EE2000 Logic Circuit Design

Chapter 2 – Minimization of Logic Functions

Outline

- 2.1 Minimization using Boolean algebra
- 2.2 Karnaugh map
- 2.3 Minimization using Karnaugh map
- 2.4 Boolean functions with Don't'-care cases
- 2.5 Minimization using Quine-McCluskey method

Advantages of minimization

- Obtain a simple (or simplest) logic circuit
- Reduce the cost of circuit
 - Cost in logic circuit
 - Gate cost (number of gates in the implementation)
 - Gate-input cost (number of inputs to the gates)
 - Total cost = Gate cost + Gate-input cost

Gate-input cost

- The number of gate-input is proportional to the number of transistors in the logic circuit
- The cost can be determined by checking logic diagram / schematic and the Boolean function

```
F_1 = abcd + a'b'c'd'

F_2 = (a'+b)(b'+c)(c'+d)(d'+a)

F_1 has 3 no. of gate and 10 no. of gate-input

Total cost = 13

F_2 has 5 no. of gate and 12 no. of gate-input

Total cost = 17
```

Cost Reduce

The key of simplifying logic functions is to reduce the no. of terms and no. of literals

```
\downarrow no. of literals = \downarrow no. of gate inputs \downarrow no. of terms = \downarrow no. of gates
```

In addition, costs in space and power consumption can be reduced.

2.1 Minimization using Boolean algebra

- e.g. Given 4 equivalent Boolean functions f_1 to f_4 expressed in SOP form already (to be proved in next chapter).
 - $f_1(a,b,c) = a'bc' + a'bc + ab'c' + ab'c + abc$ (5 product terms, 15 literals)
 - $f_2(a,b,c) = a'b + ab' + abc$ (3 product terms, 7 literals)
 - $f_3(a,b,c) = a'b + ab' + ac$ (3 product terms, 6 literals)
 - $f_4(a,b,c) = a'b + ab' + bc$ (3 product terms, 6 literals)
 - Both $f_3 \& f_4$ are the minima
- How can you simplify f₁ (the canonical sum form) to f₃ (the MSP form)?

Simplification

- $\blacksquare f_1(a,b,c) = a'bc' + a'bc + ab'c' + ab'c + abc$
- = (a'bc' + a'bc) + (ab'c' + ab'c) + abc
- $\blacksquare = a'b + ab' + abc = f_2$
- $\blacksquare = a'b + a(b' + bc)$
- $\blacksquare = a'b + a(b' + c)$
- $\blacksquare = a'b + ab' + ac$
- $\blacksquare = f_3$

How to obtain f_4 ?

Simplification

<u>Properties of</u> <u>Boolean algebra:</u>

Absorption Redundancy DeMorgan Consensus etc...

2.2 Karnaugh Map

- In 1953, Maurice Karnaugh introduced a map method known as Karnaugh map (K-map)
 - A straightforward procedure for minimizing Boolean functions in a table form
 - Graphical representation of a truth table
 - Minterm is used in the cell of the K-map
 - It is *n*-variable function (defined by 2^n):
 - Two-variable K-map has 4 cells
 - Three-variable K-map has 8 cells
 - Four-variable K-map has 16 cells

Two-variable K-map

Minterm representations

Plotting functions in K-map

 $f(a, b) = \Sigma m(0, 3)$ Canonical form (contains Minterm)

f(a, b) = a'b' + ab' Function must be formed by Minterm)

or

Functions represented graphically with corresponding minterm cells labeled to value 1

Three-variable K-map

This cell means: (a = 0 AND b = 1 AND c = 0) Note: the columns are not in numerical order, but **Gray code** order (why?)

