```
Yida Xu HW2
Exercise1
 #Exercise1
 datind2009<-fread("datind2009.csv")
 Datind2009 <- datind2009[!is.na(datind2009$age) & !is.na(datind2009$wage),]
 print(cor(Datind2009$wage, Datind2009$age, method ="pearson", use= "complete.obs"))
 #The correlation between X and Y is -0.1788512
   print(cor(Datind2009$wage, Datind2009$age,method ="pearson" , use= "complete.obs"))
[1] -0.1788512
2、
 x<-Datind2009$age %>% as.matrix()
 intercept = matrix(rep(1,20232))#there are 20232obs(lines)
 X<-cbind(intercept,x)
 Y<-matrix(Datind2009$wage)
 Inverse<-solve(t(X)%*%X)
 Beta<-Inverse%*%t(X)%*%Y
 #use %*% to inner product two matrix, use "solve" to get the inverse of a matrix
 print(Beta)
 #Beta_hat equals to -180.1765
 > print(Beta)
  [1,] 22075.1066
  [2,]
              -180.1765
3、
  #Standard formulas
 Beta[1,1]
Beta[2,1]
  SY_hat- as.matrix((Beta[2,1]*Datind2009$age-Beta[1,1]))
error--(Y-Y_hat)
 error<-(Y-Y_hat)
Error2<- t(error)%*%error/(length(Datind2009$age-1))
Varianceofbeta<- Error2%*%solve(t(Datind2009$age)%*%Datind2009$age)
Sd<-sqrt(Varianceofbeta)
print(Sd)</pre>
  #the sd of beta age is 6.560566
  #bootstrap 49
  nind=length(Datind2009$age)
  Return<- mat.or.vec(49, 2)
  set.seed(5201314)
  for (i in 1:R)
    sample<-sample(1:nind,nind,rep=TRUE)
data_sample<-Datind2009[sample,]</pre>
    x_boot<-data_sample$age %>% as.matrix()
intercept = matrix(rep(1,20232))
X_boot<-cbind(intercept,x_boot)
Y_boot<-matrix(data_sample$wage)</pre>
    Inverse<-solve(t(X_boot)%*%X_boot)
Beta_boot1<-Inverse%*%t(X_boot)%*%Y_boot</pre>
    Return[i,]<-Beta_boot1
  mean_Return1<-apply(Return, 2, mean)
  sd_Return1<-apply(Return, 2, sd)
#the sd of beta of age is 5.127342 and the mean beta age is -179.4399</pre>
#bootstrap499
R=499
nind=length(Datind2009$age)
nind=length(Datind20095age)
Return<- mat.or.vec(499, 2)
for (i in 1:R) {
    sample<-sample(1:nind,nind,rep=TRUE)
    data_sample<-Datind2009[sample,]
    x_boot<-data_sampleSage %% as.matrix()
    intercept = matrix(rep(1,2032))
    X_boot<-cbind(intercept,x_boot)
    Y_boot<-matrix(data_sampleSwage)
    Inverse<-solve(t(X_boot)%%X_boot)
    Beta_boot2<-Inverse%%t(X_boot)%%Y_boot]
```

}
mean_Return2<-apply(Return, 2, mean)
sd_Return2<-apply(Return, 2, sd)
#the sd of beta of age is 4.970636 and the mean beta age is -180.287
#The mean of beta age in 499bootstrap is closer to the results generated from the standard formulas than that in 49 bootstrap.
#However, the sd of beta shows an opposite way, and the reason might be fixed if we increase the number from 499 to 4999.

