

Photogrammetric Computer Vision

Exercise 4
Winter semester 24/25

(Course materials for internal use only!)

Computer Vision in Engineering – Prof. Dr. Rodehorst M.Sc. Mariya Kaisheva mariya.kaisheva@uni-weimar.de

Agenda

Topics

Assignment 1. Points and lines in the plane, first steps in MATLAB / Octave

Assignment 2. Projective transformation (Homography)

Assignment 3. Camera calibration using direct linear transformation (DLT)

Assignment 4. Orientation of an image pair

Assignment 5. Projective and direct Euclidean reconstruction

Assignment 6. Stereo image matching

Final Project - will be announced later -

Agenda

	Start date		Deadline
Assignment 1.	21.10.24		03.11.24
Assignment 2.	04.11.24		17.11.24
Assignment 3.	18.11.24		01.12.24
Assignment 4.	02.12.24	-	15.12.24
Assignment 4. Assignment 5.	02.12.24 16.12.24	_ _	
_	16.12.24	_	

Assignment 3

Assignment 3: Camera calibration using DLT

calibration object

image of the calibration object

 $x_6 = PX_6$

$$x_i = PX_i$$

$$K \& R, C$$

Assignment 3 – sample solution

Sample code 1/3

```
reshape(p, 4, 3)'

≠
reshape(p, 3, 4)
```

```
% Camera orientation and calibration using direct linear transformation (DLT)
function exercise3
X = [44.7 - 103.6 	 47.4 - 152.2 - 153.3 - 149.4; 	 % 6 known control points
    -142.4 -146.6 -150.1 59.4 -96.9 52.7;
     258.7 \quad 154.4 \quad 59.8 \quad 245.2 \quad 151.3 \quad 46.9; X(4, :) = 1;
x = [18.5 	 99.1 	 13.8 	 242.1 	 151.1 	 243.1; 	 % 6 measured image points
       46.8 146.5 221.8 52.5 147.1 224.5]; x(3, :) = 1;
                                                          % Spatial resection
P = calibrate(X, x);
disp camera(P);
                                  % Extract and print orientation parameters
function P = calibrate(X, x)
     ===========
T = condition3(X); N = T * X;
                                                  % Object point conditioning
t = condition2(x); n = t * x;
                                                   % Image point conditioning
A = design camera(N, n);
                                                        % Build design matrix
p = solve dlt(A);
                                           % Linear least squares solution
P = inv(t) * reshape(p, 4, 3)' * T
                                           % Unconditioning and print matrix
function A = design camera(X, x) % Design matrix for perspective projection
A = [];
for i = 1 : size(X, 2)
   A = [A; -x(3, i) * X(:, i)' 0 0 0 0 x(1, i) * X(:, i)';
            0\ 0\ 0\ 0\ -x(3, i) * X(:, i) ' x(2, i) * X(:, i)' ;
end
```


Conditioning

```
% Conditioning for image points
function T = condition2(x)
8
tx = mean(x(1,:)); ty = mean(x(2,:)); % Translation tx, ty
sx = mean(abs(x(1,:) - tx)); sy = mean(abs(x(2,:) - ty)); % Scaling sx, sy
T = [1/sx, 0, -tx/sx; 0, 1/sy, -ty/sy; 0, 0, 1];
function T = condition3(X)
                                  % Conditioning for object points
tx = mean(X(1,:)); ty = mean(X(2,:)); tz = mean(X(3,:));
sx = mean(abs(X(1,:)-tx)); sy = mean(abs(X(2,:)-ty)); sz = mean(abs(X(3,:)-tz));
T = [1/sx, 0, 0, -tx/sx;
     0, 1/sy, 0, -ty/sy;
     0, 0, 1/sz, -tz/sz;
```

0, 0, 0, 1];

Sample code 2/3

```
function [R, Q] = rqd(M)
% Decomposition in triangular & orthogonal matrix
% ======

[Q, R] = qr(inv(M));
R = inv(R); Q = inv(Q);
s = sign(diag(R));
R = R*diag(s);
Q = diag(s)*Q;
% Since M = R*Q = R*(-I*-I)*Q = (R*-I)*(-I*Q)
```


Sample code 2/3

```
diag()
gets diagonal
elements of
matrix
```

or

creates agonal matrix

diagonal matrix

```
K, R
```


Sample code 2/3

```
sign (x)
returns:

1 for x > 0
0 for x = 0
-1 for x < 0
```


Projection Center

Solve the property of the projection matrix as linear homogeneous equation system $\mathbf{P} \cdot \mathbf{C} = \mathbf{0}$ using SVD

Orientation Angles

$$\omega = arctan\left(\frac{r_{32}}{r_{33}}\right)$$
, $\varphi = -\arcsin(r_{31})$, $\kappa = arctan\left(\frac{r_{21}}{r_{11}}\right)$

Exterior Orientation

Interior Orientation

Principle distance α_x [in px]

Principle point $(x_0, y_0)^T$

Aspect ratio γ of image axes

$$\mathbf{K} = \begin{bmatrix} ck_x & -ck_x \cot(\theta) & x_0 \\ 0 & ck_y / \sin(\theta) & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 physical model

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} \text{algebraic} \\ \text{model} \end{array}$$

