

Outline

- Brief review
- Artificial Intelligence Tribes
- Some concepts of Machine Learning
- Univariate linear regression
- Basics of Python

A brief history of AI

Brief review

Lecture 2 - 3/72

Thursday

Keys triggered the revolution of AI

Brief review

Lecture 2 - 4/72

Thursday

What is artificial intelligence (AI)?

Lecture 2 - 5/72 2021/3/18
Thursday

What is artificial intelligence (AI)?

■ Weak AI or Narrow AI:

- •Weak AI is all around us and is the most successful realization of artificial intelligence to date.
- •They are focused on a single task and achieve comparable performance to human beings.
- •Generally, the weak AI system that plays go cannot play poker or chess.
- •Examples: AlphaGO, "expert" medical diagnosis systems and stock-trading systems.

■ Strong AI or Artificial General Intelligence (AGI):

- •It is supposed to solve any problem rather than some specific task.
- •The ultimate ambition of strong AI is to produce a machine whose overall intellectual ability is indistinguishable from that of a human being.
- •Examples: the robots from Westworld or Data from Star Trek: The Next Generation.
- •Is Strong AI Possible? & shall we pursue strong AI?

Brief review Lecture 2 - 6/72

Outline

- Brief review
- Artificial Intelligence Tribes
- Some concepts of Machine Learning
- Univariate linear regression
- Basics of Python

intelligence behavior

Behavior could be controlled by the brain.

intelligence behavior

Behavior could be controlled by the brain.

Neural network

A combination of different approaches seems to be a better choice

Outline

- Brief review
- Artificial Intelligence Tribes
- Some concepts of Machine Learning
- Univariate linear regression
- Basics of Python

Arthur Samuel (1959). Machine learning: Field of study that gives computers the

ability to learn without being explicitly programmed.

I am not a very good checkers player.

Supervised Learning

Unsupervised Learning

Reinforcement Learning

A widely quoted and formal definition is "<u>A</u> <u>computer program (agent)</u> is said to <u>learn from</u> experience <u>E</u> with respect to some task <u>T</u> and some performance measure <u>P</u>, if its performance on <u>T</u>, as measured by <u>P</u>, improves with experience <u>E</u>"

---Tom Mitchell(1998)

Supervised Learning **Unsupervised Learning** Reinforcement Learning Learning ability AI Memory **Prediction** ability ability

What is learning

Learning

- Task: handwritten digit recognition
- Agent
- Experience: handwritten digits and the corresponding answers by father
- Performance Measure

The performance on Task is improved

Machine Learning

- Task: handwritten digit recognition
- Model
- Dataset: handwritten digits and the corresponding answers
- Performance function

The performance on Task is improved

Machine Learning

- Task: handwritten digit recognition
- Model
- Dataset: $D = \{(x, y)\}$
- Performance function: measure the learning

Machine Learning

- Task: handwritten digit recognition
- Model
- Dataset: $D = \{(x, y)\}$
- Performance function: measure the learning

Machine Learning

- Task: handwritten digit recognition
- Model: a = F(x)
- Dataset: $D = \{(x,y)\}$
- Performance function: J(y, a)

Given a task T and dataset D, machine learning is to approximate the unknown function y = H(x) by updating the model a = F(x) to improving the performance function J(y, a) on task T

machine learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

• The dataset contains the true answer(label):

$$D=\{(x,y)\}$$

- Classification
- Regression

Unsupervised Learning

Reinforcement Learning

Outline

- Brief review
- Some concepts of Machine Learning
- Univariate linear regression
- Basics of Python

Outline

- Brief review
- Some concepts of Machine Learning
- Univariate linear regression
 - An Example
 - Least Squares Approximations
 - Steepest Gradient Descend Method
- Basics of Python

Univariate linear regression

Univariate linear regression

Regression

Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

regression is to learn a function

$$a = F(x)$$
,

where the output of the model a is close to the real label y.

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Model: a = F(x)

Machine Learning

- \bullet Task T
- Model: a = F(x)
- Dataset: $D = \{(x,y)\}$
- Performance function: J(y, a)

Given a task T and dataset D, machine learning is to approximate the unknown function y = H(x) by updating the model a = F(x) to improving the performance function J(y, a) on task T

Regression

Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

regression is to learn a function

$$a = F(x)$$
,

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Model: a = F(x)

Regression

Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

regression is to learn a function

$$a = F(x)$$
,

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Model: a = F(x)

- 1. Predict real value for new point
- 2. interpret the relation of variables

Linear Regression

Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

regression is to learn a function

$$a = F(x)$$
,

where the output of the model a is close to the real label y.

