Homework #10 Sections 7.2, 9.1-9.3, 9.4-9.5

Section 7.2

3. Find the probability of each outcome when a <u>biased die is</u> rolled, if rolling a 2 or rolling a 4 is three times as likely as rolling each of the other <u>four numbers</u> on the <u>die</u> and it is equally likely to roll a 2 or a 4.

- 7. What is the probability of these events when we randomly select a permutation of {1, 2, 3, 4}?
 a) 1 precedes 4.
 b) 4 precedes 1.
 c) 4 precedes 1 and 4 precedes 2.
 d) 4 precedes 1, 4 precedes 2, and 4 precedes 3.
 e) 4 precedes 3 and 2 precedes 1.

- 10. What is the probability of these events when we randomly select a permutation of the 26 lowercase letters of the English alphabet?
 - a) The first 13 letters of the permutation are in alphabet-
 - a) The first 13 letters of the permutation are in alphabetical order.
 b) a is the first letter of the permutation and z is the last letter.
 c) a and z are next to each other in the permutation.
 d) a and b are not next to each other in the permutation.
 e) a and z are separated by at least 23 letters in the permutation.

 - mutation. **f**) z precedes both a and b in the permutation.

Section 9.1

- 2. a) List all the ordered pairs in the relation R = {(a, b) | a divides b} on the set {1, 2, 3, 4, 5, 6}.
 b) Display this relation graphically, as was done in Example 4.
 c) Display this relation in tabular form, as was done in Example 4.

- **6.** Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if (a) x + y = 0. (b) $x = \pm y$. (c) x - y is a rational number. (d) x = 2y. (e) $xy \ge 0$. (f) xy = 0. (g) x = 1. (h) x = 1 or y = 1.
- **b**) $x = \pm y$.

8. Show that the relation $R = \emptyset$ on a nonempty set *S* is symmetric and transitive, but not reflexive.

27. Let R be the relation $R = \{(a, b) \mid a \text{ divides } b\}$ on the set of positive integers. Find **a)** R^{-1} . **b)** \overline{R} .

43. How many of the 16 different relations on $\{0, 1\}$ contain the pair (0, 1)?

49. Find the error in the "proof" of the following "theorem."

"Theorem": Let R be a relation on a set A that is symmetric and transitive. Then R is reflexive.

"Proof": Let $a \in A$. Take an element $b \in A$ such that $(a,b) \in R$. Because R is symmetric, we also have $(b,a) \in R$. Now using the transitive property, we can conclude that $(a,a) \in R$ because $(a,b) \in R$ and $(b,a) \in R$.