■ NetApp

Storage VM を管理します Cloud Manager

NetApp June 14, 2021

This PDF was generated from https://docs.netapp.com/ja-jp/occm/task_managing_svms.html on June 14, 2021. Always check docs.netapp.com for the latest.

目次

St	torage VM を管理します · · · · · · · · · · · · · · · · · · ·
	Cloud Manager で Storage VM を管理します
	AWS で Cloud Volumes ONTAP 用のデータ提供用 Storage VM を作成します
	Azure で Cloud Volumes ONTAP 用のデータ提供用 Storage VM を作成します

Storage VM を管理します

Cloud Manager で Storage VM を管理します

Storage VM は ONTAP 内で実行される仮想マシンであり、クライアントにストレージサービスとデータサービスを提供します。これは、 _ SVM _ または _ SVM _ であることがわかります。Cloud Volumes ONTAP にはデフォルトで 1 つの Storage VM が設定されますが、一部の設定では追加の Storage VM がサポートされます。

サポートされている Storage VM 数

AWS では Cloud Volumes ONTAP BYOL 、 Azure ではアドオンライセンスで複数の Storage VM がサポートされています。にアクセスします "Cloud Volumes ONTAP リリースノート" 使用している Cloud Volumes ONTAP のバージョンでサポートされる Storage VM 数を確認してください。

他のすべての Cloud Volumes ONTAP 構成で、ディザスタリカバリに使用する 1 つのデータ提供用 Storage VM と 1 つのデスティネーション Storage VM がサポートされます。ソース Storage VM で停止が発生した場合は、デスティネーション Storage VM をデータアクセス用にアクティブ化できます。

複数の Storage VM を使用できます

Cloud Manager では、 System Manager または CLI から追加で作成する Storage VM をサポートします。

たとえば、次の図は、ボリュームの作成時に Storage VM を選択する方法を示しています。

次の図は、ボリュームを別のシステムにレプリケートするときに Storage VM を選択する方法を示しています。

デフォルトの Storage VM の名前を変更します

Cloud Manager は、 Cloud Volumes ONTAP 用に作成した単一の Storage VM に自動的に名前を付けます。厳密な命名基準がある場合は、 Storage VM の名前を変更できます。たとえば、 ONTAP クラスタの Storage VM の命名規則に沿った名前に変更できます。

Cloud Volumes ONTAP 用に追加の Storage VM を作成した場合、その Storage VM の名前を Cloud Manager から変更することはできません。Cloud Volumes ONTAP から直接実行する必要があります。そのためには、System Manager または CLI を使用します。

手順

- 1. 作業環境で、メニューアイコンをクリックし、*情報*をクリックします。
- 2. Storage VM 名の右にある編集アイコンをクリックします。

◆ Working Environment Information		
ONTAP		
Serial Number:		
System ID:	system-id-capacitytest	
Cluster Name:	capacitytest	
ONTAP Version:	9.7RC1	
Date Created:	Jul 6, 2020 07:42:02 am	
Storage VM Name:	svm_capacitytest	

3. SVM 名の変更ダイアログボックスで名前を変更し、*保存*をクリックします。

ディザスタリカバリ用に Storage VM を管理する

Cloud Manager では、 Storage VM ディザスタリカバリのセットアップやオーケストレーションはサポートされていません。System Manager または CLI を使用する必要があります。

- "SVM ディザスタリカバリ設定エクスプレスガイド"
- "『SVM ディザスタリカバリエクスプレスガイド』"

AWS で Cloud Volumes ONTAP 用のデータ提供用 Storage VM を作成します

Storage VM は ONTAP 内で実行される仮想マシンであり、クライアントにストレージサービスとデータサービスを提供します。これは、 _ SVM _ または _ SVM _ であることがわかります。Cloud Volumes ONTAP にはデフォルトで 1 つの Storage VM が設定されますが、一部の設定では追加の Storage VM がサポートされます。

データを提供する Storage VM を追加で作成するには、 AWS で IP アドレスを割り当ててから、 Cloud Volumes ONTAP の設定に基づいて ONTAP コマンドを実行する必要があります。

