6.3000: Signal Processing

Continuous-Time Fourier Transform

- Definition
- Examples
- Properties

Quiz 1: October 3, 2-4pm, room 50-340 (Walker).

- Closed book except for one page of notes (8.5"x11" both sides).
- No electronic devices. (No headphones, cellphones, calculators, ...)
- Coverage up to and including classes on September 21 and HW 3.

We have posted a practice quiz as a study aid for the upcoming quiz 1.

- Your solutions will not be submitted or counted in your grade.
- Solutions will be posted on Friday.

There is no HW 4.

If you have personal or medical difficulties, please contact S³ and/or 6.3000-instructors@mit.edu for accommodations.

September 26, 2023

From Periodic to Aperiodic

We have been focusing on frequency representations of **periodic** signals: e.g., sounds, waves, music, ...

However, most real-world signals are not periodic. None are truly periodic since they do not have infinite duration!

Today: generalizing Fourier representations to include aperiodic signals.

How can we represent an aperiodic signal as a sum of sinusoids?

How can we represent an aperiodic signal as a sum of sinusoids?

Strategy: make a periodic version of f(t) by summing shifted copies:

$$f_p(t) = \sum_{m = -\infty}^{\infty} f(t - mT)$$
...
$$f_p(t)$$

$$T$$

Since $f_p(t)$ is periodic, it has a Fourier series (which depends on T).

Find Fourier series coefficients $F_p[k]$ and take the limit of $F_p[k]$ as $T \to \infty$.

As $T \to \infty$, $f_p(t) \to f(t)$ and Fourier series will approach Fourier transform.

Example.

Strategy: make a periodic version of f(t) by summing shifted copies:

$$f_p(t) = \sum_{m = -\infty}^{\infty} f(t - mT)$$
...
$$f_p(t)$$

$$T$$

Calculate the Fourier series coefficients $F_p[k]$:

$$F_p[k] = \frac{1}{T} \int_{-S}^{S} e^{-j\frac{2\pi}{T}kt} dt = \frac{1}{T} \left. \frac{e^{-j\frac{2\pi}{T}kt}}{-j\frac{2\pi k}{T}} \right|_{S}^{S} = \frac{2\sin\left(\frac{2\pi k}{T}S\right)}{T\left(\frac{2\pi k}{T}\right)}$$

Calculate the Fourier series coefficients $F_p[k]$:

$$F_p[k] = \frac{1}{T} \int_{-S}^{S} e^{-j\frac{2\pi}{T}kt} dt = \frac{1}{T} \left. \frac{e^{-j\frac{2\pi}{T}kt}}{-j\frac{2\pi k}{T}} \right|_{-S}^{S} = \frac{2\sin\left(\frac{2\pi k}{T}S\right)}{T\left(\frac{2\pi k}{T}\right)}$$

Plot the resulting Fourier coefficients when $S{=}1$ and $T{=}8$.

What happens if you double the period T?

Calculate the Fourier series coefficients $F_p[k]$:

$$F_p[k] = \frac{1}{T} \int_{-S}^{S} e^{-j\frac{2\pi}{T}kt} dt = \frac{1}{T} \left. \frac{e^{-j\frac{2\pi}{T}kt}}{-j\frac{2\pi k}{T}} \right|_{-S}^{S} = \frac{2\sin\left(\frac{2\pi k}{T}S\right)}{T\left(\frac{2\pi k}{T}\right)}$$

Plot the resulting Fourier coefficients when $S{=}1$ and $T{=}8$.

What happens if you double the period T? Plot with S=1 and T=16.

There are twice as many samples per period of the sin function. (The red samples are at new intermediate frequencies.) The amplitude is halved.

Define a new function $F(\omega)$ where $\omega = k\omega_o = 2\pi k/T$.

$$TF_p[k] = \frac{2\sin\left(\frac{2\pi k}{T}S\right)}{\frac{2\pi k}{T}} = 2\frac{\sin(\omega S)}{\omega}\bigg|_{\omega = \frac{2\pi k}{T}} = F(\omega)\bigg|_{\omega = \frac{2\pi k}{T}}$$

Then $TF_p[k]$ represents samples of $F(\omega)$ with increasing resolution in ω .

$$S{=}1 \text{ and } T{=}8{:} \qquad \dots \\ \omega = \frac{2\pi k}{T}$$

$$S{=}1$$
 and $T{=}32$: ...
$$\omega = \frac{2\pi i}{T}$$

The discrete function $TF_p[k]$ is a sampled version of the function $F(\omega)$.

