Problems Abstract Algebra Second List

Abel Doñate Muñoz

1 Nakayama's lemma. Let M be a finitely generated A-module and I an ideal of A contained in the Jacobson radical. Prove:

$$IM = M \Rightarrow M = 0$$

We suppose $M \neq 0$. Let x_1, x_2, \ldots, x_n be a minimal set of generators of the module M. Because M = IM we can express the element $x_1 = a_1x_1 + a_2x_2 + \cdots + a_nx_n$, where $a_i \in I$. Then

$$(a_1 - 1)x_1 + a_2x_2 + \dots + a_nx_n = 0 \Rightarrow \begin{cases} a_1 - 1 = 0 \\ \vdots \\ a_n = 0 \end{cases}$$

But if $a_1 = 1 \in I$, that means I = (1) = A, which cannot be contained in the Jacobson radical.

4 Let (diagram) be a short exact sequence of A-modules. Prove that if M' and M'' are finitely generated, then M is finitely generated.

We start by fixing the set of generators of M' as x_1, \ldots, x_n and of M'' as z_1, \ldots, z_m .

Since g is surjective, we can find elements y_1, \ldots, y_m such that $g(y_i) = z_i$. Now we select an arbitrary element $y \in M$. Then we have

$$g(y) = b_1 z_1 + \dots + b_m z_m = g(b_1 y_1) + \dots + g(b_m y_m) \Rightarrow g(y - \sum b_i y_i) = 0 \Rightarrow y - \sum b_i y_i \in \ker(g)$$

for some $b_i \in A$. By exactness of the sequence we have $y - \sum b_i y_i \in \text{Im}(f)$, so

$$y - \sum b_i y_i = f(\sum a_i x_i) = \sum a_i f(x_i) \Rightarrow y = \sum a_i f(x_i) + \sum b_i y_i$$

for some $a_i \in A$. Thus, a set of generators of M is $f(x_1), \ldots, f(x_n), y_1, \ldots, y_m$