CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 5– GEOMETRIA E ALGEBRA LINEARE 2016/17

Esercizio 5.1 (5.16). Si considerino le matrici

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & k+1 \\ 4 & k-3 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 \\ 2k-2 & 2k-1 \end{bmatrix}$$

- a) Si stabilisca per quale valore di $k \in \mathbb{R}$ le matrici A, B e C sono linearmente dipendenti.
- b) Per il valore trovato in a) esprimere B come combinazione lineare di A e C.

SOLUZIONE:

a) Per stabilire quando le tre matrici sono linearmente dipendenti risolviamo l'equazione xA + yB + zC = 0:

$$\begin{bmatrix} x + 2y & x + (k+1)y + z \\ 2x + 4y + (2k-2)z & -x + (k-3)y + (2k-1)z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

da cui si ottiene il sistema

$$\begin{cases} x + 2y = 0 \\ x + (k+1)y + z = 0 \\ 2x + 4y + (2k-2)z = 0 \\ -x + (k-3)y + (2k-1)z = 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 2 & 0 & | & 0 \\ 1 & k+1 & 1 & | & 0 \\ 2 & 4 & 2k-2 & | & 0 \\ -1 & k-3 & 2k-1 & | & 0 \end{bmatrix}$$

Notiamo che le matrici A, B e C sono linearmente dipendenti se il sistema ammette altre (infinite) soluzioni oltre a quella nulla x=y=z=0. Riduciamo quindi a gradini la matrice associata al sistema:

Dobbiamo ora distinguere due casi.

- Se $k \neq 1$ otteniamo la sola soluzione x = y = z = 0 per cui le tre matrici sono linearmente indipendenti.
- Se k=1 otteniamo il sistema

$$\begin{cases} x + 2y = 0 \\ z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ y = t \\ z = 0 \end{cases} \Rightarrow -2t \cdot A + t \cdot B + 0 \cdot C = 0 \quad \forall t \in \mathbb{R}$$

Il sistema ha infinite soluzioni e quindi le tre matrici sono linearmente dipendenti.

b) Per k=1 abbiamo ottenuto al punto precedente $-2t\cdot A + t\cdot B + 0\cdot C = 0 \quad \forall t\in\mathbb{R}$. Ponendo per esempio t=1 otteniamo -2A+B=0, ovvero B=2A.

Esercizio 5.2 (5.17). Date le matrici

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 1 \\ 2 & 3 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$

stabilire se D è combinazione lineare di A, B, C.

SOLUZIONE:

Si tratta di determinare se esiste soluzione dell'equazione

$$Ax + By + Cz = D$$

Esplicitando tale equazione otteniamo:

$$Ax + By + Cz = \begin{bmatrix} x & 2x \\ -x & 3x \end{bmatrix} + \begin{bmatrix} 2y & y \\ y & y \end{bmatrix} + \begin{bmatrix} -z & z \\ 2z & 3z \end{bmatrix} = \begin{bmatrix} x + 2y - z & 2x + y + z \\ -x + y + 2z & 3x + y + 3z \end{bmatrix}$$

Quindi:

$$\begin{bmatrix} x + 2y - z & 2x + y + z \\ -x + y + 2z & 3x + y + 3z \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \Rightarrow \begin{cases} x + 2y - z = 0 \\ 2x + y + z = 1 \\ -x + y + 2z = -1 \\ 3x + y + 3z = 2 \end{cases}$$

Dobbiamo quindi risolvere il sistema lineare non omogeneo di quattro equazioni i tre incognite:

$$\begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 2 & 1 & 1 & | & 1 \\ -1 & 1 & 2 & | & -1 \\ 3 & 1 & 3 & | & 2 \end{bmatrix} \Rightarrow \begin{matrix} II - 2I \\ III + I \\ IV - 3I \end{matrix} \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 3 & | & 1 \\ 0 & 3 & 1 & | & -1 \\ 0 & -5 & 6 & | & 2 \end{bmatrix} \Rightarrow \begin{matrix} III + II \\ 0 & 0 & 4 & | & 0 \\ 0 & 0 & 3 & | & 1 \\ 0 & 0 & 4 & | & 0 \\ 0 & 0 & 0 & | & 4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 3 & | & 1 \\ 0 & 0 & 4 & | & 0 \\ 0 & 0 & 0 & | & 4 \end{bmatrix}$$

Tornando al sistema notiamo che l'ultima equazione è 0=4, quindi il sistema non ammette soluzione e D non è combinazione lineare di A,B e C.

Esercizio 5.3 (7.22). Siano dati i seguneti vettori di \mathbb{R}^3 :

$$v_1 \equiv (1, 1, 1),$$
 $v_2 \equiv (2, 7, 7),$ $v_3 \equiv (0, k^2 + 2, 3),$ $v_4 \equiv (1, k + 3, k^2 + 2).$

Stabilire se v_4 è combinazione lineare di v_1 , v_2 e v_3 al variare del parametro k.

SOLUZIONE:

Si tratta di stabilire se l'equazione vettoriale $xv_1 + yv_2 + zv_3 = v_4$ ammette soluzione.

Il vettore $xv_1 + yv_2 + zv_3$ è $(x + 2y, x + 7y + (k^2 + 2)z, x + 7y + 3z)$, quindi la precedente equazione si traduce nel sistema

$$\begin{cases} x + 2y = 1 \\ x + 7y + (k^2 + 2)z = k + 3 \\ x + 7y + 3z = k^2 + 2 \end{cases}$$

Infine possiamo considerare la matrice associata a tale sistema

$$A|b = \begin{bmatrix} 1 & 2 & 0 & | & 1\\ 1 & 7 & k^2 + 2 & | & k+3\\ 1 & 7 & 3 & | & k^2 + 2 \end{bmatrix}$$

Per Rouchè - Capelli il sistema ammette soluzione se rg(A) = rg(A|b). Notiamo che potevamo passare direttamente dai vettori alla matrice A|b:

Un vettore v_4 è combinazione lineare di v_1 , v_2 , v_3 se e solo se rg(A) = rg(A|b), dove A è la matrice che ha per colonne i vettori v_1 , v_2 , v_3 e b è la matrice colonna formata da v_4 .

Riduciamo la matrice a gradini:

$$II - I \begin{bmatrix} 1 & 2 & 0 & | & 1 \\ 0 & 5 & k^2 + 2 & | & k + 2 \\ 0 & 0 & k^2 - 1 & | & k^2 - k - 1 \end{bmatrix}$$

Consideriamo il pivot della terza riga e distinguiamo i casi necessari

• Se $k \neq \pm 1$ sia la matrice completa che quella incompleta hanno 3 pivot, quindi $\operatorname{rg}(A) = \operatorname{rg}(A|b) = 3$ e il sistema ammette (una unica) soluzione. Di conseguenza v_4 è combinazione lineare di v_1 , v_2 e v_3 .