Minterm representations

cak	00	01	11	10
0	a'b'c'	a'bc'	abc'	ab'c'
1	a'b'c	a'bc	abc	ab'c

Gray code in K-map

- Adjacent cells have 1-bit (1-variable) difference only
 - e.g. 00, 01, 10, 11 (two-variable)
 - ab & ab' have 1-variable difference only!
- Any two adjacent cells sharing a common edge can form a pair of adjacent binary combinations
- This property can be used to simplify the product terms
- By this rule, we can group adjacent 1's on the map to form simplified product terms

Simplification of Product Terms

Example: Simplify $f(a, b, c) = \sum m(6, 7)$

This group contains both 0 and 1 for *c* (i.e. no longer depends on *c*, depends on *a* and *b* only)

Rule: whenever we group two adjacent cells, they can form a product term with one less variable

Wrap-around Adjacency

More examples

$$f(a, b, c) = abc' + ab'c'$$

= ac' (adjacency)

We can even group adjacent 1's across the edges:

0 1 1 10 1 Also one-variable difference!

$$f(a, b, c) = a'b'c' + ab'c'$$

= $b'c'$ (adjacency)

If We Don't Use Gray Code...

We can group these two adjacent 1's:

$$f(a, b, c) = a'bc' + abc'$$

= bc'

But not these two: Incorrect arrangement

Format of three-variable

Label rows with first variable, columns with the others

Although there are different ways drawing the K-Maps, we use the same method to group the adjacent 1's!

Vertical orientation of three-variable K-map

Four-variable K-map

Note the Gray code order of the rows and columns

Imagine the Map as...

Examples of 4-variable K-map

= cd

$$f(a, b, c, d) =$$

$$f(a, b, c, d) = cd$$

Examples of 4-variable K-map

$$f(a, b, c, d) = a'b' + ad$$

Across 4 corners:

$$f(a, b, c, d) =$$

$$f(a, b, c, d) =$$

Group of eight:

$$f(a, b, c, d) =$$

Are They Adjacent Cells?

Diagonal?

Magic square?

Summary for K-map method

Limitations

- The Boolean functions minimized by K-map are always in SOP or POS form
- Can handle minimization for two-level circuits, but not three or more levels

2.3 Minimization using Karnaugh map

 Group the adjacent cells (the number of cells must be a power of 2)

Rules

- (1) To find the fewest group that covers all cells with marked of 1s
- (2) The groups should be as large as possible

Goal

- Reduce the number of products (terms) to minimum
- Save the cost

Example: Two-variable K-map

Simplify $f(a, b) = \Sigma m(0, 1, 3)$

Many ways to group them. Which is the best solution?

Example: Three-variable K-map

Simplify $f(a, b, c) = \Sigma m(0, 1, 2, 3, 4, 5)$

Which solution is better?

Example: Four-variable K-map

Simplify $f(a, b, c, d) = \sum m(0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 15)$

cd ak	00	01	11	10
00	1	1		1
01	1	1		
11	1	1	1	1
10	1			1

Grouping of K-map

Three groups overlapped!

Too many overlaps!

Terminology: Implicant

The product term is an implicant of a function if the function has the value 1 for all minterms of the product term

Prime Implicant (PI)

■ If the removal of any literal from an implicant P results in a product term that is not an implicant of the function, P is a prime implicant

Essential Prime Implicant

■ If a minterm of a function is included in only one prime implicant, that prime implicant is essential prime implicant

Systematic Procedure

- How to satisfy rule (1) and (2)?
- To find the minimized expression from the K-map
 - ■Step 1) First determine all Pls & EPIs
 - ■Step 2) Select the EPIs
 - Step 3) If there are remaining minterms, select the PIs that including them

Back to the Previous Example

Select the essential prime implicants and no remaining minterms left!

$$f(a, b, c, d) = a'd + bd'$$

Back to the Previous Example

Select the essential prime implicants first

Still have a remaining minterm

Two Solutions

$$f(a, b, c, d) = a'b'c'd' + abc' + ab'c + bc'd + abd$$

or
$$f(a, b, c, d) = a'b'c'd' + abc' + ab'c + bc'd + acd$$

Minimization using Karnaugh Map

- Previous examples only show the simplified Boolean functions in SOP form
- How to obtain functions in POS form
 - [Step 1] Group the 0s to obtain the complement of the f in SOP form
 - [Step2] Apply DeMorgan's Theorem to find f in
 POS form

