Chapitre **Ensembles**

2

2.1 Vocabulaire des ensembles

■ Exemple 2.1 Soit les ensembles $A = \{43; 0; 7; 188\}, B = \{7; 4; 82\}$ et $D = \{188; 0; 43\}.$

L'ordre d'écriture des éléments entre accolades n'est pas important : $\{43;0;7;188\} = \{7;43;188;0\}.$

7 est un élément, {7} est un ensemble.

43; 0; 7 et 188 sont les **éléments** de l'ensemble A.

 $43 \in A \text{ se lit } 43 \text{ appartient à } A \text{ ».}$

 $82 \notin A$ se lit « 82 n'appartient pas à A ».

 $D \subset A$ car tout élément de D appartient à A.

 $B \not\subset A$. B n'est pas un sous-ensemble de A.

Figure 2.1 — Diagramme des ensembles A et B

R Les éléments d'un ensemble doivent être distincts deux-à-deux. $\{0;5;0\}$ n'est pas une écriture correcte.

Définition 2.1 Un ensemble E est constitué d'éléments.

 $a \in E$ se lit « l'élément a appartient à l'ensemble E ».

 $a \not \in E$ se lit « l'élément a n'appartient pas à l'ensemble E ».

Définition 2.2 F est un **sous-ensemble** de l'ensemble E si tous les éléments de F appartiennent aussi à E. On écrira :

 $F\subset E$ se lit « l'ensemble F est \mathbf{inclus} dans l'ensemble E ».

Exercice 1

1. Compléter à l'aide de \in , \ni , \notin , $\not\ni$, \subset , \supset :

 $7 \dots A$ $43 \dots A$ $\{43; 7; 188\} \dots A$ $A \dots 4$

 $7 \dots B$ $\{7\} \dots B$ $B \dots 43$ $B \dots \{4;7\}$

2. Donner un ensemble inclus à la fois dans A et dans B.

2.1.1 Exercices : diagrammes de Venn et opérations sur les ensembles

Les diagrammes de Venn nous permettent de représenter des ensembles ainsi que leurs éléments. L'univers noté Ω est l'ensemble de tous les éléments.

« $A \cap B$ » désigne l'intersection des ensembles A et B. C'est l'ensemble des éléments appartenants à A **ET** appartenants à B.

« $A \cup B$ » désigne l'union des ensembles A et B. C'est l'ensemble des éléments appartenants à A **OU** appartenants à B.

Exercice 2 Coloriez les ensembles indiqués sur chaque diagramme de Venn.

Exercice 3 Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$$

A =les nombres sont premiers

B =les nombres sont pairs

$$A \cup B = \{$$

Exercice 5 Complète les ensembles suivants à partir du diagramme de Venn.

$$\Omega = \{$$

$$A = \{$$

$$A \cap B = \{$$

$$A \cup B = \{$$

Exercice 4 Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}$$

A =les nombres sont des carrés parfaits

B =les nombres sont impairs

$$A \cup B = \big\{$$

Exercice 6 — Vrai ou Faux.

	Vrai	Faux
$\boxed{1/4 \in A}$		
$2/5 \in B$		
$3/A \cap B = \{5; 7; 8\}$		
$4/\Omega = A \cup B$		

 \overline{A} est le complémentaire de A. C'est l'ensemble des éléments qui ne sont pas dans A.

 $A \cap \overline{B}$ est l'intersection de A et du complémentaire de B. C'est l'ensemble des éléments qui sont dans A mais pas dans B.

La région grise représente « $A \cap \overline{B}$ »

 $\overline{A} \cap B$

La région grise représente « $A \cup \overline{B}$ », c'est l'ensemble des éléments qui sont dans A ou ne sont pas dans B.

Exercice 7 Coloriez les ensembles indiqués sur chaque diagramme de Venn.

 $\overline{A} \cap \overline{B}$

Exercice 8 — Vrai ou Faux.

