STAT 401A - Statistical Methods for Research Workers Two-way ANOVA

Jarad Niemi (Dr. J)

Iowa State University

last updated: December 18, 2014

Data

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

- complete: each treatment (variety × density) is represented in the experiment
- balanced: each treatment in the experiment has the same number of replications
- randomized: treatment was randomly assigned to the plot

This is also referred to as a full factorial or fully crossed design.

Hypotheses

- Does variety affect mean yield?
 - Is the mean yield for variety A different from B on average?
 - Is the mean yield for variety A different from B at a particular value for density?
- Does density affect mean yield?
 - Is the mean yield for density 10 different from density 20 on average?
 - Is the mean yield for density 10 different from density 20 at a particular value for variety?
- Does density affect yield differently for each variety?

For all of these questions, we want to know

- is there any effect and
- if yes, what is the nature of the effect.

Confidence intervals can answer these questions.

Summary statistics

Number of replicates

Mean Yield

```
Variety 10 20 30 40
1 C 16.300000 18.10000 19.93333 18.16667
2 A 9.200000 12.43333 12.90000 10.80000
3 B 8.933333 12.63333 14.50000 12.76667
```

Standard deviation of yield

```
Variety 10 20 30 40

1 C 1.113553 1.345362 1.6772994 0.8736895

2 A 1.300000 1.096966 0.9848858 1.7000000

3 B 1.040833 1.101514 0.8544004 1.6165808
```

Two-way ANOVA

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where Y_{iik} is the

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with j = 1, ..., J.

Consider the models:

- Additive: $\mu_{ij} = \mu + \nu_i + \delta_j$
- Cell-means: $\mu_{ij} = \mu + \nu_i + \delta_j + \gamma_{ij}$

	10	20	30	40
Α	μ_{11}	μ_{12}	μ_{13}	μ_{14}
В	μ_{21}	μ_{22}	μ_{23}	μ_{24}
С	μ_{31}	μ_{32}	μ_{33}	μ_{34}

As a regression model

- Assign a reference level for both variety (C) and density (40).
- ② Let V_i and D_i be the variety and density for observation i.
- **3** Build indicator variables, e.g. $\mathrm{I}(V_i=A)$ and $\mathrm{I}(D_i=10)$.
- The additive model:

$$\mu_i = \beta_0 + \beta_1 I(V_i = A) + \beta_2 I(V_i = B) + \beta_3 I(D_i = 10) + \beta_4 I(D_i = 20) + \beta_5 I(D_i = 30).$$

 eta_1 is the expected difference in yield between varieties A and C at any fixed density

The cell-means model:

$$\begin{split} \mu_i &= & \beta_0 + \beta_1 \mathrm{I}(V_i = A) + \beta_2 \mathrm{I}(V_i = B) \\ &+ \beta_3 \mathrm{I}(D_i = 10) + \beta_4 \mathrm{I}(D_i = 20) + \beta_5 \mathrm{I}(D_i = 30) \\ &+ \beta_6 \mathrm{I}(V_i = A) \mathrm{I}(D_i = 10) + \beta_7 \mathrm{I}(V_i = A) \mathrm{I}(D_i = 20) + \beta_8 \mathrm{I}(V_i = A) \mathrm{I}(D_i = 30) \\ &+ \beta_9 \mathrm{I}(V_i = B) \mathrm{I}(D_i = 10) + \beta_{10} \mathrm{I}(V_i = B) \mathrm{I}(D_i = 20) + \beta_{11} \mathrm{I}(V_i = B) \mathrm{I}(D_i = 30) \end{split}$$

 eta_1 is the expected difference in yield between varieties A and C at a density of 40

ANOVA Table

ANOVA Table - Additive model

Source	SS	df	MS	F
Factor A	SSA	(I-1)	SSA/(I-1)	MSA/MSE
Factor B	SSB	(J-1)	SSB/(J-1)	MSB/MSE
Error	SSE	n-I-J+1	SSE/(n-I-J+1)	
Total	SST	n-1		

ANOVA Table - Cell-means model

Source	SS	df	MS	
Factor A	SSA	I-1	SSA/(I-1)	MSA/MSE
Factor B	SSB	J-1	SSB/(J-1)	MSB/MSE
Interaction AB	SSAB	(I-1)(J-1)	SSAB /(I-1)(J-1)	MSAB/MSE
Error	SSE	n-IJ	$SSE/(n\text{-}\mathrm{IJ})$	
Total	SST	n-1		

Additive vs cell-means

Opinions differ on whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

	Additive	Cell-means
Interpretation	Direct	Complicated
Estimate of σ^2	Biased	Unbiased

We will continue using the cell-means model to answer the scientific questions of interest.

```
DATA tomato;
  INFILE 'Ch13-tomato.csv' DSD FIRSTOBS=2;
  INPUT variety $ density yield;
PROC GLM DATA=tomato PLOTS=all;
  CLASS variety density;
  MODEL yield = variety|density / SOLUTION;
  LSMEANS variety / cl adjust=tukey;
  LSMEANS density / cl adjust=tukey;
  LSMEANS variety*density / cl adjust=tukey;
  RUN:
```

The GLM Procedure

Sum of

Dependent Variable: yield

			Sur	1 01				
Source		DF	Squa	ires	Mean Squ	are F	Value	Pr > F
Model		11	422.3155	5556	38.3923	3232	24.22	<.0001
Error		24	38.0400	0000	1.5850	0000		
Corrected Total		35	460.3555	5556				
	R-Square	Coeff	Var	Root M	SE yie	eld Mean		
	0.917368	9.06	4568	1.2589	68 1	13.88889		
Source		DF	Type I	SS	Mean Squ	are F	Value	Pr > F
variety		2	327.5972	2222	163.7986	3111	103.34	<.0001
density		3	86.6866	6667	28.8955	5556	18.23	<.0001
variety*density		6	8.0316	6667	1.3386	3111	0.84	0.5484
Source		DF	Type III	SS	Mean Squ	are F	Value	Pr > F
variety		2	327.5972	2222	163.7986	3111	103.34	<.0001
density		3	86.6866	6667	28.8955	5556	18.23	<.0001
variety*density		6	8.0316	6667	1.3386	3111	0.84	0.5484

The Type I and Type III SS are equal because the design is balanced.

