План занятия (13.10.17)

• Суффиксное дерево

Напоминание. Строковые СД

Бор

Суффиксное дерево для строки ѕ

- 1. содержит все суффиксы строки |s|, причем каждый суффикс заканчивается в листе и только в нем
- 2. имеет ровно |s| листьев
- 3. каждая внутренняя вершина имеет не менее 2 детей
- 4. каждое ребро помечено непустой подстрокой *s*
- 5. никакие два ребра, выходящие из одной вершины, не имеют общего начала

Суффиксное дерево. Пример

Строка харха

Добавление \$

Суффиксное дерево

- Память
 - Лемма: количество внутренних вершин не превышает количество листьев
 - \circ O(N)
- Время
 - Наивный алгоритм O(N²)
 - Алгоритм Укконена O(N)

Поиск вхождений образца в тексте

Найти pattern в text

- KMП
 - O(|pattern|) препроцессинг
 - O(|text|) поиск
- Суфф. дерево
 - O(|text|) препроцессинг
 - O(|pattern| + K) поиск, где K число вхождений

Поиск наибольшей общей подстроки

- 1. Построение обобщенного суфф. дерева для строк *s1*, *s2:*
 - a. s = s1\$s2#
 - b. строим суфф. дерево для s
 - с. удаляем "синтетические" суффиксы
- 2. Выставляем метки для внутренних вершин
- 3. Ищем внутреннюю вершину с двумя метками наибольшей строковой глубины

- Определение максимального палиндрома:
 - aabactgaaccaat
 - o aabactgaaccaat, радиус 1, нечетный
 - o aabactgaaccaat, радиус 3, четный

Разберем случай палиндромов четной длины.

Общая схема алгоритма:

- 1. Построение суфф. дерева для строки S\$S^T
- 2. Подготовка дерева к запросам Іса
- 3. Нахождение палиндромов

Задача - научиться искать максимальное общее продолжение

Приходит запрос (i , j): найти наибольшее общее продолжение для i-ого суффикса S и (n-i)-ого суффикса S^T

Решение:

- каждому суффиксу соответствует лист -> найдем наименьшего общего предка (LCA)
- LCA -> +-1RMQ
- Для каждой внутренней вершины еще нужно предпосчитать строковые глубины

Осталось только проитерироваться по q

Время работы:

- Суфф. дерево O(N) (Укконен)
- Предпосчет RMQ O(N) (Фарак-Колтон-Бендер)
- Строковые глубины O(N) (Обход в глубину)
- Итерация по q O(N) (на каждой итерации O(1))

Итого O(N)

Что почитать

- 1. Сходить на лекцию послушать Укконена
- 2. https://neerc.ifmo.ru/wiki/index.php?title=Сжатое_суф
 фиксное дерево
- 3. Дэн Гасфилд. Строки, деревья и последовательности в алгоритмах