I. Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

Claim 1. (Original): A process for synthesizing a compound of formula (V):

comprising reacting a compound of formula (IV):

with $(A)(A_1)$ -cyanocarbonimidate to form a compound of formula (V);

wherein A and A₁ are independently selected from methyl, ethyl propyl, phenyl and benzyl; and wherein,

R is Z-R1, wherein

Z is selected from the group consisting of a bond, straight or branched C₁₋₆ alkylene, -NH-, -CH₂O-, -CH₂NH-, -CH₂N(CH₃)-, -NHCH₂-, -CH₂CONH-, -NHCH₂CO-, -COCH₂-, -CH₂COCH₂-, -CH(CH₃)-, -CH=, -O- and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower alkyl, hydroxy, halo or alkoxy group;

R₁ is selected from the group consisting of hydrogen, C₁₋₁₀ alkyl, C₃₋₁₂cycloalkyl, C₂₋₁₀alkenyl, amino, C₁₋₁₀alkylamino-, C₃₋₁₂cycloalkylamino-, -COOV₁, -C₁₋₄COOV₁, cyano, cyanoC₁₋₁₀alkyl-, cyanoC₃₋₁₀cycloalkyl-, NH₂SO₂-, NH₂SO₂C₁₋₄alkyl-, NH₂SOC₁₋₄alkyl-, aminocarbonyl-, C₁₋₄alkylaminocarbonyl-, diC₁₋₄alkylaminocarbonyl-, benzyl, C₃₋₁₂ cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a heteromonocyclic ring, a hetero-bicyclic ring system, and a spiro ring system of the formula (XI):

(XI)

wherein X_1 and X_2 are independently selected from the group consisting of NH, O, S and CH₂; and wherein said alkyl, cycloalkyl, alkenyl, C_{1-10} alkylamino-, C_{3-12} cycloalkylamino-, or benzyl of R_1 is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy, C_{1-10} alkyl, C_{1-10} alkoxy, nitro, trifluoromethyl-, cyano, $-COOV_1$, $-C_{1-4}COOV_1$, cyano C_{1-10} alkyl-, $-C_{1-5}$ (=O) W_1 , $-C_{1-5}$ NHS(=O) W_1 , a 5-membered heteroaromatic C_{0-4} alkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, C_{1-10} alkyl-, C_{1-10} alkoxy-, and cyano; and wherein said C_{3-12} cycloalkyl, C_{3-12} cycloalkenyl, monocyclic, bicyclic or

tricyclic aryl, heteroaryl ring, hetero-monocyclic ring, hetero-bicyclic ring system, or spiro ring system of the formula (XI) is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C_{1-10} alkyl, C_{1-10} alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C_{1-10} alkyl, C_{1-10} alkoxy, and cyano;

wherein V_1 is independently selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, benzyl and phenyl; and

wherein W₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₁₀ alkoxy, C₃₋₁₂ cycloalkoxy, -CH₂OH, amino, C₁₋₄alkylamino-, or diC₁₋₄alkylamino-.

Claim 2. (Original): The process of claim 1, wherein the compound of formula (IV) is formed by subjecting a compound of formula (III):

(III)

to reductive amination with 1,2-phenylenediamine, an acid and a reducing agent to form a compound of formula (IV).

Claim 3. (Original): The process of claim 1, wherein the compound of formula (IV) is formed by subjecting a compound of formula (III):

to amination with 1,2-phenylenediamine and an acid to form a compound of formula (IIIA):

and reducing the compound of (IIIA) with a reducing agent to form a compound of formula (IV).

Claim 4. (Currently Amended): The process of claim 2 or 3, wherein the compound of formula (III) is formed by reacting a compound of formula (II):

with R-amine to form a compound of formula (III); wherein B is selected from the group consisting of methyl, ethyl and propyl.

Claim 5. (Currently Amended): The process of claim 2-or 3, wherein the compound of formula (III) is formed by reacting a compound of formula (IIA):

with R-amine to form a compound of formula III;

wherein C and C_1 are independently selected from the group consisting of methyl, ethyl and propyl.

(IIA)

Claim 6. (Original): The process of claim 4, wherein the compound of formula (II) is formed by reacting a compound of formula (I):

with an C_{1-3} alkyl-halogen to form a compound of formula (II).

Claim 7. (Original): The process of claim 4, wherein the compound of formula (II) is formed by reacting a compound of formula (IA):

with a benzyl-halogen to form a compound of formula II.

Claim 8. (Original): The process of claim 4, wherein the compound of formula (IIA) is formed by reacting a compound of formula (IA):

with $(C)(C_1)$ sulphate to form a compound of formula (IIA).

Claim 9. (Original): The process of claim 1, further comprising reacting a compound of formula (V) with a D-halogen to form a compound of formula (VI):

(VI)

wherein D is selected from the group consisting of C_{1-10} alkyl, C_{3-12} cycloalkyl, C_{3-12} cycloalkyl C_{1-4} alkyl-, C_{1-10} alkoxy, C_{3-12} cycloalkoxy-, C_{1-10} alkyl substituted with 1-3 halogen, C_{3-12} cycloalkyl C_{1-4} alkyl-substituted with 1-3 halogen, C_{3-12} cycloalkyl C_{1-4} alkyl-substituted with 1-3 halogen, C_{1-10} alkoxy substituted with 1-3 halogen, C_{3-12} cycloalkoxy-substituted with 1-3 halogen, $-COOV_1$, $-C_{1-4}COOV_1$, $-CH_2OH$, $-SO_2N(V_1)_2$, hydroxy C_{1-10} alkyl-, hydroxy C_{3-10} cycloalkyl-, cyano C_{1-10} alkyl-, cyano C_{3-10} cycloalkyl-, $-CON(V_1)_2$, $-CON(V_1)_2$, -C

wherein V_1 is independently selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, benzyl and phenyl; and

wherein W₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₁₀ alkoxy, C₃₋₁₂ cycloalkoxy, -CH₂OH, amino, C₁₋₄alkylamino-, or diC₁₋₄alkylamino-; and wherein each V₁ and W₁ is the same or different.

Claim 10. (Original): The process of claim 1, wherein R_1 is selected from the group consisting of C_{1-10} alkyl and C_{3-12} cycloalkyl.

Claim 11. (Original): The process of claim 1, wherein R is cyclooctyl.

Claim 12. (Original): The process of claim 1, wherein A and A_1 are both phenyl.

Claim 13. (Original): The process of claim 1, wherein the reaction is performed in a solvent.

Claim 14. (Original): The process of claim 13, wherein the solvent is selected from acetonitrile, dimethylformamide, or a mixture thereof.

Claim 15. (Original): The process of claim 1, wherein the reaction is performed at a temperature of about 50° C to about 125° C or about 75° C to about 125° C or about 100° C.

Claim 16. (Original): The process of claim 15, wherein a portion of the reaction is performed under ambient temperature.

Claim 17. (Original): The process of claim 1, comprising isolating an intermediate cyanoimidate.

Claim 18. (Original): The process of claim 17, comprising preparing the compound of formula (V) in a one pot reaction in acetonitrile, dimethylformamide, or a mixture thereof.

Claim 19. (Original): The process of claim 2, wherein the reductive amination is performed in a suitable solvent.

Claim 20. (Original): The process of claim 19, wherein the solvent is dichloroethane, tetrahydrofuran or a mixture thereof.

Claims 21-76. (Canceled)