```
In [1]: import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        import pandas as pd
        from pandas import DataFrame
        from sklearn.preprocessing import minmax scale
        from matplotlib.colors import rgb2hex
        import mapclassify
        import adjustText as aT
        import matplotlib as mpl
        import plotly.graph objects as go
        from plotly.subplots import make subplots
        import re
        import plotly.figure factory as ff
        import plotly.express as px
        # incorporamos geopandas! geografía + pandas :)
        import geopandas as gpd
        from sklearn.preprocessing import normalize
        %matplotlib inline
        sns.set(context='notebook', style='white', palette='plasma')
        #https://plot.ly/python/v3/table/
        #https://seaborn.pydata.org/tutorial/color palettes.html
        #http://colorbrewer2.org/#type=sequential&scheme=Greens&n=3
        #https://jakevdp.github.io/PythonDataScienceHandbook/04.06-customizing-legends.html
```

```
In [3]: dataProsupuestoMunicipal = pd.read_excel('data/datos_municipales_Disponibilidad_Presupuesto_PerCapita.xls')
#dataProsupuestoMunicipal.head()
```

```
In [4]: dataPobreza = pd.read_excel('data/Indice_Pobreza_Porcentaje_Casem2018.xlsx')
#dataPobreza.head()
```

In [5]: zonas_eod = gpd.read_file('data/Comunas', encoding="utf-8",converters={'cod_comuna':str})
 zonas_eod.head()

Out[5]:

	objectid	shape_leng	dis_elec	cir_sena	cod_comuna	codregion	st_area_sh	st_length_	Region	Comuna	Provincia
0	48	170038.624165	16	8	6204	6	9.685774e+08	206184.271675	Región del Libertador Bernardo O'Higgins	Marchigüe	Cardenal Caro
1	29	125730.104795	15	8	6102	6	4.157446e+08	151911.576827	Región del Libertador Bernardo O'Higgins	Codegua	Cachapoal
2	30	63026.084422	15	8	6103	6	1.448565e+08	76355.326122	Región del Libertador Bernardo O'Higgins	Coinco	Cachapoal
3	31	89840.903562	15	8	6104	6	3.256572e+08	108874.623150	Región del Libertador Bernardo O'Higgins	Coltauco	Cachapoal
4	78	122626.493264	23	11	9121	9	6.990727e+08	156680.410681	Región de La Araucanía	Cholchol	Cautín
<											>

In [6]: zonas_eod = zonas_eod[zonas_eod.cod_comuna != 5104]
 zonas_eod = zonas_eod[zonas_eod.cod_comuna != 5201]

Out[7]:

	objectid	shape_leng	dis_elec	cir_sena	cod_comuna	codregion	st_area_sh	st_length_	Region	Comuna	Provincia
0	48	170038.624165	16	8	6204	6	9.685774e+08	206184.271675	Región del Libertador Bernardo O'Higgins	Marchigüe	Cardenal Caro
1	29	125730.104795	15	8	6102	6	4.157446e+08	151911.576827	Región del Libertador Bernardo O'Higgins	Codegua	Cachapoal
2	30	63026.084422	15	8	6103	6	1.448565e+08	76355.326122	Región del Libertador Bernardo O'Higgins	Coinco	Cachapoal
3	31	89840.903562	15	8	6104	6	3.256572e+08	108874.623150	Región del Libertador Bernardo O'Higgins	Coltauco	Cachapoal
4	78	122626.493264	23	11	9121	9	6.990727e+08	156680.410681	Región de La Araucanía	Cholchol	Cautín
<											>

```
codigoRegion=13
In [8]:
        datasetRegion=dataset[dataset['codregion']==numeroRegion]
        #########
        #datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'CALERA DE TANGO']
        #datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'COLINA']
        #datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'LAMPA']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'PIRQUE']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'CURACAVÍ']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'MARÍA PINTO']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'EL MONTE']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'TALAGANTE']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'ISLA DE MAIPO']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'PAINE']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'TILTIL']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'BUIN']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'SAN JOSÉ DE MAIPO']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO_x != 'MELIPILLA']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'SAN PEDRO']
        datasetRegion = datasetRegion[datasetRegion.MUNICIPIO x != 'ALHUÉ']
        ##########
        datasetRegion=datasetRegion.reset index()
        datasetRegion['Indice'] = datasetRegion.index
        #datasetRegion.head()
```

```
In [9]: datasetRegion["center"] = datasetRegion["geometry"].centroid
    datasetRegion_points = datasetRegion.copy()
    datasetRegion_points.set_geometry("center", inplace = True)
```