MODEL yield = variety|density / SOLUTION;

The GLM Procedure

			Standard		
Parameter		Estimate	Error	t Value	Pr > t
Intercept		18.16666667 B	0.72686542	24.99	<.0001
variety	A	-7.36666667 B	1.02794293	-7.17	<.0001
variety	В	-5.40000000 B	1.02794293	-5.25	<.0001
variety	C	0.00000000 B			
density	10	-1.86666667 B	1.02794293	-1.82	0.0819
density	20	-0.06666667 B	1.02794293	-0.06	0.9488
density	30	1.76666667 B	1.02794293	1.72	0.0986
density	40	0.00000000 B			
variety*density	A 10	0.26666667 B	1.45373083	0.18	0.8560
variety*density	A 20	1.70000000 B	1.45373083	1.17	0.2537
variety*density	A 30	0.3333333 B	1.45373083	0.23	0.8206
variety*density	A 40	0.00000000 B			
variety*density	B 10	-1.96666667 B	1.45373083	-1.35	0.1887
variety*density	B 20	-0.06666667 B	1.45373083	-0.05	0.9638
variety*density	B 30	-0.03333333 B	1.45373083	-0.02	0.9819
variety*density	B 40	0.00000000 B			
variety*density	C 10	0.00000000 B			


```
LSMEANS variety / cl adjust=tukey;
                                      Least Squares Means
                          Adjustment for Multiple Comparisons: Tukey
                            Least Squares Means for effect variety
                             Pr > |t| for HO: LSMean(i)=LSMean(i)
                                  Dependent Variable: yield
                        i/j
                                                                     3
                                                  0.2249
                                                                < .0001
                                    0.2249
                                                                <.0001
                                    < .0001
                                                  <.0001
                                                  95% Confidence Limits
                     variety
                                yield LSMEAN
                                   11.333333
                                                   10.583245
                                                                12.083422
                                   12.208333
                                                   11.458245 12.958422
                                   18.125000
                                                   17.374912 18.875088
                             Least Squares Means for Effect variety
                                  Difference
                                                     Simultaneous 95%
                                                  Confidence Limits for
                                     Between
                                                   LSMean(i)-LSMean(j)
                                       Means
                                  -0.875000
                                                   -2.158534 0.408534
                                   -6.791667
                                                   -8.075201 -5.508132
                                   -5.916667
                                                   -7.200201 -4.633132
```

Is the mean yield at density 10 different from density 20 on average?

```
LSMEANS density / cl adjust=tukey;
```

Least Squares Means

Adjustment for Multiple Comparisons: Tukey

density yield LSMEAN 95% Confidence Limits 10 11.477778 10.611650 12.343905 14.388889 13.522762 20 15.255016 15.777778 14.911650 16.643905 30 13.911111 14.777238 40 13.044984

Least Squares Means for Effect density Difference Simultaneous 95% Confidence Limits for Between LSMean(i)-LSMean(j) i Means -4.548299 -1.273923-2.911111 -4.300000 -5.937188 -2.662812 1 -2.433333 -4.070521 -0.796145 -1.388889 -3.026077 0.248299 0.477778 -1.159410 2.114966 1.866667 0.229479 3.503855

Is mean yield different for particular combinations?

LSMEANS variety*density / cl adjust=tukey;

variety	density	yield LSMEAN	95% Confiden	ce Limits
A	10	9.200000	7.699824	10.700176
A	20	12.433333	10.933157	13.933510
A	30	12.900000	11.399824	14.400176
A	40	10.800000	9.299824	12.300176
В	10	8.933333	7.433157	10.433510
В	20	12.633333	11.133157	14.133510
В	30	14.500000	12.999824	16.000176
В	40	12.766667	11.266490	14.266843
C	10	16.300000	14.799824	17.800176
C	20	18.100000	16.599824	19.600176
C	30	19.933333	18.433157	21.433510
C	40	18.166667	16.666490	19.666843

Is mean yield different for particular combinations?

LSMEANS variety*density / cl adjust=tukey;

Least Squares Means for Effect variety*density

		Difference	Simultane	ous 95%
		Between	Confidence L	
i	j	Means	LSMean(i)-L	
1	2	-3.233333	-6.939704	0.473037
1	3	-3.700000	-7.406371	0.006371
1	4	-1.600000	-5.306371	2.106371
1	5	0.266667	-3.439704	3.973037
1	6	-3.433333	-7.139704	0.273037
1	7	-5.300000	-9.006371	-1.593629
1	8	-3.566667	-7.273037	0.139704
1	9	-7.100000	-10.806371	-3.393629
1	10	-8.900000	-12.606371	-5.193629
1	11	-10.733333	-14.439704	-7.026963
1	12	-8.966667	-12.673037	-5.260296
2	3	-0.466667	-4.173037	3.239704
2	4	1.633333	-2.073037	5.339704
2	5	3.500000	-0.206371	7.206371
2	6	-0.200000	-3.906371	3.506371
2	7	-2.066667	-5.773037	1.639704
2	8	-0.333333	-4.039704	3.373037
2	9	-3.866667	-7.573037	-0.160296
2	10	-5.666667	-9.373037	-1.960296
2	11	-7.500000	-11.206371	-3.793629
2	12	-5.733333	-9.439704	-2.026963
3	4	2.100000	-1.606371	5.806371
3	5	3.966667	0.260296	7.673037
3	6	0.266667	-3.439704	3.973037

```
tomato$Density = factor(tomato$Density)
m = lm(Yield~Variety*Density, tomato)
anova(m)
Analysis of Variance Table
Response: Yield
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
Variety
                2 327.60 163.799 103.3430 1.608e-12 ***
                3 86.69 28.896 18.2306 2.212e-06 ***
Density
Variety:Density 6
                  8.03
                         1.339 0.8445
                                           0.5484
Residuals
           24 38.04
                         1.585
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
lsmeans(m, pairwise~Variety)
$1smeans
Variety 1smean SE df lower.CL upper.CL
        18.12500 0.3634327 24 17.37491 18.87509
        11.33333 0.3634327 24 10.58325 12.08342
        12.20833 0.3634327 24 11.45825 12.95842
Results are averaged over the levels of: Density
Confidence level used: 0.95
$contrasts
contrast estimate
                          SE df t.ratio p.value
C - A 6.791667 0.5139715 24 13.214 <.0001
C - B 5.916667 0.5139715 24 11.512 <.0001
A - B -0.875000 0.5139715 24 -1.702 0.2249
Results are averaged over the levels of: Density
P value adjustment: tukev method for a family of 3 means
```

library(lsmeans)

```
lsmeans(m, pairwise~Density)
```

```
$lsmeans
Density lsmean SE df lower.CL upper.CL
10 11.47778 0.4196559 24 10.61165 12.34391
20 14.38889 0.4196559 24 13.52276 15.25502
30 15.77778 0.4196559 24 14.91165 16.64391
40 13.91111 0.4196559 24 13.04498 14.77724
```

Results are averaged over the levels of: Variety Confidence level used: 0.95

\$contrasts

```
contrast estimate SE df t.ratio p.value
10 - 20 -2.9111111 0.5934831 24 -4.905 0.0003
10 - 30 -4.3000000 0.5934831 24 -7.245 <.0001
10 - 40 -2.4333333 0.5934831 24 -4.100 0.0022
20 - 30 -1.3888889 0.5934831 24 -2.340 0.1169
20 - 40 0.4777778 0.5934831 24 0.805 0.8514
```

Results are averaged over the levels of: Variety P value adjustment: tukey method for a family of 4 means

