

『실무로 통하는 인과추론 with 파이썬』 특강

던전앤파이터 직업 리뉴얼로 알아보는 가상의 통제집단

Contents

- 0. 던전앤파이터 캐릭터 리뉴얼
- 1. 가상의 통제집단 (Synthetic Control)
- 2. 데이터 소개
- 3. 캐릭터 리뉴얼에 따른 인과효과 분석

0. 던전앤파이터 캐릭터 리뉴얼

(1) 던전앤파이터의 캐릭터 리뉴얼 업데이트

- 던전앤파이터 2022년 20주차에 직업 리뉴얼 패치 ("소환사", "쿠노이치", "스트리트파이터(여)")
- **캐릭터 리뉴얼 패치 이후 리뉴얼 직업의 신규 캐릭터 생성에 실제로 효과있었을까?** (우리가 알 수 있는 정보는 시간에 따른 직업별 캐릭터 생성량)

0. 던전앤파이터 캐릭터 리뉴얼

(2) 캐릭터 리뉴얼 업데이트 효과 분석

리뉴얼 직업 리뉴얼 되지 않은 직업

- 리뉴얼 직업: 업데이트가 있었던 21주차에 크게 상승하는 패턴을 보입니다.
- 리뉴얼되지 않은 직업: 로그의 경우 매우 적은 상승량을 보여주지만 크루세이더의 경우 리뉴얼 직업 만큼의 상승률을 보임
- → 단순 차이 비교만으로는 리뉴얼 직업의 캐릭터 생성량이 크게 많아졌다고 보기 어려움

0. 던전앤파이터 캐릭터 리뉴얼

<u>(3) 가상의 통제집단</u>

- 우리가 알고 있는 정보는 시간에 따른 각 직업의 캐릭터 생성량 밖에 없음.
 또는, 그 이외에 유의미한 정보를 측정하기 어려움
- 캐릭터 리뉴얼의 효과 유무 뿐만 아니라, 그 효과가 어느 정도인지 추정하고자 함
- → 이러한 상황에서 가상의 통제집단을 이용하면 캐릭터 리뉴얼에 따른 인과효과를 추론할 수 있음

가상의 통제집단을 이용한 인과효과 추정

- 통제 그룹의 가중조합을 이용해 처치 그룹의 counterfactual 을 추정
- 실제 관측된 값과 counterfactual의 비교를 통해 그 인과 효과를 추정할 수 있음

1. 가상의 통제집단 (Synthetic Control)

(1) 가상의 통제집단 추정

- 시간에 따른 대조군의 정보를 이용해 실험군을 추정 하는 모델을 이용해 counterfactual 생성
- 모델 피팅에 이용하는 데이터는 처치 이전의 데이터만을 이용함

Textbook 9.3

1. 가상의 통제집단 (Synthetic Control)

(1) 가상의 통제집단 추정

모델 피팅

• 아래의 식을 최적화 하는 W 를 추론

$$||Y-X_1W|| = \left(\sum_{t=1}^T \left(Y_t - \sum_{j=1}^J w_j X_{tj}\right)^2\right)^{1/2}$$
 subject to $\sum_{j=1}^J w_j \leq 1, w_i \geq 0 \ orall i$

- 이때 위험한 외삽을 피하기 위해 내삽이 되도록 w_j 의 값을 제한하여 줌
- 내삽이기 때문에 표준화가 필요함

1. 가상의 통제집단 (Synthetic Control)

(2) 가상의 통제집단 추정이 가능한 이유 (개인적인 의견)

알려진 내용이 아닌 **개인적인 의견**임!

- 대조군과 실험군 사이에 공통 원인이 되는 어떤 특성 (Confounder) 들이 있어 대조군과 실험군 사이에 상관관계가 존재함
- 대조군과 실험군 인과 관계의 매개가 되는 어떤 특성 (Mediator) 들 이 있어 대조군과 실험군 사이에 상관관계가 존재함 (직접적인 인과관계도 포함)
- → 위 상관관계로 인해 대조군을 이용한 실험군의 추론이 가능함
- 시간에 대한 정보는 어디있을까? 시간에 따른 Confounder나 Mediator 의 값을 대조군에서 포함하고 있음
- 대조군과 실험군 사이에 공통의 결과가 되는 특성 (Collider) 이 있더라도 상관관계가 존재하지 않음
- Confounder 나 Mediator에 대한 정보를 알 수 있는 경우에는?
 가상의 통제집단 방법을 굳이 이용할 필요가 없다.
 단, 처치와 무관하여야 한다.

