# Deep Learning for Image Classification with EM Algorithms

[오늘도(05)]

박상은 20211522

이찬회 20192923

민경준 20192899

함정규 20211556

## **Contents**

#### 01 DEEP LEARNING FOR IMAGE CLASSIFICATION

- · Comparison of Hyper parameters
- · CNN layer
- · accuracy/loss graph

#### 02 EM ALGORITHMS FOR K-MEANS

- · loss function layer
- · accuracy/loss graph
- · t-SNE Visualization

#### 03 Intermediate feature space & CAM Visualization

- · t-SNE Visualization
- · grad-CAM Heating map

#### 04 Conclusion

- · t-SNE comparison
- · Conclusion

# **Comparison of Hyper parameters**



# **Comparison of Hyper parameters**



## DEEP LEARNING FOR IMAGE CLASSIFICATION

### **CNN layer**

#### **CNN** layer

| Layer (type)                                                                  | Output Shape        | Param # |
|-------------------------------------------------------------------------------|---------------------|---------|
|                                                                               |                     |         |
| conv2d (Conv2D)                                                               | (None, 32, 32, 64)  | 1792    |
| batch_normalization (BatchN<br>ormalization)                                  | (None, 32, 32, 64)  | 256     |
| conv2d_1 (Conv2D)                                                             | (None, 32, 32, 64)  | 36928   |
| max_pooling2d (MaxPooling2D<br>)                                              | (None, 16, 16, 64)  | 0       |
| dropout (Dropout)                                                             | (None, 16, 16, 64)  | 0       |
| conv2d_2 (Conv2D)                                                             | (None, 16, 16, 128) | 73856   |
| batch_normalization_1 (Batc<br>hNormalization)                                | (None, 16, 16, 128) | 512     |
| conv2d_3 (Conv2D)                                                             | (None, 16, 16, 128) | 147584  |
| max_pooling2d_1 (MaxPooling<br>2D)                                            | (None, 8, 8, 128)   | 0       |
| dropout_1 (Dropout)                                                           | (None, 8, 8, 128)   | 0       |
| conv2d_4 (Conv2D)                                                             | (None, 8, 8, 256)   | 295168  |
| batch_normalization_2 (BatchNormalization)                                    | (None, 8, 8, 256)   | 1024    |
| max_pooling2d_2 (MaxPooling<br>2D)                                            | (None, 4, 4, 256)   | 0       |
| dropout_2 (Dropout)                                                           | (None, 4, 4, 256)   | 0       |
| <pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>                 | (None, 256)         | 0       |
| dense (Dense)                                                                 | (None, 512)         | 131584  |
| dropout_3 (Dropout)                                                           | (None, 512)         | 0       |
| dense_1 (Dense)                                                               | (None, 10)          | 5130    |
|                                                                               |                     |         |
| otal params: 693,834<br>rainable params: 692,938<br>Jon-trainable params: 896 |                     |         |

#### Keras - sequential model



## DEEP LEARNING FOR IMAGE CLASSIFICATION

# Accuracy /loss graph

#### accuracy/loss graph



313/313 - 3s - loss: 0.4914 - acc: 0.8644 - 3s/epoch - 10ms/step

### loss function layer

#### K-MEANS



- K-means clustering 의 사용으로 class 의 중심을 효과적으로 탐색, loss 계산에 사용

 새로운 loss function 도입
 Class 내부의 표본들 간 거리 최소화, 내부 분산 감소

 class 간의 거리는 최대화, 정확도 상승

# Accuracy /loss graph

#### accuracy/loss graph comparison

acc: 0.864



acc: 0.878



<그림 7-2. 새로운 loss function 적용한 CNN 모델의 accuracy/loss graph>

Intermediate feature space & CAM Visualization

### grad-CAM Heating map

#### **CAM** visualization





<그림 6. 각 class 별 heatmap>

Intermediate feature space & CAM Visualization

# t-SNE Visualization



### t-SNE Visualization

#### 3D Surface Visualization (First conv2d layer) 2 / 19 layer

|        | ,       | <b>†</b>           |
|--------|---------|--------------------|
| conv2d | input:  | (None, 32, 32, 3)  |
| Conv2D | output: | (None, 32, 32, 64) |
|        |         |                    |



### t-SNE Visualization

#### 3D Surface Visualization (last conv2d layer) 12 / 19 layer





## t-SNE Visualization

### 3D Surface Visualization (First dense layer) 17 / 19 layer





## t-SNE Visualization

#### 3D Surface Visualization (Last dense layer) 19 / 19 layer





Conclusion

t-SNE comparison



#### **Conclusion**

- 최적화함수 변경, 학습률 조정, train 이미지 변환 등을 통해 최적의 모델 선택CNN 모델을 학습시킨 후 t-SNE 가시화 및 Grad-CAM 을 이용한 heat-map 가시화를 함으로써 클래스 간의 분류를 시각적으로 확인
- K-means clustering 후 새로운 loss function 을 설계, 적용한 모델 학습 후, 3D t-SNE 가시화를 4 개의 layer output 으로 진행하고 기존 CNN 모델과의 비교로 성능 향상을 확인