```
In [3]: import pandas as pd
         import numpy as np
         import seaborn as sns
In [15]: customer_data = pd.read_csv(r"D:\Documents\PowerBi Projects\Quantim\QVI_purchase_behaviour.csv")
         transaction_data = pd.read_excel(r"D:\Documents\PowerBi Projects\Quantim\QVI_transaction_data.xlsx")
In [18]:
         customer_data.head()
Out[18]:
            LYLTY_CARD_NBR
                                          LIFESTAGE PREMIUM_CUSTOMER
         0
                       1000
                             YOUNG SINGLES/COUPLES
                                                                 Premium
                       1002
                             YOUNG SINGLES/COUPLES
                                                              Mainstream
         1
         2
                       1003
                                     YOUNG FAMILIES
                                                                  Budget
         3
                       1004
                              OLDER SINGLES/COUPLES
                                                              Mainstream
         4
                       1005 MIDAGE SINGLES/COUPLES
                                                              Mainstream
In [21]:
        transaction_data.describe()
```

In [29]: t_datatype = transaction_data.dtypes
print(t_datatype)

ıt[21]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	count	264836.000000	264836.00000	2.648360e+05	2.648360e+05	264836.000000	264836.000000	264836.000000
	mean	43464.036260	135.08011	1.355495e+05	1.351583e+05	56.583157	1.907309	7.304200
	std 105.38928		76.78418	8.057998e+04	7.813303e+04	32.826638	0.643654	3.083226
	min	43282.000000	1.00000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.500000
	25%	43373.000000	70.00000	7.002100e+04	6.760150e+04	28.000000	2.000000	5.400000
	50%	43464.000000	130.00000	1.303575e+05	1.351375e+05	56.000000	2.000000	7.400000
	75%	43555.000000	203.00000	2.030942e+05	2.027012e+05	85.000000	2.000000	9.200000
	max	43646.000000	272.00000	2.373711e+06	2.415841e+06	114.000000	200.000000	650.000000
23]: 23]:	transa DATE STORE	ction_data.is)					
	_	CARD_NBR 6 D 6 IBR 6 IAME 6 TY 6						

dtype: int64

```
DATE
                                int64
           STORE NBR
                                int64
           LYLTY CARD NBR
                                int64
           TXN ID
                                int64
           PROD NBR
                                int64
           PROD NAME
                               object
           PROD QTY
                                int64
           TOT SALES
                              float64
           dtype: object
Examine the Outlier
            import matplotlib.pyplot as plt
  In [31]:
  In [35]: import datetime
            import re
            from sklearn.preprocessing import OneHotEncoder
  In [43]:
  In [47]: # Read data files into data frames
            customerdata = pd.read csv(r"D:\Documents\PowerBi Projects\Quantim\QVI purchase behaviour.csv")
            transactiondata = pd.read excel(r"D:\Documents\PowerBi Projects\Quantim\QVI transaction data.xlsx")
## Exploratory Data Analysis First, we want to examine the data and make sure that it is in a usable form for our analysis.
```

```
In [51]: # Examining the transaction data - view a summary of the table
         trans df = transactiondata.copy() # Keep a copy for a quick reset
         trans df
```

Out[51]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
	0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	6.0
	1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3	6.3
	2	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	2.9
	3	43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5	15.0
	4	43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	13.8
	•••								
	264831	43533	272	272319	270088	89	Kettle Sweet Chilli And Sour Cream 175g	2	10.8
	264832	43325	272	272358	270154	74	Tostitos Splash Of Lime 175g	1	4.4
	264833	43410	272	272379	270187	51	Doritos Mexicana 170g	2	8.8
	264834	43461	272	272379	270188	42	Doritos Corn Chip Mexican Jalapeno 150g	2	7.8
	264835	43365	272	272380	270189	74	Tostitos Splash Of Lime 175g	2	8.8

264836 rows × 8 columns

We can see that the date is in an integer format; change to DD/MM/YYYY format.

```
In [53]: # Change date from xls integer dates to date format in customer data
    trans_df['DATE'] = pd.to_datetime(trans_df['DATE'], unit='D', origin='1899-12-30')
    print(trans_df['DATE'].dtype) # check format of replacement date column
```

datetime64[ns]

