AGEC 3603 Agricultural Finance Lecture 1 - Introduction

Rodney Beard

September 20, 2016

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

igency incory

Capital structure

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

_ . . .

- Sole proprietorship
- Partnership
- Corporation

Why do firms exist?

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Agency theor

- ▶ Transactions cost argument
- Hiring labor
- Markets vs. Firms Argument

- V(I) is the firm value achieved with investment I (Firm value is generally the discounted value of future profits)
- ► Cost C(X) of providing non-pecuniary benefits X, i.e. managerial "perks".
- ▶ Value of these benefits to the firm P(X)
- ▶ Net benefits B(X) = P(X) C(X)
- Optimal level of non-pecuniary benefits

$$\frac{\partial B(X^*)}{\partial X^*} = \frac{\partial P(X^*)}{\partial X^*} - \frac{\partial C(X^*)}{\partial X^*} = 0$$

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Agency theory

$$F(X) = B(X^*) - B(\hat{X})$$

Selling part ownership

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Agency theory

- Owner/operator sells α shares
- ▶ Investor receives αV in return for investing I

- firm organized as sole proprietor
- Owner "chooses" mix of firm value V and "perks" F to maximize utility
- Loss in firm value due to sale of shares (think of how selling shares reduces stock price) $\bar{V}-V_0$

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost :heory

Agency theory

- most farms are owner/operated
- Exception sharecropping
- Sharecropping models address similar issues but analysis is slightly different
- sharecropping doesn't involve sale of shreas as such but is more a tenant farmer/absentee landlord relationship

- Increased need for capital and growth in scale could necessitate sale of shares
- Then the Jensen and Meckling model might apply
- New forms of finance for farms, crowdfunding via internet (Fquare, Barnraiser, Farmfund, AgFunder)

Debt choice

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Agency theor

- How do firms choose their capital structure
- Why do agricultural firms rely primarily on debt?
- Modigliani-Miller theorem

Modigiliani-miller theorem - Proposition 1

The Value of Assets is independent of the combination of debt and equity.

Business Firms		
Assets Liabilities		
Productive capital	Debt owed to households	
	Equity in firms owned by households	

Households			
Assets Liabilities			
Debt of firms	Household net worth		
Equity in firms			

Assets	Liabilities	
Productive of	apital	Household net worth

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost heory

Modigliani-miller Proposition I

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Agency theol

Debt choice

WACC is independent of the Debt-Equity ratio

theory

Consider 2 firms: Firm 2 is levered firm 1 isn't. Assume

$$V_2 > V_1$$

Step 1: Investor invests I in company 2 and gains a return $Y_2 = \alpha (I - rD_2)$, investor not firm borrows D_2 is the investors debt

- Step 2: Investor sells αE_2 equity and buys $e_1 = \alpha (E_2 + D_2)$ of shares in company 1.
 - Return to investor is

$$Y_1 = \frac{\alpha(E_2 + D_2)}{E_1}I - r\alpha D_2 = \alpha \frac{V_2}{V_1}I - r\alpha D_2$$

If $V_2 > V_1$ then $Y_1 > Y_2$

Owner's of second company will their shares in 2 to buy shares in 1 reducing V_2 .

What if $V_1 > V_2$ Investor obtains a return

$$Y_1 = \alpha I$$

Investor exchanges shares in company 1 for shares in company 2 and bonds

$$e_2 = \frac{E_2}{V_2} e_1$$

and

$$d=\frac{D_2}{V_2}e_1$$

Then

$$Y_2 = \alpha \frac{E_1}{V_2} I$$

Is Y_1 or Y_2 bigger?

AGEC 3603 Agricultural Finance

Rodney Beard

Transactions cost theory

Debt choice

So investor sells shares in company 1 and buy shares and debt in company 2. Undoing "leverage" in company 1.

Conclusion:

Arbitrage leads to value of levered and unlevered firms being eauted

$$WACC = \frac{D}{D+E}k_D + \frac{E}{D+E}k_E$$

Rearrange to get $k_E = (WACC - \frac{D}{D+E}k_D)\frac{D+E}{E}$

$$k_E = WACC \frac{D+E}{E} - \frac{D}{E} k_D$$

$$k_E = WACC \frac{D}{E} + WACC - \frac{D}{E} k_D$$

$$= (WACC - k_D)\frac{D}{E} + WACC$$

This is also known as the leverage $\frac{D}{E}$ formula

- Increasing interest rates (will impact cost of debt) depending on loan conditions
- ► This reduces cost of equity