452

4.3 a Let the Klein 4 group be defined as $V_4 = \langle a, b | a^2 = b^2 = (ab)^2 = e \rangle$, then we have the character table:

c Let $D_4 = \langle r, s | r^4 = s^2 = e, srs = r^{-1} \rangle$ and it's character table as follows:

4.7 Let G be a finite group with |G| = nm, $N \leq G$, $G' = G/N = \{r_1, \dots, r_m\}$, with the canonical projection map $\pi: G \to G'$, and let $\rho': G' \to GL(V)$ be an irreducible representation of G', and $\rho = \rho' \circ \pi$. To directly show that ρ is an irreducible representation of G, assume for contradiction that W is a G-invariant subspace. Then for all $g \in G$, $v \in W$, $\rho_g(v) = v$. However, consider for each g, there exists r_i such that $\pi(g) = r_i$. This now implies that $\rho_g(v) = \rho'_{r_i}(v) = v$. This implies that W is a G' - invariant subspace, contradicting that ρ' is irreducible. Now by using theorem 10.4.6, if we consider χ' to be the character of ρ' and χ to be the character of ρ , then

$$<\chi, \chi> = \frac{1}{nm} \sum_{g \in G} \overline{\chi(g)} \chi(g)$$

$$= \frac{1}{nm} \sum_{g \in G} \overline{\chi'(\pi(g))} \chi'(\pi(g))$$

$$= \frac{1}{nm} \sum_{i=1}^{m} n \overline{\chi'(r_i)} \chi'(r_i)$$
since $|gN| = n$

$$= \frac{1}{m} \sum_{i=1}^{m} \overline{\chi'(r_i)} \chi'(r_i)$$

$$=< \chi', \chi'>$$

$$= 1$$

Since the inner product of χ with itself is 1, then it is necessarily irreducible.

5.5 Let G be a group. Let χ_1, χ_2 by characters for G. If we let $\chi = \chi_1 \chi_2$, then for any $g, h \in G$ then $\chi(gh) = \chi_1(gh)\chi_2(gh) = \chi_1(g)\chi_2(h)\chi_1(g)\chi_2(h) = \chi_1(g)\chi_2(g)\chi_1(h)\chi_2(h) = \chi(g)\chi(h)$. Since the set of characters is just the set of homomorphisms from $G \to C^\times$ then χ is a homomorphism as well. Additionally, for every $\chi \in \hat{G}, g \in G, \chi(g) \neq 0$, therefore $\frac{1}{\chi(g)}$ exists, giving us that, $\frac{1}{\chi(g)}\frac{1}{\chi(h)} = \frac{1}{\chi(g)\chi(h)}$, therefore the inverse of

Alex Valentino Homework 10
452

a character is a character as well. Thus the set of characters and their inverses is closed under multiplication. Finally, since the trivial representation exists and the characters are functions over complex numbers the \hat{G} has an identity and associativity. Thus the dual group is a group.

If G is abelian and finite then by the structure theorem we have that $G \cong \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_k}$ where d_1, \cdots, d_k are prime powers. Note for cyclic groups, if g generates \mathbb{Z}_n , then $1 = \chi(1) = \chi(g^n) = \chi(g)^n$, which implies that $\chi(g) = e^{\frac{2\pi i k g}{n}}$ where k is some number between 0 and n-1. Furthermore since the roots of unity for n are cyclic implies that \hat{Z}_n is isomorphic to Z_n . Therefore $\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_k} \cong \{e^{\frac{2\pi i j}{d_1}}\}_{j=1}^{d_1} \oplus \cdots \oplus \{e^{\frac{2\pi i j}{d_k}}\}_{j=1}^{d_1}$. Furthermore since d_1, \cdots, d_k are prime powers there's an isomorphism from $\{e^{\frac{2\pi i j}{d_1}}\}_{j=1}^{d_1} \oplus \cdots \oplus \{e^{\frac{2\pi i j}{d_k}}\}_{j=1}^{d_1}$ to $\{e^{\frac{2\pi i j}{d_1}+\cdots+\frac{2\pi i j k}{d_k}}\}_{j_1,\cdots,j_k=1}^{d_1,\cdots,d_k}$, as the sum of fractions with prime powers can uniquely be written that way, thus each element is uniquely mapped. Thus we have shown that G is isomorphic to it's dual group.

- 5.7 (a) Note since G, G' are finite abelian groups then their homomorphism is isomorphic to a linear transformation from $\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_k}$ to $\mathbb{Z}_{d'_1} \oplus \cdots \oplus \mathbb{Z}_{d'_l}$. This can be given as a $l \times k$ matrix. Therefore the induced homomorphism is simply the d'_i component in $\mathbb{Z}_{d'_1} \oplus \cdots \oplus \mathbb{Z}_{d'_l}$ after applying ϕ to $(a_1, \cdots, a_k) \in \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_k}$. This is equivalent to $e^{\frac{2\pi i \phi(a_1, \cdots, a_k)_1}{d'_1} + \cdots + \frac{2\pi i \phi(a_1, \cdots, a_k)_l}{d'_l}}$.
 - (b) We know from linear algebra that the dual $\hat{\phi}$ corresponds to the transpose of the transpose of the linear operation ϕ . Therefore if ϕ is injective implies that ϕ^T is surjective, and ϕ is surjective implies that ϕ^T is injective. Since one can create an isomorphism from ϕ^T and $\hat{\phi}$ implies the desired result.