

SEQUENCE LISTING

<110> SCHMIDT, Harald
ZABEL, Ulrike
POLLER, Wolfgang

<120> Isolated and Purified Human Soluble
Guanylylcyclase alphal/betal (hsGC alphal/betal)

<130> VOS-101

<140> US 09/762,767
<141> 2001-06-01

<150> PCT/DE99/02601
<151> 1999-08-16

<150> DE 198 37 015.6
<151> 1998-08-14

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3015
<212> DNA
<213> homo sapiens

<400> 1
cccttatggc gattgggcgg ctgcagagac caggactcag ttccccgtcc ctatgtctgag 60
cctagtgggt gggactcagc tcagactcag tttccagaa gcagggttca gtgcagagt 120
ttccttacact tttctctgcgc tagacgcgcg agcagcctgg aacagaccca ggcggaggac 180
acctgtgggg gagggagcgc ctggaggagc ttagagaccc cagccggcg tatatctcacc 240
atgtgcggat ttgcgaggcg cggcctggag ctgtctagaga tccggaagca cagccccgag 300
gtgtgcgaag ccaccaagac tgcggcttt ggagaaagcg tgagcagggg gccaccgcgg 360
tctccgcgcc tgtctgcacc ctgtcgctg agctgcctga cagtgacaat gacatcccag 420
ttaccagtgt ctttgcattt atagtggtt ctgtttgtca gtctcatata agaactacag 480
ctcatcagga ggagatcgca gcagggttaag agacaccaac accatgttct gcacgaagct 540
caaggatctc aagatcacag gagagtgtcc tttctcccta ctggcaccag gtcaagttcc 600
taacgagctc tcagaggagg cagcaggaag ctcagagagc tgcaaagcaa ccgtgcccatt 660
ctgtcaagac attcctgaga agaacatata agaaagtctt cctcaaagaa aaaccagtctg 720
gagccgagtc tatttcaca ctttggcaga gagtattgc aaactgattt tcccagagtt 780
tgaacggctg aatgtgcac ttcagagaac attggcaaaag cacaattaa aagaaagcag 840
gaaatcttg gaaagagaag actttggaaaa aacaattgca gagcaagcag ttgcagcagg 900
agttccagtg gagtttatca aagaatctt tggtaagag gtttttaaaa tatgttacga 960
ggaagatgaa aacatccttg gggtggttgg aggaccctt aaagatttt taaacagctt 1020
cagttccctt ctgaaacaga gcagccattt ccaagaagca ggaaaaaggg gcaggcttga 1080
ggacgcctcc attctatgcc tggataagga ggtatgtttt ctacatgttt actacttctt 1140
ccctaagaga accacctccc tgattctcc cggcatcata aaggcagctg ctcacgttatt 1200
atatgaaacg gaagtggaaag tgcgttaat gcctccctgc ttccataatg attgcagcga 1260