サポートされている Storage VM 数

Cloud Volumes ONTAP の BYOL では、 9.7 リリース以降、複数の Storage VM がアドオンライセンスで AWS でサポートされます。にアクセスします "Cloud Volumes ONTAP リリースノート" 使用している Cloud

Volumes ONTAP のバージョンでサポートされる Storage VM 数を確認してください。

他のすべての Cloud Volumes ONTAP 構成で、ディザスタリカバリに使用する 1 つのデータ提供用 Storage VM と 1 つのデスティネーション Storage VM がサポートされます。ソース Storage VM で停止が発生した場合は、デスティネーション Storage VM をデータアクセス用にアクティブ化できます。

構成の制限を確認します

各 EC2 インスタンスでは、ネットワークインターフェイスごとにサポートされるプライベート IPv4 アドレスの最大数が決まっています。新しい Storage VM に AWS で IP アドレスを割り当てる前に、上限を確認する必要があります。

手順

- 1. に移動します "ストレージの制限に関するセクションは、 Cloud Volumes ONTAP リリースノートを参照してください"。
- 2. インスタンスタイプのインターフェイスごとの IP アドレスの最大数を確認します。
- 3. AWS で IP アドレスを割り当てるときは次のセクションで必要になるため、この数値をメモしておいてください。

AWS で IP アドレスを割り当てます

新しい Storage VM 用の LIF を作成する前に、 AWS のポート e0a にプライベート IPv4 アドレスを割り当てる必要があります。

Storage VM 用のオプションの管理 LIF では、単一のノードシステムおよび単一の AZ 内の HA ペア上にプライベート IP アドレスが必要です。この管理 LIF は、 SnapCenter などの管理ツールへの接続を提供します。

手順

- 1. AWS にログインして EC2 サービスを開きます。
- 2. Cloud Volumes ONTAP インスタンスを選択し、*ネットワーク*をクリックします。

HAペアで Storage VM を作成する場合は、ノード 1 を選択します。

3. ネットワークインターフェイス*までスクロールし、ポート e0a の*インターフェイス ID*をクリックします。

- 4. ネットワークインターフェイスを選択し、 * Actions > Manage IP Addresses * をクリックします。
- 5. e0a の IP アドレスのリストを展開します。
- 6. IP アドレスを確認します。
 - a. 割り当てられた IP アドレスの数を数えて、ポートに追加の IP 用のスペースがあることを確認します。

このページの前のセクションで、インターフェイスごとにサポートされる IP アドレスの最大数を確認しておく必要があります。

b. オプション: Cloud Volumes ONTAP の CLI に移動し、* network interface show * を実行して、各 IP アドレスが使用中であることを確認します。

IP アドレスが使用されていない場合は、新しい Storage VM で使用できます。

- 7. AWS コンソールに戻り、「*新しい IP アドレスを割り当て*」をクリックして、新しい Storage VM に 必要な量に基づいて追加の IP アドレスを割り当てます。
 - 。シングルノードシステム:未使用のセカンダリプライベート IP が 1 つ必要です。

Storage VM に管理 LIF を作成する場合は、オプションのセカンダリプライベート IP が必要です。

。単一の AZ における HA ペア: ノード 1 には、未使用のセカンダリプライベート IP が 1 つ必要です。

Storage VM に管理 LIF を作成する場合は、オプションのセカンダリプライベート IP が必要です。

- 。複数の AZ にまたがる HA ペア:各ノードには、未使用のセカンダリプライベート IP が 1 つ必要です。
- 8. 単一の AZ 内の HA ペアに IP アドレスを割り当てる場合は、* セカンダリプライベート IPv4 アドレスの再割り当てを許可 * を有効にします。
- 9. [保存 (Save)]をクリックします。
- 10. 複数の AZ に HA ペアを作成する場合は、ノード 2 に対して上記の手順を繰り返す必要があります。