	Vrai	Faux
$1/\overline{A} = \{1; 3; 5; 6\}$		
$2/A \cap B = \{1; 3\}$		
$3/6 \in B$		
$4/\overline{B} = \{5\}$		
$6/\overline{A \cup B} = \{6\}$		

Exercice 9 Complète les ensembles suivants à partir du diagramme de Venn.

$$\overline{B} = \{$$

$$\overline{A \cap B} = \{$$

$$\overline{A \cup B} = \{$$

$$\overline{A} \cap \overline{B} = \{$$

 $\overline{A} = \{$

Exercice 10 Complète le diagramme de Venn pour représenter les informations suivantes

$$\Omega = \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 20\}
A = \{3; 5; 7; 9\}
B = \{0; 4; 6\}
\overline{C} = \{1; 3; 4; 6; 9; 20\}
A \cap C = \{5; 7\}$$

2.2 Ensembles particuliers

Définition 2.3 — \mathbb{N} ensemble des entiers naturels.

$$\mathbb{N} = \{0; 1; 2; 3; 4; \dots \}$$

Définition 2.4 — $\ensuremath{\mathbb{Z}}$ ensemble des entiers relatifs .

$$\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\}$$

Il est composé des nombres entiers naturels et de leurs opposés. Tout entier naturel est un entier relatif : $\mathbb{N} \subset \mathbb{Z}$

Définition 2.5 — nombres décimaux. L'ensemble des nombres qui peuvent s'écrire sous forme du produit d'une puissance de 10 par un entier non divisible par 10 sont dit décimaux.

$$\mathbb{D} = \left\{ a \times 10^n \mid a \in \mathbb{Z} \text{ non divisible par } 10 \text{ et } n \in \mathbb{Z} \right\}$$

■ Exemple 2.2 — écriture décimale a) $26500 = 265 \times 10^2$ d) $\frac{3}{5} = 0.6 = 6 \times 10^{-1}$ b) $2.65 = 265 \times 10^{-2}$ e) $\frac{7}{25} = 0.32 = 32 \times 10^{-2}$

a)
$$26500 = 265 \times 10^2$$

d)
$$\frac{3}{5} = 0.6 = 6 \times 10^{-1}$$

b)
$$2.65 = 265 \times 10^{-2}$$

e)
$$\frac{7}{25} = 0.32 = 32 \times 10^{-1}$$

c)
$$0.00165 = 165 \times 10^{-5}$$

f)
$$\frac{1}{3} \notin \mathbb{D}$$

- $\frac{2}{5} \in \mathbb{D}$ mais il n'y a pas de virgule dans $\frac{2}{5}$.
- $\frac{1}{3} = 0.333...$, mais $\frac{1}{3} \notin \mathbb{D}$.

Définition 2.6 — nombres rationnels. L'ensemble des nombres réels qui peuvent s'écrire comme une fraction irréductible d'entiers sont dit rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \quad \middle| \quad a \in \mathbb{Z}, \ b \in \mathbb{Z}^*, \quad \text{sans diviseurs communs} \right\}$$

■ Exemple 2.3 — écriture fractionnaire≠nombres rationnels.

a)
$$9.75 = -13 = \frac{-13}{1} \in \mathbb{Q}$$

b)
$$13.2 = \frac{132}{10} = \frac{66 \times 2}{5 \times 2} = \frac{66}{5} \in \mathbb{Q}$$

c)
$$9.75 = \frac{975}{100} = \frac{195 \times 5}{20 \times 5} = \frac{195}{20} = \frac{39 \times 5}{4 \times 5} = \frac{39}{4} \in \mathbb{Q}$$

$$d) \ \frac{\sqrt{2}}{2} \notin \mathbb{Q}$$

■ Exemple 2.4 — Écriture décimale de nombres rationnels.

$$251 \div 25 = 10,04$$
;

$$150 \div 7 = 21,428571...;$$

 $1 \div 49 = 0.020408163265306122448979591836734693877551...$

continue.

