T.D. VIII - Intégration

Exercice 1. (Une deuxième équation fonctionnelle) On note $\mathscr E$ l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall (x,y) \in \mathbb{R}^2, f(xy) = xf(y) + yf(x).$$

Dans toute la suite, f désigne une fonction de \mathscr{E} .

- **1. a)** Déterminer les valeurs de f(0), f(1), f(-1).
 - **b)** Démontrer que la fonction f est impaire.
- **2.** On suppose que la fonction f est dérivable sur $]0, +\infty[$.
- a) Montrer que f est solution, sur l'intervalle $]0,+\infty[$, de l'équation différentielle

$$xf'(x) - f(x) = kx,$$

où k est une constante réelle dépendant de f que l'on précisera.

- **b)** Résoudre sur $]0, +\infty[$ l'équation différentielle précédente.
- c) En déduire, en fonction de la constante k, la valeur de f(x) pour tout $x \in \mathbb{R}$.
 - **d)** La fonction f est-elle dérivable en 0?
- e) En supposant que f'(1) = 1, donner l'allure du graphe de f_1 dans un repère orthonormal direct.
- 3. On note F la primitive de f qui s'annule en 0.
 - a) Montrer que pour tout $(x,y) \in \mathbb{R}^2$,

$$F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x).$$

- **b)** En déduire que la fonction f est dérivable sur $]0, +\infty[$.
- **4.** Déterminer l'ensemble \mathscr{E} .

I - Primitives & Intégrales

Exercice 2. (🐯) Déterminer une primitive des fonctions suivantes :

1.
$$\frac{x^3+5x^2-4}{x^2}$$
.

2.
$$\frac{8x^2}{(x^3+2)^3}$$
.

3.
$$x\sqrt{1-2x^2}$$
.

4.
$$(e^x + 1)^3 e^x$$
.

5.
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

6.
$$\frac{x^2}{\sqrt{5+x^3}}$$
.

7.
$$\frac{\ln(x)}{x}$$

8.
$$\frac{\ln^{27}(x)}{x}$$

Exercice 3. (Changements de variables, 🚓) Déterminer une primitive des fonctions suivantes :

1.
$$\frac{1}{e^x + 1}$$
.
 3. $\frac{1}{2t \ln(t) + t}$.

 $\varphi : u \mapsto \ln(u), \frac{1}{u(u+1)} = \frac{a}{u} + \frac{b}{u+1}$.
 $\varphi : u \mapsto e^u$.

 2. $\frac{1 - \sqrt{t}}{\sqrt{t}}$.
 4. $\frac{x^3}{\sqrt{x^2 + 2}}$.

 $\varphi : u \mapsto u^2$.
 $\varphi : u \mapsto \sqrt{u - 2}$.

$$\mathbf{3.} \quad \frac{1}{2t \ln(t) + t}$$
$$\varphi : u \mapsto e^{u}.$$

2.
$$\frac{1-\sqrt{t}}{\sqrt{t}}$$
. $\varphi: u \mapsto u^2$

4.
$$\frac{x^3}{\sqrt{x^2+2}}$$
. $\varphi: u \mapsto \sqrt{u-2}$.

Exercice 4. (Intégrations par parties, 🌣 Déterminer une primitive des fonctions suivantes:

1.
$$\ln(x)$$
.

4.
$$x^2 \ln(x)$$

2.
$$x e^x$$
.

5.
$$\sqrt{1+x}\ln(x)$$

3.
$$x^2 e^x$$
.

$$\varphi: u \mapsto \sqrt{u-2}$$

Exercice 5.

- 1. Montrer qu'il existe a, b réels tels que pour tout $x \in [0, 1]$, $\frac{x}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$
- **2.** En déduire la valeur de $\int_0^1 \frac{x}{(x+1)(x+2)} dx$.

Exercice 6. (4) Montrer que $\frac{1}{3} \leqslant \int_0^1 \frac{\mathrm{d}t}{1+t+t^2} \leqslant 1$.

Exercice 7. (Loi exponentielle, $\overset{\bullet}{\sim}$) Soit f la fonction définie par f(x) = 0si x < 0 et $f(x) = 2e^{-2x}$ sinon.

