3.2、数字水印基本理论

信息安全中心 钮心忻、杨榆、雷敏

数字水印的提出

- ■水印
 - 存在于纸张、纸币中,用于标识真伪
- 数字水印
 - 对数字产品标识真伪
 - 数字图书馆、网络音频和视频、数字地图等

数字水印系统三要素

- 数字水印
- ■水印嵌入算法
- ■水印检测算法

数字水印构成方式

- ■有意义水印
 - 文本信息,例如: "微软版权所有"
 - 图片信息,商标、徽标、标识等,例如:

随机噪声作为水印

数字水印构成方式

- 无意义水印
 - 伪随机序列, 随机噪声等

伪随机序列作为水印

-

数字水印嵌入和提取模型

水印嵌入模型

水印提取模型

4

水印嵌入模型

■ 设 I 为作品, W 为水印, K 为密钥, 处 理后的水印为

$$\widetilde{W} = F(I, W, K)$$

■水印嵌入过程: 设水印嵌入函数 E , 作品 I 和水印 w , 嵌入水印后的水印作品为

$$I_W = E(I, \widetilde{W})$$

水印提取模型

- ■水印提取过程:设水印提取函数 D , 水印提取的两种形式:
 - 提取水印信息:如文字、徽标
 - 0-1判决: 判定水印存在与否

$$W^* = D(\hat{I}_W, I, K)$$

$$C(W, W^*, K, \delta) = \begin{cases} 1, & W$$
存在 $0, & W$ 不存在

水印算法性能指标

- 水印的应用一般认为在广播监视、版权标记、版权跟踪、内容认证、拷贝控制等方面,不同应用对水印算法性能有不同的要求。
- 根据应用的需求调整水印算法性能,使 各个性能指标在调整的过程中获得妥协 的平衡。
- 某个性能指标的改善,一般是通过牺牲 其他特性的性能得到的。

水印算法性能指标

- 安全性
 - 水印系统抵抗恶意攻击的能力。
- 稳健性(健壮性、鲁棒性)
 - 水印系统抵御常规处理的能力。
- 透明性(保真性、不可感知性)
 - 算法对载体感官质量的影响程度,作品在被算法处理前后的相似程度越高,透明性越好。
- ■容量
 - 在作品中能够嵌入的最大有效载荷比特数。
- 计算量
 - 嵌入算法与提取算法的计算成本。

水印算法性能指标——安全性

- 水印算法/系统的安全性
 - ■假设攻击者知道系统部分知识,并对系统进行了恶意攻击。在这种情况下,若数字水印能够被准确提取和判断,并为版权保护或者完整性保护提供清晰的结论,则称系统是安全的。
- ■水印攻击类型
 - 非授权嵌入、非授权提取、非授权去除。

水印算法性能指标——稳健性

- ■稳健性
 - ■算法承受常规处理的能力。
- ■常规处理
 - ■滤波、去噪、格式转换、打印-扫描、重采 样、有损压缩等等
 - 几何失真
 - 旋转、平移、缩放(RST: Rotation, Translation, Scaling)
 - 抖动(随机去除若干行、列…)

水印算法性能指标——透明性

- 随着嵌入水印信息量的增加,水印作品的感官质量必然下降
- ■水印算法透明性的评价方法
 - 主观
 - 客观

水印透明性的主观度量

- ■以图像为例
- 观察者对图像进行观测,给出评价
- ITU-R Rec.500图像质量度量

等级级别	损 害	质 量
5	不可察觉	优
4	可察觉,不让人厌烦	良
3	轻微的让人厌烦	中
2	让人厌烦	差
1	非常让人厌烦	极差

差分失真度量	
平均绝对差分	$AD = \frac{1}{XY} \sum_{x,y} \left p_{x,y} - \widetilde{p}_{x,y} \right $
均方误差	$MSE = \frac{1}{XY} \sum_{x,y} (p_{x,y} - \tilde{p}_{x,y})^2$
<i>L^p</i> —范数	$L^{p} = \left(\frac{1}{XY} \sum_{x,y} \left p_{x,y} - \widetilde{p}_{x,y} \right ^{p} \right)^{1/p}$
拉普拉斯均方误差	$LMSE = \sum_{x,y} \left(\nabla^2 p_{x,y} - \nabla^2 \widetilde{p}_{x,y} \right)^2 / \sum_{x,y} \left(\nabla^2 p_{x,y} \right)^2$
信噪比	$SNR = \sum_{x,y} p_{x,y}^{2} / \sum_{x,y} (p_{x,y} - \tilde{p}_{x,y})^{2}$
峰值信噪比	$PSNR = XY \max_{x,y} p_{x,y}^{2} / \sum_{x,y} (p_{x,y} - \tilde{p}_{x,y})^{2}$
	15

