МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

VT	BI	ED	W	ПΛ	Ю

	Заведующий кафедрой
Программирования и инфор	мационных технологий
<i>@</i> /	проф. Махортов С.Д,
	03.05.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.15 Введение в программирование

1. Код и наименование направления подготовки/специальности:

09.03.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Обработка информации и машинное обучение

- 3. Квалификация (степень) выпускника: Бакалавр
- 4. Форма обучения: Очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

Программирования и информационных технологий

6. Составители программы:

ст. преподаватель каф. ПиИТ Соломатин Дмитрий Иванович

e-mail: solomatin@cs.vsu.ru факультет: Компьютерных наук

кафедра: Программирования и информационных технологий

7. Рекомендована:

НМС ф-та компьютерных наук, протокол № 7 от 03.05.2023						

8. Учебный год: 2023-2024 Семестр(ы): 1

9. Цели и задачи учебной дисциплины:

Изучение студентами основ программирования и принципов проектирования программ, а также овладение практическими навыками написания относительно простых программ (на конкретном языке).

10. Место учебной дисциплины в структуре ООП:

Учебная дисциплина относится к обязательной части блока Б1.

Для успешного освоения дисциплины необходимы знания математики и основ информатики в объеме школьной программы.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.1	Знает основы математики, физики, вычислительной техники и программирования	Знать: основы математики, физики, вычислительной техники и программирования и понимать взаимосвязь
ОПК-2	Способен использовать современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач	ОПК-2.1	Знает современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности	Знать: возможности современных языков программирования (на примере конкретного языка) при решении задач профессиональной деятельности
	профессиональной деятельности	ОПК-2.2	Умеет выбирать современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности	Уметь: выбирать средства языка программирования и использовать возможности современных сред разработки при решении задач профессиональной деятельности

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
		ОПК-2.3	Имеет навыки применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности	Владеть: современным языком программирования на достаточном уровне, чтобы решать задачи профессиональной деятельности приемлемого уровня сложности
ОПК-6	Способен разрабатывать алгоритмы и программы, пригодные для практического применения в области информационных систем и технологий	ОПК-6.1	Знает методы алгоритмизации, языки и технологии программирования, пригодные для практического применения в области информационных систем и технологий	Знать: основные алгоритмические конструкции языка программирования и принципы алгоритмизации задач
		ОПК-6.2	Умеет применять методы алгоритмизации, языки и технологии программирования при решении профессиональных задач в области информационных систем и технологий	Уметь: применять средства разработки (язык программирования и среду разработки) при реализации практических задач в области информационных систем и технологий
		ОПК-6.3	Имеет навыки программирования, отладки и тестирования прототипов программно-технических комплексов задач	Владеть: навыками программирования решения практических задач, а также их тестирования и отладки

12. Объем дисциплины в зачетных единицах/час. (в соответствии с уч. планом) – 4 / 144.

Форма промежуточной аттестации – Экзамен

13. Виды учебной работы

		Трудоемкость			
Вид уче	бной работы	Всего	По семестрам		
			1 сем.	-	-
Аудиторные занятия		66	66	ı	ı
	лекции	34	34	-	-
в том числе:	практические	16	16	_	_
	лабораторные	16	16	ı	-
Самостоятельная работа		42	42	_	_
в том числе: курс	в том числе: курсовая работа (проект)		_	_	_

	Трудоемкость			
Вид учебной работы	Всего	По семестрам		
		1 сем.	-	ı
Форма промежуточной аттестации (зачет – 0 час. / экзамен – 36 час.)	36	36	-	-
Итого:	144	144	_	_

13.1. Содержание дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК				
1. Лекции 1.1 Введение в предмет Цели и задачи изучения дисциплины; понятие и							
1.1	Введение в предмет	Цели и задачи изучения дисциплины; понятие и свойства алгоритма; краткий обзор языка Java; примеры и разбор простейших программ на языке Java; краткий обзор сред разработки Java-программ; создание проекта в среде разработки					
1.2	Переменные и типы данных, ввод-вывод данных	Понятие переменной, понятие типа данных и строгой типизации; стандартные типы языка Java (примитивные и String), преобразования типов; особенности хранения различных типов в памяти компьютера и их обработки; System.in и System.out, ввод данных с помощью класс java.util.Scanner, форматирование вывода с помощью printf и String.format					
1.3	Функции	Понятие функций (статических методов класса применительно к Java): описание и вызов, передача параметров; проектирование программы с использованием функций; важность разделения программы на подзадачи и превильного выделения подзадач, структуризация и принципы повторного использования кода; примеры программ с использованием функций					
1.4	Операторы управления ходом выполнения программ	Условный оператор, составной оператор, тернарный оператор, операторы циклов в Java, операторы break и continue; вложенные блоки кода и видимость пеменных; соглашения по оформлению Java-кода; примеры решения задач					
1.5	Простейшие алгоритмы	Примеры решения задач: перевод десятичного числа в двоичное представление, собственная реализация sqrt методом половинного деления, вычисление числа Пи, выделение n-ой части строки, разделенной запятыми, печать n символов последовательности и др.; разные варианты решения задач и выбор оптимального варианта					
1.6	Составные типы данных	Массивы и множественные массивы (массивы массивов); типичные задачи обработки массивов, класс java.util.Arrays; разработка библиотеки функций ввода/вывода массивов и других функции в виде класс ArrayUtils. Перечисления (enum). Структыры данных в виде простейших классов, важность применения структур для упрощения и струкутризация кода, массивы структур, примеры задач. Массивы и структуры в качестве параметров функций и возвращаемых значений. Понятие типов-значений (value types) и ссылочных типов (reference types) данных в Java, понятие объектов, ссылочная модель и сборка мусора.					

