Part 1: Co-modelling and Co-simulation

John Fitzgerald

Peter Gorm Larsen Ken Pierce

AARHUS UNIVERSITY

Model-driven Design

- Modern systems are complex
- To cope with this, we can build models beforehand
 - To perform analysis (e.g. static analysis, proof, model checking, simulation)
 - Clarify our assumptions
 - Evaluate potential designs
 - Avoid expensive prototypes
- Different modelling paradigms for different aspects

Crescendo Tutorial FM'14 Singapore

31-05-2014

Modelling of Software

- Typically discrete-event (DE), e.g. VDM-RT
- In simulation, only the points in time at which the state changes are represented.
- Good abstractions for software
 - e.g. data types, objectorientation, threading
- Less suited for physical system modelling

- Typically continuous-time (CT), e.g. differential equations
- In simulation, the state changes continuously through time.
- Abstractions for disciplines, e.g. mechanical, electrical, hydraulic
- Poor software modelling support
 - only basic programming support; no functions or objects

Crescendo Tutorial FM'14 Singapore

31-05-2014

3

Embedded Systems

- Interacting computing, physical, human elements
- Increasingly complex logic (e.g. moding) ~80% of control software
- Error detection and recovery
- Collaborative development
- Diverse disciplines cultures, abstractions, formalisms
- Typically tackled separately
- Need for design space exploration

Crescendo Tutorial FM'14 Singapore

31-05-2014

Co-simulation Semantics

- Simulators maintain local state / internal simulation time.
- Co-simulation engine synchronises:
 - shared variables, events, time
- Common time, t_n , at the start of a co-simulation step.
- DE simulator determines step length (to avoid roll-back).
- At t_n, the DE simulator:
 - sets controlled variables
 - proposes duration to for CT simulator to advance (if possible).
- Co-simulation engine tells the CT simulator to advance.

Crescendo Tutorial FM'14 Singapore

31-05-2014

7

Co-simulation Semantics

- The CT simulator advances. If an event occurs before the proposed step time is reached, CT simulator stops early.
- Once the CT simulator has paused (reaching internal time t_{n+1}), the monitored variables and the actual time reached in the CT simulation are communicated back to the DE simulator.
- The DE simulation then advances so that both DE and CT are again synchronised at the same simulation time.
- · Cycle repeats.

Crescendo Tutorial FM'14 Singapore

31-05-2014

Line-following Robot DSE

- Design choices restrict the design space
- Exploration is making decisions

Crescendo Tutorial FM'14 Singapore

31-05-2014

Line-following Robot DSE

- · Results can be graphical or numerical
- Designs can be evaluated by ranking functions

		Metric*				
Rank	Design	Α	В	С	D	Mean Rank
1	(b)	1	5	1	2	2.2
2	(f)	7	2	4	1	3.5
3	(a)	2	8	2	4	4.0
4	(e)	3	6	3	5	4.2
5	(i)	9	1	5	3	4.5
6	(c)	5	3	6	8	5.5
7	(d)	6	4	7	7	6.0
8	(h)	4	7	8	9	7.0
9	(j)	8	9	9	6	8.0

* A = distance, B = energy, C = deviation area, D = maximum deviation

Crescendo Tutorial FM'14 Singapore

31-05-2014

21

Paths to Initial Co-models

DE-first

 initial models are produced in the discrete-event formalism; CT model added later. Focus on DE controller first.

CT-first

 Initial models are produced in the CT tool, with a DE model being introduced later to form a co-model. Focus on modelling the dynamics of the plant.

Contract-first

 Contract defined, acts as a guide. DE- and CT-models are developed separately but concurrently (DE-first and CT-first, as above). Allows for early testing of constituent models without reliance on a competent counterpart model. The constituent models are then integrated into a co-model.

Crescendo Tutorial FM'14 Singapore

31-05-2014

• Initial models produced in the discrete-event formalism • CT model added later DE-first development Contract definition CT-only modelling CT-only modelling Integration of initial co-model DE-first ctri AARHUS NIVERSITY Crescendo Tutorial FM'14 Singapore 31-05-2014 23

Contract-first

- Contract defined, acts as a guide
 - allows for early testing of constituent models
- DE- and CT-models developed separately but concurrently
 - following DE-first and CT-first as previously shown
- Constituent models are then integrated into a co-model

Choosing a Path							
	Pros	Cons	Use where				
DE-first	complex controller behaviour can be studied early	plant dynamics over-simplified; loop controllers cannot be tuned; rapid increase in environment model complexity	complex DE control needs priority; legacy DE models exist; modeller experience is mainly in DE domain				
CT-first	feasibility study; plant dynamics can be studied early on; loop controllers can be tuned	complex DE control cannot be easily studied	feasibility of control unknown; plant dynamics need priority; legacy CT models and/or loop controllers exist; modellers' experience is mainly in CT				
Contract-first	a co-model reached early on; constituent models not mutually dependent for testing	contract required early on; extra effort is required in building testing constituent models	integration is required of two legacy models; no legacy models exist; modellers from both domains are available (or have no bias)				
Other	a novel approach can fit better with existing practice	limited experience from our existing guidelines	the standard approaches do not fit your development context; legacy models / experience in other formalisms				
Newcastle University AARHUS UNIVERSITY Crescendo Tutorial FM'14 Singapore 31-05-2014 26							

Summary of Terms (1)

model

a more or less abstract representation of a system or component of interest.

modelling

- the activity of creating models.

simulation

- symbolic execution of a model.

continuous-time simulation

 a form of simulation where the state of the system changes continuously through time.

discrete-event simulation

 a form of simulation where only the points in time at which the state of the system changes are represented.

Crescendo Tutorial FM'14 Singapore

31-05-2014

27

Summary of Terms (2)

· co-model

 a model comprising two constituent models (a DE sub-model and a CT submodel) and a contract describing the communication between them.

contract

 a description of the communication between the constituent models of a comodel, given in terms of shared design parameters, shared variables, and common events.

co-simulation

- the simulation of a co-model.

design space exploration (DSE)

 the (iterative) process of constructing co-models, performing co-simulations and evaluating the results in order to select co-models for the next iteration.

Crescendo Tutorial FM'14 Singapore

31-05-2014

Summary

- Embedded systems design
 - requires collaborative development
 - analysis of models from different disciplines
 - diverse cultures, abstractions, formalisms
- Crescendo solution is co-simulation
 - combining DE models of controllers and CT models of controlled plant
 - allow existing knowledge and skill
 - enable communication between disciplines

Crescendo Tutorial FM'14 Singapore

31-05-2014