\$1smeans

```
Variety Density lsmean
                                SE df lower.CL upper.CL
       10
               16.300000 0.7268654 24 14.799824 17.80018
        10
                 9.200000 0.7268654 24 7.699824 10.70018
               8.933333 0.7268654 24 7.433157 10.43351
       10
        20
               18.100000 0.7268654 24 16.599824 19.60018
        20
               12.433333 0.7268654 24 10.933157 13.93351
        20
               12.633333 0.7268654 24 11.133157 14.13351
        30
               19.933333 0.7268654 24 18.433157 21.43351
        30
               12.900000 0.7268654 24 11.399824 14.40018
        30
               14.500000 0.7268654 24 12.999824 16.00018
C
               18.166667 0.7268654 24 16.666490 19.66684
        40
               10.800000 0.7268654 24 9.299824 12.30018
        40
R
        40
               12.766667 0.7268654 24 11.266490 14.26684
```

Confidence level used: 0.95

\$contrasts

```
contrast
               estimate
                             SE df t.ratio p.value
C.10 - A.10 7.10000000 1.027943 24
                                     6.907 <.0001
C,10 - B,10 7.36666667 1.027943 24
                                     7.166 <.0001
C,10 - C,20 -1.80000000 1.027943 24
                                    -1.751 0.8276
C.10 - A.20 3.86666667 1.027943 24
                                     3.762 0.0356
C.10 - B.20 3.66666667 1.027943 24
                                     3.567 0.0543
C,10 - C,30 -3.63333333 1.027943 24
                                    -3.535 0.0582
                                     3.308 0.0932
C,10 - A,30
             3.40000000 1.027943 24
C.10 - B.30 1.80000000 1.027943 24
                                     1.751 0.8276
C,10 - C,40 -1.86666667 1.027943 24
                                    -1.816 0.7947
C,10 - A,40 5.50000000 1.027943 24
                                     5.350 0.0008
C.10 - B.40 3.53333333 1.027943 24
                                     3.437 0.0714
A.10 - B.10 0.26666667 1.027943 24
                                     0.259 1.0000
A,10 - C,20 -8.90000000 1.027943 24
                                    -8.658 < .0001
```

Summary

- Use LSMEANS to answer questions of scientific interest.
- Check model assumptions
- Consider alternative models, e.g. treating density as continuous

Unbalanced design

Suppose for some reason that a variety B, density 30 sample was contaminated. Although you started with a balanced design, the data is now unbalanced. Fortunately, we can still use the tools we have used previously.

Summary statistics

Number of replicates

Mean Yield

```
Variety 10 20 30 40
1 C 16.300000 18.10000 19.93333 18.16667
2 A 9.200000 12.43333 12.90000 10.80000
3 B 8.933333 12.63333 14.90000 12.76667
```

Standard deviation of yield

```
Variety 10 20 30 40

1 C 1.113553 1.345362 1.6772994 0.8736895

2 A 1.300000 1.096966 0.9848858 1.7000000

3 B 1.040833 1.101514 0.7071068 1.6165808
```

```
DATA tomato;

INFILE 'Ch13-tomato.csv' DSD FIRSTOBS=2;

INPUT variety $ density yield;

i = _n_;

PROC GLM DATA=tomato PLOTS=all;

WHERE i ~= 19; /* not equal to 19 */

CLASS variety density;

MODEL yield = variety|density / SOLUTION;

LSMEANS variety / cl adjust=tukey;

LSMEANS variety*density / cl adjust=tukey;

RNN:
```

The GLM Procedure

Dependent Variable: yield

			Sum o	f			
Source		DF	Square	s Mea	n Square	F Value	Pr > F
Model		11	423.238857	1 38	.4762597	23.87	<.0001
Error		23	37.080000	0 1	.6121739		
Corrected Total		34	460.318857	1			
	R-Square	Coefi	f Var R	loot MSE	yield Me	ean	
	0.919447	9.13	38391 1	.269714	13.894	129	
Source		DF	Type I S	S Mea	n Square	F Value	Pr > F
variety		2	329.987872	3 164	.9939361	102.34	<.0001
density		3	84.448660	8 28	.1495536	17.46	<.0001
variety*density		6	8.802324	1 1	.4670540	0.91	0.5052
Source		DF	Type III S	S Mea	n Square	F Value	Pr > F
variety		2	320.037467	9 160	.0187340	99.26	<.0001
density		3	86.065761	.3 28	.6885871	17.79	<.0001
varietv*densitv		6	8.802324	1 1	.4670540	0.91	0.5052

			Standard		
Parameter		Estimate	Error	t Value	Pr > t
Intercept		18.16666667 B	0.73306978	24.78	<.0001
variety	A	-7.36666667 B	1.03671723	-7.11	<.0001
variety	В	-5.40000000 B	1.03671723	-5.21	<.0001
variety	C	0.00000000 B			
density	10	-1.86666667 B	1.03671723	-1.80	0.0849
density	20	-0.06666667 B	1.03671723	-0.06	0.9493
density	30	1.76666667 B	1.03671723	1.70	0.1018
density	40	0.00000000 B			
variety*density	A 10	0.26666667 B	1.46613956	0.18	0.8573
variety*density	A 20	1.70000000 B	1.46613956	1.16	0.2581
variety*density	A 30	0.3333333 B	1.46613956	0.23	0.8222
variety*density	A 40	0.00000000 B			
variety*density	B 10	-1.96666667 B	1.46613956	-1.34	0.1929
variety*density		-0.06666667 B	1.46613956	-0.05	0.9641
variety*density	B 30	0.36666667 B	1.55507584	0.24	0.8157
variety*density	B 40	0.00000000 B			
variety*density	C 10	0.00000000 B			
variety*density	C 20	0.00000000 B			
variety*density		0.00000000 B			
variety*density	C 40	0.00000000 B	•		

```
The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
```

Least Squares Means for effect variety
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: yield

i/j	1	2	3
1		0.1839	<.0001
2	0.1839		<.0001
3	<.0001	<.0001	

variety	yield LSMEAN	95% Confidence	e Limits
A	11.333333	10.575098	12.091569
В	12.308333	11.504103	13.112563
C	18.125000	17.366765	18.883235

Least Squares Means for Effect variety

		Difference	Simultaneous 95%		
		Between	Confidence Limits for		
i	j	Means	LSMean(i)-L	SMean(j)	
1	2	-0.975000	-2.313097	0.363097	
1	3	-6.791667	-8.089811	-5.493522	
2	3	-5.816667	-7.154763	-4.478570	

```
The GLM Procedure
Least Squares Means
```

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for effect density
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: yield

1/J	1	2	3	4
1		0.0004	<.0001	0.0025
2	0.0004		0.0967	0.8545
3	<.0001	0.0967		0.0189
4	0.0025	0.8545	0.0189	

density	yield LSMEAN	95% Confiden	ce Limits
10	11.477778	10.602243	12.353312
20	14.388889	13.513354	15.264423
30	15.911111	14.965426	16.856797
40	13.911111	13.035577	14.786646

