

/TMO YHUBEPCUTET UTMO

«Компьютерные сети»

АЛИЕВ Тауфик Измайлович, д.т.н., профессор Лектор:

> tialiev@itmo.ru к. 1334

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

Рекомендуемая литература

- 1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 5-е изд. (Юбилейное издание) СПб: Питер, 2016 (2021). 944 с. (1005с.)
- 2. Алиев Т.И. Сети ЭВМ и телекоммуникации. СПб: СПбГУ ИТМО, 2011. 400 с. https://books.ifmo.ru/book/628/seti evm i telekommunikacii.htm
- 3. Учебно-методические материалы по дисциплине «Компьютерные сети» в ИСУ ИТМО.
- 4. Алиев Т.И., Соснин В.В., Шинкарук Д.Н. Компьютерные сети и телекоммуникации: задания и тесты. СПб: Университет ИТМО, 2018. 111 с.
- 5. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е изд. СПб: Питер, 2015. 961 с.
- 6. Куроуз Дж. Компьютерные сети: Нисходящий подход / Джеймс Куроуз, Кит Росс 6-е изд. М.: Издательство «Э», 2016.–912 с.

Разделы дисциплины

- Раздел 1. Принципы организации компьютерных сетей
- Раздел 2. Глобальная сеть Интернет
- Раздел 3. Технологии локальных сетей
- Раздел 4. Транспортные технологии глобальных сетей
- Раздел 5. Заключительный раздел

Раздел 1 Принципы организации компьютерных сетей

- 1.1. Основные понятия и терминология
- 1.2. Многоуровневая организация компьютерных сетей
- 1.3. Структурная организация компьютерных сетей
- 1.4. Функциональная организация компьютерных сетей
- 1.5. Сетевые протоколы

Основная литература:

Алиев Т.И. Сети ЭВМ и телекоммуникации. – СПб: СПбГУ ИТМО, 2011. – 400 с. (Раздел 1. Общие принципы организации сетей ЭВМ)

Проблемы построения компьютерных сетей

- Способ(ы) представления сигналов для передачи на большие расстояния цифровых и аналоговых данных (кодирование и модуляция)
- Принципы качественной передачи электрических сигналов на большие расстояния (затухание, искажение, помехи, ...)
- Способы и средства обеспечения высоких скоростей передачи сигналов на большие расстояния
- Способы формирования данных для передачи на большие расстояния (в виде сообщений)
- Разработка способов и специализированного оборудования для организации соединения между узлами сети (коммутация)
- Разработка методов и соответствующего специализированного оборудования для организации передачи данных в сети (маршрутизация)
- Способы идентификации (адресации) многочисленного оборудования

В чём разница между понятиями:

- «компьютерная сеть»;
- «сеть ЭВМ»;
- «вычислительная сеть»;
- «телекоммуникационная сеть» ;
- «сеть передачи данных»?

Что передается, обрабатывается и является результатом в компьютерной сети: данные или информация?

Понятие компьютерной сети

Компьютерная сеть (сеть ЭВМ, вычислительная сеть) – совокупность средств ВТ и телекоммуникаций: СВТ+СТК.

Средства вычислительной техники (СВТ) – ЭВМ,

вычислительные комплексы и системы различных классов (обработка данных).

Средства телекоммуникаций (СТК) – взаимосвязанная совокупность каналов связи и каналообразующей аппаратуры, образующих телекоммуникационную сеть или сеть передачи данных (СПД) (передача данных). Функции компьютерной сети: обработка и передача

(данных или информации?)

Данные - "сведения, необходимые для какого-нибудь вывода, решения" (Ожегов С.И. Словарь русского языка). Количественная мера данных – объем.

<u>Информация</u> - "сведения, осведомляющие о положении дел, о состоянии чего-нибудь" (Ожегов С.И. Словарь русского языка). Количественная мера информации – информационная энтропия.

