CURSUL 7

FORME LINIARE, BILINIARE ŞI PĂTRATICE

1. Forme liniare

În această secțiune vom considera aplicații liniare cu valori reale.

DEFINIȚIE. Fie $(V, +, \cdot)$ un spațiu liniar.

- a) O aplicație liniară $f:V \to \mathbb{R}$ se numește formă liniară sau funcțională liniară.
- b) Spațiul liniar $L(V; \mathbb{R})$ al tuturor formelor liniare se numește dualul lui V și se notează V^* .

Propoziția 1.1. Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional. Atunci V^* este de asemenea finit-dimensional şi dim V^* = dim V.

Demonstrație. Fie $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui V, unde $n := \dim V$. Considerăm funcțiile $\mathbf{b}_i^* : V \to \mathbb{R}, 1 \le i \le n$, definite prin

$$\mathbf{b}_{i}^{*}(\mathbf{v}) \coloneqq x_{i}, \ \mathbf{v} \in V, \tag{1}$$

П

unde $x_1, \ldots, x_n \in \mathbb{R}$ sunt coordonatele vectorului \mathbf{v} în baza B (adică $\mathbf{v} = x_1 \mathbf{b}_1 + \cdots + x_n \mathbf{b}_n$). Se verifică ușor că \mathbf{b}_i^* este o funcțională liniară pentru fiecare $i \in \{1, \ldots, n\}$.

Să demonstrăm acum că $B^* \coloneqq \{\mathbf{b}_1^*, \dots, \mathbf{b}_n^*\}$ este o bază a lui V^* . Dacă

$$\alpha_1 \mathbf{b}_1^* + \cdots + \alpha_n \mathbf{b}_n^* = \mathbf{0}_{V^*}$$

cu $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, atunci

$$\alpha_i = (\alpha_1 \mathbf{b}_1^* + \dots + \alpha_n \mathbf{b}_n^*)(\mathbf{b}_i) = \mathbf{0}_{V^*}(\mathbf{b}_i) = 0, \ \forall i \in \{1, \dots, n\},\$$

deci $\mathbf{b}_1^*, \dots, \mathbf{b}_n^*$ sunt liniar independente. Fie acum $f \in V^*$; dacă $\mathbf{v} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in V$, atunci, din liniaritatea lui f avem

$$f(\mathbf{v}) = f(x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n) = x_1f(\mathbf{b}_1) + \dots + x_nf(\mathbf{b}_n) = f(\mathbf{b}_1)\mathbf{b}_1^*(\mathbf{v}) + \dots + f(\mathbf{b}_n)\mathbf{b}_n^*(\mathbf{v}).$$

În concluzie, v fiind luat în mod arbitrar,

$$f = f(\mathbf{b}_1)\mathbf{b}_1^* + \dots + f(\mathbf{b}_n)\mathbf{b}_n^*,$$

deci f este o combinație liniară de elemente ale lui B^* . Acest lucru demonstrează că $\text{Lin}(B^*) = V^*$.

Aşadar,
$$\{b_1^*, \ldots, b_n^*\}$$
 este o bază a lui V^* , de unde V^* este finit-dimensional şi dim $V^* = n$.

Propoziția 1.2. Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional. Dacă $\mathbf{v} \in V \setminus \{\mathbf{0}_V\}$, atunci există $f \in V^*$ astfel încât $f(\mathbf{v}) \neq 0$.

Demonstrație. Fie n dimensiunea lui V și $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui V. Am arătat în demonstrația teoremei de mai sus că $B^* = \{\mathbf{b}_1^*, \dots, \mathbf{b}_n^*\}$ este o bază a lui V^* , unde $\mathbf{b}_i^* : V \to \mathbb{R}$, $1 \le i \le n$ sunt definite de (1). Dacă $x_1, \dots, x_n \in \mathbb{R}$ sunt coordonatele vectorului \mathbf{v} în baza B, atunci cel puțin unul dintre x_1, \dots, x_n , să spunem x_i , sunt nenuli, căci $\mathbf{v} \ne \mathbf{0}_V$. Așadar

$$0 \neq x_i = \mathbf{b}_i^*(\mathbf{v}),$$

deci \mathbf{b}_{i}^{*} este funcționala liniară căutată.

Observație. O consecință imediată a rezultatului de mai sus este că dacă $\mathbf{u}, \mathbf{v} \in V$ și $\mathbf{u} \neq \mathbf{v}$, atunci există $f \in V^*$ astfel încât $f(\mathbf{u}) \neq f(\mathbf{v})$.

DEFINIȚIE. Fie $(V, +, \cdot)$ un spațiu liniar.

- a) Dualul lui V^* , notat V^{**} , se numește bidualul lui V.
- **b**) Funcția $\psi: V \to V^{**}$ definită de

$$\psi(\mathbf{v})(f) := f(\mathbf{v}), \ \mathbf{v} \in V, \ f \in V^*$$

se numește funcția de evaluare.

Funcția de evaluare este bine definită și liniară:

a. Este clar că $\psi(\mathbf{v}): V^* \to \mathbb{R}$. Dacă $\alpha, \beta \in \mathbb{R}$ și $f, g \in V^*$, atunci

$$\psi(\mathbf{v})(\alpha f + \beta g) = (\alpha f + \beta g)(\mathbf{v}) = \alpha f(\mathbf{v}) + \beta g(\mathbf{v}) = \alpha \psi(\mathbf{v})(f) + \beta \psi(\mathbf{v})(g).$$

Aşadar $\psi(\mathbf{v})$ este liniară, adică $\psi(\mathbf{v}) \in V^{**}$. În concluzie, ψ este bine definită.

b. Dacă $\alpha, \beta \in \mathbb{R}$ și $\mathbf{u}, \mathbf{v} \in V$, atunci

$$\psi(\alpha \mathbf{u} + \beta \mathbf{v})(f) = f(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v}) = \alpha \psi(\mathbf{u})(f) + \beta \psi(\mathbf{v})(f), \ \forall f \in V^*.$$

Acest lucru înseamnă că $\psi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \psi(\mathbf{u}) + \beta \psi(\mathbf{v})$. În concluzie, ψ este liniară.

1

Dacă V este finit-dimensională, atunci ψ este un izomorfism liniar. Într-adevăr, dacă $\mathbf{v} \in \ker \psi$, atunci

$$f(\mathbf{v}) = 0, \ \forall f \in V^*.$$

Presupunerea că $\mathbf{v} \neq \mathbf{0}_V$, ar contrazice Propoziția 1.2, care afirmă existența unui $f \in V^*$ astfel încât $f(\mathbf{v}) \neq 0$. De aceea, \mathbf{v} trebuie să fie egală cu $\mathbf{0}_V$. Aceasta implică $\ker \psi = {\mathbf{0}_V}$, adică ψ este injectivă.

