AMPUTACIONES

1. FICHA DE LA ENFERMEDAD

Las amputaciones constituyen la pérdida total o parcial de un segmento corporal, habitualmente una extremidad, por causas traumáticas, vasculares, tumorales o infecciosas. Se trata de un procedimiento quirúrgico que, aunque históricamente ligado a emergencias bélicas, hoy es mayoritariamente consecuencia de complicaciones crónicas como la enfermedad arterial periférica y la diabetes mellitus [1], [2]. Estas amputaciones no solo implican la pérdida física de un miembro, sino que conllevan un fuerte impacto psicológico, funcional y social.

En términos epidemiológicos, la diabetes mellitus y la arteriopatía periférica son responsables de más del 80% de amputaciones no traumáticas en miembros inferiores [3]. A nivel mundial, la incidencia de amputaciones mayores en diabéticos es de 200 a 500 por 100.000 personas/año, con tasas más altas en países de bajos recursos [2], [4]. En el caso de amputaciones traumáticas, las principales causas son accidentes de tránsito y laborales, seguidas de traumas bélicos en contextos militares [1], [5].

La clasificación de las amputaciones depende del nivel de resección. En miembros inferiores se dividen en amputaciones menores (pie, tobillo) y mayores (transtibial, transfemoral, desarticulación de cadera), mientras que en miembros superiores se describen amputaciones transradiales, transhumerales y desarticulaciones de hombro [6]. La elección del nivel busca maximizar la preservación de tejido viable, optimizar la cicatrización y facilitar la rehabilitación protésica.

Las complicaciones más frecuentes incluyen infección del muñón, dolor neuropático y dolor fantasma. Este último, presente en hasta 80% de pacientes, se define como la percepción dolorosa en el segmento ausente y constituye un desafío terapéutico complejo [7]. La cicatrización deficiente y la necesidad de reamputaciones también representan riesgos relevantes.

El impacto psicológico es considerable: la amputación suele asociarse con depresión, ansiedad y trastornos de la imagen corporal, además de repercusiones en la capacidad laboral y en la vida diaria. La adaptación al uso de prótesis requiere no solo rehabilitación física, sino también acompañamiento psicológico y social [3], [8].

Finalmente, el abordaje de las amputaciones se ha transformado con los avances en prótesis de alta tecnología, que permiten recuperar funcionalidad, movilidad y autonomía. Sin embargo, el acceso desigual a estas tecnologías continúa siendo un problema, particularmente en países con recursos limitados [2], [9].

2. FACTORES Y ANALISIS DE LA ENFERMEDAD

2.1 Factores de Riesgo

El principal factor de riesgo de amputaciones mayores es la diabetes mal controlada, que genera neuropatía, úlceras plantares e infecciones que progresan hasta la gangrena [3]. La enfermedad arterial periférica y el tabaquismo también aumentan la probabilidad de amputación [4]. En países en desarrollo, el acceso limitado a cuidados preventivos explica la alta carga de amputaciones.

En el caso de amputaciones traumáticas, predominan en poblaciones jóvenes involucradas en accidentes de tránsito, laborales y bélicos [5]. Factores de riesgo adicionales incluyen la falta de equipos de protección, ambientes laborales inseguros y el retraso en la atención médica inicial.

2.2 Manifestaciones clínicas relevantes

La manifestación principal es la pérdida anatómica del segmento, acompañada de dolor agudo y, posteriormente, dolor fantasma en la mayoría de pacientes [7]. Los problemas funcionales incluyen pérdida de movilidad, alteraciones en la marcha y dificultades en actividades de la vida diaria.

Los pacientes con amputación de miembro inferior presentan mayor riesgo de caídas, úlceras por presión y sobrecarga articular en el miembro contralateral. En amputaciones de miembro superior, la pérdida de funcionalidad impacta directamente en la autonomía para autocuidado y desempeño laboral.

2.3 Impacto funcional en la vida diaria

El impacto funcional es profundo: la amputación altera la independencia y la reinserción laboral. El uso de prótesis mejora la movilidad, pero no siempre restaura completamente la función [6], [9]. La rehabilitación temprana, el soporte psicológico y la integración social son esenciales para mejorar la calidad de vida.

3. PREVENCION, DIAGNOSTICO, TRATAMIENTO Y MONITOREO

3.1 Prevención

La mayoría de amputaciones no traumáticas son prevenibles mediante un control adecuado de la diabetes y factores vasculares. Programas de cuidado del pie diabético han demostrado reducir la incidencia de amputaciones hasta en un 50% [2], [3]. Otras medidas incluyen cesación tabáquica, tratamiento de úlceras crónicas y educación en higiene del pie.

3.2 Diagnostico

El diagnóstico de la necesidad de amputación se basa en la evaluación clínica y vascular del miembro, utilizando pruebas como el índice tobillo-brazo, Doppler arterial y angiografía [4]. En trauma, el diagnóstico es inmediato y depende de la severidad del daño tisular, la perfusión y el pronóstico funcional de la extremidad.

