Solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice: a calculation of selected gauge observables with gradient flow

Hans Mathias Mamen Vege April 23, 2019

Supervisor: Andrea Shindler Co-supervisor: Morten Hjorth-

Jensen

University of Oslo

• QCD. We will go through and explain what QCD as well as motivate its existence.

- Quantum Chromodynamics(QCD).
- · Lattice QCD.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- **Gradient flow.** We will quickly introduce gradient flow and explain its effects.

-

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.

- · Quantum Chromodynamics(QCD).
- · Lattice OCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- Results.

- QCD. We will go through and explain what QCD as well as motivate its existence.
- LQCD. We will briefly show how one discretise the lattice and perform calculations on it.
- Gradient flow. We will quickly introduce gradient flow and explain its
 effects
- GLAC. Will briefly present the code which we developed as well as some benchmarks. We will also present the Metropolis algorithm.
- **Results.** We will present the results obtained from pure gauge calculations.

- Quantum Chromodynamics(QCD).
- · Lattice QCD.
- · Gradient flow.
- Developing a code for solving SU(3) Yang-Mills theory.
- · Results.

Introduction

Quantum Chromodynamics(QCD)

SM. A pictorial illustration of the standard model of physics. Lattice QCD is all about exploring the QCD sector consisting of gluons and quarks. We will however focus on the gluons.

• A

_

Lattice Quantum Chromodynamics(LQCD)

Recovering the continuum action action

Developing a code for solving $\mathrm{SU}(3)$ Yang-Mills theory on the lattice

The numerical challenge in lattice QCD

The path integral

The Metropolis algorithm

Link sharing

Measuring observables on the lattice

How to measure

Topological charge

Energy

Gradient flow

The flow equation

Solving gradient flow on the lattice

Smearing the lattice

Results

Ensembles

Energy and the scale setting

Topological charge

Topological susceptibility

The fourth cumulant

The topological charge correlator

The effective glueball mass

Conclusion