计算机专业导论

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

第3讲 冯.诺依曼计算机: 机器级程序及其执行

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

本讲学习什么?

---冯.诺依曼计算机: 机器级程序及其执行

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

基本目标: 理解程序是如何被执行的

基本思维: 机器级算法与程序→机器指令与指令系统→存储器→存储程序→运算器与控制器→机器级程序的执行; 算法程序化→程序指令化→指令存储化→执行信号化

冯.诺依曼计算机: 思想与构成

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

冯.诺依曼计算机: 思想与构成 (1)什么是冯.诺依曼计算机?

冯.诺依曼(Von.Neumann)计算机

- ◆1944~1945年间,冯.诺伊曼提出 "存储程序"的计算机设计思想, 并进行了实践,现代计算机普遍来 讲属于冯.诺伊曼机体系。
- ◆冯.诺伊曼机的基本思想:
 - ●运算和存储分离
 - 存储程序: 指令和数据以同等地位事先存于存储器,可按地址寻访,连续自动执行。
 - ●五大部件构成: 运算器、控制器、存储器、输入设备和输出设备
 - ●指令和数据用二进制表示,指令由操作码和地址码组成
 - •以运算器为中心,控制器负责解释指令,运算器负责执行指令

冯.诺依曼计算机: 思想与构成

(2)冯.诺依曼计算机的结构是怎样的?部件有哪些?部件的关系怎样?

以运算器为中心的冯.诺依曼计算机构成图

冯.诺依曼计算机: 思想与构成

(3)存储器为中心与运算器为中心相比的优点在哪里?

以存储器为中心的现代计算机构成图

同样是五个部件,以不同的结构来连接,便体现了不同的性能----这就是"系统":强调"结构",强调部件连接后的整体性、协同性

冯.诺依曼计算机: 思想与构成 (4)冯.诺依曼计算机的工作原理是怎样的?

工作原理

	存储地址	存储内容(以语义形式表述)			
	0	指令: 取出 125 号单元的操作数 (即操作数x)至运算器中			
	1	指令: 乘以 126 号单元的操作数 (即操作数 a, 得xxa 在运算器中)			
	125	数据: 数x			
	126	数据: 数 a			

- (1) 启动控制器工作
- (2) 发送第1条指令地址
- (3)取出指令并分析指令
- (4) 执行指令: 发送操作数x所在地址
- (5) 执行指令: 取出操作数x

- (6) 发送下一条指令地址
- (7)取出指令并分析指令
- (8)执行指令: 发送操作数a所在地址
- (9)执行指令:取出操作数a
- (10)执行指令: 通知运算器计算a乘x
- (11)继续后续指令的取指、执行…

冯.诺依曼计算机: 思想与构成 (5)什么是CPU? 现代计算机的几大部件是什么?

计算机的基本部件

- ◆CPU: 中央处理单元(Central Process Unit),将运算器和控制器集成在一块芯片上,形成微处理器。
- ◆CPU、主存储器、I/O设备及总线成为现代计算机的四大核心部件。

现代计算机里面,一个微处理器(芯片)可能包含多个CPU,即多核。

冯·诺依曼计算机: 思想与构成 (6)小结

自动存取:存储器的工作原理

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

自动存取:存储器的工作原理 (1)什么是存储器?

概念映射

存储器	宿舍楼
存储单元	房间
存储位(存0或存1)	床位(住人/不住人)
地址编码 $A_{n-1}A_0$	房间号
单元控制线W _i	房间钥匙
输出缓冲器	公共的走廊及大门

从存储器与宿舍楼的概念对比中,你能发现什么异同吗?

一个存储单元的输出D_{m-1}....D₀

自动存取:存储器的工作原理 (2)存储器是怎样存储0和1的?又是怎样控制存取的?

存储器内部的实现示例

- ◆当地址线和数据线间连接有二极管时,则存储的是1,否则,存储的是0
- ■当地址线和数据线间连接有二极管时,由地址线决定其是输出1或0,即:当地址线为高电平时,则输出1,而当地址线为低电平时,则输出0;
- ■没有连接的,则不受地址线 影响,始终输出低电平**0**;

二极管ROM结构示例 (2位地址控制4个信息单元,每个信息单元是4位0/1码)

自动存取:存储器的工作原理 (2)存储器是怎样存储0和1的?又是怎样控制存取的?