Информационная энтропия — мера неопределённости, определяемая через вероятность p_i появления i-го символа некоторого алфавита или і-го сообщения:

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i$$

n	p1	p2	р3	р4	H	
2	0,5	0,5	-	-	1	
2	0,1	0,9	ı	ı	0,47	
4	0,25	0,25	0,25	0,25	2	
4	0,1	0,2	0,3	0,4	1,85	
4	0,01	0,04	0,3	0,65	1, 2	

Элементы компьютерной сети

В чём разница между понятиями:

«вычислительная машина» «вычислительный комплекс» «вычислительная система»?

Средства вычислительной техники

ЭВМ (электронная вычислительная машина, компьютер) = совокупность технических средств, реализующих ввод, вывод, хранение и обработку данных (информации)

Вычислительный комплекс (ВК) = совокупность *технических средств*, содержащая *несколько* центральных процессоров:

- многопроцессорный ВК (МПВК);
- многомашинный BK (MMBK).

Основная цель построения ВК – обеспечение высокой надежности и/или производительности.

Вычислительная система (ВС) = технические + программные средства.

Есть ли разница между «линией связи» И «каналом связи»?

Средства телекоммуникаций

Средства телекоммуникаций

Топология телекоммуникационной сети – способ объединения УС с помощью КС (ЛС).

Классификация каналов связи

Данные и сигналы

Кодирование – представление дискретных данных в виде дискретных сигналов: *потенциальных* и *импульсных*.

Модуляция — перенос сигнала в заданную полосу частот путем изменения параметров сигнала (амплитуды, частоты, фазы) в соответствии с *информативным* сигналом.

Характеристики каналов связи

- **Полоса пропускания** (частот) [Гц]: F = 1/T. где T — период синусоидального сигнала;
- <u>Скорость модуляции</u> [бод]: $B = \frac{1}{t_L} = \frac{2}{T} = 2F$,

где t_b – длина единичного (битового) интервала: $t_h = T/2$.

$$B=10~{\rm Mfod} \longrightarrow t_b=100~{\rm Hc} \longrightarrow C=10~{\rm Mfout/c} \longrightarrow T=2t_b=0.2~{\rm mkc} \longrightarrow F=5~{\rm Mfu}$$

- **3.** Пропускная способность канала связи: $C = 1/t_h$ [бит/с или bps bits per second]

$$C = F\log_2(1 + \frac{P_{\rm C}}{P_{\rm HI}})$$

1) формула Шеннона:
$$C = F\log_2(1 + \frac{P_c}{P_{III}})$$
 $\frac{P_c}{P_{III}} - SNR$ (Signal-to-Noise Ratio)

$$\frac{P_{\rm c}}{P_{\rm co}} = 1$$
 — $C = 100 \, {\rm Mбит/c};$

$$F = 100 \text{ M}\Gamma$$
ц: $\frac{P_{\rm c}}{P_{\rm III}} = 1$ — $C = 100 \text{ M}$ бит/с; $\frac{P_{\rm c}}{P_{\rm III}} = 3$ — $C = 200 \text{ M}$ бит/с

$$C = \frac{1}{t} \log_2 n_c = 2F \log_2 n_c = B \log_2 n_c$$

$$F = 100 M \Gamma$$
ц:

$$n_c = 2$$
 — $C = 200$ Мбит/с;

$$n_c = 2$$
 — $C = 200$ Мбит/с; $n_c = 4$ — $C = 400$ Мбит/с

4. <u>Достоверность передачи данных</u> – вероятность искажения бита (10⁻⁴ до 10⁻¹⁰ и выше) при передаче по каналу связи [BER - Bit Error Rate].

Классификация данных

Что такое «многоканальная линия связи»?

