I214 System Optimization Chapter 5: Nonlinear Programming (Part C)

Brian Kurkoski

Japan Advanced Institute of Science and Technology

2023 January

Outline

5.6 Constrained Optimization Problems

5.6.1 Lagrangian Function

5.6.2 Conditions for Optimality

5.7 Methods to Solve Nonlinear Problem

5.6 Constrained Optimization Problems

Previously we considered equality-constrained optimization. Now we introduce inequalities.

The general nonlinear optimization problem is:

Minimize
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, i = 1, 2, ..., \ell$
 $g_j(\mathbf{x}) \le 0, j = 1, 2, ..., m$ (1)

5.6.1 Lagrangian Function

For the constrained optimization problem in (1), the Lagrangian function or simply Lagrangian is given as:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_{i=1}^{\ell} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{m} \mu_j g_j(\mathbf{x}),$$
(2)

where $\mu_j \geq 0, \ j=1,\cdots,m$ and there is no sign constraint on λ_i . The λ_i and μ_j are called *Lagrangian multipliers*. The Lagrangian function L is a function of variables $\mathbf{x}=(x_1,\cdots,x_n)\in\mathbb{R}^n,\ \pmb{\lambda}=(\lambda_1,\cdots,\lambda_\ell)\in\mathbb{R}^\ell$ and $\pmb{\mu}=(\mu_1,\cdots,\mu_m).$

5.6.2 Conditions for Optimality

This subsection introduces the Karush-Kuhn-Tucker condition, called KKT conditions for short. They are necessary conditions for optimality. In addition second-order necessary conditions and second-order sufficient conditions for optimality are given.

Definition

When a constraint holds with equality, then the constraint is called active constraint.

For example, suppose there exists a constraint $g_j(\mathbf{x}) \leq 0$ and $g_j(\mathbf{a}) = 0$ holds at a point $\mathbf{x} = \mathbf{a} \in \mathcal{S}$. Then the constraint $g_j(\mathbf{x}) \leq 0$ is called active at $\mathbf{x} = \mathbf{a}$.

Recall the Visualizaiton of Lagrange Multipliers

This figure illustrates minimizing f(x,y) subject to one equality constraint g(x,y)=c.

Figure 1: Credit: Wikipedia/Nexcis

Example

Minimize
$$f(\mathbf{x}) = -2x_1x_2^2$$

subject to $g_1(\mathbf{x}) = \frac{1}{2}x_1^2 + x_2^2 - \frac{3}{2} \le 0$
 $g_2(\mathbf{x}) = -x_1 \le 0$
 $g_3(\mathbf{x}) = -x_2 \le 0$
(3)

Assume that a candidate solution $\mathbf{x}^* = (1,1)^t$ has already been found. Check if it is optimal or not.

5.7 Methods to Solve Nonlinear Problem

The following shows a typical procedure to solve nonlinear programming problem using the optimality conditions.

Generate Candidates Using the Karush-Kuhn-Tucker condition, enumerate candidates for optimal solutions.

Testing Candidates: Using the second-order conditions, test whether each candidate is:

- an optimal solution the sufficient condition is satisfied
- ▶ not an optimal solution the necessary condition is not satisfied, or
- un-decidable other ad hoc approach is utilized to check candidates.

Find Active Constraints

Try various combinations of active and inactive, as shown in the following procedure:

- 1. For each inequality constraint, we assume it to be active or inactive. Let $\mathcal{I} \subseteq \{1, \dots, m\}$ be a set of indices of active inequality constraints.
- 2. Solve the following simultaneous equations with respect to x, λ and μ .

$$\begin{cases} \nabla f(\mathbf{x}) + \sum_{i=1}^{\ell} \lambda_i \nabla h_i(\mathbf{x}) + \sum_{j=1}^{m} \mu_j \nabla g_j(\mathbf{x}) = \mathbf{0} \\ h_i(\mathbf{x}) = 0, & i \in \{1, \dots, \ell\} \\ g_j(\mathbf{x}) = 0, & j \in \mathcal{I} \\ \mu_k = 0, & k \in \{1, \dots, m\} \setminus \mathcal{I} \end{cases}$$

3. Check whether the solution satisfies constraints and assumptions. That is:

(a)
$$\mu_j \geq 0$$
? $j \in \mathcal{I}$
(b) $g_k(\mathbf{x}) < 0$? $k \in \{1, \dots, m\} \setminus \mathcal{I}$

- If all constraints and assumptions satisfied, output candidate solution
- Otherwise, repeat with other active/inactive assumptions.

Example

In some cases, Lagrangian multiplier and Karush-Kuhn-Tucker condition is used for finding an optimum point analytically, as shown in the following example. Consider the following problem.

$$\label{eq:force_force} \begin{aligned} \mathbf{Minimize} & f(\mathbf{x}) = \mathbf{c}^t \mathbf{x} \\ & \text{where } \mathbf{c} \neq \mathbf{0} \\ \mathbf{subject to} & \mathbf{x}^t \mathbf{x} - 1 \leq 1 \end{aligned}$$

Example

$$\label{eq:force_force} \begin{aligned} & \mathbf{Minimize} & & f(\mathbf{x}) = \mathbf{x}^{\mathrm{t}} \mathbf{Q} \mathbf{x} \\ & \mathbf{subject to} & & \mathbf{x}^{\mathrm{t}} \mathbf{x} - 1 = 0 \end{aligned}$$

where \mathbf{Q} is symmetric and positive definite.

Class Info

- ▶ Midterm exam results: after I finish grading, your score will appear on the LMS.
- Next lecture: Friday, January 27. Duality in Nonlinear Programming. Begin Combinatorial Optimization
- ► Homework 6. Deadline: Friday, January 27 at 18:00.