Logika cyfrowa

Wykład 1: wprowadzenie

Marek Materzok 26 lutego 2024

Bramki logiczne

Bramki logiczne

bufor

not

i	0
0	1
1	0

and

i_1	i_2	0
0	0	0
0	1	0
1	0	0
1	1	1

or

i_1	i_2	0
0	0	0
0	1	1
1	0	1
1	1	1

xor

i_1	i_2	0
0	0	0
0	1	1
1	0	1
1	1	0

Budowa bramek

Sterowane elementy przełączające:

- Przekaźniki
 - powolne, ciężkie, nieefektywne, proste koncepcyjnie
- Lampy elektronowe
 - duże, wymagają wysokich napięć, wyszły z użytku
- Tranzystory bipolarne (RTL, DTL, TTL)
 - w XXI wieku praktycznie wyszły z użytku
- Tranzystory polowe (NMOS, CMOS)
 - NMOS: podobna do TTL, wyszła z użytku
 - CMOS: zużycie energii proporcjonalne do szybkości przełączeń, symetryczne poziomy napięć, duża impedancja wejściowa, mała wyjściowa

Przekaźniki

- prąd w cewce elektromagnesu przełącza przełącznik
- na obrazku przekaźnik SPST (jeden styk, jedna pozycja aktywna)
- wciąż używane do przełączania dużych prądów i napięć

Diagramy drabinkowe, sterowniki PLC

Automatycy wciąż myślą "wirtualnymi przekaźnikami":

Bramki przekaźnikowe

- Bramki and i or
- Funkcja wzmacniająca: prąd wejść nie płynie do wyjść, tylko przełącza zasilanie do wyjścia
- Półprzewodnikowe bramki są analogiczne!

Tranzystory polowe z bramką izolowaną (MOSFET)

- Kanał między źródłem (S) i drenem (D)
- Kanał typu N lub P
 - Analogicznie jak w BJT
- Domyślnie wyłączone, napięcie GS włącza
- Bramką nie płynie prąd stały
 - Ale bramka ma pojemność

rysunek uproszczony:

Technologia CMOS

- Complementary MOS
- Tranzystory N-ch łączą z masą, P-ch z zasilaniem
- Pobiera istotny prąd tylko podczas przełączania
- Symetryczne poziomy napięć i prądy wyjść
- Najpowszechniejsza współczesna technologia
- Po prawej: bramka NAND

Układy programowalne (PLD), FPGA

Programmable Logic Devices

- PAL (programowanie funkcji logicznych w PROM)
- CPLD (funkcje logiczne + stan + interconnect)
- FPGA (siatka bloków logicznych z pamięcią)

Zalety FPGA

- Wydajność
 - Dla zadań równoległych wygrywa z CPU
 - Elastyczniejsze niż GPU
 - Szybki interfejs do zewnętrznych elementów
- Czas do wprowadzenia na rynek
 - Szybszy niż dla układów specjalizowanych (ASIC)
- Koszt
 - Dla niewielkiej produkcji tańszy niż ASIC
- Łatwość utrzymania
 - Reprogramowalne w locie
 - Można poprawiać błędy i dodawać funkcjonalność w istniejących produktach
- Niezawodność
 - Równoległe komponenty nie wpływają na siebie

Płytki deweloperskie FPGA

Zastosowania FPGA

Wszędzie, gdzie można by użyć specjalizowanego układu, ale koszt byłby zbyt duży:

- Prototypowanie układów
- "Glue logic" między układami specjalizowanymi
- Przetwarzanie sygnałów (badania medyczne, przemysł, multimedia)
- Telekomunikacja (bezprzewodowa, światłowodowa, routing)
- Obliczenia równoległe (badania naukowe, kryptowaluty)
- Sterowanie procesami przemysłowymi

Łaziki na Marsie

- Kontrola lądowania
- Sterowanie silnikami
- Przetwarzanie obrazu
- Tryb oszczędzania energii "dream mode"
- Układy Xilinx space-grade

JCREW – zakłócanie bomb

- Joint Counter RCIED (Radio Controlled Improvised Explosive Device) Electronic Warfare
- Wykrywanie i zakłócanie w czasie rzeczywistym sygnałów mogących wyzwolić improwizowaną bombę
 GSM, pilot od drzwi garażowych, itp.
- Układy Xilinx Virtex 6Q, defense-grade

Projektowanie układów cyfrowych

Budowa komputera

- zasilacz
- płyta główna zawiera mikroprocesor
- karty rozszerzeń
 np. karta sieciowa, graficzna
- urządzenia wejścia/wyjścia np. dysk twardy, klawiatura

Figure 1.4 A digital hardware system (Part a).

