Oppgave 1

Det begrepsmessige skjemaet for en relasjonsdatabase for plassreservering i tog inneholder (blant annet) følgende tabeller:

Tog(togNr, startSt, endeSt, ankomstTid)

TogTabell(togNr, stasjon, avgangsTid)

Plass(dato, togNr, vognNr, plassNr, vindu, ledig)

- togNr, vognNr og plassNr har domene INTEGER
- startSt, endeSt og stasjon har domene VARCHAR(30)
- vindu og ledig har domene BOOLEAN
- avgangsTid og ankomstTid har domene TIME
- dato har domene DATE Tog har primærnøkkel togNr
- TogTabell har primærnøkkel (togNr, avgangsTid)
- Plass har primærnøkkel (dato, togNr, vognNr, plassNr)
- togNr er fremmednøkkel til Tog både i TogTabell og Plass
- Plass har f

 ølgende FD: (togNr, vognNr, plassNr) → vindu
- A) Hvilken normalform har hver av de tre relasjonene? Begrunn svarene.
- Tog er på BCNF, fordi alle ikketrivielle FDer i Tog er på formen X --> A, hvor X er en supernøkkel i Tog.
- Togtabell er på BCNF, fordi alle ikketrivielle FDer i Togtabell er på formen X --> A, hvor X er en supernøkkel i Togtabell.
- Plass er på 3NF, fordi det finnes en ikketriviell FD X --> A og en kandidatnøkkel K hvor $X \subset K$, $X \neq K$ og A ikke er et nøkkelattributt.
- B) NSB vurderer å splitte relasjonen Plass i en ny relasjon Sete og en endret relasjon Plass slik at datastrukturen blir:

Tog(togNr, startSt, endeSt, ankomstTid)

TogTabell(togNr, stasjon, avgangsTid)

Sete(togNr, vognNr, plassNr, vindu)

Plass(dato, togNr, vognNr, plassNr, ledig)

Er denne dekomposisjonen av Plass tapsfri?

Før Chasealgoritme

	Vindu	Dato	TogNr	VognNr	PlassNr	Ledig
Plass	vindu ₁	dato	tognr	vognnr	plassnr	ledig
Sete	vindu	dato ₂	tognr	vognr	plassnr	ledig ₂

Etter Chasealgoritme

	Vindu	Dato	TogNr	VognNr	PlassNr	Ledig
Plass	vindu	dato	tognr	vognnr	plassnr	ledig
Sete	vindu	dato ₂	tognr	vognr	plassnr	ledig ₂

⁻ Etter chasealgoritme så har vi en rad uten indeks, og derfor er dekomposisjonen tapsfri.

Hvilken normalform har Sete og Plass?

- Sete er på EKNF, fordi det fins en ikketriviell FD X→A hvor X ikke er en supernøkkel og A er et attributt i en elementær kandidatnøkkel.
- Plass er på BCNF, fordi alle ikketrivielle FDer i Togtabell er på formen X --> A, hvor X er en supernøkkel i Togtabell.

Ser du noen problemer med denne dekomposisjonen? Begrunn svarene.

- Dekomposisjonen er ikke FD-bevarende.
- C) Anta at NSB velger datastrukturen i deloppgave 1b. Bruk relasjonsalgebra til å finne vognNr på de vognene i tog nr. 401 som den 10.6.2008 ikke har noen ledige vindusplasser.

$$\pi_{Tog}(\sigma_{\text{\tiny Lognr}} = 401(Tog) \text{ and } \sigma_{\text{\tiny dato}} = 2008\text{-}06\text{-}10(Plass) \text{ and } \sigma_{\text{\tiny vindu}} = true) != \emptyset$$

D) Uttrykk i relasjonsalgebra at (togNr, stasjon) er kandidatnøkkel i relasjonen TogTabell. Hint: Husk at vi i relasjonsalgebraen kan ha booleske uttrykk av formen E1 ⊆ E2 der E1 og E2 er relasjonsuttrykk.

$$_{\text{o(T.lognr} = \text{U.tognr} \text{ and T.stasjon} = \text{U.stasjon) and T.avgang}}(\varrho_{\text{T}}(Togtabell) \text{ x } \varrho_{\text{U}}(Togtabell)) \text{ != } \emptyset$$

Gitt relasjonen R(A, B, C, D, E, F, G). La Q = {CDE \rightarrow B, AF \rightarrow B, B \rightarrow A, BCF \rightarrow DE, D \rightarrow G} være de integritetsreglene som gjelder for R.

