Interpreting GEMS geostationary satellite observations of the diurnal variation of nitrogen dioxide (NO₂) over East Asia

Laura H. Yang¹, Daniel J. Jacob^{1,2}, Ruijun Dang¹, Yujin J. Oak¹, Haipeng Lin¹, Jhoon Kim³, Shixian Zhai⁴, Nadia K. Colombi², Drew C. Pendergrass¹, Ellie Beaudry¹, Viral Shah^{5,6}, Xu Feng¹, Robert M. Yantosca¹, Heesung Chong⁷, Junsung Park⁷, Hanlim Lee⁸, Won-Jin Lee⁹, Soontae Kim¹⁰, Eunhye Kim¹⁰, Katherine R. Travis¹¹, James H. Crawford¹¹, Hong Liao¹²

Introduction

- Nitrogen oxide radicals ($NO_x \equiv NO + NO_2$) emitted by fuel combustion are important precursors of ozone and particulate matter pollution.
- The GEMS, launched in space in 2020, now provides hourly daytime observations of NO₂ columns over East Asia.
- Here we investigate the drivers of the diurnal variation of NO₂ observed by GEMS during winter and summer over Beijing and Seoul.

Model & Observations

Diurnal variation of NO_x emissions

- Emissions are dominated by industrial and transport sources in Beijing, and by mobile sources in Seoul.
- Both sectors show a broad maximum between 7 and 18 LT.
- There is no significant rush hour peaks in transport emissions, suggesting that surface NO₂ maxima observed in rush hours are driven more by shallow mixing depth.

Diurnal variation of NO₂ over urban core

- NO₂ in winter increases throughout the day due to high daytime emissions and increasing NO₂/NO_x ratio from entrainment of ozone, partly balanced by loss from transport.
- NO₂ in summer, chemical lass combined with transport drives a minimum in the NO₂ column at 13-14 local time.

Segregation by wind speed in winter

- At high wind speed, emission is balanced by transport leading to weak diurnal variation.
- At low wind speed, NO₂ accumulates as transport cannot keep up with emission.

Diurnal variation of NO₂ at a regional scale

- In winter, NO₂ shows a steady increase over the daytime hours due to emissions, but the transport term remains the major sink of NO_x.
- In summer, NO₂ shows negligible loss from transport in daytime because chemical loss term is much faster, but the diurnal amplitude is weak because of diluted emission and long residence time.

Conclusions

- We can independently infer the emission in the winter and chemistry in the summer by quantifying the transport term using an inversion with a chemical transport model.
- Our conclusions regarding the interpretation of the diurnal variation of NO₂ columns can be extended to other instruments of geostationary air quality constellation like TEMPO and Sentinel-4.

Acknowledgement

- This work was funded by the Samsung Advanced Institute of Technology and the Nanjing University of Information Science and Technology. LHY was funded by a US National Science Foundation Graduate Research Fellowship Program (NSF GRFP).
- Contact LHY at laurayang@g.harvard.edu
- Read the preprint at EGUsphere: https://doi.org/10.5194/egusphere-2023-2979

