Classmate Date: Page:

Fnd-Term-Practical Exam Name - Kiran Farawan Roll. No. - 32 Course - MCA Semester - 1st Section - 'D' Student Id: 21712255 91. Answer ! <! DOCTYPE html> <html> < head> (Script) function validate () { Van X = document.farms ["my Form"] ["Fname"]. value; if (x == "" | x == null) { alext ("Name must be filled out"): 3 yetun false; (Script) ((head) (body) < h2) Javascuipt validation for empty input field (/h2) (P) Submit your name here, (P) Som name = "my Form"
action = "/action-page-php"

onsubmit = " return validate ()"

method = "post" required >

Name: < input type = " text" name = "Fname" >

<input type = " submit" value = "submit" >

</form>
</form>
</form>
</form>
</form>

output:

Javascript validation for empty input field Submit your name here.

	-
Name:	Submit

Quel 2 Answer:

Form-php

<! DOCTYPE html)

<html>

(head)

< title> Student Registration < (title>

</head>

(body)

(h2) Student Registration form (1h2)

< form action = " submit. php" method = "POST" >

< input type = "text" name = "Student FixAName"</p>

value = "" placeholder = " Student First Name"

(by) < input type = "text" name = "Student LastName"

value= "" placeholder = "Student Last Names < br

Kinput type = "text" name = "FathersName" value = ""

placeholder = "Fathers Name") < by/>

<input type = "text" name= "mothers Name" value= ""

placeholder = " Mothers Name"> < 16+>

< Input type = "date" name = "Date of Birth" value=""</p>

ptaceholder = " Date of Birth" > (br/)

Linput type = "tel" name = "PhoneNumber" value = ""

placeholder = "Phone Number Kby/)

<input type = "submit" name= "submit")
</pre>

/form)

(1body)

```
Submit. php
       <! DOCTYPE html>
        < html>
            (head)
                <title> Registration form </title>
           < ( head )
          <body)
              (h2) Form Submitted (h2)
          Student's First Name: <?php echo $_ POST ['Student firstName']
                                                       23 (br/)
          Student's Last Name : <? Php echo $- Post [studentLastName]?)
                                                         < 61/3
          Student's Father's Name! <? php echo $-post ['Fathers Name']?)
          Student's Mother's Name: < ? Php echo $ - POST['Mothers Name']?)
                                                       (br/)
          Student's Date of Birth! <? Php echo $_POST [ Date of Birth ! ]?)
          Student's Phone Number! <? Php echo $- POST['Phone Number']?)
                                                             2 br/3
   (Ibody)
< (html)
```

Q.3 Answey

Analyzing Carspeed desv dataset using R.

import the data and look at the first five rows

mydata conspeed < - read.csv (file = 'data/con-speeds.csv')
head (can speeds)

outpub:	Color	Speed	· State
	Blue	3.2	Mexico
2.	Red	45	Arizona
3.	Blue	85	Colorado
4.	White	34	Arizona
5.	Red	25	Arizona

Aust row of the data without setting the header argument.

CaySpeeds [1,]

Output! Color Speed State
1. Blue 32 Mexico

The first row of the data if the header argument is set to FALSE!

mydata canspeeds <- read. csv (file = 'data (can-speeds.csv', header = FALSE)

canspeeds [1,]

```
Output:

V1 V2 V3

1. Color Speed State

Here we will me R's 'ifelse' function

Conspeed <- read · Esv (file = 'data/con-speeds.csv',
```

String As Factors = TRUE)

Can Speed & Color 2 - ifelse (can Speeds & Color = = 'Blue', 'Green',

Can Speed & Color 2 - ifelse (can Speeds & Color)

Can Speeds & Color

Output:

[1] "Green" """ "Green" "5" "4" "Green"

"Green" "2" "5".

[10] "4" "4" "5" "Green" " Green" "Green"

[100] "5"

the use the built-in unique) function to extract the unique colors in our dataset unique (conspeeds \$ color)

Outfut!

(1) Green Red White Red Black

Levels: Red Black Green Red White

Q & Answer!

Discriptive Statistics:

Summary (mydata)
dim (mydata)
str (mydata)
rames (mydata)

Infrential Statistics:

(1). Chi - squared text Speed < - chisq - test (mydata) Speed

ij. Correlation cofficient Cor (mydata & conspeeds, mydata \$ average)

Hij - Anova test