

MT1008 - MULTIVARIABLE CALCULUS

Course Title	Multivariable Calculus	Course Code	MT1008
Department	Fast School of Computing (FSC) Campus Laho		Lahore
HEC Knowledge Area	Natural Sciences	Credit Hrs.	3
Pre-requisite(s)	Calculus & Analytical Geometry	Grading Scheme	Relative
Applicable From	Spring 2024		

	Develop a thorough understanding of advanced topics of multivariable calculus and their
Course Objective	applications. Understand the concept of Laplace Transform, Fourier Series, Fourier Transform and Z Transform.

	No.	Assigned Program Learning Outcome (PLO)		
2		An ability to identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering science.		

I = Introduction, R = Reinforcement

E = Evaluation, A = Assignment, Q = Quiz, M = Midterm, F=Final, L = Lab, P = Project, W = Written Report.

No.	Course Learning Outcome (CLO) Statements	Assessment Tools	
1	Defining Functions of Several Variables, Computing Partial Derivatives, Directional and Gradient Vectors.	Q1, M1, A1, F	
2	Evaluation of Iterated Integrals, in Rectangular, Polar, Cylindrical Coordinates and their Applications.	M1, A1, F	
3	Line Integral and its Applications, of Work, Circulation and Flux.	M1, F	
4	Greens Theorem in Plane, its Tangential and Normal Form, Surface Integrals, Divergence and Stokes theorem, Laplace Transform and its operational Properties.	Q2, A2, M2, F	
5	Expanding Functions in terms of Fourier Series, Fourier Sin and Cosine Series, Introduction to Fourier Transformation. Sequence and Series.	Q3, A3, F	

MT1008 - MULTIVARIABLE CALCULUS

NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES, FAST-NU

	Title	Thomas Calculus (Thirteenth Edition).	
	Author	George B. Thomas, Jr.	
	Publisher	PEARSON.	
Text Books	Title	Differential Equations with Boundary-Value Problems (Ninth Edition)	
	Author	Dennis G. Zill.	
	Publisher	Cengage Learning.	
Reference Books	Reference Books Advanced Modern Engineering Mathematics, 4th edition, by Calculus (Sixth Edition) By Swokowski.		

Week	Course Contents/Topics	Chapter*	CLO*
1	Functions of several variables, Limit and continuity of Higher dimensions.	14.1, 14.2	1
2	Partial derivatives, Chain Rule, Directional Derivative and Gradient Vectors.	14.3, 14.4, 14.5	1
3	Double and Iterated Integrals over Rectangles, Double Integrals over General Regions, Area by Double Integration. Ouiz#1	15.1, 15.2, 15.3	2
4	Double integrals in polar form, Triple Integrals in Rectangular Coordinates.	15.4, 15.5	2, 3
5	Triple integral in cylindrical and spherical coordinates, Line Integral	15.7, 16.1	
6	Vector Fields and line Integrals: Work Circulation and Flux. Path Independence	16.2-3	3
6A	Sessional Exam -I		
7	Conservative Fields and Potential Functions, Greens Theorem in the Plane, Surfaces and Area.	16.4, 16.5	5
8	Surface Integrals, Stocks Theorem.	16.6, 16.7	5
9	The Divergence Theorem and a Unified theory, Definition of the Laplace Transform. Ouiz#2	16.8, 7.1	5, 4
10	Inverse Transforms and Transforms of Derivatives.	7.2	4
11	Operational Properties I, Translation on the S-Axis, Translation on the t-Axis, Orthogonal Functions.	7.3, 11.1	4
12	Sessional Exam -II		
12A	Fourier Series, Fourier Cosine and Sine Series.	11.2, 11.3	4
13	Definition of the Fourier Transform and Example.	2.3	4
14	Sequence and Infinite series, Integral Test Ouiz#3	10.1-3	4
15	Absolute convergence, ratio and root test	10.4,5	4
16			
	<u>Final Exam</u>		

Weightage distribution is given below.

MT1008 - MULTIVARIABLE CALCULUS

Assessment Tools	Weightage	
Assignments (3)	7%	
Quizzes (3)	8%	
Home work	5%	
Midterms I	15%	
Midterms II	15%	
Final Exam	50%	