Hash Functions

Security notions, HMAC, birthday attacks, RO model/controversies, hash trees, etc.

Hash Function

- Provides way to map long, variable-length input string to short, fixed-length output string
- Input: pre-image
- Output: digest
- Similar to hash tables in data structures:
 - O(1) look-up time
 - Key-value pairs: H(x): key \Leftrightarrow x: value

Hash Function

- Collision: H(x) = H(x'); $x \neq x'$
- Fundamental differences:
 - In data structures, collisions are undesirable (but tolerable)
 - In crypto, collision-resistance is requirement
 - Data structure elements likely chosen independently (of H)
 - Here, A will choose elements to deliberately cause collisions in H
 - Data structures collisions: use linear/quadratic probing, use chained linked lists, double hashing, etc.

Keyed Hash Function

- $\bullet \ \mathsf{H}^\mathsf{s}(\mathsf{x}) = \mathsf{H}(\mathsf{s},\mathsf{x})$
- s is a "key", x value, s public
- Collision Game Coll_{A,H}(n):
 - Challenger runs s <— Gen(1ⁿ)
 - A given s, H outputs x, x'
 - A wins ("finds a collision") if x≠x', but H^s(x) = H^s(x'), set output = 1
- H is collision-resistant, if for all PPT adversaries A, there is a negl. function, s.t.:

$$Pr[Coll_{A,H}(n) = 1] \le negl(n)$$

Collisions

- Collision game defined for strong collision resistance, or just "collision resistance"
- Weak-collision resistance
 - Given s, x, H, A can't find an x', s.t., x≠x', but
 H^s(x) = H^s(x')
 - "Second-preimage resistance"
- One-way property
 - Given s, y, H, A can't find an x, s.t., H^s(x) = y
 - "Pre-image resistance"

Collisions, etc.

- Easy to see strong collision resistance implies other two properties (but not other way!)
- Un-keyed H
 - Real-world crypto hash functions usually "unkeyed" — no s
 - H:{0,1}* -> {0,1}n
 - But still satisfy collision-resistance

Domain Extension

- We require H to be able to process arbitrary-length inputs
- How to construct H?
- Common approach:
 - Construct a collision-resistant compression function, H
 - Use domain extension on H to handle arbitrarylength inputs

Merkle-Damgård Transform

- Domain extension function:
 - Merkle-Damgård transform¹
 - Used for SHA-family (SHA-1,SHA-2), MD5 too
 - During design, helps restrict attention to fixedlength case

Merkle-Damgård Transform

- Let h: {0,1}²ⁿ -> {0,1}ⁿ be a compression function, construct H: {0,1}* -> {0,1}ⁿ
- D (digest) \leftarrow H(s, $x \in \{0,1\}^*$) $/*|D|=n,|x|<2^n*/$
 - Set B = $\lceil |x|/n \rceil / \#$ of blocks in x * / #
 - Parse blocks $x_1,...x_B$, add padding if necessary
 - Set $x_{B+1} = |x| /*$ Needed for knowing size of $x^*/$
 - Set $z_0 = 0^n / * This is IV * /$
 - for i = 1 to (B+1) do
 - Compute $z_i = h^s(z_{i-1}||x_i)$
 - Return D = z_{B+1}

Hash-and-MAC

- Informally: y <- H^s(m), then tag <- MAC(y)
- Hash-and-Mac algorithms:
- $(k,s) < Gen(1^n)$
 - Randomized
 - Choose $k \in \{0,1\}^n$, generate s, return (k,s)
- $t < -MAC(k, s, m \in \{0,1\}^*)$
 - Randomized
 - Output t<- MAC_k(H^s(m))
- {"accept","reject"} <- Verify(k, s, m, t)</p>
 - Deterministic
 - Return accept iff Verify(k,H^s(m),t) ² 1

- Hashed Message Authentication Code
- HMAC algorithms
- $(k,s) < Gen(1^{n'})$
 - Randomized
 - Choose $k \in \{0,1\}^{n'}$, generate s, return (k,s)
- $t < -MAC(k, s, m \in \{0,1\}^*)$
 - Randomized. |ipad| = |opad| = n'
 - Output $t < H^s((k \oplus opad) | | H^s((k \oplus ipad) | | m))$
- {"accept","reject"} <- Verify(k, s, m, t)</p>
 - Deterministic
 - Return accept iff $H^s((k \oplus opad) | | H^s((k \oplus ipad) | | m)) \stackrel{?}{=} t$

- HMAC an instantiation of Hash-and-MAC
- Regular Hash-and-MAC just does t<— MAC_k(H^s(m))
- HMAC does t<− H^s((k ⊕ opad)|| H^s((k ⊕ ipad) || m))
- Why the extra parameters?

