

GEOMETRÍA

Capítulo 19

1st SECONDARY

TRIÁNGULOS SEMEJANTES

MOTIVATING | STRATEGY

En nuestra vida cotidiana nos encontramos con objetos que tiene igual forma y distinto tamaño, por ejemplo algunas tablets, los conos de transito, una tarjeta de crédito, etc. En geometría existen triángulos que tiene igual forma y algunas veces igual tamaño, a dichas figuras se le llama semejantes, que es el tema que estudiaremos a continuación.

Existen condiciones mínimas para que dos triángulos sean semejantes, así como también existen figuras geométricas que siempre son semejantes, por ejemplo los triángulos equiláteros, los cuadrados ,las circunferencias, etc.

TRIÁNGULOS SEMEJANTES

Dos triángulos son semejantes si tienen tres pares de ángulos congruentes y las longitudes de sus lados homólogos

respectivamente proporcionales.

$$\frac{\mathbf{m}}{\mathbf{a}} = \frac{\mathbf{n}}{\mathbf{b}} = \frac{\mathbf{l}}{\mathbf{c}} = \mathbf{k}$$

k: razón de la semejanza

TEOREMAS FUNDAMENTALES DE SEMEJANZA

1. En el gráfico, si AB = 4 m, BC = 5 m y DF = 20 m, halle DE.

5

Resolución

- Piden: DE
- △ ABC ~ △ EDF

$$\frac{x}{4} = \frac{20}{5}$$

$$(5)(x) = (4)(20)$$

$$5x = 80$$

$$x = 16$$

DE = 16 m

X

R

Resolución

- Piden: x
- → △ABC ~△PRQ

$$\frac{x}{3} = \frac{12}{x}$$

$$(x)(x) = (3)(12)$$

$$x^2 = 36$$

$$x = 6$$

3. En el gráfico, halle el valor de x.

4. En el gráfico, halle el valor de x.

HELICO | PRACTICE

5. Las longitudes de los lados AB y AC de un triángulo ABC son de 9 m y 12 m, D ∈ AB, E ∈ BC. Si m∢BDE= m∢BCA y BE= 6 m, halle DE.

- Piden: DE
 - △ABC ~ ΔEBD

$$\frac{6}{9} = \frac{x}{12}$$

$$(6)(12) = (9)(x)$$

$$72 = 9x$$

$$8 = x$$

$$DE = 8 \text{ m}$$

HELICO | PRACTICE

6. En la figura se muestra un terreno triangular representado por \overline{PQ} . Si la pared \overline{AB} mide 10 m. ¿Cuánto mide la pared \overline{PQ} .

Resolución

- Piden: PQ
- △ABC ~ △QPR

$$\frac{x}{10} = \frac{2x}{5x}$$
$$5x = 20$$

$$x = 4$$

$$PQ = 4 m$$

HELICO | PRACTICE

7. Halle la longitud de la altura de un edificio que proyecta una sombra de 20 m y en el mismo instante que una pared de 3 m proyecta una sombra de 2 m.

Resolución

- Piden: h
- △ABC ~ △AHP

$$\frac{3}{h} = \frac{2}{20}$$

$$60 = 2h$$

$$h = 30 m$$