15/Sep/2023

Explainable AI: understand the black box of predictive models with chemical engineering applications

Name: Jinwei Hu

Supervisors: Sibo Cheng, Rossella Arcucci

Student ID: 02261789

Integrating Machine Learning and Explainability for Studying Droplet Coalescence in Microfluidic System

- Objective: Predict & Control Droplet Coalescence & Explainability
- Droplet Coalescence Applications: Pharma, Food, Oil, Materials
- Methodology: ML Models + Explainability Tools
- Key Challenges: Non-linear Dynamics & Model Opacity
- Innovation: ML & Explainability on Droplet Coalescence in Microfluidic System

Research Motivation

- Complexity: Numerous parameters in fluid coalescence
- Variability: Different conditions yield diverse outcomes
- ML Opacity: Lack of transparency in predictions
- Trust: Need for credible, understandable results
- Necessity of XAI: ML + XAI for transparent, reliable solutions in chemical engineering

Dataset Overview

- 1501 Samples
- Five Features & One Label
- Coalescence & Non-Coalescence
- Training & Testing
- Balance Ratio

	Coalescence	Non-coalescence	Balance Ratio (BR)	Total
Total dataset	782	719	1.09	1501
Training dataset	625	575	1.09	1200
Testing dataset	157	144	1.09	301

Data Preprocessing

- Raw Data
- Min-Max Normalization: keep the relative relationships among the features

$$x_{\text{scaled}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}, \quad x \in \{x_{\frac{D}{L}1 + \frac{D}{L}2}, x_{|\frac{D}{L}1 - \frac{D}{L}2|}, x_{dt}, x_{\text{flow}}, x_{\text{Heff}}\}$$

Predictive Models

- Random Forest
- XGBoost
- Multilayer Perceptron(MLP)

XAI: SHapley Additive exPlanations(SHAP)

Figure 4: Visual Representation of SHapley Additive exPlanations (SHAP) in Chemical Applications

Local Interpretable Model-agnostic Explanations(LIME)

Figure 5: Visual Representation of Local Interpretable Model-agnostic Explanations (LIME) in Chemical Applications

Implementation Details

Random Forest: [n estimators = 145, max depth = 7]

XGBoost: $[n \text{ estimators} = 15, \max \text{ depth} = 2]$

Figure 6: Validation heatmaps for the tuning hyperparameters of tree-based predictive models. The selected hyperparameters are highlighted by the red frames.

MLP Hyperparameters

Hyperparameter	Options		
Activation Functions	relu, tanh, sigmoid, linear		
Optimisers	adam, sgd, rmsprop		
Learning Rates	0.001 , 0.01, 0.1		
L2 Rates	0.0, 0.001, 0.01 , 0.1		
Dropout Rates	0.0, 0.1 , 0.2, 0.3		
	10, 50, 100, 150, 200,		
Epochs	250, 300, 400, 450, 500, 800,		
	1000, 1500, 2000, 2500 , 3000		

Predictive Results

Model	Precision(%)	Recall(%)	F1-Score(%)	Accuracy(%)
Random Forest	75.64	75.16	75.40	74.42
XGBoost	72.78	73.25	73.02	71.76
MLP	$\boldsymbol{90.27}$	64.97	75.56	78.07

Global Interpretability

Feature Ablation Testing

Model	Baseline	w/o Heff	$w/o \frac{D}{W}1 + \frac{D}{W}2$	w/o flow	$w/o \frac{D}{W}1 - \frac{D}{W}2 $	w/o dt
Random Forest XGBoost MLP	74.42% 71.76% 78.07 %	72.09% $66.11%$ $69.77%$	70.10% $72.43%$ $75.08%$	74.09% $72.09%$ $76.08%$	72.09% $72.43%$ $76.74%$	70.10% 74.09% 75.75%

Local Interpretability

Figure 9: LIME Plot for two instances. NC means the actual label for instance is Non-Coalescence, and C means the actual label for instance is Coalescence

Future works

- Adapt to other fluid dynamics areas
- Advanced Deep learning Models
- Tailor-made interpretability frameworks

15/Sep/2023

