Заполнить следующую таблицу:

ε	0,1	0,01	0,001	0,0001	• • •
N					

42. Доказать, что x_n ($n=1, 2, \ldots$) есть бесконечно малая (т. е. имеет предел, равный 0), указав для всякого $\varepsilon > 0$ число N=N (ε) такое, что $|x_n| < \varepsilon$ при n > N, если

a)
$$x_n = \frac{(-1)^{n+1}}{n}$$
; 6) $x_n = \frac{2n}{n^3 + 1}$;

B)
$$x_n = \frac{1}{n!}$$
; r) $x_n = (-1)^n \cdot 0.999^n$.

Для каждого из этих случаев заполнить следующую таблицу:

8	0,1	0,001	0,0001	
N				

43. Доказать, что последовательности

а) $x_n = (-1)^n n$, б) $x_n = 2^{\sqrt{n}}$, в) $x_n = \lg(\lg n)$ $(n \ge 2)$ имеют бесконечный предел при $n \to \infty$ (т. е. являются бесконечно большими), определив для всякого E > 0 чиело N = N (E) такое, что $|x_n| > E$ при n > N.

Для каждого из этих случаев заполнить следующую таблицу:

Е	10	100	1 000	10 000	
N		_			

44. Показать, что $x_n = n^{(-1)^n}$ (n = 1, 2, ...) не ограничена, однако не является бесконечно большой при $n \to \infty$.