Elastic Problem in Half-space

1. Estimate of Dirichlet Green Tensor

We need the following slight generalization of Van der Corput lemma for the oscillatory integral [10, P.152].

Lemma 1.1 Let $-\infty < a < b < \infty$, and u is a C^k function u in (a, b).

1. If $|u'(t)| \ge 1$ for $t \in (a,b)$ and u' is monotone in (a,b), then for any $\phi(t)$ in (a,b) with integrable derivatives

$$\left| \int_a^b e^{\mathbf{i}\lambda u(t)} \phi(t) dt \right| \le 3\lambda^{-1} \left[|\phi(b)| + \int_a^b |\phi'(t)| dt \right].$$

2. For all $k \geq 2$, if $|u^{(k)}(t)| \geq 1$ for $t \in (a,b)$, then for any $\phi(t)$ in (a,b) with integrable derivatives

$$\left| \int_{a}^{b} e^{i\lambda u(t)} \phi(t) dt \right| \leq 12k\lambda^{-1/k} \left[|\phi(b)| + \int_{a}^{b} |\phi'(t)| dt \right].$$

Proof. The assertion can be proved by extending the Van der Corptut lemma in [10]. Here we omit the details.

We recall following lemma, see e.g. [17]:

Lemma 1.2 Let $F(\lambda, a) = \int_0^a t^{\alpha-1} f(t) e^{i\lambda t} dt$ where $0 < a \le +\infty$, $0 < \alpha < 1$ and $t^{\alpha-1} f \in L^1(0, a)$, then we have

$$|F(\lambda, a)| \le C(\frac{1}{\lambda^{\alpha}} + \frac{1}{\lambda}(a^{\alpha - 1} + |t^{\alpha - 1}f|_{L^1(0, a)})$$
 (1.1)

Lemma 1.3 Let $f(\xi, \mu_s, \mu_p) = g(\xi, \mu_s, \mu_p)/\gamma(\xi, \mu_s, \mu_p)$ where g(x,y,z) is a homogeneous quadratic polynomial with respect to x,y,z. Let a,b>0 and $\rho=\sqrt{a^2+b^2}$. Assume $\kappa=k_p/k_s$ and $k_s\rho>1$, then we have

$$\left| \int_{\mathbb{R}} f(\xi, \mu_{s}, \mu_{p}) e^{\mathbf{i}(\mu_{s}b + \xi a)} d\xi - f_{\xi = \frac{k_{s}a}{\rho}} \frac{k_{s}b}{\rho} (\frac{2\pi}{k_{s}\rho})^{1/2} e^{\mathbf{i}(k_{s}\rho - \frac{\pi}{4})} \right|$$

$$\leq C \left(\frac{k_{s}b}{\rho(k_{s}\rho)^{3/4}} + \frac{k_{s}a}{\rho(k_{s}\rho)^{5/4}} \right)$$
(1.2)

and

$$\left| \int_{\mathbb{R}} f(\xi, \mu_{s}, \mu_{p}) e^{\mathbf{i}(\mu_{p}b + \xi a)} d\xi - f_{\xi = \frac{k_{p}a}{\rho}} \frac{k_{p}b}{\rho} (\frac{2\pi}{k_{p}\rho})^{1/2} e^{\mathbf{i}(k_{p}\rho - \frac{\pi}{4})} \right| \\
\leq C \left(\frac{k_{p}b}{\rho(k_{p}\rho)^{3/4}} + \frac{k_{p}a}{\rho(k_{p}\rho)^{5/4}} \right) \tag{1.3}$$

where C is only dependent on κ .

