

### **Model Extraction**

A. M. Sadeghzadeh, Ph.D.

Sharif University of Technology Computer Engineering Department (CE) Data and Network Security Lab (DNSL)



May 23, 2023

# Today's Agenda

1 Model Extraction

2 Knockoff Nets

Model Extraction

### Model Extraction

Model extraction attacks target the **confidentiality** of a victim model deployed on a remote service.

- A model refers here to both the architecture and its parameters.
- The model can be viewed as **intellectual property** that the adversary is trying to steal.

### Adversarial Motivations

There are two **primary intents** for adversaries to conduct model extraction attacks, **Stealing** and **Reconnaissance**.

### Adversarial Motivations

There are two **primary intents** for adversaries to conduct model extraction attacks, **Stealing** and **Reconnaissance**.

 Stealing: Motivated by economic incentives. Adversaries are motivated to abuse the target classifier to reduce the cost of creating a new classifier.

#### Adversarial Motivations

There are two **primary intents** for adversaries to conduct model extraction attacks, **Stealing** and **Reconnaissance**.

- Stealing: Motivated by economic incentives. Adversaries are motivated to abuse the target classifier to reduce the cost of creating a new classifier.
- Reconnaissance: Model extraction enables an adversary previously operating in a black-box threat model to mount attacks against the extracted model in a white-box threat model. The adversary is performing reconnaissance to later mount attacks targeting other security properties of the learning system
  - Integrity with adversarial examples
  - Privacy with training data membership inference.

# Model Stealing Threat Model

The adversary has black-box access to the target model (Oracle)



Model Extraction

### **Exact Extraction**

Exact extraction is impossible.

Functionality equivalent



Sharif U. T.

### **Exact Extraction**

Exact extraction is impossible.

Functionality equivalent



# Adversary's Goal

- Stealing → Accuracy
- Reconnaissance → Fidelity
  - Functionality Equivalent (Perfect Fidelity)



Figure 1: Illustrating fidelity vs. accuracy. The solid blue line is the oracle; functionally equivalent extraction recovers this exactly. The green dash-dot line achieves high fidelity: it matches the oracle on all data points. The orange dashed line achieves perfect accuracy: it classifies all points correctly.

(Jagielski, 2019)

# Adversary's Goal

## Accuracy

For the true task distribution  $D_A$  over  $\mathcal{X} \times \mathcal{Y}$ , the goal of task accuracy extraction is to construct an  $\hat{O}$  maximizing  $Pr_{(x,y)\sim D_A}[argmax(\hat{O}(x))=y]$ .

May 23, 2023

9/38

# Adversary's Goal

### Accuracy

For the true task distribution  $D_A$  over  $\mathcal{X} \times \mathcal{Y}$ , the goal of task accuracy extraction is to construct an  $\hat{O}$  maximizing  $Pr_{(x,y)\sim D_A}[argmax(\hat{O}(x))=y]$ .

#### Fidelity

■ Given some target distribution  $D_F$  over  $\mathcal{X}$ , and goal similarity function  $S(p_1, p_2)$ , the goal of fidelity extraction is to construct an  $\hat{O}$  that maximizes  $Pr_{x \sim D_F}[S(\hat{O}(x), O(x))]$ .

# Adversary's Goal

#### Accuracy

For the true task distribution  $D_A$  over  $\mathcal{X} \times \mathcal{Y}$ , the goal of task accuracy extraction is to construct an  $\hat{O}$  maximizing  $Pr_{(x,y)\sim D_A}[argmax(\hat{O}(x))=y]$ .

#### Fidelity

■ Given some target distribution  $D_F$  over  $\mathcal{X}$ , and goal similarity function  $S(p_1, p_2)$ , the goal of fidelity extraction is to construct an  $\hat{O}$  that maximizes  $Pr_{x \sim D_F}[S(\hat{O}(x), O(x))]$ .

#### Functionally Equivalent (Perfect Fidelity)

■ The goal of functionally equivalent extraction is to construct an  $\hat{O}$  such that  $\forall x \in \mathcal{X}, \hat{O}(x) = O(x)$ .

# Adversarial Capabilities

#### Threat model

- **Label**: only the label of the most-likely class is revealed.
- Label and score: in addition to the most-likely label, the confidence score of the model in its prediction for this label is revealed.
- Top-k scores: the labels and confidence scores for the k classes whose confidence are highest are revealed.
- Scores: confidence scores for all labels are revealed.
- Logits: raw logit values for all labels are revealed.

