

Algorithmen und Datenstrukturen Kapitel 4: Sortieren

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Über Aufräumen und Sortieren

"Computer manufacturers in the 1960s estimated that more **than 25 percent of the running time of computers were spent sorting**. [...] In fact, there were many installations in which tasks of sorting were responsible for more than half of the computing time." (Donald E. Knuth)

Inhalt

- Einführung
- Mergesort
- Quicksort
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

Sortieren vs. Suchen

Suchproblem

Finde ein bestimmtes Element einer Menge

(Kapitel 5, 6, 7)

Sortierproblem

Sortiere eine Menge der "Größe" nach

(dieses Kapitel 4)

In einer sortierten Menge ist das Suchen leichter!

Sortierproblem

Gegeben:

- Folge $< a_1, a_2, ..., a_n > \text{von } n \text{ Elementen.}$
- \circ Jedes Element a_i hat Schlüssel (Key) k_i

Gesucht:

- Permutation $< a'_1, a'_2, ..., a'_n >$ der Eingabe
- Es muss dann gelten: $k'_1 \le k'_1 \le \cdots k'_n$

Eigenschaften von Schlüsseln

- Sind vergleichbar: Ordnungsrelation ≤
- Meist ganzzahlig
- Typ spielt prinzipiell keine Rolle, solange zwei Schlüssel durch ≤ eindeutig vergleichbar sind.
- Frage: Wie kann man in Java zwei Objekte eines Typs vergleichen?
 - → compareTo, compare, equals

Bewertung von Sortierverfahren

Mögliche Anforderungen

- Wenig Vergleiche
- Wenig Zuweisungen, Anweisungen
- Wenig Speicherplatz
- Internes vs. externes Sortieren
 - Intern: Die zu sortierenden Daten finden im Hauptspeicher Platz (→ beliebiger Zugriff)
 - Extern: Daten auf externem Speicher (Bänder, Festplatten) (→ nur sequentieller Zugriff)
- In-place vs. out-of-place
 - In-place: Sortieralgorithmus arbeitet direkt auf Eingabe, kein zusätzlicher Speicherplatz.
- Vergleichsbasierte vs. spezielle Sortierverfahren
 - Vergleichsbasiert: Es werden nur Schlüsselvergleiche (≤) zum Sortieren verwendet.
 - Speziell: Ausnutzen spezieller Eigenschaften, z.B. ganze Zahlen als Schlüssel (Radixsort, Countingsort)
- Spezielle Sortierverfahren für teilweise vorsortierte Daten

Laufzeitanalyse: Meist genügt es, die Anzahl der Vergleiche zu zählen!

Wiederholung: Insertionsort

```
INSERTION-SORT(A)

1 for j = 1 to A. length-1

2 key = A[j]

3 // insert A[j] into already sorted sequence

4 i = j - 1

5 while i \ge 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

Quellcode: InsertionSort.java (siehe Kapitel 01: Grundlagen)

Animation

https://algorithm-visualizer.org/brute-force/insertion-sort

Invariante

 Nach dem j.-ten Durchlauf ist das linke Teilarray mit j + 1 Elementen bereits sortiert.

Anzahl der Kopiervorgänge

 \circ $O(n^2)$: Gleiche Größenordnung wie Anzahl Schlüsselvergleiche.

Wiederholung: Bubblesort

```
BUBBLE-SORT(A)

1 for i = 1 to A.length - 1

2 for j = A.length - 1 downto i

3 if A[j] < A[j-1]

4 exchange A[j] with A[j-1]

