- 16.1. Что можно сказать об операторе, который компактен и фредгольмов одновременно?
- **16.2.** Пусть $a_0, \ldots, a_n \in C[a, b]$. Докажите, что оператор

$$D: C^n[a, b] \to C[a, b], \quad D(y) = y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y$$

фредгольмов, и вычислите его индекс.

16.3. Докажите, что оператор

$$D: C^1(S^1) \to C(S^1), \quad D(f) = f'$$

фредгольмов, и вычислите его индекс.

- **16.4.** Пусть $\lambda \in \ell^{\infty}$, и пусть M_{λ} соответствующий диагональный оператор в ℓ^{p} или в c_{0} . Найдите условие на λ , необходимое и достаточное для фредгольмовости M_{λ} . Вычислите его индекс.
- **16.5.** Пусть $f \in C[a,b]$, и пусть M_f оператор умножения на f в C[a,b]. Найдите условие на f, необходимое и достаточное для фредгольмовости M_f . Вычислите его индекс.
- **16.6.** Пусть $I \subseteq \mathbb{R}$ промежуток, $f \colon I \to \mathbb{C}$ существенно ограниченная измеримая функция, и пусть M_f оператор умножения на f в $L^p(I)$ $(1 \leqslant p \leqslant \infty)$. Найдите условие на f, необходимое и достаточное для для фредгольмовости M_f . Вычислите его индекс.
- **16.7-b.** Сделайте то же, что в предыдущей задаче, для оператора умножения в пространстве $L^p(X,\mu)$ $(1\leqslant p\leqslant \infty)$, где (X,μ) пространство с мерой.
- **16.8-b** (второе доказательство аддитивности индекса). Пусть X,Y,Z векторные пространства, $T\colon X\to Y$ и $S\colon Y\to Z$ фредгольмовы операторы. Постройте разложения $X=X_0\oplus X_1,$ $Y=Y_0\oplus Y_1$ и $Z=Z_0\oplus Z_1$ так, чтобы выполнялись следующие условия:
- 1) X_0, Y_0 и Z_0 конечномерны;
- 2) $T(X_i) \subset Y_i \text{ if } S(Y_i) \subset Z_i \text{ } (i = 0, 1);$
- 3) T изоморфизм X_1 на Y_1 , а S изоморфизм Y_1 на Z_1 .

Из существования таких разложений выведите, что формулу $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$ достаточно доказать для операторов между конечномерными пространствами. Докажите эту формулу.

- **16.9-b** (*третье доказательство аддитивности индекса*). **1)** Пусть X, Y векторные пространства, $X_1 \subset X$ и $Y_1 \subset Y$ векторные подпространства и $T: X \to Y$ линейный оператор, осуществляющий изоморфизм между X_1 и Y_1 . Определим линейный оператор $\widehat{T}: X/X_1 \to Y/Y_1$ формулой $\widehat{T}(x+X_1) = T(x) + Y_1$. Постройте изоморфизмы $\ker T \cong \ker \widehat{T}$ и $\operatorname{Coker} T \cong \operatorname{Coker} \widehat{T}$. Выведите отсюда, что T фредгольмов $\iff \widehat{T}$ фредгольмов, и $\operatorname{ind} T = \operatorname{ind} \widehat{T}$.
- **2)** Пусть X,Y,Z векторные пространства, $T:X\to Y$ и $S:Y\to Z$ фредгольмовы операторы. Постройте подпространства конечной коразмерности $X_1\subset X,Y_1\subset Y$ и $Z_1\subset Z$ так, чтобы T осуществлял изоморфизм X_1 на Y_1 , а S изоморфизм Y_1 на Z_1 . Из существования таких подпространств и из п.1 выведите, что формулу $\operatorname{ind}(ST)=\operatorname{ind} S+\operatorname{ind} T$ достаточно доказать для операторов между конечномерными пространствами. Докажите эту формулу.
- **16.10** (классические теоремы Фредгольма). Пусть $I = [a, b], K \in C(I \times I)$ и $f \in C(I)$. Рассмотрим следующие уравнения в C(I):

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y) \, dy = f(x), \tag{1}$$

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y) \, dy = 0, \tag{2}$$

$$\psi(x) - \int_{a}^{b} K(y, x)\psi(y) \, dy = 0. \tag{3}$$

Докажите следующие утверждения:

- I. Уравнение (1) разрешимо тогда и только тогда, когда для любого решения ψ уравнения (3) выполнено условие $\int_a^b f(x)\psi(x)\,dx=0$. II. Если уравнение (2) имеет лишь тривиальное решение, то уравнение (1) имеет единствен-
- II. Если уравнение (2) имеет лишь тривиальное решение, то уравнение (1) имеет единственное решение для любой $f \in C(I)$. Если же уравнение (2) имеет нетривиальное решение, то уравнение (1) разрешимо не для всех $f \in C(I)$.
 - III. Уравнения (2) и (3) имеют одно и то же конечное число линейно независимых решений.

Указание. С помощью теоремы Рисса—Шаудера докажите аналоги утверждений I–III в пространстве $L^2(I)$, а затем докажите, что если функции f и K непрерывны и $\varphi \in L^2(I)$ — решение уравнения (1), то φ непрерывна.