CS70: Discrete Math and Probability

June 21, 2016

Lecture 2: Proofs!

- 1. Direct proof
- 2. by Contraposition
- 3. by Contradiction
- 4. by Cases

Integers closed under addition.

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5,

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq'

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

 $\emph{b} = \emph{aq}$ and $\emph{c} = \emph{aq}'$ where $\emph{q}, \emph{q}' \in \emph{Z}$

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$\emph{b} = \emph{aq}$$
 and $\emph{c} = \emph{aq}'$ where $\emph{q}, \emph{q}' \in \emph{Z}$

$$b-c=aq-aq'$$

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so a|(b-c)

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal:
$$P \Longrightarrow Q$$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

. . .

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

. . .

Therefore Q.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

100a+10b+c=11k+99a+11b=11(k+9a+b)

Let \mathcal{D}_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

Thm: $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n
Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n
```

Is converse a theorem? $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Yes?

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n
```

Is converse a theorem? $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Yes? No?

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)$

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof:

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)
```

Proof: Assume 11|n.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)
```

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k$$

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)
```

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

 $99a + 11b + (a - b + c) = 11k$

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b)
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
```

 $a - b + c = 11\ell$

```
Theorem: \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \implies
99a + 11b + (a - b + c) = 11k \implies
a - b + c = 11k - 99a - 11b \implies
a - b + c = 11(k - 9a - b) \implies
a - b + c = 11(k - 9a - b) \implies
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

```
Theorem: \forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)
```

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

ĥ

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)$

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)$

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in N', (11|\text{alt. sum of digits of } n) \iff (11|n)$

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

$$n = 2k + 1$$

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
```

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
```

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even.

```
Thm: For n \in \mathbb{Z}^+ and d|n. If n is odd then d is odd.
```

```
n = 2k + 1 what do we know about d?
```

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = 2k + 1 what do we know about d?
What to do?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = 2k + 1 what do we know about d?
What to do?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd
```

```
Thm: For n \in \mathbb{Z}^+ and d|n. If n is odd then d is odd.
```

$$n = 2k + 1$$
 what do we know about d ?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k)$$

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

 $d \mid n$ so we have

$$n = qd = q(2k) = 2(kq)$$

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

 $d \mid n$ so we have

$$n = qd = q(2k) = 2(kq)$$

n is even.

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
```

$$n = 2k + 1$$
 what do we know about d ?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

 n^2 is even, $n^2 = 2k$, ...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

 n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$P = 'n^2$$
 is even.'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

B

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

 $n^2 = 2I + 1$ where I is a natural number..

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

 $n^2 = 2l + 1$ where *l* is a natural number.

... and n^2 is odd!

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

 $n^2 = 2l + 1$ where *l* is a natural number.

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

 $n^2 = 2l + 1$ where *l* is a natural number.

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k + k) + 1.$$

 $n^2 = 2l + 1$ where *l* is a natural number.

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational.

 $\text{Must show: For every } \textit{a},\textit{b} \in \textit{Z},$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

c

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

S

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R \equiv$$
False

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Contrapositive: True $\implies P$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a,b\in Z$, $(\frac{a}{b})^2\neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume
$$\neg P$$
: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.

Ш

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Proof:

• Assume finitely many primes: p_1, \ldots, p_k .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

• q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p(p > 1 = R) which is one of p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p(p > 1 = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q$

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p(p > 1 = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q$

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p(p > 1 = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q=1$.

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p(p > 1 = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q=1$.
- so p ≤ 1.

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p(p > 1 = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q=1$.
- so $p \le 1$. (Contradicts R.)

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q=1$.
- so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Longrightarrow p|x-q \Longrightarrow p \le x-q=1$.
- so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

11

Did we prove?

• "The product of the first *k* primes plus 1 is prime."

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

•
$$2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$$

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.
- · The chain of reasoning started with a false statement.

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime in between 13 and q = 30031 that divides q.

Did we prove?

- "The product of the first *k* primes plus 1 is prime."
- No.
- · The chain of reasoning started with a false statement.

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime in between 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

13

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

13

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible. Case 2: a even, b odd: even - even + odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible. Case 2: a even, b odd: even - even + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.
Case 2: a even, b odd: even - even + odd = even. Not possible.
Case 3: a odd, b even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even + even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even. b even: even - even + even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even. b even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Let
$$x = y = \sqrt{2}$$
.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

14

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

14

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

,

$$x^y =$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1:
$$x^y = \sqrt{2}^{\sqrt{2}}$$
 is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

14

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.
- •

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.
- •

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^2 = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.
- •

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.
- ٠

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Theorem: 3 = 4

Theorem: 3 = 4

Proof: Assume 3 = 4.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4=3.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2

Proof:

Theorem: 1 = 2

Theorem: 1 = 2

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 1 = 2

$$(x^2 - xy) = x^2 - y^2$$

 $x(x - y) = (x + y)(x - y)$

Theorem: 1 = 2

$$(x2 - xy) = x2 - y2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

Theorem: 1 = 2Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

$$x = 2x$$

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

x = 2x
```

```
Theorem: 1 = 2
```

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

16

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

16

Direct Proof:

Direct Proof:

To Prove: $P \Longrightarrow Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$.