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1.7	Строки	Строки в Java, особенности класса String - особенности реализации (неизменяемость), поддерживаемые методы, сравнение строк с помощью equals. Особенности конкатенации строк и класс StringBuilder. Поверхностное знакомство с регулярными выражения и возможностями их применения (RegExp и некоторые методы String).	
1.8	Типичные задачи обработки массивов и строк	Примеры решения задач: поиск минимума/максимума в массиве, поиск индекса элемента, сортировка массива методом "пузырька", передача различных критериев сортировки в метод Arrays.sort, бинарный поиск в упорябоченном массиве, операции со столбцами и строка в двумерном массиве и др.; демострации важности структуризации программы с помощью фунций на примере задач обработки массивов и строк	
1.9	Основы объектно- ориентированного подхода	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
1.10	Создание приложений с оконным интерфейс	Принципы создания приложений с оконным интерфейсом; библиотека Swing и базовые Swing-компоненты; визуальное проектирование форм (JFrame) в среде разработки, обработка событий компонентов; понятие модели данных для сложных копонентов, JTable и разработка класса JTableUtils для упрощения работы с JTable. Типичная архитектура приложений с оконным интерфейсом и важность разделения логики и отображения, приложения с несколькими формами, примеры приложений. Второй вариант построения оконного интерфейса - с помощью JavaFX, возможности и особенности, примеры приложений.	
1.11	Коллекции	Понятие коллекций, какие виды колдекций бывают (списки, словари, множества, стеки и очереди), иерархия коллекций в Java; списки (List <t>) по сравнению с массивами, методы списков; словари (Мар<k, v="">) и множества (Set<t>) и их методы; понятие обобщенных типов данных и кода (generics); разница между интерфейсом и реализацией (List<t> и ArrayList<t>/LinkedList<t>, Мар<k, v=""> и TreeMap<k, v="">/HashMap<k, v="">); примеры эффективного решения задач с помощью коллекций</k,></k,></k,></t></t></t></t></k,></t>	
1.12	Создание прикладных приложений (создание игры)	Пример создания полноценного оконного приложения на Java - игры "Сапер" в качестве демонстрации применения структур данных (классов, массивов) и алгоритмов применительно к конкретной практической задаче; архитектура приложения с применение ООПподхода - выделение логики в виде отдельно класса, реализация отображение в JTable; знакомство с классом java.awt.Graphics	

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1.13	Рекурсия и рекурсивные алгоритмы	Понятие рекурсии в программирование; прямая и косвенная рекурсия; вычисление факториала, когда стоит и когда не стоит использовать рекурсию; рекурсивное вычисление чисел Фибоначчи - экспоненциальный рост количества повторных вызовов функций в некоторых рекурсивных алгоритмах и возможное решения с помощью кеширования результатов вычислений; примеры решения задач: рисование треугольника Серпинского, сопоставление строки шаблону, обход двумерного поля в глубину и ширину; варианты реализации истинно рекурсивных алгоритмов без рекурсивных вызовов с применение стеков (Stack <t>) и очередей (Queue<t>)</t></t>	
		2. Практические занятия	
2.1	Переменные и типы данных, ввод-вывод данных	Понятие переменной, понятие типа данных и строгой типизации; стандартные типы языка Java (примитивные и String), преобразования типов; особенности хранения различных типов в памяти компьютера и их обработки; System.in и System.out, ввод данных с помощью класс java.util.Scanner, форматирование вывода с помощью printf и String.format	
2.2	Функции	Понятие функций (статических методов класса применительно к Java): описание и вызов, передача параметров; проектирование программы с использованием функций; важность разделения программы на подзадачи и превильного выделения подзадач, структуризация и принципы повторного использования кода; примеры программ с использованием функций	
2.3	Операторы управления ходом выполнения программ	Условный оператор, составной оператор, тернарный оператор, операторы циклов в Java, операторы break и continue; вложенные блоки кода и видимость пеменных; соглашения по оформлению Java-кода; примеры решения задач	
2.4	Простейшие алгоритмы	Примеры решения задач: перевод десятичного числа в двоичное представление, собственная реализация sqrt методом половинного деления, вычисление числа Пи, выделение п-ой части строки, разделенной запятыми, печать п символов последовательности и др.; разные варианты решения задач и выбор оптимального варианта	
2.5	Составные типы данных	Массивы и множественные массивы (массивы массивов); типичные задачи обработки массивов, класс јаva.util.Arrays; разработка библиотеки функций ввода/вывода массивов и других функции в виде класс ArrayUtils. Перечисления (enum). Структыры данных в виде простейших классов, важность применения структур для упрощения и струкутризация кода, массивы структур, примеры задач. Массивы и структуры в качестве параметров функций и возвращаемых значений. Понятие типов-значений (value types) и ссылочных типов (reference types) данных в Java, понятие объектов, ссылочная модель и сборка мусора.	

