Trabalho de Métodos Numéricos I

Sistema de Equações

Equipe: Hexaedro Convexo

Integrantes:

- Claudemir Woche Vasconcelos (389575)
- Felipe Albuquerque Brito da Silva (386587)
- Francisco Yuri Martins (391379)
- Luiz Felipe Sousa Maciel (386597)
- Pedro Henrique Sousa da Silva (389577)
- Rodrigo Fabrício Meneses (376176)

Tema 4:

Uma determinada reação química produz uma quantidade c de CO2 medida em ppm (parte por milhão) que pode variar dependendo das condições ambientais

Nesse caso, podem-se ter quantidades c_1 , c_2 , ..., c_n diferentes.

Essas quantidades podem ser calculadas a partir da solução de um sistema de equações lineares

Ac = d

Métodos:

- Fatoração LU
- Redução de Doolittle

Procedimento Fatoração LU

- 1. Considere um sistema linear Ax = b
- 2. Fatoramos a matriz A como produto de uma matriz L triangular inferior e uma matriz U triangular superior, ou seja, A = LU
- 3. Sendo assim, o sistema pode ser reescrito da seguinte forma:

$$Ax = b \longrightarrow (LU)x = b \longrightarrow L(Ux) = b \longrightarrow Ly = b$$
 e $Ux = y$

4. Isto significa que, ao invés de resolvermos o sistema original, podemos resolver o sistema triangular inferior Ly = b e, então, o sistema triangular superior Ux = y

Algoritmo Fatoração Lu

```
Matrix Solver::successiveSubstitution(const Matrix& lower, const Matrix& b) {
    Matrix y = Matrix(lower.getRow(), 1);
    for(int i=1; i < b.getRow(); i++) {</pre>
            y(i, 0, y(i, 0) + lower(i, j)*y(j, 0));
        y(i, 0, (b(i, 0) - y(i, 0))/lower(i, i));
    return y;
Matrix Solver::retroSubstitution(const Matrix& upper, const Matrix& y) {
   Matrix x = Matrix(n, 1);
    x(n-1, 0, y(n-1, 0)/upper(n-1, n-1));
        for(int j=n-1; j > i; j--)
            x(i, 0, x(i, 0) + upper(i, j)*x(j, 0));
        x(i, 0, (y(i, 0) - x(i, 0))/upper(i, i));
    return x;
```

Procedimento Redução de Doolittle

- 1. Primeiro multiplica-se a primeira linha de L pela j-ésima coluna de U e iguala-se a a_{1j} , obtendo-se os elementos u_{1j} .
- 2. Depois multiplica-se a i-ésima linha de L pela primeira coluna de U, igualando-se a $\,a_{i1}\,$ de onde se obtém os elementos $\,l_{i1}\,$.
- Repete-se o processo para as demais linhas e colunas até se obter os demais elementos de L e U.

Algoritmo DooLittle

```
std::vector<Matrix> Solver::luDoLittle(const Matrix& matriz) {
   int n = matriz.getRow();
   int m = matriz.getCol();
   std::vector<Matrix> lu(2);
   if (n == m) {
       Matrix lower(n, n);
       Matrix upper(n, n);
        double sum;
        for(int i=0; i < n; i++)
                if(i == j) lower(i, j, l);
        for(int i=0; i < n; i++) {</pre>
            for(int k=i; k < n; k++) {
                sum = 0;
                for(int r=0; r < i; r++)
                    sum += lower(i, r)*upper(r, k);
                upper(i, k, matriz(i, k) - sum);
            for(int k=i; k < n; k++) {
                sum = 0;
                for(int r=0; r < i; r++)
                    sum += lower(k, r)*upper(r, i);
                lower(k, i, (matriz(k, i) - sum) / upper(i, i));
        std::cout << "L = \n" << lower << "\n";
        std::cout << "U = \n" << upper << "\n";
        std::cout << "LU = \n" << lower*upper << "\n";
        lu[0] = lower;
        std::cout << "col = " << m << "\n";
        std::cout << "row = " << n << "\n";
```

Pivoteamento parcial para fatoração LU

Na estratégia de pivoteamento parcial, antes de iniciar o j-ésimo estágio, permutam-se linhas da matriz $\,A_{j-1}\,$ de modo a obter

$$|a_{jj}^{j-1}| \ge |a_{ij}^{j-1}| para todo i = j, ..., n$$

Em palavras, o pivô é escolhido como sendo um dos elementos de maior valor absoluto dentre

$$a_{jj}^{j-1}, a_{j+1j}^{j-1}, \dots, a_{nj}^{j-1}$$

Pivoteamento

```
MATRIZ K = 0
  7.00000
          30.00000
                    8.00000
  9.00000
          8.00000
                   30.00000
 20.00000
          7.00000
                   9.00000
troca linha 1 por linha 3
MATRIZ K = 1
 20.00000 7.00000 9.00000
  9.00000 8.00000 30.00000
  7.00000
          30.00000
                     8.00000
troca linha 2 por linha 3
MATRIZ K = 2
 20.00000 7.00000 9.00000
  7.00000 30.00000 8.00000
  9.00000
          8.00000 30.00000
matriz pivoteada =
 20.00000 7.00000
                   9.00000
  7.00000
          30.00000
                     8.00000
  9.00000 8.00000
                    30.00000
```

