Exercices sur le chapitre 1

Les ensembles de nombres

Exercice 1

- (1) Faire un *diagramme de Venn* des ensembles \mathbb{N} , \mathbb{Z} , \mathbb{D} et \mathbb{Q} et placer sur ce diagramme les nombres -8; $\frac{45}{12}$; 0; 4,017; $\frac{9^{24}}{3^{49}}$; 10^{100} ; 0,2⁴.
- (2) Calculer et placer sur ce diagramme :

a=l'inverse du double de la somme de 3 et de 5

b=l'opposé du carré de la différence de 4 et de 9

 $c={\rm la}$ somme de l'inverse de 6 et de l'opposé de -3

d=le produit de 12 par la somme des inverses de 4 et de 3

Exercice 2

Compléter par le symbole correct parmi $\in,\not\in,\subset,\not\subset:$

745...
$$\mathbb{N}$$
 $\frac{6}{2}$... \mathbb{N} -9 ... \mathbb{N} $\left\{-26\right\}$ \mathbb{Z}

$$3,2...\mathbb{Z}$$
 $\left\{\frac{1}{2},\frac{1}{3},\frac{1}{4}\right\}.....\mathbb{D}$ $27...\mathbb{Z}$ $-65,07...\mathbb{D}$

$$\frac{7}{5}\dots\mathbb{D}$$
 $-47\dots\mathbb{Q}$ $-\frac{1}{3}\dots\mathbb{D}$ $\frac{11}{13}\dots\mathbb{Q}$

$$\mathbb{N}.....\mathbb{D}$$
 $-\frac{21}{3}...\mathbb{Z}$ $-9478...\mathbb{Z}$ $-\frac{0,1}{0,002}...\mathbb{Z}$

1

$$\varnothing \dots \mathbb{D}$$
 $\left\{-\frac{1}{7}, \frac{3}{4}\right\} \dots \mathbb{D}$ $\frac{2}{3} \dots \mathbb{D}$ $\frac{11}{13} \dots \mathbb{Q}$

Exercice 3

Que peut-on dire du développement décimal d'un nombre :

a) de l'ensemble $\mathbb D$? b) de l'ensemble $\mathbb Q$? c) de l'ensemble $\mathbb I$?

Calculer si nécessaire les nombres du tableau, puis compléter chaque case par \in ou \notin :

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
$a = -\frac{56}{8}$					
$b = \frac{9}{4}$					
$c = \frac{1}{3} : \left(-\frac{5}{6}\right)$					
$d = -\sqrt{3}$					
$e = \frac{2013}{9}$					

Exercice 5

(1) Ecrire les nombres suivants sous la forme $\frac{a}{10^n}$, avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$ et en déduire qu'ils appartiennent tous à \mathbb{D} .

$$a = \frac{7}{4} \,, \ b = -\frac{6}{5} \,, \ c = \frac{3}{20} \,, \ d = \frac{1}{25} \,, \ e = -\frac{13}{40} \,, \ f = \frac{3}{5^4} \,, \ g = \frac{-6}{2^7 \cdot 5^5} \,, \ h = \frac{24^7}{20^3 \cdot 144^2} \,, \ h = \frac{24^7}{20^3 \cdot 144^2} \,, \ h = \frac{1}{20^3 \cdot 144^2} \,,$$

(2) Les nombres rationnels suivants appartiennent-ils à \mathbb{D} ? Justifier pourquoi vous ne pouvez pas les mettre sous la forme $\frac{a}{10^n}$, avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

$$a' = \frac{17}{60}, \ b' = -\frac{8}{35}, \ c' = \frac{54}{55}, \ d' = \frac{-9}{56}, \ e' = \frac{7}{3'000}, \ f' = \frac{27}{2^4 \cdot 5^3 \cdot 7}, \ g' = \frac{9^2}{2^{10} \cdot 3^6}$$

- (3) a) Compléter : Une fraction irréductible appartient à \mathbb{D} ssi la factorisation première du dénominateur ne contient que les nombres premiers et
 - b) En utilisant la règle énoncée sous a), décider si les rationnels suivants sont dans $\mathbb D$ ou non :

$$a" = \frac{78}{320}, b" = \frac{81}{2700}, c" = \frac{-21}{980}, d" = \frac{2^3 \cdot 5^2 \cdot 3^5}{24^3 \cdot 40^2}, e" = \frac{133}{-182}$$

Exercice 6

Comparer les nombres suivants et compléter par l'un des symboles <,>,= :

