Supporting Information

for

A Pillared-Layer Coordination Polymer with a Rotatable Pillar Acting as a Molecular Gate for Guest Molecules

Joobeom Seo,[†] Ryotaro Matsuda,^{‡,§} Hirotoshi Sakamoto,[†] Charlotte Bonneau,^{‡,§} and Susumu Kitagawa*,^{†,‡,§}

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, Kitagawa Integrated Pore Project, ERATO, JST, Kyoto Research Park, 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan, and Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Contents

- Figure \$1. PXRD pattern of by-product.
- **Figure S2.** The variation in mass of **2** in response to temperature (right). The mass (red line) and temperature (blue line) as functions of time are shown.
- **Figure S3.** Crystal structure of **2** showing H-bonded pillars (dashed lines). The distance between two oxygen atoms is 2.947(18) Å.
- **Figure S4.** Crystal structure of **2** showing H-bonded water molecules in the pore. The values indicate the distances.
- **Figure S5.** TGA profiles of expanded intermediate 3 (black line) and the fully rehydrated form (red line) with heating rate of 5 $^{\circ}$ C min⁻¹ under N₂ flow.
- **Figure S6.** Adsorption isotherm of CO_2 at 293K for 2.
- Figure S7. ¹H and ¹³C NMR spectra of L.
- **Table S1**. Bond distances and angles of Cd²⁺ centers

Complete Ref. 16:

(16) Park, Y. K.; Choi, S. B.; Kim, H.; Kim, K.; Won, B.-H.; Choi, K.; Choi, J.-S.; Ahn, W.-S.; Won, N.; Kim, S.; Jung, D. H.; Choi, S.-H.; Kim, G.-H.; Cha, S.-S.; Jhon, Y. H.; Yang, J. K.; Kim, J. *Angew. Chem. Int. Ed.* **2007**, *46*, 8230-8233.

Figure \$1. PXRD pattern of by-product.

Figure S2. The variation in mass of **2** in response to temperature (right). The mass (red line) and temperature (blue line) as functions of time are shown.

Figure S3. Crystal structure of **2** showing H-bonded pillars (dashed lines). The distance between two oxygen atoms is 2.947(18) Å.

Figure S4. Crystal structure of **2** showing H-bonded water molecules in the pore. The values indicate the distances.

Figure S5. TGA profiles of expanded intermediate 3 (black line) and the fully rehydrated form (red line) with heating rate of 5 $^{\circ}$ C min⁻¹ under N₂ flow.

Figure S6. Adsorption isotherm of CO_2 at 293K for 2.

Figure S7. 1 H and 13 C NMR spectra of L in DMSO- d_6 .

Table S1. Bond distances and angles of Cd²⁺ centers

Compound		Cd1	Cd2
As-synthesized form 1	Distances	Cd(1)-N(5) 2.298(6)	Cd(2)-O(2)A 2.231(4)
	(Å)	Cd(1)-O(1W)2.313(4)	Cd(2)-O(8)B2.307(5)
Symmetry operations		Cd(1)-O(3)A2.314(4)	Cd(2)-O(5) 2.313(4)
A: $-x+1,y-1/2,-z+3/2$		Cd(1)-O(1)2.324(4)	Cd(2)-N(6)C 2.324(5)
B: $-x+2,y-1/2,-z+3/2$		Cd(1)-N(1)2.397(4)	Cd(2)-O(2W) 2.355(5)
C: $-x+1,-y+1,-z+2$		Cd(1)-O(6)2.424(4)	Cd(2)-N(3) 2.373(4)
		Cd(1)-O(5) 2.522(4)	
	Angles (°)	N(5)-Cd(1)-O(1W)168.1(2)	O(2)A-Cd(2)-O(8)B109.25(16)
		N(5)-Cd(1)-O(3)A87.2(2)	O(2)A-Cd(2)-O(5)81.45(14)
		O(1W)-Cd(1)-O(3)A85.65(15)	O(8)B-Cd(2)-O(5)169.28(16)
		N(5)-Cd(1)-O(1)92.3(3)	O(2)A-Cd(2)-N(6)C98.73(17)
		O(1W)-Cd(1)-O(1)95.31(16)	O(8)B-Cd(2)-N(6)C85.17(17)
		O(3)A-Cd(1)-O(1)77.02(13)	O(5)-Cd(2)-N(6)C92.72(17)
		N(5)-Cd(1)-N(1)95.7(2)	O(2)A-Cd(2)-O(2W)83.77(17)
		O(1W)-Cd(1)-N(1)95.49(15)	O(8)B-Cd(2)-O(2W)85.90(18)
		O(3)A-Cd(1)-N(1)147.12(14)	O(5)-Cd(2)-O(2W)96.15(18)
		O(1)-Cd(1)-N(1)70.14(14)	N(6)C-Cd(2)-O(2W)171.06(18)
		N(5)-Cd(1)-O(6)94.1(3)	O(2)A-Cd(2)-N(3)150.12(14)
		O(1W)-Cd(1)-O(6)83.91(17)	O(8)B-Cd(2)-N(3)98.95(15)
		O(3)A-Cd(1)-O(6)133.00(13)	O(5)-Cd(2)-N(3)70.64(14)
		O(1)-Cd(1)-O(6)149.53(14)	N(6)C-Cd(2)-N(3)93.17(16)
		N(1)-Cd(1)-O(6)79.59(14)	O(2W)-Cd(2)-N(3)88.70(16)
		N(5)-Cd(1)-O(5)84.5(3)	
		O(1W)-Cd(1)-O(5)84.98(16)	
		O(3)A-Cd(1)-O(5)80.57(13)	
		O(1)-Cd(1)-O(5)157.49(14)	
		N(1)-Cd(1)-O(5)132.31(14)	
		O(6)-Cd(1)-O(5) 52.95(13)	

