Hash Tables

Implement the MAP ADT

Hash functions and hash tables

Idea and Examples

Hash function details

Address Generation (Hash code + Compression code)

Collision Resolution

Linear probing

Quadratic probing

Double hashing

Idea

Hash tables are data structures that implement a MAP ADT

Data is stored and retrieved by use of a function of the key.

It is stored, but not sorted!

Example

Student records are stored in an array using a 7 digit student i.d. the index.

If the i.d. were used unmodified, the array would have to have enough room for 10,000,000 student records.

Example

Instead, student i.d.'s are "hashed" to produce an integer between, say 1 and 10,000 which indexes into an array.

Problem

Since a possible 10,000,000 numbers are being compressed into just 10,000 how can we guarantee that no 2 i.d.'s end up stored in the same place?

Problem A

Address Generation

Construction of the function h(K_i)

- Simple to calculate
- Uniformly distribute the elements in the table

Problem B

Collision Resolution

What strategy to use if two keys map to same location h(Ki)

The general Idea:

```
\forall key K_i
h(K_i) = position of K_i in the table
h(K_i) = pos pos: integer
h(K_i) \neq h(K_g) i \neq g
```


-Example -

The keys all have different first letters.

CAT, ELEPHANT, FOX, SKUNK, ZEBRA

11 31 1011013.
CAT
ELEPHANT
FOX
i i
i i
SKUNK
i i
<u>:</u>
ZEBRA

Problem

If we want to insert a key that doesn't have a

different first letter

CAT
ELEPHANT
FOX
i i
<u>:</u>
SKUNK
:
:
ZEBRA

5

Problem

If we want to insert a key that doesn't have a

different first letter

We want to insert: CRICKET

h (CRICKET) = 2

index 2 is occupied

	(
	:
CAT	l
	3
ELEPHANT	4
FOX	į
	6
	7
	8
i i	
:	
SKUNK	
:	
:	
ZEBRA	

The Birthday Paradox

In 2020, I explained in class what the birthday paradox has to do with hashing.

To learn more, you can check some links available in Brightspace.

We did the following experiments in class:

Section C: 15 students were present in class and we found no birthday collisions – no two people with the same birthday (day/month); the probability of a collision for 15 people is:

Section D: 36 students were present in class and we found at least one collision – we found two people with the same birthday; the probability of a collision for 36 people is:

(we should have collected data on all 36 but I stopped at the first collision found to save time)

Definition:

load factor of an Hash Table

$$\alpha = \frac{n}{N} \qquad \qquad \# \text{ of elements}$$
of cells

Address Generation

Split problem into 2 sub-problems:

Hash code map:

 h_1 : keys \rightarrow integers

$$h(x) = h_2(h_1(x))$$

Compression map:

 h_2 : integers \rightarrow [0, TableSize - 1]

Hash Code Maps

Hash codes reinterpret the key as an integer. They

need to: 1. Give the same result for the same key

and should: 2. Provide good "spread"

Examples:

- Memory address:
 - We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
- Integer cast:
 - We reinterpret the bits of the key as an integer
- · Component sum:
 - We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)

Hash Code Maps (cont.)

Polynomial accumulation:

- We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

$$a_0 a_1 \dots a_{n-1}$$

- We evaluate the polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_{n-1} z^{n-1}$$

at a fixed value z, ignoring overflows

- Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words)

Compression Maps

Compression Maps:

- Take the output of the hash code and compress it into the desired range.
- If the result of the hash code was the same, the result of the compression map should be the same.
- •Compression maps should maximize "spread" so as to minimize collisions.

Compression Maps Examples

· Division:

- $-h_2(y) = y \mod N$
- The size Nof the hash table is usually chosen to be a prime (number theory).

Multiply, Add and Divide (MAD):

- $h_2(y) = (ay + b) \bmod N$
- a and b are nonnegative integers such that a mod $N \neq 0$
- Otherwise, every integer would map to the same value b

Address Generation Some examples ...