Poziomy abstrakcji w systemie komputerowym

- język programowania (np. zmienne)
- system operacyjny (np. syscalle)
- architektura (np instrukcje)
- mikroarchitektura (np. kontrolery)
- logika cyfrowa (np. sumatory)
- elementy cyfrowe (np. bramki)
- obwody analogowe (np. wzmacniacze)
- elementy elektron. (np. tranzystory)
- fizyka (np. pole elektromagnetyczne)

Figure 1.4 A digital hardware system (Part b)

Dyscyplina

Ograniczenie możliwości projektowych celem podniesienia poziomu abstrakcji.

- Inżynieria: śruby i nakrętki o standardowych średnicach i gwintach
- Programowanie: warunki, funkcje i pętle zamiast instrukcji skoku warunkowego
- Układy cyfrowe: dwa poziomy napięć (niski i wysoki) zamiast napięć analogowych

Zarządzanie złożonością

- Hierarchia podział systemu na moduły
- Modularność dobrze określone funkcje modułów oraz połączenia między nimi
- Regularność wielokrotne użycie wspólnych modułów

Proces projektowania układu cyfrowego

Narzędzia CAD

- Computer Aided Design projektowanie wspomagane komputerowo
- Projektowanie: języki opisu sprzętu
- Testowanie: symulatory, weryfikacja formalna
- Prototypowanie/produkcja: synteza sprzętu

Języki opisu sprzętu (HDL)

- Języki o semantyce odpowiedniej dla układów logicznych (jawny przepływ danych, obliczenia równoległe, moduły)
- Zastosowania: projektowanie, modelowanie, testowanie i weryfikacja sprzętu
- Popularne: Verilog, SystemVerilog, VHDL
- Inne: Bluespec, Lava, $C\lambda$ ash (Haskell), HardCaml (OCaml), Chisel, SpinalHDL (Scala), Migen, nMigen (Python)

Synteza wysokiego poziomu (HLS)

- Synteza układów z abstrakcyjnego, algorytmicznego kodu
- Języki źródłowe: podzbiór C, C++, SystemC
- OpenCL wspólny język dla GPU i FPGA
- Szybsze projektowanie, ale niższa wydajność

Verilog – historia

- 1983 Verilog powstaje w Gateway Design Automation
 - zastosowania: prototypowanie i modelowanie, projektowanie sprzętu odbywało się w oddzielnych programach CAD
- 1985-90 synteza sprzętu z Veriloga
- 1995 standaryzacja
 - IEEE 1364-1995 początkowy standard
 - IEEE 1364-2001 liczby ze znakiem, generowanie
 - IEEE 1364-2005 doprecyzowanie semantyki, uwire
- 2005 SystemVerilog jako rozszerzenie Veriloga
 - IEEE 1800-2005
- 2009 SystemVerilog jako niezależny język
 - IEEE 1800-2009
 - IEEE 1800-2017

Narzędzia open source dla Veriloga

- Yosys synteza sprzętu, weryfikacja formalna
- Icarus Verilog symulator ("interpreter")
- Verilator kompilacja do C++/SystemC, wysoka wydajność

- http://digitaljs.tilk.eu/
- Kod: https://github.com/tilk/digitaljs (460*)
- Symulator obwodów dla SystemVeriloga
- Poszukiwani programiści, możliwe prace lic/inż

Digital JS – nowości

Changelog od poprzedniej edycji przedmiotu:

- Asynchroniczna symulacja (Web Worker)
- Upraszczanie schematów dla zwiększenia czytelności
- Czytelniejsze układanie schematów (elkjs)
- Wsparcie dla Yosysa 0.13
- Rozszerzenia do VS Code:
 - digitaljs-vsc (Michał Markiewicz, UWr)
 - digitaljs_code (Yichao Yu, Harvard)

Program wykładu

Program wykładu

Tercja 1: układy kombinacyjne

- Algebra Boole'a
- Reprezentacja liczb i arytmetyka
- Podstawowe układy kombinacyjne

Tercja 2: układy sekwencyjne

- Podstawowe układy sekwencyjne
- Synchroniczne układy sekwencyjne
- Projektowanie automatów skończonych

Tercja 3: procesor jako układ sekwencyjny

- Architektura RISC V (RV32I)
- Mikroarchitektury: jednocyklowa, wielocyklowa i potokowa

