### DDPG and Practice in RL

RL Discuss Group - Week 2

Zhengfei Wang

October 18, 2018

### Outline

- 1 Pre-Knowledge
- 2 DDPG
  - Paper
  - Code
- 3 Tips in Practice
- 4 Related Work
  - Priority Experience Replay
  - Parameter Noise
  - Distributed Version
- 5 My Thoughts
- 6 Reference



# Pre-Knowledge

- Actor-Critic: **Actor** updates the policy parameters  $\theta$  for  $\pi_{\theta}(a|s)$  to compute action. **Critic** updates the value function parameters w to evaluate the action-value or state-value.
- DPG: Previous policy function  $\pi(.|s)$  is modeled as a probability distribution, therefore the action is stochastic. **Deterministic Policy Gradient** models the policy function  $a = \mu(s)$  and prove the gradient of deterministic policy.
- DQN: Replay buffer minimize correlations between samples. Target update makes the algorithm more stable. Limitation: continuous and high dimensional action spaces.

3 / 16

#### Overview

A model-free, off-policy, actor-critic algorithm, deep function approximators for high-dimensional, continuous action spaces.

Continuous control with deep reinforcement learning. ICLR 2016. DeepMind.

4 / 16

#### Core Ideas

- **E**xperience replay store transitions  $(s_t, a_t, r_t, s_{t+1})$
- $\blacksquare$  Target network update follows  $\boldsymbol{\theta}' \leftarrow \boldsymbol{\tau}\boldsymbol{\theta} + (1-\boldsymbol{\tau})\boldsymbol{\theta}'$
- Add noise  $\mathcal{N}$  for exploration  $\mu'(s) = \mu_{\theta}(s) + \mathcal{N}$

## Algorithm

#### Algorithm 1 DDPG algorithm

Randomly initialize critic network  $Q(s,a|\theta^Q)$  and actor  $\mu(s|\theta^\mu)$  with weights  $\theta^Q$  and  $\theta^\mu.$ 

Initialize target network Q' and  $\mu'$  with weights  $\theta^{Q'} \leftarrow \theta^Q$ ,  $\theta^{\mu'} \leftarrow \theta^\mu$ 

Initialize replay buffer R for episode = 1, M do

Initialize a random process  $\mathcal{N}$  for action exploration

Receive initial observation state s<sub>1</sub>

for t = 1, T do

Select action  $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$  according to the current policy and exploration noise

Execute action  $a_t$  and observe reward  $r_t$  and observe new state  $s_{t+1}$ Store transition  $(s_t, a_t, r_t, s_{t+1})$  in R

Sample a random minibatch of N transitions  $(s_i, a_i, r_i, s_{i+1})$  from R

Set  $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ 

Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ 

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a|\theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for



# PyTorch DDPG

https://github.com/ailab-pku/rl-framework/tree/master/DDPG

7 / 16

## Some Tips

- Parameter initialization is IMPORTANT
- Network architecture is always small (400-300)
- Noise level SHOULD decay during training
- RunningMeanStd normalize observation and reward
- Another exploration is  $\epsilon$ -greedy style
- About Batch Normalization: I'm NOT sure currently...

### Advances for DDPG

- Prioritized Experience Replay
- Parameter Noise
- Distributed Version



## Priority Experience Relay

Prioritized Experience Replay. ICLR 2016. DeepMind.

Intuition: replay important transitions more frequently to learn more efficiently.

#### Criteria:

- **b** based on TD-error  $\delta$ , for how 'surprising' or unexpected the transition is
- stochastic priority:  $P(i) = \frac{p_i^{\alpha}}{\sum_i p_i^{\alpha}}$ 
  - $\blacksquare$  proportional,  $p_i = |\delta_i| + \epsilon$
  - rank-based,  $p_i = \frac{1}{rank(i)}$
- importance sampling to anneal the bias



# PER Experiment



Figure: median (left) or mean (right) over 57 games of maximum baseline-normalized score achieved so far

Conclusion: PER speed up learning by factor 2 and new SOA Atari benchmark.



#### Parameter Noise

Parameter Space Noise for Exploration. ICLR 2018. OpenAl.

Intuition: action noise may obtain different action a for a *fixed* state s. Solution: add noise to policy network level (for DDPG and off-policy algorithm)

## Schematic Diagram



Figure: Action space noise (left), compared to parameter space noise (right)

Conclusion: Parameter Noise rarely decrease performance, often result in improved performance and allow solving environments with sparse rewards. It is an interesting alternative.

### Distributed Version for DDPG

- Multiple Distributed Parallel Actors
- Prioritized Experience Replay
- *N*-step returns
- Distributional Critic

last two items belong to D4PG (Distributed Distributional DDPG), a paper published in ICLR 2018 by DeepMind.

# Shortages Remain in DDPG and RL

#### **DDPG**

- can not apply large network
- depend on effective exploration
- update always too big for network

#### RL

- computational consuming (mostly CPUs)
- good reward design
- always feature engineering



#### References

- Deterministic Policy Gradient on ICML
- DQN on Nature
- Deep Deterministic Policy Gradient on ICLR
- Priority Experience Replay on ICLR
- Parameter Noise on ICLR
- Distributed Distributional DDPG on ICLR
- Discuss on Batch Normalization in DDPG Zhihu
- PKU AI Lab DDPG Implementation GitHub

