Introduction to Structural Causal Models

Daniel Saggau

5/11/2021

Motivation

@marketoonist.com

Introduction

Table 1: [1]

Association-based Concepts	Causal Concepts
Correlation	Randomization
Regression	Confounding
Conditional Independence	Disturbance
Likelihood	Error Terms
Odds Ratio	Structural Coefficients
Propensity Score	Spurious Correlation

Table of Contents

- Foundations of SCMs
 - Assumptions
 - Comparing Causal Tools
- Pearl's Causal Hierachy
 - Prediction
 - Intervention
 - Counterfactuals
- Graphical Models
- Causality and Time

Foundations of SCMs

- Nonparametric SEM
- System of equations with functions
- Assignments ':=' (non-symmetric) instead of algebraic equation '=' (symmetry)
- As mentioned, we define variables as functions e.g. $A = f_A(B, U_A)$. **Error in Regression:** Omittable outside factor **Error in SCM/SEM:** Latent (influential) factor that is pivotal for the model

$$C := N_c$$
$$E := f_E(C, N_E)$$

source: [2]

Assumptions in Causality (1)

Independence:

- Noise terms independent (N_c, N_e)
- Mechanisms independent (other variables invariant)(local changes)
- Change in distribution stems from change in mechanism
- Causal Markov Condition

Assumptions in Causality (2)

SUTVA; 'The treatment that one unit receives does not change the effect of treatment for any other unit.'

Consistency: The outcome Y agrees with the potential outcome corresponding to the treatment indicator.'

Ignorability: The potential outcomes are conditionally independent of treatment given some set of de-confounding variables. (perfect RCT)

- First tow hold for SCM counterfactuals
- third not testable but can check via backdoor criterion in SCM [3]

SCM Applications:

- Flexible simulations for higher order problems (intervention, counterfactual)
- Graphical visualization via directed acyclic graph
- Example: SCM for fairness in dynamical system [4]: credit loan approval, time allocation, college admission

Fundamental Differences (1)

- conflict whether to use graphs or not
- A SEM is a parametric specification used in applied sciences (parameters contested)
- A Bayesian causal network is another popular causal model using conditional probabilities and NO functions
- Differences in performance between BCN and SCM# Performance Evaluation

Table of Contents

- Foundations of SCMs
 - Assumptions
 - Comparing Causal Tools
- Pearl's Causal Hierachy
 - Prediction
 - Intervention
 - Counterfactuals
- Graphical Models
- Causality and Time

Pearls Causal Hierachy

Table 2: Pearls Hierarchy of Causation (2009)

Method	Action	Example	Usage
Association $P(a b)$	Co-occurrence	What happened	(Un-)Supervised ML, BN, Reg.
Intervention $P(a do(b), c)$	Do- manipulation	What happens if	CBN,MDP,RL
Counterfactual $P(a_b a^i,b^i)$	Hypotheticals	What would have happened if	SCM ,PO

Prediction

- ML, BN and regression are at the lowest level in the causal hierarchy
- Prediction methods demand the least information and depend on association alone
- Association-based methods ignore external changes outside of our data
- Intervention distribution needed for higher level information

Intervention

- Mathematical Tool: do-calculus
- The do-calculus enables us to study the manipulation of parent nodes
- Atomic intervention: where we set a variable to a constant
- Policy intervention: we specify a different function for an equation
- CBN, MDP and reinforcement learning model intervention.

