001343
	90°	01295	.00114
	120°	0118	.00159
	150°	00867	.00159
	180°	00147	.0009425

		AVERAGE OF THE	AVERAGE
CONFIGURATION	YAW ANGLE	TWO MEANS	STD DEV
ZSIN	0°	0001945	.0008285
	30°	00538	.001765
	60°	007745	.00227
	90°	00419	.00192
	120°	.003615	.0010105
	150°	.0005418	.002535
	180°	000705	.00148
ZSUN	0°	0000306	.000223
	30°	.00219	.0015665
	60°	.00459	.00463
	90°	.00998	.011205
	120°	00282	.00297
	150°	00162	.001269
	180°	000257	.000248
ZSTN	0°	000433	.001315
	30°	004125	.001925
	60°	00602	.002665
	90°	00358	.00388
	120°	.00389	.00171
	150°	.00236	ز00231.
	180°	006915	.00113
ZSIC	0°	0002661	.000833
	30°	00574	.001725
	60°	00739	.00266
	90°	002415	.003455
	120°	.00281	.0018
	150°	.0010295	.002085
	180°	0006905	.0009125
zsuc	0°	0000269	.000192
	30°	.00146	.0005565
	60°	.00356	.001375
	90°	.30307	.00171
	120°	003195	.001229
	150°	00184	.000592
	180°	000399	.000197
ZSTC	0°	.0000555	.001407
	30°	002765	.00327
	60°	00418	.00321
	90°	005315	.004915
	120°	.00223	.003685
	150°	.00197	.003175
	180°	001365	.001386

APPENDIX II
THE WEBER DATA IN TABULAR FORM

TABLE 11-1

FORCE AREAS AND MOMENT VOLUMES (BODY AXIS)
FOR A FULLY EQUIPPED (75) PERCENTILE DUMMY
PLUS SURVIVAL KIT

Yaving	Noment Volume -0.3532 -0.1712 0.0263 -0.0642 -0.1498 -0.4709	-0.5368 -0.4174 -0.0642 0.0963 0.0803 0.0268 -0.2515 -0.5208	-0.0642 -0.1873 -0.2783 -0.1823 -0.3050 -0.3211	-0.0642 -0.1284 -0.0749 -0.2355 -0.2622 -0.0428
Pitching Moment Volume	-1.252 -1.140 -0.8990 -0.7224 -0.7117 -0.3264	-0.2313 0.1498 -0.0214 -2.14 -2.173 -1.274 -1.311 -0.4228	-0.0214 -1.242 -0.4067 -0.6422 -0.4923 -0.0910 0.0589	0.4549 0.4228 0.708; 0.3532 0.2361 0.0167
Rolling Moment Volume	0.9847 1.413 1.707 1.675 1.295 0.8455	0.4335 0.4231 1.777 2.232 3.018 2.906 1.873 6.8455	0.4.28 0.7385 1.25 1.814 2.355 2.665 3.798 0.4.28	0.2087 0.5994 1.113 2.483 2.938 2.017 0.4281
Lift Force Area	0.4279 0.2571 0.1090 -0.1126 -0.4624 -0.7176 -0.7594	-0.5768 -0.2970 -0.6077 -0.6095 -0.7812 -1.040 -0.643.	-2.102 -1.986 -1.754 -1.505 -1.136 -0.6849	-2.:07 -2.:76 -2.:260 -2.:(29 -1.:262 -0.9148
Side Force Force Area	-0.4051 -0.7694 -1.700 -3.307 -4.403 -5.112 -5.618	-5.386 -5.301 -0.7522 -1.282 -2.989 -4.586 -5.206 -5.301	-0.1389 -1.259 -2.702 -3.896 -5.113 -5.093	-0.2662 -1.443 -2.440 674 -4.523 -5.028
Drag Force Area	-6.656 -6.458 -6.072 -5.565 -4.765 -3.999 -2.889	-0.0272 \\ -0.3416 \\ -0.3416 \\ -0.3406 \\ -0.399 \\ -2.383 \\ -0.3916 \\ -0	-2.666 -2.756 -2.277 -1.087 -0.6631	9.1363 0.2126 0.7531 0.3516 0.3352 -0.3425
Pitch Yaw Angle Angle	0° 5 10 20 30 30 40 50 60 70	80 30° 5 15 30 45 45 60 75	et. 15 30 30 45 45 66 75 75	90° 5 30 30 45 60 75 75

