(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特期2001-155345

(P2001-155345A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7		識別記号	FΙ		ว ั	7]}*(参考)
G11B	7/007		G11B	7/007		5 D 0 2 9
	7/24	5 2 2		7/24	522A	5 D 0 9 0
		561			561M	

		審査請求	未請求 請求項の数9 OL (全 14 頁)
(21)出願番号	特願平 11-334098	(71)出願人	. ·
(00) ((100) D	TT-544 F0F F (1000 44 0F)	•	日本ピクター株式会社
(22)出顧日	平成11年11月25日(1 99 9. 11. 25)	:	神奈川県横浜市神奈川区守屋町3丁目12番地
		(72)発明者	近藤 哲也
		,	神奈川県横浜市神奈川区守屋町3丁目12番
			地 日本ピクター株式会社内
		(72)発明者	中川 栄治
			神奈川県横浜市神奈川区守屋町3丁目12番
•			地 日本ピクター株式会社内
	en de la companya de		
			最終頁に続く

(54) 【発明の名称】 光学的情報記録媒体及び及び光学的情報記錄媒体用支持体及び光学的情報記錄媒体の製造方法

(57)【要約】

【課題】 グループ内の記録マークと、アドレスピット 信号との相互干渉を最小限におさえて、良好な記録再生 を行うことができ、また、ディスク支持体の微細構造の 寸法を特定したので、安定したディスク製造及び供給を 可能とする。

【解決手段】 グループ間に配したアドレスピットを有 する支持体と、書き換え可能な相変化材料を少なくとも 含む反射率15%以上記録層とを備えることにより、読 み出しエラーも生じることなく、良好に記録再生を行え る。

【特許請求の範囲】

【請求項1】正弦波変調グループおよび前記グループ間に分散して配置されたアドレスピットが形成された支持体と、

書き換え可能な相変化材料を少なくとも含む反射率15%以上の記録層と、

前記記録層の上に形成される樹脂層とを少なくとも有 1. !

未記録状態の再生信号中に占めるアドレスピット信号成分であるアドレスピット出力値が0.18から0.27の範囲であることを特徴とする光学的情報記録媒体。

【請求項2】正弦波変調グループおよび前記グループ間 に分散して配置されたアドレスピットが同じ深さで形成 された光学的情報記録媒体用支持体であって、

前記支持体は、溝深さd、溝幅w、溝トラックピッチT P、記録情報マーク長ML、アドレスピット長AL、再 生波長入、支持体屈折率nが、それぞれ0.05入/n

 \leq d \leq 0.1 λ /nであり、且つ0.35 \leq (w/TP) \leq 0.55 であり、且つ0.18<0.14k+4.11n (d-26) / λ <0.27であり、且つ

k = A L / M L

である関係を同時に満たした微細構造を有していることを特徴とする光学的情報記録媒体用支持体。

【請求項3】請求項2記載の前記光学的情報記録媒体用 支持体と

前記光学的情報記録媒体用支持体の上に形成される書き 換え可能な相変化材料を少なくとも含む反射率15%以 上の記録層と、

前記記録層の上に形成される樹脂層とから少なくとも構成されたことを特徴とする光学的情報記録媒体。

【請求項4】正弦波変調グループおよび前記グループ間 に分散して配置されたアドレスピットが形成された支持 体と

書き換え可能な相変化材料を少なくとも含む反射率18~30%以上の記録層と、

前記記録層の上に形成される樹脂層とを少なくとも有し、

未記録状態の再生信号中に占めるアドレスピット信号成分であるアドレスピット出力値が0.18から0.27の範囲であることを特徴とする光学的情報記録媒体。

【請求項5】正弦波変調グループおよび前記グループ間 に分散して配置されたアドレスピットが同じ深さで形成 された光学的情報記録媒体用支持体であって、

前記支持体は、溝深さ d、溝幅w、溝トラックピッチTP、アドレスピット長ALが、TP=0.74 μ mであり、且つ、 $20 \le d \le 41$ nmであり、且つ0. $26 \le w \le 0$.41 μ mであり、且つ44<35AL+d<53である関係を同時に満たした微細構造を有していることを特徴とする光学的情報記録媒体用支持体。

【請求項6】請求項5記載の前記光学的情報記録媒体用 支持体と、

前記光学的情報記録媒体用支持体の上に形成される書き 換え可能な相変化材料を少なくとも含む反射率18~3 0%の記録層と、

前記記録層の上に形成される樹脂層とから少なくとも構成されたことを特徴とする光学的情報記録媒体。

【請求項7】書き換え可能な相変化材料が、アンチモンとテルルと融点1100度以下の金属を含む合金であることを特徴とする請求項1、3、4、6記載の光学的情報記録媒体。

【請求項8】書き換え可能な相変化材料が、銀、インジウム、アンチモン、テルル合金であることを特徴とする 請求項7記載の光学的情報記録媒体。

【請求項9】請求項5記載の前記光学的情報記録媒体用支持体に、書き換え可能な相変化材料を少なくとも含む反射率18~30%の記録層を真空成膜し、前記記録層面の上層にダミー支持体を積層することを特徴とする情報記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光学的情報記録媒体に対して相対運動をさせて情報を書き込み、読み出す光学的情報記録媒体用の記録再生装置(ドライブ)に用いられる光学的情報記録媒体に関するものであって、高密度で大容量の記録再生が可能な光学的情報記録媒体に関するものである。

[0002]

