

**REMARKS**

Claims 1-19 are pending in this application. Of those claims, claims 11, 12, and 17-19 have been withdrawn from consideration pursuant to the provisions of 37 C.F.R. §1.142(b).

In this Amendment, claims 1 and 7 have been amended and claim 6 has been cancelled. Care has been exercised not to introduce new matter. Specifically, claim 1 has been amended to delete an isothermal transformation process and to include the limitations recited in claim 6. Claim 7 has also been amended to be dependent on independent claim 1.

Claims 1-5, 7-10, and 13-16 are now active in this application, of which claim 1 is independent.

**Rejoinder**

Upon the allowance of claim 1, Applicants respectfully request rejoinder and allowance of claims 11, 12, and 17-19 directed to the withdrawn species.

**Claim Rejection– 35 U.S.C. § 102**

Claims 1-8 and 10 stand rejected under 35 U.S.C. § 102(b) as being anticipated by Japanese Patent Application Publication No. 09-296214 (“JP’214”). Applicants submit that the JP’214 does not identically disclose a manufacturing method of a thin component including all the limitations recited in independent claim 1, which reads:

1. A manufacturing method of a thin component, including the steps of

heating a thin component, and thereafter, while sizing with molds and using said molds as cooling media of said thin component, performing a quenching process on said thin component, wherein

after said thin component is quenched, said thin component is tempered using said molds as temperature controlling media.

According to the claimed manufacturing method, the thin component can be quenched and tempered using the molds as temperature controlling media. The term “quenching” means heating steel to an austenitic structure, and then rapidly cooling it in any of various types of cooling media, in order to generate a martensitic structure.<sup>1</sup> Further, the term “tempering” refers to an operation of heating the martensitic structure generated by quenching of steel to a temperature equal to or lower than A<sub>1</sub> point, and cooling the same.<sup>2</sup>

The JP ‘214 relates to a method of heating a material to be treated to the austenite region (not lower than A<sub>3</sub> point), then rapidly cooling the material to be treated while holding the material between forming heat treatment dies set at temperature T<sub>1</sub> lower than desired austempering temperature T<sub>2</sub>, and subsequently holding the forming heat treatment dies at austempering temperature T<sub>2</sub> to allow bainitic transformation to occur (see Fig. 1 and paragraph [0013]).

Here, temperature T<sub>1</sub> of the forming heat treatment dies in rapid cooling in the JP ‘214 is a temperature higher than martensitic transformation point M<sub>s</sub>, and hence this rapid cooling does not cause martensitic transformation. Therefore, the rapid cooling described in the JP ‘214 is not the quenching process, and the heating for holding the forming heat treatment dies at the austempering temperature T<sub>2</sub> after the above-described rapid cooling does not correspond to the tempering process.

Fig. 6 of the JP ‘214 (see, also, paragraphs [0053]-[0059]) shows apparatus 6 that has bainitizing portion 601 and martensitzing portion 602. In apparatus 6, martensitzing portion

---

<sup>1</sup> See *Illustrated Dictionary of Engineering Terms for Metals*, 543 (Institute for Materials Research, The Nikkan Kogyo Shinbun 1993), a copy of the relevant portion and the English language translation thereof are attached as Exhibit A.

<sup>2</sup> *Id.* at 544. See Exhibit A.

602 that requires tempering is provided with cooling pipe 64 for allowing cooling water to pass therethrough, and is not provided with a heating portion such as a heater for heating martensitizing portion 602. Therefore, with this apparatus, it is not possible to heat martensitizing portion 602 after a quenching process and perform a tempering process. If a heater at bainitizing portion 601 were used to perform heating, a bainitic structure would be affected adversely.

As described above, it is not possible to perform the tempering process after the quenching process in apparatus 6 shown in Fig. 6 of the JP '214. To perform tempering, it is necessary to use other dies or a furnace.

Based on the foregoing, the JP'214 does not identically disclose a manufacturing method of a thin component including all the limitations recited in independent claim 1. Dependent claims 2-8 and 10 are also patentably distinguishable over the JP'214 at least because these claim include all the limitations recited in independent claim 1. Applicants, therefore, respectfully solicit withdrawal of the rejection of the claims and favorable consideration thereof.

**Claim Rejection– 35 U.S.C. § 103**

Claim 9 and 13-16 were rejected under 35 U.S.C. § 103(a) as being unpatentable over the JP'214 in view of Grell et al. (U.S. Patent No. 6,682,227, hereinafter “Grell”).