75% with survival kn

Yawing Moment Volume	0.2997 0.2034 -0.1712 -0.0161 0.0268 0.0642	0.2141 0.0268 -0.1445 -0.0749 0.0962 0.7064	0.2729 0.0696 0.0107 0.0910 0.1498 0.0054	0.00 -0.1284 -0.1391 -0.1926 -0.1017 0.00
Mon	1 1	1 1 1	ı	11111
Pitching Moment Volume	2.274 2.376 2.253 1.878 1.027 0.1498	2.906 2.349 2.183 1.691 0.8134 -0.4388	1.332 1.065 0.8830 0.5726 -0.2622 -0.2997	-0.5565 -0.6422 -0.8776 -0.6368 -0.9365 -0.5351
Rolling Moment Volume	0.2301 0.5298 1.295 2.531 2.874 1.654 0.4281	0.7064 0.1605 0.7171 1.429 2.087 -0.9151 0.3918	-0.4121 0.00C -0.2729 -0.2194 0.0054 -0.0375	-0.0428 -0.4495 -0.6047 -0.4228 -0.2403 0.6796 0.4228
Lift Force Area	-2.492 -2.514 -2.323 -1.900 -1.327 -0.5814	-1.678 -1.579 -1.824 -1.656 -1.039 -0.7195	-0.0445 -0.3125 -0.5750 -0.5968 -0.5214 -0.3188	1.813 1.395 1.051 0.4260 0.4787 0.5995
Side Force Force Area	-0.1099 -1.816 -3.303 -4.448 -5.005 -5.209	-0.6159 -2.509 -4.050 -4.987 -5.752 -5.312	-0.2162 -1.855 -3.919 -5.119 -5.470 -5.614	-0.1308 -1.989 -3.598 -4.768 -5.475 -5.562
Drag Force area	2.398 2.649 2.266 1.788 0.7367 0.1054 -0.3416	4.577 4.565 3.886 3.197 2.045 0.9938	6.086 5.629 5.022 4.018 2.749 1.394 -0.3416	5.100 5.054 5.161 4.013 2.673 1.531
Yaw Angle	15 30 45 60 75 90	5 30 30 45 60 75 90	115 15 15 15 15 15 15 15 15 15 15 15 15	15 30 45 60 75
Pitch Angle	120°	150°	180°	210°

Yawing Moment Volume	-0.0535 0.4709 -0.0161 0.0428 -0.1445 -0.0642	-0.0535 0.0214 -0.0856 -0.3319 -0.3264 -0.1659	0.0696 0.0 -0.3799 -0.5779 -0.4174 -0.0642	-0.1926 -0.0214 -0.2034 -0.6208 -0.5833 -0.1605
Pitching Moment Volume	-2.360 -2.221 -1.440 -1.033 -0.8081 -0.2890	-0.6690 -0.5405 -0.3104 -0.4335 -0.2355 0.0642	1.777 1.445 0.9900 0.6689 0.3318 0.2462 -0.0214	1.327 1.290 0.9847 0.7385 0.3746 0.4442
Rclling Moment Volume	-0.4495 -1.654 -1.343 -1.536 -1.418 -0.4602	-0.1124 -0.6582 -1.434 -1.429 -1.151 -0.5191	0.1712 -0.0161 -0.5298 -0.8081 0.9044 0.1712	0.7331 0.8348 0.7117 0.3157 -0.1284 -0.3692 0.1605
Lift Force Area	1.526 1.589 1.243 0.9039 0.4388 -0.0890	2.434 2.228 1.820 1.156 0.2762 0.1535	1.722 1.754 1.337 0.6213 -0.5550 -0.2970	0.6931 0.5896 0.2480 -0.2271 -0.5459 -0.5641
Side Force Force Area	0.0055 -0.7240 -3.262 -4.679 -5.332 -5.301	-0.2362 -1.100 -3.003 -4.813 -5.357 -5.301	-0.1490 -1.607 -3.907 -5.344 -5.870 -5.985	-0.0927 -1.058 -3.464 -4.971 -5.715 -5.331
Drag Force Area	2.446 3.207 2.169 1.511 0.9584 0.3234 -0.3416	0.0536 0.0999 -0.1117 -0.0908 -0.3334 -0.3416	-3.043 -3.128 -2.836 -2.251 -1.300 -0.3352	-5.822 -5.783 -5.234 -4.399 -2.685 -1.850
Yaw Ang le	5 30 30 45 60 75	5 15 30 45 60 75 90	5 30 30 45 60 75 90	115 30 45 60 75
Pitch Angle	240°	270°	300°	350°

