

IN THE CLAIMS:

1. (Currently Amended) A method of encoding an audio signal, the method comprising the steps of:

- providing a respective set of sampled signal values ($x(t)$) for each of a plurality of sequential time segments;
- analyzing the sampled signal values ($x(t)$) to determine one or more sinusoidal components for each of the plurality of sequential segments;
- linking sinusoidal components across a plurality of sequential segments to provide sinusoidal tracks, each track comprising a number of frames; and
- generating an encoded signal (AS) including sinusoidal codes (C_s) comprising a representation level (r) for zero or more frames and where some of these codes (C_s) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from an encoder to a decoder at a random-access frame instead of transmitting the quantization table (Q).

2. (Original) A method as claimed in claim 1, wherein a selection between a code for a frame comprising a representation level (r) and a code for a frame comprising a phase (ϕ), a frequency (ω) and a quantization table (Q) is made in dependence upon a trigger signal (Trig.).

3. (Cancelled)

4. (Currently Amended) A method as claimed in claim 31, wherein the index (IND) is generated or represented, using Huffman coding.

5. (Previously Presented) A method as claimed in claim 1, wherein the phase (ϕ) and the frequency (ω) for a random-access frame is the current phase ($\phi(0)$) and the current frequency ($\omega(0)$).

6. (Currently Amended) A method of decoding an encoded audio stream (AS'), the method comprising the steps of:

- receiving a signal including the encoded audio stream (AS'), the audio stream (AS') comprising tracks of sinusoidal codes (C_S), where the sinusoidal codes (C_S) comprises a representation level (r) for zero or more frames and where some of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from an encoder to a decoder at a random-access frame instead of transmitting the quantization table (Q).

7. (Cancelled)

8. (Currently Amended) A method as claimed in claim 76, wherein the index (IND) is generated or represented, using Huffman coding.

9. (Previously Presented) A method as claimed in claim 6, wherein the phase (ϕ) and the frequency (ω) for a random-access frame is the current phase ($\phi(0)$) and the current frequency ($\omega(0)$).

10. (Currently Amended) An audio encoder arranged to process a respective set of sampled signal values for each of a plurality of sequential time segments, the encoder comprising;

- an analyzer for analyzing the sampled signal values to determine one or more sinusoidal components for each of the plurality of sequential segments;
- a linker (13) for linking sinusoidal components across a plurality of sequential segments to provide sinusoidal tracks, each track comprising a number of frames;
- means (15) for providing an encoded signal (AS) including sinusoidal codes (C_S) comprising a representation level (r) for zero or more frames and where some

of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from the encoder (1) to the decoder (3) at a random-access frame (702) instead of transmitting the quantization table (Q).

11. (Currently Amended) An audio player comprising:

- means for receiving a signal including the encoded audio stream (AS'), the audio stream (AS') comprising tracks of sinusoidal codes (C_S), where the sinusoidal codes (C_S) comprises a representation level (r) for zero or more frames and where some of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from an encoder to the means for receiving at a random-access frame instead of transmitting the quantization table (Q), and
- a synthesizer arranged to employ the zero or more received representation levels and the received phase (ϕ), frequency (ω) and quantization table (Q) for a given frame when the given frame is designated as a random-access frame in order to synthesize the sinusoidal components of the audio signal ($y(t)$).

12. (Currently Amended) An audio system ~~comprising an audio encoder as claimed in claim 10 and an audio player comprising:~~

- an analyzer for analyzing the sampled signal values to determine one or more sinusoidal components for each of the plurality of sequential segments;
- a linker for linking sinusoidal components across a plurality of sequential segments to provide sinusoidal tracks, each track comprising a number of frames;
- means for providing an encoded signal (AS) including sinusoidal codes (C_S) comprising a representation level (r) for zero or more frames and where some of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame;

- means for receiving a signal including the encoded audio stream (AS'), the audio stream (AS') comprising tracks of sinusoidal codes (C_S), where the sinusoidal codes (C_S) comprises a representation level (r) for zero or more frames and where some of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from the means for providing to the means for receiving at a random-access frame instead of transmitting the quantization table (Q), and

- a synthesizer arranged to employ the zero or more received representation levels and the received phase (ϕ), frequency (ω) and quantization table (Q) for a given frame when the given frame is designated as a random-access frame in order to synthesize the sinusoidal components of the audio signal ($y(t)$).

13. (Currently Amended) ~~An~~ A storage medium including an audio stream comprising sinusoidal codes (C_S) representing tracks of sinusoidal components linked across a plurality of sequential time segments of an audio signal, where the sinusoidal codes (C_S) comprises a representation level (r) for zero or more frames and where some of these codes (C_S) comprise a phase (ϕ), a frequency (ω) and a quantization table (Q) for a given frame when the given frame is designated as a random-access frame, wherein each quantization table (Q) is represented by an index (IND) and where the index (IND) is transmitted from an encoder to a decoder at a random-access frame instead of transmitting the quantization table (Q).

14. (Cancelled)