Solutions of massless Vlasov equation on a fixed FLRW background with \mathbb{R}^3 spatial topology

Victor Fuentes Labra

January 9, 2024

Outline of the talk

- 1 Introduction
- 2 The Einstein-Vlasov equation
- The FLRW metrics
- 4 Decay estimate
- **6** References

- 1 Introduction
- 2 The Einstein-Vlasov equation
- 3 The FLRW metrics
- 4 Decay estimate
- **5** References

Introduction

General relativity is a geometric theory of gravitation whose main object of study are the Lorentzian manifolds (\mathcal{M}^{1+3},g) satisfying the Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa T_{\mu\nu},$$

where $R_{\mu\nu}$ is the Ricci curvature tensor, R is the scalar curvature, $g_{\mu\nu}$ is the metric tensor, $T_{\mu\nu}$ is the energy momentum tensor of matter and κ is the Einstein gravitational constant.

4 / 26

General Relativity

The energy momentum tensor $T_{\mu\nu}$ takes the form

$$T^{\mu\nu}(t,x) = \int_{\mathcal{P}} f(t,x,p) p^{\mu} p^{\nu} \frac{\sqrt{|\det g|}}{-p^0} dp^1 dp^2 dp^3,$$
 (1)

where indices are raised and lowered with respect to metric g (so that, for example, $p_0 = g_{0\mu}p^{\mu}$).

† Here t is also denoted x^0 . Greek indices, such as μ, ν . range over 0, 1, 2, 3. Latin indices, such as i, j, k range over 1, 2, 3.

General Relativity

Several metrics exist based on the exact solutions of the Einstein field equations

 $oldsymbol{1}$ The simplest solution in Minkowski space-time (\mathbb{R}^4,g) is

$$g = -(dt)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2.$$

2 The most general metric for an expanding, homogeneous, and isotropic universe is the Friedman-Lemaître-Robertson-Walker metric. The FLRW spacetime is described on

$$\mathcal{M} = I \times \Sigma, \qquad g = -dt^2 + a(t)^2 g_{\Sigma},$$

where $I \subset \mathbb{R}$, (Σ, g_{Σ}) is a constant curvature manifold and $a: I \to (0, \infty)$ is an appropriate *scale factor*.

- 2 The Einstein-Vlasov equation

Introduction

We introduce a density distribution function $f: \mathcal{P} \to [0, \infty)$ defined on ¹

$$\mathcal{P} = \left\{ (t, x, p) \in \mathcal{TM} : g_{(t, x)}(p, p) = -m^2 \right\} \subset \mathcal{TM},$$

where p is future-directed. \mathcal{P} is a submanifold called the mass-shell.

The two cases that concern us

- **1** massive particles: m > 0 (WLOG m = 1),
- 2 mass-less particles: m = 0.

 $^{^1}f$ represents a collection of particles at time $t \in \mathbb{R}$ and position $x \in \mathbb{R}^3$ with momentum $p \in \mathbb{R}^3$.

We introduce the Vlasov equation by

$$p^{\mu}\partial_{x^{\mu}}f - \Gamma^{i}_{\mu\nu}p^{\mu}p^{\nu}\partial_{p^{i}}f = 0.$$
 (2)

In particular, this equation on Minkowski space in cartesian coordinates becomes

$$p^0\partial_t f + p^i\partial_{x^i} f = 0.$$

• The classical Vlasov equation (non-relativistic):

$$f(t, x, p) = f^{0}(x - tp, p),$$
 that solves $\partial_{t}f + p^{i}\partial_{x^{i}}f = 0.$

2 The relativistic Vlasov equation:

$$f(t,x,p) = f^0(x - t\frac{p}{p^0},p),$$
 that solves $p^0 \partial_t f + p^i \partial_{x^i} f = 0.$

