Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

« »	201	Γ.
	_ Б.В. Падалк	ин
МГТУ им. Н	.Э. Баумана	
проректор по	учебной раб	оте
Первый прор	ректор –	
Утверждаю		

Факультет Информатика и системы управления Кафедра Информационные системы и телекоммуникации

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Микропроцессорные устройства обработки сигналов для направления подготовки 09.04.02 Информационные системы и технологии магистра

Авторы программы:

В.С. Выхованец, д.т.н., проф., <u>vykhovanets@bmstu.ru</u>

Авторы программы: В.С. Выхованец	
Рецензент: И.О. Фамилия, должность, место работы	
Утверждена на заседании кафедры ИУЗ Информационные системы и телекоммуникации Протокол № 2 от 18 октября 2016 г. Заведующий кафедрой В.В. Девятков	
Декан факультета А.В. Пролетарский	
Согласовано:	
Декан факультета А.В. Пролетарский	
Начальник Управления образовательных стандартов и програт. А. Гузева	амм

СОДЕРЖАНИЕ

1 Планируемые результаты обучения по дисциплине	4
1.1 Источники разработки	4
1.2 Формируемые компетенции	4
1.3 Результаты обучения	4
2 Место дисциплины в структуре образовательной программы	7
3 Объем дисциплины	8
4 Содержание дисциплины, структурированное по темам	9
4.1 Модули и соответствующие им компетенции	9
4.2 Содержание дисциплины, структурированное по темам	11
5 Перечень учебно-методического обеспечения для самостоятельной работы студентов	14
6 Фонд оценочных средств для проведения текущей и промежуточной аттестации	
студентов по дисциплине	15
7 Перечень основной и дополнительной учебной литературы, необходимой для освоения	Ŧ
дисциплины	16
7.1 Основная литература	16
7.2 Дополнительная литература	16
7.3 Учебно-методические материалы	17
7.4 Техническая документация	17
7.5 Программные средства	18
7.6 Нормативные документы	18
8 Перечень ресурсов сети интернет, рекомендуемых для самостоятельной работы при	
освоении дисциплины	19
8.1 Ресурсы сети интернет	19
8.2 Сайт дисциплины	19
9 Методические указания для студентов по освоению дисциплины	20
10 Перечень информационных технологий, используемых при изучении дисциплины,	
включая перечень программного обеспечения и информационных справочных систем	í.21
11 Описание материально-технической базы, необходимой для изучения дисциплины	22
Пист изменений и пополнений внесенных в рабоную программу лиспиплины	23

1 ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Настоящая рабочая программа дисциплины устанавливает требования к знаниям и умениям студента, а также определяет содержание и виды учебных занятий и отчетности.

1.1 Источники разработки

Программа разработана в соответствии со следующими документами:

- Самостоятельно устанавливаемым образовательным стандартом (СУОС) по направлению подготовки 09.04.02 Информационные системы и технологии;
- Основной профессиональной образовательной программой по направлению подготовки 09.04.02 Информационные системы и технологии;
- Учебным планом МГТУ им. Н.Э. Баумана по направлению подготовки 09.04.02 Информационные системы и технологии.

1.2 Формируемые компетенции

При освоении дисциплины планируется формирование следующих собственных общепрофессиональных и собственных профессиональных компетенций (СОПК и СПК), предусмотренных основной профессиональной образовательной программой на основе СУОС по направлению подготовки 09.04.02 Информационные системы и технологии (уровень магистратуры).

- СПК-1 умение разрабатывать стратегии проектирования, определение целей проектирования, критериев эффективности, ограничений применимости;
- СПК-9 умение находить компромисс между различными требованиями (стоимости, качества, сроков исполнения) как при долгосрочном, так и при краткосрочном планировании; находить оптимальные решения;
- СПК-10 способность осуществлять сбор, анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;
- СПК-14 умение осуществлять постановку и проведение экспериментов по заданной методике и анализ результатов;
- СПК-18 способность разрабатывать методы решения нестандартных задач и новые методы решения традиционных задач;
- СПК-22 умение осуществлять контроль реализации решения и оценку его эффективности в процессе эксплуатации.

1.3 Результаты обучения

Для категорий «знать, уметь, владеть» планируется достижение следующих результатов обучения (РО), вносящих на соответствующих уровнях вклад в формирование компетенций, предусмотренных основной профессиональной образовательной программой (табл. 1).

