	Page 1	
Name:		IIT Kanpur CS771 Intro to ML
Roll No	o.: Dept.:	Mid-semester Examination Date: September 20, 2018
Instru	ctions:	Total: 80 marks
1. 2. 3. 4.	This question paper contains a total of 8 pages (8 sides of paper Please write your name, roll number, department on every side Write final answers neatly with a pen . Pencil marks can get s Important: Please do not give derivations/elaborate steps unlet to use standard results (e.g., solution of least squares regression). If needed, you may use the personal rough space for more detail. The last page of the question paper lists some formulae if you needed.	e of every sheet of this booklet. Immudged and you may lose credit. Iss specifically asked for it. Feel free I without deriving them from scratch. I without derivations.
Section	1 (True or False: 10 X $1=10$ marks). For each of the following s	simply write \mathbf{T} or \mathbf{F} in the box.
1.	The prediction cost (time taken to predict the label for a t classification is higher as compared to that of prototype bas	2 /
2.	A least squares regression problem with ℓ_1 norm regularizer a globally optimal solution.	on the weight vector \boldsymbol{w} will have
3.	The softmax regression based discriminative model for clared require learning $K-1$ probability distributions.	assification with K classes would
4.	Changing the Perceptron update rule from $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_n$ effectively learn the same hyperplane separator.	\boldsymbol{x}_n to $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \gamma y_n \boldsymbol{x}_n$ would
5.	The size of kernel induced feature mapping ϕ of a polynomissame for any value of d .	ial kernel with degree $d \geq 2$ is the
6.	If the MAP objective has a unique optima then the predictive MAP estimate and computed by averaging over the full post	-
7.	For linear/logistic regression, it is not possible to regularize d differently if using a zero mean Gaussian prior over the weig	
8.	Increasing the parameter C in soft-margin SVM objective the ℓ_2 squared norm of \boldsymbol{w} .	$\frac{ \boldsymbol{w} ^2}{2} + C \sum_{n=1}^{N} \xi_n$ tends to increase
9.	Running a linear model on landmark based features or kern be faster than a linear model on the original features.	nel random features would always
10.	The SGD algorithm for a binary linear classification mode only when the current weight vector mispredicts the chosen	-
Section	2 (8 problems: $8 \times 3 = 24$ marks). Write your answers precisely a	and concisely in the provided box.
Rı	onsider a data set with 5 points $\{x_1, x_2, x_3, x_4, x_5\}$ in two dimensions in two iterations of K -means with initial points at $\mu_1 = (-1)$ signments z_1, z_2, z_3, z_4, z_5 and the centers μ_1 and μ_2 at each iterated	$,0)$ and $\mu_2=(3,1).$ What are the

Page 2		

Nam Roll		:		De	pt.:		CS771 Intro Mid-semester Exam Date: September 2	inatior
2.			ng methods in to VM (fastest first		•		r SVM, kernelized Perc wer.	eptron
3.	i.e.,	a binary vect	or of length L .	Briefly describ	e an approach	to learn a mu	ach output $\mathbf{y}_n \in \{0, 1\}$ alti-label classification \mathcal{B} (e.g., a binary SVM)	model
4.	Let's poss: be n	s assume that ibly test a fea eeded to cons	we will not test ture at multiple	any feature the nodes at the selection tree (i.e.	at has been tes ame level). Ho e., assuming n	sted at one of tww many informs of pruning)?	has D binary-valued for the previous levels (but mation gain calculations). Just give the basic exp	we car s would
5.	$oldsymbol{x} = oldsymbol{ ext{bour}}$	(x_1, x_2) . Suppodary (equation	pose the decision	on boundary is). Write down	given by $\frac{(x_1-1)}{2}$ a mapping $\phi(x_1)$	$(x^2 + \frac{(x_2 - 2)^2}{3}) = 1$ (x) that will m	ere each input is of the of the original original of the original orig	nlinear

