NASA TECHNICAL Memorandum

NASA TM X-52161

ASA TM X-52161

	. = = 3
ACCESSION LA TOPO	4 (THRU)
37	· /
(PAGES)	(CODE)
	<i>C/</i>
(MASA CR OR THE OR AD NUMBER)	(CATEGORY)

COMPUTER PROGRAM FOR CALCULATING FLOW DISTRIBUTION IN A RADIAL-INFLOW TURBINE

by Theodore Katsanis Lewis Research Center Cleveland, Ohio

GPO PRICE	\$
CFSTI PRICE(S)	\$
Hard copy (H	c) <u>3.00</u>
	50
Micionone	

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. - 1965

COMPUTER PROGRAM FOR CALCULATING FLOW

DISTRIBUTION IN A RADIAL-INFLOW TURBINE

by Theodore Katsanis

Lewis Research Center Cleveland, Ohio

BLANK PAGE

COMPUTER PROGRAM FOR CALCULATING FLOW DISTRIBUTION IN A RADIAL-INFLOW TURBINE

by Theodore Katsanis

SUMMARY

A FORTRAN computer program for flow analysis of a radial inflow gas turbine is given. The program obtains a meridional solution on the mean surface between the blades, followed by solutions on hub, mean, and shroud blade-to-blade surfaces, in a single computer run. Suggestions for modifying the program for use with other types of turbomachines are given. Techniques for overcoming convergence problems are discussed.

INTRODUCTION

A method of flow analysis for any turbomachine is summarized in reference 1, with the details being presented in references 2 and 3. Reference 2 gives the method applied to the meridional plane. Reference 3 gives the method for obtaining a blade-to-blade solution, using information obtained from the meridional plane solution. The FORTRAN program for each solution as applied to a radial inflow gas turbine is given in the appropriate reference.

As stated in reference 3, a FORTRAN program has been written which combines both programs. The combined program obtains first the meridional solution, followed by three blade-to-blade solutions (hub, mean, and shroud), in a single computer run. Either the meridional solution or blade-to-blade solution may be obtained separately.

This report presents this FORTRAN program, with sample output for the example rotor of reference 1. Also suggestions are given for modifying the program for other types of turbomachines, and for overcoming convergence problems which may be encountered.

PROGRAM VARIABLES

The variable names used in the combined program are the same as listed in reference 2 and 3 with the addition of the following variables.

- THH(I) θ coordinate of mean blade surface at Ith quasi-orthogonal along hub
- THM(I) θ coordinate of mean blade surface at Ith quasi-orthogonal along mean streamline

THS(I) 6 coordinate of mean blade surface at I th quesi-orthogonal slong shroud PION x/N TPION 2π/N THHI(I) 6 coordinate of suction surface of complete blade at I th quasi-orthogonal slong hub THMI(I) 6 coordinate of suction surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSI(I) 6 coordinate of suction surface of complete blade at I th quasi-orthogonal along shroud THHKH(I) 6 coordinate of pressure surface of splitter blade at I th quasi-orthogonal slong hub THMKH(I) 6 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKN:I) 7 Coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) 7 Coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 8 Coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 9 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface		
THENCE THEREFUL GOORDINATE OF SUCTION SURFACE OF COMPLETE Blade at I th quasi-orthogonal along mean blade-to-blade at I th quasi-orthogonal along shroud THENCE GOORDINATE OF PRESSURE SURFACE OF SPLITTER Blade at I th quasi-orthogonal along shroud THENCE I) GOORDINATE OF PRESSURE SURFACE OF SPLITTER Blade at I th quasi-orthogonal along shroud THENCE I) GOORDINATE OF PRESSURE SURFACE OF SPLITTER Blade at I th quasi-orthogonal along mean blade-to-blade stream surface THENCE I) GOORDINATE OF PRESSURE SURFACE OF SPLITTER Blade at I th quasi-orthogonal along mean blade-to-blade at I th quasi-orthogonal along shroud THENCE I) GOORDINATE OF SUCTION SURFACE OF SPLITTER Blade at I th quasi-orthogonal along hub THENCE I) GOORDINATE OF SUCTION SURFACE OF SPLITTER Blade at I th quasi-orthogonal along mean blade-to-blade stream surface THENCE I) GOORDINATE OF SUCTION SURFACE OF SPLITTER Blade at I th quasi-orthogonal along shroud THENCE I) GOORDINATE OF SUCTION SURFACE OF SPLITTER Blade at I th quasi-orthogonal along shroud THENCE I) GOORDINATE OF PRESSURE SURFACE OF COMPLETE Blade at I th quasi-orthogonal along hub THENCE II GOORDINATE OF PRESSURE SURFACE OF COMPLETE Blade at I th quasi-orthogonal along mean blade-to-blade stream surface THENCE II GOORDINATE OF PRESSURE SURFACE OF COMPLETE Blade at I th quasi-orthogonal along mean blade-to-blade stream surface THENCE II GOORDINATE OF PRESSURE SURFACE OF COMPLETE BLADE AT I th quasi-orthogonal along mean blade-to-blade stream surface	THS(·I)	
THHI(I) coordinate of suction surface of complete blade at I th quasi-orthogonal along hub THMI(I) coordinate of suction surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface of the surface of complete blade at I th quasi-orthogonal along shroud THEKH(I) coordinate of pressure surface of splitter blade at I th quasi-orthogonal along hub THMKH(I) coordinate of pressure surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface of the surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) coordinate of suction surface of splitter blade at I th quasi-orthogonal along hub THMKP(I) coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	PION	π/N
THMI(I) 6 coordinate of suction surface of complete blade at I the quasi-orthogonal along mean blade-to-blade stream surface of the surface of complete blade at I the quasi-orthogonal along mean blade-to-blade at I the quasi-orthogonal along shroud THMKH(I) 6 coordinate of pressure surface of splitter blade at I the quasi-orthogonal along bub THMKH(I) 6 coordinate of pressure surface of splitter blade at I the quasi-orthogonal along mean blade-to-blade stream surface of the surface of splitter blade at I the quasi-orthogonal along mean blade-to-blade stream surface of the surface of splitter blade at I the quasi-orthogonal along shroud THHKP(I) 7 coordinate of suction surface of splitter blade at I the quasi-orthogonal along mean blade-to-blade stream surface of the surfac	TPION	2π/N
THSI(I) 8 coordinate of suction surface of complete blade at I th quasi-orthogonal along shroud THHKH(I) 8 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along hub THMKH(I) 8 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKE'I) 9 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) 9 coordinate of suction surface of splitter blade at I th quasi-orthogonal along hub THMKP(I) 9 coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 9 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 9 coordinate of suction surface of complete blade at I th quasi-orthogonal along shroud THMKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	THHI(I)	e coordinate of suction surface of complete blade at 1
THEKH(I) 6 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along bub THMKH(I) 6 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKE I) 6 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) 6 coordinate of suction surface of splitter blade at I th quasi-orthogonal along hub THMKP(I) 9 coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 6 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THEKMX(I) 6 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 6 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	THMI(I)	θ coordinate of suction surface of complete blade at I th quasi-orthongonal along mean blade-to-blade stream surface
THMKH(I) 0 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKE'I) 0 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along hub THMKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	THSI(I)	θ coordinate of suction surface of complete blade at I th quasi-orthogonal along shroud
THEKET I) 0 coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud THHKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along hub THMKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	THIKH(I)	θ coordinate of pressure surface of splitter blade at I^{th} quasi-orthogonal along hub
THEKP(I) 0 coordinate of suction surface of splitter blade at Ith quasi-orthogonal along hub THMKP(I) 0 coordinate of suction surface of splitter blade at Ith quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 0 coordinate of suction surface of splitter blade at Ith quasi-orthogonal along shroud THHKMX(I) 0 coordinate of pressure surface of complete blade at Ith quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at Ith quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at Ith quasi-orthogonal along mean blade-to-blade stream surface	THMKH(I.)	θ coordinate of pressure surface of splitter blade at $\overline{\textbf{1}}^{th}$ quasi-orthogonal along mean blade-to-blade stream surface
THMKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface	THSKY I)	θ coordinate of pressure surface of splitter blade at I th quasi-orthogonal along shroud
quasi-orthogonal along mean blade-to-blade stream surface THSKP(I) 0 coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud THHKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at I th	THHKP(I)	
quasi-orthogonal along shroud THHKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub THMKMX(I) 9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 9 coordinate of pressure surface of complete blade at I th	THMKP(I)	θ coordinate of suction surface of splitter blade at I th quasi-orthogonal along mean blade-to-blade stream surface
quasi-orthogonal along hub THMKMX(I) 0 coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) 0 coordinate of pressure surface of complete blade at I th	THSKP(L)	θ coordinate of suction surface of splitter blade at I th quasi-orthogonal along shroud
quasi-orthogonal along mean blade-to-blade stream surface THSKMX(I) θ coordinate of pressure surface of complete blade at I th	THHKMX(I)	9 coordinate of pressure surface of complete blade at I th quasi-orthogonal along hub
THSKMX(I) θ coordinate of pressure surface of complete blade at I th quasi-orthogonal along shroud	THMKMX(I)	θ coordinate of pressure surface of complete blade at I th quasi-orthogonal along mean blade-to-blade stream surface
	THSKMX(I)	$\boldsymbol{\theta}$ coordinate of pressure surface of complete blade at $\boldsymbol{I}^{\mbox{th}}$ quasi-orthogonal along shroud

MODIFICATIONS REQUIRED FOR OTHER APPLICATIONS

The program as written can be used for a radial inflow gas turbine. It should be emphasized that the listing of the combined program is being published as a guide to the technique used in programming the quasi-

orthogonal method of flow analysis. If it is desired to obtain a program for analysing any type of turoomachine other than a radial inflow gas turbine, several modifications as indicated below will have to be made to the program. This will require a reasonable understanding of the program and the equations involved. With this understanding, the required modifications can be easily made. Modifications which are necessary for some particular cases are listed below:

- (1) Changes required for a compressor are:
 - (a) Rotation of coordinates for use in calculating spline fit curve for the meridional streamlines. It is assumed that the inlet is to the left with the positive direction to the right, and that the quasi-orthogonals are numbered starting with 1 at the inlet. The coordinates for the streamlines must be rotated 45° in the direction opposite to that in the present program. The modifications needed are to statements for calculating AB(I) and AC(I) near statements 160 and 390, and for calculating AL(I,n) four statements after statement 160.
 - (b) The sign of CEF as calculated just before statement 150 must be reversed.
- (2) Changes required for a pump or liquid turbine.

 Statements involving temperature or density must be modified to eliminate temperature, and to allow for constant density.
- (3) Changes required for axial flow machines.

 Statements for rotating streamline coordinates for use in calculating the spline fit curve for the meridional streamlines should be modified to eliminate this rotation. The statements involved are the same as those mentioned under la above.

CONVERGENCE

It may be found that with some geometries there is a convergence problem. This is helped by using as few and as evenly spaced quasi-orthogonals as possible, consistent with a reasonable accuracy. The number of streamlines used does not appreciably affect the number of iterations. Of course, it does affect the computer time required per iteration. Another factor which helps convergence is to reduce the streamline correction factor, CORFAC, (see ref. (2), p. 23 and fig. 5). Of course, this reduces the rate of convergence, but may result in convergence when a solution could not be obtained otherwise.

However, in some cases when the initial streamline estimate is poor it may be necessary to make the streamline correction factor, CORFAC, so small that the convergence rate is too slow. One way of improving the initial

streamline estimate is to use a large streamline correction for the first iteration, say CORFAC = 1. This will bring the streamlines fairly close to the correct position, but will result in rather uneven streamlines. If the streamlines are then smoothed sufficiently, the convergence will be generally much better than when working from the original position. It has not been found helpful to make this large streamline correction more than once. There are several mathematical techniques for smoothing (ref. 4).

Another problem that may be encountered with compressible fluids is that calculations may indicate choking weight flow less than the desired weight flow in the early interations. This usually leads to a problem in convergence. However, this may be overcome by obtaining a solution based on a slightly lower weight flow, followed by a solution based on the desired weight flow. Possibly more than one increment of weight flow increase will be required to increase the flow up to the desired weight, or perhaps the desired weight flow will prove to be actually in excess of the choking weight flow.