Example: Find POS

Simplify $f(a, b, c, d) = \sum m(0, 1, 2, 5, 8, 9, 10)$ in POS form

Fill the 1s and 0s into the map

Group the 0s using the same procedure as grouping the 1s

$$f'(a, b, c, d) = ab + cd + bd'$$

$$f(a, b, c, d) = (a'+b')(c'+d')(b'+d)$$

2.4 Boolean functions with Don't'-care cases

The output of Boolean functions are **incompletely specified functions**,

- For some input conditions, the outputs are unspecified
- Input condition has no effects to the function
- Output values are defined as don't-care
- Don't-care term can be minterm / maxterms
- Don't-care term indicates by an \times , d, ϕ or φ

Truth Table with Don't Care

а	b	f
0	0	0
0	1	1
1	0	1
1	1	X

What the table says is:

$$f ext{ is 0 if } (a = 0 ext{ AND } b = 0)$$
 $f ext{ is 1 if } (a = 0 ext{ AND } b = 1), or$
 $(a = 1 ext{ AND } b = 0)$
 $f ext{ can be 0 or 1 if } (a = 1 ext{ AND } b = 1)$

$$f(a, b) = \Sigma m(1, 2) + \Sigma d(3)$$

а	b	f_1	f_2
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1

Both f_1 or f_2 of table on the left are <u>acceptable</u>

Don't-care in K-map

Which solution is better?

2 groups f = a'b + ab'

 f_2 implementation

2 groups f = a + b

Procedure for K-map in don't-care cases

- 1. Must include all 1s in the map (but \times is optional)
- 2. Select the EPIs first, then remaining Pis
- 3. Choose the largest PI terms that may contains don't'-care terms \times

Simplify $f(a, b, c, d) = \Sigma m(1, 3, 7, 11, 15) + \Sigma d(0, 2, 5)$

cd ak	00	01	11	10
00	X	0	0	0
01	1	X	0	0
11	1	1	1	1
10	X	0	0	0

$$f(a, b, c, d) = ab'd + cd$$

Other solutions

- 1. Must include all 1s in the map (but \times is optional)
- 2. Select the EPIs first, then remaining PIs
- 3. Choose the largest PI terms that may contains don't'-care terms ×

$$f(a, b, c, d) = a'b' + cd$$

$$f(a, b, c, d) = a'd + cd$$

Choose to include those Xs that give largest Pls

2.5 Minimization using Quine-McCluskey (QM) Method

- Developed by W. V. Quine and E. J. McCluskey in 1956
- Functionally identical to Karnaugh map
- More efficient in computer algorithms
- Ease to handle large number of variables

For number of variables is less then 4, we use K-map; otherwise, QM method will be more efficient.

Procedure of QM-method

- Partitioning
- Combining
- Identifying Prime Implicants (PI)
- Generating PI chart
- Reducing chart
- Reporting result

Partitioning

Simplify $f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$

List all minterms of the function first

Minterms	abcd
m_1	0001
m_4	0100
m_5	0101
m_6	0110
m_8	1000
m_9	1001
<i>m</i> ₁₀	1010
<i>m</i> ₁₂	1100
<i>m</i> ₁₄	1110

Partition them into groups

Minterms	abcd
m_1	0001
m_4	0100
m_8	1000
m_5	0101
m_{6}	0110
m_9	1001
<i>m</i> ₁₀	1010
<i>m</i> ₁₂	1100
<i>m</i> ₁₄	1110

1 1s

2 1s

3 1s

Combing

Compare the partitioned terms that follows Gary code property

Combine adjacent group implicants into (*n*-1)-variable implicants

Mark the changed bit as "-" and give a ✓ to the combined implicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
<i>m</i> ₁₀	1010 🗸
<i>m</i> ₁₂	1100 🗸
<i>m</i> ₁₄	1110 🗸

