Le second degré

Algebre - Démonstrations

Démonstration: Théorème 1

Soient a, b et c des réels tel que $a \neq 0$.

Pour tout x réel, on a $f(x) = ax^2 + bx + c$

$$= a \left[x^2 + \frac{b}{a} x \right] + c$$

$$= a \left[x^2 + \frac{2b}{2a} x + \left(\frac{b}{2a} \right)^2 - \left(\frac{b}{2a} \right)^2 \right] + c \quad \text{IR n}^\circ 1 : a^2 + 2ab + b^2 = (a+b)^2$$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right] + c$$

$$= a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c$$

$$= a(x-\alpha) + \beta \text{ avec } \alpha = \frac{-b}{2a} \text{ et } \beta = \frac{-b^2}{4a} + c = f(\alpha)$$

Démonstration : Propriété 1

(i) $1^{er} cas : a > 0$

— Soient x_1 et x_2 deux réels de l'intervalle $]-\infty;\alpha[$ tels que $x_1 < x_2 < \alpha.$

$$x_1 - \alpha < x_2 - \alpha < 0$$

$$(x_1 - \alpha)^2 > (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont négatifs}$$

$$a(x_1 - \alpha)^2 > a(x_2 - \alpha)^2 \text{ car } a > 0$$

$$a(x_1 - \alpha)^2 + \beta > a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) > f(x_2)$$

Donc f est strictement décroissante sur $]-\infty;\alpha[$.

— Soient x_1 et x_2 deux réels de l'intervalle $[\alpha; \infty[$ tels que $\alpha < x_1 < x_2.$

$$0 \le x_1 - \alpha < x_2 - \alpha$$

$$(x_1 - \alpha)^2 < (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont positifs}$$

$$a(x_1 - \alpha)^2 < a(x_2 - \alpha)^2 \text{ car } a > 0$$

$$a(x_1 - \alpha)^2 + \beta < a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) < f(x_2)$$

Donc f est strictement croissante sur $[\alpha; \infty[$.

(ii) $2^{\text{ème}} \cos : a < 0$

— Soient x_1 et x_2 deux réels de l'intervalle $]-\infty;\alpha[$ tels que $x_1 < x_2 < \alpha.$

$$x_1 - \alpha < x_2 - \alpha < 0$$

$$(x_1 - \alpha)^2 > (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont positifs}$$

$$a(x_1 - \alpha)^2 < a(x_2 - \alpha)^2 \text{ car } a < 0$$

$$a(x_1 - \alpha)^2 + \beta < a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) < f(x_2)$$

Donc f est strictement croissante sur $]-\infty;\alpha[$.

Soient x_1 et x_2 deux réels de l'intervalle $[\alpha; \infty[$ tels que $\alpha < x_1 < x_2.$

$$0 \le x_1 - \alpha < x_2 - \alpha$$

$$(x_1 - \alpha)^2 < (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont positifs}$$

$$a(x_1 - \alpha)^2 > a(x_2 - \alpha)^2 \text{ car } a < 0$$

$$a(x_1 - \alpha)^2 + \beta > a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) > f(x_2)$$

Donc f est strictement décroissante sur $[\alpha; \infty[$.

Démonstration:

Pour toute fonction du second degrée $f(x) = ax^2 + bx + c$, on a vu que f(x) peut s'écrire sous la forme $f(x) = a\left(x + \frac{b}{2a}\right) + \frac{-b}{4a} + c$.

Donc
$$f(x) = a\left(x + \frac{b}{2a}\right) + \frac{-b}{4a} + \frac{4ac}{4a}$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 + \frac{-b^2}{4a^2} + \frac{4ac}{4a^2}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$$
On pose $\Delta = -b^2 - 4ac$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$$

- $-1^{\mathrm{er}} \mathrm{cas} : \Delta < 0$
 - Si $\Delta < 0$ alors f(x) > 0 pour tout $x \in \mathbb{R}$ (si a > 0) ou f(x) < 0 pour tout $x \in \mathbb{R}$ (si
 - Donc f(x) = 0 n'admet pas de solution et f(x) n'est pas factorisable.
- $-2^{\text{ème}} \text{ cas} : \Delta = 0$

Si $\Delta=0$ alors $f(x)=a(x+\frac{b}{2a})^2$ ou $f(x)=a(x-\alpha)^2$ avec $\alpha=\frac{-b}{2a}$. Donc l'équation f(x)=0 admet une solution (double) α et f(x) est factorisable ou $f(x) = a(x - \alpha)^2$

 $3^{\text{ème}} \text{ cas} : \Delta > 0$

Si
$$\Delta > 0$$
 alors $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \left(\frac{\sqrt{\Delta}}{2a} \right)^2 \right]$

$$= a \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right)$$

$$= a \left(x - \frac{-b - \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right)$$

Donc f(x) est factorisable en $f(x) = a(x-x_1)(x-x_2)$ avec $x_1 = \frac{-b-\sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b+\sqrt{\Delta}}{2a}$. L'équation f(x) = 0 admet deux solutions x_1 et x_2 .