TABLE 11-2

FORCE AREAS AND MOMENT VOLUMES (BODY AXIS)
FOR A FULLY EQUIPPED (75) PERCENTILE DURMY
WITHOUT SURVIVAL KIT

Yawing Moment Volume	-0.2997	-0.1445	-0.1552	-0.3211	-0.2890	-0.2729	-0.0910	-0.1498	-0.3639	-0.0749	-0.1819	-0.2408	-0.2729	0.0375	0.0268	-0.0749	-0.3585	-0.2943	-0.2034	-0.2729
Pitching Moment Volume	-2.162 -2.173	-1.654	-0.7760	-0.2462	-0.2836	-0.0428	-3.050	-2.692	-1.627	-1.611	-0.6475	-0.9579	-0.4281.	0.5940	0.5191	0.2676	0.4602	0.3157	0.1231	0.0428
Rolling Moment Volume	1.134	2.376	1.814	1.242	0.6796	1.279	1.616	2.895	2.927	4.313	3.580	2.553	1.279	0.2087	3.805	1.279	2.606	3.195	2.531	1.279
Lift Force Area	0.1254	0.0	-0.5387	-0.6141	-0.6795	-0.2244	-1,700	-1.758	-1.434	-1.198	-0.8721	-0.6577	-0.2244	-1.620	-1.500	-1.740	-1.509	-0.3052	-0.8766	-0.2244
Side Force Area	-0.5005	-2.425	-3.499	-4.055	-3.843	-4.182	-0.2870	-0.9702	-2.206	-2.902	-3.642	-3.806	-4.182	-0.2507	-0.7458	-1.839	-3.010	-3.506	-3.936	-4.182
Drag Force Area	-6.668	-6.019	-4.697	-3.419	-1.792	0.0427	-3.668	-3.509	-3.248	-3.059	-2.530	-1.225	0.0427	0.0109	0.0327	0.0654	0.0177	-0.0636	-0.3842	0.0427
Yaw Ang le	15	30	45	09	75	06	ĸ	15	30	45	09	75	06	ß	15	30	45	09	75	06
pitch Angle	0						\$0 .							906						

也是是一个人,这个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人

FORCE AREAS AND MOMENT VOLUMES (BODY AXIS)
FOR A FULLY EQUIPPED (5) PERCENTILE DUMMY
PLUS SURVIVAL KIT

Yawing Moment Volume	-0.1380 -0.1259 -0.4870 -1.023 -1.380 -1.043	0.0325 -0.1055 -0.5804 -0.9821 -1.396 -0.9416	0.0244 0.0406 -0.4586 -0.6778 -0.5357 -0.4992	-0.1218 -0.1015 -0.1583 -0.6331 -0.6291 -0.3287
Pitching Moment Volume	0.7265 0.5154 0.4748 0.4343 0.1015 -0.0893	-1.181 -0.6627 0.0731 -0.0690 -0.1339 -0.1339	-0.2679 0.0690 0.3977 0.1177 -0.2354 -0.1705	0.6047 0.4830 0.3328 0.6859 0.2354 -0.0365
Rolling Moment Volume	0.2070 0.6940 1.392 1.104 0.7670 0.0852	0.4911 1.615 2.029 1.745 1.546 0.7021	0.0284 0.6981 1.510 1.607 1.672 1.376 -0.0974	-0.0649 0.2841 0.8279 1.895 2.192 1.644 -0.0974
Lift Force Area	-0.1718 -0.1322 -0.2801 -0.4482 -0.4475 -0.3152	-0.7784 -0.7552 -0.6857 -0.6686 -0.8904 -0.5535	-1.906 -1.950 -1.660 -1.188 -0.5983 -0.4519	-2.071 -2.080 -1.917 -1.747 -1.324 -0.5490
Side Force Area	0.4176 -0.1128 -3.196 -4.889 -5.721	0.2039 -1.052 -3.034 -4.610 -5.082 -5.101	-0.0710 -1.270 -2.677 -4.108 -4.755 -4.891	-0.1718 -1.262 -2.275 -3.359 -4.124 -4.603 -5.120
Drag Force Area	-5.276 -4.962 -4.556 -3.738 -2.254 -0.5446	-4.613 -4.618 -4.153 -3.093 -1.873 -0.7179	-2.371 -2.423 -2.370 -1.846 -1.160 -0.9225	0.1427 0.4605 0.6566 -0.1487 -0.3391 -0.3989
Pitch Yaw Angle Angle	0° 5 115 30 45 45 60 60 75 9c	30° 5 115 30 45 60 75 90	60° 5 30 30 45 45 60 73	90° 5 115 30 45 60 60 75