Then we want to ensure that we are only examining chip purchases.

```
In [55]: # View all unique entries in the product name column
trans_df['PROD_NAME'].unique()
```

```
Out[55]: array(['Natural Chip
                                      Compny SeaSalt175g',
                 'CCs Nacho Cheese
                                      175g',
                 'Smiths Crinkle Cut Chips Chicken 170g',
                 'Smiths Chip Thinly S/Cream&Onion 175g',
                 'Kettle Tortilla ChpsHny&Jlpno Chili 150g',
                 'Old El Paso Salsa
                                      Dip Tomato Mild 300g',
                 'Smiths Crinkle Chips Salt & Vinegar 330g',
                 'Grain Waves
                                      Sweet Chilli 210g',
                 'Doritos Corn Chip Mexican Jalapeno 150g',
                 'Grain Waves Sour
                                      Cream&Chives 210G',
                 'Kettle Sensations
                                      Siracha Lime 150g',
                 'Twisties Cheese
                                      270g', 'WW Crinkle Cut
                                                                   Chicken 175g',
                 'Thins Chips Light& Tangy 175g', 'CCs Original 175g',
                 'Burger Rings 220g', 'NCC Sour Cream & Garden Chives 175g',
                 'Doritos Corn Chip Southern Chicken 150g',
                 'Cheezels Cheese Box 125g', 'Smiths Crinkle
                                                                   Original 330g',
                 'Infzns Crn Crnchers Tangy Gcamole 110g',
                 'Kettle Sea Salt
                                      And Vinegar 175g',
                 'Smiths Chip Thinly Cut Original 175g', 'Kettle Original 175g',
                 'Red Rock Deli Thai Chilli&Lime 150g',
                 'Pringles Sthrn FriedChicken 134g', 'Pringles Sweet&Spcy BBO 134g',
                 'Red Rock Deli SR
                                      Salsa & Mzzrlla 150g',
                 'Thins Chips
                                      Originl saltd 175g',
                 'Red Rock Deli Sp
                                      Salt & Truffle 150G',
                                      Swt Chli&S/Cream175G', 'Kettle Chilli 175g',
                 'Smiths Thinly
                 'Doritos Mexicana
                                      170g',
                 'Smiths Crinkle Cut French OnionDip 150g',
                 'Natural ChipCo
                                      Hony Soy Chckn175g',
                 'Dorito Corn Chp
                                      Supreme 380g', 'Twisties Chicken270g',
                 'Smiths Thinly Cut
                                      Roast Chicken 175g',
                 'Smiths Crinkle Cut Tomato Salsa 150g',
                 'Kettle Mozzarella
                                      Basil & Pesto 175g',
                 'Infuzions Thai SweetChili PotatoMix 110g',
                 'Kettle Sensations
                                      Camembert & Fig 150g',
                 'Smith Crinkle Cut
                                      Mac N Cheese 150g',
                 'Kettle Honey Soy
                                      Chicken 175g',
                 'Thins Chips Seasonedchicken 175g',
                 'Smiths Crinkle Cut Salt & Vinegar 170g',
                 'Infuzions BBQ Rib Prawn Crackers 110g',
                 'GrnWves Plus Btroot & Chilli Jam 180g',
```

```
'Tyrrells Crisps
                    Lightly Salted 165g',
'Kettle Sweet Chilli And Sour Cream 175g',
'Doritos Salsa
                     Medium 300g', 'Kettle 135g Swt Pot Sea Salt',
'Pringles SourCream Onion 134g',
'Doritos Corn Chips
                    Original 170g',
'Twisties Cheese
                     Burger 250g',
'Old El Paso Salsa
                    Dip Chnky Tom Ht300g',
'Cobs Popd Swt/Chlli &Sr/Cream Chips 110g',
'Woolworths Mild
                     Salsa 300g',
'Natural Chip Co
                     Tmato Hrb&Spce 175g',
'Smiths Crinkle Cut Chips Original 170g',
'Cobs Popd Sea Salt Chips 110g',
'Smiths Crinkle Cut Chips Chs&Onion170g',
'French Fries Potato Chips 175g',
'Old El Paso Salsa
                     Dip Tomato Med 300g',
'Doritos Corn Chips
                    Cheese Supreme 170g',
'Pringles Original
                    Crisps 134g',
'RRD Chilli&
                     Coconut 150g',
'WW Original Corn
                     Chips 200g',
'Thins Potato Chips
                    Hot & Spicy 175g',
'Cobs Popd Sour Crm
                    &Chives Chips 110g',
'Smiths Crnkle Chip
                    Orgnl Big Bag 380g',
'Doritos Corn Chips
                    Nacho Cheese 170g',
'Kettle Sensations
                     BBQ&Maple 150g',
'WW D/Style Chip
                     Sea Salt 200g',
'Pringles Chicken
                    Salt Crips 134g',
'WW Original Stacked Chips 160g',
                    CutSalt/Vinegr175g', 'Cheezels Cheese 330g',
'Smiths Chip Thinly
'Tostitos Lightly
                     Salted 175g',
'Thins Chips Salt & Vinegar 175g',
'Smiths Crinkle Cut Chips Barbecue 170g', 'Cheetos Puffs 165g',
'RRD Sweet Chilli & Sour Cream 165g',
'WW Crinkle Cut
                     Original 175g',
'Tostitos Splash Of Lime 175g', 'Woolworths Medium Salsa 300g',
'Kettle Tortilla ChpsBtroot&Ricotta 150g',
'CCs Tasty Cheese
                    175g', 'Woolworths Cheese Rings 190g',
'Tostitos Smoked
                     Chipotle 175g', 'Pringles Barbeque 134g',
                    Corn Chips 200g',
'WW Supreme Cheese
'Pringles Mystery
                     Flavour 134g',
'Tyrrells Crisps
                     Ched & Chives 165g',
'Snbts Whlgrn Crisps Cheddr&Mstrd 90g',
```

```
'Cheetos Chs & Bacon Balls 190g', 'Pringles Slt Vingar 134g',
 'Infuzions SourCream&Herbs Veg Strws 110g',
 'Kettle Tortilla ChpsFeta&Garlic 150g',
                     Chutny Papadums 70g',
 'Infuzions Mango
 'RRD Steak &
                     Chimuchurri 150g',
                     Chicken 165g',
 'RRD Honey Soy
 'Sunbites Whlegrn
                     Crisps Frch/Onin 90g',
 'RRD Salt & Vinegar 165g', 'Doritos Cheese
                                                 Supreme 330g',
 'Smiths Crinkle Cut Snag&Sauce 150g',
 'WW Sour Cream &OnionStacked Chips 160g',
 'RRD Lime & Pepper 165g',
 'Natural ChipCo Sea Salt & Vinegr 175g',
 'Red Rock Deli Chikn&Garlic Aioli 150g',
                     Pork Belly 150g', 'RRD Pc Sea Salt
 'RRD SR Slow Rst
                                                             165g',
 'Smith Crinkle Cut Bolognese 150g', 'Doritos Salsa Mild 300g'],
dtvpe=object)
```

While it looks like we have chips, we want to check that the products are only chips by counting the word frequencies in the product names. To make this process clearer, we can remove the digits and symbols from the names.

```
In [57]: # Remove digits from the product names
    prod_name = trans_df['PROD_NAME'].str.replace(r'[0-9]+[gG]','');

# Remove & characters from the product names and replace with a space to separate flavours
    prod_name = prod_name.str.replace(r'&',' ');

In [59]: # Count the frequencies of words in product names and display counts in descending order
    word_counts = pd.Series(' '.join(prod_name).split()).value_counts()

with pd.option_context('display.max_rows', None): # show all rows
    display(word_counts)
```

175g	60561
Chips	49770
150g	41633
Kettle	41288
Smiths	28860
Salt	27976
Cheese	27890
Pringles	25102
134g	25102
Doritos	24962
Crinkle	23960
110g	22387
Corn	22063
Original	21560
Cut	20754
Chip	18645
170g	18502
Salsa	18094
Chicken	15407
Chilli	15390
165g	15297
Sea	14145
Thins	14075
Sour	13882
Crisps	12607
330g	12540
Vinegar	12402
300g	12041
RRD	11894
Sweet	11060
Infuzions	11057
Supreme	10963
Chives	10951
Cream	10723
WW	10320
Popd	9693
Cobs	9693
Tortilla	9580
Tostitos	9471
Twisties	9454
BBQ	9434

6	0.420
Sensations	9429
Lime	9347
Dip	9324
01d	9324
El	9324
Paso	9324
Tomato	7669
Thinly	7507
Tyrrells	6442
380g And	6418
	6373
Tangy	6332
SourCream	6296
Grain	6272
Waves Salted	6272
	6248
Lightly Soy	6248 6121
Natural	
Mild	6050 6048
Deli	5885
Red	5885
Rock	5885
Thai	4737
Burger	4737
Swt	4718
Honey	4661
Nacho	4658
Potato	4647
Onion	4635
Cheezels	4603
Garlic	4572
CCs	4551
200g	4473
Woolworths	4437
Pesto	3304
Mozzarella	3304
Basil	3304
Jlpno	3296
Chili	3296
ChpsHny	3296
• •	