Таблица 1 – Результаты обучения

Компетенция: код по СУОС, формулировка	Уровень освоения компетенции	Дескрипторы – основные признаки освоения компетенций (показатели достижения результата обучения, которые студент может продемонстрировать)	Формы и методы обучения, спо- собствующие формированию и развитию компетенции
1 СПК-1 — умение разрабатывать стратегии проектирования, определение целей проектирования, критериев эффективности, ограничений применимости	2 Знать: – помнить, – понимать, – продемонстрировать знания.	З Разработка алгоритма цифровой обработки сигналов с использованием специальных средств сигнальных микропроцессоров. Реализация алгоритма цифровой обработки сигналов в виде библиотечной подпрограммы.	4 Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации
СПК-9 — умение находить компромисс между различными требованиями (стоимости, качества, сроков исполнения) как при долгосрочном, так и при краткосрочном планировании; находить оптимальные решения	Уметь: – применять, – анализировать, – проводить оценку, – создавать.	Разработка устройства цифровой обработки сигналов с оптимальным разделением на программную и аппаратурную части, с оптимизацией стоимости устройства и сроков его разработки.	Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации
СПК-10 – способность осуществлять сбор, анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования	Владеть: – методом, – способом, – компетенциями.	Анализ архитектуры и организации микропроцессора для цифровой обработки сигналов, выявление его слабых и сильных сторон.	Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации

1	2	3	4
СПК-14 — умение осуществлять постановку и проведение экспериментов по заданной методике и анализ результатов		Исследование специальных средств микропроцессора для повышения эффективности цифровой обработки сигналов, экспериментальная проверка эффективности использования такого рода средств.	Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации
СПК-18 — способность разрабатывать методы решения нестандартных задач и новые методы решения традиционных задач		Разработка оригинальных программ цифровой обработки сигналов на основе использования специальных средств сигнальных микропроцессоров.	Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации
СПК-22 – умение осуществлять контроль реализации решения и оценку его эффективности в процессе эксплуатации		Выполнить оценку эффективности разработанной библиотечной подпрограммы цифровой обработки сигналов по отношению к другим ее реализациям, а также с помощью средств профилирования среды разработки программ.	Лекции Лабораторные работы Самостоятельная работа Индивидуальные консультации

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина входит в вариативную часть блока Б1 образовательной программы магистратуры по направлению подготовки 09.04.02 Информационные системы и технологии.

Изучение дисциплины предполагает предварительное освоение следующих дисциплин учебного плана:

- Программное обеспечение встроенных систем;
- Протоколы и интерфейсы информационных систем;
- Проектирование информационных и телекоммуникационных систем.

Освоение данной дисциплины необходимо как предшествующее для следующих дисциплин образовательной программы:

- Беспроводные технологии в информационных системах;
- Мультимедиа технологии;
- Проектирование сложных электронных устройств.

Освоение учебной дисциплины связано с формированием компетенций с учетом матрицы компетенций ОПОП по направлению подготовки 09.04.02 Информационные системы и технологии.

3 ОБЪЕМ ДИСЦИПЛИНЫ

Общий объем дисциплины составляет 3 з.е. (зачетные единицы), 108 академических часов.

Таблица 2 – Объём дисциплины по видам учебных занятий (в часах)

D	Объем в часа	ах по семестрам
Виды учебной работы	Bcero	2 семестр
1 Контактная работа обучающихся с преподавателем:	51	51
– лекции	34	34
– семинары	_	_
– лабораторные работы	17	17
2 Самостоятельная работа обучающихся:	57	57
 проработка учебного материала лекций 	9	9
– подготовка к семинарам	_	_
– подготовка к лабораторным работам	6	6
– подготовка к рубежному контролю	9	9
– выполнение домашнего задания	18	18
– выполнение текущего домашнего задания	_	_
- самостоятельное изучение отдельных тем	_	_
проработка литературы (дополнительная)	6	6
- самостоятельная проработка учебников и учебных пособий	9	9
– подготовка к промежуточной аттестации и ее прохождение	_	_
– выполнение курсовой работы	_	_
3 Вид промежуточной аттестации обучающегося		Зачет

4 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ

4.1 Модули и соответствующие им компетенции

Название модулей, их объем в часах и соответствие компетенциям представлены в таблице 3.

