GO enrichment by NetBAS HBG

This R script is used to calculate z-scores

```
rm(list=ls())
library(plyr)
library(gplots)
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
##
       lowess
library(microbenchmark)
library(matrixStats)
##
## Attaching package: 'matrixStats'
## The following object is masked from 'package:plyr':
##
##
       count
library(GO.db)
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
       clusterExport, clusterMap, parApply, parCapply, parLapply,
##
       parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind,
##
       colMeans, colnames, colSums, dirname, do.call, duplicated,
       eval, evalq, Filter, Find, get, grep, grepl, intersect,
##
       is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
##
##
       paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
```

```
##
       Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
##
       table, tapply, union, unique, unsplit, which, which.max,
##
       which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
## Loading required package: IRanges
## Loading required package: S4Vectors
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:gplots':
##
##
       space
## The following object is masked from 'package:plyr':
##
##
       rename
## The following object is masked from 'package:base':
##
##
       expand.grid
## Attaching package: 'IRanges'
## The following object is masked from 'package:plyr':
##
##
       desc
##
#all GO terms
go.file <- read.csv("data/human.go.csv", header=T, stringsAsFactors=F)</pre>
GO.gene <- go.file$gene
GO.id <- go.file$goid
GO.type <- go.file$type
bp.go.cat <- unique(sort(GO.id[which(GO.type == "P")]))</pre>
cc.go.cat <- unique(sort(GO.id[which(GO.type == "C")]))</pre>
mf.go.cat <- unique(sort(GO.id[which(GO.type == "F")]))</pre>
bp.hspin <- matrix(as.numeric(unlist(read.table("output/genes.bp.csv", header=F, sep=","))), ncol=1)</pre>
bp.obs <- c(bp.hspin)</pre>
bp.dim <- length(bp.go.cat)</pre>
cc.hspin <- matrix(as.numeric(unlist(read.table("output/genes.cc.csv", header=F, sep=","))), ncol=1)
```

```
cc.obs <- c(cc.hspin)</pre>
cc.dim <- length(cc.go.cat)</pre>
mf.hspin <- matrix(as.numeric(unlist(read.table("output/genes.mf.csv", header=F, sep=","))),ncol=1)
mf.obs <- c(mf.hspin)</pre>
mf.dim <- length(mf.go.cat)</pre>
#data from 100 permutations generated using previous R code (02.GO.Rmd)
bp.perm <- c()</pre>
cc.perm <- c()
mf.perm <- c()
for (i in 1:100) {
    bp.name <- paste("output/ms02.", i, ".bp.csv", sep="")</pre>
    cc.name <- paste("output/ms02.", i, ".cc.csv", sep="")
    mf.name <- paste("output/ms02.", i, ".mf.csv", sep="")</pre>
    bp.mat <- matrix(as.numeric(unlist(read.table(bp.name, header=F, sep=","))), ncol=1)</pre>
    cc.mat <- matrix(as.numeric(unlist(read.table(cc.name, header=F, sep=","))), ncol=1)</pre>
    mf.mat <- matrix(as.numeric(unlist(read.table(mf.name, header=F, sep=","))), ncol=1)</pre>
    bp.perm <- rbind(bp.perm, c(bp.mat))</pre>
    cc.perm <- rbind(cc.perm, c(cc.mat))</pre>
    mf.perm <- rbind(mf.perm, c(mf.mat))</pre>
}
bp.mean <- colMeans(bp.perm)</pre>
bp.std <- colSds(bp.perm)</pre>
cc.mean <- colMeans(cc.perm)</pre>
cc.std <- colSds(cc.perm)</pre>
mf.mean <- colMeans(mf.perm)</pre>
mf.std <- colSds(mf.perm)</pre>
#Z-score calculations
bp.zscore <- c()</pre>
for (k in 1:bp.dim) {
  bp.zscore[k] <- round((bp.obs[k] - bp.mean[k])/max(1, bp.std[k]), 3)</pre>
cc.zscore <- c()
for (k in 1:cc.dim) {
  cc.zscore[k] <- round((cc.obs[k] - cc.mean[k])/max(1, cc.std[k]), 3)
}
mf.zscore <- c()
for (k in 1:mf.dim) {
  mf.zscore[k] <- round((mf.obs[k] - mf.mean[k])/max(1, mf.std[k]), 3)</pre>
}
bp.order <- order(-bp.zscore)</pre>
mf.order <- order(-mf.zscore)</pre>
cc.order <- order(-cc.zscore)</pre>
z.bp <- matrix(bp.zscore[bp.order], nrow=bp.dim)</pre>
z.cc <- matrix(cc.zscore[cc.order], nrow=cc.dim)</pre>
z.mf <- matrix(mf.zscore[mf.order], nrow=mf.dim)</pre>
```

```
bp.obs <- bp.obs[bp.order]</pre>
bp.mean <- round(bp.mean[bp.order],3)</pre>
bp.std <- round(bp.std[bp.order],3)</pre>
cc.obs <- cc.obs[cc.order]</pre>
cc.mean <- round(cc.mean[cc.order],3)</pre>
cc.std <- round(cc.std[cc.order],3)</pre>
mf.obs <- mf.obs[mf.order]</pre>
mf.mean <- round(mf.mean[mf.order],3)</pre>
mf.std <- round(mf.std[mf.order],3)</pre>
rownames(z.bp) <- bp.go.cat[bp.order]</pre>
rownames(z.cc) <- cc.go.cat[cc.order]</pre>
rownames(z.mf) <- mf.go.cat[mf.order]</pre>
bp.enrich.list <- rownames(z.bp)</pre>
cc.enrich.list <- rownames(z.cc)
mf.enrich.list <- rownames(z.mf)</pre>
bp.enrich.list <- rownames(z.bp)</pre>
cc.enrich.list <- rownames(z.cc)
mf.enrich.list <- rownames(z.mf)</pre>
bp.enriched.terms <- c("GO.ID", "GO.Term", "zscore", "obs", "mean", "std")
for (i in 1:length(bp.enrich.list)) {
  id <- as.character(bp.enrich.list[i])</pre>
  term <- Term(GOID(id))</pre>
  z.gene <- z.bp[i]
  bp.enriched.terms <- rbind(bp.enriched.terms, c(id, term, z.gene, bp.obs[i], bp.mean[i], bp.std[i]))</pre>
bp.enriched.terms
##
## bp.enriched.terms "GO.ID"
##
                        "GD:0032981"
                       "GD:0006120"
##
##
                        "GO:1902600"
                        "GD:0009060"
##
                        "GD:0015990"
##
##
                       "GD:0006123"
                       "GD:0070126"
##
                       "GO:0070125"
##
                       "GO:0042775"
##
                       "GO:0006122"
##
##
                       "GD:0045333"
                        "GD:0022900"
##
##
                       "GO:0055114"
##
                       "GO:0006754"
##
                        "GD:0097250"
##
                        "GO:0033572"
##
                       "GO:0072593"
##
                       "GD:0015991"
##
                        "GD:0033617"
##
                        "GD:0042776"
##
                       "GD:0046322"
##
                        "GD:0006099"
```

##	"GO:0008535"
##	"GD:0006744"
##	"GD:0006626"
##	"GD:0006000"
##	"GD:0006096"
##	"GD:0030961"
##	"GD:0034220"
##	"GD:0006119"
##	"GO:0032543"
##	"GO:0030150"
##	"GO:0045039"
##	"GO:0015980"
##	"GD:0006094"
##	"GD:0061621"
##	"GD:0006116"
##	"GD:0042760"
##	"GO:0051791"
##	"GO:0009245"
##	"GD:0000820"
##	"GO:1904182"
##	"GD:0006091"
##	"GD:0009249"
##	"GD:0070072"
##	"GD:0006979"
##	"GO:0016241"
##	"GO:0033539"
##	"GD:0030388"
##	"GO:0043312"
##	"GO:0042407"
##	"GO:0007035"
##	"GD:0090646"
##	"GO:0097745"
##	"GD:0070901"
##	"GO:1990180"
##	"GD:0008286"
##	"GD:0007005"
##	"GD:0061624"
##	"GO:1901006"
##	"GO:0051341"
##	"GO:0034551"
##	"GO:0072350"
##	"GD:0006541"
##	"GO:0010510"
##	"GO:0015853"
##	"GD:0009083"
##	"GD:0006103"
##	"GD:2000984"
##	"GD:0036295"
##	"GD:0007017"
##	"GD:0022904"
##	"GO:0015867"
##	"GD:0008637"
##	"GO:0005975"
##	"GO:0070131"

##	"GD:0006090"
##	"GO:0015866"
##	"GD:0006104"
##	"GO:0006121"
##	"GO:0061458"
##	"GO:0034599"
##	"GO:0051289"
##	"GO:0099132"
##	"GD:0001676"
##	"GD:0007339"
##	"GD:0008635"
##	"GD:0009642"
##	"GO:0006105"
##	"GO:0015986"
##	"GO:0044528"
##	"GO:0042773"
##	"GO:1903426"
##	"GD:0019646"
##	"GO:1902957"
##	"GO:0032259"
##	"GD:0006644"
##	"GO:0009058"
##	"GD:0006638"
##	"GO:0010517"
##	"GO:0014048"
##	"GD:0032769"
##	"GO:0050812"
##	"GO:0051585"
##	"GO:0051622"
##	"GO:1903284"
##	"GO:1904307"
##	"GO:1903285"
##	"GO:0005980"
##	"GO:0019076"
##	"GO:0045454"
##	"GD:0006418"
##	"GD:0010940"
##	"GO:0042542"
##	"GD:0106077"
##	"GD:0007006"
##	"GD:0006783"
##	"GO:0015949"
##	"GO:0051583"
##	"GD:0046034"
##	"GD:0006820"
##	"GD:0006086"
##	"GO:0051612"
##	"GO:0061732"
##	"GO:0006941"
##	"GD:0042026"
##	"GO:0045963"
##	"GD:0032026"
##	"GD:0098656"
##	"GO:0046716"

##	"GD:0032482"
##	"GO:0051881"
##	"GD:0006069"
##	"GD:0006002"
##	"GO:0051656"
##	"GO:0006102"
##	"GO:0010021"
##	"GD:0098694"
##	"GD:0000096"
##	"GO:1903421"
##	"GO:0044381"
##	"GO:0015698"
##	"GD:0006627"
##	"GO:2001243"
##	"GO:0042744"
##	"GO:0009408"
##	"GO:0000226"
##	"GO:0032790"
##	"GO:1904504"
##	"GD:0008626"
##	"GO:0018283"
##	"GO:0048227"
##	"GO:1903217"
##	"GO:1904046"
##	"GO:1905337"
##	"GD:0006986"
##	"GO:0042416"
##	"GO:0019388"
##	"GO:0045851"
##	"GO:0044281"
##	"GD:0009298"
##	"GD:0010040"
##	"GO:0046689"
##	"GO:1903579"
## ##	"GO:0051156" "GO:0098869"
##	"GD:0098869"
## ##	"GD:0032410" "GD:0010565"
##	"GO:0010363
##	"GD:0006546"
##	"GD:0019464"
##	"GD:0006879"
##	"GD:0000379
##	"GD:0051068"
##	"GD:0002082"
##	"GD:0070495"
##	"GD:0006635"
##	"GD:0006458"
##	"GD:0010266"
##	"GO:1903147"
##	"GD:0090131"
##	"GD:0006241"
##	"GD:0006565"
	22.300000

##	"GO:0008652"
##	"GO:0021539"
##	"GO:0021548"
##	"GD:0006183"
##	"GD:0006730"
##	"GO:0072321"
##	"GD:0006452"
##	"GO:0045905"
##	"GD:0006703"
##	"GD:0006127"
##	"GO:0034389"
##	"GD:0006457"
##	"GD:0006011"
##	"GO:0016024"
##	"GD:0061179"
##	"GO:0051621"
##	"GO:0046732"
##	"GO:0045901"
##	"GO:0070124"
##	"GD:0002949"
##	"GD:0050790"
##	"GD:0006487"
##	"GO:1902254"
##	"GD:0000303"
##	"GO:1901029"
##	"GO:0001921"
##	"GO:0019918"
##	"GO:0097435"
##	"GD:0006434"
##	"GO:0061724"
##	"GO:1902583"
##	"GO:1905366"
##	"GO:0032272"
##	"GO:0000050"
##	"GD:0042450"
##	"GD:0006851"
##	"GD:0034620"
##	"GO:0018171"
##	"GD:0007010"
##	"GD:0097056"
##	"GD:1990809"
##	"GD:0006749"
##	"GD:0022898"
##	"GD:0006228"
##	"GO:0090181"
##	"GO:0043030"
##	"GO:1904874"
##	"GO:1905289"
##	"GD:0006047"
##	"GD:0006739"
##	"GD:0048738"
##	"GO:0034983"
##	"GO:1903542"
##	"GD:0000002"
	

##	"GO:0051085"
##	"GO:0046835"
##	"GO:0035338"
##	"GO:0055074"
##	"GO:0033499"
##	"GO:0034465"
##	"GO:0044210"
##	"GO:0042267"
##	"GO:0007585"
##	"GO:0019518"
##	"GO:0007174"
##	"GO:0055129"
##	"GD:0006013"
##	"GO:0016259"
##	"GO:0071492"
##	"GO:0006654"
##	"GO:0033762"
##	"GO:0006567"
##	"GO:0006165"
##	"GO:0021762"
##	"GO:0006048"
##	"GO:0006084"
##	"GO:0071301"
##	"GO:1904404"
##	"GO:0042262"
##	"GD:0030043"
##	"GO:0009263"
##	"GO:0006631"
##	"GO:1904715"
##	"GO:0045041"
##	"GO:0018205"
##	"GO:0001575"
##	"GO:0015809"
##	"GO:0035752"
##	"GO:0006556"
##	"GD:0007029"
##	"GO:0034214"
##	"GO:1901998"
##	"GD:0021680"
##	"GD:0042297"
##	"GD:0046654"
##	"GD:0009409"
##	"GO:0003400"
##	"GO:0071470"
##	"GO:1904871"
##	"GO:0044829"
##	"GO:0019835"
##	"GD:0042866"
##	"GO:1901797"
##	"GO:0019430"
##	"GO:0010121"
##	"GO:0019544"
##	"GO:0045920"
##	"GD:0006885"

##	"GO:0032049"
##	"GO:1904851"
##	"GD:0001956"
##	"GD:0006012"
##	"GD:0006552"
##	"GO:0001315"
##	"GD:0003069"
##	"GO:1905932"
##	"GD:0090385"
##	"GD:0034641" "GD:0044791"
## ##	"GO:0044791"
##	"GD:0042133"
##	"GD:0006107"
##	"GD:00/18/2"
##	"GD:0019240
##	"GD:0042373
##	"GD:0042098"
##	"GD:0006108"
##	"GD:0090084"
##	"GD:0070584"
##	"GD:0006101"
##	"GD:0055085"
##	"GO:1903371"
##	"GD:2000479"
##	"GD:1901800"
##	"GO:0010142"
##	"GO:0009142"
##	"GD:0006637"
##	"GO:0000278"
##	"GD:0006065"
##	"GD:0006097"
##	"GO:0031115"
##	"GO:0071494"
##	"GD:0006734"
##	"GD:0006779"
##	"GO:0021903"
##	"GD:0006006"
##	"GD:0046168"
##	"GD:0044209"
##	"GD:0006536"
##	"GO:0033512"
##	"GO:0010642"
##	"GD:0006072"
##	"GO:0007042"
##	"GD:0006801"
##	"GO:0031587"
##	"GO:1902045"
##	"GD:0006768"
##	"GO:0042574"
##	"GD:0036369"
##	"GO:0043456"
##	"GO:0044571" "GO:0071344"
##	"GU:00/1344"

##	"GO:0036475"
##	"GO:0070525"
##	"GO:0070221"
##	"GD:0006435"
##	"GO:0021794"
##	"GO:0032781"
##	"GO:0010243"
##	"GO:0061885"
##	"GD:0032780" "GD:0003283"
## ##	"GD:0003263"
##	"GD:2000736"
##	"GD:0050796"
##	"GD:0030730
##	"GD:0007568"
##	"GD:0007868"
##	"GD:0002842"
##	"GD:0002042
##	"GO:0051131"
##	"GD:0006066"
##	"GD:0030042"
##	"GD:0006784"
##	"GO:0021860"
##	"GD:0006633"
##	"GO:0019448"
##	"GO:1902475"
##	"GO:0019255"
##	"GD:0007089"
##	"GO:0010729"
##	"GO:1990785"
##	"GD:0006684"
##	"GD:0046033"
##	"GD:0006678"
##	"GD:0006681"
##	"GO:1901687"
##	"GO:0006172"
##	"GO:1905259"
##	"GO:0055081"
##	"GO:0035998"
##	"GD:0042559"
##	"GO:2001242" "GO:0016226"
## ##	"GD:0016226"
## ##	"GD:0030836"
##	"GD:0040088
##	"GD:0001774"
##	"GD:0001774
##	"GD:0000414
##	"GD:0010333"
##	"GD:0096583"
##	"GD:0006563"
##	"GD:0035722"
##	"GD:0032470"
##	"GO:0019413"

##	"GO:0019427"
##	"GO:0019542"
##	"GD:0006666"
##	"GD:0072656"
##	"GO:0019074"
##	"GO:0045917"
##	"GO:0106074"
##	"GD:0006593"
##	"GO:0097272"
##	"GD:0006007"
## ##	"GD:0006220"
## ##	"GO:0019244" "GO:0019343"
## ##	"GD:0019343" "GD:0010722"
## ##	"GD:0055108"
## ##	"GO:0055108"
##	"GD:0070142
##	"GD:1990386"
##	"GD:0016192"
##	"GD:0034341"
##	"GD:0005978"
##	"GO:1902958"
##	"GO:1903384"
##	"GD:0019348"
##	"GD:0045329"
##	"GD:0060732"
##	"GD:0008033"
##	"GD:0035268"
##	"GD:0043085"
##	"GO:1903599"
##	"GO:0006814"
##	"GD:0019344"
##	"GO:0045472"
##	"GD:0046931"
##	"GO:0070972"
##	"GO:0048524"
##	"GO:0070585"
##	"GD:0006258"
##	"GD:0040012"
##	"GD:0071280"
##	"GO:0051349"
##	"GO:1904231"
##	"GO:1904234"
##	"GD:0060047"
##	"GD:0030705"
##	"GO:0042987"
##	"GO:0021768"
##	"GO:0090382"
##	"GO:0044406"
##	"GO:0032472"
##	"GO:0051793"
##	"GO:0007056"
##	"GD:0060075"
##	"GD:0009061"

##	"GO:0006535"
##	"GO:0051603"
##	"GO:0006471"
##	"GO:0019254"
##	"GO:1901315"
##	"GO:0097061"
##	"GO:0034975"
##	"GD:0060166"
## ##	"GD:0006098" "GD:0007494"
## ##	"GD:1902110"
##	"GD:0050873"
##	"GD:0009087"
##	"GD:0003087
##	"GD:0032469"
##	"GD:2001171"
##	"GD:0006015"
##	"GD:0019550"
##	"GO:0019551"
##	"GO:0019516"
##	"GD:0006853"
##	"GO:0019510"
##	"GO:0071268"
##	"GD:0006533"
##	"GO:0006532"
##	"GO:1902307"
##	"GO:0046323"
##	"GO:0071476"
##	"GO:0070778"
##	"GO:0070781"
##	"GO:0022028"
##	"GD:1902669"
##	"GO:0032915"
##	"GO:0048488"
##	"GO:0070814"
##	"GO:0002138"
##	"GD:1903976"
##	"GO:1904465"
##	"GO:2001206"
## ##	"GD:0010941" "GD:0002072"
##	"GO:0002072" "GO:0042745"
## ##	"GD:0042745" "GD:0071907"
## ##	"GD:0071907"
##	"GD:0031323
##	"GD:0010033
##	"GD:0043248
##	"GD:000735"
##	"GD:1903725"
##	"GD:0033275"
##	"GD:0033273
##	"GD:0006531"
##	"GD:0070541"
##	"GD:0014916"
	20.0011010

##	"GO:0010035"
##	"GO:0050884"
##	"GD:0006106"
##	"GO:0097052"
##	"GO:0019521"
##	"GD:0009168"
##	"GO:0045730"
##	"GD:0050667"
##	"GO:0046501" "GO:2000780"
## ##	"GD: 0006068"
##	"GD:000008
##	"GD:0031284"
##	"GD:0050820"
##	"GD:1904797"
##	"GD:0006168"
##	"GD:0006429"
##	"GD:0006177"
##	"GD:0097332"
##	"GD:0001836"
##	"GD:0034605"
##	"GD:0070370"
##	"GD:0060696"
##	"GO:0071071"
##	"GO:0080058"
##	"GO:0006544"
##	"GD:0008299"
##	"GO:0010033"
##	"GO:0097428"
##	"GO:0017085"
##	"GO:0009855"
##	"GD:0090242"
##	"GO:1902236"
##	"GO:0009414"
##	"GD:0006537"
##	"GO:0006526"
##	"GO:0046651"
##	"GO:0001887"
##	"GO:0007034"
##	"GD:2000377"
##	"GD:0003333" "GD:0035865"
## ##	
## ##	"GO:0051790" "GO:0010830"
##	"GD:1902824"
##	"GO:1902824"
##	"GD:0006740"
##	"GD:0000740
##	"GD:0003110
##	"GD:0046054"
##	"GD:0040331
##	"GD:0006741"
##	"GD:1903899"
##	"GO:0034315"
	20.0001010

##	"GO:0045899"
##	"GO:1903852"
##	"GO:1904544"
##	"GD:0034379"
##	"GO:0010849"
##	"GO:1904659"
##	"GO:0070434"
##	"GO:0015871"
##	"GO:0051594" "GO:0003203"
## ##	"GD:0003203"
##	"GD:0060466"
##	"GD:0000400
##	"GD:2000438"
##	"GD:20004560"
##	"GD:0016331"
##	"GD:1901098"
##	"GD:0060385"
##	"GD:0019322"
##	"GO:1902953"
##	"GD:0044828"
##	"GO:0034199"
##	"GD:0016480"
##	"GD:0002003"
##	"GO:0043403"
##	"GO:0110024"
##	"GO:0010043"
##	"GO:0009156"
##	"GO:0030149"
##	"GO:1990001"
##	"GO:0005999"
##	"GO:1902445"
##	"GO:0019752"
##	"GO:0051181"
##	"GO:0006813"
##	"GO:0043101"
##	"GD:0009082"
##	"GD:0009098"
##	"GD:0009099"
##	"GD:0090261"
##	"GD:0045026"
##	"GD:0048069"
##	"GO:0010044"
##	"GO:0046487"
##	"GO:0032471"
##	"GD:0048489"
##	"GD:0009645"
##	"GD:0046690"
##	"GO:0006657"
##	"GO:0006825" "GO:0006112"
##	"GU:0006112" "GD:0006081"
## ##	"GD:0008081"
## ##	"GD:0048250"
	GU.UUJJ4JJ

##	"GO:0043570"
##	"GD:0090114"
##	"GO:0032468"
##	"GD:0006021"
##	"GO:0000160"
##	"GO:0043111"
##	"GD:0060323"
##	"GD:0002038"
## ##	"GD:0006700" "GD:0008053"
## ##	"GD:0008053"
##	"GD:0010939"
##	"GD:2000344"
##	"GO:0007588"
##	"GD:0009200"
##	"GD:0042176"
##	"GD:0042904"
##	"GD:0051792"
##	"GD:0002025"
##	"GO:0031649"
##	"GO:0052501"
##	"GD:0007270"
##	"GO:0007595"
##	"GD:0010042"
##	"GD:0007039"
##	"GO:0045986"
##	"GO:0000413"
##	"GO:0009052"
##	"GO:0035606"
##	"GD:0070672"
##	"GO:0010821"
##	"GO:0071902"
##	"GO:0071312"
##	"GO:0050714"
##	"GO:0009051"
##	"GO:0043418"
##	"GD:0048741"
##	"GO:0010226"
##	"GD:0006984"
##	"GO:1903515"
##	"GD:1990036"
##	"GD:2000480"
##	"GO:0019695"
##	"GO:0051604"
##	"GO:0010795"
##	"GD:0006554"
##	"GO:0048312"
##	"GD:0006782"
##	"GO:0006402"
##	"GD:0006995" "GD:0006264"
##	"GU:0006264" "GD:0006508"
## ##	"GO:0006508"
## ##	"GD:0035494"

##	"GO:0051365"
##	"GO:0090170"
##	"GO:0042100"
##	"GD:0006071"
##	"GO:0015908"
##	"GO:0010509"
##	"GD:0098974"
##	"GD:0005986"
##	"GD:0070384" "GD:0043490"
## ##	"GD:1903779"
##	"GD:0061368"
##	"GD:2001295"
##	"GD:0001889"
##	"GD:0051056"
##	"GD:0033108"
##	"GD:0035106
##	"GD:0016236"
##	"GD:0032212"
##	"GD:0002439"
##	"GD:0050832"
##	"GD:0060546"
##	"GO:0047496"
##	"GO:0016080"
##	"GO:0035094"
##	"GO:1902177"
##	"GO:0010623"
##	"GD:0006139"
##	"GO:1902686"
##	"GO:0070266"
##	"GD:0001961"
##	"GO:0052695"
##	"GO:0006550"
##	"GO:0019227"
##	"GO:0061615"
##	"GO:0093001"
##	"GO:0019853"
##	"GO:0019674"
##	"GD:0006970"
##	"GD:0030007"
##	"GD:0070407" "GD:2000276"
## ##	"GD:2000278"
## ##	"GD:0099178"
##	"GD:0042178
##	"GD:0070405"
##	"GD:0044203
##	"GD:0000493"
##	"GD:0006438"
##	"GD:0000438"
##	"GD:0060083"
##	"GD:0045724"
##	"GD:0000045"
##	"GD:0050665"
	20.000000

##	"GD:0090063"
##	"GO:0051561"
##	"GO:1902991"
##	"GO:1903373"
##	"GO:1903748"
##	"GO:0060411"
##	"GO:0006561"
##	"GD:0060073"
##	"GO:1905524"
##	"GO:0018106" "GO:0001936"
## ##	"GD:0001936" "GD:0010046"
## ##	"GD:0010046"
##	"GD:0019346"
##	"GD:00193469"
##	"GD:0008654"
##	"GD:0006796"
##	"GO:0006796"
##	"GO:0031773
##	"GO:1901896"
##	"GO:0097186"
##	"GD:0006424"
##	"GD:0070127"
##	"GO:1903205"
##	"GD:0008295"
##	"GD:0014074"
##	"GD:0006839"
##	"GD:0060324"
##	"GO:0006595"
##	"GO:0043068"
##	"GO:0050848"
##	"GO:0015804"
##	"GO:2000481"
##	"GO:1990911"
##	"GD:0048240"
##	"GD:0090076"
##	"GO:0006189"
##	"GO:0072358"
##	"GO:0046653"
##	"GO:0051090"
##	"GD:2000825"
##	"GO:0051280"
##	"GD:0006166"
##	"GD:0006538"
##	"GD:2000969"
##	"GO:0051597"
##	"GO:0019882"
##	"GO:0035751"
##	"GO:0070849"
##	"GO:1900260"
##	"GO:1990267"
##	"GO:1903896"
##	"GO:0015031"
##	"GO:0051414"

##	"GO:0001842"
##	"GO:0010259"
##	"GD:0006085"
##	"GO:0051591"
##	"GO:0014829"
##	"GO:1902803"
##	"GO:0072655"
##	"GD:0061308"
## ##	"GO:0038203" "GO:0035458"
## ##	"GD:0035458"
##	"GD:2001031"
##	"GD:0031640"
##	"GD:0031641"
##	"GD:1902380"
##	"GD:0016447"
##	"GD:0010447
##	"GD:0070257"
##	"GD:0042490"
##	"GD:0035999"
##	"GO:0045053"
##	"GO:0035545"
##	"GO:0051560"
##	"GO:0006811"
##	"GO:1900407"
##	"GO:0006591"
##	"GO:0051047"
##	"GO:1905461"
##	"GO:0039534"
##	"GO:0043032"
##	"GO:0019471"
##	"GD:0060013"
##	"GD:0006776"
##	"GD:0090074"
##	"GO:0030240"
##	"GD:0000032"
##	"GO:0061611"
##	"GD:0061635"
##	"GO:0097352"
##	"GO:0003181"
##	"GO:0071287"
##	"GD:0046449"
## ##	"GD:0051646" "GD:0046296"
## ##	"GD:0046296"
## ##	"GD:1903265"
## ##	"GO: 1903283"
## ##	"GD: 1903233"
## ##	"GD: 1900037"
## ##	"GD:0090315"
## ##	"GD:1904482"
## ##	"GD:1904482"
##	"GD:0000200
##	"GO:0030030
	30.0010010

##	"GO:0019470"
##	"GO:0010815"
##	"GD:0006600"
##	"GO:1905795"
##	"GO:0097113"
##	"GO:2001247"
##	"GO:0045951"
##	"GO:0043171"
## ##	"GO:0043503" "GO:1902358"
## ##	"GD: 0006610"
##	"GD:1901799"
##	"GD:0045022"
##	"GD:0043022
##	"GD:0009071"
##	"GD:0003071
##	"GD:0040000"
##	"GO:0045471"
##	"GD:0044597"
##	"GO:0044598"
##	"GD:1903894"
##	"GD:0006163"
##	"GO:0051599"
##	"GO:0051453"
##	"GO:0016558"
##	"GO:0008152"
##	"GO:2000255"
##	"GO:1901300"
##	"GO:0009113"
##	"GO:0090168"
##	"GO:0045682"
##	"GO:1903298"
##	"GO:0015966"
##	"GO:0034205"
##	"GO:0042448"
##	"GO:0035641"
##	"GO:0043489"
##	"GO:0032364"
##	"GD:0009063"
##	"GO:0033197"
##	"GD:0006886"
##	"GO:0006231" "GO:0006729"
## ##	"GD:0006729" "GD:0061740"
## ##	"GD:0081740" "GD:0021553"
## ##	"GD:10021553"
## ##	"GD: 1901565"
## ##	"GD: 1902904" "GD: 1904589"
## ##	"GD: 1904589" "GD: 1904764"
## ##	"GD: 1904764" "GD: 1990832"
## ##	"GD:1990832"
## ##	"GD:0032735"
##	"GD:0055091"
##	"GD:0035031
	30.0040001

##	"GO:1904426"
##	"GD:0060260"
##	"GD:0034766"
##	"GO:0070424"
##	"GO:0014075"
##	"GO:0035269"
##	"GD:0070179"
##	"GO:0010232"
##	"GD:0060156"
##	"GD:0046676"
## ##	"GD:0060904"
## ##	"GO:0097501" "GO:1903891"
## ##	"GD:1903891"
## ##	"GD: 0000422"
## ##	"GD:0000422"
## ##	"GD:0006334"
##	"GD:1990167"
##	"GD:0034340"
##	"GD:0030855"
##	"GO:1904313"
##	"GD:0035333"
##	"GD:0002739"
##	"GD:0002739
##	"GD:0003294"
##	"GD:0010032
##	"GD:0006342"
##	"GD:0050807"
##	"GD:0030807
##	"GD:0043037
##	"GD:0016323
##	"GD:0036526"
##	"GD:0036527"
##	"GD:0036528"
##	"GD:0036529"
##	"GD:0036530"
##	"GD:0036531"
##	"GD:0045560"
##	"GD:0046295"
##	"GD:0050787"
##	"GD:0106044"
##	"GD:0106045"
##	"GD:0106046"
##	"GD:1902903"
##	"GD:1903073"
##	"GO:1903122"
##	"GO:1903168"
##	"GO:1903178"
##	"GD:1903189"
##	"GD:1903197"
##	"GD:1903200"
##	"GD:2000277"
##	"GD:0070178"
##	"GD:0007031"
	45.0001001

##	"GD:0002024"
##	"GO:0032733"
##	"GO:0098970"
##	"GO:0035799"
##	"GD:0008207"
##	"GO:0032757"
##	"GD:0006890"
##	"GO:0035437"
##	"GD:0006777"
##	"GD:0035026"
## ##	"GD:0034638"
## ##	"GD:0048549" "GD:0086064"
##	"GD:0030177"
##	"GD:0035669"
##	"GD:0031396"
##	"GD:0031398
##	"GD:0048048
##	"GD:0031204"
##	"GD:0040000"
##	"GD:0033081"
##	"GD:0097201"
##	"GD:0045844"
##	"GD:1903206"
##	"GD:0021998"
##	"GD:0048352"
##	"GO:1904414"
##	"GO:1905285"
##	"GO:1905292"
##	"GD:0006222"
##	"GO:0003415"
##	"GO:0032436"
##	"GO:0061741"
##	"GO:0006114"
##	"GO:0098957"
##	"GO:0048840"
##	"GO:0046952"
##	"GO:0043069"
##	"GO:0032827"
##	"GO:0044117"
##	"GO:0070509"
##	"GO:0071243"
##	"GD:2000766"
##	"GO:0007252"
##	"GD:0031076"
##	"GO:1905867"
##	"GO:0014070"
##	"GD:0003366"
##	"GD:0061512"
##	"GO:0007141"
##	"GO:0001893"
##	"GO:1990000"
##	"GD:0002352"
##	"GD:0006422"

##	"GO:0001568"
##	"GO:0015671"
##	"GO:0010665"
##	"GD:0050901"
##	"GO:0019265"
##	"GO:0051014"
##	"GD:0035308"
##	"GD:0006694"
## ##	"GD:0007220" "GD:0002227"
## ##	"GO:1902512"
##	"GO:1902312
##	"GD:0071395"
##	"GD:0071595
##	"GD:0070388"
##	"GD:0001225
##	"GD:0039535"
##	"GD:0009253"
##	"GD:0046724"
##	"GO:0051702"
##	"GO:0060315"
##	"GD:0006290"
##	"GO:0021549"
##	"GD:0007030"
##	"GO:0010952"
##	"GO:0045541"
##	"GO:0006427"
##	"GO:0007584"
##	"GO:0048680"
##	"GO:0006573"
##	"GO:0043524"
##	"GO:1902037"
##	"GO:0033384"
##	"GO:0045337"
##	"GO:0099645"
##	"GO:0051291"
##	"GO:0010768"
##	"GO:1990771"
##	"GD:0006569"
##	"GD:0005977"
##	"GO:0048678" "GO:0018216"
##	"GD:0018218"
## ##	"GD:0034628" "GD:0046677"
##	"GD:1902356"
##	"GD:0052697"
##	"GD:0009438"
##	"GD:0009438
##	"GD:0052696"
##	"GD:0006835"
##	"GD:0036498"
##	"GD:2000657"
##	"GD:0009644"
##	"GD:0006596"
	20.000000

##	"GO:0016482"
##	"GO:0016598"
##	"GO:0071316"
##	"GO:0060945"
##	"GD:0006622"
##	"GO:0061077"
##	"GO:0031953"
##	"GD:0070536"
##	"GD:0009607"
##	"GO:0017144"
##	"GO:0071409"
##	"GO:2000121"
##	"GO:0036481"
##	"GO:0051354"
##	"GO:0032727"
##	"GO:1902031"
##	"GO:0021681"
## ##	"GO:0003418" "GO:0035928"
##	"GD:0035928" "GD:0070189"
##	"GD:0070189"
##	"GO:0015709"
##	"GO:0013729
##	"GO:1901671"
##	"GD:0000454"
##	"GD:1902806"
##	"GD:0051024"
##	"GO:0042391"
##	"GO:0046544"
##	"GO:0097531"
##	"GO:0071422"
##	"GO:1902093"
##	"GO:2001311"
##	"GO:0072249"
##	"GD:0009749"
##	"GO:0051639"
##	"GO:0070973"
##	"GO:0021756"
##	"GO:0042554"
##	"GD:0006672"
##	"GO:1902109"
##	"GD:0002090"
##	"GO:1903011"
##	"GO:1903611"
##	"GO:1903625"
##	"GO:1903629"
##	"GO:1903634"
##	"GO:0015813"
##	"GO:0042147"
##	"GD:2000116"
##	"GO:0035456"
##	"GD:0014066"
##	"GD:0000266"
##	"GO:0051873"

##	"GO:0043921"
##	"GO:0051623"
##	"GO:0072749"
##	"GD:0006430"
##	"GO:0009267"
##	"GO:0002276"
##	"GD:0048382"
##	"GO:0071377"
##	"GD:0000053"
##	"GD:0006164"
##	"GO:1903026" "GO:0071242"
## ##	"GD:0071242" "GD:0008039"
## ##	"GD:0008039"
##	"GD:0048313
##	"GD:1990830"
##	"GD:0001519"
##	"GD:0061001"
##	"GD:0001001
##	"GD:1990613"
##	"GO:0046655"
##	"GD:0060253"
##	"GO:1902679"
##	"GD:0006506"
##	"GD:0006564"
##	"GO:0090218"
##	"GO:0070235"
##	"GO:2000452"
##	"GO:0018293"
##	"GO:0019432"
##	"GO:0042472"
##	"GO:1900244"
##	"GO:0008612"
##	"GO:1905242"
##	"GO:0021702"
##	"GO:0048569"
##	"GO:0002263"
##	"GD:1903420"
##	"GO:0033590"
##	"GO:0002128"
##	"GO:0045647"
##	"GO:0001678"
## ##	"GD:0002931" "GD:0002091"
## ##	"GD:0002091" "GD:0006278"
## ##	"GD:0006278"
## ##	"GD:0080294"
## ##	"GD:0090666"
## ##	"GD:0046543"
## ##	"GD:0071353"
## ##	"GD:0019883"
## ##	"GD:0001556"
##	"GD:0003091"
##	"GD:0035279"
	22.0000210

##	"GD:0002084"
##	"GO:0050904"
##	"GO:0019547"
##	"GO:1903278"
##	"GO:0006415"
##	"GO:1903409"
##	"GO:0000255"
##	"GD:0006549"
## ##	"GD:0042180" "GD:0060440"
## ##	"GD:1905768"
## ##	"GD: 0006432"
##	"GD:0000432
##	"GD:0000702
##	"GD:0001030
##	"GD:0046475
##	"GD:0000000
##	"GD:0034614"
##	"GO:0021589"
##	"GD:0045047"
##	"GO:0043585"
##	"GO:0061515"
##	"GD:0009991"
##	"GO:1900740"
##	"GO:0030856"
##	"GO:0018916"
##	"GO:0006501"
##	"GO:0033615"
##	"GO:1904750"
##	"GO:0014010"
##	"GO:0045717"
##	"GO:0001522"
##	"GO:0031460"
##	"GO:0032328"
##	"GO:0038180"
##	"GO:0035023"
##	"GO:1904154"
##	"GD:0006144"
##	"GO:0090128"
##	"GO:0034373"
##	"GO:0098972" "GO:1904577"
## ##	"GD:1904577" "GD:0036500"
## ##	"GD:0035967"
##	"GD:0033967
##	"GD:0070846"
##	"GD:0070848"
##	"GD:0061684"
##	"GD:2000378"
##	"GD:0019852"
##	"GD:0019032
##	"GO:1903146"
##	"GD:0072584"
##	"GD:0006696"
	20.000000

##	"GO:0032510"
##	"GO:1905323"
##	"GO:1904881"
##	"GO:0071318"
##	"GD:0046940"
##	"GD:0006390"
##	"GO:0050673"
##	"GD:0006809"
##	"GO:0071276"
##	"GO:0071417"
##	"GO:0032385"
##	"GO:1901373"
##	"GO:0042743"
##	"GO:0035984"
##	"GO:0016579"
##	"GO:1904424"
##	"GO:0140018"
##	"GO:1905168"
##	"GO:0032459"
##	"GO:0070842"
##	"GD:0006611"
##	"GD:0090149"
##	"GD:0046949"
##	"GO:0048148"
##	"GO:0046185"
##	"GD:0010739"
##	"GO:0010922"
##	"GO:0017183"
##	"GO:0045116"
##	"GD:0035900"
##	"GO:0072144"
##	"GO:0016559"
##	"GD:0060996"
##	"GO:0036344"
##	"GD:0007605"
##	"GO:0010248"
##	"GD:0006695"
##	"GO:0019858"
##	"GO:0018279"
##	"GO:0071418"
##	"GO:0097120"
##	"GO:0016344"
##	"GD:0033206"
##	"GO:2000504"
##	"GO:0038158"
##	"GO:0099093"
##	"GO:0015742"
##	"GO:0051602"
##	"GO:1901318"
##	"GD:0042840"
##	"GD:2000323"
##	"GO:1903751"
##	"GO:1904019"
##	"GO:0080184"

##	"GO:0031952"
##	"GO:0071899"
##	"GO:0051402"
##	"GD:0006213"
##	"GO:0051228"
##	"GO:0016540"
##	"GD:0006924"
##	"GD:0045835"
##	"GD:0032324"
##	"GO:1905426"
##	"GO:0043508"
##	"GD:0010667"
##	"GD:0016031"
##	"GD:0070096"
##	"GO:0017126"
##	"GD:0060914"
##	"GO:1990441"
##	"GD:0002544"
##	"GO:0019934"
##	"GO:1901727"
##	"GD:0001503"
##	"GO:0014870"
##	"GO:0019731"
##	"GD:0009154"
##	"GD:0006789"
##	"GD:0032984"
##	"GO:1902443"
##	"GO:1904579"
##	"GO:1905395"
##	"GO:1901165"
##	"GD:0014059"
##	"GD:0000305"
##	"GD:0003176"
##	"GD:0003177"
##	"GD:0035564"
##	"GO:1903125"
##	"GO:1904887"
##	"GO:0071910"
##	"GD:0006207"
##	"GO:0048211"
##	"GO:0015942"
##	"GO:0051695"
##	"GD:0003374"
##	"GO:0043523"
##	"GD:0072389"
##	"GO:1903006"
##	"GO:1903007"
##	"GD:0048266"
##	"GD:0010637"
##	"GO:0014810"
##	"GO:0039689"
##	"GD:0019369"
##	"GO:2000172"
##	"GD:0036444"

##	"GO:1905279"
##	"GO:1904783"
##	"GO:0023014"
##	"GD:0006907"
##	"GO:0009117"
##	"GD:0090204"
##	"GO:0035945"
##	"GD:0035946"
## ##	"GO:2000827" "GO:0033173"
## ##	"GD:1902692"
##	"GD:0006680"
##	"GD:0072190"
##	"GD:0072130
##	"GD:0060545"
##	"GD:0036466"
##	"GD:0060052"
##	"GD:1904816"
##	"GD:0046320"
##	"GO:0071461"
##	"GO:2000158"
##	"GD:0097338"
##	"GO:0045838"
##	"GO:0070242"
##	"GO:0001914"
##	"GO:0051659"
##	"GO:0060352"
##	"GO:0048597"
##	"GO:0051261"
##	"GO:0016042"
##	"GO:1901389"
##	"GD:0000052"
##	"GD:0034982"
##	"GO:1905050"
##	"GO:0070458"
##	"GO:1903715"
##	"GO:0018272"
##	"GO:0043266"
##	"GO:0044524"
##	"GO:0046166"
##	"GO:0071266"
##	"GO:1904831"
## ##	"GO:0035878" "GO:1904401"
## ##	"GD:1904401" "GD:0046620"
## ##	"GD:0046620"
##	"GD:0032287"
## ##	"GD:0032986" "GD:0045721"
## ##	"GD:0045721" "GD:0009266"
## ##	"GD:0009266" "GD:0045128"
## ##	"GD:0045128"
## ##	"GD:0044539"
##	"GD:0002262"
##	"GO:0051283"
	30.0001200

##	"GO:0071644"
##	"GO:1905077"
##	"GO:1905403"
##	"GO:1905090"
##	"GO:0051036"
##	"GO:1900063"
##	"GO:1903288"
##	"GO:0048485"
##	"GD:1903660"
##	"GO:0043687"
##	"GO:0019062"
##	"GO:1903843"
##	"GO:0016188"
##	"GO:0019538"
##	"GO:0072663"
##	"GO:1900131"
##	"GD:0030308"
## ##	"GO:0043154" "GO:2000302"
##	"GD:2000302"
##	"GO:0010727"
##	"GO:0040015"
##	"GD:0010930
##	"GO:0000428"
##	"GD:0042120
##	"GD:0006311"
##	"GD:1901094"
##	"GD:2001137"
##	"GO:0014808"
##	"GO:0015951"
##	"GD:0003363"
##	"GD:0021816"
##	"GO:0034163"
##	"GO:0042982"
##	"GD:0000916"
##	"GO:0032024"
##	"GO:0072319"
##	"GO:1904896"
##	"GD:0009396"
##	"GO:1902339"
##	"GO:0021695"
##	"GO:0003332"
##	"GO:0048541"
##	"GO:0019724"
##	"GO:0051351"
##	"GO:0036245"
##	"GO:0051647"
##	"GO:0035418"
##	"GO:0032819"
##	"GO:0097111"
##	"GD:0000962"
##	"GD:0000965"
##	"GO:0045933"
##	"GD:0072606"

##	"GO:0042220"
##	"GO:1903862"
##	"GO:0018125"
##	"GO:0046483"
##	"GO:0032873"
##	"GD:0006259"
##	"GD:0006089"
##	"GD:0006891"
##	"GO:1905513"
##	"GO:0016488"
##	"GO:0001880"
##	"GO:1901143"
##	"GD:0060561"
##	"GO:0019919"
##	"GO:0045656"
##	"GO:0014013"
##	"GD:0046226"
## ##	"GO:0046314" "GO:0051782"
##	"GD:0051782" "GD:0006559"
##	"GD:0008359"
##	"GD:0003272
##	"GO:0048311
##	"GO:0037133
##	"GD:0010273
##	"GO:0000140
##	"GD:0013333
##	"GO:0046889"
##	"GD:2000208"
##	"GD:0039536"
##	"GO:1904031"
##	"GD:0061003"
##	"GO:0001504"
##	"GO:0051084"
##	"GO:0070682"
##	"GO:0015746"
##	"GO:0042167"
##	"GO:0090282"
##	"GD:0006693"
##	"GO:0016071"
##	"GO:0042737"
##	"GO:0030278"
##	"GO:0030433"
##	"GO:0071733"
##	"GO:0007140"
##	"GD:0060242"
##	"GO:0014012"
##	"GD:0090200"
##	"GD:0090042"
##	"GD:0006893"
##	"GO:0006572"
##	"GO:0071340"
##	"GD:0000492"
##	"GO:0070813"

##	"GO:0033194"
##	"GO:0042447"
##	"GO:0043242"
##	"GD:0060088"
##	"GO:0042256"
##	"GD:0050821"
##	"GO:1901255"
##	"GO:0000185"
##	"GO:0048389"
##	"GO:0072143"
## ##	"GD:0072168" "GD:0072169"
##	"GD:0072183"
##	"GD:0072184"
##	"GD:0072184"
##	"GD:0072239"
##	"GD:0072259"
##	"GD:0072268"
##	"GD:0090094"
##	"GD:0035690"
##	"GD:0035090
##	"GD:0072229"
##	"GO:1902224"
##	"GO:1902860"
##	"GO:0032825"
##	"GO:0032023
##	"GD:0042470
##	"GD:1901986"
##	"GD:1904009"
##	"GD:1904010"
##	"GD:0035330"
##	"GD:0009725"
##	"GD:0000451"
##	"GD:0046657"
##	"GD:0070296"
##	"GO:0034397"
##	"GD:0090172"
##	"GD:0090220"
##	"GD:0060409"
##	"GO:0006713"
##	"GD:0030162"
##	"GO:0008611"
##	"GO:0035194"
##	"GO:1905719"
##	"GO:2001173"
##	"GO:0051653"
##	"GD:0070977"
##	"GD:0060632"
##	"GO:0048378"
##	"GO:0031573"
##	"GO:0019530"
##	"GD:0006436"
##	"GO:0019353"
##	"GO:0060261"

##	"GO:0061015"
##	"GD:0098880"
##	"GO:1902905"
##	"GO:0045761"
##	"GO:0071641"
##	"GO:0070670"
##	"GO:1903775"
##	"GD:0003360"
## ##	"GO:0021772" "GO:0042423"
## ##	"GD:0042423"
##	"GO:1904417"
##	"GD:0090141"
##	"GD:1900034"
##	"GD:0043666"
##	"GD:1904425"
##	"GD:0009308"
##	"GD:2000641"
##	"GO:0014883"
##	"GO:0042182"
##	"GD:0046950"
##	"GO:0010756"
##	"GO:0007612"
##	"GO:0006520"
##	"GO:0022618"
##	"GO:2000233"
##	"GO:2000615"
##	"GO:1904158"
##	"GO:0006421"
##	"GO:0015700"
##	"GO:0031283"
##	"GO:0061857"
##	"GO:0042853"
##	"GO:0071236"
##	"GO:2000651"
##	"GO:0071277"
##	"GO:0002221"
##	"GD:0009593"
##	"GO:1902530"
##	"GO:1904754"
##	"GO:0045648"
##	"GO:0001895"
## ##	"GO:1900454" "GO:1903457"
## ##	"GD:1903457" "GD:0003158"
## ##	"GD:2000649"
##	"GD:2000649" "GD:0050779"
## ##	"GD:0050779" "GD:0008150"
## ##	"GD:0008150"
## ##	"GD:0009435"
## ##	"GD:0010098"
## ##	"GD:0010470"
##	"GD:2000052"
##	"GD:0030317"
	30.000011

##	"GO:0031585"
##	"GO:0034201"
##	"GO:0045184"
##	"GD:0099089"
##	"GO:0061912"
##	"GO:1903094"
##	"GO:2000157"
##	"GD:0016485"
##	"GO:0033198" "GO:0046850"
## ##	"GD:1902524"
##	"GD:0006516"
##	"GD:0000310
##	"GD:1903955"
##	"GD:0015728"
##	"GD:0010720"
##	"GD:0060378"
##	"GD:0072432"
##	"GD:0098586"
##	"GO:0070145"
##	"GD:0045083"
##	"GO:0031103"
##	"GO:0031670"
##	"GD:0030033"
##	"GO:2000279"
##	"GO:0101030"
##	"GO:0006505"
##	"GO:1905606"
##	"GO:0035584"
##	"GO:0009108"
##	"GO:0030157"
##	"GO:0006470"
##	"GO:0007143"
##	"GD:0003323"
##	"GD:0006821"
##	"GO:0034329"
##	"GO:0051900"
##	"GD:0002089"
##	"GO:0099505"
##	"GO:0042113"
##	"GO:1901142"
##	"GO:1901895"
## ##	"GO:0070129" "GO:0006525"
## ##	"GD:1902902"
## ##	"GD: 1902902" "GD: 2000144"
##	"GD:2000144" "GD:0072717"
## ##	"GD:0072717"
## ##	"GD:0090324" "GD:0034640"
## ##	"GD:0034640"
## ##	"GD:0048101"
## ##	"GD:0071850"
##	"GD:0000938
##	"GD:0060087"
	30.000001

##	"GD:0009822"
##	"GO:0071359"
##	"GO:0051086"
##	"GO:0051493"
##	"GO:0039019"
##	"GO:1900126"
##	"GD:0007256"
##	"GO:0048679"
##	"GO:0051788"
##	"GO:0006295"
##	"GO:0099074"
##	"GO:0007231"
##	"GO:0007548"
##	"GO:0050435"
##	"GO:1901164"
##	"GO:0044257"
##	"GO:0051248"
## ##	"GD:0097720" "GD:0006982"
##	"GD:0006982"
##	"GO:0033879"
##	"GO:0032232
##	"GO:2001135"
##	"GO:0010269"
##	"GD:2000821"
##	"GD:0070060"
##	"GD:0076000
##	"GD:0007599"
##	"GD:0010963"
##	"GD:0070965"
##	"GD:0060371"
##	"GO:0021854"
##	"GO:1990910"
##	"GD:0006625"
##	"GD:0008038"
##	"GO:0071456"
##	"GO:0071625"
##	"GD:0006419"
##	"GO:0050771"
##	"GO:0051025"
##	"GD:0009620"
##	"GD:0006486"
##	"GD:0045943"
##	"GO:1900746"
##	"GO:0060314"
##	"GO:0031109"
##	"GO:0019532"
##	"GO:0036255"
##	"GO:0070247"
##	"GO:1903442"
##	"GO:0032925"
##	"GO:0001885"
##	"GO:0035973"
##	"GD:0001974"

##	"GO:0051135"
##	"GO:0009820"
##	"GO:0061337"
##	"GO:0017196"
##	"GD:0006658"
##	"GO:0042304"
##	"GD:0090625"
##	"GO:0060544"
##	"GO:0070365"
##	"GO:0071391"
##	"GO:0072684"
##	"GO:1905049"
##	"GO:0045176"
## ##	"GD:0070201" "GD:0006517"
##	"GD:0006517"
##	"GD:1902017"
##	"GD:1902017"
##	"GD:0008730"
##	"GD:0022372"
##	"GD:0002572
##	"GD:0043461"
##	"GO:1905037"
##	"GD:2000666"
##	"GD:0010626"
##	"GO:0015937"
##	"GO:1903052"
##	"GD:0030970"
##	"GO:0071934"
##	"GD:0006878"
##	"GO:0090258"
##	"GO:0008272"
##	"GO:0010796"
##	"GO:0072385"
##	"GO:1900164"
##	"GO:0007021"
##	"GO:0006043"
##	"GO:0010906"
##	"GO:0046579"
##	"GO:0050870"
##	"GO:0010876"
##	"GO:0090297"
##	"GO:1990046"
##	"GO:0048268"
##	"GO:0045019"
##	"GD:0046604"
##	"GO:0051684"
##	"GO:1904780"
##	"GO:0071875"
##	"GO:0045040"
##	"GO:1902680"
##	"GO:0051271"
##	"GO:0021761"
##	"GO:0045939"

##	"GD:0098693"
##	"GO:1905596"
##	"GO:1905601"
##	"GO:0043086"
##	"GO:0055065"
##	"GD:2000824"
##	"GD:0034969"
##	"GD:0036250"
##	"GO:0044721" "GO:0050808"
## ##	"GD:0030808"
##	"GD:0071931
##	"GD:0030037"
##	"GD:0040037
##	"GD:0071022
##	"GD:0016476"
##	"GD:0016476
##	"GD:0006046"
##	"GO:1902175"
##	"GO:0031468"
##	"GD:0009635"
##	"GO:0031987"
##	"GO:0055070"
##	"GD:0009650"
##	"GO:0016045"
##	"GD:0046006"
##	"GO:0051645"
##	"GO:2001240"
##	"GD:0006706"
##	"GO:1903020"
##	"GO:0061734"
##	"GO:1905408"
##	"GO:0035523"
##	"GO:1904707"
##	"GD:0032268"
##	"GO:0045046"
##	"GO:0031397"
##	"GD:0006404"
##	"GO:0010965"
##	"GO:0031453"
##	"GO:0043578"
##	"GD:0044320"
## ##	"GO:0006996" "GO:1903214"
## ##	"GD:1903214" "GD:0000921"
## ##	"GD:0000921"
## ##	"GD:0006597"
## ##	"GD:0035710" "GD:0009069"
## ##	"GD:0009089"
## ##	"GD:0071874"
## ##	"GD:1902523"
## ##	"GD:1902525"
##	"GD:0006607"
##	"GD:0019640"
	30.0010040

##	"GO:0010918"
##	"GO:0010944"
##	"GO:0032012"
##	"GO:1903461"
##	"GO:0050804"
##	"GO:0097345"
##	"GO:1905208"
##	"GO:1990182"
## ##	"GO:0010643" "GO:0030422"
## ##	"GD:0030422"
## ##	"GD:0061668"
##	"GD:0043214"
##	"GD:0030774
##	"GD:0001844"
##	"GD:0001044
##	"GD:1902513"
##	"GD:0031639"
##	"GD:0055088"
##	"GD:0060416"
##	"GD:0020027"
##	"GO:0099151"
##	"GO:0033594"
##	"GO:0045007"
##	"GO:1900753"
##	"GD:0090669"
##	"GO:0015961"
##	"GO:0071544"
##	"GO:0002741"
##	"GO:0007525"
##	"GD:0006661"
##	"GO:0032429"
##	"GO:0010956"
##	"GO:0009452"
##	"GO:0022613"
##	"GO:0032486"
##	"GO:0033028"
##	"GO:0036261"
##	"GO:0072740"
##	"GO:0042438"
##	"GO:0001777"
##	"GD:0008333"
## ##	"GD:0032976" "GD:0048087"
## ##	"GD:10048087"
## ##	"GO:1990117" "GO:1903181"
## ##	"GD:1903181"
## ##	"GD:1990168"
## ##	"GD: 1990168" "GD: 1904925"
## ##	"GD:1904925" "GD:0014041"
## ##	"GD:0014041"
## ##	"GD:2000401"
##	"GD:0061025"
##	"GD:0030968"
	40.000000

##	"GD:0046686"
##	"GD:0006620"
##	"GO:0043254"
##	"GO:0032375"
##	"GO:0032011"
##	"GO:0071543"
##	"GO:0099152"
##	"GO:1901907"
## ##	"GO:1901909" "GO:1901911"
## ##	"GD:1901911"
##	"GD:0000334
##	"GD:0031200
##	"GD:0070207"
##	"GD:1903244"
##	"GD:0051205"
##	"GD:0001200
##	"GD:0072594"
##	"GD:0098779"
##	"GD:0006850"
##	"GD:0016264"
##	"GD:0044053"
##	"GO:2000109"
##	"GO:0031579"
##	"GO:0019054"
##	"GO:1902823"
##	"GO:0043011"
##	"GD:0000098"
##	"GO:0006574"
##	"GO:0002028"
##	"GD:0002762"
##	"GO:0035617"
##	"GO:0051232"
##	"GO:0044344"
##	"GO:0090219"
##	"GO:0010644"
##	"GO:0014889"
##	"GO:0018874"
##	"GO:0046415"
##	"GO:1904985"
##	"GO:1905004"
##	"GO:1905012"
## ##	"GO:0071850" "GO:0051552"
## ##	"GD:0051552" "GD:0019605"
## ##	"GD:1902603"
## ##	"GD: 1902603"
## ##	"GD:1904983" "GD:0031247"
## ##	"GD:2001022"
## ##	"GD:2001022"
## ##	"GD:0015936"
## ##	"GD:0015787"
##	"GD:0042218"
##	"GD:0030110
	40.0040010

##	"GO:0034111"
##	"GO:0021691"
##	"GD:0032298"
##	"GO:0072428"
##	"GO:1903926"
##	"GO:0019742"
##	"GO:0048034"
##	"GO:1904924"
##	"GD:0046710"
##	"GO:0046164"
##	"GD:0090350"
##	"GD:0042723"
##	"GD:0036294"
##	"GO:0006420"
##	"GO:0055059"
##	"GD:0006601"
##	"GO:0018117"
##	"GD:0044602"
##	"GO:0120049"
##	"GO:0045161"
##	"GO:1905775"
##	"GO:0060136"
##	"GO:0060291"
##	"GO:1903407"
##	"GO:1904024"
##	"GD:2000064"
##	"GO:1903830"
##	"GO:0071763"
##	"GO:1903077"
##	"GD:0002358"
##	"GD:0046359"
##	"GD:0090361"
##	"GD:0090481"
##	"GD:0055093"
##	"GD:0018885"
##	"GO:0018910" "GO:0042197"
## ##	"GD:0042197"
##	"GD:0000717"
##	"GD:0097623
##	"GD:0044262
##	"GD:0046618"
##	"GD:0003050"
##	"GD:0003030"
##	"GD:0042413
##	"GD:1902949"
##	"GD:1903712"
##	"GD:0009403"
##	"GD:0009403
##	"GD:0071615
##	"GD:1903902"
## ##	"GD:0006868"
##	"GD:0006527"
##	"GD:0036503"
II II	40.000000

##	"GD:0003339"
##	"GO:0019859"
##	"GO:0035150"
##	"GO:0035822"
##	"GD:0060382"
##	"GO:0072003"
##	"GO:0072046"
##	"GO:1905438"
## ##	"GO:1990968" "GO:1990969"
## ##	"GD:1990969"
##	"GD:0030091
##	"GD:0052047"
##	"GO:1904237"
##	"GD:0043113"
##	"GD:0015888"
##	"GD:0010000"
##	"GD:0030100
##	"GD:0006788"
##	"GO:0019725"
##	"GO:0055119"
##	"GO:1904153"
##	"GD:0006362"
##	"GO:0051886"
##	"GO:0055113"
##	"GD:0086069"
##	"GO:1901842"
##	"GO:2001203"
##	"GO:0032367"
##	"GO:0012501"
##	"GD:0006605"
##	"GD:0002476"
##	"GO:0008154"
##	"GO:0010711"
##	"GD:0043067"
##	"GO:0051066"
##	"GO:0060311"
##	"GO:1902510"
##	"GO:0034418"
##	"GD:0019064"
##	"GO:0032515" "GO:2001202"
## ##	"GD:2001202" "GD:0033091"
## ##	"GD:0033091"
##	"GD:0032733
##	"GD:1905505"
##	"GD:0006919"
##	"GD:0000313
##	"GD:0043330
##	"GD:0031033
##	"GD:0072038"
##	"GD:0061402"
##	"GD:0006491"
##	"GD:0006384"

##	"GO:0017157"
##	"GD:0030260"
##	"GO:1900169"
##	"GO:0006111"
##	"GO:0032431"
##	"GO:1902216"
##	"GO:0071108"
##	"GO:0021904"
##	"GO:0010265"
##	"GO:0043968"
##	"GO:0007007" "GO:0050775"
## ##	"GD:0050775"
## ##	"GD:0008892"
##	"GD:1901661"
##	"GD:2000266"
##	"GD:0032926"
##	"GD:0032326"
##	"GD:0043430"
##	"GO:0051683"
##	"GO:1903416"
##	"GO:0032418"
##	"GO:0016048"
##	"GO:0140058"
##	"GD:0006426"
##	"GO:0070150"
##	"GO:0048820"
##	"GO:0033320"
##	"GO:0072181"
##	"GO:0036109"
##	"GO:0034198"
##	"GO:0022011"
##	"GO:0042538"
##	"GO:0048169"
##	"GD:0003356"
##	"GO:0014032"
##	"GO:0043990"
##	"GO:0060159"
##	"GO:0022604"
##	"GO:0061819"
##	"GO:1905765"
##	"GD:0070481" "GD:0070651"
## ##	"GD:0070651" "GD:0071025"
##	"GD:0001783"
##	"GD:0001785
##	"GD:0002286"
##	"GD:0030370
##	"GD:2000409"
##	"GD:0090073"
##	"GD:0002026"
##	"GD:1902000"
##	"GD:1904960"
##	"GD:0086009"

##	"GD:0070848"
##	"GD:0070085"
##	"GD:0006210"
##	"GD:0016973"
##	"GO:0046338"
##	"GO:1902362"
##	"GO:1903054"
##	"GO:0018894"
##	"GD:0030901"
##	"GO:0097194"
##	"GO:0034097"
##	"GO:0051220"
##	"GD:2000623"
##	"GD:0043039"
##	"GO:0050954"
##	"GD:0061739"
##	"GD:0060347"
##	"GO:0031117"
##	"GO:0010884"
##	"GD:2000772"
##	"GD:0033609"
##	"GD:0001909"
##	"GD:0050849"
##	"GD:0007622"
##	"GD:0021660"
##	"GD:0021666"
##	"GO:0002755"
##	"GO:0019218"
##	"GO:2001225"
##	"GD:0003064"
##	"GO:0015886"
##	"GO:1903538"
##	"GD:0006808"
##	"GO:1990786"
##	"GO:0031054"
##	"GO:0001573"
##	"GO:0003345"
##	"GO:0045081"
##	"GO:0046294"
##	"GD:0060373"
##	"GD:0070989"
##	"GO:0072498"
##	"GD:0003186"
##	"GD:0071816"
##	"GD:0010611"
##	"GD:0014876"
##	"GD:0035610"
##	"GD:0042278"
##	"GD:0061371"
##	"GD:0001731"
##	"GD:2000273"
##	"GD:0046985"
##	"GD:0090068"
##	"GO:1904292"

##	"GO:2000176"
##	"GO:0007040"
##	"GO:0019441"
##	"GO:0015918"
##	"GO:0051208"
##	"GO:0016560"
##	"GO:0051450"
##	"GO:0042747"
##	"GO:0051306" "GO:0071435"
## ##	"GD:0071435"
##	"GD:0030902"
##	"GD:0030302
##	"GD:0071328
##	"GD:0032374
##	"GD:0035609"
##	"GD:0044313"
##	"GD:0051013"
##	"GD:0060492"
##	"GO:0045054"
##	"GD:0060313"
##	"GD:0007398"
##	"GO:0051344"
##	"GO:0070328"
##	"GO:0060548"
##	"GO:0002576"
##	"GO:0045819"
##	"GO:0070130"
##	"GO:0006807"
##	"GO:0051685"
##	"GD:0000466"
##	"GO:0042532"
##	"GO:0034103"
##	"GO:0051715"
##	"GD:0007032"
##	"GD:0008065"
##	"GO:0021675"
##	"GO:0016101"
##	"GO:0035989"
##	"GD:0036335"
##	"GD:0060999" "GD:0072202"
##	
## ##	"GO:0015844" "GO:0002866"
##	"GD:0002866
##	"GD:2001271"
## ##	"GD:0008090"
## ##	"GD:0008090"
##	"GD:0006409"
## ##	"GD:0006409"
##	"GD:0031800"
##	"GD:0052901
##	"GD:1905146"
##	"GD:0070489"
	22.00.0100

##	"GO:0000964"
##	"GO:0035195"
##	"GO:0070613"
##	"GD:0006061"
##	"GO:0036159"
##	"GO:0097238"
##	"GD:0016561"
##	"GO:0032305"
##	"GO:0048563"
##	"GO:0035021"
## ##	"GO:0042558" "GO:0010957"
## ##	"GD:0010957" "GD:0008206"
## ##	"GD:0008206"
##	"GD:0006227"
##	"GD:0006233"
##	"GD:0006235
##	"GD:0050310"
##	"GD:0070862"
##	"GD:0140009"
##	"GO:1901303"
##	"GD:0007253"
##	"GO:1905913"
##	"GO:0051447"
##	"GO:0061312"
##	"GO:0051186"
##	"GO:0035544"
##	"GO:0070863"
##	"GO:0001819"
##	"GO:0010124"
##	"GO:0019358"
##	"GO:0019878"
##	"GO:0020028"
##	"GO:0034355"
##	"GO:0035853"
##	"GO:0042366"
##	"GD:0045605"
##	"GO:2000482"
##	"GO:1903202"
##	"GO:0043280"
##	"GO:0060297"
##	"GD:0060998"
## ##	"GO:0014912" "GO:0010933"
## ##	"GD:0010933"
## ##	"GD:0019556" "GD:0019557"
## ##	"GD:0019557"
## ##	"GO:0043244"
## ##	"GD:2000850"
## ##	"GD: 0006646"
## ##	"GD:0008646"
## ##	"GD:0019941"
##	"GD:0070143
##	"GD:0032266"
	22.0000100

##	"GO:0052548"
##	"GD:0032078"
##	"GD:1900062"
##	"GO:0044773"
##	"GO:1902499"
##	"GO:0042758"
##	"GD:0006195"
##	"GD:0006185"
##	"GD:0031001"
##	"GO:0046054"
##	"GD:0046060"
##	"GO:0046711"
##	"GD:0070980"
##	"GO:1903488"
##	"GD:0033292"
##	"GD:0019068"
##	"GD:0048694"
##	"GD:1903860"
##	"GO:1905580"
##	"GO:1905943"
##	"GD:0032787"
##	"GD:0048666"
##	"GD:0051697"
##	"GO:1904526"
##	"GO:0071354"
##	"GO:0045163"
##	"GO:1902303"
##	"GD:0003170"
##	"GO:0019543"
##	"GD:0046327"
##	"GD:0046520"
##	"GO:1903215"
##	"GD:0090557"
##	"GD:0033076"
##	"GD:0036465"
##	"GD:0042168"
##	"GO:0071375"
##	"GD:0036333"
##	"GO:1900153"
##	"GO:1904772"
##	"GO:0071500"
##	"GD:0002526"
##	"GD:0008347"
##	"GD:0002939"
##	"GO:1902491"
##	"GD:2000359"
##	"GD:0070371"
##	"GD:2000035"
##	"GO:1902309"
##	"GO:0071805"
##	"GO:0035795"
##	"GD:0099625"
##	"GD:0002573"
##	"GD:0003106"

##	"GO:0014895"
##	"GO:0017004"
##	"GO:0061011"
##	"GO:0071103"
##	"GO:2000011"
##	"GO:0021801"
##	"GO:0031016"
##	"GO:0071140"
##	"GO:0009954" "GO:0070377"
## ##	"GD:0070377"
##	"GD:0000431
##	"GD:0098528"
##	"GD:0030320"
##	"GD:2001241"
##	"GD:0060562"
##	"GD:2000696"
##	"GD:0003104"
##	"GD:0032990"
##	"GD:0035883"
##	"GD:0046293"
##	"GD:0046814"
##	"GD:0060730"
##	"GO:0072576"
##	"GO:0090615"
##	"GO:1901698"
##	"GO:1904880"
##	"GO:0001818"
##	"GO:0015876"
##	"GO:0060800"
##	"GO:0014850"
##	"GO:0043103"
##	"GD:0048205"
##	"GD:0009651"
##	"GO:0035970"
##	"GD:0046839"
##	"GO:0032402"
##	"GO:0072174"
##	"GO:1902771"
##	"GO:1902948"
##	"GO:1902955"
##	"GO:1902997"
## ##	"GO:0042942" "GO:1903753"
## ##	"GD: 0006400"
## ##	"GD:0008400"
## ##	"GD:0003014"
## ##	"GD:0019932" "GD:0090140"
## ##	"GD:0090140" "GD:0001951"
## ##	"GD:0001951" "GD:0007624"
## ##	"GD:1902896"
## ##	"GD: 1902896"
##	"GD:0002904"
##	"GO:0051102"
	30.0001102

##	"GO:2001252"
##	"GO:0010750"
##	"GO:0042759"
##	"GO:0048194"
##	"GO:1902262"
##	"GD:0021955"
##	"GO:0032823"
##	"GD:0033082"
## ##	"GO:0051136" "GO:0071157"
## ##	"GD:1904842"
##	"GD:1904842
##	"GD:0071028"
##	"GD:0038061"
##	"GD:1904640"
##	"GD:0001912"
##	"GD:1900020"
##	"GD:0021545"
##	"GD:0051099"
##	"GD:0070345"
##	"GD:0006309"
##	"GD:0016925"
##	"GO:0045345"
##	"GO:0051917"
##	"GO:0070183"
##	"GO:0001831"
##	"GO:0072111"
##	"GO:0072180"
##	"GO:0002474"
##	"GO:0048611"
##	"GO:0045839"
##	"GD:0070926"
##	"GD:0071712"
##	"GD:0097190"
##	"GO:0097343"
##	"GO:1901018"
##	"GO:1901835"
##	"GO:1904246"
##	"GO:0033132"
##	"GD:0001705"
##	"GO:0002528" "GO:0035846"
##	"GD:0035846"
## ##	"GD:0035847"
##	"GD:0035849
##	"GD:0060404"
##	"GD:0000404
##	"GD:0070402
##	"GD:0072283"
##	"GD:0072283
##	"GD:0060139"
##	"GD:0030497"
##	"GD:0086097"
##	"GD:0016075"

##	"GD:0032868"
##	"GO:0016139"
##	"GO:0042593"
##	"GO:0008292"
##	"GO:0044869"
##	"GO:0044871"
##	"GO:0055082"
##	"GO:1903016"
##	"GO:1903019"
##	"GO:0034067"
##	"GO:0060143"
##	"GO:0033077"
##	"GO:0018023"
##	"GO:0015701"
##	"GO:0048368"
##	"GO:0061017"
##	"GO:0071449"
##	"GO:0014878"
##	"GD:0006665"
##	"GO:0009804"
##	"GO:0034058"
##	"GO:0047484"
##	"GO:0071169"
##	"GO:0045954"
##	"GO:2000286"
##	"GO:0015910"
##	"GD:0002891"
##	"GO:0018022"
##	"GO:0000019"
##	"GD:0006662"
##	"GD:0070741"
##	"GO:0045921"
##	"GD:0070278"
##	"GD:0010523"
##	"GD:0010848"
##	"GD:0030573"
##	"GD:0046685"
##	"GO:1903543"
##	"GO:0016446"
##	"GO:0001541"
##	"GO:0007215"
##	"GO:0019285"
##	"GD:0045623"
##	"GD:2000768"
##	"GO:0019442"
##	"GO:0048875"
##	"GO:0048298"
##	"GD:0042908"
##	"GD:0071630"
##	"GD:0090164"
##	"GD:0003326"
##	"GD:0003329"
##	"GD:0002268"
##	"GD:0033140"

##	"GO:0014902"
##	"GD:0061626"
##	"GD:2001236"
##	"GO:0071374"
##	"GO:0044803"
##	"GD:0046786"
##	"GO:0032387"
##	"GD:0044070"
##	"GO:0099173"
##	"GD:0030302"
##	"GO:0030974"
##	"GD:0033005"
##	"GO:0034352"
##	"GD:0045646"
##	"GD:0055003"
##	"GO:1901028"
##	"GD:0050966"
## ##	"GO:0098915" "GO:2000380"
##	"GO: 1902065"
##	"GD: 0002246"
##	"GD:0002246"
##	"GD:0006193
##	"GD:0008333
##	"GO:0009204"
##	"GO:0015939
##	"GD:0043780"
##	"GD:1904036"
##	"GD:0045919"
##	"GD:0001881"
##	"GD:0045069"
##	"GO:0031281"
##	"GD:0006950"
##	"GD:2001013"
##	"GO:1901017"
##	"GD:2001136"
##	"GD:0060716"
##	"GO:0038127"
##	"GO:0050885"
##	"GO:0046135"
##	"GD:0006157"
##	"GO:0032261"
##	"GO:0046111"
##	"GD:0060169"
##	"GO:0060407"
##	"GD:2000097"
##	"GD:0090611"
##	"GD:0090038"
##	"GO:0033632"
##	"GO:0021979"
##	"GO:0007072"
##	"GO:0060154"
##	"GO:0042998"
##	"GO:0035284"

##	"GO:0042148"
##	"GO:2000552"
##	"GO:0001554"
##	"GD:0002041"
##	"GD:0002683"
##	"GD:0003188"
##	"GO:0035622"
##	"GD:0060517"
##	"GD:0060784" "GD:0061046"
## ##	"GD:0081046"
##	"GD:0070303
##	"GD:2000794"
##	"GD:0048640"
##	"GD:1902178"
##	"GD:0033591"
##	"GD:0006221"
##	"GD:0055008"
##	"GO:1903718"
##	"GO:0045136"
##	"GO:0019371"
##	"GD:0006869"
##	"GO:0006154"
##	"GO:0015889"
##	"GO:0046103"
##	"GO:0071248"
##	"GO:0018063"
##	"GO:0015825"
##	"GO:0043409"
##	"GO:0070897"
##	"GD:0043060"
##	"GO:0051257"
##	"GO:0019391"
##	"GO:1900248"
##	"GO:2001268"
##	"GO:0050428"
##	"GD:0006843"
##	"GO:0021937"
##	"GO:0043651"
##	"GO:0048566"
##	"GD:0086013"
##	"GO:0051593"
## ##	"GO:0007161" "GO:0014733"
## ##	"GD:0014733"
## ##	"GD:0007290"
##	"GD:0070427" "GD:0070586"
## ##	"GD:1990253"
## ##	"GD:1990253" "GD:0061178"
## ##	"GD:0007060"
## ##	"GD:1905552"
## ##	"GD: 1905552"
##	"GO:1903238"
##	"GD:0000423"
	30.0000420

##	"GO:0002502"
##	"GO:0043323"
##	"GD:0050829"
##	"GO:0045990"
##	"GD:0006651"
##	"GO:0045113"
##	"GO:0120012"
##	"GD:0072604"
##	"GD:0032446"
## ##	"GD:0045112" "GD:0060292"
## ##	"GO:0080292"
## ##	"GO:0035646"
##	"GD:0046328"
##	"GD:0034121"
##	"GO:0051444"
##	"GD:0031444
##	"GD:0010467
##	"GD:0002055
##	"GD:0014036"
##	"GD:0015672"
##	"GD:0001920"
##	"GD:0007157"
##	"GD:0090035"
##	"GD:2000619"
##	"GD:0060370"
##	"GD:0097176"
##	"GO:0045744"
##	"GD:0060384"
##	"GO:0070673"
##	"GD:0006682"
##	"GD:0009303"
##	"GD:1990266"
##	"GO:0009956"
##	"GO:0030047"
##	"GO:1902455"
##	"GO:1990744"
##	"GD:2000659"
##	"GO:1901166"
##	"GO:0071493"
##	"GD:2000741"
##	"GD:0014806"
##	"GO:0009314"
##	"GD:0006798"
##	"GD:0035093"
##	"GO:0035280"
##	"GO:0043589"
##	"GO:0071321"
##	"GD:0010880"
##	"GD:0050679"
##	"GD:0035278"
##	"GO:0043985"
##	"GD:0065003" "GD:0002369"
##	"GU:0002369"

##	"GO:1902626"
##	"GO:0014834"
##	"GD:0032966"
##	"GO:0002070"
##	"GO:0071034"
##	"GO:0035871"
##	"GO:0002314"
##	"GO:0008627"
##	"GO:0034395"
##	"GO:0035621"
##	"GO:0035794"
##	"GO:0035821"
##	"GO:1902235"
##	"GO:0002711"
##	"GO:0051270"
##	"GD:0002692"
##	"GO:0043314"
##	"GO:0051480"
##	"GD:2000647"
##	"GO:1990034"
##	"GO:0003215"
##	"GO:0032263"
##	"GO:0035881"
##	"GO:0036473"
##	"GO:0046100"
##	"GO:0070105"
##	"GO:0072137"
##	"GO:1901805"
##	"GO:1904457"
##	"GO:0046370"
##	"GD:0060539"
##	"GO:0051016"
##	"GO:0051712"
##	"GO:0032042"
##	"GO:0071048"
##	"GO:1902410"
##	"GO:0019262"
##	"GO:0071442"
##	"GD:0033668"
##	"GO:0002480"
##	"GO:0036112"
##	"GO:0019100"
##	"GO:0046939"
##	"GO:0017145"
##	"GO:0030431"
##	"GO:0002448"
##	"GD:0099040"
##	"GO:2001234"
##	"GO:0046488"
##	"GD:0008088"
##	"GO:0010882"
##	"GO:0030510"
##	"GO:0071897"
##	"GO:0072104"

##	"GO:0055025"
##	"GO:0034109"
##	"GO:1904812"
##	"GO:0035694"
##	"GO:0071372"
##	"GD:0030223"
##	"GO:1904643"
##	"GO:0003183"
##	"GO:1901382"
##	"GO:0021782"
##	"GO:0002635"
##	"GO:0000023"
##	"GO:0001834"
##	"GO:0032889"
##	"GO:0042023"
##	"GO:0042426"
##	"GO:1901725"
##	"GO:1990261"
##	"GO:0046486"
##	"GO:2000650"
##	"GO:0044130"
##	"GO:0090657"
##	"GO:0036151"
##	"GO:0019563"
##	"GD:0043004"
##	"GO:0002344"
##	"GO:0002721"
##	"GO:0098761"
##	"GO:0032076"
##	"GO:1902511"
##	"GO:1904628"
##	"GO:0010738"
##	"GO:0035459"
##	"GO:1900127"
##	"GO:1902263"
##	"GO:1900425"
##	"GO:0010960"
##	"GD:0006623"
##	"GO:1904778"
##	"GO:2001287"
##	"GO:0061470"
##	"GO:0008655"
##	"GD:0010360"
##	"GO:0045980"
##	"GO:0120009"
##	"GO:2000142"
##	"GO:1902616"
##	"GO:2001204"
##	"GO:0035357"
##	"GO:0031086"
##	"GO:0071049"
##	"GO:0071332"
##	"GO:1902172"
##	"GO:1904582"

##	"GO:0003151"
##	"GD:0034765"
##	"GD:0072091"
##	"GO:0033189"
##	"GO:0034516"
##	"GO:0075521"
##	"GD:0001966"
##	"GD:0002639"
##	"GD:0006747"
##	"GD:0033540" "GD:0008340"
## ##	"GO:0008340" "GO:0018315"
##	"GO:0072579"
##	"GD:0072734"
##	"GD:0072734"
##	"GD:00032077"
##	"GD:0032077
##	"GD:1903225"
##	"GD:0006582"
##	"GD:0030517"
##	"GD:0032805"
##	"GD:0032848"
##	"GD:0043375"
##	"GD:0046671"
##	"GD:0048753"
##	"GD:0072061"
##	"GD:0001941"
##	"GO:0007598"
##	"GD:0010636"
##	"GO:0061642"
##	"GD:0098706"
##	"GO:0045356"
##	"GO:0046341"
##	"GO:1905205"
##	"GD:0032310"
##	"GO:0006548"
##	"GO:2000785"
##	"GD:0008356"
##	"GD:0030050"
##	"GD:0097237"
##	"GD:0045725"
##	"GD:0006948"
##	"GO:0035397"
##	"GD:0042698"
##	"GO:1901897"
##	"GO:1901888"
##	"GD:0019673"
##	"GO:0070488"
##	"GO:1903434"
##	"GO:1990967"
##	"GD:0097053"
##	"GO:0014037"
##	"GD:0034123" "GD:1904528"
##	"GU:1904528"

##	"GO:0001667"
##	"GO:0045653"
##	"GO:0009143"
##	"GO:0001824"
##	"GO:0071787"
##	"GO:0042110"
##	"GO:1902176"
##	"GO:0061987"
##	"GO:2000971"
##	"GO:0070054"
##	"GO:0098787"
##	"GO:1990579"
##	"GO:0070314"
##	"GO:0010734"
##	"GO:0015842"
##	"GO:0051126"
##	"GO:0071044"
## ##	"GO:2000002" "GO:0071888"
##	"GD:0071888" "GD:0002645"
##	"GO:1905273"
##	"GD:0034642"
##	"GO:0034042
##	"GD:0009950"
##	"GO:0005530
##	"GD:0000778"
##	"GD:0031339"
##	"GD:0002188"
##	"GO:0046898"
##	"GO:0071839"
##	"GD:0030001"
##	"GO:1900210"
##	"GO:0019088"
##	"GO:0019860"
##	"GO:0030382"
##	"GO:0046078"
##	"GO:0046086"
##	"GO:0051650"
##	"GO:0061205"
##	"GO:0072755"
##	"GO:0006433"
##	"GO:0034380"
##	"GO:0007518"
##	"GO:1904045"
##	"GO:0045645"
##	"GO:0046456"
##	"GD:0060066"
##	"GD:0060219"
##	"GO:0051965"
##	"GO:0015680"
##	"GO:1904268"
##	"GD:0000768"
##	"GD:0001562"
##	"GO:0001582"

##	"GO:0002127"
##	"GO:0002220"
##	"GO:0002253"
##	"GO:0002264"
##	"GO:0002361"
##	"GO:0002470"
##	"GO:0002590"
##	"GD:0002718"
## ##	"GD:0002760" "GD:0002787"
## ##	"GD:0002787"
##	"GD:0002818
##	"GD:0003029
##	"GD:0003032
##	"GD:0003100"
##	"GD:0003236"
##	"GD:0003259"
##	"GD:0003421"
##	"GD:0005984"
##	"GD:0006507"
##	"GD:0006598"
##	"GD:0006667"
##	"GO:0007321"
##	"GO:0009104"
##	"GO:0009124"
##	"GO:0009128"
##	"GO:0009132"
##	"GO:0009133"
##	"GO:0009134"
##	"GO:0009181"
##	"GD:0009223"
##	"GO:0009751"
##	"GO:0009914"
##	"GD:0010446"
##	"GD:0010607"
##	"GO:0010789"
##	"GO:0010970"
##	"GO:0010983"
##	"GO:0014717"
## ##	"GO:0014905" "GO:0015706"
##	"GO:0015706" "GO:0015727"
## ##	"GD:0015727"
## ##	"GD:0015730"
##	"GD:0015770
##	"GD:0015803"
##	"GD:0015803
##	"GD:0015819"
##	"GD:0015860"
##	"GD:0015864"
##	"GD:0015865"
##	"GD:0015913"
##	"GO:0015938"
##	"GD:0016077"

##	"GO:0016116"
##	"GO:0016119"
##	"GO:0016121"
##	"GO:0016122"
##	"GO:0016999"
##	"GO:0018191"
##	"GD:0018350"
##	"GO:0018969"
##	"GD:0019060"
##	"GO:0019290"
##	"GO:0019310" "GO:0019376"
## ##	"GO:0019376"
## ##	"GO:0019428"
##	"GD:0019438"
##	"GD:0019628
##	"GD:0019637
##	"GD:0019075"
##	"GO:0013333
##	"GD:0021568"
##	"GO:0021694"
##	"GO:0021822"
##	"GD:0030209"
##	"GO:0031161"
##	"GO:0031338"
##	"GO:0031549"
##	"GO:0032023"
##	"GO:0032196"
##	"GO:0032199"
##	"GO:0032475"
##	"GO:0032604"
##	"GO:0032637"
##	"GO:0032826"
##	"GO:0032979"
##	"GD:0033396"
##	"GD:0033500"
##	"GO:0033580"
##	"GO:0034224"
##	"GO:0034230"
##	"GO:0034231"
##	"GO:0034414"
##	"GO:0035212"
## ##	"GO:0035238" "GO:0035445"
## ##	"GO:0035445"
## ##	"GO:0035499"
## ##	"GD:003575"
## ##	"GO:0035709"
## ##	"GO:0035712"
## ##	"GO:0035732"
## ##	"GD:0035752"
## ##	"GD:0035874"
##	"GD:0035934"
##	"GD:0035992"
	30.0000002

##	"GD:0036031"
##	"GD:0036085"
##	"GO:0038101"
##	"GO:0038195"
##	"GO:0042044"
##	"GD:0042140"
##	"GD:0042268"
##	"GD:0042404"
##	"GD:0042636"
##	"GD:0042664"
##	"GO:0042843"
##	"GO:0043041"
##	"GO:0043143"
##	"GO:0043251"
##	"GO:0043416"
##	"GO:0043438"
##	"GD:0043467"
##	"GD:0043629"
##	"GO:0043630"
##	"GO:0044258"
##	"GO:0044275"
##	"GO:0044356"
##	"GO:0045299"
##	"GO:0045575"
##	"GD:0045660"
##	"GD:0046079"
##	"GO:0046105"
##	"GD:0046373"
##	"GO:0046546"
##	"GO:0046588"
##	"GD:0046603"
##	"GO:0046713"
##	"GO:0048058"
##	"GO:0048073"
##	"GO:0048137"
##	"GO:0048571"
##	"GO:0048698"
##	"GD:0048793"
##	"GO:0048855"
##	"GO:0050758"
##	"GO:0050783"
##	"GO:0050864"
##	"GD:0050906"
##	"GO:0050907"
##	"GO:0051582"
##	"GO:0051638"
##	"GO:0051884"
##	"GO:0051977"
##	"GO:0052565"
##	"GO:0055107"
##	"GD:0060007"
##	"GD:0060051"
##	"GO:0060118"
##	"GD:0060180"

##	"GD:0060280"
##	"GD:0060300"
##	"GO:0060481"
##	"GD:0060629"
##	"GD:0060803"
##	"GD:0060829"
##	"GD:0060887"
##	"GD:0060912"
## ##	"GO:0060921" "GO:0060975"
## ##	"GD:0060975"
##	"GD:0060989
##	"GD:0061526"
##	"GD:0061572"
##	"GD:0061760"
##	"GD:0062026"
##	"GD:0070255"
##	"GD:0070265"
##	"GD:0070368"
##	"GD:0070378"
##	"GD:0070664"
##	"GD:0070684"
##	"GO:0070782"
##	"GO:0071036"
##	"GO:0071037"
##	"GO:0071050"
##	"GO:0071076"
##	"GO:0071401"
##	"GO:0071412"
##	"GO:0071579"
##	"GO:0071611"
##	"GO:0071693"
##	"GO:0071788"
##	"GO:0071802"
##	"GO:0071954"
##	"GO:0072272"
##	"GO:0072340"
##	"GO:0072395"
##	"GO:0072522"
##	"GD:0072616"
##	"GD:0080144" "GD:0080164"
## ##	"GD:0080164" "GD:0090122"
## ##	"GD:0090122"
##	"GD:0090133
##	"GD:0097185"
##	"GD:0097183
##	"GD:0097552
##	"GD:0098838"
##	"GD:0098925"
##	"GD:0099555"
##	"GO:0120154"
##	"GO:0120151"
##	"GD:1900139"
	20.2000100

##	"GO:1900281"
##	"GO:1900758"
##	"GO:1901003"
##	"GO:1901184"
##	"GO:1901341"
##	"GO:1901565"
##	"GO:1901625"
##	"GO:1901639"
##	"GO:1901810"
##	"GO:1901995"
##	"GO:1902070"
## ##	"GO:1902082" "GO:1902204"
##	"GO:1902204"
##	"GO:1902225" "GO:1902939"
##	"GO:1902939"
##	"GO:1903403"
##	"GO: 1903403"
##	"GO:1903577"
##	"GD:1903376"
##	"GD:1903700"
##	"GD:1903707
##	"GD:1903904"
##	"GD:1903965"
##	"GD:1904035"
##	"GD:1904220"
##	"GO:1904427"
##	"GO:1904677"
##	"GO:1904717"
##	"GO:1905183"
##	"GO:1905184"
##	"GO:1905246"
##	"GO:1905281"
##	"GO:1905516"
##	"GO:1905802"
##	"GO:1905872"
##	"GO:1990079"
##	"GO:1990227"
##	"GO:1990245"
##	"GO:1990379"
##	"GO:1990384"
##	"GD:1990603"
##	"GO:1990755"
##	"GO:2000103"
##	"GO:2000193"
##	"GO:2000415"
##	"GD:2000418"
##	"GD:2000465"
##	"GD:2000565"
##	"GO:2000572"
##	"GD:2000609"
##	"GD:2000626"
##	"GO:2000751"
##	"GO:2001107"

##	"GO:2001142"
##	"GO:0010586"
##	"GO:0007159"
##	"GO:0046832"
##	"GO:0072282"
##	"GO:1904861"
##	"GD:0060161"
##	"GO:0015916"
## ##	"GO:0015919" "GO:0036113"
## ##	"GD:0036113"
##	"GD:0000821
##	"GD:0001552"
##	"GD:0001932
##	"GD:0001313
##	"GD:0002100"
##	"GD:0002302"
##	"GD:0002355"
##	"GD:0002432"
##	"GD:0002691"
##	"GD:0003017"
##	"GD:0003044"
##	"GO:0005983"
##	"GO:0006174"
##	"GO:0006186"
##	"GD:0006539"
##	"GO:0006756"
##	"GO:0006757"
##	"GO:0007291"
##	"GO:0007618"
##	"GO:0009256"
##	"GD:0009446"
##	"GO:0009798"
##	"GD:0010640"
##	"GO:0010879"
##	"GO:0015755"
##	"GO:0015854"
##	"GO:0018009"
##	"GO:0019318"
##	"GD:0019740"
## ##	"GO:0021509" "GO:0021687"
## ##	"GD:0021887"
## ##	"GD:0021920"
##	"GD:0030393"
##	"GD:0030885"
##	"GD:0030003
##	"GD:00327788"
##	"GD:0032789"
##	"GD:0035344"
##	"GD:0035364"
##	"GD:0035608"
##	"GD:0035611"
##	"GD:0035696"
	20.000000

##	"GO:0035915"
##	"GD:0036017"
##	"GD:0036090"
##	"GO:0036153"
##	"GO:0042941"
##	"GD:0043063"
##	"GO:0043413"
##	"GO:0044140"
##	"GO:0045625"
##	"GO:0045686"
##	"GD:0046208"
##	"GD:0046496"
##	"GO:0046514"
##	"GO:0048075"
##	"GO:0048241"
##	"GO:0048749"
##	"GO:0048874"
##	"GO:0051134"
##	"GO:0051958"
##	"GO:0055111"
##	"GD:0060101"
##	"GD:0060262"
##	"GD:0060678"
##	"GO:0060857"
##	"GO:0061508"
##	"GO:0061565"
##	"GO:0061566"
##	"GO:0061567"
##	"GO:0061568"
##	"GO:0061569"
##	"GO:0061570"
##	"GO:0061571"
##	"GO:0070570"
##	"GO:0071971"
##	"GO:0072076"
##	"GO:0072079"
##	"GO:0072213"
##	"GO:0072254"
##	"GO:0072267"
##	"GD:0090322"
##	"GD:0097106"
##	"GO:0098542"
##	"GD:0098629"
##	"GD:0098829"
##	"GO:0110026"
##	"GO:0120034"
##	"GO:1900035"
##	"GD:1900170"
##	"GO:1901053"
##	"GD:1901307"
##	"GO:1901492"
##	"GO:1901994"
##	"GO:1902173"
##	"GO:1902213"

##	"GO:1902283"
##	"GO:1902567"
##	"GO:1902569"
##	"GO:1903118"
##	"GO:1903242"
##	"GO:1904479"
##	"GO:1990539"
##	"GD:2000212"
##	"GO:2000417" "GO:2001051"
## ##	"GD:2001051"
## ##	"GD:1904263"
##	"GD:0071660"
##	"GD:1990592"
##	"GD:0003138"
##	"GD:0003185"
##	"GD:200009"
##	"GD:1902808"
##	"GD:0000097"
##	"GD:0001680"
##	"GO:0002578"
##	"GD:0002642"
##	"GD:0002769"
##	"GO:0006218"
##	"GO:0006256"
##	"GD:0006313"
##	"GO:0007225"
##	"GO:0014739"
##	"GO:0015828"
##	"GO:0018872"
##	"GO:0019478"
##	"GO:0019481"
##	"GO:0019627"
##	"GO:0021686"
##	"GO:0021933"
##	"GO:0032074"
##	"GO:0032218"
##	"GD:0032616"
##	"GO:0032634"
##	"GD:0033477"
##	"GD:0034440"
##	"GO:0034441" "GO:0035552"
## ##	"GD:0035695"
##	"GD:0035873"
##	"GD:0035873
##	"GD:0036088
##	"GD:0038060"
##	"GD:0038000
##	"GD:0042120
##	"GD:0045204"
##	"GD:0045209"
##	"GD:0045226"
##	"GD:0046032"
	20.0010002

##	"GD:0046485"
##	"GO:0046709"
##	"GO:0048561"
##	"GO:0051308"
##	"GO:0051410"
##	"GO:0055130"
##	"GD:0060648"
##	"GD:0060838"
##	"GO:0061430"
##	"GO:0070267"
##	"GO:0071348"
##	"GO:0071654"
##	"GO:0072721"
##	"GO:0080163"
##	"GD:0086065"
##	"GD:0090249"
##	"GD:0097305"
##	"GD:0098743"
##	"GO:0140074"
##	"GO:1901074"
##	"GO:1901231"
##	"GO:1901233"
##	"GO:1901292"
##	"GO:1901475"
##	"GO:1901827"
##	"GO:1901858"
##	"GO:1901979"
##	"GO:1902159"
##	"GO:1902466"
##	"GO:1902866"
##	"GD:1902908"
##	"GO:1903569"
##	"GO:1904026"
##	"GO:1904120"
##	"GO:1904177"
##	"GO:1904328"
##	"GO:1905240"
##	"GO:1905863"
##	"GO:1905875"
##	"GO:1990256"
##	"GD:2000403"
##	"GO:2001198"
##	"GD:0000103"
##	"GD:0009890"
##	"GD:0046834"
##	"GO:0070141"
##	"GO:0006518"
##	"GO:0051259"
##	"GO:0070413"
##	"GO:0071672"
##	"GO:0035137"
##	"GO:1905206"
##	"GO:0001662"
##	"GO:0051490"

##	"GO:0071279"
##	"GO:0001576"
##	"GO:0001694"
##	"GO:0002077"
##	"GO:0002443"
##	"GD:0002763"
##	"GO:0003011"
##	"GD:0006547"
## ##	"GD:0006863" "GD:0009583"
## ##	"GD:0009583"
##	"GD:0010710
##	"GD:0015782
##	"GD:0015731
##	"GD:0015855"
##	"GD:0015904"
##	"GD:0021683"
##	"GD:0021723"
##	"GD:0021934"
##	"GD:0030322"
##	"GD:0030860"
##	"GD:0032277"
##	"GO:0034146"
##	"GO:0035042"
##	"GO:0035772"
##	"GO:0035962"
##	"GO:0042219"
##	"GO:0042628"
##	"GO:0042774"
##	"GO:0043105"
##	"GO:0044026"
##	"GO:0045103"
##	"GO:0046130"
##	"GD:0046942"
##	"GO:0048483"
##	"GO:0048486"
##	"GO:0048520"
##	"GO:0048621"
##	"GD:0048894"
##	"GD:0050703"
##	"GO:0051050" "GO:0051177"
## ##	
## ##	"GO:0051355" "GO:0051615"
##	"GO:0051714"
##	"GD:0055017"
##	"GD:0053017
##	"GD:0061143"
##	"GD:0061452"
##	"GD:0061855"
##	"GD:0001333"
##	"GD:0071469"
##	"GD:0071939"
##	"GO:0072531"

##	"GO:0072677"
##	"GO:0090175"
##	"GO:0097310"
##	"GD:0097476"
##	"GO:0098725"
##	"GO:0099180"
##	"GO:1900721"
##	"GD:1901706"
##	"GO:1902311" "GO:1902473"
## ##	"GD: 1902473"
##	"GD:1902747
##	"GD:1904394"
##	"GO:1904334"
##	"GD:1904823"
##	"GD:1905039"
##	"GD:1905604"
##	"GD:1905710"
##	"GO:1990349"
##	"GO:1990451"
##	"GD:2000303"
##	"GD:2000355"
##	"GO:2000391"
##	"GD:2000632"
##	"GO:2001111"
##	"GO:2001208"
##	"GO:0090148"
##	"GO:0016254"
##	"GO:0030183"
##	"GO:0002093"
##	"GO:0002101"
##	"GO:0002724"
##	"GD:0003335"
##	"GD:0006876"
##	"GD:0010045"
##	"GO:0014014"
##	"GO:0015707"
##	"GO:0015747"
##	"GO:0015783"
##	"GO:0015790"
##	"GO:0015802" "GO:0015874"
##	
## ##	"GO:0016095" "GO:0019482"
##	"GD:0019482
##	"GD:0013020
##	"GD:0021858
##	"GD:0030636"
##	"GD:0032032
##	"GD:0034219"
##	"GD:0034213
##	"GD:0042107"
##	"GD:0042352"
##	"GD:0042984"
	20.0012001

##	"GO:0045234"
##	"GO:0045342"
##	"GO:0046491"
##	"GO:0050720"
##	"GO:0051620"
##	"GD:0060016"
##	"GO:0060721"
##	"GO:0061196"
##	"GO:0061400"
##	"GO:0070173"
##	"GO:0070838"
##	"GO:0070839"
##	"GO:0071701"
##	"GO:0072665"
##	"GD:0086018"
##	"GD:0086027"
##	"GD:0090022"
##	"GO:0090301"
##	"GD:0090389"
##	"GO:0090659"
##	"GO:0097254"
##	"GD:0098749"
##	"GO:0099004"
##	"GO:1901207"
##	"GO:1901676"
##	"GO:1902023"
##	"GO:1902153"
##	"GO:1902349"
##	"GO:1902367"
##	"GO:1903301"
##	"GO:1903350"
##	"GO:1903949"
##	"GO:1903954"
##	"GO:1904199"
##	"GO:1904456"
##	"GO:1904691"
##	"GO:1904766"
##	"GO:1904935"
##	"GO:1990697"
##	"GO:1990792"
##	"GO:1990983"
##	"GD:2000027"
##	"GO:2000314"
##	"GO:2001280"
##	"GO:0015722"
##	"GO:0032417"
##	"GO:0048685"
##	"GD:0000432"
##	"GD:0002767"
##	"GO:0042415"
##	"GD:0000256"
##	"GD:0001100"
##	"GD:0001581"
##	"GD:0002684"

##	"GO:0003353"
##	"GO:0006570"
##	"GO:0006575"
##	"GO:0015826"
##	"GO:0016998"
##	"GD:0032368"
##	"GO:0032597"
##	"GD:0032600"
##	"GO:0032913"
##	"GO:0034157"
##	"GO:0034589"
##	"GD:0042494"
##	"GO:0044265"
##	"GO:0044726"
##	"GO:0045062"
##	"GO:0045556"
##	"GO:0045834"
##	"GO:0046108"
##	"GO:0046272"
##	"GD:0050928"
##	"GO:0051121"
##	"GO:0051282"
##	"GO:0051758"
##	"GD:0060309"
##	"GD:0060470"
##	"GD:0060631"
##	"GO:0061537"
##	"GD:0070292"
##	"GO:0070948"
##	"GO:0071951"
##	"GO:0072028"
##	"GO:0072139"
##	"GO:0090189"
##	"GO:0097168"
##	"GO:0097274"
##	"GO:0098781"
##	"GO:0106015"
##	"GO:0106064"
##	"GO:1901624"
##	"GO:1901751"
##	"GO:1902389"
##	"GO:1903319"
##	"GO:1990822"
##	"GD:2000057"
##	"GO:2001301"
##	"GO:2001306"
##	"GO:0016571"
##	"GO:0072207"
##	"GO:0046598"
##	"GO:0006568"
##	"GO:0035115"
##	"GO:0048821"
##	"GO:0034113"
##	"GO:0043249"

##	"GO:0048496"
##	"GO:0032273"
##	"GO:0097065"
##	"GO:0043586"
##	"GO:0002149"
##	"GO:0002337"
##	"GO:0003026"
##	"GD:0006173"
##	"GD:0006797"
##	"GO:0007402"
## ##	"GD:0007468" "GD:0008052"
## ##	"GO:0008052"
##	"GO:0015887"
##	"GO:0018200"
##	"GO:0019236"
##	"GO:0019321"
##	"GO:0019323"
##	"GO:0019323
##	"GO:0035039"
##	"GO:0035332"
##	"GO:0035543"
##	"GD:0036179"
##	"GO:0036179
##	"GO:0043100
##	"GD:0052106"
##	"GD:0060731"
##	"GD:0060825"
##	"GD:0061193"
##	"GD:0061339"
##	"GD:0061448"
##	"GD:0061931"
##	"GD:0070715"
##	"GO:0090101"
##	"GD:0090107"
##	"GD:0090193"
##	"GO:1902253"
##	"GO:1902745"
##	"GO:1902838"
##	"GO:1902870"
##	"GO:1904178"
##	"GO:1990268"
##	"GO:2000124"
##	"GO:2000313"
##	"GO:2000813"
##	"GO:0045494"
##	"GD:0006663"
##	"GO:0030833"
##	"GO:0051592"
##	"GO:0008219"
##	"GO:0051096"
##	"GO:0032608"
##	"GO:0035553"
##	"GO:0042136"

##	"GO:0051968"
##	"GO:0006914"
##	"GO:0003174"
##	"GO:0003175"
##	"GO:0003284"
##	"GO:0009166"
##	"GO:0009236"
##	"GO:0015689"
##	"GO:0015820"
##	"GO:0030505"
##	"GO:0031930"
##	"GO:0032690"
##	"GD:0036306"
##	"GO:0046395"
##	"GO:0046434"
##	"GO:0048370"
##	"GO:0048792"
##	"GO:0051041"
##	"GO:0060243"
##	"GD:0070350"
##	"GO:0071635"
##	"GD:0086044"
##	"GO:0086054"
##	"GD:0086055"
##	"GD:0090366"
##	"GO:0090461"
##	"GO:0090675"
##	"GD:0098740"
##	"GD:0098906"
##	"GD:0099638"
##	"GO:0110091"
##	"GO:1900133"
##	"GO:1900450"
##	"GO:1901076"
##	"GO:1901096"
##	"GO:1901247" "GO:1901251"
	"GO:1901251"
## ##	"GO:1902251"
##	"GO:1903021
##	"GD:1904808
##	"GO:1990029
##	"GD:2000231"
## ##	"GO:2000231"
##	"GO:2001213
##	"GD:0042823"
##	"GD:0042023
##	"GO:0002731
##	"GD:0043221
##	"GD:0001809
##	"GD:00097112
##	"GD:0000939
##	"GD:0002626"
##	"GD:0002729"
	40.0002120

##	"GD:0006660"
##	"GD:0006867"
##	"GO:0008594"
##	"GD:0009072"
##	"GO:0009159"
##	"GO:0009231"
##	"GD:0009398"
##	"GO:0010106"
## ##	"GO:0015724" "GO:0015797"
## ##	"GD:0015797"
##	"GD:0013847
##	"GD:0021642"
##	"GD:0021703"
##	"GD:0021703
##	"GD:0032274"
##	"GD:0032685"
##	"GD:0032945"
##	"GD:0033345"
##	"GO:0033514"
##	"GD:0034166"
##	"GO:0035548"
##	"GD:0040016"
##	"GO:0044657"
##	"GO:0045407"
##	"GO:0050746"
##	"GO:0051459"
##	"GO:0051460"
##	"GO:0051852"
##	"GO:0051957"
##	"GD:0060849"
##	"GD:0060973"
##	"GD:0061365"
##	"GO:0071918"
##	"GO:0072592"
##	"GD:0086030"
##	"GO:0097639"
##	"GD:0097640"
##	"GO:1900011"
##	"GO:1901787"
##	"GO:1901881"
##	"GO:1901899"
## ##	"GO:1901980" "GO:1902631"
## ##	"GD: 1902631" "GD: 1903765"
## ##	"GD: 1903765"
##	"GD: 1904283" "GD: 1904906"
## ##	"GD: 1904906" "GD: 1905025"
## ##	"GD: 1905025"
## ##	"GD:2000254" "GD:2000487"
## ##	"GD:2000487"
## ##	"GD:2001193"
##	"GD:0046958"
##	"GD:0045663"
	40.004000

##	"GO:1900370"
##	"GO:0051403"
##	"GD:0031667"
##	"GO:1905062"
##	"GO:0001572"
##	"GD:0003359"
##	"GO:0006145"
##	"GD:0006214"
##	"GD:0006583"
##	"GO:0007400"
##	"GO:0009234"
##	"GO:0009590"
##	"GO:0010092"
##	"GD:0010968"
##	"GO:0015705"
##	"GO:0015858"
##	"GO:0015862"
##	"GD:0019483"
##	"GO:0021750"
##	"GO:0035702"
##	"GD:0039020"
##	"GO:0042357"
##	"GO:0042371"
##	"GD:0042946"
##	"GO:0045540"
##	"GO:0045957"
##	"GO:0050974"
##	"GD:0060165"
##	"GD:0060677"
##	"GD:0061100"
##	"GD:0061102"
##	"GD:0061103"
##	"GD:0061296"
##	"GO:0071397"
##	"GO:0098734"
##	"GO:1900402"
##	"GO:1901339"
##	"GO:1901642"
##	"GO:1902073"
##	"GO:1902490"
##	"GO:1904733"
##	"GO:1904736"
##	"GO:1905221"
##	"GO:1905373"
##	"GO:1990959"
##	"GD:1990960"
##	"GO:0061290"
##	"GD:0098909"
##	"GO:1903232"
##	"GO:0070555"
##	"GO:0048387"
##	"GO:0042138"
##	"GD:0002176"
##	"GD:0098989"

##	"GO:0002071"
##	"GO:0003352"
##	"GO:0006528"
##	"GD:0006639"
##	"GO:0010609"
##	"GO:0014056"
##	"GO:0015739"
##	"GO:0015868"
##	"GD:0030473"
##	"GO:0030719"
##	"GO:0032581"
##	"GO:0032919"
##	"GD:0032920"
##	"GO:0035750"
##	"GO:0035963"
##	"GO:0035971"
##	"GO:0043252"
##	"GD:0043269"
##	"GD:0046204"
##	"GO:0051350"
##	"GO:0055090"
##	"GO:0061580"
##	"GO:0071378"
##	"GO:0097231"
##	"GD:0098780"
##	"GO:0098814"
##	"GO:0099627"
##	"GD:0099630"
##	"GO:0106101"
##	"GO:1901208"
##	"GO:1901211"
##	"GO:1901557"
##	"GO:1903804"
##	"GO:1904071"
##	"GO:0014009"
##	"GD:0006312"
##	"GO:0071250"
##	"GO:0071873"
##	"GO:1901860"
##	"GO:1901863"
##	"GO:1904635"
##	"GO:1904639"
##	"GO:2000184"
##	"GO:0038129"
##	"GO:0071629"
##	"GO:0032532"
##	"GO:0007521"
##	"GO:0010288"
##	"GD:0002395"
##	"GD:0002946"
##	"GO:0003327"
##	"GO:0007343"
##	"GO:0010712" "GO:0010900"
##	

##	"GO:0010949"
##	"GO:0034156"
##	"GO:0034369"
##	"GO:0035038"
##	"GO:0042245"
##	"GD:0042930"
##	"GD:0043048"
##	"GD:0043381"
##	"GO:0043383"
##	"GO:0043604"
##	"GO:0043605"
##	"GO:0045586"
##	"GO:0045796"
##	"GO:0050712"
##	"GD:0050828"
##	"GO:0060163"
##	"GD:0060580"
##	"GO:0061589"
##	"GO:0072286"
##	"GO:0097006"
##	"GO:0097045"
##	"GO:0097309"
##	"GO:0098662"
##	"GO:0099044"
##	"GO:1900036"
##	"GO:1900076"
##	"GO:1901529"
##	"GO:1901668"
##	"GO:1902304"
##	"GO:1902613"
##	"GO:1903165"
##	"GO:1903576"
##	"GO:1903826"
##	"GO:1905174"
##	"GO:1990009"
##	"GO:2000275"
##	"GD:2000424"
##	"GO:2000510"
##	"GO:2000515"
##	"GO:2001251"
##	"GD:0000430"
##	"GD:0007387"
##	"GD:0007388"
##	"GD:0006685"
##	"GD:0002764"
##	"GD:0006304"
##	"GD:0006579"
##	"GD:0006580"
##	"GO:0010813"
##	"GO:0021842"
##	"GO:0033388"
##	"GO:0033633"
##	"GO:0034775"
##	"GO:0035112"

##	"GO:0045414"
##	"GO:0045423"
##	"GO:0046355"
##	"GD:0048634"
##	"GD:0050666"
##	"GD:0060448"
##	"GO:0071503"
##	"GD:0071626"
##	"GO:0090132" "GO:0090321"
## ##	"GD:0090321"
##	"GD:0097037
##	"GD:0098583"
##	"GD:0099039"
##	"GD:0106001"
##	"GD:1900142"
##	"GD:1900477"
##	"GD:1900477
##	"GO:1903169"
##	"GO:1903487"
##	"GD:1904681"
##	"GO:1904708"
##	"GO:1905662"
##	"GO:1905747"
##	"GO:1905748"
##	"GO:2000533"
##	"GO:0032728"
##	"GO:0032774"
##	"GO:0090201"
##	"GO:0090071"
##	"GO:0033278"
##	"GO:0032119"
##	"GO:0031365"
##	"GD:0002309"
##	"GO:0002517"
##	"GD:0006049"
##	"GD:0006208"
##	"GO:0006212"
##	"GO:0006581"
##	"GO:0015817"
##	"GO:0015840" "GO:0030329"
##	"GD:0030329"
## ##	"GD:0032223"
##	"GD:0033332
##	"GD:0042431
##	"GD:0045212
##	"GD:0046838"
##	"GD:0040036"
##	"GD:0053024"
##	"GD:0001032
##	"GD:0071838"
##	"GD:0090251"
##	"GD:0090410"
	20.0000110

##	"GO:0097055"
##	"GO:0097680"
##	"GO:1900039"
##	"GO:1901128"
##	"GO:1901684"
##	"GO:1902081"
##	"GO:1903597"
##	"GO:1905078"
##	"GO:2000187"
##	"GD:0007369"
##	"GD:0034162"
## ##	"GO:1902260" "GO:0042816"
## ##	"GD:0042816" "GD:0019730"
## ##	"GD:0019730"
##	"GD:0003407
##	"GO:0000413
##	"GO:0070171
##	"GD:0001307
##	"GD:0006392"
##	"GD:0006577"
##	"GD:0006677"
##	"GD:0006857"
##	"GD:0006921"
##	"GD:0010603"
##	"GD:0014841"
##	"GO:0014846"
##	"GO:0019747"
##	"GO:0033002"
##	"GO:0033034"
##	"GO:0033301"
##	"GO:0034150"
##	"GO:0035349"
##	"GO:0035922"
##	"GO:0036292"
##	"GO:0042033"
##	"GO:0042231"
##	"GO:0042253"
##	"GD:0044088"
##	"GO:0045189"
##	"GO:0046380"
##	"GD:0060468"
##	"GO:0061772"
##	"GO:0070994"
##	"GO:0071267"
##	"GO:0072671"
##	"GO:0080121"
##	"GO:0090317"
##	"GO:1900176"
##	"GO:1901533"
##	"GO:1903452"
## ##	"GO:1903545" "GO:1904152"
##	"GU:1904152" "GO:1905035"
##	GO.1300035

##	"GO:1905590"
##	"GO:1905929"
##	"GO:1990569"
##	"GD:2000382"
##	"GO:2000478"
##	"GO:2000534"
##	"GD:2000590"
##	"GD:2000645"
## ##	"GO:0048639" "GO:0030844"
## ##	"GO:1901857"
##	"GD:0060011"
##	"GD:0001695"
##	"GO:0007435"
##	"GD:0007433
##	"GD:0014052"
##	"GD:0016556"
##	"GO:0021546"
##	"GD:0030328"
##	"GO:0032618"
##	"GD:0032773"
##	"GO:0033159"
##	"GO:0034130"
##	"GO:0034158"
##	"GO:0035672"
##	"GO:0035745"
##	"GO:0038097"
##	"GO:0043012"
##	"GO:0046880"
##	"GO:0051796"
##	"GO:0052567"
##	"GD:0060005"
##	"GD:0060330"
##	"GD:0060837"
##	"GO:0060901"
##	"GO:0061944"
##	"GD:0071307"
##	"GO:0071357"
##	"GD:0071609"
##	"GO:0071846"
##	"GD:0090285"
##	"GO:1900155"
##	"GO:1901623"
##	"GO:1902910"
##	"GO:1903362"
##	"GO:1904240"
##	"GO:1990074"
##	"GO:2000108"
##	"GO:0010763"
##	"GD:0035067" "GD:0006285"
##	"GU:0006285" "GU:1903093"
## ##	"GO: 0072102"
## ##	"GO:0072102"
	GO . OO / Z I OO

##	"GO:1903774"
##	"GD:0000957"
##	"GD:0002357"
##	"GD:0006478"
##	"GD:0006679"
##	"GO:0009115"
##	"GD:0009229"
##	"GD:0009258"
##	"GO:0015684"
##	"GO:0015692"
##	"GO:0015881"
##	"GD:0030704"
##	"GD:0032596"
##	"GO:0035262"
##	"GO:0035927"
##	"GD:0038016"
##	"GO:0044537"
## ##	"GO:0044650" "GO:0045601"
##	"GD:0045601"
##	"GD:0048464"
##	"GO:0048074"
##	"GD:0048178
##	"GD:0060345"
##	"GO:0060343"
##	"GD:0062000"
##	"GD:0070627"
##	"GO:0071501"
##	"GD:0071926"
##	"GD:0097222"
##	"GD:0097380"
##	"GO:1901228"
##	"GO:1903988"
##	"GO:1905897"
##	"GO:2000981"
##	"GO:0030501"
##	"GD:0009790"
##	"GO:1904902"
##	"GD:0007286"
##	"GO:0016310"
##	"GO:0010881"
##	"GO:0035912"
##	"GO:0016338"
##	"GO:0050830"
##	"GO:0071584"
##	"GO:0071585"
##	"GO:0043279"
##	"GO:0060997"
##	"GO:0071707"
##	"GO:0000054"
##	"GD:0001906"
##	"GO:0002541"
##	"GD:0002790"
##	"GD:0003336"

##	"GD:0009893"
##	"GO:0010635"
##	"GO:0010999"
##	"GO:0030167"
##	"GO:0033353"
##	"GO:0042667"
##	"GO:0045609"
##	"GO:0045993"
##	"GD:0046986"
##	"GD:0048878"
##	"GD:0050960"
## ##	"GD:0060612" "GD:0070346"
## ##	"GD:0070346"
## ##	"GD:0070367"
##	"GD:0072080
##	"GD:0072240"
##	"GD:0072703"
##	"GD:0072703
##	"GD:0098856"
##	"GO:1901594"
##	"GO:1901846"
##	"GD:1902203"
##	"GO:1902548"
##	"GD:1904042"
##	"GO:1905042"
##	"GO:1905222"
##	"GO:1905310"
##	"GO:1905716"
##	"GO:2000136"
##	"GO:2001113"
##	"GO:0032649"
##	"GO:0015816"
##	"GO:0097264"
##	"GO:1904749"
##	"GD:0080009"
##	"GO:0006855"
##	"GD:0001805"
##	"GO:0001812"
##	"GO:0043162"
##	"GO:0002085"
##	"GO:0002416"
##	"GO:0002495"
##	"GO:0002728"
##	"GO:0003419"
##	"GD:0006238"
##	"GD:0006837"
##	"GD:0006864"
##	"GD:0007620"
##	"GD:0009107"
## ##	"GO:0010085" "GO:0010869"
##	"GD:0010869" "GD:0014053"
## ##	"GD:0014053"
ππ	GO.0014004"

##	"GO:0021511"
##	"GD:0033505"
##	"GO:0043163"
##	"GD:0043648"
##	"GO:0046177"
##	"GD:0046398"
##	"GD:0048327"
##	"GO:0048641"
##	"GO:0051051"
##	"GD:0051606"
##	"GO:0051610"
##	"GO:0051692"
##	"GD:0060802"
##	"GO:0061590"
##	"GO:0061591"
##	"GO:0061643"
##	"GO:0072233"
## ##	"GD:0090010" "GD:0090067"
##	"GD:0090067"
##	"GO:1900111"
##	"GO:1900111
##	"GO:1900383
##	"GO:1902078
##	"GO:1903304"
##	"GO:1904430"
##	"GO:1905415"
##	"GD:2000209"
##	"GD:2000272"
##	"GD:0036003"
##	"GD:0003358"
##	"GD:0006589"
##	"GD:0015760"
##	"GO:0031275"
##	"GO:0031324"
##	"GD:0033371"
##	"GD:0033373"
##	"GO:0033382"
##	"GO:0035581"
##	"GD:0036363"
##	"GO:0046219"
##	"GO:0048635"
##	"GO:0052746"
##	"GD:0060994"
##	"GO:0061682"
##	"GO:0070944"
##	"GD:0090119"
##	"GO:0090212"
##	"GO:0097638"
##	"GO:0097699"
##	"GO:0099612"
##	"GO:1900274"
##	"GO:1902462"
##	"GO:1904784"

##	"GO:1905226"
##	"GO:1990173"
##	"GO:0045056"
##	"GO:0042761"
##	"GO:1903377"
##	"GO:0048096"
##	"GO:0071361"
##	"GO:0010793"
##	"GD:0060706"
##	"GO:0001787"
##	"GO:0002282"
##	"GO:0010920"
##	"GO:0010925"
##	"GO:0021941"
##	"GO:0030845"
##	"GO:0032914"
##	"GO:0034377"
## ##	"GD:0035272" "GD:0036508"
##	"GD:0036508"
##	"GD:0046668"
##	"GD:0040008
##	"GD:0030935"
##	"GD:0070646"
##	"GD:1903441"
##	"GO:1903441
##	"GO:1900074"
##	"GD:0043390"
##	"GD:0002281"
##	"GD:0001946"
##	"GD:0072709"
##	"GO:0099150"
##	"GO:0032621"
##	"GO:0044546"
##	"GO:0050701"
##	"GO:0009720"
##	"GO:0061087"
##	"GO:0051004"
##	"GO:0000917"
##	"GO:0002839"
##	"GD:0006649"
##	"GO:0007354"
##	"GO:0010070"
##	"GO:0018166"
##	"GO:0019276"
##	"GO:0021562"
##	"GO:0021771"
##	"GD:0030204"
##	"GO:0042320"
##	"GO:0043132"
##	"GO:0051709"
##	"GD:0061090"
##	"GO:0061163"
##	"GD:0061300"

##	"GO:0061573"
##	"GO:0070230"
##	"GO:0086072"
##	"GO:0097275"
##	"GD:0097276"
##	"GD:0097277"
##	"GO:0097722"
##	"GO:1901877"
##	"GO:1901894"
##	"GO:1903699"
##	"GO:1903709"
##	"GO:1905799"
##	"GO:1990456"
##	"GD:2000010"
##	"GO:0048304"
##	"GO:0034134"
##	"GO:0043006"
##	"GO:0001658"
##	"GO:0003095"
##	"GO:0003157"
##	"GO:0010455"
##	"GO:0010814"
##	"GO:0010816"
##	"GO:0014822"
##	"GO:0018406"
##	"GO:0021512"
##	"GO:0021859"
##	"GO:0034959"
##	"GO:0040040"
##	"GO:0042666"
##	"GO:0044128"
##	"GO:0044278"
##	"GO:0044345"
##	"GO:0044375"
##	"GO:0048371"
##	"GO:0048613"
##	"GO:0048692"
##	"GO:0050902"
##	"GO:0060461"
##	"GO:0072210"
##	"GD:0090246"
##	"GO:0097036"
##	"GO:1902463"
##	"GO:1903008"
##	"GO:1903413"
##	"GO:1904692"
##	"GO:2000054"
##	"GD:2000080"
##	"GD:2000298"
##	"GO:0031914"
##	"GD:0006352"
##	"GD:0034316"
##	"GO:0031547"
##	"GD:0099578"

##	"GO:1904338"
##	"GO:0003012"
##	"GO:0006147"
##	"GO:0006253"
##	"GD:0006585"
##	"GD:0008057"
##	"GO:0016137"
##	"GO:0019546"
## ##	"GO:0034755" "GO:0036071"
## ##	"GD:0036071"
## ##	"GD:0036114"
##	"GD:0030110
##	"GD:0042214"
##	"GD:0042412"
##	"GD:0043112
##	"GD:0045225"
##	"GD:0046076"
##	"GD:0046368"
##	"GO:0051125"
##	"GD:0060020"
##	"GD:0060040"
##	"GO:0061386"
##	"GO:0072705"
##	"GO:0099158"
##	"GO:0099526"
##	"GO:1902883"
##	"GO:1903766"
##	"GO:1903815"
##	"GO:1990709"
##	"GO:2001106"
##	"GO:1902115"
##	"GO:0060718"
##	"GO:0010107"
##	"GO:0032525"
##	"GO:0060571"
##	"GO:0035054"
##	"GD:0090267"
##	"GO:0043335"
##	"GO:1901185"
##	"GD:0001845" "GD:0006668"
##	"GD:0006683"
## ##	"GD:0006683"
##	"GD:0010434
##	"GD:0021571"
##	"GD:0021372
##	"GD:0021831
##	"GD:0035229"
##	"GD:0035733"
##	"GD:0039532"
##	"GD:0043649"
##	"GD:0044241"
##	"GD:0048174"
	20.00101,1

##	"GO:0061782"
##	"GO:0061792"
##	"GO:0070486"
##	"GO:0072148"
##	"GO:0098737"
##	"GO:1903281"
##	"GO:1904381"
##	"GO:1905433"
##	"GO:1904530" "GO:0046827"
## ##	"GD:1904751"
## ##	"GD:1904751"
##	"GD:0007423
##	"GD:0050810"
##	"GD:1902742"
##	"GD:2001257"
##	"GD:0001574"
##	"GD:0001874
##	"GD:0002812"
##	"GO:0010743"
##	"GD:0015679"
##	"GO:0015694"
##	"GO:0015723"
##	"GO:0015732"
##	"GO:0016269"
##	"GO:0018003"
##	"GO:0032877"
##	"GO:0042335"
##	"GO:0042414"
##	"GO:0042488"
##	"GO:0044328"
##	"GO:0044329"
##	"GD:0044330"
##	"GO:0051542"
##	"GO:0060541"
##	"GD:0060611"
##	"GO:0070947"
##	"GO:0071478"
##	"GO:0097323"
##	"GO:0098655"
##	"GD:0098905"
##	"GO:1900535"
## ##	"GO:1901086" "GO:1902228"
## ##	"GD: 1902228" "GD: 1903036"
## ##	"GD: 1903036" "GD: 1903494"
## ##	"GD:1903494"
## ##	"GD: 1903496" "GD: 1904959"
## ##	"GD:1904959" "GD:0034760"
## ##	"GD:0034760"
## ##	"GD:2000182"
## ##	"GD: 2000182"
##	"GD:0033627
##	"GD:0002819"
	30.0002013

##	"GO:0045861"
##	"GO:1902570"
##	"GO:0086003"
##	"GO:2000376"
##	"GO:0005985"
##	"GO:0010566"
##	"GO:0034241"
##	"GD:0036046"
##	"GO:0036047"
##	"GO:0036048"
##	"GO:0036049"
##	"GO:0042427"
##	"GO:0043181"
##	"GO:0046041"
##	"GO:0046051"
##	"GO:0046121"
##	"GO:0051725"
## ##	"GD:0060400" "GD:0061698"
##	"GD:0061699"
##	"GD:0081699"
##	"GD:0070139
##	"GD:0070293
##	"GD:0086042"
##	"GD:0086053"
##	"GD:1900194"
##	"GO:1900134"
##	"GO:1904140"
##	"GO:1904151"
##	"GO:1990641"
##	"GD:2000568"
##	"GO:0015718"
##	"GO:0031293"
##	"GO:0070301"
##	"GO:0035947"
##	"GO:0018119"
##	"GO:0050792"
##	"GO:0071900"
##	"GO:1900483"
##	"GO:0002737"
##	"GD:0006030"
##	"GD:0006037"
##	"GO:0009056"
##	"GO:0010720"
##	"GO:0021569"
##	"GO:0021570"
##	"GO:0021966"
##	"GO:0031179"
##	"GO:0032957"
##	"GO:0042543"
##	"GO:0048857"
##	"GO:0050652"
##	"GD:0060588"
##	"GD:0061107"

##	"GO:0061343"
##	"GD:0062030"
##	"GO:0071073"
##	"GO:0072175"
##	"GO:1900038"
##	"GO:1904719"
##	"GD:2000860"
##	"GO:2001245"
##	"GO:0045070"
##	"GD:0006771"
##	"GO:0019050"
##	"GO:0042247" "GO:0043653"
## ##	"GU:0043653" "GU:1905818"
##	"GO:0045063"
##	"GD:0045063"
##	"GD:00019070"
##	"GD:0000272
##	"GD:0001207
##	"GD:0002343"
##	"GD:0005401
##	"GD:0018160"
##	"GO:0031104"
##	"GO:0031550"
##	"GO:0032474"
##	"GD:0033036"
##	"GD:0036413"
##	"GO:0042886"
##	"GO:0046479"
##	"GO:0050823"
##	"GO:0051039"
##	"GO:0072560"
##	"GO:0099545"
##	"GO:1905668"
##	"GO:1990504"
##	"GO:0071275"
##	"GO:1905672"
##	"GD:0006542"
##	"GO:0071480"
##	"GO:1902722"
##	"GD:2000816"
##	"GO:0010224"
##	"GO:0045410"
##	"GD:0090207"
##	"GO:0045821"
##	"GO:0060215"
##	"GD:0002792"
## ##	"GO:0035691"
##	"GO:0015805" "GO:0045636"
##	"GD:0045636"
##	"GD:0046836" "GD:0050915"
##	"GD:0030913"
##	"GD:0070033
пп	GU.0030204

##	"GO:1900004"
##	"GO:1901962"
##	"GO:1905920"
##	"GO:2000278"
##	"GO:0031659"
##	"GO:1903778"
##	"GO:0032770"
##	"GO:0097485"
## ##	"GD:0002121"
## ##	"GD:0002652" "GD:0002678"
## ##	"GD:0002878"
##	"GD:0009946"
##	"GD:0014711"
##	"GD:0014741"
##	"GD:0021740
##	"GD:0021303
##	"GD:0034276"
##	"GO:0034276
##	"GD:0042418"
##	"GD:0043170"
##	"GO:0044557"
##	"GD:0045723"
##	"GD:0050976"
##	"GO:0055073"
##	"GD:0060049"
##	"GO:0061141"
##	"GD:0070091"
##	"GO:0071284"
##	"GO:0071384"
##	"GO:0071656"
##	"GO:0097214"
##	"GO:0097692"
##	"GO:0140059"
##	"GO:1900053"
##	"GO:1901987"
##	"GO:1902683"
##	"GO:1903352"
##	"GO:1905188"
##	"GO:1905912"
##	"GD:2000224"
##	"GD:2000446"
##	"GO:2000795"
##	"GD:0000388"
##	"GO:0009257"
##	"GD:0043488"
##	"GD:0046666"
##	"GO:1901020"
##	"GO:1904792"
##	"GO:1904850"
##	"GO:1904911"
## ##	"GD:1904914" "GD:0010668"
##	"GO:0034405"

##	"GD:0060338"
##	"GO:0035196"
##	"GO:0050806"
##	"GO:0001776"
##	"GO:0018032"
##	"GD:0018277"
##	"GD:0021999"
##	"GD:0032620"
##	"GD:0036065"
##	"GD:0046851"
##	"GD:0050968"
##	"GD:0060279"
##	"GD:0060739"
##	"GD:0070086"
##	"GO:0099546"
##	"GO:0106089"
##	"GO:1903565"
##	"GO:1903568"
##	"GO:2001023"
##	"GO:0035498"
##	"GD:0006307"
##	"GD:0009437"
##	"GO:0034612"
##	"GD:0016242"
##	"GD:0070669"
##	"GD:0071104"
##	"GO:0043547"
##	"GD:0002508"
##	"GD:0002897"
##	"GD:0006643"
##	"GD:0006875"
##	"GO:0021530"
##	"GD:0033604"
##	"GO:0035434"
##	"GO:0045210"
##	"GD:0060060"
##	"GD:0060392"
##	"GD:0070084"
##	"GO:0072016"
##	"GO:1901248"
##	"GD:2000541"
##	"GD:2000807"
##	"GO:0009410"
##	"GO:0019805"
##	"GO:0043420"
##	"GO:0021871"
##	"GD:0060395"
##	"GD:0098901"
##	"GD:0000718"
##	"GD:0002803"
##	"GD:0098504"
##	"GD:0098506"
##	"GD:1900426"
##	"GD:0046826"

##	"GO:0002194"
##	"GD:0006772"
##	"GD:0007033"
##	"GD:0016036"
##	"GO:0018963"
##	"GO:0031125"
##	"GO:0042424"
##	"GO:0043049"
## ##	"GO:0043545" "GO:0048243"
## ##	"GD:0048243"
## ##	"GD:0050668"
##	"GD:0060001
##	"GO:0001114
##	"GD:0090425"
##	"GD:0097497"
##	"GO:1901631"
##	"GO:1901978"
##	"GO:1903292"
##	"GO:1903444"
##	"GO:1903759"
##	"GD:2000979"
##	"GD:0098883"
##	"GO:0045988"
##	"GO:1903170"
##	"GO:1903280"
##	"GO:0002933"
##	"GD:0060003"
##	"GO:0060244"
##	"GO:0001809"
##	"GD:0009789"
##	"GD:0009988"
##	"GO:0010657"
##	"GO:0014722"
##	"GO:0014853"
##	"GO:0015786"
##	"GO:0015911"
##	"GO:0019056"
##	"GO:0032185"
##	"GD:0034699"
##	"GD:0038179"
##	"GD:0048691"
##	"GD:0060939"
##	"GO:0072334"
##	"GO:0110077"
##	"GO:0150007"
##	"GD:2000388"
##	"GO:2000612"
##	"GO:0055014"
##	"GD:0000956" "GD:0006975"
##	
## ##	"GO:0045588" "GO:0007586"
ππ	du.0007300"
##	"GD:0044242"

##	"GO:0046902"
##	"GO:0033489"
##	"GO:0033490"
##	"GO:0000472"
##	"GO:0046339"
##	"GD:0061048"
##	"GO:0070574"
##	"GO:1904999"
##	"GO:0003144"
##	"GD:0006083"
##	"GD:0006393" "GD:0006780"
## ##	"GD:0006780"
## ##	"GD:0010721"
## ##	"GD:0018120"
##	"GO:0030421
##	"GD:0031391
##	"GD:0034242
##	"GD:0061138"
##	"GD:0072197"
##	"GD:0099550"
##	"GD:0110053"
##	"GO:1902232"
##	"GO:1902811"
##	"GD:1905870"
##	"GD:2000368"
##	"GO:0060285"
##	"GO:0002643"
##	"GO:0006915"
##	"GO:0071586"
##	"GO:0021784"
##	"GO:0050778"
##	"GO:0006760"
##	"GO:0070498"
##	"GO:0061502"
##	"GO:1903801"
##	"GD:0009786"
##	"GD:0032366"
##	"GO:0032814"
##	"GO:0042772"
##	"GO:0044727"
##	"GO:0045813"
##	"GO:0046459"
##	"GO:0046963"
##	"GD:0050817"
##	"GD:0060386"
##	"GO:0060587"
##	"GD:0060668"
##	"GD:0060693"
##	"GD:0060980"
##	"GO:0070231"
## ##	"GD:0070889"
##	"GO:0071298" "GO:0072162"
##	GU. UU12102"

##	"GD:0090082"
##	"GO:1901296"
##	"GO:1903506"
##	"GO:1904651"
##	"GO:1904723"
##	"GO:1904958"
##	"GD:2000486"
##	"GO:1901621"
## ##	"GO:1904646" "GO:1902884"
## ##	"GD:1902884"
## ##	"GD:0006178"
##	"GD:0040038
##	"GD:0031034"
##	"GD:0043833"
##	"GD:0001520"
##	"GD:0002340"
##	"GD:0010155"
##	"GO:0021535"
##	"GD:0030029"
##	"GD:0042489"
##	"GD:0048632"
##	"GD:0048699"
##	"GO:0060178"
##	"GO:0070483"
##	"GO:0090104"
##	"GO:0097035"
##	"GO:0098810"
##	"GO:1901622"
##	"GO:1905636"
##	"GD:2000763"
##	"GD:2000764"
##	"GO:2001183"
##	"GD:0001666"
##	"GO:0010759"
##	"GO:0002215"
##	"GD:0009070"
##	"GO:0035773"
##	"GO:0098507"
##	"GO:0008631"
##	"GO:0000105"
##	"GD:0006566"
## ##	"GO:0009448" "GO:0075525"
## ##	"GD:0075525"
## ##	"GD:0001808"
## ##	"GD:0002066"
## ##	"GD:0002765"
## ##	"GD:0003025"
## ##	"GD:0009794" "GD:0021563"
## ##	"GD:0021563"
## ##	"GD:0021618"
##	"GD:0021018
##	"GD:0031344
	40.004000

##	"GO:0070572"
##	"GO:0071602"
##	"GO:0071976"
##	"GO:0120117"
##	"GO:0140014"
##	"GO:1901652"
##	"GO:1902947"
##	"GO:1905344"
## ##	"GD:2000691" "GD:2000050"
## ##	"GD:0030488"
##	"GD:0030488
##	"GD:0001370
##	"GO:1901097"
##	"GD:0009086"
##	"GD:0051902"
##	"GD:0009987"
##	"GD:0006688"
##	"GD:0019402"
##	"GO:0045381"
##	"GO:0045751"
##	"GD:0048002"
##	"GD:0048263"
##	"GO:0051878"
##	"GD:0060064"
##	"GD:0061360"
##	"GO:0061623"
##	"GD:0090673"
##	"GO:0099131"
##	"GO:1900044"
##	"GO:1901731"
##	"GO:1902498"
##	"GO:1905419"
##	"GO:1905474"
##	"GO:2000297"
##	"GD:2000597"
##	"GD:2000671"
##	"GO:0016240"
##	"GO:0031642"
##	"GD:0002376"
##	"GD:0009785"
##	"GD:0046683"
##	"GO:0009235"
##	"GO:0051388"
##	"GD:0006360"
##	"GD:0008063"
##	"GO:0010817"
##	"GO:0006482"
##	"GO:0010764"
##	"GO:0017038"
## ##	"GO:0002312" "GO:0015811"
## ##	"GO:0018811"
	d0.0010094"
##	"GD:0018101"

##	"GO:0042095"
##	"GO:0045343"
##	"GO:0046386"
##	"GO:0048757"
##	"GO:0050866"
##	"GO:0071105"
##	"GO:0071444"
##	"GO:1904027"
##	"GO:1905097"
##	"GO:1905522"
## ##	"GD:2001246" "GD:0031666"
## ##	"GD:200573"
## ##	"GD: 0046085"
##	"GD:0046649"
##	"GD:0040049
##	"GD:0071879"
##	"GD:1904227"
##	"GD:0033151"
##	"GD:0034436"
##	"GD:0002295"
##	"GD:0002644"
##	"GD:0002710"
##	"GO:0010037"
##	"GO:0019319"
##	"GO:0030237"
##	"GO:0033080"
##	"GO:0033386"
##	"GO:0033595"
##	"GO:0035239"
##	"GO:0035684"
##	"GO:0038030"
##	"GO:0043017"
##	"GO:0045403"
##	"GD:0046882"
##	"GO:0048203"
##	"GO:0048592"
##	"GO:0052314"
##	"GO:0060377"
##	"GO:0061369"
##	"GO:0072033"
##	"GO:0072273"
##	"GD:0097530" "GD:1904400"
## ##	"GD: 1904400" "GD: 1904947"
## ##	"GO: 1904947" "GO: 1905217"
## ##	"GO:1905217"
## ##	"GO:1905225" "GO:1990791"
## ##	"GD:1990791" "GD:2000019"
## ##	"GD:2000019"
## ##	"GD: 2000086"
## ##	"GD:0031032"
##	"GD:0002682"
##	"GD:0002002
	30.0040200

##	"GO:0016573"
##	"GO:0032535"
##	"GD:2000808"
##	"GO:0016255"
##	"GO:0023016"
##	"GO:0045964"
##	"GO:0008217"
##	"GD:0060038"
##	"GD:0000188" "GD:0006032"
## ##	"GD:0008032"
##	"GD:0032499
##	"GD:0051794"
##	"GD:0031754"
##	"GD:0070232"
##	"GD:1902256"
##	"GD:1903082"
##	"GD:1903701"
##	"GO:1904211"
##	"GO:1904612"
##	"GO:1990166"
##	"GD:2000350"
##	"GO:2001180"
##	"GO:0032205"
##	"GD:0060044"
##	"GO:0003278"
##	"GO:0035574"
##	"GO:0045967"
##	"GO:0006726"
##	"GO:0060290"
##	"GO:0042376"
##	"GO:0050754"
##	"GO:0086011"
##	"GO:0003167"
##	"GO:0007506"
##	"GO:0009441"
##	"GD:0010002"
##	"GO:0010189"
##	"GD:0014896"
## ##	"GD:0016062" "GD:0016332"
	"GD:0016332" "GD:0019677"
##	"GD:0019677"
## ##	"GD:0021757"
##	"GD:0021738
##	"GD:0031443
##	"GD:0033623"
##	"GD:00336257"
##	"GD:0030237
##	"GD:0043310
##	"GD:0044237
##	"GD:0060283"
##	"GD:0060482"
##	"GD:0060550"

##	"GO:0060552"
##	"GO:0072053"
##	"GO:0072054"
##	"GD:0072060"
##	"GD:0097278"
##	"GO:1900243"
##	"GO:1903435"
##	"GO:1904075"
##	"GO:1904591"
##	"GO:1905154"
##	"GO:1905162"
##	"GO:1905171"
##	"GO:1905469"
##	"GO:1990502"
##	"GD:2000309"
##	"GD:0008089"
##	"GO:0045332"
## ##	"GO:0006743" "GO:0008615"
##	"GO:0008613"
##	"GO:0048713"
##	"GD:0031433
##	"GD:0043002
##	"GD:0040210
##	"GD:0090031
##	"GO:1903038"
##	"GD:0030834"
##	"GD:0000664"
##	"GD:0002757"
##	"GD:0014034"
##	"GO:0035744"
##	"GO:0035812"
##	"GD:0036359"
##	"GD:0038044"
##	"GD:0046900"
##	"GD:0060327"
##	"GD:0061408"
##	"GO:0070202"
##	"GO:0071033"
##	"GO:0097499"
##	"GO:1901879"
##	"GO:2000256"
##	"GO:2001161"
##	"GD:0001707"
##	"GO:0045870"
##	"GO:1905463"
##	"GO:0001711"
##	"GO:0042461"
##	"GO:0015917"
##	"GD:0006742"
##	"GO:0006824"
##	"GO:0010464"
##	"GO:0032511"
##	"GO:0036494"

##	"GO:0042663"
##	"GO:0045167"
##	"GO:0050653"
##	"GO:0051122"
##	"GD:0060084"
##	"GO:1900005"
##	"GO:1904891"
##	"GO:1990523"
##	"GO:0045927"
##	"GO:0035623"
##	"GO:0050717"
##	"GD:0046007"
##	"GD:0050687"
##	"GO:0007611"
##	"GO:0046104"
##	"GD:0002828"
##	"GO:0002859"
## ##	"GO:0002875" "GO:0005998"
##	"GD:0005998"
##	"GD:0021830"
##	"GO:0035491
##	"GO:0035320
##	"GO:0030414"
##	"GD:0042160"
##	"GO:0048100
##	"GD:0052651"
##	"GD:0061044"
##	"GD:0097198"
##	"GO:1901331"
##	"GO:1901723"
##	"GO:1903034"
##	"GO:1904597"
##	"GO:1904604"
##	"GO:1905634"
##	"GO:2000225"
##	"GO:2000312"
##	"GO:2000514"
##	"GO:2001153"
##	"GO:0033555"
##	"GO:0043278"
##	"GO:0001708"
##	"GO:0034773"
##	"GO:0090298"
##	"GO:0021767"
##	"GO:0061374"
##	"GD:0061377"
##	"GD:0061379"
##	"GO:0061381"
##	"GO:0003131"
##	"GO:0031052"
##	"GO:0035978"
##	"GD:0045626"
##	"GD:2000436"

##	"GD:2000685"
##	"GD:0098508"
##	"GO:0106022"
##	"GO:1905198"
##	"GD:0006669"
##	"GO:0015812"
##	"GO:0015891"
##	"GO:0016132"
##	"GD:0018352"
##	"GO:0034203" "GO:0034477"
## ##	"GD:0034477"
##	"GD:0030161"
##	"GD:0060931"
##	"GD:0000931"
##	"GD:0071171
##	"GD:0099504"
##	"GD:1900108"
##	"GO:1900108
##	"GD:1903580"
##	"GD:2001140"
##	"GD:0048546"
##	"GD:0002876"
##	"GD:0045932"
##	"GD:1904382"
##	"GD:0061029"
##	"GD:0010171"
##	"GD:0032675"
##	"GO:0061881"
##	"GO:1901340"
##	"GO:0002761"
##	"GD:0009305"
##	"GO:0019075"
##	"GO:0031651"
##	"GO:0034508"
##	"GO:0051413"
##	"GD:0060697"
##	"GD:0070734"
##	"GO:0071110"
##	"GO:0071878"
##	"GD:0098705"
##	"GD:1900075"
##	"GO:1901626"
##	"GO:1903540"
##	"GO:1903818"
##	"GO:1905006"
##	"GO:1905517"
##	"GO:2000287"
##	"GD:2000393"
##	"GD:0032918"
##	"GO:0001546"
##	"GO:0045837"
##	"GO:0035565"
##	"GO:0042403"

##	"GO:0048499"
##	"GD:0000963"
##	"GO:0006557"
##	"GO:0035088"
##	"GO:0036265"
##	"GO:0045065"
##	"GO:0070899"
##	"GO:1905152"
##	"GO:2001150"
##	"GD:0086014"
##	"GO:0106005" "GO:0009447"
## ##	"GD:0009447"
## ##	"GD:0040034"
## ##	"GD:0001361"
## ##	"GD:0071398"
##	"GD:1902220"
##	"GD:0008049"
##	"GD:0008049
##	"GD:0014820"
##	"GD:0034763"
##	"GO:0097510"
##	"GD:1905788"
##	"GO:1990542"
##	"GD:0072697"
##	"GD:0090083"
##	"GO:0031119"
##	"GO:0032946"
##	"GD:0009692"
##	"GO:0019341"
##	"GO:0031204"
##	"GO:0036499"
##	"GO:1903296"
##	"GO:0010460"
##	"GO:0070542"
##	"GD:0098742"
##	"GO:0014732"
##	"GO:0045141"
##	"GD:0048667"
##	"GD:0002399"
##	"GO:0010139"
##	"GD:0035872"
##	"GD:0036060"
##	"GO:0042269"
##	"GO:0044211"
##	"GO:0045016"
##	"GO:0048841"
##	"GO:0050711"
##	"GO:0072108"
##	"GO:1902809"
## ##	"GO:1903045" "GO:1903547"
##	"GD:1903547" "GD:2000374"
## ##	"GD:2000374"
ππ	GU.2000403"

##	"GO:0021575"
##	"GO:1904876"
##	"GO:0021986"
##	"GD:0009101"
##	"GO:0043583"
##	"GO:0045773"
##	"GO:0060557"
##	"GD:0060633"
##	"GO:0071963" "GO:1904353"
## ##	"GD:1904845"
## ##	"GO:1904845"
##	"GO:1901215"
##	"GD:0002588"
##	"GD:00023665"
##	"GD:0022612"
##	"GD:0006399"
##	"GD:0006529"
##	"GD:0006664"
##	"GO:0021650"
##	"GO:0032571"
##	"GO:0033578"
##	"GO:0036378"
##	"GO:0042351"
##	"GO:0042790"
##	"GO:0044089"
##	"GO:0046081"
##	"GO:0048789"
##	"GO:0060302"
##	"GO:0061444"
##	"GO:0070981"
##	"GD:0080129"
##	"GO:0097115"
##	"GD:0098698"
##	"GO:1905520"
##	"GO:0006196"
##	"GO:0002636"
##	"GO:0010459"
##	"GO:0015808"
##	"GO: 0031444"
##	"GO:1903348" "GO:0002860"
##	"GD:0002860" "GD:0051023"
## ##	"GO:0051023"
##	"GD:0060268"
##	"GD:0000208
##	"GD:0002739
## ##	"GD:0009450"
##	"GD:0035461"
## ##	"GD:0035461"
##	"GD:1902480"
##	"GO:0001553"
##	"GD:0009743"
##	"GD:0006273"
	40.0000210

##	"GO:0051128"
##	"GD:0060056"
##	"GO:0010256"
##	"GO:0048146"
##	"GO:0032496"
##	"GO:0021559"
##	"GO:0045002"
##	"GO:0002152"
##	"GO:0002426" "GO:0010847"
## ##	"GD:0010847"
##	"GD:0021793
##	"GD:0035350"
##	"GD:0050923"
##	"GD:0060282"
##	"GD:0060538"
##	"GD:0060566"
##	"GD:0071477"
##	"GD:0120094"
##	"GD:2000576"
##	"GD:2000806"
##	"GD:0046466"
##	"GO:1905314"
##	"GO:0007129"
##	"GO:0045597"
##	"GD:0098939"
##	"GO:0003168"
##	"GO:0003285"
##	"GO:0006475"
##	"GO:0010902"
##	"GO:0019408"
##	"GO:0021972"
##	"GO:0031060"
##	"GD:0033026"
##	"GO:0033274"
##	"GO:0050929"
##	"GO:0060579"
##	"GD:0060596"
##	"GD:0060929"
##	"GO:0070829"
##	"GO:0071471" "GO:0097205"
##	"GO:1903615"
## ##	"GO:1903615" "GO:0019079"
##	"GD:0019079
##	"GD:0000081
##	"GO:0015677"
## ##	"GD:0013677"
##	"GD:1903286"
## ##	"GO:1903286"
##	"GO:1903764"
##	"GD:0032800"
##	"GD:0032500
##	"GO:0017143"
	40.0011140