Proof. We only proof the first estimate. The second one is similar. Let $I(a,b) = \int_{\mathbb{R}} f(\xi, \mu_s, \mu_p) e^{\mathbf{i}(\mu_s b + \xi a)} d\xi$. To simplify the integral, the standard substitution $\xi = k_s \sin t$ is made, taking the ξ -plane to a strip $-\pi/2 < \operatorname{Re} t < \pi/2$ in the t-plane, and the real axis in the ξ -plane onto the path L from $-\pi/2 + \mathbf{i}\infty \to -\pi/2 \to \pi/2 \to \pi/2 - \mathbf{i}\infty$ in the t-plane. Then $I(a,b) := I(\rho,\phi)$ becomes(Let $\mathbf{a} = \rho \sin \phi$ and $\mathbf{b} = \rho \cos \phi$, $0 < \phi < \pi/2$)

$$k_s \int_I f(\sin t, \cos t, (\kappa^2 - \sin^2 t)^{1/2}) \cos t \ e^{\mathbf{i}k_s \rho(\cos(t-\phi))} dt \tag{1.4}$$

Taking the shift transformation of t and using cauchy integral theorem, we can obtain the representation of I(a,b):

$$k_s \int_L f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2}) \cos(t+\phi) e^{\mathbf{i}k_s \rho(\cos t)} dt$$

$$= k_s \cos \phi \int_L f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2}) \cos t \ e^{\mathbf{i}k_s \rho(\cos t)} dt$$

$$-k_s \sin \phi \int_L f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2}) \sin t \ e^{\mathbf{i}k_s \rho(\cos t)} dt$$

$$:= k_s (\cos \phi \ I_1 + \sin \phi \ I_2)$$

For I_2 , using integration by parts on path L first, we have

$$I_2 = \frac{1}{\mathbf{i}k_s \rho} \int_L f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2}) d \ e^{\mathbf{i}(k_s \rho \cos t)}$$
 (1.5)

$$= -\frac{1}{\mathbf{i}k_s\rho} \int_L \frac{\partial f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2})}{\partial t} e^{\mathbf{i}(k_s\rho\cos t)} dt$$
 (1.6)

$$:= \frac{1}{k_s \rho} I_3 \tag{1.7}$$

Therefore,

$$I(\rho,\phi) = k_s(\cos\phi I_1 + \frac{\sin\phi}{k_s\rho}I_3)$$
(1.8)

First, we define $0 < \phi_1 < \phi_\kappa < \phi_2 < \pi/2$ such that $\sin(\phi_\kappa) = \kappa, \sin(\phi_1) < \kappa/2, \sin(\phi_2) > (1 + \kappa)/2$ and $\cos(\phi_1) > (1 + \kappa)/2, \cos(\phi_2) < \kappa/2$. Now, we claim that

1. If $\phi \in (0, \phi_1) \cup (\phi_2, \pi/2)$, we have

$$\left| I_1 - f(\sin\phi, \cos\phi, (\kappa^2 - \sin^2\phi)^{1/2}) \left(\frac{2\pi}{k_s \rho} \right)^{1/2} e^{\mathbf{i}(k_s \rho - \frac{\pi}{4})} \right| \le C \frac{1}{k_s \rho}$$
 (1.9)

$$|I_3| \le C \frac{1}{(k_s \rho)^{1/2}} \tag{1.10}$$

where C is independent of ϕ .

2. If $\phi \in [\phi_1, \phi_2]$ and $\phi \neq \phi_{\kappa}$, we have

$$\left| I_1 - f(\sin\phi, \cos\phi, (\kappa^2 - \sin^2\phi)^{1/2}) \left(\frac{2\pi}{k_s \rho} \right)^{1/2} e^{\mathbf{i}(k_s \rho - \frac{\pi}{4})} \right| \le C(\phi) \frac{1}{k_s \rho} \tag{1.11}$$

$$|I_3| \le C(\phi) \frac{1}{(k_s \rho)^{1/2}}$$
 (1.12)

3. If $\phi = \phi_{\kappa}$, we have

$$\left| I_1 - f(\sin\phi, \cos\phi, 0) \left(\frac{2\pi}{k_s \rho} \right)^{1/2} e^{\mathbf{i}(k_s \rho - \frac{\pi}{4})} \right| \le C \frac{1}{(k_s \rho)^{3/4}}$$
 (1.13)

$$|I_3| \le C(\phi) \frac{1}{(k_s \rho)^{1/4}}$$
 (1.14)

Since $I(\rho, \phi)$ is a continuous function, we can obtain estimate (1.42) soon by the claim and equality (1.48). We now proceed with the proof of the claim above.

1. For the claim 1, wo only give the proof when $\phi \in (\phi_2, \pi/2)$ since the similar proof can be adjusted to the other case. By the convention of ϕ_2 , for any $\phi \in (\phi_2, \pi/2)$, there exists $0 < \delta < \pi/4$ only dependent on κ such that

$$|\sin(t+\phi)| > (1+2\kappa)/3, |\cos(t+\phi)| < 2\kappa/3$$
 (1.15)

for any $t \in (-\delta, \delta)$ while

$$|\cos(t+\phi)| > (1+2\kappa)/3, |\sin(t+\phi)| < 2\kappa/3$$
 (1.16)

for any $t \in (-\pi/2, -\pi/2 + \delta) \cup (\pi/2 - \delta, \pi/2)$. Let $\chi_{\delta} \in C_0^{\infty}(-\pi/2, \pi/2)$ be the cut-off function with that $0 \le \chi_{\delta} \le 1$, $\chi_{\delta} = 1$ in $(-\delta/2, \delta/2)$ and $\chi_{\delta} = 0$ in $L \setminus (-\delta, \delta)$. Then we can divide I_1 into two parts such that

$$I_{1} = \int_{L} f(t) \cos t e^{\mathbf{i}k_{s}\rho \cos t} dt$$

$$= \int_{\mathbb{R}} f(t) \cos t \chi_{\delta}(t) e^{\mathbf{i}k_{s}\rho \cos t} dt + \int_{L'} f(t) \cos t (1 - \chi_{\delta}(t)) e^{\mathbf{i}k_{s}\rho \cos t} dt \qquad (1.17)$$

$$=: I_{11} + I_{12}$$

where $L' = L \setminus (-\delta/2, \delta/2)$ and $f(t) := f(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2})$. Let $g_{\delta}(t) = f(t) \cos t \chi_{\delta}(t)$ and subtitating $t(s) = 2 \arcsin s/2$ for t in I_{11} , we have

$$I_{11} = \int_{\mathbb{R}} g_{\delta}(t(s)) \frac{1}{\sqrt{1 - s^2/4}} e^{\mathbf{i}k_s \rho} e^{-\mathbf{i}k_s \rho s^2/2} ds$$
 (1.18)

Let $h_{\delta}(s) = g_{\delta}(t(s)) \frac{1}{\sqrt{1-s^2/4}}$. It is easy to see that $h_{\delta}(s) \in C_0^{\infty}(-2\sin\delta/2, 2\sin\delta/2)$. By the lemma of the stationary phase for quadratic term in [9], we have

$$I_{11} = e^{\mathbf{i}k_s\rho} \int_{\mathbb{R}} h_{\delta}(s)e^{-\mathbf{i}\frac{k_s\rho}{2}s^2} ds = e^{\mathbf{i}k_s\rho} \int_{\mathbb{R}} \widehat{h_{\delta}}(y)\alpha(-y)dy$$
 (1.19)

where

$$\alpha(y) = \left(\frac{1}{2\pi k_{s}\rho}\right)^{1/2} e^{-i\pi/4} e^{\frac{i}{2k_{s}\rho}y^{2}}$$
(1.20)

$$= \left(\frac{1}{2\pi k_s \rho}\right)^{1/2} e^{-i\pi/4} \left(1 + O\left(\frac{y^2}{k_s \rho}\right)\right) \tag{1.21}$$

Consequently

$$I_{11} = \left(\frac{1}{2\pi k_s \rho}\right)^{1/2} e^{\mathbf{i}k_s \rho - \mathbf{i}\pi/4} \int_{\mathbb{R}} \widehat{h_\delta}(y) \left(1 + \frac{1}{k_s \rho} O(y^2)\right) dy$$
 (1.22)

But $\int_{\mathbb{R}} \widehat{h_{\delta}}(y) dy = 2\pi h_{\delta}(0)$ and $|\int_{\mathbb{R}} \widehat{h_{\delta}}(y) y^2 dy| < C$ since $|\widehat{h_{\delta}}(y)| < C_1$ and $|\widehat{h_{\delta}}(y)| < C_2/y^4$ where C, C_1, C_2 is independent of ϕ . It turns to estimate I_{12} . Using integration by parts, we obtain

$$|I_{12}| = \left| \frac{1}{k_s \rho} \int_{L'} (f(t) \cos t (1 - \chi_{\delta}(t) / \sin t)' e^{\mathbf{i}k_s \rho \cos t} dt \right|$$
(1.23)

$$\leq \frac{1}{k_s \rho} \left(\int_{L \setminus (-\frac{\pi}{2}, \frac{\pi}{2})} |(f(t)\cos t(1 - \chi_{\delta}(t)/\sin t)'| e^{\mathbf{i}\cos t} dt \right)$$
 (1.24)

$$+ \int_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \left(-\frac{\delta}{2}, \frac{\delta}{2}\right)} \left| \left(f(t)\cos t(1 - \chi_{\delta}(t)/\sin t)'\right| dt \right) \tag{1.25}$$

$$\leq C \frac{1}{k_s \rho} \tag{1.26}$$

Then inequality (1.49) follows.

For I_3 , we split the integral path L into $L_1 = (-\pi/2, \pi/2)$ and $L_2 = (-\pi/2 + \mathbf{i}\infty, -\pi/2) \cup (\pi/2, \pi/2 - \mathbf{i}\infty)$, then we have corresponding representation: $I_3 = I_{31} + I_{32}$. Then $|I_{32}| \leq C/(k_s\rho)$ can be proved by the same method used above. Following a tedious computation, we obtain a simple form of $\partial f/\partial t$:

$$\frac{\partial f}{\partial t} = \frac{(\gamma \partial_t g - g \partial_t \gamma)(\kappa^2 - \sin^2 t)^{1/2}}{(\sin^2 t + \cos t(\kappa^2 - \sin^2 t)^{1/2})^2} \frac{1}{(\kappa^2 - \sin^2 t)^{1/2}}$$
(1.27)

$$:= \frac{h(\sin(t+\phi), \cos(t+\phi), (\kappa^2 - \sin^2(t+\phi))^{1/2})}{(\kappa^2 - \sin^2(t+\phi))^{1/2}}$$
(1.28)

where h and $\partial h/\partial t$ are integrable on path L_1 . Let define $t_1, t_2 \in \chi_1 = (-\pi/2 + \delta, -\delta) \cup (\delta, \pi/2 - \delta)$ which satisfy $\kappa^2 = \sin^2(t_i + \phi)$, i = 1, 2. Moreover, for any $0 < \lambda_1 < 1$ and $1 < \lambda_2 < 1/\kappa$, there exists $\sigma > 0$, which satisfy that $\chi_2 = (t_1 - \sigma, t_1 + \sigma) \cup (t_2 - \sigma, t_2 + \sigma) \subset \chi_1$ and is only dependent on $\lambda_1, \lambda_2, \kappa$, such that

$$\lambda_1 \kappa < |\sin(t + \phi)| < \lambda_2 \kappa. \tag{1.29}$$

for any $t \in \chi_2$. We are now in a position to estimate I_{21} . Similarly, we split the path L_1 into χ_2 and $L_1 \setminus \chi_2$, then we have the corresponding representation: $I_{21} = I_{\chi_2} + I_{L_1 \setminus \chi_2}$.