Таблица 3 – Модули дисциплины, соответствующие им компетенции, виды занятий и текущий контроль результатов обучения

Модуль	Ви,	Вид занятий*), часы		асы	Активные и интерактивные формы проведения занятий		Компетенция по СУОС	Текущ	ий контроль результатов обу	/чения
	Л	С	ЛР	СР	Форма			неделя	формы	баллы
Модуль 1. Архитек-	12	_	4	19	Лекции: ответы на вопросы, дискуссии.	4	СПК-10 СПК-14	6	Защита домашнего задания 1	8/14
тура и ор- ганизация					Лабораторные работы: работа в малых группах, тренинги.			7	Защита лабораторной работы 1	8/14
микропро- цессоров								8	Рубежный контроль 1	3/4
								Итого по	модулю 1	19/32
Модуль 2. Обработка	12	_	6	19	Лекции: ответы на вопросы, дискуссии.	4	СПК-1 СПК-22	10	Защита домашнего задания 2	8/14
сигналов и данных					Лабораторные работы: работа в малых группах, тренинги.			11	Защита лабораторной работы 2	8/14
								12	Рубежный контроль 2	4/6
								Итого по	о модулю 2	20/34
Модуль 3. Разработка	10	_	7	19	Лекции: ответы на вопросы, дискуссии.	4	СПК-9 СПК-18	14	Защита домашнего задания 3	8/14
устройств обработки					Лабораторные работы: работа в малых группах, тренинги.			15	Защита лабораторной работы 2	8/14

сигналов								16	Рубежный контроль 3	4/6
								Итого по	о модулю 3	20/34
Всего	34	_	17	57			12			59/100
*) ~		•	·		у н	G	HD ~	 CD		

 $^{^{*)}}$ Сокращенные наименования видов занятий: Л – лекции, С – семинары, ЛР – лабораторные работы, СР – самостоятельная работа.

4.2 Содержание дисциплины, структурированное по темам

Учебный материал дисциплины разбит на три модуля.

4.2.1 Модуль 1. Архитектура и организация микропроцессоров

Модуль 1 включает в себя материал дисциплины, связанный с общей теорией цифровой обработки сигналов, а также посвящен изучению архитектуры и организации микропроцессоров, используемых для их реализации.

4.2.1.1 Лекции (12 часов)

Цифровая обработка сигналов. Организация цифровой обработки сигналов. Абстракции сигналов. Методы цифровой обработки сигналов: дискретизация сигнала, передискретизация (децимация, интерполяция), преобразование (модуляция, манипуляция, нелинейное преобразование), корреляция, свертка, фильтрация (рекурсивная, нерекурсивная), спектральная обработка, восстановление сигнала.

Сигнальные микропроцессоры. Устройства обработки сигналов: звуковая карта, аудио-устройство, сканер отпечатков. Обобщенная схема устройства обработки сигналов. Микропроцессор цифровой обработки сигналов. Неймановская и гарвардская архитектура. Состав микропроцессора. Ядро микропроцессора. Адресные пространства. Циклы чтения и записи. Тройное чтение и двойная запись. Постоянная память.

Представление чисел. Целочисленные форматы. Двоичная арифметика. Флаги результата операций. Целочисленное умножение. Дробные форматы. Преобразования дробных чисел. Насыщение и округление. Дробное умножение. Форматы с плавающей запятой. Денормализованные числа. Порядок слов при хранении чисел в памяти.

Операционное устройство и устройство адресации. Организация операционного устройства. Регистровый файл. Арифметико-логический блок. Битовый блок. Сдвигатель. Двойной умножитель. Устройство адресации. Организация устройства адресации. Регистровый файл. Генератор адресов. Арифметико-логический блок. Методы адресации. Циклическая адресация. Бит-реверсивная адресация. Модификаторы адресов.

Устройство управления. Организация устройства управления. Регистровый файл: регистры потока команд, регистры простого повторения команд, регистры блочного повторения команд, регистры прерываний, регистры состояния. Генератор адресов. Конфигурации стеков. Вызов и возврат. Режимы косвенной адресации.

Конвейеризация и распараллеливание. Буфер команд. Кэш команд. Очередь команд. Декодер команд. Конвейеризация. Конвейер выборки. Конвейер выполнения. Перезагрузка конвейера. Конфликты в конвейере. Виды параллелизма: встроенный, пользовательский, комбинированный, двойной доступ к памяти. Условия распараллеливания команд. Внутренние и внешние шины. Трассировка данных. Параллельные операции. Правила распараллеливания команд. Разработка программ с параллельным выполнением команд. Примеры распараллеливания команд.

