Inverse Kinematics

C. Karen Liu

Kinematics

- Forward kinematics
 - Given a pose of a structure, what is the 3D position of a point on the structure?
- Inverse kinematics
 - Given a target position for a point on the structure, what is the pose such that the point reaches the target position?

Quiz

Which one is solving Inverse Kinematics?

$$[\theta, \phi, \sigma] = f(\mathbf{p})$$

$$\mathbf{p} = f(\theta, \phi, \sigma)$$

Why inverse?

- The world is described in the Cartesian space but the movement is described in the pose space.
 - IK provides more intuitive control.
 - IK maintains environment constraints.

Define a pose

$$\mathbf{q} \equiv \{x, y, z, r, p, y, \theta_1, \dots, \theta_{12}\}\$$

Transformation chain

Transformation chain

Transformation chain

 \boldsymbol{A} is a transformation matrix that maps a point from the foot coord frame to the torso frame

$$\mathbf{p}(\mathbf{q}) = \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \mathbf{p}_0$$

$$= A(\theta_1, \theta_2, \theta_3) \mathbf{p}_0 = A(\mathbf{q}) \mathbf{p}_0$$

 \mathbf{p}_0 is the local coordinates of the end-effector in foot frame. In our example, $\mathbf{p}_0 = [0.062, -0.062, 0.018]$

Quiz

What if the point of interest is on the "shin" of Pupper? What is the transformation chain?

Answer: $\mathbf{p}(\mathbf{q}) = \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{p}_0$

Joints

What is the condition for a pose $\bf q$ such that the toe reaches point $\bar{\bf p}$?

$$C(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}} = \mathbf{0}$$

This is an *inverse* kinematic question, but we need to evaluate toe position, $\mathbf{p}(\mathbf{q})$, given a pose \mathbf{q} , and *that* is a *forward* kinematics question.

What is the coordinates of the toe in the torso frame?

What is the condition for a pose $\bf q$ such that the toe reaches point $\bar{\bf p}$?

$$C(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}} = \mathbf{0}$$

This is an *inverse* kinematic question, but we need to evaluate toe position, $\mathbf{p}(\mathbf{q})$, given a pose \mathbf{q} , and *that* is a *forward* kinematics question.

What is the coordinates of the toe in the torso frame?

$$\mathbf{p}(\mathbf{q}) = \mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\mathbf{p}_0$$
 the toe in torso frame the toe in local frame

What is the condition for a pose $\bf q$ such that the toe reaches point $\bar{\bf p}$?

$$C(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}} = \mathbf{0}$$

This is an *inverse* kinematic question, but we need to evaluate toe position, $\mathbf{p}(\mathbf{q})$, given a pose \mathbf{q} , and *that* is a *forward* kinematics question.

What is the coordinates of the toe in the torso frame?

$$\mathbf{p}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}$$

In practice, just drop the fourth element, "1" at the end of FK calculation

What is the condition for a pose ${f q}$ such that the toe reaches point ${f ar p}$?

$$\mathbf{C}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}} = \mathbf{0}$$

$$\mathbf{C}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_{z}(\theta_{1}) \mathbf{F}_{12} \mathbf{R}_{z}(\theta_{2}) \mathbf{F}_{23} \mathbf{R}_{z}(\theta_{3}) \begin{bmatrix} \mathbf{p}_{0} \\ 1 \end{bmatrix} - \bar{\mathbf{p}} = \mathbf{0}$$

C(q) = 0 is a nonlinear root finding problem.

What is the coordinates of the toe in the torso frame?

$$\mathbf{p}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}$$

Solve for the constraint

What is the condition for a pose ${f q}$ such that the toe reaches point ${f ar p}$?

$$\mathbf{C}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}} = \mathbf{0}$$

$$\mathbf{C}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_{z}(\theta_{1}) \mathbf{F}_{12} \mathbf{R}_{z}(\theta_{2}) \mathbf{F}_{23} \mathbf{R}_{z}(\theta_{3}) \begin{bmatrix} \mathbf{p}_{0} \\ 1 \end{bmatrix} - \bar{\mathbf{p}} = \mathbf{0}$$

- When C(q) is nonlinear in q, it's difficult to solve analytically
- There could be
 - A single solution
 - No solution
 - Multiple solutions

Solve it numerically, as an optimization problem

Solve IK as optimization problem

$$\mathbf{C}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}}$$

$$\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^{2}$$

Among all possible ${\bf q}$'s, find one that minimizes the objective function: $\|{\bf C}({\bf q})\|^2$

What is the smallest possible value for $\|\mathbf{C}(\mathbf{q})\|^2$?