2

a)
$$-0,\overline{001}$$
 ... $-0,0\overline{01}$

c)
$$-3.12\overline{9}$$
 ... -3.13

b)
$$\frac{1}{0,333}$$
 ... 3

d)
$$2,45\overline{635}$$
 ... $2,45\overline{63}$

- (1) Compléter:
 - a) $\mathbb{Z} \dots \mathbb{Q}$

d) $\mathbb{N}...\mathbb{Z}_{+}$

b) $\mathbb{I} \cup \mathbb{Q} = \dots$

e) $\frac{1}{3}$... \mathbb{I}

c) $\sqrt{2}$... \mathbb{Q}

- f) $\mathbb{Q} \cap \mathbb{N} = \dots$
- (2) Compléter par le symbole correct parmi $\in, \not\in, \subset, \not\subset, =$:

d) $-\frac{2004}{88}$ \mathbb{D}

b) $\mathbb{N}^* \dots \mathbb{D}_+$

e) 24N.....6N

c) $\sqrt{(-2)^2}$ \mathbb{Z}_{-}

f) $3 + \frac{10}{71} - \pi \dots \mathbb{R}_{+}$

Exercice 8

Quel est le 2012^e chiffre derrière la virgule du développement décimal périodique

a)

$$de \frac{8}{13}$$
 ?

b) de
$$\frac{8}{13} \cdot 10^{-2}$$
? c) de $\frac{8}{13} \cdot 10^{25}$?

c) de
$$\frac{8}{13} \cdot 10^{25}$$
?

Exercice 9

Ecrire sous forme d'une fraction irréductible à termes entiers les réels

a)
$$u = 35, \overline{4}$$

b)
$$y = 1, \overline{54}$$

c)
$$z = -0.03$$
 d) $x = 6.\overline{24}$

d)
$$x = 6, \overline{2}$$

Exercice 10

Compléter le tableau suivant par \in ou \notin :

	\mathbb{Z}_{-}	\mathbb{D}	\mathbb{Q}_+	\mathbb{R}_{-}	I
$\sqrt{9}$					
$-\frac{13}{125}$					
$(-12)^{25}$					
$0,000515\cdot 10^{15}$					

Dessiner un diagramme de Venn représentant tous les ensembles de nombres que vous connaissez, puis placez les nombres suivants sur ce diagramme :

a)
$$-6$$
; $\frac{8}{2}$; $\frac{58}{100}$; $-\frac{93}{31}$; $\frac{3}{7}$; $-\frac{2}{5}$; $3,\overline{123}$

b)
$$9,\overline{57}$$
; $\frac{\pi}{2}$; $-\sqrt{3}$; $\frac{63}{14}$; 2^{10} ; $\frac{0}{\sqrt{\pi}}$; $-\sqrt{36}$

c)
$$4,33$$
; $\sqrt{5}$; $-\frac{6}{8}$; $\frac{12}{7}$; -11^2 ; $\frac{12}{3}$

Exercice 12

Donner le développement décimal des fractions suivantes et en préciser la période :

a)
$$\frac{111}{9}$$

d)
$$-\frac{147}{14}$$

g)
$$\frac{6}{125}$$

b)
$$\frac{232}{33}$$

e)
$$\frac{120}{111}$$

h)
$$-\frac{6519}{3000}$$

c)
$$\frac{9}{26}$$

f)
$$\frac{22}{7}$$

i)
$$\frac{63}{56}$$

Exercice 13

Trouver le \dots

a) ... 45° chiffre derrière la virgule du d.d.p. de $\frac{10}{7}$.

b) ... 2012° chiffre derrière la virgule du d.d.p. de $\frac{17}{13}$.

Exercice 14

Ecrivez les d.d.p. suivants sous forme de fractions (irréductibles) de nombres entiers :

1^{re}	série

a)
$$2,\overline{7}$$

b)
$$-3,0\overline{4}$$

c)
$$11,2\overline{21}$$

d)
$$3,\overline{92}$$

e)
$$2,01\overline{3}$$

$$\mathbf{f}$$
) $3,\overline{60}$

2^e série

a)
$$32,5\overline{123}$$

b)
$$7,69\overline{26}$$

c)
$$0.21\overline{6}$$

d)
$$8,\overline{020202}$$

e)
$$17,95\overline{555}$$

f)
$$7,105\overline{105105}$$

Calculer (donnez le résultat sous forme de d.d.p.) :

a)
$$a = 0.8\overline{3} - 0.4\overline{6}$$

c)
$$c = 5, \overline{8} + 0, 3$$

b)
$$b = 3, \overline{71} + 1, \overline{5}$$

d)
$$d = 0, \overline{6} \cdot 0, 4\overline{09}$$

Mettre les nombres suivants sous forme d'une fraction irréductible, puis décider s'il s'agit de nombres décimaux ou non :

a)
$$\frac{0,4}{0,3}$$

b)
$$\frac{2^3 - \frac{7}{2}}{0,15}$$

c)
$$\frac{1,\overline{3}}{0,2^3}$$

d)
$$3 \cdot \frac{45}{56} : \frac{60}{28}$$

e)
$$\frac{4 - \frac{3}{2,1}}{2,5 + \frac{1}{2}}$$

f)
$$4, \overline{6} - (-9)^8 \cdot \frac{2}{27^5}$$

$$g) \ \frac{12^{12} \cdot 21^{21}}{7^7 \cdot 14^{14} \cdot 15^{15}}$$