【従来の技術】従来より、相対運動をさせて情報を読み 出す情報記録媒体のシステムとして、ディスク状 媒体 を用い、光学的に記録または再生の行えるシステムがあ る。ディスク方式には大別して再生専用型 (ROM型) のもの、追記型 (ライトワンス (R型)) のもの、記録 可能型(複数回重ね記録可能型(RW型))のものがあ る。一般的に記録密度は、再生専用のものが高く、追記 型や記録型のものは低めである。例えば、1996年に 登場したDVDシステム(レーザー波長635から65 Onm) においても、再生専用型 (DVD-ROM、D VDビデオ)が先行し、その記録容量は4.7GBであ る。一方、記録可能型なDVD-RAMではその容量は 2. 6 GBであり、ROMの55%程度の容量である。 記録型ディスクの容量を高める研究開発が進んでいる が、DVD-ROMと同じ容量のシステムはまだ完成し ていない。

【0003】記録型の場合、ディスク上の記録フォーマット、記録媒体の材料などが重要な技術である。ところで、DVD-RAMでは光学的情報記録媒体のランドとグループの両方を記録に供する、ランドグループ記録を用いていた。ここで記録再生に伴って必要なアドレス

(番地) は、特定の間隔毎にランド及びグループを切断

して記録されていた。

【0004】図19はランドグループ記録型ディスクの 微細構造20 (物理フォーマット構造) を示す平面図で ある。図19は未記録時の構造外観を示しており、グル ープ21が平行に形成されている。グループ21の間は ランド22になっており、記録時にはこの双方に情報が 記録される。記録再生に必要となるアドレスピット23 は、ランド22及びグループ21を切断して形成されて いた。このアドレスは付随する信号と共に、ある領域2 4を占有するため、これが大容量化を妨げていた。言い 換えれば限られた面積を有効に利用できていなかった。 【0005】また記録材料にあっては、再生専用型DV Dドライブとの互換性を考えると、磁気ヘッドを使用し ない相変化記録方式が相応しい。しかしながらこの方式 は、再生専用型、あるいは色素を用いる追記型と比べて 大幅に反射率が低いという欠点があり、このことも記録 容量を向上できない原因となっていた。

【0006】表面面積の利用効率のよい微細構造(物理フォーマット構造)と、高密度記録用相変化材料を組み合わせ、最適化することによって、再生専用型DVDに匹敵する記録容量が達成できる可能性がある。

[0007]

【発明が解決しようとする課題】大容量光ディスクに相 応しいフォーマットとして、例えば、図19に示した領 域24などの特定のアドレス領域を持たず、アドレスを 分散記録する光ディスクが考えられる。すなわちアドレ ス領域(領域24)がないために、記録密度をDVD-ROM並みに向上できる可能性がある。しかしながらこ の方法はアドレス信号の近傍に主たる記録信号を記録し たとき、アドレス信号に干渉してエラーが発生し、これ 以降の書き換えができなくなることがあり、また逆に、 アドレス信号が主たる記録信号に漏れ込み干渉し、読み 出しエラーが生じることもあった。本発明の目的は、主 たる記録信号とアドレス信号が、互いに干渉しあわず記 録再生できる高密度相変化型の光学的情報記録媒体(記 録ディスク)を提案することであり、特にこの目的を実 現するためのアドレス信号出力範囲と、アドレス信号等 の具体的な微細構造を寸法で示すことにある。更にDV Dに限定されることなく、開発中である短波長レーザー を利用した記録再生装置にも対応した、微細構造寸法を 一般式で示すことにある。

[0008]

【課題を解決するための手段】本発明は、上述の問題点を解決するために、正弦波変調グループおよび前記グループ間に分散して配置されたアドレスピットが形成された支持体と、書き換え可能な相変化材料を少なくとも含む反射率15%以上の記録層と、前記記録層の上に形成される樹脂層とを少なくとも有し、未記録状態の再生信号成分中に占めるアドレスピット信号成分であるアドレスピット出力値が0.18から0.27の範囲であるこ

とを特徴とする光学的情報記録媒体を提供する。また、 本発明は、上述の問題点を解決するために、正弦波変調 グループおよび前記グループ間に分散して配置されたア ドレスピットが同じ深さで形成された光学的情報記録媒 体用支持体であって、前記支持体は、溝深さd、溝幅 w、溝トラックピッチTP、記録情報マーク長ML、ア ドレスピット長AL、再生波長入、支持体屈折率nが、 $\frac{\partial \lambda}{\partial n} \leq d \leq 0.1 \lambda/n \tau$ あり、且つ、 $0.35 \le (w/TP) \le 0.55$ であ り、且つ、0. 18<0. 14k+4. 11n (d-2) 6) $/\lambda$ < 0. 27であり、且つ、k = AL/MLであ る関係を同時に満たした微細構造を有していることを特 徴とする光学的情報記録媒体用支持体を提供する。さら に、本発明は上述の問題点を解決するために、正弦波変 調グループおよび前記グループ間に分散して配置された アドレスピットが形成された支持体と、書き換え可能な 相変化材料を少なくとも含む反射率18~30%以上の 記録層と、前記記録層の上に形成される樹脂層とを少なう くとも有し、未記録状態の再生信号成分中に占めるアド レスピット信号成分であるアドレスピット出力値が0... 18から0.27の範囲であることを特徴とする光学的 情報記録媒体を提供する。さらに、本発明は上述の問題 点を解決するために、正弦波変調グループおよび前記グ ループ間に分散して配置されたアドレスピットが同じ深 さで形成された光学的情報記録媒体用支持体であって、 前記支持体は、溝深さd、溝幅w、溝トラックピッチT P、アドレスピット長ALが、 $TP=0.74\mu m$ であ り、且つ、 $20 \le d \le 41$ nmであり、且つ、0.26 $\leq w \leq 0.41 \mu m$ であり、且つ、44 < 35 A L +d < 53である関係を同時に満たした微細構造を有して いることを特徴とする光学的情報記録媒体用支持体を提 供する。