シングルノードシステムに Storage VM を作成する

以下の手順では、シングルノードシステムに新しい Storage VM を作成します。NAS LIF を作成するには 1 つのプライベート IP アドレスが必要で、管理 LIF を作成する場合はもう 1 つのプライベート IP アドレスが必要です。

手順

1. Storage VM と Storage VM へのルートを作成してください。

vserver create -rootvolume-security-style unix -rootvolume root_svm_2
-snapshot-policy default -vserver svm_2 -aggregate aggr1

network route create -destination 0.0.0.0/0 -vserver svm_2 -gateway
subnet_gateway

2. NAS LIF を作成します。

network interface create -auto-revert true -vserver svm_2 -service
-policy default-data-files -home-port e0a -address private_ip_x -netmask
nodelMask -lif ip_nas_2 -home-node cvo-node

ここで、 private IP x は、 e0a 上の未使用のセカンダリプライベート IP です。

3. オプション: Storage VM 管理 LIF を作成する

network interface create -auto-revert true -vserver svm_2 -service
-policy default-management -home-port e0a -address private_ip_y -netmask
node1Mask -lif ip_svm_mgmt_2 -home-node cvo-node

ここで、 private_IP_y は e0a 上の別の未使用のセカンダリプライベート IP です。

の HA ペアに Storage VM を作成します 単一 AZ

以下の手順では、単一の AZ の HA ペアに新しい Storage VM を作成します。NAS LIF を作成するには 1 つのプライベート IP アドレスが必要で、管理 LIF を作成する場合はもう 1 つのプライベート IP アドレスが必要です。

これらの両方の LIF はノード 1 に割り当てられます。障害が発生した場合、プライベート IP アドレスをノード間で移動できます。

手順

1. Storage VM と Storage VM へのルートを作成してください。

vserver create -rootvolume-security-style unix -rootvolume root_svm_2
-snapshot-policy default -vserver svm 2 -aggregate aggr1

network route create -destination 0.0.0.0/0 -vserver svm_2 -gateway
subnet_gateway

2. ノード 1 に NAS LIF を作成します。

network interface create -auto-revert true -vserver svm_2 -service
-policy default-data-files -home-port e0a -address private_ip_x -netmask
nodelMask -lif ip nas 2 -home-node cvo-nodel

ここで、 _private_IP_x_は 、 CVO-node1 の e0a にある未使用のセカンダリプライベート IP です。テイクオーバーの際には、この IP アドレスを CVO-node2 の e0a に再配置できます。これは、サービスポリシー default-data-files が、 IP をパートナーノードに移行できることを示しているためです。

3. オプション: ノード 1 に Storage VM 管理 LIF を作成します。

network interface create -auto-revert true -vserver svm_2 -service
-policy default-management -home-port e0a -address private_ip_y -netmask
node1Mask -lif ip_svm_mgmt_2 -home-node cvo-node1

ここで、 private_IP_y は e0a 上の別の未使用のセカンダリプライベート IP です。

複数の HA ペアに Storage VM を作成する AZS

以下の手順は、複数の AZ にまたがる HA ペア上に新しい Storage VM を作成します。

NAS LIF には _floated_ip アドレスが必要です。これは管理 LIF のオプションです。これらのフローティング IP アドレスでは、 AWS でプライベート IP を割り当てる必要はありません。代わりに、 AWS ルートテーブ ルに、同じ VPC 内の特定のノードの ENI を指すようにフローティング IP が自動的に設定されます。

フローティング IP が ONTAP と連携するためには、各ノードのすべての Storage VM でプライベート IP アドレスを設定する必要があります。以下の手順は、ノード 1 とノード 2 に iSCSI LIF を作成したものです。

手順

1. Storage VM と Storage VM へのルートを作成してください。

vserver create -rootvolume-security-style unix -rootvolume root_svm_2
-snapshot-policy default -vserver svm 2 -aggregate aggr1

network route create -destination 0.0.0.0/0 -vserver svm_2 -gateway
subnet_gateway

