N-port grid array substrate with NxN surface heating elements thermalnport

Form:

thermalnport: $\langle \mathtt{instance\ name} \rangle\ n_1\ n_2\ \cdots\ \langle \mathtt{parameter\ list} \rangle$

 n_1 and n_2 are the element nodes.

Parameters:

Parameter	Type	Default value	Required?
ntimesteps: Number of time	INTEGER	0	no
steps in transient simulation			
dt: Length of timestep (s)	DOUBLE	0	no
tambient: Ambient temperature (K)	DOUBLE	300	no
time_d: Flag, if true, calculate in the time domain.	BOOLEAN	false	no
read_input: Flag, read_input	BOOLEAN	false	no
thermal resistance matrices from file			
l: Substrate x-dimension in meters.	DOUBLE	0.05	no
w: Substrate y-dimension in meters	DOUBLE	0.05	no
d: Substrate z-dimension in meters.	DOUBLE	0.0016	no
ks: Thermal conductivity (W/m.K)	DOUBLE	0.294	no
rho: Density (kg.m ⁻³)	DOUBLE	1900	no
c: Specific heat (J/kg.K)	DOUBLE	1150	no
xi: Adjustment for $T * *4$ non linearity.	DOUBLE	1.3	no
eta: Adjustment for natural convection.	DOUBLE	3	no
epsilon: Emissivity.	DOUBLE	0.7	no
narray: Order of NxN grid array	INTEGER	n/a	yes
ndevices: Number of heat dissipating devices	INTEGER	1	no
b: Exponent in power law temperature	DOUBLE	0	no
dependence of thermal conductivity			

Example:

thermalnport: test1 12 22 32 42 52 62 72 82 92 10 Ntimesteps = nsteps dt = deltat Tambient = temp time_d=1 nfingers = 1 narray = 3 read_input = 1

Notes:

There is no equivalent SPICE element.

Version: 2000.09.01

Credits:

Name Affiliation Date Links

Carlos E. Christofferson, Bill Batty NC State University Sept 2000 NC STATE UNIVERSITY cechrist@ieee.org www.ncsu.edu

w.batty@elec-eng.leeds.ac.uk

Publications:

- 1. W Batty, C. E. Christoffersen, A. J. Panks, S. David, C. M. Snowden and M. B. Steer, "Electro-Thermal CAD of Power Devices and Circuits with Fully Physical Time-Dependent Compact Thermal Modelling of Complex Non Linear 3-D Systems," IEEE Transactions on Components and Packaging Technology, Vol. 34, No. 4, December 2002, pp. 566-590.
- 2. W. Batty, C. E. Christoffersen, C. M. Snowden and M. B. Steer, "Fully Physical Coupled Electro-Thermal Modelling of Power Devices and Circuits," PSSD conference Digest, Ilkley, UK, March 2002.
- 3. W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C. M. Snowden and M. B. Steer, "Global Electro-thermal CAD of Complex Non Linear 3-D Systems Based on a Fully Physical Time-dependent Compact Thermal Model," 2001 IEEE Int. Microwave Symp. Digest, May 2001, pp. 667-670.