Faculté de Sciences et Technologie - UPEC $2^{\rm \acute{e}me}$ Contrôle Continu de Mécanique du Point 1 (29/11/2023)

Responsable TD: Felipe FIGUEREDO ROCHA felipe.figueredo-rocha@u-pec.fr

NOM:	Prénom:	Numéro:
Licence:	Groupe:	Note:

Instructions et rappels

- Calculettes et téléphones portables interdits (stricte! le nom sera remonté aux coordinateurs).
- N'oubliez pas les unités, des flèches au-dessus des vecteurs, etc.
- On négligera la poussé d'Archimède et le frottement sauf si autrement dit.
- Dérivé d'un fonction composé: $(f \circ g)'(x) = (f' \circ g)(x)g'(x)$.
- Produit scalaire en deux dimensions : $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y = ||a|| ||b|| \cos \theta$, où θ est l'angle entre \vec{a} et \vec{b} .
- Quelques relations en repère polaire avec l'angle θ mesuré par rapport \vec{u}_x (ci-dessous dépendance explicite du temps omis, $r = r(t), \theta = \theta(t), \vec{u}_r = \vec{u}_r(t), \vec{u}_\theta = \vec{u}_\theta(t)$):

$$\vec{u}_r = \cos\theta \vec{u}_x + \sin\theta \vec{u}_y, \quad \vec{u}_\theta = -\sin\theta \vec{u}_x + \cos\theta \vec{u}_y, \quad , \dot{\vec{u}}_r = \dot{\theta} \vec{u}_\theta, \quad \dot{\vec{u}}_\theta = -\dot{\theta} \vec{u}_r,$$

$$\vec{OM}(t) = r\vec{u}_r, \quad d\vec{OM}(t) = dr\vec{u}_r + rd\theta \vec{u}_\theta, \quad \vec{v}(t) = \dot{r}\vec{u}_r + r\dot{\theta}\vec{u}_\theta, \quad \vec{a}(t) = (\ddot{r} - r\dot{\theta}^2)\vec{u}_r + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{u}_\theta$$

- Travail d'une force entre A et B : $W_{A \to B}(\vec{F}) = \int_A^B \vec{F} \cdot d\vec{OM}$
- Enérgie cinétique en A (instant t_A) : $E_c^A = \frac{1}{2} m \|\vec{v}(t_A)\|^2$
- Theorème d'énergie cinétique entre A et $B\colon E^B_c E^A_c = \sum_{\vec{F}} W_{A\to B}(\vec{F})$.

Q1 (10 pts): skateur dans un half-pipe (analogue pendule)

Un skateur de masse m est sur un half-pipe semi-circulaire (moitié d'un cercle) de rayon R. On va considérer le skateur comme une particule M qui ne décolle jamais du half-pipe, c'est-à-dire, il sera toujours à une distance R de l'origine O. On repère la position du skateur par l'angle θ qu'il fait avec la vertical descendent depuis O. La norme de l'accéleration de la pesanteur est dénoté g (le vecteur \vec{g} pointe vers le bas). On va étudier ce mouvement en repère polaire.

- 1. Complétez la Figure 1 ci-dessous en plaçant θ , \vec{u}_x , \vec{u}_y , \vec{u}_r , \vec{u}_θ selon la convention usuelle (voir rappel si besoin et notez qu'il de fléchés en plus).
- 2. Faire un bilan de forces (sans frottement) appliqué sur la particule M et donner les expressions de toutes les forces en repère polaire (n'oubliez pas de dessiner ces vecteurs).

