Group Art Unit No.: 2681

Amendment to the Claims:

This listing of the claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims:

Applicant has not amended the claims, and has listed the claims herein.

Claim 1 (Original): A method of indicating extant battery life, the method comprising the steps of: (a) initially determining a first extant battery life value having a first confidence level; (b) generating a perceivable indication of said first battery life value; (c) determining a second extant battery life value having a second confidence level; and (d) generating a perceivable indication of said second battery life value after generating the perceivable indication of said first battery life value, wherein the second confidence level is higher than said first confidence level and said determination of said first extant battery life value is completed before said determination of said second extant battery life value is completed.

AZ

Claim 2 (Original): A method according to claim 1, wherein the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 3 (Original): A method according to claim 1, wherein the first and second battery life values are indicated visually.

Claim 4 (Original): A method according to claim 1, wherein the first extant battery life value is determined on the basis of an average of a plurality of battery voltage readings.

Group Art Unit No.: 2681

Claim 5 (Original): A method according to claim 4, wherein the first extant battery life value is read from a lookup table in dependence on said average.

Claim 6 (Original): A method according to claim 1, wherein the second extant battery life value is determined on the basis of a plurality of time-spaced battery voltage readings.

Claim 7 (Original): A method according to claim 6, wherein said second extant battery life value t calculated on the basis of three voltage readings according to the formula:

AZ

$$t = \frac{\ln\left(\frac{\left(\Phi - V_T\right)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

Claim 8 (Original): A method according to claim 4, wherein the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and the first of said time spaced readings is used for calculating said average.

Claim 9 (Original): A method of indicating extant battery life for a battery powered apparatus, the method comprising the steps of: (a) determining a first extant battery life value having a first confidence level during operation of an apparatus in a first mode; (b) generating a perceivable indication of said first battery life value; (c) determining a second extant battery life value having a second confidence level during operation of an apparatus in a second mode; and (d) generating a perceivable indication of said second battery life value after generating the perceivable indication of said first battery life value, wherein the second confidence level is higher than said first confidence level and said first mode places a greater current demand on the battery than the second mode.

Claim 10 (Original): A method according to claim 9, wherein the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 11 (Original): A method according to claim 9, wherein the first and second battery life values are indicated visually.

Claim 12 (Original): A method according to claim 9, wherein the first extant battery life value is determined on the basis of an average of a plurality of battery voltage readings.

Claim 13 (Original): A method according to claim 12, wherein the first extant battery life value is read from a lookup table in dependence on said average.

Claim 14 (Original): A method according to claim 9, wherein the second extant battery life value is determined on the basis of a plurality of time-spaced battery voltage readings.

Claim 15 (Original): A method according to claim 14, wherein said second extant battery life value t calculated on the basis of three voltage readings according to the formula:

$$t = \frac{\ln\left(\frac{\left(\Phi - V_T\right)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{\left(V_0 - V_1\right)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{\left(V_0 - V_1\right)^2}{2V_1 - V_2 - V_0}$$

Claim 16 (Original): A method according to claim 12, wherein the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and the first of said time spaced readings is used for calculating said average.

Claim 17 (Original): A battery-powered apparatus including terminals for connections to a battery, a voltage sensor configured to sense the output voltage of a battery connected to said terminals, an indicator and a processor for controlling the indicator to indicate the extant life of a battery, connected to said terminals, in dependence on the output of the voltage sensor, wherein the processor is configured to: (a) initially determine a first extant battery life value having a first confidence level on the basis of the output of the voltage sensor; (b) control the indicator to indicate said first battery life value; (c) determine a second extant battery life value having a second confidence level, higher than the first confidence level, on the basis of the output of the sensor; and (d) control the indicator to indicate said second battery life value after indication of said first battery life value, and said determination of said first extant battery life value is completed before said determination of said second extant battery life value is completed.

Claim 18 (Original): An apparatus according to claim 17, wherein the processor is configured to control the indicator such that the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 19 (Original): An apparatus according to claim 17, wherein the indicator is a display device.

Claim 20 (Original): An apparatus according to claim 17, wherein the processor is configured to determine the first extant battery life value on the basis of an average of a plurality of battery voltage readings.

Group Art Unit No.: 2681

Claim 21 (Original): An apparatus according to claim 20, including a memory storing a lookup table relating battery voltage readings to extant battery life values, wherein the processor is configured to read the first extant battery life value from the lookup table in dependence on said average.

Claim 22 (Original): An apparatus according to claim 17, wherein the processor is configured to calculate the second extant battery life value on the basis of a plurality of time-spaced outputs from said voltage sensor.

Claim 23 (Original): An apparatus according to claim 22, wherein said second extant battery life value is calculated on the basis of three voltage readings according to the formula:

$$t = \frac{\ln\left(\frac{\left(\Phi - V_T\right)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

Claim 24 (Original): An apparatus according to claim 20, wherein the processor is configured to determine the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and calculate said average using the first of said time spaced readings.

Claim 25 (Original): A battery-powered apparatus including terminals for connections to a battery, voltage sensor configured to sense the output voltage of a battery connected to said terminals, an indicator and a processor for controlling the indicator to indicate the extant life of a battery, connected to said terminals, in dependence on the output of the voltage sensor, wherein the processor is configured to: (a) determine a first extant battery life value having a first confidence level on the basis of the output of the voltage sensor when the apparatus is operating in a first mode; (b) control the indicator to indicate said first battery life value; (c) determine a second extant battery life value having a second confidence level, higher than the first confidence level, on the basis of the output of the sensor when the apparatus is operating in a second mode; and (d) control the indicator to indicate said second battery life value after indication of said first battery life value, and said second mode is characterised by a higher current demand being placed on the battery powering the apparatus than that placed on the battery by said first mode.

