

通用物体检测

内容回顾: 基于锚框的检测算法

基于锚框的检测算法是对预设锚框进行逐步矫正的思想

级联地重复这个过程

内容回顾:基于锚框的检测算法

内容回顾: 基于锚框的检测算法

■ 单阶段法:对预设的初始锚框进行1次矫正,得到结果

■ 多阶段法:对预设的初始锚框<mark>级联地</mark>进行≥2次类别和位置的矫正,得到结果

多阶段法

单阶段法

内容回顾:基于锚框的多阶段法Faster R-CNN

Faster R-CNN中RPN步骤:

- 整张图传入VGG16或ResNet提取特征
- 选择下采样倍数为16的特征层作为检测层 (2)
- 根据检测层预设一系列大小和比例的锚框 (9个)
- 对锚框进行二分类和回归得到若干候选区域 (4)

Faster R-CNN中Fast R-CNN步骤:

- 1 利用RolPooling在检测层的特征上提取每个候选区域对应的 特征
- 输入CNN/FC子网络来增强候选区域的特征 2
- 对候选区域进行多分类和回归得到检测结果

内容回顾:基于锚框的单阶段法SSD/RetinaNet

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

单阶段法的思想

利用Faster R-CNN中的RPN来做物体检测:

VGG16网络中的卷积层

额外添加的卷积层

- (1) 数据增广; (2) 多个检测层;
- (3) 正负样本平衡策略; (4) 其它

⇒ 内容回顾:基于锚框的检测算法的总结

基于锚框的检测算法		多阶段法	单阶段法
相同点	检测思想	铺设的锚框为检测起点,对锚框的类别和位置进行矫正	
	检测起点	铺设的锚框	
	检测结果	新正的锚框	
不同点	难点问题之一	小尺度物体	正负样本的平衡
	锚框矫正次数	≥2次	1次
	检测精度	较高	较低
	检测速度	较慢	较快

- 物体检测环境配置
- **通用物体检测概述**
- 基于锚框的检测算法
- **元需锚框的检测算法**
- 物体检测算法的对比总结
- 实用检测算法的研究思路

锚框涉及到的超参数

- 预设的锚框是检测结果的起点,锚框设计的好坏决定了检测算法的性能上限
- 锚框的设计有以下三个方面的超参数:
- ① 锚框的关联层:选择哪些特征层作为检测层,来关联锚框进行检测
- ② 锚框的大小:每个检测层上所关联锚框的尺度大小
- ③ 锚框的比例:每个检测层上所关联锚框的长宽比例

锚框设计

锚框涉及到的超参数

- 预设的锚框是检测结果的起点,锚框设计的好坏决定了检测算法的性能上限
- 锚框的设计有以下三个方面的超参数:
- ① 锚框的关联层:选择哪些特征层作为检测层,来关联锚框进行检测
- ② 锚框的大小:每个检测层上所关联锚框的尺度大小
- ③ 锚框的比例:每个检测层上所关联锚框的长宽比例

- 锚框设计好后,训练过程中需要对锚框进行匹配,划分成正负样本
- 锚框的匹配涉及两个超参数:
- ① 选取正样本的IoU阈值:大于等于该IoU阈值的锚框是正样本
- ② 选取负样本的IoU阈值:小于等于该IoU阈值的锚框是负样本

锚框设计

锚框匹配

锚框超参数带来的问题

- 锚框涉及到非常多的超参数,需要人为地根据经验来设置
- 针对不同的类别、场景、尺度和比例,都要人为地设计一套特定的锚框超参数
- 应用基于锚框的检测算法时,主要花时间的地方就是锚框超参数的调整
- 锚框超参数的设置需要大量的经验,新手不容易上手使用

- 提出全新的物体检测流程,不再依赖锚框来检测物体
- 消除锚框相关的超参数,从而解决锚框所带来的问题,
- 更少的超参数,让无需锚框的检测算法用起来更加方便
- 无需锚框的检测算法也能达到与基于锚框的检测算法相似的性能

关键点法

中心域法

⇒ 无需锚框的检测算法

关键点法

中心域法

无需锚框的关键点法CornerNet

- 利用**关键点检测**的思路来做物体检测
- 物体检测 = 物体定位 + 物体分类
- 物体定位:找到物体边界框的左上角点和右下角点,从而形成一个矩形框
- 物体分类:对角点进行分类,得到物体的类别

