Package 'HDRFA'

July 22, 2024

Type Package
Title High-Dimensional Robust Factor Analysis
Version 0.1.5
Author Yong He [aut], Lingxiao Li [aut], Dong Liu [aut, cre], Wenxin Zhou [aut]
Maintainer Dong Liu liudong_stat@163.com>
Pactor models have been widely applied in areas such as economics and finance, and the well-known heavy-tailedness of macroeconomic/financial data should be taken into account when conducting factor analysis. We propose two algorithms to do robust factor analysis by considering the Huber loss. One is based on minimizing the Huber loss of the idiosyncratic error's L2 norm, which turns out to do Principal Component Analysis (PCA) on the weighted same ple covariance matrix and thereby named as Huber PCA. The other one is based on minimizing the element-wise Huber loss, which can be solved by an iterative Huber regression algorithm. In this package we also provide the code for traditional PCA, the Robust Two Step (RTS) method by He et al. (2022) and the Quantile Factor Analysis (QFA) method by Chen et al. (2021) and He et al. (2023).
License GPL-2 GPL-3
Encoding UTF-8
Imports quantreg, pracma
Depends R (>= $3.5.0$)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-07-22 04:50:02 UTC
Contents
HPCA

2 HPCA

HPCA			 	Н	uh	101	. 1	Pri	'n	·in	nal	 'or	nn	201	101	nt	Aı	na	Iv.	cic	fe	or.	L	ire	ρ.	.D	in	101	151	ini	าก	1 1	Fai	cto	
Index																																			12
	RTS_FN .												•																						10
	RTS																																		
	PCA_FN																																		8
	PCA																																		7
	IQR_FN .																																		

Description

This function is to fit the factor models via the Huber Principal Component Analysis (HPCA) method. One is based on minimizing the Huber loss of the idiosyncratic error's ℓ_2 norm, which turns out to do Principal Component Analysis (PCA) on the weighted sample covariance matrix and thereby named as Huber PCA. The other one is based on minimizing the elementwise Huber loss, which can be solved by an iterative Huber regression algorithm.

Usage

```
\label{eq:hpca} \begin{split} \text{HPCA}(\textbf{X}, \ \textbf{r}, \ \texttt{Method} = \texttt{"E"}, \ \texttt{tau} = \texttt{NULL}, \ \texttt{scale\_est="MAD"}, \ \texttt{L\_init} = \texttt{NULL}, \\ \textbf{F\_init} = \texttt{NULL}, \ \texttt{maxiter\_HPCA} = \texttt{100}, \ \texttt{maxiter\_HLM} = \texttt{100}, \ \texttt{eps} = \texttt{0.001}) \end{split}
```

Arguments

X	Input matrix, of dimension $T \times N$. Each row is an observation with N features at time point t .
r	A positive integer indicating the factor numbers.
Method	Method="P" indicates minimizing the Huber loss of the idiosyncratic error's ℓ_2 norm while Method="E" indicates minimizing the elementwise Huber loss. The default is the elementwise Huber loss.
tau	Optional user-supplied parameter for Huber loss; default is NULL, and τ is provided by default.
scale_est	A parameter for the elementwise Huber loss. $scale_est="MAD"$ indicates robust variance estimation in each iteration, while $scale_est="const"$ indicates fixing user-supplied τ . The default is $scale_est="MAD"$.
L_init	User-supplied inital value of loadings; default is the PCA estimator.
F_init	User-supplied inital value of factors; default is the PCA estimator.
maxiter_HPCA	The maximum number of iterations in the HPCA. The default is 100.
maxiter_HLM	The maximum number of iterations in the iterative Huber regression algorithm. The default is $100.$
eps	The stopping critetion parameter in the HPCA. The default is 1e-3.