15

相关失真度量

归一化互相关	$NC = \sum_{x,y} p_{x,y} \tilde{p}_{x,y} / \sum_{x,y} p_{x,y}^2$
相关质量	$CQ = \sum_{x,y} p_{x,y} \tilde{p}_{x,y} / \sum_{x,y} p_{x,y}$

其它

全局西格马信噪比

$$GSSNR = \sum_{b} \sigma_{b}^{2} / \sum_{b} (\sigma_{b} - \tilde{\sigma}_{b})^{2}$$
其中,
$$\sigma_{b} = \sqrt{\frac{1}{n} \sum_{b} p_{x,y}^{2} - \left(\frac{1}{n} \sum_{b} p_{x,y}\right)^{2}}$$

直方图相似性

$$HS = \sum_{c=0}^{255} \left| f_I(c) - f_{\widetilde{I}}(c) \right|$$

1. NMSE(Normalised MSE,标准均方误差)

$$NMSE = \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j) - R(i,j)]^{2} / \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j)]^{2}$$

2. SC (Structural content,结构化内容)

$$SC = \sum_{i=1}^{M} \sum_{j=1}^{N} \left[I(i,j) \right]^2 / \sum_{i=1}^{M} \sum_{j=1}^{N} \left[R(i,j) \right]^2$$

3. AAD (Absolute average difference 绝对平均差)

$$AAD = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} |I(i,j) - R(i,j)|$$

4. CQ (Correlation quality,相关性)

$$CQ = \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j) \ R(i,j)] / \sum_{i=1}^{M} \sum_{j=1}^{N} I(i,j)$$

5. NCC (Normalised cross-correlation, 归一化相关系数)

$$NCC = \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j) | R(i,j)] / \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j)]^{2}$$

6. PMSE (Peak MSE,峰值均方误差)

$$PMSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i,j) - R(i,j)]^{2} / 255^{2}$$

7. IF (Image fidelity,图像保真度)

$$IF = 1 - \left(\sum_{i=1}^{M} \sum_{j=1}^{N} \left[I(i,j) - R(i,j) \right]^2 / \sum_{i=1}^{M} \sum_{j=1}^{N} \left[I(i,j) \right]^2 \right)$$

8. PSNR (Peak Signal Noise Ratio,峰值信噪比)

$$PSNR = 10\log_{10}\left[M \times N \times 255^{2} / \sum_{i=1}^{M} \sum_{j=1}^{N} (I(i, j) - R(i, j))^{2}\right]$$

数字水印的分类

- 从作品类型上分类
- 从透明性上分类
- 从嵌入方式上分类
- 从检测方法上分类
- 从稳健性上分类

- ■图像水印
 - 图像是使用最多的一种多媒体数据,也是 经常引起版权纠纷的一类载体。
 - 彩色/灰度图像,卡通,设计图,二值图像(徽标、文字),等
- 视频水印
 - 保护视频产品和节目制作者的合法利益。
- ■音频水印
 - 保护MP3、CD、广播电台的节目内容等。

• 软件水印

- 是镶嵌在软件中的一些模块或数据,通过它们证明该软件的版权所有者和合法使用者等信息。
- 软件水印分为静态水印和动态水印两类
 - 静态水印:不依赖于软件的运行状态,可以在软件编制时或编制完成后被直接加入。
 - 动态水印:依赖于软件的运行状态,通常时在一类特殊的输入下才会产生,水印的验证也是在特定的时机下才能完成。

• 文档水印

确定文档数据的所有者。

从透明性上分类

- 可见水印(可察觉水印)
 - 如电视节目上的半透明标识,其目的在于明确标识版权,防止非法的使用,虽然降低了资料的商业价值,却无损于所有者的使用。
- 不可见水印(不可察觉水印)
 - 水印在视觉上不可见,目的是为了将来起诉 非法使用者。不可见水印往往用在商业用的 高质量图像上,而且往往配合数据解密技术 一同使用。

从透明性上分类

■ 案例: 可见和不可见水印

(a)原始图像

(c)以不可见方式嵌入水印之后的图像

Copyright Playboy

(b)水印信息

(d)以可见方式嵌入水印之后的图像

从嵌入方式上分类

- 空间域水印
 - LSB方法
 - 拼凑方法
 - 文档结构微调方法
- 变换域水印
 - DCT变换,小波变换,傅立叶变换, Fourier-Mellin变换或其它变换

