Search for an image by its fragment

Authors: Ilia Mistiurin, Nazgul Salikhova, Milyausha Shamsutdionova

Date: 17.07.2024

The Value Proposition

Matching image fragment to its original

The Value Proposition

Finding highly similar images by image fragment

The Value Proposition

Matching image fragment to its original or highly similar images

Use-cases:

- Detection of plagiarism in images
- Product search in retail

Architecture Design

- 1. Dataset preprocessing: Sliding window technique, Object detection model
- 2. Embedder
- 3. Database

Stack and key technologies

- Python 3.11
- Dataset: Open Images V7 (5000 pcs from train set → 59980 instances, class = "Flowers")
- Object detection model: ultralytics/yolov8-oiv7
- Embedder: nomic-ai/nomic-embed-vision-v1.5
- Database: Qdrant (HNSW for indexing)

Evaluation dataset

100 test images was taken from dataset Open Images V7 and fragments was created used the following methods:

- 25 images from validation dataset cropped by flower detection model (Yolov8)
- 25 images from train dataset cropped by detection boxes
- 25 images from validation dataset cropped by sliding window method
- 25 images from train dataset cropped by sliding window method

Experiments

Results

Before dimension reduction

Size of embedding: 768

Memory consuming of all embeddings: 310 Mb

After dimension reduction using PCA

Size of embedding: 223

Memory consuming of all embeddings: 140 Mb

Variance explained: 90%

Minimum Hardware Requirements

RAM: 1 Gb for database

Vram: 1.5 Gb for embedder (depend on batch size)

Disk space: 5 Gb for dataset

Thank you!

https://github.com/MrllyaneX/DLS-Project