• Se k = 1 la matrice diventa:

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 \\ 0 & 5 & 3 & | & 3 \\ 0 & 0 & 0 & | & -1 \end{bmatrix}$$

Quindi A ha 2 pivot, mentre A|b ne ha 3. Dal momento che $\operatorname{rg}(A) < \operatorname{rg}(A|b)$ il sitema non ammette soluzioni e v_4 non è combinazione lineare di v_1, v_2 e v_3 .

• Se k = -1 la matrice diventa:

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 \\ 0 & 5 & 3 & | & 1 \\ 0 & 0 & 0 & | & -1 \end{bmatrix}$$

Quindi A ha 2 pivot, mentre A|b ne ha 3. Dal momento che $\operatorname{rg}(A) < \operatorname{rg}(A|b)$ il sitema non ammette soluzioni e v_4 non è combinazione lineare di v_1 , v_2 e v_3 .

Esercizio 5.4 (7.25).

a) Mostrare che i vettori

$$v_1 = (0, 1, 1), \quad v_2 = (-1, k, 0), \quad v_3 = (1, 1, k)$$

sono linearmente indipendenti per ogni valore di $k \in \mathbb{R}$.

b) Esprimere il vettore v = (2, 1, 2) come combinazione lineare di v_1, v_2, v_3 .

SOLUZIONE:

Per rispondere alla domanda a) dobbiamo verificare che l'equazione $xv_1 + yv_2 + zv_3 = 0$ ammette **solo** la soluzione nulla, ovvero che la matrice A associata ai tre vettori ha sempre rango 3.

Per rispondere alla domanda b) dobbiamo verificare che l'equazione $xv_1 + yv_2 + zv_3 = v$ ammette soluzione (e non ha importanza se ne ammette una oppure infinite), ovvero che $\operatorname{rg}(A|b) = \operatorname{rg}(A)$, dove A|b è la matrice associata all'equazione.

Per rispondere a entrambe le domande riduciamo quindi direttamente a gradini la matrice formata dai tre vettori v_1, v_2, v_3 e dal vettore v come colonna dei termini noti:

$$\begin{bmatrix} 0 & -1 & 1 & | & 2 \\ 1 & k & 1 & | & 1 \\ 1 & 0 & k & | & 2 \end{bmatrix} \Rightarrow \begin{matrix} III \\ II \\ II \end{matrix} \begin{bmatrix} 1 & 0 & k & | & 2 \\ 0 & -1 & 1 & | & 2 \\ 1 & k & 1 & | & 1 \end{bmatrix} \Rightarrow \begin{matrix} III - I \begin{bmatrix} 1 & 0 & k & | & 2 \\ 0 & -1 & 1 & | & 2 \\ 0 & k & 1 - k & | & -1 \end{bmatrix} \Rightarrow \begin{matrix} III + kII \begin{bmatrix} 1 & 0 & k & | & 2 \\ 0 & -1 & 1 & | & 2 \\ 0 & 0 & 1 & | & -1 + 2k \end{bmatrix}$$

- a) Per rispondere alla prima domanda ci interessa solo la matrice A dei cofficienti. La matrice dei coefficienti ha sempre rango 3, quindi l'equazione $xv_1 + yv_2 + zv_3 = 0$ ammette la sola soluzione nulla e v_1, v_2, v_3 sono linearmente indipendenti per ogni valore di k.
- b) Risolviamo il sistema $xv_1 + yv_2 + zv_3 = v$ di cui abbiamo già ridotto a gradini la matrice associata:

$$\begin{cases} x + kz = 2 \\ -y + z = 2 \\ z = 2k - 1 \end{cases} \Rightarrow \begin{cases} x = -2k^2 + k + 2 \\ y = 2k - 3 \\ z = 2k - 1 \end{cases}$$

Quindi

$$v = (-2k^2 + k + 2)v_1 + (2k - 3)v_2 + (2k - 1)v_3$$

è combinazione lineare di v_1 , v_2 e v_3 .

Esercizio 5.5 (5.19). Siano dati i polinomi

$$p_1(x) = 1 + x,$$
 $p_2(x) = 1 + 2x + x^2,$ $p_3(x) = x - x^2.$

Esprimere, se è possibile, $f(x) = x^2 - x + 2$ come combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$.

SOLUZIONE:

Si tratta di stabilire se l'equazione

$$ap_1(x) + bp_2(x) + cp_3(x) = f(x)$$

ammette soluzioni. Esplicitando l'equazione otteniamo:

$$ap_1(x) + bp_2(x) + cp_3(x) = a(1+x) + b(1+2x+x^2) + c(x-x^2)$$

= $(b-c)x^2 + (a+2b+c)x + (a+b)$

Quindi

$$(b-c)x^{2} + (a+2b+c)x + (a+b) = x^{2} - x + 2 \implies \begin{cases} b-c = 1\\ a+2b+c = -1\\ a+b = 2 \end{cases}$$

Risolviamo ora il sistema

$$\begin{bmatrix} 0 & 1 & -1 & | & 1 \\ 1 & 2 & 1 & | & -1 \\ 1 & 1 & 0 & | & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} III & 1 & 0 & | & 2 \\ 1 & 2 & 1 & | & -1 \\ 0 & 1 & -1 & | & 1 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & | & -3 \\ 0 & 1 & -1 & | & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & | & -3 \\ 0 & 0 & -2 & | & 4 \end{bmatrix} \Rightarrow \begin{cases} x_1 + x_2 = 2 \\ x_2 + x_3 = -3 \\ -2x_3 = 4 \end{cases} \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = -1 \\ x_3 = -2 \end{cases}$$

Quindi

$$f(x) = 3 \cdot p_1(x) - 1 \cdot p_2(x) - 2 \cdot p_3(x)$$

L'esercizio poteva essere svolto in maniera leggermente semplificata osservando che a ogni polinomio possiamo associare il vettore formato dai suoi coefficienti dopo avere scelto un ordine per l'insieme $\mathcal{B} = \{x^2, x, 1\}$. La giustificazione precisa di questo fatto verrà data dopo avere introdotto il concetto di base, ma possiamo intanto osservare che ogni vettore è univocamente determinato dai suoi coefficienti e che la somma e il prodotto per scalari sono definiti in maniera analoga tra vettori e tra polinomi. Di conseguenza ai polinomi $p_1(x), p_2(x)$ e $p_3(x)$ possiamo associamo i tre vettori

$$\begin{aligned} p_1 &= (0,1,1) \\ p_2 &= (1,2,1) \\ p_3 &= (-1,1,0) \\ f &= (1,-1,2) \end{aligned}$$

Il polinomio f(x) è combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$ se il vettore f è combinazione lineare dei vettori p_1 , p_2 , p_3 . Risolvendo l'equazione $ap_1 + bp_2 + cp_3$ otteniamo il sistema a cui è associata la matrice

$$\begin{bmatrix} 0 & 1 & -1 & | & 1 \\ 1 & 2 & 1 & | & -1 \\ 1 & 1 & 0 & | & 2 \end{bmatrix}$$

che è infatti la stessa che abbiamo ottenuto con il precedente metodo.