Методы уплотнения каналов связи

Традиционные методы уплотнения каналов:

Методы мультиплексирования

<u>Частотное мультиплексирование</u> (Frequency Division Multiplexing – FDM)

Методы мультиплексирования

Временное мультиплексирование (Time Division Multiplexing – TDM)

Статическое (синхронное)

Статистическое (асинхронное)

Методы мультиплексирования

<u>Волновое мультиплексирование – спектральное уплотнение</u> (Wavelength Division Multiplexing – WDM)

Грубое волновое мультиплексирование CWDM (Coarse WDM):

до 16 спектральных каналов (волн) по 2,5 Гбит/с с разносом несущих в 20 нм

Уплотнённое волновое мультиплексирование DWDM (Dense WDM):

32, 40 и 80 спектральных каналов (от 10 до 100 Гбит/с и более) с разносом несущих в 1,6 нм и 0,8 нм

В чем отличие «компьютерной сети» от «многомашинного комплекса»?

- Передача данных на большие расстояния наличие связного (телекоммуникационного) оборудования
- Данные передаются в виде структурированных блоков сообщений (пакетов, кадров, ...)
- Открытость архитектуры

Состав компьютерных систем и сетей

А*рхитектура компьютерной сети* – множество технических и инженерных решений по структурной и функциональной организации сети, обеспечивающих определенную совокупность ее свойств и характеристик, рассматриваемую с точки зрения *пользователя* сети и отличающую данную конкретную сеть от любой другой сети.

Технология компьютерной сети — способы организации передачи и обработки данных, обеспечивающие достижение требуемой эффективности сети.

1.2. Многоуровневая организация компьютерных сетей Требования к организации компьютерных сетей

Уровень (layer) - понятие, позволяющее разделить всю совокупность функций обработки и передачи данных на несколько *иерархических групп*. На каждом уровне реализуются определенные функции обработки и передачи данных с помощью тех или иных аппаратных и программных средств сети.

Каждый уровень обслуживает вышележащий уровень и, в свою очередь, пользуется услугами нижележащего.

Модель взаимодействия открытых систем

Семиуровневая OSI-модель:

- **OSI-модель** (Open Systems Interconnection) модель Взаимодействия Открытых Систем (ВОС)
- *ISO* (International Standards Organization) Международная Организация по Стандартам (МОС)

PDU (Protocol Data Unit) - протокольный блок данных: cooбщение (message), дейтаграмма (datagram), пакет (packet), кадр (frame)

Основные функции уровней OSI-модели

Уровень 7 – прикладной:

- **поддержка прикладных процессов** и программ конечного пользователя;
- > управление взаимодействием прикладных программ с различными объектами сети;
- 🗲 формирование интерфейса между прикладным программным обеспечением и системой связи.

Уровень 6 – представления:

- **преобразование (перекодировка) данны**х во внутренний формат каждой ЭВМ и обратно;
- **у** шифрование и дешифрование данных с целью защиты от несанкционированного доступа;
- > сжатие данных, что особенно актуально при передаче мультимедийных данных;
- > управление информационным обменом.

Уровень 5 – сеансовый:

- **установление соединения** с адресатом, управление сеансом и разрыв соединения;
- 🕨 координация связи прикладных программ на двух взаимодействующих рабочих станциях

Уровень 4 – транспортный (сегмент, дейтаграмма; адрес процесса – порт):

- ▶ разбиение длинных сообщений на более короткие PDU (дейтаграммы, сегменты) при их передаче в сети и обратное преобразование;
- ▶ контроль последовательности прохождения PDU и регулирование трафика в сети;
- распознавание дублированных PDU и их уничтожение

<u>Уровень 3 – сетевой (пакет; сетевой адрес: 192.168.1. 4):</u>

- **у** формирование пакетов;
- **жаршрутизация** и обработка ошибок,
- мультиплексирование и демультиплексирование пакетов;
- > управление потоками данных в сети.

<u>Уровень 2 – канальный (кадр; МАС-адрес: 00-19-45-A2-B4-DE):</u>

- **управление доступом** сетевых устройств к среде передачи;
- \triangleright увеличение надежности передачи данных в канале связи (до $10^{-8} 10^{-9}$);
- > управление потоком для предотвращения перегрузок и блокировок

<u>Уровень 1 – физический (достоверность передачи по ЭЛС: $10^{-4} - 10^{-6}$):</u>

- > подключение и отключение канала связи;
- кодирование / декодирование данных и модуляция / демодуляция сигнала;
- ▶ формирование и передача физических сигналов.

