Visión por computador

Práctica 2

Arón Collados Cristian Román

Detección de blobs

Para obtener los contornos de los distintos blobs primero se ha calculado la imagen binaria mediante las funciones otsu y adaptive, para luego pasarla a la función findContours.

ADAPTIVE

Como se ve el método adaptive proporciona una imagen con ruido o detalles de los objetos que no deseamos. Al calcular los contornos con esta imagen binaria obtendremos equivocadamente alguno de estos detalles como blobs distintos.

OTSU

Con este modo se desechan todos los detalles de los objetos y sólo obtendremos los contornos de los blobs.

Hay que tener en cuenta que a partir de esta metodología es imposible obtener los contornos de blobs que estén superpuestos, siempre se detectarán como un único objeto.

Aprendizaje

Obtención de descriptores:

Los descriptores de los objetos se han obtenido mediante las funciones nativas de opency a partir de los contornos. Hay que tener en cuenta que los momentos invariables que ofrece opency están escaladas.

Almacenamiento de datos en ficheros

Para almacenar los descriptores de los objetos se ha utilizado el manejo de ficheros que ofrece c++, con la siguiente estructura:

```
Objeto1:MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Perimetro</sub>,MI<sub>Muestra1,MI1</sub>,MI<sub>Muestra1,MI2</sub>,MI<sub>Muestra1,MI3</sub>,;MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Perimetro</sub>,MI<sub>Muestra1,MI1</sub>,MI<sub>Muestra1,MI3</sub>,
Objeto2:MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Perimetro</sub>,MI<sub>Muestra1,MI1</sub>,MI<sub>Muestra1,MI2</sub>,MI<sub>Muestra1,MI3</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Perimetro</sub>,MI<sub>Muestra1,MI1</sub>,MI<sub>Muestra1,MI3</sub>,MI<sub>Muestra1,MI3</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Perimetro</sub>,MI<sub>Muestra1,MI1</sub>,MI<sub>Muestra1,MI3</sub>,MI<sub>Muestra1,MI3</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,MI<sub>Muestra1,Area</sub>,M
```

Unos posibles datos podrían ser:

circulo:0.159259,2.21773e-05,2.4618e-07,2.01052e-10,1.1032e-18,3.71391e-13,-8.85228e-19; rectangulo:0.171661,0.0024267,1.64133e-07,2.4731e-08,6.99554e-16,9.03894e-10,-1.41184e-15; rueda:0.159361,9.92973e-06,7.89747e-08,1.41184e-10,-3.3731e-19,1.50834e-14,3.2935e-19;

Reconocimiento

Para calcular la correlación del objeto que se está analizando con el que se compara, se usa la distancia mínima de Mahalonobis de los tres primeros momententos invariables:

$$D^{2}(x, w) = \sum (x_{j} - \mu_{ij})^{2} / \sigma_{ij}^{2}$$

 $D^{2}(x, w)$ tiene una distribución Chi-cuadrado siendo m en número de valores observados.

m\α	0.025	0.05	0.1	0.25	0.5
5	12,83	11,07	9,24	6,63	4,35

Debido a que se observan 3 valores (los 3 momentos invariables) y que deseamos encontrar el objeto con un 95% de posibilidades, se ha escogido un umbral de 7,8147

$$P(D^2(x, w) < U) = P(D^2(x, w) < 11,07) = 0.95$$

Regularización

Se le da un porcentaje a la media.

$$D^{2}(x, w) = \Delta \sum (x_{i} - \mu_{ij})^{2} / \sigma_{ij}^{2}$$

Y se corrige la varianza a priori

$$\sigma_N^2 = \frac{\sigma_{0N}^2}{N} + \frac{N-1}{N}\sigma^2$$