For I_{χ_2} , we only analysis the integral on $\chi_{21} = (t_1 - \sigma, t_1 + \sigma)$ denoted by $I_{\chi_2}^1$, the procedure of the another is same. Without loss of generality, we assume that $\sin(t_1 - \sigma + \phi) < \kappa < \sin(t_1 + \sigma + \phi)$. It is easy to see that $\sin(t + \phi)$ is monotonic increasing in χ_{21} . Let $\sin(t + \phi) = \kappa \sin \theta$ and the implicit mapping from θ to t is denoted by $t(\theta)$ while the inverse mapping by $\theta(t)$, taking the interval χ_{21} onto $L_{\theta}: \theta_1 \to \pi/2 \to \pi/2 - \mathbf{i}\theta_2$ where $\sin(t_1 - \sigma + \phi) = \kappa \sin \theta_1, \sin(t_1 + \sigma + \phi) = \kappa \sin(\pi/2 - \mathbf{i}\theta_2)$. By substituting $t(\theta)$ into $I_{\chi_2}^1$, we have

$$I_{\chi_2}^1 = \int_{L_\theta} \frac{h(\kappa \sin \theta, (1 - \kappa^2 \sin^2 \theta)^{1/2}, \kappa \cos \theta)}{(1 - \kappa^2 \sin^2 \theta)^{1/2}} e^{\mathbf{i}k_s \rho(\cos(t(\theta)))} d\theta$$
 (1.30)

Because of inequality 1.29, we assert that h and $\partial h/\partial \theta$ are integrable on the path L_{θ} . A simple computation show that

$$\frac{dt(\theta)}{d\theta} = \frac{\kappa \cos \theta}{\cos(t+\phi)} \quad \frac{d^2t(\theta)}{dt^2} = \frac{\kappa^2 \cos^2 \theta \sin(t+\phi) - \kappa \sin \theta \cos^2(t+\phi)}{\cos^3(t+\phi)}$$

Then we can obtain

$$\begin{split} \frac{d\cos t}{d\theta} &= \frac{-\kappa \sin t \cos \theta}{\cos(t+\phi)} \\ \frac{d^2 \cos t}{d\theta^2} &= \frac{d^2 \cos t}{dt^2} (\frac{dt}{d\theta})^2 + \frac{d\cos t}{dt} \frac{d^2t}{d\theta^2} \\ &= \frac{-\kappa^2 \cos^2 \theta \cos t}{\cos^2(t+\phi)} + \frac{\kappa \sin \theta \cos^2(t+\phi) \sin t - \kappa^2 \cos^2 \theta \sin(t+\phi) \sin t}{\cos^3(t+\phi)} \\ &= \frac{-\kappa^2 \cos^2 \theta \cos \phi + \kappa \sin \theta \cos^2(t+\phi) \sin t}{\cos^3(t+\phi)} \\ &= \frac{(\sin^2(t+\phi) - \kappa^2) \cos \phi + \cos^2(t+\phi) \sin(t+\phi) \sin t}{\cos^3(t+\phi)} \end{split}$$

It is simple to see that $\theta = \pi/2$ is the only stationary point of $\cos(t(\theta))$ and we can obtain

$$\left| \frac{d^2 \cos t}{d\theta^2} (\pi/2) \right| = \frac{(1 - \kappa^2)\kappa}{(1 - \kappa^2)^{3/2}} |\sin t| > \frac{(1 - \kappa^2)\kappa}{(1 - \kappa^2)^{3/2}} \sin \delta$$
 (1.31)

