Microcontroller
A short intro using Arduino Platform

Pongsakorn Wechakarn
BCI Lab

@peachiia

Basic Engineering Skills in Biomedical Engineering

Time Knowledge

Money Land & Space

"EXPENSIVE"

Human Technology Resources

Equipments

Which of the MCUs should we pick?

				EGBI 10: Basic Engineering Skills in Biomedical Engineering
Board		Arduino UNO	STM32-BluePill	PIC32MX795 Dev Board (USB 32-Bit Whacker)
MCU		ATmega328P	STM32F103C8T6	PIC32MX795F512L
CPU	Туре	8 bits / AVR	32 bits / ARM Cortex-M3	32 bits / MIPS32 M4K Core
	Speed	20 MHz	72 MHz	80 MHz
MEM	Flash	32 KB	64 KB	512 KB
	SRAM	2 KB	20 KB	128 KB
	EEPROM	1 KB	N/A	N/A
COST (appox*)		28 USD 970 THB	9 USD 330 THB	147 USD 5040 THB

```
Rasic Enningering Skills in Rigmertical I
init:
    call serial init
start:
    ldi r19, 0x0a ;push newline onto the stack
    ldi r19, 0x3e ;print '>'
    call serial transmit
loop:
    call serial receive ; receive a character
    call serial_transmit ;print character
    cpi r19, 0x0a
    breq input_finished ;if it's a newline jump to input_finished
    push r19 ;otherwise push it to the stack
    rjmp loop
input_finished:
    pop r19 ; remove char from top of stack
    call serial transmit ;transmit it
    cpi r19, 0x0a
    breq start ;if it's a newline, full string has been sent so go back to start
    rjmp input finished
```

```
void setup()
{
   pinMode(LED,OUTPUT);
}

void loop()
{
   digitalWrite(LED,HIGH);
   delay(1000);
   digitalWrite(LED,LOW);
   delay(1000);
}
```


EGBI 101 Basic Engineering Skills in Biomedical Engineering

LAB 01:

Use 5V Pin to Power ON the LED And try out with difference Resistor.

EGBI 101 asic Engineering Skills in Biomedical Engineering

LAB 02:

Use Digital Pin 5
to Power ON the LED (still)

LAB 03:

Use Digital Pin 5

Blink the LED every 1 Seconds.

ON the LED for 0.5 Second, Then OFF for 0.5 Second, and so on.

```
LAB 04:
Use Digital Pin 5
and analogWrite() to dim the LED.
```



```
LAB 05:
Say "Hello World!"
Using Serial.print()

Or Serial.println()
```

LAB 06:
Using digitalRead()
Use Digital Pin 3
Read State of the pin (True,False)
And print out Using Serial.print()

EGBI 101

Basic Engineering Skills in Biomedical Engineering

LAB 07:

Using analogRead()

Read voltage from potentiometer.

LAB 08: By using the Potentiometer, Control the brightness of LED. if AnalogRead() > 700: LED ON @ 100% else: LED OFF

LAB 09: By using the Light Dependent Resistor (LDR), Control the brightness of LED. if DARK: LED ON @ 100% else: LED OFF

```
BONUS A:

By using the potentiometer,

Control the brightness of LED.

if AnalogRead() > 700 :

LED ON @ 100%

else if AnalogRead() <= 700 and >= 300 :

LED ON @ 50%

else:

LED OFF
```

EGBI

BONUS B:

```
if Button is Pushed:
    LED ON @ 100%, No Blink
else if AnalogRead() > 700 :
    LED ON @ 20%, Blink at 1 Hz. (0.5s On, 0.5s OFF)
else if AnalogRead() <= 700 and >= 300 :
    LED ON @ 50%, Blink at 3 Hz
else:
    LED ON @ 100%, Blink at 5 Hz
```

EGBI asic Engineering Skills in Biomedical Enginee

What's next?

- Another I/O
- Peripheral Modules
- Serial Communication
- Task Scheduler
- Memory Managements
- etc.

EGBI 101

BONUS C:

By using 2 LEDs,
Make it blink at different frequency.

One at 3 Hz, and Another one at 7 Hz.