Pe de altă parte, datorită Propoziției 1.1, $\dim V^{**} = \dim V^* = \dim V$. Din teorema dimensiunii, $\operatorname{rank} \psi = \dim V = \dim V^{**}$, deci ψ este de asemenea surjectivă.

În concluzie, ψ este un izomorfism liniar, numit, în acest caz, izomorfismul canonic între V și V^{**} .

DEFINIȚIE. Fie $(V, +, \cdot)$ un spațiu liniar. Un subspațiu $W \subseteq V$ se numește un hiperplan (vectorial) dacă există $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$ astfel încât ker f = W.

Propoziția 1.3. Dacă $(V, +, \cdot)$ este un spațiu finit-dimensional cu $\dim V = n \in \mathbb{N}^*$, atunci un subspațiu liniar $W \subseteq V$ este un hiperplan dacă și numai dacă $\dim W = n - 1$.

Dемонstrație. Dacă $W = \ker f$ pentru o funcțională liniară $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$, atunci, din teorema dimensiunii

$$\dim W = \dim(\ker f) = \dim V - \dim(\operatorname{Im} f) = n - 1,$$

deoarece $f \neq \mathbf{0}_{V^*}$ și astfel Im $f = \mathbb{R}$.

Reciproc, dacă dim W = n - 1, atunci există o bază $B = \{\mathbf{b}_1, \dots, \mathbf{b}_{n-1}, \mathbf{b}_n\}$ a lui V astfel încât $\text{Lin}\{\mathbf{b}_1, \dots, \mathbf{b}_{n-1}\} = W$. Luând $f: V \to \mathbb{R}$ definită de

$$f(\alpha_1\mathbf{b}_1+\cdots+\alpha_n\mathbf{b}_n) \coloneqq \alpha_n$$

pentru $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, avem $f \neq \mathbf{0}_{V^*}$ și

$$f(\mathbf{b}_1) = \cdots = f(\mathbf{b}_{n-1}) = 0,$$

ceea ce implică $W \subseteq \ker f$ (adică $f(\mathbf{v}) = 0$, $\forall \mathbf{v} \in W$). Pe de altă parte, din implicația directă, dim $(\ker f) = n-1$ și deci $W = \ker f$. \square Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional și $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui V. Dacă W este un hiperplan cu $W = \ker f$, unde $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$, fie $\beta_1 := f(\mathbf{b}_1), \dots, \beta_n := f(\mathbf{b}_n)$. Atunci condiția $\mathbf{v} = x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n \in \ker f$ este caracterizată de ecuația

$$\beta_1 x_1 + \dots + \beta_n x_n = 0. \tag{2}$$

Aşadar

$$W = \{x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in V \mid \beta_1 x_1 + \dots + \beta_n x_n = 0\}.$$
 (3)

Reciproc, fiind dați $\beta_1, \ldots, \beta_n \in \mathbb{R}$, nu toți 0, submulțimea lui V definită de relația de mai sus este un hiperplan al lui V.

Se poate arăta că orice subspațiu liniar al lui V (nu numai hiperplanele) pot fi caracterizate de sisteme de ecuații de forma (2).

Dacă $V = \mathbb{R}^n$ și B este o bază canonică, relația (3) poate fi scrisă ca

$$W = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid \beta_1 x_1 + \cdots + \beta_n x_n = 0\}.$$

În cazurile particulare n=2 și n=3, ecuația (2) caracterizează o dreaptă (1-dimensională), respectiv un plan (2-dimensional) ce trece prin origine.

Următoarea noțiunie permite caracterizarea tuturor dreptelor (dacă n = 2) și planelor (când n = 3), nu neapărat a celor ce trecprin origine.

Definiție. Fie $(V, +, \cdot)$ un spațiu liniar. O funcție $f: V \to \mathbb{R}$ se numește funcțională afină dacă există o funcțională liniară $f_0 \in V^*$ și o constantă $c \in \mathbb{R}$ astfel încât $f(\mathbf{v}) = f_0(\mathbf{v}) + c$, $\forall \mathbf{v} \in V$.

Pentru o funcțională afină $f: V \to \mathbb{R}$ se poate defini nucleul ei în același mod ca pentru funcționalele liniare, adică

$$\ker f := \{ \mathbf{v} \in V \mid f(\mathbf{v}) = 0 \}.$$

Definiție. Fie $(V, +, \cdot)$ un spațiu liniar. O submulțime $U \subseteq V$ se numește hiperplan afin dacă există o funcțională afină neconstantă $f: V \to \mathbb{R}$ astfel încât ker f = U.

Cu alte cuvinte, U este un hiperplan afin dacă (exercițiu!) există un hiperplan vectorial W și un vector $\mathbf{v}_0 \in V$ astfel încât

$$U = W + \mathbf{v}_0 := \{ \mathbf{v} + \mathbf{v}_0 \mid \mathbf{v} \in W \}.$$

Dacă V este finit-dimensional cu o bază $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$, atunci hiperplanele afine sunt date de submulțimi de forma

$$U = \{x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in V \mid \beta_1 x_1 + \dots + \beta_n x_n + c = 0\},\$$

unde $c, \beta_1, \ldots, \beta_n \in \mathbb{R}$.

În cazurile n = 2 și n = 3, hiperplanele afine sunt dreptele, respectiv planele.

DEFINIȚIE. Fie $(V, +, \cdot)$ și $(W, +, \cdot)$ două spații liniare. O funcție $g: V \times W \to \mathbb{R}$ se numește *formă* (*aplicație*) *biliniară* pe $V \times W$ dacă sunt satisfăcute următoarele condiții:

- (i) $g(\alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w}) = \alpha g(\mathbf{u}, \mathbf{w}) + \beta g(\mathbf{v}, \mathbf{w}), \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{u}, \mathbf{v} \in V, \forall \mathbf{w} \in W;$
- (ii) $q(\mathbf{v}, \lambda \mathbf{w} + \mu \mathbf{z}) = \lambda q(\mathbf{v}, \mathbf{w}) + \mu q(\mathbf{v}, \mathbf{z}), \forall \lambda, \mu \in \mathbb{R}, \forall \mathbf{v} \in V, \forall \mathbf{w}, \mathbf{z} \in W.$

În cazul W = V, o formă biliniară pe $V \times V$ se mai numește formă (aplicație) biliniară pe V.

