

Code: 15EE21T

Register	12.5	111-11	nateri		
Number					

II Semester Diploma Examination, April/May-2018

ELECTRICAL CIRCUITS

EEEE TRICITE CIRCUITS		
Time: 3 Hours	Max. Marks : 100	
Note: (i) Answer any six questions from Part – A. Each question (ii) Answer any seven questions from Part – B. Each questions		
	in an article	
PART – A		
1. Explain closed circuit, open circuit, short circuit with neat circuit	diagram. 5	
2. Define:		
(i) Bilateral circuit		
(ii) Unilateral circuit	5	
(ii) Cimatorui Circuit		
3. Define and mention SI units for the followings:	5	
(i) Absolute permeability		
(ii) Relative permeability		
	g.	
4. List the difference between electric circuit and magnetic circuit.	5	
5. State and explain Fleming's right hand rule.	5	
6. Define power and power factor in AC circuit.	5	
1 of 4	[Turn over	

5

- 7. Define:
 - (a) RMS value of alternating current.
 - (b) Average value of an alternating current and write their equations.
- 8. Derive an equation for power in pure resistive circuit.

5

9. List advantages of 3-phase system over $1 - \phi$ system.

5

PART - B

10. (a) Define the followings:

4

- (i) Linear circuit
- (ii) Non-linear circuit
- (b) By applying Kirchhoff's law find the current through the milliammeter connected to the circuit below.

11. (a) Derive an expression for star – delta transformation.

5

(b) Using star-delta transformation find the total current for the circuit given below: 5

12. (a) State and explain maximum power transfer theorem.

5

(b) Prove Reciprocity theorem for the circuit given below:

13. (a) Define the following:

4

- (i) Magnetic flux (φ)
- (ii) Flux density (B)
- (b) An air cored toroidal coil has 3000 turns and carries a current of 0.1 A. The cross sectional area of the coil is 4 cm² and length of magnetic circuit is 15 cm. Determine the magnetic field strength, flux density and total flux in the coil.

6

14. (a) State and explain:

6

- (i) Fleming's right hand rule
- (ii) Cork's screw rule
- (b) Define self inductance and co-efficient of self inductance of a coil with units. 4
- 15. (a) Draw sinusoidal waveform and mark the following:

5

- (i) Instantaneous value
 - (ii) Amplitude
 - (iii) Cycle
 - (iv) Frequency
 - (v) Time period
 - (b) A sinusoidal alternating current is represented by i = 30 sin 30 t.Find:
- 5

- (i) maximum value
- (ii) current when t = 0.002 sec passing through zero in the direction
- (iii) RMS value of current

16.	(a)	Derive an expression for instantaneous value of alternating voltage and current.	5
-----	-----	--	---

(b) If $I_1 = 2 + i3$

5

$$I_2 = 5 + i6$$

Perform

- (i) $I_1 + I_2$
- (ii) $I_1 I_2$
- (iii) $I_1 \times I_2$
- (iv) $\frac{I_1}{I_2}$
- 17. (a) With diagram explain pure resistive circuit.

5

5

- (b) An AC series circuit consisting of 10 Ω resistance, 0.05 h inductance and 100 μ F capacitance. If the voltage applied to circuit is 200 V 60 Hz, find :
 - (i) Impedance
 - (ii) Current
 - (iii) Power factor
- 18. (a) Define:

5

5

5

5

- (i) Inductive reactance (X₁)
- (ii) Capacitive reactance (X_C)
- (b) A series RLC circuit has $R = 50 \Omega$, $L = 50 \mu h$ and c = 1000 pf, find resonant frequency (fr) and Q factor.
- 19. (a) Prove that line voltage is equal to $\sqrt{3}$ phase voltage in a 3 ϕ star connected system.
 - (b) Two wattmeters connected to 3 φ AC line to measure power and reads 6717 W and 2538 W. Find total power drawn by the balanced load and power factor.