 \dagger Where, abusing notation, we write p for p^i

issical estimates

For the classical case, we have

$$\int_{\mathbb{R}^3} f(t,x,p)dp = \int_{\mathbb{R}^3} f^0(x-pt,p)dp$$

$$\leq \sup_{w \in \mathbb{R}^3} \int_{\mathbb{R}^3} f^0(x-pt,w)dp.$$

For t > 0, we can apply the change of variable y = x - pt and the appropriate scaling to get the decay estimates

$$\left| \int_{\mathbb{R}^3} f(t, x, p) dp \right| \leq \frac{1}{t^3} \sup_{w \in \mathbb{R}^3} \int_{\mathbb{R}^3} \left| f^0(y, w) \right| dy.$$

Introduction

For the relativistic case,

$$\int_{\mathbb{R}^3} f(t,x,p)dp \leq \int_{\mathbb{R}^3} \sup_{w \in \mathbb{R}^3} f^0(x - \frac{p}{p^0}t,w)dp.$$

Applying the change of variable $y = x - \frac{p}{p^0}t$, assuming that f has compact support², so that, we can bound the Jacobian by a constant C_v to get

$$\int_{\mathbb{R}^3} |f(t,x,p)| dp \leq \frac{C_v}{t^3} \int_{\mathbb{R}^3} \sup_{w \in \mathbb{R}^3} |f^0(y,w)| dy,$$

$$V=\sup\left\{\rho\in\mathbb{R}^3:\left|\frac{\rho}{\rho^0}\right|<1;\ \exists x\in\mathbb{R}^3:|x-t\frac{\rho}{\rho^0}|\geq R>0\ \text{for all}\ t>0,\ \ \text{such that}\ \ \textit{f}(t,x,\rho)\neq 0\right\}.$$

- 4 ロ b 4 個 b 4 種 b 4 種 b - 種 - 夕 Q ()

 $^{^{2} \}text{ Considering } \tfrac{p}{p^{0}} \leq \tfrac{R}{\sqrt{1+R^{2}}} < 1, \text{ we have that if } |p| \leq R \text{ and } |x| \geq R + \tfrac{R}{\sqrt{1+R^{2}}} \text{ then } |x-t\tfrac{p}{p^{0}}| \geq R.$

Using polar coordinates $r = |p|, p = r\omega$ we may write

$$\int_{\mathbb{R}^3} f(t, x, p) dp = \int_{\mathbb{R}^3} f^0(x - \frac{p}{|p|}t, p) dp$$
$$= \int_0^\infty \int_{\mathbb{S}^2} f^0(x - t\omega, r\omega) d\omega dr,$$

then, on the sphere (rather than the whole space) applying the change of variables $\omega \to t\omega = \gamma$, where $|J| = t^2$. Then, $d\gamma = t^2 d\omega$, so that

$$\int_{\mathbb{R}^3} f(t, x, p) dp = \frac{1}{t^2} \int_0^\infty \int_{\mathbb{S}^2} f^0(x - \gamma, rt^{-1}\gamma) d\gamma dr$$

$$\leq \frac{\tilde{C}_v}{t^2} \sup_{x, y \in \mathbb{R}^3} \int_0^\infty \int_{\mathbb{S}^2} f^0(x - \gamma, v) d\gamma dr.$$

- (ロ)(回)(回)(E)(E)(E)(E)(O)(C)

- 3 The FLRW metrics
- **4** Decay estimate

For any smooth sufficiently decaying function $\mu:[0,\infty)\to[0,\infty)$, $\mu\neq 0$, the metric g_\circ and f_\circ defined by ³

$$g_{\circ} = -dt^2 + a(t)^2 \left((dx^1)^2 + (dx^2)^2 + (dx^3)^2 \right),$$
 $f_{\circ}(t, x, p) = \mu \left(a(t)^4 |p|^2 \right),$

where

$$a(t)=t^{rac{1}{2}}\left(rac{4arrho}{3}
ight)^{rac{1}{4}}, \qquad arrho=\int |p|\mu(|p|^2)dp,$$

define a solution of (1)-(2) on $\mathcal{M}_{\circ}=(0,\infty)\times\mathbb{R}^3$.

