Prova III (ANN0001/ CCI122-03U)

Prof. Helder G. G. de Lima¹

Nome do(a) aluno(a): ______ Data: 03/07/2018

- Identifique-se em todas as folhas.
- Mantenha o celular e os demais equipamentos eletrônicos desligados durante a prova.
- Justifique cada resposta com cálculos ou argumentos baseados na teoria estudada.
- Sempre que calcular o valor de uma das funções consideradas em um ponto x, arredonde o resultado para o número de dígitos especificado, e só então use esse valor (arredondado) nas fórmulas dos métodos iterativos.
- Resolva apenas os itens de que precisar para somar 10,0 pontos.
- 1. (1,0) Explique o funcionamento e as vantagens do método de Newton-Cotes adaptável.
- 2. (3,0) Seja $f(x) = 1 x^4$. Se for utilizada a regra 1/3 de Simpson com repetição, qual será o menor número de **pontos** distintos em que f precisará ser calculada para que o erro relativo percentual ao aproximar $\int_{-1}^{1} f(x) dx$ seja de no máximo 1%? (Utilize números decimais com 4 dígitos após a vírgula)
- **3.** (3,0) Considerando que $\int_{-1}^{3} \sqrt[3]{x} \, dx = \frac{9\sqrt[3]{3}-3}{4} \approx 2,4951$ e que $\int_{-1}^{5} \sqrt[3]{x} \, dx = \frac{15\sqrt[3]{5}-3}{4} \approx 5,6624$, verifique que o erro relativo da aproximação de $\int_{-1}^{3} \sqrt[3]{x} \, dx$ pela regra de Gauss-Legendre com 3 pontos é cerca de um terço do erro relativo da aproximação de $\int_{-1}^{5} \sqrt[3]{x} \, dx$ pelo mesmo método. (*Utilize números decimais com 4 dígitos após a vírgula*)
- **4.** (3,0) Dados os pontos $x_0 = 0$, $x_1 = 1$ e $x_2 = 4$, obtenha os pesos w_i para que a aproximação

$$\int_0^4 f(x) dx \approx w_0 f(0) + w_1 f(1) + w_2 f(4)$$

seja exata para polinômios de grau menor ou igual a dois. Utilize a regra obtida para calcular $\int_0^4 g(x)$ considerando que g(0) = 2, g(1) = 0 e g(4) = 3.

5. (3,0) Em relação às soluções aproximadas do problema de valor inicial

$$\begin{cases} y'(x) = x - y(x), & x \in [0,1] \\ y(0) = 2 \end{cases}$$

pelos métodos de Euler explícito e implícito, com passo h=0.25, verifique se é correto afirmar que o maior erro absoluto (em módulo) em ambos os casos ocorre quando x=1, considerando que a solução exata é $y(x)=3e^{-x}+x-1$.

(Utilize números decimais com 3 dígitos após a vírgula)

BOA PROVA E BOAS FÉRIAS!

¹ Este é um material de acesso livre distribuído sob os termos da licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional

Respostas

- 1. (Solução) Neste método, depois de aproximar o valor de $\int_a^b f(x) dx$, é feita uma estimativa do erro cometido nesta aproximação. Se o erro é maior do que o desejado, o intervalo é subdividido ao meio, e são calculadas aproximações individuais para $\int_a^{\frac{a+b}{2}} f(x) dx$ e $\int_{\frac{a+b}{2}}^b f(x) dx$. Em cada caso, o erro cometido é avaliado, e usado como critério para decidir se algum dos intervalos (ou ambos) precisa ser dividido ao meio novamente. O processo se repete até que a soma das aproximações das integrais nos subintervalos considerados esteja próxima o bastante do valor exato da integral em [a,b]. Uma vantagem deste tipo de abordagem é que ele evita calcular f(x) desnecessariamente em regiões onde é possível alcançar uma boa aproximação sem usar muitos pontos.
- 2. (Solução) O valor exato da integral é

$$\int_{-1}^{1} 1 - x^4 dx = \left(x - \frac{x^5}{5}\right) \Big|_{-1}^{1} = \frac{8}{5} = 1,6.$$

As aproximações obtidas pelo método 1/3 de Simpson são as seguintes:

Subintervalos	Pontos	Aproximação	Erro (%)
1	3	1,3333	16,6688
2	5	1,5833	1,0438
3	7	1,5967	0,2063

Então é preciso calcular f em pelo menos 7 pontos para que o erro relativo percentual não ultrapasse 1%.

