Institut Supérieur du Numérique Algèbre / Série III

Exercice 1

On définit une loi de composition interne * sur R par : $\forall (a,b) \in R^2$, $a*b = \ln(e^a + e^b)$ Quelles en sont les propriétés ? Possède-t-elle un élément neutre ? Y a-t-il des éléments réguliers (On dit qu'un élément a est régulier si pour tout $(b,c) \in R$, $a*b=a*c \Rightarrow b=c$)

Exercice 2.

- a) Sur l'ensemble Z, étudier les propriétés de la loi définie par : p * q = p + q + p.q
- b) 1. Montrer que * est une loi de composition interne commutative et associative.
- c) 2. Montrer que * possède un élément neutre.
- d) 3. Quels sont les éléments symétrisables ? Réguliers ?
- e) 4. Est-ce que (Z, *) est un groupe ?
- f) 5. L'ensemble R \ $\{-1\}$ muni de la loi * définie par $\forall (a, b) \in \mathbb{R}^2$, a * b = a + b + ab est-il un groupe ?

Exercice 3

Soient $G = R^* \times R$ et * la loi de composition interne définie sur G par (x, y) *(x', y') = (xx', xy' + y)

- 1. Montrer que (G, *) est un groupe.
- 2. Montrer que $R_+^* \times R$ est un sous groupe de (G, *).

Exercice 4

Soient les quatre fonctions de R^* dans R^*

$$f_1(x) = x;$$
 $f_2(x) = \frac{1}{x};$ $f_3(x) = -x;$ $f_4(x) = \frac{-1}{x}$

Montrer que $G = \{f_1, f_2, f_3, f_4\}$ est un groupe pour la loi o

Exercice 5

Démontrer que le centre $C(G) = \{a \in G \text{ tel que } ax = xa \ \forall x \in G\}$ d'un groupe G est un sous groupe de G.

Exercice 6.

Soit $f: \mathbb{R} \to \mathbb{C}^*$. l'application qui à tout $x \in \mathbb{R}$ associe $e^{ix} \in \mathbb{C}$.

- 1. Montrer que f est un homomorphisme de groupes.
- 2. Calculer son noyau et son image. f est-elle injective?

Exercice 7

Montrer que la composition de deux homomorphismes de groupe est un homomorphisme de groupe.

Exercice 8

Soit $n \in N^*$. On considère l'ensemble $U_n = \{z \in C \text{ tel que } z^n = 1\} \subset C$ et l'application $f_n \colon Z \to C^*$ définie par $f_n(k) = e^i \frac{2k\pi}{n}$.

- 1. Démontrer que U_n muni de la multiplication est un sous-groupe de (C^*, x) .
- 2. Notons $\omega = e^{i\frac{2\pi}{n}}$ Montrer que le groupe U_n est engendré par $\omega : U_n = <\omega>$.
- 3. Montrer que, pour n, $m \in N^*$, si n divise m alors $U_n \subset U_m$.

- 4. Montrer que f_n est un morphisme de groupes de (Z, +) dans (C^*, x) .
- 5. Déterminer le noyau $Ker(f_n)$ et l'image $Im(f_n)$.

Exercice 9

- 1. Soit $n \ge 4$ et a, b, c, $d \in \{1,...n\}$ tous distincts. Que vaut (a b) \circ (c d) \circ (d a)?
- 2. Que dire d'une permutation de Sn possédant au moins n-1 points fixes.
- 3. Une permutation $s \neq Id$ telle que $s^2 = Id$ est-elle nécessairement une transposition?
- 4. Énumérer tous les éléments de S4.

Exercice 10

Pour les permutations σ suivantes, décomposer σ en produits de cycles disjoints, en produit de transpositions, calculer l'ordre de σ , la signature de σ , calculer σ^{100} :

$$\sigma 1 = \binom{123456}{354621} \qquad \qquad \sigma 2 = \binom{123456789}{469725813}$$

Exercice 11

Soit
$$\sigma = \binom{1234567}{3567124}$$

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Donner la signature de σ .
- 3. Décomposer σ en produit de transpositions.
- 4. Calculer σ^{2001}

Exercice 12

Pour $n \ge 1$, on note An l'ensemble des éléments de Sn de signature égale à 1. An est appelé le groupe alterné d'indice n.

- 1. Démontrer que An est un sous-groupe de Sn.
- 2. Énumérer tous les éléments de A3, de A4.
- 3. On suppose désormais que $n \ge 2$ et on fixe τ une transposition de Sn. Démontrer que $\phi : Sn \to Sn$, $\sigma \mapsto \sigma \circ \tau$ est une bijection. En déduire le cardinal de An.

Exercice 13

Soit n > 3

Soient $a \neq b \in \{1,...n\}$ et soit $\sigma \in Sn$. Quelle est la permutation $\sigma \circ (a \ b) \circ \sigma^{-1}$? On appelle centre du groupe symétrique l'ensemble des permutations $\sigma \square Sn$ qui commutent avec toutes les autres : $\forall s \in Sn$, $s \circ \sigma = \sigma \circ s$. Déterminer le centre de Sn