From f(t) to $F(\omega)$:

The limiting behaviors as $T \to \infty$ define the Fourier transform:

$$F(\omega) = \lim_{T \to \infty} TF_p[k] \Big|_{k = \frac{\omega}{\omega_0} = \frac{T}{2\pi}\omega}$$

$$= \lim_{T \to \infty} T \left[\frac{1}{T} \int_T f_p(t) e^{-j\frac{2\pi k}{T}t} dt \right]_{k = \frac{T}{2\pi}\omega}$$

$$= \lim_{T \to \infty} \int_T f_p(t) e^{-j\omega t} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

This analysis equation defines the Fourier transform.

S=1 and T=8: ...

The **synthesis equation** follows from piecewise constant approximation.

$$f(t) = \lim_{T \to \infty} f_p(t) = \lim_{T \to \infty} \sum_{k = -\infty}^{\infty} F_p[k] e^{j\frac{2\pi}{T}kt}$$
$$= \lim_{T \to \infty} \left(\frac{1}{2\pi}\right) \sum_{k = -\infty}^{\infty} TF_p[k] e^{j\frac{2\pi}{T}kt} \left(\frac{2\pi}{T}\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

$$S=1 \text{ and } T=16: \dots$$

$$\omega=k\omega_o=\frac{2\pi k}{T} \dots$$

$$\omega=k\omega_o=\frac{2\pi k}{T} \dots$$

 $TF_{p}[k] = F(\omega)$

$$S=1$$
 and $T=32$: ... $\omega = k\omega_o = \frac{2\pi}{T}$... $\omega = k\omega_o = \frac{2\pi k}{T}$ Fourier Transform relation: $f(t) \stackrel{\mathrm{FT}}{\Longrightarrow} F(\omega)$

Fourier series and transforms are similar: both represent signals by their frequency content.

Continuous-Time Fourier Series

$$F[k] = \frac{1}{T} \int_{T} f(t)e^{-jk\omega_{o}t}dt$$

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} F[k]e^{jk\omega_{o}t}$$

analysis equation

synthesis equation

where $\omega_o=rac{2\pi}{T}$

Continuous-Time Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

All of the information in a periodic signal is contained in one period. The information in an aperiodic signal is spread across all time.

Continuous-Time Fourier Series

$$F[k] = \frac{1}{T} \int_{T} f(t)e^{-jk\omega_{0}t} dt$$

 $f(t) = f(t+T) = \sum_{k=0}^{\infty} F[k]e^{jk\omega_0 t}$

analysis equation

synthesis equation

where $\omega_o=rac{2\pi}{T}$

Continuous-Time Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

analysis equation

synthesis equation

Periodic signals can be synthesized from a discrete set of harmonics. Aperiodic signals generally require all possible frequencies.

Continuous-Time Fourier Series

$$F[k] = \frac{1}{T} \int_{T} f(t)e^{-jk\omega_{o}t}dt$$

$$f(t) = f(t+T) = \sum_{k=0}^{\infty} F[k]e^{jk\omega_0 t}$$

analysis equation

synthesis equation

where
$$\omega_o=rac{2\pi}{T}$$

Continuous-Time Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

analysis equation

synthesis equation

Harmonic frequencies $k\omega_o$ are samples of continuous frequency ω .

