DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Summer Examination – 2023

Subject with code: Engineering Mathematics – III (BTBS 301)

Semester: III

Max Marks: 60

Duration: 3 Hr

Branch: B. Tech (Common to all)

Date: 08/08/2023

	Instructions to the Students:				
	1. All the questions are compulsory.				
	2. The level of question/expected answer as per OBE or the Course Outcome (CO)				
	on which the question is based is mentioned in () in front of the question.				
	3. Use of non-programmable scientific calculators is allowed.				
	4. Assume suitable data wherever necessary and mention it clearly.	Level/CO	Marks		
		Level/CO	Marks		
Q. 1	Solve Any Two of the following.		12		
A)	Find the Laplace transform of $f(t) = \frac{e^{t} - \cos t}{t}$	Understand/	6		
		(CO1)			
	-m 2. 2	` ,			
B)	Using Laplace transform prove That $\int_0^\infty t \ e^{-3t} \sin t \ dt = \frac{3}{50}$	Understand/	6		
		(CO1)			
C)	Find the Laplace transform of the triangular wave function of period	Remember/	6		
ŕ	$2c \text{ given by } f(t) = \begin{cases} t, & 0 \le t \le c \\ 2c - t, & c < t < 2c \end{cases}$	(CO1)			
	$2c \text{ given by } \Gamma(t) = \{2c - t, c < t < 2c\}$	(COI)			
Q.2	Solve Any Two of the following.		12		
A)	Find the inverse Laplace transforms of $\bar{f}(s) = \frac{s e^{-4s}}{s^2+9}$	Understand/	6		
11)			U		
		(CO2)			
B)	By convolution theorem, find the inverse Laplace Transforms of	Understand/	6		
	$\bar{\mathbf{f}}(\mathbf{s}) = \frac{1}{\mathbf{s}(\mathbf{s}^2 - \mathbf{a}^2)}$	(CO2)			
	$\Gamma(\mathbf{S}) = \frac{1}{\mathrm{s}(\mathrm{s}^2 - \mathrm{a}^2)}$				
C)	Solve the equation $\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$, where	Remember/	6		
	at at	(CO2)			
	$y = 1, \frac{dy}{dt} = 2, \frac{d^2y}{dt^2} = 2$ at $t = 0$, by Laplace transform method.				
0.2			10		
Q. 3	Solve Any Two of the following.		12		
A)	Using the Fourier integral representations, show that	Understand/	6		
		(CO3)			
	$\int_0^\infty \frac{\cos x\omega}{1+\omega^2} \ d\omega = \frac{\pi}{2} e^{-x} \ (x \ge 0)$				
	$10 1+\omega^2$ 2 \sim 7				
T .\	ax	TT. 1 4 34			
B)	Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.	Understand/	6		
	X	(CO3)			
C)	m sin² v	Remember/	6		
	Using Parseval's identity Evaluate $\int_0^\infty \frac{\sin^2 x}{x^2} dx$		U		
		(CO3)			

Q.4	Solve Any Two of the following.		12
A)	Form the partial differential equation by eliminating the arbitrary	Understand/	6
	functions from $z = f(x + it) + g(x - it)$	(CO4)	
B)	Solve the partial differential equation $x(y^2+z)p-y(x^2+z)q=z(x^2-y^2)$	Understand/ (CO4)	6
C)	Use the method of separation of variables to solve the equation $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0.$	Remember/ (CO4)	6
Q. 5	Solve Any Two of the following.		12
A)	Find a function $w = u + iv$ which is analytic if $u = x^2 - y^2$.	Understand/ (CO5)	6
B)	Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is $ z = \frac{3}{2}$.	Understand/ (CO5)	6
C)	By Residue theorem evaluate $\int_C \frac{\mathrm{d}z}{(z^2+4)^2}$, where C is the circle $ z-i =2$.	Understand/ (CO5)	6

*** End ***