Math 126 Discussion Problems for 7/11/2018

- 1. Confirm that d'Alembert's formula for solutions to the wave equation solves the initial value problem by differentiating and plugging in initial values. (You may assume that ϕ and ψ have as many derivatives as you need. For fun, try to figure out the minimal number.)
- 2. In class earlier, we proved uniqueness of solutions to the Dirichlet problem for the heat equation on the interval $0 \le x \le l$. Show that there is at most one solution to the heat equation $u_t - ku_{xx} = f(x,t)$ with $u(x,0) = \phi(x)$ on $-\infty < x < \infty$ provided that $\lim_{|x| \to \infty} u(x,t) = 0$ for all $t \ge 0$. Which methods can you use on this problem? Maximum Principle, Energy Methods, both?
- 3. Use energy methods to prove uniqueness to the wave equation initial value problem $u_{tt} c^2 u_{xx} = f(x,t)$ with $u(x,0) = \phi(x)$ and $u_t(x,0) = \psi(x)$.
- 4. Let H(x) = 0 for x < 0 and H(x) = -1 for x > 0. Let f(x) be a continuously differentiable function that goes to 0 as $x \to \infty$.
- a) Show that $\int_{-\infty}^{\infty} H(x)f'(x)dx = f(0)$. b) Integrate by parts to show that $\int_{-\infty}^{\infty} -H'(x)f(x) = f(0)$. What function is -H'(x)? Does this even make sense?
- c) Okay, now that you've thought about part b), let $\delta(x)$ be a function which is ∞ at x=0 and 0 everywhere else whose integral is 1. Show that $\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0)$.
 - d) Show that for any x, $\int_{-\infty}^{\infty} f(x-y)\delta(y)dy = f(x)$.
- e) Solve the heat equation on the real line with initial conditions $u(x,0) = \delta(x)$. Explain why we say the heat equation has infinite speed of propogation.
- 5. (Exercise 3.4.5) Let f(x,t) be any function and let $u(x,t) = \frac{1}{2c} \int \int_{\Delta} f$, where Δ is the triangle of dependence. Verify directly by differentiation that $u_{tt} = c^2 u_{xx} + f$ and $u(x,0) = u_t(x,0) = 0$. Hint: Begin by writing the formula as the iterated integral

$$u(x,t) = \frac{1}{2c} \int_0^t \int_{x-ct+cs}^{x+ct-cs} f(y,s) dy ds$$

and differentiate with care using the rule in the Appendix.

- 6. Solve the eigenvalue problem $-X''(x) = \lambda X(x)$ with X'(0) = X'(l) = 0. Check all possible eigenvalues.
- 7. Let A be a 2x2 symmetric matrix.
- a) For $u, v \in \mathbb{R}^2$, show that $(Au) \cdot v = u \cdot (Av)$.
- b) Show that A has only real eigenvalues.
- c) Let f(x) and g(x) be functions satisfying symmetric boundary conditions on the interval [a,b]. Show that

$$\int_a^b f''(x)g(x)dx = \int_a^b f(x)g''(x)dx.$$

- d) Explain how the two scenarios are analogous.
- 8. Consider the initial-value problem for the wave equation on the interval $-\pi < x < \pi$ with homogeneous Dirichlet boundary conditions. That is, $u_{tt} = c^2 u_{xx}$ with $u(x,0) = \phi(x)$, $u_t(x,o) = \psi(x)$, and $u(-\pi,t) = 0$ $u(\pi, t) = 0.$
- a) Write down the formula for the solution in terms of series expansions we derived previously. The coefficients in your solution should reference the Fourier coefficients of ϕ and ψ .
- b) Now that you have the Fourier expansions for ϕ and ψ , plug their 2π -periodic extensions into d'Alembert's formula. What do you get? (Hint: You will want to use the sine and cosine addition formulas at some point. Also, integrating a Fourier series term-by-term is okay, even though differentiating

1

presents problems.)