4. Operadores autoadjuntos

1
A lo largo de esta sección E denotará un e.p.i. real de dimensión finita, $\operatorname{End}(E):=\mathcal{L}(E,E)$ y $A\in\operatorname{End}(E).$
Definición 4.1. Decimos que A es autoadjunto si $A = A^*$.
Observación 4.2.
(I) A es autoadjunto sii $\langle Au, v \rangle = \langle u, Av \rangle$ para todo $u, v \in E$.
(II) El conjunto de los operadores autoadjuntos forma un subespacio vectorial de $\operatorname{End}(E).$
(III) Sea $B \in \text{End}(E)$. AB es autoadjunto sii $AB = BA$.
Ejemplo 4.3. Sean $A, B \in \text{End}(\mathbb{R}^2)$
Propiedad 4.4. Sea $P \in \text{End}(E)$ una proyección. Luego, P es autoadjunto sii es una proyección ortogonal sobre su imagen.
$Demostraci\'on.$ $Ejercicio.$
Propiedad 4.5. Las siguientes proposiciones son equivalentes:
(I) A es autoadjunto.
(II) La matriz de A respecto a una base ortonormal es simétrica.
(III) La matriz de A respecto a cualquier base ortonormal es simétrica.
Ejemplo 4.6 (La matriz de una proyeción ortogonal.).
Propiedad 4.7. Si el subespacio $F \subset E$ es invariante por A , entonces F^{\perp} es invariante por A^* .
Demostración. Ejercicio.
Propiedad 4.8. Si A es autoadjunto y el subespacio $F \subset E$ es invariante por A , entonces F^{\perp} es invariante por A .
$Demostraci\'on.$ $Ejercicio.$
Ejemplo 4.9. Sea $A \in \text{End}(\mathbb{R}^2)$, $A(x,y) = (x, \alpha x + y)$, con $\alpha \neq 0$.
Propiedad 4.10. Sea A autoadjunto. Si $\lambda_1, \ldots, \lambda_n$ son autovalores dos a dos diferentes de A , entonces los autovectores correspondientes v_1, \ldots, v_n forma un conjunto ortogonal.

Demostración. Ejercicio.

Observación 4.11. Cuando la matriz de A respecto a una base \mathcal{U} es diagonal, se tiene que los vectores de \mathcal{U} son autovectores de A.

Theorem 4.12 (Teorema Espectral). Si A es autoadjunto, entonces existe una base ortonormal de E formada por autovectores de A.

Lema 4.13. Si A es autoadjunto y $\dim(E) = 2$, entonces existe una base ortonormal de E formada por autovectores de A.

Lema 4.14. Si A es autoadjunto, entonces A posee un autovector.

(Prueba del teorema 4.12.) Ejercicio.

Observación 4.15. Vale la recíproca del Teorema Espectral.

Definición 4.16. Diremos que A es **semidefinido positivo** (**definido positivo**), y escribiremos $A \ge 0$ (A > 0), si es autoadjunto y $\langle Av, v \rangle \ge 0$ para todo $v \in E$ ($\langle Av, v \rangle > 0$ para todo $v \in E$ no nulo).

Propiedad 4.17. Sea A autoadjunto. Se cumple que

- (I) $A \ge 0$ sii todos sus autovalores son mayores o iguales a 0.
- (II) A > 0 sii todos sus autovalores son mayores que 0.

Demostración. Ejercicio.

Propiedad 4.18. Si $A \ge 0$ y para un cierto $v \in E$ vale $\langle Av, v \rangle = 0$, entonces Av = 0.

Demostraci'on. Ejercicio.

Observación 4.19. Geometricamente, $A \geq 0$ significa que el ángulo entre v y Av es agudo o recto para cualquier $v \in E$. La propiedad de arriba dice que cuando $Av \neq 0$, ese ángulo es agudo.

Propiedad 4.20. $A > 0 \Leftrightarrow A \ge 0, A$ es invertible.

Demostración. Ejercicio.

Definición 4.21. Diremos que una matriz cuadrada \mathbf{a} es semidefinida positiva (definida positiva), y escribiremos $\mathbf{a} \ge 0$ ($\mathbf{a} > 0$), si su endomorfismo asociado respecto a la base canónica es semidefinido positivo (definido positivo).

Propiedad 4.22. Sea a una matriz simétrica. Se cumple que

- (I) $\mathbf{a} \geq 0$ sii todos sus autovalores son mayores o iguales a 0.
- (II) $\mathbf{a} > 0$ sii todos sus autovalores son mayores que 0.

Ejemplo 4.23.

Definición 4.24. Un operador $X \in \text{End}(E)$ se dice que es una **raíz** de A cuando $X^2 = A$.

Definición 4.25. Sea λ un autovalor de A. Luego,

$$E_{\lambda} := \{ v \in E : Av = \lambda v \}$$

es llamado de **autoespacio** de A asociado a λ .

Observación 4.26. Sea E_{λ} un autoespacio de A.

- (I) E_{λ} es un subespacio invariante por A.
- (II) El operador A restringido a E_{λ} es la multiplicación por λ .
- (III) Todo vector no nulo de E_{λ} es autovector de A con autovalor λ .

Propiedad 4.27. Si A es autoadjunto y $\{\lambda_1, \ldots, \lambda_k\}$ es el conjunto de autovalores de A, entonces

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$
.

Propiedad 4.28. Si $A \ge 0$ (A > 0), entonces A posee una única raíz cuadrada semidefinida positiva (definida positiva).