2. ノード 1 に NAS LIF を作成します。

network interface create -auto-revert true -vserver svm_2 -service
-policy default-data-files -home-port e0a -address floating_ip -netmask
nodelMask -lif ip_nas_floating_2 -home-node cvo-node1

- 。フローティング IP アドレスは、 HA 構成を導入する AWS リージョン内のどの VPC の CIDR ブロックにも属していない必要があります。192.168.209.27 は、フローティング IP アドレスの例です。 "フローティング IP アドレスの選択の詳細については、こちらを参照してください"。
- 。「-service-policy default-data-files」は、IP をパートナーノードに移行できることを示します。
- 3. オプション: ノード 1 に Storage VM 管理 LIF を作成します。

network interface create -auto-revert true -vserver svm_2 -service
-policy default-management -home-port e0a -address floating_ip -netmask
nodelMask -lif ip svm mgmt 2 -home-node cvo-node1

4. ノード 1 に iSCSI LIF を作成

network interface create -vserver svm_2 -service-policy default-datablocks -home-port e0a -address private_ip -netmask nodei1Mask -lif ip_node1_iscsi_2 -home-node cvo-node1

- $^\circ$ この iSCSI LIF は、 Storage VM でフローティング IP の LIF 移行をサポートするために必要です。iSCSI LIF である必要はありませんが、ノード間で移行するように設定することはできません。
- 。「-service-policy default-data-block」は、 IP アドレスがノード間で移行されないことを示します。
- 。_private_IP_は 、 CVO-node1 の eth0 (e0a)上の未使用のセカンダリプライベート IP アドレスです。

5. ノード 2 に iSCSI LIF を作成

network interface create -vserver svm_2 -service-policy default-datablocks -home-port e0a -address private_ip -netmaskNode2Mask -lif ip_node2_iscsi_2 -home-node cvo-node2

- 。この iSCSI LIF は、 Storage VM でフローティング IP の LIF 移行をサポートするために必要です。iSCSI LIF である必要はありませんが、ノード間で移行するように設定することはできません。
- 。「-service-policy default-data-block」は、 IP アドレスがノード間で移行されないことを示します。

。_private_IP_は 、 CVO-node2 の eth0 (e0a)上の未使用のセカンダリプライベート IP アドレスです。

Azure で Cloud Volumes ONTAP 用のデータ提供用 Storage VM を作成します

Storage VM は ONTAP 内で実行される仮想マシンであり、クライアントにストレージサービスとデータサービスを提供します。これは、 $_$ SVM $_$ または $_$ SVM $_$ であることがわかります。Cloud Volumes ONTAP にはデフォルトで 1 つの Storage VM が設定されていますが、Azure で Cloud Volumes ONTAP を実行している場合は追加の Storage VM がサポートされます。

データを提供する Storage VM を追加で作成するには、 Azure で IP アドレスを割り当ててから、 ONTAP コマンドを実行して Storage VM とデータ LIF を作成する必要があります。

サポートされている Storage VM 数

Azure では、 9.9.0 リリース以降、複数の Storage VM が Cloud Volumes ONTAP BYOL でサポートされており、アドオンライセンスが付与されています。にアクセスします "Cloud Volumes ONTAP リリースノート" 使用している Cloud Volumes ONTAP のバージョンでサポートされる Storage VM 数を確認してください。

他のすべての Cloud Volumes ONTAP 構成で、ディザスタリカバリに使用する 1 つのデータ提供用 Storage VM と 1 つのデスティネーション Storage VM がサポートされます。ソース Storage VM で停止が発生した場合は、デスティネーション Storage VM をデータアクセス用にアクティブ化できます。

Azure で IP アドレスを割り当てます

構成に応じて、シングルノードシステム、 iSCSI を使用する HA ペア、 NFS / SMB を使用する HA ペアのいずれかの手順を実行します。

シングルノード

Storage VM を作成して LIF を割り当てる前に、 Azure で IP アドレスを nic0 に割り当てる必要があります。

データ LIF アクセス用の IP アドレスと、 Storage VM (SVM)管理 LIF のオプションの IP アドレスを作成する必要があります。この管理 LIF は、 SnapCenter などの管理ツールへの接続を提供します。

