

Department of Computer Science & Engineering

Course No : CSE3110

Course Title : Digital System Design

Experiment No : 01

Experiment Name : ALU Implementation

Date of Submission : 3 December 2022

Submitted to : Md Raqibul Hasan & Anika Rahman

Submitted by -

Group No : 03(A2)

Name : Aurprita Mahmood

Sumaiya Shejin

Ziyan Shirin Raha

Meherin Sultana

Yasir Arafah Prince

ld : 20200104035, 20200104043,

20200104033, 20200104036,

20200104042

Section : A

Problem Statement: The problem statement is given below:-

S2 S1	5.	Output	Function
1 0	1	Ai-Bi	Subtract
1 0	0	Ai+1+1	Transfer A with Canny
0 0	1	Ai-1	Decrement A
0 0	0	Ai-Bi-1	Subtract with Bonnow
1 1	X	Ai'	Complement A
0 1	X	Ai.Bi	AND

Introduction: The main purpose of this experiment is to design a ALU (Arithmetic and Logic Unit). Our ALU is A bit. This combinational circuit named ALU periforims imporitant functions like arithmetic and logic openators. Generating functions will be the goal of our experiment. For generating the function at first we will have to derive equation from the table given above using the selector bits for three inputs. After the k-map we have to for three inputs. After the k-map we have to simplify the equation then with the help of the software named prototeus we will implement these software named prototeus we will implement the output functions. Thus the ALU will generate the output of the given functions.

Function Table: The function table is given b	below:-
---	---------

52	51	50	X;	Y:	7;	70/cin	Output
0	0	0	Ai	Bi	Ci	0	Ai-Bi-1
0	0	1	Ai	All 1	Ci	0	Ai-1
0	1	0	Ai+Bi	Bì	0	0	Ai. Bi
0	1	1	Ai+Bi	Bì	0	0	Ai. Bi
1	0	0	Ai	All 1	Ci	1	Ai+1+1
1	0	1	Ai	Bi	Ci	1	Ai-Bi
1	1	0	·Āi	0	0	0	Ai'
1	1	1	Ai	0	0	0	Ai'

K-map: Forc Zo,

>	5,50	5,50	5,50	5,50
2	0	O	0	0
2	1	1	0	0

FOR Yi,

52	5,50	5,50	5,50	5,50
52	Bi	1	Bì	Bi
52	[1]	Bi	0	0

$$Y_{1} = g_{2}S_{0}B_{1} + \overline{5}_{2}S_{1}S_{0} + \overline{5}_{2}S_{1}B_{1} + \overline{5}_{2}S_{1}S_{0} + \overline{5}_{2}S_{1}S_{0}B_{1}$$

 $= \overline{5}_{1}(\overline{5}_{2}S_{0} + S_{2}S_{0}) + \overline{B}_{1}(\overline{5}_{2}S_{0} + \overline{5}_{2}S_{1} + \overline{5}_{2}S_{1}S_{0})$
 $= \overline{5}_{1}(\overline{5}_{2}\Theta_{50}) + \overline{B}_{1}(\overline{5}_{2}S_{0} + \overline{5}_{2}S_{1} + S_{2}S_{1}S_{0})$

Fore Xi,

5,50	5,50	5,50	5,50	5,50
52	Aì	Ai	Ai+ Bi	AitBi
2	Ai	Ai	Āi	Āi]

Result:

For subtract with borrow operation.

Se	lecto	^	7	Input (A)				Inp	wt ((B)	Output					
		50					-	_			Cout				F.	
											1	-	0	1	1	
0	0	0	1	1	1	0	1	0	0	1	1	O	1	0	0	
			1	0	0	1	0	1	1	1	1	0	0	0	1	

For decrement operation -

Se	electo	^						Inpu	+ (1	B)	Output					
52	S,	Sp	Az	A ₂	A,	Ao	Bz	B ₂	BI	Bo	Cout	F3	F ₂	FI	Fo	
			0		1	1	0	1	0	0	1	0	1	1	0	
0	0	1	1	1	D	1	0	1	1	0	1	1	1	0	0	
			1	0	1	1	1	1	0	0	1	1	0	1	0	

Fon AND operation -

Se	Aector	1	1	npu	+ (F	1)	1	npu	4 (B)		Owl	put		
32	3,	So	Az	Az	A,	A	B3	B2	B,	Во	Court	Fa	f_2	Fı	F
			1	1	0	1	1	1	0	0	0	1	1	0	0
0	1	X	0	1	1	1	1	1	0	1	0	0	1	0	1
			1	0	1	1	1	0	1	D	0	1	0	1	0

For transfer with carry operation:

Se	leed	ron		Inpu	A (1	A)	7	Enpi	d ((B)	Output				
			AB							The second second	Const	of the other parameters of	and the second second second		-
			0	1	1	0					1	-	The second section is a second section of		
1	0	0	1	0	1	0	0	0	0	1	1	1	0	1	0
			perconsumor property	retreatment of the B	CONTRACTOR AND ADDRESS OF	and the state of the last	reaction returns	etcompany (see	medical property	-	1				

For subtract operation -

Se	eled	ton		Inpui	t (A)	I	npw	(B))	Output					
32	S,	50	As	Az	A	Po	B3	B2	BI	Bo	Cow	F3	F2	F,	F	
			- 1	0	1	1	0	1	0	1	1	0	1	1	0	
١	0	1	1	1	1	1	0	0	1	1	1	1	1	0	0	
			0	1	0	1	0	1	0	0	1	0	0	0	1	

For complement operation

S	elece	ton	the second control of				J	npu	ot (B)	Output					
52	Si	S.	As	Az	Ar	A	B3	B2	BI	Bo	Cont	F ₃	F2	F,	F	
			1	0	1	0	0	0	0	0	0	0	1	0	1	
1	1	X	0	0	1	1	0	0	0	0	0	1	1	0	0	
			1	0	0	1	0	0	0	0	0	0	1	1	0	

Conclusion: The proteus software that we use to execute the stimulation have some Jeaturces, and on that account the instrumental errores occurr. At first ourc ALU (Arcithmetic and Logical Unit was giving us some inaccureate results on outputs for logical opercations however for some meason it was working accurately for out our arcithmetic opercations. Thus we had to implement the circuit using direct equations without simply. In Simplifying it and this time functions were working correctly. But after practical implementation there might be an error in fact fact the IC's we use can be also become morce proone to error.