Définition 2.7 — \mathbb{R} ensemble des nombres réels. Les nombres réels sont classés dans les catégories suivantes :

- \mathbb{N} nombres entiers positifs (partie fractionnaire est nulle).
- \mathbb{Z} nombres entiers positifs ou négatifs
- D nombre décimaux, s'écrivent comme fraction décimale. Leur écriture décimale est finie.
- $\mathbb{Q} \cap \overline{\mathbb{D}}$ rationnels mais pas décimaux : s'écrivent comme fraction d'entiers, et leur écriture décimale est périodique.

 Les nombres rationnels ont une représentation finie en fraction
- $\mathbb{R} \cap \overline{\mathbb{Q}}$ nombres irrationnels. Leur écriture décimale est infinie et non périodique (exemple avec $\sqrt{2}$, π et exploration de son écriture décimale).

Les nombres irrationnels ont une représentation infinie en fraction continue . L'écriture 0,499 999 99... n'est pas considérée une écriture décimale infinie périodique.

Figure 2.2 – $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Les ensembles étoilé désignent les ensembles précédents sans l'élément $0: \mathbb{N}^* = \mathbb{N} \setminus \{0\}, \mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ et $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$. De manière plus générale, on peut écrire $\mathbb{R} \setminus \{-2; 4; 5\}$ pour désigner l'ensemble des nombres réels autre que -2, 4 et 5.

LG Jeanne d'Arc, 2nd
Année 2022/2023

2.2.1 Exercices : ensembles de réels

Exercice 11 Compléter par \in , \notin et \ni :

$$5 - \frac{4}{9} = \frac{1}{2} \dots \mathbb{Q}; \qquad \frac{12}{5} \times \frac{1}{9} = \frac{1}{2} \dots \mathbb{Q}; \qquad \frac{5}{4} + \frac{13}{12} = \frac{1}{2} \dots \mathbb{Q}$$

$$\frac{8}{3} + \frac{11}{12} = \boxed{\dots \mathbb{D}}$$

Tout nombre décimal s'écrit :

- $b \times 10^n$ avec $b \in \mathbb{Z}$ entier non divisible par 10 et $n \in \mathbb{Z}$.
- écriture scientifique : $a \times 10^n$ avec $a \in \mathbb{D}$ est la matisse, $0 \leqslant a < 10$ et $n \in \mathbb{Z}$

L'ordre de grandeur du nombre est alors le produit de l'entier le plus proche de a par 10^n

Exercice 12 Compléter pour écrire les nombres décimaux sous les 2 formes.

1)
$$0.0425 = \dots 425 \times 10^{-4} = \dots 4.25 \times 10^{-2}$$
. Ordre de grandeur est $\dots 4 \times 10^{-2}$

6)
$$0,001$$
 $52 = \dots \times 10^{\dots} = \dots \times 10^{\dots}$. Ordre de grandeur est \dots

Définition 2.8 Un encadrement décimal à 10^{-n} près d'un réel x est deux nombres décimaux a et b tel que $b - a = 10^{-n}$ et $a \le x \le b$.

■ Exemple 2.5 $3,141 \le \pi \le 3,142$ est un encadrement décimal à $3,141-3,142=0,001=10^{-3}$ près.