gtttgtgaat cagccctact tgggttactc cggtcacatg aaaagcacca agccatccct 1320
gtccccccagc aaaccccaagt cctcgctgtt gattccaca tcgctattct gcaagacatt 1380
tccattccat ttcatgtttt acaaagatata gacaattctg caatttgca atggcatcag 1440
aaggctgtatg aacaggagag actttcaagg aaagcctaata tttgaagaat actttgaaat 1500
tctgactcca aaaatcaacc agacgtttt cgggatcatg actatgttga atatgcagtt 1560
tgggttacga gtgaggagat gggacaactc tggtaagaaa tcttcaaggg ttatggacct 1620
caaaggccaa atgatctaca ttgttgaatc cagtgcaatc ttgttttgg ggtcaccctg 1680
tgtggacaga tttagaagatt ttacaggacg aggctctac ctctcagaca tcccaattca 1740
caatgcactg agggatgtgg tcttaatagg ggaacaagcc cgagctcaag atggcctgaa 1800
gaagaggctg gggaaagctga aggctaccct tgagcaagcc caccaagccc tggaggagga 1860
gaagaaaaaa acagtagacc ttctgtgtc cataattccc tggaggttg ctcagcagct 1920
gtggcaaggg caagttgtgc aagccaaagaa gttcagtaat gtcaccatgc tcttctcaga 1980
catcggttggg ttcactgcca tctgctccca gtgctcaccc ctgcagggtca tcaccatgct 2040
caatgcactg tacactcgct tcgaccagca gtgtggagag ctggatgtct acaaggtgga 2100
gaccattggc gatgcctatt gtgttagctt gggattacac aaagagagtg atactcatgc 2160
tggttcagata ggcgtgtatgg ccctgaagat gatggagctc tctgtatgaag ttatgtctcc 2220
ccatggagaa cctatcaaga tgcaatgg actgcactt ggatcagttt ttgctggcg 2280
cggtggagtt aaaatgcccc gttactgtct tttggaaac aatgtcactc tggctaacaa 2340
atttgagtcc tgcaatgtac cacgaaaaat caatgtcagc ccaacaactt acagattact 2400
caaagactgt cctggttgc tggttacccc tcgatcaagg gaggaacttc caccaaaactt 2460
ccctagtgaa atccccggaa tctgccatcc tctggatgtc taccacaaag gaacaaactc 2520
aaaaccatgc ttccaaaaga aagatgtgga agatggcaat gccaatttt taggcaaagc 2580
atcaggaata gattagcaac ctatataacct attataagt ctttggggtt tgactcattt 2640
aagatgtgt aagcctctga aagcacttta gggattgttag atggctaaca agcagtatta 2700
aaatttcagg agccaagtca caatcttct cctgttaac atgacaaaat gtactcactt 2760
cagttactca gctctcaag aaaaaaaaaaa aaaccttaaa aagctacttt tggggagta 2820
tttcttattt ataaccagca cttaacttct gtactcaaaa ttcaagcacct ttttacatata 2880
tcagataatt gtatgtcaatt gtacaaactg atggagtcac ctgcaatctc atatcctgg 2940
ggaatgcat ggttattttttt gttgtttgtt gatagtgtcg tcaaaaaaaaaaaaaaaaaa 3000
aaaaaaaaaaaa aaaaaa 3015

<210> 2
<211> 688
<212> PRT
<213> homo sapiens

<400> 2
Met Phe Cys Thr Lys Leu Lys Asp Leu Lys Ile Thr Gly Glu Cys Pro
1 5 10 15
Phe Ser Leu Leu Ala Pro Gly Gln Val Pro Asn Glu Ser Ser Glu Glu
20 25 30
Ala Ala Gly Ser Ser Glu Ser Cys Lys Ala Thr Val Pro Ile Cys Gln
35 40 45
Asp Ile Pro Glu Lys Asn Ile Gln Glu Ser Leu Pro Gln Arg Lys Thr
50 55 60
Ser Arg Ser Arg Val Tyr Leu His Thr Leu Ala Glu Ser Ile Cys Lys
65 70 75 80
Leu Ile Phe Pro Glu Phe Glu Arg Leu Asn Val Ala Leu Gln Arg Thr
85 90 95
Leu Ala Lys His Lys Ile Lys Glu Ser Arg Lys Ser Leu Glu Arg Glu
100 105 110
Asp Phe Glu Lys Thr Ile Ala Glu Gln Ala Val Ala Gly Val Pro
115 120 125