Compound		Cd1	Cd2
Partially dried form 1a	Distances	Cd(1)-O(3)A 2.299(4)	Cd(2)-O(2)A 2.245(4)
	(Å)	Cd(1)-O(1) 2.308(4)	Cd(2)-O(8)B 2.318(7)
		Cd(1)-N(5) 2.326(6)	Cd(2)-O(5) 2.333(4)
Symmetry operations		Cd(1)-O(6) 2.374(4)	Cd(2)-N(6)C 2.339(5)
A: $-x+1/2,y+1/2,-z+3/2$		Cd(1)-O(1W) 2.380(5)	Cd(2)-N(3) 2.346(5)
B: -x-1/2,y+1/2,-z+3/2		Cd(1)-N(1) 2.380(5)	Cd(2)-O(2W) 2.458(6)
		Cd(1)-O(5) 2.541(4)	
C: $-x+1,-y+2,-z+2$	Angles (°)	O(3)A-Cd(1)-O(1)77.27(15)	O(2)A-Cd(2)-O(8)B103.40(18)
		O(3)A-Cd(1)-N(5)86.52(19)	O(2)A-Cd(2)-O(5)79.81(15)
		O(1)-Cd(1)-N(5)86.21(18)	O(8)B-Cd(2)-O(5)176.09(19)
		O(3)A-Cd(1)-O(6)131.57(15)	O(2)A-Cd(2)-N(6)C94.30(19)
		O(1)-Cd(1)-O(6)148.78(14)	O(8)B-Cd(2)-N(6)C85.6(2)
		N(5)-Cd(1)-O(6)104.8(2)	O(5)-Cd(2)-N(6)C91.94(16)
		O(3)A-Cd(1)-O(1W)80.21(16)	O(2)A-Cd(2)-N(3)147.67(15)
		O(1)-Cd(1)-O(1W)95.48(16)	O(8)B-Cd(2)-N(3)105.74(18)
		N(5)-Cd(1)-O(1W)165.87(18)	O(5)-Cd(2)-N(3)71.73(15)
		O(6)-Cd(1)-O(1W)80.84(19)	N(6)C-Cd(2)-N(3)101.54(18)
		O(3)A-Cd(1)-N(1)146.36(16)	O(2)A-Cd(2)-O(2W)74.3(2)
		O(1)-Cd(1)-N(1)69.96(15)	O(8)B-Cd(2)-O(2W)103.3(2)
		N(5)-Cd(1)-N(1)98.45(18)	O(5)-Cd(2)-O(2W)79.62(19)
		O(6)-Cd(1)-N(1)79.47(15)	N(6)C-Cd(2)-O(2W)166.8(2)
		O(1W)-Cd(1)-N(1)95.29(17)	N(3)-Cd(2)-O(2W)85.60(19)
		O(3)A-Cd(1)-O(5)82.21(14)	
		O(1)-Cd(1)-O(5)158.16(14)	
		N(5)-Cd(1)-O(5)85.16(16)	
		O(6)-Cd(1)-O(5)53.06(13)	
		O(1W)-Cd(1)-O(5)88.25(15)	
		N(1)-Cd(1)-O(5) 131.23(15)	

