» Frank-Wolfe Algorithm

- Penalty method let's us handle constrained optimisation when projecting onto constrained set is hard/slow (so projected gradient descent is slow)
- * Frank-Wolfe algorithm1 uses another idea to avoid projections
- * We start by going back to look at the special case where the cost function being minimised is *linear* ...

¹https://en.wikipedia.org/wiki/Frank-Wolfe_algorithm

» Linear Cost Functions

* Suppose the function we are trying to minimise is linear e.g f(x) = -x

 The minimum will always lie on one of the constraints (one side or other of the green shaded region above)

» Linear Cost Functions

- * The same is true when x is a vector. Suppose $x=[x_1,x_2]$ and we constrain $x_1\geq 0.5$ and $x_2\geq 0.5$
- * Examples: $f(x) = x_1$ and $f(x) = x_1 + x_2$:

- * Red line/dot mark the minima
- * The minimum will always lie on the constraints (the boundary of the green shaded region above)
- This fact can be v handy often makes linear optimisation easier since know that solution lies on boundary of feasible set ...

» Linear Programmes

* General form of a linear function of a vector $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$ is the weighted sum of the elements of \mathbf{x} i.e.

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

with weights a_1, a_2, \ldots, a_n . With vector $a = [a_1, a_2, \ldots, a_n]$, can be written in short form as $a^T x = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$

* A *linear programme* is an optimisation where both the cost function and constraints are linear. Can be written as

$$\min_{\mathbf{x} \in X} \mathbf{a}^T \mathbf{x}$$

with $X = \{x \in \mathbb{R}^n : Cx \le b\}$. Here *C* is a matrix, *b* is a vector:

$$Cx = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & & & & \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \le \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n \le b_1$$

 $c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n \le b_2$
 \vdots
 $c_{m1}x_1 + c_{m2}x_2 + \dots + c_{mn}x_n \le b_m$

» Linear Programmes

* Each linear constraint

$$c_{11}x_1 + c_{12}x_2 + \cdots + c_{1n}x_n \leq b_1$$

defines a line, sequence of constraints

$$c_{11}x_1 + c_{12}x_2 + \cdots + c_{1n}x_n \leq b_1$$
 $c_{21}x_1 + c_{22}x_2 + \cdots + c_{2n}x_n \leq b_2$
 \vdots
 $c_{m1}x_1 + c_{m2}x_2 + \cdots + c_{mn}x_n \leq b_m$

defines a polytope

red line: $x_2 = -x_1$, blue line: $x_1 = x_2$, yellow line: $x_1 = -1$

» Linear Programmes

- * Linear programme: $\min_{x \in X} a^T x$, $X = \{x \in \mathbb{R}^n : Cx \leq b\}$
- * Minimise a linear cost function $a^T x$ with x constrained to lie in polytope X, e.g.

- Solution will lie on boundary of polytope, at one of vertices.
- * To find minimiser, walk along polytope vertices \rightarrow Simplex algorithm²
- Note: not same as Nelder-Mead Simplex algo for nonlinear optimsation, sometimes called Dantzig Simplex algo to distinguish
- E.g. see scipy.optimize.linprog https:
 //docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

²https://en.wikipedia.org/wiki/Simplex_algorithm

» NonLinear Cost Functions

- * Key idea: Suppose linear optimisation over constraint set X can be done quickly. Can we minimise a nonlinear function over set X by repeatedly minimising linear functions on X?
- * Maybe ...
- * Example: suppose we want to minimise $f(x) = x^2$ subject to constraint that $x \in X = \{x : 0.5 \le x \le 1\}$. Solution is x = 0.5, on boundary of set X.

- * $\frac{df}{dx}(x) = 2x$
- * Suppose we start at $x_0 = 1$ and $\frac{df}{dx}(1) = 2$. Now solve $\min_{x \in X} \frac{df}{dx}(x_0)x = \min_{x \in X} 2x$. Solution is x = 0.5.
- * Repeat. Now $x_1=0.5$ and $\frac{df}{dx}(0.5)=1$. Solve $\min_{x\in X}\frac{df}{dx}(x_1)x=\min_{x\in X}x$. Solution is x=0.5, and stop.
- * We've managed to solve a nonlinear constrained optimisation by solving multiple linear constrained optimisations.

