November 17, 2005

Metamorphic isograds – Barrow See Spear ch. 10, Spear ch. 4 for more on metamorphic minerals

Graphical representations

- 1) useful for visualizing chemical reactions
- 2) reinforce the idea that bulk composition of your rock is important

Plot bulk composition to find stable phases:

Anorthite

grossular + kyanite + quartz

Terminal reaction − end of P-T stability of a phase

Reactions in simpler, lower variance systems

Kyanite ⇌ sillimanite

Barrow's metamorphic grades

<u>Pelites</u> – J B Thompson (1957) developed an approach for understanding reactions in pelites. The system is: $SiO_2 - Al_2O_3 - K_2O - MgO - FeO - H_2O$. He took advantage of some simplifying features in these rocks:

- 1) quartz assumed always present
- 2) H₂O assumed present as fluid phase

Can further simplify if muscovite is always present to the two-dimensional FMA diagram $(F = FeO, M = MgO, A = Al_2O_3)$

<u>Minerals</u>

Staurolite

Muscovite KAl₂AlSi₃O₁₀(OH)₂

Sillimanite-Andalusite-Kyanite Al₂SiO₅

Quartz SiO₂

K-Feldspar KAlSi $_3$ O $_8$ Stable at low T + P

and again at high T +

P

Garnet Pyrope $Mg_3Al_2Si_3O_{12}$ Almandine $Fe_3Al_2Si_3O_{12}$

 $\begin{array}{ccc} Biotite & Phlogopite & KMg_3AlSi_3O_{10}(OH)_2\\ & Annite & KFe_3AlSi_3O_{10}(OH)_2 \end{array}$

 $Fe_2Al_9Si_4O_{22}(OH)_2$

Chloritoid $(Fe,Mg)_2Al(OH)_4Al_3O_2(SiO_4)_2$ Chlorite $(Fe,Mg,Al)_6(Si,Al)_4O_{10}(OH)_8$

Cordierite $Mg_2Al_4Si_5O_{18}$ Low P indicator

mineral

To plot minerals in projection:

1) start with chemical analysis in wt % of oxides

2) divide each wt % by gm mol wt, renormalize → calculate mol % or mol fraction

Project through muscovite onto FMA face, for example:

Reactions when you have solid solution minerals: Continuous, 3 phase triangles move across the diagram

Isograds – mineral appearances – depend on P, T, and the bulk composition