PROGRAM LISTING

DECK

```
$18FTC FIXED
             SUBROUTINE FIXED (HUB, MEAN, SHROUD)
      CALCULATION OF VELOCITY AND PRESSURE DISTRIBUTION IN A RADIAL FLOW
                             TURBO MACHINE
             THE THE THE THE THE TENT OF THE TAR THE THE THE THE THE TENT OF TH
                    PLOSS, NPRT, ITER1, SETIN, WTOLER, THI, THHKH, THHKP, THHKMX, THMI, THMKH, THMKP, THMKMX, THSI, THSKH, THSKP, THSKNX, Z , R , AB, AC, AD, RUND, M'BL, PIOY, W, BETAI, WTR, CURV
             DIMENSION AL(21,21), BETA(21,21), CAL(21,21), CBFTA(21,21),
           1CURV(21, 22), DN(21, 21), PRS(21, 21), R(2), 21;, Z(21, 21), SM(21, 21),
           2SA(21,21), SB(21,21), SC(21,217, SD(21,21), SAL(21,21), SBETA(21,21),
           ATN(21,21), TT(21,21), WA(21,21), WTR(21,21)
             DIMETSION 48(22), AC(22), AD(22), BA(21), DELBTA(21), DRDM(21),
           1DTDR(21), CTDZ(21), OMDM(21), DWTDM(21), RH(21), RS(21), 7H(21), ZS(21),
           2THTA(21), WT: L(21), XR(21), XT(21), XZ(21), BETAI(3), AA(3)
             DIMENSION THH(21), THM(21), THS(21), THH1 (21), THHKH(21), THHKP(21),
                 THHK4X(21), TH41(21), TH4K4(21), TH4KP(21), TH4KMX(21 1, TH51(21),
           2 THSCH(21), THSKP(21), THSKMX(21)
              INTEGER RUND, TYPE, BODP, SRW, HUB, SHROUD
              RUNDEO
       10 READ (5,1010)MX,KMX,MR,MZ,W,WT,XN,GAM,AR
              ITNO = 1
              RUND=RUYJ+1
              WRITE (6,1020) RUND WRITE (6,1010)MX,KM: MR,MZ,W,WT,XN,GAM,AR
              READ (5,1010) TYPE,300P, SRW, MXBL, TEMP, ALM, RHO, TOLER, PLOSS, WTOLER
              WRITE(6, 1010) TYPE, 300P, SRW, MXBL, TEMP, ALM, RHO, TOLER, PLOSS, WTOLER
              READ (5,1010)MTHTA, NPRT, ITER, NULL, SFACT, ZSPLIT, BETIN, CORFAC
              WRITE(6,1010)MTHTA, NPRT, ITER, NULL, SFACT, ZSPLIT, BETIN, CORFAC
              ITER1 = ITER
              READ( 5, 1030) (ZS(I), I=1, MX)
              WRITE(6, 1030)(ZS(I), I=1, MX)
              READ(5,1030)(ZH(I),I=1,MX)
              WRITE(6,1030)(ZH(T),I=1,MX)
              READ(5,1030)(RS(1),1=1,MX)
              WRITE(6, 1030)(RS(I), I=I, MX)
              RFAD(5,1030)(RH(1),I=1,MX)
              WRITE(6, 1030) (RH(I), T=1, MX)
              00 20 I=1,MX
              ZS(I)=ZS(I)/12.
              ZH(I)=7H(I)/12.
              RS(1)=RS(1)/12.
       20 RH(I)=RH(I)/12.
              IF(TYPE. NE. J) GO TO 40
              WA(1,1) = WT/RHJ/(ZS(1)-ZH(1))/3.14/(RS(1)+RH(1))
              XM,1=1 06 CG
              DN(I, KMX) = SQRT((ZS(I)-7H(I)) ++2+(RS(I)-RH(I)) ++2)
              DO 30 K=1,K4X
              DN(I,K)=FLOAT(K-1)/FLOAT(KMX-1)*DN(I,KMX)
              WA(I,K)=WA(1,1)
              Z(I,K)=DN(I,K)/DN(I,KMX)*(ZS(I)-ZH(I))+ZH(I)
```

```
30 R(I, C)=DN(I, K)/DN(I, KNX)*\RS(I)-R-((T))+R-1(I)
        GD TO 50
       IF(TYPE.NE.1) GO TO 145
       CALL BCREAG(DN(1,1),DN(21,21))
       CALL BCREAD (WA(1,1), WA(21,21))
CALL BCREAD (Z(1,1),Z(21,21))
       CALL BCREAD (R/1,1),R(21,21))
WRITE (6,1040)
   50 READ (5,1030)(THTA(I),I=1,MTHTA)
#RITE (6,1030)(THTA(I),I=1,MT+TA)
       READ (5,1030)(XT(1),1=1,MT4TA)
       ARITE(6,1030)(XT(1),1=1,MT-1TA)
       DO 60 K=1,MR
READ (5,1030)(TN(1,K),T=1,MZ)
   60 WRITE (6,1030)(TN(I,K),I=1,4Z)
       READ
             (5,1030)(XZ(I),I=1,MZ)
       WRITE (6,1030)(XZ(1),1=1,MZ)
              [5,1030)(XR([], [=], MR)
       READ
       WRITE (6,1030)(XR(I),I=1,MR)
   END OF INPUT STATEMENTS
   SCALING-CHANGE INCHES TO REST AND PSF TO LB/SQ FT, INITIALIZE, CALCULATE
C
C
        CONSTANTS
   70 DO 90 K=1,MR
   DO 30 1=1,MZ
80 TN(1,K) = TN(1,K)/17
   90 XR(K) = XR(K)/12.
      DO 100 [=1,4Z
  100 XZ(I) = XZ(I)/12.
      00 110 K=1,KMX
  110 SM(1,K)=0.
      BA(1)=0.
      00 120 K#2,KMX
  120 BAIK) = FLOATIK-1)*WT/FLOATIKEX -11
      DO 130 I=1,4X
 130 DN(I, 1)=0.
DD 140 I=1,MTHTA
 140 XT(1)=XT(1)/12.
      ROOT = SQRT(2.0)
 145 CONTINUE
      TOLER =TOLER/12.
ZSPLIT = ZSPLIT/12.
      PLUSS=PLUSS#144.
      CI = SQRT(GAM*AR*TEMP)
      WRITE (6,1050) CI
KMXM1 = KMX-1
      CP=AR *GAM/(GAM-1.)
      EXPOY = 1./(GAM-1.)
      BETIN = BETIN/57.29577
      ZINLFT = (ZS(1)+ZH(1))/2.
      RINLET = (RS(1)+RH(11)/2.
      CALL LININT (ZINLET, RINLET, XZ, XR, TN, 21, 21, T)
      RB = RINLFT*EXP(-.71*(2.*3.14159/(XN*SFACT)-T/RINLET))
```

```
WRITE (6,1030) RB
    CEF = -SIN(BETIN)/COS(BETIN)/RINLET/(RINLET-RB) **2
    ERROR = 100000.
 BEGINNING OF LOOP FOR ITERATIONS
150 IF(ITER.EQ.O) WRITE (6,1060) ITNO
    IF(ITE... EQ.0) WRITE (6,1070)
    ERROR 1 = ERROR
   - ERROR=O.
 START CALCULATION OF PARAMETERS
    DO 230 K=1,KMX
    DO 160 I=1,4X
    AB(I) = (Z(I,K)-R(I,K))/ROOT
160 AC(1)=(L(1,.)+R(1,K))/ROOT
CALL SPLINE (AB,AC,MX,4L(1,K),CURV(1,K))
    00 170 I=1,4X
    CURV( I, K) = CURV( ', K)/(1.+AL(I, K) **2) **1.5
    AL(I,K) = ATAN(AL(I,K))-.785398
    CAL(I,K) = COS(AL(I,K))
170 SAL(I,K) = SIN(AL(I,K))
    DO 180 I=2,4X
180 SM(I,K) = SM(I-1,K) + SQRT((Z(I,K)-Z(I-1,K)) **2 + (R(I,K)-R(I-1,K)) **
      21
190 CALL SPLDER(XT(1), THT4(1), MTHTA, Z(1, K), MX, OTDZ(1))
    00 220 I=1,4X
    T = 0.
    IF([.LE.MXBL) CALL LININT(Z([,K),R([,K),XZ,XR,TN,21,21,T)
    IF(R(I,K).LF.RB)G3 TO 200
    DTDR(1)=CFF*(R(1,K)-38)**2
    GD TO 210
200 DTDR(T)=0.
210 TQ=R([,<)*DTDR([)
    TP = R(I,K)*DTDZ(I)
    TT(I,K)=T*SQRT(I.+TP*TP)
    BETALI, K) =ATAN(TP*CAL(I,K)+TQ*SAL(I,K))
    SBETA(I,K) - SIN(BETA(I,K))
    CBETA(I,K)
                   COS(BETA(I,K))
    SA(I,K)=CBETA(I,K)**2*CAL(I,K)*CURV(I,K)-SBETA(I,K)**2/R(I,K)+
   1SAL(I,<)*CBETA(I,K)*SBETA(I,K)*DTOR(I)
    SC(I,K)=-SAL(I,K)*CBETA(I,K)**2*CURV(I,K)+SAL(I,K)*CBETA(I,K)
   1#SBETA(I/K)*DTDZ(I)
    AB( I)=WA( I,K)*CBETA(I,K)
AB(I)=WA(I,K)=CDE:MI,A,A

220 AC(I)=WA(I,K)+SBETA(I,K)

CALL SPLINF(SM(I,K),AB,MX,DWMDM,AD)

CALL SPLINE(SM(I,K),AC,MX,DWTDM,AD)
     IF((ITER.LF.O).AND.(MOD(K-1,NPRT).EQ.O)) WRITE [6,1080] K
     DO 230 [=1,4X
     SB(I,K)=SAL(I,K)+CBETA(I,K)+DWMDM(I)-2.+W+SBETA(I,K)+DTDR(I)+
   IR(I, <) *CSETA(I,K) * (DWTDM(I)+2. *W*SAL(I,K))
    SD(I,K)=CAL(I,K)+CBETA(I,K)+DWMM(I)+DTDZ(I)+
   IR(I,K)+CBFTA(I,K)+(DWTDM(I)+2.+W+SAL(I,K))
    IF((ITER.GT.0).39.(M30(K-1,NPRT).NE.0))30 TD 233
        AL( I .K ) + 57.29577
```

```
$4(I,K)*12.
            TT(1,K)+12.
        G=BETA(I,K)#57.29577
        WRITE (6,1090) A, CURV(I,K), B, G, E, SA(I,K), SB(I,K), SC(I,K), SD(I,K)
   230 CONTINUE
    END OF LODP - PARAMETER CALCULATION
    CALCULATE BLADE SURFACE VELOCITIES (AFTER CONVERGENCE)
 C
        IF(ITER-NE.0) GO TO 260
        DO 250 K=1.K4X
        CALL SPLINE (SME1,K),TT(1,K),MX,DELBTA,AC)
        A=YN
        NO 240 I=1,4X
   240 AB(1)=(R(1,K)*W+WA(1,K)*SBETA(1,K))+(6.283186+R(1,K)/ A-TT(1,K))
        CALL SPLINE (SM(1,K),A3,MX,DRDM,AC)
        IF (SFACT.LF. 1.0) GO TO 245
        A = SFACT*XV
        DO 244 I=1,MX
   244 AB(1)=(R(1,K)+W+WA(1,K)+SBETA(1,K))+(6.2831854R(1,K)/ A-TT(1,K))
        CALL SPLINE (SM(1,K),AB,MX,AD ,AC)
                      I=1,4X
   245 00 250
        BETAD = BETA(1,K)-JELBTA(1)/2.
        BETAT = BEIAD+DELBTA(1)
        COSBD = COS[BETAD]
        COSBT = COS(BETAT)
        IF(Z(I,K).LT.ZSPLIT) DRDM(I) = AD(I)

WTR(I,K)=COSBD+COSBT/(COSBD+COSBT)*(2.*WA(I,K)/COSBD+R(I,K)*d*
       1(BETAD-BETAT)/CBETA(I,K)**2+DRDM(I))
   250 CONTINUE
. C
    END OF BLADE SURFACE VELOCITY CALCULATIONS START CALCULATION OF WEIGHT FLOW VS. DISTANCE FROM HUB
   260 DO 370 I=1,4X
        IND=1
        DO 270 K=1,KMX
    270 AC(K)=DN(I,K)
        GO TO 290
    280 WA(I,1)=.5*WA(I,1)
    290 DO 300 K=2,K4X
        J=K-1
        HR=R\{I,K\}-R\{I,J\}
        HZ=7(1,K)-Z(1,J)
        WAS=WA(I,J)*(1.+SA{ ,J)*HR+SC{I,J)*HZ}+SB(I,J)*HR+SD(I,J)*HZ
WASS=WA(I,J)+WAS*(SA(I,K)*HR+SC{I,K)*HZ}+SB(I,K)*HR+SD{I,K)*HZ
    300 WA! I,K)=(WAS+WASS1/2.
   310 DU 340 K=1,KMX
        T1P= 1.-(WA(1,K)**2+2.*W*4LM-(W*R(1,K))**2)/2./CP/TEMP
        IF(T1F.LT.-0) GJ TJ 280
        TPP 1P= 1.-
                              {2.*W+ALM-{W*R | I | K) } **21/2./CP/TEMP
        DENSTY=T1P**EXPJN*RHJ-(TiP/TPP1P)**EXPUN*PLOSS/AR/TPP1P/TEMP
       1 #32.17#SM(I,K)/SM(MX8L,K)
        PR:(1,K1=DENSTY#AR#T1P#TEMP/32.17/144.
        IF(ZS[I].LE.ZH([)) GO TO 320
PSI=ATAN((RS(I)-RH(I))/(ZS(I)-ZH(I)))-1.5708
```

Ξ...