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Model: a = F(x)

Linear Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

linear regression is to learn a linear function

$$a = wx + b$$

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Linear Model: a = wx + b

Linear Regression

Linear Regression

Given a dataset

$$D = \{(x \in R^n, y \in R)\},\$$

linear regression is to learn a linear function

$$a = wx + b$$

- Dataset: $D = \{(x \in R^n, y \in R)\}$
- Linear Model: a = wx + b

Univariate Linear Regression

Univariate Linear Regression

Given a dataset

$$D = \{(x \in R, y \in R)\},\$$

univariate linear regression is to learn a linear function

$$a = wx + b$$

- Dataset: $D = \{(x \in R, y \in R)\}$
- Linear Model: a = wx + b

Univariate Linear Regression

Univariate Linear Regression

Given a dataset

$$D = \{(x \in R, y \in R)\},\$$

univariate linear regression is to learn a linear function

$$a = wx + b$$

- Dataset: $D = \{(x \in R, y \in R)\}$
- Linear Model: a = F(x)

How to find the appropriate w and b?

Please predict the price for a house with 5 square!!!

square	price
1.156762	3.949326
2.624116	1.746431
2.943006	9.902035
2.499967	5.326710
3.530516	10.569117
4.045524	12.493749
5.607250	14.531507
5.784322	15.758228
7.016050	12.235891
8.304229	12.536069
7.351775	19.349313
8.799763	18.347272
9.346700	18.812099
10.232547	19.750414
11.872116	24.672962

An example Lecture 2 - 48/72 2021/3/18 Thursday

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object: For each x^i , let a^i is close to y^i

7

square	price
1.156762	3.949326
2.624116	1.746431
2.943006	9.902035
2.499967	5.326710
3.530516	10.569117
4.045524	12.493749
5.607250	14.531507
5.784322	15.758228
7.016050	12.235891
8.304229	12.536069
7.351775	19.349313
8.799763	18.347272
9.346700	18.812099
10.232547	19.750414
(1.872116)	24.672962

$$(x \in R, y \in R)$$

2021/3/18 Thursday

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object: For each x^i , let a is close to y^i

For each (x^i, y^i) , let e^i as small as possible

An example

Lecture 2 - 50/72

Thursday

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object: For each x^i , let a is close to y^i

For each (x^i, y^i) , let e^i as small as possible

$$e^i = \frac{1}{2} \left(a^i - y^i \right)^2$$

input

$$e^{i} = (a^{i} - y^{i})$$
 $e^{i} = |a^{i} - y^{i}|$ $e^{i} = \sqrt{(a^{i} - y^{i})^{2}}$

An example

Lecture 2 - 51/72

Thursday

Cost function

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object: For each x^i , let a is close to y^i

For each (x^i, y^i) , let e^i as small as possible

$$e^i = \frac{1}{2} \left(a^i - y^i \right)^2$$

Given *D*, let cost function $J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$ as small as possible

input

Cost function

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\},$ where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

Object: For each x^i , let a is close to y^i

For each (x^i, y^i) , let e^i as small as possible $e^i = \frac{1}{2} (a^i - y^i)^2$

$$e^i = \frac{1}{2} \left(a^i - y^i \right)^2$$

Given D, let cost function $J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$ as small as possible

cost function:
$$J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$$
$$= \frac{1}{2m} \sum_{i=1}^{m} (w x^i + b - y^i)^2$$

$$\underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2} = \underset{w,b}{\operatorname{argmin}} J(w, b)$$

2021/3/18 Lecture 2 - 53/72 <u>Thursday</u>

variables

Cost function

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object:

$$\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

?

cost function: $J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$ $= \frac{1}{2m} \sum_{i=1}^{m} (w x^i + b - y^i)^2$ variables

How to find minimum point (w,b) of cost function J

minimum point

General Nonlinear function J(w,b), (w^*,b^*) is a minimum point if $J(w^*,b^*) \leq J(w,b)$ for any (w,b) that very close to (w^*,b^*) .

An example

Lecture 2 - 55/72

Lecture 2 - 55/72

Thursday

minimum point

General Nonlinear function J(w,b), (w^*,b^*) is a minimum point if $J(w^*,b^*) \leq J(w,b)$ for any (w,b) that very close to (w^*,b^*) .

cost function: $J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$ = $\frac{1}{2m} \sum_{i=1}^{m} (w x^i + b - y^i)^2$

How to find minimum point (w,b) of cost function J

An example

Lecture 2 - 56/72

Thursday

minimum point

General Nonlinear function J(w,b), (w^*,b^*) is a minimum point if $J(w^*,b^*) \leq J(w,b)$ for any (w,b) that very close to (w^*,b^*) .

