МОДИФИКАЦИЯ ФУНКЦИОНАЛА ОШИБКИ В ЗАДАЧАХ НЕЛИНЕЙНОЙ РЕГРЕССИИ ДЛЯ УЧЕТА ПОГРЕШНОСТИ В ИЗМЕРЯЕМЫХ ДАННЫХ

Г.И. Рудой

1 Введение

В ряде экспериментальных приложений возникает задача нахождения оптимальных коэффициентов ω некоторой регрессионной модели f, представленной в виде аналитической формулы, по набору экспериментальных данных. Для этого в предположении о нормальном распределении регрессионных остатков строится функционал, являющийся суммой квадратов отклонений экспериментальных точек y_i от регрессионной кривой: $\sum_i (y_i - f(x_i, \omega))^2$. Для численного решения этой задачи широко применяется алгоритм Левенберга-Марквардта [1].

Однако, данный функционал построен и статистически обоснован в предположении о точно измеренных независимых переменных и гомоскедастичности ошибок измерения зависимой переменной. Иными словами, рассматриваются только ошибки измерения зависимой переменной, для которых дисперсия соответствующего распределения принимается одинаковой.

В значительной части естественнонаучных приложений это предположение не выполняется. Например, в задаче нахождения дисперсионной зависимости прозрачного полимера (то есть, зависимости коэффициента преломления n от длины волны λ) [2] погрешности измерения различных физических параметров, вообще говоря, различны. Так, например, если для измерения длины волны λ используется дифракционная решетка, то постоянной является относительная погрешность определения длины волны $\frac{\sigma_{\lambda_i}}{\lambda_i} \approx \text{const}$, и, следовательно, погрешность определения длины волны зависит от самой длины волны.

Таким образом, возникает задача поиска оптимальных коэффициентов регрессионной формулы с учетом отличающихся погрешностей различных экспериментальных точек. Для некоторых частных случаев эта задача уже была решена: например, в работе [?] вводится предположение, что зависимые переменные y_i измеряются неточно, и каждая переменная y_i имеет свою собственную погрешность измерения σ_{y_i} . Далее в [?] показывается, что обычный функционал суммы квадратов регрессионных остатков, где каждый остаток нормирован на соответствующую величину $\sigma_{y_i}^2$, корректен и статистически состоятелен.

В настоящей работе рассмотрена более общая ситуация, в которой независимые переменные также определяются неточно в процессе эксперимента, и каждая переменная имеет свою собственную погрешность измерения. Предлагается модифицированный функционал качества, учитывающий погрешности как зависимых, так и независимых переменных в наиболее общем виде, и рассматривается соответствующшим образом модифицированный алгоритм Левенберга-Марквардта, предназначенный для оптимизации этого функционала и опирающийся на классический алгоритм Левенберга-Марквардта (в дальнейшем будем называть их мАЛМ и АЛМ соответственно). Доказывается сходимость модифицированного алгоритма и приводятся результаты на экспериментальных данных по измерению параметров усиливающей среды лазерного излучателя.

2 Постановка задачи

Дана обучающая выборка $D = \{\mathbf{x}_i, y_i\} | i \in \{1, \dots, \ell\}, x_i \in \mathbb{R}^m, y_i \in \mathbb{R}$. Для каждой зависимой переменной переменной y_i известно стандартное отклонение ошибки ее измерения σ_{y_i} , а для соответствующего вектора независимых переменных \mathbf{x}_i аналогично известны стандартные отклонения его компонент $\sigma_{x_{ij}}|j\in\{1,\dots,m\}$. Пусть, кроме того, дана некоторая параметрическая регрессионная модель $y = f(\mathbf{x}, \boldsymbol{\omega})$.