हेत्। हिन्सु-**ट**

```
GD TJ 330
  320 PSI=ATAN((ZH(I)-ZS(I))/(RS(I)-RH(I)))
  330 WTHRU=WA(I,K)*CBETA(I,K)*CDS(PSI-AL(I,K))
      \Delta = X V
      IF(Z(I,K).LT.ZSPLIT) A=SFACT+XN
      C = 6.283186*R(I,K)-A+TT(I,K)
  340 AD(K)=PENSTY*WTHRU*C
      CALL INTGRL(AC(1),AD(1),KMX,WTFL(1))
      IF (ABS(WT-WTFL(KM')).LE.WTOLER) GO TO 350
      CALL CONTIN (WA(1,1), WTFL(KMX), IND, 1, WT)
      IF (IND.NE.6) GD TD 290
  350 CALL SPLINT (WTFL,AC,KMX,BA,KMX,AB)
      DO 360 K=1.K4X
      DELTA=ABS(AB(K)-DN(I,K))
      DN(I,K)=(1.-CORFAC)*DN(I,K)+CORFAC*AB(K)
  360 IF(DELTA.GT.ERROR1ERROR=DELTA
  370 CONTINUE
   END OF LOOP - WEIGHT FLOW CALCULATION
   CALCULATE STREAMLINE COORDINATES FOR NEXT ITERATION
C
      DB 380 K=2,KMXM1
      DO 380 I=1,4X
      Z(I,K)=DN(I,K)/DN(I,KMX)*(ZS(I)-ZH(I))+ZH(I)
  3RO R(I,K)=DN(I,K)/DN(I,KMX)*(RS(I)-RH(I))+RH(I)
      IF((ERRIR.GF.ERRIR1).JR.(ERROR.LE.TOLER)) ITER=ITER-1
      IF(ITER.GT.0) GD TD 410
      WRITE (6,1100)
      DD 400 K=1,KMX,NPRT
      WRITE (6,1080) K
      DO 390 I=1.MX
      AB(I)=(Z(I,K)-R(I,K))/ROOT
  390 AC(I)=(Z(I,K)+R(I,K))/ROOT
      CALL SPLINE (AB, AC, MX, AD; CURV(1,K))
      DO 400 I=1,4X
      CURV(I,K)=CURV(I,K)/(1.+AD(I) ++2)*+1.5
      A=DN(I,<)*12.
      B = Z(I,K) * 12.
      D= R(I, K) *12.
  400 WRITE (6,1110) A,B,D,WA(I,K),PRS(I,K),WTR(I,K),CURV(I,K)
      WRITE (6,1130)
  410 A=FRR7R*12.
      WRITE (6,1120) ITND, A
      I+CVTI=ONTI
      IF (ITER.GE.O) GO TO 150
      WRITE (6,1140)
      K = (KMX+1)/2
      DO 440 I=1.4%
      IF(ZS(I).LE.ZH(I)) GO TO 420
      PSI = ATAN((RS(I)-RH(I))/(ZS(I)-ZH(I)))-1.5708
      GD TO 430
  420 \text{ PSI} = \text{ATAN}((ZH(I)-ZS(I))/(RS(I)-RH(I)))
  430 AB(I) = (DN(I,2)-DV(I,1)) +COS(PSI-AL(I,2))
      AC(I) = \{DN(I,K+1)-DN(I,K-1)\}/2, *CDS(PSI-AL(I,K))
      AD(I) = \{DN(I,KMX)-DN(I,KMXMI)\}
                                         *COS(PSI-AL(I,KMX-1))
      A = AB(1)*12.
```

```
B = AC(T)*12.
     D = AD(I)*12.
 440 WRITE (6,1110) A,B,D
     CALL SPLINT (XT, THTA, MTHTA, Z(1,1), MX, THH)
     CALL SPLINT (XT, THTA, MTHTA, Z(1, 2), MX, THH)
     CALL SPLINT (XT, THTA, MTHTA, Z(1, K), MX, THM)
CALL SPLINT (XT, THTA, MTHTA, Z(1, KMX ), MX, THS)
     PION = 3.1415927/XN
     TPION = PION*SFACT
     WRITE (6, 1150)
     00 450 I=1,4X
     THH1(I) = THH(I)-TPION>TT(I,1)/2./R(I,1)
                = THM(I)-TPION+TT(I,K)/2./R(I,K)
     TH41(1)
                = THS(I)-TPION+TT(I,KMX)/2./R(I,KMX)
     THS1(1)
     THHKH(I) = THH(I) - PION-TT(I,1)/2./R(I,1)
     THMKH(I) = THM(I) - PION-TT(I,K)/2./R(I.K)
     THSKH(I) = THS(I)- PION-TT(I,KMX )/2./R(I,KMX )
     THH(P(I) = THH(I) - PION+TT(I,1)/2./R(I,1)
     THMKP(I) = THM(I) - PION+TT(I,K)/2./R(I,K)
     THSKP(I) = THS(I)- PICN+TT(I,KMX )/2./R(I,KMX)
     THHKMX(I)= THH(I)-TT(I,1 )/2./R(I,1 THMKMX(I)= THM(I)-TT(I,K )/2./R(I,K
     THSKMX(I) = THS(I)-TT(I,KMX )/2./R(I,KMX)
 450 WRITE(6,1160) THH1(I), THHK4(I), THHKP(I), THHKMX(I), THM1(I), THMKH(I)
    1,THMKP(I),THMKMX(I),THS1(I),THSKH(I),THSKP(I),THSKMX(I)
     09 460 J=1,3
     1=1
     K = 1
     IF(J.EQ.2) K = (KMX+1)/2
      IF(J.FQ.3) K=KMX
     T1P= 1.-(WA(I,K)++2+2.*W+ALM-(W+R(I,K))++2)/2./CP/TEMP
     DENSTY = T1P**EXPON*RHO
     C = 6.283186 * R(I,K) - XN * TT(I,K) * SFACT
     WIDTH = AB
     IF(J.EQ.2) WIDTH = AC
     IF(J.EQ.3) WIDTH = AD
     WM = BA(2)/DENSTY/C/WIDTH
     WTHETA = ALM/R(I,K)-W*R(I,K)
     BETAI(J) = ATAN(WTHETA/WM)
      AA(J) = BETAI(J)*57.29577
 460 CONTINUE
      WRITE (6,1170) 44
      IF(BCDP.EQ.2) CALL BCDUMP(SRW,BETAI(3))
      IF(BCDP.NE.1) RETURN
     CALL BCDUMP (DN(1,1),DN(21,21))
CALL BCDUMP (WA(1,1),WA(21,21))
     CALL RCDUMP ( Z(1,1), Z(21,21))
CALL RCDUMP ( R(1,1), R(21,21))
      RETURN
1010 FORMAT (415,6F10.4)
1020 FORMAT (8H1RUN NO.13,10X,25HINPUT DATA CARD LISTING 1030 FORMAT (7F10.4)
1040 FORMAT (10X24HBCD CARDS FOR DN.WA,Z,R )
1050 FORMAT (36HK STAG. SPEED OF SOUND AT INLET = ,F9.2)
1050 FORMAT (36HK STAG. SPEED OF S
1060 FORMAT (///5X13H1TERATION NO.13)
                                        9:15HSM
                                                   9X5HBETA 9X5HTT
                                                                         9X5H*1
1070 FORMAT (1H 6X5HALPHA9X5HRC
```



```
SIBFTC SPLBLD DECK
      SUBROUTINE SPLBLD(HUB, MEAN, SHEOUD, MOB)
      COMMON SRW. KMXF, MX, WT, XN, GAM, AR, TYPE, BCDP, TEMP, ALM, RHO, TOLER,
         PLOSS, NPRT, ITER1, RETIN, WTOLER, THHI, THHKH, THHKP, THHKMX, THMI,
         THMKH, THMKP, THMKMX, THS1, THSKH, THSKP, THSKHX, Z1, R1, AB, AD, AE,
         RUND, MXRL, PION, W. BETAI, OTDM, CURV
      DIMENSION Z(21),R(21), DN(21), SM(21), BA(22), AB(22), AC(22), AL(21),
     1RC(21), CAL(21), SAL(21), PRS(22', WTFL (22), WTHETA(21,22), DWDM(21,22),
     2THETA( 21, 22), WA( 21, 22), BETA( 21, 22), SBETA(21, 22), CBETA(21, 22),
     3SA(21,22), SB(21,22), CURV(21,22), DTDM(21,22)
      DIMENSION Z1(21,21), R1(21,21),
                                            THH1 (21) .THHKH(21) .THHKP(21),
        THHKMX(21), THM1(21), THMKH(21), THMKP(21), THMKMX(21), THS1(21),
     2 THSCH(21), THSKP(21), THSKMX(21)
      DIMENSION THAL (23,4), SMAL (23), AD (22), AE (22), DENSTY (22), BETAI (3)
      INTEGER RUND, TYPE, BCDP, SRW, RR, HUB, SHRUUD
      LOGICAL PRINT
      IF/MDB.EQ.21 GD TO 10
      RUND=0
      IF(MDB.EQ.4) GO TO 10
    5 READ (5,1010)MX,KMX,MXSP,RR,W,WT,XN,GAM,AR
      ITNO = 1
      RUNO=RUND+1
      WRITE (6,1020) RUNG
      WRITE (6,1010)MX,KMX,MXSP,RR,W,WT,XN,GAM,AR
      READ (5,1010)TYPE,3COP,SRW,MXBL,TEMP,ALM,RHO,TOLER,PLOSS,D#DM1
      WRITE(6,1010) TYPE, BCDP, SRW. MXBL, TEMP, ALM, RHO, TOLER, PLOSS, DWDM1
      PLOSS=PLOSS*144
      READ (5,1010) NULL, NPRT, ITER, NULL, BETIN, WTOLER, CORFAC
      WRITE(6,1010) NULL, NORT, ITER, NULL, BETIN, WTOLER, CORFAC
      BETIN = BETIN/57.29577
      KHMX = KMX/2
      KHP1 = KHMX+1
      KHP2 = CHMX+2
      READ (5,1030) (THETA(1,1),1=1,MX)
      WRITE(6, 1030) (THETA(1,1),1=1,MX)
      READ (5, 1030) (THETA (1, KMX), T=1, MX)
      WRITE(6, 1030) (THETA(I,KMX), I=1, MX)
      READ (5,1030) (THETA(I,KHMX),I=1,MXSP) WRITE(6,1030) (THETA(I,KHMX),I=1,MXSP)
      READ (5,1030) (THETA(T,KHP1), I=1, MXSP)
      WRITE(6, 1030) (THETA(I, KHP1), I=1, MXSP)
      IF(RR.EQ.1) GO TO 90
      READ (5,1030)(Z(I),T=1,MX)
      WRITE(6,1030)(Z(I),I=1,MX)
      READ (5,1030)(R(I),I=1,4X)
      WRITE(6,1030)(R(I),I=1,MX)
      READ (5,1030)(DN(1),I=1,MX)
      WRITE(6,1030)(DN(I),I=1,MX)
      DO 9 1=1.MX
      Z(1)=Z(1)/12.
      R(I)=R(I):'2.
      DN(I)=DN(I)/12.
      GO TO 21
```

```
10 IF(MDB.EQ.4) CALL BCREAD(SRW, BETAI(3))
   MX = MX+1
   MOB = 2
   WT = WT/FLOAT(KMXF-1)
   WTOLER = WTOLER/FLOAT(KMXF-1)
   MXBL = MXBL+1
11 READ (5,1010)KMX, MXSP, RR , TYPE, CORFAC, TOLER, THIKMX
   RUNO = RUNO+1
   IF((HUB.EQ.O).AND.(MEAN.EQ.O).AND.(SHROUD.EQ.O)) RETURN
   WRITE (6,1020) RUND
   WRITE(6,1010)KMX, MXSP, RR , TYPE, CORFAC, TOLER, THIKMX
   ITNO = 1
   ITER = ITER1
   KHMX = KMX/2
   K_1P1 = KHMX+1
   KHP2 = KHMX+2
   READ (5,1030) Z(1),R(1),DN(1)
   WRITE(6,1030) Z(1),R(1),DN(1)
   Z(1) = Z(1)/12.
   R(1) = R(1)/12.
   DN(1) = DN(1)/12.
   DWDM1 = W+ALM/R(1)**2
   1F(HUB.EQ.0) GO TO 14
   HUB = 0
   DO 12 T=2,MX
   J = I - 1
   THETA(I,1) = IHH1(J)
   THETA(I,KMX) = THHKMX(J)
   Z(I) = Z1(J, 1)
R(I) = R1(J,1)
12 DN(I) = AB(J)
   DD 13 I=2.MXSP
   J = I - 1
   THETA(I,KHMX) = THHKH(J)
13 THETA(I_{+}XHP1) = THHKP(J)
   BETIN = BETAI(1)
   GD TD 20
14 IF(MEAN.EQ.O) GD TO 17
   MEAN = 0
   K = (KMXF+1)/2
   00 15 I=2, MX
   J = I - 1
   THETA(I,1) = THM1(J)
   THETA(I,KMX) = THMKMX(^)
   Z(I) = ZI(J,K)
   R(I) = R1(J,K)
15 DN(I) = AD(J)
   DO 16 I=2, MXSP
   J = I-1
   THETA(I,KHMX) = THMKH(J)
16 THETA(I, KHP1) = THMKP(J)
   BETIN = BETAI(2)
   GO TO 20
17 IF(SHROUD.EQ.O) RETURN
```

SHROUD = 0

```
DO 18 1=2,MX
   J = I - I
   THETA(1,1) = THS1(J)
   THETA(I,KMX) = THSKMX(J)
   Z(I) = ZI(J,KMXF)
   R(I) = R1(J,KMXF)
18 DN(I) = AE(J)
   00 19 I=2, MXSP
   J = I-1
THETA(I,KHMX) = THSKH(J)
19 THETA(I,KHP1) = THSKP(J)
   BETIN = BETAI(3)
20 TANBTO = SIN(BETIN)/COS(BETIN)
   TANBT = TANBTO +(AL4-W+R(1)++2)/(ALM-W+R(2)++2)+DN(1)/DN(2)
   DTDM1 = TANBT/R(1)
   DELTHT = TANRTO/(W+R\{Z\}++2-ALM)+(ALM+ALOG(R(1)/R\{2))+W/2.*(R\{2)++2
      -R(1)**2))*(DN(1)+DN(2))/2./DN(2)
   THETA(1.KMX) = THIKMX*DELTHT
   THETA(1, KHP1) = THETA(1, KMX)-PION
   THETA(1,KHMX) = THETA(1,KHP1)
   THETA(1,1) = THETA(1,KHMX)-PION
   NULL = 0
   WRITE (6,1010)MX,KMX,MXSP,RR,W,WT,XN,GAM,AR
   PLOSS1 = PLOSS/144.
   WRITE(6,1010)TYPE,BCDP,SRW,MXBL,TEMP,ALM,RHO,TOLER,PLOSSI,DWDM1
   BETIN1 = BETIN*57.29577
   WRITE(6,1010) NULL, NPRT, ITER, NULL, BETINI, WTOLER, CORFAC
   #R{TE(6,1030) {THETA{I,1),I=1,MX}
   WRITE(6, 1030) (THE TA(I,KMX), I=1, MX)
   WRITE(6,1030) (THETA(I,KHMX),I=1,MXSP)
   WRITF(6,1030) (THETA(I,KHP1),I=1,MXSP)
   WRITE(6,1030)(Z(I),I=1,MX)
   WRITE(6,1030)(R(I),I=1,MX)
   WP ITE(6, 1030) (DN(I), I=1, MX)
21 [F[TYPE.EQ.1 ] GO TO 30
   WA(1,1)=WT/RHO/DN(1)/R(1)/XN/(THETA(1,KMX)-THETA(1,1))
   DD 23 I=1.MX
   IF((I.EQ.1).OR.(I.GT.MXSP)) THETA(I,KHMX) = (THETA(I,KMX)+THETA
    (1,1))/2.
   IF((I.EQ.1).OR.(I.GT.MXSP)) THETA(I,KHP1) = THETA(I,KHMX)
   DD 22 K=1,KHMX
   THETA(1,K) = FLOAT(K-1)/FLOAT(KHMX-1)*(THETA(I,KHMX)-THETA(I,1))
  1 + THETA(1,1)
22 WA(I,K)=WA(1,1)
   DO 23 K=KHP1,KMX
   THETA(I,K) = FLOAT(K-KHP1)/FLOAT(KMX-KHP1)*(THETA(I,KMX)-
      THETA(I,KHP1))+THETA(I,KHP1)
23 WA(I,K) = WA(1,1)
   READ (5, 1010) NEXT
WRITE(6:1010) NEXT
24 IF(NEXT.EQ.0) GD TD 25
   READ (5, 1021)13, K1, THETA (11, K1), 12, K2, THETA (12, K2), 13, K3, THETA (13,
      K3), 14, K4, THETA(14, K4), 15, K5, THETA(15, K5), NEXT
```