Continuous-Time Fourier Series

$$F[k] = \frac{1}{T} \int_{T} f(t)e^{-jk\omega_{0}t}dt$$

$$f(t) = f(t+T) = \sum_{k=0}^{\infty} F[k]e^{jk\omega_0 t}$$

analysis equation

synthesis equation

where $\omega_o=rac{2\pi}{T}$

Continuous-Time Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

analysis equation

synthesis equation

Example

Find the Fourier Transform (FT) of a rectangular pulse:

$$f(t) = \begin{cases} 1 & -1 < t < 1 \\ 0 & \text{otherwise} \end{cases}$$
 ...
$$t$$

$$-1 & 0 & 1$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{-1}^{1} e^{-j\omega t}dt = \frac{e^{-j\omega t}}{-j\omega}\Big|_{-1}^{1} = 2\frac{\sin\omega}{\omega}$$

$$F(\omega)$$
 ...
$$F(\omega)$$
 ...
$$\omega$$

$$F(\omega)$$
 provides a recipe for constructing $f(t)$ from sinusoidal components:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

A square pulse contains (almost) all frequencies ω (missing just π , 2π , ...).

Fourier transforms offer an alternative view of an aperiodic signal.

A signal and its Fourier transform contain exactly the same information, but some information is more easily seen in one domain than in the other.

There are many **properties** of Fourier transforms. These properties summarize systematic relations between time and frequency representations.

Time delay maps to linear phase delay of the Fourier transform.

If
$$f(t) \stackrel{\operatorname{FT}}{\Longrightarrow} F(\omega)$$
 then $f(t-\tau) \stackrel{\operatorname{FT}}{\Longrightarrow} e^{-j\omega\tau}F(\omega)$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$
$$G(\omega) = \int_{-\infty}^{\infty} f(t - \tau)e^{-j\omega t}dt$$

Let $u = t - \tau$ (and therefore du = dt since τ is a constant)

$$G(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega(u+\tau)}du = e^{-j\omega\tau} \int_{-\infty}^{\infty} f(u)e^{-j\omega u}du = e^{-j\omega\tau}F(\omega)$$

The angle of $e^{-j\omega\tau} = -\omega\tau$.

Why does time delay change phase by an amount proportional to frequency?

Why does time delay change phase by an amount proportional to frequency?

Doubling the frequency of a sinusoid doubles the change in phase associated with a given time delay.

Scaling time.

Consider the following signal and its Fourier transform.

Time representation:

Frequency representation:

$$F_1(\omega) = \frac{1}{\omega}$$

How would these functions scale if time were stretched?

Check Yourself

Signal $f_2(t)$ and its Fourier transform $F_2(\omega)$ are shown below.

Which of the following is true?

- 1. b=2 and $\omega_0=\pi/2$
- 2. b=2 and $\omega_0=2\pi$
- 3. b=4 and $\omega_0=\pi/2$
- 4. b=4 and $\omega_0=2\pi$
- 5. none of the above

Check Yourself

Find the Fourier transform.

$$F_{2}(\omega) = \int_{-2}^{2} e^{-j\omega t} dt = \frac{e^{-j\omega t}}{-j\omega} \Big|_{-2}^{2} = \frac{2\sin 2\omega}{\omega} = \frac{4\sin 2\omega}{2\omega}$$

$$F_{1}(t) \qquad F_{1}(\omega) = \frac{2\sin \omega}{\omega}$$

$$F_{2}(\omega) = \frac{4\sin 2\omega}{2\omega}$$

$$F_{2}(t) \qquad 4$$

Stretching time compresses frequency.

Check Yourself

Signal $f_2(t)$ and its Fourier transform $F_2(\omega)$ are shown below.

Which of the following is true? 3

- 1. b=2 and $\omega_0=\pi/2$
- 2. b=2 and $\omega_0=2\pi$
- 3. b = 4 and $\omega_0 = \pi/2$
- 4. b=4 and $\omega_0=2\pi$
- 5. none of the above

Find a general scaling rule.

Let $f_2(t) = f_1(at)$ where a > 0.

$$F_2(\omega) = \int_{-\infty}^{\infty} f_1(at)e^{-j\omega t}dt$$

Let $\tau = at$. Then $d\tau = a dt$.

$$F_2(\omega) = \int_{-\infty}^{\infty} f_1(\tau) e^{-j\omega\tau/a} \frac{1}{a} d\tau = \frac{1}{a} F_1\left(\frac{\omega}{a}\right)$$

Stretching time compresses frequency and increases amplitude (preserving area).

Area Properties

The value of $F(\omega)$ at $\omega=0$ is the integral of f(t) over time t.

$$F(\omega)|_{\omega=0} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} f(t)e^{-j\mathbf{0}t}dt = \int_{-\infty}^{\infty} f(t)\,dt$$

Areas

The value of f(0) is the integral of $F(\omega)$ divided by 2π .