HPCA_FN 3

Details

See He et al. (2023) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat The estimated factor matrix of dimension $T \times r$. The estimated loading matrix of dimension $N \times r$. The number of iterations.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

He Y, Li L, Liu D, Zhou W., 2023 Huber Principal Component Analysis for Large-dimensional Factor Models.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%**%t(L)+E

fit=HPCA(X,r,Method = "E")
fit$Fhat;fit$Lhat

fit=HPCA(X,r,Method = "P")
```

HPCA_FN

Estimating Factor Numbers via Rank Minimization Corresponding to Huber PCA

Description

This function is to estimate factor numbers via rank minimization corresponding to Huber Principal Component Analysis (HPCA).

Usage

4 HPCA_FN

Arguments

X Input matrix, of dimension $T \times N$. Each row is an observation with N features

at time point t.

rmax The user-supplied maximum factor numbers.

Method Method="P" indicates minimizing the Huber loss of the idiosyncratic error's ℓ_2

norm while Method="E" indicates minimizing the elementwise Huber loss. The

default is the elementwise Huber loss.

tau Optional user-supplied parameter for Huber loss; default is NULL, and τ is

provided by default.

scale_est A parameter for the elementwise Huber loss. scale_est="MAD" indicates ro-

bust variance estimation in each iteration, while scale_est="const" indicates

fixing user-supplied τ . The default is scale_est="MAD".

threshold The threshold of rank minimization; default is NULL.

L_init User-supplied inital value of loadings in the HPCA; default is the PCA estimator.

F_init User-supplied inital value of factors in the HPCA; default is the PCA estimator.

maxiter_HPCA The maximum number of iterations in the HPCA. The default is 100.

maxiter_HLM The maximum number of iterations in the iterative Huber regression algorithm.

The default is 100.

eps The stopping critetion parameter in the HPCA. The default is 1e-3.

Details

See He et al. (2023) for details.

Value

rhat The estimated factor number.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

He Y, Li L, Liu D, Zhou W., 2023 Huber Principal Component Analysis for Large-dimensional Factor Models.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
HPCA_FN(X,8,Method="E")
```

IQR 5

```
HPCA_FN(X,8,Method="P")
```

IQR

Iterative Quantile Regression Methods for Quantile Factor Models

Description

This function is to fit the quantile factor model via the Iterative Quantile Regression (IQR) algorithm.

Usage

```
IQR(X, r, tau, L_init = NULL, F_init = NULL, max_iter = 100, eps = 0.001)
```

Arguments

Χ	Input matrix, of dimension $T \times N$. Each row is an observation with N features at time point t .
r	A positive integer indicating the factor numbers.
tau	The user-supplied quantile level.
L_init	User-supplied inital value of loadings; default is the PCA estimator.
F_init	User-supplied inital value of factors; default is the PCA estimator.
max_iter	The maximum number of iterations. The default is 100.
eps	The stopping critetion parameter. The default is 1e-06.

Details

See Chen et al. (2021) and He et al. (2023) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat The estimated factor matrix of dimension $T \times r$. The estimated loading matrix of dimension $N \times r$. t The number of iterations.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

Chen, L., Dolado, J.J., Gonzalo, J., 2021. Quantile factor models. Econometrica 89, 875–910. He Y, Kong X, Yu L, Zhao P., 2023 Quantile factor analysis for large-dimensional time series with statistical guarantee <arXiv:2006.08214>.

IQR_FN

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E

tau=0.5
fit=IQR(X,r,tau)
fit$Fhat;fit$Lhat
```

IQR_FN

Estimating Factor Numbers via Rank Minimization Corresponding to IQR

Description

This function is to estimate factor numbers via rank minimization corresponding to Iterative Quantile Regression (IQR).

Usage

Arguments

Χ	Input matrix, of dimension $T \times N$. Each row is an observation with N features
	at time point t .

rmax The user-supplied maximum factor numbers.

tau The user-supplied quantile level.

threshold The threshold of rank minimization; default is NULL.

L_init User-supplied inital value of loadings in the IQR; default is the PCA estimator.

F_init User-supplied inital value of factors in the IQR; default is the PCA estimator.

max_iter The maximum number of iterations. The default is 100.

eps The stopping critetion parameter of the IQR method. The default is 1e-06.

Details

See Chen et al. (2021) for more details.

Value

rhat The estimated factor number.

PCA 7

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

Chen, L., Dolado, J.J., Gonzalo, J., 2021. Quantile factor models. Econometrica 89, 875–910.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
tau=0.5
IQR_FN(X,8,tau)
```

PCA

Principal Component Analysis for Large-Dimensional Factor Models

Description

This function is to fit the factor models via Principal Component Analysis (PCA) methods.

