!pip install pandas

Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)
Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.0.2)

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1) Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)

import pandas as pd

housing_data = pd.read_csv("/content/sample_data/california_housing_train.csv")

housing_data.head(5)

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
	0	-114.31	34.19	15.0	5612.0	1283.0	1015.0	472.0	1.4936	66900.0
	1	-114.47	34.40	19.0	7650.0	1901.0	1129.0	463.0	1.8200	80100.0
	2	-114.56	33.69	17.0	720.0	174.0	333.0	117.0	1.6509	85700.0
	3	-114.57	33.64	14.0	1501.0	337.0	515.0	226.0	3.1917	73400.0
	4	-114.57	33.57	20.0	1454.0	326.0	624.0	262.0	1.9250	65500.0

housing_data.tail(5)

 \rightarrow

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
	16995	-124.26	40.58	52.0	2217.0	394.0	907.0	369.0	2.3571	111400.0
	16996	-124.27	40.69	36.0	2349.0	528.0	1194.0	465.0	2.5179	79000.0
	16997	-124.30	41.84	17.0	2677.0	531.0	1244.0	456.0	3.0313	103600.0
	16998	-124.30	41.80	19.0	2672.0	552.0	1298.0	478.0	1.9797	85800.0
	16999	-124.35	40.54	52.0	1820.0	300.0	806.0	270.0	3.0147	94600.0

To calculation of descriptive statistics. housing_data.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_hou
count	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	17000.000000	1700
mean	-119.562108	35.625225	28.589353	2643.664412	539.410824	1429.573941	501.221941	3.883578	20730
std	2.005166	2.137340	12.586937	2179.947071	421.499452	1147.852959	384.520841	1.908157	11598
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	1499
25%	-121.790000	33.930000	18.000000	1462.000000	297.000000	790.000000	282.000000	2.566375	11940
50%	-118.490000	34.250000	29.000000	2127.000000	434.000000	1167.000000	409.000000	3.544600	18040
75%	-118.000000	37.720000	37.000000	3151.250000	648.250000	1721.000000	605.250000	4.767000	26500
may	-114 310000	4 1 950000	52 000000	37937 በበበበበበ	6445 000000	35682 000000	6082 000000	15 000100	50000

housing_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 17000 entries, 0 to 16999 Data columns (total 9 columns):

Data	COTUMNIS (COCUT) CO.	Tulli 13 / •	
#	Column	Non-Null Count	Dtype
0	longitude	17000 non-null	float64
1	latitude	17000 non-null	float64
2	housing_median_age	17000 non-null	float64
3	total_rooms	17000 non-null	float64
4	total_bedrooms	17000 non-null	float64
5	population	17000 non-null	float64
6	households	17000 non-null	float64
7	median_income	17000 non-null	float64

8 median_house_value 17000 non-null float64

dtypes: float64(9)
memory usage: 1.2 MB

housing data.shape

→ (17000, 9)

housing_data_shuffled = housing_data.sample(frac=1)

housing_data_shuffled.head(5)

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
	5679	-118.18	33.81	27.0	471.0	132.0	315.0	96.0	1.7500	154200.0
	8381	-118.47	35.72	18.0	4754.0	1075.0	1366.0	690.0	2.0694	81200.0
	6723	-118.29	33.98	46.0	1118.0	300.0	786.0	254.0	1.4042	110000.0
	15875	-122.42	37.74	52.0	2713.0	624.0	1370.0	594.0	4.6547	325700.0
	8544	-118.50	34.03	44.0	2146.0	394.0	851.0	355.0	6.4800	500001.0

housing_data_shuffled.shape

→ (17000, 9)

housing_data_no_duplicates = housing_data_shuffled.drop_duplicates()

housing_data_no_duplicates.shape

→ (17000, 9)

import numpy as np

'''import pandas as pd import numpy as np

Load the dataset

file_path = '/content/sample_data/california_housing_train.csv'
housing_data_no_duplicates = pd.read_csv(file_path)'''

Simulate ocean proximity based on longitude

This is a simplified example; real-world application would require more sophisticated logic def determine_ocean_proximity(longitude):

if longitude < -122:
 return 'NEAR OCEAN'
elif longitude < -121:
 return 'NEAR BAY'
else:</pre>

return 'INLAND'

