Prof. Dr. Özlem Imamoglu

Nur die Aufgaben mit einem * werden korrigiert.

- **6.1. MC Fragen:** Wählen Sie die richtigen Antworten.
 - (a) Kreuze die richtigen Aussagen an.

Seien $f, g \colon D \to \mathbb{R}$ monoton wachsende Funktionen, $D \subseteq \mathbb{R}$.

- \square $f \cdot g \colon D \to \mathbb{R}$ ist monoton wachsend.
- \square Angenommen $g(x) \neq 0$ für alle $x \in D$. Dann ist $\frac{f}{g}$ monton wachsend.
- \square Angenommen, $f(x), g(x) \neq 0$ für alle $x \in D$. Dann ist $\frac{f}{q}$ oder $\frac{g}{f}$ monoton wachsend.
- (b) Kreuze die richtigen Aussagen an. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion, die stetige bei $x_0 = 0$ ist mit $f(x_0) > 0$.
 - \square Es existieren $\varepsilon, \delta > 0$ so dass $f(x) > \varepsilon$ für alle $x \in (-\delta, \delta)$ gilt.
 - \square Es gilt $f(x) \ge 0$ für alle $x \in \mathbb{R}$.
 - \square Beide obige Aussagen sind falsch.
- (c) Kreuze die richtigen Aussagen an.
 - \Box $f: [0,1] \to \mathbb{R}$ beschränkt $\Longrightarrow f$ monoton.
 - \Box $f: [0,1] \to \mathbb{R}$ strikt monoton wachsend $\Longrightarrow f$ stetig.
 - \Box $f:(0,1] \to \mathbb{R}$ monoton $\Longrightarrow f$ beschränkt.
 - \square $f: [0,1] \to \mathbb{R}$ monoton $\Longrightarrow f$ beschränkt.
- (d) Die Aufrundungsfunktion $\mathbb{R} \to \mathbb{R}, x \mapsto \lceil x \rceil := \min\{n \in \mathbb{Z} \mid n \geq x\}$ ist im Punkt x = 2
 - \square stetig.
 - \square unstetig.
 - □ Die Informationen genügen nicht um zu schliessen.

*6.2. Cauchy Produkt. Zeigen Sie, dass für jedes $x \in \mathbb{R}$ wobei |x| < 1 Folgendes gilt:

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$

*6.3. Stetigkeit I. Zeigen Sie direkt aus der ε - δ Definition, dass

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = e^x$$

in jedem Punkt stetig ist.

6.4. Stetigkeit II. Zeigen Sie, dass die Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \qquad f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

nur in x = 0 stetig ist.