IN THE CLAIMS

1. (currently amended) A compound of formula (I)

$$R^{3}$$
 R^{4}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{9}
 R^{9}

(I)

or a salt, ester, or amide thereof;

.. MECO typers 1. To a where X is O, or S, S(O) or S(O)2 or NR 10 where R 10 is hydrogen or C1-6alkyl; R⁵ is a group OR¹¹, NR¹²R¹³ or SR¹¹ where R¹¹, R¹² and R¹³ are independently selected from hydrogen, optionally substituted hydrocarbyl or optionally substituted heterocyclic R^{12} and R^{12} and R^{13} may additionally form together with the nitrogen atom to which they are attached, an optionally substituted aromatic or non-aromatic heterocyclic ring which may contain further heteroatoms,

> R⁴ and R⁷ are independently selected from hydrogen or hydrocarbyl; R⁸ and R⁹ are independently selected from hydrogen, halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄alkoxymethyl, di(C₁₋₄alkoxy)methyl, C₁₋₄alkanoyl, trifluoromethyl, cyano, amino, C2-salkenyl, C2-salkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated, [[(]]linked via a ring carbon or nitrogen atom, [[]]] or unsaturated, [[(]]linked via a ring carbon atom, [[)]], and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C_{1.3}alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C_{2.4}alkanoyl, C_{1.4}alkanoylamino,

-3-9628795_3

C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄alkylsulphonyl, carbamoyl, <u>N</u>-C₁₋₄alkylcarbamoyl, <u>N</u>-M-di(C₁₋₄alkyl) aminosulphonyl, aminosulphonyl, <u>N</u>-C₁₋₄alkylaminosulphonyl, <u>N</u>-M-di(C₁₋₄alkyl) aminosulphonyl, C₁₋₄alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₃alkanoyloxy, trifluoromethyl, cyano, amino, nitro and C₁₋₄alkoxycarbonyl, and R¹, R², R³, R⁴ are independently selected from halogeno, cyano, nitro, C₁₋₃alkylsulphanyl, -N(OH)R¹⁴, [[0]]wherein R¹⁴ is hydrogen, or C₁₋₃alkyl, [[0]], or R¹⁶X¹- wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹-, [[0]]wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, [[0]], and R¹⁶ is hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy.

- (previously presented) A compound according to claim 1 wherein at least one group R¹, R², R³, R⁴ is a group R¹⁶X¹ and R¹⁶ is hydrogen, an optionally substituted hydrocarbyl group selected from alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkenyl or cycloalkynyl, or combinations thereof; or an optionally substituted heterocyclyl group of from 4 to 20 ring atoms, and where the optional substituents comprise at least one functional group selected from nitro, cyano, halo, oxo, =CR⁷⁸R⁷⁹, C(O)_xR⁷⁷, OR⁷⁷, S(O)_yR⁷⁷, NR⁷⁸R⁷⁹, C(O)NR⁷⁸R⁷⁹, OC(O)NR⁷⁸R⁷⁹, =NOR⁷⁷, -NR⁷⁷C(O)_xR⁷⁸, -NR⁷⁷CONR⁷⁸R⁷⁹, -N=CR⁷⁸R⁷⁹, S(O)_yNR⁷⁸R⁷⁹ or -NR⁷⁷S(O)_yR⁷⁸ where R⁷⁷, R⁷⁸ and R⁷⁹ are independently selected from hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy, or R⁷⁸ and R⁷⁹ together form an optionally substituted ring which optionally contains further heteroatoms, where x is an integer of 1 or 2, y is 0 or an integer of 1-3.
 - 3. (currently amended) A compound according to claim 2 where hydrocarbyl, heterocyclyl or alkoxy groups R⁷⁷, R⁷⁸ and R⁷⁹ as well as rings formed by R⁷⁸ and R⁷⁹ are optionally substituted by halo, perhaloalkyl, mercapto, alkylthio, hydroxy, carboxy, alkoxy, heteroaryl,

heteroaryloxy, cycloalkyl, cycloalkenyl, cycloalkynyl, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl-group may be substituted by halo, nitro, or hydroxy), cyano, nitro, amino, mono- or di-alkyl amino, oximino or S(O)_yR⁹⁰, where the aryl group may be substituted by halo, nitro, or hydroxy and where y is as defined in claim 2 and R⁹⁰ is a alkyl.