Nº п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
2.6	Строки	Строки в Java, особенности класса String - особенности реализации (неизменяемость), поддерживаемые методы, сравнение строк с помощью equals. Особенности конкатенации строк и класс StringBuilder. Поверхностное знакомство с регулярными выражения и возможностями их применения (RegExp и некоторые методы String).	
2.7	Типичные задачи обработки массивов и строк	Примеры решения задач: поиск минимума/максимума в массиве, поиск индекса элемента, сортировка массива методом "пузырька", передача различных критериев сортировки в метод Arrays.sort, бинарный поиск в упорябоченном массиве, операции со столбцами и строка в двумерном массиве и др.; демострации важности структуризации программы с помощью фунций на примере задач обработки массивов и строк	
2.8	Основы объектно- ориентированного подхода	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
2.9	Создание приложений с оконным интерфейс	Принципы создания приложений с оконным интерфейсом; библиотека Swing и базовые Swing-компоненты; визуальное проектирование форм (JFrame) в среде разработки, обработка событий компонентов; понятие модели данных для сложных копонентов, JTable и разработка класса JTableUtils для упрощения работы с JTable. Типичная архитектура приложений с оконным интерфейсом и важность разделения логики и отображения, приложения с несколькими формами, примеры приложений. Второй вариант построения оконного интерфейса - с помощью JavaFX, возможности и особенности, примеры приложений.	
2.10	Коллекции	Понятие коллекций, какие виды колдекций бывают (списки, словари, множества, стеки и очереди), иерархия коллекций в Java; списки (List <t>) по сравнению с массивами, методы списков; словари (Мар<k, v="">) и множества (Set<t>) и их методы; понятие обобщенных типов данных и кода (generics); разница между интерфейсом и реализацией (List<t> и ArrayList<t>/LinkedList<t>, Мар<k, v=""> и TreeMap<k, v="">/HashMap<k, v="">); примеры эффективного решения задач с помощью коллекций</k,></k,></k,></t></t></t></t></k,></t>	
2.11	Создание прикладных приложений (создание игры)	Пример создания полноценного оконного приложения на Java - игры "Сапер" в качестве демонстрации применения структур данных (классов, массивов) и алгоритмов применительно к конкретной практической задаче; архитектура приложения с применение ООПподхода - выделение логики в виде отдельно класса, реализация отображение в JTable; знакомство с классом java.awt.Graphics	

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
2.12	Рекурсия и рекурсивные алгоритмы	Понятие рекурсии в программирование; прямая и косвенная рекурсия; вычисление факториала, когда стоит и когда не стоит использовать рекурсию; рекурсивное вычисление чисел Фибоначчи - экспоненциальный рост количества повторных вызовов функций в некоторых рекурсивных алгоритмах и возможное решения с помощью кеширования результатов вычислений; примеры решения задач: рисование треугольника Серпинского, сопоставление строки шаблону, обход двумерного поля в глубину и ширину; варианты реализации истинно рекурсивных алгоритмов без рекурсивных вызовов с применение стеков (Stack <t>) и очередей (Queue<t>)</t></t>	
		3. Лабораторные работы	
3.1	Переменные и типы данных, ввод-вывод данных	Понятие переменной, понятие типа данных и строгой типизации; стандартные типы языка Java (примитивные и String), преобразования типов; особенности хранения различных типов в памяти компьютера и их обработки; System.in и System.out, ввод данных с помощью класс java.util.Scanner, форматирование вывода с помощью printf и String.format	
3.2	Функции	Понятие функций (статических методов класса применительно к Java): описание и вызов, передача параметров; проектирование программы с использованием функций; важность разделения программы на подзадачи и превильного выделения подзадач, структуризация и принципы повторного использования кода; примеры программ с использованием функций	
3.3	Операторы управления ходом выполнения программ	Условный оператор, составной оператор, тернарный оператор, операторы циклов в Java, операторы break и continue; вложенные блоки кода и видимость пеменных; соглашения по оформлению Java-кода; примеры решения задач	
3.4	Простейшие алгоритмы	Примеры решения задач: перевод десятичного числа в двоичное представление, собственная реализация sqrt методом половинного деления, вычисление числа Пи, выделение n-ой части строки, разделенной запятыми, печать n символов последовательности и др.; разные варианты решения задач и выбор оптимального варианта	
3.5	Составные типы данных	Массивы и множественные массивы (массивы массивов); типичные задачи обработки массивов, класс јаva.util.Arrays; разработка библиотеки функций ввода/вывода массивов и других функции в виде класс ArrayUtils. Перечисления (enum). Структыры данных в виде простейших классов, важность применения структур для упрощения и струкутризация кода, массивы структур, примеры задач. Массивы и структуры в качестве параметров функций и возвращаемых значений. Понятие типов-значений (value types) и ссылочных типов (reference types) данных в Java, понятие объектов, ссылочная модель и сборка мусора.	