存储器内部的实现示例

将地址编码转换为地址单元控制信号 类比:将房间号转换成房间钥匙

二极管ROM结构示例 (2位地址控制4个信息单元,每个信息单元是4位0/1码)

自动存取:存储器的工作原理 (3)存储器芯片容量不够了怎么办?

用多个存储器芯片可搭建容量更大的存储器

利用4个256x8存储器芯片扩展出1024x8存储器的电路图

问:从概念的角度,你能说说存储器扩展要解决什么问题吗?

提示: 地址编码空间, 存储字长.

自动存取:存储器的工作原理

(4)小结?

机器指令与机器级程序

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

机器指令与机器级程序 (1)如何计算一个运算式?

问题---计算机如何计算一个运算式?

$$8 \times 3^2 + 2 \times 3 + 6$$

机器指令与机器级程序 (2)什么是算法?

算法---从冯.诺依曼计算机的角度

可在机器上执行的求解问题的操作规则及步骤,被称为可执行的算法。

计算 $8 \times 3^2 + 2 \times 3 + 6 = ((8 \times 3) + 2) \times 3 + 6$

计算方法1

Step1: 取出数3至运算器中

Step2: 乘以数3在运算器中

Step3: 乘以数8在运算器中

Step4: 存结果8×3²在存储器中

Step5: 取出数2至运算器中

Step6: 乘以数3在运算器中

Step7: 加上(8×32)在运算器中

Step8: 加上数6在运算器中

计算方法2

Step1: 取出数3至运算器中

Step2: 乘以数8在运算器中

Step3: 加上数2在运算器中

Step4: 乘以数3在运算器中

Step5: 加上数6至运算器中

问:怎么看待算法节省的步数? ---算法需要"优化"

机器指令与机器级程序 (3)机器指令是怎样的?

机器指令 - 机器语言

- ◆ 机器指令是CPU可以直接分析并执 行的指令,一般由0和1的编码表 示。
- ◆ 指令≈操作码+地址码; 地址码

000001 00 00000111

000100 00 00001010

(如取数,加法等操作) (操作中的数据的来源)

000001 0000000100

000001 0000001100

000001 0000001000

Ħ	L器指令	对应的功能	
操作码	地址码		
取数	α	α号存储单元的数 取出送到	
000001	000000100	运算器;	
存数	β	运算器中的数 存储到 β号存	
000010	0000010000	储单元;	
加法	γ	运算器中的数 加上 γ号存储	
000011	0000001010	单元的数,结果保留在运算器;	
乘法	δ	运算器中的数 乘以 δ号存储	
000100	0000001001	单元的数,结果保留在运算器;	
打印		打印指令	
000101	0000001100	וויאונ	
停机		停机指令	
000110		15-17に1日マ	

机器指令与机器级程序 (4)怎样用机器指令表达算法?

战德臣 教授

$((8 \times 3) + 2) \times 3 + 6$

机器级

计算方法2

step1: 取出数3至运算器中

Step2: 乘以数8在运算器中

Step3: 加上数2在运算器中

Step4: 乘以数3在运算器中

Step5: 加上数6至运算器中

机器 级程序

000001 0000001000 000100 0000001001 000011 0000001010 000100 0000001000 000011 0000001100 000101 0000001100 000110

机	器指令	对应的功能	
操作码	地址码		
取数	α	α号存储单元的数 取出送到	
000001 0000000100		运算器;	
存数	β	运算器中的数 存储到 β号存	
000010	0000010000	储单元;	
加法	γ	运算器中的数 加上 γ号存储	
000011	0000001010	单元的数,结果保留在运算器;	
乘法	δ	运算器中的数 乘以 δ号存储	
000100	0000001001	单元的数,结果保留在运算器;	
打印		打印指令 机器	
000101	0000001100	1) WHE	
		指令	
停机		存机长人	
000110		- 停机指令	

- "3"存储在8号存储单元
- "8"存储在9号存储单元
- "2"存储在10号存储单元
- "6"存储在11号存储单元

机器指令与机器级程序

(5)将机器级程序和数据装载进存储器中?