- 4. (previously presented) A compound according to claim 2 wherein at least one group R¹, R², R³, R⁴ is a group R¹⁶X¹- and R¹⁶ is hydrogen or an alkyl group, optionally substituted with one or more groups selected from functional groups as defined in claim 2, or alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, cycloalkenyl or cycloalkynyl, any of which may be substituted with a functional group as defined in claim 2, and where any aryl, heterocyclyl, cycloalkyl, cycloalkyl, cycloalkynyl groups may also be optionally substituted with hydrocarbyl.
- currently amended) A compound according to claim 1 wherein at least one of R¹, R², R³ and R⁴ is a group R¹⁶X¹ where X¹ is as defined in claim 1 and R¹⁶ is selected from one of the following twenty-two groups:
- one or more functional groups;
- 2) -R^aX²C(O)R²²; [[(]]wherein X² represents -O- or -NR²³-, [[(]]in which R²³ represents hydrogen[[,]] or alkyl optionally substituted with a functional group, [[)] and R²² represents C₁₋₃alkyl, -NR²⁴R²⁵ or -OR²⁶, [[(]]wherein R²⁴, R²⁵ and R²⁶ which may be the same or different each represents hydrogen[[,]] or alkyl optionally substituted with a functional group[[))];
 - 3) -R^bX³R²⁷; [[(]]wherein X³ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR²⁸C(O)-, -NR²⁸C(O)O-, -C(O)NR²⁹-, -C(O)ONR²⁹-, -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²-, [[(]]wherein R²⁸, R²⁹, R³⁰, R³¹ and R³² each independently represents hydrogen[[,]] or alkyl optionally substituted with a functional group, [[)] and R²⁷ represents hydrogen, hydrocarbyl or a saturated heterocyclic group, wherein the hydrocarbyl or heterocyclic groups may be optionally substituted by one or more functional groups and the heterocyclic groups may additionally be substituted by a hydrocarbyl group[[)]];
 4) -R^cX⁴R^c X⁵R³⁵; [[()]wherein X⁴ and X⁵ which may be the same or different are each -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR³⁶C(O)-, -NR³⁶C(O)O-, -C(O)NR³⁷-,

```
-C(O)ONR^{37} - -SO_2NR^{38} -, -NR^{39}SO_2 or -NR^{40} -, [[(]] wherein R^{36}, R^{37}, R^{38}, R^{39} and R^{40}
each independently represents hydrogen or alkyl optionally substituted by a functional
group, [[]]] and R<sup>35</sup> represents hydrogen[[,]] or alkyl optionally substituted by a
functional group[[)]];
```

- 5) R⁴¹; wherein R⁴¹ is a C₃₆ cycloalkyl or saturated heterocyclic ring [[(]]linked via carbon or nitrogen[[]], which cycloalkyl or heterocyclic group may be substituted by one or more functional groups or by a hydrocarbyl or heterocyclyl group which hydrocarbyl or heterocyclyl group may be optionally substituted by one or more functional groups;
- 6) -R^dR⁴¹; [[(]]wherein R⁴¹ is as defined hereinbefore[[)]];
- 7) R^eR⁴¹; [[(]]wherein R⁴¹ is as defined hereinbefore[[]]];
- 8) -Rf R41; [[(]] wherein R41 is as defined hereinbefore[[]]];
- 9) R⁴²; wherein R⁴² represents an aryl group or an aromatic heterocyclic group [[(]]linked via carbon or nitrogen[[]]] with 1-3 heteroatoms selected from O, N and S, which aryl or aromatic heterocyclic group may be substituted by one or more functional groups or by a eguipa Segreta pure service to hydrocarbyl group optionally substituted by one or more functional groups or every recommendation heterocyclyl groups, or by a heterocyclyl group optionally susbsituted substituted by one or more functional groups or hydrocarbyl groups;
 - 10) -R⁵R⁴² (wherein R⁴² is as defined hereinbefore);
 - 11) -RhR42 (wherein R42 is as defined hereinbefore);
 - 12) -Ri R42 (wherein R42 is as defined hereinbefore);
 - 13) -Rⁱ X⁶R⁴² (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁴⁷C(O)-, -C(O)NR⁴⁸-, -C(O)ONR⁴⁸-, -SO₂NR⁴⁹-, -NR⁵⁰SO₂- or -NR⁵¹- (wherein R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰ and R⁵¹ each independently represents hydrogen, or alkyl optionally substituted with a functional group) and R42 is as defined hereinbefore);
 - 14) -R^kX⁷R⁴²; [[(]] wherein X⁷ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁵²C(O)-, -C(O)NR⁵³-, C(O)ONR⁵³-, -SO₂NR⁵⁴-, -NR⁵⁵SO₂- or -NR⁵⁶-, [[(]]wherein R⁵², R⁵³, R⁵⁴, R⁵⁵ and R⁵⁶ each independently represents hydrogen[[,]] or alkyl optionally substituted with a functional group, [[]]] and R⁴² is as defined hereinbefore[[]];
 - 15) $-R^{m}X^{8}R^{42}$; [[(]] wherein X^{8} represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁵⁷C(O)-, -C(O)NR⁵⁸-, -C(O)ONR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹-, [[(]]wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, hydrogen, or alkyl

