DCC059 – Teoria dos Grafos Prof. Stênio Sã Rosário Furtado Soares

Figura 5: Um grafo G e sua sequência de grau

Note que, embora um grafo tenha uma única sequência de grau, diferentes grafos podem apresentar uma mesma sequência de grau. Por exemplo:

Figura 6: Diferentes grafos com a mesma sequência de grau <3, 3, 2, 2, 2, 2 >

Teorema 1: Um grafo simples não trivial G deve ter pelo menos um par de vértices com o mesmo grau.

Prova: exercício.

Teorema 2 (Teorema da soma dos graus de Euler): a soma dos graus dos vértices de um grafo é o dobro do número de arestas.

Prova: cada aresta contribui com duas unidades no somatório.

Corolário 1: Em um grafo, existe um número par de vértices de grau ímpar.

Prova: exercício.

Corolário 2: A sequência de grau de um grafo é uma sequência finita e decrescente de inteiros não negativos cuja soma é par.

Prova: exercício.

Pode-se afirmar ainda que toda sequência finita e decrescente de inteiros não negativos cuja soma é par é sequência grau de algum grafo.

Teorema 3: Seja $< d_1, d_2, ..., d_n >$ uma sequência decrescente finita de inteiros não negativos. Existe um grafo de vértices $v_1, v_2, ..., v_n$ tal que $d(v_i) = d_i$, para i = 1, ..., n.

DCC059 – Teoria dos Grafos Prof. Stênio Sã Rosário Furtado Soares

Prova: para cada vértice v_i , se d_i é par, insira $d_i/2$ self-loops em v_i , caso contrário, insira $(d_i-1)/2$ self-loops. Como existe um numero par de vértices de grau ímpar, o grafo pode ser completado tomando-se os vértices de grau ímpar aos pares, incluindo uma aresta incidindo em cada par.

Por exemplo, considere a sequência < 5, 4, 3, 3, 2, 1, 0>. Inicie com sete vértices isolados, v_1 , v_2 , ..., v_7 . Para os termos pares, inserimos o número apropriado de self-loops. Assim, v_2 recebe dois, v_5 recebe um e v_7 zero (vértice isolado). Para os quatro vértices de grau ímpar, tomamo-los aos pares e inserimos uma aresta para em cada par de vértices. O grafo é concluído inserindo o número de self-loops adequado em cada um destes vértices

Figura 7: Construção de um grafo a partir da sequência de grau

Def.: O **grau de entrada** de um vértice v em um digrafo, denotado $d^+(v)$, é o número de arcos direcionados para v; o **grau de saída** do vértice v, denotado $d^-(v)$, é o número de arcos cuja origem é v. Cada self-loop em um vértice de um digrafo conta uma unidade no seu grau de entrada e uma unidade no grau de saída.

Figura 8: Grau de entrada e grua de saída em um digrafo.

Teorema 4: em um digrafo *G*, a soma dos graus de entrada e a soma dos graus de saída, ambas são igual ao número de arcos de *G*.

Prova: Exercício

Def: dado um Grafo G=(V,E), a **ordem** de G é dada por |V|=n (número de vértices de G).

Def: seja um Grafo G=(V,E) e $W\subseteq V$. W é uma **cobertura de vértices** de G se toda aresta de E incide em pelo menos um nó de W.