Лекция 13

Моделирование системы и языки моделирования

Алгоритмические языки при моделировании систем служат вспомогательным аппаратом в разработке машинной реализации и анализа характеристик моделей.

Основная задача – это выбор языка.

Каждый язык имеет свою систему абстракций, позволяющих реализовать формальную модель системы.

Качество языков моделирования характеризуется:

- удобством описания процесса функционирования;
- удобством ввода исходных данных, варьирования структуры, алгоритмов разработки и параметров модели;
- эффективностью анализа и вывода результатов моделирования;
- простотой отладки и контроля работы моделирующей программы;
- доступностью восприятия и использования языка.

Все современные языки программирования определяют поведение систем во времени (событийный алгоритм и его модификации). В большинстве своем языки моделирования определяют поведение систем во времени с помощью модифицированного событийного алгоритма. Как правило, он включает в себя список текущих и будущих событий.

Классификация языков имитационного моделирования.

Основа классификации – принцип формирования системного времени.

Непрерывное представление систем сводится к представлению дифференциальных уравнений, с помощью которых устанавливается связь входвыход. Если выходные переменные модели принимают дискретные значения, то уравнения являются разностными.

Предполагается, что в системе могут наступать события двух типов:

- события, зависящие от состояния;
- события, зависящие от времени.

Состояние системы описывается набором переменных, причем некоторые из них меняются непрерывно. При таком подходе пользователь должен использовать функции, описывающие условия наступления событий. Обязательно нужно описать: законы изменения непрерывных переменных, правила перехода от одного состояния к другому, т.е. реализуется классический принцип ДУ (дифференциальные уравнения).

Формальное описание динамики моделируемого объекта

Будем считать, что любая работа в системе совершается путем выполнения *активностей*. Т.е. активность является наименьшей единицей работы. Именно её рассматривают как единый дискретный шаг. Она имеет свое время выполнения. Следовательно, активность является единым динамическим объектом, указывающим на совершение единицы работ.

Процесс – это логически связанный набор активностей.

Пример (считывание информации с жесткого диска): активность установки головки жесткого диска, активность ожидания запроса к диску, активность передачи информации с жесткого диска.

Активность проявляется в результате совершения событий. **События** — это мгновенное изменение состояния некоторого объекта системы.

Рассмотренные объекты (активности, процессы, события) являются конструктивными элементам для динамического поведения системы. На их основе строятся языки моделирования. В то время, когда динамическое поведение системы формируется в результате выполнения большого числа взаимодействующих процессов, сами эти процессы образуют относительно небольшое число классов. Следовательно, чтобы описать поведение сложной системы, достаточно описать поведение каждого класса процессов и задать значение атрибутов для конкретных процессов (т.е. выбрать параметрическую модель).

Задачи построения модели

Построение модели состоит из решения двух основных задач:

- 1. Первая задача сводится к тому, чтобы описать правила, задающие виды процессов, происходящих в системе. Указать значения атрибутов таких процессов или сгенерировать. При этом система описывается на определенном уровне детализации в терминах множества описаний процессов, каждый из которых включает множество правил и условий возбуждения активности. Такое описание системы может быть декомпозировано. Именно такой подход обеспечивает многоуровневое исследование системы.
- 2. Вторая задача заключается в том, чтобы описать правила задания атрибутов или задать правила генерации этих значений. При этом система определяется на конкретном уровне детализации в терминах множества описаний процессов, каждый из которых в свою очередь включает множество правил и условий возбуждений активности. Такое описание системы может быть детализировано на более подробном или более

иерархическом уровне представления с помощью декомпозиции процессов (в идеальном случае в активности). Это обеспечивает многоуровневое исследование системы.

Так как модель в общем случае служит для описания временного поведения системы, то язык моделирования должен обладать средствами отображения времени.

Языки, ориентированные на события

Моделирующая программа реализована в виде совокупности секций событий. Секция событий состоит из операций, которые в общем случае выполняются после завершения какой-либо активности. Выполнение функций синхронизировано списков будущих событий.

Структура программы на языке SIMSCRIPT:

Первичное описание – это описание секций событий.

Языки, ориентированные на процессы

Моделирующая программа организуется в виде набора описаний процесса. Каждый из которых описывает один класс. Описание процесса функционирования устанавливает атрибуты и активности всех процессов. Синхронизация операций во времени (языка ориентированного на процессы) реализуются так же с помощью списка будущих событий, который содержит точку возобновления конкретного процесса (точка прерывания).

На примере языка SIMULA:

Критерии

- ullet возможности языка (SIMULA o SIMSCRIPT o GPSS o C o Python)
- простота применения (GPSS \to SIMSCRIPT \to SIMULA \to Python \to C)
- предпочтения пользователя (SIMSCRIPT o GPSS o SIMULA o Python o C)

Сравнение универсальных и специализированных языков программирования при моделировании

Преимущества	Недостатки
Универсальные	
Минимум ограничений на выходной формат	Значительное время, затрачиваемое на программирование
Широкое распространение	Значительное время, затрачиваемое на отладку
Специализированные	
Меньше затраты времени на	Необходимость точно придерживаться
программирование	ограничений на форматы данных
Более эффективные методы выявления ошибок	Меньшая гибкость модели
Краткость, точность понятий,	
характеризующих имитируемые	
конструкции	
Возможность заранее строить стандартные	
блоки, которые могут использоваться в	
любой имитационной модели	
Автоматическое формирование	
определенных типов данных,	
необходимых именно в процессе	
имитационного моделирования	
Удобство накопления и представления выходной информации	
Эффективное использование ресурсов	