Для удобства введем вектор, составленный из ошибок измерений зависимых переменных σ_{y_i} :

$$\boldsymbol{\sigma}_y = \{\sigma_{y_1}, \dots, \sigma_{y_\ell}\}.$$

Аналогично введем матрицу, составленную из ошибок измерений компонент независимых переменных $\sigma_{x_{ij}}$:

$$\Sigma_x = \|\sigma_{x_{ij}}\||i \in \{1, \dots, \ell\}, j \in \{1, \dots, m\}.$$

Требуется построить функционал ошибки $S(\boldsymbol{\omega})$ вектора параметров $\boldsymbol{\omega}$ модели f, учитывающий ошибки измерений σ_{y_i} и $\sigma_{x_{ij}}$:

$$S(\boldsymbol{\omega}) = S(\boldsymbol{\omega}, \boldsymbol{\sigma}_y, \boldsymbol{\Sigma}_x), \tag{1}$$

и, кроме того, найти вектор параметров ω , минимизирующий функционал S:

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}} S(\boldsymbol{\omega}) \tag{2}$$

3 Модифицированный функционал качества

Воспользуемся следующим естественным качественным физическим соображением: чем больше погрешность определения зависимой и независимых переменных для некоторой экспериментальной точки, тем меньше соответствующий регрессионный остаток должен учитываться при оптимизации параметров модели.

Рассмотрим для простоты изложения случай одной независимой переменной: $x \in \mathbb{R}$. Введем следующее определение расстояния $\rho(x,i)$ от точки (x_i,y_i) из обучающей выборки до некоторой точки $(x,f(x,\boldsymbol{\omega}))$ на кривой, описываемой регрессионной моделью:

$$\rho(x,i) = \frac{(x_i - x)^2}{\sigma_{x_i}^2} + \frac{(y_i - y)^2}{\sigma_{y_i}^2},\tag{3}$$

где $y = f(x, \boldsymbol{\omega})$.

Непосредственное точное определение расстояния представляется отдельной сложной вычислительной задачей, однако, в подавляющем большинстве практических приложений регрессионные зависимости достаточно гладкие, а погрешности измерения достаточно малы. Пользуясь этим, линеаризуем $f(x, \omega)$ в окрестности точки x_i :

$$f(x, \boldsymbol{\omega}) = f(x_i, \boldsymbol{\omega}) + (x - x_i) \frac{\partial f}{\partial x}(x_i, \boldsymbol{\omega}).$$
 (4)

Введем для удобства обозначение $k = \frac{\partial f}{\partial x}(x_i, \boldsymbol{\omega}).$

Тогда расстояние (3) можно выразить через линеаризованную функцию (4) следующим образом:

$$\rho(x,i) = \frac{(x_i - x)^2}{\sigma_{x_i}^2} + \frac{(y_i - f(x_i, \boldsymbol{\omega}) - k(x - x_i))^2}{\sigma_{y_i}^2}.$$
 (5)

Минимизируя это выражение, находим выражение для расстояния от точки (x_i, y_i) из обучающей выборки до линеаризованной в ее окрестности экспериментальной зависимости:

$$\rho(x,i) = \frac{(y_i - f(x_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + k^2 \sigma_{x_i}^2}.$$
(6)

Аналогичным образом можно получить выражение для случая, когда \mathbf{x} — вектор m-мерном пространстве \mathbb{R}^m :

$$\rho(\mathbf{x}, i) = \frac{(y_i - f(\mathbf{x}_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$

Таким образом, функционал, минимизирующий сумму введеных согласно (3) расстояний, выглядит следующим образом:

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} \frac{(y_i - f(\mathbf{x}_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + \sum_{j=1}^{m} (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$
 (7)

Отметим следующие наблюдения:

- Функционал (7) соответствует классической сумме квадратов регрессионных остатков при условии нормировки квадрата каждого остатка на на сумму квадратов погрешности определения зависимой величины σ_{y_i} и произведения частной производной регрессионной модели по j-ой компоненте вектора независимых величин на погрешность определения соответствующей компоненты $\sigma_{x_{ij}}$.
- При прочих равных условиях в выражении для расстояния (6) и, соответственно, в функционале (7) с большим весом учитываются те точки, в которых производная регрессионной модели $\frac{\partial f}{\partial x_j}$ по соответствующей компоненте x_j больше, что соответствует физической интуиции: чем меньше наклон регрессионной зависимости в окрестности данной точки, тем меньше влияние неточного измерения соответствующей независимой переменной на значение регрессионной зависимости в этой точке
- Кроме того, если все независимые переменные измерены точно, то есть, $\forall i, j : \sigma_{x_i j} = 0$, то предложенный функционал переходит в предложенный в [?]. Если же, кроме того, все зависимые переменные имеют одну и ту же погрешность, то предложенный функционал переходит в известную сумму квадратов регрессионных остатков с точностью до некоторого множителя σ_y , влияющего на значение функционала, но не на точку его минимума.