[0009]

【発明の実施の形態】以下、本発明の実施例に関して図面を用いて詳しく説明する。本発明の発明者は将来、様々な波長の半導体レーザーが登場することを視野に入れつつ、鋭意開発を進めた結果、本発明に至ったものである。即ち数多くの試作と評価を繰り返して、記録再生波長635から650nmにおいては再生専用型DVDと同じ記録容量(4.7GB)を実現し、更に600nm以下の短波長化したレーザーにおいてもシステムが成立する方法を確立するに至った。

【0010】次に図面を使用して本発明を説明する。図1は本発明の実施例を示す鳥瞰図である。図1に示す光ディスク1は、グループ11にのみ情報記録する方式であり、情報トラックであるグループ11や、後述するアドレスピット13 (図示せず) はディスクに対して同芯円状またはスパイラル状に埋め込まれ、微細構造10を形成している。その断面図は図14に示すようになっている。

【0011】図14は本発明の実施例の断面図で、本発明の実施例の最も基本的な構成を図示したものである。すなわち光ディスク1は支持体2、記録層3、樹脂層4の順に積層されている。光による記録再生は記録層3に対し行われるが、対物レンズ(開口数NA)によって絞り込まれたレーザー光(波長入nm)をどちらから照射するか、すなわち支持体2側から入射するか、樹脂層4側から入射するかは任意である。そして光の入射する通路、すなわち光路は波長入に対して所定の屈折率れを持ち、この屈折率れによって実効的な光学長が決まる。なお、図14では、一例として支持体2を光路として図示している。そしてグルーブ11を含む微細構造10は、光ディスク1の内部に埋め込まれており、具体的には支持体2表面に形成されている。そして支持体2と記録層3とは互いに平行に形成されている。

【0012】図2は本発明の実施例の微細構造(物理フォーマット)10を示す拡大平面図であり、未記録時の状態を模式的に示している。ここで、微細構造10とは光ディスク1の物理フォーマットのことを示す。光ディスク1の支持体2にはグループ11が各々略平行に形成されている。それぞれのグループ11はクロックを抽出するため、システム全体のシンクフレーム周波数に対し、整数倍周波数で変調されており、正弦波形状となっている。この波形は、隣接グループと同期していてもよいし、同期していなくてもよいものである。

【0013】グルーブ11間のランド12には、分散し **- てアドレスピット13が形成されており、アドレス情報** を担っている。 すなわちアドレスピット13は隣接トラ ックに対して橋を架けるように (I字型に)予め支持体 2に埋め込んでおく。具体的には、支持体2に正弦波変 調グループ11、およびグルーブ11間に分散して配置 されたアドレスピット13が同じ深さで形成されてい る。このようにアドレスピット13がグループ11間を 橋渡ししているために、アドレスピット13はどちらの グループ11を使用しているときにも読み取れる。 つま りグループに対して内周側をそのアドレスとするか、外 周側をアドレスとするかは任意である。なおアドレスピ ット13は正弦波グループ11が最大偏向した位置(正 弦波の頂点±10度以内) に配置される。アドレス情報 は各アドレスピット13間の距離を基に記録される。従 ってアドレスピット13自身の長さ(AL)は一定とす る。図17はアドレス情報の一例を示す情報フォーマッ トである。冒頭にシンクビット(同期信号)があり、続 いて相対アドレスデータが続き、そしてECCブロック アドレスデータ (ECС:エラー訂正コード) からなっ ている。例えばシンクは1ビット、相対アドレスデータ ーが4ビット、ECCプロックアドレスデータが8ビッ トという構成になっている。

【0014】図3は本発明の実施例の物理フォーマット を示す別の拡大平面図であり、光ディスク1の記録時の 状態を模式的に示している。その構成は図2と基本的には同じであるが、情報マーク14がグルーブ11内に変調記録されている。その情報マークは相変化記録、すなわち記録層材料の変化によって記録されたもので、例えば、未記録状態が結晶質、記録状態が非晶質となる性質であり、結晶質では高反射率、非晶質では低反射率であることを利用して再生することができる。ただし、材料の選択によっては未記録時を低反射率、記録時を高反射率とすることもできる。

【0015】情報マーク14は、公知のデジタル符号による変調信号であり、チャネルビット (T) の整数倍の信号である。従って公知の光ディスクのように、最短マーク長を2T、3T、4T、5Tなどとした信号をすべて扱うことができる。例えば最短マーク長を3Tとした信号系では、8/14変調、8/15変調といった、3T~11Tまでの信号からなる信号系や、8/16変調といった3Tから11Tまでの信号及び14T信号からなる信号系を扱うことができる。

【0016】このように本発明の実施例の光ディスク1では、アドレスピット13がランド12上に分散記録されており、ランドグループ方式のように特定の領域24を有しないために、面積利用効率がよい。しかも情報マーク14はグループ11に記録されているために、ランド12上のアドレスピット13との干渉は少ない構造である。ただし図3に示すように、アドレスピット13と情報マーク14は隣接する場合もあり、隣接記録後のアドレスピット13の読み取り性、及び情報マーク14の読み取り性には充分留意が必要である。

【0017】ところで、本発明の実施例である光ディス ク1に用いる記録層2の材料にあっては、記録層2の反 射率が15%以上となる相変化材料が相応しく、望まし くは18%以上の高い反射率となる相変化材料が相応し い。特にアンチモンとテルルと融点1100℃以下の金 属とを含む合金であり、記録前後で反射率コントラスト が大きく取れる相変化材料が相応しい。例えば実用的な 記録感度と、実用的な信号特性(変調度、反射率、ジッ ター、書き換え可能回数)を有する材料として、アンチ モン、テルルを必須成分とし、これらに金、銀、銅、イ ンジウム、アルミニウム、ゲルマニウムの少なくともい ずれか1つを含む材料が望ましい。特に望ましいのは銀 ・インジウム・アンチモン・テルル合金 (AgInSb Te) や銅・アルミニウム・テルル・アンチモン合金 (CuAlTeSb)、ゲルマニウム・アンチモン・テ ルル合金 (GeSbTe)、銀・ゲルマニウム・アンチ モン・テルル合金 (AgGeSbTe)、金・ゲルマニ ウム・アンチモン・テルル合金 (AuGeSbTe)な どである。