无需锚框的关键点法CornerNet: 算法框架

无需锚框的关键点法CornerNet: 输入图像

■ 输入图像的数据增广:随机颜色抖动、随机裁剪、随机扩充、随机水平翻转、

对图像进行PCA操作、不等比例地缩放至511x511

无需锚框的关键点法CornerNet: 基础网络

■ 输入图像的数据增广:随机颜色抖动、随机裁剪、随机扩充、随机水平翻转、

对图像进行PCA操作、不等比例地缩放至511x511

■ 基础网络: 2级漏斗网络 (Hourglass Network, 特征金字塔FPN的起源)

输出128x128大小的特征用于后续预测

Prediction Module

- 輸入图像的数据增广:随机颜色抖动、随机裁剪、随机扩充、随机水平翻转、
 - 对图像进行PCA操作、不等比例地缩放至511x511
- 基础网络: 2级漏斗网络 (Hourglass Network,特征金字塔FPN的起源) 输出128x128大小的特征用于后续预测
- 左上角点预测模块 + 右下角点预测模块

- 输入图像的数据增广:随机颜色抖动、随机裁剪、随机扩充、随机水平翻转、 对图像进行PCA操作、不等比例地缩放至511x511
- 基础网络: 2级漏斗网络 (Hourglass Network,特征金字塔FPN的起源) 输出128x128大小的特征用于后续预测
- 左上角点预测模块 + 右下角点预测模块
- 预测模块的整体结构

无需锚框的关键点法CornerNet: Corner Pooling

■ 问题: 左上角点和右下角点处于背景区域,并不在物体之上,缺少明显的特征信息来被使用

■ 方案:利用Corner Pooling操作,来增强左上角点和右下角点这两个角点的特征,利于后续任务的进行

无需锚框的关键点法CornerNet: Corner Pooling

无需锚框的关键点法CornerNet: Corner Pooling

$$t_{ij} = \begin{cases} \max(f_{t_{ij}}, t_{(i+1)j}) & \text{if } i < H \\ f_{t_{Hj}} & \text{otherwise} \end{cases}$$

$$l_{ij} = \begin{cases} \max(f_{l_{ij}}, l_{i(j+1)}) & \text{if } j < W \\ f_{l_{iW}} & \text{otherwise} \end{cases}$$

无需锚框的关键点法CornerNet: 预测模块

■ 正样本:角点对应的位置,y=1

■ 负样本:非角点对应的位置,y=0

■ 损失函数: focal loss

■ 问题:离正样本很近的那些负样本,容易产生歧义

■ 方案:降低那些歧义负样本的作用

$$y = e^{-\frac{a^2 + b^2}{2\sigma^2}}$$

$$L_{det} = \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \left\{ \frac{(1 - p_{cij})^{\alpha} \log(p_{cij})}{(1 - y_{cij})^{\beta} (p_{cij})^{\alpha} \log(1 - p_{cij})} \text{ if } y_{cij} = 1 \right.$$

无需锚框的关键点法CornerNet: 预测模块

■ 无需锚框的关键点法有一个难点:**点与点之间的配对问题**

■ 无需锚框的关键点法有一个难点:**点与点之间的配对问题**

对于第1个左上角点

■ 无需锚框的关键点法有一个难点:**点与点之间的配对问题**

对于第1个左上角点

对于第2个左上角点

 e_{t_k} 是左上角点的编码 e_{b_k} 是右下角点的编码

$$e_k = \frac{e_{t_k} + e_{b_k}}{2}$$

■ 属于一对角点的两个点, 距离近

$$L_{pull} = \frac{1}{N} \sum_{k=1}^{N} \left[(e_{t_k} - e_k)^2 + (e_{b_k} - e_k)^2 \right]$$

■ 不属于一对角点的两个点,距离远

$$L_{push} = \frac{1}{N(N-1)} \sum_{k=1}^{N} \sum_{\substack{j=1\\ i \neq k}}^{N} \max(0, \Delta - |e_k - e_j|)$$