4 Модифицированный алгоритм Левенберга-Марквардта

Для минимизации функционала (7) предлагается следующий итеративный алгоритм, предназначенный для использования с уже имеющимися реализациями АЛМ 1 :

- 1. Выбирается некоторое начальное приближение вектора параметров ω .
- 2. Для каждой пары (\mathbf{x}_i, y_i) из обучающей выборки рассчитывается значение частной производной $\frac{\partial f}{\partial x}$ в точке $(\mathbf{x}_i, \boldsymbol{\omega})$.
- 3. Каждое значение зависимой переменной y_i и значение функции $f(\mathbf{x}_i, \boldsymbol{\omega})$ нормируется на соответствующую величину

$$\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2.$$

- 4. Выполняется итерация АЛМ для таким образом модифицированных значений функции f и зависимых переменных y_i , таким образом получается новое значение вектора ω .
- 5. Если критерий останова мАЛМ не достигнут, алгоритм продолжает выполнение с пункта 2.

Отметим следующее:

- Критерием останова мАЛМ могут служить обычные критерии вроде достижения некоторого числа итераций, нормы изменения вектора ω , и т. п.
- Если известно, что производная $\frac{\partial f}{\partial x}$ достаточно гладка в окрестности $(\mathbf{x}_i, \boldsymbol{\omega}) \mid i \in \{1, \dots, \ell\}$, на шаге 4 алгоритма мАЛМ представляется разумным выполнить сразу несколько итераций классического АЛМ во избежание потенциально ресурсоемкого пересчета производных и перенормировки значений y_i и f.

Сходимость предложенного алгоритма можно показать, сведя его к классическому АЛМ. Для этого вместо объектов (\mathbf{x}_i, y_i) в обучающей выборке будем формально рассматривать объекты $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$, где $\tilde{y}_i = 0$, а $\tilde{\mathbf{x}}_i$ — вектор \mathbf{x}_i с дополнительно приписанным к нему значением y_i . Примем

$$\tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}) = \frac{f(\mathbf{x}_i, \boldsymbol{\omega}) - y_i}{\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$

Тогда минимизация функционала (7) возможна средствами классического АЛМ, так как легко видеть, что (7) в этом случае эквивалентен

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} (\tilde{y}_i - \tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}))^2.$$

Кроме того, при возможности выполнить аналитическое дифференцирование функции f, этот метод показывает еще один способ практической минимизации функционала (7) без постоянной корректировки значений y_i и f, как в предложенном выше алгоритме.

¹Предполагается, что реализация АЛМ «принимает на вход» массив значений y_i , функцию вычисления значения f в точках \mathbf{x}_i с вектором параметров $\boldsymbol{\omega}$, и критерий останова в виде числа итераций. Примером такой реализации, использовавшейся авторами, может служить [3].

5 Вычислительный эксперимент

В вычислительном эксперименте рассматриваются данные, полученные в ходе анализа зависимости интенсивности излучения I лазера от прозрачности его резонатора. Изучался лазер высокого давления (≈ 3 атм $He, \approx 60$ Topp $Ne, \approx 20$ Topp Ar) на 3p-3s переходах неона (основной переход — 585 нм), возбуждаемый электронным пучком, что означает, что накачка однородна.

Пусть насыщающая переход интенсивность излучения — I_s , наблюдаемая интенсивность — I_l . В таком случае для безразмерной величины $y = \frac{I_l}{I_s}$ можно получить нелинейное уравнение [?]:

$$\alpha_0 L - \frac{1}{2} \ln R_0 = g_0 L \frac{1 + \sqrt{R_0}}{1 - \sqrt{R_0}} \frac{1}{y} \ln \left(1 + \frac{y \frac{1 - \sqrt{R_0}}{1 + \sqrt{R_0}}}{1 + y \frac{2\sqrt{R_0}}{1 - R_0}} \right), \tag{8}$$

где α_0 — распределенные потери (например, на рассеяние света), g_0 — коэффициент усиления слабого сигнала, R_0 — прозрачность выходного зеркала лазера. Однородность накачки означает, что g_0 и α_0 одинаковы по всему объему с хорошей точностью.

