Практика по геометрии (преподаватель Амрани И. М.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	(03.09.2019) Кривые и поверхности	2
2	(10.09.2019) Задачи на кривые	g
3	(17.09.2019) Поверхности	7
4	(24.10.2019) Первая фундаментальная форма	8
5	(01.10.2019) Ещё задача на ${\bf I}(F)$	10
6	(01.10.2019) Вторая фундаментальная форма	11

1 (03.09.2019) Кривые и поверхности

Пример

$$\gamma:\mathbb{R}\to\mathbb{R}^3,\quad \gamma\in C^2$$
, т.ч. $|\gamma(t)|=1\ \forall t\in\mathbb{R}$ Д-ть, что $\gamma'(t)\bot\gamma''(t)\ \forall t\in\mathbb{R}$

Док-во

$$|\gamma'| = 1 \Leftrightarrow \sqrt{\langle \dot{\gamma}, \dot{\gamma} \rangle} = 1 \Leftrightarrow \langle \dot{\gamma}, \dot{\gamma} \rangle = 1$$
$$(\langle \dot{\gamma}, \dot{\gamma} \rangle)' = (1)' \Rightarrow 2 \langle \dot{\gamma}, \ddot{\gamma} \rangle = 0$$

Вообще очевидно, но если нет, то:

$$(\langle \dot{\gamma}, \dot{\gamma} \rangle)' = (\sum_{i=1}^{3} \dot{\gamma}_{i}^{2})' = \sum_{i=1}^{3} 2\dot{\gamma}_{i}\ddot{\gamma}_{i} = 2 \langle \dot{\gamma}, \ddot{\gamma} \rangle$$

Пример

$$\gamma : \mathbb{R} \to \mathbb{R}^3, \quad \gamma \in C^3, \quad |\gamma'| = 1, \quad \gamma'' \neq 0$$

$$T(t) = \gamma'(t), \quad B(t) = T(t) \times N(t), \quad N(t) = \frac{\gamma''(t)}{|\gamma''(t)|}$$

- 1. Д-ть, что $\{T(t), N(t), B(t)\}$ ОНБ
- 2. Найти координаты $\frac{dT}{dt}$, $\frac{dN}{dt}$, $\frac{dB}{dt}$ в базисе $\{T, N, B\}$

- 1. Очевидно, $B(t) = T \cdot N \sin \angle (T, N)$ $T \perp N$ (по пред. задаче), $B \perp N$, $B \perp T$ (по опр. вект. произв.)
- 2. По определению "взятием производной" получаем:

$$\frac{dI}{dt} = 0T + |\ddot{\gamma}|N + 0B$$

$$< N, T >= 0 \Rightarrow < \frac{dN}{dt}, T > + < N, \frac{dT}{dt} >= 0$$
 Аналогично $0 = < \frac{dT}{dt}, B >= - < \frac{dB}{dt}, T >$
$$|\ddot{\gamma}| = < \frac{dN}{dt}, T >= - < N, \frac{dT}{dt} >$$

$$\frac{dN}{dt} = -|\ddot{\gamma}|T + 0N + \tau(t)B$$

$$\frac{dB}{dt} = 0T - \tau(t)N + 0B$$

2 (10.09.2019) Задачи на кривые

Мы хотим найти τ через $\dot{\gamma}$, $\ddot{\gamma}$, $\ddot{\gamma}$

Замечание

На плоскоти в каждой точке гладкой кривой есть окружность, которая наилучшим образом приближает кривую

$$R=rac{1}{|\ddot{\gamma}|},\quad |\ddot{\gamma}|:=$$
 æ - кривизна

Решение (продолжение)

