TH-Quiz 6 (Point Processes)

Due May 12, 2020 (11:59 pm)

- 1. Suppose that $\{N_1(t), t \geq 0\}$ and $\{N_2(t), t \geq 0\}$ are independent Poisson processes with rates λ_1 and λ_2 . Show that $\{N_1(t) + N_2(t), t \geq 0\}$ is a Poisson process with rate $\lambda_1 + \lambda_2$. Also, show that the probability that the first event of the combined process comes from $\{N_1(t), t \geq 0\}$ is $\lambda_1/(\lambda_1 + \lambda_2)$, independently of the time of the event.
- 2. Buses arrive at a certain stop according to a Poisson process with rate λ . If you take the bus from that stop then it takes a time R, measured from the time at which you enter the bus, to arrive home. If you walk from the bus stop the it takes a time W to arrive home. Suppose that your policy when arriving at the bus stop is to wait up to a time s, and if a bus has not yet arrived by that time then you walk home.
 - (a) Compute the expected time from when you arrive at the bus stop until you reach home.
 - (b) Show that if $W < 1/\lambda + R$ then the expected time of part (a) is minimized by letting s = 0; if $W > 1/\lambda + R$ then it is minimizes by letting $s = \infty$ (that is, you continue to wait for the bus); and when $W = 1/\lambda + R$ all values of s give the same expected time.
 - (c) Give an intuitive explanation of why we need only consider the cases s=0 and $s=\infty$ when minimizing the expected time.