Diszkrét matematika 1.

6. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Gráfok alapfogalmai 1

Definíció

 $AG = (V, E, \varphi)$ hármast gráfnak nevezzük, ahol

- V ≠ ∅ elemei a gráf csúcsai
- E elemei a gráf élei
- $\varphi: E \to \{\{u,v\}: u,v \in V\}$ az illeszkedési leképezés

 $v \in \varphi(e)$ esetén e illeszkedik v-re, illetve v végpontja e-nek.

Definíció

Ha $|V| < \infty \land |E| < \infty$, akkor G véges gráf, egyébként végtelen gráf. Ha $E = \emptyset$, akkor G üres gráf.

Definíció

Ha $\varphi(e) = \{v\}$ akkor e hurokél. Ha $e \neq f \land \varphi(e) = \varphi(f)$, akkor e és f párhuzamos élek. Egy gráf egyszerű, ha nem tartalmaz sem párhuzamos, sem hurokélet.

Gráfok alapfogalmai 2

Definíció

- $e \neq f$ élek szomszédosak, ha $\varphi(e) \cap \varphi(f) \neq \emptyset$
- $u \neq v$ csúcsok szomszédosak, ha $\exists e \in E$, amire $v \in \varphi(e) \land u \in \varphi(e)$.
- $v \in V$ fokszáma a rá illeszkedő élek száma (hurkokat kétszer számolva), jele d(v)
- $v \in V$ izolált, ha d(v) = 0
- G gráf n-reguláris, ha $\forall v \in V : d(v) = n$

Állítás

Minden $G = (V, E, \varphi)$ gráfra

$$\sum_{v \in V} d(v) = 2|E|.$$

Példák gráfokra

Definíció

A $G=(V,E,\varphi)$ és $G'=(V',E',\varphi')$ gráfok izomorfak, ha $\exists f:V\mapsto V'$ bijekció, amire $\{u,v\}\in E\Leftrightarrow \{f(u),f(v)\}\in E',$ valamint szomszédos csúcspárokra ugyanannyi él illeszkedik.

Példák

- K_n: n csúcsú teljes gráf
- C_n: n csúcsú kör
- P_n : n hosszú út
- S_n : n élű csillag
- $G = ((A, B), E, \varphi)$ páros gráf

Részgráfok

Definíció

- A $G' = (V', E', \varphi')$ gráf a $G = (V, E, \varphi)$ gráfnak részgráfja, ha $V' \subset V, E' \subset E$ és $\varphi' \subset \varphi$, jele: $G' \leq G$
- G' feszítő részgráfja G-nek, ha $(G' \leq G) \land (V = V')$
- G' a G gráf V' által feszített részgráfja, ha E' pontosan azon E-beli élekből áll, melyeknek a végpontjai V'-beliek és E' az összes ilyen élt tartalmazza

Definíció

Ha $G' \leq G$, akkor a G'-nek a G-re vonatkozó komplementere a $(V, E \setminus E', \varphi|_{E \setminus E'})$ gráf.

