

PRIMER PARCIAL HOJA DE EXAMEN

CÓDIGO DEL ESTUDIANTE

Meal. Molonio, Joše de Quere Prestigio, Disciplina y Mejores Oportunidades	HOJA DE EXAMEN		
CARRERA: CIENCIAS BASICAS		ASIGNATURA: FÍSICA I	FECHA: 26/03/2021
CURSO: PRIMER SEMESTRE		DOCENTE: LIC. JOSE LUIS MAMANI CERVANTES LIC. CESAR VLADIMIR ARANCIBIA CARBAJAL	
UNIDADES TEMÁTICAS A EVALUAR	1 2	Movimiento rectilíneo, Mov. Acelerado, Mov. Acelerado variable Movimiento en el plano, Coordenadas Cartesianas y Normal Tangencial	

RECOMENDACIONES A LOS ESTUDIANTES

- 1. Los estudiantes tienen 5 (Cinco) minutos para interpretar el examen y solicitar aclaraciones al docente.
- El RAC-07 (RÉGIMEN DISCIPLINARIO), en el CAP IV. FALTAS Y SANCIONES, Art. 20 tipifica el FRAUDE O INTENTO DE FRAUDE EN EXÁMENES, como "CAUSAL DE SEPARACIÓN SIN DERECHO A REINCORPORACIÓN" de la EMI.
- 3. Mediante MOODLE el estudiante descargará el examen y subirá el examen resuelto en formato PDF
- 4. Mediante TEAMS el estudiante está en la obligación de permanecer conectado durante el desarrollo de la prueba
- 5. Tiempo de Duración:
 - a. "90 Minutos" para resolver el EXAMEN
 - b. "10 Minutos" para subir el examen en formato PDF.

PREGUNTAS

- 1. El movimiento de una partícula se define por $x(t) = \cos(2\pi t) * e^{\frac{\pi}{2}t}$, donde t se expresa en segundos y x en metros. Determine:
 - a) (1 PTS) ¿La velocidad en función del tiempo?
 - b) (1.5 PTS) ¿La aceleración en función del tiempo?
- 2. (2.5 PTS) La velocidad de una partícula está dada por: $v(t) = \left(\frac{3}{2}\right)t^2 + 4$ en m/s. Si la partícula tiene una posición x = -1m cuando t = 0s, determina su posición cuando la aceleración es de $6\left[\frac{m}{s^2}\right]$
- 3. Se observa que el esquiador deja la rampa en \boldsymbol{A} a un ángulo $\theta_{\scriptscriptstyle A}$ = 25° con la horizontal. Si golpea el suelo en \boldsymbol{B} , determine:
 - a) (2 PTS) La rapidez inicial v_{A}
 - b) (0.5 PTS) El Tiempo de vuelo t_{AB}
- **4.** Un auto se mueve según el vector posición $\vec{r}(t) = t^3 i + t^2 j$, para t = 2s determine:
 - a) (0.5 PTS) La aceleración total
 - b) (0.5 PTS) La aceleración normal
 - c) (0.5 PTS) La aceleración tangencial
 - d) (1 PTS) El radio de curvatura ρ

Formulario

$$v = \frac{dx}{dt}$$

$$a = \frac{dv}{dt}$$

$$\frac{dx^n}{dx} = nx^{n-1}$$

$$v = \frac{\Delta x}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$ $V = \frac{d}{t}$

$$a = \frac{\Delta v}{\Delta t}$$

$$V = \frac{d}{t}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

$$\frac{dsinx}{dx} = cosx \qquad \frac{dcosx}{dx} = -sinx \qquad \frac{de^x}{dx} = e^x$$

$$\frac{de^x}{dx} = e^x$$

$$x = x_o + v_x t$$

$$v_x = v_o \cos(\theta)$$

$$x = x_o + v_x t$$
 $v_x = v_o \cos(\theta)$ $\sin(\theta) = \frac{C.O.}{H.}$

$$y = y_o + v_{oy}t + \frac{1}{2}gt^2$$
 $v_{oy} = v_o \operatorname{sen}(\theta)$ $\cos(\theta) = \frac{C.A.}{H.}$

$$v_{oy} = v_o \operatorname{sen}(\theta)$$

$$\cos(\theta) = \frac{C.A}{H.}$$

$$v_y = v_{oy} + gt$$

$$v = \sqrt{v_x^2 + v_y^2}$$

$$v_y = v_{oy} + gt$$

$$v = \sqrt{v_x^2 + v_y^2} \qquad \tan(\theta) = \frac{C.O.}{C.A.}$$

$$v_y^2 = v_{oy}^2 + 2g\Delta y$$

$$a_N = \frac{v^2}{\rho}$$

$$a_T = \frac{d^2S}{dt^2}$$

$$a = \sqrt{a_T^2 + a_N^2}$$

$$\vec{v} = v_x \ \hat{\imath} + v_y \ \hat{\jmath}$$

$$v = \sqrt{v_x^2 + v_y^2}$$

$$a_N = \frac{v^2}{\rho} \qquad a_T = \frac{d^2S}{dt^2} \qquad a = \sqrt{a_T^2 + a_N^2} \qquad \vec{v} = v_x \ \hat{\imath} + v_y \ \hat{\jmath} \qquad v = \sqrt{v_x^2 + v_y^2}$$

$$\rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\left|\frac{d^2y}{dx^2}\right|}$$