ПОИСК ЭЙЛЕРОВЫХ ПУТЕЙ И ЦИКЛОВ В ГРАФАХ

Задача о Кенигсбергских мостах

Задача о Кенигсбергских мостах

Сбалансированные и несбалансированные графы

Связанные и несвязанные графы

Определение 1: Эйлеровым циклом называется цикл, который использует каждое ребро графа в точности один раз.

Определение 2: Эйлеровым графом называют граф, содержащий Эйлеров цикл.

Определение 3: Граф (V, E) называют сильно связанным, если для любой пары вершин $(u, v) \in V \times V$ вершина u достижима из вершины v.

Теорема: каждый сбалансированный, сильно связанный граф является Эйлеровым.

Алгоритм поиска Эйлерова цикла

eulerian_cycle(Graph):

Сформировать цикл *Cycle* произвольно перемещаясь по *Graph* (не заходя на одно ребро дважды).

Пока в *Graph* есть непосещённые рёбра:

Выбрать вершину newStart из Cycle, в которой есть неиспользованные исходящие рёбра.

Переписать Cycle начиная с newStart.

Сформировать Cycle' продолжив Cycle.

Cycle = Cycle'

От Эйлерова цикла к Эйлерову пути

Алгоритм восстановления строки по набору фрагментов

resconstruct(Patterns):

G = размеченный граф де Брёйна по Patterns.

u= вершина G, у которой число исходящих рёбер < числа входящих.

v= вершина G, у которой число исходящих рёбер > числа входящих.

Добавить в G ребро (u, v).

 $Cycle = eulerian_cycle(G).$

«Перемотать» Cycle так, чтобы он начинался с v.

Path = Cycle[:-1]

Восстановить строку по Path.