For a differentiable function J(w, b), if (w^*, b^*) is a minimum point of J, then the following equation holds:

$$\left\{ \frac{\partial J}{\partial w} \Big|_{w=w^*} = 0 \\ \left\{ \frac{\partial J}{\partial b} \Big|_{b=b^*} = 0 \right\} \right\}$$

$$\frac{\partial J}{\partial w} = \frac{1}{2m} \sum_{i=1}^{m} \frac{\partial (w \, x^i + b - y^i)^2}{\partial (w \, x^i + b - y^i)} \cdot \frac{\partial (w \, x^i + b - y^i)}{\partial w}$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (wx^i + b - y^i) \cdot x^i = \mathbf{0}$$

$$\frac{\partial J}{\partial b} = \frac{1}{2m} \sum_{i=1}^{m} \frac{\partial (w \, x^i + b - y^i)^2}{\partial (w \, x^i + b - y^i)} \cdot \frac{\partial (w \, x^i + b - y^i)}{\partial b}$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (wx^i + b - y^i)$$
 = **0**

For a differentiable function J(w, b), if (w^*, b^*) is a minimum point of J, then the following equation holds:

$$\left. \begin{cases} \frac{\partial J}{\partial w} \Big|_{w=w^*} = 0 \\ \frac{\partial J}{\partial b} \Big|_{b=b^*} = 0 \end{cases}$$

cost function:
$$J = \frac{1}{2m} \sum_{i=1}^{m} (a^i - y^i)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (w x^i + b - y^i)^2$

$$\frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) = 0$$

$$\sum_{i=1}^{m} (wx^i - y^i) + \sum_{i=1}^{m} b = 0$$

$$mb$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y^{i} - w \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \cdot x^{i}$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i})$$

$$\frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \cdot x^{i} = 0$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y^{i} - w \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

$$\sum_{i=1}^{m} \left[wx^{i} + \frac{1}{m} \sum_{j=1}^{m} y^{j} - w \frac{1}{m} \sum_{j=1}^{m} x^{j} - y^{i} \right] \cdot x^{i} = 0$$

$$\sum_{i=1}^{m} \left[w \left(x^{i} - \frac{1}{m} \sum_{j=1}^{m} x^{j} \right) + \frac{1}{m} \sum_{j=1}^{m} y^{j} - y^{i} \right] \cdot x^{i} = 0$$

$$w \left(\sum_{i=1}^{m} x^{i} x^{i} - \sum_{i=1}^{m} \frac{1}{m} \sum_{j=1}^{m} x^{j} x^{i} \right) = \sum_{i=1}^{m} y^{i} \cdot x^{i} - \sum_{i=1}^{m} \frac{1}{m} \sum_{j=1}^{m} y^{j} x^{i}$$

$$\frac{1}{m} \sum_{i=1}^{m} \left[x^{i} \sum_{j=1}^{m} x^{j} \right] = \frac{1}{m} \left(\sum_{j=1}^{m} x^{j} \right)^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} \left[x^{i} \sum_{j=1}^{m} y^{j} \right]$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y^{i} - w \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

$$w = \frac{\sum_{i=1}^{m} y^{i} \cdot x^{i} - \frac{1}{m} \sum_{i=1}^{m} [x^{i} \sum_{j=1}^{m} y^{j}]}{\sum_{i=1}^{m} x^{i} x^{i} - \frac{1}{m} (\sum_{i=1}^{m} x^{i})^{2}}$$

$$\begin{cases} \bar{y} = \frac{1}{m} \sum_{i=1}^{m} y^{i} \\ \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x^{i} \end{cases}$$

$$b = \bar{y} - w\bar{x}$$

$$w = \frac{\sum_{i=1}^{m} y^{i} \cdot x^{i} - m\bar{y}\bar{x}}{\sum_{i=1}^{m} x^{i} x^{i} - m\bar{x}^{2}}$$