Exercise2

1、

```
#Exercise2
datind05<-fread("datind2005.csv",colClasses=c(idind="character",idmen="character"))
datind06<-fread("datind2006.csv",colClasses=c(idind="character",idmen="character"))
datind07<-fread("datind2007.csv",colClasses=c(idind="character",idmen="character"))
datind08<-fread("datind2008.csv",colClasses=c(idind="character",idmen="character"))
datind08<-fread("datind2001.csv",colClasses=c(idind="character",idmen="character"))
datind10<-fread("datind2010.csv",colClasses=c(idind="character",idmen="character"))
datind10<-fread("datind2011.csv",colClasses=c(idind="character",idmen="character"))
datind11<-fread("datind2013.csv",colClasses=c(idind="character",idmen="character"))
datind13<-fread("datind2013.csv",colClasses=c(idind="character",idmen="character"))
datind13<-fread("datind2014.csv",colClasses=c(idind="character",idmen="character"))
datind14<-fread("datind2015.csv",colClasses=c(idind="character",idmen="character"))
datind15<-fread("datind2015.csv",colClasses=c(idind="character",idmen="character"))
datind16<-fread("datind2015.csv",colClasses=c(idind="character",idmen="character"))
datind18<-fread("datind2018.csv",colClasses=c(idind="character",idmen="character"))
datind18<-fread("da
```

^	V1 [‡]	idind [‡]	idmen ‡	year [‡]	empstat [‡]	respondent	÷	profession [‡]	gender [‡]	age 🗦	wage [‡]	ag
1	1	1120001004058010001	1200010040580100	2005	Inactive		1		Female	31	12334	31-35
2	3	1120001006663010001	1200010066630100	2005	Employed		1	38	Male	32	50659	31-35
3	4	1120001006663010002	1200010066630100	2005	Employed	(0	45	Female	28	19231	26-30
4	5	1120001008245010001	1200010082450100	2005	Retired		1		Female	90	0	60+
5	6	1120001008644010001	1200010086440100	2005	Employed		1	34	Male	37	31511	36-40
6	7	1120001008644010002	1200010086440100	2005	Employed	(0	42	Female	35	24873	31-35
7	8	1120001010299010001	1200010102990100	2005	Employed		1	55	Female	41	30080	41-45
8	9	1120001010299010002	1200010102990100	2005	Inactive	(0		Female	16	0	0-18
9	10	1120001011845010001	1200010118450100	2005	Employed		1	37	Male	55	43296	51-55
10	11	1120001011845010002	1200010118450100	2005	Employed	(0	54	Female	55	20426	51-55
11	12	1120002001293010001	1200020012930100	2005	Employed		1	11	Male	57	0	56-60
12	13	1120002001293010002	1200020012930100	2005	Employed	(0	11	Female	52	0	51-55
13	16	1120002001739010001	1200020017390100	2005	Employed		1	11	Male	51	0	51-55
14	17	1120002002642010001	1200020026420100	2005	Employed		1	11	Male	47	0	46-50
15	19	1120002004513010001	1200020045130100	2005	Employed		1	34	Female	55	49240	51-55
16	20	1120002004513010002	1200020045130100	2005	Inactive	(0		Male	17	0	0-18
17	21	1120002009437010001	1200020094370100	2005	Employed		1	22	Male	41	15005	41-45
18	22	1120002009437010002	1200020094370100	2005	Employed		0	34	Female	39	35192	36-40
19	25	1120002011845010001	1200020118450100	2005	Retired		1		Male	80	0	60+
20	26	1120002012268010001	1200020122680100	2005	Employed		1	45	Male	30	22852	26-30
21	27	1120002012268010002	1200020122680100	2005	Inactive	(0		Female	32	1832	31-35

[&]quot;ag" is the created categorical variable.

wage of each age group across year

#There is a trend. From the plot, we can find that the wage of each age group increases as years.

#Specially, wage of "56-60" has the fastest increase and wage of age lower than 30 has the slowest increase.

#wages of "0-18" and "60+" have the lowest avg wage.

