Problem

Show that A is decidable iff $A \leq_m 0^*1^*$.

Step-by-step solution

Step 1 of 3

Decidability

Assume $B = 0^*1^*$. Thus it is required to prove that A is decidable iff $A \leq_m B$.

Solution can be divided into two parts.

1: If A is decidable then $A \leq_m B$.

2: If $A \leq_m B$ then A is decidable.

Comment

Step 2 of 3

Part 1: If A is decidable then $A \leq_m B$.

 $\mbox{Proof: Firstly define a function } f \mbox{ as follows:} \\$

$$f(s) = 01$$
 if $s \in A$
 $f(s) = 10$ otherwise.

Since A is decidable, decider can be used for A to compute f . Also, $s \in A$ iff $f(s) \in B$.

Hence, f is mapping reduction from A to B.

Comment

Step 3 of 3

Part 2: If $A \leq_m B$, then A is decidable.

Proof: Since $A \leq_m B$, there exist a function f, such that $w \in A$ iff $f(w) \in B$.

Now consider Turing Machine M:

M= On input w

1. Compute f(w)

2. If f(w) is in form of 0^*1^* , then accept, Otherwise, reject.

Now

$$w \in A$$

 $\Leftrightarrow f(w)$ is of the form 0^*1^*

 $\Leftrightarrow M$ accept w.

Thus, M decides A.

Comment