Teorema Spettrale

Sia V uno spazio vettoriale su campo \mathbb{C} di dimensione n, dotato di un prodotto hermitiano definito positivo, e sia $T:V\to V$ un'applicazione lineare. Se T è autoaggiunto esiste una base ortonormale costituita da autovettori di T.

Dimostrazione.

Per dimostrare il teorema si procederà per induzione sulla dimensione di V. Si osservi che, in generale, essendo $\mathbb C$ algebricamente chiuso, ogni endomorfismo su campo complesso ammette almeno un autovalore non nullo. Infatti è sempre possibile fissare una base ortonormale di $\mathbb C^n$, isomorfo a V. In questo modo a T è associata una matrice il cui polinomio caratterisco ammette sempre almeno una radice non nulla in $\mathbb C$.

Se $\dim V$ = 1, siccome T deve avere almeno un autovalore non nullo, V coincide con l'unico autospazio di T.

Si consideri ora dimV=n>1, per quanto già detto deve esistere un autovettore non nullo v_1 di T in V. Sia W lo spazio ortogonale a v_1 , questo ha chiaramente dimensione n-1. Si osservi che il vettore $Tw \in W$, se $w \in W$, infatti:

$$\langle Tw, v \rangle = \langle w, Tv \rangle = \lambda \langle w, v \rangle = 0 \qquad \forall v \in \text{span}\{v_1\}.$$

Inoltre W è a sua volta dotato di un prodotto hermitiano definito positivo e la restrizione di T su W è ancora autoaggiunto. Per le ipotesi induttive, in W esiste una base ortonormale di autovettori di $T|_{W}$ $\{v_2, v_3, ..., v_n\}$.

Per concludere la dimostrazione è quindi sufficente normalizzare v_1 (che è già ortogonale a tuttti i vettori $\{v_2,v_3,...,v_n\}$) così che $\left\{\frac{v_1}{\|v_1\|},v_2,v_3,...,v_n\right\}$ sia una base ortonormale di V costituita da autovettori di T.

Corollario

Sia $A \in M_{n \times n}(\mathbb{C})$ una matrice hermitiana, allora esiste una matrice unitaria $U \in M_{n \times n}(\mathbb{C})$ tale che:

$$U^{\dagger}AU = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

dove $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ sono gli autovalori di A e i vettori colonna della matrice U sono gli autovettori normalizzati di A.

Dimostrazione.

Si consideri l'applicazione lineare $T:\mathbb{C}^n\to\mathbb{C}^n$ associata alla matrice A, rispetto alla base canonica, questa è un'applicazione autoaggiunta. Per il teorema spettrale esiste quindi una base ortonormale di autovettori di T $\{v_1, v_2, \ldots, v_n\}$. In questa base la matrice associata a T è diagonale siccome ogni v_i è un autovettore.

Infine, si osservi che la matrice del cambio di base U è composta dagli autovettori colonna di A, infatti questa trasforma la base canonica in $\{v_1, v_2, \ldots, v_n\}$:

$$v_j = \sum_{i=0}^n U_{ij} e^i.$$

Da cui si conclude che U è unitaria poiché $\langle v_i, v_j \rangle = \delta_{ij} \implies U^{\dagger}U = 1$.

Teorema Spettrale

Sia V uno spazio vettoriale su campo $\mathbb C$ di dimensione n, dotato di un prodotto hermitiano definito positivo, e sia $T:V\to V$ un'applicazione lineare. Se T è autoaggiunto esiste una base ortonormale costituita da autovettori di T.

Inoltre, sia $A \in M_{n \times n}(\mathbb{C})$ la matrice associata a T (fissata la base canonica), allora esiste una matrice unitaria $U \in M_{n \times n}(\mathbb{C})$ tale che:

$$U^{\dagger}AU = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

dove $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ sono gli autovalori di T e i vettori colonna della matrice U sono gli autovettori normalizzati di T.

Dimostrazione.

Per dimostrare il teorema si procederà per induzione sulla dimensione di V. Si osservi che, in generale, essendo $\mathbb C$ algebricamente chiuso, ogni endomorfismo su campo complesso ammette almeno un autovalore non nullo. Infatti è sempre possibile fissare una base ortonormale di $\mathbb C^n$, isomorfo a V. In questo modo a T è associata una matrice il cui polinomio caratterisco ammette sempre almeno una radice non nulla in $\mathbb C$.

Se $\dim V$ = 1, siccome T deve avere almeno un autovalore non nullo, V coincide con l'unico autospazio di T.

Si consideri ora dimV=n>1, per quanto già detto deve esistere un autovettore non nullo v_1 di T in V. Sia W lo spazio ortogonale a v_1 , questo ha chiaramente dimensione n-1. Si osservi che il vettore $Tw \in W$, se $w \in W$, infatti:

$$\langle Tw, v \rangle = \langle w, Tv \rangle = \lambda \langle w, v \rangle = 0 \quad \forall v \in \text{span}\{v_1\}.$$

Inoltre W è a sua volta dotato di un prodotto hermitiano definito positivo e la restrizione di T su W è ancora autoaggiunto. Per le ipotesi induttive, in W esiste una base ortonormale di autovettori di $T|_{W}$ $\{v_2, v_3, ..., v_n\}$.

È quindi sufficiente normalizzare v_1 (che è già ortogonale a tuttti i vettori $\{v_2, v_3, ..., v_n\}$) così che $\{v_1, v_2, v_3, ..., v_n\}$ sia una base ortonormale di V costituita da autovettori di T.

In questa base la matrice associata a T è diagonale, siccome ogni v_i è un autovettore di T. Si osservi che la matrice del cambio di base U è composta dagli autovettori colonna di A, infatti questa trasforma la base canonica in $\{v_1, v_2, \ldots, v_n\}$:

$$v_j = \sum_{i=0}^n U_{ij} e^i.$$

Da cui si conclude che U è unitaria poiché $\langle v_i, v_j \rangle = \delta_{ij} \implies U^{\dagger}U = 1$.