Observación 4.29.

Observación 4.30.

Theorem 4.31. Sea $A \in \mathcal{L}(E, F)$. Entonces:

- (i) $A^*A, AA^* \geq 0$,
- (II) $\operatorname{rank}(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A),$
- (III) $A^*A, AA^* > 0 \Leftrightarrow A \text{ es invertible.}$

Corolario 4.32.

Observación 4.33.

Ejemplo 4.34. Sea a = ...

Theorem 4.35 (Teorema de los Valores Singulares).

Definición 4.36. Los números positivos $\sigma_1, \ldots, \sigma_r$ son llamados de **valores singulares** de $A \in \mathcal{L}(E, F)$ con rank(A) = r.

Definición 4.37. Un operador $A \in \operatorname{End}(E)$ será llamado de **normal** si A y A^* conmutan y **diagonalizable** si E posee una base formada por autovectores de A. Un subconjunto $\Sigma \subset E$ es llamado de **elipsoide** cuando existe una base ortonormal $\{u_1, \ldots, u_n\}$ de E y números positivos a_1, \ldots, a_n tales que

$$\Sigma = \{ v = x_1 u_1 + \dots + x_n u_n \in E ; a_1 x_1^2 + \dots + a_n x_n^2 = 1 \}.$$

Ejercicio 4.1. Sea $A \in \text{End}(E)$ diagonalizable y sea $F \subset E$ subespacio. Si F es invariante por A, pruebe que existe un subespacio $G \subset E$ también invariante por A tal que $E = F \oplus G$.

Ejercicio 4.2. Sean $A, B \in \text{End}(E)$ auto-adjuntos.

- (I) Pruebe que AB + BA es autoadjunto.
- (II) ¿Qué se puede decir sobre AB BA?

Ejercicio 4.3. Sean $A, B \in \text{End}(E)$ auto-adjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a B y A.

Ejercicio 4.4. Sea P una proyección ortogonal y $\alpha > 0$. Exprese la raíz cuadrada de definida positiva de $I + \alpha P$ en términos de P.

Ejercicio 4.5. Analice si los siguientes subconjuntos del espacio vectorial $\mathcal{L}(E)$ es un subespacio vectorial, un cono o un cono convexo:

- (I) operadores normales,
- (II) operadores autoadjuntos,
- (III) operadores semidefinidos positivos.

Ejercicio 4.6. Sea $A \in \text{End}(E)$ autoadjunto. Para todo $k \in \mathbb{N}$ impar, pruebe que existe un único operador autoadjunto $X \in \text{End}(E)$ tal que $X^k = A$. Si k es par, existe X autoadjunto con $X^k = A$ sii $A \geq 0$. En este caso, X puede ser escogido semidefinido positivo y entonces es único.

Ejercicio 4.7. Sea $A \in \text{End}(E)$.

- (I) Si $A^*A = -A$, pruebe que los autovalores de A pertenecen al conjunto $\{0, -1\}$.
- (II) Dé una matriz $\mathbf{a} \in \mathcal{M}(2 \times 2)$ tal que $a_{11} = -1/3$ y $\mathbf{a}^{\mathsf{T}} \mathbf{a} = -\mathbf{a}$.
- (III) ¿Cuántas matriz del tipo del ítem anterior existen?

Ejercicio 4.8. Sea $A \in \text{End}(E)$ autoadjunto y sea $B \in \text{End}(E)$. Pruebe las siguientes proposiciones:

- (I) B^*AB es autoadjunto.
- (II) $A \ge 0 \implies B^*AB \ge 0$.
- (III) A > 0, B es invertible $\Rightarrow B^*AB > 0$.

Ejercicio 4.9. Sea $A \in \text{End}(E)$ invertible y sea $\Sigma \subset E$ un elipsoide. Pruebe que $A(\Sigma)$ es un elipsoide.

Ejercicio 4.10. Sea $\Sigma \subset E$. Pruebe que Σ es un elipsoide sii existe $A \in \operatorname{End}(E)$ definido positivo tal que

$$\Sigma = \{ v \in E ; \langle Av, v \rangle = 1 \}.$$

Ejercicio 4.11. Sea $A \in \text{End}(E)$ autoadjunto y sea $B \in \text{End}(E)$ definido positivo. Pruebe las siguientes proposiciones:

- (I) X es la raíz cuadrada positiva de $B \Rightarrow XAX$ es autoadjunto.
- (II) v es autovector de $XAX \Leftrightarrow Xv$ es autovector de BA.
- (III) BA es diagonalizable.
- (IV) E posee una base tal que para todo $v \in \text{existe } \lambda \in \mathbb{R} \text{ con } Av = \lambda Bv$.

Ejercicio 4.12. Sea $A \in \text{End}(E)$ autoadjunto. Pruebe que

$$A = \lambda_1 P_1 + \dots + \lambda_m P_m,$$

donde

- (I) $\lambda_1 < \cdots < \lambda_m$.
- (II) P_i es una proyección ortogonal, $i = 1, \ldots, m$.
- (III) $P_i P_j = 0 \text{ si } i \neq j.$
- (IV) $P_1 + \cdots + P_m = I$.

Pruebe también que la expresión de A con las propiedades de arriba es única.

Ejercicio 4.13. Pruebe que todo operador autoadjunto A es suma de operadores autoadjuntos de rango 1, los cuales pueden ser tomados semidefinidos positivos si A fuese semidefinido positivo.