小考參考解答

1.

(a) A stem-and-leaf plot is shown below.

Stem	Leaf	Frequency
0*	34	2
0	56667777777889999	17
1*	0000001223333344	16
1	5566788899	10
2*	034	3
2	7	1
3*	2	1

(b) The relative frequency distribution table is shown next.

Relative Frequency Distribution of Fruit Fly Lives

relative frequency Distribution of Francis				
Class Interval	Class Midpoint	Frequency, f	Relative Frequency	
0 - 4	2	2	0.04	
5 - 9	7	17	0.34	
10 - 14	12	16	0.32	
15 - 19	17	10	0.20	
20 - 24	22	3	0.06	
25 - 29	27	1	0.02	
30 - 34	32	1	0.02	

(c) A histogram plot is shown next.

2.

- (a) $P(A \cap B \cap C) = P(C \mid A \cap B)P(B \mid A)P(A) = (0.20)(0.75)(0.3) = 0.045$.
- (b) $P(B' \cap C) = P(A \cap B' \cap C) + P(A' \cap B' \cap C) = P(C \mid A \cap B')P(B' \mid A)P(A) + P(C \mid A' \cap B')P(B' \mid A')P(A') = (0.80)(1 0.75)(0.3) + (0.90)(1 0.20)(1 0.3) = 0.564.$

3.

(a)
$$g(x) = \int_0^\infty y e^{-y(1+x)} dy = -\frac{1}{1+x} y e^{-y(1+x)} \Big|_0^\infty + \frac{1}{1+x} \int_0^\infty e^{-y(1+x)} dy$$

 $= -\frac{1}{(1+x)^2} e^{-y(1+x)} \Big|_0^\infty$
 $= \frac{1}{(1+x)^2}$, for $x > 0$.
 $h(y) = y e^{-y} \int_0^\infty e^{-yx} dx = -e^{-y} e^{-yx} \Big|_0^\infty = e^{-y}$, for $y > 0$.

(b)
$$P(X \ge 2, Y \ge 2) = \int_2^\infty \int_2^\infty y e^{-y(1+x)} dx dy = -\int_2^\infty e^{-y} e^{-yx} \Big|_2^\infty dy = \int_2^\infty e^{-3y} dy = -\frac{1}{3}e^{-3y}\Big|_2^\infty = \frac{1}{3e^6}.$$

4.

Assigning wrights of 3w and w for a head and tail, respectively. We obtain P(H) = 3/4 and P(T) = 1/4. The sample space for the experiment is $S = \{HH, HT, TH, TT\}$. Now if X represents the number of tails that occur in two tosses of the coin, we have

$$P(X = 0) = P(HH) = (3/4)(3/4) = 9/16,$$

 $P(X = 1) = P(HT) + P(TH) = (2)(3/4)(1/4) = 3/8,$
 $P(X = 2) = P(TT) = (1/4)(1/4) = 1/16.$

The probability distribution for X is then

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 \\ \hline f(x) & 9/16 & 3/8 & 1/16 \end{array}$$

from which we get $\mu = E(X) = (0)(9/16) + (1)(3/8) + (2)(1/16) = 1/2$.