【0018】ここで後述する記録再生性能の説明のために種々寸法の定義をしておく。図2 (未記録状態) において、正弦波変調されたグループ11の中心線と中心線

との間の距離をトラックピッチTPと定義し、グループ 11自身の幅をWと定義し、アドレスピット13の長さをALと定義する。アドレスピット13はランド12のほぼ中央に打ち込まれているからアドレスピット13の中心線とグループ11の中心線との間隔は、ほぼ、TP/2となる(図示せず)。またグループ11とアドレスピット13は支持体2に対して共に同じ深さに刻まれたものであり、図示はしないが、その深さは共にdとする。また図3(記録状態)において記録後の情報マーク14の長さは変調により様々な長さであるが、そのうち最短マークの長さをMLとする。

【0019】これら高密度記録用相変化材料を用いて、実際に各種微細構造寸法(TP、d、w、ML、AL)の光ディスクを試作し、記録再生特性の評価を行ったところ、本発明の実施例の光ディスク1のアドレス出力の数値範囲、微細構造寸法の範囲値を得ることができた。なお本発明の実施例として説明した光ディスク及び光ディスクドライブは、再生スポット径(入/NA)に対して、TPが60から70%程度、MLが35から45%程度の長さを想定している。

【0020】(1)未記録ディスクのトラッキング性能 記録後のディスクは、図3に示した通りグループに反射 率差のある記録マーク14が形成されているので、トラ ッキングは種々方法が取りうる。例えばDPDトラッキ ングやDPPトラッキングなどである。しかしながら未 記録時は図2のとおりグループ11のみであり、トラッ キング方法は事実上、プッシュプル法しか取り得ない。 【0021】グループ11深さdとブッシュプル信号の 出力 (PPb) の関係を調べ、図4に記した。なお、こ こでW/TP=0.35~0.55の範囲のものについ て測定した。図4で示すようにdが小さいほどPPbは 小さくなる。いわゆるd=0. 125 λ /n (nは光路 の屈折率)にて最大となるが、トラッキング自体は比較 的小さなPPbであっても安定である。実際に本発明な る分散アドレスピット付き相変化ディスク1についてト ラッキングが外れる限界を調べたところ、Pb=0.2 2であり、これ以上であればトラッキングは安定であっ た。言い換えればd \geq 0.05 λ /nであることが必要 である。

【0022】(2)記録マークの再生性能

記録マーク14の読みとり性能の指標の一つにジッターがある。これは記録後に、再生を行って、時間軸方向の揺らぎ(標準偏差)をクロックで除したものであり、数値は小さいほど安定した再生が得られる。例えばDVD規格ではイコライザー通過後、8.0%以下であることが決まっている。

【0023】図5は溝深さd及び溝幅に対するジッターの値(5トラック、10回重ね書き時)を測定したものである。なお溝幅は、幅wをトラックピッチTPに対して規格化した値、w/TPで表現している。図5のとお

り、溝深さdが小さい程、良いジッターが得られる。この理由は溝が浅いほど反射率及び信号変調度が高く得られ、相対的にベースノイズが減るためである。溝幅w/TPのジッターへの影響は相対的に少ない。

【0024】ジッター8.0%以下を得るには、溝幅に もよるがd \le 0.1 λ /nであることが必要となる。更 に0.35 \le (w/TP) \le 0.55であることも必要 である。なおアドレスピット13は各グループに対して I字型に形成されるから、アドレスピット13自身の幅 はTP比で0.65から0.45の値を取ることにな

【0025】(3)アドレスピットの再生性能と記録マークからの干渉

DVDプレーヤーに代表される再生装置のピックアップ には4分割のフォトディテクターが用いられている。こ のそれぞれの出力を加減乗除することによってアドレス ピット信号を効率よく生成することができる。図6は上 述したような4分割ディテクター9の模式図である。図 2 および図3に対応して縦軸は半径方向、横軸を接線方 向(トラック方向)としている。4分割ディテクターの 再生出力をそれぞれIa、Ib、Ic、Idとしている が、ここで図2および図3に対応してIa及びIbは内 周側、Ic及びIdは外周側に配置したディテクターで ある。そして再生にあたっては、(Ia+Ib) - (I c+Id)となるように出力を合成することでアドレス ピット13をコントラスト良く再生することができる。 【0026】図7および図8は、このようにして再生し た波形を示したものである。図7は未記録状態の再生波 形で、正弦波変調されたグループ11の波形に、アドレ スピット13が合成されて再生されている。このように アドレスピット13だけ突出して検出することができる。 ので、アドレスを読み取ることができる。従ってこの突 出分に対応して、規格化した値を未記録時アドレスピッ ト出力と定義することができる。 具体的には (I a + I b) - (Ic+Id) の絶対値を、全ディテクターの合 計、すなわち (Ia+Ib+Ic+Id) の絶対値で割 った値を未記録時アドレスピット出力 (APb) として 定義する。アドレスピット出力値(APb)とは、未記 録状態の再生信号中に占めるアドレスピット信号成分の 値を意味する。

