

Optimization of Making-and-Breaking Scheduling

Nicholas Lorio, Lee Dao Ming, Jason Tang, Ajay Janakiram May 20, 2019

What is Making and Breaking?

Long Consist → Short Consist → Long Consist

b Outline

- 1. Background
- 2. Problem Scope & Motivations
- 3. Pre-processing
- 4. Model
- 5. Results
- 6. Analysis
- 7. Recommendations/next steps

Main public train system of the Bay Area

BART Provides 125 million trips annually

Opened in 1972

Current BART System

Fleet of the Future

Introduced over next decade

1081 new cars by 2026 'D' (control) and 'E' (non-control) cars

Motivation for Making and Breaking

Problem Statement / Motivation

- 1) Determine the optimal make/break schedule for 2026 weekday BART operations.
- 2) Find the necessary ratio of D to E cars that can support this schedule so that BART can determine an appropriate purchasing plan for the rest of their new cars.

Pros and Cons of Making/Breaking

Pros	Cons
Reduction in train car operating hour accrual	Increased wear on certain train car components such as couplers
Reduction in power consumption	Increased labor costs
More spares available throughout the day	

Model Assumptions

- 1. Fleet of 1080 cars
 - a. Ratio of D:E cars is 2:3
 - b. 5-car (DEEED) consists as a basic unit
 - c. 10 car or 5 car consists only

- 2. Only 5-10 & 10-5 car make-and-break
- 3. Conventional weekday
- 4. All current yards and tail tracks remain open
 - a. Utilize current capacity of yard and tail tracks

- 5. Forecasted passenger demand by time of day resembles current demand.
- 6. Trains start the day and finish the day at end-of-line yards/tail tracks
- 7. Relies on current BART railway network
- 8. Inventory fulfillment policy

System Representation in Steady State

Figure 21: Locations of BART Revenue Fleet Storage Facilities

North Concord/ Pittsburg

Directed Lines

- 1: Richmond-Millbrae
- 2: Millbrae-Richmond
- 3: Richmond-Warm Springs/
- 4: Warm Springs Richmond
- 5: Daly City-East Dublin
- 6: East Dublin-Daly City
- 7: Pittsburg/Bay Point SFO
- 8: SFO Pittsburg/Bay Point
- 9: Daly City Warm Springs
- 10: Warm Springs- Daly City

Assumptions: A, B proxies the D, E cars

Data obtained through draft of Fleet Management Plan, BART Ridership reports/dataset, emails exchanged with Operations Planning department.

Ridership demand obtained through latest (Jan/Feb 2019 monthly ridership data). Assumed equal sharing of passenger loads across a station serviced by 2 lines

Parameter derivation

Cost of electricity/ car-mile: \$0.3539/car-mile

- A,B (proxies D,E respectively): 3.3708 kwh/car-mile
- Industrial rate of power: \$0.105/kwh

'According to the most recent Maintenance Plan, each of the 8 PM visits takes an average of **15.5 labor hours.'**The Overhaul plan estimate is about **410 labor hours per overhaul** for the entire vehicle, with 128 of those owing to the Coupler. Overhauls are once every 7 years.

Cost of regular maintenance:

(Labour hrs/yr) x (Salary \$/labor hour / Car-miles/yr)

- <u>Car-miles/yr</u>: 122275 (A) 137605 (B)
- Labor hrs/yr: 15.5*365 + 410/7 = 5716
- Maintenance worker salary/hr = 33
- Cost/car-mile: 1.543 (A Car) 1.371 (B Car)

Cost of yard team/shift:

- 2 hour shift, 3 person team, \$33/hr: \$198/team-shift

Max no. of makes and breaks/shift

- 8 min aux cycle, 2 hr shift: 15 makes and breaks

Couplers receive about 2.17 hours of labor per PM visit. 218 of the 410 labor hours/overhaul of vehicle is owed to coupler

Making and breaking:

- 0.5 x coupler maintenance cost as proxy
- Only concerns D cars
- Salary cost, Coupler maintenance hours, No. of makes and breaks
 - → Cost of making and breaking ~ \$36.63/make-and-break. *Rough* estimate

Forecasted passenger demand:

- SRTP & CIP Report 2019

	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28
Average Weekday	413,000	433,700	443,900	458,400	473,900	483,500	490,500	500,100	535,800	548,000
Total Annual (M)	119.7	126.4	129.4	133.6	138.1	140.9	143.0	145.8	156.2	159.7
Annual Change		5.0%	2.4%	3.3%	3.4%	2.0%	1.4%	2.0%	7.1%	2.3%

Yard-to-yard distances:

- <u>Distance matrix provided</u>

See raw derivation

Preprocessing Steps

1. Realistic Steady State Weekday Schedule

2. Ridership Demand by Time of Day

3. Relations/Database Management

Forecasted Weekday Schedule

100s - Warm Springs/Daly City

Cars:	Α	В	C	D	E
AM	0	62	28	4	6
PM	0	62	28	4	6

CBBBCCBBBC

Dispatch Time Patrons Size PPC

S-M	M-S	S-M	M-S	S-M	M-S	S-M	M-S	S-M	M-S	S-M	M-S]
A70 101	101	101	101	101	101	101	101	101	101	101	101	н
05:01	06:13	07:30	08:43	10:00	11:13	12:30	13:43	15:00	16:13	17:30	18:43	
10	10	10	10	10	10	10	10	10	10	10	10	1

- Departure Times Per Directed Line
 - Fixed
- Headways
 - $15 \min \rightarrow 12 \min$

- Travel times
 - Inclusive end of line station to yard
- **Operating hours**

Schedule Assumptions

- **Peak period:** 20 base Transbay trains/hr (GYRB)
- All trains begin/end at end of line yards/tt

Rush trains	Green	Yellow	Red	Blue
1st hour	1	3	1	1
Peak hour	1	7	1	1
3rd hour	1	3	1	1

Peak period	AM: 0700 - 1000 PM: 1600 - 1900
Peak hour (busiest)	AM: 0800 - 0900 PM: 1700 - 1800
Base headways (min)	12
Evening (after 1900) headways (min)	15
First train dispatched	0400
Last train dispatched	Orange, Yellow, Blue: 0000 Red: 1830 (shut down after 2000) Green: 2030 (shut down after 2200)

Ridership Demand by Time of Day

Data: Hourly Origin-Destination counts

Aggregated by directed lines

AM & PM Peaks

- \circ East Bay \rightarrow SF
- \circ SF \rightarrow East Bay

PreProcessing for peaks

making/breaking not logical

Departures to be considered for making / breaking?

Passenger Demand Intervals Directed Line - Departure Indexes

Yard-Shifts

Yard-Event Indexes

Yard-Event Index

Directed Line -Departure Indexes

How We Approached the Problem

- **PreProcessing** in Pandas
- Formulated the model as a Mixed Integer Linear Program
- **Solved** using Gurobi Solver in Python

Variable	Type	Description
TS _{ac}	Indicator	$0 \rightarrow 5$ -car consist $1 \rightarrow 10$ -car consist
M _{dj}	Indicator	Indicates whether a make occurs at yard d at event index j
B _{dj}	Indicator	Indicates whether a break occurs at yard d at event index j
L _{ds}	Integer	Level of staffing at yard d on shift s

Also Auxiliary Inventory Balance Decision Variable

Objective Function

Electricity and Regular Maintenance

$$C \cdot \sum_{a \in A, c \in C} [(1 + TS_{ac}) \cdot D_a]$$

C = Electricity and maintenance cost of running a 5-car consist per car-mile

$$(1 + TSac) = 1$$
 if 5-car, 2 if 10-car consist

D_a = Car-mile per directed line

$$C_y \cdot \sum_{s \in S} \sum_{d \in D} L_{ds}$$

 $C_v = Cost per yard team shift$

L_{ds} = Level (No. of) of yard teams on shift

BART

Makes-and-Breaks

$$C_{M/B} \cdot \sum_{d \in D} \sum_{j \in J} (M_{dj} + B_{dj})$$

 $C_{M/B}$ = Cost of make-and-break

 M_{di} , B_{di} = Make/Break at (just before) yard event

Passenger demand flow

$$P_{az} \leq CC_{5cartrain} \cdot \sum_{c \in z} [(1 + TS_{ac}) \cdot F_{ac}, orall a \in A, orall z \in Z]$$

P _{az}	No. of people travelling along each direct line during an interval
CC _{5-cartrain}	Carrying capacity of a 5-car train
Fac	Capacity multiplier based on interval overlap
1 + TS _{ac}	5 or 10-car