Zero!

How to find \mathbf{q} such that $\|\mathbf{C}(\mathbf{q})\|^2$ is minimized?

Gradient Descent Method

Gradient descent


```
\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^2
```

// while not converged

// compute gradient of objective function at current **q**

 $^{\prime}/$ update ${f q}$ by moving along the negative gradient direction by a small step

while $\|\mathbf{C}(\mathbf{q})\|^2 > \epsilon$

$$\mathbf{d} = 2 \frac{\partial \mathbf{C}(\mathbf{q})}{\partial \mathbf{q}}^{T} \mathbf{C}(\mathbf{q})$$

$$\mathbf{q} = \mathbf{q} - \alpha \mathbf{d}$$

Compute gradient

$$\mathbf{d} = 2 \frac{\partial \mathbf{C}(\mathbf{q})^T}{\partial \mathbf{q}} \mathbf{C}(\mathbf{q})$$

To compute gradient in each optimization iteration,

we need to evaluate the constraint:

$$\mathbf{C}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix} - \bar{\mathbf{p}}$$

we need to compute the partial derivatives of C

$$\frac{\partial \mathbf{C}(\mathbf{q})}{\partial \mathbf{q}} = \frac{\partial \mathbf{p}(\mathbf{q})}{\partial \mathbf{q}} = ?$$

This is called the Jacobian Matrix

What's the dimension of Jacobian $\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \mathbf{q}}$?

5

$$\mathbf{p}(\mathbf{q}) = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_1} = \text{Proj}\left(\mathbf{F}_{01} \frac{\partial \mathbf{R}_z(\theta_1)}{\partial \theta_1} \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}\right)$$

$$\mathbf{p}(\mathbf{q}) = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_1} = \text{Proj}\left(\mathbf{F}_{01} \frac{\partial \mathbf{R}_z(\theta_1)}{\partial \theta_1} \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_2} = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\frac{\partial \mathbf{R}_z(\theta_2)}{\partial \theta_2}\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\mathbf{p}(\mathbf{q}) = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_1} = \text{Proj}\left(\mathbf{F}_{01} \frac{\partial \mathbf{R}_z(\theta_1)}{\partial \theta_1} \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_2} = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12} \frac{\partial \mathbf{R}_z(\theta_2)}{\partial \theta_2}\mathbf{F}_{23}\mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_3} = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\frac{\partial \mathbf{R}_z(\theta_3)}{\partial \theta_3}\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\mathbf{p}(\mathbf{q}) = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\frac{\partial \mathbf{R}_{z}(\theta_{1})}{\partial \theta_{1}} = \begin{bmatrix}
-\sin \theta_{1} & -\cos \theta_{1} & 0 & 0 \\
\cos \theta_{1} & -\sin \theta_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\frac{\partial \mathbf{R}_{z}(\theta_{2})}{\partial \theta_{2}} = \begin{bmatrix}
-\sin \theta_{2} & -\cos \theta_{2} & 0 & 0 \\
\cos \theta_{2} & -\sin \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\frac{\partial \mathbf{R}_{z}(\theta_{3})}{\partial \theta_{3}} = \begin{bmatrix}
-\sin \theta_{3} & -\cos \theta_{3} & 0 & 0 \\
\cos \theta_{3} & -\sin \theta_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

recall affine transformations

$$\operatorname{Rot}_{x}(\theta_{x}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_{x} & -\sin \theta_{x} & 0 \\ 0 & \sin \theta_{x} & \cos \theta_{x} & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{Rot}_{y}(\theta_{y}) = \begin{pmatrix} \cos \theta_{y} & 0 & \sin \theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Rot_{z}(\theta_{z}) = \begin{pmatrix} \cos \theta_{z} & -\sin \theta_{z} & 0 & 0 \\ \sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{p}(\mathbf{q}) = \text{Proj}\left(\mathbf{F}_{01}\mathbf{R}_z(\theta_1)\mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3)\begin{bmatrix}\mathbf{p}_0\\1\end{bmatrix}\right)$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \mathbf{q}} =$$

$$\frac{\partial \mathbf{p}(\mathbf{q})}{\partial \theta_1} = \text{Proj}\left(\mathbf{F}_{01} \begin{vmatrix} -\sin \theta_1 & -\cos \theta_1 & 0 & 0 \\ \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} \mathbf{F}_{12}\mathbf{R}_z(\theta_2)\mathbf{F}_{23}\mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix}\right)$$