#wages of 36 to 60 are the highest and enjoy a fast increase as years.

```
#3
#X<-matrix(Append1$age,Append1$year)</pre>
X<-Append1%>%select(age,year)%>%as.matrix()
Y<-matrix(Append1$wage)
Inverse<-solve(t(X)%*%X)
Beta<-Inverse%*%t(X)%*%Y
print(Beta)
#The beta of age is -182.9581 if we add year as a variable
#if we want a time fixed effect, we need to use "plm" function
timefixedreturn <- plm(wage ~ age, data = Append1, index = "year")</pre>
summary(timefixedreturn)
#Then the beta of age equals to -186.8793
#Here index control for heterogeneity in variables year
> print(Beta)
         Г 17
age -182.9581
year 11.2271
> summary(timefixedreturn)
Oneway (individual) effect Within Model
Call:
plm(formula = wage ~ age, data = Append1, index = "year")
Unbalanced Panel: n = 14, T = 18767-22742, N = 289769
Residuals:
                    Median 3rd Qu.
Min. 1st Qu. Median
-21321.1 -11464.5 -7266.0
                            8496.3 1738140.9
Coefficients:
    Estimate Std. Error t-value Pr(>|t|)
age -186.8793 2.0016 -93.366 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 1.2219e+14
Residual Sum of Squares: 1.1862e+14
R-Squared: 0.029206
R-Squared:
Adj. R-Squared: 0.02916
F-statistic: 8717.28 on 1 and 289754 DF, p-value: < 2.22e-16
Exercise3
#1
```

Datind2007<-datind07%>%filter(empstat!="Inactive")%>%filter(empstat!="Retired")

	F	Filter			'	
_	V1 [‡]	idind	idmen [‡]	year [‡]	empstat [‡]	res
1	1	1140001000124010001	1400010001240100	2007	Unemployed	
2	2	1140001000124010002	1400010001240100	2007	Employed	
3	4	1140001001167010001	1400010011670100	2007	Employed	
4	8	1140001002054010001	1400010020540100	2007	Employed	
5	9	1140001002054010002	1400010020540100	2007	Unemployed	
6	13	1140001005753010002	1400010057530100	2007	Employed	
7	14	1140001005753010003	1400010057530101	2007	Employed	
8	15	1140001007323010001	1400010073230100	2007	Employed	
9	21	1140001007351010001	1400010073510100	2007	Employed	
10	22	1140001007351010002	1400010073510100	2007	Employed	
11	23	1140001007351010003	1400010073510100	2007	Employed	
12	26	1140001010658010001	1400010106580100	2007	Employed	
13	27	1140001010658010002	1400010106580100	2007	Employed	
14	28	1140001010658010003	1400010106580100	2007	Employed	
15	32	1140001012406010001	1400010124060100	2007	Unemployed	
16	36	1140002004331010002	1400020043310100	2007	Employed	
17	41	1140002009113010001	1400020091130100	2007	Employed	
18	44	1140002012114010001	1400020121140100	2007	Employed	
10	٨٢	1140014001720010001	1400140017200100	2007	Employed	

This step removes all "inactive" and "retired"

2、

```
#2
#Since there are only two state of empstat:employed and unemployed
#First,we find independent variable "age", and create a dummy variable for "empstat"
age<-Datind2007$age
empstat<-Datind2007$empstat
empstat[ which(empstat == "Employed") ] = 1
empstat[ which(empstat == "Unemployed") ] = 0
empstat <- as.numeric(empstat)</pre>
likelihood<- function(coff,age,empstat)</pre>
{xbeta = coff[1] + coff[2]*age}
pr = pnorm(xbeta)
pr[pr>0.999999] = 0.9999999
pr[pr<0.000001] = 0.000001
like
               = empstat*log(pr) + (1-empstat)*log(1-pr)
return(-sum(like))}
```