# Budget

Adversaries want to **minimize the number of queries** to the target model in order to

- **Avoid detection** and prevention of the attack
- **Limit the amount of money** spent for predictions, in the case of MLaaS prediction APIs
- Minimize the number of **samples required** to query the model.

# **Attack Strategies**

#### In-Distribution (ID) samples

- Transfer learning
- Semi-supervised learning
- Active learning
- Self-supervised learning



A. M. Sadeghzadeh

Sharif U. T.

Model Extraction

## Attack Strategies

#### In-Distribution (ID) samples

- Transfer learning
- Semi-supervised learning
- Active learning
- Self-supervised learning

#### **Out-Of-Distribution (OOD) samples**

- Data Augmentation (Limited access to ID samples)
- Semantically similar natural samples
- Synthetic samples



# **Defense Strategies**

- Detection-based methods
- Perturbation-based methods
- Watermarking



**Knockoff Nets** 

### **Knockoff Nets**

### **Knockoff Nets: Stealing Functionality of Black-Box Models**

Tribhuvanesh Orekondy<sup>1</sup>

Bernt Schiele<sup>1</sup>

Mario Fritz<sup>2</sup>

<sup>1</sup> Max Planck Institute for Informatics <sup>2</sup> CISPA Helmholtz Center for Information Security Saarland Informatics Campus, Germany

## Abstract

It formulates model **functionality stealing** as a two-step approach

- Querying a set of input images to the blackbox model to obtain predictions
- $\blacksquare$  Training a knockoff with queried image-prediction pairs.

#### **Abstract**

It formulates model **functionality stealing** as a two-step approach

- Querying a set of input images to the blackbox model to obtain predictions
- Training a knockoff with queried image-prediction pairs.

#### Remarkable observations

- Querying random images from a different distribution than that of the blackbox training data results in a well-performing knockoff
- This is possible even when the knockoff is represented using a **different architecture**
- Reinforcement learning approaches improve query sample efficiency in certain settings and provides performance gains.

#### **Problem Statement**



Figure 2: Problem Statement. Laying out the task of model functionality stealing in the view of two players - victim V and adversary A. We group adversary's moves into (a) Transfer Set Construction (b) Training Knockoff  $F_A$ .

#### **Problem Statement**



**Figure 1:** An adversary can create a "knockoff" of a blackbox model solely by interacting with its API: image in, prediction out. The knockoff bypasses the monetary costs and intellectual effort involved in creating the blackbox model.

# Adversary's Attack

# To train a knockoff, the adversary

- Interactively queries images  $\{x_i \stackrel{\pi}{\sim} P_A(X)\}$  using strategy  $\pi$  to obtain a transfer set of images and pseudo-labels  $\{(x_i, F_V(x_i))\}_{i=1}^B$
- Selects an architecture  $F_A$  for the knockoff and trains it to mimic the behavior of  $F_V$  on the transfer set.
- Objective
  - lacksquare Maximizing performance within a budget of B blackbox queries

## Transfer Set Construction

## Selecting $P_A(X)$

lacksquare This can be a **large set of natural images**. For instance, one of the distributions  $P_A$  we consider is the 1.2M images of ILSVRC dataset

### Transfer Set Construction

## Selecting $P_A(X)$

 $lue{}$  This can be a **large set of natural images**. For instance, one of the distributions  $P_A$  we consider is the 1.2M images of ILSVRC dataset

#### Sampling Strategy $\pi$

- Once the image distribution  $P_A(X)$  is chosen, the adversary samples images  $x \stackrel{\pi}{\sim} P_A(X)$  using a strategy  $\pi$ . There are two strategies.
  - Random strategy
  - Adaptive strategy

# Random Strategy

In this strategy, the adversary **randomly samples images** (without replacement)  $x \stackrel{iid}{\sim} P_A(X)$  to query  $F_V$ . This is an extreme case where adversary performs pure exploration.

There is a risk that the adversary samples images irrelevant to learning the task (e.g., over-querying dog images to a birds classifier).