Figure 1

- 3. Donner les expressions simplifiés pour ce type de mouvement pour les vecteurs vitesse \vec{v} et accélération \vec{a} en repère polaire (voir rappel).
- 4. Appliquer le principe fondamentale de la dynamique (PFD) et les projeter sur l'axe \vec{u}_{θ} et \vec{u}_{r} .
- 5. En utilisant le PFD sur \vec{u}_{θ} , déduire l'équation différentiel qui gouverne ce mouvement en utilisant l'approximation $\sin \theta \approx \theta$ pour des petites oscillations.
- 6. Vérifiez qu'une solution du type $\theta(t) = A \sin \omega t$ peut satisfaire l'équation précédent. Donner aussi l'expression pour ω en fonction de g et R.
- 7. Dans l'instant initial le skateur est au tout au fond du half-pipe, avec $\theta(0) = 0$, et il imprime une vitesse angulaire (par exemple en s'autopropulsant avec ces pieds) de sorte que $\dot{\theta}(0) = \dot{\theta}_0$. Déterminez la constant A en fonction de $\dot{\theta}_0$ et ω . Qu'est-ce que représente A et donner sa dimension.
- 8. Ce mouvement circulaire est-il uniforme ou non-uniforme? pourquoi?
- 9. Pour le cas particulier de $R=10\mathrm{m},\,g=10\mathrm{m/s^2},\,\dot{\theta}_0=5\times10^{-2}\mathrm{rad/s},\,\mathrm{calculer}~\omega$ et A.
- 10. Pour ce cas particulier, tracer $\theta(t)$ pour $t \in [0s, T]$, où T est temps nécessaire pour que la fonction sinus complète son cycle. N'oubliez pas de calculer T (en fonction de π) et d'écrire la valeur de T et A sur le dessin.

- 11. Donner l'expression d'énérgie cinétique générique en fonction de R, m et $\dot{\theta}$ (utilisez la formule de vitesse du l'exercise 3).
- 12. Pour le cas particulier l'exercise 9 et pour m = 80kg, calculer l'énergie cinétique du skateur de masse à l'instant t = 0s.
- 13. Donner l'expression du travail $W_{0\to f}(\vec{P})$ réalisé par la force de poids entre $\theta_0=0$ rad et θ_f , en fonction des valeurs génériques de m,g,θ_f .
- 14. En utilisant le théorème d'énergie cinétique, donner l'expression pour $\dot{\theta}_0$ nécessaire pour que le skateur arrive jusqu'au bord supérieur du half-pipe (à $\theta_f = \pi/2$) mais sans le dépasser.
- 15. Maintenant, une force de frottement constant est présent $\vec{f} = -f\vec{u}_{\theta}$ (en supposant $\dot{\theta}_0 > 0$), donner une expression $\dot{\theta}_0$ sous les mêmes conditions du problème précédent.

Q2 (6 pts): repère polaire alternatif

Imaginons que dans une autre pays du monde la convention préféré pour le repère polaire est tel que la position d'une particule M soit paramétrisé par sa distance $\rho = \rho(t)$ (variable avec le temps) par rapport l'origine O et une angle $\alpha = \alpha(t)$ (variable avec le temps) mesuré par rapport à \vec{u}_y de tel sorte que $\vec{e}_\rho = -\sin\alpha\vec{u}_x + \cos\alpha\vec{u}_y$ et $\vec{e}_\alpha = \cos\alpha\vec{u}_x + \sin\alpha\vec{u}_y$ représente les vecteurs radiale et circonférentielle de la base, respectivement (notez qu'on a utilisé d'autres lettres pour cette nouvelle base afin de ne pas confondre avec la notation du rappel).

- 1. (1,5pts) Dessinez le repère $R'(O, \vec{e}_{\rho}, \vec{e}_{\alpha})$ par rapport au repère cartésien $R(O, \vec{u}_x, \vec{u}_y)$ dans l'space ci-dessous.
- 2. (1,5pts) Vérifiez que $\{\vec{e}_{\rho},\vec{e}_{\alpha}\}$ est une base orthonormale, c'est-à-dire, $\|\vec{e}_{\rho}\| = \|\vec{e}_{\alpha}\| = 1$ et $\vec{e}_{\rho} \cdot \vec{e}_{\alpha} = 0$.
- 3. (1,5pts) Démontrez des expressions pour $\dot{\vec{e}}_{\rho}$ et $\dot{\vec{e}}_{\alpha}$ (analogues mais différents à celles du rappel).
- 4. (1,5pts) En sachant que $\vec{OM} = \rho \vec{e}_{\rho}$, ou de manière explicite $\vec{OM}(t) = \rho(t)\vec{e}_{\rho}(\alpha(t))$, dérivez ce vecteur pour obtenir la vitesse \vec{v} (analogue mais pas exactement égal à celle du rappel).