Les Réseaux

Prof. Rami Langar LIGM/UPEM

Rami.Langar@u-pem.fr

http://perso.u-pem.fr/~langar

Organisation

- □ 20 heures de cours
- □ 12 heures de travaux dirigés
 - 6 séances de 2 heures
- □ 8 heures de travaux pratiques
 - 2 séances de 4 heures
- □ 1 CC : 30%
- □ 1 Examen : 50%
- □ 1 TP: 20%

Objectives pédagogiques

- □ Acquérir une culture générale des réseaux et une bonne connaissance de l'Internet
 - Architectures des réseaux et l'Internet
 - Applications (Web, DNS)
 - Protocoles de transport (TCP et UDP)
 - Protocole IP, adressage, routage
 - Ethernet
 - WiFi

Références

- Analyse structurée des réseaux, 2ème édition, James Kurose et Keith Ross, Traduction par Stéphane Pauquet, Pearson Education France 2003
- □ Andrew Tanenbaum, «Réseaux » Dunod 2002
- □ Guy Pujolle, « Les Réseaux », Eyrolles, ed. 2005
- □ Khaldoun Alagha & Guy Pujolle & Guillaume Vivier, « *Réseaux sans fil et mobiles* », octobre 2001
- □ Claude Servin, « Réseaux et télécoms », Dunod 2003
- □ L. Toutain « Réseaux Locaux et Internet »
- □ Le web
- □ ...

Introduction: Généralités

Définitions

- Réseau d'ordinateurs : Ensemble de terminaux et d'ordinateurs interconnectés par des télécommunications généralement permanentes
- Transmission : Action de transmettre quelque chose à quelqu'un.
- Protocole : Ensemble de règles définissant le mode de communication entre deux entités.

Introduction: Généralités

- □ Objectifs des réseaux
 - Partage des ressources : Rendre accessible à chacun les données, les programmes et équipements indépendamment de leur situation physique par rapport à l'utilisateur.
 - Augmenter la fiabilité: *Permettre des copies d'un même fichier sur plusieurs machines augmente la fiabilité face aux pannes d'une machine.*
 - Réduction des coûts : *Plusieurs petits ordinateurs revient moins cher que de gros serveurs à performance égale.*
 - Médium de communications : Des personnes éloignées géographiquement peuvent travailler ensemble plus facilement.
 - Travail coopératif

Structure des réseaux

□ Terminologie

Système-terminal, hôte ou noeud du réseau *Tout simplement l'ordinateur...*

Sous-réseau

Les hôtes sont connectés par le sous-réseau. Son rôle est le transport des messages d'un hôte à l'autre. Il comporte généralement les lignes de transmission et les éléments de commutation (hub, switch, routeurs).

Un réseau ...

Structure des réseaux

- Deux types de réseaux
 - Réseau point à point
 - Grand nombre de connexions entre machines.
 - Les messages peuvent passer par plusieurs machines avant d'atteindre leur destination.
 - Différentes structures :

Boucle

Etoile

Réseau complet

Arbre / structure hiérarchique

Structure des réseaux

- □ Deux types de réseaux
 - Réseau à diffusion (broadcast) ou à accès multiple
 - ☐ Un seul canal de communication
 - □ Tout le monde entend le message de tout le monde
 - □ Un message est envoyé avec une adresse de destination : seul le destinataire répond.
 - □ Différentes structures :

Bus

Anneau

Quelques dates...

Classifications des réseaux

- □ Critères de classification
 - Technique de transfert
 - □ À circuit ou à paquet
 - □ À commutation ou à routage
 - Topologie
 - □ Étoile, anneau, bus
 - Taille
 - □ WAN, LAN, MAN, PAN, ...

Taille des réseaux

- □ PAN Personal Area Network (portée entre 1m et 10m)
 Interconnectent sur quelques mètres des équipements
 personnels tels que les téléphones portables, PALM,
 PDA, oreillettes, domotique, auto-radio, etc...
- □ Technologies:
 - USB
 - bluetooth
 - infra-rouge
 - ...

- □ LAN Local Area Network (portée entre 10 m et 1km)
 - Correspondent aux réseaux d'entreprises, réseaux de campus ou équivalents.
 - Tailles restreintes
 - Débits de 10Mbps à 10Gbps
 - Topologies les plus utilisées : bus, anneau, étoile
- □ Technologies:
 - Ethernet
 - Token ring
 - WiFi
 - **...**

- □ MAN Metropolitan Area Network (portée jusqu' à 10km)
 - Réseau couvrant une ville.
 - Interconnexion des entreprises, campus, et éventuellement de particuliers.
 - Haut débit, très important dans le coeur de réseau, redistribué en de moindres mesures aux extrémités.
 - Gérés généralement par une entreprise.
- □ Technologies:
 - ATM
 - FDDI
 - Wi-MAX
 - **...**

- □ WAN Wide Area Network (portée jusqu' à 100km)
 - Réseau longue distance (de l'ordre du pays)
 - Peuvent être des réseaux terrestres (essentiellement de la fibre optique), ou hertziens (comme les réseaux satellitaires).
- □ Technologies:
 - ATM
 - **X25**
 - Frame Relay
 - MPLS
 - Satellite
 - ...