##	"GO:0006829"
##	"GO:0051058"
##	"GO:0010987"
##	"GO:0016246"
##	"GO:0021877"
##	"GO:0031128"
##	"GO:0032203"
##	"GO:0032912"
##	"GO:0033577"
##	"GO:0034337"
##	"GO:0036305"
##	"GO:0046874"
##	"GO:0048560"
##	"GO:0051648"
##	"GO:0065005"
##	"GO:0070175"
##	"GO:0070859"
##	"GO:0071072"
##	"GO:0072707"
##	"GO:0090024"
##	"GO:0090239"
##	"GO:0090671"
##	"GO:0150019"
##	"GO:1901989"
##	"GO:1903259"
##	"GO:1903697"
##	"GO:1904694"
##	"GO:1904867"
##	"GO:2000584"
##	"GO:2001253"
##	"GO:0010193"
##	"GO:0048525"
##	"GO:0016311"
##	"GO:1902035"
##	"GO:1905618"
## ##	"GO:0003413" "GO:0045359"
## ##	"GO:0042780" "GO:1900017"
##	"GD:0060334"
##	"GD:0000334
##	"GD:0097155"
##	"GD:0000455
## ##	"GD:1900060"
##	"GD:0002587"
##	"GD:0002387
##	"GD:0005171
##	"GD:0003997
## ##	"GD:0010357"
## ##	"GD:0017158"
## ##	"GD:0021763" "GD:0023057"
## ##	"GD:0023057"
##	"GD:0042492
##	"GD:0042732"
n n	40.0040072

##	"GO:0060127"
##	"GO:0060435"
##	"GO:0060578"
##	"GO:0070560"
##	"GO:0071908"
##	"GO:0071909"
##	"GO:1990134"
##	"GD:2000167"
## ##	"GD:2000329" "GD:2000360"
## ##	"GD:0032623"
##	"GD:2001259"
##	"GD:0061188"
##	"GD:0001188
##	"GD:0002423
##	"GD:0046688"
##	"GD:0045008"
##	"GD:0045000
##	"GD:0070625"
##	"GO:0031507"
##	"GO:0001770"
##	"GO:0002561"
##	"GD:0006055"
##	"GD:0006308"
##	"GO:0021644"
##	"GO:0021882"
##	"GO:0021893"
##	"GO:0043922"
##	"GO:0044065"
##	"GO:0044206"
##	"GO:0046473"
##	"GO:0051452"
##	"GO:0061073"
##	"GD:0090362"
##	"GD:0090500"
##	"GO:1901750"
##	"GO:1902871"
##	"GO:1903445"
##	"GO:1904106"
## ##	"GO:0030539" "GO:0019884"
##	
## ##	"GO:1905041" "GO:0019058"
## ##	"GD:0019058"
##	"GD:0043213"
##	"GD:0045201
##	"GD:0073713
##	"GD:0030322
##	"GD:0006481"
##	"GD:0009624"
##	"GD:0003024
##	"GO:0015851"
##	"GD:0015882"
##	"GD:0031048"
	20.0001010

##	"GO:0032349"
##	"GO:0035600"
##	"GO:0036145"
##	"GD:0070904"
##	"GO:0097403"
##	"GO:1902531"
##	"GD:2000458"
##	"GD:2000661"
## ##	"GO:0000338" "GO:0071247"
## ##	"GD:0071247"
##	"GD:0042271
##	"GD:0010897
##	"GD:0030490
##	"GD:0071405
##	"GO:1902847"
##	"GD:1902998"
##	"GO:1903573"
##	"GO:1905892"
##	"GO:1905895"
##	"GD:0048295"
##	"GO:0051665"
##	"GD:0002292"
##	"GD:0002384"
##	"GD:0009220"
##	"GO:0016260"
##	"GO:0021834"
##	"GO:0031392"
##	"GO:0035304"
##	"GO:0045795"
##	"GO:0070329"
##	"GO:0072236"
##	"GD:0098736"
##	"GO:1900082"
##	"GO:1901660"
##	"GO:1902268"
##	"GO:1903249"
##	"GO:1905144"
##	"GD:2000627"
##	"GO:0036152"
##	"GO:0060971"
##	"GO:0031449"
## ##	"GO:0034378" "GO:0003341"
## ##	"GD:1902617"
## ##	"GD:1902617" "GD:0060168"
## ##	"GD:0000188"
## ##	"GD:0006895"
## ##	"GD:0015734" "GD:0030500"
## ##	"GD:0030500"
## ##	"GD:0033025"
## ##	"GD:0061185"
##	"GD:0070634"
##	"GD:0071576"
	30.0072100

##	"GO:1902559"
##	"GO:0001779"
##	"GO:0072044"
##	"GD:2001044"
##	"GD:0008610"
##	"GD:0002446"
##	"GD:0006437"
##	"GO:0018344"
## ##	"GO:0006235" "GO:0031648"
## ##	"GD:0031648"
## ##	"GO:0002542"
##	"GO:0010337
##	"GO:0043079"
##	"GD:0050747
##	"GD:0001373
##	"GD:0070900"
##	"GD:0071529"
##	"GD:0099606"
##	"GD:0099607"
##	"GO:1901077"
##	"GO:1902748"
##	"GO:1905572"
##	"GD:1990927"
##	"GD:2000812"
##	"GO:0046578"
##	"GO:0010693"
##	"GO:0014706"
##	"GO:0045084"
##	"GO:1904355"
##	"GD:0060272"
##	"GO:1990834"
##	"GD:0045190"
##	"GO:0001300"
##	"GO:0022405"
##	"GD:0033214"
##	"GO:0044793"
##	"GO:0120045"
##	"GO:1900159"
##	"GO:1902774"
##	"GO:1903533"
##	"GD:2000308"
##	"GD:2000663"
##	"GD:0002335"
##	"GD:0002380"
##	"GO:0031167"
##	"GO:0036111"
##	"GD:2000987"
##	"GD:0006998"
##	"GO:0033260"
##	"GO:0051225" "GO:1902306"
## ##	"GO: 0050689"
##	"GO:1905598"

##	"GO:0000154"
##	"GO:0099575"
##	"GO:0006479"
##	"GD:0032092"
##	"GO:2001288"
##	"GD:0006761"
##	"GD:0009756"
##	"GD:0009949"
##	"GO:0014858"
##	"GO:0035787"
##	"GO:0035921"
##	"GO:0042541"
##	"GO:0044091"
##	"GD:0046901"
##	"GO:0051729"
##	"GD:0060439"
##	"GO:0060458"
##	"GO:0060459"
##	"GO:0060516"
##	"GO:0060577"
##	"GD:0060685"
##	"GD:0060782"
##	"GD:0060783"
##	"GO:0061189"
##	"GO:0061346"
##	"GO:0070315"
##	"GO:0090177"
##	"GO:1900175"
##	"GO:1900387"
##	"GO:1903056"
##	"GO:1903209"
##	"GO:1904684"
##	"GO:1905327"
##	"GD:2000062"
##	"GD:2000063"
##	"GO:2000357"
##	"GO:2000358"
##	"GO:0030323"
##	"GO:0036518"
##	"GO:2001032"
##	"GD:0003409"
##	"GO:0035902"
##	"GO:0045743"
##	"GO:0022616"
##	"GO:0034114"
##	"GO:0034139"
##	"GO:0042635"
##	"GO:0098937"
##	"GO:1903620"
##	"GO:1903704"
##	"GO:0072049"
##	"GO:0072050"
##	"GO:0090311"
##	"GO:0048305"

##	"GD:0060043"
##	"GD:0070327"
##	"GD:0071166"
##	"GO:0097502"
##	"GD:2000345"
##	"GO:2001256"
##	"GD:0001672"
##	"GD:0002943"
##	"GO:0003142"
##	"GO:0014813"
##	"GD:0021892"
##	"GO:0022406"
##	"GD:0033033"
##	"GD:0060807"
##	"GD:0072302"
##	"GO:0072355"
##	"GD:0086050"
##	"GD:0086052"
##	"GO:0097327"
##	"GO:1904057"
##	"GD:2000043"
##	"GO:2000178"
##	"GD:0060968"
##	"GD:0098968"
##	"GD:0006463"
##	"GO:0032258"
##	"GO:1904992"
##	"GD:0030073"
##	"GD:0032058"
##	"GO:0036474"
##	"GO:0044245"
##	"GO:0045624"
##	"GO:0048845"
##	"GO:0051141"
##	"GO:0051935"
##	"GO:1903917"
##	"GO:1904899"
##	"GO:1990172"
##	"GD:2000640"
##	"GD:0072034" "GD:0035987"
##	"GO:0090521"
## ##	"GD:0000379"
## ##	"GD:0006004"
	"GD:0030070"
## ##	"GO:0034445" "GO:0042137"
	"GU:0042137" "GO:0046498"
##	
##	"GO:0048731"
##	"GD:0048866"
## ##	"GD:0070869" "GD:0090044"
##	"GD: 0090044" "GD: 1901873"
## ##	"GO:1901873" "GO:1903892"
ππ	GU.1303032"

##	"GD:2000389"
##	"GO:0045089"
##	"GO:0035282"
##	"GD:0035616"
##	"GO:0051548"
##	"GD:0060381"
##	"GO:0061428"
##	"GO:1904378"
## ##	"GO:1905324" "GO:0099562"
## ##	"GD:0099862"
##	"GO:1904431"
##	"GD:0021623"
##	"GD:0021023
##	"GD:0090503"
##	"GD:0035809"
##	"GD:0005991"
##	"GD:0005993"
##	"GD:0006062"
##	"GD:0006720"
##	"GO:0009191"
##	"GD:0021919"
##	"GO:0032458"
##	"GO:0043972"
##	"GO:0051160"
##	"GO:0051164"
##	"GO:0051386"
##	"GO:1901135"
##	"GO:1902310"
##	"GO:0032725"
##	"GO:0060213"
##	"GD:0006288"
##	"GD:0062028"
##	"GD:2000758"
##	"GD:0000461"
##	"GO:0060574"
##	"GD:0046745"
##	"GD:0000819"
##	"GO:0006913"
##	"GD:2000078"
##	"GD:0006423" "GD:0014805"
## ##	"GD:0014805" "GD:0015920"
## ##	"GD:0015920"
##	"GD:0035505"
##	"GD:0035303
##	"GD:0050119
##	"GD:0031142
##	"GD:1905523"
##	"GD:2000173"
##	"GD:2000175
##	"GD:2000334"
##	"GD:0060306"
##	"GO:0045358"
	20.0010000

##	"GO:0051045"
##	"GO:0070172"
##	"GO:1990126"
##	"GO:0010038"
##	"GO:0014718"
##	"GO:0015711"
##	"GD:0036509"
##	"GO:0036511"
## ##	"GO:0036512" "GO:0051570"
##	"GD:0060401"
##	"GD:0080401"
##	"GD:0070291
##	"GD:1901673"
##	"GD:0032680"
##	"GD:0033342"
##	"GD:0030730"
##	"GD:0030730
##	"GD:0003218"
##	"GD:0032361"
##	"GD:0033007"
##	"GD:0035907"
##	"GD:0046629"
##	"GD:0060695"
##	"GD:0061061"
##	"GO:0070104"
##	"GO:0071678"
##	"GO:1902206"
##	"GO:1902215"
##	"GO:1902233"
##	"GO:1902983"
##	"GD:2000836"
##	"GO:0030644"
##	"GO:0051445"
##	"GO:0002158"
##	"GD:0030098"
##	"GD:0009062"
##	"GD:0032729"
##	"GO:0048022"
##	"GO:0050850"
##	"GO:1904872"
##	"GD:0036148"
##	"GO:0043097"
##	"GD:0090662"
##	"GO:0046040"
##	"GO:0055118"
##	"GD:0070970"
##	"GD:0006401"
##	"GD:0055064"
##	"GD:0003226"
## ##	"GD:0009597" "GD:0036323"
##	"GD:0036323" "GD:0038009"
## ##	"GD:0038009"
ππ	GU.0040001"

##	"GO:0051394"
##	"GO:0051417"
##	"GD:0060299"
##	"GD:1900826"
##	"GD:2000791"
##	"GO:0010761"
##	"GO:0021983"
##	"GO:0061518"
##	"GO:0061153"
##	"GO:0071035"
##	"GO:1902396"
##	"GO:0032350"
##	"GD:0006624"
##	"GD:0009994"
##	"GO:0021814"
##	"GD:0030887"
##	"GD:0032227"
##	"GD:0032875"
##	"GD:0032970"
##	"GD:0039003"
##	"GD:0060602"
##	"GD:0071363"
##	"GD:0072305"
##	"GD:0097376"
##	"GO:1900215"
##	"GO:1900218"
##	"GD:2000098"
##	"GD:2000594"
##	"GD:2000870"
##	"GD:0033158"
##	"GD:0040029"
##	"GD:0030878"
##	"GD:0003006"
##	"GD:0002925"
##	"GD:0010877"
##	"GD:0032462"
##	"GD:0036309"
##	"GO:0051651"
##	"GO:1901628"
##	"GO:1901630"
##	"GO:1903002"
##	"GO:1905855"
##	"GO:1905860"
##	"GO:1905890"
##	"GO:1900186"
##	"GD:0000711"
##	"GD:0006617"
##	"GD:0014861"
##	"GD:0016038"
##	"GO:0032231"
##	"GD:0046490"
##	"GD:0046633"
##	"GO:0051103"
##	"GO:0051481"

##	"GO:0051545"
##	"GO:0060856"
##	"GO:0097213"
##	"GO:1900107"
##	"GO:1900229"
##	"GO:1901383"
##	"GO:1901991"
##	"GO:1903392"
##	"GO:1904274"
##	"GO:1904864"
##	"GO:2000628"
##	"GO:0021855"
##	"GO:0061010"
##	"GO:1903586"
##	"GO:0000495"
##	"GO:0048167"
##	"GO:0071549"
##	"GO:0006474"
##	"GO:1903724"
##	"GO:0006497"
##	"GD:0000966"
##	"GO:0002489"
##	"GO:0021688"
##	"GO:0048631"
##	"GO:0060318"
##	"GO:0060460"
##	"GD:0060691"
##	"GD:0060853"
##	"GD:0060903"
##	"GD:0061646"
##	"GO:0098773"
##	"GD:1900100"
##	"GO:1904064"
##	"GD:2000723"
##	"GD:0000294" "GD:0090618"
##	"GD:0090618"
## ##	"GO:0070563" "GO:0072289"
## ##	"GD:0072289"
##	"GD:0001773
##	"GD:0033619
##	"GD:0034670
## ##	"GD:0000251"
##	"GD:0002277
##	"GD:0032209
##	"GD:0040000
##	"GD:0001088
##	"GD:0000414"
##	"GD:0007147
##	"GD:0008545"
##	"GD:0008383
##	"GO:0021392
##	"GD:0030886"
n n	40.000000

##	"GD:0046057"
##	"GO:0046067"
##	"GO:0046712"
##	"GO:0048677"
##	"GO:0060012"
##	"GO:0072274"
##	"GO:0072599"
##	"GO:1902269"
##	"GO:0010165"
##	"GO:0018342"
##	"GD:0006699"
##	"GO:0033363"
##	"GO:1902995"
##	"GO:1905349"
##	"GO:0036018"
##	"GO:0046725"
##	"GO:0061326"
##	"GO:0072308"
##	"GO:2000744"
##	"GO:0099564"
##	"GO:1903432"
##	"GD:0006336"
##	"GO:0038113"
##	"GD:0006431"
##	"GO:0003277"
##	"GO:0015833"
##	"GD:0032730"
##	"GD:0032816"
##	"GD:0035990"
##	"GD:0048023"
##	"GD:0048392"
##	"GO:0055020"
##	"GD:0060433"
##	"GD:0060488"
##	"GD:0060489"
##	"GD:0060490"
##	"GD:0060503"
##	"GD:0060592"
##	"GD:0061047"
##	"GO:0061149"
##	"GO:0061151"
##	"GO:0061155"
##	"GO:0071206"
##	"GO:0071893"
##	"GO:0072097"
##	"GO:0072101"
##	"GO:0072172"
##	"GO:0072192"
##	"GO:0072198"
##	"GO:0072200"
##	"GO:0090194"
##	"GO:0090494"
##	"GO:0097090"
##	"GO:1901258"

##	"GO:1901964"
##	"GO:1902954"
##	"GO:1904970"
##	"GO:1905072"
##	"GO:1905243"
##	"GD:2000005"
##	"GD:2000007"
##	"GD:2000137"
##	"GO:0021513"
##	"GO:0003404"
##	"GO:0044565"
##	"GO:1904744"
##	"GD:0010664"
##	"GD:0090209"
##	"GD:0002037"
##	"GO:0009214"
##	"GO:0014707"
##	"GO:0019417"
##	"GO:0036345"
##	"GO:0038094"
##	"GO:0044783"
##	"GO:0071894"
##	"GD:0090036"
##	"GO:0097050"
##	"GD:0097676"
##	"GD:0098902"
##	"GO:0045950"
##	"GD:0098976"
##	"GD:0006710"
##	"GO:0048102"
##	"GD:0071663"
##	"GO:1990481"
##	"GD:0000494"
##	"GD:0000961"
##	"GO:0001811"
##	"GO:0001814"
##	"GD:0002266"
##	"GD:0002436"
##	"GD:0002622"
##	"GO:0002779"
##	"GO:0034342"
##	"GO:0042704"
##	"GO:0051238"
##	"GD:0060004"
##	"GO:0060559"
##	"GO:0071955"
##	"GD:0090264"
##	"GO:0150024"
##	"GO:1905898"
##	"GO:1990258"
##	"GO:2000119"
##	"GO:1903061"
##	"GO:0035965"
##	"GO:0042254"

##	"GO:0002228"
##	"GD:0019086"
##	"GO:0032485"
##	"GD:0009629"
##	"GO:0031584"
##	"GD:0070966"
##	"GO:1904434"
##	"GO:1904437"
##	"GO:0007113"
##	"GO:0071226"
##	"GD:0033306"
##	"GO:0046458"
##	"GO:0050729"
##	"GD:0032290"
##	"GO:0033168"
##	"GO:0036101"
##	"GD:0036404"
##	"GD:0001980"
##	"GO:0016256"
##	"GO:0016539"
##	"GD:0032869"
##	"GD:0033488"
##	"GO:0035590"
##	"GO:0051029"
##	"GO:0051673"
##	"GD:0061197"
##	"GO:0071657"
##	"GO:0072537"
##	"GO:0110076"
##	"GO:0140112"
##	"GO:1902564"
##	"GO:2000156"
##	"GD:2000761"
##	"GO:0002840"
##	"GO:0032072"
##	"GO:0043370"
##	"GO:1990774"
##	"GO:0021849"
##	"GO:0045578"
##	"GO:0046513"
##	"GO:0045078"
##	"GO:0031214"
##	"GO:0061736"
##	"GO:0061753"
##	"GO:0071211"
##	"GD:0006266"
##	"GO:0035711"
##	"GD:0018012"
##	"GO:0018013"
##	"GO:0018016"
##	"GD:0021879"
##	"GO:0035572"
##	"GO:0035573"
##	"GO:0035582"

##	"GD:0043090"
##	"GO:0048852"
##	"GO:1902605"
##	"GO:2001258"
##	"GD:0008209"
##	"GD:0023035"
##	"GO:0002481"
##	"GO:0061433"
##	"GO:0070446"
##	"GO:2000177"
##	"GO:0030035"
##	"GO:0051563"
##	"GO:0072278"
##	"GD:0030318"
##	"GD:0000447"
##	"GO:0045669"
##	"GO:0051279"
##	"GO:0042493"
##	"GO:0042501"
##	"GO:0002778"
##	"GD:0002863"
##	"GO:0006540"
##	"GO:0042694"
##	"GO:0043368"
##	"GD:0046069"
##	"GO:0050894"
##	"GO:0061101"
##	"GO:0098924"
##	"GO:0140196"
##	"GO:1900212"
##	"GO:2000494"
##	"GD:0009313"
##	"GO:0003161"
##	"GO:0003211"
##	"GO:0045759"
##	"GO:0048070"
##	"GD:0009992"
##	"GD:0010649"
##	"GD:0036438"
##	"GO:0097553"
##	"GO:0042997"
##	"GO:0051296"
##	"GD:0090027"
##	"GO:1902103"
##	"GO:1990573"
##	"GD:2000426"
##	"GO:0031291"
##	"GO:0045048"
##	"GO:0021869"
##	"GO:0030389"
##	"GO:0033343"
##	"GO:0042496"
##	"GO:0045338"
##	"GO:0045428"

##	"GO:0061140"
##	"GO:0070092"
##	"GO:0072619"
##	"GO:0097401"
##	"GO:1901250"
##	"GO:1901256"
##	"GO:1904956"
##	"GD:2000041"
##	"GO:2001182"
##	"GO:0023021"
##	"GO:0031284"
##	"GD:0007623"
##	"GO:1904389"
##	"GO:1904391"
##	"GO:1904397"
##	"GO:2001199"
##	"GD:0032696"
## ##	"GD:0040008" "GD:0042361"
##	"GD:0042361"
##	"GD:1902426"
##	"GO:1902420"
##	"GO:1902039
##	"GO:2000105"
##	"GD:0006391"
##	"GD:0000331
##	"GD:0007096"
##	"GD:0045793"
##	"GO:0034165"
##	"GD:0036492"
##	"GO:0070537"
##	"GO:0015893"
##	"GO:0021526"
##	"GO:0042495"
##	"GD:0060672"
##	"GO:2000351"
##	"GO:0030578"
##	"GO:0032673"
##	"GO:0033216"
##	"GO:0070241"
##	"GO:1905165"
##	"GO:0038155"
##	"GO:0070550"
##	"GO:0086092"
##	"GO:1905406"
##	"GD:0009948"
##	"GO:0035964"
##	"GO:0048199"
##	"GD:0060024"
##	"GD:0071320"
##	"GD:0003007"
##	"GD:0003310"
##	"GO:0006014"
##	"GO:0018192"

##	"GO:0021588"
##	"GO:0022004"
##	"GO:0035644"
##	"GO:0036520"
##	"GO:0046061"
##	"GO:0048232"
##	"GO:0072040"
##	"GO:0072221"
##	"GO:1904613"
##	"GO:1905711"
##	"GO:0016574"
##	"GO:1901016"
##	"GO:1902992"
##	"GD:0060221"
##	"GO:0048017"
##	"GO:1905451"
##	"GO:0000012"
##	"GO:0097755"
##	"GO:0010564"
##	"GO:0061302"
##	"GO:1904843"
##	"GO:0032878"
##	"GO:0060152"
##	"GO:0001508"
##	"GD:0042088"
##	"GO:0008216"
##	"GO:0031034"
##	"GO:0033037"
##	"GO:0043482"
##	"GO:0043567"
##	"GO:0045075"
##	"GO:0045188"
##	"GO:0048630"
##	"GO:0051089"
##	"GO:0061743"
##	"GO:0070349"
##	"GO:1900106"
##	"GD:2000502"
##	"GO:0044819"
##	"GO:0090160"
##	"GO:1904716"
##	"GO:0035988"
##	"GO:0014854"
##	"GO:0034197"
##	"GO:0048588"
##	"GO:0061640"
##	"GO:0071218"
##	"GO:0045351"
##	"GO:0048147"
##	"GO:0002353"
##	"GO:0010593"
##	"GO:0017186"
##	"GO:0042144"
##	"GO:0045368"

##	"GO:0045622"
##	"GD:0046203"
##	"GO:1901862"
##	"GO:1902630"
##	"GO:1903762"
##	"GO:1904205"
##	"GD:0009609"
##	"GO:0030835"
## ##	"GO:0033564" "GO:0003182"
## ##	"GD:0003182"
##	"GD:0003241"
##	"GD:0003241
##	"GD:0003270
##	"GO:0007440
##	"GD:0060341"
##	"GD:0060768"
##	"GD:0060843"
##	"GD:1903849"
##	"GO:0021678"
##	"GD:0070475"
##	"GD:0033574"
##	"GO:1900221"
##	"GD:0010501"
##	"GO:0031630"
##	"GO:0001080"
##	"GO:0006188"
##	"GO:0010255"
##	"GO:0015798"
##	"GO:0034021"
##	"GO:0034255"
##	"GO:0038185"
##	"GD:0050655"
##	"GO:0050922"
##	"GO:0052652"
##	"GD:0060872"
##	"GD:0090184"
##	"GO:1905695"
##	"GD:2000213"
##	"GD:2000977"
##	"GO:2001250"
##	"GD:0006686"
##	"GO:1904021"
##	"GD:0035666"
##	"GD:0032204"
##	"GO:0046331"
##	"GD:0090737"
##	"GO:1904219"
##	"GO:1904222"
##	"GO:0033326" "GO:0035378"
##	"GU:0035378" "GO:0085018"
## ##	"GD:0085018"
ππ	GU.0003207"
##	"GD:0095500"

##	"GD:0030224"
##	"GO:0048675"
##	"GO:2000866"
##	"GO:0006148"
##	"GD:0006560"
##	"GO:0009443"
##	"GO:0010133"
##	"GO:0021521"
##	"GO:0046621"
##	"GO:0048319"
##	"GO:0048332"
##	"GO:0051256"
##	"GD:0060689"
##	"GO:0061074"
##	"GO:0072095"
##	"GO:1902414"
##	"GO:1903893"
##	"GO:2001184"
##	"GO:0001302"
##	"GO:0051300"
##	"GO:0045922"
##	"GO:1903939"
##	"GD:0070286"
##	"GO:0006562"
##	"GO:0032695"
##	"GO:0061002"
##	"GO:0000186"
##	"GO:2000767"
##	"GO:0003156"
##	"GO:0007509"
##	"GO:0010621"
##	"GO:0033622"
##	"GO:0035802"
##	"GO:0036155"
##	"GO:0036514"
##	"GO:0036515"
##	"GO:0043553"
##	"GO:0045621"
##	"GO:0046390"
##	"GO:2000291"
##	"GO:0019089"
##	"GO:0044111"
##	"GO:0046824"
##	"GO:1905906"
##	"GO:0033211"
##	"GO:0046726"
##	"GO:0071313"
##	"GO:0071895"
##	"GO:0000725"
##	"GO:0002829"
##	"GO:0071241"
##	"GO:0043318"
##	"GO:1903076"
##	"GO:1990089"

##	"GO:0003221"
##	"GO:0006211"
##	"GO:0014816"
##	"GO:0019732"
##	"GO:0034085"
##	"GO:0035329"
##	"GD:0060700"
##	"GO:0061355"
##	"GO:1903659"
##	"GO:1905069"
## ##	"GO:1990700" "GO:0036315"
## ##	"GD:0036315" "GD:0014051"
## ##	"GD:0014051"
##	"GD:0048103
##	"GD:0050965"
##	"GD:0030303"
##	"GD:1900025"
##	"GD:0007227"
##	"GD:0034499"
##	"GD:0003229"
##	"GD:0005996"
##	"GD:0006182"
##	"GO:0010025"
##	"GO:0010921"
##	"GO:0019082"
##	"GO:0030309"
##	"GO:0032904"
##	"GD:0060086"
##	"GO:0061789"
##	"GO:0090472"
##	"GO:0032928"
##	"GO:0045401"
##	"GO:0090237"
##	"GD:0032200"
##	"GO:0038168"
##	"GO:0045123"
##	"GD:0006650"
##	"GO:0048936"
##	"GO:0071799"
##	"GO:0010872"
##	"GD:0030576"
## ##	"GD:0072193" "GD:0003127"
## ##	"GD:0003127" "GD:0009449"
## ##	"GD:0009449" "GD:0009451"
## ##	"GD:0009451"
## ##	"GD:0030201"
## ##	"GD:0038086"
## ##	"GD:0038154"
## ##	"GD:0051946"
## ##	"GD:0070543"
##	"GD:0071404"
##	"GO:0072214"
	JJ. 001 ZZIO

##	"GO:0072235"
##	"GO:0110008"
##	"GO:1900220"
##	"GO:0003166"
##	"GO:0046470"
##	"GO:0008344"
##	"GD:0016339"
##	"GD:0031663"
## ##	"GO:0007044" "GO:0070375"
## ##	"GD:0070375"
##	"GD:1902227"
##	"GD:0003097"
##	"GD:0003097
##	"GD:0060008"
##	"GD:0033234"
##	"GD:0061325"
##	"GD:0001326"
##	"GO:1905322"
##	"GO:0051255"
##	"GO:1904515"
##	"GD:0006655"
##	"GO:0007352"
##	"GO:0034164"
##	"GO:0070884"
##	"GO:0043987"
##	"GD:0033088"
##	"GO:0061842"
##	"GO:0009268"
##	"GO:0097477"
##	"GO:0036149"
##	"GD:0031296"
##	"GO:0098887"
##	"GD:0006929"
##	"GD:0006817"
##	"GO:0021872"
##	"GD:0040030"
##	"GO:0042135"
##	"GD:0042360"
##	"GD:0090049"
## ##	"GO:1903027" "GO:0010766"
## ##	"GD:0010766"
## ##	"GD:0060058"
##	"GD:0030104"
##	"GD:0000104
##	"GD:0002381
##	"GD:0086047"
##	"GD:0000047
##	"GD:0009309
##	"GD:0072010"
##	"GO:1901534"
##	"GD:1902038"
##	"GO:0071421"

##	"GO:1903541"
##	"GD:0060688"
##	"GD:0007632"
##	"GO:0014740"
##	"GO:0021759"
##	"GO:0051641"
##	"GO:0099172"
##	"GD:2000170"
##	"GD:0006449"
##	"GD:0000416"
##	"GO:1900224"
##	"GO:1902544"
##	"GO:0097017"
##	"GO:0097154"
##	"GO:1903903"
##	"GD:1903906"
##	"GD:1903909"
##	"GD:0015793"
##	"GO:1904395"
##	"GO:0010917"
##	"GD:0021536"
##	"GD:0043697"
##	"GD:0044795"
##	"GD:0060079"
##	"GD:0000132"
##	"GD:0034729"
##	"GO:0051451"
##	"GO:1903393"
##	"GD:2000677"
##	"GD:0006051"
##	"GO:0014734"
##	"GO:0021533"
##	"GD:0021682"
##	"GD:0036138"
##	"GO:0038133"
##	"GO:0038172"
##	"GD:0042265"
##	"GO:0046521"
##	"GO:0006711"
##	"GO:0045425"
##	"GO:0045910"
##	"GO:1905382"
##	"GO:0097152"
##	"GD:0006045"
##	"GO:0019085"
##	"GD:0060027"
##	"GD:2000234"
##	"GO:0001841"
##	"GO:0010894"
##	"GD:0046661"
##	"GD:0009826"
##	"GO:0021524"
##	"GO:0044338"
##	"GD:0044339"

##	"GD:0098700"
##	"GD:2000299"
##	"GD:0046031"
##	"GO:0016182"
##	"GO:1900226"
##	"GO:0034213"
##	"GD:0060046"
##	"GD:0032964"
##	"GO:0021797"
##	"GO:0040019"
##	"GO:0060547"
##	"GO:1904398"
##	"GO:1904373"
##	"GD:0097267"
##	"GO:0097535"
##	"GD:0002086"
##	"GO:0010164"
##	"GD:0033364"
##	"GD:0060438"
##	"GO:1904290"
##	"GD:2000643"
##	"GO:0010041"
##	"GO:0060212"
##	"GO:1900745"
##	"GD:2000562"
##	"GO:0015827"
##	"GO:0072675"
##	"GO:0003351"
##	"GO:0035511"
##	"GO:0033598"
##	"GO:0046959"
##	"GD:0000904"
##	"GD:0035036"
##	"GD:0000972"
##	"GD:0060708"
##	"GD:0007066"
##	"GD:0019303"
##	"GO:0022018"
##	"GD:0060366"
##	"GD:0060367"
##	"GD:0060594"
##	"GD:0060873"
##	"GO:0060875"
##	"GO:0097187"
##	"GO:1903010"
##	"GD:2000363"
##	"GO:0033184"
##	"GO:1904025"
##	"GO:0030213"
##	"GO:1904271"
##	"GO:1904556"
##	"GO:0021912"
##	"GO:0045822"
##	"GO:0071864"

##	"GO:2001178"
##	"GD:0008630"
##	"GO:0031427"
##	"GO:0051005"
##	"GD:0061670"
##	"GO:0002519"
##	"GO:0003192"
##	"GO:0007181"
##	"GD:0061136"
##	"GO:0010845"
##	"GO:0035789"
##	"GD:0060981"
##	"GO:0072262"
##	"GD:0003322"
##	"GD:0021905"
##	"GO:0021918"
##	"GO:0032286"
##	"GO:0075044"
##	"GO:0070076"
##	"GO:0070193"
##	"GO:0098885"
##	"GO:0032401"
##	"GO:0039521"
##	"GO:0046968"
##	"GD:0060620"
##	"GO:0014835"
##	"GO:0010032"
##	"GO:0010797"
##	"GO:0021913"
##	"GO:1900235"
##	"GO:1901558"
##	"GO:0018126"
##	"GO:0072237"
##	"GO:0072287"
##	"GD:2000490"
##	"GO:0015695"
##	"GO:0042791"
##	"GO:0042797"
##	"GO:0043320"
##	"GO:0071038"
##	"GD:0061303"
##	"GO:1900451"
##	"GO:0009304"
##	"GO:0014737"
##	"GO:0034148"
##	"GO:0061043"
##	"GO:0070429"
##	"GO:0072377"
##	"GO:0072573"
##	"GD:0072666"
##	"GO:1901739"
##	"GO:2000818"
##	"GO:0019377"
##	"GO:0046534"

##	"GO:0061032"
##	"GO:0061525"
##	"GO:0061817"
##	"GD:0097089"
##	"GD:0106030"
##	"GO:1901253"
##	"GO:1902855"
##	"GD:2001108"
##	"GD:2001190"
##	"GO:0032483"
##	"GO:0051042"
##	"GD:0060804"
##	"GO:2001033"
##	"GO:0003195"
##	"GO:0007412"
##	"GO:0070571"
##	"GO:0097091"
##	"GO:0016094"
##	"GD:0062043"
##	"GO:0014728"
##	"GD:0060316"
##	"GO:0099558"
##	"GO:0071259"
##	"GD:0006592"
##	"GO:0021508"
##	"GO:0035634"
##	"GO:0060214"
##	"GO:1903644"
##	"GD:0006971"
##	"GO:0010633"
##	"GD:0022009"
##	"GD:0043506"
##	"GO:0048213"
##	"GD:0060480"
##	"GD:0034972"
##	"GD:0060336"
##	"GD:0060817"
##	"GO:1901202"
##	"GO:0032438"
##	"GD:0036164"
##	"GD:0086019"
##	"GD:1902966"
##	"GO:0033273"
##	"GO:1903385"
##	"GO:0000712"
##	"GO:0032075"
##	"GO:0090341"
##	"GO:1900028"
##	"GO:2000325"
##	"GO:0017121"
##	"GO:0021633"
##	"GD:0032801"
##	"GO:0045959"
##	"GO:0098904"

##	"GO:1904938"
##	"GO:2000349"
##	"GO:0007371"
##	"GO:0021910"
##	"GO:0051799"
##	"GD:0060248"
##	"GO:0070197"
##	"GO:0072285"
##	"GO:0097340"
##	"GD:2000826"
##	"GO:2001037"
##	"GO:0046684"
##	"GO:0042275"
##	"GD:0033032"
##	"GD:0032902"
##	"GO:0099179"
##	"GD:0046340"
##	"GD:0097466"
##	"GD:2000321"
##	"GO:0015670"
##	"GO:0045799"
##	"GO:0060217"
##	"GD:0060375"
##	"GO:1901990"
##	"GO:1903140"
##	"GO:1903744"
##	"GO:1905705"
##	"GD:2000564"
##	"GO:2000575"
##	"GD:0000480"
##	"GD:0007079"
##	"GO:0032834"
##	"GO:0097752"
##	"GO:1901409"
##	"GO:1902010"
##	"GO:0034474"
##	"GO:0060532"
##	"GO:0061145"
##	"GO:1904358"
##	"GD:0040009"
##	"GD:0006949"
##	"GO:0044878"
##	"GO:0010874"
##	"GO:0034370"
##	"GD:0060383"
##	"GD:0097068"
##	"GO:1903208"
##	"GO:1905774"
##	"GO:1905776"
##	"GO:0090291"
##	"GO:1905908"
##	"GO:0002554"
##	"GD:0090260"
##	"GO:1904100"

##	"GD:0006450"
##	"GO:0060628"
##	"GO:0003252"
##	"GO:2000819"
##	"GO:0007493"
##	"GO:0018917"
##	"GO:0021615"
##	"GD:0032642" "GD:0042228"
## ##	"GD:0042228" "GD:0097400"
## ##	"GO:20097400"
##	"GD:2000793
##	"GO:0002418"
##	"GD:0003162"
##	"GO:0003162
##	"GD:0007495"
##	"GD:0007433
##	"GO:1903984"
##	"GO:0033631"
##	"GO:0072255"
##	"GO:1901254"
##	"GO:1905176"
##	"GD:2000591"
##	"GD:0044341"
##	"GD:0009157"
##	"GD:1904506"
##	"GO:1904535"
##	"GD:0002313"
##	"GD:2000330"
##	"GD:0006874"
##	"GD:0006931"
##	"GD:0010559"
##	"GD:0018400"
##	"GD:0043647"
##	"GO:0045404"
##	"GO:1905907"
##	"GO:0010585"
##	"GD:0014908"
##	"GO:0015721"
##	"GO:0015822"
##	"GD:0018979"
##	"GO:0032817"
##	"GD:0038018"
##	"GD:0060359"
##	"GO:0072017"
##	"GD:1903400"
##	"GD:1903803"
##	"GD:1904340"
##	"GO:1905437"
##	"GD:0060979"
##	"GD:0006382"
##	"GO:0046098"
##	"GO:0070940"
##	"GO:1904877"

##	"GO:0071504"
##	"GO:1990390"
##	"GO:0002283"
##	"GO:0006041"
##	"GO:0021953"
##	"GO:0032386"
##	"GD:0060676"
##	"GO:1904016"
##	"GO:0021557"
##	"GO:0021558"
##	"GO:0045977"
##	"GO:0061106"
##	"GO:0072141"
##	"GO:2000227"
##	"GD:0060683"
##	"GO: 1004870"
##	"GO:1904879" "GO:1905553"
## ##	"GO:1905553"
##	"GO:0032053"
##	"GD:0032423"
##	"GD:0032425
##	"GD:0043310"
##	"GO:0060342
##	"GO:0071921"
##	"GD:1903401"
##	"GD:0000302"
##	"GO:0030259"
##	"GO:0071578"
##	"GD:0060032"
##	"GO:0070988"
##	"GO:0106004"
##	"GO:0002726"
##	"GD:0006707"
##	"GO:0032264"
##	"GO:0050706"
##	"GO:2001226"
##	"GO:0021503"
##	"GD:2000467"
##	"GD:0008643"
##	"GO:0032602"
##	"GO:0072718"
##	"GO:1901317"
##	"GD:2000104"
##	"GD:0006751"
##	"GD:0036304"
##	"GO:0042590"
##	"GD:0060126"
##	"GD:0060900"
##	"GO:2001212"
##	"GO:0003357"
## ##	"GO:0051100" "GO:2000271"
	"GU:2000271" "GO:0035457"
##	GU:003545/"

##	"GO:0035771"
##	"GO:0043305"
##	"GO:1902714"
##	"GD:0060621"
##	"GO:0071812"
##	"GO:0071848"
##	"GD:2000269"
##	"GD:0033316"
##	"GO:0036337"
##	"GO:1903096"
##	"GO:0043618" "GO:0048822"
## ##	"GD:0048822" "GD:0042339"
## ##	"GD:0042339"
##	"GO:1902721"
##	"GO:1902721"
##	"GD:0009312"
##	"GD:1901222"
##	"GD:0042491"
##	"GD:0060082"
##	"GD:0060236"
##	"GD:0060729"
##	"GO:1904510"
##	"GO:0050651"
##	"GO:0061078"
##	"GO:0061081"
##	"GO:0071624"
##	"GO:1900276"
##	"GO:1900737"
##	"GO:1990511"
##	"GO:0043313"
##	"GO:0046015"
##	"GO:0055092"
##	"GO:1901984"
##	"GO:0022607"
##	"GO:0032455"
##	"GO:0043973"
##	"GO:2000059"
##	"GO:0046512"
##	"GD:0002830"
##	"GO:0003136"
##	"GD:0006659"
## ##	"GD:0006844" "GD:0021874"
## ##	"GD:0021874" "GD:0030910"
## ##	"GD:0030910" "GD:0048337"
## ##	"GD:0048337"
## ##	"GD:0061031" "GD:0090676"
## ##	"GD:2000081"
## ##	"GD:2000081" "GD:0018230"
## ##	"GD:2000474"
## ##	"GD: 0008228"
##	"GD:0003228
##	"GD:0033073
	22.00,1100

##	"GD:0097473"
##	"GD:2000630"
##	"GD:0001660"
##	"GO:0007063"
##	"GD:0009750"
##	"GO:0010634"
##	"GO:0015696"
##	"GO:0051541"
##	"GO:0021800"
##	"GO:0032412"
##	"GO:0007250"
##	"GO:0007386"
##	"GO:0035315"
##	"GO:0021836"
##	"GD:0001706"
##	"GO:0048703"
##	"GD:0060335"
##	"GD:2000048"
##	"GO:0018879"
##	"GO:0065001"
##	"GD:2000845"
##	"GD:0003096"
##	"GD:0007264"
##	"GO:0032415"
##	"GO:0034635"
##	"GO:0097211"
##	"GO:0097291"
##	"GO:1904030"
##	"GO:0010754"
##	"GD:0010890"
##	"GO:0048729"
##	"GD:0070236"
##	"GD:0098886"
##	"GD:0009972"
##	"GO:0071294"
##	"GO:0071557"
##	"GD:0007638"
##	"GD:0009653"
##	"GD:0002730"
##	"GD:0034346"
##	"GD:0098868"
##	"GD:1903638"
##	"GO:1903645"
##	"GD:0032466"
##	"GO:1903905"
##	"GO:0000719"
##	"GO:2000118"
##	"GD:0006689"
##	"GO:0044752"
##	"GD:0097069"
##	"GO:2000822"
##	"GD:0000038"
##	"GD:0030262"
##	"GD:0060977"

##	"GD:0002017"
##	"GO:0019101"
##	"GO:0033157"
##	"GD:0060014"
##	"GO:1904998"
##	"GO:0072161"
##	"GD:0000467"
##	"GO:0071929"
##	"GD:0048880"
##	"GO:0002845"
##	"GO:0008582"
##	"GO:0010430"
##	"GO:0021885"
##	"GO:0032383"
##	"GO:1900245"
##	"GO:1903556"
##	"GO:1905399"
##	"GO:1905404"
##	"GD:0032958"
##	"GO:1902230"
##	"GO:0003350"
##	"GO:0002315"
##	"GO:0002732"
##	"GO:0032498"
##	"GD:0032633"
##	"GO:0046645"
##	"GO:0061519"
##	"GD:0099601"
##	"GO:0006054"
##	"GO:0014809"
##	"GD:0032738"
##	"GD:0035665"
##	"GD:0086043"
##	"GD:0046477"
##	"GO:0099175"
##	"GO:2000107"
##	"GO:1904491"
##	"GD:0021610"
##	"GO:0071670"
##	"GD:0002506"
##	"GD:0006386"
##	"GO:0015824"
##	"GO:0019439"
##	"GD:0032400"
##	"GO:0042779"
##	"GD:0060733"
##	"GO:0071264"
##	"GO:0071786"
##	"GO:1990926"
##	"GO:0010453"
##	"GO:2000327"
##	"GO:0001923"
##	"GD:0036006"
##	"GD:0032687"

##	"GO:0003273"
##	"GO:0032487"
##	"GO:0032674"
##	"GO:0034105"
##	"GO:0045833"
##	"GO:0071373"
##	"GO:1902684"
##	"GO:1903743"
## ##	"GO:0002265" "GO:0021778"
## ##	"GD:0021778"
##	"GD:1903723"
##	"GD:0001763"
##	"GD:0001765
##	"GD:0014888
##	"GD:1903944"
##	"GD:0086001"
##	"GD:1900424"
##	"GD:0045992"
##	"GD:0089709"
##	"GD:2000301"
##	"GO:0002415"
##	"GO:0035441"
##	"GO:0045579"
##	"GO:1902775"
##	"GO:1903936"
##	"GO:0036351"
##	"GO:0036352"
##	"GO:0061333"
##	"GO:0061394"
##	"GO:2000777"
##	"GO:0010716"
##	"GO:0072177"
##	"GD:0009240"
##	"GO:0050992"
##	"GO:0060598"
##	"GO:0072750"
##	"GO:0033085"
##	"GO:0034770"
##	"GD:0032802"
##	"GD:0048644" "GD:0050674"
## ##	"GD:0050674"
## ##	"GD:0050677"
##	"GD:0060436"
##	"GD:0060879"
##	"GD:0060879
##	"GD:0061485"
##	"GD:0001403
##	"GD:2000676"
##	"GD:0045769"
##	"GD:0002329"
##	"GD:0061144"
##	"GD:0086016"

##	"GO:1902691"
##	"GO:0060675"
##	"GO:1904251"
##	"GD:2001260"
##	"GD:0006490"
##	"GD:0060586"
##	"GD:0070987"
##	"GO:0097325"
##	"GO:1904294"
##	"GO:0048014"
##	"GO:0043382"
##	"GO:0071711"
##	"GO:0010898"
##	"GO:0033233"
##	"GO:0072110"
##	"GO:0072303"
##	"GO:0098759"
##	"GD:0030326"
##	"GO:0051754"
##	"GO:0070478"
##	"GO:0098582"
##	"GO:0016078"
##	"GO:0090051"
##	"GD:2000978"
##	"GD:0060414"
##	"GD:2000003"
##	"GD:2001016"
##	"GD:0003165"
##	"GD:0010466"
##	"GD:0033129"
## ##	"GO:0033561" "GO:0060820"
## ##	"GD:0060820"
##	"GD:0000821
## ##	"GD:0070868"
##	"GD:0000704
##	"GD:0070332
##	"GD:0097298
##	"GD:0007271"
##	"GD:0007271
##	"GD:0030200"
##	"GD:0043247"
##	"GD:0072015"
##	"GD:0090310"
##	"GD:1903929"
##	"GD:0006826"
##	"GD:0030862"
##	"GD:0035844"
##	"GD:0039008"
##	"GD:0039023"
##	"GD:0070121"
##	"GO:0046533"
##	"GD:0006670"
##	"GO:0010888"

##	"GO:0010753"
##	"GO:0071314"
##	"GO:0099551"
##	"GO:0021520"
##	"GO:0035425"
##	"GO:0035583"
##	"GD:0040038"
##	"GD:0060928"
## ##	"GO:0070649" "GO:1905143"
## ##	"GD:1905143"
##	"GD:1902990"
##	"GD:0033227"
##	"GD:0053227
##	"GD:0031077
##	"GD:0110025"
##	"GO:1901953"
##	"GD:0010573"
##	"GD:0044027"
##	"GD:0048619"
##	"GD:0060576"
##	"GO:0072011"
##	"GO:1903204"
##	"GO:0001899"
##	"GO:0051801"
##	"GO:2000672"
##	"GO:0000117"
##	"GO:0000971"
##	"GO:0032980"
##	"GO:0044861"
##	"GO:0001829"
##	"GO:0021812"
##	"GO:0045137"
##	"GD:0098908"
##	"GO:0099525"
##	"GO:0035602"
##	"GO:0035603"
##	"GO:0035604"
##	"GD:0060601"
##	"GO:0035087"
##	"GD:0050975" "GD:0060709"
##	"GD:0080709"
## ##	"GD:0097117"
##	"GD:000002
##	"GD:0006403"
##	"GD:0000403
##	"GD:1990416"
##	"GD:0010792"
##	"GD:0010732
##	"GD:0042420
##	"GD:0001766"
##	"GD:0021813"
##	"GD:0038043"
	20.0000010

##	"GD:0060307"
##	"GD:0006959"
##	"GO:0070423"
##	"GO:0043000"
##	"GO:1901031"
##	"GO:1903028"
##	"GO:1904356"
##	"GO:0033313"
## ##	"GO:0048861" "GO:0019836"
## ##	"GD:0019838"
##	"GD:0048819
##	"GD:0002503"
##	"GD:0002321
##	"GD:0003440
##	"GO:0050510
##	"GD:2000706"
##	"GD:2000740"
##	"GD:2000798"
##	"GO:0010159"
##	"GO:0045055"
##	"GD:0052066"
##	"GD:0060296"
##	"GO:0060993"
##	"GO:0002625"
##	"GD:0006613"
##	"GO:0000578"
##	"GO:0061098"
##	"GO:0035790"
##	"GO:0072189"
##	"GO:1903382"
##	"GO:1903845"
##	"GO:2000739"
##	"GO:0007288"
##	"GD:0008078"
##	"GO:0021543"
##	"GO:0031334"
##	"GO:0090134"
##	"GO:1902514"
##	"GO:0032971"
##	"GO:0033692" "GO:0001659"
## ##	"GD:0001659"
## ##	"GD:0002940" "GD:0043066"
##	"GD:0043088
##	"GD:0031489
## ##	"GO:0072136"
## ##	"GD:0070417"
##	"GD:1903378"
## ##	"GD: 1903378"
##	"GD:0042480
##	"GD:0097474
##	"GO:1904743"
##	"GO:0071295"
	22.00,1200

##	"GO:1990743"
##	"GD:2000616"
##	"GD:0042668"
##	"GO:0043243"
##	"GD:0048006"
##	"GO:0061364"
##	"GO:0086024"
##	"GO:1901291"
## ##	"GO:0031503" "GO:0061317"
## ##	"GO:0061317"
## ##	"GD:0072716"
##	"GD:0072710"
##	"GD:0072739"
##	"GD:0099072"
##	"GD:0033072"
##	"GD:0042264"
##	"GD:0018395"
##	"GD:0033045"
##	"GD:0070078"
##	"GD:0070079"
##	"GO:0007185"
##	"GD:0019046"
##	"GD:0039530"
##	"GD:0090402"
##	"GD:0009259"
##	"GO:0010833"
##	"GO:0040011"
##	"GO:0055089"
##	"GO:1904469"
##	"GO:1990918"
##	"GO:0006725"
##	"GD:0032490"
##	"GO:0045105"
##	"GD:0060379"
##	"GO:1903935"
##	"GO:0071205"
##	"GO:0097192"
##	"GD:0003290"
##	"GD:0003383"
##	"GD:0042309"
##	"GO:1902261"
##	"GO:1904049"
##	"GO:0043128"
##	"GD:0060267"
##	"GD:0006226"
##	"GD:0033209"
##	"GO:0071051"
##	"GO:2001186"
##	"GO:0050925" "GO:2000974"
##	"GU:2000974" "GO:0050857"
## ##	"GD:0050857"
	GU.0002002"
##	"GD:0036372"

##	"GO:0072014"
##	"GO:0086048"
##	"GO:0060913"
##	"GD:0002679"
##	"GD:0006203"
##	"GO:0072615"
##	"GO:0001579"
##	"GD:0033043"
## ##	"GO:0043029" "GO:0045607"
## ##	"GD:0045807"
##	"GD:0048790"
##	"GD:0048790"
##	"GD:0002504"
##	"GD:0002304"
##	"GD:0006933"
##	"GD:0034120"
##	"GD:0043367"
##	"GD:0031064"
##	"GO:0050881"
##	"GO:0007284"
##	"GO:0048743"
##	"GO:0052182"
##	"GO:0052213"
##	"GO:0099156"
##	"GO:1900122"
##	"GO:0034243"
##	"GO:0045887"
##	"GO:0051562"
##	"GO:1903817"
##	"GO:0018107"
##	"GD:0001949"
##	"GO:0030242"
##	"GO:0030258"
##	"GO:0031947"
##	"GO:0045989"
##	"GO:0048239"
##	"GO:1990637"
##	"GO:0034334"
##	"GO:0035747"
##	"GO:0050725" "GO:0090108"
##	
## ##	"GD:0090340" "GD:0050856"
##	"GD:2001054"
##	"GD:0072070"
## ##	"GD:0072070"
## ##	"GD:0030099"
##	"GD:1901026"
## ##	"GO:1901026"
##	"GD:0070431
##	"GD:0098840
##	"GD:0002011"
##	"GD:0003271"
	40.0000211

##	"GO:0019043"
##	"GO:0033504"
##	"GO:0034127"
##	"GO:0045416"
##	"GD:0060741"
##	"GO:1901620"
##	"GD:0002027"
##	"GO:0021501"
## ##	"GO:0021547" "GO:1902257"
## ##	"GD: 0007597"
##	"GD:0007397
##	"GD:0019081
##	"GO:0059320
##	"GD:0097156"
##	"GD:0037155"
##	"GD:1901537"
##	"GD:0007228"
##	"GD:0098912"
##	"GD:2000008"
##	"GD:0030300"
##	"GD:0060119"
##	"GO:0071800"
##	"GD:0008617"
##	"GO:0038184"
##	"GO:0046070"
##	"GO:0046122"
##	"GO:2001027"
##	"GO:0001543"
##	"GO:0016082"
##	"GO:1903827"
##	"GO:0051640"
##	"GD:0060025"
##	"GO:0070925"
##	"GO:1902685"
##	"GO:1903307"
##	"GO:0002367"
##	"GD:0014909"
##	"GO:0033387"
##	"GD:0016243"
##	"GD:0030003" "GD:0097734"
##	"GD:1902047"
## ##	"GD: 1902047" "GD: 1990938"
##	"GD:0002566"
##	"GD:1900369"
##	"GD:0051798"
##	"GD:0060415"
##	"GD:0072553"
##	"GD:2000343"
##	"GD:0006407"
##	"GD:0060456"
##	"GD:2000143"
##	"GO:0021685"

##	"GD:0032692"
##	"GO:0036010"
##	"GO:0045086"
##	"GO:0098914"
##	"GO:1901726"
##	"GO:1903429"
##	"GO:0002317"
##	"GO:0010387"
##	"GO:0032275"
##	"GD:0098942"
##	"GO:1904117"
##	"GO:0016267"
##	"GO:1901856"
##	"GO:0045197"
##	"GO:0051017"
##	"GO:2001145"
##	"GO:0030048"
##	"GO:1901374"
##	"GO:0072073"
##	"GO:0015884"
##	"GO:0043538"
##	"GD:0060465"
##	"GO:0033979"
##	"GO:0044335"
##	"GO:0055002"
##	"GD:0002906"
##	"GO:0071163"
##	"GO:1903614"
##	"GD:0006499"
##	"GD:0061030"
##	"GD:0090427"
##	"GO:2001055"
##	"GD:0036269"
	"GO:0043686" "GO:0086045"
## ##	"GD:0086045"
## ##	"GD:1901387"
##	"GO:1901387
##	"GD:0006738"
##	"GD:0000738
##	"GD:0042471
##	"GD:0040804"
##	"GD:0060842"
##	"GD:0072363"
##	"GD:0072366"
##	"GD:0010842"
##	"GD:0010842
##	"GD:0048697"
##	"GD:0051153"
##	"GD:0031133
##	"GD:0048608"
##	"GD:0048710"
##	"GD:0051262"
##	"GO:1903427"

##	"GO:0006543"
##	"GO:0045023"
##	"GO:1904352"
##	"GD:2000402"
##	"GO:1903412"
##	"GD:0000060"
##	"GD:0070858"
##	"GD:0009838"
##	"GO:0019367" "GO:0021722"
## ##	"GD:0021722"
##	"GD:0032972
##	"GD:0034626"
##	"GD:0003223"
##	"GD:0003223
##	"GD:0090065"
##	"GD:1903798"
##	"GD:0010992"
##	"GD:0032609"
##	"GD:0071224"
##	"GO:1902170"
##	"GD:0006828"
##	"GO:0010811"
##	"GD:0099566"
##	"GO:1904357"
##	"GO:0032784"
##	"GO:0001932"
##	"GO:0010751"
##	"GO:0030252"
##	"GO:1902857"
##	"GO:0002381"
##	"GO:0045218"
##	"GO:0072125"
##	"GO:0042226"
##	"GD:0090648"
##	"GD:0002029"
##	"GO:0038192"
##	"GO:0019372"
##	"GO:0031536"
##	"GO:0061182"
##	"GO:0035481"
##	"GO:2001076" "GO:0003338"
## ##	"GD:0003338" "GD:1903980"
## ##	"GD:1903980" "GD:0007522"
## ##	"GD:0007522"
## ##	"GD:0032818"
## ##	"GD:0045082"
## ##	"GD:0051292" "GD:1902459"
## ##	"GD:1902459"
## ##	"GD:0003416"
## ##	"GD:0034787"
##	"GD:1904428"
##	"GO:0035108"
	30.000100

##	"GO:0048242"
##	"GO:0001913"
##	"GO:0002115"
##	"GO:0042094"
##	"GD:0030299"
##	"GO:0097712"
##	"GD:2000310"
##	"GD:0003094"
##	"GO:0071045"
##	"GO:0038165"
##	"GO:0021873"
##	"GO:0051409"
##	"GO:1905312"
##	"GO:0032835"
##	"GO:0035470"
##	"GO:0046474"
##	"GD:0002930"
##	"GD:0035993"
##	"GO:0044830"
##	"GO:0001174"
##	"GO:0002154"
##	"GO:0022414"
##	"GO:0034504"
##	"GO:1903351"
##	"GO:1990114"
##	"GO:0071499"
##	"GO:0110032"
##	"GO:0021555"
##	"GO:0032812"
##	"GD:0046856"
##	"GO:1990535"
##	"GO:0001927"
##	"GO:0032635"
##	"GD:0035880"
##	"GO:0070075"
##	"GO:0072107"
##	"GO:0030718"
##	"GD:0006272"
##	"GO:0006354"
##	"GO:0009264"
##	"GO:2000397"
##	"GO:0007168"
##	"GO:0070383"
##	"GO:0089700"
##	"GD:0097066"
##	"GO:1903572"
##	"GD:0030030"
##	"GO:0050957"
##	"GO:0061548"
##	"GO:0007418"
##	"GO:0150033"
##	"GO:1902993"
##	"GO:2000232"
##	"GO:0003197"

##	"GO:0016553"
##	"GO:0043519"
##	"GD:0061469"
##	"GO:1905653"
##	"GD:0003169"
##	"GD:0060420"
##	"GO:0045590"
##	"GO:0045618"
##	"GO:0051088"
##	"GO:0050768"
##	"GO:0065002"
##	"GO:0010752"
##	"GD:0032960"
##	"GO:0051083"
##	"GO:0014031"
##	"GO:0044778"
##	"GO:0070527"
##	"GO:1904379"
##	"GO:1990668"
##	"GD:0003308"
##	"GO:0014003"
##	"GO:1900121"
##	"GO:0018158"
##	"GD:0050896"
##	"GD:0060841"
##	"GD:2001038"
##	"GD:0060067"
##	"GO:0010452"
##	"GO:0019985"
##	"GO:1903364"
##	"GO:0019287"
##	"GD:2000340"
##	"GD:0001806"
##	"GO:0002572"
##	"GD:0006616"
##	"GO:0035898"
##	"GO:0045713"
##	"GD:0060694"
##	"GO:0061085"
##	"GO:0110059"
##	"GO:2000230"
##	"GD:2000607"
##	"GD:2000683"
##	"GD:2000703"
##	"GO:2000734"
##	"GD:0022037"
##	"GO:0035295"
##	"GO:0046784"
##	"GO:1902525"
##	"GD:0060502"
##	"GO:1904168"
##	"GO:0030212"
##	"GO:0070192"
##	"GO:1902667"

##	"GO:0018364"
##	"GO:0035743"
##	"GO:0045916"
##	"GD:0070476"
##	"GO:2000516"
##	"GO:1902618"
##	"GD:0000288"
##	"GD:0060763"
##	"GO:1903387" "GO:0009386"
## ##	"GD:0009386"
##	"GD:0030903
##	"GD:0019370
##	"GD:0002320
##	"GD:0031638"
##	"GD:0001390"
##	"GD:0003330"
##	"GD:0010225"
##	"GD:0021894"
##	"GD:0099183"
##	"GO:0050911"
##	"GD:0061762"
##	"GO:1900015"
##	"GD:0002637"
##	"GD:0060836"
##	"GO:0032723"
##	"GO:0060754"
##	"GO:1904815"
##	"GO:0007341"
##	"GO:0014891"
##	"GD:0060916"
##	"GD:0007356"
##	"GO:0001738"
##	"GO:0034154"
##	"GO:0048627"
##	"GD:0006003"
##	"GO:0043988"
##	"GO:0006117"
##	"GO:0030512"
##	"GD:0046068"
## ##	"GO:0150012" "GO:1990108"
## ##	"GD:1990108" "GD:0045685"
## ##	"GD:0045655"
##	"GD:0051704"
##	"GD:0061535"
##	"GD:0098597"
##	"GD:0055009"
##	"GD:0003882"
##	"GD:0002332
##	"GD:0032759"
##	"GD:0036037"
##	"GD:0070262"
##	"GD:0007167"
	20.0001201

##	"GD:0039502"
##	"GD:0039563"
##	"GD:0039564"
##	"GD:0043001"
##	"GD:0060413"
##	"GD:0019226"
##	"GD:0033058"
##	"GD:0007512"
##	"GO:0021591"
##	"GO:0042109"
##	"GD:0086103"
##	"GO:0001732"
##	"GO:0014843"
##	"GD:0042660"
##	"GO:1903640"
##	"GO:0021544"
##	"GO:1901843"
##	"GD:2000210"
##	"GD:0003219"
##	"GO:0034142"
##	"GD:0060684"
##	"GD:0033143"
##	"GD:0090394"
##	"GD:0009595"
##	"GD:0045608"
##	"GO:0140194"
##	"GO:1904550"
##	"GO:0001523"
##	"GO:0034143"
##	"GO:0044854"
##	"GD:0097359"
##	"GO:1901890"
##	"GD:0010916"
##	"GO:1904948"
##	"GO:0015879"
##	"GO:0019284"
##	"GO:0050748"
##	"GD:0070093"
##	"GO:1902882"
##	"GO:0002458"
##	"GD:0002509"
##	"GO:0045818"
##	"GD:0046631"
##	"GO:1902219"
##	"GD:2000410"
##	"GO:0010519"
##	"GO:0031118"
##	"GD:0031120"
##	"GD:0060301"
##	"GO:0150018"
##	"GO:1902378"
##	"GO:1902946"
##	"GO:1902950"
##	"GO:1902951"

##	"GO:1905040"
##	"GD:0002605"
##	"GO:0018958"
##	"GO:0050819"
##	"GO:1905150"
##	"GD:0021502"
##	"GO:0021541"
##	"GD:2001222"
##	"GD:0070671"
##	"GO:0005989"
##	"GO:1904647"
##	"GO:1990778"
##	"GO:1903632"
##	"GO:0051389"
##	"GD:0090326"
##	"GD:0099639"
##	"GD:0032836"
##	"GO:0034381"
##	"GO:0043691"
##	"GO:1904782"
##	"GD:2000729"
##	"GD:0031938"
##	"GD:0035886"
##	"GD:0050868"
##	"GO:1902977"
##	"GO:0071219"
##	"GD:0016052"
##	"GO:1903428"
##	"GD:0046636"
##	"GO:0071947"
##	"GO:1990418"
##	"GO:0061052"
##	"GD:0006705"
##	"GD:0061038"
##	"GD:0006873"
##	"GO:0071329"
##	"GO:1990116"
##	"GD:0042659"
##	"GO:0050865"
##	"GO:0001754"
##	"GO:0035128"
##	"GO:1901581"
##	"GO:1901582"
##	"GO:0043569"
##	"GO:0070232"
##	"GD:0090344"
##	"GD:0033600"
##	"GO:0051222"
##	"GD:0060026"
##	"GD:0060023"
##	"GD:0000212"
##	"GO:0014910"
##	"GD:0039650"
##	"GO:0061055"

##	"GD:0086029"
##	"GO:0032226"
##	"GO:0035726"
##	"GD:0021766"
##	"GO:0099637"
##	"GO:0001945"
##	"GO:0042325"
##	"GD:0010828"
## ##	"GD:0046223" "GD:0060940"
## ##	"GD:0080940"
##	"GD:1903788"
##	"GD:0048863"
##	"GD:0010543"
##	"GD:0010343
##	"GD:1903044"
##	"GD:0042921"
##	"GD:0042321
##	"GD:0046013"
##	"GD:0048386"
##	"GD:1902044"
##	"GO:0001544"
##	"GO:0031087"
##	"GO:0099502"
##	"GO:1903828"
##	"GD:0072006"
##	"GD:0006029"
##	"GO:1901525"
##	"GO:0070995"
##	"GO:0000022"
##	"GO:0044154"
##	"GO:0072075"
##	"GD:0090162"
##	"GO:1902963"
##	"GO:0002192"
##	"GO:1901898"
##	"GO:2000138"
##	"GO:0021957"
##	"GO:0031129"
##	"GO:0042373"
##	"GO:0048747"
##	"GO:0140199"
## ##	"GD:0008306" "GD:0032874"
## ##	"GD:0032874" "GD:0042738"
## ##	"GD:2000521"
## ##	"GD: 0050953"
## ##	"GD:0050953"
## ##	"GD:0051771" "GD:0072179"
## ##	"GD:0072179"
## ##	"GD:2000342"
## ##	"GD: 0009405"
##	"GD:0009403"
##	"GD:0013230
	30.0002040

##	"GO:0034421"
##	"GO:0048143"
##	"GD:0090169"
##	"GD:0035166"
##	"GO:0038156"
##	"GO:2001255"
##	"GD:0000354"
##	"GO:0001865"
##	"GD:0030324"
## ##	"GD:0030474" "GD:0035630"
## ##	"GD:0035630"
##	"GO:1903087"
##	"GD:0014904"
##	"GD:0017055"
##	"GD:0017033"
##	"GO:1903566"
##	"GD:0045603"
##	"GD:0043003
##	"GD:0060627"
##	"GD:0070779"
##	"GD:0098712"
##	"GD:0031398"
##	"GD:0000463"
##	"GD:0055096"
##	"GD:0010574"
##	"GO:0035723"
##	"GO:0097242"
##	"GO:0034505"
##	"GO:0071691"
##	"GO:0010823"
##	"GD:0031860"
##	"GO:0032370"
##	"GO:0034656"
##	"GO:0097533"
##	"GD:0002190"
##	"GO:0032055"
##	"GD:0034087"
##	"GD:0036371"
##	"GD:0086066"
##	"GD:0086070"
##	"GO:1901021"
##	"GD:0033693"
##	"GD:0046426"
##	"GD:0060485"
##	"GO:0072284"
##	"GO:0001555"
##	"GD:0050707"
##	"GD:0006167"
##	"GD:0042089"
##	"GD:0044208"
##	"GO:0048343"
##	"GD:0061445" "GD:0072719"
##	"GU:00/2/19"

##	"GO:2000017"
##	"GD:0006687"
##	"GD:0006702"
##	"GD:0038163"
##	"GD:0061709"
##	"GO:0032214"
##	"GO:1905778"
##	"GO:1905839"
##	"GO:2000331"
##	"GO:0051495"
##	"GO:1990442"
##	"GD:0003205"
##	"GO:0019048"
##	"GO:0036321"
##	"GO:0043134"
##	"GO:0045715"
##	"GO:1904008" "GO:0000147"
## ##	"GD:0000147" "GD:0051666"
##	"GD:0091866"
##	"GO:1903772"
##	"GO:0044691"
##	"GD:0044891
##	"GD:0048800"
##	"GO:0083032
##	"GO:1902750"
##	"GD:0016554"
##	"GO:0019395"
##	"GD:0090158"
##	"GD:0030010"
##	"GD:0099170"
##	"GO:1902117"
##	"GO:2001165"
##	"GO:0045132"
##	"GD:0046016"
##	"GO:0019509"
##	"GO:0035542"
##	"GO:0061309"
##	"GO:2001273"
##	"GO:0031077"
##	"GD:0060022"
##	"GD:0060164"
##	"GO:0021599"
##	"GO:0042093"
##	"GO:0072708"
##	"GO:1902850"
##	"GO:0010835"
##	"GO:0043379"
##	"GO:0044324"
##	"GO:1990440"
##	"GD:0097749"
##	"GO:1903595"
##	"GO:1904050"
##	"GO:1905302"

##	"GO:0032425"
##	"GO:1900242"
##	"GD:2000016"
##	"GD:0061418"
##	"GD:2000611"
##	"GD:0010578"
##	"GO:0051438"
##	"GO:0051458"
##	"GO:1903051"
##	"GO:0035759"
##	"GO:0046325"
##	"GO:0048771"
##	"GD:0070676"
##	"GO:1902504"
##	"GD:0061187"
##	"GD:2000529"
##	"GO:2000548"
## ##	"GO:0090290" "GO:0110061"
	"GO:0032765"
##	"GD:0032765"
## ##	"GO:0035235"
## ##	"GO:1905445"
##	"GO:0002522" "GO:0002758"
## ##	"GD:0021696" "GD:0043299"
##	"GO:0045728"
##	"GD:0045728"
##	"GD:0032342"
##	"GO:0032542
##	"GO:0034631
##	"GD:2000420"
##	"GD:0006983"
##	"GD:0014819"
##	"GD:0032392"
##	"GD:0060218"
##	"GD:0042662"
##	"GD:0046718"
##	"GD:1903670"
##	"GD:0045994"
##	"GD:0045924"
##	"GD:0050794"
##	"GD:0042048"
##	"GD:0061184"
##	"GD:0090178"
##	"GD:1901301"
##	"GD:0009812"
##	"GD:0021649"
##	"GD:0051384"
##	"GD:0072205"
##	"GD:0097374"
##	"GD:1900112"
##	"GO:1900924"
	· · · · · · -

##	"GO:1904835"
##	"GO:0043631"
##	"GD:0007529"
##	"GO:0050432"
##	"GD:2000074"
##	"GD:0001736"
##	"GO:0030538"
##	"GO:0031935"
##	"GO:1903347"
##	"GO:0001704"
##	"GO:0007175"
##	"GO:0048133"
##	"GO:0043031"
##	"GD:0097498"
##	"GO:1904980"
##	"GD:0060128" "GD:0070640"
	"GD:0070840"
## ##	"GD:0070888"
##	"GO:1903465"
##	"GD:2000830"
##	"GD:200030"
##	"GD:0021612"
##	"GD:0030222"
##	"GD:0048668"
##	"GD:0072126"
##	"GD:0090191"
##	"GD:0021773"
##	"GD:0043549"
##	"GD:0072672"
##	"GO:1900158"
##	"GO:0016198"
##	"GD:2000738"
##	"GO:0060231"
##	"GO:0044314"
##	"GO:0005976"
##	"GO:0001839"
##	"GO:0098719"
##	"GO:0016046"
##	"GO:0033605"
##	"GO:0035261"
##	"GD:0090292"
##	"GO:0010625"
##	"GO:0038202"
##	"GO:0045639"
##	"GD:0060113"
##	"GD:0060664"
##	"GD:0006020"
##	"GD:0046879"
##	"GO:0061056"
##	"GO:0048265"
##	"GO:0060372"
##	"GO:2001189"
##	"GO:0043525"

##	"GD:0000706"
##	"GO:0046596"
##	"GD:0090288"
##	"GD:0098969"
##	"GO:0046318"
##	"GO:1901563"
##	"GD:1902083"
##	"GD:1903109"
##	"GO:0043555"
##	"GO:1904894"
##	"GO:0001655"
##	"GD:0006936"
##	"GO:0034473"
##	"GD:0034476"
##	"GD:0060948"
##	"GO:0016197"
##	"GD:0060346"
##	"GO:0071221"
##	"GO:1990737"
##	"GD:0006286"
##	"GD:0032376"
##	"GD:0042270"
##	"GO:0019511"
##	"GO:0051123"
##	"GD:0042700"
##	"GD:0050869"
##	"GO:0008544"
##	"GO:0043043"
##	"GD:0097116"
##	"GO:0050910"
##	"GD:0071600"
##	"GO:0045003"
##	"GO:0072012"
##	"GO:0090329"
##	"GO:0035508"
##	"GO:0042552"
##	"GO:0097105"
##	"GO:1904903"
##	"GO:0002183"
##	"GO:0090222"
##	"GO:0061033"
##	"GO:0071394"
##	"GO:0072178"
##	"GO: 2000454"
##	"GO:0034498"
##	"GD:0044342"
##	"GO:0032803"
##	"GO:0055001"
##	"GO:1900095"
##	"GD:0006335"
##	"GO:0010512"
##	"GD:0034462"
##	"GD:0090527"
##	"GD:0001698"

##	"GO:0061577"
##	"GO:0045923"
##	"GO:0048320"
##	"GD:0060035"
##	"GO:1904238"
##	"GD:0090205"
##	"GO:0003184"
##	"GD:0003057"
##	"GO:0016073"
##	"GO:0040031"
##	"GO:0060133"
##	"GO:0061113"
##	"GO:0035359"
##	"GO:0051309"
##	"GO:0003081"
##	"GD:0006691"
##	"GO:0014040"
##	"GO:0050893"
##	"GD:0060447"
##	"GD:0090668"
##	"GD:0090400"
##	"GO:1903423"
##	"GD:0009306"
##	"GO:0010758"
##	"GO:0016072"
##	"GO:0032435"
##	"GO:0098530"
##	"GO:0021693"
##	"GO:0048599"
##	"GO:1903575"
##	"GO:0031133"
##	"GO:0034344"
##	"GO:0039528"
##	"GO:0099185"
##	"GO:0099133"
##	"GO:0010310"
##	"GO:0007538"
##	"GO:0097210"
##	"GO:1903527"
##	"GO:0042748"
##	"GO:0048853"
##	"GD:0050650"
##	"GD:0060512"
##	"GO:2001274"
##	"GO:0002378"
##	"GO:0010719"
##	"GO:0030540"
##	"GO:0071550"
##	"GD:0090272"
##	"GD:0003266"
##	"GO:0034356"
##	"GO:0001959"
##	"GO:0060351"
##	"GO:0097536"

##	"GO:0035725"
##	"GO:0072218"
##	"GD:0010836"
##	"GO:0035331"
##	"GO:0042117"
##	"GO:0010878"
##	"GO:0055026"
##	"GO:0045175"
##	"GO:0035493"
##	"GO:1901385"
##	"GO:0000448"
##	"GD:0002021"
##	"GO:0002143"
##	"GD:0035082"
##	"GD:0060536"
##	"GD:0090327"
##	"GO:0015914"
##	"GO:0018008"
##	"GO:0021828"
##	"GO:0071596"
##	"GO:1903375"
##	"GO:0048858"
##	"GO:1905563"
##	"GO:0045004"
##	"GO:1902165"
##	"GO:0034724"
##	"GO:0045655"
##	"GO:0051155"
##	"GO:0072164"
##	"GO:1903223"
##	"GD:2000864"
##	"GO:0035249"
##	"GD:0060319"
##	"GD:0060806"
##	"GD:0034698"
##	"GD:0048007"
##	"GD:0046500"
##	"GD:0060603"
##	"GD:0046886"
##	"GO:0018153"
##	"GO:0046321"
##	"GD:0043402"
##	"GO:0001984"
##	"GO:0019885"
##	"GO:0021514"
##	"GO:0031645"
##	"GO:0032348"
##	"GO:0032534"
##	"GD:2000065"
##	"GO:0001775"
##	"GD:0000460"
##	"GO:0043152"
##	"GD:0060972"
##	"GD:0072393"

##	"GO:0035095"
##	"GO:1900163"
##	"GO:2000753"
##	"GO:2000755"
##	"GD:0007206"
##	"GO:0031644"
##	"GO:0032930"
##	"GO:0036023"
##	"GO:0043397"
##	"GO:0060033"
##	"GO:0072092"
##	"GO:1902725"
##	"GO:0006348"
##	"GO:0045076"
##	"GO:0070120"
##	"GO:0071932"
##	"GO:0060595"
##	"GO:0060615"
##	"GD:0060667"
##	"GO:0060915"
##	"GO:1900625"
##	"GO:0050760"
##	"GO:0034184"
##	"GO:0055069"
##	"GO:0006925"
##	"GO:0008645"
##	"GO:0061833"
##	"GO:1903514"
##	"GD:2000324"
##	"GO:0021938"
##	"GO:0010778"
##	"GO:0018343"
##	"GO:0031619"
##	"GO:0043150"
##	"GO:0002717"
##	"GO:0051290"
##	"GD:0010998"
##	"GO:0019243"
##	"GO:0003337"
## ##	"GO:0032330" "GO:0071042"
## ##	"GD:0071042" "GD:0009631"
	"GD:0009631"
## ##	"GD:0061669" "GD:0071765"
## ##	"GD:0071765"
##	"GO:1902723"
## ##	"GD:1902723" "GD:0051044"
## ##	"GD:0051044" "GD:0010522"
## ##	"GD:0010522" "GD:0021978"
##	"GD:0021978" "GD:0090312"
##	"GD:0090312" "GD:1900114"
##	"GD:1900114" "GD:1902373"
## ##	"GO:1902375"
## ##	"GD:0060947"
пп'	GU.0000341

##	"GO:1902960"
##	"GO:1903003"
##	"GO:1990264"
##	"GO:0018095"
##	"GO:0021747"
##	"GO:0060844"
##	"GO:0097101"
##	"GO:1901186"
##	"GO:1901189"
##	"GO:1901297"
## ##	"GO:1905793"
## ##	"GD:0006903" "GD:0061462"
## ##	"GD:0072577"
## ##	"GD:0006198"
## ##	"GD:0042421"
##	"GO:0150020"
##	"GD:0003160"
##	"GO:0003100
##	"GD:0010372
##	"GD:0000267
##	"GD:0010804"
##	"GD:0007249"
##	"GD:0021785"
##	"GO:1901407"
##	"GD:0032688"
##	"GD:0044062"
##	"GD:2001269"
##	"GO:1902938"
##	"GD:0007028"
##	"GO:1904977"
##	"GO:0097102"
##	"GO:0051601"
##	"GO:0043497"
##	"GO:0086005"
##	"GO:1902430"
##	"GO:0008593"
##	"GO:0021914"
##	"GD:0032682"
##	"GD:0046680"
##	"GO:1905835"
##	"GO:2000775"
##	"GO:0042534"
##	"GO:0043584"
##	"GO:0055048"
##	"GO:0071364"
##	"GO:0071506"
##	"GD:1902365"
##	"GD:1902846"
##	"GO:1905820"
##	"GO:0045110"
##	"GO:0043137"
##	"GO:1902412"
##	"GO:0051046"

##	"GO:0060535"
##	"GD:0001838"
##	"GO:0018206"
##	"GO:0055072"
##	"GD:0061723"
##	"GO:0072277"
##	"GO:1903251"
##	"GD:0006690"
##	"GD:0035024"
##	"GD:0040020"
## ##	"GD:0050730"
## ##	"GD:0070997" "GD:0010650"
## ##	"GD:0072660"
## ##	"GD:1900827"
##	"GO:1900027
##	"GO:2000095"
##	"GD:0031508"
##	"GD:0045722"
##	"GO:0043722
##	"GD:0098532"
##	"GD:0033603"
##	"GD:0070166"
##	"GD:1903974"
##	"GD:0010572"
##	"GD:2000392"
##	"GD:0033144"
##	"GD:0042058"
##	"GD:1904209"
##	"GD:0072001"
##	"GO:0035509"
##	"GD:0097049"
##	"GD:0003256"
##	"GO:0032014"
##	"GD:0002371"
##	"GO:0035793"
##	"GD:0070662"
##	"GO:0097326"
##	"GO:0120072"
##	"GO:1904343"
##	"GD:0060123"
##	"GO:0035720"
##	"GD:0043947"
##	"GD:0048730"
##	"GD:0000290"
##	"GD:0010610"
##	"GO:0016126"
##	"GO:0022013"
##	"GD:0036342"
##	"GO:0051048"
##	"GO:0051054"
##	"GO:1900264"
##	"GO:0019800"
##	"GO:0031401"

##	"GO:0001712"
##	"GO:0042509"
##	"GD:0043369"
##	"GO:1903126"
##	"GO:0086015"
##	"GO:0050851"
##	"GO:0021781"
##	"GO:0061395"
##	"GD:0097698"
##	"GO:1902108"
##	"GD:0030263"
##	"GO:0016320"
##	"GO:0017187"
##	"GD:0009966"
##	"GO:0046587"
##	"GO:0016577"
##	"GD:0030049"
##	"GD:0030702"
##	"GO:0032615"
##	"GO:0048284"
##	"GD:0060068"
##	"GO:0099050"
##	"GO:0007144"
##	"GD:0060129"
##	"GD:0099642"
##	"GO:0042276"
##	"GD:0060662"
##	"GO:0003433"
##	"GD:0007500"
##	"GD:0036486"
##	"GD:0097490"
##	"GO:0097491"
##	"GO:1900165"
##	"GO:1902285"
##	"GO:1901350"
##	"GO:1904976"
##	"GO:0001692"
##	"GO:0043129"
##	"GO:0048562"
##	"GD:0002323"
##	"GO:0032762"
##	"GO:0034314"
##	"GO:0044860"
##	"GO:1900825"
##	"GD:0006836"
##	"GO:1904693"
##	"GO:0042074"
##	"GO:0097051"
##	"GO:0045650"
##	"GO:0070309"
##	"GO:0072203"
##	"GO:0035455"
##	"GO:0042481"
##	"GO:0070318"

##	"GD:0000350"
##	"GO:0000715"
##	"GD:0001505"
##	"GO:0010571"
##	"GD:0071107"
##	"GD:0086004"
##	"GO:0090241"
##	"GD:1900390"
##	"GD:0007320"
##	"GO:0031346"
##	"GO:0098907"
##	"GO:0099148"
##	"GO:1990443"
##	"GO:0045900"
##	"GD:0002878"
##	"GO:0045947"
##	"GD:0007549"
##	"GO:0045576"
##	"GD:0098930"
##	"GO:1901837"
##	"GO:0010524"
##	"GD:0032411"
##	"GO:0043315"
##	"GD:0007499"
##	"GD:0010481"
##	"GD:0046855"
##	"GO:1904674"
##	"GD:0036303"
##	"GO:0051353"
##	"GD:0060453"
##	"GO:0018243"
##	"GD:0035507"
##	"GO:1901874"
##	"GD:0007160"
##	"GD:0099560"
##	"GO:0032225"
##	"GO:0035782"
##	"GD:0048708"
##	"GD:0070164"
##	"GO:2000412"
##	"GO:2000513"
##	"GD:2000518"
##	"GD:2000558"
##	"GO:0001985"
##	"GO:0034653"
##	"GO:2000171"
##	"GD:0009744"
##	"GO:0032764"
##	"GD:0032927"
##	"GO:0018298"
##	"GO:0090244"
##	"GO:1990426"
##	"GO:0035037"
##	"GO:0072112"

##	"GD:0022010"
##	"GO:0032516"
##	"GD:0006287"
##	"GO:0010157"
##	"GO:0010606"
##	"GD:0060054"
##	"GO:0014015"
##	"GO:0033235"
##	"GD:0090647"
##	"GO:0098943"
##	"GO:0016050"
##	"GO:0045060"
##	"GO:0046167"
##	"GO:0045581"
##	"GO:0010518"
##	"GO:0038110"
##	"GO:0097195"
##	"GO:0045654"
##	"GO:0097021"
##	"GO:1904468"
##	"GD:2000642"
##	"GO:0014886"
##	"GO:0021516"
##	"GO:0051919"
##	"GD:0061009"
##	"GO:0098910"
##	"GO:1905065"
##	"GD:0033262"
##	"GO:0045716"
##	"GO:0010807"
##	"GO:0021764"
##	"GO:0044648"
##	"GO:0071440"
##	"GO:1900180"
##	"GO:1901674"
##	"GO:2001040"
##	"GO:0042631"
##	"GO:0045898"
##	"GO:0072752"
##	"GD:0000910"
##	"GO:0032447"
##	"GO:0034227"
##	"GD:0006509"
##	"GO:0036123"
##	"GD:0007601"
##	"GD:0009301"
##	"GD:0048846"
##	"GD:0000296"
##	"GO:0006343"
##	"GO:0007292"
##	"GO:0042595"
##	"GO:0071441"
##	"GO:2000655"
##	"GO:0021960"

##	"GO:0034475"
##	"GO:0033087"
##	"GO:0106071"
##	"GO:2000354"
##	"GO:0007614"
##	"GO:0030683"
##	"GO:1900225"
##	"GO:0010034"
##	"GO:0010893"
##	"GO:0070293"
##	"GO:1901532"
##	"GO:0014044"
##	"GO:0042323"
##	"GO:0070256"
##	"GO:0052547"
##	"GO:1900085"
##	"GO:1903609"
##	"GO:0034391"
##	"GO:0001919"
##	"GO:0030832"
##	"GO:0035655"
##	"GO:0061484"
##	"GO:0036399"
##	"GO:1901299"
##	"GD:0009247"
##	"GO:0034128"
##	"GO:0035358"
##	"GD:0030866"
##	"GO:0036517"
##	"GD:0060354"
##	"GO:0061347"
##	"GD:0061348"
##	"GD:0061349"
##	"GD:0061350"
##	"GO:0061354"
##	"GO:1904934"
##	"GO:1904955"
##	"GD:2000786"
##	"GD:0008210"
##	"GO:0014719"
##	"GO:0021551"
##	"GD:0060809"
##	"GO:1904562"
##	"GO:1904588"
##	"GO:1905229"
##	"GO:0034427"
##	"GO:1903363"
##	"GO:1902202"
##	"GO:0097026"
##	"GO:0001952"
##	"GO:0009912"
##	"GO:0035986"
##	"GO:0010705"
##	"GO:0030071"

##	"GD:0060828"
##	"GO:0003147"
##	"GO:0006576"
##	"GD:0061713"
##	"GO:0071231"
##	"GD:2000536"
##	"GD:0030888"
##	"GD:0060474"
##	"GO:1902033" "GO:1902952"
## ##	"GO:1902952"
##	"GD:2000601"
##	"GD:0008050"
##	"GD:0010498"
##	"GD:0010436"
##	"GD:0010354
##	"GD:0031022"
##	"GD:0070253"
##	"GD:0010986"
##	"GD:0032202"
##	"GD:0061889"
##	"GO:1903422"
##	"GD:0000732"
##	"GO:0071139"
##	"GO:1902186"
##	"GO:1903646"
##	"GO:0006858"
##	"GO:0045200"
##	"GO:1903071"
##	"GO:0051885"
##	"GD:2000986"
##	"GO:0007528"
##	"GO:0098711"
##	"GO:0001550"
##	"GD:0003406"
##	"GD:0038066"
##	"GO:0051383"
##	"GO:0071545"
##	"GO:0036324"
##	"GO:0035633"
##	"GO:0043654"
##	"GD:0090075"
## ##	"GD:0060717" "GD:0097119"
## ##	"GD:0097119" "GD:0031989"
## ##	"GD:0031989" "GD:0071371"
##	"GD:0071371" "GD:0071847"
## ##	"GD:10071847"
## ##	"GD:1990414" "GD:0060638"
## ##	"GD:0080838"
## ##	"GD:1902043"
## ##	"GD: 1902043"
##	"GD:0002327
##	"GD:0031000
	30.0012003

##	"GD:0010966"
##	"GD:0060816"
##	"GD:0006476"
##	"GO:0048850"
##	"GO:0090129"
##	"GO:0035246"
##	"GO:0021847"
##	"GD:0038108"
##	"GO:0055075"
##	"GO:1902003"
##	"GO:1904172"
##	"GO:2001162"
##	"GO:0042634"
##	"GO:1904293"
##	"GD:0060666"
##	"GO:1902188"
##	"GO:0000470"
##	"GD:0038193"
##	"GO:0090187"
##	"GO:0003431"
##	"GD:0042766"
##	"GO:0043377"
##	"GO:0045875"
##	"GD:0044331"
##	"GD:0003420" "GD:0009100"
## ##	"GD:0009100"
##	"GD:0016926"
##	"GD:0033910"
##	"GD:0007010"
##	"GD:0038123"
##	"GD:0071727"
##	"GD:0007634"
##	"GO:0010725"
##	"GO:0035854"
##	"GD:0060876"
##	"GD:0002009"
##	"GD:0006584"
##	"GO:0021930"
##	"GD:0006883"
##	"GO:0034059"
##	"GO:0045604"
##	"GD:2000707"
##	"GO:0060775"
##	"GO:0042796"
##	"GO:0002244"
##	"GO:0034124"
##	"GO:0075206"
##	"GO:0090151"
##	"GD:0086046"
##	"GO:0032527"
##	"GD:0035607"
##	"GO:0090259"
##	"GO:1901379"

##	"GD:2000491"
##	"GO:0031345"
##	"GO:0048769"
##	"GO:0072757"
##	"GO:0038093"
##	"GO:0061551"
##	"GO:0072488"
##	"GO:0043400"
##	"GO:1904346"
##	"GD:0006297"
##	"GO:1902807"
##	"GD:0060923"
##	"GO:1902415"
##	"GO:0002051"
##	"GO:0072369"
##	"GO:0072386"
##	"GO:1902259"
##	"GO:1902988"
##	"GO:1905689"
##	"GO:0060430"
##	"GO:0070837"
##	"GO:0031061"
##	"GO:0071801"
##	"GO:0072378"
##	"GO:2000810"
##	"GO:0010961"
##	"GO:0046890"
##	"GO:0072554"
##	"GO:0021895"
##	"GO:2000570"
##	"GO:0051180"
##	"GO:0071962"
##	"GO:2000820"
##	"GO:0016441"
##	"GO:0045061"
##	"GO:0002740"
##	"GO:0008625"
##	"GO:1904953"
##	"GO:1905537"
##	"GO:1905612"
##	"GO:1905696"
##	"GO:0035148"
##	"GO:0060029"
##	"GO:2000779"
##	"GO:0014028"
##	"GO:0007178"
##	"GO:1903979"
##	"GO:0006887"
##	"GO:0031643"
##	"GO:0048388"
##	"GO:1904885"
##	"GO:0010767"
##	"GO:1902305"
##	"GO:0061441"

##	"GO:0097500"
##	"GO:0071230"
##	"GO:0001822"
##	"GO:0021884"
##	"GD:0032006"
##	"GO:0040010"
##	"GO:0042986"
##	"GD:0021940"
##	"GO:0031058" "GO:0033182"
## ##	"GD:0035182"
##	"GD:00033022"
##	"GD:0002232
##	"GD:2000973"
##	"GD:0002826"
##	"GD:0070213"
##	"GD:0070218"
##	"GD:1990966"
##	"GD:2001020"
##	"GD:0002062"
##	"GD:0002686"
##	"GD:0007041"
##	"GO:0031998"
##	"GO:0032230"
##	"GO:0039529"
##	"GO:1904706"
##	"GO:0042369"
##	"GD:0003058"
##	"GO:0003099"
##	"GO:0038194"
##	"GO:0071871"
##	"GD:0007014"
##	"GO:1903883"
##	"GO:1903886"
##	"GD:0060819"
##	"GO:0070294"
##	"GO:0003209"
##	"GD:0060426"
##	"GO:2000317"
##	"GD:0032304"
##	"GO:0060743" "GO:0034472"
##	"GD:1900045"
## ##	"GD:1900045"
##	"GD:0008366"
##	"GD:2000726"
##	"GD:0001510"
##	"GD:0001310
##	"GD:0097191"
##	"GD:0037131
##	"GO:0033152"
##	"GD:0061028"
##	"GD:0035705"
##	"GD:0043310"
	20.0010010

##	"GD:0050916"
##	"GO:0050917"
##	"GO:0061756"
##	"GD:0090265"
##	"GO:2000451"
##	"GD:2000464"
##	"GO:0048041"
##	"GD:0006880"
##	"GD:0006896"
##	"GO:0014067"
##	"GD:0002634"
##	"GD:0060450"
##	"GO:1901491"
##	"GD:0007091"
##	"GO:1901355"
##	"GO:1904586"
##	"GO:1990828"
##	"GD:0000469"
##	"GD:0038190"
##	"GD:0071386"
##	"GO:0097475"
##	"GD:1902336"
##	"GO:0001910"
##	"GO:0010172"
##	"GO:0010477"
##	"GO:0072683"
##	"GD:0033089"
##	"GO:0051168"
##	"GD:0030574"
##	"GO:1902959"
##	"GD:2000195"
##	"GD:0010988"
##	"GO:1904978"
##	"GO:0007530"
##	"GO:0098735"
##	"GO:0072356"
##	"GO:0021942"
##	"GO:0046947"
##	"GO:1903012"
##	"GO:1901380"
##	"GO:0070433"
##	"GO:0001958"
##	"GO:0002673"
##	"GO:0038145"
##	"GO:0072089"
##	"GO:0086012"
##	"GD:2000439"
##	"GO:0032808"
##	"GO:0042701"
##	"GD:0099116"
##	"GD:0002460"
##	"GO:0009817"
##	"GD:0032667"
##	"GO:0034721"

##	"GD:0060042"
##	"GO:0060751"
##	"GO:0061035"
##	"GO:1903911"
##	"GO:1905313"
##	"GO:1990402"
##	"GD:0001826"
##	"GD:0043405"
##	"GD:0045064"
##	"GO:0048259"
##	"GD:0007289"
##	"GD:0033030"
##	"GO:0070059"
##	"GO:0071639"
##	"GD:0030953"
##	"GD:0006521"
##	"GO:0034375"
##	"GO:0048333"
##	"GO:0072173"
##	"GD:0007088"
##	"GD:2000544"
##	"GD:0003222"
##	"GD:0010936"
##	"GD:0031106"
##	"GD:0032507"
##	"GO:1904141"
##	"GO:1904498"
##	"GO:0017148"
##	"GD:0061771"
##	"GO:0010822"
##	"GO:0010867"
##	"GO:0018057"
##	"GO:0007501"
##	"GO:0045602"
##	"GO:0043380"
##	"GO:0071258"
##	"GO:1903464"
##	"GO:1904300"
##	"GO:1904303"
##	"GO:1904306"
##	"GO:1904317"
##	"GD:0038026"
##	"GO:0033128"
##	"GO:0038162"
##	"GO:0010871"
##	"GO:0032147"
##	"GO:0034140"
##	"GD:0060537"
##	"GO:0061301"
##	"GO:1902533"
##	"GO:0019373"
##	"GO:1902174"
##	"GO:1902731"
##	"GO:0016572"

##	"GO:0032354"
##	"GO:1904908"
##	"GO:0045080"
##	"GO:0000481"
##	"GO:0010825"
##	"GO:0021517"
##	"GO:0032208"
##	"GD:0042989"
##	"GO:0099087" "GO:1901992"
## ##	"GO:1901992"
## ##	"GD:1903770"
##	"GD:0035520"
##	"GD:0035320
##	"GD:0043714"
##	"GD:0060363"
##	"GD:1902161"
##	"GD:1902897"
##	"GD:1900078"
##	"GD:0006590"
##	"GO:0035305"
##	"GD:0097402"
##	"GO:0032414"
##	"GO:0051454"
##	"GO:0071603"
##	"GD:0060907"
##	"GO:1905166"
##	"GO:0045585"
##	"GO:1903489"
##	"GO:0090650"
##	"GO:0001916"
##	"GO:1904380"
##	"GO:0021808"
##	"GO:1904139"
##	"GO:0002523"
##	"GO:0032434"
##	"GO:0033601"
##	"GO:0048854"
##	"GO:0030917"
##	"GO:0035701"
##	"GO:0042092" "GO:0010994"
##	
## ##	"GO:0031440" "GO:0010989"
##	"GD:0010989
##	"GD:1900134"
##	"GD:0003150"
## ##	"GD:0003180"
##	"GD:0003309
## ##	"GD:0007004"
##	"GD:0071237
##	"GD:0034497
##	"GD:0032057"
##	"GD:0033674"
	JJ. 000001 I

##	"GO:0001835"
##	"GO:0002693"
##	"GO:2001223"
##	"GO:0099149"
##	"GO:0085029"
##	"GO:0043308"
##	"GO:1990408"
##	"GO:0021935"
##	"GD:0097039"
##	"GD:0030282"
##	"GO:0019087"
##	"GO:0021902"
##	"GO:0032929"
##	"GO:0038124"
##	"GO:0071726"
##	"GD:0000720"
##	"GD:0003279"
## ##	"GO:0019915" "GO:0045415"
##	"GD:0045415"
##	"GD:0045620"
##	"GD:0030103"
##	"GD:1990048"
##	"GD:0008277"
##	"GD:00002175"
##	"GO:0002176
##	"GD:0060509"
##	"GO:0032613"
##	"GO:0061146"
##	"GD:0003254"
##	"GD:0046928"
##	"GD:0000083"
##	"GO:0035066"
##	"GO:0048752"
##	"GD:0060081"
##	"GO:1905005"
##	"GO:0035522"
##	"GO:0001111"
##	"GO:0010525"
##	"GO:0060753"
##	"GO:0071315"
##	"GO:1902622"
##	"GO:0060558"
##	"GO:0032943"
##	"GD:0002902"
##	"GO:0035995"
##	"GD:0099068"
##	"GO:0021861"
##	"GO:0031393"
##	"GD:0060486"
##	"GO:0010216"
##	"GD:0071896"
##	"GO:0032911"
##	"GO:0033314"

##	"GD:0098703"
##	"GO:0002043"
##	"GO:0030854"
##	"GO:0070561"
##	"GO:0071109"
##	"GO:0071677"
##	"GD:0090136"
##	"GO:1990478"
##	"GD:0002316"
##	"GO:0071475"
##	"GO:1902166"
##	"GD:0002666"
##	"GO:0010463"
##	"GD:0071460"
##	"GO:0090188"
##	"GO:0043615"
##	"GO:0010975"
##	"GO:0030301"
##	"GD:0098900"
##	"GD:0030947"
##	"GD:0000435"
##	"GD:0060715"
##	"GD:2000463"
##	"GD:0033626"
##	"GD:0060192"
##	"GD:0002695"
##	"GD:0060713"
##	"GO:0015761"
##	"GD:0034435"
##	"GO:0048318"
##	"GO:0097503"
##	"GO:0000301"
##	"GO:0001892"
##	"GO:0021799"
##	"GO:0045931"
##	"GO:1901194"
##	"GO:1902167"
##	"GO:1904803"
##	"GO:0010840"
##	"GO:0022410"
##	"GO:0032717"
##	"GO:0021965"
##	"GO:0048468"
##	"GO:0018964"
##	"GO:0021586"
##	"GO:1905429"
##	"GO:0031627"
##	"GD:0060405"
##	"GD:0071866"
##	"GD:0001960"
##	"GD:0033563"
##	"GO:0030182"
##	"GO:0035050"
##	"GO:0072434"

##	"GO:1903626"
##	"GO:1903978"
##	"GO:1905843"
##	"GO:1904862"
##	"GO:0043932"
##	"GO:0051092"
##	"GD:0090286"
##	"GO:1903946"
##	"GD:0010838"
##	"GO:0071281"
##	"GO:1902018"
##	"GO:0072540"
##	"GO:0016445"
##	"GO:0010948"
##	"GD:0030264"
##	"GO:0051053"
##	"GD:0070661"
##	"GD:0070963"
##	"GD:0072608"
##	"GO:0090195"
##	"GO:0090198"
##	"GD:0000738"
##	"GO:0001823"
##	"GO:0048297"
##	"GD:0007223"
##	"GO:0048570"
##	"GD:0042693"
##	"GO:0048681"
##	"GO:0070473"
##	"GD:0008037"
##	"GO:0010735"
##	"GO:0023051"
##	"GO:2000588"
##	"GO:0007274"
##	"GO:0010656"
##	"GO:0034728"
##	"GD:0099003"
##	"GO:0033624"
##	"GO:0045582"
##	"GO:2000781"
##	"GO:0010829"
##	"GD:0036297"
##	"GO:0021796"
##	"GO:0033044"
##	"GD:0033700"
##	"GD:0032648"
##	"GD:0002098"
##	"GO:0032020"
##	"GO:0051971"
##	"GO:0070244"
##	"GO:2000719"
##	"GO:0021532"
##	"GO:0043931"
##	"GO:0060252"

##	"GO:0043046"
##	"GO:0071283"
##	"GO:0003009"
##	"GO:0033567"
##	"GO:0045066"
##	"GO:0060712"
##	"GD:0001709"
##	"GD:0022602"
##	"GD:0003139"
## ##	"GD:0034402" "GD:0010260"
##	"GD:0010280"
##	"GD:0010394"
##	"GD:0006082"
##	"GD:0006082
##	"GO:0051580"
##	"GO:0031330"
##	"GD:0021057"
##	"GD:0001337
##	"GD:1900006"
##	"GD:0046545"
##	"GD:0045836"
##	"GD:0051963"
##	"GD:0035377"
##	"GD:0061084"
##	"GD:0014736"
##	"GO:0034115"
##	"GD:0038002"
##	"GD:0002752"
##	"GD:0033127"
##	"GD:0042428"
##	"GO:0044839"
##	"GD:0060761"
##	"GO:1902746"
##	"GO:0001547"
##	"GO:0060041"
##	"GO:0061314"
##	"GO:0045670"
##	"GO:0016340"
##	"GO:0031583"
##	"GD:0038083"
##	"GO:0042313"
##	"GO:0043179"
##	"GO:2000194"
##	"GO:0010903"
##	"GO:0022029"
##	"GO:0033484"
##	"GO:1900135"
##	"GO:0043374"
##	"GO:0070535"
##	"GD:1900246"
##	"GD:0003430"
##	"GO:0010899"
##	"GO:0043378"

##	"GD:0060235"
##	"GO:0001935"
##	"GO:0051595"
##	"GO:1901675"
##	"GO:0002457"
##	"GO:0048210"
##	"GD:0002074"
##	"GD:0032430"
##	"GO:1903141"
##	"GD:0030916"
##	"GO:1904637"
##	"GD:2000304"
##	"GO:0032461"
##	"GD:0034696"
##	"GD:0030859"
##	"GO:0070101"
##	"GO:0045720"
##	"GD:0060686"
##	"GO:0100057"
##	"GO:1904828"
##	"GO:0019102"
##	"GD:0060520"
##	"GO:0072429"
##	"GD:0046903"
##	"GO:0043372"
##	"GO:0070831"
##	"GO:1901329"
##	"GD:2000049"
##	"GO:2000721"
##	"GO:0048659"
##	"GO:1900227"
##	"GO:2001141"
##	"GO:0060137"
##	"GO:0099527"
##	"GO:0007431"
##	"GO:0051649"
##	"GD:0007000"
##	"GO:0007254"
##	"GO:1905460"
##	"GO:0050847"
##	"GD:0002326"
##	"GO:0061005"
##	"GO:0099588"
##	"GO:1905355"
##	"GO:0060312"
##	"GO:0030853"
##	"GO:0097527"
##	"GO:1902975"
##	"GO:1902981"
##	"GO:1904161"
##	"GO:0001778"
##	"GO:1905671"
##	"GO:1901485"
##	"GD:0006267"

##	"GO:0051026"
##	"GO:0031647"
##	"GD:0050690"
##	"GO:0001998"
##	"GD:0002363"
##	"GO:0061383"
##	"GO:1903673"
##	"GO:1904695"
##	"GO:1904954"
##	"GO:1905114"
##	"GO:0043949"
##	"GO:0044255"
##	"GD:2000549"
##	"GO:2001045"
##	"GO:0010757"
##	"GD:0034970"
##	"GO:1904325"
##	"GD:0003402"
##	"GO:0071593"
##	"GO:0010954"
##	"GO:0045324"
##	"GO:0099557"
##	"GO:0038183"
##	"GD:0060197"
##	"GD:0060443"
##	"GD:0001867"
##	"GD:0033861"
##	"GO:0098921"
##	"GO:1905224"
##	"GD:0048856"
##	"GD:0060298"
##	"GO:1904044"
##	"GO:0010819"
##	"GO:0038091"
##	"GD:0002934"
##	"GO:0030728"
##	"GD:0071306"
##	"GO:1900747"
##	"GD:2000566"
##	"GO:0021527"
##	"GD:0007566"
##	"GO:0070168"
##	"GO:0002260"
##	"GO:0071985"
##	"GO:0001957"
##	"GO:0034382"
##	"GO:0035092"
##	"GD:0002507"
##	"GO:0021775"
##	"GO:0021776"
##	"GD:0022027"
##	"GO:0042985"
##	"GO:2000318"
##	"GD:0035562"

##	"GO:0051984"
##	"GD:0007569"
##	"GO:0048807"
##	"GO:0051345"
##	"GO:2000556"
##	"GO:0038109"
##	"GO:0034644"
##	"GO:0051823"
##	"GO:0002518"
##	"GD:0002920"
##	"GO:0031620"
##	"GO:0035645"
##	"GO:0035768"
##	"GO:0071482"
##	"GO:1990839"
##	"GO:2000545"
##	"GO:0042594"
##	"GD:0099576"
##	"GD:2001200"
##	"GD:0006448"
##	"GO:0016576"
##	"GO:0045616"
##	"GD:0000320"
##	"GO:0010587"
##	"GD:0030643"
##	"GD:0005979"
##	"GO:0021817"
##	"GD:0002827"
##	"GD:0060010"
##	"GO:1905643"
##	"GO:0019896"
##	"GD:0035360"
##	"GO:0002291"
##	"GO:0014043"
##	"GO:0033299"
##	"GO:0001514"
##	"GO:0008355"
##	"GD:0001996"
##	"GO:0001997"
##	"GO:0035407"
##	"GD:0043306"
##	"GO:0045841"
##	"GD:0001991"
##	"GD:0002033"
##	"GO:0002035"
##	"GO:0035932"
##	"GO:0060183"
##	"GO:1904022"
##	"GO:2000288"
##	"GO:1902842"
##	"GO:0016569"
##	"GO:0048535"
##	"GO:0001942"
##	"GD:0060762"

##	"GD:0072307"
##	"GO:1904383"
##	"GO:0050855"
##	"GO:0055078"
##	"GO:0072657"
##	"GD:0060710"
##	"GO:0051891"
##	"GD:2000639"
##	"GO:0036353"
##	"GO:1904878"
##	"GO:0001970"
##	"GD:2000020"
##	"GO:0032244"
##	"GD:0032900"
##	"GO:0097010"
##	"GD:1990708"
##	"GD:0032369"
##	"GO:0042994"
##	"GO:0040017"
##	"GD:0010669"
##	"GO:0017198"
##	"GD:0018002"
##	"GD:0009404"
##	"GO:0010891"
##	"GD:0043401"
##	"GO:0032497"
##	"GD:0002651"
##	"GD:0002663"
##	"GO:0051346"
##	"GO:1905315"
##	"GO:1905316"
##	"GO:1905317"
##	"GD:0003247"
##	"GO:0031940"
##	"GO:1905549"
##	"GO:0050801"
##	"GO:0070487"
##	"GD:0060992"
##	"GO:1902766"
##	"GO:1903033"
##	"GO:0034384"
##	"GD:0002300"
##	"GO:0035089"
##	"GO:0051307"
##	"GO:0001113"
##	"GO:0010748"
##	"GO:0021798"
##	"GO:0035356"
##	"GO:0048170"
##	"GO:1903551"
##	"GD:0021670"
##	"GO:0048871"
##	"GO:0071474"
##	"GD:0072602"

##	"GD:0007296"
##	"GO:0007422"
##	"GO:0070200"
##	"GO:1905274"
##	"GO:0045726"
##	"GO:0061844"
##	"GO:0002479"
##	"GO:0045348"
##	"GO:0060523" "GO:0042308"
## ##	"GD:0042308"
##	"GD:0034971"
##	"GO:0034371"
##	"GD:0048642"
##	"GD:004885"
##	"GD:0031960"
##	"GD:0031300
##	"GD:0038116"
##	"GD:0040036"
##	"GO:0043117"
##	"GD:0044090"
##	"GD:0061324"
##	"GO:0071379"
##	"GO:0097022"
##	"GO:1905386"
##	"GO:2000522"
##	"GO:2000525"
##	"GO:2000526"
##	"GO:2000547"
##	"GO:0030311"
##	"GO:0043970"
##	"GO:0045542"
##	"GO:0045976"
##	"GO:0048505"
##	"GO:0071636"
##	"GO:0072513"
##	"GO:0003289"
##	"GO:0048638"
##	"GO:0048625"
##	"GD:0050688"
##	"GD:0001755" "GD:0060699"
## ##	"GD:0060699"
## ##	"GD:1902629"
##	"GD:0061014"
##	"GD:0001014
##	"GD:0046813"
## ##	"GD:1903966"
##	"GD:0060059"
##	"GD:0060039
##	"GD:0000203
##	"GD:0007000
##	"GD:0010748
##	"GD:0050999"
	45.0000000

##	"GD:0060830"
##	"GD:0061026"
##	"GD:0006298"
##	"GO:0021534"
##	"GO:1900148"
##	"GO:1902891"
##	"GO:1905045"
##	"GD:0060442"
## ##	"GO:1900748" "GO:0030575"
## ##	"GD:0030375"
## ##	"GD:0045745"
##	"GD:0035385"
##	"GD:0033383
##	"GD:0052362"
##	"GD:1905597"
##	"GO:1905599"
##	"GD:0018345"
##	"GO:0051249"
##	"GD:0033120"
##	"GD:0033962"
##	"GD:0060193"
##	"GO:0051867"
##	"GO:0070757"
##	"GO:1902817"
##	"GO:2000111"
##	"GD:0006323"
##	"GD:0006489"
##	"GO:1904951"
##	"GO:0038178"
##	"GD:0046960"
##	"GD:0043366"
##	"GO:1900365"
##	"GD:0006812"
##	"GO:0034137"
##	"GO:0048145"
##	"GO:1900271"
##	"GO:1904447"
##	"GD:0098903"
##	"GD:0070165"
##	"GO:0090086" "GO:0045453"
## ##	"GD:0045453"
## ##	"GD:0048199"
##	"GD:0048103
##	"GD:0032224
##	"GD:0097494
##	"GD:1903546"
##	"GD:0001828"
##	"GD:0001828
##	"GD:0034727"
##	"GD:0035566"
##	"GD:2000538"
##	"GD:0014832"
	20.0011002

##	"GD:0060437"
##	"GD:0070228"
##	"GO:0051838"
##	"GO:0021889"
##	"GO:0032640"
##	"GO:2001181"
##	"GD:0007023"
##	"GO:0033169"
##	"GD:0050658"
##	"GO:0010868"
##	"GO:0048935"
##	"GO:0060122"
##	"GO:1905642"
##	"GO:0032237"
##	"GO:1903358"
##	"GO:0046549"
##	"GO:0050913"
##	"GD:0010866"
##	"GO:1904685"
##	"GO:1901841"
##	"GO:1903977"
##	"GO:0030203"
##	"GO:0046469"
##	"GO:1900024"
##	"GO:0048662"
##	"GO:0072715"
##	"GO:1904570"
##	"GO:1904574"
##	"GO:0014057"
##	"GO:0034349"
##	"GD:0046929"
##	"GO:0003344"
##	"GO:0014062"
##	"GO:0042487"
##	"GD:0046324"
##	"GD:0060487"
##	"GO:0031018"
##	"GO:0061041"
##	"GO:0050726"
##	"GO:0031439"
##	"GO:0044805"
##	"GO:0048254"
##	"GO:2000975"
##	"GO:0035926"
##	"GO:0060742"
##	"GO:0034122"
##	"GO:0045216"
##	"GO:0046548"
##	"GD:2000667"
##	"GO:1904527"
##	"GO:0070911"
##	"GO:0050951"
##	"GO:2000381"
##	"GD:0002063"

##	"GO:0002155"
##	"GO:0001798"
##	"GO:0008211"
##	"GD:0006900"
##	"GO:0030221"
##	"GO:1905931"
##	"GO:0036462"
##	"GD:0002467"
## ##	"GD:0048593" "GD:0000920"
## ##	"GD:1900744"
##	"GD:0006704"
##	"GD:0000704
##	"GD:0014842
##	"GD:0040070
##	"GD:0042769"
##	"GD:0042703
##	"GD:2000058"
##	"GD:2001214"
##	"GO:0045191"
##	"GO:0061744"
##	"GO:0070593"
##	"GO:0050773"
##	"GO:1903025"
##	"GD:0002068"
##	"GD:0009612"
##	"GO:0032741"
##	"GO:0044336"
##	"GO:0048671"
##	"GO:0060748"
##	"GO:0002924"
##	"GO:0042322"
##	"GD:0003408"
##	"GO:0042249"
##	"GO:0060510"
##	"GO:0090102"
##	"GO:2000346"
##	"GD:0090080"
##	"GO:0001765"
##	"GD:0035860"
##	"GO:0048015" "GO:0060534"
## ##	"GD:1903593"
## ##	"GD:1903593" "GD:0043268"
##	"GD:0043288"
##	"GD:1905098"
##	"GD:0003062"
##	"GD:0003002
##	"GD:0000703
##	"GD:2000051"
##	"GD:0048290"
##	"GO:1904155"
##	"GO:1904156"
##	"GD:0006359"
	20.00000

##	"GO:0015909"
##	"GO:0043207"
##	"GO:0060177"
##	"GD:0060513"
##	"GO:0001542"
##	"GD:2000679"
##	"GO:0002320"
##	"GO:0002331"
## ##	"GO:0014042" "GO:0010990"
## ##	"GD:0010990"
##	"GD:0036211
##	"GD:0040042
##	"GD:0031770
##	"GD:0090085"
##	"GD:1903376"
##	"GD:1904762"
##	"GD:0002224"
##	"GD:0008064"
##	"GD:0050672"
##	"GD:0002922"
##	"GD:0003093"
##	"GO:0002532"
##	"GO:0034447"
##	"GO:0010980"
##	"GO:0003231"
##	"GO:0033135"
##	"GO:0007130"
##	"GO:0031111"
##	"GO:0051466"
##	"GO:0097581"
##	"GD:0002318"
##	"GO:0034138"
##	"GO:0070544"
##	"GO:1900086"
##	"GO:2000353"
##	"GO:2000854"
##	"GO:0021954"
##	"GD:0061298"
##	"GD:0003429"
##	"GD:0046597" "GD:0003073"
## ##	"GD:0003073"
## ##	"GD:0030185"
##	"GD:00484550"
##	"GD:0048330
##	"GD:1903531"
##	"GD:0006271"
##	"GD:0000271
##	"GD:0043101
##	"GD:0060623"
##	"GD:0019065"
##	"GD:1901201"
##	"GO:1904059"
	20.2001000

##	"GD:2000670"
##	"GD:0002862"
##	"GO:2001034"
##	"GD:0000902"
##	"GO:0007576"
##	"GO:0090176"
##	"GO:1904385"
##	"GO:1903142"
##	"GO:0010765" "GO:0042104"
## ##	"GD:10042104"
##	"GD:0043434"
##	"GD:0048208"
##	"GD:1900452"
##	"GD:0002689"
##	"GD:0002005
##	"GD:1902416"
##	"GD:0048633"
##	"GD:0070372"
##	"GD:0010638"
##	"GO:0031279"
##	"GD:0040013"
##	"GO:0051294"
##	"GO:0120058"
##	"GO:0002328"
##	"GO:0003016"
##	"GO:1905333"
##	"GO:0030277"
##	"GO:0071599"
##	"GO:0045738"
##	"GO:0061481"
##	"GO:1902546"
##	"GO:2001272"
##	"GO:0009584"
##	"GD:0022008"
##	"GO:0070828"
##	"GO:1903539"
##	"GO:0072133"
##	"GO:0032479"
##	"GO:0051567"
##	"GO:2000473"
##	"GO:1990049"
## ##	"GD:0030579" "GD:0050671"
## ##	"GD:0050671"
## ##	"GD:0061037"
## ##	"GD:0060339"
## ##	"GD:2000809"
## ##	"GD:2000809"
## ##	"GD:0010737"
## ##	"GD:1903078"
## ##	"GD:1903078"
##	"GD:0019933
##	"GD:0040717
	30.001200T

##	"GO:0010499"
##	"GD:2000660"
##	"GD:0070836"
##	"GD:0009311"
##	"GO:0060529"
##	"GO:0045321"
##	"GO:0001781"
##	"GD:0045684"
## ##	"GO:1903588" "GO:0035409"
## ##	"GD:0033409"
##	"GD:0033888
##	"GD:0040849
##	"GD:000973"
##	"GD:0042327"
##	"GD:0042327
##	"GD:0031441
##	"GD:000183"
##	"GD:0003208"
##	"GD:0006942"
##	"GO:0017156"
##	"GO:0071709"
##	"GO:0090197"
##	"GO:0070094"
##	"GD:2000042"
##	"GO:0003253"
##	"GO:0046058"
##	"GO:0097286"
##	"GO:0031999"
##	"GO:0040032"
##	"GO:0072673"
##	"GO:2000828"
##	"GD:0030903"
##	"GO:0035585"
##	"GO:0048745"
##	"GD:0006701"
##	"GO:0018312"
##	"GO:0001193"
##	"GO:0032232"
##	"GD:0090274"
##	"GO:0045938"
##	"GD:0032804"
## ##	"GO:0046847" "GO:0034720"
## ##	"GD:0034720"
## ##	"GD:0048842"
## ##	"GD:0043925"
## ##	"GD:0043087"
## ##	"GD:0034645"
## ##	"GD:0097300"
## ##	"GD:0021891"
## ##	"GD:0090245"
##	"GD:0050766"
##	"GD:0050760
	40.0001401

##	"GO:0045619"
##	"GD:0061156"
##	"GO:1904017"
##	"GO:0017185"
##	"GD:0001827"
##	"GD:0044380"
##	"GD:2000543"
##	"GD:0039702"
##	"GO:1901653"
##	"GD:0007442"
##	"GO:0061158"
##	"GO:0051147"
##	"GD:0007163"
##	"GO:0010724"
##	"GO:0014054" "GO:0043619"
##	
##	"GO:1902732" "GO:0002534"
## ##	"GD:0002534"
##	"GD:0047497"
##	"GD:0060019"
##	"GD:0021769"
##	"GO:0021709
##	"GD:0043983"
##	"GD:0071881"
##	"GD:0071882"
##	"GD:0050883"
##	"GD:0033153"
##	"GD:0003245"
##	"GD:0007260"
##	"GD:0031589"
##	"GD:0048870"
##	"GO:1902527"
##	"GD:0045926"
##	"GO:0051224"
##	"GO:1903361"
##	"GO:0035313"
##	"GO:0035426"
##	"GD:0050891"
##	"GD:0090306"
##	"GO:0032785"
##	"GO:1905123"
##	"GO:0021915"
##	"GO:0006477"
##	"GO:0051988"
##	"GD:0000018"
##	"GD:0060665"
##	"GD:0070945"
##	"GD:0048066"
##	"GO:0050765"
##	"GO:0051795"
##	"GD:0060125"
##	"GD:0099509"
##	"GO:0042340"

##	"GO:0072365"
##	"GO:1904996"
##	"GO:0097284"
##	"GO:0010887"
##	"GO:0019222"
##	"GO:1903526"
##	"GO:0001832"
##	"GO:0010508"
##	"GO:0046877" "GO:0051569"
## ##	"GD:0051569"
##	"GD:1905053"
##	"GD:0002001"
##	"GD:0002001
##	"GD:2000404"
##	"GD:1901844"
##	"GD:0070830"
##	"GD:0070000
##	"GD:0030210"
##	"GD:0034587"
##	"GD:0043297"
##	"GO:0045918"
##	"GD:2001205"
##	"GO:0070885"
##	"GO:1904247"
##	"GO:0036124"
##	"GO:0021897"
##	"GO:0021540"
##	"GO:0050713"
##	"GO:0070445"
##	"GD:0008298"
##	"GO:0044772"
##	"GD:0007208"
##	"GD:0060364"
##	"GO:0060179"
##	"GD:0060428"
##	"GO:0071285"
##	"GD:0060736"
##	"GO:0033566"
##	"GO:1901030"
##	"GO:0019433"
##	"GO:0045664"
## ##	"GD:0001757" "GD:0035408"
## ##	"GD:0035408" "GD:0038041"
## ##	"GD:0038041" "GD:0050805"
## ##	"GD:1905665"
## ##	"GD:1905665" "GD:0001825"
## ##	"GD:0001825"
## ##	"GD: 2001056"
## ##	"GD:0007057"
## ##	"GD:0034555"
##	"GD:0060322"
##	"GO:0061358"
	30.0001000

##	"GD:0030865"
##	"GO:0098815"
##	"GO:0010596"
##	"GO:0048645"
##	"GO:0045762"
##	"GD:0006275"
##	"GO:1904779"
##	"GD:0071420"
##	"GO:0045091"
##	"GO:0060355"
##	"GO:0010536"
## ##	"GO:0045162" "GO:0002676"
##	"GD:0002676"
##	"GD:0003199" "GD:0034502"
##	"GD:0034502"
##	"GO:0045642"
##	"GO:0035516"
##	"GD:0048172"
##	"GO:0048339
##	"GD:0042321
##	"GD:0052405"
##	"GD:0062400"
##	"GD:0021631"
##	"GD:0060740"
##	"GD:0010826"
##	"GD:0099590"
##	"GO:0051546"
##	"GO:1903679"
##	"GD:0032796"
##	"GD:0033003"
##	"GO:0051293"
##	"GO:0072382"
##	"GO:0015015"
##	"GO:0051549"
##	"GO:0010529"
##	"GO:0021997"
##	"GO:0045740"
##	"GO:2001170"
##	"GD:0034446"
##	"GO:0043610"
##	"GO:0043954"
##	"GO:0046697"
##	"GO:0099547"
##	"GO:1900239"
##	"GO:1903721"
##	"GO:1904056"
##	"GO:1904193"
##	"GO:1904197"
##	"GO:1904206"
##	"GO:1904213"
##	"GO:1904690"
##	"GO:0072182"
##	"GO:1900453"

##	"GO:0010694"
##	"GD:0000727"
##	"GD:0007076"
##	"GO:1900168"
##	"GO:0150003"
##	"GO:0061890"
##	"GO:0048514"
##	"GO:0022038"
##	"GD:0046825"
##	"GD:0007340"
##	"GO:0051148"
##	"GD:0060317"
##	"GO:0061157"
##	"GO:1990086"
##	"GO:0001821"
##	"GO:0038001"
##	"GO:0048812"
##	"GD:0050994"
##	"GD:0006953"
##	"GO:0006513"
##	"GO:0051055"
##	"GD:2000394"
##	"GO:0014005"
##	"GO:0045444"
##	"GD:0050867"
##	"GD:0023041"
##	"GO:1901740"
##	"GO:0055123"
##	"GD:0010001"
##	"GO:0043535"
##	"GO:0042045"
##	"GD:0060527"
##	"GO:1900195"
##	"GO:0031223"
##	"GO:0009648"
##	"GO:0032611"
##	"GO:0001782"
##	"GO:0045010"
##	"GO:1900273"
##	"GO:0097084"
##	"GO:0001933"
##	"GO:0043652"
##	"GO:2000348" "GO:2001264"
##	"GD:2001264" "GD:0042063"
##	"GD:0042063"
##	
##	"GO:0051987" "GO:0097753"
##	"GU:0097753" "GO:1903518"
##	
##	"GO:0045595"
##	"GD:0048669" "GD:0060021"
## ##	"GU:0060021" "GU:1903438"
##	"GD:1903438" "GD:0038089"
##	GU:0038089"

##	"GO:0006972"
##	"GO:0038114"
##	"GD:0006937"
##	"GO:0010482"
##	"GO:0002674"
##	"GO:0032880"
##	"GO:0048742"
##	"GO:0001771"
##	"GO:0014823"
##	"GO:1903829"
##	"GO:0032206"
##	"GD:0000003"
##	"GO:0048643"
##	"GO:0060674"
##	"GO:0016189"
##	"GO:0048843"
##	"GD:2000664"
##	"GO:0043486"
##	"GO:0060074"
##	"GO:0051972"
##	"GO:0042692"
##	"GO:0045823"
##	"GO:0097681"
##	"GO:0060599"
##	"GO:0021697"
##	"GO:0035563"
##	"GD:0048341"
##	"GO:0050772"
##	"GD:0070602"
##	"GO:0003065"
##	"GD:0032416"
##	"GO:0006412"
##	"GO:0071542"
##	"GO:1900118"
##	"GO:0002455"
##	"GO:0045672"
##	"GO:0050982"
##	"GO:0097202"
##	"GO:1902287"
##	"GO:0031081"
##	"GO:0048859"
##	"GO:1905064"
##	"GO:2000270"
##	"GO:1901509"
##	"GD:0007009"
##	"GO:0048808"
##	"GO:0002437"
##	"GO:0016199"
##	"GO:1903691"
##	"GO:0002019"
##	"GO:2000347"
##	"GO:0009957"
##	"GO:0032959"
##	"GO:0038007"

##	"GO:0048598"
##	"GO:0061154"
##	"GD:0030101"
##	"GO:0031937"
##	"GD:0036343"
##	"GO:0033864"
##	"GO:0034244"
##	"GO:1990314"
##	"GD:0009617"
##	"GO:0046005"
##	"GO:0097756"
##	"GO:0001780"
##	"GO:0003365"
##	"GO:0048011"
##	"GD:0060112"
##	"GO:0072423"
##	"GO:0090118"
##	"GO:0021542"
##	"GD:0032464"
##	"GO:0051101"
##	"GD:0061304"
##	"GO:1901985"
##	"GD:0032940"
##	"GD:0002793"
##	"GO:0071874"
##	"GD:0030879"
##	"GD:0043967"
##	"GD:0046638"
##	"GO:0071415"
##	"GO:0010942"
##	"GD:0006884"
##	"GD:0007015"
##	"GO:0034104"
##	"GO:0045217"
##	"GO:0070471"
##	"GO:1905010"
##	"GO:1905589"
##	"GD:0043620"
##	"GD:0044770"
##	"GO:1902164"
##	"GO:0002191"
##	"GD:0032000"
##	"GD:0046831"
##	"GO:0051304"
##	"GD:2000546"
##	"GD:0007497"
##	"GD:0009967"
##	"GO:0031017"
##	"GO:0035307"
##	"GO:0003105"
##	"GO:0030174"
##	"GO:1902237"
##	"GO:0010507"
##	"GO:0045085"

##	"GO:0071404"
##	"GO:1903508"
##	"GO:0043408"
##	"GD:0044319"
##	"GD:0090266"
##	"GO:0031915"
##	"GO:0032197"
##	"GO:0051932"
## ##	"GD:0070986" "GD:2000077"
## ##	"GD:2000774"
## ##	"GD: 2000774"
##	"GD:0002738
##	"GD:0000333
##	"GD:0070234"
##	"GD:0070234"
##	"GD:0006044"
##	"GD:0060434"
##	"GD:0070307"
##	"GO:0051918"
##	"GO:1901666"
##	"GO:0055013"
##	"GD:0006261"
##	"GD:0090663"
##	"GO:0051012"
##	"GO:0071389"
##	"GO:1902856"
##	"GO:0010810"
##	"GO:0044334"
##	"GO:0071447"
##	"GD:0097694"
##	"GD:0097695"
##	"GO:1904884"
##	"GO:1990869"
##	"GO:0010909"
##	"GO:1904179"
##	"GO:0046326"
##	"GO:0030913"
##	"GD:0072300"
##	"GD:0032494"
##	"GD:0060174" "GD:0097070"
##	"GD:0097070"
## ##	"GD:0037151"
##	"GO:1905581"
##	"GD:1905602"
##	"GD:0010715"
##	"GD:1990928"
##	"GD:0050764"
##	"GD:0030764"
##	"GD:1905223"
##	"GD:0030219"
##	"GD:0060744"
##	"GD:0010803"
	20.0010000

##	"GD:2000466"
##	"GO:0035864"
##	"GO:1903937"
##	"GO:0097167"
##	"GO:0045661"
##	"GO:0050716"
##	"GO:0051151"
##	"GD:0045806"
## ##	"GO:0021510" "GO:1902425"
## ##	"GD: 0060050"
##	"GD:0000030"
##	"GD:0070100
##	"GD:0043267"
##	"GD:0043207
##	"GD:0010001
##	"GD:1902943"
##	"GD:0003331"
##	"GD:0042149"
##	"GD:0010560"
##	"GD:0070100"
##	"GD:0007183"
##	"GO:0021943"
##	"GO:1905342"
##	"GO:1905477"
##	"GO:0007520"
##	"GO:0034383"
##	"GO:0044497"
##	"GO:0120061"
##	"GO:0120069"
##	"GO:0006408"
##	"GO:0001947"
##	"GO:0021819"
##	"GO:0045903"
##	"GO:0031929"
##	"GD:0046602"
##	"GO:0003051"
##	"GO:0016486"
##	"GO:0038027"
##	"GD:0034398"
##	"GD:0022400"
##	"GO:0043504"
## ##	"GO:1903839"
## ##	"GO:0048261" "GO:0051966"
## ##	"GD:0051966" "GD:0043123"
## ##	"GD:0043123"
## ##	"GD:0044351" "GD:0071245"
## ##	"GD:1903408"
## ##	"GD: 2000582"
## ##	"GD: 0048144"
## ##	"GD:0048144"
##	"GD:0003417
##	"GD:0099171
	30.0042100

##	"GO:0048168"
##	"GD:0000462"
##	"GO:0001516"
##	"GD:0032876"
##	"GO:0043122"
##	"GD:0002720"
##	"GO:0002879"
##	"GD:0006991"
## ##	"GD:0070304" "GD:0070668"
## ##	"GD:0070888"
##	"GD:0090025
##	"GD:0030270
##	"GD:0045906"
##	"GD:1905075"
##	"GD:0010907"
##	"GD:0051660"
##	"GD:0060369"
##	"GD:0015872"
##	"GD:0048702"
##	"GD:0050863"
##	"GD:0010332"
##	"GO:0071392"
##	"GO:0003179"
##	"GO:0032736"
##	"GO:0051923"
##	"GO:1901224"
##	"GO:1902532"
##	"GO:0045820"
##	"GO:0048557"
##	"GO:0061549"
##	"GO:0035051"
##	"GO:1904825"
##	"GO:1905167"
##	"GO:0016578"
##	"GO:0015014"
##	"GD:0060266"
##	"GO:1902074"
##	"GO:0002774"
##	"GO:1990776"
##	"GD:0061647" "GD:0065004"
##	
## ##	"GD:1990619" "GD:0048490"
##	"GD:0048490"
##	"GD:0000301
##	"GD:0010971
##	"GD:0090045"
##	"GD:0030323"
##	"GD:0030207
##	"GD:0003257"
##	"GD:0070667"
##	"GD:1903676"
##	"GD:0031664"
	20.0001001

##	"GO:0035335"
##	"GO:0055062"
##	"GO:0072574"
##	"GO:0070254"
##	"GO:0033210"
##	"GO:0060117"
##	"GD:0006641"
##	"GD:0006636"
##	"GO:0002248" "GO:0060452"
## ##	"GD:0080452"
##	"GD:0008408
##	"GD:1990090"
##	"GD:0016479"
##	"GD:1905000"
##	"GD:1905031"
##	"GD:1900031
##	"GD:0002821"
##	"GD:0010996"
##	"GD:0046778"
##	"GO:0071651"
##	"GD:0006171"
##	"GD:0086002"
##	"GO:0031943"
##	"GO:0023052"
##	"GO:0002118"
##	"GO:0050859"
##	"GO:0002159"
##	"GO:0007344"
##	"GO:0014038"
##	"GO:1990410"
##	"GD:0039695"
##	"GD:0070922"
##	"GO:0140052"
##	"GO:1904973"
##	"GO:1905698"
##	"GO:0002296"
##	"GO:0016570"
##	"GO:0031848"
##	"GD:0061036"
##	"GD:0060350"
##	"GO:0010883" "GO:0060349"
## ##	
## ##	"GD:0060394" "GD:0042359"
## ##	"GD:0042359" "GD:0050880"
## ##	"GD:0030880"
## ##	"GD:0021987"
## ##	"GD:2000765"
## ##	"GD: 0048340"
## ##	"GD:0048340"
## ##	"GD:0081051"
##	"GD:1903671"
##	"GD:0071548"
	30.0011040

##	"GD:0001675"
##	"GD:0090037"
##	"GD:0002023"
##	"GO:0043415"
##	"GO:0051138"
##	"GO:0051298"
##	"GD:0060613"
##	"GO:0035845"
##	"GD:0010760"
##	"GO:0046541"
##	"GO:0060591"
##	"GO:0070857"
##	"GO:0002385"
##	"GD:0006833"
##	"GD:0043622"
##	"GD:0031577"
##	"GD:0035640"
##	"GD:0060745"
##	"GO:0070447"
##	"GO:0045869"
##	"GO:1902895"
##	"GD:0006349"
##	"GO:0080111"
##	"GD:2000815"
##	"GO:0031126"
##	"GD:0038166"
##	"GD:0001502"
##	"GD:0038063"
##	"GD:2001015"
##	"GO:0021952"
##	"GO:0035234"
##	"GD:0002087"
##	"GO:0003251"
##	"GD:0061040"
##	"GO:1905305"
##	"GO:0070508"
##	"GO:0061384"
##	"GD:1903070"
##	"GO:0043462"
##	"GO:2000427"
##	"GO:0060840"
##	"GD:0003274"
##	"GO:1902728"
##	"GO:0033138"
##	"GO:0050691"
##	"GD:0000722"
##	"GO:0042482"
##	"GO:0051028"
##	"GO:0090277"
##	"GO:0048478"
##	"GO:0032071"
##	"GO:1904349"
##	"GO:0090501"
##	"GD:0001964"

##	"GO:0010701"
##	"GO:1901798"
##	"GO:0071514"
##	"GD:0001682"
##	"GO:0007019"
##	"GO:1902715"
##	"GO:0035404"
##	"GD:0106028"
## ##	"GO:0021853" "GO:0031623"
## ##	"GD:0031625"
##	"GD:0002075
##	"GD:0034110
##	"GD:0048336"
##	"GD:000291"
##	"GD:0018026"
##	"GD:0016020
##	"GD:0043568"
##	"GD:0000027"
##	"GD:0001976"
##	"GD:0002431"
##	"GD:0003056"
##	"GO:0031047"
##	"GO:0048715"
##	"GO:0050710"
##	"GO:0003342"
##	"GO:0007281"
##	"GO:0071803"
##	"GO:0038033"
##	"GO:0051246"
##	"GD:0070306"
##	"GD:2000120"
##	"GO:0032463"
##	"GO:0001759"
##	"GO:0014047"
##	"GO:0009582"
##	"GD:0046822"
##	"GD:0060374"
##	"GO:0060441"
##	"GO:0032495"
##	"GD:1905663" "GD:0060528"
## ##	"GD:0080528"
## ##	"GD:0032651"
##	"GD:1902474"
##	"GD:1902474
##	"GD:0033004"
##	"GD:0033004"
##	"GD:0070105
##	"GD:0045010
##	"GD:0042596"
##	"GD:0071621"
##	"GD:0007276"
##	"GO:0072711"

##	"GO:1902595"
##	"GD:0002768"
##	"GO:0035754"
##	"GO:0042073"
##	"GO:1904668"
##	"GD:0070050"
##	"GO:1902275"
##	"GO:1900102"
##	"GO:0033627"
##	"GD:0060080"
## ##	"GD:0039694"
## ##	"GO:0086100" "GO:1990403"
## ##	"GD:1990403" "GD:0003149"
##	"GD:0003149"
##	"GD:0003220
##	"GO:1902889"
##	"GO:1902889"
##	"GO:0032480"
##	"GD:0060760"
##	"GD:0018027"
##	"GD:0090656"
##	"GD:0046622"
##	"GO:0050877"
##	"GO:1904888"
##	"GO:1902239"
##	"GD:0072362"
##	"GO:2000191"
##	"GO:2000675"
##	"GO:0032722"
##	"GO:0042476"
##	"GO:0043116"
##	"GO:0046601"
##	"GO:0010390"
##	"GO:0061086"
##	"GO:0010544"
##	"GO:0050715"
##	"GO:0071223"
##	"GO:0032782"
##	"GO:0071260"
##	"GO:0051707"
##	"GO:0051901"
##	"GO:0030997"
##	"GO:0034454"
##	"GO:0045955"
##	"GD:0034616"
##	"GO:0038084"
##	"GO:1903919"
##	"GD:0060463"
##	"GO:0035909"
##	"GO:0031658"
##	"GO: 0045719"
##	"GO:0061767" "GO:1904354"
##	"GU:1904354"

##	"GO:0035063"
##	"GO:0051694"
##	"GO:0061419"
##	"GD:0098967"
##	"GO:0034371"
##	"GO:0016180"
##	"GO:0031056"
##	"GD:0048665"
## ##	"GO:0071383" "GO:0032652"
## ##	"GD:0032652"
##	"GD:1904645"
##	"GO:0034247"
##	"GD:0002322"
##	"GD:0002322
##	"GD:1900138"
##	"GO:0071455"
##	"GD:0042159"
##	"GO:0051247"
##	"GO:0051124"
##	"GO:1904339"
##	"GO:0032916"
##	"GD:0097067"
##	"GO:0001654"
##	"GO:0030491"
##	"GO:0070317"
##	"GO:0072610"
##	"GO:0030336"
##	"GO:1903053"
##	"GO:0043281"
##	"GO:0048193"
##	"GD:0060766"
##	"GO:0033522"
##	"GO:0042536"
##	"GO:0001994"
##	"GO:0034112"
##	"GO:0032714"
##	"GO:0035303"
##	"GO:0043487"
##	"GO:0030948"
##	"GO:0030321" "GO:0045409"
##	
## ##	"GO:0072318" "GO:0001172"
##	"GD:0001172
##	"GD:0090203
## ##	"GD:2000563"
## ##	"GD:0002088"
##	"GD:1990051"
## ##	"GO: 0045876"
##	"GD:0043876"
##	"GD:0002851"
##	"GD:0032831"
##	"GD:0032031
	40.0010011

##	"GO:0051882"
##	"GO:0072331"
##	"GD:0001560"
##	"GO:0001714"
##	"GD:0002333"
##	"GD:0033523"
##	"GD:0060750"
##	"GO:1904531"
##	"GD:0002865"
##	"GO:0034463"
##	"GO:0080135" "GO:0099641"
## ##	"GD:0099641"
##	"GD:0086073"
##	"GO:0042035" "GO:0071539"
##	"GD:0071539" "GD:0008595"
##	"GO:0008595"
##	"GD:0034136"
##	"GD:0009416"
##	"GD:0043993"
##	"GO:1990145"
##	"GD:0036228"
##	"GD:0036226
##	"GD:0046425"
##	"GD:0030316"
##	"GO:0055015"
##	"GO:0046641"
##	"GO:0038112"
##	"GD:0061847"
##	"GO:0071538"
##	"GO:1990859"
##	"GO:0051169"
##	"GO:0071425"
##	"GO:0010324"
##	"GO:0014839"
##	"GO:0036091"
##	"GO:0038188"
##	"GD:0040018"
##	"GD:0060340"
##	"GO:0072679"
##	"GO:1904566"
##	"GO:0033147"
##	"GO:0007154"
##	"GO:0010801"
##	"GO:0051668"
##	"GD:2000503"
##	"GO:0048762"
##	"GD:0002408"
##	"GD:0061024"
##	"GD:0060399"
##	"GO:1900222"
##	"GD:0009566"
##	"GD:0060402"
##	"GO:0046888"

##	"GO:1900738"
##	"GO:2000724"
##	"GO:0072431"
##	"GO:0090161"
##	"GO:2001229"
##	"GO:0042255"
##	"GO:0031622"
##	"GO:0048672"
##	"GO:0044267"
##	"GD:0000055"
##	"GO:2000117"
##	"GO:0097104"
##	"GO:0071453"
##	"GD:0048009"
##	"GD:0060978"
##	"GO:0031062"
##	"GD:0090303"
## ##	"GD:0006269" "GD:0090331"
##	"GD:0090331"
##	"GD:0007258"
##	"GD:0000388
##	"GD:0030378"
##	"GD:0090110
##	"GD:0030230"
##	"GD:0061564"
##	"GD:0001004"
##	"GD:0050803"
##	"GD:0060687"
##	"GD:0060707"
##	"GO:0071673"
##	"GO:0046755"
##	"GD:0006296"
##	"GO:1903755"
##	"GO:0032754"
##	"GO:0035814"
##	"GO:0033133"
##	"GD:0002677"
##	"GO:0086091"
##	"GO:1904430"
##	"GO:0045124"
##	"GO:0031629"
##	"GO:0014894"
##	"GO:0030208"
##	"GO:0032849"
##	"GO:0007413"
##	"GO:0010837"
##	"GO:0010832"
##	"GD:0043270"
##	"GO:0045627"
##	"GO:0031102"
##	"GO:0045198"
##	"GO:0045577"
##	"GO:0070212"

##	"GD:0002377"
##	"GO:0031145"
##	"GO:0051415"
##	"GD:0099577"
##	"GO:0045634"
##	"GD:0060670"
##	"GO:0032963"
##	"GO:0048873"
## ##	"GO:0007095" "GO:0072134"
## ##	"GD:0072134"
##	"GD:0016191"
##	"GD:0000289"
##	"GD:0000283"
##	"GD:0021537
##	"GD:0071802
##	"GD:0008361"
##	"GD:0000001"
##	"GD:0050908"
##	"GD:0038028"
##	"GD:2000001"
##	"GD:0006294"
##	"GO:0016185"
##	"GO:0032713"
##	"GD:0039692"
##	"GO:2000618"
##	"GO:0010666"
##	"GO:1900449"
##	"GO:1905664"
##	"GO:0048755"
##	"GO:1903923"
##	"GO:0098534"
##	"GD:0006898"
##	"GO:0051964"
##	"GO:0003190"
##	"GO:0002520"
##	"GO:0032488"
##	"GO:0072676"
##	"GO:0050718"
##	"GD:0031328"
##	"GD:0032502"
##	"GD:0032786"
## ##	"GO:0071731" "GO:0033683"
##	"GD:1902916"
##	"GD:0007162"
## ##	"GD:0007162"
## ##	"GD:0031063"
##	"GD:0007059"
## ##	"GD:0007059"
##	"GD:0043217"
##	"GD:0043217
##	"GD:0032528"
##	"GD:0052626"
	22.0001100

##	"GO:0061582"
##	"GO:0072383"
##	"GO:1904798"
##	"GO:0031959"
##	"GO:0090335"
##	"GO:2000320"
##	"GO:0001937"
##	"GO:0090399"
##	"GO:0051303"
##	"GO:1903553"
##	"GO:2001244"
##	"GO:0006997"
##	"GO:0051295"
##	"GO:0002667"
##	"GO:0071774"
##	"GO:0035483"
##	"GO:0001878"
##	"GO:1990845"
##	"GO:0002305"
##	"GO:0051797"
##	"GD:0060831"
##	"GO:0090370"
##	"GO:0050708"
##	"GO:0045779"
##	"GO:1905232"
##	"GO:0030011"
##	"GO:0042551"
##	"GO:2001046"
##	"GO:2000587"
##	"GD:0032079"
##	"GD:0032099"
##	"GO:0042311"
##	"GD:0048302"
##	"GO:0016233"
##	"GD:1903800"
## ##	"GO:1902004" "GO:1905448"
	"GD: 0010977"
## ##	"GD:0010977"
##	"GD:2000179"
## ##	"GD:2000179"
##	"GD:0060563"
##	"GD:0000303
##	"GD:1903799"
##	"GD:0061299"
##	"GO:1900110"
##	"GD:2000553"
##	"GD:0038031"
##	"GD:0030851"
## ##	"GD:0030851"
## ##	"GD:0081903"
## ##	"GD:0032008"
##	"GD:0050016"
##	"GD:0003143"
n n	40.000140

##	"GD:0001944"
##	"GD:0045446"
##	"GO:0051150"
##	"GO:0045475"
##	"GO:0045737"
##	"GD:2000483"
##	"GD:0036493"
##	"GO:0016321"
##	"GD:0045606"
##	"GO:1903861"
##	"GO:0061045"
##	"GO:0031123"
##	"GO:0042713"
##	"GO:1901386"
##	"GO:1900275"
##	"GD:0001886"
##	"GO:0051127"
##	"GD:0030072"
##	"GD:0043969"
##	"GD:0061921"
##	"GD:0140066"
##	"GD:0140067"
##	"GO:0046881"
##	"GD:1902608"
##	"GD:0007026"
##	"GO:0050861"
##	"GD:0032007"
##	"GD:0035065"
##	"GD:0048568"
##	"GD:0042306"
##	"GO:0044458"
##	"GD:0060449"
##	"GO:0034141"
##	"GD:0090336"
##	"GD:0002064"
##	"GD:0050702"
##	"GD:0051661"
##	"GO:2001224"
##	"GO:0015012"
##	"GO:0001922"
##	"GO:0048712"
##	"GD:0060956"
##	"GO:0010744"
##	"GD:2000737"
##	"GO:0043576"
##	"GD:0050860"
##	"GD:2000253"
##	"GO:1901741"
##	"GD:0009649"
##	"GD:0046605"
##	"GO:0051252"
##	"GO:0010923"
##	"GO:0016458"
##	"GO:0090281"

##	"GD:0048609"
##	"GO:2000852"
##	"GO:0042036"
##	"GO:0048732"
##	"GD:0030950"
##	"GO:0097252"
##	"GD:0010513"
##	"GD:0016125"
##	"GD:0038092"
##	"GD:0000349"
##	"GO:0010641"
##	"GD:0033092"
##	"GO:0045814"
##	"GO:0042592"
##	"GO:1902231"
##	"GO:0048733"
##	"GO:0001545"
##	"GO:0002903"
##	"GO:1905244"
##	"GO:2001286"
##	"GO:1905216"
##	"GD:0006642"
##	"GO:0033685"
##	"GD:0002360"
##	"GO:0043045"
##	"GO:1902476"
##	"GO:0043981"
##	"GD:0043982"
##	"GO:0045617"
##	"GO:0045104"
##	"GD:0060711"
##	"GD:0071930"
##	"GD:0051896"
##	"GO:1903912"
##	"GD:2000386"
##	"GD:0044387"
##	"GO:0031954"
##	"GO:0051586"
##	"GD:0060055"
##	"GO:1990138"
##	"GO:0071385"
##	"GD:0002237"
##	"GD:0001661"
##	"GO:1900027"
##	"GD:0006268"
##	"GD:0090190"
##	"GD:0060391"
##	"GO:1903589"
##	"GO:0030325"
##	"GD:0030502"
##	"GD:0030951"
##	"GO:0002456"
##	"GD:0016064"
##	"GO:0034622"

##	"GO:0035265"
##	"GD:0030195"
##	"GO:1901536"
##	"GO:0010875"
##	"GO:0002184"
##	"GD:0000077"
##	"GO:0022408"
##	"GO:0048709"
##	"GD:0007406"
## ##	"GD:0043304" "GD:0000082"
## ##	"GD:0000082"
## ##	"GD:0080770"
##	"GD:0000076"
##	"GD:0006790"
##	"GD:0000790
##	"GD:0001764"
##	"GO:0001704
##	"GO:0033721
##	"GD:0016051"
##	"GD:0034374"
##	"GD:0036258"
##	"GD:0090043"
##	"GD:0033689"
##	"GD:0070895"
##	"GD:0007158"
##	"GD:0061351"
##	"GD:0050678"
##	"GD:0007621"
##	"GO:0030432"
##	"GO:0036336"
##	"GD:0010839"
##	"GD:0030890"
##	"GO:0050427"
##	"GD:0090398"
##	"GO:0034101"
##	"GO:2001028"
##	"GO:0007176"
##	"GO:0055010"
##	"GD:0042177"
##	"GD:0060028"
##	"GD:0090279"
##	"GD:0034144"
##	"GO:0042474"
##	"GO:0042535"
##	"GD:0050882"
##	"GO:0006465"
##	"GO:0048705"
##	"GO:0072344"
##	"GD:0001656"
##	"GD:0002638"
##	"GO:0015074"
##	"GO:1901203"
##	"GO:0048477"

##	"GO:0061737"
##	"GD:0000056"
##	"GO:0035728"
##	"GO:0045662"
##	"GO:0014033"
##	"GD:0000304"
##	"GD:0006990"
##	"GD:0007625"
## ##	"GO:0032211" "GO:1905430"
## ##	"GD:1905430"
##	"GD:0031033
##	"GD:0042102
##	"GD:0007338"
##	"GD:0060661"
##	"GD:1903690"
##	"GD:0002034"
##	"GD:0032897"
##	"GD:0040037"
##	"GD:0000028"
##	"GO:1904322"
##	"GD:0002820"
##	"GO:0051302"
##	"GD:0060850"
##	"GO:0048791"
##	"GD:0007603"
##	"GO:0030166"
##	"GO:0007617"
##	"GO:0051598"
##	"GO:0060575"
##	"GD:2000646"
##	"GO:1904262"
##	"GO:2000311"
##	"GO:1901381"
##	"GD:0030837"
##	"GO:0032308"
##	"GD:0060263"
##	"GO:0019216"
##	"GO:0051258"
##	"GO:0051343"
##	"GD:0000244" "GD:0022409"
## ##	"GD:0022409" "GD:0045930"
## ##	"GD:0045930"
##	"GD:1990428"
##	"GD:0010841"
##	"GD:0010341
##	"GD:0010730"
##	"GD:0010762
##	"GD:0007567"
##	"GD:0007367
##	"GD:0060585"
##	"GD:0016239"
##	"GD:0032509"
	20.00000