Exercice 13 Donner un encadrement décimal à 10^{-4} des nombres réels suivants :

a)
$$\sqrt{2}$$

b)
$$\frac{1}{125}$$
 c) $\frac{22}{7}$

(c)
$$\frac{22}{7}$$

d)
$$\pi$$

$$| e) \cos(35^{\circ})$$

Exemple 2.6 Écrire sous forme de fraction irréductible les rationnels suivants :

$$x = 0, \underline{7} = 0,777\dots$$

$$y = 0, \underline{371} = 0,371 \ 371 \ 371 \dots$$
 $z = 1,432 \ 323 \ 2 \dots$

$$z = 1,432 = 1,432 323 2.$$

Exercice 14 Même consignes :

$$a = 0, \underline{5} = 0,555...$$
 $c = 0, \underline{45} = 0,454 545...$ $b = 0, \underline{14} = 0,141 414...$ $d = 0, \underline{152} = 0,152 152$

■ Exemple 2.7

a)
$$\frac{3\pi}{5\pi} =$$

b)
$$\frac{2}{7} =$$

c)
$$3 \times \left(\frac{1}{3} - \frac{3}{4}\right) - \frac{5}{6} =$$

Exercice 15 Cochez les cases correspondants aux ensembles auxquels chaque nombre appartient :

ercice 13 Cochez les cases correspondants aux ensembles auxqueis chaque nombre appartient.					
	N	Z	D	Q	R
1/ 2,25					
$2/\frac{7}{4}$					
$3/\frac{19}{25}$					
$\frac{2}{4}$ $\frac{4}{3}$ $\frac{19}{25}$ $\frac{4}{4}$					
$5/\frac{6^{\frac{3}{-}(-5)+1}}{(-8)/2}$					
6/ $1 + 2\sqrt{3}$					
$7/1+2\sqrt{4}$					
$8/3 - \sqrt{-4+5\times8}$					
$9/2.3 \times 10^{-12}$					
$10/\frac{\sqrt{100}}{100}$					
$10/\frac{100}{100}$ $11/\frac{5\sqrt{2}}{12\sqrt{2}}$					
$12/\left(\sqrt{5}\right)^2$					

Exercice 16 — Vrai ou Faux?. Si faux, donner un contre-exemple à l'aide de l'exercice15.

	Vrai	Faux
1/ Un nombre décimal ne peut pas être un nombre entier.		
2/ Un nombre décimal est un rationnel.		
3/ Un nombre irrationnel peut être un entier.		
4/ Un nombre entier relatif est un décimal.		
5/ Le produit de deux nombres décimaux est un décimal.		
6/ Le quotient de deux nombres décimaux est toujours un décimal.		
7/ Le quotient de deux nombres décimaux peut être un décimal.		
8/ Le produit de deux nombres rationnels est toujours un rationnel.		
9/ Le produit de deux nombres irrationnels est toujours un irrationnel.		
10/ Le quotient de deux nombres irrationnels peut être un entier.		

8 2 Ensembles

solution de l'exercice 14.

solution de l'exercice 14.
$$a = \frac{5}{9}; \ b = \frac{14}{99}; \ c = \frac{45}{99} = \frac{5}{11}; \ d = \frac{152}{999} = \frac{19}{111}; \ 10e = 5 + \frac{41}{99} \text{ et } e = \frac{536}{990} = \frac{268}{495}; \ 10f = 12 + \frac{76}{99} \text{ et } f = \frac{1264}{990} = \frac{632}{495}.$$

solution de l'exercice 15.

	N	Z	D	Q	R
1/ 2,25			\boxtimes	\boxtimes	\boxtimes
$2/\frac{7}{4}$					
$3/\frac{19}{25}$			\boxtimes		
$4/-\frac{4}{3}$					
$ \frac{2}{\frac{7}{4}} \frac{19}{3} $				\boxtimes	\boxtimes
$6/1 + 2\sqrt{3}$					
$7/1+2\sqrt{4}$	\boxtimes			\boxtimes	\boxtimes
$8/3 - \sqrt{-4 + 5 \times 8}$	\boxtimes		\boxtimes		
$9/2.3 \times 10^{-12}$			\boxtimes		\boxtimes
$10/\frac{\sqrt{100}}{100}$			\boxtimes	\boxtimes	\boxtimes
$12/\left(\sqrt{5}\right)^2$	\boxtimes		\boxtimes		