-6-

CEFF

e di limbio star

marginal and

:

20. fem. 34 4

optionally substituted with a functional group, [[)]] and R⁴² is as defined hereinbefore[[]];

- 16) $-R^n X^9 R^n R^{42}$; [[(]] wherein X^9 represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, $-NR^{62}C(O)$ -, $-C(O)NR^{63}$ -, $-C(O)ONR^{63}$ -, $-SO_2NR^{64}$ -, $-NR^{65}SO_2$ - or $-NR^{66}$ -, [[(]] wherein R⁶², R⁶³, R⁶⁴, R⁶⁵ and R⁶⁶ each independently represents hydrogen, hydrogen, or alkyl optionally substituted with a functional group, [[)] and \mathbb{R}^{42} is as defined hereinbefore[[)]];
- 17) $-R^p X^9 R^{p'} R^{41}$; [[(]] wherein X^9 and R^{41} are as defined hereinbefore[[)]];
- 18) C2-5alkenyl which may be unsubstituted or which may be substituted with one or more functional groups;
- Life Harrist to the country of the C2-salkynyl which may be unsubstituted or which may be substituted with one or more functional groups;
 - 20) R^tX⁹R^tR⁴¹; [[([]]wherein X⁹ and R⁴¹ are as defined hereinbefore[[)]];
- \mathbb{R}^4 and \mathbb{R}^4 are as defined hereinbefore[[]]; and
- $\operatorname{rein}(X') = \operatorname{Reg}(X') + 22$ $\operatorname{Reg}(X') = \operatorname{Reg}(X') = \operatorname{Reg}(X')$

. 1, and R⁶⁷ is a C₁₋₃alkylene group or a cyclic group selected from divalent cycloalkyl or heterocyclic group, which C1.3alkylene group may be substituted by one or more

functional groups and which cyclic group may be substituted by one or more functional appendive substituted by one or more functional groups

or heterocyclyl groups, or by a heterocyclyl group optionally substituted substituted by maring partition of the one or more functional groups or hydrocarbyl groups; and R⁶⁸ is hydrogen, C₁₋₃alkyl, or a

cyclic group selected from cycloalkyl or heterocyclic group, which C1-3alkylene group

may be substituted by one or more functional groups and which cyclic group may be

substituted by one or more may be substituted by one or more functional groups or by a hydrocarbyl group optionally substituted by one or more functional groups or

heterocyclyl groups, or by a heterocyclyl group optionally substituted by one or more

functional groups or hydrocarbyl groups[[]];

and wherein Ra, Rb, Rc, Rc, Rc, Rd, Rg, Rj, Rn, Rn, Rp, Rp, Rt, Ru, Rv and Rv are independently selected from C1-salkylene groups optionally substitued substituted by one

or more functional groups,

static areas, occur-

at a dyche shoot.

Rosel Crouts Blue 19

Commence of

 R^{6} R^{h} , R^{k} and R^{t} are independently selected from C_{2-8} alkenylene groups optionally substituted by one or more functional groups, and R^{f} , R^{i} , R^{m} and R^{u} are independently selected from by C_{2-8} alkynylene groups optionally substituted by one or more functional groups.