Classification par topologie

Classification par la technique de transfert

Réseau à commutation

Réseau à routage

Commutation de circuit (e.g., RTC)

- □ Source établie une connexion vers le destinataire
 - Nœuds intermédiaires enregistrent les informations liées à la connexion, et peuvent réserver des ressources pour la connexion
- □ Source envoie les données le long de la connexion
 - Pas d'a de destination, puisque les nœuds connaissent le chemin à suivre.
- □ Clôture de la connexion:
 - Source termine la connexion une fois terminée.

Synchronous Time Division Multiplexing (TDM)

- Utilisée pour des signaux numériques ou analogiques transportant des données numériques.
- □ Signaux numériques entrelacés en temps.
- □ Données en termes de bits ou bloc d'octets (typiquement 1 octet).
- □ Séquence de slots dédiés à une seule source est appelée: canal
- □ TDM est appelée synchrone:
 - Time slots assignés aux sources sont fixes.
 - Time slots d'une source sont transmis même si la source n'a pas de données à envoyer.
- □ E.g., RTC

Système de transport numérique

- □ Hiérarchie de TDM
- □ USA/Canada/Japan utilise un seul système, ITU-T (Europe) utilise un système similaire.
- □ Système Européen basé sur le format E-1
 - Trame de longueur 125 microsec.
 - Multiplexage de 32 canaux (30 voix, 2 synchronisation/signalisation)
 - Chaque trame contient 8 bits par canal.
- □ US system basé sur le format DS-1
 - Trame de longueur 125 microsec.
 - Multiplexage de 24 canaux
 - Chaque trame contient 8 bits par canal plus un framing bit: 193 bits par trame.

Inconvénients de commutation de circuit

- □ Bande passante perdue
 - Trafic en rafale entraine connexion inactive pendant une période OFF (silencieuse)
 - TDM: slot transmis même s'il n'y a pas de données à envoyer!!
 - Pas de gains tangible comme le multiplexage statistique
- Connexions bloquées
 - Refus de connexion lorsque les ressources disponible sont insuffisante!
- □ Délai d'établissement de connexion
 - Pas de communications jusqu'à ce que la connexion est établie.
- □ Etat du réseau
 - Nœuds du réseau doivent enregistrer les informations liées à une connexion.

Commutation de paquet

- Commutation de circuit est bien adaptée à la voix
 - Ressources dédiées à une connexion.
 - La plupart du temps, la connexion est inactive!
 - Débit des données est fixée!
 - □ Les deux extrémités doivent opérer avec le même débit!
- □ Solution: commutation de paquet.

Commutation de paquets: opérations de base

- □ Trafic data divisé en paquets
 - Data transmis en paquet de petite taille (typiquement 1000 octets)
 - Les messages plus long sont divisés en une série de paquets
 - Chaque paquet contient une portion de données utilisateurs + données de contrôle
- □ Données de contrôle
 - Infos de routage (addressage)
- □ Paquets circulent indépendamment dans le réseau
 - Transfert des paquets basé sur l'en-tête :
 - Utilisation d'une adresse IP complète pour le forwarding (pas de signalisation)
 => routage avec des datagramme IP (e.g., Internet)
 - Utilisation d'une référence ou label contenue dans l'en-tête : trace un "Circuit Virtuel" en utilisant des messages de signalisation (e.g., ATM),
 - Nœuds du réseau peuvent enregistrer les paquets temporairement: Store and Forward
- □ Destination reconstruits le message

Routage

- □ Réseaux à datagrammes (e.g., Internet)
 - Pas de phase de connexion ni de réservation de ressources.
 - Chaque paquet est émis de manière indépendante.
 - Chaque nœud maintient une table de routage pour aiguiller le paquet individuellement.
 - Plusieurs paquets d'un même message peuvent suivre des routes différentes.
 - Les paquets peuvent arriver dans un ordre différent que celui dans lequel ils ont été émis.
 - □ Plusieurs paquets peuvent arriver en même temps sur un hôte
 - Files d'attente.

Multiplexage statistique

- □ Dans TDM synchrone, plusieurs slots sont perdus ou inutilisés
- ☐ TDM statistique alloue les time slots dynamiquement, sur demande.
- Multiplexeur scanne les lignes d'entrée et collecte les données jusqu'à ce que la trame soit pleine.
- □ Pas de slot réservé.
- Overhead/slot pour TDM statistique puisque chaque slot contient des données et une adresse.
- □ Problème de saturation en période pleine:
 - Buffériser les données avant transmission

LEGEND

Data

Address

Unused

capacity

Modèles de référence

- □ Le modèle OSI
 - Norme
 - Très précis
 - Vaste
- □ Le modèle Internet ou TCP/IP
 - Standard de fait
 - Plus ciblé
 - Plus pratique
 - Imposé par sa simplicité
- □ Tous 2 des modèles de couches

