Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security
Sebastian Stich

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 8 — Solutions (Local SGD - continue)

1 Scaffold

Consider a distributed optimization problem of the form $f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$.

1.1 Unbiased Local Steps

Let $\mathbf{g}^i(\mathbf{x})$ denote a unbiased gradient estimator for the local objective function $f_i(\mathbf{x})$, i.e. $\mathbb{E}\mathbf{g}^i(\mathbf{x}) = \nabla f_i(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^d$.

Let \mathbf{y}_k^i denote a local iterate of Scaffold on node $i \in [n]$ at (local) iteration $k \in \{0, \dots, K-1\}$. Recall that the control variates are defined as $\mathbf{c}^i = \mathbf{g}^i(\mathbf{y}_0)$ and $\mathbf{c} = \frac{1}{n} \sum_{i=1}^n \mathbf{c}^i$ ($\mathbf{y}_0^i = \mathbf{y}_0^j$ for all $i, j \in [n]$).

Prove that the update direction in Scaffold,

$$\mathbf{v}_k^i = \mathbf{g}^i(\mathbf{y}_k^i) - \mathbf{c}^i + \mathbf{c} \,,$$

is an unbiased gradient estimator, i.e. $\mathbb{E}\mathbf{v}_k^i = \nabla f_i(\mathbf{y}_k^i)$.

Proof. This follows from $\mathbb{E}\mathbf{g}^i(\mathbf{y}_k^i) = \nabla f_i(\mathbf{y}_k^i)$ (unbiased gradient oracle) and $\mathbb{E}\mathbf{c}^i \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \mathbf{c}^i \stackrel{\text{def}}{=} \mathbf{c}$.

1.2 Hessian Similarity I

Let $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$, with each f_i an L-smooth and twice differentiated function. δ -Hessian similarity was defined in the lecture as:

$$\|\nabla^2 f_i(\mathbf{x}) - \nabla^2 f(\mathbf{x})\| \le \delta \quad \forall i \in [n], \forall \mathbf{x} \in \mathbb{R}^d.$$

Prove that Hessian similarity always holds for $\delta \leq 2L$.

Proof. For a twice differentiable L smooth function $f_i(\mathbf{x})$ it holds $\|\nabla^2 f_i(\mathbf{x})\| \le L$, and hence $\|\nabla^2 f_i(\mathbf{x}) - \nabla^2 f(\mathbf{x})\| \le \|\nabla^2 f_i(\mathbf{x})\| + \|\nabla^2 f(\mathbf{x})\| \le 2L$.

1.3 Hessian Similarity II

Prove that the following holds for any two (twice differentiable) functions $f_i(\mathbf{x})$, $f(\mathbf{x})$ satisfying δ -Hessian similarity:

$$\|\nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x}) + \nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2 \le \delta^2 \|\mathbf{y} - \mathbf{x}\|^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

Proof. Consider the function $\Psi(\mathbf{z}) = f_i(\mathbf{z}) - f(\mathbf{z})$. By the δ -Hessian similarity assumption, we know $\|\nabla \Psi(\mathbf{z})\| \leq \delta$ for all $\mathbf{z} \in \mathbb{R}^d$, i.e. Ψ is δ -smooth. This implies that

$$\|\nabla \Psi(\mathbf{y}) - \nabla \Psi(\mathbf{x})\| \le \delta \|\mathbf{y} - \mathbf{x}\|$$
.