Plan du cours

Activité d'introduction

Figure

(MN) // (ST)

Mesurer (au mm près) les longueurs RM, RS, RN, RT, MN et ST et compléter le tableau ci-dessous :

Longueurs des côtés du triangle RMN	RM	RN	MN
Longueurs des côtés correspondants du triangle RST	RS	RT	ST

Que constate-t-on ?

Mesurer (au mm près) les longueurs EK, EF, EL, EG, KL et FG et compléter le tableau ci-dessous :

Longueurs des côtés du triangle EKL	EK	EL	KL
Longueurs des côtés correspondants du triangle EFG	EF	EG	FG

Que constate-t-on?

I. Théorème de Thalès

1. Le théorème

Théorème

Soient ABC un triangle quelconque non aplati, M et N deux points tels que $M \in [AB]$ et $N \in [AC]$. Si la droite (MN) est parallèle à la droite (BC), Alors on a l'égalité suivante :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Exemple:

Écrire les égalités données par le théorème de Thalès dans les cas suivants :

2. Application du Théorème de Thalès

Objectif : Le théorème de Thalès permet de calculer des longueurs de segments.

On considère un triangle ABC tel que AB = 12 cm, BC = 4 cm, AM = 9cm et AN = 6 cm. Les droites (MN) et (BC) sont parallèles.

Calculer AC et MN.(Faîtes un schéma à main levée avec les mesures.)

Résolution:

Dans le triangle ABC :

- Les droites (MB) et (NC) sont sécantes en A. Les points A, M, B et A, N, C sont alignés dans le même ordre.
- (MN) // (BC)

D'après le théorème de Thalès, on a :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

On remplace:

$$\frac{9}{12} = \frac{6}{AC} = \frac{MN}{4}$$

Calcul de AC:

$$\frac{9}{12} = \frac{6}{AC} \text{ donc } AC = \frac{6 \times 12}{9}$$

$$AC = 8 \text{ cm}$$

Calcul de MN:

$$\frac{9}{12} = \frac{MN}{4} \text{ donc } MN = \frac{4 \times 9}{12}$$

$$MN = 3 \text{ cm}$$

Exercice d'application 1

On considère le triangle ci-contre, les droites (AD) et (BC) sont parallèles.

Calculer la distance BC.

II. Réciproque du théorème de Thalès

Théorème

Si les points A, B et M sont alignés dans le même ordre que les points A, C et N et $\frac{AM}{AB} = \frac{AN}{AC}$ alors (BC)//(MN).

Exemple:

1. Les droites (AB) et (DE) sont-elles parallèles?
2. Les droites (PR) et (DE) sont-elles parallèles?