# Adaptive Strategy - Reinforcement Learning



# Supplementing $P_A$ in Adaptive Strategy

- To encourage relevant queries, images in the adversary's distribution are enriched by associating each image  $x_i$  with a label  $z_i \in Z$ .
- No semantic relation of these labels with the blackbox's output classes is assumed or exploited.
  - $lue{}$  As an example, when  $P_A$  corresponds to 1.2M images of the ILSVRC dataset, labels defined over 1000 classes are used.
  - These labels can be alternatively obtained by unsupervised measures e.g., clustering.
- Furthermore, since we expect labels  $\{z_i \in Z\}$  to be correlated or inter-dependent, we represent them within a coarse-to-fine hierarchy, as nodes of a tree as shown in Figure 4b.

# Adaptive Strategy



Figure 4: Strategy adaptive.

#### Actions

At each time-step t, we sample actions from a discrete action space  $z_t \in Z$  i.e., adversary's independent label space.

Drawing an action is a forward-pass (denoted by a blue line in Figure 4b) through the tree: at each node, we sample a child node with probability  $\pi_t(z)$  (which sums to 1 over siblings).

Upon reaching a leaf-node, a sample of images is returned corresponding to label  $z_t$ .

### Rewards

The quality of sampled image  $\boldsymbol{x}_t$  is evaluated by three reward functions

May 23, 2023

26 / 38

#### Rewards

The quality of sampled image  $x_t$  is evaluated by three reward functions

■ Margin-based certainty measure to encourage images where the victim is confident (hence indicating the domain  $F_V$  was trained on):

$$R^{cert}(y_t) = P(y_{t,k_1}|x_t) - P(y_{t,k_2}|x_t)$$

where  $F_V(x_t) = y_t$  and  $k_i$  is the  $i^{th}$ -most confident class.

#### Rewards

The quality of sampled image  $x_t$  is evaluated by three reward functions

■ **Margin-based certainty** measure to encourage images where the victim is confident (hence indicating the domain  $F_V$  was trained on):

$$R^{cert}(y_t) = P(y_{t,k_1}|x_t) - P(y_{t,k_2}|x_t)$$

where  $F_V(x_t) = y_t$  and  $k_i$  is the  $i^{th}$ -most confident class.

lacktriangle To prevent the degenerate case of image exploitation over a single label, we introduce a **diversity reward**  $(F_A(x_t)=y_t)$ :

$$R^{div}(y_{1:t}) = \sum_{k} max(0, y_{t,k} - \bar{y}_{t:t-\Delta,k})$$

A. M. Sadeghzadeh Sharif U. T.

#### Rewards

The quality of sampled image  $x_t$  is evaluated by three reward functions

■ Margin-based certainty measure to encourage images where the victim is confident (hence indicating the domain  $F_V$  was trained on):

$$R^{cert}(y_t) = P(y_{t,k_1}|x_t) - P(y_{t,k_2}|x_t)$$

where  $F_V(x_t) = y_t$  and  $k_i$  is the  $i^{th}$ -most confident class.

lacktriangleright To prevent the degenerate case of image exploitation over a single label, we introduce a **diversity reward** ( $F_A(x_t)=y_t$ ):

$$R^{div}(y_{1:t}) = \sum_{k} max(0, y_{t,k} - \bar{y}_{t:t-\Delta,k})$$

■ To encourage images where the knockoff prediction  $\hat{y}_t = F_A(x_t)$  does not imitate  $F_V$ , we reward high Cross Entropy (CE) loss:

$$R^{\mathcal{L}}(y_t, \hat{y}_t) = CE(y_t, \hat{y}_t)$$

A. M. Sadeghzadeh

Sharif U. T.

#### Rewards

The quality of sampled image  $x_t$  is evaluated by **three reward functions** 

■ **Margin-based certainty** measure to encourage images where the victim is confident (hence indicating the domain  $F_V$  was trained on):

$$R^{cert}(y_t) = P(y_{t,k_1}|x_t) - P(y_{t,k_2}|x_t)$$

where  $F_V(x_t) = y_t$  and  $k_i$  is the  $i^{th}$ -most confident class.

lacksquare To prevent the degenerate case of image exploitation over a single label, we introduce a **diversity reward** ( $F_A(x_t)=y_t$ ):

$$R^{div}(y_{1:t}) = \sum_{k} max(0, y_{t,k} - \bar{y}_{t:t-\Delta,k})$$

■ To encourage images where the knockoff prediction  $\hat{y}_t = F_A(x_t)$  does not imitate  $F_V$ , we reward high Cross Entropy (CE) loss:

$$R^{\mathcal{L}}(y_t, \hat{y}_t) = CE(y_t, \hat{y}_t)$$

Individual rewards are **summed up** when multiple measures are used.