APb=| (Ia+Ib) - (Ic+Id) | / | (Ia+Ib+Ic+Id) |

【0027】正確な測定を行う場合には、種々ノイズ分を除くため、フィルターを入れるのが望ましい。例えば (Ia+Ib+Ic+Id) の絶対値を測定する場合には、30kHzのカットオフなるローパスフィルターを入れる。また逆に (Ia+Ib) - (Ic+Id) の絶対値を測定する場合には、20MHz以上帯域確保したアンプを用いるのが望ましい。

【0028】アドレスピット出力値はアドレスピット1

3の回折によって得られているものであるから、深さdと長さALに強く依存する。アドレスピット出力値APbが小さいと読み取りにくくなり、エラーレートは増加する傾向にある。また図8は記録状態の再生波形である。図7の波形に対し、グループ11に記録された情報マーク14の信号が重ね書きされている。この信号はグループ11に対して、あたかもノイズのように重畳されるので、アドレスピット13の読み取りには甚大な影響を及ぼす。言い換えれば未記録時にアドレスピットが正しくデコードできたとしても、記録後にはデコードできない場合が出てくる。

【0029】dとALを種々可変して作製した光ディス クについて、記録前のアドレスピットのエラーレートを 測定した。その後グルーブ11にランダムな記録を行 い、その後アドレスピットのエラーレートを再度測定し た。なお、記録後のエラーレートは5%未満であること . が信頼性の条件である。図9にその測定値を示す。ここ で横軸はアドレスピット出力値APbであり、縦軸は1 000mCCブロック以上について計測したブロックエ ラーレートである。記録前のエラーレート (BERb) と記録後のエラーレート (BER-a) が併せてプ ロットしてある。このようにアドレスピット出力値AP bが大きい値ほど、アドレスピットは読み出しやすく、 エラーレートは小さいものとなる。記録前後で比べる と、記録前は読み出しやすいが、記録後は読み出しでエ ラーが発生しやすいことが分かる。記録信号が干渉しや すくなっているためであり、充分なAPb値が必要であ る。以上のことから、記録後のエラーレート、5%未満 を確保するためには、アドレスピット出力値APbは 0.18以上必要であるといえる。なお記録後のエラー レートが5%である状態を詳しく信号解析すると、RF 信号の重畳がかなり見られ、図8におけるアドレスピッ トの開口率、すなわち図8におけるΔ/APsは10% しかない。言い換えれば、 $\Delta / APsが10%$ 以上必要 ともいえる。

【0030】(4) 記録マークへのアドレスピットか らの干渉

アドレスピット13とグループ11は部分的に接しているので、アドレスピット13が記録後の記録マーク14の再生に干渉することも考えられる。そこで種々アドレスピット出力値(APb)を有する光ディスクについて、記録マーク14を読み取り、エラー数を計測した。図10にその測定値を示す。ここで横軸はアドレスピット出力値APbであり、縦軸はPIエラー数(連続8ECCプロックについて、1バイト以上誤ったプロックがりである。APbのある値を境に、急激にエラーが増大することが分かる。アドレスピット13の回折光が、記録マーク14に干渉して読み誤りを発生させていることが理解される。例えば、DVD規格ではPIエラーは280個以下であることを求めているので、アドレ

スピット出力値APbは 0.27以下が相応しい。

【0031】(5) 所望のアドレスピット出力値AP bを得る微細構造の寸法

本発明なる光ディスク及びドライブは、先述したとおり 再生スポット径(入/NA)に対して、小さいTPと小 さい最短マーク長を想定している。更に(1)及び

(2)で検討したように、再生波長より充分浅い深さを 想定している。このような条件下で所望のアドレスピッ ト出力値APbを得るための、ALとdの条件を検討し た。

【0032】ALとMLはお互いの干渉性から考えて比較的同じオーダーと考えられるので、k=AL/MLと仮定し、そのkの値とアドレスピット出力値APbの値、及びdの値とアドレスピット出力値APbの値を検討した。その結果dが大きいほど、またkが大きいほど、APbは大きくなることが判明した。具体的にはAPbは以下の関数で表現できる。

APb=0: 14k+4. $11n(d-26)/\lambda$ 【0033】以上、記録再生するドライブの実動作に支障のないアドレスピット出力 (APb)を求め、更に各種微細構造の寸法 (TP、d、w、k) について検討してきた。以上 (1) ~ (5) の検討を集約すると、以下のようにまとめられる。つまり、未記録状態の再生信号中に占めるアドレスピット信号成分であるアドレスピット出力値 (APb) の範囲:

0.18 < APb < 0.27

上記アドレスピット出力を満足する各種微細寸法:0.05 $\lambda/n \le d \le 0.1\lambda/n$ であり、且つ0.35 $\le (w/TP) \le 0.55$ であり、且つ0.18<0.14k+4.11 $n(d-26)/\lambda < 0.27$

なる関係を同時に満足する寸法d及びw及びk。

【0034】このように本発明なるアドレスピット出力を持つ光ディスク1は、グループ内の記録マーク14と、アドレスピット13との相互干渉が最小限におさえられ、良好な記録再生を行うことができる。また本発明なる微細構造寸法を持つ支持体2、及びそれを含有した光ディスク1は、記録マーク14とアドレスピット13の再生干渉を互いに最小限とすることができる。

【0035】また、本発明はそのようなディスク1を製造するにあたっての支持体2の微細構造寸法を特定したので、安定した製造及び供給を可能とするものである。次に図18を用いて本発明なる具体的な製造方法を説明する。公知のブランクマスター(レジスト盤)に対して、レーザービームレコーダー(LBR)によるマスタリングを行い、本発明なる微細構造10を形成する(図18a)。これには例えば波長458、442、413、407、364、351、325、275、266、257、244nmなどを光源とするレーザーを内蔵したレコーダーが望ましく、マスタービームとサブビ