#We have intercept=1.045310107,Beta_age=0.006900150,likelihood=3555.890 #Since the beta_age is positive, We can say that age has a positive effect onlabor mkt participation.

```
#4
Datind2007[lis.na(Datind2007$age)&lis.na(Datind2007$wage),]
Datind2007-c-Datind2007%mgefilter(wage|=0)
wage-Datind2007%mge
age<-Datind2007$wage
pr = pnorm(xbeta)
pr[pr=0.09999] = 0.99999]
pr[pr=0.09999] = 0.99999]
pr[pr=0.000001] = 0.000001
like
= empstat*log(pr) + (1-empstat)*log(1-pr)
return(=sum(fike)))
return2 = mat.or.vec(ntry,4)

for (i in 1:ntry){
start = c(runif(1,-0.1,0.1),runif(1,-0.01,0.01),runif(1,-0.0001,0.0001))
res = optin(start,fn=likelihood2,method="BFGS",control=list(trace=6,maxit=1000),age = age, wage = wage, empstat = empstat)
return2[i,] = c(res$par,res$value)
}
return2[valata-frame(return2, scientific = F)
colnames(return2) = c("beta_0", "beta_age", "beta_wage", "likelihood_value")
return2[valich(return218ilelihood_value = min(return25likelihood_value)),]
#We have intercept=0.0844164496, beta_wage are positive, which means that age and wage have a positive effect on labor mkt participation.

> return2[which(return218ilelihood_value = = min(return25likelihood_value)),]
beta_0 beta_age beta_wage likelihood_value
32 0.0844164496 0.0086827248 0.00007762600 1832.814
```

#We have

intercept=0.0844164496,beta_age=0.0086827248,beta_wage=0.00007762600,likelihood_value=1832.81

#We find that both beta_age and beta_wage are positive, which means that age and wage have a positive effect on labor mkt participation.

Exercise4

1

^	V1 [‡]	idind [‡]	idmen ‡	year [‡]	empstat [‡]	respondent [‡]	profession	gender [‡]	age [‡]	wage [‡]	2005	2006 🗘	200
1	3	1120001006663010001	1200010066630100	2005	Employed	1	38	Male	32	50659	1	0	
2	4	1120001006663010002	1200010066630100	2005	Employed	0	45	Female	28	19231	1	0	
3	6	1120001008644010001	1200010086440100	2005	Employed	1	34	Male	37	31511	1	0	
4	7	1120001008644010002	1200010086440100	2005	Employed	0	42	Female	35	24873	1	0	
5	8	1120001010299010001	1200010102990100	2005	Employed	1	55	Female	41	30080	1	0	
6	10	1120001011845010001	1200010118450100	2005	Employed	1	37	Male	55	43296	1	0	
7	11	1120001011845010002	1200010118450100	2005	Employed	0	54	Female	55	20426	1	0	
8	12	1120002001293010001	1200020012930100	2005	Employed	1	11	Male	57	0	1	0	
9	13	1120002001293010002	1200020012930100	2005	Employed	0	11	Female	52	0	1	0	
0	15	1120002001293010004	1200020012930100	2005	Employed	0		Male	50	NA	1	0	
1	16	1120002001739010001	1200020017390100	2005	Employed	1	11	Male	51	0	1	0	
2	17	1120002002642010001	1200020026420100	2005	Employed	1	11	Male	47	0	1	0	
3	18	1120002002642010002	1200020026420100	2005	Employed	0		Male	39	NA	1	0	
4	19	1120002004513010001	1200020045130100	2005	Employed	1	34	Female	55	49240	1	0	0
5	21	1120002009437010001	1200020094370100	2005	Employed	1	22	Male	41	15005	1	0	
6	22	1120002009437010002	1200020094370100	2005	Employed	0	34	Female	39	35192	1	0	
7	26	1120002012268010001	1200020122680100	2005	Employed	1	45	Male	30	22852	1	0	
8	29	1120014901293010001	1200149012930100	2005	Employed	1	46	Male	42	28247	1	0	
9	30	1120014901293010002	1200149012930100	2005	Employed	0	55	Female	36	21134	1	0	
0	38	1120014909940010002	1200149099400100	2005	Unemployed	0		Male	41	0	1	0	