Swt/Chlli	3269
Sr/Cream	3269
Ched	3268
Pot	3257
135g	3257
0f	3252
Splash	3252
SweetChili	3242
PotatoMix	3242
Crnkle	3233
Orgnl	3233
Big	3233
Bag	3233
Hot	3229
Spicy	3229
Fig	3219
Camembert	3219
Barbeque	3210
Mexican	3204
Jalapeno	3204
Light	3188
Chp	3185
Dorito	3185
Spcy	3177
Rib	3174
Crackers	3174
Prawn	3174
Southern	3172
Chicken270g	3170
250g	3169
210g	3167
Crm	3159
Ricotta	3146
ChpsBtroot	3146
Chipotle	3145
Smoked	3145
Infzns	3144
Crn	3144
Crnchers	3144
Gcamole	3144
ChpsFeta	3138

Veg	3134
Herbs	3134
Strws	3134
Siracha	3127
Tom	3125
Chnky	3125
Ht300g	3125
270g	3115
Mexicana	3115
Flavour	3114
Mystery	3114
Seasonedchicken	3114
Med	3114
210G	3105
Crips	3104
Slt	3095
Vingar	3095
Maple	3083
Sthrn	3083
FriedChicken	3083
Rings	3080
ChipCo	3010
90g	3008
190g	2995
SR	2984
160g	2970
Smith	2963
Chs	2960
Cheetos	2927
Medium	2879
French	2856
Snbts	1576
Whlgrn	1576
Cheddr	1576
Mstrd	1576
Spce	1572
Tmato	1572
Co	1572
Hrb	1572
220g	1564
Vinegr	1550

Tasty	1539
Belly	1526
Pork	1526
Rst	1526
Slow	1526
Roast	1519
N	1512
Mac	1512
Mango	1507
70g	1507
Chutny	1507
Papadums	1507
Coconut	1506
Sauce	1503
Snag	1503
Truffle	1498
Sp	1498
150G	1498
Barbecue	1489
Stacked	1487
OnionStacked	1483
Onion170g	1481
Balls	1479
Bacon	1479
S/Cream	1473
Pepper	1473
D/Style	1469
Compny	1468
SeaSalt175g	1468
Jam	1468
GrnWves	1468
Plus	1468
Btroot	1468
180g	1468
Chli	1461
S/Cream175G	1461
Hony	1460
Chckn175g	1460
Mzzrlla	1458
Steak	1455
Chimuchurri	1455

```
Box
                        1454
                       1454
125g
Bolognese
                       1451
Puffs
                        1448
Originl
                        1441
saltd
                        1441
CutSalt/Vinegr175g
                        1440
OnionDip
                       1438
Chikn
                       1434
Aioli
                       1434
Frch/Onin
                       1432
Whlegrn
                       1432
Sunbites
                       1432
Рс
                       1431
Garden
                       1419
NCC
                       1419
Fries
                       1418
Name: count, dtype: int64
```

```
In [61]: # Remove salsas from the dataset
    trans_df = trans_df['PROD_NAME'].str.contains(r"[Ss]alsa") == False]
    trans_df.shape # check for a reduction in no of rows
```

Out[61]: (246742, 8)

Now we can create summaries of the data (eg min, max, mean) to see if there are any obvious outliers in the data and if there are any nulls in any of the columns.

```
In [63]: # Create summaries of the transaction data
trans_df.describe()
```

Out[63]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	count	246742	246742.000000	2.467420e+05	2.467420e+05	246742.000000	246742.000000	246742.000000
	mean	2018-12-30 01:19:01.211467520	135.051098	1.355310e+05	1.351311e+05	56.351789	1.908062	7.321322
	min	2018-07-01 00:00:00	1.000000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.700000
	25%	2018-09-30 00:00:00	70.000000	7.001500e+04	6.756925e+04	26.000000	2.000000	5.800000
	50%	2018-12-30 00:00:00	130.000000	1.303670e+05	1.351830e+05	53.000000	2.000000	7.400000
	75%	2019-03-31 00:00:00	203.000000	2.030840e+05	2.026538e+05	87.000000	2.000000	8.800000
	max	2019-06-30 00:00:00	272.000000	2.373711e+06	2.415841e+06	114.000000	200.000000	650.000000
	std	NaN	76.787096	8.071528e+04	7.814772e+04	33.695428	0.659831	3.077828

```
In [65]: # Check if there are any nans in the dataset
trans_df.isnull().values.any()
```

Out[65]: False

From the summary, there is at least one transaction with 200 packets. Let's investigate this purchase further.

```
In [67]: # Filter the entries that have 200 packets.
trans_df.loc[trans_df['PROD_QTY'] == 200.0]
```

Out[67]:	DATE		STORE_NBR	LYLTY_CARD_NBR TXN_ID PRO		PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
	69762	2018-08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	650.0
	69763	2019-05-20	226	226000	226210	4	Dorito Corn Chp Supreme 380g	200	650.0

The same customer has made these transactions. They could have been for commercial purposes so we can check to see if they made any other purchases.

```
In [69]: # Filter the entires by the customer
trans_df.loc[trans_df['LYLTY_CARD_NBR'] == 226000]
```

Out[69]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
	69762	2018-08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	650.0
	69763	2019-05-20	226	226000	226210	4	Dorito Corn Chp Supreme 380g	200	650.0

It looks like this is the only purchase they have made so we will remove these transactions from the dataset.

```
In [71]: # Remove the transactions
    trans_df = trans_df['LYLTY_CARD_NBR'] != 226000]
    trans_df.shape # check for a reduction of 2 rows (i.e. 246740 rows)
```

Out[71]: (246740, 8)

In [73]: # Recheck the data summary
trans_df.describe()

Out[73]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	count	246740	246740.000000	2.467400e+05	2.467400e+05	246740.000000	246740.000000	246740.000000
	mean	2018-12-30 01:18:58.448569344	135.050361	1.355303e+05	1.351304e+05	56.352213	1.906456	7.316113
	min	2018-07-01 00:00:00	1.000000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.700000
	25%	2018-09-30 00:00:00	70.000000	7.001500e+04	6.756875e+04	26.000000	2.000000	5.800000
	50%	2018-12-30 00:00:00	130.000000	1.303670e+05	1.351815e+05	53.000000	2.000000	7.400000
	75%	2019-03-31 00:00:00	203.000000	2.030832e+05	2.026522e+05	87.000000	2.000000	8.800000
	max	2019-06-30 00:00:00	272.000000	2.373711e+06	2.415841e+06	114.000000	5.000000	29.500000
	std	NaN	76.786971	8.071520e+04	7.814760e+04	33.695235	0.342499	2.474897

The summaries now look reasonable. Now look at the number of transaction lines over time to see if there are any obvious data issues such as missing data from particular days.

```
In [75]: # Count transactions by date to see if there are any missing days
    count = trans_df.groupby(trans_df['DATE'].dt.date).size().reset_index(name = 'COUNT')
    count.shape
```

Out[75]: (364, 2)

In [77]: # There is one day of data missing. First check the range of dates by sorting in time order.
trans_df.sort_values(by='DATE')