Claims 9 and 13-16 depend on independent claim 1. Applicants thus incorporate herein the arguments made in response to the rejection of independent claim 1 under 35 U.S.C. § 102(b) for anticipation evidenced by the JP'214. The Examiner's additional comments and secondary reference to Grell do not cure the deficiencies of the JP'214. Applicants, therefore, respectfully solicit withdrawal of the rejection of the claims and favorable consideration thereof.

**Conclusion**

In view of the above remarks, Applicants submit that this application should be allowed and the case passed to issue. If there are any questions regarding this Amendment or the application in general, a telephone call to the undersigned would be appreciated to expedite the prosecution of the application.

To the extent necessary, a petition for an extension of time under 37 C.F.R. 1.136 is hereby made. Please charge any shortage in fees due in connection with the filing of this paper, including extension of time fees, to Deposit Account 500417 and please credit any excess fees to such deposit account.

Respectfully submitted,

McDERMOTT WILLIAMS & EMERY LLP

  
Tomoki Tanida  
Registration No. 60,453

Please recognize our Customer No. 20277  
as our correspondence address.

600 13<sup>th</sup> Street, N.W.  
Washington, DC 20005-3096  
Phone: 202.756.8000 SAB:TT:amz  
Facsimile: 202.756.8087  
**Date: October 10, 2008**

## Exhibit A

Partial English Translation of  
"Illustrated Dictionary of Engineering Terms for Metals"

Edited by Institute for Materials Research

THE NIKKAN KOGYO SHINBUN, LTD.

(pp. 543)

淬火・ quenching: An operation of heating steel to an austenitic structure, and then rapidly cooling the same in various types of cooling media is referred to as quenching. An object of the quenching is to inhibit ferritic, pearlitic, and bainitic transformations and generate a martensitic structure. Therefore, a cooling rate depending on hardenability and dimension of steel is adopted, so that various types of cooling media are used in quenching, and various types of operations are used to prevent quenching transformation and cracking.

(pp. 544)

焼入れ・tempering: An operation of heating the martensitic structure generated by quenching of steel to a temperature equal to or lower than  $A_1$  point, and cooling the same is referred to as tempering. This corresponds to a heat treatment with which carbide and others are precipitated from the martensitic structure having carbon and others solid-solved therein in a supersaturated manner, so as to allow the martensitic structure to be a more stable structure and recover toughness. Although this treatment is referred to as an aging treatment in other metals, an aging treatment of a martensite of steel is commonly referred to as tempering.

"Illustrated Dictionary of Engineering Terms for Metals"

The first impression of the first edition was published on November 20, 1988.

The third impression of the first edition was published on July 20, 1993.

Editor: Institute for Materials Research

Publisher: Toshio FUJIYOSHI

Publication Office: THE NIKKAN KOGYO SHINBUN, LTD.

# 金属材料技術用語辞典

金属材料技術研究所 撰

日刊工業新聞社

542

モン—モン

**モン** *Monoclinic* 面心立方の構造で割れらる鋼ニッケルマット ( $\text{Ni} + \text{Cu} = 80\%$ ,  $\text{Si} = 15\%$ ,  $\text{Fe}(\text{Cr}) = 5\%$ ) からニッケルを得るために、 $1400^\circ\text{C}$  K. R. L. Mond らによって開発された方法である。還元: 鹽酸鉄にニッケル(II)を溶かす。水素ガス ( $\text{H}_2 + \text{CO}$ ) で還元してスパンジ状のニッケルとし、さらに CO ガスと作用させて揮発性のニッケルカーボニル ( $\text{Ni}(\text{CO})_4$ ) の気体とし、 $473\text{ K}$  程度で加熱した珪藻土のうえで分解して、純度 99.9% 程度のニッケルを得る。

ヤギ—ヤキ

543

ヤ—ヤ

**插入法** *insertion* 鋼をベースメタルに埋めこむ技術。鋼を被覆中に他の元素を挿入する方法。その過程、クラウト、ペーパー、ペーパークランプ等を用いてハーフクラウド組織を生むことをやめる。そのため、鋼の插入部や接合部には冷延成形が適用されるので、伝導熱は接合部の冷却が悪いから、また挿入部变形や剥離を防止するため各種の方法が用いられる。

**插入熱** *quench aging* 高温から急冷して過渡的過飽和をつくり、室温あるいはそれより少し高い温度で保持したときに生ずる時熱現象。あるいはその操作を行う。冷却速度(%)

**純入法** *hardfacing* 別のクラウドサイト組織の形成により、被覆部を形成する。被覆部の表面は同一鋼の表面よりも約 2 倍の強度をもつていて、硬度も絶対硬さにおいては、通常被覆部はてつもクラウドサイト組織が生じることである。そのため、被覆部の小角による被覆部の硬化が現れる。すなわち質量変化が小さく、また被覆部の変形や剥離を防ぐ。