4.2.1.2 Лабораторные работы (4 часа)

Исследование архитектуры и организации микропроцессора. Изучение интегрированной среды разработки программ Code Composer StudioTM компании Texas Instruments® и исследование команд микропроцессора TMS320C5515TM путем модификации и выполнения в соответствие с выданным индивидуальным заданием текстов программ на языке Си и на ассемблере.

4.2.2 Модуль 2. Обработка сигналов и данных

Модуль 2 включает в себя материал дисциплины, связанный с методами и средствами, используемыми для цифровой обработки сигналов.

4.2.2.1 Лекции (12 часов)

Обработка прерываний. Организация прерываний. Прерывание. Источники прерываний. Обработка прерываний. Вектор прерываний. Процедуры обработки прерываний. Конфигурации стеков. Состояния стеков при прерывании. Регистры прерываний. Пример программы с обработкой прерываний.

Входы-выходы общего назначения. Организация входов-выходов общего назначения. Основные и альтернативные функции выводов. Регистр выбора шин. Регистры входов-выходов общего назначения. Подтягивающие резисторы. Пример программ ввода-вывода данных по опросу и через прерывание.

Таймеры и часы реального времени. Организация таймера общего назначения. Тактирование таймера. Регистры таймера. Агрегация прерываний от таймеров. Флаги прерываний. Пример программы с таймером. Сторожевой таймер. Регистры сторожевого таймера. Пример программы со сторожевым таймером. Часы реального времени. Регистры часов реального времени. Генерация прерываний. Пробуждение микропроцессора.

Приборный интерфейс. Организация приборного интерфейса (I2C): физические линии; состояния линий, адресация, синхронизация и арбитраж устройств; форматы посылок и протоколы обмена данными; регистры управления и конфигурирование; обработка прерываний; примеры использования.

Звуковой интерфейс. Организация звукового интерфейса (I2S): физические линии; состояния линий, адресация и синхронизация устройств; форматы посылок и протоколы обмена данными; регистры управления и конфигурирование; обработка прерываний; примеры использования.

Аудио-кодек. Организация аудио-кодека. Схема включения. Входные и выходные цепи. Цепи питания. Тактирование. Трассировка звуковых сигналов. Организация обработки сигналов и данных. Карта памяти. Доступ к регистрам. Пример программы с использованием аудио-кодека.

4.2.2.2 Лабораторные работы (6 часов)

Исследование процессов обработки сигналов и данных. Изучение стандартных процедур обработки сигналов и данных, разработка программы обработки сигналов на языке программирования Си в интегрированной среде проектирования Code Composer StudioTM для микропроцессора TMS320C5515TM, исследование эффективности разработанных функций с аналогичными из состава стандартной библиотеки DSP Library компании Texas Instruments®.

4.2.3 Модуль 3. Разработка устройств обработки сигналов

Модуль 3 включает в себя материал дисциплины, связанный с разработкой устройств обработки сигналов на основе создания программ для сигнальных микропроцессоров.

4.2.3.1 Лекции (10 часов)

Прямой доступ к памяти. Организация ввода-вывода данных через прямой доступ к памяти. Канал прямого доступа к памяти. Переключение буферов (метод Ping-Pong). Арбитраж доступа к внутренней шине. Режимы изменения адресов и режимы переноса канала прямого доступа к памяти. Регистры контроллера и каналов прямого доступа к памяти. Конфигурирование контроллера и каналов прямого доступа к памяти. Ввод-вывод данных через прямой доступ к памяти.

Технология разработки программ. Программы. Свойства программ. Программные средства. Жизненный цикл программных средств. Программное обеспечение. Средства разработки программ. Технология разработки программ для сигнальных микропроцессоров. Секционирование программ. Сегментация памяти. Компоновка программы. Ранее и позднее связывание. Модели памяти. Среда разработки программ. Начальный загрузчик.

Приемы программирования. Процесс разработки программ. Режимы микропроцессора для различных видов программ. Типы данных и их выравнивание в памяти. Вызов функций и процедур. Передача аргументов и возврат результата. Локальные переменные. Сохранение и

восстановление регистров. Специальные квалификаторы данных и функций: restrict, volatile, ioport, interrupt. Директивы секционирования. Директивы оптимизации циклов. Ассемблерные вставки. Формат оператора ассемблера. Использование библиотек.

Отладка и тестирование программ. Способы программирования микропроцессора. Отладка. Интерфейс JTAG. Микросхема с JTAG. Ячейка JTAG. Автомат JTAG. Сигналы JTAG. Команды JTAG. Схема программатора. Тестирование и верификация программ. Технология тестирования. Методы тестирования. Среда тестирования.