Să presupunem acum că V şi W sunt finit-dimensionale, cu bazele $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ şi $\bar{B} = \{\bar{\mathbf{b}}_1, \dots, \bar{\mathbf{b}}_m\}$ pe V, respectiv W. Dacă $\mathbf{v} \in V$ şi $\mathbf{w} \in W$ au coordonatele în bazele B, respectiv \bar{B} , pe $\alpha_1, \dots, \alpha_n \in \mathbb{R}$, respectiv $\beta_1, \dots, \beta_m \in \mathbb{R}$, atunci

$$g(\mathbf{v}, \mathbf{w}) = g\left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i, \sum_{j=1}^{m} \beta_j \bar{\mathbf{b}}_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j g(\mathbf{b}_i, \bar{\mathbf{b}}_j).$$

Scalarii $a_{ij} \coloneqq g(\mathbf{b}_i, \bar{\mathbf{b}}_j), \ 1 \le i \le n, \ 1 \le j \le m$ sunt numiți coeficienții formei biliniare g în raport cu bazele B și \bar{B} ; matricea $A^g_{B,\bar{B}} \coloneqq (a_{ij})_{\substack{1 \le i \le n \\ 1 \le i < m}}$ în \mathcal{M}_{nm} se numește matricea formei biliniare g în raport cu bazele B și \bar{B} .

Dacă $B' = \{b'_1, \ldots, b'_n\}$ este o altă bază a lui V şi $\bar{B}' = \{\bar{b}'_1, \ldots, \bar{b}'_m\}$ este o altă bază a lui W, să notăm $S = (s_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n$ matricea de trecere de la \bar{B} la \bar{B}' . Atunci matricea lui g în raport cu bazele B' și \bar{B}' poate fi scrisă ca

$$A_{B'\bar{B}'}^g = S^{\mathrm{T}} \cdot A_{B\bar{B}}^g \cdot \bar{S}.$$

Se poate demonstra că rang $A^g_{B',\bar{B}'}$ = rang $A^g_{B,\bar{B}}$, deci rangul matricei formei biliniare g nu depinde de bazele considerate. Această valoare comună se numește rangul lui g și este notată rang g.

Fixând $\mathbf{w} \in W$, forma biliniară $g: V \times W \to \mathbb{R}$ definește o funcțională $f_{\mathbf{w}}: V \to \mathbb{R}$ prin

$$f_{\mathbf{w}}(\mathbf{v}) := g(\mathbf{v}, \mathbf{w}), \ \mathbf{v} \in V.$$

Lăsând w să varieze, aplicația $\mathbf{w} \mapsto f_{\mathbf{w}}$ definește un operator liniar $g': W \to V^*$. Într-o manieră similară se poate defini un operator liniar $g'': V \to W^*$ prin $g''(\mathbf{v}) \coloneqq h_{\mathbf{v}}$, unde funcționala liniară $h_{\mathbf{v}} \in W^*$ este introdusă de

$$h_{\mathbf{v}}(\mathbf{w}) := g(\mathbf{v}, \mathbf{w}), \ \mathbf{w} \in V.$$

Se poate arăta (exercițiu!) că matricea asociată lui g' în raport cu bazele \bar{B} și B^* (introdusă în demonstrația propoziției 1.1 prin relația (1)) coincide cu matricea formei g în raport cu bazele B și \bar{B} . Așadar rang g = rang g'. Într-un mod similar se poate arăta că rang g = rang g''.

DEFINIȚIE. Fie $g: V \times W \to \mathbb{R}$ o formă biliniară şi operatorii liniari asociați $g': W \to V^*$ şi $g'': V \to W^*$ introduşi mai sus. Subspațiul liniar $\ker g' \subseteq W$ se numeşte nucleul drept al lui g, în timp ce subspațiul liniar $\ker g'' \subseteq V$ se numeşte nucleul stâng al lui g.

Dacă $Ker(g') = \{\mathbf{0}_W\}$ şi $Ker(g'') = \{\mathbf{0}_V\}$, atunci forma biliniară g se numește nedegenerată.

Definiție. O formă biliniară $g:V\times V\to \mathbb{R}$ se numește simetrică dacă

$$q(\mathbf{u}, \mathbf{v}) = q(\mathbf{v}, \mathbf{u}), \forall \mathbf{u}, \mathbf{v} \in V,$$

respectiv antisimetrică dacă

$$q(\mathbf{u}, \mathbf{v}) = -q(\mathbf{v}, \mathbf{u}), \forall \mathbf{u}, \mathbf{v} \in V.$$

Propoziția 2.1. Fie $g: V \times V \to \mathbb{R}$ o formă biliniară simetrică sau antisimetrică. Atunci nucleul ei drept coincide cu nucleul ei stâng.

Pentru o formă liniară ca mai sus, nucleul stâng (ce coincide cu cel drept) se numește *nucleul* lui g și se notează ker g. Următorul rezultat joacă un rol similar teoremei dimensiunii pentru operatori liniari și este o simplă consecință a acesteia (datorită faptului că rang g = rang g').

Propoziția 2.2. Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional și $g: V \times V \to \mathbb{R}$ o formă biliniară simetrică. Atunci

$$\operatorname{rang} q + \dim (\ker q) = \dim V.$$

Observație. Datorită rezultatului de mai sus, o condiție necesară și suficientă ca o formă biliniară simetrică să fie nedegenerată este ca rang $q = \dim V$.

Definiție. Fie $q: V \times V \to \mathbb{R}$ o formă biliniară simetrică.

- a) Doi vectori $\mathbf{u}, \mathbf{v} \in V$ se numesc ortogonali (sau conjugați) în raport cu g dacă $g(\mathbf{u}, \mathbf{v}) = 0$.
- b) Dacă U este o submulțime nevidă a lui V, spunem că U este *ortogonală* în raport cu g (sau g-ortogonală) dacă $g(\mathbf{u}, \mathbf{v}) = 0$ pentru orice vectori distincți $\mathbf{u}, \mathbf{v} \in U$.

3

c) Dacă U este o submulțime nevidă a lui V, mulțimea

$$\{\mathbf{v} \in V \mid q(\mathbf{u}, \mathbf{v}) = 0, \ \forall \mathbf{u} \in U\}$$

este un subspațiu liniar al lui V, numit suplimentul ortogonal al lui U în raport cu g, notat $U^{\perp g}$.

Observație. Dacă W este un subspațiu finit-dimensional al lui V cu $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ bază a lui W, atunci $\mathbf{v} \in W^{\perp g}$ dacă și numai dacă $g(\mathbf{b}_k, \mathbf{v}) = 0, \forall k \in \{1, \ldots, n\}$.

Teorema 2.3. Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional și $g: V \times V \to \mathbb{R}$ o formă biliniară simetrică. Dacă $B = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ este o bază a lui V care este g-ortogonală, atunci rang g este numărul de elemente diferite de 0 printre $g(\mathbf{b}_1, \mathbf{b}_1)$, $g(\mathbf{b}_2, \mathbf{b}_2), \ldots, g(\mathbf{b}_n, \mathbf{b}_n)$.