Page 3		

Nam	ne:							IIT Kanpu CS771 Intro to M
Roll	No.:				Dept.:			Mid-semester Examinatio Date: September 20, 201
6.	vs-A	$M = M \cdot M$	and All-Pairs les per class	(note: all-pa $(N = KM)$	irs is also ca examples to	alled "All vs etal). Typica	All" or A	assification problems using One vA). Suppose we have K classes SVM takes roughly N^2 time to use OVA instead of AVA?
7.			c ∈.	$\min_{\mathbb{R}^D,R\in\mathbb{R}}R^2$	$ c ^2 \le R^2$	$\min_{oldsymbol{c} \in \mathbb{R}^D, au \in \mathbb{R}} rac{1}{2}$ subject to $oldsymbol{c}$	$rac{ oldsymbol{c} ^2}{2} - au$	ne-class SVM problem (right). $\frac{ x_n ^2}{2}$ s that value τ ?
8.	$ ext{vecto} \ (ilde{\mathbf{X}}, ilde{oldsymbol{y}})$	or $oldsymbol{w} \in \mathbb{R}^D$ $(ilde{oldsymbol{y}}) = \{(ilde{oldsymbol{x}}_m)$	^o . Assume no	o regularization regularization of the contract of the contrac	ion on $m{w}$. Hasing these ϵ	Iowever, sup additional fa	pose we a ke examp	$\{x_n, y_n\}_{n=1}^N$ and regression weighted another M "fake" example les is equivalent to using an $\{x_n, y_n\}_{n=1}^N$ and $\{x_n, y_n\}_{n=1}^N$ and regression weighted another $\{x_n, y_n\}_{n=1}^N$ and $\{x_n, y_n\}_{n=1$

Page 4 **IIT Kanpur** Name: CS771 Intro to ML Mid-semester Examination Roll No.: Dept.: Date: September 20, 2018 **Section 3** (6 problems: $6 \times 6 = 36$ marks). Write your answers precisely and concisely in the provided box. 1. Assuming hard-margin SVM, show that, given the solution for the dual variables α_n 's, the bias term $b \in \mathbb{R}$ can be computed as $b = y_s - t_s$ where s can denote the index of any of the support vectors, and t_s is a term that requires computing a summation defined over all the support vectors. (Hint: Use KKT conditions) 2. Show that we can rewrite regression with absolute loss function $|y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n|$ as a reweighted least squares objective where the squared loss term for each example (x_n, y_n) is multiplied by an importance weight $s_n > 0$. Write down the expression for s_n , and briefly explain why this expression for s_n makes intuitive sense. Given N examples $\{(\boldsymbol{x}_n,y_n\}_{n=1}^N$, briefly outline the steps of an optimization algorithm that estimates the unknowns (\boldsymbol{w} and the importance weights $\{s_n\}_{n=1}^N$) for this reweighted least squares problem.

Page 5

IIT Kanpı CS771 Intro to M					ıe:	Nam
Mid-semester Examinatio Date: September 20, 201		Dept.:			No.: [Roll
K count-valued random variable y as $y = \mathbb{I}[m > 0]$, where $\mathbb{I}[.]$	m_k , and genera	ne $m = \sum_{k=1}^{K}$	way to generate $k = 1,, K$. Definite the expression	$Poisson(\lambda_k), k$	$m_k \sim$	
yle optimization on the K-mear i-batch size = 1, i.e., you get on he SGD update equations for the result of these SGD updates?	$ \mu_k ^2$. Assume in η . What will be	$\sum_{k=1}^{K} z_{nk} \boldsymbol{x}_n - \sum_{k=1}^{K} z_{nk} \boldsymbol{x}_k $	$\mu_{z_n} ^2 = \sum_{n=1}^N $	ive $\sum_{n=1}^{N} oldsymbol{x}_n $ mly chosen exa	object rando	