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3.6	Строки	Строки в Java, особенности класса String - особенности реализации (неизменяемость), поддерживаемые методы, сравнение строк с помощью equals. Особенности конкатенации строк и класс StringBuilder. Поверхностное знакомство с регулярными выражения и возможностями их применения (RegExp и некоторые методы String).	
3.7	Типичные задачи обработки массивов и строк	Примеры решения задач: поиск минимума/максимума в массиве, поиск индекса элемента, сортировка массива методом "пузырька", передача различных критериев сортировки в метод Arrays.sort, бинарный поиск в упорябоченном массиве, операции со столбцами и строка в двумерном массиве и др.; демострации важности структуризации программы с помощью фунций на примере задач обработки массивов и строк	
3.8	Основы объектно- ориентированного подхода	Принципы объектно ориентированного подхода; понятие класса и его экземпляров; различия между static-функциями и методами классов; классы как расширение концепции типа данных в виде объединения данных и методов их обработки, понятие состояния объекта, примеры; принципы инкапсуляции; понятие наследования и полиморфизма; класс Object и его методы	
3.9	Создание приложений с оконным интерфейс	Принципы создания приложений с оконным интерфейсом; библиотека Swing и базовые Swing-компоненты; визуальное проектирование форм (JFrame) в среде разработки, обработка событий компонентов; понятие модели данных для сложных копонентов, JTable и разработка класса JTableUtils для упрощения работы с JTable. Типичная архитектура приложений с оконным интерфейсом и важность разделения логики и отображения, приложения с несколькими формами, примеры приложений. Второй вариант построения оконного интерфейса - с помощью JavaFX, возможности и особенности, примеры приложений.	
3.10	Коллекции	Понятие коллекций, какие виды колдекций бывают (списки, словари, множества, стеки и очереди), иерархия коллекций в Java; списки (List <t>) по сравнению с массивами, методы списков; словари (Мар<k, v="">) и множества (Set<t>) и их методы; понятие обобщенных типов данных и кода (generics); разница между интерфейсом и реализацией (List<t> и ArrayList<t>/LinkedList<t>, Map<k, v=""> и TreeMap<k, v="">/HashMap<k, v="">); примеры эффективного решения задач с помощью коллекций</k,></k,></k,></t></t></t></t></k,></t>	
3.11	Создание прикладных приложений (создание игры)	Пример создания полноценного оконного приложения на Java - игры "Сапер" в качестве демонстрации применения структур данных (классов, массивов) и алгоритмов применительно к конкретной практической задаче; архитектура приложения с применение ООПподхода - выделение логики в виде отдельно класса, реализация отображение в JTable; знакомство с классом java.awt.Graphics	

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3.12	Рекурсия и рекурсивные алгоритмы	Понятие рекурсии в программирование; прямая и косвенная рекурсия; вычисление факториала, когда стоит и когда не стоит использовать рекурсию; рекурсивное вычисление чисел Фибоначчи - экспоненциальный рост количества повторных вызовов функций в некоторых рекурсивных алгоритмах и возможное решения с помощью кеширования результатов вычислений; примеры решения задач: рисование треугольника Серпинского, сопоставление строки шаблону, обход двумерного поля в глубину и ширину; варианты реализации истинно рекурсивных алгоритмов без рекурсивных вызовов с применение стеков (Stack <t>) и очередей (Queue<t>)</t></t>	

13.2. Темы (разделы) дисциплины и виды занятий

			_	· · · ·	,	
		Виды занятий (часов)				
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практи- ческие	Лабора- торные	Самостоя- тельная работа	Всего
1	Введение в предмет	2	_	_	4	6
2	Переменные и типы данных, ввод-вывод данных	2	1	1	4	8
3	Функции	3	1	1	4	9
4	Операторы управления ходом выполнения программ	3	2	2	4	11
5	Простейшие алгоритмы	2	1	1	4	8
6	Составные типы данных	3	1	1	4	9
7	Строки	2	1	1	4	8
8	Типичные задачи обработки массивов и строк	2	2	2	4	10
9	Основы объектно- ориентированного подхода	3	1	1	6	11
10	Создание приложений с оконным интерфейс	4	2	2	6	14
11	Коллекции	2	1	1	6	10
12	Создание прикладных приложений (создание игры)	3	2	2	6	13
13	Рекурсия и рекурсивные алгоритмы	3	1	1	6	11
	Итого:	34	16	16	42	144

14. Методические указания для обучающихся по освоению дисциплины

Рекомендуется работа с конспектами лекций, презентационным материалом, выполнение всех лабораторных и контрольных работ, заданий текущей аттестации. Учебные и методические материалы по дисциплине размещены на сетевом диске, доступным на любом компьютере в локальной сети ФКН.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Эккель, Брюс. Философия Java = Thinking in Java / Брюс Эккель ; [пер. с англ. Е. Матвеева] .— 4- е полное изд. — Москва : Вильямс, 2017 .— 1165 с. : ил. — (Классика computer science) .— ISBN 978-5-496-01127-3.
2	Хорстманн, Кей. Java = Core Java / Кей Хорстманн ; [пер. с англ. и ред. И.В. Берштейна] .— Москва ; Санкт-Петербург ; Киев : Вильямс, 2017— (Библиотека профессионала) .— ISBN 978-5-8459-2083-6.
3	Блох, Джошуа. Java. Эффективное программирование = Effective Java programming language guide / Джошуа Блох ; пер. с англ. В. Стрельцов ; науч. ред. Р. Усманов ; предисл. Г. Стила .— Москва : Лори, 2017 .— 294 с. : табл. — (Серия Java "из первых рук") .— Библиогр.: с. 288-294 .— ISBN 978-5-85582-347-9.

б) дополнительная литература:

Nº	Источник
п/п	ИСТОЧНИК
4	Хорстманн, Кей. Java = Core Java / К. Хорстманн, Г. Корнелл ; [пер. с англ. и ред.И.В. Берштейна] .— Москва ; Санкт-Петербург ; Киев : Вильямс, 2015 .— (Библиотека профессионала) .— ISBN
	— москва , Санкт-петероург , киев : Бильямс, 2015 .— (Виолиотека профессионала) .— 136N 978-5-8459-2032-4.
5	Шилдт, Герберт. Java : руководство для начинающих / Герберт Шилдт ; [пер. с англ. и ред.В.В.
	Вейтмана] .— 4-е изд. — М. [и др.] : Вильямс, 2009 .— 715 с. : ил. — Предм. указ.: с.709-715 .—
	ISBN 978-5-8459-1440-8.
6	Портянкин, Иван Александрович. Swing. Эффектные пользовательские интерфейсы. Java
	Foundftlon Classos / Иван Портянкин .— СПб. [и др.] : Питер, 2005 .— 523 с. — (Библиотека
	программиста) .— Алф. указ.: с.515-523 .— ISBN 5-469-00005-2.
7	Дейтел, Х.М. Как программировать на Java / Х.М. Дейтел, П.Д. Дейтел .— М. : Бином, 2003Кн. 1:
	Основы программирования / Пер. с англ. под ред. А.В. Козлова .— 4-е изд. — 2003 .— 847 с. : ил.
	— Парал. тит. л. англ. — ISBN 5-9518-0015-3.
8	Технологии программирования на Java 2 / Х.М. Дейтел, П.Д. Дейтел, С.И. Сантри .— М. : Бином,
	2003Кн. 1: Графика, JavaBeans, интерфейс пользователя / Пер. с англ. под. ред. А.И. Тихонова
	.— 2003 .— 560 с. : ил. — Парал. тит. л. англ. — ISBN 5-9518-0017-Х .— ISBN 0-13-089560-1.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет):

Nº п/п	Источник
9	Самоучитель по Java с нуля [Электронный ресурс] : — Режим доступа: https://vertex- academy.com/tutorials/ru/samouchitel-po-java-s-nulya/
10	Учебник: программирование на Java [Электронный ресурс] : — Режим доступа: https://java9.ru/
11	Иллюстрированный самоучитель по Java [Электронный ресурс] : — Режим доступа: http://www.realcoding.net/teach/java/

16. Перечень учебно-методического обеспечения для самостоятельной работы

Nº ⊓/⊓	Источник
1	Шилдт, Герберт. Искусство программирования на JAVA : пер. с англ. / Герберт Шилдт, Джеймс
	Холмс .— СПб. [и др.] : БХВ-Петербург, 2005 .— 331 с. : ил. — Парал. тит. л. англ. — Предм. указ.
	: с.330-331, 4000 экз.
2	Лафоре, Роберт. Структуры данных и алгоритмы в Java = Data structures @ algorithms in Java /
	Роберт Лафоре ; [пер. с англ. Е. Матвеева] .— 2-е изд. — Санкт-Петербург [и др.] : Питер, 2014
	.— 701 с. : ил., табл. — (Классика computer science) .— Библиогр.: с.683-685 .— Алф. указ.: с.695-
	701 .— ISBN 985-5-496-00740-5.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