Quellcode: siehe Übung 01
```

Animation

- https://algorithm-visualizer.org/brute-force/bubble-sort
- Achtung: Dort ist nach dem 1. Durchlaufen der äußeren for-Schleife das Maximum an der korrekten Stelle.

Invariante

Nach dem i.-ten Schritt ist das i.-kleinste Element an der richtigen Stelle.

Anzahl der Vergleiche

- o In dieser "dummen" Fassung immer: $\Theta(n^2)$.
- Wann könnte man ggfs. vorzeitig abbrechen?

Anzahl der Kopiervorgänge

Abhängig von Art der Eingabe.

Publikums-Joker: Bubble vs. Insertionsort

Gegeben sei das folgende Array A = <1,5,1,1>. Die Fragen beziehen sich auf die Implementierungsvarianten von Folie 6 und Folie 7. Welche Aussage ist **falsch?**

- B. Insertionsort führt genauso viele Elementvertauschungen wie Bubblesort durch.
- Insertionsort und Bubblesort benötigen beide O(1) zusätzlichen Speicherplatz.

Inhalt

- Einführung
- Mergesort
- Quicksort
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

Sortieren mit Mergesort

Animation: https://algorithm-visualizer.org/divide-and-conquer/merge-sort

Mergesort - Verfahren

Grundidee

- Aufteilen der Menge in 2 gleich große Teilmengen.
- Sortiere beiden Teile, ggfs. rekursiv.
- Dann mische beide Teilmengen zusammen ("Merge") im Reißverschlussverfahren.
- Divide-and-Conquer: Um Array A[L..r] zu sortieren
 - Divide: Teile auf in A[L..m] und A[m+1..r] mit m als Mitte.
 - Conquer: Sortiere rekursiv A[L..m] und A[m+1..r]
 - Combine: "Merge" die beiden nun sortierten Subarrays A[L..m] und A[m+1..r] um ein sortiertes Array A[L..r] zu erhalten.

Array					
Index	1		m		r

Mergesort

Wie implementiert man MERGE effizient?

- Übung: A=[5 2 4 7 1 3 2 6]
 - Überzeugen, dass die vorgeschlagene Aufteilung funktioniert.
- Kernfunktion
 - Merge: Zusammenführen im "Reißverschlussverfahren"

Merge: Reißverschlussverfahren

Idee

- "Linkes" und "rechtes" Array sind bereits sortiert.
- Vergleiche jeweils das linke Element des "linken" und des "rechten" Arrays und sortiere den kleineren der beiden in das Ergebnis ein.

Programmiertrick: Sentinel

- Deutsch: "Wächterwert"
- Füge ans Ende des "linken" und "rechten" Arrays einen sonst nicht vorkommenden Wert maximalen hinzu (hier: ∞)
- Verkürzt Code, <u>aber nur falls Integer zu</u> <u>sortieren sind.</u>


```
MERGE(A, l, m, r)
                          Verschmelze
    n1 = m - L + 1
                          A[I..m]
    n2 = r - m
                          und A[I+1..r]
    let L[0..n1] and
          R[0..n2] be new arrays
    for i = 0 to n1-1
       L[i] = A[l+i]
    for j = 0 to n2-1
        R[j] = A[m+1+j]
8
    L[n1] = \infty
                         // Sentinel
    R[n2] = \infty
    i = 0
10
11
    j = 0
    for k = l to r // Reißverschluss
12
13
        if L[i] \leq R[j]
           A[k] = L[i]
14
15
           i = i + 1
16
       else
           A[k] = R[j]
17
18
           j = j + 1
```

Quellcode: MergeSortRecursive.java

Publikums-Joker: Merge

Welche Aussage ist *falsch*?

- A. Die Funktion MERGE erfordert O(1) zusätzlichen Speicherplatz.
- B. Die Funktion MERGE funktioniert nur, wenn die beiden Bereiche bereits sortiert sind.
- C. Durch den Einsatz des Sentinels/Wächterwerts

 ∞ bzw. Integer.MAX_VALUE kann der Code von MERGE kurz gehalten werden.
- D. Falls alle Werte des rechten Bereichs größer sind als alle Werte des linken Bereichs, nimmt MERGE keine Vertauschungen vor.

Diskussion

Laufzeit

- MERGE: $\Theta(n)$
 - "Es wird jedes Element der Eingabe ca. zweimal angeschaut."
- MERGE-SORT Rekursion, gesamt:
 - $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + \Theta(n)$
 - Geschlossene Form $T(n) = n \cdot \log n + n = \Theta(n \cdot \log n)$ (siehe Maximum Subarray)

Speicherverbrauch

- MERGE benötigt $\Theta(n)$ zusätzlichen Speicherplatz.
 - Arrays L und R
- Kein In-Place Algorithmus!
 - In-Place Algorithmus jedoch theoretisch möglich, wenn auch sehr kompliziert:
 - Ausblick: https://xinok.wordpress.com/2014/08/17/in-place-merge-sort-demystified-2/

"Divide-Phase" einfach, Combine-Phase "schwierig"!

 Man kann beweisen, dass es asymptotisch keine schnelleren vergleichsbasierten Sortieralgorithmen gibt.

Mergesort: Iteration vs. Rekursion

Mergesort lässt sich *iterativ* oder *rekursiv* implementieren.

Animation

https://algorithm-visualizer.org/divide-and-conquer/merge-sort

Rekursiv: Top-Down Mergesort, Divide & Conquer

Siehe bisherige Version, zunächst wird die linke Hälfte sortiert.

Iterativ: Bottom-up

Idee: Verschmelze erst 1-elementige, dann 2-elementige, dann 3-elementige Arrays.

```
MERGESORT-ITERATIVE(A)
1    n = a.length
2    let temp[0..(n-1)] be a new array // create temp array for merging
4    for (len = 1; len < n; len *= 2) // length of subarrays to merge
5    for (left = 0; left < n - len; left += 2 * len)
6    // iterate over left border of subarrays; always consider 2 subarrays
7    middle = left + len - 1
8    right = min{left+2*len-1, n-1}
9    merge(A, left, middle, right) Quellcode: MergeSortIterative.java</pre>
```

Visualisierung des Vorgehens

Top-Down / rekursiv

Bottom-Up / iterativ

Quelle: Sedgewick et al.

Publikums-Joker: Mergesort

Welche der folgenden Aussagen ist falsch?

- A. Mergesort ist für sehr große Eingaben schneller als Insertionsort.
- B. Mergesort ist kein In-Place Algorithmus.
- c. Wendet man Mergesort auf ein Array an, das nur 2 verschiedene Werte enthält, dann ist die Worst-Case Laufzeit $\Theta(n \log n)$.
- Die iterative Variante ist bezüglich der asymptotischen Worst-Case Laufzeit schneller als die rekursive Variante.

Inhalt

- Einführung
- Mergesort
- Quicksort [5]
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

19

Sortieren mit Quicksort

Teilen durch Vergleichen

Sortieren beim Teilen

Zusammenfügen durch Vereinigen

Man wählt in jedem Schritt ein Element (Pivot) und partitioniert das Array bzgl. dieses Elements.

Divide & Conquer: Sortiere A[L..r]

- □ **Pivot p**: Bestimme beliebiges Element A[p] mit $l \le p \le r$
 - Strategie zunächst: Wähle Element ganz rechts, d.h. A[r]
- \square **Divide:** Partitioniere A[l...r] in A[l...p-1] und A[p+1...r], so dass
 - jedes Element im 1. Subarray ≤ A[p].
 - jedes Element im 2. Subarray ≥ A[p].
 - Pivotelement A[p] bereits an korrekter, finaler Position steht
- Conquer: Sortiere rekursiv die beiden Teilarrays.
- Combine: Nichts zu tun!

Partitionierung nach Hoare

Herausforderungen:

- In-Place: Nur O(1) zusätzlicher Speicher.
- Pivot am Schluss an "richtiger" Stelle

Partitionierung

- Wähle Pivot x am rechten Rand (Entscheidung willkürlich!)
- Finde Tauschpartner
 - Zeiger i wandert von links nach rechts bis Element A[i] größer als Pivot.
 - Zeiger j wandert von rechts nach links bis Element A[j] kleiner als Pivot.
 - Dann A[i] und A[j] vertauschen.
- Terminierung: Zeiger i und j kreuzen sich.
- Eventuell noch Pivot an richtige Stelle setzen.

```
Partitioniere Array
      A[I..r], so dass A[I..p-1] \le A[p] \le A[p+1..r]
PARTITION(A, l, r)
1
    pivot = A[r]
       = 1
3
       = r-1
    do
5
        while A[j] \ge pivot and j > l
           j = j-1
        while A[i]≤pivot and i<r
           i = i+1
        if (i < j)
10
           exchange(A[i], A[j])
    while i<j
11
12
    if A[i]> pivot,
13
        exchange(A[i], A[r])
14
    return i
                      Quellcode: QuickSort.java
```

Gibt Indexposition des Pivots zurück

Publikums-Joker: Partitionierung nach Hoare

Welche der folgenden Aussagen ist *falsch*?

- A. Steht rechts das größte Element des Arrays, so werden keinerlei Vertauschungen vorgenommen.
- B. Falls alle Element des Arrays gleich sind, so nimmt PARTITION keinerlei Vertauschungen vor.
- c. Die Laufzeit von PARTITION beträgt $\Theta(n)$.
- D. Es sei A=(2,1). Es wird PARTITION(A, 0, 1) aufgerufen. Dann wird nur eine Vertauschung vorgenommen und zwar in Zeile 10.


```
PARTITION(A, L, r)

1  pivot = A[r]

2  i = l

3  j = r-1

4  do

5  while A[j]≥pivot and j>l

6  j = j-1

7  while A[i]≤pivot and i<r

8  i = i+1

9  if (i < j)

10  exchange(A[i], A[j])

11 while i<j

12  if A[i]> pivot,

13  exchange(A[i], A[r])

14 return i
```

Quicksort: Laufzeit

- \square PARTITION: Lineare Laufzeit $\Theta(n)$
 - Jedes Element wird "einmal betrachtet".

Worst Case

- Das Pivot-Element partitioniert das Ausgangsarray in zwei Arrays mit sehr ungleicher Größe.
 - Beispiel: Man wählt zufällig das größte Element als Pivotelement.
 - Wie viele Elemente fallen in den linken Teil? Wie viele in den rechten?
- Rekursion: $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$

Best Case

- Pivot teilt Ausgangsarray immer in genau 2 gleich große Hälften.
- Rekursion: $T(n) = 2 \cdot T(n/2) + \Theta(n) = \Theta(n \log n)$

Diskussion

Laufzeit

- Worst Case: $\Theta(n^2)$
- Average Case: $\Theta(n \log n)$
- o Die "Konstanten" in $\Theta(n \log n)$ sind im Vergleich zu Mergesort und Heapsort klein.

Speicherverbrauch

- In-Place!
- Gut geeignet für virtuellen Speicher, räumliche Lokalität
- Variation: Randomisierter Quicksort-Algorithmus
 - Wähle Pivot zufällig und nicht immer das rechte Element
 - Dann wird der Worst Case unwahrscheinlicher.

Divide-Phase schwierig, Combine-Phase leicht!

Umgekehrt wie bei Mergesort.

Publikumsjoker

Eingabegröße

Algorithmen:

- Insertionsort
- Quicksort
- Mergesort

Experimentell bestimmte Laufzeiten in Millisekunden der drei Algorithmen zum Sortieren von Folgen der Länge 1 bis 150.000

Ordnen Sie die Farben den Algorithmen zu!

- A. Rot=Insertion, Blau=Quick, Grün=Merge
- B. Rot=Insertion, Blau=Merge, Grün=Quick
- c. Rot=Merge, Blau=Insertion, Grün=Quick
- D. Rot=Merge, Blau=Quick, Grün=Insertion
- E. Rot=Quick, Blau=Merge, Grün=Insertion
- F. Rot=Quick, Blau=Insertion, Grün=Merge

Inhalt

- Einführung
- Mergesort
- Quicksort
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

Heapsort

- ullet Worst Case Laufzeit: $O(n \log n)$
 - Vergleich: Quicksort hat im Worst Case $O(n^2)$
 - Theorie: Es kann kein schnelleres, allgemeines Sortierverfahren geben
 - Aber: Average Case bei Quicksort besser!

- Einsatz von Heapsort statt Quicksort lohnt sich nur wenn
 - Vergleiche auf zu sortierenden Daten sehr aufwendig sind und gleichzeitig
 - die Datenanordnung für Quicksort ungünstig ist.
- Heapsort ist In-Place!
- Benötigt eine ADT "Heap" (dt. "Halde")
 - Achtung: Mit "Heap" ist hier nicht wie bei Prg2 der Speicherbereich gemeint, der dynamische Daten aufnimmt und durch die Garbage Collection verwaltet wird.

Datenstruktur Heap ("Halde") und Heapsort

- Datenstruktur zur effizienten Bestimmung des maximalen bzw. minimalen Elements einer Menge!
 - Heapsort verwendet diese Datenstruktur.

- Vorgehen bei Heapsort / Überblick
 - Wiederholtes Entfernen des Maximums!

HEAPSORT

Verwandle unsortierte Folge/Array F in einen Heap while (F nicht leer)

- entnimm maximales Element aus Heap
- setze maximales Element an korrekte Position
- stelle Heapeigenschaft auf Rest wieder her

Maximum Heap

- □ **Definition** *Max-Heap*: Lineare Liste $(k_0, k_1, ..., k_{n-1})$, so dass für alle $i = 0, 1, ..., \frac{n-1}{2}$ gilt: $k_i \ge k_{2i+1}$ und $k_i \ge k_{2i+2}$ sofern 2i < n bzw. 2i + 1 < n
 - Min-Heap Definition äquivalent
 - Fast immer wird ein Array zur Umsetzung der Linearen Liste bzw. des Heaps verwendet.

□ Übung: Erfüllen diese Folgen die Heap-Eigenschaft?

C

i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4	i = 5	i = 6	i = 7	i = 8	i = 9
16	14	10	4	7	9	3	2	8	1

i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4	i = 5	<i>i</i> = 6
47	17	43	15	8	4	2

Visualisierung eines Heaps als Baum

Ein Heap

- Wird meist in Form eines Arrays abgespeichert,
- Kann jedoch besser als Baum graphisch visualisiert werden.
- Nur auf den ersten Blick ein binärer Suchbaum!
 - Es gibt nur eine schwache Ordnung zwischen den Elementen.

Heap-Bedingung

- Max-Heap: Schlüssel jedes Knotens ≥ Schlüssel seiner beiden Kinder.
- Min-Heap: Schlüssel jedes Knotens ≤ Schlüssel seiner beiden Kinder.
- Darauf folgt: Die Wurzel speichert den größten bzw. kleinsten Wert.

Achtung: Dieses Array ist 1-indiziert!

Publikums-Joker: Heap

Ein Array enthalte genau 4 verschiedene Elemente. Wie viele Möglichkeiten für die Belegung dieses Arrays gibt es?

C. 3

). 4

Heap: Operationen und Navigation

Navigation

- Man kann zwischen Eltern und Kindknoten im Array durch Indexrechnung navigieren.
- PARENT(i): Index des Elternknotens von i
 - return (i 1) : 2
- LEFT(i): Index des linken Kindknotens von i
 - return 2 * i + 1;
- RIGHT(i): Index des rechten Kindknotens von i
 - Wie berechnet man diesen Index?

BUILD-MAX-HEAP(A): Operation

 Baut aus beliebigem (0-inidiziertem) Array A der Größe n ein Array, dass der MaxHeap-Eigenschaft genügt.

\square MAX-HEAPIFY (A, i, n): Operation

- Berücksichtigt nur den Heap A[0..(n-1)]. Alle Elemente weiter rechts werden ignoriert.
- Stellt Heap-Bedingung für den Unterbaum ab Index i wieder her, falls diese verletzt ist.

MAX-HEAPIFY: Stelle Heap-Bedingung her

HEAPSORT

```
Verwandle unsortiertes Array F in einen Heap
while (F nicht leer)
entnehme maximales Element aus Heap
setze maximales Element an korrekte Position
stelle Heapeigenschaft auf Rest wieder her
```

Idee

- Maximum (= Element ganz links im Array, kleinster Index)
- Tausche Maximum mit Element ganz rechts. Das Maximum steht dann an korrekter Stelle.
- Aber nun ist die Heapeigenschaft verletzt, da nicht zwingend das größte Element an der Heapwurzel steht.
- Rufe MAX-HEAPIFY auf der "neuen" Wurzel auf, um die Heapeigenschaft dort wiederherzustellen

Wiederherstellen der Heap-Eigenschaft

Heap-Bedingung sei an Knoten i verletzt

- Schlüssel des Elternknotens ist kleiner als Schlüssel eines seiner beiden Kinder.
- Vertausche Elternknoten mit größerem der beiden Kinder
 - "Versickern"
- Nun kann Heap-Bedingung weiter unten verletzt sein
 - Rekursion!

Stelle Heap-Eigenschaft im Teilbaum mit A[i] als Wurzel wieder her. Aber nur bis zum Index n-1!

```
MAX-HEAPIFY(A, i, n)
    l = LEFT(i)
    r = RIGHT(i)
    if l < n and A[l] > A[i]
3
       largest = l
    else
       largest = i
6
    if r < n and A[r] > A[largest]
8
       largest = r
10
11
    if largest # i
12
       exchange(A[i],A[largest])
13
       MAX-HEAPIFY(A, largest, n)
                          Quellcode: HeapSort.java
```

35

Rekursion!

Wiederherstellen der Heap-Eigenschaft

Übung: Stellen Sie die Heap-Eigenschaft wieder her!

Quelle: [1]

Achtung: Arrays sind hier 1-indiziert!

Wiederherstellen der Heap-Eigenschaft

Lösung

Achtung: Arrays sind hier 1-indiziert!

(c)

Initiales Herstellen der Heap-Eigenschaft

HEAPSORT

```
Verwandle unsortierte Folge/Array F in einen Heap while (F nicht leer)
entnehme maximales Element aus Heap setze maximales Element an korrekte Position stelle Heapeigenschaft auf Rest wieder her
```

- □ Array zu Beginn kein Heap → Heap herstellen!
- Idee
 - Alle Blätter (= Elemente A[n/2..(n-1)]) erfüllen trivialerweise bereits die Heap-Bedingung
 - Rufe MAX-HEAPIFY auf allen verbleibenden Elementen auf und zwar in der folgenden Index-Reihenfolge: (n-1)/2, (n-1)/2 1, ...,0

BUILD-MAX-HEAP(A)

```
1 n = A.length
```

2 for i = (n-1)/2 downto 0

do MAX-HEAPIFY(A, i, n)

Wandle das Array A in einen Heap um

Quellcode: HeapSort.java

BUILD-MAX-HEAP: Beispiel

Achtung: In der Abbildung ist das Array 1-indiziert!

BUILD-MAX-HEAP(A)

1 n = A.length

2 for i = (n-1)/2 downto 0

3 do MAX-HEAPIFY(A, i, n)

39

- a) Anfangszustand
- b)- e) Zwischenzustände
- f) Endzustand

Quelle: [1]

Heapsort Algorithmus: Überblick

HEAPSORT(A) 1 BUILD-MAX-HEAP(A) 2 for i = n-1 downto 1 3 exchange(A[0],A[i]) 4 MAX-HEAPIFY(A, 0, i-1)

Tausche Wurzel mit Element A[i] (=Element rechts unten);

BUILD-MAX-HEAP(A)

```
n = A.length
for i = (n-1)/2 downto 0
do MAX-HEAPIFY(A, i, n)
```

Quellcode: HeapSort.java

HEAPSORT

```
Verwandle unsortiertes Array F in einen Heap
while (F nicht leer)
   entnehme maximales Element aus Heap
   setze maximales Element an korrekte Position
   stelle Heapeigenschaft auf Rest wieder her
```

```
MAX-HEAPIFY(A, i, n)
     l = LEFT(i)
    r = RIGHT(i)
     if l < n and A \lceil l \rceil > A \lceil i \rceil
        largest = l
     else
        largest = i
     if r < n and A[r] > A[largest]
        largest = r
10
11
     if largest ≠ i
        exchange(A[i],A[largest])
12
        MAX-HEAPIFY(A, largest, n)
13
```

Worst Case Laufzeit: "intuitiv"

■ MAX-HEAPIFY (A,i,n)

- Vertausche ggfs. Eltern mit größerem Kind: O(1)
- Nun muss rekursiv an Unterbäumen Heap-Bedingung wiederhergestellt werden
- Baum der Höhe h hat mindestens 2^h Elemente → h ≈ log n
- h Rekursionen \rightarrow Laufzeit: $\Theta(\log n)$

BUILD-MAX-HEAP(A)

- Ruft n/2- mal MAX-HEAPIFY auf
- o Gesamtlaufzeit: n/2 * log n → Θ (n log n)

Heapsort Algorithmus: Laufzeit

```
HEAPSORT(A)
      BUILD-MAX-HEAP(A)
      for i = n-1 downto 1
           exchange(A[0],A[i])
          MAX-HEAPIFY(A, 0, i-1)
BUILD-MAX-HEAP(A)
     n = A.length
1
     for i = \lfloor n/2 \rfloor downto 0
         do MAX-HEAPIFY(A, i, n)
             \Theta(n \log n)
```

Gesamtlaufzeit: $\Theta(n \log n)$

```
\Theta(n) mal MAX-HEAPIFY \rightarrow \Theta(n \log n)
```

 $\Theta(\log n)$

```
MAX-HEAPIFY(A, i, n)
     l = LEFT(i)
    r = RIGHT(i)
     if l \leq n and A\lceil l \rceil > A\lceil i \rceil
        largest = l
     else
        largest = i
6
     if r \le n and A[r] > A[largest]
9
        largest = r
10
11
     if largest ≠ i
12
        exchange(A[i],A[largest])
        MAX-HEAPIFY(A, largest, n)
13
```

Diskussion

Laufzeit

- Worst Case: $\Theta(n \log n)$
- Average Case: $\Theta(n \log n)$
- Bzgl. des asymptotischen Verhaltens kann es kein besseres vergleichsbasiertes Sortierverfahren.
 - Vergleichsbasiert == Beruhend auf dem Vergleich von Schlüsseln.

Dennoch:

Ein gut implementierter Quicksort ist meist schneller!

Speicherverbrauch

In-Place, kein zusätzlicher Speicher notwendig!

Animation

- https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
- https://algorithm-visualizer.org/brute-force/heapsort

Publikums-Joker: Heapsort

Welche der folgenden Aussagen ist falsch?

- A. Heapsort basiert auf einem Min-Heap.
- B. Heapsort läuft nie langsamer als $\Theta(n \log n)$.

- c. Heapsort entfernt jeweils das Maximum aus dem Heap und tauscht es mit dem rechtesten Element des noch unsortierten Bereichs.
- D. Heapsort kann ungünstig sein, da teilweise zwischen Speicheradressen hin- und hergesprungen wird.

Inhalt

- Einführung
- Mergesort
- Quicksort
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

Vergleichsbasierte Sortierverfahren

- Alle bisherigen Suchverfahren sind vergleichsbasiert.
 - Es wird jeweils ein Paar von Schlüssel miteinander vergleichen.

- Theorie: $\Omega(n \log n)$ ist eine **untere Schranke** für die (Worst Case)-Laufzeit von vergleichsbasierten Verfahren.
 - Es kann kein schnelleres Sortierverfahren geben, so lange man mit Vergleichen von Schlüsseln arbeitet.

- Macht man weitere Annahmen über die Schlüssel, so sind jedoch schnellere Verfahren möglich
 - Countingsort
 - Radixsort

CountingSort

Annahme bzgl. Schlüssel

- Der Wertebereich der zu sortierenden Schüssel ist klein und bekannt.
- Beispiel im Folgenden: Integer aus der Menge {0, 1, ..., k}
 - **k+1** verschiedene Werte.
 - Maximaler Schlüsselwert: k.

Grundidee

- Berechne für jeden Schlüssel x die Anzahl der Elemente, die kleiner sind als x.
- Beispiel: Falls 17 Elemente kleiner sind als x, dann muss x an der 18. Position des Arrays stehen.

Sortiere Array A mit n Elementen, wobei die zu sortierenden Zahlen im Bereich {0, 1, 2, ...k} liegen.

```
COUNTINGSORT(A,n,k) (Skizze)
Eingabe: n-elementiges Array mit A[j] ∈ {0,1,...,k} für j = 1,...,n
Ausgabe: n-elementiges Array mit Werten aus A, sortiert!!!.
Zwischenspeicher: C[0..k]
1. Zähle zunächst in C[i] wie oft jeder Wert i ∈ {0,1,...,k} vorkommt.
2. Berechne dann in C[i] wie viele Werte ≤ i sind.
3. Gehe von hinten durch A, setze jeden Wert an korrekte Position in B.
```

Countingsort: Beispiel

Sortiere Array A mit n Elementen, wobei die zu sortierenden Zahlen im Bereich {0, 1, 2, ...k} liegen.

```
COUNTINGSORT(A,n,k) (Skizze)

Eingabe: n-elementiges Array mit A[j] \in \{0,1,...,k\} für j=1,...,n

Ausgabe: n-elementiges Array mit Werten aus A, sortiert!!!.

Zwischenspeicher: C[0..k]

1. Zähle zunächst in C[i] wie oft jeder Wert i \in \{0,1,...,k\} vorkommt.

2. Berechne dann in C[i] wie viele Werte \leq i sind.

3. Gehe von hinten durch A, setze jeden Wert an korrekte Position in B.
```

Beispiel: siehe Übung

- Beispiel: A=[2, 5, 3, 0, 2, 3, 0, 3]
 - Wie sieht C nach Schritt 1 aus?
 - An Index i+1 wird gezählt wie oft Zahl i vorkommt.
 - Wie sieht C nach Schritt 2 aus?
 - An C[i] kann man ablesen wie viele Elemente in der Eingabe ≤ i sind. Folglich kann man das Eingabeelement i an die i. Position im Ergebnisarray setzen.
 - Beim Durchlaufen von A: Wie sieht A nach jeder Iteration aus?
- Animation:
 - https://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Stabiler Sortieralgorithmus

Stabil vs. instabil

- Kommen in Eingabe Schlüssel mehrfach vor, so behält der Algorithmus die Reihenfolge dieser Elemente bei.
- Beispiel: A=<1_a, 2, 1_b> wird sortiert.
 - Stabiles Verfahren liefert: <1_a, 1_b, 2>
 - Instabiles Verfahren könnte liefern: <1_b, 1_a, 2>
- Stabiles Verfahren sind manchmal notwendig → wesentlich für RadixSort!
- Animation: Stabiler Countingsort
 - https://www.cs.usfca.edu/~galles/visualization/CountingSort.html
- Verzichtet man auf Stabilität lässt sich Countingsort noch einfacher implementieren:
 - https://visualgo.net/bn/sorting

Countingsort: Diskussion

- Verwendet keine Vergleiche
 - Aber Annahme: Wertebereich der Schüssel ist klein und bekannt.
 - Schlüssel können Integerzahlen sein.
 - Alternativ auch: Character aus einem Alphabet, siehe Übung.
- Laufzeit
 - $\Theta(n+k)$ (k: maximaler Integerwert)
 - Falls k = O(n) wird die Laufzeit linear: O(n)
 - Countingsort lohnt sich, falls maximaler Integerwert nicht zu groß bzw. deutlich kleiner als die Größe des Eingabearrays.
- CountingSort wird in der Regel in der stabilen Variante implementiert.
- Ist Countingsort ein In-Place Algorithmus?
 - Nein, ggfs. sehr viel zusätzlicher Speicher notwendig für B und C.
 - Radixsort ist eine Erweiterung von Countingsort und benötigt weniger zusätzlichen Speicher!

Publikums-Joker: Countingsort

Welche der folgenden Aussagen ist falsch?

- A. Countingsort benötigt O(n) zusätzlichen Speicherplatz.
- B. Countingsort eignet sich für das Sortieren von Matrikelnummern einer Fachhochschule.
- Countingsort ist ein stabiler Sortieralgorithmus, der die Reihenfolge von gleichen Eingabewerten nicht verändert.
- Countingsort eignet sich für das Sortieren von Studenten nach Ihrer Klausurnote im Fach AD.

(LSD)-Radixsort

Idee

- Betrachte die Ziffern einer Zahl (z.B. Dezimalzahl) der Reihe nach
- Sortiere erst nach niedrigstwertigster Ziffer, dann zweitniedrigstwertigster Ziffer, etc.
 - Meist mit Countingsort.
- Intuitiver Ansatz erst nach der höchstwertigen Ziffer zu sortieren, würde viel zusätzlichen Speicherplatz (!) benötigen.
- Um eine Zahl mit d Ziffern zu sortieren.

RADIXSORT(A, d)						
1 for $i = 1$ to d						
2	use stable sort to sort A on					
	ith least significant digit					

Sortiere erst niedrigwertige, dann höherwertige Ziffern!

Analyse

- Verwende Countingsort als stabilen Sortieralgorithmus!
- In-Place?
 - CountingSort benötigt zusätzlichen Speicher. → Kein In-Place!
 - Aber ansonsten kein weiterer Speicher notwendig, falls man wie bei Radixsort mit der niedrigstwertigsten Ziffer beginnt.
- Laufzeit
 - $\Theta(d(n+k))$
 - Falls k = O(n), d.h. maximaler Wert ähnlich wie Eingabegröße:

Exkurs: Generische Anwendung von Radixsort

n: Größe des Eingabearraysd: Anzahl Ziffern / Stellenk: Maximale Ziffer, bzw. wie viele verschiedene Ziffern gibt es?

"Wie teilt man einen Schlüssel in Ziffern auf"?

- Eine "Runde" in Radixsort muss nicht zwingend einer Ziffer entsprechen!
- Z.B. Gruppen von Ziffern könnten auf einmal mit Countingsort sortiert werden.
- Oder: Schlüssel setzt sich aus mehreren Komponenten zusammen. Bsp: Für "Name", "Alter", "Geburtsdatum" jeweils eine Runde mit Countingsort?

Allgemein

- Ein Schlüssel bestehe aus b Bits.
- Unterteile Schlüssel in Gruppen von r Bits. Dann: $d = \lceil b/r \rceil$
- Verwende jeweils Countingsort mit $k = 2^r 1$
- Laufzeit: $\Theta(\frac{b}{r} \cdot (n+2^r))$
- Theorie: Bei der idealen Wahl von $r := \log n$ erhält man Θ $(bn/\log n)$
- Kann deutlich besser sein, als Quicksort oder Mergesort.

Publikums-Joker: Radixsort

Radixsort wird ziffernweise auf die Folge 21, 86, 124, 33, 29, 163 angewendet. Welche Ordnung haben die Zahlen bevor in der letzten Runde die größte Ziffer betrachtet wird?

- A. 21,33,163,124,86,29.
- B. 21,29,33,86,124,163.
- c. 21,124,29,33,163,86.
- D. 21,29,86,33,124,163

Inhalt

- Einführung
- Mergesort
- Quicksort
- Heapsort
- Sortieren in linearer Zeit
- Zusammenfassung

56

Sortieren in Java

- Java.util.Arrays
 - sort(int[] a): Verwendet effizienten Quicksort.
 - sort(Object[] a): Verwendet effizienten Mergesort.

- Java.util.Collections
 - sort(.): Verwendet effizienten Mergesort.

- Für andere Sortierverfahren müssen externe Frameworks verwendet werden.
 - Z.B. http://psjava.org/

Sortierverfahren: Vergleich

Algorithmus	Average Case	Worst Case	In-Place	Vergleichsbasiert
Insertionsort	$\Theta(n^2)$	$\Theta(n^2)$	Ja	Ja
Bubblesort	$\Theta(n^2)$	$\Theta(n^2)$	Ja	Ja
Mergesort	$\Theta(n \log n)$	$\Theta(n \log n)$	Nein	Ja
Quicksort	$\Theta(n \log n)$	$\Theta(n^2)$	Ja	Ja
Heapsort	$\Theta(n \log n)$	$\Theta(n \log n)$	Ja	Ja
Countingsort	Für bestimmte Eingaben linear	$\Theta(n+k)$	Nein	Nein
Radixsort	Für bestimmte Eingaben linear	$\Theta(d(n+k))$	Nein	Nein

n: Anzahl der Elemente

k: Anzahl der möglichen Werte, Ziffern

d: Anzahl der Stellen /Digits

Viele weitere Sortierverfahren!

https://de.wikipedia.org/wiki/Sortierverfahren

Inhalt

- Einführung und elementare Sortierverfahren
 - Bubblesort, Insertionsort, quadratische Laufzeit.
- Mergesort
 - Divide-Phase leicht, Combine-Phase schwierig.
- Quicksort
 - Divide-Phase schwierig, Combine-Phase leicht.
- Heapsort
 - Benötigt Datenstruktur Heap
 - Asymptotisch effizient, aber meist ist gut implementierter Quicksort schneller
- Sortieren in linearer Zeit
 - Macht man Annahmen über Schlüssel, so sind auch schnellere Verfahren möglich.
- Zusammenfassung

Quellenverzeichnis

- [1] Cormen, Leiserson, Rivest and Stein. *Introduction to Algorithms*, Third Edition, The MIT Press, 2009.
- [2] Ottmann, Widmayer. *Algorithmen und Datenstrukturen*, Kapitel 1.2.3, 5. Auflage, Spektrum Akademischer Verlag, 2012. (xxx)
- [3] http://dilbert.com/strip/1996-05-22 (abgerufen am 21.10.2016)
- [4] https://s3.amazonaws.com/lowres.cartoonstock.com/business-commerce-pc-neat-tidy_desks-desks-file-cwln557_low.jpg (abgerufen am 16.10.2016)
- [5] https://de.wikipedia.org/wiki/Quicksort (abgerufen am 25.10.2017)