Assignment #1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. If $f(x) = \frac{1}{2}x - 3$ and g(x) = 2x + 5, what is the value of $(g \circ f)(4)$?

2. Which graph does *not* represent a function?

В.

3. If a function is defined by the equation $f(x) = 4^x$, which graph represents the inverse of this function?

A.

B.

D.

4. Four points on the graph of the function f(x) are shown below.

 $\{(0,1),(1,2),(2,4),(3,8)\}$

Which equation represents f(x)?

A.
$$f(x) = 2^x$$

C.
$$f(x) = x + 1$$

B.
$$f(x) = 2x$$

D.
$$f(x) = \log_2 x$$

5. Which graph does *not* represent a function?

A.

B.

C.

D.

6. Which graph represents a relation that is *not* a function?

B.

D.

7. If $f(x) = 4x - x^2$ and $g(x) = \frac{1}{x}$, then $(f \circ g)(\frac{1}{2})$ is equal to

- D. 4

8. What is the range of f(x) = |x - 3| + 2?

- A. $\{x | x \ge 3\}$
- B. $\{y | y \ge 2\}$

- C. $\{x \mid x \in \text{real numbers}\}$
- D. $\{y | y \in \text{real numbers}\}$

9. Which function is one-to-one?

- A. f(x) = |x|
- B. $f(x) = 2^x$

- C. $f(x) = x^2$ D. $f(x) = \sin x$

10. Which function is one-to-one?

A.
$$k(x) = x^2 + 2$$

C.
$$f(x) = |x| + 2$$

B.
$$g(x) = x^3 + 2$$

D.
$$j(x) = x^4 + 2$$

- 11. If $f(x) = \sqrt{9 x^2}$, what are its domain and range?
 - A. domain: $\{x \mid -3 \le x \le 3\}$; range:

C. domain: $\{x \mid x \le -3 \text{ or } x \ge 3\}$; range: $\{y \mid y \neq 0\}$

$$\{y \mid 0 \le y \le 3\}$$

B. domain: $\{x \mid x \neq \pm 3\}$; range: $\{y \mid 0 \le y \le 3\}$

D. domain: $\{x \mid x \neq 3\}$; range: $\{y \mid y \geq 0\}$

12. Which diagram represents a relation that is both one-to-one and onto?

В.

13. What is the range of the function shown below?

A.
$$x \le 0$$

B.
$$x \ge 0$$

C.
$$y \le 0$$

D.
$$y \ge 0$$

14. For $y = \frac{3}{\sqrt{x-4}}$, what are the domain and range?

A.
$$\{x | x > 4\}$$
 and $\{y | y > 0\}$

C.
$$\{x | x > 4\}$$
 and $\{y | y \ge 0\}$

B.
$$\{x | x \ge 4\}$$
 and $\{y | y > 0\}$

D.
$$\{x | x \ge 4\}$$
 and $\{y | y \ge 0\}$

15. If $f(x) = 2x^2 - 3x + 1$ and g(x) = x + 5, what is f(g(x))?

A.
$$2x^2 + 17x + 36$$

B. $2x^2 + 17x + 66$

C.
$$2x^2 - 3x + 6$$

B.
$$2x^2 + 17x + 66$$

D.
$$2x^2 - 3x + 36$$

- ____ 16. The domain of $f(x) = -\frac{3}{\sqrt{2-x}}$ is the set of all real numbers
 - A. greater than 2

C. except 2

B. less than 2

D. between -2 and 2

25. If
$$f(x) = 3x^2 + 2x - 1$$
, what is $f(0)$?

A - C 1

. 1 . B 0 D 4

Question Answer:

Q1a: Solve the inequality and sketch the solution on the coordinate line.

i)
$$\frac{2}{x} < \frac{3}{x-2}$$
 ii) $x^3 + 3x^2 - 2x \ge 0$

Q1b: Solve for x:

i)
$$|2x - 3| = 2|3x - 5|$$
 ii) $\frac{1}{|2x - 3|} \le 3$

Q2:

- a) Find the formula for $f\circ g$ and $g\circ f$, and state the domains of the functions. $f(x)=\frac{x}{1+x^2},\quad g(x)=\frac{1}{x}$
- b) Find a formula for $f^{-1}(x)$.

$$f(x) = \begin{cases} \frac{7}{2} - x & x < 2\\ \frac{3}{x} & x \ge 2 \end{cases}$$

Q3: Sketch the graph of the function.

$$i.f(x) = -|x-2| + 5$$

ii.
$$f(x) = \frac{1}{x-1} - 3$$

iii.
$$f(x) = \sqrt[3]{x-3} - 5$$

Q4: Use the given graph of f(x).

i) FIND
$$\lim_{x\to -1} f(x)$$
 , $f(-1)$, $\lim_{x\to 1} f(x)$, $f(1)$ and $\lim_{x\to 3} f(x)$

5. Let a and b stand for constants and let
$$f(x) = \begin{cases} b - x, x < 1 \\ a(x - 2)^2, x \ge 1 \end{cases}$$

- a. Find an equation relating a and b b. Find b if a = -1. Graph and show c. Find another value aif f is to be continuous at x = 1. that the function is continuous
 - b where f is continuo

Q6: : A lab technician controls the temperature T inside a kiln. From an initial temperature of 0 degrees Celsius (°C), he allows the kiln to increase by 2°C per minute for the next 10 min. After the 10th minute, he allows the kiln to cool at the rate of 3°C per minute. The temperature function *T* is defined by

$$T(t) = \begin{cases} 2t, & if \ t \leq 10 \\ C^2 - 15C - 3t, & if \ t > 10 \end{cases}$$

- i) Find C such that T is continuous at t = 10 min
- ii) Explain why T must be continuous at t = 10 min.

Q7:

Find the value of x where the function is discontinuous.

$$a. \ f(x) = x^3 + 3^x$$

b.
$$f(x) = \frac{5}{x^2 - 81}$$

a.
$$f(x) = x^3 + 3^x$$
 b. $f(x) = \frac{5}{x^2 - 81}$ c. $f(x) = \frac{x^2 + 2x - 24}{x^2 - 36}$ c. $f(x) = \frac{2x + 1}{x^2 + 6x + 9}$

$$f(x) = \frac{2x+1}{x^2+6x+9}$$