IEEE-модель локальных сетей

IEEE-модель:

 Уровни ОЅІ-модели

 7 - прикладной

 6 - представления

 5 - сеансовый

 4 - транспортный

 3 - сетевой

 2 - канальный

 LLC

 МАС

 1 - физический

Необходимость деления на подуровни:

- •увеличение числа функций;
- •предоставление дополнительных услуг.

IEEE (*Institute of Electrical and Electronics Engineers*) - Институт инженеров по электротехнике и электронике

MAC (Medium Access Control) – управление доступом к среде передачи

МАС-адрес: 00-25-AF-98-DC-07

LLC (Logical Link Control) – управление логическим соединением

предоставляет сервис трех типов:

- 1) без установления соединения и без подтверждения доставки;
- 2) без установления соединения с подтверждением доставки;
- 3) сервис с установлением соединения.

Протокольные блоки данных (PDU)

y	ровни OSI-модели	PDU			
7	Прикладной	Сообщение	Message		
• • •	•••		•••		
4	Транспортный	Дейтаграмма	Datagram		
		Сегмент	Datagram Segment		
3	Сетевой	Пакет	Packet		
2	Канальный	Кадр	Frame		

Ячейка (в АТМ-сетях)

Сетевая операционная система

1.3. Структурная организация компьютерных сетей

Типовые топологии

Структурная организация компьютерной сети определяется:

- составом узлов (количество и типы узлов);
- топологией;
- производительностью узлов связи и пропускной способностью каналов связи.

Следует различать: физическую (структурную) топологию; логическую (функциональную) топологию.

Основные топологии:

- •«общая шина»;
- •полносвязная,
- •«кольцо»,
- •«дерево»,
- •«звезда» (узловая),
- •смешанная,
- •многосвязная.

1.3. Структурная организация компьютерных сетей Сравнительный анализ топологий

Сравнительный анализ топологий проводится на основе следующих признаков:

- простота (сложность) структурной и функциональной организации;
- надежность, определяемая наличием альтернативных путей;
- **производительность** сети (реальная и эффективная скорость передачи данных [бит/с]; количество передаваемых за единицу времени пакетов);
- **время доставки** сообщений, например в хопах (hop);
- стоимость, зависящая как от состава оборудования, так и от сложности реализации.

	Топология							
Показатель	ОШ	Звезда	Дерево	Кольцо	Полно-	Сме-	Много-	
					связная	шанная	связная	
Простота	1	2	2	3	5	4	4	
Стоимость	1	2	2	3	5	4	4	
Надёжность	5	4	4	3	1	2	2	
Производительность	5	4	4	3	1	2	2	
Время доставки	3	2	4	5	1	3	3	

1.4. Функциональная организация компьютерных сетей

1.4. Функциональная организация компьютерных сетей

Коммутация

1.4. <u>Функциональная организация компьютерных сетей</u> Коммутация каналов (КК)

<u>Достоинства КК:</u>

- возможность использования существующей инфраструктуры и каналов связи *телефонной сети*;
- не требуется память в транзитных узлах для хранения сообщений;
- эффективна при передаче длинных сообщений.

Недостатки КК:

- *низкое качество* телефонных каналов и, как следствие *невысокие скорости* передачи данных;
- каналы должны иметь одинаковые пропускные способности на всем пути передачи;
- большие накладные расходы на установление соединения при передаче коротких сообщений.

1.4. <u>Функциональная организация компьютерных сетей</u> Коммутация сообщений (КС)

<u>Достоинства КС:</u>

- не требуется предварительное установление соединения, что существенно снижает накладные расходы;
- каналы связи на всем пути передачи могут иметь разные пропускные способности;
- в промежуточных узлах происходит регенерация передаваемых сигналов.