手順

- 1. Azure ポータルにログインし、 * Virtual Machine * サービスを開きます。
- 2. Cloud Volumes ONTAP VM の名前をクリックします。
- 3. [* ネットワーク] をクリックします。
- 4. nic0 のネットワークインターフェイスの名前をクリックします。
- 5. [* 設定]で、[* IP 設定*]をクリックします。
- 6. [追加 (Add)]をクリックします。
- 7. IP 設定の名前を入力し、 * Dynamic * を選択して、 * OK * をクリックします。
- 8. 作成した IP 設定の名前をクリックし、 * Assignment * を * Static * に変更して、 * Save * をクリックしま

す。

9. SVM 管理 LIF を作成する場合は、ノード 1 で上記の手順を繰り返します。

作成したプライベート IP アドレスをコピーします。新しい Storage VM の LIF を作成するときに、これらの IP アドレスを指定する必要があります。

iSCSI を使用した HA ペア

Storage VM を作成して LIF を割り当てる前に、 Azure で iSCSI IP アドレスを nic0 に割り当てる必要があります。iSCSI はフェイルオーバーに ALUA を使用するため、 iSCSI の IPS はロードバランサではなく nic0 に割り当てられます。

データ LIF からアクセスするための IP アドレスはノード 1 から、データ LIF からノード 2 のアクセス用の別の IP アドレス、および Storage VM (SVM)管理 LIF の別のオプションの IP アドレスで作成する必要があります。この管理 LIF は、 SnapCenter などの管理ツールへの接続を提供します。

手順

- 1. Azure ポータルにログインし、* Virtual Machine * サービスを開きます。
- 2. ノード 1 の Cloud Volumes ONTAP VM の名前をクリックします。
- 3. [* ネットワーク] をクリックします。
- 4. nic0 のネットワークインターフェイスの名前をクリックします。
- 5. [* 設定]で、[* IP 設定*]をクリックします。
- 6. [追加(Add)]をクリックします。
- 7. IP 設定の名前を入力し、 * Dynamic * を選択して、 * OK * をクリックします。
- 8. 作成した IP 設定の名前をクリックし、 * Assignment * を * Static * に変更して、 * Save * をクリックします。
- 9. ノード2で上記の手順を繰り返します。
- 10. SVM 管理 LIF を作成する場合は、ノード 1 で上記の手順を繰り返します。

作成したプライベート IP アドレスをコピーします。新しい Storage VM の LIF を作成するときに、これらの IP アドレスを指定する必要があります。

NFS / SMB を使用した HA ペア

NFS データおよび SMB データに使用する IP アドレスはロードバランサに割り当てられます。これにより、フェイルオーバー時に IP アドレスを別のノードに移行できるようになります。

手順

- 1. Azure ポータルで、 * ロードバランサ * サービスを開きます。
- 2. HA ペアのロードバランサの名前をクリックします。
- 3. データ LIF へのアクセスに使用するフロントエンド IP 構成をノード 1 から、データ LIF へのアクセスに 使用するフロントエンド IP 構成(HA ペアのみ)と、 Storage VM (SVM)管理 LIF のもう 1 つのオプションのフロントエンド IP を作成します。
 - a. [* 設定] で、[* フロントエンド IP 設定 *] をクリックします。
 - b. [追加 (Add)] をクリックします。

c. フロントエンド IP の名前を入力し、 Cloud Volumes ONTAP HA ペアのサブネットを選択して、 * Dynamic * を選択したままにします。

- d. 作成したフロントエンド IP 設定の名前をクリックし、 * Assignment * を * Static * に変更して、 * Save * をクリックします。
- 4. 作成した各フロントエンド IP のヘルスプローブを追加します。
 - a. ロードバランサーの*設定*で、*ヘルスプローブ*をクリックします。
 - b. [追加 (Add)]をクリックします。
 - c. ヘルスプローブの名前を入力し、 $63005 \sim 65000$. のポート番号を入力します。他のフィールドはデフォルト値のままにします。