- 6. (currently amended) A compound according to claim 1, wherein R¹⁶ is selected from one of the following twenty-two groups:
 - 1) hydrogen or $C_{1.5}$ alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, oxiranyl, fluoro, chloro, bromo, amino, $C_{1.5}$ alkyl, and trifluoromethyl;
- 2) -R°X²C(O)R²²². [[(]]wherein X² represents -O- or -NR²³-, [[(]]in which R²³ represents hydrogen, C₁₋₃alkyl or C₁₋₃alkyl) and R²² represents C₁₋₃alkyl, -NR²⁴R²⁵ or constituted to the transfer of the
- \mathbb{R}^{b} \mathbb{C}^{b} \mathbb{C}^{b} -NR²⁸C(O)-, -NR²⁸C(O)O₃ -C(O)NR²⁹-, C(O)ONR²⁹-, -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²-, communication [[0]] wherein R₂₃, R²⁹, R³⁰, R³¹ and R³² each independently represents hydrogen, C₁₋₃alkyl. the little and the hydroxy C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl, [[]] and R²⁷ represents hydrogen, C₁₋₆alkyl, C₂₋ are a second falkenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or a 5-6-membered manuscript in saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-6} alkyl group may bear 1, 2 or 3 substituents selected from oxo, hydroxy, halogeno, cyclopropyl, amino, C₁₋₄alkylamino, C₁₋₄alkanoyldi-C₁₋₄alkylamino, C₁₋₄alkylthio, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C1.4cyanoalkyl, C1.4alkyl, C1.4hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(R^{b'})_gD_x [[(]]wherein f is 0 or 1, g is 0 or 1 and D is a cyclic group selected from C₃₋₆cycloalkyl group, an aryl group or a 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo or C₁₋₄alkyl[[))]];

```
4) -R<sup>c</sup>X<sup>4</sup>R<sup>c</sup> X<sup>5</sup>R<sup>35</sup>; [[(]] wherein X<sup>4</sup> and X<sup>5</sup> which may be the same or different are each
                                                   -O-, C(O), -S-, -SO-, -SO<sub>2</sub>-, -NR^{36}C(O)-, -NR^{36}C(O)O-, -C(O)NR^{37}-, -C(O)ONR^{37}-,
                                                   -SO_2NR^{38}-, -NR^{39}SO_2- or -NR^{40}-, [[(]]wherein R^{36}, R^{37}, R^{38}, R^{39} and R^{40} each
                                                   independently represents hydrogen, C<sub>1-3</sub>alkyl or C<sub>1-3</sub>alkoxyC<sub>2-3</sub>alkyl, [[)]] and R<sup>35</sup>
                                                   represents hydrogen, C<sub>1-3</sub>alkyl, hydroxyC<sub>1-3</sub>alkyl or C<sub>1-3</sub>alkoxyC<sub>2-3</sub>alkyl[[)]];
                                                   5) R<sup>41</sup>: [[(]]wherein R<sup>41</sup> is a 4-6-membered cycloalkyl or saturated heterocyclic ring,
                                                   [[(]]linked via carbon or nitrogen, [[)]] with 1-2 heteroatoms, selected independently
                                                   from O, S and N, which cycloalkyl or heterocyclic group may bear 1 or 2 substituents
                                                   selected from oxo, hydroxy, halogeno, cyano, C1_4alkyl, hydroxyC1_4alkyl, cyanoC1_4alkyl,
                        cyclopropyl, C<sub>1-4</sub>alkylsulphonylC<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkoxycarbonyl, carboxamido,
                       C<sub>1-4</sub>aminoalkyl, C<sub>1-4</sub>alkylamino, di(C<sub>1-4</sub>alkyl)amino, C<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkyl,
                 .....C<sub>1-4</sub>alkanoyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkoxy,
                           di(C14alkyl)aminoC14alkoxy nitro, amino, C14alkoxy, C14hydroxyalkoxy, carboxy,
             1.000 \times 10^{-100} = 1.00
may be the same or different, each represents hydrogen, C14alkyl, hydroxyC14alkyl or
   C1-3alkoxyC2:3alkyl) and a group -(-O-)(C1-4alkyl)gringD, [[(]]wherein f is 0 or 1, g is 0
and D is a cyclic group selected from C3-6cycloalkyl, aryl or 5-6-membered saturated
    the state of unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O,
 some substituents selected from halo and
                                                   C_{1-4}alkyl[[))]];
```

- 6) -R^dR⁴¹; [[(]]wherein R⁴¹ is as defined hereinbefore[[)]];
- 7) R^cR⁴¹; [[(]] wherein R⁴¹ is as defined hereinbefore[[)]];
 - 8) -Rf R41; [[(]]wherein R41 is as defined hereinbefore[[)]];
 - 9) R⁴²; wherein R⁴² represents a phenyl group or a 5-6-membered aromatic heterocyclic group. [[(]]linked via carbon or nitrogen, [[)]] with 1-3 heteroatoms selected from O, N and S, which; phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, oxo, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkanoyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl,

