Weekly Puzzle - Solutions Number Theory

Thomas Winrow-Campbell

17/11/2024 - 24/12/2024

If $x \equiv y \pmod{m}$, then m|(x-y), which means x = y + km, where $k \in \mathbb{Z}$.

Questions:

Modular arithmetic:

- 1. (a) $\{x | x = 2n + 5, n \in \mathbb{Z}\}.$
 - (b) This means $a_1 = b_1 + k_1 m$ and $a_2 = b_2 + k_2 m$, where $k_1, k_2 \in \mathbb{Z}$. Therefore, $a_1 + a_2 = b_1 + k_1 m + b_2 + k_2 m = b_1 + b_2 + (k_1 + k_2) m$. Let $k = k_1 + k_2$, so $k \in \mathbb{Z}$, then $a_1 + a_2 = b_1 + b_2 + k m$, so $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
 - (c) $a \equiv b \pmod{m}$ means a = b + cm, where $c \in \mathbb{Z}$. We assume $k \in \mathbb{Z}$. Then, ka = kb + kcm. $kc \in \mathbb{Z}$, so $ka \equiv kb \pmod{m}$.
 - (d) a = b + cm, so if $k \in \mathbb{Z}^+$, then $a^k = (b + cm)^k$. Using the binomial theorem, then $a^k = \sum_{i=0}^k \binom{k}{i} b^{k-i} (cm)^i$. The only term where $b^{k-i} (cm)^i$ would not necessarily be divisible by cm is when i = 0, and so this would be b^k . So, $a^k = b^k + dm$, so $a^k \equiv b^k \pmod{m}$.
 - (e) From the previous part, $a \equiv b \pmod{m}$ implies $a^k \equiv b^k \pmod{m}$, where $k \in \mathbb{Z}$. So as $11 \equiv 1 \pmod{10}$, then $11^{1000} \equiv 1^{1000} \pmod{10}$, so $11^{1000} \equiv 1 \pmod{10}$, so the last digit is 1.
 - (f) From part (d), $12^{1000} \equiv 2^{1000} \, (mod \, m)$.

We notice that by increasing the power of 2^i , where $i \in \mathbb{Z}^+$, we seem to have a repeating pattern of 2, 4, 8, 6.

However, this is not a proof, so we can use induction to show that the final digit of 2^{4i} , where $i \in \mathbb{Z}^+$.

However, this can be made simpler, $2^{4i} \equiv 16^i \equiv 6^i \pmod{10}$.

Base case: $6^1 \equiv 6 \pmod{10}$, so this is correct.

If it is true for i = k, then $6^k \equiv 6 \pmod{10}$, so $6^{k+1} \equiv 36 \equiv 6 \pmod{10}$, so it is true for i = k+1.

Therefore, by mathematical induction, the statement that $6^i \equiv 6 \pmod{10}$ is true for all $i \in \mathbb{Z}^+$. As $4 \mid 1000$, then the last digit of 2^{1000} is 6.

(g) We can represent an integer as a series of digits, from the least significant digit to the most significant digit as the digits a_i , starting from i = 0 where the number has n digits.

This means the number 123 would have $a_0 = 3$, $a_1 = 2$ and $a_2 = 1$, and n = 3.

A number in this format is equal to $\sum_{i=0}^{n} a_i \times 10^i$. From part (d), when $i \geq 1$, then

 $10^i \equiv 1^i \equiv 1 \pmod{9}$. So then $\sum_{i=0}^n a_i \times 10^i \equiv \sum_{i=0}^n a_i \pmod{9}$. We have therefore proven it.

Irrationality:

2. (a) Suppose $\log_2 3$ is rational, so $\log_2 3 = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$.

Then, $2^{\frac{a}{b}} = 3$, so $2^a = 3^b$. As 3 > 1, we know that $\log_2 3$ is positive, so we can say both $a, b \in \mathbb{Z}^+$. Therefore, 2^a is even, and 3^b is odd. So therefore, as an even number cannot equal an odd number, then $2^a \neq 3^b$, so we have a contradiction, so our original assumption was wrong, so $\log_2 3$ is irrational.

Suppose $\sqrt{2}$ is rational, so $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$, and we shall suppose that $\frac{a}{b}$ is in its lowest form. So $\frac{a^2}{b^2} = 2$. Therefore $a^2 = 2b^2$. So, a^2 is even, and therefore a is even. If a is even, then a = 2c. So $4c^2 = 2b^2$, so $b^2 = 2c^2$, so b is even. However, as $\frac{a}{b}$ is in its lowest form, so both a and b cannot be even, so we have a contradiction. So $\sqrt{2}$ is irrational.

(b) If $a^2 = 4b^2$, this does not imply that a is a multiple of 4.

Prime numbers:

- 3. (a) Suppose there is a largest prime number. Then we can write the finite set of prime numbers with elements p_i . But, then the number $1 + \prod_i p_i$ is not divisible by any p_i , so this is a new largest prime number. So, there is no largest prime number.
 - (b) As we need to prove it for all integers x, we need to use induction twice, one with an ascending inductive step, and one with a descending inductive step.

If x = 0, then $x^p = 0 = x \mod p$, so the statement is true for x = 0.

If it is true for x = k, then $k^p \equiv k \mod p$.

Let a be an integer.

$$(k+a)^p = \sum_{i=0}^p {p \choose i} k^i \times a^{p-i}$$

If $1 \ge i \ge n-1$, then $\binom{p}{i} = \frac{p!}{i!(p-i)!}$. As p is prime, it divides the numerator but not the denominator, so the only two terms left in the sum are k^p and a^p , so $(k+a)^p \equiv k^p + a^p \equiv k + a^p \pmod{m}$.

If a=1, then $(k+1)^p \equiv k+1^p \equiv k+1 \pmod{p}$, so the statement is true for x=k+1. If a=-1, then $(k-1)^p \equiv k+(-1)^p \pmod{p}$.

If p is odd, then $(k-1)^p \equiv k + (-1)^p \equiv k - 1 \pmod{p}$. If p is even, then p is 2, so $(k-1)^p \equiv k + (-1)^2 \equiv k + 1 \equiv k - 1 \pmod{p}$, so the statement is true for x = k - 1.

As the statement is true for x = 0, and if it is true for x = k, then it is true for x = k + 1 and x = k - 1, then by mathematical induction, the statement is true for all $x \in \mathbb{Z}$.

- (c) $a^p 1 = (a-1)(a^{b-1} + a^{b-2} + \dots + a + 1)$. If $a^p 1$ is prime, then the only two factors are 1 and $a^p 1$. So a 1 = 1 or $a 1 = a^p 1$. So a = 2 or $a = a^p$. As $a \neq 0$ and $a \neq 1$, otherwise $a^p 1$ is not prime, then for $a = a^p$ to be true, p = 1. So either a = 2 or p = 1.
- (d) The contrapositive of the statement is that if p is not prime, then 2^p-1 is not prime. Suppose p=ab, where a and b are factors which are not 1. Then $2^p-1=2^{ab}-1$. As $x-y\mid x^n-y^n$, then $2^a-1\mid 2^{ab}-1$ and $2^b-1\mid 2^{ab}-1$, so as $a\neq 1$ and $b\neq 1$, then $2^a-1\neq 1$ and $2^b-1\neq 1$, so 2^p-1 is not prime. Therefore, by the law of contrapositives, if 2^p-1 is prime, then p is prime.

©2025 Thomas Winrow-Campbell