Digital Signal Processing

I. Sampling of analog signals

I.1. Analog and Digital Signals

Signals

- ➤ Signal = a measurable quantity which varies in time, space or some other variable
- **Examples**:
 - a voltage which varies in time (1D voltage signal)
 - sound pressure which varies in time (sound signal)
 - ▶ intensity of light which varies across a photo (2D image)
- ▶ Represented as a mathematical function, e.g. v(t).

Glossary

- ► Glossary:
 - ► "e.g." = "exampli gratia" (lat.) = "for example" (eng.) = "de exemplu" (rom.)
 - ▶ "i.e." = "id est" (lat) = "that is" (eng.) = "adică" (rom.)

Signal dimension

- ▶ Unidimensional (1D) signal = a function of a single variable
 - **Example:** a voltage signal v(t) only varies in time.
- ► Multidimensional (2D, 3D ... M-D) signal = a function of a multiple variables
 - Example: intensity of a grayscale image I(x, y) across the surface of a photo
- ▶ In these lectures we consider only 1D signals, but the theory is similar

Continuous and discrete signals

- Continuous (analog) signal = function of a continuous variable
 - ▶ Signal has a value for possible value of the variable in the defined range
 - The variable may be defined only in a certain range (e.g. $t \in [0, 100]$), but it is a compact range
- ▶ Discrete signal = function of a discrete variable
 - ► Signal has values only at certain discrete values (samples)
 - ▶ Indexed with natural numbers: x[-1], x[0], x[1] etc.
 - Outside the samples, the signal is not defined

Notation

- ▶ We use the following notation:
- Continuous signal
 - ► Has **round parantheses**, e.g. $x_a(t)$
 - Sometimes has the a subscript
 - ► The variable is usually *t* (time)
 - \triangleright x(2.3) =the value of the signal a(t) at t = 2.3
- ▶ Discrete signal
 - ► Has **square brackets**, e.g. x[n]
 - ightharpoonup The variables are denoted as n or k (suggest natural numbers)
 - \triangleright x[3] = the value of the signal x[n] for n = 3
 - \triangleright x[1.5] = does not exist

Signals with continuous and discrete values

- ▶ Not only the time can be continuous or discrete
- ▶ The signal **values** can also be continuous or discrete
 - Example: signal values stored as 8-bit or 16-bit values
- On digital systems, signals always have discrete values due to finite number precision

Discrete frequency

- ► A signal is **periodic** if the values repeat themselves after a certain time (**period**)
- Frequency = inverse of period $F = \frac{1}{2}$
- ▶ Pulsation $\omega = 2 * \pi *$ frequency
- ► Continuous signals:
 - Periodic: $x_a(t) = x(t+T)$
 - T is usually measured in seconds (or some other unit)
 - $F = \frac{1}{T} \text{ is measured in } \underline{Hz} = \frac{1}{s} \text{ (Hertz)}$
- Discrete signals:
 - Periodic: $\underline{x[n]} = \underline{x[n+N]}$
 - has no unit, because it is just a number
 - $f = \frac{1}{N}$ has no unit also

Frequency limits

- \blacktriangleright For continuous signals, F can go to ∞
 - ▶ Because period T can be $T \rightarrow 0$
- For discrete signals, **largest frequency** is $f_{max} = \frac{1}{2}$
 - ▶ Smallest period is N = 2 (excluding N = 1, constant signals)
 - ► Consequence of using natural numbers to index the samples (x[0], x[1], x[2]...), without any physical unit attached
- For mathematical reasons, we will consider negative frequencies as well (remember SCS) (e.g. $-\omega$)

Domain of definition

- ► **Finite-length** discrete signals *x*[*n*]:
 - have only a certain number N of samples (e.g. for n = 0, 1, ... N-1)
 - they are not defined outside these samples
 - can be represented as a **vector** of numbers (e.g. like in Matlab, C)
- ▶ **Infinite-length** discrete signals x[n]:
 - e.g. defined for n = ... 2, -1, 0, 1, 2, ... or

Vector space of signals

- ▶ All signals of a certain length N form a vector space
- In mathematics, a vector space = a set V of elements $\{v\}$ (called "vectors") such that:
 - ▶ the sum of any two elements from V is still a member of V
 - \triangleright any vector from V multiplied by a constant is still a member of V
- ► These properties can easily be verified for signals