$$\begin{split} \tau = & < \frac{dN}{dt}, \ B > \\ \frac{dN}{dt} = \left(\frac{\ddot{\gamma}}{|\ddot{\gamma}|}\right)' = \frac{\ddot{\gamma} |\ddot{\gamma}| - |\ddot{\gamma}|' \ddot{\gamma}}{|\ddot{\gamma}|^2} \\ \Rightarrow & < \frac{dN}{dt}, \ B > = < \frac{\dddot{\gamma} |\ddot{\gamma}| - |\ddot{\gamma}|' \ddot{\gamma}}{|\ddot{\gamma}|^2}, \ \frac{\dot{\gamma} \times \ddot{\gamma}}{|\ddot{\gamma}|} > = \\ & = \frac{1}{|\ddot{\gamma}|^3} < \dddot{\gamma} |\ddot{\gamma}| - |\ddot{\gamma}|' \ddot{\gamma}, \ \dot{\gamma} \times \ddot{\gamma} >_{\text{cm. Ha N}} \\ & = \frac{1}{|\ddot{\gamma}|^3} < \dddot{\gamma} |\ddot{\gamma}|, \ \dot{\gamma} \times \ddot{\gamma} > = \frac{1}{|\ddot{\gamma}|^2} < \dddot{\gamma}, \ \dot{\gamma} \times \ddot{\gamma} > = \frac{(\dot{\gamma}, \ \ddot{\gamma}, \ \dddot{\gamma})}{|\ddot{\gamma}|^2} \end{split}$$

Пример

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \quad t \mapsto (4\cos(t), 5 - 5\sin(t), -3\cos(t))$$

- 1. Найти æ и τ
- 2. Понять, что из себя представляет линия

Решение

1. Предыдущую задачу мы не можем просто так применить, потому что $|\dot{\gamma}| = 5 \neq 1$, но мы можем перепараметризовать:

$$\begin{split} \widetilde{\gamma} : \mathbb{R} &\to \mathbb{R}^3, \quad t \mapsto (4\cos(\frac{t}{5}), \ 5 - 5\sin(\frac{t}{5}), \ -3\cos(\frac{t}{5})) \\ \widetilde{\dot{\gamma}} &= (-\frac{4}{5}\sin(\frac{t}{5}), \ -\cos(\frac{t}{5}), \ \frac{3}{5}\sin(\frac{t}{5})) \\ \Rightarrow |\widetilde{\dot{\gamma}}| &= 1 \\ \widetilde{\ddot{\gamma}} &= (-\frac{4}{25}\cos(\frac{t}{5}), \ \frac{1}{5}\sin(\frac{t}{5}), \ \frac{3}{25}\cos(\frac{t}{5})) \\ \Rightarrow &\approx = |\widetilde{\ddot{\gamma}}| &= \frac{1}{25} \\ \widetilde{\ddot{\gamma}} &= (\frac{4}{125}\sin(\frac{t}{5}), \ \frac{1}{25}\cos(\frac{t}{5}), \ -\frac{3}{125}\sin(\frac{t}{5})) \\ \Rightarrow &\tau &= \frac{(\dot{\gamma}, \ \ddot{\gamma}, \ \dddot{\gamma})}{|\ddot{\gamma}|^2} &= 25(\dot{\gamma}, \ \ddot{\gamma}, \ \dddot{\gamma}) &= 0 \end{split}$$

2. Наша линия находится на плоскости:

$$3x + 0y + 4z$$

И лежит на сфере:

$$x^2 + (y - 5)^2 + z^2 = 25$$

Значит она представляет из себя окружность, потому что есть разные точки

5cos(u), 5-5sin(u), 3cos(u) -

Пример

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \quad t \mapsto (\cos(t), \sin(t), t)$$

1. Построить график

2. Найти æ и τ

Аналогично
$$t \to \frac{t}{\sqrt{2}}$$

$$\begin{split} \widetilde{\gamma} : \mathbb{R} &\to \mathbb{R}^3, \quad t \mapsto (\cos(\frac{t}{\sqrt{2}}), \sin(\frac{t}{\sqrt{2}}), \frac{t}{\sqrt{2}}) \\ \widetilde{\dot{\gamma}} &= (-\frac{1}{\sqrt{2}}\sin(\frac{t}{\sqrt{2}}), \frac{1}{\sqrt{2}}\cos(\frac{t}{\sqrt{2}}), \frac{1}{\sqrt{2}}) \\ \Rightarrow |\widetilde{\dot{\gamma}}| &= 1 \\ \widetilde{\ddot{\gamma}} &= (-\frac{1}{2}\cos(\frac{t}{\sqrt{2}}), -\frac{1}{2}\sin(\frac{t}{\sqrt{2}}), 0) \\ \Rightarrow &\approx = |\widetilde{\ddot{\gamma}}| &= \frac{1}{2} \\ \widetilde{\ddot{\gamma}} &= (\frac{1}{2\sqrt{2}}\sin(\frac{t}{\sqrt{2}}), -\frac{1}{2\sqrt{2}}\cos(\frac{t}{\sqrt{2}}), 0) \end{split}$$

$$\tau = \frac{(\dot{\gamma}, \ \ddot{\gamma}, \ \ddot{\gamma})}{|\ddot{\gamma}|^2}$$

$$(\dot{\gamma}, \ \ddot{\gamma}, \ \ddot{\gamma}) = \det \begin{pmatrix} -\frac{1}{\sqrt{2}}\sin(\frac{t}{\sqrt{2}}) & \frac{1}{\sqrt{2}}\cos(\frac{t}{\sqrt{2}}) & \frac{1}{\sqrt{2}}\\ -\frac{1}{2}\cos(\frac{t}{\sqrt{2}}) & -\frac{1}{2}\sin(\frac{t}{\sqrt{2}}) & 0\\ \frac{1}{2\sqrt{2}}\sin(\frac{t}{\sqrt{2}}) & -\frac{1}{2\sqrt{2}}\cos(\frac{t}{\sqrt{2}}) & 0 \end{pmatrix} = \frac{1}{8}$$

3 (17.09.2019) Поверхности

Пример

$$\gamma: \mathbb{R} \to \mathbb{R}^3$$
, $t \mapsto (r(t), 0, z(t))$, где $r: \mathbb{R} \to \mathbb{R}, z: \mathbb{R} \to \mathbb{R}$

Найти параметрищацию поверхности вращения вокруг OZ

Док-во

Из геометрических соображений: $(r(t)\cos\varphi,\ r(t)\sin\varphi,\ z(t)),\ \varphi\in[0,\ 2\pi]$ Более строго:

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r(t) \\ 0 \\ z(t) \end{pmatrix} = \begin{pmatrix} r(t)\cos \alpha \\ r(t)\sin \alpha \\ z(t) \end{pmatrix}$$

Опр

Гладкая двухмерная поверхность:

$$F: \overset{\text{откр}}{\underset{t,\ s}{U}} \subset \mathbb{R}^2 \to \mathbb{R}^3$$

т.ч.
$$\frac{\partial F}{\partial S}, \frac{\partial F}{\partial t}$$
 - непрерывные функции

Опр

Гладкая регулярная поверхность:

$$F: \overset{\text{откр}}{\underset{t,\ s}{U}} \subset \mathbb{R}^2 \to \mathbb{R}^3$$

т.ч.
$$\frac{\partial F}{\partial S}$$
, $\frac{\partial F}{\partial t}$ - линейно независимы "регулярная = скорость не обнуляется"

4 (24.10.2019) Первая фундаментальная форма

Пример

$$F: U \subset \mathbb{R}^2 \to \mathbb{R}^3$$

$$\det \begin{pmatrix} \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \rangle & \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle \\ \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial s} \rangle & \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial s} \rangle \end{pmatrix} = \\ = \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \rangle \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial s} \rangle - \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial s} \rangle = \\ = \left| \frac{\partial F}{\partial t} \right|^2 \left| \frac{\partial F}{\partial s} \right|^2 - \left| \frac{\partial F}{\partial s} \right|^2 \left| \frac{\partial F}{\partial t} \right|^2 \cos^2 t = \left| \frac{\partial F}{\partial t} \right|^2 \left| \frac{\partial F}{\partial s} \right|^2 = \left| \frac{\partial F}{\partial t} \times \frac{\partial F}{\partial s} \right|^2$$