2. 데이터 소개

<u>(1) 데이터 추출 과정</u>

캐릭터명, 서버명으로 검색

neople DEVELOPERS

캐릭터정보 수집

- 캐릭터명
- 서버명

타임라인 데이터 수집 • 캐릭터 생성일

2. 데이터 소개

<u>(2) 데이터 전처리</u>

- 수집된 데이터에서 직업별, 생성주차 별 캐릭터 생성빈도수로 전처리
- 패치노트가 업로드되는 수요일을 기준으로 주차를 분류
- 15개의 직업군 (스트리트파이터(여) 포함)의 경우 생성일이 수집되지 않아 제외
- 데이터 예시

	거너 (남)_런 처	거너 (남)_레 인저	거너 (남)_메 카닉	거너(남)_ 스핏파이 어	거너 (남)_어 썰트	거너 (여)_런 처	거너 (여 <u>)</u> -레 인저	거너 (여)_메 카닉	거너(여)_ 스핏파이 어	격투가 (남)_그래 플러
create_date										
12	83	186	24	124	334	72	165	79	100	28
13	139	196	41	176	434	116	298	185	242	31
14	67	116	26	97	184	77	182	76	113	17
15	47	83	17	56	113	36	107	47	72	10
16	30	48	12	38	75	19	99	40	45	6
17	25	36	10	26	48	24	48	22	43	5

(1) 캐릭터 생성량

$$Y_{th}(T) = C_{th} + R_{th} \cdot T + \epsilon$$

- Y_th: t시점의 직업 h 의 신규 생성량
- C_th: Treatment와 무관한 t시점의 직업 h 직업 생성량 효과 (가상의 통제집단 방법으로 추정된 실험군의 캐릭터 생성량)
- R_th: t시점의 직업 h 의 신규 생성량에 대한 Treatment의 효과
- T: 리뉴얼 여부 (1 or 0)
- 즉, 리뉴얼 직업의 실제 생성량은 Y_th(1) 이며 Synthetic control 결과는 Y_th(0) 의 추정치입니다.

(2) 캐릭터 생성량의 counterfactual 추정

- 참고: Amjad, Muhammad, Devavrat Shah, and Dennis Shen. "Robust synthetic control." Journal of Machine Learning Research 19.22 (2018): 1-51.
- 20주차 부터 22주차에서 얻어진 Counterfactual 값과 실제 생성량을 비교하여보면 직업 리뉴얼을 통해 소환사의 경우 244개, 쿠노이치의 경우 54개의 신규 캐릭터가 생성되었다고 추정할 수 있습니다.
- Counterfactual 값에도 비약적인 캐릭터 생성량의 상승이 있는데 이는 편의성 패치, 밸런스 패치 등의 효과가 반영된 것으로 보입니다.
- 이 효과는 정말로 유효한 것일까요? 이를 검정해볼 수 없을까요?

(3) Placebo Test 를 이용한 유효성 검정

- › 20 주차 이전 (Treatment 이전)에서 큰 MSE값 을 보여준 직업은 Synthetic 효과를 잘 추정하지 못하기 때문에 분석에서 제외되었습니다.
- Treatment 이후 모두 리뉴얼된 직업이 가장 높은 수치를 보여주었고, 이는 실제 직업 리뉴얼이 신규캐릭터 생성에 효과가 있음을 의미합니다. (실제값과 가상의 통제집단 방법을 이용해 추정한 값의 차이)

(3) Placebo Test 를 이용한 유효성 검정

• 위 결과를 이용하여 아래와 같은 Empirical p-value 값을 얻을 수 있으며, 이를 통해 이 효과가 유의미한지 검정해 볼 수 있습니다.

$$p ext{-}value = rac{1}{N}\sum_{h\in \Xi} \sum_{\Xi extstyle \Xi} I(R_{20:22,h'} \leq R_{20:22,h})$$

- 여기서 h' 은 리뉴얼 직업, $R_{20:22,h} = \sum_{t=20}^{22} R_{th}$
- 이를 이용해 우리는 아래와 같은 검정을 시도해 볼 수 있는데요.

$$H_0:$$
 신규 캐릭터 생성 효과 $=0$ $v.s.$ $H_1:$ 신규 캐릭터 생성 효과 >0

- 유의 수준을 a라고 둔다면,
 - 두 개의 p-value를 얻을 수 있는 다중 검정이기 때문에 Bonferroni correction을 이용하면 두 p-value 값이 모두 a /2 보다 낮은 경우 해당 귀무가설을 기각하게 됩니다.
 - 일반적으로 많이 이용되는 a 값인 0.05 에서는 아주 근소한 차이로 H_0 를 기각하기 어렵지만, p-value의 가장 낮은 값이 1/35(0.029) 이기 때문에 유의미한 결과로 볼 수 있습니다.