- First, why does k go "inside" twice, e.g., H^s((k ⊕ opad) | | H^s((k ⊕ ipad) | | m))?
- This guarantees HMAC'll be secure, even if H is only weakly-collision resistant
- MD5 was discovered to not be (fully) collisionresistant, HMAC-MD5 was still secure¹

- Role of ipad and opad:
 - Ensure independent keys in inner/outer computation
 - k used with ipad, opad to derive 2 keys
- $k_{out} = H^s(IV \mid | (k \oplus opad))$
- $k_{in} = H^s(IV | | (k \oplus ipad))$
- MAC_{kin,kout} (m) = $H^s(k_{out} | H^s_{kin}(m))$

- Industry standard, widely used in practice
- Supported by proof based on standard assumptions on hash functions (one-wayness, weak-collisionresistance)
- Proof in standard model (not random oracle model)
 - Reduction-based works in usual way

Birthday Attack

- Trivial birthday attack (from pigeon-hole principle):
 - Let H: $\{0,1\}^* -> \{0,1\}^l$
 - Simply compute H(1),...,H(2^l+1)
 - At least 2 outputs will collide
- Birthday paradox
 - Min. no. of people in room with > 50% chance of colliding birthdays
 - 23
 - Roughly: collisions after 2^{1/2} digests for H

Naïve Birthday Attack

- Alice has 2 messages
 - M = "I'll loan Alice \$100"
 - M' = "I agree to pay Alice \$1,000,000"
- Plans to ask Bob to sign H(M), and attach Bob's sig.
 to H(M')
- Prepares:
 - $(M_1,...,M_2^{l/2}), (M'_1,...,M'_2^{l/2}),$
 - $(H(M_1),...,H(M_2^{l/2})), (H(M'_1),...,H(M'_2^{l/2}))$

Naïve Birthday Attack

- Probability of collision between $H(M_i)$, $H(M'_j) > 50\%$
- Some points:
 - All M_i, M'_i must make sense (else Bob won't sign legit. M)
 - Simply write same sentence in 2^{1/2} different ways
 - Change syntax, not meaning
- Significant memory overhead Alice needs to store 2 lists of 2^{1/2} values each

Small-space Birthday Attack

- Birthday attack = $O(2^{l/2})$ space, $O(2^{l/2})$ time
 - Since attacker doesn't know which pair of values will yield a collision
- Better method: space-efficient, $O(2^{1/2})$ time, O(1) space
- Idea: pick a random value, repeatedly hash it until collision found

Small-space Birthday Attack

- Goal: given H:{0,1}* -> {0,1}^l, find distinct x, x'
 with H(x) = H(x')
- Pick an $x_0 \in \{0,1\}^{l+1}$
- Compute $x_i = H(x_{i-1}), x_{2i} = H(H(x_{2(i-1)})); \forall i \in [1...2^{l/2}]$
 - i=1: $x_1 = H(x_0)$, $x_2 = H^2(x_0)$ (2-fold H)
 - $i=2: x_2 = H(x_1), x_4 = H^2(x_2)$
 - $i=3: x_3 = H(x_2), x_6 = H^2(x_4), ...$
 - $x_i = H^i(x_0)$ (i-fold H)

Small-space Birthday Attack

- Known result: If $x_1,...,x_q$ is a sequence of values with $x_m = H(x_{m-1})$, and if $x_l = x_J$, $1 \le I < J \le q$, there exists an i < J, s.t., $x_i = x_{2i}$
- Applying result:
 - In each step, compare $(x_{i,}x_{2i})$, if $x_i = x_{2i}$ there has to be a collision in $x_0,x_1,...,x_{2i-1}$
 - Find an $x_j = x_{i+j}$
 - Output (x_{j-1}, x_{j+i-1}) as (values that casued) the collision
- Example: If $x_3 = x_6$, has to be a collision in $x_0, x_1, ..., x_5$
- So, j=3 (since $x_j = x_{i+j}$), output (x_{2,x_5}) as the collision

Inverting Hash Functions

- Consider $H:\{0,1\}^l -> \{0,1\}^l$. Given y = H(x), find x', s.t., y = H(x')
- Naïve way: Compute all 2^l digest values of H. Time O(2^l),
 Space (memory) is O(1)¹
- Smart way: Incur more space cost upfront, amortize cost over efficient H inversions
 - Spend big on pre-processing time/space, "pay off debt" over time
 - Comes from amortized analysis in algorithms
 - Used for on-line algorithms

- A priori, evaluate and store all (x, H(x)₁),..., (x, H(x)₂) for some x,
- Store in, say, Hash table look-up time O(1)
- When a "y" comes in, just do a look-up
- Time: O(1), Space: O(2^l)
- Naïve, smart way 1: two extremes
 - Could we think of a middle ground? Space-time tradeoff?

- Flavor of BSGS
- Assume H:{0,1}^l -> {0,1}^l defines a circle, i.e., x, H(x), H²(x), H³(x),..., H^{2l}(x) covers all of {0,1}^{2l}
- Let N= 2^l
- Pre-processing (off-line phase):
 - Partition cycle into √N segments (à la giant steps)
 - Store (beginning, end) pairs: $(x_{i \cdot JN}, x_{(i+1) \cdot JN}); \forall i \in \{0,1,...,JN-1\}$ segments
 - Store $\int N$ pairs in table space $O(\int N)$

- Is the segmentation $(x_{i \cdot JN}, x_{(i+1) \cdot JN}); \forall i \in \{0,1, ..., JN-1\}$ correct? Whole circle covered?
- Yes!
- i = 0: $(x_0 \cdot f_N, x_1 \cdot f_N) = (x_0, x_{f_N})$
- $i = 1: (x_{/N}, x_{2 \cdot /N})$
- $i = 2: (x_{2/N}, x_{3 \cdot /N})$
- $i = 3: (x_3/N, x_4./N)$
- •
- $i = \int N-1 : (x_{(/N-1)}) \cdot f(N), x_{(/N-1+1)}) = (x_{N-/N}, x_{N})$

- On-line phase: a "y" comes in, need to find H-1(y)
- Check if y, H(y), H²(y), H³(y),..., H^{√N}(y) correspond to an endpoint
 - Basically check entire circumference
- Guaranteed to hit an endpoint in time O(√N) (since y lies in the circle)

- Once endpoint $x = x_{(i+1)} \cdot \sqrt{N}$ found, take starting point, $x' = x_i \cdot \sqrt{N}$
- Baby steps:
 - Compute H(x'), H²(x'), H³(x'),...,H^{N-√N}(x'), until
 y is found
 - Pr[finding y] = 1 since y lies in the circle
- Entire time: $O(\sqrt{N})$, entire space $O(\sqrt{N})$
- I.e., $O(2^{l/2})$, $O(2^{l/2})$ resp.

- Problem: assumes H's range forms a circle
- Hellman's optimization:
 - Generalized Smart Way 2, with H's range not a circle
 - Also, H:{0,1}* -> {0,1}^l domain, range different
 - Time: $O(2^{2l/3})$, space: $O(2^{2l/3})$
- Rainbow table modification of Hellman algorithm

Random Oracle (RO) Model

- Rigorous, formal proofs backbone of modern crypto
- Hash functions used in many crypto protocols
- What if the proof of security requires more than just collision-resistance of H, to go through...?
- Choice: no proof, or use unproven protocols
 - ...which have no security justification

- Hugely popular approach: Prove protocols secure in an idealized model
- What does that entail?
 - Assume a magic hash "oracle", O exists
 - Adversary, honest parties can query O, e.g., send x
 - O replies with H(x)
 - H(x) completely random
 - O inscrutable¹ no-one knows internal workings of O, H

- Approach:
 - First, prove protocols secure in RO model
 - Then, replace H with real-world hash function H'
- Hope transition is seamless, security preserved
- Core problem: No justification for this hope!
 - Many proofs in RO model break down when H replaced by H'
 - Famous example: F-S paradigm

- Proofs "break down"...? Huh?
- H has infinite range; real-world H': {0,1}* -> {0,1}\text{l} always finite range
- Proofs by reduction (sometimes) require programmability
 - O chooses value of H(x) returned
 - H' output cannot be chosen arbitrarily
- Proofs by reduction (sometimes) require extractability
 - \bullet O sees all queries, x A's x queries are known
 - A's H' queries oracle-independent

- Source of controversy and heartburn for 10+ years
- Around 2006-2007 heated arguments break out
- Supporters: RO model flawed, but better than nothing — most of theoretical crypto community
- Naysayers: RO model worthless, proofs in RO useless a *few*

Cons of RO Model

Biggest objection

No justification at all to believe proofs with O translate into proofs with real-world H'!