I.2. Sampling

Sampling

Esautionare

- ► Sampling = Taking the values from an analog signal at certain discrete moments of time, usually periodic
- ightharpoonup Distance between two samples = sampling period T_s
- **Sampling frequency** $F_s = \frac{1}{T_s}$
- ▶ Why sampling?
 - Converts continuous signals to discrete
 - Processing of continuous signals is expensive
 - Processing of discrete signals is cheap (digital devices)
 - Sometimes nothing is lost due to sampling

Escution = "Sample"

Graphical example

Sampling equation

► Mathematically, it is described by **the sampling equation**:

$$x[n] = x_a(n \cdot T_s)$$

- ▶ Produces a discrete signal x[n] from a continuous signal $x_a(t)$
- The *n*-th value of the discrete signal x[n] is the value of the analog signal $x_a(t)$ taken after *n* sampling periods, at time $n \cdot T_s$

Sampling of harmonic signals

Let's sample a cosine: $x_a(t) = cos(2\pi Ft)$

$$x[n] = x_a(nT_s) \quad t$$

$$= cos(2\pi F nT_s)$$

$$= cos(2\pi F n \frac{1}{F_s})$$

$$= cos(2\pi \frac{F}{F_s} n)$$

Sampling a continuous cosine produces a discrete cosine with discrete frequency:

► Same for sine instead of cosine

Discrete frequency is relative

$$X \left\{ A \right\} = Cos \left(2 \pi \right) \left(4 \right)$$

$$= \frac{F}{F_s}$$

- Discrete frequency should be understood as a value relative to the sampling frequency
- Example: $f = \frac{1}{4}$ means "coming from an analog frequency F which was $\frac{1}{4}$ of the sampling frequency"
 - ▶ it could have been a 100Hz signal sampled with 400Hz
 - ightharpoonup it could also have been a 3MHz signal sampled with 12MHz

False friends

Note: A discrete sinusoidal signal might not *look* sinusoidal, when its frequency is high (close to $\frac{1}{2}$).

Sampling theorem (Nyquist-Shannon)

The Nyquist-Shannon sampling theorem:

If a signal $x_a(t)$ that has maximum frequency F_{max} is sampled with a a sampling frequency

$$F_s \geq 2F_{max}$$

then it can be perfectly reconstructed from its samples using the formula:

$$x_a(t) = \sum_{n=-\infty}^{+\infty} x[n] \cdot \frac{\sin(\pi(F_s t - n))}{\pi(F_s t - n)}.$$

Comments on the sampling theorem

- ► All the information in the original signal is contained in the samples, provided the sampling frequency is high enough
- ► It is much easier to process discrete samples instead of nalog signals (e.g. using Matlab instead of capacitors :))
- ▶ Sampling with $F_s \ge 2F_{max}$ makes the discrete frequency smaller than 1/2 —

$$f = \frac{F}{F_s} \le \frac{F_{max}}{F_s} \le \frac{1}{2}$$

$$f = \frac{500}{1000}, \frac{500}{1200}$$

Example of the sampling theorem in action

Sampling theorem in action:

- ► Humans can only hear sounds up to ~20kHz
- ► Use sampling rates higher than 40kHz => no quality loss
 - Standardized for CD-Audio: 44100Hz

Aliasing

- http://www.dictionary.com/browse/alias:
 - ▶ "alias": a false name used to conceal one's identity; an assumed name
- What happens when the sampling frequency is not high enough?
- ▶ Example: F = 600Hz sampled with $F_s = 1000Hz$

$$\begin{array}{cccc}
 & \downarrow & \rightarrow & \text{M.T}_{\varsigma} \\
x[n] = x_a(nT_{\varsigma}) & & \\
= \cos(2\pi 600nT_{\varsigma}) & & \\
= \cos(2\pi 600n\frac{1}{1000}) & & \\
= \cos(2\pi \frac{6}{10}n) & & \uparrow & = \frac{F}{T_{\varsigma}} & = \frac{6}{10}
\end{array}$$

▶ Bad sign: We get a frequency larger than $f_{max} = \frac{1}{2}$

Funny things with cos() and sin()