**純入熱** *hardfacing curve* 被覆部の挿入熱を算定するための一級導入試験(ジーニー試験)において、温度 20 mm 及び 100 mm の距離を…端から始めし、その平均端から平均距離に亘る被覆部の伸び率を示す曲線をいう。

**純入熱指数** *multiplying factor* 被覆部挿入量に対する合金属量の影響の大きさを示す値であり、合金属量によって正確比較して得られる。挿入熱指数を用いて、合金属量と被覆部の伸び率を算出することができる。

すなわち、その伸び率を算出するための被覆部の伸び率によって決定され、合金属量の挿入熱量を乗じることによって得られる。

純入熱曲線 *hardfacing parameter* 被覆部の挿入熱(%)と当該挿入(%)の関係。 $P = T$  ( $T$ :被覆部(%)、 $P$ :挿入(%))で表され、この場合の  $P$  を最ももじべつマークという。C は則確によって表なり、実質で求められる。因に鋼で開して T や P が変化しても C の値が変わらなければ挿入熱を算出される。

**純入式形** *quenching furnace* 挿入熱による急速加热によって生じる形状または形状の傾きである。これは熱ひずみ、変形ひずみ、実質時間のずれによるひずみのひずみが重複して熱帶を也じて挿入熱に対して大き影響を及ぼす形では作用せずあり、その結果には極力一定に分布する操作が必要である。



| 54                                                 | PT—TP | 55 |
|----------------------------------------------------|-------|----|
| preserves inspection 検査用器具                         |       |    |
| 233                                                |       |    |
| press distortion 遷れ干渉 121                          |       |    |
| press brake ブレーキプレス                                |       |    |
| 489 ブレスブレーキ 489                                    |       |    |
| press quenching プレス焼入れ                             |       |    |
| 489                                                |       |    |
| pressure casting process 加圧鍛造 77                   |       |    |
| pressure boundary 衝力バリア 10                         |       |    |
| pressure casting process 圧力鍛造 10                   |       |    |
| pressure die casting process 加圧ダイカスト法 77           |       |    |
| pressure dissolving process ダイカスト法 214             |       |    |
| pressure-temperature phase diagram 衝力-温度相図 10      |       |    |
| pressure test 鋼鉄試験 313                             |       |    |
| pressure tube material 衝力管材 10                     |       |    |
| pressure welding 衝撃 9                              |       |    |
| premixed water reactor 加圧水型原子炉 77                  |       |    |
| premold プレス加工 489                                  |       |    |
| primary coil 一次コイル 27                              |       |    |
| primary condent system 一次冷却系 30                    |       |    |
| primary crystal 初晶 263                             |       |    |
| primary eutectoid carbide 一次射出組織 25                |       |    |
| primary knock-on atom 一次はじき出L電子子 28                |       |    |
| primary operation 一次加工 27                          |       |    |
| primary particle 一次粒子 29                           |       |    |
| primary recrystallization 一次再結晶 27                 |       |    |
| primary solid solution 一次固溶体 27                    |       |    |
| primitive unit lattice 基本単位格子 119                  |       |    |
| principal axis 主ひずみ 259                            |       |    |
| principle of equal a priori probability 等確率の原理 385 |       |    |
| principal stress 主応力 236                           |       |    |
| probe coil ブローワイム 492                              |       |    |
| probe index 入射点 407                                |       |    |
| probe method プロービング法 492                           |       |    |
| process annealing 中間焼なまし 338                       |       |    |
| prod magnetization method プロダクションマグネット化法 491       |       |    |
| production index 生産性指標 294                         |       |    |
| product rule プロダクションルール 491                        |       |    |
| programmable memory 計算機内蔵メモリ 45                    |       |    |
| projected cell contact length 接触距離長 361            |       |    |
| projection welding プロジェクション溶接 489                  |       |    |
| proximal (Heiden) neurons 関節中性子 309                |       |    |
| proximally 附近 318                                  |       |    |
| proper process プロペラジ法 492                          |       |    |
| proportional counter 比例計数管 469                     |       |    |
| proportional limit 比例限度 460                        |       |    |
| projection potential 頂点電荷 611                      |       |    |
| PR thermocouple 領域熱電対 443                          |       |    |
| pseudo-binary phase diagram 二元系状図 117              |       |    |
| pseudo-potential 異なるシナリオ 119                       |       |    |
| P-S-N diagram P-S-N図 445                           |       |    |
| p-type semiconductor p型半導体 445                     |       |    |
| poly. 成形 173                                       |       |    |
| pulsating stress 脈動り応力 100                         |       |    |
| pulse バルス 436                                      |       |    |
| pulsed arc welding パルスアーケット溶接 436                  |       |    |
| pulse distribution analysis method パルス分布分析法 436    |       |    |
| pulse echo technique バルス反射法 436                    |       |    |
| pulse eddy current test パルス漏電流検査 436               |       |    |
| pulse magnet 439 ガンチ 430                           |       |    |
| pure iron 鋼鉄 243                                   |       |    |
| pure protein ピューレックタンパク 456                        |       |    |
| purification 清浄化 343                               |       |    |
| Purifier process プロファーフ法 492                       |       |    |
| pyrite 黄鉄鉱 65                                      |       |    |
| pyrolysis 燃料炭化 415                                 |       |    |
| pyroelectric -44リチウム 422                           |       |    |
| pyroelectricity 熱分解燃焼 421                          |       |    |
| pyrolytic carbon 熱分解炭素 413                         |       |    |
| pyrometry 热式測定 106                                 |       |    |
| pyrometer 高温計 174                                  |       |    |
| pyrophoric metal 火火金属 429                          |       |    |
| PZT ceramic PZTセラミック 438                           |       |    |
| Q                                                  |       |    |
| Q-BOP process Q-BOP法 136                           |       |    |
| quadrupole mass spectrometer 四重極質量分析計 226          |       |    |
| quality factor 質量係数 268                            |       |    |
| quantitative microscopy 測定顕微鏡 308                  |       |    |
| quantitative metallurgy 定量金属組織学 361                |       |    |
| quantum number 量子数 576                             |       |    |
| quasi cleavage fracture 斷へき面崩壊 119                 |       |    |
| quasi-crystal 液結晶 241                              |       |    |
| quasi-ordered structure 半定向構造 560                  |       |    |
| R                                                  |       |    |
| raceway レースウェイ 583                                 |       |    |
| radial distribution function 濃度関数 383              |       |    |
| radiation 放射線 612                                  |       |    |
| radiation sources 放射源装置 612                        |       |    |
| radiation thickness gauge 放射線厚さ計 512               |       |    |
| radioisotopic analysis 放射化分析 511                   |       |    |
| radiative waste 放射廃棄物 512                          |       |    |
| radiographic emulsion 放射線乳剤 512                    |       |    |
| radiograph 電子線写真 346                               |       |    |
| radiosotope 放射同位元素 612                             |       |    |
| radiouclide analysis 放射性分析 612                     |       |    |
| rafted structure ラフテッドストラクチャ 566                   |       |    |
| rail melt 鋼液浴 117 レール鋼浴 564                        |       |    |
| rain flow method レインフロー法 560                       |       |    |

