GNN谱图分析

刘闯 chuangliu@whu.edu.cn 2019.03.08

Reference

- 1. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, 2018, AAAI (P3 P8)
- 2. Revisiting Graph Neural Networks: All We Have is Low-Pass Filters Node Classification, 2019 (P9 P11)
- 3. Graph Neural Networks Exponentially Lose Expressive Power for Node Classification.

Laplacian Smoothing

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, 2018, AAAI

GCN vs FCN

FCN:
$$H^{(l+1)} = \sigma \left(H^{(l)} \Theta^{(l)} \right)$$

GCN:
$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} \Theta^{(l)} \right)$$

One-layer GCN

1. 通过图卷积生成特征 Y

$$Y = \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X$$

2. 将特征矩阵 Y 输入到全连接网络

Laplacian Smoothing

* The Laplacian smoothing on each channel of the input features is defined as:

$$\hat{\mathbf{y}}_i = (1-\gamma)\mathbf{x}_i + \gamma\sum_j \frac{\tilde{a}_{ij}}{d_i}\mathbf{x}_j \quad (\text{ for } 1 \leq i \leq n)$$
 γ 控制自身特征和邻居特征之间权重

***** Matrix form :

$$\hat{Y} = X - \gamma \tilde{D}^{-1} \tilde{L} X = \left(I - \gamma \tilde{D}^{-1} \tilde{L} \right) X$$

 $\gamma = 1$: 只利用邻居节点特征

$$\hat{Y} = \tilde{D}^{-1} \tilde{A} X$$

* 归一化改为对称归一化

$$\hat{Y} = \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X$$

实际就是卷积生成特征

Laplacian Smoothing

Graph convolution a special form of Laplacian smoothing

- 1. Laplacian smoothing 计算邻居节点的平均特征作为新特征
- 2. 由于同一 cluster 中的顶点往往紧密相连,平滑使得它们的特征相似,这使得后续的分类任务更加容易。

How many convolutional layers

层数不是越多越好:

- 1. 多层难于训练
- 2. 层数太多, Laplacian smoothing 将不同 cluster 的顶点特征趋于相同

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

2-layer 的时候分的较好,之后开始混合在一起

How many convolutional layers

By repeatedly applying Laplacian smoothing many times, the features of vertices within each connected component of the graph will converge to the same value

Suppose that a graph \mathcal{G} has k connected components $\{C_i\}_{i=1}^k$, and the indication vector for the i-th component is denoted by $\mathbf{1}^{(i)} \in \mathbb{R}^n$. This vector indicates whether a vertex is in the component C_i , i.e.,

$$\mathbf{1}_{j}^{(i)} = \begin{cases} 1, v_j \in C_i \\ 0, v_j \notin C_i \end{cases} \tag{11}$$

Theorem 1. If a graph has no bipartite components, then for any $\mathbf{w} \in \mathbb{R}^n$, and $\alpha \in (0,1]$,

$$\lim_{m \to +\infty} (I - \alpha L_{rw})^m \mathbf{w} = [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \dots, \mathbf{1}^{(k)}] \theta_1,$$

$$\lim_{m \to +\infty} (I - \alpha L_{sym})^m \mathbf{w} = D^{-\frac{1}{2}} [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \dots, \mathbf{1}^{(k)}] \theta_2,$$

where $\theta_1 \in \mathbb{R}^k$, $\theta_2 \in \mathbb{R}^k$, i.e., they converge to a linear combination of $\{\mathbf{1}^{(i)}\}_{i=1}^k$ and $\{D^{-\frac{1}{2}}\mathbf{1}^{(i)}\}_{i=1}^k$ respectively.

Solutions

Graph convolution is a localized filter

☐ 层数少了,在 label 数据少的时候,难以将 Label 传播出去

Co-Train a GCN with a Random Walk Model

Random walk 可以捕捉网络的全局特征

- 1. 先 rw 每一类有标签节点最接近的一些节点,
- 2. 加入训练集,进行训练

GCN Self-Training

更好的利用训练样本

- 1. 训练 GCN,得到结果
- 2. 将最可信的结果看作 label 数据
- 3. 重复训练

Union + Intersection

Algorithm 1 Expand the Label Set via ParWalks

- 1: $P := (L + \alpha \Lambda)^{-1}$
- 2: for each class k do
- 3: $\boldsymbol{p} := \sum_{j \in \mathcal{S}_k} P_{:,j}$
- 4: Find the top t vertices in p
- 5: Add them to the training set with label k
- 6: end for

Algorithm 2 Expand the Label Set via Self-Training

- 1: $\mathbf{Z} := GCN(X) \in \mathbb{R}^{n \times F}$, the output of GCN
- 2: for each class k do
- 3: Find the top t vertices in $Z_{i,k}$
- 4: Add them to the training set with label k
- 5: end for

GNN: Low-Pass Filter

Revisiting Graph Neural Networks: All We Have is Low-Pass Filters

Our results indicate that graph neural networks only perform low-pass filtering on feature vectors and do not have the **non-linear manifold** learning property. (SGC)

Figure 5: Decision boundaries on 500 generated data samples following the two circles pattern

从 graph signal processing 角度来分析 GNN (挑选了 GCN(kipf) 和 SGC 两个简单的模型)

GSP

GSP 将节点上的数据看作信号,应用信号处理技术理解信号的特性。

在一个标准的信号处理问题中,通常假设观测结果包含一些噪声,并且底层的"真实信号"是低频的。

Assumption 1. Input features consist of low-frequency true features and noise. The true features have sufficient information for the machine learning task.

Compute the first k-frequency component: $\hat{\mathcal{X}}_k = U[:k]^\top \tilde{D}^{1/2} \mathcal{X}$

- 1. 只有少量的频率有用
- 2. 加入噪声之后预测效果变差,但是低频部分鲁棒性较好

Convolution

将图信号与传播矩阵相乘对应于低通滤波,表明图卷积层只是低通滤波 (low-pass filtering)。因此,不需要学习图卷积层的参数。

Theorem 2 (Informal, see Theorem 7, 8). Under Assumption 1, the outcomes of SGC, GCN, and gfNN are similar to those of the corresponding NNs using true features.

剔除噪声之后,表现相同