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

• Object:

$$\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y^{i} - w \frac{1}{m} \sum_{i=1}^{m} x^{i}$$

$$w = \frac{\sum_{i=1}^{m} y^{i} \cdot x^{i} - \frac{1}{m} \sum_{i=1}^{m} [x^{i} \sum_{j=1}^{m} y^{j}]}{\sum_{i=1}^{m} x^{i} x^{i} - \frac{1}{m} (\sum_{i=1}^{m} x^{i})^{2}}$$

$$\begin{cases} \bar{y} = \frac{1}{m} \sum_{i=1}^{m} y^{i} \\ \bar{x} = \frac{1}{m} \sum_{i=1}^{m} y^{i} \end{cases}$$

$$b = \bar{y} - w\bar{x}$$

$$w = \frac{\sum_{i=1}^{m} y^{i} \cdot x^{i} - m\bar{y}\bar{x}}{\sum_{i=1}^{m} x^{i} x^{i} - m\bar{x}^{2}}$$

square	price
1.156762	3.949326
2.624116	1.746431
2.943006	9.902035
2.499967	5.326710
3.530516	10.569117
4.045524	12.493749
5.607250	14.531507
5.784322	15.758228
7.016050	12.235891
8.304229	12.536069
7.351775	19.349313
8.799763	18.347272
9.346700	18.812099
10.232547	19.750414
11.872116	24.672962

predict the price for a house with 5 square feet

$$1.79 * 5 + 2.44 = 10.71$$

$$\begin{cases} w = \frac{\sum_{i=1}^{m} y^{i} \cdot x^{i} - m\bar{y}\bar{x}}{\sum_{i=1}^{m} x^{i} x^{i} - m\bar{x}^{2}} \\ b = \bar{y} - w\bar{x} \end{cases}$$

$$\begin{cases} \bar{y} = \frac{1}{m} \sum_{i=1}^{m} y^{i} \\ \bar{x} = \frac{1}{m} \sum_{i=1}^{m} y^{i} \end{cases}$$

Finding a minimum point step by step

$$w(k+1) = w(k) + \alpha_k \cdot p_k^w$$

$$b(k+1) = b(k) + \alpha_k \cdot p_k^b$$

 p_k^w , p_k^b are called searching direction

 α_k is learning rate at step k.

Gradient:
$$\begin{cases} \frac{\partial J}{\partial w} \Big|_{w=w(k)} \\ \frac{\partial J}{\partial b} \Big|_{b=b(k)} \end{cases}$$

Steepest Descent Algorithm:

$$\begin{cases} p_k^w = -\frac{\partial J}{\partial w} \Big|_{w=w(k)} \\ p_k^b = -\frac{\partial J}{\partial b} \Big|_{b=b(k)} \end{cases}$$

$$\begin{cases} w(k+1) = w(k) - \alpha_k \cdot \frac{\partial J}{\partial w} \Big|_{w(k)} \\ b(k+1) = b(k) - \alpha_k \cdot \frac{\partial J}{\partial b} \Big|_{b(k)} \end{cases}$$

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

Object:

$$\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Steepest Descent Algorithm:

$$\begin{cases} w(k+1) = w(k) - \alpha_k \cdot \frac{\partial J}{\partial w} \Big|_{w(k)} \\ b(k+1) = b(k) - \alpha_k \cdot \frac{\partial J}{\partial b} \Big|_{b(k)} \end{cases}$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \cdot x^{i}$$
$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i})$$

Univariate Linear Regression

- Data:
 - Sample: $(x \in R, y \in R)$, where x is square and y is the price.
 - Dataset: $D = \{(x^i \in R, y^i \in R) | i \in [1, m]\}$, where m=10 is the number of the samples.
- Linear Model:

$$a = wx + b$$

Object:

$$\underset{w,b}{\operatorname{argmin}} J(w,b) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2m} \sum_{i=1}^{m} (a^{i} - y^{i})^{2}$$

Steepest Descent Algorithm

Input: D, w, b, α for k in 1,2,...,K: $\left\{ \frac{\partial J}{\partial w} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \cdot x^{i} \right.$ $\left. \frac{\partial J}{\partial b} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \right.$

}

square	price
1.156762	3.949326
2.624116	1.746431
2.943006	9.902035
2.499967	5.326710
3.530516	10.569117
4.045524	12.493749
5.607250	14.531507
5.784322	15.758228
7.016050	12.235891
8.304229	12.536069
7.351775	19.349313
8.799763	18.347272
9.346700	18.812099
10.232547	19.750414
11.872116	24.672962

predict the price for a house with 5 square feet

$$1.79 * 5 + 2.44 = 10.71$$

Steepest Descent Algorithm

Input:
$$D$$
, w , b , α for k in 1,2,..., K :

$$\frac{\partial J}{\partial w} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i}) \cdot x^{i}$$
$$\frac{\partial J}{\partial b} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (wx^{i} + b - y^{i})$$

$$w \leftarrow w - \alpha \frac{\partial J}{\partial w}$$
$$b \leftarrow b - \alpha \frac{\partial J}{\partial b}$$

Thanks!!!