Therefore, we can choose appropriate λ_1, λ_2 , only dependent on κ , such that $\left|\frac{d^2 \cos t}{d\theta^2}\right| > \frac{(1-\kappa^2)\kappa}{(1-\kappa^2)^{3/2}} \sin \delta$ for any $\theta \in \theta(\chi_{21})$. Therefore, we can decompose $\theta(\chi_{21})$ into several intervals such that in each either $|\partial \cos(t(\theta))/\partial \theta|$ or $|\partial^2 \cos(t(\theta))/\partial \theta^2|$ has positive lower bound and $|\partial \cos(t(\theta))/\partial \theta|$ is monotonous. Since the amplitude function of integrand in $I_{\chi_2}^1$ and its derivative with respect to θ are both integrable on L_{θ} , the estimation $|I_{\chi_2}^1| \leq C/(k_s\rho)^{1/2}$ can be obtained immediately by lemma 1.1. Then the estimate $|I_{L_1\backslash\chi_2}| \leq C/(k_s\rho)^{1/2}$ also follows lemma 1.1. This completes the proof of the claim 1.

- 2. For the claim 2, since $\phi \neq \phi_1 \kappa$ we always can find some δ enough small such that $\sin^{\ell}(t+\phi) \neq \kappa^2$ for any $t \in (-\delta, \delta)$. Thus, the proof is similar to the claim1, here we omit the details.
- 3. To prove the claim 3, observe that 0 and ϕ' are the only two movable singular points of f'(t) for $t \in L$ where $\sin^2(\phi' + \phi_{\kappa}) = \kappa^2$ and $\phi' \neq 0$. However, we can not use stationary phase lemma directly because the fourth derivatives of amplitude function has singularity when t = 0. Let $0 < \delta < \pi/4$ such that $\sin(t + \phi_{\kappa})$ is monotonic as $t \in (-\delta, \delta)$, then we have $I_1 = I_{11} + I_{12}$, $I_3 = I_{31} + I_{32}$ like (1.17). Using the same argument as in the proof of the claim 1, we easily obtain

$$|I_{12}| \le C \frac{1}{k_s \rho} \quad |I_{32}| \le C \frac{1}{(k_s \rho)^{1/2}}$$
 (1.32)

Obseve that we can always obtain following representation of f(t)

$$f(t) = \frac{g(t)}{\sin^2(t + \phi_\kappa) + \cos(t + \phi_\kappa)(\kappa^2 - \sin^2(t + \phi_\kappa))^{1/2}}$$
(1.33)

$$= \frac{g(t)(\sin^2(t+\phi_{\kappa}) - \cos(t+\phi_{\kappa})(\kappa^2 - \sin^2(t+\phi_{\kappa}))^{1/2})}{(1+\kappa^2)\sin^2(t+\phi_{\kappa}) - \kappa^2}$$
(1.34)

$$= f_1(t) + f_2(t)(\sin^2 \phi_{\kappa} - \sin^2(t + \phi_{\kappa}))^{1/2}$$
(1.35)

$$= f_1(t) + \mathbf{i} f_2(t) (\sin \phi_{\kappa} + \sin(t + \phi_{\kappa}))^{1/2} \cos^{1/2}(t/2 + \phi_{\kappa}) (2\sin \frac{t}{2})^{1/2} \quad (1.36)$$

$$= f_1(t) + g_1(t)(2\sin\frac{t}{2})^{1/2}$$
(1.37)

where $f_1, f_2, g_1 \in C^{\infty}(-\delta, \delta)$. It follows that

$$I_{11} = \int_{\mathbb{R}} f_1(t) \cos t \chi_{\delta}(t) e^{\mathbf{i}k_s \rho \cos t} dt$$

$$+ \int_{\mathbb{R}} g_1(t) \cos t (2 \sin t/2)^{1/2} \chi_{\delta}(t) e^{\mathbf{i}k_s \rho \cos t} dt$$

$$:= I_{111} + I_{112}$$
(1.38)

$$I_{31} = \int_{\mathbb{R}} f_1'(t) \chi_{\delta}(t) e^{\mathbf{i}k_s \rho \cos t} dt$$

$$+ \int_{\mathbb{R}} g_1'(t) (2\sin t/2)^{1/2} \chi_{\delta}(t) e^{\mathbf{i}k_s \rho \cos t} dt$$