Nº ⊓/⊓	Наименование
1	OpenJDK - беплатен
2	Среда разработки NetBeans или Intellij IDEA (академическая лицензия или версия Community) -
	бесплатны

18. Материально-техническое обеспечение дисциплины:

№ п/п	Наименование
1	Мультимедийная лекционная аудитория (корп. 1а, ауд. № 479 или другая подходящая): рабочее место преподавателя: ПК-Intel-i3, проектор, видеокоммутатор, микрофон, аудиосистема, специализированная мебель: доски меловые 2 шт., столы и стулья/лавки в количестве, достаточном для размещения потока студентов; выход в Интернет, доступ к фондам учебно-
	методической документации и электронным изданиям.
2	Компьютерный класс (корп. 1а, ауд. № 382-385 или другие подходящие): ПК-Intel-i3 16 шт., специализированная мебель: доска маркерная 1 шт., столы и стулья в количестве, достаточном для размещения академической группы (подгруппы) студентов; выход в Интернет, доступ к фондам учебно-методической документации и электронным изданиям.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1	Введение в предмет	ОПК-1, ОПК-2	ОПК-1.1, ОПК-2.1, ОПК-2.2, ОПК-2.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
2	Переменные и типы данных, ввод-вывод данных	ОПК-2	ОПК-2.1, ОПК-2.2, ОПК-2.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
3	Функции	ОПК-2, ОПК-6	ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
4	Операторы управления ходом выполнения программ	ОПК-1, ОПК-2	ОПК-1.1, ОПК-2.1, ОПК-2.2, ОПК-2.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
5	Простейшие алгоритмы	ОПК-1, ОПК-2, ОПК-6	ОПК-1.1, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
6	Составные типы данных	ОПК-2, ОПК-6	ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
7	Строки	ОПК-6	ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
8	Типичные задачи обработки массивов и строк	ОПК-6	ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
9	Основы объектно- ориентированного подхода	ОПК-1, ОПК-6	ОПК-1.1, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
10	Создание приложений с оконным интерфейс	ОПК-1, ОПК-6	ОПК-1.1, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен- ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
11	Коллекции	ОПК-6	ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
12	Создание прикладных приложений (создание игры)	ОПК-1, ОПК-2, ОПК-6	ОПК-1.1, ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
13	Рекурсия и рекурсивные алгоритмы	ОПК-2, ОПК-6	ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК-6.1, ОПК-6.2, ОПК-6.3	Обязательные практические задания из пункта 20.1 (контроль и оценка выполнения)
	Промежу ⁻ форма ко	Перечень вопросов к экзамену из пункта 20.2		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью контроля выполнения обязательных практических заданий. Перечень заданий:

N Ω Π/Π	Задание
1	Задача 1 - Запись выражений и оператор присвания (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
2	Задача 2 - Условный оператор (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
3	Задача 3 - Примененение функций (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
4	Задача 4 - Циклы (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
5	Задача 5 - Циклы (рисование фигуры псевдографикой, >= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
6	Задача 6 - Циклы (вычисление суммы ряда, >= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
7	Задача 7 - Одномерные массивы (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
8	Задача 8 - Двумерные массивы (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
9	Задача 9 - Коллекции (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
10	Задача 10 - Структуры данных (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
11	Задача 11 - Строки (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
12	Задача 12 - Рекурсия (>= 20 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)
13	Задача 13 - Логическая игра (>= 30 индивидуальных вариантов, размещены на общедоступном диске в сети ФКН)

20.2 Промежуточная аттестация

Для оценивания результатов обучения на зачете используются следующие содержательные показатели (формулируется с учетом конкретных требований дисциплины):

- 1) знание теоретических основ учебного материала, основных определений, понятий и используемой терминологии;
- 2) умение проводить обоснование и представление основных теоретических и практических результатов (теорем, алгоритмов, методик) с использованием математических выкладок, блоксхем, структурных схем и стандартных описаний к ним;

- 3) умение связывать теорию с практикой, иллюстрировать ответ примерами, в том числе, собственными, умение выявлять и анализировать основные закономерности, полученные, в том числе, в ходе выполнения лабораторно-практических заданий;
- 4) умение обосновывать свои суждения и профессиональную позицию по излагаемому вопросу;
- 5) владение навыками программирования и экспериментирования в рамках выполняемых лабораторных заданий;

Различные комбинации перечисленных показателей определяют критерии оценивания результатов обучения (сформированности компетенций) на зачете:

- высокий (углубленный) уровень сформированности компетенций;
- повышенный (продвинутый) уровень сформированности компетенций;
- пороговый (базовый) уровень сформированности компетенций.