Out[77]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES
	9161	2018-07- 01	88	88140	86914	25	Pringles SourCream Onion 134g	2	7.4
	155442	2018-07- 01	60	60276	57330	3	Kettle Sensations Camembert & Fig 150g	2	9.2
	181349	2018-07- 01	199	199014	197623	104	Infuzions Thai SweetChili PotatoMix 110g	2	7.6
	229948	2018-07- 01	35	35052	31630	11	RRD Pc Sea Salt 165g	1	3.0
	104647	2018-07- 01	72	72104	71038	20	Doritos Cheese Supreme 330g	2	11.4
	•••								
	10254	2019-06- 30	112	112141	114611	98	NCC Sour Cream & Garden Chives 175g	2	6.0
	113220	2019-06- 30	207	207155	205513	99	Pringles Sthrn FriedChicken 134g	2	7.4
	229182	2019-06- 30	10	10140	9882	12	Natural Chip Co Tmato Hrb&Spce 175g	2	6.0
	229015	2019-06- 30	6	6258	6047	29	French Fries Potato Chips 175g	1	3.0
	262768	2019-06- 30	183	183196	185975	22	Thins Chips Originl saltd 175g	2	6.6

246740 rows × 8 columns

We can see that the dates range from 1 Jul 2018 to 30 Jun 2019. Now we want to check through the year of dates to see which day the data is missing.

The missing date is Christmas day, a public holiday, so it is expected that there are no sales on this day. Now we move onto creating other features such as the pack size, and checking this for any outliers.

Out[97]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE
	40783	2018- 09-25	97	97067	96696	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0
	222256	2018- 12-16	114	114138	117726	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0
	261068	2019- 03-23	103	103109	103191	38	Infuzions Mango Chutny Papadums 70g	1	2.4	70.0
	154268	2019- 04-15	47	47110	42492	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0
	76489	2018- 09-29	164	164110	164477	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0
	•••									
	20302	2019- 04-02	104	104151	104652	14	Smiths Crnkle Chip Orgnl Big Bag 380g	2	11.8	380.0
	178013	2018- 12-05	119	119152	122742	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0
	156836	2018- 08-31	78	78135	76252	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0
	243002	2018- 09-25	59	59078	54929	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0
	102409	2019- 05-08	43	43184	39874	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0

246740 rows × 9 columns

```
In [99]: # Minimum packet size is 70g while max is 380g - this is reasonable.
# Plot a histogram to visualise distribution of pack sizes.
plt.hist(trans_df['PACK_SIZE'], weights=trans_df['PROD_QTY']);
plt.xlabel('Packet size (g)');
plt.ylabel('Quantity');
```


Now that the pack size looks reasonable, we can create the brand names using the first word of each product name.

```
In [103... # Add a column to extract the first word of each product name to.
    trans_df.insert(9, "BRAND_NAME",trans_df['PROD_NAME'].str.split().str.get(0), True)
    trans_df
```

						·	_				
93		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND_NAME
40		2018- 09-25	97	97067	96696	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0	Infuzions
222		2018- 12-16	114	114138	117726	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0	Infuzions
261		2019- 03-23	103	103109	103191	38	Infuzions Mango Chutny Papadums 70g	1	2.4	70.0	Infuzions
154		2019- 04-15	47	47110	42492	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0	Infuzions
76		2018- 09-29	164	164110	164477	38	Infuzions Mango Chutny Papadums 70g	2	4.8	70.0	Infuzions
	•••										
20	12/11/	2019- 04-02	104	104151	104652	14	Smiths Crnkle Chip Orgnl Big Bag 380g	2	11.8	380.0	Smiths
178		2018- 12-05	119	119152	122742	4	Dorito Corn Chp Supreme 380a	2	13.0	380.0	Dorito

380g

		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND_NAME
	156836	2018- 08-31	78	78135	76252	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0	Dorito
:	243002	2018- 09-25	59	59078	54929	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0	Dorito
	102409	2019- 05-08	43	43184	39874	4	Dorito Corn Chp Supreme 380g	2	13.0	380.0	Dorito

246740 rows × 10 columns

'Twisties', 'Dorito'], dtype=object)
Some brand names have been doubled up. Replace all contractions and double ups with their full name.

```
In [107... # Create a function to identify the string replacements needed.

def replace_brandname(line):
    name = line['BRAND_NAME']
    if name == "Infzns":
        return "Infuzions"
    elif name == "Red":
        return "Red Rock Deli"
    elif name == "RRD":
        return "Red Rock Deli"
    elif name == "Grain":
        return "Grain Waves"
    elif name == "GrnhWes":
        return "Grain Waves"
    elif name == "Snbts":
```

```
return "Sunbites"
               elif name == "Natural":
                   return "Natural Chip Co"
               elif name == "NCC":
                   return "Natural Chip Co"
               elif name == "WW":
                   return "Woolworths"
               elif name == "Smith":
                   return "Smiths"
              elif name == "Dorito":
                   return "Doritos"
              else:
                   return name
          # Then apply the function to clean the brand names
          trans df["BRAND NAME"] = trans df.apply(lambda line: replace brandname(line), axis=1)
          # Check that there are no duplicate brands
          trans df["BRAND NAME"].unique()
Out[107... array(['Infuzions', 'Sunbites', 'Cobs', 'Cheezels', 'Pringles', 'Kettle',
                  'Doritos', 'Red Rock Deli', 'Smiths', 'Woolworths', 'Tyrrells',
                  'Cheetos', 'Natural Chip Co', 'Thins', 'Tostitos', 'CCs', 'French',
                  'Grain Waves', 'Burger', 'Twisties'], dtype=object)
```

The brand names seme reasonable, without duplicates. Now we want to examine the customer data. We can generate summaries and check the categories in this dataset.

```
In [109... # Now examine customer data
    cust_df = customerdata.copy()
    cust_df.head()
```

```
Out[109...
             LYLTY CARD NBR
                                            LIFESTAGE PREMIUM CUSTOMER
           0
                         1000
                              YOUNG SINGLES/COUPLES
                                                                   Premium
                                                                 Mainstream
           1
                         1002
                               YOUNG SINGLES/COUPLES
           2
                         1003
                                                                    Budget
                                       YOUNG FAMILIES
           3
                         1004
                                                                 Mainstream
                                OLDER SINGLES/COUPLES
           4
                         1005 MIDAGE SINGLES/COUPLES
                                                                 Mainstream
          # Rename "PREMIUM_CUSTOMER" to "MEMBER_TYPE" for easier identification of the column data
In [111...
          cust df = cust df.rename(columns={'PREMIUM CUSTOMER': 'MEMBER TYPE'})
          # Check the summary of the customer data
In [113...
          cust df.describe()
Out[113...
                 LYLTY_CARD_NBR
                     7.263700e+04
           count
                     1.361859e+05
           mean
                     8.989293e+04
             std
                     1.000000e+03
            min
            25%
                     6.620200e+04
            50%
                     1.340400e+05
            75%
                     2.033750e+05
                     2.373711e+06
            max
In [115...
          # Check the entries in the member type and lifestage columns
          cust_df["MEMBER_TYPE"].unique()
Out[115... array(['Premium', 'Mainstream', 'Budget'], dtype=object)
```