 C_{1-4} alkylamino C_{1-4} alkoxy, di $(C_{1-4}$ alkyl)amino C_{1-4} alkoxy, carboxy, carboxamido,

```
trifluoromethyl, cyano, -C(0)NR<sup>69</sup>R<sup>70</sup>, -NR<sup>71</sup>C(0)R<sup>72</sup>, [[(]]wherein R<sup>69</sup>, R<sup>70</sup>, R<sup>71</sup> and R<sup>72</sup>.
                             which may be the same or different, each represents hydrogen, C1-alkyl,
                             hydroxyC_{1.4}alkyl or C_{1.3}alkoxyC_{2.3}alkyl, [[]] and a group -(-O-)_f(C_{1.4}alkyl)_gringD,
                             [[(]]wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from
                             C3-6cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with
                             1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear
                             one or more substituents selected from halo and C1-4alkyl[[]];
                             10) -R<sup>g</sup>R<sup>42</sup>; [[(]]wherein R<sup>42</sup> is as defined hereinbefore[[)]];
                             11) -R^hR^{42}; [[(]] wherein R^{42} is as defined hereinbefore[[]]];
                             12) -R<sup>i</sup> R<sup>42</sup>; [[(]]wherein R<sup>42</sup> is as defined hereinbefore[[]]];
                             13):-R^{j} X^{6} R^{42}; [[(]]wherein X^{6} represents -O-, -C(O)-, -S-, -SO-, -SO<sub>2</sub>-, -OC(O)-,
                         -NR<sup>47</sup>C(O)-,-C(O)NR<sup>48</sup>-, C(O)ONR<sup>48</sup>-, -SO<sub>2</sub>NR<sup>49</sup>-, -NR<sup>50</sup>SO<sub>2</sub>- or -NR<sup>51</sup>-, [[(]]wherein
                         R<sup>47</sup>, R<sup>48</sup>, R<sup>49</sup>, R<sup>50</sup> and R<sup>51</sup> each independently represents hydrogen, C<sub>1-3</sub>alkyl,
                        hydroxyC<sub>1,3</sub>alkyl or C<sub>1,3</sub>alkoxyC<sub>2,3</sub>alkyl, [[]]] and R<sup>42</sup> is as defined hereinbefore[[]]];
official Contract
reservice and the 14).-R<sup>k</sup>X<sup>7</sup>R<sup>42</sup>; [[(]]wherein X<sup>7</sup> represents -O-, C(O), -S-, -SO-, -SO<sub>2</sub>-, -NR<sup>73</sup>C(O)-,
                           C(O)NR^{74}, C(O)ONR^{74}, SO_2NR^{75}, -NR^{76}SO_2- or -NR^{77}-, [[(]] wherein R^{73}, R^{74}, R^{75},
ж<sup>2</sup>. - ги-<sup>Ти</sup>
                          R<sup>76</sup> and R<sup>77</sup> each independently represents hydrogen, C<sub>1-3</sub>alkyl, hydroxyC<sub>1-3</sub>alkyl or
megend for ever
                           C<sub>1-3</sub>alkoxyC<sub>2-3</sub>alkyl<sub>2</sub>[[)]] and R<sup>42</sup> is as defined hereinbefore[[)]];
                             15) -R<sup>m</sup>X<sup>8</sup>R<sup>42</sup>; [[(]]wherein X<sup>8</sup> represents -O-, -C(O)-, -S-, -SO-, -SO<sub>2</sub>-, -NR<sup>57</sup>C(O)-,
                            -C(O)NR^{58}-, -SO_2NR^{59}-, -NR^{60}SO_2- or -NR^{61}-, [[(]] wherein R^{57}, R^{58}, R^{59}, R^{60} and R^{61}
                             each independently represents hydrogen, C1-3alkyl, hydroxyC1-3alkyl or
                             C<sub>1-3</sub>alkoxyC<sub>2-3</sub>alkyl, [[]] and R<sup>42</sup> is as defined hereinbefore[[]];
                              16) -R<sup>n</sup> X<sup>9</sup>R<sup>n</sup> R<sup>42</sup>; [[(]]wherein X<sup>9</sup> represents -O-, -C(O)-, -S-, -SO-, -SO<sub>2</sub>-, -NR<sup>62</sup>C(O)-,
                              -C(O)NR<sup>63</sup>-, C(O)ONR<sup>63</sup>-, -SO<sub>2</sub>NR<sup>64</sup>-, -NR<sup>65</sup>SO<sub>2</sub>- or -NR<sup>66</sup>-, [[(]]wherein R<sup>62</sup>, R<sup>63</sup>, R<sup>64</sup>,
                              R<sup>65</sup> and R<sup>66</sup> each independently represents hydrogen, C<sub>1-3</sub>alkyl, hydroxyC<sub>1-3</sub>alkyl or
                              C<sub>1-3</sub>alkoxyC<sub>2-3</sub>alkyl, [[)]] and R<sup>42</sup> is as defined hereinbefore[[)]];
                              17) -R<sup>p</sup> X<sup>9</sup>-R<sup>p</sup> |R<sup>41</sup>; [[([]] wherein X<sup>9</sup> and R<sup>41</sup> are as defined hereinbefore[[)]];
                              18) C2.5alkenyl which may be unsubstituted or which may be substituted with one or
                              more groups selected from hydroxy, fluoro, amino, C1-4alkylamino,
                              N.N-di(C1-4alkyl)amino, aminosulphonyl, N-C1-4alkylaminosulphonyl and
                              N,N-di(C1-alkyl)aminosulphonyl;
```