Apply the function to create the ocean_proximity column

 $housing_data_no_duplicates['ocean_proximity'] = housing_data_no_duplicates['longitude']. apply(determine_ocean_proximity) = housing_data_no_duplicates['longitude']. Apply(data_no_duplicates['longitude']. Apply(data_no_duplicates['longitude'].$

Perform one-hot encoding on the 'ocean_proximity' column
data_encoded = pd.get_dummies(housing_data_no_duplicates, columns=['ocean_proximity'])

Display the updated DataFrame
data_encoded.head(5)

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	(
5679	-118.18	33.81	27.0	471.0	132.0	315.0	96.0	1.7500	154200.0	
8381	-118.47	35.72	18.0	4754.0	1075.0	1366.0	690.0	2.0694	81200.0	
6723	-118.29	33.98	46.0	1118.0	300.0	786.0	254.0	1.4042	110000.0	
15875	-122.42	37.74	52.0	2713.0	624.0	1370.0	594.0	4.6547	325700.0	
8544	-118 50	34 03	44 N	2146 N	394 በ	851 0	355 0	6 4800	500001 0	

- # Replace True and False with 1 and 0 in the 'ocean_proximity' columns
- # Assuming you have a column named 'ocean_proximity' with boolean values
- # Replace 'ocean_proximity' with your actual column name if it's different.

for column in data_encoded.columns:

- if 'ocean_proximity' in column:
 - data_encoded[column] = data_encoded[column].astype(int)

Display the updated DataFrame
data_encoded.head(5)

•	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	(
5679	-118.18	33.81	27.0	471.0	132.0	315.0	96.0	1.7500	154200.0	
8381	-118.47	35.72	18.0	4754.0	1075.0	1366.0	690.0	2.0694	81200.0	
6723	-118.29	33.98	46.0	1118.0	300.0	786.0	254.0	1.4042	110000.0	
15875	-122.42	37.74	52.0	2713.0	624.0	1370.0	594.0	4.6547	325700.0	
8544	-118 50	34 03	44 0	2146 በ	394 በ	851 0	355 0	6 4800	500001 0	

Assuming 'median_house_value' is the column you want to move

cols = list(data_encoded.columns)

cols.remove('median_house_value')

cols.append('median_house_value')

data_encoded = data_encoded[cols]

Display the updated DataFrame
data_encoded.head(5)

•	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity_INLA
5679	-118.18	33.81	27.0	471.0	132.0	315.0	96.0	1.7500	
8381	-118.47	35.72	18.0	4754.0	1075.0	1366.0	690.0	2.0694	
6723	-118.29	33.98	46.0	1118.0	300.0	786.0	254.0	1.4042	
1587	-122.42	37.74	52.0	2713.0	624.0	1370.0	594.0	4.6547	
8544	-118 50	34 03	44 0	2146 በ	394 0	851 0	355 0	6 4800	•

data_encoded.shape

→ (17000, 12)

data_encoded=data_encoded.dropna()

data_encoded.shape

→ (17000, 12)

```
import numpy as np
# Detect outliers using IQR method for 'median_house_value'
Q1 = data_encoded['median_house_value'].quantile(0.25)
Q3 = data_encoded['median_house_value'].quantile(0.75)
IQR = Q3 - Q1
outliers = data_encoded[(data_encoded['median_house_value'] < Q1 - 1.5 * IQR) | (data_encoded['median_house_value'] > Q3 + 1.5 * IQR)]
# Remove outliers
data_no_outliers = data_encoded[(data_encoded['median_house_value'] >= Q1 - 1.5 * IQR) & (data_encoded['median_house_value'] <= Q3 + 1.5 * I
data_no_outliers.info()
<<class 'pandas.core.frame.DataFrame'>
     Index: 16105 entries, 16279 to 10026
     Data columns (total 12 columns):
     # Column
                                     Non-Null Count Dtype
                                     16105 non-null float64
     0 longitude
         latitude
                                     16105 non-null float64
         housing_median_age
                                     16105 non-null float64
                                   16105 non-null float64
         total rooms
     4 total_bedrooms
                                   16105 non-null float64
                                     16105 non-null float64
         population
                                     16105 non-null float64
         households
         median_income
                                     16105 non-null float64
      8
         ocean_proximity_INLAND
                                     16105 non-null int64
        ocean_proximity_NEAR BAY
                                     16105 non-null int64
     10 ocean_proximity_NEAR OCEAN 16105 non-null int64
     11 median_house_value
                                     16105 non-null float64
     dtypes: float64(9), int64(3)
     memory usage: 1.6 MB
data_no_outliers.isnull().sum()
→
                                 0
              longitude
                                 0
               latitude
                                0
          housing_median_age
                                 0
             total_rooms
                                0
            total_bedrooms
                                 0
              population
                                0
             households
                                0
            median_income
                                0
        ocean_proximity_INLAND
                                 0
       ocean_proximity_NEAR BAY
      ocean_proximity_NEAR OCEAN 0
          median_house_value
data_housing=data_no_outliers
data_housing.shape
→ (16105, 12)
from sklearn.model_selection import train_test_split
# Separate features and target variable
X = data_housing.drop('median_house_value', axis=1)
y = data_housing['median_house_value']
```

First, split the data into training and temporary sets

```
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Then, split the temporary set into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42) # 0.25 x 0.8 = 0.2
# Display the sizes of the splits
print(f"Training set size: {X_train.shape,y_train.shape}")
print(f"Validation set size: {X_val.shape,y_val.shape}")
print(f"Test set size: {X_test.shape,y_test.shape}")
→ Training set size: ((9663, 11), (9663,))
     Validation set size: ((3221, 11), (3221,))
     Test set size: ((3221, 11), (3221,))
from sklearn.preprocessing import StandardScaler
# Initialize the scaler
scaler = StandardScaler()
# Fit and transform the data
data_scaled = scaler.fit_transform(data_housing.iloc[ : , :8])
# Get the names of the scaled columns
scaled_columns = data_housing.columns[:8]
# Create a DataFrame for the scaled data
data_scaled_df = pd.DataFrame(data_scaled, columns=scaled_columns, index=data_housing.index)
# Concatenate the scaled data with the remaining columns from the original DataFrame
data_processed = pd.concat([data_scaled_df, data_housing.drop(columns=scaled_columns)], axis=1)
# Verify the structure of the processed DataFrame
data_processed.head()
<del>_</del>₹
             longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity_INLA
```

5679	0.684864	-0.853557	-0.103947	-0.988168	-0.966246	-0.975194	-1.053082	-1.229832	
8381	0.540379	0.033772	-0.824282	0.973252	1.257013	-0.070215	0.482217	-1.025772	
6723	0.630060	-0.774580	1.416761	-0.691871	-0.570161	-0.569632	-0.644703	-1.450759	
15875	-1.427607	0.972203	1.896985	0.038566	0.193716	-0.066771	0.234088	0.625944	
2551	N 948923	-0 700249	-1 544617	0 571626	-በ 1222በዓ	0.316403	-N N3 4 719	3 072371	
4									

import seaborn as sns
import matplotlib.pyplot as plt

Calculate the correlation matrix
correlation_matrix = data_processed.corr()

Plot the correlation matrix
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

₹

train_pred = model.predict(X_train) val_pred = model.predict(X_val)

longitude -

```
latitude --0.92 1 0.0110.03-70.0710.120.0780.08-0.83 0.49 0.56-0.15
                 housing_median_age -0.110.011 1 -0.37-0.33-0.29-0.31-0.190.08-0.0980.2 0.063
                          total_rooms -0.0470.0370.37 1 0.93 0.86 0.92 0.220.0079.0320.0410.15
                       total bedrooms -0.0730.0710.330.93 1 0.88 0.980.0190.038.0010.0470.076
                           population - 0.1 -0.12-0.29 0.86 0.88 1 0.910.0380.070.0070.095.015
                           households -0.0630.0780.310.920.980.91 1 0.0430.0250.0130.0420.096
                      median_income -0.0070.08-0.19 0.220.0190.0380.043 1 -0.0470.0280.0310.65
             ocean_proximity_INLAND - 0.9 -0.830.0807.0079.0380.0720.0250.041
                                                                                    -0.6-0.65<mark>0.062</mark>
          ocean proximity NEAR BAY -0.440.490.098.030.00010070.0120.028-0.6
                                                                                        -0.210.074
       ocean_proximity_NEAR OCEAN -0.680.56 0.2-0.04D.04D.09D.04D.031-0.65-0.21
                 median house value -0.0450.150.0630.150.0760.0150.0960.650.0620.0740.15
                                         longitude
                                                  housing_median_age
                                                       total_rooms
                                                            total_bedrooms
                                                                 population
                                                                      households
                                                                           median_income
                                                                               ocean_proximity_INLAND
                                                                                     BAY
                                                                                         ocean_proximity_NEAR OCEAN
                                                                                              median_house_value
                                                                                    ocean_proximity_NEAR
from sklearn.ensemble import RandomForestRegressor
# Separate features and target variable
X = data_processed.drop('median_house_value', axis=1)
y = data_processed['median_house_value']
# Train a RandomForest model
model = RandomForestRegressor()
model.fit(X, y)
# Get feature importances
feature_importances = model.feature_importances_
features = X.columns
# Display feature importances
importance_df = pd.DataFrame({'Feature': features, 'Importance': feature_importances})
importance_df = importance_df.sort_values(by='Importance', ascending=False)
print(importance_df)
                               Feature Importance
                         median income
                                           0.452571
     0
                             longitude
                                           0.205792
                                            0.180969
                              latitude
                   housing_median_age
                                            0.054208
     5
                                           0.032789
                            population
     3
                           total_rooms
                                            0.028335
     4
                       total bedrooms
                                            0.023475
                            households
                                            0.020468
     6
     9
            ocean_proximity_NEAR BAY
                                            0.000733
     8
                                            0.000367
              ocean_proximity_INLAND
         ocean_proximity_NEAR OCEAN
                                            0.000294
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Predictions and MSE calculation
```

