

该放大电路,在放大倍数较大时,可避免使用大电阻。但 R_1 的存在,削弱了负反馈。

Electric Circuits

But $V_1=V_2=V_i$. Equation (1) becomes $\frac{-V_i}{R_1} = \frac{V_i-V_o}{R_f}$

$$\therefore V_o = (1 + \frac{R_f}{R_1})V_i$$

A noninverting amplifier is an op amp circuit designed to provide a positive voltage gain.

Electric Circuits

2. If feedback resister R_f =0 (short circuit) or R_1 = ∞ (open circuit) or both, the gain becomes 1. Under these conditions (R_f =0 and R_1 = ∞), the circuit is called a **voltage follower** (or **unity gain amplifier**) because the output follows the input. I_2

Electric Circuits

Summing Amplifier

A summing amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

Electric Circuits

Electric Circuits

Applying KCL at node a gives i=i₁+i₂+i₃

But
$$\frac{V_a - V_o}{R_f} = \frac{V_1 - V_a}{R_1} + \frac{V_2 - V_a}{R_2} + \frac{V_3 - V_a}{R_3}$$

We note that V_a=0, and we get

$$\frac{-V_o}{R_f} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}$$

$$V_o = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

If we assume $R_1=R_2=R_3=R_f$

$$V_o = -(V_1 + V_2 + V_3)$$

Difference Amplifier

A difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.

3

Applying KCL to node a,
$$\frac{V_1 - V_a}{R_1} = \frac{V_a - V_o}{R_2}$$
 or $V_o = (\frac{R_2}{R_1} + 1)V_a - \frac{R_2}{R_1}V_1$ (1)

or
$$V_o = (\frac{R_2}{R_1} + 1)V_a - \frac{R_2}{R_1}V_1$$
 (1)

Applying KCL to node b, $\frac{V_2 - V_b}{R_3} = \frac{V_b - 0}{R_4}$

or
$$V_b = \frac{R_4}{R_3 + R_4} V_2$$
 (2)

But V_a=V_b. Substituting Eq.(2) into Eq.(1) yields

$$V_o = (\frac{R_2}{R_1} + 1) \frac{R_4}{R_3 + R_4} V_2 - \frac{R_2}{R_1} V_1$$

$$V_o = \frac{R_2}{R_1} \cdot \frac{1 + \frac{R_1}{R_2}}{1 + \frac{R_3}{R_4}} V_2 - \frac{R_2}{R_1} V_1$$

Since a difference amplifier must reject a signal common to the two inputs, the amplifier must have the property that $V_0=0$ when $V_1=V_2$. This property exists when $R_1/R_2=R_3/R_4$.

Electric Circuits

$$\therefore V_o = \frac{R_2}{R_1} (V_2 - V_1)$$

If $R_2=R_1$ and $R_3=R_4$, the difference amplifier becomes a subtractor, with the output

$$V_{0} = V_{2} - V_{1}$$

Electric Circuits Integrator 积分器

$$\frac{u_1}{R} + C\frac{du_2}{dt} = 0 \qquad \Rightarrow \frac{du_2}{dt} = -\frac{1}{RC}u_1$$
$$\Rightarrow u_2 = -\frac{1}{RC}\int_{-\infty}^t u_1 dt$$