Pourquoi une architecture en couches

- □ Lorsqu'on doit concevoir un système complexe
 - Autant de fonctions différentes => découpage en couche où chaque couche est en charge de différentes fonctions
 - La modularité facilite la maintenance et la mise à jour du système
 - □ La modification d'une couche reste transparente au reste du système
 - Tâches identifiées pour les réseaux :
 - □ Support physique (envoyer des 0 et des 1)
 - ☐ Contrôle et correction d'erreurs
 - □ Adressage
 - □ Routage (différent de l'adressage ?)
 - □ Mise en paquet
 - □ Sécurité
 - □ Contrôle de flux
 - □ ...
- □ 2 aspects : vertical et horizontal

Aspect vertical: principe des couches

- □ Une couche i fournit un service à une couche i+1 en s' appuyant par le service fournit par la couche i-1.
 - La couche i+1 voit la couche i uniquement par le service offert.
 - La couche i+1 n'a aucune vue sur la couche i-1
- ☐ Abstraction pour masquer la complexité à la couche supérieure (1 couche = 1 boite noire)
- □ Découpage des messages et encapsulation

Aspect horizontal: Protocoles

- □ 2 couches de niveau i de 2 systèmes différents dialoguent avec le même protocole
- □ Protocole = Ensemble de règles et de conventions pour la conversation

Communications entre couches

- □ La couche i du système A dialogue uniquement avec la couche i du système B en utilisant un protocole de niveau i.
- Deux couches de niveau i ne peuvent dialoguer qu' en traversant les couches j < i.
- □ Pour mieux comprendre, un exemple :
 - Soient 2 explorateurs français, l'un en Espagne, l'autre en Bolivie
 - Ils ne peuvent parler directement car ils ne savent pas utiliser le télégraphe => médium de transmission
 - Ils ont besoin d'un technicien pour envoyer et recevoir les infos. => couche de niveau 1
 - Ils ne parlent pas espagnols, ils ont besoin d'un interprète. => couche de niveau 2

Communications entre couches

□ Les explorateurs (niveau 3) communiquent en traversant les couches.

Modèle OSI

TCP/IP vs. OSI

HTTP: Hypertext Transfer Protocol

FTP: File Transfer Protocol

SMTP: Simple Mail Transfer Protocol

DNS: Domain Name System

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

IP: Internet Protocol

PPP: Point-to-Point Protocol

Modèle TCP/IP

- Physique
 - Responsable de la transmission des bits de façon brute sur le medium
 - □ Spécification des connecteurs
 - □ Détermination des caractéristiques électriques des circuits
 - □ Définition des procédures d'utilisation des connexions physiques
 - Exemple de protocoles de niveau 1 : PPP, Ethernet...
- □ Liaison de données
 - Fragmentation des données transmises par la couche supérieure en trame de données
 - Responsable de la transmission fiable de trames sur une connexion physique
 - □ Contrôle d'accès au medium
 - Ne pas excéder le buffer du récepteur
 - Régulation de trafic
 - □ Détection et correction d'erreur
 - Erreurs dues à l'atténuation du signal
 - Détection des collisions
 - Gestion des acquittements
 - Exemples de protocoles de niveau 2: PPP, Ethernet, WiFi, Token-Ring, HDLC, ...

36

Modèle TCP/IP

- □ Réseau
 - Responsable du transfert de données à travers le réseau
 - □ Adressage
 - □ Routage
 - □ Contrôle de congestion
 - Exemples de protocoles de niveau 3: IP, ATM, X25-3, ICMP, ...
- □ Transport
 - Responsable du transfert de bout-en-bout, avec fiabilité et efficacité
 - □ Contrôle de flux
 - □ Reprise sur erreur
 - □ Contrôle de congestion
 - Exemples de protocoles de niveau 4 : TCP, UDP, SCTP ...
- Application
 - Applications réseaux et interfaces avec l'utilisateur
 - Exemples de protocoles : Messagerie électronique, web (http), terminal virtuel, FTP...

Mode connecté Vs non connecté

- □ Chaque couche peut fonctionner suivant 2 modes de fonctionnement (dépend du protocole)
 - Connecté
 - Non connecté
- □ Dépend :
 - Du service demandé
 - Du protocole utilisé

Mode connecté

- □ Par analogie avec un appel téléphonique
- \square 3 temps
 - Établissement de la connexion (synchronisation, négociation, etc..)
 - Utilisation de la connexion
 - Relâchement de la connexion
- □ ② : Service fiable
 - ②: Une connexion alourdit le transfert
 - Difficile pour des applications multipoints (autant de connexions que de paires d'hôtes)
- □ Utilisé pour le transfert de fichiers

Mode non connecté

- □ Par analogie avec un envoi de courrier
- □ Chaque message est auto-suffisant (sans état)
- □ Aucune garantie
- □ ② : Plus léger, parfois plus rapide
 - ②: Service non fiable
- □ Utilisé pour la messagerie électronique (le destinataire n' a pas besoin d'être là), la consultation de bases de données...

Encapsulation / Décapsulation

Encapsulation TCP/IP: exemple

