

Draft Shapes Storage

Context Distillation

Reward Model

Step 1 Collect demonstration data. and train a supervised policy.

Step 2 Collect comparison data. and train a reward model.

anding to a 6 year old

0

54.8

63.1

28.0

28.7

18.3

41.5

A prompt and

several model

outputs are

sampled.

55.4

65.0

29.4

progress

progress

progress

Optimize a policy against the reward model using reinforcement learning.

68.9

71.5

33.0

56.8

29.9

58.0

Write a story

A new prompt is sampled from the dataset.

The policy generates

an output.

Step 3

45.3

55.5

25.7

14.6

12.8

31.5

(SFT), (2)ttion (PPO) 3. In Step 2, nore details

urney

ma 2.0

0000

Figure 1: The Evolution of Llama-2 and ChatLlama-2: This process begins with the pretraining of Llama-2 using publicly available and safety-compliant supervised data. Following this, we create an initial version of CHATLLAMA-2 through the application of supervised learning. Subsequently, the model is iteratively refined using RLHF methodologies, specifically through rejection sampling and PPO. Throughout the RLHF stage, the accumulation of iterative reward modeling data in parallel with model enhancements is crucial to ensure the reward models remain within distribution. Topo The figure is still a draft, edit the figure in Figure 1 Slides

2 Pretraining

We replicate many of the approaches described in Touvron et al. (2023), but made several changes to LLAMA-2's pretraining as compared with LLAMA-1 to make it more compatible for production and commercial use cases. Specifically, we updated our data mixes and did more robust data cleaning, we trained on more total tokens, we increased the context length, and we used multi query attention for our larger models.

2.1 Pretraining Data

Our training corpus includes a mix of licensed and publicly available data, which does not include any Meta user data. We made an effort to remove privacy violating web data, filtering out sites rich in Personally Identifyable Information (PII), like voter registries and neighborhood bulletins at the URL granularity. A small amount of PII may remain in the training corpus from third-party web crawls (see analysis in 4.1), so we apply tuning-level mitigations to reduce the chance that any PII will be regurgitated in model use (see analysis in Tooo Section X). In total, we train on 2 trillion tokens of data, after upsampling the most factual sources in an effort to increase knowledge and dampen hallucinations.

We performed a variety of pretraining data-level investigations so that we and commercial users can better understand the potential capabilities and limitations of our models. In addition to those discussed below,

Helpful RLHF

Generate Responses to "Red Teaming"

Prompts Eliciting Harmful Samples

earning (SL) stage, consisting of sequence of steps at the bottom l set of principles drawn from a , and gives some control over th

ation problems. The RL stage sig