Недостатки КС:

- необходимость хранения сообщений в промежуточных узлах требует значительной ёмкости памяти при разных длинах передаваемых сообщений;
- задержка в промежуточных узлах может оказаться значительной;
- монополизация среды передачи длинными сообщениями.

1.4. <u>Функциональная организация компьютерных сетей</u> Коммутация пакетов (КП)

Коммутация ячеек

В АТМ-технологии:

Pазмер пакета L_{Π} =?

<u>Достоинства КП:</u>

- *время доставки сообщений меньше*, чем при коммутации сообщений;
- более эффективное использование буферной памяти;
- более эффективная организация надежной передачи данных;
- не монополизируется среда передачи;
- меньше задержка пакетов в узлах.

Недостатки КП:

- более высокие накладные расходы на анализ и передачу заголовков всех пакетов сообщения;
- необходимость сборки сообщения из пакетов в узле назначения.

1.4. Функциональная организация компьютерных сетей Сравнительный анализ коммутации сообщений и коммутации пакетов

Коммутация сообщений

Коммутация пакетов (сообщение разделено на 4 пакета)

Способы передачи пакетов

1. Дейтаграммный: а) без установления соединения; б) с установлением соединения

<u>Достоинства:</u>

- простота организации и реализации передачи данных без установления соединения;
- каждый пакет выбирает наилучший путь;
- возможность установления соединения.

Недостатки:

- произвольный порядок прибытия в конечный узел и, как следствие,
 - ▶ большое время ожидания прихода всех пакетов для сборки сообщения;
 - ▶ возможность переполнения буферной памяти;
- затраты ресурсов на установление соединения.

2. «Виртуальный канал»

Достоинства:

- меньшие задержки в узлах сети за счёт резервирования ресурсов;
- небольшое время ожидания в конечном узле;
- более эффективное использование буферной памяти узлов сети.

Недостатки:

- наличие накладных расходов (дополнительных затрат) на установление соединения;
- неэффективное использование ресурсов сети, поскольку они резервируются на все время взаимодействия абонентов (сеанса).

Задачи управления трафиком

Особенности сетевого трафика:

- •неоднородность потока данных;
- •разные *теебования* к качеству передачи данных разных типов;
- •нестационарность трафика;
- •возникновение перегрузок в сети.

Основные задачи управления трафиком:

- малые задержки при передаче по сети;
- надежная передача данных (без потерь);
- эффективная загрузка оборудования (каналов и узлов) сети;
- предотвращение перегрузок и блокировок.

1. Управление трафиком на физическом уровне

<u>На физическом уровне</u> – выделение кадров из потока битов (разделение на кадры):

- 1) указание в заголовке кадра его длины (недостаток неустойчивость к помехам);
- 2) использование в качестве границы кадров запрещенных сигналов физического уровня;
- 3) использование в качестве границы кадров специальных стартовых и стоповых символов (байт) *байт-стаффинг*;
- 4) использование в качестве границы кадров специальных последовательностей битов **бит-стаффинг (bit stuffing)**.

01110110111111111000010<mark>01111110</mark>10000001010010111111001001

 $100\underline{01111110}11001110101111100\underline{11111}0110000\underline{11111}11$

<u>01111110</u> 100<u>011111010</u>1100111010111100<u>1111110</u>0110000<u>1111110</u>11 <u>01111110</u>

 $0010 \underline{01111110} 1000 \underline{111110} 101100111001111100 \underline{111110} 0110000 \underline{111110} 11 \underline{011111110} 0011$

2. Управление трафиком на канальном уровне

На канальном уровне управление потоком в канале связи между двумя узлами реализуется за счет применения:

Ширина окна=4

Загрузка канала: 10/25 = 40%

Протоколы: HDLC, LAP-M

 $T=D\theta$

- механизма квитирования;
- механизма тайм-аута;
- механизма скользящего окна.

