3D Data Processing Point Clouds Descriptor

Hyoseok Hwang

Today

- PFH (Point Feature Histogram)
- FPFH (Fast Point Feature Histogram)
- RSD (Radius-Based Surface Descriptor)
- 3DSC (3D Shape Context)
- SHOT (Signatures of Histograms of Orientations)
- NARF (Normal Aligned Radial Feature)

3D feature matching

- Feature matching
 - Classification
 - Registration
 - Pose estimation

3D feature matching

A Service of the Control of the Cont

- Differences to 2D features
 - Many methods are focused on descriptors.
 - It's hard to define feature point (lack of texture)
 - Write a descriptor for every point after downsampling

3D descriptors

- 3D features(descriptor) should follows:
 - Robust to transformations
 - Rigid transformations must not affect the feature
 - Robust to noise
 - measurement errors that cause noise should not change the feature estimation much
 - Resolution invariant
 - if sampled with different density (like after performing downsampling), the result must be identical or similar

3D Descriptors

- Local descriptors are computed for individual points
- No notion of what an object is, they just describe how the local geometry is around that point.
- Feature Point
 - downsampling and choosing all remaining points

An installand of the control of the

- Capture information of the geometry surrounding the point
- Analyzing the difference between the directions of the normals in the vicinity
 - algorithm pairs all points in the vicinity
 - a fixed coordinate frame is computed from their normal
 - the difference between the normals can be encoded with <u>3 angular variables</u>
 - 3 angular variables + euclidean distance between the points
 - All pairs of vicinity are computed → binning to histogram

vicinity: points in a shpere

- Normal vector estimation
 - Using the simplest method is based on the first order 3D plane fitting
 - P_k : A point cloud consisting of p and its k-neighbors.
 - Normal vector n is perpendicular to a plane consisting P_k

$$x = \overline{p} = \frac{1}{k} \cdot \sum_{i=1}^{k} p_{i}$$

$$C = \frac{1}{k} \sum_{i=1}^{k} \xi_{i} \cdot (p_{i} - \overline{p}) \cdot (p_{i} - \overline{p})^{T}, C \cdot \vec{v}_{j} = \lambda_{j} \cdot \vec{v}_{j}, j \in \{0, 1, 2\}$$

- The eigen vector, of which eigen value is the smallest is normal vector n
- Represented in spherical coordinate:

$$\phi = \arctan\left(\frac{n_z}{n_y}\right), \ \theta = \arctan\frac{\sqrt{(n_y^2 + n_z^2)}}{n_x}$$

Normal vector estimation

Point clouds

normal vector

- The quadruplet $< \alpha, \phi, \theta, d >$ of two points
 - There are $k^{\frac{k-1}{2}}$ quadruplet per a group (vicinity)

The query point (red) and its k-neighbors (blue) are fully interconnected in a mesh.

$$\begin{cases} u = n_s \\ v = u \times \frac{(p_t - p_s)}{\|p_t - p_s\|_2} \\ w = u \times v \end{cases}$$

$$\begin{cases} \mathbf{u} = \mathbf{n}_{s} & \alpha = \mathbf{v} \cdot \mathbf{n}_{t} \\ \mathbf{v} = \mathbf{u} \times \frac{(\mathbf{p}_{t} - \mathbf{p}_{s})}{\|\mathbf{p}_{t} - \mathbf{p}_{s}\|_{2}} & \phi = \mathbf{u} \cdot \frac{(\mathbf{p}_{t} - \mathbf{p}_{s})}{d} \\ \mathbf{w} = \mathbf{u} \times \mathbf{v} & \theta = \arctan(\mathbf{w} \cdot \mathbf{n}_{t}, \mathbf{u} \cdot \mathbf{n}_{t}) \end{cases}$$

- PFH representation for the query point p
 - all quadruplets is binned into a histogram.
 - each features's value range into b subdivisions
 - counts the number of occurrences in each subinterval

• Example of Point Feature Histograms

- PFH gives accurate results, but it has a drawback
 - It is too computationally expensive to perform at real time
 - complexity of $O(nk^2)$.
- FPFH reduce the complexity of PFH
 - complexity of O(nk).
- the FPFH does not <u>fully interconnect</u> all neighbors of p_q
- the FPFH includes additional point pairs outside the r radius sphere

