```
In [ ]: # import pandas as pd
```

```
In [157]: | json_path = "purchase_data.json"
           players_df = pd.read_json(json_path)
           players_df.head()
```

Out[157]:

	Age	Gender	Item ID	Item Name	Price	SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

```
In [158]: #Players Count
          #total number of players
          Number_of_Players = players_df["SN"].nunique()
          num_players = pd.DataFrame({"Total Players":[Number_of_Players]})
          num_players
```

Out[158]:

```
Total Players
573
```

```
In [159]:
          #Purchasing Analysis (Total)
          #number of uniques items, average price, number of purchases, total rev
          count = players_df["Item ID"].nunique()
          avg = players_df["Price"].mean()
          purchase = players_df["Item ID"].count()
          revenue = players_df["Price"].sum()
          purch_analysis = pd.DataFrame({"Number of Unique Items":[count],
                                          "Average Price":[avg],
                                          "Number of Purchases":[purchase],
                                          "Total Revenue":[revenue]})
          purch_analysis["Average Price"]= purch_analysis["Average Price"].map("${:,.2f}
          ".format)
          purch_analysis["Total Revenue"] = purch_analysis["Total Revenue"].map("${:,.2
          f}".format)
          purch_analysis
```

Out[159]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$2.93	780	\$2,286.33

```
In [160]:
          #Gender Demographics
          #group by gender, columns: Percentages of Players, Total Count
          gender_total = players_df["Gender"].count()
          #male_total = (players_df.loc[(players_df["Gender"]=="Male"), "Gender"]).mean()
          grouped_gender = players_df.groupby(['Gender'])
          gender_data = pd.DataFrame({"Percentage of Players":
               ((grouped_gender['Gender'].count()/gender_total)*100).round(2),
                                       "Total Count":grouped_gender["Gender"].count()})
          gender_data["Percentage of Players"]= gender_data["Percentage of Players"].map
          ("{0:,.2f}%".format)
          gender_data
```

Out[160]:

	Percentage of Players	Total Count
Gender		
Female	17.44%	136
Male	81.15%	633
Other / Non-Disclosed	1.41%	11

```
In [161]: #Purchase Analyisis (Gender)
          #purchase count, avg purchase price, total purchase value, normalized totals
          players_grouped = players_df.groupby(["Gender"])
          players grouped.count()
          gender_total = players_df["Gender"].count()
          revenue = players_df["Price"].sum()
          normalized_total = (revenue/gender_total)
          aggregation={'Price':{'Purchase Count':'count',
                                'Average Purchase Price': 'mean',
                                'Total Purchase Value': 'sum'}
                      }
          players_data = players_df.groupby('Gender').agg(aggregation)
          #players_data['Average Purchase Price']= players_data['Average Purchase Pric
          e'].map("${:,.2f}".format)
          #players_data["Total Purchase Value"]= players_data["Total Purchase Value"].ma
          p("${:,.2f}".format)
          players_data
```

C:\Users\jpaz5\Anaconda3\lib\site-packages\pandas\core\groupby\groupby.py:465 8: FutureWarning: using a dict with renaming is deprecated and will be remove d in a future version return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)

Out[161]:

	Price			
	Purchase Count	Average Purchase Price	Total Purchase Value	
Gender				
Female	136	2.815515	382.91	
Male	633	2.950521	1867.68	
Other / Non-Disclosed	11	3.249091	35.74	

In [162]: #Age Demographics bins = [0, 10, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999] group_labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"] players_df["Age Group"]=pd.cut(players_df["Age"], bins,labels=group_labels) age_group = players_df.groupby(["Age Group"]) age_count = age_group["SN"].count() player_count = players_df["SN"].nunique() player_percentage = ((age_count/player_count)*100).round(2) final_df = pd.DataFrame({"Percentage of Players":player_percentage,"Total Coun t": age_count}) final_df["Percentage of Players"]= final_df["Percentage of Players"].map("{: **0,.2f**}%".format) final_df

Out[162]:

	Percentage of Players	Total Count
Age Group		
<10	5.58%	32
10-14	5.41%	31
15-19	23.21%	133
20-24	58.64%	336
25-29	21.82%	125
30-34	11.17%	64
35-39	7.33%	42
40+	2.97%	17

```
In [163]: #Purchasing Analysis (Age)
          #Purchase Count,Average Purchase Price, Total Purchase Value, Normalized Total
          bins = [0, 10, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
          group_labels = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","40+"]
          players_df["Age Group"]=pd.cut(players_df["Age"], bins,labels=group_labels)
          avg = players_df.groupby(["Age Group"]).mean()["Price"].rename("Average Purcha
          se Price")
          purchase = players_df.groupby(["Age Group"]).count()["Price"].rename("Purchase
           Count")
          revenue = players_df.groupby(["Age Group"]).sum()["Price"].rename("Total Purch
          ase Value")
          gender total = players df["Gender"].count()
          normalized_total = (revenue/gender_total)
          purch_df = pd.DataFrame({"Purchase Count": purchase, "Average Purchase Price":
          avg,
                                    "Total Purchase Value":revenue, "Normalized Totals":no
          rmalized_total})
          purch_df["Average Purchase Price"]= purch_df["Average Purchase Price"].map("$
          {:,.2f}".format)
          purch_df["Total Purchase Value"] = purch_df["Total Purchase Value"].map("${:,.
          2f}".format)
          purch_df["Normalized Totals"]= purch_df["Normalized Totals"].map("${:,.2f}".fo
          rmat)
          purch_df
```

