WO 2005/031274

5

10

15

20

25

30

Schall- oder Ultraschallwandler

Die Erfindung bezieht sich auf einen Schall- oder Ultraschallwandler mit einer scheibenförmigen piezo-elektrischen Einheit, einem ringförmigen Koppel-element, das die piezo-elektrische Einheit form- und kraftschlüssig umgibt, einer Anpaßschicht, die in Abstrahlrichtung der Schall- oder Ultraschallwellen vor der piezoelektrischen Einheit angeordnet ist, und einer Sende-/Empfangseinheit, die die piezoelektrische Einheit zu Radialschwingungen anregt. Bei der piezoelektrischen Einheit handelt es sich bevorzugt um eine Piezokeramikscheibe. Der Ultraschallwandler ist bevorzugt Teil eines Sensors zur Bestimmung und/oder Überwachung des Füllstands eines Prozeßmediums, welches in einem Behälter angeordnet ist.

Der zuvor beschriebenen Schall- oder Ultraschallwandler ist bereits aus der EP 0 615 471 B1 bekannt geworden. Insbesondere zeichnet sich der bekannte Wandler dadurch aus, daß er bei geringen Abmessungen der Piezokeramikscheibe eine gegenüber der Radialresonanzfrequenz der Piezokeramikscheibe verringerte Betriebsfrequenz aufweist. Erreicht wird dies dadurch, daß ein Metallring die Mantelfläche der Piezokeramikscheibe formund kraftschlüssig umschließt. Hierzu ist der Metallring mit der Piezokeramikscheibe bevorzugt durch Aufschrumpfen verbunden. Aufgrund der Kopplung verhält sich die Kombination aus Piezokeramikscheibe und Koppelring wie ein Radialschwinger, insbesondere wirkt die aus beiden Teilkomponenten gebildete Fläche des Radialschwingers als Abstrahlfläche für die Schall- oder Ultraschallwellen.

Der Erfindung liegt die Aufgabe zugrunde, insbesondere einen als Radialschwinger ausgebildeten Schall- oder Ultraschallwandler für den Einsatz im Hochtemperaturbereich auszulegen.

Die Aufgabe wird dadurch gelöst, daß die Anpaßschicht aus einem Material gefertigt ist, das eine Wärmeformfestigkeit bis zu einer Temperatur aufweist,

die über der Temperatur am Einbauort des Schall- oder Ultraschallwandlers liegt, daß der materialspezifische Ausdehnungskoeffizient des Materials der Anpaßschicht größer ist als der Ausdehnungskoeffizient der Materialien der piezoelektrischen Einheit und/oder des Koppelrings und daß der E-Modul des Materials der Anpaßschicht um mindestens eine Größenordnung geringer ist als der E-Modul der piezoelektrischen Einheit und/oder des Koppelrings.

5

10

15

20

25

30

Bevorzugt ist die Anpaßschicht aus Hartschaumstoff gefertigt. Als Hartschaumstoff mit niedriger Dichte kann beispielsweise der PMI-Hartschaumstoff Rohacell der Firma Röhm eingesetzt werden. Dieser Hartschaumstoff ist mit Dichten zwischen 30 bis 200 kg/ m^3 lieferbar. Durch die Verwendung eines Schaumstoffes mit geringer Dichte kann eine effektive Impedanzanpassung an die Luft bzw. an die Atmosphäre, in der der Schall-/Ultraschallwandler eingesetzt wird, erzielt werden. Da der Schaumstoff eine relativ hohe Eigendämpfung besitzt, trägt die Anpaßschicht zur Verringerung des Nachschwingens des Schall- oder Ultraschallwandlers bei. Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Schall- oder Ultraschallwandlers ist vorgesehen, daß die Anpaßschicht sich aus mehreren Lagen mit zumindest teilweise unterschiedlichen Dichten zusammensetzt. Insbesondere ist in diesem Zusammenhang vorgesehen, daß die Lage der Anpaßschicht mit der höchsten Dichte in unmittelbarer Umgebung zum Radialschwinger angeordnet ist, während die Lage der Anpaßschicht mit der geringsten Dichte den größten Abstand zum Radialschwinger aufweist. Durch eine derartige Ausgestaltung läßt sich eine Verbesserung des Verhältnisses zwischen dem eigentlichen Echosignal und den durch das Nachschwingen hervorgerufenen Störsignalen erreichen.

