MODULE DAG

DiGraph ${\rm https://} github.com/{\rm nano-o/TLA-}$ taken from operators Library/blob/master/DiGraph.tla

EXTENDS FiniteSets, Naturals, Sequences

The following two operators are from the Specifying Systems book, though I can't make Path work because of Seq being infinite and non-enumerable.

 $Path(G) \stackrel{\triangle}{=}$ The set of paths in G, where a path is represented as a sequence of nodes $\{p \in Seq(G.node) : \land p \neq \langle \rangle$ $\land \forall i \in 1 ... (Len(p) - 1) : \langle p[i], p[i+1] \in G.edge \rangle \}$

 $SeqOf(set, n) \triangleq$

All sequences up to length n with all elements in set. Includes empty sequence.

Union
$$\{[1 \dots m \to set] : m \in 0 \dots n\}$$

 $Contains(s, e) \triangleq$

TRUE iff the element $e \in ToSet(s)$.

$$\exists i \in 1 \dots Len(s) : s[i] = e$$

 $SimplePath(G) \triangleq$

A simple path is a path with no repeated nodes.

 $\{p \in SeqOf(G.node, Cardinality(G.node)): \}$

$$\land p \neq \langle \rangle$$

$$\land Cardinality(\{p[i]: i \in DOMAIN p\}) = Len(p)$$

 $AreConnected(m, n, G) \triangleq True if there is a path from m to n in G$ $\exists p \in Path(G) : (p[1] = m) \land (p[Len(p)] = n)$