##	"GO:2000252"
##	"GO:0010831"
##	"GO:0090330"
##	"GO:0043084"
##	"GD:0033602"
##	"GO:0050770"
##	"GD:0060988"
##	"GO:0090559"
##	"GO:0019049"
##	"GO:0070512"
##	"GO:0090435"
##	"GO:0046785"
##	"GO:0042462"
##	"GO:0061511"
##	"GO:0099553"
##	"GO:1900223"
##	"GD:1903999" "GD:0014807"
## ##	"GD:0014807"
##	"GD:0009792"
##	"GD:0009792
##	"GD:1900119"
##	"GD:0001963"
##	"GD:2000620"
##	"GD:0034260"
##	"GD:0003085"
##	"GD:0030889"
##	"GD:0035020"
##	"GD:0098911"
##	"GO:0032489"
##	"GO:0035948"
##	"GO:0022617"
##	"GO:0006882"
##	"GD:0033686"
##	"GO:0097296"
##	"GO:0030241"
##	"GO:0051310"
##	"GO:0002016"
##	"GO:0030513"
##	"GO:0031069"
##	"GO:0045580"
##	"GO:0071305"
##	"GO:0010827"
##	"GO:0034351"
##	"GO:1905832"
##	"GO:0008156"
##	"GD:0045630"
##	"GO:0008584"
##	"GO:0071393"
##	"GO:0060271"
##	"GO:0031652"
##	"GD:0098792"
##	"GO:0034393"
##	"GO:0007589"

##	"GO:0009395"
##	"GD:0033634"
##	"GD:0072583"
##	"GO:0090166"
##	"GO:1905555"
##	"GD:0042976"
##	"GO:0007190"
##	"GO:1902894"
##	"GO:0021554"
##	"GD:0032210"
## ##	"GD:0070898"
## ##	"GD:0006816" "GD:0008343"
##	"GD:0006343"
##	"GD:0016322"
##	"GD:0000281"
##	"GD:2000249"
##	"GO:1900041"
##	"GD:0044818"
##	"GD:0071559"
##	"GD:0051000"
##	"GD:0051970"
##	"GD:0009968"
##	"GD:0045746"
##	"GD:0002438"
##	"GD:0042832"
##	"GD:0090403"
##	"GD:0006378"
##	"GD:0090091"
##	"GO:0043393"
##	"GO:0002230"
##	"GD:0014063"
##	"GD:0048814"
##	"GO:0031442"
##	"GO:0030534"
##	"GO:2000648"
##	"GO:0034394"
##	"GO:1900042"
##	"GO:0018146"
##	"GD:2000096"
##	"GD:0090230"
##	"GD:0007199"
##	"GD:0045824"
##	"GD:0036089"
##	"GO:0001702"
##	"GO:0019827"
##	"GD:0006957"
##	"GO:0042754"
##	"GO:0099054"
##	"GO:0007379"
##	"GD:0032095"
##	"GO:0045880"
##	"GO:1901214"
##	"GO:0048251"

##	"GD:0048484"
##	"GD:0070233"
##	"GD:0032792"
##	"GD:0042632"
##	"GO:0051461"
##	"GD:0048280"
##	"GD:0030423"
##	"GD:0070206"
##	"GD:0060445"
##	"GO:0060491"
##	"GO:1904761"
##	"GD:0002606"
##	"GO:1903598"
##	"GD:0060160"
##	"GO:0051145"
##	"GO:0071732"
##	"GD:2000045"
##	"GD:0003334"
##	"GD:0006446"
##	"GO:0007259"
##	"GO:0030511"
##	"GO:0099563"
##	"GO:0046599"
##	"GO:0033280"
##	"GD:0006511"
##	"GO:0045792"
##	"GD:0006363"
##	"GO:0044782"
##	"GD:0006027"
##	"GD:0006606"
##	"GD:0060216"
##	"GD:0060348"
##	"GD:0044340"
##	"GO:0007198"
##	"GO:0045591"
##	"GO:1901223"
##	"GO:0098535"
##	"GD:0090343"
##	"GD:2000811"
##	"GD:0097062"
##	"GD:0043200"
##	"GO:0008354"
##	"GD:0032743"
##	"GD:0043276"
##	"GD:0060644"
##	"GD:0030490"
##	"GO:0045187"
##	"GD:1903898"
##	"GD:0032388"
##	"GD:0048536"
##	"GD:0001955"
##	"GO:0018149"
##	"GD:0006303"
##	"GO:0018105"

##	"GO:0055117"
##	"GD:0001649"
##	"GD:0001967"
##	"GO:1901216"
##	"GD:0010632"
##	"GO:0035106"
##	"GD:0070873"
##	"GD:0070914"
## ##	"GO:0099159" "GO:0048617"
##	"GD:0048817"
##	"GD:1900113"
##	"GO:0031571"
##	"GO:0031371
##	"GD:0043143
##	"GD:0001953"
##	"GD:1903055"
##	"GD:0007217"
##	"GD:0007368"
##	"GD:0007084"
##	"GD:0032098"
##	"GD:0110104"
##	"GO:1990120"
##	"GD:0010812"
##	"GO:0030214"
##	"GD:0033327"
##	"GD:0000733"
##	"GO:0070245"
##	"GD:0006383"
##	"GD:0048339"
##	"GO:0048706"
##	"GO:0072201"
##	"GD:0006930"
##	"GD:0030239"
##	"GD:0031134"
##	"GO:1905515"
##	"GD:0097028"
##	"GO:1900272"
##	"GO:2000110"
##	"GO:1904837"
##	"GD:0010458"
##	"GD:0097029"
##	"GD:0000079"
##	"GD:0008628"
##	"GD:0032148"
## ##	"GD:0060124" "GD:0010886"
##	"GD:0010886" "GD:0033625"
## ##	"GD:0033625"
## ##	"GD:0051216" "GD:0043550"
##	"GD:0043550"
##	"GD:0097350"
##	"GD:0010595"
##	"GD:0010353"
	30.0040000

##	"GD:0030111"
##	"GD:0042053"
##	"GO:0071360"
##	"GD:2000535"
##	"GO:0042633"
##	"GO:0016081"
##	"GO:0032693"
##	"GO:0032740"
##	"GD:0033993"
##	"GD:0002685"
##	"GO:0031668"
##	"GO:0051001"
##	"GD:0060390"
##	"GO:0051584"
##	"GD:0006888"
##	"GO:0071380"
##	"GO:0120163"
##	"GD:1904028"
##	"GD:0046010"
##	"GD:0002042"
##	"GO:0046427"
##	"GO:0071466"
##	"GO:0051412"
##	"GO:0007020"
##	"GD:0033344"
##	"GO:0051464"
##	"GO:0086098"
##	"GO:0050892"
##	"GO:0021522"
##	"GD:0043984"
##	"GO:0033277"
##	"GO:0032700"
##	"GD:0034968"
##	"GD:0007635"
##	"GD:0042246"
##	"GO:0043534"
##	"GO:0031113"
##	"GO:0021587"
##	"GO:0075522"
##	"GO:0002125"
##	"GD:0048294"
##	"GD:2000406"
##	"GO:0043923"
##	"GO:0046777"
##	"GD:0016202"
##	"GO:0031641"
##	"GD:0009636"
##	"GD:0060017"
##	"GD:0060749"
##	"GO:0001817"
##	"GD:0002551"
##	"GD:0032962"
##	"GO:0010824"
##	"GD:0097368"

##	"GO:0006974"
##	"GO:0045665"
##	"GO:0006265"
##	"GD:0006999"
##	"GO:0098884"
##	"GO:0002018"
##	"GO:0007257"
##	"GO:0014065"
##	"GD:2000300"
##	"GO:0035791"
##	"GD:0090309"
##	"GO:0031669"
##	"GO:0060325"
##	"GO:1904000"
##	"GO:0051057"
##	"GO:0072368"
##	"GO:0046626"
##	"GO:2000637"
##	"GO:0031581"
##	"GD:0007051"
##	"GD:0048663"
##	"GO:0051969"
##	"GO:0034392"
##	"GO:0035774"
##	"GO:0051568"
##	"GO:0045760"
##	"GD:0002687"
##	"GO:0021984"
##	"GO:0043149"
##	"GO:0038111"
## ##	"GO:0009888" "GO:0070459"
## ##	"GD:0070459"
##	"GD:0042933
## ##	"GD:0048512"
##	"GD:0032811
##	"GD:0030206"
##	"GD:0030200
##	"GD:0051098"
##	"GO:1902041"
##	"GD:2000369"
##	"GD:0034088"
##	"GO:0007182"
##	"GO:0071347"
##	"GO:2000114"
##	"GD:0007263"
##	"GO:1902741"
##	"GO:0060157"
##	"GD:0018394"
##	"GD:2000678"
##	"GD:0070932"
##	"GO:0003180"
##	"GO:0071922"
##	"GO:0072425"
	-

##	"GO:1903237"
##	"GD:0009048"
##	"GO:0000395"
##	"GO:0045629"
##	"GO:0071773"
##	"GO:1900181"
##	"GO:0060765"
##	"GD:2000370"
##	"GD:2000484"
##	"GD:2001237"
## ##	"GD:0003382"
## ##	"GD:0032909"
## ##	"GO:0042699" "GO:0033365"
## ##	"GD:0033365"
## ##	"GD:0000455"
##	"GD:0000731
##	"GD:0014827
##	"GD:0005515
##	"GD:2000435"
##	"GD:0010457"
##	"GD:0010457
##	"GD:0098903
##	"GD:2000757"
##	"GD:0097320"
##	"GD:0097320
##	"GD:0043019"
##	"GD:0048385"
##	"GD:0048383
##	"GD:0053012
##	"GD:0000048
##	"GD:0032094"
##	"GD:0032886"
##	"GD:0032000
##	"GD:0033171
##	"GD:0007498"
##	"GD:0030193"
##	"GD:0006464"
##	"GD:0010870"
##	"GD:0032732"
##	"GD:0001938"
##	"GD:0032228"
##	"GD:0071356"
##	"GO:0051974"
##	"GD:0022407"
##	"GD:0070564"
##	"GD:0071168"
##	"GD:0048012"
##	"GD:2000147"
##	"GD:0097421"
##	"GD:0051572"
##	"GD:2001168"
##	"GD:0042118"
##	"GD:0032460"
	45.000Z400

##	"GD:0033690"
##	"GO:0042981"
##	"GO:0002725"
##	"GO:0033629"
##	"GO:0003100"
##	"GD:0006940"
##	"GO:0045778"
##	"GD:0060100"
##	"GD:0070528" "GD:0098609"
## ##	"GD:0098609"
##	"GD:0060337"
##	"GD:0051387"
##	"GD:0031387
##	"GD:0007210"
##	"GD:0007210
##	"GD:0031122"
##	"GD:0051081"
##	"GO:0045741"
##	"GD:0044030"
##	"GO:2001235"
##	"GO:0045429"
##	"GO:0050709"
##	"GD:0060669"
##	"GO:0042756"
##	"GO:0010608"
##	"GO:0034776"
##	"GO:1902042"
##	"GO:1903507"
##	"GO:2000574"
##	"GO:0051983"
##	"GD:0050663"
##	"GO:0042326"
##	"GO:1905007"
##	"GO:0016079"
##	"GO:0045652"
##	"GO:0007420"
##	"GO:1904753"
##	"GO:0030041"
##	"GD:0032331"
##	"GD:0003198" "GD:2000669"
## ##	"GD:2000869" "GD:0051097"
## ##	"GD:0051097"
##	"GD:2000134"
##	"GD:0043507"
##	"GD:0043307
##	"GD:0009791
##	"GD:1902961"
##	"GD:0050732"
##	"GD:0003300"
##	"GD:0002669"
##	"GD:0060406"
##	"GD:0032229"

##	"GO:1904037"
##	"GO:0043537"
##	"GO:0007052"
##	"GO:0030194"
##	"GO:0072643"
##	"GO:0031297"
##	"GO:0090316"
##	"GD:0007207"
## ##	"GD:0006310" "GD:0030949"
## ##	"GD:2000060"
##	"GD:0031065"
##	"GD:0031340"
##	"GD:0007283"
##	"GD:0007283
##	"GD:0007405"
##	"GD:0060501"
##	"GD:0051895"
##	"GO:0051924"
##	"GD:0050995"
##	"GO:0003015"
##	"GD:0008608"
##	"GO:0014061"
##	"GO:0045667"
##	"GO:0051967"
##	"GO:0034695"
##	"GO:0050930"
##	"GO:0061053"
##	"GO:1904261"
##	"GO:0050680"
##	"GO:0048646"
##	"GO:0050776"
##	"GO:0042445"
##	"GO:0090314"
##	"GD:2000036"
##	"GO:0060134"
##	"GO:0016525"
##	"GO:0032715"
##	"GO:0010468"
## ##	"GD:0033630" "GD:2001014"
##	"GD:2001014" "GD:0035914"
## ##	"GD:0035914" "GD:0071352"
## ##	"GD:1904568"
##	"GD:1904308"
##	"GD:0071407"
##	"GD:0010212"
##	"GD:0010212
##	"GD:0043303
##	"GD:0007203
##	"GD:2000653"
##	"GD:0097647"
##	"GD:0019228"
##	"GD:0022007"

##	"GO:0030238"
##	"GO:0043551"
##	"GO:0007043"
##	"GD:0043406"
##	"GO:1902661"
##	"GO:0071498"
##	"GO:0030198"
##	"GO:0045945"
##	"GO:2000352" "GO:0006344"
## ##	"GD:0008344"
##	"GD:2000373"
##	"GD:0050919"
##	"GO:0050315"
##	"GD:0001833"
##	"GD:0062009"
##	"GO:1905564"
##	"GD:0030514"
##	"GD:0006353"
##	"GO:0033031"
##	"GD:0006284"
##	"GO:0032100"
##	"GO:0043928"
##	"GO:0061436"
##	"GO:0007596"
##	"GO:0032233"
##	"GO:0045953"
##	"GO:0043491"
##	"GO:0050777"
##	"GO:0045765"
##	"GO:0090135"
##	"GD:0097746"
##	"GO:0002690"
##	"GD:0090240"
##	"GO:0035372"
##	"GO:0051152"
##	"GO:0031110"
##	"GO:0006356"
##	"GO:1903997"
##	"GO:0046907"
##	"GO:0060173" "GO:0035624"
##	"GD:0035624" "GD:0007613"
## ##	"GD:0007613" "GD:0045059"
##	"GD:0043039
##	"GO:1904781"
##	"GD:0035729"
## ##	"GD:0035729"
##	"GD:0002513
##	"GD:0032308
##	"GD:0098696"
##	"GD:0030261"
##	"GD:0036251
##	"GD:0051209"
	40.0001200

##	"GD:0090305"
##	"GD:0002052"
##	"GD:0006398"
##	"GO:0051382"
##	"GD:0006346"
##	"GO:0034453"
##	"GO:0050872"
##	"GO:0051573"
##	"GO:0071481"
##	"GO:0010951"
##	"GO:1902893"
##	"GO:0042307"
##	"GD:0071333"
##	"GD:0060045"
##	"GD:0090235"
##	"GD:1900363"
##	"GD:0006282"
##	"GD:0001992"
##	"GO:0045637"
##	"GD:0030516"
##	"GO:0051385"
##	"GD:0033146"
##	"GD:0060965"
##	"GO:0051272"
##	"GD:0071346"
##	"GD:0061000"
##	"GD:0038095"
##	"GD:0045776"
##	"GD:0072520"
##	"GD:0098962"
##	"GD:0010506"
##	"GD:0048661"
##	"GD:0007214"
##	"GD:0043517"
##	"GD:0070562"
##	"GD:0032270"
##	"GD:2000379"
##	"GO:0033148"
##	"GD:0061049"
##	"GO:0035162"
##	"GO:0050769"
##	"GO:1904886"
##	"GO:0045347"
##	"GD:0002092"
##	"GO:0035924"
##	"GD:0060396"
##	"GO:0043588"
##	"GO:0007219"
##	"GO:0008104"
##	"GD:0007097"
##	"GD:0050434"
##	"GD:0070816"
##	"GO:0071681"
##	"GO:0009953"

##	"GO:2000145"
##	"GO:0042753"
##	"GD:0007100"
##	"GD:0048839"
##	"GD:0010591"
##	"GO:0051574"
##	"GD:0007016"
##	"GO:0045786"
##	"GD:0098664"
##	"GD:0030220"
##	"GD:0032870"
##	"GD:0042730"
##	"GD:0060078"
##	"GO:0060158"
##	"GD:0003084"
##	"GD:0048660"
##	"GO:0048589"
##	"GO:1901796"
##	"GD:0035904"
##	"GO:0048704"
##	"GO:0043473"
##	"GD:0010800"
##	"GO:0038170"
##	"GO:0046883"
##	"GD:0097009"
##	"GO:0035813"
##	"GO:0035116"
##	"GD:0042770"
##	"GO:0017015"
##	"GD:0043966"
##	"GD:0050798"
##	"GD:0045600"
##	"GD:0032091"
##	"GD:0048286"
##	"GO:0042417"
##	"GD:0106072"
##	"GD:0032703"
##	"GD:0050767"
##	"GD:0050920"
##	"GD:0090502"
##	"GD:2000146"
##	"GO:0045109"
##	"GD:0070198"
##	"GD:0036035"
##	"GD:0001816"
##	"GD:0061198"
##	"GD:0060976"
##	"GD:0050909"
##	"GD:0000187"
##	"GO:0051149"
##	"GO:0048754"
##	"GO:0042475"
##	"GO:0032201"
##	"GO:0043542"

##	"GO:0050727"
##	"GO:1900087"
##	"GD:0048278"
##	"GO:0061099"
##	"GO:1903243"
##	"GO:1903608"
##	"GD:0006293"
##	"GD:0007565"
##	"GD:0014826"
##	"GO:0048844"
##	"GD:0060789"
##	"GO:0051865"
##	"GO:0072422"
##	"GO:0048384"
##	"GO:0010976"
##	"GO:0030850"
##	"GO:0048245"
##	"GO:0071901"
##	"GO:0016358"
##	"GO:0010717"
##	"GD:0090050"
##	"GD:0001768"
##	"GO:0030217"
##	"GD:0032332"
##	"GD:0031497"
##	"GO:0042711"
##	"GD:0009913"
##	"GD:0060135"
##	"GD:0007416"
##	"GD:0050862"
##	"GO:0007195"
##	"GD:0030032"
##	"GO:0045589"
##	"GD:0007156"
##	"GD:0070934"
##	"GD:0032060"
##	"GO:0071526"
##	"GO:0002040"
##	"GD:0070474"
##	"GO:0014049"
##	"GD:0007626"
##	"GO:0048813"
##	"GD:0046600"
##	"GO:0051693"
##	"GO:0032968"
##	"GD:0032526"
##	"GO:0031394"
##	"GO:0007389"
##	"GO:0050871"
##	"GO:0120162"
##	"GO:0043153"
##	"GO:0000389"
##	"GO:0051497"
##	"GO:0016032"

##	"GO:0007224"
##	"GD:0007602"
##	"GO:1902749"
##	"GO:0006379"
##	"GO:0045736"
##	"GD:0032956"
##	"GO:1901838"
##	"GD:0001954"
##	"GO:0045165" "GO:0001973"
## ##	"GD:0001973"
##	"GD:0003376
##	"GD:0007080"
##	"GD:0070493"
##	"GD:0014030"
##	"GD:0072332"
##	"GD:0043114"
##	"GD:0010818"
##	"GD:0032924"
##	"GD:0010700"
##	"GD:2000617"
##	"GO:0007179"
##	"GO:0033119"
##	"GO:0046887"
##	"GO:0007492"
##	"GO:0034501"
##	"GD:0036302"
##	"GO:0048016"
##	"GO:0006337"
##	"GO:1900364"
##	"GO:0048255"
##	"GO:0007417"
##	"GD:0000724"
##	"GD:0006906"
##	"GO:0045668"
##	"GO:0048008"
##	"GO:0051321"
##	"GD:0031146"
##	"GD:0046833"
##	"GD:0003148"
## ##	"GO:0043951" "GO:1901522"
## ##	"GD:1901522" "GD:2000727"
## ##	"GD: 1903672"
##	"GD:0060037"
##	"GD:0008016"
##	"GD:0032922"
##	"GD:0006417"
##	"GD:0000417
##	"GD:0001730
##	"GD:0009310"
##	"GD:0033137"
##	"GD:0038189"
##	"GD:0031274"
	20.00012.1

##	"GO:0046628"
##	"GD:0000070"
##	"GO:0038128"
##	"GO:0050795"
##	"GD:0006289"
##	"GO:0034063"
##	"GO:0031053"
##	"GO:1900029"
##	"GO:0070933"
##	"GO:0045785"
##	"GO:0033628"
##	"GO:0085020"
##	"GO:0042119"
##	"GO:0035810"
##	"GO:0030199"
##	"GD:0007608" "GD:0010659"
##	
## ##	"GD:0007064" "GD:0045651"
##	"GD:0045651" "GD:0032465"
##	"GD:0032465"
##	"GD:0032355
##	"GD:0001037
##	"GD:0002070
##	"GD:0007519"
##	"GO:1902255"
##	"GD:0097150"
##	"GO:0010389"
##	"GD:0060065"
##	"GO:0032467"
##	"GO:0016575"
##	"GO:0010862"
##	"GO:0010569"
##	"GO:0031529"
##	"GO:0007196"
##	"GO:0000165"
##	"GO:0007212"
##	"GO:0030520"
##	"GD:0007600"
##	"GO:0016266"
##	"GO:0060389"
##	"GO:0031023"
##	"GO:0071479"
##	"GO:0045948"
##	"GO:0051146"
##	"GO:0006325"
##	"GO:0045445"
##	"GO:0048024"
##	"GD:0010863"
##	"GD:0090280"
##	"GO:0051443"
##	"GD:0090023"
##	"GD:0048469"
##	"GO:0010447"

##	"GD:0031290"
##	"GO:0071158"
##	"GD:0016584"
##	"GD:0018076"
##	"GD:0045862"
##	"GD:0006897"
##	"GO:0043124"
##	"GD:0006612"
##	"GD:0070979"
##	"GD:0007409"
##	"GD:0007172"
##	"GD:0044806"
##	"GO:0043433"
##	"GO:0035176"
##	"GO:0014824"
##	"GD:0043407"
##	"GD:0006978"
##	"GO:0032720"
##	"GD:0001934"
##	"GD:0006024"
##	"GD:0042273"
##	"GD:0006469"
##	"GO:0045071"
##	"GO:0035567"
##	"GD:0006977"
##	"GO:0010628"
##	"GO:0042789"
##	"GD:0007266"
##	"GO:2001238"
##	"GD:0006909"
##	"GD:0046329"
##	"GD:0002223"
##	"GO:0045727"
##	"GD:0050921"
##	"GD:0016567"
##	"GD:0006904"
##	"GO:0045739"
##	"GD:0043950"
##	"GD:0044849"
##	"GO:0007094"
##	"GO:0048246"
##	"GO:0001975"
##	"GD:0050684"
##	"GO:0031936"
##	"GO:0046632"
##	"GO:0051893"
##	"GO:0002430"
##	"GO:0007628"
##	"GO:0031333"
##	"GO:0007197"
##	"GO:1904058"
##	"GO:0042752"
##	"GO:0032731"
##	"GO:0032753"

##	"GO:0070373"
##	"GO:0070534"
##	"GO:0007205"
##	"GO:0045742"
##	"GD:0006302"
##	"GD:0006270"
##	"GO:0036120"
##	"GO:0016601"
##	"GO:0035735"
##	"GO:0072659"
##	"GO:0030155"
## ##	"GO:0048149" "GO:0045599"
## ##	"GD:0045599"
## ##	"GO:0045671"
##	"GD:0031491
##	"GD:0042274
##	"GD:0061614
##	"GD:0042771"
##	"GD:0019229"
##	"GD:1904667"
##	"GD:0030518"
##	"GD:2000773"
##	"GO:0009615"
##	"GD:0007099"
##	"GD:0043410"
##	"GD:0000729"
##	"GO:0034613"
##	"GO:0042742"
##	"GO:0045840"
##	"GD:0030838"
##	"GO:0001837"
##	"GO:0051928"
##	"GO:2000778"
##	"GO:0090179"
##	"GD:0046627"
##	"GO:0030225"
##	"GO:1902036"
##	"GO:0042130"
##	"GO:0043484"
##	"GO:0009880"
##	"GO:0045879"
##	"GO:2001275"
##	"GO:0007077"
##	"GO:0035855"
##	"GD:0006968"
##	"GO:0032570"
##	"GO:0006301"
##	"GD:0007062"
##	"GD:0034080"
## ##	"GO:0051894" "GO:0071345"
##	"GD:0071345" "GD:0007517"
## ##	"GD:0007517"
ππ	GU.0002250"

##	"GO:0097711"
##	"GO:0006952"
##	"GO:0035019"
##	"GO:0070936"
##	"GO:0051170"
##	"GD:0006283"
##	"GO:0051781"
##	"GO:0070208"
##	"GO:0090307"
##	"GD:0038003"
##	"GO:0010820"
##	"GO:0001569"
##	"GO:0007216"
##	"GO:0050852"
##	"GO:0048260"
##	"GO:0035589"
##	"GD:0045666"
## ##	"GD:0090026" "GD:0007229"
##	"GD:0007229"
##	"GO:0071870"
##	"GD:0001898
##	"GD:0008589
##	"GD:0030309
##	"GD:0050890"
##	"GD:0000209"
##	"GD:0042531"
##	"GO:0051726"
##	"GO:0030178"
##	"GO:0070507"
##	"GO:0050927"
##	"GO:0051642"
##	"GD:0006473"
##	"GO:0010613"
##	"GO:0045777"
##	"GO:0048701"
##	"GO:0001578"
##	"GD:0006958"
##	"GO:0048013"
##	"GO:0032760"
##	"GO:0008203"
##	"GO:0060071"
##	"GO:0031116"
##	"GD:0060964"
##	"GO:0007213"
##	"GD:0006376"
##	"GD:0046330"
##	"GD:0000375"
##	"GD:0007399"
##	"GO:0043536"
##	"GO:0035556"
##	"GO:0070268"
##	"GO:2000251"
##	"GO:0035635"

##	"GO:0048714"
##	"GO:0070935"
##	"GD:0007616"
##	"GD:0006306"
##	"GD:0032967"
##	"GD:0030216"
##	"GD:0009611"
##	"GD:0006956"
##	"GO:0043627"
##	"GD:0032088"
##	"GO:0042733"
##	"GO:0007169"
##	"GO:0001843"
##	"GO:0031532"
##	"GO:0014911"
##	"GD:0030036"
##	"GD:0060070"
##	"GD:0090103"
##	"GD:0048565"
##	"GD:0006468"
##	"GD:0030097"
##	"GO:0001570"
##	"GD:0038096"
##	"GO:0050853"
##	"GD:0006281"
##	"GO:0030449"
##	"GO:0007050"
##	"GO:0030031"
##	"GO:0042059"
##	"GO:0051091"
##	"GD:0030900"
##	"GD:0010629"
##	"GO:0008015"
##	"GO:0048025"
##	"GO:0031175"
##	"GO:0009952"
##	"GO:0016056"
##	"GO:0050482"
##	"GO:0050728"
##	"GO:1900026"
##	"GO:0035815"
##	"GD:0060333"
##	"GD:0007093"
##	"GO:0045907"
##	"GD:0030307"
##	"GO:0010592"
##	"GO:0002031"
##	"GO:0051571"
##	"GD:0048026"
##	"GO:0032481"
##	"GD:0000086"
##	"GD:0002407"
##	"GO:0007221"
##	"GD:0090090"

##	"GO:0007049"
##	"GO:1902187"
##	"GD:0006396"
##	"GO:0045987"
##	"GO:0060412"
##	"GD:0000723"
##	"GO:0002218"
##	"GO:0051492"
## ##	"GD:0070102" "GD:0042060"
## ##	"GD:0042080"
##	"GD:0008542"
##	"GD:0008342
##	"GD:0007203
##	"GD:0036092"
##	"GD:0006911"
##	"GD:0000311
##	"GD:0000387"
##	"GD:0007173"
##	"GD:0019233"
##	"GD:0050918"
##	"GO:0010718"
##	"GO:0042755"
##	"GD:0048247"
##	"GD:0051607"
##	"GD:0000245"
##	"GO:0010575"
##	"GO:0019221"
##	"GO:0009755"
##	"GO:0045787"
##	"GO:0001558"
##	"GO:0007191"
##	"GO:0007155"
##	"GO:0007194"
##	"GO:0030595"
##	"GO:0043044"
##	"GO:0001701"
##	"GO:1900182"
##	"GO:0043552"
##	"GD:0000380"
##	"GO:0016477"
##	"GD:0007346"
##	"GD:0008285"
##	"GD:0046854"
##	"GO:0042310"
##	"GO:0051897"
##	"GD:0006405"
##	"GO:0007018"
##	"GD:0030334"
##	"GO:0050731"
##	"GD:0009887" "GD:0007098"
##	"GD:0007098" "GD:0018108"
## ##	"GU:0018108" "GO:0051930"
	GU: 005 1930"

##	"GD:0002548"
##	"GO:0071222"
##	"GD:0001501"
##	"GO:0045747"
##	"GD:0045292"
##	"GO:0030521"
##	"GO:0035025"
##	"GD:0006364"
##	"GO:0051496"
##	"GD:0050900"
##	"GD:0006338"
##	"GD:0014068"
##	"GD:0007202"
##	"GO:0048010"
##	"GO:0071560"
##	"GO:0008284"
##	"GO:0030168"
##	"GO:0042127"
##	"GD:0006370"
##	"GD:0007411"
##	"GD:0007631"
##	"GD:0070374"
##	"GD:0006397"
##	"GD:0007507"
##	"GD:0030335"
##	"GO:0051301"
##	"GO:0031424"
##	"GO:0030154"
##	"GO:0002181"
##	"GO:0048511"
##	"GO:0006260"
##	"GD:0008543"
##	"GD:0000381"
##	"GO:0031295"
##	"GO:0001525"
##	"GD:0030593"
##	"GD:0001580"
##	"GD:0006369"
##	"GD:0007188"
##	"GD:0045087"
##	"GD:0006368"
##	"GD:0006413"
##	"GD:0045766"
##	"GD:0007166"
##	"GD:0007268"
##	"GD:0019722"
##	"GO:0051482"
##	"GD:0016070"
##	"GD:0060326"
##	"GD:0006367"
##	"GD:0070098"
##	"GD:0008380"
##	"GO:0042795"
##	"GD:0007267"

```
##
                      "GD:0006935"
##
                      "GD:0007187"
##
                      "GD:0007189"
##
                      "GD:0006406"
##
                      "GO:0031124"
                      "GO:0045892"
##
                      "GD:0007275"
##
##
                      "GD:0045893"
##
                      "GD:0007193"
##
                      "GD:0010469"
##
                      "GD:0006955"
                      "GD:0007200"
##
##
                      "GD:0008283"
                      "GD:0007165"
##
##
                      "GD:0006614"
##
                      "GO:0000184"
                      "GD:0000122"
##
##
                      "GD:0006355"
                      "GD:0006366"
##
##
                      "GD:0006954"
##
                      "GD:0007218"
                      "GO:0007204"
##
                      "GO:0045944"
##
                      "GD:0000398"
##
##
                      "GD:0006357"
##
                      "GD:0007186"
##
                      "GD:0006351"
                      GD:0032981
##
   bp.enriched.terms "GO.Term"
##
##
                      "mitochondrial respiratory chain complex I assembly"
##
                      "mitochondrial electron transport, NADH to ubiquinone"
##
                      "proton transmembrane transport"
##
                      "aerobic respiration"
                      "electron transport coupled proton transport"
##
##
                      "mitochondrial electron transport, cytochrome c to oxygen"
                      "mitochondrial translational termination"
##
##
                      "mitochondrial translational elongation"
##
                      "mitochondrial ATP synthesis coupled electron transport"
                      "mitochondrial electron transport, ubiquinol to cytochrome c"
##
                      "cellular respiration"
##
                      "electron transport chain"
##
                      "oxidation-reduction process"
##
                      "ATP biosynthetic process"
##
                      "mitochondrial respiratory chain supercomplex assembly"
##
                      "transferrin transport"
##
                      "reactive oxygen species metabolic process"
##
##
                      "ATP hydrolysis coupled proton transport"
                      "mitochondrial respiratory chain complex IV assembly"
##
##
                      "mitochondrial ATP synthesis coupled proton transport"
##
                      "negative regulation of fatty acid oxidation"
                      "tricarboxylic acid cycle"
##
                      "respiratory chain complex IV assembly"
##
##
                      "ubiquinone biosynthetic process"
##
                      "protein targeting to mitochondrion"
```

```
##
                      "fructose metabolic process"
##
                      "glycolytic process"
                      "peptidyl-arginine hydroxylation"
##
                      "ion transmembrane transport"
##
##
                      "oxidative phosphorylation"
##
                      "mitochondrial translation"
                      "protein import into mitochondrial matrix"
##
                      "protein import into mitochondrial inner membrane"
##
##
                      "energy derivation by oxidation of organic compounds"
                      "gluconeogenesis"
##
##
                      "canonical glycolysis"
                      "NADH oxidation"
##
                      "very long-chain fatty acid catabolic process"
##
                      "medium-chain fatty acid metabolic process"
##
##
                      "lipid A biosynthetic process"
##
                      "regulation of glutamine family amino acid metabolic process"
                      "regulation of pyruvate dehydrogenase activity"
##
                      "generation of precursor metabolites and energy"
##
##
                      "protein lipoylation"
                      "vacuolar proton-transporting V-type ATPase complex assembly"
##
##
                      "response to oxidative stress"
                      "regulation of macroautophagy"
##
                      "fatty acid beta-oxidation using acyl-CoA dehydrogenase"
##
                      "fructose 1,6-bisphosphate metabolic process"
##
                      "neutrophil degranulation"
##
##
                      "cristae formation"
##
                      "vacuolar acidification"
                      "mitochondrial tRNA processing"
##
                      "mitochondrial tRNA 5'-end processing"
##
                      "mitochondrial tRNA methylation"
##
##
                      "mitochondrial tRNA 3'-end processing"
##
                      "insulin receptor signaling pathway"
                      "mitochondrion organization"
##
                      "fructose catabolic process to hydroxyacetone phosphate and glyceraldehyde-3-phosp
##
                      "ubiquinone-6 biosynthetic process"
##
                      "regulation of oxidoreductase activity"
##
##
                      "mitochondrial respiratory chain complex III assembly"
##
                      "tricarboxylic acid metabolic process"
                      "glutamine metabolic process"
##
                      "regulation of acetyl-CoA biosynthetic process from pyruvate"
##
                      "adenine transport"
##
##
                      "branched-chain amino acid catabolic process"
                      "2-oxoglutarate metabolic process"
##
                      "negative regulation of ATP citrate synthase activity"
##
                      "cellular response to increased oxygen levels"
##
                      "microtubule-based process"
##
                      "respiratory electron transport chain"
##
                      "ATP transport"
##
                      "apoptotic mitochondrial changes"
##
                      "carbohydrate metabolic process"
##
##
                      "positive regulation of mitochondrial translation"
                      "pyruvate metabolic process"
##
##
                      "ADP transport"
```

"succinyl-CoA metabolic process"

```
"mitochondrial electron transport, succinate to ubiquinone"
##
##
                     "reproductive system development"
                      "cellular response to oxidative stress"
##
                      "protein homotetramerization"
##
                      "ATP hydrolysis coupled cation transmembrane transport"
##
                     "long-chain fatty acid metabolic process"
##
                      "binding of sperm to zona pellucida"
##
                      "activation of cysteine-type endopeptidase activity involved in apoptotic process
##
##
                     "response to light intensity"
                     "succinate metabolic process"
##
##
                      "ATP synthesis coupled proton transport"
                      "regulation of mitochondrial mRNA stability"
##
                     "ATP synthesis coupled electron transport"
##
                     "regulation of reactive oxygen species biosynthetic process"
##
##
                      "aerobic electron transport chain"
                      "negative regulation of mitochondrial electron transport, NADH to ubiquinone"
##
                      "methylation"
##
                      "phospholipid metabolic process"
##
##
                      "biosynthetic process"
                      "neutral lipid metabolic process"
##
##
                      "regulation of phospholipase activity"
                      "regulation of glutamate secretion"
##
                      "negative regulation of monooxygenase activity"
##
                      "regulation of acyl-CoA biosynthetic process"
##
                      "negative regulation of dopamine uptake involved in synaptic transmission"
##
##
                      "negative regulation of norepinephrine uptake"
##
                      "positive regulation of glutathione peroxidase activity"
                      "response to desipramine"
##
                      "positive regulation of hydrogen peroxide catabolic process"
##
                      "glycogen catabolic process"
##
                      "viral release from host cell"
##
##
                      "cell redox homeostasis"
                     "tRNA aminoacylation for protein translation"
##
##
                      "positive regulation of necrotic cell death"
                      "response to hydrogen peroxide"
##
##
                     "histone succinylation"
##
                      "mitochondrial membrane organization"
##
                      "heme biosynthetic process"
                      "nucleobase-containing small molecule interconversion"
##
                     "dopamine uptake involved in synaptic transmission"
##
                     "ATP metabolic process"
##
##
                     "anion transport"
                      "acetyl-CoA biosynthetic process from pyruvate"
##
                     "negative regulation of serotonin uptake"
##
                      "mitochondrial acetyl-CoA biosynthetic process from pyruvate"
##
                      "striated muscle contraction"
##
                      "protein refolding"
##
                      "negative regulation of dopamine metabolic process"
##
##
                      "response to magnesium ion"
                      "anion transmembrane transport"
##
##
                      "muscle cell cellular homeostasis"
                      "Rab protein signal transduction"
##
                      "regulation of mitochondrial membrane potential"
##
                      "ethanol oxidation"
##
```

```
##
                      "fructose 6-phosphate metabolic process"
##
                     "establishment of organelle localization"
                     "isocitrate metabolic process"
##
                      "amylopectin biosynthetic process"
##
                      "regulation of synaptic vesicle budding from presynaptic endocytic zone membrane"
##
##
                      "sulfur amino acid metabolic process"
                      "regulation of synaptic vesicle recycling"
##
                      "glucose import in response to insulin stimulus"
##
##
                      "inorganic anion transport"
                      "protein processing involved in protein targeting to mitochondrion"
##
##
                      "negative regulation of intrinsic apoptotic signaling pathway"
                      "hydrogen peroxide catabolic process"
##
                      "response to heat"
##
                      "microtubule cytoskeleton organization"
##
##
                      "ribosome disassembly"
##
                      "positive regulation of lipophagy"
                      "granzyme-mediated apoptotic signaling pathway"
##
                      "iron incorporation into metallo-sulfur cluster"
##
##
                      "plasma membrane to endosome transport"
                      "negative regulation of protein processing involved in protein targeting to mitoch
##
##
                      "negative regulation of vascular endothelial growth factor production"
                      "positive regulation of aggrephagy"
##
##
                      "response to unfolded protein"
                      "dopamine biosynthetic process"
##
##
                      "galactose catabolic process"
##
                      "pH reduction"
##
                      "small molecule metabolic process"
                      "GDP-mannose biosynthetic process"
##
                      "response to iron(II) ion"
##
##
                      "response to mercury ion"
##
                      "negative regulation of ATP metabolic process"
##
                      "glucose 6-phosphate metabolic process"
                      "cellular oxidant detoxification"
##
                      "retinol metabolic process"
##
                      "negative regulation of transporter activity"
##
                     "regulation of cellular ketone metabolic process"
##
##
                      "mitochondrial respiratory chain complex II assembly"
##
                      "glycine catabolic process"
                      "glycine decarboxylation via glycine cleavage system"
##
                      "cellular iron ion homeostasis"
##
                      "lipoate metabolic process"
##
##
                      "dihydrolipoamide metabolic process"
                      "regulation of oxidative phosphorylation"
##
                      "negative regulation of thrombin-activated receptor signaling pathway"
##
                      "fatty acid beta-oxidation"
##
                      "'de novo' protein folding"
##
                      "response to vitamin B1"
##
                      "negative regulation of autophagy of mitochondrion"
##
##
                      "mesenchyme migration"
                      "CTP biosynthetic process"
##
                     "L-serine catabolic process"
##
                     "cellular amino acid biosynthetic process"
##
##
                      "subthalamus development"
                      "pons development"
##
```

```
"GTP biosynthetic process"
##
##
                     "one-carbon metabolic process"
                      "chaperone-mediated protein transport"
##
                     "translational frameshifting"
##
##
                      "positive regulation of translational termination"
##
                      "estrogen biosynthetic process"
                      "glycerophosphate shuttle"
##
                      "lipid droplet organization"
##
##
                      "protein folding"
                      "UDP-glucose metabolic process"
##
##
                      "CDP-diacylglycerol biosynthetic process"
                      "negative regulation of insulin secretion involved in cellular response to glucose
##
                      "regulation of norepinephrine uptake"
##
                      "active induction of host immune response by virus"
##
                      "positive regulation of translational elongation"
##
##
                      "mitochondrial translational initiation"
                     "tRNA threonylcarbamoyladenosine modification"
##
                      "regulation of catalytic activity"
##
##
                      "protein N-linked glycosylation"
                      "negative regulation of intrinsic apoptotic signaling pathway by p53 class mediator
##
##
                      "response to superoxide"
                      "negative regulation of mitochondrial outer membrane permeabilization involved in
##
                      "positive regulation of receptor recycling"
##
                      "peptidyl-arginine methylation, to symmetrical-dimethyl arginine"
##
                      "supramolecular fiber organization"
##
##
                      "seryl-tRNA aminoacylation"
##
                      "lipophagy"
                      "multi-organism intracellular transport"
##
                      "negative regulation of intralumenal vesicle formation"
##
                      "negative regulation of protein polymerization"
##
##
                      "urea cycle"
##
                      "arginine biosynthetic process via ornithine"
                      "mitochondrial calcium ion transmembrane transport"
##
                      "cellular response to unfolded protein"
##
##
                      "peptidyl-cysteine oxidation"
                      "cytoskeleton organization"
##
##
                      "selenocysteinyl-tRNA(Sec) biosynthetic process"
##
                      "endoplasmic reticulum tubular network membrane organization"
                      "glutathione metabolic process"
##
                      "regulation of transmembrane transporter activity"
##
                      "UTP biosynthetic process"
##
##
                      "regulation of cholesterol metabolic process"
                      "regulation of macrophage activation"
##
                      "positive regulation of telomerase RNA localization to Cajal body"
##
                      "regulation of CAMKK-AMPK signaling cascade"
##
                      "UDP-N-acetylglucosamine metabolic process"
##
                      "NADP metabolic process"
##
                     "cardiac muscle tissue development"
##
##
                      "peptidyl-lysine deacetylation"
                      "negative regulation of exosomal secretion"
##
##
                     "mitochondrial genome maintenance"
                      "chaperone cofactor-dependent protein refolding"
##
##
                      "carbohydrate phosphorylation"
                      "long-chain fatty-acyl-CoA biosynthetic process"
##
```

```
##
                      "calcium ion homeostasis"
##
                      "galactose catabolic process via UDP-galactose"
                      "response to carbon monoxide"
##
                      "'de novo' CTP biosynthetic process"
##
                      "natural killer cell mediated cytotoxicity"
##
                      "respiratory gaseous exchange"
##
                      "L-threonine catabolic process to glycine"
##
                      "epidermal growth factor catabolic process"
##
##
                      "L-proline biosynthetic process"
                      "mannose metabolic process"
##
##
                      "selenocysteine metabolic process"
                      "cellular response to UV-A"
##
                      "phosphatidic acid biosynthetic process"
##
                      "response to glucagon"
##
##
                      "threonine catabolic process"
##
                      "nucleoside diphosphate phosphorylation"
                      "substantia nigra development"
##
                      "UDP-N-acetylglucosamine biosynthetic process"
##
##
                      "acetyl-CoA metabolic process"
##
                      "cellular response to vitamin B1"
##
                      "response to formaldehyde"
                      "DNA protection"
##
##
                      "actin filament fragmentation"
                      "deoxyribonucleotide biosynthetic process"
##
                      "fatty acid metabolic process"
##
##
                      "negative regulation of chaperone-mediated autophagy"
##
                      "protein import into mitochondrial intermembrane space"
                      "peptidyl-lysine modification"
##
##
                      "globoside metabolic process"
##
                      "arginine transport"
##
                      "lysosomal lumen pH elevation"
##
                      "S-adenosylmethionine biosynthetic process"
##
                      "endoplasmic reticulum organization"
                      "protein hexamerization"
##
##
                      "toxin transport"
##
                      "cerebellar Purkinje cell layer development"
##
                      "vocal learning"
##
                      "tetrahydrofolate biosynthetic process"
                      "response to cold"
##
                      "regulation of COPII vesicle coating"
##
                      "cellular response to osmotic stress"
##
##
                      "positive regulation of protein localization to Cajal body"
                      "positive regulation by host of viral genome replication"
##
##
                      "cytolysis"
                      "pyruvate biosynthetic process"
##
                      "negative regulation of signal transduction by p53 class mediator"
##
##
                      "removal of superoxide radicals"
                      "arginine catabolic process to proline via ornithine"
##
##
                      "arginine catabolic process to glutamate"
                      "negative regulation of exocytosis"
##
##
                      "regulation of pH"
                      "cardiolipin biosynthetic process"
##
                      "positive regulation of establishment of protein localization to telomere"
##
##
                      "positive regulation of neurotransmitter secretion"
```

```
##
                      "galactose metabolic process"
##
                      "leucine catabolic process"
                      "age-dependent response to reactive oxygen species"
##
                      "acetylcholine-mediated vasodilation involved in regulation of systemic arterial b
##
                      "positive regulation of vascular smooth muscle cell differentiation involved in ph
##
                      "phagosome-lysosome fusion"
##
                      "cellular nitrogen compound metabolic process"
##
                      "positive regulation by host of viral release from host cell"
##
##
                      "neurotransmitter metabolic process"
                      "oxaloacetate metabolic process"
##
##
                      "cellular response to epinephrine stimulus"
                      "citrulline biosynthetic process"
##
                     "retinoic acid metabolic process"
##
                      "protein maturation by protein folding"
##
##
                      "T cell proliferation"
##
                      "malate metabolic process"
                     "negative regulation of inclusion body assembly"
##
##
                      "mitochondrion morphogenesis"
##
                      "citrate metabolic process"
##
                      "transmembrane transport"
##
                     "regulation of endoplasmic reticulum tubular network organization"
                      "regulation of cAMP-dependent protein kinase activity"
##
                      "positive regulation of proteasomal protein catabolic process"
##
                      "farnesyl diphosphate biosynthetic process, mevalonate pathway"
##
                     "nucleoside triphosphate biosynthetic process"
##
##
                      "acyl-CoA metabolic process"
##
                      "mitotic cell cycle"
                      "UDP-glucuronate biosynthetic process"
##
                      "glyoxylate cycle"
##
                      "negative regulation of microtubule polymerization"
##
##
                      "cellular response to UV-C"
##
                     "NADH metabolic process"
                      "porphyrin-containing compound biosynthetic process"
##
                      "rostrocaudal neural tube patterning"
##
##
                      "glucose metabolic process"
                     "glycerol-3-phosphate catabolic process"
##
##
                     "AMP salvage"
##
                      "glutamate metabolic process"
                      "L-lysine catabolic process to acetyl-CoA via saccharopine"
##
                     "negative regulation of platelet-derived growth factor receptor signaling pathway"
##
                      "glycerol-3-phosphate metabolic process"
##
                      "lysosomal lumen acidification"
##
                      "superoxide metabolic process"
##
                      "positive regulation of inositol 1,4,5-trisphosphate-sensitive calcium-release cha
##
                      "negative regulation of Fas signaling pathway"
##
                      "biotin metabolic process"
##
                     "retinal metabolic process"
##
                     "transcription factor catabolic process"
##
##
                      "regulation of pentose-phosphate shunt"
                      "[2Fe-2S] cluster assembly"
##
##
                     "diphosphate metabolic process"
                      "neuron death in response to oxidative stress"
##
##
                      "tRNA threonylcarbamoyladenosine metabolic process"
```

##

"sulfide oxidation, using sulfide:quinone oxidoreductase"

```
##
                      "threonyl-tRNA aminoacylation"
##
                     "thalamus development"
                      "positive regulation of ATPase activity"
##
                      "response to organonitrogen compound"
##
##
                      "positive regulation of mini excitatory postsynaptic potential"
##
                      "negative regulation of ATPase activity"
                      "atrial septum development"
##
                      "protein to membrane docking"
##
##
                      "regulation of stem cell differentiation"
                      "regulation of insulin secretion"
##
##
                      "regulation of glycolytic process"
                      "aging"
##
                      "B cell cytokine production"
##
                      "positive regulation of T cell mediated immune response to tumor cell"
##
##
                      "isotype switching to IgG isotypes"
##
                      "chaperone-mediated protein complex assembly"
                     "alcohol metabolic process"
##
##
                      "actin filament depolymerization"
                     "heme a biosynthetic process"
##
##
                      "pyramidal neuron development"
##
                     "fatty acid biosynthetic process"
                      "L-cysteine catabolic process"
##
                      "L-alpha-amino acid transmembrane transport"
##
                      "glucose 1-phosphate metabolic process"
##
                      "traversing start control point of mitotic cell cycle"
##
##
                      "positive regulation of hydrogen peroxide biosynthetic process"
##
                      "response to water-immersion restraint stress"
                      "sphingomyelin metabolic process"
##
                      "AMP metabolic process"
##
                      "glucosylceramide metabolic process"
##
                      "galactosylceramide metabolic process"
##
##
                      "glutathione derivative biosynthetic process"
                      "ADP biosynthetic process"
##
                      "negative regulation of nitrosative stress-induced intrinsic apoptotic signaling p
##
##
                      "anion homeostasis"
                     "7,8-dihydroneopterin 3'-triphosphate biosynthetic process"
##
##
                      "pteridine-containing compound biosynthetic process"
##
                      "regulation of intrinsic apoptotic signaling pathway"
                      "iron-sulfur cluster assembly"
##
                     "positive regulation of actin filament depolymerization"
##
                      "response to copper ion"
##
##
                      "cellular response to superoxide"
                      "microglial cell activation"
##
                     "translational elongation"
##
                      "negative regulation of protein processing"
##
                      "phagosome acidification"
##
                      "lipid metabolic process"
##
                     "L-serine metabolic process"
##
                      "interleukin-12-mediated signaling pathway"
##
                      "positive regulation of endoplasmic reticulum calcium ion concentration"
##
##
                     "acetate biosynthetic process"
                      "acetyl-CoA biosynthetic process from acetate"
##
##
                      "propionate biosynthetic process"
```

"3-keto-sphinganine metabolic process"

```
##
                      "maintenance of protein location in mitochondrion"
##
                     "viral RNA genome packaging"
                      "positive regulation of complement activation"
##
                      "aminoacyl-tRNA metabolism involved in translational fidelity"
##
##
                      "ornithine catabolic process"
                      "ammonia homeostasis"
##
                      "glucose catabolic process"
##
                      "pyrimidine nucleotide metabolic process"
##
##
                      "lactate biosynthetic process from pyruvate"
                      "cysteine biosynthetic process via cystathionine"
##
##
                      "regulation of ferrochelatase activity"
                      "Golgi to transport vesicle transport"
##
                      "synaptic vesicle budding"
##
                      "lysosomal membrane organization"
##
##
                      "mitotic cleavage furrow ingression"
##
                      "vesicle-mediated transport"
                     "response to interferon-gamma"
##
                      "glycogen biosynthetic process"
##
                      "positive regulation of mitochondrial electron transport, NADH to ubiquinone"
##
                      "negative regulation of hydrogen peroxide-induced neuron intrinsic apoptotic signa
##
##
                     "dolichol metabolic process"
                      "carnitine biosynthetic process"
##
                      "positive regulation of inositol phosphate biosynthetic process"
##
                      "tRNA processing"
##
                      "protein mannosylation"
##
##
                      "positive regulation of catalytic activity"
##
                      "positive regulation of autophagy of mitochondrion"
                      "sodium ion transport"
##
##
                      "cysteine biosynthetic process"
##
                      "response to ether"
                      "pore complex assembly"
##
##
                      "protein localization to endoplasmic reticulum"
                      "positive regulation of viral process"
##
##
                      "protein localization to mitochondrion"
##
                      "UDP-glucose catabolic process"
##
                     "regulation of locomotion"
##
                      "cellular response to copper ion"
##
                      "positive regulation of lyase activity"
                      "positive regulation of succinate dehydrogenase activity"
##
                      "positive regulation of aconitate hydratase activity"
##
                      "heart contraction"
##
##
                      "cytoskeleton-dependent intracellular transport"
                      "amyloid precursor protein catabolic process"
##
                      "nucleus accumbens development"
##
                      "phagosome maturation"
##
                      "adhesion of symbiont to host"
##
##
                      "Golgi calcium ion transport"
                     "medium-chain fatty acid catabolic process"
##
##
                      "spindle assembly involved in female meiosis"
                      "regulation of resting membrane potential"
##
##
                      "anaerobic respiration"
                      "cysteine biosynthetic process from serine"
##
                      "proteolysis involved in cellular protein catabolic process"
##
                      "protein ADP-ribosylation"
##
```

```
"carnitine metabolic process, CoA-linked"
##
##
                      "negative regulation of histone H2A K63-linked ubiquitination"
                      "dendritic spine organization"
##
                      "protein folding in endoplasmic reticulum"
##
##
                      "olfactory pit development"
                      "pentose-phosphate shunt"
##
                      "midgut development"
##
                      "positive regulation of mitochondrial membrane permeability involved in apoptotic
##
##
                      "brown fat cell differentiation"
                      "methionine catabolic process"
##
##
                      "olfactory bulb mitral cell layer development"
                      "endoplasmic reticulum calcium ion homeostasis"
##
                      "positive regulation of ATP biosynthetic process"
##
                      "5-phosphoribose 1-diphosphate biosynthetic process"
##
##
                      "glutamate catabolic process to aspartate"
##
                      "glutamate catabolic process to 2-oxoglutarate"
                      "lactate oxidation"
##
##
                      "carnitine shuttle"
##
                      "S-adenosylhomocysteine catabolic process"
                      "homocysteine biosynthetic process"
##
##
                      "aspartate catabolic process"
                      "aspartate biosynthetic process"
##
                      "positive regulation of sodium ion transmembrane transport"
##
                      "glucose import"
##
                      "cellular hypotonic response"
##
##
                      "L-aspartate transmembrane transport"
##
                      "response to biotin"
                      "tangential migration from the subventricular zone to the olfactory bulb"
##
                      "positive regulation of axon guidance"
##
                      "positive regulation of transforming growth factor beta2 production"
##
##
                      "synaptic vesicle endocytosis"
                      "hydrogen sulfide biosynthetic process"
##
                      "retinoic acid biosynthetic process"
##
##
                      "negative regulation of glial cell migration"
                      "negative regulation of matrix metallopeptidase secretion"
##
##
                      "positive regulation of osteoclast development"
##
                      "regulation of cell death"
##
                      "optic cup morphogenesis involved in camera-type eye development"
                      "circadian sleep/wake cycle"
##
                     "determination of digestive tract left/right asymmetry"
##
                      "positive regulation of cellular metabolic process"
##
##
                      "response to iron ion"
                      "proteasome assembly"
##
                      "uncoating of virus"
##
                      "removal of nonhomologous ends"
##
                      "regulation of phospholipid metabolic process"
##
                      "actin-myosin filament sliding"
##
                      "response to steroid hormone"
##
##
                      "aspartate metabolic process"
                      "response to platinum ion"
##
##
                      "regulation of lung blood pressure"
                      "response to inorganic substance"
##
##
                      "neuromuscular process controlling posture"
                      "fumarate metabolic process"
##
```

```
##
                      "L-kynurenine metabolic process"
##
                      "D-gluconate metabolic process"
                      "purine ribonucleoside monophosphate biosynthetic process"
##
                      "respiratory burst"
##
                      "homocysteine metabolic process"
##
                      "protoporphyrinogen IX metabolic process"
##
                      "negative regulation of double-strand break repair"
##
                      "ethanol catabolic process"
##
##
                      "positive regulation of sequestering of calcium ion"
                      "Cajal-Retzius cell differentiation"
##
##
                      "positive regulation of coagulation"
                      "negative regulation of core promoter binding"
##
                      "adenine salvage"
##
                      "leucyl-tRNA aminoacylation"
##
##
                      "GMP biosynthetic process"
##
                      "response to antipsychotic drug"
                     "release of cytochrome c from mitochondria"
##
                      "cellular response to heat"
##
                      "cellular heat acclimation"
##
                      "regulation of phospholipid catabolic process"
##
##
                     "regulation of phospholipid biosynthetic process"
                      "protein deglutathionylation"
##
                      "glycine metabolic process"
##
                      "isoprenoid biosynthetic process"
##
                     "response to organic substance"
##
##
                      "protein maturation by iron-sulfur cluster transfer"
##
                      "response to insecticide"
                      "determination of bilateral symmetry"
##
                     "retinoic acid receptor signaling pathway involved in somitogenesis"
##
                      "negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic s
##
##
                      "response to water deprivation"
##
                      "glutamate biosynthetic process"
                      "arginine biosynthetic process"
##
                      "lymphocyte proliferation"
##
                      "selenium compound metabolic process"
##
                     "vacuolar transport"
##
##
                      "regulation of reactive oxygen species metabolic process"
##
                      "amino acid transmembrane transport"
                      "cellular response to potassium ion"
##
                     "short-chain fatty acid biosynthetic process"
##
                      "regulation of myotube differentiation"
##
##
                      "positive regulation of late endosome to lysosome transport"
                      "regulation of chaperone-mediated autophagy"
##
                      "NADPH regeneration"
##
                      "nucleoside metabolic process"
##
                      "adenine biosynthetic process"
##
                      "ketone body biosynthetic process"
##
                      "positive regulation of fast-twitch skeletal muscle fiber contraction"
##
##
                      "NADP biosynthetic process"
                      "positive regulation of PERK-mediated unfolded protein response"
##
##
                      "regulation of Arp2/3 complex-mediated actin nucleation"
                      "positive regulation of RNA polymerase II transcriptional preinitiation complex as
##
##
                      "positive regulation of cristae formation"
                      "positive regulation of free ubiquitin chain polymerization"
##
```

```
##
                      "very-low-density lipoprotein particle assembly"
##
                      "regulation of proton-transporting ATPase activity, rotational mechanism"
                      "glucose transmembrane transport"
##
                      "positive regulation of nucleotide-binding oligomerization domain containing 2 sig
##
##
                      "choline transport"
##
                     "detection of glucose"
                      "endocardial cushion morphogenesis"
##
                      "meiotic mismatch repair"
##
##
                      "activation of meiosis involved in egg activation"
                      "regulation of fertilization"
##
##
                      "negative regulation of monocyte extravasation"
                      "positive regulation of CD24 biosynthetic process"
##
                      "morphogenesis of embryonic epithelium"
##
                      "positive regulation of autophagosome maturation"
##
##
                      "axonogenesis involved in innervation"
##
                      "pentose biosynthetic process"
                      "positive regulation of ER to Golgi vesicle-mediated transport"
##
                      "negative regulation by host of viral genome replication"
##
##
                      "activation of protein kinase A activity"
                      "negative regulation of transcription by RNA polymerase III"
##
##
                      "angiotensin maturation"
                      "skeletal muscle tissue regeneration"
##
                      "positive regulation of cardiac muscle myoblast proliferation"
##
                      "response to zinc ion"
##
                     "ribonucleoside monophosphate biosynthetic process"
##
##
                      "sphingolipid catabolic process"
##
                      "inhibition of cysteine-type endopeptidase activity involved in apoptotic process"
                      "xylulose biosynthetic process"
##
                      "regulation of mitochondrial membrane permeability involved in programmed necrotic
##
                      "carboxylic acid metabolic process"
##
##
                      "cofactor transport"
##
                      "potassium ion transport"
                      "purine-containing compound salvage"
##
                      "branched-chain amino acid biosynthetic process"
##
##
                      "leucine biosynthetic process"
                     "valine biosynthetic process"
##
##
                      "positive regulation of inclusion body assembly"
##
                      "plasma membrane fusion"
                      "eye pigmentation"
##
                      "response to aluminum ion"
##
                      "glyoxylate metabolic process"
##
##
                      "negative regulation of endoplasmic reticulum calcium ion concentration"
                      "synaptic vesicle transport"
##
                      "response to low light intensity stimulus"
##
                      "response to tellurium ion"
##
                      "CDP-choline pathway"
##
                      "copper ion transport"
##
                      "energy reserve metabolic process"
##
##
                      "cellular aldehyde metabolic process"
                      "iron import into the mitochondrion"
##
##
                     "phosphate ion transmembrane transport"
                      "maintenance of DNA repeat elements"
##
##
                      "COPII-coated vesicle budding"
                      "Golgi calcium ion homeostasis"
##
```

```
##
                      "inositol biosynthetic process"
##
                      "phosphorelay signal transduction system"
##
                      "replication fork arrest"
                      "head morphogenesis"
##
                      "positive regulation of L-glutamate import across plasma membrane"
##
                      "C21-steroid hormone biosynthetic process"
##
                      "mitochondrial fusion"
##
                      "positive regulation by host of viral process"
##
##
                      "regulation of necrotic cell death"
                      "positive regulation of acrosome reaction"
##
##
                      "excretion"
                      "deoxyribonucleoside triphosphate metabolic process"
##
                      "regulation of protein catabolic process"
##
                      "9-cis-retinoic acid biosynthetic process"
##
##
                      "medium-chain fatty acid biosynthetic process"
##
                      "norepinephrine-epinephrine-mediated vasodilation involved in regulation of system
                      "heat generation"
##
                      "positive regulation by organism of apoptotic process in other organism involved in
##
##
                      "neuron-neuron synaptic transmission"
                      "lactation"
##
##
                     "response to manganese ion"
                      "protein catabolic process in the vacuole"
##
                      "negative regulation of smooth muscle contraction"
##
                      "protein peptidyl-prolyl isomerization"
##
                      "pentose-phosphate shunt, non-oxidative branch"
##
##
                      "peptidyl-cysteine S-trans-nitrosylation"
##
                      "response to interleukin-15"
                      "regulation of mitochondrion organization"
##
                      "positive regulation of protein serine/threonine kinase activity"
##
                      "cellular response to alkaloid"
##
##
                      "positive regulation of protein secretion"
##
                      "pentose-phosphate shunt, oxidative branch"
                      "homocysteine catabolic process"
##
                      "skeletal muscle fiber development"
##
##
                      "response to lithium ion"
                     "ER-nucleus signaling pathway"
##
##
                      "calcium ion transport from cytosol to endoplasmic reticulum"
##
                      "calcium ion import into sarcoplasmic reticulum"
                      "negative regulation of cAMP-dependent protein kinase activity"
##
                      "choline metabolic process"
##
                      "protein maturation"
##
##
                      "regulation of ubiquinone biosynthetic process"
                      "lysine catabolic process"
##
                      "intracellular distribution of mitochondria"
##
                      "protoporphyrinogen IX biosynthetic process"
##
                      "mRNA catabolic process"
##
                      "cellular response to nitrogen starvation"
##
                     "mitochondrial DNA replication"
##
##
                      "proteolysis"
                      "SNARE complex disassembly"
##
##
                     "dATP biosynthetic process"
                     "cellular response to potassium ion starvation"
##
##
                      "regulation of Golgi inheritance"
                      "B cell proliferation"
##
```

```
##
                      "glycerol metabolic process"
##
                      "fatty acid transport"
                      "polyamine homeostasis"
##
                      "postsynaptic actin cytoskeleton organization"
##
##
                      "sucrose biosynthetic process"
                     "Harderian gland development"
##
                      "malate-aspartate shuttle"
##
                      "regulation of cardiac conduction"
##
##
                      "behavioral response to formalin induced pain"
                      "malonyl-CoA biosynthetic process"
##
##
                      "liver development"
                      "regulation of small GTPase mediated signal transduction"
##
                      "mitochondrial respiratory chain complex assembly"
##
                      "negative regulation of cell volume"
##
##
                      "macroautophagy"
##
                      "positive regulation of telomere maintenance via telomerase"
                      "chronic inflammatory response to antigenic stimulus"
##
                      "defense response to fungus"
##
                      "negative regulation of necroptotic process"
##
                      "vesicle transport along microtubule"
##
##
                     "synaptic vesicle targeting"
                      "response to nicotine"
##
                      "positive regulation of oxidative stress-induced intrinsic apoptotic signaling pat
##
                      "programmed cell death involved in cell development"
##
                     "nucleobase-containing compound metabolic process"
##
##
                      "mitochondrial outer membrane permeabilization involved in programmed cell death"
##
                      "necroptotic process"
                      "positive regulation of cytokine-mediated signaling pathway"
##
                      "cellular glucuronidation"
##
                      "isoleucine catabolic process"
##
##
                      "neuronal action potential propagation"
                     "glycolytic process through fructose-6-phosphate"
##
                      "glycolysis from storage polysaccharide through glucose-1-phosphate"
##
##
                      "L-ascorbic acid biosynthetic process"
                      "NAD metabolic process"
##
##
                     "response to osmotic stress"
##
                      "cellular potassium ion homeostasis"
                      "oxidation-dependent protein catabolic process"
##
                      "negative regulation of oxidative phosphorylation uncoupler activity"
##
                     "regulation of retrograde trans-synaptic signaling by endocanabinoid"
##
                     "xenobiotic catabolic process"
##
                      "carbamoyl phosphate biosynthetic process"
##
                      "'de novo' UMP biosynthetic process"
##
                     "pyrimidine nucleoside biosynthetic process"
##
                      "box H/ACA snoRNP assembly"
##
                      "valyl-tRNA aminoacylation"
##
                      "late endosomal microautophagy"
##
                     "smooth muscle contraction involved in micturition"
##
                      "positive regulation of cilium assembly"
##
                      "autophagosome assembly"
##
##
                      "hydrogen peroxide biosynthetic process"
                      "positive regulation of microtubule nucleation"
##
                      "positive regulation of mitochondrial calcium ion concentration"
##
                      "regulation of amyloid precursor protein catabolic process"
##
```

```
"positive regulation of endoplasmic reticulum tubular network organization"
##
##
                      "negative regulation of establishment of protein localization to mitochondrion"
                      "cardiac septum morphogenesis"
##
                      "proline biosynthetic process"
##
##
                      "micturition"
##
                      "negative regulation of protein autoubiquitination"
                      "peptidyl-histidine phosphorylation"
##
                      "regulation of endothelial cell proliferation"
##
##
                      "response to mycotoxin"
                      "magnesium ion transport"
##
##
                      "transsulfuration"
                      "determination of pancreatic left/right asymmetry"
##
                      "phospholipid biosynthetic process"
##
                      "phosphate-containing compound metabolic process"
##
##
                      "response to redox state"
                      "negative regulation of DNA damage response, signal transduction by p53 class medi
##
                      "positive regulation of calcium-transporting ATPase activity"
##
##
                      "amelogenesis"
                      "glutamyl-tRNA aminoacylation"
##
                      "tRNA aminoacylation for mitochondrial protein translation"
##
##
                     "regulation of hydrogen peroxide-induced cell death"
                      "spermidine biosynthetic process"
##
                      "response to purine-containing compound"
##
                      "mitochondrial transport"
##
                     "face development"
##
##
                      "polyamine metabolic process"
                      "positive regulation of programmed cell death"
##
                      "regulation of calcium-mediated signaling"
##
                      "neutral amino acid transport"
##
                      "positive regulation of cAMP-dependent protein kinase activity"
##
##
                      "response to psychosocial stress"
##
                      "sperm capacitation"
                      "relaxation of skeletal muscle"
##
##
                      "'de novo' IMP biosynthetic process"
                      "cardiovascular system development"
##
##
                     "tetrahydrofolate metabolic process"
##
                      "regulation of DNA-binding transcription factor activity"
##
                      "positive regulation of androgen receptor activity"
                      "negative regulation of release of sequestered calcium ion into cytosol"
##
                      "purine ribonucleoside salvage"
##
                      "glutamate catabolic process"
##
##
                      "positive regulation of AMPA receptor activity"
                      "response to methylmercury"
##
                     "antigen processing and presentation"
##
                      "regulation of lysosomal lumen pH"
##
                      "response to epidermal growth factor"
##
                      "negative regulation of RNA-directed 5'-3' RNA polymerase activity"
##
                      "response to transition metal nanoparticle"
##
                      "positive regulation of IRE1-mediated unfolded protein response"
##
                      "protein transport"
##
##
                      "response to cortisol"
                      "neural fold formation"
##
##
                      "multicellular organism aging"
                      "acetyl-CoA biosynthetic process"
##
```

```
"response to cAMP"
##
##
                      "vascular smooth muscle contraction"
                     "regulation of synaptic vesicle transport"
##
                     "establishment of protein localization to mitochondrion"
##
                      "cardiac neural crest cell development involved in heart development"
##
                     "TORC2 signaling"
##
                      "cellular response to interferon-beta"
##
                      "activation of transmembrane receptor protein tyrosine kinase activity"
##
##
                      "positive regulation of cellular glucuronidation"
                      "killing of cells of other organism"
##
##
                      "regulation of cellular pH"
                      "positive regulation of endoribonuclease activity"
##
                      "somatic recombination of immunoglobulin gene segments"
##
                      "glyoxylate catabolic process"
##
##
                      "positive regulation of mucus secretion"
##
                      "mechanoreceptor differentiation"
##
                      "tetrahydrofolate interconversion"
                      "protein retention in Golgi apparatus"
##
##
                      "determination of left/right asymmetry in nervous system"
                      "mitochondrial calcium ion homeostasis"
##
##
                     "ion transport"
##
                      "regulation of cellular response to oxidative stress"
                      "ornithine metabolic process"
##
                      "positive regulation of secretion"
##
                      "positive regulation of vascular associated smooth muscle cell apoptotic process"
##
##
                      "negative regulation of MDA-5 signaling pathway"
##
                      "positive regulation of macrophage activation"
                      "4-hydroxyproline metabolic process"
##
                     "righting reflex"
##
                      "vitamin A metabolic process"
##
##
                      "negative regulation of protein homodimerization activity"
##
                     "skeletal muscle thin filament assembly"
                      "cell wall mannoprotein biosynthetic process"
##
##
                      "mannose to fructose-6-phosphate metabolic process"
                      "regulation of protein complex stability"
##
##
                     "autophagosome maturation"
##
                      "atrioventricular valve morphogenesis"
##
                      "cellular response to manganese ion"
                      "creatinine metabolic process"
##
                     "mitochondrion localization"
##
                      "glycolate catabolic process"
##
##
                      "regulation of cardiac muscle cell membrane potential"
                      "positive regulation of tumor necrosis factor-mediated signaling pathway"
##
                      "regulation of calcium ion-dependent exocytosis of neurotransmitter"
##
                      "regulation of cellular response to hypoxia"
##
                      "negative regulation of protein targeting to membrane"
##
                      "glycine biosynthetic process from serine"
##
                      "cellular response to tetrahydrofolate"
##
                      "pyrimidine nucleobase metabolic process"
##
                      "positive regulation of metanephric cap mesenchymal cell proliferation"
##
##
                      "aspartate transmembrane transport"
                      "4-hydroxyproline catabolic process"
##
##
                      "bradykinin catabolic process"
```

"creatine metabolic process"

```
##
                      "cellular response to puromycin"
##
                     "AMPA glutamate receptor clustering"
                      "positive regulation of phosphatidylcholine biosynthetic process"
##
                      "positive regulation of mitotic recombination"
##
##
                      "peptide catabolic process"
                      "skeletal muscle fiber adaptation"
##
                      "sulfate transmembrane transport"
##
                      "ribosomal protein import into nucleus"
##
##
                      "negative regulation of proteasomal protein catabolic process"
                     "early endosome to late endosome transport"
##
##
                      "succinyl-CoA pathway"
                      "serine family amino acid catabolic process"
##
                     "2-oxobutyrate biosynthetic process"
##
                     "Sertoli cell development"
##
##
                      "response to ethanol"
##
                      "daunorubicin metabolic process"
##
                      "doxorubicin metabolic process"
                      "regulation of IRE1-mediated unfolded protein response"
##
##
                      "purine nucleotide metabolic process"
##
                      "response to hydrostatic pressure"
##
                      "regulation of intracellular pH"
##
                      "protein import into peroxisome matrix"
                      "metabolic process"
##
                      "negative regulation of male germ cell proliferation"
##
                      "positive regulation of hydrogen peroxide-mediated programmed cell death"
##
##
                      "purine nucleobase biosynthetic process"
##
                      "Golgi reassembly"
                      "regulation of epidermis development"
##
                      "negative regulation of hypoxia-induced intrinsic apoptotic signaling pathway"
##
                      "diadenosine tetraphosphate biosynthetic process"
##
##
                      "amyloid-beta formation"
##
                      "progesterone metabolic process"
                      "locomotory exploration behavior"
##
##
                      "RNA stabilization"
##
                      "oxygen homeostasis"
##
                     "cellular amino acid catabolic process"
##
                     "response to vitamin E"
##
                     "intracellular protein transport"
##
                      "dTMP biosynthetic process"
                     "tetrahydrobiopterin biosynthetic process"
##
                      "protein targeting to lysosome involved in chaperone-mediated autophagy"
##
##
                      "olfactory nerve development"
                      "regulation of acid-sensing ion channel activity"
##
                      "negative regulation of supramolecular fiber organization"
##
                      "regulation of protein import"
##
                      "chaperone-mediated autophagy translocation complex disassembly"
##
##
                      "slow axonal transport"
##
                      "positive regulation of interleukin-12 production"
##
                      "fibroblast apoptotic process"
                      "phospholipid homeostasis"
##
##
                      "positive regulation of endocytosis"
                      "positive regulation of GTP binding"
##
                      "regulation of transcription initiation from RNA polymerase II promoter"
##
                      "negative regulation of ion transmembrane transport"
##
```

```
##
                      "regulation of nucleotide-binding oligomerization domain containing signaling path
##
                      "response to amine"
                      "protein O-linked mannosylation"
##
                      "D-serine biosynthetic process"
##
##
                      "vascular transport"
##
                     "milk ejection reflex"
                      "negative regulation of insulin secretion"
##
                      "regulation of protein folding in endoplasmic reticulum"
##
##
                      "stress response to metal ion"
                     "regulation of ATF6-mediated unfolded protein response"
##
##
                      "regulation of PERK-mediated unfolded protein response"
                      "autophagy of mitochondrion"
##
                      "nucleosome assembly"
##
                      "central nervous system myelin formation"
##
##
                      "protein K27-linked deubiquitination"
##
                      "response to type I interferon"
                     "epithelial cell differentiation"
##
                      "response to methamphetamine hydrochloride"
##
                      "Notch receptor processing, ligand-dependent"
##
                      "regulation of cytokine secretion involved in immune response"
##
##
                     "atrial ventricular junction remodeling"
                      "positive regulation of cell communication by chemical coupling"
##
                      "positive regulation of telomerase activity"
##
                      "chromatin silencing"
##
                     "regulation of synapse organization"
##
##
                      "positive regulation of monocyte differentiation"
##
                      "enzyme active site formation via L-cysteine sulfinic acid"
                      "cellular response to glyoxal"
##
                      "peptidyl-cysteine deglycation"
##
                      "peptidyl-arginine deglycation"
##
##
                      "peptidyl-lysine deglycation"
                      "protein deglycation, glyoxal removal"
##
                      "protein deglycation, methylglyoxal removal"
##
                      "glutathione deglycation"
##
                      "regulation of TRAIL receptor biosynthetic process"
##
                      "glycolate biosynthetic process"
##
##
                      "detoxification of mercury ion"
##
                      "guanine deglycation"
                      "guanine deglycation, methylglyoxal removal"
##
                      "guanine deglycation, glyoxal removal"
##
                      "regulation of supramolecular fiber organization"
##
                      "negative regulation of death-inducing signaling complex assembly"
##
                      "negative regulation of TRAIL-activated apoptotic signaling pathway"
##
                      "positive regulation of pyrroline-5-carboxylate reductase activity"
##
                      "positive regulation of tyrosine 3-monooxygenase activity"
##
                      "glyoxal metabolic process"
##
                      "positive regulation of L-dopa biosynthetic process"
##
                      "positive regulation of L-dopa decarboxylase activity"
##
                      "positive regulation of oxidative phosphorylation uncoupler activity"
##
                      "D-serine metabolic process"
##
##
                      "peroxisome organization"
                      "diet induced thermogenesis"
##
##
                      "positive regulation of interleukin-10 production"
##
                      "postsynaptic neurotransmitter receptor diffusion trapping"
```

```
##
                      "ureter maturation"
##
                     "C21-steroid hormone metabolic process"
                     "positive regulation of interleukin-8 production"
##
                      "retrograde vesicle-mediated transport, Golgi to ER"
##
##
                      "maintenance of protein localization in endoplasmic reticulum"
##
                     "Mo-molybdopterin cofactor biosynthetic process"
                      "leading edge cell differentiation"
##
                      "phosphatidylcholine catabolic process"
##
##
                      "positive regulation of pinocytosis"
                      "cell communication by electrical coupling involved in cardiac conduction"
##
##
                      "positive regulation of Wnt signaling pathway"
                      "TRAM-dependent toll-like receptor 4 signaling pathway"
##
                      "regulation of protein ubiquitination"
##
                      "embryonic eye morphogenesis"
##
##
                      "protein insertion into mitochondrial membrane"
##
                      "positive regulation of calcium ion-dependent exocytosis"
                      "regulation of stress-activated MAPK cascade"
##
                      "regulation of T cell differentiation in thymus"
##
                      "negative regulation of transcription from RNA polymerase II promoter in response
##
                      "positive regulation of striated muscle tissue development"
##
##
                      "negative regulation of hydrogen peroxide-induced cell death"
                      "neural plate mediolateral regionalization"
##
                      "paraxial mesoderm structural organization"
##
                      "positive regulation of cardiac ventricle development"
##
                     "fibrous ring of heart morphogenesis"
##
##
                      "regulation of neural crest cell differentiation"
##
                      "UMP biosynthetic process"
                      "chondrocyte hypertrophy"
##
                      "positive regulation of proteasomal ubiquitin-dependent protein catabolic process"
##
                      "chaperone-mediated protein transport involved in chaperone-mediated autophagy"
##
##
                      "glycerol biosynthetic process"
##
                      "anterograde axonal transport of mitochondrion"
                      "otolith development"
##
##
                      "ketone body catabolic process"
##
                      "negative regulation of programmed cell death"
##
                     "negative regulation of natural killer cell differentiation involved in immune res
##
                      "growth of symbiont in host"
##
                      "calcium ion import"
                      "cellular response to arsenic-containing substance"
##
                     "negative regulation of cytoplasmic translation"
##
                      "I-kappaB phosphorylation"
##
##
                      "embryonic camera-type eye development"
                      "epididymis development"
##
                      "response to organic cyclic compound"
##
                      "cell-matrix adhesion involved in ameboidal cell migration"
##
                      "protein localization to cilium"
##
##
                      "male meiosis I"
                     "maternal placenta development"
##
##
                      "amyloid fibril formation"
                      "B cell negative selection"
##
##
                     "aspartyl-tRNA aminoacylation"
                      "blood vessel development"
##
##
                      "oxygen transport"
```

##

"regulation of cardiac muscle cell apoptotic process"

```
##
                      "leukocyte tethering or rolling"
##
                      "glycine biosynthetic process, by transamination of glyoxylate"
                      "actin filament severing"
##
                     "negative regulation of protein dephosphorylation"
##
##
                      "steroid biosynthetic process"
##
                     "Notch receptor processing"
                      "innate immune response in mucosa"
##
                      "positive regulation of apoptotic DNA fragmentation"
##
##
                      "negative regulation of IRE1-mediated unfolded protein response"
                      "cellular response to jasmonic acid stimulus"
##
##
                      "calcium ion transmembrane transport"
                      "regulation of protein transport"
##
                     "xenobiotic metabolic process"
##
                      "regulation of RIG-I signaling pathway"
##
##
                      "peptidoglycan catabolic process"
##
                      "oxalic acid secretion"
                     "interaction with symbiont"
##
                      "negative regulation of ryanodine-sensitive calcium-release channel activity"
##
##
                      "pyrimidine dimer repair"
                      "cerebellum development"
##
##
                     "Golgi organization"
                      "positive regulation of peptidase activity"
##
                      "negative regulation of cholesterol biosynthetic process"
##
                      "histidyl-tRNA aminoacylation"
##
                     "response to nutrient"
##
##
                      "positive regulation of axon regeneration"
##
                      "valine metabolic process"
                      "negative regulation of neuron apoptotic process"
##
                      "negative regulation of hematopoietic stem cell differentiation"
##
                      "geranyl diphosphate biosynthetic process"
##
                      "farnesyl diphosphate biosynthetic process"
##
##
                     "neurotransmitter receptor localization to postsynaptic specialization membrane"
                      "protein heterooligomerization"
##
                      "negative regulation of transcription from RNA polymerase II promoter in response
##
##
                      "clathrin-dependent extracellular exosome endocytosis"
##
                     "tryptophan catabolic process"
##
                      "glycogen metabolic process"
##
                      "response to axon injury"
                      "peptidyl-arginine methylation"
##
                     "'de novo' NAD biosynthetic process from aspartate"
##
                      "response to antibiotic"
##
##
                      "oxaloacetate(2-) transmembrane transport"
                      "xenobiotic glucuronidation"
##
                      "methylglyoxal metabolic process"
##
                      "regulation of protein tyrosine kinase activity"
##
##
                      "flavonoid glucuronidation"
                      "dicarboxylic acid transport"
##
                     "IRE1-mediated unfolded protein response"
##
##
                      "negative regulation of apolipoprotein binding"
                      "response to high light intensity"
##
##
                      "polyamine biosynthetic process"
                      "cytosolic transport"
##
##
                      "protein arginylation"
                      "cellular response to nicotine"
##
```

```
##
                      "cardiac neuron differentiation"
##
                      "protein targeting to lysosome"
##
                      "chaperone-mediated protein folding"
                      "negative regulation of protein autophosphorylation"
##
##
                      "protein K63-linked deubiquitination"
                      "response to biotic stimulus"
##
                      "drug metabolic process"
##
                      "cellular response to cycloheximide"
##
##
                      "regulation of removal of superoxide radicals"
                     "intrinsic apoptotic signaling pathway in response to hydrogen peroxide"
##
##
                      "negative regulation of oxidoreductase activity"
                      "positive regulation of interferon-alpha production"
##
                      "regulation of NADP metabolic process"
##
                      "cerebellar granular layer development"
##
##
                      "growth plate cartilage chondrocyte differentiation"
##
                      "rRNA import into mitochondrion"
                     "kynurenine metabolic process"
##
                      "thiosulfate transport"
##
##
                      "oxaloacetate transport"
                      "malate transmembrane transport"
##
##
                     "positive regulation of superoxide dismutase activity"
                      "snoRNA guided rRNA pseudouridine synthesis"
##
                      "regulation of cell cycle G1/S phase transition"
##
                      "positive regulation of immunoglobulin secretion"
##
##
                      "regulation of membrane potential"
##
                      "development of secondary male sexual characteristics"
##
                      "mast cell migration"
                      "succinate transmembrane transport"
##
                      "positive regulation of flagellated sperm motility"
##
                      "lysobisphosphatidic acid metabolic process"
##
                      "metanephric glomerular visceral epithelial cell development"
##
##
                     "response to glucose"
                      "actin filament network formation"
##
                      "protein localization to endoplasmic reticulum exit site"
##
##
                      "striatum development"
                     "superoxide anion generation"
##
##
                      "ceramide metabolic process"
##
                      "negative regulation of mitochondrial membrane permeability involved in apoptotic
                      "regulation of receptor internalization"
##
                     "negative regulation of bone development"
##
                      "negative regulation of calcium-dependent ATPase activity"
##
                      "negative regulation of DNA catabolic process"
##
                      "positive regulation of dUTP diphosphatase activity"
##
                      "negative regulation of leucine-tRNA ligase activity"
##
                      "L-glutamate transmembrane transport"
##
                      "retrograde transport, endosome to Golgi"
##
                      "regulation of cysteine-type endopeptidase activity"
##
                     "response to interferon-beta"
##
                      "regulation of phosphatidylinositol 3-kinase signaling"
##
                      "mitochondrial fission"
##
##
                     "killing by host of symbiont cells"
                      "modulation by host of viral transcription"
##
##
                      "positive regulation of norepinephrine uptake"
                      "cellular response to cytochalasin B"
##
```

```
##
                      "lysyl-tRNA aminoacylation"
##
                      "cellular response to starvation"
                      "basophil activation involved in immune response"
##
                      "mesendoderm development"
##
                      "cellular response to glucagon stimulus"
##
##
                      "argininosuccinate metabolic process"
                      "purine nucleotide biosynthetic process"
##
                      "negative regulation of RNA polymerase II regulatory region sequence-specific DNA
##
##
                      "cellular response to ammonium ion"
                      "synaptic target recognition"
##
##
                      "spermatid differentiation"
                      "steroid metabolic process"
##
                      "cellular response to leukemia inhibitory factor"
##
                      "peptide amidation"
##
##
                      "regulation of dendritic spine morphogenesis"
##
                      "cellular response to oleic acid"
                     "mitochondrial membrane fusion"
##
##
                     "folic acid metabolic process"
##
                      "negative regulation of glial cell proliferation"
                      "negative regulation of RNA biosynthetic process"
##
##
                     "GPI anchor biosynthetic process"
                      "L-serine biosynthetic process"
##
                      "positive regulation of lipid kinase activity"
##
                      "regulation of activation-induced cell death of T cells"
##
                     "regulation of CD8-positive, alpha-beta cytotoxic T cell extravasation"
##
##
                      "protein-FAD linkage"
##
                      "triglyceride biosynthetic process"
                      "inner ear morphogenesis"
##
                      "positive regulation of synaptic vesicle endocytosis"
##
                      "peptidyl-lysine modification to peptidyl-hypusine"
##
##
                      "response to 3,3',5-triiodo-L-thyronine"
##
                     "cerebellar Purkinje cell differentiation"
                      "post-embryonic animal organ development"
##
##
                      "cell activation involved in immune response"
                      "protein localization to endoplasmic reticulum tubular network"
##
##
                      "response to cobalamin"
##
                      "tRNA nucleoside ribose methylation"
##
                      "negative regulation of erythrocyte differentiation"
                      "cellular glucose homeostasis"
##
                     "response to ischemia"
##
                     "negative regulation of receptor internalization"
##
                     "RNA-dependent DNA biosynthetic process"
##
                     "cilium movement involved in cell motility"
##
                     "scaRNA localization to Cajal body"
##
                      "development of secondary female sexual characteristics"
##
                      "cellular response to interleukin-4"
##
                      "antigen processing and presentation of endogenous antigen"
##
                      "oocyte maturation"
##
##
                      "glutaminyl-tRNA aminoacylation"
                      "renal water homeostasis"
##
##
                      "mRNA cleavage involved in gene silencing by miRNA"
                      "protein depalmitoylation"
##
##
                      "diapedesis"
```

"arginine catabolic process to ornithine"

```
"positive regulation of sodium ion export across plasma membrane"
##
##
                      "translational termination"
                     "reactive oxygen species biosynthetic process"
##
                     "allantoin metabolic process"
##
                     "isoleucine metabolic process"
##
                     "cellular ketone metabolic process"
##
                      "trachea formation"
##
                      "negative regulation of double-stranded telomeric DNA binding"
##
##
                      "phenylalanyl-tRNA aminoacylation"
                      "negative regulation of endoribonuclease activity"
##
##
                      "placenta development"
                      "glycerophospholipid catabolic process"
##
                      "amino acid transport"
##
                      "cerebellar granule cell differentiation"
##
##
                      "cellular response to reactive oxygen species"
##
                      "cerebellum structural organization"
##
                     "protein targeting to ER"
                      "nose morphogenesis"
##
                      "myeloid cell development"
##
                      "response to extracellular stimulus"
##
##
                      "positive regulation of protein insertion into mitochondrial membrane involved in
##
                      "regulation of epithelial cell differentiation"
                      "nitrobenzene metabolic process"
##
                      "C-terminal protein lipidation"
##
                     "mitochondrial proton-transporting ATP synthase complex assembly"
##
##
                      "negative regulation of protein localization to nucleolus"
##
                      "Schwann cell proliferation"
                      "negative regulation of fatty acid biosynthetic process"
##
                      "pseudouridine synthesis"
##
                      "glycine betaine transport"
##
                      "alanine transport"
##
                     "nerve growth factor signaling pathway"
##
                      "regulation of Rho protein signal transduction"
##
                      "positive regulation of retrograde protein transport, ER to cytosol"
##
                      "purine nucleobase metabolic process"
##
##
                      "regulation of synapse maturation"
                     "intermediate-density lipoprotein particle remodeling"
##
##
                      "anterograde dendritic transport of mitochondrion"
                      "cellular response to tunicamycin"
##
                     "ATF6-mediated unfolded protein response"
##
                      "cellular response to topologically incorrect protein"
##
                      "polyubiquitinated misfolded protein transport"
##
                      "Hsp90 deacetylation"
##
                     "lung morphogenesis"
##
                      "chaperone-mediated autophagy"
##
                      "negative regulation of reactive oxygen species metabolic process"
##
                     "L-ascorbic acid metabolic process"
##
##
                     "lactate biosynthetic process"
                      "regulation of autophagy of mitochondrion"
##
                      "caveolin-mediated endocytosis"
##
                     "ergosterol biosynthetic process"
##
                     "endosome to lysosome transport via multivesicular body sorting pathway"
##
                      "telomerase holoenzyme complex assembly"
##
                      "cellular response to hydrogen sulfide"
##
```

```
##
                      "cellular response to ATP"
##
                     "nucleoside monophosphate phosphorylation"
                     "mitochondrial transcription"
##
                      "epithelial cell proliferation"
##
##
                      "nitric oxide biosynthetic process"
##
                     "cellular response to cadmium ion"
                      "cellular response to organonitrogen compound"
##
                      "positive regulation of intracellular cholesterol transport"
##
##
                      "lipid hydroperoxide transport"
                      "hydrogen peroxide metabolic process"
##
##
                      "cellular response to trichostatin A"
                      "protein deubiquitination"
##
                      "regulation of GTP binding"
##
                      "regulation of cytoplasmic translational fidelity"
##
##
                      "positive regulation of double-strand break repair via homologous recombination"
##
                      "regulation of protein oligomerization"
                      "aggresome assembly"
##
                      "protein export from nucleus"
##
                      "mitochondrial membrane fission"
##
                      "fatty-acyl-CoA biosynthetic process"
##
##
                     "behavioral response to cocaine"
                      "aldehyde catabolic process"
##
                      "positive regulation of protein kinase A signaling"
##
                      "positive regulation of phosphatase activity"
##
                      "peptidyl-diphthamide biosynthetic process from peptidyl-histidine"
##
##
                      "protein neddylation"
##
                      "response to isolation stress"
                      "glomerular mesangial cell development"
##
                      "peroxisome fission"
##
                      "dendritic spine development"
##
##
                      "platelet morphogenesis"
                      "sensory perception of sound"
##
                      "establishment or maintenance of transmembrane electrochemical gradient"
##
                      "cholesterol biosynthetic process"
##
##
                      "cytosine metabolic process"
                      "protein N-linked glycosylation via asparagine"
##
##
                      "cellular response to amine stimulus"
##
                      "receptor localization to synapse"
                      "meiotic chromosome movement towards spindle pole"
##
                     "meiotic cytokinesis"
##
                      "positive regulation of blood vessel remodeling"
##
##
                      "granulocyte colony-stimulating factor signaling pathway"
                      "calcium export from the mitochondrion"
##
                     "alpha-ketoglutarate transport"
##
                      "response to electrical stimulus"
##
                      "negative regulation of flagellated sperm motility"
##
                      "D-glucuronate catabolic process"
##
                      "negative regulation of glucocorticoid receptor signaling pathway"
##
                      "negative regulation of intrinsic apoptotic signaling pathway in response to hydro
##
                      "epithelial cell apoptotic process"
##
##
                      "response to phenylpropanoid"
                      "regulation of protein autophosphorylation"
##
                      "negative regulation of estrogen receptor binding"
##
```

"neuron apoptotic process"

```
"pyrimidine nucleoside metabolic process"
##
##
                      "mitotic spindle disassembly"
                     "protein autoprocessing"
##
                      "activation-induced cell death of T cells"
##
##
                      "negative regulation of meiotic nuclear division"
##
                      "molybdopterin cofactor biosynthetic process"
                      "positive regulation of Wnt-mediated midbrain dopaminergic neuron differentiation"
##
                      "negative regulation of JUN kinase activity"
##
##
                      "negative regulation of cardiac muscle cell apoptotic process"
                     "tRNA import into mitochondrion"
##
##
                      "mitochondrial outer membrane translocase complex assembly"
                      "nucleologenesis"
##
##
                      "heart formation"
                      "negative regulation of transcription from RNA polymerase II promoter in response
##
##
                      "chronic inflammatory response"
##
                      "cGMP-mediated signaling"
                     "positive regulation of histone deacetylase activity"
##
##
                      "ossification"
##
                     "response to muscle inactivity"
##
                     "antibacterial humoral response"
##
                     "purine ribonucleotide catabolic process"
                      "bilirubin conjugation"
##
                      "protein-containing complex disassembly"
##
                      "negative regulation of ripoptosome assembly involved in necroptotic process"
##
                     "cellular response to thapsigargin"
##
##
                      "response to flavonoid"
##
                      "positive regulation of trophoblast cell migration"
                      "regulation of dopamine secretion"
##
                      "response to oxygen radical"
##
                      "aortic valve development"
##
##
                      "pulmonary valve development"
##
                      "regulation of kidney size"
                      "negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phos
##
                     "Wnt signalosome assembly"
##
                      "determination of liver left/right asymmetry"
##
##
                     "'de novo' pyrimidine nucleobase biosynthetic process"
##
                     "Golgi vesicle docking"
##
                     "formate metabolic process"
                      "actin filament uncapping"
##
                     "dynamin family protein polymerization involved in mitochondrial fission"
##
                      "regulation of neuron apoptotic process"
##
##
                     "flavin adenine dinucleotide catabolic process"
                      "positive regulation of protein K63-linked deubiquitination"
##
                      "positive regulation of Lys63-specific deubiquitinase activity"
##
                      "behavioral response to pain"
##
                      "negative regulation of mitochondrial fusion"
##
                      "positive regulation of skeletal muscle contraction by regulation of release of se-
##
                      "negative stranded viral RNA replication"
##
##
                      "arachidonic acid metabolic process"
                      "regulation of branching morphogenesis of a nerve"
##
##
                     "calcium import into the mitochondrion"
                      "regulation of retrograde transport, endosome to Golgi"
##
                      "positive regulation of NMDA glutamate receptor activity"
##
```

"signal transduction by protein phosphorylation"

```
##
                      "pinocytosis"
##
                      "nucleotide metabolic process"
##
                      "protein localization to nuclear pore"
                      "mitochondrial ncRNA surveillance"
##
##
                      "mitochondrial mRNA surveillance"
##
                      "mitochondrial RNA surveillance"
                      "calcineurin-NFAT signaling cascade"
##
                      "regulation of neuroblast proliferation"
##
##
                      "glucosylceramide catabolic process"
                      "ureter urothelium development"
##
##
                      "synaptonemal complex disassembly"
                      "positive regulation of necroptotic process"
##
                      "synaptic vesicle recycling via endosome"
##
                      "neurofilament cytoskeleton organization"
##
##
                      "positive regulation of protein localization to chromosome, telomeric region"
##
                      "regulation of fatty acid oxidation"
                     "cellular response to redox state"
##
                      "positive regulation of ubiquitin-specific protease activity"
##
                      "response to clozapine"
##
                      "positive regulation of membrane potential"
##
##
                      "thymocyte apoptotic process"
                      "regulation of T cell mediated cytotoxicity"
##
                      "maintenance of mitochondrion location"
##
                      "cell adhesion molecule production"
##
                      "post-embryonic camera-type eye morphogenesis"
##
##
                      "protein depolymerization"
##
                      "lipid catabolic process"
                      "negative regulation of transforming growth factor beta activation"
##
                      "citrulline metabolic process"
##
                      "mitochondrial protein processing"
##
##
                      "positive regulation of metallopeptidase activity"
##
                      "cellular detoxification of nitrogen compound"
                      "regulation of aerobic respiration"
##
                      "protein-pyridoxal-5-phosphate linkage via peptidyl-N6-pyridoxal phosphate-L-lysin
##
                      "regulation of potassium ion transport"
##
                      "protein sulfhydration"
##
##
                      "glyceraldehyde-3-phosphate biosynthetic process"
##
                      "'de novo' L-methionine biosynthetic process"
                      "positive regulation of aortic smooth muscle cell differentiation"
##
                     "nail development"
##
                      "cellular response to Thyroid stimulating hormone"
##
                      "regulation of organ growth"
##
                      "peripheral nervous system myelin maintenance"
##
                      "protein-DNA complex disassembly"
##
                      "negative regulation of gluconeogenesis"
##
                      "response to temperature stimulus"
##
                      "negative regulation of reciprocal meiotic recombination"
##
                      "long-chain fatty acid import"
##
##
                      "chromosome organization"
                      "myeloid cell homeostasis"
##
##
                      "negative regulation of sequestering of calcium ion"
                      "negative regulation of chemokine (C-C motif) ligand 4 production"
##
##
                      "negative regulation of interleukin-17 secretion"
                      "negative regulation of activated CD8-positive, alpha-beta T cell apoptotic proces
##
```

```
##
                     "negative regulation of parkin-mediated stimulation of mitophagy in response to mi
##
                     "regulation of endosome size"
                     "regulation of peroxisome organization"
##
                     "positive regulation of potassium ion import"
##
                     "sympathetic nervous system development"
##
##
                     "negative regulation of complement-dependent cytotoxicity"
                     "post-translational protein modification"
##
                     "virion attachment to host cell"
##
##
                     "cellular response to arsenite ion"
                     "synaptic vesicle maturation"
##
##
                     "protein metabolic process"
                     "establishment of protein localization to peroxisome"
##
                     "negative regulation of lipid binding"
##
                     "negative regulation of cell growth"
##
##
                     "negative regulation of cysteine-type endopeptidase activity involved in apoptotic
                     "positive regulation of synaptic vesicle exocytosis"
##
                     "negative regulation of hydrogen peroxide metabolic process"
##
                     "negative regulation of multicellular organism growth"
##
                     "positive regulation of endopeptidase activity"
##
                     "isoleucyl-tRNA aminoacylation"
##
##
                     "nitrate assimilation"
                     "positive regulation of protein import into nucleus, translocation"
##
                     "meiotic gene conversion"
##
                     "negative regulation of protein homotetramerization"
##
                     "positive regulation of endocytic recycling"
##
                     "release of sequestered calcium ion into cytosol by sarcoplasmic reticulum"
##
##
                     "purine ribonucleotide interconversion"
                     "lamellipodium assembly involved in ameboidal cell migration"
##
                     "extension of a leading process involved in cell motility in cerebral cortex radia
##
                     "regulation of toll-like receptor 9 signaling pathway"
##
                     "amyloid precursor protein metabolic process"
##
##
                     "actomyosin contractile ring contraction"
                     "positive regulation of insulin secretion"
##
                     "vesicle uncoating"
##
                     "ESCRT complex disassembly"
##
                     "folic acid-containing compound biosynthetic process"
##
                     "positive regulation of apoptotic process involved in morphogenesis"
##
##
                     "cerebellar cortex development"
                     "negative regulation of extracellular matrix constituent secretion"
##
                     "Peyer's patch development"
##
                     "B cell mediated immunity"
##
                     "positive regulation of ligase activity"
##
                     "cellular response to menadione"
##
                     "nucleus localization"
##
                     "protein localization to synapse"
##
                     "positive regulation of natural killer cell proliferation"
##
                     "endoplasmic reticulum-Golgi intermediate compartment organization"
##
                     "positive regulation of mitochondrial RNA catabolic process"
##
                     "mitochondrial RNA 3'-end processing"
##
                     "positive regulation of muscle contraction"
##
                     "interleukin-8 secretion"
##
                     "response to cocaine"
##
                     "positive regulation of oxidative phosphorylation"
##
                     "peptidyl-cysteine methylation"
##
```

```
##
                      "heterocycle metabolic process"
##
                      "negative regulation of stress-activated MAPK cascade"
                      "DNA metabolic process"
##
                      "lactate metabolic process"
##
##
                      "intra-Golgi vesicle-mediated transport"
##
                     "negative regulation of short-term synaptic potentiation"
                      "farnesol catabolic process"
##
                     "Mullerian duct regression"
##
##
                      "insulin catabolic process"
                      "apoptotic process involved in morphogenesis"
##
##
                      "peptidyl-arginine methylation, to asymmetrical-dimethyl arginine"
                      "negative regulation of monocyte differentiation"
##
                      "regulation of gliogenesis"
##
                      "coumarin catabolic process"
##
##
                      "phosphocreatine biosynthetic process"
##
                      "negative regulation of cell division"
                     "L-phenylalanine catabolic process"
##
                      "endocardial cushion formation"
##
##
                      "mitochondrion distribution"
                      "intrinsic apoptotic signaling pathway"
##
##
                     "detoxification of copper ion"
                      "sphingolipid biosynthetic process"
##
                      "cAMP-mediated signaling"
##
                      "hypoxia-inducible factor-1alpha signaling pathway"
##
                      "positive regulation of lipid biosynthetic process"
##
##
                      "positive regulation of ribosomal small subunit export from nucleus"
##
                      "negative regulation of RIG-I signaling pathway"
                      "positive regulation of cyclin-dependent protein kinase activity"
##
                      "positive regulation of dendritic spine morphogenesis"
##
                      "neurotransmitter uptake"
##
                      "'de novo' posttranslational protein folding"
##
##
                      "proteasome regulatory particle assembly"
                      "citrate transport"
##
##
                      "heme catabolic process"
                      "positive regulation of transcription involved in G2/M transition of mitotic cell
##
##
                      "prostaglandin metabolic process"
##
                      "mRNA metabolic process"
##
                      "drug catabolic process"
                      "regulation of ossification"
##
                     "ubiquitin-dependent ERAD pathway"
##
                      "transcriptional activation by promoter-enhancer looping"
##
                      "male meiotic nuclear division"
##
                      "contact inhibition"
##
                      "peripheral nervous system axon regeneration"
##
                      "positive regulation of release of cytochrome c from mitochondria"
##
##
                      "tubulin deacetylation"
                      "Golgi to plasma membrane transport"
##
                      "tyrosine catabolic process"
##
                      "skeletal muscle acetylcholine-gated channel clustering"
##
                      "box C/D snoRNP assembly"
##
##
                      "hydrogen sulfide metabolic process"
                      "response to hydroperoxide"
##
##
                      "hormone catabolic process"
                      "negative regulation of protein complex disassembly"
##
```

```
##
                      "auditory receptor cell stereocilium organization"
##
                     "mature ribosome assembly"
##
                     "protein stabilization"
                      "nucleotide-excision repair involved in interstrand cross-link repair"
##
##
                      "activation of MAPKKK activity"
##
                     "intermediate mesoderm development"
                      "mesangial cell development"
##
                      "specification of anterior mesonephric tubule identity"
##
##
                      "specification of posterior mesonephric tubule identity"
                      "negative regulation of nephron tubule epithelial cell differentiation"
##
##
                      "renal vesicle progenitor cell differentiation"
                      "metanephric nephron tubule development"
##
                      "metanephric glomerulus vasculature development"
##
                      "metanephric interstitial fibroblast development"
##
##
                      "pattern specification involved in metanephros development"
                      "metanephric cap mesenchymal cell proliferation involved in metanephros developmen
##
                     "cellular response to drug"
##
                      "acetyl-CoA catabolic process"
##
                     "metanephric proximal convoluted tubule development"
##
                      "ketone body metabolic process"
##
##
                      "propionyl-CoA biosynthetic process"
                      "positive regulation of natural killer cell differentiation"
##
                      "outer ear morphogenesis"
##
                      "meiosis I"
##
                     "response to ketamine"
##
##
                      "cellular response to monosodium glutamate"
##
                      "response to Aroclor 1254"
                      "regulation of hippo signaling"
##
                     "response to hormone"
##
                      "rRNA 2'-O-methylation"
##
##
                      "folic acid catabolic process"
                     "sarcoplasmic reticulum calcium ion transport"
##
                     "telomere localization"
##
##
                      "microtubule cytoskeleton organization involved in homologous chromosome segregati
                      "chromosome localization to nuclear envelope involved in homologous chromosome seg
##
##
                     "positive regulation of acetylcholine metabolic process"
##
                      "glucocorticoid catabolic process"
##
                      "regulation of proteolysis"
                      "ether lipid biosynthetic process"
##
                      "posttranscriptional gene silencing by RNA"
##
                      "protein localization to perinuclear region of cytoplasm"
##
                      "regulation of histone H2B conserved C-terminal lysine ubiquitination"
##
                      "spindle localization"
##
                      "bone maturation"
##
                      "regulation of microtubule-based movement"
##
                      "regulation of lateral mesodermal cell fate specification"
##
                     "intra-S DNA damage checkpoint"
##
                     "taurine metabolic process"
##
                      "tryptophanyl-tRNA aminoacylation"
##
                      "protoporphyrinogen IX biosynthetic process from glutamate"
##
##
                      "positive regulation of transcription initiation from RNA polymerase II promoter"
                      "snRNA import into nucleus"
##
                      "maintenance of postsynaptic specialization structure"
##
```

##

"positive regulation of supramolecular fiber organization"

```
"regulation of adenylate cyclase activity"
##
                      "negative regulation of macrophage inflammatory protein 1 alpha production"
##
                      "response to interleukin-4"
##
                      "regulation of DNA double-strand break processing"
##
##
                      "brainstem development"
                     "olfactory bulb development"
##
                      "catecholamine biosynthetic process"
##
                      "desensitization of G protein-coupled receptor signaling pathway by arrestin"
##
##
                      "positive regulation of xenophagy"
                      "positive regulation of mitochondrial fission"
##
##
                      "regulation of cellular response to heat"
                      "regulation of phosphoprotein phosphatase activity"
##
                      "negative regulation of GTP binding"
##
                      "amine metabolic process"
##
##
                      "regulation of early endosome to late endosome transport"
##
                      "transition between fast and slow fiber"
##
                     "ketone catabolic process"
                     "cellular ketone body metabolic process"
##
##
                      "positive regulation of plasminogen activation"
##
                      "learning"
##
                     "cellular amino acid metabolic process"
##
                      "ribonucleoprotein complex assembly"
                      "negative regulation of rRNA processing"
##
                      "regulation of histone H3-K9 acetylation"
##
                     "axonemal central apparatus assembly"
##
##
                      "asparaginyl-tRNA aminoacylation"
##
                      "arsenite transport"
                      "negative regulation of guanylate cyclase activity"
##
##
                      "endoplasmic reticulum stress-induced pre-emptive quality control"
                      "L-alanine catabolic process"
##
##
                      "cellular response to antibiotic"
##
                      "positive regulation of sodium ion transmembrane transporter activity"
                      "cellular response to calcium ion"
##
##
                      "pattern recognition receptor signaling pathway"
##
                      "detection of chemical stimulus"
                     "positive regulation of protein linear polyubiquitination"
##
##
                      "positive regulation of vascular associated smooth muscle cell migration"
##
                      "positive regulation of erythrocyte differentiation"
                      "retina homeostasis"
##
##
                     "positive regulation of long-term synaptic depression"
                      "lactate catabolic process"
##
##
                      "endothelium development"
                      "regulation of sodium ion transmembrane transporter activity"
##
                     "RNA destabilization"
##
                      "biological_process"
##
##
                      "NAD biosynthetic process"
                      "monoterpenoid metabolic process"
##
                     "regulation of gastrulation"
##
                      "dihydrofolate metabolic process"
##
                      "positive regulation of non-canonical Wnt signaling pathway"
##
##
                      "flagellated sperm motility"
                      "regulation of inositol 1,4,5-trisphosphate-sensitive calcium-release channel acti
##
##
                      "response to oleic acid"
```

"establishment of protein localization"

```
"establishment of endoplasmic reticulum localization to postsynapse"
##
##
                     "selective autophagy"
                      "negative regulation of protein K48-linked deubiquitination"
##
                      "negative regulation of ubiquitin-specific protease activity"
##
##
                      "protein processing"
                      "response to ATP"
##
                      "regulation of bone remodeling"
##
                      "positive regulation of protein K48-linked ubiquitination"
##
##
                      "glycoprotein catabolic process"
                      "negative regulation of cardiac muscle hypertrophy"
##
##
                      "positive regulation of protein targeting to mitochondrion"
                      "mevalonate transport"
##
                      "behavioral response to nutrient"
##
                      "regulation of brood size"
##
##
                      "response to G1 DNA damage checkpoint signaling"
##
                      "cellular response to virus"
                     "mitochondrial asparaginyl-tRNA aminoacylation"
##
                      "negative regulation of interleukin-12 biosynthetic process"
##
##
                      "axon regeneration"
                      "cellular response to nutrient"
##
##
                     "microvillus assembly"
                      "negative regulation of DNA biosynthetic process"
##
                      "tRNA-guanine transglycosylation"
##
                      "GPI anchor metabolic process"
##
                     "regulation of presynapse assembly"
##
##
                      "calcium-mediated signaling using intracellular calcium source"
                      "coenzyme biosynthetic process"
##
                      "pancreatic juice secretion"
##
                      "protein dephosphorylation"
##
                      "female meiotic nuclear division"
##
##
                      "type B pancreatic cell development"
##
                      "chloride transport"
                      "cell junction assembly"
##
##
                      "regulation of mitochondrial depolarization"
                      "lens morphogenesis in camera-type eye"
##
##
                     "regulation of presynaptic membrane potential"
##
                      "B cell activation"
##
                      "insulin metabolic process"
                      "negative regulation of calcium-transporting ATPase activity"
##
                     "regulation of mitochondrial translation"
##
                      "arginine metabolic process"
##
                      "negative regulation of autophagosome assembly"
##
                      "positive regulation of DNA-templated transcription, initiation"
##
                      "cellular response to actinomycin D"
##
                      "negative regulation of oxidative phosphorylation"
##
                      "establishment of mitochondrion localization by microtubule attachment"
##
                      "hypoxanthine biosynthetic process"
##
                      "negative regulation of chemokine (C-C motif) ligand 5 production"
##
                      "mitochondrial mRNA catabolic process"
##
                      "pre-miRNA export from nucleus"
##
##
                      "relaxation of vascular smooth muscle"
                     "alkaloid catabolic process"
##
##
                      "cellular response to dsRNA"
                      "chaperone mediated protein folding independent of cofactor"
##
```

```
"regulation of cytoskeleton organization"
##
##
                      "pronephric nephron development"
                      "negative regulation of hyaluronan biosynthetic process"
##
                      "activation of JNKK activity"
##
                      "regulation of axon regeneration"
##
                      "response to misfolded protein"
##
                      "nucleotide-excision repair, DNA incision, 3'-to lesion"
##
                      "mitochondrion to lysosome transport"
##
##
                      "osmosensory signaling pathway"
                      "sex differentiation"
##
##
                      "amyloid-beta metabolic process"
                      "negative regulation of trophoblast cell migration"
##
                      "cellular protein catabolic process"
##
                      "negative regulation of protein metabolic process"
##
##
                      "calcineurin-mediated signaling"
##
                      "response to lipid hydroperoxide"
##
                      "plasma membrane lactate transport"
                      "secretory granule localization"
##
##
                      "regulation of innate immune response"
                      "regulation of endocytic recycling"
##
##
                      "response to selenium ion"
##
                      "regulation of grooming behavior"
                      "'de novo' actin filament nucleation"
##
                      "peptidyl-serine autophosphorylation"
##
                      "hemostasis"
##
##
                      "regulation of L-arginine import"
##
                      "positive regulation of neutrophil mediated killing of fungus"
                      "regulation of atrial cardiac muscle cell membrane depolarization"
##
                      "hypothalamus development"
##
                      "response to hypobaric hypoxia"
##
##
                      "protein targeting to peroxisome"
##
                      "neuron recognition"
                      "cellular response to hypoxia"
##
##
                      "vocalization behavior"
                      "alanyl-tRNA aminoacylation"
##
##
                      "negative regulation of axonogenesis"
##
                      "negative regulation of immunoglobulin secretion"
##
                      "response to fungus"
##
                      "protein glycosylation"
##
                      "positive regulation of transcription by RNA polymerase I"
                      "regulation of vascular endothelial growth factor signaling pathway"
##
                      "regulation of ryanodine-sensitive calcium-release channel activity"
##
                      "microtubule polymerization or depolymerization"
##
                      "oxalate transport"
##
                      "response to methylamine"
##
                      "regulation of natural killer cell apoptotic process"
##
                      "response to lipoic acid"
##
                      "regulation of activin receptor signaling pathway"
##
                      "endothelial cell development"
##
                      "aggrephagy"
##
##
                      "blood vessel remodeling"
                      "positive regulation of NK T cell activation"
##
                      "alkaloid metabolic process"
##
                      "cardiac conduction"
##
```

```
##
                     "N-terminal peptidyl-methionine acetylation"
##
                     "phosphatidylserine metabolic process"
                     "regulation of fatty acid biosynthetic process"
##
                     "mRNA cleavage involved in gene silencing by siRNA"
##
##
                     "regulation of necroptotic process"
                     "hepatocyte differentiation"
##
                     "cellular response to estrogen stimulus"
##
                     "mitochondrial tRNA 3'-trailer cleavage, endonucleolytic"
##
##
                     "negative regulation of metallopeptidase activity"
                     "apical protein localization"
##
##
                     "regulation of establishment of protein localization"
                     "protein deglycosylation"
##
                     "regulation of endocytosis"
##
                     "regulation of cilium assembly"
##
##
                     "glutathione biosynthetic process"
##
                     "membrane to membrane docking"
                     "myeloid dendritic cell cytokine production"
##
                     "protein retention in ER lumen"
##
##
                     "proton-transporting ATP synthase complex assembly"
##
                     "autophagosome organization"
##
                     "negative regulation of interleukin-13 secretion"
                     "negative regulation of Schwann cell proliferation"
##
                     "coenzyme A biosynthetic process"
##
                     "positive regulation of proteolysis involved in cellular protein catabolic process
##
                     "retrograde protein transport, ER to cytosol"
##
##
                     "thiamine transmembrane transport"
##
                     "cellular copper ion homeostasis"
                     "negative regulation of mitochondrial fission"
##
                     "sulfate transport"
##
                     "regulation of multivesicular body size"
##
##
                     "minus-end-directed organelle transport along microtubule"
##
                     "nodal signaling pathway involved in determination of lateral mesoderm left/right
                     "tubulin complex assembly"
##
                     "glucosamine catabolic process"
##
                     "regulation of glucose metabolic process"
##
                     "positive regulation of Ras protein signal transduction"
##
##
                     "positive regulation of T cell activation"
##
                     "lipid localization"
                     "positive regulation of mitochondrial DNA replication"
##
                     "stress-induced mitochondrial fusion"
##
                     "clathrin coat assembly"
##
##
                     "negative regulation of nitric oxide biosynthetic process"
                     "positive regulation of mitotic centrosome separation"
##
                     "maintenance of Golgi location"
##
                     "negative regulation of protein localization to centrosome"
##
                     "adrenergic receptor signaling pathway"
##
                     "protein import into mitochondrial outer membrane"
##
                     "positive regulation of RNA biosynthetic process"
##
                     "negative regulation of cellular component movement"
##
                     "limbic system development"
##
##
                     "negative regulation of steroid metabolic process"
                     "regulation of synaptic vesicle cycle"
##
                     "negative regulation of low-density lipoprotein particle receptor binding"
##
                     "negative regulation of receptor-mediated endocytosis involved in cholesterol tran
##
```

```
"negative regulation of catalytic activity"
##
##
                     "metal ion homeostasis"
                     "negative regulation of androgen receptor activity"
##
                     "histone arginine methylation"
##
##
                     "peroxisome transport along microtubule"
                     "protein import into peroxisome matrix, substrate release"
##
                     "synapse organization"
##
                     "positive regulation of transcription involved in G1/S transition of mitotic cell
##
##
                     "actin filament reorganization involved in cell cycle"
                     "GMP metabolic process"
##
##
                     "regulation of granulocyte chemotaxis"
                     "peptidyl-proline hydroxylation to 4-hydroxy-L-proline"
##
                     "regulation of embryonic cell shape"
##
                     "phosphatidylcholine biosynthetic process"
##
                     "N-acetylglucosamine catabolic process"
##
##
                     "regulation of oxidative stress-induced intrinsic apoptotic signaling pathway"
                     "nuclear envelope reassembly"
##
                     "response to herbicide"
##
##
                     "locomotion involved in locomotory behavior"
##
                     "copper ion homeostasis"
##
                     "UV protection"
                     "detection of bacterium"
##
                     "regulation of activated T cell proliferation"
##
                     "Golgi localization"
##
                     "negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
##
##
                     "steroid catabolic process"
##
                     "positive regulation of glycoprotein metabolic process"
                     "parkin-mediated stimulation of mitophagy in response to mitochondrial depolarizat
##
##
                     "negative regulation of creatine transmembrane transporter activity"
                     "protein K29-linked deubiquitination"
##
##
                     "positive regulation of vascular smooth muscle cell proliferation"
##
                     "regulation of cellular protein metabolic process"
                     "protein import into peroxisome membrane"
##
##
                     "negative regulation of protein ubiquitination"
##
                     "RNA import into nucleus"
                     "regulation of mitotic sister chromatid separation"
##
##
                     "positive regulation of heterochromatin assembly"
##
                     "nuclear matrix organization"
                     "cellular response to leptin stimulus"
##
                     "organelle organization"
##
                     "regulation of protein targeting to mitochondrion"
##
##
                     "septin ring assembly"
                     "spermine biosynthetic process"
##
                     "CD4-positive, alpha-beta T cell activation"
##
                     "serine family amino acid metabolic process"
##
                     "mononuclear cell migration"
##
                     "DNA catabolic process, endonucleolytic"
##
                     "positive regulation of protein K63-linked ubiquitination"
##
##
                     "protein transmembrane transport"
                     "NLS-bearing protein import into nucleus"
##
                     "glucuronate catabolic process to xylulose 5-phosphate"
##
                     "positive regulation of mitochondrial membrane potential"
##
                     "negative regulation of transcription by competitive promoter binding"
##
                     "regulation of ARF protein signal transduction"
##
```

```
##
                      "Okazaki fragment processing involved in mitotic DNA replication"
##
                     "modulation of chemical synaptic transmission"
##
                     "mitochondrial outer membrane permeabilization"
                      "negative regulation of cardiocyte differentiation"
##
##
                      "exosomal secretion"
##
                      "cell communication by chemical coupling"
                      "production of siRNA involved in RNA interference"
##
                      "mitochondrial ribosome assembly"
##
##
                      "sarcomere organization"
                      "negative regulation of dendrite morphogenesis"
##
##
                      "stress-activated protein kinase signaling cascade"
                      "protein insertion into mitochondrial membrane involved in apoptotic signaling pat
##
                      "regulation of fat cell differentiation"
##
                      "regulation of organelle transport along microtubule"
##
##
                      "plasminogen activation"
##
                      "lipid homeostasis"
                     "response to growth hormone"
##
##
                      "hemoglobin metabolic process"
                      "regulation of postsynaptic density assembly"
##
                      "response to hydroxyisoflavone"
##
##
                      "depurination"
                      "doxorubicin transport"
##
                      "telomerase RNA stabilization"
##
                      "diadenosine polyphosphate catabolic process"
##
                     "diphosphoinositol polyphosphate catabolic process"
##
##
                      "positive regulation of cytokine secretion involved in immune response"
##
                      "somatic muscle development"
                      "phosphatidylinositol biosynthetic process"
##
                      "regulation of phospholipase A2 activity"
##
                      "negative regulation of calcidiol 1-monooxygenase activity"
##
##
                      "7-methylguanosine RNA capping"
##
                     "ribonucleoprotein complex biogenesis"
                      "Rap protein signal transduction"
##
                      "myeloid cell apoptotic process"
##
##
                      "7-methylguanosine cap hypermethylation"
                     "cellular response to anisomycin"
##
##
                      "melanin biosynthetic process"
##
                      "T cell homeostatic proliferation"
                      "endosome to lysosome transport"
##
                     "release of matrix enzymes from mitochondria"
##
                      "positive regulation of developmental pigmentation"
##
##
                      "B cell receptor apoptotic signaling pathway"
                      "positive regulation of dopamine biosynthetic process"
##
                      "cellular response to granulocyte macrophage colony-stimulating factor stimulus"
##
                      "protein K33-linked deubiquitination"
##
                      "positive regulation of autophagy of mitochondrion in response to mitochondrial de
##
                      "regulation of neuron maturation"
##
                      "protein quality control for misfolded or incompletely synthesized proteins"
##
                      "regulation of lymphocyte migration"
##
                      "membrane fusion"
##
                      "endoplasmic reticulum unfolded protein response"
##
                      "response to cadmium ion"
##
                      "posttranslational protein targeting to endoplasmic reticulum membrane"
##
```

"regulation of protein complex assembly"

```
"negative regulation of cholesterol transport"
##
##
                     "ARF protein signal transduction"
                     "diphosphoinositol polyphosphate metabolic process"
##
                     "regulation of neurotransmitter receptor transport, endosome to postsynaptic membr
##
                     "diadenosine pentaphosphate catabolic process"
##
                     "diadenosine hexaphosphate catabolic process"
##
                     "adenosine 5'-(hexahydrogen pentaphosphate) catabolic process"
##
                     "cysteine metabolic process"
##
##
                     "protein homooligomerization"
                     "membrane depolarization during action potential"
##
##
                     "protein homotrimerization"
                     "positive regulation of cardiac muscle hypertrophy in response to stress"
##
                     "protein insertion into membrane"
##
                     "posterior mesonephric tubule development"
##
##
                     "establishment of protein localization to organelle"
##
                     "positive regulation of mitophagy in response to mitochondrial depolarization"
                     "mitochondrial pyruvate transmembrane transport"
##
##
                     "gap junction assembly"
                     "translocation of peptides or proteins into host cell cytoplasm"
##
                     "regulation of macrophage apoptotic process"
##
##
                     "membrane raft organization"
                     "modulation by virus of host process"
##
                     "negative regulation of late endosome to lysosome transport"
##
                     "myeloid dendritic cell differentiation"
##
                     "sulfur amino acid catabolic process"
##
##
                     "valine catabolic process"
##
                     "regulation of sodium ion transport"
                     "negative regulation of myeloid leukocyte differentiation"
##
                     "stress granule disassembly"
##
                     "meiotic spindle elongation"
##
                     "cellular response to fibroblast growth factor stimulus"
##
                     "negative regulation of lipid kinase activity"
##
                     "cell communication by electrical coupling"
##
##
                     "muscle atrophy"
##
                     "benzoate metabolic process"
##
                     "urate metabolic process"
                     "negative regulation of quinolinate biosynthetic process"
##
##
                     "picolinic acid biosynthetic process"
                     "regulation of 'de novo' NAD biosynthetic process from tryptophan"
##
                     "mitotic cell cycle arrest"
##
                     "flavone metabolic process"
##
##
                     "butyrate metabolic process"
                     "carnitine transmembrane transport"
##
                     "glycine import into mitochondrion"
##
                     "actin rod assembly"
##
                     "positive regulation of response to DNA damage stimulus"
##
##
                     "coenzyme A metabolic process"
                     "UDP-glucuronic acid transmembrane transport"
##
##
                     "1-aminocyclopropane-1-carboxylate biosynthetic process"
                     "cargo loading into COPII-coated vesicle"
##
##
                     "animal organ development"
                     "negative regulation of homotypic cell-cell adhesion"
##
##
                     "cerebellar Purkinje cell layer maturation"
                     "positive regulation of DNA-dependent DNA replication initiation"
##
```

```
##
                      "signal transduction involved in intra-S DNA damage checkpoint"
##
                     "cellular response to bisphenol A"
                      "pentacyclic triterpenoid metabolic process"
##
                      "heme O biosynthetic process"
##
                      "negative regulation of mitophagy in response to mitochondrial depolarization"
##
                     "GDP metabolic process"
##
                     "alcohol catabolic process"
##
                      "negative regulation of cellular organofluorine metabolic process"
##
##
                      "thiamine-containing compound metabolic process"
                     "cellular response to decreased oxygen levels"
##
##
                      "arginyl-tRNA aminoacylation"
                      "asymmetric neuroblast division"
##
##
                      "creatine biosynthetic process"
                      "protein adenylylation"
##
##
                      "protein deadenylylation"
##
                      "snRNA (adenine-N6)-methylation"
##
                     "neuronal ion channel clustering"
                     "negative regulation of DNA helicase activity"
##
##
                      "embryonic process involved in female pregnancy"
##
                      "long-term synaptic potentiation"
                     "negative regulation of sodium:potassium-exchanging ATPase activity"
##
                      "negative regulation of glucose catabolic process to lactate via pyruvate"
##
                      "regulation of cortisol biosynthetic process"
##
                      "magnesium ion transmembrane transport"
##
                     "nuclear membrane organization"
##
##
                      "negative regulation of protein localization to plasma membrane"
##
                      "B cell homeostatic proliferation"
                      "butyrate catabolic process"
##
##
                     "regulation of platelet-derived growth factor production"
                      "pyrimidine nucleotide-sugar transmembrane transport"
##
##
                      "response to hyperoxia"
##
                     "carbon tetrachloride metabolic process"
                      "benzene metabolic process"
##
##
                      "halogenated hydrocarbon metabolic process"
##
                      "nucleotide-excision repair, DNA duplex unwinding"
##
                     "potassium ion export across plasma membrane"
##
                      "cellular carbohydrate metabolic process"
##
                      "establishment of monopolar cell polarity"
                      "drug export"
##
                     "regulation of systemic arterial blood pressure by atrial natriuretic peptide"
##
                      "carnitine catabolic process"
##
##
                      "cysteine transport"
                      "positive regulation of tau-protein kinase activity"
##
                      "cysteine transmembrane transport"
##
                      "toxin biosynthetic process"
##
##
                      "oxidative deethylation"
                      "regulation of mammary gland epithelial cell proliferation"
##
                      "positive regulation of viral life cycle"
##
##
                      "glutamine transport"
                      "arginine catabolic process"
##
##
                     "ERAD pathway"
                      "regulation of mesenchymal to epithelial transition involved in metanephros morpho
##
##
                      "thymine metabolic process"
```

"regulation of tube size"

```
##
                     "gene conversion"
                     "regulation of DNA strand elongation"
##
                     "kidney rudiment formation"
##
                     "establishment of planar polarity involved in nephron morphogenesis"
##
##
                     "non-canonical Wnt signaling pathway involved in midbrain dopaminergic neuron diff
                     "modulation by host of RNA binding by virus"
##
                     "modulation by host of viral RNA-binding transcription factor activity"
##
                     "protein repair"
##
##
                     "cerebral cortex cell migration"
                     "interaction with other organism via secreted substance involved in symbiotic inte
##
                     "positive regulation of substrate-dependent cell migration, cell attachment to sub
##
                     "receptor clustering"
##
                     "thiamine transport"
##
                     "establishment of protein localization to membrane"
##
##
                     "positive regulation of apoptotic process"
##
                     "heme oxidation"
                     "cellular homeostasis"
##
                     "relaxation of cardiac muscle"
##
##
                     "negative regulation of retrograde protein transport, ER to cytosol"
##
                     "transcription elongation from RNA polymerase I promoter"
##
                     "negative regulation of timing of anagen"
                     "epiboly involved in gastrulation with mouth forming second"
##
                     "bundle of His cell to Purkinje myocyte communication"
##
                     "negative regulation of high voltage-gated calcium channel activity"
##
                     "positive regulation of transforming growth factor-beta secretion"
##
##
                     "intracellular cholesterol transport"
##
                     "programmed cell death"
##
                     "protein targeting"
                     "antigen processing and presentation of endogenous peptide antigen via MHC class I
##
##
                     "actin polymerization or depolymerization"
##
                     "negative regulation of collagen catabolic process"
##
                     "regulation of programmed cell death"
                     "dihydrobiopterin metabolic process"
##
                     "negative regulation of elastin catabolic process"
##
                     "regulation of apoptotic DNA fragmentation"
##
                     "urate biosynthetic process"
##
##
                     "fusion of virus membrane with host plasma membrane"
##
                     "negative regulation of phosphoprotein phosphatase activity"
                     "negative regulation of transforming growth factor-beta secretion"
##
                     "positive regulation of immature T cell proliferation"
##
                     "positive regulation of interleukin-6 production"
##
##
                     "metanephric glomerulus development"
                     "positive regulation of motile cilium assembly"
##
                     "activation of cysteine-type endopeptidase activity involved in apoptotic process"
##
##
                     "response to exogenous dsRNA"
                     "membrane depolarization"
##
##
                     "response to dsRNA"
                     "mesenchymal stem cell maintenance involved in nephron morphogenesis"
##
                     "positive regulation of transcription from RNA polymerase II promoter in response
##
##
                     "N-glycan processing"
                     "transcription initiation from RNA polymerase III promoter"
##
                     "regulation of exocytosis"
##
##
                     "entry into host cell"
                     "regulation of glucocorticoid mediated signaling pathway"
##
```

```
##
                      "regulation of gluconeogenesis"
##
                      "activation of phospholipase A2 activity"
                      "positive regulation of interleukin-4-mediated signaling pathway"
##
                      "protein K48-linked deubiquitination"
##
##
                      "dorsal/ventral neural tube patterning"
##
                     "SCF complex assembly"
                      "histone H2A acetylation"
##
                      "inner mitochondrial membrane organization"
##
##
                      "positive regulation of dendrite morphogenesis"
                      "post-Golgi vesicle-mediated transport"
##
##
                      "nucleotide biosynthetic process"
                      "quinone metabolic process"
##
                      "regulation of blood coagulation, intrinsic pathway"
##
                      "negative regulation of activin receptor signaling pathway"
##
##
                      "regulation of protein homodimerization activity"
##
                      "DNA recombinase assembly"
                     "establishment of Golgi localization"
##
##
                      "response to glycoside"
##
                      "lysosome localization"
##
                      "detection of temperature stimulus"
##
                      "neuron projection arborization"
                      "glycyl-tRNA aminoacylation"
##
                      "mitochondrial glycyl-tRNA aminoacylation"
##
                      "hair follicle maturation"
##
                     "UDP-D-xylose biosynthetic process"
##
##
                      "mesonephric duct formation"
##
                      "alpha-linolenic acid metabolic process"
                      "cellular response to amino acid starvation"
##
                      "myelination in peripheral nervous system"
##
##
                      "hyperosmotic salinity response"
##
                      "regulation of long-term neuronal synaptic plasticity"
##
                     "regulation of cilium beat frequency"
##
                      "neural crest cell development"
                      "histone H2A-S1 phosphorylation"
##
##
                      "regulation of dopamine receptor signaling pathway"
                     "regulation of cell morphogenesis"
##
##
                      "telomeric DNA-containing double minutes formation"
##
                      "negative regulation of protection from non-homologous end joining at telomere"
                      "nuclear-transcribed mRNA catabolic process, non-stop decay"
##
                     "nonfunctional rRNA decay"
##
                     "RNA surveillance"
##
##
                      "B cell apoptotic process"
                      "T cell activation involved in immune response"
##
                     "sodium ion export across plasma membrane"
##
                      "metanephric smooth muscle tissue development"
##
                      "positive regulation of T cell extravasation"
##
                      "positive regulation of protein homodimerization activity"
##
                      "regulation of the force of heart contraction"
##
##
                      "homogentisate catabolic process"
                      "positive regulation of cytochrome-c oxidase activity"
##
##
                      "membrane repolarization"
##
                      "response to growth factor"
##
                      "glycosylation"
##
                      "thymine catabolic process"
```

```
##
                      "poly(A)+ mRNA export from nucleus"
##
                      "phosphatidylethanolamine catabolic process"
                      "melanocyte apoptotic process"
##
                      "negative regulation of extracellular matrix organization"
##
##
                      "dibenzo-p-dioxin metabolic process"
                     "midbrain development"
##
                      "execution phase of apoptosis"
##
                      "response to cytokine"
##
##
                      "cytoplasmic sequestering of protein"
                      "negative regulation of nuclear-transcribed mRNA catabolic process, nonsense-media
##
##
                      "tRNA aminoacylation"
                      "sensory perception of mechanical stimulus"
##
                      "protein lipidation involved in autophagosome assembly"
##
                      "heart trabecula formation"
##
##
                      "positive regulation of microtubule depolymerization"
##
                      "positive regulation of lipid storage"
                      "regulation of cellular senescence"
##
##
                      "oxalate metabolic process"
##
                      "leukocyte mediated cytotoxicity"
                      "negative regulation of calcium-mediated signaling"
##
##
                      "rhythmic behavior"
                      "rhombomere 3 formation"
##
                      "rhombomere 5 formation"
##
                      "MyD88-dependent toll-like receptor signaling pathway"
##
                     "regulation of steroid metabolic process"
##
##
                      "regulation of chloride transport"
##
                      "regulation of heart rate by hormone"
                      "heme transport"
##
                      "regulation of meiotic cell cycle process involved in oocyte maturation"
##
                      "regulation of nitrogen utilization"
##
##
                      "cellular response to dsDNA"
##
                      "pre-miRNA processing"
                      "ganglioside metabolic process"
##
##
                      "proepicardium cell migration involved in pericardium morphogenesis"
                      "negative regulation of interleukin-10 biosynthetic process"
##
##
                     "formaldehyde catabolic process"
##
                      "regulation of ventricular cardiac muscle cell membrane depolarization"
##
                      "oxidative demethylation"
                      "embryonic skeletal joint development"
##
                     "tricuspid valve morphogenesis"
##
                      "tail-anchored membrane protein insertion into ER membrane"
##
##
                      "regulation of cardiac muscle hypertrophy"
                      "response to injury involved in regulation of muscle adaptation"
##
                      "protein side chain deglutamylation"
##
                      "purine nucleoside metabolic process"
##
                      "determination of heart left/right asymmetry"
##
                      "formation of translation preinitiation complex"
##
                      "positive regulation of signaling receptor activity"
##
##
                      "positive regulation of hemoglobin biosynthetic process"
                      "positive regulation of cell cycle process"
##
##
                      "regulation of ERAD pathway"
                      "positive regulation of pro-T cell differentiation"
##
##
                      "lysosome organization"
                      "tryptophan catabolic process to kynurenine"
##
```

```
##
                      "sterol transport"
##
                     "sequestering of calcium ion"
                      "protein import into peroxisome matrix, docking"
##
                      "myoblast proliferation"
##
                      "circadian sleep/wake cycle, REM sleep"
##
                     "mitotic sister chromatid separation"
##
                      "potassium ion export"
##
                      "adenylate cyclase-activating adrenergic receptor signaling pathway involved in he
##
##
                      "hindbrain development"
                      "tRNA re-export from nucleus"
##
##
                      "regulation of cholesterol transport"
                      "cardiac muscle hypertrophy in response to stress"
##
                     "C-terminal protein deglutamylation"
##
                      "protein K6-linked deubiquitination"
##
##
                      "microtubule severing"
##
                      "lung induction"
                     "constitutive secretory pathway"
##
                      "negative regulation of blood vessel remodeling"
##
                      "ectoderm development"
##
                      "negative regulation of cyclic-nucleotide phosphodiesterase activity"
##
##
                      "triglyceride homeostasis"
                      "negative regulation of cell death"
##
                      "platelet degranulation"
##
                      "positive regulation of glycogen catabolic process"
##
                      "negative regulation of mitochondrial translation"
##
##
                      "nitrogen compound metabolic process"
##
                      "maintenance of ER location"
                      "maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, L
##
                      "negative regulation of tyrosine phosphorylation of STAT protein"
##
                      "regulation of tissue remodeling"
##
##
                      "cytolysis in other organism"
##
                      "endosome organization"
                      "establishment of blood-nerve barrier"
##
                      "nerve development"
##
##
                      "diterpenoid metabolic process"
                     "tendon development"
##
##
                      "intestinal stem cell homeostasis"
##
                      "positive regulation of dendritic spine development"
                      "cell differentiation involved in metanephros development"
##
                     "monoamine transport"
##
                      "positive regulation of acute inflammatory response to antigenic stimulus"
##
##
                      "response to cobalt ion"
                      "negative regulation of cysteine-type endopeptidase activity involved in execution
##
                      "retrograde axonal transport"
##
                      "response to endoplasmic reticulum stress"
##
                      "tRNA export from nucleus"
##
                      "general adaptation syndrome"
##
                      "positive regulation of neurotrophin production"
##
                      "positive regulation of lipid catabolic process"
##
                      "lysosomal protein catabolic process"
##
##
                     "T cell aggregation"
                      "mitochondrial RNA 5'-end processing"
##
##
                      "gene silencing by miRNA"
                      "regulation of protein processing"
##
```

```
##
                     "sorbitol biosynthetic process"
##
                     "inner dynein arm assembly"
                     "cellular response to methylglyoxal"
##
                     "protein import into peroxisome matrix, translocation"
##
##
                     "positive regulation of icosanoid secretion"
                     "post-embryonic animal organ morphogenesis"
##
                     "negative regulation of Rac protein signal transduction"
##
                     "pteridine-containing compound metabolic process"
##
##
                     "negative regulation of vitamin D biosynthetic process"
                     "bile acid metabolic process"
##
##
                     "cellular response to magnesium ion"
                     "dUDP biosynthetic process"
##
                     "dTDP biosynthetic process"
##
                     "SREBP-SCAP complex retention in endoplasmic reticulum"
##
                     "regulation of endoplasmic reticulum stress-induced eIF2 alpha phosphorylation"
##
##
                     "negative regulation of protein exit from endoplasmic reticulum"
##
                     "L-aspartate import across plasma membrane"
                     "negative regulation of cargo loading into COPII-coated vesicle"
##
##
                     "cytoplasmic sequestering of NF-kappaB"
                     "negative regulation of calcium ion export across plasma membrane"
##
##
                     "negative regulation of meiotic cell cycle"
##
                     "BMP signaling pathway involved in heart development"
                     "cofactor metabolic process"
##
                     "negative regulation of SNARE complex assembly"
##
                     "positive regulation of protein exit from endoplasmic reticulum"
##
##
                     "positive regulation of cytokine production"
##
                     "phenylacetate catabolic process"
                     "nicotinate nucleotide salvage"
##
##
                     "lysine biosynthetic process via aminoadipic acid"
                     "endocytic hemoglobin import"
##
##
                     "NAD salvage"
                     "chromosome passenger complex localization to spindle midzone"
##
                     "cobalamin catabolic process"
##
                     "negative regulation of epidermal cell differentiation"
##
##
                     "regulation of interleukin-8 secretion"
                     "negative regulation of oxidative stress-induced cell death"
##
##
                     "positive regulation of cysteine-type endopeptidase activity involved in apoptotic
##
                     "regulation of sarcomere organization"
                     "regulation of dendritic spine development"
##
##
                     "negative regulation of smooth muscle cell migration"
                     "positive regulation of macrophage tolerance induction"
##
                     "histidine catabolic process to glutamate and formamide"
##
                     "histidine catabolic process to glutamate and formate"
##
                     "regulation of protein complex disassembly"
##
                     "cellular response to anoxia"
##
                     "negative regulation of glucocorticoid secretion"
##
                     "phosphatidylethanolamine biosynthetic process"
##
                     "modification-dependent protein catabolic process"
##
                     "mitochondrial alanyl-tRNA aminoacylation"
##
                     "myelin assembly"
##
##
                     "protein catabolic process"
                     "regulation of endopeptidase activity"
##
                     "negative regulation of endodeoxyribonuclease activity"
##
                     "regulation of replicative cell aging"
##
```

```
##
                      "mitotic DNA damage checkpoint"
##
                      "positive regulation of protein autoubiquitination"
                      "long-chain fatty acid catabolic process"
##
                      "purine nucleotide catabolic process"
##
##
                      "dGDP biosynthetic process"
##
                     "response to brefeldin A"
                      "dGMP metabolic process"
##
                      "dATP metabolic process"
##
##
                     "GDP biosynthetic process"
                     "biphenyl catabolic process"
##
##
                      "negative regulation of lactation"
                      "T-tubule organization"
##
##
                     "virion assembly"
                      "positive regulation of collateral sprouting of injured axon"
##
##
                      "negative regulation of dendrite extension"
##
                      "positive regulation of ERBB3 signaling pathway"
                      "negative regulation of formation of growth cone in injured axon"
##
                      "monocarboxylic acid metabolic process"
##
##
                      "neuron development"
##
                      "protein delipidation"
##
                     "regulation of microtubule binding"
                      "cellular response to interleukin-6"
##
                      "clustering of voltage-gated potassium channels"
##
                      "negative regulation of potassium ion export"
##
                     "heart valve development"
##
##
                      "propionate catabolic process"
##
                      "glycerol biosynthetic process from pyruvate"
                      "sphingoid biosynthetic process"
##
                      "negative regulation of protein targeting to mitochondrion"
##
                      "establishment of endothelial intestinal barrier"
##
##
                      "isoquinoline alkaloid metabolic process"
##
                      "synaptic vesicle recycling"
                      "heme metabolic process"
##
                      "cellular response to peptide hormone stimulus"
##
##
                      "hepatocyte homeostasis"
                      "positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-
##
##
                      "response to tetrachloromethane"
##
                      "cellular response to nitrosative stress"
                      "acute inflammatory response"
##
                     "glial cell migration"
##
                      "tRNA N1-guanine methylation"
##
##
                      "negative regulation of sperm capacitation"
                      "regulation of binding of sperm to zona pellucida"
##
                      "ERK1 and ERK2 cascade"
##
                      "regulation of stem cell division"
##
                      "negative regulation of peptidyl-serine dephosphorylation"
##
                      "potassium ion transmembrane transport"
##
                      "negative regulation of mitochondrial membrane permeability"
##
                      "ventricular cardiac muscle cell membrane repolarization"
##
                      "myeloid leukocyte differentiation"
##
##
                      "negative regulation of glomerular filtration by angiotensin"
                      "smooth muscle hypertrophy"
##
##
                      "cytochrome complex assembly"
                      "hepatic duct development"
##
```

```
##
                      "DNA conformation change"
##
                     "regulation of adaxial/abaxial pattern formation"
                      "cerebral cortex radial glia guided migration"
##
                      "pancreas development"
##
##
                      "resolution of mitotic recombination intermediates"
##
                      "proximal/distal pattern formation"
                      "negative regulation of ERK5 cascade"
##
                      "primary lung bud formation"
##
##
                      "cellular response to organic substance"
                      "skeletal muscle fiber differentiation"
##
##
                      "response to caffeine"
                      "positive regulation of extrinsic apoptotic signaling pathway in absence of ligand
##
##
                      "epithelial tube morphogenesis"
                      "regulation of epithelial cell differentiation involved in kidney development"
##
##
                      "positive regulation of glomerular filtration"
##
                      "cell part morphogenesis"
                     "enteroendocrine cell differentiation"
##
                     "formaldehyde biosynthetic process"
##
##
                      "coreceptor-mediated virion attachment to host cell"
                      "regulation of intestinal epithelial structure maintenance"
##
##
                     "liver morphogenesis"
                      "mitochondrial mRNA processing"
##
                      "response to nitrogen compound"
##
                      "response to hydrogen sulfide"
##
                     "negative regulation of cytokine production"
##
##
                      "acetyl-CoA transport"
##
                      "regulation of cell differentiation involved in embryonic placenta development"
                      "response to muscle activity"
##
                      "hypoxanthine salvage"
##
                      "COPI coating of Golgi vesicle"
##
##
                      "response to salt stress"
                      "peptidyl-threonine dephosphorylation"
##
                      "phospholipid dephosphorylation"
##
                      "melanosome transport"
##
##
                      "metanephric tubule formation"
                      "positive regulation of choline O-acetyltransferase activity"
##
##
                      "negative regulation of tau-protein kinase activity"
##
                      "positive regulation of early endosome to recycling endosome transport"
                      "negative regulation of neurofibrillary tangle assembly"
##
                     "D-serine transport"
##
                      "negative regulation of p38MAPK cascade"
##
##
                      "tRNA modification"
                      "renal system process"
##
                     "second-messenger-mediated signaling"
##
                      "regulation of mitochondrial fission"
##
                      "intestinal D-glucose absorption"
##
                      "ultradian rhythm"
##
                      "terminal web assembly"
##
##
                     "intrinsic apoptotic signaling pathway in response to hypoxia"
                      "positive regulation of B cell apoptotic process"
##
##
                     "DNA ligation involved in DNA recombination"
                      "positive regulation of chromosome organization"
##
                      "positive regulation of nitric oxide mediated signal transduction"
##
##
                      "long-chain fatty acid biosynthetic process"
```

```
##
                      "Golgi vesicle budding"
##
                      "apoptotic process involved in blood vessel morphogenesis"
                      "central nervous system neuron axonogenesis"
##
                      "regulation of natural killer cell differentiation"
##
##
                      "regulation of extrathymic T cell differentiation"
##
                      "regulation of NK T cell differentiation"
                      "negative regulation of cell cycle arrest"
##
                      "response to nitroglycerin"
##
##
                      "sebum secreting cell proliferation"
                      "nuclear mRNA surveillance"
##
##
                      "NIK/NF-kappaB signaling"
                      "response to methionine"
##
                      "positive regulation of leukocyte mediated cytotoxicity"
##
                      "positive regulation of protein kinase C activity"
##
##
                      "cranial nerve development"
##
                      "positive regulation of binding"
                      "negative regulation of fat cell proliferation"
##
                      "apoptotic DNA fragmentation"
##
##
                      "protein sumoylation"
                      "positive regulation of MHC class I biosynthetic process"
##
##
                      "regulation of fibrinolysis"
                      "mitochondrial tryptophanyl-tRNA aminoacylation"
##
                      "trophectodermal cellular morphogenesis"
##
                      "cell proliferation involved in kidney development"
##
                     "mesonephric duct morphogenesis"
##
##
                      "antigen processing and presentation of peptide antigen via MHC class I"
##
                      "embryonic ectodermal digestive tract development"
                      "negative regulation of mitotic nuclear division"
##
                      "regulation of ATP:ADP antiporter activity"
##
                      "ER-associated misfolded protein catabolic process"
##
##
                      "apoptotic signaling pathway"
##
                      "ripoptosome assembly"
                      "positive regulation of potassium ion transmembrane transporter activity"
##
                      "positive regulation of deadenylation-independent decapping of nuclear-transcribed
##
                      "negative regulation of polynucleotide adenylyltransferase activity"
##
                      "negative regulation of glucokinase activity"
##
                      "ectoderm formation"
##
##
                      "regulation of vascular permeability involved in acute inflammatory response"
                      "oviduct epithelium development"
##
                     "uterine epithelium development"
##
                      "nephric duct elongation"
##
##
                      "horizontal cell localization"
                      "axonemal microtubule depolymerization"
##
                      "plus-end specific microtubule depolymerization"
##
                      "renal vesicle morphogenesis"
##
                      "metanephric renal vesicle morphogenesis"
##
                      "dorsal spinal cord interneuron posterior axon guidance"
##
                      "positive regulation of apoptotic process by virus"
##
##
                      "fatty acid elongation"
                      "phospholipase C-activating angiotensin-activated signaling pathway"
##
##
                     "rRNA catabolic process"
                      "response to insulin"
##
##
                      "glycoside catabolic process"
                      "glucose homeostasis"
##
```

```
"acetylcholine biosynthetic process"
##
                     "negative regulation by host of viral exo-alpha-sialidase activity"
##
                     "negative regulation by host of viral glycoprotein metabolic process"
##
                     "cellular chemical homeostasis"
##
                     "negative regulation of exo-alpha-sialidase activity"
##
                     "negative regulation of glycoprotein metabolic process"
##
                     "protein localization to Golgi apparatus"
##
                     "positive regulation of syncytium formation by plasma membrane fusion"
##
##
                     "T cell differentiation in thymus"
                     "peptidyl-lysine trimethylation"
##
##
                     "bicarbonate transport"
                     "lateral mesoderm development"
##
                     "hepatoblast differentiation"
##
                     "cellular response to lipid hydroperoxide"
##
                     "response to electrical stimulus involved in regulation of muscle adaptation"
##
##
                     "sphingolipid metabolic process"
##
                     "coumarin metabolic process"
                     "endosomal vesicle fusion"
##
##
                     "regulation of response to osmotic stress"
                     "establishment of protein localization to chromatin"
##
##
                     "positive regulation of natural killer cell mediated cytotoxicity"
##
                     "receptor internalization involved in canonical Wnt signaling pathway"
                     "peroxisomal long-chain fatty acid import"
##
                     "positive regulation of immunoglobulin mediated immune response"
##
                     "peptidyl-lysine methylation"
##
##
                     "regulation of mitotic recombination"
##
                     "glycerol ether metabolic process"
                     "response to interleukin-6"
##
##
                     "positive regulation of exocytosis"
                     "extracellular matrix constituent secretion"
##
##
                     "negative regulation of calcium ion transport into cytosol"
##
                     "regulation of chromatin disassembly"
                     "bile acid catabolic process"
##
##
                     "response to arsenic-containing substance"
                     "positive regulation of exosomal secretion"
##
##
                     "somatic hypermutation of immunoglobulin genes"
##
                     "ovarian follicle development"
##
                     "glutamate receptor signaling pathway"
##
                     "glycine betaine biosynthetic process from choline"
##
                     "negative regulation of T-helper cell differentiation"
                     "positive regulation of nephron tubule epithelial cell differentiation"
##
##
                     "tryptophan catabolic process to acetyl-CoA"
                     "chemical homeostasis within a tissue"
##
                     "positive regulation of isotype switching to IgA isotypes"
##
                     "xenobiotic transport"
##
                     "nuclear protein quality control by the ubiquitin-proteasome system"
##
                     "asymmetric Golgi ribbon formation"
##
                     "pancreatic A cell fate commitment"
##
##
                     "pancreatic PP cell fate commitment"
                     "follicular dendritic cell differentiation"
##
                     "negative regulation of peptidyl-serine phosphorylation of STAT protein"
##
                     "myotube differentiation"
##
##
                     "pharyngeal arch artery morphogenesis"
```