Hat der Schaumstoff beispielsweise eine Wärmeformfestigkeit bis 180° C, so arbeitet der Schall- oder Ultraschallwandler über einen Bereich von -40° C bis 150° C gleichmäßig. Da der materialspezifische Ausdehnungskoeffizient des Materials der Anpaßschicht größer ist als der Ausdehnungskoeffizient der

Materialien der piezoelektrischen Einheit und/oder des Koppelrings und da der E-Modul des Materials der Anpaßschicht um mindestens eine Größenordnung geringer ist als der E-Modul der piezoelektrischen Einheit und/oder des Koppelrings, wird eine sehr gute Verbindung zwischen der Anpaßschicht und dem Radialschwinger über einen großen Temperaturbereich sichergestellt.

Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung ist der Koppelring aus Metall oder aus Keramik gefertigt. Ist der Koppelring aus Metall gefertigt, so ist es möglich, die Verbindung zwischen der Mantelfläche der Piezokeramikscheibe und dem Koppelring über einen Schrumpfprozeß zu realisieren.

Infolge der hohen Feuchteempfindlichkeit des Schaumstoffs, aus dem die Anpaßschicht bevorzugt gebildet ist, ist es erforderlich, diesen effektiv vor Umwelteinflüssen, insbesondere vor der Diffusion von Wasserdampf und vor Verschmutzungen zu schützen. Erreicht wird die erforderliche Kapselung gemäß einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung über eine Kombination: Diese besteht aus dem bereits zuvor erwähnten Metallring, der im Außenbereich der Piezokeramikscheibe angeordnet ist, und einer dünnen Schutzfolie, die die Anpaßschicht in Abstrahlrichtung abdeckt. Bevorzugt handelt es sich bei der Schutzfolie um eine Metallfolie, die beispielsweise aus Edelstahl gefertigt ist. Bevorzugt ist die Schutzfolie auf die Anpaßschicht geklebt bzw. in anderer Weise fest mit ihr verbunden und erhöht damit gleichzeitig deren mechanische Festigkeit.

25

30

5

10

15

20

Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung schlägt ein Gehäuse vor, in dem die piezoelektrische Einheit mit dem Koppelring und der Anpaßschicht angeordnet ist. Weiterhin ist eine Vergußmasse vorgesehen, die zumindest in einigen Teilbereichen zwischen der Anpaßschicht, der piezoelektrischen Einheit, dem Koppelring und der Innenwand des Gehäuses angeordnet ist. Mit anderen Worten: Die Vergußmasse füllt den Rückraum des Gehäuses vollständig oder zumindest weitgehend aus. Bei der

Vergußmasse handelt es sich beispielsweise um eine Elastomervergußmasse.

5

15

20

25

30

Um das Eindringen von Feuchtigkeit oder von Verschmutzungen durch den Rückraum des Sensors zu verhindern, ist eine Diffusionssperre vorgesehen, die entgegen der Abstrahlrichtung auf der Vergußmasse angeordnet ist. Bei der Diffusionssperre handelt es sich wiederum bevorzugt um eine Metallfolie.

Die Erfindung wird anhand der nachfolgenden Fig. 1 näher erläutert. Fig. 1 zeigt eine bevorzugte Ausgestaltung des erfindungsgemäßen Schall- oder Ultraschallwandlers im Querschnitt.

Der in Fig. 1 dargestellte Schall- oder Ultraschallwandler 1 besteht aus einer runden Piezokeramikscheibe 2, deren Mantelfläche form- und kraftschlüssig von dem Koppelring 3 umschlossen wird. Handelt es sich bei dem Koppelring 3 beispielsweise um einen Metallring aus Aluminium, so kann dieser mit der piezoelektrischen 2 Einheit beispielsweise über Aufschrumpfen verbunden sein. Hierzu wird der Koppelring 3 in erwärmtem Zustand um die Piezokeramikscheibe 2 gelegt; beim Erkalten zieht er sich zusammen und umschließt die Piezokeramikscheibe 2 form- und kraftschlüssig.

Über die Verbindungsleitungen 10 wird eine Wechselspannung an die piezoelektrische Einheit 2 angelegt, wodurch diese und der mit ihr verbundene Koppelring 3 zu Radialschwingungen angeregt wird. Der Radialschwinger wird somit aus zwei Komponenten gebildet. Selbstverständlich könnte es sich bei dem Radialschwinger auch einfach um einen Piezokeramikscheibe handeln. Die Dicke der Anpaßschicht 4, die in Abstrahlrichtung der Schall- oder Ultraschallen auf dem Radialschwinger, gebildet aus piezoelektrischer Einheit 2 und Koppelring 3, angeordnet ist, ist so gewählt, daß die Schall- oder Ultraschallwellen im wesentlichen nur in die gewünschte Abstrahlrichtung abgestrahlt werden.

Weiterhin ist die Anpaßschicht 4 so ausgelegt, daß der Schall- oder Ultraschallwandler 1 bzw. der zugehörige Sensor für den Einsatz im Hochtemperaturbereich geeignet ist. Hierzu ist die Anpaßschicht 4 aus einem Material gefertigt, das eine Wärmeformfestigkeit bis zu einer Temperatur aufweist, die über der Temperatur am Einbauort des Schall- oder Ultraschallwandlers 1 liegt. Weiterhin ist der materialspezifische Ausdehnungskoeffizient des Materials der Anpaßschicht 4 größer als der Ausdehnungskoeffizient der Materialien der piezoelektrischen Einheit 2 und/oder des Koppelrings 3. Auch ist der E-Modul des Materials der Anpaßschicht 4 um mindestens eine Größenordnung geringer als der E-Modul der piezoelektrischen Einheit 2 und/oder des Koppelrings 3. Wie bereits gesagt, besteht die Anpaßschicht 4 bevorzugt aus Hartschaumstoff.

5

10

30

15 Der Radialschwinger mit piezoelektrischer Einheit 2, Koppelring 3 und Anpaßschicht 4 ist in einem Gehäuse 8 angeordnet. Der Bereich zwischen der Mantelfläche des Radialschwingers und der Innenwand des Gehäuses 8 sowie der Bereich über dem Radialschwinger, der entgegen der Abstrahlrichtung der Schall- oder Ultraschallwellen orientiert ist, ist mit einer Verguß-20 masse 7 aufgefüllt. Neben der Funktion, daß der Radialschwinger vor eindringender Feuchigkeit oder vor eindringendem Schmutz geschützt wird, kommt der Vergußmasse 7 die Aufgabe zu, das Abklingverhalten des Radialschwingers zu optimieren. Insbesondere handelt es sich bei der Vergußmasse 7 um einen Silikonverguß, in den Keramikteilchen und/oder 25 Lufteinschlüsse eingebettet sind. Hierbei dient der Lufteinschluß der Verringerung der Dichte der Vergußmasse 7, was zu einem besseren Dämpfungsverhalten des Radialschwingers führt.

Als Diffusionssperre in Abstrahlrichtung der Schall- oder Ultraschallwellen dient die Schutzfolie 5, bei der es sich bevorzugt um eine Edelstahlfolie handelt. Durch eine weitere Diffusionssperre 6, die entgegen der Abstrahlrichtung der Schall- oder Ultraschallwellen angeordnet ist, wird eine optimale

Kapselung des Radialschwingers gegen die Atmosphäre bzw. gegen den Prozeß erreicht. Der Radialschwinger ist nach allen Richtungen gekapselt und wird so effektiv vor Feuchtigkeit und Schmutz geschützt.

Es versteht sich von selbst, daß die Erfindung nicht auf die hier beschriebene Form des Radialschwingers, gebildet aus Piezokeramikscheibe und Koppelring beschränkt ist. Im Prinzip kann die erfindungsgemäße Anpaßschicht in Verbindung mit beliebigen Radialschwingern verwendet werden, also auch beispielweise mit dem Schall- oder Ultraschallwandler, der in der DE 25 41 492 B beschrieben ist.

Bezugszeichenliste

	1	Schall- oder Ultraschallwandler
	2	Piezoelektrische Einheit
5	3	Koppelelement / Koppelring
	4	Anpaßschicht
	5	Schutzfolie
	6	Diffusionssperre
	7	Vergußmasse / Dämpfungsverguß
10	8	Gehäuse
	9	Kontaktierung
	10	Verbindungsleitung
	11	Sende-/Empfangseinheit
	12	Erdungsanschluß

Patentansprüche

1. Schall- oder Ultraschallwandler (1) mit einer scheibenförmigen piezoelektrischen Einheit (2), einem ringförmigen Koppelelement (3), das die piezoelektrische Einheit (2) form- und kraftschlüssig umgibt, einer Anpaßschicht (4),
die in Abstrahlrichtung der Schall- oder Ultraschallwellen vor der
piezoelektrischen Einheit (2) angeordnet ist, und einer Sende-/Empfangseinheit (11), die die piezoelektrische Einheit (2) zu Radialschwingungen
anregt,

10 dadurch gekennzeichnet,

daß die Anpaßschicht (4) aus einem Material gefertigt ist, das eine Wärmeformfestigkeit bis zu einer Temperatur aufweist, die über der Temperatur am
Einbauort des Schall- oder Ultraschallwandlers (1) liegt,
daß der materialspezifische Ausdehnungskoeffizient des Materials der Anpaßschicht (4) größer ist als der Ausdehnungskoeffizient der Materialien der
piezoelektrischen Einheit (2) und/oder des Koppelrings und
daß der E-Modul des Materials der Anpaßschicht (4) um mindestens eine
Größenordnung geringer ist als der E-Modul der piezoelektrischen Einheit (2)
und/oder des Koppelrings (3).

20

5

- Schall- oder Ultraschallwandler 1,
 dadurch gekennzeichnet,
 daß die Anpaßschicht (4) aus Hartschaumstoff gefertigt ist.
- 3. Schall- oder Ultraschallwandler 1,
 dadurch gekennzeichnet,
 daß der Koppelring (3) aus Metall oder aus Keramik gefertigt ist.
 - 4. Schall- oder Ultraschallwandler 1, 2 oder 3,

30 dadurch gekennzeichnet,

daß in Abstrahlrichtung der Schall- oder Ultraschallwellen vor der Anpaßschicht (4) eine Schutzfolie (5) vorgesehen ist, die so angeordnet ist,

daß sie die Anpaßschicht (4) in Abstrahlrichtung vor dem Eindringen von Feuchtigkeit und Verschmutzungen schützt.

- 5. Schall- oder Ultraschallwandler 4,
- 5 dadurch gekennzeichnet,

daß die Schutzfolie (5) aus Metall gefertigt ist.

- 6. Schall- oder Ultraschallwandler nach Anspruch 1, dadurch gekennzeichnet,
- daß ein Gehäuse (8) vorgesehen ist, in dem die Anpaßschicht (4) und die piezoelektrische Einheit (2) mit dem Koppelring (3) angeordnet sind und daß eine Vergußmasse (7) vorgesehen ist, die zumindest in einigen Teilbereichen zwischen der Anpaßschicht (4), der piezoelektrischen Einheit (2), dem Koppelring (3) und der Innenwand des Gehäuses (8) angeordnet ist.

15

7. Schall- oder Ultraschallwandler nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß es sich bei der Vergußmasse (7) um eine Elastomervergußmasse handelt.

20

- Schall- oder Ultraschallwandler nach einem oder mehreren der Ansprüche
 bis 7,
- dadurch gekennzeichnet,
- eine Diffusionssperre (6) vorgesehen ist, die entgegen der Abstrahlrichtung 25 auf der Vergußmasse (7) angeordnet ist.

