Histograms of Oriented Gradients for Human Detection

Praneeth A S Anuroop K

IIT Jodhpur

November 3, 2014

Author

Navneet Dalal and Bill Triggs

Abstract

▶ Review existing edge and gradient based descriptors

Abstract

- ▶ Review existing edge and gradient based descriptors
- ► Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection

Abstract

- ▶ Review existing edge and gradient based descriptors
- ► Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection
- Study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks

MIT Pedestrian Dataset

▶ 509 training and 200 test images

MIT Pedestrian Dataset

- ▶ 509 training and 200 test images
- ► Limited range of poses

▶ $1805 64 \times 128$ images of humans

- ▶ $1805 64 \times 128$ images of humans
- ► No bias on pose

- ▶ $1805 64 \times 128$ images of humans
- ▶ No bias on pose
- ▶ Positive Training Samples 1239*2 : Left-Right Reflections

- ▶ $1805 64 \times 128$ images of humans
- ▶ No bias on pose
- ▶ Positive Training Samples 1239*2 : Left-Right Reflections
- ▶ Negative(Person free Item Sets) 12180 patches sampled from 1218 person-free photos(hard examples: False Positives)

- ▶ 1805 64 × 128 images of humans
- No bias on pose
- ▶ Positive Training Samples 1239*2 : Left-Right Reflections
- ▶ Negative(Person free Item Sets) 12180 patches sampled from 1218 person-free photos(hard examples: False Positives)
- ▶ Diverse environments, lighting conditions and large range of poses and backgrounds.

Figure 1: Method for human detection using HOG Descriptors

► Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients

- ► Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".

- ► Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".
- ▶ Each cell accumulates a local 1-D histogram of gradient directions

- ► Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".
- ▶ Each cell accumulates a local 1-D histogram of gradient directions
- Combined histograms of all cells form the representation

- Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".
- ▶ Each cell accumulates a local 1-D histogram of gradient directions
- Combined histograms of all cells form the representation
- ► 50% Overlapping cells

- Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".
- ▶ Each cell accumulates a local 1-D histogram of gradient directions
- Combined histograms of all cells form the representation
- ▶ 50% Overlapping cells
- ▶ HOG a measure of local histogram "energy" over larger spatial regions ("blocks") and using the results to normalize all of the cells in the block.

- Local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients
- ▶ Divide the image into small spacial regions called "cells".
- ▶ Each cell accumulates a local 1-D histogram of gradient directions
- Combined histograms of all cells form the representation
- ▶ 50% Overlapping cells
- HOG a measure of local histogram "energy" over larger spatial regions ("blocks") and using the results to normalize all of the cells in the block.
- Train the HOG using linear SVM for human/non-human classification

Advantages

► Captures edge or gradient structure that is very characteristic of local shape

Advantages

- Captures edge or gradient structure that is very characteristic of local shape
- ► Invariance Translations or rotations make little difference if they are much smaller that the local spatial or orientation bin size

Advantages

- Captures edge or gradient structure that is very characteristic of local shape
- Invariance Translations or rotations make little difference if they are much smaller that the local spatial or orientation bin size
- Permits limbs and body segments to change appearance and move from side to side provided they maintain an upright orientation

Error Plots

► Detection Error Tradeoff (DET) TruePos+FalseNeg vs FPPW(False Positivies per Window)

Error Plots

- $\begin{tabular}{ll} \hline \textbf{Postection Error Tradeoff (DET)} & \hline FalseNeg \\ \hline TruePos+FalseNeg \\ \hline Positivies per Window) \\ \hline \end{tabular} \ vs \ FPPW(False) \\ \hline \end{tabular}$
- ▶ Much like ROC Receiver Operating Characteristics

Algorithm for HOG

Algorithm 1 HOG Descriptors

Input: Set of Images of size 128×64 **Output:** HOG Descriptors for each image

- 1. Divide the Image window of size 128 \times 64 into 8 \times 8 blocks // Total 15 \times 7 blocks
- 2. Calculate Gradient Histograms for every block
- 3. Collect 2×2 cells and normalize the histograms obtained above. // 4×9 histograms per cell // Normalization
- 4. Concatenate Histograms // Total vector size = $15 \times 7 \times 2 \times 2 \times 9 = 3780$

Algorithm for histogram calculation

Algorithm 2 Histgram Calculation

Input: Image block of size 8×8 **Output:** Histogram of gradients

- 1. Take number of bins = 9
- 2. Divide $0-180^\circ$ into 9 bins $0-20,20-40,\ldots,160-180$ // May use any voting methods for giving weight to different orientations

Gradient variation

ightharpoonup [-1,0,1] - Centered

Gradient variation

- ▶ [-1, 0, 1] Centered
- ightharpoonup [-1,1] Uncentered

Gradient variation

- ▶ [-1, 0, 1] Centered
- \triangleright [-1,1] Uncentered
- ightharpoonup [1,-8,0,8,-1] Cubic centered

Orientation Binning

► Change in number of bins: 9, 8

Orientation Binning

- ► Change in number of bins: 9, 8
- ► The orientation bins are evenly spaced over $0 180^{\circ}$ ("unsigned" gradient) or $0 360^{\circ}$ ("signed" gradient).

Normalization

▶ L2-Norm $v \to \frac{v}{\sqrt{\|v\|^2 + \epsilon^2}}$

Normalization

- ► L2-Norm $v \to \frac{v}{\sqrt{\|v\|^2 + \epsilon^2}}$ ► L1-Norm $v \to \frac{v}{\sqrt{\|v\| + \epsilon}}$

Normalization

► L2-Norm
$$v \to \frac{v}{\sqrt{\|v\|^2 + \epsilon^2}}$$

▶ L2-Norm
$$v \to \frac{v}{\sqrt{\|v\|^2 + \epsilon^2}}$$
▶ L1-Norm $v \to \frac{v}{\sqrt{\|v\| + \epsilon}}$

ightharpoonup to ensure denominator is not zero

SIFT(Scale Invariant Feature Transform)

- ► The scale invariant feature transform (SIFT) algorithm is used to detect and describe local features in images
- Image features are transformed into local feature coordinates that are invariant to image translation, scaling, rotation and partially invariant to illumination changes
- ► To use the SIFT operator for object recognition purposes, it is applied on two object images, a model and a test image
- Calculation of SIFT image features is performed through the four consecutive steps

SIFT Algorithm

- Scale-space extrema detection
 - Extract scale and rotation invariant interest points (i.e., keypoints).
- ► Keypoint localization
 - Determine location and scale for each interest point.
 - ▶ Eliminate "weak" keypoints
- Orientation assignment
 - Assign one or more orientations to each keypoint.
- Keypoint descriptor
 - Use local image gradients at the selected scale

SIFT Features Matching

- ➤ To find corresponding features between the two images, which will lead to object recognition, different feature matching approaches can be used.
- According to the Nearest Neighbourhood procedure for each F₁ⁱ feature in the model image feature set the corresponding feature F₂^j must be looked for in the test image feature set.
- ▶ The corresponding feature is one with the smallest Euclidean distance to the feature F_1^i
- ▶ A pair of corresponding feature (F_1^i, F_2^j) called a match $M(F_1^i, F_2^j)$

Thank You