

Communication acoustics Ch 6: Musical Instruments and Sound Synthesis

Ville Pulkki and Matti Karjalainen

Department of Signal Processing and Acoustics Aalto University, Finland

October 2, 2017

This chapter

- Acoustical music instruments
 - Types
 - Basic operation principle
 - Examples: guitar, trumpet
- Sound synthesis
 - Frequency- and time-domain models of musical instruments
 - Synthesizers

Acoustic instruments

- Idiophones
 - Instument body makes the sound
 - Xylophone, church bell, rattle
- Membranophones
 - Membrane is the main vibrating unit
 - Drums
- Chordophones
 - String is the main vibrating unit
 - Guitar, piano, violin, harp
- Aerophones
 - Air column is the main vibrating unit
 - Trumpet, pipe organ, flute

How sound is generated

- Excitation
 - The player of then instrument applies a force to a part of the instrument
 - Something starts to vibrate
 - The repetition frequency of vibration is often controlled by the player
- Resonance
 - Often the vibration is led to resonant structures in instrument
 - Colors the sound, and helps to radiate more sound
- Radiation
 - Often the main source of radiation is the resonator or the air column

Example 1: Guitar

- Chordophone, player plucks the strings causing vibration
- The length of string defines directly f₀
- Guitar body, both air volume and plates, act as resonators
- Sound is radiated mostly from sound hole and sound board

Guitar body response

Example 2: Trumpet

- Aerophone, air column is the main vibrating unit
- The vibrations in player's lips coupled to modes of the column
- Frequencies of modes follow roughly harmonic spectrum
 - (notes of valveless trumpet in C)
- Length of air column is changed with valves
- Sound is radiated mostly from the bell

Synthesis of musical sounds

- Frequency-domain models of instruments
- Time-domain models of instruments
- Other music sound synthesis methods (not models of instruments)

Frequency-domain models of music instruments

- Excitation is modeled as input signal $X(j\omega)$
- Vibrating unit(s) and resonators are modeled as $H_i(j\omega)$
- Output: $Y(j\omega) = X(j\omega) \prod_i H_i(j\omega)$
- Computationally efficient
- Valid if system is LTI (linear and time invariant)
- Many instruments not: trumpet (excitation coupled to modes), piano (hammer strucks many times, excitation depends on string position)
- Some instruments yes: Guitar

Time-domain models of music instruments

- The vibrating unit is modeled with time-domain approach, such as a delay line or a mesh of nodes
- Resonators can be modeled with IIR or FIR filters
- Computationally laborious methods

Time-domain model of guitar string

- String is modeled as a delay line
- Damping in each end
- Excitation is given as input signal
- Excitation can be convolved with body response as in the demo below
- Output is taken out from the position of guitar microphones

Click to hear guitar model playing Bach

Other methods to synthesize musical sounds

- Sampling, record musical notes and play them back upon request from user
- Additive synthesis, add up sinusoids to obtain desired sound
- Subtractive synthesis, generate spectrally rich sound, and filter it to get needed sound
- Non-linear synthesis, e.g., frequency-modulation (FM) synthesis (Yamaha DX 7)

Envelope of musical sounds

In synthesizers: attack - decay - sustain - release

From: http://en.wikipedia.org/wiki/Synthesizer#ADSR envelope

 In real instruments similar, but each harmonic of a real instrument has its own temporal envelope

References

These slides follow corresponding chapter in: Pulkki, V. and Karjalainen, M. Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics. John Wiley & Sons, 2015, where also a more complete list of references can be found.