Least Squares Means for Effect density

		Difference	Simultaneous 95%		
		Between	Confidence L	imits for	
i	j	Means	LSMean(i)-L	SMean(j)	
1	2	-2.911111	-4.567433	-1.254789	
1	3	-4.433333	-6.157288	-2.709379	
1	4	-2.433333	-4.089656	-0.777011	
2	3	-1.522222	-3.246177	0.201733	

Two-way ANOVA

The GLM Procedure Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

			LSMEAN
variety	density	yield LSMEAN	Number
A	10	9.2000000	1
A	20	12.4333333	2
A	30	12.9000000	3
A	40	10.8000000	4
В	10	8.9333333	5
В	20	12.6333333	6
В	30	14.9000000	7
В	40	12.7666667	8
C	10	16.3000000	9
C	20	18.1000000	10
C	30	19.9333333	11
C	40	18.1666667	12

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for Effect variety*density

		Difference	Simultaneous 95%	
		Between	Confidence	Limits for
i	j	Means	LSMean(i)-	-LSMean(j)
1	11	-10.733333	-14.487164	-6.979502
1	12	-8.966667	-12.720498	-5.212836
2	3	-0.466667	-4.220498	3.287164
2	4	1.633333	-2.120498	5.387164
2	5	3.500000	-0.253831	7.253831
2	6	-0.200000	-3.953831	3.553831
2	7	-2.466667	-6.663577	1.730244
2	8	-0.333333	-4.087164	3.420498
2	9	-3.866667	-7.620498	-0.112836
2	10	-5.666667	-9.420498	-1.912836
2	11	-7.500000	-11.253831	-3.746169
2	12	-5.733333	-9.487164	-1.979502
3	4	2.100000	-1.653831	5.853831
3	5	3.966667	0.212836	7.720498
3	6	0.266667	-3.487164	4.020498
3	7	-2.000000	-6.196911	2.196911
3	8	0.133333	-3.620498	3.887164
3	9	-3.400000	-7.153831	0.353831
3	10	-5.200000	-8.953831	-1.446169
3	11	-7.033333	-10.787164	-3.279502
3	12	-5.266667	-9.020498	-1.512836
4	5	1.866667	-1.887164	5.620498

```
lsmeans(m, pairwise~Variety)
$1smeans
 Variety lsmean
                      SE df lower.CL upper.CL
        18.12500 0.3634327 24 17.37491 18.87509
        11.33333 0.3634327 24 10.58325 12.08342
        12.20833 0.3634327 24 11.45825 12.95842
Results are averaged over the levels of: Density
Confidence level used: 0.95
$contrasts
                         SE df t.ratio p.value
 contrast estimate
 C - A 6.791667 0.5139715 24 13.214 <.0001
 C - B 5.916667 0.5139715 24 11.512 <.0001
 A - B -0.875000 0.5139715 24 -1.702 0.2249
Results are averaged over the levels of: Density
P value adjustment: tukey method for a family of 3 means
```

```
lsmeans(m, pairwise~Density)
```

```
$1smeans
Density 1smean SE df lower.CL upper.CL
10
        11.47778 0.4196559 24 10.61165 12.34391
        14.38889 0.4196559 24 13.52276 15.25502
20
30
        15.77778 0.4196559 24 14.91165 16.64391
40
        13 91111 0 4196559 24 13 04498 14 77724
```

Results are averaged over the levels of: Variety Confidence level used: 0.95

\$contrasts

```
SE df t.ratio p.value
contrast
          estimate
10 - 20 -2.9111111 0.5934831 24 -4.905 0.0003
10 - 30 -4.3000000 0.5934831 24 -7.245 <.0001
10 - 40 -2.4333333 0.5934831 24 -4.100 0.0022
20 - 30 -1.3888889 0.5934831 24 -2.340 0.1169
20 - 40 0.4777778 0.5934831 24 0.805 0.8514
30 - 40 1 8666667 0 5934831 24 3 145 0 0213
```

Results are averaged over the levels of: Variety

P value adjustment: tukey method for a family of 4 means

lsmeans(m, pairwise~Variety*Density)

```
$1smeans
```

Variety	Density	lsmean	SE	df	lower.CL	upper.CL
C	10	16.300000	0.7268654	24	14.799824	17.80018
A	10	9.200000	0.7268654	24	7.699824	10.70018
В	10	8.933333	0.7268654	24	7.433157	10.43351
C	20	18.100000	0.7268654	24	16.599824	19.60018
A	20	12.433333	0.7268654	24	10.933157	13.93351
В	20	12.633333	0.7268654	24	11.133157	14.13351
C	30	19.933333	0.7268654	24	18.433157	21.43351
A	30	12.900000	0.7268654	24	11.399824	14.40018
В	30	14.500000	0.7268654	24	12.999824	16.00018
C	40	18.166667	0.7268654	24	16.666490	19.66684
A	40	10.800000	0.7268654	24	9.299824	12.30018
В	40	12.766667	0.7268654	24	11.266490	14.26684

Confidence level used: 0.95

\$contrasts

```
contrast
            estimate
                             SE df t.ratio p.value
C.10 - A.10 7.10000000 1.027943 24
                                     6.907 <.0001
C.10 - B.10 7.36666667 1.027943 24
                                     7.166 < .0001
C,10 - C,20 -1.80000000 1.027943 24
                                    -1.751 0.8276
C.10 - A.20 3.86666667 1.027943 24
                                     3.762 0.0356
C,10 - B,20 3.66666667 1.027943 24
                                     3.567 0.0543
C,10 - C,30 -3.63333333 1.027943 24
                                    -3.535 0.0582
C,10 - A,30 3.40000000 1.027943 24
                                     3.308 0.0932
C.10 - B.30 1.80000000 1.027943 24
                                     1.751 0.8276
C,10 - C,40 -1.86666667 1.027943 24
                                    -1.816 0.7947
C,10 - A,40 5.50000000 1.027943 24
                                     5.350 0.0008
C.10 - B.40 3.53333333 1.027943 24
                                     3.437 0.0714
A.10 - B.10 0.26666667 1.027943 24
                                     0.259 1.0000
A,10 - C,20 -8.90000000 1.027943 24
                                    -8.658 < .0001
```

Summary

The analysis can be completed just like the balanced design using LSMEANS to answer scientific questions of interest.

Incomplete design

Suppose none of the samples from Variety B, density 30 were obtained. Now the analysis becomes more complicated.