Demonstrație. Fie $A = (a_{ij})_{1 \le i,j \le n}$ matricea lui g în raport cu B; atunci $a_{ij} = g(\mathbf{b}_i, \mathbf{b}_j)$, pentru orice i și j. Întrucât B este gortogonală, A este o matrice diagonală cu intrările $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), ..., g(\mathbf{b}_n, \mathbf{b}_n)$. Evident, rang g = rang A, iar acest număr este
egal cu numărul de elemente diferite de 0 printre elementele diagonalei.

De fapt, numărul de valori pozitive (și negative) printre $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), ..., g(\mathbf{b}_n, \mathbf{b}_n)$ este invariant în raport cu B, după cum afirmă următorul rezultat:

Teorema 2.4 (Legea inerției a lui Sylvester). Fie $(V, +, \cdot)$ un spațiu liniar n-dimensional și $g: V \times V \to \mathbb{R}$ o formă biliniară simetrică. Atunci există $p, q, r \in \mathbb{N}$ astfel încât pentru orice bază g-ortogonală $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ a lui V, p, q și r reprezintă numărul de valori strict pozitive, strict negative, respectiv nule printre $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), \ldots, g(\mathbf{b}_n, \mathbf{b}_n)$.

Demonstrație. Fie $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ și $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ două baze g-ortogonale ale lui V, iar p, q, r, respectiv p', q', r' numărul de valori strict pozitive, strict negative, respectiv nule printre $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), \dots, g(\mathbf{b}_n, \mathbf{b}_n)$, respectiv $g(\mathbf{b}'_1, \mathbf{b}'_1), g(\mathbf{b}'_2, \mathbf{b}'_2), \dots, g(\mathbf{b}'_n, \mathbf{b}'_n)$. Din teorema precedentă, $r = n - \operatorname{rang} g$ și $r' = n - \operatorname{rang} g$, deci r = r'. Să demonstrăm acum că p = p'.

Putem presupune, fără a restrânge generalitatea, că $g(\mathbf{b}_i, \mathbf{b}_i) > 0$, $\forall i \in \{1, ..., p\}$ și că $g(\mathbf{b}'_{p'+j}, \mathbf{b}'_{p'+j}) \leq 0$, $\forall i \in \{1, ..., n-p'\}$.

Vom arăta că $\mathbf{b}_1,\dots,\mathbf{b}_p,\mathbf{b}_{p'+1}^{'},\dots,\mathbf{b}_n^{'}$ sunt liniar independenți. Într-adevăr, dacă

$$\alpha_1 \mathbf{b}_1 + \dots + \alpha_p \mathbf{b}_p + \beta_{p'+1} \mathbf{b}'_{p'+1} + \dots + \beta'_n \mathbf{b}'_n = \mathbf{0},$$

atunci fie

$$\mathbf{v} := \alpha_1 \mathbf{b}_1 + \dots + \alpha_p \mathbf{b}_p = -(\beta_{p'+1} \mathbf{b}_{p'+1}' + \dots + \beta_n' \mathbf{b}_n').$$

Pe de o parte

$$g(\mathbf{v},\mathbf{v}) = g(\alpha_1\mathbf{b}_1 + \dots + \alpha_p\mathbf{b}_p, \alpha_1\mathbf{b}_1 + \dots + \alpha_p\mathbf{b}_p) = \sum_{i=1}^p \alpha_i^2 g(\mathbf{b}_i, \mathbf{b}_i) \ge 0,$$

iar pe de altă parte

$$g(\mathbf{v},\mathbf{v}) = g(\beta_{p'+1}\mathbf{b}_{p'+1}' + \dots + \beta_n'\mathbf{b}_n', \beta_{p'+1}\mathbf{b}_{p'+1}' + \dots + \beta_n'\mathbf{b}_n') = \sum_{j=1}^p \beta_{p'+j}^2 g(\mathbf{b}_{p'+j}', \mathbf{b}_{p'+j}) \le 0.$$

Din aceste două relații deducem $g(\mathbf{v}, \mathbf{v}) = 0$, deci $\alpha_1 = \cdots = \alpha_p = 0$. Rezultă că $\beta_{p'+1}\mathbf{b}'_{p'+1} + \cdots + \beta'_n\mathbf{b}'_n = \mathbf{0}$ și prin urmare $\beta_{p'+1} = \cdots = \beta'_n = 0$. În concluzie $\mathbf{b}_1, \ldots, \mathbf{b}_p, \mathbf{b}'_{p'+1}, \ldots, \mathbf{b}'_n$ sunt liniar independenți. Cum nu pot exista mai mult de n vectori liniar independenți, avem că $p + n - p' \le n$, adică $p \le p'$. În mod similar se arată că $p' \le p$.

Numerele p și q sunt numiți *indicii de inerție pozitivă*, respectiv *negativă*, în timp ce tripletul (p, q, r) se numește signatura lui g. Evident, p + q + r = n $(n = \dim V)$; mai mult, din teorema 2.3, rang g = p + q.

3. Forme pătratice

DEFINITIE. Fie $(V, +, \cdot)$ un spațiu liniar și $q: V \times V \to \mathbb{R}$ o formă biliniară simetrică. Funcția $h: V \to \mathbb{R}$, definită de

$$h(\mathbf{v}) := q(\mathbf{v}, \mathbf{v}), \ \mathbf{v} \in V$$

se numește forma (funcționala) pătratică asociată lui q

Observație. Deoarece $h(\mathbf{u} + \mathbf{v}) = g(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) = g(\mathbf{u}, \mathbf{u}) + g(\mathbf{u}, \mathbf{v}) + g(\mathbf{v}, \mathbf{u}) + g(\mathbf{v}, \mathbf{v})$ și $g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$, avem

$$h(\mathbf{u} + \mathbf{v}) = h(\mathbf{u}) + 2g(\mathbf{u}, \mathbf{v}) + h(\mathbf{v}), \ \forall \mathbf{u}, \mathbf{v} \in V.$$

Din această formulă putem deduce pe g dacă-l cunoaștem pe h:

$$g(\mathbf{u}, \mathbf{v}) = \frac{1}{2} [h(\mathbf{u} + \mathbf{v}) - h(\mathbf{u}) - h(\mathbf{v})], \ \forall \mathbf{u}, \mathbf{v} \in V$$

sau

$$g(\mathbf{u}, \mathbf{v}) = \frac{1}{4} [h(\mathbf{u} + \mathbf{v}) - h(\mathbf{u} - \mathbf{v})], \ \forall \mathbf{u}, \mathbf{v} \in V.$$

Să presupunem acum că V este un spațiu liniar finit-dimensional și $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui V. Fie $A_{B,B}^g$ = $(a_{ij})_{1 \le i,j \le n}$ matricea lui g în raport cu B. Dacă $x_1,\ldots,x_n \in \mathbb{R}$ sunt coeficienții unui vector $\mathbf{v} \in V$ în raport cu B, atunci

$$h(\mathbf{v}) = h(x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j.$$

Partea dreaptă a acestei egalități este un polinom omogen de gradul 2, numit polinomul pătratic asociat cu forma pătratică h și bazei B. Determinantul matricei simetrice $A_{B,B}^g$ se numește discriminantul lui h.în raport cu B, iar semnul acestuia este invariant în raport cu B.

