q1a

November 7, 2023

1 Project 3 - Chris O'Brien 4638722

https://github.com/chrisobi<02/Chris-OBrien-2504-2023-PROJECT3

I did no data recovery strategy (although I'm sure the EM algorithm or nearest neighbour would have been sufficient). I dropped any missing prices from task 1.2 onwards when concerned with price, but for single variables included all datapoints

```
[]: using Pkg; Pkg.activate(".")
```

Activating project at `~/Chris-OBrien-2504-2023-PROJECT3`

```
[]: using DataFrames, CSV, DataFrameMacros, StatsBase, StatsPlots, Dates
```

	Suburb	Address	Rooms	Type	Price	Method	SellerG	
	String31	String31	Int64	String1	Int64	String3	String31	
1	Abbotsford	85 Turner St	2	h	1480000	S	Biggin	
2	Abbotsford	25 Bloomburg St	2	h	1035000	\mathbf{S}	Biggin	
3	Abbotsford	5 Charles St	3	h	1465000	SP	Biggin	
4	Abbotsford	40 Federation La	3	h	850000	PΙ	Biggin	
5	Abbotsford	55a Park St	4	h	1600000	VB	Nelson	
6	Abbotsford	129 Charles St	2	h	941000	\mathbf{S}	Jellis	
7	Abbotsford	124 Yarra St	3	h	1876000	\mathbf{S}	Nelson	
8	Abbotsford	98 Charles St	2	h	1636000	\mathbf{S}	Nelson	
9	Abbotsford	217 Langridge St	3	h	1000000	\mathbf{S}	Jellis	
10	Abbotsford	18a Mollison St	2	\mathbf{t}	745000	\mathbf{S}	Jellis	
11	Abbotsford	6/241 Nicholson St	1	u	300000	\mathbf{S}	Biggin	
12	Abbotsford	10 Valiant St	2	h	1097000	\mathbf{S}	Biggin	
13	Abbotsford	403/609 Victoria St	2	u	542000	\mathbf{S}	Dingle	
14	Abbotsford	25/84 Trenerry Cr	2	u	760000	SP	Biggin	
15	Abbotsford	106/119 Turner St	1	u	481000	SP	Purplebricks	
16	Abbotsford	411/8 Grosvenor St	2	u	700000	VB	Jellis	
17	Abbotsford	40 Nicholson St	3	h	1350000	VB	Nelson	
18	Abbotsford	123/56 Nicholson St	2	u	750000	\mathbf{S}	Biggin	
19	Abbotsford	22 Park St	4	h	1985000	\mathbf{S}	Biggin	
20	Abbotsford	13/84 Trenerry Cr	1	u	500000	\mathbf{S}	Biggin	
21	Abbotsford	45 William St	2	h	1172500	\mathbf{S}	Biggin	
22	Abbotsford	7/20 Abbotsford St	1	u	441000	SP	Greg	
23	Abbotsford	16 William St	2	h	1310000	\mathbf{S}	Jellis	
24	Abbotsford	42 Henry St	3	h	1200000	\mathbf{S}	Jellis	
		•••		•••	•••	•••	•••	

2 1.1a

2.0.1 Landsize

In examining this data, there were some significant outliers on the largest landplot size. As such the full distribution is shown on the left, and the right censors sizes above 10000. The dataset has been plotted as a quantile-quantile plot

```
title="Censored Dataset", ylims=(0,10000), yticks=0:

41000:maximum(distance_df.Landsize)+1000)

plot(distance_full, distance_truncated, layout=(1,2))
```


As can be seen, almost all houses ($\sim 90\%$) have less than a plot size of less than 1000 m(?)

3 Method

The method has been visualised as a bar chart counting the occurences of each type.

The vast majority of property sales (more than 50%) occur through direct sale

4 Rooms

The proportion of sales for each number of rooms is shown below

5 Price

A histogram of the price distribution can be seen below. It has been normalised to represent the proportion of houses sold that sold for that given price bucket.

```
[]: histogram(skipmissing(df.Price), normalize=:probability, legend=false, usualbel="Price", ylabel="Proportion of dataset")
```


6 1.2a

These plots are presented with grouping by type, since we would expect significant difference between the nature of each property

It can be noted across all these graphs, the housing series tended to attain the upper echelon of values, while the units were the cheapest. Trends are not as clear when it comes to other metrics. Room prices are roughly symetric about 4, hwoever the larger room counts do not follow this trend Price does seem to increase as distances increase, most specifically notable for houses. The other two are less clear, but seems though the variance in Unit price increases. Nothing clear about sale method, except that houses were consistently most valuable.

7 Other fun variable relations examined

First we have the distribution of Rooms and Distance from cbd and their impact on price.

It appears most properties are at distances of up to $10 \mathrm{km}$ from the city, with 3 bedrooms. The counts of properties are shown on the colour axis

```
[]: @df df scatter(
    :YearBuilt, :Price, group=:Type, xlim=(1800,2020), xlabel="Year Built",
    ⇒ylabel="Price", label=["House" "Townhouse" "Unit"]
)
```


Note the bounds have been set to 1800, one house was allegedly built in 1200, however this was omitted. No clear trend can be observed here.

I believe this plot is broken, as its colour axis is orders of magnitude too large. I believe it is blending the prices into bucekts. Irrespective of this, it indicates most sales are occurring with small building area and land sizes

7.1 As counts

Here it shows the distribution of property sales - most are for smaller properties.

8 1.3a

9 Proportion of House sales

Below is the chart for the proportions of sales houses occupy. It seems as though it has been slowly increasing as the years progress.

```
[]: gf = groupby(price_df, :Month)
    price_sum = combine(gf, :Price => sum)
    count_f = combine(groupby(price_df, [:Month, :Type]), :Type => length => :Num)
    total_f = combine(groupby(price_df, [:Month]), nrow => :Mnum)
    final = innerjoin(count_f, total_f, on= :Month)
    final[!, :Prop] = final.Num./final.Mnum

Odf filter(:Type => x->x=="h", final) bar(
        :Month,
        :Prop,
        legend=false, xlabel="Date", ylabel="House Proportion of Sales"
)
```


10 Sales volume and revenue

Below is a side-by-side comparison of the total number of sales and the net revenue from those sales. It should be noted these follow the same general trend almost one to one. This makes sense given one must sell a house to make money. This was further examined by considering the mean house price, which does not significantly vary between months implying sales volume is a good indicator of revenue

11 1.4

Note when I say significant, I refer to the statistical threshold of 0.05

```
[]:
    using GLM
     everything_model = lm(@formula(Price ~ Distance + Landsize + Bedroom2 + Car +__

¬Rooms + Type + Method + BuildingArea + YearBuilt), price_df)
    StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.
     →DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, __

¬Vector{Int64}}}}, Matrix{Float64}}
    Price ~ 1 + Distance + Landsize + Bedroom2 + Car + Rooms + Type + Method +
     →BuildingArea + YearBuilt
    Coefficients:
                                                         Pr(>|t|)
                                                                          Lower 95%
                           Coef.
                                      Std. Error
          Upper 95%
    (Intercept)
                       8.57629e6
                                       3.17639e5
                                                   27.00
                                                                          7.95364e6
                                                            <1e-99
          9.19893e6
```

Distance	-32632.9	875.461	-37.28	<1e-99	-34349.0	ш
Landsize → 37.4007	27.8362	4.87927	5.70	<1e-07	18.2717	Ш
Bedroom2 →85359.1	46082.7	20036.6	2.30	0.0215	6806.38	Ш
Car	53652.6	5876.45	9.13	<1e-19	42133.4	Ш
Rooms	1.53102e5	20344.5	7.53	<1e-13	1.13222e5	ш
Type: t	-14167.1	20741.3	-0.68	0.4946	-54824.8	Ш
Type: u → -1.2120	-1.56044e5 7e5	17772.0	-8.78	<1e-17	-1.90881e5	Ш
Method: S	1905.22	15969.0	0.12	0.9050	-29397.8	Ш
Method: SA		62265.4	0.26	0.7980	-1.06115e5	П
→ 1.3799		10015 0	0.00		4.4.4.00	
Method: SP →-33657.0	-72559.5	19845.9	-3.66	0.0003	-111462.0	Ш
Method: VB	60487.2	22005.8	2.75	0.0060	17350.8	Ш
	4e5					
BuildingArea	2560.54	73.9468	34.63	<1e-99	2415.59	Ш
YearBuilt ⊶-3842.65	-4166.54	165.227	-25.22	<1e-99	-4490.42	Ш

From this we refine the model to remove Method and type as it lacks significance. The townhouse type does not have significance, but being a unit is significant. This makes sense due to the significant differences in accommodation style

```
[]: reduced = lm(@formula(Price ~ Distance + Landsize + Rooms +Car + Bedroom2+__

BuildingArea + YearBuilt), price_df)
```

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.

DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}},

Vector{Int64}}}, Matrix{Float64}}

Price ~ 1 + Distance + Landsize + Rooms + Car + Bedroom2 + BuildingArea + $_{\sqcup}$ $_{\hookrightarrow}$ YearBuilt

Coefficients:

Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%

(Intercept) → 9.85733e	9.2926e6 e6	2.88094e5	32.26	<1e-99	8.72787e6	Ш
Distance	-31474.3	840.463	-37.45	<1e-99	-33121.8	Ш
Landsize → 35.3611	25.7742	4.89073	5.27	<1e-06	16.1872	Ш
Rooms → 2.14413e	1.74489e5	20366.8	8.57	<1e-16	1.34565e5	Ш
Car	57999.2	5891.05	9.85	<1e-22	46451.4	П
Bedroom2	52932.5	20140.8	2.63	0.0086	13451.9	П
BuildingArea ⇔2774.57	2629.49	74.0112	35.53	<1e-99	2484.41	Ц
YearBuilt ⊶-4318.21	-4606.51	147.072	-31.32	<1e-99	-4894.81	П

All of these variables are significant in terms of P values. Landsize has a small coefficient. Recall most sales occur over a small window of land sizes, while few have significantly larger sizes.

```
[]: reduced = lm(@formula(Price ~ Distance + Landsize + Rooms + Bedroom2 + → BuildingArea + Car+YearBuilt), price_df)
```

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.

DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}},

Vector{Int64}}}, Matrix{Float64}}

Price ~ 1 + Distance + Landsize + Rooms + Bedroom2 + BuildingArea + Car + $_{\sqcup}$ $_{\hookrightarrow}$ YearBuilt

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Ш
→ Upper 9	95%					
(Intercept) → 9.85733	9.2926e6 8e6	2.88094e5	32.26	<1e-99	8.72787e6	Ш
Distance →-29826.8	-31474.3	840.463	-37.45	<1e-99	-33121.8	ш
Landsize → 35.3611	25.7742	4.89073	5.27	<1e-06	16.1872	Ш
Rooms → 2.14413	1.74489e5 8e5	20366.8	8.57	<1e-16	1.34565e5	Ш
Bedroom2	52932.5	20140.8	2.63	0.0086	13451.9	Ш

BuildingArea	2629.49	74.0112	35.53	<1e-99	2484.41	Ц
Car	57999.2	5891.05	9.85	<1e-22	46451.4	Ш
YearBuilt ⊶-4318.21	-4606.51	147.072	-31.32	<1e-99	-4894.81	П

Consider a model based purely on attributes which impact the size of the house:

```
[]: house_size = lm(@formula(Price ~ Landsize + Rooms + Bedroom2 + Car + ⊔ →BuildingArea), price_df)
```

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.

DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}},

Vector{Int64}}}, Matrix{Float64}}

Price ~ 1 + Landsize + Rooms + Bedroom2 + Car + BuildingArea

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper <mark>∟</mark>
95 %						
(Intercept)	55772.4	21270.9	2.62	0.0088	14076.8	97468.1
Landsize ⊶99103	-4.92995	5.5713	-0.88	0.3762	-15.8509	5.
Rooms	3.04549e5	24470.0	12.45	<1e-34	256582.0	3.
Bedroom2	20747.8	24452.1	0.85	0.3962	-27183.7	68679.4
Car	13900.3	7026.58	1.98	0.0479	126.667	27674.0
BuildingArea	52.3667	14.0532	3.73	0.0002	24.8193	79.914

In terms of considering house size based attributes only, landsize and the existence of second bedrooms lose their statistical significance. The bedroom loses significance since it is linked naturally to the Rooms variable. As such we will exclude them in future

```
[]: final_model = lm(@formula(Price ~ Distance + Car + Rooms + YearBuilt + ⊔
→BuildingArea), price_df)
```

StatsModels.TableRegressionModel{LinearModel{GLM.LmResp{Vector{Float64}}}, GLM.

DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}},

Vector{Int64}}}, Matrix{Float64}}

Price ~ 1 + Distance + Car + Rooms + YearBuilt + BuildingArea

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	ш
→ Upper 95%	6					
(Intercept) → 1.01023e7	9.56844e6	2.72368e5	35.13	<1e-99	9.03455e6	ш
Distance	-30434.9	755.199	-40.30	<1e-99	-31915.3	ш
Car ⊶69226.4	58365.3	5540.83	10.53	<1e-25	47504.2	ш
Rooms →233233.0	2.19954e5	6774.17	32.47	<1e-99	2.06676e5	ш
YearBuilt ⊶-4466.71	-4739.18	139.001	-34.09	<1e-99	-5011.65	Ш
BuildingArea	2701.11	70.0674	38.55	<1e-99	2563.76	Ц

This final model has all significant values.