Usare un foglio separato per risolvere i due esercizi che seguono, specificando nell'intestazione: **Titolo del** corso (Architettura degli Elaboratori – modulo I oppure Architettura degli Elaboratori A), **Data esame**, Cognome e Nome, Matricola

Esercizio 1 (modulo I e arch. A)

Si considerino i seguenti numeri espressi in esadecimale:

A = 425C8000

B = C30DC000

Si richiede di:

- 1. trasformare i due numeri in binario;
- 2. interpretarli come numeri razionali espressi secondo lo Standard IEEE754 e tradurli in decimale;
- 3. eseguirne la somma utilizzando l'algoritmo visto a lezione per la somma di numeri FP rappresentati in Standard IEEE754. Mostrare tutti i passaggi del procedimento. Che numero decimale rappresenta il risultato ottenuto?
- 4. tradurre il numero FP ottenuto (espresso secondo lo Standard IEEE754) in ottale.

Soluzione

1. I due numeri espressi in binario sono:

 $A = 0100\ 0010\ 0101\ 1100\ 1000\ 0000\ 0000\ 0000$

 $B = 1100\ 0011\ 0000\ 1101\ 1100\ 0000\ 0000\ 0000$

2. i due numeri interpretati come numeri razionali in standard IEEE754:

 $Segno_A = 0$

Esponente_A = $10000100_2 = 132_{10} = 127 + 5$

 $Mantissa_A = 10111001$

Quindi $A = +1,10111001 \cdot 2^5 = 110111,001_2 = 55,125_{10}$.

 $Segno_B = 1$

Esponente_B = $10000110 = 134_{10} = 127 + 7$

 $Mantissa_B = 000110111$

Quindi B = $-1,000110111 \cdot 2^7 = -10001101,11_2 = -141,75_{10}$.

- 3. Eseguiamo la somma:
 - (a) Allineamento esponenti:

$$A = 1,10111001 \cdot 2^5 = 0,0110111001 \cdot 2^7$$

(b) Complemento a due di B

|B| = 01,000110111 da cui B = 10,111001001

(c) Somma mantisse

A 00,0110111001 +

B 10,1110010010

C 11,0101001011

Quindi il risultato C è negativo. Ricaviamo $|C| = 00,1010110101 \cdot 2^7$

(d) Normalizzazione risultato

$$|C| = 1,010110101 \cdot 2^6$$

Allora:

 $Segno_C = 1$

Esponente_C = $10000101 = 133_{10} = 127 + 6$

 $Mantissa_C = 010110101$

Ovvero:

4. Traduzione del risultato in ottale

Quindi $C = 30253240000_8$

Esercizio 2 (modulo I e arch. A)

Si vuole progettare un circuito sequenziale di Moore per il controllo della temperatura dell'acqua di un acquario. L'input del circuito consiste nella rilevazione di tre possibili fasce di temperatura dell'acqua: fredda, calda e ok. In corrispondenza alla fascia rilevata, il circuito deve comandare l'eventuale accensione degli impianti di riscaldamento o di raffreddamento. Ovviamente se la fascia di temperatura è ok non è necessario riscaldarla né raffreddarla. Nel progettare il circuito supporre che sia possibile il passaggio diretto dalla fascia fredda alla calda o viceversa (ad esempio dovuto all'immissione di nuova acqua troppo calda o troppo fredda). Si richiede di disegnare l'automa a stati finiti, determinare le tabelle di verità per le funzioni Output e NextState, procedere alla loro minimizzazione e disegnare il circuito sequenziale risultante.

Soluzione

L'automa di Moore che modella il circuito è il seguente:

Codifichiamo i valori ricevuti in input come segue:

Ingresso		I1	I2
ok		0	0
fredda		0	1
calda	- 1	1	0

Si noti che Il I2 = 11 non è una configurazione d'ingresso possibile, per cui deve essere ignorata dal circuito. Codifichiamo gli stati esattamente come le uscite. Allora:

Stato	I	s1	s2	
				-
Spento		0	0	
raffredda		0	1	
riscalda	- 1	1	0	

Si noti che s1 s2 = 11 non è una configurazione di stato possibile e quindi il valore restituito dalle funzioni Output e NextState in questo caso è don't care.

Per quanto riguarda la funzione Output si ha: O1 = s1 e O2 = s2.

La tabella relativa a NextState è la seguente:

I1	I2	s1	s2		s1'	s2'
0	0	0	0		0	0
0	0	0	1		0	0
0	0	1	0		0	0
0	0	1	1		Х	Х
0	1	0	0	-	1	0
0	1	0	1	-	1	0
0	1	1	0		1	0
0	1	1	1		Х	X
1	0	0	0		0	1
1	0	0	1		0	1
1	0	1	0		0	1
1	0	1	1		Х	X
1	1	0	0		Х	X
1	1	0	1		Х	X
1	1	1	0	1	X	Х
1	1	1	1	-	X	Х

Le mappe di Karnaugh per la minimizzazione di s1' e s2' sono:

s1 s2	00	01	11	10	
00			х		
01	1	1	х	1	
11	х	х	х	х	
10			х		

s1 s	2	00	01	11	10
00				х	
01				х	
11		х	Х	Х	Х
10		1	1	х	1

Quindi s1' = I2 e s2' = I1. Il circuito finale è il seguente:

