Assignment

<u>Advanced Regression – Housing Price Prediction</u>

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

Optimal value is when we have the highest R2 value (0.83)

Optimal Value for Ridge = 2

Optimal value for Lasso = 0.0001.

If we double the value of Ridge to 4 then R2 score of the model is still around 0.826.

The MSE of the model on the test dataset for doubled alpha is 0.00186

Out[133]:

	Ridge Doubled Alpha Co-Efficient
Total_sqr_footage	0.149028
GarageArea	0.091803
TotRmsAbvGrd	0.068283
OverallCond	0.043303
LotArea	0.038824
Total_porch_sf	0.033870
CentralAir_Y	0.031832
LotFrontage	0.027526
Neighborhood_StoneBr	0.026581
OpenPorchSF	0.022713
MSSubClass_70	0.022189
Alley_Pave	0.021672
Neighborhood_Veenker	0.020098
BsmtQual_Ex	0.019949
KitchenQual_Ex	0.019787
HouseStyle_2.5Unf	0.018952
MasVnrType_Stone	0.018388
PavedDrive_P	0.017973
RoofMati_WdShngl	0.017856
PavedDrive_Y	0.016840

Out[127]:

	Ridge Co-Efficient
Total_sqr_footage	0.169122
GarageArea	0.101585
TotRmsAbvGrd	0.067348
OverallCond	0.047652
LotArea	0.043941
CentralAir_Y	0.032034
LotFrontage	0.031772
Total_porch_sf	0.031639
${\tt Neighborhood_StoneBr}$	0.029093
Alley_Pave	0.024270
OpenPorchSF	0.023148
MSSubClass_70	0.022995
RoofMatl_WdShngl	0.022586
${\tt Neighborhood_Veenker}$	0.022410
SaleType_Con	0.022293
HouseStyle_2.5Unf	0.021873
PavedDrive_P	0.020160
KitchenQual_Ex	0.019378
LandContour_HLS	0.018595
Sale Type_Oth	0.018123

Lasso:

Out[134]:			
Lasso Doubled Alpha Co-Effic		so Co-Efficient	
		0.202244	Total_sqr_footage
		0.110863	GarageArea
		0.063161	TotRmsAbvGrd
		0.046686	OverallCond
		0.044597	LotArea
		0.033294	CentralAir_Y
		0.028923	Total_porch_sf
		0.023370	borhood_StoneBr
		0.020848	Alley_Pave
		0.020776	OpenPorchSF
		0.018898	MSSubClass_70
		0.017279	andContour_HLS
		0.016795	KitchenQual Ex
		0.016710	BsmtQual_Ex
		0.015551	Condition1 Norm
		0.014707	borhood_Veenker
		0.014389	- MasVnrType Stone
		0.013578	PavedDrive_P
		0.013377	LotFrontage
		0.012363	PavedDrive Y

We don't see much difference in the top predictor variables as the alpha value is already small. So, doubling it doesn't make much change.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

Optimal lambda values

- 1. Ridge 2
- 2. Lasso 0.0001

Mean Squared Errors –

- 1. Ridge ~ 0.00184
- 2. Lasso ~ 0.00186

Both Lasso and Ridge have almost same MSE.

But I would choose **Lasso** over Ridge as it helps in feature reduction by setting the coefficients of less important features to zero.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

5 most important predictor variables in Lasso model are –

- 1. Total_sqr_footage
- 2. GarageArea
- 3. TotRmsAbvGrd
- 4. OverallCond
- 5. LotArea

After making the model in Jupiter notebook by removing these variables we find –

R2 value ~ 0.73

MSE value ~ 0.0028

We see that the R2 value has dropped significantly and also MSE has increased.

New Top 5 predictors are –

- 1. LotFrontage
- 2. Total_porch_sf
- 3. HouseStyle_2.5Unf
- 4. HouseStype_2.5Fin
- 5. Neighbourhood_Veenker

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

We should follow Occam's Razor principle while designing the models – "We should keep the model as simple as possible without compromising on accuracy significantly". Simpler models are more robust and generalizable as they have not "memorized" the dataset.

Keeping the model simple also helps us avoid problem of "Overfitting".

We can avoid "Overfitting" by ensuring that the model has similar performance on the training and test data set.

To achieve this fine balance of correct level of complexity in models so that we have a robust and generic model but not too naïve, that is it of no use - we use **Regularization** techniques.

A balanced model will have best combination of Bias and Variance (i.e. the intersection point in Bias Variance Curve) which ensures the **least Total Error**.

