Séries statistiques à une variable 1/3

<u>TP 1 :</u> Histogramme des fréquences cumulées croissantes et interpolation affine

On a mesuré la durée de vie de 400 lampes produites dans une usine. On a obtenu les résultats suivants :

Durée de vie	Nombre de lampes		
(en heures)			
[300, 500[60		
[500,700[134		
[700,900[130		
[900, 1100[70		
[1100, 1300]	6		

- 1) Déterminer le pourcentage de lampes dont la durée de vie est strictement inférieure à 700 heures.
- 2) Déterminer le pourcentage de lampes dont la durée de vie est supérieure ou égale à 900 heures.
- 3) Représenter l'histogramme des fréquences cumulées croissantes.
- 4) On suppose que, dans chaque classe, les éléments sont répartis de manière uniforme. On peut alors remplacer l'histogramme par la ligne brisée définie par le point d'abscisse 300 et d'ordonnée 0 et chacun des sommets supérieurs droits des rectangles.
- a) Tracer cette ligne brisée.
- b) On se propose de déterminer le pourcentage de lampes dont la durée de vie est inférieure ou égale à 560 heures. Soit *R et N* les points de la ligne brisée de coordonnées respectives (500 ; 0,15) et (700 ; 0,485). Soit *M* le point du segment [RN] d'abscisse 560. Le pourcentage de lampes dont la durée de vie est inférieure ou égale à 560 heures est l'ordonnée du point M. Déterminer ce pourcentage.
- c) Soit P le point de coordonnées (900 ; 0,81) de la ligne brisée. Soit I le point du segment [NP] d'ordonnée 0,50. La médiane est l'abscisse du point I. Déterminer la valeur approchée à 10^{-2} près de la médiane.

On dit qu'on a réalisé une interpolation affine. On pourra faire un agrandissement de la partie de la figure relative à l'intervalle [500; 700].

TP 2 : Calcul de moyenne et d'écart type

Dans une classe, la liste des notes obtenues à un devoir de mathématiques par les élèves classés par ordre alphabétique est la suivante :

1) Regrouper en classes cette série statistique, en reproduisant et complétant le tableau suivant.

Note x_i	2	
Effectif n_i	1	

- 2) Déterminer des valeurs approchées à 10^{-1} près de la moyenne \bar{x} et de l'écart type σ de cette série statistique.
- 3) Quel est le pourcentage de notes appartenant à l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$?
- 4) Quel est le pourcentage de notes appartenant à l'intervalle $[\bar{x} 3\sigma; \bar{x} + 3\sigma]$?

Diagrammes statistiques

Exercice 1: Les bons de commande

La série statistique suivante donne le nombre de bons de commande enregistrés chaque jour par une entreprise pendant un mois : 30 ; 26 ; 26 ; 32 ; 31 ; 29 ; 27 ; 27 ; 28 ; 30 ; 31 ; 27 ; 29 ; 30 ; 28 ; 26 ; 26 ; 32 ; 31 ; 30.

1) Regrouper en classes cette série en remplissant, après l'avoir reproduit, le tableau suivant où les nombres x_i sont des nombres entiers consécutifs.

Nombre x_i de commandes	26	27	
Effectifs n_i (nombre de jours où on a observé x_i commandes)			

2) Construire le diagramme en bâtons correspondant.

Séries statistiques à une variable 2/3

Exercice 2 : La production de l'atelier

Dans un atelier, la production de certaines pièces pendant les 20 jours de travail d'un mois donné a été la suivante :

520; 450;460;485;510;450;405;460;499; 380; 398; 455; 385; 409; 390; 424; 459; 407; 410; 428.

1) Regrouper ces données en classes d'amplitude 25 en commençant par la classe [375 ; 400[. On complétera le tableau suivant après l'avoir reproduit.

Nombre de pièces produites	[375; 400[
Effectif	4	•••	

2) Construire l'histogramme correspondant.

Exercice 3: Résistance mécanique d'un béton
Lors de la réalisation d'un tronçon de l'autoroute A14,
pour contrôler la qualité du béton utilisé dans la
construction de la chaussée, on a mesuré en
mégapascals la résistance à la compression
d'un échantillon de 200 prélèvements,
7 jours après leur fabrication.
On trouve, dans la notice publiée après la fin
du chantier, l'histogramme des fréquences suivant.

- 1) En effectuant des mesures sur la figure, construire le tableau des classes et des effectifs.
- 2) Déterminer le pourcentage des prélèvements dont la résistance est strictement inférieure à 35 MPa.

