EXERCISE SHEET 22 (SELECTED QUESTIONS)

SEP 14

Pr(Complaint | Nonjogger) =
$$\frac{Pr(\frac{Non}{Jogger} \cap Complaint)}{Pr(Complaint)}$$

$$= \frac{0.0375}{0.0875}$$

$$= \frac{3}{7}$$

Box | Box 2

$$\frac{6}{9}$$
 $\frac{3}{9}$ $\frac{3}{12}$ $\frac{9}{12}$
Blue White Blue White
Pr(Blue) = $\frac{1}{2}$ \times $\frac{6}{9}$ $+$ $\frac{1}{2}$ \times $\frac{3}{12}$
 $=$ $\frac{11}{24}$

Pr (Blue | Box2) =
$$\frac{\Pr(\text{Blue (1Box 2)})}{\Pr(\text{Box 2})}$$
$$= \left(\frac{1}{2} \times \frac{3}{12}\right) \div \frac{11}{24}$$

Pr (Forecast | Fine) =
$$\frac{Pr(Forecast \cap Fine)}{Pr(Fine)}$$
=
$$\frac{0.7 \times 0.9}{0.3 \times 0.05 \times 0.7 \times 0.9}$$
=
$$\frac{42}{43}$$

(3) of
$$Pr(ANB) = 0.6 + 0.5 - 0.8$$

= 0.3/

by 9ince Pr(AMB) #0, the events A and B are not mutually exclusive

$$Pr(A) Pr(B) = 0.6 \times 0.5$$

= 0.3

Since Pr(A)Pr(B) = Pr(ANB), the events A and B are independent

d) i)
$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

$$= \frac{0.3}{0.5}$$

$$= 0.6//$$

$$Pr(A'|B) = \frac{Pr(A'\cap B)}{Pr(B)} = \frac{0.5-0.3}{0.5} = 0.4$$

$$Pr(B|A') = \frac{Pr(B(A'))}{Pr(A')}$$

$$= \frac{0.5 - 0.3}{1 - 0.6}$$

EXERCISE SHEET 22

SEP 14

OKSelected question>

$$Pr(tall | man) = \frac{0.4 \times 0.04}{6.4 \times 0.04 + 0.6 \times 0.01}$$

$$= \frac{8}{11}$$

- 3 kselected question>
- (1) Uselected question >

Pr(head) = Pr(fair Nhead) + Pr(fair Nhead) + Pr(double-headed Nhead) $= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 1$ $= \frac{2}{3}$

Pr(head | double-headed) =
$$\frac{\text{Pr(head Ndouble-headed)}}{\text{Pr(head)}}$$

= $\left(\frac{1}{3}\right) \div \left(\frac{2}{3}\right)$
= $\frac{1}{2}$

$$Pr(\text{on time} | \text{late/on time}| \text{on time}) = 0.9 \times 0.9 + 0.1 \times 0.8$$

$$= 0.89_{\text{m}}$$

Pr(Wed on time | Tues on time) =
$$\frac{0.9 \times 0.9}{0.89}$$

= 0.910 112 3595506
 $\approx 0.91 < 200 > 10$

$$pr(x)(y) = 0.35 - 0.2 + 0.4$$

= 0.55/

$$Pr(Y|X) = \frac{Pr(Y \cap X)}{Pr(X)}$$

$$= \frac{0.2}{0.35}$$

$$= 0.5714285714286$$

$$\approx 0.57 < 2dp >_{p}$$

$$Pr(Y'|X) = \frac{Pr(Y'|X)}{Pr(X)}$$

$$= \frac{0.35 - 0.2}{0.35}$$

$$= 0.4285714285714$$

$$\approx 0.43 < 2dp > 1/2$$

(i) Pr(3 Hearts chosen) =
$$\frac{{}^{13}C_3 \times {}^{52-13}C_1}{{}^{52}C_5}$$

= 0.081 54261 70468
= 0.0815 \(\frac{4dp}{}\right)_1

Pr (at least 3 hearts) exactly 3 hearts) = 0.0815426170468
$$\div$$

$$= 0.8790035587189$$

$$\approx 0.87904440 /$$

Pr(0 received | 0 sent) =
$$\frac{0.03 \times 0.95}{0.1255}$$

= 0.22709|6335
 $\approx 0.2271 < 4 dp > 1/2$

Probability that a 0 is sent when a 0 is necessed is low so the communication system is unreliable.

(3) Pr(Internet) = 0.025
Pr(TV) = 0.25
Pr(Internet
$$\cap TV$$
) = 0.01
Pr(Internet $/ TV / Internet \cap TV | Buy) = $\frac{1}{3}$
Pr(No Ad | Buy) = 0.125
(A) 0.025 - 0.01 + 0.25 = 0.265$

$$\frac{0.265 \times \frac{4}{5}}{0.1802} = 0.4901734104$$

$$\approx 0.49 < 2007$$

Profit
$$0.73$$
 Profit 0.27 Loss 0.27 Loss 0.27 Loss 0.27 Loss 0.37 Profit 0.73 Profit 0.73 Profit

(v) 0.73 x0.73 x0.73 +0.73 x0.27 x0.63 + 0.27 x0.63 × 0.73 + 0.27 x0.37 x0.63 = 0.7003

$$\frac{1}{10} \times \frac{3}{10} \times \frac{3}{10} + \frac{7}{10} \times \frac{1}{10} = \frac{4}{25}$$

$$\sqrt{\frac{3}{10}} \times \frac{3}{10} \times \frac{3}{10} + \frac{3}{10} \times \frac{7}{10} \times \frac{1}{10} + \frac{7}{10} \times \frac{1}{10} \times \frac{3}{10} + \frac{7}{10} \times \frac{9}{10} \times \frac{1}{10} = \frac{33}{250}$$