Val Glu Val Ile Lys Glu Ser Leu Gly Glu Glu Val Phe Lys Ile Cys
130 135 140
Tyr Glu Glu Asp Glu Asn Ile Leu Gly Val Val Gly Gly Thr Leu Lys
145 150 155 160
Asp Phe Leu Asn Ser Phe Ser Thr Leu Leu Lys Gln Ser Ser His Cys
165 170 175
Gln Glu Ala Gly Lys Arg Gly Arg Leu Glu Asp Ala Ser Ile Leu Cys
180 185 190
Leu Asp Lys Glu Asp Asp Phe Leu His Val Tyr Tyr Phe Phe Pro Lys
195 200 205
Arg Thr Thr Ser Leu Ile Leu Pro Gly Ile Ile Lys Ala Ala Ala His
210 215 220
Val Leu Tyr Glu Thr Glu Val Glu Val Ser Leu Met Pro Pro Cys Phe
225 230 235 240
His Asn Asp Cys Ser Glu Phe Val Asn Gln Pro Tyr Leu Leu Tyr Ser
245 250 255
Val His Met Lys Ser Thr Lys Pro Ser Leu Ser Pro Ser Lys Pro Gln
260 265 270
Ser Ser Leu Val Ile Pro Thr Ser Leu Phe Cys Lys Thr Phe Pro Phe
275 280 285
His Phe Met Phe Asp Lys Asp Met Thr Ile Leu Gln Phe Gly Asn Gly
290 295 300
Ile Arg Arg Leu Met Asn Arg Arg Asp Phe Gln Gly Lys Pro Asn Phe
305 310 315 320
Glu Glu Tyr Phe Glu Ile Leu Thr Pro Lys Ile Asn Gln Thr Phe Ser
325 330 335
Gly Ile Met Thr Met Leu Asn Met Gln Phe Val Val Arg Val Arg Arg
340 345 350
Trp Asp Asn Ser Val Lys Lys Ser Ser Arg Val Met Asp Leu Lys Gly
355 360 365
Gln Met Ile Tyr Ile Val Glu Ser Ser Ala Ile Leu Phe Leu Gly Ser
370 375 380
Pro Cys Val Asp Arg Leu Glu Asp Phe Thr Gly Arg Gly Leu Tyr Leu
385 390 395 400
Ser Asp Ile Pro Ile His Asn Ala Leu Arg Asp Val Val Leu Ile Gly
405 410 415
Glu Gln Ala Arg Ala Gln Asp Gly Leu Lys Lys Arg Leu Gly Lys Leu
420 425 430
Lys Ala Thr Leu Glu Gln Ala His Gln Ala Leu Glu Glu Lys Lys
435 440 445
Lys Thr Val Asp Leu Leu Cys Ser Ile Phe Pro Cys Glu Val Ala Gln
450 455 460
Gln Leu Trp Gln Gly Gln Val Val Gln Ala Lys Lys Phe Ser Asn Val
465 470 475 480
Thr Met Leu Phe Ser Asp Ile Val Gly Phe Thr Ala Ile Cys Ser Gln
485 490 495
Cys Ser Pro Leu Gln Val Ile Thr Met Leu Asn Ala Leu Tyr Thr Arg
500 505 510
Phe Asp Gln Gln Cys Gly Glu Leu Asp Val Tyr Lys Val Glu Thr Ile
515 520 525
Gly Asp Ala Tyr Cys Val Ala Gly Gly Leu His Lys Glu Ser Asp Thr
530 535 540
His Ala Val Gln Ile Ala Leu Met Ala Leu Lys Met Met Glu Leu Ser

545	550	555	560												
Asp	Glu	Val	Met	Ser	Pro	His	Gly	Glu	Pro	Ile	Lys	Met	Arg	Ile	Gly
565	570	575													
Leu	His	Ser	Gly	Ser	Val	Phe	Ala	Gly	Val	Val	Gly	Val	Lys	Met	Pro
580	585	590													
Arg	Tyr	Cys	Leu	Phe	Gly	Asn	Asn	Val	Thr	Leu	Ala	Asn	Lys	Phe	Glu
595	600	605													
Ser	Cys	Ser	Val	Pro	Arg	Lys	Ile	Asn	Val	Ser	Pro	Thr	Thr	Tyr	Arg
610	615	620													
Leu	Leu	Lys	Asp	Cys	Pro	Gly	Phe	Val	Phe	Thr	Pro	Arg	Ser	Arg	Glu
625	630	635	640												
Glu	Leu	Pro	Pro	Asn	Phe	Pro	Ser	Glu	Ile	Pro	Gly	Ile	Cys	His	Phe
645	650	655													
Leu	Asp	Ala	Tyr	Gln	Gln	Gly	Thr	Asn	Ser	Lys	Pro	Cys	Phe	Gln	Lys
660	665	670													
Lys	Asp	Val	Glu	Asp	Gly	Asn	Ala	Asn	Phe	Leu	Gly	Lys	Ala	Ser	Gly
675	680	685													