Yawing Moment Volume	-0.0122 -0.0162 -0.3693 -0.3369 -0.4383 -0.4018	-0.2313 -0.4545 -0.4221 -0.2882 -0.2476 -0.3125	0.1015 -0.0406 -0.2841 -0.1461 -0.3896 -0.5317	0.0933 -0.2922 -0.4099 -0.3571 -0.3653
Pitching Moment Volume	2.151 1.899 2.731 1.429 1.035 0.2273 -0.2638	2.348 2.265 2.090 1.757 1.222 0.3937	0.6291 0.6534 0.4748 0.4627 -0.6128 -0.2537	-2.346 -1.912 -1.907 -0.8847 -0.8239 -0.3450
Rolling Moment Volume	0.4545 0.3369 0.5885 1.940 2.407 1.664 -0.1015	0.0974 0.1502 0.9091 1.262 1.692 1.489 -0.1015	-0.0487 -0.0487 0.2841 0.7224 -0.6128 0.1177	0.4992 -0.7588 -0.5073 -0.0186 -0.5641 -0.2597
Lift Force Area	-2.124 -1.966 -2.089 -1.677 -1.277 -0.6320	-1.181 -1.252 -1.137 -1.038 -0.6656 -0.3481	0.1165 0.1427 0.0747 0.0247 -0.2405 -0.4557 -0.3152	0.5946 0.5341 0.4318 0.3130 0.0530 -0.1845
Side Force Area	0.0456 -1.082 -2.761 -4.077 -4.904 -4.696 -5.120	-0.4870 -1.809 -3.487 -4.581 -5.135 -5.109	0.1808 -1.598 -3.781 -5.036 -5.617 -5.343	-0.2995 -2.125 -3.455 -4.612 -5.263 -5.479
Drag Force Area	1.972 2.594 1.930 1.590 0.6716 -0.0261	3.647 3.771 3.666 2.786 1.433 0.3854 -0.6708	4.380 4.486 4.235 3.350 1.937 0.4952 -0.6708	3.922 3.860 3.782 3.143 1.705 0.2682 -0.6708
Yaw Angle	5 115 30 45 60 75	5 30 45 60 75 90	115 30 45 60 75	15 30 45 66 75
Pitch Angle	120°	150°	180°	210°

Yawing Moment Volume	+0.8279 -0.2110 -0.3247 -0.5479 -0.7549 -0.4992	-0.1664 -0.3815 -0.4911 -0.8523 -0.9375 -0.9578	-0.0203 -0.2719 -0.7102 -0.9456 -0.8320 -0.8117	-0.1380 -0.3084 -0.7508 -1.104 -0.8280 -1.015
Pitching Moment Volume	-2.524 -2.4960 -2.301 -1.765 -0.9253 -0.3571	-0.9091 -0.7508 -0.3977 -0.5235 -0.2679 -0.1948	1.242 1.242 1.230 0.9619 0.7183 0.1542 -0.2638	1.778 1.656 1.441 1.031 0.7508 0.4424 -0.2638
Rolling Moment Volume	0.0122 -0.6615 -1.364 -1.579 -1.489 -0.8766	0.1380 -0.2679 -1.104 -1.660 -1.327 -0.7468	0.0162 -0.1461 -0.5357 -0.7549 -1.222 -0.8726	0.2476 0.4870 0.5453 0.3287 -0.0893 -0.5154
Lift Force Area	0.9479 1.399 1.064 0.7291 0.1770 -0.3249	2.138 1.963 1.494 0.9173 0.1434 -0.4616	1.495 1.407 1.123 0.5476 -0.0620 -0.7380	0.0926 0.8164 0.4572 0.0657 -0.2465 -0.3378
Side Force Area	-0.5976 -1.526 -3.490 -4.629 -5.505 -5.791	-0.6290 -1.567 -3.243 -4.896 -6.000 -5.844	-0.6140 -1.972 -3.679 -5.245 -5.856 -5.907	-0.0598 -1.436 -3.379 -4.906 -5.665 -5.667
Drag Force Area	2.712 1.982 1.836 1.187 0.3451 -0.4743	0.2823 0.2263 0.0844 -0.1098 -0.2868 -0.3167	-2.313 -2.487 -2.665 -2.183 -1.472 -0.5550	-4.619 -4.598 -4.474 -3.890 -2.452 -0.7171
Pitch Yaw Angle Angle	240° 5 15 30 45 60 75 90	270° 5 15 30 45 60 60 75	300° 5 15 30 45 45 60 60 75	330° 5 15 30 45 45 60 60 75

The state of the s

FORCE AREA AND MOMENT VOLUME (BODY AXIS)
FOR A FULLY EQUIPPED 5 PERCENTILE DUMMY
WITHOUT SURVIVAL KIT

Yawing Moment Volume	0.3856 0.3571 0.1502 -0.5804 -0.8157 -0.6778	0.0162 -0.1339 -0.5195 -0.6981 -0.6737 -0.4830	-0.1055 -0.0609 -0.0893 -0.4058 -0.5114 -0.6088
Pitching Moment Volume	-0.0041 -0.0974 -0.4140 -0.2719 -0.0731 -0.2638	-0.8969 -0.8401 -0.3084 -0.4464 -0.7062 -0.2273	0.7630 0.4789 0.2679 0.3815 0.1664 -0.1705
Rolling Moment Volume	0.5601 0.8726 1.636 1.814 1.567 0.8320	-0.1299 -1.043 1.838 1.907 1.834 1.550	-0.0041 0.2232 1.213 2.102 2.289 2.021 0.6575
Lift Force Area	-0.2667 -0.0710 0.2779 -0.1942 -0.2951 -0.3757	-1.401 -1.278 -1.181 -1.147 -0.7350 -0.7350	-1.797 -1.526 -2.125 -1.807 -1.404 -0.8097
Side Force Area	1.554 -0.9696 -2.288 -3.457 -4.108 -3.899	0.0493 -0.6290 -2.159 -3.159 -3.584 -3.468	-0.2428 -0.6529 -1.639 -2.830 -3.160 -3.566
Drag Force Area	-5.370 -5.157 -4.712 -3.744 -2.557 -1.292 -0.5393	-3.077 -3.237 -2.886 -2.192 -1.344 -1.079	-0.3817 0.5834 0.5752 0.4317 0.2211 -0.3249
Pitch Yaw Angle Angle	3° 115 30 445 60 75 90	50° 5 15 30 45 45 60 60 75 90	90° 5 30 30 45 60 60 75