WRITE(6, 1021)11,K1, THETA(11,K1),I2,K2,THETA(12,K2),I3,K3,THETA(13,

K3), 14, K4, THETA([4,K4), 15,K5, THETA([5,K5), NEXT

```
GO TO 24
C
       END OF INPUT STATEMENTS
   25 WRITE (6, 1023)
      DO 26 K=1,KMX
   26 WRITE (6,1030) (THETA(I,K), I=1, MX)
      GD TD 45
   30 CALL BCREAD (THETA(1,1), THETA(21,21))
      CALL BCREAD (WA
                       (1,1), WA(21,21))
      WRITE (6,1040)
   45 CONTINUE
      CP = AR *GAM/(GAM-1.)
      CI = SQRT(GAM*AR*TEMP)
      WRITE (6,1050) CI
      KMXM1 = KMX-1
      MXP2 = 4X+2
      MXSP1 = MXSP+1
      WTH = WT/2.
      EXPON = 1./(GAM-1.)
      DTDM1=SIN(BETIN)/COS(BETIN)/R(1)
      IF(M)B.EQ.2) DTDM1 = TANBT/R(1)
      RODT=SQRT(2.)
      SM(1) = -SQRT((Z(2)-Z(1))**2+(R(2)-R(1))**2)
      00 60 K=1,K4XM1
   60 BA(K)=FLOAT(K-1)*WT/FLOAT(KMXM1-1)
C
       CALCULATE ALPHA AND SM
C
      DO 70 I=1.MX
      AB(I)=(Z(I)-R(I))/ROOT
   70 AC(I)=(Z(I)+R(I))/ROOT
      CALL SPLINE(AB,AC,MX,AL,RC)
      DO 80 I=1,MX
      AL(I)=ATAN(AL(I))-.785398
      CAL(I)=COS(AL(I))
   80 SAL(I)=SIN(AL(I))
      DD 85 I=27MX
      J=I-1
   85 SM(I)=SM(J:)+SQRT((Z(I)-Z(J))*#2+(R(I)-R(J))*#2)
      SMAL(3) = SM(2) + .1*(SM(3) - SM(2))
      SMAL(4) = SM(2) + .5*(SM(3) - SM(2))
   90 ERROR = 1000.
       CALCULATE BETA ON BLADE SURFACES
   BEGINNING OF LOOP FOR ITERATIONS
   91 DC 97 J=1,4
      K = 1
      IF(J.12.2) K=KHMX
      IF(J.EQ.3) K=KHP1
      IF(J.EQ.4) <=KMX
      00 93 I=1, 2
      THAL(I,J) = THETA(I,K)
   93 SMAL(I) = SM(I)
```

```
DO 94 I=3,4
   94 THAL(I,J) = THETA(2,K)+(SMAL(I)-SM(2))/(SM(3)-SM(2))*(THETA(3,K)
         -THETA(2,K))
      DO 95 I=5, MXP2
      IM2 = I-2
      THAL(I,J) = THETA(IM2,K)
   95 SMAL(I) = SM(IM2)
      CALL SPLIN2(SMAL, THAL(1,J), DTDM1, MXP2, DTDM(1,K), AB)
      00 96 I=1,2
      CURV(I,K) = AB(I)/12./(1.+(DTDM(I,K)/12.)**2)**1.5
      BETA(I,K) = ATAN(R(I)*DTDM(I,K))
      SRETA(I,K) = SIN(BETA(I,K))
      CBETA(I,K) = COS(BETA(I,K))
   96 CONTINUE
      DO 97 I=3,MX
      IP2 = I+2
      CURV(I,K) = AB(IP2)/12./(1.+(DTDM(IP2,K)/12.)**2)**1.5
      BETA(I,K) = ATAN(R(I)*DTDM(IP2,K))
      SBETA(I,K) = SIN(BETA(I,K))
      CBETA(I.K) = COS(BFTA(I.K))
   97 CONTINUE
      PRINT = (ITER.LE.O).OR.(ITNO.LE.NC)
      IF (PRINT) WRITE(6,1060)ITNO
      ERROR 1=ERROR
      ERROR = 0.
C
      START CALCULATION OF PARAMETERS
      LAST = KHMX-1
      DD 100 K=2,LAST
      CALL SPLIN2(SM, THETA(1,K), DTDM1, MX, DTDM(1,K), AB)
      XP.1=1 001 00
      CURV(I, <) = AB(I)/12./(1.+()TDM(I, K)/12.)**2)**1.5
      BETA(I, K) = ATAN(R(I) *DTDM(I, K))
      SBETA(I,K)=SIN(BETA(I,K))
      CBETA(I,K)=COS(BETA(I,K))
  100 CONTINUE
      DO 101 K=KHP2,KMXM1
      CALL SPLINZ(SM, THETA(1,K), OTOM1, MX, DTDM(1,K), AB)
      DO 101 T=1,MX
CURV(T,<) = AB(I)/12./(1.+(DTDM(I,K)/12.)**2)**1.5
      BETA(I,K)=ATAN(R(I)*DTDM(I,K))
      SBETA(I,K)=SIN(BETA(I,K))
      CRETA(1,K)=COS(BETA(1,K))
  101 CONTINUE
      DO 110 K=1,KMX
      DO 105 I=1,MX
      WTHETA(I,K)=WA(I,K)*SBETA(I,K)
  105 CONTINUE
      CALL SPLIN2(SM, WTHETA(1,K), DWDM1, MX, DWDM(1,K), AC)
      DO 110 [=1,4X
      SA(I,K) = SAL(I)*SBETA(I,K)*CBFTA(I,K)
      SB(I,K) = CBETA(I,K)*R(I)*(2.*W*SAL(I)+DWDM(I,K))
  110 CONTINUE
      END OF PARAMETER CALCULATION
```

```
3298
```

```
CALCULATE VFLOCITY DISTRIBUTION, CHECK CONTINUITY
            DD 200 [=1,MX
            INO=1
            IND2 = 1
           GO TO 130
120 WA(I,1)=.5*WA(I,1)
           GO TO 130
125 WA(I,1)=2.*WA(I,1)
            GD TO 130
126 WA(I,KHPI) = .5*WA(I,KHPI)
           GD TO 130
127 WA(I,KHP1) = 2.*WA(I,KHP1)
130 IF((I.GT.1).AND.(I.LF.MXSP)) GO TO 142
           DO 140 K=2,KMX
            J = \langle -1
            IF(K.EQ.KHP1) WA(I,K) = WA(I,J)
IF(K.EQ.KHP1) GO TO 140
            HT=THETA(I,K)-THETA(I,J)
            TH*(\{L,1\}BR+(L,1)AR*(L,1)AW)+(\{L,1\}AW) = RAW
            WASS = WA(I,J)+(WAS*SA(I,K)+SB(I,K))*HT
           WA(I_*K) = (WAS+WASS)/2.
140 CONTINUE
            GO TO 148
142 DO 144 K=2,KHMX
            J = K - 1
           HT=THETA(I,K)+THETA(I,J)
           WAS = WA(I,J)+(WA(I,J)*SA(I,J)+SB(I,J))*4T

WASS = WA(I,J)+(WAS*SA(I,K)+SB(I,K))*HT
           WA(1,K) = (WAS+WASS)/2.
144 CONTINUE
            DO 146 K=KHP2,K4X
             J = K-1
            HT=THETA(I,K)-THETA(I,J)
           TH* \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} \} + \{1,1\} \} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1\} + \{1,1
            MA(I,K) = (WAS+WASS)/2.
146 CONTINUE
148 CONTINUE
            DO 150 K=1,KMX
             TIP= 1.-(WA(I,K)**2+2.*W*ALM-(W*R(I) )**2)/2./CP/TEM*
            IF((T1P.LT..O).AND.(I.GT.1).AND.(I.LE.MXSP).AND.(K.GE.KHP1))
               GO TO 126
            IF(T1P.LT..0) GD TO 120
            TPP 1P= 1.-
                                                                     (2.+W+ALM-(W+R(I) )++2)/2./CP/TEMP
           DENSTY(K) = T1P**EXPON*RHO-(T1P/TPP1P) **EXPON*PLOSS'AR/TPP1P/TEMP
         1 *32.17*SM(T) /SM(MXRL)
           PRS(\zeta) = DENSTY(K)*AR*T1P*TEMP/32.17/144.
           WM=WA(I,K)*CBETA(I,K)
            AB(K) = DSNSTY(K)*WM*DN(I)*R(I)*XN
150 AC(K)=THETA(I,K)
            CALL INTGRE(AC, AB, KHMX, WTFL)
            IF(WTFL(KHMX).LE..O) GO TO 125
            CALL INTGRL(AC(KHP1),AB(KHP1),KHMX,WTFL(KHP1))
             IF((WTFL(KMX).LE..O).AND.(I.GT.1).AND.(I.LE.MXSP)) GO TO 127
            IF(WTFL( KMX).LE..O) GO TO 125
```

```
IF((I.GT.1).AND.(I.LE.MXSP)) GO TO 155
    DO 152 K=KHP1,KMXM1
    AC(K) = AC(K+1)
152 WTFL(K) = WTFL(KHMX)+WTFL(K+1)
    IF(ABS(WT-WTFL(KMXM1)).LE. WTOLFR) 30 TO 160
    CALL CONTIN(WA(1,1), WTFL(KMXM1), IN), I, WT)
    IF(IND.NE.6)G0 TO 130
    GD TO 160
155 IF (ABS(WTH-WTFL(KHMX)).LE.WTOLER) IND=6
IF (ABS(WTH-WTFL(KMX)).LE.WTOLER) IND2=6
    IF(IND.NE.6) CALL CONTIN(WA(I,1),WTFL(KHMX),IND,I,WTH)
    IF(IND2.NE.6) CALL CONTAL(WA(I,KHPI),WTFL(KMX),IND2,I,WTH)
    IF((IND. NF.6).OR.(IND2.NE.6)) GO TO 130
160 IF((I.GT.1).AND.(I.LE.MXSP)) GO TO 165
    CALL SPLINT (WTFL,AC,KMXM1,BA,KMXM1,AB)
    GO TO 166
165 CALL SPLINT(WTFL, AC, KHMX, BA, KHMX, AB)
    CALL SPLINT(WTFL(KHP1), AC(KHP1), KHMX, BA(1)
                                                      ,KHMX,AB(KHP1))
166 CONTINUE
    IF((I.GT.1).AND.(I.LE.MXSP)) GO TO 168
    DO 167 K=1,KHMX
    KA = KMX-K+1
    J = KA-1
167 \text{ AB(KA)} = \text{AB(J)}
168 DO 170 K=1,KMX
    DELTA=ABS(AB(K)-THETA(I,K))
170 IF(DELTA.GT.ERROR)ERROR=DELTA
    IF(.NOT.PRINT) GO TO 178
    A=SM( [)*12.
    C=AL(I )*57.29577
    D = R(I) * 12.
    E = Z(1)*12.
    F = DN(I)*12.
    WRITE (6,1080) I,A,C,D,E,F
    WRITE (6,1070)
    DO 175 K=1.KHMX.NPRT
    B=BETA( 1, % ) *57.29577
    C = WTHETA(I,K)+W*R(I)
    WM = WA(I,K) * CBETA(I,K)
    V = SQRT(C^2+2+WM**2)
    OWOT - WALL, KI+S/(I, K)+SB(I,K)
    WRITE (6,1090) THETA(I,K),CURV(I,K),B,WA(I,K),WTHETA(I,K),C,WM,V,
       PRS(K), DENSTY(K), DTDM(I, K), DWDM(I, K), SA(I, K), SB(I, K), DWDY
175 CONTINUE
    WRITE (6,1095)
    DO 176 K=KHP1,KMX,NPRT
    8=BETA(1,K)*57.29577
    C = \text{WTHETA}(I_{\gamma}K) + \text{W*R}(I)
    WM = WATE,KI+CBETA,I,K)
    V = SQRT(C**2+WM**2)
    DWDT = WA(I,K)*SA(I,K)+SB(I,K)
    WRITE (6,1090) THETA(I,K),CURV(I,K),B,MA(I,K),WTHETA(I,K),C,WM,V,
       PRS(K), DENSTY(K), DTDM(I, K), DWDM(I, K), SA(I, K), SB(I, K), DWDT
176 CONTINUE
WRITE (6,1095)
178 DO 180 K=2,KMXM1
```

```
180 THETA(I,<)=(1.-CORFAC)*THETA(I,K)+CORFAC*AB(K)
  200 CONTINUE
      END OF VELOCITY CALCULATIONS.
C
      WRITE (6,1120) ITNO, ERROR
      IF(ITER.LE.0) GO TO 230
      IF((ERROR.GE.ERROR1).OR.(ERROR.LE.TOLER)) ITER=ITER-1
      ITNO=ITNO+1
      GO TO 91
  230 IF(BCDP.NE-1) GO TO 240
     CALL BCDUMP (THETA(1,1), THE (4(21,21))
CALL BCDUMP ( WA(1,1), WA(21,21))
  240 IF(M3B.EQ.2) GO TO 11
      GO TO 5
 1010 FORMAT (415,6F10.4)
 1020 FORMAT (8H1RUN NO.13,10X,25H1NPUT DATA CARD LISTIN'
1021 FORMAT (5(212,F8.5),11)
 1023 FORMAT (32H THETA-CALCULATED AND/OR INPUT )
 1030 FORMAT (7F10.4)
1040 FORMAT (10X25HBCO CARDS FOR THETA.WA
                       STAG. SPEED OF SOUND AT INLET = ,F9.2,//1
 1050 FORMAT (36HK
 1060 FORMAT (///SX13HITERATION NO.I3)
 1070 FORMAT (132HK THETA T-CURV
                                          BETA
                                                           WTHETA VTHETA
                            DENSTY
                      PRS
                                       DTDM
                                               DWDM
                                                          SA
     184
     2DT
 1080 FORMAT (2X16HQUASI-ORTHOGONALI3,6X,4HSM =,F7.4,9H ALPHA =, 7.2,
         5H R =, F7.4, 5H Z =, F7.4, 6H DN =, F7.4)
 1090 FORMAT (1x, F9.4, 2F8.2, 5F8.1, F7.2, F9.5, F7.2, F8.0, F8.4, 2F9.1)
 1095 FORMAT (1H )
                        ITERATION NO. 13,10x,24HMAX. STREAMLINE CHANGE = ,
 1120 FORMAT (18HJ
     1F10.61
 1200 FORMAT(//10X7HNORMAL 14)
 1210 FORMAT(7F18.6)
      END
```

```
SIBFTC SPLINT DECK
                (TRIY, KAM, I, R, Y, X, 
                DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),
             1G(50), E4(50), Z(50), YINT(50)
                C NCHMOD
                INTEGER Q
        00 10 I=2,N
10 S(I)=X(I)-X(I-1)
               NO=N-1
                DO 26 I=2,NO
                A(1)=S(1)/6.0
                B(1)=(S(1)+S(1+1))/3.0
                C(1)=S(1+1)/6.0
        20 F(1)=(Y([+1)-Y(]))/S(1+1)-(Y([]-Y([-1))/S(])
                A(N)=-.5
                8(1)=1.0
                B(N)=1.0
                C(1)=-.5
                F(1)=0.0
                F(4)=0.0
                W(1)=8(1)
                SB(1)=C(1)/W(1)
                G(1)=0.0
                DO 30 I=2,N
                W(I)=8(I)-A(i)*S5(I-1)
                SB(1)=C(1)/W(1)
        30 G(1)=(F(1)-A(1)+G(1-1))/W(1)
                EM(N)=G(N)
                90 40 I=2,N
                K=N+1-1
        40 EH(K)=G(K)-SB(K)*EM(K+1)
                DO 90 I=1, MAX
                K=2
                IF(Z(1)-X(1)) 60,50,70
        50 YINT( 1)=Y(1)
                GN TO 90
        60 [F(Z([].LT.(].]*X(])-.[*X(2)])WRITE (6,1000)Z(])
                GD TO 85
   1000 FORMAT (17H DUT OF RANGE Z =F10.6)
        65 IF(Z(1).GT.(1.1*X(Y)-.1*X(N-1))) WRITE (5,1333)Z(I)
                K=N
                 GD TD 85
        70 IF(Z(1)-X(K)) 85,75,80
75 YINT(1)=Y(K)
                 GD TD 90
         80 K=K+1
        IF(K-N) 70,70,65
85 YINT(I) = E4(K-1)*(X(K)-Z(I))**3/6./S(K)+EM(K)*(Z(I)-X(K-1))**3/6.
              1/S(K)+(Y(K)/~(K)-EM(K)*S(K)/6.)*(Z(I)-X(K-1))+(Y(R-1)/S(K)-EM(K-1)
              2*S(K)/6.)*(X(K)-Z(I))
         90 CONTINUE
                MXA = MAXO(N_1MAX)
                 IF(Q.EQ.16) WRITE(6,1010) N,MAX,(X(I),Y(I),Z(I),YINT(I),I=1,MXA)
    1010 FORMAT (2x21HNO. UF POINTS GIVEN =,13,30H, NO. OF INTERPOLATED POI
                                                                                                  12X11HX-INTERPOL.9X11HY-INTERPOL.//4
                                                                  15X5HY
               INTS =, 13, /10 X5HX
```