Методологии проектирования. Определение, спецификация и реализация требований к программному средству. Предметная область: сущности и связи. Модель предметной области. Требования к модели. Программа как формализованное описание предметной области. Методологии анализа предметной области. Функциональный анализ и функциональное моделирование: сущности предметной области (процесс, деятельность, функция, задача), диаграммы (контекстная, декомпозиции, дерева узлов, экспозиции), описание элементарных работ. Структурный анализ и структурное моделирование: сущности предметной области (части, связи), модели (функциональная, данных, потоков данных), диаграммы (потоков данных, сущность-связь, переходов состояний), спецификация процессов и словарь терминов. Объектный анализ и объектно-ориентированное моделирование: сущности предметной области (объекты, состояние, поведение), модели (использования, концептуальная, процессов, реализации, развертывания); диаграммы (вариантов использования, классов, состояний, последовательностей, деятельностей, кооперации, пакетов, компонентов, размещения).

4.2.3.2 Лабораторные работы (7 часов)

Исследование устройств обработки сигналов и данных. Разработка и исследование программы обработки сигналов в интегрированной среде проектирования Code Composer StudioTM для микропроцессора $TMS320C5515^{TM}$, которая реализует звуковой эффект, заданный в индивидуальном задании.

5 ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для обеспечения самостоятельной работы студентов по дисциплине сформирован методический комплекс, включающий следующие учебно-методических материалы в электронном виде:

- программа дисциплины;
- презентации лекций;
- методические указания по выполнению лабораторных работ;
- методические указания по выполнению домашних заданий;
- комплект индивидуальных домашних заданий по дисциплине;
- техническая документация на используемые в дисциплине изделия и устройства;
- примеры разработки программных средств;
- вопросы для самоконтроля усвоения материала дисциплины.

Материалы учебно-методического комплекса размещаются на сайте дисциплины, адрес которого объявляется на первых занятиях. Там же размещаются и электронные копии учебных изданий из перечня основной и дополнительной литературы (раздел 7).

Дополнительные материалы перечислены в перечне ресурсов сети интернет, рекомендуемых для самостоятельной работы при освоении дисциплины (раздел 8). Студенты получают доступ к этим материалам через сайт дисциплины.

6 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств (ФОС) для проведения текущей и промежуточной аттестации обучающихся по дисциплине базируется на перечне компетенций с указанием этапов их формирования в процессе освоения образовательной программы (раздел 1). ФОС должен обеспечивать объективный контроль достижения всех результатов обучения, запланированных для дисциплины.

ФОС включает в себя:

- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и уровня овладения формирующимися компетенциями в процессе освоения дисциплины (тематика заданий текущего контроля, вопросы для оценки качества освоения дисциплины, примеры заданий промежуточного и (или) итогового контроля);

Контроль освоения дисциплины производится в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации студентов МГТУ им. Н.Э. Баумана.

ФОС является приложением к данной программе дисциплины.

7 ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Учебная литература, используемая студентами для изучения дисциплины, разделяется на следующие виды:

- основная литература для освоения теоретического раздела дисциплины;
- дополнительная литература для углубленного изучении дисциплины;
- учебно-методическая литература для выполнения домашних заданий и лабораторных работ по дисциплине;
- техническая документация для выполнения индивидуальных заданий в процессе подготовки домашних заданий и лабораторных работ;
 - программные средства для изучения примеров разработки программ;
- нормативные документы для подготовки и оформления расчетно-пояснительной записки и графических документов курсовой работы, также отчетов по домашним заданиям и лабораторным работам.

Все перечисленные выше виды учебной литературы предоставляется студентам в электронном виде и размещаются на сайте дисциплины (см. подраздел 8.2).

7.1 Основная литература

- [Л1] Айфичер, Э.С. Цифровая обработка сигналов: практический подхо: 2-е изд.: Пер. с англ. / Э.С. Айфичер, Б.У Джервис. М.: Издательский дом «Вильямс», 2004. 992 с.
- [Л2] Проектирование систем цифровой и смешанной обработки сигналов / Под ред. У. Кестера; Пер. с англ. под ред. А.А. Власенко. М.: Техносфера, 2010. 328 с.
- [Л3] Kuo S.M., Lee B.H., Tian W. Real-time Digital Signal Processing. Implementations and Applications. Chichester: Wiley, 2006. 646 р.
- [Л4] DAFX Digital Audio Effects / Ed. Udo Zolzer. Chichester: John Wiley & Sons, 2002. 554 р.