	Vrai	Faux
1/ Un nombre décimal ne peut pas être un nombre entier.	\boxtimes	
2/ Un nombre décimal est un rationnel.		
3/ Un nombre irrationnel peut être un entier.		\boxtimes
4/ Un nombre entier relatif est un décimal.	\boxtimes	
5/ Le produit de deux nombres décimaux est un décimal.	\boxtimes	
6/ Le quotient de deux nombres décimaux est toujours un décimal.		
7/ Le quotient de deux nombres décimaux peut être un décimal.	\boxtimes	
8/ Le produit de deux nombres rationnels est toujours un rationnel.	\boxtimes	
9/ Le produit de deux nombres irrationnels est toujours un irrationnel.		\boxtimes
10/ Le quotient de deux nombres irrationnels peut être un entier.		

LG Jeanne d'Arc, 2nd Année 2022/2023

2.3 Valeur absolue et écart entre nombres

Figure 2.3 – L'ensemble des réels est représenté par une droite graduée. Chaque nombre réel correspond à un unique point de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé *abscisse* de ce point.

Définition 2.9 Pour tout nombre $a \in \mathbb{R}$, la **valeur absolue** de a est la distance qui sépare le point d'abscisse a de l'origine d'abscisse a sur la droite graduée. On la note |a|:

$$|a| = \begin{cases} a & \text{Si } a \geqslant 0\\ -a & \text{Si } a < 0 \end{cases}$$

Utilisation

L'écart entre deux réels a et $b \in \mathbb{R}$ est donnée par |a - b| = |b - a|.

■ Exemple 2.8

- a) |-3| = |3| = 3. Les nombres -3 et 3 sont à égales distances de 0, leurs valeurs absolues sont égales.
- b) L'écart entre 4 et -2 est |4 (-2)| = |4 + 2| = |6| = 6.
- c) Vrai ou Faux? $\left| \pi \frac{22}{7} \right| \le 2 \times 10^{-3}$
- d) donner des exemples variés pour préparer l'exercice 1.

Figure 2.4 – Deux nombres opposés ont la même valeur absolue.

Figure 2.5 – L'écart entre 4 et -2.

2.3.1 Exercices: valeur absolue

Exercice 17

	Vrai	Faux
1/ -5 =5		
2/ 8 = 8		
3/ 3-5 =-2		
4/ -7-5 =2		
5/ 3-5 = 3+5		
6/ 3-5 = -5-3		
7/ 7-5 = 5-7		
8/ -7-5 = 7+5		
$9/\left \frac{1}{6}-\frac{1}{2}\right =\frac{1}{3}$		
$10/\left \frac{-4}{7}\right = \frac{4}{7}$		

	Vrai	Faux
$1/\left -\sqrt{2}\right = 1,414\ 213$		
$2/ \pi-3 =\pi-3$		
$3/ \sqrt{3}-1 =-(1-\sqrt{3})$		
$ 4/ \sqrt{3}-2 = -(2-\sqrt{3})$		
$ 5/ \sqrt{5}-2 =1-\sqrt{5}$		
$6/\left 10^{5}\right =10^{5}$		
$7/\left 10^{-3}\right = 10^3$		
$8/\left -10^{-3}\right =10^3$		
$9/\left 10^3 - 10^4\right = 10^3 + 10^4$		
$10/\left 10^3 - 10^{-4}\right = 10^3 - 10^{-4}$		

■ Exemple 2.9 — Je fais. Calculer les expressions suivantes

$$A = |3 - 10|$$

$$B = |3(-6)|$$

$$C = |-14 + 20|$$

$$C = |-14 + 20| \qquad \qquad D = 3|-15 + 10|$$

Exercice 18 — 🖬, À vous.

$$A = |4 - 15|$$

$$D = |15 + 26|$$

$$E = 7|3(-4)|$$

$$F = -|15 - 46|$$

$$G = |3(-4)| + |2(-4)|$$

$$H = -3|26 - 12|$$

Défi : Trouve deux nombres qui rendent l'égalité suivante vraie:
$$|30-\ldots|=10.$$

Exercice 19 On considère une droite graduée. Entourer le(s) égalité(s) qui correspondent à l'énoncé. Plusieurs réponses sont possibles.