Projection Center

Solve the property of the projection matrix as linear homogeneous equation system $\mathbf{P} \cdot \mathbf{C} = \mathbf{0}$ using SVD

Orientation Angles

$$\omega = arctan\left(\frac{r_{32}}{r_{33}}\right)$$
, $\varphi = -\arcsin(r_{31})$, $\kappa = arctan\left(\frac{r_{21}}{r_{11}}\right)$

Exterior Orientation

Interior Orientation

Principle distance α_x [in px]

Principle point $(x_0, y_0)^T$

Aspect ratio γ of image axes

$$\mathbf{K} = \begin{bmatrix} ck_x & -ck_x \cot(\theta) & x_0 \\ 0 & ck_y / \sin(\theta) & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 physical model

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{algebraic model}$$

Projection Center

Solve the property of the projection matrix as linear homogeneous equation system $\mathbf{P} \cdot \mathbf{C} = \mathbf{0}$ using SVD

Orientation Angles

$$\omega = arctan\left(\frac{r_{32}}{r_{33}}\right)$$
, $\varphi = -arcsin(r_{31})$, $\kappa = arctan\left(\frac{r_{21}}{r_{11}}\right)$

Exterior Orientation

Interior Orientation

Principle distance α_x [in px]

Principle point $(x_0, y_0)^T$

Aspect ratio γ of image axes

$$\mathbf{K} = \begin{bmatrix} ck_x & -ck_x \cot(\theta) & x_0 \\ 0 & ck_y / \sin(\theta) & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 physical model

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} \text{algebraic} \\ \text{model} \end{array}$$

Projection Center

Solve the property of the projection matrix as linear homogeneous equation system $\mathbf{P} \cdot \mathbf{C} = \mathbf{0}$ using SVD

Orientation Angles

$$\omega = arctan\left(\frac{r_{32}}{r_{33}}\right)$$
, $\varphi = -\arcsin(r_{31})$, $\kappa = arctan\left(\frac{r_{21}}{r_{11}}\right)$

Exterior Orientation

Interior Orientation

Principle distance α_x [in px]

Principle point $(x_0, y_0)^T$

Aspect ratio γ of image axes

$$\mathbf{K} = \begin{bmatrix} ck_x & -ck_x \cot(\theta) & x_0 \\ 0 & ck_y / \sin(\theta) & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 physical model

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 algebraic model

Projection Center

Solve the property of the projection matrix as linear homogeneous equation system $\mathbf{P} \cdot \mathbf{C} = \mathbf{0}$ using SVD

Orientation Angles

$$\omega = arctan\left(\frac{r_{32}}{r_{33}}\right)$$
, $\varphi = -\arcsin(r_{31})$, $\kappa = arctan\left(\frac{r_{21}}{r_{11}}\right)$

Exterior Orientation

Interior Orientation

Principle distance α_x [in px]

Principle point $(x_0, y_0)^T$

Aspect ratio γ of image axes

$$\mathbf{K} = \begin{bmatrix} ck_x & -ck_x \cot(\theta) & x_0 \\ 0 & ck_y / \sin(\theta) & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 physical model

$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} \text{algebraic} \\ \text{model} \end{array}$$

Sample code 3/3

```
function disp camera(P)
                                         % M is the left 3x3 submatrix of P
M = P(:, 1:3);
M = M / norm(M(3, :)); % The 3rd row of M defines the scaling factor
if det(M) < 0
                                     % The determinant of M defines the sign
   M = -M;
end
[K, R] = rgd(M) % Decomposition of M in calibration and rotation matrix
C = solve dlt(P); C(1:3)/C(end) % Estimation of the projection center P <math>C = 0
omega = atan2(R(3,2), R(3,3)) * 180/pi % Print three spatial angles
phi = -asin(R(3,1)) * 180/pi
kappa = atan2(R(2,1), R(1,1)) * 180/pi
     = acot(-K(1,2) / K(1,1)) * 180/pi
                                       % Shearing of the image axes
     = K(2,2) / K(1,1)
                                                     % and the aspect ratio
```


- 1) Image acquisition
 - take pictures of the same spatially structured object from two different views
 - use convergent image arrangement

1) Image acquisition

- take pictures of the same spatially structured object from two different views
- use convergent image arrangement

2) Image pair orientation

- measure at least 8 point pairs
- compute the fundamental matrix F
- visualize used points
- draw epipolar lines (hline.m)

1) Image acquisition

- take pictures of the same spatially structured object from two different views
- use convergent image arrangement

2) Image pair orientation

- measure at least 8 point pairs
- compute the fundamental matrix F
- visualize used points
- draw epipolar lines (hline.m)

1) Image acquisition

- take pictures of the same spatially structured object from two different views
- use convergent image arrangement

2) Image pair orientation

- measure at least 8 point pairs
- compute the fundamental matrix F
- visualize used points
- draw epipolar lines (hline.m)

3) Evaluation

- comment line characteristics
- calculate the geometric image error

$$\sum_{i} d\left(\mathbf{x}_{i}^{\prime}, \mathbf{F} \mathbf{x}_{i}\right)^{2} + d\left(\mathbf{x}_{i}, \mathbf{F}^{\mathsf{T}} \mathbf{x}_{i}^{\prime}\right)^{2}$$