无需锚框的关键点法CornerNet: 预测模块

downsampling

特征128x128

- 问题: 511x511图像上的点 (x, y) 映射到128x128特征上为 $\left(\left|\frac{x}{n}\right|,\left|\frac{y}{n}\right|\right)$, n=4是下采样倍数,即原图上16个点对应特征上的1个点,那么这1个点映射回原图时,要选择哪个点?
- 方案: 预测向下取整时的偏差,从特征映射回原图时加上这个偏差即可

$$o_k = \left(\frac{x_k}{n} - \left\lfloor \frac{x_k}{n} \right\rfloor, \frac{y_k}{n} - \left\lfloor \frac{y_k}{n} \right\rfloor\right) \qquad L_{off} = \frac{1}{N} \sum_{k=1}^{N} \text{SmoothL1Loss}(o_k, \hat{o}_k)$$

\$

无需锚框的关键点法CornerNet: 损失函数

$$L_{det} = \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \left\{ \frac{(1 - p_{cij})^{\alpha} \log (p_{cij})}{(1 - y_{cij})^{\beta} (p_{cij})^{\alpha} \log (1 - p_{cij})} \text{ otherwise} \right\}$$

$$L_{off} = \frac{1}{N} \sum_{k=1}^{N} \text{SmoothL1Loss}(o_k, \hat{o}_k)$$

$$L = L_{det} + \alpha L_{pull} + \beta L_{push} + \gamma L_{off}$$

$$L_{pull} = \frac{1}{N} \sum_{k=1}^{N} \left[(e_{t_k} - e_k)^2 + (e_{b_k} - e_k)^2 \right] \qquad L_{push} = \frac{1}{N(N-1)} \sum_{k=1}^{N} \sum_{\substack{j=1 \ i \neq k}}^{N} \max (0, \Delta - |e_k - e_j|)$$

⇒ 无需锚框的检测算法

关键点法

中心域法

无需锚框的中心域法FCOS

■ 基于锚框的单阶段法RetinaNet的检测流程

\$

无需锚框的中心域法FCOS

■ 基于锚框的单阶段法RetinaNet的检测流程

■ 无需锚框的中心域法FCOS的检测流程

ᢌ 无需锚框的中心域法FCOS

■ FCOS的原理:从铺设锚框,变成铺设锚点,来做物体检测

FCOS算法的整体框架

FCOS算法的整体框架:基础网络

■ 基础网络: ResNet或ResNeXt

FCOS算法的整体框架: 特征金字塔

■ 基础网络: ResNet或ResNeXt

■ 特征金字塔:輸出5层特征作为检测层 (P3、P4、P5、P6、P7)

\$

FCOS算法的整体框架: 检测头

■ 基础网络: ResNet或ResNeXt

■ 特征金字塔:輸出5层特征作为检测层 (P3、P4、P5、P6、P7)

■ 共享的检测头:5个检测层共享同一个检测子网络

4x4输入图像

4x4输入图像

\$

FCOS算法的原理和流程

4x4输入图像

■ 理论感受野:感受野的大小、感受野的中心

■ 理论感受野:感受野的大小、感受野的中心

■ 锚点的生成: 锚点 = 理论感受野的中心

■ 理论感受野:感受野的大小、感受野的中心

■ 锚点的生成: 锚点 = 理论感受野的中心

■ 锚点的划分:根据特定规则(后续介绍),把锚点分为正样本(+)和负样本(-)

■ 理论感受野:感受野的大小、感受野的中心

■ 锚点的生成:锚点 = 理论感受野的中心

■ 锚点的划分:根据特定规则(后续介绍),把锚点分为正样本(+)和负样本(-)

■ 锚点的分类:正样本和负样本 + 多分类Focal Loss损失函数

1 _{前景}	2 _{前景}	Focal Loss
3 _{前景}	4 _{前景}	1 00ai 2033

 负
 负

 负
 正

1 _l	2,	1 _t	2 _t	1 _r	2 _r	1 _b	2 _b
3 _l	4 _l	3 _t	4 _t	3,	4,	3,	4 _b

■ 理论感受野:感受野的大小、感受野的中心

■ 锚点的生成:锚点 = 理论感受野的中心

■ 锚点的划分:根据特定规则(后续介绍),把锚点分为正样本(+)和负样本(-)