WL REDUCED COEFFICIENTS FOR A FULLY EQUIPPED 75 PERCENTILE DUMMY PLUS SURVIVAL KIT

Th' N	-0.0019 -0.0009 0.0001 -0.0003 -0.0025 -0.0034 -0.0032	0.0005 0.0004 0.0001 -0.0013 -0.0033 -0.0020	-0.0010 -0.0015 -0.0010 -0.0016 0.0017 0.0013	2.0907 -9.0004 -6.0001 -9.0012 -6.0014 -6.0002
CA/AL	-0.0066 -0.0060 -0.0047 -0.0017 -0.0008 -0.0013 0.0008	-0.0113 -0.0114 -0.0067 -0.0053 -0.0013 -0.0001	-0.0654 -0.0021 -0.0034 -0.0026 -0.0003 0.0003	0.0024 0.0072 0.0011 0.0019 0.0012 0.9001
C. L. WILL	0.0052 0.0074 0.0090 0.0088 0.0087 0.0045 0.0015 0.0023	0.0094 0.0117 0.0159 0.0059 0.0045	0.0039 0.0064 0.0095 0.0124 0.0140 0.0095	0.0011 0.0032 0.0059 0.0131 0.0155 0.0022
CL VWL	0.0133 0.0080 0.0084 -0.0035 -0.2225 -0.0236 -0.0179 0.0092	-6.0188 -0.0189 -0.0278 -0.0342 -0.0199	-0.0657 -0.0616 -0.0544 -0.0466 -0.0352 -0.0213	-0.0684 -0.0706 -0.0701 -0.0629 -0.0334 -0.0092
C _V /WI.	-0.0126 -0.0239 -0.527 -0.1025 -0.1365 -0.1742 -0.1707 -0.1643	-0.0233 -0.0397 -0.0927 -0.1422 -0.1614 -0.1580	-0.0043 -0.0390 -0.0838 -0.1208 -0.1585 -0.1579	-0.083 -0.0447 -0.0756 -0.1139 -0.1462 -0.1559
TM, G	-0.2064 -0.2002 -0.1883 -0.1725 -0.1477 -0.0896 -0.0471 -0.0003	-0.1700 -0.167.4 -0.1428 -0.1085 -0.0739 -0.0276	-0.0827 -0.0854 -0.0792 -0.0706 -0.0337 -0.0206	0.0042 0.0066 0.0233 0.0109 0.0164 -0.0106
Pitch Yaw Angle Angle	0° 5 10 20 30 40 50 60 70 80 80	30° 5 30 30 43 60 75 90	66° 5 30 45 60 73 90	2, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

C _N /WL	0.0016 0.0011 -0.0009 -0.0001 0.0003	0.0011 0.0001 -0.0008 -0.0004 0.0005 -0.00037	0.0014 0.0004 0.0001 0.0008 0.0	0.0 -0.0007 -0.0010 -0.0005 0.0 -0.00033
C _M /WIL	0.0120 0.0125 0.0011 0.0099 0.0054 0.0008	0.0153 0.0124 0.0115 0.0089 0.0043 -0.0023	0.0070 0.0056 0.0046 0.0030 -0.0014 -0.0016	-0.0029 -0.0034 -0.0046 -0.0034 -0.0049 -0.0028
Cranic	0.0012 0.0028 0.0068 0.0133 0.0151 0.0087	0.0037 0.0008 0.0038 0.0075 0.0110 -0.0048	-0.0022 0.0 -0.0014 -0.0312 0.0 -0.0002	-0.0002 -0.0024 -0.0032 -0.0013 0.0036
CL-/WL	-0.0773 -0.0720 -0.0589 -0.0411 -0.0180	-0.0520 -0.0490 -0.0566 -0.0513 -0.0322 -0.02:3	-1.380 -0.0097 -0.0178 -0.0185 -0.0162 -0.0099	0.0562 0.0432 0.0326 0.0132 0.0148 0.0186
CY VIII.	-0.0034 -0.0563 -0.1024 -0.1379 -0.1552 -0.1643	-0.0.91 -0.0773 -0.1256 -0.1546 -0.1783 -0.1647	-0.0067 -0.0575 -0.1215 -0.1587 -0.1696 -0.1740	-0.0041 -0.0617 -0.1116 -0.1478 -0.1697 -0.1724
CDVMI	0.0743 0.0821 0.0703 0.0554 0.0228 0.0033	0.1419 0.1415 0.1205 0.0991 0.0634 0.0308	0.1887 0.1745 0.1557 0.1246 0.0852 0.0432	0.1581 0.1567 0.1600 0.1244 0.0829 0.0475
Pitch Yaw Angle Angle	120° 5 15 30 45 60 60 75	150° 5 30 30 45 60 75 90	180° 5 15 30 45 60 60 75	210° 5 15 30 45 60 60 75