Address Generation (a)

00000000
00000001
00000011

$$N = size of the table$$

$$r = \lceil \log N \rceil$$

Example: N = 29

r=9: number of bits to represent a cell

For a given key, the Hash code must return a sequence of bit

The Compression Map must return 9 bits representing a cell

Address Generation (a)

N = size of the table $r = \lceil \log N \rceil$

Hash code

 $h_1(x)$: gives a binary string

Compression Map

- a) $h_2(h_1(x))$: = subset (of r bits) of $h_1(x)$
 - a.1) the r least significant bits
 - a.2) the r most significant bits
 - a.3) the central r bits
- → Simple to calculate
- → Doesn't guarantee a random distribution

-Example -

Coding of letters

BAT---

Size of the table: $N = 2^9$

a1) Example of address Generation: the r least significant bits

$$(r = 9)$$

All the animals of 4 (or less) characters hash to the same location.

a2) Example of address Generation: the r most significant bits

$$(r = 9)$$

h₂(0000110010000000010100100100000100000) = 000011001

All the animals that begin with the same first two letters hash to the same location.

Address Generation (b)

$h_1(x)$: gives a binary string

b) $h_2(h_1(x))$: sum of subset of bits of $h_1(x)$

- → Simple to calculate
- → More random than a)

-Example -

Coding of letters

H 001000

T 010010

ப 100000

 $N = 2^9$ r = 9

CHAT--

 $h_2(000011001000000010100100100000100000) =$

000011001 most significant 000101001 central 000100000 least significant

Address Generation (c)

 $h_1(x)$: gives a binary string

```
c) h_2(h_1(x)): subset (of r bits) of h_1(x)^2
```

- → Multiplication is involved
- → More random than a) and b)

Address Generation (d)

d)
$$h_2(h_1(x))$$
: = $h_1(x)$ MOD N

- → Division is involved!
- \rightarrow Very random (if N is odd)

Collision Resolution

Collision Resolution

Separate Chaining

Collision Resolution (examples)

1. Open Addressing

CAT
CRICKET
ELEPHANT
FOX
ZEBRA

→ COYOTE

h (COYOTE) = 2 OCCUPIED
 We consider 3 OCCUPIED
 We consider 4 OCCUPIED
 " 5 OCCUPIED
 " 6 FREE!

Linear Probing

Collision Resolution (1) Linear Probing

$$h(K_i), h(K_i) + 1, h(K_i) + 2, h(K_i) + 3$$

 $h_0(K_i), h_1(K_i), h_2(K_i), h_3(K_i)$

Let
$$h_0(K_i) = h(K_i)$$

$$h_{j}(K_{i}) = [h(K_{i}) + j] \mod N$$

Search with Linear Probing

- Consider a hash table
 A that uses linear
 probing
- findElement(k)
 - We start at cell h(k)
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - Ncells have been unsuccessfully probed

```
Algorithm findElement(k)
   i \leftarrow h(k)
   p \leftarrow 0
   repeat
      c \leftarrow A[i]
      if c = \emptyset
          return NO SUCH KEY
       else if c.key() = k
          return c.element()
      else
          i \leftarrow (i+1) \bmod N
          p \leftarrow p + 1
   until p = N
   return NO_SUCH_KEY
```

Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements
- removeElement(k)
 - We search for an item with key k
 - If such an item (*k*, *o*) is found, we replace it with the special item

 AVAILABLE and we return element *o*
 - Else, we return
 NO_SUCH_KEY

- insert Item(k, o)
 - We throw an exception if the table is full
 - We start at cell h(k)
 - We probe consecutive cells until one of the following occurs
 - A cell i is found that is either empty or stores AVAILABLE, or
 - N cells have been unsuccessfully probed
 - We store item (*k*, *o*) in cell *i*

Performances of Linear Probing

Search: Average number of probes $C(\alpha)$

Experimental results for a hash table with load factor α

α=n/N	C (α)
0.1 (10%)	1.06
0.5 (50%)	1.50
0.75 (75%)	2.50
0.9 (90%)	5.50

Example of Linear probing

$$N = 13$$

$$h_{j}(k_{i}) = [h(k_{i}) + j] \mod N$$

Insert keys 13,15,5,28,1,14,2 in this order

Problem

with Linear Probing: PRIMARY CLUSTERING

Here we are using as address generation the integer corresponding to the first letter

Idea:

Use a non-linear probe

Collision Resolution (2) Quadrating Probing

$$h(k_i)$$
, $h(k_i)+1$, $h(k_i)+4$, $h(k_i)+9$, ... $h_0(k_i)$ $h_1(k_i)$

$$h_{j}(k_{i}) = [h(k_{i}) + j^{2}] \mod N$$

N: prime

- → mod is hard to calculate
- → Visits only half of the table

but...