Victor Fuentes Labra Supervisor: Léo Bigorgne

 $^{^3}$ Constant curvature manifold $(\Sigma, g_{\Sigma}) = (\mathbb{R}^3, g_{eucl})$

A double null gauge consists of functions $u, v: \mathcal{Q} \to \mathbb{R}$ that foliate \mathcal{Q} in outgoing (ingoing) null lines, where $\mathcal{Q} := \mathcal{M}/SO(3)$ to introduce spherical symmetry assumption.

It can be complemented with coordinates (θ^1, θ^2) on \mathbb{S}^2 to local coordinates $(u, v, \theta^1, \theta^2)$ for \mathcal{M} .

The metric g can be written in double null form

$$g = -\Omega^2 dudv + R^2 \gamma,$$

where γ is the unit round metric on \mathbb{S}^2 , Ω is a function on \mathcal{Q} and $R:\mathcal{Q}\to\mathbb{R}$ is the area radius function.

Introduction

For $t \in (0, \infty)$, define double null coordinates

$$u=t^{\frac{1}{2}}-\frac{r}{2}, \qquad v=t^{\frac{1}{2}}+\frac{r}{2},$$

where

$$r = \left(\frac{4\varrho}{3}\right)^{\frac{1}{4}} \left((dx^1)^2 + (dx^2)^2 + (dx^3)^2 \right)^{\frac{1}{2}}.$$

Since $t \ge 0$ and $r \ge 0$ in \mathcal{M}_{\circ} , we have

$$v \ge 0,$$
 $v \ge u,$ $v \ge -u.$

The FLRW metric g_{\circ} in the above double null gauge takes the form

$$g_{\circ} = -4t du dv + tr^{2} \gamma, \quad t = \frac{1}{4} (v + u)^{2}, \quad r = v - u,$$
 (3)

defined on the quotient manifold

$$\mathcal{Q}_{\circ} = \{(u,v) \in \mathbb{R}^2 : v \geq 0, v \geq u, v \geq -u\}.$$

Thus, g_{\circ} can be written as

$$g_\circ = -\Omega_\circ^2 du dv + R_\circ^2 \gamma, \qquad ext{ where } \Omega_\circ^2 = 4t, \qquad R_\circ = t^{\frac{1}{2}} r,$$

with $\sqrt{-\det g_{\circ}} = 2t^2r^2\sqrt{\det \gamma}$.

A given spherically symmetric double null gauge $(u, v, \theta^1, \theta^2)$ for (\mathcal{M}, g) , induces a coordinate system⁴ $(u, v, \theta^1, \theta^2, p^v, p^1, p^2)$ on the mass shell \mathcal{P} .

Moreover, in a given double null gauge, f can be written as

$$f(x,p)=f(u,v,p^{v},L),$$

where A and B range over 1 and 2, $L = (R^4 \gamma_{AB} p^A p^B)^{\frac{1}{2}}$ is the angular momentum on \mathcal{P} .

Victor Fuentes Labra Supervisor: Léo Bigorgne

 $^{^4}p^{\mu}$ is defined by the mass shell relation $g_{\mu\nu}p^{\mu}p^{\nu}=0$

Thus, the components of the energy-momentum tensor T on \mathcal{M} takes the form

$$T_{uu}(u,v) = \frac{\Omega^4}{R^2} \frac{\pi}{2} \int_0^\infty \int_0^\infty f(u,v,p^v,L) p^v L dL dp^v, \tag{4}$$

$$T_{uv}(u,v) = \frac{\Omega^4}{R^2} \frac{\pi}{2} \int_0^\infty \int_0^\infty f(u,v,p^v,L) p^u L dL dp^v, \tag{5}$$

$$T_{vv}(u,v) = \frac{\Omega^4}{R^2} \frac{\pi}{2} \int_0^\infty \int_0^\infty f(u,v,p^v,L) \frac{(p^u)^2}{p^v} L dL dp^v,$$
 (6)

with $p^{u}(u, v, p^{v}, L)$ defined by

$$p^{u} = \frac{R^{2} \gamma_{AB} p^{A} p^{B}}{\Omega^{2} p^{v}} = \frac{L^{2}}{\Omega^{2} R^{2} p^{v}}.$$