A. Hvilke kandidatnøkler har R?

- BCF, ACF og CDEF er kandidatnøkler i R.

B. Finn den høyeste normalformen som R tilfredsstiller.

- 1NF

C. La D = {ABF, ACF, BCDE, DG} være en dekomposisjon av R. Avgjør om D er tapsfri med hensyn på Q.

- Dekomposisjonen er ikke tapsfri med hensyn på Q.

Før Chasealgoritme

	A	В	С	D	Е	F	G
ABF	A	В	c_1	d_1	e_1	F	g ₁
ACF	A	b_2	С	d_2	e_2	F	g_2
BCDE	a_1	В	С	D	Е	f_1	g_3
DG	a_2	b ₃	c_2	D	e ₃	f_2	G

Etter Chasealgoritme

	A	В	С	D	Е	F	G
ABF	A	В	c_1	d_1	e_1	F	g ₁
ACF	A	В	С	d_2	e_2	F	g ₂
BCDE	A	В	С	D	Е	f_1	G
DG	a_2	b ₃	c_2	D	e ₃	f_2	G

- Etter chasealgoritme så har vi ikke en rad uten indeks, og derfor er ikke dekomposisjonen tapsfri.
- D. (i) Dekomponer R tapsfritt til BCNF. Start dekomposisjonen ved å ta utgangspunkt i FDen CDE \rightarrow B.

- R dekomponert ved å ta utgangspunkt i CDE--> B gir relasjonene $S_1(ABCDEG)$ og $S_2(CDEF)$. S_1 : $FD = \{CDE-->B, B-->A, D-->G\}$ med kandidatnøkkel CDE.

- Relasjonen S dekomponert gir relasjonene S₃(B, A), med FD = {B-->A} og kandidatnøkkel B, og S₄(BCDEG), med FD = {CDE-->B, D-->G} og kandidatnøkkel CDE.
- Relasjonen S_4 dekomponert gir relasjonen $S_5(D, G)$ med $FD = \{D-->G\}$ og kandidatnøkkel D.

(ii) Er dekomposisjonen FD-bevarende?

 Dekomposisjonen er ikke tapsfri, fordi det finnes FD-er som ikke er en delmengde av Dekomposisjonen.

$$R = \{A, B, C, D, E, F, G\}$$

$$F = \{CDE --> B, AF --> B, B --> A, BCF --> D, BCF --> E, D --> G\}$$

 $D = \{CDEF, BCDE, AB, DG\}$

CDE --> B delmengde av BCDE

AF --> B ikke delmengde av dekomposisjonen

B --> A delmendge av AB

BCF --> D ikke delmengde av dekomposisjonen
BCF --> E ikke delmengde av dekomposisjonen

D --> G delmengde av dekomposisjonen

(iii) Kan dekomposisjonen ha støyinstanser?

- Dekomposisjonen kan ha støyinstanser, siden det finnes en syklus.

- E. Vis at CDF \rightarrow B ikke holder.
- CDF --> B holder ikke fordi tillukkingen av CDF gir CDFG.

F. Utvid Q med MVDen DG -->> AC. Vis at CDF \rightarrow B nå følger fra Q.

- Den holder:

Før chasealgoritmen

	A	В	С	D	Е	F	G
CDF>	A	В	С	D	Е	F	G
В	A_2	B_2	С	D	E ₂	F	G_2
DG>>	A_2	В	C_2	D	Е	F	G
A	A	B_2	C_2	D	E ₂	F	G

Etter chasealgortimen

	A	В	С	D	Е	F	G
CDF>	A	В	С	D	Е	F	G
В	A_2	В	С	D	E ₂	F	G
DG>>	A_2	В	C_2	D	Е	F	G
A	A	B_2	C_2	D	E ₂	F	G