Dados os retornos	$\{\Gamma_1, \dots, \Gamma_T\}$ e $H_0: S(\Gamma) = 0$ $H_a: S(\Gamma) \neq 0$
estatistica t de Ŝ(r	$t = \frac{\hat{S}(r)}{\sqrt{6/\tau}}$
regna de decisal: re	ejeitar Ho num nivel de signif. \times se $7 \times 2 \times $
	Ho: $K(r)-3=0$ versus $H_a: K(r)-3 \neq 0$ rejeitar Ho se $ +1>Z_{x/z}$
Teste de Jorque 29	Bera: combinação dos dois testes acima
estabística feste: JB=	$\frac{\hat{S}^{2}(r)}{6/T} + \frac{(\hat{K}(r)-3)^{2}}{24/T}$
cuja distribuiçad asso Ho: Tt é normal	intética é $\chi^2(df=2)$
Esumple IBM	

Ĩ

i a sua	muis geral para os log retornos {[it; i=1,, N; funcos distribuiça conjunta
	1,, [N1; (12,, [NZ; (1T,, [NT; Y, 0))
ra qual	: le um "retor de estado" composto das variáveis que descrevem o "ambiente" no qual os retornos sad determinados
	Dé um vetor de parâmetros que determina univocamente a função de distribuição Fr(-)
	O comportamento estocasico de l'it e de y
VI CULLUX	e ruinus como acido la puncipal paras
reocupach	Vé habado como dado e a principal pulsos passa a ser a distribuiça condicional lado V
ráltse em es log-re ica, sobr	lado Y Lado Y Lado Y Lado Y Lado Y Lado Serimor De dado o histórico pasado Lo comportamento de ¿cit} da equação (2) é muito geral para ser de use resar distre ele fornece o acabouço geral par conome hicos de ¿cit}

ltaú BBA		
----------	--	--

/	eshylung.
	Ordras teorias enfolizam a dinâmica de retormos de abivos individuais, i.e., a distribuição de
	Elis,, (it) pl um dado alivo i
	Odo o foco é a distrib. conjunta de { cit} plo o ativo i (análise univariada) é útil purticionar a distribuira, conjunta como
(3)	$F(\Gamma_{i_1,\dots,\Gamma_{i_T},\Theta}) = F(\Gamma_{i_2}) F(\Gamma_{i_2} \Gamma_{i_3}) \cdots F(\Gamma_{i_T} \Gamma_{i_1,T-s},\dots,\Gamma_{i_s})$
	$= F(\Gamma_{is}) \prod_{t=2} F(\Gamma_{i,t} \Gamma_{i,t-s},, \Gamma_{is})$
	(o votor de parâmetros @ foi omitido para simplificar)
	Esta particol ressalta as dependencias temporais dos log-retornos Cit
	O problema parsa ser entais a especificaças da distribui- conscienceal F((it (i,t-1,, (i,s))
l,	em particular, como esta evolui e o lempo.
	Na prática: deferentes especificações p/ esta distribuição
	Leonias diferentes

10

Exemplo: uma das versões da hi	potese da caminhada aleatória
Exemplo: uma das versões da hij	
F(rit) ri, t-1,, ri1) = F(rix)
distrib. condicional	· distribuiço marginal
=> relomos são temporalmente mão previsíveis.	independentes e, portanto,
Para retornos calculados em baix genal um habamento de varián e, fazendo reso de suas p.d. t	a-frequência usa-se em el aleatória contínua e da relação (rdentil)
$f_{x,y}(x,y;\theta) = f_{x,y}(x;\theta)$	
pode-a escrever a partical ante	ior (eg.(3)) como
f((is,, \(\text{r}_{i\tau}; \Theta) = f((\text{r}_{i\text{s}}, \Theta)) \) t=2	ît [i,t-1,, [is; [H])
Para reformos em alta-fregienaia r ser um problema. Tick-siz	a caráles discuto passa se importa
NYSE: alé julho de 1997. alé janeiro de 2001	lick-size = US\$ 1/8
afé janeiro de 2001 após	US\$ 1/16 US\$ 0.01

12

Como a soma de um número finito de vas normais i.i.a é normal, então [K] também é normal sob esta hipólese.
Alem disso: mão existe limite inferior para le e o linite inferior para Re é satisfeito refitizando-se 1+Re = e
Entretanto: continua o problema do excesso de curtose positivo
Distribucións estáveis
Generalizações maturais da distribuição normal (estávis gdo
capturam o exasso de curbose positiva dos retornos históricos empíricos.
entulanto: distribuições estáveis nas normais podem ser varian- cia infinita. (conflito el feorias financinas)
alem desso: modelagem estatéstica é mais deficil
Exemplo: distribuiços de Cauchy (similia e c/ variância infinita)

