Machine Learning System Design

Quiz, 5 questions

1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.85

1 point Machine Learning System Designable for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which a	are the two?
	A human expert on the application domain
	can confidently predict \boldsymbol{y} when given only the features \boldsymbol{x}
	(or more generally, if we have some way to be confident
	that x contains sufficient information to predict y
	accurately).
	When we are willing to include high
	order polynomial features of x (such as x_1^2 , x_2^2 ,
	x_1x_2 , etc.).
	The classes are not too skewed.
	Our learning algorithm is able to
	represent fairly complex functions (for example, if we
	train a neural network or other model with a large
	number of parameters).
1 point	
3.	
Suppos	e you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \mathrm{threshold}$, and predict 0 if $h_{\theta}(x) < \mathrm{threshold}$, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.7. Which of the following are true? Check all that apply.

Machina I	oarni	The classifier is likely to now have higher recall. Ing System Design
Quiz, 5 questions	earm	The classifier is likely to now have higher precision.
		The classifier is likely to from flave flighter precision.
		The classifier is likely to have unchanged precision and recall, and
		thus the same F_1 score.
		The classifier is likely to have unchanged precision and recall, but
		higher accuracy.
	1 point	
	4.	
		e you are working on a spam classifier, where spam
	emails are positive examples ($y=1$) and non-spam emails are	
	negative examples ($y=0$). You have a training set of emails	
	in which 99% of the emails are non-spam and the other 1% is	
	spam. \	Which of the following statements are true? Check all
	that apply.	
		If you always predict spam (output $y=1$),
		your classifier will have a recall of 0% and precision
		of 99%.
		If you always predict spam (output $y=1$),
		your classifier will have a recall of 100% and precision
		of 1%.
		If you always predict non-spam (output
		y=0), your classifier will have a recall of
		0%.

Machine Learning System Design pam (output

Quiz.	5	questions	;
Quiz,	J	questions	,

y=0), your classifier will have an accuracy of

99%.

1 point	
5. Which	of the following statements are true? Check all that apply.
	After training a logistic regression
	classifier, you must use 0.5 as your threshold
	for predicting whether an example is positive or
	negative.
	If your model is underfitting the
	training set, then obtaining more data is likely to
	help.
	Using a very large training set
	makes it unlikely for model to overfit the training
	data.
	It is a good idea to spend a lot of time
	collecting a large amount of data before building
	your first version of a learning algorithm.
	On skewed datasets (e.g., when there are
	more positive examples than negative examples), accuracy
	is not a good measure of performance and you should
	instead use F_1 score based on the

Machine Learning System Design

Quiz, 5 questions

I, **Bo Wen**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code

Submit Quiz