SOLUZIONE:

Si tratta di risolvere l'equazione xA + yB + zC = D. Tale equazione si traduce nel seguente sistema

$$\begin{cases} 2x + 2z = 6 \\ x + 4y + 9z = k - 2 \\ 2x + 4y + 10z = 2 \\ x + z = k + 2 \end{cases} \Rightarrow \begin{bmatrix} 2 & 0 & 2 & | & 6 \\ 1 & 4 & 9 & | & k - 2 \\ 2 & 4 & 10 & | & 2 \\ 1 & 0 & 1 & | & k + 2 \end{bmatrix} \Rightarrow \begin{bmatrix} I/2I & 0 & 1 & | & 3 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 4 & 8 & | & -4 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 4 & 8 & | & -4 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 4 & 8 & | & k - 5 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & k - 1 \end{bmatrix}$$

$$\frac{1/4III}{II-III} \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & | & k-1 \\ 0 & 0 & 0 & | & k-1 \end{bmatrix}$$

Il sistema ammette soluzioni solo se k=1, quindi D è combinazione lineare di A,B e C solo se k=1 quando otteniamo:

$$\begin{cases} x+z=3\\ y+2z=-1 \end{cases} \Rightarrow \begin{cases} x=3-t\\ y=-1-2t \quad \forall t\in \mathbb{R}\\ z=t \end{cases}$$
$$\Rightarrow D=(3-t)A+(-1-2t)B+C \quad \forall t\in \mathbb{R}, \quad \text{se } k=1.$$

Esercizio 5.6 (7.27). Si consideri il sottospazio $V = \langle v_1, v_2, v_3 \rangle$ di \mathbb{R}^5 generato dai vettori

$$v_1 = (-1, 1, 2, 1, 0), \ v_2 = (0, 2, 1, 1, 0), \ v_3 = (1, 1, -1, 0, 0).$$

- a) Trovare una base di V.
- b) Determinare le coordinate del vettore $v = (-2, 6, 6, 4, 0) \in V$ rispetto alla base trovata al punto a).

SOLUZIONE:

Riduciamo a gradini la matrice associata dai tre vettori v_1, v_2, v_3 affiancata dal vettore v per rispondere a entrambe le domande.

$$\begin{bmatrix} -1 & 0 & 1 & | & -2 \\ 1 & 2 & 1 & | & 6 \\ 2 & 1 & -1 & | & 6 \\ 1 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{matrix} III+I \\ 0 & 2 & 2 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{matrix} \Rightarrow \begin{matrix} III-II \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{matrix}$$

- a) Il rango di A
 eq 2 e una base di $V
 eq \mathcal{B} = \{v_1, v_2\}.$
- b) Dobbiamo risolvere l'equazione $xv_1 + yv_2 = v$. Abbiamo già ridotto a gradini la matrice associata a tale equazione (basta ignorare la terza colonna relativa a v_3), quindi

$$\begin{cases}
-x = -2 \\
y = 2
\end{cases} \Rightarrow v = 2v_1 + 2v_2, \qquad v = (2, 2)_{\mathcal{B}}$$

Esercizio 5.7 (7.33). Si considerino i vettori di \mathbb{R}^4

$$v_1 = (1, 2, -1, 3), \quad v_2 = (-2, -4, 2, -6), \quad v_3 = (3, 6, k - 6, 3k)$$

- a) Si stabilisca per quali valori di k il vettore v_3 appartiene al sottospazio $W = \langle v_1, v_2 \rangle$ generato da v_1 e v_2 .
- b) Si trovi, al variare di k, una base di W e una base del sottospazio $\langle v_1, v_2, v_3 \rangle$.

SOLUZIONE:

a) Si tratta di stabilire quando il vettore v_3 è combinazione lineare di v_1 e v_2 , ovvero quando il sistema associato all'equazione vettoriale $xv_1+yv_2=v_3$ ammette soluzione. Riduciamo a gradini la matrice associata a tale sistema

$$\begin{bmatrix} 1 & -2 & | & 3 \\ 2 & -4 & | & 6 \\ -1 & 2 & | & k-6 \\ 3 & -6 & | & 3k \end{bmatrix} \Rightarrow \begin{matrix} II-2I \\ III+I \\ 1/3IV-I \end{matrix} \begin{bmatrix} 1 & -2 & | & 3 \\ 0 & 0 & | & 0 \\ 0 & 0 & | & k-3 \\ 0 & 0 & | & k-3 \end{bmatrix}$$

Infine

- Se $k \neq 3$, rg(A) = 1 < rg(A|b) = 2 e il sistema non ammette soluzione. Di conseguenza v_3 non appartiene a W.
- Se k=3, rg(A)=rg(A|b)=1 e il sitema ammette (infinite) soluzioni. Di conseguenza v_3 appartiene a W.
- b) Per determinare una base di W dobbiamo calcolare il rango della matrice associata a v_1 e v_2 . Abbiamo già ridotto a gradini tale matrice:

$$\begin{bmatrix}
1 & -2 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}$$

La matrice ha rango 1, quindi v_1 e v_2 non formano una base, sono infatti linearmente dipendenti. Di conseguenza uno solo dei vettori è sufficiente a generare tutto lo spazio e una base di W è data per esempio da $\{v_1\}$.