- **1.** Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

Exercice 11. Pour tout *n* entier naturel, on pose $I_n = \int_0^1 \ln(1+x^n) dx$.

- **1.** Montrer que : $\forall x \ge 0, 0 \le \ln(1+x) \le x$.
- **2.** En déduire que $\lim_{n \to +\infty} I_n = 0$.

Exercice 12. Pour tout n entier naturel non nul, on pose $I_n = \int_0^1 x^n \ln(1+x^2) dx$ et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- **1. a)** Calculer J_1 .
 - **b)** Montrer que, pour tout n entier naturel non nul, $0 \le J_n \le \frac{1}{n+1}$.
 - c) En déduire que (J_n) converge et déterminer sa limite.
- 2. a) À l'aide d'une intégration par parties, montrer que :

$$\forall n \ge 1, I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

- **b)** Montrer que la suite (I_n) converge.
- c) Montrer que la suite (nI_n) converge et déterminer sa limite.

Exercice 13. (Fonction bêta) Pour tout $(p,q) \in \mathbb{N}^2$, on note $I_{p,q} = \int_0^1 x^p (1-x)^q \, \mathrm{d}x.$

- **1.** Déterminer une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.
- 2. Exprimer la valeur de $I_{p,q}$ à l'aide de factorielles.

III - Calculs d'intégrales généralisées

Exercice 14. (Étudier la convergence et, le cas échéant, calculer les intégrales suivantes :

1.
$$\int_0^1 x \ln^2(x) \, \mathrm{d}x$$
.

3.
$$\int_{1}^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$$

2.
$$\int_0^1 \ln^2(t) dt$$
.

3.
$$\int_{1}^{+\infty} \frac{e^{-t}}{t} dt.$$
4.
$$\int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{\sqrt{t}} dt.$$

 D_{2}

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x$$
.

3. Si $x \ge 0$, déterminer $\int_0^x f(t) dt$ et en déduire $\lim_{x \to +\infty} \int_0^x f(t) dt$.

Exercice 8. (**)

1. Montrer que, pour tout $k \ge 2$,

$$\int_{k-1}^{k} \ln(t) \, \mathrm{d}t \leqslant \ln(k) \leqslant \int_{k}^{k+1} \ln(t) \, \mathrm{d}t.$$

2. En déduire que, pour tout $n \ge 1$,

$$\int_{1}^{n} \ln(t) dt \leq \ln(n!) \leq \int_{1}^{n} \ln(t) dt + \ln(n).$$

3. En utilisant une primitive de ln, en déduire la limite de la suite de terme général $\frac{\ln(n!)}{n\ln(n)}$

Exercice 9. (**) Pour tout $x \in [0,1]$, on pose $f(x) = \int_{-\ln(t)}^{x^2} \frac{dt}{\ln(t)}$.

1. En utilisant la concavité du logarithme, montrer que

$$\forall x \in]0,1[, \forall t \in]x^2,1[, \frac{2\ln(x)}{x^2-1}(t-1) \le \ln(t) \le t-1.$$

- 2. Montrer que f est prolongeable par continuité en 1.
- **3.** Montrer que f est dérivable sur [0,1] et calculer sa dérivée.

II - Suites d'intégrales

Exercice 10. ($\mathfrak{A}_{\mathfrak{s}}^{\mathfrak{s}}$) Pour tout n entier naturel, on pose $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1. Montrer que (I_n) converge et déterminer sa limite.
- **2.** Calculer $I_n + I_{n+1}$.
- **3.** En déduire la limite de la suite de terme général $\sum_{k=0}^{n} \frac{(-1)^k}{k+1}$.

5.
$$\int_{0}^{+\infty} \frac{dx}{(x+1)(x+2)}.$$

$$\frac{1}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$$
6.
$$\int_{1}^{+\infty} \frac{\ln(t)}{t} dt.$$
7.
$$\int_{0}^{+\infty} \frac{dt}{t(\ln(t))^{2}}.$$

6.
$$\int_{1}^{+\infty} \frac{\ln(t)}{t} dt.$$
7.
$$\int_{2}^{+\infty} \frac{dt}{t(\ln(t))^{2}}.$$

Exercice 15. (Loi uniforme, $\overset{\bullet}{\mathbf{x}_{8}}$) Soit a < b et f la fonction définie par

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}.$$

Déterminer $\int_{-\infty}^{+\infty} f(x) dx$.