7.2 Дополнительная литература

- [Д1] Безуглов, Д.А. Цифровые устройства и микропроцессоры / Д.А. Безуглов, И.В Калиенко. М.: Феникс, 2008. 469 с
- [Д2] Болл, С.Р. Аналоговые интерфейсы микроконтроллеров. М.: Додэка-XXI, 2007. 360 с.
- [Д3] Керниган, Б. Язык программирования Си / Б. Керниган, Д. Ритчи; Пер. с англ., 3-е изд., испр. СПб.: Невский диалект, 2001. 352 с.
- [Д4] Ключев, А.О. Программное обеспечение встроенных вычислительных систем / А.О. Ключев, П.В. Кустарев, Д.Р. Ковязина, Е.В. Петров. СПб.: СПбГУ ИТМО, 2009. 212 с.
- [Д5] Костров, Б.В. Архитектура микропроцессорных систем / Б.В. Костров, В.Н. Ручкин. М.: Диалог-МИФИ, 2007. 304 с.
 - [Д6] Лайсон, Р. Цифровая обработка сигналов М.: Бином-Пресс, 2006. 656 с.
- [Д7] Лэй, Э. Цифровая обработка сигналов для инженеров и технических специалистов: практическое руководство М.: Группа ИДТ, 2007. 336 с.
- [Д8] Оппенгейм, А. Цифровая обработка сигналов / А. Оппенгейм, Р. Шафер. М.: Техносфера, 2006.-856 с.
 - [Д9] Сергиенко, А.Б. Цифровая обработка сигналов. СПб.: Питер, 2002. 606 с.
- [Д10] Солонина, А.И. Основы цифровой обработки сигналов / А.И. Солонина, Д.А. Улахович, С.М. Арбузов, Е.Б. Соловьева. СПб: БХВ-Петербург, 2005. 768 с.
- [Д11] Сперанский, В.С. Сигнальные процессоры и их применение в системах телекоммуникации и электроники. М.: Горячая линия Телеком, 2008. 168 с.

- [Д12] Kehtarnavaz, N. Real-Time Digital Signal Processing Based on the TMS320C6000. Ox-ford: Elsevier, $2005. 306 \, p$.
- [Д13] Chassaing, R. Digital Signal Processing. Laboratory Experiments Using C and the TMS320C31 DSK. Chichester: Wiley, 1999. 263 р.
- [Д14] Chassaing, R. Digital Signal Processing with the TMS320C6713 and TMS320C6416 DSK / R. Chassaing, D. Reay. Chichester: Wiley-Intersience, 2008. 576 р.

7.3 Учебно-методические материалы

[У1] Микропроцессорные устройства обработки сигналов. Учебное пособие [Электронный ресурс] / В.С. Выхованец, Н.А Демин, Е.И. Мозговая, С.И. Назарова, Д.А. Рожкова, Е.С. Шапкина; Под ред. В.С. Выхованца. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. – 196 с.

7.4 Техническая документация

- [T1] TMS320C55x. CPU. Reference Guide. Texas Instruments, 2009. 265 p.
- [T2] TMS320C55x. Programmer's Guide. Texas Instruments, 2001. 287 p.
- [T3] TMS320C55x. Assembly Language Tools. User's Guide. Texas Instruments, 2011. 366 p.
- [T4] TMS320C55x. Optimizing C/C++ Compiler. User's Guide. Texas Instruments, 2011. 181 p.
- [T5] TMS320C55x. Mnemonic Instruction Set. Reference Guide. Texas Instruments, 2009. 863 p.
 - [T6] TMS320C5515. Fixed-Point Digital Signal Processor. Texas Instruments, 2011. 160 p.
 - [T7] TMS320C5515. DSP System. User's Guide. Texas Instruments, 2011. 82 p.
- [T8] TMS320C5515. Direct Memory Access Controller. User's Guide. Texas Instruments, 2010. 32 p.
- [T9] TMS320C5515. External Memory Interface. User's Guide. Texas Instruments, 2011. 92 p.
 - [T10] TMS320C5515. Real Time Clock. User's Guide. Texas Instruments, 2010. 35 p.
- [T11] TMS320C5515. Timer/Watchdog Timer. User's Guide. Texas Instruments, 2009. 21 p.
- [T12] TMS320C5515. General-Purpose Input-Output. User's Guide. Texas Instruments, 2009. 20 p.
- [T13] TMS320C5515. Serial Peripheral Interface. User's Guide. Texas Instruments, 2009. 32 p.
- [T14] TMS320C5515. Universal Asynchronous Receiver/Transmitter. User's Guide. Texas Instruments, 2009. 37 p.
- [T15] TMS320C5515. Universal Serial Bus 2.0 Controller. User's Guide. Texas Instruments, 2010. 135 p.
- [T16] TMS320C5515. Successive Approximation Register. Analog-to-Digital Converter. User's Guide. Texas Instruments, 2011. 26 p.
 - [T17] TMS320C5515. Inter-IC Sound Bus. User's Guide. Texas Instruments, 2011. 42 p.
- [T18] TMS320C5515. Inter-Integrated Circuit Peripheral. User's Guide. Texas Instruments, 2009. 39 p.
- [T19] TMS320C5515. Liquid Crystal Display Controller. User's Guide. Texas Instruments, 2009. 36 p.
- [T20] TMS320C5515. Multimedia Card/Secure Digital Card Controller. Reference Guide. Texas Instruments, 2010. 61 p.

