概率论与数理统计模拟试题(九)

- 一、填空题(每小题3分,共5小题,满分15分)
- 1. 设事件 A 与 B 互不相容,且 P(A) = p, P(B) = q , 求下列事件的概率,则 $P(\overline{A} \ \overline{B}) = \underline{\hspace{1cm}}$
 - 2. 设随机变量 X 具有 $f(x) = \begin{cases} \frac{2}{\pi(1+x^2)} & x > 0 \\ 0 & x \le 0 \end{cases}$, 则 $Y = \ln X$ 的概率密度

 $f_{v}(y) =$ ______.

3. 设随机变量 X 的分布列为 $P(X = k) = A \left(\frac{1}{3}\right)^k, k = 1,2,3,\cdots$

则 P(X > 1) =______.

- 4. 设 r. v X,Y 相互独立, 且均服从参数为2的指数分布,则 $P\{\min(X,Y) \leq 1\} =$.
- 5. 为确定某种溶液中杂质的浓度,共取样 4 次,测得平均值 $\bar{x} = 0.834$,样本标准 $\pm S = 0.0003$,设总体服从 $N(\mu, \sigma^2)$,求 μ 的置信区间_____($\alpha = 0.05$).
- 二、选择题(每小题3分,共5小题,满分15分)

(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

- 1. 5人以摸彩方式决定谁能得一张电影票,今设 A_i 表示第i个人摸到(i=1,2,3,4,5),则下列结果中有一个不正确,它是().
 - (A) $P(A_3 | \overline{A_1 A_2}) = \frac{1}{3}$; (B) $P(\overline{A_1 A_2}) = \frac{1}{5}$; (C) $P(\overline{A_1 A_2}) = \frac{1}{4}$; (D) $P(A_5) = \frac{1}{5}$.
- 2. 设随机变量 X 的概率密度为 f(x) ,且 f(-x) = f(x), F(x) 是 X 的分布函数,则对任意实数 a 有(

(A)
$$F(-a) = 1 - \int_0^a f(x) dx$$
; (B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$;

- (C) F(-a) = F(a);
- (D) F(-a) = 2F(a) 1.
- 3. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,Y())
- (A) 不相关的充分条件,但不是必要条件; (B) 独立的必要条件,但不是充分条件;
- (C) 不相关的必要条件, 但不是充分条件; (D) 独立的充分必要条件.
- 4. 设总体 $X \sim N(0,1), X_1, X_2, \dots, X_n$ 为 X 的样本,则下列统计量的分布中不正确

的是().

(A)
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$
;

(B)
$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim N(0,1)$$
;

(C)
$$\frac{\sqrt{n-1}X_n}{\sqrt{\sum_{i=1}^{n-1}X_i^2}} \sim t(n-1);$$

(D)
$$\frac{(\frac{n}{2}-1)\sum_{i=1}^{2}X_{i}^{2}}{\sum_{i=3}^{n}X_{i}^{2}} \sim F(2,n-2)$$

- 5. 设随机变量 X 的概率密度为 f(x),即 $X\sim f(x)$,期望 μ 与方差 σ^2 都存在,样本 $X_1\cdots X_n(n>1)$ 取自 X,\overline{X} 是样本均值,则有().
 - (A) $\overline{X} \sim f(x)$;

(B) $\min_{1 \le i \le n} X_i \sim f(x)$;

(C)
$$\max_{1 \le i \le n} X_i \sim f(x);$$

(D)
$$(X_1, X_2, \dots, X_n) \sim \prod_{i=1}^n f(x_i)$$

三、(10分)两箱同种类的零件,第1箱装50件,其中10件一等品,第2箱装30件,其中12件一等品,今通过抛掷一枚均匀的分布来决定从哪一箱中取零件,现若取出的第1件是一等品,并把它放回,问从同一箱中抽取的第2件也是一等品的概率.

四、
$$(10\, \%)$$
 设 (X,Y) 有概率密度 $f(x,y)=$
$$\begin{cases} 4xy & 0 < x < 1, \ 0 < y < 1 \\ 0 &$$
其它
$$x\,Z=X+Y \text{ 的概率密度 } f_Z(z). \end{cases}$$

五、(10 分) 国际市场上每年对我国某种商品的需求量 X 为连续型的随机变量,其概率密度为 f(x),且当 $x \le 0$ 时, f(x) = 0 ,当 x > 0 时, f(x) > 0 。已知每售出一吨该商品,可净获利 a 美元 (a > 0) ,每积压一吨净损失 b 美元 (b > 0) ,试证明为获得最大的期望利润,每年准备的货源 S 应满足

$$P(X \le S) = \frac{a}{a+b}.$$

六、(14 分) 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{4}{\sqrt{\pi}\alpha^3} x^2 e^{-\frac{x^2}{\alpha^2}}, & x > 0, & \alpha > 0 \\ 0, & x \le 0 \end{cases}$

是来自总体X的简单随机样本.

- (1) 求 α^2 的极大似然估计量; (2) α^2 是否是 α^2 的无偏估计量? 为什么?.

七、 $(6\ \beta)$ 某单位招聘155人,接考试成绩录用,共有526人报告,假设报名者的成绩 $X\sim N(\mu,\sigma^2)$,已知90分以上有12人,60分以下有84人,若从高分到低分依次录取,某人成绩为78分,问此人是否在被录取之列?