

On the Partial Convexification for Low-Rank Spectral Optimization: Rank Bounds and Algorithms

Low-Rank Spectral Optimization Problem (LSOP)

(LSOP) $\mathbf{V}_{\text{opt}} := \min_{\mathbf{X} \in \mathcal{D}} \left\{ \langle A_0, \mathbf{X} \rangle : b_i^l \le \langle A_i, \mathbf{X} \rangle \le b_i^u, \forall i \in [m] \right\}$

- ▶ Domain set: $\mathcal{D} := \{X \in \mathcal{S}^n_+ : \operatorname{rank}(X) \leq k, F(X) := f(\lambda(X)) \leq 0\}$
- ightharpoonup F(X) is closed convex spectral that depends on eigenvalues $\lambda(X)$
- ► Can cover multiple spectral functions

LSOP-R: Partial Convexification of Doamin Set $\mathcal D$

(LSOP-R)
$$\mathbf{V}_{\text{rel}} := \min_{X \in \text{conv}(\mathcal{D})} \left\{ \langle A_0, X \rangle : b_i^l \le \langle A_i, X \rangle \le b_i^u, \forall i \in [m] \right\}$$

- ightharpoonup Replace \mathcal{D} by $conv(\mathcal{D})$
- ► Example 1.

$$\overline{\mathcal{D}} = \{X \in \mathcal{S}_+^2 : \operatorname{rank}(X) \le 1, \operatorname{tr}(X) \le 1, \log \det(I + X) \ge \frac{3}{2} \}$$

Research Gap: No theoretical rank bound for general LSOP-R

Applications

I: Radio network

II: Power grid

III: Fair PCA

- ► II: optimal power flow formulated by QCQP
- ► Besides, sparse ridge regression, matrix completion, etc.

Theoretical Rank Bounds for LSOP-R

Theorem 1. Suppose $V_{rel} > -\infty$, there is an optimal extreme point to LSOP-R with rank at most $k + \left| \sqrt{2m + \frac{9}{4}} - \frac{3}{2} \right|$.

- ▶ Proof Idea: describe set $conv(\mathcal{D})$ and bound the rank of its faces
- ightharpoonup Be independent of the domain set \mathcal{D}
- ► Recover the existing ones for QCQP and Fair PCA

When LSOP-R Matches LSOP?

Theorem 2. Suppose $V_{rel} > -\infty$, LSOP-R yields the same optimal solution and value as LSOP when $m \le 1$.

- ▶ Proof Idea: let $\lfloor \sqrt{2m+9/4} 3/2 \rfloor = 0$
- ▶ For **Example 1**, consider m = 1 linear inequality: $X_{12} \ge 0$

► Same extreme points

Extensions

Matrix space	Symmetric	Non-symmetric	Diagona
Rank bound	$k + \lfloor \sqrt{4m + 9} - 3 \rfloor$	$k + \lfloor \sqrt{2m + \frac{9}{4}} - \frac{3}{2} \rfloor$	k+m

Algorithms: Column Generation (CG) + Rank-Reduction and Numerical Study

(Pricing problem) $\max_{X \in \mathcal{D}} \langle C_t, X \rangle$

- ► Equivalent to vector-based convex program
- Theorem 3. The output solution is optimal to LSOP-R and satisfies the rank bound.

- Case I. Complex domain set $\mathcal{D} := \{X \in \mathcal{S}_+^n : \operatorname{rank}(X) \leq k, \operatorname{tr}(X) \leq U, \log \det(I_n + X) \geq L\}$
- ▶ Naive CG: directly use $conv(\mathcal{D})$
- "-": cannot be solved within one hour

		k	MOSEK		Naive CG		Proposed Algorithms				Rank
n	m						Our CG		Rank-reduction		bound
			rank	time(s)	rank	time(s)	rank	time(s)	reduced rank	time(s)	(Theorem 1)
50	5	5	48	17	3	223	3	1	2	1	7
50	10	5	29	19	5	1261	5	1	3	1	8
50	10	10	32	183	_	_	5	1	3	1	13
100	10	10	_	_	_	_	2	2	1	1	13
100	15	10	_	_	_	_	5	2	3	1	14
100	15	15	_	_	_	_	5	3	3	1	19
500	25	25	_	_	_	_	10	24	8	2	30
500	50	25		_		_	21	99	20	2	33
500	50	50	_	_	_	_	22	104	20	2	58

Case II: QCQP. Simple domain set $\mathcal{D} := \{X \in \mathcal{S}_+^n : \operatorname{rank}(X) \le 1, L \le \operatorname{tr}(X) \le U\}$

			-	L		•		丁		(/ —	J
		k	MOSEK		Naive CG		Proposed Algorithms Rank				
n	m		1010	MOSEK		Naive CU		ır CG	Rank-reduction		bound
			rank	time(s)	rank	time(s)	rank	time(s)	reduced rank	time(s)	(Theorem 1)
1000	50	1	28	160			3	42	2	3	9
1000	60	1	32	195	_	_	5	80	3	10	10
1500	60	1	27	642	_	_	3	113	2	11	10
1500	75	1	186	724	_	_	6	344	4	35	11
2000	75	1	40	1850	_	_	5	594	3	67	11
2000	90	1	12	2236	_	_	4	483	2	27	13
2500	90	1	_	_	_	_	5	1323	3	122	13
2500	100	1	_	_	_	_	4	1326	2	114	13