- [T21] TMS320C5515. Evaluation Module. Technical Reference. Spectrum Digital, 2010. 76 p.
 - [T22] TMS320C5515. Evaluation Module. Schematics. Spectrum Digital, 2010. 20 p.

7.5 Программные средства

- [III] TMS320C55x. Chip Support Library. Texas Instruments, 2012.
- [Π2] TMS320C55x. DSP Library. Texas Instruments, 2013.
- [ПЗ] TMS320C55x. Connected Audio Framework ver. 01.52.01.00. Texas Instruments, 2013.
 - [Π4] Evaluation module EVM5515. Demo Software. Texas Instruments, 2011.

7.6 Нормативные документы

- [H1] ГОСТ Р 7.0.5–2008. Библиографическая ссылка. Общие требования и правила составления. М.: Изд-во стандартов, 2009. 23 с.
- [H2] ГОСТ 2.105-95. Единая система конструкторской документации. Общие требования к текстовым документам. М.: Изд-во стандартов, 1995. 37 с.
- [H3] ГОСТ 2.702-2011. Единая система конструкторской документации. Правила выполнения электрических схем. М.: Стандартинформ, 2011. 23 с.
- [H4] ГОСТ 19.701-90. Единая система программной документации. Схемы алгоритмов, программ, данных и систем. М.: Изд-во стандартов, 1990. 26 с.
 - [H5] Стилевой шаблон MS Word для оформления текстовых документов. 2013. 4 с.
- [H6] Рабочая программа дисциплины «Микропроцессорные устройства обработки сигналов». М.: МГТУ им. Н.Э. Баумана, 2016. 23 с.

8 ПЕРЕЧЕНЬ РЕСУРСОВ СЕТИ ИНТЕРНЕТ, РЕКОМЕНДУЕМЫХ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПРИ ОСВОЕНИИ ДИСЦИПЛИНЫ

8.1 Ресурсы сети интернет

- [И1] Сайт дисциплины http://vykhovanets.ru/course50/
- [И2] Сайт компании Texas Instruments http://www.ti.com/product/TMS320C5515/
- [ИЗ] Форум по цифровой обработке сигналов http://www.cyberforum.ru
- [И4] Видеохостинг http://www.youtube.com/ (поиск по ключевым словам C5515, DSP)

8.2 Сайт дисциплины

На сайте дисциплины размещаются электронные документы, необходимые и достаточные для самостоятельной работы студента при освоении дисциплины. Сайт дисциплины состоит из следующих разделов:

- общие данные о дисциплине;
- список преподавателей и их адреса электронной почты;
- расписание постоянных и дополнительных консультаций;
- раздел с презентациями лекций и указанием дат проведения лекционных занятий;
- раздел домашних заданий, содержащий темы индивидуальных заданий, типовые замечания к отчетам по домашним заданиям, учебно-методические материалы по выполнению домашних заданий, график сдачи отчетов по домашним заданиям;
- раздел лабораторных работ, содержащий расписание проведения лабораторных занятий, разбивку академических групп на подгруппы, учебно-методические материалы для выполнения лабораторных работ, расписание отработки пропущенных лабораторных работ;
 - раздел рубежного контроля и модульных баллов дисциплины;
- раздел литературы, содержащий библиографическое описание и ссылки на электронные копии основной и дополнительной литературы, технической и нормативной документации;
 - раздел с программными средствами;
- другие материалы в электронном виде, рекомендуемые для самостоятельного изучения дисциплины.

Сайт дисциплине не индексируется поисковыми информационными системами сети интернет и доступен только прямой ссылке.

