ODE Lesson 2: Order, Linearity, and Autonomy -Pattern Recognition

ODE 1 - Prof. Adi Ditkowski

1 Systematic Recognition Approach

The Three Questions:

- 1. What's the order?
- 2. Is it linear?
- 3. What special form does it have?

2 Order Determination - Advanced

2.1 Hidden Derivatives

Watch for disguised derivatives!

- If p = y', then p' = y''
- Parametric forms: $\frac{dp}{dx} = \frac{d^2y}{dx^2}$
- Substitutions can change apparent order

Example 1 (Hidden Second-Order). Given: $p = \frac{dy}{dx}$ and the equation $x\frac{dp}{dx} + p = p^2$ This is actually: $x\frac{d^2y}{dx^2} + \frac{dy}{dx} = \left(\frac{dy}{dx}\right)^2$ Order: Second (not first!)

3 Linearity Testing - The Superposition Principle

Method 1 (Superposition Test). An ODE is linear if and only if:

If y_1 and y_2 are solutions, then $c_1y_1 + c_2y_2$ is also a solution.

3.1 Systematic Linearity Check

1. Rearrange: All y-terms left, non-y terms right

2. **Examine:** Left side must be $\sum a_i(x)y^{(i)}$

3. **Verify:** No products, powers, or functions of y

Example 2 (Tricky Linear Cases).

$$x^2y + xy' + y'' = e^x \quad \checkmark \text{ Linear (coefficients can be any function of } x)$$
 (1)

$$e^y \cdot y' = x \times Nonlinear (exponential of y)$$
 (2)

$$\frac{y'}{y} = x \times Nonlinear (division by y)$$
 (3)

3.2 Common Linearity Mistakes

_	Linear?	Why?
$\begin{bmatrix} x^2y \\ y^2 \end{bmatrix}$	Yes	x^2 is just a coefficient
y^2	No	Power of y
yy'	No	Product of y and its derivative
$\sin(x)y$	Yes	$\sin(x)$ is a coefficient
$\sin(y)$	No	Nonlinear function of y
y/x	Yes	Same as $(1/x) \cdot y$
x/y	No	Division by y

4 Autonomy - Time Independence

Definition 1 (Autonomous System). An ODE is autonomous if it can be written without explicit appearance of the independent variable:

$$\frac{dy}{dx} = f(y) \quad or \quad F(y, y', y'', \ldots) = 0$$

4.1 Physical Interpretation

• Autonomous: Laws don't change with time

• Non-autonomous: External time-dependent forcing

4.2 Key Property of Autonomous Equations

Time-Translation Invariance: If y(x) solves an autonomous equation, then y(x-c) is also a solution for any constant c.

Example 3 (Equilibrium Solutions). For autonomous y' = f(y):

- Set f(y) = 0 to find equilibria
- These are constant solutions
- Example: y' = y(1 y) has equilibria at y = 0 and y = 1

5 Special Forms - Quick Recognition Guide

5.1 First-Order Special Types

Type	Standard Form	Recognition
Separable	y' = f(x)g(y)	Variables multiply separately
Linear	y' + P(x)y = Q(x)	Linear in y and y'
Bernoulli	$y' + P(x)y = Q(x)y^n$	Almost linear, power of y
Riccati	$y' = q_0(x) + q_1(x)y + q_2(x)y^2$	Quadratic in y
Exact	M(x,y)dx + N(x,y)dy = 0	Check $\partial M/\partial y = \partial N/\partial x$
Homogeneous	y' = F(y/x)	Scaling property

5.2 Recognition Flowchart

6 Advanced Classification Examples

Example 4 (Multi-characteristic Equation).

$$y' + \frac{y}{x} = \frac{y^2}{x}$$

Analysis:

• Order: First

• Linear: No (contains y^2)

• Autonomous: No (explicit x)

• Special type: Riccati (rewrite as $y' = -y/x + y^2/x$)

• Alternative: Bernoulli with n = 2 after rearrangement

7 Exam Trap Patterns

Common Exam Traps:

1. Equations that look like one type but are another

2. Hidden nonlinearities: $e^{y'} = x + y$ (nonlinear in y'!)

3. Degree tricks: $\sqrt{1+(y')^2}=x$ has degree 2 after clearing

4. Almost-linear: $y' + y = y^{1.001}$ is Bernoulli, not linear!

8 Memory Devices

SLBR-EH: Some Lions Bring Real Excitement Home

 \bullet Separable

• Linear

• Bernoulli

• Riccati

• Exact

• Homogeneous