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$$

Areas

The value of f(0) is the integral of $F(\omega)$ divided by 2π .

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$$

Stretching Time

Stretching time compresses frequency and increases amplitude (preserving area).

Compressing Time to the Limit

Alternatively, we could compress time while keeping area = 1.

In the limit, the pulse has zero width but area 1! We represent this limit with the delta (or impulse) function: $\delta(t)$.

Math With Impulses

Although physically unrealizeable, the impulse (a.k.a. Dirac delta) function is useful as a mathematically tractable approximation to a very brief signal.

Example 1: Find the Fourier transform of a unit impulse function.

$$F(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt$$

Since $\delta(t)$ is zero except near $t{=}0$, only values of $e^{-j\omega t}$ near $t{=}0$ are important. Because $e^{-j\omega t}$ is a smooth function of t, $e^{-j\omega t}$ can be replaced by $e^{-j\omega 0}$:

$$F(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega 0}dt = \int_{-\infty}^{\infty} \delta(t)dt = 1$$

This matches our previous result which was based explicitly on a limit. Here the limit is implicit.

Math With Impulses

Although physically unrealizeable, the impulse (a.k.a. Dirac delta) function is useful as a mathematically tractable approximation to a very brief signal.

Example 2: Find the function whose Fourier transform is an impulse.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j0t} d\omega = \frac{1}{2\pi}$$

$$1 \stackrel{\text{CTFT}}{\Longrightarrow} 2\pi\delta(\omega)$$

Notice the similarity to the previous result:

$$\delta(t) \stackrel{\text{CTFT}}{\Longrightarrow} 1$$

These relations are **duals** of each other.

- A constant in time consists of a single frequency at $\omega = 0$.
- An impulse in time contains components at all frequencies.

Math With Impulses

Although physically unrealizeable, the impulse (a.k.a. Dirac delta) function is useful as a mathematically tractable approximation to a very brief signal.

Example 3: Find the function whose Fourier transform is a shifted impulse.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - \omega_o) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - \omega_o) e^{j\omega_o t} d\omega$$

$$= \frac{1}{2\pi} e^{j\omega_o t} \int_{-\infty}^{\infty} \delta(\omega - \omega_o) d\omega$$

$$= \frac{1}{2\pi} e^{j\omega_o t}$$

$$e^{j\omega_o t} \stackrel{\text{CTFT}}{\Longrightarrow} 2\pi \delta(\omega - \omega_o)$$

Use this result to relate Fourier series to Fourier transforms.

Relation Between Fourier Series and Fourier Transforms

If a periodic signal f(t)=f(t+T) has a Fourier series representation, then it can also be represented by an equivalent Fourier transform.

$$e^{j\omega_{o}t} \stackrel{\text{FT}}{\Longrightarrow} 2\pi\delta(\omega - \omega_{o})$$

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} F[k]e^{j\frac{2\pi}{T}kt} \quad \overset{\text{CTFS}}{\longleftrightarrow} \qquad F[k]$$

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} F[k]e^{j\frac{2\pi}{T}kt} \quad \overset{\text{CTFT}}{\longleftrightarrow} \qquad \sum_{k=-\infty}^{\infty} 2\pi F[k]\delta\left(\omega - \frac{2\pi}{T}k\right)$$

Each term in the Fourier series is replaced by an impulse in the Fourier transform.

Relation between Fourier Transform and Fourier Series

Each Fourier series term is replaced by an impulse in the Fourier transform.

Summary

Fourier series and transforms are similar: both represent signals by their frequency content.

Continuous-Time Fourier Series

$$F[k] = \frac{1}{T} \int_{T} f(t)e^{-jk\omega_{o}t}dt$$

$$f(t) = f(t+T) = \sum_{k=0}^{\infty} F[k]e^{jk\omega_{o}t}$$

analysis equation

synthesis equation

where $\omega_o = \frac{2\pi}{T}$

Continuous-Time Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

analysis equation

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

synthesis equation

Next time: Fourier Transform for discrete-time signals.