Yard Inventory Balance

$$egin{aligned} I_{d5j} &= I_{d5j-1} + Y_{dj} \cdot T_{ac} + M_{dj} - B_{dj} \ I_{d10j} &= I_{d10j-1} + Y_{dj} \cdot (1 - T_{ac}) - 2 \cdot M_{dj} + 2 \cdot B_{dj}, \ orall d \in D, orall j \in J(d), orall a, c \in d, j \end{aligned}$$

$$I_{dtj}\geqslant 0, orall d\in D, orall j\in J(d), orall t\in T$$

l dtj	No. of 5/10 car consist in yard at an event index
Y_{dj}	(For yard event) 1 if Arrival, -1 if Departure

Other constraints

Same start and end yard state

$$I_{dt0} = I_{dtj}, orall d \in D, j = max(j \in J(d)), orall t \in T$$

Yard capacity

$$\sum_{t \in T} I_{dtj} \leqslant G_d, orall d \in D, j \in J(d)$$

Disallow makes-and-breaks where inappropriate

$$M_{dj} = B_{dj} = 0, orall d \in (WarmSprings, SFO), orall j \in J(d)$$

Capacity for makes-and-breaks

$$\sum_{j \in s} M_{dj} + B_{dj} \leqslant M \cdot L_{ds}, orall d \in D, orall s \in S, orall j \in J(s)$$

Max. no of m&b that can be performed by a team on shift

BResults

Results

Result: Total Costs

Cost(\$)	Baseline	All 10-car
Operating cost (Electricity & wear-and-tear)	455,536	729,843
Yard operator salaries	396	0
Make-and-break	659	0
Total	456,592	729,843

b Analysis

- Operating costs dominates
- Inventory fulfillment:
 - Jump in availability (~750 to 1081 cars), spare ratio
 - Excess inventory of either train set consist length
- 'Green': Run 5-cars whenever possible
- Robust:
 - Consist length constrained by passenger demand
 - Not sensitive to small changes in other constraints

Effect of cost variation on Total Cost

Baseline: Feasible to purchase a lower ratio of D:E cars than 2:3

- a. Create 2026 fleet with 2:5 ratio of D:E cars
- b. Greater Flexibility \rightarrow 2:3 car ratio

Baseline Strategy Requirements (40% 2:8, 60% 2:3)	All 10 Car Consist Requirements
346 D Cars	216 D Cars
734 E Cars	864 E Cars
1.94 billion	1.9 billion

Total Cost of Fleet

NPV of cost for both scenarios

- Initial Investment Cost in 2019
- Yearly Consist Operational Cost over the next 20 years [2026 2046]
 - Baseline: ~166 million annually
 - All 10 Car: ~266 million annually
- Assume an interest rate of 4%

$$(2019 \text{ Initial Investment}) + (\sum_{y=0}^{20} \frac{\text{Yearly Operational Cost}}{(1.04)^y}) \div (1.04)^7$$

Baseline NPV	All 10 Car NPV
3.78 billion	4.85 billion

Proceed with baseline purchasing strategy

- Lowest NPV cost
- Run a mix of breakable and unbreakable consists
 - 60% 5 car consist
 - 40% unbreakable 10 car consist

Potential Next Steps

Transitional/Mixed Fleet prior to Steady State Account for Spare Ratio Requirement

Consider
Malfunctioning Cars

Analyze other (non-weekday) schedules

Thank you

To do slide

- 2. Sensitivity analysis
 - LB, UB of parameter values
 - Effect on objective function costs
 - Comparison of Baseline and Green scenario
 - Piechart to show cost breakdown (None since e+w&t dominates)
 - Sensitivity analysis for parameter values
 - Establish lower bound, upper bounds
 - Effect on objective function
 - For constraint?

Current Make and Break Operations

Line	Make/Break Operations
Warm Springs-Daly City	None (10-car consists all day)
Richmond-Warm Springs	6/8 → 4 → 6/8 OR 6/8 all day
Bay Point-SFO	None (10-car consists all day)
Richmond-Millbrae	$8/9/10 \rightarrow 4/5 \rightarrow 8/9/10$
Dublin-Daly City	$9/10 \rightarrow 4/5 \rightarrow 9/10$