Recursive Methods

Pierre Rouillard

1. Dynamic optimization in discrete time

1

1. Dynamic optimization in discrete time

 $> x_t$ state variable at time t

> x_{t+1} determined through at t $f(x_t, a_t)$ with a_t control/action variable (consumption in classic model)

DEFINITION 1. Sequential problem

(SP):
$$V^*(x_0) = \max_{\{x_t\}_{t\geq 0}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}) \qquad x_t \in X, x_{t+1} \in \Gamma(x_t)$$

DEFINITION 2. Functional equation

(FE):
$$V(x) = \max_{x' \in \Gamma(x)} \{F(x, x') + \beta . V(x')\}$$

 $\Gamma(x_t)$

ASSUMPTION 1. For all $x \in X : \Gamma(x)$ is non empty

Assumption 2. For all $x_0 \in X$ and $\underline{x} \in \Pi(x_0)$: $\lim_{T\to\infty} \sum_{t=0}^T \beta^t F(x_t, x_{t+1})$ exists

THEOREM 1. Bellman Equation (1)

- Assumption 1 & 2 hold
- $V^*(x)$ solution of **(SP)** is well defined for all $x \in X$

$$\Longrightarrow V^*(x) = \max_{x' \in \Gamma(x)} \{ F(x, x') + \beta . V^*(x') \}$$

Bellman equation Theorem.1 : V^* solves (SP) $\Rightarrow V^*$ solves (FE)

THEOREM 2. Bellman Equation (2)

- Assumption 1 & 2 hold
- $V^*(x)$ solution of **(SP)** is well defined for all $x \in X$
- $\{x_t^*\}_{t\geq 0}$ optimal path for x_0 , $\{x_t^*\}\in\Pi(x_0)$

$$\implies V^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta . V^*(x_{t+1}^*) \qquad \forall t \geqslant 0$$

Bellman equation Theorem.2 : any optimal path $\{x_t^*\}_{t\geqslant 0}$ is generated by the optimal policy correspondence **but** reverse not always true!

$$G^*(x) = \underset{x' \in \Gamma(x)}{\operatorname{argmax}} \{ F(x, x') + \beta . V^*(x') \} \qquad \Rightarrow x_{t+1}^* \in G^*(x_t) \ \forall t \geqslant 0$$