Minterms	abcd	
m_1, m_5	0-01	
m_1, m_9	-001	
m_4, m_5	010-	
m_4, m_6	01-0	
m_4, m_{12}	-100	
m_8, m_9	100-	
m_8, m_{10}	10-0	
m_8, m_{12}	1-00	
m_6, m_{14}	-110	
m_{10}, m_{14}	1-10	
m_{12}, m_{14}	11-0	

implicants

implicants

48

0001

0101

Combing

Further compare the new partitioned terms that follows Gary

Further combine adjacent group

implicants into (*n*-2)-variable implicants

Minterms	abcd
m_1, m_5	0-01
<i>m</i> ₁ , <i>m</i> ₉	-001
m_4, m_5	010-
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 ✓
<i>m</i> ₈ , <i>m</i> ₉	100-
m_8, m_{10}	10-0 🗸
m_8, m_{12}	1-00 🗸
m_6, m_{14}	-110 ✓
m_{10}, m_{14}	1-10 🗸
m_{12}, m_{14}	11-0 ✓

Again, mark the changed bit as "-" and give a ✓ to the combined implicants

Minterms	abcd	
m_4 , m_6 , m_{12} , m_{14}	-1-0	No more
$m_8, m_{10}, m_{12}, m_{14}$	10	combination
<i>m</i> ₄ , <i>m</i> ₆ : <u>0</u> 1-	0 <i>m</i> ₄	, <i>m</i> ₁₂ : -1 <u>0</u> 0
<i>m</i> ₁₂ , <i>m</i> ₁₄ : <u>1</u> 1-	$0 m_6$, <i>m</i> ₁₄ : -1 <u>1</u> 0

Identifying Prime Implicants (PI)

Minterms	abcd	Minterms	abcd	Minterms	abcd			
m_1	0001 🗸	m_1, m_5	0-01 Pl ₃	m_4 , m_6 , m_{12} , m_{14}	-1-0 PI ₁			
m_4	0100 🗸	m_1, m_9	-001 PI ₄ *	$m_8, m_{10}, m_{12}, m_{14}$	10 Pl2			
<i>m</i> ₈	1000 🗸	m_4, m_5	010- PI ₅					
m_5	0101 🗸	m_4, m_6	01-0 🗸	/ The remaining	/ Lunmarked			
m_{6}	0110 🗸	m_4, m_{12}	-100 ✓	The remaining unmarke implicants are prime implicants. Label them				
m_9	1001 🗸	m_8, m_9	100- PI ₆					
<i>m</i> ₁₀	1010 🗸	m_8, m_{10}	10-0 🗸	as PI _i (label the column first)	e rigntmost			
<i>m</i> ₁₂	1100 🗸	m_8, m_{12}	1-00 🗸	,				
<i>m</i> ₁₄	1110 🗸	m_6, m_{14}	-110 🗸					
		m_{10}, m_{14}	1-10 🗸					
		m_{12}, m_{14}	11-0 🗸					

Generating PI chart

Mark an X in the corresponding columns if this PI covers that minterms e.g. PI_1 involves m_4 , m_6 , m_{12} , m_{14}

Essential prime implicants

			~		~	~		~	~	~
PI	Numeric	1	4	5	6	8	9	10	12	14
PI ₁	-1-0		Х		\otimes				Х	Х
PI ₂	10					Х		\otimes	X	X
PI_3	0-01	X		X						
PI ₄	-001	X					X			
PI ₅	010-		X	X						
PI ₆	100-					Χ	Χ			

Reducing chart

Reduce the chart by removing those rows of essential prime implicants and columns that covered by them

Reducing chart

The reduced PI chart may not have any essential prime implicants

PI	Numeric	1	5	9
PI_3	0-01	X	X	
PI ₄	-001	X		X
PI_5	010-		X	
PI ₆	100-			Х

How to further reduce the chart?

