

10. 下列级数发散的是().

(A)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2^n} + \frac{\sqrt{n}}{n^2 + 1}\right)$$
 (B) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ (C) $\sum_{n=1}^{\infty} \frac{3n+1}{\sqrt{n(n^3 + 2n + 1)}}$ (D) $\sum_{n=1}^{\infty} \left(\frac{3n}{5n - 2}\right)^n$

二、(8 分) 求直线
$$\begin{cases} 2x-y+z-4=0 \\ x+y-z+1=0 \end{cases}$$
 在平面 $2x+3y+4z-9=0$ 上的投影直线方程.

三、(8 分) 设
$$z = yf(x^2 - y^2, xy)$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

四、(8 分) 求函数 $f(x,y) = e^{-x-y}(x^2 + y^2)$ 的极值.

五、 $(8 \ \%)$ 交換二次积分 $\int_0^1 dy \int_y^1 \frac{y}{\sqrt{3+x^3}} dx$ 的积分顺序,并求出积分值.

六、 $(8 \, \Im)$ 计算曲线积分 $\int_L (\sin^2(x+y)+4y) dx + (xy^2 + \frac{1}{3}x^3 - \cos^2(x+y)) dy$,其中曲线 L 是平面区域 $x^2 + y^2 \le x$ 的正向边界.

七、 $(9\ H)$ 计算曲面积分 $\iint_{\mathbf{z}} x(z-y^2) dydz + y(y^2+3z) dzdx - 2zy^2 dxdy$,其中 Σ 为曲面 $z=2-x^2-y^2$ 位于平面 z=1 与平面 z=2 之间的部分,取上侧.

八、(8 分) 将函数 $f(x) = \frac{1}{x^2 - x - 12}$ 展成 x - 2 的幂级数.

九、(7 分) 设函数 f(x) 的一阶导数连续,且满足:

$$\int_0^x (x+1-t)f'(t)dt = x^2 + 1 - f(x),$$

求f(x).

十、(6 分)若级数 $\sum_{n=1}^{\infty} \frac{(x-a)^n}{\sqrt{n}}$ 在 x=-2 处是条件收敛的,求常数 a 的值,并证明:级数

$$\sum_{n=1}^{\infty} n^3 (x-a)^n \div x = \ln \frac{1}{2}$$
 处是绝对收敛的.