2E20.8)) 100 RETURN END

THE REAL PROPERTY OF THE PARTY OF THE PARTY

END

```
$18FTC SPLDER DECK
      SUBROUTINE SPLDER (X,Y,N,Z,MAL,DYDX)
      DIMENSION X(50), Y(50), S(50), A(50), B(50), C(50), F(50), W(50), SB(50),
     1G(50), F4(50), Z(50), DYDX(50)
      DO 10 I=2.N
   10 S(I)=X(I.-X(I-1)
      NO=4-1
      CM.S=1 0S 0D
0.0\(1)2=(1)A
      B(I)=(S(I)+S(I+1))/3.0
      C(1)=S(1-1)/6.0
   20 F(1)=(Y(1+1)-Y(1))/S('+1! ·(Y(1)-Y(1-1))/S(1)
       A(N)=-.5
       B(1)=1.0
       B(N)=1.0
       C(1)=-.5
       F(1)=0.0
       F(N)=0.0
       W(.1)=B(1)
       SB(1)=C(1)/W(1)
       G(1)=0.0
       90 30 I=2.N
       W(1)=B(1)-A(1)*SB(1-1)
       SB(I)=C(1)/W(I)
   30 G(1)=(F(1)-A(1)*G(1-1))/W(1)
       EM(N)=G(N)
       DO 40 I=2,N
       X=N+1-1
   40 EM(K)=G(K)-SB'K)*E4(K+1)
       DO 90 I=1, MAX
       K ≈ 2
 IF(Z(I)-X(1)) 60,70,70
60 WRITE (6,1000)Z(I)
1000 FORMAT (17H OUT DF BLADE Z =F10.6)
   GD TO 85
65 WRITE (6,1000)Z(I)
       K=N
       GO TO 85
   70 IF(Z(I)-X(K)) 85,85,80
    80 K=K+1
       IF(K-N) 70,70,65
    85 DYDX([]=-EM(K-1)*(X(K)-Z([))**2/2.0/S(K)+EM(K)*(X(K-1)-Z([))**2/2.
      10/S(K)+(Y(K)-Y(K-1))/S(K)-(EM(K)-EM(K-1))*S(K)/6.0
  90 CONTINUE
  100 RETURN
```

```
SIBFIC CONTIN DECK
      SUBROUTINE CONTIN (HA; WTFL, IND, I, WT)
      DIMENSION SPEED(3), WEIGHT(3)
  135 GO TO (140,150,210,270,370), IND
  140 \text{ SPEED(1)} = WA
      WEIGHT(1) = WTFL
      DELTA = WT/WTFL*WA-WA
      IF(ABS(DELTA).GT.100.) DELTA = SIGN(100.,DELTA)
      WA = DEL TA+WA
      IND = 2
      RETURN
  150 IF ((WTFL-WEIGHT(1))/(WA-SPEED(1))) 180,180,160
  160 SPEED(2) = WA
      DELTA = (WT-WTFL)/(WTFL-WEIGHT(1))*(WA-SPEED(1))
      IF(ABS(DELTA).GT.100.) DELTA = SIGN(100., DELTA)
      WA = DEL TA+WA
  166 \text{ SPEED(1)} = \text{SPEED(2)}
      WFIGHT(1) = WTFL
      RETURN
  170 WRITE (6,1000) I, WTFL
      IND = 6
      RETURN
  18C IND = 3
      IF (WTFL.GE.WT) GO TO 140
      IF (SPEED(1)-WA) 190,200,200
 190 SPEED(2) = SPEED(1)
      SPEED(1) = 2.0*SPFED(1)-WA
      SPEED(3) = WA
     WEIGHT(2) = WEIGHT(1)
     WEIGHT(3) = WTFL
     WA = SPEED(1)
      RETURN
 200 \text{ SPEED(2)} = WA
     SPEED(3) = SPEED(1)
      SPEED(1) = 2.0*WA-SPEED(1)
     WEIGHT(2) = WTFL
     WEIGHT(3) = WEIGHT(1)
     WA = SPEED(1)
     RETURN
 210 WEIGHT(1) = WTFL
     IF (WTFL.GE.WT) GO TO 140
     IF (WEIGHT(1)-WEIGHT(2)) 236,380,220
 220 WEIGHT(3) = WEIGHT(2)
     WEIGHT(2) = WEIGHT(1)
     SPEED(3) = SPEED(2)
     SPEED(2) = SPEED(1)
     SPEFD(1) = 2.0*SPEFD(2)-SPEED(3)
     WA = SPEED(1)
     RETURN
 230 IF (SPEED(3)-SPEED(1)-10.0) 170,170,240
 240 : ND = 4
 245 IF (WEIGHT(3)-WEIGHT(1)) 260,260,250
 250 WA = (SPEED(1)+SPEED(2))/2.0
     RETURN
 260 WA = (SPEED(3)+SPEED(2))/2.0
     RETURN
```

```
270 IF (SPEED(3)-SPEED(1)-10.0) 170,170,280
 280 IF (UTFL-WEIGHT(2)) 320,350,290
 290 IF (WA-SPEED(2)) 310,300,300
 300 \text{ SPEED(1)} = \text{SPEED(2)}
     SPEED(2) = WA
     WEIGHT(1) = WEIGHT(2)
     WEIGHT(2) = WIFL
     GO TJ 245
 310 \text{ SPEED(3)} = \text{SPEED(2)}
     SPEED(2) = WA
     WEIGHT(3) = WEIGHT(2)
     WEIGHT(2) = WTFL
     GO TO 245
 320 IF (WA-SPEED(2)) 340,330,330
 330 WEIGHT(3) = WTFL
     SPEED(3) = WA
     GO TO 245
 340 \text{ WFIGHT(1)} = \text{WTFL}
     SPEED(1) = WA
     GO TO 245
 350 IND = 5
     IF (WA-SPEED(2)) 380,360,360
 360 \text{ SPEED(1)} = \text{SPEED(2)}
     WEIGHT(1) = WEIGHT(2)
     SPEED(2) = (SPEED(1)+SPEED(3))/2.0
     WA = SPEED(2)
     RETURN
 370 \text{ IND} = 4
     WEIGHT(2) = WTFL
     WA = (SPEED(1)+SPEED(2))/2.0
     RETURN
 380 \text{ IND} = 5
 390 WEIGHT(3) = WEIGHT(2)
     SPEED(3) = SPEED(2)
     SPFED(2) = (SPEED(1) + SPEED(3))/2.
     WA = SPEED(2)
     RETURN
1000 FORMAT (/12H FIXED LINE 12,12H. MAX WT = F10.6)
```

```
$IBFTC SPLIN2 neck
      SUBROUTINE SPLIN2(X,Y,Y1P,N,SLOPE,EM)
      DIMENSION X(50), Y(50), S(50), A(50), B(50), C(50), F(50), H(50), SB(50),
     1G(50), EM(50), SLOPE(50)
      O NCMMOD
      INTEGER Q
      DO 10 I=2,N
   10 S(I)=X(I)-X(I-1)
      NO=N-1
      CM,S=1 0S 00
      A(1)=S(1)/6.
      B(I)=(S(I)+S(I+1))/3.
     C(I)=S(I+1)/6.
   20 F(I) = (Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
      A(N)=-.5
      B(1)=S(2)/3.
      B(N)=1.
      C(1)=S(2)/6.
     F(1)=(Y(2)-Y(1))/S(2)-Y1P
      F(N)=0.
     W(1)=B(1)
     SB(1)=C(1)/W(1)
      G(1)=F(1)/W(1)
     DO 30 I=2,N .
W(I)=B(I)-A(I)*SB(I-1)
     SB(I)=C(I)/W(I)
  30 G(I)=(F(I)-A(I)+G(I-1))/W(I)
     FM(N) = G(N)
     DO 40 I=2,N
     K=N+1-I
  40 EM(K)=G(K)-SB(K)*EM(K+1)
     SLOPE(1)=-S(2)/6.*(2.*EM(1)+EM(2))+(Y(2)-Y(1))/S(2)
     0050 I=2, N
  50 SLOPE(I)=S(I)/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/S(I)
      IF (2.E2.14) WRITE (6,100) N,(X(I),Y(I),SLOPE(I),EM(I),I=1,N)
 100 FORMAT (2X15HNO. OF POINTS =[3/10X5HX
                                                 15X5HY
                                                            15X5HSLOPE15X5H
     1 EM
         /(4F20.8))
     RETURN
     END
```

```
SIBFTC SPLINE DECK
      SUBROUTINE SPLINE (X,Y,N,SLOPE,EM)
DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),
     1G(50), FM(50), SLOPF(50)
      C NCMMOD
      INTEGER Q
      DD 10 I=2.N
   10 S(I)=X(I)-X(I-1)
      NO=N-1
      DO 20 1=2,NO
      A(I)=S(I)/6.
      B(1)=(S(1)+S(1+1))/3.
      C(1)=S(1+1)/6.
   20 F(I)=(Y(I+1)-Y(I))/S(I+1)-(Y(I)-Y(I-1))/S(I)
       A(N)=-.5
       B(1)=1.
       B(N)=1.
      C(1)=-.5
       F(1)=0.
       F(N)=0.
      4(1)=B(1)
       SB(1)=C(1)/W(1)
       G(1)=0.
       DO 30 I=2.N
       W(I)=B(I)-A(I)*Sb(I-1)
       SB(I)=C(I)/W(I)
   30 G(1)=(F(1)-A(1)*G(1-1))/W(1)
       EM(M) =C(A)
       DO 40 1=2.N
      K = N + 1 - I
   40 E'I'K; =G(K)-SB(K)*EM(K+1)
       SLOPE(1)=-S(2)/6.*(2.*EM(1)+EM(2))+(Y(2)-Y(1))/S(2)
       0050 I=2,N
   50 SLOPE(I)=S(I)/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/S(I)
IF (Q.EQ.13) WRITE (6,100) N,(X(I),Y(I),SLOPE(I),FM(I),I=1,N)
                                                      15X5HY
                                                                  15X5HSLOPE15X5H
  100 FORMAT (2X15HNO. DF POINTS =13/10X5HX
     164
           /{4F20.8}}
       RETURN
       END
```

```
SFTC INTGRL DECK
SUBROUTINE INTGRL (X,Y,N,SUM)
DIMENSION X(50),Y(50),S(50),A(50),B(50),C(50),F(50),W(50),SB(50),
IG(50).EM(50),SUM(50)
COMMON SRW
INTEGER SRW
DO 1C I=2,Y
10 S(I)=X(I)-X(I-1)
NO=N+1
SIBFTC INTGRL
     10 S(I) = X(I) - X(I) - I)

NO=N+1

DD 20 I = 2,ND

A(I) = S(I) / 6.0

A(I) = S(I) + S(I+1) / 3.0

C(I) = S(I+1) / 6.0

20 F(I) = (Y(I+1) - Y(I)) / S(I+1) - (Y(I) - Y(I-1)) / S(I)
           A(N)=-,5
           B(1)=1.0
           B(N)=1.0
           C(1)=-.5
F(1)=0.0
           F(N)=0.0
W(1)=5(1)
SB(1)=C(1)/W(1)
    SB(1)=C(1)/W(1)
G(1)=0.0
DD 30 I=2.N
W(1)=B(1)-A(1)*SB(1-1)
SB(1)=C(1)/W(1)
30 G(1:=(F(1)-A(1)*G(1-1))/W(1)
EM(N)=G(N)
           DO 40 I=2+N
           K=N+1-1
     40 EM(K)=G(K)-SB(K)*EM(K+1)
           SUM(1) =0.0
     DO 50 K=2+N

50 SUM(<) = SUM(K-1)+S(K)*(Y(K)+Y(K-1))/2*0-S(K)**3*(EM(K)+EM(K-1))/2
        14.0
IF(SRW.EQ.17) WRITE(6,1000) N,(X(I),Y(I),SUM(I),EM(I),I=1,N)
           RETURN
 1000 FORMAT (17HK NO. OF POINTS =[3/10X5HX
1 13X10H2ND DERIV./(4F20.8))
                                                                                         15X5PY
                                                                                                            15X5HSUM
```

```
SIBFTC LININT DECK
      SUBROUTINE LININT(X1, Y1, X, Y, TN, MX, MY, F)
      COMMON K
      DIMENSION X(MX),Y(MY), TN(MX,MY)
      00 10 J3=1,MX
   10 IF(X1.LE.X(J3))G0 T0 20
      J3=4X
   20 DO 30 J4=1,MY
   30 IF(Y1.LF.Y(J4))GO TO 40
      J4=MY
   40 J1=J3-1
      J2=J4-1
      EPS1=(X1-X(J1))/(X(J3)-X(J1))
      EPS2=(Y1-Y(J2))/(Y(J4)-Y(J2))
      EPS3=1.-EPS1
      FPS4=1.-EPS2
      F=TN(J1,J2)*EPS3*EPS4+TN(J3,J2)*EPS1*EPS4+TN(J1,J4)*EPS2*EPS3+
     1TN(J3,J4)*EPS1*EPS2
      IF(<.EQ.14) WRITE(6,1)X1,Y1,F,J1,J2,EPS1,EPS2
    1 FORMAT (8H LININT3F10.5,213,2F10.5)
      K=0
      RETURN
      END
```

```
$IBFTC CONTAL DECK
      SUBROUTINE CONTAL (WA, WTFL, IND, I, WT)
      DIMENSION SPEED(3), WEIGHT(3)
  135 GO TO (140,150,210,270,370), IND
  140 SPEED(1) = WA
      WEIGHT(1) = WTFL
      WA = WT/WTFL*WA
      IND = 2
      RETURN
  150 IF ((WTFL-WFIGHT(1))/(WA-SPEED(1))) 180,180,160
  160 \text{ SPEED(2)} = WA
      WA = (WT-WTFL)/(WTFL-WEIGHT(1))
         *(WA-SPEED(1))+WA
      IF (ABS(WA-SPEED(21)-100.0) 166,165,161
  161 IF(WA-SPEED(2))163,163,162
  162 \text{ WA} = \text{SPEED}(2) + 100.0
      GD TO 166
  163 \text{ WA} = \text{SPFFD}(2)-100.0
  166 SPEED(1) = SPEED(2)
      WEIGHT(1) = WTFL
      RETURN
  170 WRITE (6,1000) I, WTFL
      IND = 6
      RETURN
  180 \text{ IND} = 3
      IF (WTFL.GE.WT) GO TO 140
      IF (SPEED(1)-WA) 190,200,200
  190 SPEED(2) = SPEED(1)
      SPEED(1) = 2.0*SPEED(1)-WA
      SPEED(3) = WA
      WEIGHT(2) = WEIGHT(1)
      WEIGHT(3) = WTFL
      WA = SPEED(1)
      RETURN
  200 SPEED(2) = WA
      SPEED(3) = SPEED(1)
      SPEED(1) = 2.0*WA-SPEED(1)
      WEIGHT(2) = WIFL
      WEIGHT(3) = WEIGHT(1)
      WA = SPEED(1)
      RETURN
  210 \text{ WEIGHT(1)} = \text{WTFL}
      IF (WTFL.GE.WT) GO TO 140
      IF (WEIGHT(1)-WEIGHT(2)) 230,380,220
  220 WEIGHT(3) = WEIGHT(2)
      WEIGHT(2) = WEIGHT(1)
      SPEED(3) = SPEED(2)
      SPFED(2) = SPEEP(1)
      SPEED(1) = 2.0*SPEED(2)-SPEED(3)
      WC = SPEED(1)
      RETURN
  230 IF (SPFED(3)-SPEED(1)-10.0) 170,170,240
  240 \text{ IND} = 4
  245 IF (WEIGHT(3)-WEIGHT(1)) 260,260,250
  250 WA = (SPEFO(1)+SPEED(2))/2.0
```

RETURN

```
-3298
```

```
260 \text{ WA} = (SPEFD(3)+SPEED(2))/2.0
    RETURM
270 [F (SPEED(3)-SPEED(1)-10.0) 170,170,280
280 IF (WTFL-WEIGHT(2)) 320,350,290
290 IF (WA-SPEED(2)) 310,300,300
300 \text{ SPEED(1)} = \text{SPEED(2)}
     SPEED(2) = WA
    WEIGHT(1) = WEIGHT(2)
    WEIGHT(2) = WTFL
    GO TO 245
310 SPFED(3) = SPEED(2)
     SPEED(2) = WA
     WEIGHT(3) = WEIGHT(2)
    WEIGHT(2) = WTFL
     GD TO 245
320 IF (WA-SPEED(2)) 340.330.330
330 WEIGHT(3) = WTFL
     SPEED(3) = WA
     GD TO 245
340 \text{ WEIGHT}(1) = \text{WTFL}
     SPEED(1) = WA
     GO TO 245
350 \text{ IND} = 5
     IF (WA-SPEED(2)) 380,360,360
360 \text{ SPEED(1)} = \text{SPEED(2)}
     WEIGHT(1) = WEIGHT(2)
     SPEED(2) = (SPEED(1) + SPEED(3))/2.0
     WA = SPEFD(2)
     RETURN
370 \text{ IND} = 4
     WEIGHT(2) = WTFL
     WA = (SPEED(1) + SPEED(2))/2.0
     RETURN
380 \text{ IND} = 5
 390 WEIGHT(3) = WEIGHT(2)
     SPEED(3) = SPEED(2)
     SPEED(2) = (SPEED(1) + SPEED(3))/2.
     WA = SPEED(2)
     RETURN
1000 FORMAT (/12H FIXED LINE 12,12H, MAX WT = F10.6)
     END
```

SAMPLE OUTPUT

For aid in checking the operation of the program and as an illustration of the results obtained by the program, sample output is included below. The case used here is the same radial gas turbine rotor with splitter blades that was used for the numerical example in reference (2). The first output is from the calling program (Q3D) and consists of the values of variables MOB, H, M, and S. The value of MOB determines whether the meridional solution (FIXED) or the blade-to-blade solution (3PLBLD) or both is desired. In the example below MOB = 2 which gives both solutions. The value of H, M, r S is used to indicate whether the hub, meridional or shroud blade-to-blade solution is desired; the value 1 indicates that particular solution is desired, the value 0 not. In the example H = 1, and M and S = 0.

The data given immediately following "RUN NO. 1 INPUT DATA CARD LISTING", up to the line before "STAG. SPEED OF SOUND AT INLET", are a listing of the data on the input data cards for the meridional solution. This is followed by a list of the maximum computed streamline change at each iteration for the meridional solution. Convergence to the specified accuracy of .OO1" was obtained after 105 iterations. Then the calculated information is printed out for every 5th streamline. Data at more streamlines will be printed out if the value of NPRT is reduced from 5.

The output for the meridional solution is given in two parts. The first part gives values of DN, Z, R, WA, PRESS, WTR, and RC and the maximum streamline change for iteration No. 106. The second part for iteration No. 107 gives values for ALPHA, RC, SM, BETA, TT, SA, SB, SC, and SD, followed by a repetition of the values of DN, Z, R, WA, PRESS, WTR, and RC. The next output is the "STREAMLINE SPACING ALONG NORMAL", "BLADE COORDINATES", and "INLET ANGLES", which is computed by the meridional program (FIXED) and is used for input to the blade-to-blade program (SPLELD).

Next is the output from the blade-to-blade program at the hub. The first line is "RUN NO. 2 INPUT DATA CARD LISTING". The next two lines are data from input cards. The following lines up to the 3rd line before "THETA-CALCULATED AND/OR IN TUT", are computed by the program, and are the data which would have to be supplied if not furnished by the meridional program. The second line before "THETA-CALCULATED AND/OR INPUT" is data from an input card with a 1 in card column 5, indicating further data is given. A blank card here would indicate no more input for this blade-to-blade solution. The line just before "THETA-CALCULATED AND/OR INPUT" is data from an input card giving information of splitter blade coordinates near the trailing edge that were altered from those computed by the meridional program. The next data are the θ coordinates of the initial equally spaced streamlines at every quasi-orthongonal. This is followed by the stagnation speed of sound, and then a list of the maximum predicted streamline change at each iteration for the blade-to blade solution. Convergence to the desired accuracy of .001" was obtained in 27 iterations. The desired output is printed out for every 5th streamline at each quasi-orthogonal. Again, data at more streamlines can be obtained with a different value of NPRT.