Now that the customer dataset looks fine, we want to add this information to the transactions dataset.

```
# Join the customer and transaction datasets, and sort transactons by date
full_df = trans_df.set_index('LYLTY_CARD_NBR').join(cust_df.set_index('LYLTY_CARD_NBR'))
full_df = full_df.reset_index()
full_df = full_df.sort_values(by='DATE').reset_index(drop=True)
full_df
```

Out[119		LYLTY_CARD_NBR	DATE	STORE_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TOT_SALES	PACK_SIZE	BRAND_NAME
	0	47288	2018- 07-01	47	42735	97	RRD Salt & Vinegar 165g	2	6.0	165.0	Red Rock Deli
	1	112065	2018- 07-01	112	114104	87	Infuzions BBQ Rib Prawn Crackers 110g	2	7.6	110.0	Infuzions
	2	28024	2018- 07-01	28	24672	113	Twisties Chicken270g	2	9.2	270.0	Twisties
	3	186028	2018- 07-01	186	188435	52	Grain Waves Sour Cream&Chives 210G	2	7.2	210.0	Grain Waves
	4	219068	2018- 07-01	219	218409	88	Kettle Honey Soy Chicken 175g	2	10.8	175.0	Kettle
	•••										
	246735	67038	2019- 06-30	67	64039	8	Smiths Crinkle Cut Chips Original 170g	2	5.8	170.0	Smiths
	246736	272074	2019- 06-30	272	269737	60	Kettle Tortilla ChpsFeta&Garlic 150g	2	9.2	150.0	Kettle
	246737	172204	2019- 06-30	172	174020	20	Doritos Cheese Supreme 330g	2	11.4	330.0	Doritos
	246738	221140	2019- 06-30	221	220611	68	Pringles Chicken Salt Crips 134g	1	3.7	134.0	Pringles
	246739	249288	2019- 06-30	249	251195	99	Pringles Sthrn FriedChicken 134g	1	3.7	134.0	Pringles

246740 rows × 12 columns

```
In [121... # Check for nulls in the full dataset full_df.isnull().values.any()

Out[121... False

In [123... # Looks Like all the data is reasonable so export to CSV full_df.to_csv('QVI_fulldata.csv')
```

Data analysis on customer segments Now that the data has been cleaned, we want to look for interesting insights in the chip market to help recommend a business strategy. To do so, some metrics we want to consider are: - Who spends the most on chips (total sales), describing customers by lifestage and how premium their general purchasing behaviour is - How many customers are in each segment - How many chips are bought per customer by segment - What's the average chip price by customer segment Some more information from the data team that we could ask for, to analyse with the chip information for more insight includes - The customer's total spend over the period and total spend for each transaction to understand what proportion of their grocery spend is on chips. - Spending on other snacks, such as crackers and biscuits, to determine the preference and the purchase frequency of chips compared to other snacks - Proportion of customers in each customer segment overall to compare against the mix of customers who purchase chips Firstly, we want to take a look at the split of the total sales by LIFESTAGE and MEMBER TYPE.

```
In [125... # calculate total sales by lifestage and member type and generate a list
    total_sales_cust = full_df.groupby(['LIFESTAGE','MEMBER_TYPE'], as_index = False)['TOT_SALES'].agg(['sum'])
    total_sales_cust = total_sales_cust.rename(columns={'sum': 'sum_tot_sales'})
    total_sales_cust.sort_values(by = "sum_tot_sales", ascending = False)
```

Out[125...

	LIFESTAGE	MEMBER_TYPE	sum_tot_sales
6	OLDER FAMILIES	Budget	156863.75
19	YOUNG SINGLES/COUPLES	Mainstream	147582.20
13	RETIREES	Mainstream	145168.95
15	YOUNG FAMILIES	Budget	129717.95
9	OLDER SINGLES/COUPLES	Budget	127833.60
10	OLDER SINGLES/COUPLES	Mainstream	124648.50
11	OLDER SINGLES/COUPLES	Premium	123537.55
12	RETIREES	Budget	105916.30
7	OLDER FAMILIES	Mainstream	96413.55
14	RETIREES	Premium	91296.65
16	YOUNG FAMILIES	Mainstream	86338.25
1	MIDAGE SINGLES/COUPLES	Mainstream	84734.25
17	YOUNG FAMILIES	Premium	78571.70
8	OLDER FAMILIES	Premium	75242.60
18	YOUNG SINGLES/COUPLES	Budget	57122.10
2	MIDAGE SINGLES/COUPLES	Premium	54443.85
20	YOUNG SINGLES/COUPLES	Premium	39052.30
0	MIDAGE SINGLES/COUPLES	Budget	33345.70
3	NEW FAMILIES	Budget	20607.45
4	NEW FAMILIES	Mainstream	15979.70
5	NEW FAMILIES	Premium	10760.80

```
In [129...
          # Calculate total sales
          total sales = full df['TOT SALES'].sum()
          # Plot a breakdown of the total sales by lifestage and member type
          total sales breakdown = (
              full df.groupby(['LIFESTAGE', 'MEMBER TYPE'])['TOT SALES']
              .agg(['sum', 'mean'])
              .unstack('MEMBER TYPE', fill value=0)
          # Plotting the stacked bar chart
          ax = total sales breakdown['sum'].plot(kind='barh', stacked=True, figsize=(15, 5))
          # Add percentage labels for each bar
          for rect in ax.patches:
              width = rect.get width()
              label = width / total sales * 100 # Calculate percentage
              x = rect.get x()
              y = rect.get_y()
              # Position the labels inside each bar
              label text = f'{label:.1f}%'
              label x = x + width / 2
              label y = y + rect.get height() / 2
              if width > 0:
                  ax.text(label x, label y, label text, ha='center', va='center', fontsize=8)
          ax.set xlabel("Total Sales")
          ax.set title('Total Sales Distribution by Customer Lifestage and Affluence')
          plt.show()
```


Here, we can see the most sales are from Older families - Budget, Young singles/couples - Mainstream and Retirees - Mainstream. We can see if this is because of the customer numbers in each segment.

```
# Check all rows are unique in customer information
In [131...
          len(cust df['LYLTY CARD NBR'].unique()) == cust df.shape[0]
Out[131... True
          # Check if all customers made chip purchases.
In [133...
          len(cust df['LYLTY CARD NBR'].unique()) == len(full df['LYLTY CARD NBR'].unique())
Out[133... False
          # Plot the numbers of customers in each segment by counting the unique LYLTY CARD NBR entries
In [135...
          sum customers= full df.groupby(['LIFESTAGE','MEMBER TYPE'])['LYLTY CARD NBR'].agg('nunique').unstack('MEMBER TYPE').fillna(0)
          ax = sum customers.plot(kind='barh', stacked=True, figsize=(15, 5))
          # Add customer numbers as labels to each bar
          # .patches is everything inside of the chart
          for rect in ax.patches:
              # Find where everything is located
              height = rect.get height()
```

```
width = rect.get_width()
x = rect.get_x()
y = rect.get_y()

label_text = f'{(width):.0f}'

# Set label positions
label_x = x + width / 2
label_y = y + height / 2

# only plot labels greater than given width
if width > 0:
    ax.text(label_x, label_y, label_text, ha='center', va='center', fontsize=8)

ax.set_xlabel("No of customers")
ax.set_title('Distribution of the Number of Customers By Customer Lifestage and Affluence')
plt.show()
```


There are more Young singles/couples - mainstream and Retirees - mainstream who buy chips. This contributes to there being more sales to these customer segments but this is not a major driver for the Older families - budget segment. We can then take a look at the total and average units of chips bought per customer by LIFESTAGE and MEMBER_TYPE.

```
In [137... # PLot the average no of chip packets bought per customer by LIFESTAGE and MEMBER_TYPE.
no_packets_data = full_df.groupby(['LIFESTAGE','MEMBER_TYPE'])['PROD_QTY'].sum()/full_df.groupby(['LIFESTAGE','MEMBER_TYPE'])[
```

```
ax = no_packets_data.unstack('MEMBER_TYPE').fillna(0).plot.bar(stacked = False, figsize=(10, 5))
ax.set_ylabel("Avg no packets purchased")
ax.set_title('Chips Purchased by Customer Lifestage and Affluence')
plt.xticks(rotation=45)
plt.show()
```


Older families and young families in general buy more chips per customer. We can also investigate the average price per unit sold by LIFESTAGE and MEMBER_TYPE.

```
In [139... # Create a column for the unit price of chips purchased per transaction
full_df['UNIT_PRICE'] = full_df['TOT_SALES']/full_df['PROD_QTY']
```

```
In [143...
# Calculate the average unit price per transaction by LIFESTAGE and MEMBER_TYPE
avg_priceperunit = (
    full_df.groupby(['LIFESTAGE', 'MEMBER_TYPE'])['UNIT_PRICE']
    .mean()
    .unstack('MEMBER_TYPE', fill_value=0)
)

# Plotting the bar chart
ax = avg_priceperunit.plot(kind='bar', stacked=False, figsize=(10, 5))
ax.set_ylabel("Avg unit price per transaction")
ax.set_title('Average Unit Price Per Transaction by Customer Lifestage and Affluence')
plt.legend(loc="upper left", bbox_to_anchor=(1.0, 1.0))
plt.xticks(rotation=45)
plt.show()
```


For young and midage singles/couples, the mainstream group are more willing to pay more for a packet of chips than their budget and premium counterpart. Given the total sales, as well as the number of customers buying chips, is higher in these groups compared to the non-mainstream groups, this suggests that chips may not be the choice of snack for these groups. Further information on shopping habits would be useful in this case. As the difference in average price per unit isn't large, we can check if this difference is statistically different, with a t-test.

```
In [145... # Check the difference in the average price unit between the mainstream and premium/budget groups for young/midage singles/cou from scipy.stats import ttest_ind

# Identify the groups to test the hypthesis with
```

```
mainstream = full_df["MEMBER_TYPE"] == "Mainstream"
young_midage = (full_df["LIFESTAGE"] == "MIDAGE SINGLES/COUPLES") | (full_df["LIFESTAGE"] == "YOUNG SINGLES/COUPLES")
premium_budget = full_df["MEMBER_TYPE"] != "Mainstream"

group1 = full_df[mainstream & young_midage]["UNIT_PRICE"]
group2 = full_df[premium_budget & young_midage]["UNIT_PRICE"]

# Generate the t-test
stat, pval = ttest_ind(group1.values, group2.values, equal_var=False)
print(pval, stat)
```

6.967354232991983e-306 37.6243885962296

The t-test results in a p-value of 6.97e-306, being close to 0, indicates that the unit price for mainstream, young and mid-age singles and couples ARE significantly higher than that of budget or premium, young and midage singles and couples. ### Deep dive into specific customer segments for insights We have found quite a few interesting insights that we can dive deeper into. We might want to target customer segments that contribute the most to sales to retain them or further increase sales. Let's look at Mainstream - young singles/couples. For instance, let's find out if they tend to buy a particular brand of chips.

```
# Create a visual of what brands young singles/couples are purchasing the most for a general indication
young_mainstream = full_df.loc[full_df['LIFESTAGE'] == "YOUNG SINGLES/COUPLES"]
young_mainstream = young_mainstream.loc[young_mainstream['MEMBER_TYPE'] == "Mainstream"]
ax = young_mainstream["BRAND_NAME"].value_counts().sort_values(ascending = True).plot.barh(figsize=(10, 5))
ax.set_xlabel("No packets purchased")
ax.set_ylabel("Brands")
plt.show()
```



```
In [149...
temp = full_df.copy()
temp["group"] = temp["LIFESTAGE"] + ' - ' + temp['MEMBER_TYPE']

In [151...
groups = pd.get_dummies(temp["group"])
brands = pd.get_dummies(temp["BRAND_NAME"])
groups_brands = groups.join(brands)
groups_brands
```

Out[151...

	MIDAGE SINGLES/COUPLES	MIDAGE SINGLES/COUPLES	MIDAGE SINGLES/COUPLES	NEW FAMILIES	NEW FAMILIES -	NEW FAMILIES	OLDER FAMILIES	OLDER FAMILIES -	OLDER FAMILIES	
	- Budget	- Mainstream	- Premium	- Budget	Mainstream	Premium	- Budget	Mainstream	Premium	
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	True	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
•••										
246735	False	False	False	False	False	False	False	False	False	
246736	False	False	False	False	False	False	False	False	False	
246737	False	False	False	False	False	False	False	True	False	
246738	False	False	False	False	False	False	False	False	False	
246739	False	False	False	False	False	False	False	False	False	

246740 rows × 41 columns

```
In [161... import mlxtend

In [163... from mlxtend.frequent_patterns import apriori
    from mlxtend.frequent_patterns import association_rules

In [165... freq_groupsbrands = apriori(groups_brands, min_support=0.008, use_colnames=True)
    rules = association_rules(freq_groupsbrands, metric="lift", min_threshold=0.5)
    rules.sort_values('confidence', ascending = False, inplace = True)
```

```
In [167... set_temp = temp["group"].unique()
    rules[rules["antecedents"].apply(lambda x: list(x)).apply(lambda x: x in set_temp)]
```

Out[167...

