Fonctions dérivées et applications

1^{re} Spécialité mathématiques Analyse - Cours

I. Fonctions dérivées

Définition:

Soit f une fonction définie sur un intervalle I.

Si, pour tout réel a de I, le nombre dérivé f'(a) existe, on dit que la fonction f est dérivable sur I. On appelle fonction dérivée de f sur I la fonction qui, a tout réel $x \in I$ associe le réel f'(x).

On la note f' .

Dérivées des fonctions usuelles

La fonction f est définie par	f est définie sur \dots	f est dérivable sur \dots	La fonction dérivée f' est définie par
$f(x) = k \ (k \in \mathbb{R})$	\mathbb{R}	$\mathbb R$	f'(x) = 0
Fonction constante			
f(x) = ax + b			
(a et b réels)	\mathbb{R}	$\mathbb R$	f'(x) = a
Fonction affine			
$f(x) = x^n \ (x \in \mathbb{N}^*)$	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction puissance			
$f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = \frac{-1}{x^2}$
Fonction inverse			
$f(x) = \frac{1}{x^n}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = \frac{-n}{x^{n+1}}$
Fonction inverse d'une puissance (avec $x \in \mathbb{N}^*$)			
$f(x) = \sqrt{x}$	$[0;+\infty[$	$]0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$
Fonction racine carrée			
$f(x) = \cos x$	\mathbb{R}	\mathbb{R}	$f'(x) = -\sin x$
Fonction cosinus			
$f(x) = \sin x$	\mathbb{R}	\mathbb{R}	$f'(x) = \cos x$
Fonction sinus			

II. Opérations sur les fonctions dérivables

Propriété:

Soient u et v deux fonctions dérivables sur un intervalle I, et k un nombre réel.

Les fonctions suivantes sont dérivables sur I de fonctions dérivées :

Fonction	Fonction dérivée	
Somme $u+v$	(u+v)' = u' + v'	
Produit par un réel ku	(ku)' = ku'	
Produit uv	(uv)' = u'v + uv'	
Quotient $\dfrac{u}{v}$ (avec $v eq 0$)	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	
Inverse $\frac{1}{u}$ (avec $u \neq 0$)	$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$	

Exemples:

Soit
$$f(x) = 3x\sqrt{x}$$
 sur $I =]0; +\infty[$.

Posons
$$u(x)=3x$$
 et $v(x)=\sqrt{x}$. On a $u(x)'=3$ et $v(x)'=\frac{1}{2\sqrt{x}}$.

On a
$$(uv)' = u'v + uv'$$
.

Donc
$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= 3\sqrt{x} + 3x \times \frac{1}{2\sqrt{x}}$$

$$= 3\sqrt{x} + \frac{3x}{2\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}}$$

$$= 3\sqrt{x} + \frac{3x\sqrt{x}}{2x}$$

$$= 3\sqrt{x} + 1, 5\sqrt{x} = 4, 5\sqrt{x}$$

Soit
$$g(x) = \frac{2x-1}{x-5}$$
 sur $I =]-\infty; 5[\cup]5; +\infty[$.

Posons
$$u(x) = 2x - 1$$
 et $v(x) = x - 5$.

On a
$$u(x)' = 2$$
 et $v(x)' = 1$.

On a
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
.

Donc
$$g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

$$= \frac{2(x-5) - (2x-1) \times 1}{(x-5)^2}$$

$$= \frac{2x - 10 - 2x + 1}{(x-5)^2}$$

$$= \frac{-9}{(x-5)^2}$$

Propriété admise :

On considère un intervalle I et a et b deux réels.

Soit J l'intervalle formé des valeurs prises par ax + b lorsque x décrit l'intervalle I.

Si la fonction g est dérivable sur J, alors la fonction f définie sur I par f(x) = g(ax + b) est dérivable sur I et, pour tout réel x de I, on a $f'(x) = a \times g'(ax + b)$.

Exemple:

Soit
$$f$$
 définie sur $[\frac{-2}{5};+\infty[$ par $f(x)=\sqrt{5x+2}$ On a $f:x\longrightarrow 5x+2\longrightarrow \sqrt{5x+2}$

On a
$$f:x\longrightarrow 5x+2\longrightarrow \sqrt{5x+2}$$

La fonction f est de la forme f(x)=g(ax+b) avec $a=5,\ b=2$ et $g:x\mapsto \sqrt{x}$

Donc
$$f'(x)=ag'(ax+b)$$
 avec $g':x\mapsto \frac{1}{2\sqrt{x}}$
$$=5\times\frac{1}{\sqrt{5x+2}}=\frac{5}{\sqrt{5x+2}}$$

Pour tout $x \in \left[\frac{-2}{5}; +\infty\right[, 5x + 2 \in [0; +\infty[.$

Or g est dérivable sur $]0; +\infty[$.

Donc f est dérivable sur $\left[\frac{-2}{5}; +\infty\right[$.

III. Applications de la dérivation

1. Étude des variations d'une fonction

Théorème admis :

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- Si f est croissante sur I, alors f' est positive sur I.
- Si f est décroissante sur I, alors f' est négative sur I.
- Si f est constante sur I, alors f' est nulle sur I.

Théorème réciproque admis :

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- Si f' est strictement positive sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement croissante sur I.
- Si f' est strictement négative sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement décroissante sur I.
- Si f' est nulle sur I, alors f est constante sur I.

2. Étude des extrema d'une fonction

Définitions :

Soit f une fonction définie sur un intervalle I et c un réel de I et qui n'est pas une borne de I.

- Dire que f(c) est un maximum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a;b[$ et que pour tout réel $x \in]a;b[$, $f(x) \leq f(c)$.
- Dire que f(c) est un minimum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a;b[$ et que pour tout réel $x \in]a;b[$, $f(x) \geq f(c)$.
- Un extremum local est un minimum ou un maximum local.

Théorème de la condition nécessaire sur l'existence d'un extremum local (admis) :

Soit f une fonction dérivable sur un intervalle ouvert I et a un réel de I.

Si f présente un extremum local en a alors f'(a) = 0.

Remarque: La réciproque est fausse. En effet, pour f: $x\mapsto x^3$ on a $f:x\mapsto 3x^2$ donc f'(0)=0 mais f n'admet pas d'extremum local en O.

Théorème de la condition suffisante sur l'existence d'un extremum local :

Soit f une fonction dérivable sur un intervalle ouvert I, de dérivée f' et $a \in I$. Si la dérivée f' s'annule en a en changeant de signe en a, alors la fonction f admet un extremum local en a.