Spunem că h este o formă pătratică nedegenerată dacă g este o formă biliniară nedegenerată, adică discriminantul lui h este diferit de zero (rang $A_{B,B}^g = \operatorname{rang} g = n$). Altfel, spunem că h este o formă pătratică degenerată.

Dacă (p, q, r) este signatura lui q, o vom numi de asemenea signatura lui h.

Definiție. Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional și $h: V \to V$ o formă pătratică asociată unei forme biliniare $g: V \times V \to \mathbb{R}$. Dacă B este o bază a lui V astfel încât matricea lui g este diagonală, numim forma canonică (redusă) a lui h polinomul pătratic asociat lui h și B. Forma canonică a lui h se numește normală dacă matricea diagonală a lui q are pe diagonală numai elementele 1, -1 și 0.

Dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V care dă forma canonică $\omega_1 x_1^2 + \omega_2 x_2^2 + \dots + \omega_n x_n^2$ lui h, atunci $B' = \{c_1 \mathbf{b}_1, \dots, c_n \mathbf{b}_n\}$ dă o formă normală lui h, unde $c_i = 1$ dacă $\omega_i = 0$, în timp ce $c_i = \frac{1}{\sqrt{|\omega_i|}}$ dacă $\omega_i \neq 0$, pentru $1 \leq i \leq n$.

Teorema 3.1. Fie $(V, +, \cdot)$ un spațiu liniar n-dimensional și $h: V \to \mathbb{R}$ o formă pătratică. Atunci există o bază $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a lui V și $\omega_1, \ldots, \omega_n \in \mathbb{R}$ astfel încât pentru orice $x_1, \ldots, x_n \in \mathbb{R}$ să avem

$$h(x_1b_1 + \cdots + x_nb_n) = \omega_1x_1^2 + \omega_2x_2^2 + \cdots + \omega_nx_n^2$$

Observație. Polinomul pătratic $\omega_1 x_1^2 + \omega_2 x_2^2 + \dots + \omega_n x_n^2$ este forma redusă a lui h (matricea lui g în raport cu $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o matrice diagonală cu intrările ω_1,\ldots,ω_n). Dacă signatura lui h este (p,q,r), atunci printre coeficienții ω_1,\ldots,ω_n , p sunt strict pozitivi, q sunt strict negativi, iar r sunt egali cu 0.

Demonstrație. Fie $\bar{B} = \{\bar{\mathbf{b}}_1, \dots, \bar{\mathbf{b}}_n\}$ o bază a lui V și $(\bar{a}_{ij})_{1 \leq i,j \leq n}$ matricea asociată lui g în raport cu B. Evident,

$$h(\bar{x}_1\bar{\mathbf{b}}_1 + \dots + \bar{x}_n\bar{\mathbf{b}}_n) = \bar{a}_{11}\bar{x}_1^2 + 2\bar{a}_{12}\bar{x}_1\bar{x}_2 + \dots + 2\bar{a}_{1n}\bar{x}_1\bar{x}_n$$

$$+\bar{a}_{22}\bar{x}_2^2 + \dots + 2\bar{a}_{2n}\bar{x}_2\bar{x}_n$$

$$\vdots$$

$$+\bar{a}_{nn}\bar{x}_n^2$$

1. În cazul în care $\bar{a}_{11} = g(\bar{\mathbf{b}}_1, \bar{\mathbf{b}}_1) \neq 0$, avem

$$h(\bar{x}_1\bar{\mathbf{b}}_1 + \dots + \bar{x}_n\bar{\mathbf{b}}_n) = \bar{a}_{11}\left(\bar{x}_1 + \frac{\bar{a}_{12}}{\bar{a}_{11}}\bar{x}_2 + \dots + \frac{\bar{a}_{1n}}{\bar{a}_{11}}\bar{x}_n\right)^2 + \left(\bar{a}_{22} - \frac{\bar{a}_{12}^2}{\bar{a}_{11}}\right)\bar{x}_2^2 + \dots + 2\left(\bar{a}_{2n} - \frac{\bar{a}_{12}\bar{a}_{1n}}{\bar{a}_{11}}\right)\bar{x}_2\bar{x}_n$$

$$\vdots$$

$$+ \left(\bar{a}_{nn} - \frac{\bar{a}_{1n}^2}{\bar{a}_{11}}\right)\bar{x}_n^2$$

Făcând schimbarea de coordonate

$$x'_{1} = \bar{x}_{1} + \frac{\bar{a}_{12}}{\bar{a}_{11}}\bar{x}_{2} + \dots + \frac{\bar{a}_{1n}}{\bar{a}_{11}}\bar{x}_{n};$$

$$x'_{2} = \bar{x}_{2};$$

$$\vdots$$

$$x'_{n} = \bar{x}_{n},$$

găsim o nouă bază $\{b_1',\ldots,b_n'\}$ (exercițiu: determinați baza!) astfel încât

$$h(x'_{1}\mathbf{b}'_{1} + \dots + x'_{n}\mathbf{b}'_{n}) = \bar{a}_{11}(x'_{1})^{2} + a'_{22}(x'_{2})^{2} + \dots + 2a'_{2n}x'_{2}x'_{n}$$

$$\vdots$$

$$+a'_{2n}(x'_{2n})^{2n}$$

unde $a'_{ij} := \bar{a}_{ij} - \frac{\bar{a}_{1i}\bar{a}_{1j}}{\bar{a}_{11}}, \ i,j \in \{2,\dots,n\}.$ 2. Dacă $\bar{a}_{11} = 0$ și există $i \in \{1,\dots,n\}$ astfel încât $\bar{a}_{ii} \neq 0$, schimbăm $\bar{\mathbf{b}}_1$ cu $\bar{\mathbf{b}}_i$ în scrierea bazei \bar{B} , ajungând astfel în cazul precedent cu noua bază.

