References

- https://www.forbes.com/sites/ibm/2020/01/16/the-quantum-computing-era-is-here-why-it-mattersand-how-it-may-change-our-world/#45629785c2b1
- Alicki, R.: Quantum error correction fails for Hamiltonian models. Fluct. Noise Lett. (2006). arxiv.org/quant-ph/0411008
- 3. Haroche, S., Raymond, J.-M.: Quantum computing: dream or nightmare. Phys. Today 49, 8, 51 (1996)
- 't Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quantum Grav. 16, 3263 (1999). gr-qc/9903084.
- 5. Kak, S.: General qubit errors cannot be corrected. Inf. Sci. **152**, 195 (2003)
- Kalai, G.: How quantum computers fail: quantum codes, correlations in physical systems, and noise accumulation. arXiv:1106.0485. https://www.quantamagazine.org/gil-kalais-argumentagainst-quantum-computers-20180207/
- 7. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)
- 8. Laughlin, R.: https://www.youtube.com/watch?v=iYQSbV_BII8
- 9. Levin, L.: Polynomial time and extravagant models (2003). The tale of one-way functions. Probl. Inf. Transm. **39**(1) (2003). https://arxiv.org/pdf/cs/0012023.pdf
- Wolfram, S.: Undecidability and intractability in theoretical physics. Phys. Rev. Lett. 54, 735 (1985)
- 11. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)
- 12. Manin, Y.: Vychislimoe i nevychislimoe (Computable and Noncomputable). Sov. Radio, pp. 13–15 (1980) (in Russian)
- 13. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
- Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97 (1985)
- Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, p. 124. IEEE Computer Society Press, Los Alamitos, CA (1994)
- 16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28-th Annual ACM Symposium on the Theory of Computing, p. 212 (1996)
- Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)
- 18. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)
- 19. Ofek, N., Petrenko, A., et al.: Extending the lifetime of a quantum bit with error correction superconducting circuits. Nature **536**, 441 (2016)
- Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

46 References

 Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computation, p. 176, ACM Press, New York (1998). arXiv:quant-ph/9611025, http://arXiv:quant-ph/9906129

- 22. Knill, E.: Extracting information from qubits-environment correlations. Nature 463, 441 (2010)
- 23. Aliferis, P., Gottesman, D., and Preskill, J.: Accuracy threshold for post selected quantum computation. Quantum Inf. Comput. 8, 181 (2008). arXiv:quant-ph/0703264
- 24. D-wave systems. https://en.wikipedia.org/wiki/D-Wave_Systems
- https://docs.dwavesys.com/docs/latest/c_gs_2.html, https://en.wikipedia.org/wiki/D-Wave_ Systems#History
- 26. https://en.wikipedia.org/wiki/Pi_Josephson_junction
- 27. https://en.wikipedia.org/wiki/Josephson_effect
- 28. Likharev, K.K.: Dynamics of Josephson Junctions and Circuits. Gordon and Breach Publications, New York (1986)
- 29. King, A.D., Carrasquilla, J., et al.: Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature **560**, 456 (2018)
- Chen, Y., Neill. C., et al.: Phys. Rev. Lett. 113, 220502 (2014). https://arxiv.org/pdf/1402.7367.
- 31. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature **574**, 505 (2019). https://www.nature.com/articles/s41586-019-1666-5
- 32. https://www.quantamagazine.org/google-and-ibm-clash-over-quantum-supremacy-claim-20191023/
- 33. Foxen, B., et al.: Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. https://arxiv.org/abs/2001.08343
- 34. Quantum Manifesto. https://qt.eu/app/uploads/2018/04/93056_Quantum Manifesto_WEB.pdf
- A quantum information science and technology roadmap, Part 1: quantum computation, report
 of the quantum information science and technology experts panel. http://qist.lanl.gov/qcomp-map.shtml
- National academies of sciences, engineering, and medicine, quantum computing: progress and prospects. National Academies Press, Washington, DC (2018). https://doi.org/10.17226/25196
- 37. Bravyi, S.: Universal quantum computation with the $\nu=5/2$ fractional quantum Hall state. Phys. Rev. A **73**, 042313 (2006). arXiv: quant-ph/0511178
- 38. Wilczek, F. (ed.): Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)
- 39. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. **303**, 2 (2003). arXiv: quant-ph/9707021
- 40. Moore, J.E.: The birth of topological insulators. Nature **464**, 194 (2010)
- 41. Wilczek, F.: Majorana returns. Nat. Phys. 5, 614 (2009)
- 42. Lian, B., Sun, X.-Q., et al.: Topological quantum computation based on chiral Majorana fermions. Proc. Nat. Acad. Sci. USA 115(43), 10938 (2018)
- 43. Pade, J.: Quantum Mechanics for Pedestrians 1: Fundamentals. Springer (2014)
- 44. Shor, P.: Fault-tolerant quantum computation. In: 37th Symposium on Foundations of Computing, pp. 56–65. IEEE Computer Society Press (1996). arxiv.org/quant-ph/9605011
- Preskill, J.: Fault-tolerant quantum computation. In: Lo, H.-K., Papesku, S., Spiller, T. (eds.) Introduction to Quantum Computation and Information, pp. 213–269. World Scientific, Singapore (1998). arxiv.org/quant-ph/9712048
- Gottesman, D.: An introduction to quantum error correction. In: Lomonaco Jr., S.J. (ed.) Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium, pp. 221–235. American Mathematical Society, Providence, Rhode Island (2002). arxiv.org/quant-ph/0004072
- Steane, A.M.: Quantum computing and error correction. In: Gonis, A., Turchi, P. (eds.) Decoherence and its Implications in Quantum Computation and Information Transfer, pp. 284–298. IOS Press, Amsterdam (2001). arxiv.org/quant-ph/0304016
- 48. Steane, A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)