Out[163]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
Age Group				
<10	32	\$3.02	\$96.62	\$0.12
10-14	31	\$2.70	\$83.79	\$0.11
15-19	133	\$2.91	\$386.42	\$0.50
20-24	336	\$2.91	\$978.77	\$1.25
25-29	125	\$2.96	\$370.33	\$0.47
30-34	64	\$3.08	\$197.25	\$0.25
35-39	42	\$2.84	\$119.40	\$0.15
40+	17	\$3.16	\$53.75	\$0.07

```
In [165]: #Top Spenders: top 5 spenders by total purchase value (SN, purchase count, aver
          age purchase price, total purchase value)
          avg = players_df.groupby(["SN"]).mean()["Price"].rename("Average Purchase Pric
          e")
          purchase = players_df.groupby(["SN"]).count()["Price"].rename("Purchase Count"
          revenue = players_df.groupby(["SN"]).sum()["Price"].rename("Total Purchase Val
          ue")
          top_df= pd.DataFrame({"Purchase Count":purchase,
                                   "Average Purchase Price":avg,
                                   "Total Purchase Value":revenue})
          top_ordered = top_df.sort_values("Total Purchase Value",ascending=False)
          top_ordered["Average Purchase Price"]= top_ordered["Average Purchase Price"].m
          ap("${:,.2f}".format)
          top_ordered["Total Purchase Value"] = top_ordered["Total Purchase Value"].map(
          "${:,.2f}".format)
          top_ordered.head(5)
```

Out[165]:

	Purchase Count	Average Purchase Price	Total Purchase Value
SN			
Undirrala66	5	\$3.41	\$17.06
Saedue76	4	\$3.39	\$13.56
Mindimnya67	4	\$3.18	\$12.74
Haellysu29	3	\$4.24	\$12.73
Eoda93	3	\$3.86	\$11.58

```
In [166]:
          #Most Popular Items: Item ID, Item Name, Purchase Count, Item Price, Total Pur
          chase Value
          popular_df = players_df.loc[:,["Item ID", "Item Name", "Price"]]
          #popular df
          purchase = players_df.groupby(["Item ID","Item Name"]).count()["Price"].rename
          ("Purchase Count")
          avg = players_df.groupby(["Item ID","Item Name"]).mean()["Price"].rename("Item
           Price")
          revenue = players_df.groupby(["Item ID","Item Name"]).sum()["Price"].rename("T
          otal Purchase Value")
          popular_item= pd.DataFrame({"Purchase Count":purchase,
                                      "Item Price": avg,
                                      "Total Purchase Value":revenue})
          popular_item = popular_item.sort_values("Purchase Count",ascending=False)
          popular_item["Item Price"]= popular_item["Item Price"].map("${:,.2f}".format)
          popular item["Total Purchase Value"] = popular item["Total Purchase Value"].ma
          p("${:,.2f}".format)
          popular_item.head(5)
```

Out[166]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
39	Betrayal, Whisper of Grieving Widows	11	\$2.35	\$25.85
84	Arcane Gem	11	\$2.23	\$24.53
31	Trickster	9	\$2.07	\$18.63
175	Woeful Adamantite Claymore	9	\$1.24	\$11.16
13	Serenity	9	\$1.49	\$13.41

```
In [167]:
          #Most Popular Items: Item ID, Item Name, Purchase Count, Item Price, Total Pur
          chase Value
          popular_df = players_df.loc[:,["Item ID", "Item Name", "Price"]]
          #popular df
          purchase = players_df.groupby(["Item ID","Item Name"]).count()["Price"].rename
          ("Purchase Count")
          avg = players df.groupby(["Item ID","Item Name"]).mean()["Price"].rename("Item
           Price")
          revenue = players_df.groupby(["Item ID","Item Name"]).sum()["Price"].rename("T
          otal Purchase Value")
          popular_item= pd.DataFrame({"Purchase Count":purchase,
                                      "Item Price": avg,
                                      "Total Purchase Value":revenue})
          popular_item = popular_item.sort_values("Total Purchase Value",ascending=False
          popular_item["Item Price"] = popular_item["Item Price"].map("${:,.2f}".format)
          popular_item["Total Purchase Value"] = popular_item["Total Purchase Value"].ma
          p("${:,.2f}".format)
          popular_item.head(5)
```

Out[167]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
34	Retribution Axe	9	\$4.14	\$37.26
115	Spectral Diamond Doomblade	7	\$4.25	\$29.75
32	Orenmir	6	\$4.95	\$29.70
103	Singed Scalpel	6	\$4.87	\$29.22
107	Splitter, Foe Of Subtlety	8	\$3.61	\$28.88