PARTITION AROUND MEDOIDS (PAM)

Arleth Michell Morales García

2022-05-27

```
library(cluster)
```

Cargar la matriz de datos

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1. Transformacion de las variables x1, x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

MÉTODO PAM

1. Separacion de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2. Estandarización univariante

```
X.s<-scale(X)</pre>
```

3. Aplicación del algoritmo

```
pam.3<-pam(X.s,3)
```

4. Clusters

```
cl.pam<-pam.3$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##			_	0	2
ππ	2	2	2	2	3
##	2 New Mexico	2 New York	North Carolina	North Dakota	Ohio
	_	2 New York 3	North Carolina 1	North Dakota 2	Ohio 3
##	_	2 New York 3 Oregon	North Carolina 1 Pennsylvania	2	Ohio 3 South Carolina
## ##	New Mexico	3	1	2	3
## ## ##	New Mexico 1 Oklahoma	3	1	2	3 South Carolina 1
## ## ##	New Mexico 1 Oklahoma 3	3 Oregon 2	1 Pennsylvania 3	2 Rhode Island 2	3 South Carolina 1
## ## ## ##	New Mexico 1 Oklahoma 3 South Dakota	3 Oregon 2 Tennessee 1	1 Pennsylvania 3	2 Rhode Island 2 Utah 2	3 South Carolina 1 Vermont 2

5. Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualizacion con Componentes Principales

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Se observa buena variabilidad en los datos.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1. Generación de los cálculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2. Generación del gráfico

Silhouette for PAM

Average silhouette width: 0.22

Su clasificación no es buena, tiene promedio de clasificación más baja que en K-MEDIAS, además tiene observaciones negativas SEGUNDO EJERCICIO

library(cluster)

Cargar la matriz de datos

```
X<-as.data.frame(state.x77)

colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"

## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1. Transformacion de las variables x1, x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"</pre>
```

```
X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

MÉTODO PAM

1. Separacion de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2. Estandarización univariante

```
X.s<-scale(X)</pre>
```

3. Aplicación del algoritmo

```
pam.2<-pam(X.s,2)
```

4. Clusters

```
cl.pam<-pam.2$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	1	1	1	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	1	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	1	2	1	1	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	1	2	1	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	2	2	2	1
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	1	1	2	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	2	1	1	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	2	1	1	2	2
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	2	1	2	2

5. Scatter plot de la matriz con los grupos

```
col.cluster<-c("mediumorchid4","lightseagreen")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Se observa buena variabilidad en los datos.

Visualizacion con Componentes Principales

```
clusplot(X.s,cl.pam)
text(princomp(X.s)$scores[,1:2],
    labels=rownames(X.s),pos=1, col="mediumvioletred")
```

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

El cluster está solapado, algunos estados del cluster 1 comparten similitudes con el cluster 2

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1. Generación de los cálculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2. Generación del gráfico

Silhouette for PAM

Average silhouette width: 0.26

Con 2 clusters se obtiene una mejor clasificación, ya que su clasificación promedio es de 0.26 en cambio con 3 clusters es de 0.22 En este caso, es mejor utilizar solo 2 clusters.