$$+ \int_{\mathbb{R}} 1/2 g_1(t) \cos t (2\sin t/2)^{-1/2} \chi_{\delta}(t) e^{\mathbf{i}k_s \rho \cos t}$$

$$:= I_{311} + I_{312} + I_{313}$$

$$(1.39)$$

Subtitating $t(s) = 2 \arcsin s/2$ for t in I_{112} , I_{312} , and I_{313} and by lemma (1.2), we have

$$|I_{112}| \le C \frac{1}{(k_s \rho)^{3/4}}, |I_{312}| \le C \frac{1}{(k_s \rho)^{3/4}}, |I_{313}| \le C \frac{1}{(k_s \rho)^{1/4}}$$
 (1.40)

By lemma (1.1), we have

$$|I_{311}| \le C \frac{1}{(k_s \rho)^{1/2}} \tag{1.41}$$

Finally, the claim 3 is a direct cosequence of using stationary phase theorem for I_{111} . This completes the proof.

References

- [1] Jan Achenbach. Wave Propagation in Elastic Solids. North-Holland, 1980.
- [2] Lars V Ahlfors. Complex Analysis: An introduction to the theory of analytic functions of one complex variable. McGraw-Hill, 1979.
- [3] Habib Ammari, Josselin Garnier, Wenjia Jing, Hyeonbae Kang, Mikyoung Lim, Knut Sølna, and Han Wang. Mathematical and statistical methods for multistatic imaging, volume 2098. Springer, 2013.
- [4] T. Arens. A new integral equation formulation for the scattering of plane elastic waves by diffraction gratings. *Journal of Integral Equations and Applications*, 11(3):232C245, 1999.
- [5] Wen Fong Chang. Elastic reverse-time migration. Geophysical Prospecting, 37(3):243–256, 1987.
- [6] Zhiming Chen and Guanghui Huang. Reverse time migration for reconstructing extended obstacles in the half space. *Inverse Problems*, 31(5):055007, 2015.
- [7] Yves Dermenjian and Jean Claude Guillot. Scattering of elastic waves in a perturbed isotropic half space with a free boundary. the limiting absorption principle. *Mathematical Methods in the Applied Sciences*, 10(2):87C124, 1988.
- [8] Mario Durán, Ignacio Muga, and Jean-Claude Nédélec. The outgoing time-harmonic elastic wave in a half-plane with free boundary. SIAM Journal on Applied Mathematics, 71(2):443–464, 2011.
- [9] Lawrence C Evans. Partial differential equations. 2nd ed. Marcel Dekker,, 2010.
- [10] Loukas Grafakos. Classical and modern Fourier analysis. Prentice Hall, 2004.
- [11] Johng. Harris. Linear elastic waves. Cambridge University Press, 2001.
- [12] Rolf Leis. Initial Boundary Value Problems in Mathematical Physics. J. Wiley, 1986.
- [13] Andrew I. Madyarov and Bojan B. Guzina. A radiation condition for layered elastic media. *Journal of Elasticity*, 82(1):73–98, 2006.
- [14] Mourad Sini. Absence of positive eigenvalues for the linearized elasticity system. *Integral Equations and Operator Theory*, 49(2):255–277, 2004.
- [15] J. Sun, Y. Zhang, J. Sun, and Y. Zhang. Practical issues of reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding. Aseg Extended Abstracts, 2009(3):397– 398, 2008.
- [16] Calvin H. Wilcox. Scattering Theory for the d'Alembert Equation in Exterior Domains. PhD thesis, Springer Berlin Heidelberg, 1975.
- [17] R. Wong, Werner Rheinboldt, and Daniel Siewiorek. Asymptotic Approximations of Integrals. 1989.

[18] Yu Zhang, Sheng Xu, Norman Bleistein, and Guanquan Zhang. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations. Geophysics, 72(1):S49–S58, 2007.