Compound		Cd1	Cd2
Dried form 2	Distances (Å)	Cd(1)-O(3)A 2.210(9)	Cd(2)-O(7)B 2.199(8)
Symmetry operations		Cd(1)-O(1) 2.302(8)	Cd(2)-O(2)A 2.224(8)
		Cd(1)-N(5) 2.327(8)	Cd(2)-N(3) 2.262(7)
A: -x+3/2,y-1/2,-z+1/2		Cd(1)-O(5) 2.329(7)	Cd(2)-N(6)C 2.309(8)
B: -x+1/2,y-1/2,-z+1/2		Cd(1)-N(1) 2.380(9)	Cd(2)-O(5) 2.394(7)
C: -x+2,-y,-z		Cd(1)-O(6) 2.617(8)	
	Angles (°)	O(3)A-Cd(1)-O(1)83.3(3)	O(7)B-Cd(2)-O(2)A108.9(3)
		O(3)A-Cd(1)-N(5)86.9(3)	O(7)B-Cd(2)-N(3)95.0(3)
		O(1)-Cd(1)-N(5)94.9(3)	O(2)A-Cd(2)-N(3)111.3(3)
		O(3)A-Cd(1)-O(5)102.6(3)	O(7)B-Cd(2)-N(6)C91.6(3)
		O(1)-Cd(1)-O(5)172.0(3)	O(2)A-Cd(2)-N(6)C103.2(3)
		N(5)-Cd(1)-O(5)90.9(3)	N(3)-Cd(2)-N(6)C140.3(3)
		O(3)A-Cd(1)-N(1)153.5(3)	O(7)B-Cd(2)-O(5)162.8(3)
		O(1)-Cd(1)-N(1)70.2(3)	O(2)A-Cd(2)-O(5)86.0(3)
		N(5)-Cd(1)-N(1)96.1(3)	N(3)-Cd(2)-O(5) 771.1(3)
		O(5)-Cd(1)-N(1)103.7(3)	N(6)C-Cd(2)-O(5)93.1(3)
		O(3)A-Cd(1)-O(6)109.3(3)	
		O(1)-Cd(1)-O(6)120.1(3)	
		N(5)-Cd(1)-O(6)142.3(3)	
		O(5)-Cd(1)-O(6)53.0(2)	
		N(1)-Cd(1)-O(6)84.1(3)	

Compound		Cd1	Cd2
Partially rehydrated	Distances	Cd(1)-O(3)A 2.300(8)	Cd(2)-O(2)A 2.246(8)
form 3	(Å)	Cd(1)-O(1) 2.322(8)	Cd(2)-O(7)B 2.292(12)
		Cd(1)-N(5) 2.349(10)	Cd(2)-N(6)C 2.340(9)
Symmetry operations		Cd(1)-O(6) 2.385(8)	Cd(2)-O(5) 2.341(7)
A: $-x+3/2,y+1/2,-z+3/2$		Cd(1)-N(1) 2.385(9)	Cd(2)-N(3) 2.341(9)
B: -x+5/2,y+1/2,-z+3/2		Cd(1)-O(1W) 2.390(9)	Cd(2)-O(2W) 2.461(11)
C: -x+1,-y+2,-z+1		Cd(1)-O(5) 2.534(7)	
	Angles (°)	O(3)A-Cd(1)-O(1)76.8(3)	O(2)A-Cd(2)-O(7)B103.4(4)
		O(3)A-Cd(1)-N(5)86.9(3)	O(2)A-Cd(2)-N(6)C94.1(3)
		O(1)-Cd(1)-N(5)86.1(3)	O(7)B-Cd(2)-N(6)C86.2(4)
		O(3)A-Cd(1)-O(6)132.2(3)	O(2)A-Cd(2)-O(5)79.4(3)
		O(1)-Cd(1)-O(6)148.8(3)	O(7)B-Cd(2)-O(5)176.8(4)
		N(5)-Cd(1)-O(6)104.5(4)	N(6)C-Cd(2)-O(5)92.0(3)
		O(3)A-Cd(1)-N(1)145.8(3)	O(2)A-Cd(2)-N(3)147.1(3)
		O(1)-Cd(1)-N(1)70.0(3)	O(7)B-Cd(2)-N(3)106.3(4)
		N(5)-Cd(1)-N(1)98.3(3)	N(6)C-Cd(2)-N(3) 7101.7(3)
		O(6)-Cd(1)-N(1)79.4(3)	O(5)-Cd(2)-N(3)71.4(3)
		O(3)A-Cd(1)-O(1W)80.0(3)	O(2)A-Cd(2)-O(2W)4.1(3)
		O(1)-Cd(1)-O(1W)95.7(3)	O(7)B-Cd(2)-O(2W)102.4(4)
		N(5)-Cd(1)-O(1W)166.0(3)	N(6)C-Cd(2)-O(2W)166.7(4)
		O(6)-Cd(1)-O(1W)81.1(3)	O(5)-Cd(2)-O(2W)79.8(3)
		N(1)-Cd(1)-O(1W)95.4(3)	N(3)-Cd(2)-O(2W)85.7(3)
		O(3)A-Cd(1)-O(5)82.7(3)	
		O(1)-Cd(1)-O(5)158.2(3)	
		N(5)-Cd(1)-O(5)85.8(3)	
		O(6)-Cd(1)-O(5)53.0(3)	
		N(1)-Cd(1)-O(5)131.2(3)	
		O(1W)-Cd(1)-O(5)87.5(3)	