Reservoir Computing : passage à la pratique avec ReservoirPy

Introduction

Quel outil Python pour le reservoir computing ?

La philosophie de ReservoirPy

Libre et open-source (licence MIT)

Basé sur l'écosystème NumPy / SciPy

Entièrement documenté

De nombreux guides

https://github.com/reservoirpy/reservoirpy

Format des données

Toutes les données sont des tableaux NumPy.

```
shape = (timesteps, features)
```


Préparer les données

```
from reservoirpy.datasets import to_forecasting

dataset = to_forecasting(X, forecast=10, test_size=0.2)
x_train, x_test, y_train, y_test = dataset

$\square$ 0.0s
```


Créer un Echo State Network

```
from reservoirpy.nodes import ESN
model = ESN(
    units=100,
    lr=0.3,
    sr=1.25,
    ridge=1e-8
}
```


Entraîner et lancer le modèle

... et avec une prédiction à t+50 ?

```
from reservoirpy.datasets import to_forecasting

dataset = to_forecasting(X, forecast=50, test_size=0.2)
x_train, x_test, y_train, y_test = dataset

$\square$ 0.0s
Python
```


... et avec une prédiction à t+50 ? le résultat

```
from reservoirpy.datasets import to_forecasting

dataset = to_forecasting(X, forecast=50, test_size=0.2)
  x_train, x_test, y_train, y_test = dataset

$\square$ 0.0s
```


Paul.Bernard@inria.fr - ReservoirPy - 2025

Qu'est-ce qui se passe dans le réservoir ?

```
reservoir = Reservoir(units=20)
activity = reservoir.run(X_test)
```


Crédits de l'image : Wikimedia

Récapitulatif

```
from reservoirpy.datasets import (
    mackey_glass,
    to forecasting,
from reservoirpy.nodes import ESN
timeseries = mackey_glass(n_timesteps=2_000)
dataset = to_forecasting(timeseries, forecast=100, test_size=0.2)
x_train, x_test, y_train, y_test = dataset
model = ESN(
    units=100,
    lr=0.3,
    sr=1.25,
    ridge=1e-8,
model.fit(x_train, y_train)
y_pred = model.run(x_test)
```


Les nœuds

```
from reservoirpy.nodes import (
    Reservoir, Ridge
)
reservoir = Reservoir(units=10)
readout = Ridge(ridge=1e-4)

model = reservoir >> readout
```


Connexion *feedback*

```
from reservoirpy.nodes import (
    Reservoir, Ridge
)
reservoir = Reservoir(units=10)
readout = Ridge(ridge=1e-4)

reservoir <<= readout
model = reservoir >> readout
```


Architectures complexes

Créer des modèles complexes à partir de briques simples.

```
from reservoirpy.nodes import Input
in node = Input(name="u")
r1 = Reservoir(units=100, name="r1")
                                                                    readou
r2 = Reservoir(units=220, name="r2")
readout1 = Ridge(ridge=1e-4)
                                           u[t
readout2 = Ridge(ridge=1e-2)
                                                                    readout
r1 <<= readout1
r2 <<= readout2
readout1 <<= readout2
readout2 <<= readout1
model = in node >> [r1 >> readout1, r2 >> readout2]
```


Les nœuds scikit-learn

De l'importance des hyper-paramètres

16

Recherche d'hyper-paramètres avec reservoirpy.hypers

Voir le tutoriel n°4: https://github.com/reservoirpy/ reservoirpy/tree/master/tutorials

reservoirpy

v0.3

Un *framework* Python dédié au Reservoir Computing:

- Apprentissage en-ligne/horsligne
- Boucles de **feedback**
- Modèles hiérarchiques, deep r eservoir computing
- Parallèlisation des calculs

Une boîte à outil pour construire des modèles de Reservoir Computing:

- Reservoir,
- Reservoir autoregressifs (NVAR),
- Ridge regression,
- FORCE learning,
- Intrinsic Plasticity...

Mais aussi:

- Des jeux de données, des métriques, des outils d'aide à l'optimisation des hyperparamètres avec *Hyperopt*.
- Des tutoriels, des exemples.