Determiniamo ora una base di $\langle v_1, v_2, v_3 \rangle$. Dobbiamo distinguere due casi:

– Se k=3, v_3 appartiene a $W=\langle v_1,v_2\rangle$. Quindi se k=3, $\langle v_1,v_2,v_3\rangle=W$ e una base di $\langle v_1,v_2,v_3\rangle$ è la stessa di W, quindi $\{v_1\}$. Analogamente la matrice, già ridotta, associata a v_1,v_2 e v_3 nel caso k=3 è

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rg}(A) = \dim(\langle v_1, v_2, v_3 \rangle) = 1 \text{ e } \mathcal{B}(\langle v_1, v_2, v_3 \rangle) = \{v_1\}$$

- Se $k \neq 3$, v_3 non appartiene a $W = \langle v_1, v_2 \rangle$. Quindi per ottenere una base di $\langle v_1, v_2, v_3 \rangle$ dobbiamo aggiungere alla base di W il vettore v_3 , ottenendo quindi la base $\{v_1, v_3\}$. Analogamente la matrice, già ridotta, associata a v_1, v_2 e v_3 nel caso $k \neq 3$ è

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & k - 3 \\ 0 & 0 & k - 3 \end{bmatrix} \Rightarrow \operatorname{rg}(A) = \dim(\langle v_1, v_2, v_3 \rangle) = 2 \text{ e } \mathcal{B}(\langle v_1, v_2, v_3 \rangle) = \{v_1, v_3\}$$

Esercizio 5.8 (7.33). Sia V lo spazio vettoriale generato dai vettori $v_1 = (1, -2, 4, 0), v_2 = (2, 3, -1, 1)$ e $v_3 = (0, -1, 3, 0)$:

$$V = \langle v_1, v_2, v_3 \rangle$$

- (1) Determinare la dimensione dello spazio vettoriale V.
- (2) Determinare se il vettore $v_4 = (3,1,3,1)$ appartiene a V. In caso positivo esprimere v_4 come combinazione lineare di v_1 , v_2 e v_3 .
- (3) Determinare la dimensione dello spazio vettoriale $W = \langle v_1, v_2, v_3, v_4 \rangle$.

SOLUZIONE:

Per potere rispondere a tutte le domande riduciamo a gradini la matrice associata all'equazione

$$xv_1 + yv_2 + zv_3 = v_4$$

$$\begin{bmatrix} 1 & 2 & 0 & | & 3 \\ -2 & 3 & -1 & | & 1 \\ 4 & -1 & 3 & | & 3 \\ 0 & 1 & 0 & | & 1 \end{bmatrix} \Rightarrow \begin{matrix} II + 2I \\ III - 4I \\ 0 & -9 & 3 & | & -9 \\ 0 & 1 & 0 & | & 1 \end{matrix} \Rightarrow \begin{matrix} IV \\ 1/3III \\ 0 & 7 & -1 & | & 7 \\ 0 & -3 & 1 & | & -3 \\ 0 & 7 & -1 & | & 7 \end{matrix} \end{bmatrix}$$

$$\Rightarrow \begin{matrix} IV \\ 1/3III \\ 0 & 7 & -1 & | & 7 \\ 0 & 7 & -1 & | & 7 \end{matrix}$$

$$\Rightarrow \begin{matrix} III + 3II \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & -1 & | & 0 \\ 0 & 0 & -1 & | & 0 \end{matrix} \Rightarrow \begin{matrix} IV \\ 0 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Possiamo ora risponedere alle domande.

(1) Per determinare la dimensione dello spazio vettoriale V calcoliamo il rango della matrice A dei coefficienti:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

La matrice ha 3 pivot, quindi $\dim(V) = \operatorname{rg}(A) = 3$.

(2) Per determinare se il vettore $v_4=(3,1,3,1)$ appartiene a V consideriamo la matrice completa e torniamo al sistema associato:

$$\begin{cases} x + 2y = 3 \\ y = 1 \\ z = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 1 \\ z = 0 \end{cases}$$

Di conseguenza il vettore v_4 appartiene a V:

$$v_4 = v_1 + v_2$$

(3) Per determinare la dimensione dello spazio vettoriale $W = \langle v_1, v_2, v_3, v_4 \rangle$ consideriamo la matrice completa B:

$$B = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Anche in questo caso la matrice ha 3 pivot, quindi

$$\dim(W) = \operatorname{rg}(B) = 3$$

Notiamo che potevamo risponedere a questa domanda semplicemente osservando che dal punto predente sappiamo che $v \in V$, quindi W = V e $\dim(W) = \dim(V) = 3$.

Esercizio 5.9 (7.52). Si consideri il sottoinsieme S di \mathbb{R}^4 costituito dai vettori v della forma

$$v = (a_1 - a_2 + 2a_3, a_1, 2a_1 - a_2, a_1 + 3a_2 + a_4)$$

dove a_1, a_2, a_3 e a_4 sono parametri reali.

- a) $S \ \dot{e} \ un \ sottospazio \ vettoriale \ di \ \mathbb{R}^4$?
- b) In caso di risposta affermativa ad a), trovare una base di S.

SOLUZIONE:

Notiamo che

$$v = a_1(1, 1, 2, 1) + a_2(-1, 0, -1, 3) + a_3(2, 0, 0, 0) + a_4(0, 0, 0, 1)$$

Siano

$$v_1 = (1, 1, 2, 1),$$
 $v_2 = (-1, 0, -1, 3),$ $v_3 = (2, 0, 0, 0),$ $v_4 = (0, 0, 0, 1)$

a) S è l'insieme delle combinazioni lineari di v_1, v_2, v_3 e v_4 , quindi

$$S = \langle v_1, v_2, v_3, v_4 \rangle$$

e si tratta di uno spazio vettoriale (sottospazio di \mathbb{R}^4).

b) Consideriamo la matrice associata a v_1, v_2, v_3 e v_4 :

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix} \Rightarrow \begin{matrix} II - I \\ III - 2I \\ IV - I \end{matrix} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 4 & -2 & 1 \end{bmatrix} \Rightarrow \begin{matrix} III - II \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 6 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} III - II \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 6 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} IV + 3III \\ 0 & 0 & 0 & 1 \end{matrix}$$

La matrice ha rango 4, quindi i vettori sono linearmente indipendenti e una base di S è data da $\{v_1, v_2, v_3, v_4\}$.

Esercizio 5.10 (7.53). Si consideri il sottoinsieme S di \mathbb{R}^4 costituito dai vettori v della forma

$$v = (a_1 - a_2 + 2a_3 + a_4, a_1, 2a_1 - a_2, a_1 + 3a_2)$$

dove a_1, a_2, a_3 e a_4 sono parametri reali.

- a) $S \ \dot{e} \ un \ sottospazio \ vettoriale \ di \ \mathbb{R}^4$?
- b) In caso di risposta affermativa ad a), trovare una base di S.