从嵌入方式上分类

■ 案例: 空域水印示意

从嵌入方式上分类

■ 案例: 变换域水印示意

(b) 变换域水印嵌入算法

从检测方法上分类

- 非盲水印和盲水印
 - 非盲水印(私有水印): 水印检测时需要原 始载体
 - 盲水印(公开水印): 水印检测时无需原始 载体
- 私钥水印和公钥水印
 - 私钥水印: 水印加载和检测使用同一密钥
 - 公钥水印:水印加载和检测使用不同的密钥 (同密码学中的公钥密码)

从检测方法上分类

■ 案例: 基于LSB的盲水印系统

从检测方法上分类

基于Cox水印算法非盲水印系统

DCT(DFT ,DWT)

关键系数

判决结果

水印载体

关键系数位置 $p_i = \underset{i}{argmax}(c_i^c)$

关键系数、

原始水印

从稳健性上分类

- 健壮性数字水印
 - ■要求水印能够经受各种常用的操作。
 - 只要载体信号没有被破坏到不可使用的程度,都应 该能够检测出水印信息。
- 脆弱性数字水印(完全脆弱性/半脆弱性)
 - 要求水印对载体的变化很敏感,根据水印的状态来 判断数据是否被篡改过
 - ■特点: 载体数据经过很微小的处理后,水印就会被改变或毁掉。
 - 主要用于完整性保护。
 - 与稳健性水印的要求相反。

健壮性水印例

放大和旋转后的含水印图像 $(size=280\times280,\theta=2)$

提取的水印

健壮性水印例

原始图像

嵌入水印后图像

打印扫描后的图像

■水印仍能正确提取

半脆弱水印例

原始图像

含水印图像

受攻击水印图像

篡改检测 第二层

数字水印的性能评价

水印容量、可感知性、健壮性三者之间 的平衡

隐写术与数字水印的区别

	隐写术	数字水印
用途	用于保密通信	用于版权标识
前提	一般不知有信息隐藏	可以公布有水印存在
主要攻击	隐写分析	对水印的非授权删除
主要考核	透明性	稳健性
安全性含义	不显著改变载体对象统 计特性	能够抵抗恶意攻击
载体(作品)	1、信息与载体无关	1、水印与作品相关
和信息	2、载体可选	2、作品不可选
		37

- 1、请简单介绍数字水印的构成方式。
- 2、请简介数字水印算法性能指标有哪些? 水印算法安全性与隐写算法安全性有何 区别?
- 3、水印算法可分为可见和不可见水印算法,这种分类方式是: ()
- A、根据载体分类; B、根据嵌入方式分类;
- C、根据透明性分类; D、根据鲁棒性分类

- 4、下面类别,哪一个不是根据稳健性分类: () A、脆弱水印; B、半脆弱水印; C、变换域水印; D、鲁棒水印
- 5、关于盲水印,下列说法正确的是:
- A、盲水印指嵌入水印后,载体中的水印是不可见的。
- B、盲水印指提取水印时,算法需要使用原始载体。
- C、盲水印指嵌入水印后,载体中的水印是可见的。
- D、盲水印指提取水印时,算法不需要使用原始载体。

附录

基础练习题解答

- 1、请简单介绍数字水印的构成方式。
 - 答: 数字水印可以是有意义信息,例如版权 声明文本,机构、组织或公司的Logo。还可 以是无意义信息,例如随机数序列。

- 2、请简介数字水印算法性能指标有哪些? 水印算法安全性与隐写算法安全性有何 区别?
 - 答: 数字水印指标有安全性、稳健性、透明性、容量和计算量等。
 - 隐写算法安全性描述算法对载体统计特征的影响程度,安全的隐写算法不显著改变载体统计特征。
 - 数字水印算法安全性描述算法抵抗恶意攻击的能力, 安全的水印算法能抵抗恶意攻击。

■ 3、水印算法可分为可见和不可见水印算法,这种分类方式是: ()

A、根据载体分类; B、根据嵌入方式分类; C、根据透明性分类; D、根据鲁棒性分类 答: 选(C),根据透明性,水印算法可以分为可见和不可见水印算法两类。

■ 4、下面类别,哪一个不是根据稳健性分类: () A、脆弱水印; B、半脆弱水印; C、变换域水印; D、鲁棒水印

答: 选(C)。根据稳健性,水印算法分为稳健,半脆弱和脆弱水印三类。

- 5、关于盲水印,下列说法正确的是:
- A、盲水印指嵌入水印后,载体中的水印是不可见的。
- B、盲水印指提取水印时,算法需要使用原始载体。
- C、盲水印指嵌入水印后,载体中的水印是可见的。
- D、盲水印指提取水印时,算法不需要使用原始载体。

答:选(**D**)。按提取水印时,是否需要原始载体,水印算法可分为盲水印和非盲水印算法两类。