$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{i}{\sqrt{2} \; (k r_5 + k^3 r_5)}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6 k^2 r_5 + t_1}{2 (1 + k^2)^2 r_5 t_1}$	0	0	0	0
$\sigma_1^{\#2}{}_+\alpha\beta$	$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$		$\frac{1}{\sqrt{2} \left(k^2 r_5 + k^4 r_5 \right)}$	$-\frac{i}{\sqrt{2} (k r_5 + k^3 r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-\bar{l} \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	0

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$								
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0					
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0					
$\omega_2^{#1}$ † $^{lphaeta\chi}$	0	0	<u>t</u> 1 2					

$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	$r_5\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$r_5 \partial_{lpha} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} + 2 r_5 \partial_{ heta} \omega_{\lambda}^{\ \ lpha} \partial_{\kappa} \omega^{\kappa \lambda heta} - rac{1}{3} t_1 \partial^{lpha} f_{ eta \kappa} \partial^{\kappa} f_{ lpha}^{\ \ \ eta} -$	$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + t_1\;\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{\prime} + t_1\;\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\prime} +$	$2t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{,-}t_1\partial_{\kappa}f^{\lambda}_{\ \lambda}\partial^{\kappa}f'_{,+}+\frac{1}{3}t_1\ \omega_{,\theta\kappa}\ \partial^{\kappa}f'^{\theta}+\frac{4}{3}t_1\ \omega_{,\kappa\theta}\ \partial^{\kappa}f'^{\theta}-$	$rac{1}{3}t_1\;\omega_{ heta_{lK}}\partial^{\kappa}f^{'}{}^{ heta}+rac{2}{3}t_1\;\omega_{ heta_{K}}\;\partial^{\kappa}f^{'}{}^{ heta}-t_1\;\omega_{_{l}\alpha}^{\;\;lpha}\;\partial^{\kappa}f^{'}_{\;\;\kappa}-t_1\;\omega_{_{l}\lambda}^{\;\;\lambda}\;\partial^{\kappa}f^{'}_{\;\;\kappa}+$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{3}t_1\partial_{\kappa}f_{\theta}^{\lambda}\partial^{\kappa}f_{\lambda}^{\theta} + \frac{2}{3}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta} -$	$t_1 \partial^{lpha} f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Added source term: $\int \epsilon^{\alpha\beta} r = \mu^{\alpha\beta\chi} \alpha$
---	---	---	---	---	---	---	--	---

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	0

Source constraints	
SO(3) irreps	#
$\sigma_0^{\#1} == 0$	1
$\tau_{0+}^{#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} = 0$	5
Total #:	1

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 r_5 + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	<u>i kt</u> 1 3	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ākt₁
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-ikt_1$	0	0	0

 $\frac{\text{Unitarity conditions}}{r_5 > 0 \&\& t_1 < 0 \mid\mid t_1 > 0}$

Lagrangian density

(No massive particles)