Literatura

- S. Brown, Z. Vranesic Fundamentals of Digital Logic with Verilog Design
- D. Harris, S. Harris Digital Design and Computer Architecture
- J. Bhasker, A Verilog HDL Primer
- S. Palnitkar, Verilog HDL A Guide to Digital Design and Synthesis
- T. Kuphaldt, Lessons in Electric Circuits, Vol. IV Digital
- Standard IEEE 1364-2005 (Verilog 2005)
- Standard IEEE 1800-2017 (SystemVerilog 2017)

Zasady zaliczania

Składowe ćwiczenio-pracowni:

- Listy zadań z teorii (dającej fundamenty praktyce!)
- Zadania praktyczne z implementacji układów w Verilogu

Wykład kończy się egzaminem.

Zasady – zadania ćwiczeniowe

- Obowiązuje system deklaracji znany z innych przedmiotów.
- Jeśli nie podano inaczej, to zadanie jest warte jeden punkt.
- W przypadku błędnego rozwiązania, zadanie zostaje skreślone z deklaracji.
- Jeśli student zadeklarował zadanie, którego w oczywisty sposób nie potrafi rozwiązać, przewiduje się karę w postaci wykreślenia pewnej ilości punktów z deklaracji.
- Jeśli dodatkowo student wykazuje brak znajomości podstawowych pojęć pojawiających się na liście, to przewidywana jest kara w postaci punktów ujemnych.
- Brak obecności w momencie losowania osoby prezentującej rozwiązanie zadania oznacza utratę punktów za to zadanie.

Zasady – zadania praktyczne

- Językiem wykorzystywanym podczas zajęć jest SystemVerilog (a dokładniej: syntezowalny podzbiór SystemVerilog 2012 obsługiwany przez Yosys w wersji 0.9).
- Program musi syntezować się poprawnie w narzędziu DigitalJS.
- Student może pracować nad rozwiązaniem przy użyciu dowolnie wybranych przez siebie narzędzi, ale prowadzący będzie zakładać, że interpretacja programu przez DigitalJS jest zgodna z intencją studenta.
- Rozwiązania należy wysyłać w wyznaczonym terminie przez system Web-CAT (dostęp przez SKOS).
- Punktacja obejmuje poprawność i jakość rozwiązania (czytelność, rozmiar i efektywność układu, etc.)
- Obowiązuje limit 10 zgłoszeń przed zgłoszeniem rozwiązania należy dołożyć starań, aby rozwiązanie było poprawne.

Zasady – samodzielność pracy

- Wspólne rozwiązywanie zadań ćwiczeniowych nie jest zabronione, jednak każdy student, który zadeklarował zadanie, musi być w stanie je samodzielnie zreferować.
- Współpraca przy zadaniach praktycznych jest dozwolona, jednak przesłane rozwiązania muszą być napisane całkowicie samodzielnie. Kopiowanie kodu od innych studentów oraz z Internetu jest niedopuszczalne.
- Sytuacje wątpliwe są rozstrzygane na korzyść studenta.
- Dodatkowe informacje w "Kodeksie samodzielnego studiowania" (w systemie SKOS).

Zasady – korespondencja

- Ogólne pytania dotyczące list / zajęć powinny być zadawane przez kanał przedmiotu na MS Teams, tak by wszyscy studenci mogli na tym skorzystać.
- Pytania o charakterze niepublicznym (np. korekcja liczby punktów za listę) proszę wysyłać przez e-mail lub prywatnie na MS Teams.
- Ogłoszenia związane z organizacją przedmiotu będą pojawiać się jednocześnie na MS Teams i w systemie SKOS.

Algebra Boole'a

Algebra dwóch wartości

Będziemy zajmować się operacjami (spójnikami) na dwuelementowym zbiorze $\mathbb{B}\colon$

- 1 też: prawda (⊤, ⊤), stan wysoki (H)
- 0 też: fałsz (F, \perp), stan niski (L)

Koniunkcja

Spójnik binarny (dwuargumentowy) $x \wedge y$ (czasem: x&y, $x \cdot y$, xy, iloczyn logiczny):

- $0 \wedge 0 = 0$
- $0 \wedge 1 = 0$
- $1 \wedge 0 = 0$
- $1 \land 1 = 1$

lnaczej: $x \wedge y = 1$ wtw zarówno x = 1 oraz y = 1, w przeciwnym wypadku $x \wedge y = 0$.