References 47

49. Kribs, D., Laflamme, R., Poulin, D.: A unified and generalized approach to quantum error correction. Phys. Rev. Lett. **94**, 180501 (2005)

- Kak, S.: General qubit errors cannot be corrected. Inf. Sci. 152, 195 (2003). arxiv.org/quantph/0206144
- Aharonov, D.: Quantum computation. In: Stauffer, D. (ed.) Annual Reviews of Computational Physics, p. 259. World Scientific, VI (1999). arXiv:quantph/98120
- 52. Because of this similarity, it is quite probable that the design and the theory of such machines will become the next hot topic, especially if a good name (beginning with the magic word "quantum") for this activity will be invented
- Dyakonov, M.I.: Quantum computing: a view from the enemy camp. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics. The Nano Millennium, p. 307, Wiley (2002). arXiv:cond-mat/0110326
- Dyakonov, M.I.: Prospects for quantum computing: extremely doubtful. Int. J. Mod. Phys. Conf. Ser. 33, 1460357 (2014), arxiv:1401.3629
- 55. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer (1999)
- 56. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)
- 57. Vandersypen, L.M.K., et al.: Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature **414**, 883 (2001)
- 58. Lanyon, B.P., et al.: Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. Phys. Rev. Lett. **99**, 250505 (2007)
- 59. Lucero, E., et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719 (2012). arXiv:1202.5707
- Beckman, D., et al.: Efficient networks for quantum factoring. Phys. Rev. A 54, 1034 (1996). arXiv:quant-ph/9602016
- 61. Martin-López, E., et al.: Experimental realization of Shor's quantum factoring algorithm using qubit recycling. Nat. Photonics, **6**, 773 (2012). arXiv:1111.4147
- Dyakonov, M.I.: Is fault-tolerant quantum computation really possible? In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics. Up the Nano Creek, p. 4. Wiley (2007). arXiv:quant-ph/0610117
- 63. Twain, M.: A Connecticut Yankee in King Arthur's Court, Chapter 24 (1889). http://www.gutenberg.org/files/86/86-h/86-h.htm
- 64. To put it bluntly, one should refrain from proving theorems about systems and phenomena of which one has no profound understanding
- Hašek, J.: The Fateful Adventures of the Good Soldier Švejk During the World War (translated by Sadlon, Z.K.). SAMIZDAT (2007). amazon.com/Fateful-Adventures-Soldier-Svejk-During/dp/1585004286
- 66. Banach, S., Tarski, A.: Sur la décomposition des ensembles de points en parties respectivement congruents. Fundam. Math. 6, 244 (1924)
- 67. www.wikipedia.org/wiki/Banach_Tarski
- 68. Nasreddin Hodja was a populist philosopher and a wise man believed to have lived around 13-th century during the Seljuq dynasty and remembered for his funny stories and anecdotes. The International Nasreddin Hodja fest is celebrated annually in July in Aksehir, Turkey every year
- 69. Knill, E.: Quantum computing. Nat. Phys. **463**, 441 (2010)
- 70. When a spin relaxation time of 10 ns is measured, instead of 1 ns previously, this is heralded as another breakthrough on the way to quantum computing
- 71. Dyakonov, M.I.: State of the art and prospects for quantum computing. In: Luryi, S., Xu, J., Zaslavsky, A. (eds) Future Trends in Microelectronics. Frontiers and Innovations, p. 266. Wiley (2013). arXiv:1212.3562
- Dyakonov, M.I.: Revisiting the hopes for scalable quantum computation. JETP Lett. 98, 514 (2013). arXiv:1210.1782
- 73. Dyakonov, M.: The case against quantum computing. IEEE Spectr. **56**(3), 24 (2019)
- 74. Dyakonov, M.I.: When will we have a quantum computer? Solid State Electron. 155, 4 (2019)