Summary statistics

Number of replicates

Mean Yield

```
Variety 10 20 30 40
1 C 16.30000 18.1000 19.9333 18.16667
2 A 9.20000 12.43333 12.90000 10.80000
3 B 8.93333 12.63333 NaN 12.76667
```

Standard deviation of yield

```
Variety 10 20 30 40

1 C 1.113553 1.345362 1.6772994 0.8736895

2 A 1.300000 1.096966 0.9848858 1.7000000

3 B 1.040833 1.101514 NA 1.6165808
```

```
INFILE 'Ch13-tomato.csv' DSD FIRSTOBS=2;
INPUT variety $ density yield;

PROC GLM DATA=tomato PLOTS=all;
WHERE ~(variety='B' & density=30);
CLASS variety density;
MODEL yield = variety|density / SOLUTION;
LSMEANS variety / cl adjust=tukey;
LSMEANS density / cl adjust=tukey;
LSMEANS variety*density / cl adjust=tukey;
RUN;
```

DATA tomato:

The GLM Procedure

Dependent	Variable:	vield
-----------	-----------	-------

			Sun	ı of					
Source		DF	Squa	res	Mean	Square	F	Value	Pr > F
Model		10	421.0933	3333	42.	1093333		25.33	<.0001
Error		22	36.5800	0000	1.0	6627273			
Corrected Total		32	457.6733	3333					
	R-Square	Coeff	Var	Root M	ISE	yield Me	an		
	0.920074	9.32	1454	1.2894	168	13.833	333		
Source		DF	Type 1	SS	Mean	Square	F	Value	Pr > F
variety		2	347.3819	9444	173.	6909722		104.46	<.0001
density		3	66.6531	019	22.	2177006		13.36	<.0001
variety*density		5	7.0582	2870	1.4	4116574		0.85	0.5300
Source		DF	Type III	SS	Mean	Square	F	Value	Pr > F
variety		2	321.2233	3796	160.	6116898		96.60	<.0001
density		3	66.6531	019	22.	2177006		13.36	<.0001
variety*density		5	7.0582	2870	1.4	4116574		0.85	0.5300

			Standard		
Parameter		Estimate	Error	t Value	Pr > t
Intercept		18.16666667 B	0.74447460	24.40	<.0001
variety	A	-7.36666667 B	1.05284607	-7.00	<.0001
variety	В	-5.40000000 B	1.05284607	-5.13	<.0001
variety	C	0.00000000 B			
density	10	-1.86666667 B	1.05284607	-1.77	0.0901
density	20	-0.06666667 B	1.05284607	-0.06	0.9501
density	30	1.76666667 B	1.05284607	1.68	0.1075
density	40	0.00000000 B			
variety*density	A 10	0.26666667 B	1.48894919	0.18	0.8595
variety*density		1.70000000 B	1.48894919	1.14	0.2658
variety*density	A 30	0.33333333 B	1.48894919	0.22	0.8249
variety*density	A 40	0.00000000 B			
variety*density	B 10	-1.96666667 B	1.48894919	-1.32	0.2001
variety*density	B 20	-0.06666667 B	1.48894919	-0.04	0.9647
variety*density	B 40	0.00000000 B			
variety*density	C 10	0.00000000 B	•		
variety*density	C 20	0.00000000 B	•		
variety*density	C 30	0.00000000 B			
variety*density	C 40	0.00000000 B			

Notice the missing variety*density B 30 line.

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer

		LSMEAN
variety	yield LSMEAN	Number
A	11.3333333	1
В	Non-est	2
C	18.1250000	3

Least Squares Means for effect variety
Pr > |t| for HO: LSMean(i)=LSMean(j)

variety	yield LSMEAN	95% Confidence	e Limits
A	11.333333	10.561360	12.105306
В			
C	18.125000	17.353027	18.896973

Least Squares Means for Effect variety

		Difference	Simultane	ous 95%
		Between	Confidence L	imits for
i	j	Means	LSMean(i)-L	SMean(j)
1	2			
1	3	-6.791667	-7.883358	-5.699975
2	3			

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

				LSME	AN
	density	yield L	SMEAN	Numbe	er
	10	11.47	77778		1
	20	14.38	88889		2
	30	No	n-est		3
	40	13.91	11111		4
density	yield L	SMEAN	95%	Confidence	e Limits
10	11.4	77778	10.	586380	12.369175
20	14.3	88889	13.	497491	15.280286

20	14.388889	13.497491	15.280286
30			
40	13.911111	13.019714	14.802509

Least Squares Means for Effect density

		Difference	Simultaneous 95%		
		Between	Confidence L	imits for	
i	j	Means	LSMean(i)-L	SMean(j)	
1	2	-2.911111	-4.438096	-1.384126	
1	3				
1	4	-2.433333	-3.960319	-0.906348	
2	3				
2	4	0.477778	-1.049207	2.004763	
3	4				

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey

			LSMEAN
variety	density	yield LSMEAN	Number
A	10	9.2000000	1
A	20	12.4333333	2
A	30	12.9000000	3
A	40	10.8000000	4
В	10	8.9333333	5
В	20	12.6333333	6
В	40	12.7666667	7
C	10	16.3000000	8
C	20	18.1000000	9
C	30	19.9333333	10

		Difference	Simultar	ieous 95%
		Between	Confidence	Limits for
i	j	Means	LSMean(i)-	-LSMean(j)
1	2	-3.233333	-6.997053	0.530387
1	3	-3.700000	-7.463720	0.063720
1	4	-1.600000	-5.363720	2.163720
1	5	0.266667	-3.497053	4.030387
1	6	-3.433333	-7.197053	0.330387
1	7	-3.566667	-7.330387	0.197053
1	8	-7.100000	-10.863720	-3.336280
1	9	-8.900000	-12.663720	-5.136280
1	10	-10.733333	-14.497053	-6.969613
1	11	-8.966667	-12.730387	-5.202947
2	3	-0.466667	-4.230387	3.297053
2	4	1.633333	-2.130387	5.397053
2	5	3.500000	-0.263720	7.263720
2	6	-0.200000	-3.963720	3.563720
2	7	-0.333333	-4.097053	3.430387
2	8	-3.866667	-7.630387	-0.102947
2	9	-5.666667	-9.430387	-1.902947
2	10	-7.500000	-11.263720	-3.736280
2	11	-5.733333	-9.497053	-1.969613
3	4	2.100000	-1.663720	5.863720
3	5	3.966667	0.202947	7.730387
3	6	0.266667	-3.497053	4.030387
3	7	0.133333	-3.630387	3.897053
3	8	-3.400000	-7.163720	0.363720
3	9	-5.200000	-8.963720	-1.436280
3	10	-7.033333	-10.797053	-3.269613
3	11	-5.266667	-9.030387	-1.502947
4	5	1.866667	-1.897053	5.630387

Treat as a One-way ANOVA

When the data are incomplete, use a one-way ANOVA combined with contrasts to answer questions of interest. For example, to compare the average difference between B and C, we want to only compare at densities 10, 20, and 40.