1/ La distance du point $A(3)$ à $B(2)$ vaut	2 - 3	3 - 2	3+2
2 / La distance du point $A(3)$ à $C(-2)$ vaut	-2-3	3 - 2	3+2
3/ La distance du point $C(-2)$ à $D(-5)$ vaut	-2-5	-2+5	-5+2
4/ La distance du point $M(x)$ à $A(3)$ vaut 1	x+3 = 1	x-3 =1	-x+3 =1
5/ La distance du point $M(x)$ à $B(-2)$ vaut 1	x+2 = 1	x-2 =1	x+1 = -2

■ Exemple 2.10 — Je fais.

a) Placer les points A et B dont l'abscisse x vérifie |x|=2.

b) Placer les points C et D dont l'abscisse x vérifie |x-3|=0,5.

c) Placer les points E et F dont l'abscisse x vérifie |x+3|=0.5.

Exercice 20 Déterminer les solutions dans \mathbb{R} des équations suivantes :

a)
$$|x| = 5$$

d)
$$|x| = -2$$

a)
$$|x+6|=0.1$$

b)
$$|x| = 3$$

e)
$$|x-5|=2$$

c)
$$|x| = 0$$

f)
$$|x-6|=0.7$$

i)
$$|x+5| = 0.0$$

Exercice 21 Compléter les pointillés par > ou < :

$$a) |3,7| \dots |3,8$$

c)
$$|-\pi| \dots |3,14|$$

$$e) |\pi - \frac{333}{106}| \dots 10^{-6}$$

b)
$$|-2,5| \ldots |-2,4$$

d)
$$|-1,41| \dots |-\sqrt{2}$$

12 **2 Ensembles**

 $solution\ de\ l'exercice\ 20\ .$

$$S_1 = \{-5,5\}; \ S_2 = \{-3,3\}; \ S_3 = \{0\}; \ S_4 = \{\}; \ S_5 = \{3,7\}; \ S_6 = \{5.9,6.1\}; \ S_7 = \{-6.1,-5.9\}; \\ S_8 = \{9.99,10.01\}; \ S_9 = \{-3.01,-2.99\};$$

Année 2022/2023 LG Jeanne d'Arc, 2nd

$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d}{b \times d} + \frac{c \times b}{d \times b} = \frac{ad + bc}{bd}$$

Fra

Sommes de fractions:

Ramener au même

dénominateur

 $a,b\in I$

Inverse de
$$\frac{a}{b} = \frac{1}{\frac{a}{b}} = \frac{b}{a}$$

Inverse de $b \neq 0$ se note $\frac{1}{b}$ $b \times \frac{1}{b} = 1$

L'inverse de 0 n'existe pas $\frac{1}{b}$

Fract

 $\frac{a}{b}$

Diviser revient à multiplier par l'inverse :

$$\frac{a}{b} \div \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

ction comme quotient:

$$\frac{a}{b} = a \div b$$

Simplification/Amplification:

$$\frac{a}{b} = \frac{a}{b} \times \frac{c}{c} = \frac{a \times c}{b \times c}$$

$$b \neq 0$$

Multiplication de fractions :

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Règles des signes :

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$
$$\frac{-a}{-b} = \frac{a}{b}$$

L'unité :

$$\frac{b}{b} = b \times \frac{1}{b} = 1$$

on comme multiplication:

$$\frac{a}{b} = a \times \frac{1}{b}$$

Fractions de fractions :

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{1}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$

$$\times c = \frac{a \times c}{b} = a \times \frac{c}{b}$$