The mean and shroud blade-to-blade solutions would have also been obtained on the same computer run if we had set M and S equal to 1, and supplied the appropriate input cards.

```
PUN NO.
                     INPUT DATA CARD LISTING
                                             11.0000
                                                         1.6667 1245.0000
       21
                     4030.0000
                                   0.6110
  14
   0
                     1950.0000
                                  221.5000
                                              0.0247
                                                         0.0010
                                                                    0.2500
                                                                               0.000
                   G
                        2.0000
                                   1.0006
                                            -25.1000
                                                         0.0500
  19
   0.7590
              C.8100
                         0.8900
                                   1.0150
                                              1.1200
                                                         1.2300
                                                                    1.3520
   1.5500
              1.8030
                         2.1000
                                   2.3500
                                              2.5500
                                                         2.9500
                                                                    3.1500
   0.
             -0.0030
                         0.0300
                                    0.1400
                                              0.3170
                                                         0.5900
                                                                    0.9430
   1.3550
              1.7650
                         2.1000
                                   2.3500
                                              2.5500
                                                         2.8500
                                                                    3.1500
                                              2.2420
   3.0100
              2.7360
                         2.5130
                                   2.32 30
                                                         2.1383
                                                                    2.1600
                                                         2.1470
                                                                    2.1470
                                   2.1470
   2.1470
              2.1470
                         2.1470
                                              1.4700
                                                         1.1583
                                                                    0.9230
0.7500
   3.0100
              2.6000
                         2.2300
                                   1.8220
   0.7970
              0.7524
                         9.7500
                                              0.7500
                                                         0.7500
                                    0.7500
                                             -0.
-0.1246
                       -0.
                                                                   -0-
  -0.
             -0-
                                   -0.
                                                        -0.
  -0.0012
             -0.0044
                                   -0.0567
                                                        -0 .2339
                                                                   -0.3966
                        -0.0201
  -0.6231
             -0.8604
                        -1.0978
                                   -1.3352
                                             -1.5725
                                                         0.8303
                                                                    1.0000
  -0.2000
              0.
                         0.2000
                                    0.4000
                                              0.5000
                                                                    2.2000
   1.1000
              1.2000
                         1.4000
                                   1.6000
                                              1.8000
                                                         2.0000
   2.4000
              2.600)
                         2.8000
                                    3.0000
                                              3.2000
                                              0.1270
                                                         0.1160
                                                                    0.0330
   0.1860
              2.1719
                         0.1560
                                    0.1410
                                              0.1065
                                   0.1210
                                                         0.0960
                                                                    0.0300
   0.1660
              0.15.0
                         0.1360
   0.1460
              0.1310
                         0.1160
                                    0.1010
                                              0.0870
                                                         0.0760
                                                                    0.0270
   0.1260
                         0.0960
                                    0.0820
                                              0.0570
                                                         0.0550
                                                                    0.0240
              C.1110
   0.1050
              0.0910
                         0.0760
                                    0.0620
                                              0.0480
                                                         0.0360
                                                                    0.0220
   0.0855
              0.0710
                         0.0560
                                    0.0420
                                              0.0280
                                                         0.0160
                                                                    0.0190
   0 0670
              0.0510
                         0.3360
                                    0.0220
                                              0.0080
                                                        -0,0050
                                                                    0.0160
                                              1.6000
  -0.0040
              0.4000
                         0.8000
                                    1.2000
                                                         2.0000
                                                                    2.4000
                                                                    3.0200
   0.6000
              1.0000
                         1.4000
                                    1.8000
                                              2.2000
                                                         2.6000
    STAG. SPEED OF SOUND AT INLET = 2011.55
   0.2073
    ITERATION NO.
                                MAX. STREAMLINE CHANGE =
                                                            0.397387
    ITERATION NO.
                                MAX. STREAMLINE CHANGE =
                                                            0.364558
    ITERATION NO.
                                MAX. STREAMLINE CHANGE =
                                                            0.338418
                                MAX. STREAMLINE CHANGE =
                                                             0.317072
    .CV NOIYANSTI
    ITERATION NO.
                                MAX. STREAMLINE CHANGE =
                                                             0.294279
    ITERATION NO.
                                MAX. STREAMLINE CHANGE =
                                                            0.277526
                                 MAX. STREAMLINE CHANGE =
    ITERATION NO.
                                                             D.261206
    ITERATION NO.
                    8
                                MAX. STREAMLINE CHANGE =
                                                             0.245780
                                                             0.731244
    ITERATION NJ.
                                 ME K.
                                      STREAMLINE CHANGE =
                                     STREAMLINE
                                                 CHANGE
                                                             0.217489
    ITERATION NO. 10
                                 MA X.
                                                            0.204468
                                 MAX. STREAMLINE CHANGE =
     ITERATION VO. 11
                                MAX. STREAMLINE CHANGE =
                                                            0.192163
    ITERATION NO.
                   12
    .CV VOITARATI
                                MAX. STREAMLINE CHANGE =
                                                             3.110295
    ITERATION NO. 14
                                MAX. STREAMLINE CHANGE =
                                                             0.169344
    ITERATION NO. 15
                                MAX. STREAMLINE CHANGE =
                                                             0.159114
     ITERATION NO. 16
                                MAX. STREAMLINE CHANGE =
                                                             0.149380
                                                             0.140383
     ITERATION NO. 17
                                MAX. STREAMLINE CHANGE =
                                MAX. STREAMLINE CHANGE #
    ITERATION NO. 18
                                                             0.132053
                                MAX. STREAMLINE CHANGE =
                                                             0.124201
    ITERATION NO. 19
                                MAX. STREAMLINE CHANGE =
    ITLRATION NO. 20
                                                             0.115800
     ITERATION NO. 21
                                MAX. STREAMLINE CHANGE =
                                                             0.109090
    ITERATION ND. 22
                                                 CHANGE
                                                             3.399879
                                MAX. STREAMLINE
     ITERATION NO. 23
                                      STREAMLINE CHANGE *
                                                             0.093197
                                MA X.
    ITERATION NO. 24
                                 MAX.
                                      STREAMLINE CHANGE =
                                                             0.087511
                                      STREAMLINE CHANGE
                                                             0.032277
     ITERATION NO. 25
                                 MAX.
     ITERATION NO. 26
                                 MAX. STREAMLINE CHANGE =
                                                             3.077439
     ITERALION NO. 27
                                MAX.
                                      STREAMLINE CHANGE =
                                                             3.)72972
     ITERATION NO. 28
                                                             0.068739
                                MAX. STREAMLINE CHANGE =
    ITERATION NO. 29
ITERATION NO. 30
                                 MAX. STREAMLINE CHANGE
                                                             0.064801
```

MAX. STREAMLINE CHANGE =

0.061076

```
ITERATION NO. 31
                                 STREAMLINE CHANGE =
                                                         0.057551
                            MAX.
                                                         0.054177
ITERATION VO.
               32
                            MAX.
                                  STRF AMLINE
                                              CHANGE
                                              CHANGE
                                                         0.051032
TERATION NO.
                            MA X.
                                  STREAMLINE
               33
                                              CHANGE
ITERATION NO.
               34
                            YAX.
                                  STREAMLINE
                                                         3.049114
                                  STREAMLINE
                                              CHANGE
                                                         0.045275
ITERATION
          . CF
               35
                            MAX.
.CV NOITARSTI
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                                         0.042680
               36
                                              CHANGE
                                                         0.040203
                            MA X.
                                  STREAMLINE
. CH HOLTASTI
               37
                                  STREAMLINE
                                                         0.037993
ITERATION
          VO.
               38
                            MAX.
                                              CHANGE
ITERATION
          NO.
               39
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                     *
                                                         0.035860
                                                         1.333894
                                              CHANGE
ITERATION
          ٧З.
               40
                            MA X.
                                  STREAMLINE
ITERATION
          40.
               41
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                         0.031966
                                                         0.030159
          Y').
               42
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                                     =
ITERATION
ITERATION
          vo.
               43
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                         0.028456
VEITARATI
          ND.
                            MA X.
                                  STREAMLI NE
                                              CHANGE
                                                         7.026837
ITERATION
               45
                            44 X.
                                  STREAMLINE
                                              CHANGE
                                                         3.325363
          · CV
                            MAX.
                                              CHANGE
                                                         0.023967
                                  STREAMLINE
ITERATION
          · CF
               46
          NO.
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                                     =
                                                         0.022629
ITERATION
               47
ITERATION
          . CV
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                                      2
                                                         0.021369
                                                         0.020179
                                              CHANGE
ITEP AT ION
          . CF
               49
                            MAX.
                                  STREAMLINE
TYERATION
          . CF
               50
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                         0.019052
                                                         0.017998
                                  STREAMLINE
                                              CHANGE
ITERATION
          . CF
               51
                            MA X.
ITERATION
          ND.
               52
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                      3
                                                         3.317031
                                  STREAMLINE
                                              CHANGE
                                                         0.016058
ITERATION
          · CV
               53
                            MA X.
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                         0.015168
ITERATION
               54
          NO.
                                              CHANGE
               55
                            MA X.
                                 STREAMLINE
                                                         2.214330
ITERATION
          V).
ITERATION
          · CF
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                      =
                                                         0.013539
               56
ITERATION
                            MAX. STREAMLINE CHANGE
                                                         0.012791
          . CF
               57
ITERATION
                            MA X.
                                  STREAMLINE CHANGE
                                                         0.012087
          · CV
               58
                                  STREAMLINE
                            MAX.
                                              CHANGE
                                                         0.011487
ITERATION
          · CV
               59
ITERAYION
                            MA X.
                                  STREAMLINE
                                              CHANGE =
                                                         ).)10813
          YD.
               60
                                              CHANGE
ITERATION
                            MAX.
                                  STREAMLINE
                                                         0.010206
          NO. 61
ITER AT TON
                            MAX.
                                  STREAMLINE CHANGE
                                                         0.009696
          VJ. 62
                                                         0.009128
                                                     =
                            MAX. STREAMLINE CHANGE
ITERATION
          · CV
              63
                                                          2.228669
ITERATION
          ₩7. 64
                            MA X.
                                  STREAMLINE
                                              CHANSE
ITERATION
                            MAX.
                                  STREAMLINE CHANGE
                                                         0.008158
          NJ. 65
ITERATION
                                  STREAMLINE
                            MA X.
                                              CHANGE
                                                          J.307750
          · CV
              66
          Mu.
              67
                            MA X.
                                  STREAMLINE CHANGE
                                                          0.007291
ITERATION
ITERATION
           47. 58
                            MAX. STREAMLINE
                                              CHANGE =
                                                          0.006937
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                                      =
                                                          0.006519
ITERATION
          NO .
               69
          NS.
                            MAX.
                                  STREAMLINE CHANGE
                                                          3.036204
ITERATION
               70
                                                          0.005890
                            MAX.
                                  STREAMLINE CHANGE
          · CF
                                                      #
ITERATION
               71
ITERATION
           . CF
               72
                            A AM
                                  STREAMLINE CHANGE
                                                      70
                                                          0.005517
          . SP
                                  STREAMLINE CHANGE
                                                      ×
                                                          3.005248
ITERATION
               73
                            MA X.
                            MA X.
                                  STREAMLINE
                                              CHANGE
                                                          0.004985
          40.
               74
ITERATION
                                                          0.004665
          . СИ
                                              CHANGE
ITERATION
               75
                            MAX.
                                  STREAMLINE
                                  STREAMLINE CHANGE =
ITERATION
           ND.
               76
                            MA X.
                                                          0.004424
                                  STREAMLINE
ITERATION
           V7.
               77
                            MA X.
                                              CHANGE
                                                      *
                                                          0.004201
                                              CHAMGE
                                  STREAMLINE
ITERATION
          . CM
                            MAX.
                                                          0.003997
               78
                                  STREAMLINE
                            MA X.
                                              CHANGE
                                                          0.003801
               79
ITERATION
           ٧Э.
                                                          0.003538
                                  STREAMLINE
                                              CHANGE
                                                      =
ITERATION
           · GF
               80
                            MA X.
ITERATION
           • CV
                            MAX.
                                  STREAMLI NE
                                              CHANGE
                                                      =
                                                          0.003360
               81
                                              CHANGE
                                                      =
ITERATION
               82
                            MAX.
                                  STREAMLINE
                                                          0.003189
           NO.
          * 0V
                                              CHANGE
                                                          3.333026
                            MAX.
                                  STREAMLINE
ITERATION
               81
                                                          0.002872
          . CV
                            MAX.
                                  STREAMLI NE
ITERATION
               84
                                              CHANGE
                                                          0.002728
ITERATION
           NO.
               85
                            MAX.
                                  STREAMLINE
                                              CHANGE
                                              CHANGE
ITERATION
           · CF
               86
                             YA X.
                                  STREAMLINE
                                                          0.002603
                                  STREAMLINE
                                              CHANGE
                                                          0.002406
ITERATION
               87
                            MAX.
           NO.
                                              CHANGE
                                                          3.002284
ITERATION
                            MA X.
                                  STREAMLINE
           · CV
               68
                                              CHANGE
           . 07
                                                      #
                                                          0.002178
ITERATION
               89
                            MAX. STREAMLINE
           · CF
                            MAX. STREAMLINE CHANGE
                                                          0.002058
ITERATION
               90
```

心意できる

E-3298

9.0	0.810334	2, 550000	1.560569	798.011	103	7.742152	000000-0-	5.724055	
9.0	0.802349	2,850000	٠.	793.153	175	7.727714	-0.00000		
9.0	0.800654	3,150000	1.550957	793.904586	989	7.700324	-0.00000		
STREAMLINE 1	91								
0	0.581970	0.582132	3.01000	343.181992	260	10.748186	-0.000000	2.603305	
5.6	10-160-0	0.040040	201020102	1015-406		C+0017-01			
- a	0.14(258	0.754618	7.403363	10000 P	7.7	9.282377	000000-0-		
	0.00004	1 014026	2 1 4 0 0 4 3	843.744		C. 1000.1	000000-0-		
	1.064116	1.141556	2.04140 2.04140	543.44934.		A. 903367	-0-00000		
	1.144435	1 - 362246	7.000515	546.171		8.947193	-0-00000		
	18500	1.524391	1.06049	522.184326	126	6.913226	-0.00000		
	190466	1.797410	1.941799	581,572	E C.	8.722108	-0.00000		
	1,157251	2.10000	466400	767 - CAT	7.4	8.163368	-0.00000		
	127490	2.350000	1-877456	987.544	99	7.352173	-0.00000		
	110010	2 880000	3 0	870.631	0	7.743914	-0.00000	6	
	1.115434	2.850000	1.00000	A41-A75244	**	7-743157	000000-	3.334	
-	114563	3.150000		861,700	946	7.71.6558	-0.00000	3-16419	
C THE MANAGES	0001	20000	•		ţ				
SINCRAL LAC		000011	000	747 948	-	10.718747	•	2. 144050	
	. (38/88	0.124000	0000000	7000		71017		1000000 F	
	0.654176	0.0000	0000000	0/70414	20	0 411134	• •	12.414844	
	0.405361	6000000	000616-2		7 7	040660		CCARCC	
-	1.010889	1.015000	000076.5	071+160		440000	.	C.C	
	114024	1.120000	100242*2	670-076	٠.	200719	÷	0.440.41	
7*1	1.212764	1.230000	5.1881.5	015.510	71.	6-13/076	• •	50.101.03	
	296206	1.352000	2.163033	639.562	693	R. 84245	å e	7.14.8E. * 6.E.	
,",	.364230	1.550000	2-14/000	200.028	£03	8.936932	Ď,	66.1070.00	
-	.395782	1.803000	2.147033	165.644	ec :	8.770262	ć	-5.716556	
1.3	.397322	2.100000	2.147000	828-493	217	8.181007	ċ	1.212459	
	196918	2,350000		1051.483	92	7.342592	ď	-0.051705	
1.3	.396596	2.550000		937.061	640	7.758596	ė,	7.513247	
-	.396448	•	2-147000	929.850731	131	7.755997	ċ c	\$E.200.0-	
E•1	*396473	3.150000		479.626	-	-	•	C + 101 - 1-1	
ITERATION VO.106	1 49.106	MAX, STREAMLINE	CHANGE "	0.300915					
				9					
TTERATION 40.107	40.107								
AL PHA	ۍ ک	ž.	9ETA	E	SÀ	æ	S	0.0	
STREAML INE	_	,							
-92.079852	1.197485	0.	246680.62-	282/90-0	6400000	607414.6042	0.4815/5	1.00.00 to	
76.07.05- 0.07.07.00			010000	4040404	0.012127	204 423434	K 484817	- T-10-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
14848) *OS-	5.155613		0.00.0-	0.13011	1.898475	772.642024	4 990.815		
-64 F4753E			082000	0.130587	4.488724	-245.542917	49060	152,314234	
-41.600297			-0.215887	0-135975	4.941300	150.630854	4.387139	-165.170145	
-24.788874			-0.349154	0.134488	4.387074	177.544947	573	-357.595392	
-10.733212		2 - 86 7575	-4.452844	0.126025	4.636741	438.544933	0.878905	1201.911514	
-2.107058			-16.745259	0.119840	2.2.2521	2199.423476	0.082541	4457.376311	
0.231244	•		-31.152805	0.134399	-4.776276	4187,341248	0.019777	962.833252	
-0.056674			-41.573327	0.055497	-6.961608		-0.005885	1935.43572	
0.019123	٠		-41.599141	•	-7.076388	356.85028	0.002238	-24/13.280823	
-0.005654			-41.533157	•	-7.070536	359.8840	-0.000698	2129.153574	
0.004545			-41.563993	·c	-7.067869	5357.933105	0.000561	-1139.17218n	
STREAM INE	9		;						
-86.192426		÷0	-25.051566	0.054338	0.111445	2189.869476	1.674544	15.216757	
-80.034306		0.371252	-1 - 79 585 F	0.164735	109014-0	2018E0 -1471	20101.	٠.	
-69.908507	4400.7	015650.	0.00000	* D2 + C0 * C	E 471243	- FED 00407	C4:000 C		
! >>-	VADY1690	C4.60 # D # 1	\$ P.	140041.00	14911496	2730374545	34 9000 01		