» NonLinear Cost Functions

- * Suppose now we want to minimise $f(x) = (x 0.75)^2$ such that $x \in X = \{x : 0.5 \le x \le 1\}$. Solution is x = 0.75, in interior of set X.
 - $* \frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{x}) = 2(\mathbf{x} 0.75)$
 - * Suppose we start at $x_0=1$. Now solve $\min_{x\in X}\frac{df}{dx}(x_0)x=\min_{x\in X}0.5x$. Solution is x=0.5.

- * Repeat. Now $x_1=0.5$. Solve $\min_{\mathbf{x}\in X}\frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{x}_1)\mathbf{x}=\min_{\mathbf{x}\in X}-0.5\mathbf{x}$. Solution is $\mathbf{x}=1$.
- We repeatedly alternate between 0.5 and 1, spending equal time at each value
- st On average $rac{1}{T}\sum_{t=1}^{T} {m{\mathsf{x}}}_t = 0.75$ i.e. solves the nonlinear optimisation

» Frank-Wolfe Algorithm

* To solve $\min_{x \in X} f(x)$ with $x = [x_1, \dots, x_n]$:

initialise
$$x_0=0, t=0, 0<\beta<1$$

Repeat:
$$z_t\in\arg\min_{x\in X}\nabla f(x_t)x$$

$$x_{t+1}=\beta x_t+(1-\beta)z_t$$

$$t=t+1$$
 and recall $\nabla f(x)=[\frac{\partial f}{\partial x_1}(x),\frac{\partial f}{\partial x_2}(x),\dots,\frac{\partial f}{\partial x_n}(x)]$

- * $\nabla f(x_t)x$ is linear cost function ($\nabla f(x_t)$ is constant, min is wrt x) $\rightarrow \min_{x \in X} \nabla f(x_t)x$ is linear optimisation over set X
- * Solution z_t to linear optimisation will lie on boundary of set X
- * x_{t+1} is running average of $z_1, z_2, \ldots, z_{t-1}$. Parameter β controls this averaging
- * Note: no step size lpha.

» Running Average

- $* x_{t+1} = \beta x_t + (1-\beta)z_t$
- * Expanding this out:

$$\begin{aligned}
x_1 &= (1 - \beta)z_0 \\
x_2 &= \beta x_1 + (1 - \beta)z_1 = \beta(1 - \beta)z_0 + (1 - \beta)z_1 \\
&= (1 - \beta)(\beta z_0 + z_1) \\
x_3 &= \beta x_2 + (1 - \beta)z_2 = \beta^2(1 - \beta)z_0 + \beta(1 - \beta)z_1 + (1 - \beta)z_2 \\
&= (1 - \beta)(\beta^2 z_0 + \beta z_1 + z_2)
\end{aligned}$$

so x_t is weighted sum of $z_0, z_1, \ldots, z_{t-1}$. E.g. with $\beta = 0.9$ then $\beta = 0.9$, $\beta^2 = 0.81$, $\beta^3 = 0.729$ etc

* Sum
$$\beta^n + \beta^{n-1} + \cdots + \beta + 1 = \frac{1-\beta^n}{1-\beta} \approx \frac{1}{1-\beta}$$
 for large n

» Running Average

- * Example: $\beta = 0.9$, $z_t = (-1)^t$ i.e. $z_0 = 0$, $z_1 = 1$, $z_2 = +1$, $z_3 = -1$, ...
- * $x_{t+1} = \beta x_t + (1 \beta) z_t$:

* See that x_t smooths the z_t values and is roughly equal to their average

* $f(x) = x^2$, $X = \{x \in \mathbb{R} : 1 \le x \le 5\}$, initial x = 3. Minimiser is x = +1 i.e on boundary of X. Frank-Wolfe, $\beta = 0.9$:

st See that z goes straight to +1, but running average x takes a while to "catch up"

