Задача 9.1.

Смотри решение первой части задачи 11.1

Задача 9.2 Занимательное путешествие.

1. Если Федя измеряет расстояние в столбах, а время в шагах, то единицей измерения скорости является [столбов/шаг], а ускорения — [столбов/шаг²]. Движение поезда при разгоне — равноускоренное, следовательно, пройденный путь равен:

$$S = \frac{at^2}{2} \tag{1},$$

причем расстояние измеряется в столбах а время в шагах. Для более точного определения ускорения необходимо построить график зависимости S от t^2 . Для этого добавим в таблицу, составленную Федей, третью колонку в которую занесем время движения (в шагах) поезда.

Номер столба, S	Количество шагов	Время движения	t^2
1	19	19	361
2	8	27	729
3	6	33	1089
4	5	38	1444
5	4	42	1764
6	4	46	2116
7	4	50	2500
8	3	53	2809

 $\frac{S}{\Gamma$ рафик зависимости S от t^2 представлен на рисунке.

Наклон графика равен $2.9 \cdot 10^{-3}$, ускорение при разгоне равно:

$$a_P = 5.8 \cdot 10^{-3} \frac{cmon\delta o s}{ua z^2} \tag{2}.$$

Поезд разгонялся на расстоянии равном 45 столбам. Скорость определим по формуле:

$$v = \sqrt{2aS} = 0.72 \frac{cmoлбa}{uac}$$
 (3).

3. Т. к. поезд тормозит на расстоянии в 1,5 раза меньшем чем разгоняется (30 против 45), то его ускорение при торможении в 1,5 раза больше:

$$a_T = 8.7 \cdot 10^{-3} \frac{cmon\delta o s}{ua c^2} \tag{4}.$$

4. Время разгона равно: $t_P = \frac{v}{a_P} = 124$ шага, время торможения $t_T = 83$ шага, а время

движения с постоянной скоростью $t_{II}=\frac{200 cmoлбов}{v}=278 mazos$. Тогда средняя скорость равна:

$$\langle v \rangle = \frac{45 + 200 + 35}{124 + 278 + 83} = 0.58 \frac{cmo\pi\delta o e}{uaz}$$
 (5).

5. Обозначим длину шага Феди за l. Тогда за время, в течение которого Федя делает 15 шагов, поезд равноускоренно пройдет расстояние (50+15)l. Следовательно:

$$\frac{a_P 15^2}{2} = 65l \tag{6}.$$

Подставляя значение ускорения, получим:

$$l = 0,01$$
столба (7).

6. Один столб равен 100 шагам. Поэтому:

$$a_P = 0.58 ua c^{-1}$$
 (8),

$$a_T = 0.87 ua z^{-1}$$
 (9),

$$v = 72 \tag{10},$$

$$\langle v \rangle = 58 \tag{11},$$

Формально скорость становится безразмерной величиной, а ускорение измеряется в обратных шагах. Однако на самом деле не вполне корректно сокращать шаги в числителе и в знаменателе, т. к. в знаменателе шаг является мерой расстояния, а в числителе мерой времени.

7. По результатам забега на 100-метровую дистанцию, определяем, что длина шага Феди равна 0,5 м, а промежуток времени между ними равен 1,2 с. Расстояние между столбами, очевидно, 50 м. Подставляя в (2) — (5), получим:

$$a_P = 0.2 \frac{M}{c^2}$$
 (12),

$$a_T = 0.3 \frac{M}{c^2}$$
 (13),

$$v = 30 \frac{M}{c} \tag{14},$$

$$\left\langle v\right\rangle = 24\frac{M}{c} \tag{15}.$$

8. Расстояние между остановками:

$$S = 280 \, \text{столбов} \cdot 50 \, \text{м} = 14 \, \text{км}$$
 (16).

Задача 9.3. Пружинки.

1.1 Ускорение a системы, образованной двумя брусками, найдем из второго закона Ньютона

$$2ma = F - 2F_{mp} = F - 2\mu mg , \qquad (1)$$

где $F_{mp} = F_{mp1} = F_{mp2}$ сила трения, действующая на каждый из брусков.

Поскольку силы упругости пружины в данном случае являются внутренними (действуют