	10	20	30	40
Α	μ_{11}	μ_{12}	μ_{13}	μ_{14}
В	μ_{21}	μ_{22}	μ_{23}	μ_{24}
С	μ_{31}	μ_{32}	μ_{33}	μ 34

Thus, the contrast is

$$\gamma = \frac{1}{3}(\mu_{31} + \mu_{32} + \mu_{34}) - \frac{1}{3}(\mu_{21} + \mu_{22} + \mu_{24})
= \frac{1}{3}(\mu_{31} + \mu_{32} + \mu_{34} - \mu_{21} - \mu_{22} - \mu_{24})$$

The GLM Procedure

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	10	421.0933333	42.1093333	25.33	<.0001
Error	22	36.5800000	1.6627273		
Corrected Total	32	457.6733333			
R-	Square Coe	ff Var Roo	t MSE yield M	ean	
0.	920074 9.	321454 1.2	89468 13.83	333	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
variety*density	10	421.0933333	42.1093333	25.33	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
variety*density	10	421.0933333	42.1093333	25.33	<.0001

		Standard				
Parameter	Estimate	Error	t Value	Pr > t	95% Confide	nce Limits
Intercept	18.16666667 B	0.74447460	24.40	<.0001	16.62272085	19.71061248
variety*density A 10	-8.96666667 B	1.05284607	-8.52	<.0001	-11.15013578	-6.78319756
variety*density A 20	-5.73333333 B	1.05284607	-5.45	<.0001	-7.91680244	-3.54986422
variety*density A 30	-5.26666667 B	1.05284607	-5.00	<.0001	-7.45013578	-3.08319756
variety*density A 40	-7.36666667 B	1.05284607	-7.00	<.0001	-9.55013578	-5.18319756
variety*density B 10	-9.23333333 B	1.05284607	-8.77	<.0001	-11.41680244	-7.04986422
variety*density B 20	-5.53333333 B	1.05284607	-5.26	<.0001	-7.71680244	-3.34986422
variety*density B 40	-5.40000000 B	1.05284607	-5.13	<.0001	-7.58346911	-3.21653089
variety*density C 10	-1.86666667 B	1.05284607	-1.77	0.0901	-4.05013578	0.31680244
variety*density C 20	-0.06666667 B	1.05284607	-0.06	0.9501	-2.25013578	2.11680244
variety*density C 30	1.76666667 B	1.05284607	1.68	0.1075	-0.41680244	3.95013578
varietv*density C 40	0.00000000 B					

The Regression model

The regression model here considers variety-density combination as a single explanatory variable with 11 levels: A10, A20, A30, A40, B10, B20, B40, C10, C20, C30, and C40. By default, SAS chose C40 as our reference level. For observation i, let

- Y_i be the yield
- \bullet V_i be the variety
- D_i be the density

The model is then $Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ and

$$\begin{array}{llll} \mu_{i} & = \beta_{0} & +\beta_{1}\mathrm{I}(V_{i} = A, D_{i} = 10) & +\beta_{2}\mathrm{I}(V_{i} = A, D_{i} = 20) & +\beta_{3}\mathrm{I}(V_{i} = A, D_{i} = 30) & +\beta_{4}\mathrm{I}(V_{i} = A, D_{i} = 40) \\ & +\beta_{5}\mathrm{I}(V_{i} = B, D_{i} = 10) & +\beta_{6}\mathrm{I}(V_{i} = B, D_{i} = 20) & +\beta_{10}\mathrm{I}(V_{i} = C, D_{i} = 30) \\ & +\beta_{7}\mathrm{I}(V_{i} = B, D_{i} = 40) \end{array}$$

The GLM Procedure

Dependent Variable: yield

		Standard				
Parameter	Estimate	Error	t Value	Pr > t	95% Confide	nce Limits
C-B	6.07777778	0.60786096	10.00	<.0001	4.81715130	7.33840426
C-A	6.79166667	0.52642304	12.90	<.0001	5.69993211	7.88340122
B-A	0.63333333	0.60786096	1.04	0.3088	-0.62729315	1.89395981

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey

			LSMEAN
variety	density	yield LSMEAN	Number
A	10	9.2000000	1
A	20	12.4333333	2
A	30	12.9000000	3
A	40	10.8000000	4
В	10	8.9333333	5
В	20	12.6333333	6
В	40	12.7666667	7
C	10	16.3000000	8
C	20	18.1000000	9
C	30	19.9333333	10

		Difference		ieous 95%
		Between	Confidence	Limits for
i	j	Means	LSMean(i)-	-LSMean(j)
1	2	-3.233333	-6.997053	0.530387
1	3	-3.700000	-7.463720	0.063720
1	4	-1.600000	-5.363720	2.163720
1	5	0.266667	-3.497053	4.030387
1	6	-3.433333	-7.197053	0.330387
1	7	-3.566667	-7.330387	0.197053
1	8	-7.100000	-10.863720	-3.336280
1	9	-8.900000	-12.663720	-5.136280
1	10	-10.733333	-14.497053	-6.969613
1	11	-8.966667	-12.730387	-5.202947
2	3	-0.466667	-4.230387	3.297053
2	4	1.633333	-2.130387	5.397053
2	5	3.500000	-0.263720	7.263720
2	6	-0.200000	-3.963720	3.563720
2	7	-0.333333	-4.097053	3.430387
2	8	-3.866667	-7.630387	-0.102947
2	9	-5.666667	-9.430387	-1.902947
2	10	-7.500000	-11.263720	-3.736280
2	11	-5.733333	-9.497053	-1.969613
3	4	2.100000	-1.663720	5.863720
3	5	3.966667	0.202947	7.730387
3	6	0.266667	-3.497053	4.030387
3	7	0.133333	-3.630387	3.897053
3	8	-3.400000	-7.163720	0.363720
3	9	-5.200000	-8.963720	-1.436280
3	10	-7.033333	-10.797053	-3.269613
3	11	-5.266667	-9.030387	-1.502947
4	5	1.866667	-1.897053	5.630387

```
m = lm(Yield~Variety:Density, tomato, subset=!(Variety=='B' & Density==30))
anova(m)
Analysis of Variance Table
Response: Yield
               Df Sum Sq Mean Sq F value Pr(>F)
Variety:Density 10 421.09 42.109 25.326 8.563e-10 ***
Residuals
           22 36.58 1.663
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
tomato$VarietyDensity = factor(paste(tomato$Variety, tomato$Density, sep=""))
# Note the -1 in order to construct the contrast
m = lm(Yield~VarietyDensity-1, tomato, subset=!(Variety=='B' & Density==30))
                   A10 A20 A30 A40 B10 B20 B40 C10 C20 C30 C40
K = rbind('C-B' = c(0, 0, 0, 0, -1, -1, -1, 1, 1, 0, 1)/3,
         ^{\dagger}C-A^{\dagger} = c(-1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1)/4
          'B-A' = c(-1, -1, 0, -1, 1, 1, 1, 0, 0, 0, 0)/3)
library(multcomp)
t = glht(m, linfct=K)
#summary(t)
confint(t, calpha=univariate calpha())
Simultaneous Confidence Intervals
Fit: lm(formula = Yield ~ VarietyDensity - 1, data = tomato, subset = !(Variety ==
    "B" & Density == 30))
Quantile = 2.0739
95% confidence level
Linear Hypotheses:
         Estimate lwr
                          upr
C-B == 0 6.0778 4.8172 7.3384
C-A == 0 6.7917 5.6999 7.8834
B-A == 0 \quad 0.6333 \quad -0.6273 \quad 1.8940
```

```
m = lm(Yield~Variety:Density, tomato, subset=!(Variety=='B' & Density==30))
lsmeans(m. pairwise~Variety:Density)
```