Example Intevention (1)

Atomic Intervention:

• replacing function with a constant

$$C_1 := f_{c_1}(p, N_{c_1}) \rightarrow C_1 := 600$$

$$C_2 := f_{c_2}(a, N_{c_2})$$

$$E := f_E(C_1, C_2, N_E)$$

Example Intevention (2)

Policy Intervention:

replacing function with a different conditional probability

$$C_1 := f_{c_1}(p, N_{c_1}) \rightarrow C_1 := f(\pi)$$

$$C_2 := f_{c_2}(a, N_{c_2})$$

$$E := f_E(C_1, C_2, N_E)$$

Counterfactuals

• missing data problem in PO framework

Process is described as follows:

- **a** Abduction: Cast probability P(u) as conditional probability $P(u|\epsilon)$
- **1** Action: Exchange (X = x)
- **O** Prediction: Compute (Y = y)

Table of Contents

- Foundations of SCMs
 - Assumptions
 - Comparing Causal Tools
- Pearl's Causal Hierachy
 - Prediction
 - Intervention
 - Counterfactuals
- Graphical Models
- Causality and Time

Graphical Tools

- Nodes -> Variables (endogenous/exogenous)
- Edges -> relationship (equations)
- Parents/Ancestors/Descendents
- No need to specify exact parametric shape
- Highlight colliders
- Estimation back door criterion
- Test theoretical model structure via causal algorithms to detect structure in data (IC/PC Algo.)

Graphical Illustration - Probabilisitic Model

Figure 1: Probabilistic Model

Graphical Illustration - Structural Causal Model

Figure 2: Structural Causal Model

Table of Contents

- Foundations of SCMs
 - Assumptions
 - Comparing Causal Tools
- Pearl's Causal Hierachy
 - Prediction
 - Intervention
 - Counterfactuals
- Graphical Models
- Causality and Time

Causality and Time

- Time in Physical Sciences: Mechanical and exact
- Time in Social Sciences: Often Vague
- Regular Time Specification is also more vague
- To accommodate that issue, research on differential equation based SCMs started

Causal Modelling with Differential Equations

Intial Value:

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

Derivative of function x with respect to time t:

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$$

Value of Function at time t + dt:

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + dt \cdot f(\mathbf{x}(t))$$

 dependence on prior time point and change in time contribute to the value at time point

Graphical Overview

model	predict in IID setting	predict under changing distributions / interventions	answer counter- factual questions	obtain physical insight
mechanistic model	Y	Y	Y	Y
structural causal model	Y	Y	Y	N
causal graphical model	Y	Y	N	N
statistical model	Y	N	N	N

Source: [2]

Extensions

- Mediation Analysis
- PO-Framework
- Causal Algorithms
- IV-Estimation
- Causal Constraints Model

Concluding Remarks

- Assosicational learning is easy to model because of lower information neccessary
- but not always appropiate in high stake settings
- SCM as simulator for causal modelling, entailing a lot of information (DGP, intervention distribution)
- Note: "Garbage in, Garbage out"
- computational advantage casting causal model as system of assignments
- Enables modelling of higher order concepts like counterfactuals
- Extensions through differential equations for concise modelling of time

References

- J. Pearl. "The causal foundations of structural equation modeling." CALIFORNIA UNIV LOS ANGELES DEPT OF COMPUTER SCIENCE, 2012.
- [2]
- J. Peters, D. Janzing, and B. Schölkopf, Elements of causal inference: Foundations and learning algorithms. Cambridge, Massachuestts: The MIT Press, 2017.
- [3]
- M. Hardt and B. Recht. Patterns, predictions, and actions: A story about machine learning, https://mlstory.org. 2021.
- [4]
- E. Creager, D. Madras, T. Pitassi, and R. Zemel, "Causal modeling for fairness in dynamical systems," in Proceedings of the 37th international conference on machine learning, 2020, vol. 119, pp. 2185-2195, [Online]. Available: http://proceedings.mlr.press/v119/creager20a.html.

Appendix

Method	CBN	SCM
Prediction	 Unstable Volatile to parameter changes Re-Estimate entire model	StableMore Natural SpecificationOnly estimate Δ CM
Intervention	 Costly for Non-Markovian Models Unstable(Nature CP) Only generic estimates(Δ CP) 	Pot. Cyclic RepresentationStableContext specific
Counterfactuals	$ \begin{array}{c} \cdot \ \textbf{Impossible} \\ \cdot \ \text{no information on latent} \\ \text{factors}(\epsilon) \end{array} $	Possible Inclusion of latent factors