#### Sistem Digital (SisDig) CII113



Disusun oleh: Tim dosen SisDig

Prodi S1 Teknologi Informasi Fakultas Informatika Universitas Telkom

# Semester Learning Plan



|             | Rencana Studi                                                                                                              |    |                |    |             |   | Rincian Nilai |                         |     |  |          |          |   |
|-------------|----------------------------------------------------------------------------------------------------------------------------|----|----------------|----|-------------|---|---------------|-------------------------|-----|--|----------|----------|---|
| Perte-      |                                                                                                                            |    | Bobot Tiap CLO |    | Tugas (50%) |   |               | A s s e s s m e n (50%) |     |  |          |          |   |
| muan<br>Ke- | Materi                                                                                                                     |    | (%)            |    | CLO CLO     |   | CLO<br>3      | CLO<br>4                | CLO |  | CLO<br>3 | CLO<br>4 |   |
| Ke-         |                                                                                                                            | 1  | 2              | 3  | 4           | 1 | 2             |                         | 4   |  | 2        | 3        | 4 |
| 1           | >>Perkenalan >>Konversi antar basis bilangan (CLO 1) >>1's complement (CLO 1)                                              |    |                |    |             |   |               |                         |     |  |          |          |   |
| 2           | >>2's complement (CLO 1) >>Floating point (CLO 1) >>Excess-n (CLO 1) >>IEEE754 (CLO 1) >>Big endian, little endian (CLO 1) | 24 |                | 12 |             |   |               | 12                      |     |  |          |          |   |
| 3           | >>Tanya jawab materi asesmen 1 >>Asesmen 1 = 12%; (CLO 1)                                                                  |    |                |    |             |   |               |                         |     |  |          |          |   |
| 4           | >>Aljabar Boolean (CLO 2)                                                                                                  |    |                |    |             |   |               |                         |     |  |          |          |   |
| 5           | >Penyederhanaan dengan K-Map (CLO 2)                                                                                       |    |                |    |             |   |               |                         |     |  |          |          |   |
| 6           | >>Penyederhanaan dengan MEV (CLO 2)                                                                                        | 26 |                |    | 13          |   |               |                         | 13  |  |          |          |   |
| 7           | >>Penyederhanaan dengan MEV (CLO 2) (lanjutan)                                                                             |    |                |    |             |   |               |                         |     |  |          |          |   |
|             | Assessmen 2 (UTS) = 13%                                                                                                    |    |                |    |             |   |               |                         |     |  |          |          |   |

# Peta Karnaugh (K-Map) (1)



a). K'Map 2 variabel

| $x^{\frac{1}{2}}$ | 0    | 1   |
|-------------------|------|-----|
| 0                 | x'y' | x'y |
| 1                 | xy'  | xy  |

| $x^{\frac{1}{2}}$ | 9 0   | 1     |
|-------------------|-------|-------|
| 0                 | $m_0$ | $m_1$ |
| 1                 | $m_2$ | $m_3$ |

b) K'Map 3 variabel

| x y | z 00   | 01    | 11   | 10    |
|-----|--------|-------|------|-------|
| 0   | x'y'z' | x'y'z | x'yz | x'yz' |
| 1   | xy'z'  | xy'z  | xyz  | xyz'  |
|     |        |       |      |       |

| x | V2 | z 00  | 01    | 11    | 10    |
|---|----|-------|-------|-------|-------|
|   | 0  | $m_0$ | $m_1$ | $m_3$ | $m_2$ |
|   | 1  | $m_4$ | $m_5$ | $m_7$ | $m_6$ |
|   |    |       |       |       |       |

# Peta Karnaugh (K-Map) (2)



c) K'Map 4 variabel

| wx yz | 00       | 01      | 11     | 10      |
|-------|----------|---------|--------|---------|
| 00    | w'x'y'z' | w'x'y'z | w'x'yz | w'x'yz' |
| 01    | w'xy'z'  | w'xy'z  | w'xyz  | w'xyz'  |
| 11    | Wxy'z'   | wxy'z   | wxyz   | wxyz'   |
| 10    | wx'y'z'  | wx'y'z  | wx'yz  | wx'yz'  |

| \VZ   |                   |                            | · · · · · · · · · · · · · · · · · · · |                  |
|-------|-------------------|----------------------------|---------------------------------------|------------------|
| wx yz | 00                | 01                         | 11                                    | 10               |
| 00    | $\mathbf{m}_0$    | $m_1$                      | $m_3$                                 | $m_2$            |
| 01    | $\mathrm{m_{_4}}$ | $m_{\scriptscriptstyle 5}$ | $m_7$                                 | $\mathbf{m}_{6}$ |
| 11    | m <sub>12</sub>   | m <sub>13</sub>            | ${ m m}_{15}$                         | $m_{14}$         |
| 10    | $ m m_8$          | $m_9$                      | $m_{11}$                              | $m_{10}$         |

#### 2 Variabel (1)



Sederhanakanlah persamaan: (lihat soal no.1 penyederhanaan dengan aljabar)

$$f(x,y) = x'y + xy' + xy$$
  
=  $m_1 + m_2 + m_3$ 

#### Jawab:

Sesuai dengan bentuk minterm, maka 3 kotak dalam K-Map 2 dimensi, diisi dengan 1:



# Penyederhanaan Dengan K-Map 2 Variabel (2)

- n = 0, 1, 2, 3, dst



- Selanjutnya kelompokkan semua 1 yang ada dengan membuat kumpulan kotak atau persegi panjang dengan jumlah sel bujursangkar kecil sebanyak 2<sup>n</sup>
- Buat kelompok yang sebesar-besarnya



#### 2 Variabel (3)



- Cara menentukan bentuk sederhana dari hasil pengelompokan adalah:
  - Carilah variabel yang memiliki nilai yang sama (tidak) berubah) dalam kelompok tersebut, sebagai contoh:
    - Pada kelompok A adalah variabel y dengan nilai 1
    - Pada kelompok B adalah variabel x dengan nilai 1
  - Tentukan bentuk hasil pengelompokan Kelompok A adalah y, dan kelompok B adalah x, sehingga hasil bentuk sederhana dari contoh di atas:

$$f(x,y) = x'y + xy' + xy = kelompok A + kelompok B$$
  
= y + x

#### 3 Variabel (1)



1. Sederhanakanlah persamaan berikut: (lihat soal no.2 penyederhanaan dengan aljabar)

$$f(x,y,z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz'$$
  
Jawab:



#### 3 Variabel (2)



2. Sederhanakanlah fungsi Boolean berikut dengan menggunakan K'Map:

$$f(x,y,z) = xyz + xyz' + xy'z + x'yz + x'yz' + xy'z' + x'y'z'$$

Jawab:



# Penyederhanaan Dengan K-Map 3 Variabel (3)



3. Sederhanakanlah fungsi Boolean:

$$f(w,x,y) = \sum m(0, 1, 3, 5, 7)$$

Jawab:





# 4 Variabel (1)

1. Sederhanakanlah fungsi Boolean berikut:  $f(w,x,y,z) = \sum m(0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14)$  Jawab:





#### 4 Variabel (2)

#### 2. Sederhanakanlah fungsi Boolean:

$$f(w,x,y,z) = wxy'z' + wxy'z + wxyz + wx'yz + w'x'yz + w'xyz' + w'xyz' + w'xy'z' + w'xy'z$$

Jawab: (alternatif 1)



#### 4 Variabel (3)





#### 4 Variabel (4)



Jawab: (alternatif 3)



#### 4 Variabel (5)











Misal isinya



tergantung kebutuhan

SOP berdasarkan bit-bit 1

$$\Rightarrow$$
 f(A,B,C,D) = C + B'D' + A'BD

#### 4 Variabel (6)





# Penyederhanaan Dengan K-Map 4 Variabel (7)



 $f(A,B,C,D) = \sum m(0,2,4,5,7,10,11,14,15)$ 



#### 4 Variabel (8)



 $f(A,B,C,D) = \sum m(0,2,4,5,7,10,11,14,15)$ 



# Don't Care (1)



- Nilai peubah don't care tidak diperhitungkan oleh fungsinya
- Nilai 1 atau 0 dari peubah don't care tidak berpengaruh pada hasil fungsi
- Semua nilai don't care disimbolkan dengan X, d, atau φ

