SUPERVISED LEARNING

BINARY CLASSIFICATION

$$\begin{cases} x_1, \dots, x_n \end{cases} \xrightarrow{\psi_i} \begin{cases} x_i \in \mathbb{R}^d \\ y_1, \dots, y_n \end{cases} \xrightarrow{\psi_i} \begin{cases} y_i \in \{0, 1\} / \{-1, +1\} \end{cases} \qquad \begin{cases} x_i \in \mathbb{R}^d \\ y_i \in \{0, 1\} / \{-1, +1\} \end{cases}$$

LOSS (R) =
$$\frac{1}{n} \sum_{i=1}^{n} 1 \left(R(x_i) \neq y_i \right)$$
 $\frac{2}{n} \sum_{i=1}^{n} 1 \left(R(x_i) \neq y_i \right)$
 $\frac{1}{n} \sum$

- Given
$$X_{\text{test}}$$
, find the k -closest points in the training set - $(x_1^*, x_2^*, \dots, x_k^*)$

- PREDICT
$$y_{\text{test}} = majority (y_1, y_2, \dots, y_k)$$

Choosing K

- -> Can treat as a Hyper Parameter
- → Smaller me k, complicated the decision boundary
- -> Soln: CROSS-VALIDATE FOR K

ISSUES with K-NN

- Choosing a distance function
 - PREDICTION IS COMPUTATIONALLY EXPENSIVE.
 - NO MODEL IS LEARNT.
 - Cannot throw away data after "LEARING

Question is a (feature, value) pair.

Eg: height
$$\leq$$
 180cm?

(f3) θ

How to measure "goodness" of a Question?

$$D_{MASET} = \left\{ (x_1, y_1) \cdot \dots \cdot (x_n, y_n) \right\}$$

$$f_k \leq \theta ?$$

$$yes = \left\{ (x_1, y_1) \cdot \dots \cdot (x_n, y_n) \right\}$$

$$D_{mo}$$

. Need is a measure of "Impurity" for a set of

$$ENTROPY \left(\left\{ y_{1}, \dots, y_{n} \right\} \right) = ENTROPY \left(p \right)$$

$$= -\left(p \log p + (1-p) \log (1-p) \right)$$

$$= \log (p) = 0$$

$$\mathcal{P} = \frac{|\mathcal{D}_{yes}|}{|\mathcal{D}|}$$

ALGORITHM - DECISION TREE

- DISCRETIZE each feature in [min, max] range
- Pick the Question that has the largest Information gain.
 - Repeat the procedure for Dyes, Dno

POINCS

- Can Stop goowing a tree if a node becomes "SUFFICIENTLY" pure.
- DEPTH of the tree is a hyperparameter
- There are alternate measures for "goodness" of a QUESHOO
 - GINI INDEX

TYPES OF MODELING

CLASSIFI CATION

- GENERATIVE MODEL
- DISCRIMINATIVE MODEL

GIENERATIVE MODEL

MODEL

MODEL

P(
$$y|x$$
)

Eg: K-NM

DECISION -TREES

Lecision there for x

coys 1.

P($y=1/x$) = 1 if majority of neighbours say i

=0 shearish