战德臣 教授

存储器

计算8×3²+2×3+6的程序; 计算ax²+bx+c的程序。

机器 级程序

对应的十	存储单元的地址	存储单元的内容				
进制地址		操作码	地址码	说明 ————————————————————————————————————		
0	00000000 00000000	000001	0000001000	指令:取出8号存储单元的数(即3)至运算器中		
1	00000000 00000001	000100	0000001001	指令:乘以9号存储单元的数(即8)得8×3在运算器中		
2	00000000 00000010	000011	0000001010	指令:加上10号存储单元的数(即2)得8×3+2在运算器中 指令:乘以8号存储单元的数(即3)得(8×3+2)×3在运算器中		
3	00000000 00000011	000100	000001000			
4	00000000 00000100	000011	0000001011	指令:加上11号存储单元的数(即6)得8×3²+2×3+6至运算器中		
5	00000000 00000101	000010	0000001100	指令: 将上述运算器中结果存于 12 号存储单元		
6	00000000 00000110	000101	0000001100	指令: 打印		
7	00000000 00000111	000110		指令: 停机		
8	00000000 00001000	000000	0000000011	000000011 数据:数3存于8号单元		
9	00000000 00001001	000000 0000001000 000000 0000000010 000000 0000000110		数据:数8存于9号单元	程序与数据以	
10	00000000 00001010			数据:数 2 存于 10 号单元	同等地位存于	
11	00000000 00001011			数据:数6存于11号单元	存储器中	
12	00000000 00001100			数据: 存放结果		

机器指令与机器级程序

(6)高级语言程序和机器有什么关系呢?

高级语言程序的示例

计算ax²+bx+c

其中a,x,b,c是变量。

变量的地址是由编译程序在编译过程中自动分配的,也即是说编译器根据当时编译的情况,分配a,x,b,c为8号,9号,10号,11号存储单元,并产生上述的机器指令程序

```
Main() {
int result;
         //定义变量 result
         //定义变量 x
int x;
         //定义变量 a
int a;
         //定义变量 b
int b;
        //定义变量 c
int c;
x=3; //将3赋值给x
//数据赋值过程中也可在运行过程中进行
a=8; //将8赋值给a
b= 2;
        //将 2 赋值给 b
c= 6; //将 6 赋值给 c
result = a * x * x + b * x + c;
// 计算 a * x * x + b * x + c 并赋值给 result
print result; //打印 result 的值
```

机器指令与机器级程序 (7)小结?

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

(1)装配一台计算机--运算器

- □(数据)寄存器
- □算术逻辑部件

$$R_0 = R_1 \theta R_0$$

(赋值, R₀既是一个操作数,又保存运算结果)。 其中θ为算术、逻辑及移位运算符

(2)装配一台计算机一控制器

- □程序计数器PC
- □指令寄存器
- □信号控制器
- □时钟与信号发生器

注:

PC: 程序计数器---存储下一要 执行指令的地址

IR: 指令寄存器---存储当前指

令内容

信号控制线

数据线

—— 地址线

战德臣 教授

机器级程序的执行机制 (4)指令是怎样被执行的?

指令执行

- ◆不同的指令,由一组不同的电信号构成
- ◆同一指令的电信号在时钟与节拍的控制下按次序产生与传输
- ◆一条指令占用一个或多个机器周期,一个机器周期又分为多个节拍
- ◆最小的时间区隔单位--时钟周期

时钟周期、 节拍与 机器周期

指令执行的信号化--即在节拍控制下有序地发出各种电信号

问: 机器的"主频"指的是什么?

(5)机器级程序被装载进存储器中

计算机各部件内部的简单构成关系

- □寄存器
- □算术逻辑部件
- □程序计数器PC
- □指令寄存器
- □信号控制器
- □时钟与信号发生器
- □存储单元地址
- □存储单元内容

战德臣

哈尔滨工业大学 教授.博士生导师 教育部大学计算机课程教学指导委员会委员

(2)第1条指令的读取

战德臣 教授

(4)第2条指令的读取

(5)第2条指令的执行

机器级程序的执行过程模拟 (7)小结?

机器级程序的执行过程模拟 (8)本讲总结?

基本目标: 理解程序是如何被执行的

基本思维: 机器级算法与程序→机器指令与指令系统→存储器→存储程序→运算器与控制器→机器级程序的执行; 算法程序化→程序指令化→指令存储化→执行信号化