Exercice 16. (Loi exponentielle, \mathfrak{S}) Soit $\lambda > 0$ et f la fonction définie par

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}.$$

Déterminer $\int_{-\infty}^{+\infty} f(x) dx$.

Exercice 17. (Montrer que les intégrales suivantes convergent :

$$1. \int_{-\infty}^{+\infty} e^{-t^2} dt.$$

4.
$$\int_0^1 \frac{\ln t}{1+t^4} \, \mathrm{d}t.$$

$$\forall \ t \geqslant 1, e^{-t^2} \leqslant e^{-t}.$$

5.
$$\int_{0}^{1} \frac{\sqrt{t}-1}{t^2-1} dt$$
.

2.
$$\int_0^{+\infty} \sqrt{t} e^{-t} dt.$$

$$\forall t \ge a. \sqrt{t} e^{-t} \le 1/t^2.$$

6.
$$\int_{-t}^{+\infty} \frac{e^{-t} - 1}{t} dt$$

3.
$$\int_0^{+\infty} \frac{\ln t}{1 + t^4} \, \mathrm{d}t.$$

6.
$$\int_0^{+\infty} \frac{e^{-t} - 1}{t} dt$$
.

3. En déduire, pour tout n entier naturel, la valeur de $\Gamma(n+1)$.

Exercice 20. On pose $I = \int_0^1 \frac{x-1}{\ln(x)} dx$.

- **1.** Existence. On pose $f: x \mapsto \frac{x-1}{\ln(x)}$.
 - a) Montrer que f admet un prolognement continu en 0.
 - **b)** Montrer que f admet un prolognement continu en 1.
 - c) En déduire que l'intégrale I converge.
- **2.** On pose $J_{\varepsilon,M} = \int_{1}^{M} \frac{x-1}{\ln(x)} dx$.
 - a) Effectuer le changement de variable $\varphi: u \mapsto e^{-u}$ dans $J_{\varepsilon,M}$
 - **b)** En utilisant la linéarité de l'intégrale, calculer $J_{\varepsilon,M}$.
- c) En faisant tendre successivement M vers $+\infty$, puis ε vers 0, en déduire la valeur de I.

V - Calculs d'équivalents

Exercice 21. Piour chacune des fonctions suivantes, calculer un équivalent en $+\infty$ et déterminer si l'intégrale de la fonction sur $[1, +\infty]$ converge.

1. $f_1(x) = \frac{(x^5 + 3x + 1) e^{-x}}{12x + 3}$.

2. $f_2(x) = \frac{(x + 25) \ln(x)}{e^x + e^{-x}}$.

3. $f_3(x) = \frac{\ln(x+1) e^x}{2x+5}$.

4. $f_4(x) = \frac{(3x+12) \ln(1+\frac{1}{x})}{5x^4+2}$.

5. $f_6(x) = \frac{x}{e^x - e^{-x}}$.

7. $f_7(x) = \frac{e^x + e^{-x}}{x^2(e^x - e^{-x})}$.

8. $f_8(x) = \frac{x^4(e^x + e^{-x})}{e^x - e^{-x}}$.

9. $f_9(x) = \frac{\sqrt{x}}{e^x - e^{-x}}$.

10. $f_{10}(x) = \frac{t^3 e^{-2\sqrt{t}}}{1+t^3+t^4}$.

1.
$$f_1(x) = \frac{(x^5 + 3x + 1)e^{-x}}{12x + 3}$$
.

