From mathematics ...

... to the screen

E. Galin Université Lyon 1

Core

Modeling Ray Tracing Meshing

Introduction

Introduction

Introduction

Mathematics

Supplementary

Définition

Les surfaces implicites sont un modèle volumique

Représentation adaptée à la modélisation de volumes de géométrie et de topologie changeante

$$S = \{ \mathbf{p} \in \mathbf{R}^3, f(\mathbf{p}) = 0 \}$$

Variété de formes Modèle compact Détection de S

LIRIS	cnrs
Université Claude Bernard	Uß Lyon 1

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin Modélisation

Animation

Visualisation

Contrôle de forme Raccordements

Habillage de particules Contrôle de mouvement $\begin{array}{l} \text{Intersection } \Delta \cap S \\ \text{Approximation de } S \end{array}$

Mathematics

Définition

Introduction

Mathematics

Supplementary

Définition

Caractérisation indirecte de la surface $S = \{ \mathbf{p} \in \mathbf{R}^3, f(\mathbf{p}) = 0 \}$

Propriétés

Les surfaces implicites sont des formes géométriques à 2 dimensions dans ${\bf R}^3$ Une surfaces implicite est une 2 variété

Le voisinage autour de tout point p de S est équivalent à un disque

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

Surfaces Eulériennes

Formule d'Euler pour les maillages

$$V - E + F = 2 - 2 H$$

Propriétés

Introduction

Mathematics

Supplementary

Théorème des fonctions implicites

Si 0 est une valeur régulière de f, alors la surface implicite $f^{-1}(0)$ est une 2 variété

Théorème de séparation

Une 2 variété sépare \mathbf{R}^3 en une surface \mathbf{S} et 2 régions connexes \mathbf{E}^- et \mathbf{E}^+ \mathbf{E}^- finie dans la surface \mathbf{S} et \mathbf{E}^+ infinie dehors

Convention intérieur extérieur différente selon les modèles

$$f(\mathbf{p}) > 0$$

$$f(\mathbf{p}) < 0$$

$$f(x, y, z) = 1 - x^2 - y^2 - z^2$$

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

Propriétés

Introduction

Mathematics

Supplementary

Définition et propriétés

Intérieur de la surface Gradient

$$\nabla f(\mathbf{p}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Approximation numérique d'une dérivée

$$\frac{\partial f}{\partial x} \approx \frac{f(x+\varepsilon, y, z) - f(x-\varepsilon, y, z)}{2\varepsilon}$$

Normale à la surface

$$\forall \mathbf{p} \in S, \mathbf{n} = -\nabla f(\mathbf{p})/|\nabla f(\mathbf{p})|$$

Projection d'un point sur la surface

$$\mathbf{p}_{k+1} = \mathbf{p}_k + \varepsilon \nabla o f(\mathbf{p}_k)$$

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

Propriétés

Introduction **Mathematics** Supplementary

Matrice Hessienne

Matrice carrée $\mathbf{H}(f)$ des dérivées partielles secondes

$$\mathbf{H}(f) = \nabla^2 f = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

H définie et symétrique pour f de classe C^2 sur un ouvert Ω de \mathbb{R}^3

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x+\varepsilon, y, z) - 2f(x, y, z) + f(x-\varepsilon, y, z)}{2\varepsilon}$$

Applications

Nature des points critiques de la fonction f (annulation de ∇f) Un point critique **p** de f est dégénéré si det $\mathbf{H}(f(\mathbf{p})) = 0$

> Classification par analyse du signe des valeurs propres de $\mathbf{H}(f)$

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin $\mathbf{H}(f)$ définie positive, la fonction *f* atteint un minimum local

 $\mathbf{H}(f)$ définie négative, la fonction *f* atteint un maximum local

 $\mathbf{H}(f)$ a des valeurs propres positives et négatives : point col

 $\mathbf{H}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f^2}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{pmatrix}$

Courbure

Introduction

Mathematics

Supplementary

Courbure

La courbure se déduit de la matrice \mathbf{H} de f

$$k_G = \frac{\nabla f \, \mathbf{H}^* \, \nabla f^t - |\nabla f|^2 t(\mathbf{H})}{|\nabla f|^4}$$

 \mathbf{H}^* matrice des cofacteurs $t(\mathbf{H})$ trace de \mathbf{H} ou co-matrice

$$k_M = \frac{\nabla f \mathbf{H} \nabla f^t - |\nabla f|^2 t(\mathbf{H})}{2|\nabla f|^3}$$

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

R. Goldman. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design. 22, 632–658, 2005

Fonctions Lipschitziennes

Introduction

Mathematics

Supplementary

Définition

La fonction f doit être au moins de classe C^0 (les classes C^1 ou C^2 sont plus régulières) f est Lipschitzienne si et seulement si

$$\exists \lambda > 0 \ \forall (\mathbf{p}, \mathbf{q}) \in \mathbf{R}^3 \times \mathbf{R}^3 |f(\mathbf{p}) - f(\mathbf{q})| < \lambda |\mathbf{p} - \mathbf{q}|$$

Critère d'exclusion [Hart1996]

Soit f une fonction λ –Lipschitzienne, alors \forall $\mathbf{p} \in \mathbf{R}^3$

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

J. Hart. Sphere Tracing: A Geometric Method for the Anti aliased Ray Tracing of Implicit Surfaces, The Visual Computer, 12(10), 1996

Supplementary material

Scalar Fields

Introduction

Mathematics

Supplementary

Interpretation of scalar fields

In general, the signed function f is not the Euclidean distance to the surface S If f is λ —Lipschitz, then f/λ is a lower signed **Euclidean distance bound** to S [Hart1996]

$$\forall \mathbf{p} \in \mathbf{R}^3 |f(\mathbf{p})|/\lambda < e(\mathbf{p}) \text{ with } e(\mathbf{p}) = d(\mathbf{p}, S)$$

Eikonal equation

Euclidean distance

If f is the signed Euclidean distance to the surface S, then $|\nabla f(\mathbf{p})| = 1$

Therefore, is 1 –Lipschitz

eric.galin@liris.cnrs.fr http://liris.cnrs.fr/~egalin

J. Hart. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces. The Visual Computer 12(10), 527-545,1996.