| 70                                              | su—th                                           |
|-------------------------------------------------|-------------------------------------------------|
| surface wave probe 表面波探子                        | top 出露 239                                      |
| 459                                             | surface automated bonding TAB法                  |
| surface wave technique 表面波法                     | 323 フィルムキャリア法 465                               |
| 460                                             | lapping 出刷 228                                  |
| surfactants 表面活性剤 100                           | scratching 表色 507                               |
| susceptibility to SR cracking SR                | TD nickel TDニッケル 369                            |
| 割れ感受性 48                                        | Tec John T板手 358                                |
| suspension electrolysis 悬滴電解                    | telurium テルム 364                                |
| 171                                             | temperature by Kelvin ケルビン                      |
| Suzuki's effect 塗木効果 271                        | 温度 164                                          |
| sweat pH pH 271                                 | tempered martensite 桃もどし                        |
| sweetening pH ハーモティシング                          | ルテナサイト 346                                      |
| 209                                             | temper embrittlement 塗もどし脆                      |
| Sweetshay スイートハイ 209                            | 性 54                                            |
| swelling スwelling 219                           | tempering 塗もどし 64                               |
| switching contacts 切替点 62                       | tempering parameter 塗もどしパ                       |
| symmetry operation 対称操作                         | ラメラ 444                                         |
| 316                                             | temping 塗温压焼 346                                |
| synchrotron orbital radiationSOR                | tensile strength 依張力 186 51                     |
| 321                                             | tensile test 引張試験 453                           |
| synchrotron radiation シンクロトロ                    | tensile test at elevated temperature 高温引張試験 175 |
| ンの輻射光 351                                       | tension control 張力制御 346                        |
| synthetic aperture focusing                     | ternary metal 三元金属 323                          |
| technique 開口合焦法 77                              | tertiary recrystallization 三次再結                 |
| synthetic heat-affected zone test 再現熱影響領域試験 204 | 晶 211                                           |
|                                                 | test cell 試験コイル 224                             |
| tack welding 仮付溶接 100                           | test for brittle fracture parameter 塗也强度参数 368  |
| TAF steel TA鋼 321                               | testing of stress corrosion cracking 遠力学剥離試験 68 |
| tailing 尾端 448                                  | test of drawability 伸展性試験 468                   |
| Tammann furnace タマン炉                            | tetrahedral site 四面体位置 233                      |
| 332                                             | texture 細胞組織 326                                |
| Tanno level タノ準位 334                            | TFS ティフリーゲル 361                                 |
| tandem rolling タンデム圧延                           | thallium タリウム 331                               |
| 331                                             | the fine law of thermodynamics 热力学の第1法則 414     |
| tandem sccm タンデム充填 331                          | the first order reaction 一次反応 28                |
| tantalite タンタライト 331                            |                                                 |
| tantulite タンタル 331                              |                                                 |
| tantulon タンタロン 331                              |                                                 |