- * $f(x) = (x-2)^2$, $X = \{x \in \mathbb{R} : 1 \le x \le 5\}$, initial x = 3. Minimiser is x = +2 i.e in interior of $X \to so$ expect z to oscillate between +1 and +5 (boundaries of X) but have average equal to +2.
- Frank-Wolfe, $\beta = 0.9$:

100

- * Toy neural net with minimiser x=[1,5], constraint $x_1\geq 0.5$. But to use Frank-Wofle also need to constrain max value of x_1 and max/min values of x_2 (since linear programme step will find points on boundary of X, so need all values in X to be bounded).
- $*~~ \emph{X} = \{\emph{x} \in \mathbb{R}^2 : 0.5 \leq \emph{x}_1 \leq 5, -5 \leq \emph{x}_2 \leq 10 \}$, initial $\emph{x} = [1,1]$
- * Frank-Wolfe, $\beta = 0.99$:

* Note: larger value of $\beta=0.999$ used so as to reduce size of oscillations in x and obtain convergence to minimum. When smaller β used, e.g. $\beta=0.995$, then converges to sub-optimal point ...

- * Toy neural net with minimiser x = [1, 5], $X = \{x \in \mathbb{R}^2 : 0.5 \le x_1 \le 5, -5 \le x_2 \le 10\}$, initial x = [1, 1]
- * When smaller β used, e.g. $\beta=0.95$, then converges to sub-optimal point and x jumps around quite a bit ...
- * Frank-Wolfe, $\beta = 0.95$:

» Interpretation As Actions

- * Frank-Wolfe avoids projections, and so do penalty approaches.
- Penalty approaches are generally computationally cheaper no need to solve a linear programme at each iteration.
- * But Frank-Wolfe has an interesting connection with "actions":
 - * Suppose we can only choose between n actions e.g. between two routes to travel to work. We repeat these actions e.g. we travel to work every day.
 - * Associate a vector with each action e.g. $u_1 = [1,0]$ and $u_2 = [0,1]$ for the two routes
 - * Define X to be a polytope with vertex corresponding to an action e.g. for two routes $X = \{x = \alpha u_1 + (1 \alpha)u_2 : 0 \le \alpha \le 1\}$. Can think of α as the probability of choosing route 1 each day and 1α as probability of choosing route 2.
 - * *Define cost function* f(x) e.g. travel time.
 - * Run Frank-Wolfe algo to minimise f(x) such that $x \in X$.
 - * At each iteration the FW algorithm selects a vertex of X as z i.e. selects an action. E.g. selects a route each day.
 - * The running average of the actions converges to a minimiser of f(x).
- * That leads us into online learning and optimisation ...

» What Next?

- * This module is just a first course on optimisation, with a focus on practical understanding and use in machine learning.
- * Optimisation itself is a huge subject ... possible next steps include:
 - * Theoretical analysis of convergence rates of algorithms.
 - * Plenty on the web about this
 - Almost entirely focussed on convex optimisation (convex cost function and constraints). But neural nets etc are all non-convex
 - * Almost entirely focussed on worst-case analysis. But we're usually more interested in algos that work well on our specific problem
 - * Optimality conditions and duality.
 - KKT conditions that need to be satisfied by an optimum sometimes allow solution to be obtained directly e.g. our projection examples
 - * Duality. Can be used to reformulate optimisation problem.
 - * Privacy of gradients
 - Federated learning (already being used by Google)
 - * Sharing gradients can reveal information e.g. words typed on phone keyboard, image viewed by camera
 - * An area of active research ...
 - * Online learning
 - * Multi-arm bandits, online convex optimisation
 - * Reinforcement learning
 - * Integer optimisation methods
 - * Perhaps main topic in optimisation outside of ML
 - * Decision variables x can only take integer values e.g. 0 or 1.