##

"regulation of extrinsic apoptotic signaling pathway"

```
##
                     "cellular response to parathyroid hormone stimulus"
##
                     "multi-organism membrane organization"
                     "viral replication complex formation and maintenance"
##
                     "negative regulation of intracellular transport"
##
##
                     "regulation of anion transport"
##
                     "postsynapse organization"
                     "deoxynucleotide transport"
##
                     "thiamine pyrophosphate transmembrane transport"
##
##
                     "positive regulation of mast cell activation"
                     "positive regulation of glial cell apoptotic process"
##
##
                     "regulation of erythrocyte differentiation"
                     "cardiac myofibril assembly"
##
                     "regulation of mitochondrial outer membrane permeabilization involved in apoptotic
##
                     "detection of mechanical stimulus involved in sensory perception of pain"
##
                     "membrane repolarization during ventricular cardiac muscle cell action potential"
##
##
                     "regulation of mesoderm development"
                     "response to L-glutamate"
##
                     "wound healing involved in inflammatory response"
##
##
                     "ITP catabolic process"
                     "methionine metabolic process"
##
                     "deoxyribonucleoside triphosphate catabolic process"
##
                     "pantothenate metabolic process"
##
                     "positive regulation of bone resorption"
##
                     "glutaminyl-tRNAGln biosynthesis via transamidation"
##
                     "negative regulation of epithelial cell apoptotic process"
##
##
                     "positive regulation of cytolysis"
##
                     "receptor recycling"
                     "regulation of viral genome replication"
##
                     "positive regulation of cyclase activity"
##
##
                     "response to stress"
                     "epithelial cell proliferation involved in renal tubule morphogenesis"
##
##
                     "negative regulation of potassium ion transmembrane transporter activity"
                     "negative regulation of endocytic recycling"
##
                     "labyrinthine layer blood vessel development"
##
                     "ERBB signaling pathway"
##
                     "neuromuscular process controlling balance"
##
##
                     "pyrimidine nucleoside catabolic process"
##
                     "deoxyadenosine catabolic process"
                     "purine nucleotide salvage"
##
                     "xanthine biosynthetic process"
##
                     "negative regulation of adenosine receptor signaling pathway"
##
                     "negative regulation of penile erection"
##
                     "regulation of smooth muscle cell-matrix adhesion"
##
                     "ubiquitin-independent protein catabolic process via the multivesicular body sorti:
##
                     "negative regulation of protein kinase C signaling"
##
                     "regulation of cell-cell adhesion mediated by integrin"
##
                     "hypothalamus cell differentiation"
##
                     "positive regulation of transcription involved in exit from mitosis"
##
                     "cellular process regulating host cell cycle in response to virus"
##
                     "positive regulation of Golgi to plasma membrane protein transport"
##
##
                     "brain segmentation"
                     "strand invasion"
##
                     "negative regulation of T-helper 2 cell cytokine production"
##
```

"luteolysis"

```
##
                     "intussusceptive angiogenesis"
##
                     "negative regulation of immune system process"
                     "heart valve formation"
##
                     "intrahepatic bile duct development"
##
                     "epithelial cell proliferation involved in prostatic bud elongation"
##
                     "regulation of cell proliferation involved in tissue homeostasis"
##
                     "regulation of branching involved in lung morphogenesis"
##
                     "response to cGMP"
##
##
                     "cellular response to acidic pH"
                     "regulation of epithelial cell proliferation involved in lung morphogenesis"
##
##
                     "negative regulation of developmental growth"
                     "fibroblast growth factor receptor apoptotic signaling pathway"
##
                     "response to L-ascorbic acid"
##
                     "pyrimidine nucleotide biosynthetic process"
##
                     "cardiac muscle tissue morphogenesis"
##
##
                     "cellular response to ammonia"
                     "development of secondary sexual characteristics"
##
                     "cyclooxygenase pathway"
##
##
                     "lipid transport"
                     "adenosine catabolic process"
##
##
                     "cobalamin transport"
                     "inosine biosynthetic process"
##
                     "cellular response to metal ion"
##
                     "cytochrome c-heme linkage"
##
                     "L-serine transport"
##
##
                     "negative regulation of MAPK cascade"
##
                     "transcription preinitiation complex assembly"
                     "meiotic metaphase I plate congression"
##
                     "meiotic spindle midzone assembly"
##
                     "glucuronoside catabolic process"
##
##
                     "negative regulation of cytoplasmic translational elongation"
##
                     "negative regulation of cysteine-type endopeptidase activity involved in apoptotic
                     "3'-phosphoadenosine 5'-phosphosulfate biosynthetic process"
##
##
                     "mitochondrial citrate transmembrane transport"
                     "cerebellar Purkinje cell-granule cell precursor cell signaling involved in regula
##
##
                     "linoleic acid metabolic process"
##
                     "embryonic digestive tract development"
##
                     "membrane repolarization during cardiac muscle cell action potential"
                     "response to folic acid"
##
                     "calcium-independent cell-matrix adhesion"
##
                     "regulation of skeletal muscle adaptation"
##
##
                     "spermatid nucleus elongation"
                     "nucleotide-binding oligomerization domain containing 1 signaling pathway"
##
                     "cell-cell adhesion involved in gastrulation"
##
                     "cellular response to leucine starvation"
##
                     "regulation of insulin secretion involved in cellular response to glucose stimulus
##
                     "male meiosis chromosome segregation"
##
                     "positive regulation of protein localization to endoplasmic reticulum"
##
##
                     "response to muscle stretch"
                     "positive regulation of leukocyte tethering or rolling"
##
##
                     "mitophagy"
                     "peptide antigen assembly with MHC class I protein complex"
##
                     "positive regulation of natural killer cell degranulation"
##
```

"defense response to Gram-negative bacterium"

```
"carbon catabolite regulation of transcription"
##
##
                     "diacylglycerol biosynthetic process"
                      "regulation of integrin biosynthetic process"
##
                     "intermembrane sphingolipid transfer"
##
                      "interleukin-6 secretion"
##
                      "protein modification by small protein conjugation"
##
                      "integrin biosynthetic process"
##
                      "long-term synaptic depression"
##
##
                      "endosome to melanosome transport"
                     "L-glutamate import"
##
##
                      "regulation of JNK cascade"
                      "regulation of toll-like receptor signaling pathway"
##
                      "negative regulation of ubiquitin-protein transferase activity"
##
                      "gene expression"
##
##
                      "positive regulation of mesenchymal cell proliferation"
                      "'de novo' NAD biosynthetic process from tryptophan"
##
##
                     "neural crest cell fate specification"
##
                     "monovalent inorganic cation transport"
##
                      "negative regulation of receptor recycling"
                      "heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules"
##
##
                     "positive regulation of chaperone-mediated protein complex assembly"
##
                      "negative regulation of histone H4-K16 acetylation"
                      "susceptibility to T cell mediated cytotoxicity"
##
                      "epoxide metabolic process"
##
                      "negative regulation of G protein-coupled receptor signaling pathway"
##
##
                      "innervation"
##
                      "response to interleukin-18"
                      "galactosylceramide biosynthetic process"
##
                      "rRNA transcription"
##
                      "neutrophil migration"
##
##
                      "radial pattern formation"
##
                      "actin modification"
                      "negative regulation of stem cell population maintenance"
##
##
                      "primary miRNA methylation"
                      "regulation of interleukin-1-mediated signaling pathway"
##
                     "neural crest cell migration involved in autonomic nervous system development"
##
##
                      "cellular response to UV-B"
##
                      "positive regulation of mesenchymal stem cell differentiation"
##
                      "smooth muscle hyperplasia"
##
                     "response to radiation"
                      "polyphosphate catabolic process"
##
##
                      "spermatogenesis, exchange of chromosomal proteins"
                      "miRNA loading onto RISC involved in gene silencing by miRNA"
##
                     "skin morphogenesis"
##
                      "cellular response to cGMP"
##
                      "regulation of release of sequestered calcium ion into cytosol by sarcoplasmic ret
##
                      "positive regulation of epithelial cell proliferation"
##
##
                     "miRNA mediated inhibition of translation"
                      "histone H4-R3 methylation"
##
                      "protein-containing complex assembly"
##
##
                     "T cell cytokine production"
                     "assembly of large subunit precursor of preribosome"
##
                      "skeletal muscle satellite cell maintenance involved in skeletal muscle regenerati
##
```

##

"negative regulation of collagen biosynthetic process"

```
##
                     "epithelial cell maturation"
##
                     "CUT catabolic process"
                     "protein K11-linked deubiquitination"
##
                     "germinal center B cell differentiation"
##
                     "intrinsic apoptotic signaling pathway in response to osmotic stress"
##
                     "regulation of transcription from RNA polymerase II promoter in response to iron"
##
                     "ER to Golgi ceramide transport"
##
                     "positive regulation of mitochondrial membrane permeability"
##
##
                     "modification of morphology or physiology of other organism"
                     "regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling
##
##
                     "positive regulation of T cell mediated immunity"
                     "regulation of cellular component movement"
##
                     "negative regulation of cellular extravasation"
##
                     "negative regulation of neutrophil degranulation"
##
##
                     "regulation of cytosolic calcium ion concentration"
##
                     "negative regulation of stem cell proliferation"
                     "calcium ion export across plasma membrane"
##
##
                     "cardiac right ventricle morphogenesis"
##
                     "GMP salvage"
                     "amacrine cell differentiation"
##
##
                     "cell death in response to oxidative stress"
                     "hypoxanthine metabolic process"
##
                     "positive regulation of interleukin-6-mediated signaling pathway"
##
                     "condensed mesenchymal cell proliferation"
##
                     "beta-glucoside catabolic process"
##
##
                     "positive regulation of neuronal action potential"
                     "fructose biosynthetic process"
##
                     "diaphragm development"
##
                     "barbed-end actin filament capping"
##
                     "positive regulation of killing of cells of other organism"
##
                     "mitochondrial DNA metabolic process"
##
##
                     "nuclear retention of unspliced pre-mRNA at the site of transcription"
                     "mitotic cytokinetic process"
##
##
                     "N-acetylneuraminate catabolic process"
                     "positive regulation of histone H3-K14 acetylation"
##
                     "negative regulation by symbiont of host apoptotic process"
##
##
                     "antigen processing and presentation of exogenous peptide antigen via MHC class I,
##
                     "medium-chain fatty-acyl-CoA metabolic process"
                     "male germ-line sex determination"
##
                     "nucleotide phosphorylation"
##
                     "stem cell division"
##
##
                     "sleep"
                     "mast cell mediated immunity"
##
                     "ceramide translocation"
##
                     "negative regulation of apoptotic signaling pathway"
##
                     "phosphatidylinositol metabolic process"
##
                     "axo-dendritic transport"
##
                     "regulation of cardiac muscle contraction by calcium ion signaling"
##
##
                     "regulation of BMP signaling pathway"
                     "DNA biosynthetic process"
##
##
                     "glomerular capillary formation"
                     "positive regulation of cardiac muscle tissue development"
##
##
                     "homotypic cell-cell adhesion"
                     "rRNA acetylation involved in maturation of SSU-rRNA"
##
```

```
##
                      "mitochondrial protein catabolic process"
##
                     "cellular response to follicle-stimulating hormone stimulus"
##
                      "neutrophil differentiation"
                      "response to curcumin"
##
##
                      "mitral valve morphogenesis"
                     "regulation of chorionic trophoblast cell proliferation"
##
                      "glial cell development"
##
                      "negative regulation of germinal center formation"
##
##
                      "maltose metabolic process"
                      "trophectodermal cell proliferation"
##
##
                      "regulation of vacuole fusion, non-autophagic"
                      "DNA endoreduplication"
##
                      "choline catabolic process"
##
                      "regulation of histone deacetylase activity"
##
                      "pre-mRNA catabolic process"
##
##
                      "glycerolipid metabolic process"
                      "negative regulation of sodium ion transmembrane transporter activity"
##
                      "negative regulation of growth of symbiont in host"
##
##
                      "telomeric loop disassembly"
                      "phosphatidylcholine acyl-chain remodeling"
##
##
                      "glycerol catabolic process"
                      "cytoplasmic sequestering of CFTR protein"
##
                     "B cell affinity maturation"
##
                      "regulation of B cell cytokine production"
##
                     "cellular response to interleukin-7"
##
##
                      "negative regulation of deoxyribonuclease activity"
##
                      "negative regulation of apoptotic DNA fragmentation"
                      "cellular response to phorbol 13-acetate 12-myristate"
##
                     "regulation of protein kinase A signaling"
##
                      "cargo loading into vesicle"
##
                      "positive regulation of hyaluronan biosynthetic process"
##
##
                      "apoptotic process involved in embryonic digit morphogenesis"
                      "negative regulation of defense response to bacterium"
##
##
                      "magnesium ion homeostasis"
                      "protein targeting to vacuole"
##
                      "positive regulation of protein localization to cell cortex"
##
##
                      "negative regulation of caveolin-mediated endocytosis"
##
                      "T follicular helper cell differentiation"
                      "pyrimidine-containing compound salvage"
##
                     "negative regulation of anion channel activity"
##
                      "negative regulation of nucleotide metabolic process"
##
                      "intermembrane lipid transfer"
##
                      "regulation of DNA-templated transcription, initiation"
##
##
                      "acyl carnitine transmembrane transport"
                      "regulation of osteoclast development"
##
                      "peroxisome proliferator activated receptor signaling pathway"
##
                      "nuclear-transcribed mRNA catabolic process, deadenylation-independent decay"
##
                     "nuclear retention of pre-mRNA with aberrant 3'-ends at the site of transcription"
##
                      "cellular response to fructose stimulus"
##
                      "regulation of keratinocyte apoptotic process"
##
                      "positive regulation of intracellular mRNA localization"
##
                      "outflow tract morphogenesis"
##
##
                      "regulation of ion transmembrane transport"
                      "regulation of stem cell proliferation"
##
```

```
##
                      "response to vitamin A"
##
                     "response to vitamin B6"
                      "microtubule-dependent intracellular transport of viral material towards nucleus"
##
                      "thigmotaxis"
##
                      "positive regulation of immunoglobulin production"
##
                      "FAD biosynthetic process"
##
                      "fatty acid beta-oxidation using acyl-CoA oxidase"
##
                      "determination of adult lifespan"
##
##
                      "molybdenum incorporation into molybdenum-molybdopterin complex"
                      "glycine receptor clustering"
##
##
                      "cellular response to staurosporine"
                      "ventricular septum development"
##
                      "positive regulation of deoxyribonuclease activity"
##
                      "regulation of cellular respiration"
##
                      "negative regulation of endodermal cell differentiation"
##
##
                      "melanin metabolic process"
##
                     "negative regulation of axon extension"
                      "positive regulation of low-density lipoprotein particle receptor catabolic proces
##
                      "negative regulation of cellular pH reduction"
##
                      "CD8-positive, alpha-beta T cell lineage commitment"
##
##
                      "negative regulation of retinal cell programmed cell death"
##
                      "pigment granule organization"
                      "inner medullary collecting duct development"
##
                      "postsynaptic membrane organization"
##
                     "blood coagulation, extrinsic pathway"
##
##
                      "positive regulation of mitochondrial fusion"
##
                      "chemoattraction of axon"
                      "ferric iron import across cell outer membrane"
##
                      "positive regulation of interferon-alpha biosynthetic process"
##
                      "CDP-diacylglycerol metabolic process"
##
                      "positive regulation of connective tissue replacement"
##
##
                      "prostaglandin secretion"
                      "histidine catabolic process"
##
##
                      "regulation of autophagosome assembly"
                      "asymmetric cell division"
##
##
                     "vesicle transport along actin filament"
##
                      "cellular response to toxic substance"
##
                      "positive regulation of glycogen biosynthetic process"
##
                      "induction by virus of host cell-cell fusion"
##
                     "helper T cell enhancement of adaptive immune response"
                      "ovulation cycle"
##
                      "regulation of relaxation of cardiac muscle"
##
                      "regulation of cell junction assembly"
##
                      "GDP-mannose metabolic process"
##
                      "neutrophil aggregation"
##
                      "negative regulation of constitutive secretory pathway"
##
                      "multi-organism toxin transport"
##
##
                     "L-kynurenine catabolic process"
                      "Schwann cell differentiation"
##
                      "positive regulation of toll-like receptor signaling pathway"
##
##
                      "positive regulation of microtubule binding"
                      "ameboidal-type cell migration"
##
                      "negative regulation of megakaryocyte differentiation"
##
```

"nucleoside triphosphate catabolic process"

```
##
                      "blastocyst development"
##
                      "endoplasmic reticulum tubular network formation"
                      "T cell activation"
##
                      "negative regulation of oxidative stress-induced intrinsic apoptotic signaling pat
##
                      "negative regulation of transcription from RNA polymerase II promoter by glucose"
##
##
                      "negative regulation of detection of glucose"
                      "mRNA splicing, via endonucleolytic cleavage and ligation"
##
                      "mRNA cleavage involved in mRNA processing"
##
##
                      "peptidyl-serine trans-autophosphorylation"
                     "G1 to G0 transition"
##
##
                      "negative regulation of protein glutathionylation"
                      "aminergic neurotransmitter loading into synaptic vesicle"
##
                      "negative regulation of actin nucleation"
##
                      "histone mRNA catabolic process"
##
                      "negative regulation of DNA damage checkpoint"
##
##
                      "macrophage apoptotic process"
                      "positive regulation of tolerance induction"
##
                      "positive regulation of proton-transporting ATP synthase activity, rotational mech
##
##
                      "mitochondrion migration along actin filament"
                      "L-alanine metabolic process"
##
##
                     "dorsal/ventral axis specification"
                      "proline transmembrane transport"
##
                      "porphyrin-containing compound metabolic process"
##
                      "negative regulation of vesicle fusion"
##
                     "translation reinitiation"
##
##
                      "response to cycloheximide"
##
                      "apoptotic process in bone marrow"
                      "metal ion transport"
##
                      "positive regulation of cardiolipin metabolic process"
##
                      "immortalization of host cell by virus"
##
                      "uracil metabolic process"
##
##
                      "sperm mitochondrion organization"
                      "dUMP metabolic process"
##
##
                      "adenosine biosynthetic process"
                      "establishment of vesicle localization"
##
##
                      "paramesonephric duct development"
##
                      "cellular response to benomyl"
##
                      "prolyl-tRNA aminoacylation"
                      "high-density lipoprotein particle assembly"
##
                      "myoblast fate determination"
##
                      "cellular response to aldosterone"
##
##
                      "positive regulation of eosinophil differentiation"
                      "icosanoid biosynthetic process"
##
                      "oviduct development"
##
                      "camera-type eye photoreceptor cell differentiation"
##
                      "positive regulation of synapse assembly"
##
                      "protein maturation by copper ion transfer"
##
                      "positive regulation of Schwann cell chemotaxis"
##
                      "syncytium formation by plasma membrane fusion"
##
                      "response to protozoan"
##
                      "detection of chemical stimulus involved in sensory perception of sweet taste"
##
                      "tRNA wobble base cytosine methylation"
##
                      "innate immune response activating cell surface receptor signaling pathway"
##
```

"activation of immune response"

```
##
                      "endothelial cell activation involved in immune response"
##
                     "CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation"
                      "plasmacytoid dendritic cell antigen processing and presentation"
##
                      "negative regulation of antigen processing and presentation of peptide antigen via
##
##
                      "regulation of cytokine production involved in immune response"
                      "positive regulation of antimicrobial humoral response"
##
                      "negative regulation of antibacterial peptide production"
##
                      "intracellular defense response"
##
##
                      "detection of hypoxic conditions in blood by carotid body chemoreceptor signaling"
                      "detection of oxygen"
##
##
                      "negative regulation of the force of heart contraction by chemical signal"
                      "cardiac atrium formation"
##
##
                      "sinus venosus morphogenesis"
                      "cardioblast anterior-lateral migration"
##
##
                      "growth plate cartilage axis specification"
##
                      "disaccharide metabolic process"
                      "GPI anchor release"
##
##
                      "polyamine catabolic process"
##
                      "sphinganine metabolic process"
                      "sperm displacement"
##
##
                      "lipopolysaccharide catabolic process"
                      "nucleoside monophosphate biosynthetic process"
##
                      "purine nucleoside monophosphate catabolic process"
##
                      "nucleoside diphosphate metabolic process"
##
                     "nucleoside diphosphate biosynthetic process"
##
##
                      "nucleoside diphosphate catabolic process"
##
                      "purine ribonucleoside diphosphate catabolic process"
                      "pyrimidine deoxyribonucleotide catabolic process"
##
                      "response to salicylic acid"
##
##
                      "hormone transport"
##
                      "response to alkaline pH"
##
                     "negative regulation of cytoplasmic mRNA processing body assembly"
                      "meiotic sister chromatid cohesion involved in meiosis I"
##
##
                      "transport along microtubule"
                      "positive regulation of high-density lipoprotein particle clearance"
##
                      "regulation of satellite cell activation involved in skeletal muscle regeneration"
##
##
                      "myoblast fusion involved in skeletal muscle regeneration"
##
                      "nitrate transport"
                      "lactate transport"
##
                     "propanoate transport"
##
                      "sucrose transport"
##
##
                      "aromatic amino acid transport"
                      "branched-chain amino acid transport"
##
                     "lysine transport"
##
                      "methionine transport"
##
                      "purine nucleoside transmembrane transport"
##
                      "pyrimidine nucleoside transport"
##
                      "purine nucleotide transport"
##
##
                      "short-chain fatty acid import"
                      "coenzyme A catabolic process"
##
##
                     "snoRNA catabolic process"
                      "carotenoid metabolic process"
##
##
                      "carotene metabolic process"
```

"carotene catabolic process"

```
##
                      "xanthophyll metabolic process"
##
                     "antibiotic metabolic process"
##
                      "peptidyl-serine octanoylation"
                      "protein esterification"
##
##
                      "thiocyanate metabolic process"
                     "intracellular transport of viral protein in host cell"
##
                      "siderophore biosynthetic process"
##
                      "inositol catabolic process"
##
                      "galactolipid catabolic process"
##
                      "allantoin biosynthetic process"
##
##
                      "aromatic compound biosynthetic process"
                      "urate catabolic process"
##
                      "organophosphate metabolic process"
##
                      "propionate metabolic process, methylcitrate cycle"
##
##
                      "cyclic-nucleotide-mediated signaling"
##
                      "commissural neuron differentiation in spinal cord"
                     "rhombomere 2 development"
##
                      "cerebellar Purkinje cell layer formation"
##
                      "negative regulation of cell motility involved in cerebral cortex radial glia guid
##
                      "dermatan sulfate catabolic process"
##
##
                      "phosphatidylinositol catabolic process"
                      "regulation of vesicle fusion"
##
                      "negative regulation of brain-derived neurotrophic factor receptor signaling pathw
##
                      "trypsinogen activation"
##
##
                     "transposition"
##
                      "reverse transcription involved in RNA-mediated transposition"
##
                      "otolith formation"
                      "granulocyte macrophage colony-stimulating factor production"
##
                      "interleukin-8 production"
##
                      "regulation of natural killer cell differentiation involved in immune response"
##
##
                      "protein insertion into mitochondrial inner membrane from matrix side"
##
                      "beta-alanine biosynthetic process via 3-ureidopropionate"
                      "carbohydrate homeostasis"
##
##
                      "protein galactosylation at cell surface"
##
                      "cellular response to zinc ion starvation"
##
                     "enkephalin processing"
##
                     "islet amyloid polypeptide processing"
##
                     "tRNA 3'-trailer cleavage, endonucleolytic"
                      "cell competition in a multicellular organism"
##
                     "vitamin A biosynthetic process"
##
                     "borate transmembrane transport"
##
##
                      "carnosine biosynthetic process"
                     "neuromast hair cell development"
##
                     "memory T cell activation"
##
                      "T-helper 2 cell activation"
##
                      "response to nitrogen dioxide"
##
                     "nitric oxide storage"
##
                     "dITP catabolic process"
##
##
                      "cellular response to copper ion starvation"
                      "corticosterone secretion"
##
##
                      "tendon formation"
                     "recruitment of mRNA capping enzyme to RNA polymerase II holoenzyme complex"
##
##
                      "GDP-fucose import into Golgi lumen"
                      "sequestering of nodal from receptor via nodal binding"
##
```

```
"urokinase plasminogen activator signaling pathway"
##
##
                     "fluid transport"
                     "late meiotic recombination nodule assembly"
##
                     "regulation of cytolysis"
##
                      "thyroid hormone catabolic process"
##
                      "negative regulation of hair cycle"
##
                      "negative regulation of endodermal cell fate specification"
##
                     "D-xylose catabolic process"
##
##
                      "amino acid activation for nonribosomal peptide biosynthetic process"
                     "regulation of translation by machinery localization"
##
##
                      "sodium-dependent organic anion transport"
                      "regulation of skeletal muscle tissue regeneration"
##
                      "acetoacetic acid metabolic process"
##
                      "regulation of generation of precursor metabolites and energy"
##
##
                      "ncRNA polyadenylation"
                      "ncRNA polyadenylation involved in polyadenylation-dependent ncRNA catabolic proce
##
##
                     "intestinal lipid catabolic process"
                     "cellular carbohydrate catabolic process"
##
                     "clearance of foreign intracellular DNA by conversion of DNA cytidine to uridine"
##
                      "otolith mineralization"
##
##
                     "basophil activation"
##
                      "positive regulation of neutrophil differentiation"
                      "dUMP catabolic process"
##
                      "thymidine biosynthetic process"
##
                     "L-arabinose metabolic process"
##
##
                      "development of primary male sexual characteristics"
##
                      "negative regulation of calcium-dependent cell-cell adhesion"
                      "negative regulation of mitotic centrosome separation"
##
                      "borate transport"
##
                      "compound eye corneal lens development"
##
                      "regulation of eye pigmentation"
##
##
                      "spermatocyte division"
                      "long-day photoperiodism"
##
                      "negative regulation of collateral sprouting in absence of injury"
##
                      "pronephros development"
##
                      "adenohypophysis morphogenesis"
##
                      "regulation of thymidylate synthase biosynthetic process"
##
##
                      "cocaine metabolic process"
                      "regulation of B cell activation"
##
##
                     "detection of stimulus involved in sensory perception"
                      "detection of chemical stimulus involved in sensory perception"
##
                      "positive regulation of neurotransmitter uptake"
##
                      "barbed-end actin filament uncapping"
##
                     "regulation of timing of anagen"
##
                      "lysophospholipid transport"
##
                      "response to defense-related host nitric oxide production"
##
                      "Golgi to secretory granule transport"
##
##
                     "linear vestibuloocular reflex"
                      "negative regulation of protein glycosylation"
##
                      "vestibular receptor cell development"
##
##
                     "female mating behavior"
                      "negative regulation of ovulation"
##
##
                      "regulation of cytokine activity"
                      "lobar bronchus epithelium development"
##
```

```
##
                     "regulation of homologous chromosome segregation"
##
                     "BMP signaling pathway involved in mesodermal cell fate specification"
                     "negative regulation of canonical Wnt signaling pathway involved in neural plate a
##
                     "limb epidermis development"
##
##
                     "cardiac cell fate specification"
##
                     "sinoatrial node cell differentiation"
                     "cardioblast migration to the midline involved in heart field formation"
##
                     "lipid tube assembly involved in organelle fusion"
##
##
                     "negative regulation of hair follicle placode formation"
                     "acetylcholine secretion"
##
##
                     "actin filament bundle organization"
                     "antifungal innate immune response"
##
                     "negative regulation of SCF-dependent proteasomal ubiquitin-dependent catabolic pr
##
                     "regulation of mucus secretion"
##
##
                     "necrotic cell death"
##
                     "positive regulation of hepatocyte differentiation"
                     "positive regulation of ERK5 cascade"
##
                     "negative regulation of leukocyte proliferation"
##
##
                     "seminal clot liquefaction"
                     "phosphatidylserine exposure on apoptotic cell surface"
##
##
                     "nuclear polyadenylation-dependent snoRNA catabolic process"
                     "nuclear polyadenylation-dependent snRNA catabolic process"
##
                     "snoRNA polyadenylation"
##
                     "RNA 3' uridylation"
##
                     "cellular response to triglyceride"
##
##
                     "cellular response to genistein"
##
                     "regulation of zinc ion transport"
                     "granulocyte colony-stimulating factor production"
##
                     "protein transport within extracellular region"
##
                     "endoplasmic reticulum tubular network maintenance"
##
##
                     "negative regulation of podosome assembly"
##
                     "chemokine (C-C motif) ligand 11 production"
                     "proximal/distal pattern formation involved in metanephric nephron development"
##
                     "cellular lactam catabolic process"
##
                     "signal transduction involved in cell cycle checkpoint"
##
                     "purine-containing compound biosynthetic process"
##
##
                     "interleukin-18 secretion"
##
                     "amino acid homeostasis"
                     "regulation of nitric oxide metabolic process"
##
                     "cholesterol ester hydrolysis involved in cholesterol transport"
##
                     "mesendoderm migration"
##
##
                     "regulation of establishment of blood-brain barrier"
                     "cellular response to azide"
##
                     "mitochondrial double-strand break repair via homologous recombination"
##
                     "inorganic cation import across plasma membrane"
##
                     "folate transmembrane transport"
##
                     "retrograde trans-synaptic signaling by nitric oxide, modulating synaptic transmis
##
                     "trans-synaptic signaling by nitric oxide, modulating synaptic transmission"
##
##
                     "negative regulation of ERBB4 signaling pathway"
                     "positive regulation of collagen catabolic process"
##
##
                     "negative regulation of arachidonic acid secretion"
                     "positive regulation of CD4-positive, alpha-beta T cell costimulation"
##
##
                     "negative regulation of D-amino-acid oxidase activity"
```

"negative regulation of fermentation"

```
"regulation of ERBB signaling pathway"
##
                     "positive regulation of store-operated calcium channel activity"
##
                     "organonitrogen compound catabolic process"
##
                     "cellular response to ergosterol"
##
##
                     "XDP catabolic process"
##
                     "beta-carotene metabolic process"
                     "positive regulation of meiotic cell cycle phase transition"
##
                     "positive regulation of sphingolipid mediated signaling pathway"
##
##
                     "positive regulation of calcium ion import into sarcoplasmic reticulum"
                     "positive regulation of hepatocyte growth factor receptor signaling pathway"
##
##
                     "negative regulation of acrosome reaction"
                     "negative regulation of intracellular calcium activated chloride channel activity"
##
                     "positive regulation of exo-alpha-sialidase activity"
##
                     "negative regulation of renal phosphate excretion"
##
##
                     "cellular response to L-arginine"
##
                     "regulation of ATP metabolic process"
                     "regulation of hemopoiesis"
##
                     "negative regulation of hemopoiesis"
##
                     "regulation of viral life cycle"
##
                     "negative regulation of establishment of T cell polarity"
##
##
                     "monounsaturated fatty acid catabolic process"
                     "regulation of epithelial cell apoptotic process"
##
                     "regulation of serine C-palmitoyltransferase activity"
##
                     "positive regulation of calcium ion transmembrane transport"
##
                     "positive regulation of somatic stem cell division"
##
##
                     "regulation of AMPA glutamate receptor clustering"
##
                     "negative regulation of protein serine/threonine phosphatase activity"
                     "positive regulation of protein serine/threonine phosphatase activity"
##
                     "negative regulation of aspartic-type peptidase activity"
##
                     "positive regulation of retrograde transport, endosome to Golgi"
##
##
                     "positive regulation of fertilization"
##
                     "regulation of cellular response to manganese ion"
                     "negative regulation of protein localization to cell leading edge"
##
                     "cartilage homeostasis"
##
                     "paranodal junction maintenance"
##
                     "histone H2A-T120 phosphorylation"
##
                     "lipid transport across blood brain barrier"
##
##
                     "hyaloid vascular plexus regression"
                     "dark adaptation"
##
                     "mitotic spindle microtubule depolymerization"
##
                     "positive regulation of mammary stem cell proliferation"
##
                     "positive regulation of fatty acid transport"
##
                     "positive regulation of fibronectin-dependent thymocyte migration"
##
                     "positive regulation of eosinophil migration"
##
                     "regulation of glycogen (starch) synthase activity"
##
                     "negative regulation of CD8-positive, alpha-beta T cell proliferation"
##
                     "positive regulation of interleukin-4-dependent isotype switching to IgE isotypes"
##
                     "regulation of thyroid hormone generation"
##
                     "negative regulation of miRNA catabolic process"
##
                     "histone H3-T3 phosphorylation involved in chromosome passenger complex localizati
##
                     "negative regulation of Rho guanyl-nucleotide exchange factor activity"
##
##
                     "nicotinate transport"
##
                     "miRNA metabolic process"
##
                     "leukocyte cell-cell adhesion"
```

```
##
                      "negative regulation of RNA export from nucleus"
##
                      "metanephric nephron tubule morphogenesis"
                      "excitatory synapse assembly"
##
                      "positive regulation of dopamine receptor signaling pathway"
##
##
                      "fatty-acyl-CoA transport"
##
                      "peroxisomal membrane transport"
                      "very long-chain fatty-acyl-CoA catabolic process"
##
                      "regulation of arginine metabolic process"
##
##
                      "cilium or flagellum-dependent cell motility"
                      "ovarian follicle atresia"
##
##
                      "negative regulation of T cell mediated cytotoxicity"
                      "glandular epithelial cell differentiation"
##
                      "tRNA wobble adenosine to inosine editing"
##
                      "CD8-positive, alpha-beta T cell differentiation involved in immune response"
##
##
                      "detection of tumor cell"
##
                      "granuloma formation"
                      "regulation of cellular extravasation"
##
##
                      "lymph circulation"
                      "regulation of systemic arterial blood pressure mediated by a chemical signal"
##
                      "starch catabolic process"
##
##
                      "dADP phosphorylation"
                      "dGDP phosphorylation"
##
                      "glutamate catabolic process via 2-oxoglutarate"
##
                      "AMP phosphorylation"
##
                      "ATP generation from ADP"
##
##
                      "sperm individualization"
##
                      "mating"
                      "10-formyltetrahydrofolate metabolic process"
##
                      "putrescine biosynthetic process"
##
##
                      "axis specification"
                      "regulation of platelet-derived growth factor receptor signaling pathway"
##
##
                      "cholesterol transport involved in cholesterol storage"
                      "fructose transmembrane transport"
##
##
                      "guanine transport"
                      "N-terminal peptidyl-L-cysteine N-palmitoylation"
##
##
                      "hexose metabolic process"
##
                      "nitrogen utilization"
##
                      "roof plate formation"
                      "cerebellar molecular layer morphogenesis"
##
                      "regulation of transcription from RNA polymerase II promoter involved in spinal co.
##
                      "melatonin biosynthetic process"
##
##
                      "fructoselysine metabolic process"
                      "regulation of myeloid dendritic cell activation"
##
                      "DNA methylation on adenine"
##
                      "saturated monocarboxylic acid metabolic process"
##
                      "unsaturated monocarboxylic acid metabolic process"
##
##
                      "hypoxanthine transport"
                      "thymine transport"
##
##
                      "protein deglutamylation"
                      "protein branching point deglutamylation"
##
##
                      "monocyte extravasation"
                      "pore formation in membrane of other organism"
##
##
                      "response to erythropoietin"
##
                      "cleavage furrow ingression"
```

```
##
                      "triglyceride acyl-chain remodeling"
##
                      "D-alanine transport"
                     "intercellular bridge organization"
##
                      "macromolecule glycosylation"
##
##
                      "negative regulation of growth of symbiont on or near host surface"
                      "regulation of T-helper 1 cell differentiation"
##
                      "negative regulation of glial cell differentiation"
##
                      "spermine catabolic process"
##
##
                      "nicotinamide nucleotide metabolic process"
                      "ceramide catabolic process"
##
##
                      "positive regulation of eye pigmentation"
                      "epinephrine transport"
##
##
                      "compound eye development"
                      "host-mediated regulation of intestinal microbiota composition"
##
##
                      "negative regulation of NK T cell activation"
##
                      "methotrexate transport"
                     "ingression involved in gastrulation with mouth forming second"
##
##
                      "negative regulation of phagocytosis, engulfment"
##
                      "negative regulation of N-terminal protein palmitoylation"
                      "dichotomous subdivision of terminal units involved in ureteric bud branching"
##
##
                     "establishment of glial blood-brain barrier"
                      "CDP phosphorylation"
##
                      "dAMP phosphorylation"
##
                      "CMP phosphorylation"
##
                     "dCMP phosphorylation"
##
##
                      "GDP phosphorylation"
##
                     "UDP phosphorylation"
                      "dCDP phosphorylation"
##
                     "TDP phosphorylation"
##
                      "regulation of neuron projection regeneration"
##
##
                      "extracellular exosome assembly"
##
                     "nephrogenic mesenchyme development"
                      "nephron tubule formation"
##
##
                      "metanephric capsule development"
                      "metanephric glomerular mesangial cell differentiation"
##
##
                      "metanephric capsule specification"
##
                      "regulation of superoxide metabolic process"
##
                      "postsynaptic density organization"
                      "defense response to other organism"
##
                     "trans-Golgi network membrane organization"
##
                      "intestinal folate absorption"
##
##
                      "regulation of DNA strand resection involved in replication fork processing"
                      "positive regulation of plasma membrane bounded cell projection assembly"
##
                      "negative regulation of cellular response to heat"
##
                      "negative regulation of glucocorticoid mediated signaling pathway"
##
                      "sarcosine catabolic process"
##
                      "positive regulation of spermidine biosynthetic process"
##
                      "positive regulation of lymphangiogenesis"
##
##
                      "negative regulation of meiotic cell cycle phase transition"
                      "negative regulation of keratinocyte apoptotic process"
##
##
                      "positive regulation of prolactin signaling pathway"
                      "negative regulation of primary amine oxidase activity"
##
##
                      "negative regulation of eosinophil activation"
##
                      "negative regulation of activation of Janus kinase activity"
```

```
##
                      "urate homeostasis"
                     "regulation of cardiac muscle hypertrophy in response to stress"
##
                      "negative regulation of intestinal absorption"
##
                      "fructose import across plasma membrane"
##
##
                      "negative regulation of glutamate metabolic process"
                      "negative regulation of eosinophil migration"
##
                      "positive regulation of tendon cell differentiation"
##
                      "naphthalene metabolic process"
##
##
                      "positive regulation of TORC1 signaling"
                      "positive regulation of IP-10 production"
##
##
                      "protein K69-linked ufmylation"
                      "primary heart field specification"
##
                      "sinoatrial valve morphogenesis"
##
                      "negative regulation of protein localization to cell surface"
##
##
                      "positive regulation of cell cycle G1/S phase transition"
##
                      "sulfur amino acid biosynthetic process"
                     "tRNA 3'-terminal CCA addition"
##
                      "negative regulation of antigen processing and presentation"
##
##
                      "positive regulation of immunoglobulin biosynthetic process"
                      "natural killer cell inhibitory signaling pathway"
##
##
                     "uridine catabolic process"
                      "UDP catabolic process"
##
                      "transposition, DNA-mediated"
##
                      "patched ligand maturation"
##
                      "positive regulation of muscle hyperplasia"
##
##
                      "tyrosine transport"
##
                      "arsonoacetate metabolic process"
                      "D-amino acid catabolic process"
##
##
                     "L-alanine catabolic process, by transamination"
##
                      "urea metabolic process"
##
                      "cerebellar granular layer maturation"
##
                     "radial glia guided migration of cerebellar granule cell"
                     "negative regulation of nuclease activity"
##
##
                     "riboflavin transport"
##
                      "interleukin-13 production"
##
                     "interleukin-5 production"
##
                     "S-methylmethionine metabolic process"
##
                      "lipid oxidation"
                      "plasma lipoprotein particle oxidation"
##
                     "oxidative single-stranded DNA demethylation"
##
                     "mitophagy by induced vacuole formation"
##
##
                     "lactate transmembrane transport"
                     "D-serine catabolic process"
##
                     "cellular response to mycotoxin"
##
                      "nitric oxide-cGMP-mediated signaling pathway"
##
                      "nitrate metabolic process"
##
                     "cellular amide metabolic process"
##
                     "MAPK export from nucleus"
##
                     "MAPK phosphatase export from nucleus, leptomycin B sensitive"
##
                      "extracellular polysaccharide biosynthetic process"
##
##
                     "ADP catabolic process"
                     "ether lipid metabolic process"
##
##
                     "IDP catabolic process"
```

"establishment of animal organ orientation"

```
##
                      "male meiosis chromosome separation"
##
                     "detoxification of nitrogen compound"
                     "D-alanine catabolic process"
##
                      "mammary gland bud morphogenesis"
##
##
                      "lymphatic endothelial cell fate commitment"
                      "bone trabecula morphogenesis"
##
                      "oncosis"
##
                      "cellular response to interleukin-11"
##
##
                      "positive regulation of chemokine (C-C motif) ligand 1 production"
                     "cellular response to dithiothreitol"
##
##
                      "regulation of protein serine/threonine phosphatase activity"
                      "cell communication involved in cardiac conduction"
##
                      "regulation of cell motility involved in somitogenic axis elongation"
##
                      "response to alcohol"
##
##
                      "cell aggregation"
##
                      "cardiac endothelial to mesenchymal transition"
                     "regulation of engulfment of apoptotic cell"
##
                      "positive regulation of non-canonical Wnt signaling pathway via JNK cascade"
##
                      "negative regulation of convergent extension involved in axis elongation"
##
                      "nucleoside phosphate catabolic process"
##
##
                      "pyruvate transmembrane transport"
##
                      "zeaxanthin biosynthetic process"
                      "regulation of mitochondrial DNA metabolic process"
##
                      "regulation of inward rectifier potassium channel activity"
##
                      "regulation of cyclic nucleotide-gated ion channel activity"
##
##
                      "positive regulation of histone H3-K27 trimethylation"
##
                      "regulation of retina development in camera-type eye"
                      "regulation of melanosome transport"
##
##
                      "positive regulation of protein localization to ciliary membrane"
                      "regulation of collagen fibril organization"
##
                      "positive regulation of otic vesicle morphogenesis"
##
                      "regulation of adipose tissue development"
##
                      "regulation of myofibroblast contraction"
##
##
                      "negative regulation of canonical Wnt signaling pathway involved in osteoblast dif
##
                      "invadopodium organization"
                      "negative regulation of postsynaptic density organization"
##
##
                      "signal clustering"
##
                      "positive regulation of lymphocyte migration"
                      "regulation of dendritic cell differentiation"
##
                     "sulfate assimilation"
##
                      "negative regulation of biosynthetic process"
##
##
                      "lipid phosphorylation"
                      "response to UV-A"
##
                      "peptide metabolic process"
##
                      "protein complex oligomerization"
##
                      "trehalose metabolism in response to stress"
##
                      "negative regulation of smooth muscle cell chemotaxis"
##
                     "hindlimb morphogenesis"
##
                      "positive regulation of hydrogen peroxide-induced cell death"
##
                      "behavioral fear response"
##
##
                     "negative regulation of filopodium assembly"
                      "cellular response to cobalt ion"
##
##
                      "globoside biosynthetic process"
                      "histamine biosynthetic process"
##
```

```
##
                      "acrosome matrix dispersal"
##
                     "leukocyte mediated immunity"
                      "positive regulation of myeloid leukocyte differentiation"
##
                      "involuntary skeletal muscle contraction"
##
##
                      "histidine metabolic process"
                      "purine nucleobase transport"
##
                      "detection of light stimulus"
##
                      "regulation of collagen catabolic process"
##
##
                      "CMP-N-acetylneuraminate transmembrane transport"
                      "polyol transport"
##
##
                      "amine transport"
                      "pyrimidine nucleobase transport"
##
                      "tetracycline transport"
##
                      "cerebellar granular layer morphogenesis"
##
##
                      "medullary reticular formation development"
##
                      "hindbrain tangential cell migration"
##
                     "stabilization of membrane potential"
                     "regulation of polarized epithelial cell differentiation"
##
##
                      "negative regulation of gonadotropin secretion"
##
                      "toll-like receptor 5 signaling pathway"
##
                     "fertilization, exchange of chromosomal proteins"
##
                     "interleukin-13-mediated signaling pathway"
                      "response to interleukin-13"
##
                      "cellular modified amino acid catabolic process"
##
                     "mating plug formation"
##
##
                      "plasma membrane ATP synthesis coupled electron transport"
##
                      "negative regulation of GTP cyclohydrolase I activity"
                      "DNA hypermethylation"
##
                     "intermediate filament-based process"
##
                      "purine ribonucleoside catabolic process"
##
##
                      "carboxylic acid transport"
##
                     "autonomic nervous system development"
##
                      "parasympathetic nervous system development"
##
                      "positive regulation of behavior"
##
                      "post-embryonic digestive tract morphogenesis"
##
                      "efferent axon development in a lateral line nerve"
##
                      "interleukin-1 alpha secretion"
##
                      "positive regulation of transport"
                      "meiotic sister chromatid cohesion"
##
                      "proprioception involved in equilibrioception"
##
                      "histamine uptake"
##
                      "positive regulation of cytolysis in other organism"
##
                      "cardiac muscle tissue growth"
##
                     "seminal vesicle epithelium development"
##
                      "alveolar primary septum development"
##
##
                      "retrotrapezoid nucleus neuron differentiation"
##
                      "negative regulation of neuroblast migration"
                     "cellular response to cortisol stimulus"
##
##
                      "cellular response to alkaline pH"
                      "vitamin A import"
##
                      "pyrimidine-containing compound transmembrane transport"
##
                      "eosinophil migration"
##
                      "regulation of establishment of planar polarity"
##
                      "cap2 mRNA methylation"
##
```

```
##
                      "spinal cord motor neuron migration"
##
                      "symmetric cell division"
                      "zinc ion import into synaptic vesicle"
##
                      "positive regulation of uterine smooth muscle relaxation"
##
##
                      "mesenchymal cell differentiation involved in bone development"
##
                     "regulation of copper ion transmembrane transport"
                      "regulation of protein localization to synapse"
##
                      "negative regulation of lens fiber cell differentiation"
##
##
                      "regulation of skeletal muscle acetylcholine-gated channel clustering"
                      "negative regulation of skeletal muscle acetylcholine-gated channel clustering"
##
##
                      "negative regulation of protein localization to cell cortex"
                      "purine nucleobase transmembrane transport"
##
##
                      "carboxylic acid transmembrane transport"
                      "negative regulation of maintenance of permeability of blood-brain barrier"
##
##
                      "positive regulation of membrane permeability"
##
                      "gap junction-mediated intercellular transport"
                      "cellular stress response to acidic pH"
##
                      "regulation of ceramide biosynthetic process"
##
##
                      "negative regulation of ovarian follicle development"
                      "positive regulation of neutrophil extravasation"
##
##
                      "negative regulation of pre-miRNA processing"
                      "positive regulation of lens epithelial cell proliferation"
##
                      "negative regulation of transcription elongation by RNA polymerase I"
##
                      "membrane fission"
##
                      "preassembly of GPI anchor in ER membrane"
##
##
                      "B cell differentiation"
                      "auditory receptor cell morphogenesis"
##
                      "tRNA wobble cytosine modification"
##
                     "regulation of T cell cytokine production"
##
##
                      "corneccyte development"
##
                      "cellular cadmium ion homeostasis"
##
                     "response to nickel cation"
##
                      "negative regulation of gliogenesis"
                      "nitrite transport"
##
##
                      "urate transport"
                     "GDP-fucose transmembrane transport"
##
##
                     "UDP-xylose transmembrane transport"
##
                      "basic amino acid transport"
                      "norepinephrine transport"
##
                     "polyprenol catabolic process"
##
                      "beta-alanine metabolic process"
##
##
                      "short-chain fatty acid catabolic process"
                      "GABAergic neuron differentiation in basal ganglia"
##
                     "regulation of vitamin metabolic process"
##
                      "interleukin-3 production"
##
                      "negative regulation of MyD88-dependent toll-like receptor signaling pathway"
##
##
                      "carbohydrate transmembrane transport"
                      "sequestering of BMP from receptor via BMP binding"
##
##
                      "cytokine metabolic process"
##
                      "GDP-L-fucose salvage"
##
                      "regulation of amyloid precursor protein biosynthetic process"
                      "protein palmitoleylation"
##
##
                      "MHC class II biosynthetic process"
                      "L-methylmalonyl-CoA metabolic process"
##
```

```
##
                     "interleukin-1 beta biosynthetic process"
##
                     "norepinephrine uptake"
                     "granulosa cell development"
##
                     "regulation of spongiotrophoblast cell proliferation"
##
##
                     "fungiform papilla development"
##
                     "positive regulation of transcription from RNA polymerase II promoter in response
                     "regulation of enamel mineralization"
##
                     "divalent metal ion transport"
##
##
                     "divalent metal ion export"
                     "regulation of MAPK export from nucleus"
##
##
                     "protein localization to vacuole"
                     "SA node cell to atrial cardiac muscle cell signaling"
##
                     "AV node cell to bundle of His cell signaling"
##
                     "regulation of neutrophil chemotaxis"
##
##
                     "negative regulation of neural crest formation"
##
                     "phagosome-lysosome fusion involved in apoptotic cell clearance"
                     "walking behavior"
##
##
                     "renal tubular secretion"
                     "cerebellar neuron development"
##
##
                     "calmodulin dependent kinase signaling pathway"
##
                     "regulation of heart looping"
                     "positive regulation of histone H3-K27 acetylation"
##
                     "L-arginine transport"
##
                     "regulation of response to DNA damage checkpoint signaling"
##
                     "response to chloroquine"
##
##
                     "negative regulation of Notch signaling pathway involved in somitogenesis"
##
                     "positive regulation of hexokinase activity"
                     "response to dopamine"
##
                     "positive regulation of atrial cardiac muscle cell action potential"
##
                     "positive regulation of voltage-gated potassium channel activity involved in atria
##
                     "positive regulation of regulation of vascular smooth muscle cell membrane depolar
##
##
                     "negative regulation of neuronal action potential"
                     "negative regulation of type B pancreatic cell proliferation"
##
                     "negative regulation of macroautophagy by TORC1 signaling"
##
##
                     "positive regulation of cell proliferation in midbrain"
                     "protein depalmitoleylation"
##
##
                     "cellular response to glial cell derived neurotrophic factor"
##
                     "tRNA demethylation"
                     "regulation of animal organ morphogenesis"
##
                     "negative regulation of fibroblast growth factor receptor signaling pathway involv
##
                     "positive regulation of unsaturated fatty acid biosynthetic process"
##
##
                     "canalicular bile acid transport"
                     "positive regulation of sodium:proton antiporter activity"
##
                     "negative regulation of collateral sprouting of intact axon in response to injury"
##
                     "positive regulation of transcription from RNA polymerase II promoter by glucose"
##
                     "immune response-inhibiting cell surface receptor signaling pathway"
##
                     "norepinephrine metabolic process"
##
                     "allantoin catabolic process"
##
##
                     "negative regulation of exit from mitosis"
                     "detection of chemical stimulus involved in sensory perception of sour taste"
##
##
                     "positive regulation of immune system process"
                     "positive regulation of cilium movement"
##
##
                     "tyrosine metabolic process"
##
                     "cellular modified amino acid metabolic process"
```

```
##
                      "threonine transport"
##
                     "cell wall macromolecule catabolic process"
##
                      "regulation of lipid transport"
                      "B cell receptor transport into membrane raft"
##
##
                      "chemokine receptor transport out of membrane raft"
##
                      "negative regulation of transforming growth factor beta3 production"
                      "positive regulation of toll-like receptor 7 signaling pathway"
##
                      "hydroxyproline transport"
##
##
                      "detection of bacterial lipoprotein"
                      "cellular macromolecule catabolic process"
##
##
                      "protection of DNA demethylation of female pronucleus"
                      "extrathymic T cell selection"
##
                      "positive regulation of TRAIL biosynthetic process"
##
                      "positive regulation of lipid metabolic process"
##
##
                      "uridine metabolic process"
##
                      "stilbene catabolic process"
                     "negative regulation of positive chemotaxis"
##
##
                      "hepoxilin metabolic process"
##
                      "regulation of sequestering of calcium ion"
                      "homologous chromosome movement towards spindle pole involved in homologous chromo
##
##
                     "elastin catabolic process"
                      "positive regulation of cytosolic calcium ion concentration involved in egg activa
##
##
                      "regulation of meiosis I"
                      "glycine secretion, neurotransmission"
##
##
                      "N-acylphosphatidylethanolamine metabolic process"
##
                      "regulation of neutrophil mediated cytotoxicity"
##
                      "conversion of methionyl-tRNA to N-formyl-methionyl-tRNA"
                      "nephron morphogenesis"
##
                      "glomerular parietal epithelial cell differentiation"
##
                      "regulation of branching involved in ureteric bud morphogenesis"
##
##
                      "mesenchymal stem cell proliferation"
##
                      "urea homeostasis"
##
                      "ncRNA transcription"
                      "negative regulation of inflammatory response to wounding"
##
##
                      "regulation of cobalamin metabolic process"
                     "negative regulation of lymphocyte chemotaxis"
##
##
                      "leukotriene A4 metabolic process"
##
                      "ceramide 1-phosphate transport"
                      "positive regulation of protein maturation"
##
                     "basic amino acid transmembrane transport"
##
                      "negative regulation of Wnt signaling pathway involved in digestive tract morphoge:
##
##
                      "lipoxin biosynthetic process"
                      "lipoxin B4 biosynthetic process"
##
                     "histone methylation"
##
                      "metanephric epithelium development"
##
                      "positive regulation of viral entry into host cell"
##
                      "tryptophan metabolic process"
##
                      "embryonic forelimb morphogenesis"
##
##
                      "erythrocyte development"
                      "heterotypic cell-cell adhesion"
##
##
                      "erythrocyte maturation"
                      "maintenance of animal organ identity"
##
                      "positive regulation of protein polymerization"
##
                      "anterior head development"
##
```

```
##
                      "tongue development"
##
                      "hypochlorous acid biosynthetic process"
##
                      "B-1a B cell differentiation"
                      "regulation of systemic arterial blood pressure by aortic arch baroreceptor feedba
##
##
                      "dADP biosynthetic process"
##
                      "polyphosphate metabolic process"
                      "ganglion mother cell fate determination"
##
                      "regulation of rhodopsin gene expression"
##
                      "sensory organ boundary specification"
##
##
                      "biotin transport"
##
                      "pantothenate transmembrane transport"
                      "peptidyl-glutamic acid modification"
##
##
                      "response to pheromone"
                      "pentose metabolic process"
##
##
                      "pentose catabolic process"
##
                      "retinol transport"
                     "male pronucleus assembly"
##
##
                      "positive regulation of hippo signaling"
                      "positive regulation of SNARE complex assembly"
##
##
                      "osteoclast maturation"
##
                     "zonula adherens assembly"
                      "regulation of phosphorus metabolic process"
##
                      "quorum sensing involved in interaction with host"
##
                      "positive regulation of intestinal epithelial structure maintenance"
##
                     "fibroblast growth factor receptor signaling pathway involved in neural plate ante
##
##
                      "taste bud development"
                      "establishment or maintenance of monopolar cell polarity"
##
                      "connective tissue development"
##
                      "positive regulation of erythrocyte enucleation"
##
##
                      "sodium-dependent organic cation transport"
##
                      "negative regulation of transmembrane receptor protein serine/threonine kinase sig
##
                     "regulation of high-density lipoprotein particle assembly"
                      "positive regulation of glomerulus development"
##
                      "regulation of intrinsic apoptotic signaling pathway by p53 class mediator"
##
##
                      "positive regulation of lamellipodium organization"
                      "regulation of nuclear migration along microtubule"
##
##
                      "negative regulation of amacrine cell differentiation"
##
                      "negative regulation of adipose tissue development"
                      "response to gold nanoparticle"
##
                     "regulation of endocannabinoid signaling pathway"
##
                      "regulation of fibroblast growth factor receptor signaling pathway involved in neu
##
##
                      "negative regulation of barbed-end actin filament capping"
                      "photoreceptor cell maintenance"
##
                      "platelet activating factor biosynthetic process"
##
                      "regulation of actin filament polymerization"
##
                      "response to calcium ion"
##
##
                      "cell death"
                      "positive regulation of helicase activity"
##
##
                      "interferon-beta production"
                      "oxidative single-stranded RNA demethylation"
##
##
                     "neurotransmitter biosynthetic process"
                      "positive regulation of synaptic transmission, glutamatergic"
##
                     "autophagy"
##
##
                      "mitral valve development"
```

```
##
                     "tricuspid valve development"
##
                     "septum primum development"
                     "nucleotide catabolic process"
##
                     "cobalamin biosynthetic process"
##
##
                     "molybdate ion transport"
##
                     "leucine transport"
                     "inorganic diphosphate transport"
##
                     "mitochondria-nucleus signaling pathway"
##
##
                     "negative regulation of interleukin-1 alpha production"
                     "embryonic heart tube elongation"
##
##
                     "carboxylic acid catabolic process"
                     "organophosphate catabolic process"
##
                     "lateral mesoderm formation"
##
                     "spontaneous exocytosis of neurotransmitter"
##
##
                     "positive regulation of calcium-independent cell-cell adhesion"
##
                     "negative regulation of cell growth involved in contact inhibition"
                     "regulation of white fat cell proliferation"
##
                     "negative regulation of transforming growth factor beta production"
##
##
                     "atrial cardiac muscle cell to AV node cell communication by electrical coupling"
                     "bundle of His cell to Purkinje myocyte communication by electrical coupling"
##
##
                     "Purkinje myocyte to ventricular cardiac muscle cell communication by electrical c
                     "positive regulation of mRNA modification"
##
##
                     "glutamate homeostasis"
                     "intermicrovillar adhesion"
##
                     "multi organism cell adhesion"
##
##
                     "regulation of Purkinje myocyte action potential"
##
                     "endosome to plasma membrane protein transport"
                     "negative regulation of hippocampal neuron apoptotic process"
##
                     "regulation of renin secretion into blood stream"
##
                     "negative regulation of glutamate receptor signaling pathway"
##
                     "positive regulation of engulfment of apoptotic cell"
##
##
                     "regulation of autophagosome maturation"
                     "negative regulation of lung ciliated cell differentiation"
##
                     "positive regulation of lung goblet cell differentiation"
##
                     "negative regulation of erythrocyte apoptotic process"
##
##
                     "protein localization to photoreceptor connecting cilium"
##
                     "positive regulation of protein oxidation"
##
                     "vasomotion"
                     "anti-Mullerian hormone signaling pathway"
##
                     "positive regulation of pancreatic stellate cell proliferation"
##
                     "negative regulation of vasculogenesis"
##
##
                     "lipoxin A4 biosynthetic process"
                     "pyridoxal phosphate biosynthetic process"
##
                     "negative regulation of dendritic cell cytokine production"
##
                     "negative regulation of FasL biosynthetic process"
##
                     "negative regulation of complement activation, lectin pathway"
##
                     "gamma-aminobutyric acid receptor clustering"
##
                     "mitochondrial RNA metabolic process"
##
                     "nitric oxide production involved in inflammatory response"
##
                     "negative regulation of T cell antigen processing and presentation"
##
##
                     "positive regulation of natural killer cell cytokine production"
                     "phosphatidylserine catabolic process"
##
##
                     "asparagine transport"
                     "photoreceptor cell morphogenesis"
##
```

```
##
                     "aromatic amino acid family metabolic process"
##
                     "deoxyribonucleoside monophosphate catabolic process"
##
                     "riboflavin biosynthetic process"
                     "FMN biosynthetic process"
##
##
                     "cellular response to iron ion starvation"
##
                     "formate transport"
                     "mannitol transport"
##
##
                     "putrescine transport"
##
                     "somatic motor neuron differentiation"
                     "trochlear nerve formation"
##
##
                     "locus ceruleus development"
                     "olfactory lobe development"
##
##
                     "gonadotropin secretion"
                     "negative regulation of granulocyte macrophage colony-stimulating factor production
##
##
                     "negative regulation of mononuclear cell proliferation"
##
                     "asparagine catabolic process via L-aspartate"
                     "L-lysine catabolic process to acetyl-CoA via L-pipecolate"
##
##
                     "toll-like receptor 10 signaling pathway"
##
                     "negative regulation of interferon-beta secretion"
##
                     "embryonic cleavage"
##
                     "pore formation in membrane of other organism during symbiotic interaction"
                     "positive regulation of interleukin-5 biosynthetic process"
##
##
                     "regulation of lipoprotein metabolic process"
                     "regulation of corticotropin secretion"
##
                     "negative regulation of corticotropin secretion"
##
##
                     "disruption by host of symbiont cells"
##
                     "positive regulation of amino acid transport"
                     "regulation of transcription involved in lymphatic endothelial cell fate commitmen
##
                     "cell migration involved in heart development"
##
                     "positive regulation of triglyceride lipase activity"
##
##
                     "urea transmembrane transport"
##
                     "oxygen metabolic process"
                     "adenylate cyclase-activating adrenergic receptor signaling pathway involved in ca
##
                     "L-lysine import across plasma membrane"
##
                     "L-ornithine import across plasma membrane"
##
                     "negative regulation of corticotropin-releasing hormone receptor activity"
##
##
                     "benzoyl-CoA metabolic process"
##
                     "positive regulation of protein depolymerization"
                     "positive regulation of relaxation of cardiac muscle"
##
                     "positive regulation of inward rectifier potassium channel activity"
##
                     "negative regulation of membrane hyperpolarization"
##
##
                     "negative regulation of potassium ion export across plasma membrane"
                     "negative regulation of antigen processing and presentation of endogenous peptide
##
                     "positive regulation of endothelial cell-matrix adhesion via fibronectin"
##
                     "negative regulation of membrane repolarization during ventricular cardiac muscle
##
                     "regulation of male germ cell proliferation"
##
                     "positive regulation of glutamine transport"
##
                     "positive regulation of gamma-delta T cell activation involved in immune response"
##
##
                     "malonyl-CoA catabolic process"
##
                     "nonassociative learning"
##
                     "positive regulation of myoblast differentiation"
                     "positive regulation of RNA interference"
##
##
                     "stress-activated MAPK cascade"
```

"response to nutrient levels"

```
##
                      "positive regulation of cardioblast proliferation"
##
                      "lactosylceramide biosynthetic process"
                      "noradrenergic neuron fate commitment"
##
                      "purine nucleobase catabolic process"
##
                      "thymidine catabolic process"
##
##
                      "melanin biosynthetic process from tyrosine"
                      "neuroblast fate determination"
##
                      "menaquinone biosynthetic process"
##
##
                      "detection of gravity"
                      "specification of animal organ identity"
##
##
                      "regulation of microtubule nucleation"
                      "iodide transport"
##
##
                      "nucleoside transport"
                      "uridine transport"
##
##
                      "beta-alanine biosynthetic process"
##
                      "vestibular nucleus development"
                     "monocyte homeostasis"
##
                      "pronephric nephron tubule development"
##
##
                      "thiamine diphosphate metabolic process"
                      "vitamin K biosynthetic process"
##
##
                     "glucoside transport"
                      "regulation of cholesterol biosynthetic process"
##
                      "negative regulation of complement activation, alternative pathway"
##
                      "detection of mechanical stimulus involved in sensory perception"
##
##
                     "regulation of timing of subpallium neuron differentiation"
##
                      "ureteric bud elongation"
##
                      "lung neuroendocrine cell differentiation"
                      "stomach neuroendocrine cell differentiation"
##
                      "carotid body glomus cell differentiation"
##
                      "negative regulation of mesenchymal cell apoptotic process involved in mesonephric
##
##
                      "cellular response to cholesterol"
                     "macromolecule depalmitoylation"
##
                      "regulation of carbohydrate metabolic process by regulation of transcription from
##
                      "regulation of store-operated calcium channel activity"
##
                      "nucleoside transmembrane transport"
##
                      "positive regulation of hypoxia-inducible factor-1alpha signaling pathway"
##
##
                      "regulation of sperm capacitation"
##
                      "negative regulation of electron transfer activity"
                      "negative regulation of fatty acid beta-oxidation using acyl-CoA dehydrogenase"
##
                     "positive regulation of platelet formation"
##
                      "ceramide phosphoethanolamine biosynthetic process"
##
##
                      "eosinophil homeostasis"
                      "basophil homeostasis"
##
                      "canonical Wnt signaling pathway involved in metanephric kidney development"
##
                      "regulation of cardiac muscle cell action potential involved in regulation of cont
##
                      "melanosome assembly"
##
##
                      "response to interleukin-1"
                      "negative regulation of retinoic acid receptor signaling pathway"
##
                      "meiotic DNA double-strand break formation"
##
                      "male germ cell proliferation"
##
##
                     "NMDA selective glutamate receptor signaling pathway"
                      "glandular epithelial cell maturation"
##
##
                      "regulation of cilium movement"
```

"asparagine metabolic process"

```
"acylglycerol metabolic process"
##
##
                      "mRNA localization resulting in posttranscriptional regulation of gene expression"
                      "regulation of acetylcholine secretion, neurotransmission"
##
                      "sialic acid transport"
##
                      "purine ribonucleotide transport"
##
                      "nuclear migration along microtubule"
##
                      "P granule organization"
##
                      "ER-dependent peroxisome organization"
##
##
                      "spermine acetylation"
                      "putrescine acetylation"
##
##
                      "protein localization to myelin sheath abaxonal region"
                      "cellular response to interleukin-13"
##
                      "peptidyl-histidine dephosphorylation"
##
                      "sodium-independent organic anion transport"
##
##
                      "regulation of ion transport"
##
                      "nor-spermidine metabolic process"
                     "negative regulation of lyase activity"
##
                      "acylglycerol homeostasis"
##
##
                      "colon epithelial cell migration"
                      "cellular response to growth hormone stimulus"
##
##
                     "cell motility in response to calcium ion"
                      "response to mitochondrial depolarisation"
##
                      "spontaneous synaptic transmission"
##
                      "neurotransmitter receptor cycle"
##
                      "postsynaptic neurotransmitter receptor cycle"
##
##
                      "ER-dependent peroxisome localization"
##
                      "negative regulation of heart looping"
                      "negative regulation of cardiac chamber formation"
##
                      "response to fenofibrate"
##
                      "glycine import across plasma membrane"
##
##
                      "presynaptic active zone assembly"
##
                      "glial cell proliferation"
                      "mitotic recombination"
##
##
                      "cellular response to nitrite"
##
                      "response to norepinephrine"
                      "positive regulation of mitochondrial DNA metabolic process"
##
##
                      "positive regulation of muscle tissue development"
                      "positive regulation of glomerular visceral epithelial cell apoptotic process"
##
                      "cellular response to resveratrol"
##
                     "positive regulation of progesterone biosynthetic process"
##
                      "ERBB3 signaling pathway"
##
                      "cytoplasm protein quality control by the ubiquitin-proteasome system"
##
                      "regulation of microvillus length"
##
                      "muscle cell fate determination"
##
                      "response to lead ion"
##
                      "immune response in nasopharyngeal-associated lymphoid tissue"
##
                      "tRNA C5-cytosine methylation"
##
                      "type B pancreatic cell fate commitment"
##
##
                      "egg activation"
                      "regulation of collagen metabolic process"
##
                     "negative regulation of phosphatidylcholine catabolic process"
##
                      "negative regulation of intestinal phytosterol absorption"
##
##
                      "negative regulation of toll-like receptor 7 signaling pathway"
                      "plasma lipoprotein particle remodeling"
##
```

```
##
                     "female pronucleus assembly"
##
                     "RNA repair"
                     "enterobactin transport"
##
                     "dolichyl monophosphate biosynthetic process"
##
##
                     "negative regulation of memory T cell differentiation"
##
                     "negative T cell selection"
                     "amide biosynthetic process"
##
                     "cellular amide catabolic process"
##
##
                     "regulation of gamma-delta T cell differentiation"
                     "negative regulation of intestinal cholesterol absorption"
##
##
                     "negative regulation of interleukin-1 alpha secretion"
                     "regulation of liquid surface tension"
##
##
                     "subpallium neuron fate commitment"
                     "ventral spinal cord interneuron fate determination"
##
##
                     "calcium activated phosphatidylserine scrambling"
##
                     "metanephric connecting tubule development"
                     "regulation of plasma lipoprotein particle levels"
##
                     "phosphatidylserine exposure on blood platelet"
##
##
                     "cap1 mRNA methylation"
                     "inorganic cation transmembrane transport"
##
##
                     "vesicle tethering to endoplasmic reticulum"
                     "positive regulation of cellular response to heat"
##
                     "regulation of cellular response to insulin stimulus"
##
                     "positive regulation of anion channel activity"
##
                     "regulation of superoxide dismutase activity"
##
##
                     "positive regulation of potassium ion export"
##
                     "negative regulation of anti-Mullerian hormone signaling pathway"
                     "response to polycyclic arene"
##
                     "response to L-arginine"
##
                     "arginine transmembrane transport"
##
                     "regulation of vascular smooth muscle cell dedifferentiation"
##
##
                     "retinal cell apoptotic process"
                     "regulation of oxidative phosphorylation uncoupler activity"
##
                     "positive regulation of eosinophil chemotaxis"
##
##
                     "positive regulation of dendritic cell chemotaxis"
                     "negative regulation of CD4-positive, alpha-beta T cell activation"
##
##
                     "negative regulation of chromosome organization"
##
                     "regulation of transcription from RNA polymerase II promoter by glucose"
                     "anterior compartment pattern formation"
##
                     "posterior compartment specification"
##
                     "sphingomyelin catabolic process"
##
##
                     "immune response-regulating signaling pathway"
                     "DNA modification"
##
                     "amino-acid betaine catabolic process"
##
                     "ethanolamine metabolic process"
##
                     "neuropeptide catabolic process"
##
                     "chemorepulsion involved in interneuron migration from the subpallium to the corte
##
                     "putrescine biosynthetic process from arginine"
##
##
                     "negative regulation of cell-cell adhesion mediated by integrin"
                     "glutathione transmembrane transport"
##
##
                     "genitalia morphogenesis"
                     "regulation of interleukin-8 biosynthetic process"
##
                     "regulation of granulocyte macrophage colony-stimulating factor biosynthetic proce
##
```

"mannan catabolic process"

```
##
                      "regulation of muscle organ development"
##
                      "regulation of homocysteine metabolic process"
                      "dichotomous subdivision of terminal units involved in lung branching"
##
##
                     "response to heparin"
##
                      "mastication"
                      "epithelium migration"
##
                      "positive regulation of chylomicron remnant clearance"
##
                      "heme export"
##
##
                      "hematopoietic stem cell migration to bone marrow"
                     "learned vocalization behavior"
##
##
                      "sphingolipid translocation"
                      "intestinal hexose absorption"
##
                     "negative regulation of oligodendrocyte apoptotic process"
##
                      "negative regulation of G1/S transition of mitotic cell cycle by negative regulati
##
##
                      "negative regulation of relaxation of muscle"
##
                      "regulation of calcium ion transmembrane transport"
                     "regulation of lactation"
##
                      "response to 3-methylcholanthrene"
##
##
                      "regulation of granulosa cell apoptotic process"
                      "negative regulation of telomerase RNA reverse transcriptase activity"
##
##
                      "negative regulation of saliva secretion"
                      "hard palate morphogenesis"
##
                      "negative regulation of renal albumin absorption"
##
                      "positive regulation of interferon-beta production"
##
                     "RNA biosynthetic process"
##
##
                      "negative regulation of release of cytochrome c from mitochondria"
##
                      "negative regulation of ribosome biogenesis"
                      "cell proliferation in midbrain"
##
                     "sequestering of zinc ion"
##
                      "N-terminal protein amino acid modification"
##
##
                      "T cell proliferation involved in immune response"
##
                      "T cell tolerance induction"
                     "UDP-N-acetylglucosamine catabolic process"
##
##
                      "pyrimidine nucleobase catabolic process"
                      "uracil catabolic process"
##
##
                     "acetylcholine catabolic process"
##
                      "histidine transport"
##
                      "urea transport"
                      "prenylcysteine metabolic process"
##
                     "negative regulation of synaptic transmission, cholinergic"
##
                     "NAD transmembrane transport"
##
##
                     "indole metabolic process"
                      "neurotransmitter receptor biosynthetic process"
##
                     "deoxycytidine metabolic process"
##
                      "phosphorylated carbohydrate dephosphorylation"
##
                      "regulation of cardiac muscle tissue development"
##
                      "positive regulation of phospholipid translocation"
##
                      "cellular response to pH"
##
                      "cell proliferation in bone marrow"
##
                      "protein localization involved in establishment of planar polarity"
##
##
                      "malonate catabolic process"
                      "agmatine biosynthetic process"
##
                      "double-strand break repair via classical nonhomologous end joining"
##
                      "positive regulation of cellular response to hypoxia"
##
```

```
##
                      "gentamycin metabolic process"
##
                      "arsenate ion transmembrane transport"
                      "negative regulation of calcium ion import into sarcoplasmic reticulum"
##
                      "negative regulation of gap junction assembly"
##
##
                      "positive regulation of interleukin-17 secretion"
##
                      "positive regulation of phosphate transmembrane transport"
                      "gastrulation"
##
                      "toll-like receptor 9 signaling pathway"
##
##
                      "negative regulation of delayed rectifier potassium channel activity"
                     "vitamin B6 metabolic process"
##
##
                      "antimicrobial humoral response"
                      "neural retina development"
##
                     "negative regulation of histone H3-K36 methylation"
##
                      "negative regulation of tooth mineralization"
##
##
                      "acetylcholine catabolic process in synaptic cleft"
##
                      "pulmonary valve formation"
                      "transcription elongation from mitochondrial promoter"
##
                     "amino-acid betaine metabolic process"
##
##
                      "glycosylceramide metabolic process"
                      "oligopeptide transport"
##
##
                     "cellular component disassembly involved in execution phase of apoptosis"
                      "regulation of cytoplasmic mRNA processing body assembly"
##
                      "skeletal muscle satellite cell proliferation"
##
                      "esophagus smooth muscle contraction"
##
                     "regulation of isoprenoid metabolic process"
##
##
                      "muscle cell proliferation"
##
                      "positive regulation of myeloid cell apoptotic process"
                      "cell cycle comprising mitosis without cytokinesis"
##
                     "toll-like receptor 6 signaling pathway"
##
                      "coenzyme A transmembrane transport"
##
##
                      "foramen ovale closure"
##
                     "DNA rewinding"
                      "chemokine biosynthetic process"
##
##
                     "interleukin-13 biosynthetic process"
                      "granulocyte macrophage colony-stimulating factor biosynthetic process"
##
##
                     "regulation of vacuole organization"
##
                      "connective tissue growth factor biosynthetic process"
##
                      "N-acetylneuraminate biosynthetic process"
                      "prevention of polyspermy"
##
                     "drug transport across blood-nerve barrier"
##
                      "detection of oxidative stress"
##
##
                     "L-methionine salvage"
                      "mitochondria-associated ubiquitin-dependent protein catabolic process"
##
                     "AMP transport"
##
                      "negative regulation of intracellular protein transport"
##
                      "negative regulation of nodal signaling pathway involved in determination of later
##
                      "negative regulation of hematopoietic progenitor cell differentiation"
##
                      "positive regulation of G1 to G0 transition"
##
##
                      "cellular response to butyrate"
                      "regulation of retrograde protein transport, ER to cytosol"
##
##
                      "negative regulation of antifungal innate immune response"
                      "fibronectin fibril organization"
##
##
                      "positive regulation of invadopodium disassembly"
```

"UDP-N-acetylglucosamine transmembrane transport"

```
##
                     "positive regulation of mesoderm development"
                     "positive regulation of metanephric glomerular visceral epithelial cell developmen
##
                     "positive regulation of renal albumin absorption"
##
                     "negative regulation of metanephric mesenchymal cell migration"
##
##
                     "negative regulation of receptor catabolic process"
                     "positive regulation of developmental growth"
##
                     "positive regulation of intermediate filament depolymerization"
##
                     "positive regulation of cellular respiration"
##
##
                     "Sertoli cell proliferation"
                     "histamine catabolic process"
##
##
                     "salivary gland morphogenesis"
                     "pyruvate oxidation"
##
                     "regulation of gamma-aminobutyric acid secretion"
##
                     "mRNA modification"
##
##
                     "rhombomere development"
##
                     "prenylcysteine catabolic process"
                     "interleukin-15 production"
##
                     "positive regulation of monophenol monooxygenase activity"
##
##
                     "negative regulation of protein import into nucleus, translocation"
##
                     "toll-like receptor 1 signaling pathway"
##
                     "toll-like receptor 8 signaling pathway"
                     "oligopeptide transmembrane transport"
##
                     "T-helper 2 cell cytokine production"
##
                     "positive regulation of mast cell activation by Fc-epsilon receptor signaling path
##
                     "regulation of fusion of sperm to egg plasma membrane"
##
##
                     "regulation of follicle-stimulating hormone secretion"
##
                     "negative regulation of timing of catagen"
                     "response to defense-related host reactive oxygen species production"
##
                     "vestibular reflex"
##
                     "regulation of response to interferon-gamma"
##
##
                     "blood vessel endothelial cell differentiation"
##
                     "regulation of hair cycle by canonical Wnt signaling pathway"
                     "negative regulation of protein K48-linked ubiquitination"
##
##
                     "cellular response to vitamin K"
                     "cellular response to type I interferon"
##
##
                     "chemokine (C-C motif) ligand 5 production"
##
                     "actin filament debranching"
##
                     "negative regulation of protein glycosylation in Golgi"
                     "negative regulation of bone trabecula formation"
##
                     "regulation of lymphocyte chemotaxis"
##
                     "positive regulation of melanosome transport"
##
##
                     "regulation of cellular protein catabolic process"
                     "negative regulation of VCP-NPL4-UFD1 AAA ATPase complex assembly"
##
                     "polyuridylation-dependent mRNA catabolic process"
##
                     "positive regulation of leukocyte apoptotic process"
##
                     "positive regulation of fibroblast migration"
##
                     "negative regulation of histone acetylation"
##
                     "base-excision repair, AP site formation"
##
##
                     "regulation of protein K48-linked deubiquitination"
                     "glomerulus morphogenesis"
##
                     "nephron tubule epithelial cell differentiation"
##
                     "positive regulation of viral budding via host ESCRT complex"
##
##
                     "mitochondrial RNA catabolic process"
##
                     "defense response to tumor cell"
```

```
##
                      "peptidyl-tyrosine sulfation"
##
                      "glucosylceramide biosynthetic process"
                      "xanthine catabolic process"
##
                      "thiamine diphosphate biosynthetic process"
##
##
                      "10-formyltetrahydrofolate catabolic process"
                     "ferrous iron transport"
##
                     "lead ion transport"
##
                      "creatine transmembrane transport"
##
##
                      "vitelline membrane formation"
##
                      "protein transport into membrane raft"
##
                      "gonad morphogenesis"
                      "RNA import into mitochondrion"
##
##
                     "insulin receptor internalization"
                      "regulation of circulating fibrinogen levels"
##
##
                      "adhesion of symbiont to host cell"
##
                      "regulation of endothelial cell differentiation"
                     "acylglycerol catabolic process"
##
##
                      "negative regulation of eye pigmentation"
                      "negative regulation of hepatocyte growth factor biosynthetic process"
##
                      "camera-type eye photoreceptor cell fate commitment"
##
##
                      "spleen trabecula formation"
                      "adrenal chromaffin cell differentiation"
##
                      "positive regulation of cardiac endothelial to mesenchymal transition"
##
                      "ferrous iron import"
##
                     "cellular response to sterol depletion"
##
##
                      "endocannabinoid signaling pathway"
##
                      "mitochondrial mRNA polyadenylation"
                      "dorsal spinal cord interneuron anterior axon guidance"
##
                      "positive regulation of transcription from RNA polymerase II promoter involved in
##
                      "ferrous iron export across plasma membrane"
##
##
                      "regulation of response to endoplasmic reticulum stress"
##
                     "negative regulation of inner ear receptor cell differentiation"
                      "positive regulation of bone mineralization"
##
                      "embryo development"
##
##
                      "ESCRT III complex assembly"
                      "spermatid development"
##
##
                      "phosphorylation"
##
                      "regulation of cardiac muscle contraction by regulation of the release of sequeste
                      "dorsal aorta morphogenesis"
##
                     "calcium-independent cell-cell adhesion via plasma membrane cell-adhesion molecule
##
                      "defense response to Gram-positive bacterium"
##
##
                      "negative regulation of zinc ion transmembrane import"
                      "detoxification of cadmium ion"
##
##
                     "response to alkaloid"
                      "dendritic spine morphogenesis"
##
                      "immunoglobulin heavy chain V-D-J recombination"
##
                      "ribosomal subunit export from nucleus"
##
                      "cell killing"
##
##
                      "activation of plasma proteins involved in acute inflammatory response"
##
                      "peptide secretion"
##
                      "corneccyte desquamation"
                      "positive regulation of metabolic process"
##
##
                      "regulation of mitochondrial fusion"
                      "regulation of eIF2 alpha phosphorylation by heme"
##
```

```
##
                     "proteoglycan catabolic process"
##
                     "S-adenosylmethionine cycle"
                     "auditory receptor cell fate specification"
##
                     "positive regulation of inner ear auditory receptor cell differentiation"
##
                     "negative regulation of translational initiation by iron"
##
##
                     "negative regulation of hemoglobin biosynthetic process"
                     "chemical homeostasis"
##
                     "detection of temperature stimulus involved in thermoception"
##
##
                     "adipose tissue development"
                     "positive regulation of fat cell proliferation"
##
##
                     "negative regulation of hepatocyte differentiation"
                     "specification of loop of Henle identity"
##
                     "metanephric macula densa development"
##
                     "metanephric DCT cell differentiation"
##
##
                     "cellular response to methyl methanesulfonate"
##
                     "regulation of actin cytoskeleton organization by cell-cell adhesion"
                     "intestinal lipid absorption"
##
##
                     "response to capsazepine"
                     "positive regulation of cell communication by electrical coupling involved in card
##
                     "negative regulation of hepatocyte growth factor receptor signaling pathway"
##
##
                     "negative regulation of cellular response to vascular endothelial growth factor st
                     "negative regulation of cystathionine beta-synthase activity"
##
                     "negative regulation of epithelium regeneration"
##
                     "atrioventricular canal morphogenesis"
##
                     "regulation of cardiac neural crest cell migration involved in outflow tract morph
##
##
                     "negative regulation of cornification"
                     "regulation of cell proliferation involved in heart morphogenesis"
##
                     "negative regulation of cellular response to hepatocyte growth factor stimulus"
##
                     "regulation of interferon-gamma production"
##
##
                     "glycine transport"
##
                     "self proteolysis"
##
                     "regulation of protein localization to nucleolus"
##
                     "mRNA methylation"
                     "drug transmembrane transport"
##
                     "positive regulation of type III hypersensitivity"
##
                     "positive regulation of type I hypersensitivity"
##
##
                     "ubiquitin-dependent protein catabolic process via the multivesicular body sorting
##
                     "inhibition of neuroepithelial cell differentiation"
                     "IgG immunoglobulin transcytosis in epithelial cells mediated by FcRn immunoglobul
##
                     "antigen processing and presentation of peptide antigen via MHC class II"
##
                     "negative regulation of natural killer cell cytokine production"
##
                     "growth plate cartilage chondrocyte proliferation"
##
                     "CMP salvage"
##
                     "serotonin transport"
##
                     "pyrimidine nucleotide transport"
##
##
                     "copulation"
                     "lipoate biosynthetic process"
##
                     "polarity specification of proximal/distal axis"
##
##
                     "regulation of receptor biosynthetic process"
                     "negative regulation of gamma-aminobutyric acid secretion"
##
##
                     "positive regulation of serotonin secretion"
                     "spinal cord patterning"
##
##
                     "floor plate morphogenesis"
                     "cell envelope organization"
##
```

```
##
                     "dicarboxylic acid metabolic process"
##
                     "D-gluconate catabolic process"
##
                     "UDP-glucuronate metabolic process"
                     "axial mesodermal cell fate specification"
##
##
                     "regulation of skeletal muscle tissue development"
##
                     "negative regulation of transport"
                     "detection of stimulus"
##
                     "serotonin uptake"
##
##
                     "cellular oligosaccharide catabolic process"
                     "epiblast cell-extraembryonic ectoderm cell signaling involved in anterior/posteri
##
##
                     "calcium activated phosphatidylcholine scrambling"
                     "calcium activated galactosylceramide scrambling"
##
##
                     "chemorepulsion of axon"
                     "metanephric thick ascending limb development"
##
                     "transforming growth factor beta receptor signaling pathway involved in primitive
##
##
                     "regulation of thalamus size"
                     "regulation of microtubule nucleation by Ran protein signal transduction"
##
##
                     "positive regulation of histone H3-K9 dimethylation"
                     "regulation of synaptic plasticity by receptor localization to synapse"
##
                     "positive regulation of lateral motor column neuron migration"
##
##
                     "regulation of protein localization to cilium"
                     "positive regulation of aspartate secretion"
##
                     "regulation of dense core granule exocytosis"
##
                     "pyrimidine nucleotide import into mitochondrion"
##
##
                     "regulation of anoikis"
##
                     "negative regulation of signaling receptor activity"
##
                     "positive regulation of transcription from RNA polymerase II promoter in response
                     "noradrenergic neuron development"
##
                     "octopamine biosynthetic process"
##
##
                     "glucose-6-phosphate transport"
##
                     "regulation of lateral pseudopodium assembly"
##
                     "negative regulation of cellular metabolic process"
                     "T cell secretory granule organization"
##
                     "maintenance of protease location in mast cell secretory granule"
##
                     "maintenance of granzyme B location in T cell secretory granule"
##
                     "sequestering of extracellular ligand from receptor"
##
##
                     "transforming growth factor beta activation"
##
                     "indolalkylamine biosynthetic process"
                     "negative regulation of muscle organ development"
##
                     "inositol phosphorylation"
##
                     "regulation of transcription from RNA polymerase II promoter involved in kidney de
##
##
                     "seminal vesicle morphogenesis"
                     "neutrophil mediated killing of bacterium"
##
                     "vesicle-mediated cholesterol transport"
##
                     "negative regulation of establishment of blood-brain barrier"
##
                     "L-arginine import across plasma membrane"
##
                     "vascular endothelial cell response to fluid shear stress"
##
                     "protein localization to axon"
##
                     "regulation of phospholipase C activity"
##
                     "positive regulation of mesenchymal stem cell proliferation"
##
                     "NLRP1 inflammasome complex assembly"
##
                     "regulation of adhesion of symbiont to host epithelial cell"
##
##
                     "protein localization to nucleoplasm"
##
                     "transcytosis"
```

```
##
                     "very long-chain fatty acid biosynthetic process"
##
                     "negative regulation of oxidative stress-induced neuron intrinsic apoptotic signal
                     "chromatin-mediated maintenance of transcription"
##
##
                     "cellular response to ethanol"
##
                     "regulation of mRNA export from nucleus"
                     "cell differentiation involved in embryonic placenta development"
##
                     "natural killer cell proliferation"
##
                     "microglial cell activation involved in immune response"
##
##
                     "negative regulation of inositol phosphate biosynthetic process"
                     "positive regulation of inositol-polyphosphate 5-phosphatase activity"
##
##
                     "negative regulation of cerebellar granule cell precursor proliferation"
                     "phospholipase C-inhibiting G protein-coupled receptor signaling pathway"
##
                     "positive regulation of transforming growth factor beta1 production"
##
                     "plasma lipoprotein particle assembly"
##
##
                     "exocrine system development"
##
                     "protein alpha-1,2-demannosylation"
                     "T cell selection"
##
                     "regulation of retinal cell programmed cell death"
##
##
                     "thermoception"
##
                     "regulation of cell diameter"
##
                     "protein modification by small protein removal"
                     "protein localization to ciliary membrane"
##
##
                     "ferrous iron transmembrane transport"
                     "mitotic sister chromatid biorientation"
##
                     "aflatoxin B1 metabolic process"
##
##
                     "macrophage activation involved in immune response"
##
                     "lymphangiogenesis"
                     "cellular response to sorbitol"
##
                     "regulation of postsynaptic specialization assembly"
##
##
                     "interleukin-18 production"
##
                     "NLRP3 inflammasome complex assembly"
##
                     "interleukin-1 secretion"
##
                     "detection of hormone stimulus"
##
                     "positive regulation of histone H3-K27 methylation"
##
                     "regulation of lipoprotein lipase activity"
                     "division septum assembly"
##
##
                     "positive regulation of immune response to tumor cell"
##
                     "phospholipid transfer to membrane"
                     "zygotic determination of anterior/posterior axis, embryo"
##
                     "zygote asymmetric cell division"
##
                     "C-terminal protein-tyrosinylation"
##
##
                     "UDP-N-acetylgalactosamine metabolic process"
                     "vestibulocochlear nerve development"
##
                     "lateral geniculate nucleus development"
##
                     "chondroitin sulfate metabolic process"
##
                     "regulation of circadian sleep/wake cycle, REM sleep"
##
##
                     "NAD transport"
                     "regulation of killing of cells of other organism"
##
##
                     "positive regulation of sequestering of zinc ion"
##
                     "endoplasmic reticulum polarization"
##
                     "cerebellum vasculature development"
                     "actin filament bundle retrograde transport"
##
##
                     "positive regulation of lymphocyte apoptotic process"
                     "AV node cell-bundle of His cell adhesion involved in cell communication"
##
```

```
##
                     "cellular ammonia homeostasis"
##
                     "cellular creatinine homeostasis"
##
                     "cellular urea homeostasis"
##
                     "sperm motility"
##
                     "negative regulation of calcium ion binding"
##
                     "regulation of calcium-transporting ATPase activity"
                     "tarsal gland development"
##
                     "uterine gland development"
##
##
                     "regulation of intraciliary retrograde transport"
                     "mitochondrion-endoplasmic reticulum membrane tethering"
##
##
                     "positive regulation of protein localization to cell surface"
                     "positive regulation of isotype switching to IgG isotypes"
##
                     "toll-like receptor 2 signaling pathway"
##
                     "activation of phospholipase A2 activity by calcium-mediated signaling"
##
##
                     "branching involved in ureteric bud morphogenesis"
##
                     "pressure natriuresis"
                     "endocardium development"
##
                     "positive regulation of cell fate commitment"
##
##
                     "substance P catabolic process"
##
                     "calcitonin catabolic process"
##
                     "detection of wounding"
                     "protein C-linked glycosylation via 2'-alpha-mannosyl-L-tryptophan"
##
                     "spinal cord anterior/posterior patterning"
##
                     "pyramidal neuron differentiation"
##
                     "endothelin maturation"
##
##
                     "thermosensory behavior"
                     "negative regulation of ectodermal cell fate specification"
##
                     "positive regulation of growth of symbiont in host"
##
                     "cell wall disruption in other organism"
##
                     "stromal-epithelial cell signaling involved in prostate gland development"
##
##
                     "regulation of peroxisome size"
##
                     "lateral mesodermal cell differentiation"
                     "embryonic ectodermal digestive tract morphogenesis"
##
                     "negative regulation of axon extension involved in regeneration"
##
##
                     "leukocyte adhesive activation"
                     "right lung morphogenesis"
##
##
                     "metanephric nephron development"
##
                     "convergent extension involved in somitogenesis"
                     "regulation of plasma membrane sterol distribution"
##
                     "protein localization to cell leading edge"
##
                     "organelle disassembly"
##
##
                     "cellular response to bile acid"
                     "positive regulation of type B pancreatic cell proliferation"
##
                     "negative regulation of Wnt signaling pathway involved in dorsal/ventral axis spec
##
                     "negative regulation of canonical Wnt signaling pathway involved in controlling ty
##
                     "regulation of Rho-dependent protein serine/threonine kinase activity"
##
                     "negative regulation of synaptic plasticity"
##
                     "DNA-templated transcription, initiation"
##
                     "negative regulation of Arp2/3 complex-mediated actin nucleation"
##
                     "brain-derived neurotrophic factor receptor signaling pathway"
##
##
                     "regulation of translation at postsynapse, modulating synaptic transmission"
                     "regulation of dopaminergic neuron differentiation"
##
##
                     "muscle system process"
##
                     "guanine catabolic process"
```

```
"dCTP catabolic process"
##
##
                     "dopamine biosynthetic process from tyrosine"
##
                      "eye pigment granule organization"
                      "glycoside metabolic process"
##
##
                      "arginine deiminase pathway"
##
                     "iron ion transmembrane transport"
                      "N-glycan fucosylation"
##
                      "medium-chain fatty-acyl-CoA catabolic process"
##
##
                      "long-chain fatty-acyl-CoA catabolic process"
                     "terpene metabolic process"
##
##
                      "taurine biosynthetic process"
                      "receptor metabolic process"
##
                      "negative regulation of ion transport"
##
                      "negative regulation of CD4 biosynthetic process"
##
##
                      "dTTP catabolic process"
##
                      "GDP-L-fucose metabolic process"
                     "regulation of actin nucleation"
##
##
                      "Bergmann glial cell differentiation"
##
                     "retinal bipolar neuron differentiation"
##
                      "closure of optic fissure"
##
                     "cellular response to mercaptoethanol"
                      "regulation of recycling endosome localization within postsynapse"
##
                      "presynapse to nucleus signaling pathway"
##
                      "negative regulation of response to oxidative stress"
##
                      "positive regulation of potassium ion export across plasma membrane"
##
##
                      "negative regulation of collecting lymphatic vessel constriction"
##
                      "presynaptic active zone organization"
                      "regulation of Rho guanyl-nucleotide exchange factor activity"
##
                      "regulation of organelle assembly"
##
                      "chorionic trophoblast cell differentiation"
##
##
                      "potassium ion import"
##
                      "somite rostral/caudal axis specification"
                      "morphogenesis of an epithelial fold"
##
                      "embryonic heart tube anterior/posterior pattern specification"
##
                      "positive regulation of mitotic cell cycle spindle assembly checkpoint"
##
                      "protein unfolding"
##
##
                      "negative regulation of ERBB signaling pathway"
##
                      "phagolysosome assembly"
                      "sphinganine-1-phosphate metabolic process"
##
                      "galactosylceramide catabolic process"
##
                      "negative regulation of cell fate commitment"
##
##
                      "rhombomere 5 development"
                      "rhombomere 6 development"
##
                      "embryonic olfactory bulb interneuron precursor migration"
##
                      "pseudopodium organization"
##
                      "positive regulation of glutamate-cysteine ligase activity"
##
##
                      "hepatic stellate cell activation"
                      "negative regulation of viral-induced cytoplasmic pattern recognition receptor sig
##
##
                      "dicarboxylic acid catabolic process"
##
                      "lipid digestion"
##
                     "negative regulation of short-term neuronal synaptic plasticity"
                      "vesicle fusion with vesicle"
##
##
                      "secretory granule maturation"
```

"leukocyte aggregation"

```
##
                      "epithelial cell fate commitment"
##
                      "protein insertion into plasma membrane"
                      "positive regulation of calcium:sodium antiporter activity"
##
                      "Golgi apparatus mannose trimming"
##
                      "negative regulation of retrograde trans-synaptic signaling by neuropeptide"
##
##
                      "negative regulation of actin filament binding"
                      "positive regulation of protein export from nucleus"
##
                      "positive regulation of protein localization to nucleolus"
##
##
                      "sensory organ development"
                      "prenylated protein catabolic process"
##
##
                      "regulation of steroid biosynthetic process"
                      "apoptotic process involved in development"
##
                      "regulation of cation channel activity"
##
                      "ganglioside biosynthetic process"
##
##
                      "NK T cell proliferation"
##
                      "biosynthetic process of antibacterial peptides active against Gram-negative bacte
                     "regulation of macrophage derived foam cell differentiation"
##
                      "plasma membrane copper ion transport"
##
##
                      "mercury ion transport"
##
                      "bilirubin transport"
##
                     "prostaglandin transport"
                      "O-glycan processing, core 3"
##
                      "peptidyl-lysine N6-acetylation"
##
                      "positive regulation of DNA endoreduplication"
##
                      "cuticle development"
##
##
                      "epinephrine metabolic process"
##
                      "positive regulation of odontogenesis of dentin-containing tooth"
                      "canonical Wnt signaling pathway involved in positive regulation of endothelial ce
##
                      "canonical Wnt signaling pathway involved in positive regulation of cell-cell adhe
##
                      "canonical Wnt signaling pathway involved in positive regulation of wound healing"
##
##
                      "elastin biosynthetic process"
##
                     "respiratory system development"
                      "mammary gland fat development"
##
                      "neutrophil mediated killing of fungus"
##
                      "cellular response to radiation"
##
                     "B cell adhesion"
##
##
                      "cation transmembrane transport"
##
                      "regulation of bundle of His cell action potential"
                      "palmitic acid biosynthetic process"
##
                      "benzylpenicillin metabolic process"
##
                      "positive regulation of macrophage colony-stimulating factor signaling pathway"
##
##
                      "positive regulation of response to wounding"
                      "response to dehydroepiandrosterone"
##
                     "response to 11-deoxycorticosterone"
##
                      "regulation of cytochrome-c oxidase activity"
##
                      "negative regulation of iron ion transmembrane transport"
##
                      "mitotic DNA integrity checkpoint"
##
                      "regulation of progesterone biosynthetic process"
##
##
                      "ceramide transport"
                      "protein ufmylation"
##
##
                      "regulation of adaptive immune response"
                      "negative regulation of proteolysis"
##
##
                      "protein localization to nucleolus"
                      "cardiac muscle cell contraction"
##
```

```
##
                      "positive regulation of oxygen metabolic process"
##
                      "sucrose metabolic process"
                      "regulation of ketone biosynthetic process"
##
                      "positive regulation of macrophage fusion"
##
##
                      "protein demalonylation"
##
                      "peptidyl-lysine demalonylation"
                      "protein desuccinylation"
##
                      "peptidyl-lysine desuccinylation"
##
##
                      "serotonin biosynthetic process"
                     "vacuolar sequestering"
##
##
                      "ITP metabolic process"
                      "UTP metabolic process"
##
                     "deoxyribonucleoside catabolic process"
##
                      "protein de-ADP-ribosylation"
##
                      "negative regulation of growth hormone receptor signaling pathway"
##
##
                      "protein deglutarylation"
                      "peptidyl-lysine deglutarylation"
##
                      "mitochondrial threonyl-tRNA aminoacylation"
##
##
                     "renal water absorption"
                      "SA node cell to atrial cardiac muscle cell communication by electrical coupling"
##
##
                     "cardiac muscle cell-cardiac muscle cell adhesion"
                      "AV node cell to bundle of His cell communication by electrical coupling"
##
                      "negative regulation of oocyte maturation"
##
                      "regulation of ephrin receptor signaling pathway"
##
                     "negative regulation of microglial cell migration"
##
##
                      "positive regulation of microglial cell mediated cytotoxicity"
##
                      "response to iron ion starvation"
                      "positive regulation of memory T cell activation"
##
                      "monocarboxylic acid transport"
##
                      "membrane protein intracellular domain proteolysis"
##
##
                      "cellular response to hydrogen peroxide"
                     "regulation of gluconeogenesis by regulation of transcription from {\tt RNA} polymerase
##
                      "peptidyl-cysteine S-nitrosylation"
##
                      "regulation of viral process"
##
                      "regulation of protein serine/threonine kinase activity"
##
                     "regulation of protein targeting to vacuolar membrane"
##
##
                      "negative regulation of plasmacytoid dendritic cell cytokine production"
##
                      "chitin metabolic process"
                      "cell wall chitin metabolic process"
##
                     "catabolic process"
##
                      "positive regulation of cell development"
##
##
                      "rhombomere 3 development"
                      "rhombomere 4 development"
##
                     "corticospinal neuron axon guidance"
##
                      "peptide modification"
##
                      "inositol trisphosphate metabolic process"
##
                      "protein N-linked glycosylation via arginine"
##
                      "neural nucleus development"
##
                      "dermatan sulfate proteoglycan biosynthetic process, polysaccharide chain biosynth
##
                      "negative regulation of lipoprotein lipid oxidation"
##
##
                     "seminal vesicle development"
                      "cell adhesion involved in heart morphogenesis"
##
##
                      "negative regulation of stress granule assembly"
```

##

"positive regulation of phospholipid biosynthetic process"

```
"epithelial tube formation"
##
##
                      "negative regulation of cellular response to hypoxia"
                      "positive regulation of AMPA glutamate receptor clustering"
##
                      "positive regulation of aldosterone secretion"
##
##
                      "regulation of phosphatidylcholine biosynthetic process"
                      "positive regulation of viral genome replication"
##
                      "riboflavin metabolic process"
##
                      "suppression by virus of host apoptotic process"
##
##
                      "establishment of planar polarity of follicular epithelium"
                     "mitochondrial fragmentation involved in apoptotic process"
##
##
                      "regulation of chromosome separation"
                      "T-helper 1 cell differentiation"
##
##
                      "ammonia assimilation cycle"
                      "polysaccharide catabolic process"
##
##
                      "histone displacement"
##
                      "activation of blood coagulation via clotting cascade"
                     "axis elongation"
##
                      "quaternary ammonium group transport"
##
##
                      "peptidyl-pyrromethane cofactor linkage"
##
                      "dendrite regeneration"
##
                     "positive regulation of brain-derived neurotrophic factor receptor signaling pathw
                      "otolith morphogenesis"
##
                      "macromolecule localization"
##
                      "histone H3-R26 citrullination"
##
                     "amide transport"
##
##
                      "glycosphingolipid catabolic process"
##
                      "peptide antigen stabilization"
                      "positive regulation of transcription involved in meiotic cell cycle"
##
                      "type B pancreatic cell maturation"
##
                      "trans-synaptic signaling by trans-synaptic complex"
##
                      "positive regulation of protein localization to endosome"
##
##
                      "dense core granule exocytosis"
                      "cellular response to aluminum ion"
##
##
                      "negative regulation of lysosome organization"
##
                      "glutamine biosynthetic process"
##
                     "cellular response to gamma radiation"
##
                      "positive regulation of prolactin secretion"
##
                      "negative regulation of mitotic sister chromatid separation"
                      "response to UV-B"
##
                      "positive regulation of interleukin-6 biosynthetic process"
##
                      "regulation of triglyceride metabolic process"
##
##
                      "positive regulation of glycolytic process"
                      "primitive hemopoiesis"
##
                      "negative regulation of peptide secretion"
##
                      "macrophage migration inhibitory factor signaling pathway"
##
                      "S-adenosyl-L-methionine transport"
##
                      "positive regulation of melanocyte differentiation"
##
                      "glycolipid transport"
##
##
                      "sensory perception of sour taste"
                      "transepithelial transport"
##
                     "positive regulation of protein glycosylation in Golgi"
##
                      "negative regulation of serine-type endopeptidase activity"
##
##
                      "S-adenosyl-L-methionine transmembrane transport"
                      "positive regulation of CoA-transferase activity"
##
```

```
"regulation of DNA biosynthetic process"
##
##
                     "protein localization to vacuolar membrane"
##
                     "positive regulation of monooxygenase activity"
##
##
                     "neuron projection guidance"
                     "inter-male aggressive behavior"
##
                     "regulation of tolerance induction dependent upon immune response"
##
                     "positive regulation of chronic inflammatory response"
##
##
                     "proximal/distal axis specification"
                     "neuroblast differentiation"
##
##
                     "negative regulation of muscle hypertrophy"
                     "principal sensory nucleus of trigeminal nerve development"
##
                     "neurohypophysis development"
##
                     "negative regulation of interleukin-3 production"
##
##
                     "kynurenic acid biosynthetic process"
##
                     "L-fucose catabolic process"
                     "epinephrine biosynthetic process"
##
                     "macromolecule metabolic process"
##
##
                     "relaxation of smooth muscle"
                     "positive regulation of fatty acid biosynthetic process"
##
##
                     "detection of mechanical stimulus involved in sensory perception of touch"
                     "cadmium ion homeostasis"
##
                     "regulation of protein glycosylation"
##
                     "lung ciliated cell differentiation"
##
                     "glucagon secretion"
##
##
                     "cellular response to lead ion"
##
                     "cellular response to corticosteroid stimulus"
                     "negative regulation of granulocyte colony-stimulating factor production"
##
                     "positive regulation of lysosomal membrane permeability"
##
                     "histone H3-K4 monomethylation"
##
##
                     "dendrite arborization"
##
                     "negative regulation of retinoic acid biosynthetic process"
                     "regulation of cell cycle phase transition"
##
##
                     "regulation of receptor localization to synapse"
                     "L-ornithine transmembrane transport"
##
                     "positive regulation of metaphase/anaphase transition of meiosis I"
##
##
                     "regulation of calcium ion export across plasma membrane"
##
                     "regulation of testosterone biosynthetic process"
                     "regulation of macrophage migration inhibitory factor signaling pathway"
##
                     "negative regulation of epithelial cell proliferation involved in lung morphogenes
##
                     "spliceosome conformational change to release U4 (or U4atac) and U1 (or U11)"
##
                     "10-formyltetrahydrofolate biosynthetic process"
##
                     "regulation of mRNA stability"
##
                     "retinal cell programmed cell death"
##
                     "negative regulation of calcium ion transmembrane transporter activity"
##
                     "positive regulation of shelterin complex assembly"
##
                     "negative regulation of establishment of protein localization to telomere"
##
                     "negative regulation of establishment of RNA localization to telomere"
##
                     "negative regulation of establishment of protein-containing complex localization t
##
                     "ectodermal cell differentiation"
##
##
                     "response to fluid shear stress"
                     "regulation of type I interferon-mediated signaling pathway"
##
                     "production of miRNAs involved in gene silencing by miRNA"
##
                     "positive regulation of synaptic transmission"
##
```

```
##
                      "leukocyte homeostasis"
##
                      "protein amidation"
                      "protein deamination"
##
                      "neural plate anterior/posterior regionalization"
##
##
                      "interleukin-17 production"
##
                     "fucosylation"
                      "negative regulation of bone remodeling"
##
                      "detection of chemical stimulus involved in sensory perception of pain"
##
##
                      "positive regulation of ovulation"
                      "mesenchymal-epithelial cell signaling involved in prostate gland development"
##
##
                      "ubiquitin-dependent endocytosis"
                      "protein catabolic process, modulating synaptic transmission"
##
                      "negative regulation of cell adhesion involved in sprouting angiogenesis"
##
                      "negative regulation of protein localization to cilium"
##
##
                      "negative regulation of protein localization to ciliary membrane"
##
                      "regulation of response to drug"
                     "carnosine metabolic process"
##
                      "DNA dealkylation involved in DNA repair"
##
##
                      "carnitine metabolic process"
##
                      "response to tumor necrosis factor"
##
                     "negative regulation of macroautophagy"
                      "response to interleukin-2"
##
                      "response to interleukin-9"
##
                      "positive regulation of GTPase activity"
##
                      "central tolerance induction"
##
##
                      "positive regulation of central B cell tolerance induction"
##
                      "membrane lipid metabolic process"
                      "cellular metal ion homeostasis"
##
                      "spinal cord oligodendrocyte cell fate specification"
##
                      "negative regulation of catecholamine secretion"
##
##
                      "copper ion transmembrane transport"
##
                     "FasL biosynthetic process"
                      "post-embryonic retina morphogenesis in camera-type eye"
##
                      "negative regulation of SMAD protein signal transduction"
##
##
                      "protein initiator methionine removal"
                      "glomerular parietal epithelial cell development"
##
##
                      "positive regulation of lung ciliated cell differentiation"
##
                      "positive regulation of protein geranylgeranylation"
                      "regulation of synaptic vesicle clustering"
##
                     "response to xenobiotic stimulus"
##
                      "quinolinate biosynthetic process"
##
##
                      "anthranilate metabolic process"
                      "forebrain regionalization"
##
##
                      "SMAD protein signal transduction"
                      "regulation of cardiac muscle cell action potential"
##
                      "nucleotide-excision repair, DNA damage removal"
##
                      "positive regulation of antibacterial peptide production"
##
                      "DNA 3' dephosphorylation involved in DNA repair"
##
##
                      "polynucleotide 3' dephosphorylation"
                      "positive regulation of defense response to bacterium"
##
##
                      "negative regulation of protein export from nucleus"
                      "hepatocyte cell migration"
##
##
                      "thiamine metabolic process"
```

"vacuole organization"

```
##
                     "cellular response to phosphate starvation"
##
                     "phthalate metabolic process"
                     "rRNA 3'-end processing"
##
                     "catecholamine catabolic process"
##
##
                     "otic placode formation"
##
                     "molybdopterin cofactor metabolic process"
                     "norepinephrine secretion"
##
                     "positive regulation of homocysteine metabolic process"
##
##
                     "Spemann organizer formation"
                     "branching involved in pancreas morphogenesis"
##
##
                     "positive regulation of macrophage inflammatory protein 1 alpha production"
                     "acinar cell differentiation"
##
                     "blood vessel endothelial cell delamination"
##
                     "positive regulation of presynaptic membrane organization"
##
##
                     "positive regulation of cell cycle checkpoint"
##
                     "protein localization to Golgi membrane"
                     "negative regulation of brown fat cell differentiation"
##
                     "signal transduction involved in regulation of aerobic respiration"
##
                     "positive regulation of forebrain neuron differentiation"
##
                     "synapse pruning"
##
##
                     "negative regulation of striated muscle contraction"
                     "negative regulation of calcium ion transmembrane transport"
##
                     "negative regulation of calcium:sodium antiporter activity"
##
                     "lipid hydroxylation"
##
                     "copper ion export"
##
##
                     "negative regulation of cell proliferation involved in contact inhibition"
##
                     "positive regulation of type IV hypersensitivity"
                     "positive regulation of abscisic acid-activated signaling pathway"
##
                     "cell-cell recognition"
##
                     "muscle cell apoptotic process"
##
                     "regulation of skeletal muscle contraction by calcium ion signaling"
##
##
                     "regulation of excitatory postsynaptic membrane potential involved in skeletal mus
                     "UDP-glucose transmembrane transport"
##
##
                     "plasma membrane long-chain fatty acid transport"
                     "modulation by virus of host transcription"
##
                     "septin cytoskeleton organization"
##
##
                     "response to luteinizing hormone"
##
                     "neurotrophin signaling pathway"
                     "positive regulation of axon extension involved in regeneration"
##
                     "epicardium-derived cardiac fibroblast cell development"
##
                     "UDP-galactose transmembrane transport"
##
                     "vesicle-mediated intercellular transport"
##
                     "clathrin-dependent synaptic vesicle endocytosis"
##
                     "positive regulation of antral ovarian follicle growth"
##
                     "regulation of thyroid-stimulating hormone secretion"
##
                     "atrial cardiac muscle cell development"
##
                     "nuclear-transcribed mRNA catabolic process"
##
                     "DNA damage induced protein phosphorylation"
##
                     "positive regulation of gamma-delta T cell differentiation"
##
                     "digestion"
##
                     "cellular lipid catabolic process"
##
                     "regulation of mitochondrial membrane permeability"
##
                     "cholesterol biosynthetic process via desmosterol"
##
                     "cholesterol biosynthetic process via lathosterol"
##
```

```
##
                     "diacylglycerol metabolic process"
                     "negative regulation of branching involved in lung morphogenesis"
##
                     "cadmium ion transmembrane transport"
##
                     "positive regulation of leukocyte adhesion to arterial endothelial cell"
##
                     "embryonic heart tube formation"
##
                     "acetate metabolic process"
##
                     "termination of mitochondrial transcription"
##
##
                     "uroporphyrinogen III biosynthetic process"
                     "negative regulation of cell development"
##
##
                     "peptidyl-arginine ADP-ribosylation"
                     "defecation"
##
                     "wybutosine biosynthetic process"
##
                     "negative regulation of syncytium formation by plasma membrane fusion"
##
##
                     "egg coat formation"
##
                     "morphogenesis of a branching epithelium"
                     "ureter morphogenesis"
##
                     "trans-synaptic signaling, modulating synaptic transmission"
##
##
                     "regulation of actin filament organization"
                     "regulation of positive thymic T cell selection"
##
##
                     "positive regulation of skeletal muscle fiber differentiation"
                     "positive regulation of 3'-UTR-mediated mRNA stabilization"
##
                     "positive regulation of acrosomal vesicle exocytosis"
##
                     "cilium-dependent cell motility"
##
                     "regulation of tolerance induction"
##
##
                     "apoptotic process"
##
                     "CAAX-box protein processing"
                     "postganglionic parasympathetic fiber development"
##
                     "positive regulation of immune response"
##
                     "folic acid-containing compound metabolic process"
##
                     "interleukin-1-mediated signaling pathway"
##
##
                     "early endosome to recycling endosome transport"
                     "L-leucine import across plasma membrane"
##
                     "regulation of asymmetric cell division"
##
                     "intracellular sterol transport"
##
                     "regulation of natural killer cell activation"
##
##
                     "DNA damage response, signal transduction resulting in transcription"
##
                     "DNA demethylation of male pronucleus"
                     "positive regulation of Wnt signaling pathway, calcium modulating pathway"
##
                     "short-chain fatty acid metabolic process"
##
                     "3'-phosphoadenosine 5'-phosphosulfate transport"
##
##
                     "coagulation"
                     "synapse assembly involved in innervation"
##
                     "regulation of lipoprotein lipid oxidation"
##
                     "regulation of branching involved in salivary gland morphogenesis by extracellular
##
                     "regulation of branching involved in salivary gland morphogenesis"
##
                     "cell migration involved in coronary vasculogenesis"
##
                     "T cell apoptotic process"
##
                     "platelet alpha granule organization"
##
                     "cellular response to L-ascorbic acid"
##
                     "metanephric mesenchymal cell differentiation"
##
                     "positive regulation of heart induction by negative regulation of canonical Wnt si
##
```

"endonucleolytic cleavage to generate mature 5'-end of SSU-rRNA from (SSU-rRNA, 5.

##

##

##

"regulation of nucleic acid-templated transcription"

"negative regulation of canonical Wnt signaling pathway involved in cardiac muscle

```
##
                     "positive regulation of fat cell apoptotic process"
##
                     "negative regulation of Wnt-Frizzled-LRP5/6 complex assembly"
                     "positive regulation of midbrain dopaminergic neuron differentiation"
##
                     "negative regulation of glutamine transport"
##
                     "negative regulation of smoothened signaling pathway involved in dorsal/ventral ne
##
                     "cellular response to amyloid-beta"
##
                     "positive regulation of response to oxidative stress"
##
                     "guanine salvage"
##
##
                     "GMP catabolic process"
                     "establishment of mitochondrion localization"
##
##
                     "regulation of protein kinase activity"
                     "regulation of exocyst assembly"
##
                     "leukotriene production involved in inflammatory response"
##
                     "pancreatic D cell differentiation"
##
##
                     "regulation of proton transport"
##
                     "cell migration in hindbrain"
                     "actin filament-based process"
##
                     "negative regulation of odontogenesis of dentin-containing tooth"
##
                     "negative regulation of skeletal muscle tissue growth"
##
                     "generation of neurons"
##
##
                     "regulation of exocyst localization"
                     "detection of hypoxia"
##
                     "pancreatic epsilon cell differentiation"
##
                     "regulation of membrane lipid distribution"
##
                     "neurotransmitter reuptake"
##
##
                     "positive regulation of smoothened signaling pathway involved in dorsal/ventral ne
##
                     "positive regulation of RNA polymerase II regulatory region sequence-specific DNA
                     "positive regulation of transcription from RNA polymerase II promoter involved in
##
                     "positive regulation of semaphorin-plexin signaling pathway involved in outflow tr
##
                     "negative regulation of interleukin-12 secretion"
##
##
                     "response to hypoxia"
##
                     "positive regulation of macrophage chemotaxis"
                     "defense response to nematode"
##
                     "serine family amino acid biosynthetic process"
##
                     "insulin secretion involved in cellular response to glucose stimulus"
##
##
                     "polynucleotide 5' dephosphorylation"
##
                     "intrinsic apoptotic signaling pathway in response to oxidative stress"
##
                     "histidine biosynthetic process"
                     "threonine metabolic process"
##
                     "gamma-aminobutyric acid metabolic process"
##
                     "viral translational termination-reinitiation"
##
                     "negative regulation of type IV hypersensitivity"
##
                     "columnar/cuboidal epithelial cell development"
##
                     "immune response-inhibiting signal transduction"
##
                     "regulation of systemic arterial blood pressure by baroreceptor feedback"
##
                     "regulation of mitotic cell cycle, embryonic"
##
                     "glossopharyngeal nerve development"
##
                     "vagus nerve development"
##
                     "hypoglossal nerve morphogenesis"
##
                     "regulation of cell projection organization"
##
##
                     "GTP metabolic process"
                     "positive regulation of neuron projection regeneration"
##
##
                     "phytosphingosine biosynthetic process"
                     "cell gliding"
##
```

```
"T cell meandering migration"
##
##
                     "mitotic nuclear division"
                     "response to peptide"
##
                      "regulation of tau-protein kinase activity"
##
##
                      "prostaglandin catabolic process"
                      "negative regulation of cardiac muscle cell myoblast differentiation"
##
                      "regulation of non-canonical Wnt signaling pathway"
##
                      "tRNA methylation"
##
##
                      "testosterone biosynthetic process"
##
                     "craniofacial suture morphogenesis"
##
                      "negative regulation of autophagosome maturation"
                      "methionine biosynthetic process"
##
                      "negative regulation of mitochondrial depolarization"
##
                      "cellular process"
##
##
                      "glycosphingolipid biosynthetic process"
##
                      "galactitol metabolic process"
##
                     "regulation of interleukin-18 biosynthetic process"
                      "negative regulation of Toll signaling pathway"
##
##
                      "antigen processing and presentation of peptide antigen"
                      "determination of dorsal identity"
##
##
                     "lateral element assembly"
##
                      "Spemann organizer formation at the anterior end of the primitive streak"
                      "optic chiasma development"
##
                      "glycolytic process from galactose"
##
                      "endothelial cell-matrix adhesion"
##
##
                      "ATP hydrolysis coupled ion transmembrane transport"
##
                      "regulation of protein K63-linked ubiquitination"
                      "positive regulation of platelet aggregation"
##
                      "regulation of protein autoubiquitination"
##
                      "sperm flagellum movement involved in flagellated sperm motility"
##
                      "canonical Wnt signaling pathway involved in stem cell proliferation"
##
##
                     "negative regulation of synapse maturation"
                      "positive regulation of optic nerve formation"
##
##
                      "regulation of motor neuron apoptotic process"
                      "autophagosome membrane docking"
##
##
                      "negative regulation of myelination"
##
                      "immune system process"
##
                      "blue light signaling pathway"
                      "response to organophosphorus"
##
                     "cobalamin metabolic process"
##
                      "positive regulation of neurotrophin TRK receptor signaling pathway"
##
                      "transcription by RNA polymerase I"
##
                      "Toll signaling pathway"
##
                     "regulation of hormone levels"
##
                      "protein demethylation"
##
                      "negative regulation of fibroblast migration"
##
                      "protein import"
##
                      "B cell activation involved in immune response"
##
##
                      "L-cystine transport"
                      "protein polyglycylation"
##
##
                      "protein citrullination"
                     "interferon-gamma biosynthetic process"
##
                      "regulation of MHC class I biosynthetic process"
##
```

"deoxyribose phosphate catabolic process"

```
##
                      "pigment granule maturation"
##
                      "negative regulation of cell activation"
                      "response to interleukin-11"
##
                      "cellular response to pheromone"
##
                      "negative regulation of collagen fibril organization"
##
                      "regulation of guanyl-nucleotide exchange factor activity"
##
                      "negative regulation of macrophage migration"
##
                      "negative regulation of phosphatidylcholine biosynthetic process"
##
##
                      "positive regulation of lipopolysaccharide-mediated signaling pathway"
                      "positive regulation of DNA biosynthetic process"
##
##
                      "adenosine metabolic process"
                      "lymphocyte activation"
##
                      "negative regulation of UDP-glucose catabolic process"
##
                      "positive regulation of adenylate cyclase-activating adrenergic receptor signaling
##
##
                      "negative regulation of glycogen synthase activity, transferring glucose-1-phospha
##
                      "V(D)J recombination"
                      "glycoprotein transport"
##
                      "T-helper cell lineage commitment"
##
##
                      "negative regulation of tolerance induction"
                      "negative regulation of T cell mediated immunity"
##
##
                     "response to carbon dioxide"
                      "hexose biosynthetic process"
##
                      "female sex determination"
##
                      "immature T cell proliferation in thymus"
##
                      "geranylgeranyl diphosphate biosynthetic process"
##
##
                      "response to genistein"
##
                      "tube morphogenesis"
                      "helper T cell extravasation"
##
                      "non-canonical Wnt signaling pathway via MAPK cascade"
##
                      "positive regulation of lymphotoxin A biosynthetic process"
##
                      "negative regulation of interleukin-4 biosynthetic process"
##
##
                      "negative regulation of follicle-stimulating hormone secretion"
                      "vesicle targeting, trans-Golgi to endosome"
##
##
                      "eye morphogenesis"
                      "phytoalexin metabolic process"
##
                      "negative regulation of mast cell differentiation"
##
##
                      "negative regulation of testicular blood vessel morphogenesis"
##
                      "renal vesicle formation"
                      "metanephric nephron morphogenesis"
##
                      "granulocyte migration"
##
                      "response to Thyroid stimulating hormone"
##
##
                     "folate import into mitochondrion"
                      "response to astaxanthin"
##
                     "response to thyrotropin-releasing hormone"
##
                      "dorsal root ganglion development"
##
                      "negative regulation of male gonad development"
##
                      "positive regulation of cortisol biosynthetic process"
##
                      "actomyosin structure organization"
##
##
                      "cell cycle G1/S phase transition"
                      "regulation of immune system process"
##
##
                     "nitric oxide metabolic process"
                     "histone acetylation"
##
##
                      "regulation of cellular component size"
                      "negative regulation of synaptic vesicle clustering"
##
```

```
##
                      "attachment of GPI anchor to protein"
##
                     "signal transduction by trans-phosphorylation"
                      "positive regulation of dopamine metabolic process"
##
                      "regulation of blood pressure"
##
##
                      "cardiac muscle cell proliferation"
##
                     "inactivation of MAPK activity"
                      "chitin catabolic process"
##
                      "detection of peptidoglycan"
##
##
                      "basement membrane disassembly"
                      "regulation of timing of catagen"
##
##
                      "actin-mediated cell contraction"
                      "detection of lipoteichoic acid"
##
                     "regulation of apoptotic process involved in outflow tract morphogenesis"
##
                      "positive regulation of C-C chemokine receptor CCR7 signaling pathway"
##
##
                      "substantia propria of cornea development"
##
                      "membrane protein proteolysis involved in retrograde protein transport, ER to cyto
                     "response to 2,3,7,8-tetrachlorodibenzodioxine"
##
                      "protein localization to site of double-strand break"
##
##
                      "positive regulation of CD40 signaling pathway"
##
                      "negative regulation of interleukin-10 secretion"
##
                      "negative regulation of telomere maintenance"
                      "negative regulation of cardiac muscle cell proliferation"
##
                      "apoptotic process involved in heart morphogenesis"
##
                      "histone H4-K20 demethylation"
##
                     "negative regulation of growth rate"
##
##
                      "eye pigment biosynthetic process"
##
                      "transdifferentiation"
                      "phylloquinone catabolic process"
##
                      "positive regulation of fractalkine biosynthetic process"
##
                      "membrane repolarization during action potential"
##
                      "atrioventricular bundle cell differentiation"
##
##
                      "gonadal mesoderm development"
                      "glycolate metabolic process"
##
                      "cardioblast differentiation"
##
##
                      "vitamin E biosynthetic process"
                     "muscle hypertrophy"
##
##
                      "adaptation of rhodopsin mediated signaling"
##
                      "establishment or maintenance of polarity of embryonic epithelium"
                      "NAD catabolic process"
##
                     "caudate nucleus development"
##
                      "putamen development"
##
##
                      "fast-twitch skeletal muscle fiber contraction"
                      "regulation of cell projection size"
##
                      "regulation of integrin activation"
##
                      "multivesicular body organization"
##
                      "cytotoxic T cell degranulation"
##
                      "cellular metabolic process"
##
                      "follicle-stimulating hormone secretion"
##
##
                      "negative regulation of oocyte development"
                      "lobar bronchus development"
##
##
                      "positive regulation of fructose 1,6-bisphosphate 1-phosphatase activity"
                      "positive regulation of fructose 1,6-bisphosphate metabolic process"
##
##
                      "renal inner medulla development"
                      "renal outer medulla development"
##
```

```
##
                     "outer medullary collecting duct development"
                     "complement-dependent cytotoxicity"
##
                     "negative regulation of synaptic vesicle endocytosis"
##
                     "positive regulation of constitutive secretory pathway"
##
##
                     "positive regulation of trophectodermal cell proliferation"
                     "positive regulation of protein import"
##
                     "negative regulation of membrane invagination"
##
                     "regulation of phagosome maturation"
##
##
                     "positive regulation of protein localization to phagocytic vesicle"
                     "negative regulation of clathrin-coated pit assembly"
##
##
                     "dense core granule maturation"
                     "positive regulation of tumor necrosis factor (ligand) superfamily member 11 produ
##
##
                     "anterograde axonal transport"
                     "phospholipid translocation"
##
##
                     "ubiquinone metabolic process"
##
                     "pyridoxine biosynthetic process"
                     "regulation of oligodendrocyte differentiation"
##
                     "attachment of spindle microtubules to kinetochore involved in homologous chromosom
##
##
                     "nitrate catabolic process"
                     "nitric oxide catabolic process"
##
##
                     "positive regulation of steroid hormone biosynthetic process"
                     "cellular organofluorine metabolic process"
##
                     "negative regulation of leukocyte cell-cell adhesion"
##
                     "regulation of actin filament depolymerization"
##
                     "regulation of T cell tolerance induction"
##
##
                     "immune response-activating signal transduction"
##
                     "neural crest cell fate commitment"
                     "T-helper 1 cell cytokine production"
##
                     "renal sodium excretion"
##
##
                     "renal potassium excretion"
##
                     "transforming growth factor-beta secretion"
##
                     "tetrahydrofolylpolyglutamate metabolic process"
                     "cytoplasmic actin-based contraction involved in cell motility"
##
                     "positive regulation of transcription from RNA polymerase II promoter in response
##
                     "regulation of establishment of protein localization to chromosome"
##
                     "nuclear retention of pre-mRNA at the site of transcription"
##
##
                     "protein localization to non-motile cilium"
##
                     "regulation of protein depolymerization"
                     "positive regulation of male germ cell proliferation"
##
                     "negative regulation of histone H3-K79 methylation"
##
                     "mesoderm formation"
##
##
                     "positive regulation of single stranded viral RNA replication via double stranded
                     "negative regulation of DNA duplex unwinding"
##
                     "endodermal cell fate commitment"
##
                     "photoreceptor cell development"
##
                     "aminophospholipid transport"
##
##
                     "NADP catabolic process"
                     "cobalt ion transport"
##
##
                     "regulation of mesenchymal cell proliferation"
                     "late endosome to vacuole transport via multivesicular body sorting pathway"
##
##
                     "positive regulation of translation initiation in response to endoplasmic reticulu
                     "regulation of endodermal cell fate specification"
##
##
                     "asymmetric protein localization involved in cell fate determination"
```

##

"chondroitin sulfate proteoglycan biosynthetic process, polysaccharide chain biosy

```
##
                     "hepoxilin biosynthetic process"
##
                     "synaptic transmission involved in micturition"
##
                     "positive regulation of serine-type endopeptidase activity"
                     "positive regulation of excitatory synapse assembly"
##
##
                     "bone regeneration"
##
                     "positive regulation of growth"
                     "renal glucose absorption"
##
                     "positive regulation of interleukin-1 alpha secretion"
##
##
                     "negative regulation of activated T cell proliferation"
                     "negative regulation of defense response to virus"
##
##
                     "learning or memory"
                     "thymidine metabolic process"
##
                     "regulation of type 2 immune response"
##
                     "negative regulation of natural killer cell mediated cytotoxicity directed against
##
##
                     "negative regulation of chronic inflammatory response to antigenic stimulus"
##
                     "xylulose catabolic process"
                     "interneuron migration from the subpallium to the cortex"
##
                     "positive regulation of leukotriene production involved in inflammatory response"
##
##
                     "retrograde transport, plasma membrane to Golgi"
                     "histone citrullination"
##
##
                     "positive regulation of cytokine biosynthetic process"
                     "primary follicle stage"
##
##
                     "pigment granule transport"
                     "monoacylglycerol catabolic process"
##
                     "negative regulation of vascular wound healing"
##
##
                     "histone H3-K36 trimethylation"
##
                     "positive regulation of odontoblast differentiation"
                     "negative regulation of cell proliferation involved in kidney development"
##
                     "regulation of response to wounding"
##
                     "negative regulation of connective tissue replacement involved in inflammatory res
##
##
                     "negative regulation of advanced glycation end-product receptor activity"
##
                     "regulation of protein localization to chromatin"
                     "negative regulation of testosterone biosynthetic process"
##
                     "regulation of kainate selective glutamate receptor activity"
##
                     "regulation of CD4-positive, alpha-beta T cell activation"
##
                     "positive regulation of renal water transport"
##
##
                     "multicellular organismal response to stress"
##
                     "response to morphine"
                     "cell fate specification"
##
                     "histone H4-K20 trimethylation"
##
                     "negative regulation of mitochondrial DNA replication"
##
##
                     "mammillary body development"
                     "mammillothalamic axonal tract development"
##
                     "mammary gland lobule development"
##
                     "inferior colliculus development"
##
                     "cell migration in diencephalon"
##
##
                     "mesodermal-endodermal cell signaling"
                     "chromosome breakage"
##
##
                     "histone H2A-S139 phosphorylation"
                     "negative regulation of T-helper 1 cell differentiation"
##
##
                     "positive regulation of protein neddylation"
                     "positive regulation of cellular response to X-ray"
##
##
                     "endothelial to hematopoietic transition"
                     "positive regulation of vesicle docking"
##
```

```
"manchette assembly"
##
                      "sphinganine-1-phosphate biosynthetic process"
##
                      "gamma-aminobutyric acid transport"
##
                      "siderophore transport"
##
                      "brassinosteroid biosynthetic process"
##
##
                      "protein-pyridoxal-5-phosphate linkage"
                      "glycolipid translocation"
##
                      "U6 snRNA 3'-end processing"
##
##
                      "prolactin signaling pathway"
                      "acrosomal vesicle exocytosis"
##
##
                      "sinoatrial node cell development"
                      "site-specific DNA replication termination at RTS1 barrier"
##
                     "multinuclear osteoclast differentiation"
##
                      "synaptic vesicle cycle"
##
##
                      "negative regulation of nodal signaling pathway"
##
                      "mitotic DNA replication termination"
                      "positive regulation of ATP metabolic process"
##
                      "positive regulation of phospholipid transport"
##
##
                      "digestive tract morphogenesis"
                      "positive regulation of chronic inflammatory response to antigenic stimulus"
##
##
                      "negative regulation of muscle contraction"
                      "mannose trimming involved in glycoprotein ERAD pathway"
##
                      "eyelid development in camera-type eye"
##
                      "body morphogenesis"
##
                      "regulation of interleukin-6 production"
##
##
                      "positive regulation of anterograde axonal transport of mitochondrion"
##
                      "negative regulation of store-operated calcium channel activity"
                      "regulation of myeloid leukocyte differentiation"
##
                      "protein biotinylation"
##
##
                      "virus maturation"
##
                      "negative regulation of heat generation"
##
                      "centromere complex assembly"
                      "response to cortisone"
##
                      "positive regulation of phospholipid catabolic process"
##
                      "histone H3-K27 methylation"
##
##
                     "histone biotinylation"
##
                      "negative regulation of adenylate cyclase-activating adrenergic receptor signaling
##
                      "copper ion import across plasma membrane"
                      "positive regulation of neuromuscular synaptic transmission"
##
                     "regulation of postsynaptic membrane organization"
##
                      "establishment of protein localization to postsynaptic membrane"
##
                      "positive regulation of voltage-gated potassium channel activity"
##
                      "negative regulation of epithelial to mesenchymal transition involved in endocardi
##
##
                      "macrophage migration"
                      "positive regulation of myotome development"
##
                      "negative regulation of lamellipodium morphogenesis"
##
                      "spermidine acetylation"
##
                      "preantral ovarian follicle growth"
##
                      "negative regulation of membrane potential"
##
                      "regulation of pronephros size"
##
##
                      "thyroid hormone metabolic process"
                      "synaptic vesicle membrane organization"
##
##
                      "mitochondrial RNA processing"
                      "S-adenosylmethioninamine biosynthetic process"
##
```

```
##
                     "establishment or maintenance of apical/basal cell polarity"
##
                     "RNA (guanine-N7)-methylation"
                     "cytotoxic T cell differentiation"
##
                     "mitochondrial tRNA wobble uridine modification"
##
                     "positive regulation of voltage-gated sodium channel activity"
##
                     "positive regulation of dipeptide transmembrane transport"
##
                     "atrial cardiac muscle cell action potential"
##
                     "RNA 5'-cap (guanine-N7)-methylation"
##
##
                     "putrescine catabolic process"
                     "regulation of development, heterochronic"
##
##
                     "fatty acid alpha-oxidation"
                     "cellular response to lipid"
##
                     "intracellular transport of virus"
##
                     "positive regulation of intrinsic apoptotic signaling pathway in response to osmot
##
##
                     "male courtship behavior"
##
                     "nucleotide-sugar metabolic process"
                     "tonic smooth muscle contraction"
##
                     "negative regulation of transmembrane transport"
##
##
                     "base-excision repair, AP site formation via deaminated base removal"
                     "negative regulation of detection of mechanical stimulus involved in sensory perce
##
##
                     "mitochondrial transmembrane transport"
                     "protein localization to cell cortex"
##
                     "regulation of inclusion body assembly"
##
                     "tRNA pseudouridine synthesis"
##
                     "positive regulation of mononuclear cell proliferation"
##
##
                     "ethylene metabolic process"
##
                     "dibenzo-p-dioxin catabolic process"
                     "posttranslational protein targeting to membrane, translocation"
##
                     "PERK-mediated unfolded protein response"
##
                     "positive regulation of glutamate secretion, neurotransmission"
##
                     "positive regulation of heart rate"
##
##
                     "response to fatty acid"
                     "cell-cell adhesion via plasma-membrane adhesion molecules"
##
                     "skeletal muscle atrophy"
##
                     "meiotic telomere clustering"
##
##
                     "cell morphogenesis involved in neuron differentiation"
##
                     "MHC class II protein complex assembly"
##
                     "pyrimidine deoxyribonucleotide salvage"
                     "nucleotide-binding domain, leucine rich repeat containing receptor signaling path
##
                     "slit diaphragm assembly"
##
                     "regulation of natural killer cell mediated cytotoxicity"
##
##
                     "CTP salvage"
                     "mitochondrial magnesium ion transmembrane transport"
##
                     "regulation of axon extension involved in axon guidance"
##
                     "negative regulation of interleukin-1 secretion"
##
                     "positive regulation of mesenchymal to epithelial transition involved in metanephr
##
                     "regulation of skeletal muscle fiber differentiation"
##
                     "neural crest cell migration involved in sympathetic nervous system development"
##
##
                     "regulation of growth hormone activity"
                     "regulation of oxygen metabolic process"
##
##
                     "negative regulation of T cell migration"
                     "hindbrain morphogenesis"
##
                     "negative regulation of DNA ligase activity"
##
                     "habenula development"
##
```

```
##
                      "glycoprotein biosynthetic process"
##
                      "ear development"
                      "positive regulation of axon extension"
##
                      "positive regulation of vitamin D biosynthetic process"
##
##
                      "negative regulation of transcription initiation from RNA polymerase II promoter"
                     "establishment or maintenance of cell polarity regulating cell shape"
##
                      "regulation of telomere capping"
##
                      "cellular response to L-glutamine"
##
##
                      "animal organ regeneration"
                      "negative regulation of neuron death"
##
##
                      "positive regulation of antigen processing and presentation of peptide antigen via
                      "negative regulation of lipopolysaccharide-mediated signaling pathway"
##
##
                      "gland morphogenesis"
                      "tRNA metabolic process"
##
##
                      "asparagine biosynthetic process"
##
                      "glycolipid metabolic process"
                      "vestibulocochlear nerve formation"
##
##
                     "response to vitamin K"
                      "protein glycosylation in Golgi"
##
##
                      "calcitriol biosynthetic process from calciol"
##
                     "'de novo' GDP-L-fucose biosynthetic process"
                      "nucleolar large rRNA transcription by RNA polymerase I"
##
                      "positive regulation of cellular component biogenesis"
##
                      "dUTP catabolic process"
##
                      "cytoskeletal matrix organization at active zone"
##
##
                      "negative regulation of cytokine activity"
##
                      "endocardial cushion cell development"
                      "L-asparagine biosynthetic process"
##
                      "proteasome core complex assembly"
##
                      "neurexin clustering involved in presynaptic membrane assembly"
##
##
                      "postsynaptic specialization assembly"
                      "positive regulation of presynaptic active zone assembly"
##
                      "AMP catabolic process"
##
                      "positive regulation of germinal center formation"
##
##
                      "negative regulation of heart rate"
                      "L-alanine transport"
##
##
                      "slow-twitch skeletal muscle fiber contraction"
##
                      "positive regulation of bicellular tight junction assembly"
                      "positive regulation of natural killer cell mediated cytotoxicity directed against
##
                      "regulation of immunoglobulin secretion"
##
                      "regulation of nitrogen compound metabolic process"
##
##
                      "negative regulation of respiratory burst"
                      "regulation of antimicrobial humoral response"
##
                      "gamma-aminobutyric acid catabolic process"
##
                      "parallel actin filament bundle assembly"
##
                      "vitamin transmembrane transport"
##
                      "developmental growth involved in morphogenesis"
##
                      "protein localization to mitotic spindle"
##
##
                      "luteinization"
                      "response to carbohydrate"
##
##
                     "lagging strand elongation"
                      "regulation of cellular component organization"
##
##
                      "mammary gland involution"
##
                      "endomembrane system organization"
```

```
##
                      "positive regulation of fibroblast proliferation"
##
                      "response to lipopolysaccharide"
                      "trigeminal nerve development"
##
                      "double-strand break repair via single-strand annealing"
##
##
                      "bile acid conjugation"
##
                     "immunoglobulin production in mucosal tissue"
                      "regulation of chromatin assembly"
##
                      "chemorepulsion of branchiomotor axon"
##
##
                      "negative regulation of interleukin-18 production"
                      "FAD transmembrane transport"
##
##
                      "regulation of negative chemotaxis"
                      "positive regulation of oocyte development"
##
                      "skeletal muscle organ development"
##
                      "positive regulation of DNA-templated transcription, termination"
##
##
                      "cellular hypotonic salinity response"
##
                      "negative regulation of peptidyl-lysine crotonylation"
                      "positive regulation of microtubule motor activity"
##
                      "positive regulation of termination of RNA polymerase II transcription, poly(A)-co
##
##
                      "membrane lipid catabolic process"
                      "semi-lunar valve development"
##
##
                      "synapsis"
                      "positive regulation of cell differentiation"
##
                      "dendritic transport of mitochondrion"
##
                      "Purkinje myocyte differentiation"
##
                     "septum secundum development"
##
##
                      "internal protein amino acid acetylation"
##
                      "positive regulation of very-low-density lipoprotein particle remodeling"
                      "dolichol biosynthetic process"
##
                      "corticospinal neuron axon guidance through spinal cord"
##
                      "regulation of histone methylation"
##
##
                      "negative regulation of mast cell apoptotic process"
##
                      "response to vitamin B2"
                      "induction of negative chemotaxis"
##
                      "ventral spinal cord interneuron fate commitment"
##
##
                      "mammary placode formation"
                     "atrioventricular node cell fate commitment"
##
##
                      "heterochromatin maintenance"
##
                      "cellular response to non-ionic osmotic stress"
                      "renal filtration"
##
                     "positive regulation of protein tyrosine phosphatase activity"
##
                      "viral genome replication"
##
##
                      "branch elongation involved in ureteric bud branching"
                      "mesonephric epithelium development"
##
                      "copper ion import"
##
                      "signal transduction involved in regulation of gene expression"
##
                      "regulation of potassium ion import"
##
                      "regulation of voltage-gated potassium channel activity involved in ventricular ca
##
                     "regulation of potassium ion export across plasma membrane"
##
                      "receptor biosynthetic process"
##
                      "sphinganine biosynthetic process"
##
##
                     "insecticide metabolic process"
                      "zinc ion transport"
##
                      "negative regulation of small GTPase mediated signal transduction"
##
```