3. În cazul în care $\bar{a}_{11} = \bar{a}_{22} = \cdots = \bar{a}_{nn} = 0$ și putem găsi $i \in \{2, \ldots, n\}$ astfel încât $\bar{a}_{1i} \neq 0$, facem schimbarea de coordonate

$$x'_1 = \bar{x}_1 + \bar{x}_i;$$

 $x'_i = \bar{x}_1 - \bar{x}_i;$
 $x'_k = \bar{x}_k, \ k \neq 1, i,$

baza corespunzătoare acesteia este $\left\{\mathbf{b}_1',\ldots,\mathbf{b}_n'\right\}$ cu

$$\mathbf{b}'_{1} = \frac{1}{2} \left(\bar{\mathbf{b}}_{1} + \bar{\mathbf{b}}_{i} \right);$$

$$\mathbf{b}'_{i} = \frac{1}{2} \left(\bar{\mathbf{b}}_{1} - \bar{\mathbf{b}}_{i} \right);$$

$$\mathbf{b}'_{k} = \bar{\mathbf{b}}_{k}, \ k \neq 1, i.$$

În noua bază, coeficientul lui $(x_1')^2$ este

$$h(\mathbf{b}_1') = \frac{1}{4}g(\bar{\mathbf{b}}_1 + \bar{\mathbf{b}}_i, \bar{\mathbf{b}}_1 + \bar{\mathbf{b}}_i) = \frac{1}{2}g(\bar{\mathbf{b}}_1, \bar{\mathbf{b}}_i) = \frac{\bar{a}_{1i}}{2} \neq 0,$$

ajungând din nou la cazul 1.

4. Cazul rămas este cel în care $\bar{a}_{11} = \bar{a}_{22} = \cdots = \bar{a}_{nn} = 0$ și $\bar{a}_{1i} = 0, \forall i \in \{2, \dots, n\}$. În fiecare din aceste cazuri, am schimbat (eventual) baza \bar{B} cu o bază $B' = \{b'_1, \dots, b'_n\}$ în care h are forma

$$h(x'_{1}b'_{1} + \dots + x'_{n}b'_{n}) = \omega_{1}(x'_{1})^{2} + a'_{22}(x'_{2})^{2} + \dots + 2a'_{2n}x'_{2}x'_{n}$$

$$\vdots$$

$$+a'_{nn}(x'_{n})^{2}$$

(adică $a'_{12} = \cdots = a'_{1n} = 0$).

Pasul II. Repetăm procedeul descris la pasul precedent, găsind o altă (eventual) bază $B'' = \{b_1'', \dots, b_n''\}$ față de care h are forma

$$h(x_1''b_1' + \dots + x_n''b_n') = \omega_1(x_1'')^2 + \omega_2(x_2'')^2 + a_{33}''(x_3'')^2 + \dots + a_{3n}''x_3''x_n'' + \dots + a_{nn}''(x_n'')^2.$$

(adică
$$a_{12}^{"} = \cdots = a_{1n}^{"} = a_{23}^{"} = \cdots = a_{2n}^{"} = 0$$
).

Coninuând această procedură, ajungem ca la pasul n-1 să găsim o bază $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ față de care h are forma

$$h(x_1\mathbf{b}_1+\cdots+x_n\mathbf{b}_n)=\omega_1x_1^2+\omega_2x_2^2+\cdots+\omega_nx_n^2.$$

Metoda descrisă în demonstrația de mai sus se numește metoda lui Gauss de reducere a unei forme pătratice.

Teorema 3.2 (Metoda lui Jacobi de reducere a unei forme pătratice). Fie $(V, +, \cdot)$ un spațiu liniar n-dimensional şi $h: V \to \mathbb{R}$ o formă pătratică. Fie Δ_i , $1 \le i \le n$ minorii principali ai matricei $(a_{ij})_{1 \le i,j \le n}$ asociate lui h în raport cu o bază a lui V, adică

$$\Delta_{i} = \begin{vmatrix} a_{11} & \dots & a_{1i} \\ a_{21} & \dots & a_{2i} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} \end{vmatrix}, \ 1 \leq i \leq n.$$

Dacă $\Delta_i \neq 0$, $\forall i \in \{1, ..., n\}$, atunci h poate fi redusă la forma canonică

$$\mu_1 x_1^2 + \mu_2 x_2^2 + \dots + \mu_n x_n^2$$

unde $\mu_i = \frac{\Delta_{i-1}}{\Delta_i}$, $\forall i = \{1, \ldots, n\}$, $cu \Delta_0 = 1$.

Dемонstrație. Plecând de la baza $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a lui V, considerăm vectorii $\mathbf{b}_1', \mathbf{b}_2', \dots, \mathbf{b}_n'$, unde

$$\begin{cases} b'_1 &= s_{11}b_1 \\ b'_2 &= s_{21}b_1 + s_{22}b_2 \\ &\vdots \\ b'_n &= s_{n1}b_1 + s_{n2}b_2 + \dots + s_{nn}b_n, \end{cases}$$

unde $s_{ij} \in \mathbb{R}$, $1 \le j \le i \le n$ sunt determinați astfel încât

$$\begin{cases} g(\mathbf{b}_i', \mathbf{b}_j) = 0, & 1 \le j < i \le n; \\ g(\mathbf{b}_i', \mathbf{b}_i) = 1, & 1 \le i \le n. \end{cases}$$

Aceste condiții determină în mod unic elementele matricii $S = (s_{ij})_{1 \le j \le i \le n}$, în ipotezele din enunț. Într-adevăr, pentru obținerea lui b'_i , avem de rezolvat sistemul algebric liniar

$$\begin{cases} a_{11}s_{i1} + a_{12}s_{i2} + \dots + a_{1i}s_{ii} & = & 0 \\ a_{21}s_{i1} + a_{22}s_{i2} + \dots + a_{2i}s_{ii} & = & 0 \\ & \vdots & \\ a_{i-1,1}s_{i1} + a_{i-1,2}s_{i2} + \dots + a_{i-1,i}s_{ii} & = & 0 \\ a_{i1}s_{i1} + a_{i2}s_{i2} + \dots + a_{ii}s_{ii} & = & 1 \end{cases}$$

al cărui determinant este chiar $\Delta_i \neq 0$, deci sistemul este compatibil determinat, având o soluție unică. Mai mult, din regula lui Kramer, $s_{ii} = \frac{\Delta_{i-1}}{\Delta_i}$; așadar se poate arăta că $B' = \left\{ \mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n \right\}$ este o bază în V, întrucât matricea de trecere de la B la B' (fiind triunghiulară superior) are determinantul egal cu $s_{11} \cdot s_{22} \cdot \dots \cdot s_{nn} = \frac{1}{\Delta_n} \neq 0$.