Control of the Contro

309	1599	1505	682	5.0	953	261	1531	262	348		335	(1)	1617	227	.145	.235	612	1895	110	987	5101	225		*	213		231	308	165	548	570	902	0151	875	6.83	535	.053	.433	626	00	0.50	454	356	152	414	1744	141	187	350		50.5	580	ມ	1.107685
		-443.758505			0 11545. 11953		5 -4214-155281															124664.2246- 0		8 - [347,857	1987 27841	7.1.7	Ī	950 477335							1064.445543													9 12528-465187		'	9 1883-128235	•	~	417
6. 10092	3.89343	2.581762	0.55212	-0.759083	-1-15344	- n. 59049R	-0.339076	-0.09485	0.0000		2.03729	6.13737	8. 55203	A.68759	7.04841	4.08792	7.766271	0.461877	-0.665317	-:-1294R1	-0.577799	-0.255840	6	-0.00303	102046 0	44.76974	9. 58553	17.38991	6.99766	6.543151	2.565247	0.307124	-0.321584	-0.64426	-0. 31 8919	-0.102254	-0.033905	-0.001073	4 1750371	7.515601	11.17551	15.28024	10.54927	8.09463	1.71221	0.02 1311	0.01535	-0.005199	0.001#86	- 0 nood 74	\$1000.0	-0-00011	2	183.159516
-919.105957	154.597387	602.14441;	1369.543198	3610.050267	5348.411671	6735.892517	6651.391052	6476.933147	6579.204529		1633.758865	-1225.097336	-1463,916474	-1821.467579	-446.663994	462.410961	823.455223	2410.478882	4460.972473	6245.222778	7216.994141	7133.839355	7081.067505	7081.939575	471 205442	-2270-030084	-3487.054230	-2121,083954	-742.787464	735.852089	1605.810364	3154.6189RR	5288.41436R	6761.921814	7414,753967	7361.601929	7344.824158	7364.801453	-644 900774	F1724 46241	- KROD - 428711	-2319. 5799R7	-850.037590	1445.935242	2661.694275	3448.332916	5518.082153	6979.509644	7502.671143	7500.364758	7503.769592	7502.593506	PRESS	10. 7080RR
6.935300	6.487713	6.697061	2.251640	-3.307820	-4.590942	-3.981251	-5.712037	-6.445198	-6.585154		0.274004	1.585766	4.057788	7.370506	9.157116	7.858189	8.181177	2-265741	-3.557184	-4.071487	-3.978477	•	•	-5.403021	077036 0	1.926672	4.873506	10.717844	9.884747	14.388179	9.953196	2.457659	-3.280351	-4.839810	-4.251562	-5.205934	-5-285952	-5.315227	3134616		4.407071	14.695595	16.432699	73.452905	12.169130	1.550693	-3.008553	-4.136812	-4.851517	-4-836128	4.844119	-4.643053		****
0.190518	0.100520	0.097406	0.092929	0.096789	0.398458	0.062374	٥.	ċ	ં		0.051653	1.755171	0.075044	0.081511	0.083331	0.082728	0.080433	0.077098	0.082852	0.090418	0.065479	· c	• 0	•	******	0.044640	0.065078	0.070376	0.071436	0.072763	0.068634	3.066187	0.071426	0.080416	0.066376	•	ċ	•	410000	700000	0.04720	0.062083	0.062798	0.061950	0.059949	0.057599	ě	٩	Ę	ė	•	•	4	
-0.035073	0.133227	-2.419274	-11.559214	-28.837953	-44.319237	. 55.123064	-54.870390	-54.773328	-54.713467		-24.931461	-3,022355	-0.337564	-0.339337	0.154729	-1.059155	-5.336945	-16.719355	-35.307061	-51,350363	-61.572864	-61.545811	-61.519542	-61.478693	1007 69 46-	-4-158022	0.014372	0.125683	-0.588606	-3.456959	-8.538727	-21.074204	-39.933691	-55.721359	-65.770150	-65.679476	-65.734525	-55.580281	01130 FOL	01+C4C+12-	0.03486	-0.536589	-2.599059	-6.177768	-11.873043	-24.833829	-43.332332	-59.977937	-68.572921	-68.522358	-68.579542	-69.506514	Œ	
1.323094	1.600244	1.877626	7.196640	7.540141	2.868165	3.123841	3.324773	3.624930	3.924937		ċ	0.338687	0.629759	0.925033	1.143061	1.349809	1.556557	1.820095	2.123451	2.439756	7.694593	2,895246	3.195350	4.495355	•	111905	0.570519	0.826452	0.997837	1.155777	1.315263	1.540951	1.815396	2.119982	2.371720	2.571876	2.871899	3.171900		0.278706	0.515622	0.738893	0.874617	0.997156	1.122328	1.320755	1.573755	1.870755	2.120755	2,320755	2.620755	2-920755	~	
9.370177	7.566375	7.235368	2.777719	-1.669528	0.204163	9.123643	2.908270	0.802779	0.384300		2.497983	6.356512	9.465882	11.392922	11.555781	8.863362	8.772571	3.153880	-1.804881	-1.054492	8.595780	2.224066	2169690	0.307582	300000	7.074244	10.753308	15.639882	12-117799	15.887104	10.649172	3,756306	-1.254417	-1.489208	6.332346	0.731679	0.334510	0.154187	30770	7 627203	12.414864	207.02.14	19.584972	25.169187	13.080172	3.076135	-0.716506	0.212459	-0.061705	0.013247	-0.002939	025100-0-	•	•
-42.256077	-39,969021	-21.08;983	-13.777638	-12.924515	-14,103229	-8.443632	-3.405184	-0.843168	0.000664	STREAML INE 11	-82,339553	-75.512821	~64.616480	-49.688977	-37.586169	-27.483977	-18.681746	-11,522017	-10.408468	-12,799867	-7.556935	-2.692810	-0. 701719	-0.029677	STREAML 14E 16	-74 113400	-63.050170	-46.741236	-35.281972	-24.454983	-14,452373	-7.123102	-5.599013	-7.582535	-4.289842	-1.125251	-0.367505	-0.011572	31 NEATLE 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 2 2 30 10 2 3	-64-180804	-46-117389	-32,699182	-19.041815	-8.004016	-1.045930	0.292417	-0.072003	0.017547	\$19500°0-	0.001766	-0.001392	CTDEAMITHE	SINCAME INC.

E-3298

9 2.938333 4 5.758834												r													0.344307			5-255965	•	_												7.075131							0 -1-254530					
44.381239	A 4 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		111100101	17.000.701	202 - St. 2	21 5, 551 5, 51 5, 51 5, 51	401/0-497	066212.666	000000	670-059	77466	084.2/176	204.097569	79.501 489	74. 960695	165, 568123	737.262316	297. 768276	211.972967	207.946825	253.863977	#C3505.574	2007	ARRE	73 1.246048		224. 906893	5071	.:	256. 489874	334.957592	238,306179	23% 808084	191.624953	15121-152	8/6:346	01012131313	5	802.454147		24.7.099993	183.061054	720.004879	357. 52055		256.854904		;	276, 503910	404-695511	849.245132	908-501259	14 6 6 6 0 0 1 1 1 1	500057 520
10.213267	0.000	9.309812	190,000	9.10.813	07 10 00 °E	8. 351356	5 Tr 14 0	8.00000 L	CU-010.	10136101	C+00+0.	01011010	10.787158	10.23366	9.790318	9.400119	9.145304	8.948539	8.876746	8. 750896	8.547420	8.090542 7.644130	7 100110	7 205014	7-672917		076077-01	. 0	9, 787643	9.395243	9.152268	9.04.40.6	8. 957729	8.864217	8-653436	F. 130874	1.04464	7.73770	7, 700321		10.748185	10.210644	9. 733873	9.282370	4.089538	8.493366	8. 17.49. H	8.913236	8. 722123	185691.8	7.352176	7. 743912	C# 16 #)	4 71462
269.531698	24176 046	704117.647	242.361450	257 - 516582	1/8559-622	46.1256.34	*000 ** 020	518.508.50	07,000	001011-040	16636.410	687-157875				324,333592	345,822739	369.588024	343.962872	364.595916	440.297020	0 .	100000	100000000000000000000000000000000000000	ç		325.857048	328.782814	365.786694	411.984879	448.605117	440.459671	437.571918	444.565285	513.566574	55000000000000000000000000000000000000	7079-006		2000111007		0	369.316677	436.518093	519.947258	543.757790	543.4590 . 1		522.189201	581.577255	762.741524	19248767	670.436935	78 I 78 I 78 I 8 I	
2.600000		C00228.1	1.4/0000	1.155000	0.923050	00.797.003	3- 132300	0.750000	0000010	000000	0-150000	0. 75 0000	3.01000	2.541075	2-327019	2.023113	1.808135	1.643613	1.522107	1.479573	1.353707	1.275685	211772-1	1 102083	1,191034		3.013000	2-577351	2.402804	2.154130	7.033639	1.893107	1.812079	1.746016	1.590830	1.626199	617010	1.000001	1.550981		3.01000	2.708508	2.453585	2.252905	2.140998	2.051774	5.039539	1.959565	1.941825	1.907038	1.877478	1.959555	2 + B + S + B + S	700376
000800-0-	90000	0.14000	0. 31 7900	0.590000	0.941000	1.355000	1.05000	2.100000	2.350000	0000557	2.850900	3.15/090	0,201052	0-24249	0.324828	0.482586	0.668713	n. 891 753	1.141088	1.446364	1,781391	2.100000	000005	0000000	3.10000	2000211	0.395533	0.457608	- 20	0.714284	0.872037	1.046765	1.736964	1.492080	1.790574	0000012	0.00055	306/151-52			0.582138	9.645654	0.739834	0.885143	1.014942	1.151568	1.302257	1.524385	1.797411	2.100000	2.350000	2.550000	2.850000	
ုံစီင	•	• 6	•	•	•	ò	•	•	• (• 6	• 0		SINEAMLINE O	0.248025	0.310479	0.395792	0.487955	0.571804	0.631045	0.639193	0.602046	0.525808	0.412.080	9/976**	0.44200	CTDCAME INC. 11		0.466942	0.552826	0.663473	0.770040	0.865545	0.936476	6.959023	939959	0.876405	0.826133	0.01004	0.800676	STREAMLINE 16	0.581975	0.657534	0.747275	n_860868	2.968302	1.064143	1.144462	1.18-031	1. 20495	1.157279	1.127415	1.119229	1.115445	

MAX. STR ANLINE CHANGE = ITERATION NO.197

E-3298

STREAMLINE SPACING ALONG NORMAL

	7,500 -0,000 -0,000 -0,001 -0,000 -0,
	0.2753 -0.2753 -0.2753 -0.2754 -0.2724 -0.2773 -0.2773 -0.2956 -0.3975 -0.5754 -0.5754 -1.0868
	SARDUD SARDUD 10.2946 10.2946 10.2946 10.3956 10.3956 10.4440 11.4486 11.4988
	10.5649 -0.5622 -0.5622 -0.5630 -0.5880 -0.5880 -0.6631 -0.8620 -1.1192
SHROUD 0.034168 0.034168 0.024822 0.025841 0.025764 0.025764 0.025764 0.038419 0.038419 0.052036 0.052036 0.0554241	KMX -0.0086 -0.0122 -0.0126 -0.0222 -0.0224 -0.0284 -0.3347 -0.3347 -0.3347 -1.1572
10.00.00.00.00.00	KHP1 -0.2770 -0.2734 -0.2734 -0.2647 -0.2641 -0.2596 -
#FAN 0.037813 0.047665 0.04754 0.044754 0.045669 0.052244 0.05224 0.05027 0.066784 0.066623	BLACE CODROINATES MHM MHM -0.2942 -0.2 -0.2978 -0.2 -0.3012 -0.2 -0.3045 -0.2 -0.3045 -0.2 -0.3048 -0.2 -0.4308 -0.2 -0.6203 -0.2 -0.6203 -0.2 -1.6668 -1.5 -1.7988 -1.4
4	10.00000000000000000000000000000000000
HUB 0.040693 0.052181 0.0526181 0.0524510 0.170835 0.170835 0.175676 0.175676 0.134393 0.11065 0.10653	KMX -0.0112 -0.0164 -0.0329 -0.0529 -0.0584 -0.0584 -0.0587 -0.0912 -0.3765 -0.3765
	KHP1 -0.244 -0.2528 -0.2528 -0.2528 -0.2128 -0.2128 -0.3120 -0.5229 -0.5229 -1.08121 -1.4988
	HUB -0.2968 -0.3020 -0.3020 -0.3389 -0.3389 -0.3463 -0.3463 -0.36621 -1.6621 -1.6621 -1.7988
	-0.5500 -0.5548 -0.55482 -0.55482 -0.52482 -0.52484 -0.52484 -0.52484 -0.6036 -1.3724 -1.3724 -1.3724