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
40	(YOUNG SINGLES/COUPLES - Mainstream)	(Kettle)	0.079209	0.167334	0.015579	0.196684	1.175400	0.002325	1.036537	0.162062
0	(MIDAGE SINGLES/COUPLES - Mainstream)	(Kettle)	0.044966	0.167334	0.008657	0.192519	1.150508	0.001132	1.031190	0.136978
23	(RETIREES - Budget)	(Kettle)	0.057652	0.167334	0.010505	0.182214	1.088926	0.000858	1.018196	0.086660
32	(RETIREES - Premium)	(Kettle)	0.049591	0.167334	0.008981	0.181105	1.082296	0.000683	1.016816	0.080006
13	(OLDER SINGLES/COUPLES - Budget)	(Kettle)	0.069596	0.167334	0.012422	0.178488	1.066658	0.000776	1.013578	0.067167
21	(OLDER SINGLES/COUPLES - Premium)	(Kettle)	0.067115	0.167334	0.011944	0.177959	1.063495	0.000713	1.012925	0.064000
26	(RETIREES - Mainstream)	(Kettle)	0.080935	0.167334	0.013723	0.169554	1.013269	0.000180	1.002674	0.014248
16	(OLDER SINGLES/COUPLES - Mainstream)	(Kettle)	0.069146	0.167334	0.011490	0.166168	0.993034	-0.000081	0.998602	-0.007479
34	(YOUNG FAMILIES - Budget)	(Kettle)	0.071991	0.167334	0.011117	0.154422	0.922837	-0.000930	0.984730	-0.082654
4	(OLDER FAMILIES - Budget)	(Kettle)	0.087193	0.167334	0.013455	0.154318	0.922216	-0.001135	0.984609	-0.084586
10	(OLDER FAMILIES - Mainstream)	(Kettle)	0.053664	0.167334	0.008183	0.152481	0.911237	-0.000797	0.982475	-0.093327
8	(OLDER FAMILIES - Budget)	(Smiths)	0.087193	0.123016	0.011948	0.137027	1.113895	0.001222	1.016236	0.112016

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
36	(YOUNG FAMILIES - Budget)	(Smiths)	0.071991	0.123016	0.009459	0.131397	1.068126	0.000603	1.009648	0.068729
38	(YOUNG SINGLES/COUPLES - Mainstream)	(Doritos)	0.079209	0.102229	0.009642	0.121725	1.190712	0.001544	1.022198	0.173944
18	(OLDER SINGLES/COUPLES - Mainstream)	(Smiths)	0.069146	0.123016	0.008389	0.121329	0.986288	-0.000117	0.998080	-0.014715
30	(RETIREES - Mainstream)	(Smiths)	0.080935	0.123016	0.009593	0.118528	0.963514	-0.000363	0.994908	-0.039572
42	(YOUNG SINGLES/COUPLES - Mainstream)	(Pringles)	0.079209	0.101735	0.009382	0.118451	1.164310	0.001324	1.018962	0.153262
14	(OLDER SINGLES/COUPLES - Budget)	(Smiths)	0.069596	0.123016	0.008146	0.117051	0.951509	-0.000415	0.993244	-0.051929
28	(RETIREES - Mainstream)	(Pringles)	0.080935	0.101735	0.008523	0.105308	1.035124	0.000289	1.003994	0.036920
24	(RETIREES - Mainstream)	(Doritos)	0.080935	0.102229	0.008466	0.104607	1.023260	0.000192	1.002656	0.024733
2	(OLDER FAMILIES - Budget)	(Doritos)	0.087193	0.102229	0.008235	0.094450	0.923907	-0.000678	0.991410	-0.082760
6	(OLDER FAMILIES - Budget)	(Pringles)	0.087193	0.101735	0.008089	0.092777	0.911949	-0.000781	0.990126	-0.095657

In [169... rules[rules['antecedents'] == {'YOUNG SINGLES/COUPLES - Mainstream'}]

Out[169...

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
40	(YOUNG SINGLES/COUPLES - Mainstream)	(Kettle)	0.079209	0.167334	0.015579	0.196684	1.175400	0.002325	1.036537	0.162062
38	(YOUNG SINGLES/COUPLES - Mainstream)	(Doritos)	0.079209	0.102229	0.009642	0.121725	1.190712	0.001544	1.022198	0.173944
42	(YOUNG SINGLES/COUPLES - Mainstream)	(Pringles)	0.079209	0.101735	0.009382	0.118451	1.164310	0.001324	1.018962	0.153262

From apriori analysis, we can see that for Mainstream - young singles/couples, Kettle is the brand of choice. This is also true for most other segments. We can use the affinity index to see if there are brands this segment prefers more than the other segments to target.

```
In [171...
# find the target rating proportion
target_segment = young_mainstream["BRAND_NAME"].value_counts().sort_values(ascending = True).rename_axis('BRANDS').reset_index
target_segment.target /= young_mainstream["PROD_QTY"].sum()

# find the other rating proportion
not_young_mainstream = full_df.loc[full_df['LIFESTAGE'] != "YOUNG SINGLES/COUPLES"]
not_young_mainstream = not_young_mainstream.loc[not_young_mainstream['MEMBER_TYPE'] != "Mainstream"]
other = not_young_mainstream["BRAND_NAME"].value_counts().sort_values(ascending = True).rename_axis('BRANDS').reset_index(name
other.other /= not_young_mainstream["PROD_QTY"].sum()

# join the two dataframes
brand_proportions = target_segment.set_index('BRANDS').join(cust_df.set_index('BRANDS'))
# full_df = trans_df.set_index('LYLTY_CARD_NBR').join(cust_df.set_index('LYLTY_CARD_NBR'))
brand_proportions = brand_proportions.reset_index()
brand_proportions['affinity'] = brand_proportions['target']/brand_proportions['other']
brand_proportions.sort_values(by = 'affinity', ascending = False)
```

$\cap \dots +$	[171
Uut	1 / 1.