<210> 3

<211> 2443

<212> DNA

<213> homo sapiens

<400> 3

ccccccccccg ccgcgtgccgc ctctgcctgg gtcgccttcgg ccgtacctct gcgtgggggc 60
tgcctcccg gtcggcggtg cagacaccat gtacggattt gtgaatcacg ccctggagtt 120
gctgggtatc cgcaattacg gccccggatgtt gtcggaaagac atcaaaaaaag aggcacagtt 180
agatgaagaa ggacagtttc ttgtcagaat aatatatgtat gactccaaaaa cttatgattt 240
gtttgctgtt gcaagcaaag tcctcaatct caatgctgga gaaatctcc aatgtttgg 300
gaagatgtt ttcgtctttt gccaagaatc tggatgtat acaatcttcg gtgtcctggg 360
ctctaattgtc agagaatttc tacagaacct tgcgtctgtt caccgaccacc ttgctaccat 420
ctacccagga atgcgtgcac cttcctttag gtgcactgtat gcagaaaaagg gcaaaggact 480
cattttgcac tactactcg agagagaagg acttcaggat attgtcatttgc gatcatcaa 540
aacagtggca caacaaatcc atggcactga aatagacatg aaggttattc agcaaagaaaa 600
tgaagaatgt gatcatactc aatttttaat tgaagaaaaa gagtcaaaag aagaggattt 660
ttatgaagat cttgacagat ttgaagaaaa tggtaccccg gaatcacgca tcagccata 720
tacattctgc aaagcttttc ctttcatat aatatttgc cgggaccttag tggtcactca 780
gtgtggcaat gctatataca gagttctccc ccagctccag cctggaaattt gcagccttct 840
gtctgtcttc tcgctgggtt gtcctcatat tgatattgtt ttccatggga tccttctca 900
catcaatact gttttgtat tgagaagcaa ggaaggattt ttggatgtgg agaaaattaga 960
atgtgaggat gaactgactg ggactgagat cagctgttta cgtctcaagg gtcaaattgtat 1020
ctacttacact gaagcagata gcatactttt tctatgttca ccaagtgtca tgaacctgg 1080
cgatttgaca aggagagggc tgcgttcaag tgacatccct ctgcgtatg ccacgcgcga 1140
tcttggcttt ttgggagaac aatttagaga ggaataaaaaa ctcacccaaag aactggaaat 1200
cctcaactgac aggctacagc tcacgtttaag agccctggaa gatggaaaaa aaaaagacaga 1260
cacattgtcg tattctgtcc ttccctccgtc tggatgttcaat gagctgcggc acaagcgtcc 1320
agtgcgtgcc aaaagatatg acaatgtac cattttttt agtggcattt tggcatttcaa 1380
tgctttctgt agcaagcatg catctggaga aggagccatg aagatgttca accttcctcaa 1440
cgacctctac accagatttgc acacactgtac tgattcccg aaaaacccat ttgtttataa 1500
gttggagact gttgggttca agtataatgtac agtggatgtgtt ttaccagagc catgcattca 1560
ccatgcacga tccatctgtcc acctggccctt ggacatgtat gaaattgttg gccaggttca 1620
agttagatgtt agatctgttca agataacaat agggatacac actggagagg tagttacagg 1680