■ 锚点的分类:正样本和负样本 + 多分类Focal Loss损失函数

■ 锚点的回归:正样本 + SmoothL1损失函数

1* _l	2 *	1*	2*	1*	2 *	1*	2*
3*	4,*	3 *	4 *	3 *	4,*	3*	4*
·	·	ľ	·		,	<i>b</i>	В

FCOS算法的原理和流程:回归目标值的计算

■ 锚点的回归目标值的计算

锚点的回归目标值

$$l^* = \frac{x_p - x_1^*}{S}, \quad t^* = \frac{y_c - y_1^*}{S}$$
 $r^* = \frac{x_2^* - x_p}{S}, \quad b^* = \frac{y_2^* - y_c}{S}$

S是锚点所关联的检测层的下采样倍数(stride), 用来进行归一化,使得不同尺度的物体,回归目 标值都在一定范围内

⇒ FCOS算法的原理和流程:正负样本的划分

FCOS算法的原理和流程:正负样本的划分

■ 空间上的限制:位于物体真实标注框里面的锚点是候选正样本

FCOS算法的原理和流程:正负样本的划分

空间上的限制

尺度上的限制

- 空间上的限制:位于物体真实标注框里面的锚点是候选正样本
- 尺度上的限制:每个检测层有一个尺度范围,锚点回归目标的最大值在这个范围内是最终的正样本
- *注:锚点回归目标的最大值: MAX (I*, t*, r*, b*),即锚点到边框四条边界的距离的最大值
- 红色锚点:关联与下采样率为8 (即stride=8) 的检测层,检测小尺度物体 (-∞ ~ 64)
- 绿色锚点: 关联与下采样率为16 (即stride=16) 的检测层, 检测中尺度物体 (64 ~ 256)
- 蓝色锚点:关联与下采样率为32 (即stride=32) 的检测层,检测大尺度物体 (256 ~ +∞)

FCOS算法的原理和流程: 检测头

■ 共享的检测头:5个检测层共享同一个检测子网络

无需锚框的中心域法FCOS: 分类分支

空间上的限制

尺度上的限制

P3: -∞ ~ 64

P4: 64 ~ 128

P5: 128 ~ 256

P6: 256 ~ 512

P7: 512 ~ +∞

无需锚框的中心域法FCOS: 回归分支

无需锚框的中心域法FCOS: 中心性分支

动机: 离物体中心点越近的锚点, 4个方向的回归目标值越一致, 回归难度较低, 因此回归效果越好

定义: 定义如下公式所示的中心性得分, 离物体中心点越近, 该得分越高, 最大为1, 最小为0

centerness* =
$$\sqrt{\frac{\min(l^*, r^*)}{\max(l^*, r^*)}} \times \frac{\min(t^*, b^*)}{\max(t^*, b^*)}$$

方案: 预测每个锚点的中心性得分,利用该得分对分类 得分进行加权处理,使得离物体中心点越近的锚 点,得分相对越高

无需锚框的中心域法FCOS: 中心性分支

⇒ 无需锚框的检测算法: 总结

无需锚框算法	关键点法	中心域法
算法动机	移除掉锚框,减少超参数,增加灵活性	
算法思想	先检测关键点,再进行配对来框定物体	铺设锚点替代锚框来检测物体
算法优点	全新的检测流程,为检测带来了新的思 路	减少超参数,简化计算
算法难点	不同关键点之间的配对问题	正负样本的划分问题
计算速度	流程比较复杂,速度相对较慢	流程比较简单,速度相对较快
检测精度	精度能达到甚至超过基于锚框的单阶段法	

- 物体检测环境配置
- **通用物体检测概述**
- 基于锚框的检测算法
- 无需锚框的检测算法
- 物体检测算法的对比总结
- **文用检测算法的研究思路**

物体检测算法的总结

参 物体检测算法的总结

基于锚框的多阶段法

基于锚框的多阶段法

基于锚框的多阶段法

参 物体检测算法的总结

无需锚框的中心域法

⇒ 课程作业

- 物体检测算法的对比报告
- 1. 通过对比基于锚框的多阶段法Faster R-CNN和基于锚框的单阶段法SSD,列举出多阶段法

Faster R-CNN性能好于单阶段法SSD的几点原因。

2. 通过对比基于锚框的单阶段法RetinaNet和无需锚框的中心域法FCOS,列举出两者之间的不同

之处。

感谢聆听 Thanks for Listening