SOLUZIONE:

Notiamo che

$$v = a_1(1,1,2,1) + a_2(-1,0,-1,3) + a_3(2,0,0,0) + a_4(1,0,0,0)$$

Siano

$$v_1 = (1, 1, 2, 1),$$
 $v_2 = (-1, 0, -1, 3),$ $v_3 = (2, 0, 0, 0),$ $v_4 = (1, 0, 0, 0)$

a) S è l'insieme delle combinazioni lineari di v_1, v_2, v_3 e v_4 , quindi

$$S = \langle v_1, v_2, v_3, v_4 \rangle$$

e si tratta di uno spazio vettoriale (sottospazio di \mathbb{R}^4).

b) Consideriamo la matrice associata a v_1, v_2, v_3 e v_4 :

$$A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix} \Rightarrow \begin{matrix} II - I \\ III - 2I \\ IV - I \end{matrix} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 4 & -2 & -1 \end{bmatrix} \Rightarrow \begin{matrix} III - II \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 6 & 3 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} III - II \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 6 & 3 \end{bmatrix}$$

$$\Rightarrow \begin{matrix} IV + 3III \end{matrix} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{matrix}$$

La matrice ha rango 3 e una base di S è data da $\{v_1, v_2, v_3\}$.

Notiamo che potevamo osservare dall'inizio che v_3 e v_4 sono linearmente dipendenti tra loro, quindi una base può contenerne solo uno dei due; di conseguenza nella ricerca della base potevamo considerare dall'inizio solo i vettori v_1 , v_2 e v_3 per verificare se sono linearmente indipendenti.

In alternativa si può utilizzare il determinante. det(A) = 0, quindi i quattro vettori sono linearmente dipendenti e non possono formare una base di S. Osservando che v_3 e v_4 sono linearmente dipendenti consideriamo la matrice formata da v_1, v_2 e v_3 :

$$B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$

Il determinante della matrice quadrata B' formata dalle prime tre righe è

$$\det(B') = -2 \cdot (-1) = 2 \neq 0$$

quindi rg(B') = 3 e v_1, v_2 e v_3 sono linearmente indipendenti. Di conseguenza una base di S è l'insieme $\mathcal{B}(S) = \{v_1, v_2, v_3\}$.

Esercizio 5.11 (7.56). Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + (k+1)z = k, \quad 2x + y + z = 0 \}$$

- a) Stabilire per quali valori di k l'insieme S è un sottospazio di \mathbb{R}^3 .
- b) Per il valore di k trovato al punto precedente determinare una base di S.

SOLUZIONE:

Gli elementi dell'insieme S sono i vettori di \mathbb{R}^3 tali che

$$\begin{cases} x + y + (k+1)z = k \\ 2x + y + z = 0 \end{cases}$$

- a) Sappiamo che le soluzioni di un sistema lineare formano uno spazio vettoriale se e solo se il sistema è omogeneo. Quindi S è uno spazio vettoriale se k=0
- b) Scriviamo esplicitamente gli elementi di S cercando le soluzioni del sistema nel caso k=0:

$$\begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 2 & 1 & 1 & | & 0 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -1 & -1 & | & 0 \end{bmatrix}$$
$$\Rightarrow \begin{cases} x + y + z = 0 \\ -y - z = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = t \\ z = t \end{cases} \forall t \in \mathbb{R}$$

Quindi

$$S = \{ (0, -t, t) \mid t \in \mathbb{R} \}$$

E' ora evidente che ogni elemento di S si può scrivere nella forma

$$(0, -1, 1) \cdot t$$

quindi una base di S è data dall'insieme

$$\mathcal{B} = \{(0, -1, 1)\}$$

Esercizio 5.12 (7.57). Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + kz = k - 1, \quad x - 2y + z = 0, \quad -2x + 4ky - 2z = 0 \}$$

- a) Stabilire per quali valori di k l'insieme S è un sottospazio di \mathbb{R}^3 .
- b) Per il valore di k trovato al punto precedente determinare una base di S.

SOLUZIONE:

Gli elementi dell'insieme S sono i vettori di \mathbb{R}^3 tali che

$$\begin{cases} x - 2y + kz = k - 1 \\ x - 2y + z = 0 \\ -2x + 4ky - 2z = 0 \end{cases}$$

- a) Sappiamo che le soluzioni di un sistema lineare formano uno spazio vettoriale se e solo se il sistema è omogeneo. Quindi S è uno spazio vettoriale se k = 1.
- b) Scriviamo esplicitamente gli elementi di S cercando le soluzioni del sistema nel caso k=1:

$$\begin{bmatrix} 1 & -2 & 1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ -2 & 4 & -2 & | & 0 \end{bmatrix} \Rightarrow \begin{matrix} II - 2I & \begin{bmatrix} 1 & -2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\Rightarrow x - 2y + z = 0 \Rightarrow \begin{cases} x = 2s - t \\ y = s \\ z = t \end{cases} \quad \forall s, t \in \mathbb{R}$$

Quindi

$$S = \{ (2s - t, s, t) \mid s, t \in \mathbb{R} \}$$

Separiamo le variabili nella scrittura del generico elemento di S:

$$(2s, s, 0) + (-t, 0, t) = (2, 1, 0) \cdot s + (-1, 0, 1) \cdot t$$

Quindi S è generato dall'insieme

$$\mathcal{B} = \{(2,1,0), (-1,0,1)\}$$

Per come è stato calcolato, e comunque sarebbe immediato verificarlo, l'insieme \mathcal{B} è linearmente indipendente, quindi si tratta effettivamente di una base di S.

Esercizio 5.13 (7.63). Sia A la matrice reale seguente:

$$A = \begin{bmatrix} k & -k & 0 & -1 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & k & 1 \end{bmatrix}$$

- a) Determinare il rango di A al variare del parametro reale k.
- b) Calcolare una base del nucleo di A, cio dello spazio delle soluzioni del sistema lineare omogeneo Ax = 0, nel caso k = 1.

SOLUZIONE:

Riduciamo a gradini la matrice A:

$$\begin{array}{c} II \\ III \\ I \\ I \\ I \\ I \\ I \\ III - kII \\ III - kII \\ \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & k & 1 \\ 0 & k & -k & -1 \\ \end{bmatrix} \Rightarrow \\ III - kI \\ \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & k & 1 \\ 0 & 0 & -k - k^2 & -1 - k \\ \end{bmatrix}$$

Quindi

- Se $k \neq -1$ la matrice A ha rango 3.
- Se k = -1 la matrice A ha rango 2.
- b) Ponendo k=1 al termine della riduzione e considerando il sistema omogeneo associato otteniamo:

$$\begin{bmatrix} 1 & -2 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & 1 & | & 0 \\ 0 & 0 & -2 & -2 & | & 0 \end{bmatrix} \Rightarrow \begin{cases} x - 2y + z = 0 \\ y + z + w = 0 \\ -2z - 2w = 0 \end{cases} \Rightarrow \begin{cases} x = -t \\ y = 0 \\ z = t \\ w = -t \end{cases}$$

Quindi il nucleo di A è l'insieme (spazio vettoriale):

$$N(A) = \{ (-1, 0, 1, -1) \cdot t \mid t \in \mathbb{R} \}$$

e una base del nucleo è data dall'insieme

$$\mathcal{B}(N(A)) = \{ (-1, 0, 1, -1) \}$$

Esercizio 5.14 (7.64).

a) Sia

$$V = \langle (1, 2, 1), (-1, 3, 0), (3, 1, 2) \rangle$$

Si determini la dimensione e una base di V.

b) Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 3z = 0, \ 2x + 3y + z = 0, \ x + 2z = 0 \}$$

Si determini la dimensione e una base di S.

c) Si confrontino i metodi risolutivi e i risultati dei due precedenti punti.