# Learning the Policy

**Gradient bandit algorithm** (Reinforcement Learning: An Introduction - Sec. 2.7)

■ We use the received reward  $r_t$  for an action  $z_t$  to update the policy  $\pi$  using the gradient bandit algorithm

# Learning the Policy

### Gradient bandit algorithm (Reinforcement Learning: An Introduction - Sec. 2.7)

- We use the received reward  $r_t$  for an action  $z_t$  to update the policy  $\pi$  using the gradient bandit algorithm
- This update is equivalent to a **backwardpass through the tree** (denoted by a green line in Figure 4b), where the node potentials are updated as:

$$\pi_t(z) = \frac{e^{H_t(z)}}{\sum_{z'} e^{H_t(z')}}$$

$$H_{t+1}(z_t) = H_t(z_t) + \alpha(r_t - \bar{r}_t)(1 - \pi_t(z_t))$$
  

$$H_{t+1}(z') = H_t(z') - \alpha(r_t - \bar{r}_t)\pi_t(z') \qquad \forall z' \neq z_t$$

where  $\alpha=\frac{1}{N(z)}$  is the learning rate, N(z) is the number of times action z has been drawn, and  $\bar{r}_t$  is the mean reward over past  $\Delta$  time-steps.

A. M. Sadeghzadeh

Sharif U. T.

# Learning the Policy

### Gradient bandit algorithm (Reinforcement Learning: An Introduction - Sec. 2.7)

- We use the received reward  $r_t$  for an action  $z_t$  to update the policy  $\pi$  using the gradient bandit algorithm
- This update is equivalent to a **backwardpass through the tree** (denoted by a green line in Figure 4b), where the node potentials are updated as:

$$\pi_t(z) = \frac{e^{H_t(z)}}{\sum_{z'} e^{H_t(z')}}$$

$$H_{t+1}(z_t) = H_t(z_t) + \alpha(r_t - \bar{r}_t)(1 - \pi_t(z_t))$$
  

$$H_{t+1}(z') = H_t(z') - \alpha(r_t - \bar{r}_t)\pi_t(z') \qquad \forall z' \neq z_t$$

where  $\alpha=\frac{1}{N(z)}$  is the learning rate, N(z) is the number of times action z has been drawn, and  $\bar{r}_t$  is the mean reward over past  $\Delta$  time-steps.

 $\blacksquare$   $\pi_0(z)$  and  $H_0(z)$  are initialized such that reaching all leaf nodes in the hierarchy are equally probable.

A. M. Sadeghzadeh Sharif U. T. Model Extraction

27 / 38

# Selecting Architecture $F_A$

### ${\cal F}_A$ with a **reasonably complex architecture** e.g., VGG or ResNet.

 Existing findings in Knowledge distillation indicate robustness to choice of reasonably complex student models.

#### Training to Imitate

- To bootstrap learning, the training is initialized with a pretrained Imagenet network (Transfer Learning)
- Knockoff  $F_A$  is trained to imitate  $F_V$  on the transfer set by minimizing the cross entropy

# Training the Black-boxes

### All models are trained using a ResNet-34 architecture

| Blackbox $(F_V)$                                                  | $ \mathcal{D}_V^{	ext{train}}  +  \mathcal{D}_V^{	ext{test}} $ | Output classes $K$                                                                                     |
|-------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Caltech256 [11]<br>CUBS200 [36]<br>Indoor67 [26]<br>Diabetic5 [1] | 23.3k + 6.4k<br>6k + 5.8k<br>14.3k + 1.3k<br>34.1k + 1k        | 256 general object categories<br>200 bird species<br>67 indoor scenes<br>5 diabetic retinopathy scales |
|                                                                   |                                                                |                                                                                                        |

**Table 1: Four victim blackboxes**  $F_V$ . Each blackbox is named in the format: [dataset][# output classes].

# Choice of $P_A$

- $P_A = ILSVRC$
- $P_A = OpenImages$ 
  - OpenImages v4 is a large-scale dataset of 9.2M images gathered from Flickr. A subset of 550K unique images is gathered in 600 categories.
- $P_A = D^2$ : dataset of datasets

#### **Datasets**



Figure 6: Qualitative Results. (a) Samples from the transfer set  $(\{(x_i, F_V(x_i))\}, x_i \sim P_A(X))$  displayed for four output classes (one from each blackbox): 'Homer Simpson', 'Harris Sparrow', 'Gym', and 'Proliferative DR'. (b) With the knockoff  $F_A$  trained on the transfer set, we visualize its predictions on victim's test set  $(\{(x_i, F_A(x_i))\}, x_i \sim D_v^{lest})$ . Ground truth labels are underlined.