- Discrete cos() and sin() have funny properties
- ► They are **the same** when adding an integer to the frequency:

$$\cos(2\pi(f+k)n) = \cos(2\pi f n + (2kn\pi)) = \cos(2\pi f n)$$

► So all these discrete frequencies are identical:

$$f = \dots = -1.4 = -0.4 = 0.6 = 1.6 = 2.6 = 3.6 = \dots$$

▶ In addition, negative frequencies can be turned into positive:

$$-1.4 = -0.4 = 0.6 = 1.6 = 2.6 = 3.6 = \dots$$

$$\text{(a)} \left(2 | 0.4 \text{ M} \right) = \text{(b)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M} \right) = \text{(c)} \left(2 | 1 | 0.4 \text{ M} \right)$$

$$\text{(c)} \left(2 | 1 | 0.4 \text{ M$$

Aliasing

Aliasing:

- Every discrete frequency f outside the interval $\left[-\frac{1}{2},\frac{1}{2}\right]$ is **identical** (an "alias") with a frequency from this interval $f_{alias} \in \left[-\frac{1}{2},\frac{1}{2}\right]$
- ▶ Just add or subtract 1's to f until the result is in $\left[-\frac{1}{2}, \frac{1}{2}\right]$

Aliasing example - high frequency signal, same samples

Aliasing example - samples only 1.00 -0.75 -0.50 -0.25 -0.00 -0.25 --0.50 --0.75 --1.00 -200 400 600 800 1000

The problem of aliasing

- Sampling different signals can lead to exactly same samples
- Problem: how to know from what signal did the samples come from? Impossible.
- Example:
 - all these discrete frequencies are identical: $f = -0.4 = 0.4 = 0.6 = 1.6 = \dots$

- ▶ so if $F_s = 1000 Hz$, the original signal could have been any frequency F out of: 400 Hz or 600 Hz or 1400 Hz or 1600 Hz or ...
- Exercise: check some of these

Anti-alias

- Aliasing only affects digital signals (it is caused by sampling)
- ► Sampling according to Shannon theorem guarantees no aliasing:

$$F_s \ge 2F_{max} \Rightarrow f = \frac{F}{F_{max}} \le \frac{1}{2}$$

▶ Better remove from the signal the frequencies larger than $\frac{F_s}{2}$, which will not be sampled correctly, otherwise they will create a false frequency and bring confusion

Anti-alias

- ▶ Anti-alias filter: a low-pass filter situated before a sampling circuit, rejecting all frequencies $F > \frac{F_s}{2}$ from the signal before sampling
 - ▶ Standard practice in the design of processing systems

Ideal signal reconstruction from samples

- Reconstruction = opposite of sampling
- Produces a continuous signal from a discrete one

Ideal reconstruction equation:

tinuous signal from a discrete one n equation:
$$(t) = x[\frac{t}{T_s}] = x[t \cdot F_s]$$

$$(t) = x[\frac{t}{T_s}] = x[t \cdot F_s]$$

 \blacktriangleright A discrete frequency f becomes $F = f \cdot F_s$

Reconstruction and aliasing

- ▶ What value to use for f?
 - we know f = f + 1 = f + 2 = ..., which one to use?
- ▶ The reconstruction assumes all f are in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$
 - apply reconstruction equation
 - ▶ the resulting signal has all frequencies $F \leq \frac{F_s}{2} = F_N$ (= "the Nyquist frequency")
- ▶ In exercises: Always bring f in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ before reconstruction
- ▶ Reconstruction always produces signals with frequencies in $\left[-\frac{F_s}{2}, \frac{F_s}{2}\right]$
 - Only signals or components sampled according to the sampling theorem will be reconstructed identically
 - ▶ Any other components are replaced with their aliased counterparts

A/D and D/A conversion

- ► Sampling + quantization + coding is usually done by an Analog to Digital Converter (ADC)
 - It takes an analog signal and produces a sequence of binary-coded values
- Reconstructing an analog signal from numeric samples is done by a Digital to Analog Converter (DAC)
 - ▶ Usually the reconstruction is not based on sampling theorem equation, which is too complicated, but with simpler empirical solutions
- You have ADCs and DACs for any In or Out audio jack (phone, computer etc)

Signal quantization and coding

- ► In practice, the amplitudes of the samples are converted to binary representation
- ▶ Because of this, the amplitudes are rounded to fixed levels, e.g. 8-bit values (256 distinct levels), 16-bit values (65536).
- ► This "rounding" is known as quantization
- ► The "rounding error" is known as quantization error
- Converting the value to binary form is known as coding
- ▶ ADCs handle sampling, quantization and coding simultaneously