Modélisation Prédictive de l'Impact des Catastrophes Naturelles

Groupe: WAOH

Noms: Cylia, Fatima, Imane, Yikun

Sommaire

1 | Présentation générale et des données

- 1.1 | Contexte et problématique
- 1.2 | Présentation des données
- 1.3 | Analyse et traitement des valeurs manquantes

2 | Exploration et Analyse des Données

- 2.1 | Analyse Descriptive Univariée
- 2.2 | Analyse Bivariée
- 2.3 | Visualisation géographique

3 | Machine Learning

- 3.1 | Les modèles et les préparations des données
- 3.2 | Les modèles
- 3.3 | Comparaison des modèles

3.4 | Analyse approfondie du modèle Random Forest

4 | Application actuarielle

- 4.1 | Approche de notre application
- 4.2 | Les indicateurs régionaux
- 4.3 | Synthèse des profils régionaux
- 4.4 | Score Global de Risque Assurantiel
- 4.5 | Cartographie

5 | Conclusion Globale

- 5.1 | Conclusion
- 5.2 Dashboard

Présentation générale et des données

1.1 | Contexte et problématique

- Contexte des catastrophes naturelles
- Base des données EM-DAT
- La problématique de l'étude : Comment prévoir l'impact humain des catastrophes naturelles en termes de décès et de populations affectées, et utiliser ces prévisions pour proposer une solution concrète aux assureurs ?
- Proposer une application pour le secteur de l'assurance

1.2 | Présentation des données

- La base de données EM-DAT (Emergency Events Database)
 - Les **types** de catastrophes (inondations, séismes, épidémies, etc.)
 - Type de catastrophes
 - Sous-type de catastrophes
 - Leur localisation :
 - Continent
 - Pays
 - Leurs impacts sur les populations (nombre de décès, de personnes affectées)
 - Nombre de décès
 - Nombre de personnes affectés

1.3 | Analyse et traitement des valeurs manquantes

Pourcentage de valeurs manquantes par variable

	Variable	Missing_Percentage
disaster_subgroup	disaster_subgroup	0
disaster_type	disaster_type	0
disaster_subtype	disaster_subtype	0
iso_code	iso_code	0
country	country	0
subregion	subregion	0
region	region	0
location	location	0
magnitude_scale	magnitude_scale	0
total_deaths	total_deaths	30
total_affected	total_affected	23
year	year	0
start_date	start_date	19
end_date	end_date	18
event_duration	event_duration	20

1.3 | Analyse et traitement des valeurs manquantes

Comparaison des statistiques avant et après nettoyage

Statistique	Avant	Après
Nombre d'observations	14936.0	7148.00
Moyenne des décès	278.7	250.81
Médiane des décès	15.0	13.00
Moyenne des affectés	693686.2	631806.86
Médiane des affectés	5788.0	6900.00

Pourcentage de données conservées : 47.86%

2 Exploration et Analyse des Données

2.1 | Analyse Descriptive Univariée

Variable d'intérêt :

total deaths (nombre de décès pour chaque catastrophe naturelle)

Variables explicatives :

- disaster_type : Type de catastrophes
- disaster subtype : Sous-type de catastrophes
- Region : Continents
- total_affected : Personnes affectés (blessés, déplacés, nécessitant une assistance)
- event_duration : Durée de l'évènement
- Year : Année de l'évènement

2.1 | Analyse Descriptive Univariée : Variable Cible

2.1 | Analyse Descriptive Univariée : Variables Quantitatives

2.1 | Analyse Descriptive Univariée : Variables Qualitatives

2.2 | Analyse Bivariée

2.2 | Analyse Bivariée

2.3 | Visualisation géographique

Couleur : nombre de catastrophes | Taille des bulles : nombre de décès

lon

Modèles de Machine Learning

3.1 Les modèles et les préparations des données

Modèle	Туре	Justification
Random Forest	Ensemble Learning	Robuste aux outliers, gère naturellement les variables catégorielles, bonne capacité de généralisation
XGBoost	Gradient Boosting	Performance reconnue sur des données complexes, capture efficacement les relations non-linéaires
Régression Linéaire	Modèle linéaire	Modèle de référence simple, facilement interprétable, base de comparaison
SVR	Support Vector Machine	Efficace pour les relations non-linéaires, robuste avec les données normalisées

- Ensemble d'entraînement : 5718 lignes (80% des données).
- Ensemble de test : 1430 lignes (20% des données).

3.2 | Nos modèles:

3.3 | Comparaison des modèles :

Comparaison des performances des différents modèles

	Modèle	RMSE	MAE	R2
\longrightarrow	Random Forest	1.20	0.94	0.44
	XGBoost	1.21	0.95	0.42
	Régression Linéaire	1.31	1.01	0.33
	SVR	1.29	0.97	0.36

3.4 | Analyse approfondie du modèle Random Forest :

Variables

3.5 | Analyse approfondie du modèle Random Forest

Diagnostic des erreurs de prédiction

3.6 | Analyse approfondie du modèle Random Forest

Analyse quantitative des erreurs et limitations

Statistiques descriptives des erreurs

Métrique	Valeur
RMSE	1.202
MAE	0.936
Erreur médiane	0.784
Écart-type des erreurs	0.755
Q1	0.378
Q3	1.299

Performance des erreurs par région

4 Application actuarielle

4.1 | Approche de notre application

 Construire d'indicateurs pour établir un Score Global de Risque Assurantiel (SGRA)

Objectif:

- Evaluer la gravité des catastrophes pour affiner la segmentation des contrats
- Prioriser les actions assurantielles selon l'exposition globale aux risques

■ Taux de mortalité :

Taux de mortalité =
$$\frac{\text{décès}}{\text{total exposé}} \times 100$$

où : Total exposé = décès + personnes affectées.

4.2 | Construction d'indicateurs régionaux

Indice de Sévérité Populationnelle (ISP)

ISP = Taux moyen de mortalité × log(Population totale exposée) × Fréquence moyenne

Score de Risque Combiné (SRC)

SRC = Taux moyen de mortalité × Population totale exposée × Fréquence moyenne

Indice de Résilience

Résilience =
$$\frac{1}{\text{Taux moyen} \times \text{Fréquence moyenne}}$$

4.3 | Synthèse des profils régionaux

Région	Rang ISP	Rang SRC	Rang Résilience
Africa	1	3	5
Americas	2	2	4
Asia	5	1	1
Europe	3	4	3
Oceania	4	5	2

- Couvertures renforcées pour l'Afrique
- Gestion des risques de masse pour l'Asie
- Approche standardisée pour l'Europe et l'Océanie

4.4 | Elaboration du Score Global de Risque Assurantiel

$$SGRA = \alpha \times ISP + \beta \times SRC - \gamma \times Résilience$$

Région	SGRA	Impact ISP	Impact SRC	Impact Résilience
Africa	0.71	0.68	-0.04	0.07
Americas	0.28	0.23	0.00	0.05
Asia	-0.08	-0.57	0.66	-0.17
Europe	-0.17	0.07	-0.29	0.05
Oceania	-0.74	-0.40	-0.34	0.00

- Afrique : vulnérabilité maximale, résilience minimale
- Amériques : exposition importante mais meilleure résilience
- Asie : forte population exposée compensée par une bonne résilience
- Europe : profil équilibré sur tous les critères
- Océanie : exposition limitée et bonne résilience

4.4 | Analyse régionale du risque et de l'exposition des populations

5 Conclusion

4.4 | Dashboard Data Visualisation

