Table. Overview of the multiple plot similarity coefficients that are available, including names, formulae, and references. The references are given mainly for the multiple plot case or adaptation. However, in the case of approaches based on pairwise similarities important references to the pairwise case are given as well. The following variables occur: S = pairwise similarity (with the subscript Sor, Sørensen similarity is denoted); s = species richness (with subscript i denoting species richness on the ith plot and subscript n (number of plots) denoting total species richness in the neighborhood); b = number of species exclusive to a site (such that min (b_{ij}, b_{ji}) denotes the minimum number of species exclusive to one of any two compared sites, for details see Baselga 2010).

Multiple plot similarity measure	Formula	References
Average pairwise similarity	mps _{av} = \overline{S}_{Sor}	Sørensen 1948, Hubalek 1982, Lennon et al. 2001, Koleff et al. 2003
Average pairwise similarity between focal and surrounding plots	mps _{avt} = S _{Sor}	Sørensen 1948, Koleff et al. 2003, Jurasinski et al. 2007
Multiplicative partitioning (Whittaker's beta)	$mps_{mol} = \frac{s_n}{\sum_i s_i/n}$	Whittaker 1960
Inverse multiplicative partitioning	$mps_{inv} = \frac{\sum\limits_{i} s_{i}/n}{s_{n}}$	This paper
Additive partitioning	$mps_{add} = s_n - \sum_i s_i/n$	Lande 1996, Veech et al. 2002, Crist et al. 2003
Harrison multiple plot turnover measure	$mps_{Hat} = \frac{\frac{s_h}{maxs_t} - 1}{n - 1}$	Harrison et al. 1992, Baselga 2010
Williams multiple plot turnover measure	$mps_{Wit} = 1 - \frac{max s_i}{s_n}$	Williams 1996, Baselga 2010
Harrison multiple plot dissimilarity	$mps_{Her} = \frac{mps_{mul} - 1}{n - 1}$	Harrison et al. 1992, Baselga 2010
Diserud & Ødegaard multiple plot similarity	$mps_{DO} = \frac{n - mps_{mul}}{n - 1}$	Diserud & Ødegaard 2007, Baselga 2010
Sørensen based multiple plot similarity	$mps_{Sor} = 1 - \frac{\left[\sum_{i=1}^{n} min(b_{ij}, b_{ji})\right] + \left[\sum_{i=1}^{n} max(b_{ij}, b_{ji})\right]}{2\left[\sum_{i} s_{i} - s_{n}\right] + \left[\sum_{i=1}^{n} min(b_{ij}, b_{ji})\right] + \left[\sum_{i=1}^{n} max(b_{ij}, b_{ji})\right]}$	- Baselga 2010 I
Simpson based multiple plot similarity	$\begin{aligned} & \text{mps}_{\text{Sim}} = 1 - \frac{\left[\sum\limits_{i,j}^{n} \min(b_{ij}, b_{ji})\right]}{2\left[\sum\limits_{i} s_{i} - s_{n}\right] + \left[\sum\limits_{i,j}^{n} \min(b_{ij}, b_{ji})\right]} \end{aligned}$	Baselga et al. 2007, Baselga 2010
Nestedness-resultant multiple plot similarity	mps _{nes} = mps _{Sor} - mps _{Sim}	Baselga 2010
symmetric focal multiple plot similarity	$mps_{i} = \sum_{i=1}^{n_{i}} f_{oi} + \sum_{j=1}^{n_{i}} f_{nj}$	This paper
asymmetric focal multiple plot plot similarity	$mps_{f_0} = \sum_{i=1}^{n_0} f_{oi} + \sum_{j=1}^{n_0} f_{nj}$	This paper
presence only focal multiple plot similarity	$mps_{tpo} = \sum_{i=1}^{s_o} f_{oi}$	This paper