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P
```

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition:
```

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$.

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False .
```

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

```
Direct Proof:
```

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Direct Proof:

```
To Prove: P \implies Q. Assume P. Prove Q. By Contraposition:

To Prove: P \implies Q Assume \neg Q. Prove \neg P.

By Contradiction:

To Prove: P Assume \neg P. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.
```

Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False . By Cases: informal. Universal: show that statement holds in all cases.
```

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False . By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either \sqrt{2} and \sqrt{2} worked. or \sqrt{2} and \sqrt{2}^{\sqrt{2}} worked.
```

Careful when proving!

Don't assume the theorem.

Careful when proving!

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False . By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either \sqrt{2} and \sqrt{2} worked. or \sqrt{2} and \sqrt{2}^{\sqrt{2}} worked.
```

Don't assume the theorem. Divide by zero.

Direct Proof:

```
To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False .
```

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse.

Careful when proving!

```
Direct Proof: To Prove: P \Longrightarrow Q. Assume P. Prove Q. By Contraposition: To Prove: P \Longrightarrow Q Assume \neg Q. Prove \neg P. By Contradiction: To Prove: P Assume \neg P. Prove False . By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either \sqrt{2} and \sqrt{2} worked. or \sqrt{2} and \sqrt{2}^{\sqrt{2}} worked.
```

Don't assume the theorem. Divide by zero. Watch converse. ...

CS70: Note 3. Induction!

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. ..and Induction.
- 4. Simple Proof.

The naturals.

0,

0, 1,

0, 1, 2,

0, 1, 2, 3,

0, 1, 2, 3,

$$0, 1, 2, 3, \dots, n, n+1,$$

Teacher: Hello class.

Teacher: Hello class.

Teacher:

A formu<u>la.</u>

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k.

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
```

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^n i = \frac{n(n+1)}{2}) Proof? Idea: assume predicate P(n) for n=k. P(k) is \sum_{i=1}^k i = \frac{k(k+1)}{2}. Is predicate, P(n) true for n=k+1? \sum_{i=1}^{k+1} i
```

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$$

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1$$

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works!

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = \left(\sum_{i=1}^k i\right) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \Longrightarrow P(k+1)$.

Is this a proof?

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \Longrightarrow P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = \left(\sum_{i=1}^k i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \Longrightarrow P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

21

```
Child Gauss: (\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
```

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for n = k

```
Child Gauss: (\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
```

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for $n = k \implies$ true for n = k + 1

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
```

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

```
Child Gauss: (\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
Idea: assume predicate P(n) for n = k. P(k) is \sum_{i=1}^{k} i = \frac{k(k+1)}{2}.
Is predicate. P(n) true for n = k + 1?
 \sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.
How about k+2. Same argument starting at k+1 works!
      Induction Step. P(k) \Longrightarrow P(k+1).
Is this a proof? It shows that we can always move to the next step.
Need to start somewhere. P(0) is \sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2} Base Case.
Statement is true for n = 0 P(0) is true
  plus inductive step \implies true for n = 1 (P(0) \land (P(0) \implies P(1))) \implies P(1)
     plus inductive step \implies true for n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)
        true for n = k \implies true for n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)
```

```
Child Gauss: (\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
Idea: assume predicate P(n) for n = k. P(k) is \sum_{i=1}^{k} i = \frac{k(k+1)}{2}.
Is predicate. P(n) true for n = k + 1?
 \sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.
How about k+2. Same argument starting at k+1 works!
      Induction Step. P(k) \Longrightarrow P(k+1).
Is this a proof? It shows that we can always move to the next step.
Need to start somewhere. P(0) is \sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2} Base Case.
Statement is true for n = 0 P(0) is true
  plus inductive step \implies true for n = 1 (P(0) \land (P(0) \implies P(1))) \implies P(1)
     plus inductive step \implies true for n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)
        true for n = k \implies true for n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)
```

```
Child Gauss: (\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?

Idea: assume predicate P(n) for n = k. P(k) is \sum_{i=1}^{k} i = \frac{k(k+1)}{2}.

Is predicate, P(n) true for n = k+1?

\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.
```

Is this a proof? It shows that we can always move to the next step.

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

```
Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 (P(0) \land (P(0) \implies P(1))) \implies P(1) plus inductive step \implies true for n=2 (P(1) \land (P(1) \implies P(2))) \implies P(2) ... true for n=k \implies true for n=k+1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)
```

Predicate, P(n), True for all natural numbers!

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^n i = \frac{n(n+1)}{2}) Proof?

Idea: assume predicate P(n) for n = k. P(k) is \sum_{i=1}^k i = \frac{k(k+1)}{2}.
```

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

```
Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 (P(0) \land (P(0) \implies P(1))) \implies P(1) plus inductive step \implies true for n=2 (P(1) \land (P(1) \implies P(2))) \implies P(2) ... true for n=k \implies true for n=k+1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)
```

Predicate, P(n), True for all natural numbers! Proof by Induction.