Pour aller plus loin

https://github.com/reservoirpy/reservoirpy/

→ tutorials/

https://reservoirpy.readthedocs.io/

→ User Guide

À vous!

https://github.com/reservoirpy/presentations

Compléments

Optimisation des hyper-paramètres

https://github.com/reservoirpy/reservoirpy/ blob/master/tutorials/4-Understand_and_optimize_hyperparameters.ipyn h

Paul.Bernard@inria.fr - ReservoirPy - 2025

Compléments

Publications avec ReservoirPy

HAL id 🕝	HAL citation									
hal- 03699931	Nathan Trouvain, Xavier Hinaut. reservoirpy: A Simple and Flexible Reservoir Computing Tool in Python. 2022. (hal-03699931)									
hal- 02595026	Nathan Trouvain, Luca Pedrelli, Thanh Trung Dinh, Xavier Hinaut. ReservoirPy: an Efficient and User-Friendly Library to Design Echo State Networks. ICANN 2020 - 29th International Conference on Artificial Neural Networks, Sep 2020, Bratislava, Slovakia. (hal-02595026v2)									
hal- 03533731	Nathan Trouvain, Xavier Hinaut. Reservoir Computing: théorie, intuitions et applications avec ReservoirPy. Plate-Forme Intelligence Artificielle (PFIA), Jun 2021, Bordeaux, France. (hal-03533731)									
hal- 03203318	Xavier Hinaut, Nathan Trouvain. Which Hype for my New Task? Hints and Random Search for Reservoir Computing Hyperparameters. ICANN 2021 - 30th International Conference on Artificial Neural Networks, Sep 2021, Bratislava, Slovakia. (hal-03203318v2)									
hal- 03482372	Silvia Pagliarini, Arthur Leblois, Xavier Hinaut. Canary Vocal Sensorimotor Model with RNN Decoder and Low-dimensional GAN Generator. ICDL 2021- IEEE International Conference on Development and Learning, Aug 2021, Beijing, China. (hal-03482372)									
hal- 03203374	Nathan Trouvain, Xavier Hinaut. Canary Song Decoder: Transduction and Implicit Segmentation with ESNs and LTSMs. <i>ICANN</i> 2021 - 30th International Conference on Artificial Neural Networks, Sep 2021, Bratislava, Slovakia. pp.7182, (10.1007/978-3-030-86383-8_6). (hal-03203374v2)									
hal- 03761440	Nathan Trouvain, Nicolas P. Rougier, Xavier Hinaut. Create Efficient and Complex Reservoir Computing Architectures with ReservoirPy. SAB 2022 - FROM ANIMALS TO ANIMATS 16: The 16th International Conference on the Simulation of Adaptive Behavior, Sep 2022, Cergy-Pontoise / Hybrid, France. (hal-03761440)									
tel- 03946773	Xavier Hinaut. Reservoir SMILES: Towards SensoriMotor Interaction of Language and Embodiment of Symbols with Reservoir Architectures. Artificial Intelligence [cs.Al]. Université de Bordeaux (UB), France, 2022. (tel-03946773)									
hal- 03628290	Subba Reddy Oota, Frédéric Alexandre, Xavier Hinaut. Cross-Situational Learning Towards Robot Grounding. 2022. (hal-03628290v2)									
hal- 03780006	Xavier Hinaut, Nathan Trouvain. ReservoirPy: Efficient Training of Recurrent Neural Networks for Timeseries Processing. EuroSciPy 2022 - 14th European Conference on Python in Science, Aug 2022, Basel, Switzerland. (hal-03780006)									
hal- 03945994	Nathan Trouvain, Xavier Hinaut. Reservoir Computing: traitement efficace de séries temporelles avec Reservoir Py. Dataquitaine 2022, Feb 2022, Bordeaux, France. (hal-03945994)									

Introduction

		Main	Last								
Library	Language	dependency	activity	Package	Doc.	Tests	Off.	On.	Fb.	Model type	Deep
PyRCN	Python 3	Scikit-learn	Nov 2022	pip	✓	✓	√	Х	Х	ESN	√
EchoTorch	Python 3	PyTorch	Sep. 2021	pip	✓	✓	✓	×	×	ESN, Conceptors	✓
★Res.Comp.jl ³	Julia	Julia	Sept 2023	Pkg	✓	✓	√	Х	Х	ESN	x
Pytorch-esn	Python 3	Pytorch	Feb 2022	Х	Х	х	✓	×	Х	ESN	✓
DeepESN	Matlab	Matlab	Feb. 2019	Matlab	✓	?	✓	×	Х	ESN	✓
RCNet	C#	C#	Aug. 2021 (closed)	x	partial	x	✓	×	×	ESN, LSM	х
LSM	Python 3	Nest	Nov. 2020	х	х	×	✓	×	Х	LSM	x
Oger	Python 2	mdp	2012 (obsolete)	×	×	✓	✓	✓	✓	LSM, ESN	✓
<pre>★reservoirpy (this package)</pre>	Python 3	Numpy	Sept 2023	pip	✓	✓	✓	√	✓	ESN	✓

Table 1: Comparative table of some open source software for Reservoir Computing. This table might not be exhaustive. **Doc.** Complete documentation. **Off.** Offline learning strategies included. **On.** Online learning strategies included. **Fb.** Feedback and delayed connections. **Deep** The software allows the design of complex models where basic RC elements such as reservoirs and readouts can be stacked to form so-called "deep" networks.