ポート番号が $63005 \sim 65000$. であることが重要です。たとえば、 3 つのヘルスプローブを作成する場合、ポート番号 63005、 63006 、および 63007 を使用するプローブを入力できます。

- 5. フロントエンド IP ごとに新しいロードバランシングルールを作成します。
 - a. ロードバランサーの*設定*で、*ロードバランシングルール*をクリックします。
 - b. [*追加(Add)]をクリックして、必要な情報を入力する。
 - ■*名前*:ルールの名前を入力します。
 - * IP バージョン * : 「 * ipv4 * 」を選択します。
 - * フロントエンド IP アドレス *: 作成したフロントエンド IP アドレスのいずれかを選択します。
 - *HA Ports *: このオプションを有効にします。
 - * バックエンドプール * : すでに選択されているデフォルトのバックエンドプールをそのまま使用します。
 - * ヘルスプローブ * :選択したフロントエンド IP に対して作成したヘルスプローブを選択します。
 - * セッション持続性 *: 「なし」を選択します。
 - * フローティング IP * : * 有効 * を選択します。

Cloud Volumes ONTAP のネットワークセキュリティグループルールで、ロードバランサが上記の手順 4 で作成したヘルスプローブの TCP プローブを送信できることを確認します。これはデフォルトで許可されています。

Storage VM と LIF を作成

以下の手順では、シングルノードシステムまたは HA ペアに新しい Storage VM を作成します。ノード 1 からのデータ LIF へのアクセスには、ノード 2 (HA ペアのみ) からのデータ LIF へのアクセスに使用する別の IP アドレス、および Storage VM (SVM) の管理 LIF のオプションの IP アドレスが 1 つ必要です。この管理 LIF は、 SnapCenter などの管理ツールへの接続を提供します。

次のコマンドは、 Storage VM のデータアクセスプロトコルである NAS または iSCSI に一致するものを使用してください。

手順

1. Storage VM と Storage VM へのルートを作成してください。

vserver create -vserver <svm-name> -subtype default -rootvolume <rootvolume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name> -gateway
<ip-of-gateway-server>

- 2. データ LIF を作成します。
 - a. 次のコマンドを使用して、ノード 1 に NAS LIF を作成します。

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol cifs,nfs -address <nfs--ip-address> -netmask
-length <length> -home-node <name-of-node1> -status-admin up
-failover-policy system-defined -firewall-policy data -home-port e0a
-auto-revert true -failover-group Default -probe-port <port-number-for-azure-health-probe1>

シングルノードシステムの場合は、 -failover-policy パラメータの値を *disabled* に変更する必要があります。

b. 次のコマンドを使用して、ノード 2 に NAS LIF を作成します(HA ペアの場合のみ)。

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol cifs,nfs -address <nfs-cifs-ip-address> -netmask
-length <length> -home-node <name-of-node2> -status-admin up
-failover-policy system-defined -firewall-policy data -home-port e0a
-auto-revert true -failover-group Default -probe-port <port-numberfor-azure-health-probe2>

C. 次のコマンドを使用して、ノード 1 に iSCSI LIF を作成します。

network interface create -vserver <svm-name> -home-port e0a -address
<iscsi-ip-address> -lif <lif-name> -home-node <name-of-node1> -data
-protocol iscsi

d. 次のコマンドを使用して、ノード 2 に iSCSI LIF を作成します(HA ペアの場合のみ)。

network interface create -vserver <svm-name> -home-port e0a -address
<iscsi-ip-address> -lif <lif-name> -home-node <name-of-node2> -data
-protocol iscsi

3. オプション: ノード 1 に Storage VM 管理 LIF を作成します。

network interface create -vserver <svm-name> -lif f-name> -role data
-data-protocol none -address <svm-mgmt-ip-address> -netmask-length
<length> -home-node node1 -status-admin up -failover-policy systemdefined -firewall-policy mgmt -home-port e0a -auto-revert false
-failover-group Default -probe-port <port-number-for-azure-healthprobe3>

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.