Usage

```
PCA(X, r, constraint = "L")
```

Arguments

X Input matrix, of dimension $T \times N$. Each row is an observation with N features

at time point t.

r A positive integer indicating the factor numbers.

constraint The type of identification condition. If constraint="L", the columns of the es-

timated loading matrix are orthogonal and constraint="F" indicates the columns

of the estimated factor matrix are orthogonal.

Details

See Bai (2003) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat The estimated factor matrix of dimension $T \times r$. Lhat The estimated loading matrix of dimension $N \times r$. PCA_FN

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

Bai, J., 2003. Inferential theory for factor models of large dimensions. Econometrica 71, 135–171.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
fit=PCA(X,3,"L")
t(fit$Lhat)%*%fit$Lhat/N
fit=PCA(X,3,"F")
t(fit$Fhat)%*%fit$Fhat/T
```

PCA_FN

Estimating Factor Numbers via Eigenvalue Ratios Corresponding to PCA

Description

This function is to estimate factor numbers via eigenvalue ratios corresponding to Principal Component Analysis (PCA).

Usage

```
PCA_FN(X, rmax)
```

Arguments

X Input matrix, of dimension $T \times N$. Each row is an observation with N features

at time point t.

rmax The user-supplied maximum factor numbers.

Details

See Ahn and Horenstein (2013) for details.

Value

rhat

The estimated factor numbers.

RTS 9

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

Ahn, S.C., Horenstein, A.R., 2013. Eigenvalue ratio test for the number of factors. Econometrica 81, 1203–1227.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
PCA_FN(X,8)
```

RTS

Robust Two Step Algorithm for Large-Dimensional Elliptical Factor Models

Description

This function is to fit the large-dimensional elliptical factor models via the Robust Two Step (RTS) algorithm.

Usage

```
RTS(X, r)
```

Arguments

r

X Input matrix, of dimension $T \times N$. Each row is an observation with N features at time point t.

A positive integer indicating the factor numbers.

Details

See He et al. (2022) for details.

Value

The return value is a list. In this list, it contains the following:

Fhat The estimated factor matrix of dimension $T \times r$. Lhat The estimated loading matrix of dimension $N \times r$.

10 RTS_FN

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

References

He, Y., Kong, X., Yu, L., Zhang, X., 2022. Large-dimensional factor analysis without moment constraints. Journal of Business & Economic Statistics 40, 302–312.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
fit=RTS(X,3)
fit$Fhat;fit$Lhat
```

RTS_FN

Estimating Factor Numbers Robustly via Multivariate Kendall's Tau Eigenvalue Ratios

Description

This function is to estimate factor numbers robustly via multivariate Kendall's tau eigenvalue ratios.

Usage

```
RTS_FN(X, rmax)
```

Arguments

X Input matrix, of dimension $T \times N$. Each row is an observation with N features

at time point t.

rmax The user-supplied maximum factor numbers.

Details

See Yu et al. (2019) for details.

Value

rhat

The estimated factor number.

Author(s)

Yong He, Lingxiao Li, Dong Liu, Wenxin Zhou.

RTS_FN 11

References

Yu, L., He, Y., Zhang, X., 2019. Robust factor number specification for large-dimensional elliptical factor model. Journal of Multivariate analysis 174, 104543.

Examples

```
set.seed(1)
T=50;N=50;r=3
L=matrix(rnorm(N*r,0,1),N,r);F=matrix(rnorm(T*r,0,1),T,r)
E=matrix(rnorm(T*N,0,1),T,N)
X=F%*%t(L)+E
RTS_FN(X,8)
```

Index

```
HPCA, 2
HPCA_FN, 3
IQR, 5
IQR_FN, 6
PCA, 7
PCA_FN, 8
RTS, 9
RTS_FN, 10
```