Experimental data acquisition and processing system for ECG signals

Levy G. S. Galvão

19 de outubro de 2021

- 1 Initial studies
- 2 Methodology
- 3 Results
- 4 Next steps

- 1 Initial studies
- Methodology
- 3 Results
- 4 Next steps

Initial studies: bibliographic research

- Importance of an electrocardiograph (ECG) instrument;
- Electrical and physical characteristics of an ECG signal;
- 3. Distortions associated with the ECG;
- Consolidated data acquisition systems for ECG;
- 5. User interface with the ECG instrument;

Figura: Normal waveform pattern of cardiac signal obtained in ECG. Source: [Khandpur, 2019].

Initial studies: system specification

- 1. Amplitude:
 - ECG signal with $1 \,\mathrm{mV}$ peak-to-peak [Khandpur, 2019];
 - Combined distortions with $\approx 10 \,\mu\mathrm{V}$ peak-to-peak [Khandpur, 1987];
 - Solution: preamplifier gain of 500 [Khandpur, 2019] and CMRR $> +100 {\rm dB}$ [Khandpur, 2019, Khandpur, 2005]
- 2. Frequency range:
 - Typical range 0.05 to $150\,\mathrm{Hz}$ and sampling rate of $300\,\mathrm{samples/s}$;
 - **Solution:** used sampling rate of 500 samples/s;
- 3. Quantization:
 - 16-bit or 24-bit ADC [Khandpur, 2019];
 - Solution: available 12-bit ADC;
- 4. Typical use of bipolar leads arrangement [Khandpur, 2019];

Initial studies: distortions specifications

- 1. Power-line interference:
 - Frequency of $50/60 \,\mathrm{Hz}$;
 - Solution: analog Notch filter;
- 2. Baseline wanders and muscle contraction:
 - Range of 0.05 Hz [Khandpur, 2019, Murugappan, 2014] to 0.5 Hz [Sahin, 2020];
 - Solution: analog high-pass filter;
- 3. Electromagnetic interference:
 - Higher frequencies (RF);
 - Solution: analog low-pass filter;
- 4. AWGN and aliasing:
 - Across all frequency range;
 - **Solution:** analog low-pass filter and digital moving average filter;

- Initial studies
- 2 Methodology
- 3 Results
- 4 Next steps

System overview

System overview

- ECG simulator embedded in an ESP32 microcontroller dev-kit outputting via a built-in 8-bit DAC using the [Quiroz, 2019] model;
- Analog front-end simulated via software in LTSpice;
- ECG DAQ embedded in another ESP32 dev-kit with:
 - Built-in 12-bit ADC;
 - Two cores;
 - USB interface with Python plotter client;
 - DSP for heart rate computation and pathology analysis;

Figura: Diagram relating the cardiac natural pacemakers to non linear variables. Source: [Quiroz, 2019].

- 1 Initial studies
- Methodology
- 3 Results
- 4 Next steps

ECG simulator in 32-bit software vs. 8-bit DAC hardware

ECG - Normal rhythm

ECG simulator for multiples pathology configurations

Analog front-end nodes in time domain

ECG - different stages of acquisition

Analog front-end nodes in frequency domain

ECG - different stages of acquisition

Heart rate analysis in software

ECG - Heart rate in normal rhythm

Visualization in Python USB client: noisy ECG

Visualization in Python USB client: filtered ECG

Visualization in Python USB client: ECG + heart rate

- 1 Initial studies
- Methodology
- 3 Results
- 4 Next steps

Next steps

- Implement the ECG simulator with a better DAC;
- Implement the analog front-end in hardware and validate the wave forms in each node with oscilloscopes;
- Use an external ADC with higher bit resolution and conditioning circuit to address its input to the ADC linear region;
- Transmit the data via wireless protocol via internet;
- Test new topologies for the analog front-end, such as: multistage amplifiers, higher order filters etc.;
- Further enhance the DAQ DSP section;

References

Raghbir Khandpur (2019)

Compendium of Biomedical Instrumentation John Wiley & Sons

Raghbir Khandpur (2005)

Compendium of Biomedical Instrumentation

JMcGraw-Hill New York

Raghbir Khandpur (1987)

Handbook of biomedical instrumentation McGraw-Hill Education

→ □ → → □ → → □ → □ → ○ ○ ○

References

Mesut Sahin (2020)

Instrumentation Handbook for Biomedical Engineers

CRC Press

Murugappan M. et al (2014)

Development of cost effective ECG data acquisition system for clinical applications using LabVIEW IEEE

Quiroz-Juárez (2014)

Generation of ECG signals from a reaction-diffusion model spatially discretized

Nature Publishing Group