\$1smeans

```
Variety Density
                   lsmean
                                 SE df lower.CL upper.CL
       10
               16.300000 0.7444746 22 14.756054 17.84395
                9.200000 0.7444746 22 7.656054 10.74395
       10
       10
                8.933333 0.7444746 22 7.389388 10.47728
       20
               18.100000 0.7444746 22 16.556054 19.64395
       20
               12.433333 0.7444746 22 10.889388 13.97728
       20
               12.633333 0.7444746 22 11.089388 14.17728
C.
        30
               19.933333 0.7444746 22 18.389388 21.47728
Α
        30
               12.900000 0.7444746 22 11.356054 14.44395
       30
                                 NA NA
                                              NΑ
                       NA
                                                       NA
C.
       40
                18 166667 0 7444746 22 16 622721 19 71061
               10.800000 0.7444746 22 9.256054 12.34395
        40
В
       40
                12.766667 0.7444746 22 11.222721 14.31061
```

Confidence level used: 0.95

\$contrasts

```
estimate
                              SE df t.ratio p.value
contrast
C.10 - A.10
             7.10000000 1.052846 22
                                     6.744 <.0001
             7.36666667 1.052846 22
                                      6.997 < .0001
C,10 - B,10
C.10 - C.20 -1.80000000 1.052846 22
                                     -1.710 0.8458
C.10 - A.20 3.86666667 1.052846 22
                                     3.673 0.0465
C,10 - B,20
             3.66666667 1.052846 22
                                     3.483 0.0688
C,10 - C,30 -3.63333333 1.052846 22
                                     -3.451 0.0734
C.10 - A.30
             3.40000000 1.052846 22
                                      3.229
                                           0.1136
C,10 - B,30
                     NΑ
                              NA NA
                                        NA
                                                NA
C,10 - C,40 -1.86666667 1.052846 22
                                     -1.773 0.8156
C.10 - A.40 5.50000000 1.052846 22
                                     5.224 0.0014
C.10 - B.40
             3.53333333 1.052846 22
                                     3.356 0.0887
A,10 - B,10
             0.26666667 1.052846 22
                                      0.253
                                           1.0000
```

Summary

When dealing with an incomplete design, it is often easier to treat the analysis as a one-way ANOVA and use contrasts to answer scientific questions of interest.

Optimal yield

Now suppose you have the same data set, but your scientific question is different. Specifically, you are interested in choosing a variety and density that provide the optimal yield.

You can use the ANOVA analysis to choose from amongst the 3 varieties and one of the 4 densities, but there is no reason to believe that the optimal density will be one of those 4.

Modeling

Considering a single variety, if we assume a linear relationship between Yield (Y_i) and Density (D_i) then the maximum Yield will occur at either $-\infty$ or $+\infty$ which is unreasonable. The easiest way to have a maximum (or minimum) is to assume a quadratic relationship, e.g.

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

Now we can incorporate Variety (V_i) in many ways. Two options are parallel curves or completely independent curves.

Parallel curves:

$$\mu_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}D_{i}^{2} + \beta_{3}I(V_{i} = A) + \beta_{4}I(V_{i} = B)$$

Independent lines:

$$\mu_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}D_{i}^{2} + \beta_{3}I(V_{i} = A) + \beta_{4}I(V_{i} = B) + \beta_{5}I(V_{i} = A)D_{i} + \beta_{6}I(V_{i} = B)D_{i} + \beta_{7}I(V_{i} - A)D_{i}^{2} + \beta_{7}I(V_{i} - B)D_{i}^{2}$$
Two-way ANOVA

62 / 77

Finding the maximum

For a particular variety, there will be an equation like

$$E[Y_i] = \mu_i = \beta_0 + \beta_1 D_i + \beta_2 D_i^2$$

where these β_1 and β_2 need not correspond to any particular β_1 and β_2 we have discussed thus far.

If $\beta_2 < 0$, then the quadratic curve has a maximum and it occurs at $-\beta_1/2\beta_2$.

Analysis in SAS

```
DATA tomato;
 INFILE 'Ch13-tomato.csv' DSD FIRSTOBS=2;
 INPUT variety $ density vield:
/* No variety */
PROC GLM DATA=tomato PLOTS=all:
 CLASS variety; /* density is no longer here */
 MODEL yield = density | density / SOLUTION;
 RUN:
/* Parallel curves */
PROC GLM DATA=tomato PLOTS=all:
 CLASS variety; /* density is no longer here */
 MODEL yield = density|density variety/ SOLUTION;
 RUN;
/* Independent curves */
PROC GLM DATA=tomato PLOTS=all;
 CLASS variety; /* density is no longer here */
 MODEL vield = density|density|variety/ SOLUTION:
 RUN;
```

No variety

The GLM Procedure

Cum of

Dependent Variable: yield

		Sum or				
Source	DF	Squares	Mean S	Square	F Value	Pr > F
Model	2	85.3346667	42.66	373333	3.75	0.0340
Error	33	375.0208889	11.36	342694		
Corrected Total	35	460.3555556				
Source	DF	Type III SS	Mean S	Square	F Value	Pr > F
density	1	65.30344358	65.303	344358	5.75	0.0223
density*density	1	51.36111111	51.36	111111	4.52	0.0411
		S	tandard			
Parameter	Est	timate	Error	t Value	Pr >	t

5.74444444

0.684111111

-0.011944444

Jarad	Niemi	(lowa	State)	١

Intercept

density*density

density

3.12824210

0.28538383

0.00561849

1.84

2.40

-2.13

0.0753

0.0223

0.0411

Parallel curves

The GLM Procedure

Dependent Variable: yield

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	412.9318889	103.2329722	67.48	<.0001
Error	31	47.4236667	1.5297957		
Corrected Total	35	460.3555556			

٠.,

Source	DF	Type III SS	Mean Square	F Value	Pr > F
density	1	65.3034436	65.3034436	42.69	<.0001
density*density	1	51.3611111	51.3611111	33.57	<.0001
variety	2	327.5972222	163.7986111	107.07	<.0001

Standard

Parameter		Estimate	Error	t Value	Pr > t
Intercept		9.980555556 B	1.18419286	8.43	<.0001
density		0.68411111	0.10470690	6.53	<.0001
density*dens	sity	-0.011944444	0.00206142	-5.79	<.0001
variety	A	-6.791666667 B	0.50494153	-13.45	<.0001
variety	В	-5.916666667 B	0.50494153	-11.72	<.0001
varietv	C	0.000000000 B			

Independent curves

			Sum of			
Source		DF	Squares	Mean Squa	re F Val	ue Pr > F
Model		8	419.8612222	52.48265	28 34.	99 <.0001
Error		27	40.4943333	1.49979	01	
Corrected Total		35	460.3555556			
Source		DF	Type III SS	Mean Squa	re F Val	ue Pr > F
density		1	65.30344358	65.303443	58 43.	54 < .0001
density*density		1	51.36111111	51.361111	11 34.	25 < .0001
variety		2	21.66539427	10.832697	13 7.	22 0.0031
density*variety		2	2.07850215	1.039251	08 0.	69 0.5088
densit*densit*variet		2	1.65388889	0.826944	44 0.	55 0.5825
				Standard		
Parameter		E	Estimate	Error	t Value	Pr > t
Intercept		11.8	30833333 B	1.96836425	6.00	<.0001
density		0.5	52016667 B	0.17957029	2.90	0.0074
density*density		-0.0	00891667 B	0.00353529	-2.52	0.0179
variety	Α	-8.4	15833333 B	2.78368742	-3.04	0.0052
	В		73333333 B	2.78368742	-3.50	0.0016
variety	C		00000000 B			-
density*variety	Α		19916667 B	0.25395073		
density*variety	В		29266667 B	0.25395073	1.15	0.2592
density*variety			00000000 B	•		
densit*densit*variet			00441667 B	0.00499965	-0.88	0.3848
densit*densit*variet	-		00466667 B	0.00499965	-0.93	0.3589
densit*densit*variet	C	0.0	00000000 B			•

No variety

```
Call:
lm(formula = Yield ~ Density + I(Density^2), data = tomato)
Residuals:
  Min
        1Q Median 3Q Max
-4.898 -2.721 -1.320 3.364 6.109
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.744444 3.128242 1.836 0.0753 .
Density 0.684111 0.285384 2.397 0.0223 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.371 on 33 degrees of freedom
Multiple R-squared: 0.1854, Adjusted R-squared: 0.136
F-statistic: 3.755 on 2 and 33 DF, p-value: 0.03395
```

Parallel curves

```
Call:
lm(formula = Yield ~ Density + I(Density^2) + Variety, data = tomato)
Residuals:
   Min
          10 Median
                         30
                               Max
-2.3422 -0.9039 0.1744 0.8082 2.1828
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.980556 1.184193 8.428 1.61e-09 ***
        0.684111 0.104707 6.534 2.71e-07 ***
Density
VarietyA -6.791667 0.504942 -13.450 1.76e-14 ***
VarietyB -5.916667 0.504942 -11.718 6.39e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.237 on 31 degrees of freedom
Multiple R-squared: 0.897, Adjusted R-squared: 0.8837
F-statistic: 67.48 on 4 and 31 DF, p-value: 7.469e-15
```

Independent curves

```
Call:
lm(formula = Yield ~ Density * Variety + I(Density^2) * Variety,
   data = tomato)
Residuals:
    Min
              10 Median
                               3Q
                                      Max
-2.04500 -0.82125 -0.01417 0.94000 1.71000
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    11.808333 1.968364 5.999 2.12e-06 ***
                    0.520167 0.179570 2.897 0.00739 **
Density
                    -8.458333 2.783687 -3.039 0.00523 **
VarietyA
VarietvB
                   -9.733333
                               2.783687 -3.497 0.00165 **
I(Density^2)
                 -0.008917
                               0.003535 -2.522 0.01787 *
Density: VarietyA
                               0.253951 0.784 0.43971
                   0.199167
Density: VarietyB
                               0.253951 1.152 0.25924
                  0.292667
VarietyA:I(Density^2) -0.004417
                               0.005000 -0.883 0.38482
VarietyB:I(Density^2) -0.004667
                               0.005000 -0.933 0.35889
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.225 on 27 degrees of freedom
Multiple R-squared: 0.912, Adjusted R-squared: 0.886
F-statistic: 34.99 on 8 and 27 DF, p-value: 2.678e-12
```

Completely randomized design (CRD)

This semester, we have assumed a completely randomized design. As an example, consider 36 plots and we are randomly assigning our variety-density combinations to the plots such that we have 3 reps of each combination. The result may look something like this

A20	A30	A40	C20	A40	B40
C20	C40	C40	B30	A10	A40
B40	C30	B40	C10	A20	C10
C10	B20	B20	A30	B10	A20
A10	C40 A10		B10	A30	B10
C20	B30	B20	B30	C30	C30

Complete randomized block design (RBD)

A randomized block design is appropriate when there is a nuisance factor that you want to control for. In our example, imagine you had 12 plots at 3 different locations and you expect these locations would have impact on yield. A randomized block design might look like this.

A30	B40	
C10	B10	
C30	C20	
B30	B20	
A10	A20	
C40	A40	

A20	B40
C10	B20
C30	C40
A10	A30
B30	A40
C20	B10

A10	B40
C20	B30
C10	A40
A20	C40
A30	B10
B20	C30

Block 1

Block 2

Block 3

RBD Analysis

Generally, you will want to model a randomized block design using an additive model for the treatment and blocking factor. If you have the replication, you should test for an interaction. Let's compute the degrees of freedom for the ANOVA tables for this current design considering the variety-density combination as the treatment.

V+D+B		T+B		Cell-means	
Factor	df	Factor	df	Factor	df
Variety	2				
Density	3	Treatment	11	Treatment	11
Block	2	Block	2	Block	2
				Treatment x Block	22
Error	28	Error	22	Error	0
Total	35	Total	35	Total	35

The cell-means model does not have enough degrees of freedom to estimate the interacion because there is no replication of the treatment within a block.

Why block?

Consider a simple experiment with 2 blocks each with 3 experimental units and 3 treatments (A, B, C).

Let's consider 3 possible analyses:

- Blocked experiment using an additive model for treatment and block (RBD)
- Unblocked experiment using only treatment (CRD)
- Unblocked experiment using an additive model for treatment and block

Why block?

Now suppose, the true model is

$$\mu_{ij} = \mu + T_i + B_j$$

where $T_1 = T_2 = T_3$ and $B_1 = 0$ and $B_2 = \delta$.

In the Blocked experiment using an additive model for treatment and block, the expected treatment differences to all be zero.

In the Unblocked design using only treatment, the expected difference between treatments is

$$\mu_C - \mu_B = \delta$$
 and $\mu_C - \mu_A = \delta/2$.

In the Unblocked design using an additive model for treatment and block, we would have an unbalanced design and it would be impossible to compare B and C.

Summary

Block what you can control; randomize what you cannot.