2.
$$f_2(x) = \frac{(x+25)\ln(x)}{e^x + e^{-x}}$$
.

$$3. \ f_3(x) = \frac{\ln(x+1)e^x}{2x+5}$$

4.
$$f_4(x) = \frac{(3x+12)\ln(1+\frac{1}{x})}{5x^4+2}$$

5.
$$f_5(x) = \frac{x}{e^x + e^{-x}}$$

6.
$$f_6(x) = \frac{x^2}{e^x - e^{-x}}$$

7.
$$f_7(x) = \frac{e^x + e^{-x}}{x^2(e^x - e^{-x})}$$

8.
$$f_8(x) = \frac{x^4(e^x + e^{-x})}{e^x - e^{-x}}$$

9.
$$f_9(x) = \frac{\sqrt{x}}{e^x - e^{-x}}$$

10.
$$f_{10}(x) = \frac{t^3 e^{-2\sqrt{t}}}{1+t^3+t^4}$$

Exercice 22. Piour chacune des fonctions suivantes, calculer un équivalent en 0 et déterminer si l'intégrale de la fonction sur [0, 1] converge.

1.
$$f_1(x) = \frac{(x^5+3x+1)e^{-x}}{12x+3}$$
.

2.
$$f_2(x) = \frac{(x+25)\ln(x)}{e^x + e^{-x}}$$
.

IV - Intégrations par parties - Changement de variable

Exercice 18. (Expression intégrale de la factorielle, $\overset{\bullet}{\bullet}$) Pour tout n entier naturel, on pose $I_n = \int_0^{+\infty} t^n e^{-t} dt$.

- **1.** Calculer I_0 .
- **2.** Soit $n \in \mathbb{N}$.
 - a) Montrer qu'il existe un réel a tel que

$$\forall t \geqslant a, \ 0 \leqslant t^n e^{-t} \leqslant \frac{1}{t^2}.$$

- **b)** En déduire que l'intégrale I_n converge.
- 3. En utilisant une intégration par parties sur le segment [0, M], puis en faisant tendre M vers $+\infty$, montrer que $I_{n+1} = nI_n$.
- **4.** En déduire, pour tout n entier naturel, la valeur de I_n .

Exercice 19. (Fonction Gamma d'Euler,) Pour tout réel x strictement positif, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- **1.** Soit x > 0.
 - a) Pour tout $t \in]0,1]$, rappeler la définition de t^{x-1} .
 - **b)** Déterminer un équivalent, lorsque $t \to 0$ de $t^{x-1} e^{-t}$.
 - c) En déduire que $\int_{-1}^{1} t^{x-1} e^{-t} dt$ converge.
 - **d)** Montrer qu'il existe un réel a tel que

$$\forall t \ge a, t^{x-1} e^{-t} \le e^{-t/2}.$$

- e) En déduire que $\int_{-\infty}^{+\infty} t^{x-1} e^{-t} dt$ converge.
- f) En déduire que la fonction Γ est bien définie.
- 2. En utilisant une intégration par parties sur le segment $[\varepsilon, M]$ puis en faisant tendre ε vers 0 et M vers $+\infty$, montrer que $\Gamma(x+1)=x\Gamma(x)$.

3.
$$f_3(x) = \frac{\ln(x+1)e^x}{2x+5}$$
.

4.
$$f_4(x) = \frac{(3x+12)\ln(1+\frac{1}{x})}{5x^4+2}$$
.

5.
$$f_5(x) = \frac{x}{e^x + e^{-x}}$$
.

6.
$$f_6(x) = \frac{x^2}{e^x - e^{-x}}$$
.

7.
$$f_7(x) = \frac{e^x + e^{-x}}{x^2(e^x - e^{-x})}$$
.

8.
$$f_8(x) = \frac{x^4(e^x + e^{-x})}{e^x - e^{-x}}$$
.

9.
$$f_9(x) = \frac{\sqrt{x}}{e^x - e^{-x}}$$
.

Exercice 23. Piour chacune des fonctions suivantes, calculer un équivalent en 1 et déterminer si l'intégrale de la fonction sur [1, 2] converge.

1.
$$f_1(x) = \frac{1}{\sqrt{x^2-1}}$$
.

2.
$$f_2(x) = \frac{\ln(1+x)}{\sqrt{x^2-1}}$$
.

3.
$$f_3(x) = \frac{\ln(x)}{\sqrt{x^2 - 1}}$$
.

4.
$$f_4(x) = \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$$

4.
$$f_4(x) = \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$$
.
5. $f_5(x) = \frac{\ln(1-x)}{\sqrt{x^2-1}}$.