##

"negative regulation of high-density lipoprotein particle clearance"

```
##
                      "RNA interference"
##
                      "forebrain neuron fate commitment"
##
                     "developmental induction"
                      "telomere formation via telomerase"
##
##
                      "negative regulation of transforming growth factor beta2 production"
##
                      "protein glycosylation in endoplasmic reticulum"
                      "RNA folding"
##
                      "ameloblast differentiation"
##
##
                      "quinolinate metabolic process"
                      "establishment of anatomical structure orientation"
##
##
                      "vesicle localization"
                      "protein-lipid complex assembly"
##
                      "positive regulation of enamel mineralization"
##
                      "positive regulation of bile acid biosynthetic process"
##
##
                      "negative regulation of phospholipid biosynthetic process"
##
                      "cellular response to sodium dodecyl sulfate"
                     "negative regulation of neutrophil chemotaxis"
##
                     "regulation of histone H4 acetylation"
##
##
                      "telomerase RNA localization to Cajal body"
                      "basal dendrite morphogenesis"
##
##
                     "positive regulation of cell cycle phase transition"
                      "exon-exon junction complex disassembly"
##
                      "negative regulation of microvillus assembly"
##
                      "negative regulation of vascular smooth muscle contraction"
##
                      "protein localization to Cajal body"
##
##
                      "negative regulation of platelet-derived growth factor receptor-alpha signaling pa
##
                      "regulation of histone H3-K36 trimethylation"
                      "response to ozone"
##
                      "negative regulation of viral process"
##
##
                      "dephosphorylation"
                      "positive regulation of hematopoietic stem cell proliferation"
##
##
                      "positive regulation of miRNA mediated inhibition of translation"
                      "chondrocyte differentiation involved in endochondral bone morphogenesis"
##
                      "positive regulation of interferon-beta biosynthetic process"
##
##
                      "tRNA 3'-end processing"
                     "positive regulation of cytokine production involved in inflammatory response"
##
##
                      "regulation of interferon-gamma-mediated signaling pathway"
##
                      "fasciculation of sensory neuron axon"
                      "enzyme-directed rRNA pseudouridine synthesis"
##
                     "cellular sphingolipid homeostasis"
##
                      "negative regulation of ceramide biosynthetic process"
##
                      "negative regulation of antigen processing and presentation of peptide antigen via
##
                      "atrioventricular valve development"
##
                     "xylulose metabolic process"
##
                      "peroxisome membrane biogenesis"
##
                      "regulation of calcium ion-dependent exocytosis"
##
                      "subthalamic nucleus development"
##
                      "negative regulation of signaling"
##
##
                      "gamma-delta T cell differentiation"
                      "D-xylose metabolic process"
##
                      "positive regulation of rhodopsin gene expression"
##
                      "prolactin secreting cell differentiation"
##
##
                      "bronchiole development"
                      "superior vena cava morphogenesis"
##
```

```
##
                      "protein secretion by platelet"
##
                      "determination of intestine left/right asymmetry"
                     "determination of stomach left/right asymmetry"
##
                      "epithelial cell apoptotic process involved in palatal shelf morphogenesis"
##
                      "regulation of planar cell polarity pathway involved in neural tube closure"
##
                      "negative regulation of T-helper 17 cell lineage commitment"
##
                      "negative regulation of binding of sperm to zona pellucida"
##
                      "interleukin-2 production"
##
##
                      "positive regulation of cation channel activity"
                      "negative regulation of chromatin silencing at rDNA"
##
##
                      "immune response-activating cell surface receptor signaling pathway"
                      "thymus development"
##
                      "dolichol-linked oligosaccharide biosynthetic process"
##
                      "depyrimidination"
##
##
                      "endothelial cell chemotaxis"
##
                      "zymogen granule exocytosis"
##
                     "heterochromatin assembly"
                      "establishment of natural killer cell polarity"
##
##
                      "basophil degranulation"
                      "CMP-N-acetylneuraminate biosynthetic process"
##
##
                     "DNA catabolic process"
##
                      "vagus nerve morphogenesis"
                      "regulation of transcription from RNA polymerase II promoter involved in forebrain
##
                      "cerebral cortex GABAergic interneuron fate commitment"
##
                     "negative regulation by host of viral transcription"
##
##
                      "regulation of respiratory system process"
##
                      "UMP salvage"
                      "phosphatidic acid metabolic process"
##
##
                     "intracellular pH reduction"
##
                      "ciliary body morphogenesis"
##
                      "positive regulation of platelet-derived growth factor production"
##
                      "endocardial cushion to mesenchymal transition"
                      "leukotriene D4 biosynthetic process"
##
##
                      "positive regulation of amacrine cell differentiation"
##
                      "protein transport from ciliary membrane to plasma membrane"
##
                      "protein localization to microvillus"
##
                      "male genitalia development"
##
                      "antigen processing and presentation of exogenous antigen"
                      "regulation of epithelium regeneration"
##
                     "viral life cycle"
##
                     "neurotransmitter receptor metabolic process"
##
##
                     "response to leucine"
                     "establishment of integrated proviral latency"
##
                     "intracellular receptor signaling pathway"
##
                      "regulation of glycogen catabolic process"
##
                      "C-terminal protein methylation"
##
                      "response to nematode"
##
                     "positive regulation of synaptic vesicle priming"
##
##
                      "nucleobase transport"
                      "L-ascorbic acid transmembrane transport"
##
##
                     "chromatin silencing by small RNA"
                      "positive regulation of aldosterone biosynthetic process"
##
##
                      "tRNA methylthiolation"
                      "dendritic cell homeostasis"
##
```

```
##
                     "transepithelial L-ascorbic acid transport"
##
                     "cellular response to raffinose"
                     "regulation of intracellular signal transduction"
##
                     "regulation of astrocyte chemotaxis"
##
                     "positive regulation of interleukin-1-mediated signaling pathway"
##
                     "protein deneddylation"
##
                     "cellular response to chromate"
##
                     "susceptibility to natural killer cell mediated cytotoxicity"
##
##
                     "negative regulation of triglyceride catabolic process"
                     "regulation of translational initiation by eIF2 alpha dephosphorylation"
##
##
                     "cellular response to high density lipoprotein particle stimulus"
                     "type I interferon production"
##
                     "regulation of neuronal signal transduction"
##
                     "positive regulation of neurofibrillary tangle assembly"
##
##
                     "negative regulation of response to endoplasmic reticulum stress"
##
                     "negative regulation of cellular response to thapsigargin"
                     "negative regulation of cellular response to tunicamycin"
##
                     "positive regulation of isotype switching to IgE isotypes"
##
                     "membrane raft localization"
##
                     "T cell differentiation involved in immune response"
##
##
                     "hepatic immune response"
##
                     "pyrimidine ribonucleotide biosynthetic process"
                     "selenocysteine biosynthetic process"
##
                     "chemorepulsion involved in embryonic olfactory bulb interneuron precursor migrati
##
                     "regulation of prostaglandin biosynthetic process"
##
##
                     "regulation of protein dephosphorylation"
##
                     "positive regulation of cell volume"
                     "tRNA seleno-modification"
##
##
                     "metanephric loop of Henle development"
                     "negative regulation of the force of heart contraction"
##
                     "negative regulation of arginine catabolic process"
##
##
                     "calcium ion export"
                     "negative regulation of polyamine transmembrane transport"
##
                     "negative regulation of citrulline biosynthetic process"
##
##
                     "response to acetylcholine"
                     "positive regulation of miRNA catabolic process"
##
##
                     "phosphatidylethanolamine acyl-chain remodeling"
##
                     "embryonic heart tube left/right pattern formation"
                     "regulation of slow-twitch skeletal muscle fiber contraction"
##
                     "chylomicron assembly"
##
                     "cilium movement"
##
##
                     "response to fluoride"
                     "positive regulation of adenosine receptor signaling pathway"
##
                     "Golgi to endosome transport"
##
                     "taurine transport"
##
                     "regulation of bone mineralization"
##
                     "regulation of mast cell apoptotic process"
##
                     "negative regulation of dermatome development"
##
##
                     "transepithelial ammonium transport"
                     "negative regulation of mononuclear cell migration"
##
##
                     "distal tubule morphogenesis"
                     "3'-phospho-5'-adenylyl sulfate transmembrane transport"
##
                     "natural killer cell differentiation"
##
                     "collecting duct development"
##
```

```
##
                      "regulation of integrin-mediated signaling pathway"
##
                      "lipid biosynthetic process"
                      "neutrophil mediated immunity"
##
                      "tyrosyl-tRNA aminoacylation"
##
##
                      "protein geranylgeranylation"
                      "dTTP biosynthetic process"
##
                      "protein destabilization"
##
                      "Factor XII activation"
##
##
                      "positive regulation of macromolecule biosynthetic process"
                      "negative regulation of chemokine biosynthetic process"
##
##
                      "positive regulation of lipoprotein metabolic process"
                      "mammillary axonal complex development"
##
                      "mitochondrial tyrosyl-tRNA aminoacylation"
##
                      "mitochondrial tRNA modification"
##
##
                      "cementum mineralization"
##
                      "microtubule plus-end directed mitotic chromosome migration"
                     "lateral attachment of mitotic spindle microtubules to kinetochore"
##
                      "regulation of relaxation of muscle"
##
##
                      "positive regulation of lens fiber cell differentiation"
##
                      "ganglioside GM1 transport to membrane"
##
                     "calcium ion regulated lysosome exocytosis"
                      "regulation of barbed-end actin filament capping"
##
                      "regulation of Ras protein signal transduction"
##
                      "negative regulation of alkaline phosphatase activity"
##
                     "striated muscle tissue development"
##
##
                      "positive regulation of interleukin-12 biosynthetic process"
##
                      "positive regulation of telomere capping"
                      "embryonic skeletal joint morphogenesis"
##
                      "response to odorant"
##
                      "isotype switching"
##
##
                      "chronological cell aging"
##
                     "hair cycle process"
                     "iron assimilation by chelation and transport"
##
##
                      "negative regulation by host of viral process"
##
                      "stereocilium maintenance"
                     "positive regulation of bone mineralization involved in bone maturation"
##
##
                      "late endosome to lysosome transport"
##
                      "regulation of protein targeting"
                      "negative regulation of tumor necrosis factor (ligand) superfamily member 11 produ
##
                     "negative regulation of interleukin-5 secretion"
##
                      "mature B cell differentiation"
##
                      "immunoglobulin secretion involved in immune response"
##
                      "rRNA methylation"
##
                     "very long-chain fatty-acyl-CoA metabolic process"
##
                      "positive regulation of behavioral fear response"
##
                      "nuclear envelope organization"
##
                      "nuclear DNA replication"
##
                      "spindle assembly"
##
                      "negative regulation of sodium ion transmembrane transport"
##
                      "negative regulation of defense response to virus by host"
##
##
                      "negative regulation of low-density lipoprotein receptor activity"
                      "rRNA modification"
##
                      "regulation of protein catabolic process at presynapse, modulating synaptic transm
##
                      "protein methylation"
##
```

```
##
                     "positive regulation of protein binding"
##
                     "positive regulation of caveolin-mediated endocytosis"
##
                     "dihydrofolate biosynthetic process"
                     "carbohydrate mediated signaling"
##
                     "polarity specification of anterior/posterior axis"
##
##
                     "positive regulation of skeletal muscle cell proliferation"
                     "cell migration involved in kidney development"
##
                     "desmosome disassembly"
##
##
                     "hemoglobin biosynthetic process"
                     "membrane biogenesis"
##
##
                     "tetrahydrofolylpolyglutamate biosynthetic process"
                     "germline cell cycle switching, mitotic to meiotic cell cycle"
##
##
                     "trachea morphogenesis"
                     "right lung development"
##
##
                     "left lung development"
##
                     "primary prostatic bud elongation"
                     "pulmonary vein morphogenesis"
##
##
                     "regulation of prostatic bud formation"
                     "regulation of mesenchymal cell proliferation involved in prostate gland developme:
##
                     "mesenchymal smoothened signaling pathway involved in prostate gland development"
##
##
                     "positive regulation of sclerotome development"
                     "planar cell polarity pathway involved in heart morphogenesis"
##
                     "G1 to G0 transition involved in cell differentiation"
##
                     "establishment of planar polarity involved in neural tube closure"
##
                     "regulation of nodal signaling pathway involved in determination of lateral mesode
##
##
                     "negative regulation of cell-cell adhesion by negative regulation of transcription
##
                     "regulation of melanosome organization"
                     "positive regulation of oxidative stress-induced cell death"
##
                     "negative regulation of metalloendopeptidase activity"
##
##
                     "tracheoesophageal septum formation"
##
                     "negative regulation of ureter smooth muscle cell differentiation"
                     "positive regulation of ureter smooth muscle cell differentiation"
##
                     "negative regulation of kidney smooth muscle cell differentiation"
##
                     "positive regulation of kidney smooth muscle cell differentiation"
##
##
                     "respiratory tube development"
                     "chemorepulsion of dopaminergic neuron axon"
##
##
                     "regulation of double-strand break repair via nonhomologous end joining"
##
                     "optic cup structural organization"
                     "response to immobilization stress"
##
                     "positive regulation of fibroblast growth factor receptor signaling pathway"
##
                     "DNA strand elongation"
##
                     "regulation of heterotypic cell-cell adhesion"
##
                     "regulation of toll-like receptor 3 signaling pathway"
##
                     "positive regulation of hair cycle"
##
                     "anterograde dendritic transport"
##
##
                     "positive regulation of transdifferentiation"
                     "negative regulation of production of siRNA involved in RNA interference"
##
                     "comma-shaped body morphogenesis"
##
##
                     "S-shaped body morphogenesis"
                     "regulation of protein deacetylation"
##
##
                     "immunoglobulin secretion"
                     "regulation of cardiac muscle cell proliferation"
##
##
                     "thyroid hormone transport"
##
                     "ribonucleoprotein complex localization"
```

```
##
                     "mannosylation"
##
                     "regulation of hepatocyte proliferation"
##
                     "regulation of store-operated calcium entry"
                     "regulation of chromatin assembly or disassembly"
##
##
                     "tRNA dihydrouridine synthesis"
##
                     "cardiogenic plate morphogenesis"
                     "skeletal muscle satellite cell commitment"
##
                     "cerebral cortex GABAergic interneuron differentiation"
##
##
                     "membrane docking"
                     "negative regulation of myeloid cell apoptotic process"
##
##
                     "regulation of transcription from RNA polymerase II promoter involved in definitiv
                     "negative regulation of metanephric glomerular mesangial cell proliferation"
##
                     "histone H3-T3 phosphorylation"
##
                     "membrane repolarization during bundle of His cell action potential"
##
##
                     "membrane repolarization during SA node cell action potential"
##
                     "response to antineoplastic agent"
                     "negative regulation of sensory perception of pain"
##
##
                     "regulation of cardiac cell fate specification"
                     "negative regulation of neural precursor cell proliferation"
##
##
                     "regulation of gene silencing"
##
                     "neurotransmitter receptor transport postsynaptic membrane to endosome"
                     "steroid hormone receptor complex assembly"
##
                     "protein localization by the Cvt pathway"
##
                     "positive regulation of adenylate cyclase-inhibiting dopamine receptor signaling p
##
                     "insulin secretion"
##
##
                     "positive regulation of translational initiation in response to stress"
##
                     "cell death in response to hydrogen peroxide"
                     "polysaccharide digestion"
##
                     "positive regulation of T-helper cell differentiation"
##
##
                     "venous blood vessel morphogenesis"
                     "negative regulation of NK T cell proliferation"
##
##
                     "glutamate reuptake"
                     "positive regulation of endoplasmic reticulum stress-induced eIF2 alpha dephosphor
##
                     "positive regulation of hepatic stellate cell proliferation"
##
                     "G protein-coupled receptor catabolic process"
##
                     "positive regulation of SREBP signaling pathway"
##
##
                     "renal vesicle induction"
##
                     "endodermal cell differentiation"
                     "glomerular visceral epithelial cell migration"
##
                     "tRNA-type intron splice site recognition and cleavage"
##
                     "fucose metabolic process"
##
                     "insulin processing"
##
                     "negative regulation of plasma lipoprotein oxidation"
##
##
                     "sequestering of neurotransmitter"
                     "S-adenosylhomocysteine metabolic process"
##
                     "system development"
##
##
                     "stem cell fate specification"
                     "heterochromatin assembly involved in chromatin silencing"
##
##
                     "positive regulation of tubulin deacetylation"
                     "regulation of post-translational protein modification"
##
                     "negative regulation of ATF6-mediated unfolded protein response"
##
                     "regulation of neutrophil extravasation"
##
##
                     "positive regulation of innate immune response"
##
                     "segmentation"
```

```
##
                     "histone H2B conserved C-terminal lysine deubiquitination"
##
                     "negative regulation of keratinocyte migration"
                     "positive regulation of single-stranded telomeric DNA binding"
##
                     "negative regulation of transcription from RNA polymerase II promoter in response
##
                     "maintenance of unfolded protein involved in ERAD pathway"
##
                     "telomere-telomerase complex assembly"
##
                     "maintenance of postsynaptic density structure"
##
                     "cell proliferation in forebrain"
##
##
                     "positive regulation of t-circle formation"
                     "oculomotor nerve formation"
##
##
                     "metanephric part of ureteric bud development"
                     "RNA phosphodiester bond hydrolysis, exonucleolytic"
##
                     "regulation of urine volume"
##
                     "trehalose metabolic process"
##
##
                     "trehalose catabolic process"
##
                     "sorbitol catabolic process"
                     "isoprenoid metabolic process"
##
                     "ribonucleoside diphosphate catabolic process"
##
                     "BMP signaling pathway involved in spinal cord dorsal/ventral patterning"
##
##
                     "slow endocytic recycling"
##
                     "histone H3-K23 acetylation"
                     "L-xylitol catabolic process"
##
                     "L-xylitol metabolic process"
##
                     "regulation of neurotrophin TRK receptor signaling pathway"
##
                     "carbohydrate derivative metabolic process"
##
##
                     "positive regulation of peptidyl-serine dephosphorylation"
##
                     "positive regulation of granulocyte macrophage colony-stimulating factor production
                     "positive regulation of nuclear-transcribed mRNA poly(A) tail shortening"
##
                     "base-excision repair, DNA ligation"
##
                     "regulation of stress granule assembly"
##
                     "positive regulation of peptidyl-lysine acetylation"
##
##
                     "endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.
                     "intestinal epithelial cell maturation"
##
                     "viral capsid secondary envelopment"
##
                     "sister chromatid segregation"
##
                     "nucleocytoplasmic transport"
##
                     "positive regulation of type B pancreatic cell development"
##
##
                     "cysteinyl-tRNA aminoacylation"
                     "smooth muscle adaptation"
##
                     "lipopolysaccharide transport"
##
                     "long-chain fatty-acyl-CoA metabolic process"
##
                     "positive regulation of myosin light chain kinase activity"
##
                     "response to platelet-derived growth factor"
##
                     "positive regulation of NK T cell proliferation"
##
                     "cellular response to tumor cell"
##
                     "positive regulation of macrophage migration"
##
                     "negative regulation of branching morphogenesis of a nerve"
##
                     "negative regulation of hydrogen peroxide catabolic process"
##
                     "positive regulation of blood microparticle formation"
##
                     "regulation of membrane repolarization"
##
                     "negative regulation of interferon-beta biosynthetic process"
##
                     "negative regulation of membrane protein ectodomain proteolysis"
##
##
                     "positive regulation of tooth mineralization"
```

"retrograde transport, endosome to plasma membrane"

```
##
                      "response to metal ion"
                      "positive regulation of satellite cell activation involved in skeletal muscle rege:
##
                      "organic anion transport"
##
                      "trimming of terminal mannose on B branch"
##
##
                      "trimming of first mannose on A branch"
                     "trimming of second mannose on A branch"
##
                      "regulation of histone H3-K9 methylation"
##
                      "cytosolic calcium ion transport"
##
##
                      "N-acylethanolamine metabolic process"
                     "regulation of protein exit from endoplasmic reticulum"
##
##
                      "regulation of mitotic spindle assembly"
                      "regulation of tumor necrosis factor production"
##
                      "negative regulation of collagen binding"
##
                      "sequestering of triglyceride"
##
##
                      "chromatin maintenance"
##
                      "cardiac left ventricle formation"
                      "pyridoxal phosphate catabolic process"
##
                      "negative regulation of mast cell activation involved in immune response"
##
##
                      "dorsal aorta development"
                      "gamma-delta T cell activation"
##
##
                      "negative regulation of cholesterol transporter activity"
##
                      "muscle structure development"
                      "negative regulation of interleukin-6-mediated signaling pathway"
##
                      "olfactory bulb axon guidance"
##
                     "negative regulation of interleukin-2-mediated signaling pathway"
##
##
                      "negative regulation of interleukin-4-mediated signaling pathway"
                      "negative regulation of positive thymic T cell selection"
##
                      "DNA strand elongation involved in mitotic DNA replication"
##
##
                      "positive regulation of androgen secretion"
                      "cellular chloride ion homeostasis"
##
##
                      "regulation of meiotic cell cycle"
##
                     "osteoclast proliferation"
##
                      "lymphocyte differentiation"
##
                      "fatty acid catabolic process"
                      "positive regulation of interferon-gamma production"
##
##
                      "negative regulation of melanin biosynthetic process"
##
                      "positive regulation of calcium-mediated signaling"
##
                      "regulation of telomerase RNA localization to Cajal body"
                      "phosphatidylglycerol acyl-chain remodeling"
##
                      "pyrimidine nucleoside salvage"
##
                      "ATP hydrolysis coupled transmembrane transport"
##
##
                     "IMP metabolic process"
                      "negative regulation of cardiac muscle contraction"
##
                     "interleukin-2 secretion"
##
                      "RNA catabolic process"
##
                      "chloride ion homeostasis"
##
                      "right ventricular compact myocardium morphogenesis"
##
                     "detection of virus"
##
                      "vascular endothelial growth factor receptor-1 signaling pathway"
##
                      "regulation of signal transduction by receptor internalization"
##
##
                      "positive regulation of glial cell differentiation"
                      "regulation of nerve growth factor receptor activity"
##
##
                      "microtubule nucleation by spindle pole body"
                      "negative regulation of sarcomere organization"
##
```

```
##
                     "negative regulation of membrane depolarization during cardiac muscle cell action
##
                     "negative regulation of mesenchymal cell proliferation involved in lung developmen
##
                     "fibroblast migration"
                     "pituitary gland development"
##
##
                     "microglial cell proliferation"
                     "trachea gland development"
##
                     "nuclear polyadenylation-dependent rRNA catabolic process"
##
                     "protein localization to bicellular tight junction"
##
##
                     "regulation of hormone metabolic process"
                     "vacuolar protein processing"
##
##
                     "oocyte differentiation"
                     "cell motility involved in cerebral cortex radial glia guided migration"
##
                     "positive regulation of myeloid dendritic cell activation"
##
                     "negative regulation of synaptic transmission, dopaminergic"
##
##
                     "regulation of DNA endoreduplication"
##
                     "regulation of actin filament-based process"
                     "pronephric field specification"
##
##
                     "branch elongation of an epithelium"
##
                     "cellular response to growth factor stimulus"
                     "negative regulation of mesenchymal cell apoptotic process involved in metanephric
##
##
                     "interneuron axon guidance"
                     "negative regulation of apoptotic process involved in metanephric collecting duct
##
                     "negative regulation of apoptotic process involved in metanephric nephron tubule d
##
                     "negative regulation of smooth muscle cell-matrix adhesion"
##
                     "positive regulation of metanephric DCT cell differentiation"
##
##
                     "regulation of progesterone secretion"
                     "regulation of protein import into nucleus, translocation"
##
                     "regulation of gene expression, epigenetic"
##
                     "thyroid gland development"
##
                     "developmental process involved in reproduction"
##
##
                     "positive regulation of humoral immune response mediated by circulating immunoglob
##
                     "lipid transport involved in lipid storage"
##
                     "regulation of protein homooligomerization"
                     "protein localization to M-band"
##
##
                     "maintenance of location in cell"
                     "positive regulation of postsynaptic membrane organization"
##
                     "negative regulation of presynaptic membrane organization"
##
##
                     "positive regulation of lipid transport across blood brain barrier"
                     "positive regulation of heparan sulfate binding"
##
                     "positive regulation of heparan sulfate proteoglycan binding"
##
                     "regulation of cellular response to very-low-density lipoprotein particle stimulus
##
                     "negative regulation of clathrin-dependent endocytosis"
##
                     "meiotic DNA repair synthesis"
##
                     "SRP-dependent cotranslational protein targeting to membrane, signal sequence reco
##
                     "regulation of skeletal muscle contraction via regulation of action potential"
##
                     "absorption of visible light"
##
                     "regulation of actin filament bundle assembly"
##
                     "isopentenyl diphosphate metabolic process"
##
##
                     "alpha-beta T cell proliferation"
                     "DNA ligation involved in DNA repair"
##
##
                     "negative regulation of cytosolic calcium ion concentration"
                     "negative regulation of elastin biosynthetic process"
##
##
                     "establishment of blood-brain barrier"
```

"regulation of lysosomal membrane permeability"

```
##
                     "regulation of nodal signaling pathway"
##
                     "negative regulation of single-species biofilm formation in or on host organism"
                     "negative regulation of chorionic trophoblast cell proliferation"
##
                     "negative regulation of mitotic cell cycle phase transition"
##
##
                     "negative regulation of adherens junction organization"
##
                     "tricellular tight junction assembly"
                     "negative regulation of beta-catenin-TCF complex assembly"
##
                     "regulation of miRNA metabolic process"
##
##
                     "hypothalamus cell migration"
                     "gall bladder development"
##
##
                     "positive regulation of histone deubiquitination"
                     "box H/ACA snoRNA 3'-end processing"
##
                     "regulation of synaptic plasticity"
##
                     "cellular response to dexamethasone stimulus"
##
##
                     "N-terminal protein amino acid acetylation"
##
                     "positive regulation of centriole elongation"
                     "protein lipidation"
##
##
                     "RNA 5'-end processing"
##
                     "antigen processing and presentation of endogenous peptide antigen via MHC class I
##
                     "cerebellar molecular layer formation"
##
                     "regulation of skeletal muscle tissue growth"
                     "definitive erythrocyte differentiation"
##
                     "left lung morphogenesis"
##
                     "epithelial cell maturation involved in salivary gland development"
##
                     "Notch signaling pathway involved in arterial endothelial cell fate commitment"
##
##
                     "positive regulation of meiosis I"
##
                     "positive regulation of glutamate neurotransmitter secretion in response to membra
                     "skin epidermis development"
##
                     "positive regulation of plasma cell differentiation"
##
                     "positive regulation of cation transmembrane transport"
##
##
                     "negative regulation of cardiac vascular smooth muscle cell differentiation"
##
                     "nuclear-transcribed mRNA catabolic process, endonucleolytic cleavage-dependent de
##
                     "DNA clamp unloading"
                     "outer dynein arm assembly"
##
                     "negative regulation of vitamin D receptor signaling pathway"
##
                     "metanephric nephron tubule formation"
##
##
                     "myeloid dendritic cell activation"
##
                     "membrane protein proteolysis"
                     "chemotaxis to arachidonic acid"
##
                     "regulation of glial cell proliferation"
##
                     "myeloid dendritic cell activation involved in immune response"
##
                     "negative regulation of cellular protein metabolic process"
##
                     "negative regulation of Ras protein signal transduction"
##
                     "regulation of sequestering of zinc ion"
##
                     "regulation of histone H3-K36 methylation"
##
                     "female meiosis II"
##
##
                     "motor neuron axon guidance"
                     "female gonad development"
##
##
                     "fourth ventricle development"
                     "initiation of neural tube closure"
##
##
                     "negative regulation of myeloid dendritic cell activation"
                     "dADP catabolic process"
##
##
                     "dGDP catabolic process"
##
                     "GDP catabolic process"
```

```
##
                     "axon extension involved in regeneration"
##
                     "synaptic transmission, glycinergic"
                     "metanephric glomerular basement membrane development"
##
                     "establishment of protein localization to endoplasmic reticulum"
##
                     "positive regulation of polyamine transmembrane transport"
##
                     "response to X-ray"
##
                     "protein prenylation"
##
                     "bile acid biosynthetic process"
##
##
                     "secretory granule organization"
                     "positive regulation of phospholipid efflux"
##
##
                     "ciliary transition zone assembly"
                     "cellular response to erythropoietin"
##
                     "negative regulation by virus of viral protein levels in host cell"
##
                     "renal tubule development"
##
##
                     "negative regulation of metanephric nephron tubule epithelial cell differentiation
##
                     "positive regulation of anterior head development"
                     "modification of synaptic structure, modulating synaptic transmission"
##
                     "regulation of TORC1 signaling"
##
                     "DNA replication-independent nucleosome assembly"
##
                     "interleukin-9-mediated signaling pathway"
##
##
                     "methionyl-tRNA aminoacylation"
                     "apoptotic process involved in endocardial cushion morphogenesis"
##
                     "peptide transport"
##
                     "positive regulation of interleukin-1 alpha production"
##
                     "positive regulation of natural killer cell activation"
##
##
                     "tendon cell differentiation"
##
                     "positive regulation of melanin biosynthetic process"
                     "intermediate mesodermal cell differentiation"
##
                     "positive regulation of cardiac muscle fiber development"
##
##
                     "bronchus development"
                     "orthogonal dichotomous subdivision of terminal units involved in lung branching m
##
##
                     "planar dichotomous subdivision of terminal units involved in lung branching morph
                     "lateral sprouting involved in lung morphogenesis"
##
                     "bud dilation involved in lung branching"
##
                     "mammary gland formation"
##
                     "positive regulation of branching involved in lung morphogenesis"
##
##
                     "BMP signaling pathway involved in ureter morphogenesis"
##
                     "BMP signaling pathway involved in renal system segmentation"
                     "pulmonary artery endothelial tube morphogenesis"
##
                     "establishment of protein localization to juxtaparanode region of axon"
##
                     "BMP signaling pathway involved in nephric duct formation"
##
                     "negative regulation of branch elongation involved in ureteric bud branching by BM
##
                     "specification of ureteric bud anterior/posterior symmetry by BMP signaling pathwa
##
##
                     "mesonephric tubule formation"
                     "ureter epithelial cell differentiation"
##
                     "mesenchymal cell proliferation involved in ureter development"
##
                     "negative regulation of mesenchymal cell proliferation involved in ureter developm
##
                     "negative regulation of glomerulus development"
##
##
                     "dopamine uptake"
                     "presynaptic membrane organization"
##
                     "positive regulation of macrophage colony-stimulating factor production"
##
                     "positive regulation of cell proliferation involved in outflow tract morphogenesis
##
                     "regulation of early endosome to recycling endosome transport"
##
```

"brush border assembly"

```
"cardiac jelly development"
##
                     "cellular response to 3,3',5-triiodo-L-thyronine"
##
                      "negative regulation of metanephric S-shaped body morphogenesis"
##
                      "negative regulation of metanephric comma-shaped body morphogenesis"
##
                      "negative regulation of cell proliferation involved in heart morphogenesis"
##
                      "spinal cord dorsal/ventral patterning"
##
                      "optic vesicle morphogenesis"
##
                      "dendritic cell proliferation"
##
##
                      "positive regulation of telomeric DNA binding"
                      "negative regulation of striated muscle cell apoptotic process"
##
##
                      "negative regulation of triglyceride metabolic process"
                      "negative regulation of L-glutamate import across plasma membrane"
##
                      "cyclic nucleotide catabolic process"
##
                      "branchiomeric skeletal muscle development"
##
##
                      "sulfur oxidation"
##
                      "platelet maturation"
                      "Fc-gamma receptor signaling pathway"
##
##
                      "G1 DNA damage checkpoint"
                     "histone H2B conserved C-terminal lysine ubiquitination"
##
                      "regulation of protein kinase C signaling"
##
##
                     "type B pancreatic cell apoptotic process"
                      "histone H3-K36 dimethylation"
##
                      "regulation of membrane depolarization during action potential"
##
                      "negative regulation of mitotic recombination"
##
                     "excitatory chemical synaptic transmission"
##
##
                      "androgen catabolic process"
##
                      "autophagic cell death"
                      "positive regulation of granzyme B production"
##
##
                      "mRNA pseudouridine synthesis"
                      "box C/D snoRNA 3'-end processing"
##
                      "negative regulation of mitochondrial RNA catabolic process"
##
##
                     "negative regulation of type I hypersensitivity"
                      "negative regulation of antibody-dependent cellular cytotoxicity"
##
##
                      "follicular dendritic cell activation"
                      "immune complex clearance by monocytes and macrophages"
##
##
                     "regulation of B cell antigen processing and presentation"
##
                     "antibacterial peptide secretion"
##
                      "response to type III interferon"
                      "uterine wall breakdown"
##
                     "sequestering of metal ion"
##
                     "reflex"
##
                      "positive regulation of calcidiol 1-monooxygenase activity"
##
                      "recycling endosome to Golgi transport"
##
                     "regulation of immune complex clearance by monocytes and macrophages"
##
                      "oxidised low-density lipoprotein particle clearance"
##
                      "positive regulation of response to endoplasmic reticulum stress"
##
                      "histone glutamine methylation"
##
                      "negative regulation of sodium-dependent phosphate transport"
##
##
                      "positive regulation of protein lipidation"
                      "cardiolipin acyl-chain remodeling"
##
##
                     "ribosome biogenesis"
                     "natural killer cell mediated immunity"
##
##
                      "late viral transcription"
                      "regulation of Ral protein signal transduction"
##
```

```
"response to gravity"
##
                     "activation of phospholipase D activity"
##
                     "nuclear-transcribed mRNA catabolic process, no-go decay"
##
                     "positive regulation of ferrous iron binding"
##
                     "positive regulation of transferrin receptor binding"
##
                     "endomitotic cell cycle"
##
                     "cellular response to molecule of fungal origin"
##
                     "phytol metabolic process"
##
##
                     "hexadecanal metabolic process"
                     "positive regulation of inflammatory response"
##
##
                     "peripheral nervous system myelin formation"
                     "conversion of ds siRNA to ss siRNA involved in RNA interference"
##
                     "leukotriene B4 catabolic process"
##
                     "conversion of ds siRNA to ss siRNA"
##
##
                     "regulation of systemic arterial blood pressure by ischemic conditions"
##
                     "N-glycan processing to lysosome"
##
                     "intein-mediated protein splicing"
                     "cellular response to insulin stimulus"
##
                     "cholesterol biosynthetic process via 24,25-dihydrolanosterol"
##
                     "purinergic nucleotide receptor signaling pathway"
##
##
                     "rRNA transport"
##
                     "membrane disruption in other organism"
                     "fungiform papilla morphogenesis"
##
                     "positive regulation of granulocyte colony-stimulating factor production"
##
                     "fibroblast activation"
##
##
                     "negative regulation of ferroptosis"
##
                     "extracellular vesicle biogenesis"
                     "negative regulation of neutrophil activation"
##
##
                     "regulation of retrograde vesicle-mediated transport, Golgi to ER"
                     "positive regulation of N-terminal peptidyl-lysine acetylation"
##
                     "regulation of T cell mediated immune response to tumor cell"
##
##
                     "regulation of restriction endodeoxyribonuclease activity"
                     "regulation of CD4-positive, alpha-beta T cell differentiation"
##
##
                     "tumor necrosis factor secretion"
                     "neuroblast division in subventricular zone"
##
##
                     "negative regulation of B cell differentiation"
##
                     "ceramide biosynthetic process"
                     "positive regulation of interferon-gamma biosynthetic process"
##
##
                     "biomineral tissue development"
                     "engulfment of target by autophagosome"
##
                     "substrate localization to autophagosome"
##
                     "protein targeting to vacuole involved in autophagy"
##
                     "DNA ligation"
##
                     "T-helper 1 cell activation"
##
                     "N-terminal peptidyl-alanine trimethylation"
##
                     "N-terminal peptidyl-glycine methylation"
##
                     "N-terminal peptidyl-proline dimethylation"
##
                     "forebrain neuron differentiation"
##
##
                     "N-terminal peptidyl-serine dimethylation"
                     "N-terminal peptidyl-serine trimethylation"
##
##
                     "sequestering of BMP in extracellular matrix"
                     "amino acid import"
##
##
                     "diencephalon morphogenesis"
```

"heterotrimeric G-protein complex assembly"

```
##
                     "negative regulation of cation channel activity"
##
                     "androgen metabolic process"
                     "CD40 signaling pathway"
##
                     "antigen processing and presentation of exogenous protein antigen via MHC class Ib
##
##
                     "cellular response to caloric restriction"
##
                     "negative regulation of oligodendrocyte progenitor proliferation"
                     "regulation of neural precursor cell proliferation"
##
                     "microspike assembly"
##
##
                     "smooth endoplasmic reticulum calcium ion homeostasis"
                     "metanephric comma-shaped body morphogenesis"
##
##
                     "melanocyte differentiation"
                     "endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA
##
                     "positive regulation of osteoblast differentiation"
##
                     "regulation of release of sequestered calcium ion into cytosol"
##
##
                     "response to drug"
##
                     "serine phosphorylation of STAT protein"
                     "antibacterial peptide production"
##
                     "positive regulation of inflammatory response to antigenic stimulus"
##
##
                     "glutamate decarboxylation to succinate"
##
                     "muscle cell fate specification"
##
                     "positive T cell selection"
                     "cGMP catabolic process"
##
                     "determination of affect"
##
                     "neuroendocrine cell differentiation"
##
##
                     "retrograde trans-synaptic signaling by nitric oxide"
##
                     "positive regulation of adenylate cyclase-activating adrenergic receptor signaling
##
                     "negative regulation of mesenchymal cell apoptotic process involved in metanephros
                     "positive regulation of interleukin-18-mediated signaling pathway"
##
                     "oligosaccharide catabolic process"
##
                     "cardiac conduction system development"
##
##
                     "cardiac ventricle formation"
##
                     "negative regulation of action potential"
                     "regulation of developmental pigmentation"
##
                     "cellular water homeostasis"
##
                     "regulation of cell communication by electrical coupling"
##
                     "maintenance of lens transparency"
##
##
                     "calcium ion transmembrane import into cytosol"
##
                     "negative regulation of Golgi to plasma membrane protein transport"
                     "establishment of meiotic spindle orientation"
##
                     "negative regulation of monocyte chemotaxis"
##
                     "negative regulation of metaphase/anaphase transition of meiotic cell cycle"
##
##
                     "potassium ion import across plasma membrane"
                     "negative regulation of apoptotic cell clearance"
##
                     "Ran protein signal transduction"
##
                     "protein insertion into ER membrane"
##
                     "forebrain ventricular zone progenitor cell division"
##
                     "fructosamine metabolic process"
##
                     "positive regulation of collagen binding"
##
                     "detection of diacyl bacterial lipopeptide"
##
                     "farnesyl diphosphate metabolic process"
##
##
                     "regulation of nitric oxide biosynthetic process"
                     "lung secretory cell differentiation"
##
##
                     "regulation of glucagon secretion"
```

"interleukin-21 secretion"

```
"synaptic vesicle lumen acidification"
##
##
                     "negative regulation of lung goblet cell differentiation"
                     "regulation of macrophage colony-stimulating factor production"
##
                     "regulation of midbrain dopaminergic neuron differentiation"
##
                     "negative regulation of planar cell polarity pathway involved in axis elongation"
##
                     "regulation of interleukin-12 secretion"
##
                     "termination of signal transduction"
##
                     "positive regulation of guanylate cyclase activity"
##
##
                     "circadian rhythm"
                     "rod bipolar cell differentiation"
##
##
                     "response to ciliary neurotrophic factor"
                     "negative regulation of neuromuscular junction development"
##
                     "negative regulation of dendritic cell differentiation"
##
                     "negative regulation of interleukin-13 production"
##
##
                     "regulation of growth"
##
                     "menaquinone catabolic process"
                     "vitamin K catabolic process"
##
                     "deactivation of mitotic spindle assembly checkpoint"
##
##
                     "regulation of glucose mediated signaling pathway"
                     "negative regulation of protein localization to kinetochore"
##
##
                     "positive regulation of DNA-dependent DNA replication"
                     "transcription initiation from mitochondrial promoter"
##
                     "mRNA export from nucleus in response to heat stress"
##
                     "regulation of exit from mitosis"
##
                     "positive regulation of cell size"
##
##
                     "positive regulation of toll-like receptor 9 signaling pathway"
                     "eiF2alpha phosphorylation in response to endoplasmic reticulum stress"
##
                     "histone H2A K63-linked deubiquitination"
##
                     "drug transport"
##
                     "medial motor column neuron differentiation"
##
##
                     "detection of triacyl bacterial lipopeptide"
##
                     "epithelial cell morphogenesis involved in placental branching"
                     "regulation of endothelial cell apoptotic process"
##
##
                     "PML body organization"
                     "regulation of interleukin-4 production"
##
##
                     "ferric iron import"
##
                     "positive regulation of activated T cell autonomous cell death"
##
                     "regulation of lysosomal protein catabolic process"
                     "interleukin-23-mediated signaling pathway"
##
                     "rDNA condensation"
##
                     "regulation of the force of heart contraction by cardiac conduction"
##
##
                     "positive regulation of mitotic cohesin loading"
                     "anterior/posterior axis specification"
##
                     "COPI-coated vesicle budding"
##
                     "vesicle targeting, to, from or within Golgi"
##
                     "rhythmic synaptic transmission"
##
                     "cellular response to cAMP"
##
                     "heart morphogenesis"
##
##
                     "pancreatic A cell differentiation"
                     "D-ribose metabolic process"
##
                     "enzyme active site formation via cysteine modification to L-cysteine persulfide"
##
                     "cerebellum formation"
##
                     "midbrain-hindbrain boundary maturation during brain development"
##
```

"phosphoanandamide dephosphorylation"

```
##
                      "astrocyte-dopaminergic neuron signaling"
##
                     "dATP catabolic process"
                     "male gamete generation"
##
                     "negative regulation of mesenchymal cell apoptotic process involved in nephron mor
##
##
                      "metanephric distal convoluted tubule development"
##
                     "cellular response to 2,3,7,8-tetrachlorodibenzodioxine"
                      "response to phosphatidylethanolamine"
##
                      "histone ubiquitination"
##
##
                      "regulation of potassium ion transmembrane transporter activity"
                      "negative regulation of amyloid precursor protein catabolic process"
##
##
                      "retinal rod cell differentiation"
                      "inositol lipid-mediated signaling"
##
                      "positive regulation of Fc-gamma receptor signaling pathway involved in phagocytos
##
                      "single strand break repair"
##
##
                      "positive regulation of blood vessel diameter"
##
                      "regulation of cell cycle process"
                     "smooth muscle cell-matrix adhesion"
##
                      "cellular response to nitroglycerin"
##
                      "regulation of establishment or maintenance of cell polarity"
##
                      "microtubule-based peroxisome localization"
##
                     "action potential"
##
                      "T-helper 1 type immune response"
##
                      "spermidine metabolic process"
##
                      "myosin filament assembly"
##
                      "polysaccharide localization"
##
##
                      "cellular pigment accumulation"
##
                      "regulation of insulin-like growth factor receptor signaling pathway"
                      "regulation of interleukin-12 biosynthetic process"
##
                      "regulation of circadian sleep/wake cycle, non-REM sleep"
##
                      "skeletal muscle tissue growth"
##
##
                      "constitutive protein ectodomain proteolysis"
##
                      "motor learning"
                      "positive regulation of brown fat cell proliferation"
##
                      "positive regulation of hyaluranon cable assembly"
##
                      "negative regulation of natural killer cell chemotaxis"
##
                      "mitotic G1/S transition checkpoint"
##
                      "Golgi to lysosome transport"
##
##
                      "positive regulation of chaperone-mediated autophagy"
                      "chondrocyte proliferation"
##
                     "response to inactivity"
##
                      "triglyceride transport"
##
                      "developmental cell growth"
##
                      "cytoskeleton-dependent cytokinesis"
##
                      "cellular response to misfolded protein"
##
                      "type I interferon biosynthetic process"
##
                      "negative regulation of fibroblast proliferation"
##
                      "plasma kallikrein-kinin cascade"
##
                      "negative regulation of lamellipodium assembly"
##
                      "peptidyl-pyroglutamic acid biosynthetic process, using glutaminyl-peptide cyclotr
##
                      "vacuole fusion, non-autophagic"
##
                      "positive regulation of interleukin-13 biosynthetic process"
##
                      "regulation of T-helper cell differentiation"
##
##
                      "spermidine catabolic process"
                      "negative regulation of muscle tissue development"
```

```
##
                     "regulation of membrane hyperpolarization"
##
                     "positive regulation of voltage-gated potassium channel activity involved in ventr
                     "negative regulation of skeletal muscle hypertrophy"
##
                     "response to symbiotic bacterium"
##
##
                     "negative regulation of actin filament depolymerization"
##
                     "anterior/posterior axon guidance"
                     "coronary sinus valve morphogenesis"
##
                     "cardiac right atrium morphogenesis"
##
##
                     "growth involved in heart morphogenesis"
                     "Notch signaling pathway involved in regulation of secondary heart field cardiobla
##
##
                     "foregut morphogenesis"
                     "cell differentiation in spinal cord"
##
                     "regulation of cellular localization"
##
                     "regulation of epithelial cell proliferation involved in prostate gland developmen
##
##
                     "venous endothelial cell differentiation"
##
                     "positive regulation of aorta morphogenesis"
                     "third ventricle development"
##
##
                     "rRNA base methylation"
##
                     "response to testosterone"
##
                     "regulation of amyloid-beta clearance"
##
                     "RNA secondary structure unwinding"
                     "regulation of synaptic vesicle fusion to presynaptic active zone membrane"
##
                     "nitrogen catabolite activation of transcription from RNA polymerase II promoter"
##
                     "IMP biosynthetic process"
##
                     "glucose mediated signaling pathway"
##
##
                     "myo-inositol transport"
##
                     "response to silicon dioxide"
                     "regulation of urea metabolic process"
##
                     "intracellular bile acid receptor signaling pathway"
##
                     "dermatan sulfate proteoglycan metabolic process"
##
##
                     "negative regulation of chemotaxis"
##
                     "cyclic purine nucleotide metabolic process"
##
                     "semicircular canal development"
                     "positive regulation of kidney development"
##
##
                     "positive regulation of phosphatidic acid biosynthetic process"
                     "positive regulation of glutamate metabolic process"
##
##
                     "regulation of forebrain neuron differentiation"
##
                     "positive regulation of ammonia assimilation cycle"
                     "sphingomyelin biosynthetic process"
##
                     "negative regulation of G protein-coupled receptor internalization"
##
                     "TRIF-dependent toll-like receptor signaling pathway"
##
##
                     "regulation of telomere maintenance"
                     "lateral inhibition"
##
                     "telomere maintenance via telomere trimming"
##
                     "positive regulation of CDP-diacylglycerol-serine O-phosphatidyltransferase activi
##
                     "positive regulation of serine C-palmitoyltransferase activity"
##
##
                     "cerebrospinal fluid secretion"
                     "carbon dioxide transmembrane transport"
##
##
                     "maintenance of symbiont-containing vacuole by host"
##
                     "cardiac chamber formation"
##
                     "acetylcholine receptor signaling pathway"
                     "monocyte differentiation"
##
##
                     "axon extension"
```

"positive regulation of estradiol secretion"

```
##
                      "inosine catabolic process"
##
                      "proline metabolic process"
##
                      "pyridoxal 5'-phosphate salvage"
                      "proline catabolic process to glutamate"
##
##
                      "ventral spinal cord interneuron specification"
                     "negative regulation of organ growth"
##
                      "axial mesoderm morphogenesis"
##
                      "mesoderm morphogenesis"
##
                      "mitotic spindle midzone assembly"
##
                     "cell differentiation involved in salivary gland development"
##
##
                      "regulation of neural retina development"
                      "regulation of branch elongation involved in ureteric bud branching"
##
                      "protein localization to cell junction"
##
                      "positive regulation of ATF6-mediated unfolded protein response"
##
##
                      "positive regulation of interleukin-12 secretion"
##
                      "replicative cell aging"
                      "spindle pole body organization"
##
                      "negative regulation of fatty acid metabolic process"
##
##
                      "regulation of TORC2 signaling"
                      "axonemal dynein complex assembly"
##
##
                      "proline catabolic process"
                      "negative regulation of interleukin-12 production"
##
                      "negative regulation of dendritic spine morphogenesis"
##
                      "activation of MAPKK activity"
##
                      "positive regulation of cytoplasmic translation"
##
##
                      "regulation of animal organ formation"
##
                      "mesoderm migration involved in gastrulation"
                      "negative regulation of transcription by transcription factor localization"
##
##
                      "integrin activation"
                      "adrenal cortex formation"
##
##
                      "acylglycerol acyl-chain remodeling"
##
                      "dopaminergic neuron axon guidance"
                      "serotonergic neuron axon guidance"
##
                      "negative regulation of phosphatidylinositol 3-kinase activity"
##
                      "positive regulation of lymphocyte differentiation"
##
##
                      "ribose phosphate biosynthetic process"
##
                      "regulation of myoblast proliferation"
##
                      "transmission of virus"
                      "development involved in symbiotic interaction"
##
                      "positive regulation of nucleocytoplasmic transport"
##
                      "regulation of amyloid fibril formation"
##
                      "adiponectin-activated signaling pathway"
##
                      "positive regulation by virus of viral protein levels in host cell"
##
                      "cellular response to caffeine"
##
                      "odontoblast differentiation"
##
##
                      "recombinational repair"
                      "negative regulation of type 2 immune response"
##
                      "cellular response to inorganic substance"
##
                      "negative regulation of cytotoxic T cell degranulation"
##
                      "regulation of protein localization to plasma membrane"
##
##
                     "response to nerve growth factor"
                      "right ventricular cardiac muscle tissue morphogenesis"
##
                      "5-methylcytosine catabolic process"
##
```

"skeletal muscle satellite cell differentiation"

```
##
                      "antifungal humoral response"
##
                     "establishment of sister chromatid cohesion"
                     "hippo signaling"
##
                      "regulation of ribonuclease activity"
##
##
                      "Wnt protein secretion"
##
                     "regulation of complement-dependent cytotoxicity"
                      "allantois development"
##
                      "nucleolar chromatin organization"
##
##
                      "cellular response to sterol"
                      "gamma-aminobutyric acid secretion"
##
##
                      "establishment of body hair planar orientation"
                      "positive regulation of epithelial cell differentiation"
##
                      "detection of temperature stimulus involved in sensory perception of pain"
##
                      "negative regulation of mesenchymal to epithelial transition involved in metanephr
##
##
                      "negative regulation of substrate adhesion-dependent cell spreading"
##
                      "signal transduction downstream of smoothened"
                     "late endosome to Golgi transport"
##
                     "ventricular cardiac muscle tissue development"
##
##
                     "monosaccharide metabolic process"
                      "cGMP biosynthetic process"
##
##
                     "wax biosynthetic process"
                      "regulation of phosphatase activity"
##
                      "viral protein processing"
##
                      "poly-N-acetyllactosamine metabolic process"
##
                     "negative regulation of nerve growth factor production"
##
##
                      "circadian temperature homeostasis"
##
                      "dense core granule priming"
                      "dibasic protein processing"
##
                     "regulation of superoxide anion generation"
##
                      "positive regulation of interleukin-3 biosynthetic process"
##
                      "regulation of arachidonic acid secretion"
##
##
                     "telomere organization"
                      "epidermal growth factor receptor signaling pathway via I-kappaB kinase/NF-kappaB
##
##
                      "cellular extravasation"
                      "glycerophospholipid metabolic process"
##
                      "peripheral nervous system neuron axonogenesis"
##
##
                      "cellular response to prostaglandin D stimulus"
##
                      "regulation of cholesterol esterification"
                      "Cajal body organization"
##
                      "ureter smooth muscle cell differentiation"
##
                      "detection of nodal flow"
##
                      "gamma-aminobutyric acid biosynthetic process"
##
                      "RNA modification"
##
                      "heparan sulfate proteoglycan metabolic process"
##
                      "protein O-linked fucosylation"
##
                      "interleukin-11-mediated signaling pathway"
##
                      "regulation of glutamate uptake involved in transmission of nerve impulse"
##
                     "response to linoleic acid"
##
                      "cellular response to hydrostatic pressure"
##
                      "metanephric cortex development"
##
                     "metanephric cortical collecting duct development"
##
                      "metanephric distal tubule development"
##
##
                      "ncRNA deadenylation"
                      "semaphorin-plexin signaling pathway involved in bone trabecula morphogenesis"
##
```

```
##
                     "bundle of His development"
##
                     "phosphatidylcholine metabolic process"
                     "adult locomotory behavior"
##
                     "calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules"
##
##
                     "lipopolysaccharide-mediated signaling pathway"
                     "cell-substrate junction assembly"
##
                     "ERK5 cascade"
##
                     "mitochondrial tRNA pseudouridine synthesis"
##
##
                     "negative regulation of macrophage colony-stimulating factor signaling pathway"
                     "renal water transport"
##
##
                     "cellular response to mercury ion"
                     "Sertoli cell differentiation"
##
                     "negative regulation of protein sumoylation"
##
                     "cell proliferation involved in outflow tract morphogenesis"
##
                     "cellular response to corticotropin-releasing hormone stimulus"
##
##
                     "positive regulation of mesenchymal stem cell migration"
                     "spindle midzone assembly"
##
                     "positive regulation of TORC2 signaling"
##
##
                     "phosphatidylglycerol biosynthetic process"
                     "zygotic specification of dorsal/ventral axis"
##
##
                     "negative regulation of toll-like receptor 9 signaling pathway"
                     "regulation of calcineurin-NFAT signaling cascade"
##
                     "histone H3-S10 phosphorylation"
##
                     "negative regulation of immature T cell proliferation in thymus"
##
##
                     "microtubule organizing center localization"
##
                     "response to pH"
##
                     "lateral motor column neuron migration"
                     "phosphatidylinositol acyl-chain remodeling"
##
                     "B cell costimulation"
##
                     "neurotransmitter receptor transport, endosome to postsynaptic membrane"
##
##
                     "substrate-dependent cell migration"
##
                     "phosphate ion transport"
                     "forebrain generation of neurons"
##
                     "regulation of molecular function, epigenetic"
##
                     "neurotransmitter catabolic process"
##
                     "vitamin E metabolic process"
##
##
                     "regulation of cell migration involved in sprouting angiogenesis"
##
                     "regulation of opsonization"
                     "negative regulation of sodium ion transport"
##
                     "ventricular cardiac myofibril assembly"
##
                     "positive regulation of apoptotic process involved in mammary gland involution"
##
##
                     "water homeostasis"
                     "negative regulation of antigen processing and presentation of peptide or polysacc
##
                     "AV node cell to bundle of His cell communication"
##
                     "membrane depolarization during Purkinje myocyte cell action potential"
##
                     "amine biosynthetic process"
##
                     "positive regulation of protein catabolic process"
##
                     "glomerular epithelium development"
##
                     "positive regulation of hematopoietic progenitor cell differentiation"
##
                     "positive regulation of hematopoietic stem cell differentiation"
##
##
                     "manganese ion transmembrane transport"
                     "regulation of exosomal secretion"
##
                     "regulation of morphogenesis of a branching structure"
##
                     "visual behavior"
##
```

```
##
                      "negative regulation of muscle hyperplasia"
##
                      "globus pallidus development"
                      "cellular localization"
##
                      "presynapse organization"
##
##
                      "positive regulation of peptidyl-cysteine S-nitrosylation"
##
                      "regulation of translational termination"
                      "positive regulation of histone H3-K36 methylation"
##
                      "positive regulation of nodal signaling pathway involved in determination of later
##
##
                      "regulation of DNA N-glycosylase activity"
                      "renal protein absorption"
##
##
                      "GABAergic neuron differentiation"
                      "regulation of establishment of T cell polarity"
##
                      "regulation of plasma membrane raft polarization"
##
                      "regulation of receptor clustering"
##
##
                      "glycerol transport"
##
                      "positive regulation of skeletal muscle acetylcholine-gated channel clustering"
                      "negative regulation of mitochondrial membrane potential"
##
                      "diencephalon development"
##
                      "cell dedifferentiation"
##
                      "trans-Golgi network to recycling endosome transport"
##
##
                     "excitatory postsynaptic potential"
                      "establishment of mitotic spindle orientation"
##
##
                      "histone H3-K79 methylation"
                      "myoblast migration"
##
                      "positive regulation of adherens junction organization"
##
##
                      "regulation of transcription regulatory region DNA binding"
##
                     "N-acetylmannosamine metabolic process"
                      "skeletal muscle hypertrophy"
##
                      "cell differentiation in hindbrain"
##
##
                      "nerve maturation"
##
                      "peptidyl-histidine hydroxylation"
##
                      "ERBB2-ERBB3 signaling pathway"
                      "interleukin-33-mediated signaling pathway"
##
                      "peptidyl-asparagine hydroxylation"
##
##
                      "sphingoid catabolic process"
                     "estrogen catabolic process"
##
##
                      "positive regulation of granulocyte macrophage colony-stimulating factor biosynthe
##
                      "negative regulation of DNA recombination"
                      "positive regulation of snRNA transcription by RNA polymerase II"
##
                     "mesenchymal cell apoptotic process"
##
                      "N-acetylglucosamine biosynthetic process"
##
##
                      "early viral transcription"
                      "convergent extension involved in gastrulation"
##
                      "positive regulation of rRNA processing"
##
                      "neural tube formation"
##
                      "negative regulation of steroid biosynthetic process"
##
                      "male sex differentiation"
##
                      "unidimensional cell growth"
##
##
                      "visceral motor neuron differentiation"
                      "canonical Wnt signaling pathway involved in mesenchymal stem cell differentiation
##
##
                     "canonical Wnt signaling pathway involved in osteoblast differentiation"
                      "neurotransmitter loading into synaptic vesicle"
##
                      "negative regulation of Rho-dependent protein serine/threonine kinase activity"
##
```

"ADP metabolic process"

```
##
                      "synaptic vesicle budding from endosome"
##
                      "negative regulation of NLRP3 inflammasome complex assembly"
                      "quinolinate catabolic process"
##
                      "regulation of acrosome reaction"
##
##
                      "collagen biosynthetic process"
##
                     "forebrain anterior/posterior pattern specification"
                      "positive regulation of embryonic development"
##
                      "negative regulation of necrotic cell death"
##
##
                      "positive regulation of neuromuscular junction development"
                      "response to kainic acid"
##
##
                      "omega-hydroxylase P450 pathway"
                      "lymphoid lineage cell migration into thymus"
##
                      "diaphragm contraction"
##
                      "response to cesium ion"
##
##
                      "mast cell secretory granule organization"
##
                      "trachea development"
                     "negative regulation of mitotic DNA damage checkpoint"
##
                      "positive regulation of early endosome to late endosome transport"
##
##
                      "response to iron(III) ion"
                      "negative regulation of nuclear-transcribed mRNA poly(A) tail shortening"
##
##
                      "positive regulation of p38MAPK cascade"
                      "negative regulation of CD4-positive, alpha-beta T cell proliferation"
##
                      "tryptophan transport"
##
                      "osteoclast fusion"
##
##
                      "epithelial cilium movement"
##
                      "oxidative DNA demethylation"
##
                      "mammary gland epithelial cell proliferation"
                      "habituation"
##
                      "cell morphogenesis involved in differentiation"
##
##
                      "sperm-egg recognition"
                      "transcription-dependent tethering of RNA polymerase II gene DNA at nuclear periph
##
                      "spongiotrophoblast differentiation"
##
                      "female meiosis sister chromatid cohesion"
##
                      "D-ribose catabolic process"
##
                      "lateral ganglionic eminence cell proliferation"
##
                     "lambdoid suture morphogenesis"
##
##
                      "sagittal suture morphogenesis"
##
                      "mammary gland specification"
                      "anterior semicircular canal development"
##
                     "lateral semicircular canal development"
##
                      "dentinogenesis"
##
##
                      "regulation of bone development"
                      "positive regulation of prostaglandin-E synthase activity"
##
                      "positive regulation of histone ubiquitination"
##
                      "positive regulation of glucose catabolic process to lactate via pyruvate"
##
                      "hyaluronan biosynthetic process"
##
                      "L-proline import across plasma membrane"
##
                      "L-tryptophan transmembrane transport"
##
                      "regulation of transcription from RNA polymerase II promoter involved in spinal co
##
                      "negative regulation of heart contraction"
##
##
                      "positive regulation of cell proliferation in bone marrow"
                      "positive regulation of mediator complex assembly"
##
                      "intrinsic apoptotic signaling pathway in response to DNA damage"
##
```

"response to methotrexate"

```
##
                     "negative regulation of lipoprotein lipase activity"
##
                     "evoked neurotransmitter secretion"
##
                     "natural killer cell tolerance induction"
                     "mitral valve formation"
##
##
                     "transforming growth factor beta receptor complex assembly"
                     "regulation of proteasomal protein catabolic process"
##
                     "positive regulation of reciprocal meiotic recombination"
##
                     "metanephric mesenchymal cell migration"
##
##
                     "cell migration involved in coronary angiogenesis"
                     "metanephric glomerular mesangial cell proliferation involved in metanephros devel
##
##
                     "pancreatic A cell development"
                     "forebrain-midbrain boundary formation"
##
                     "regulation of transcription from RNA polymerase II promoter involved in somatic m
##
                     "central nervous system myelin maintenance"
##
##
                     "autophagy of host cells involved in interaction with symbiont"
##
                     "histone lysine demethylation"
                     "synaptonemal complex organization"
##
                     "modification of postsynaptic actin cytoskeleton"
##
                     "establishment of melanosome localization"
##
##
                     "suppression by virus of host autophagy"
##
                     "peptide antigen transport"
                     "regulation of cholesterol import"
##
                     "myoblast differentiation involved in skeletal muscle regeneration"
##
                     "meiotic chromosome condensation"
##
                     "regulation of multivesicular body size involved in endosome transport"
##
##
                     "regulation of transcription from RNA polymerase II promoter involved in ventral s
##
                     "negative regulation of Kit signaling pathway"
                     "response to metformin"
##
                     "protein hydroxylation"
##
                     "metanephric proximal tubule development"
##
##
                     "metanephric distal tubule morphogenesis"
##
                     "negative regulation of hepatic stellate cell activation"
                     "organic cation transport"
##
                     "5S class rRNA transcription by RNA polymerase III"
##
                     "tRNA transcription by RNA polymerase III"
##
                     "natural killer cell degranulation"
##
##
                     "nuclear polyadenylation-dependent tRNA catabolic process"
##
                     "cornea development in camera-type eye"
                     "positive regulation of glutamate receptor signaling pathway"
##
                     "tRNA transcription"
##
                     "positive regulation of muscle atrophy"
##
                     "negative regulation of toll-like receptor 5 signaling pathway"
##
                     "regulation of vascular wound healing"
##
                     "negative regulation of nucleotide-binding oligomerization domain containing 1 sig
##
                     "blood coagulation, common pathway"
##
                     "tolerance induction to lipopolysaccharide"
##
                     "establishment of protein localization to vacuole"
##
                     "regulation of myoblast fusion"
##
                     "negative regulation of myoblast proliferation"
##
                     "glycolipid catabolic process"
##
##
                     "positive regulation of photoreceptor cell differentiation"
                     "visceral serous pericardium development"
##
##
                     "hindgut development"
```

"endoplasmic reticulum-plasma membrane tethering"

```
"methyl-branched fatty acid metabolic process"
##
##
                     "neuron projection fasciculation"
                     "negative regulation of intracellular transport of viral material"
##
                     "regulation of non-motile cilium assembly"
##
                     "positive regulation of Rho guanyl-nucleotide exchange factor activity"
##
                     "positive regulation of T cell activation via T cell receptor contact with antigen
##
                     "regulation of Rab protein signal transduction"
##
                     "negative regulation of calcium-independent cell-cell adhesion"
##
##
                     "positive regulation of Wnt signaling pathway by BMP signaling pathway"
                     "negative regulation of double-strand break repair via nonhomologous end joining"
##
##
                     "tricuspid valve formation"
                     "axon target recognition"
##
                     "negative regulation of neuron projection regeneration"
##
                     "synaptic vesicle clustering"
##
##
                     "polyprenol biosynthetic process"
##
                     "positive regulation of cardiac epithelial to mesenchymal transition"
                     "regulation of the force of skeletal muscle contraction"
##
                     "positive regulation of ryanodine-sensitive calcium-release channel activity"
##
##
                     "maintenance of synapse structure"
                     "cellular response to magnetism"
##
##
                     "ornithine biosynthetic process"
                     "floor plate formation"
##
                     "response to stilbenoid"
##
                     "endocardium formation"
##
                     "regulation of chaperone-mediated protein folding"
##
##
                     "hypotonic response"
##
                     "negative regulation of epithelial cell migration"
                     "central nervous system vasculogenesis"
##
                     "regulation of JUN kinase activity"
##
                     "Golgi vesicle prefusion complex stabilization"
##
                     "lung goblet cell differentiation"
##
##
                     "histone H3-R26 methylation"
                     "negative regulation of interferon-gamma-mediated signaling pathway"
##
##
                     "inactivation of paternal X chromosome"
##
                     "negative regulation of extracellular matrix assembly"
##
                     "melanosome organization"
##
                     "cell-abiotic substrate adhesion"
##
                     "cell-cell signaling involved in cardiac conduction"
                     "positive regulation of protein localization to early endosome"
##
                     "response to vitamin"
##
                     "regulation of homophilic cell adhesion"
##
##
                     "resolution of meiotic recombination intermediates"
                     "positive regulation of nuclease activity"
##
                     "negative regulation of secretion of lysosomal enzymes"
##
                     "negative regulation of ruffle assembly"
##
                     "regulation of nuclear receptor transcription coactivator activity"
##
                     "phospholipid scrambling"
##
                     "optic nerve structural organization"
##
                     "receptor catabolic process"
##
                     "negative regulation of complement activation, classical pathway"
##
##
                     "regulation of AV node cell action potential"
                     "planar cell polarity pathway involved in axon guidance"
##
##
                     "negative regulation of CD40 signaling pathway"
```

"ventral midline determination"

```
##
                     "smoothened signaling pathway involved in ventral spinal cord patterning"
##
                     "negative regulation of hair follicle development"
                     "detection of cell density by contact stimulus involved in contact inhibition"
##
                     "meiotic attachment of telomere to nuclear envelope"
##
                     "mesenchymal to epithelial transition involved in metanephric renal vesicle format
##
##
                     "inhibition of cysteine-type endopeptidase activity"
                     "regulation of heart morphogenesis"
##
                     "positive regulation of tongue muscle cell differentiation"
##
##
                     "response to pyrethroid"
                     "error-free postreplication DNA repair"
##
##
                     "regulation of myeloid cell apoptotic process"
                     "nerve growth factor production"
##
                     "regulation of synaptic membrane adhesion"
##
                     "diacylglycerol catabolic process"
##
##
                     "ubiquitin-dependent glycoprotein ERAD pathway"
                     "positive regulation of T-helper 17 cell differentiation"
##
                     "carbon dioxide transport"
##
                     "positive regulation of chromatin assembly or disassembly"
##
##
                     "hemangioblast cell differentiation"
                     "regulation of mast cell differentiation"
##
##
                     "regulation of mitotic cell cycle phase transition"
                     "regulation of establishment of endothelial barrier"
##
                     "positive regulation of anterograde synaptic vesicle transport"
##
                     "cellular response to paclitaxel"
##
                     "regulation of CD8-positive, alpha-beta T cell proliferation"
##
##
                     "negative regulation of microtubule motor activity"
                     "endonucleolytic cleavage in 5'-ETS of tricistronic rRNA transcript (SSU-rRNA, 5.8
##
                     "mitotic chromosome movement towards spindle pole"
##
                     "positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell
##
                     "regulation of DNA stability"
##
                     "positive regulation of phosphorylation of RNA polymerase II C-terminal domain"
##
                     "negative regulation of translation in response to endoplasmic reticulum stress"
##
                     "U2 snRNA 3'-end processing"
##
##
                     "bronchus cartilage development"
                     "lung smooth muscle development"
##
                     "positive regulation of telomere maintenance via telomere lengthening"
##
##
                     "regulation of growth rate"
##
                     "syncytium formation"
                     "mitotic cytokinesis checkpoint"
##
                     "regulation of cholesterol efflux"
##
                     "triglyceride-rich lipoprotein particle remodeling"
##
                     "positive regulation of DNA strand elongation"
##
                     "response to thyroxine"
##
                     "negative regulation of hydrogen peroxide-induced neuron death"
##
                     "regulation of DNA helicase activity"
##
                     "positive regulation of DNA helicase activity"
##
                     "negative regulation of osteoclast proliferation"
##
                     "positive regulation of amyloid fibril formation"
##
                     "serotonin secretion by platelet"
##
                     "negative regulation of retinal ganglion cell axon guidance"
##
##
                     "positive regulation of protein O-linked glycosylation"
                     "regulation of translational fidelity"
##
                     "regulation of ER to Golgi vesicle-mediated transport"
##
                     "negative regulation of cell proliferation involved in heart valve morphogenesis"
##
```

```
##
                     "regulation of nucleotide-excision repair"
##
                     "endodermal cell fate determination"
                     "fluorene metabolic process"
##
                     "glossopharyngeal nerve morphogenesis"
##
##
                     "regulation of chemokine production"
                     "interleukin-8 biosynthetic process"
##
                     "interleukin-17-mediated signaling pathway"
##
                     "cell proliferation involved in heart valve development"
##
##
                     "positive regulation of endocardial cushion to mesenchymal transition involved in
                     "immune response to tumor cell"
##
##
                     "atrioventricular node development"
                     "osteoblast proliferation"
##
                     "visceral mesoderm-endoderm interaction involved in midgut development"
##
                     "regulation of vesicle targeting, to, from or within Golgi"
##
##
                     "positive regulation of TRAIL-activated apoptotic signaling pathway"
##
                     "cell-cell adhesion mediated by integrin"
                     "metanephric glomerular mesangial cell development"
##
                     "positive regulation of intracellular transport of viral material"
##
                     "positive regulation of vascular smooth muscle cell dedifferentiation"
##
                     "positive regulation of metanephric mesenchymal cell migration"
##
##
                     "sodium-dependent phosphate transport"
                     "deoxyribonucleoside monophosphate biosynthetic process"
##
                     "negative regulation of telomere maintenance in response to DNA damage"
##
                     "positive regulation of telomeric loop disassembly"
##
                     "mature B cell differentiation involved in immune response"
##
##
                     "positive regulation of T-helper 17 cell lineage commitment"
##
                     "cellular calcium ion homeostasis"
                     "substrate-dependent cell migration, cell attachment to substrate"
##
                     "regulation of glycoprotein biosynthetic process"
##
                     "peptidyl-proline hydroxylation to 3-hydroxy-L-proline"
##
                     "inositol phosphate metabolic process"
##
##
                     "positive regulation of interleukin-4 biosynthetic process"
                     "negative regulation of amyloid fibril formation"
##
##
                     "glutamine secretion"
                     "myotube differentiation involved in skeletal muscle regeneration"
##
##
                     "bile acid and bile salt transport"
##
                     "ornithine transport"
##
                     "trichloroethylene metabolic process"
                     "regulation of natural killer cell proliferation"
##
                     "Wnt receptor catabolic process"
##
                     "response to ammonium ion"
##
##
                     "distal tubule development"
                     "L-arginine transmembrane transport"
##
                     "L-glutamine import across plasma membrane"
##
                     "positive regulation of dopaminergic neuron differentiation"
##
                     "positive regulation of histone H3-K4 trimethylation"
##
                     "vasculogenesis involved in coronary vascular morphogenesis"
##
                     "adenosine to inosine editing"
##
                     "guanine metabolic process"
##
                     "dephosphorylation of RNA polymerase II C-terminal domain"
##
##
                     "positive regulation of DNA ligase activity"
                     "cellular response to heparin"
##
##
                     "protein K33-linked ubiquitination"
##
                     "neutrophil activation involved in immune response"
```

```
##
                      "glucosamine metabolic process"
##
                      "central nervous system neuron differentiation"
                      "regulation of intracellular transport"
##
                      "ureteric bud formation"
##
##
                      "response to Thyroglobulin triiodothyronine"
##
                     "oculomotor nerve development"
                      "trochlear nerve development"
##
                      "positive regulation of mitotic cell cycle, embryonic"
##
##
                      "negative regulation of stomach neuroendocrine cell differentiation"
                     "renal interstitial fibroblast development"
##
##
                      "negative regulation of pancreatic A cell differentiation"
                      "regulation of branching involved in salivary gland morphogenesis by epithelial-me
##
                      "regulation of glomerular mesangial cell proliferation"
##
                      "positive regulation of calcium ion transmembrane transport via high voltage-gated
##
##
                      "regulation of blood vessel branching"
##
                      "embryonic lung development"
                     "ciliary basal body organization"
##
##
                      "regulation of mismatch repair"
                     "regulation of DNA damage response, signal transduction by p53 class mediator"
##
                      "positive regulation of pigment cell differentiation"
##
##
                      "regulation of chondrocyte development"
                      "cohesin loading"
##
##
                      "L-lysine transmembrane transport"
                      "response to reactive oxygen species"
##
                     "lipid glycosylation"
##
##
                      "zinc ion import across plasma membrane"
##
                      "notochord regression"
                      "demethylation"
##
                      "tRNA (guanine-N7)-methylation"
##
                      "positive regulation of T cell cytokine production"
##
##
                      "cholesterol catabolic process"
##
                     "IMP salvage"
                      "regulation of interleukin-1 beta secretion"
##
                      "negative regulation of chloride transport"
##
                      "neural fold bending"
##
                      "positive regulation of glycogen (starch) synthase activity"
##
##
                      "carbohydrate transport"
##
                      "chemokine production"
                      "response to cisplatin"
##
                     "regulation of flagellated sperm motility"
##
                      "negative regulation of DNA-dependent DNA replication"
##
##
                      "glutathione catabolic process"
                      "umbilical cord morphogenesis"
##
                      "antigen processing and presentation of exogenous peptide antigen via MHC class I"
##
                      "somatotropin secreting cell differentiation"
##
                      "embryonic camera-type eye formation"
##
                      "regulation of vasculogenesis"
##
                      "noradrenergic neuron differentiation"
##
##
                      "negative regulation of binding"
                      "positive regulation of fibroblast apoptotic process"
##
##
                     "cellular response to interferon-alpha"
                     "interleukin-4-mediated signaling pathway"
##
##
                      "negative regulation of mast cell degranulation"
```

##

"negative regulation of interferon-gamma secretion"

```
##
                     "negative regulation of cholesterol import"
                     "positive regulation of fever generation by positive regulation of prostaglandin s
##
                     "positive regulation of ERK1 and ERK2 cascade via TNFSF11-mediated signaling"
##
                     "regulation of fibroblast apoptotic process"
##
##
                     "meiotic spindle assembly checkpoint"
                     "Fas signaling pathway"
##
                     "protein localization to meiotic spindle midzone"
##
                     "regulation of transcription from RNA polymerase II promoter in response to stress
##
##
                     "enucleate erythrocyte development"
                     "keratan sulfate metabolic process"
##
##
                     "negative regulation of lymphocyte activation"
                     "negative regulation of prolactin secretion"
##
##
                     "mitochondrial L-ornithine transmembrane transport"
                     "oligosaccharide biosynthetic process"
##
##
                     "regulation of NIK/NF-kappaB signaling"
##
                     "inner ear auditory receptor cell differentiation"
                     "eye blink reflex"
##
                     "regulation of mitotic spindle organization"
##
                     "intestinal epithelial structure maintenance"
##
                     "positive regulation of protein localization to basolateral plasma membrane"
##
                     "dermatan sulfate proteoglycan biosynthetic process"
##
                     "positive regulation of prostaglandin secretion involved in immune response"
##
                     "positive regulation of myeloid leukocyte cytokine production involved in immune r
##
                     "positive regulation of granulocyte chemotaxis"
##
                     "regulation of proteinase activated receptor activity"
##
##
                     "negative regulation of phospholipase C-activating G protein-coupled receptor sign
##
                     "piRNA biosynthetic process"
                     "regulation of neutrophil degranulation"
##
                     "regulation of transcription by glucose"
##
##
                     "sterol homeostasis"
##
                     "negative regulation of protein acetylation"
##
                     "cellular component assembly"
                     "nerve growth factor processing"
##
                     "histone H3-K4 acetylation"
##
                     "negative regulation of ubiquitin-dependent protein catabolic process"
##
                     "sphingosine biosynthetic process"
##
                     "positive regulation of type 2 immune response"
##
##
                     "negative regulation of heart induction by canonical Wnt signaling pathway"
                     "phosphatidylserine biosynthetic process"
##
                     "acyl carnitine transport"
##
                     "Wnt signaling pathway involved in forebrain neuroblast division"
##
##
                     "olfactory placode formation"
                     "positive regulation of mesodermal cell fate specification"
##
                     "endodermal digestive tract morphogenesis"
##
                     "calcium ion transmembrane transport via low voltage-gated calcium channel"
##
                     "positive regulation of canonical Wnt signaling pathway involved in controlling ty
##
                     "peptidyl-L-cysteine S-palmitoylation"
##
                     "regulation of opioid receptor signaling pathway"
##
##
                     "opsonization"
                     "negative regulation of kinase activity"
##
##
                     "cellular response to high light intensity"
##
                     "retinal rod cell apoptotic process"
##
                     "positive regulation of miRNA metabolic process"
```

"fever generation"

```
##
                      "regulation of sister chromatid cohesion"
##
                      "response to fructose"
                      "positive regulation of epithelial cell migration"
##
                      "ammonium transport"
##
                      "elastin metabolic process"
##
                     "cerebral cortex tangential migration"
##
                      "regulation of ion transmembrane transporter activity"
##
                      "activation of NF-kappaB-inducing kinase activity"
##
##
                      "compartment pattern specification"
                     "hair cell differentiation"
##
##
                      "chemorepulsion involved in postnatal olfactory bulb interneuron migration"
                      "endoderm formation"
##
                      "embryonic viscerocranium morphogenesis"
##
                      "positive regulation of interferon-gamma-mediated signaling pathway"
##
                      "negative regulation of cell-cell adhesion mediated by cadherin"
##
##
                      "biphenyl metabolic process"
                      "specification of axis polarity"
##
                      "positive regulation of testosterone secretion"
##
##
                      "renal sodium ion transport"
                      "small GTPase mediated signal transduction"
##
##
                     "regulation of sodium:proton antiporter activity"
                      "glutathione transport"
##
                      "cellular response to gonadotropin-releasing hormone"
##
                      "renal phosphate ion absorption"
##
                     "negative regulation of cyclin-dependent protein kinase activity"
##
##
                      "negative regulation of cGMP-mediated signaling"
##
                      "positive regulation of sequestering of triglyceride"
                      "tissue morphogenesis"
##
                      "negative regulation of activation-induced cell death of T cells"
##
                      "modification of dendritic spine"
##
                      "cytidine deamination"
##
##
                      "cellular response to zinc ion"
                      "histone H3-K27 demethylation"
##
##
                      "mechanosensory behavior"
                      "anatomical structure morphogenesis"
##
##
                     "regulation of dendritic cell cytokine production"
##
                      "positive regulation of type III interferon production"
##
                      "bone growth"
                      "positive regulation of protein import into mitochondrial outer membrane"
##
                      "negative regulation of chaperone-mediated protein folding"
##
                      "negative regulation of cytokinesis"
##
                      "positive regulation of establishment of T cell polarity"
##
                      "photoreactive repair"
##
                      "regulation of sodium-dependent phosphate transport"
##
                      "ganglioside catabolic process"
##
                      "response to human chorionic gonadotropin"
##
                      "cellular response to thyroxine stimulus"
##
                     "regulation of behavioral fear response"
##
##
                      "very long-chain fatty acid metabolic process"
                      "apoptotic nuclear changes"
##
##
                     "coronary vasculature morphogenesis"
                      "regulation of blood volume by renal aldosterone"
##
                      "female somatic sex determination"
##
                      "regulation of intracellular protein transport"
##
```

```
##
                     "granulosa cell differentiation"
##
                     "negative regulation of leukocyte adhesion to arterial endothelial cell"
                     "mesenchymal cell differentiation involved in kidney development"
##
                     "exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic
##
##
                     "alpha-tubulin acetylation"
##
                     "sensory system development"
                     "positive regulation of tolerance induction to tumor cell"
##
                     "regulation of synaptic growth at neuromuscular junction"
##
##
                     "fatty acid omega-oxidation"
                     "forebrain cell migration"
##
##
                     "regulation of intracellular cholesterol transport"
                     "positive regulation of MDA-5 signaling pathway"
##
                     "negative regulation of tumor necrosis factor superfamily cytokine production"
##
                     "regulation of activated CD4-positive, alpha-beta T cell apoptotic process"
##
##
                     "positive regulation of activated CD8-positive, alpha-beta T cell apoptotic proces
##
                     "inositol phosphate biosynthetic process"
                     "negative regulation of intrinsic apoptotic signaling pathway in response to DNA d
##
                     "pulmonary myocardium development"
##
                     "marginal zone B cell differentiation"
##
                     "positive regulation of dendritic cell cytokine production"
##
##
                     "detection of muramyl dipeptide"
                     "interleukin-4 production"
##
                     "positive regulation of gamma-delta T cell activation"
##
                     "macrophage homeostasis"
##
                     "regulation of neurotransmitter receptor activity"
##
##
                     "N-acetylneuraminate metabolic process"
##
                     "regulation of skeletal muscle contraction by regulation of release of sequestered
                     "positive regulation of interleukin-15 production"
##
                     "TIRAP-dependent toll-like receptor 4 signaling pathway"
##
                     "bundle of His cell action potential"
##
##
                     "glycosylceramide catabolic process"
##
                     "regulation of postsynapse organization"
                     "negative regulation of leukocyte apoptotic process"
##
                     "protein localization to ciliary transition zone"
##
##
                     "facial nerve morphogenesis"
                     "smooth muscle cell chemotaxis"
##
##
                     "polysaccharide assembly with MHC class II protein complex"
##
                     "termination of RNA polymerase III transcription"
                     "proline transport"
##
                     "aromatic compound catabolic process"
##
                     "melanosome localization"
##
##
                     "tRNA 3'-trailer cleavage"
                     "regulation of eIF2 alpha phosphorylation by amino acid starvation"
##
                     "positive regulation of translational initiation in response to starvation"
##
                     "endoplasmic reticulum tubular network organization"
##
                     "short-term synaptic potentiation"
##
                     "regulation of cell fate commitment"
##
                     "positive regulation of nuclear receptor transcription coactivator activity"
##
##
                     "B-1 B cell differentiation"
                     "cellular response to macrophage colony-stimulating factor stimulus"
##
##
                     "negative regulation of interferon-alpha production"
                     "cell migration involved in endocardial cushion formation"
##
##
                     "regulation of Rap protein signal transduction"
```

"regulation of interleukin-5 production"

```
"positive regulation of tissue remodeling"
##
##
                     "negative regulation of lipid metabolic process"
                     "cellular response to luteinizing hormone stimulus"
##
                     "negative regulation of receptor localization to synapse"
##
##
                     "negative regulation of anterograde synaptic vesicle transport"
##
                     "astrocyte activation involved in immune response"
                     "oligodendrocyte cell fate specification"
##
                     "vascular wound healing"
##
##
                     "negative regulation of centriole elongation"
                     "morphogenesis of a branching structure"
##
##
                     "skeletal myofibril assembly"
                     "phagolysosome assembly involved in apoptotic cell clearance"
##
                     "negative regulation of hepatocyte apoptotic process"
##
                     "cardiac muscle cell action potential"
##
##
                     "regulation of defense response to bacterium"
##
                     "negative regulation of embryonic development"
                     "L-histidine transmembrane transport"
##
                     "negative regulation of synaptic vesicle exocytosis"
##
                     "immunoglobulin transcytosis in epithelial cells mediated by polymeric immunoglobu
##
##
                     "cell migration involved in vasculogenesis"
##
                     "positive regulation of B cell differentiation"
                     "mitochondrial large ribosomal subunit assembly"
##
                     "cellular response to sodium arsenite"
##
                     "histone H2A-K13 ubiquitination"
##
##
                     "histone H2A-K15 ubiquitination"
##
                     "renal tubule morphogenesis"
##
                     "regulation of transcription from RNA polymerase II promoter in response to arseni
                     "positive regulation of proteasomal ubiquitin-dependent protein catabolic process
##
                     "negative regulation of extracellular matrix disassembly"
##
                     "mesonephric duct development"
##
                     "isopentenyl diphosphate biosynthetic process"
##
##
                     "dimethylallyl diphosphate biosynthetic process"
                     "dichotomous subdivision of terminal units involved in mammary gland duct morphoge:
##
##
                     "cellular response to leptomycin B"
                     "negative regulation of T cell differentiation in thymus"
##
                     "histone H4-K20 methylation"
##
                     "low-density lipoprotein particle receptor catabolic process"
##
##
                     "muscle organ morphogenesis"
                     "urothelial cell proliferation"
##
                     "positive regulation of urothelial cell proliferation"
##
                     "bronchiole morphogenesis"
##
                     "mesenchymal-epithelial cell signaling involved in lung development"
##
                     "semicircular canal fusion"
##
                     "lung proximal/distal axis specification"
##
                     "memory T cell proliferation"
##
                     "positive regulation of hair follicle cell proliferation"
##
                     "positive regulation of type B pancreatic cell apoptotic process"
##
                     "negative regulation of asymmetric cell division"
##
##
                     "pre-B cell differentiation"
                     "alveolar secondary septum development"
##
##
                     "AV node cell action potential"
                     "respiratory basal cell differentiation"
##
##
                     "ureteric bud morphogenesis"
```

"regulation of bile acid metabolic process"

```
"regulation of semaphorin-plexin signaling pathway"
##
                     "oligosaccharide-lipid intermediate biosynthetic process"
##
                     "multicellular organismal iron ion homeostasis"
##
                     "error-free translesion synthesis"
##
                     "melanocyte proliferation"
##
                     "positive regulation of ERAD pathway"
##
                     "Tie signaling pathway"
##
                     "positive regulation of memory T cell differentiation"
##
##
                     "basement membrane organization"
                     "positive regulation of triglyceride catabolic process"
##
##
                     "regulation of protein sumoylation"
                     "glomerular mesangial cell proliferation"
##
                     "positive regulation of glomerular metanephric mesangial cell proliferation"
##
                     "cellular response to interleukin-8"
##
##
                     "embryonic limb morphogenesis"
                     "meiotic sister chromatid cohesion, centromeric"
##
                     "nuclear-transcribed mRNA catabolic process, 3'-5' exonucleolytic nonsense-mediate
##
                     "innate vocalization behavior"
##
##
                     "tRNA catabolic process"
                     "negative regulation of cell migration involved in sprouting angiogenesis"
##
##
                     "negative regulation of forebrain neuron differentiation"
##
                     "aorta smooth muscle tissue morphogenesis"
                     "positive regulation of DNA damage checkpoint"
##
                     "positive regulation of skeletal muscle cell differentiation"
##
                     "Purkinje myocyte development"
##
##
                     "negative regulation of peptidase activity"
##
                     "positive regulation of histone phosphorylation"
                     "regulation of water loss via skin"
##
                     "inactivation of X chromosome by heterochromatin assembly"
##
                     "inactivation of X chromosome by DNA methylation"
##
                     "heterochromatin organization involved in chromatin silencing"
##
##
                     "cell-cell signaling involved in mammary gland development"
                     "positive regulation of white fat cell proliferation"
##
##
                     "regulation of nucleus size"
                     "determination of left/right asymmetry in lateral mesoderm"
##
##
                     "synaptic transmission, cholinergic"
##
                     "tongue morphogenesis"
##
                     "heparan sulfate proteoglycan catabolic process"
                     "telomere maintenance in response to DNA damage"
##
                     "glomerular visceral epithelial cell development"
##
                     "negative regulation of methylation-dependent chromatin silencing"
##
                     "primary palate development"
##
                     "iron ion transport"
##
                     "positive regulation of polarized epithelial cell differentiation"
##
                     "cloaca development"
##
                     "pronephric nephron tubule morphogenesis"
##
                     "pronephric duct morphogenesis"
##
                     "Kupffer's vesicle development"
##
                     "negative regulation of photoreceptor cell differentiation"
##
                     "sphingosine metabolic process"
##
                     "negative regulation of lipid storage"
##
                     "positive regulation of cGMP-mediated signaling"
##
##
                     "cellular response to cocaine"
                     "trans-synaptic signaling by neuropeptide, modulating synaptic transmission"
##
```

```
##
                     "spinal cord motor neuron cell fate specification"
##
                     "autocrine signaling"
                     "sequestering of TGFbeta in extracellular matrix"
##
                     "polar body extrusion after meiotic divisions"
##
##
                     "atrioventricular node cell development"
                     "formin-nucleated actin cable assembly"
##
                     "eukaryotic translation initiation factor 2 complex assembly"
##
                     "negative regulation of neutrophil differentiation"
##
##
                     "mitotic telomere maintenance via semi-conservative replication"
                     "dsRNA transport"
##
##
                     "pigment granule aggregation in cell center"
                     "mesenchymal cell proliferation involved in ureteric bud development"
##
                     "DNA strand resection involved in replication fork processing"
##
                     "positive regulation of anterograde dense core granule transport"
##
##
                     "vascular endothelial growth factor production"
                     "hypermethylation of CpG island"
##
                     "embryonic hindgut morphogenesis"
##
##
                     "intestinal epithelial cell development"
##
                     "glomerular endothelium development"
                     "negative regulation of oxidative stress-induced neuron death"
##
##
                     "negative regulation of cytolysis by symbiont of host cells"
                     "cytolysis in other organism involved in symbiotic interaction"
##
                     "negative regulation of motor neuron apoptotic process"
##
                     "regulation of transcription involved in G2/M transition of mitotic cell cycle"
##
                     "tRNA exon ligation utilizing 2',3' cyclic phosphate of 5'-exon as source of linka
##
##
                     "keratinocyte activation"
##
                     "protein transport into plasma membrane raft"
                     "trophectodermal cell differentiation"
##
                     "neuronal-glial interaction involved in cerebral cortex radial glia guided migrati
##
                     "development of primary sexual characteristics"
##
##
                     "regulation of neuronal action potential"
##
                     "presynaptic dense core vesicle exocytosis"
                     "fibroblast growth factor receptor signaling pathway involved in negative regulati
##
                     "fibroblast growth factor receptor signaling pathway involved in hemopoiesis"
##
##
                     "fibroblast growth factor receptor signaling pathway involved in positive regulati
                     "lateral sprouting from an epithelium"
##
##
                     "siRNA loading onto RISC involved in RNA interference"
##
                     "sensory perception of touch"
                     "glycogen cell differentiation involved in embryonic placenta development"
##
                     "guanylate kinase-associated protein clustering"
##
                     "negative regulation of protein kinase activity by protein phosphorylation"
##
##
                     "enzyme-directed rRNA 2'-0-methylation"
                     "RNA localization"
##
                     "fusion of sperm to egg plasma membrane involved in single fertilization"
##
                     "cellular response to brain-derived neurotrophic factor stimulus"
##
                     "DNA double-strand break processing involved in repair via single-strand annealing
##
##
                     "dopamine catabolic process"
                     "post-embryonic eye morphogenesis"
##
##
                     "membrane raft polarization"
                     "cell-cell adhesion involved in neuronal-glial interactions involved in cerebral c
##
##
                     "interleukin-5-mediated signaling pathway"
                     "regulation of ventricular cardiac muscle cell membrane repolarization"
##
##
                     "humoral immune response"
```

##

"nucleotide-binding oligomerization domain containing signaling pathway"

```
"Golgi to plasma membrane CFTR protein transport"
##
##
                     "regulation of response to reactive oxygen species"
                     "positive regulation of opsonization"
##
                     "regulation of telomere maintenance via telomere lengthening"
##
                     "meiotic cell cycle checkpoint"
##
                     "leukemia inhibitory factor signaling pathway"
##
                     "hemolysis by symbiont of host erythrocytes"
##
                     "optic placode formation involved in camera-type eye formation"
##
##
                     "peptide antigen assembly with MHC class II protein complex"
                     "leukocyte differentiation"
##
##
                     "cyanate catabolic process"
                     "trimming of terminal mannose on C branch"
##
                     "centrosome separation"
##
                     "negative regulation of dense core granule biogenesis"
##
                     "negative regulation of mesenchymal stem cell differentiation"
##
##
                     "negative regulation of amniotic stem cell differentiation"
##
                     "specification of animal organ position"
##
                     "regulated exocytosis"
                     "entry of symbiont into host cell by promotion of host phagocytosis"
##
                     "regulation of cilium beat frequency involved in ciliary motility"
##
##
                     "kidney morphogenesis"
                     "regulation of T cell antigen processing and presentation"
##
                     "cotranslational protein targeting to membrane"
##
                     "embryonic axis specification"
##
                     "positive regulation of protein tyrosine kinase activity"
##
##
                     "platelet-derived growth factor receptor-alpha signaling pathway"
##
                     "ureter development"
                     "negative regulation of endoplasmic reticulum stress-induced neuron intrinsic apop
##
                     "negative regulation of cellular response to transforming growth factor beta stimu
##
                     "regulation of mesenchymal stem cell differentiation"
##
                     "sperm axoneme assembly"
##
##
                     "mesodermal cell migration"
                     "pallium development"
##
##
                     "positive regulation of protein complex assembly"
                     "cell migration involved in mesendoderm migration"
##
                     "regulation of calcium ion transmembrane transport via high voltage-gated calcium
##
##
                     "regulation of muscle filament sliding"
##
                     "cellular polysaccharide biosynthetic process"
                     "temperature homeostasis"
##
                     "tRNA N2-guanine methylation"
##
                     "negative regulation of apoptotic process"
##
                     "regulation of filopodium assembly"
##
                     "metanephric mesenchymal cell proliferation involved in metanephros development"
##
                     "cellular response to cold"
##
                     "astrocyte fate commitment"
##
                     "positive regulation of oxidative stress-induced neuron intrinsic apoptotic signal
##
                     "negative regulation of eye photoreceptor cell development"
##
                     "retinal cone cell apoptotic process"
##
                     "negative regulation of alpha-beta T cell differentiation"
##
                     "negative regulation of telomeric DNA binding"
##
##
                     "cellular response to vitamin"
                     "protein sialylation"
##
                     "negative regulation of histone H3-K9 acetylation"
##
```

"auditory receptor cell fate determination"

```
"positive regulation of protein complex disassembly"
##
                     "antigen processing and presentation, endogenous lipid antigen via MHC class Ib"
##
                     "apoptotic process involved in luteolysis"
##
                     "adenylate cyclase-activating adrenergic receptor signaling pathway involved in po
##
                     "negative regulation of double-strand break repair via single-strand annealing"
##
                     "protein-containing complex localization"
##
                     "canonical Wnt signaling pathway involved in cardiac muscle cell fate commitment"
##
                     "response to hydroxyurea"
##
##
                     "response to actinomycin D"
                     "response to dithiothreitol"
##
##
                     "response to anisomycin"
                     "regulation of postsynaptic membrane neurotransmitter receptor levels"
##
                     "very-low-density lipoprotein particle remodeling"
##
                     "peptidyl-aspartic acid hydroxylation"
##
##
                     "peptidyl-lysine hydroxylation to 5-hydroxy-L-lysine"
##
                     "regulation of sister chromatid segregation"
##
                     "histone H3-R2 demethylation"
##
                     "histone H4-R3 demethylation"
                     "transmembrane receptor protein tyrosine phosphatase signaling pathway"
##
                     "release from viral latency"
##
##
                     "MDA-5 signaling pathway"
##
                     "oncogene-induced cell senescence"
##
                     "ribonucleotide metabolic process"
                     "telomere maintenance via telomere lengthening"
##
                     "locomotion"
##
##
                     "fatty acid homeostasis"
                     "positive regulation of tumor necrosis factor secretion"
##
                     "double-strand break repair involved in meiotic recombination"
##
##
                     "cellular aromatic compound metabolic process"
                     "detection of molecule of bacterial origin"
##
##
                     "intermediate filament polymerization or depolymerization"
##
                     "cardiac muscle cell myoblast differentiation"
                     "response to sodium arsenite"
##
                     "protein localization to juxtaparanode region of axon"
##
##
                     "extrinsic apoptotic signaling pathway in absence of ligand"
##
                     "atrial septum secundum morphogenesis"
##
                     "apical constriction"
##
                     "homoiothermy"
                     "positive regulation of delayed rectifier potassium channel activity"
##
                     "negative regulation of spontaneous neurotransmitter secretion"
##
                     "positive regulation of 1-phosphatidylinositol 4-kinase activity"
##
##
                     "positive regulation of respiratory burst"
                     "dUMP biosynthetic process"
##
                     "tumor necrosis factor-mediated signaling pathway"
##
                     "polyadenylation-dependent snoRNA 3'-end processing"
##
                     "negative regulation of CD8-positive, alpha-beta T cell activation"
##
                     "negative regulation of negative chemotaxis"
##
                     "negative regulation of pro-B cell differentiation"
##
                     "positive regulation of antigen receptor-mediated signaling pathway"
##
                     "regulation of angiotensin levels in blood"
##
##
                     "opsin transport"
                     "proximal tubule development"
##
                     "membrane depolarization during bundle of His cell action potential"
##
```

"cardiac cell fate determination"

```
"respiratory burst involved in defense response"
##
##
                     "dGTP catabolic process"
                     "interleukin-17 secretion"
##
                     "medium-chain fatty acid transport"
##
##
                     "regulation of organelle organization"
                     "T cell homeostasis"
##
                     "regulation of inner ear auditory receptor cell differentiation"
##
                     "cytosol to ER transport"
##
##
                     "maintenance of presynaptic active zone structure"
                     "leukocyte activation involved in immune response"
##
##
                     "antigen processing and presentation of peptide or polysaccharide antigen via MHC
                     "phosphatidylserine acyl-chain remodeling"
##
                     "negative regulation of cell adhesion involved in substrate-bound cell migration"
##
                     "positive regulation of erythrocyte aggregation"
##
##
                     "CD4-positive, alpha-beta T cell differentiation"
##
                     "negative regulation of histone deacetylation"
                     "musculoskeletal movement"
##
                     "spermatogonial cell division"
##
                     "positive regulation of skeletal muscle fiber development"
##
                     "modification by host of symbiont morphology or physiology via secreted substance"
##
##
                     "interaction with symbiont via secreted substance involved in symbiotic interaction
                     "cell-cell signaling via exosome"
##
                     "positive regulation of receptor binding"
##
                     "regulation of transcription elongation from RNA polymerase II promoter"
##
                     "positive regulation of synaptic growth at neuromuscular junction"
##
##
                     "negative regulation of mitochondrial calcium ion concentration"
##
                     "negative regulation of voltage-gated potassium channel activity"
                     "peptidyl-threonine phosphorylation"
##
                     "sebaceous gland cell differentiation"
##
                     "autophagy of peroxisome"
##
##
                     "lipid modification"
##
                     "negative regulation of glucocorticoid biosynthetic process"
                     "positive regulation of striated muscle contraction"
##
                     "negative regulation of DNA recombination at telomere"
##
                     "response to prolactin"
##
                     "adherens junction maintenance"
##
##
                     "natural killer cell chemotaxis"
##
                     "positive regulation of interleukin-1 beta biosynthetic process"
                     "positive regulation of high-density lipoprotein particle assembly"
##
                     "positive regulation of secretion of lysosomal enzymes"
##
                     "regulation of T cell receptor signaling pathway"
##
                     "negative regulation of mesenchymal cell apoptotic process"
##
                     "loop of Henle development"
##
                     "myeloid cell differentiation"
##
                     "cytokine secretion involved in immune response"
##
                     "ripoptosome assembly involved in necroptotic process"
##
                     "nucleotide-binding oligomerization domain containing 2 signaling pathway"
##
                     "protein transport along microtubule"
##
                     "inactivation of MAPK activity involved in osmosensory signaling pathway"
##
                     "morphogenesis of an epithelial sheet"
##
                     "smoothened signaling pathway involved in regulation of secondary heart field card
##
                     "establishment of viral latency"
##
##
                     "floor plate development"
```

##

"regulation of MyD88-independent toll-like receptor signaling pathway"

```
##
                     "positive regulation of interleukin-8 biosynthetic process"
##
                     "prostate gland stromal morphogenesis"
                     "regulation of smoothened signaling pathway involved in dorsal/ventral neural tube
##
                     "regulation of heart rate"
##
##
                     "prechordal plate formation"
                     "midbrain-hindbrain boundary initiation"
##
                     "negative regulation of apoptotic process involved in outflow tract morphogenesis"
##
                     "blood coagulation, intrinsic pathway"
##
##
                     "viral translation"
                     "induction by virus of host autophagy"
##
##
                     "negative regulation of striated muscle cell differentiation"
                     "fasciculation of motor neuron axon"
##
                     "negative regulation of interferon-alpha biosynthetic process"
##
                     "positive regulation of DNA demethylation"
##
##
                     "positive regulation of hh target transcription factor activity"
##
                     "membrane depolarization during atrial cardiac muscle cell action potential"
                     "regulation of protein localization to cell surface"
##
                     "regulation of intestinal cholesterol absorption"
##
##
                     "inner ear receptor cell development"
                     "podosome assembly"
##
##
                     "guanosine metabolic process"
                     "cell surface bile acid receptor signaling pathway"
##
                     "dGTP metabolic process"
##
                     "purine deoxyribonucleoside metabolic process"
##
                     "negative regulation of endothelial cell chemotaxis"
##
##
                     "ovarian follicle rupture"
##
                     "synaptic vesicle priming"
                     "regulation of cellular protein localization"
##
                     "organelle localization"
##
                     "regulation of synaptic activity"
##
##
                     "organelle assembly"
##
                     "positive regulation of receptor localization to synapse"
                     "positive regulation of regulated secretory pathway"
##
                     "cytokine production involved in immune response"
##
##
                     "smooth muscle cell migration"
##
                     "putrescine biosynthetic process from ornithine"
##
                     "regulation of autophagosome size"
##
                     "cellular cation homeostasis"
                     "extracellular exosome biogenesis"
##
                     "polyamine transmembrane transport"
##
                     "peptidyl-aspartic acid autophosphorylation"
##
                     "somatic diversification of immune receptors via somatic mutation"
##
                     "negative regulation of RNA interference"
##
                     "positive regulation of hair follicle development"
##
                     "muscle tissue morphogenesis"
##
                     "terminal button organization"
##
                     "positive regulation of chemokine (C-X-C motif) ligand 2 production"
##
                     "rRNA export from nucleus"
##
                     "positive regulation of digestive system process"
##
                     "negative regulation of DNA-templated transcription, initiation"
##
##
                     "cerebellar granular layer structural organization"
                     "negative regulation of interleukin-1 production"
##
##
                     "protein localization to endosome"
                     "positive regulation of interleukin-2 biosynthetic process"
##
```

```
##
                     "membrane repolarization during atrial cardiac muscle cell action potential"
##
                     "negative regulation of histone deacetylase activity"
                     "regulation of cell maturation"
##
                     "plasma cell differentiation"
##
##
                     "COP9 signalosome assembly"
                     "luteinizing hormone secretion"
##
                     "retrograde trans-synaptic signaling by trans-synaptic protein complex"
##
                     "cellular response to vasopressin"
##
##
                     "O-glycan processing, core 1"
                     "negative regulation of cellular respiration"
##
##
                     "establishment or maintenance of epithelial cell apical/basal polarity"
                     "actin filament bundle assembly"
##
                     "negative regulation of phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase act
##
                     "actin filament-based movement"
##
##
                     "acetate ester transport"
##
                     "kidney epithelium development"
                     "folic acid transport"
##
                     "regulation of actin phosphorylation"
##
                     "pharynx development"
##
                     "box H/ACA snoRNA metabolic process"
##
##
                     "canonical Wnt signaling pathway involved in neural crest cell differentiation"
                     "striated muscle cell development"
##
                     "negative regulation of mature B cell apoptotic process"
##
                     "DNA replication preinitiation complex assembly"
##
                     "negative regulation of protein tyrosine phosphatase activity"
##
##
                     "N-terminal protein myristoylation"
                     "epithelial cell differentiation involved in mammary gland alveolus development"
##
                     "activation of meiosis"
##
                     "positive regulation of mesenchymal cell apoptotic process"
##
##
                     "swimming behavior"
##
                     "co-translational protein modification"
##
                     "membrane depolarization during AV node cell action potential"
                     "positive regulation of isotype switching"
##
                     "positive regulation of voltage-gated calcium channel activity"
##
                     "positive regulation of endoplasmic reticulum unfolded protein response"
##
                     "nicotinamide riboside catabolic process"
##
##
                     "ear morphogenesis"
##
                     "stem cell development"
                     "regulation of Fc receptor mediated stimulatory signaling pathway"
##
                     "arterial endothelial cell differentiation"
##
                     "regulation of glycolytic process by positive regulation of transcription from RNA
##
                     "regulation of cellular ketone metabolic process by positive regulation of transcr
##
                     "retina layer formation"
##
                     "regulation of hormone biosynthetic process"
##
                     "positive regulation of collateral sprouting in absence of injury"
##
                     "regulation of striated muscle cell differentiation"
##
                     "negative regulation of SMAD protein complex assembly"
##
                     "reproductive structure development"
##
                     "regulation of astrocyte differentiation"
##
                     "protein tetramerization"
##
                     "negative regulation of reactive oxygen species biosynthetic process"
##
                     "glutamine catabolic process"
##
                     "GO to G1 transition"
##
                     "positive regulation of protein catabolic process in the vacuole"
##
```

```
##
                     "negative regulation of lymphocyte migration"
##
                     "response to bile acid"
                     "protein import into nucleus, translocation"
##
                     "negative regulation of bile acid biosynthetic process"
##
##
                     "abscission"
##
                     "fatty acid elongation, saturated fatty acid"
                     "superior olivary nucleus maturation"
##
                     "regulation of muscle filament sliding speed"
##
##
                     "fatty acid elongation, monounsaturated fatty acid"
                     "fatty acid elongation, polyunsaturated fatty acid"
##
##
                     "ventricular compact myocardium morphogenesis"
                     "regulation of viral transcription"
##
                     "regulation of production of siRNA involved in RNA interference"
##
                     "regulation of production of miRNAs involved in gene silencing by miRNA"
##
##
                     "ubiquitin recycling"
##
                     "interferon-gamma production"
                     "cellular response to peptidoglycan"
##
                     "cellular response to reactive nitrogen species"
##
##
                     "manganese ion transport"
                     "positive regulation of cell-substrate adhesion"
##
##
                     "regulation of postsynaptic cytosolic calcium ion concentration"
                     "negative regulation of telomere maintenance via telomere lengthening"
##
                     "regulation of DNA-templated transcription, elongation"
##
                     "regulation of protein phosphorylation"
##
                     "negative regulation of nitric oxide mediated signal transduction"
##
##
                     "growth hormone secretion"
##
                     "positive regulation of non-motile cilium assembly"
                     "immunoglobulin production involved in immunoglobulin mediated immune response"
##
                     "zonula adherens maintenance"
##
                     "negative regulation of glomerular mesangial cell proliferation"
##
##
                     "interleukin-6 biosynthetic process"
##
                     "response to environmental enrichment"
                     "desensitization of G protein-coupled receptor signaling pathway"
##
##
                     "gastric inhibitory peptide signaling pathway"
##
                     "lipoxygenase pathway"
##
                     "positive regulation of exit from mitosis"
##
                     "negative regulation of chondrocyte development"
##
                     "positive regulation of Notch signaling pathway involved in heart induction"
                     "positive regulation of metanephric ureteric bud development"
##
                     "metanephros morphogenesis"
##
                     "positive regulation of microglial cell activation"
##
##
                     "visceral muscle development"
                     "negative regulation of natural killer cell activation"
##
                     "positive regulation of interleukin-10 biosynthetic process"
##
                     "nuclear pore complex assembly"
##
                     "positive regulation of stem cell population maintenance"
##
                     "endochondral bone growth"
##
                     "positive regulation of ion transmembrane transport"
##
##
                     "epithelial-mesenchymal signaling involved in prostate gland development"
                     "negative regulation of tubulin deacetylation"
##
##
                     "limb morphogenesis"
                     "epinephrine secretion"
##
                     "T cell mediated cytotoxicity"
##
```

"store-operated calcium entry"

```
##
                      "interleukin-2 biosynthetic process"
##
                     "intestinal cholesterol absorption"
                     "vesicle targeting, trans-Golgi to periciliary membrane compartment"
##
                     "regulation of NMDA receptor activity"
##
##
                      "glomerular filtration"
                      "nuclear histone mRNA catabolic process"
##
                      "oncostatin-M-mediated signaling pathway"
##
                      "forebrain neuroblast division"
##
##
                      "response to nitrosative stress"
                      "positive regulation of cardiac neural crest cell migration involved in outflow tr
##
##
                      "glomerulus development"
                      "positive regulation of vascular wound healing"
##
                      "glycerophospholipid biosynthetic process"
##
                      "trabecular meshwork development"
##
##
                      "deltoid tuberosity development"
##
                      "modulation by host of viral RNA genome replication"
                      "transcriptional start site selection at RNA polymerase II promoter"
##
                      "thyroid hormone mediated signaling pathway"
##
                      "reproductive process"
##
##
                      "protein localization to nucleus"
##
                     "cellular response to dopamine"
                      "RNA polymerase II core complex assembly"
##
                      "cellular response to laminar fluid shear stress"
##
                      "positive regulation of G2/MI transition of meiotic cell cycle"
##
                      "midbrain-hindbrain boundary morphogenesis"
##
##
                      "positive regulation of epinephrine secretion"
##
                      "phosphatidylinositol dephosphorylation"
                      "neuron projection maintenance"
##
                      "exocyst assembly"
##
                      "interleukin-6 production"
##
##
                      "embryonic nail plate morphogenesis"
##
                      "tear secretion"
                      "positive regulation of ureteric bud formation"
##
                      "germ-line stem cell population maintenance"
##
                      "leading strand elongation"
##
                     "DNA-templated transcription, elongation"
##
##
                      "deoxyribonucleotide catabolic process"
##
                      "positive regulation of ubiquitin-dependent endocytosis"
                      "receptor guanylyl cyclase signaling pathway"
##
                     "DNA cytosine deamination"
##
                      "protein kinase D signaling"
##
                      "response to thyroid hormone"
##
                      "positive regulation of protein kinase D signaling"
##
                      "cell projection organization"
##
                      "equilibrioception"
##
                      "ganglion development"
##
                      "ventral midline development"
##
                     "negative regulation of protein localization to lysosome"
##
                      "positive regulation of amyloid precursor protein catabolic process"
##
                      "regulation of rRNA processing"
##
                      "endocardial cushion development"
##
                      "base conversion or substitution editing"
##
                      "regulation of myosin II filament organization"
##
                      "regulation of type B pancreatic cell proliferation"
##
```

```
##
                     "positive regulation of artery morphogenesis"
##
                     "coronary vein morphogenesis"
##
                     "regulation of heart growth"
                     "negative regulation of regulatory T cell differentiation"
##
##
                     "positive regulation of keratinocyte differentiation"
##
                     "PMA-inducible membrane protein ectodomain proteolysis"
                     "negative regulation of neurogenesis"
##
                     "intracellular protein transmembrane transport"
##
##
                     "regulation of cGMP-mediated signaling"
                     "regulation of inositol trisphosphate biosynthetic process"
##
##
                     "'de novo' cotranslational protein folding"
                     "mesenchymal cell development"
##
                     "meiotic DNA integrity checkpoint"
##
                     "platelet aggregation"
##
##
                     "protein localization to cytosolic proteasome complex involved in ERAD pathway"
##
                     "vesicle fusion with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)
                     "negative regulation of Wnt signaling pathway involved in heart development"
##
##
                     "oligodendrocyte development"
                     "negative regulation of receptor binding"
##
##
                     "protein oxidation"
##
                     "response to stimulus"
                     "venous blood vessel development"
##
                     "regulation of cellular response to drug"
##
                     "cervix development"
##
                     "histone H3-K36 methylation"
##
##
                     "translesion synthesis"
                     "positive regulation of cellular protein catabolic process"
##
                     "isopentenyl diphosphate biosynthetic process, mevalonate pathway"
##
                     "positive regulation of chemokine (C-X-C motif) ligand 1 production"
##
                     "type IV hypersensitivity"
##
##
                     "pro-T cell differentiation"
                     "SRP-dependent cotranslational protein targeting to membrane, translocation"
##
                     "parathyroid hormone secretion"
##
                     "low-density lipoprotein particle receptor biosynthetic process"
##
##
                     "regulation of cholesterol transporter activity"
                     "regulation of histone H3-K27 methylation"
##
##
                     "negative regulation of blood vessel endothelial cell differentiation"
##
                     "negative regulation of pancreatic stellate cell proliferation"
                     "negative regulation of cell proliferation involved in mesonephros development"
##
                     "regulation of cellular response to X-ray"
##
                     "negative regulation of fibroblast growth factor receptor signaling pathway involv
##
                     "negative regulation of glial cell-derived neurotrophic factor receptor signaling
##
                     "metencephalon development"
##
                     "tube development"
##
                     "viral mRNA export from host cell nucleus"
##
                     "regulation of protein monoubiquitination"
##
                     "epithelial cell proliferation involved in lung morphogenesis"
##
                     "negative regulation of thyroid hormone receptor activity"
##
##
                     "hyaluronan metabolic process"
                     "chromosome organization involved in meiotic cell cycle"
##
##
                     "regulation of axon guidance"
                     "peptidyl-glutamine methylation"
##
                     "CD4-positive, alpha-beta T cell cytokine production"
##
                     "negative regulation of complement activation"
##
```

```
##
                     "rRNA (guanine-N7)-methylation"
                     "positive regulation of CD4-positive, alpha-beta T cell activation"
##
                     "cellular response to fluoride"
##
                     "nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay"
##
##
                     "mammary duct terminal end bud growth"
##
                     "positive regulation of homophilic cell adhesion"
                     "translational attenuation"
##
                     "neuromuscular process"
##
##
                     "leukotriene biosynthetic process"
                     "tRNA wobble base 5-methoxycarbonylmethyl-2-thiouridinylation"
##
##
                     "regulation of nitric oxide mediated signal transduction"
                     "zymogen activation"
##
                     "spliceosomal complex disassembly"
##
                     "BMP signaling pathway involved in heart induction"
##
##
                     "response to UV-C"
##
                     "cerebral cortex GABAergic interneuron development"
                     "trans-synaptic signaling by BDNF, modulating synaptic transmission"
##
                     "detection of chemical stimulus involved in sensory perception of smell"
##
##
                     "CAMKK-AMPK signaling cascade"
                     "regulation of cytokine production involved in inflammatory response"
##
##
                     "regulation of immunoglobulin production"
                     "lymphatic endothelial cell differentiation"
##
                     "positive regulation of connective tissue growth factor production"
##
                     "positive regulation of mast cell chemotaxis"
##
                     "negative regulation of protein localization to chromosome, telomeric region"
##
##
                     "penetration of zona pellucida"
##
                     "striated muscle atrophy"
                     "mesenchymal cell proliferation involved in lung development"
##
                     "thorax and anterior abdomen determination"
##
                     "morphogenesis of a polarized epithelium"
##
                     "toll-like receptor 7 signaling pathway"
##
##
                     "myoblast development"
                     "fructose 2,6-bisphosphate metabolic process"
##
##
                     "histone H3-S28 phosphorylation"
##
                     "acetaldehyde metabolic process"
                     "negative regulation of transforming growth factor beta receptor signaling pathway
##
##
                     "cGMP metabolic process"
##
                     "positive regulation of neuron projection arborization"
                     "protein linear deubiquitination"
##
                     "regulation of glial cell differentiation"
##
                     "actin crosslink formation"
##
                     "gamma-aminobutyric acid secretion, neurotransmission"
##
                     "glutamate secretion, neurotransmission"
##
                     "observational learning"
##
                     "atrial cardiac muscle tissue morphogenesis"
##
                     "positive regulation of chronic inflammatory response to non-antigenic stimulus"
##
                     "regulation of natural killer cell mediated immunity"
##
                     "positive regulation of TRAIL production"
##
##
                     "CD8-positive, alpha-beta T cell activation"
                     "peptidyl-serine dephosphorylation"
##
                     "enzyme linked receptor protein signaling pathway"
##
                     "suppression by virus of host type I interferon-mediated signaling pathway"
##
##
                     "suppression by virus of host STAT1 activity"
```

"suppression by virus of host STAT2 activity"

```
##
                     "Golgi to plasma membrane protein transport"
##
                     "atrial septum morphogenesis"
##
                     "transmission of nerve impulse"
                     "directional locomotion"
##
##
                     "adult heart development"
##
                     "ventricular system development"
                     "lymphotoxin A biosynthetic process"
##
                     "G protein-coupled receptor signaling pathway involved in heart process"
##
##
                     "formation of cytoplasmic translation initiation complex"
                     "growth factor dependent regulation of skeletal muscle satellite cell proliferation
##
##
                     "positive regulation of cell fate specification"
                     "negative regulation of gastrin-induced gastric acid secretion"
##
##
                     "subpallium development"
                     "positive regulation of high voltage-gated calcium channel activity"
##
                     "positive regulation of anoikis"
##
##
                     "cardiac right ventricle formation"
                     "toll-like receptor 4 signaling pathway"
##
                     "epithelial-mesenchymal cell signaling"
##
                     "regulation of intracellular steroid hormone receptor signaling pathway"
##
##
                     "negative regulation of excitatory postsynaptic potential"
##
                     "detection of biotic stimulus"
                     "negative regulation of inner ear auditory receptor cell differentiation"
##
                     "negative regulation of adenylate cyclase-inhibiting adrenergic receptor signaling
##
                     "response to arachidonic acid"
##
                     "retinoid metabolic process"
##
##
                     "regulation of toll-like receptor 4 signaling pathway"
##
                     "plasma membrane raft assembly"
                     "UDP-glucosylation"
##
                     "positive regulation of cell junction assembly"
##
                     "negative regulation of very-low-density lipoprotein particle clearance"
##
##
                     "midbrain dopaminergic neuron differentiation"
##
                     "carnitine transport"
                     "L-methionine salvage from S-adenosylmethionine"
##
                     "negative regulation of lipoprotein metabolic process"
##
                     "negative regulation of glucagon secretion"
##
                     "regulation of response to oxidative stress"
##
##
                     "peripheral T cell tolerance induction"
##
                     "central tolerance induction to self antigen"
                     "negative regulation of glycogen catabolic process"
##
                     "alpha-beta T cell activation"
##
                     "negative regulation of intrinsic apoptotic signaling pathway in response to osmot
##
                     "regulation of thymocyte migration"
##
                     "negative regulation of phospholipase activity"
##
                     "rRNA pseudouridine synthesis"
##
                     "snRNA pseudouridine synthesis"
##
                     "positive regulation of cytokine activity"
##
                     "basal dendrite development"
##
                     "VEGF-activated neuropilin signaling pathway involved in axon guidance"
##
##
                     "protein localization to early endosome"
##
                     "regulation of dendritic spine maintenance"
                     "negative regulation of dendritic spine maintenance"
##
##
                     "otic placode development"
                     "negative regulation of dendritic cell antigen processing and presentation"
##
##
                     "phenol-containing compound metabolic process"
```

```
##
                     "negative regulation of coagulation"
##
                     "regulation of voltage-gated sodium channel activity"
##
                     "neural fold elevation formation"
##
                     "ammon gyrus development"
##
                     "regulation of neuron migration"
##
                     "response to interleukin-12"
                     "lactose biosynthetic process"
##
                     "response to rotenone"
##
##
                     "protein localization to cell periphery"
                     "positive regulation of aminoacyl-tRNA ligase activity"
##
##
                     "inactivation of MAPKK activity"
                     "positive regulation of locomotion involved in locomotory behavior"
##
                     "neurotransmitter receptor transport, endosome to plasma membrane"
##
                     "glomerular basement membrane development"
##
##
                     "plasma lipoprotein particle clearance"
##
                     "reverse cholesterol transport"
                     "negative regulation of NMDA glutamate receptor activity"
##
                     "positive regulation of mesenchymal cell proliferation involved in ureter developm
##
##
                     "regulation of chromatin silencing at telomere"
                     "vascular smooth muscle cell differentiation"
##
##
                     "negative regulation of T cell activation"
                     "mitotic DNA replication preinitiation complex assembly"
##
                     "cellular response to molecule of bacterial origin"
##
                     "carbohydrate catabolic process"
##
                     "positive regulation of reactive oxygen species biosynthetic process"
##
##
                     "negative regulation of alpha-beta T cell activation"
##
                     "protein deubiquitination involved in ubiquitin-dependent protein catabolic proces
                     "response to insulin-like growth factor stimulus"
##
                     "negative regulation of cell growth involved in cardiac muscle cell development"
##
                     "mineralocorticoid biosynthetic process"
##
##
                     "uterus morphogenesis"
##
                     "cellular ion homeostasis"
                     "cellular response to sucrose stimulus"
##
                     "ribosome-associated ubiquitin-dependent protein catabolic process"
##
##
                     "regulation of cell fate specification"
                     "regulation of cell activation"
##
##
                     "eye photoreceptor cell differentiation"
##
                     "post-embryonic forelimb morphogenesis"
                     "negative regulation of telomeric RNA transcription from RNA pol II promoter"
##
                     "positive regulation of telomeric RNA transcription from RNA pol II promoter"
##
                     "negative regulation of insulin-like growth factor receptor signaling pathway"
##
##
                     "regulation of T cell apoptotic process"
                     "negative regulation of cell aging"
##
                     "negative regulation of mammary gland epithelial cell proliferation"
##
                     "positive regulation of protein transport"
##
                     "convergent extension"
##
                     "soft palate development"
##
                     "meiotic spindle organization"
##
##
                     "regulation of smooth muscle cell migration"
                     "suppression by virus of host cysteine-type endopeptidase activity involved in apo
##
##
                     "myotome development"
                     "Purkinje myocyte to ventricular cardiac muscle cell signaling"
##
##
                     "positive regulation of synaptic transmission, dopaminergic"
                     "common myeloid progenitor cell proliferation"
##
```

```
##
                      "hippocampus development"
##
                      "neurotransmitter receptor transport"
##
                      "lymph vessel development"
                      "regulation of phosphorylation"
##
##
                      "positive regulation of glucose transmembrane transport"
##
                      "aflatoxin catabolic process"
                      "epithelial to mesenchymal transition involved in cardiac fibroblast development"
##
                      "cellular response to salt stress"
##
##
                      "positive regulation of glutathione biosynthetic process"
                      "stem cell differentiation"
##
##
                      "regulation of platelet activation"
                      "negative regulation of DNA binding"
##
                      "protein localization to membrane raft"
##
                      "glucocorticoid receptor signaling pathway"
##
##
                      "maintenance of protein location"
##
                      "regulation of T cell homeostatic proliferation"
                      "positive regulation of retinoic acid receptor signaling pathway"
##
                      "regulation of Fas signaling pathway"
##
                      "initiation of primordial ovarian follicle growth"
##
                      "deadenylation-independent decapping of nuclear-transcribed mRNA"
##
##
                     "calcium-dependent activation of synaptic vesicle fusion"
                      "negative regulation of cellular protein localization"
##
                      "nephron development"
##
                      "proteoglycan metabolic process"
##
                      "negative regulation of mitophagy"
##
##
                      "NADPH oxidation"
##
                      "mitotic spindle elongation"
                      "histone H3-K14 acetylation"
##
                      "metanephric mesenchyme development"
##
                      "establishment of epithelial cell polarity"
##
                      "negative regulation of metalloendopeptidase activity involved in amyloid precurso
##
##
                      "IRES-dependent translational initiation of linear mRNA"
                      "negative regulation of relaxation of cardiac muscle"
##
                      "positive regulation of cell proliferation involved in heart morphogenesis"
##
##
                      "corticospinal tract morphogenesis"
                     "inductive cell-cell signaling"
##
##
                     "vitamin K metabolic process"
##
                      "muscle fiber development"
                      "negative regulation of adenylate cyclase-activating adrenergic receptor signaling
##
                     "associative learning"
##
                      "positive regulation of stress-activated MAPK cascade"
##
##
                      "exogenous drug catabolic process"
                      "negative regulation of immunological synapse formation"
##
                      "sensory perception of light stimulus"
##
                      "negative regulation of nitric-oxide synthase biosynthetic process"
##
                      "nephric duct formation"
##
                      "positive regulation of fibroblast growth factor production"
##
                      "negative regulation of chemokine (C-X-C motif) ligand 2 production"
##
##
                      "pathogenesis"
                      "proprioception"
##
##
                      "cardiolipin metabolic process"
                      "post-translational protein acetylation"
##
##
                      "astrocyte activation"
                      "regulation of spindle assembly"
##
```

```
##
                      "post-embryonic hemopoiesis"
##
                      "interleukin-3-mediated signaling pathway"
                      "positive regulation of histone H3-K36 trimethylation"
##
                      "cis assembly of pre-catalytic spliceosome"
##
##
                      "NK T cell differentiation"
##
                     "lung development"
                      "spindle pole body duplication"
##
                      "bone mineralization involved in bone maturation"
##
##
                      "positive regulation of heart growth"
                      "mitotic spindle pole body duplication"
##
##
                      "myotube cell development"
                      "negative regulation of RNA polymerase II transcriptional preinitiation complex as
##
                      "cellular response to leucine"
##
                      "positive regulation of protein localization to cilium"
##
##
                      "positive regulation of endothelial cell differentiation"
##
                      "positive regulation of DNA ligation"
                      "regulation of vesicle-mediated transport"
##
##
                      "D-aspartate import across plasma membrane"
##
                      "L-glutamate import across plasma membrane"
                      "positive regulation of protein ubiquitination"
##
                     "maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LS
##
                      "low-density lipoprotein particle mediated signaling"
##
                      "regulation of vascular endothelial growth factor production"
##
                      "interleukin-15-mediated signaling pathway"
##
##
                     "amyloid-beta clearance"
##
                      "tooth mineralization"
##
                      "cardiac muscle thin filament assembly"
                      "negative regulation of mitochondrion organization"
##
                      "telomeric 3' overhang formation"
##
                      "positive regulation of lipid transport"
##
##
                      "nucleobase-containing small molecule catabolic process"
##
                     "cellular stress response to acid chemical"
                      "cap-independent translational initiation"
##
                      "negative regulation of translation in response to stress"
##
                      "establishment of mitotic sister chromatid cohesion"
##
                     "protein localization to T-tubule"
##
##
                      "atrial cardiac muscle cell to AV node cell communication"
##
                      "SA node cell to atrial cardiac muscle cell communication"
                      "positive regulation of calcium ion transmembrane transporter activity"
##
                     "neurofilament bundle assembly"
##
                     "negative regulation of JAK-STAT cascade"
##
##
                      "mesenchyme development"
                      "metanephric S-shaped body morphogenesis"
##
                      "oocyte growth"
##
                      "regulation of cytokine secretion"
##
                      "AMP biosynthetic process"
##
                      "cytokine biosynthetic process"
##
                     "'de novo' AMP biosynthetic process"
##
                      "paraxial mesodermal cell fate commitment"
##
                      "endocardial cushion cell fate commitment"
##
##
                     "cellular response to cisplatin"
                      "positive regulation of determination of dorsal identity"
##
##
                      "glycosphingolipid metabolic process"
                      "androgen biosynthetic process"
##
```

```
##
                     "thrombopoietin-mediated signaling pathway"
##
                     "reticulophagy"
                     "negative regulation of telomere maintenance via semi-conservative replication"
##
                     "negative regulation of exonuclease activity"
##
##
                     "negative regulation of telomeric D-loop disassembly"
##
                     "regulation of terminal button organization"
                     "positive regulation of cytoskeleton organization"
##
                     "intrinsic apoptotic signaling pathway in response to nitrosative stress"
##
##
                     "cardiac chamber development"
                     "modulation by virus of host morphology or physiology"
##
##
                     "ghrelin secretion"
                     "regulation of hindgut contraction"
##
                     "negative regulation of low-density lipoprotein particle receptor biosynthetic pro
##
                     "response to monosodium glutamate"
##
                     "actin cortical patch assembly"
##
                     "actin cortical patch localization"
##
                     "anterograde dendritic transport of neurotransmitter receptor complex"
##
                     "regulation of viral budding via host ESCRT complex"
##
##
                     "tooth eruption"
                     "genitalia development"
##
##
                     "modulation by symbiont of host I-kappaB kinase/NF-kappaB cascade"
                     "postsynaptic density assembly"
##
                     "negative regulation of cell cycle G2/M phase transition"
##
                     "cytidine to uridine editing"
##
                     "fatty acid oxidation"
##
##
                     "endoplasmic reticulum membrane organization"
##
                     "establishment of cell polarity"
                     "postsynaptic modulation of chemical synaptic transmission"
##
                     "positive regulation of organelle assembly"
##
                     "positive regulation of phosphorylation of RNA polymerase II C-terminal domain ser
##
##
                     "meiotic chromosome segregation"
##
                     "positive regulation of transcription by glucose"
                     "L-methionine salvage from methylthioadenosine"
##
##
                     "regulation of SNARE complex assembly"
                     "cardiac neural crest cell development involved in outflow tract morphogenesis"
##
                     "regulation of glucose import in response to insulin stimulus"
##
##
                     "post-embryonic camera-type eye development"
##
                     "hard palate development"
                     "regulation of timing of neuron differentiation"
##
                     "abducens nerve formation"
##
                     "T-helper cell differentiation"
##
##
                     "response to sorbitol"
                     "microtubule cytoskeleton organization involved in mitosis"
##
                     "regulation of protein ADP-ribosylation"
##
                     "memory T cell differentiation"
##
                     "regulation of transcription involved in anterior/posterior axis specification"
##
                     "positive regulation of transcription from RNA polymerase II promoter in response
##
                     "membrane tubulation"
##
                     "positive regulation of histamine secretion by mast cell"
##
                     "positive regulation of spontaneous neurotransmitter secretion"
##
##
                     "negative regulation of macropinocytosis"
                     "positive regulation of mismatch repair"
##
##
                     "regulation of synaptic vesicle endocytosis"
```

"negative regulation of determination of dorsal identity"

```
##
                     "regulation of transcription from RNA polymerase II promoter in response to hypoxi
##
                     "positive regulation of thyroid hormone generation"
                     "regulation of adenylate cyclase activity involved in G protein-coupled receptor s
##
                     "regulation of ubiquitin-protein transferase activity"
##
##
                     "corticotropin secretion"
##
                     "negative regulation of proteolysis involved in cellular protein catabolic process
                     "mesangial cell-matrix adhesion"
##
                     "negative regulation of glucose import"
##
##
                     "tissue remodeling"
                     "intralumenal vesicle formation"
##
##
                     "regulation of signal transduction involved in mitotic G2 DNA damage checkpoint"
                     "regulation of chromatin silencing at rDNA"
##
                     "positive regulation of myeloid dendritic cell chemotaxis"
##
                     "negative regulation of dendritic cell dendrite assembly"
##
##
                     "positive regulation of osteoclast proliferation"
##
                     "regulation of angiotensin-activated signaling pathway"
                     "positive regulation of mast cell cytokine production"
##
                     "DNA methylation on cytosine"
##
                     "ionotropic glutamate receptor signaling pathway"
##
                     "positive regulation of clathrin coat assembly"
##
##
                     "leukocyte migration involved in immune response"
                     "innate immune response-activating signal transduction"
##
                     "cerebellar cortex morphogenesis"
##
                     "leukocyte degranulation"
##
                     "respiratory burst after phagocytosis"
##
##
                     "interferon-alpha production"
##
                     "aldosterone biosynthetic process"
                     "cortisol biosynthetic process"
##
                     "zinc ion transmembrane transport"
##
                     "negative regulation of eosinophil extravasation"
##
##
                     "ER overload response"
##
                     "regulation of skeletal muscle contraction"
                     "DNA geometric change"
##
                     "hematopoietic stem cell differentiation"
##
##
                     "negative regulation of mesodermal cell fate specification"
##
                     "viral entry into host cell"
                     "regulation of sprouting angiogenesis"
##
##
                     "positive regulation of translational initiation by iron"
                     "regulation of female receptivity"
##
                     "regulation of cellular process"
##
                     "olfactory behavior"
##
##
                     "positive regulation of dermatome development"
                     "regulation of establishment of planar polarity involved in neural tube closure"
##
                     "regulation of cargo loading into COPII-coated vesicle"
##
                     "flavonoid metabolic process"
##
                     "vestibulocochlear nerve structural organization"
##
                     "response to glucocorticoid"
##
                     "metanephric collecting duct development"
##
##
                     "sensory neuron axon guidance"
                     "regulation of histone H3-K9 trimethylation"
##
##
                     "negative regulation of glycine import across plasma membrane"
                     "dorsal root ganglion morphogenesis"
##
##
                     "RNA polyadenylation"
```

"establishment of synaptic specificity at neuromuscular junction"

```
##
                     "catecholamine secretion"
##
                     "regulation of type B pancreatic cell development"
##
                     "establishment of planar polarity"
                     "embryonic genitalia morphogenesis"
##
##
                     "regulation of chromatin silencing"
                     "negative regulation of bicellular tight junction assembly"
##
                     "formation of primary germ layer"
##
                     "negative regulation of epidermal growth factor-activated receptor activity"
##
##
                     "male germ-line stem cell asymmetric division"
                     "negative regulation of macrophage activation"
##
##
                     "endothelial tube lumen extension"
                     "positive regulation of endosome organization"
##
                     "corticotropin hormone secreting cell differentiation"
##
                     "vitamin D3 metabolic process"
##
##
                     "positive regulation of calcineurin-NFAT signaling cascade"
##
                     "negative regulation of monocyte chemotactic protein-1 production"
                     "positive regulation of mitotic cell cycle DNA replication"
##
                     "positive regulation of parathyroid hormone secretion"
##
##
                     "regulation of extrinsic apoptotic signaling pathway in absence of ligand"
##
                     "facial nerve structural organization"
##
                     "eosinophil differentiation"
                     "collateral sprouting"
##
                     "positive regulation of glomerular mesangial cell proliferation"
##
                     "negative regulation of branching involved in ureteric bud morphogenesis"
##
                     "striatal medium spiny neuron differentiation"
##
##
                     "regulation of kinase activity"
##
                     "neutrophil extravasation"
                     "negative regulation of bone mineralization involved in bone maturation"
##
                     "axon choice point recognition"
##
                     "positive regulation of stem cell differentiation"
##
##
                     "mesenchymal to epithelial transition"
##
                     "protein K27-linked ubiquitination"
                     "polysaccharide metabolic process"
##
##
                     "neural plate morphogenesis"
                     "sodium ion import across plasma membrane"
##
##
                     "detection of fungus"
##
                     "positive regulation of catecholamine secretion"
##
                     "external genitalia morphogenesis"
                     "nuclear matrix anchoring at nuclear membrane"
##
                     "positive regulation of Schwann cell proliferation"
##
                     "TORC1 signaling"
##
##
                     "positive regulation of myeloid cell differentiation"
                     "inner ear receptor cell differentiation"
##
                     "epithelial cell proliferation involved in salivary gland morphogenesis"
##
                     "inositol metabolic process"
##
                     "hormone secretion"
##
                     "sclerotome development"
##
                     "response to pain"
##
                     "regulation of atrial cardiac muscle cell membrane repolarization"
##
                     "negative regulation of T cell activation via T cell receptor contact with antigen
##
##
                     "positive regulation of neuron apoptotic process"
                     "meiotic DNA double-strand break processing"
##
##
                     "regulation of viral entry into host cell"
                     "negative regulation of cellular response to growth factor stimulus"
##
```

```
"neurotransmitter receptor transport to postsynaptic membrane"
##
                     "negative regulation of glucosylceramide biosynthetic process"
##
                     "response to camptothecin"
##
                     "negative regulation of peptidyl-cysteine S-nitrosylation"
##
##
                     "positive regulation of mitochondrial transcription"
                     "regulation of translation in response to stress"
##
                     "positive regulation of STAT cascade"
##
                     "urogenital system development"
##
##
                     "muscle contraction"
                     "U1 snRNA 3'-end processing"
##
##
                     "U5 snRNA 3'-end processing"
                     "cardiac vascular smooth muscle cell development"
##
                     "endosomal transport"
##
                     "bone trabecula formation"
##
                     "cellular response to bacterial lipopeptide"
##
##
                     "response to manganese-induced endoplasmic reticulum stress"
##
                     "base-excision repair, base-free sugar-phosphate removal"
                     "positive regulation of cholesterol transport"
##
                     "protection from natural killer cell mediated cytotoxicity"
##
##
                     "peptidyl-proline hydroxylation"
                     "RNA polymerase II preinitiation complex assembly"
##
##
                     "luteinizing hormone signaling pathway"
                     "negative regulation of B cell activation"
##
                     "epidermis development"
##
                     "peptide biosynthetic process"
##
##
                     "gephyrin clustering involved in postsynaptic density assembly"
##
                     "detection of mechanical stimulus involved in sensory perception of sound"
                     "otic vesicle morphogenesis"
##
                     "double-strand break repair via synthesis-dependent strand annealing"
##
                     "glomerulus vasculature development"
##
                     "regulation of DNA-dependent DNA replication"
##
##
                     "positive regulation of myosin-light-chain-phosphatase activity"
                     "myelination"
##
##
                     "presynaptic membrane assembly"
                     "ESCRT III complex disassembly"
##
##
                     "cytoplasmic translational initiation"
##
                     "centrosome-templated microtubule nucleation"
##
                     "secretion by lung epithelial cell involved in lung growth"
                     "cellular response to testosterone stimulus"
##
                     "nephric duct morphogenesis"
##
                     "positive regulation of CD8-positive, alpha-beta cytotoxic T cell extravasation"
##
##
                     "early endosome to Golgi transport"
                     "type B pancreatic cell proliferation"
##
                     "regulation of low-density lipoprotein particle receptor catabolic process"
##
                     "muscle cell development"
##
                     "regulation of dosage compensation by inactivation of X chromosome"
##
                     "DNA replication-dependent nucleosome assembly"
##
##
                     "negative regulation of phosphatidylinositol biosynthetic process"
##
                     "small-subunit processome assembly"
                     "actin filament reorganization"
##
                     "gastrin-induced gastric acid secretion"
##
                     "calcium ion transmembrane transport via high voltage-gated calcium channel"
##
                     "positive regulation of fatty acid metabolic process"
##
                     "axial mesoderm formation"
##
```

```
##
                     "notochord cell development"
##
                     "pericyte cell differentiation"
                     "positive regulation of cholesterol metabolic process"
##
                     "pulmonary valve morphogenesis"
##
                     "regulation of the force of heart contraction by chemical signal"
##
                     "snRNA metabolic process"
##
                     "snRNA modification"
##
                     "somatotropin secreting cell development"
##
##
                     "pancreas morphogenesis"
                     "negative regulation of peroxisome proliferator activated receptor signaling pathw
##
                     "female meiosis chromosome separation"
##
                     "regulation of systemic arterial blood pressure by renin-angiotensin"
##
                     "leukotriene metabolic process"
##
                     "positive regulation of Schwann cell differentiation"
##
##
                     "sensory processing"
##
                     "bud outgrowth involved in lung branching"
##
                     "endothelial cell chemotaxis to vascular endothelial growth factor"
                     "stress-induced premature senescence"
##
                     "positive regulation of synaptic vesicle recycling"
##
                     "protein secretion"
##
##
                     "regulation of macrophage chemotaxis"
##
                     "rRNA metabolic process"
                     "negative regulation of proteasomal ubiquitin-dependent protein catabolic process"
##
                     "positive regulation of strand invasion"
##
                     "cerebellar Purkinje cell layer structural organization"
##
##
                     "oocyte development"
##
                     "cornified envelope assembly"
                     "regulation of axon diameter"
##
                     "regulation of type III interferon production"
##
                     "cytoplasmic pattern recognition receptor signaling pathway in response to virus"
##
                     "postsynaptic intermediate filament cytoskeleton organization"
##
##
                     "ATP hydrolysis coupled anion transmembrane transport"
                     "regulation of hydrogen peroxide metabolic process"
##
##
                     "primary sex determination"
                     "response to gonadotropin-releasing hormone"
##
                     "positive regulation of membrane tubulation"
##
##
                     "circadian sleep/wake cycle, non-REM sleep"
##
                     "forebrain morphogenesis"
                     "chondroitin sulfate proteoglycan biosynthetic process"
##
                     "prostate gland morphogenesis"
##
                     "negative regulation of glucose import in response to insulin stimulus"
##
                     "immunoglobulin biosynthetic process"
##
                     "negative regulation of epithelial to mesenchymal transition"
##
                     "female genitalia development"
##
                     "death-inducing signaling complex assembly"
##
                     "negative regulation of fibroblast growth factor production"
##
                     "regulation of secondary heart field cardioblast proliferation"
##
                     "NAD biosynthesis via nicotinamide riboside salvage pathway"
##
                     "regulation of cytokine-mediated signaling pathway"
##
                     "cartilage development involved in endochondral bone morphogenesis"
##
##
                     "thymus epithelium morphogenesis"
                     "sodium ion transmembrane transport"
##
                     "metanephric ascending thin limb development"
##
```

"negative regulation of protein ADP-ribosylation"

```
##
                     "negative regulation of hippo signaling"
##
                     "monocyte activation"
                     "cholesterol storage"
##
                     "negative regulation of cardiac muscle tissue development"
##
##
                     "basal protein localization"
                     "SNARE complex assembly"
##
                     "regulation of voltage-gated calcium channel activity"
##
                     "cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (
##
##
                     "response to dietary excess"
                     "tRNA wobble position uridine thiolation"
##
##
                     "axoneme assembly"
                     "cartilage morphogenesis"
##
                     "negative regulation of locomotion involved in locomotory behavior"
##
                     "phospholipid transport"
##
##
                     "N-terminal peptidyl-glycine N-myristoylation"
##
                     "gonadotrophin-releasing hormone neuronal migration to the hypothalamus"
                     "ubiquitin-dependent protein catabolic process via the N-end rule pathway"
##
##
                     "facioacoustic ganglion development"
##
                     "cell projection morphogenesis"
                     "negative regulation of vascular endothelial cell proliferation"
##
##
                     "DNA replication proofreading"
                     "regulation of intrinsic apoptotic signaling pathway in response to DNA damage by
##
                     "DNA replication-independent nucleosome organization"
##
                     "regulation of monocyte differentiation"
##
                     "positive regulation of striated muscle cell differentiation"
##
##
                     "mesonephric tubule development"
                     "positive regulation of oxidative stress-induced neuron death"
##
                     "regulation of estradiol secretion"
##
                     "synaptic transmission, glutamatergic"
##
                     "primitive erythrocyte differentiation"
##
##
                     "negative regulation of cell differentiation involved in embryonic placenta develo
##
                     "response to gonadotropin"
                     "antigen processing and presentation, exogenous lipid antigen via MHC class Ib"
##
                     "S-adenosylmethionine metabolic process"
##
##
                     "mammary gland duct morphogenesis"
                     "positive regulation of hormone biosynthetic process"
##
                     "isopeptide cross-linking via N6-(L-isoglutamyl)-L-lysine"
##
##
                     "positive regulation of fatty acid oxidation"
                     "glucocorticoid mediated signaling pathway"
##
                     "artery vasodilation involved in baroreceptor response to increased systemic arter
##
                     "antigen processing and presentation of endogenous peptide antigen via MHC class I
##
##
                     "ventral spinal cord interneuron differentiation"
                     "negative regulation of neurological system process"
##
                     "negative regulation of aldosterone biosynthetic process"
##
                     "regulation of microvillus assembly"
##
                     "negative regulation of cortisol biosynthetic process"
##
                     "cell activation"
##
                     "maturation of 5.8S rRNA"
##
##
                     "induction of bacterial agglutination"
##
                     "left/right pattern formation"
##
                     "microtubule anchoring at microtubule organizing center"
                     "behavioral response to nicotine"
##
##
                     "positive regulation of phospholipid scramblase activity"
                     "positive regulation of glucosylceramide catabolic process"
##
```

```
##
                     "positive regulation of sphingomyelin catabolic process"
##
                     "phospholipase C-activating G protein-coupled glutamate receptor signaling pathway
                     "regulation of neurological system process"
##
                     "positive regulation of superoxide anion generation"
##
##
                     "embryonic skeletal limb joint morphogenesis"
                     "regulation of corticotropin-releasing hormone secretion"
##
                     "anatomical structure regression"
##
                     "ureteric bud invasion"
##
##
                     "negative regulation of satellite cell differentiation"
                     "chromatin silencing at telomere"
##
##
                     "regulation of interleukin-2 biosynthetic process"
                     "ciliary neurotrophic factor-mediated signaling pathway"
##
                     "replication fork reversal"
##
                     "fibroblast growth factor receptor signaling pathway involved in mammary gland spe
##
##
                     "mammary gland bud formation"
##
                     "branch elongation involved in salivary gland morphogenesis"
                     "mesenchymal cell differentiation involved in lung development"
##
##
                     "positive regulation of monocyte aggregation"
                     "negative regulation of thymidylate synthase biosynthetic process"
##
                     "positive regulation of maintenance of mitotic sister chromatid cohesion"
##
##
                     "zinc ion homeostasis"
                     "inflammatory cell apoptotic process"
##
                     "hexose transmembrane transport"
##
                     "protein localization to tricellular tight junction"
##
                     "release of sequestered calcium ion into cytosol by endoplasmic reticulum"
##
##
                     "positive regulation of glucocorticoid receptor signaling pathway"
##
                     "smoothened signaling pathway involved in regulation of cerebellar granule cell pr
                     "meiotic DNA repair synthesis involved in reciprocal meiotic recombination"
##
                     "protein farnesylation"
##
                     "homologous chromosome orientation involved in meiotic metaphase I plate congressi
##
                     "DNA synthesis involved in double-strand break repair via homologous recombination
##
                     "positive regulation of natural killer cell mediated immunity"
##
                     "protein heterotetramerization"
##
                     "regulation of translational initiation by eIF2 alpha phosphorylation"
##
##
                     "methylglyoxal catabolic process to D-lactate via S-lactoyl-glutathione"
                     "mesenchymal to epithelial transition involved in metanephros morphogenesis"
##
##
                     "regulation of chondrocyte differentiation"
##
                     "nuclear polyadenylation-dependent mRNA catabolic process"
                     "cold acclimation"
##
                     "spontaneous neurotransmitter secretion"
##
                     "nuclear inner membrane organization"
##
##
                     "regulation of kinetochore assembly"
                     "negative regulation of skeletal muscle satellite cell proliferation"
##
                     "positive regulation of membrane protein ectodomain proteolysis"
##
                     "regulation of calcium ion transport into cytosol"
##
                     "telencephalon regionalization"
##
                     "positive regulation of protein deacetylation"
##
                     "positive regulation of histone H3-K9 trimethylation"
##
                     "negative regulation of mRNA catabolic process"
##
                     "negative regulation of transcription from RNA polymerase II promoter by histone m
##
##
                     "cardiac vascular smooth muscle cell differentiation"
                     "negative regulation of aspartic-type endopeptidase activity involved in amyloid p
##
##
                     "positive regulation of protein deubiquitination"
```

"peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase ac

```
##
                     "protein polyglutamylation"
##
                     "cochlear nucleus development"
                     "arterial endothelial cell fate commitment"
##
                     "blood vessel endothelial cell fate specification"
##
##
                     "positive regulation of ERBB signaling pathway"
                     "positive regulation of ephrin receptor signaling pathway"
##
                     "positive regulation of canonical Wnt signaling pathway involved in cardiac muscle
##
                     "protein localization to pericentriolar material"
##
##
                     "vesicle targeting"
                     "protein localization to lysosome"
##
##
                     "endothelial cell apoptotic process"
                     "cAMP catabolic process"
##
                     "norepinephrine biosynthetic process"
##
                     "basal dendrite arborization"
##
##
                     "endocardium morphogenesis"
##
                     "negative regulation of G2/M transition of mitotic cell cycle"
                     "epithelial cilium movement involved in determination of left/right asymmetry"
##
                     "fast, calcium ion-dependent exocytosis of neurotransmitter"
##
##
                     "negative regulation of tumor necrosis factor-mediated signaling pathway"
##
                     "I-kappaB kinase/NF-kappaB signaling"
##
                     "branchiomotor neuron axon guidance"
                     "regulation of phosphorylation of RNA polymerase II C-terminal domain"
##
                     "negative regulation of interferon-beta production"
##
                     "regulation of excretion"
##
                     "positive regulation of cysteine-type endopeptidase activity involved in apoptotic
##
##
                     "regulation of intracellular calcium activated chloride channel activity"
##
                     "cytoplasm organization"
                     "lymphatic endothelial cell migration"
##
##
                     "endothelial tip cell fate specification"
                     "exocyst localization"
##
                     "regulation of protein heterodimerization activity"
##
##
                     "ventricular cardiac muscle cell action potential"
                     "negative regulation of amyloid-beta formation"
##
##
                     "regulation of Notch signaling pathway"
                     "negative regulation of smoothened signaling pathway involved in ventral spinal co
##
##
                     "negative regulation of chemokine production"
##
                     "response to DDT"
##
                     "cellular response to pyrimidine ribonucleotide"
                     "histone H3-S10 phosphorylation involved in chromosome condensation"
##
                     "regulation of tumor necrosis factor biosynthetic process"
##
                     "nose development"
##
                     "anastral spindle assembly"
##
                     "cellular response to epidermal growth factor stimulus"
##
                     "cellular response to mycophenolic acid"
##
                     "positive regulation of protein localization to spindle pole body"
##
                     "positive regulation of mitotic spindle elongation"
##
                     "positive regulation of chromosome separation"
##
                     "intermediate filament bundle assembly"
##
                     "DNA replication, removal of RNA primer"
##
                     "regulation of mitotic cytokinesis"
##
##
                     "regulation of secretion"
                     "trachea cartilage morphogenesis"
##
##
                     "embryonic epithelial tube formation"
                     "peptidyl-methionine modification"
##
```

```
##
                     "iron ion homeostasis"
##
                     "glycophagy"
                     "metanephric glomerular capillary formation"
##
                     "multi-ciliated epithelial cell differentiation"
##
                     "icosanoid metabolic process"
##
                     "negative regulation of Rho protein signal transduction"
##
                     "regulation of meiotic nuclear division"
##
                     "regulation of peptidyl-tyrosine phosphorylation"
##
##
                     "neuron death"
                     "positive regulation of cell communication by electrical coupling"
##
##
                     "maintenance of protein location in plasma membrane"
                     "positive regulation of membrane depolarization during cardiac muscle cell action
##
                     "regulation of calcium ion transmembrane transporter activity"
##
                     "regulation of Wnt signaling pathway, planar cell polarity pathway"
##
                     "pericentric heterochromatin assembly"
##
##
                     "positive regulation of gluconeogenesis"
                     "NMDA glutamate receptor clustering"
##
                     "histone H3-K27 trimethylation"
##
##
                     "positive regulation of dopamine secretion"
                     "enamel mineralization"
##
##
                     "positive regulation of cellular response to macrophage colony-stimulating factor
                     "positive regulation of platelet activation"
##
                     "regulation of lamellipodium morphogenesis"
##
                     "negative regulation of intracellular steroid hormone receptor signaling pathway"
##
                     "regulation of epidermal growth factor receptor signaling pathway"
##
##
                     "positive regulation of chemokine (C-C motif) ligand 2 secretion"
##
                     "renal system development"
                     "negative regulation of myosin-light-chain-phosphatase activity"
##
                     "motor neuron apoptotic process"
##
                     "regulation of transcription from RNA polymerase II promoter involved in myocardia
##
                     "positive regulation of ARF protein signal transduction"
##
##
                     "dendritic cell cytokine production"
                     "positive regulation of metanephric mesenchymal cell migration by platelet-derived
##
##
                     "mast cell proliferation"
                     "melanocyte adhesion"
##
##
                     "positive regulation of pyloric antrum smooth muscle contraction"
##
                     "positive regulation of colon smooth muscle contraction"
##
                     "regulation of growth hormone secretion"
                     "intraciliary anterograde transport"
##
                     "positive regulation by host of symbiont catalytic activity"
##
                     "epidermis morphogenesis"
##
                     "deadenylation-dependent decapping of nuclear-transcribed mRNA"
##
                     "regulation of mRNA stability involved in response to stress"
##
                     "sterol biosynthetic process"
##
                     "pallium cell proliferation in forebrain"
##
                     "post-anal tail morphogenesis"
##
                     "negative regulation of secretion"
##
                     "positive regulation of DNA metabolic process"
##
                     "positive regulation of DNA-directed DNA polymerase activity"
##
                     "peptide cross-linking via chondroitin 4-sulfate glycosaminoglycan"
##
##
                     "positive regulation of protein modification process"
                     "ectodermal cell fate commitment"
##
                     "regulation of tyrosine phosphorylation of STAT protein"
##
```