Análise dos procedimentos

Fatoração LU para o Exemplo

•Tema 4: $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 20 & 7 & 9 \\ 7 & 30 & 8 \\ 9 & 8 & 30 \end{bmatrix} \qquad \{d\} = \begin{bmatrix} 16 \\ 38 \\ 38 \end{bmatrix} \qquad \{c\} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$

$$\{d\} = \begin{bmatrix} 16\\38\\38 \end{bmatrix}$$

$$\{c\} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.35 & 1 & 0 \\ 0.45 & 0.18 & 1 \end{bmatrix}$$

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.35 & 1 & 0 \\ 0.45 & 0.18 & 1 \end{bmatrix} \qquad [U] = \begin{bmatrix} 20 & 7 & 9 \\ 0 & 27.55 & 4.85 \\ 0 & 0 & 25.10 \end{bmatrix} \qquad [y] = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$[y] = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$Ac = d \longrightarrow (LU)c = d \longrightarrow L(Uc) = d \longrightarrow Ly = d$$
 e $Uc = y$

Solução do Exemplo

Quantidades de CO2 em ppm :

$$\begin{cases} c_1 \\ c_2 \\ c_3 \end{cases} = \begin{cases} 0 \\ 1 \\ 1 \end{cases}$$

```
1.00000
             0.00000
                       0.00000
   0.35000
             1.00000
                       0.00000
   0.45000
             0.17604
                       1.00000
 20.00000
             7.00000
                       9.00000
  0.00000
            27.55000
                       4.85000
   0.00000
             0.00000
                      25.09619
LU =
 20.00000
             7.00000
                        9.00000
  7.00000
            30.00000
                       8.00000
   9.00000
             8.00000
                      30.00000
Algoritmo executado em 0.00035 s
vetor solucao =
  0.00000
   1.00000
   1.00000
```

Análise da Fatoração LU com pivoteamento

Tempo em relação ao tamanho da matriz

TAM. DA MATRIZ	SEGUNDO(S)	MINUTO(S)	HORA(S)
3x3	0.000067s	-	-
5X5	0.000070s	-	-
10X10	0.000150s	-	-
50X50	0.005217s	-	-
100X100	0.019179s	-	-
500X500	1.82641s	0,030440s	-
1000X1000	14.6837s	0,24472min	0,004078h
5000X5000	1824.17s	30,4028min	0,506713h
10000X10000	14586.9s	243.115min	4,051916h

Análise da Redução de Dolittle

Tempo em relação ao tamanho da matriz

TAM. DA MATRIZ	SEGUNDO(S)	MINUTO(S)	HORA(S)
3x3	0.0000082s	-	-
5X5	0.000097s	-	-
10X10	0.000208s	-	-
50X50	0.001905s	-	-
100X100	0.0083454s	-	-
500X500	0.911254s	0.015187min	-
1000X1000	7.87655s	0.131277min	0.002187h
5000X5000	1202.43s	20.0405min	0.33400h
10000X10000	13205s	220.0833min	3.668055h

Conclusão

- 1. Para o exemplo não foi necessário o pivoteamento parcial.
- 2. Redução de DooLittle é mais rápido que a Fatoração LU.
- 3. Caso necessário mudar o vetor {d}, não é necessário aplicar todo o método novamente.
- 4. Ajuda a simplificar os cálculos, dependendo dos valores de [A] e {d}.
- Como temos que calcular 2 substituições, para matrizes grandes o método é demorado.
- 6. Número de passos é sempre fixo.

Metodologia

- ◆ Programação C++
- IDE : Clion, Visual Studio Code
- Sistema Operacional : Linux Ubuntu
- Computador : Core i3(5º geração), 4gb de memória RAM.

Fontes

- Ruggiero, Marcia A. Gomes, Cálculo Numérico.
- Site: www.math.tecnico.ulisboa.pt/~calves/courses/sis-lin/capii12.html
- Site: https://www.ufrgs.br/numerico/livro/sdsl-fatoracao_lu.html
- Site: http://www.ime.unicamp.br/~valle/Teaching/2015/MS211/Aula7.pdf