tgtcatagga cagcgatgc ctcgatactg tcttttggg aatactgtca acctcacaag 1740
ccgaacagaa accacaggag aaaagggaaa aataaaatgtg tctgaatata catacagatg 1800
tcttatgtct ccagaaaatt cagatccaca attccacttg gagcacagag gcccagtgtc 1860
catgaagggc aaaaaagaac caatgcaagt ttggtttcta tccagaaaaa atacaggaac 1920
agaggaaaca aagcaggatg atgactgaat ctggattat ggggtgaaga ggagtacaga 1980
ctaggttcca gtttcttct aacacgtgcc aagcccgagga gcagttcttc cctatggata 2040
cagatttct tttgtccttgc tccattaccc caagacttcc ttctagatat atctctcact 2100
atccgttatt caaccttagc tctgcttctt attactttt aggctttagt atattatcta 2160
aagtttgct tttgatgtgg atgatgtgag ctcatgtgt cttaaaatct actacaagca 2220
ttacctaaca tggtgatctg caagtagtag gcacccaata aatattgtt gaatttagtt 2280
aaatgaaact gaacagtgtt tggccatgtg tataattata tcatgtttac caaatctgtt 2340
tagtgttcca catatatgtt tatgtatatt ttaatgacta taatgtaata aagtttatat 2400
catgttggtg tatatcatta tagaaatcat tttctaaagg agt 2443

<210> 4
<211> 619
<212> PRT
<213> homo sapiens

<400> 4
Met Tyr Gly Phe Val Asn His Ala Leu Glu Leu Leu Val Ile Arg Asn
1 5 10 15
Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala Gln Leu Asp
20 25 30
Glu Glu Gly Gln Phe Leu Val Arg Ile Ile Tyr Asp Asp Ser Lys Thr
35 40 45
Tyr Asp Leu Val Ala Ala Ala Ser Lys Val Leu Asn Leu Asn Ala Gly
50 55 60
Glu Ile Leu Gln Met Phe Gly Lys Met Phe Phe Val Phe Cys Gln Glu
65 70 75 80
Ser Gly Tyr Asp Thr Ile Leu Arg Val Leu Gly Ser Asn Val Arg Glu
85 90 95
Phe Leu Gln Asn Leu Asp Ala Leu His Asp His Leu Ala Thr Ile Tyr
100 105 110
Pro Gly Met Arg Ala Pro Ser Phe Arg Cys Thr Asp Ala Glu Lys Gly
115 120 125
Lys Gly Leu Ile Leu His Tyr Tyr Ser Glu Arg Glu Gly Leu Gln Asp
130 135 140
Ile Val Ile Gly Ile Ile Lys Thr Val Ala Gln Gln Ile His Gly Thr
145 150 155 160
Glu Ile Asp Met Lys Val Ile Gln Gln Arg Asn Glu Glu Cys Asp His
165 170 175
Thr Gln Phe Leu Ile Glu Glu Lys Glu Ser Lys Glu Glu Asp Phe Tyr
180 185 190
Glu Asp Leu Asp Arg Phe Glu Glu Asn Gly Thr Gln Glu Ser Arg Ile
195 200 205
Ser Pro Tyr Thr Phe Cys Lys Ala Phe Pro Phe His Ile Ile Phe Asp
210 215 220
Arg Asp Leu Val Val Thr Gln Cys Gly Asn Ala Ile Tyr Arg Val Leu
225 230 235 240
Pro Gln Leu Gln Pro Gly Asn Cys Ser Leu Leu Ser Val Phe Ser Leu
245 250 255
Val Arg Pro His Ile Asp Ile Ser Phe His Gly Ile Leu Ser His Ile

