

C Rejection algorithm- generally the 3 letters, If there is Duplication, reject the world Rom - chack 6 random number in U(0,1), get the rank for each, then select 42, 1st select and Ghird from ronks A key usive with rejected algorithm is the frequency of resection 16 Mills is too high the nethod is inethiral. The sequence of occepts/rejew 18 a bring berroulli sequence be the between rejected is a random with years dot. Calculates probability of n trad until swall at hm +1 brul 0 Key 1) 0 (BIA) P(A) = P(AIB) P(B) Sent to so forward could the IF A Shards for first cord is it and is for search cord is ming: P(A) = 48 P(BIA) = 34 P(A) = 48 P(AONB) = 43 P(B)=4B. -> P(A1B)=34 = ABM) = P(BowA) That is, given many paid of (1st cod, 2nd cod) and feccent only on the paid for which I'd count is the It will be district that the proprior of like for which I'd (ord is also to will be 317, but now m) into their buthards. E A first x lan y simulan o first chart x from marginal dilkinoon ten chase y kan the condinal distre Magnel X dist 1 (0.27, 626, 629,023) pondom umk (0-022) give) x=1 etc

As it o continuo, he put is a smooth come 1 Doory sugest that when pand of are que sincer, there was IF e 9 P/4 D=0.99 E[s] = 0.99[1-099] = /W Similarly the probability du any special i are vay small, a) with a contra at. Note that ump = (fp) 700 o uncound 31 From tonie, Standarding Mardon we get p (T212) = \$\phi \frac{1245}{3} - \phi \big(\frac{13}{3}\) = 0.16 P(t 718) = 0.16

P (13 6 t 617) = \$\phi \big(\frac{17}{3}\) - \$\phi \big(\frac{13}{3}\) - \$\phi \big(\frac{13}{3}\) = 0.55 The cost or compact, so instead he we be standarding total of popularly to compel to probability 16 Normiv (number, mean, vanance) Colubrate to probably Norman con be as heard by "going in" to the body of the tubes of normal probabilist NORMOND and hone to the magn (Magn) to body god P(4 < 104) = 0.949, body to maryon yet RAM) = 0.4445, leady to 4-1.041. Simulated o via Normin (u) where ware town an time of random numb (0,11, I was can be gentle by 15+34 C Smulle valve for company A.B.C. Use Sytem Lice = Mox (G min (A,B))

5.	
Applied Probability 2012 Exon Mu	
0.817 6x12 0.696 17.451 17.406 17.08 18.48 0.090 0.094 0.088 15.77 15.282 15.264 18.78	
Phony $\frac{1}{2}(T_A + t_B + T_L) \sim N(1r = \frac{3^2}{2}) P(\alpha_{MY} \leq \alpha_L) = \frac{p(\alpha + t_R)}{\sqrt{3}}$ $(T_3 \leq 12) = A_1 \left((T_A \leq 12 \leq t_B \leq 12) \right) \text{ and } (T_C \leq 12)$	
P(T7612) = (P(TA612) + P(TB612) - P(TA612)) P(T6612)) P(T6612)) P(T6612)	
The state of the s	