Package 'mbmixture'

November 28, 2024

Version 0.6

Date 2024-11-27

Title Microbiome Mixture Analysis

Description Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples.

Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.

Author Karl W Broman [aut, cre] (https://orcid.org/0000-0002-4914-6671)

Depends R (>= 3.1.0)

Imports stats, parallel, numDeriv

Suggests knitr, rmarkdown, testthat, devtools, roxygen2

License MIT + file LICENSE

URL https://github.com/kbroman/mbmixture

BugReports https://github.com/kbroman/mbmixture/issues

VignetteBuilder knitr

LazyData true

Encoding UTF-8

ByteCompile true

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-27 23:20:02 UTC

2 bootstrapNull

Contents

bootstrapNull	2
bootstrapSE	3
mbmixdata	4
mbmix_loglik	5
mle_e	5
$mle_p \ \dots $	6
$mle_pe\ldots\ldots\ldots\ldots\ldots\ldots$	7

8

bootstrapNull

Bootstrap to assess significance

Description

Index

Perform a parametric bootstrap to assess whether there is significant evidence that a sample is a mixture.

Usage

```
bootstrapNull(
  tab,
  n_rep = 1000,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = TRUE,
  cores = 1,
  return_raw = TRUE
)
```

Arguments

tab Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x

genotype in second sample x allele in read.

n_rep Number of bootstrap replicates

interval Interval to which each parameter should be constrained

tol Tolerance for convergence

check_boundary If TRUE, explicitly check the boundaries of interval.

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

return_raw If TRUE, return the raw results. If FALSE, just return the p-value. Unlink

bootstrapSE(), here the default is TRUE.

bootstrapSE 3

Value

If return_raw=FALSE, a single numeric value (the p-value). If return_raw=TRUE, a vector of length n_rep with the LRT statistics from each bootstrap replicate.

See Also

```
bootstrapSE()
```

Examples

```
data(mbmixdata)
# just 100 bootstrap replicates, as an illustration
bootstrapNull(mbmixdata, n_rep=100)
```

bootstrapSE

Bootstrap to get standard errors

Description

Perform a parametric bootstrap to get estimated standard errors.

Usage

```
bootstrapSE(
  tab,
  n_rep = 1000,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE,
  cores = 1,
  return_raw = FALSE
)
```

Arguments

tab Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x

genotype in second sample x allele in read.

n_rep Number of bootstrap replicates

interval Interval to which each parameter should be constrained

tol Tolerance for convergence

check_boundary If TRUE, explicitly check the boundaries of interval.

cores Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().)

Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

return_raw If TRUE, return the raw results. If FALSE, just return the estimated standard

errors.

4 mbmixdata

Value

If return_raw=FALSE, a vector of two standard errors. If return_raw=TRUE, an matrix of size $n_rep \times 2$ with the detailed bootstrap results.

See Also

```
bootstrapNull()
```

Examples

```
data(mbmixdata)
# just 100 bootstrap replicates, as an illustration
bootstrapSE(mbmixdata, n_rep=100)
```

mbmixdata

Example dataset for mbmixture package

Description

Example dataset for mbmixture package.

Usage

```
data(mbmixdata)
```

Format

Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.

Examples

```
data(mbmixdata)
mle_pe(mbmixdata)
```

mbmix_loglik 5

mbmix 1	OΦ	ΙiΙ	k

log likelihood function for microbiome mixture

Description

Calculate log likelihood function for microbiome sample mixture model at particular values of p and e.

Usage

```
mbmix_loglik(tab, p, e = 0)
```

Arguments

tab	Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
р	Contaminant probability (proportion of mixture coming from the second sample).
е	Sequencing error rate.

Value

The log likelihood evaluated at p and e.

Examples

```
data(mbmixdata)
mbmix_loglik(mbmixdata, p=0.74, e=0.002)
```

mle_e

MLE of e for fixed p

Description

Calculate the MLE of the sequencing error rate e for a fixed value of the contaminant probability p.

Usage

```
mle_e(
   tab,
   p = 0.05,
   interval = c(0, 1),
   tol = 0.000001,
   check_boundary = FALSE
)
```

6 mle_p

Arguments

tab	Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
p	Assumed value for the contaminant probability
interval	Interval to which each parameter should be constrained
tol	Tolerance for convergence
check_boundary	If TRUE, explicitly check the boundaries of interval.

Value

A single numeric value, the MLE of e, with the log likelihood as an attribute.

Examples

```
data(mbmixdata)
mle_e(mbmixdata, p=0.74)
```

mle_p

MLE of p for fixed e

Description

Calculate the MLE of the contaminant probability p for a fixed value of the sequencing error rate e.

Usage

```
mle_p(
   tab,
   e = 0.002,
   interval = c(0, 1),
   tol = 0.000001,
   check_boundary = FALSE
)
```

Arguments

tab	Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
е	Assumed value for the sequencing error rate
interval	Interval to which each parameter should be constrained
tol	Tolerance for convergence
check_boundary	If TRUE, explicitly check the boundaries of interval.

mle_pe 7

Value

A single numeric value, the MLE of p, with the log likelihood as an attribute.

Examples

```
data(mbmixdata)
mle_p(mbmixdata, e=0.002)
```

mle_pe

Find MLEs for microbiome mixture

Description

Find joint MLEs of p and e for microbiome mixture model

Usage

```
mle_pe(
  tab,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE,
  SE = FALSE
)
```

Arguments

Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.

Interval Interval to which each parameter should be constrained

Tolerance for convergence
check_boundary If TRUE, explicitly check the boundaries of interval.

SE If TRUE, get estimated standard errors.

Value

A vector containing the estimates of p and e along with the evaluated log likelihood and likelihood ratio test statistics for the hypotheses p=0 and p=1.

Examples

```
data(mbmixdata)
mle_pe(mbmixdata)
```

Index

```
* datasets
    mbmixdata, 4

bootstrapNull, 2
bootstrapSull(), 4
bootstrapSE, 3
bootstrapSE(), 2, 3

mbmix_loglik, 5
mbmixdata, 4
mle_e, 5
mle_p, 6
mle_pe, 7

parallel::detectCores(), 2, 3
parallel::makeCluster(), 2, 3
```