1 -0.92-0.110.0470.073 0.1 0.0610.007 0.9 -0.44-0.680.045

1.00

0.75

0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

```
train_mse = mean_squared_error(y_train, train_pred)
val_mse = mean_squared_error(y_val, val_pred)
# Print the results
print(f"Training MSE: {train_mse}")
print(f"Validation MSE: {val_mse}")
print(np.sqrt(train_mse))
print(np.sqrt(val_mse))
Training MSE: 3581875084.283568
     Validation MSE: 3600033089.940089
     59848.76844416741
     60000.2757488671
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
# Initialize the KNN regressor with a chosen K value
k = 9 \# You can tune this value
knn = KNeighborsRegressor(n_neighbors=k)
# Train the model
knn.fit(X_train, y_train)
# Make predictions on the train and val set
train_pred_knn = knn.predict(X_train)
val pred knn = knn.predict(X val)
# Evaluate the model
ktrain_mse = mean_squared_error(y_train, train_pred_knn)
kval_mse = mean_squared_error(y_val, val_pred_knn)
print(f"KNN Training MSE: {ktrain_mse}")
print(f"KNN Validation MSE: {kval_mse}")
print(np.sqrt(ktrain_mse))
print(np.sqrt(kval_mse))
→ KNN Training MSE: 5912027655.560283
     KNN Validation MSE: 7700467969.752054
     76889.71098632301
     87752.31033854354
from sklearn.ensemble import RandomForestRegressor
# Train a RandomForest model
rfr = RandomForestRegressor(max_depth=10)
rfr.fit(X_train, y_train) # Change: Fit the rfr model, not the 'model' variable
# Make predictions on the train and val set
train_pred_rfr = rfr.predict(X_train)
val_pred_rfr = rfr.predict(X_val)
# Evaluate the model
rtrain_mse = mean_squared_error(y_train, train_pred_rfr)
rval_mse = mean_squared_error(y_val, val_pred_rfr)
print(f"KNN Training MSE: {rtrain mse}")
print(f"KNN Validation MSE: {rval_mse}")
print(np.sqrt(rtrain_mse))
print(np.sqrt(rval_mse))
→ KNN Training MSE: 1261197804.0308385
     KNN Validation MSE: 2219313808.976221
     35513.346843557825
     47109.593598079584
from sklearn.model selection import GridSearchCV
from sklearn.linear_model import Ridge
# Define the parameter grid
param_grid = {
    'alpha': [0.1, 1.0, 10.0, 100.0],
    'fit_intercept': [True, False]
}
# Initialize the model
model - Ridge()
```

```
# Initialize GridSearchCV
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error')
# Fit GridSearchCV
grid search.fit(X train, y train)
# Print the best parameters and best score
print(f"Best Parameters: {grid_search.best_params_}")
print(f"Best Cross-Validation MSE: {-grid_search.best_score_}")

→ Best Parameters: {'alpha': 10.0, 'fit_intercept': True}

     Best Cross-Validation MSE: 3632873870.138489
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
# Train a Gradient Boosting model with n_estimators
gbr = GradientBoostingRegressor(n_estimators=100) # Added n_estimators
gbr.fit(X_train, y_train) # Fit the gbr model
# Make predictions on the train and val set
train_pred_gbr = gbr.predict(X_train)
val_pred_gbr = gbr.predict(X_val)
# Evaluate the model
train_mse_gbr = mean_squared_error(y_train, train_pred_gbr)
val_mse_gbr = mean_squared_error(y_val, val_pred_gbr)
print(f"Gradient Boosting Training MSE: {train_mse_gbr}")
print(f"Gradient Boosting Validation MSE: {val_mse_gbr}")
print(np.sqrt(train_mse_gbr))
print(np.sqrt(val_mse_gbr))
→ Gradient Boosting Training MSE: 2170266581.246331
     Gradient Boosting Validation MSE: 2443847109.7669673
     46586.12004928433
     49435.28203385683
'''import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import Ridge
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Define the parameter grids for each model
param_grid_ridge = {
    'alpha': [0.1, 1.0, 10.0, 100.0],
    'fit_intercept': [True, False]
}
param_grid_knn = {
    'n_neighbors': [3, 5, 7, 9],
    'weights': ['uniform', 'distance'],
    'metric': ['euclidean', 'manhattan']
param_grid_rf = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}
# Initialize the models
ridge = Ridge()
knn = KNeighborsRegressor()
rf = RandomForestRegressor(random_state=42)
# Initialize GridSearchCV for each model
grid_search_ridge = GridSearchCV(estimator=ridge, param_grid=param_grid_ridge, cv=5, scoring='neg_mean_squared_error')
grid_search_knn = GridSearchCV(estimator=knn, param_grid=param_grid_knn, cv=5, scoring='neg_mean_squared_error')
grid_search_rf = GridSearchCV(estimator=rf, param_grid=param_grid_rf, cv=5, scoring='neg_mean_squared_error', n_jobs=-1)
```

mouci - niuge(/

```
# Fit GridSearchCV for each model
grid_search_ridge.fit(X_train, y_train)
grid_search_knn.fit(X_train, y_train)
grid_search_rf.fit(X_train, y_train)
# Print the best parameters and best score for each model
print("Linear Regression (Ridge) Best Parameters:", grid_search_ridge.best_params_)
print("Linear Regression (Ridge) Best Cross-Validation MSE:", -grid_search_ridge.best_score_)
print("KNN Best Parameters:", grid_search_knn.best_params_)
print("KNN Best Cross-Validation MSE:", -grid_search_knn.best_score_)
print("Random Forest Best Parameters:", grid_search_rf.best_params_)
print("Random Forest Best Cross-Validation MSE:", -grid_search_rf.best_score_)
# Evaluate the best models on the test set
best_ridge = grid_search_ridge.best_estimator_
best_knn = grid_search_knn.best_estimator_
best_rf = grid_search_rf.best_estimator_
y_pred_ridge = best_ridge.predict(X_test)
y_pred_knn = best_knn.predict(X_test)
y_pred_rf = best_rf.predict(X_test)
mse_ridge = mean_squared_error(y_test, y_pred_ridge)
mse_knn = mean_squared_error(y_test, y_pred_knn)
mse_rf = mean_squared_error(y_test, y_pred_rf)
print(f"Test MSE for Ridge Regression: {mse_ridge}")
print(f"Test MSE for KNN: {mse_knn}")
print(f"Test \ MSE \ for \ Random \ Forest: \ \{mse\_rf\}")'''
```