Example of Quadratic probing

$$N = 13$$

$$h_j(k_i) = [h(k_i) + j^2] \bmod N$$

Insert keys 13,15,5,28,1,14,2 in this order

$$h_0(14) = 14 \mod 13 = 1$$

Probe 1

Probe 2

Probe 5

Probe 10 --- FOUND

Delete 5:

Probe 5

Find 14:

Probe 1

Probe 2

Probe 5

???

Probe 10

Performances of Quadratic Probing

Experimental results for a hash table with load factor α

Search

α = n/N	C (α)
0.1 (10%)	1.05
0.5 (50%)	1.44
0.75 (75%)	1.99
0.9 (90%)	2.79

Problem

with non linear Probing: SECONDARY CLUSTERING

Two keys that hash to the same place follow the same collision path

Idea:

Double Hashing

Collision Resolution

Ex: Open Adressing: (3) Double Hashing

$$h(k_i), h(k_i)+d(k_i), h(k_i)+2d(k_i), h(k_i)+3d(k_i), ...$$
 h_0
 h_1
 h_2
 h_3
...

$$h_{\underline{j}}(k_i) = [h(k_i) + j \cdot d(k_i)] \mod N$$

OR

Ex:

$$h(k_i)$$
, $h(k_i)+d(k_i)$, $h(k_i)+4$ $d(k_i)$, $h(k_i)+9$ $d(k_i)$, ...

$$h_J(k_i) = [h(k_i) + j^2 \cdot d(k_i)] \mod N$$

Choice of primary hashing function h()
Choice of secondary hashing function d()

$$h_j(k_i) = [h(k_i) + j \cdot d(k_i)] \mod N$$

Example of Double Hashing

$$- N = 13$$

$$- h(k) = k \mod 13$$

$$- d(k) = 7 - k \mod 7$$

Insert keys 18, 41, 22,
 44, 59, 32, 31, 73, in this order

\boldsymbol{k}	h(k)	d(k)	Pro	bes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	9	0
73	8	4	8		

$$h_j(k_i) = [h(k_i) + j \cdot d(k_i)] \mod N$$

Example of Double Hashing

$$- N = 13$$

$$- h(k) = k \mod 13$$

$$- d(k) = 7 - k \mod 7$$

Insert keys 18, 41, 22,
 44, 59, 32, 31, 73, in this order

k	h(k)	d(k)	Pro	bes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	9	0
73	8	4	8		

Remove 22 (22 mod 13 = 9)

$$h(k) = k \mod 13$$

$$d(k) = 7 - k \mod 7$$

31	41		18	32	59	73	AVA	44	
0									

Search 31

Primary hash function: 31 mod 13 = 5 Occupied and different

Secondary hash function: $7 - 31 \mod 7 = 4$.

Probe cell 5+4=9: AVAILABLE

Probe cell (9+4) mod 13: FOUND

$$h(k) = k \mod 13$$

$$d(k) = 7 - k \mod 7$$

Another Example of Double Hashing

$$h(k_i) = k_i \mod N$$

 $h'(k_i) = k_i \operatorname{div} N$

N prime!

Performances of Double Hashing

Experimental results for a hash table with load factor α

Search

α = n/N	C (α)
0.1 (10%)	1.05
0.5 (50%)	1.38
0.75 (75%)	1.83
0.9 (90%)	2.55

Performance of Hashing: Summary

- In the worst case, searches, insertions and removals on a hash table take O(n) time
- The worst case occurs when all the keys inserted into the dictionary collide
- The load factor α = n/N
 affects the performance of a
 hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is approximately $1 / (1 \alpha)$

- The expected running time of all the dictionary ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables:
 - small databases
 - compilers
 - browser caches
 - P2P