à la compression (MPa)

Calculs de moyenne et d'écart type

TP 3 : Exemple de populations correspondant à un même tableau d'effectifs

Dans ce TP, nous allons calculer la moyenne et l'écart type de quatre populations (Correspondant à un même tableau d'effectifs. Nous observerons ainsi l'influence de la répartition des éléments de la population à l'intérieur de chaque classe sur la moyenne et l'écart type.

On considère le tableau d'effectifs suivant

Classe	[0, 4[[4, 8[[8, 12[
Effectif	4	4	4

1) On suppose que, dans chaque classe, tous les éléments sont situés au centre de la classe, c'est-à-dire que la population est : 2 ; 2 ; 2 ; 6 ; 6 ; 6 ; 6 ; 10 ; 10 ; 10 ; 10.

Calculer la moyenne \bar{x} et une valeur approchée à 10^{-2} près de l'écart type σ de cette première population.

2) On suppose que les éléments de chaque classe sont répartis uniformément de la façon suivante : 0,5 ; 1,5 ; 2,5 ; 3,5 ; 4,5 ; 5,5 ; 6,5 ; 7,5 ; 8,5 ; 9,5 ; 10,5 ; 11,5.

Calculer la moyenne \bar{x}' et une valeur approchée à 10^{-2} près de l'écart type σ' de cette deuxième population.

3) On suppose que les éléments de chaque classe sont répartis de la façon suivante :

1;1;3;3;5;5;7;7;9;9;11;11.

Calculer la moyenne \bar{x}'' et une valeur approchée à 10^{-2} près de l'écart type σ'' de cette troisième population.

Comparer \bar{x} , \bar{x}' , \bar{x}'' d'une part et σ , σ' , σ'' d'autre part.

4) On suppose que dans chaque classe tous les éléments sont situés d'un même côté et le plus loin possible du centre de la classe, c'est-à-dire que la population est :

0;0;0;0;4;4;4;4;8;8;8;8;8.

Calculer la moyenne \bar{x}''' et une valeur approchée à 10^{-2} près de l'écart type σ''' de cette quatrième population.

Pouvait-on prévoir les valeurs de \bar{x}''' et σ''' ?

BTS Aéronautique

Séries statistiques à une variable 3/3

Exercice 4 : Les notes des étudiants

Les 31 étudiants d'une section de techniciens supérieurs ont obtenu les notes suivantes à un devoir de mathématiques :

Notes x_i	7	8	9	10	11	12	13	14
Effectifs n_i	1	5	4	12	5	3	0	1

- 1) Construire le diagramme en bâtons obtenu en plaçant en abscisse x_i et en ordonnée n_i . Construire le polygone des effectifs.
- 2) Faire une représentation en bâtons des effectifs cumulés croissants.
- 3) Déterminer des valeurs approchées à 10⁻² près de la moyenne et de l'écart type de cette série statistique.

Exercice 5 : Longueurs de tiges d'acier

On a mesuré les longueurs en millimètres d'un échantillon de 1 00 tiges d'acier à la sortie d'une machine automatique. On a trouvé les résultats suivants :

Longueurs (en mm)	Effectifs
[120, 125[10
[125, 130[20
[130, 135[38
[135, 140[25
[140, 145]	1

- 1) Construire l'histogramme des effectifs.
- 2) On suppose que les tiges sont défectueuses si leur longueur est strictement inférieure à 125 mm ou supérieure ou égale à 140 mm.

Quel est le pourcentage de pièces acceptables ?

3) On suppose que, dans chaque classe, tous les éléments sont situés au centre.

Calculer la moyenne et la valeur approchée décimale arrondie à 10⁻² près de l'écart type de cette série statistique ainsi définie.

Exercices d'examen

Exercice 5 : Détermination de la médiane par interpolation affine

Une maison d'édition confie la frappe de ses manuscrits à une entreprise extérieure spécialisée dans la saisie informatique. Cette entreprise effectue une « première saisie » du manuscrit qui est envoyée à l'auteur pour correction des fautes de frappe. On s'intéresse à la population constituée d'un grand nombre de parties, toutes du même nombre de signes, de la « première saisie » du document.

De cette population, on extrait un échantillon de 315 parties, et on compte sur chacune d'elles le nombre de fautes de frappe. On a obtenu les résultats suivants, les pourcentages étant arrondis :

Nombre de fautes de frappe (en %)	Nombre de parties
[75, 80[5
[80, 85[10
[85, 90[20
[90, 95[36
[95, 100[15
[100, 105[8
[105, 110[6

- 1) Construire l'histogramme des fréquences de cette série statistique.
- 2) En utilisant les fréquences cumulées croissantes, tracer le polygone des fréquences cumulées croissantes.
- 3) Déterminer la classe médiane. En admettant que la répartition de l'effectif est uniforme à l'intérieur de chaque classe, déterminer la médiane M. Que représente m?