- Simplified Point Feature Histogram (SPFH)
 - for each query point p_q a set of tuples $< \alpha, \phi, \theta >$ between itself and its neighbors
 - No features are calculated among other points in vicinity
 - FPFH: SPFH values are used to weight the final histogram of p_q

$$FPFH(\mathbf{p}_q) = SPFH(\mathbf{p}_q) + \frac{1}{k} \sum_{i=1}^{k} \frac{1}{\omega_k} \cdot SPFH(\mathbf{p}_k)$$

- Simplified Point Feature Histogram (SPFH)
 - for each query point p_q a set of tuples $< \alpha, \phi, \theta >$ between itself and its neighbors
 - No features are calculated among other points in vicinity
 - FPFH: SPFH values are used to weight the final histogram of p_q

- Decorrelated Histogram
- FPH using correlated histogram
 - Ex) feature number is d, subdivision number is d, then histogram dimension is b^d
- FPFH concatenate each subdivisions (such as SIFT)

- Other ideas to speed-up
- Caching and Point Ordering technique
 - Temporal locality in the cache => Close points should have indices which are close together.
 - Caching: If p and q are the each other's neighborhood, recomputing is wasting time!
 - Caching with FIFO basis! -> Reusing

Fig. 4. Complexity Analysis on Point Feature Histograms computations for the bunny00 dataset: unordered (top), and reordered (bottom).

3DSC

- 2D Shape context
 - Local descriptor of points and their neighborhood
 - Count the number of points inside each bin
 - Compact representation of distribution of points relative to each point

3DSC

- Comparing 2D Shape context
 - An example

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{\left[h_i(k) - h_j(k)\right]^2}{h_i(k) + h_j(k)}$$

3DSC

- 3D Shape Context
 - 3D Shape Context is a descriptor that extends its existing 2D counterpart to the third dimension
 - The "north pole" of that sphere → normal vector
 - Not invariant to in-plane rotation
 - the sphere is divided in 3D regions or bins
 - 2 coordinates (azimuth and elevation): equally spaced
 - radial dimension: logarithmically spaced

SHOT

- Signature of Histogram of OrienTation
 - Rotation invariance → local reference frame (Eigen Value Decomposition-based method)
 - Encodes information about the topology (surface) within a spherical support structure.
 - For every volume, a one-dimensional local histogram is computed. → rotation invariance
 - Sphere is divided in 32 bins or volumes
 - 8 divisions along the azimuth
 - 2 along the elevation
 - 2 along the radius

SHOT

- Descriptor
 - Angles of normal vector of the query and the target points

$$\cos_{\theta_i} = n_s \cdot n_i$$

• Quantized to 11bins: $32bins(grid) \times 11bins(angle) = 352 dim$

SHOT

• A matching example

NARF

- Normal Aligned Radial Feature
- 3D Range Image Features for Object Recognition
- Depth image-based method
 - 2D-image with pixel values representing depth
 - Allows border extraction
- Uses borders and change in distance (pixel) values to identify key points
- Key points are invariant to scale, susceptible to camera orientation

NARF

- NARF descriptor
 - calculate a normal aligned range value patch in the point
 - overlay a star pattern onto this patch
 - extract a unique orientation from the descriptor
 - shift the descriptor according to this value to make it invariant to the rotation

- Point clouds registration using Feature descriptor
 - Load Point Clouds
 - Downsampling
 - Feature(descriptor) extraction
 - Pose estimation (RANSAC)
 - Refinement (ICP)

- Load Point Clouds
 - Using sample point clouds provided by Open3D

```
demo_icp_pcds = o3d.data.OfficePointClouds()
source = o3d.io.read_point_cloud(demo_icp_pcds.paths[20])
target = o3d.io.read_point_cloud(demo_icp_pcds.paths[21])
```