3. (Solução) Considerando x = 2t + 1, tem-se $\int_{-1}^{3} \sqrt[3]{x} dx = 2 \int_{-1}^{1} \sqrt[3]{2t + 1} dt$. Consequentemente, o valor aproximado da integral pode ser calculado pelo método de Gauss-Legendre com 3 pontos com o auxílio da seguinte tabela:

x_i	$t_i = 2x_i + 1$	$\sqrt[3]{t_i}$	w_i	$w_i \sqrt[3]{t_i}$
-0,7746	-0,5492	-0,8189	$0,\!5556$	-0,4550
0,0000	1,0000	1,0000	0,8889	0,8889
0,7746	2,5492	1,3661	$0,\!5556$	0,7589

Assim,

$$\int_{-1}^{3} \sqrt[3]{x} \, dx \approx 2 \cdot (-0.4550 + 0.8889 + 0.7589) = 2.3856,$$

e o erro relativo desta aproximação é $\varepsilon_1 = -0.0439$. Analogamente, tomando x = 3t + 2, tem-se $\int_{-1}^{3} \sqrt[3]{x} \, dx = 3 \int_{-1}^{1} \sqrt[3]{3t+2} \, dt$. Consequentemente, o valor aproximado da integral pode ser calculado pelo método de Gauss-Legendre com 3 pontos com o auxílio da seguinte tabela:

x_i	$t_i = 3x_i + 2$	$\sqrt[3]{t_i}$	w_i	$w_i \sqrt[3]{t_i}$
-0,7746	-0,3238	-0,6867	0,5556	-0,3815
0,0000	2,0000	1,2599	0,8889	1,1199
0,7746	4,3238	1,6291	$0,\!5556$	0,9051

Assim,

$$\int_{-1}^{3} \sqrt[3]{x} \, dx \approx 3 \cdot (-0.3815 + 1.1199 + 0.9051) = 4.9305,$$

e o erro relativo desta aproximação é $\varepsilon_2 = -0.1293$. Comparando-se os erros relativos de ambas as aproximações, resulta que $\frac{\varepsilon_1}{\varepsilon_2} = \frac{-0.0439}{-0.1293} = 0.3395 \approx 1/3$.

4. (Solução) Se a aproximação

$$\int_0^4 f(x) \, dx \approx w_0 f(0) + w_1 f(1) + w_2 f(4)$$

for exata para polinômios de grau menor ou igual a dois então, em particular, ela será exata para os polinômios $1, x \in x^2$, isto é,

$$\int_0^4 1 \, dx = 4 = w_0 \cdot 1 + w_1 \cdot 1 + w_2 \cdot 1$$
$$\int_0^4 x \, dx = 8 = w_0 \cdot 0 + w_1 \cdot 1 + w_2 \cdot 4$$
$$\int_0^4 x^2 \, dx = \frac{64}{3} = w_0 \cdot 0 + w_1 \cdot 1 + w_2 \cdot 16$$

Resolvendo o sistema, chega-se a $w_0 = -2/3$, $w_1 = 32/9$ e $w_2 = 10/9$. Em particular,

$$\int_0^4 g(x) dx \approx -0.6667 \cdot 2 + 3.5556 \cdot 0 + 1.1111 \cdot 3 = 1.9999.$$

5. (Solução) Denotando f(x,y) = x - y e h = 0.25, pode-se expressar a fórmula do método de Euler explícito da seguinte forma:

$$y_n = y_{n-1} + h f(x_{n-1}, y_{n-1}) = y_{n-1} + 0.25(x_{n-1} - y_{n-1}) = 0.25x_{n-1} + 0.75y_{n-1}$$

Disto resulta que os valores obtidos a cada passo são os seguintes:

n	x_n	$y_n = 0.25x_{n-1} + 0.75y_{n-1}, n \ge 1$	$y_{exato}(x_n)$	$\varepsilon_n = y_n - y_{exato}(x_n)$
0	0,000	2,000	2,000	0,000
1	0,250	$0,25 \cdot 0,000 + 0,75 \cdot 2,000 = 1,500$	1,586	0,086
2	0,500	$0,25 \cdot 0,250 + 0,75 \cdot 1,500 = 1,188$	1,320	0,132
3	0,750	$0,25 \cdot 0,500 + 0,75 \cdot 1,188 = 1,016$	1,167	0,151
4	1,000	$0.25 \cdot 0.750 + 0.75 \cdot 1.016 = 0.950$	1,104	$0,\!154$

Em particular, o maior erro absoluto ocorre no ponto x = 1.

No método de Euler implícito, por sua vez, utiliza-se a relação $y_n = y_{n-1} + hf(x_n, y_n)$ que, no problema considerado, pode ser reescrita de forma equivalente como:

$$y_n = y_{n-1} + 0.25(x_n - y_n) \Leftrightarrow 1.25y_n = 0.25x_n + y_{n-1} \Leftrightarrow y_n = 0.2x_n + 0.8y_{n-1}.$$

Consequentemente, os valores obtidos a cada passo são:

n	x_n	$y_n = 0.2x_n + 0.8y_{n-1}, n \ge 1$	$y_{exato}(x_n)$	$\varepsilon_n = y_n - y_{exato}(x_n)$
0	0,000	2,000	2,000	0,000
1	0,250	$0,200 \cdot 0,250 + 0,800 \cdot 2,000 = 1,650$	1,586	-0,064
2	0,500	$0,200 \cdot 0,500 + 0,800 \cdot 1,650 = 1,420$	1,320	-0,100
3	0,750	$0,200 \cdot 0,750 + 0,800 \cdot 1,420 = 1,286$	1,167	-0,119
4	1,000	$0,200 \cdot 1,000 + 0,800 \cdot 1,286 = 1,229$	1,104	-0,125

Novamente, o maior erro absoluto (em módulo) ocorre no ponto x=1. Portanto a afirmação é correta.