INLET ANGLES - 418 -24,56. HEAN -23,38, SHROJD -21,51

```
RUN NO.
                      INPUT DATA CARD LISTING
                         0.1500
        8
                   2
                                    0.0010
                                               0.2000
  22
              n
              3.3100
                         0.0380
  0.
                                              11.0000
                                                          1.6567 1245.0000
  15
       22
              8
                   0
                      4030.0000
                                    0.0305
                                               0.0247
                                                                     0.2500 6941.2549
                  12
                      1950.0000
                                  221.5000
                                                          0.7717
                                    0.0000
   0
        5
                       -24.5566
                                               0.1500
  -0.5561
                                   -0.5482
             -0.5600
                        -0.5548
                                              -0.5384
                                                         -0.5268
                                                                    -0.5125
                                   -0.8085
  -0.4984
             -0.5103
                        -0.6036
                                              -1.0977
                                                         -1.3724
                                                                    -1.7284
  -2.0844
                                                                    -0.0587
   0.0151
             -0.0112
                        -0.0164
                                   -0.0229
                                              -0.0328
                                                         -0.0444
                                                                    -1,1572
  -0.0729
             -0.0972
                       -0.1918
                                   -0.3765
                                              -0.6005
                                                         -0.9312
  -1.5132
                                              -0.3184
                                                         -0.3300
                                                                    -0.3443
  -0.2705
             -0.2968
                        -0.3020
                                   -0.3025
  -0.3585
             -0.2744
                        -0.2692
                                                         -0.2412
                                                                    -0.2269
  -0.2705
                                   -0.2626
                                              -0.2528
  -0.2128
                        -0.0002
                                    0.0025
                                               0.0117
                                                          0.0264
                                                                     0.0492
              0.
   0.
   0.0786
                                                                     ú. 2375
              0.1129
                         0.1471
                                    0.1750
                                               0.1958
                                                          0.2125
   0.2625
                                                                     0.0965
   0.2758
              0.2508
                         0.2167
                                    0.1858
                                               0.1518
                                                          0.1225
                                                                     0.0625
   0.0769
              0.0664
                         0.0627
                                    0.0625
                                               0.0625
                                                          0.0525
   0.0625
                                    0.0057
              0.0034
                         0.0043
                                               0.0079
                                                          0.0109
                                                                     0,0142
   v.0032
   0.0172
              0.0167
                         0.0146
                                    0.0112
                                               0.0092
                                                          0.0085
                                                                     0.0083
   0.0082
711-0.33890 811-0.31900 712-0.23630 812-0.28660 812-0.286600
 THETA-CALCULATED AND/OR INPUT
                                              -0.5384
                                                         -0.5268
                                                                    -0.5125
  -0.5561
             -0.5600
                        -0.5548
                                   -0.5482
  -0.4984
             -0.5103
                        -0.6036
                                   -0.8085
                                              -1.0977
                                                         -1.3T24
                                                                    -1.7294
  -2.0844
                                                                    -0.4957
                        -0.5295
                                              -0.5164
                                                         -0.5071
                                   -0.5243
  -0.5275
             -0.5337
                                                                    -1.6998
                                              -1.0728
  -0.4844
             -0.4897
                        -0.5830
                                   -0.7869
                                                         -1.3438
  -2.0558
                                                                     -0.4789
                        -0.5042
                                   -0-5003
                                              -0.4944
                                                         -0.4974
  -0.4990
             -0.5074
  -0.4704
                        -0.5624
                                              -1.0479
                                                         -1.3153
                                                                     -1.6713
             -0.4690
                                   -0.7653
  -2.0273
                                              -0.4724
                                                         -0.4578
                                                                     -0.4621
  -0.4704
             -0.4810
                        -0.4789
                                   -0.4763
                        -0.5419
                                   -0.7437
                                              -1.0231
                                                         -1.2867
                                                                     -1.6427
  -0.4564
             -0.4484
  -1.9987
                                              -0.4504
                                                                     -0.4453
  -0.4418
             -0.4547
                        -0.4537
                                   -0.4524
  -0.4424
-1.9701
                                   -0.7221
                                              -0.9982
                                                         -1.2582
                                                                     -1.6141
             -0.4277
                        -0.5213
  -0.4133
-0.4284
                                              -0.4284
                        -0.4284
                                   -0.4284
                                                         -0.4284
                                                                     -0.4284
             -0.4284
                        -0.5007
                                   -0.7005
                                              -0.973;
                                                         -1.2296
                                                                    -1.5856
             -0.4071
  -1.9416
             -0.4021
  -0.3847
                        -0.4031
                                   -0.4044
                                              -0.4064
                                                         -0.4087
                                                                    -0.4116
  -0.4145
             -0.3864
                        -0.4801
                                   -0.6789
                                              -0.9485
                                                         -1-2713
                                                                    -1.5570
  -1.9130
                        -0.3779
                                              -0.3844
                                                         -0.3890
  -0.3562
             -0.3757
                                   -0.3805
                                                                    -0.3948
                                                                    -1,5285
                                              -0.9236
                                                         -1.1725
  -0.4005
             -0.3657
                         9.4595
                                   -0.6573
  -1.8845
                                                         -0.3694
                                                                    -0.3780
                                   -0.3565
  -0.3276
             -0.369+
                        -0.3526
                                              -0.3624
                                                         -1.1439
                                                                    -1.4999
  -0.3865
             -0.3451
                        -0.4289
                                   -0.6357
                                              -0.8988
  -1.8559
                        -0.3273
                                              -0.3404
                                                         -0.3497
                                                                     -0.3612
  -0-2990
             -0.3231
                                   -0.3325
  -0.3725
                                              -0.8739
                                                         -1.1154
                                                                     -1.4713
                        -0.4133
                                   -0.6141
             -0.3244
  -1.9273
                                                                    -0.3389
                                                         -0.3300
  -0.2705
             -0.2968
                        -0.3020
                                   -0.3085
                                              -0.3184
  -0.3190
                                              -0.0491
                                                         -1.0869
                                                                    -1.4428
             -0.3038
                        -0.3977
                                   -0.5925
  -1.7988
```

-U.2705	-0.2744	-0.2692	-0.2626	-0.2528	-0.2412	-0.2363
-0.2866	-0.3038	-0.3977	-0.5925	-0.8491	-1.0868	-1.4428
-1.7988						
-0.2419	-0.2481	-0.2439	-0.2387	-0.2308	-0.2215	-0.2101
-0.1988	~0.2831	-0.3771	-0.5709	-0.8242	-1.0582	-1.4142
-1.7702						
-0.2134	-0.2218	-0.2186	-0.2147	-0.2088	-0.2013	-0.1933
-0.1848	-0.2625	-0.3565	~0.5493	-0.7993	-1,0297	-1.3857
-1.7417						
0.1848	-0.1954	د 193ء ~0	-0.1907	-0.1858	-0.1822	-0.1765
-0.1708	-0.2418	-0.3359	-0.5277	-0.7745	-1.0011	-1.3571
-1.7131		•				
-0.1562	-0.1691	-0.1681	-0.1668	-0.1648	-7.1625	-0.1597
-0.1568	-0.2212	~0.3153	-0.5061	-0.7495	-0.9726	-1.3285
-1.6845						
-0.1277	-0.1428	-0.1428	-0.1428	-0.1428	-0.1428	-0.1428
-0.1428	-0.2005	-0.2947	-0.4845	-0.7248	-0.9443	-1.3000
-1.6560						
-0.0991	-0.1165	-0.1175	-0.1188	-0.1208	-0.1251	-0.1260
-0.1289	-0.1799	-0.2742	-0.4629	-0.5999	-0.9154	-1.2714
-1.6274						
-0.0706	-0.0901	-0.0923	-0.0949	-0.0988	-0.1034	-0.1092
-0.1149	-0.1592	-0.2536	-0.4413	-0.6750	-0.8369	-1.2429
-1.5989						
-0.0420	-0.0638	-0.0670	-0.0709	-0.0768	-0.0938	-0.0924
-0.1009	-0.1386	-0.2330	-0.4197	-0.6502	-0.8533	-1.2143
-1.5703						
-0.0134	-0.0375	-0.0417	-0.0469	~0.0548	-0.054i	-0.0756
-0.0869	-0.1179	-0.2124	-0.3981	~0.6253	-0.9298	-1.1857
-1.5417						
0.0151	-9.0112	-0.0164	-0.0229	-0.0328	-0.0444	-0.0587
-0.0729	-0.0972	-0.1918	-0.3765	-0.6005	-0.8012	-1-1572
-1.5132						

STAG. SPEED OF SOUND AT INLET = 2011.55

ITERATION !	. ON	1	MAX.	STREAMLINE	CHANGE	=	0.068444
ITERATION ?	. OV	2	MAX.	STREAMLINE	CHANGE	#	0.058218
ITERATION '	. CV	3	MAX.	STREAMLINE	CHANGE	=	2.249416
ITERATION '	νэ.	4	MA X.	STREAMLINE		=	0.041949
ITERATION '	NO.	5	MAX.	STREAMLINE		=	0.035614
	. CV	6	MAX.	STREAMLINE	CHANGE	=	0.230236
ITERATION '	ND.	7	MAX.	STPEAMLINE		=	0.025670
	NO.	8	MAX.	STREAMLINE	-	3	2.021794
	vo.	9	MAX.	STREAMLINE		=	2.018503
	V).	10	MA X.	STREAMLINE		æ	0.015709
ITERATION :	י כע	11	MAX.	STREAMLINE		=	0.013338
- : - :		12	MAX.	STREAMLINE		=	2.011324
ITERATION '		13	MAX.	STREAMLINE		#	2.229614
		14	MAX.	STREAMLINE		2	2.008163
ITERATION '		15	MAX.	STREAMLINE		2	0.006931
		16	MAX.	STREAMLINE		*	3.305885
ITERATION '		17	MAX.	STREAMLINE	•	2	2.204996
		18	MA X.	STREAMLINE	•	#	0.004248
ITERATION '		19	MAX.	STREAMLINE		*	2.003601
		20	MAX.	STREAMLINE	CHANGE	3	0.003061
ITERATION '		21	MAX.	STREAMLINE	CHANGE	#	0.002595
ITERATION '		22	MA X.	STREAMLINE		=	0.002207
ITERATION Y		23	MAX.	STREAMLINE	·		0.001876
ITERATION !		24	MAX.	STREAMLINE			0.001588
TI CUMITON .	4.7 0	£ 7	"14 A s	SINCAMULTIC	CHANGE	-	3 + 2 3 7 3 9 9

-310.1

-20.4 -21.9 -23.5

17.7 -17.7 -19.0

-0.1693	2.46	98.0	295.0	4.5	4.616.4	294.9	683.3	9.26	0.02015	0.10	- 788.	0.0144	-1263.6	-1267.9
9760-0	•	•	ő	•				:	:	;		•		:
QUASI-DRINDG3VAL	HDC3CH	·¢	SM = 1.5	980 ALPH	A = -55	.53 R =	1.4700	.0 = Z	3170 DN	= 0.130	•			
THETA	1-CE V	BETA	ş	u	VTHETA	ž	>	PRS	DENSTY	DTO	PCMO	SA	S3	TOMC
-0.5268	0.19		· •	ě	6.605	7-946	416.6	8	0.01962	0.25	•	-0.0389	-825.9	-434.4
-0.4419	-1.56	2,79	279.1	13.6	507.3	278.8	578.8	8.97	0.01974	0.40	396.	-0.0405	-774.2	-785.5
10.00	5	•	;	:	46.34	1.1.1						•	•	
-0.2412		3.46	53.	71.3	515.0	152.3	524.3	8.87	ē;	0.26	10.	0.050	907	925
-0-1570	-0.76	3.05	187.5	6.6 6.6	508.5	187.3	583.4	9.06	0.01976	-0.24	-17.	0.0398	-830.9	-937.0
OHAS T-RETHINGS. A	W. JESCH.		c.	0126 At PH	19- = 4	# & US	1,1580	1 0 1	5900 DN	= 0.170	æ			
	Tue Cart		* ;			·			}	;	,			
THET	1-5.URV	PETA	44	WTHETA	VTHETA	3	>	PRS	DENSTY	POTO	KCNO	54	S	DWDT
-0,5125	6,74	2.51	346.2	15.	0 40	303.1	502.1	60.0	0.01930	26.0	-26-	-0.0250	15,80.5	-526.2
-0-3388	3.14	0.84	256.5	3.8	392.5	56.	0.69+	A. 77	6.01945	-0.31	581.	00.0	-460.4	-452.4
-0.2343	.7.21		4	-26.1	367.8		50%	8.66	0.03930	0.29	-951.	5	-606.5	-589.2
1961-0-	-3.79	7	297.5	-16.7	374.2	97	477.8	8.72	0.01939	-0.51	-674.	0.1327	-580.8	-571.0
1.0587	0.03	-2.34	45	-10.0	378.9	45.	451.3	8.78	6	-0.32	98	0.0271	-506.6	6.064-
QUASI-OPTHOGONAL	HOGOMAL	æ	54 = 2.4	367 ALPH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.79 R =	0.9230	7 = 1	9430 DN	= 0.206				
THETA	T-CU3V	RETA	¥	WTHETA	VTHETA	X 3	>	PRS	DENSTY	DTD	MCMO	SA	S3	DWDT
-0.4984	-1.24		332.3	5.5	315.1	32	458.6	8.53	0.01911	0.38	-622-	0.0	-307.7	13.
-0-4126	-0.83	2.37	306.4	12.7	322.7	335.1	1.54.B	6.57	0.01916	0.54	-384.	-0.0173	-289.2	-794.5
48T6 • 0-	•		2 1 1 2			•				•		;		•
-0.7866	5.43	ŝ,	8	-24.9	785.1		399.2	8.63	2	ċ	457.	760	-223.9	<u>.</u>
-0.1845	2.91 0.27	-3.08	229.4	-13.8	303.5	229.3	383.5	8.65	0.01923	-0.39	-109.	0.0116	-263.2	-2555-
QUASI-0PTH0G3YAL	HOGOVAL	۰	SM = 2.8	675 ALPH	A = -10	.73 R =	0.7970	1 = 2	3550 DN	002.0 ≠	•			
1.4511	7 G/ U - 1	4130	7	utue T.	VTUCTA	3	>	203	DENCTY	MOTO	2	5	ű	TORC
-0-5133	5.42	-4.60	159.2	2 5	238.9	357.3	423.6	8.47	0.01893	0.45	-1129.	0.0149	:	
-0.4153	-6.80	•	340.9	-25.4	242.3	339.9		8.44	n.01897	-1.12	-1495.		198	3
-0-3152	-7,70	-3.97	20.	25	245.4	320.0	403.5	8.47	0.01900	0.15	-1628.	210		-503-5
-0.3152	-5.87	-4.78	320.8	26.	240.9	-		8-47	5	-0.75	6	5	69	55.
-0.2093	-5.60	-4.93	303.9	1-96-	241.5	302.4	387.3	6,49	0,01903	-1.30	-1033	0,3159	-167.7	-157.8
2160.0	* 0 • • • • • • • • • • • • • • • • • • •	17.6	• 100	0.07					5			5		:
QUASI-ORTHOGONAL	HOGONAL	10	SM = 3.2	BOC ALPH	A = -2	.11 R =	0.7520	1 = 1	7650 DN	= 0.175	_			
TRETA	T-CU3 V	BETA	NA .	HTHETA	YTHETA	3	> 1	PRS	DFKSTY	0104	POWO	SA	600	DWDT
-0.6036	-8.86	9	4 6 6 7 4	6 36 1-	150.7	8-864 707	****	2.5	5 6	7.0	-6118	; ;	1,024	7 7 7 7
-0.4122 -0.4122	-8.24	-16.63	410.5	-117.5	135.0	343.4	415.9	8.29	0.51874	9.72	-4705	0.0101	-300-3	-295.2
		:				- 8	717		76010	1	706.4	6	907	ä
-0.4122	-8.71	- 16.47	380.6	-116.4	145.9	393.7	393.4	8.34	0.01881	-1.10	-4158	0.0000	-268.0	-101-9
-0-1918			352.2	-45.1	157.4	39	173.8		2	-0.36	-3663.	0.00		35.
QUAS I-OR THOGONAL	TENOSCH		Sh = 3.6	6150 ALPH	0 #	.23 R =	٩.7500	2 = 2	1000 SM	= 0.134	4			

F

E-3298

REFERENCES

- 1. Katsanis, Theodore: Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution in a Turbomachine. ASME Paper no. 65-WA/GTP-2, 1965.
- 2. Katsanis, Theodore: Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution in the Meridianal Plane of a Turbomachine. NASA TN D-2546, 1965.
- 3. Katsanis, Theodore: Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution on a Blade-to-Blade Surface in a Turbomachine. NASA TN D-2809, 1965.
- 4. Hamming, R. W.: Numerical Methods for Scientists and Engineers. McGraw-Hill Book, Co., Inc., 1962, p. 314.