The state of the s

CNATE	-0.0003 0.0025 -0.0001 0.0002 -0.0008 0.0	-C.0003 0.0001 -0.0005 -0.0017 -0.00087 -0.00083	0.00037 0.0 -0.00200 -0.00304 -0.00220 -0.00155	-0.00101 -0.00011 -0.00327 -0.00307 -0.00084 -0.00033
C _M /W _L	-0.0124 -0.0117 -0.0076 -0.0054 -0.0043 -0.0015	-0.0035 -0.0028 -0.0016 -0.0023 -0.0012 0.0003	0.0094 0.0076 0.0052 0.0017 0.0013 -0.0001	0.0070 0.0068 0.0052 0.0039 0.0020 0.0023
C _L , (VII.	-0.0024 -0.0087 -0.0002 -0.0081 -0.0075 -0.0024	-0.0006 -0.0035 -0.0075 -0.0061 -0.0027	0.0009 -0.0001 -0.0028 -0.0043 0.0048 0.0009	0.0039 0.0044 0.0037 0.0017 -0.0007 0.0008
CLVWL	0.0473 0.0493 0.0385 0.0280 0.0136 -0.0028	0.0755 0.0691 0.0564 0.0358 0.0086 0.0048	0.0533 0.0544 0.0415 0.0193 0.0007 -0.0172	0.0215 0.0183 0.0077 -0.0169 -0.0175
CY VWI.	-0.0002 -0.0224 -0.1011 -0.1451 -0.1653 -0.1654	-0.0073 -0.0341 -0.0931 -0.1492 -0.1661 -0.1808	-0.0046 -0.0498 -0.1211 -0.1657 -0.1856 -0.1856	-0.0029 -0.0328 -0.1074 -0.1541 -0.1772 -0.1715
C _{D_v(d)}	0.0758 0.0994 0.0672 0.0468 0.0297 0.0100	0.0017 0.0031 -0.0035 -0.0028 -0.019 -0.0103	-0.0943 -0.0970 -0.0879 -0.0403 -0.0104	-0.1805 -0.1793 -0.1623 -0.1364 -0.0832 -0.0574
Pitch Yaw <u>Angle Angle</u>	240° 5 115 30 45 60 60 75	270° 5 30 45 60 60 75	300° 5 115 30 45 60 60 75	330° 5 115 30 45 60 60 75

the same of the sa

WL REDUCED COEFFICIENTS FOR A FULLY EQUIPPED 75 PERCENTILE DUMMY WITHOUT SURVIVAL KIT

75% without survival kit

WL REDUCED COEFFICIENTS FOR A FULLY EQUIPPED 5 PERCENTILE DUMMY PLUS SURVIVAL KIT

CNAME	-0.0009 -0.0033 -0.0070 -0.0095 -0.0095	0.0002 -0.0007 -0.0067 -0.0067 -0.0096 -0.0065	0.0002 0.0003 -0.0031 -0.0046 -0.0037 -0.0041	-0.0008 -0.0007 -0.0043 -0.0043 -0.0023
C. MART	0.0050 0.0035 0.0033 0.0030 0.0007 -0.0006	-0.0081 -0.0032 0.0005 -0.0006 -0.0009	-0.0018 0.0005 0.0026 0.0008 -0.0016 -0.0012	0.0041 0.0033 0.0023 0.0047 0.0016 -0.0003
Covering	0.0014 0.0048 0.0095 0.0076 0.0053 0.0006	0.0034 0.0111 0.0139 0.0120 0.0106 0.0005	0.0002 0.0048 0.0104 0.0110 0.0115 -0.0007	-0.0004 0.0019 0.0057 0.0130 0.0150 -0.0007
CL VWE	-0.0064 -0.0049 -0.0104 -0.0167 -0.0175	-0.0290 -0.0281 -0.0255 -0.0249 -0.0332 -0.0206	-0.0710 -0.0727 -0.0619 -0.0443 -0.0168 -0.0168	-0.0772 -0.0775 -0.0714 -0.0651 -0.0493 -0.0205
CYVIN	0.0156 -0.0042 -0.1191 -0.1191 -0.1822 -0.2132	0.0076 -0.0392 -0.1131 -0.1718 -0.1894 -0.1901	-0.0026 -0.0473 -0.0998 -0.1531 -0.1772 -0.1823	-0.0064 -0.0470 -0.0848 -0.1252 -0.1537 -0.1716 -0.1908
C _D /MI	-0.1966 -0.0149 -0.1698 -0.0840 -0.0203	-0.1719 -0.1721 -0.1548 -0.1153 -0.0698 -0.0268	-0.0884 -0.0903 -0.0883 -0.0688 -0.0432 -0.0344	0.0053 0.0172 0.0245 -0.0055 -0.0126 -0.0149
h Yaw e Angle	° 5 15 30 30 60 60 75 90	° 11 5 30 30 45 45 45 90 90 90 90 90 90 90 90 90 90 90 90 90	30 30 45 60 75 90	30 30 45 60 75 90
Pitch Angle	0	0 0	ຶດຈ	06