ームによる2ピームマスタリングが有用である。具体的にはマスターピームをグループ11の形成に充て、サブピームをアドレスピット13の形成に充てる。そしてマスターピームには偏向器(例えばEODやAOD)を通すことで正弦波変調する。またサブピームには変調する。(例えばEOMやAOM)を通すことで断続変調する。この2ピームによるマスタリングは、それぞれを単独に行った場合には位置精度が不充分となるので同時に行うのが望ましい。その場合、マスターピームとサブビームとの間隔はTP/2に設定することが必要となる。なお、この段階ではブランクマスターにはイメージは記録されるが、形状の変更はない。

【0036】続いて記録したブランクマスターに対して、公知のアルカリ現像を行い、マスタリングイメージを凹凸に変換する(図18b)。この形状は後述する支持体2とほぼ同じ微細構造10を持つ。そしてこのガラスマスターに対して、公知のスタンパー化処理、すなわち導電化処理と電鋳処理を行ってスタンパーを形成する(図18c)。この形状は後述する支持体2とほぼ凹凸を逆にした微細構造を持つ。

【0037】そして得られたスタンパーを用いて、公知の成形を行って支持体2を構成する(図18d)。支持体2の材料は、ポリカーボネート樹脂、ポリサルフォン樹脂、ポリフェニレンオキサイド樹脂、ポリスチレン樹脂、ポリノルボルネン樹脂、ポリメタクリル樹脂、ポリメタクリル樹脂、ポリメチルペンテン樹脂、及びこれらの樹脂骨格を有する各種共重合体、ブロック重合体などなどの合成樹脂を用いることができる。ただし支持体2を光路とする場合には公知のとおり、その光学特性、例えば屈折率(n)や複屈折に留意が必要である。例えば、屈折率をn=1.45~1.65とし、複屈折をダブルパスにて100nm以下とすることによって、DVDとの互換性も良好に保っことができる。

【0038】そして支持体1上に記録層3を成膜する。 具体的には微細構造10上に記録層3を成膜する(図1 8 e)。記録層3の主たる構成要素である相変化材料に ついては先述のとおりであるが、必要に応じて光学特性 調整、熱伝搬特性調整等を目的として種々光学干渉膜で 挟み込んでもよい。例えば誘電体材料であるSiN、S iC、SiO、ZnS、ZnSSiO、GeN、Al O、MgF、InO、ZrOなどが有用であり、そのな かでもZnSSiO (ZnSとSiO2の混合) は相変 化記録材料との熱バランスが特に良い。また反射率調 整、熱伝搬特性調整等を目的として公知の光反射膜(ア ルミニウム、金、銀やこれらを含む合金など)を併用し て積層し、記録層3を構成してもよい。また、高密度記 録再生を行うために、公知の超解像マスク膜やコントラ スト増強膜を併用して積層してもよい。このような成膜 を行う方法としては、公知の真空成膜法、例えばスパッ タリング法やイオンプレーティング法、真空蒸着法、C

VD法を用いることができる。特に相変化材料とスパッタリング法は相性がよく、量産性にも富んでいる。

【0039】続いて記録層3上に樹脂層4を形成する。この樹脂層は記録層2を化学的にまたは機械的にガードするもので、光ディスク1の構造によっては接着性を付与してもよいものである。樹脂層4の材料としては紫外線硬化樹脂、各種放射線硬化樹脂、電子線硬化樹脂、熱硬化樹脂、湿気硬化樹脂、複数液混合硬化樹脂などから選択して使用できる。また成膜方法には公知のスピンコート法やスクリーン印刷、オフセット印刷などを用いることができる。

【004.0】以上本発明なる光ディスク1の製造方法について説明してきた。なお図14なる光ディスク1の構成図は基本的なものにすぎず、各種変形が可能である。例えば別の支持体と貼り合わせて強度を高めたり、図14なる光ディスク1を2枚用意して互いに貼り合わせて、ディスクとしてもよいものである(両面ディスクまたは二層ディスク)。

【0041】(実施例1)本発明の一実施例である光ディスク1を赤色半導体レーザーを用いたディスクシステムに適応した例について説明する。なお使用するλは650nm、対物レンズの開口数NAは0.6である。従って再生スポット径 (λ/NA)は1083nm (1.083μm)である。

【0042】本発明の一実施例である光ディスク1の断 面構造を図15に示す。支持体2、記録層3、樹脂層 4、ダミー支持体5の順に積層される。ここで支持体2 表面には後述する微細構造10がエンポス形成されてい る。ここで支持体2はレーザーから記録層3までの光路 になっており、その厚みは0.6mmとなっている。支 持体2とダミー支持体5の材料は共にポリカーボネート 樹脂であり、650nmにおける屈折率nは1.58で ある。記録層3は未記録時を高反射率、記録時を低反射 率とした相変化材料を主とした積層構造である。具体的 には記録層3は、支持体2側よりZnSSiO/AgI nSbTe/ZnSSiO/AlTiの順でスパッタリ ング法によって積層されている。そして反射率は18~ 30%である。この構造で650nmにおける記録感度 は7.5~14.0mWとなっている。また635nm 光においても記録することができ、その記録感度は65 0 nmとほぼ同じ7.0~13.0mWの範囲で保て

【0043】未記録時における微細構造10は、図2に示すようになっている。グループ11はスパイラル状であり、そのトラックピッチTPはDVD-ROMと同じ、0.74μmであり、正弦波変調されている。グループの周期はシンクフレームの8倍の周波数で記録されている。また波の振幅は9から17nmの範囲内の任意としている。また、CLV(線速度一定)記録のため隣接トラックどおしの位相はランダムである。そしてグル