"CD4-positive or CD8-positive, alpha-beta T cell lineage commitment"

```
##
                      "negative regulation of centriole-centriole cohesion"
##
                      "SA node cell action potential"
                     "antigen receptor-mediated signaling pathway"
##
                      "glial cell fate commitment"
##
                      "positive regulation of transcription from RNA polymerase II promoter in response
##
                      "telomere maintenance via base-excision repair"
##
                      "regulation of mitochondrial membrane permeability involved in apoptotic process"
##
                      "apoptotic chromosome condensation"
##
##
                      "endoplasmic reticulum membrane fusion"
                      "peptidyl-glutamic acid carboxylation"
##
##
                      "regulation of signal transduction"
                      "positive regulation of calcium-dependent cell-cell adhesion"
##
                      "histone demethylation"
##
                      "muscle filament sliding"
##
##
                      "chromatin silencing at centromere"
##
                      "interleukin-12 production"
##
                     "organelle fusion"
##
                     "vagina development"
##
                      "vesicle scission"
                      "female meiosis I"
##
##
                     "thyroid-stimulating hormone-secreting cell differentiation"
##
                      "retrograde axonal protein transport"
##
                      "error-prone translesion synthesis"
                      "salivary gland cavitation"
##
                     "chondrocyte development involved in endochondral bone morphogenesis"
##
##
                      "mesodermal cell fate determination"
##
                      "ventral trunk neural crest cell migration"
                      "sympathetic neuron projection extension"
##
##
                      "sympathetic neuron projection guidance"
                      "negative regulation of interleukin-6 secretion"
##
                      "semaphorin-plexin signaling pathway involved in neuron projection guidance"
##
                     "cell-cell signaling involved in cell-cell junction organization"
##
                      "cellular response to bleomycin"
##
##
                      "histamine metabolic process"
##
                      "surfactant homeostasis"
##
                     "embryonic organ morphogenesis"
##
                      "natural killer cell activation involved in immune response"
##
                      "mast cell cytokine production"
                      "Arp2/3 complex-mediated actin nucleation"
##
                     "protein localization to plasma membrane raft"
##
                      "regulation of membrane depolarization during cardiac muscle cell action potential
##
##
                     "neurotransmitter transport"
                      "midbrain morphogenesis"
##
                     "cell migration involved in gastrulation"
##
                      "establishment of protein localization to endoplasmic reticulum membrane"
##
                      "negative regulation of macrophage differentiation"
##
                     "lens fiber cell morphogenesis"
##
                      "cell proliferation involved in metanephros development"
##
##
                      "response to interferon-alpha"
                      "regulation of odontogenesis"
##
                      "positive regulation of GO to G1 transition"
##
                      "generation of catalytic spliceosome for second transesterification step"
##
##
                      "nucleotide-excision repair, DNA damage recognition"
##
                      "regulation of neurotransmitter levels"
```

```
"positive regulation of nuclear cell cycle DNA replication"
##
##
                     "response to parathyroid hormone"
                     "regulation of cardiac muscle cell contraction"
##
                     "negative regulation of histone H4 acetylation"
##
##
                     "regulation of iron ion import"
##
                     "insemination"
                     "positive regulation of cell projection organization"
##
                     "regulation of SA node cell action potential"
##
##
                     "regulation of synaptic vesicle docking"
                     "peptidyl-threonine autophosphorylation"
##
##
                     "negative regulation of translational elongation"
                     "negative regulation of acute inflammatory response to non-antigenic stimulus"
##
                     "negative regulation of translational initiation"
##
                     "dosage compensation"
##
##
                     "mast cell activation"
##
                     "axonal transport"
                     "negative regulation of transcription of nucleolar large rRNA by RNA polymerase I"
##
                     "positive regulation of calcium ion transport into cytosol"
##
##
                     "positive regulation of transporter activity"
##
                     "positive regulation of neutrophil degranulation"
##
                     "ectoderm and mesoderm interaction"
                     "epidermal cell division"
##
##
                     "inositol phosphate dephosphorylation"
                     "positive regulation of somatic stem cell population maintenance"
##
##
                     "lymph vessel morphogenesis"
##
                     "positive regulation of oxidoreductase activity"
##
                     "regulation of gastric acid secretion"
                     "protein O-linked glycosylation via threonine"
##
                     "regulation of myosin-light-chain-phosphatase activity"
##
                     "negative regulation of post-translational protein modification"
##
##
                     "cell-matrix adhesion"
##
                     "synaptic membrane adhesion"
                     "regulation of synaptic transmission, dopaminergic"
##
                     "mature natural killer cell chemotaxis"
##
##
                     "astrocyte differentiation"
                     "negative regulation of adiponectin secretion"
##
##
                     "positive regulation of thymocyte migration"
##
                     "positive regulation of granzyme A production"
                     "negative regulation of T-helper 1 cell activation"
##
                     "positive regulation of immunoglobulin production in mucosal tissue"
##
                     "negative regulation of heart rate involved in baroreceptor response to increased
##
##
                     "retinoic acid catabolic process"
                     "negative regulation of dendrite development"
##
##
                     "response to sucrose"
                     "negative regulation of mast cell cytokine production"
##
                     "positive regulation of activin receptor signaling pathway"
##
                     "protein-chromophore linkage"
##
                     "Wnt signaling pathway involved in somitogenesis"
##
                     "mitotic recombination-dependent replication fork processing"
##
##
                     "sperm entry"
##
                     "glomerular visceral epithelial cell differentiation"
                     "central nervous system myelination"
##
                     "positive regulation of phosphoprotein phosphatase activity"
##
                     "base-excision repair, gap-filling"
##
```

```
##
                     "response to chlorate"
##
                     "positive regulation of cytoplasmic mRNA processing body assembly"
                     "positive regulation of epithelial cell proliferation involved in wound healing"
##
                     "positive regulation of gliogenesis"
##
##
                     "positive regulation of protein sumoylation"
                     "modulation of age-related behavioral decline"
##
                     "neurotransmitter receptor transport, postsynaptic endosome to lysosome"
##
                     "vesicle organization"
##
##
                     "negative thymic T cell selection"
                     "glycerol-3-phosphate biosynthetic process"
##
##
                     "negative regulation of T cell differentiation"
                     "positive regulation of phospholipase activity"
##
                     "interleukin-2-mediated signaling pathway"
##
                     "pilomotor reflex"
##
                     "positive regulation of megakaryocyte differentiation"
##
##
                     "lymphocyte migration into lymphoid organs"
                     "negative regulation of tumor necrosis factor secretion"
##
                     "negative regulation of early endosome to late endosome transport"
##
                     "transition between slow and fast fiber"
##
                     "dorsal spinal cord development"
##
##
                     "positive regulation of fibrinolysis"
                     "common bile duct development"
##
                     "regulation of atrial cardiac muscle cell action potential"
##
                     "positive regulation of vascular smooth muscle cell differentiation"
##
                     "regulation of nuclear cell cycle DNA replication"
##
##
                     "positive regulation of low-density lipoprotein particle receptor biosynthetic pro
##
                     "regulation of synaptic vesicle priming"
                     "amygdala development"
##
                     "histone H3-K4 dimethylation"
##
                     "regulation of histone H3-K14 acetylation"
##
##
                     "regulation of protein localization to nucleus"
##
                     "regulation of histone H3-K27 acetylation"
                     "positive regulation of cellular response to drug"
##
                     "cellular response to water deprivation"
##
                     "regulation of RNA polymerase II transcriptional preinitiation complex assembly"
##
                     "cellular response to rapamycin"
##
##
                     "cytokinesis"
##
                     "protein urmylation"
                     "tRNA thio-modification"
##
                     "membrane protein ectodomain proteolysis"
##
                     "histone H3-K9 dimethylation"
##
##
                     "visual perception"
                     "snRNA transcription"
##
                     "axon extension involved in axon guidance"
##
                     "spermine transport"
##
                     "establishment of chromatin silencing"
##
##
                     "female gamete generation"
                     "behavioral response to starvation"
##
##
                     "negative regulation of histone H3-K14 acetylation"
                     "negative regulation of cellular response to testosterone stimulus"
##
##
                     "anterior commissure morphogenesis"
                     "U4 snRNA 3'-end processing"
##
##
                     "negative regulation of immature T cell proliferation"
                     "positive regulation of adenylate cyclase-activating G protein-coupled receptor si
##
```

```
##
                     "regulation of ovarian follicle development"
##
                     "short-term memory"
                     "evasion or tolerance by virus of host immune response"
##
                     "regulation of NLRP3 inflammasome complex assembly"
##
##
                     "response to acetate"
                     "positive regulation of steroid biosynthetic process"
##
                     "renal absorption"
##
                     "regulation of hematopoietic progenitor cell differentiation"
##
##
                     "Schwann cell development"
                     "negative regulation of circadian sleep/wake cycle, non-REM sleep"
##
##
                     "negative regulation of mucus secretion"
                     "regulation of peptidase activity"
##
                     "negative regulation of peptidyl-tyrosine autophosphorylation"
##
                     "negative regulation of inward rectifier potassium channel activity"
##
##
                     "regulation of smooth muscle cell apoptotic process"
##
                     "regulation of receptor recycling"
                     "regulation of actin filament length"
##
                     "interleukin-18-mediated signaling pathway"
##
##
                     "hematopoietic stem cell homeostasis"
                     "TCR signalosome assembly"
##
##
                     "negative regulation of hydrogen peroxide-mediated programmed cell death"
                     "glycolipid biosynthetic process"
##
                     "negative regulation of MyD88-independent toll-like receptor signaling pathway"
##
                     "regulation of peroxisome proliferator activated receptor signaling pathway"
##
                     "cortical actin cytoskeleton organization"
##
##
                     "chemoattraction of serotonergic neuron axon"
##
                     "negative regulation of cell adhesion molecule production"
                     "planar cell polarity pathway involved in outflow tract morphogenesis"
##
                     "planar cell polarity pathway involved in ventricular septum morphogenesis"
##
                     "planar cell polarity pathway involved in cardiac right atrium morphogenesis"
##
                     "planar cell polarity pathway involved in cardiac muscle tissue morphogenesis"
##
##
                     "planar cell polarity pathway involved in pericardium morphogenesis"
                     "negative regulation of cell proliferation in midbrain"
##
                     "planar cell polarity pathway involved in midbrain dopaminergic neuron differentia
##
##
                     "positive regulation of autophagosome assembly"
                     "estrogen metabolic process"
##
##
                     "skeletal muscle satellite cell activation"
##
                     "central nervous system morphogenesis"
                     "mesodermal to mesenchymal transition involved in gastrulation"
##
                     "phosphatidylinositol 5-phosphate metabolic process"
##
                     "cellular response to glycoprotein"
##
##
                     "cellular response to thyrotropin-releasing hormone"
                     "nuclear-transcribed mRNA catabolic process, exonucleolytic, 3'-5'"
##
                     "negative regulation of cellular protein catabolic process"
##
                     "regulation of hepatocyte growth factor receptor signaling pathway"
##
                     "dendritic cell dendrite assembly"
##
                     "regulation of cell-matrix adhesion"
##
                     "auditory receptor cell fate commitment"
##
                     "senescence-associated heterochromatin focus assembly"
##
                     "meiotic DNA double-strand break processing involved in reciprocal meiotic recombi:
##
##
                     "regulation of mitotic metaphase/anaphase transition"
                     "regulation of canonical Wnt signaling pathway"
##
                     "neural crest cell migration involved in heart formation"
##
```

"cellular biogenic amine metabolic process"

```
##
                      "anterior neural tube closure"
##
                     "cellular response to folic acid"
                      "negative regulation of entry of bacterium into host cell"
##
                      "regulation of B cell proliferation"
##
                      "positive regulation of flagellated sperm motility involved in capacitation"
##
                      "regulation of hematopoietic stem cell proliferation"
##
                      "positive regulation of dendritic spine maintenance"
##
                      "regulation of regulated secretory pathway"
##
##
                      "positive regulation of Arp2/3 complex-mediated actin nucleation"
                      "female courtship behavior"
##
##
                      "proteasomal protein catabolic process"
                      "macrophage cytokine production"
##
                      "multivesicular body-lysosome fusion"
##
                      "nuclear migration along microfilament"
##
##
                      "somatostatin secretion"
##
                      "positive regulation of lipoprotein particle clearance"
                      "telomere assembly"
##
                      "negative regulation of astrocyte activation"
##
                      "negative regulation of synaptic vesicle recycling"
##
                      "strand displacement"
##
##
                     "resolution of recombination intermediates"
                      "regulation of viral release from host cell"
##
                      "positive regulation of chaperone-mediated protein folding"
##
                      "extracellular transport"
##
                     "establishment of neuroblast polarity"
##
##
                      "positive regulation of ER-associated ubiquitin-dependent protein catabolic proces
##
                      "positive regulation of timing of anagen"
                      "negative regulation of behavioral fear response"
##
                      "neuromuscular junction development"
##
                      "iron ion import across plasma membrane"
##
                      "ovarian cumulus expansion"
##
                     "retinal pigment epithelium development"
##
                      "p38MAPK cascade"
##
                      "kinetochore organization"
##
                      "inositol phosphate catabolic process"
##
                     "vascular endothelial growth factor receptor-2 signaling pathway"
##
##
                      "maintenance of permeability of blood-brain barrier"
##
                      "recognition of apoptotic cell"
                      "relaxation of muscle"
##
                     "chorion development"
##
                      "postsynaptic density protein 95 clustering"
##
##
                      "bombesin receptor signaling pathway"
                      "cellular response to gonadotropin stimulus"
##
                     "TNFSF11-mediated signaling pathway"
##
                      "replication-born double-strand break repair via sister chromatid exchange"
##
                      "mesenchymal-epithelial cell signaling"
##
                      "melanocyte migration"
##
                      "positive regulation of extrinsic apoptotic signaling pathway via death domain rec
##
##
                      "immature B cell differentiation"
                      "positive regulation of lipoprotein lipase activity"
##
##
                     "T-helper 17 cell differentiation"
                      "regulation of phosphate transport"
##
                      "random inactivation of X chromosome"
##
```

"protein deacetylation"

```
##
                     "hypophysis morphogenesis"
##
                     "positive regulation of synapse maturation"
                     "peptidyl-arginine N-methylation"
##
                     "ventricular zone neuroblast division"
##
                     "negative regulation of appetite by leptin-mediated signaling pathway"
##
                     "potassium ion homeostasis"
##
                     "regulation of amyloid-beta formation"
##
                     "positive regulation of bleb assembly"
##
##
                     "positive regulation of histone H3-K79 methylation"
                     "regulation of hair cycle"
##
##
                     "negative regulation of ERAD pathway"
                     "dichotomous subdivision of terminal units involved in salivary gland branching"
##
                     "positive regulation of viral release from host cell"
##
                     "maturation of LSU-rRNA"
##
##
                     "thromboxane A2 signaling pathway"
                     "positive regulation of pancreatic juice secretion"
##
                     "growth plate cartilage chondrocyte development"
##
                     "nucleosome mobilization"
##
                     "negative regulation of CD8-positive, alpha-beta T cell differentiation"
##
                     "negative regulation of sister chromatid cohesion"
##
##
                     "cell-cell adhesion mediated by cadherin"
                     "regulation of growth plate cartilage chondrocyte proliferation"
##
                     "glycoprotein metabolic process"
##
                     "protein desumoylation"
##
                     "ascending aorta morphogenesis"
##
##
                     "behavior"
                     "camera-type eye development"
##
                     "toll-like receptor TLR1:TLR2 signaling pathway"
##
                     "cellular response to triacyl bacterial lipopeptide"
##
##
                     "optokinetic behavior"
                     "regulation of primitive erythrocyte differentiation"
##
##
                     "eosinophil fate commitment"
                     "semicircular canal formation"
##
##
                     "morphogenesis of an epithelium"
                     "catecholamine metabolic process"
##
##
                     "cerebellar granule cell precursor proliferation"
##
                     "cellular sodium ion homeostasis"
##
                     "response to anoxia"
                     "regulation of epidermal cell differentiation"
##
                     "positive regulation of dense core granule biogenesis"
##
                     "planar cell polarity pathway involved in gastrula mediolateral intercalation"
##
                     "snRNA transcription by RNA polymerase III"
##
                     "hematopoietic progenitor cell differentiation"
##
                     "regulation of MyD88-dependent toll-like receptor signaling pathway"
##
                     "positive regulation by host of symbiont cAMP-mediated signal transduction"
##
                     "establishment of protein localization to mitochondrial membrane"
##
                     "membrane depolarization during SA node cell action potential"
##
                     "protein exit from endoplasmic reticulum"
##
                     "fibroblast growth factor receptor signaling pathway involved in orbitofrontal cor
##
                     "regulation of retinal ganglion cell axon guidance"
##
##
                     "regulation of potassium ion transmembrane transport"
                     "positive regulation of hepatic stellate cell activation"
##
                     "negative regulation of cell projection organization"
##
```

"sarcomerogenesis"

```
##
                     "cellular response to camptothecin"
##
                     "Fc receptor signaling pathway"
                     "trigeminal ganglion development"
##
                     "ammonium transmembrane transport"
##
##
                     "cortisol secretion"
                     "positive regulation of gastric mucosal blood circulation"
##
                     "nucleotide-excision repair, DNA gap filling"
##
                     "negative regulation of cell cycle G1/S phase transition"
##
##
                     "cardiac muscle cell fate commitment"
                     "regulation of mRNA binding"
##
##
                     "osteoblast fate commitment"
                     "regulation of lipid transport by positive regulation of transcription from RNA po
##
                     "plus-end-directed organelle transport along microtubule"
##
                     "regulation of delayed rectifier potassium channel activity"
##
##
                     "neurofibrillary tangle assembly"
##
                     "positive regulation of diacylglycerol kinase activity"
                     "lung saccule development"
##
                     "dehydroascorbic acid transport"
##
                     "negative regulation of histone methylation"
##
                     "regulation of podosome assembly"
##
##
                     "blood coagulation, fibrin clot formation"
                     "regulation of bicellular tight junction assembly"
##
                     "cellular magnesium ion homeostasis"
##
                     "regulation of lipid biosynthetic process"
##
                     "blood vessel lumenization"
##
##
                     "cerebral cortex neuron differentiation"
##
                     "positive regulation of T-helper 2 cell activation"
                     "vitamin transport"
##
                     "mitotic sister chromatid cohesion, centromeric"
##
                     "negative regulation of transcription from RNA polymerase II promoter involved in
##
##
                     "posttranscriptional gene silencing"
##
                     "thymic T cell selection"
                     "negative regulation of cytokine secretion involved in immune response"
##
                     "extrinsic apoptotic signaling pathway via death domain receptors"
##
                     "Wnt signaling pathway involved in midbrain dopaminergic neuron differentiation"
##
                     "positive regulation of eukaryotic translation initiation factor 4F complex assemb
##
##
                     "positive regulation of mRNA cap binding"
##
                     "regulation of polysome binding"
                     "tube formation"
##
                     "convergent extension involved in organogenesis"
##
                     "regulation of double-strand break repair"
##
##
                     "notochord formation"
                     "transmembrane receptor protein serine/threonine kinase signaling pathway"
##
                     "negative regulation of microglial cell activation"
##
                     "exocytosis"
##
                     "positive regulation of myelination"
##
                     "endosomal lumen acidification"
##
                     "beta-catenin destruction complex assembly"
##
##
                     "regulation of transcription from RNA polymerase II promoter in response to UV-ind
                     "regulation of sodium ion transmembrane transport"
##
##
                     "renal artery morphogenesis"
                     "receptor localization to non-motile cilium"
##
##
                     "cellular response to amino acid stimulus"
```

"kidney development"

```
##
                     "forebrain neuron development"
##
                     "regulation of TOR signaling"
                     "positive regulation of growth rate"
##
                     "positive regulation of amyloid precursor protein biosynthetic process"
##
##
                     "positive regulation of cerebellar granule cell precursor proliferation"
                     "positive regulation of histone modification"
##
                     "regulation of histone ubiquitination"
##
                     "positive regulation of Rac protein signal transduction"
##
##
                     "leukocyte chemotaxis involved in inflammatory response"
                     "SREBP signaling pathway"
##
##
                     "regulation of pro-B cell differentiation"
                     "negative regulation of T-helper 1 type immune response"
##
                     "protein auto-ADP-ribosylation"
##
                     "actin polymerization-dependent cell motility"
##
                     "ATP generation from poly-ADP-D-ribose"
##
##
                     "regulation of response to DNA damage stimulus"
##
                     "chondrocyte differentiation"
                     "negative regulation of leukocyte migration"
##
##
                     "lysosomal transport"
                     "regulation of fatty acid beta-oxidation"
##
##
                     "positive regulation of synaptic transmission, GABAergic"
                     "RIG-I signaling pathway"
##
                     "negative regulation of vascular smooth muscle cell proliferation"
##
                     "vitamin D catabolic process"
##
                     "hormonal regulation of the force of heart contraction"
##
##
                     "positive regulation of the force of heart contraction by chemical signal"
##
                     "thyroid-stimulating hormone signaling pathway"
                     "response to epinephrine"
##
##
                     "actin ubiquitination"
                     "positive regulation of interleukin-17-mediated signaling pathway"
##
                     "positive regulation of chemokine (C-C motif) ligand 20 production"
##
##
                     "inactivation of X chromosome by genetic imprinting"
                     "renal sodium ion absorption"
##
##
                     "cardiac atrium morphogenesis"
##
                     "lung vasculature development"
                     "negative regulation of T-helper 17 type immune response"
##
##
                     "negative regulation of icosanoid secretion"
##
                     "epithelial cell maturation involved in prostate gland development"
                     "snRNA 3'-end processing"
##
                     "negative regulation of protein K63-linked ubiquitination"
##
                     "axon ensheathment"
##
##
                     "collagen-activated signaling pathway"
                     "negative regulation of cardiac muscle cell differentiation"
##
                     "RNA methylation"
##
                     "positive regulation of meiotic cell cycle"
##
                     "extrinsic apoptotic signaling pathway"
##
                     "protein O-linked glycosylation via serine"
##
                     "immunoglobulin V(D)J recombination"
##
                     "establishment of endothelial barrier"
##
                     "T-helper 17 cell chemotaxis"
##
##
                     "negative regulation of eosinophil degranulation"
                     "sensory perception of sweet taste"
##
##
                     "sensory perception of umami taste"
```

"leukocyte adhesion to vascular endothelial cell"

```
"positive regulation of immune complex clearance by monocytes and macrophages"
##
##
                     "positive regulation of CD8-positive, alpha-beta T cell extravasation"
                     "positive regulation of astrocyte chemotaxis"
##
                     "focal adhesion assembly"
##
                     "intracellular sequestering of iron ion"
##
                     "Golgi to vacuole transport"
##
                     "negative regulation of phosphatidylinositol 3-kinase signaling"
##
                     "regulation of germinal center formation"
##
##
                     "positive regulation of hindgut contraction"
                     "negative regulation of lymphangiogenesis"
##
##
                     "metaphase/anaphase transition of mitotic cell cycle"
                     "response to rapamycin"
##
                     "cellular response to putrescine"
##
                     "hepatocyte dedifferentiation"
##
##
                     "cleavage involved in rRNA processing"
##
                     "VEGF-activated neuropilin signaling pathway"
                     "cellular response to corticosterone stimulus"
##
##
                     "motor neuron migration"
##
                     "positive regulation of retinal ganglion cell axon guidance"
                     "regulation of leukocyte mediated cytotoxicity"
##
##
                     "embryonic body morphogenesis"
                     "response to sulfur dioxide"
##
                     "T cell extravasation"
##
                     "positive regulation of T cell differentiation in thymus"
##
                     "nuclear export"
##
##
                     "collagen catabolic process"
##
                     "regulation of aspartic-type endopeptidase activity involved in amyloid precursor
                     "negative regulation of female gonad development"
##
                     "regulation of low-density lipoprotein particle clearance"
##
                     "regulation of endosome organization"
##
##
                     "sex determination"
##
                     "positive regulation of the force of heart contraction"
                     "chromosome passenger complex localization to kinetochore"
##
##
                     "radial glia guided migration of Purkinje cell"
                     "hydroxylysine biosynthetic process"
##
##
                     "positive regulation of bone development"
                     "negative regulation of potassium ion transmembrane transport"
##
##
                     "negative regulation of nucleotide-binding oligomerization domain containing 2 sig
                     "endochondral ossification"
##
                     "regulation of acute inflammatory response"
##
                     "macrophage colony-stimulating factor signaling pathway"
##
##
                     "stem cell proliferation"
                     "membrane depolarization during cardiac muscle cell action potential"
##
                     "positive regulation of monocyte extravasation"
##
                     "lacrimal gland development"
##
                     "progesterone secretion"
##
                     "tRNA 5'-end processing"
##
                     "adaptive immune response based on somatic recombination of immune receptors built
##
                     "defense response to fungus, incompatible interaction"
##
                     "regulation of interleukin-23 production"
##
##
                     "histone H3-K4 demethylation, trimethyl-H3-K4-specific"
                     "retina morphogenesis in camera-type eye"
##
                     "branch elongation involved in mammary gland duct branching"
##
```

"regulation of cartilage development"

```
##
                     "positive regulation of receptor clustering"
##
                     "transforming growth factor beta receptor signaling pathway involved in heart deve
                     "embryonic liver development"
##
                     "inner cell mass cell differentiation"
##
##
                     "regulation of MAP kinase activity"
                     "T-helper 2 cell differentiation"
##
                     "regulation of receptor-mediated endocytosis"
##
                     "spermatid nucleus differentiation"
##
##
                     "negative regulation of neutrophil apoptotic process"
                     "intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
##
##
                     "positive regulation of monocyte chemotactic protein-1 production"
                     "astral microtubule organization"
##
                     "regulation of cellular amino acid metabolic process"
##
                     "high-density lipoprotein particle remodeling"
##
##
                     "mesodermal cell differentiation"
##
                     "metanephric tubule morphogenesis"
                     "regulation of mitotic nuclear division"
##
                     "regulation of endothelial cell chemotaxis to fibroblast growth factor"
##
##
                     "ventricular trabecula myocardium morphogenesis"
                     "negative regulation of macrophage cytokine production"
##
##
                     "septin ring organization"
                     "maintenance of protein location in cell"
##
                     "positive regulation of microglial cell migration"
##
                     "protein localization to mitotic actomyosin contractile ring"
##
                     "negative regulation of translation"
##
##
                     "response to caloric restriction"
##
                     "positive regulation of mitochondrion organization"
                     "positive regulation of triglyceride biosynthetic process"
##
                     "peptidyl-lysine oxidation"
##
                     "mesodermal cell fate specification"
##
##
                     "negative regulation of endothelial cell differentiation"
##
                     "regulation of memory T cell differentiation"
                     "cellular response to gravity"
##
##
                     "negative regulation of mitotic cell cycle DNA replication"
##
                     "positive regulation of transcytosis"
                     "positive regulation of maternal process involved in parturition"
##
##
                     "positive regulation of gastro-intestinal system smooth muscle contraction"
##
                     "cellular response to 2-0-acetyl-1-0-hexadecyl-sn-glycero-3-phosphocholine"
                     "reelin-mediated signaling pathway"
##
                     "negative regulation of histone phosphorylation"
##
                     "erythropoietin-mediated signaling pathway"
##
                     "negative regulation of receptor biosynthetic process"
##
                     "activation of protein kinase activity"
##
                     "negative regulation of toll-like receptor 3 signaling pathway"
##
                     "muscle tissue development"
##
                     "cerebellum vasculature morphogenesis"
##
                     "positive regulation of intracellular signal transduction"
##
                     "epoxygenase P450 pathway"
##
                     "positive regulation of keratinocyte apoptotic process"
##
                     "negative regulation of chondrocyte proliferation"
##
##
                     "histone phosphorylation"
                     "response to follicle-stimulating hormone"
##
                     "negative regulation of maintenance of mitotic sister chromatid cohesion, telomeri
##
                     "positive regulation of chemokine biosynthetic process"
```

```
"maturation of 5S rRNA"
##
##
                     "positive regulation of centrosome duplication"
##
                     "ventral spinal cord development"
                     "negative regulation of telomere maintenance via recombination"
##
##
                     "sequestering of actin monomers"
##
                     "anterograde axonal transport of messenger ribonucleoprotein complex"
                     "positive regulation of mitotic cell cycle phase transition"
##
                     "negative regulation of beta-galactosidase activity"
##
##
                     "negative regulation of telomere single strand break repair"
                     "monoubiquitinated protein deubiquitination"
##
##
                     "regulation of low-density lipoprotein particle receptor biosynthetic process"
                     "iris morphogenesis"
##
                     "cranial suture morphogenesis"
##
                     "positive regulation of cyclic nucleotide-gated ion channel activity"
##
##
                     "regulation of postsynaptic density protein 95 clustering"
##
                     "positive regulation of cellular response to insulin stimulus"
                     "thyroid hormone generation"
##
                     "negative regulation of dephosphorylation"
##
##
                     "neuroblast migration"
                     "positive regulation of ion transmembrane transporter activity"
##
##
                     "intracellular pH elevation"
                     "endothelial cell-cell adhesion"
##
                     "positive regulation of macrophage cytokine production"
##
                     "negative regulation of lysosomal protein catabolic process"
##
                     "positive regulation of cytotoxic T cell differentiation"
##
##
                     "positive regulation of lactation"
                     "cellular response to oxygen-glucose deprivation"
##
                     "positive regulation of T cell mediated cytotoxicity"
##
                     "endoplasmic reticulum mannose trimming"
##
                     "cytosolic calcium signaling involved in initiation of cell movement in glial-medi
##
##
                     "regulation of microglial cell migration"
                     "leukocyte migration involved in inflammatory response"
##
                     "regulation of proteasomal ubiquitin-dependent protein catabolic process"
##
##
                     "positive regulation of mammary gland epithelial cell proliferation"
##
                     "brain morphogenesis"
##
                     "midbrain-hindbrain boundary development"
##
                     "hematopoietic stem cell migration"
##
                     "type 2 immune response"
                     "free ubiquitin chain polymerization"
##
                     "regulation of mRNA 3'-end processing"
##
                     "negative regulation of low-density lipoprotein particle clearance"
##
                     "negative regulation of CD4-positive, alpha-beta T cell differentiation"
##
                     "negative regulation of renin secretion into blood stream"
##
##
                     "muscular septum morphogenesis"
                     "type B pancreatic cell differentiation"
##
                     "telomere maintenance via telomerase"
##
                     "cellular response to electrical stimulus"
##
                     "protein localization to phagophore assembly site"
##
                     "protein transport to vacuole involved in ubiquitin-dependent protein catabolic pr
##
                     "negative regulation of translational initiation in response to stress"
##
##
                     "positive regulation of kinase activity"
                     "blastocyst hatching"
##
##
                     "positive regulation of cellular extravasation"
                     "negative regulation of neuron migration"
##
```

```
"regulation of postsynaptic neurotransmitter receptor internalization"
##
##
                     "extracellular matrix assembly"
                     "eosinophil degranulation"
##
                     "calcitonin gene-related peptide receptor signaling pathway"
##
##
                     "cerebellar granule cell precursor tangential migration"
##
                     "protein linear polyubiquitination"
                     "bone mineralization"
##
                     "transformation of host cell by virus"
##
##
                     "commitment of neuronal cell to specific neuron type in forebrain"
                     "negative regulation of superoxide anion generation"
##
##
                     "toll-like receptor TLR6:TLR2 signaling pathway"
                     "cellular response to diacyl bacterial lipopeptide"
##
                     "pyrimidine dimer repair by nucleotide-excision repair"
##
                     "cardiac septum development"
##
##
                     "lipid storage"
                     "negative regulation of interleukin-8 biosynthetic process"
##
                     "negative regulation of lymphocyte differentiation"
##
##
                     "primitive streak formation"
##
                     "vasopressin secretion"
                     "anterograde neuronal dense core vesicle transport"
##
##
                     "regulation of G protein-coupled receptor signaling pathway"
                     "protein localization to paranode region of axon"
##
                     "DNA methylation on cytosine within a CG sequence"
##
                     "type I pneumocyte differentiation"
##
                     "interleukin-10 production"
##
##
                     "Peyer's patch morphogenesis"
##
                     "regulation of membrane depolarization"
                     "regulation of neurotransmitter secretion"
##
                     "regulation of transcription involved in G1/S transition of mitotic cell cycle"
##
                     "positive regulation of histone acetylation"
##
##
                     "semicircular canal morphogenesis"
##
                     "membrane hyperpolarization"
                     "regulation of epithelial to mesenchymal transition involved in endocardial cushio
##
##
                     "monoubiquitinated histone H2A deubiquitination"
                     "promoter clearance from RNA polymerase II promoter"
##
                     "regulation of transposition, RNA-mediated"
##
##
                     "regulation of mast cell chemotaxis"
##
                     "cellular response to morphine"
                     "regulation of neutrophil migration"
##
                     "regulation of calcidiol 1-monooxygenase activity"
##
                     "mononuclear cell proliferation"
##
##
                     "regulation of B cell apoptotic process"
                     "detection of muscle stretch"
##
                     "postsynapse assembly"
##
                     "forebrain radial glial cell differentiation"
##
                     "negative regulation of prostaglandin biosynthetic process"
##
                     "Clara cell differentiation"
##
                     "maintenance of DNA methylation"
##
##
                     "protein localization to adherens junction"
                     "negative regulation of transforming growth factor beta1 production"
##
##
                     "mitotic DNA replication checkpoint"
                     "calcium ion import across plasma membrane"
##
                     "blood vessel endothelial cell proliferation involved in sprouting angiogenesis"
##
```

"positive regulation of granulocyte differentiation"

```
##
                      "vitamin D receptor signaling pathway"
##
                     "superior temporal gyrus development"
##
                      "positive regulation of mononuclear cell migration"
                      "epithelial cell-cell adhesion"
##
##
                      "response to ultrasound"
                      "follicular B cell differentiation"
##
                      "cellular hyperosmotic salinity response"
##
                      "negative regulation of intrinsic apoptotic signaling pathway in response to DNA d
##
##
                      "positive regulation of T cell tolerance induction"
                      "mesenchymal cell proliferation"
##
##
                      "cellular response to cell-matrix adhesion"
                      "negative regulation of pancreatic juice secretion"
##
                      "astrocyte cell migration"
##
                      "regulation of neuron projection development"
##
##
                      "cholesterol transport"
##
                      "regulation of action potential"
                     "regulation of vascular endothelial growth factor receptor signaling pathway"
##
                      "positive regulation of transcription from RNA polymerase II promoter by galactose
##
                      "syncytiotrophoblast cell differentiation involved in labyrinthine layer developme:
##
                      "positive regulation of excitatory postsynaptic potential"
##
##
                      "positive regulation of integrin activation by cell surface receptor linked signal
                      "negative regulation of lipase activity"
##
                      "negative regulation of leukocyte activation"
##
                      "labyrinthine layer morphogenesis"
##
                     "mannose transmembrane transport"
##
##
                      "cholesterol esterification"
##
                      "axial mesoderm development"
##
                      "sialylation"
                      "retrograde transport, vesicle recycling within Golgi"
##
                      "embryonic placenta development"
##
##
                      "cerebral cortex radially oriented cell migration"
##
                      "positive regulation of mitotic cell cycle"
                      "negative regulation of formation of translation preinitiation complex"
##
                      "positive regulation of intrinsic apoptotic signaling pathway in response to DNA d
##
                      "regulation of translation involved in cellular response to UV"
##
                     "regulation of circadian sleep/wake cycle, wakefulness"
##
##
                      "circadian sleep/wake cycle process"
##
                      "negative regulation of interleukin-8 production"
                      "spinal cord ventral commissure morphogenesis"
##
                      "cell development"
##
                      "propylene metabolic process"
##
                      "pons maturation"
##
                      "response to glycine"
##
                      "telomeric loop formation"
##
                      "regulation of penile erection"
##
                      "negative regulation of apoptotic process in bone marrow"
##
                      "negative regulation of cytokine-mediated signaling pathway"
##
                      "dorsal/ventral axon guidance"
##
##
                      "neuron differentiation"
                      "embryonic heart tube development"
##
##
                     "signal transduction involved in mitotic G2 DNA damage checkpoint"
                      "positive regulation of DNA catabolic process"
##
##
                      "regulation of microglial cell activation"
##
                      "regulation of cellular response to gamma radiation"
```

```
"inhibitory synapse assembly"
##
##
                     "ossification involved in bone remodeling"
                      "positive regulation of NF-kappaB transcription factor activity"
##
                      "cytoskeletal anchoring at nuclear membrane"
##
                      "negative regulation of ventricular cardiac muscle cell action potential"
##
##
                      "positive regulation of keratinocyte proliferation"
                      "cellular response to iron ion"
##
                      "negative regulation of cilium assembly"
##
##
                      "T-helper 17 cell lineage commitment"
                      "somatic diversification of immunoglobulins"
##
##
                      "negative regulation of cell cycle process"
                      "nuclear fragmentation involved in apoptotic nuclear change"
##
                      "negative regulation of DNA metabolic process"
##
                      "leukocyte proliferation"
##
##
                      "positive regulation of neutrophil mediated killing of gram-negative bacterium"
##
                      "interleukin-10 secretion"
                     "chemokine secretion"
##
##
                      "negative regulation of chemokine secretion"
##
                     "DNA catabolic process, exonucleolytic"
                      "mesonephros development"
##
##
                      "negative regulation of isotype switching to IgA isotypes"
                      "Wnt signaling pathway, calcium modulating pathway"
##
                      "notochord morphogenesis"
##
                      "muscle cell fate commitment"
##
                     "negative regulation of axon regeneration"
##
##
                      "negative regulation of uterine smooth muscle contraction"
##
                      "cell recognition"
                      "positive regulation of transcription via serum response element binding"
##
                      "regulation of signaling"
##
                      "positive regulation of platelet-derived growth factor receptor-beta signaling pat
##
##
                      "neuromuscular synaptic transmission"
##
                      "negative regulation of muscle cell apoptotic process"
                      "nucleosome organization"
##
                      "vesicle-mediated transport in synapse"
##
##
                      "negative regulation of integrin activation"
                      "positive regulation of T cell differentiation"
##
##
                      "positive regulation of double-strand break repair"
##
                      "negative regulation of glucose transmembrane transport"
                      "interstrand cross-link repair"
##
                     "cerebral cortex regionalization"
##
                      "regulation of chromosome organization"
##
##
                      "phospholipid efflux"
                      "regulation of interferon-beta production"
##
                      "tRNA wobble uridine modification"
##
                      "ISG15-protein conjugation"
##
                      "positive regulation of transmission of nerve impulse"
##
                      "negative regulation of thymocyte apoptotic process"
##
                     "negative regulation of maintenance of mitotic sister chromatid cohesion, centrome
##
##
                      "neural tube patterning"
                      "ossification involved in bone maturation"
##
##
                      "positive regulation of glial cell proliferation"
                      "DNA methylation involved in gamete generation"
##
##
                      "cellular response to iron(III) ion"
```

"skeletal muscle contraction"

```
"DNA replication, Okazaki fragment processing"
##
##
                     "regulatory T cell differentiation"
                      "spongiotrophoblast layer development"
##
                      "cell fate determination"
##
##
                      "ovulation cycle process"
                     "secondary heart field specification"
##
                      "recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex"
##
                      "animal organ senescence"
##
##
                      "regulation of endothelial cell migration"
                     "positive regulation of interleukin-23 production"
##
##
                      "organic acid metabolic process"
                      "DNA deamination"
##
                      "regulation of neurotransmitter uptake"
##
                      "trigeminal nerve structural organization"
##
##
                      "positive regulation of Wnt protein secretion"
##
                      "neuroligin clustering involved in postsynaptic membrane assembly"
                      "positive regulation of dendrite development"
##
                      "development of primary female sexual characteristics"
##
##
                      "positive regulation of meiotic nuclear division"
##
                      "regulation of synapse assembly"
##
                     "transepithelial water transport"
                      "negative regulation of protein refolding"
##
                      "negative regulation of muscle atrophy"
##
                      "negative regulation of heterotypic cell-cell adhesion"
##
                     "endocrine signaling"
##
##
                      "cell surface pattern recognition receptor signaling pathway"
##
                     "regulation of histone phosphorylation"
                      "serotonin metabolic process"
##
                     "cell cycle G2/M phase transition"
##
                      "negative regulation of response to cytokine stimulus"
##
##
                      "regulation of lens fiber cell differentiation"
##
                     "antral ovarian follicle growth"
                     "retina development in camera-type eye"
##
##
                     "Notch signaling involved in heart development"
##
                      "regulation of osteoclast differentiation"
##
                     "calcium-dependent cell-matrix adhesion"
##
                      "phospholipase D-activating G protein-coupled receptor signaling pathway"
##
                      "peptidyl-tyrosine autophosphorylation"
                      "protein kinase C deactivation"
##
                     "rhythmic excitation"
##
                      "regulation of female gonad development"
##
                      "negative regulation of very-low-density lipoprotein particle remodeling"
##
                      "telencephalon cell migration"
##
                     "nitric oxide homeostasis"
##
                      "positive regulation of renin secretion into blood stream"
##
                      "CD8-positive, alpha-beta T cell differentiation"
##
                      "histone H2A K63-linked ubiquitination"
##
                      "positive regulation of RIG-I signaling pathway"
##
                      "growth plate cartilage chondrocyte growth"
##
                      "regulation of phosphatidylcholine catabolic process"
##
                     "positive regulation of CD8-positive, alpha-beta T cell differentiation"
##
                     "lens induction in camera-type eye"
##
##
                      "endothelial cell proliferation"
```

"response to methylglyoxal"

```
##
                     "negative regulation of histone H3-K27 acetylation"
##
                     "T cell antigen processing and presentation"
                     "Golgi vesicle fusion to target membrane"
##
                     "extraocular skeletal muscle development"
##
                     "positive regulation of phospholipase A2 activity"
##
                     "negative regulation of establishment of endothelial barrier"
##
                     "otic vesicle formation"
##
                     "cellular response to ionomycin"
##
##
                     "positive regulation of ceramide biosynthetic process"
                     "positive regulation of protein oligomerization"
##
##
                     "response to prostaglandin F"
                     "polarized epithelial cell differentiation"
##
                     "positive regulation of chemokine-mediated signaling pathway"
##
                     "negative regulation of integrin biosynthetic process"
##
##
                     "negative regulation of prostatic bud formation"
##
                     "regulation of phenotypic switching by transcription from RNA polymerase II promot
                     "positive regulation of hydrogen sulfide biosynthetic process"
##
                     "male somatic sex determination"
##
                     "activation of prostate induction by androgen receptor signaling pathway"
##
                     "response to intra-S DNA damage checkpoint signaling"
##
##
                     "secretion"
                     "positive regulation of CD4-positive, alpha-beta T cell differentiation"
##
                     "basement membrane assembly"
##
                     "regulation of odontoblast differentiation"
##
                     "positive regulation of cell-cell adhesion mediated by cadherin"
##
##
                     "positive regulation of transcription from RNA polymerase II promoter involved in
##
                     "smooth muscle cell proliferation"
                     "positive regulation of NLRP3 inflammasome complex assembly"
##
                     "regulation of RNA biosynthetic process"
##
                     "maternal process involved in parturition"
##
##
                     "postsynapse to nucleus signaling pathway"
                     "salivary gland development"
##
                     "establishment of localization in cell"
##
##
                     "nucleolus organization"
##
                     "JNK cascade"
                     "negative regulation of vascular associated smooth muscle cell apoptotic process"
##
##
                     "progesterone receptor signaling pathway"
##
                     "B cell lineage commitment"
                     "cell differentiation involved in kidney development"
##
                     "positive regulation of postsynaptic cytosolic calcium concentration"
##
                     "spine apparatus assembly"
##
                     "regulation of blood vessel remodeling"
##
                     "negative regulation of granulocyte differentiation"
##
                     "necroptotic signaling pathway"
##
                     "mitotic DNA replication initiation"
##
                     "synthesis of RNA primer involved in mitotic DNA replication"
##
                     "DNA synthesis involved in UV-damage excision repair"
##
                     "plasma membrane repair"
##
                     "regulation of lysosome organization"
##
                     "positive regulation of transcription factor catabolic process"
##
                     "pre-replicative complex assembly involved in nuclear cell cycle DNA replication"
##
                     "chiasma assembly"
##
                     "regulation of protein stability"
##
```

"regulation of defense response to virus by virus"

```
##
                     "angiotensin-mediated vasoconstriction involved in regulation of systemic arterial
##
                     "alpha-beta T cell lineage commitment"
                     "trabecula morphogenesis"
##
                     "mitotic cleavage furrow formation"
##
##
                     "positive regulation of vascular smooth muscle contraction"
##
                     "canonical Wnt signaling pathway involved in midbrain dopaminergic neuron differen
                     "cell surface receptor signaling pathway involved in cell-cell signaling"
##
                     "regulation of cAMP-mediated signaling"
##
##
                     "cellular lipid metabolic process"
                     "positive regulation of dendritic cell dendrite assembly"
##
##
                     "negative regulation of integrin-mediated signaling pathway"
                     "negative regulation of plasminogen activation"
##
                     "histone H3-R2 methylation"
##
                     "positive regulation of inhibitory G protein-coupled receptor phosphorylation"
##
##
                     "planar cell polarity pathway involved in axis elongation"
##
                     "lymphocyte aggregation"
                     "positive regulation of protein processing"
##
                     "late endosome to vacuole transport"
##
                     "trans-synaptic signaling by trans-synaptic complex, modulating synaptic transmiss
##
                     "bile acid signaling pathway"
##
##
                     "cloacal septation"
                     "mammary gland morphogenesis"
##
##
                     "complement activation, lectin pathway"
                     "negative regulation of NAD(P)H oxidase activity"
##
                     "retrograde trans-synaptic signaling by endocannabinoid"
##
##
                     "clathrin-coated pit assembly"
##
                     "anatomical structure development"
                     "positive regulation of sarcomere organization"
##
                     "response to aldosterone"
##
                     "regulation of T cell chemotaxis"
##
                     "positive regulation of cell proliferation by VEGF-activated platelet derived grow
##
##
                     "desmosome organization"
                     "ovulation"
##
                     "cellular response to vitamin E"
##
                     "negative regulation of vascular endothelial growth factor signaling pathway"
##
                     "positive regulation of CD8-positive, alpha-beta T cell proliferation"
##
##
                     "spinal cord association neuron differentiation"
##
                     "embryo implantation"
                     "negative regulation of biomineral tissue development"
##
                     "lymphocyte homeostasis"
##
                     "multivesicular body sorting pathway"
##
##
                     "intramembranous ossification"
##
                     "chylomicron remnant clearance"
                     "sperm chromatin condensation"
##
                     "tolerance induction"
##
                     "smoothened signaling pathway involved in ventral spinal cord interneuron specific
##
                     "smoothened signaling pathway involved in spinal cord motor neuron cell fate speci
##
                     "interkinetic nuclear migration"
##
                     "negative regulation of amyloid precursor protein biosynthetic process"
##
                     "positive regulation of T-helper 17 type immune response"
##
##
                     "negative regulation of chromatin binding"
                     "positive regulation of chromosome segregation"
##
##
                     "cell aging"
```

"female genitalia morphogenesis"

```
##
                     "positive regulation of hydrolase activity"
##
                     "positive regulation of T-helper 1 cell cytokine production"
##
                     "Kit signaling pathway"
##
                     "cellular response to UV"
##
                     "regulation of synapse structural plasticity"
##
                     "lymphocyte chemotaxis across high endothelial venule"
                     "regulation of humoral immune response"
##
                     "regulation of fever generation"
##
##
                     "enteric smooth muscle cell differentiation"
##
                     "endothelial cell chemotaxis to fibroblast growth factor"
##
                     "cellular response to light stimulus"
                     "response to endothelin"
##
                     "negative regulation of endothelial cell chemotaxis to fibroblast growth factor"
##
                     "response to starvation"
##
##
                     "regulation of protein catabolic process at postsynapse, modulating synaptic trans
##
                     "positive regulation of dendritic cell differentiation"
                     "regulation of translational elongation"
##
##
                     "histone dephosphorylation"
                     "regulation of keratinocyte differentiation"
##
                     "re-entry into mitotic cell cycle"
##
##
                     "miRNA catabolic process"
                     "cellular phosphate ion homeostasis"
##
                     "regulation of glycogen biosynthetic process"
##
                     "nucleokinesis involved in cell motility in cerebral cortex radial glia guided mig
##
                     "positive regulation of T-helper 1 type immune response"
##
##
                     "Sertoli cell fate commitment"
##
                     "positive regulation of DNA methylation"
                     "axonal transport of mitochondrion"
##
                     "positive regulation of peroxisome proliferator activated receptor signaling pathw
##
                     "T cell activation via T cell receptor contact with antigen bound to MHC molecule
##
##
                     "negative regulation of neuron maturation"
##
                     "secretion of lysosomal enzymes"
##
                     "selenocysteine incorporation"
                     "olfactory learning"
##
                     "positive regulation of heart rate by epinephrine-norepinephrine"
##
                     "positive regulation of the force of heart contraction by epinephrine-norepinephri
##
##
                     "histone H3-T11 phosphorylation"
##
                     "positive regulation of mast cell degranulation"
                     "negative regulation of mitotic metaphase/anaphase transition"
##
                     "regulation of systemic arterial blood pressure by circulatory renin-angiotensin"
##
                     "angiotensin-mediated vasodilation involved in regulation of systemic arterial blo
##
##
                     "brain renin-angiotensin system"
                     "aldosterone secretion"
##
                     "apelin receptor signaling pathway"
##
                     "positive regulation of G protein-coupled receptor internalization"
##
                     "positive regulation of myoblast proliferation"
##
                     "negative regulation of netrin-activated signaling pathway"
##
                     "covalent chromatin modification"
##
##
                     "lymph node development"
                     "hair follicle development"
##
                     "regulation of branching involved in mammary gland duct morphogenesis"
##
                     "regulation of metanephric nephron tubule epithelial cell differentiation"
##
##
                     "response to sodium phosphate"
                     "regulation of B cell receptor signaling pathway"
##
```

```
##
                     "sodium ion homeostasis"
##
                     "protein localization to membrane"
                     "chorio-allantoic fusion"
##
                     "positive regulation of cardioblast differentiation"
##
##
                     "negative regulation of SREBP signaling pathway"
                     "histone H2A-K119 monoubiquitination"
##
                     "negative regulation of calcium ion transmembrane transport via high voltage-gated
##
                     "positive regulation of activation of membrane attack complex"
##
##
                     "positive regulation of male gonad development"
                     "positive regulation of nucleoside transport"
##
##
                     "negative regulation of neurotrophin production"
                     "eukaryotic translation initiation factor 4F complex assembly"
##
                     "conditioned place preference"
##
                     "negative regulation of lipid transport"
##
##
                     "cytoplasmic sequestering of transcription factor"
##
                     "positive regulation of locomotion"
##
                     "epithelial structure maintenance"
                     "N-terminal peptidyl-serine acetylation"
##
##
                     "N-terminal peptidyl-glutamic acid acetylation"
                     "toxin metabolic process"
##
##
                     "negative regulation of sequestering of triglyceride"
##
                     "steroid hormone mediated signaling pathway"
                     "detection of lipopolysaccharide"
##
                     "positive regulation of tolerance induction to self antigen"
##
                     "positive regulation of B cell tolerance induction"
##
##
                     "negative regulation of hydrolase activity"
##
                     "cell proliferation involved in endocardial cushion morphogenesis"
                     "superior endocardial cushion morphogenesis"
##
##
                     "inferior endocardial cushion morphogenesis"
                     "post-embryonic cardiac muscle cell growth involved in heart morphogenesis"
##
                     "positive regulation of chromatin silencing at telomere"
##
##
                     "positive regulation of telomeric heterochromatin assembly"
                     "ion homeostasis"
##
##
                     "monocyte aggregation"
##
                     "response to fungicide"
                     "skeletal muscle satellite cell migration"
##
##
                     "positive regulation of microtubule plus-end binding"
##
                     "high-density lipoprotein particle clearance"
                     "CD8-positive, alpha-beta intraepithelial T cell differentiation"
##
                     "establishment of apical/basal cell polarity"
##
                     "meiotic chromosome separation"
##
                     "transcriptional open complex formation at RNA polymerase II promoter"
##
                     "negative regulation of plasma membrane long-chain fatty acid transport"
##
                     "forebrain dorsal/ventral pattern formation"
##
                     "cellular triglyceride homeostasis"
##
                     "positive regulation of long-term neuronal synaptic plasticity"
##
                     "regulation of extracellular exosome assembly"
##
                     "lateral ventricle development"
##
##
                     "multicellular organismal homeostasis"
                     "cellular hyperosmotic response"
##
##
                     "interleukin-4 secretion"
                     "vitellogenesis"
##
                     "peripheral nervous system development"
##
                     "establishment of protein localization to telomere"
##
```

```
##
                     "regulation of modification of postsynaptic actin cytoskeleton"
##
                     "positive regulation of integrin biosynthetic process"
                     "antimicrobial humoral immune response mediated by antimicrobial peptide"
##
                     "antigen processing and presentation of exogenous peptide antigen via MHC class I,
##
##
                     "positive regulation of MHC class II biosynthetic process"
##
                     "prostate epithelial cord elongation"
                     "negative regulation of protein import into nucleus"
##
                     "JAK-STAT cascade involved in growth hormone signaling pathway"
##
##
                     "histone H3-R17 methylation"
                     "positive regulation of eosinophil degranulation"
##
##
                     "negative regulation of skeletal muscle tissue development"
                     "positive regulation of hypersensitivity"
##
                     "response to corticosteroid"
##
                     "chemokine (C-C motif) ligand 19 signaling pathway"
##
##
                     "chemokine (C-C motif) ligand 21 signaling pathway"
##
                     "regulation of fibroblast growth factor receptor signaling pathway"
                     "positive regulation of vascular permeability"
##
                     "positive regulation of vacuole organization"
##
                     "canonical Wnt signaling pathway involved in positive regulation of cardiac outflo
##
                     "cellular response to prostaglandin stimulus"
##
##
                     "lymphocyte migration into lymph node"
                     "positive regulation of protein localization to presynapse"
##
                     "positive regulation of immunological synapse formation"
##
                     "positive regulation of T cell costimulation"
##
                     "positive regulation of glycoprotein biosynthetic process involved in immunologica
##
##
                     "regulation of dendritic cell dendrite assembly"
##
                     "poly-N-acetyllactosamine biosynthetic process"
                     "histone H3-K9 acetylation"
##
                     "positive regulation of cholesterol biosynthetic process"
##
                     "negative regulation of mitotic cell cycle, embryonic"
##
##
                     "regulation of timing of cell differentiation"
                     "positive regulation of transforming growth factor beta production"
##
                     "positive regulation of secondary heart field cardioblast proliferation"
##
                     "atrial septum primum morphogenesis"
##
##
                     "regulation of developmental growth"
                     "myoblast fate commitment"
##
##
                     "regulation of defense response to virus"
##
                     "neural crest cell migration"
                     "regulation of endoribonuclease activity"
##
                     "regulation of eIF2 alpha phosphorylation by dsRNA"
##
                     "regulation of mRNA stability involved in cellular response to UV"
##
##
                     "positive regulation of mRNA catabolic process"
                     "regulation of cell cycle arrest"
##
                     "receptor-mediated virion attachment to host cell"
##
                     "monounsaturated fatty acid biosynthetic process"
##
                     "embryonic retina morphogenesis in camera-type eye"
##
                     "positive regulation of respiratory burst involved in inflammatory response"
##
                     "sensory perception of chemical stimulus"
##
                     "negative regulation of macrophage derived foam cell differentiation"
##
                     "negative regulation of cell differentiation"
##
                     "regulation of nitric-oxide synthase activity"
##
                     "ciliary receptor clustering involved in smoothened signaling pathway"
##
##
                     "cardiac muscle tissue regeneration"
##
                     "mismatch repair"
```

```
##
                     "cell proliferation in hindbrain"
##
                     "negative regulation of Schwann cell migration"
                     "negative regulation of root hair elongation"
##
                     "negative regulation of Schwann cell proliferation involved in axon regeneration"
##
##
                     "branching involved in prostate gland morphogenesis"
                     "positive regulation of vascular endothelial growth factor signaling pathway"
##
                     "nuclear body organization"
##
                     "positive regulation of G protein-coupled receptor signaling pathway"
##
##
                     "regulation of plasminogen activation"
                     "Roundabout signaling pathway"
##
##
                     "negative regulation of development of symbiont involved in interaction with host"
                     "catabolism by host of symbiont protein"
##
                     "positive regulation of low-density lipoprotein particle receptor binding"
##
                     "positive regulation of low-density lipoprotein receptor activity"
##
##
                     "protein palmitoylation"
##
                     "regulation of lymphocyte activation"
                     "positive regulation of RNA splicing"
##
                     "cytoplasmic mRNA processing body assembly"
##
##
                     "positive regulation of lipase activity"
                     "general adaptation syndrome, behavioral process"
##
##
                     "interleukin-35-mediated signaling pathway"
                     "negative regulation of protein localization to microtubule"
##
                     "positive regulation of macrophage apoptotic process"
##
                     "DNA packaging"
##
                     "dolichyl diphosphate biosynthetic process"
##
##
                     "positive regulation of establishment of protein localization"
##
                     "complement component C5a signaling pathway"
                     "sensitization"
##
                     "beta selection"
##
                     "positive regulation of mRNA polyadenylation"
##
##
                     "cation transport"
##
                     "positive regulation of toll-like receptor 2 signaling pathway"
                     "regulation of fibroblast proliferation"
##
##
                     "regulation of long-term synaptic potentiation"
##
                     "folate import across plasma membrane"
                     "regulation of membrane repolarization during action potential"
##
##
                     "positive regulation of adiponectin secretion"
##
                     "negative regulation of protein deubiquitination"
                     "bone resorption"
##
                     "maintenance of epithelial cell apical/basal polarity"
##
                     "somatic stem cell division"
##
                     "positive regulation of synaptic transmission, cholinergic"
##
                     "regulation of vesicle size"
##
                     "negative regulation of activation of membrane attack complex"
##
                     "protein localization to photoreceptor outer segment"
##
                     "inner cell mass cellular morphogenesis"
##
                     "positive regulation of CREB transcription factor activity"
##
                     "piecemeal microautophagy of the nucleus"
##
##
                     "regulation of metanephros size"
                     "positive regulation of B cell chemotaxis"
##
##
                     "urinary bladder smooth muscle contraction"
                     "lung growth"
##
##
                     "regulation of lymphocyte apoptotic process"
                     "cytolysis by host of symbiont cells"
##
```

```
##
                     "olfactory bulb interneuron differentiation"
##
                     "tumor necrosis factor production"
                     "positive regulation of interleukin-10 secretion"
##
                     "post-chaperonin tubulin folding pathway"
##
##
                     "histone H3-K9 demethylation"
                     "RNA transport"
##
                     "negative regulation of triglyceride biosynthetic process"
##
                     "peripheral nervous system neuron development"
##
##
                     "inner ear receptor cell stereocilium organization"
                     "negative regulation of DNA methylation"
##
##
                     "activation of store-operated calcium channel activity"
                     "regulation of Golgi organization"
##
                     "retinal cone cell development"
##
                     "sensory perception of bitter taste"
##
                     "regulation of triglyceride biosynthetic process"
##
##
                     "positive regulation of metalloendopeptidase activity"
##
                     "regulation of high voltage-gated calcium channel activity"
                     "positive regulation of glial cell migration"
##
##
                     "glycosaminoglycan metabolic process"
                     "platelet activating factor metabolic process"
##
##
                     "regulation of substrate adhesion-dependent cell spreading"
##
                     "negative regulation of smooth muscle cell proliferation"
                     "cellular response to selenite ion"
##
                     "negative regulation of selenocysteine incorporation"
##
                     "negative regulation of selenocysteine insertion sequence binding"
##
##
                     "positive regulation of acetylcholine secretion, neurotransmission"
##
                     "glial cell apoptotic process"
                     "negative regulation of neurotransmitter secretion"
##
##
                     "pericardium morphogenesis"
                     "regulation of serotonin secretion"
##
                     "regulation of odontogenesis of dentin-containing tooth"
##
                     "regulation of glucose import"
##
                     "lung epithelial cell differentiation"
##
##
                     "endocrine pancreas development"
                     "regulation of wound healing"
##
                     "positive regulation of interleukin-1 alpha biosynthetic process"
##
##
                     "positive regulation of mRNA cleavage"
##
                     "late nucleophagy"
                     "snoRNA localization"
##
                     "positive regulation of pro-B cell differentiation"
##
                     "chemokine (C-C motif) ligand 2 secretion"
##
                     "epithelial cell differentiation involved in prostate gland development"
##
                     "negative regulation of toll-like receptor signaling pathway"
##
                     "cell-cell junction organization"
##
                     "retinal rod cell development"
##
                     "positive regulation of interleukin-13 secretion"
##
                     "negative regulation of microtubule binding"
##
                     "global genome nucleotide-excision repair"
##
##
                     "sensory perception of temperature stimulus"
                     "negative regulation of mesoderm development"
##
##
                     "chondrocyte development"
                     "regulation of thyroid hormone mediated signaling pathway"
##
##
                     "positive regulation of type IIa hypersensitivity"
                     "glucocorticoid metabolic process"
##
```

```
##
                     "vesicle budding from membrane"
##
                     "basophil differentiation"
                     "negative regulation of vascular smooth muscle cell differentiation involved in ph
##
                     "TRAIL-activated apoptotic signaling pathway"
##
##
                     "germinal center formation"
                     "camera-type eye morphogenesis"
##
                     "septum digestion after cytokinesis"
##
                     "regulation of p38MAPK cascade"
##
##
                     "glucocorticoid biosynthetic process"
                     "regulation of skeletal muscle satellite cell proliferation"
##
##
                     "positive regulation of saliva secretion"
                     "epithelium development"
##
                     "DNA damage response, detection of DNA damage"
##
                     "positive regulation of gastric acid secretion"
##
##
                     "regulation of ubiquitin-dependent protein catabolic process"
##
                     "positive regulation of vasculogenesis"
                     "regulation of isotype switching"
##
##
                     "motor behavior"
##
                     "dendrite self-avoidance"
##
                     "regulation of dendrite development"
##
                     "regulation of RNA polymerase II regulatory region sequence-specific DNA binding"
                     "glandular epithelial cell development"
##
                     "response to mechanical stimulus"
##
                     "positive regulation of interleukin-18 production"
##
                     "canonical Wnt signaling pathway involved in negative regulation of apoptotic proc
##
##
                     "negative regulation of collateral sprouting"
##
                     "tertiary branching involved in mammary gland duct morphogenesis"
                     "negative regulation of humoral immune response mediated by circulating immunoglob
##
                     "negative regulation of circadian sleep/wake cycle, REM sleep"
##
                     "optic cup formation involved in camera-type eye development"
##
##
                     "establishment of planar polarity of embryonic epithelium"
##
                     "type II pneumocyte differentiation"
                     "cochlea development"
##
                     "negative regulation of hepatocyte proliferation"
##
                     "positive regulation of MAPKKK cascade by fibroblast growth factor receptor signal
##
                     "membrane raft assembly"
##
##
                     "glial cell-derived neurotrophic factor receptor signaling pathway"
##
                     "phosphatidylinositol-mediated signaling"
                     "trachea cartilage development"
##
                     "regulation of histamine secretion by mast cell"
##
                     "positive regulation of potassium ion transport"
##
##
                     "positive regulation of DNA binding"
                     "negative regulation of guanyl-nucleotide exchange factor activity"
##
                     "regulation of heart rate by chemical signal"
##
                     "positive regulation of epithelial cell proliferation involved in prostate gland d
##
                     "cerebellar Purkinje cell layer morphogenesis"
##
                     "negative regulation of non-canonical Wnt signaling pathway"
##
                     "isotype switching to IgA isotypes"
##
##
                     "DN2 thymocyte differentiation"
                     "DN3 thymocyte differentiation"
##
##
                     "regulation of transcription by RNA polymerase III"
                     "long-chain fatty acid transport"
##
##
                     "response to external biotic stimulus"
```

"regulation of angiotensin metabolic process"

```
##
                     "prostatic bud formation"
##
                     "ovulation from ovarian follicle"
                     "positive regulation of transcription regulatory region DNA binding"
##
                     "lymphoid progenitor cell differentiation"
##
##
                     "pre-B cell allelic exclusion"
##
                     "positive regulation of neuron maturation"
                     "regulation of SMAD protein complex assembly"
##
                     "protein modification process"
##
##
                     "negative regulation of alpha-beta T cell proliferation"
                     "positive regulation of nitric-oxide synthase biosynthetic process"
##
##
                     "cellular response to muramyl dipeptide"
                     "regulation of protein deubiquitination"
##
                     "regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathw
##
                     "positive regulation of myofibroblast differentiation"
##
##
                     "toll-like receptor signaling pathway"
##
                     "regulation of actin polymerization or depolymerization"
                     "negative regulation of lymphocyte proliferation"
##
##
                     "positive regulation of humoral immune response"
##
                     "regulation of glomerular filtration"
                     "production of molecular mediator involved in inflammatory response"
##
##
                     "very-low-density lipoprotein particle clearance"
                     "positive regulation of vitamin D 24-hydroxylase activity"
##
                     "cardiac ventricle development"
##
                     "regulation of peptidyl-serine phosphorylation"
##
                     "synaptonemal complex assembly"
##
##
                     "negative regulation of microtubule polymerization or depolymerization"
##
                     "positive regulation of corticotropin-releasing hormone secretion"
                     "lamellipodium organization"
##
                     "myeloid progenitor cell differentiation"
##
                     "toll-like receptor 3 signaling pathway"
##
##
                     "histone H3-K36 demethylation"
##
                     "positive regulation of peptidyl-tyrosine autophosphorylation"
                     "positive regulation of endothelial cell apoptotic process"
##
                     "positive regulation of corticosterone secretion"
##
##
                     "central nervous system neuron development"
                     "retina vasculature development in camera-type eye"
##
##
                     "growth plate cartilage chondrocyte morphogenesis"
##
                     "negative regulation of viral entry into host cell"
                     "regulation of systemic arterial blood pressure"
##
                     "nitric oxide transport"
##
                     "lung-associated mesenchyme development"
##
                     "negative regulation of pinocytosis"
##
                     "regulation of phosphatidylinositol dephosphorylation"
##
                     "negative regulation of secretion by cell"
##
                     "DNA strand elongation involved in DNA replication"
##
                     "proteasome-mediated ubiquitin-dependent protein catabolic process"
##
                     "cellular response to diamide"
##
                     "regulation of chromosome condensation"
##
##
                     "receptor-mediated endocytosis of virus by host cell"
                     "regulation of extracellular matrix assembly"
##
##
                     "regulation of locomotor rhythm"
                     "positive regulation of dendritic cell apoptotic process"
##
##
                     "negative regulation of inflammatory response to antigenic stimulus"
                     "positive regulation of double-strand break repair via nonhomologous end joining"
##
```

```
##
                      "cell morphogenesis"
##
                     "nucleolar fragmentation"
                      "microtubule cytoskeleton organization involved in establishment of planar polarit
##
                     "cellular response to angiotensin"
##
##
                      "positive regulation of establishment of endothelial barrier"
##
                      "positive regulation of sodium ion transport"
                      "positive regulation of activated T cell proliferation"
##
                      "positive regulation of cell cycle G2/M phase transition"
##
##
                      "response to peptide hormone"
                      "COPII vesicle coating"
##
##
                      "regulation of long-term synaptic depression"
                      "negative regulation of leukocyte chemotaxis"
##
                      "hormone biosynthetic process"
##
                      "positive regulation of mRNA binding"
##
##
                      "positive regulation of skeletal muscle tissue growth"
##
                      "regulation of ERK1 and ERK2 cascade"
                     "positive regulation of organelle organization"
##
##
                      "regulation of cyclase activity"
##
                      "negative regulation of locomotion"
                      "establishment of spindle orientation"
##
##
                      "positive regulation of small intestinal transit"
                      "pro-B cell differentiation"
##
                      "respiratory system process"
##
                      "regulation of gastric motility"
##
                     "maintenance of gastrointestinal epithelium"
##
##
                      "otic vesicle development"
##
                      "negative regulation of DNA repair"
                      "response to TNF agonist"
##
                      "positive regulation of DNA N-glycosylase activity"
##
                      "positive regulation of cysteine-type endopeptidase activity involved in execution
##
##
                      "detection of visible light"
##
                      "neurogenesis"
                      "heterochromatin organization"
##
                      "protein localization to postsynaptic membrane"
##
##
                      "metanephric mesenchyme morphogenesis"
                     "regulation of type I interferon production"
##
##
                      "histone H3-K9 methylation"
##
                      "positive regulation of hematopoietic stem cell migration"
                      "retrograde neuronal dense core vesicle transport"
##
                      "ubiquitin-dependent SMAD protein catabolic process"
##
                      "positive regulation of lymphocyte proliferation"
##
##
                      "negative regulation of cartilage development"
                      "negative regulation of type I interferon-mediated signaling pathway"
##
                      "positive regulation of synapse structural plasticity"
##
                      "positive regulation of synaptic vesicle clustering"
##
                      "protein kinase A signaling"
##
                      "regulation of pathway-restricted SMAD protein phosphorylation"
##
                      "positive regulation of protein localization to plasma membrane"
##
##
                      "sexual reproduction"
                      "acid secretion"
##
##
                      "organelle transport along microtubule"
                      "proteasomal ubiquitin-independent protein catabolic process"
##
                      "negative regulation of interleukin-1-mediated signaling pathway"
##
```

"caveola assembly"

```
##
                     "oligosaccharide metabolic process"
##
                     "squamous basal epithelial stem cell differentiation involved in prostate gland ac
                     "leukocyte activation"
##
##
                     "neutrophil apoptotic process"
##
                     "positive regulation of epidermis development"
##
                     "negative regulation of blood vessel endothelial cell proliferation involved in sp.
                     "histone H3-Y41 phosphorylation"
##
                     "regulation of osteoblast proliferation"
##
##
                     "bone remodeling"
                     "adenylate cyclase-activating adrenergic receptor signaling pathway"
##
##
                     "posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery"
                     "positive regulation of phosphorylation"
##
##
                     "negative regulation of mRNA 3'-end processing"
##
                     "lipoprotein metabolic process"
##
                     "chromatin silencing at rDNA"
##
                     "cardiac ventricle morphogenesis"
                     "regulation of striated muscle contraction"
##
##
                     "calcium ion regulated exocytosis"
##
                     "membrane assembly"
##
                     "positive regulation of chemokine secretion"
##
                     "positive regulation of glucagon secretion"
                     "negative regulation of double-strand break repair via homologous recombination"
##
                     "cardiac neural crest cell migration involved in outflow tract morphogenesis"
##
                     "cAMP metabolic process"
##
                     "iron ion import"
##
##
                     "negative regulation of fatty acid beta-oxidation"
##
                     "post-embryonic body morphogenesis"
                     "lamellipodium morphogenesis"
##
                     "regulation of parathyroid hormone secretion"
##
##
                     "notochord development"
##
                     "calcium-mediated signaling using extracellular calcium source"
##
                     "smooth muscle tissue development"
##
                     "progesterone biosynthetic process"
                     "peptidyl-serine ADP-ribosylation"
##
##
                     "maintenance of transcriptional fidelity during DNA-templated transcription elonga
                     "negative regulation of actin filament bundle assembly"
##
##
                     "positive regulation of somatostatin secretion"
##
                     "positive regulation of circadian sleep/wake cycle, sleep"
                     "negative regulation of low-density lipoprotein particle receptor catabolic proces
##
                     "filopodium assembly"
##
                     "histone H3-K4 demethylation"
##
##
                     "positive regulation of axon extension involved in axon guidance"
                     "positive regulation of female receptivity"
##
##
                     "regulation of GTPase activity"
                     "cellular macromolecule biosynthetic process"
##
                     "programmed necrotic cell death"
##
##
                     "olfactory bulb interneuron development"
                     "axis elongation involved in somitogenesis"
##
##
                     "protein K29-linked ubiquitination"
##
                     "positive regulation of phagocytosis"
##
                     "maintenance of protein location in nucleus"
                     "regulation of lymphocyte differentiation"
##
##
                     "pulmonary artery morphogenesis"
                     "cellular response to Thyroglobulin triiodothyronine"
```

```
##
                     "peptidyl-lysine hydroxylation"
##
                     "inner cell mass cell fate commitment"
##
                     "protein localization to cytoskeleton"
                     "positive regulation of gastrulation"
##
##
                     "viral budding via host ESCRT complex"
##
                     "cellular response to peptide"
                     "hindgut morphogenesis"
##
                     "3'-UTR-mediated mRNA destabilization"
##
##
                     "regulation of muscle cell differentiation"
                     "establishment or maintenance of cell polarity"
##
##
                     "regulation of definitive erythrocyte differentiation"
                     "positive regulation of gamma-aminobutyric acid secretion"
##
                     "regulation of transcription from RNA polymerase II promoter in response to oxidat
##
                     "positive regulation of chondrocyte proliferation"
##
##
                     "cytokine production involved in inflammatory response"
##
                     "mitochondrion transport along microtubule"
                     "histamine secretion by mast cell"
##
                     "radial glial cell differentiation"
##
##
                     "orbitofrontal cortex development"
                     "forelimb morphogenesis"
##
##
                     "histone H4-K12 acetylation"
                     "adenylate cyclase-inhibiting adrenergic receptor signaling pathway"
##
                     "phospholipase C-activating adrenergic receptor signaling pathway"
##
                     "musculoskeletal movement, spinal reflex action"
##
                     "T cell receptor V(D)J recombination"
##
##
                     "cardiac muscle tissue growth involved in heart morphogenesis"
##
                     "tyrosine phosphorylation of STAT protein"
                     "cell-substrate adhesion"
##
                     "cell motility"
##
                     "positive regulation of protein monoubiquitination"
##
                     "negative regulation of growth"
##
##
                     "negative regulation of protein transport"
                     "protein localization to basolateral plasma membrane"
##
                     "wound healing, spreading of epidermal cells"
##
                     "extracellular matrix-cell signaling"
##
                     "multicellular organismal water homeostasis"
##
##
                     "spindle assembly involved in meiosis"
##
                     "negative regulation of DNA-templated transcription, elongation"
                     "regulation of glucosylceramidase activity"
##
                     "neural tube development"
##
                     "protein sulfation"
##
##
                     "regulation of attachment of spindle microtubules to kinetochore"
                     "regulation of DNA recombination"
##
                     "regulation of branching involved in salivary gland morphogenesis by mesenchymal-e
##
                     "neutrophil mediated killing of gram-negative bacterium"
##
                     "developmental pigmentation"
##
                     "negative regulation of phagocytosis"
##
                     "positive regulation of timing of catagen"
##
                     "negative regulation of growth hormone secretion"
##
                     "regulation of presynaptic cytosolic calcium ion concentration"
##
##
                     "keratan sulfate catabolic process"
                     "regulation of cellular ketone metabolic process by negative regulation of transcr
##
                     "positive regulation of leukocyte adhesion to vascular endothelial cell"
##
```

"hepatocyte apoptotic process"

```
##
                      "negative regulation of cholesterol storage"
##
                      "regulation of metabolic process"
                      "negative regulation of membrane tubulation"
##
                      "blastocyst growth"
##
##
                      "positive regulation of autophagy"
##
                      "regulation of saliva secretion"
                      "regulation of histone H3-K4 methylation"
##
                      "response to UV"
##
##
                      "positive regulation of base-excision repair"
                      "renin secretion into blood stream"
##
##
                      "negative regulation of striated muscle tissue development"
                      "regulation of T cell migration"
##
                      "regulation of cell communication by electrical coupling involved in cardiac condu
##
                      "bicellular tight junction assembly"
##
                      "ruffle assembly"
##
##
                      "heparin biosynthetic process"
                      "piRNA metabolic process"
##
                      "apical junction assembly"
##
##
                      "negative regulation of cytolysis"
                      "negative regulation of osteoclast development"
##
##
                      "negative regulation of calcineurin-NFAT signaling cascade"
                      "positive regulation of polynucleotide adenylyltransferase activity"
##
                      "histone H3-K9 trimethylation"
##
                      "forebrain astrocyte development"
##
                     "corpus callosum morphogenesis"
##
##
                      "negative regulation of interleukin-1 beta secretion"
##
                      "regulation of oligodendrocyte progenitor proliferation"
                      "intracellular mRNA localization"
##
                     "mitotic cell cycle phase transition"
##
                      "phospholipase C-activating serotonin receptor signaling pathway"
##
##
                      "frontal suture morphogenesis"
##
                     "male mating behavior"
                      "lung epithelium development"
##
                      "cellular response to lithium ion"
##
##
                      "prostate gland growth"
                      "gamma-tubulin complex localization"
##
##
                      "positive regulation of mitochondrial outer membrane permeabilization involved in
##
                      "triglyceride catabolic process"
                      "regulation of neuron differentiation"
##
                     "somite specification"
##
                      "histone H3-T6 phosphorylation"
##
##
                      "cross-receptor inhibition within G protein-coupled receptor heterodimer"
                      "negative regulation of synaptic transmission"
##
                      "positive regulation of calcium ion import across plasma membrane"
##
                      "blastocyst formation"
##
                      "positive regulation of cysteine-type endopeptidase activity"
##
                      "spindle assembly involved in female meiosis I"
##
                      "adherens junction assembly"
##
                      "endocytic recycling"
##
                      "head development"
##
##
                     "negative regulation of Wnt protein secretion"
                      "cortical cytoskeleton organization"
##
##
                      "modulation of excitatory postsynaptic potential"
```

"negative regulation of endothelial cell migration"

```
##
                     "animal organ formation"
                     "positive regulation of adenylate cyclase activity"
##
                     "regulation of DNA replication"
##
                     "regulation of protein localization to centrosome"
##
##
                     "cellular response to histamine"
                     "regulation of single stranded viral RNA replication via double stranded DNA inter
##
                     "positive regulation of cell adhesion molecule production"
##
                     "positive regulation of activation of Janus kinase activity"
##
##
                     "clustering of voltage-gated sodium channels"
                     "regulation of chronic inflammatory response"
##
##
                     "endocardial cushion to mesenchymal transition involved in heart valve formation"
                     "protein localization to chromosome"
##
                     "positive regulation of mitotic metaphase/anaphase transition"
##
                     "histone H2A monoubiquitination"
##
##
                     "regulation of short-term neuronal synaptic plasticity"
##
                     "bone marrow development"
##
                     "negative regulation of circadian sleep/wake cycle, sleep"
                     "telomeric D-loop disassembly"
##
                     "negative regulation by host of symbiont molecular function"
##
                     "mammary gland epithelium development"
##
##
                     "optic nerve morphogenesis"
##
                     "prostate gland epithelium morphogenesis"
                     "negative regulation of centrosome duplication"
##
                     "neurotransmitter receptor internalization"
##
                     "keratinocyte migration"
##
##
                     "positive regulation of cap-independent translational initiation"
##
                     "uropod organization"
                     "regulation of mast cell activation"
##
##
                     "establishment of spindle localization"
                     "minus-end-directed vesicle transport along microtubule"
##
                     "heparan sulfate proteoglycan biosynthetic process, enzymatic modification"
##
##
                     "positive regulation of keratinocyte migration"
                     "negative regulation of transposition"
##
##
                     "neural plate axis specification"
                     "positive regulation of DNA replication"
##
##
                     "negative regulation of ATP biosynthetic process"
##
                     "substrate adhesion-dependent cell spreading"
##
                     "regulation of carbohydrate utilization"
                     "cellular component maintenance"
##
                     "decidualization"
##
                     "regulation of translation at synapse, modulating synaptic transmission"
##
##
                     "regulation of phenotypic switching"
                     "positive regulation of I-kappaB phosphorylation"
##
                     "positive regulation of cholangiocyte proliferation"
##
                     "negative regulation of cholangiocyte apoptotic process"
##
                     "positive regulation of granulosa cell proliferation"
##
                     "positive regulation of skeletal muscle hypertrophy"
##
                     "negative regulation of iodide transmembrane transport"
##
                     "positive regulation of cytoplasmic translational initiation"
##
                     "regulation of nephron tubule epithelial cell differentiation"
##
##
                     "negative regulation of long-term synaptic depression"
                     "positive regulation of alkaline phosphatase activity"
##
                     "double-strand break repair via break-induced replication"
##
                     "mitotic chromosome condensation"
##
```

```
##
                      "positive regulation of glial cell-derived neurotrophic factor secretion"
##
                      "regulation of spontaneous synaptic transmission"
                      "positive regulation of astrocyte activation"
##
                      "blood vessel morphogenesis"
##
##
                      "corpus callosum development"
##
                      "regulation of protein export from nucleus"
                      "acrosome reaction"
##
                      "negative regulation of muscle cell differentiation"
##
                      "cardiac epithelial to mesenchymal transition"
##
                     "mRNA destabilization"
##
##
                      "lens fiber cell apoptotic process"
                      "histamine secretion"
##
##
                      "paracrine signaling"
                      "neuron projection morphogenesis"
##
                      "regulation of lipid catabolic process"
##
                      "acute-phase response"
##
                     "protein monoubiquitination"
##
                      "negative regulation of lipid biosynthetic process"
##
                      "positive regulation of lamellipodium morphogenesis"
##
                      "microglia development"
##
##
                     "fat cell differentiation"
                      "positive regulation of cell activation"
##
                      "neuronal signal transduction"
##
                      "negative regulation of myoblast fusion"
##
                     "digestive system development"
##
##
                      "glial cell differentiation"
##
                      "regulation of blood vessel endothelial cell migration"
                      "epithelial fluid transport"
##
                      "prostate epithelial cord arborization involved in prostate glandular acinus morph
##
                      "positive regulation of oocyte maturation"
##
##
                      "auditory behavior"
##
                      "photoperiodism"
                      "interleukin-1 beta production"
##
                      "B cell homeostasis"
##
                      "actin nucleation"
##
                     "positive regulation of long-term synaptic potentiation"
##
##
                      "vascular smooth muscle cell development"
##
                      "negative regulation of protein phosphorylation"
                      "engulfment of apoptotic cell"
##
                     "regulation of CD40 signaling pathway"
##
                      "negative regulation of C-C chemokine binding"
##
                      "gliogenesis"
##
                      "regulation of interleukin-6 biosynthetic process"
##
                      "positive regulation of attachment of spindle microtubules to kinetochore"
##
                      "membrane bending"
##
                      "positive regulation of single strand break repair"
##
                      "regulation of cell differentiation"
##
                      "collateral sprouting in absence of injury"
##
##
                      "roof of mouth development"
                      "positive regulation of mitotic cytokinetic process"
##
                      "positive regulation of cell migration by vascular endothelial growth factor signa
##
                      "hyperosmotic response"
##
##
                      "interleukin-21-mediated signaling pathway"
```

"regulation of muscle contraction"

```
##
                      "regulation of epidermal cell division"
##
                      "negative regulation of acute inflammatory response"
                      "regulation of protein localization"
##
                      "regulation of skeletal muscle fiber development"
##
##
                      "immunological synapse formation"
                     "response to activity"
##
                      "positive regulation of cellular protein localization"
##
                      "positive regulation of telomere maintenance"
##
##
                      "reproduction"
                      "positive regulation of skeletal muscle tissue development"
##
##
                      "placenta blood vessel development"
                      "synaptic vesicle to endosome fusion"
##
                      "negative regulation of axon extension involved in axon guidance"
##
                      "positive regulation of interleukin-5 secretion"
##
##
                      "histone exchange"
##
                      "synapse maturation"
##
                     "regulation of telomerase activity"
##
                      "muscle cell differentiation"
##
                      "positive regulation of heart contraction"
                      "double-strand break repair via alternative nonhomologous end joining"
##
##
                     "lateral sprouting involved in mammary gland duct morphogenesis"
                      "cerebellar cortex formation"
##
                      "positive regulation of chromatin binding"
##
                      "paraxial mesoderm formation"
##
                      "positive regulation of axonogenesis"
##
##
                      "regulation of centromeric sister chromatid cohesion"
##
                      "positive regulation of heart rate by epinephrine"
                      "negative regulation of sodium:proton antiporter activity"
##
##
                      "translation"
                      "dopaminergic neuron differentiation"
##
##
                      "negative regulation of execution phase of apoptosis"
##
                      "humoral immune response mediated by circulating immunoglobulin"
                      "positive regulation of osteoclast differentiation"
##
##
                      "detection of mechanical stimulus"
                      "activation of cysteine-type endopeptidase activity"
##
##
                     "semaphorin-plexin signaling pathway involved in axon guidance"
##
                      "nuclear pore distribution"
##
                      "formation of anatomical boundary"
                      "negative regulation of vascular smooth muscle cell differentiation"
##
                     "negative regulation of fibroblast apoptotic process"
##
                      "regulation of endothelial tube morphogenesis"
##
##
                      "plasma membrane organization"
                      "male genitalia morphogenesis"
##
                     "inflammatory response to antigenic stimulus"
##
                      "axon midline choice point recognition"
##
                      "positive regulation of wound healing, spreading of epidermal cells"
##
                      "regulation of renal output by angiotensin"
##
                      "positive regulation of hepatocyte proliferation"
##
##
                      "epidermal cell fate specification"
                      "inositol trisphosphate biosynthetic process"
##
##
                     "netrin-activated signaling pathway"
                      "embryonic morphogenesis"
##
##
                      "endothelial tube morphogenesis"
                      "natural killer cell activation"
##
```

```
"positive regulation of chromatin silencing"
##
##
                     "psychomotor behavior"
                     "positive regulation of NAD(P)H oxidase activity"
##
                     "negative regulation of transcription elongation from RNA polymerase II promoter"
##
                     "cellular response to insulin-like growth factor stimulus"
##
                     "response to bacterium"
##
                     "positive regulation of circadian sleep/wake cycle, REM sleep"
##
                     "negative regulation of blood vessel diameter"
##
##
                     "neutrophil homeostasis"
                     "establishment of cell polarity involved in ameboidal cell migration"
##
##
                     "neurotrophin TRK receptor signaling pathway"
                     "generation of ovulation cycle rhythm"
##
                     "response to DNA damage checkpoint signaling"
##
                     "receptor-mediated endocytosis involved in cholesterol transport"
##
##
                     "dentate gyrus development"
                     "positive regulation of protein homooligomerization"
##
                     "regulation of DNA binding"
##
                     "retinal blood vessel morphogenesis"
##
                     "positive regulation of protein acetylation"
##
                     "secretion by cell"
##
##
                     "positive regulation of peptide secretion"
                     "cellular response to norepinephrine stimulus"
##
                     "mammary gland development"
##
                     "histone H4 acetylation"
##
                     "positive regulation of alpha-beta T cell differentiation"
##
##
                     "cellular response to purine-containing compound"
##
                     "positive regulation of cell death"
                     "cell volume homeostasis"
##
##
                     "actin filament organization"
                     "negative regulation of tissue remodeling"
##
##
                     "cell-cell junction maintenance"
##
                     "uterine smooth muscle contraction"
                     "positive regulation of L-lysine import across plasma membrane"
##
##
                     "positive regulation of L-arginine import across plasma membrane"
                     "regulation of DNA-templated transcription in response to stress"
##
##
                     "cell cycle phase transition"
##
                     "positive regulation of DNA damage response, signal transduction by p53 class medi-
##
                     "cap-dependent translational initiation"
                     "positive regulation of fatty acid beta-oxidation"
##
                     "regulation of RNA export from nucleus"
##
                     "chromosome separation"
##
                     "positive regulation of endothelial cell chemotaxis to fibroblast growth factor"
##
                     "posterior midgut development"
##
                     "positive regulation of signal transduction"
##
                     "exocrine pancreas development"
##
                     "positive regulation of protein dephosphorylation"
##
                     "negative regulation of glomerular filtration"
##
                     "regulation of DNA-dependent DNA replication initiation"
##
                     "positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic s
##
                     "negative regulation of autophagy"
##
                     "negative regulation of interleukin-2 biosynthetic process"
##
                     "cellular response to low-density lipoprotein particle stimulus"
##
                     "positive regulation of nucleic acid-templated transcription"
##
                     "regulation of MAPK cascade"
##
```

```
"wound healing, spreading of cells"
##
##
                     "regulation of mitotic cell cycle spindle assembly checkpoint"
                     "positive regulation of synaptic plasticity"
##
                     "transposition, RNA-mediated"
##
                     "synaptic transmission, GABAergic"
##
                     "left/right axis specification"
##
                     "negative regulation of type B pancreatic cell development"
##
                     "positive regulation of cellular senescence"
##
##
                     "MyD88-independent toll-like receptor signaling pathway"
                     "chromatin assembly or disassembly"
##
##
                     "astrocyte development"
                     "positive regulation of T cell apoptotic process"
##
                     "response to muscle activity involved in regulation of muscle adaptation"
##
                     "N-acetylglucosamine metabolic process"
##
##
                     "bronchus morphogenesis"
##
                     "lens fiber cell development"
                     "negative regulation of fibrinolysis"
##
                     "positive regulation of NAD+ ADP-ribosyltransferase activity"
##
##
                     "cardiac muscle cell development"
                     "DNA-dependent DNA replication"
##
##
                     "galanin-activated signaling pathway"
                     "microtubule sliding"
##
                     "cellular response to mineralocorticoid stimulus"
##
                     "negative regulation of non-motile cilium assembly"
##
                     "regulation of cell-substrate adhesion"
##
##
                     "canonical Wnt signaling pathway involved in positive regulation of epithelial to
##
                     "cellular response to hydroperoxide"
                     "establishment of RNA localization to telomere"
##
                     "establishment of protein-containing complex localization to telomere"
##
                     "positive regulation of telomerase catalytic core complex assembly"
##
##
                     "cellular response to chemokine"
##
                     "positive regulation of heparan sulfate proteoglycan biosynthetic process"
                     "positive regulation of adipose tissue development"
##
##
                     "positive regulation of glucose import"
                     "paranodal junction assembly"
##
                     "positive regulation of metanephric glomerulus development"
##
##
                     "response to peptidoglycan"
##
                     "limb bud formation"
                     "ductus arteriosus closure"
##
                     "positive regulation of inhibitory postsynaptic potential"
##
                     "negative regulation of interferon-gamma production"
##
                     "positive regulation of low-density lipoprotein particle clearance"
##
                     "positive regulation of receptor-mediated endocytosis involved in cholesterol tran
##
                     "regulation of extracellular matrix disassembly"
##
                     "response to amino acid starvation"
##
                     "regulation of phagocytosis"
##
                     "extracellular structure organization"
##
                     "epicardium morphogenesis"
##
                     "megakaryocyte differentiation"
##
                     "mammary gland branching involved in thelarche"
##
##
                     "regulation of tumor necrosis factor-mediated signaling pathway"
                     "negative regulation of glycogen (starch) synthase activity"
##
##
                     "response to potassium ion"
                     "response to acrylamide"
##
```

```
##
                     "circadian regulation of translation"
##
                     "regulation of myoblast differentiation"
                     "positive regulation of interleukin-1 secretion"
##
                     "negative regulation of smooth muscle cell differentiation"
##
##
                     "negative regulation of endocytosis"
                     "spinal cord development"
##
                     "positive regulation of attachment of mitotic spindle microtubules to kinetochore"
##
                     "positive regulation of protein glycosylation"
##
##
                     "interleukin-27-mediated signaling pathway"
                     "establishment of mitotic spindle localization"
##
##
                     "negative regulation of potassium ion transport"
                     "epithelial cell migration"
##
                     "regulation of T cell proliferation"
##
                     "positive regulation of voltage-gated chloride channel activity"
##
##
                     "positive regulation of extracellular matrix constituent secretion"
##
                     "cellular response to glucose starvation"
                     "positive regulation of glycoprotein biosynthetic process"
##
                     "negative regulation of chemokine-mediated signaling pathway"
##
##
                     "SMAD protein complex assembly"
                     "formation of radial glial scaffolds"
##
##
                     "positive regulation of protein localization to kinetochore"
                     "positive regulation of protein localization to membrane"
##
                     "myoblast fusion"
##
                     "low-density lipoprotein particle clearance"
##
                     "positive regulation of blood pressure in other organism"
##
##
                     "negative regulation of gastric emptying"
                     "positive regulation of stomach fundus smooth muscle contraction"
##
                     "snRNA export from nucleus"
##
                     "heart looping"
##
                     "layer formation in cerebral cortex"
##
                     "positive regulation of translational fidelity"
##
##
                     "TOR signaling"
                     "regulation of mitotic centrosome separation"
##
                     "angiotensin-mediated drinking behavior"
##
                     "peptide hormone processing"
##
                     "apolipoprotein A-I-mediated signaling pathway"
##
##
                     "telomere tethering at nuclear periphery"
##
                     "regulation of rhodopsin mediated signaling pathway"
                     "mitochondrial DNA repair"
##
                     "positive regulation of mRNA 3'-UTR binding"
##
                     "negative regulation of receptor-mediated endocytosis"
##
                     "regulation of synaptic transmission, glutamatergic"
##
                     "positive regulation of I-kappaB kinase/NF-kappaB signaling"
##
                     "macropinocytosis"
##
                     "cellular response to carbon monoxide"
##
                     "positive regulation of sodium:potassium-exchanging ATPase activity"
##
                     "positive regulation of ATP-dependent microtubule motor activity, plus-end-directed
##
                     "fibroblast proliferation"
##
                     "growth plate cartilage development"
##
                     "presynaptic modulation of chemical synaptic transmission"
##
##
                     "lipoprotein biosynthetic process"
                     "regulation of neuronal synaptic plasticity"
##
                     "maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LS
##
```

"prostaglandin biosynthetic process"

```
##
                     "negative regulation of DNA endoreduplication"
##
                     "regulation of I-kappaB kinase/NF-kappaB signaling"
                     "positive regulation of cytokine production involved in immune response"
##
                     "positive regulation of acute inflammatory response to non-antigenic stimulus"
##
##
                     "response to sterol depletion"
##
                     "positive regulation of stress-activated protein kinase signaling cascade"
                     "positive regulation of mast cell proliferation"
##
                     "regulation of monocyte chemotaxis"
##
##
                     "regulation of peptide hormone secretion"
                     "hypomethylation of CpG island"
##
##
                     "negative regulation of vasoconstriction"
                     "positive regulation of tight junction disassembly"
##
                     "positive regulation of glucose metabolic process"
##
                     "establishment of centrosome localization"
##
##
                     "positive regulation of Fc receptor mediated stimulatory signaling pathway"
##
                     "dopamine transport"
                     "embryonic neurocranium morphogenesis"
##
##
                     "regulation of T cell activation"
                     "response to gamma radiation"
##
##
                     "cellular response to estradiol stimulus"
##
                     "heart valve morphogenesis"
                     "positive regulation of interleukin-13 production"
##
                     "sulfation"
##
                     "positive regulation of NIK/NF-kappaB signaling"
##
                     "negative regulation of intracellular signal transduction"
##
##
                     "negative regulation of glycolytic process"
##
                     "embryonic digestive tract morphogenesis"
                     "sympathetic ganglion development"
##
                     "cardiocyte differentiation"
##
                     "protein localization to microtubule plus-end"
##
##
                     "positive regulation of lysosomal protein catabolic process"
##
                     "histone deubiquitination"
                     "heparan sulfate proteoglycan biosynthetic process, polysaccharide chain biosynthe
##
                     "negative regulation of respiratory burst involved in inflammatory response"
##
                     "response to salt"
##
                     "Fc receptor mediated inhibitory signaling pathway"
##
##
                     "response to angiotensin"
##
                     "histone H3-K9 modification"
                     "protein-DNA complex assembly"
##
                     "histone H3-K9 deacetylation"
##
                     "anterograde synaptic vesicle transport"
##
                     "transcription initiation from RNA polymerase I promoter"
##
                     "positive regulation of G2/M transition of mitotic cell cycle"
##
                     "positive regulation of deacetylase activity"
##
                     "regulation of locomotion involved in locomotory behavior"
##
                     "chondroitin sulfate catabolic process"
##
                     "cytokinetic process"
##
                     "positive regulation of transcription from RNA polymerase II promoter involved in
##
##
                     "negative regulation of mast cell proliferation"
                     "positive regulation of cap-dependent translational initiation"
##
                     "regulation of lipopolysaccharide-mediated signaling pathway"
##
                     "peptidyl-tyrosine dephosphorylation"
##
##
                     "phosphate ion homeostasis"
```

"hepatocyte proliferation"

```
##
                     "mucus secretion"
                     "leptin-mediated signaling pathway"
##
                     "auditory receptor cell development"
##
                     "triglyceride metabolic process"
##
                     "unsaturated fatty acid biosynthetic process"
##
                     "connective tissue replacement involved in inflammatory response wound healing"
##
                     "positive regulation of cardiac muscle contraction"
##
                     "gonad development"
##
##
                     "negative regulation of ossification"
                     "cellular response to nerve growth factor stimulus"
##
##
                     "negative regulation of transcription by RNA polymerase I"
                     "regulation of membrane repolarization during atrial cardiac muscle cell action po
##
                     "regulation of membrane repolarization during cardiac muscle cell action potential
##
                     "negative regulation of cytokine production involved in inflammatory response"
##
##
                     "positive regulation of adaptive immune response"
##
                     "response to auditory stimulus"
##
                     "modification by virus of host mRNA processing"
                     "positive regulation of chemokine (C-C motif) ligand 5 production"
##
##
                     "cAMP biosynthetic process"
                     "cardiac muscle cell action potential involved in contraction"
##
##
                     "regulation of glucocorticoid metabolic process"
                     "signaling"
##
##
                     "aggressive behavior"
                     "negative regulation of B cell receptor signaling pathway"
##
                     "desmosome assembly"
##
##
                     "pronuclear fusion"
##
                     "regulation of Schwann cell differentiation"
                     "adrenomedullin receptor signaling pathway"
##
##
                     "DNA-templated viral transcription"
                     "small RNA loading onto RISC"
##
                     "cellular response to oxidised low-density lipoprotein particle stimulus"
##
##
                     "positive regulation of viral translation"
                     "positive regulation of polysome binding"
##
##
                     "T-helper 1 cell lineage commitment"
                     "histone modification"
##
                     "protection from non-homologous end joining at telomere"
##
##
                     "positive regulation of cartilage development"
##
                     "endochondral bone morphogenesis"
                     "regulation of lipid storage"
##
                     "bone morphogenesis"
##
                     "negative regulation of pathway-restricted SMAD protein phosphorylation"
##
##
                     "vitamin D metabolic process"
                     "regulation of blood vessel size"
##
                     "cerebral cortex development"
##
                     "positive regulation of toll-like receptor 4 signaling pathway"
##
                     "regulation of cytoplasmic translation"
##
                     "paraxial mesoderm morphogenesis"
##
                     "positive regulation of cell growth involved in cardiac muscle cell development"
##
##
                     "negative regulation of epithelial cell differentiation"
                     "negative regulation of sprouting angiogenesis"
##
##
                     "response to dexamethasone"
                     "acrosome assembly"
##
                     "positive regulation of protein kinase C signaling"
##
```

"reduction of food intake in response to dietary excess"

```
##
                     "positive regulation of skeletal muscle tissue regeneration"
##
                     "positive regulation of NK T cell differentiation"
                     "centrosome duplication"
##
                     "fat pad development"
##
                     "photoreceptor cell outer segment organization"
##
                     "negative regulation of macrophage chemotaxis"
##
                     "saliva secretion"
##
                     "chondroblast differentiation"
##
##
                     "regulation of bile acid biosynthetic process"
                     "mucosal immune response"
##
##
                     "water transport"
                     "cortical microtubule organization"
##
                     "spindle checkpoint"
##
                     "exploration behavior"
##
##
                     "mammary gland branching involved in pregnancy"
##
                     "positive regulation of oligodendrocyte progenitor proliferation"
                     "negative regulation of single stranded viral RNA replication via double stranded
##
                     "positive regulation of pri-miRNA transcription by RNA polymerase II"
##
                     "regulation of gene expression by genetic imprinting"
##
                     "DNA demethylation"
##
                     "regulation of mRNA stability involved in response to oxidative stress"
##
##
                     "snoRNA 3'-end processing"
                     "angiotensin-activated signaling pathway"
##
                     "cartilage condensation"
##
                     "collagen-activated tyrosine kinase receptor signaling pathway"
##
##
                     "negative regulation of skeletal muscle cell differentiation"
##
                     "central nervous system projection neuron axonogenesis"
                     "ectopic germ cell programmed cell death"
##
                     "regulation of respiratory gaseous exchange by neurological system process"
##
                     "positive regulation of cell proliferation involved in heart valve morphogenesis"
##
                     "female gonad morphogenesis"
##
##
                     "negative regulation of cardiac myofibril assembly"
                     "cholesterol import"
##
##
                     "heart trabecula morphogenesis"
                     "negative regulation of ER-associated ubiquitin-dependent protein catabolic proces
##
##
                     "regulation of ATPase activity"
##
                     "positive regulation of apoptotic cell clearance"
##
                     "artery development"
##
                     "endocardial cushion fusion"
                     "positive regulation of growth factor dependent skeletal muscle satellite cell pro
##
                     "positive regulation of peptidyl-serine phosphorylation"
##
                     "regulation of defense response to virus by host"
##
                     "telomere maintenance via recombination"
##
                     "positive regulation of odontogenesis"
##
                     "mRNA transport"
##
                     "positive regulation of peptide hormone secretion"
##
                     "replication fork protection"
##
                     "regulation of endodeoxyribonuclease activity"
##
                     "positive regulation of small intestine smooth muscle contraction"
##
                     "RNA phosphodiester bond hydrolysis"
##
##
                     "startle response"
                     "positive regulation of norepinephrine secretion"
##
                     "positive regulation of signal transduction by p53 class mediator"
##
                     "genetic imprinting"
##
```

```
"tRNA 5'-leader removal"
##
##
                     "microtubule depolymerization"
                     "positive regulation of interferon-gamma secretion"
##
                      "histone-serine phosphorylation"
##
##
                      "neuron projection retraction"
##
                      "cerebral cortex GABAergic interneuron migration"
                      "receptor internalization"
##
                      "positive regulation of acute inflammatory response"
##
##
                      "positive regulation of heterotypic cell-cell adhesion"
                      "embryonic camera-type eye morphogenesis"
##
##
                      "T cell migration"
                      "nuclear-transcribed mRNA catabolic process, exonucleolytic"
##
##
                      "peptidyl-lysine monomethylation"
                      "negative regulation of urine volume"
##
##
                      "positive regulation of insulin-like growth factor receptor signaling pathway"
##
                      "ribosomal large subunit assembly"
                     "neurological system process involved in regulation of systemic arterial blood pre
##
                      "Fc receptor mediated stimulatory signaling pathway"
##
##
                      "regulation of vascular smooth muscle contraction"
##
                      "gene silencing by RNA"
                      "negative regulation of oligodendrocyte differentiation"
##
                      "negative regulation of cytokine secretion"
##
                      "proepicardium development"
##
                      "germ cell development"
##
                      "positive regulation of podosome assembly"
##
##
                      "positive regulation of endothelial cell chemotaxis by VEGF-activated vascular end
##
                      "regulation of protein metabolic process"
                      "lens fiber cell differentiation"
##
                      "positive regulation of sodium-dependent phosphate transport"
##
                      "negative regulation of protein homooligomerization"
##
##
                      "organ induction"
##
                      "glutamate secretion"
                      "detection of abiotic stimulus"
##
                      "regulation of nucleocytoplasmic transport"
##
##
                      "mast cell differentiation"
                      "epithelial tube branching involved in lung morphogenesis"
##
                      "response to muramyl dipeptide"
##
##
                      "positive regulation of telomerase RNA reverse transcriptase activity"
                      "secretory columnal luminar epithelial cell differentiation involved in prostate g
##
                     "regulation of interleukin-1 beta production"
##
                      "regulation of multicellular organism growth"
##
##
                      "positive regulation of protein localization to synapse"
                      "extracellular negative regulation of signal transduction"
##
                      "negative regulation of mast cell activation"
##
                      "positive regulation of biomineral tissue development"
##
                      "keratinocyte proliferation"
##
                      "viral penetration into host nucleus"
##
                     "fear response"
##
##
                      "granulocyte chemotaxis"
                      "gamete generation"
##
##
                     "cellular response to hydroxyurea"
                     "regulation of DNA replication origin binding"
##
                      "immune response-regulating cell surface receptor signaling pathway"
##
                      "B cell chemotaxis"
##
```

```
##
                      "intraciliary transport"
                      "positive regulation of ubiquitin protein ligase activity"
##
                      "neuron cellular homeostasis"
##
                      "regulation of chromatin organization"
##
                      "negative regulation of endoplasmic reticulum unfolded protein response"
##
                     "cell adhesion mediated by integrin"
##
                     "inhibitory postsynaptic potential"
##
                     "viral RNA genome replication"
##
##
                      "endothelin receptor signaling pathway"
                     "embryonic brain development"
##
##
                      "membranous septum morphogenesis"
                     "left ventricular cardiac muscle tissue morphogenesis"
##
                     "cellular protein-containing complex localization"
##
                      "protein localization to spindle microtubule"
##
##
                      "RNA localization to chromatin"
##
                      "negative regulation of type I interferon production"
                     "positive regulation of response to cytokine stimulus"
##
                      "peptidyl-lysine dimethylation"
##
##
                      "t-circle formation"
                      "positive regulation of organ growth"
##
##
                     "nervous system process"
                      "cranial skeletal system development"
##
                      "negative regulation of intrinsic apoptotic signaling pathway in response to osmot
##
                      "regulation of glycolytic process by negative regulation of transcription from RNA
##
                     "regulation of fatty acid transport"
##
##
                      "negative regulation of type B pancreatic cell apoptotic process"
##
                      "positive regulation of chemokine production"
                      "odontogenesis"
##
##
                      "negative regulation of vascular permeability"
                      "positive regulation of centriole replication"
##
##
                      "histone monoubiquitination"
##
                     "negative regulation of histone H3-K27 methylation"
                      "negative regulation of platelet activation"
##
##
                      "positive regulation of cytokine secretion"
                      "cellular response to lipoteichoic acid"
##
                     "bile acid secretion"
##
##
                      "cellular response to mechanical stimulus"
##
                      "response to other organism"
                      "positive regulation of mitochondrial depolarization"
##
                     "regulation of centriole-centriole cohesion"
##
                     "microtubule anchoring at centrosome"
##
##
                     "negative regulation of calcium ion-dependent exocytosis"
                      "response to laminar fluid shear stress"
##
                     "vascular endothelial growth factor signaling pathway"
##
                      "negative regulation of actin filament severing"
##
                      "lung lobe morphogenesis"
##
                      "aorta morphogenesis"
##
##
                     NA
                     "negative regulation of glycogen biosynthetic process"
##
                      "negative regulation of lung blood pressure"
##
##
                      "negative regulation of telomere capping"
                      "nuclear speck organization"
##
##
                      "pointed-end actin filament capping"
                      "positive regulation of transcription from RNA polymerase II promoter in response
##
```

```
##
                     "exocytic insertion of neurotransmitter receptor to postsynaptic membrane"
##
                     "chylomicron remodeling"
                     "snRNA processing"
##
                     "regulation of histone modification"
##
                     "neuron fate specification"
##
##
                     "cellular response to steroid hormone stimulus"
                     "regulation of interleukin-1 production"
##
                     "cellular pigmentation"
##
##
                     "response to amyloid-beta"
                     "snoRNA splicing"
##
##
                     "B cell proliferation involved in immune response"
                     "regulation of fatty acid metabolic process"
##
                     "negative regulation of phospholipase A2 activity"
##
                     "cellular response to hyperoxia"
##
##
                     "lipoprotein catabolic process"
##
                     "positive regulation of protein metabolic process"
                     "synaptic growth at neuromuscular junction"
##
                     "negative regulation of dopaminergic neuron differentiation"
##
                     "positive regulation of transforming growth factor beta3 production"
##
                     "cellular response to thyroid hormone stimulus"
##
##
                     "eye development"
                     "heteroduplex formation"
##
                     "negative regulation of GO to G1 transition"
##
                     "interleukin-12 secretion"
##
                     "negative regulation of cell migration"
##
##
                     "regulation of extracellular matrix organization"
##
                     "regulation of cysteine-type endopeptidase activity involved in apoptotic process"
                     "Golgi vesicle transport"
##
                     "negative regulation of androgen receptor signaling pathway"
##
                     "histone H2A ubiquitination"
##
                     "negative regulation of tumor necrosis factor biosynthetic process"
##
##
                     "norepinephrine-epinephrine vasoconstriction involved in regulation of systemic ar
                     "positive regulation of homotypic cell-cell adhesion"
##
                     "negative regulation of interleukin-5 production"
##
                     "regulation of dephosphorylation"
##
                     "regulation of RNA stability"
##
                     "negative regulation of vascular endothelial growth factor receptor signaling path
##
##
                     "transepithelial chloride transport"
                     "negative regulation of interleukin-6 biosynthetic process"
##
                     "clathrin coat disassembly"
##
                     "transcription, RNA-templated"
##
                     "positive regulation of canonical Wnt signaling pathway"
##
                     "actomyosin contractile ring assembly"
##
                     "positive regulation of CD4-positive, alpha-beta T cell proliferation"
##
                     "lens development in camera-type eye"
##
                     "activation of protein kinase C activity"
##
                     "positive regulation of sister chromatid cohesion"
##
                     "CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment"
##
                     "positive regulation of peripheral T cell tolerance induction"
##
                     "positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell
##
                     "negative regulation of interferon-gamma biosynthetic process"
##
                     "mitochondrial depolarization"
##
                     "signal transduction by p53 class mediator"
##
                     "regulation of cell growth by extracellular stimulus"
##
```

```
##
                     "endodermal cell fate specification"
##
                     "transitional one stage B cell differentiation"
##
                     "histone H2B ubiquitination"
                     "epithelial cell proliferation involved in mammary gland duct elongation"
##
##
                     "positive regulation of actin filament binding"
##
                     "negative regulation of acute inflammatory response to antigenic stimulus"
                     "90S preribosome assembly"
##
                     "regulation of cellular response to stress"
##
##
                     "anterograde axonal protein transport"
                     "bundle of His cell-Purkinje myocyte adhesion involved in cell communication"
##
##
                     "regulation of cytokine biosynthetic process"
                     "protein localization to centrosome"
##
                     "anterior/posterior axis specification, embryo"
##
                     "negative regulation of toll-like receptor 2 signaling pathway"
##
##
                     "response to light stimulus"
##
                     "regulation of embryonic development"
                     "protein O-linked glycosylation"
##
                     "maintenance of translational fidelity"
##
##
                     "protein localization to nuclear inner membrane"
                     "negative regulation of myeloid cell differentiation"
##
##
                     "regulation of JAK-STAT cascade"
                     "osteoclast differentiation"
##
                     "ventricular cardiac muscle cell development"
##
                     "positive regulation of alpha-beta T cell proliferation"
##
                     "interleukin-8-mediated signaling pathway"
##
##
                     "response to cholecystokinin"
##
                     "SH2 domain-mediated complex assembly"
                     "cellular response to endothelin"
##
                     "nuclear transport"
##
                     "hematopoietic stem cell proliferation"
##
##
                     "membrane invagination"
##
                     "myoblast migration involved in skeletal muscle regeneration"
                     "positive regulation of transcription from RNA polymerase II promoter in response
##
                     "cholecystokinin signaling pathway"
##
                     "positive regulation of multicellular organism growth"
##
                     "positive regulation of type I interferon-mediated signaling pathway"
##
##
                     "thymocyte migration"
##
                     "cellular response to 1-oleoyl-sn-glycerol 3-phosphate"
                     "negative regulation of intracellular estrogen receptor signaling pathway"
##
                     "cell communication"
##
                     "negative regulation of peptidyl-threonine phosphorylation"
##
##
                     "localization within membrane"
                     "positive regulation of natural killer cell chemotaxis"
##
##
                     "mesenchymal cell differentiation"
                     "myeloid dendritic cell chemotaxis"
##
                     "membrane organization"
##
                     "positive regulation of growth hormone receptor signaling pathway"
##
                     "negative regulation of amyloid-beta clearance"
##
##
                     "fertilization"
                     "calcium ion transport into cytosol"
##
##
                     "negative regulation of hormone secretion"
                     "positive regulation of phospholipase C-activating G protein-coupled receptor sign
##
                     "positive regulation of cardiac vascular smooth muscle cell differentiation"
##
```

"signal transduction involved in mitotic G1 DNA damage checkpoint"

```
##
                     "Golgi ribbon formation"
##
                     "negative regulation of response to gamma radiation"
                     "ribosome assembly"
##
                     "positive regulation of fever generation"
##
##
                     "positive regulation of collateral sprouting"
                     "cellular protein metabolic process"
##
                     "ribosomal large subunit export from nucleus"
##
                     "negative regulation of cysteine-type endopeptidase activity"
##
##
                     "postsynaptic membrane assembly"
                     "cellular response to oxygen levels"
##
##
                     "insulin-like growth factor receptor signaling pathway"
                     "angiogenesis involved in coronary vascular morphogenesis"
##
                     "positive regulation of histone methylation"
##
                     "positive regulation of wound healing"
##
##
                     "DNA replication, synthesis of RNA primer"
##
                     "negative regulation of platelet aggregation"
                     "JUN phosphorylation"
##
                     "tRNA splicing, via endonucleolytic cleavage and ligation"
##
##
                     "regulation of body fluid levels"
##
                     "C-5 methylation of cytosine"
##
                     "positive regulation of arachidonic acid secretion"
                     "negative regulation of interleukin-23 production"
##
                     "axon development"
##
                     "neural crest formation"
##
                     "regulation of synapse structure or activity"
##
##
                     "regulation of branching involved in prostate gland morphogenesis"
##
                     "trophoblast giant cell differentiation"
                     "positive regulation of smooth muscle cell chemotaxis"
##
##
                     "viral budding"
                     "nucleotide-excision repair, DNA incision, 5'-to lesion"
##
##
                     "positive regulation of SUMO transferase activity"
##
                     "positive regulation of interleukin-5 production"
                     "negative regulation of renal sodium excretion"
##
##
                     "positive regulation of glucokinase activity"
                     "negative regulation of chronic inflammatory response"
##
##
                     "regulation of heart rate by cardiac conduction"
##
                     "negative regulation of t-circle formation"
##
                     "regulation of bone resorption"
                     "synaptic vesicle fusion to presynaptic active zone membrane"
##
                     "response to denervation involved in regulation of muscle adaptation"
##
                     "dermatan sulfate biosynthetic process"
##
##
                     "positive regulation of cellular pH reduction"
                     "axonal fasciculation"
##
                     "regulation of keratinocyte proliferation"
##
                     "negative regulation of myotube differentiation"
##
                     "positive regulation of ion transport"
##
                     "positive regulation of T-helper 1 cell differentiation"
##
                     "neuron projection regeneration"
##
                     "establishment of epithelial cell apical/basal polarity"
##
                     "regulation of B cell differentiation"
##
##
                     "protein poly-ADP-ribosylation"
                     "immunoglobulin production"
##
                     "anaphase-promoting complex-dependent catabolic process"
##
                     "microtubule nucleation by interphase microtubule organizing center"
##
```

```
"regulation of translation at presynapse, modulating synaptic transmission"
##
##
                     "regulation of melanocyte differentiation"
                     "branching involved in labyrinthine layer morphogenesis"
##
                     "collagen metabolic process"
##
                     "homeostasis of number of cells within a tissue"
##
                     "mitotic G2 DNA damage checkpoint"
##
                     "nephrogenic mesenchyme morphogenesis"
##
                     "pericardium development"
##
##
                     "synaptic vesicle uncoating"
                     "nuclear-transcribed mRNA poly(A) tail shortening"
##
##
                     "telencephalon development"
                     "cellular response to temperature stimulus"
##
                     "dendrite extension"
##
                     "regulation of cell size"
##
##
                     "macrophage activation"
##
                     "detection of light stimulus involved in visual perception"
                     "insulin receptor signaling pathway via phosphatidylinositol 3-kinase"
##
                     "regulation of DNA damage checkpoint"
##
                     "nucleotide-excision repair, preincision complex assembly"
##
                     "synaptic vesicle budding from presynaptic endocytic zone membrane"
##
##
                     "negative regulation of interleukin-4 production"
                     "single stranded viral RNA replication via double stranded DNA intermediate"
##
                     "regulation of histone H4-K16 acetylation"
##
                     "positive regulation of cardiac muscle cell apoptotic process"
##
                     "regulation of glutamate receptor signaling pathway"
##
##
                     "regulation of calcium ion import across plasma membrane"
##
                     "branching morphogenesis of a nerve"
                     "positive regulation of protein processing in phagocytic vesicle"
##
                     "centriole assembly"
##
                     "receptor-mediated endocytosis"
##
                     "negative regulation of synapse assembly"
##
##
                     "atrioventricular valve formation"
                     "immune system development"
##
##
                     "Cdc42 protein signal transduction"
##
                     "lymphocyte migration"
                     "positive regulation of interleukin-1 beta secretion"
##
                     "positive regulation of cellular biosynthetic process"
##
##
                     "developmental process"
                     "positive regulation of DNA-templated transcription, elongation"
##
                     "response to nitric oxide"
##
                     "nucleotide-excision repair, DNA incision"
##
##
                     "positive regulation of protein polyubiquitination"
                     "negative regulation of cell adhesion"
##
                     "regulation of histone deacetylation"
##
                     "positive regulation of peptidyl-serine phosphorylation of STAT protein"
##
                     "chromosome segregation"
##
                     "platelet dense granule organization"
##
                     "myelin maintenance"
##
                     "reciprocal meiotic recombination"
##
                     "microvillus organization"
##
##
                     "negative regulation of cortisol secretion"
                     "intestinal epithelial cell migration"
##
                     "plus-end-directed vesicle transport along microtubule"
##
                     "positive regulation of core promoter binding"
##
```

```
##
                     "mineralocorticoid receptor signaling pathway"
##
                     "regulation of brown fat cell differentiation"
                     "negative regulation of T-helper 17 cell differentiation"
##
                     "negative regulation of endothelial cell proliferation"
##
##
                     "replicative senescence"
                     "establishment of chromosome localization"
##
                     "positive regulation of extracellular exosome assembly"
##
                     "positive regulation of intrinsic apoptotic signaling pathway"
##
##
                     "nucleus organization"
                     "establishment of meiotic spindle localization"
##
##
                     "regulation of T cell anergy"
                     "response to fibroblast growth factor"
##
                     "gastric emptying"
##
                     "response to yeast"
##
##
                     "adaptive thermogenesis"
##
                     "CD8-positive, gamma-delta intraepithelial T cell differentiation"
                     "regulation of hair follicle development"
##
                     "smoothened signaling pathway involved in dorsal/ventral neural tube patterning"
##
##
                     "negative regulation of cholesterol efflux"
##
                     "regulation of protein secretion"
##
                     "negative regulation of bone resorption"
                     "cellular response to L-glutamate"
##
                     "maintenance of cell polarity"
##
                     "neuron maturation"
##
                     "positive regulation of integrin-mediated signaling pathway"
##
##
                     "negative regulation of platelet-derived growth factor receptor-beta signaling pat
##
                     "positive regulation of endodeoxyribonuclease activity"
                     "negative regulation of appetite"
##
##
                     "vasodilation"
                     "regulation of isotype switching to IgG isotypes"
##
##
                     "telomere capping"
##
                     "positive regulation of production of miRNAs involved in gene silencing by miRNA"
                     "positive regulation of amyloid-beta formation"
##
                     "positive regulation of mitochondrial ATP synthesis coupled electron transport"
##
                     "negative regulation of neuron projection development"
##
##
                     "positive regulation of interferon-beta secretion"
##
                     "positive regulation of neural precursor cell proliferation"
##
                     "RNA polymerase I preinitiation complex assembly"
                     "neuroepithelial cell differentiation"
##
                     "commissural neuron axon guidance"
##
                     "negative regulation of production of miRNAs involved in gene silencing by miRNA"
##
##
                     "retina vasculature morphogenesis in camera-type eye"
                     "negative regulation of histone H3-K9 dimethylation"
##
                     "positive regulation of T-helper 2 cell cytokine production"
##
                     "non-canonical Wnt signaling pathway via JNK cascade"
##
                     "granulocyte differentiation"
##
                     "positive regulation of 1-phosphatidylinositol-3-kinase activity"
##
                     "positive regulation of TOR signaling"
##
##
                     "cellular response to interleukin-3"
                     "negative regulation of calcium ion transport"
##
##
                     "embryonic heart tube morphogenesis"
                     "vasculature development"
##
                     "endothelial cell differentiation"
##
##
                     "regulation of smooth muscle cell differentiation"
```

```
##
                     "locomotor rhythm"
                     "positive regulation of cyclin-dependent protein serine/threonine kinase activity"
##
                     "negative regulation of interleukin-8 secretion"
##
                     "positive regulation of translation in response to endoplasmic reticulum stress"
##
##
                     "female meiosis chromosome segregation"
                     "positive regulation of epidermal cell differentiation"
##
                     "positive regulation of dendrite extension"
##
                     "negative regulation of wound healing"
##
##
                     "RNA 3'-end processing"
                     "sperm ejaculation"
##
##
                     "negative regulation of voltage-gated calcium channel activity"
                     "negative regulation of phospholipase C activity"
##
                     "endothelial cell morphogenesis"
##
                     "positive regulation of actin nucleation"
##
##
                     "peptide hormone secretion"
##
                     "histone H2B acetylation"
                     "peptidyl-lysine propionylation"
##
##
                     "peptidyl-lysine crotonylation"
##
                     "peptidyl-lysine butyrylation"
                     "positive regulation of follicle-stimulating hormone secretion"
##
##
                     "positive regulation of large conductance calcium-activated potassium channel acti
                     "negative regulation of microtubule depolymerization"
##
                     "positive regulation of B cell receptor signaling pathway"
##
                     "negative regulation of TOR signaling"
##
                     "regulation of histone acetylation"
##
##
                     "embryonic organ development"
##
                     "regulation of protein import into nucleus"
                     "motile cilium assembly"
##
                     "bud elongation involved in lung branching"
##
                     "positive regulation of toll-like receptor 3 signaling pathway"
##
##
                     "positive regulation of brown fat cell differentiation"
##
                     "epithelial cell development"
                     "interleukin-1 beta secretion"
##
##
                     "maintenance of centrosome location"
##
                     "positive regulation of neuron migration"
##
                     "heparan sulfate proteoglycan biosynthetic process"
##
                     "B-1 B cell homeostasis"
##
                     "negative regulation of astrocyte differentiation"
                     "endocardial cell differentiation"
##
                     "positive regulation of macrophage derived foam cell differentiation"
##
                     "negative regulation of stem cell differentiation"
##
##
                     "regulation of respiratory gaseous exchange"
                     "negative regulation of T cell receptor signaling pathway"
##
                     "positive regulation of feeding behavior"
##
                     "positive regulation of myoblast fusion"
##
                     "entrainment of circadian clock"
##
                     "regulation of centrosome cycle"
##
                     "regulation of RNA metabolic process"
##
                     "negative regulation of phosphatase activity"
##
                     "gene silencing"
##
##
                     "negative regulation of calcium ion import"
                     "multicellular organismal reproductive process"
##
##
                     "regulation of corticosterone secretion"
                     "negative regulation of cytokine biosynthetic process"
##
```

```
##
                     "gland development"
##
                     "establishment or maintenance of actin cytoskeleton polarity"
##
                     "oligodendrocyte apoptotic process"
                     "positive regulation of phosphatidylinositol biosynthetic process"
##
##
                     "sterol metabolic process"
                     "nodal signaling pathway"
##
                     "generation of catalytic spliceosome for first transesterification step"
##
                     "positive regulation of platelet-derived growth factor receptor signaling pathway"
##
##
                     "positive regulation of immature T cell proliferation in thymus"
                     "negative regulation of gene expression, epigenetic"
##
##
                     "homeostatic process"
                     "positive regulation of intrinsic apoptotic signaling pathway in response to DNA d
##
                     "sebaceous gland development"
##
                     "primary ovarian follicle growth"
##
##
                     "negative regulation of B cell apoptotic process"
##
                     "regulation of modification of synaptic structure"
                     "regulation of caveolin-mediated endocytosis"
##
##
                     "positive regulation of RNA binding"
##
                     "triglyceride mobilization"
                     "negative regulation of luteinizing hormone secretion"
##
##
                     "T cell lineage commitment"
                     "DNA methylation involved in embryo development"
##
                     "chloride transmembrane transport"
##
                     "histone H4-K5 acetylation"
##
                     "histone H4-K8 acetylation"
##
##
                     "negative regulation of keratinocyte differentiation"
##
                     "intermediate filament cytoskeleton organization"
                     "labyrinthine layer development"
##
                     "negative regulation of transcription involved in G1/S transition of mitotic cell
##
                     "regulation of protein kinase B signaling"
##
                     "negative regulation of endoplasmic reticulum stress-induced eIF2 alpha phosphoryl
##
##
                     "positive regulation of ovarian follicle development"
                     "negative regulation of protein kinase activity by regulation of protein phosphory
##
                     "positive regulation of protein autophosphorylation"
##
                     "positive regulation of dopamine uptake involved in synaptic transmission"
##
                     "angiogenesis involved in wound healing"
##
##
                     "neuron projection extension"
##
                     "cellular response to glucocorticoid stimulus"
                     "response to molecule of bacterial origin"
##
                     "conditioned taste aversion"
##
                     "regulation of ruffle assembly"
##
##
                     "DNA unwinding involved in DNA replication"
                     "positive regulation of branching involved in ureteric bud morphogenesis"
##
                     "positive regulation of SMAD protein signal transduction"
##
                     "positive regulation of blood vessel endothelial cell proliferation involved in sp
##
                     "adrenal gland development"
##
                     "negative regulation of bone mineralization"
##
                     "establishment or maintenance of microtubule cytoskeleton polarity"
##
##
                     "T cell mediated immunity"
                     "immunoglobulin mediated immune response"
##
##
                     "cellular protein-containing complex assembly"
                     "organ growth"
##
##
                     "negative regulation of blood coagulation"
```

"negative regulation of DNA demethylation"

```
##
                      "positive regulation of cholesterol efflux"
##
                      "cytoplasmic translational termination"
                      "DNA damage checkpoint"
##
                      "negative regulation of cell-cell adhesion"
##
##
                      "oligodendrocyte differentiation"
                      "negative regulation of neuroblast proliferation"
##
                      "regulation of mast cell degranulation"
##
                      "G1/S transition of mitotic cell cycle"
##
##
                      "negative regulation of epithelial cell proliferation involved in prostate gland d
                     "cellular response to retinoic acid"
##
##
                      "DNA replication checkpoint"
                      "sulfur compound metabolic process"
##
                      "positive regulation of release of sequestered calcium ion into cytosol"
##
                      "neuron migration"
##
##
                      "intraciliary retrograde transport"
##
                      "positive regulation of astrocyte differentiation"
                      "carbohydrate biosynthetic process"
##
                      "low-density lipoprotein particle remodeling"
##
##
                      "multivesicular body assembly"
                      "regulation of tubulin deacetylation"
##
##
                      "negative regulation of osteoblast proliferation"
                      "negative regulation of transposon integration"
##
                      "neuron cell-cell adhesion"
##
                      "neural precursor cell proliferation"
##
                      "regulation of epithelial cell proliferation"
##
##
                      "negative regulation of female receptivity"
##
                      "peristalsis"
                      "dendritic cell migration"
##
                      "negative regulation of keratinocyte proliferation"
##
                      "positive regulation of B cell proliferation"
##
                      "3'-phosphoadenosine 5'-phosphosulfate metabolic process"
##
##
                      "cellular senescence"
                      "erythrocyte homeostasis"
##
##
                      "positive regulation of endothelial cell chemotaxis"
                      "regulation of epidermal growth factor-activated receptor activity"
##
                      "ventricular cardiac muscle tissue morphogenesis"
##
##
                      "negative regulation of protein catabolic process"
##
                      "convergent extension involved in axis elongation"
                      "regulation of calcium ion import"
##
                     "negative regulation of toll-like receptor 4 signaling pathway"
##
                      "middle ear morphogenesis"
##
                      "positive regulation of tumor necrosis factor biosynthetic process"
##
                      "voluntary musculoskeletal movement"
##
                     "signal peptide processing"
##
                      "skeletal system morphogenesis"
##
                      "rescue of stalled ribosome"
##
##
                      "metanephros development"
                      "negative regulation of immunoglobulin production"
##
##
                      "DNA integration"
                      "positive regulation of extracellular matrix assembly"
##
##
                      "oogenesis"
                      "leukotriene signaling pathway"
##
##
                      "ribosomal small subunit export from nucleus"
                      "response to hepatocyte growth factor"
##
```

```
##
                     "negative regulation of myoblast differentiation"
##
                     "neural crest cell differentiation"
                     "response to singlet oxygen"
##
                     "positive regulation of transcription from RNA polymerase II promoter involved in
##
##
                     "grooming behavior"
                     "negative regulation of telomere maintenance via telomerase"
##
                     "cellular response to glycine"
##
                     "adenylate cyclase-inhibiting opioid receptor signaling pathway"
##
##
                     "positive regulation of T cell proliferation"
                     "regulation of feeding behavior"
##
##
                     "single fertilization"
                     "submandibular salivary gland formation"
##
                     "negative regulation of wound healing, spreading of epidermal cells"
##
                     "regulation of blood vessel diameter by renin-angiotensin"
##
##
                     "negative regulation of viral transcription"
##
                     "negative regulation of fibroblast growth factor receptor signaling pathway"
##
                     "ribosomal small subunit assembly"
                     "cellular response to forskolin"
##
##
                     "negative regulation of adaptive immune response"
                     "regulation of cell division"
##
##
                     "regulation of transcription involved in cell fate commitment"
                     "calcium ion-regulated exocytosis of neurotransmitter"
##
                     "phototransduction, visible light"
##
                     "proteoglycan biosynthetic process"
##
                     "mating behavior"
##
##
                     "meiotic recombination checkpoint"
##
                     "intestinal epithelial cell differentiation"
                     "positive regulation of receptor catabolic process"
##
                     "negative regulation of TORC1 signaling"
##
                     "regulation of AMPA receptor activity"
##
                     "positive regulation of potassium ion transmembrane transport"
##
##
                     "negative regulation of actin filament polymerization"
                     "positive regulation of prostaglandin secretion"
##
##
                     "regulation of respiratory burst"
                     "regulation of lipid metabolic process"
##
##
                     "protein polymerization"
##
                     "positive regulation of cyclic-nucleotide phosphodiesterase activity"
##
                     "spliceosomal tri-snRNP complex assembly"
                     "positive regulation of cell-cell adhesion"
##
                     "negative regulation of mitotic cell cycle"
##
                     "multicellular organism growth"
##
##
                     "miRNA transport"
                     "positive regulation of circadian sleep/wake cycle, wakefulness"
##
                     "negative regulation of hydrogen peroxide biosynthetic process"
##
                     "regulation of fibroblast migration"
##
                     "vitamin metabolic process"
##
##
                     "parturition"
                     "neuron fate determination"
##
                     "positive regulation of prostaglandin-endoperoxide synthase activity"
##
                     "positive regulation of macroautophagy"
##
                     "endosome transport via multivesicular body sorting pathway"
##
                     "negative regulation of feeding behavior"
##
##
                     "positive regulation of myotube differentiation"
                     "regulation of platelet aggregation"
##
```

```
##
                      "penile erection"
##
                      "negative regulation of dopamine secretion"
                      "regulation of axonogenesis"
##
                      "lipid tube assembly"
##
##
                      "regulation of membrane permeability"
                      "evasion or tolerance of host defenses by virus"
##
                      "positive regulation of histone H4-K20 methylation"
##
                      "protein localization to nuclear envelope"
##
##
                      "microtubule polymerization"
                      "eye photoreceptor cell development"
##
##
                      "centriole elongation"
                      "trans-synaptic signaling by endocannabinoid, modulating synaptic transmission"
##
                      "positive regulation of amyloid-beta clearance"
##
                      "negative regulation of eating behavior"
##
##
                      "regulation of somitogenesis"
##
                      "cardiac muscle cell differentiation"
                      "embryo development ending in birth or egg hatching"
##
##
                      "pyroptosis"
                      "positive regulation of execution phase of apoptosis"
##
                      "synaptic transmission, dopaminergic"
##
##
                      "positive regulation of histone H4-K16 acetylation"
                      "negative regulation of GTPase activity"
##
                      "negative regulation of systemic arterial blood pressure"
##
                      "negative regulation of B cell proliferation"
##
                     "regulation of Rac protein signal transduction"
##
##
                      "regulation of ventricular cardiac muscle cell action potential"
##
                      "regulation of Cdc42 protein signal transduction"
                      "positive regulation of gluconeogenesis by positive regulation of transcription fr
##
                      "extracellular matrix disassembly"
##
                      "cellular zinc ion homeostasis"
##
##
                      "positive regulation of luteinizing hormone secretion"
##
                      "activation of cysteine-type endopeptidase activity involved in apoptotic signalin
                     "skeletal muscle myosin thick filament assembly"
##
##
                      "metaphase plate congression"
                      "regulation of blood volume by renin-angiotensin"
##
##
                      "positive regulation of BMP signaling pathway"
##
                      "hair follicle morphogenesis"
##
                      "regulation of T cell differentiation"
                      "cellular response to vitamin D"
##
                     "regulation of glucose transmembrane transport"
##
                      "negative regulation of glial cell apoptotic process"
##
                      "positive regulation of spindle assembly"
##
                      "negative regulation of DNA replication"
##
                      "positive regulation of T-helper 2 cell differentiation"
##
                      "male gonad development"
##
                      "cellular response to progesterone stimulus"
##
                      "cilium assembly"
##
                      "positive regulation of heat generation"
##
##
                      "xenophagy"
                      "positive regulation of smooth muscle cell apoptotic process"
##
##
                      "body fluid secretion"
                      "phospholipid catabolic process"
##
                      "positive regulation of cell-cell adhesion mediated by integrin"
##
```

"clathrin-dependent endocytosis"

```
##
                      "Golgi disassembly"
##
                      "positive regulation blood vessel branching"
                      "activation of Janus kinase activity"
##
                     "activation of adenylate cyclase activity"
##
                      "negative regulation of pri-miRNA transcription by RNA polymerase II"
##
##
                      "optic nerve development"
                      "regulation of telomere maintenance via telomerase"
##
                      "RNA polymerase III preinitiation complex assembly"
##
##
                      "calcium ion transport"
                     "adult feeding behavior"
##
##
                      "neuron remodeling"
                      "response to leptin"
##
##
                     "mitotic cytokinesis"
                      "regulation of actin cytoskeleton reorganization"
##
##
                      "negative regulation of interleukin-2 secretion"
##
                      "mitotic G2/M transition checkpoint"
                     "response to transforming growth factor beta"
##
                      "positive regulation of nitric-oxide synthase activity"
##
##
                      "negative regulation of transmission of nerve impulse"
                      "negative regulation of signal transduction"
##
##
                     "negative regulation of Notch signaling pathway"
                      "acute inflammatory response to antigenic stimulus"
##
                     "defense response to protozoan"
##
                      "oxidative stress-induced premature senescence"
##
                     "mRNA polyadenylation"
##
##
                      "positive regulation of extracellular matrix disassembly"
##
                      "regulation of protein binding"
                      "positive regulation of defense response to virus by host"
##
                      "negative regulation of serotonin secretion"
##
                      "regulation of dendrite morphogenesis"
##
##
                      "positive regulation of mRNA 3'-end processing"
##
                      "adult behavior"
                      "positive regulation of stem cell proliferation"
##
                      "protein localization to cell surface"
##
##
                      "positive regulation of interleukin-2 secretion"
                     "keratan sulfate biosynthetic process"
##
##
                      "positive regulation of Wnt signaling pathway, planar cell polarity pathway"
##
                      "regulation of centromere complex assembly"
                      "G protein-coupled receptor signaling pathway coupled to cGMP nucleotide second me
##
                     "negative regulation of innate immune response"
##
                      "cleavage furrow formation"
##
                      "gastrulation with mouth forming second"
##
                      "stem cell population maintenance"
##
                      "complement activation, alternative pathway"
##
                      "negative regulation of circadian rhythm"
##
                      "presynapse assembly"
##
##
                      "segment specification"
                      "regulation of response to food"
##
##
                      "positive regulation of smoothened signaling pathway"
##
                      "regulation of neuron death"
##
                     "elastic fiber assembly"
                      "enteric nervous system development"
##
##
                      "negative regulation of T cell apoptotic process"
                      "negative regulation of CREB transcription factor activity"
##
```

```
##
                      "cholesterol homeostasis"
##
                      "positive regulation of corticotropin secretion"
                      "vesicle fusion with Golgi apparatus"
##
                     "targeting of mRNA for destruction involved in RNA interference"
##
##
                      "protein trimerization"
##
                      "branching involved in salivary gland morphogenesis"
                      "regulation of cell projection assembly"
##
                      "negative regulation of myofibroblast differentiation"
##
##
                      "positive regulation of dendritic cell antigen processing and presentation"
                      "positive regulation of gap junction assembly"
##
##
                      "negative regulation of dopamine receptor signaling pathway"
                      "smooth muscle cell differentiation"
##
##
                      "cellular response to nitric oxide"
                      "regulation of G1/S transition of mitotic cell cycle"
##
##
                      "keratinocyte development"
##
                      "regulation of translational initiation"
                     "JAK-STAT cascade"
##
##
                      "positive regulation of transforming growth factor beta receptor signaling pathway
##
                      "modification of synaptic structure"
                      "regulation of centriole replication"
##
##
                     "response to vitamin D"
                      "ubiquitin-dependent protein catabolic process"
##
                      "negative regulation of cell size"
##
                      "termination of RNA polymerase I transcription"
##
                     "cilium organization"
##
##
                      "glycosaminoglycan catabolic process"
##
                      "protein import into nucleus"
                      "definitive hemopoiesis"
##
                     "bone development"
##
                      "canonical Wnt signaling pathway involved in regulation of cell proliferation"
##
##
                      "adenylate cyclase-inhibiting serotonin receptor signaling pathway"
##
                      "positive regulation of regulatory T cell differentiation"
                      "negative regulation of NIK/NF-kappaB signaling"
##
                      "de novo centriole assembly involved in multi-ciliated epithelial cell differentia
##
##
                      "positive regulation of cell aging"
                      "negative regulation of anoikis"
##
##
                      "dendritic spine maintenance"
##
                      "response to amino acid"
                      "germ cell migration"
##
                      "positive regulation of interleukin-2 production"
##
##
                      "mammary gland epithelial cell differentiation"
##
                      "maturation of SSU-rRNA"
##
                     "regulation of circadian sleep/wake cycle, sleep"
##
                      "negative regulation of PERK-mediated unfolded protein response"
##
                      "positive regulation of intracellular transport"
##
                      "spleen development"
##
                      "blood vessel maturation"
##
##
                      "peptide cross-linking"
                      "double-strand break repair via nonhomologous end joining"
##
##
                      "peptidyl-serine phosphorylation"
                      "regulation of cardiac muscle contraction"
##
##
                      "osteoblast differentiation"
```

"suckling behavior"

```
##
                      "positive regulation of neuron death"
##
                      "regulation of epithelial cell migration"
##
                      "operant conditioning"
                      "regulation of glycogen metabolic process"
##
##
                      "UV-damage excision repair"
                      "regulation of modification of postsynaptic structure"
##
                      "embryonic foregut morphogenesis"
##
                      "DNA damage response, signal transduction by p53 class mediator"
##
##
                      "negative regulation of histone H3-K9 trimethylation"
                     "mitotic G1 DNA damage checkpoint"
##
##
                      "homologous chromosome segregation"
                      "tissue homeostasis"
##
                      "negative regulation of cell-matrix adhesion"
##
                      "positive regulation of extracellular matrix organization"
##
##
                      "tachykinin receptor signaling pathway"
##
                      "determination of left/right symmetry"
                     "mitotic nuclear envelope reassembly"
##
##
                      "regulation of appetite"
##
                      "mRNA alternative polyadenylation"
                      "messenger ribonucleoprotein complex assembly"
##
##
                      "negative regulation of cell-substrate adhesion"
                      "hyaluronan catabolic process"
##
                      "Leydig cell differentiation"
##
                      "DNA strand renaturation"
##
                      "positive regulation of thymocyte apoptotic process"
##
##
                      "transcription by RNA polymerase III"
##
                      "paraxial mesoderm development"
                      "embryonic skeletal system development"
##
##
                      "negative regulation of mesenchymal cell proliferation"
                      "substrate-dependent cell migration, cell extension"
##
##
                      "myofibril assembly"
##
                      "sister chromatid biorientation"
                      "non-motile cilium assembly"
##
##
                      "dendritic cell differentiation"
                      "negative regulation of long-term synaptic potentiation"
##
##
                     "negative regulation of macrophage apoptotic process"
##
                      "beta-catenin-TCF complex assembly"
##
                      "exit from mitosis"
                      "mature conventional dendritic cell differentiation"
##
                     "regulation of cyclin-dependent protein serine/threonine kinase activity"
##
                      "hormone-mediated apoptotic signaling pathway"
##
##
                      "activation of protein kinase B activity"
                      "positive regulation of growth hormone secretion"
##
                      "positive regulation of cholesterol storage"
##
                      "positive regulation of integrin activation"
##
##
                      "cartilage development"
                      "regulation of lipid kinase activity"
##
                      "neutrophil clearance"
##
                      "protein localization to chromosome, centromeric region"
##
                      "positive regulation of endothelial cell migration"
##
##
                      "enucleate erythrocyte differentiation"
                      "regulation of Wnt signaling pathway"
##
##
                      "regulation of dopamine metabolic process"
                      "cellular response to exogenous dsRNA"
##
```

```
"regulation of entry of bacterium into host cell"
##
##
                      "hair cycle"
                      "synaptic vesicle docking"
##
                      "negative regulation of interleukin-10 production"
##
                      "positive regulation of interleukin-17 production"
##
##
                      "response to lipid"
                      "regulation of leukocyte migration"
##
                      "cellular response to extracellular stimulus"
##
##
                      "negative regulation of nitric-oxide synthase activity"
                     "regulation of SMAD protein signal transduction"
##
##
                      "regulation of dopamine uptake involved in synaptic transmission"
                      "ER to Golgi vesicle-mediated transport"
##
                     "cellular response to prostaglandin E stimulus"
##
                      "negative regulation of cold-induced thermogenesis"
##
##
                      "positive regulation of collagen fibril organization"
##
                      "positive regulation of circadian sleep/wake cycle, non-REM sleep"
                      "cell migration involved in sprouting angiogenesis"
##
##
                      "positive regulation of JAK-STAT cascade"
##
                      "cellular response to xenobiotic stimulus"
##
                      "response to corticosterone"
##
                      "microtubule nucleation"
                      "cholesterol efflux"
##
##
                      "positive regulation of cortisol secretion"
                      "angiotensin-activated signaling pathway involved in heart process"
##
                     "intestinal absorption"
##
##
                      "spinal cord motor neuron differentiation"
##
                      "histone H4-K16 acetylation"
                      "abortive mitotic cell cycle"
##
                     "negative regulation of interleukin-17 production"
##
                      "histone lysine methylation"
##
##
                      "chemosensory behavior"
##
                     "tissue regeneration"
                     "blood vessel endothelial cell migration"
##
##
                      "regulation of microtubule polymerization"
                      "cerebellum morphogenesis"
##
##
                     "IRES-dependent viral translational initiation"
##
                      "maternal aggressive behavior"
##
                      "negative regulation of isotype switching to IgE isotypes"
                      "positive regulation of T cell migration"
##
                      "positive regulation by host of viral transcription"
##
                      "protein autophosphorylation"
##
                      "regulation of striated muscle tissue development"
##
                      "regulation of myelination"
##
                      "response to toxic substance"
##
                      "parathyroid gland development"
##
                      "mammary gland alveolus development"
##
                      "regulation of cytokine production"
##
                      "mast cell chemotaxis"
##
                      "positive regulation of inositol trisphosphate biosynthetic process"
##
                      "regulation of centrosome duplication"
##
##
                     "establishment of Sertoli cell barrier"
                      "cellular response to DNA damage stimulus"
##
##
                      "negative regulation of neuron differentiation"
                      "DNA topological change"
##
```

```
##
                      "nuclear pore organization"
##
                      "postsynaptic neurotransmitter receptor internalization"
                      "renin-angiotensin regulation of aldosterone production"
##
                     "activation of JUN kinase activity"
##
##
                      "phosphatidylinositol 3-kinase signaling"
                      "regulation of synaptic vesicle exocytosis"
##
                      "platelet-derived growth factor receptor-beta signaling pathway"
##
                      "positive regulation of methylation-dependent chromatin silencing"
##
##
                      "cellular response to nutrient levels"
                      "face morphogenesis"
##
##
                      "positive regulation of eating behavior"
                      "positive regulation of small GTPase mediated signal transduction"
##
                      "regulation of lipid transport by negative regulation of transcription from RNA po
##
                      "regulation of insulin receptor signaling pathway"
##
##
                      "positive regulation of gene silencing by miRNA"
##
                      "hemidesmosome assembly"
                      "spindle organization"
##
##
                      "neuron fate commitment"
##
                      "regulation of transmission of nerve impulse"
                      "negative regulation of smooth muscle cell apoptotic process"
##
##
                      "positive regulation of insulin secretion involved in cellular response to glucose
                      "histone H3-K4 methylation"
##
                      "positive regulation of action potential"
##
                      "positive regulation of leukocyte migration"
##
                     "adenohypophysis development"
##
##
                      "stress fiber assembly"
##
                      "interleukin-7-mediated signaling pathway"
                      "tissue development"
##
                     "prolactin secretion"
##
##
                      "lipoprotein transport"
##
                      "circadian behavior"
##
                     "negative regulation of epinephrine secretion"
##
                     "cellular response to fatty acid"
##
                      "chondroitin sulfate biosynthetic process"
##
                      "cardiac muscle fiber development"
##
                     "regulation of binding"
##
                      "regulation of extrinsic apoptotic signaling pathway via death domain receptors"
##
                      "regulation of clathrin-dependent endocytosis"
                      "maintenance of mitotic sister chromatid cohesion"
##
                     "common-partner SMAD protein phosphorylation"
##
                      "cellular response to interleukin-1"
##
##
                      "regulation of establishment of cell polarity"
                     "nitric oxide mediated signal transduction"
##
                     "positive regulation of interferon-alpha secretion"
##
                      "urinary bladder development"
##
                      "peptidyl-lysine acetylation"
##
                      "negative regulation of transcription regulatory region DNA binding"
##
                     "histone H3 deacetylation"
##
##
                      "aortic valve morphogenesis"
                      "regulation of cohesin loading"
##
##
                     "signal transduction involved in G2 DNA damage checkpoint"
                      "negative regulation of leukocyte tethering or rolling"
##
##
                      "dosage compensation by inactivation of X chromosome"
##
                      "mRNA 5'-splice site recognition"
```

```
"negative regulation of T-helper 2 cell differentiation"
##
##
                     "cellular response to BMP stimulus"
                      "negative regulation of protein localization to nucleus"
##
                      "regulation of androgen receptor signaling pathway"
##
##
                      "positive regulation of clathrin-dependent endocytosis"
                      "positive regulation of interleukin-8 secretion"
##
                      "negative regulation of extrinsic apoptotic signaling pathway"
##
                      "epithelial cell morphogenesis"
##
##
                      "regulation of transforming growth factor beta2 production"
                     "follicle-stimulating hormone signaling pathway"
##
##
                      "protein localization to organelle"
                      "negative regulation of gastric acid secretion"
##
                      "DNA synthesis involved in DNA repair"
##
                     "intestine smooth muscle contraction"
##
##
                      "detection of calcium ion"
                      "smooth muscle contraction"
##
                      "negative regulation of protein neddylation"
##
##
                      "centriole-centriole cohesion"
                      "dendritic transport of messenger ribonucleoprotein complex"
##
                      "cardiac left ventricle morphogenesis"
##
##
                      "negative regulation of peptidyl-lysine acetylation"
##
                      "plasma membrane tubulation"
                      "positive regulation of gene expression, epigenetic"
##
                      "chordate embryonic development"
##
                     "regulation of retinoic acid receptor signaling pathway"
##
##
                      "ventricular cardiac muscle cell differentiation"
##
                      "cardiac muscle contraction"
                      "positive regulation of cholesterol esterification"
##
##
                      "response to food"
                      "regulation of microtubule-based process"
##
##
                      "cannabinoid signaling pathway"
##
                      "apoptotic cell clearance"
                      "mesoderm development"
##
##
                      "regulation of blood coagulation"
                      "cellular protein modification process"
##
                      "positive regulation of receptor biosynthetic process"
##
##
                      "positive regulation of interleukin-1 production"
##
                      "positive regulation of endothelial cell proliferation"
                      "regulation of synaptic transmission, GABAergic"
##
                     "cellular response to tumor necrosis factor"
##
                      "negative regulation of telomerase activity"
##
##
                      "regulation of cell-cell adhesion"
                      "positive regulation of vitamin D receptor signaling pathway"
##
                      "protein localization to chromatin"
##
                      "hepatocyte growth factor receptor signaling pathway"
##
                      "positive regulation of cell motility"
##
                      "liver regeneration"
##
                      "negative regulation of histone H3-K4 methylation"
##
                      "positive regulation of histone H2B ubiquitination"
##
                      "endothelial cell activation"
##
##
                      "negative regulation of protein oligomerization"
                      "positive regulation of osteoblast proliferation"
##
##
                      "regulation of apoptotic process"
                      "negative regulation of T cell cytokine production"
##
```

```
##
                     "negative regulation of cell adhesion mediated by integrin"
##
                     "regulation of systemic arterial blood pressure by endothelin"
                     "regulation of smooth muscle contraction"
##
                     "positive regulation of ossification"
##
                     "positive regulation of phagocytosis, engulfment"
##
                     "protein kinase C signaling"
##
                     "cell-cell adhesion"
##
                     "response to cholesterol"
##
##
                     "type I interferon signaling pathway"
                     "negative regulation of neurotrophin TRK receptor signaling pathway"
##
##
                     "negative regulation of interleukin-1 beta production"
                     "serotonin receptor signaling pathway"
##
                     "macrophage derived foam cell differentiation"
##
                     "cytoplasmic microtubule organization"
##
##
                     "nuclear envelope disassembly"
##
                     "positive regulation of epidermal growth factor-activated receptor activity"
                     "regulation of DNA methylation"
##
                     "positive regulation of apoptotic signaling pathway"
##
                     "positive regulation of nitric oxide biosynthetic process"
##
                     "negative regulation of protein secretion"
##
##
                     "embryonic placenta morphogenesis"
                     "drinking behavior"
##
                     "posttranscriptional regulation of gene expression"
##
                     "response to histamine"
##
                     "negative regulation of extrinsic apoptotic signaling pathway via death domain rec
##
##
                     "negative regulation of nucleic acid-templated transcription"
##
                     "regulation of microtubule motor activity"
                     "regulation of chromosome segregation"
##
                     "cytokine secretion"
##
                     "negative regulation of phosphorylation"
##
                     "positive regulation of epithelial to mesenchymal transition involved in endocardi
##
##
                     "synaptic vesicle exocytosis"
                     "regulation of megakaryocyte differentiation"
##
##
                     "brain development"
                     "negative regulation of vascular associated smooth muscle cell migration"
##
##
                     "actin filament polymerization"
##
                     "negative regulation of chondrocyte differentiation"
##
                     "epithelial to mesenchymal transition involved in endocardial cushion formation"
                     "negative regulation of dendritic cell apoptotic process"
##
                     "negative regulation of helicase activity"
##
                     "coronary artery morphogenesis"
##
                     "negative regulation of G1/S transition of mitotic cell cycle"
##
                     "positive regulation of JUN kinase activity"
##
                     "post-embryonic development"
##
                     "erythrocyte differentiation"
##
                     "positive regulation of aspartic-type endopeptidase activity involved in amyloid p
##
                     "negative regulation of peptidyl-tyrosine phosphorylation"
##
                     "cardiac muscle hypertrophy"
##
                     "positive regulation of T cell anergy"
##
                     "positive regulation of penile erection"
##
                     "negative regulation of synaptic transmission, GABAergic"
##
                     "positive regulation of epithelial cell apoptotic process"
##
                     "negative regulation of blood vessel endothelial cell migration"
##
```