- No real-world H' can emulate O's H
- Are such RO "proofs" even useful? Waste-of-time?
- See Lindell—Menzes argument, Damgård's response, etc.

Support for RO Model

Biggest support

Some proof better than no proof at all

- Gives confidence to schemes being considered for standardization (NIST, ENISA, etc. won't touch candidates otherwise)
- Deployed schemes with proofs in RO model:
 - RSA, RSA-PKCS, ElGamal, RSA-FDH, Schnorr schemes, DSA-ECDSA
 - Note: DSA, ECDSA proven secure if H,F can be modeled as RO
- So far, no real-world attacks on schemes with proofs in RO model

Closing RO Remarks

- Standard model gold standard
 - I.e., assume only real-world hash functions H
- ... but if no proof exists in standard model, RO acceptable alternative
- No self-respecting standards org. will accept a "proof-less" candidate (nor will anyone in the crypto community take seriously)
- Think about Damgård's essay

Hash Function Applications

- H(x) serves as unique id for any x
- Applications:
- Fingerprinting (virus)
 - Store hashes of known viruses (and mutations)
 - Compare with hash of apps/downloads
- Data de-duplication (remove redundancies)
 - Many users store H(F) in cloud, F=popular movie
 - New upload: add pointer/symbolic link to H(F)

File-checking

- Hash functions useful in file-integrity, filefreshness checking
- E.g., files stored on untrusted server, user periodically does read/update
- Threat Model
 - Untrusted server
 - May modify files
 - Or return valid, but old copies

File-checking

- Naïve solution 1:
 - Server stores x₁,...,x_n, user stores y₁←H(x₁),
 ...,y_n←H(x_n)
 - User check $H(x_i)^2y_i$ for downloaded x_i
 - Space-cost at user: O(n), time = O(1)
- Naïve solution 2:
 - User stores $y \leftarrow H(x_1,...,x_n)$, server stores $x_1,...,x_n$
 - User wants to check x_i , downloads all $x_1,...,x_n$
 - User time = space = O(1), communication cost = O(n)

Merkle Hash Tree

- Ralph Merkle, 1979
- Balanced binary tree, with special property
- Insert, update, delete: O(log n), for tree with n leaves
- Hashes of files stored at leaves
- Have files: f₁,f₂,f₃,f₄,f₅,f₆,f₇,f₈
- Compute $h_1 = H(f_1)$, $h_2 = H(f_2)$, $h_3 = H(f_3)$, $h_4 = H(f_4)$, $h_5 = H(f_5)$, $h_6 = H(f_6)$, $h_7 = H(f_7)$, $h_8 = H(f_8)$

Hash Tree - Read

User

Has files: f₁,f₂,f₃,f₄,f₅,f₆,f₇,f₈ Computes and stores rootHash, deletes files

Sends $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8$

Sends read request for f₄

Sends f₄, h₄, sibling-hashes:(h₃, p₁, gp₂)

Verifies:

- h₄
- $p_2=H(h_3||h_4)$
- $gp_1=H(p_1||p_2)$
- root=H(gp₁ | |gp₂)
- Accepts if root = rootHash

- Computes root over $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8$
 - Stores entire tree

Hash Tree - Update

Entire tree stored at Bob's side

Needs to update f₆

Sends read request for f₆

Sends f₆, h₆, sibling-hashes:(h₅, p₄, gp₁)

- First verifies current f₆ integrity. If ok:
- Computes h'₆, siblinghashes:(p'₃, gp'₂), root'

Stores root'

Sends f'_6 , h'_6 , sibling-hashes: (p'_3, gp'_2) , root'

 Updates tree with recd. values

Stores root'

Hash Tree

- Some points:
 - Minimize user-server comm: send only the bare minimum (for verification)
 - If (log n) not power of 2, add dummy (null) leaves
 - Unfortunate case: no. of files = 2^h+1, h = height of tree,
 - E.g., 17 files, need to add 15 dummy-leaves for 2⁵=32
 - Very efficient: O(log n) all ops.
 - E.g., 4096 files, user-server comp./comm. ≈16 hashes
 - User storage-cost O(1) only rootHash stored