J. J	-0.0001 -0.0001 -0.0023 -0.0023 -0.0028	-0.6016 -0.003 -0.0026 -0.9017 -0.0027 -0.003	0.0007 -0.0003 -0.0019 -0.0027 -0.0036 -0.0036	0.0006 -0.0020 0.0 -0.0028 -0.0024 -0.0034
S, W.	0.5146 0.0130 0.0187 0.0098 0.0071 0.0016	0.0016 0.0155 0.0143 0.0123 0.0084 0.0027 -0.0018	0.0043 0.0043 0.0033 -0.0042 -0.0018	-0.0151 -0.0131 -0.0131 -0.0061 -0.0057 -0.0024
C VWI.	0.0031 0.0023 0.0040 0.0133 0.0165 0.0114	0.0007 0.0010 0.0062 0.0087 0.0116 0.0102	-0.0003 -0.0003 0.0019 0.0050 -0.0042 -0.0008	-0.0034 -0.0052 -0.0035 -0.0001 -0.0039 -0.0018
CL VIII.	-0.0792 -0.0733 -0.0779 -0.0625 -0.0476 -0.0236	-0.0440 -0.0467 -0.0424 -0.0387 -0.0248 -0.0130	0 0043 0.0053 0.0028 0.0009 -0.0070 -0.0117	0.2216 0.0199 0.0161 0.0117 0.0026 -0.0069
CY (ML	0.0017 -0.0403 -0.1029 -0.1520 -0.1750 -0.1750	-0.0182 -0.0674 -0.1230 -0.1707 -0.1914 -0.1908	0.0067 -0.0592 -0.1409 -0.1877 -0.2094 -0.1991	-0.0112 -0.0792 -0.1288 -0.1719 -0.1962 -0.2042
C _D Gri	0.0735 0.0967 0.0719 0.0593 0.0256 -0.0016	0.1360 0.1405 0.1366 0.1038 0.0534 0.0144	0.0163 0.1672 0.1578 0.1249 0.0722 0.0185	0.1462 0.1439 0.1410 0.1171 0.0635 0.0100 -0.0250
Yaw Ang Le	15 30 45 60 73	115 30 45 60 75 90	5 115 30 45 60 75	25 30 45 45 60 75
Pitch Angle	120	150°	°081	210°

The state of the s

J.W.	0.0114 -0.0014 -0.0022 -0.0038 -0.0052 -0.0048	-0.0011 -0.0026 -0.0034 -0.0059 -0.0064 -0.0066	-0.0001 -0.0019 -0.0065 -0.0057 -0.0056	-0.0009 -0.0021 -0.0052 -0.0076 -0.0070 -0.0034
C _M /ML	-0.0173	-0.0062	0.0085	0.0122
	-0.0171	-0.0052	0.0085	0.0114
	-0.0158	-0.0027	0.0084	0.0099
	-0.0063	-0.0036	0.0066	0.0071
	-0.0064	-0.0013	0.0011	0.0030
	-0.0018	-0.0013	0.0018	-0.0018
CRANT	0.0001	0.0009	0.0001	0.0017
	-0.0045	-0.0018	-0.0010	0.0033
	-0.0094	-0.0076	-0.0037	0.0044
	-0.0108	-0.00114	-0.0084	0.0023
	-0.0060	-0.0051	-0.0084	-0.0006
	-0.0060	-0.0051	-0.0007	-0.0035
CL JAIL	0.0353 0.0521 0.0397 0.0272 0.0066 -0.0121 -0.0121	0.0797 0.0732 0.0557 0.0342 0.0053 -0.0172	0.0557 0.0524 0.0419 0.0204 -0.0023 -0.0275	0.0035 0.0304 0.0170 0.0024 -0.0092 -0.0200
C _Y /MI	-0.0223	-0.0234	-0.0229	-0.0022
	-0.0569	-0.0584	-0.0735	-0.0535
	-0.1301	-0.1209	-0.1371	-0.1259
	-0.1725	-0.1825	-0.1955	-0.1829
	-0.2052	-0.236	-0.2183	-0.2111
	-0.2158	-0.2178	-0.2202	-0.2112
C _D /MI	0.1011	0.0105	-0.0862	-0.1722
	0.0739	0.0084	-0.0927	-0.1714
	0.0684	0.0031	-0.0993	-0.1668
	0.0442	-0.0041	-0.0814	-0.1450
	0.0129	-0.0107	-0.0549	-0.0914
	-0.0177	-0.0118	-0.0250	-0.0267
Yaw Angle	5 115 30 45 60 75	5 115 30 45 60 75	5 15 30 45 60 75	5 115 30 45 60 75
Pitch Angle	240°	270°	300°	330°