- Downsampling
 - Voxel-grid downsampling

```
# for display
voxel_size = 0.02
source_big = source.voxel_down_sample(voxel_size=voxel_size)
target_big = target.voxel_down_sample(voxel_size=voxel_size)

# for calculation
voxel_size = 0.04
source = source.voxel_down_sample(voxel_size=voxel_size)
target = target.voxel_down_sample(voxel_size=voxel_size)
```


- Feature(descriptor) extraction
 - Fast Points Feature Histogram

open3d.pipelines.registration.compute_fpfh_feature

open3d.pipelines.registration.compute_fpfh_feature(input, search_param)

Function to compute FPFH feature for a point cloud

Parameters

- input (open3d.cpu.pybind.geometry.PointCloud) The Input point cloud.
- search_param (open3d.cpu.pybind.geometry.KDTreeSearchParam) KDTree KNN search parameter.

Returns

open3d.cpu.pybind.pipelines.registration.Feature

- Feature(descriptor) extraction
 - Fast Points Feature Histogram
 - Normal estimation
 - KD-Tree: Accelerate searching speed of neighborhood points

```
radius_normal = voxel_size * 2
radius_feature = voxel_size * 3
source.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
target.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
```

target_fpfh = o3d.pipelines.registration.compute_fpfh_feature(target, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))

Pose estimation (RANSAC)

open3d.pipelines.registration.registration_ransac_based_on_feature_matching

open3d.pipelines.registration.registration_ransac_based_on_feature_matching(source, target, source_feature, target_feature, mutual_filter, max_correspondence_distance, estimation_method=TransformationEstimationPointToPoint without scaling., ransac_n=3, checkers=[], criteria=RANSACConvergenceCriteria class with max_iteration=100000, and confidence=9.990000e-01)

Function for global RANSAC registration based on feature matching

Parameters

- source (open3d.geometry.PointCloud) The source point cloud.
- target (open3d.geometry.PointCloud) The target point cloud.
- source_feature (open3d.pipelines.registration.Feature) Source point cloud feature.
- target_feature (open3d.pipelines.registration.Feature) Target point cloud feature.
- mutual_filter (bool) Enables mutual filter such that the correspondence of the source point's correspondence is itself.

- Pose estimation (RANSAC)
 - max_correspondence_distance (float) Maximum correspondence points-pair distance.
 - estimation_method (open3d.pipelines.registration.TransformationEstimation, optional,
 default=TransformationEstimationPointToPoint without scaling.) Estimation method. One
 Of (TransformationEstimationPointToPoint , TransformationEstimationPointToPlane ,
 TransformationEstimationForGeneralizedICP , TransformationEstimationForColoredICP)
 - ransac_n (int, optional, default=3) Fit ransac with ransac_n correspondences
 - checkers (List[open3d.pipelines.registration.CorrespondenceChecker], optional, default=[]) –
 Vector of Checker class to check if two point clouds can be aligned. One of
 (CorrespondenceCheckerBasedOnEdgeLength), CorrespondenceCheckerBasedOnDistance),
 CorrespondenceCheckerBasedOnNormal)
 - criteria (open3d.pipelines.registration.RANSACConvergenceCriteria, optional, default=RANSACConvergenceCriteria class with max_iteration=100000, and confidence=9.990000e-01) – Convergence criteria

Pose estimation (RANSAC)

```
distance threshold = voxel size
result =
o3d.pipelines.registration.registration ransac based on feature matching (
        source, target, source fpfh, target fpfh, True,
        distance threshold,
        o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
        3, [
            o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(
                0.3),
            o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(
                distance threshold)
        ], o3d.pipelines.registration.RANSACConvergenceCriteria(10000000, 0.99))
```


- Pose estimation (RANSAC)
 - Result

```
[[ 0.81867216 -0.2547088 0.51468371 1.19344985]
[ 0.08310333 0.93936707 0.33269107 0.22875684]
[-0.56821627 -0.22959299 0.79020082 2.05779707]
[ 0. 0. 0. 1. ]]
```

RegistrationResult with fitness=6.654856e-01, inlier_rmse=1.984455e-02, and correspondence_set size of 4132 Access transformation to get result.

Refinement

RegistrationResult with fitness=6.688678e-01, inlier_rmse=1.757332e-02, and correspondence_set size of 4153 Access transformation to get result.

Thank you