Dysjunkcja

Spójnik binarny (dwuargumentowy) $x \lor y$ (czasem: $x \mid y$, x + y, alternatywa, suma logiczna):

- $0 \lor 0 = 0$
- $0 \lor 1 = 1$
- $1 \lor 0 = 1$
- $1 \lor 1 = 1$

lnaczej: $x \lor y = 0$ wtw zarówno x = 0 oraz y = 0, w przeciwnym wypadku $x \lor y = 1$.

Negacja

Spójnik unarny (jednoargumentowy) $\neg x$ (czasem: $^{\sim}x$, !x, \bar{x}):

- $\neg 0 = 1$
- $\neg 1 = 0$

Negacja jest niemonotoniczna, w przeciwieństwie do koniunkcji i dysjunkcji.

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

•
$$x \lor y \land z =$$

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

•
$$x \lor y \land z = x \lor (y \land z)$$

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

- $x \lor y \land z = x \lor (y \land z)$
- $x \land \neg y \lor z =$

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

- $x \lor y \land z = x \lor (y \land z)$
- $x \wedge \neg y \vee z = (x \wedge (\neg y)) \vee z$

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

- $x \lor y \land z = x \lor (y \land z)$
- $x \wedge \neg y \vee z = (x \wedge (\neg y)) \vee z$
- $x \wedge y \vee \neg z \wedge \neg q =$

- Negacja wiąże najmocniej
- Słabiej wiąże koniunkcja
- Najsłabiej wiąże dysjunkcja

- $x \lor y \land z = x \lor (y \land z)$
- $x \land \neg y \lor z = (x \land (\neg y)) \lor z$
- $x \wedge y \vee \neg z \wedge \neg q = (x \wedge y) \vee ((\neg z) \wedge (\neg q))$

Funkcje logiczne wielu argumentów

- Funkcje $f(x_1, ..., x_n) = \Phi$, gdzie Φ jest wyrażeniem algebry Boole'a ze zmiennymi ze zbioru $\{x_1, ..., x_n\}$
- Piszemy: $f: \mathbb{B}^n \to \mathbb{B}$
- Funkcje w sensie "matematycznym", deklaratywnym (zależność wyniku od argumentów), nie "programistycznym", imperatywnym (ciąg instrukcji do wykonania)
- Przykłady:
 - f(x) = x
 - $f(x, y) = x \vee \neg y$
 - $f(x, y, z) = (x \wedge y) \vee (x \wedge z)$

Tabelki zero-jedynkowe

Funkcje logiczne można opisać za pomocą tabelki.

Przykład dla $f(x, y) = x \vee \neg y$:

X	У	$x \vee \neg y$
0	0	1
0	1	0
1	0	1
1	1	1

Tabelkę można konstruować dla kolejnych podwyrażeń.

X	У	Z	$x \wedge y$	$x \wedge z$	f(x, y, z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Tabelkę można konstruować dla kolejnych podwyrażeń.

X	у	Z	$x \wedge y$	$x \wedge z$	f(x, y, z)
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

Tabelkę można konstruować dla kolejnych podwyrażeń.

X	у	Z	$x \wedge y$	$x \wedge z$	f(x, y, z)
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	0	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	0	
1	1	1	1	1	

Tabelkę można konstruować dla kolejnych podwyrażeń.

X	У	Z	$x \wedge y$	$x \wedge z$	f(x, y, z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Równość ekstensjonalna funkcji

Funkcje logiczne n-arne f i g są ekstensjonalnie równe wtw

dla każdego przypisania zmiennym x_1 do x_n wartości ze zbioru $\{0,1\}$ zachodzi $f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)$.

Gdy funkcje $f(x_1, \ldots, x_n) = \Phi_f$ i $g(x_1, \ldots, x_n) = \Phi_g$ są ekstensjonalnie równe, mówimy, że wyrażenia algebry Boole'a Φ_f i Φ_g są logicznie równoważne.

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0					
0	1					
1	0					
1	1					

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0	1				
0	1	1				
1	0	0				
1	1	0				

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0	1	1			
0	1	1	0			
1	0	0	1			
1	1	0	0			

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0	1	1	0		
0	1	1	0	1		
1	0	0	1	1		
1	1	0	0	1		

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0	1	1	0	1	
0	1	1	0	1	0	
1	0	0	1	1	0	
1	1	0	0	1	0	

X	У	$\neg x$	$\neg y$	$x \lor y$	f(x,y)	g(x,y)
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Diagramy Venna

