# Lecture 10: Classification examples

Reading: Chapter 4

STATS 202: Data mining and analysis

October 14, 2019

## Recap: Predicting default

Used LDA to predict credit card default in a dataset of 10K people.

Predicted "yes" if P(default = yes|X) > 0.5.

|                   |       | True default status |     |        |
|-------------------|-------|---------------------|-----|--------|
|                   |       | No                  | Yes | Total  |
| Predicted         | No    | 9,644               | 252 | 9,896  |
| $default\ status$ | Yes   | 23                  | 81  | 104    |
|                   | Total | 9,667               | 333 | 10,000 |

- ► The error rate among people who do not default (false positive rate) is very low.
- ▶ However, the rate of false negatives is 76%.
- It is possible that false negatives are a bigger source of concern!
- One possible solution: Change the threshold.

### Example. Predicting default

Changing the threshold to 0.2 makes it easier to classify to "yes".

Predicted "yes" if P(default = yes|X) > 0.2.

|                   |       | True default status |     |        |
|-------------------|-------|---------------------|-----|--------|
|                   |       | No                  | Yes | Total  |
| Predicted         | No    | 9,432               | 138 | 9,570  |
| $default\ status$ | Yes   | 235                 | 195 | 430    |
|                   | Total | 9,667               | 333 | 10,000 |

Note that the rate of false positives became higher! That is the price to pay for fewer false negatives.

## Example. Predicting default

Let's visualize the dependence of the error on the threshold:



- ► - False negative rate (error for defaulting customers)
- ▶ · · · · False positive rate (error for non-defaulting customers)
- ▶ 0-1 loss or total error rate =  $\frac{\#FP + \#FN}{n}$

## Example. Predicting default



- ► - False negative rate (error for defaulting customers)
- ▶ · · · · False positive rate (error for non-defaulting customers)
- ▶ 0-1 loss or total error rate

0-1 error rate 
$$=\frac{\#\mathsf{FP}+\#\mathsf{FN}}{n}$$
  
 $=(\mathsf{FP}\;\mathsf{rate})\times\frac{n-m}{n}+(\mathsf{FN}\;\mathsf{rate})\times\frac{m}{n}$ 

where m=# of people who did default, n= total sample size

### Example. The ROC curve



- Displays the performance of the method for any choice of threshold.
- ► TP rate = 1-FN rate
- The area under the curve (AUC) measures the quality of the classifier:
  - 0.5 is the AUC for a random classifier
  - ► The closer AUC is to 1, the better.

## Thinking about the loss function is important

Most of the **regression** methods we've studied aim to minimize the RSS, while **classification** methods aim to minimize the 0-1 loss.

In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not the 0-1 loss.

Changing the classification threshold to trade off between false positives and false negatives is an example of **tuning** a classifier to perform well with respect to a problem-specific objective.

• e.g. Find the threshold that brings the False negative rate below an acceptable level.

## Comparing classification methods through simulation

- 1. Simulate 100 random training sets from several different known distributions with 2 predictors and a binary response variable.
- 2. Compare the test error (0-1 loss) for the following methods:
  - ► KNN-1
  - ► KNN-CV (parameter *K* selected using cross-validation)
  - Logistic regression
  - ► Linear discriminant analysis (LDA)
  - ► Quadratic discriminant analysis (QDA)

Check that the logistic regression boundary is linear!



Logistic

▶ In each class,  $(X_1, X_2)$ uncorrelated and bivariate normal, means differ between classes.







▶ In each class,  $(X_1, X_2)$  is bivariate normal with correlation -0.5, means differ between classes.







In each class, (X₁, X₂) independent Student t random variables, means differ between classes.





- ▶ In each class,  $(X_1, X_2)$  bivariate normal, means differ between classes.
- ► First class has correlation 0.5, second class has correlation -0.5.





- $ightharpoonup X_1, X_2$  uncorrelated, standard normal.
- Response Y was sampled from:

$$P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1(X_1^2) + \beta_2(X_2^2) + \beta_3(X_1X_2)}}{1 + e^{\beta_0 + \beta_1(X_1^2) + \beta_2(X_2^2) + \beta_3(X_1X_2)}}.$$

- ► The true decision boundary is quadratic.
- Note: We could also modify logistic regression to include quadratic terms, in the same way that we modified linear regression!

13 / 23



- $ightharpoonup X_1, X_2$  uncorrelated, standard normal.
- ► Response *Y* was sampled from:

$$\begin{split} P(Y=1|X) &= \\ \frac{e^{f_{\text{nonlinear}}(X_1, X_2)}}{1 + e^{f_{\text{nonlinear}}(X_1, X_2)}}. \end{split}$$

► The true decision boundary is very rough.

#### Cross-validation

**Key question:** Given a single training set, how do we choose the supervised learning method with the best test error or select the tuning parameter for the method, e.g.

- ▶ k in k-nearest neighbors,
- the number of variables to include in forward or backward selection,
- the order of a polynomial in polynomial regression?

The validation set or hold-out approach is one way to approximate the test error:

- Divide the data into two parts.
- Train each model on one part.
- Compute the error on the other.

### Validation set approach

Goal: Estimate the test error for a supervised learning method.

#### Strategy:

- Split the data in two parts.
- ► Train the method on the first part.
- Compute the error on the second part.



### Validation set approach

Polynomial regression to estimate mpg from horsepower in the Auto data.



**Problems:** 1. Every split yields a different estimate of the error.

2. Only a subset of points is used to evaluate the model.

- ▶ For every i = 1, ..., n:
  - train the model on every point except i,
  - compute the test error on the held out point.
- ► Average the test errors.



- ▶ For every i = 1, ..., n:
  - train the model on every point except i,
  - compute the test error on the held out point.
- Average the test errors.

$$\mathsf{CV}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2$$

Prediction for the *i* sample without using the *i*th sample.

- ▶ For every i = 1, ..., n:
  - train the model on every point except i,
  - compute the test error on the held out point.
- Average the test errors.

$$\mathsf{CV}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(y_i \neq \hat{y}_i^{(-i)})$$

... for a classification problem.

Computing  $CV_{(n)}$  can be computationally expensive, since it involves fitting the model n times.

For linear regression, there is a shortcut:

$$\mathsf{CV}_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{y_i - \hat{y}_i}{1 - h_{ii}} \right)^2$$

where  $h_{ii}$  is the leverage statistic.

#### k-fold cross-validation

- ▶ Split the data into *k* subsets or *folds*.
- For every  $i = 1, \ldots, k$ :
  - train the model on every fold except the ith fold,
  - compute the test error on the ith fold.
- Average the test errors.



#### LOOCV vs. k-fold cross-validation



- ▶ k-fold CV depends on the chosen split.
- ▶ In *k*-fold CV, we train the model on less data than what is available. This introduces **bias** into the estimates of test error.
- ► In LOOCV, the training samples highly resemble each other. This increases the **variance** of the test error estimate.