#### Лабораторна робота №2

## Запам'ятовуючі пристрої. Дослідження тригерів.

Група: ІПС – 11, ФКНК

Сенечко Д. В.

### Мета роботи:

- дослідження структури та алгоритмів роботи асинхронних та синхронних тригерів;
- дослідження функцій переходів та збудження основних типів тригерів;
- дослідження можливості взаємозаміни тригерами різних типів.

#### №1. Дослідження RS-тригера.

Для початку збираємо схему:



1) 
$$S = 0$$
,  $R = 1 \Rightarrow Q = 0$ :







- надходження активного рівня логічного сигналу на вхід скидання, тригер встановлюється в "0";
- при переході до S=0, R=0 тригер зберігає попередній стан Q=0.

3) 
$$S = 1$$
,  $R = 0 \Rightarrow Q = 1$ :

4) 
$$S = 0$$
,  $R = 0 \Rightarrow Q = 1$ :





- надходження на вхід установки активного рівня логічного сигналу, тригер встановлюється в "1";
- при переході до S = 0, R = 0 тригер зберігає попередній стан Q = 1.
- заповнюємо таблицю функцій збудження для схеми за результатами експерименту:

| S | R | Q    |
|---|---|------|
| 0 | 1 | 0    |
| 0 | 0 | Qt=0 |
| 1 | 0 | 1    |
| 0 | 0 | Qt=1 |

## №2. Дослідження $\overline{RS}$ -тригера.

Для початку збираємо схему:



1) 
$$S = 1$$
,  $R = 0 \Rightarrow Q = 0$ :

2) 
$$S = 1$$
,  $R = 1 \Rightarrow Q = 0$ :



- надходження активного рівня логічного сигналу на вхід скидання, тригер встановлюється в "0";
- при переході до S = 1, R = 1 тригер зберігає попередній стан Q = 0.

3) 
$$S = 0$$
,  $R = 1 \Rightarrow Q = 1$ :

4) 
$$S = 1$$
,  $R = 1 \Rightarrow Q = 1$ :





- надходження на вхід установки активного рівня логічного сигналу, тригер встановлюється в "1";
- при переході до S=1, R=1 тригер зберігає попередній стан Q=1.
- заповнюємо таблицю функцій збудження для схеми за результатами експерименту:

| S | R | Q    |
|---|---|------|
| 1 | 0 | 0    |
| 1 | 1 | Qt=0 |
| 0 | 1 | 1    |
| 1 | 1 | Qt=1 |

## №3. Дослідження ЈК-тригера.

Збираємо схему:



1) 
$$S = 0$$
,  $R = 1 \Rightarrow Q = 1$ :







При S = 0, R = 1 тригер встановлюється в стан Q = 1, а при S = 1, R = 0 тригер встановлюється в стан Q = 0 незалежно від стану інших входів.

Щоб отримати часові діаграми роботи тригера дещо видозмінюємо схему та

вмикаємо Logic Analyzer:

Згідно з побудованою схемою:

С - синій

К - фіолетовий

J - червоний

*Q* - жовтий





Запустивши схему, бачимо часові діаграми для всіх можливих С, Ј, К, Q.

### Складаємо таблицю збуджень тригера:

| $Q_t$ | $Q_{t+1}$ | J | K |
|-------|-----------|---|---|
| 0     | 0         | 0 | 0 |
| 0     | 0         | 0 | 1 |
| 0     | 1         | 1 | 0 |
| 0     | 1         | 1 | 1 |
| 1     | 1         | 0 | 0 |
| 1     | 0         | 0 | 1 |
| 1     | 1         | 1 | 0 |
| 1     | 0         | 1 | 1 |

## №4. Дослідження ЈК-тригера в лічильному режимі (Т-тригер).

Збираємо схему:



I трохи змінюємо, встановлюємо Logic Analyzer:



Далі, змінюючи стан лічильного входу, малюємо часові діаграми роботи Т-тригера:



№5. Дослідження ЈК-тригера, побудованого на базі логічних елементів.

Збираємо схему:



Трохи змінюємо, встановлюємо Logic Analyzer:



Запускаємо симуляцію, отримуємо часові діаграми:



Отже, тригер працю $\epsilon$  в лічильному режимі.

Тепер потрібно визначити моменти зміни рівня сигналу на виходах Q1 та Q2 по відношенню до моментів зміни значення рівня сигналу на вході.

| C         | 1 | 0 | 1 | 0 |
|-----------|---|---|---|---|
| Q1        | 1 | 1 | 0 | 0 |
| <i>Q2</i> | 0 | 1 | 1 | 0 |

Проаналізувавши цю таблицю, можемо визначити, що:

- npu C = 1 вихід Q1 змінюється на npomuneжний, Q2 залишається незмінним;
- $npu\ C=0\ вихід\ Q2\ змінюється на <math>npomuneжний,\ Q1\ залишається незмінним.$

#### №6. Дослідження D-тригера.

Збираємо схему:



I переконуємося, що:

- 1) при S = 0, R = 1 тригер встановлюється в стан Q = 1 незалежно від стану інших входів;
- 2) при S = I, R = 0 тригер встановлюється в стан Q = 0 незалежно від стану інших входів.





## Далі під'єднуємо Logic Analyzer, як і для інших тригерів:



## І отримуємо такі часові діаграми:



### А далі робимо таблицю:

| С | 0 | 0 | 1 | 1 |
|---|---|---|---|---|
| D | 1 | 0 | 0 | 1 |
| Q | 1 | 1 | 0 | 0 |

# №7. Дослідження роботи D-тригера в лічильному режимі.

Складаємо схему:

VCC

5.0V

VCC

U1

X1

SET

D

CLK

RESET

X2

0

Key = C

D\_FF\_NEGSR

2.5V

Міняємо схему та додаємо Logic Analyzer:



## І отримуємо такі часові діаграми:



#### Висновки:

Загальні висновки з лабораторної роботи на тему дослідження тригерів:

#### 1. Дослідження RS-тригера:

- При дослідженні RS-тригера видно, що він має два входи: S set та R reset, які відповідають за встановлення та скидання.
- Під час експерименту перевірено правильність роботи тригера при різних комбінаціях вхідних сигналів.
  - Заповнивши таблицю функцій збудження, систематизовано результати експерименту.

#### 2. Дослідження ЈК-тригера:

- Проведення дослідження JK-тригера дозволило з'ясувати, що він має три входи: J jack та K kill, які відповідають за встановлення та скидання, а також C clock, який відповідає за синхронізацію.
- Перевірено роботу тригера при різних комбінаціях вхідних сигналів, включаючи лічильний режим.
- Складання часових діаграм та таблиці функцій збудження допомогли визначити моменти зміни рівня сигналу на виходах відносно зміни значення на входах.

### 3. Дослідження D-тригера:

- Дослідження D-тригера показало, що він має один вхід D data, який визначає новий стан тригера.
- Перевірено, як тригер реагує на різні комбінації вхідних сигналів, включаючи лічильний режим.
- Складання таблиці функцій збудження та часових діаграм дозволили з'ясувати, як точно тригер реагує на зміни вхідних сигналів.

У цілому, проведення цих експериментів допомогло краще зрозуміти принципи роботи та особливості кожного типу тригера, що  $\epsilon$  корисним при проектуванні та реалізації логічних схем.