AdaBoost

Daniel Hsu (COMS 4771)

The algorithm

The input training data is $\{(x_i, y_i)\}_{i=1}^n$ from $\mathcal{X} \times \{-1, +1\}$.

- Initialize $D_1(i) := 1/n$ for each i = 1, ..., n.
- For $t = 1, \dots, T$, do:
 - Give D_t -weighted examples to Weak Learner; get back $h_t : \mathcal{X} \to \{-1, +1\}$.
 - Compute weight on h_t and update weights on examples:

https://eduassistpro.github.io/

where

 $Z_t := \sum_{i = 1}^n D_t(i) \cdot e$ is the normalizer that makes D_{t+1} a probability e^{t} and e^{t} $e^{$

• Final hypothesis is \hat{h} defined by $\hat{h}(x) := \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot h_t(x)\right)$ for $x \in \mathcal{X}$.

Training error rate bound

Let $\hat{\ell}$ be the function defined by

$$\hat{\ell}(x) := \sum_{t=1}^{T} \alpha_t \cdot h_t(x) \quad \text{for } x \in \mathcal{X}$$

so $\hat{h}(x) = \text{sign}(\hat{\ell}(x))$. The training error rate of \hat{h} can be bounded above by the average exponential loss of $\hat{\ell}$:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ \hat{h}(x_i) \neq y_i \} \le \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{\ell}(x_i)).$$

This holds because

$$\hat{h}(x_i) \neq y_i \Leftrightarrow -y_i \hat{\ell}(x_i) \ge 0 \Leftrightarrow \exp(-y_i \hat{\ell}(x_i)) \ge 1.$$

1

Furthermore, the average exponential loss of $\hat{\ell}$ equals the product of the normalizers from all rounds:

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{\ell}(x_i)) = \sum_{i=1}^{n} D_1(i) \cdot \exp\left(-\sum_{t=1}^{T} \alpha_t \cdot y_i h_t(x_i)\right)$$

$$= Z_1 \sum_{i=1}^{n} \frac{D_1(i) \cdot \exp(-\alpha_1 \cdot y_i h_1(x_i))}{Z_1} \cdot \exp\left(-\sum_{t=2}^{T} \alpha_t \cdot y_i h_t(x_i)\right)$$

$$= Z_1 \sum_{i=1}^{n} D_2(i) \cdot \exp\left(-\sum_{t=2}^{T} \alpha_t \cdot y_i h_t(x_i)\right)$$

$$= Z_1 Z_2 \sum_{i=1}^{n} \frac{D_2(i) \cdot \exp(-\alpha_2 \cdot y_i h_2(x_i))}{Z_2} \cdot \exp\left(-\sum_{t=3}^{T} \alpha_t \cdot y_i h_t(x_i)\right)$$

$$= Z_1 Z_2 Z_3 \sum_{i=1}^{n} D_3(i) \cdot \exp\left(-\sum_{t=3}^{T} \alpha_t \cdot y_i h_t(x_i)\right)$$

$$= \cdots$$

$$= \prod_{t=1}^{T} Z_t.$$

Since each $y_i h_i(x_i) \in \{-1, +1\}$, the normalizer Z_t can be written as Assignment Project Exam Help

https://eduassistpro.gfthub.io/ $= \sum_{i=1}^{n} D_t(i) \cdot \frac{1+y_i h_t(x_i)}{2} \frac{\overline{1-s}}{1+s} \frac{1-y h(x)}{1+s}$ $= \sqrt{1-s_t^2}.$ At the proof of the p

So, we conclude the following bound on the training error rate of \hat{h} :

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ \hat{h}(x_i) \neq y_i \} \le \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{\ell}(x_i)) = \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} \sqrt{1 - s_t^2} \le \exp\left(-\frac{1}{2} \sum_{t=1}^{T} s_t^2\right)$$

where the last step uses the fact that $1 + x \le e^x$ for any real number x.

(The bound is usually written in terms of $\gamma_t := s_t/2$, i.e., as $\exp(-2\sum_{t=1}^T \gamma_t^2)$.)

Margins on training examples

Let \hat{g} be the function defined by

$$\hat{g}(x) := \frac{\sum_{t=1}^{T} \alpha_t \cdot h_t(x)}{\sum_{t=1}^{T} |\alpha_t|} \quad \text{for } x \in \mathcal{X}$$

so $y_i \hat{g}(x_i)$ is the margin achieved on example (x_i, y_i) . We may assume without loss of generality that $\alpha_t \geq 0$ for each t = 1, ..., T (by replacing h_t with $-h_t$ as needed.) Fix a value $\theta \in (0, 1)$, and consider the fraction of training examples on which \hat{g} achieves a margin at most θ :

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\{y_i\hat{g}(x_i)\leq\theta\}.$$

This quantity can be bounded above using the arguments from before:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ y_i \hat{g}(x_i) \leq \theta \} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ y_i \hat{\ell}(x_i) \leq \theta \sum_{t=1}^{T} \alpha_t \right\}$$

$$\leq \exp\left(\theta \sum_{t=1}^{T} \alpha_t\right) \cdot \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{\ell}(x_i))$$

$$= \exp\left(\theta \sum_{t=1}^{T} \alpha_t\right) \cdot \prod_{t=1}^{T} \sqrt{1 - s_t^2}$$

$$= \prod_{t=1}^{T} \sqrt{(1 + s_t)^{1 + \theta} (1 - s_t)^{1 - \theta}}.$$

Suppose that for some $\gamma > 0$, $s_t \ge 2\gamma$ for all t = 1, ..., T. If $\theta < \gamma$, then using calculus, it can be shown that each term in the product is less than 1:

$$\sqrt{(1+s_t)^{1+\theta}(1-s_t)^{1-\theta}} < 1.$$

Hence, the bound decreases to zero exponentially fast with T.

Assignment Project Exam Help https://eduassistpro.github.io/ Add WeChat edu_assist_pro