Topological K-Theory and Hopf Invariant One

Dylan Burke & William Gao Mentor: Sacha Goldman

May 2, 2025

Department of Mathematics, University of Toronto

Table of Contents

The Hopf Invariant One Problem — Introduction

Vector Bundles

Topological K-Theory

The Hopf Invariant One Problem — Solution

— Introduction

There exists a map $f:S^{2n-1}\to S^n$ of Hopf invariant one

• \mathbb{R}^n is a division \mathbb{R} -algebra.

Definition. A division algebra is almost a field, but possibly without multiplicative associativity or commutativity.

- \mathbb{R}^n is a division \mathbb{R} -algebra.
 - **Definition.** A division algebra is almost a field, but possibly without multiplicative associativity or commutativity.
- S^{n-1} is parallelizable.
 - **Definition.** A manifold is parallelizable if its tangent bundle is trivial (we will learn what this means soon).

- \mathbb{R}^n is a division \mathbb{R} -algebra.
 - **Definition.** A division algebra is almost a field, but possibly without multiplicative associativity or commutativity.
- S^{n-1} is parallelizable.
 - **Definition.** A manifold is parallelizable if its tangent bundle is trivial (we will learn what this means soon).
- S^{n-1} is an H-space.
 - **Definition.** An *H*-space is a topological space with a "nice" multiplication.

- \mathbb{R}^n is a division \mathbb{R} -algebra.
 - **Definition.** A division algebra is almost a field, but possibly without multiplicative associativity or commutativity.
- S^{n-1} is parallelizable.
 - **Definition.** A manifold is parallelizable if its tangent bundle is trivial (we will learn what this means soon).
- Sⁿ⁻¹ is an H-space.
 Definition. An H-space is a topological space with a "nice" multiplication.
- There exists a map $f: S^{2n-1} \to S^n$ of Hopf invariant one. **Definition.** We will use K-Theory.

- Cohomology solution: Adams (1960), 85 pages.
- K-Theory solution: Adams & Atiyah (1966), 8 pages.

Let X be a topological space.

Definition. A vector bundle (E, π, X) over X is

A total space E, a base space X, and a projection $\pi: E \to X$.

Definition. A vector bundle (E, π, X) over X is

- a finite dimensional \mathbb{R} or \mathbb{C} -vector space E_x for each $x \in X$,
- a topology on $E := \bigsqcup_{x \in X} E_x$ such that the projection $\pi : E \to X$, defined so that $\pi^{-1}(x) = E_x$ for each $x \in X$, is continuous.

 $\pi^{-1}(x) = E_x$ is called the fiber over x.

Definition. A vector bundle (E, π, X) over X is

• such that for each $x \in X$, there is a neighbourhood U of x and a vector space V such that $\pi^{-1}(U)$ is isomorphic (as vector bundles) to $U \times V$.

7

Trivial Bundles

A vector bundle over X in the form $X \times V$ is called the trivial bundle of rank $\dim(V)$. The previous condition says vector bundles are locally trivial.

The Tangent Bundle

Example. Let X be the sphere $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$.

For each $x \in S^1$, let E_x be the tangent space $(S^1)_x$.

 $E=\bigsqcup_{x\in S^1}(S^1)_x$ is a subspace of $S^1\times\mathbb{R}^2$, so $\pi:E\to S^1$ is the projection onto S^1 . With the subspace topology on E, π is continuous.

The vector bundle (E, π, S^1) is called the tangent bundle.

The Tangent Bundle Trivialization

Claim. The tangent bundle over S^1 is trivial.

90% Proof. Rotate the fibers by $\frac{\pi}{2}$ to be perpendicular to the plane containing the circle. This transformation preserves the vector bundle structure, and the result is the trivial bundle $S^1 \times \mathbb{R}$.

We have shown S^1 is parallelizable!

The Möbius Bundle

Example. Another vector bundle over S^1 is the (infinite) Möbius band.

Vector Bundle Addition

Let E, E' be vector bundles over X, their fibers denoted by E_x, E'_x .

Definition. We define $E \oplus E'$ as the vector bundle over X having fibers

$$(E \oplus E')_x := E_x \oplus E'_x$$
.

Topological K-Theory

The Group K(X)

From now on, we consider only complex vector bundles.

Definition. K(X) is the group of formal differences E-E' of vector bundles over X, modulo the equivalence relation $E_1-E_2\sim E_3-E_4$ if

$$E_1 \oplus E_4 \cong E_2 \oplus E_3$$
.

Vector Bundle Multiplication

Let E, E' be vector bundles over X.

Definition. We define $E \otimes E'$ as the vector bundle over X having fibers

$$(E\otimes E')_x:=E_x\otimes E'_x.$$

As the tensor product distributes over the direct sum, this makes K(X) a commutative ring.

The Adams Operations

Theorem. There exists a family of operations $\psi^k : K(X) \to K(X)$, called the Adams operations, such that

- 1. ψ^k is a ring homomorphism.
- 2. $\psi^k(L) = L^k$ whenever L is a rank 1 vector bundle.
- $3. \ \psi^k \circ \psi^\ell = \psi^\ell \circ \psi^k.$

The Hopf Invariant One Problem

— Solution

The Hopf Invariant

Given $f: S^{2n-1} \to S^n$, glue the open 2n-dimensional unit ball B^{2n} to S^n via f along the boundary S^{2n-1} .

Call the resulting space X_f .

The Hopf Fibration

Another example of these maps from $S^{2n-1} \to S^n$ where n=2.

The Hopf Invariant

 $K(X_f)$ turns out to be free on two generators α and β , satisfying

$$\beta^2 = d\alpha$$

for some $d \in \mathbb{Z}$, which we define as the Hopf invariant H(f) := d.

For which *n* does there exist a map $f: S^{2n-1} \to S^n$ with H(f) = 1?

- If n is odd, only n = 1.
- If n = 2m is even, the Adams operations require

$$\psi^3 \circ \psi^2(\beta) = \psi^2 \circ \psi^3(\beta).$$

This simplifies as $2^m \mid 3^m - 1$, thus by number theory, m = 1, 2, or 4.

Conclusion

If n = 1, 2, 4, 8, we have division algebras: \mathbb{R} , \mathbb{C} , quaternions, octonions.

If there is a map of Hopf invariant one, then n = 1, 2, 4, or 8.

Conclusion

 \mathbb{R}^n is a division \mathbb{R} -algebra $\begin{tabular}{l} & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

There exists a map $f:S^{2n-1}\to S^n$ of Hopf invariant one

References

- 1. J.F. Adams & M.F. Atiyah (1966). *K-Theory and the Hopf Invariant*. Quarterly Journal of Mathematics, Volume 17, Issue 1.
- 2. I. Banerjee (2016). The Hopf invariant one problem.
- 3. M. Karoubi (1978). K-Theory: An Introduction. Springer-Verlag.