مدرس: دکتر فدایی

طراحان: نگار مرادی، علیرضا اربابی

مهلت تحویل: دوشنبه ۸ خرداد ۱۴۰۲، ساعت ۲۳:۵۵

درخت تصميم

فرخنده مدتی است که از دریافت ایمیلهای spam کلافه شده است و هماکنون پس از مطالعه مباحث مربوط به یادگیری ماشین، قصد دارد تا ایمیلهای ورودی به آدرس خود را دستهبندی کرده و ایمیلهای Spam را از ایمیلهای Ham (ایمیلهای غیر اسیم) جدا کند.

- جدول ۱-۱ شامل ۱۴ داده و شامل مجموعه دادگان آموزش شما می باشد.
 - جدول ۲-۱ شامل ۶ داده و شامل مجموعه دادگان آزمون شما می باشد.

قسمت اول)

یک طبقه بند درخت تصمیم مبتنی بر Information gain را با عمق ۳ (با احتساب ریشه و برگها) برای پیش بینی spam و یا ham بودن ایمیل ها را بر روی مجموعه دادگان جدول ۱-۱ آموزش دهید. علاوه بر نشان دادن درخت تصمیم نهایی، مراحل محاسبات خود، برای ساخت آن را بنویسید.

قسمت دوم)

با استفاده از طبقهبند ساختهشده در قسمت اول، طبقه هر کدام از داده های آزمون جدول ۱-۲ را پیشبینی کنید.

قسمت سوم)

حال با طبقهبندی انجام شده برای دادگان آزمون، برای ارزیابی عملکرد طبقهبند، ابتدا ماتریس درهمریختگی را ایجاد کرده و سپس Accuracy و Precision و Recall و Recall را برای هر نتیجه محاسبه کنید. برای مطالعه بیشتر درباره این موضوع میتوانید به این لینک مراجعه کنید. ماتریس درهمریختگی را با ساختار زیر نشان دهید:

Actual

		Ham	Spam	
redicted	Ham			
Predi	Spam			

قسمت چهارم)

تفاوت روشهای یادگیری ماشین random forest و d-tree چیست؟ استفاده از روش random forest چه مزیتی برای ما دارد؟ تفاوت متریک های bias و variance را در هر دو روش بررسی کرده و علت تفاوت را شرح دهید.

تشخيص	دامنه ایمیل	فرمت ايميل	طول بدنه ایمیل	نرخ شكايت از فرستنده	شماره
Ham	gmail	مشكوك	متوسط	پایین	١
Spam	gmail	مشكوك	كوتاه	بالا	۲
Ham	گمنام	مشكوك	متوسط	پایین	٣
Spam	gmail	مشكوك	كوتاه	پایین	٤
Ham	academic	نامشكوك	كوتاه	بالا	0
Spam	gmail	نامشكوك	طولاني	پایین	٦
Spam	gmail	نامشكوك	متوسط	كالب	٧

Spam	academic	مشكوك	كوتاه	كالب	٨
Spam	گمنام	مشكوك	طولاني	پایین	٩
Ham	gmail	نامشكوك	كوتاه	پایین	١.
Spam	academic	نامشكوك	طولاني	بالا	11
Spam	گمنام	مشكوك	طولاني	بالا	١٢
Spam	academic	مشكوك	متوسط	کال	١٣
Ham	گمنام	نامشكوك	متوسط	پایین	١٤

جدول ١-١

تشخيص	دامنه ایمیل	فرمت ايميل	طول بدنه ایمیل	نرخ شکایت از فرستنده	شماره
نامشكوك	کم	مشكوك	كوتاه	پایین	١
مشكوك	متوسط	نامشكوك	كوتاه	بالا	۲
مشكوك	زیاد	مشكوك	كوتاه	Уŀ	٣
مشكوك	زیاد	مشكوك	متوسط	Уļ	٤
نامشكوك	کم	مشكوك	متوسط	پایین	0
مشكوك	متوسط	نامشكوك	طولاني	УļĻ	٦

شبكههاى عصبي

قسمت اول)

شبکه ی عصبی زیر را در نظر بگیرید. این شبکه یک input layer و یک hidden layer و یک hidden و یک hidden hidden و ا دارد. مقادیر bias و همچنین وزن اولیه برای هر نود داده شده است. activation function برای layer و output layer است.

$$Sigmoid(x) = \frac{1}{1 + e^{-x}}$$

رید. $h_1,\; h_2,\; o_1,\; o_2$ را به دست آورید. $h_1,\; h_2,\; o_1,\; o_2$

واقعی) با فرض مقدار o_1 , o_2 برای $t_1=0.01$, $t_2=0.99$ با فرض مقدار عدید (خروجی واقعی) با استفاده از تابع خطای زیر مقدار جدید w_5 را محاسبه کنید. (learning rate وا v_5 در نظر بگیرید)

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

قسمت دوم)

۱. دو activation function معروف را نام ببرید و مزایای آنها را بنویسید.