### Accuracy on test sets

|        |                          | random                       |                              |                              |                              |  |
|--------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|
|        | $P_{A}$                  | Caltech256                   | CUBS200                      | Indoor67                     | Diabetic5                    |  |
|        | $P_V(F_V)$<br>$P_V$ (KD) | 78.8 (1×)<br>82.6 (1.05×)    | 76.5 (1×)<br>70.3 (0.92×)    | 74.9 (1×)<br>74.4 (0.99×)    | 58.1 (1×)<br>54.3 (0.93×)    |  |
| Closed | $D^2$                    | 76.6 (0.97×)                 | 68.3 (0.89×)                 | 68.3 (0.91×)                 | 48.9 (0.84×)                 |  |
| Open   | ILSVRC<br>OpenImg        | 75.4 (0.96×)<br>73.6 (0.93×) | 68.0 (0.89×)<br>65.6 (0.86×) | 66.5 (0.89×)<br>69.9 (0.93×) | 47.7 (0.82×)<br>47.0 (0.81×) |  |

|        |                   | adaptive                     |                              |                              |                              |  |
|--------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|
|        | $P_A$             | Caltech256                   | CUBS200                      | Indoor67                     | Diabetic5                    |  |
|        | $P_V(F_V)$        | -                            | -                            | -                            | -                            |  |
|        | $P_V$ (KD)        | -                            | -                            | -                            | -                            |  |
| Closed | $D^2$             | 82.7 (1.05×)                 | 74.7 (0.98×)                 | 76.3 (1.02×)                 | 48.3 (0.83×)                 |  |
| Open   | ILSVRC<br>OpenImg | 76.2 (0.97×)<br>74.2 (0.94×) | 69.7 (0.91×)<br>70.1 (0.92×) | 69.9 (0.93×)<br>70.2 (0.94×) | 44.6 (0.77×)<br>47.7 (0.82×) |  |

Table 2: Accuracy on test sets. Accuracy of blackbox  $F_V$  indicated in gray and knockoffs  $F_A$  in black. B=60k.

## Performance of the knockoff at various budgets.



Figure 5: Performance of the knockoff at various budgets. Across choices of adversary's image distribution  $(P_A)$  and sampling strategy  $\pi$ . - represents accuracy of blackbox  $F_V$  and  $\cdots$  represents chance-level performance. Enlarged version available in supplementar further trivial version and  $F_V$  and  $F_V$  and  $F_V$  and  $F_V$  are represents chance-level performance.

Sharif U. T. Model Extraction May 23, 2023

# Policy $\pi$ learnt by the adaptive approach



Figure 7: Policy  $\pi$  learnt by the adaptive approach. Each bar represents preference for action z. Top 30 actions (out of 2.1k and 1k) are displayed. Colors indicate parent of action in hierarchy.

### **Reward Ablation**



**Figure 8: Reward Ablation.** cert: certainty, uncert: uncertainty, div: diversity,  $\mathcal{L}$ : loss, none: no reward (random strategy).

### **Truncated Posteriors**

- $\blacksquare$  top-k
  - lacksquare Top-k (out of K) unnormalized posterior probabilities are retained, while rest are zeroed-out.
- $\mathbf{2}$  rounding r
  - Posteriors are rounded to r decimals e.g., round(0.127, r = 2) = 0.13.



**Figure 9: Truncated Posteriors.** Influence of training knockoff with truncated posteriors.

### Architecture choices

Selecting a more complex model architecture of the knockoff is beneficial.



**Figure 10: Architecture choices.**  $F_V$  (left: Resnet-34 and right: VGG-16) and  $F_A$  (lines in each plot).

### Effect of CNN Initialization



Figure S3: Training with non-ImageNet initializations of knockoff models. Shown for various choices of blackboxes  $F_V$  (subplots) and adversary's image distribution  $P_A$  (lines). All victim blackbox models are trained from scratch; test accuracy indicated by --- . All knockoff models are either trained from scratch, or pretrained on the corresponding  $P_A$  task (suffixed with '(pt)').