Matricea asociată lui h în raport cu B' este una diagonală, cu elementele $s_{ii} = \frac{\Delta_{i-1}}{\Delta_i}$ pe respectiva diagonală. Într-adevăr, avem:

$$g(\mathbf{b}_i', \mathbf{b}_j') = g(\mathbf{b}_i', s_{j1}\mathbf{b}_1 + s_{j2}\mathbf{b}_2 + \dots + s_{jj}\mathbf{b}_j) = s_{j1}g(\mathbf{b}_i', \mathbf{b}_1) + s_{j2}g(\mathbf{b}_i', \mathbf{b}_2) + \dots + s_{jj}g(\mathbf{b}_i', \mathbf{b}_j), \ 1 \le j \le i \le n.$$

Datorită simetriei lui g, obținem

$$g(\mathbf{b}_i',\mathbf{b}_j') = \begin{cases} 0, & i \neq j; \\ s_{ii}, & i = j. \end{cases}$$

Definiție. Fie $(V,+,\cdot)$ un spațiu liniar n-dimensional și $h:V\to\mathbb{R}$ o formă pătratică cu signatura (p,q,r).

- a) Dacă p = n, h se numește formă pătratică pozitiv-definită.
- **b**) Dacă q = 0, forma pătratică h se numește pozitiv-semidefinită.
- c) Dacă q = n, h se numește formă pătratică negativ-definită.
- d) Dacă p = 0, forma pătratică h se numește negativ-semidefinită.
- **e**) Forma pătratică h se numește nedefinită dacă p > 0 și q > 0.

Observații.

- 1. Bineînţeles, dată fiind o formă pătratică *h*, pozitiva-definire implică pozitiva-semidefinire, iar negativa-definire implică negativa-semidefinire.
- 2. Fie Δ_i , $1 \le i \le n$ minorii principali ai matricei asociate lui h în raport cu o bază a lui V. Conform teoremei 3.2, h este pozitiv-definită dacă și numai dacă

$$\Delta_i > 0, \ \forall i \in \{1,\ldots,n\},\$$

iar h este negativ-definită dacă și numai dacă

$$(-1)^i \Delta_i > 0, \ \forall i \in \{1, \ldots, n\}.$$

Teorema 3.3 (Metoda valorilor proprii de reducere a unei forme pătratice). Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian finit-dimensional cu dim V = n și $h: V \to \mathbb{R}$ o formă pătratică. Atunci există o bază ortonormală în raport cu care h are forma canonică

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2, \ x_1, x_2, \dots, x_n \in \mathbb{R},$$

unde $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ sunt valorile proprii ale matricei asociate lui h în raport cu orice bază a lui V.

Demonstrație. Fie $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui V și A_B matricea asociată lui h în raport cu baza B. Deoarece A_B este simetrică, operatorul liniar $T: V \to V$ asociat lui A_B (în raport cu aceeași bază B) este autoadjunct și deci diagonalizabil. Fie $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ valorile proprii ale lui T. Din metoda de diagonalizare a lui T, putem construi o bază ortonormală $B' = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a lui V astfel încât \mathbf{v}_i este un vector propriu al lui λ_i , pentru $1 \le i \le n$ (într-adevăr, dacă $\lambda_i \ne \lambda_j$, deoarece T este autoadjunct vom avea $\lambda_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \langle \lambda_i \mathbf{v}_i, \mathbf{v}_j \rangle = \langle T(\mathbf{v}_i), \mathbf{v}_j \rangle = \langle \mathbf{v}_i, T(\mathbf{v}_j) \rangle = \langle \mathbf{v}_i, \lambda_j \mathbf{v}_j \rangle = \lambda_j \langle \mathbf{v}_i, \mathbf{v}_j \rangle$, ceea ce implică $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$). De asemenea, în raport cu B', matricea $A_{B'}$ asociată lui B va avea forma diag $(\lambda_1, \dots, \lambda_n)$, de unde concluzia.

Definiție. Fie $(V, +, \cdot)$ un spațiu liniar, $h: V \to \mathbb{R}$ o formă pătratică și $f: V \to \mathbb{R}$ o funcțională afină. Suma h+f se numește funcțională (formă) pătratică neomogenă pe V.

Dacă V este finit-dimensional și $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ este o bază a lui V, atunci pentru orice $x_1, \dots, x_n \in \mathbb{R}$,

$$(h+f)(x_1\mathbf{b}_1+\dots+x_n\mathbf{b}_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j + \sum_{i=1}^n b_ix_i + c,$$
 (4)

unde $A = (a_{ij})_{1 \le i,j \le n}$ este matricea asociată lui $h, b_1, \ldots, b_n \in \mathbb{R}$ şi $c \in \mathbb{R}$. Termenul din dreapta acestei egalități se numește *polinomul pătratic* asociat lui h + f (acesta este un polinom de grad 2, nu necesar omogen).

Dacă $V = \mathbb{R}^n$ și B este baza sa canonică, atunci (4) poate fi privit ca

$$(h+f)(\mathbf{x}) = \rho(\mathbf{x}) := \langle A\mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{x} \rangle + c, \ \forall \mathbf{x} \in \mathbb{R}^n$$
 (5)

(unde vectorul $\mathbf{x} \in \mathbb{R}^n$ este interpretat ca matrice coloană pentru înmulțirea cu A).

Reciproc, pentru o matrice simetrică $A \in \mathcal{M}_n$, $\mathbf{b} \in \mathbb{R}^n$ și $c \in \mathbb{R}$, funcția $\rho : V \to \mathbb{R}$ definită de (5) definește o funcțională pătratică neomogenă pe V. De fapt, restricția ca A să fie simetrică poate fi îndepărtată, deoarece

$$\langle A\mathbf{x}, \mathbf{x} \rangle = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{x}, A\mathbf{x} \rangle = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle + \frac{1}{2} \langle A^{\mathsf{T}}\mathbf{x}, \mathbf{x} \rangle = \left(\frac{1}{2} \left(A + A^{\mathsf{T}} \right) \mathbf{x}, \mathbf{x} \right);$$

așadar matricea A poate fi înlocuită de matricea simetrică $\frac{1}{2}(A+A^{T})$.