Page 6

Roll No.: Dept.: Dept.: Mid-semester Examin Date: September 20, 5. Consider N scalar-valued observations x_1, \ldots, x_N from a Gaussian $\mathcal{N}(\mu, \lambda^{-1})$. Suppose the me is known and precision λ is unknown. Assume a gamma prior on λ , i.e., $p(\lambda) = \operatorname{Gamma}(\lambda a, \frac{1}{\Gamma(a)}b^a\lambda^{a-1}\exp(-b\lambda)$. Compute the posterior distribution of λ , i.e., $p(\lambda x_1, \ldots, x_N)$. Is the posterior distribution? If yes, why, and what's the name of this distribution? If no, why
is known and precision λ is unknown. Assume a gamma prior on λ , i.e., $p(\lambda) = \operatorname{Gamma}(\lambda a, \frac{1}{\Gamma(a)}b^a\lambda^{a-1}\exp(-b\lambda)$. Compute the posterior distribution of λ , i.e., $p(\lambda x_1, \ldots, x_N)$. Is the pos
(Hint/suggestion: Try computing the posterior first, before answering yes or no). 6. Consider linear regression with squared loss $\mathcal{L}(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{T} \boldsymbol{x}_n)^2$ (no regularizer), and Newton's method to find the optimal \boldsymbol{w} . Write down the expression for the weight update at iteration. What is the minimum number of iterations that Newton's method will take to converg that what you would expect Newton's method to do for this problem? If yes, why? If no, why not?

		Page 7	
Nam	e :		IIT Kanpur CS771 Intro to ML Mid-semester Examination
Roll	No	Dept.:	Date: September 20, 2018
Secti	on 4	(1 problem: 10 marks). Write your answers precisely a	nd concisely in the provided box.
	weig in s	mistake-driven Perceptron update rule, after Percentrat vector as $\boldsymbol{w}^{(t)} = \boldsymbol{w}^{(t-1)} + y_n \boldsymbol{x}_n$. This update will meach a way that it becomes less incorrect on the example, if $y_n = 1$ then $\boldsymbol{w}^{(t)}^{\top} \boldsymbol{x}_n$ will become less negative to	diffy the weight vector (hyperplane separator) ple (\boldsymbol{x}_n, y_n) , but not necessarily <i>correct</i> . For
		wise, if $y_n = -1$ then $\boldsymbol{w}^{(t)} \boldsymbol{x}_n$ will become less positive	
	$oldsymbol{w}^{(t)}$ mal	try to design a variant of Perceptron that guarantees will definitely be correct on the example (\boldsymbol{x}_n, y_n) , i.e., the new weight vector $\boldsymbol{w}^{(t)}$ drift too far from the curred ℓ_2 distance $ \boldsymbol{w}^{(t)} - \boldsymbol{w}^{(t-1)} ^2$ as small as possible.	that, after the update, the new weight vector $y_n \boldsymbol{w}^{(t)^{\top}} \boldsymbol{x}_n \geq 0$. At the same time, let's not
		rulate the above as an optimization problem and solve	
	Per	eptron. Also verify that your obtained expression for u	$\frac{y^{(i)} \text{ does satisfy the constraint } y_n \boldsymbol{w^{(i)}} \boldsymbol{x}_n \geq 0.$

Name:	IIT Kanpur CS771 Intro to ML		
Roll No.:	Dept.:	Mid-semester Examinati Date: September 20, 20	

Some formulae you might need

- Gaussian PDF: $\mathcal{N}(x|\mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp(-\frac{\lambda}{2}(x-\mu)^2)$ Poisson PMF: Poisson $(x|\lambda) = \frac{\lambda^x \exp(-\lambda)}{x!}$
- Hessian of a scalar-valued function $\mathcal{L}(\boldsymbol{w})$ w.r.t. $\boldsymbol{w} \in \mathbb{R}^D$ is $\mathbf{H} = \frac{\partial^2 \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w} \partial \boldsymbol{w}^\top} = \frac{\partial}{\partial \boldsymbol{w}} \begin{bmatrix} \frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}} \end{bmatrix}^\top = \frac{\partial \boldsymbol{g}^\top}{\partial \boldsymbol{w}}$
- Derivatives linear form: $\frac{\partial x^{\top} a}{\partial x} = \frac{\partial a^{\top} x}{\partial x} = a$, quadratic form: $\frac{\partial}{\partial x} (x s)^{\top} \mathbf{W} (x s) = 2 \mathbf{W} (x s)$