3.3 Tratamiento

El tratamiento quirúrgico incluye resección del segmento afectado, conformación del muñón, cobertura muscular adecuada y preservación de longitud ósea útil para prótesis [6]. Posteriormente, se inicia fisioterapia, entrenamiento con prótesis y manejo del dolor fantasma [7].

Las prótesis actuales van desde dispositivos mecánicos básicos hasta prótesis mioeléctricas y biónicas, capaces de responder a señales musculares residuales e incluso con retroalimentación sensorial experimental [8], [9]. La selección depende del nivel de amputación, las necesidades del paciente y los recursos disponibles.

3.4 Monitoreo

El seguimiento se centra en la vigilancia del muñón, prevención de infecciones y úlceras, y ajuste de la prótesis a medida que cambian las condiciones del paciente [3].

La monitorización psicológica y social es igualmente relevante para prevenir depresión y abandono del uso de prótesis [8].

4. REFLEXION INGENERIL

Desde la ingeniería biomédica, las amputaciones representan un área de gran innovación. El desarrollo de prótesis biónicas con control mioeléctrico, sensores de fuerza e interfaces cerebro-computadora está transformando el paradigma de rehabilitación. Estos avances buscan no solo restaurar la movilidad, sino también devolver percepción sensorial al paciente [8], [9].

Asimismo, la ingeniería puede contribuir al diseño de prótesis de bajo costo y alta durabilidad para contextos de bajos recursos, integrando materiales accesibles, impresión 3D y componentes modulares. Esta línea es clave para reducir la inequidad en el acceso a tecnologías que hoy marcan la diferencia en calidad de vida tras una amputación [2], [6].

5. REFERENCIAS BIBLIOGRAFICAS

- [1] J. Mondragón-Zamora, B. P. Marina López-de Dicastillo, M. Gutiérrez-Nistal, N. A. Concepción-Rodríguez, J. D. Zafra-Angulo, B. Martínez-Turégano, V. Morillo-Jiménez y Á. Fernández-Heredero, "Evolución y protetización de las amputaciones mayores en pacientes con enfermedad arterial periférica de nuestro centro," *Angiología*, vol. 74, no. 6, pp. 278–285, nov./dic. 2022. Disponible en: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0003-31702022000600003
- [2] World Health Organization, "Amputations and prosthetics: global perspective," WHO Report, 2021. [En línea]. Disponible: https://www.who.int/publications/i/item/amputations-and-prosthetics Accedido: 25-ago-2025.
- [3] J. Armstrong y D. Boulton, "Diabetic foot ulcers and their recurrence," *New England Journal of Medicine*, vol. 376, no. 24, pp. 2367–2375, 2017. [En línea]. Disponible: https://pubmed.ncbi.nlm.nih.gov/28614678/ Accedido: 25-ago-2025.
- [4] N. E. Villegas Loaiza, "Tratamiento rehabilitador como alternativa en paciente amputado: Presentación de un caso y revisión de la literatura," *Revista Finlay*, vol. 13, no. 4, pp. 480–488, dic. 2023. Disponible en: http://scielo.sld.cu/scielo.php?script=sci arttext&pid=S2221-24342023000400480
- [5] E. Dougherty, "Traumatic limb amputations: epidemiology and outcomes," *Journal of Trauma and Acute Care Surgery*, vol. 81, no. 5, pp. 1020–1027, 2016. [En línea]. Disponible: https://pubmed.ncbi.nlm.nih.gov/27668694/ Accedido: 25-ago-2025.
- [6] M. Gutiérrez-Fernández *et al.*, "Diferencias según el género en el perfil clínico de riesgo del paciente amputado de miembro inferior," *Cirugía Española*, vol. 89, no. 4, pp. 490–496, 2021. doi: 10.24875/CIRU.20000649. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34352862/

- [7] M. C. Almaraz *et al.*, "Incidencia de amputaciones de extremidades inferiores en la población con diabetes mellitus en Málaga (1996-1997)," *Aten Primaria*, vol. 26, no. 10, pp. 677–680, Dic. 2000. doi: 10.1016/S0212-6567(00)78750-6
- [8] M. Resnik et al., "Advanced upper limb prostheses: outcomes and future directions," *Journal of Rehabilitation Research and Development*, vol. 51, no. 5, pp. 725–740, 2014. [En línea]. Disponible: https://pubmed.ncbi.nlm.nih.gov/25357162/ Accedido: 25-ago-2025.
- [9] I. Font-Jimenez, M. Llauradó-Serra, À. Pallarés-Martí, and F. García-Hedrera, "Psycho-social factors involved in amputation. Systematic review of the literature," *Aten Primaria*, vol. 48, no. 3, pp. 207–210, Mar. 2016.