260	265	270
Asn Thr Val Phe Val Leu Arg Ser Lys Glu Gly Leu Leu Asp Val Glu		
275	280	285
Lys Leu Glu Cys Glu Asp Glu Leu Thr Gly Thr Glu Ile Ser Cys Leu		
290	295	300
Arg Leu Lys Gly Gln Met Ile Tyr Leu Pro Glu Ala Asp Ser Ile Leu		
305	310	315
Phe Leu Cys Ser Pro Ser Val Met Asn Leu Asp Asp Leu Thr Arg Arg		
325	330	335
Gly Leu Tyr Leu Ser Asp Ile Pro Leu His Asp Ala Thr Arg Asp Leu		
340	345	350
Val Leu Leu Gly Glu Gln Phe Arg Glu Glu Tyr Lys Leu Thr Gln Glu		
355	360	365
Leu Glu Ile Leu Thr Asp Arg Leu Gln Leu Thr Leu Arg Ala Leu Glu		
370	375	380
Asp Glu Lys Lys Lys Thr Asp Thr Leu Leu Tyr Ser Val Leu Pro Pro		
385	390	395
Ser Val Ala Asn Glu Leu Arg His Lys Arg Pro Val Pro Ala Lys Arg		
405	410	415
Tyr Asp Asn Val Thr Ile Leu Phe Ser Gly Ile Val Gly Phe Asn Ala		
420	425	430
Phe Cys Ser Lys His Ala Ser Gly Glu Gly Ala Met Lys Ile Val Asn		
435	440	445
Leu Leu Asn Asp Leu Tyr Thr Arg Phe Asp Thr Leu Thr Asp Ser Arg		
450	455	460
Lys Asn Pro Phe Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met		
465	470	475
Thr Val Ser Gly Leu Pro Glu Pro Cys Ile His His Ala Arg Ser Ile		
485	490	495
Cys His Leu Ala Leu Asp Met Met Glu Ile Ala Gly Gln Val Gln Val		
500	505	510
Asp Gly Glu Ser Val Gln Ile Thr Ile Gly Ile His Thr Gly Glu Val		
515	520	525
Val Thr Gly Val Ile Gly Gln Arg Met Pro Arg Tyr Cys Leu Phe Gly		
530	535	540
Asn Thr Val Asn Leu Thr Ser Arg Thr Glu Thr Thr Gly Glu Lys Gly		
545	550	555
Lys Ile Asn Val Ser Glu Tyr Thr Tyr Arg Cys Leu Met Ser Pro Glu		
565	570	575
Asn Ser Asp Pro Gln Phe His Leu Glu His Arg Gly Pro Val Ser Met		
580	585	590
Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn		
595	600	605
Thr Gly Thr Glu Glu Thr Lys Gln Asp Asp Asp		
610	615	

<210> 5
<211> 14
<212> PRT
<213> homo sapiens

<400> 5

Phe Thr Pro Arg Ser Arg Glu Glu Leu Pro Pro Asn Phe Pro
1 5 10

<210> 6
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 6
Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
1 5 10 15
Thr Gly Thr Glu Glu Thr
20

<210> 7
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 7
aaaaggatcc atgttctgca cgaagctc 28

<210> 8
<211> 18
<212> DNA
<213> homo sapiens

<400> 8
attatggaag cagggagg 18

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 9
aaaaggatcc atgtacggat ttgtgaat 28

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer .

<400> 10
atgcgtgatt cctgggtacc

20

<210> 11
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> conserved guanylyl cyclase sequence

<400> 11
Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met Thr Val Ser Gly
1 5 10 15
Leu Pro

<210> 12
<211> 13
<212> PRT
<213> homo sapiens

<400> 12
Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala
1 5 10

<210> 13
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Conserved guanylyl cyclase sequence

<400> 13
Lys Lys Asp Val Glu Glu Ala Asn Ala Asn Phe Leu Gly Lys Ala Ser
1 5 10 15
Gly Ile Asp

<210> 14
<211> 15
<212> PRT
<213> Bos taurus

<400> 14

Ser Arg Lys Asn Thr Gly Thr Glu Glu Thr Glu Gln Asp Glu Asn
1 5 10 15

<210> 15
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> cloning site

<400> 15
cggatcccggtacccctcta gaattccgga gcggccgctgcagatct

47

<210> 16
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> cloning site

<400> 16
ccttagggccc atgaaagatc ttaaggcctc gccggcgacgtctaga

46

<210> 17
<211> 38
<212> DNA
<213> homo sapiens

<400> 17
ctggtccgcgtggatccccggaaattcatcgtgactga

38

<210> 18
<211> 15
<212> PRT
<213> homo sapiens

<400> 18
Leu Val Pro Arg Gly Ser Pro Gly Ile His Arg Asp Ser Thr Pro
1 5 10 15

<210> 19
<211> 6
<212> PRT
<213> Homo sapiens

<400> 19
Leu Val Pro Arg Cys Ser
1 5