ープ11よりも外側のランドに、一定長さALのアドレスピット13がアドレス値に従って刻まれている。

【0044】記録時の微細構造10は、図3のようになっている。記録する信号は8/16変調信号で、最短マーク長MLは 0.40μ mである。この値はDVD-ROMと同じであり、このことによって直径120mmディスクでの4.7GBの記録容量が実現できる(記録範囲は半径 $24\sim58mm$)。なおこの時、TPは再生スポット径の68%に相当し、最短マークの長さ(ML)は37%に相当する。

【0045】グルーブ内の記録マーク14と、アドレスピット13が互いに干渉し合わず、良好な記録再生を行うことができるアドレスピット出力の範囲、すなわち0.18<APb<0.27を満たす各種微細構造の寸法は、以下のような条件である。

0. $0.5 \cdot 6.50 / 1$. $5.8 \le d \le 0$. $1 \cdot 6.50 / 1$. $5.8 \le d \le 0$.

すなわち20≦d≦41nmであり、且つ

ંજેલ તે તે કાલ 0.4 કે 5'≦ (w/0. 74) ≦'0. 5 5√લ લાકાર્યો અ

すなわち、0.26 \leq w \leq 0.41 μ mであり、且つ 0.18<0.14k+4.11 \cdot 1.58 (d-2

6) $\sqrt{650} < 0.27$

すなわち0.18<0.14k +0.01 (d-26)<0.27である。ここで、 $ML=0.4\mu m$ であるから、0.18<0.35 AL+0.01 (d-26)<0.27、すなわち44<35 AL+d<53 とも表現できる。

【0046】特にdとkの範囲を明確にするために、kとAPbの関係をグラフで表示すると図11のようになる。トラッキング性能の限界であるd=20nmでのAPbの制限、及びジッターの限界であるd=41nmでのAPbの制限から、d、kは図示した平行四辺形内の範囲を取りうる。すなわち(d、k)=(41,0.22)、(41、0.85)、(210,2.34)、(20,1.70)で囲まれた範囲である。製造上のバラッ・キ(溝深さdやアドレスピット長さALの製造変動)を考慮すれば(d,k)=(39.5,0.34),(39.5,0.95),(21.5,2.23)

3), (21.5, 1.60) で囲まれた範囲が望ま しい。

【0047】ML=0. 4μ mであるから、図11は k を ALに置き換えて書き直すこともできる。図12は横軸を ALとしたものである。本発明の範囲は(d、AL)=(41, 0. 08)、(41, 0. 34)、(20, 0. 68) で囲まれた範囲である。なお、製造上のバラッキを考慮すれば、(d, AL)=(39. 5, 0. 136), (39. 5, 0. 380), (21. 5, 0. 892), (21. 5, 0. 640) で囲まれた範囲が望ましい。【0048】(実施例2) 本発明の実施例である光ディ

スク1を緑色半導体レーザーを用いたディスクシステム に適応した例について説明する。使用する入は532nm、対物レンズの開口数NAは0.75である。従って 再生スポット径(λ/NA)は709nm($0.709\mu m$)である。

【0049】本発明の実施例である光ディスク1の断面構造を図16に示す。支持体2、記録層3、樹脂層4、透過層7の順に積層される。ここで支持体2表面には後述する微細構造10がエンボス形成されている。ここで透過層7はレーザーから記録層3までの光路になっており、その厚みは0. $1\sim0$. 12 mmとなっている。透過層7はアセテート樹脂であり、532 nmにおける屈折率れは1. 6 である。記録層3は未記録時を高反射率、記録時を低反射率とした相変化材料であって、反射率が $15\sim32$ %であるCuAlTeSbを主として使用している。具体的に記録層3は積層構造であり、支持体2側からAgPdCu/ZnSSiO/CuAlTeSb/ZnSSiO0順で積層されている。この構造で532nmにおける記録感度は4. $5\sim7$ mWとなっている。

【0050】未記録時における微細構造10は、図20ようになっている。グループ110トラックピッチTPは 0.468μ mであり、正弦波変調されている。グループ110周期はシンクフレームの6倍の周波数で記録されている。また波の振幅は $5\sim9$ nmの範囲内の任意としている。また、CAV(回転数一定)記録のため隣接トラックどおしの位相は正確に同期しており、常に互いに完全平行である。そしてグループ11よりも内側のランド12に、一定長さALのアドレスピット13がアドレス値に従って刻まれている。

【0051】記録時の微細構造10は、図3のようになっている。記録する信号は8-15変調信号で、最短マーク長MLは 0.269μ mである。このことによって直径120mmディスクでの11.8GBの記録容量が実現できる(記録範囲は半径 $24\sim58$ mm)。なおこの時、TPは再生スポット径の66%に相当し、最短マークの長さ(ML)は38%に相当する。

【0052】グループ内の記録マーク14と、アドレスピット13が互いに干渉し合わず、良好な記録再生を行うことができるアドレスピット出力の範囲、すなわち0.18<APb<0.27を満たす各種微細構造の寸法は、以下のような条件である。

0. $0.5 \cdot 5.32 / 1.60 \le d \le 0.1 \cdot 5.32 / 1.60$

すなわち $17 \le d \le 33$ nmであり、且つ 0.35 $\le (w/0.468) \le 0.55$ 、

すなわち0. $16 \le w \le 0$. $26 \mu m$ であり、且つ

0. 18 < 0. 14k+4. $11 \cdot 1$. 60 (d-26) / 532 < 0. 27.