Для достаточно больших R_0 , близких к единице, можно заменить $2\sqrt{R_0}\approx 1+R_0$ в (8), получив выражение

$$y(R_0) = \gamma \frac{1 - R_0}{1 + R_0} \left(\frac{g_0}{\alpha_0 - \frac{1}{2}L \ln R_0} - 1 \right), \tag{9}$$

где γ — нормировочный коэффициент.

Длина активной среды L-150 см, точность определения мощности лазера зафиксирована как относительная погрешность в 2% ($\sigma_y=0.02y$), точность определения R_0 зафиксирована как абсолютная погрешность и составляет 0.01 см ($\sigma_{R_0}=0.01$).

В ходе физических измерений получены значения $y(R_0)$, приведенные в таблице 1.

Таблица 1: Экспериментальные значения $y(R_0)$.

			0.56	l	I			
į	/	3.25	10.2	16.5	20.5	22.5	23.2	18.2

Таким образом, решается задача минимизации функционала (7) при $f(R_0, \omega) = y(R_0, \gamma, \alpha_0, g_0)$, то есть, вектор параметров ω состоит из трех компонент γ, α_0, g_0 . Предполагается, что указанные выше погрешности определяют дисперсию соответствующего распределения ошибок измерений: $\sigma_{y_i} = 0.02y_i, \ \sigma_{x_i} = 0.01$.

5.1 Оптимальные параметры модели

В таблице 2 приведены оптимальные значения параметров модели, а также соответствующие значения MSE, для модифицированного функционала (7). В таблице также приведены для сравнения соответствующие значения, получающиеся при минимизации классического функционала

$$S = \sum_{i=1}^{\ell} (y_i - f(x_i, \omega))^2,$$
(10)

а также относительная разность соответствующих величин.

Таблица 2: Оптимальные значения параметров модели.

	g_0	α_0	γ	MSE
(7)	$2.932 \cdot 10^{-3}$	$2.219 \cdot 10^{-4}$	99.2	0.282
(10)	$2.917 \cdot 10^{-3}$	$2.129 \cdot 10^{-4}$	101.5	0.183
Разность	$5.2 \cdot 10^{-3}$	$4.2 \cdot 10^{-2}$	$2.4 \cdot 10^{-2}$	0.54

5.2 Сходимость оптимальных параметров

Численно исследована зависимость сходимости параметров ω к параметрам ω_0 , получаемым минимизацией функционала (10).

Разумно предположить, что при увеличении погрешности измерения величины y при фиксированной погрешности измерения R_0 оптимальный вектор ω будет приближаться к ω_0 , так как тем более незначительным будет вклад ошибки измерения независимой переменной.

Рассматривается зависимость оптимальных коэффициентов g_0 , α_0 и γ от погрешности измерения y, задаваемой как $k\sigma_y=0.02ky$, где k в одном эксперименте менялось от 1 до 10, а в другом — от 1 до 10^4 , в обоих случаях с шагом 0.1. Отметим, что при k=50 характерная погрешность измерения величины y сопоставима с самой величиной y, а при больших значениях k превышает ее.

Результаты приведены на рис. 1 и 2 соответственно.

Видно, что для достаточно больших k оптимальные значения параметров ω существенно отличаются от ω_0 . Соответствующая зависимость имеет сложный характер с несколькими (как минимум, двумя) пересечениями с искомыми оптимальными значениями. Подробное исследование подобной зависимости является целью будущих работ.

Рис. 1: Зависимость оптимальных параметров от $\sigma_y = 0.02 ky, k \in [1; 10].$

Рис. 2: Зависимость оптимальных параметров от $\sigma_y = 0.02 ky, k \in [1;10000].$

Список литературы

- [1] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [2] Рудой, Г. И.: О Возможности Применения Методов Монте-Карло В Анализе Нелинейных Регрессионных Моделей. Сибирский Журнал Вычислительной Математики, 4, 2015.
- [3] King, Davis E.: *Dlib-ml: A Machine Learning Toolkit*. Journal of Machine Learning Research, 10:1755–1758, 2009.