#### Bentuk SOP:

- Nilai X yang masuk ke dalam kelompok akan bernilai 1
- Nilai X yang tidak masuk ke dalam kelompok akan bernilai 0

#### **Bentuk POS:**

- Nilai X yang masuk ke dalam kelompok akan bernilai 0
- Nilai X yang tidak masuk ke dalam kelompok akan bernilai 1

# Don't Care (2)



#### Contoh 1:

$$f(w,x,y,z) = \Sigma m(1,3,7,11,15)$$
  
don't care =  $d(w,x,y,z) = \Sigma m(0,2,5)$ 

#### **Bentuk SOP:**



Hasil penyederhanaan:

$$f(w,x,y,z) = yz + w'z$$

# Don't Care (3)



#### Contoh 1:

$$f(w,x,y,z) = \Sigma m(1,3,7,11,15)$$
  
don't care =  $d(w,x,y,z) = \Sigma m(0,2,5)$ 

#### **Bentuk POS:**



# Don't Care (4)

#### Contoh 2:



|     |        |       |        | _   |                |  |
|-----|--------|-------|--------|-----|----------------|--|
|     | 10     | х     |        | X   | x              |  |
| 'd  | ,      | b     | d      |     | $^{\prime}$ cd |  |
| f(2 | a,b,c, | ,d) = | = c'd' | +bd |                |  |
|     |        |       |        |     |                |  |

| a | b | С | d | f(a,b,c,d) |
|---|---|---|---|------------|
| 0 | 0 | 0 | 0 | 1          |
| 0 | 0 | 0 | 1 | 0          |
| 0 | 0 | 1 | 0 | 0          |
| 0 | 0 | 1 | 1 | 1          |
| 0 | 1 | 0 | 0 | 1          |
| 0 | 1 | 0 | 1 | 1          |
| 0 | 1 | 1 | 0 | 0          |
| 0 | 1 | 1 | 1 | 1          |
| 1 | 0 | 0 | 0 | X          |
| 1 | 0 | 0 | 1 | X          |
| 1 | 0 | 1 | 0 | X          |
| 1 | 0 | 1 | 1 | X          |
| 1 | 1 | 0 | 0 | X          |
| 1 | 1 | 0 | 1 | X          |
| 1 | 1 | 1 | 0 | X          |
| 1 | 1 | 1 | 1 | X          |

# Don't Care (5)



POS berdasarkan bit-bit 0:



x = don't care, bisa 0 bisa 1, tergantung kebutuhan

$$f(A,B,C,D) = (A'+B')(B'+C+D)(B+C+D')$$

# Penyederhanaan Dengan K-Map 5 Variabel (1)





$$f(A,B,C,D,E) = A'B'D + AB'D + A'BD'E + ABD'E + ABC'D'$$
$$= B'D + BD'E + ABC'D'$$

#### 5 Variabel (2)



Dengan model **stack**:



#### **6 Variabel**





#### Latihan



#### Sederhanakan fungsi berikut ini dengan K-Map!

- $y(A,B,C,D) = \prod M(0,1,6,8,9,11,14,15)$
- b)  $T(A,B,C,D) = \sum m(3,4,6,7,11,14) + \Phi(0,2,15)$ 
  - $\Phi$  = don't care
- c)  $f(A,B,C,D,E) = \sum m(0,1,2,3,8,9,10,11,14,20,21,22,25)$
- d)  $f(A,B,C,D,E,F) = \sum m(0,2,4,6,8,10,12,14,16,20,23,32,$ 34,36,38,40,42,44,45,46,49,51,57, 59,60,61,62,63)

## **Pustaka**



Materi disusun dari berbagai sumber.