すなわち0.18<0.14k+0.012 (d−2

6) < 0.27である。

【0053】特に0.18<APb<0.27の範囲を明確にするために、kとAPbの関係をグラフで表示すると図13のようになる。トラッキング性能の限界であるd=17nmでのAPbの制限、及びジッターの限界であるd=33nmでのAPbの制限から、アドレスピットの長さは図示した平行四辺形内の範囲を取りうる。すなわち(d、k)=(33,0.68)、(33、1.32)、(17,2.68)、(17,2.04)で囲まれた範囲である。

【0054】以上本発明の実施例について、アドレスピットをグループ間に配置した高密度光ディスク1について実施例を交えて説明してきた。なお上述した実施例は、本発明の一例にすぎず、本発明の趣旨に則って種々変形が可能である。本発明の趣旨を損なわない範囲で、各種構成要素を互いに入れ替えることも可能である。例えば再生又は記録再生に使用するレーザー波長は、650nmと532nmとしたが、これに限定されるものではない。例えば830、635、515、460、430、405、370nmなどやその付近などでも可能である。またレンズ開口数NAは、0・60、0・75以外に、0・4、0・45、0・55、0・65、0・7、0・8、0・85、0・9などでも可能である。またソリッドイマージョンレンズに代表される1以上の開口数でも可能である。

【0055】また図2に示した微細構造10は、その説明を簡略化するために本発明の要部のみ説明するものであり、図2に示したグループ、ラシド、アドレスピット等以外に、他の信号を刻んでもよい。例えば、支持体2の微細構造として、リードイン信号を担うピット列や、ダンプコピー防止、偽造防止のためのピット列を併せて内周部、例えば半径15から24mmの範囲の任意の半径幅に記録してもよい。またBCAと呼ばれる追記型情報管理領域(USP5617408号公報記載)を同様に内周部に設けてもよい。また各種層の厚みやその内部構成、外寸、構成材料は必要に応じ随時変更することが可能である。

[0056]

【発明の効果】本発明なる光ディスクでは、アドレスピットがランド上に分散記録されており、反射率15%以上の相変化記録層を併用することによって高密度記録型光ディスクが実現でき、特に本発明なるアドレスピット出力を持つディスクは、グループ内の記録マークと、アドレスピット信号との相互干渉を最小限におさえることができ、良好な記録再生を行うことができる。またディスク支持体微細構造の寸法を特定したので、安定したディスク製造及び供給を可能とするものである。

[0057]

【図面の簡単な説明】

【図1】本発明の実施例を示す鳥瞰図である。

【図2】本発明の実施例の微細構造(物理フォーマット)10を示す拡大平面図である。

【図3】本発明の実施例の物理フォーマットを示す別の 拡大平面図である。

【図4】グループ深さdとブッシュブル信号の出力 (PPb) の関係各を示す図である。

【図5】 溝深さd及び溝幅に対するジッターの値を測定した結果を示す図である。

【図6】4分割ディテクターの模式図である。

【図7】未記録状態の再生波形を示す図である。

【図8】記録状態の再生波形である。

【図9】アドレスピットのエラーレートの測定値を示す 図である。 \

【図10】記録マークのエラーレートを測定した図である。

【図11】 (アドレスピット長 (AL) /記録情報マーク長 (ML)) である (k) とアドレスピット出力値APbの関係を示す図である。

【図12】アドレスピット長さ (AL) とアドレスピット出力値 (APb) との関係示す図である。

【図13】 (アドレスピット長 (AL) /記録情報マーク長 (ML)) である (k) とアドレスピット出力値 (APb) との関係を示す図である。

【図14】光ディスク1の断面図である。

【図15】実施例1の光ディスク1の断面構造を示す図 である。

【図16】本発明の実施例2の光ディスク1の断面構造を示す図である。

【図17】アドレス情報の一例を示す物理構成フォーマットである。

【図18】本発明の製造方法の一例を説明する図である。

【図19】ランドグループ記録型ディスクの微細構造2 0 (物理フォーマット構造)を示す平面図である。

【符号の説明】

1…光ディスク

2…支持体

3…記録層

4…樹脂層

5…ダミー支持体

7…透過層

9…4分割ディテクター

10…微細構造

11…グループ

12…ランド

13…アドレスピット

14…情報マーク

20…微細構造

21…グループ

22…ランド

23…アドレスピット

24…アドレス領域

【図12】

650nm λ: . 1.58 n: ML: 0.40 μm 0.3 0.29 0.28 0.27 0.26 d=41 nm0.25 0.24 0.23 0.22 0.21 d= 20 nm 0.2 0.19 0.18-. 0.17-0.16 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **AL** (μm)

【図13】

【図15】

【図18】

【図19】

フロントページの続き

Fターム(参考) 5D029 JA01 JB03 JC02 KB03 KC06 KC07 LA02 LB01 WA05 WA31 WB11 WB14 WB17 WC01 5D090 AA01 BB05 FF04 GG03 GG17 GG22

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-155345

(43)Date of publication of application: 08.06.2001

(51)Int.CI.

G11B 7/007 G11B 7/24

(21)Application number: 11-334098

(71)Applicant: VICTOR CO OF JAPAN LTD

(22)Date of filing:

(72)Inventor: KONDO TETSUYA

NAKAGAWA EIJI

(54) OPTICAL INFORMATION RECORDING MEDIUM, SUPPORTING BODY FOR OPTICAL INFORMATION RECORDING MEDIUM AND METHOD FOR MANUFACTURING OPTICAL INFORMATION RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To execute excellent recording and reproducing by suppressing mutual interference between a recording mark and an address pit signal in a groove to a minimum and to stably manufacture and supply a disk by specifying size of minute structure of a disk supporting body.

25.11.1999

SOLUTION: Excellent recording and reproducing can be executed without generating reading-out error by providing the supporting body having address pits arranged between grooves and a recording layer which at least contains a phase transition material capable of rewriting and has reflectivity of 15%.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

THIS PAGE BLANK (USPTO)