SOLUZIONE:

a) Calcoliamo il rango della matrice A associata ai tre vettori riducendola a gradini:

$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & -1 & 3 \\ 0 & 5 & -5 \\ 0 & 1 & -1 \end{bmatrix} \Rightarrow \frac{1}{5II} \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi

$$\dim(V) = \operatorname{rg}(A) = 2$$

$$\mathcal{B}(V) = \{ (1, 2, 1), (-1, 3, 0) \}$$

b) Associamo al sistema omogeneo

$$\begin{cases} x - y + 3z = 0 \\ 2x + 3y + z = 0 \\ x + 2z = 0 \end{cases}$$

la matrice

$$\begin{bmatrix} 1 & -1 & 3 & | & 0 \\ 2 & 3 & 1 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{bmatrix} \Rightarrow \cdots \Rightarrow \begin{bmatrix} 1 & -1 & 3 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Notiamo che i conti sono già stati eseguiti al punto precedente. Quindi

$$\begin{cases} x - y + 3z = 0 \\ x - z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ y = t \\ z = t \end{cases} \forall t \in \mathbb{R}$$

е

$$\dim(S) = 1$$

 $\mathcal{B}(S) = \{ (-2, 1, 1) \}$

c) Notiamo che con la stessa matrice abbaimo risolto due esercizi differenti tra cui in genere è facile confondersi. La relazione tra i due esercizi, oltre alla medesima riduzione della matrice, è solo legata alle dimensioni:

$$\begin{aligned} \dim(V) &= \operatorname{rg}(A) \\ \dim(S) &= \operatorname{numero \ delle \ incognite} - \operatorname{rg}(A) \\ \dim(V) &+ \dim(S) = \operatorname{numero \ delle \ incognite} \end{aligned}$$

Esercizio 5.15 (7.70). Sia dato l'insieme

$$V = \{p(x) \in \mathbb{R}_3[x] \mid p(1) = 0 \}$$

- a) Verificare che l'insieme V è un sottospazio vettoriale di $\mathbb{R}_3[x]$.
- b) Determinare una base di V.

SOLUZIONE:

Sia $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, $a_i \in \mathbb{R}$ il generico elemento di $\mathbb{R}_3[x]$. A p(x) possiamo associare le sue componenti (a_0, a_1, a_2, a_3) rispetto alla base canonica di $\mathbb{R}_3[x]$ formata dai polinomi $\{1, x, x^2, x^3\}$. Quindi a ogni polinomio $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}_3[x]$ possiamo associare il vettore $(a_0, a_1, a_2, a_3) \in \mathbb{R}^4$.

Nel nostro caso la condizione p(1) = 0 si traduce nella condizione $a_0 + a_1 + a_2 + a_3 = 0$, quindi all'insieme di polinomi V corrisponde l'insieme:

$$W = \{(a_0, a_1, a_2, a_3) \in \mathbb{R}^4 \mid a_0 + a_1 + a_2 + a_3 = 0\}$$

cioè l'insieme delle soluzioni del sistema omogeneo formato dalla sola equazione $a_0 + a_1 + a_2 + a_3 = 0$.

- a) L'insieme W, e quindi l'insieme V, è uno spazio vettoriale in quanto si tratta dell'insieme delle soluzioni di un sistema omogeneo.
- b) Per trovare una base di V determiniamo una base di W per poi tornare ai polinomi.

$$a_0 + a_1 + a_2 + a_3 = 0 \Rightarrow \begin{cases} a_0 = -r - s - t \\ a_1 = r \\ a_2 = s \\ a_3 = t \end{cases} \forall r, s, t \in \mathbb{R}$$

Quindi il generico elemento di W ha la forma

$$(-1,1,0,0) \cdot r + (-1,0,1,0) \cdot s + (-1,0,0,1) \cdot t$$

e una base di W è data dall'insieme

$$\mathcal{B}(W) = \{(-1, 1, 0, 0), (-1, 0, 1, 0), (-1, 0, 0, 1)\}\$$

Associamo ora ai vettori determinati i corrispondenti polinomi:

$$(-1, 1, 0, 0) \Rightarrow p_1(x) = -1 + x$$

 $(-1, 0, 1, 0) \Rightarrow p_2(x) = -1 + x^2$
 $(-1, 0, 0, 1) \Rightarrow p_3(x) = -1 + x^3$

Infine l'insieme

$$\mathcal{B}(V) = \{ p_1(x) = -1 + x, \ p_2(x) = -1 + x^2, \ p_3(x) = -1 + x^3 \}$$

è una base di V.

Esercizio 5.16 (7.71). Siano dati i polinomi

$$p_1(x) = 1 + x,$$
 $p_2(x) = 1 + 2x + x^2,$ $p_3(x) = x - x^2.$

- a) Verificare che l'insieme $\{p_1(x), p_2(x), p_3(x)\}\$ è una base di $\mathbb{R}_2[x]$.
- b) Esprimere $f(x) = x^2 x + 2$ come combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$.

SOLUZIONE:

Ricordiamo che a ogni polinomio di $\mathbb{R}_2[x]$ possiamo associare le sue componenti (a_0, a_1, a_2) rispetto alla base canonica $\mathcal{B} = \{x^2, x, 1\}$. Di conseguenza ai polinomi p_1, p_2 e p_3 possiamo associamo i tre vettori

$$p_1 = (0, 1, 1)$$

 $p_2 = (1, 2, 1)$
 $p_3 = (-1, 1, 0)$

Quindi i polinomi p_1, p_2 e p_3 formano una base di $\mathbb{R}_2[x]$ sse i tre vettori p_1, p_2 e p_3 formano una base di \mathbb{R}^3 . In particolare $\mathbb{R}_2[x]$ ha dimensione 3, ed è sufficiente verificare che i tre vettori siano linearmente indipendenti.

