Контрольная работа 2

Задача 1. Пусть K(x) — непрерывная ограниченная и четная функция из $L^1(\mathbb{R}^d)$. Пусть $h(x,t)\colon \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ непрерывная, ограниченная и строго убывающая по t функция.

$$f(x,\mu) = \int h(y, K * \mu(y)) K(x-y) \, dy, \quad \mu \in \mathcal{P}(\mathbb{R}^d), \quad K * \mu(y) = \int K(y-x) \, d\mu(x).$$

Докажите, что из неравенства

$$\int (f(x,\mu) - f(x,\sigma)) d(\mu - \sigma) \ge 0$$

следует $f(x,\mu) = f(x,\sigma)$.

Задача 2. Пусть в условиях предыдущей задачи $K(x) = e^{-|x|^2}$. Докажите, что из неравенства

$$\int (f(x,\mu) - f(x,\sigma)) d(\mu - \sigma) \ge 0$$

следует $\mu = \sigma$.

Задача 3. Пусть A — метрическое пространство и $U \colon \mathcal{P}(A) \to \mathbb{R}$. Будем говорить, что отображение U непрерывно дифференцируемо, если существует такое непрерывное отображение $\frac{\delta U}{\delta m}$: $\mathcal{P}(A) \times A \to \mathbb{R}$, что

$$U(\sigma) - U(\mu) = \int_0^1 \int_A \frac{\delta U}{\delta m} (\mu + s(\sigma - \mu), a)(\sigma - \mu)(da) ds \quad \forall \mu, \sigma \in \mathcal{P}(A).$$

Пусть μ — точка минимума U. Докажите, что

$$\int \frac{\delta U}{\delta m}(\mu, a) \, d\mu \le \frac{\delta U}{\delta m}(\mu, b),$$

то есть носитель меры μ сосредоточен в точках минимума отображения $a o rac{\delta U}{\delta m}(\mu,a)$.

Задача 4. В условиях предыдущей задачи докажите, что выпуклость отображения U:

$$U((1-s)\mu + s\sigma) \le (1-s)U(\mu) + sU(\sigma), \quad s \in [0,1],$$

равносильна монотонности:

$$\int_{A} \left(\frac{\delta U}{\delta m}(\mu, a) - \frac{\delta U}{\delta m}(\sigma, a) \right) (\mu - \sigma)(da) \ge 0.$$

Задача 5.

- (а) Пусть в условиях задачи 4 множество A конечно и состоит из $1,2,\ldots,N$, а вероятностная мера μ задается набором чисел (m_1,\ldots,m_N) , где $m_i\geq 0$ и $\sum_i m_i=1$. Пусть G непрерывно дифференцируема на \mathbb{R}^N . Положим $U(\mu)=G(m_1,\ldots,m_N)$. Найдите $\frac{\delta U}{\delta m}$.
- (b) Пусть A произвольное метрическое пространство, g непрерывная и ограниченная функция на A, F — непрерывно дифференцируемая функция на \mathbb{R} . Положим

$$U(\mu) = F\left(\int_A g \, d\mu\right).$$

- Найдите $\frac{\delta U}{\delta m}$. (c) Пусть теперь A компакт в метрическом пространстве. Докажите, что множество функций вида $f\left(\int g \, d\mu\right)$ всюду плотно в пространстве непрерывных функций на $\mathcal{P}(A)$.
- **Задача 6.** Пусть отображение $U\colon \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ непрерывно дифференцируемо, отображение $x \to \frac{\delta U}{\delta m}(\mu,x)$ дифференцируемо и отображение $D_x \frac{\delta U}{\delta m}(\mu,x)$ непрерывно по μ и x и ограниченно. Предположим, что непрерывная кривая $t o \mu_t$ в $\mathcal{P}(\mathbb{R}^d)$ является решением уравнения непрерывности

$$\partial_t \mu_t + \operatorname{div}(b\mu_t) = 0,$$

причем b — гладкое векторное поле с компактным носителем. Докажите, что

$$\frac{d}{dt}U(\mu_t) = \int \langle D_x \frac{\delta U}{\delta m}(\mu_t, x), b(x, t) \rangle d\mu_t.$$

Задача 7. Пусть отображение $b \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ ограниченно и липшицево. Пусть w_t — классический d—мерный винеровский процесс и \mathcal{F}_t — порождаемая им фильтрация. Докажите существование и единственность решения задачи Коши для стохастического уравнения

$$dx_t = B(x_t, \mu_t) dt + dw_t, \quad B(x, \mu) = \int b(x, y) \, \mu(dy), \quad \mu_t = P \circ x_t^{-1}.$$

Задача 8. Используя замену координат $(t,x) \to (t,e^tx)$ решите задачу Коши для уравнения Фоккера-Планка-Колмогорова

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t + \operatorname{div}(x\mu_t) = 0, \quad \mu_t = \nu.$$

Проделайте аналогичные вычисления с помощью формулы Ито и найдите решение соответствующего стохастического уравнения.

Задача 9. Докажите существование и единственность решения системы

$$\begin{cases} -u_t - u_{xx} + |u_x|^2 = 0, \\ \partial_t \mu_t - \partial_x^2 \mu_t - \partial_x (u_x \mu_t) = 0 \end{cases}$$

с начальными условиями $u(x,T)=g(x,\mu_T),\,\mu_0=\nu.$

(Указание: использовать замену $v = e^{-u}$)