VWL REDUCED COEFFICIENTS FOR A FULLY EQUIPPED 5 PERCENTILE DUMMY WITHOUT SURVIVAL KIT

CNVML	0.0026 0.0024 0.0010 -0.0040 -0.0056 -0.0046	0.0001 -0.0009 -0.0048 -0.0046 -0.0046	-0.0007 -0.0004 -0.0028 -0.0035 -0.0042
M MIL	0.0	-0.0062	0.0052
	-0.0007	-0.0058	0.0033
	-0.0028	-0.0021	0.0018
	-0.0019	-0.0031	0.0026
	-0.0005	-0.0048	0.0011
	-0.0018	-0.0016	-0.0013
C. L. VILL	0.0038	-0.0009	0.00
	0.0060	0.0072	0.0015
	0.0112	0.0126	0.0083
	0.0124	0.0131	0.0144
	0.0107	0.0126	0.0157
	0.0057	0.0106	0.0139
CL_VATE	-0.0099	-0.0522	-0.0670
	-0.0026	-0.0476	-0.0681
	0.0104	-0.0440	-0.0792
	-0.0110	-0.0427	-0.0673
	-0.0140	-0.0327	-0.0523
	-0.0166	-0.0274	-0.0302
C _V /WL	0.0058	0.0018	-0.0090
	-0.0361	-0.0234	-0.0243
	-0.0853	-0.0805	-0.0611
	-0.1288	-0.1177	-0.1055
	-0.1531	-0.1336	-0.1178
	-0.1453	-0.1293	-0.1330
CD/dD	-0.2001	-0.1147	-0.0142
	-0.1922	-0.1206	0.0217
	-0.1756	-0.1076	0.0214
	-0.0953	-0.0817	0.0161
	-0.0482	-0.0501	0.0082
	-0.0201	-0.0402	-0.0121
Yaw	15 30 30 60 75 90	115 130 150 150 150 150 150 150 150 150 150 15	5 30 30 45 60 75
Pitch Angle	°	\$0°	•06

REFERENCES

l.	Payne,	P.R.
----	--------	------

Some Studies Relating to "Limb Flailing"

After an Emergency Escape from an Aircraft;
Aerospace Medical Research Laboratory,
Wright-Patterson Air Force Base, Ohio 45433;
AMRL TR 73-24; AD A005699 (December 1974)

2. Hertzberg, H.T.E.

Anthropometry of Flying Personnel; Wright Air Development Center, Wright-Patterson Air Force Base, Ohio 45433; WADC TR 52-321; AD 47953 (September 1954)

3. Schmitt, T.J.

Wind Tunnel Investigation of Air Loads on Human Beings; Navy Department, The David Taylor Model Basin Aerodynamics Laboratory; Report 892 Aero 858; AD 491 201 (January 1954)

4. Rickards, M.A., and Collins, J.M.

Full-Scale Subsonic Wind Tunnel Tests on Fully Equipped 75 and 5 Percentile Dummies; Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45433 AFFDL TR 67-44 (August 1967)

5. Puddycomb, R.H.

Human Free-Fall Trajectories; Air Force Flight Test Center, Edwards Air Force Base, California; FTC-TDR-64-10; AD 442 045 (June 1964)

6. Haak, E.L., and Thompson, R.E.

Analytical and Empirical Investigation of The Drag Area of Deployment Bags, Cargo Platforms and Containers, and Parachutists; Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45453 AFFDL TR 67-166; AD 840 082 (July 1968)

7. Cobb, D.B., and Waters, M.H.L.

The Behavior of Dummy Men During Long Free-Falls; Royal Aircraft Establishment, Farnsborough, Hants, ENGLAND; Technical Note: Mech. Eng. 179 (July 1954)

8. Webster, A.P.

Free Falls and Parachute Descents in the Standard Atmosphere; National Advisory Committee for Aeronautics; NACA TN 1315 (June 1947)