Big data project

Introduction

Data science

Copyright © 2014 by Steven Geringer Raleigh, NC. Permission is granted to use, distribute, or modify this image, provided that this copyright notice remains intact.

Your superpower?

Answering business or scientific questions with data.

Data science, in practice

- In practice, this process involves several steps:
 - Understanding and formalizing the problem
 - Defining a model
 - Collecting, cleaning and storing data
 - Choosing a technology
 - Analyzing the results
 - Storytelling and visualization
 - Iterate
- In this project, we will ask you an open and incompletely defined question and you will go through all these steps to form an answer.

Understanding and formalizing

- What is it that I really want to answer?
- Why do I want an answer to this question?
- Do I understand the problem?

Defining a model

- How do I answer?
- What are my assumptions?
- What statistical model do I consider?
- What algorithm shall I use?

Collecting, cleaning and storing data

- What data do I need for fitting my model?
- How large this data should be?
- Where do I collect this data?
- Is data cleaning necessary?
- How do I store the data?

Choosing a technology

- What tools do I need?
- What technology shall I use?
- Is a laptop enough, or shall I use a large-scale distributed system?
- How do I make my analysis reproducible?

Analyzing the results

- How do I analyze the results of the model?
- How do I assess the significance of the results?
- To what do I compare?
- What are the conclusions?
- Is this convincing?
- Does this corroborate with previous studies or intuition?

Storytelling and visualization

- How do I present my results?
- How do I make interpretable visualizations?
- How do I present my results to a non-technical audience?
- How do I make my results and conclusions as simple as possible, but not simpler?

Iterate

- Is this conclusive?
- Am I going in the right direction?
- Shall I go back and define a new model?
- ... or collect new or more data?
- ... or use other tools?

Your project this year

Does sunshine make us happy?

Organization

Activities

- Teams of 3 students. -
- Monthly project reviews of the progress.
 - Oral presentation
 - 10mn
 - Q&A
 - Everyone must present at least once
 - Short report
 - 4 pages max
 - Feedback on technical progress and project management.
- Seminars by local and external speakers.
 - Topics: big data, data science, visualization, communication, domain-specific presentations, etc.
 - Presence at the seminars and intermediate reviews is mandatory.
- Writing of a final report.
- Defense of the project.

Schedule

- 30/10: Presentation of the project
- 20/11: Review 1
 - Explain your objectives and roadmap
 - Oral presentation
 - Short report
- 11/12: Review 2
- 19/02: Review 3
- 19/03: Review 4
- 16/04: Review 5
- 14/05: Final report and defenses

Reports to be sent on the Friday before the review dates.

Seminars will be announced later.

Evaluation

The evaluation will be based on:

- the intermediate review meetings (progress achieved, quality of project management) (30%)
- the quality of the final report (15%)
- the quality of the final oral defense (15%)
- the overall solution (40%)
 - the originality, methodology, clarity, reproducibility and technological choices of the solution will be mainly assessed.

Brainstorming