- 2 The Einstein-Vlasov equation
- 4 Decay estimate

Theorem

Let f be a solution of the massless Vlasov equation (2) on $(\mathcal{M}_{\circ},g_{\circ})$, where g_{\circ} is the FLRW metric (3), such that $f_1=f|_{t=1}$ is compactly supported. The components of the energy-momentum tensor satisfy

$$T_{uu} \lesssim \frac{\|f_1\|_{L^{\infty}}}{t^2}, \qquad T_{uv} \lesssim \frac{\|f_1\|_{L^{\infty}}}{t^3}, \qquad T_{vv} \lesssim \frac{\|f_1\|_{L^{\infty}}}{t^4}$$

for $t \ge 1$.

22 / 26

The massless Vlasov equation on an FLRW background

Sketch of proof:

- Consider $cr \le t^{\frac{1}{2}} \le Cr$ in supp f,
- then, from the conservation of angular momentum, the mass relation and properties of null geodesics in FLRW, it is possible to have the following bounds

$$(\gamma_{ab}p^ap^b)^{\frac{1}{2}} \leq \frac{L_0}{t^2}, \qquad 0 \leq p^u \leq \frac{Cp^v}{t}, \ 0 \leq p^v \leq \frac{C}{t}, \qquad ct^2 \leq R_o^2 \leq Ct^2.$$

The massless Vlasov equation on an FLRW background

Hence, in view of expression (4), we can get

$$T_{uu} = \frac{\Omega_{\circ}^4}{R_{\circ}^2} \frac{\pi}{2} \int_0^{L_0} \int_0^{\frac{C}{t}} f(u, v, p^v, L) p^v L dL dp^v \lesssim \frac{\|f_1\|_{L^{\infty}}}{t^2}.$$

Similarly, in view of (5) and (6), we can get

$$T_{uv} = \frac{\Omega_{\circ}^{4}}{R_{\circ}^{2}} \frac{\pi}{2} \int_{0}^{L_{0}} \int_{0}^{\frac{C}{t}} f(u, v, p^{v}, L) p^{u} dp^{v} L dL \lesssim \frac{\|f_{1}\|_{L^{\infty}}}{t^{3}},$$

$$T_{vv} = \frac{\Omega_{\circ}^{4}}{R_{\circ}^{2}} \frac{\pi}{2} \int_{0}^{L_{0}} \int_{0}^{\frac{C}{t}} f(u, v, p^{v}, L) \frac{(p^{u})^{2}}{p^{v}} dp^{v} L dL \lesssim \frac{\|f_{1}\|_{L^{\infty}}}{t^{4}}.$$

24 / 26

- 2 The Einstein-Vlasov equation
- **4** Decay estimate
- 6 References

References

■ Back to star

- [1] M. Taylor, "Future stability of expanding spatially homogeneous flrw solutions of the spherically symmetric einstein–massless vlasov system with spatial topology \mathbb{R}^3 ," arXiv, 2023.
- [2] O. Sarbach and T. Zannias, "Tangent bundle formulation of a charged gas," arXiv, 2013.
- B. Perthame, "Mathematical tools for kinetic equations," Bulletin of American Mathematical Society, 2004.
- [4] A. Rendall, "An introduction to the einstein-vlasov system," arXiv, 1996.
- [5] J. Smulevici, "Small data solutions of the vlasov-poisson system and the vector field method," *arXiv*, 2015.
- [6] S. Hawking and G. Ellis, The large scale structure of space-time. Cambridge University Press, 1973.