"mitotic spindle organization"

##

```
##
                      "positive regulation of blood coagulation"
##
                      "interferon-gamma secretion"
                      "replication fork processing"
##
                      "positive regulation of intracellular protein transport"
##
                      "phospholipase C-activating G protein-coupled acetylcholine receptor signaling pat
##
                      "DNA recombination"
##
                      "positive regulation of vascular endothelial growth factor receptor signaling path
##
                      "positive regulation of ubiquitin-dependent protein catabolic process"
##
##
                      "positive regulation of histone deacetylation"
                      "positive regulation of vesicle fusion"
##
##
                      "spermatogenesis"
                      "histone H3-K4 trimethylation"
##
##
                     "neuroblast proliferation"
                      "positive regulation of epithelial cell proliferation involved in lung morphogenes
##
##
                      "negative regulation of focal adhesion assembly"
##
                      "regulation of calcium ion transport"
                     "negative regulation of lipid catabolic process"
##
##
                      "heart process"
                      "attachment of spindle microtubules to kinetochore"
##
                      "regulation of norepinephrine secretion"
##
##
                     "regulation of osteoblast differentiation"
                      "negative regulation of synaptic transmission, glutamatergic"
##
##
                      "response to prostaglandin E"
                      "induction of positive chemotaxis"
##
                     "somite development"
##
##
                      "positive regulation of basement membrane assembly involved in embryonic body morp
##
                      "negative regulation of epithelial cell proliferation"
                      "anatomical structure formation involved in morphogenesis"
##
                      "regulation of immune response"
##
                      "hormone metabolic process"
##
##
                      "positive regulation of protein targeting to membrane"
##
                      "regulation of stem cell population maintenance"
                      "prepulse inhibition"
##
                      "negative regulation of angiogenesis"
##
                      "negative regulation of interleukin-6 production"
##
##
                     "regulation of gene expression"
##
                      "positive regulation of cell adhesion mediated by integrin"
##
                      "regulation of skeletal muscle cell differentiation"
                      "skeletal muscle cell differentiation"
##
                     "cellular response to interleukin-2"
##
                      "cellular response to wortmannin"
##
##
                      "cellular response to prolactin"
                     "cellular response to organic cyclic compound"
##
##
                     "response to ionizing radiation"
                      "mast cell degranulation"
##
##
                      "neurotransmitter secretion"
##
                     "internal peptidyl-lysine acetylation"
                     "regulation of genetic imprinting"
##
##
                      "amylin receptor signaling pathway"
                      "neuronal action potential"
##
##
                     "convergent extension involved in neural plate elongation"
                     "male sex determination"
##
                      "regulation of phosphatidylinositol 3-kinase activity"
##
                      "cell-cell junction assembly"
```

```
##
                      "positive regulation of MAP kinase activity"
##
                      "positive regulation of glucose mediated signaling pathway"
                      "cellular response to fluid shear stress"
##
                     "extracellular matrix organization"
##
##
                      "positive regulation of transcription by RNA polymerase III"
                      "negative regulation of endothelial cell apoptotic process"
##
                      "maintenance of chromatin silencing"
##
                      "homeostasis of number of cells"
##
##
                      "positive regulation of DNA topoisomerase (ATP-hydrolyzing) activity"
                      "negative chemotaxis"
##
##
                      "attachment of mitotic spindle microtubules to kinetochore"
                      "inner cell mass cell proliferation"
##
                     "secondary palate development"
##
                      "positive regulation of vascular endothelial cell proliferation"
##
##
                      "negative regulation of BMP signaling pathway"
##
                      "DNA-templated transcription, termination"
                     "positive regulation of neutrophil apoptotic process"
##
                      "base-excision repair"
##
##
                      "positive regulation of appetite"
                      "exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylati
##
##
                     "establishment of skin barrier"
                      "blood coagulation"
##
                      "positive regulation of actin filament bundle assembly"
##
                      "negative regulation of natural killer cell mediated cytotoxicity"
##
                     "protein kinase B signaling"
##
##
                      "negative regulation of immune response"
##
                      "regulation of angiogenesis"
                      "actin filament branching"
##
                      "regulation of blood vessel diameter"
##
                      "positive regulation of leukocyte chemotaxis"
##
##
                      "positive regulation of histone H4 acetylation"
##
                      "protein localization to microtubule"
                      "positive regulation of smooth muscle cell differentiation"
##
                      "regulation of microtubule polymerization or depolymerization"
##
                      "regulation of transcription by RNA polymerase I"
##
##
                      "positive regulation of non-membrane spanning protein tyrosine kinase activity"
##
                      "intracellular transport"
##
                      "limb development"
                      "receptor transactivation"
##
                     "memory"
##
                      "positive thymic T cell selection"
##
##
                      "regulation of cell shape"
                      "positive regulation of protein localization to centrosome"
##
                      "cellular response to hepatocyte growth factor stimulus"
##
                      "tolerance induction to self antigen"
##
                      "DNA duplex unwinding"
##
##
                      "gastric acid secretion"
                      "regulation of neurotransmitter receptor localization to postsynaptic specializati
##
##
                      "chromosome condensation"
                      "Wnt signaling pathway"
##
##
                     "release of sequestered calcium ion into cytosol"
                     "nucleic acid phosphodiester bond hydrolysis"
##
##
                      "positive regulation of neuroblast proliferation"
```

"mRNA 3'-end processing by stem-loop binding and cleavage"

```
"kinetochore assembly"
##
##
                     "methylation-dependent chromatin silencing"
                     "microtubule anchoring"
##
                      "white fat cell differentiation"
##
                      "negative regulation of histone H3-K9 methylation"
##
                     "cellular response to X-ray"
##
                      "negative regulation of endopeptidase activity"
##
                      "regulation of pri-miRNA transcription by RNA polymerase II"
##
##
                      "positive regulation of protein import into nucleus"
                      "cellular response to glucose stimulus"
##
##
                      "positive regulation of cardiac muscle cell proliferation"
                      "regulation of metaphase plate congression"
##
                      "regulation of mRNA polyadenylation"
##
                      "regulation of DNA repair"
##
##
                      "regulation of systemic arterial blood pressure by vasopressin"
##
                      "regulation of myeloid cell differentiation"
                     "regulation of axon extension"
##
                      "response to mineralocorticoid"
##
                      "regulation of intracellular estrogen receptor signaling pathway"
##
                      "negative regulation of gene silencing by miRNA"
##
##
                      "positive regulation of cellular component movement"
                      "cellular response to interferon-gamma"
##
                      "negative regulation of dendritic spine development"
##
                      "Fc-epsilon receptor signaling pathway"
##
                     "negative regulation of blood pressure"
##
##
                      "seminiferous tubule development"
##
                      "regulation of postsynaptic neurotransmitter receptor activity"
                      "regulation of autophagy"
##
                      "positive regulation of smooth muscle cell proliferation"
##
                      "gamma-aminobutyric acid signaling pathway"
##
                      "positive regulation of DNA damage response, signal transduction by p53 class medi-
##
##
                      "regulation of vitamin D receptor signaling pathway"
                      "positive regulation of cellular protein metabolic process"
##
##
                      "positive regulation of reactive oxygen species metabolic process"
                      "positive regulation of intracellular estrogen receptor signaling pathway"
##
                      "cell growth involved in cardiac muscle cell development"
##
##
                      "embryonic hemopoiesis"
##
                      "positive regulation of neurogenesis"
                      "beta-catenin destruction complex disassembly"
##
                     "negative regulation of MHC class II biosynthetic process"
##
                      "positive regulation of receptor internalization"
##
                      "cellular response to vascular endothelial growth factor stimulus"
##
                      "growth hormone receptor signaling pathway"
##
                      "skin development"
##
                      "Notch signaling pathway"
##
                      "protein localization"
##
                      "nuclear migration"
##
                      "positive regulation of viral transcription"
##
                      "phosphorylation of RNA polymerase II C-terminal domain"
##
                      "cellular response to indole-3-methanol"
##
##
                     "dorsal/ventral pattern formation"
                      "regulation of cell motility"
##
                      "positive regulation of circadian rhythm"
##
                      "mitotic centrosome separation"
##
```

```
"inner ear development"
##
##
                     "regulation of lamellipodium assembly"
                      "positive regulation of histone H3-K9 methylation"
##
                      "cytoskeletal anchoring at plasma membrane"
##
                      "negative regulation of cell cycle"
##
                      "G protein-coupled serotonin receptor signaling pathway"
##
                      "platelet formation"
##
                      "cellular response to hormone stimulus"
##
##
                      "fibrinolysis"
                      "regulation of postsynaptic membrane potential"
##
##
                      "phospholipase C-activating dopamine receptor signaling pathway"
                      "positive regulation of systemic arterial blood pressure"
##
                      "regulation of smooth muscle cell proliferation"
##
                      "developmental growth"
##
##
                      "regulation of signal transduction by p53 class mediator"
##
                      "aorta development"
                      "embryonic skeletal system morphogenesis"
##
##
                      "pigmentation"
                      "positive regulation of peptidyl-threonine phosphorylation"
##
##
                      "somatostatin signaling pathway"
##
                     "regulation of hormone secretion"
                      "energy homeostasis"
##
##
                      "regulation of renal sodium excretion"
                      "embryonic hindlimb morphogenesis"
##
                     "signal transduction in response to DNA damage"
##
##
                      "regulation of transforming growth factor beta receptor signaling pathway"
##
                      "histone H3 acetylation"
                      "activated T cell proliferation"
##
                      "positive regulation of fat cell differentiation"
##
                      "negative regulation of protein binding"
##
##
                      "lung alveolus development"
##
                      "dopamine metabolic process"
                      "negative regulation of adenylate cyclase-activating G protein-coupled receptor si
##
                      "negative regulation of interleukin-2 production"
##
##
                      "regulation of neurogenesis"
                      "regulation of chemotaxis"
##
##
                      "RNA phosphodiester bond hydrolysis, endonucleolytic"
##
                      "negative regulation of cell motility"
                      "intermediate filament organization"
##
                     "protein localization to chromosome, telomeric region"
##
                      "osteoclast development"
##
##
                      "cytokine production"
                      "fungiform papilla formation"
##
                      "coronary vasculature development"
##
                      "sensory perception of taste"
##
                      "activation of MAPK activity"
##
                      "positive regulation of muscle cell differentiation"
##
                      "branching morphogenesis of an epithelial tube"
##
##
                      "odontogenesis of dentin-containing tooth"
                      "telomere maintenance via semi-conservative replication"
##
##
                     "endothelial cell migration"
                      "regulation of inflammatory response"
##
                      "positive regulation of G1/S transition of mitotic cell cycle"
##
##
                      "vesicle docking"
```

```
##
                      "negative regulation of protein tyrosine kinase activity"
##
                     "negative regulation of cardiac muscle hypertrophy in response to stress"
                      "protein localization to cytoplasmic stress granule"
##
                      "nucleotide-excision repair, preincision complex stabilization"
##
##
                      "female pregnancy"
##
                     "vein smooth muscle contraction"
                      "artery morphogenesis"
##
                      "hair follicle placode formation"
##
##
                      "protein autoubiquitination"
                      "signal transduction involved in DNA damage checkpoint"
##
##
                      "retinoic acid receptor signaling pathway"
                      "positive regulation of neuron projection development"
##
                      "prostate gland development"
##
                      "eosinophil chemotaxis"
##
                      "negative regulation of protein serine/threonine kinase activity"
##
##
                      "dendrite development"
                      "regulation of epithelial to mesenchymal transition"
##
                      "positive regulation of cell migration involved in sprouting angiogenesis"
##
##
                      "establishment of T cell polarity"
                     "T cell differentiation"
##
##
                     "positive regulation of chondrocyte differentiation"
                      "chromatin assembly"
##
                      "maternal behavior"
##
                      "epidermal cell differentiation"
##
                     "maternal process involved in female pregnancy"
##
##
                      "synapse assembly"
                      "positive regulation of T cell receptor signaling pathway"
##
                      "adenylate cyclase-inhibiting dopamine receptor signaling pathway"
##
                     "lamellipodium assembly"
##
                      "regulation of regulatory T cell differentiation"
##
##
                      "homophilic cell adhesion via plasma membrane adhesion molecules"
##
                      "CRD-mediated mRNA stabilization"
                      "bleb assembly"
##
##
                      "semaphorin-plexin signaling pathway"
##
                      "sprouting angiogenesis"
##
                      "positive regulation of uterine smooth muscle contraction"
                      "positive regulation of glutamate secretion"
##
##
                      "locomotory behavior"
                      "dendrite morphogenesis"
##
                     "negative regulation of centriole replication"
##
                      "actin filament capping"
##
                      "positive regulation of transcription elongation from RNA polymerase II promoter"
##
                      "response to retinoic acid"
##
                      "positive regulation of prostaglandin biosynthetic process"
##
                      "pattern specification process"
##
                      "positive regulation of B cell activation"
##
                      "positive regulation of cold-induced thermogenesis"
##
                      "entrainment of circadian clock by photoperiod"
##
##
                      "mRNA 3'-splice site recognition"
                      "negative regulation of stress fiber assembly"
##
##
                      "viral process"
                      "smoothened signaling pathway"
##
##
                      "phototransduction"
                      "regulation of cell cycle G2/M phase transition"
##
```

```
##
                      "mRNA cleavage"
                     "negative regulation of cyclin-dependent protein serine/threonine kinase activity"
##
                      "regulation of actin cytoskeleton organization"
##
                      "positive regulation of transcription of nucleolar large rRNA by RNA polymerase I"
##
##
                      "positive regulation of cell-matrix adhesion"
                      "cell fate commitment"
##
                      "adenosine receptor signaling pathway"
##
                      "sphingosine-1-phosphate receptor signaling pathway"
##
##
                      "mitotic metaphase plate congression"
                      "thrombin-activated receptor signaling pathway"
##
##
                      "negative regulation of glutamate secretion"
                      "antigen processing and presentation of exogenous peptide antigen via MHC class II
##
                     "intrinsic apoptotic signaling pathway by p53 class mediator"
##
                      "regulation of vascular permeability"
##
##
                      "T cell chemotaxis"
##
                      "activin receptor signaling pathway"
                     "negative regulation of norepinephrine secretion"
##
                      "positive regulation of histone H3-K9 acetylation"
##
                      "transforming growth factor beta receptor signaling pathway"
##
                      "negative regulation of RNA splicing"
##
##
                      "positive regulation of hormone secretion"
                      "endoderm development"
##
                      "protein localization to kinetochore"
##
                      "atrioventricular canal development"
##
##
                     "inositol phosphate-mediated signaling"
##
                      "nucleosome disassembly"
##
                      "negative regulation of mRNA polyadenylation"
                      "mRNA stabilization"
##
                      "central nervous system development"
##
                      "double-strand break repair via homologous recombination"
##
##
                      "vesicle fusion"
##
                     "negative regulation of osteoblast differentiation"
                      "platelet-derived growth factor receptor signaling pathway"
##
                      "meiotic cell cycle"
##
                     "SCF-dependent proteasomal ubiquitin-dependent protein catabolic process"
##
##
                     "positive regulation of RNA export from nucleus"
##
                      "outflow tract septum morphogenesis"
##
                      "negative regulation of cAMP-mediated signaling"
                      "positive regulation of transcription from RNA polymerase II promoter involved in
##
                      "positive regulation of cardiac muscle cell differentiation"
##
                      "positive regulation of sprouting angiogenesis"
##
##
                      "pharyngeal system development"
                      "regulation of heart contraction"
##
                     "circadian regulation of gene expression"
##
                      "regulation of translation"
##
                      "somitogenesis"
##
                      "phagocytosis, recognition"
##
                      "mRNA transcription"
##
                      "negative regulation of peptidyl-serine phosphorylation"
##
                      "neuropilin signaling pathway"
##
##
                      "positive regulation of pseudopodium assembly"
                      "positive regulation of insulin receptor signaling pathway"
##
##
                      "mitotic sister chromatid segregation"
                      "ERBB2 signaling pathway"
##
```

```
##
                      "regulation of behavior"
##
                      "nucleotide-excision repair"
                      "stress granule assembly"
##
                      "primary miRNA processing"
##
##
                      "positive regulation of ruffle assembly"
##
                      "histone H4 deacetylation"
                      "positive regulation of cell adhesion"
##
                      "regulation of cell adhesion mediated by integrin"
##
##
                      "protein K6-linked ubiquitination"
                      "neutrophil activation"
##
##
                      "positive regulation of urine volume"
                      "collagen fibril organization"
##
                      "sensory perception of smell"
##
                      "cardiac muscle cell apoptotic process"
##
##
                      "mitotic sister chromatid cohesion"
##
                      "positive regulation of macrophage differentiation"
                      "regulation of cytokinesis"
##
                      "response to estradiol"
##
                      "ureteric bud development"
##
                      "osteoblast development"
##
##
                     "adherens junction organization"
                      "skeletal muscle tissue development"
##
                      "positive regulation of intrinsic apoptotic signaling pathway by p53 class mediato
##
                      "neuronal stem cell population maintenance"
##
                     "regulation of G2/M transition of mitotic cell cycle"
##
##
                      "uterus development"
##
                      "positive regulation of cytokinesis"
                      "histone deacetylation"
##
                      "positive regulation of pathway-restricted SMAD protein phosphorylation"
##
                      "regulation of double-strand break repair via homologous recombination"
##
##
                      "ruffle organization"
##
                      "adenylate cyclase-inhibiting G protein-coupled glutamate receptor signaling pathw
                      "MAPK cascade"
##
                      "dopamine receptor signaling pathway"
##
                      "intracellular estrogen receptor signaling pathway"
##
                     "sensory perception"
##
##
                      "O-glycan processing"
##
                      "pathway-restricted SMAD protein phosphorylation"
                      "microtubule organizing center organization"
##
                     "cellular response to ionizing radiation"
##
                      "positive regulation of translational initiation"
##
##
                      "striated muscle cell differentiation"
                      "chromatin organization"
##
                      "myoblast differentiation"
##
                      "regulation of mRNA splicing, via spliceosome"
##
                      "positive regulation of phospholipase C activity"
##
                      "positive regulation of calcium ion import"
##
                      "positive regulation of ubiquitin-protein transferase activity"
##
                      "positive regulation of neutrophil chemotaxis"
##
                      "cell maturation"
##
                     "response to acidic pH"
##
                      "retinal ganglion cell axon guidance"
##
                      "positive regulation of cell cycle arrest"
##
                      "nucleosome positioning"
##
```

```
##
                      "N-terminal peptidyl-lysine acetylation"
##
                      "positive regulation of proteolysis"
##
                      "endocytosis"
                      "negative regulation of I-kappaB kinase/NF-kappaB signaling"
##
##
                      "protein targeting to membrane"
                      "protein K11-linked ubiquitination"
##
                      "axonogenesis"
##
##
                      "signal complex assembly"
##
                      "G-quadruplex DNA unwinding"
                     "negative regulation of DNA-binding transcription factor activity"
##
##
                      "social behavior"
                      "artery smooth muscle contraction"
##
                      "negative regulation of MAP kinase activity"
##
                      "DNA damage response, signal transduction by p53 class mediator resulting in trans
##
##
                      "negative regulation of tumor necrosis factor production"
##
                      "positive regulation of protein phosphorylation"
                      "glycosaminoglycan biosynthetic process"
##
##
                      "ribosomal large subunit biogenesis"
                     "negative regulation of protein kinase activity"
##
                      "negative regulation of viral genome replication"
##
##
                     "non-canonical Wnt signaling pathway"
                      "DNA damage response, signal transduction by p53 class mediator resulting in cell
##
                      "positive regulation of gene expression"
##
                      "mRNA transcription by RNA polymerase II"
##
                     "Rho protein signal transduction"
##
##
                      "positive regulation of extrinsic apoptotic signaling pathway"
##
                      "phagocytosis"
                      "negative regulation of JNK cascade"
##
                      "stimulatory C-type lectin receptor signaling pathway"
##
                      "positive regulation of translation"
##
##
                      "positive regulation of chemotaxis"
##
                      "protein ubiquitination"
                      "vesicle docking involved in exocytosis"
##
                      "positive regulation of DNA repair"
##
                      "positive regulation of cAMP-mediated signaling"
##
                      "estrous cycle"
##
##
                     "mitotic spindle assembly checkpoint"
##
                      "macrophage chemotaxis"
                      "response to amphetamine"
##
                     "regulation of mRNA processing"
##
                      "negative regulation of chromatin silencing"
##
                      "alpha-beta T cell differentiation"
##
                      "regulation of focal adhesion assembly"
##
                      "complement receptor mediated signaling pathway"
##
                      "adult walking behavior"
##
                      "negative regulation of protein complex assembly"
##
                      "adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling p
##
                      "positive regulation of sensory perception of pain"
##
##
                      "regulation of circadian rhythm"
                      "positive regulation of interleukin-1 beta production"
##
                      "positive regulation of interleukin-4 production"
##
                      "negative regulation of ERK1 and ERK2 cascade"
##
##
                      "protein K63-linked ubiquitination"
```

"protein kinase C-activating G protein-coupled receptor signaling pathway"

```
"positive regulation of epidermal growth factor receptor signaling pathway"
##
##
                      "double-strand break repair"
                      "DNA replication initiation"
##
                      "cellular response to platelet-derived growth factor stimulus"
##
##
                      "Rac protein signal transduction"
                     "intraciliary transport involved in cilium assembly"
##
                      "protein localization to plasma membrane"
##
                      "regulation of cell adhesion"
##
##
                      "behavioral response to ethanol"
                      "negative regulation of fat cell differentiation"
##
##
                      "negative regulation of osteoclast differentiation"
                      "positive regulation of filopodium assembly"
##
                      "ribosomal small subunit biogenesis"
##
                      "pri-miRNA transcription by RNA polymerase II"
##
##
                      "branching involved in mammary gland duct morphogenesis"
##
                      "intrinsic apoptotic signaling pathway in response to DNA damage by p53 class medi
                     "regulation of vasoconstriction"
##
                      "negative regulation of ubiquitin protein ligase activity"
##
##
                     "intracellular steroid hormone receptor signaling pathway"
                      "negative regulation of cellular senescence"
##
##
                     "response to virus"
                      "centriole replication"
##
                      "positive regulation of MAPK cascade"
##
                      "DNA double-strand break processing"
##
                     "cellular protein localization"
##
##
                      "defense response to bacterium"
                      "positive regulation of mitotic nuclear division"
##
                      "positive regulation of actin filament polymerization"
##
                      "epithelial to mesenchymal transition"
##
                      "positive regulation of calcium ion transport"
##
                      "positive regulation of interleukin-6 secretion"
##
                      "planar cell polarity pathway involved in neural tube closure"
##
                      "negative regulation of insulin receptor signaling pathway"
##
##
                      "macrophage differentiation"
                      "regulation of hematopoietic stem cell differentiation"
##
                      "negative regulation of T cell proliferation"
##
##
                      "regulation of RNA splicing"
##
                      "embryonic pattern specification"
                      "negative regulation of smoothened signaling pathway"
##
                     "positive regulation of glucose import in response to insulin stimulus"
##
                      "mitotic nuclear envelope disassembly"
##
##
                      "megakaryocyte development"
                      "cellular defense response"
##
                     "response to progesterone"
##
                      "postreplication repair"
##
                      "sister chromatid cohesion"
##
                      "CENP-A containing nucleosome assembly"
##
                     "positive regulation of focal adhesion assembly"
##
##
                      "cellular response to cytokine stimulus"
                      "muscle organ development"
##
##
                     "adaptive immune response"
                      "ciliary basal body-plasma membrane docking"
##
##
                      "defense response"
```

"somatic stem cell population maintenance"

##

```
##
                      "protein K48-linked ubiquitination"
##
                      "import into nucleus"
                      "transcription-coupled nucleotide-excision repair"
##
                      "positive regulation of cell division"
##
##
                      "protein heterotrimerization"
                      "mitotic spindle assembly"
##
                      "opioid receptor signaling pathway"
##
                      "positive regulation of T cell chemotaxis"
##
##
                      "branching involved in blood vessel morphogenesis"
                      "G protein-coupled glutamate receptor signaling pathway"
##
##
                      "T cell receptor signaling pathway"
                      "positive regulation of receptor-mediated endocytosis"
##
                      "G protein-coupled purinergic nucleotide receptor signaling pathway"
##
                      "positive regulation of neuron differentiation"
##
##
                      "positive regulation of monocyte chemotaxis"
##
                      "integrin-mediated signaling pathway"
##
                     "cellular response to catecholamine stimulus"
                     "negative regulation of protein kinase B signaling"
##
                      "regulation of smoothened signaling pathway"
##
##
                      "BMP signaling pathway"
                      "activation of GTPase activity"
##
##
                      "cognition"
                      "protein polyubiquitination"
##
                      "positive regulation of tyrosine phosphorylation of STAT protein"
##
                      "regulation of cell cycle"
##
##
                      "negative regulation of Wnt signaling pathway"
##
                      "regulation of microtubule cytoskeleton organization"
                      "positive regulation of positive chemotaxis"
##
##
                      "centrosome localization"
                      "protein acetylation"
##
                      "positive regulation of cardiac muscle hypertrophy"
##
##
                      "positive regulation of blood pressure"
                      "embryonic cranial skeleton morphogenesis"
##
##
                      "microtubule bundle formation"
                      "complement activation, classical pathway"
##
##
                      "ephrin receptor signaling pathway"
##
                      "positive regulation of tumor necrosis factor production"
##
                      "cholesterol metabolic process"
                      "Wnt signaling pathway, planar cell polarity pathway"
##
                      "positive regulation of microtubule polymerization"
##
                      "regulation of gene silencing by miRNA"
##
                      "G protein-coupled acetylcholine receptor signaling pathway"
##
                      "mRNA splice site selection"
##
                      "positive regulation of JNK cascade"
##
                      "RNA splicing, via transesterification reactions"
##
                      "nervous system development"
##
                      "positive regulation of blood vessel endothelial cell migration"
##
                      "intracellular signal transduction"
##
                      "cornification"
##
                      "positive regulation of actin cytoskeleton reorganization"
##
##
                      "entry of bacterium into host cell"
                      "positive regulation of oligodendrocyte differentiation"
##
                      "3'-UTR-mediated mRNA stabilization"
##
                      "long-term memory"
##
```

```
##
                      "DNA methylation"
                      "positive regulation of collagen biosynthetic process"
##
##
                      "keratinocyte differentiation"
                      "response to wounding"
##
##
                      "complement activation"
                     "response to estrogen"
##
                      "negative regulation of NF-kappaB transcription factor activity"
##
                      "embryonic digit morphogenesis"
##
##
                      "transmembrane receptor protein tyrosine kinase signaling pathway"
                     "neural tube closure"
##
##
                      "actin cytoskeleton reorganization"
                      "positive regulation of smooth muscle cell migration"
##
##
                      "actin cytoskeleton organization"
                     "canonical Wnt signaling pathway"
##
##
                      "cochlea morphogenesis"
##
                      "digestive tract development"
##
                     "protein phosphorylation"
##
                      "hemopoiesis"
##
                      "vasculogenesis"
                      "Fc-gamma receptor signaling pathway involved in phagocytosis"
##
##
                     "B cell receptor signaling pathway"
                      "DNA repair"
##
                      "regulation of complement activation"
##
                      "cell cycle arrest"
##
                     "cell projection assembly"
##
##
                      "negative regulation of epidermal growth factor receptor signaling pathway"
##
                      "positive regulation of DNA-binding transcription factor activity"
                      "forebrain development"
##
##
                      "negative regulation of gene expression"
##
                      "blood circulation"
##
                      "negative regulation of mRNA splicing, via spliceosome"
##
                     "neuron projection development"
                      "anterior/posterior pattern specification"
##
##
                      "rhodopsin mediated signaling pathway"
##
                      "arachidonic acid secretion"
##
                     "negative regulation of inflammatory response"
##
                      "positive regulation of substrate adhesion-dependent cell spreading"
##
                      "positive regulation of renal sodium excretion"
                      "interferon-gamma-mediated signaling pathway"
##
                     "mitotic cell cycle checkpoint"
##
                      "positive regulation of vasoconstriction"
##
##
                      "positive regulation of cell growth"
                      "positive regulation of lamellipodium assembly"
##
                      "G protein-coupled receptor internalization"
##
                      "positive regulation of histone H3-K4 methylation"
##
                      "positive regulation of mRNA splicing, via spliceosome"
##
                      "positive regulation of type I interferon production"
##
                      "G2/M transition of mitotic cell cycle"
##
##
                      "dendritic cell chemotaxis"
                      "positive regulation of transcription of Notch receptor target"
##
##
                      "negative regulation of canonical Wnt signaling pathway"
##
##
                      "negative regulation of viral release from host cell"
##
                      "RNA processing"
```

```
"positive regulation of smooth muscle contraction"
##
##
                      "ventricular septum morphogenesis"
                     "telomere maintenance"
##
                      "activation of innate immune response"
##
##
                      "regulation of stress fiber assembly"
                     "interleukin-6-mediated signaling pathway"
##
                      "wound healing"
##
                      "histone mRNA metabolic process"
##
##
                      "visual learning"
                     "Ras protein signal transduction"
##
##
                      "positive regulation of protein kinase activity"
                      "phosphatidylinositol-3-phosphate biosynthetic process"
##
                      "phagocytosis, engulfment"
##
                      "pre-mRNA cleavage required for polyadenylation"
##
##
                      "spliceosomal snRNP assembly"
##
                      "epidermal growth factor receptor signaling pathway"
##
                      "sensory perception of pain"
##
                      "positive chemotaxis"
                      "positive regulation of epithelial to mesenchymal transition"
##
##
                      "eating behavior"
##
                     "lymphocyte chemotaxis"
##
                      "defense response to virus"
                      "spliceosomal complex assembly"
##
                      "positive regulation of vascular endothelial growth factor production"
##
                      "cytokine-mediated signaling pathway"
##
##
                      "hormone-mediated signaling pathway"
##
                      "positive regulation of cell cycle"
                      "regulation of cell growth"
##
                      "adenylate cyclase-activating dopamine receptor signaling pathway"
##
##
                      "cell adhesion"
                      "negative regulation of adenylate cyclase activity"
##
##
                     "leukocyte chemotaxis"
                     "ATP-dependent chromatin remodeling"
##
##
                     "in utero embryonic development"
                      "positive regulation of protein localization to nucleus"
##
                      "positive regulation of phosphatidylinositol 3-kinase activity"
##
##
                      "alternative mRNA splicing, via spliceosome"
##
                      "cell migration"
                      "regulation of mitotic cell cycle"
##
##
                     "negative regulation of cell proliferation"
                      "phosphatidylinositol phosphorylation"
##
##
                      "vasoconstriction"
                      "positive regulation of protein kinase B signaling"
##
                      "RNA export from nucleus"
##
                      "microtubule-based movement"
##
                      "regulation of cell migration"
##
                      "positive regulation of peptidyl-tyrosine phosphorylation"
##
##
                      "animal organ morphogenesis"
##
                      "centrosome cycle"
                      "peptidyl-tyrosine phosphorylation"
##
##
                      "regulation of sensory perception of pain"
                      "monocyte chemotaxis"
##
##
                      "cellular response to lipopolysaccharide"
                      "skeletal system development"
##
```

```
##
                      "positive regulation of Notch signaling pathway"
##
                      "mRNA cis splicing, via spliceosome"
                      "androgen receptor signaling pathway"
##
                      "positive regulation of Rho protein signal transduction"
##
##
                      "rRNA processing"
##
                      "positive regulation of stress fiber assembly"
                      "leukocyte migration"
##
                      "chromatin remodeling"
##
##
                      "positive regulation of phosphatidylinositol 3-kinase signaling"
                      "activation of phospholipase C activity"
##
##
                      "vascular endothelial growth factor receptor signaling pathway"
                      "cellular response to transforming growth factor beta stimulus"
##
                      "positive regulation of cell proliferation"
##
                      "platelet activation"
##
##
                      "regulation of cell proliferation"
##
                      "7-methylguanosine mRNA capping"
                     "axon guidance"
##
##
                     "feeding behavior"
##
                      "positive regulation of ERK1 and ERK2 cascade"
                      "mRNA processing"
##
##
                     "heart development"
                      "positive regulation of cell migration"
##
                      "cell division"
##
                      "keratinization"
##
                     "cell differentiation"
##
                      "cytoplasmic translation"
##
##
                      "rhythmic process"
                      "DNA replication"
##
                     "fibroblast growth factor receptor signaling pathway"
##
                      "regulation of alternative mRNA splicing, via spliceosome"
##
##
                      "T cell costimulation"
##
                      "angiogenesis"
                      "neutrophil chemotaxis"
##
                      "detection of chemical stimulus involved in sensory perception of bitter taste"
##
                      "termination of RNA polymerase II transcription"
##
                     "adenylate cyclase-modulating G protein-coupled receptor signaling pathway"
##
##
                     "innate immune response"
##
                      "transcription elongation from RNA polymerase II promoter"
                      "translational initiation"
##
                     "positive regulation of angiogenesis"
##
                      "cell surface receptor signaling pathway"
##
##
                      "chemical synaptic transmission"
                      "calcium-mediated signaling"
##
                      "positive regulation of cytosolic calcium ion concentration involved in phospholip
##
                      "RNA metabolic process"
##
                      "cell chemotaxis"
##
                     "transcription initiation from RNA polymerase II promoter"
##
                     "chemokine-mediated signaling pathway"
##
##
                      "RNA splicing"
                      "snRNA transcription by RNA polymerase II"
##
##
                     "cell-cell signaling"
                     "chemotaxis"
##
                      "G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second
##
```

"adenylate cyclase-activating G protein-coupled receptor signaling pathway"

```
##
                      "mRNA export from nucleus"
##
                      "mRNA 3'-end processing"
##
                      "negative regulation of transcription, DNA-templated"
##
                      "multicellular organism development"
##
                      "positive regulation of transcription, DNA-templated"
                      "adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway"
##
                      "regulation of signaling receptor activity"
##
##
                      "immune response"
##
                      "phospholipase C-activating G protein-coupled receptor signaling pathway"
##
                      "cell proliferation"
##
                      "signal transduction"
                      "SRP-dependent cotranslational protein targeting to membrane"
##
##
                      "nuclear-transcribed mRNA catabolic process, nonsense-mediated decay"
##
                      "negative regulation of transcription by RNA polymerase II"
                      "regulation of transcription, DNA-templated"
##
##
                      "transcription by RNA polymerase II"
                      "inflammatory response"
##
##
                      "neuropeptide signaling pathway"
##
                      "positive regulation of cytosolic calcium ion concentration"
##
                      "positive regulation of transcription by RNA polymerase II"
##
                      "mRNA splicing, via spliceosome"
                      "regulation of transcription by RNA polymerase II"
##
##
                      "G protein-coupled receptor signaling pathway"
                      "transcription, DNA-templated"
##
##
##
  bp.enriched.terms "zscore"
                                "obs"
                                       "mean"
                                                  "std"
                                                 "10.801"
##
                      "144.024" "1656" "100.45"
                      "124.805" "1343" "90.91"
                                                  "10.032"
##
                               "748" "130.84"
                                                 "12.576"
##
                      "49.074"
                                "355"
                                       "46.8"
##
                      "49.004"
                                                  "6.289"
                                "94"
                                       "4.42"
                                                  "2.006"
##
                      "44.657"
##
                      "43.194"
                                "210" "19.05"
                                                  "4.421"
                                "818" "231.87"
                                                  "15.124"
##
                     "38.756"
                      "38.18"
                                "833"
                                       "237.19"
                                                  "15.605"
##
                                "206" "24.48"
##
                      "35.773"
                                                  "5.074"
                      "35.398"
                               "174" "20.98"
                                                  "4.323"
##
##
                     "33.534"
                                "178" "20.03"
                                                  "4.711"
##
                      "32.913"
                                "387" "85.6"
                                                  "9.157"
                      "29.852"
                                "1273" "573.26"
                                                  "23.44"
##
                                "200" "28.93"
                     "29.019"
                                                  "5.895"
##
                     "28.78"
                                "30"
                                       "1.22"
                                                  "0.938"
##
                     "28.475"
                                "525" "169.18"
##
                                                 "12.496"
                      "27.771"
                                "286"
                                       "60.93"
                                                  "8.104"
##
                     "27.737"
                                "432"
                                      "125.52"
                                                 "11.049"
##
                      "27.488"
                                "82"
                                       "6.9"
                                                  "2.732"
##
                      "27.423"
                                "143"
                                       "17.87"
                                                  "4.563"
##
                                "63"
                                       "4.58"
##
                      "26.916"
                                                  "2.17"
                     "26.746"
                                "451" "141.85"
                                                  "11.559"
##
##
                      "24.558"
                                "46"
                                       "3.27"
                                                  "1.74"
                     "24.178"
                                "82"
                                       "9.83"
                                                  "2.985"
##
##
                     "24.022"
                                "182" "39.41"
                                                  "5.936"
                                "125" "17.9"
##
                     "23.966"
                                                  "4.469"
##
                      "23.964"
                                "615"
                                       "236.65"
                                                  "15.788"
                      "23.75"
                                "29"
                                       "1.39"
##
                                                  "1.163"
```

```
"23.743"
                                  "647"
                                          "274.55"
                                                     "15.687"
##
                       "23.465"
                                  "105"
                                          "16.1"
                                                     "3.789"
##
                       "22.973"
                                                     "7.9"
##
                                  "248"
                                          "66.51"
                       "22.918"
                                  "145"
                                          "24.39"
                                                     "5.263"
##
                                  "57"
##
                       "22.712"
                                          "5.3"
                                                     "2.276"
                       "22.548"
                                  "29"
                                          "1.57"
                                                     "1.217"
##
                       "22.499"
                                  "567"
                                          "215.6"
                                                     "15.619"
##
                                                     "16.377"
                       "21.708"
                                  "606"
                                          "250.48"
##
##
                       "21.681"
                                  "76"
                                          "11.31"
                                                     "2.984"
                                  "71"
                       "21.211"
                                          "9.14"
                                                     "2.916"
##
##
                       "20.951"
                                  "51"
                                          "4.67"
                                                     "2.211"
                       "20.342"
                                  "30"
                                          "1.87"
                                                     "1.383"
##
                       "20.316"
                                  "34"
                                          "2.85"
                                                     "1.533"
##
                                  "34"
                                          "2.85"
                                                     "1.533"
                       "20.316"
##
##
                       "19.651"
                                  "285"
                                          "106.77"
                                                     "9.07"
                                                     "1.977"
##
                       "19.484"
                                  "43"
                                          "4.48"
                       "19.186"
                                  "60"
                                          "7.77"
                                                     "2.722"
##
                                          "251.81"
##
                       "19.184"
                                  "548"
                                                     "15.439"
                       "19.098"
                                  "553"
                                          "267.96"
                                                     "14.925"
##
                                  "77"
                                          "11.31"
                                                     "3.521"
##
                       "18.656"
##
                       "18.562"
                                  "222"
                                          "65.92"
                                                     "8.408"
##
                       "18.458"
                                  "1970" "1364.02" "32.83"
                                  "135"
                                          "27.6"
                                                     "5.85"
                       "18.359"
##
                       "18.192"
                                  "119"
                                          "25.65"
                                                     "5.131"
##
                                  "48"
                                          "7.79"
                       "17.918"
                                                     "2.244"
##
##
                       "17.872"
                                  "46"
                                          "7.1"
                                                     "2.177"
##
                       "17.661"
                                  "45"
                                          "6.48"
                                                     "2.181"
                       "17.458"
                                  "45"
                                          "6.89"
                                                     "2.183"
##
                                          "274.44"
                       "17.447"
                                  "538"
                                                     "15.106"
##
                       "17.331"
                                  "458"
                                          "211.64"
                                                     "14.215"
##
                       "17.273"
                                  "86"
                                          "18.03"
                                                     "3.935"
##
##
                       "17.254"
                                  "31"
                                          "2.4"
                                                     "1.658"
                       "16.946"
                                  "35"
                                          "3.64"
                                                     "1.851"
##
                                                     "2.343"
                       "16.909"
                                  "44"
                                          "4.38"
##
                                                     "2.21"
                                  "40"
                                          "4.62"
##
                       "16.008"
                       "15.875"
                                  "198"
                                          "78.36"
                                                     "7.536"
##
##
                       "15.811"
                                  "42"
                                          "6.36"
                                                     "2.254"
##
                       "15.568"
                                  "166"
                                          "50.69"
                                                     "7.407"
##
                       "15.45"
                                  "91"
                                          "23.51"
                                                     "4.368"
                       "15.232"
                                  "185"
                                          "60.85"
                                                     "8.151"
##
                       "15.21"
                                  "16"
                                          "0.79"
                                                     "0.924"
##
                                  "102"
##
                       "15.051"
                                          "25.45"
                                                     "5.086"
                       "14.602"
                                  "670"
                                          "366.2"
                                                     "20.806"
##
                       "14.464"
                                  "75"
                                          "17.19"
                                                     "3.997"
##
                       "14.341"
                                  "153"
                                          "47.91"
                                                     "7.328"
##
                                  "211"
                                          "87.11"
                       "14.291"
                                                     "8.669"
##
                       "14.244"
                                  "388"
                                          "187.73"
                                                     "14.06"
##
                       "14.078"
                                  "70"
                                          "18.28"
                                                     "3.674"
##
                                  "136"
                                          "51.78"
                                                     "5.994"
##
                       "14.05"
                       "14.041"
                                  "142"
                                          "43.28"
                                                     "7.031"
##
##
                                  "82"
                       "14.033"
                                          "22.45"
                                                     "4.244"
                                                     "1.57"
                                  "25"
                                          "3"
##
                       "14.013"
                                  "29"
##
                       "13.769"
                                          "3.27"
                                                     "1.869"
                       "13.689"
                                  "509"
                                          "287.11"
                                                     "16.209"
##
```

```
"386"
                                          "206.37"
                                                      "13.165"
##
                       "13.644"
                       "13.637"
                                   "116"
                                          "33.42"
                                                      "6.056"
##
                                          "26.67"
##
                       "13.539"
                                   "90"
                                                      "4.678"
                       "13.488"
                                   "306"
                                          "150.4"
                                                      "11.537"
##
##
                       "13.385"
                                   "44"
                                          "8.85"
                                                      "2.626"
                       "13.212"
                                   "34"
                                          "5.25"
                                                      "2.176"
##
                       "13.205"
                                   "74"
                                          "18.85"
                                                      "4.176"
##
                                                      "2.358"
                       "13.196"
                                   "36"
                                          "4.88"
##
##
                       "13.1"
                                   "21"
                                          "2.39"
                                                      "1.421"
                       "12.987"
                                   "23"
                                          "2.38"
                                                      "1.588"
##
##
                       "12.98"
                                   "54"
                                          "12.52"
                                                      "3.196"
                       "12.63"
                                   "13"
                                          "0.37"
                                                      "0.677"
##
                       "12.493"
                                   "51"
                                          "10.98"
                                                      "3.203"
##
                                   "136"
                                          "53.73"
                                                      "6.596"
                       "12.472"
##
                                   "98"
                                                      "5.245"
##
                       "12.368"
                                           "33.13"
                                   "40"
                                           "7.11"
                                                      "2.674"
##
                       "12.301"
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
                                   "50"
                                          "10.9"
##
                       "12.26"
                                                      "3.189"
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
##
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
                       "12.26"
                                   "50"
                                          "10.9"
                                                      "3.189"
##
                                   "50"
                       "12.26"
                                          "10.9"
                                                      "3.189"
##
##
                       "12.109"
                                   "52"
                                          "11.6"
                                                      "3.336"
##
                       "12.049"
                                   "128"
                                          "50.81"
                                                      "6.407"
                       "12.031"
                                   "89"
                                          "33.31"
                                                      "4.629"
##
                                          "130.71"
                       "12.003"
                                   "265"
                                                      "11.188"
##
                       "12.001"
                                   "241"
                                          "121.56"
                                                      "9.953"
##
                                   "40"
                                          "7.79"
                                                      "2.694"
##
                       "11.955"
##
                       "11.94"
                                   "321"
                                          "187.53"
                                                      "11.178"
                       "11.819"
                                   "93"
                                          "30.95"
                                                      "5.25"
##
                       "11.812"
                                   "59"
                                          "15.09"
                                                      "3.718"
##
                                          "14.92"
                                   "58"
                                                      "3.656"
##
                       "11.783"
##
                       "11.783"
                                   "162"
                                          "65.34"
                                                      "8.203"
##
                       "11.754"
                                   "60"
                                          "14.79"
                                                      "3.846"
##
                       "11.702"
                                   "481"
                                          "276.09"
                                                      "17.51"
                                   "83"
##
                       "11.675"
                                          "25.53"
                                                      "4.923"
                                   "89"
                                          "31.11"
                                                      "5.043"
                       "11.479"
##
                       "11.463"
                                   "50"
                                          "11.87"
                                                      "3.326"
##
                                   "87"
##
                       "11.427"
                                          "26.06"
                                                      "5.333"
                       "11.317"
                                   "107"
                                          "36.57"
                                                      "6.224"
##
                       "11.308"
                                   "701"
                                          "433.41"
                                                      "23.664"
##
                       "11.109"
                                   "51"
                                          "12.5"
                                                      "3.466"
##
                       "10.904"
                                          "40"
                                   "105"
                                                      "5.961"
##
                       "10.899"
                                   "99"
                                           "36.08"
                                                      "5.773"
##
                       "10.803"
                                   "159"
                                          "67.56"
                                                      "8.464"
##
                                   "233"
##
                       "10.714"
                                          "124.66"
                                                      "10.112"
                       "10.708"
                                   "179"
                                          "85.27"
                                                      "8.753"
##
##
                                   "119"
                       "10.68"
                                          "54.3"
                                                      "6.058"
                       "10.636"
                                   "184"
                                          "82.7"
                                                      "9.525"
##
                                   "17"
##
                       "10.636"
                                           "2.04"
                                                      "1.406"
                       "10.55"
                                   "103"
                                          "34.4"
                                                      "6.503"
##
```

##	"10.505"	"54"	"14.54"	"3.756"
##	"10.505"	"54"	"14.54"	"3.756"
##	"10.498"	"77"	"31.23"	"4.36"
##	"10.466"	"54"	"14.26"	"3.797"
##	"10.379"	"54"	"14.61"	"3.795"
##	"10.356"	"97"	"36.5"	"5.842"
##	"10.214"	"40"	"11.04"	"2.835"
##	"10.194"	"177"	"92.62"	"8.278"
##	"10.134	"115"	"47.66"	"6.685"
##	"10.046"	"377"	"241.18"	"13.519"
##	"10.013"	"797"	"539.4"	"25.727"
##	"9.996"	"47"	"13.86"	"3.315"
##	"9.994"	"71"	"24.86"	"4.617"
##	"9.934"	"33"	"6.49"	"2.669"
##	"9.875"	"18"	"2.78"	"1.541"
##	"9.875"	"76"	"30.8"	"4.577"
##	"9.867"	"54"	"15.79"	"3.872"
##	"9.848"	"40"	"10.46"	"3"
##	"9.828"	"39"	"9.76"	"2.975"
##	"9.782"	"886"	"598.28"	"29.413"
##	"9.773"	"71"	"23.93"	"4.816"
##	"9.716"	"71"	"23.14"	"4.926"
##	"9.716"	"67"	"23.77"	"4.449"
##	"9.634"	"36"	"8.22"	"2.884"
##	"9.583"	"81"	"30.3"	"5.291"
##	"9.551"	"74"	"27.66"	"4.852"
##	"9.522"	"59"	"19.42"	"4.156"
##	"9.455"	"11"	"1.32"	"1.024"
##	"9.37"	"102"	"46.63"	"5.91"
##	"9.358"	"142"	"70.9"	"7.598"
##	"9.347"	"96"	"43.66"	"5.6"
##	"9.345"	"50"	"14.69"	"3.778"
##	"9.32"	"10"	"0.68"	"0.723"
##	"9.32"	"10"	"0.68"	"0.723"
##	"9.295"	"12"	"1.65"	"1.114"
##	"9.295"	"12"	"1.65"	"1.114"
##	"9.292"	"323"	"193.01"	"13.989"
##	"9.277"	"42"	"12.07"	"3.226"
##	"9.277"	"42"	"12.07"	"3.226"
##	"9.263"	"62"	"18.78"	"4.666"
##	"9.239"	"50"	"14.91"	"3.798"
##	"9.227"	"105"	"44.67"	"6.538"
##	"9.198"	"87"	"35.66"	"5.582"
##	"9.194"	"13"	"1.77"	"1.221"
##	"9.191"	"19"	"2.88"	"1.754"
##	"9.181"	"150"	"75.82"	"8.08"
##	"9.173"	"101"	"42.95"	"6.328"
##	"9.162"	"104"	"44.49"	"6.496"
##	"9.156"	"90"	"36.14"	"5.883"
##	"9.14"	"10"	"0.86"	"0.888"
##	"9.14"	"10"	"0.86"	"0.888"
##	"9.091"	"103"	"43.95"	"6.495"
##	"8.986"	"148"	"79.87"	"7.582"
##	"8.974"	"29"	"6.73"	"2.482"

##	"8.921"	"69"	"29.46"	"4.432"
##	"8.921"	"69"	"29.46"	"4.432"
##	"8.887"	"53"	"18.2"	"3.916"
##	"8.843"	"18"	"3.72"	"1.615"
##	"8.822"	"64"	"26.62"	"4.237"
##	"8.819"	"967"	"733.54"	"26.473"
##	"8.775"	"49"	"16.08"	"3.752"
##	"8.754"	"41"	"11.34"	"3.388"
##	"8.664"	"51"	"16.71"	"3.958"
##	"8.659"	"94"	"40.42"	"6.188"
##	"8.638"	"46"	"13.42"	"3.772"
##	"8.615"	"69"	"29.84"	"4.545"
##	"8.54"	"20"	"4.25"	"1.844"
##	"8.523"	"26"	"5.78"	"2.372"
##	"8.508"	"248"	"144.67"	"12.146"
##	"8.475"	"139"	"66.68"	"8.534"
##	"8.451"	"70"	"26.3"	"5.171"
##	"8.439"	"48"	"17.09"	"3.663"
##	"8.362"	"116"	"56.46"	"7.12"
##	"8.346"	"91"	"43.09"	"5.74"
##	"8.337"	"35"	"10.85"	"2.897"
##	"8.319"	"134"	"69.91"	"7.704"
##	"8.315"	"43"	"12"	"3.728"
##	"8.259"	"26"	"7"	"2.301"
##	"8.259"	"26"	"7"	"2.301"
##	"8.259"	"26"	"7"	"2.301"
##	"8.253"	"39"	"11.71"	"3.307"
##	"8.235"	"91"	"42.77"	"5.857"
##	"8.171"	"41"	"12.6"	"3.476"
##	"8.167"	"87"	"35.71"	"6.28"
##	"8.16"	"486"	"327.2"	"19.462"
##	"8.158"	"29"	"8.18"	"2.552"
##	"8.147"	"623"	"451.22"	"21.085"
##	"8.147"	"43"	"12.18"	"3.783"
##	"8.139"	"27"	"6.84"	"2.477"
##	"8.12"	"87"	"32.72"	"6.685"
##	"8.093"	"108"	"50.04"	"7.162"
##	"8.08"	"110"	"51.18"	"7.28"
##	"8.067"	"35"	"11.62"	"2.898"
##	"8.046"	"53"	"19.53"	"4.16"
##	"8.008"	"260"	"166.63"	"11.659"
##	"7.999"	"59"	"22.7"	"4.538"
##	"7.998"	"62"	"24.63"	"4.672"
##	"7.982"	"59"	"22.9"	"4.523"
##	"7.955"	"67"	"29.1"	"4.764"
##	"7.932"	"57"	"23.49"	"4.225"
##	"7.894"	"33"	"10.49"	"2.852"
##	"7.885"	"62"	"23.56"	"4.875"
##	"7.81"	"576"	"400.36"	"22.49"
##	"7.773"	"132"	"68.48"	"8.172"
##	"7.772"	"72"	"30.17"	"5.382"
##	"7.761"	"103"	"51.16"	"6.68"
##	"7.744"	"55"	"21.03"	"4.387"
##	"7.728"	"46"	"16.34"	"3.838"
	20		10.01	0.000

##	"7.682"	"50"	"18.78"	"4.064"
##	"7.671"	"108"	"57.97"	"6.522"
##	"7.654"	"112"	"52.47"	"7.778"
##	"7.634"	"41"	"14.3"	"3.497"
##	"7.601"	"26"	"7.75"	"2.401"
##	"7.597"	"47"	"17.46"	"3.888"
##	"7.588"	"40"	"12.26"	"3.656"
##	"7.572"	"27"	"7.37"	"2.592"
##	"7.569"	"31"	"9.18"	"2.883"
##	"7.545"	"63"	"23.31"	"5.26"
##	"7.54"	"53"	"20.36"	"4.329"
##	"7.476"	"40"	"14.05"	"3.471"
##	"7.465"	"77"	"34.6"	"5.68"
##	"7.433"	"302"	"202.73"	"13.354"
##	"7.425"	"64"	"27.48"	"4.918"
##	"7.387"	"51"	"21.58"	"3.983"
##	"7.374"	"49"	"18.71"	"4.108"
##	"7.374"	"49"	"18.71"	"4.108"
##	"7.373"	"42"	"14.67"	"3.707"
##	"7.37"	"65"	"27.78"	"5.05"
##	"7.346"	"48"	"16.95"	"4.227"
##	"7.331"	"119"	"60.27"	"8.011"
##	"7.33"	"53"	"20.26"	"4.467"
##	"7.302"	"58"	"24.25"	"4.622"
##	"7.236"	"50"	"19.98"	"4.149"
##	"7.214"	"13"	"2.03"	"1.521"
##	"7.214"	"13"	"2.03"	"1.521"
##	"7.214"	"13"	"2.03"	"1.521"
##	"7.196"	"75"	"34.52"	"5.625"
##	"7.192"	"85"	"38.63"	"6.447"
##	"7.188"	"111"	"57.08"	"7.502"
##	"7.185"	"246"	"163.82"	"11.438"
##	"7.158"	"65"	"30.52"	"4.817"
##	"7.141"	"41"	"14.11"	"3.766"
##	"7.136"	"50"	"19.86"	"4.224"
##	"7.125"	"240"	"154.28"	"12.031"
##	"7.109"	"54"	"25.33"	"4.033"
##	"7.102"	"58"	"24.36"	"4.737"
##	"7.072"	"188"	"118.28"	"9.859"
##	"7.061"	"39"	"12.82"	"3.707"
##	"7.043"	"30"	"9.13"	"2.963"
##	"7.034"	"33"	"10.96"	"3.133"
##	"7.022"	"49"	"19.68"	"4.175"
##	"7.017"	"74"	"32.94"	"5.851"
##	"7.013"	"26"	"7.99"	"2.568"
##	"7.013"	"26"	"7.99"	"2.568"
##	"7.011"	"51"	"20.32"	"4.376"
##	"6.998"	"73"	"34.09"	"5.56"
##	"6.982"	"23"	"6.08"	"2.423"
##	"6.961"	"188"	"118.84"	"9.936"
##	"6.955"	"52"	"24.09"	"4.013"
##	"6.952"	"58"	"26.32"	"4.557"
##	"6.947" "6.946"	"12" "16"	"2.21" "3.84"	"1.409" "1.751"
##	0.940"	10	3.84"	1.751"

##	"6.946"	"16"	"3.84"	"1.751"
##	"6.946"	"16"	"3.84"	"1.751"
##	"6.943"	"26"	"7.93"	"2.602"
##	"6.938"	"17"	"4.08"	"1.862"
##	"6.925"	"57"	"24.01"	"4.764"
##	"6.918"	"13"	"2.09"	"1.577"
##	"6.916"	"70"	"30.16"	"5.761"
##	"6.906"	"77"	"36.42"	"5.876"
##	"6.904"	"62"	"28.61"	"4.837"
##	"6.883"	"66"	"31"	"5.085"
##	"6.877"	"72"	"32.34"	"5.767"
##	"6.866"	"90"	"45.22"	"6.522"
##	"6.855"	"51"	"19.69"	"4.568"
##	"6.847"	"256"	"165.16"	"13.268"
##	"6.844"	"63"	"26.27"	"5.367"
##	"6.841"	"46"	"19.42"	"3.885"
##	"6.831"	"577"	"408.53"	"24.661"
##	"6.826"	"13"	"2.28"	"1.57"
##	"6.815"	"39"	"14.45"	"3.602"
##	"6.811"	"149"	"87.87"	"8.975"
##	"6.794"	"28"	"9.42"	"2.735"
##	"6.785"	"36"	"13.86"	"3.263"
##	"6.773"	"23"	"5.89"	"2.526"
##	"6.764"	"916"	"733.76"	"26.943"
##	"6.76"	"28"	"9.59"	"2.723"
##	"6.75"	"29"	"7.94"	"3.12"
##	"6.747"	"95"	"50.33"	"6.621"
##	"6.74"	"50"	"20.8"	"4.332"
##	"6.722"	"95"	"47.85"	"7.014"
##	"6.7"	"8"	"1.3"	"0.99"
##	"6.691"	"14"	"3.13"	"1.625"
##	"6.665"	"197"	"123.92"	"10.965"
##	"6.664"	"21"	"5.94"	"2.26"
##	"6.653"	"24"	"6.98"	"2.558"
##	"6.636"	"45"	"18.07"	"4.058"
##	"6.619"	"37"	"12.57"	"3.691"
##	"6.617"	"52"	"22.86"	"4.404"
##	"6.616"	"20"	"5.58"	"2.18"
##	"6.591"	"23"	"5.97"	"2.584"
##	"6.562"	"48"	"21"	"4.115"
##	"6.558"	"42"	"15.69"	"4.012"
##	"6.55"	"7"	"0.45"	"0.657"
##	"6.549"	"32"	"11.23"	"3.171"
##	"6.542"	"65"	"32.14"	"5.023"
##	"6.541"	"130"	"74.7"	"8.455"
##	"6.531"	"39"	"15.66"	"3.574"
##	"6.525"	"25"	"7.33"	"2.708"
##	"6.51"	"44"	"18.14"	"3.972"
##	"6.507"	"8"	"1.18"	"1.048"
##	"6.5"	"13"	"2.39"	"1.632"
##	"6.49"	"8"	"1.51"	"0.98"
##	"6.489"	"28"	"9.18"	"2.9"
##	"6.487"	"39"	"15.56"	"3.613"
##	"6.468"	"229"	"151.4"	"11.997"

##	"6.464"	"63"	"28.04"	"5.408"
##	"6.458"	"29"	"9.77"	"2.978"
##	"6.437"	"43"	"17.52"	"3.958"
##	"6.426"	"49"	"21.8"	"4.233"
##	"6.413"	"26"	"9.32"	"2.601"
##	"6.413"	"21"	"5.92"	"2.351"
##	"6.408"	"289"	"201.52"	"13.653"
##	"6.391"	"91"	"48.69"	"6.621"
##	"6.351"	"603"	"463.73"	"21.927"
##	"6.35"	"53"	"23.93"	"4.578"
##	"6.35"	"53"	"23.93"	"4.578"
##	"6.35"	"53"	"23.93"	"4.578"
##	"6.35"	"292"	"208.2"	"13.198"
##	"6.344"	"43"	"17.77"	"3.977"
##	"6.34"	"65"	"31.87"	"5.226"
##	"6.3"	"7"	"0.7"	"0.882"
##	"6.284"	"35"	"12.5"	"3.58"
##	"6.27"	"137"	"83.13"	"8.591"
##	"6.268"	"33"	"12.5"	"3.271"
##	"6.264"	"9"	"1.61"	"1.18"
##	"6.263"	"27"	"9.5"	"2.794"
##	"6.228"	"51"	"22.59"	"4.562"
##	"6.209"	"23"	"7.3"	"2.529"
##	"6.193"	"49"	"21.1"	"4.505"
##	"6.15"	"14"	"2.92"	"1.802"
##	"6.127"	"19"	"5.76"	"2.161"
##	"6.126"	"13"	"2.38"	"1.734"
##	"6.126"	"13"	"2.38"	"1.734"
##	"6.093"	"47"	"20.3"	"4.382"
##	"6.083"	"19"	"5.82"	"2.167"
##	"6.077"	"56"	"28.19"	"4.576"
##	"6.075"	"28"	"9.63"	"3.024"
##	"6.074"	"19"	"5.5"	"2.222"
##	"6.074"	"19"	"5.5"	"2.222"
##	"6.067"	"19"	"4.93"	"2.319"
##	"6.056"	"84"	"46.29"	"6.227"
##	"6.051"	"65"	"32.42"	"5.385"
##	"6.049"	"64"	"30.58"	"5.525"
##	"6.027"	"13"	"2.85"	"1.684"
##	"6.022"	"113"	"64.75"	"8.012"
##	"6.016"	"183"	"124.65"	"9.7"
##	"6.013"	"72"	"36.72"	"5.867"
##	"6.013"	"26"	"9.05"	"2.819"
##	"6"	"227"	"151.34"	"12.609"
##	"5.996"	"72"	"34.24"	"6.298"
##	"5.975"	"289"	"203.36"	"14.333"
##	"5.945"	"24"	"7.59"	"2.76"
##	"5.944"	"27"	"11.05"	"2.683"
##	"5.944"	"27"	"11.05"	"2.683"
##	"5.944"	"27"	"11.05"	"2.683"
##	"5.875"	"7"	"0.98"	"1.025"
##	"5.874"	"58"	"27.64"	"5.169"
##	"5.868"	"46"	"20.73"	"4.306"
##	"5.857"	"18"	"5.38"	"2.155"
	0.001	10	0.00	2.100

##	"5.854"	"66"	"34.18"	"5.435"
##	"5.843"	"27"	"8.96"	"3.088"
##	"5.843"	"27"	"8.96"	"3.088"
##	"5.832"	"98"	"53.28"	"7.667"
##	"5.823"	"25"	"9.37"	"2.684"
##	"5.823"	"10"	"2.11"	"1.355"
##	"5.811"	"36"	"15.27"	"3.567"
##	"5.81"	"6"	"0.19"	"0.419"
##	"5.801"	"27"	"10.19"	"2.898"
##	"5.801"	"27"	"10.19"	"2.898"
##	"5.801"	"27"	"10.19"	"2.898"
##	"5.801"	"27"	"10.19"	"2.898"
##	"5.798"	"373"	"291.49"	"14.059"
##	"5.796"	"100"	"59.94"	"6.912"
##	"5.773"	"95"	"55.2"	"6.895"
##	"5.765"	"18"	"5.41"	"2.184"
##	"5.765"	"18"	"5.41"	"2.184"
##	"5.754"	"14"	"3.51"	"1.823"
##	"5.741"	"27"	"9.57"	"3.036"
##	"5.733"	"53"	"25.21"	"4.848"
##	"5.716"	"75"	"41.68"	"5.829"
##	"5.715"	"14"	"3.65"	"1.811"
##	"5.7"	"183"	"124.84"	"10.204"
##	"5.674"	"53"	"22.53"	"5.37"
##	"5.662"	"63"	"31.83"	"5.505"
##	"5.658"	"36"	"15.35"	"3.65"
##	"5.651"	"49"	"23.77"	"4.465"
##	"5.646"	"69"	"36.96"	"5.675"
##	"5.637"	"28"	"9.33"	"3.312"
##	"5.631"	"36"	"16.19"	"3.518"
##	"5.625"	"69"	"38.37"	"5.445"
##	"5.624"	"22"	"6.51"	"2.754"
##	"5.607"	"71"	"38.64"	"5.771"
##	"5.591"	"83"	"44.52"	"6.882"
##	"5.58"	"6"	"0.42"	"0.699"
##	"5.58"	"6"	"0.42"	"0.699"
##	"5.58"	"6"	"0.42"	"0.699"
##	"5.565"	"76"	"45.15"	"5.544"
##	"5.554"	"131"	"86.83"	"7.953"
##	"5.549"	"37"	"14.96"	"3.972"
##	"5.545"	"27"	"10.88"	"2.907"
##	"5.518"	"30"	"12.2"	"3.226"
##	"5.514"	"54"	"28.17"	"4.684"
##	"5.505"	"17"	"5.15"	"2.153"
##	"5.495"	"13"	"2.93"	"1.833"
##	"5.494"	"36"	"16.21"	"3.602"
##	"5.488"	"29"	"11.28"	"3.229"
##	"5.477"	"8"	"1.69"	"1.152"
##	"5.474"	"29"	"11.94"	"3.117"
##	"5.448"	"133"	"85.15"	"8.783"
##	"5.443"	"63"	"36.75"	"4.823"
##	"5.426"	"15"	"3.71"	"2.081"
##	"5.416"	"45"	"20.64"	"4.498"
##	"5.414"	"31"	"13.43"	"3.245"

##	"5.41"	"108"	"65.96"	"7.771"
##	"5.406"	"27"	"11.7"	"2.83"
##	"5.403"	"56"	"26.54"	"5.452"
##	"5.4"	"94"	"56.24"	"6.992"
##	"5.395"	"25"	"9.66"	"2.843"
##	"5.387"	"89"	"52.28"	"6.817"
##	"5.386"	"37"	"17.03"	"3.708"
##	"5.384"	"24"	"8.04"	"2.964"
##	"5.382"	"58"	"30.4"	"5.129"
##	"5.373"	"100"	"60.81"	"7.294"
##	"5.365"	"37"	"16.19"	"3.879"
##	"5.358"	"26"	"9.09"	"3.156"
##	"5.358"	"26"	"9.09"	"3.156"
##	"5.348"	"15"	"4.33"	"1.995"
##	"5.346"	"27"	"11.94"	"2.817"
##	"5.339"	"28"	"11.47"	"3.096"
##	"5.339"	"28"	"11.47"	"3.096"
##	"5.331"	"26"	"9.11"	"3.168"
##	"5.325"	"26"	"9.1"	"3.173"
##	"5.324"	"27"	"11.01"	"3.003"
##	"5.322"	"63"	"32.12"	"5.802"
##	"5.291"	"14"	"4.28"	"1.837"
##	"5.277"	"12"	"3"	"1.706"
##	"5.271"	"27"	"9.44"	"3.331"
##	"5.26"	"44"	"21.01"	"4.37"
##	"5.246"	"40"	"18.79"	"4.043"
##	"5.242"	"25"	"9.81"	"2.898"
##	"5.235"	"168"	"115.82"	"9.968"
##	"5.228"	"36"	"15.61"	"3.9"
##	"5.223"	"27"	"11.41"	"2.985"
##	"5.218"	"14"	"3.83"	"1.949"
##	"5.218"	"14"	"3.83"	"1.949"
##	"5.213"	"16"	"4.94"	"2.122"
##	"5.211"	"141"	"90.67"	"9.658"
##	"5.206"	"27"	"11.27"	"3.021"
##	"5.199"	"28"	"11.7"	"3.135"
##	"5.19"	"6"	"0.81"	"0.873"
##	"5.177"	"38"	"18.22"	"3.821"
##	"5.172"	"86"	"50.12"	"6.937"
##	"5.17"	"67"	"36.88"	"5.826"
##	"5.163"	"24"	"10.61"	"2.593"
##	"5.153"	"9"	"2.63"	"1.236"
##	"5.143"	"31"	"13.41"	"3.42"
##	"5.138"	"37"	"18.41"	"3.618"
##	"5.135"	"105"	"62.58"	"8.261"
##	"5.122"	"32"	"13.2"	"3.671"
	"5.122"			"2.161"
##	"5.122" "5.12"	"16" "20"	"4.93" "7.12"	"2.161"
##	0.12			
##	"5.117"	"76"	"44.24" "8.86"	"6.207"
##	"5.113"	"21"		"2.374"
##	"5.096"	"11"	"2.94"	"1.582"
##	"5.078" "5.066"	"24"	"9.52"	"2.851" "3.208"
##	'n Unn''	"28"	"11.75"	.3. 708"
##	"5.064"	"69"	"38.08"	"6.106"

##	"5.041"	"40"	"19.61"	"4.045"
##	"5.031"	"30"	"13.2"	"3.339"
##	"5.011"	"14"	"4.3"	"1.936"
##	"5.001"	"45"	"22.37"	"4.525"
##	"4.991"	"66"	"38.62"	"5.486"
##	"4.991"	"17"	"6.35"	"2.134"
##	"4.99"	"16"	"5.27"	"2.15"
##	"4.99"	"16"	"5.27"	"2.15"
##	"4.99"	"16"	"5.27"	"2.15"
##	"4.976"	"13"	"3.88"	"1.833"
##	"4.974"	"17"	"5.7"	"2.272"
##	"4.967"	"27"	"11.95"	"3.03"
##	"4.964"	"23"	"8.36"	"2.949"
##	"4.963"	"116"	"75.77"	"8.106"
##	"4.961"	"648"	"514.84"	"26.842"
##	"4.961"	"196"	"135.02"	"12.292"
##	"4.957"	"15"	"4.11"	"2.197"
##	"4.957"	"15"	"4.11"	"2.197"
##	"4.953"	"12"	"2.96"	"1.825"
##	"4.947"	"58"	"30.7"	"5.519"
##	"4.941"	"38"	"17.75"	"4.098"
##	"4.91"	"192"	"134.96"	"11.617"
##	"4.886"	"49"	"24.99"	"4.914"
##	"4.876" "4.86"	"20"	"7.19"	"2.627" "3.284"
##	"4.86" "4.86"	"31" "31"	"15.04" "15.04"	"3.284"
## ##	"4.855"	"110"	"72.19"	"7.787"
##	"4.847"	"29"	"13.74"	"3.148"
##	"4.833"	"15"	"4.42"	"2.189"
##	"4.826"	"41"	"20.84"	"4.177"
##	"4.819"	"28"	"13.64"	"2.98"
##	"4.816"	"37"	"18.34"	"3.875"
##	"4.815"	"48"	"24.99"	"4.779"
##	"4.801"	"60"	"33.47"	"5.526"
##	"4.797"	"20"	"8.17"	"2.466"
##	"4.772"	"61"	"34.12"	"5.632"
##	"4.77"	"5"	"0.23"	"0.468"
##	"4.756"	"21"	"9.46"	"2.426"
##	"4.747"	"28"	"12.37"	"3.293"
##	"4.738"	"91"	"59.12"	"6.729"
##	"4.728"	"17"	"5.71"	"2.388"
##	"4.715"	"44"	"22.04"	"4.658"
##	"4.715"	"21"	"8.11"	"2.734"
##	"4.71"	"25"	"10.72"	"3.032"
##	"4.708"	"10"	"2.28"	"1.64"
##	"4.683"	"15"	"4.7"	"2.2"
##	"4.681"	"13"	"3.56"	"2.017"
##	"4.666"	"31"	"13.77"	"3.692"
##	"4.665"	"169"	"120.16"	"10.47"
##	"4.665"	"8"	"1.56"	"1.38"
##	"4.665"	"8"	"1.56"	"1.38"
##	"4.664"	"65"	"38.61"	"5.658"
##	"4.66"	"23"	"9.08"	"2.987"
##	"4.657"	"55"	"29.43"	"5.491"

##	"4.642"	"129"	"85.64"	"9.34"
##	"4.64"	"16"	"5.52"	"2.258"
##	"4.64"	"30"	"14.09"	"3.429"
##	"4.629"	"68"	"40.71"	"5.895"
##	"4.628"	"32"	"15.32"	"3.604"
##	"4.628"	"16"	"5.77"	"2.21"
##	"4.628"	"16"	"5.77"	"2.21"
##	"4.628"	"16"	"5.77"	"2.21"
##	"4.628"	"16"	"5.77"	"2.21"
##	"4.622"	"39"	"20.62"	"3.977"
##	"4.621"	"35"	"17.74"	"3.735"
##	"4.617"	"85"	"56.45"	"6.183"
##	"4.616"	"28"	"12.65"	"3.325"
##	"4.615"	"28"	"12.54"	"3.35"
##	"4.588"	"29"	"12.93"	"3.503"
##	"4.576"	"103"	"66.09"	"8.066"
##	"4.571"	"19"	"7.31"	"2.557"
##	"4.569"	"23"	"8.56"	"3.16"
##	"4.559"	"71"	"42.8"	"6.186"
##	"4.556"	"26"	"11.59"	"3.163"
##	"4.55"	"76"	"45.89"	"6.618"
##	"4.546"	"26"	"10.46"	"3.418"
##	"4.546"	"8"	"1.93"	"1.335"
##	"4.545"	"38"	"18.11"	"4.376"
##	"4.543"	"27"	"10.52"	"3.628"
##	"4.542"	"27"	"11.57"	"3.397"
##	"4.534"	"13"	"3.99"	"1.987"
##	"4.53"	"5"	"0.47"	"0.643"
##	"4.519"	"99"	"68.49"	"6.752"
##	"4.512"	"28"	"13.13"	"3.296"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.503"	"39"	"20.33"	"4.146"
##	"4.501"	"21"	"8.79"	"2.713"
##	"4.501"	"15"	"4.81"	"2.264"
##	"4.491"	"15"	"4.73"	"2.287"
##	"4.484"	"18"	"6.67"	"2.527"
##	"4.472"	"27"	"12.23"	"3.302"
##	"4.467"	"58"	"33.27"	"5.536"
##	"4.466"	"14"	"4.51"	"2.125"
##	"4.466"	"14"	"4.51"	"2.125"
##	"4.459"	"25"	"9.55"	"3.465"
##	"4.451"	"19"	"7.32"	"2.624"
##	"4.437"	"121"	"79.27"	"9.405"
##	"4.428"	"38"	"19.06"	"4.278"
##	"4.42"	"8"	"1.92"	"1.376"
##	"4.418"	"20"	"8.45"	"2.615"
##	"4.408"	"31"	"16.05"	"3.392"
##	"4.396"	"55"	"31.71"	"5.298"
##	"4.39"	"8"	"2.19"	"1.323"
##	"4.386"	"20"	"6.94"	"2.977"
##	"4.379"	"24"	"10.3"	"3.129"
##	"4.379"	"31"	"15.83"	"3.464"
	1.010	01	10.00	0.404

##	"4.378"	"14"	"4.84"	"2.092"
##	"4.372"	"17"	"6.3"	"2.447"
##	"4.371"	"21"	"8.89"	"2.77"
##	"4.369"	"26"	"11.12"	"3.406"
##	"4.338"	"52"	"28.81"	"5.346"
##	"4.335"	"23"	"9.75"	"3.056"
##	"4.334"	"17"	"6.6"	"2.399"
##	"4.332"	"90"	"59.94"	"6.94"
##	"4.329"	"20"	"6.64"	"3.086"
##	"4.29"	"179"	"130.22"	"11.37"
##	"4.29"	"34"	"18.08"	"3.711"
##	"4.28"	"5"	"0.72"	"0.78"
##	"4.278"	"29"	"13.93"	"3.523"
##	"4.278"	"29"	"13.93"	"3.523"
##	"4.273"	"36"	"19.09"	"3.957"
##	"4.27"	"63"	"38.35"	"5.772"
##	"4.248"	"144"	"101.21"	"10.074"
##	"4.243"	"21"	"7.78"	"3.116"
##	"4.236"	"11"	"3.24"	"1.832"
##	"4.235"	"29"	"14.29"	"3.474"
##	"4.229"	"147"	"103.76"	"10.224"
##	"4.228"	"27"	"11.51"	"3.664"
##	"4.224"	"37"	"19.81"	"4.069"
##	"4.219"	"22"	"9.77"	"2.898"
##	"4.211"	"59"	"35.17"	"5.659"
##	"4.209"	"234"	"185.37"	"11.553"
##	"4.202"	"52"	"30.07"	"5.219"
##	"4.19"	"119"	"85.03"	"8.107"
##	"4.179"	"29"	"13.99"	"3.592"
##	"4.176"	"29"	"13.45"	"3.724"
##	"4.176"	"63"	"38.27"	"5.922"
##	"4.16"	"57"	"33.01"	"5.767"
##	"4.153"	"14"	"5.31"	"2.092"
##	"4.153"	"14"	"5.31"	"2.092"
##	"4.153"	"14"	"5.31"	"2.092"
##	"4.145"	"67"	"40.55"	"6.381"
##	"4.14"	"5"	"0.86"	"0.899"
##	"4.135"	"66"	"41.04"	"6.037"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.12"	"16"	"5.85"	"2.463"
##	"4.119"	"60"	"37.6"	"5.438"
##	"4.116"	"19"	"7.97"	"2.68"
##	"4.11"	"148"	"105.85"	"10.256"
##	"4.107"	"114"	"75.7"	"9.326"
##	"4.106"	"44"	"23.99"	"4.873"
##	"4.096"	"428"	"356.52"	"17.452"
##	"4.095"	"24"	"11.63"	"3.021"
##	"4.076"	"12"	"3.9"	"1.987"
##	"4.076"	"63"	"38.87"	"5.92"
##	"4.073"	"64"	"40.16"	"5.853"
##	"4.07"	"87"	"58.21"	"7.074"
##	"4.066"	"13"	"5.07"	"1.95"
##	"4.06"	"33"	"16.48"	"4.069"
##	"4.058"	"23"	"10.49"	"3.083"
	1.000	20	10.10	0.000

##	"4.055"	"72"	"43.94"	"6.919"
##	"4.053"	"9"	"2.78"	"1.535"
##	"4.048"	"29"	"14.39"	"3.609"
##	"4.043"	"12"	"3.92"	"1.998"
##	"4.04"	"79"	"53.67"	"6.27"
##	"4.037"	"67"	"43.85"	"5.734"
##	"4.031"	"19"	"8.74"	"2.545"
##	"4.03"	"316"	"258.8"	"14.193"
##	"4.025"	"296"	"232.8"	"15.702"
##	"4.022"	"10"	"3.52"	"1.611"
##	"4.015"	"23"	"9.73"	"3.306"
##	"4.009"	"393"	"318.17"	"18.664"
##	"4.003"	"286"	"226.72"	"14.809"
##	"3.998"	"32"	"16.95"	"3.764"
##	"3.995"	"42"	"24.19"	"4.458"
##	"3.992"	"73"	"43.36"	"7.426"
##	"3.991"	"81"	"50.78"	"7.571"
##	"3.99"	"24"	"11.34"	"3.173"
##	"3.986"	"130"	"94.32"	"8.952"
##	"3.986"	"33"	"16.74"	"4.079"
##	"3.974"	"65"	"42.75"	"5.598"
##	"3.968"	"72"	"45.41"	"6.702"
##	"3.962"	"23"	"10.17"	"3.238"
##	"3.961"	"81"	"50.71"	"7.647"
##	"3.96"	"36"	"19.57"	"4.149"
##	"3.957"	"15"	"6.11"	"2.247"
##	"3.949"	"17"	"7.92"	"2.299"
##	"3.949"	"17"	"7.04"	"2.522"
##	"3.948"	"33"	"17.06"	"4.037"
##	"3.948"	"33"	"17.06"	"4.037"
##	"3.936"	"12"	"4.69"	"1.857"
##	"3.927"	"34"	"18.33"	"3.99"
##	"3.926" "3.925"	"88" "41"	"58.87"	"7.42" "4.54"
## ##	"3.925"	"12"	"23.18" "4.1"	"4.54"
## ##	"3.925" "3.912"	"23"	"4.1"	"3.288"
##	"3.895"	23 "16"	"6.37"	"2.473"
##	"3.891"	"16"	"6.19"	"2.521"
##	"3.89"	"35"	"18.62"	"4.211"
##	"3.877"	"35"	"19.12"	"4.096"
##	"3.877"	"35"	"19.12"	"4.096"
##	"3.876"	"16"	"6.27"	"2.51"
##	"3.873"	"23"	"10.68"	"3.181"
##	"3.87"	"84"	"57.87"	"6.752"
##	"3.864"	"23"	"10.11"	"3.336"
##	"3.857"	"45"	"26.47"	"4.804"
##	"3.855"	"203"	"153.03"	"12.963"
##	"3.85"	"28"	"13.01"	"3.894"
##	"3.844"	"135"	"96.25"	"10.08"
##	"3.839"	"22"	"9.96"	"3.136"
##	"3.834"	"17"	"6.76"	"2.671"
##	"3.833"	"11"	"3.84"	"1.868"
##	"3.833"	"81"	"54.41"	"6.937"
##	"3.828"	"57"	"35.74"	"5.553"

##	"3.826"	"21"	"9.47"	"3.013"
##	"3.826"	"23"	"10.51"	"3.264"
##	"3.817"	"82"	"56.31"	"6.731"
##	"3.814"	"20"	"9.73"	"2.693"
##	"3.809"	"31"	"17.86"	"3.45"
##	"3.809"	"10"	"2.85"	"1.877"
##	"3.806"	"13"	"4.88"	"2.133"
##	"3.804"	"45"	"25.74"	"5.062"
##	"3.8"	"5"	"1.2"	"0.974"
##	"3.799"	"27"	"14.26"	"3.353"
##	"3.798"	"46"	"26.82"	"5.05"
##	"3.796"	"32"	"16.31"	"4.133"
##	"3.792"	"72"	"49.97"	"5.809"
##	"3.792"	"113"	"82.22"	"8.116"
##	"3.79"	"26"	"13.8"	"3.219"
##	"3.781"	"8"	"2.1"	"1.56"
##	"3.781"	"8"	"2.1"	"1.56"
##	"3.781"	"10"	"3.38"	"1.751"
##	"3.773"	"9"	"2.87"	"1.625"
##	"3.768"	"14"	"5.58"	"2.235"
##	"3.767"	"70"	"45.14"	"6.6"
##	"3.753"	"118"	"83.43"	"9.212"
##	"3.748"	"11"	"3.91"	"1.891"
##	"3.74"	"103"	"76.97"	"6.959"
##	"3.736"	"21"	"9.29"	"3.134"
##	"3.735"	"9"	"2.83"	"1.652"
##	"3.729"	"35"	"19.04"	"4.28"
##	"3.721"	"31"	"17.13"	"3.727"
##	"3.72"	"62"	"38.47"	"6.325"
##	"3.712"	"10"	"3.02"	"1.88"
##	"3.709"	"41"	"23.61"	"4.688"
##	"3.708"	"31"	"16.8"	"3.83"
##	"3.706"	"38"	"20.38"	"4.754"
##	"3.7"	"164"	"128.04"	"9.718"
##	"3.689"	"93"	"65.58"	"7.432"
##	"3.688"	"34"	"18.11"	"4.309"
##	"3.687"	"13"	"4.92"	"2.191"
##	"3.681"	"14"	"5.43"	"2.328"
##	"3.668"	"29"	"14.95"	"3.831"
##	"3.661"	"26"	"13.16"	"3.507"
##	"3.656"	"53"	"33.83"	"5.244"
##	"3.653"	"29"	"16.45"	"3.436"
##	"3.652"	"71"	"46.71"	"6.65"
##	"3.652"	"28"	"15.92"	"3.308"
##	"3.652"	"13"	"4.38"	"2.36"
##	"3.65"	"25"	"11.94"	"3.578"
##	"3.644"	"703"	"626.11"	"21.099"
##	"3.636"	"34"	"19.01"	"4.123"
##	"3.632"	"21"	"10.18"	"2.979"
##	"3.631"	"45"	"25.52"	"5.364"
##	"3.629"	"22"	"11.74"	"2.827"
##	"3.629"	"149"	"110.3"	"10.665"
##	"3.628"	"44"	"24.59"	"5.351"
##	"3.628"	"28"	"14.5"	"3.721"

##	"3.621"	"47"	"28.25"	"5.178"
##	"3.616"	"55"	"34.43"	"5.689"
##	"3.607"	"12"	"4.08"	"2.196"
##	"3.604"	"55"	"34.63"	"5.653"
##	"3.598"	"32"	"17.11"	"4.139"
##	"3.584"	"14"	"6.11"	"2.201"
##	"3.572"	"89"	"63.27"	"7.202"
##	"3.571"	"56"	"35.53"	"5.732"
##	"3.571"	"62"	"39.82"	"6.211"
##	"3.569"	"22"	"10.34"	"3.267"
##	"3.559"	"5"	"1.3"	"1.04"
##	"3.559"	"40"	"22.81"	"4.83"
##	"3.557"	"65"	"44.35"	"5.806"
##	"3.555"	"49"	"31.88"	"4.816"
##	"3.553"	"25"	"12.1"	"3.631"
##	"3.54"	"4"	"0.46"	"0.688"
##	"3.536"	"23"	"10.92"	"3.416"
##	"3.53"	"41"	"24.63"	"4.638"
##	"3.527"	"9"	"2.8"	"1.758"
##	"3.523"	"70"	"47.67"	"6.339"
##	"3.519"	"19"	"8.96"	"2.853"
##	"3.515"	"35"	"20.71"	"4.066"
##	"3.508"	"21"	"10.21"	"3.076"
##	"3.508"	"65"	"43.56"	"6.112"
##	"3.503"	"28"	"14.46"	"3.865"
##	"3.498"	"33"	"18.37"	"4.182"
##	"3.492"	"31"	"17.53"	"3.857"
##	"3.492"	"57"	"37.72"	"5.521"
##	"3.483"	"87"	"60.98"	"7.47"
##	"3.481"	"9"	"3.35"	"1.623"
##	"3.481"	"9"	"3.35"	"1.623"
## ##	"3.477" "3.471"	"91" "172"	"67.39" "131.16"	"6.791" "11.765"
## ##	"3.468"	"57"	"37.75"	"5.551"
##	"3.468"	"57"	"38.13"	"5.441"
##	"3.464"	"18"	"8.38"	"2.777"
##	"3.461"	"40"	"23.63"	"4.73"
##	"3.45"	"4"	"0.55"	"0.702"
##	"3.449"	"15"	"6.85"	"2.363"
##	"3.449"	"134"	"100.72"	"9.649"
##	"3.446"	"14"	"6.06"	"2.304"
##	"3.445"	"15"	"6.43"	"2.487"
##	"3.439"	"15"	"6.25"	"2.544"
##	"3.421"	"35"	"19"	"4.677"
##	"3.421"	"35"	"19"	"4.677"
##	"3.419"	"14"	"5.18"	"2.58"
##	"3.417"	"58"	"37.53"	"5.991"
##	"3.414"	"12"	"4.46"	"2.208"
##	"3.414"	"14"	"5.84"	"2.39"
##	"3.411"	"10"	"3.71"	"1.844"
##	"3.403"	"22"	"11.29"	"3.147"
##	"3.399"	"23"	"12.12"	"3.201"
##	"3.393"	"35"	"20.77"	"4.194"
##	"3.391"	"19"	"9.42"	"2.825"

##	"3.388"	"14"	"6.28"	"2.279"
##	"3.386"	"23"	"12.11"	"3.216"
##	"3.386"	"39"	"22.52"	"4.867"
##	"3.386"	"6"	"1.86"	"1.223"
##	"3.384"	"92"	"63.86"	"8.316"
##	"3.379"	"87"	"62.75"	"7.177"
##	"3.364"	"52"	"34.75"	"5.127"
##	"3.353"	"7"	"2.22"	"1.425"
##	"3.352"	"8"	"3.25"	"1.417"
##	"3.352"	"8"	"3.25"	"1.417"
##	"3.351"	"70"	"48.85"	"6.312"
##	"3.35"	"409"	"340.86"	"20.341"
##	"3.348"	"32"	"18.01"	"4.179"
##	"3.348"	"32"	"18.01"	"4.179"
##	"3.341"	"64"	"43.42"	"6.16"
##	"3.33"	"4"	"0.67"	"0.779"
##	"3.328"	"66"	"46.74"	"5.787"
##	"3.32"	"16"	"7.39"	"2.593"
##	"3.307"	"20"	"10.24"	"2.951"
##	"3.297"	"20"	"9.24"	"3.263"
##	"3.293"	"28"	"14.77"	"4.017"
##	"3.29"	"20"	"9.75"	"3.115"
##	"3.285"	"46"	"30.72"	"4.652"
##	"3.283"	"45"	"29.68"	"4.666"
##	"3.278"	"20"	"10.8"	"2.807"
##	"3.278"	"31"	"17.04"	"4.259"
##	"3.273"	"46"	"28.65"	"5.302"
##	"3.273"	"23"	"11.98"	"3.366"
##	"3.273"	"25"	"13.1"	"3.636"
##	"3.26"	"69"	"46.07"	"7.034"
##	"3.258"	"13"	"5.07"	"2.434"
##	"3.257"	"22"	"11.48"	"3.23"
##	"3.256"	"4"	"0.74"	"1.001"
##	"3.249"	"50"	"32.04"	"5.528"
##	"3.229"	"717"	"638.24"	"24.394"
##	"3.222"	"15"	"6.91"	"2.511"
##	"3.217"	"21"	"10.65"	"3.217"
##	"3.216"	"76"	"55.98"	"6.225"
##	"3.213"	"65"	"45.47"	"6.079"
##	"3.209"	"8"	"2.58"	"1.689"
##	"3.208"	"71"	"51.31"	"6.138"
##	"3.208"	"71"	"51.31"	"6.138"
##	"3.208"	"71"	"51.31"	"6.138"
##	"3.208"	"71"	"51.31"	"6.138"
##	"3.203"	"79"	"56.27"	"7.097"
##	"3.203"	"92"	"65.45"	"8.288"
##	"3.197"	"73"	"53.56"	"6.081"
##	"3.182"	"110"	"81.79"	"8.865"
##	"3.18"	"4"	"0.82"	"0.881"
##	"3.179"	"82"	"59.93"	"6.942"
##	"3.17"	"31"	"18.18"	"4.044"
##	"3.169"	"30"	"16.61"	"4.226"
##	"3.167"	"63"	"42.71"	"6.406"
##	"3.166"	"14"	"5.68"	"2.628"

##	"3.16"	"8"	"2.8"	"1.645"
##	"3.156"	"11"	"4.63"	"2.018"
##	"3.156"	"11"	"4.63"	"2.018"
##	"3.149"	"90"	"67.07"	"7.283"
##	"3.149"	"37"	"23.46"	"4.3"
##	"3.149"	"37"	"23.46"	"4.3"
##	"3.149"	"37"	"23.46"	"4.3"
	"3.149"	"37"	"23.46"	4.3 "4.3"
##	"3.149"		"119.34"	"10.377"
## ##	"3.144"	"152" "566"	"492.01"	"23.532"
			"6.97"	"2.236"
##	"3.144"	"14"		
##	"3.142"	"8"	"2.68"	"1.693"
##	"3.14"	"47"	"31.18"	"5.038"
##	"3.139"	"129"	"99.62"	"9.36"
##	"3.139"	"37"	"23.5"	"4.301"
##	"3.136"	"23"	"12.33"	"3.402"
##	"3.134"	"10"	"3.86"	"1.959"
##	"3.13"	"11"	"4.7"	"2.013"
##	"3.13"	"11"	"4.7"	"2.013"
##	"3.128"	"302"	"249.77"	"16.696"
##	"3.117"	"110"	"84.06"	"8.322"
##	"3.116"	"134"	"102.05"	"10.254"
##	"3.115"	"69"	"47.12"	"7.024"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.109"	"8"	"2.82"	"1.666"
##	"3.106"	"25"	"14.55"	"3.365"
##	"3.102"	"29"	"16.7"	"3.966"
##	"3.099"	"57"	"38.04"	"6.118"
##	"3.098"	"35"	"21.64"	"4.312"
##	"3.094"	"31"	"18.97"	"3.888"
##	"3.093"	"9"	"3.5"	"1.778"
##	"3.086"	"152"	"118.76"	"10.771"
	0.000	102	110.10	10.111

##	"3.082"	"344"	"291.5"	"17.033"
##	"3.08"	"37"	"23.68"	"4.325"
##	"3.064"	"14"	"6.61"	"2.412"
##	"3.064"	"60"	"41.52"	"6.031"
##	"3.06"	"4"	"0.94"	"0.952"
##	"3.057"	"17"	"8.35"	"2.83"
##	"3.056"	"54"	"37.54"	"5.387"
##	"3.055"	"94"	"68.17"	"8.454"
##	"3.054"	"14"	"6.93"	"2.315"
##	"3.052"	"236"	"193.22"	"14.017"
##	"3.05"	"29"	"17.74"	"3.692"
##	"3.05"	"4"	"0.95"	"0.989"
##	"3.049"	"35"	"22.22"	"4.191"
##	"3.047"	"75"	"53.81"	"6.955"
##	"3.046"	"33"	"20.23"	"4.192"
##	"3.041"	"87"	"62.52"	"8.051"
##	"3.036"	"11"	"4.76"	"2.055"
	"3.033"		"41.17"	"6.867"
##	"3.033"	"62"	"41.17"	
##		"11"		"2.223"
##	"3.032"	"11"	"4.26"	"2.223"
##	"3.032"	"11"	"4.26"	"2.223"
##	"3.032"	"11"	"4.26"	"2.223"
##	"3.032"	"11"	"4.26"	"2.223"
##	"3.031"	"9"	"3.46"	"1.828"
##	"3.028"	"8"	"2.99"	"1.654"
##	"3.023"	"562"	"491.34"	"23.377"
##	"3.022"	"73"	"54.29"	"6.191"
##	"3.017"	"13"	"5.48"	"2.492"
##	"3.016"	"8"	"3.01"	"1.654"
##	"3.015"	"10"	"3.95"	"2.007"
##	"3.014"	"12"	"5.54"	"2.143"
##	"3.013"	"67"	"47.74"	"6.392"
##	"3.012"	"8"	"2.72"	"1.753"
##	"3.012"	"8"	"2.72"	"1.753"
##	"3.011"	"55"	"37.6"	"5.779"
##	"3.006"	"34"	"20.52"	"4.484"
##	"3.005"	"18"	"9.22"	"2.922"
##	"3.001"	"62"	"43.86"	"6.045"
##	"2.99"	"63"	"44.39"	"6.225"
##	"2.987"	"11"	"4.78"	"2.082"
##	"2.985"	"147"	"112.41"	"11.59"
##	"2.981"	"21"	"11.85"	"3.069"
##	"2.969"	"65"	"44.8"	"6.805"
##	"2.967"	"82"	"63.87"	"6.111"
##	"2.966"	"50"	"34.82"	"5.118"
##	"2.963"	"110"	"86.16"	"8.046"
##	"2.962"	"8"	"3.1"	"1.655"
##	"2.962"	"13"	"6.57"	"2.171"
##	"2.955"	"114"	"89.96"	"8.136"
##	"2.954"	"60"	"41.7"	"6.195"
##	"2.946"	"11"	"4.43"	"2.23"
##	"2.944"	"60"	"42.31"	"6.01"
##	"2.94"	"4"	"1.06"	"0.962"
##	"2.929"	"28"	"16.55"	"3.909"
	2.020	20	10.00	0.000

			"40 40"	" 4 070"
##	"2.928"	"31"	"18.49"	"4.272"
##	"2.927"	"41"	"26.8"	"4.851"
##	"2.919"	"23"	"12.67"	"3.539"
##	"2.918"	"90"	"66.11"	"8.186"
##	"2.907"	"13"	"5.85"	"2.459"
##	"2.907"	"37"	"24.45"	"4.317"
##	"2.901"	"18"	"8.97"	"3.112"
##	"2.894"	"108"	"79.73"	"9.77"
##	"2.892"	"60"	"42.81"	"5.944"
##	"2.886"	"179"	"149.19"	"10.33"
##	"2.886"	"23"	"12.58"	"3.61"
##	"2.883"	"8"	"2.77"	"1.814"
##	"2.88"	"4"	"1.12"	"0.935"
##	"2.875"	"81"	"62.07"	"6.585"
##	"2.872"	"51"	"35.48"	"5.404"
##	"2.869"	"32"	"19.06"	"4.51"
##	"2.867"	"114"	"87.41"	"9.275"
##	"2.865"	"320"	"278.88"	"14.352"
##	"2.865"	"116"	"88.86"	"9.472"
##	"2.865"	"27"	"15.63"	"3.969"
##	"2.863"	"10"	"3.67"	"2.211"
##	"2.854"	"192"	"153.92"	"13.341"
##	"2.848"	"18"	"9.9"	"2.844"
##	"2.842"	"13"	"6.48"	"2.294"
##	"2.842"	"422"	"369.35"	"18.529"
##	"2.84"	"39"	"25.73"	"4.673"
##	"2.835"	"11"	"4.99"	"2.12"
##	"2.835"	"11"	"4.99"	"2.12"
##	"2.826"	"36"	"23.25"	"4.511"
##	"2.823"	"225"	"188.77"	"12.835"
##	"2.821"	"92"	"70.51"	"7.618"
##	"2.819"	"20"	"11.39"	"3.055"
##	"2.81"	"15"	"7.42"	"2.697"
##	"2.808"	"118"	"92.33"	"9.141"
##	"2.805"	"168"	"133.96"	"12.135"
##	"2.804"	"36"	"22.74"	"4.728"
##	"2.802"	"12"	"5.55"	"2.302"
##	"2.8"	"132"	"105.7"	"9.394"
##	"2.8"	"4"	"1.2"	"0.91"
##	"2.795"	"12"	"5.15"	"2.451"
##	"2.79"	"10"	"4.29"	"2.046"
##	"2.788"	"12"	"6.01"	"2.149"
##	"2.787"	"10"	"4.41"	"2.006"
##	"2.78"	"4"	"1.22"	"0.917"
##	"2.778"	"194"	"161.17"	"11.819"
##	"2.772"	"28"	"17.42"	"3.817"
##	"2.77"	"3"	"0.23"	"0.489"
##	"2.767"	"10"	"4.35"	"2.042"
##	"2.765"	"22"	"12.29"	"3.511"
##	"2.764"	"5"	"1.4"	"1.303"
##	"2.764"	"92"	"71.07"	"7.572"
##	"2.761"	"24"	"14.29"	"3.517"
##	"2.759"	"61"	"43.76"	"6.249"
##	"2.754"	"120"	"95.35"	"8.951"
ππ	2.104	120	20.00	0.501

##	"2.753"	"62"	"44.34"	"6.415"
##	"2.753"	"77"	"56.34"	"7.505"
##	"2.75"	"3"	"0.25"	"0.5"
##	"2.75"	"55"	"38.34"	"6.057"
##	"2.744"	"23"	"13.59"	"3.429"
##	"2.742"	"19"	"10.5"	"3.099"
##	"2.741"	"10"	"4.47"	"2.017"
##	"2.739"	"17"	"8.85"	"2.976"
##	"2.738"	"67"	"46.69"	"7.418"
##	"2.738"	"11"	"5.07"	"2.166"
##	"2.733"	"7"	"3.02"	"1.456"
##	"2.731"	"8"	"3.07"	"1.805"
##	"2.721"	"9"	"3.85"	"1.893"
##	"2.721"	"11"	"4.86"	"2.256"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.719"	"20"	"10.66"	"3.435"
##	"2.708"	"22"	"12.97"	"3.335"
##	"2.708"	"84"	"65"	"7.015"
##	"2.704"	"39"	"26.56"	"4.6"
##	"2.702"	"128"	"103.21"	"9.174"
##	"2.702"	"6"	"2.29"	"1.373"
##	"2.702"	"6"	"2.29"	"1.373"
##	"2.7"	"4"	"1.3"	"0.937"
##	"2.7"	"39"	"24.67"	"5.307"
##	"2.7"	"3"	"0.3"	"0.482"
##	"2.694"	11.011	110 2011	"1.34"
##	2.094	"6"	"2.39"	"1.34"
##	"2.688"	"6" "241"	"2.39" "205.87"	"13.068"
##	"2.688"	"241"	"205.87"	"13.068"
##	"2.688" "2.688"	"241" "42"	"205.87" "28.96"	"13.068" "4.851"
## ## ##	"2.688" "2.688" "2.682"	"241" "42" "21"	"205.87" "28.96" "11.61"	"13.068" "4.851" "3.502"
## ## ##	"2.688" "2.688" "2.682" "2.677"	"241" "42" "21" "49"	"205.87" "28.96" "11.61" "34.43"	"13.068" "4.851" "3.502" "5.443"
## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.677"	"241" "42" "21" "49" "24"	"205.87" "28.96" "11.61" "34.43" "13.88"	"13.068" "4.851" "3.502" "5.443" "3.791"
## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67"	"241" "42" "21" "49" "24" "58"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972"
## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662"	"241" "42" "21" "49" "24" "58"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258"
## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658"	"241" "42" "21" "49" "24" "58" "5"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413"
## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658" "2.658"	"241" "42" "21" "49" "24" "58" "5" "33" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471"
## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658" "2.658"	"241" "42" "21" "49" "24" "58" "5" "33" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662" "2.658" "2.658" "2.658" "2.658"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658"	"241" "42" "49" "24" "58" "5" "33" "6" "6" "6" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658"	"241" "42" "49" "24" "58" "5" "33" "6" "6" "6" "6" "6" "13" "185"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "6.23"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658"	"241" "42" "49" "24" "58" "5" "33" "6" "6" "6" "6" "6"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "6.23" "151.78"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471" "1.471"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.647"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "6" "13" "185" "25" "27"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "1.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.554" "12.554" "12.532" "3.8" "3.674"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.651" "2.647" "2.646"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "6" "13" "185" "25"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "1.09"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.554" "12.554" "12.532" "3.8"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.647" "2.646" "2.644"	"241" "42" "49" "24" "58" "5" "33" "6" "6" "6" "6" "13" "185" "25" "27" "99" "17"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02" "8.71"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "2.554" "12.532" "3.8" "3.674" "8.314" "3.138"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.646" "2.644" "2.644"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "13" "185" "25" "27"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.554" "12.554" "12.532" "3.8" "3.674" "8.314" "3.138" "4.422"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.654" "2.644" "2.644" "2.642" "2.641"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "6" "13" "185" "25" "27" "99" "17" "36"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02" "8.71" "24.32" "14.08"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "2.554" "12.532" "3.8" "3.674" "8.314" "3.138"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.651" "2.647" "2.644" "2.642" "2.642" "2.639" "2.637"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "13" "185" "25" "27" "99" "17" "36" "22" "44"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02" "8.71" "24.32" "14.08" "29.52"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.554" "12.554" "12.532" "3.8" "3.674" "8.314" "3.138" "4.422" "3.001" "5.491"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.682" "2.677" "2.67" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.647" "2.644" "2.642" "2.642" "2.641" "2.639"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "6" "13" "185" "25" "27" "99" "17" "36" "22"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02" "8.71" "24.32" "14.08"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "1.471" "1.554" "12.554" "12.532" "3.8" "3.674" "8.314" "3.138" "4.422" "3.001"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.651" "2.651" "2.647" "2.646" "2.644" "2.642" "2.637" "2.637" "2.633"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "13" "185" "25" "27" "99" "17" "36" "22" "44" "44" "11"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "151.78" "14.94" "17.28" "77.02" "8.71" "24.32" "14.08" "29.52" "5.56"	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "2.554" "12.532" "3.8" "3.674" "8.314" "3.138" "4.422" "3.001" "5.491" "2.066"
## ## ## ## ## ## ## ## ## ## ## ## ##	"2.688" "2.688" "2.682" "2.677" "2.662" "2.662" "2.658" "2.658" "2.658" "2.658" "2.658" "2.651" "2.651" "2.647" "2.646" "2.644" "2.642" "2.639" "2.637"	"241" "42" "21" "49" "24" "58" "5" "33" "6" "6" "6" "13" "185" "25" "27" "99" "17" "36" "22" "44" "44"	"205.87" "28.96" "11.61" "34.43" "13.88" "42.1" "1.65" "21.27" "2.09" "2.09" "2.09" "2.09" "1.05" "1	"13.068" "4.851" "3.502" "5.443" "3.791" "5.972" "1.258" "4.413" "1.471" "1.471" "1.471" "1.471" "2.554" "12.532" "3.8" "3.674" "8.314" "3.138" "4.422" "3.001" "5.491"

##	"2.628"	"11"	"5.03"	"2.272"
##	"2.628"	"118"	"91.69"	"10.013"
##	"2.626"	"6"	"2.22"	"1.44"
##	"2.619"	"46"	"32.23"	"5.257"
##	"2.619"	"84"	"64.84"	"7.315"
##	"2.618"	"6"	"2.24"	"1.436"
##	"2.612"	"35"	"24.15"	"4.155"
##	"2.612"	"31"	"21.46"	"3.653"
##	"2.608"	"68"	"50.64"	"6.655"
##	"2.607"	"332"	"289.82"	"16.179"
##	"2.6"	"8"	"3"	"1.923"
##	"2.598"	"50"	"35.15"	"5.716"
##	"2.594"	"7"	"2.97"	"1.553"
##	"2.59"	"3"	"0.41"	"0.621"
##	"2.589"	"48"	"35.46"	"4.844"
##	"2.589"	"33"	"21.36"	"4.496"
##	"2.576"	"6"	"2.12"	"1.506"
##	"2.574"	"17"	"8.85"	"3.167"
##	"2.572"	"34"	"21.82"	"4.736"
##	"2.572"	"44"	"29.59"	"5.603"
##	"2.571"	"6"	"2.45"	"1.381"
##	"2.571"	"6"	"2.45"	"1.381"
##	"2.57"	"3"	"0.43"	"0.607"
##	"2.566"	"25"	"15.89"	"3.55"
##	"2.566"	"102"	"78.46"	"9.172"
##	"2.561"	"41"	"28.15"	"5.018"
##	"2.554"	"10"	"4.31"	"2.228"
##	"2.552"	"4"	"1.35"	"1.038"
##	"2.55"	"11"	"5.43"	"2.185"
##	"2.549"	"9"	"3.98"	"1.969"
##	"2.547"	"8"	"3.65"	"1.708"
##	"2.547"	"8"	"3.65"	"1.708"
##	"2.545"	"53"	"36.19"	"6.605"
##	"2.544"	"7"	"3.05"	"1.553"
##	"2.544"	"49"	"33.44"	"6.116"
##	"2.543"	"77"	"58.85"	"7.137"
##	"2.539"	"110"	"88.23"	"8.574"
##	"2.53"	"36"	"24.58"	"4.513"
##	"2.527"	"29"	"20.48"	"3.371"
##	"2.527"	"6"	"2"	"1.583"
##	"2.522"	"65"	"47.36"	"6.996"
##	"2.521"	"6"	"2.43"	"1.416"
##	"2.516"	"211"	"178.7"	"12.838"
##	"2.515"	"11"	"5.21"	"2.302"
##	"2.514"	"78"	"60.29"	"7.044"
##	"2.514"	"15"	"7.7"	"2.904"
##	"2.506"	"132"	"105.57"	"10.546"
##	"2.506"	"57"	"40.84"	"6.447"
##	"2.504"	"5"	"1.75"	"1.298"
##	"2.499"	"21"	"12.67"	"3.333"
##	"2.495"	"8"	"3.71"	"1.719"
##	"2.485"	"9"	"4.35"	"1.872"
##	"2.481"	"29"	"19.64"	"3.773"
##	"2.471"	"8"	"3.8"	"1.7"

##	"2.467"	"12"	"6.39"	"2.274"
##	"2.467"	"12"	"6.39"	"2.274"
##	"2.467"	"7"	"3.01"	"1.617"
##	"2.454"	"56"	"41.1"	"6.073"
##	"2.453"	"12"	"5.51"	"2.646"
##	"2.452"	"14"	"7.09"	"2.818"
##	"2.451"	"17"	"10.47"	"2.665"
##	"2.447"	"129"	"106.22"	"9.308"
##	"2.446"	"12"	"5.43"	"2.686"
##	"2.445"	"16"	"8.79"	"2.948"
##	"2.436"	"7"	"2.83"	"1.712"
##	"2.433"	"212"	"178.54"	"13.751"
##	"2.431"	"37"	"25.32"	"4.805"
##	"2.431"	"55"	"39.8"	"6.252"
##	"2.43"	"9"	"3.83"	"2.128"
##	"2.43"	"27"	"16.6"	"4.281"
##	"2.429"	"39"	"26.55"	"5.125"
##	"2.428"	"227"	"196.26"	"12.661"
##	"2.425"	"6"	"2.51"	"1.439"
##	"2.421"	"7"	"2.8"	"1.735"
##	"2.417"	"12"	"6.53"	"2.263"
##	"2.414"	"5"	"1.8"	"1.326"
##	"2.414"	"16"	"8.71"	"3.019"
##	"2.413"	"13"	"7.02"	"2.478"
##	"2.409"	"36"	"23.97"	"4.994"
##	"2.407"	"5"	"1.82"	"1.321"
##	"2.4"	"3"	"0.6"	"0.752"
##	"2.4"	"3"	"0.6"	"0.752"
##	"2.398"	"77"	"59.78"	"7.182"
##	"2.397"	"108"	"86.4"	"9.013"
##	"2.395"	"8"	"3.92"	"1.704"
##	"2.393"	"8"	"3.47"	"1.893"
##	"2.391"	"36"	"25.72"	"4.3"
##	"2.39"	"3"	"0.61"	"0.803"
##	"2.39"	"3"	"0.61"	"0.815"
##	"2.39"	"3"	"0.61"	"0.764"
##	"2.385"	"51"	"38.09"	"5.412"
##	"2.382"	"12"	"6.06"	"2.494"
##	"2.382"	"12"	"6.06"	"2.494"
##	"2.382"	"12"	"6.06"	"2.494"
##	"2.38"	"55"	"41.46"	"5.69"
##	"2.379"	"108"	"87.87"	"8.46"
##	"2.376"	"84"	"66.87"	"7.211"
##	"2.368"	"21"	"12.62"	"3.538"
##	"2.366"	"10"	"4.74"	"2.223"
##	"2.357"	"90"	"71.82"	"7.712"
##	"2.354"	"57"	"42.62"	"6.11"
##	"2.353"	"14"	"6.9"	"3.017"
##	"2.351"	"47"	"33.44"	"5.767"
##	"2.347"	"103"	"82.98"	"8.529"
##	"2.345"	"8"	"3.51"	"1.915"
##	"2.344"	"114"	"93.2"	"8.874"
##	"2.341"	"28"	"17.97"	"4.284"
##	"2.336"	"19"	"11.04"	"3.408"

#	#	"2.333"	"21"	"12.9"	"3.471"
#	#	"2.328"	"37"	"25.79"	"4.814"
#	#	"2.327"	"228"	"194.69"	"14.315"
#	#	"2.321"	"40"	"27.04"	"5.583"
#	#	"2.32"	"3"	"0.68"	"0.863"
#	#	"2.32"	"3"	"0.68"	"0.863"
#	#	"2.318"	"39"	"27.42"	"4.995"
#	#	"2.313"	"37"	"25.12"	"5.135"
#	#	"2.311"	"1358"	"1260.46"	"42.209"
#	#	"2.311"	"18"	"10.73"	"3.146"
#	#	"2.309"	"11"	"5.21"	"2.508"
#	#	"2.308"	"23"	"13.81"	"3.982"
#	#	"2.307"	"10"	"4.56"	"2.358"
#	#	"2.307"	"67"	"50.5"	"7.151"
#	#	"2.305"	"179"	"148.43"	"13.263"
#	#	"2.303"	"10"	"4.58"	"2.354"
#	#	"2.297"	"31"	"21.32"	"4.214"
#	#	"2.292"	"60"	"46.04"	"6.09"
#	#	"2.285"	"7"	"3.18"	"1.672"
#	#	"2.281"	"29"	"19.91"	"3.985"
#	#	"2.28"	"12"	"6.03"	"2.619"
#	#	"2.28"	"8"	"3.89"	"1.803"
#	#	"2.271"	"64"	"47.66"	"7.195"
#	#	"2.27"	"36"	"24.95"	"4.869"
#	#	"2.269"	"44"	"31.51"	"5.506"
#	#	"2.267"	"17"	"9.46"	"3.326"
#	#	"2.265"	"49"	"36.52"	"5.509"
#	#	"2.263"	"13"	"6.83"	"2.727"
#	#	"2.26"	"166"	"139.18"	"11.865"
#	#	"2.26"	"27"	"18"	"3.982"
#	#	"2.254"	"117"	"97.71"	"8.557"
#	#	"2.246"	"28"	"17.89"	"4.501"
#	#	"2.245"	"87"	"68.3"	"8.33"
#	#	"2.238"	"6"	"2.57"	"1.533"
#	#	"2.237"	"37"	"26.78"	"4.57"
#	#	"2.236"	"28"	"18.68"	"4.168"
#	#	"2.236"	"28"	"18.68"	"4.168"
#	#	"2.233"	"7"	"3.36"	"1.63"
#	#	"2.23"	"3"	"0.77"	"0.851"
#	#	"2.23"	"3"	"0.77"	"0.827"
#	#	"2.229"	"4"	"1.56"	"1.095"
#	#	"2.223"	"144"	"123.77"	"9.1"
#	#	"2.222"	"6"	"2.45"	"1.598"
#	#	"2.221"	"6"	"2.6"	"1.531"
#	#	"2.221"	"26"	"16.85"	"4.12"
#	#	"2.219"	"43"	"30.6"	"5.589"
#	#	"2.206"	"8"	"3.79"	"1.908"
#	#	"2.204"	"5"	"1.81"	"1.447"
#	#	"2.196"	"40"	"28.36"	"5.3"
#	#	"2.193"	"34"	"23.78"	"4.659"
#	#	"2.191"	"210"	"183.21"	"12.229"
#	#	"2.19"	"7"	"3.34"	"1.671"
#	#	"2.189"	"41"	"29.17"	"5.405"
#	#	"2.187"	"30"	"21.24"	"4.005"

##	"2.185"	"29"	"19.93"	"4.152"
##	"2.185"	"17"	"9.77"	"3.309"
##	"2.183"	"14"	"8.19"	"2.662"
##	"2.181"	"45"	"33"	"5.501"
##	"2.178"	"49"	"36.44"	"5.767"
##	"2.173"	"50"	"36.97"	"5.997"
##	"2.173"	"4"	"1.54"	"1.132"
##	"2.173"	"4"	"1.54"	"1.132"
##	"2.171"	"17"	"10.41"	"3.035"
##	"2.171"	"11"	"5.29"	"2.63"
##	"2.171"	"63"	"48.69"	"6.59"
##	"2.169"	"36"	"25.67"	"4.763"
	"2.169"			"7.067"
##		"65"	"49.67"	
##	"2.168"	"28"	"18.7"	"4.289"
##	"2.164"	"136"	"115.18"	"9.622"
##	"2.164"	"21"	"13.52"	"3.457"
##	"2.16"	"86"	"67.78"	"8.437"
##	"2.156"	"5"	"1.99"	"1.396"
##	"2.15"	"3"	"0.85"	"0.892"
##	"2.149"	"12"	"6.44"	"2.587"
##	"2.148"	"12"	"6.45"	"2.583"
##	"2.147"	"11"	"5.6"	"2.515"
##	"2.147"	"11"	"5.6"	"2.515"
##	"2.144"	"33"	"22.52"	"4.888"
##	"2.143"	"52"	"39.28"	"5.936"
##	"2.14"	"3"	"0.86"	"0.899"
##	"2.139"	"18"	"11.39"	"3.091"
##	"2.139"	"18"	"11.39"	"3.091"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.133"	"5"	"2.13"	"1.346"
##	"2.132"	"37"	"27.18"	"4.606"
##	"2.131"	"23"	"15.62"	"3.463"
##	"2.12"	"3"	"0.88"	"0.977"
##	"2.117"	"11"	"5.87"	"2.423"
##	"2.116"	"12"	"6.2"	"2.741"
##	"2.11"	"29"	"19.74"	"4.389"
##	"2.107"	"39"	"27.93"	"5.254"
##	"2.107"	"39"	"27.93"	"5.254"
##	"2.107"	"39"	"27.93"	"5.254"
##	"2.105"	"12"	"6.15"	"2.779"
##	"2.103"	"12"	"6.21"	"2.753"
##	"2.103"	"5"	"2.05"	"1.403"
##	"2.102"	"10"	"5.41"	"2.184"
##	"2.1"	"34"	"24.15"	"4.691"
##	"2.1"	"23"	"15.16"	"3.733"
##	"2.098"	"8"	"3.89"	"1.959"
##	"2.098"	"20"	"13.14"	"3.269"
##	"2.097"	"8"	"3.75"	"2.027"
##	"2.087"	"103"	"84.82"	"8.711"
##	"2.086"	"5"	"2.16"	"1.361"
##	"2.086"	"14"	"8.3"	"2.732"
##	"2.082"	"54"	"41.76"	"5.879"
п п	2.002	JŦ	41.10	0.013

			" 00"	
##	"2.08"	"3"	"0.92"	"0.961"
##	"2.08"	"3"	"0.92"	"0.961"
##	"2.08"	"3"	"0.92"	"0.961"
##	"2.075"	"34"	"23.22"	"5.194"
##	"2.072"	"20"	"13.24"	"3.263"
##	"2.07"	"3"	"0.93"	"0.998"
##	"2.07"	"3"	"0.93"	"0.844"
##	"2.069"	"67"	"53.78"	"6.389"
##	"2.068"	"10"	"5.67"	"2.094"
##	"2.066"	"10"	"4.9"	"2.468"
##	"2.066"	"25"	"16.17"	"4.274"
##	"2.065"	"27"	"18.94"	"3.902"
##	"2.059"	"5"	"1.96"	"1.477"
##	"2.056"	"5"	"2.31"	"1.308"
##	"2.056"	"41"	"29.62"	"5.536"
	"2.052"		"29.02"	"4.258"
##		"29"		
##	"2.047"	"12"	"6.64"	"2.619"
##	"2.046"	"12"	"6.59"	"2.644"
##	"2.035"	"6"	"2.91"	"1.518"
##	"2.035"	"13"	"7.76"	"2.575"
##	"2.034"	"6"	"2.81"	"1.568"
##	"2.033"	"9"	"4.79"	"2.071"
##	"2.033"	"7"	"3.49"	"1.726"
##	"2.03"	"60"	"47.47"	"6.173"
##	"2.029"	"52"	"40.1"	"5.866"
##	"2.028"	"7"	"3.19"	"1.879"
##	"2.028"	"10"	"5.56"	"2.19"
##	"2.026"	"46"	"34.78"	"5.539"
##	"2.024"	"5"	"2.04"	"1.463"
##	"2.018"	"63"	"48.55"	"7.161"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"30"	"21.28"	"4.325"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"14"	"7.56"	"3.195"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.015"	"15"	"9.2"	"2.878"
##	"2.015"	"19"	"12.21"	"3.37"
##	"2.012"	"28"	"19.6"	"4.175"
##	"2.01"	"34"	"24.32"	"4.816"
##	"2.007"	"59"	"45.44"	"6.757"
##	"2.004"	"32"	"22.69"	"4.646"
##	"2.003"	"13"	"7.4"	"2.796"
##	"2.003"	"10"	"5.63"	"2.182"
##	"2.001"	"26"	"17.9"	"4.049"
##	"2.001"	"73"	"59.21"	"6.892"
##	"1.998"	"41"	"29.72"	"5.644"
##	"1.993"	"8"	"4.16"	"1.927"
##	"1.993"	"4"	"1.54"	"1.234"
##	"1.993"	"4"	"1.54"	"1.234"
##	"1.993"	"4"	"1.54"	"1.234"
##	"1.993"	"9"	"4.51"	"2.259"
##	"1.985"	"14"	"4.51" "8.12"	"2.259"
##	"1.983"	"14"	"6.65"	"2.698"
##	1.983"	12"	0.00"	∠.098"

##	"1.977"	"8"	"4.29"	"1.876"
##	"1.973"	"66"	"53.41"	"6.38"
##	"1.973"	"52"	"40.31"	"5.925"
##	"1.971"	"1127"	"1064.13"	"31.904"
##	"1.968"	"52"	"40.52"	"5.834"
##	"1.966"	"39"	"28.49"	"5.346"
##	"1.965"	"40"	"30.87"	"4.646"
##	"1.958"	"22"	"15.31"	"3.416"
##	"1.956"	"6"	"2.83"	"1.621"
##	"1.956"	"6"	"2.83"	"1.621"
##	"1.955"	"443"	"404.12"	"19.89"
##	"1.955"	"231"	"206.29"	"12.641"
##	"1.951"	"10"	"5.08"	"2.521"
##	"1.95"	"12"	"6.7"	"2.717"
##	"1.945"	"31"	"21.99"	"4.633"
##	"1.944"	"39"	"29.36"	"4.959"
##	"1.943"	"15"	"9.42"	"2.872"
##	"1.94"	"2"	"0.06"	"0.239"
##	"1.939"	"128"	"108.14"	"10.245"
##	"1.938"	"11"	"6.62"	"2.26"
##	"1.937"	"9"	"5.08"	"2.023"
##	"1.937"	"12"	"7.22"	"2.468"
##	"1.932"	"19"	"12.86"	"3.178"
##	"1.93"	"2"	"0.07"	"0.256"
##	"1.92"	"3"	"1.08"	"0.981"
##	"1.92"	"3"	"1.08"	"0.981"
##	"1.92"	"3"	"1.08"	"0.895"
##	"1.914"	"25"	"17.82"	"3.751"
##	"1.912"	"6"	"3.07"	"1.533"
##	"1.912"	"118"	"99.6"	"9.621"
##	"1.912"	"6"	"3.07"	"1.533"
##	"1.912"	"6"	"3.07"	"1.533"
##	"1.91"	"2"	"0.09"	"0.288"
##	"1.906"	"23"	"16.05"	"3.647"
##	"1.902"	"39"	"29.82"	"4.827"
##	"1.899"	"23"	"16.06"	"3.654"
##	"1.897"	"8"	"4.46"	"1.866"
##	"1.895"	"10"	"5.79"	"2.222"
##	"1.895"	"7"	"3.57"	"1.81"
##	"1.892"	"4"	"1.63"	"1.253"
##	"1.892"	"27"	"19.68"	"3.869"
##	"1.886"	"39"	"29.23"	"5.181"
##	"1.884"	"6"	"3.05"	"1.566"
##	"1.88"	"8"	"4.36"	"1.936"
##	"1.879"	"3"	"1.08"	"1.022"
##	"1.879"	"3"	"1.08"	"1.022"
##	"1.879"	"20"	"13.14"	"3.652"
##	"1.879"	"18"	"11.78"	"3.311"
##	"1.877"	"194"	"171.02"	"12.243"
##	"1.877"	"39"	"29.01"	"5.323"
##	"1.875"	"11"	"6.66"	"2.315"
##	"1.874"	"12"	"7.06"	"2.635"
##	"1.873"	"62"	"48.2"	"7.369"
##	"1.871"	"66"	"52.55"	"7.189"

##	"1.868"	"20"	"12.73"	"3.892"
##	"1.866"	"146"	"125.5"	"10.988"
##	"1.86"	"2"	"0.14"	"0.377"
##	"1.859"	"9"	"5.25"	"2.017"
##	"1.858"	"11"	"6.19"	"2.589"
##	"1.858"	"5"	"2.26"	"1.474"
##	"1.855"	"31"	"21.83"	"4.942"
##	"1.854"	"30"	"21.56"	"4.551"
##	"1.853"	"60"	"48.27"	"6.329"
##	"1.852"	"27"	"19.07"	"4.281"
##	"1.85"	"2"	"0.15"	"0.359"
##	"1.85"	"3"	"1.15"	"0.978"
##	"1.849"	"60"	"47.58"	"6.718"
##	"1.848"	"8"	"4.5"	"1.894"
##	"1.847"	"11"	"6.59"	"2.387"
##	"1.846"	"9"	"5.11"	"2.108"
##	"1.846"	"164"	"143.77"	"10.957"
##	"1.835"	"11"	"6.58"	"2.409"
##	"1.834"	"53"	"40.7"	"6.707"
##	"1.83"	"54"	"42.05"	"6.529"
##	"1.828"	"12"	"6.75"	"2.872"
##	"1.826"	"45"	"34.11"	"5.963"
##	"1.825"	"8"	"4.38"	"1.984"
##	"1.823"	"17"	"11.26"	"3.148"
##	"1.816"	"60"	"47.75"	"6.744"
##	"1.814"	"49"	"38.2"	"5.953"
##	"1.812"	"13"	"8.03"	"2.743"
##	"1.807"	"5"	"2.33"	"1.477"
##	"1.804"	"13"	"7.9"	"2.827"
##	"1.8"	"3"	"1.16"	"1.022"
##	"1.8"	"7"	"3.64"	"1.867"
##	"1.799"	"8"	"4.78" "17.45"	"1.79"
##	"1.795" "1.792"	"24" "32"	"17.45"	"3.65" "4.425"
##	"1.792" "1.79"	"32" "11"	"6.64"	"4.425"
## ##	"1.79" "1.782"	"68"	"54.47"	"2.435" "7.591"
##	"1.78"	"223"	"200.87"	"12.435"
##	"1.778"	"33"	"24.52"	"4.77"
##	"1.775"	"75"	"63.43"	"6.518"
##	"1.774"	"11"	"6.66"	"2.446"
##	"1.773"	"11"	"6.77"	"2.386"
##	"1.772"	"72"	"60.26"	"6.624"
##	"1.767"	"13"	"8.24"	"2.694"
##	"1.766"	"76"	"62.36"	"7.726"
##	"1.763"	"3"	"1.12"	"1.066"
##	"1.76"	"24"	"16.91"	"4.028"
##	"1.759"	"75"	"61.4"	"7.732"
##	"1.75"	"2"	"0.25"	"0.479"
##	"1.749"	"36"	"26.37"	"5.506"
##	"1.748"	"5"	"2.45"	"1.459"
##	"1.747"	"17"	"11.25"	"3.292"
##	"1.746"	"26"	"18.31"	"4.403"
##	"1.74"	"34"	"25.85"	"4.683"
##	"1.736"	"857"	"808.64"	"27.858"

##	"1.734"	"14"	"8.52"	"3.161"
##	"1.731"	"41"	"30.75"	"5.923"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.73"	"2"	"0.27"	"0.529"
##	"1.728"	"252"	"226"	"15.049"
##	"1.725"	"8"	"4.78"	"1.867"
##	"1.725"	"8"	"4.78"	"1.867"
##	"1.725"	"8"	"4.78"	"1.867"
##	"1.725"	"8"	"4.78"	"1.867"
##	"1.724"	"9"	"5.31"	"2.14"
##	"1.724"	"57"	"45.91"	"6.432"
##	"1.722"	"15"	"9.92"	"2.95"
##	"1.72"	"2"	"0.28"	"0.514"
##	"1.72"	"2"	"0.28"	"0.514"
##	"1.72"	"2"	"0.28"	"0.514"
##	"1.718"	"14"	"9.02"	"2.899"
##	"1.716"	"89"	"74.59"	"8.399"
##	"1.713"	"7"	"3.85"	"1.839"
##	"1.71"	"2"	"0.29"	"0.591"
##	"1.706"	"14"	"8.82"	"3.036"
##	"1.701"	"4"	"1.87"	"1.253"
##	"1.701"	"4"	"1.87"	"1.253"
##	"1.701"	"4"	"1.87"	"1.253"
##	"1.699"	"4"	"1.8"	"1.295"
##	"1.697"	"19"	"13.74"	"3.1"
##	"1.697"	"46" "12"	"35.25"	"6.335"
##	"1.694" "1.694"	"12" "57"	"7.08" "45.22"	"2.905" "6.955"
##	"1.69"	"19"	"13.01"	"3.543"
## ##	"1.69"	"2"	"0.31"	"0.581"
##	"1.689"	"37"	"28.21"	"5.205"
##	"1.687"	"7"	"4.05"	"1.749"
##	"1.686"	"12"	"7.17"	"2.864"
##	"1.682"	"11"	"6.62"	"2.605"
##	"1.679"	"42"	"33.26"	"5.204"
##	"1.676"	"14"	"9.49"	"2.691"
##	"1.67"	"5"	"2.41"	"1.551"
##	"1.662"	"6"	"3.06"	"1.769"
##	"1.661"	"97"	"83.15"	"8.339"
##	"1.66"	"14"	"9.29"	"2.837"
##	"1.66"	"2"	"0.34"	"0.536"
##	"1.66"	"2"	"0.34"	"0.623"
##	"1.658"	"20"	"13.66"	"3.825"
##	"1.656"	"4"	"1.75"	"1.359"
##	"1.655"	"8"	"4.89"	"1.88"
""	1.000	J	4.03	1.00

##	"1.65"	"2"	"0.35"	"0.609"
##	"1.647"	"32"	"23.96"	"4.88"
##	"1.646"	"31"	"23.73"	"4.417"
##	"1.646"	"3"	"1.28"	"1.045"
##	"1.645"	"31"	"23.12"	"4.789"
##	"1.645"	"37"	"28.75"	"5.014"
##	"1.641"	"22"	"15.43"	"4.003"
##	"1.641"	"555"	"513.85"	"25.078"
##	"1.64"	"137"	"120.71"	"9.931"
##	"1.64"	"2"	"0.36"	"0.644"
##	"1.637"	"27"	"19.61"	"4.515"
##	"1.637"	"67"	"55.48"	"7.037"
##	"1.636"	"27"	"20.16"	"4.182"
##	"1.63"	"2"	"0.37"	"0.58"
##	"1.63"	"2"	"0.37"	"0.58"
##	"1.625"	"20"	"13.99"	"3.7"
##	"1.624"	"236"	"210.87"	"15.473"
##	"1.621"	"17"	"11.84"	"3.184"
##	"1.621"	"3"	"1.2"	"1.11"
##	"1.621"	"3"	"1.2"	"1.11"
##	"1.62"	"30"	"22.66"	"4.531"
##	"1.618"	"15"	"9.94"	"3.126"
##	"1.614"	"11"	"7.06"	"2.44"
##	"1.612"	"6"	"2.99"	"1.867"
##	"1.61"	"2"	"0.39"	"0.618"
##	"1.609"	"44"	"34.32"	"6.015"
##	"1.608"	"6"	"3.13"	"1.785"
##	"1.608"	"39"	"30.71"	"5.155"
##	"1.607"	"13"	"8.13"	"3.031"
##	"1.606"	"236"	"211.6"	"15.191"
##	"1.6"	"8"	"4.46"	"2.213"
##	"1.6"	"2"	"0.4"	"0.711"
##	"1.6"	"7"	"4.03"	"1.856"
##	"1.598"	"59"	"49.06"	"6.22"
##	"1.597"	"180"	"159.5"	"12.833"
##	"1.596"	"122"	"105.03"	"10.63"
##	"1.596"	"5"	"2.72"	"1.429"
##	"1.596"	"3"	"1.21"	"1.122"
##	"1.589"	"11"	"6.83"	"2.625"
##	"1.586"	"30"	"22.87"	"4.496"
##	"1.584"	"8"	"4.65"	"2.115"
##	"1.581"	"471"	"438.23"	"20.732"
##	"1.568"	"15"	"10.01"	"3.183"
##	"1.566"	"12"	"7.66"	"2.771"
##	"1.556"	"70"	"59.31"	"6.869"
##	"1.556"	"10"	"6.25"	"2.409"
##	"1.554"	"45"	"36.04"	"5.765"
##	"1.552"	"54"	"44.55"	"6.089"
##	"1.552"	"13"	"8.46"	"2.925"
##	"1.552"	"5"	"2.54"	"1.585"
##	"1.552"	"167"	"149.56"	"11.24"
##	"1.552"	"13"	"8.46"	"2.925"
##	"1.551"	"18"	"12.58"	"3.494"
##	"1.55"	"10"	"5.97"	"2.599"

##	"1.55"	"10"	"5.97"	"2.599"
##	"1.546"	"59"	"49.06"	"6.429"
##	"1.546"	"21"	"15.02"	"3.869"
##	"1.546"	"11"	"7.18"	"2.472"
##	"1.546"	"12"	"7.61"	"2.839"
##	"1.537"	"28"	"21"	"4.555"
##	"1.532"	"45"	"35.87"	"5.961"
##	"1.531"	"152"	"135.8"	"10.584"
##	"1.53"	"2"	"0.47"	"0.731"
##	"1.53"	"2"	"0.47"	"0.731"
##	"1.53"	"2"	"0.47"	"0.758"
##	"1.53"	"2"	"0.47"	"0.688"
##	"1.527"	"80"	"68.31"	"7.656"
##	"1.526"	"3"	"1.31"	"1.107"
##	"1.523"	"15"	"9.98"	"3.297"
##	"1.519"	"64"	"53.4"	"6.978"
##	"1.516"	"6"	"3.43"	"1.695"
##	"1.515"	"44"	"34.69"	"6.144"
##	"1.513"	"19"	"13.81"	"3.431"
##	"1.51"	"2"	"0.49"	"0.659"
##	"1.504"	"3"	"1.33"	"1.111"
##	"1.504"	"92"	"79.3"	"8.442"
##	"1.503"	"68"	"56.68"	"7.53"
##	"1.5"	"4"	"1.93"	"1.38"
##	"1.496"	"20"	"14.14"	"3.916"
##	"1.494"	"326"	"303.29"	"15.2"
##	"1.493"	"47"	"38.47"	"5.713"
##	"1.492"	"73"	"61.49"	"7.713"
##	"1.491"	"18"	"13"	"3.354"
##	"1.49"	"115"	"100.51"	"9.726"
##	"1.489"	"21"	"15.9"	"3.425"
##	"1.487"	"12"	"7.59"	"2.965"
##	"1.481"	"6"	"3.61"	"1.614"
## ##	"1.48"	"80"	"66.13"	"9.373"
			"4.04"	"2.005"
## ##	"1.477" "1.476"	"7" "3"	"1.48"	"1.03"
			"16.87"	"4.158"
##	"1.474"	"23"		"1.691"
##	"1.473" "1.467"	"5"	"2.51" "36.04"	"5.425"
##	"1.467"	"44"		"7.017"
##		"68"	"57.71"	
##	"1.458"	"61"	"50.79"	"7.001"
##	"1.454"	"27"	"20.42"	"4.524"
##	"1.452"	"7"	"4.1"	"1.997"
##	114 45411	11.011	"0 00"	114 04711
	"1.451"	"6"	"3.32"	"1.847"
##	"1.437"	"5"	"2.6"	"1.67"
##	"1.437" "1.435"	"5" "3"	"2.6" "1.32"	"1.67" "1.171"
## ##	"1.437" "1.435" "1.435"	"5" "3" "16"	"2.6" "1.32" "11.54"	"1.67" "1.171" "3.109"
## ## ##	"1.437" "1.435" "1.435" "1.434"	"5" "3" "16" "23"	"2.6" "1.32" "11.54" "16.89"	"1.67" "1.171" "3.109" "4.261"
## ## ##	"1.437" "1.435" "1.435" "1.434" "1.433"	"5" "3" "16" "23" "7"	"2.6" "1.32" "11.54" "16.89" "4.25"	"1.67" "1.171" "3.109" "4.261" "1.919"
## ## ## ##	"1.437" "1.435" "1.435" "1.434" "1.433" "1.427"	"5" "3" "16" "23" "7" "20"	"2.6" "1.32" "11.54" "16.89" "4.25" "14.49"	"1.67" "1.171" "3.109" "4.261" "1.919" "3.863"
## ## ## ## ##	"1.437" "1.435" "1.435" "1.434" "1.433" "1.427" "1.424"	"5" "3" "16" "23" "7" "20" "18"	"2.6" "1.32" "11.54" "16.89" "4.25" "14.49" "12.96"	"1.67" "1.171" "3.109" "4.261" "1.919" "3.863" "3.539"
## ## ## ## ## ##	"1.437" "1.435" "1.435" "1.434" "1.427" "1.424" "1.423"	"5" "3" "16" "23" "7" "20" "18" "67"	"2.6" "1.32" "11.54" "16.89" "4.25" "14.49" "12.96" "57.27"	"1.67" "1.171" "3.109" "4.261" "1.919" "3.863" "3.539" "6.837"
## ## ## ## ##	"1.437" "1.435" "1.435" "1.434" "1.433" "1.427" "1.424"	"5" "3" "16" "23" "7" "20" "18"	"2.6" "1.32" "11.54" "16.89" "4.25" "14.49" "12.96"	"1.67" "1.171" "3.109" "4.261" "1.919" "3.863" "3.539"

##	"1.421"	"13"	"8.89"	"2.892"
##	"1.416"	"12"	"7.94"	"2.867"
##	"1.413"	"14"	"9.54"	"3.157"
##	"1.401"	"16"	"10.63"	"3.834"
##	"1.401"	"8"	"4.42"	"2.555"
##	"1.4"	"2"	"0.6"	"0.711"
##	"1.397"	"75"	"65.11"	"7.078"
##	"1.395"	"18"	"13.32"	"3.354"
##	"1.393"	"11"	"7.54"	"2.484"
##	"1.392"	"37"	"29.83"	"5.152"
##	"1.392"	"52"	"43.06"	"6.424"
##	"1.391"	"25"	"18.67"	"4.551"
##	"1.39"	"2"	"0.61"	"0.751"
##	"1.39"	"2"	"0.61"	"0.815"
##	"1.389"	"14"	"9.74"	"3.067"
##	"1.388"	"32"	"25"	"5.043"
##	"1.388"	"8"	"4.83"	"2.283"
##	"1.383"	"27"	"21.45"	"4.014"
##	"1.383"	"34"	"26.97"	"5.082"
##	"1.38"	"2"	"0.62"	"0.776"
##	"1.379"	"26"	"20.68"	"3.858"
##	"1.377"	"41"	"32.95"	"5.845"
##	"1.372"	"4"	"2.17"	"1.334"
##	"1.372"	"4"	"2.17"	"1.334"
##	"1.37"	"12"	"8.45"	"2.591"
##	"1.369"	"14"	"9.66"	"3.169"
##	"1.365"	"12"	"8.03"	"2.908"
##	"1.362"	"338"	"308.86"	"21.395"
##	"1.36"	"2"	"0.64"	"0.785"
##	"1.357"	"387"	"362.47"	"18.076"
##	"1.356"	"38"	"30.59"	"5.466"
##	"1.354"	"12"	"8"	"2.954"
##	"1.353"	"55"	"46.3"	"6.43"
##	"1.35"	"2"	"0.65"	"0.821"
##	"1.349"	"14"	"9.44"	"3.379"
##	"1.345"	"66"	"54.95"	"8.215"
##	"1.345"	"100"	"88.3"	"8.7"
##	"1.345"	"6"	"3.44"	"1.903"
##	"1.342"	"62"	"53.05"	"6.667"
##	"1.341"	"5"	"2.77"	"1.663"
##	"1.34"	"2"	"0.66"	"0.781"
		_		
##	"1.34"	"2"	"0.66"	"0.742"
## ##	"1.34"		"0.66" "0.66"	"0.807"
		"2" "2" "2"		"0.807" "0.742"
##	"1.34" "1.34" "1.337"	"2" "2"	"0.66"	"0.807"
## ##	"1.34" "1.34" "1.337" "1.33"	"2" "2" "17" "2"	"0.66" "0.66"	"0.807" "0.742" "3.306" "0.792"
## ## ##	"1.34" "1.34" "1.337" "1.33" "1.33"	"2" "2" "17" "2" "38"	"0.66" "0.66" "12.58" "0.67" "30.87"	"0.807" "0.742" "3.306" "0.792" "5.361"
## ## ##	"1.34" "1.34" "1.337" "1.33" "1.33" "1.326"	"2" "2" "17" "2"	"0.66" "0.66" "12.58" "0.67"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299"
## ## ## ##	"1.34" "1.34" "1.337" "1.33" "1.33" "1.326" "1.324"	"2" "2" "17" "2" "38"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12"	"0.807" "0.742" "3.306" "0.792" "5.361"
## ## ## ## ##	"1.34" "1.34" "1.337" "1.33" "1.326" "1.324" "1.32"	"2" "2" "17" "2" "38" "74"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299" "5.198" "1.439"
## ## ## ## ##	"1.34" "1.34" "1.337" "1.33" "1.326" "1.324" "1.32" "1.32"	"2" "2" "17" "2" "38" "74" "35" "4"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12" "2.1" "6.82"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299" "5.198" "1.439" "2.409"
## ## ## ## ## ##	"1.34" "1.34" "1.33" "1.33" "1.326" "1.324" "1.32" "1.32" "1.319"	"2" "2" "17" "2" "38" "74" "35" "4" "10" "7"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12" "2.1" "6.82" "4.53"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299" "5.198" "1.439" "2.409" "1.872"
## ## ## ## ## ## ##	"1.34" "1.34" "1.33" "1.33" "1.326" "1.324" "1.32" "1.32" "1.32" "1.319" "1.318"	"2" "2" "17" "2" "38" "74" "35" "4"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12" "2.1" "6.82"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299" "5.198" "1.439" "2.409" "1.872" "1.222"
## ## ## ## ## ## ## ## ## ## ##	"1.34" "1.34" "1.33" "1.33" "1.326" "1.324" "1.32" "1.32" "1.319"	"2" "2" "17" "2" "38" "74" "35" "4" "10" "7"	"0.66" "0.66" "12.58" "0.67" "30.87" "64.32" "28.12" "2.1" "6.82" "4.53"	"0.807" "0.742" "3.306" "0.792" "5.361" "7.299" "5.198" "1.439" "2.409" "1.872"

""	114 04711	110411	1140 0011	
##	"1.317"	"24"	"18.33"	"4.304"
##	"1.315"	"24"	"18.09"	"4.495"
##	"1.311"	"79"	"68.35"	"8.126"
##	"1.311"	"62"	"52.26"	"7.43"
##	"1.31"	"2"	"0.69"	"0.787"
##	"1.31"	"2"	"0.69"	"0.929"
##	"1.306"	"20"	"14.97"	"3.852"
##	"1.305"	"17"	"12.58"	"3.388"
##	"1.304"	"10"	"6.82"	"2.439"
##	"1.302"	"86"	"74.78"	"8.621"
##	"1.301"	"44"	"36.76"	"5.565"
##	"1.3"	"9"	"5.9"	"2.385"
##	"1.296"	"33"	"26.59"	"4.944"
##	"1.294"	"8"	"5.11"	"2.233"
##	"1.29"	"23"	"17.27"	"4.442"
##	"1.29"	"2"	"0.71"	"0.832"
##	"1.288"	"6"	"3.67"	"1.809"
##	"1.287"	"4"	"2.17"	"1.422"
##	"1.286"	"10"	"6.6"	"2.644"
		"11"		"2.551"
##	"1.286" "1.286"		"7.72"	
##		"7"	"4.47"	"1.967"
##	"1.281"	"66"	"57.31"	"6.785"
##	"1.28"	"2"	"0.72"	"0.911"
##	"1.279"	"81"	"69.9"	"8.678"
##	"1.279"	"11"	"7.57"	"2.683"
##	"1.277"	"9"	"6.2"	"2.193"
##	"1.274"	"11"	"7.75"	"2.552"
##	"1.274"	"11"	"7.64"	"2.638"
##	"1.274"	"3"	"1.42"	"1.241"
##	"1.272"	"26"	"20.6"	"4.245"
##	"1.27"	"2"	"0.73"	"0.839"
##	"1.27"	"27"	"21.41"	"4.402"
##	"1.264"	"80"	"71.04"	"7.088"
##	"1.259"	"55"	"46.61"	"6.667"
##	"1.254"	"3"	"1.56"	"1.149"
##	"1.254"	"3"	"1.56"	"1.149"
##	"1.254"	"3"	"1.56"	"1.149"
##	"1.251"	"97"	"86.86"	"8.103"
##	"1.249"	"18"	"13.46"	"3.636"
##	"1.245"	"7"	"4.16"	"2.282"
##	"1.245"	"6"	"3.72"	"1.832"
##	"1.245"	"7"	"4.16"	"2.282"
##	"1.244"	"31"	"24.82"	"4.967"
##	"1.243"	"75"	"65.86"	"7.354"
##	"1.242"	"10"	"6.67"	"2.682"
##	"1.241"	"24"	"18.63"	"4.327"
##	"1.24"	"2"	"0.76"	"0.955"
##	"1.24"	"2"	"0.76"	"0.878"
##	"1.24"	"16"	"11.88"	"3.322"
##	"1.24"	"2"	"0.76"	"0.866"
##	"1.24"	"2"	"0.76"	"0.866"
##	"1.235"	_ "74"	"64.45"	"7.735"
##	"1.23"	"2"	"0.77"	"0.863"
##	"1.228"	"3"	"1.58"	"1.156"
		-		

	114 00411		"00 07"	UE 44EU
##	"1.224"	"37"	"30.37"	"5.415"
##	"1.224"	"4"	"2.27"	"1.413"
##	"1.224"	"4"	"2.27"	"1.413"
##	"1.224"	"124"	"110.65"	"10.907"
##	"1.221"	"10"	"7.13"	"2.351"
##	"1.22"	"2"	"0.78"	"0.871"
##	"1.218"	"40"	"33.15"	"5.625"
##	"1.218"	"8"	"5.42"	"2.119"
##	"1.216"	"20"	"15.34"	"3.833"
##	"1.214"	"8"	"5.07"	"2.413"
##	"1.211"	"26"	"20.21"	"4.781"
##	"1.21"	"2"	"0.79"	"0.891"
##	"1.207"	"28"	"22.27"	"4.746"
##	"1.206"	"22"	"17.47"	"3.756"
##	"1.204"	"10"	"6.87"	"2.6"
##	"1.204"	"23"	"17.68"	"4.417"
##	"1.203"	"8"	"5.45"	"2.12"
##	"1.201"	"43"	"35.32"	"6.393"
##	"1.199"	"8"	"5.43"	"2.143"
##	"1.197"	"6"	"3.88"	"1.771"
##	"1.197"	"21"	"16.29"	"3.935"
##	"1.195"	"165"	"152.18"	"10.727"
##	"1.194"	"5"	"3"	"1.676"
##	"1.194"	"19"	"14.24"	"3.988"
##	"1.193"	"23"	"18.71"	"3.597"
##	"1.19"	"2"	"0.81"	"0.861"
##	"1.188"	"11"	"7.74"	"2.744"
##	"1.188"	"154"	"141.12"	"10.843"
##	"1.186"	"9"	"5.77"	"2.722"
##	"1.186"	"12"	"8.64"	"2.834"
##	"1.185"	"291"	"272.68"	"15.463"
##	"1.184"	"16"	"12.19"	"3.218"
##	"1.184"	"16"	"12.19"	"3.218"
##	"1.184"	"16"	"12.19"	"3.218"
##	"1.184"	"16"	"12.19"	"3.218"
##	"1.184"	"41"	"34.68"	"5.337"
##	"1.182"	"19"	"14.83"	"3.528"
##	"1.18"	"12"	"8.76"	"2.746"
##	"1.179"	"34"	"26.83"	"6.082"
##	"1.17"	"2"	"0.83"	"0.877"
##	"1.17"	"3"	"1.61"	"1.188"
##	"1.169"	"17"	"12.93"	"3.482"
##	"1.168"	"22"	"17.05"	"4.236"
##	"1.167"	"8"	"5.17"	"2.425"
##	"1.167"	"12"	"8.51"	"2.99"
##	"1.166"	"10"	"7.3"	"2.316"
##	"1.164"	"136"	"123.45"	"10.786"
##	"1.163"	"6"	"3.89"	"1.814"
##	"1.162"	"53"	"45.83"	"6.173"
##	"1.158"	"27"	"21.95"	"4.361"
##	"1.157"	"21"	"16.6"	"3.803"
##	"1.157"	"4"	"2.39"	"1.392"
##	"1.156"	"130"	"116.61"	"11.582"
##	"1.155"	"16"	"12.07"	"3.403"
mm .	1.135	10	12.01	3.403