Să considerăm acum o schimbare afină de coordonate, adică o transformare de forma

$$\mathbf{x}' = S\mathbf{x} + \mathbf{x}_0,$$

unde $S \in \mathcal{M}_n$ este o matrice nesingulară și $\mathbf{x}_0 \in \mathbb{R}^n$. Atunci

$$\rho(\mathbf{x}) = \left\langle AS^{-1}(\mathbf{x}' - \mathbf{x}_0), S^{-1}(\mathbf{x}' - \mathbf{x}_0) \right\rangle + \left\langle \mathbf{b}, S^{-1}(\mathbf{x}' - \mathbf{x}_0) \right\rangle + c$$

$$= \left\langle \left(S^{-1} \right)^{\mathrm{T}} AS^{-1} \mathbf{x}', \mathbf{x}' \right\rangle - \left\langle 2 \left(S^{-1} \right)^{\mathrm{T}} AS^{-1} \mathbf{x}_0 + \left(S^{-1} \right)^{\mathrm{T}} \mathbf{b}, \mathbf{x}' \right\rangle + \left(c - \left\langle \mathbf{b}, S^{-1} \mathbf{x}_0 \right\rangle \right).$$

Să presupunem acum că S este matricea de trecere de la baza canonică la o bază ortonormală ce dă forma canonică din teorema 3.3. Atunci S este o matrice ortonormală $(S^{-1} = S^T)$ şi $S^T A S = D := \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, unde $\lambda_1, \ldots, \lambda_n$ sunt valorile proprii ale lui A. În consecință,

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle - 2 \left(S \left(A S^T \mathbf{x}_0 + \frac{1}{2} \mathbf{b} \right), \mathbf{x}' \right) + (c - \langle \mathbf{b}, S^{-1} \mathbf{x}_0 \rangle).$$

Dacă A este nesingulară, putem lua $\mathbf{x}_0 \coloneqq -\frac{1}{2}SA^{-1}\mathbf{b}$, obținând în acest fel

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle + c_0,$$

unde $c_0 := \langle D\mathbf{x}_0, \mathbf{x}_0 \rangle - \langle S\mathbf{b}, \mathbf{x}_0 \rangle + c$. De aceea, prin schimbarea de coordonate $\mathbf{x}' = S\mathbf{x} - \frac{1}{2}SA^{-1}\mathbf{b}$, obţinem

$$\rho(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i (x_i')^2 + c_0, \ \forall \mathbf{x} \in \mathbb{R}^n,$$
(6)

unde x_i' sunt coordonatele lui **x** în raport cu noua bază ortogonală.

Dacă det A = 0, atunci lăsând $\mathbf{x}_0 := \mathbf{0}$, obtinem

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle + \langle S\mathbf{b}, \mathbf{x}' \rangle + c_0,$$

unde $c_0 := -\langle S\mathbf{b}, \mathbf{x}_0 \rangle + c$.

Dacă (p,q,r) este signatura lui h, avem r > 0 și n - r este rangul lui A; se poate mai departe găsi o bază B'' astfel încât

$$\rho(\mathbf{x}) = \sum_{i=1}^{n-r} \lambda_i (x_i'')^2 + \gamma x_{n-r+1}'', \ \forall \mathbf{x} \in \mathbb{R}^n,$$
(7)

unde x_1'', \ldots, x_n'' sunt coordonatele lui **x** în raport cu această nouă bază și $\gamma \in \mathbb{R}$.

Forma (6) sau (7) se poate aduce la forma normală a funcționalei pătratice neomogene h + f (sau a lui ρ): $\lambda_i \in \{-1, 1\}$, $c_0 \in \mathbb{R} \text{ si } \gamma \in \{-1, 1\}.$

Dintr-un punct de vedere geometric,

$$\ker \rho := \{ \mathbf{x} \in \mathbb{R}^n \mid \rho(\mathbf{x}) = 0 \}$$

reprezintă o conică în cazul n=2, o cuadrică în cazul n=3, respectiv o hipercuadrică dacă $n\geq 4$.

Dacă n=1, există trei tipuri de forme normale ale lui ρ : x^2+1 (atunci ker $\rho=\varnothing$: două puncte "imaginare"), x^2-1 (ker $\rho = \{-1, 1\}$: două puncte distincte) sau $x^2 = 0$ (ker $\rho = \{0\}$: două puncte identice).

Dacă n = 2, există nouă tipuri de conice, după forma normală a lui ρ :

- 1. $x_1^2 + x_2^2 + 1 = 0$ (\varnothing : *elipsă* "imaginară");
- 2. $x_1^{\frac{5}{2}} x_2^{\frac{5}{2}} + 1 = 0$ (hiperbolă);
- 3. $x_1^2 + x_2^2 1 = 0$ (elipsă);
- 4. $x_1^2 x_2 = 0$ (parabolă);
- 5. $x_1^2 + x_2^2 = 0$ (un punct: două drepte "imaginare", conjugate);
- 6. $x_1^2 x_2^2 = 0$ (două drepte ce se intersectează);
- 7. $x_1^2 + 1 = 0$ (\varnothing : două drepte "imaginare");
- 8. $x_1^2 1 = 0$ (două drepte paralele);
- 9. $x_1^2 = 0$ (două drepte identice).

În cazul n = 3, avem 17 tipuri de cuadrice, caracterizate de următoarele forme normale:

- 1. $x_1^2 + x_2^2 + x_3^2 + 1 = 0$ (elipsoid "imaginar"); 2. $x_1^2 + x_2^2 + x_3^2 1 = 0$ (elipsoid);

```
3. x_1^2 + x_2^2 - x_3^2 - 1 = 0 (hiperboloid cu o pânză);

4. x_1^2 - x_2^2 - x_3^2 - 1 = 0 (hiperboloid cu două pânze);

5. x_1^2 + x_2^2 + x_3^2 = 0 (un punct: con "imaginar");

6. x_1^2 + x_2^2 - x_3^2 = 0 (con);

7. x_1^2 + x_2^2 - x_3 = 0 (paraboloid eliptic);

8. x_1^2 - x_2^2 - x_3 = 0 (paraboloid hiperbolic).
```

Celelalte 9 forme normale rămase sunt aceleași ca în cazul n = 2, care în \mathbb{R}^3 reprezintă *cilindri* de diferite tipuri: eliptic, hiperbolic sau parabolic. Primele 6 cuadrice sunt cuadrice nesingulare, în timp ce celelalte sunt cuadrice singulare.

BIBLIOGRAFIE SELECTIVĂ

- [1] M. Ariciuc, S. Roatesi, Lecții de algebră liniară și geometrie analitică, Editura Matrix Rom, București, 2008.
- [2] K. C. Border, More than you wanted to know about quadratic forms, Caltech, 2016.
- [3] K. Conrad, Bilinear Forms, Notes on Advanced Linear Algebra, 2015.
- [4] C. Costinescu, Algebră liniară și aplicații în geometrie, Editura Matrix Rom, București, 2005.
- [5] D. Drăghici, Algebră, Editura Didactică și Pedagogică, București, 1972.
- [6] G. Galbură, F. Radó, Geometrie, Ed. Didactică și Pedag., București, 1979.
- [7] M. Neagu, Geometria curbelor și suprafețelor. Teorie și aplicații, Editura Matrix Rom, București, 2013.
- [8] P. Ott, Bilinear and Quadratic Forms, Prof. Robert Beezer's Notes on Advanced Linear Algebra, 2014.
- [9] I. Radomir, Elemente de algebră vectorială, geometrie și calcul diferențial, Editura Albastră, Cluj-Napoca, 2000.