Diagramy Venna

- Diagramy przedstawiające wszystkie zależności pomiędzy skończoną liczbą zbiorów
- Nakładające się zamknięte krzywe (np. okręgi) reprezentują zbiory
- Obszary nakładania się krzywych reprezentują przecięcia zbiorów
- Obszar poza krzywymi reprezentuje dopełnienie sumy zbiorów (do większego zbioru "uniwersum")

Diagramy Venna – przykład

- Uniwersum: zbiór nazw owoców
 O = {awokado, papryka, banan, malina, . . . }
- Zbiór nazw owoców zielonych $O_z = \{awokado, papryka, ...\}$
- Zbiór nazw owoców żółtych $O_{\dot{z}} = \{ {\rm banan}, {\rm papryka}, \dots \}$

Diagramy Venna – przykład

Diagramy Venna dla funkcji logicznych

- ullet Uniwersum: zbiór wszystkich wartościowań argumentów \mathbb{B}^n
- Zbiory X_i : zbiory tych wartościowań, gdzie i-ty argument ma wartość 1 $X_i = \{(x_1, \dots, x_n) \in \mathbb{B}^n \mid x_i = 1\}$
- \bullet Dla zadanej funkcji $f:\mathbb{B}^n \to \mathbb{B}$ zamalowujemy wartościowania, dla których funkcja ma wartość 1

Diagram Venna – przykład

Funkcja $f(x,y) = x \vee \neg y$:

Konstrukcja diagramu Venna

- Koniunkcja przecięcie diagramów
- Dysjunkcja suma diagramów
- Negacja dopełnienie diagramu

Funkcja $f(x, y, z) = (x \land y) \lor (x \land z)$:

Funkcja $f(x, y, z) = (x \land y) \lor (x \land z)$:

Funkcja $f(x, y, z) = (x \wedge y) \vee (x \wedge z)$:

Funkcja $f(x, y, z) = (x \land y) \lor (x \land z)$:

Prawa algebry Boole'a

Prawa algebry Boole'a

- Gdy formuły Φ_1 i Φ_2 są logicznie równoważne, to $\Phi_1=\Phi_2$ nazywamy prawem algebry Boole'a.
- Jeśli pod dowolną zmienną x w logicznie równoważnych formułach Φ_1 i Φ_2 podstawimy inną formułę Ψ , to powstałe formuły też są logicznie równoważne. Inaczej: jeśli $\Phi_1 = \Phi_2$ jest prawem algebry Boole'a, to $\Phi_1\{x/\Psi\} = \Phi_2\{x/\Psi\}$ też jest prawem algebry Boole'a.
- Wniosek: formuły algebry Boole'a można przekształcać przez przepisywanie przy użyciu praw algebry Boole'a.

Prawa dotyczące stałych

Pozwalają na obliczanie wartości formuł bez zmiennych.

•
$$0 \lor 0 = 0$$

•
$$1 \lor 0 = 0 \lor 1 = 1$$

•
$$1 \lor 1 = 1$$

•
$$\neg 0 = 1$$

•
$$1 \land 1 = 1$$

$$\bullet \ 0 \wedge 1 = 1 \wedge 0 = 0$$

•
$$0 \wedge 0 = 0$$

•
$$\neg 1 = 0$$

Prawa z 1 zmienną

Element neutralny

•
$$x \lor 0 = 0 \lor x = x$$

Element anihilujący

•
$$x \lor 1 = 1 \lor x = 1$$

Idempotentność

•
$$x \lor x = x$$

Dopełnienie

•
$$x \lor \neg x = \neg x \lor x = 1$$

Podwójna negacja

$$\bullet \ \neg \neg x = x$$

•
$$x \wedge 1 = 1 \wedge x = x$$

•
$$x \wedge 0 = 0 \wedge x = 0$$

•
$$x \land x = x$$

•
$$x \land \neg x = \neg x \land x = 0$$

Prawa z 2 i 3 zmiennymi

Przemienność

•
$$x \lor y = y \lor x$$

Łączność

•
$$x \lor (y \lor z) = (x \lor y) \lor z$$

Rozdzielność

•
$$x \lor y \land z = (x \lor y) \land (x \lor z)$$

Prawo de Morgana

•
$$x \wedge y = y \wedge x$$

•
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

•
$$x \wedge (y \vee z) = x \wedge y \vee x \wedge z$$

Zasada dualności

Jeśli $\Phi_1=\Phi_2$ jest prawem algebry Boole'a, to po zamianie wszystkich wystąpień w Φ_1 i Φ_2 :

- 0 na 1, i odwrotnie,
- ∨ na ∧, i odwrotnie,

otrzymujemy prawo algebry Boole'a.