2、

For probit

```
#probit model
empstat<-AppendnewSempstat
empstat[ which(empstat == "Employed") ] = 1
empstat[ which(empstat == "Unemployed") ] = 0
empstat <- as.numeric(empstat)</pre>
 likelihood3 = function(coff,age,t06,t07,t08,t09,t10,t11,t12,t13,t14,t15,empstat) {xbeta = coff[1] + coff[2]*age +coff[3]*t06+coff[4]*t07+coff[5]*t08+coff[6]*t09+ coff[7]*t10+coff[8]*t11+coff[9]*t12+coff[10]*t13+coff[11]*t14+coff[12]*t15
    = pnorm(xbeta)
pr[pr>0.999999] = 0.999999
pr[pr<0.000001] = 0.000001
                   = empstat*log(pr) + (1-empstat)*log(1-pr)
 return(-sum(like))}
ntry = 100
return3 = mat.or.vec(ntry,13)
 for (i in 1:ntry){
   t13=t13,t14=t14,t15=t15,empstat = empstat)
   return3[i.] = c(res$par. res$value)}
 return3 = data.frame(return3)
#which means that age have a positive effect on labor mkt participation.
For loait
                function(coff,age,t06,t07,t08,t09,t10,t11,t12,t13,t14,t15,empstat)
 {xbeta = coff[1] + coff[2]*age +coff[3]*t06+coff[4]*t07+coff[5]*t08+coff[6]*t09+
coff[7]*t10+coff[8]*t11+coff[9]*t12+coff[10]*t13+coff[11]*t14+coff[12]*t15
pr = xbeta
pr[pr>0.999999] = 0.999999
pr[pr<0.000001] = 0.000001
like = empstat*log(pr) + (1-empstat)*log(1-pr)
 return(-sum(like))}
 ntrv = 100
 return5 = mat.or.vec(ntry,13)
 for (i in 1:ntry){
   res = optim(start,fn = likelihood5,method = "BFGS",

control = list(trace=6,maxit=1000),

age = age,t06=t06,t07=t07,t08=t08,t09=t09,t10=t10,t11=t11,t12=t12,
   \label{eq:total_tilde} \begin{split} & \texttt{t13} \! = \! \texttt{t13}, \texttt{t14} \! = \! \texttt{t14}, \texttt{t15} \! = \! \texttt{t15}, \texttt{empstat} = \texttt{empstat}) \\ & \texttt{return5[i,]} = \texttt{c(res\$par, res\$value)} \end{split}
> return5[which(return5$likelihood == min(return5$likelihood)),]
    beta_0    beta_age    beta_5    beta_6    beta_7    beta_8    beta_9    beta_10    beta_11    beta_12    beta_13    beta_14
85 5.954075 -0.04029524 4.45932 2.524891 1.931448 -0.0331935 -3.069214 3.223872 2.456985 0.06812651 1.170139 -0.2420417
    likelihood
     180372.2
#After adding fixed time effect, beta age is -0.04029524 which is negative.
#which means that age have a negative effect on labor mkt participation.
#If we increases ntry to 1000, the beta_age might change.
3、
#The parameters generated by porbit and logit can be interpreted as whether there is positive or negative relationship
#between age and labor mkt participation.
#The parameter generated by the OLS model can be interpreted as certain degree of change of labor mkt participation
#as one unit change of age.
```

Exercise5

1

```
#Exercise5
#1
intercept = matrix(rep(1,128636))#there are 128636bs(lines)
x<-cbind(intercept,age,t06,t07,t08,t09,t10,t11,t12,t13,t14,t15)
install.packages("margins")
library(margins)
mar1--glm(empstat~age+t06+t07+t08+t09+t10+t11+t12+t13+t14+t15,family=binomial(link=probit),data=Appendnew)
summary(mar1)
mar2probit<-margins(mar1)
mar2--glm(empstat~age+t06+t07+t08+t09+t10+t11+t12+t13+t14+t15,family=binomial(link=logit),data=Appendnew)
summary(mar2)
margllogit<-margins(mar2)
#2
set.seed(12345)
bootmarg <- mat.or.vec(30, 12)
```