Compute gradient

$$\mathbf{d} = 2 \frac{\partial \mathbf{C}(\mathbf{q})}{\partial \mathbf{q}}^T \mathbf{C}(\mathbf{q})$$

To compute gradient in each optimization iteration,

we need to evaluate the constraint:

$$\mathbf{C}(\mathbf{q}) = \mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{F}_{01} \mathbf{R}_z(\theta_1) \mathbf{F}_{12} \mathbf{R}_z(\theta_2) \mathbf{F}_{23} \mathbf{R}_z(\theta_3) \begin{bmatrix} \mathbf{p}_0 \\ 1 \end{bmatrix} - \bar{\mathbf{p}}$$

we need to compute the partial derivatives of C

$$\frac{\partial \mathbf{C}(\mathbf{q})}{\partial \mathbf{q}} =$$

Gradient descent


```
\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^2
```

// while not converged

// compute gradient of objective function at current **q**

 $^{\prime}/$ update ${f q}$ by moving along the negative gradient direction by a small step

while $\|\mathbf{C}(\mathbf{q})\|^2 > \epsilon$

$$\mathbf{d} = 2 \frac{\partial \mathbf{C}(\mathbf{q})}{\partial \mathbf{q}}^T \mathbf{C}(\mathbf{q})$$

$$\mathbf{q} = \mathbf{q} - \alpha \mathbf{d}$$

An easier way to compute the gradient is called Finite Differencing. This is what we are going to implement in Lab 3.

Gradient descent

 $\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^2$

Finite differenting

$$\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^{2}$$
where $f(\mathbf{q}) \equiv \|\mathbf{C}(\mathbf{q})\|^{2} = \|\mathbf{p}(\mathbf{q}) - \bar{\mathbf{p}}\|^{2}$

$$\frac{\partial f(\mathbf{q})}{\partial \mathbf{q}} = \left[\frac{\partial f(\mathbf{q})}{\partial \theta_{1}}, \frac{\partial f(\mathbf{q})}{\partial \theta_{2}}, \frac{\partial f(\mathbf{q})}{\partial \theta_{3}}\right]$$

$$\frac{\partial f(\mathbf{q})}{\partial \theta_{1}} \approx \frac{\Delta f}{\Delta \theta_{1}} = \frac{f(\mathbf{q} + \begin{bmatrix} \epsilon \\ 0 \\ 0 \end{bmatrix}) - f(\mathbf{q})}{\epsilon}$$

$$\frac{\partial f(\mathbf{q})}{\partial \theta_2} \approx 2$$

$$\frac{\partial f(\mathbf{q})}{\partial \theta_3} \approx ?$$

Gradient descent


```
\min_{\mathbf{q}} \|\mathbf{C}(\mathbf{q})\|^2
// while not converged
// compute gradient of objective function at current \mathbf{q}
// update \mathbf{q} by moving along the negative gradient direction by a small step

while f(\mathbf{q}) > \epsilon
```

 $\mathbf{d} = \text{finiteDiff}(f, \mathbf{q})$

 $\mathbf{q} = \mathbf{q} - \alpha \mathbf{d}$

Implement this for Lab 3

Gradient descent


```
\begin{aligned} & \underset{\mathbf{q}}{\min} & \|\mathbf{C}(\mathbf{q})\|^2 \\ & \text{// while not converged} \\ & \text{// compute gradient of objective function at current } \mathbf{q} \\ & \text{// update } \mathbf{q} \text{ by moving along the negative gradient direction by a small step} \\ & \text{while } f(\mathbf{q}) > \epsilon \end{aligned}
```

How to determine α ? Experiment it by yourself

 $\mathbf{d} = \text{finiteDiff}(f, \mathbf{q})$

 $\mathbf{q} = \mathbf{q} - \alpha \mathbf{d}$

Challenge: Close the door, Pupper!

Formulate an IK constraint that brings Pupper's front left toe $\mathbf{p}(\mathbf{q})$ to the corner of the door $\bar{\mathbf{p}}$ defined in the world frame. Write down the chain of transformation and derive the Jacobian matrix.

Questions?