19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N, N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C_{1-4} alkyl)aminosulphonyl; 20) $-R^{t}X^{9}R^{t'}R^{41}$; [[(]] wherein X^{9} and R^{41} are as defined hereinbefore[[)]]: 21) $-R^u X^9 R^u R^{41}$; [[(]]wherein X^9 and R^{41} are as defined hereinbefore[[)]]; and 22) - $R^{\nu} R^{67} (R^{\nu})_{\alpha} (X^9)_{\alpha} R^{68}$; [[(]] wherein X^9 is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R⁶⁷ is a C_{1.3}alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkylene group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy etemper in the riverand which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, C_{14} alkyl, C_{14} alkyl, C_{14} alkyl, C_{14} alkyl, C_{14} alkyl, C_{14} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl; C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} aminoalkyl, red called a C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, Calgathylkumerk mynamine Comment C14alkylamino C14alkoxy, di(C14alkyl)amino C14alkoxy and a group noting the control of and form any most respected from C3-6cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic at managery transfer a group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C1-4alkyl[[]]; and R⁶⁸ is Maria Baran (1996) hydrogen, C₁₋₃alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, La make was firm of cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C1-3alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₄alkyl)amino, C₁₄alkylaminoC₁₄alkyl, di(C₁₄alkyl)aminoC₁₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)f(C1-alkyl)gringD, [[(]]wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C3-6cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic

9628795_3 -11-

group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and $C_{1-alkyl[[])}$; and wherein R^a , R^b , R^b , R^c , R^c , R^c , R^g , R^j , R^n , R^n , R^p , R^p , R^p , R^p , R^p , R^p and R^p are independently selected from $C_{1-alkyl[]}$ as one or more substituents selected from hydroxy, halogeno, amino,

R^e R^h, R^k and R^t are independently selected from C₂₋₈alkenylene groups optionally substituted by by one or more substituents selected from hydroxy, halogeno, amino, and R^t may additionally be a bond; and

 R^f , R^i , R^m and R^u are independently selected from by C_{2-8} alkynylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino.

7. (currently amended) A compound of formula (IA)

$$R^{8}$$
 R^{9}
 R^{9}
 R^{4}
 R^{1}
 R^{1}
 R^{2}
 R^{4}
 R^{4}
 R^{1}
 R^{3}
 R^{4}

or a salt, ester or amide thereof:

where X is O, or S, S(O) or S(O)₂, NH or NR¹⁰ where R¹⁰ is hydrogen or C₁₋₆alkyl; R⁵ is a group OR¹¹, NR¹²R¹³ or SR¹¹ where R¹¹, R¹² and R¹³ are independently selected from hydrogen, optionally substituted hydrocarbyl or optionally substituted heterocyclic groups, and R¹² and R¹³ may additionally form together with the nitrogen atom to which they are attached, an aromatic or non-aromatic heterocyclic ring which may contain further heteroatoms,

R⁸ and R⁹ are independently selected from hydrogen, halo, C₁₋₄alkyl, C₁₋₄ alkoxy, C₁₋₄alkoxymethyl, di(C₁₋₄alkoxy)methyl, C₁₋₄alkanoyl, trifluoromethyl, cyano, amino, C₂₋₅alkenyl, C₂₋₅alkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic

-12-

group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated, [[(]]linked via a ring carbon or nitrogen atom, [[)]] or unsaturated, [[(]]linked via a ring carbon atom[[)]], and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, C1.3 alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C2.4 alkanoyl, C1.4 alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄alkylsulphonyl, carbamoyl, N-C₁₋₄alkylcarbamoyl, N,N-di(C₁₋₄alkyl)carbamoyl, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl, N.N-di(C₁₋₄alkyl)aminosulphonyl, C₁₋₄alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 the substituents selected from oxo, hydroxy, halogeno, C₁₋₃alkyl, C₁₋₃alkoxy, where the control of the salkanoyloxy, trifluoromethyl, cyano, amino, nitro and C14alkoxycarbonyl, and here, we would read R¹, R², R³, R⁴ are independently selected from halo, cyano, nitro, trifluoromethyl, $m_{\rm constant} \sim C_{1-3}$ alkyl, $-NR^{14}_{~12}R^{15}_{~12}$ [[(]] wherein R^{14} and R^{15} , which may be the same or different, each 19. - SO₂, -NR¹⁷CO-, -CONR¹⁸-, -SO₂NR¹⁹-, $R^{20} = 10^{-1} NR_{\tau}^{20} SO_2$ or $NR_{\tau}^{21} = [[0]]$ wherein R^{17} , R^{18} , R^{19} , R^{20} and R^{21} each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl[D]], R¹⁶ is selected from one of the following seventeen groups: 1') hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro or amino, 2') C_{1-5} alkyl X^2 COR²²; [[()] wherein X^2 represents -O- or -NR²³-, [[()] in which R²³ represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl, [[)]] and R22 represents C1-3alkyl, -NR²⁴R²⁵ or -QR²⁶, [[(]] wherein R²⁴, R²⁵ and R²⁶ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl[))]; 3') C₁₋₅alkylX³R²⁷; [[(]]wherein X³ represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²⁸CO-,

independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, [[]] and R²⁷ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated

-CONR²⁹-, -SO₂NR³⁰-, -NR³¹SO₂- or -NR³²-, [[[]] wherein R²⁸, R²⁹, R³⁰, R³¹ and R³² each

heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C1-3alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C14alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy); 4') C₁₋₅alkylX⁴C₁₋₅alkylX⁵R³⁵; [[(]]wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR³⁶CO-, -CONR³⁷-, -SO₂NR³⁸-, -NR³⁹SO₂- or -NR⁴⁰-, [[(]] wherein R³⁶, R³⁷, R³⁸, R³⁹ and R⁴⁰ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl, [[)]] and R^{35} represents hydrogen or C_{1-3} alkyl[[)]]; 5') R⁴¹; [[(]]wherein R⁴¹ is a 5-6-membered saturated heterocyclic group, [[(]]linked via carbon or nitrogen, [[)]] with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and C₁_alkylsulphonylC₁_alkyl[[)]]; the first of the second of the salkylR⁴¹; [[(]] wherein R⁴¹ is as defined hereinbefore[[)]]; the as the man in the constant of the constant 10 and a constant and a 8') C₂₋₅alkynylR⁴¹; [[(]]wherein R⁴¹ is as defined hereinbefore[[)]]; 92) R⁴² [[(]] wherein R⁴² represents a phenyl group or a 5-6-membered aromatic heterocyclic group, [[(]]linked via carbon or nitrogen, [[)]] with 1-3 heteroatoms selected from O, N and S, which phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C124hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -CONR⁴³R⁴⁴ and -NR⁴⁵COR⁴⁶, [[[]]wherein R⁴³, R⁴⁴, R⁴⁵ and R⁴⁶, which may be the same or different, each represents hydrogen, C1-4alkyl or C1-3alkoxyC2-3alkyl[[))]]; 10') C₁₋₅alkylR⁴²; [[(]]wherein R⁴² is as defined hereinbefore[[)]]; 11') C2-5alkenylR42; [[(]]wherein R42 is as defined hereinbefore[[)]]; 12') C2-5alkynylR⁴² [[(]]wherein R⁴² is as defined hereinbefore[[)]]; 13') C₁₋₅alkylX⁶R⁴²; [[(]]wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁷CO-, -CONR⁴⁸-, -SO₂NR⁴⁹-, -NR⁵⁰SO₂- or -NR⁵¹-, [[(]] wherein \mathbb{R}^{47} , \mathbb{R}^{48} , \mathbb{R}^{49} , \mathbb{R}^{50} and \mathbb{R}^{51} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl, [[)]] and R^{42} is as defined hereinbefore[[)]];

14') C_{2-5} alkenyl X^7R^{42} ; [[(]]wherein X^7 represents -O-, -S-, -SO-, -SO₂-, -NR⁵²CO-, -CONR⁵³-, -SO₂NR⁵⁴-, -NR⁵⁵SO₂- or -NR⁵⁶-, [[(]]wherein R⁵², R⁵³, R⁵⁴, R⁵⁵ and R⁵⁶ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl, [[)] and R⁴² is as defined hereinbefore[[)];

15') C₂₋₅alkynylX⁸R⁴²; [[(]]wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁵⁷CO-, -CONR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -NR⁶¹-, [[(]]wherein R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, [[)]] and R⁴² is as defined hereinbefore[[)]];

16') C₁₋₃alkylX⁹C₁₋₃alkylR⁴²; [[(]]wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁶²CO-, -CONR⁶³-, -SO₂NR⁶⁴-, -NR⁶⁵SO₂- or -NR⁶⁶-, [[(]]wherein R⁶², R⁶³, R⁶⁴, R⁶⁵ and R⁶⁶ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, [[)]] and R⁴² is as defined hereinbefore[[)]; and

17') $C_{1:3}$ alkyl X_1^9 $C_{1:3}$ alkyl R^{41} ; [[([]]wherein X^9 and R^{41} are as defined hereinbefore[[)]]; and R^6 and R^7 are hydrogen or $C_{1:4}$ alkyl.

hydrogen. (previously presented) A compound according to claim 7 wherein R⁶ and R⁷ are

(previously presented) A compound according to claim 7 of formula (IB)

$$R^{8}$$
 R^{7}
 R^{6}
 R^{8}
 R^{9}
 R^{9}
 R^{4}
 R^{9}
 R^{9}
 R^{9}
 R^{9}
 R^{9}
 R^{9}

where X, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in claim 7.