9 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступая к изучению дисциплины, студент должен принимать во внимание следующие положения.

- 9.1 Дисциплина построена по модульному принципу, каждый модуль представляет собой логически завершенный раздел курса.
- 9.2 На первом занятии каждый студент получает в электронном виде полный комплекс учебно-методических материалов по дисциплине, включающий программу, лекционный курс, методические указания по лабораторным работам.
- 9.3 Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебный заданий, выносимых на самостоятельную проработку.
- 9.4 Лабораторные работы предназначены для приобретения опыта практической реализации основной профессиональной образовательной программы. Методические указания к лабораторным работам прорабатываются студентами во время самостоятельной подготовки. Необходимый уровень подготовки контролируется перед проведением лабораторных работ.
- 9.5 Самостоятельная работа студентов включает проработку лекционного курса, выполнение домашних заданий, подготовку рефератов и пр. Результаты всех видов работы студентов формируются в виде их личных портфолио, которые учитываются на промежуточной аттестации. Самостоятельная работа предусматривает не только проработку материалов лекционного курса, но и их расширение в результате поиска, анализа, структурирования и представления в компактном виде современной информации их всех возможных источников.
- 9.6 Текущий (рубежный) контроль проводится в течении каждого модуля, его итоговые результаты складываются из оценок по следующим видам контрольных мероприятий:
 - защиты домашних заданий;
 - защиты лабораторных работ;
 - выполнения контрольных работ.
- 9.7 Освоение дисциплины, ее успешное завершение на стадии промежуточного контроля возможно только при регулярной работе во время семестра и планомерном прохождении текущего контроля. Создать портфолио по модулям в каждом семестре, пройти по каждому модулю плановые контрольные мероприятия в течение экзаменационной сессии невозможно.
- 9.8 Для завершения работы в семестре студент должен выполнить все контрольные мероприятия.
- 9.9 Промежуточная аттестация по результатам семестра по дисциплине проходит в форме зачета, контролирующего освоение ключевых, базовых положений дисциплины, составляющих основу остаточных знаний по ней. Оценивание дисциплины ведется в соответствии с Положением о текущем и промежуточном контроле.

10 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

В процессе преподавания дисциплины используются следующие методы, средства и программное обеспечение информационных технологий:

- электронные почтовые адреса преподавателей и студентов для отправки на проверку отчетов по домашним заданиям и лабораторным работам, для получения по ним рецензий, для оперативной связи с преподавателями, для ответов на индивидуальные вопросы;
- контактные данные преподавателей в информационной системе Скайп для удалённых индивидуальных видео-консультаций, для обмена файлами, для контроля правильности работы студентов в программах, рекомендованных для использования при изучении дисциплины;
- электронные учебно-методические материалы для обеспечения самостоятельной работы студентов, доступные в сети Интернет;
 - презентации, анимации, видео сюжеты, схемы и тексты программ по дисциплине;
 - сервисы сети Интернет для поиска научно-технической информации по дисциплине;
 - приложения из состава комплекта программ Microsoft OfficeTM (Open Office®).

11 ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Перечень материально-технического обеспечения дисциплины приведен в таблице 4.

Таблица 4 – Перечень материально-технического обеспечения

Вид занятия	Наименование оборудования
Лекционные занятия	1) Помещение для проведения аудиторных занятий, оборудованное учебной мебелью и классной доской 2) Презентационная техника: экран и мультимедиа-проектор.
Лабораторные работы	1) Аудитория, оборудованная учебной мебелью вместимостью 15 человек. 2) Компьютеры с доступом к сети Интернет — 15 шт. 3) Программные средства, установленные на компьютеры: Texas Instrument® Code Compose Studio ^{тм} версии не ниже 6.0. 4) Оценочная плата Texas Instrument® TMS320C5515 EVM TM — 15 комплектов.
Самостоятельная работа	1) Библиотека (читальный зал) с рабочими места для студентов. 2) Аудитории, оснащенные компьютерами с доступом к сети Интернет.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В РАБОЧУЮ ПРОГРАММУ ДИСЦИПЛИНЫ

Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
Было:	Стало:				
Основание –					
Номер изменения, дата внесения изменения, но	мер страницы для внесения изменений				
Номер изменения, дата внесения изменения, но	мер страницы для внесения изменений				
Было:	Стало:				
Основание –					
Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
Было:	Стало:				
Основание –					
Номер изменения, дата внесения изменения, номер страницы для внесения изменений					