B

Se X1, X2, sais vais independentes e identicamente distribuídas, com média µ e variancia o entai
(X1++ Xn -nm)/ TVn
converge em distribuição para uma v.a. c/ distrib. normal padrão.
Teorema limik: Xa,, Xn i.i.d. entai ZXi Bn d =
Duais as leis de limite que aparecem desta forma?
Suponhamos X uma v.a. e que, para cada n, existem con fautes an, on tais que
$a_nX + b_n = X_1 + X_2 + \dots + X_n$
na qual XI,, Xn são i.i.d. e da mesma distrib. de X.
Nesle caro dizemos que X é uma v.a. el distrib. estável
Exemples: normal e Cauchy
Cauchy: $f(x) = \frac{1}{\pi} \frac{1}{\gamma^2 + (\pi - \delta)^2}$
escala (z > 6)

Mistura de Distribuições Normais
Estudos recentes tem relitizado, para retormos de ações, as chamadas misturas de escala ou misturas finitas de destribuições gaussiamas.
Sob a hipótese de que os retornos R_t of são distribuídos de acordo of uma SMN os log-retornos $\Gamma_t \sim N(\mu, \sigma^2)$
Entretante d'é uma v.a. d'distrib. positiva (e.g.
$\sigma^2 \sim \Gamma$
Exemplo: 1-X)N(µ, 52) + XN(µ, 52)
X: Bernoulli tal que $P(X=1)=\alpha$ $0 < \kappa < 1$ $P(X=0)=1-\alpha$
$G_1^2 < G_2^2$
$\alpha = 0.05 \rightarrow 95\%$ des reformes sequem $N(\mu.\sigma_i^2)$ e $N(\mu,\sigma_i^2)$
52 > 0; coloca mais "mara" mas caudas da distribución dos retornos mas a maioria dos log retornos ainda seguem a N(μ,0;
Vantagens: mantén a tratabilidade da gaussiana. · surmentos de orden superior finitos · pode capturar o excesso de curtose.

· a estimação dos parametros ainda é complicada

Relamos Mulbrariados

Dado um veter alcatório X=(X1,...,Xp), sex seu veter smédia e matriz de covariáncia são dados (definidos) como

$$E[X] = \mu_{\alpha} = (E[X_1], \dots, E[X_p])$$

$$lov[X] = \sum_{n} = E[(X-\mu_n)(X-\mu_n)']$$

uma vez que es valores esperados vaistam

duando uma amostra { 2, ... x } está disponível a midia e a covariancia amostral são definidas como

$$\frac{1}{\mu \ln x} = \frac{1}{T} \sum_{t=1}^{T} n_t \qquad \sum_{x=T-1}^{T} \sum_{t=1}^{T} (x_t - \hat{\mu}_x)(x_t - \hat{\mu}_x)$$

Estas estatisticas amostrais são consistentes uma vez que a matriz de covaciancia de X seja bem definida

En finanças a distribuição normal multiraciada é em gral utilizada para o log retorno r.

Funça Derossimi Mança dos retornos

A partição da equação (3) pode su utilizada para obtermos a função de verossimilhama dos log rebornos [15,..., 5,3 pl um ativo (i foi omitido!)

Se a distribuição condicional $f(r_1, r_2, \dots, r_n; G)$ é mormal, c/ média μ_t e variancia σ_t^2

Dish. Gla. = Diah. Good x Dish. Harg.

{ (i, (2) consuliro

((c),(2)= f((2/r)) f(6)

{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}

f(1,12,13) = \$1(3)(2,11) & (1,1)

= f(13) (2. (a) f(12/10) f(12)

 $\left\{ \left(+,\left(-,\cdot\right) \right\} \right\}$

Ally

 $f\left(r_{1},r_{1-2},\ldots,r_{2},r_{2}\right) = \left(\frac{1}{t+2}f\left(r_{2},r_{2},\ldots,r_{2}\right)\right) f\left(r_{2}\right)$

Se fallenmer au N(U. d.)

 $f(r_1,...,r_1) = \begin{cases} \frac{1}{t-2} & \frac{1}{\sqrt{2\pi}\sigma} \\ \frac{1}{\sqrt{2\pi}\sigma} & \frac{1}{\sqrt{2\pi}\sigma} \end{cases} f(r_1)^2$