SOME SAMPLE GRAPH THEORY PICS USING TIKZ

JILL FAUDREE

ABSTRACT. Some sample graph theory pictures using tikz. I will include more explanation later, but for now the reader will need to infer/guess/test.

1. Sample Pics

FIGURE 1. This figure illustrates the paths from vertex z to P, a shortest path dominating a maximum number of vertices. Note the circled section denotes P_r , the section of the path strictly between two consecutive paths, x_r and x_{r+1} .

Let $P_r = P(x_{i_r}, x_{i_{r+1}})$ denote the subpath of P strictly between two consecutive endpoints of paths from z. (See Figure 1.)

FIGURE 2. For each subpath of P, u_i is the first nonmovable vertex and, so, those in Q_i are all movable. Observe that any edges between distinct Q_i 's results in a path dominating more vertices by using the edge between vertices of smallest indices (or, alternatively, left-most vertices). New path: x to x_{i_r} to z to x_{i_s} to a to b to y. Note that all vertices of Q_r and Q_s not on the new path are dominated elsewhere.

Date: May 28, 2016.

J. FAUDREE

FIGURE 3. Example ??

The following corollary follows immediately from the statement of the theorem:

FIGURE 4. A single pair of crossing edges results in a smaller cycle. Follow $x_1 = v_0$ to v_{3i} , down to z_1 , around to v_{3j} via x_s , down to z_2 and back to x_1 .

Now, using the previous upper and lower bounds on the number of excess chords, we produce the following contradiction:

$$\frac{1}{k+2}n = \frac{(k+3)n}{k+2} - n$$

$$\leq \frac{(k+3)n}{k+2} - (b+c+3k+7)$$

$$< \frac{(k+3)n}{k+2} - b - 2k - 6 - c$$

$$\leq (2k+2)|X|$$

$$= o(n).$$

Now, for n sufficiently large,

$$\sigma_{2}(G_{j_{1}}) \geq \frac{2n}{k+2} + f(k) - 2s \geq \frac{2|V(G_{j_{1}})| + 2(n - |V(G_{j_{1}})|)}{k+2} + f(k) - 2s$$

$$\geq \frac{2|V(G_{j_{1}})|}{k+2} + \frac{2(\sigma_{2}(G)/2)}{k+2} - 2s = \frac{2|V(G_{j_{1}})|}{k+2} + \frac{2n}{(k+2)^{2}} - 2s$$

$$\geq \frac{2|V(G_{j_{1}})|}{k+2}$$

since s = o(n).

Table 1. Cut-Set Selection Algorithm

Iteration 1: A minimum cut set S_0 results in four connected components, G_1 , G_2 , G_3 , and G_4 . So $S = S_0$ and $k \leq s < t$.

Iteration 2: Minimum cut sets S_1 and S_2 are found in noncomplete components of G - S with connectivity less than 30kt. Now, $S = S_0 \cup S_1 \cup S_2$, s < t + 2(30kt) and G - S results in seven connected components.

Iteration 3: Minimum cut sets S_3 and S_4 are found in noncomplete components of G - S with connectivity less than 30kt. Now, $S = \bigcup_{i=0}^4 S_i$, s < t + 4(30kt) and G - S results in 9 connected components. The algorithm would terminate with all components either complete or with connectivity at least 30kt.

Because the steps used in Case 1 will be essentially the same in Cases 2 and 3, the steps are given names for ease of reference later. To aid the reader, pictures of the various steps are shown in Table 2.

Theorem 1.1 (Turán, '40). If $3 \le p \le n$, then $ex(n, K_p) = \left(1 - \frac{1}{p-1}\right) \frac{n^2}{2}$ and the unique K_p -saturated graph of size $ex(n, K_p)$ is the balanced (or nearly balanced) complete (p-1)-partite graph.

4 J. FAUDREE

Table 2. Cartoon Illustrating the Proof of Theorem ??

This shows S and the components of G - S

This shows G' with added vertices u_i .

This shows C' (in red, green, and teal) in G'. Note that the the Q'_i s are depicted in green (and teal) which is the portion of C' left intact. The teal section (Q'_3) illustrates how complicated these connector sections may be. They may include vertices from G outside S and possibly vertices from T.

This diagram illustrates how the red portion of C' is replaced with a path containing the vertices of T_i . As before, vertices of T are black, associated neighbors of vertices that belong to G_i are in gray. Observe that y_1 and y_l may or may not be on this new path. It is enough to know that z_i and w_i have distinct neighbors in G_i .

The unique K_5 -free graph with $\mathbf{ex}(13, K_5)$ edges

The unique K_5 -free graph with $\mathbf{sat}(13, K_5)$ edges

REFERENCES

[AS] N. Alon, J. Spencer, **The probabilistic method** Third edition. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2008. xviii+352 pp. ISBN: 978-0-470-17020-5 [VA74] V. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices (Russian), *Prikl. Mat. I Programmirovanie* 11 (1974), 3-8, 126.

[JB80] J. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).

6 J. FAUDREE

[BF87] J. Bondy, G. Fan, A sufficient condition for dominating cycles Discrete Math. 67 (1987), no. 2, 205-208.

[HB88] H. Broersma, Existence of Δ_{γ} -cycles and Δ_{γ} -paths, J. Graph Theory 12 (1988), 499-507.

[CFHJL] G. Chen, M. Ferrara, Z. Hu, M. Jacoboson, H. Liu, Degree conditions for spanning brooms, J. Graph Theory, 77 (2014), no. 3, 237-250.

[CCE] B. Clark, C. Colbourn, P. Erdős, A conjecture on dominating cycles, Comb. graph theory and computing, Proc. 16th Southeast Conf., Boca Raton/Fla. 1985, Cong. Numerantium 47, 189-197 (1985).

[GD52] G. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2, (1952), 69-81.

[FGJW] R. Faudree, R. Gould, M. Jacobson, D. West, Minimum Degree and Dominating Paths, (submitted).

[FKKLR] E. Flandrin, T. Kaiser, R. Kužel, H. Li, Z. Ryjáček, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008), no. 23, 43-50. (double check this)

[L76] N. Linial, A lower bound for circumference of a graph, Discrete Math., 15 (1976), no. 3, 297-300.

[MOS] H. Matsumura, K. Ozeki, T. Sugiyama, Note on a longest cycle which is vertex dominating, J. Graphs. Combin., 4, (2007) no. 3, 233-243.

[OY11] K. Ozeki, T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011), no. 1, 1-26.

[CP75] C. Payan, Sur le Nombre d'Absorbtion d'un Graphe Simple, *Proc. Colloque sur la Theorie des Graphes* (Paris, 1974) Cahiers Centre Etudes Recherche Oper. 17 (1975), 307-317.

[SY] A. Saito, T. Yamashita, Cycles within specified distance from each vertex, *Discrete Math.* 278 (2004) 219-226. [DW96] D.B. West, *Introduction to Graph Theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[TY07] T. Yamashita, Vertex-dominating cycles in 2-connected bipartite graphs. (English summary) Discuss. Math. Graph Theory 27 (2007), no. 2, 323-332.

Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660

E-mail address: jrfaudree@alaska.edu