### Let's start solve <del>problems</del> challenges on **Kaggle**

### About me



#### Vladimir Alekseichenko

Love analyze data





# Data Science Mainstream

Deep Learning

Pattern recognition

Machine Learning

## Data Science

Big Data

Data Mining

Statistics





## Let's focus on Machine Learning

### Learning by doing



### What is learning?



### Algorithm for any exam

- Prepare to exam (train phase)
- Prepare answers (predict phase)
- Check answers (evaluation phase)

### The Home of Data Science

COMPETITIONS - CUSTOMER SOLUTIONS - JOBS BOARD

Get started »

kaggle.com

### Bike Sharing Demand









kaggle.com/c/bike-sharing-demand

### Tools

IPython notebook



pandas numpy

scikit-learn

matplotlib ggplot seaborn

### My Solution

bit.ly/1LIGD9U

Please download:)

### Data



Completed • Knowledge • 3,252 teams

#### **Bike Sharing Demand**

Wed 28 May 2014 - Fri 29 May 2015 (4 months ago)





or use this temporary link: bit.ly/1MTq4FM

### Evaluation



Completed • Knowledge • 3,252 teams

#### **Bike Sharing Demand**

Wed 28 May 2014 - Fri 29 May 2015 (4 months ago)



Leaderboard

1. Team Oliver

Competition Details » Get the Data » Make a submission

#### **Evaluation**

Submissions are evaluated one the Root Mean Squared Logarithmic Error (RMSLE). The RMSLE is calculated as

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\log(p_i+1)-\log(a_i+1))^2}$$

#### Where:

- n is the number of hours in the test set
- p<sub>i</sub> is your predicted count
- $a_i$  is the actual count
- log(x) is the natural logarithm

### Predict is it bike or not?

Machine learning on intuitive level

### Data



### Prepare data

Feature engineering

### Features

| object | numbers of<br>wheels | shape of wheels |  |
|--------|----------------------|-----------------|--|
|        | 2                    | circle          |  |
|        | 4                    | circle          |  |
|        | 2                    | circle          |  |
|        | 0                    | _               |  |
|        | 2                    | circle          |  |

### Build a model

### Model



## Evaluate (quality checking)

### Model Evaluation



### Success



### ... or not?



### What about this?















### Model Evaluation



### Start looks good, but...



### In summary

- Understand your success metrics (evaluation)
- Understand your data
- Do a lot of experiments

### Thank you!