Claim 26 (Original): An apparatus according to claim 25, wherein the processor is configured to control the indicator such that the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 27 (Original): An apparatus according to claim 25, wherein the indicator is a display device.

Claim 28 (Original): An apparatus according to claim 25, wherein the processor is configured to determine the first extant battery life value on the basis

Group Art Unit No.: 2681

of an average of a plurality of battery voltage readings.

Claim 29 (Original): An apparatus according to claim 28, including a memory storing a lookup table relating battery voltage readings to extant battery life values, wherein the processor is configured to read the first extant battery life value from the lookup table in dependence on said average.

Claim 30 (Original): An apparatus according to claim 25, wherein the processor is configured to calculate the second extant battery life value on the basis of a plurality of time-spaced outputs from said voltage sensor.

A2

Claim 31 (Original): An apparatus according to claim 30, wherein said second extant battery life value is calculated on the basis of three voltage readings according to the formula:

$$t = \frac{\ln\left(\frac{\left(\Phi - V_T\right)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

Claim 32 (Original): An apparatus according to claim 28, wherein the processor is configured to determine the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and calculate said average using the first of said time spaced readings.

Claim 33 (Original): A mobile telephone including terminals for connections to a battery, a voltage sensor configured to sense the output voltage of a battery connected to said terminals, an indicator and a processor for controlling the indicator to indicate the extant life of a battery, connected to said terminals, in dependence on the output of the voltage sensor, wherein the processor is configured to: (a) initially determine a first extant battery life value having a first confidence level on the basis of the output of the voltage sensor; (b) control the indicator to indicate said first battery life value; (c) determine a second extant battery life value having a second confidence level, higher than the first confidence level, on the basis of the output of the sensor; and (d) control the indicator to indicate said second battery life value after indication of said first battery life value, and said determination of said first extant battery life value is completed before said determination of said second extant battery life value is completed.

Claim 34 (Original): A mobile telephone according to claim 33, wherein the processor is configured to control the indicator such that the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 35 (Original): A mobile telephone according to claim 33, wherein the indicator is a display device.

Claim 36 (Original): A mobile telephone according to claim 33, wherein the processor is configured to determine the first extant battery life value on the basis of an average of a plurality of battery voltage readings.

AZ

Group Art Unit No.: 2681

Claim 37 (Original): A mobile telephone according to claim 36, including a memory storing a lookup table relating battery voltage readings to extant battery life values, wherein the processor is configured to read the first extant battery life value from the lookup table in dependence on said average.

Claim 38 (Original): A mobile telephone according to claim 33, wherein the processor is configured to calculate the second extant battery life value on the basis of a plurality of time-spaced outputs from said voltage sensor.

AZ

Claim 39 (Original): A mobile telephone according to claim 38, wherein said second extant battery life value is calculated on the basis of three voltage readings according to the formula:

$$t = \frac{\ln\left(\frac{(\Phi - V_T)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

Claim 40 (Original): A mobile telephone according to claim 36, wherein the processor is configured to determine the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and calculate said average using the first of said time spaced readings.

Claim 41 (Original): A mobile telephone including terminals for connections to a battery, voltage sensor configured to sense the output voltage of a battery connected to said terminals, an indicator and a processor for controlling the indicator to indicate the extant life of a battery, connected to said terminals, in dependence on the output of the voltage sensor, wherein the processor is configured to: (a) determine a first extant battery life value having a first confidence level on the basis of the output of the voltage sensor when the apparatus is operating in a first mode; (b) control the indicator to indicate said first battery life value; (c) determine a second extant battery life value having a second confidence level, higher than the first confidence level, on the basis of the output of the sensor when the apparatus is operating in a second mode; and (d) control the indicator to indicate said second battery life value after indication of said first battery life value, and said second mode is characterised by a higher current demand being placed on the battery powering the apparatus than that placed on the battery by said first mode.

Claim 42 (Original): A mobile telephone according to claim 41, wherein the processor is configured to control the indicator such that the manner of indicating the second battery life value is different from the manner of indicating the first battery life value.

Claim 43 (Original): A mobile telephone according to claim 41, wherein the indicator is a display device.

Claim 44 (Original): A mobile telephone according to claim 41, wherein the processor is configured to determine the first extant battery life value on the basis

Group Art Unit No.: 2681

of an average of a plurality of battery voltage readings.

Claim 45 (Original): A mobile telephone according to claim 44, including a memory storing a lookup table relating battery voltage readings to extant battery life values, wherein the processor is configured to read the first extant battery life value from the lookup table in dependence on said average.

Claim 46 (Original): A mobile telephone according to claim 41, wherein the processor is configured to calculate the second extant battery life value on the basis of a plurality of time-spaced outputs from said voltage sensor.

Claim 47 (Original): A mobile telephone according to claim 46, wherein said second extant battery life value is calculated on the basis of three voltage readings according to the formula:

$$t = \frac{\ln\left(\frac{(\Phi - V_T)}{\xi}\right)}{\ln \alpha}$$

where:

$$\alpha = e^{\frac{\ln\left[\frac{V_1 - V_2}{V_0 - V_1}\right]}{\Delta t}}$$

$$\xi = \frac{\left(V_0 - V_1\right)^2}{2V_1 - V_2 - V_0}$$

$$\Phi = V_0 - \frac{(V_0 - V_1)^2}{2V_1 - V_2 - V_0}$$

Claim 48 (Original): A mobile telephone according to claim 44, wherein the processor is configured to determine the second extant battery life value is determined on the basis of a plurality of time spaced battery voltage readings and calculate said average using the first of said time spaced readings.