Для оценивания результатов обучения на зачете с оценкой используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения на экзамене представлено в следующей таблице.

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Студент владеет основными понятиями учебной дисциплины, может пояснить большинство принципов на примерах; вовремя сдал все практические задания, которые выполнены на высоком уровне, без явных ошибок.	Повышенный уровень	Отлично
Студент владеет основными понятиями учебной дисциплины, однако в ответах на некоторые вопросы допускает неточности; сдал все практические задания, однако к некоторым решениям студента у преподавателя есть замечания.	Базовый уровень	Хорошо
Студент знает основные определения из учебной дисциплины, однако пояснить многие понятия на примерах затрудняется; сдал большую часть практических заданий, однако продемонстрированные решения содержат существенные ошибки.	Пороговый уровень	Удовлетворительно
Студент путается в основных понятиях учебной дисциплины, не может привести примеры; не сдал большую часть практических заданий.	-	Неудовлетвори- тельно

Перечень вопросов к экзамену (зачету):

Nº	Родрос
п/п	Вопрос
1	Алгоритм и его свойства
2	Обзор языка Java
3	Типы данных языка Java: типы-значения и ссылочные типы, обзор числовых типов
4	Переменнные, область видимости переменных, строгая типизация
5	Строки и работа со строками (обзор String, StringBuilder, RegExp)
6	Операторы языка Java
7	Соглашения по оформлению Java-кода
8	Функции, структуризация программ с помощью функций
9	Ввод-вывод данных в Java
10	Массивы: одномерные, двумерные, типичные задачи с использованием массивов
11	Сортировка: реализая пузыльковой сортировки, Arrays.sort, различные критерии сортировки
12	Поиск в массиве: последовательный поиск, бинарный в отсортированном массиве
13	Составные типы данных - классы
14	Основы объекно-ориентиртованного подхода
15	Коллекции в языке Java
16	Практические примеры работы со словарями (Мар)
17	Обобщенное программирование (generics), классы-обертки над примитвными типами данных
18	Построение оконного интерфейса с помощью библиотеки Swing, архитектура приложения
19	Работа с компонентом JTable
20	"Рисование" в Java, обзор методов класса Graphics

Nº ⊓/⊓	Вопрос
21	Обзор библиотеки и принципов создания приложений JavaFX
22	Рекурсия и рекурсивные алгоритмы
23	Рекурсия и рекурсивные алгоритмы Рекурсивные алгоритмы: сопоставление строки шаблону
24	Рекурсивные алгоритмы: рисование фракталов
	Рекурсивные алгоритмы: рисование фракталов Рекурсивные алгоритмы: обход поля в глубину
25	
26	Реализация рекурсивных алгоритмов без рекурсии с помощью стека и очереди

20.3. Приведённые ниже задания рекомендуется использовать при проведении диагностических работ для оценки остаточных знаний по дисциплине

Вопросы с множественным ответом (5)

- 1. Строгая типизация предполагает (выберите верные утверждения)?
 - Все используемые в функции переменные должны объявляться строго до остального кода функции.
 - При компиляции программы весь код (все операции) проверяется на совместимость или возможность преобразования типов, несовместимость считается ошибкой.
 - В программе нельзя определить несколько функций с одинаковым именем.
 - Язык программирования обязательно должен быть объектно-ориентированным.
- 2. Какие утверждения верны для массивов в языке Java?
 - Размер массива может быть изменен после его создания.
 - Индексация элементов в массиве начинается с 1.
 - Все элементы в конкретном массиве должны быть одного типа (или наследоваться от одного типа).
 - В одной программе могут использоваться массивы только для одного типа данных.
- 3. Почему для конкатенации множества строк в языке Java следует использовать StringBuilder (выберите верные утверждения)?
 - Конкатенация строк оператором «+» не предусмотрена.
 - При конкатенации строк с помощью оператором «+» результат всегда печатается в консоль (стандартный поток вывода stdout).
 - Конкатенация строк оператором «+» приводит к созданию множества экземпляров строк и многократному копированию данных.
 - Строки не являются ссылочным типом данных.
- 4. Что возвращает функция, приведенная ниже:

```
public int getXYZ(int[] arr) {
    int a = -1;
    for (int i = 0; i < arr.length; i++) {
        if (arr[i] > 0 && (a < 0 || arr[i] < a)) {
            a = arr[i];
        }
    }
    return a;
}</pre>
```

- последнее положительное значение в массиве;
- максимальное значение в массиве;
- минимальное значение после первого положительного значения в массиве;
- минимальное положительное значение в массиве.