Inoltre al polinomio f(x) associamo il vettore f(1, -1, 2)

Per rispondere ad entrambe le domande riduciamo a gradini la matrice associata ai quattro vettori.

$$\begin{bmatrix} 0 & 1 & -1 & | & 1 \\ 1 & 2 & 1 & | & -1 \\ 1 & 1 & 0 & | & 2 \end{bmatrix} \Rightarrow \begin{matrix} III \\ 1 & 2 & 1 & | & -1 \\ 0 & 1 & -1 & | & 1 \end{matrix}$$

$$\Rightarrow II - I \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & | & -3 \\ 0 & 1 & -1 & | & 1 \end{bmatrix} \Rightarrow \begin{matrix} \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & | & -3 \\ 0 & 0 & -2 & | & 4 \end{bmatrix}$$

- a) La matrice dei coefficienti, associata a p_1, p_2 e p_3 , ha rango 3, quindi i tre polinomi sono linearmente indipendenti e formano una base di $\mathbb{R}_2[x]$.
- b) Torniamo al sistema associato ai quattro vettori:

$$\Rightarrow \begin{cases} x_1 + x_2 = 2 \\ x_2 + x_3 = -3 \\ -2x_3 = 4 \end{cases} \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = -1 \\ x_3 = -2 \end{cases}$$

Quindi

$$f(x) = 3 \cdot p_1(x) - 1 \cdot p_2(x) - 2 \cdot p_3(x)$$

Esercizio 5.17 (7.74). Sia W l'insieme dei polinomi $p(x) = ax^3 + bx^2 + cx + d \in \mathbb{R}[x]$, di grado al più 3, tali che p(0) = p(1) = 0. Determinare un insieme generatore di W.

SOLUZIONE:

Come negli esercizi precedenti associamo a p(x) le sue componenti rispetto alla base canonica di $\mathbb{R}_3[x]$, $\{1, x, x^2, x^3\}$:

$$p(x) = ax^3 + bx^2 + cx + d \quad \Rightarrow \quad p = (d, c, b, a)$$

Imponiamo le due condizioni al generico polinomio di grado al più 3:

$$\begin{cases} p(0) = 0 \implies d = 0 \\ p(1) = 0 \implies a + b + c + d = 0 \end{cases} \implies \begin{cases} d = 0 \\ a + b + c = 0 \end{cases}$$

Quindi a W corrisponde il sottospazio V formato dagli elementi di \mathbb{R}^4 soluzioni del sistema omogeneo:

$$V = \{(d, c, b, a) \in \mathbb{R}^4 \mid d = 0, \ a + b + c = 0\}$$

Scriviamo ora le soluzioni di tale sistema omogeneo:

$$\begin{cases} a = -s - t \\ b = s \\ c = t \\ d = 0 \end{cases} \forall s, t, \in \mathbb{R}$$

Quindi

$$V = \langle (0,0,1,-1), (0,1,0,-1) \rangle$$

Infine

$$W = \langle p_1(x) = x^2 - x^3, \ p_2(x) = x - x^3 \ \rangle$$

Esercizio 5.18 (7.84). Sia S l'insieme delle matrici simmetriche:

$$S = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix} \mid a, b, d \in \mathbb{R} \right\}$$

(Notiamo anche che $S = \{A \in M_{2\times 2} \mid A^T = A\}$).

- a) Verificare che S è un sottospazio di $M_{2\times 2}$.
- b) Determinare una base di S.

SOLUZIONE:

a) Notiamo che la condizione percé una matrice 2×2 appartenga a S è che gli elementi di posto 1,2 e 2,1 siano uguali.

Verifichiamo le due proprietà richieste per uno spazio vettoriale.

- SOMMA. Siano

$$A_1 = \begin{bmatrix} a_1 & b_1 \\ b_1 & d_1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} a_2 & b_2 \\ b_2 & d_2 \end{bmatrix}$$

due generici elementi di S. Allora

$$A_1 + A_2 = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ b_1 + b_2 & d_1 + d_2 \end{bmatrix} \in S$$

- PRODOTTO per scalari. Sia

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

un generico elemento di S e $\lambda \in \mathbb{R}$. Allora

$$\lambda A = \begin{bmatrix} \lambda a & \lambda b \\ \lambda b & \lambda d \end{bmatrix} \in S$$

b) Separiamo i parametri nella generica scrittura di A:

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix} =$$
$$= a \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Quindi l'insieme

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

è una base di S. Infatti:

- Abbiamo appena visto che il generico elemento di S si può scrivere come combinazione lineare degli elementi di \mathcal{B} .
- Gli elementi di \mathcal{B} sono linearmente indipendenti, infatti:

$$\begin{aligned} a \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0 & \Rightarrow \\ \begin{bmatrix} a & b \\ b & d \end{bmatrix} = 0 & \Rightarrow \begin{cases} a = 0 \\ b = 0 \\ d = 0 \end{cases} \end{aligned}$$

Esercizio 5.19 (7.89). Sia

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

e sia $S = \{M \in M_2(\mathbb{R}) \mid AM = MA = 0\}$. Dimostrare che S è un sottospazio di $M_2(\mathbb{R})$ e calcolarne la dimensione.

SOLUZIONE:

Sia

$$M = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

la generica matrice di $M_2(\mathbb{R})$. Cominciamo a calcolare gli elementi di S:

$$AM = \begin{bmatrix} x - z & y - w \\ -2x + 2z & -2y + 2w \end{bmatrix} = 0 \implies \begin{cases} x = z \\ y = w \end{cases}$$

$$MA = \begin{bmatrix} x - 2y & -x + 2y \\ z - 2w & -z + 2w \end{bmatrix} = 0 \implies \begin{cases} x = 2y \\ z = 2w \end{cases}$$

$$\Rightarrow \begin{cases} x = 2t \\ y = t \\ z = 2t \\ w = t \end{cases}$$

$$\Rightarrow S = \begin{cases} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \cdot t \mid t \in \mathbb{R} \end{cases}$$

Chiamiamo B la matrice

$$B = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

S è quindi formato dai multilpli di B. E' perciò immediato dimostare che si tratta di un sottospazio vettoriale di $M_{2\times 2}$:

• SOMMA. Se A_1 e A_2 appartengono a S, allora $A_1 = t_1 \cdot B$ e $A_2 = t_2 \cdot B$ per opportuni $t_1, t_2 \in S$, quindi

$$A_1 + A_2 = t_1 \cdot B + t_2 \cdot B = (t_1 + t_2) \cdot B \in S$$

• PRODOTTO per scalari. Sia $A = t \cdot B$ un generico elemento di $S \in \mathbb{R}$, allora

$$\lambda A = \lambda \cdot t \cdot B = (\lambda \cdot t) \cdot B \in S$$

In particolare S è uno spazio vettoriale di dimensione 1, generato dalla matrice B.

