

Universidade Federal da Grande Dourados (UFGD)

Dourados, 29 de Março de 2023.

Prof. Dr. Willian Isao Tokura Disciplina: Álgebra Elementar

Lista 3

Exercício 1.

Prove os itens abaixo:

- a) Se P é o conjunto dos números primos, então P é infinito (Demonstração por absurdo).
- b) A soma de três números inteiros e consecutivos é divisível por 3. (Demonstração direta).
- c) se n é um número inteiro, então $n^2 \ge n$ (Demonstração por casos).
- d) O produto de dois números inteiros pares é par (Demonstração direta).
- e) Se um inteiro é divisível por 6, então duas vezes esse inteiro é divisível por 4 (Demonstração direta).
- f) Se 3n + 2 é impar, no qual n é um número inteiro, então n é impar (Demonstração pela contrapositiva).
- g) Se n=ab, com a e b inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$ (Demonstração por absurdo).
- h) Se um número somado a ele mesmo é ele mesmo, então esse número é 0 (Demonstração por absurdo).
- i) Seja $n \in \mathbb{N}$. Mostre que se $n \leq 5$, então $n^2 \leq 5n + 10$ (Demonstração pela contrapositiva).
- j) $\sqrt{2}$ é irracional (Demonstração por absurdo).

Exercício 2.

Sejam dois círculos tangentes C_1 e C_2 com respectivos raios r_1 e r_2 , tais que r_1 é um número racional e r_2 irracional. Inicialmente os círculos estão parados com os pontos p_1 do círculo C_1 e p_2 do círculo C_2 coincidentes. Logo após o instante inicial, os círculos C_1 e C_2 começam um movimento uniforme de rotação sem deslizamento. Prove que uma vez o movimento iniciado, os pontos p_1 e p_2 nunca mais serão coincidentes novamente.

Exercício 3.

Algum dia será possível criar um programa de computador que sempre ganhe no xadrez?

Exercício 4.

Mostre que todo inteiro par maior do que 2 pode ser escrito como a soma de 2 números primos.

Exercício 5.

Prove os itens abaixo utilizando umas das técnicas de demonstração (Direta, casos, contrapositiva ou absurdo).

- a) Sejam a e b números reais tais que 0 < a < b. Então $a^2 < b^2$.
- b) Se x e y são ímpares, prove que o produto xy é ímpar.
- c) Prove que para todo par de números racionais x e y, xy é racional.
- d) Se n é um inteiro maior do que 2 e x,y e z são naturais positivos, então $x^n+y^n=z^n$ não tem solução. [Pierre de Fermat (1601-1665)]

Exercício 6.

Demonstre por absurdo que não existe raíz racional para a equação $x^3 + x + 1 = 0$.

Exercício 7.

Assuma a existência da prova do teorema de Pitágoras para este exercício. Demonstre por contradição o seguinte enunciado, conhecido por "inversa do teorema de Pitágoras".

Teorema 1. Considere um triângulo de lados não nulos a, b e c tal que $a^2 + b^2 = c^2$. Então o triângulo é retângulo.

Exercício 8.

Mostre, utilizando indução, que:

a)
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

d) Para todo $n \in \mathbb{N}$, $n^2(n^2 - 1)$ é divisível por 12.