Замечание

$$A(S) = \sum A(\Box)$$

$$A(\Box) \approx \left| \frac{\partial F}{\partial t} \times \frac{\partial F}{\partial s} \right| \Delta t \Delta s$$

$$I(F) = \begin{pmatrix} \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \rangle & \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle \\ \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial s} \rangle & \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial s} \rangle \end{pmatrix}$$

$$A(S) = \iint \left| \frac{\partial F}{\partial t} \times \frac{\partial F}{\partial v} \right| dt ds = \iint \sqrt{\det I(F)} dt ds$$

Пример

$$F: (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3$$
$$(\theta, \varphi) \to (\cos \theta \sin \varphi, \cos \theta \cos \varphi, \sin \theta)$$

- 1. Доказать, что образ F находится на сфере радиуса 1
- 2. Найти S сферы через I(F)

Док-во

1. Видно из параметрического уравнения сферы что это сфера, а также понятен радиус и её центр

$$\begin{cases} x = x_0 + R \cdot \sin \theta \cdot \cos \phi, \\ y = y_0 + R \cdot \sin \theta \cdot \sin \phi, \\ z = z_0 + R \cdot \cos \theta, \end{cases}$$

где $\theta \in [0,\pi]$ и $\phi \in [0,2\pi)$ (у нас будет сдвиг на угол)

2. Найдем переменные для I(F):

$$< \frac{\partial F}{\partial \theta}, \ \frac{\partial F}{\partial \theta} > = \sin^2 \theta \sin^2 \varphi + \sin^2 \theta \cos^2 \varphi + \cos^2 \theta = 1$$

$$< \frac{\partial F}{\partial \theta}, \ \frac{\partial F}{\partial \varphi} > = 0, \quad < \frac{\partial F}{\partial \varphi}, \ \frac{\partial F}{\partial \theta} > = 0, \quad < \frac{\partial F}{\partial \varphi}, \ \frac{\partial F}{\partial \varphi} > = \cos^2 \theta$$

$$\Rightarrow I(F) = \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 \theta \end{pmatrix}$$

$$\Rightarrow A(S) = \iint \sqrt{\det I(F)} d\theta d\varphi = \int_0^{\pi} \int_0^{2\pi} |\cos \theta| d\theta d\varphi = \int_0^{\pi} 4d\varphi = 4\pi$$

5 (01.10.2019) Ещё задача на I(F)

Пример

$$F:U\subset\mathbb{R}^2\to\mathbb{R}^3,\quad C^1$$
 регулярная

Найти длину $\widetilde{\gamma} = F \circ \gamma$ через γ и $\mathrm{I}(F)$

$$\begin{split} &l(F\circ\gamma):=\int_{0}^{1}|F\circ\gamma(t)'|dt\\ &\frac{d(F\circ\gamma(t))}{dt}=\underbrace{\frac{\partial F}{\partial x}\overset{\text{crainsp}}{\hat{\gamma_{1}}(t)}}_{\text{bertop}}\dot{\gamma_{2}}(t)=\\ &=<\frac{\partial F}{\partial x}\dot{\gamma_{1}}(t)+\frac{\partial F}{\partial y}\dot{\gamma_{2}}(t),\;\frac{\partial F}{\partial x}\dot{\gamma_{1}}(t)+\frac{\partial F}{\partial y}\dot{\gamma_{2}}(t)>=\\ &=<\frac{\partial F}{\partial x},\frac{\partial F}{\partial x}>\dot{\gamma_{1}}^{2}(t)+2<\frac{\partial F}{\partial x},\frac{\partial F}{\partial y}>\dot{\gamma_{1}}(t)\dot{\gamma_{2}}(t)+<\frac{\partial F}{\partial y},\frac{\partial F}{\partial y}>\dot{\gamma_{2}}^{2}(t)=\\ &=(\dot{\gamma_{1}},\dot{\gamma_{2}})I(F)\begin{pmatrix}\dot{\gamma_{1}}\\\dot{\gamma_{2}}\end{pmatrix}\\ &\Rightarrow l(F\circ\gamma)=\int_{0}^{1}\sqrt{(\dot{\gamma_{1}},\dot{\gamma_{2}})I(F)\begin{pmatrix}\dot{\gamma_{1}}\\\dot{\gamma_{2}}\end{pmatrix}}dt \end{split}$$

6 (01.10.2019) Вторая фундаментальная форма

Опр

$$F: U_{x,y}\subset\mathbb{R}^2\to\mathbb{R}^3 \qquad C^2 \text{ регулярная}$$

$$|\frac{\partial F}{\partial x}\times\frac{\partial F}{\partial y}|\neq 0$$

$$n:=\frac{\frac{\partial F}{\partial x}\times\frac{\partial F}{\partial y}}{|\frac{\partial F}{\partial x}\times\frac{\partial F}{\partial y}|}\text{- перп. обоим и по модулю 1}$$

$$L=<\frac{\partial^2 F}{\partial x^2},\ n>,\quad M=<\frac{\partial^2 F}{\partial x\partial y},\ n>,\quad N=<\frac{\partial^2 F}{\partial y},\ n>$$

$$\mathrm{II}(F)=\begin{pmatrix}L&M\\M&N\end{pmatrix}$$

Замечание

 $\Pi(F)$ говорит, какая ПВП лучше всего приближает в данной точке

Пример

Пусть есть сфера радиуса г:

$$\begin{cases} x = x_0 + R \cdot \sin \theta \cdot \cos \phi, \\ y = y_0 + R \cdot \sin \theta \cdot \sin \phi, \\ z = z_0 + R \cdot \cos \theta, \end{cases}$$

где
$$\theta \in [-\frac{\pi}{2}, \ \frac{\pi}{2}]$$
 и $\phi \in [0, \ 2\pi)$
Найти $\Pi(F), \ \Pi(F)$ и $\frac{\det(\Pi)}{\det(\Pi)}$

$$\frac{\partial F}{\partial \theta} = (-r\sin\theta\cos\varphi, \ -r\sin\theta\sin\varphi, \ r\cos\theta)$$

$$\frac{\partial F}{\partial \varphi} = (-r\cos\theta\sin\varphi, \ r\cos\theta\cos\varphi, \ 0)$$

$$<\frac{\partial F}{\partial \theta}, \frac{\partial F}{\partial \theta} > = r^2, \quad <\frac{\partial F}{\partial \theta}, \frac{\partial F}{\partial \varphi} > = 0$$

$$<\frac{\partial F}{\partial \varphi}, \frac{\partial F}{\partial \theta}> = 0, \quad <\frac{\partial F}{\partial \varphi}, \frac{\partial F}{\partial \varphi}> = r^2 \cos^2 \theta$$

 $\Rightarrow I(F) = \begin{pmatrix} r^2 & 0 \\ 0 & r^2 \cos^2 \theta \end{pmatrix}$

Пример

Пусть
$$\gamma: t \to (t - \operatorname{th}(t), 0, \frac{1}{\operatorname{ch}(t)}), \quad t > 0$$

- 1. Найти S поверхности, полученной вращением γ вокруг OZ
- 2. Найти $\mathrm{II}(F),\,\mathrm{I}(F)$ и $K=\dfrac{\mathrm{det}(\mathrm{II})}{\mathrm{det}(\mathrm{I})}$
- 3. Площадь S_F