# Data exploration and deterministic functions

## David Murillo

# October 7, 2022

# Contents

xlab= "Elevation")

| Question                                                                                 | 7   |
|------------------------------------------------------------------------------------------|-----|
| 1. Terrain Histogram                                                                     | 7   |
| 2. Elevation Histograma Interpretation                                                   | 8   |
| 3. Slope units                                                                           | 8   |
| 4. Slope Histogram Interpretation                                                        | 8   |
| 5. Aspect                                                                                | 8   |
| 6. Aspect Histogram Interpretation                                                       | 8   |
| 7. Terrain/Basal Area Linear Model                                                       | 9   |
| 8. Terrain/Basal Model Interpretation                                                    | 9   |
| load packagues                                                                           |     |
| library(here)                                                                            |     |
|                                                                                          |     |
| ## Warning: package 'here' was built under R version 4.1.3                               |     |
| ## here() starts at C:/Users/Pc/OneDrive - University of Massachusetts/Umass/Classes/Fai | 112 |
|                                                                                          |     |
| load data set                                                                            |     |
| <pre>habitat &lt;- read.csv(here("data", "hab.sta.csv"))</pre>                           |     |
|                                                                                          |     |
| Examine histograms of the three terrain variables.                                       |     |
| Plot histograms of the following terrain variables: elevation aspect slope               |     |
| <pre>hist(habitat\$elev, main = "Histogram of elevation",</pre>                          |     |

# Histogram of elevation



# Histogram of aspec



# **Histogram of Slope**



1. Create scatterplots of total basal area and the terrain variables (consult the metadata file to see which column(s) you need).

Basal area should be on the y-axis.

Visually inspect the plots and fit a linear function to each of the scatterplots using the parameterization functions provided above.

You'll need this fitted model for the assignment questions.

```
# Calculates the value of y for a linear function, given the coordinates
# of a known point (x1, y1) and the slope of the line.
line_point_slope = function(x, x1, y1, slope)
{
    get_y_intercept =
        function(x1, y1, slope)
            return(-(x1 * slope) + y1)

linear =
    function(x, yint, slope)
        return(yint + x * slope)

return(linear(x, get_y_intercept(x1, y1, slope), slope))
}
```

```
plot(habitat$elev, habitat$ba.tot)
curve(line_point_slope(x, x1 = 3.5, y1 = 1.25, slope = 0.4), add = TRUE)
```



```
plot(habitat$aspect, habitat$ba.tot)
curve(line_point_slope(x, x1 = 3.5, y1 = 1.25, slope = 0.4), add = TRUE)
```



```
plot(habitat$slope, habitat$ba.tot)
curve(line_point_slope(x, x1 = 3.5, y1 = 1.25, slope = 0.4), add = TRUE)
```



# Question

## 1. Terrain Histogram

#### Instructions:

Create histograms for the three terrain variables: elevation, slope, and aspect. Plot all three histograms in one figure and include it in your report.

# 





## 2. Elevation Histograma Interpretation

Consider the distribution of elevations at the bird census sample sites.

Interpret the shape of the elevation histogram in non-technical language that a non-scientist audience would understand. Some points to consider: Are there more high- or low-elevation sampling sites? Is there an even distribution of sampling site elevation? Your answer should be 1-2 short paragraphs in length.

Answer: For the elevation histogram, will can see that between 350m to 400m is the value more commun, also elevation could have normal distribution

## 3. Slope units

What are the units of slope in this data set?

**Answer: Percentage** 

#### 4. Slope Histogram Interpretation

Consider the distribution of slopes at the bird census sample sites.

Interpret the shape of the slope histogram in non-technical language that a non-scientist audience would understand. Some points to consider:

Are most sample sites flat? Is there an even mixture of steep and shallow slopes? Your answer should be 1-2 short paragraphs in length.

Answer:

### 5. Aspect

Briefly define aspect, describing the units used in this dataset.

Answer:

### 6. Aspect Histogram Interpretation

Consider the distribution of aspect at the bird census sample sites.

Interpret the shape of the aspect histogram in non-technical language that a non-scientist audience would understand. Some points to consider: Do the sampling sites tend to be on north-facing slopes? South-facing? Evenly distributed? Your answer should be 1-2 short paragraphs in length.

#### Answer:

## 7. Terrain/Basal Area Linear Model

#### Instructions:

Create scatterplots of total basal area and each of the the terrain variables: elevation, slope, and aspect. Basal area should be on the y-axis. Visually inspect the plots and fit a linear function to each terrain variable. Review the linear model parameterization section of the assignment walkthrough if needed.

#### Answer:

## 8. Terrain/Basal Model Interpretation

For each terrain variable (elevation, slope, aspect), describe the relationship you observe and your model fit. You should consider

Is there a noticeable association? If so, is it linear? Based on a visual assessment, is your linear model a good fit for the data, why or why not?

#### Answer: