VEHICLE SURROUNDING CONDITION DISPLAY DEVICE

Patent Number:

JP10257482

Publication date:

1998-09-25

Inventor(s):

KUMAMOTO KENJI

Applicant(s):

NISSAN MOTOR COLTD

Requested Patent:

JP10257482

Application Number: JP19970058718 19970313

Priority Number(s):

IPC Classification:

H04N7/18; B60K35/00; B60R1/00; G08G1/16

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide the left, right and rear road conditions as continuous information and to instantaneously grasp the entire conditions by matching the infinite far points of three left side, right side and rear images at least and synthesizing the left side, right side and rear images so as to watch from one virtual

SOLUTION: When the left, right and rear sides of vehicle are photographed by CCD cameras having the same view angle, the vehicle positioned back in the relation of distance between the camera and the vehicle is projected a little smaller for the lateral image and projected a little larger for a rear image 42. Therefore, in order to display the image just like watching from one viewpoint (from the front side of vehicle, for example), the rear image 42 is reduced so as to match the size of image projected in the rear image 42 with the size of image projected in left and right side images. Then, the outside part of left and right side images is cut while considering the form of meter cluster, afterwards, one part 49 of left and right side image overlapped with the rear image 42 is cut, image processing is performed so as to match infinite far points 7, 8 and 9 of three images and one viewpoint image is prepared.

Data supplied from the esp@cenet database - I2

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-257482

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. ⁸		識別記号	FΙ						
H04N	7/18		H04N 7	7/18		J			
B60K	35/00		B60K 35	B 6 0 K 35/00 B 6 0 R 1/00		Z A			
B 6 0 R	1/00		B60R 1						
G 0 8 G	1/16		G 0 8 G 1	1/16	С				
			審査請求	未請求	請求項の数 5	OL	(全 8]	頁)	
(21)出願番号 特顧平9-58718		(71)出顧人 000003997 日産自動車株式会社							
(22)出願日		平成9年(1997)3月13日		神奈川県	具横浜市神奈川	区宝町	2番地		
			(72)発明者	隈本 6	建可				
			·		具横浜市神奈川 株式会社内	玄宝町 :	2番地 日	産	

(54) 【発明の名称】 車両周辺状況表示装置

(57)【要約】

【課題】 左右及び後方の画像を同時に液晶パネル上に 表示する車両周辺状況表示装置において、瞬時に左右及 び後方の道路状況を連続した情報として得、危険の事前 回避をし易くした技術を提供すること。

【解決手段】 左右ドアミラー近傍に取り付けられたC C D カメラにより撮影した車両左右側方画像と、後部に取り付けられたC C D カメラにより撮影した車両後部画像とを、インストルメントパネルに設置した液晶パネルに表示する車両周辺状况表示装置において、左右側方及び後方の3つの画像の無限違点を合わせて1つの無限違点6を設け、1つの仮想視点から見たように左右側方及び後部画像を画像合成した。

【特許請求の範囲】

【請求項1】 左右ドアミラー近傍に取り付けられたCCDカメラにより撮影した車両左右側方画像と、後部に取り付けられたCCDカメラにより撮影した車両後部画像とを、インストルメントパネルに設置した液晶パネルに表示する車両周辺状況表示装置において、

左右側方及び後方の少なくとも3つの画像の無限遠点を合わせ、1つの仮想視点から見たように左右側方及び後部画像を画像合成したことを特徴とする車両周辺状況表示装置。

【請求項2】 前記3つの画像を表示する画面において、左右側方画像と後方画像の像の大きさを合わせるように、後方画像の緞幅を左右側方画像の緞幅よりも小さくしたことを特徴とする請求項1記載の車両周辺状況表示装置。

【請求項3】 低中速走行のときは、画像サイズを縮小し、高速走行のときは画像サイズを拡大する請求項1または請求項2記載の車両周辺状況表示装置。

【請求項4】 ウインカーを出すと同時にパネルに表示される画像が車両進行方向の画像にシフトすることを特徴とする請求項1ないし3項いずれか一項記載の車両周辺状況表示装置。

【請求項5】 路面の凹凸による走行中の車体の変位をセンサーにより検知し、車体の変位に伴う画像の揺れを除去したことを特徴とする請求項1ないし4項いずれか一項記載の車両周辺状況表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は車両の周辺状況を表示する装置に関し、特に左右及び後方の画像を同時に液晶パネル上に表示する車両周辺状況表示装置に関するものである。

[0002]

【従来の技術】 車両外部の状況を把握する方法としては、後方はルームミラー、側方はドアミラーまたはフェンダーミラーによるものが現在の市販車の主流である。それ以外では、CCDカメラによるインストルメントパネルの液晶パネルへの映像表示も一部実用化または試作品として公開されている。例えばウインドシールドとインストルメントパネル上面の境目にCCDカメラで撮影した左右側方及び後方の映像を表示するものや、車が接近してきたときに警告と共に接近してきた車の映像が表示されるものがある。

[0003]

【発明が解決しようとする課題】 しかしながら上記従来の表示は、左右側方、後方の映像が独立して映し出されるものであり、ドライバーは全ての周辺状況を把握するためには個々の映像を1つずつ認識しなければならないため時間がかかる。上記従来例の、CCDカメラで撮影した左右側方及び後方の画像を表示するものに関して

いえば、各画面同士が離れており、ルームミラーとドアミラーの機能に近く、一つ一つの画面を見ていく必要がある。警告と共に接近して車の映像が表示されるものに関していえば側方或いは後方画面のみが表示され、全体は把握しづらい。本発明は従来の問題点に鑑みてなされたものであり、その目的は、瞬時に左右及び後方の道路状況を連続した情報として得、全体の把握をし易くすることである。

[0004]

【課題を解決するための手段】 本発明は前記目的を達成するために、左右側方及び後方の少なくとも3つの画像の無限遠点を合わせ、1つの仮想視点から見たように左右側方及び後部画像を画像合成し、左右側方画像と後方画像の像の大きさを合わせるように、後方画像の縦幅を左右側方画像の縦幅よりも小さくし、画像サイズを低中速走行のときは、小さく、高速走行のときは大きくし、ウインカーを出すと同時にパネルに表示される画像が曲がる方向の画像にシフトし、路面の凹凸による走行中の車体の変位をセンサーにより検知することによって、車体の変位に伴う画像の揺れを除去する車両周辺状況表示装置としている。

[0005]

【作用】 上記構成の本発明によれば、左右及び後方画 像を同時に1つの視点から見たように表示することによ って、左右及び後方を走行する車両の動きが一目で把握 することができ、危険の事前回避がし易くなる。例えば 後方の車両が車線変更をして自車の左または右の車線に 進入した場合でも、左右どちらかの画面をみて車両の存 在を把握した後、後方の画面を見て、車線変更したこと を認識する等の2段構えの動作がいらず、車両の動きを 連続して把握することができ、周辺道路状況を把握する 時間が短くて済む。また、左右側方画像と後方画像の像 の大きさを合わせるように、後方画像の縦幅を左右側方 画像の縦幅よりも小さくすることによって、左右の画像 は仮想視点の近くから見たように映り、後方の画像は仮 想視点から遠方に見えるように映る。これにより遠近感 が表現される。左右側方画面と後方画面の縦幅の差は、 車両の車体前後長を表現する。後方画像にはトランクの 後端を、左右側方画像には左右ドアアウター端部を見せ るようにすることによって、周囲との距離感が掴みやす くなる。画像サイズが、低速走行時には小さく、高速走 行時には大きくなることによって、低速走行時には車両 側方の視野角が広がり、より横方向が見やすくなり、市 街地等の混雑した道路の把握がし易くなり、高速走行時 には、車両側方の視野角は狭くなるが、後方車両との距 離感が掴みやすくなる。また、表示画像が、車線変更や 交差点での右左折時にウインカーを出したときに、自車 の進行方向の画像にシフトすることによって、より横方 向まで映し出すことができ、他車との接触やバイク等の 巻き込みを事前に防止し易くなる。また、路面の凹凸に よる車体の変位を加速度センサにより検知し、表示画像にフィードバックし、画像の揺れを除去することにより、常にクリーンな車両周辺画像を見ることができる。 【0006】

【発明の実施の形態】 以下、図に基づいて本発明の実施の形態を詳細に説明する。図1は本発明の実施の形態の車両周辺状況表示装置の組み付け状況を示した概略図である。基本的にはドライバーの前方、メータクラスター1内に液晶パネル2を埋め込み、液晶パネル2に車両周辺状況を表示する。液晶パネル2は車両周辺状況以外にも、車速やエンジン回転数等様々な情報を表示可能である。図2は液晶パネル2に表示する本発明の車両周辺状況表示を示しており、表示画面は、左側方画面3と右側方画面4と後方画面5から構成されている。各画面に表示する画像は、車体に取り付けたCCDカメラで撮影する。

【0007】図3にカメラ設置位置の1案を示す。左右 ドアミラーにCCDカメラ2台31、32と設置し、ト ランク近辺にCCDカメラ1台33を設置する。CCD カメラ31は左側方画像を視野角34で、CCDカメラ 32は右側方画像を視野角35でCCDカメラ33は後 方画像を視野角36で撮影する。ここで、それらの画像 について従来の方法では図17に示すように、左側方画 面103の画像には1つの無限遠点107が存在し、右 側方画面104の画像にも1つの無限遠点109が存在 し、後方画面105の画像にも1つの無限遠点108が 存在する。つまり、3つの画像がそれぞれに無限遠点を 持っており、3画面の画像は連続していない。よって、 周辺の道路状況を把握するためには左右、後方の画像を 個別に1つずつ認識しなければならず、時間がかかって しまうことになる。なお、図中128は左ドアアウタ ー、129は右ドアアウター、130はトランク後端で ある。また、116、117は左側方画面103の画像 における路面上の白線、122, 123および124は 右側方画面104の画像における路面上の白線および地 平線、118, 119, 120, 121は後方画面10 5の画像における路面上の白線である。

【0008】その対策としての図2に示す本発明の表示では、図17に示す従来例の無限違点107、108、109を1つの無限違点6に集約し、1つの仮想視点37(図3参照)から見たように3つの画面3、4、5の画像を合成した。例えば図17における道路上の白線116と白線118は図2において白線10となり、白線117と119は白線11となる。同様に白線123と白線121は白線14となり、白線122と白線120は白線13となる。15は水平線である。

【0009】従って、上記のように左右及び後方の画像を1つの視点37から見たように表示することにより、 自車周辺の道路状況をすばやく把握することができ、危 険の事前回避につながる。 【0010】CCDカメラで取り込んだ画像は3:4の 横長であり、できるだけ大きく液晶パネルに表示することを考え、左右側方画像の実撮像範囲よりも横方向をカットして表示する。図4において、左側方の実撮像範囲はフレーム38であるが、表示部は前記左側方画面3で示した大きさとする。右側方も同様に実撮像範囲39が右側方画面4で示した大きさとする。後方の実撮像範囲40は大幅なカットはせず、ほぼ取り込んだ画像をそのまま縮小して前記後方画面5で示した大きさで表示する。

【0011】続いて、合成の1手順について説明する。 同じ視野角のCCDカメラで車両左右及び後方を撮影す ると、特に画像処理をしなければ図5に示すように、あ る位置にいる車両46に対し、左右画像41、43では 小さめに映り、後方画像42では大きめに映る。これは カメラからその車両までの距離が違うためである。1視 点37(図3参照)から見たように表示するには同じ位 置にある物体は同じ大きさでなければならないため、後 方画像42に映った像46の大きさを左右側方画像4 1、43に映った像44、45に会わせるべく後方画像 42を縮小する。このための画像合成処理を図6~図1 0によって説明すると、車両横の画像はなるべく広い範 囲で映すため、左右側方画像の縦方向は液晶パネル2の 縦方向最大幅47にレイアウトする。メータクラスター 1の形状を考慮すると左右側方画像が収まり切らず、外 側48はカットする。その後、後方画像42とだぶって いる左右側方画像の一部49をカットし、無限違点7、 8、9を合わせるように画像処理をおこない図9の如く の1視点画像を作成する。

【0012】このとき、左右側方画像にはドアアウターの端部25、26が映り、後方画像にはトランク後端27が映るようにする。これにより他車との距離感を把握し易くなる。また、左右側方画面3、4と後方画面5の縦幅の差は車体の前後長を示しており、遠近感を表現している。図10のようにこの段差も利用して自車をCG50で表現することもできる。

【0013】(その他の実施の形態)以下、その他の実施の形態を説明するが、前記実施の形態と同一構成部分には同一の符号を付してその説明は省略する。

【0014】その他の実施の形態として図11に合成の 手順(a),(b)を示す。関方の画面の変形を少なく したものである。図12に、車速が低中速のときと、高 速のときの表示画面を(a)、(b)で示す。低中速は 主に市街走行である。比較的混雑しているそのような状 況では、車線変更を行なうときに横に他車が走行してい る場合が多い。よって、できるだけ広角に自車の横の道 路状況を知る必要がある。そこで低中速のときは、

(a) に示すように、後方画像が認識できる範囲で画像 サイズを縮小した縮小画面51とする。逆に、高速走行 では車速が速いため、車線変更をするときは他車との距 離惑を掴むことが重要であるが、映っている車の大きさが小さいと距離感を掴みにくい。そこで、(b)に示すように、多少横の情報は削除しても後方画像を拡大した拡大画面52として表示した方がよい。

【0015】また、通常の表示が図13に示すものであったときに、車線変更や交差点での右左折時にウインカーを出したときには図14に示すように自車の侵入する方向の画像が中央の方へシフトしてきて、より、横方向の画像を確認することができ、他車との接触やバイクの巻き込み等を回避し易くなる。もともと図4に示すように実撮像範囲38は表示領域(画面)3よりも広いため、シフトすればより横の画像を表示することができる。

【0016】以上のような表示を常にクリアに見せるために、路面が凹凸しているところを走行したときにも画面が揺れないように以下のシステムとする。図15

(a), (b)に示すように、路面からの振動をサスペンション等に取り付けた加速度センサー53により、検知する。その後図16に示すように、ある領域αの振幅及び周波数の振動をある時間も秒間検知すると、画面の揺れを補正する命令が図外のコントロールユニットから出される。補正の命令は検知される振幅、周波数によってマップ化されていて、対応する補正がなされる。しかし、ある領域αでの振幅及び周波数が無い状態がs秒間検知された場合は補正制御は停止する。尚、実撮像範囲38、39、40は表示領域(画面)3、4、5よりも大きいのでこの分を補正代として使用する。

[0017]

【発明の効果】 以上説明したように、本発明による車 両周辺状況表示装置によれば、左右及び後方画像を同時 に1つの視点から見たように表示することによって、左 右及び後方を走行する車両の動きが一目で把握すること ができ、危険の事前回避がし易くなる。例えば後方の車 両が車線変更をして自車の左または右の車線に侵入した 場合でも、左右どちらかの画面をみて車両の存在を把握 した後、後方の画面を見て、車線変更したことを認識す る等の2段構えの動作がいらず、車両の動きを連続して 把握することができ、周辺道路状況を把握する時間が短 くて済む。また、左右側方画像と後方画像の像の大きさ を合わせるように、後方画像の縦幅を左右側方画像の縦 幅よりも小さくすることによって、左右の画像は仮想視 点の近くから見たように映り、後方の画像は仮想視点か ら遠方に見えるように映る。これにより遠近感が表現さ れる。左右側方画面と後方画面の縦幅の差は、車両の車 体前後長を表現する。後方画像にはトランクの後端を、 左右側方画像には左右ドアアウト端部を見せるようにす ることによって、周囲との距離感が掴みやすくなる。画 像サイズが、低速走行時には小さく、高速走行時には大 きくなることによって、低速走行時には車両側方の視野 角が広がり、より横方向が見やすくなり、市街地等の混

雑した道路の把握がし易くなり、高速走行時には、車両 側方の視野角は狭くなるが、後方車両との距離感が掴み やすくなる。また、表示画像が、車線変更や交差点での 右左折時にウインカーを出したときに、自車の進行方向 の画像にシフトすることによって、より横方向まで映し 出すことができ、他車との接触やバイク等の巻き込みを 事前に防止し易くなる。

【0018】また、路面の凹凸による車体の変位を加速 度センサーにより検知し、表示画像にフィードバック し、画像の揺れを除去することにより、常にクリーンな 車両周辺画像を見ることができる。

【図面の簡単な説明】

- 【図1】 本発明の車両周辺状況表示装置の組み付け状態を示す図である。
- 【図2】 本発明の車両周辺状況表示を示す図である。
- 【図3】 カメラ設置位置を示す図である。
- 【図4】 CCDカメラによる実撮像範囲を示す図である。
- 【図5】 左右及び後方画像の合成の手順を示す図である。
- 【図6】 左右及び後方画像の合成の手順を示す図である。
- 【図7】 左右及び後方画像の合成の手順を示す図である。
- 【図8】 左右及び後方画像の合成の手順を示す図である。
- 【図9】 左右及び後方画像の合成の手順を示す図である。
- 【図10】 自車表示状態を示す図である。
- 【図11】 合成の手順その2を示す図である。
- 【図12】 低中速及び高速走行時の表示を示す図である。
- 【図13】 ウインカー表示前の画面を示す図である。
- 【図14】 ウインカー表示後の画面を示す図である。
- 【図15】 加速度センサー取り付けの概略図を示す図である。
- 【図16】 画面揺れ補正のフローチャートを示す図である。
- 【図17】 従来例を示す図である。

【符号の説明】

- 1 メータクラスター
- 2 液晶パネル
- 3 左側方画面
- 4 右側方画面
- 5 後方画面
- 6 無限遠点
- 7 無限違点
- 9 無限遠点
- 10 白線
- 11 白線

- 13 白線
- 14 白線
- 15 地平線
- 25 左ドアアウト端部
- 26 右ドアアウト端部
- 27 トランク端部
- 31 左側方CCDカメラ
- 32 右側方CCDカメラ
- 33 後方CCDカメラ
- 34 カメラ31の視野角
- 35 カメラ32の視野角
- 36 カメラ33の視野角
- 37 仮想視点
- 38 カメラ31の実撮像範囲
- 39 カメラ32の実撮像範囲

- 40 カメラ33の実撮像範囲
- 41 左側方画像
- 42 後方画像
- 43 右側方画像
- 44 後方車両像
- 45 後方車両像
- 46 車両像
- 47 左右側方画像縦寸法
- 48 画像カット領域
- 49 画像ダブリ領域
- 50 自車表示
- 51 縮小画像サイズ
- 52 拡大画像サイズ
- 53 加速度センサー

【図1】

【図4】

【図5】

【図17】

【図16】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ______

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.