Reducing chart (covering rule)

Now go back to the reduced PI chart

PI	Numeric	1	5	9
PI_3	0-01	X	X	
PI_4	-001	X		X
PI_5	010-		X	
PI_6	100-			X

PI	Numeric	1	5	9
PI_3	0-01	X	(X	
PI ₄	-001	X		X

Pl₅ is covered by Pl₃ (i.e. Pl₅ can be removed)

Pl₆ is covered by Pl₄ (i.e. Pl₆ can be removed)

By choosing PI_3 & PI_4 , all minterms (m_1 , m_5 , m_9) have been selected

So combing with previous result (all rows with ✓), the minimized function is

$$f(a, b, c, d) = Pl_1 + Pl_2 + Pl_3 + Pl_4$$

= -1-0 + 1--0 + 0-01 + -001
= $bd' + ad' + a'c'd + b'c'd$

Result!!!

Verify the Result by K-map

■ Simplify $f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$

f(a, b, c, d) = bd' + ad' + a'c'd + b'c'd

Don't Care Conditions

- How to minimize incompletely specified functions using Q-M method?
 - The first three steps are the same (list, partition and combine)
 - But do NOT list the don't care minterms in the PI chart in step 4
- The reason is
 - We set don't care terms to minterms so as to find PIs
 - But omit them as the don't care terms are not essential to be covered

Example: Don't Care

Simplify $f(a, b, c, d) = \Sigma m(4, 8, 9, 10, 12, 15) + \Sigma d(2, 6, 13)$

The d	on′t ca	re term	s are lis	sted to	gether

Minterms	abcd
m_2	0010
m_4	0100
m_6	0110
m_8	1000
m_9	1001
<i>m</i> ₁₀	1010
<i>m</i> ₁₂	1100
<i>m</i> ₁₃	1101
<i>m</i> ₁₅	1111

Partition the terms as usual

Minterms	abcd
m_2	0010
m_4	0100
m_8	1000
m_6	0110
m_9	1001
<i>m</i> ₁₀	1010
<i>m</i> ₁₂	1100
<i>m</i> ₁₃	1101
<i>m</i> ₁₅	1111

Example: Don't Care

Combine them to form prime implicants

Minterms	abcd	Minterms	abcd	Minterms	abcd
m_2	0010 🗸	m_2, m_6	0-10 Pl ₂	m_8, m_9, m_{12}, m_{13}	1-0- PI ₁
m_4	0100 🗸	m_2, m_{10}	-010 Pl ₃		
<i>m</i> ₈	1000 🗸	m_4, m_6	01-0 PI ₄		
m_6	0110 🗸	m_4, m_{12}	-100 PI ₅		
m_9	1001 🗸	m_8, m_9	100- ✔		
<i>m</i> ₁₀	1010 🗸	m_8, m_{10}	10-0 PI ₆		
<i>m</i> ₁₂	1100 🕶	m_8, m_{12}	1-00 🗸		
<i>m</i> ₁₃	1101 🗸	m_9, m_{13}	1-01 🗸		
<i>m</i> ₁₅	1111 🗸	m_{12}, m_{13}	110- 🗸		
		m_{13}, m_{15}	11-1 PI ₇		

Example: Don't Care

Note that the don't care terms m_2 , m_6 , m_{13} are not listed in this chart!

Find the essential prime implicants and reduce the chart as usual

PI	Numeric	4	8	9	10	12	15
PI ₁	1-0-		Х	\otimes		Х	
PI ₂	0-10						
PI_3	-010				X		
PI ₄	01-0	X					
PI ₅	-100	X				X	
PI_6	10-0		Х		X		
PI ₇	11-1						\otimes

PI	Numeric	4	10
PI_3	-010		X
PI ₄	01-0	X	
PI ₅	-100	X	
PI ₆	10-0		X

$$f(a, b, c, d) = PI_1 + PI_3 + PI_4 + PI_7$$

= 1-0- + -010 + 01-0 + 11-1
= $ac' + b'cd' + a'bd' + abd$

PI	Numeric	4	10
PI_3	-010		X
PI_4	01-0	X	

Summary