Index

В	Precision of quantum gates, 35
Banach-Tarski theorem, 39	Proposals for qubits, 7, 9, 10, 12, 33, 42
	•
C	Q
Capturing a lion, 24, 25	Quantum amplitudes, 2, 4, 5, 17, 23, 28, 36
Classical limit, 16, 17, 22	Quantum annealing, 6, 35, 42
Classical limit of quantum computer, 17, 22	Quantum computer as non-linear system, 34
Conclusions, 31, 39, 42	Quantum computing 2002 and 2016
	roadmaps, 10
	Quantum computing the identity $1 = 1, 36$
D	Quantum gates, 4, 7, 19, 21, 22, 24, 35
Dynamics of spin systems, 19	Quantum mechanics, 3, 4, 6, 15–19, 22, 24,
	28, 30, 31, 34, 36
	Qubits, 1–7, 9–13, 17–21, 23–37, 40
E	
Energy, 6, 15–19, 31, 33–35	
Error correction, 4, 5, 7, 9, 23–26, 29–31,	S
34–36, 42	Schrödinger equation, 18, 19
Expert panels, 10	Shor's algorithm, 1, 35, 36, 42
	Sociological problems, 40
	Soldier Švejk, 39
M	Spin, 3, 4, 11–13, 17–20, 22–24, 26–30, 33,
Mathematics and reality, 39	34, 42
Measurements, 2–4, 17, 23, 24, 26–29, 31–	Spin relaxation, 20, 29
37	Storing a qubit in memory, 36
	Storing a quote in momery, 50
N	Т
Nasreddin Hodja, 40	Threshold theorem, 5, 24–27, 29, 30, 40
- · · · · · · · · · · · · · · · · · · ·	2007 and 2012 goals, 10
	2007 and 2012 goals, 10
P	
Perpetual motion, 31	U
Planck constant, 4, 6, 15–17	Undesired free evolution, 33, 34
Precision, 4, 19, 22, 23, 27, 28, 30, 36, 40	Universal quantum computer, 1, 6, 7, 34, 35
1100101011, 1, 17, 22, 23, 21, 20, 30, 30, 40	om voisar quantum computer, 1, 0, 7, 34, 33

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

M. I. Dyakonov, Will We Ever Have a Quantum Computer?,

SpringerBriefs in Physics, https://doi.org/10.1007/978-3-030-42019-2

49