-15-

- norchi All and Fi

- 10. (currently amended) A compound according to claim 6, wherein R^3 is selected from a group OR^{11} where R^{11} is hydrogen or C_{1-4} alkyl; or a group $NR^{12}R^{13}$ where one of R^{12} or R^{13} is hydrogen and the other is optionally substituted C_{1-6} alkyl, optionally substituted aryl or optionally substituted heterocyclyl, or R^{12} and R^{13} together with the nitrogen atom to which they are attached from a heterocyclic ring.
- 11. (previously presented) A compound according to claim 10, which is a phosphate ester of a compound of formula (I).
- 12. (previously presented) A method for preparing a compound of formula (I) as defined in claim 1 which method comprises reacting a compound of formula (II)

m

where X, R⁸ and R⁹ are as defined in claim 1, R¹, R², R³, R⁴ are groups R¹, R², R³, R⁴ as defined in claim 1 respectively; and R⁸⁵ is a leaving group, with a compound of formula (III)

where R⁶ are R⁷ are as defined in claim 1 and R⁵, is a group as defined in claim 1.

13. (cancelled)

- 14. (previously presented) A method for treating colorectal or breast cancer in a warm blooded animal, in need of such treatment, which comprises administering to said animal an effective amount of a compound of formula (I), or a salt, ester, or amide thereof.
- 15. (previously presented) A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or a salt, ester, or amide thereof, in combination with a pharmaceutically acceptable carrier.
- 16. (currently amended) A compound according to claim 10 or a salt, ester or amide thereof; where X is as defined in claim 1 and R⁴, R², R³, R⁴ are as defined in claim 6; and

 R⁵ is a group OR¹¹, NR¹²R¹³ or SR¹¹ where R¹¹ is hydrogen or C₁₋₄alkyl, and where one

 of R¹² and R¹³ is hydrogen and the other is C₁₋₆alkyl optionally substituted with one or

 more groups selected from hydroxy, trifluoromethyl, C₁₋₃alkoxy, cyano, amino, mono- or

 more di-C₁₋₄alkylamino, C₁₋₄alkylthio, C₃₋₆cycloalkyl or heterocyclyl optionally substituted

 with C₁₋₄alkyl; or one of R¹² and R¹³ is hydrogen and the other is a heterocyclic group as

 well as dioxides thereof, C₃₋₆cycloalkyl or a phenyl group any of which may be

 substituted with one or more groups selected from halo, nitro, C₁₋₄alkyl or C₁₋₄alkoxy,

 and R¹² and R¹³ may additionally form together with the nitrogen atom to which they are

 attached, morpholine or piperidine,

 R⁵ and R⁷ are independently selected from hydrogen or C₁₋₄alkoxy, trifluoromethyl,

 R⁸ and R⁹ are independently selected from hydrogen, halo, C₁₋₄ alkoxy, trifluoromethyl,
 - 17. (previously presented) A compound according to claim 16 wherein X is NH or O.
 - 18. (currently amended) A compound according to claim 16 wherein R¹ is hydrogen,
 R² is halo, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR¹⁴R¹⁵, [[(]]wherein R¹⁴ and R¹⁵,
 which may be the same or different, each represents hydrogen or C₁₋₃alkyl[[)]], or a group
 -X¹R¹⁶ where X¹ is oxygen and R¹⁶ is a group (1) as defined in claim 6,

cyano or phenyl.

 R^3 is a group $-X^1R^{16}$ where X^1 is oxygen and R^{16} is a group selected from group (1), (3), (6) and (10) as defined in claim 6 and R^4 is hydrogen, halo, C_{1-4} alkyl, or C_{1-4} alkoxy.

- 19. (previously presented) A compound according to claim 16 wherein R² and R³ are independently methoxy or 3,3,3-trifluoroethoxy.
- 20. (previously presented) A compound according to claim 16 wherein R³ is 3-morpholinopropoxy.
- hydrogen. (previously presented) A compound according to claim 16 wherein R⁸ and R⁹ are both
- d according to claim 16 wherein R⁶ and R⁷ are both hydrogen.