

International Conference on Machine Learning, June 22nd, 2016

Extended and Unscented Kitchen Sinks

Edwin V. Bonilla, UNSW Daniel Steinberg, NICTA Alistair Reid, NICTA

Gaussian Process (GP) Models

- * Models of the form $y = g(f) + \varepsilon$, where f is drawn from a GP
 - Standard supervised learning
 - Inversion problems
- * Key Challenges
 - 1. Scalability on the number of observations
 - 2. Multi-task settings
 - 3. Nonlinear likelihoods

- Random feature approximations to the covariance function
 - Affine transformations of latent processes
- Local and adaptive linearizations

All within a single variational inference framework

Multi-output Setting

- * Supervised learning: $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N = \{\mathbf{X}, \mathbf{Y}\}$
 - x_n: d-dimensional, y_n: P-dimensional
- * Prior: Q latent functions

$$f_q \sim \mathcal{GP}(0, k_q(\cdot, \cdot))$$

$$\frac{Q}{Q}$$

$$p(\mathbf{F}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{f}_{\cdot q}; \mathbf{0}, \mathbf{K}_q)$$

* Likelihood: For a given nonlinear forward model **g**(.)

$$p(\mathbf{Y}|\mathbf{F}) = \prod_{n=1}^{N} p(\mathbf{y}_n|\mathbf{g}(\mathbf{f}_{n.}))$$

Multi-output Setting

- * Supervised learning: $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N = \{\mathbf{X}, \mathbf{Y}\}$
 - x_n: d-dimensional, y_n: P-dimensional
- * Prior: Q latent functions

$$f_q \sim \mathcal{GP}(0, k_q(\cdot, \cdot))$$
$$p(\mathbf{F}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{f}_{\cdot q}; \mathbf{0}, \mathbf{K}_q)$$

* Likelihood: For a given nonlinear forward model **g**(.)

$$p(\mathbf{Y}|\mathbf{F}) = \prod_{n=1}^{N} p(\mathbf{y}_n|\mathbf{g}(\mathbf{f}_{n.}))$$

* Goal: Probabilistic predictions and posterior estimation p(F | Y)

Multi-output Setting

- * Supervised learning: $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N = \{\mathbf{X}, \mathbf{Y}\}$ \mathbf{x}_n : d-dimensional, \mathbf{y}_n : P-dimensional
- * Prior: Q latent functions

$$f_q \sim \mathcal{GP}(0, k_q(\cdot, \cdot))$$

$$p(\mathbf{F}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{f}_{\cdot q}; \mathbf{0}, \mathbf{K}_q)$$

* Likelihood: For a given nonlinear forward model **g**(.)

$$p(\mathbf{Y}|\mathbf{F}) = \prod_{n=1}^{N} p(\mathbf{y}_n|\mathbf{g}(\mathbf{f}_{n.}))$$

Extended and Unscented GPs (Steinberg & Bonilla, NIPS 2014)

Variational inference based on linearization of $g(f_n)$

- Linearization is local and adaptive
- ☐ Multi-output?, Q=1 Random Kitchen Sinks
- \square Scalable inference?, $O(N^3)$ in time

* Goal: Probabilistic predictions and posterior estimation p(**F** | **Y**)

Random Kitchen Sinks (RKS)

(Rahimi and B. Recht, NIPS 2008)

* Fourier duality of the covariance function of a stationary process and its spectral density:

$$k(\boldsymbol{\tau}) = \int S(\mathbf{s})e^{2\pi i \mathbf{s}^T \boldsymbol{\tau}} d\mathbf{s} \longleftrightarrow S(\mathbf{s}) = \int k(\boldsymbol{\tau})e^{-2\pi i \mathbf{s}^T \boldsymbol{\tau}} d\boldsymbol{\tau}$$

* Approximate $k(\tau)$ by explicitly constructing "suitable" random features and (Monte Carlo) averaging over samples

$$k(\mathbf{x} - \mathbf{x}') = k(\boldsymbol{\tau}) \approx \frac{1}{D} \sum_{i=1}^{D} \phi_i(\mathbf{x}) \, \phi_i(\mathbf{x}')$$