| th—th                              | 71                                            |
|------------------------------------|-----------------------------------------------|
| theoretical roughness 理論粗さ         | thermocompression bonding 热圧                  |
| 576                                | 着 409                                         |
| thermal analysis 热分析 413           | thermocouple 热電対 412                          |
| thermal barrier coating 遮熱コー       | thermoelectric refrigeration 热子               |
| ティング 234                           | 冷却 378                                        |
| thermal conductivity by conduction | thermoelectromotive force 热電電                 |
| electrons 伝導電子による热伝導               | 力 411                                         |
| 319                                | thermoelectric phenomenon 热電                  |
| thermoelectric detector 热電         | 気現象 413                                       |
| 感度測定出射 413                         | thermoelectric generation 热電发                 |
| thermal cycle 热サイクル 411            | 電 412                                         |
| thermal equilibrium concentration  | dissipative element 热耗衰換                      |
| of point defects 点欠陥の热平衡           | 電子 413                                        |
| 密度 472 热平均 415                     | thermoelectric cooling 热電冷却                   |
| Thermal fatigue ワイ 200             | 413                                           |
| thermally activated process 热活     | thermoelectric generation of                  |
| 化過程 410                            | electricity 热中性子 412                          |
| thermal neutron 热中性子 412           | thermoelectric transformation 热轉              |
| thermal neutron absorption         | 換反応 411                                       |
| coefficient 热中性子吸收断面積              | thermomechanical treatment 加工工程 93            |
| 412                                | thermonuclear fusion 热核融合                     |
| thermal ratchet 热チャック              | 409                                           |
| 414                                | thermonuclear fission 热核分裂                    |
| thermal shield 热遮へい体 411           | 409                                           |
| thermal shock 热激撃 411              | thermooetting resin 热固化レジン                    |
| thermal spike 温度スパイク 76            | 411                                           |
| 熱エバグ 411                           | the second law of thermodynamics 热力学の第2法則 414 |
| thermal spraying 涂射 351            | the second order reaction 二次反                 |
| thermal spray material 涂射材料        | 応 422                                         |
| 352                                | the third law of thermodynamics 热力学の第3法則 416  |
| thermal stress 热応力 499             | thickness シンクター 223                           |
| thermionic emission 热电子发射          | thick plate 半板 6                              |
| 412                                | thin film 薄膜 427                              |
| thermistor サーミスター 209              | thermocycling process テンソキヤス                  |
| thermite ナルミット法 209                | ティング法 333                                     |
| thermite process ナルミット法            | Thomson converter トマソン転炉                      |
| 209                                | 369                                           |
| thermite eutectic agent テル         | Thomson effect トムソン効果                         |
| ミット剤 364                           | 370                                           |
| thermite welding テルミット接            |                                               |

出版 金属材料技術用語辞典

NDC 566

1988年 11月20日 初版1刷発行  
1990年 7月20日 初版3刷発行

定価はケースに  
表示しております

◎著者 金属材料技術研究所  
発行者 露 吉 敦 先  
発行所 日刊工業新聞社  
東京都千代田区麹町二丁目10  
(郵便番号 102)  
電話 東京 (03) 7313  
郵便番号 東京 9-185070  
印刷・製本 大日本印刷株式会社

旗下、既刊本はお取り扱いいたします

ISBN4-526-03446-5