Esercizio 5.20 (7.90). Si consideri la matrice

$$A = \begin{bmatrix} 1 & k \\ 2 & 3 \end{bmatrix}.$$

- a) Si determini una base del sottospazio $U = \{X \in M_2(\mathbb{R}) : AX = XA\}$.
- b) Mostrare che il sottoinsieme $W = \{X \in U : X \text{ è invertibile}\}$ non è un sottospazio vettoriale di U.

SOLUZIONE:

Sia

$$X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$

la generica matrice di $M_2(\mathbb{R})$.

$$AX = \begin{bmatrix} x+kz & y+kw \\ 2x+3z & 2y+3w \end{bmatrix} \qquad XA = \begin{bmatrix} x+2y & kx+3y \\ z+2w & kz+3w \end{bmatrix}$$

Da AX = XA otteniamo il sistema

$$\begin{cases} x + kz = x + 2y \\ y + kw = kx + 3y \\ 2x + 3z = z + 2w \\ 2y + 3w = kz + 3w \end{cases} \Rightarrow \begin{cases} -2y + kz = 0 \\ kx + 2y - kw = 0 \\ 2x + 2z - 2w = 0 \\ 2y - kz = 0 \end{cases}$$

Riduciamo a gradini la matrice associata a tale sistema:

$$\begin{vmatrix} 0 & -2 & k & 0 & | & 0 \\ k & 2 & 0 & -k & | & 0 \\ 2 & 0 & 2 & -2 & | & 0 \\ 0 & 2 & -k & 0 & | & 0 \end{vmatrix} \Rightarrow \begin{matrix} I/2III \\ II \\ 0 & -2 & k & 0 & | & 0 \\ k & 2 & 0 & -k & | & 0 \\ 0 & 2 & -k & 0 & | & 0 \\ 0 & 2 & -k & 0 & | & 0 \\ 0 & 2 & -k & 0 & | & 0 \\ 0 & 2 & -k & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ -2y + kz = 0 \end{matrix} \Rightarrow \begin{cases} x = -s + t \\ y = \frac{k}{2}s \\ z = s \\ w = t \end{cases} \forall s, t \in \mathbb{R}$$

Quindi

$$X = \begin{bmatrix} -1 & \frac{k}{2} \\ 1 & 0 \end{bmatrix} \cdot s + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot t$$

a) Abbiamo ottenuto che

$$\mathcal{B}(U) = \left\{ \begin{bmatrix} -1 & \frac{k}{2} \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

b) W non è un sottospazio in quanto, per esempio, non contiene l'elemento nullo. Infatti la matrice nulla

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

non è invertibile.

Esercizio 5.21 (7.91). Sia $W = \langle A, B, C \rangle$ il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici

$$A = \begin{bmatrix} 0 & 0 \\ k & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & k \\ -2 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} k & 1 \\ k-1 & 1 \end{bmatrix}$$

Si determini la dimensione di W e una sua base al variare del parametro reale k.

SOLUZIONE:

Cominciamo a stabilire quando le tre matrici
 sono linearmente indipendenti risolvento l'equazione matriciale
 xA + yB + zC = 0:

$$\begin{bmatrix} y+kz & ky+z \\ kx-2y+(k-1)z & z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

da cui si ottiene il sistema

$$\begin{cases} y + kz = 0 \\ ky + z = 0 \\ kx - 2y + (k-1)z = 0 \end{cases} \Rightarrow \begin{cases} y = 0 \\ 0 = 0 \\ kx = 0 \\ z = 0 \end{cases}$$

Dobbiamo ora distinguere due casi.

• Se $k \neq 0$ otteniamo la sola soluzione x = y = z = 0 per cui le tre matrici sono linearmente indipendenti:

$$\dim(W) = 3$$

$$\mathcal{B}(W) = \{A, B, C\}$$

• Se k=0 otteniamo la sola soluzione $x=t,\ y=z=0$ per cui le tre matrici sono linearmente dipendenti. In particolare A è la matrice nulla e $A=0\cdot B+0\cdot C$ dipende linearmente da B e C. Se studiamo invece la dipendenza di B e C risolvendo l'equazione yB+zC=0 otteniamo la

sola soluzione y=z=0 quindi B e C sono linearmente indipendenti (Infatti B e C non sono una multiplo dell'altra). Di conseguenza

$$\dim(W) = 2$$

$$\mathcal{B}(W) = \{B, C\}$$

Esercizio 5.22 (7.92). Sia $V = \langle A, B, C \rangle$ il sottospazio di $M_{2 \times 2}(\mathbb{R})$ dove

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}.$$

- a) Si determini la dimensione e una base di V.
- b) Si esprima $D = \begin{bmatrix} 2 & 2 \\ 5 & 6 \end{bmatrix}$ come combinazione lineare della base trovata al punto a).

SOLUZIONE:

a) Per determinare la dimensione di V cominciamo a verificare se A, B e C sono linearmente indipendenti risolvendo il sistema xA + yB + zC = 0:

$$x \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} + y \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} + z \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} 2x + 2y + 2z & y + 3z \\ x + 3y + 7z & 2x + 4y + 8z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} 2x + 2y + 2z = 0 \\ y + 3z = 0 \\ x + 3y + 7z = 0 \\ 2x + 4y + 8z = 0 \end{cases} \Rightarrow \begin{bmatrix} 2 & 2 & 2 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 1 & 3 & 7 & | & 0 \\ 2 & 4 & 8 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1/2I & 1 & 1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 2 & 6 & | & 0 \\ 0 & 2 & 6 & | & 0 \end{bmatrix}$$

$$\Rightarrow III - 2II \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\Rightarrow III - 2II \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

La matrice dei coefficienti ha rango 2, quindi il sistema xA+yB+zC=0 ammette infinite soluzioni. Di conseguenza le tre matrici A, B, C sono linearmente dipendenti e dim(V) < 3. Dai conti appena svolti si vede inoltre che risolvendo l'equazione xA+yB=0 otteniamo il sistema

$$\begin{cases} 2x + 2y = 0 \\ y = 0 \\ x + 3y = 0 \\ 2x + 4y = 0 \end{cases}$$

che ammette la sola soluzione x=y=0, quindi le matrici A e B sono linearmente indipendenti. Infine $\dim(V)=2$ e una base di V è data dall'insieme $\{A,B\}$.

b) Dobbiamo risolvere l'equazione xA + yB = D. Procedendo come nel punto precedente otteniamo il sistema

$$\begin{cases} 2x + 2y = 2 \\ y = 2 \\ x + 3y = 5 \\ 2x + 4y = 6 \end{cases} \Rightarrow \begin{cases} x = -1 \\ y = 2 \end{cases} \Rightarrow D = -A + 2B$$