5. Какие числа встретятся среди всех напечатанных при выполнении следующего фрагмента кода (требуется указать все правильные варианты):

```
int a = 2, b = 0;
for (int i = 0; i < 20; i++) {
    System.out.println(a);
    a += 7;
    if (a >= 20) {
        a -= 20;
        b++;
        if (b >= 3)
        break;
    }
}
```

- 15
- 16
- 17
- 18
- 6. Строгая типизация предполагает (выберите верные утверждения)?
 - Все используемые в функции переменные должны объявляться строго до остального кода функции.
 - При компиляции программы весь код (все операции) проверяется на совместимость или возможность преобразования типов, несовместимость считается ошибкой.
 - В программе нельзя определить несколько функций с одинаковым именем.
 - Язык программирования обязательно должен быть объектно-ориентированным.
- 7. Определите, что вычисляет следующая функция:

```
public static int solve(int[] arr) {
    int minIndex = 0;
    int maxIndex = 0;
    for (int i = 1; i < arr.length; i++) {
        if (arr[i] < arr[minIndex]) {
            minIndex = i;
        }
        if (arr[i] >= arr[maxIndex]) {
            maxIndex = i;
        }
    }
    return Math.max(Math.abs(minIndex - maxIndex) - 1, 0);
}
```

- количество элементов в массиве между первым минимальным и последним максимальным значением;
- разность между минимальных и максимальным элементом массива;
- количество элементов в массиве между первым максимальным и последним минимальным значением;
- разность между общим количеством минимальных и максимальных элементов в массиве.

- 8. Выберите верные утверждения для циклов:
 - Цикл for выполняется в 2 раза быстрее, чем цикл while.
 - Циклы не могут быть использованы в рекурсивных функциях.
 - В С-подобных языках (например, Java) любой цикл while формально может быть переписан в виде цикла for.
 - Количество вложенных циклов в функции не может быть больше, чем количество параметров в этой функции.

Вопросы с коротким ответом (1)

1. Какая строка будет напечатана в результате выполнения следующего кода?

```
char ch = 'a';
int a = 256;
int b = 0;
while (a > b) {
    System.out.print(ch);
    ch++;
    a = a / 2;
    b++;
}
System.out.println();
Other: abcdef
```

2. Какое максимальное значение могло храниться в переменной х, если в результате выполнения кода, приведенного ниже, было напечатано число 12?

```
int[] arr = {1, 3, x, 7, 10};
int s = 0;
for (int i = 0; i < arr.length; i++) {
    s += arr[i];
}
s = s / 4;
System.out.println(s);
Other: 30</pre>
```

Вопросы развернутые (1)

1. Реализовать на любом языке программирования наиболее эффективный алгоритм, который в массиве целых чисел перенесет в начало массива все нулевые элементы, при этом взаимное расположение ненулевых элементов не должно измениться.

Пример работы алгоритма, который требуется реализовать: $[1,0,0,3,2,0,6,0,0,4,5] \rightarrow [0,0,0,0,0,1,3,2,6,4,5]$ Ответ:

```
public void task(int[] arr) {
   int j = arr.length - 1;
   for (int i = arr.length - 1; i >= 0; i--) {
      if (arr[i] != 0) {
        if (i < j) {
            arr[j] = arr[i];
        }
}</pre>
```

```
}
    j--;
}

for (int i = 0; i <= j; i++) {
    arr[i] = 0;
}
</pre>
```

Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит полную и безошибочную реализацию алгоритма, который работает за O(n).	Отлично (90-100 баллов)
Обучающий приводит корректную реализацию алгоритма, который работает за время, большее, чем O(n).	Хорошо (70-80 баллов)
В реализации допущены некоторые ошибки, но в целом идея реализации алгоритма правильная.	Удовлетворительно (50-70 баллов)
Приведенный алгоритм содержит грубые ошибки реализации.	Неудовлетворительно (менее 50 баллов)

2. Реализовать на любом языке программирования алгоритм, который в массиве целых чисел найдет значение максимального локального минимума. Под локальный минимумом понимается элемент, соседи которого больше данного элемента (у первого и последнего элемента – по одному соседу, у всех остальных – по два, слева и справа).

Пример работы алгоритма, который требуется реализовать (цветом выделен локальные минимумы):

```
[1, 3, 4, 3, 3, 5, 8, 4, 5, 3, 5] \rightarrow 4
Other:
```


Критерии оценивания ответа

Критерии оценивания	Шкала оценок
Обучающийся приводит полную и безошибочную реализацию алгоритма, который работает за O(n), возможно, с выделением функции проверки элемента на локальный минимум.	Отлично (90-100 баллов)
Обучающий приводит корректную реализацию алгоритма, однако более запутанную, чем возможно.	Хорошо (70-80 баллов)
В реализации допущены некоторые ошибки, но в целом идея реализации алгоритма правильная.	Удовлетворительно (50-70 баллов)
Приведенный алгоритм содержит грубые ошибки реализации.	Неудовлетворительно (менее 50 баллов)