Проверка:

- пакет не искажен?
- порядок пакетов не нарушен?

3. Управление трафиком на сетевом уровне – маршрутизация

<u>Таблица маршрутизации (ТМ) узла 4</u>

Сетевой адрес	Интерфейс	Метрика	
1	И1	0	
2	И2	0	
2	И3	1	
3	ИЗ	0,5	
3	И4	1,5	
5	И5	0	

Маршрутизация по предыдущему опыту

Таблица маршрутизации узла \mathbf{y}_7 (1)					
AH	АСУ	Расстояние (Р)			
\mathbf{y}_1	\mathbf{y}_9	3			
•••	•••	•••			

Таблица маршрутизации узла У7 (2)					
AH	АСУ	Расстояние (P)			
\mathbf{y}_1	\mathbf{y}_6	2			
• • •	• • •	•••			

Таблица маршрутизации узла У $_7$ (3)				
AH	АСУ	Расстояние (P)		
\mathbf{y}_1	\mathbf{y}_4	1		
•••	•••	•••		

<u>1.4. Функциональная организация компьютерных сетей</u> Управление трафиком на высших уровнях OSI-модели

На транспортном уровне управление потоком *между конечными узлами* компьютерной сети может быть реализован за счет:

- квитирования на основе скользящего окна (например, в протоколе ТСР);
- установления приоритетов между различными типами трафика;
- применения методов борьбы с перегрузками в сети (когда скорость передачи данных от отправителя выше скорости получателя) путем:
 - уменьшения объемов передаваемых данных (размера скользящего окна) при возникновении перегрузок;
 - > ограничения поступающего от абонента трафика;
- ограничения доступа количества пакетов в сети (изаритмический алгоритм).

На сеансовом уровне управление трафиком в коммутируемых сетях сеансом связи реализуется за счет:

- •применения различных способов установления, поддержки и разрыва соединения между абонентами;
- •приоритезации трафика.

1.5. Стеки сетевых протоколов

Стек протоколов – множество протоколов разных уровней одной сетевой технологии:

	OSI-модель	IEEE-N	иодель	TCP/IP	XNS(IPX)	AppleTalk	DECnet	SNA
7	Прикладной	Прикладной		Прикладной	Прикладной	Представления	Прикладной (пользователь- ский)	Сервис транзакций
6	Представления				Контрольный		Сетевые приложения	Представитель- ный сервис
5	Сеансовый (сессионный)					Сессионный	Контроль сессии	Контроль потока данных
4	Транспортный			Транспортный	Транспортный	Транспортный	Коммуникации "конец-связи"	Контроль передачи
3	Сетевой			Межсетевой	Межсетевой	Сетевой	Маршрутизаци- онный	Контроль маршрута
2	Канальный	Каналь-	LLC	Сетевой	Канальный	Канальный	Канальный	Контроль канала
-	(передачи данных)	N/AC	интерфейс	интерфейс	•	•	•	
1	Физический	Физический				Физический	Физический канал	Физический контроль

1.1. Основные понятия и терминология

РЕЗЮМЕ:

- 1. Данные и информация
- 2. Вычислительная машина, комплекс и система
- 3. Линия и канал связи
- 4. Симплексный, дуплексный и полудуплексный канал связи
- 5. Непрерывные и дискретные данные и сигналы
- 6. Кодирование и модуляция
- 7. Витая пара, коаксиальный кабель, оптическое волокно
- 8. Беспроводные системы связи (сотовая и спутниковая связь)
- 9. Полоса пропускания и пропускная способность канала связи

1.1. Основные понятия и терминология

«Полоса пропускания» и «Пропускная способность» канала связи – это одно и то же?

От чего зависит пропускная способность канала связи?

1.1. Основные понятия и терминология

64 кбит/c = 64 000 бит/c или 65 536 бит/c? 2 Мбит/c = 2 000 000 или 2 048 000 бит/c?

Есть ли разница между понятиями «пропускная способность» канала связи и «скорость передачи» по каналу?