Use RKS bases to approximate GP model

Example:

$$\mathbf{s}_i \sim \mathcal{N} ig(\mathbf{s}_i ig| \mathbf{0}, \sigma_\phi^2 \mathbf{I}_d ig)$$

$$[\phi_i(\mathbf{x}), \phi_{D+i}(\mathbf{x})] = \frac{1}{\sqrt{D}} [\cos(2\pi \mathbf{s}_i^T \mathbf{x}), \sin(2\pi \mathbf{s}_i^T \mathbf{x})]$$

Converges in expectation to the (isotropic) squared exponential kernel

Approximate Model

Using RKS bases, we approximate our GP model
 Over weights

$$p(\mathbf{W}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{w}_q | \mathbf{0}, \omega_q^2 \mathbf{I}_D)$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n|\mathbf{g}(\mathbf{W}\boldsymbol{\phi}_n), \boldsymbol{\Sigma})$$
 $p(\mathbf{Y}|\mathbf{W}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n|\mathbf{g}(\mathbf{W}\boldsymbol{\phi}_n), \boldsymbol{\Sigma})$
D-dimensional Noise feature vector variance

• Effectively, $\mathbf{f}_{q} \simeq \mathbf{\Phi} \mathbf{w}_{q}$, where $\mathbf{\Phi}$ is the NxD feature matrix

* Approximate inference due to nonlinear **g**(.)

$$ilde{q}_{\mathbf{W}} \stackrel{\mathrm{def}}{=} \prod_{q=1}^{Q} \mathcal{N}(\mathbf{w}_{q} | \mathbf{m}_{q}, \mathbf{C}_{q})^{\mathrm{Variational}}_{\mathrm{posterior}}$$

* The evidence lower bound (ELBO) involves:

$$\left\langle \left(\mathbf{y}_n - \mathbf{g}(\mathbf{W} oldsymbol{\phi}_n)
ight)^{\!\! o} oldsymbol{\Sigma}^{\! ext{-}1} \left(\mathbf{y}_n - \mathbf{g}(\mathbf{W} oldsymbol{\phi}_n)
ight)
ight
angle_{\!\! ilde{q}_{\mathbf{W}}}$$

For which we make:

$$\mathbf{g}(\mathbf{W}\boldsymbol{\phi}_n) \approx \mathbf{A}_n \mathbf{W} \boldsymbol{\phi}_n + \mathbf{b}_n$$

- Unlike original EGP/UGP, inference scales up to large N
 - Objective amenable to parallel / stochastic optimization

How to linearize (estimate A_n , b_n)? —> Extended vs Unscented

Extended or Unscented?

Extended Kitchen Sinks (EKS)

- * First-order Taylor expansion around the posterior mean $\bar{\mathbf{f}}_n = \mathbf{M} \boldsymbol{\phi}_n$
 - Requires Jacobian estimation

Unscented Kitchen Sinks (UKS)

- * Fits a linear model using deterministic samples given by the Unscented Transform
 - Exploits structure of the posterior
 - 'black-box' method
- * Both methods are *local* (datapoint-dependent) and *adaptive* (updated according to the current posterior estimate)

Experiments — Classification Odd Digits vs Even Digits on MNIST

	NLP		Error Rate	
	D=1000	D=2000	D=1000	D=2000
EKS	0.129	0.088	0.043	0.026
UKS	0.129	0.088	0.043	0.026
HMG [3]	0.069		0.022	
DB [4]	0.068		0.022	

Similar performance to recently developed inducing-point approximations

Experiments – Seismic Inversion

(Otway Basin, Australia)

Conclusion & Discussion

- * EKS and UKS: scalable methods for approximate inference in GP models with nonlinear likelihoods
 - UKS is a 'black-box' method
- * By using RKS-based approximations we can achieve similar performance to EGP and UGP but at a significantly lower computational cost
- * Algorithms useful for inversion problems as fast and scalable alternatives to MCMC
 - Approximate models no longer GPs so can further investigate sampling approaches
 - More complex posteriors and stochastic optimizers

References

- * [1] D. M. Steinberg and E. V. Bonilla, "Extended and unscented Gaussian processes", in NIPS, 2014.
- * [2] A. Rahimi and B. Recht, "Random features for large-scale kernel machines", in NIPS, 2008.
- * [3] J. Hensman, A. Matthews, and Z. Ghahramani, "Scalable variational Gaussian process classification", in AISTATS, 2015.
- * [4] A. Dezfouli and E. V. Bonilla, "Scalable inference for Gaussian process models with black-box likelihoods", in NIPS, 2015.