In [10]: datasetRegion.describe()

Out[10]:

	index	objectid	shape_leng	dis_elec	cir_sena	cod_comuna	codregion	st_area_sh	st_length_	CODIG
count	39.000000	39.000000	39.000000	39.000000	39.0	39.000000	39.0	3.900000e+01	39.000000	39.000
mean	132.641026	776.384615	36977.124416	10.589744	7.0	13167.820513	13.0	1.441608e+08	44560.435019	13167.820
std	49.757563	2872.995050	36655.028415	2.035448	0.0	127.208050	0.0	3.232383e+08	43922.543865	127.208
min	26.000000	288.000000	10795.433316	8.000000	7.0	13101.000000	13.0	9.056280e+06	12827.159439	13101.000
25%	108.500000	308.500000	13994.375779	9.000000	7.0	13110.500000	13.0	1.595480e+07	17545.506898	13110.500
50%	136.000000	318.000000	23724.899355	10.000000	7.0	13120.000000	13.0	3.337678e+07	28343.661508	13120.000
75%	164.500000	327.500000	46906.835635	12.500000	7.0	13129.500000	13.0	1.040717e+08	56445.848084	13129.500
max	227.000000	18258.000000	172581.447530	14.000000	7.0	13605.000000	13.0	1.469677e+09	206660.187466	13605.000
<										>

In [11]: datasetRegion.head()

Out[11]:

	index	objectid	shape_leng	dis_elec	cir_sena	cod_comuna	codregion	st_area_sh	st_length_	Region	 Provincia
0	26	330	13987.326781	10	7	13129	13	1.424341e+07	16812.167615	Región Metropolitana de Santiago	 Santiago
1	36	331	13311.641304	13	7	13130	13	1.389538e+07	15988.816037	Región Metropolitana de Santiago	 Santiago
2	47	332	11733.486710	13	7	13131	13	9.056280e+06	14061.528858	Región Metropolitana de Santiago	 Santiago
3	56	309	11488.695747	9	7	13108	13	1.068637e+07	14088.417488	Región Metropolitana de Santiago	 Santiago
4	60	310	12797.595762	13	7	13109	13	1.454185e+07	15442.412755	Región Metropolitana de Santiago	 Santiago
5 r	ows × 2	1 column	S								
<											>

Pobreza

In [13]: len(datasetRegion)

Out[13]: 39

```
In [14]:
         datasetRegion['IndiceNombre'] = datasetRegion['Indice'].map(str) +':'+ datasetRegion['Comuna']
         datasetRegion['NombreIndice']=datasetRegion['Comuna']+':'+ datasetRegion['Indice'].map(str)
         fig = go.Figure(data=[go.Table(
             header=dict(values=list(datasetRegion[['Comuna']].columns),
                          fill color='lightskyblue',
                         line_color='#87CEEB',
                          align='left'),
             cells=dict(values=[datasetRegion.IndiceNombre],
                        fill color='white',
                         line_color='#87CEEB',
                         align='left'))
         ])
         fig.update_layout(width=320, height= (26 * len(datasetRegion) ), font=dict(
                 family="Courier New, monospace",
                 size=14,
                 color="black"
         fig.show()
```

Comuna 0:San Joaquín 1:San Miguel 2:San Ramón 3:Independencia 4:La Cisterna 5:Peñalolén 6:Providencia 7:La Reina 8:Calera de Tango 9:Colina 10:Santiago 11:Lampa 12: Puente Alto 13:Huechuraba 14:San Bernardo 15:Cerrillos 16:Cerro Navia 17:Vitacura 18:Conchalí 19:El Bosque 20:Estación Central 21:La Florida 22:La Granja 23:La Pintana 24:Las Condes 25:Lo Barnechea 26:Lo Espejo