Układy kombinacyjne

Bramka logiczna

- Rysunkowe przedstawienie spójnika logicznego
- Bramka posiada:
 wejścia (z lewej)
 wyjścia (z prawej)

Bramka logiczna

Bramki AND i OR mogą mieć więcej niż dwa wejścia:

Negację wyjścia bramki można oznaczyć kółkiem ("bąbelkiem"):

$$\stackrel{\times}{y}$$
 $\stackrel{\frown}{=}$ \bigcirc $\neg (x \land y)$

Układ logiczny

- Diagram, w którym do każdego wejścia bramki jest podłączone co najwyżej jedno wyjście (być może innej bramki).
- Wyrażeniom algebry Boole'a odpowiadają drzewa bramek.
 Bramki tworzą drzewo, gdy każde wyjście jest podłączone do co najwyżej jednego wejścia oraz diagram nie zawiera cykli.

Przykład: $x \wedge y \vee x \wedge z$

Diagramy acykliczne

Można uwspólnić poddiagramy równoważne logicznie.

Przykład: $\Phi = \neg x \land y \lor \neg x \land z$

Układy kombinacyjne

- Acykliczne układy logiczne nazywamy układami kombinacyjnymi.
- Układy kombinacyjne odpowiadają funkcjom logicznym.

Wstęp do SystemVeriloga

Moduły

```
Podstawowa jednostka programów w Verilogu:

module modul(porty);

// zawartość modułu...

endmodule
```

Porty

```
Mogą być wejściowe albo wyjściowe:

module polsumator(output s, output c, input a, input b);

// zawartość modułu...

endmodule
```

Porty

```
Skrócony zapis typów portów:

module polsumator(output s, c, input a, b);

// zawartość modułu...

endmodule
```

Instancje bramek

```
Należy podać wejścia i wyjścia bramki:

module polsumator(output s, c, input a, b);

xor (s, a, b); // pierwszy port to wyjście and (c, a, b);

endmodule
```

Druty

```
Dodatkowe połączenia wewnątrz modułu:
module implikacja(output o, input a, b);
  logic na;
  not (na, a);
  or (o, na, b);
endmodule
```

Tylko jedno wyjście na drucie

```
Drut musi być zapisywany przez tylko jedno wyjście!

module niedobry(output o, input a, b);

or (o, a, b);

and (o, a, b); // nie zadziała

endmodule
```

Instancje modułów

```
Podobnie, jak instancje bramek:
module sumator(output s, c, input a, b, cin);
  logic ps1s, ps1c, ps2c;
  polsumator ps1(ps1s, ps1c, a, b);
  polsumator ps2(s, ps2c, ps1s, cin);
  or (c, ps1c, ps2c);
endmodule
```

Bloki assign

```
Przypisanie do drutu wartości wyrażenia logicznego:
module identycznosc(output o, input a);
assign o = a;
endmodule
```

Operatory – bramki

- && koniunkcja, bramka AND
- || dysjunkcja, bramka OR
- ! negacja, bramka NOT

```
module implikacja(output o, input a, b);
   assign o = !a || b;
```

endmodule

Stałe bitowe

```
Logika trójwartościowa – dodatkowa wartość x (don't know/don't care):
module stalebitowe(output t, f, x);
  assign t = 'b1;
  assign f = 'b0;
  assign x = 'bx;
endmodule
```

Bramki logiczne – logika trójwartościowa

bufor

Х

i	0
0	1
X	X
1	0

i_1	i_2	0
0	0	0
0	х	x
0	1	1
х	0	x
х	х	x
х	1	1
1	0	1
1	х	1
1	1	1

i_1	i_2	0	
0	0	0	
0	Х	Х	
0	1	1	
Х	0	X	
Х	Х	X	
Х	1	X	
1	0	1	
1	Х	x	
1	1	0	

Bramki logiczne – logika trójwartościowa

	0	Х	1
0	0	0	0
Х	0	Х	Х
1	0	Х	1

	0	X	1
0	0	Х	1
Х	Х	Х	1
1	1	1	1

	0	Х	1
0	0	Х	1
Х	Х	X	X
1	1	Х	0

Logika trójwartościowa – dla zainteresowanych

Inne spojrzenie – izomorfizm:

- $\{0, x, 1\} \cong \{-1, 0, 1\}$
- ∨ odpowiada max (maksimum)
- ◆ ∧ odpowiada min (minimum)
- ¬ odpowiada − (negacji)