	BRANDS	target	other	affinity
8	Tyrrells	0.017088	0.013368	1.278270
13	Twisties	0.024845	0.019632	1.265496
18	Doritos	0.065673	0.052511	1.250646
12	Tostitos	0.024569	0.019944	1.231911
19	Kettle	0.106115	0.086574	1.225712
17	Pringles	0.063906	0.052477	1.217793
10	Cobs	0.023851	0.020004	1.192293
15	Infuzions	0.034507	0.029930	1.152890
9	Grain Waves	0.017833	0.016214	1.099878
14	Thins	0.032188	0.029771	1.081172
5	Cheezels	0.009551	0.009866	0.968161
16	Smiths	0.053030	0.064809	0.818247
3	Cheetos	0.004582	0.006139	0.746405
1	French	0.002153	0.003017	0.713793
11	Red Rock Deli	0.024155	0.035152	0.687154
6	Natural Chip Co	0.010876	0.016236	0.669883
4	CCs	0.006128	0.009668	0.633867
2	Sunbites	0.003533	0.006576	0.537349
7	Woolworths	0.013223	0.025567	0.517189
0	Burger	0.001712	0.003415	0.501180

By using the affinity index, we can see that mainstream young singles/couples are 28% more likely to purchase Tyrrells chips than the other segments. However, they are 50% less likely to purchase Burger Rings. We also want to find out if our target segment tends to buy larger packs of chips.

```
In [173... # Plot the distribution of the packet sizes for a general indication of what it most popular.
    young_mainstream = full_df.loc[full_df['LIFESTAGE'] == "YOUNG SINGLES/COUPLES"]
    young_mainstream = young_mainstream.loc[young_mainstream['MEMBER_TYPE'] == "Mainstream"]
    ax = young_mainstream["PACK_SIZE"].value_counts().sort_values(ascending = True).plot.barh()
    ax.set_ylabel("Packet size (g)")
    ax.set_xlabel("Packets purchased")
    plt.show()
```



```
# Also want to check which brands correspond to what sized packets.

brand_size = young_mainstream.groupby(['BRAND_NAME','PACK_SIZE'], as_index = False)['TOT_SALES'].agg(['sum'])

ax = brand_size.sort_values(by = 'sum').plot.barh(y = "sum", figsize=(10,10))

ax.set_ylabel("(Brand, packet size(g))")
```

ax.set_xlabel("Packets purchased")
plt.show()


```
In [179...
groups = pd.get_dummies(temp["group"])
brands = pd.get_dummies(temp["PACK_SIZE"])
groups_brands = groups.join(brands)
groups_brands
```

Out[179...

	MIDAGE SINGLES/COUPLES	MIDAGE SINGLES/COUPLES	MIDAGE SINGLES/COUPLES	NEW FAMILIES	NEW FAMILIES -	NEW FAMILIES	OLDER FAMILIES	OLDER FAMILIES -	OLDER FAMILIES	
	- Budget	- Mainstream	- Premium	- Budget	Mainstream	Premium	- Budget	Mainstream	Premium	
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	True	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
•••										
246735	False	False	False	False	False	False	False	False	False	
246736	False	False	False	False	False	False	False	False	False	
246737	False	False	False	False	False	False	False	True	False	
246738	False	False	False	False	False	False	False	False	False	
246739	False	False	False	False	False	False	False	False	False	

246740 rows × 41 columns

freq_groupsbrands = apriori(groups_brands, min_support=0.009, use_colnames=True) rules = association_rules(freq_groupsbrands, metric="lift", min_threshold=0.5)
rules.sort_values('confidence', ascending = False, inplace = True) set_temp = temp["group"].unique() rules[rules["antecedents"].apply(lambda x: list(x)).apply(lambda x: x in set_temp)]While it appears that most segments purchase more chip packets that are 175g, which is also the size that most Kettles chips are purchased in, we can also determine whether mainstream young singles/couples have certain preferences over the other segments again using the affinity index.

```
# find the target rating proportion
target_segment = young_mainstream["PACK_SIZE"].value_counts().sort_values(ascending = True).rename_axis('SIZES').reset_index(notarget_segment.target /= young_mainstream["PROD_QTY"].sum()

# find the other rating proportion
other = not_young_mainstream["PACK_SIZE"].value_counts().sort_values(ascending = True).rename_axis('SIZES').reset_index(name='other.other /= not_young_mainstream["PROD_QTY"].sum()
```

```
# join the two dataframes
brand_proportions = target_segment.set_index('SIZES').join(other.set_index('SIZES'))
brand_proportions = brand_proportions.reset_index()
brand_proportions['affinity'] = brand_proportions['target']/brand_proportions['other']
brand_proportions.sort_values(by = 'affinity', ascending = False)
```

\cap	- 4	- 1	Γ	1	\cap	1	
U	uч	-	L	Τ.	フ	Τ	۰

	SIZES	target	other	affinity
11	270.0	0.017115	0.012958	1.320826
12	380.0	0.017281	0.013375	1.291992
14	330.0	0.032988	0.026455	1.246968
10	210.0	0.015901	0.012973	1.225655
17	134.0	0.063906	0.052477	1.217793
16	110.0	0.056618	0.046653	1.213618
9	135.0	0.008006	0.006750	1.185951
8	250.0	0.007729	0.006674	1.158076
15	170.0	0.043478	0.041826	1.039502
18	150.0	0.085024	0.084969	1.000652
19	175.0	0.137943	0.141498	0.974878
13	165.0	0.030421	0.032135	0.946660
6	190.0	0.004086	0.006318	0.646684
3	180.0	0.001932	0.003240	0.596328
5	160.0	0.003533	0.006428	0.549720
4	90.0	0.003533	0.006576	0.537349
2	70.0	0.001739	0.003282	0.529870
0	125.0	0.001629	0.003153	0.516530
7	200.0	0.004941	0.009714	0.508695
1	220.0	0.001712	0.003415	0.501180

Here, we can see that mainstream young singles/couples are 32% more likely to purchase 270g chips than the other segments. However, they are 50% less likely to purchase 220g chips. The chips that come in 270g bags are Twisties while Burger Rings come in 220g bags, which is consistent with the affinity testing for the chip brands. ## Summary of Insights The three highest contributing segments to the total sales are: 1. Older families - Budget 2. Young singles/couples - Mainstream 3. Retirees - Mainstream The largest population group is mainstream young

singles/couples, followed by mainstream retirees which explains their large total sales. While population is not a driving factor for budget older families, older families and young families in general buy more chips per customer. Furthermore, mainstream young singles/couples have the highest spend per purchase, which is statistically significant compared to the non-mainstream young singles/couples. Taking a further look at the mainstream yong singles/couples segment, we have found that they are 28% more likely to purchase Tyrells chips than the other segments. This segment does purchase the most Kettles chips, which is also consistent with most other segments. However, they are 50% less likely to purchase Burger Rings, which was also evident in the preferences for packet sizes given they are the only chips that come in 220g sizes. Mainstream young singles/couples are 32% more likely to purchase 270g chips, which is the size that Twisties come in, compare to the other segments. The packet size purchased most over many segments is 175g. Perhaps we can use the fact that Tyrells and (the packet size of) Twisties chips are more likely to be purchased by mainstream young singles/couples and place these products where they are more likely to be seen by this segment. Furthermore, given that Kettles chips are still the most popular, if the primary target segment are mainstream young singles/couples, Tyrells and Twisties could be placed closer to the Kettles chips. This strategy, with the brands they are more likely to purchase, could also be applied to other segments that purchase the most of Kettles to increase their total sales.

In []: