CS 228 : Logic in Computer Science

Krishna. S

Summary

- Started looking at FO nondefinability
- Defined quantifier depth or quantifier rank of a formula
- Showed that there are finitely many FO formulae of quantifier rank r
- ► Introduced some new notations for words, mimicking assignments of values to free variables

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

• If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$
- $c(\neg \varphi) = c(\varphi)$

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$
- $ightharpoonup c(\neg \varphi) = c(\varphi)$
- $c(\varphi \wedge \psi) = max(c(\varphi), c(\psi))$

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$
- $ightharpoonup c(\neg \varphi) = c(\varphi)$
- $c(\varphi \wedge \psi) = max(c(\varphi), c(\psi))$
- $ightharpoonup c(\exists \varphi) = c(\varphi) + 1$

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_a(x))$ then $c(\varphi) = 0$
- $ightharpoonup c(\neg \varphi) = c(\varphi)$
- $ightharpoonup c(\varphi \wedge \psi) = max(c(\varphi), c(\psi))$
- $ightharpoonup c(\varphi) = c(\varphi) + 1$
- ▶ Quantifier free formulae written in DNF : $C_1 \lor C_2 \lor \cdots \lor C_n$

Let φ be a FO formula. Define the quantifier rank of φ denoted $c(\varphi)$

- If φ is atomic $(x = y, x < y, S(x, y), Q_{\theta}(x))$ then $c(\varphi) = 0$
- $ightharpoonup c(\neg \varphi) = c(\varphi)$
- $ightharpoonup c(\varphi \wedge \psi) = max(c(\varphi), c(\psi))$
- $ightharpoonup c(\exists \varphi) = c(\varphi) + 1$
- ▶ Quantifier free formulae written in DNF : $C_1 \lor C_2 \lor \cdots \lor C_n$
- ▶ Formulae of quantifier rank c+1 written as a disjunction of the conjunction of formulae, each formula of the form $\exists x\varphi, \neg \exists x\varphi$ or φ , with $c(\varphi) \leqslant c$. Eliminate repeated disjuncts/conjunts

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

Let \mathcal{V} be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from \mathcal{V} .

- ▶ If \mathcal{V} has 2 variables x, y, and τ has $Q_a, S, <$.
- ▶ Atomic formulae : $\{Q_a(x), Q_a(y), S(x, y), x < y\}$
- $G = \{Q_a(x), \neg Q_a(x), Q_a(y), \neg Q_a(y), S(x, y), \neg S(x, y), x < y, \neg (x < y)\}$
- ▶ Each subset of *G* is a possible conjunct *C_i*.
- ▶ All possible disjuncts using each C_i: formulae in DNF of rank 0

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

Let \mathcal{V} be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from \mathcal{V} .

▶ 2*m* atomic/negated atomic formulae

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

- ▶ 2*m* atomic/negated atomic formulae
- ▶ Number of conjunctions C_i possible $\leq 2^{2m}$

Let $\mathcal V$ be a finite set of first order variables. Fix a finite signature τ . Let there be m atomic formulae over τ having variables from $\mathcal V$.

- ▶ 2*m* atomic/negated atomic formulae
- ▶ Number of conjunctions C_i possible $\leq 2^{2m}$
- Number of formulae in DNF $\leq 2^{2^{2m}}$ (c = 0)

Rank 1

Let there be p formulae φ of rank 0.

- ▶ 2*p* formulae of the form $\exists x \varphi$, $\neg \exists x \varphi$
- ▶ 2^{2p} conjunctions of rank 1
- ► Conjuncting any one of the p formulae of rank 0 gives all conjuncts of rank $\leq 1 : p2^{2p}$ more
- ▶ Possible conjuncts of rank ≤ 1 is $q = (p+1)2^{2p}$
- Possible disjuncts of these : 2^q

Let V be a finite set of first order variables, and let $c \ge 0$. There are finitely many FO formulae in DNF with rank c over V.

Some Notation

Given a word $w = a_1 \dots a_n$, and a finite set of variables V, define a V-structure with respect to w as

- \blacktriangleright $(a_1, U_1)(a_2, U_2) \dots (a_n, U_n)$ where
- $ightharpoonup \bigcup_i U_i = \mathcal{V}$
- $ightharpoonup U_i \cap U_i = \emptyset$
- ▶ Think of a V-structure as a word over the alphabet $\Sigma \times 2^{V}$
- $(a, \{x\})(b, \{y, z\})(c, \emptyset)(d, \{u, v\})$ is a $\{x, y, z, u, v\}$ -structure with respect to the word *abcd*.

Given a V-structure $w = (a_1, S_1) \dots (a_n, S_n)$,

```
Given a V-structure w = (a_1, S_1) \dots (a_n, S_n),
```

- $w \models Q_a(x)$ iff there exists j such that $a_j = a$ and $x \in S_j$
 - ► $(a, \{y\})(b, \{u, v\})(a, \{x\}) \models Q_a(x)$

```
Given a V-structure w = (a_1, S_1) \dots (a_n, S_n),
```

- ▶ $w \models Q_a(x)$ iff there exists j such that $a_j = a$ and $x \in S_j$
 - $(a, \{y\})(b, \{u, v\})(a, \{x\}) \models Q_a(x)$
- $w \models (x = y)$ iff there exists j such that $x, y \in S_i$
 - ► $(a, \{x\})(b, \{y, z\})(c, \emptyset) \nvDash (x = y)$

```
Given a V-structure w = (a_1, S_1) \dots (a_n, S_n),
```

- ▶ $w \models Q_a(x)$ iff there exists j such that $a_j = a$ and $x \in S_j$
 - $(a, \{y\})(b, \{u, v\})(a, \{x\}) \models Q_a(x)$
- $w \models (x = y)$ iff there exists j such that $x, y \in S_i$
 - $(a, \{x\})(b, \{y, z\})(c, \emptyset) \nvDash (x = y)$
- $w \models x < y$ iff there exists i < j such that $x \in S_i, y \in S_i$
 - ► $(a, \{x\})(b, \{y, z\})(c, \emptyset) \models x < y$

```
Given a V-structure w = (a_1, S_1) \dots (a_n, S_n),
  • w \models Q_a(x) iff there exists j such that a_j = a and x \in S_i
         • (a, \{v\})(b, \{u, v\})(a, \{x\}) \models Q_a(x)
  • w \models (x = y) iff there exists j such that x, y \in S_i
         ► (a, \{x\})(b, \{y, z\})(c, \emptyset) \nvDash (x = y)
  • w \models x < y iff there exists i < j such that x \in S_i, y \in S_i
         ► (a, \{x\})(b, \{y, z\})(c, \emptyset) \models x < y
  w \models \exists x Q_a(x) iff there exists i such that
      (a_1, S_1) \dots (a_i, S_i \cup \{x\}) \dots (a_n, S_n) \models Q_a(x)
         ▶ (b, \{v, z\})(a, \{u\})(c, \emptyset) \models \exists xQ_a(x) since
            (b, \{y, z\})(a, \{x, u\})(c, \emptyset) \models Q_a(x)
```

Q/

 $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \to [(x < y) \land Q_b(y)]) \text{ iff }$

- ▶ $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])$ iff
- $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] \text{ iff }$

- $(a, \emptyset)(a, \emptyset)(b, \emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) \text{ iff}$
- $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] \text{ iff}$
- $(a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] \text{ iff}$

- $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \to [(x < y) \land Q_b(y)]) \text{ iff }$
- $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] \text{ iff}$
- $(a, \emptyset)(a, \emptyset)(b, \emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ iff
 - $(a, \{x\})(a, \emptyset)(b, \emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ and

▶ $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])$ iff ▶ $(a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ iff ▶ $(a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ iff ▶ $(a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ and

• $(a, \emptyset)(a, \{x\})(b, \emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]$ and

```
▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\{x\})(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\emptyset)(b,\{x\}) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]
```

```
▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\{x\})(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\emptyset)(b,\{x\}) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \models \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff
```

```
▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\{x\})(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

▶ (a,\emptyset)(a,\emptyset)(b,\{x\}) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]

▶ (a,\{x\})(a,\emptyset)(b,\emptyset) \models \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

▶ (a,\{x\})(a,\emptyset)(b,\{y\}) \models (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])
```

```
• (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \forall x \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

• (a,\emptyset)(a,\emptyset)(b,\emptyset) \models \neg \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

• (a,\emptyset)(a,\emptyset)(b,\emptyset) \nvDash \exists x \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] iff

• (a,\{x\})(a,\emptyset)(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

• (a,\emptyset)(a,\{x\})(b,\emptyset) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])] and

• (a,\emptyset)(a,\emptyset)(b,\{x\}) \nvDash \neg [\exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])]

• (a,\{x\})(a,\emptyset)(b,\emptyset) \models \exists y (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) iff

• (a,\{x\})(a,\emptyset)(b,\{y\}) \models (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])

Similarly, (a,\emptyset)(a,\{x\})(b,\{y\}) \models (Q_a(x) \rightarrow [(x < y) \land Q_b(y)]) and

(a,\emptyset)(a,\emptyset)(b,\{x,y\}) \models (Q_a(x) \rightarrow [(x < y) \land Q_b(y)])
```

- ▶ $(a_1, \emptyset) \dots (a_n, \emptyset) \models \exists x \varphi \text{ iff}$
- ► There is some position *i* such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$

- \blacktriangleright $(a_1,\emptyset)\dots(a_n,\emptyset)\models \exists x\varphi$ iff
- ► There is some position *i* such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$
- ▶ For a formula $\varphi(x_1, ..., x_m)$, $L(\varphi)$ is the set of all $\{x_1, ..., x_m\}$ structures satisfying φ

- \blacktriangleright $(a_1,\emptyset)\dots(a_n,\emptyset)\models \exists x\varphi$ iff
- ► There is some position *i* such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$
- ▶ For a formula $\varphi(x_1, \ldots, x_m)$, $L(\varphi)$ is the set of all $\{x_1, \ldots, x_m\}$ structures satisfying φ
- ▶ For a sentence φ , $L(\varphi)$ is the set of all \emptyset structures satisfying φ

Logical Equivalence

▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.

Logical Equivalence

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ~_r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank ≤ r.

Logical Equivalence

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- ▶ Write $w_1 \sim_r w_2$ iff w_1, w_2 satisfy the same set of FO formulae of rank $\leq r$.
- ▶ $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$

Logical Equivalence

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ~_r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank ≤ r.
- $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $ightharpoonup \sim_r$ is an equivalence relation

Logical Equivalence

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ~_r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank ≤ r.
- $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $ightharpoonup \sim_r$ is an equivalence relation
- Finitely many equivalence classes : each class consists of words that behave the same way on formulae of rank $\leq r$

Non-Expressibility in FO: The Game Begins

▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ▶ There are 2 players : Spoiler and Duplicator

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different ($w_1 \sim_r w_2$)

- ► Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different $(w_1 \nsim_r w_2)$
- ▶ Duplicator wants to show that they are same $(w_1 \sim_r w_2)$

- ► Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different $(w_1 \sim_r w_2)$
- ▶ Duplicator wants to show that they are same $(w_1 \sim_r w_2)$
- ▶ Each player has r pebbles z_1, \ldots, z_r

▶ At the start of each round, spoiler chooses a structure.

- ▶ At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word
- ► A pebble once placed, cannot be removed

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word
- A pebble once placed, cannot be removed
- ► The game ends after r rounds, when both players have used all their pebbles

• $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks *w*₂, duplicator picks *w*₁

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- \triangleright 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ▶ Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- \triangleright 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - ▶ After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - Duplicator : (a, {z₁})(b, ∅)
 - ▶ After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:
 - Spoiler continues on the structure w₂'

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ▶ Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play
 - ▶ Spoiler : $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play
 - ► Spoiler : $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$
 - ▶ Duplicator : $(a, \{z_1, z_2\})(b, \emptyset)$ or $(a, \{z_1\})(b, \{z_2\})$

► Start with two ∅ structures (w₁, w₂)

- ▶ Start with two \emptyset structures (w_1, w_2)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$
- ▶ That is, $w'_1 \sim_0 w'_2$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$
- ▶ That is, $w'_1 \sim_0 w'_2$
- Spoiler wins otherwise.

Given two word structures (w_1, w_2) , duplicator wins on (w_1, w_2) if for every atomic formula α , $w_1 \models \alpha$ iff $w_2 \models \alpha$

Play continues

- Who won in the earlier play?
- We had
 - $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$ and $(a, \{z_1, z_2\})(b, \emptyset)$
 - $(a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)$
 - $(a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2)$ or

Play continues

- Who won in the earlier play?
- We had

```
• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1, z_2\})(b, \emptyset)

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)

• (a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2) or

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1\})(b, \{z_2\})

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models Q_a(z_2)

• (a, \{z_1\})(b, \{z_2\}) \nvDash Q_a(z_2)
```

Spoiler wins in two rounds

Play continues

- Who won in the earlier play?
- We had

```
• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1, z_2\})(b, \emptyset)

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)

• (a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2) or

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1\})(b, \{z_2\})

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models Q_a(z_2)

• (a, \{z_1\})(b, \{z_2\}) \nvDash Q_a(z_2)
```

- Spoiler wins in two rounds
- If the game was played only for one round, who will win?

Unique Winner

Given structures w_1 , w_2 , and a number of rounds r, exactly one of the players win.

20/

Let w_1, w_2 be \mathcal{V} -structures and let $r \ge 0$. Then $w_1 \sim_r w_2$ iff Duplicator has a winning strategy in the r-round game on (w_1, w_2) .

21/

Assume $w_1 \sim_r w_2$, and induct on r

▶ Base : r = 0 and $w_1 \sim_0 w_2$. Duplicator wins, since by assumption, w_1 , w_2 agree on all atomic formulae.

Assume $w_1 \sim_r w_2$, and induct on r

- ▶ Base : r = 0 and $w_1 \sim_0 w_2$. Duplicator wins, since by assumption, w_1 , w_2 agree on all atomic formulae.
- Assume for r-1: $w_1 \sim_{r-1} w_2 \Rightarrow$ Duplicator has a winning strategy in a r-1 round game

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - The resultant structure is w₁'

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ▶ In response, duplicator places her pebble somewhere on w_2

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ▶ In response, duplicator places her pebble somewhere on w_2
 - ▶ The resultant structure is w_2'

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ▶ In response, duplicator places her pebble somewhere on w_2
 - ► The resultant structure is w₂'
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - ▶ Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank $\leq r-1$ in normal form that are satisfied by w_1'

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank $\leqslant r-1$ in normal form that are satisfied by w_1'
 - ▶ Then $w'_1 \models \psi, w'_2 \nvDash \psi$

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w₁, places a pebble z₁ somewhere on w₁
 - The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂'
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank $\leq r-1$ in normal form that are satisfied by w'_1
 - ▶ Then $w'_1 \models \psi, w'_2 \nvDash \psi$
 - We thus have

$$W_1 \models \exists Z_1 \psi, W_2 \not\models \exists Z_1 \psi$$

contradicting $w_1 \sim_r w_2$