27:Lo Prado
28:Macul
29:Maipú
30:Ñuñoa
31:Pedro Aguirre
Cerda
32:Pudahuel
32:Pudahuel 33:Quilicura

```
In [15]: | ax = datasetRegion.plot(figsize=(15, 15), column='Indice Pobreza Porcentaje Casem2018', cmap=colorSchema,
                                 legend=True, linewidth=1, edgecolor='#87CEEB', scheme=schemev,
                                 k=numeroDivisiones)
         #plt.title('Porcentaje de Pobreza', fontsize=fontSizeTitulo)
         leg = ax.get legend()
         leg.set bbox to anchor((1., 0.45, 0.2, 0.2))
         #'box plot', 'equal interval', 'fisher jenks', 'fisher jenks sampled', 'headtail breaks',
         # 'jenks caspall', 'jenks caspall forced', 'jenks caspall sampled', 'max p classifier',
         # 'maximum breaks', 'natural breaks', 'quantiles', 'percentiles', 'std mean', 'user defined'
         #Accent, Accent r, Blues, Blues r, BrBG, BrBG r, BuGn, BuGn r, BuPu, BuPu r, CMRmap,
         #CMRmap r, Dark2, Dark2 r, GnBu, GnBu r, Greens, Greens r, Greys, Greys r, OrRd, OrRd r,
         #Oranges, Oranges r, PRGn, PRGn r, Paired, Paired r, Pastel1, Pastel1 r, Pastel2, Pastel2 r,
         #PiYG, PiYG r, PuBu, PuBuGn, PuBuGn r, PuBu r, PuOr, PuOr r, PuRd, PuRd r, Purples, Purples r,
         #RdBu, RdBu r, RdGy, RdGy r, RdPu, RdPu r, RdYlBu, RdYlBu r, RdYlGn, RdYlGn r, Reds, Reds r, Set1,
         #Set1 r. Set2, Set2 r. Set3, Set3 r. Spectral, Spectral r. Wistia, Wistia r. YlGn, YlGnBu, YlGnBu r. YlGn r.
         #YlOrBr, YlOrBr r, YlOrRd, YlOrRd r, afmhot, afmhot r, autumn, autumn r, binary, binary r, bone, bone r,
         #brq, brq r, bwr, bwr r, cividis, cividis r, cool, cool r, coolwarm, coolwarm r, copper, copper r, cubehelix,
         #cubehelix r, flaq, flaq r, qist earth, qist_earth_r, gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_nc
         #qist ncar r, qist rainbow, qist rainbow r, qist stern, qist stern r, qist yarq, qist yarq r, qnuplot, qnuplo
         t2.
         #anuplot2 r, anuplot r, aray, aray r, hot, hot r, hsv, hsv r, icefire, icefire r, inferno, inferno r, jet, je
         tr.
         #magma, magma r, mako, mako r, nipy spectral, nipy spectral r, ocean, ocean r, pink, pink r, plasma, plasma
         #prism, prism r, rainbow, rainbow r, rocket, rocket r, seismic, seismic r, spring, spring r, summer, summer
         r,
         #tab10, tab10 r, tab20, tab20 r, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight,
         #twilight r, twilight shifted, twilight shifted r, viridis, viridis r, vlag, vlag r, winter, winter r
         #vlim = (-3970000,-3920000) # Latitude
         #xlim = (-7880000,-7830000) # Longitude
         #ax.set xlim(xlim)
         #ax.set vlim(vlim)
```

Out[15]: 1


```
In [16]: | ax = datasetRegion.plot(figsize=(15, 15), column='IADM10 (TAS) Disponibilidad Presupuestaria Municipal por Ha
        bitante (M$) 2018',
                              cmap=(colorSchema+' r'),
                               legend=True, linewidth=1, edgecolor='#87CEEB', scheme=schemev,
                               k=numeroDivisiones)
        #plt.title('Presupuesto por Habitante', fontsize=fontSizeTitulo)
        leg = ax.get legend()
        leg.set bbox to anchor((1., 0.45, 0.2, 0.2))
        #vlim = (-3970000,-3920000) # Latitude
        #xlim = (-7880000,-7830000) # Longitude
        #ax.set xlim(xlim)
        #ax.set ylim(ylim)
        ax.set axis off()
        texts = []
        for x, y, label in zip(datasetRegion points.geometry.x, datasetRegion points.geometry.y,
                             datasetRegion points["Comuna"]):texts.append(plt.text(x, y, label, fontsize = fontSize
        EnMapa,
                                                                              color='black'))
        aT.adjust text(texts, force points=0.3, force text=0.5, expand points=(0,1), expand text=(0,0), arrowprops=di
        ct(arrowstyle="-", color='grey', lw=1))
        \#aT.adjust\ text(texts,\ force\ points=0.3,\ force\ text=0.5,\ expand\ points=(0,1),\ expand\ text=(0,0))
```

Out[16]: 1

In [18]: hist = chartdf.hist(bins=6)

In [20]: hist = chartdf.hist(bins=4)

Out[42]: <Figure size 720x720 with 0 Axes>

<Figure size 720x720 with 0 Axes>