18.102 Assignment 2

Octavio Vega

February 9, 2023

Problem 1

(a)

Proof. Let B be a Banach space. Suppose $T \in \mathcal{B}(B,B)$ and ||I-T|| < 1. Then by Geometric series,

$$\sum_{n=0}^{\infty} ||(I-T)^n|| \le \sum_{n=0}^{\infty} ||I-T||^n = \frac{1}{1-||I-T||} < \infty.$$
 (1)

So the series $\sum_{n=0}^{\infty}(I-T)^n$ converges absolutely, which implies that it converges. Fix $m\in\mathbb{N}$. Then

$$T\sum_{n=0}^{m} (I-T)^n = [I-(I-T)]\sum_{n=0}^{m} (I-T)^n$$
 (2)

$$= \sum_{n=0}^{m} (I - T)^n - \sum_{n=0}^{m} (I - T)^{n+1}$$
 (3)

$$= I - (I - T)^{m+1}, \text{ by telescoping sum.}$$
 (4)

By continuity of T,

$$T\sum_{n=0}^{\infty} (I-T)^n = T\left(\lim_{m\to\infty} \sum_{n=0}^m (I-T)^n\right)$$
 (5)

$$=\lim_{m\to\infty}T\sum_{n=0}^{m}(I-T)^n\tag{6}$$

$$= \lim_{m \to \infty} \left[I - (I - T)^{m+1} \right] \tag{7}$$

$$=I, (8)$$

since ||I - T|| < 1. We can similarly show that $\sum_{n=0}^{\infty} (I - T)^n = I$.

Thus, T is indeed invertible, and $\sum_{n=0}^{\infty} (I-T)^n \to T^{-1}$ in $\mathcal{B}(B,B)$.

(b)

Proof. Let $\mathcal{I}:=\{T\in\mathcal{B}(B,B)|T^{-1}\text{ exists}\}$. We want to show that $\forall T\in\mathcal{I}, \exists \delta>0$ such that if $||S-T||<\delta\implies S\in\mathcal{I}$.

Choose $\delta = \frac{1}{||T^{-1}||}$, and write

$$S = T - (T - S) = T \left[I - T^{-1} (T - S) \right]. \tag{9}$$

If $||S - T|| < \delta = \frac{1}{||T^{-1}||}$, then

$$\frac{1}{||T^{-1}||} > ||S - T|| \tag{10}$$

$$= ||T - T[I - T^{-1}(T - S)]||$$
(11)

$$= ||T|| \cdot ||I - [I - T^{-1}(T - S)]|| \tag{12}$$

$$\implies ||I - [I - T^{-1}(T - S)]|| < \frac{1}{||T^{-1}|| \cdot ||T||} = 1$$
 (13)

$$\implies ||T^{-1}(T-S)|| = ||I - T^{-1}S|| < 1. \tag{14}$$

So by (a), $T^{-1}S$ is invertible, which implies that S is invertible. Thus, $\exists \delta > 0$ such that if $S \in B_{\delta}(T)$, then $S \in \mathcal{I}$.

Therefore, \mathcal{I} is open.