

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- \bullet 40V,100A,R_{DS(ON).max}=5.0m Ω @V_{GS}=10V
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- ♦ UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 5.0 m\Omega \\ I_D & 100A \end{array}$

Pin Configuration

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	40	V
Continuous drain current (T _C = 25°C)	1-	100	A
Continuous drain current (T _C = 100°C)	- I _D	70	Α
Pulsed drain current ¹⁾	Іом	400	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	156	mJ
Power Dissipation (T _C = 25°C)	P _D	100	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.25	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM100N04-T2	TO-252	VSM100N04-T2
VSM100N04-T1	TO-251	VSM100N04-T1

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	T _J = 25°C unle	ss otherwise noted				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250uA	1.0		2.0	V
Drain-source leakage current	IDSS	V _{DS} =40 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
		V _{DS} =32 V, V _{GS} =0 V, T _J = 125°C			30	μА
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
.		V _{GS} =10 V, I _D =40 A		3.8	5	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =30 A		4.7	6.2	mΩ
Forward transconductance	g fs	V _{DS} =5 V , I _D =30 A		79		S
Dynamic characteristics						
Input capacitance	C _{iss}			4023.6		
Output capacitance	Coss	V _{DS} = 20 V, V _{GS} = 0 V,		410.4		pF
Reverse transfer capacitance	Crss	- F = 1MHz		338.5		
Turn-on delay time	t _{d(on)}			231.6		- ns
Rise time	t _r			213.6		
Turn-off delay time	t _{d(off)}	- V _{DD} = 30V,V _{GS} =15V, I _D =30 A		219.2		
Fall time	t _f	•		74		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.4		Ω
Gate charge characteristics	•					
Gate to source charge	Q _{gs}			11		
Gate to drain charge	Q_{gd}	V _{DS} =30 V, I _D =30A, - V _{GS} =10V		16.7		nC
Gate charge total	Qg			66.7		
Drain-Source diode characteristic	s and Maxir	num Ratings				
Continuous Source Current	Is				100	А
Pulsed Source Current ³⁾	I _{SM}]			400	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =40A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}			41.4		ns
Reverse Recovery Charge	Qrr	I _S =20A,di/dt=100A/us, T _J =25℃		29		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =20V, V_{GS} =10V, L=0.5mH, I_{AS} =25A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300 \, \mu \, \text{s}$, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics 50 45 Common V_{DS}=5 V 40 35 Drain current I_D (A) 30 T_c=125°C 25 20 T_c = 25°C 15 10 5 0 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0 Gate-source voltage V_{GS} (V)

Figure 3. Capacitance Characteristics

10 V_{GS} = 10 V

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 8. Maximum Safe Operating Area

103
104
105
Limited by R (Scott)
1000
Limited by R (Scott)
1000
Nodes:
T + 25c C
T + 150 C
Single Pulse
1002
0.01

Drain-Source Voltage V
DS (V)

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