##	"1.154"	"29"	"23.54"	"4.73"
##	"1.148"	"40"	"33.08"	"6.026"
##	"1.143"	"13"	"9.7"	"2.887"
##	"1.143"	"24"	"19.1"	"4.289"
##	"1.14"	"2"	"0.86"	"0.995"
##	"1.139"	"113"	"102.84"	"8.924"
##	"1.136"	"31"	"25.76"	"4.615"
##	"1.135"	"107"	"96.43"	"9.314"
##	"1.133"	"10"	"6.98"	"2.667"
##	"1.131"	"24"	"18.78"	"4.614"
##	"1.131"	"13"	"9.47"	"3.122"
##	"1.129"	"32"	"25.84"	"5.455"
##	"1.128"	"101"	"90.4"	"9.399"
##	"1.124"	"35"	"29.2"	"5.162"
##	"1.122"	"6"	"3.69"	"2.058"
##	"1.122"	"6"	"3.81"	"1.952"
##	"1.118"	"29"	"23.65"	"4.787"
##	"1.115"	"5"	"3.05"	"1.749"
##	"1.109"	"3"	"1.66"	"1.208"
##	"1.108"	"20"	"15.78"	"3.807"
##	"1.1"	"2"	"0.9"	"0.859"
##	"1.1"	"2"	"0.9"	"0.859"
##	"1.094"	"46"	"39.48"	"5.959"
##	"1.094"	"18"	"13.98"	"3.676"
##	"1.093"	"93"	"83.07"	"9.082"
##	"1.091"	"5"	"2.97"	"1.861"
##	"1.089"	"16"	"12.02"	"3.654"
##	"1.087"	"3"	"1.65"	"1.242"
##	"1.087"	"3"	"1.65"	"1.242"
##	"1.087"	"30"	"24.69"	"4.886"
##	"1.087"	"7"	"4.53"	"2.272"
##	"1.087"	"3"	"1.65"	"1.242"
##	"1.087"	"8"	"5.66"	"2.152"
##	"1.086"	"13"	"9.64"	"3.093"
##	"1.085"	"4"	"2.47"	"1.41"
##	"1.085"	"82"	"72.41"	"8.84"
##	"1.085"	"4"	"2.47"	"1.41"
##	"1.085"	"4"	"2.47"	"1.41"
##	"1.085"	"4"	"2.47"	"1.41"
##	"1.081"	"10"	"6.71"	"3.043"
##	"1.076"	"41"	"34.6"	"5.949"
##	"1.076"	"9"	"6.14"	"2.659"
##	"1.074"	"4"	"2.47"	"1.425"
##	"1.068"	"21"	"16.78"	"3.951"
##	"1.066"	"30"	"24.54"	"5.124"
##	"1.066"	"7"	"4.63"	"2.223"
##	"1.065"	"64"	"55.84"	"7.663"
##	"1.062"	"113"	"103.34"	"9.098"
##	"1.062"	"67"	"58.79"	"7.728"
##	"1.061"	"35"	"29.67"	"5.023"
##	"1.056"	"116"	"106.28"	"9.204"
##	"1.054"	"15"	"11.28"	"3.528"
##	"1.05"	"2"	"0.95"	"0.833"
##	"1.05"	"2"	"0.95"	"0.892"

##	"1.05"	"2"	"0.95"	"0.833"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.049"	"7"	"4.77"	"2.127"
##	"1.049"	"321"	"302.52"	"17.623"
##	"1.049"	"20"	"16.34"	"3.488"
##	"1.047"	"55"	"47.8"	"6.878"
##	"1.045"	"8"	"5.49"	"2.402"
##	"1.041"	"29"	"24.08"	"4.724"
##	"1.037"	"2"	"0.92"	"1.041"
##	"1.035"	"15"	"11.41"	"3.47"
##	"1.034"	"13"	"9.85"	"3.046"
##	"1.03"	"2"	"0.97"	"0.958"
##	"1.029"	"11"	"8.3"	"2.623"
##	"1.027"	"15"	"11.53"	"3.38"
##	"1.027"	"15"	"11.53"	"3.38"
##	"1.023"	"7"	"4.58"	"2.366"
##	"1.022"	"54"	"47.71"	"6.152"
##	"1.017"	"20"	"15.8"	"4.129"
##	"1.016"	"67"	"59.21"	"7.666"
##	"1.015"	"9"	"6.34"	"2.622"
##	"1.011"	"5"	"3.25"	"1.731"
##	"1.008"	"50"	"43.75"	"6.203"
##	"1.007"	"21"	"17.34"	"3.635"
##	"1.005"	"41"	"35"	"5.968"
##	"1.005"	"23"	"18.95"	"4.031"
##	"1.003"	"64"	"57.19"	"6.792"
##	"1.003"	"7"	"4.84"	"2.154"
##	"1"	"13"	"9.91"	"3.092"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"1"	"3"	"1.74"	"1.26"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"0.997"	"39"	"32.97"	"6.046"
##	"0.991"	"8"	"5.77"	"2.251"
##	"0.99"	"1"	"0.01"	"0.1"
##	"0.99"	"2"	"1.01"	"0.959"
##	"0.99"	"1"	"0.01"	"0.1"
##	"0.982"	"9"	"6.5"	"2.545"
##	"0.982"	"76"	"68.01"	"8.14"
##	"0.981"	"13"	"10.22"	"2.834"
##	"0.98"	"1"	"0.02"	"0.141"
##	"0.98"	"1"	"0.02"	"0.141"
##	"0.98"	"75"	"67.73"	"7.419"
##	"0.979"	"6"	"4.17"	"1.87"
##	"0.977"	"2"	"0.98"	"1.044"
##	"0.975"	"11"	"8.22"	"2.852"
##	"0.974"	"28"	"24.09"	"4.013"
##	"0.973"	"13"	"10.19"	"2.887"
##	"0.973"	"13"	"10.19"	"2.887"
##	"0.97"	"2"	"1.03"	"0.958"
	0.01	_	1.00	0.000

##	"0.97"	"1"	"0.03"	"0.223"
##	"0.97"	"2"	"1.03"	"0.958"
			"32.66"	"5.549"
##	"0.962"	"38"		
##	"0.96"	"1"	"0.04"	"0.197"
##	"0.96"	"2"	"1.04"	"0.898"
##	"0.956"	"2"	"0.97"	"1.077"
##	"0.953"	"4"	"2.43"	"1.647"
##	"0.952"	"6"	"3.95"	"2.153"
##	"0.951"	"5"	"3.4"	"1.682"
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.945"	"4"	"2.46"	"1.629"
##	"0.945"	"25"	"21.18"	"4.044"
##	"0.942"	"23"	"19.45"	"3.767"
##	"0.942"	"99"	"89.69"	"9.886"
##	"0.94"	"1"	"0.06"	"0.239"
##	"0.94"	"2"	"1.06"	"0.952"
##	"0.94"	"1"	"0.06"	"0.239"
##	"0.938"	"15"	"12.16"	"3.028"
##	"0.935"	"5"	"3.39"	"1.723"
##	"0.932"	"65"	"58.41"	"7.073"
##	"0.931"	"4"	"2.64"	"1.46"
##	"0.93"	"1"	"0.07"	"0.256"
##	"0.93"	"1"	"0.07"	"0.256"
##	"0.93"	"1"	"0.07"	"0.293"
##	"0.929"	"45"	"39.3"	"6.132"
##	"0.928"	"3"	"1.78"	"1.315"
##	"0.928"	"3"	"1.78"	"1.315"
##	"0.928"	"3"	"1.78"	"1.315"
##	"0.926"	"15"	"12.04"	"3.197"
##	"0.925"	"3"	"1.75"	"1.351"
##	"0.924"	"2"	"1.05"	"1.029"
##	"0.923"	"8"	"5.88"	"2.297"
##	"0.921"	"3"	"1.8"	"1.303"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.92"	"88"	"80.33"	"8.336"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.919"	"2"	"1.06"	"1.023"
##	"0.919"	"2"	"1.06"	"1.023"
##	"0.917"	"6"	"4.19"	"1.973"
##	"0.917"	"13"	"10.24"	"3.009"
##	"0.916"	"3"	"1.8"	"1.31"
##	"0.911"	"12"	"9.37"	"2.887"
##	"0.911"	"47"	"41.17"	"6.396"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
пп	0.01	1	0.03	0.200

##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
				"0.288"
##	"0.91"	"1"	"0.09"	
##	"0.908"	"4"	"2.65"	"1.486"
##	"0.904"	"49"	"43.28"	"6.325"
##	"0.904"	"21"	"17.63"	"3.727"
##	"0.904"	"21"	"17.63"	"3.727"
##	"0.902"	"67"	"60.42"	"7.295"
##	"0.9"	"1"	"0.1"	"0.333"
##	"0.9"	"23"	"19.16"	"4.268"
##	"0.899"	"1104"	"1072.1"	"35.478"
##	"0.897"	"3"	"1.74"	"1.404"
##	"0.893"	"28"	"24.21"	"4.246"
##	"0.893"	"22"	"17.9"	"4.591"
##	"0.892"	"19"	"15.74"	"3.656"
##	"0.891"	"10"	"7.85"	"2.414"
##	"0.89"	"1"	"0.11"	"0.314"
##	"0.89"	"1"	"0.11"	"0.345"
##	"0.89"	"1"	"0.11"	"0.373"
##	"0.89"	"2"	"1.11"	"0.952"
##	"0.89"	"1"	"0.11"	"0.314"
##	"0.889"	"8"	"6.07"	"2.171"
##	"0.885"	"24"	"20.18"	"4.317"
##	"0.884"	"165"	"154.82"	"11.52"
##	"0.882"	"21"	"18.03"	"3.368"
##	"0.881"	"49"	"42.88"	"6.946"
##	"0.88"	"1"	"0.12"	"0.327"
##	"0.88"	"1"	"0.12"	"0.327"
##	"0.88"	"1"	"0.12"	"0.356"
##	"0.88"	"1"	"0.12"	"0.327"
##	"0.88"	"7"	"4.85"	"2.443"
##	"0.879"	"6"	"4.21"	"2.037"
##	"0.874"	"30"	"26.21"	"4.338"
##	"0.873"	"55"	"49.47"	"6.335"
##	"0.873"	"21"	"17.71"	"3.769"
##	"0.872"	"4"	"2.57"	"1.641"
##	"0.87"	"77"	"69.73"	"8.352"
##	"0.87"	"7"	"5.12"	"2.162"
##	"0.87"	"1"	"0.13"	"0.338"
##	"0.864"	"215"	"202.42"	"14.562"
##	"0.864"	"70"	"63.73"	"7.253"
##	"0.863"	"73"	"66.05"	"8.055"
##	"0.861"	"2"	"1.11"	"1.034"
##	"0.86"	"1"	"0.14"	"0.377"
##	"0.859"	"3"	"1.87"	"1.315"
##	"0.858"	"8"	"5.92"	"2.423"
##	"0.855"	"15"	"12.01"	"3.497"
##	"0.853"	"58"	"51.8"	"7.267"
##	"0.852"	"29"	"25.4"	"4.224"
##	"0.852"	"2"	"1.13"	"1.022"
##	"0.851"	"18"	"14.88"	"3.666"
##	"0.85"	"1"	"0.15"	"0.359"
##	"0.85"	"1"	"0.15"	"0.359"
	0.00	-	0.10	0.000

##	"0.849"	"59"	"52.14"	"8.082"
##	"0.846"	"16"	"12.86"	"3.712"
##	"0.843"	"69"	"63.2"	"6.883"
##	"0.842"	"80"	"73.81"	"7.355"
##	"0.841"	"7"	"5.13"	"2.223"
##	"0.841"	"58"	"52.03"	"7.096"
##	"0.84"	"36"	"31.55"	"5.298"
##	"0.84"	"17"	"14"	"3.573"
##	"0.84"	"1"	"0.16"	"0.443"
##	"0.84"	"1"	"0.16"	"0.395"
##	"0.838"	"9"	"6.95"	"2.447"
##	"0.838"	"15"	"12.05"	"3.52"
##	"0.836"	"13"	"10.31"	"3.218"
##	"0.836"	"57"	"52.06"	"5.912"
##	"0.836"	"21"	"18.01"	"3.577"
##	"0.832"	"25"	"21.18"	"4.589"
##	"0.83"	"1"	"0.17"	"0.428"
##	"0.829"	"22"	"18.92"	"3.716"
##	"0.823"	"8"	"6.08"	"2.334"
##	"0.823"	"8"	"6.08"	"2.334"
##	"0.821"	"30"	"26.22"	"4.607"
##	"0.82"	"1"	"0.18"	"0.458"
##	"0.82"	"1"	"0.18"	"0.411"
##	"0.818"	"12"	"9.55"	"2.996"
##	"0.817"	"143"	"134.91"	"9.903"
##	"0.816"	"22"	"18.66"	"4.093"
##	"0.816"	"17"	"14.01"	"3.664"
##	"0.816"	"151"	"141.95"	"11.091"
##	"0.81"	"1"	"0.19"	"0.443"
##	"0.81"	"45"	"40.01"	"6.16"
##	"0.81"	"5"	"3.76"	"1.532"
##	"0.81"	"21"	"17.68"	"4.097"
##	"0.807"	"35"	"30.55"	"5.515"
##	"0.806"	"14"	"11.06"	"3.648"
##	"0.806"	"14"	"11.06"	"3.648"
##	"0.805"	"3"	"1.94"	"1.317"
##	"0.805"	"3"	"1.94"	"1.317"
##	"0.805"	"3"	"1.94"	"1.317"
##	"0.802"	"12"	"9.39"	"3.256"
##	"0.802"	"28"	"24.56"	"4.291"
##	"0.801"	"19"	"15.94"	"3.819"
##	"0.8"	"2"	"1.2"	"0.888"
##	"0.8"	"1"	"0.2"	"0.426"
##	"0.791"	"33"	"28.62"	"5.537"
##	"0.79"	"40"	"35.23"	"6.04"
##	"0.79"	"1"	"0.21"	"0.456"
##	"0.79"	"1"	"0.21"	"0.433"
##	"0.788"	"13"	"10.44"	"3.248"
##	"0.785"	"78"	"71.53"	"8.242"
##	"0.782"	"5"	"3.68"	"1.687"
##	"0.78"	"1"	"0.22"	"0.484"
##	"0.78"	"69"	"63.13"	"7.527"
##	"0.78"	"1"	"0.22"	"0.504"
##	"0.78"	"1"	"0.22"	"0.484"

##	"0.78"	"1"	"0.22"	"0.484"
##	"0.778"	"2"	"1.16"	"1.08"
##	"0.778"	"99"	"92.22"	"8.716"
##	"0.777"	"42"	"37.57"	"5.7"
##	"0.775"	"150"	"140.72"	"11.972"
##	"0.775"	"33"	"28.82"	"5.391"
##	"0.775"	"28"	"24.23"	"4.866"
##	"0.771"	"3"	"1.93"	"1.387"
##	"0.77"	"1"	"0.23"	"0.468"
##	"0.769"	"10"	"7.95"	"2.664"
##	"0.767"	"20"	"16.39"	"4.705"
##	"0.764"	"5"	"3.4"	"2.094"
##	"0.762"	"34"	"29.73"	"5.606"
##	"0.761"	"15"	"12.34"	"3.497"
##	"0.76"	"1"	"0.24"	"0.515"
##	"0.757"	"3"	"1.98"	"1.348"
##	"0.757"	"3"	"2.02"	"1.295"
##	"0.755"	"2"	"1.13"	"1.152"
##	"0.755"	"2"	"1.13"	"1.152"
##	"0.755"	"2"	"1.13"	"1.152"
##	"0.753"	"337"	"320.09"	"22.46"
##	"0.75"	"6"	"4.38"	"2.159"
##	"0.75"	"2"	"1.19"	"1.08"
##	"0.749"	"31"	"27.28"	"4.967"
##	"0.748"	"4"	"2.83"	"1.564"
##	"0.748"	"23"	"19.83"	"4.238"
##	"0.747"	"7"	"5.34"	"2.221"
##	"0.747"	"3"	"1.88"	"1.499"
##	"0.742"	"37"	"32.74"	"5.743"
##	"0.74"	"1"	"0.26"	"0.579"
##	"0.74"	"1"	"0.26"	"0.463"
##	"0.74"	"1"	"0.26"	"0.505"
##	"0.74"	"2"	"1.26"	"0.991"
##	"0.74"	"14"	"11.48"	"3.407"
##	"0.739"	"10"	"7.92"	"2.813"
##	"0.734"	"2"	"1.21"	"1.076"
##	"0.733"	"12"	"9.93"	"2.822"
##	"0.731"	"27"	"23.48"	"4.813"
##	"0.73"	"2"	"1.22"	"1.069"
##	"0.73"	"1"	"0.27"	"0.529"
##	"0.73"	"1"	"0.27"	"0.584"
##	"0.73"	"1"	"0.27"	"0.529"
##	"0.73"	"1"	"0.27"	"0.51"
##	"0.729"	"23"	"19.8"	"4.392"
##	"0.729"	"23"	"19.89"	"4.266"
##	"0.724"	"14"	"11.16"	"3.92"
##	"0.724"	"3"	"2.02"	"1.356"
##	"0.723"	"3"	"2.02"	"1.356"
##	"0.721"	"3"	"1.96"	"1.442"
##	"0.72"	"44"	"39.45"	"6.319"
##	"0.72"	"44"	"39.45"	"1.528"
##	"0.72" "0.719"	"4"	"2.9"	"1.528"
##	"0.719"	"4" "15"	"12.32"	"3.747"
##	"0.715"	"15"	"7.34"	"2.323"
##	0.714"	3"	1.34"	2.323"

шш	II 710II	"0"	U4 4 E U	114 4001
##	"0.713"	"2"	"1.15"	"1.192"
##	"0.71"	"1"	"0.29"	"0.556"
##	"0.706"	"23"	"19.88"	"4.418"
##	"0.705"	"4"	"2.76"	"1.759"
##	"0.704"	"2"	"1.26"	"1.05"
##	"0.702"	"36"	"32.11"	"5.538"
##	"0.702"	"5"	"3.66"	"1.908"
##	"0.701"	"12"	"9.75"	"3.211"
##	"0.7"	"41"	"36.79"	"6.012"
##	"0.7"	"1"	"0.3"	"0.595"
##	"0.7"	"3"	"2.02"	"1.4"
##	"0.7"	"12"	"9.86"	"3.055"
##	"0.7"	"1"	"0.3"	"0.56"
##	"0.699"	"9"	"7.21"	"2.56"
##	"0.697"	"5"	"3.74"	"1.807"
##	"0.696"	"31"	"27.23"	"5.418"
##	"0.694"	"13"	"10.73"	"3.272"
##	"0.694"	"75"	"69.53"	"7.88"
##	"0.692"	"186"	"177.21"	"12.695"
##	"0.69"	"293"	"281.69"	"16.397"
##	"0.69"	"2"	"1.31"	"0.907"
##	"0.69"	"1"	"0.31"	"0.581"
##	"0.685"	"12"	"9.85"	"3.138"
##	"0.684"	"2"	"1.29"	"1.038"
##	"0.683"	"20"	"17.28"	"3.982"
##	"0.683"	"56"	"51.52"	"6.557"
##	"0.681"	"2"	"1.27"	"1.072"
##	"0.68"	"1"	"0.32"	"0.53"
##	"0.679"	"56"	"51.04"	"7.307"
##	"0.678"	"2"	"1.29"	"1.047"
##	"0.677"	"20"	"17.58"	"3.577"
		"29"	"25.46"	
##	"0.676" "0.676"		"2.8"	"5.237" "1.775"
##		"4"		
##	"0.676"	"6"	"4.58"	"2.099"
##	"0.676"	"61"	"56.46"	"6.72"
##	"0.676"	"6"	"4.58"	"2.099"
##	"0.674"	"5"	"3.52"	"2.195"
##	"0.673"	"10"	"7.94"	"3.061"
##	"0.669"	"14"	"11.68"	"3.467"
##	"0.669"	"9"	"7.32"	"2.51"
##	"0.667"	"30"	"26.8"	"4.801"
##	"0.665"	"185"	"175.38"	"14.457"
##	"0.664"	"28"	"24.78"	"4.846"
##	"0.663"	"2"	"1.26"	"1.116"
##	"0.662"	"3"	"2.08"	"1.39"
##	"0.66"	"14"	"12"	"3.032"
##	"0.66"	"3"	"2.11"	"1.348"
##	"0.659"	"8"	"6.3"	"2.58"
##	"0.658"	"2"	"1.27"	"1.109"
##	"0.658"	"61"	"55.88"	"7.78"
##	"0.656"	"15"	"12.61"	"3.646"
##	"0.655"	"4"	"2.95"	"1.604"
##	"0.655"	"4"	"2.93"	"1.635"
##	"0.655"	"4"	"2.95"	"1.604"

шш	110 CE 411	11.4.11	UO 07U	114 7071
##	"0.654"	"4"	"2.87"	"1.727"
##	"0.653"	"2"	"1.22"	"1.194"
##	"0.652"	"3"	"2.08"	"1.412"
##	"0.65"	"4"	"2.93"	"1.647"
##	"0.65"	"1"	"0.35"	"0.592"
##	"0.649"	"16"	"13.48"	"3.883"
##	"0.646"	"9"	"7.29"	"2.649"
##	"0.642"	"5"	"3.86"	"1.775"
##	"0.64"	"1"	"0.36"	"0.612"
##	"0.64"	"1"	"0.36"	"0.612"
##	"0.64"	"1"	"0.36"	"0.659"
##	"0.64"	"1"	"0.36"	"0.56"
##	"0.64"	"1"	"0.36"	"0.659"
##	"0.64"	"1"	"0.36"	"0.542"
##	"0.64"	"1"	"0.36"	"0.659"
##	"0.637"	"18"	"15.67"	"3.657"
##	"0.636"	"30"	"26.84"	"4.968"
##	"0.629"	"13"	"10.93"	"3.288"
##	"0.629"	"11"	"8.95"	"3.261"
##	"0.628"	"76"	"70.78"	"8.308"
##	"0.625"	"2"	"1.34"	"1.056"
##	"0.621"	"20"	"17.5"	"4.026"
##	"0.62"	"60"	"55.75"	"6.853"
##	"0.62"	"1"	"0.38"	"0.616"
##	"0.62"	"1"	"0.38"	"0.678"
##	"0.62"	"1"	"0.38"	"0.565"
##	"0.62"	"1"	"0.38"	"0.616"
##	"0.62"	"1"	"0.38"	"0.678"
##	"0.62"	"1"	"0.38"	"0.632"
##	"0.62"	"1"	"0.38"	"0.616"
##	"0.62"	"15"	"12.83"	"3.499"
##	"0.62"	"1"	"0.38"	"0.565"
##	"0.617"	"19"	"16.81"	"3.55"
##	"0.616"	"127"	"120.42"	"10.682"
##	"0.616"	"3"	"2.15"	"1.381"
##	"0.614"	"12"	"9.94"	"3.354"
##	"0.611"	"27"	"23.97"	"4.959"
##	"0.61"	"1"	"0.39"	"0.618"
##	"0.61"	"1"	"0.39"	"0.567"
##	"0.61"	"1"	"0.39"	"0.567"
##	"0.61"	"1"	"0.39"	"0.618"
##	"0.61"	"1"	"0.39"	"0.53"
##	"0.609"	"5"	"3.84"	"1.905"
##	"0.608"	"11"	"9.23"	"2.912"
##	"0.607"	"282"	"268.39"	"22.415"
##	"0.6"	"1"	"0.4"	"0.636"
##	"0.597"	"13"	"11.08"	"3.215"
##	"0.594"	"65"	"60.33"	"7.861"
##	"0.591"	"19"	"16.7"	"3.894"
##	"0.59"	"1"	"0.41"	"0.637"
##	"0.59"	"1"	"0.41"	"0.637"
##	"0.588"	"14"	"12.02"	"3.366"
##	"0.586"	"20"	"17.6"	"4.097"
##	"0.584"	"2"	"1.34"	"1.13"

##	"0.583"	"5"	"3.91"	"1.87"
##	"0.58"	"1"	"0.42"	"0.638"
##	"0.58"	"1"	"0.42"	"0.622"
		_		
##	"0.58"	"1"	"0.42"	"0.638"
##	"0.58"	"1"	"0.42"	"0.638"
##	"0.58"	"1"	"0.42"	"0.638"
##	"0.58"	"1"	"0.42"	"0.638"
##	"0.58"	"1"	"0.42"	"0.606"
##	"0.579"	"14"	"12.05"	"3.371"
##	"0.577"	"276"	"263.13"	"22.314"
##	"0.577"	"3"	"2.15"	"1.473"
##	"0.577"	"3"	"2.15"	"1.473"
##	"0.577"	"3"	"2.15"	"1.473"
##	"0.577"	"3"	"2.15"	"1.473"
##	"0.575"	"3"	"2.16"	"1.461"
##	"0.574"	"57"	"52.99"	"6.987"
##	"0.572"	"4"	"3.13"	"1.522"
##	"0.572"	"19"	"17.01"	"3.477"
##	"0.568"	"42"	"38.54"	"6.093"
##	"0.567"	"2"	"1.33"	"1.181"
##	"0.56"	"1"	"0.44"	"0.756"
##	"0.555"	"3"	"2.13"	"1.568"
##	"0.555"	"3"	"2.2"	"1.443"
##	"0.555"	"3"	"2.2"	"1.443"
##	"0.552"	"2"	"1.33"	"1.215"
##	"0.552"	"29"	"26.48"	"4.563"
##	"0.551"	"38"	"34.97"	"5.495"
##	"0.55"	"2"	"1.45"	"0.968"
##	"0.55"	"16"	"13.91"	"3.801"
##	"0.55"	"1"	"0.45"	"0.609"
##	"0.55"	"98"	"93.22"	"8.691"
##	"0.547"	"14"	"12.05"	"3.566"
##	"0.547"	"49"	"45.29"	"6.787"
##	"0.547"	"14"	"12.05"	"3.566"
##	"0.544"	"12"	"10.33"	"3.072"
##	"0.543"	"26"	"23.4"	"4.784"
##	"0.542"	"12"	"10.27"	"3.194"
##	"0.54"	"1"	"0.46"	"0.626"
##	"0.54"	"1"	"0.46"	"0.642"
##	"0.54"	"1"	"0.46"	"0.642"
##	"0.539"	"136"	"129.79"	"11.53"
##	"0.537"	"21"	"18.89"	"3.931"
##	"0.535"	"30"	"27.31"	"5.033"
##	"0.534"	"44"	"40.78"	"6.026"
##	"0.531"	"5"	"3.92"	"2.033"
##	"0.531"	"2"	"1.37"	"1.186"
##	"0.53"	"1"	"0.47"	"0.674"
##	"0.53"	"1"	"0.47"	"0.745"
##	"0.53"	"1"	"0.47"	"0.745"
##	"0.53"	"1"	"0.47"	"0.745"
##	"0.53"	"1"	"0.47"	"0.674"
##	"0.53"	"1"	"0.47"	"0.674"
##	"0.528"	"36"	"33.49"	"4.754"
##	"0.527"	"3"	"2.21"	"1.499"
		-		

##	"0.524"	"46"	"42.79"	"6.122"
##	"0.524"	"6"	"4.9"	"2.101"
##	"0.523"	"35"	"32.02"	"5.694"
##	"0.522"	"7"	"5.75"	"2.393"
##	"0.52"	"1"	"0.48"	"0.689"
##	"0.52"	"96"	"91.59"	"8.473"
##	"0.52"	"1"	"0.48"	"0.703"
##	"0.517"	"57"	"53.41"	"6.947"
##	"0.516"	"68"	"64.15"	"7.468"
##	"0.513"	"6"	"4.8"	"2.34"
##	"0.513"	"6"	"4.8"	"2.34"
##	"0.51"	"11"	"9.48"	"2.98"
##	"0.51"	"1"	"0.49"	"0.659"
##	"0.51"	"1"	"0.49"	"0.595"
##	"0.51"	"1"	"0.49"	"0.689"
##	"0.51"	"1"	"0.49"	"0.659"
##	"0.51"	"1"	"0.49"	"0.595"
##	"0.51"	"30"	"27.29"	"5.309"
##	"0.51"	"1"	"0.49"	"0.689"
##	"0.51"	"1"	"0.49"	"0.628"
##	"0.51"	"1"	"0.49"	"0.628"
##	"0.508"	"10"	"8.63"	"2.699"
##	"0.508"	"2"	"1.4"	"1.181"
##	"0.508"	"11"	"9.59"	"2.775"
##	"0.506"	"36"	"33.05"	"5.826"
##	"0.506"	"2"	"1.45"	"1.086"
##	"0.506"	"30"	"27.61"	"4.722"
##	"0.505"	"62"	"58.37"	"7.194"
##	"0.505"	"60"	"56.44"	"7.046"
##	"0.505"	"2"	"1.42"	"1.148"
##	"0.503"	"54"	"50.37"	"7.218"
##	"0.5"	"1"	"0.5"	"0.611"
##	"0.5"	"1"	"0.5"	"0.718"
##	"0.5"	"1"	"0.5"	"0.718"
##	"0.5"	"1"	"0.5"	"0.718"
##	"0.5"	"1"	"0.5"	"0.718"
##		"2"	"1.38"	"1.245"
##	"0.498"	"38"	"35.34"	"5.339"
##	"0.493"	"25"	"22.65"	"4.77"
##	"0.491"	"25"	"22.32"	"5.453"
##	"0.491"	"40"	"37.22"	"5.658"
##	"0.491"	"25"	"22.8"	"4.477"
##	"0.49"	"9"	"7.66"	"2.735"
##	"0.49"	"1"	"0.51"	"0.745"
##	"0.49"	"9"	"7.66"	"2.735"
##	"0.49"	"1"	"0.51"	"0.835"
##	"0.488"	"4"	"3.15"	"1.743"
##	"0.487"	"5"	"3.15"	"2.115"
##	"0.487"	"5"	"3.97"	"2.115"
##	"0.487"	"29"	"3.97"	"4.963"
	"0.486"	"29"	"26.59"	"5.273"
## ##	"0.484" "0.481"	"28"	"25.45"	"5.273"
	"0.481"	"14"	"7.68"	"2.745"
##			"7.68" "90.49"	"9.388"
##	"0.48"	"95"	"90.49"	"9.388"

##	"0.48"	"1"	"0.52"	"0.759"
##	"0.48"	"1"	"0.52"	"0.759"
##	"0.48"	"1"	"0.52"	"0.759"
##	"0.48"	"125"	"119.92" "0.52"	"10.574"
##	"0.48"	"1"		"0.785"
##	"0.48"	"1"	"0.52"	"0.759"
##	"0.479"	"33"	"30.29"	"5.656"
##	"0.476"	"129"	"123.42"	"11.72"
##	"0.476"	"6"	"5.07"	"1.955"
##	"0.473"	"5"	"4.1"	"1.904"
##	"0.473"	"29"	"26.71"	"4.842"
##	"0.472"	"6"	"4.96"	"2.202"
##	"0.472"	"24"	"21.82"	"4.615"
##	"0.471"	"23"	"20.9"	"4.457"
##	"0.47"	"46"	"42.9"	"6.597"
##	"0.47"	"246"	"238.61"	"15.709"
##	"0.47"	"37"	"34.29"	"5.767"
##	"0.47"	"1"	"0.53"	"0.771"
##	"0.47"	"1"	"0.53"	"0.745"
##	"0.468"	"30"	"27.47"	"5.408"
##	"0.468"	"4"	"3.11"	"1.901"
##	"0.468"	"4"	"3.11"	"1.901"
##	"0.467"	"102"	"97.58"	"9.469"
##	"0.467"	"3"	"2.23"	"1.651"
##	"0.466"	"11"	"9.57"	"3.069"
##	"0.466"	"4"	"3.22"	"1.673"
##	"0.466"	"46"	"43.09"	"6.251"
##	"0.466"	"91"	"86.96"	"8.661"
##	"0.466"	"4"	"3.22"	"1.673"
##	"0.465"	"19"	"17.15"	"3.981"
##	"0.463"	"3"	"2.2"	"1.729"
##	"0.463"	"3"	"2.2"	"1.729"
##	"0.462"	"4"	"3.28"	"1.558"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.809"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.46"	"1"	"0.54"	"0.702"
##	"0.458"	"4"	"3.21"	"1.725"
##	"0.457"	"11"	"9.76"	"2.716"
##	"0.456"	"11"	"9.51"	"3.271"
##	"0.453"	"34"	"31.67"	"5.141"
##	"0.453"	"178"	"172.18"	"12.856"
##	"0.451"	"2"	"1.47"	"1.176"
##	"0.451"	"308"	"299.19"	"19.514"
##	"0.45"	"1"	"0.55"	"0.73"
##	"0.45"	"1"	"0.55"	"0.702"
##	"0.45"	"1"	"0.55"	"0.702"
	0.10	-	0.00	0.102

##	"0.45"	"1"	"0.55"	"0.702"
##	"0.45"	"1"	"0.55"	"0.702"
##	"0.45"	"1"	"0.55"	"0.702"
##	"0.449"	"66"	"62.45"	"7.913"
##	"0.446"	"8"	"6.85"	"2.576"
##	"0.445"	"52"	"49.01"	"6.717"
##	"0.442"	"2"	"1.48"	"1.176"
##	"0.441"	"20"	"18.16"	"4.172"
##	"0.441"	"11"	"9.72"	"2.899"
##	"0.44"	"1"	"0.56"	"0.756"
##	"0.44"	"1"	"0.56"	"0.701"
##	"0.436"	"11"	"9.73"	"2.912"
##	"0.435"	"7"	"5.88"	"2.575"
##	"0.435"	"8"	"6.89"	"2.55"
##	"0.435"	"9"	"7.92"	"2.485"
##	"0.435"	"2"	"1.54"	"1.058"
##	"0.434"	"34"	"31.48"	"5.801"
##	"0.433"	"16"	"14.23"	"4.092"
##	"0.433"	"15"	"13.36"	"3.783"
##	"0.432"	"4"	"3.24"	"1.759"
##	"0.43"	"1"	"0.57"	"0.685"
##	"0.427"	"3"	"2.33"	"1.57"
##	"0.426"	"21"	"19.15"	"4.345"
##	"0.426"	"8"	"6.9"	"2.584"
##	"0.426"	"5"	"4.13"	"2.043"
##	"0.425"	"38"	"35.36"	"6.209"
##	"0.425"	"2"	"1.53"	"1.105"
##	"0.421"	"5"	"4.21"	"1.876"
##	"0.42"	"1"	"0.58"	"0.727"
##	"0.419"	"6"	"5.17"	"1.98"
##	"0.416"	"39"	"36.53"	"5.943"
##	"0.416"	"47"	"44.36"	"6.343"
##	"0.415"	"25"	"22.93"	"4.985"
##	"0.412"	"82"	"79.05"	"7.165"
##	"0.41"	"32"	"29.88"	"5.166"
##	"0.41"	"1"	"0.59"	"0.805"
##	"0.41"	"2"	"1.48"	"1.267"
##	"0.41"	"1"	"0.59"	"0.698"
##	"0.409"	"3"	"2.39"	"1.49"
##	"0.407"	"4"	"3.25"	"1.844"
##	"0.406"	"17"	"15.57"	"3.52"
##	"0.404"	"4"	"3.24"	"1.881"
##	"0.404"	"30"	"27.89"	"5.216"
##	"0.403"	"8"	"6.96"	"2.578"
##	"0.4"	"1"	"0.6"	"0.725"
##	"0.4"	"1"	"0.6"	"0.725"
##	"0.399"	"5"	"4.19"	"2.029"
##	"0.398"	"9"	"7.95"	"2.638"
##	"0.396"	"13"	"11.67"	"3.361"
##	"0.395"	"12"	"10.7"	"3.295"
##	"0.395"	"8"	"6.96"	"2.636"
##	"0.392"	"14"	"12.69"	"3.341"
##	"0.39"	"1"	"0.61"	"0.665"
##	"0.39"	"1"	"0.61"	"0.665"
	0.00	-	0.01	0.000

##	"0.388"	"6"	"5.19"	"2.087"
##	"0.384"	"8"	"7.02"	"2.55"
##	"0.382"	"18"	"16.39"	"4.214"
##	"0.38"	"1"	"0.62"	"0.789"
##	"0.38"	"1"	"0.62"	"0.789"
##	"0.38"	"1"	"0.62"	"0.736"
##	"0.38"	"4"	"3.34"	"1.736"
##	"0.38"	"44"	"41.66"	"6.15"
##	"0.38"	"50"	"47.8"	"5.791"
##	"0.38"	"1"	"0.62"	"0.814"
##	"0.377"	"66"	"63.51"	"6.607"
##	"0.377"	"3"	"2.38"	"1.644"
##	"0.376"	"2"	"1.53"	"1.251"
##	"0.374"	"25"	"23.22"	"4.762"
##	"0.37"	"1"	"0.63"	"0.72"
##	"0.37"	"1"	"0.63"	"0.761"
##	"0.37"	"13"	"11.8"	"3.244"
##	"0.37"	"1"	"0.63"	"0.761"
##	"0.37"	"1"	"0.63"	"0.72"
##	"0.37"	"57"	"54.41"	"7.002"
##	"0.37"	"1"	"0.63"	"0.787"
##	"0.37"	"1"	"0.63"	"0.72"
##	"0.367"	"3"	"2.43"	"1.552"
##	"0.364"	"12"	"10.79"	"3.322"
##	"0.364"	"29"	"27.28"	"4.731"
##	"0.363"	"35"	"32.96"	"5.619"
##	"0.361"	"9"	"7.98"	"2.825"
##	"0.36"	"7"	"6.05"	"2.638"
##	"0.359"	"31"	"29.13"	"5.202"
##	"0.358"	"2"	"1.59"	"1.147"
##	"0.355"	"55"	"52.58"	"6.824"
##	"0.352"	"30"	"28.17"	"5.199"
##	"0.352"	"129"	"125.18"	"10.837"
##	"0.351"	"2"	"1.5"	"1.425"
##	"0.35"	"1"	"0.65"	"0.716"
##	"0.35"	"1"	"0.65"	"0.716"
##	"0.35"	"1"	"0.65"	"0.716"
##	"0.35"	"1"	"0.65"	"0.716"
##	"0.35"	"1"	"0.65"	"0.716"
##	"0.35"	"1"	"0.65"	"0.73"
##	"0.349"	"19"	"17.63"	"3.93"
##	"0.348"	"3"	"2.42"	"1.665"
##	"0.347"	"3"	"2.5"	"1.439"
##	"0.344"	"3"	"2.49"	"1.48"
##	"0.343"	"16"	"14.72"	"3.736"
##	"0.343"	"7"	"6.17"	"2.421"
##	"0.342"	"23"	"21.45"	"4.531"
##	"0.341"	"3"	"2.4"	"1.758"
##	"0.341"	"12"	"10.93"	"3.137"
##	"0.341"	"4"	"3.43"	"1.671"
##	"0.34"	"1"	"0.66"	"0.768"
##	"0.34"	"1"	"0.66"	"0.901"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"1"	"0.66"	"0.714"
		_		

шш	110 0411	11.4.11	110 0011	110 71411
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.34"	"9"	"7.96"	"3.055"
##	"0.34"	"1"	"0.66"	"0.714"
##	"0.338"	"2"	"1.61"	"1.154"
##	"0.338"	"2"	"1.61"	"1.154"
##	"0.333"	"7"	"6.14"	"2.586"
##	"0.332"	"6"	"5.28"	"2.17"
##	"0.331"	"56"	"53.42"	"7.806"
##	"0.33"	"1"	"0.67"	"0.792"
##	"0.329"	"4"	"3.43"	"1.731"
##	"0.325"	"7"	"6.13"	"2.677"
##	"0.321"	"23"	"21.77"	"3.827"
##	"0.32"	"1"	"0.68"	"0.723"
##	"0.32"	"1"	"0.68"	"0.803"
##	"0.32"	"1"	"0.68"	"0.723"
##	"0.32"	"1"	"0.68"	"0.75"
##	"0.318"	"2"	"1.64"	"1.133"
##	"0.315"	"3"	"2.51"	"1.554"
##	"0.315"	"34"	"32.2"	"5.707"
	"0.315"	"4"	"3.43"	"1.81"
##	"0.312"		"6.31"	"2.214"
##	"0.312"	"7"	"6.31"	"2.214"
##	"0.312"	"7" "1"	"0.69"	"0.761"
##	"0.31"	"1"	"0.69"	"0.813"
##			"10.95"	
##	"0.31"	"12" "2"	"10.95"	"3.386"
##	"0.305" "0.301"	"2"		"1.31" "1.13"
##			"1.66"	
##	"0.3"	"1"	"0.7"	"0.893" "2.912"
##	"0.299"	"9"	"8.13"	
##	"0.297"	"37"	"35.32"	"5.657"
##	"0.297"	"36"	"34.24"	"5.922"
##	"0.296"	"28"	"26.61"	"4.692"
##	"0.294"	"25"	"23.6"	"4.765"
##	"0.293"	"5"	"4.41"	"2.016"
##	"0.29"	"1"	"0.71"	"0.856"
##	"0.29"	"8"	"7.23"	"2.659"
##	"0.29"	"1"	"0.71"	"0.844"
##	"0.289"	"36"	"34.36"	"5.67"
##	"0.288"	"19"	"17.79"	"4.203"
##	"0.286"	"8"	"7.28"	"2.515"
##	"0.286"	"3"	"2.52"	"1.679"
##	"0.284"	"96"	"93.23"	"9.742"
##	"0.284"	"20"	"18.92"	"3.802"
##	"0.283"	"24"	"22.87"	"3.989"
##	"0.283"	"5"	"4.43"	"2.011"
##	"0.283"	"7"	"6.2"	"2.828"
##	"0.283"	"68"	"65.71"	"8.102"
##	"0.282"	"2"	"1.68"	"1.136"
##	"0.28"	"1"	"0.72"	"0.74"
##	"0.28"	"1"	"0.72"	"0.792"

шш	110 0011	11.4.11	110 7011	"0.889"
##	"0.28"	"1"	"0.72"	"1.946"
##	"0.278"	"5"	"4.46"	
##	"0.276"	"16"	"15"	"3.629"
##	"0.276"	"2"	"1.64"	"1.307"
##	"0.276"	"40"	"38.25"	"6.347"
##	"0.271"	"17"	"15.93"	"3.945"
##	"0.27"	"1"	"0.73"	"0.777"
##	"0.269"	"64"	"61.91"	"7.776"
##	"0.267"	"35"	"33.35"	"6.18"
##	"0.267"	"28"	"26.53"	"5.5"
##	"0.265"	"7"	"6.33"	"2.531"
##	"0.263"	"76"	"73.83"	"8.261"
##	"0.261"	"3"	"2.59"	"1.571"
##	"0.26"	"1"	"0.74"	"0.76"
##	"0.26"	"2"	"1.68"	"1.23"
##	"0.259"	"4"	"3.55"	"1.737"
##	"0.259"	"30"	"28.56"	"5.564"
##	"0.257"	"14"	"13.01"	"3.849"
##	"0.256"	"14"	"13.09"	"3.556"
##	"0.25"	"1"	"0.75"	"0.796"
##	"0.25"	"1"	"0.75"	"0.821"
##	"0.249"	"49"	"47.41"	"6.379"
##	"0.249"	"24"	"22.81"	"4.786"
##	"0.248"	"4"	"3.51"	"1.977"
##	"0.247"	"2"	"1.69"	"1.253"
##	"0.244"	"46"	"44.55"	"5.935"
##	"0.242"	"6"	"5.52"	"1.987"
##	"0.24"	"1"	"0.76"	"0.922"
##	"0.24"	"1"	"0.76"	"0.922"
##	"0.24"	"1"	"0.76"	"0.933"
##	"0.24"	"1"	"0.76"	"0.922"
##	"0.24"	"1"	"0.76"	"0.866"
##	"0.238"	"21"	"20.08"	"3.866"
##	"0.236"	"14"	"13.17"	"3.511"
##	"0.234"	"2"	"1.7"	"1.283"
##	"0.232"	"2"	"1.73"	"1.162"
##	"0.231"	"143"	"140.6"	"10.381"
##		"1"	"0.77"	"0.941"
##	"0.23"	"21"	"19.94"	"4.607"
##	"0.229"	"25"	"23.81"	"5.191"
##	"0.229"	"17"	"16.19"	"3.538"
##	"0.227"	"3"	"2.66"	"1.499"
##	"0.226"	"38"	"36.66"	"5.936"
##	"0.226"	"159"	"155.84"	"14.008"
##	"0.225"	"48"	"46.38"	"7.197"
##	"0.224"	"22"	"20.99"	"4.5"
##	"0.224"	"380"	"375.62"	"19.561"
##	"0.224"	"380"	"8.32"	"3.048"
##	"0.223"	"22"	"21.01"	"4.466"
##	"0.222"	"14"	"13.15"	"3.867"
	"0.22"	"14"	"13.15"	"4.453"
## ##	"0.213"	"18" "11"	"17.05"	"4.453"
	"0.212"	"11"	"10.24"	"3.582"
##				
##	"0.211"	"11"	"10.34"	"3.121"

##	"0.21"	"1"	"0.79"	"0.795"
##	"0.21"	"4"	"3.6"	"1.902"
##	"0.21"	"1"	"0.79"	"0.844"
##	"0.21"	"1"	"0.79"	"0.924"
##	"0.21"	"1"	"0.79"	"0.935"
##	"0.21"	"1"	"0.79"	"0.808"
##	"0.21"	"1"	"0.79"	"0.88"
##	"0.209"	"3"	"2.65"	"1.678"
##	"0.209"	"2"	"1.74"	"1.244"
##	"0.208"	"4"	"3.62"	"1.83"
##	"0.208"	"4"	"3.62"	"1.83"
##	"0.208"	"84"	"82.34"	"7.991"
##	"0.204"	"2"	"1.74"	"1.276"
##	"0.203"	"4"	"3.65"	"1.725"
##	"0.202"	"14"	"13.29"	"3.511"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.2"	"1"	"0.8"	"0.791"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.2"	"1"	"0.8"	"0.943"
##	"0.2"	"1"	"0.8"	"0.91"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.196"	"4"	"3.63"	"1.889"
##	"0.196"	"6"	"5.56"	"2.244"
##	"0.195"	"30"	"28.92"	"5.539"
##	"0.195"	"5"	"4.61"	"2.005"
##	"0.191"	"15"	"14.28"	"3.771"
##	"0.188"	"4"	"3.67"	"1.758"
##	"0.188"	"3"	"2.7"	"1.592"
##	"0.187"	"2"	"1.76"	"1.28"
##	"0.184"	"12"	"11.48"	"2.819"
##	"0.18"	"1"	"0.82"	"0.925"
##	"0.178"	"22"	"21.31"	"3.876"
##	"0.178"	"2"	"1.78"	"1.236"
##	"0.175"	"2"	"1.79"	"1.2"
##	"0.175"	"2"	"1.79"	"1.2"
##	"0.174"	"54"	"52.8"	"6.912"
##	"0.171"	"30"	"29.11"	"5.209"
##	"0.17"	"1"	"0.83"	"0.954"
##	"0.17"	"1"	"0.83"	"0.829"
##	"0.17"	"76"	"74.52"	"8.731"
##	"0.168" "0.167"	"17" "105"	"16.3" "103.22"	"4.177" "10.656"
##	"0.167"	"16"	"103.22"	"4"
## ##	"0.167"	"7"	"6.62"	"2.295"
##	"0.166"	"37"	"35.97"	"6.188"
##	"0.166"	"6"	"5.65"	"2.11"
##	"0.161"		"8.54"	"2.855"
##	"0.161"	"9" "1"	"0.84"	"0.929"
##	"0.159"	"12"	"11.52"	"3.023"
##	"0.159"	"3"	"2.72"	"1.77"
##	"0.156"	"24"	"23.28"	"4.621"
##	"0.152"	"8"	"7.6"	"2.629"
пп	0.102	U	1.0	2.023

##	"0.15"	"1"	"0.85"	"0.88"
##	"0.146"	"16"	"15.44"	"3.836"
##	"0.145"	"2"	"1.8"	"1.378"
##	"0.144"	"6"	"5.64"	"2.501"
##	"0.143"	"2"	"1.8"	"1.4"
##	"0.14"	"1"	"0.86"	"0.853"
##	"0.14"	"1"	"0.86"	"0.954"
##	"0.14"	"1"	"0.86"	"0.921"
##	"0.14"	"1"	"0.86"	"0.954"
##	"0.14"	"1"	"0.86"	"0.954"
##	"0.14"	"3"	"2.76"	"1.712"
##	"0.14"	"1"	"0.86"	"0.954"
##	"0.139"	"1"	"0.86"	"1.005"
##	"0.139"	"46"	"45.12"	"6.343"
##	"0.138"	"23"	"22.36"	"4.64"
##	"0.138"	"6"	"5.7"	"2.177"
##	"0.136"	"4"	"3.73"	"1.984"
##	"0.134"			"2.603"
		"7"	"6.65" "2.78"	
##	"0.132"	"3"		"1.667"
##	"0.131"	"4"	"3.78"	"1.685"
##	"0.131"	"4"	"3.78"	"1.685"
##	"0.131"	"4"	"3.78"	"1.685"
##	"0.13"	"1"	"0.87"	"0.928"
##	"0.13"	"1"	"0.87"	"0.928"
##	"0.129"	"20"	"19.44"	"4.347"
##	"0.126"	"22"	"21.48"	"4.126"
##	"0.126"	"20"	"19.44"	"4.452"
##	"0.126"	"15"	"14.5"	"3.968"
##	"0.126"	"13"	"12.58"	"3.337"
##	"0.125"	"5"	"4.75"	"1.997"
##	"0.12"	"29"	"28.42"	"4.818"
##	"0.119"	"22"	"21.48"	"4.382"
##	"0.119"	"15"	"14.56"	"3.702"
##	"0.119"	"3"	"2.82"	"1.507"
##	"0.116"	"4"	"3.78"	"1.905"
##	"0.115"	"1"	"0.88"	"1.047"
##	"0.115"	"3"	"2.81"	"1.65"
##	"0.115"	"1"	"0.88"	"1.047"
##	"0.11"	"1"	"0.89"	"0.973"
##	"0.11"	"1"	"0.89"	"0.92"
##	"0.106"	"2"	"1.87"	"1.228"
##	"0.106"	"6"	"5.76"	"2.261"
##	"0.104"	"20"	"19.55"	"4.317"
##	"0.103"	"3"	"2.79"	"2.041"
##	"0.103"	"5"	"4.78"	"2.13"
##	"0.103"	"6"	"5.79"	"2.037"
##	"0.103"	"3"	"2.79"	"2.041"
##	"0.103"	"3"	"2.79"	"2.041"
##	"0.101"	"125"	"123.88"	"11.109"
##	"0.101"	"62"	"61.22"	"7.705"
##	"0.099"	"16"	"15.6"	"4.04"
##	"0.098"	"46"	"45.44"	"5.734"
##	"0.097"	"2"	"1.87"	"1.338"
##	"0.094"	"3"	"2.85"	"1.598"
	0.001	•	2.00	1.550

##	"0.092"	"2"	"1.87"	"1.412"
##	"0.091"	"4"	"3.85"	"1.648"
##	"0.09"	"1"	"0.91"	"0.965"
##	"0.09"	"12"	"11.66"	"3.764"
##	"0.089"	"63"	"62.35"	"7.265"
##	"0.089"	"1"	"0.91"	"1.006"
##	"0.089"	"1"	"0.91"	"1.006"
##	"0.084"	"6"	"5.8"	"2.374"
##	"0.083"	"64"	"63.44"	"6.742"
##	"0.083"	"12"	"11.72"	"3.373"
##	"0.083"	"10"	"9.78"	"2.654"
##	"0.083"	"2"	"1.88"	"1.451"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.082"	"23"	"22.66"	"4.147"
##	"0.082"	"3"	"2.85"	"1.839"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.081"	"4"	"3.85"	"1.861"
##	"0.08"	"1"	"0.92"	"0.929"
##	"0.08"	"1"	"0.92"	"0.961"
##	"0.08"	"1"	"0.92"	"0.895"
##	"0.08"	"1"	"0.92"	"0.929"
##	"0.079"	"2"	"1.9"	"1.259"
##	"0.078"	"3"	"2.88"	"1.546"
##	"0.077"	"2"	"1.89"	"1.435"
##	"0.074"	"9"	"8.77"	"3.12"
##	"0.072"	"5"	"4.85"	"2.091"
##	"0.07"	"2"	"1.91"	"1.288"
##	"0.07"	"32"	"31.67"	"4.701"
##	"0.069"	"31"	"30.63"	"5.331"
##	"0.065"	"32"	"31.64"	"5.571"
##	"0.065"	"9"	"8.8"	"3.091"
##	"0.064"	"48"	"47.59"	"6.436"
##	"0.063"	"5"	"4.86"	"2.216"
##	"0.063"	"5"	"4.86"	"2.216"
##	"0.063"	"29"	"28.67"	"5.271"
##	"0.063"	"3"	"2.89"	"1.734"
##	"0.062"	"11"	"10.81"	"3.047"
##	"0.06"	"1"	"0.94"	"0.93"
##	"0.06"	"2"	"1.92"	"1.331"
##	"0.06"	"1"	"0.94"	"0.839"
##	"0.06"	"1"	"0.94"	"0.886"
##	"0.059"	"2"	"1.92"	"1.346"
##	"0.056"	"8"	"7.84"	"2.859"
##	"0.055"	"3"	"2.92"	"1.461"
##	"0.055"	"35"	"34.72"	"5.115"
##	"0.053"	"15"	"14.8"	"3.763"
##	"0.052"	"42"	"41.66"	"6.542"
##	"0.05"	"1"	"0.95"	"0.892"
##	"0.049"	"66"	"65.65"	"7.072"
##	"0.047"	"4"	"3.9"	"2.134"
##	"0.046"	"119"	"118.48"	"11.294"

	110 04011	11 4 4 11	1140 7411	"
##	"0.046"	"41"	"40.71"	"6.362"
##	"0.045"	"2"	"1.94"	"1.347"
##	"0.045"	"2"	"1.94"	"1.347"
##	"0.044"	"2"	"1.94"	"1.362"
##	"0.044"	"2"	"1.94"	"1.362"
##	"0.044"	"2"	"1.94"	"1.362"
##	"0.041"	"16"	"15.85"	"3.702"
##	"0.04"	"1"	"0.96"	"0.909"
##	"0.04"	"1"	"0.96"	"0.942"
##	"0.039"	"4"	"3.93"	"1.805"
##	"0.039"	"46"	"45.75"	"6.389"
##	"0.036"	"22"	"21.84"	"4.408"
##	"0.032"	"4"	"3.93"	"2.189"
##	"0.03"	"1"	"0.97"	"0.937"
##	"0.03"	"1"	"0.97"	"0.926"
##	"0.028"	"4"	"3.94"	"2.164"
	"0.028"	"1"	"0.97"	"1.068"
##		_		
##	"0.027"	"14"	"13.89"	"4.085"
##	"0.026"	"3"	"2.96"	"1.51"
##	"0.024"	"4"	"3.95"	"2.047"
##	"0.024"	"5"	"4.95"	"2.091"
##	"0.023"	"14"	"13.91"	"3.995"
##	"0.023"	"3"	"2.96"	"1.752"
##	"0.023"	"3"	"2.96"	"1.752"
##	"0.021"	"5"	"4.95"	"2.376"
##	"0.021"	"4"	"3.96"	"1.933"
##	"0.02"	"1"	"0.98"	"0.887"
##	"0.02"	"1"	"0.98"	"0.887"
##	"0.02"	"1"	"0.98"	"0.932"
##	"0.02"	"1"	"0.98"	"0.887"
##	"0.02"	"1"	"0.98"	"0.974"
##	"0.02"	"18"	"17.93"	"3.557"
##	"0.02"	"1"	"0.98"	"0.887"
##	"0.02"	"1"	"0.98"	"0.932"
##	"0.018"	"4"	"3.97"	"1.708"
##	"0.018"	"41"	"40.89"	"6.105"
##	"0.015"	"4"	"3.97"	"2.062"
##	"0.015"	"4"	"3.97"	"2.067"
##	"0.01"	"1"	"0.99"	"1.01"
##	"0.01"	"1"	"0.99"	"1.04"
##	"0.01"	"1"	"0.99"	"1.03"
##	"0.01"	"1"	"0.99"	"1.04"
##	"0.009"	"76"	"75.94"	"6.88"
##	"0.007"	"2"	"1.99"	"1.534"
##	"0.007"	"2"	"1.99"	"1.439"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	U	U	U	U

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	· ·	•	-	9

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"4"	"4"	"1.969"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"2"	"2"	"1.348"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"7"	"7"	"2.578"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"1"	"1"	"1.025"
##	"0"	"1"	"1"	"1.025"
##	"0"	"0"	"0"	"0"
##	0	0	0	0

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"2"	"2"	"1.348"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"2"	"2"	"1.31"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	"0"	"0"	"0"	"0"
## ##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##				
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0" "0"	"0"	"0" "0"
##	"0"	-	"0"	-
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"-0.003"	"40"	"40.02"	"6.143"
##	"-0.005"	"65"	"65.04"	"7.964"
##	"-0.005"	"16"	"16.02"	"3.723"
##	"-0.005"	"6"	"6.01"	"2.177"
##	"-0.005"	"5"	"5.01"	"2.115"

##	"-0.007"	"21"	"21.03"	"4.491"
##	"-0.009"	"1"	"1.01"	"1.059"
##	"-0.009"	"1"	"1.01"	"1.059"
##	"-0.009"	"1"	"1.01"	"1.059"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"10"	"10.03"	"3.06"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	-0.01	U ·	0.01	0.1

##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
## ##	"-0.01"	"0"	"0.01"	"0.1"
		-		
##	"-0.01"	"0"	"0.01"	"0.1"

##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.011"	"4"	"4.02"	"1.869"
##	"-0.012"	"31"	"31.06"	"5.003"
##	"-0.014"	"2"	"2.02"	"1.421"
##	"-0.014"	"5"	"5.03"	"2.148"
##	"-0.018"	"1"	"1.02"	"1.092"
##	"-0.018"	"1"	"1.02"	"1.092"
##	"-0.018"	"33"	"33.11"	"6.017"
##	"-0.019"	"27"	"27.09"	"4.727"
##	"-0.02"	"0"	"0.02"	"0.141"
##	-0.02 "-0.02"	"0"	"0.02"	"0.141"
## ##			"0.02"	
	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"		"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.921"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.995"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.921"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
	0.02	J	0.02	V.141

##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.022"	"2"	"2.03"	"1.381"
##	"-0.022"	"2"	"2.03"	"1.359"
##	"-0.022"	"4"	"4.04"	"1.836"
##	"-0.022"	"36"	"36.13"	"5.925"
##	"-0.024"	"6"	"6.07"	"2.868"
##	"-0.024"	"198"	"198.32"	"13.545"
##	"-0.024"	"2"	"2.03"	"1.267"
##	"-0.024"	"6"	"6.06"	"2.534"
##	"-0.025"	"12"	"12.09"	"3.554"
##	"-0.025"	"4"	"4.05"	"1.961"
##	"-0.028"	"89"	"89.26"	"9.217"
##	"-0.028"	"9"	"9.08"	"2.824"
##	"-0.028"	"2"	"2.04"	"1.449"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
			-	

##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"5"	"5.07"	"2.362"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
	"-0.03"	"0"	"0.03"	
##				"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.223"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
	0.00	v	0.00	U. I I I

##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"1"	"1.03"	"0.958"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.031"	"8"	"8.09"	"2.937"
##	"-0.032"	"3"	"3.06"	"1.89"
##	"-0.036"	"173"	"173.41"	"11.521
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.243"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"1"	"1.04"	"0.994"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"

##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"1"	"1.04"	"0.963"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.041"	"2"	"2.06"	"1.448"
##	"-0.043"	"2"	"2.06"	"1.406"
##	"-0.043"	"11"	"11.15"	"3.454"
##	"-0.043"	"2"	"2.06"	"1.391"
##	"-0.049"	"4"	"4.1"	"2.052"
##	"-0.049"	"1"	"1.05"	"1.019"
##	"-0.049"	"7"	"7.12"	"2.467"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
	0.00	•	0.00	0.210

##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.261"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.261"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.051"	"46"	"46.34"	"6.715"
##	"-0.051"	"2"	"2.08"	"1.555"
##	"-0.052"	"26"	"26.23"	"4.458"
##	"-0.055"	"2"	"2.08"	"1.447"
##	"-0.055"	"35"	"35.32"	"5.772"
##	"-0.056"	"36"	"36.34"	"6.097"
##	"-0.057"	"27"	"27.3"	"5.246"
##	"-0.057"	"18"	"18.22"	"3.855"
##	"-0.057"	"11"	"11.18"	"3.144"
##	"-0.058"	"35"	"35.32"	"5.55"
##	"-0.058"	"10"	"10.17"	"2.941"
##	"-0.059"	"30"	"30.33"	"5.565"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"

##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"1"	"1.06"	"0.993"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"1"	"1.06"	"0.993"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"1"	"1.06"	"0.973"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.062"	"35"	"35.34"	"5.511"
##	"-0.063"	"1"	"1.07"	"1.103"
##	"-0.064"	"24"	"24.3"	"4.659"
##	"-0.064"	"159"	"159.9"	"14.098"
##	"-0.066"	"41"	"41.46"	"6.956"
##	"-0.066"	"37"	"37.4"	"6.072"
##	"-0.067"	"5"	"5.14"	"2.103"
##	"-0.067"	"1"	"1.07"	"1.047"
##	"-0.067"	"4"	"4.14"	"2.089"
##	"-0.068"	"97"	"97.58"	"8.488"
##	"-0.069"	"327"	"328.22"	"17.646"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"

##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.073"	"2"	"2.11"	"1.497"
##	"-0.075"	"2"	"2.1"	"1.337"
##	"-0.075"	"2"	"2.1"	"1.337"
##	"-0.076"	"3"	"3.13"	"1.715"
##	"-0.077"	"1"	"1.08"	"1.041"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	-0.00	U	0.00	0.213"

##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"56"	"56.58"	"7.21"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"1"	"1.09"	"1.129"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273" "0.273"
##	"-0.08"	"0"	"0.08"	0.2.0
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08" "-0.08"	"0" "0"	"0.08" "0.08"	"0.307" "0.273"
##		-	"0.08"	
##	"-0.08" "-0.08"	"0"	0.00	"0.307"
##	"-0.08" "-0.08"	"0" "0"	"0.08" "0.08"	"0.273" "0.273"
##				
##	"-0.08" "-0.08"	"0"	"0.08" "0.08"	"0.273" "0.273"
##		"0"	"2.12"	"1.486"
##	"-0.081" "-0.082"	"2" "38"	"2.12" "38.51"	"1.486" "6.245"
##	"-0.082" "-0.082"	"38" "3"	"38.51" "3.14"	"6.245" "1.718"
##		-		
##	"-0.083" "-0.086"	"395" "79"	"397.09" "79.61"	"25.198" "7.088"
## ##	"-0.086" "-0.086"	"79" "1"	"79.61" "1.1"	"7.088" "1.159"
##	"-0.086"	"0"	"0.09"	"0.288"
## ##	"-0.09"	"0"	"0.09"	"0.321"
##	-0.09"	O	0.09"	0.321"

##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"87"	"87.89"	"9.872"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"17"	"17.35"	"3.896"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.091"	"6"	"6.22"	"2.419"
##	"-0.091"	"18"	"18.36"	"3.971"
##	"-0.091"	"6"	"6.22"	"2.41"
##	"-0.092"	"105"	"105.97"	"10.595"
##	"-0.097"	"26"	"26.41"	"4.209"
##	"-0.098"	"1"	"1.11"	"1.118"
##	"-0.099"	"7"	"7.25"	"2.528"
##	"-0.099"	"2"	"2.15"	"1.513"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"

##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.389"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"1"	"1.1"	"0.969"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"24"	"24.43"	"4.298"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.389"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.102"	"23"	"23.51"	"5.006"
##	"-0.103"	"37"	"37.62"	"6.045"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.104"	"2"	"2.13"	"1.253"
##	"-0.104"	"2"	"2.15"	"1.445"
##	"-0.106"	"9"	"9.31"	"2.933"
##	"-0.109"	"1"	"1.12"	"1.104"
##	"-0.109"	"136"	"137.35"	"12.373"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.373"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"

##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.373"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"1"	"1.11"	"0.92"
##	"-0.11"	"0"	"0.11"	"0.399"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.373"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"22"	"22.56"	"5.07"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.111"	"2"	"2.16"	"1.441"
##	"-0.115"	"1"	"1.12"	"1.047"
##	"-0.115"	"1"	"1.12"	"1.047"
##	"-0.116"	"1"	"1.12"	"1.037"
##	"-0.12"	"0"	"0.12"	"0.409"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.409"
##	"-0.12"	"2"	"2.15"	"1.25"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.409"
	0.12	J	0.12	0.400

##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"1"	"1.12"	"0.956"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.121"	"59"	"60.01"	"8.348"
##	"-0.122"	"3"	"3.21"	"1.719"
##	"-0.122"	"57"	"57.92"	"7.518"
##	"-0.123"	"6"	"6.31"	"2.529"
##	"-0.126"	"4"	"4.26"	"2.063"
##	"-0.127"	"2"	"2.18"	"1.417"
##	"-0.129"	"3"	"3.23"	"1.78"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.393"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.367"
##	-0.13 "-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"11"	"11.46"	"3.54"
##	"-0.13"	"0"	"0.13"	"0.338"
##	-0.13 "-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.393"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13" "-0.13"	"15"	"15.48"	"3.705"
##	"-0.13" "-0.13"	"15"	"15.48"	"0.338"
##	"-0.13" "-0.13"	"0"	"0.13"	"0.338"
##	"-0.13" "-0.13"	"0"	"0.13"	"0.393"
	"-0.13" "-0.13"	"0"	"0.13"	"0.393"
##	-0.13"		0.13"	0.338"

##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.393"
##	"-0.131"	"84"	"85.22"	"9.307"
##	"-0.131"	"33"	"33.8"	"6.105"
##	"-0.131"	"41"	"41.75"	"5.743"
##	"-0.132"	"2"	"2.2"	"1.511"
##	"-0.133"	"15"	"15.54"	"4.066"
##	"-0.134"	"23"	"23.67"	"5.005"
##	"-0.138"	"2"	"2.21"	"1.52"
##	"-0.138"	"2"	"2.21"	"1.52"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"2"	"2.2"	"1.428"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.377"
	V.11	J	V.11	0.011

##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.141"	"16"	"16.54"	"3.841"
##	"-0.144"	"1"	"1.15"	"1.038"
##	"-0.144"	"3"	"3.22"	"1.528"
##	"-0.147"	"5"	"5.31"	"2.112"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"31"	"31.84"	"5.606"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.435"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.458"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.435"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"1"	"1.15"	"0.999"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.411"
##	"-0.15"	"0"	"0.15"	"0.386"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.15"	"0"	"0.15"	"0.359"
##	"-0.154"	"36"	"36.85"	"5.518"
##	"-0.154"	"61"	"62.12"	"7.269"
##	"-0.155"	"4"	"4.32"	"2.064"
##	"-0.157"	"1"	"1.17"	"1.083"
##	"-0.158"	"1"	"1.18"	"1.14"
##	"-0.158"	"1"	"1.18"	"1.14"
##	"-0.159"	"9"	"9.5"	"3.154"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.368"

##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.161"	"54"	"55.09"	"6.766"
##	"-0.162"	"2"	"2.21"	"1.297"
##	"-0.162"	"2"	"2.24"	"1.485"
##	"-0.164"	"95"	"96.32"	"8.046"
##	"-0.164"	"160"	"161.81"	"11.037"
##	"-0.165"	"52"	"53.03"	"6.237"
##	"-0.166"	"12"	"12.59"	"3.548"
##	"-0.167"	"1"	"1.19"	"1.134"
##	"-0.167"	"110"	"111.87"	"11.173"
##	"-0.167"	"1"	"1.18"	"1.077"
##	"-0.167"	"1"	"1.18"	"1.077"
##	"-0.169"	"29"	"29.79"	"4.672"
##	"-0.169"	"64"	"65.19"	"7.043"
##	"-0.169"	"1"	"1.19"	"1.125"
##	"-0.17"	"59"	"60.21"	"7.134"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.451"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.428"

##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"46"	"47.24"	"7.303"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.451"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.473"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.171"	"12"	"12.58"	"3.391"
##	"-0.173"	"3"	"3.29"	"1.678"
##	"-0.173"	"3"	"3.3"	"1.732"
##	"-0.174"	"5"	"5.38"	"2.182"
##	"-0.175"	"9"	"9.49"	"2.801"
##	"-0.176"	"10"	"10.55"	"3.131"
##	"-0.178"	"4"	"4.33"	"1.859"
##	"-0.178"	"4"	"4.33"	"1.859"
##	"-0.178"	"43"	"44.22"	"6.845"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.458"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.479"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"1"	"1.18"	"0.869"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.479"
##	"-0.18"	"0"	"0.18"	"0.458"

##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.458"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.458"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18" "-0.184"	"0" "10"	"0.18" "10.56"	"0.411" "3.049"
## ##	"-0.184"	"23"	"23.95"	"5.018"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.506"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.443"
##	"-0.19"	"0"	"0.19"	"0.443"
##	"-0.19"	"0"	"0.19"	"0.486"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.486"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.486"
## ##	"-0.191" "-0.193"	"68" "11"	"69.66" "11.65"	"8.682" "3.368"
## ##	"-0.193"	"12"	"12.79"	"4.078"
##	"-0.194"	"31"	"32.1"	"5.633"
n if	0.130	51	02.1	0.000

##	"-0.195"	"22"	"22.86"	"4.402"
##	"-0.196"	"19"	"19.9"	"4.591"
##	"-0.198"	"13"	"13.73"	"3.684"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"15"	"15.85"	"4.251"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"6"	"6.5"	"2.501"
##	"-0.2"	"0"	"0.2"	"0.471"
##	"-0.2"	"0"	"0.2"	"0.402"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.402"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.2"	"0"	"0.2"	"0.471"
##	"-0.201"	"1"	"1.22"	"1.097"
##	"-0.202"	"19"	"19.84"	"4.165"
##	"-0.203"	"11"	"11.63"	"3.097"
##	"-0.203"	"8"	"8.48"	"2.363"
##	"-0.203"	"2"	"2.29"	"1.431"
##	"-0.204"	"1"	"1.21"	"1.028"
##	"-0.204"	"1"	"1.21"	"1.028"
##	"-0.204"	"1"	"1.21"	"1.028"
##	"-0.206"	"1"	"1.22"	"1.069"
##	"-0.207"	"40"	"41.1"	"5.325"
##	"-0.209"	"3"	"3.4"	"1.917"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.409"
##	"-0.21" "-0.21"	"0"	"0.21"	"0.518"
##	"-0.21" "-0.21"	"0" "0"	"0.21" "0.21"	"0.433" "0.433"
##	"-0.21"	"0"	"0.21"	"0.478"
##	"-0.21"	"0"	"0.21"	"0.433"
## ##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.518"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.433"
##	-0.21 "-0.21"	"0"	"0.21"	"0.478"
##	-0.21 "-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.433"
	V.ZI	J	V.21	0.100

##	"-0.21"	"0"	"0.21"	"0.518"
##	"-0.21"	"0"	"0.21"	"0.498"
##	"-0.21"	"0"	"0.21"	"0.498"
##	"-0.21"	"0"	"0.21"	"0.518"
##	"-0.21"	"0"	"0.21"	"0.518"
##	"-0.21"	"0"	"0.21"	"0.478"
##	"-0.21"	"0"	"0.21"	"0.409"
##	"-0.21"	"71"	"72.68"	"8.009"
##	"-0.213"	"25"	"25.87"	"4.084"
##	"-0.215"	"10"	"10.65"	"3.02"
##	"-0.215"	"29"	"30.15"	"5.344"
##	"-0.219"	"87"	"88.78"	"8.14"
##	"-0.22"	"2"	"2.31"	"1.412"
##	"-0.22"	"17"	"17.86"	"3.913"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.524"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.561"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.462"
## ##	"-0.22" "-0.22"	"0" "0"	"0.22" "0.22"	"0.462" "0.462"
## ##	"-0.22"	"0"	"0.22"	"0.462"
## ##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"4"	"4.47"	"2.139"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.504"
##	"-0.222"	"4"	"4.45"	"2.027"
##	"-0.224"	"140"	"142.62"	"11.682"
##	"-0.225"	"8"	"8.71"	"3.15"
##	"-0.228"	"3"	"3.4"	"1.752"
##	"-0.228"	"28"	"29.23"	"5.395"
##	"-0.228"	"2"	"2.35"	"1.533"
##	"-0.23"	"0"	"0.23"	"0.489"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.489"

""			" 00"	
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"61"	"62.63"	"7.102"
##	"-0.23"	"0"	"0.23"	"0.548"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.468"
	"-0.23"			
##		"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.489"
##	"-0.231"	"8"	"8.67"	"2.896"
##	"-0.232"	"3"	"3.41"	"1.77"
##	"-0.233"	"20"	"21.07"	"4.584"
##	"-0.233"	"19"	"19.92"	"3.941"
##	"-0.235"	"32"	"33.4"	"5.963"
##	"-0.237"	"3"	"3.45"	"1.898"
##	"-0.238"	"31"	"32.39"	"5.838"
##	"-0.239"	"34"	"35.3"	"5.43"
##	"-0.239"	"35"	"36.35"	"5.658"
##	"-0.24"	"4"	"4.47"	"1.962"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.452"
##	"-0.24"	"0"	"0.24"	"0.515"
##	"-0.24"	"1"	"1.27"	"1.127"
##	"-0.24"	"1"	"1.27"	"1.127"
##	"-0.24"	"0"	"0.24"	"0.452"
##	"-0.24"	"0"	"0.24"	"0.474"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.515"
##	"-0.24"	"0"	"0.24"	"0.553"
##	"-0.24"	"0"	"0.24"	"0.452"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.474"
##	"-0.24"	"0"	"0.24"	"0.452"
##	"-0.24"	"0"	"0.24"	"0.534"
##	"-0.24"	"2"	"2.34"	"1.416"

##	"-0.24"	"0"	"0.24"	"0.534"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.241"	"2"	"2.37"	"1.535"
##	"-0.244"	"131"	"133.78"	"11.37"
##	"-0.245"	"13"	"13.88"	"3.591"
##	"-0.248"	"1"	"1.28"	"1.129"
##	"-0.248"	"1"	"1.26"	"1.05"
##	"-0.248"	"13"	"13.96"	"3.877"
##	"-0.248"	"1"	"1.3"	"1.21"
##	"-0.249"	"2"	"2.4"	"1.608"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.435"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.25"	"0"	"0.25"	"0.575"
##	"-0.25"	"0"	"0.25"	"0.575"
##	"-0.25"	"1"	"1.27"	"1.081"
##	"-0.256"	"1"	"1.28"	"1.092"
##	"-0.256"	"12"	"13.03"	"4.024"
##	"-0.256"	"1"	"1.27"	"1.053"
##	"-0.257"	"1"	"1.32"	"1.246"
##	"-0.257"	"5"	"5.58"	"2.253"
##	"-0.258"	"6"	"6.63"	"2.44"
##	"-0.258"	"46"	"47.76"	"6.833"
##	"-0.258"	"25"	"26.18"	"4.573"
##	"-0.259"	"3"	"3.49"	"1.894"
##	"-0.259"	"1"	"1.29"	"1.122"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.441"

##	"-0.26"	"0"	"0.26"	"0.543"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.485"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"0"	"0.26"	"0.543"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.262"	"4"	"4.58"	"2.216"
##	"-0.264"	"41"	"42.7"	"6.438"
## ##	"-0.264"	"41" "232"	"235.74"	"6.438" "14.175"
	"-0.264" "-0.265"	"232" "2"	"235.74" "2.43"	"14.175" "1.622"
## ## ##	"-0.264" "-0.265" "-0.269"	"232" "2" "6"	"235.74" "2.43" "6.72"	"14.175" "1.622" "2.678"
## ## ##	"-0.264" "-0.265" "-0.269" "-0.269"	"232" "2" "6" "14"	"235.74" "2.43" "6.72" "14.98"	"14.175" "1.622" "2.678" "3.638"
## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269"	"232" "2" "6" "14" "12"	"235.74" "2.43" "6.72" "14.98" "12.82"	"14.175" "1.622" "2.678" "3.638" "3.053"
## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.269"	"232" "2" "6" "14" "12" "3"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047"
## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468"
## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51"
## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51"
## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.489"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.489" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.489" "0.51" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.489" "0.51" "0.51" "0.51" "0.51" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0"	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.529" "0.529"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.265" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.529" "0.529" "0.548" "0.51"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.529" "0.529" "0.548" "0.548" "0.548"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.529" "0.548" "0.529" "0.548" "0.548" "0.566" "0.5666"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.584" "0.529" "0.529" "0.529" "0.548" "0.548" "0.566" "0.468" "0.548"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.51" "0.529" "0.529" "0.529" "0.548" "0.548" "0.566" "0.468" "0.468"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.264" "-0.269" "-0.269" "-0.269" "-0.269" "-0.27"	"232" "2" "6" "14" "12" "3" "0" "0" "0" "0" "0" "0" "0" "0" "0	"235.74" "2.43" "6.72" "14.98" "12.82" "3.55" "0.27"	"14.175" "1.622" "2.678" "3.638" "3.053" "2.047" "0.468" "0.51" "0.51" "0.51" "0.51" "0.584" "0.529" "0.529" "0.529" "0.548" "0.548" "0.566" "0.468" "0.548"

##					
##	##	"-0.27"	"0"	"0.27"	"0.566"
##	##	"-0.27"	"0"	"0.27"	"0.548"
##	##	"-0.271"	"138"	"141.04"	"11.235"
##	##	"-0.272"	"1"		"1.066"
##	##	"-0.272"	"4"	"4.55"	"2.022"
##	##		"2"	"2.39"	"1.435"
##	##		"17"	"18.13"	"4.143"
##	##		"31"	"32.6"	"5.867"
##	##	"-0.276"	"6"	"6.76"	"2.757"
##	##	"-0.277"	"2"	"2.44"	"1.591"
##	##	"-0.28"	"0"	"0.28"	"0.533"
##	##		"0"	"0.28"	"0.514"
##	##		"0"	"0.28"	"0.494"
##	##		"0"	"0.28"	"0.533"
##	##		"0"	"0.28"	"0.494"
##	##				"0.494"
##	##		"0"		"0.494"
##	##		"0"	"0.28"	"0.473"
##	##				"0.494"
##	##				"0.587"
## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "0" "0.28" "0. ## "-0.28" "5" "5.65" "2. ## "-0.283" "5" "5.65" "2. ## "-0.284" "2" "2.45" "1. ## "-0.284" "167" "170.16" "11 ## "-0.284" "19" "30.64" "5. ## "-0.284" "1" "1.32" "1. ## "-0.285" "30" "31.54" "5. ## "-0.285" "10" "10.87" "3. ## "-0.285" "10" "10.87" "3. ## "-0.287" "45" "46.76" "6. ## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.	##				"0.533"
##	##				"0.621"
##	##				"0.533"
##	##				"0.621"
##	##				"0.514"
##					"0.494"
## "-0.28" "0" "0.28" "0. ## "-0.283" "5" "5.65" "2. ## "-0.284" "2" "2.45" "1. ## "-0.284" "167" "170.16" "11 ## "-0.284" "29" "30.64" "5. ## "-0.284" "1" "1.32" "1. ## "-0.284" "1" "1.32" "1. ## "-0.285" "30" "31.54" "5. ## "-0.285" "10" "10.87" "3. ## "-0.285" "10" "10.87" "3. ## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.35" "1. ## "-0.289" "1" "11.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"0.514"
## "-0.283" "5" "5.65" "2.5 ## "-0.284" "2" "2.45" "1. ## "-0.284" "167" "170.16" "11 ## "-0.284" "29" "30.64" "5. ## "-0.284" "1" "1.32" "1. ## "-0.284" "1" "1.32" "1. ## "-0.285" "30" "31.54" "5. ## "-0.285" "10" "10.87" "3. ## "-0.285" "10" "10.87" "3. ## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.35" "1. ## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"0.494"
## "-0.284" "2" "2.45" "1. ## "-0.284" "167" "170.16" "11 ## "-0.284" "29" "30.64" "5. ## "-0.284" "1" "1.32" "1. ## "-0.285" "30" "31.54" "5. ## "-0.285" "19" "20.34" "4. ## "-0.285" "10" "10.87" "3. ## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.89" "3. ## "-0.289" "1" "11.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"0.552"
## "-0.284" "2" "2.45" "1. ## "-0.284" "167" "170.16" "11 ## "-0.284" "29" "30.64" "5. ## "-0.284" "1" "1.32" "1. ## "-0.285" "30" "31.54" "5. ## "-0.285" "19" "20.34" "4. ## "-0.285" "10" "10.87" "3. ## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.89" "3. ## "-0.289" "1" "11.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"2.293"
##					"2.293"
##			_		"1.585"
##					"11.12"
##					"5.774"
##			_		"1.127"
## "-0.285" "10" "10.87" "3.4 ## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.89" "3.4 ## "-0.289" "1" "1.35" "1.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.5 ## "-0.29" "0" "0.29" "0.5 ## "-0.29" "0" "0.29" "0.5 ## "-0.29" "9" "9.94" "3.5					"5.394"
## "-0.287" "45" "46.76" "6. ## "-0.287" "11" "11.89" "3. ## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"4.697"
## "-0.287" "11" "11.89" "3. ## "-0.289" "1" "1.35" "1. ## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0.					"3.054"
## "-0.289" "1" "1.35" "1. ## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3.					"6.137"
## "-0.289" "1" "1.35" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "3" "3.49" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "4" "4.55" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3.		0.20.			"3.097" "1.209"
## "-0.29" "0" "0.29" "0. ## "-0.29" "3" "3.49" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "4" "4.55" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.			_		
## "-0.29" "3" "3.49" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "4" "4.55" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.					"1.209"
## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "4" "4.55" "1. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.			-		"0.556" "1.691"
## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "4" "4.55" "1.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "9" "9.94" "3.4 ## "-0.291" "35" "36.6" "5.4					"0.556"
## "-0.29" "0" "0.29" "0.4 ## "-0.29" "4" "4.55" "1.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "0" "0.29" "0.4 ## "-0.29" "9" "9.94" "3.4 ## "-0.291" "35" "36.6" "5.4		0.20		0.20	"0.591"
## "-0.29" "4" "4.55" "1.4" ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.4					"0.537"
## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.					"1.898"
## "-0.29" "0" "0.29" "0. ## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.					"0.537"
## "-0.29" "0" "0.29" "0. ## "-0.29" "9" "9.94" "3. ## "-0.291" "35" "36.6" "5.					"0.556"
## "-0.29" "9" "9.94" "3.3 ## "-0.291" "35" "36.6" "5.4					"0.556"
## "-0.291" "35" "36.6" "5.					"3.244"
					"5.49"
ππ 0.251 1 1.41 1.4					"1.408"
	ππ	0.291	T	1.41	1.400

##	"-0.298"	"2"	"2.47"	"1.579"
##	"-0.299"	"2"	"2.46"	"1.54"
##	"-0.3"	"0"	"0.3"	"0.522"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.577"
##	"-0.3"	"0"	"0.3"	"0.577"
##	"-0.3"	"0"	"0.3"	"0.577"
##	"-0.3"	"0"	"0.3"	"0.522"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.595"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.541"
##	"-0.3"	"7"	"7.82"	"2.732"
##	"-0.3"	"0"	"0.3"	"0.595"
##	"-0.3"	"0"	"0.3"	"0.482"
##	"-0.3"	"0"	"0.3"	"0.482"
##	"-0.3"	"0"	"0.3"	"0.522"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"3"	"3.54"	"1.8"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.482"
##	"-0.3"	"0"	"0.3"	"0.482"
##	"-0.3"	"0"	"0.3"	"0.56"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.577"
##	"-0.3"	"0"	"0.3"	"0.577"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.482"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.522"
##	"-0.3"	"0"	"0.3"	"0.522"
##	"-0.301"	"9"	"9.86"	"2.86"
##	"-0.303"	"10"	"10.92"	"3.034"
##	"-0.304"	"622"	"631.56"	"31.469"
##	"-0.304"	"4"	"4.6"	"1.975"
##	"-0.305"	"30"	"31.52"	"4.98"
##	"-0.305"	"7"	"7.74"	"2.427"
##	"-0.305"	"7"	"7.74"	"2.427"
##	"-0.305"	"7"	"7.74"	"2.427"
##	"-0.305"	"7"	"7.74"	"2.427"
##	"-0.306"	"3"	"3.62"	"2.029"
##	"-0.306"	"19"	"20.13"	"3.697"
##	"-0.308"	"72"	"74.45"	"7.946"
##	"-0.309"	"27"	"28.66"	"5.371"
##	"-0.309"	"36"	"37.69"	"5.466"
## ##	"-0.309"	"0"	"0.31"	"0.526"
##	"-0.31"	"0"	"0.31"	"0.581"
##	"-0.31"	"0"	"0.31"	"0.545"
##	-0.31	U	0.31	0.345

##	"-0.31"	"0"	"0.31"	"0.545"
##	"-0.31"	"0"	"0.31"	"0.545"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.31"	"0"	"0.31"	"0.545"
##	"-0.31"	"0"	"0.31"	"0.581"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.31"	"0"	"0.31"	"0.581"
##	"-0.31"	"1"	"1.37"	"1.195"
##	"-0.31"	"0"	"0.31"	"0.526"
##	"-0.31"	"0"	"0.31"	"0.545"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.31"	"0"	"0.31"	"0.545"
##	"-0.311"	"1"	"1.34"	"1.094"
##	"-0.312"	"8"	"8.88"	"2.822"
##	"-0.313"	"2"	"2.5"	"1.599"
##	"-0.314"	"55"	"57.57"	"8.184"
##	"-0.316"	"39"	"40.97"	"6.24"
##	"-0.318"	"2"	"2.5"	"1.573"
##	"-0.318"	"2"	"2.5"	"1.573"
##	"-0.319"	"525"	"531.74"	"21.144"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.566"
##	"-0.32"	"0"	"0.32"	"0.51"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.649"
##	"-0.32"	"0"	"0.32"	"0.548"
##	"-0.32"	"0"	"0.32"	"0.566"
##	"-0.32"	"0"	"0.32"	"0.51"
##	"-0.32"	"2"	"2.48"	"1.501"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.618"
##	"-0.32"	"0"	"0.32"	"0.53"
##	"-0.322"	"2"	"2.52"	"1.617"
##	"-0.324"	"2"	"2.51"	"1.573"
##	"-0.324"	"2"	"2.51"	"1.573"
##	"-0.325"	"1"	"1.38"	"1.17"
##	"-0.325"	"173"	"177.17"	"12.836"
##	"-0.325"	"3"	"3.59"	"1.815"
##	"-0.326"	"1"	"1.37"	"1.134"
##	"-0.326"	"1"	"1.36"	"1.106"
##	"-0.326"	"1"	"1.37"	"1.134"
##	"-0.326"	"1"	"1.37"	"1.134"
##	"-0.326"	"1"	"1.37"	"1.134"
##	"-0.328"	"27"	"28.63"	"4.97"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.551"
##	"-0.33"	"1"	"1.38"	"1.153"
##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.33"	"0"	"0.33"	"0.551"
##	"-0.33"	"0"	"0.33"	"0.604"

##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.493"
##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.33"	"2"	"2.53"	"1.605"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.533"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.551"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.331"	"4"	"4.73"	"2.206"
##	"-0.334"	"1"	"1.4"	"1.198"
##	"-0.334"	"1"	"1.4"	"1.198"
##	"-0.334"	"1"	"1.4"	"1.198"
##	"-0.336"	"8"	"8.95"	"2.83"
##	"-0.336"	"2"	"2.5"	"1.487"
##	"-0.336"	"7"	"7.91"	"2.712"
##	"-0.34"	"0"	"0.34"	"0.572"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.517"
##	"-0.34"	"0"	"0.34"	"0.623"
##	"-0.34"	"0"	"0.34"	"0.517"
##	"-0.34"	"0"	"0.34"	"0.623"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.517"
##	"-0.34"	"0"	"0.34"	"0.517"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.67"
##	"-0.34"	"0"	"0.34"	"0.555"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.572"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.342"	"3"	"3.72"	"2.104"
##	"-0.343"	"59"	"61.52"	"7.348"
##	"-0.343"	"54"	"56.31"	"6.725"
##	"-0.343"	"10"	"11.16"	"3.378"
##	"-0.345"	"24"	"25.76"	"5.101"
##	"-0.345"	"2"	"2.56"	"1.623"
##	"-0.345"	"50"	"52.22"	"6.435"
##	"-0.346"	"2"	"2.51"	"1.474"
##	"-0.346"	"2"	"2.51"	"1.474"
##	"-0.347"	"17"	"18.37"	"3.951"
##	"-0.348"	"1"	"1.47"	"1.352"
##	"-0.349"	"4"	"4.72"	"2.065"
	0.010	•		2.500

##				
	"-0.349"	"1"	"1.39"	"1.118"
##	"-0.349"	"4"	"4.72"	"2.065"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"0"	"0.35"	"0.557"
##	"-0.35"	"0"	"0.35"	"0.609"
##	"-0.35"	"0"	"0.35"	"0.557"
##	"-0.35"	"0"	"0.35"	"0.672"
##	"-0.35"	"0"	"0.35"	"0.52"
##	"-0.35"	"0"	"0.35"	"0.539"
##	"-0.35"	"0"	"0.35"	"0.609"
##	"-0.35"	"0"	"0.35"	"0.575"
##	"-0.35"	"1"	"1.35"	"0.968"
##	"-0.35"	"1"	"1.35"	"0.968"
##	"-0.35"	"0"	"0.35"	"0.657"
##	"-0.35"	"0"	"0.35"	"0.557"
##	"-0.35"	"0"	"0.35"	"0.672"
##	"-0.35"	"0"	"0.35"	"0.52"
##	"-0.35"	"0"	"0.35"	"0.52"
##	"-0.35"	"0"	"0.35"	"0.575"
##	"-0.352"	"2"	"2.56"	"1.591"
##	"-0.353"	"2"	"2.55"	"1.559"
##	"-0.353"	"1100"	"1110.95"	"31.02"
	"-0.353"	"1"	"1.42"	"1.191"
##	"-0.354"	"1"	"1.46"	"1.298"
##	"-0.354"	"1"	"1.43"	"1.208"
## ##	"-0.356"	"1"	"1.48"	"1.344"
	"-0.358"	"448"	"457.36"	"26.177"
##		"4"	"4.72"	"2.005"
##	"-0.359"	"1"		"1.225"
##	"-0.359"	"16"	"1.44"	"3.81"
## ##	"-0.36"	"0"	"17.37"	"0.612"
	"-0.36"		"0.36"	
	11 0 2611	11011		IIO ECII
##	"-0.36"	"0"	"0.36"	"0.56"
## ##	"-0.36"	"2"	"2.51"	"1.418"
## ## ##	"-0.36" "-0.36"	"2" "0"	"2.51" "0.36"	"1.418" "0.542"
## ## ##	"-0.36" "-0.36" "-0.36"	"2" "0" "0"	"2.51" "0.36" "0.36"	"1.418" "0.542" "0.578"
## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0"	"2.51" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595"
## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628"
## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612"
## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523"
## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56"
## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.566" "0.578"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "4.76"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "0" "0" "0" "11"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "1.76" "0.36" "1.4"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "1.36" "4.76" "0.36" "12.4" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "12.4" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.566"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "12.4" "0.36" "12.4" "0.36" "15.77"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.566" "2.136"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "1.36" "1.4" "0.36" "1.4" "0.36" "1.4" "0.36" "1.4" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.56" "2.136" "0.578"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "1.36" "1.4" "0.36" "12.4" "0.36" "0.36" "10.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.56" "2.136" "0.578" "0.578"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5" "0" "11"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "4.76" "0.36" "12.4" "0.36" "5.77" "0.36" "0.36" "12.27"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.56" "2.136" "0.578" "0.578" "3.53"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5" "0" "11" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "4.76" "0.36" "12.4" "0.36" "0.36" "12.4" "0.36" "12.4" "0.36" "0.36" "1.036" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.56" "2.136" "0.578" "0.578" "0.578" "3.53" "0.56"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5" "0" "11" "0" "11" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "12.4" "0.36" "12.4" "0.36" "12.4" "0.36" "12.4" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.566" "2.136" "0.578" "0.578" "0.578" "0.578" "0.578" "0.578"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.36" "-0.36"	"2" "0" "0" "0" "0" "0" "4" "0" "11" "0" "5" "0" "11" "0"	"2.51" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "0.36" "4.76" "0.36" "12.4" "0.36" "0.36" "12.4" "0.36" "12.4" "0.36" "0.36" "1.036" "0.36" "0.36" "0.36" "0.36"	"1.418" "0.542" "0.578" "0.595" "0.628" "0.612" "0.523" "0.56" "0.578" "2.109" "0.542" "3.892" "0.523" "0.56" "2.136" "0.578" "0.578" "0.578" "3.53" "0.56"

##	"-0.36"	"0"	"0.36"	"0.56"
##	"-0.362"	"15"	"16.34"	"3.704"
##	"-0.365"	"167"	"171.6"	"12.604"
##	"-0.366"	"1"	"1.5"	"1.367"
##	"-0.367"	"1"	"1.44"	"1.2"
##	"-0.367"	"1"	"1.44"	"1.2"
##	"-0.367"	"2"	"2.54"	"1.473"
##	"-0.368"	"64"	"67.29"	"8.929"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.63"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"0"	"0.37"	"0.562"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"0"	"0.37"	"0.614"
##	-0.37 "-0.37"	"0"	"0.37"	"0.614"
##		"15"	"16.54"	"4.159"
	"-0.37"			
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"0"	"0.37"	"0.63"
##	"-0.37"	"0"	"0.37"	"0.63"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.677"
##	"-0.37"	"0"	"0.37"	"0.614"
##	"-0.37"	"0"	"0.37"	"0.614"
##	"-0.37"	"0"	"0.37"	"0.63"
##	"-0.372"	"349"	"356.39"	"19.858"
##	"-0.374"	"47"	"49.71"	"7.255"
##	"-0.374" "-0.375"	"47" "1"	"49.71" "1.43"	"7.255" "1.148"
## ##	"-0.374" "-0.375" "-0.375"	"47" "1" "9"	"49.71" "1.43" "10.13"	"7.255" "1.148" "3.011"
## ## ##	"-0.374" "-0.375" "-0.375" "-0.375"	"47" "1" "9" "10"	"49.71" "1.43" "10.13" "11.25"	"7.255" "1.148" "3.011" "3.334"
## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375"	"47" "1" "9" "10" "1"	"49.71" "1.43" "10.13" "11.25" "1.42"	"7.255" "1.148" "3.011" "3.334" "1.121"
## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376"	"47" "1" "9" "10" "1" "30"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342"
## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378"	"47" "1" "9" "10" "1" "30" "9"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019"
## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.376" "-0.378" "-0.379"	"47" "1" "9" "10" "1" "30" "9"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479"
## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379"	"47" "1" "9" "10" "1" "30" "9" "2"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479"
## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.379"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074"
## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "31" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "31" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.663" "0.663"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.663" "0.663"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "31" "0" "0" "0" "0" "0" "0" "0"	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.582" "0.599"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.582" "0.599" "5.419"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.376" "-0.378" "-0.379" "-0.379" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.582" "0.599" "5.419" "0.736"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.736" "0.736" "0.736"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "6.074" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.736" "0.736" "0.736" "0.738"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.736" "0.736" "0.736" "0.736" "0.736" "0.708"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.736" "0.736" "0.736" "0.736" "0.708" "0.708" "0.678"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.374" "-0.375" "-0.375" "-0.375" "-0.375" "-0.376" "-0.379" "-0.379" "-0.38"	"47" "1" "9" "10" "1" "30" "9" "2" "2" "31" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"49.71" "1.43" "10.13" "11.25" "1.42" "32.01" "10.14" "2.56" "2.56" "33.3" "0.38"	"7.255" "1.148" "3.011" "3.334" "1.121" "5.342" "3.019" "1.479" "1.479" "0.599" "0.546" "0.599" "0.663" "0.599" "0.663" "0.599" "0.663" "0.736" "0.736" "0.736" "0.736" "0.736" "0.708"

##	"-0.38"	"0"	"0.38"	"0.736"
##	"-0.38"	"0"	"0.38"	"0.528"
##	"-0.38"	"0"	"0.38"	"0.599"
##	"-0.383"	"4"	"4.91"	"2.375"
##	"-0.385"	"16"	"17.59"	"4.129"
##	"-0.386"	"4"	"4.85"	"2.204"
##	"-0.386"	"1"	"1.47"	"1.218"
##	"-0.386"	"9"	"10.12"	"2.9"
##	"-0.387"	"10"	"11.21"	"3.125"
##	"-0.387"	"19"	"20.74"	"4.498"
##	"-0.388"	"71"	"74.29"	"8.471"
##	"-0.39"	"0"	"0.39"	"0.601"
##	"-0.39"	"0"	"0.39"	"0.567"
##	"-0.39"	"0"	"0.39"	"0.709"
##	"-0.39"	"0"	"0.39"	"0.709"
##	"-0.39"	"0"	"0.39"	"0.584"
##	"-0.39"	"0"	"0.39"	"0.584"
##	"-0.39"	"0"	"0.39"	"0.65"
##	"-0.39"	"0"	"0.39"	"0.68"
##	"-0.39"	"0"	"0.39"	"0.65"
##	"-0.39"	"0"	"0.39"	"0.567"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.39"	"0"	"0.39"	"0.584"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.39"	"0"	"0.39"	"0.601"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.39"	"0"	"0.39"	"0.695"
##	"-0.39"	"0"	"0.39"	"0.68"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.39"	"0"	"0.39"	"0.65"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.391"	"6"	"7.11"	"2.842"
##	"-0.391"	"6"	"7.04"	"2.659"
##	"-0.392"	"27"	"29.03"	"5.184"
##	"-0.393"	"7"	"8.13"	"2.877"
##	"-0.393"	"10"	"11.16"	"2.95"
##	"-0.394"	"2"	"2.61"	"1.55"
##	"-0.394"	"9"	"10.19"	"3.024"
##	"-0.395"	"18"	"19.66"	"4.207"
##	"-0.396"	"4"	"4.91"	"2.297"
##	"-0.396"	"13"	"14.44"	"3.636"
##	"-0.398"	"10"	"11.24"	"3.114"
##	"-0.398"	"2"	"2.66"	"1.659"
##	"-0.399"	"6"	"7.07"	"2.679"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.586"
##	"-0.4"	"0"	"0.4"	"0.569"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.667"
##	"-0.4"	"0"	"0.4"	"0.586"
##	"-0.4"	"0"	"0.4"	"0.62"

'0" '0" '0" '0" '0" '22"	"0.4" "0.4" "0.4" "0.4" "0.4" "23.81"	"0.636" "0.586" "0.696" "0.586" "0.62" "4.512"
'0" '0" '0" '22"	"0.4" "0.4" "0.4"	"0.696" "0.586" "0.62"
'0" '0" '22"	"0.4" "0.4"	"0.586" "0.62"
'0" '22"	"0.4"	"0.62"
'22"		
	"23.81"	II / E 1 O II
'79"		4.512
	"82.57"	"8.913"
'2"	"2.58"	"1.444"
'1"	"1.58"	"1.444"
'2"	"2.63"	"1.555"
'2"		"1.555"
'2"		"1.555"
'13"		"4.09"
'2"	"2.71"	"1.737"
'0"	"0.41"	"0.621"
'0"		"0.668"
'0"		"0.637"
'0"	"0.41"	"0.653"
'0"	"0.41"	"0.605"
'0"	"0.41"	"0.552"
'0"		"0.552"
'0"		"0.683"
'0"		"0.653"
'0"		"0.588"
'0"		"0.712"
'0"		"0.552"
•		"0.653"
•		"0.621"
-		"0.653"
		"0.683"
_		"1.807"
•		"0.588"
•	0.11	"0.621"
•		"0.552"
•		"0.552"
•		"0.552"
-		"0.57"
-		"0.653"
•		"0.621"
•		"0.653" "0.653"
•		0.000
•	0.11	"0.621"
-	0.11	"0.552" "0.552"
	0.11	"7.389"
'8"		"2.005"
'3" '1"	"1.51"	"1.227"
· I		"1.227"
	114 [11	
'1"	"1.5"	
'1" '213"	"219.21"	"14.909"
'1" '213" '5"	"219.21" "6"	"14.909" "2.395"
'1" '213" '5" '5"	"219.21" "6"	"14.909" "2.395" "2.395"
'1" '213" '5" '5" '4"	"219.21" "6" "6" "4.84"	"14.909" "2.395" "2.395" "2.009"
'1" '213" '5" '5"	"219.21" "6"	"14.909" "2.395" "2.395"
	22" 22" 213" 20" 20" 20" 20" 20" 20" 20" 20" 20" 20	12"

##	"-0.419"	"113"	"117.92"	"11.739"
##	"-0.419"	"24"	"26.15"	"5.125"
##	"-0.42"	"44"	"46.65"	"6.314"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"0"	"0.42"	"0.606"
##	"-0.42"	"0"	"0.42"	"0.589"
##	"-0.42"	"0"	"0.42"	"0.606"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"0"	"0.42"	"0.589"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"0"	"0.42"	"0.589"
##	"-0.42"	"0"	"0.42"	"0.638"
##	"-0.42"	"0"	"0.42"	"0.654"
##	"-0.42"	"0"	"0.42"	"0.554"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"0"	"0.42"	"0.622"
##	"-0.421"	"17"	"18.87"	"4.446"
##	"-0.422"	"27"	"29.24"	"5.303"
##	"-0.423"	"1"	"1.58"	"1.372"
##	"-0.424"	"1"	"1.44"	"1.038"
##	"-0.424"	"12"	"13.35"	"3.186"
##	"-0.425"	"2"	"2.73"	"1.717"
##	"-0.425"	"15"	"16.82"	"4.281"
##	"-0.426"	"2"	"2.74"	"1.739"
##	"-0.426"	"4"	"4.91"	"2.137"
##	"-0.429"	"1"	"1.57"	"1.328"
##	"-0.43"	"0"	"0.43"	"0.64"
##	"-0.43"	"0"	"0.43"	"0.64"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.607"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.624"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.573"
##	"-0.43"	"0"	"0.43"	"0.728"
##	"-0.43"	"0"	"0.43"	"0.728"
##	"-0.43"	"0"	"0.43"	"0.64"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.624"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.64"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.655"
##	"-0.43"	"0"	"0.43"	"0.655"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.685"

##	"-0.43"	"0"	"0.43"	"0.671"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.64"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.59"
##	"-0.43"	"0"	"0.43"	"0.655"
##	"-0.433"	"45"	"47.9"	"6.704"
##	"-0.435"	"11"	"12.57"	"3.61"
##	"-0.436"	"2"	"2.71"	"1.629"
##	"-0.436"	"2"	"2.75"	"1.72"
##	"-0.436"	"2"	"2.71"	"1.629"
##	"-0.436"	"5"	"6.02"	"2.34"
##	"-0.437"	"1"	"1.55"	"1.258"
##	"-0.437"	"1"	"1.55"	"1.258"
##	"-0.437"	"1"	"1.55"	"1.258"
##	"-0.437"	"1"	"1.55"	"1.258"
##	"-0.437"	"12"	"13.57"	"3.596"
##	"-0.438"	"2"	"2.66"	"1.506"
##	"-0.44"	"0"	"0.44"	"0.701"
##	"-0.44"	"0"	"0.44"	"0.641"
##	"-0.44"	"0"	"0.44"	"0.671"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.44"	"1"	"1.55"	"1.25"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.44"	"0"	"0.44"	"0.671"
##	"-0.44"	"3"	"3.88"	"2.001"
##	"-0.44"	"0"	"0.44"	"0.656"
##	"-0.44"	"0"	"0.44"	"0.671"
##	"-0.44"	"0"	"0.44"	"0.686"
##	"-0.44"	"0"	"0.44"	"0.641"
##	"-0.44"	"0"	"0.44"	"0.715"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.441"	"51"	"53.84"	"6.44"
##	"-0.442"	"6"	"7.24"	"2.804"
##	"-0.442"	"6"	"7.24"	"2.804"
##	"-0.443"	"15"	"16.89"	"4.264"
##	"-0.443"	"1"	"1.54"	"1.218"
##	"-0.447"	"2"	"2.74"	"1.655"
##	"-0.45"	"0"	"0.45"	"0.575"
##	"-0.45"	"0"	"0.45"	"0.716"
##	"-0.45"	"0"	"0.45"	"0.592"
##	"-0.45"	"0"	"0.45"	"0.702"
##	"-0.45"	"0"	"0.45"	"0.642"
##	"-0.45"	"0"	"0.45"	"0.642"
##	"-0.45"	"0"	"0.45"	"0.687"
##	"-0.45"	"0"	"0.45"	"0.687"
##	"-0.45"	"0"	"0.45"	"0.642"
##	"-0.45"	"0"	"0.45"	"0.657"
##	"-0.45"	"0"	"0.45"	"0.702"
		-		

##	"-0.45"	"0"	"0.45"	"0.687"
##	"-0.45"	"0"	"0.45"	"0.592"
##	"-0.451"	"7"	"8.25"	"2.772"
##	"-0.454"	"6"	"7.36"	"2.993"
##	"-0.455"	"1"	"1.59"	"1.296"
##	"-0.456"	"32"	"34.61"	"5.724"
##	"-0.456"	"22"	"24.22"	"4.865"
##	"-0.457"	"219"	"226.26"	"15.888"
##	"-0.458"	"3"	"3.89"	"1.943"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.593"
##	"-0.46"	"0"	"0.46"	"0.731"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.61"
##	"-0.46"	"0"	"0.46"	"0.688"
##	"-0.46"	"0"	"0.46"	"0.61"
##	"-0.46"	"0"	"0.46"	"0.593"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.61"
##	"-0.46"	"0"	"0.46"	"0.593"
##	"-0.46"	"0"	"0.46"	"0.688"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.688"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.731"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.593"
##	"-0.46"	"0"	"0.46"	"0.688"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.758"
##	"-0.461"	"13"	"14.55"	"3.365"
##	"-0.462"	"122"	"127.16"	"11.171"
##	"-0.463"	"30"	"32.81"	"6.065"
##	"-0.463"	"9"	"10.3"	"2.805"
##	"-0.463"	"3"	"3.82"	"1.772"
##	"-0.464"	"2"	"2.8"	"1.723"
##	"-0.464"	"2"	"2.8"	"1.723"
##	"-0.464"	"2"	"2.8"	"1.723"
##	"-0.464"	"2"	"2.8"	"1.723"
##	"-0.464"	"2"	"2.8"	"1.723"
##	"-0.467"	"10"	"11.59"	"3.403"
##	"-0.467"	"10"	"11.59"	"3.403"
##	"-0.467"	"10"	"11.59"	"3.403"
##	"-0.467"	"2"	"2.68"	"1.456"
##	"-0.467"	"4"	"5.11"	"2.378"
##	"-0.467"	"10"	"11.59"	"3.403"
##	"-0.468"	"1"	"1.64"	"1.367"
##	"-0.469"	"3"	"3.79"	"1.684"
##	"-0.469"	"1"	"1.66"	"1.409"
##	"-0.47"	"0"	"0.47"	"0.688"
##	"-0.47"	"0"	"0.47"	"0.611"

##	"-0.47"	"0"	"0.47"	"0.703"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.731"
##	"-0.47"	"0"	"0.47"	"0.703"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.674"
##	"-0.47"	"0"	"0.47"	"0.674"
##	"-0.47"	"0"	"0.47"	"0.643"
##	"-0.47"	"0"	"0.47"	"0.674"
##	"-0.47"	"0"	"0.47"	"0.611"
##	"-0.47"	"0"	"0.47"	"0.674"
##	"-0.47"	"0"	"0.47"	"0.643"
##	"-0.47"	"0"	"0.47"	"0.688"
##	"-0.47"	"0"	"0.47"	"0.717"
##	"-0.471"	"35"	"37.71"	"5.758"
##	"-0.473"	"4"	"4.99"	"2.091"
##	"-0.474"	"1"	"1.77"	"1.626"
##	"-0.475"	"1"	"1.57"	"1.2"
##	"-0.476"	"99"	"103.54"	"9.548"
##	"-0.477"	"2"	"2.84"	"1.762"
##	"-0.477"	"1"	"1.54"	"1.132"
##	"-0.479"	"1"	"1.55"	"1.149"
##	"-0.479"	"9"	"10.49"	"3.109"
##	"-0.48"	"0"	"0.48"	"0.627"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.703"
##	"-0.48"	"0"	"0.48"	"0.674"
##	"-0.48"	"0"	"0.48"	"0.731"
##	"-0.48"	"0"	"0.48"	"0.759"
##	"-0.48"	"58"	"61.54"	"7.372"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.703"
##	"-0.48"	"0"	"0.48"	"0.659"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.627"
##	"-0.48"	"0"	"0.48"	"0.643"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.484"	"1"	"1.58"	"1.199"
##	"-0.486"	"1"	"1.68"	"1.399"
##	"-0.486"	"2"	"2.73"	"1.503"
##	"-0.487"	"6"	"7.45"	"2.976"
##	"-0.489"	"1"	"1.61"	"1.246"
##	"-0.489"	"3"	"3.94"	"1.922"
##	"-0.49"	"0"	"0.49"	"0.643"
##	"-0.49"	"0"	"0.49"	"0.689"
##	"-0.49"	"0"	"0.49"	"0.674"
##	"-0.49"	"0"	"0.49"	"0.643"
##	"-0.49"	"0"	"0.49"	"0.718"

##	"-0.49"	"0"	"0.49"	"0.674"
##	"-0.49"	"2"	"2.96"	"1.959"
##	"-0.49"	"0"	"0.49"	"0.674"
##	"-0.493"	"11"	"12.65"	"3.347"
##	"-0.495"	"1"	"1.56"	"1.131"
##	"-0.496"	"1"	"1.59"	"1.19"
##	"-0.496"	"1"	"1.69"	"1.39"
##	"-0.497"	"5"	"6.16"	"2.334"
##	"-0.499"	"1"	"1.59"	"1.181"
##	"-0.499"	"299"	"310.49"	"23.042"
##	"-0.499"	"1"	"1.59"	"1.181"
##	"-0.5"	"0"	"0.5"	"0.659"
##	"-0.5"	"0"	"0.5"	"0.835"
##	"-0.5"	"0"	"0.5"	"0.785"
##	"-0.5"	"0"	"0.5"	"0.689"
##	"-0.5"	"0"	"0.5"	"0.745"
##	"-0.5"	"0"	"0.5"	"0.674"
##	"-0.5"	"0"	"0.5"	"0.689"
##	"-0.502"	"2"	"2.81"	"1.612"
##	"-0.502"	"1"	"1.67"	"1.334"
##	"-0.503"	"2"	"2.94"	"1.869"
##	"-0.504"	"1"	"1.57"	"1.13"
##	"-0.505"	"2"	"2.89"	"1.763"
##	"-0.505"	"2"	"2.89"	"1.763"
##	"-0.505"	"6"	"7.37"	"2.714"
##	"-0.505"	"43"	"45.97"	"5.885"
##	"-0.505"	"3"	"3.87"	"1.721"
##	"-0.506"	"35"	"38.04"	"6.012"
##	"-0.506"	"10"	"11.62"	"3.2"
##	"-0.506"	"2"	"2.93"	"1.838"
##	"-0.509"	"11"	"12.83"	"3.593"
##	"-0.509"	"15"	"16.99"	"3.909"
##	"-0.509"	"22"	"24.3"	"4.518"
##	"-0.51"	"0"	"0.51"	"0.718"
##	"-0.51"	"0"	"0.51"	"0.628"
##	"-0.51"	"0"	"0.51"	"0.718"
##	"-0.51"	"0"	"0.51"	"0.628"
##	"-0.51"	"0"	"0.51"	"0.659"
##	"-0.51"	"0"	"0.51"	"0.759"
##	"-0.51"	"0"	"0.51"	"0.732"
##	"-0.51"	"0"	"0.51"	"0.732"
##	"-0.51"	"0"	"0.51"	"0.745"
##	"-0.51"	"1"	"1.69"	"1.354"
##	"-0.51"	"0"	"0.51"	"0.718"
##	"-0.51"	"0"	"0.51"	"0.732"
##	"-0.51"	"1"	"1.61"	"1.197"
##	"-0.51"	"0"	"0.51"	"0.718"
##	"-0.51"	"0"	"0.51"	"0.718"
##	"-0.511"	"2"	"2.91"	"1.781"
##	"-0.511"	"4"	"5.06"	"2.073"
##	"-0.512"	"3"	"4.17"	"2.283"
##	"-0.513"	"6"	"7.34"	"2.61"
##	"-0.513"	"6"	"7.21"	"2.358"
##	"-0.513"	"83"	"87.5"	"8.774"

##	"-0.513"	"4"	"5.15"	"2.24"
##	"-0.513"	"1"	"1.69"	"1.346"
##	"-0.513"	"2"	"2.79"	"1.539"
##	"-0.513"	"10"	"11.76"	"3.429"
##	"-0.514"	"2"	"2.83"	"1.615"
##	"-0.517"	"127"	"132.52"	"10.68"
##	"-0.517"	"157"	"163.42"	"12.429"
##	"-0.518"	"1"	"1.62"	"1.196"
##	"-0.518"	"3"	"4.21"	"2.337"
##	"-0.519"	"11"	"12.68"	"3.238"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.52"	"1"	"1.67"	"1.288"
##	"-0.52"	"0"	"0.52"	"0.674"
##	"-0.52"	"0"	"0.52"	"0.659"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.52"	"0"	"0.52"	"0.759"
##	"-0.52"	"3"	"3.9"	"1.732"
##	"-0.52"	"0"	"0.52"	"0.643"
##	"-0.52"	"1"	"1.6"	"1.155"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.52"	"0"	"0.52"	"0.659"
##	"-0.52"	"0"	"0.52"	"0.627"
##	"-0.52"	"0"	"0.52"	"0.772"
##	"-0.52"	"0"	"0.52"	"0.689"
##	"-0.52"	"1"	"1.67"	"1.288"
##	"-0.52"	"0"	"0.52"	"0.703"
##	"-0.52"	"0"	"0.52"	"0.627"
##	"-0.52"	"0"	"0.52"	"0.627"
##	"-0.52"	"0"	"0.52"	"0.627"
##	"-0.521"	"1"	"1.61"	"1.171"
##	"-0.525"	"1"	"1.64"	"1.219"
##	"-0.525"	"17"	"19.06"	"3.92"
##	"-0.525"	"3"	"4.04"	"1.979"
##	"-0.526"	"1"	"1.87"	"1.655"
##	"-0.526"	"12"	"13.78"	"3.386"
##	"-0.527"	"1"	"1.59"	"1.12"
##	"-0.528"	"27"	"29.73"	"5.173"
##	"-0.529"	"2"	"2.84"	"1.587"
##	"-0.529"	"2"	"2.84"	"1.587"
##	"-0.53"	"0"	"0.53"	"0.771"
##	"-0.53"	"0"	"0.53"	"0.703"
##	"-0.53"	"0"	"0.53"	"0.643"
##	"-0.53"	"0"	"0.53"	"0.658"
##	"-0.53"	"0"	"0.53"	"0.717"
##	"-0.53"	"0"	"0.53"	"0.643"
##	"-0.531"	"6"	"7.25"	"2.354"
##	"-0.532"	"16"	"18.31"	"4.341"
##	"-0.534"	"7"	"8.51"	"2.83"
##	"-0.534"	"3"	"4.09"	"2.04"
##	"-0.534"	"9"	"10.55"	"2.904"
##	"-0.535"	"8"	"9.49"	"2.787"
##	"-0.535"	"257"	"266.56"	"17.859"
##	"-0.536"	"271"	"279.45"	"15.763"
##	"-0.537"	"3"	"4.12"	"2.085"

##	"-0.539"	"1"	"1.63"	"1.169"
##	"-0.54"	"0"	"0.54"	"0.717"
##	"-0.54"	"0"	"0.54"	"0.797"
##	"-0.54"	"0"	"0.54"	"0.797"
##	"-0.54"	"0"	"0.54"	"0.731"
##	"-0.54"	"0"	"0.54"	"0.758"
##	"-0.54"	"0"	"0.54"	"0.717"
##	"-0.54"	"0"	"0.54"	"0.731"
##	"-0.54"	"0"	"0.54"	"0.784"
##	"-0.54"	"0"	"0.54"	"0.673"
##	"-0.54"	"1"	"1.76"	"1.408"
##	"-0.54"	"0"	"0.54"	"0.642"
##	"-0.54"	"0"	"0.54"	"0.784"
##	"-0.54"	"0"	"0.54"	"0.702"
##	"-0.54"	"1"	"1.76"	"1.408"
##	"-0.541"	"1"	"1.61"	"1.127"
##	"-0.542"	"1"	"1.62"	"1.144"
##	"-0.543"	"20"	"22.11"	"3.887"
##	"-0.544"	"151"	"157.55"	"12.031"
##	"-0.549"	"1"	"1.68"	"1.238"
##	"-0.55"	"0"	"0.55"	"0.77"
##	"-0.55"	"0"	"0.55"	"0.77"
##	"-0.55"	"37"	"40.11"	"5.658"
##	"-0.55"	"0"	"0.55"	"0.783"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.716"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.783"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.716"
##	"-0.55"	"0"	"0.55"	"0.757"
##	"-0.55"	"0"	"0.55"	"0.73"
##	"-0.55"	"0"	"0.55"	"0.77"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.857"
##	"-0.55"	"0"	"0.55"	"0.716"
##	"-0.55"	"0"	"0.55"	"0.73"
##	"-0.551"	"47"	"50.56"	"6.456"
##	"-0.551"	"1"	"1.76"	"1.379"
##	"-0.551"	"1"	"1.76"	"1.379"
##	"-0.552"	"2"	"2.81"	"1.468"
##	"-0.552"	"84"	"88.89"	"8.853"
##	"-0.553"	"2"	"2.97"	"1.755"
##	"-0.553"	"2"	"2.97"	"1.755"
##	"-0.553"	"2"	"2.97"	"1.755"
##	"-0.554"	"4"	"5.2"	"2.165"
##	"-0.555"	"3"	"4.1"	"1.982"
##	"-0.557"	"2"	"2.99"	"1.778"
##	"-0.559"	"1"	"1.77"	"1.377"
##	"-0.559"	"5"	"6.27"	"2.273"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.833"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.686"
##	-0.36	U	0.50	0.000

##	"-0.56"	"0"	"0.56"	"0.743"
##	"-0.56"	"0"	"0.56"	"0.756"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.743"
##	"-0.56"	"0"	"0.56"	"0.671"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.671"
##	"-0.56"	"0"	"0.56"	"0.701"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.671"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.671"
##	"-0.56"	"0"	"0.56"	"0.729"
##	"-0.56"	"0"	"0.56"	"0.715"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.743"
##	"-0.56"	"0"	"0.56"	"0.701"
##	"-0.56"	"0"	"0.56"	"0.729"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.729"
##	"-0.56"	"0"	"0.56"	"0.715"
##	"-0.56"	"0"	"0.56"	"0.743"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.561"	"8"	"9.76"	"3.137"
##	"-0.561"	"1"	"1.75"	"1.336"
##	"-0.562"	"58"	"61.88"	"6.904"
##	"-0.562"	"1"	"1.84"	"1.496"
##	"-0.562"	"11"	"13.15"	"3.825"
##	"-0.563"	"2"	"2.79"	"1.402"
##	"-0.563"	"7"	"8.45"	"2.576"
##	"-0.564"	"3"	"4.18"	"2.091"
##	"-0.564"	"12"	"13.95"	"3.456"
##	"-0.567"	"102"	"108.34"	"11.189"
##	"-0.567"	"1"	"1.82"	"1.445"
##	"-0.569"	"7"	"8.64"	"2.883"
##	"-0.569"	"1"	"1.74"	"1.3"
##	"-0.569"	"1"	"1.74"	"1.3"
##	"-0.57"	"0"	"0.57"	"0.655"
##	"-0.57"	"0"	"0.57"	"0.671"
##	"-0.57"	"0"	"0.57"	"0.82"
##	"-0.57"	"0"	"0.57"	"0.7"
##	"-0.57"	"0"	"0.57"	"0.714"
##	"-0.57"	"0"	"0.57"	"0.671"
##	"-0.57"	"1"	"1.91"	"1.596"
##	"-0.57"	"0"	"0.57"	"0.742"
##	"-0.57"	"0"	"0.57"	"0.82"
##	"-0.57"	"0"	"0.57"	"0.671"
##	"-0.57"	"0"	"0.57"	"0.671"
##	"-0.57"	"0"	"0.57"	"0.769"
##	"-0.57"	"0"	"0.57"	"0.671"
##	"-0.57"	"0"	"0.57"	"0.756"
##	"-0.57"	"0"	"0.57"	"0.728"
##	"-0.57"	"0"	"0.57"	"0.728"
		-		

"-0.57"	"0"	"0.57"	"0.742"
"-0.57"	"0"	"0.57"	"0.728"
"-0.57"	"0"	"0.57"	"0.7"
"-0.57"	"0"	"0.57"	"0.7"
"-0.572"	"5"	"6.41"	"2.466"
"-0.573"	"12"	"14.06"	"3.598"
"-0.574"	"1"	"1.64"	"1.115"
"-0.576"	"5"	"6.45"	"2.516"
"-0.576"	"119"	"125.81"	"11.819"
"-0.577"	"4"	"5.23"	"2.131"
"-0.577"	"4"	"5.37"	"2.373"
"-0.578"	"10"	"11.88"	"3.254"
"-0.578"	"1"		"1.21"
"-0.579"	"10"		"3.625"
			"0.768"
			"0.794"
	"0"		"0.684"
	"0"		"0.901"
		"0.58"	"0.768"
			"0.768"
			"0.768"
			"8.534"
			"0.768"
	•		"0.794"
	•		"0.855"
	-		"0.806"
	•		"0.713"
	•		"0.878"
	•		"0.713"
	•		"0.831"
	•		"0.768"
	•		"0.831"
	•	0.00	"0.669"
0.002			"4.439"
	_		"1.254"
	_		"1.441"
0.001			"22.414"
			"1.371" "2.784"
0.000	•		"5.046"
			"9.266"
			"4.184"
		2012.	"0.753"
	-	0.00	"1.848"
	_		"0.712"
			"0.793"
			"0.793"
			"0.767"
			"0.683"
			"0.753"
			"0.805"
			"0.793"
			"0.818"
			"0.74"
0.03	J	0.00	0.14
	"-0.57" "-0.57" "-0.572" "-0.573" "-0.574" "-0.576" "-0.576" "-0.577" "-0.577" "-0.578"	"-0.57" "0" "-0.57" "0" "-0.57" "0" "-0.57" "0" "-0.572" "5" "-0.574" "11" "-0.576" "5" "-0.576" "119" "-0.577" "4" "-0.577" "4" "-0.578" "10" "-0.578" "10" "-0.58" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0" "-0.59" "0"	"-0.57" "0" "0.57" "-0.57" "0" "0.57" "-0.57" "0" "0.57" "-0.57" "0" "0.57" "-0.572" "5" "6.41" "-0.573" "12" "14.06" "-0.574" "1" "1.64" "-0.576" "5" "6.45" "-0.576" "119" "125.81" "-0.577" "4" "5.23" "-0.577" "4" "5.37" "-0.578" "10" "11.88" "-0.578" "10" "11.88" "-0.578" "10" "12.1" "-0.58" "0" "0.58" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59" "-0.59" "0" "0.59"

##	"-0.59"	"0"	"0.59"	"0.805"
##	"-0.59"	"0"	"0.59"	"0.753"
##	"-0.591"	"42"	"45.85"	"6.511"
##	"-0.591"	"1"	"1.74"	"1.252"
##	"-0.592"	"1"	"1.71"	"1.2"
##	"-0.595"	"1"	"1.7"	"1.176"
##	"-0.596"	"14"	"16.5"	"4.191"
##	"-0.596"	"1"	"1.83"	"1.393"
##	"-0.598"	"3"	"4.13"	"1.889"
##	"-0.598"	"2"	"2.98"	"1.639"
##	"-0.598"	"2"	"2.98"	"1.639"
##	"-0.598"	"2"	"2.98"	"1.639"
##	"-0.598"	"2"	"2.98"	"1.639"
##	"-0.598"	"2"	"2.98"	"1.639"
##	"-0.599"	"1"	"1.7"	"1.168"
##	"-0.599"	"1"	"1.77"	"1.286"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.752"
##	"-0.6"	"0"	"0.6"	"0.791"
##	"-0.6"	"0"	"0.6"	"0.725"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.752"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.778"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.778"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.602"	"2"	"3.07"	"1.777"
##	"-0.603"	"1"	"1.85"	"1.41"
##	"-0.605"	"4"	"5.21"	"2.001"
##	"-0.605"	"20"	"23.11"	"5.136"
##	"-0.607"	"2"	"2.99"	"1.63"
##	"-0.607"	"3"	"4.1"	"1.812"
##	"-0.608"	"1"	"1.89"	"1.463"
##	"-0.609"	"31"	"34.52"	"5.781"
##	"-0.61"	"0"	"0.61"	"0.737"
##	"-0.61"	"18"	"20.47"	"4.046"
##	"-0.61"	"0"	"0.61"	"0.777"
##	"-0.61"	"0"	"0.61"	"0.723"
##	"-0.61"	"0"	"0.61"	"0.815"
##	"-0.61"	"0"	"0.61"	"0.737"
##	"-0.61"	"0"	"0.61"	"0.764"
##	"-0.61"	"0"	"0.61"	"0.852"
##	"-0.612"	"13"	"15.7"	"4.414"
##	"-0.612"	"7"	"8.79"	"2.924"
##	"-0.612"	"1"	"1.83"	"1.356"
##	"-0.615"	"31"	"34.28"	"5.337"
##	"-0.616"	"5"	"6.35"	"2.19"

##	"-0.617"	"1"	"1.82"	"1.329"
##	"-0.617"	"3"	"4.21"	"1.961"
##	"-0.618"	"5"	"6.65"	"2.668"
##	"-0.619"	"202"	"210.76"	"14.152"
##	"-0.62"	"0"	"0.62"	"0.85"
##	"-0.62"	"0"	"0.62"	"0.826"
##	"-0.62"	"0"	"0.62"	"0.776"
##	"-0.62"	"0"	"0.62"	"0.763"
##	"-0.62"	"0"	"0.62"	"0.789"
##	"-0.62"	"0"	"0.62"	"0.838"
##	"-0.62"	"0"	"0.62"	"0.874"
##	"-0.62"	"0"	"0.62"	"0.801"
##	"-0.62"	"4"	"5.26"	"2.033"
##	"-0.62"	"4"	"5.26"	"2.033"
##	"-0.62"	"0"	"0.62"	"0.776"
##	"-0.62"	"0"	"0.62"	"0.789"
##	"-0.62"	"0"	"0.62"	"0.736"
##	"-0.62"	"0"	"0.62"	"0.789"
##	"-0.62"	"0"	"0.62"	"0.826"
##	"-0.621"	"19"	"22.2"	"5.15"
##	"-0.624"	"4"	"5.38"	"2.21"
##	"-0.625"	"3"	"4.33"	"2.128"
##	"-0.626"	"25"	"28.36"	"5.368"
##	"-0.627"	"72"	"77.61"	"8.944"
##	"-0.628"	"2"	"3.23"	"1.958"
##	"-0.628"	"2"	"3.17"	"1.864"
##	"-0.629"	"37"	"40.58"	"5.689"
##	"-0.63"	"0"	"0.63"	"0.8"
##	"-0.63"	"0"	"0.63"	"0.812"
##	"-0.63"	"0"	"0.63"	"0.734"
##	"-0.63"	"0"	"0.63"	"0.734"
##	"-0.63"	"0"	"0.63"	"0.787"
##	"-0.63"	"0"	"0.63"	"0.734"
##	"-0.63"	"3"	"4.3"	"2.062"
##	"-0.63"	"0"	"0.63"	"0.812"
##	"-0.63"	"0"	"0.63"	"0.734"
##	"-0.63"	"0"	"0.63"	"0.8"
##	"-0.631"	"1"	"1.84" "1.84"	"1.331"
##	"-0.631"	"1"		"1.331" "4.88"
##	"-0.631" "-0.631"	"20" "1"	"23.08" "1.78"	"4.88" "1.236"
##		"1" "12"	"1.78" "14.45"	
##	"-0.631"		"14.45" "25.78"	"3.88" "4.401"
## ##	"-0.632" "-0.632"	"23" "2"	"25.78" "3.22"	"4.401"
## ##	"-0.632"	"175"	"3.22" "183.11"	"12.827"
	"-0.632"	"175"	"17.53"	"4.004"
##	"-0.634"			"2.459"
## ##	"-0.634" "-0.634"	"4" "51"	"5.56" "55.41"	"2.459" "6.952"
##	"-0.634" "-0.635"	"51" "12"	"55.41"	"6.952"
##	"-0.635" "-0.635"	"12"	"14.07"	"1.669"
## ##	"-0.635" "-0.638"	"2" "47"	"3.06" "51.55"	"1.669" "7.13"
## ##	"-0.638" "-0.639"	"47" "317"	"51.55" "328.45"	"7.13" "17.907"
## ##	"-0.639"	"12"	"14.26"	"3.538"
##	"-0.64"	"0"	"0.64"	"0.811"
ਜਜ	0.04	J	0.04	0.011

##	"-0.64"	"0"	"0.64"	"0.811"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.746"
##	"-0.64"	"0"	"0.64"	"0.704"
##	"-0.64"	"4"	"5.71"	"2.672"
##	"-0.64"	"0"	"0.64"	"0.759"
##	"-0.64"	"0"	"0.64"	"0.811"
##	"-0.64"	"0"	"0.64"	"0.859"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.704"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.746"
##	"-0.64"	"0"	"0.64"	"0.823"
##	"-0.64"	"0"	"0.64"	"0.746"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.704"
##	"-0.64"	"0"	"0.64"	"0.811"
##	"-0.64"	"0"	"0.64"	"0.759"
##	"-0.64"	"0"	"0.64"	"0.732"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.64"	"0"	"0.64"	"0.798"
##	"-0.641"	"2"	"3.13"	"1.762"
##	"-0.641"	"3"	"4.29"	"2.012"
##	"-0.641"	"5"	"6.53"	"2.389"
##	"-0.642"	"2"	"3.14"	"1.775"
##	"-0.642"	"44"	"48.94"	"7.695"
##	"-0.644"	"1"	"1.97"	"1.507"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"2"	"3.12"	"1.737"
##	"-0.645"	"2"	"3.12"	"1.737"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"2"	"3.12"	"1.737"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.646"	"1"	"1.97"	"1.501"
##	"-0.646"	"1"	"1.97"	"1.501"
##	"-0.646"	"3"	"4.31"	"2.029"
##	"-0.647"	"1"	"1.96"	"1.483"
##	"-0.647"	"11"	"13.48"	"3.831"
##	"-0.647"	"1"	"1.81"	"1.253"
##	"-0.648"	"7"	"8.87"	"2.887"
##	"-0.648"	"3"	"4.25"	"1.93"
##	"-0.648"	"1"	"1.88"	"1.358"
##	"-0.648"	"5"	"6.63"	"2.517"

##	"-0.65"	"0"	"0.65"	"0.783"
##	"-0.65"	"0"	"0.65"	"0.757"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.869"
##	"-0.65"	"0"	"0.65"	"0.744"
##	"-0.65"	"0"	"0.65"	"0.869"
##	"-0.65"	"5"	"6.46"	"2.245"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.845"
##	"-0.65"	"0"	"0.65"	"0.809"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"3"	"4.32"	"2.029"
##	"-0.65"	"0"	"0.65"	"0.892"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.652"	"15"	"17.7"	"4.14"
##	"-0.653"	"42"	"45.98"	"6.092"
##	"-0.654"	"1"	"1.87"	"1.331"
##	"-0.655"	"1"	"1.85"	"1.298"
##	"-0.655"	"5"	"6.59"	"2.429"
##	"-0.655"	"7"	"8.81"	"2.762"
##	"-0.657"	"58"	"63.34"	"8.127"
##	"-0.66"	"0"	"0.66"	"0.781"
##	"-0.66"	"0"	"0.66"	"0.807"
##	"-0.66"	"0"	"0.66"	"0.768"
##	"-0.66"	"1"	"2.03"	"1.56"
##	"-0.66"	"0"	"0.66"	"0.819"
##	"-0.66"	"0"	"0.66"	"0.655"
##	"-0.66"	"0"	"0.66"	"0.831"
##	"-0.66"	"0"	"0.66"	"0.781"
##	"-0.66"	"1"	"2.03"	"1.56"
##	"-0.66"	"0"	"0.66"	"0.714"
##	"-0.66"	"0"	"0.66"	"0.655"
##	"-0.663"	"1"	"1.76"	"1.147"
##	"-0.666"	"56"	"60.64"	"6.971"
##	"-0.669"	"17"	"19.94"	"4.397"
##	"-0.67"	"0"	"0.67"	"0.865"
##	"-0.67"	"0"	"0.67"	"0.805"
##	"-0.67"	"0"	"0.67"	"0.877"
##	"-0.67"	"0"	"0.67"	"0.779"
##	"-0.67"	"0"	"0.67"	"0.726"
##	"-0.67"	"0"	"0.67"	"0.829"
##	"-0.67"	"0"	"0.67"	"0.829"
##	"-0.67"	"0"	"0.67"	"0.779"
##	"-0.67"	"0"	"0.67"	"0.911"
##	"-0.67"	"0"	"0.67"	"0.726"
##	"-0.67"	"3"	"4.42"	"2.119"
##	"-0.67"	"0"	"0.67"	"0.779"
##	"-0.67"	"0"	"0.67"	"0.792"
##	"-0.671"	"38"	"42.36"	"6.496"
##	"-0.673"	"1"	"1.98"	"1.456"
##	"-0.673"	"15"	"17.97"	"4.416"
##	"-0.673"	"6"	"7.84"	"2.733"
##	"-0.673"	"1"	"1.98"	"1.456"
	0.010	-	1.00	1.100

##	"-0.673"	"11"	"13.58"	"3.833"
##	"-0.673"	"8"	"10"	"2.971"
##	"-0.673"	"1"	"1.98"	"1.456"
##	"-0.674"	"9"	"11.61"	"3.871"
##	"-0.676"	"8"	"10.24"	"3.312"
##	"-0.676"	"10"	"12.19"	"3.24"
##	"-0.677"	"2"	"3.22"	"1.801"
##	"-0.677"	"1"	"1.9"	"1.33"
##	"-0.678"	"71"	"76.79"	"8.534"
##	"-0.679"	"4"	"5.43"	"2.105"
##	"-0.68"	"1"	"2.12"	"1.647"
##	"-0.68"	"1"	"2.12"	"1.647"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.909"
##	"-0.68"	"0"	"0.68"	"0.851"
##	"-0.68"	"0"	"0.68"	"0.827"
##	"-0.68"	"0"	"0.68"	"0.827"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.851"
##	"-0.68"	"0"	"0.68"	"0.815"
##	"-0.68"	"0"	"0.68"	"0.79"
##	"-0.681"	"4"	"5.69"	"2.481"
##	"-0.681"	"51"	"56.45"	"8.002"
##	"-0.682"	"5"	"6.7"	"2.492"
##	"-0.682"	"13"	"15.67"	"3.916"
##	"-0.682"	"13"	"15.67"	"3.916"
##	"-0.683"	"16"	"18.61"	"3.819"
##	"-0.683"	"11"	"13.79"	"4.086"
##	"-0.684"	"1"	"1.97"	"1.417"
##	"-0.686"	"13"	"15.75"	"4.011"
##	"-0.686"	"97"	"103.39"	"9.315"
##	"-0.686"	"1"	"1.87"	"1.269"
##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.8"
##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.813"
##	"-0.69"	"0"	"0.69"	"0.8"
##	"-0.69"	"0"	"0.69"	"0.692"
##	"-0.69"	"0"	"0.69"	"0.761"
##	"-0.69"	"0"	"0.69"	"0.825"
##	"-0.69"	"0"	"0.69"	"0.787"
##	"-0.69"	"0"	"0.69"	"0.8"
##	"-0.69"	"0"	"0.69"	"0.813"
##	"-0.691"	"4"	"5.51"	"2.186"
##	"-0.692"	"43"	"47.7"	"6.796"
##	"-0.693"	"2"	"3.34"	"1.934"
##	"-0.693"	"3"	"4.46"	"2.105"
##	"-0.693" "-0.693"	"2"	"3.26"	"1.818"
	"-0.693"	"2" "12"	"3.26" "14.78"	"4.014"
##	"-0.693" "-0.698"	"12" "16"	"14.78" "18.72"	"3.895"
##	"-0.698" "-0.7"	"16"	"18.72"	"3.895"
##		-		"0.859"
##	"-0.7"	"0"	"0.7"	

##	"-0.7"	"0"	"0.7"	"0.823"
##	"-0.7"	"0"	"0.7"	"0.823"
##	"-0.7"	"0"	"0.7"	"0.823"
##	"-0.7"	"0"	"0.7"	"0.823"
##	"-0.7"	"0"	"0.7"	"0.732"
##	"-0.7"	"0"	"0.7"	"0.859"
##	"-0.7"	"0"	"0.7"	"0.882"
##	"-0.702"	"168"	"178.11"	"14.393"
##	"-0.704"	"4"	"5.74"	"2.473"
##	"-0.705"	"7"	"9.15"	"3.05"
##	"-0.706"	"4"	"5.51"	"2.139"
##	"-0.709"	"3"	"4.44"	"2.032"
##	"-0.71"	"0"	"0.71"	"0.868"
##	"-0.71"	"0"	"0.71"	"0.743"
##	"-0.71"	"0"	"0.71"	"0.701"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.967"
##	"-0.71"	"0"	"0.71"	"0.844"
##	"-0.71"	"0"	"0.71"	"0.856"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.756"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.844"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.711"	"3"	"4.69"	"2.377"
##	"-0.713"	"1"	"2.05"	"1.473"
##	"-0.714"	"1"	"2.02"	"1.428"
##	"-0.714"	"5"	"6.77"	"2.478"
##	"-0.715"	"5"	"6.96"	"2.741"
##	"-0.715"	"65"	"70.33"	"7.454"
##	"-0.715" "-0.715"	"3"	"4.35" "19.34"	"1.888" "4.671"
##	"-0.715" "-0.715"	"16" "12"	"19.34" "14.56"	"4.671"
## ##	"-0.715" "-0.716"	"2"	"3.41"	"1.97"
##	"-0.716"	"4"	"5.75"	"2.443"
##	"-0.716"	"2"	"3.31"	"1.83"
##	"-0.717"	"2"	"3.15"	"1.604"
##	"-0.718"	"1"	"2.12"	"1.559"
##	"-0.718"	"1"	"1.88"	"1.225"
##	"-0.719"	"46"	"51.63"	"7.827"
##	"-0.719"	"1"	"2.2"	"1.67"
##	"-0.72"	"0"	"0.72"	"0.954"
##	"-0.72"	"3"	"4.47"	"2.042"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.922"
##	"-0.72"	"0"	"0.72"	"0.817"
##	"-0.72"	"0"	"0.72"	"0.922"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.922"
##	"-0.72"	"0"	"0.72"	"0.922"
##	"-0.72"	"0"	"0.72"	"0.805"
##	"-0.722"	"14"	"17.08"	"4.266"

##	"-0.722"	"56"	"61.73"	"7.942"
##	"-0.722"	"2"	"3.25"	"1.731"
##	"-0.723"	"2"	"3.32"	"1.825"
##	"-0.726"	"11"	"13.76"	"3.801"
##	"-0.727"	"11"	"13.65"	"3.647"
##	"-0.728"	"4"	"5.72"	"2.362"
##	"-0.73"	"0"	"0.73"	"0.839"
##	"-0.73"	"1"	"1.92"	"1.261"
##	"-0.73"	"0"	"0.73"	"0.874"
##	"-0.73"	"0"	"0.73"	"0.679"
##	"-0.73"	"0"	"0.73"	"0.973"
##	"-0.73"	"0"	"0.73"	"0.874"
##	"-0.73"	"0"	"0.73"	"0.763"
##	"-0.73"	"0"	"0.73"	"0.897"
##	"-0.73"	"0"	"0.73"	"0.815"
##	"-0.73"	"110"	"117.86"	"10.768"
##	"-0.73"	"0"	"0.73"	"0.897"
##	"-0.73"	"0"	"0.73"	"0.863"
##	"-0.73"	"0"	"0.73"	"0.897"
##	"-0.73"	"0"	"0.73"	"0.897"
##	"-0.73"	"0"	"0.73"	"0.874"
##	"-0.73"	"0"	"0.73"	"0.897"
##	"-0.73"	"0"	"0.73"	"0.941"
##	"-0.732"	"17"	"20.03"	"4.14"
##	"-0.735"	"37"	"41.73"	"6.432"
##	"-0.736"	"61"	"66.89"	"8.006"
##	"-0.737"	"4"	"5.68"	"2.278"
##	"-0.738"	"5"	"6.89"	"2.562"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.738"	"1"	"2.09"	"1.478"
## ##	"-0.738"	"2"	"3.54" "2.09"	"2.086" "1.478"
## ##	"-0.738" "-0.738"	"1" "1"	"2.09"	"1.478"
## ##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.739"	"11"	"13.26"	"3.057"
##	"-0.74"	"0"	"0.74"	"0.812"
##	"-0.74"	"7"	"9.15"	"2.907"
##	"-0.74"	"0"	"0.74"	"0.848"
##	"-0.74"	"0"	"0.74"	"0.787"
##	"-0.74"	"0"	"0.74"	"0.895"
##	"-0.74"	"0"	"0.74"	"0.939"
##	"-0.74"	"0"	"0.74"	"0.848"
##	"-0.74"	"6"	"8.08"	"2.809"
##	"-0.74"	"17"	"20.4"	"4.597"
##	"-0.74"	"0"	"0.74"	"0.883"
##	"-0.74"	"0"	"0.74"	"0.86"
##	"-0.74"	"0"	"0.74"	"0.917"
##	"-0.74"	"0"	"0.74"	"0.96"
##	"-0.74"	"0"	"0.74"	"0.787"
##	"-0.74"	"0"	"0.74"	"0.824"

##	"-0.74"	"0"	"0.74"	"0.939"
##	"-0.74"	"0"	"0.74"	"0.895"
##	"-0.74"	"0"	"0.74"	"0.86"
##	"-0.74"	"0"	"0.74"	"0.96"
##	"-0.741"	"4"	"5.83"	"2.47"
##	"-0.742"	"2"	"3.37"	"1.846"
##	"-0.744"	"1"	"1.98"	"1.318"
##	"-0.744"	"1"	"2.02"	"1.371"
##	"-0.746"	"7"	"9.2"	"2.947"
##	"-0.746"	"94"	"100.65"	"8.916"
##	"-0.746"	"92"	"99.6"	"10.188"
##	"-0.747"	"8"	"10.46"	"3.295"
##	"-0.748"	"9"	"11.37"	"3.168"
##	"-0.749"	"7"	"9.13"	"2.845"
##	"-0.75"	"0"	"0.75"	"0.796"
##	-0.75 "-0.75"	"0"	"0.75"	"0.821"
	"-0.75"	"0"	"0.75"	"0.783"
##			"0.75" "0.75"	
##	"-0.75" "-0.75"	"0" "0"	"0.75" "0.75"	"0.783" "0.783"
##				01.00
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"0"	"0.75"	"0.783"
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"0"	"0.75"	"0.783"
##	"-0.75"	"0"	"0.75"	"0.783"
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"0"	"0.75"	"0.833"
##	"-0.75"	"0"	"0.75"	"0.892"
##	"-0.751"	"8"	"10.53"	"3.368"
##	"-0.751"	"4"	"5.68"	"2.238"
##	"-0.757"	"2"	"3.23"	"1.626"
##	"-0.757"	"1"	"2.02"	"1.348"
##	"-0.757"	"1"	"2.08"	"1.426"
##	"-0.758"	"2"	"3.43"	"1.887"
##	"-0.758"	"2"	"3.31"	"1.727"
##	"-0.758"	"3"	"4.58"	"2.085"
##	"-0.758"	"3"	"4.58"	"2.085"
##	"-0.759"	"2"	"3.52"	"2.002"
##	"-0.759"	"16"	"19.25"	"4.281"
##	"-0.759"	"29"	"33.31"	"5.681"
##	"-0.759"	"2"	"3.39"	"1.831"
##	"-0.76"	"0"	"0.76"	"0.842"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"16"	"19.5"	"4.605"
##	"-0.76"	"21"	"24.76"	"4.948"
##	"-0.76"	"0"	"0.76"	"0.911"
##	"-0.76"	"0"	"0.76"	"0.911"
##	"-0.76"	"0"	"0.76"	"0.9"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"0"	"0.76"	"0.78"
##	"-0.76"	"0"	"0.76"	"0.944"
##	"-0.76"	"0"	"0.76"	"0.78"

##	"-0.76"	"0"	"0.76"	"0.83"
##	"-0.76"	"0"	"0.76"	"0.78"
##	"-0.761"	"54"	"59.46"	"7.174"
##	"-0.761"	"2"	"3.44"	"1.893"
##	"-0.762"	"18"	"21.6"	"4.725"
##	"-0.762"	"3"	"4.61"	"2.112"
##	"-0.762"	"1"	"2.16"	"1.522"
##	"-0.762"	"1"	"2.06"	"1.391"
##	"-0.763"	"1"	"2.09"	"1.429"
##	"-0.763"	"3"	"4.52"	"1.992"
##	"-0.763"	"3"	"4.52"	"1.992"
##	"-0.763"	"3"	"4.52"	"1.992"
##	"-0.764"	"1"	"2.2"	"1.57"
##	"-0.766"	"1"	"1.97"	"1.267"
##	"-0.766"	"1"	"2.06"	"1.384"
##	"-0.768"	"80"	"86.74"	"8.777"
##	"-0.768"	"21"	"24.76"	"4.897"
##	"-0.769"	"4"	"5.74"	"2.264"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.908"
##	"-0.77"	"0"	"0.77"	"0.886"
##	"-0.77"	"1"	"2.13"	"1.468"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.92"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.863"
##	"-0.77"	"0"	"0.77"	"0.863"
##	"-0.77"	"0"	"0.77"	"0.863"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.952"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.763"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.839"
##	"-0.77"	"0"	"0.77"	"0.952"
##	"-0.77"	"0"	"0.77"	"0.886"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.839"
##	"-0.77"	"0"	"0.77"	"0.815"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.763"
##	"-0.77"	"0"	"0.77"	"0.827"
	· · · · ·	•	· · · ·	0.021

##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.77"	"0"	"0.77"	"0.827"
##	"-0.771"	"1"	"2.17"	"1.518"
##	"-0.772"	"2"	"3.44"	"1.866"
##	"-0.772"	"3"	"4.47"	"1.904"
##	"-0.774"	"2"	"3.24"	"1.603"
##	"-0.775"	"11"	"13.79"	"3.602"
##	"-0.776"	"1"	"2.16"	"1.496"
##	"-0.78"	"0"	"0.78"	"0.98"
##	"-0.78"	"0"	"0.78"	"0.894"
##	"-0.78"	"0"	"0.78"	"0.848"
##	"-0.78"	"0"	"0.78"	"0.848"
##	"-0.78"	"0"	"0.78"	"0.811"
##	"-0.78"	"0"	"0.78"	"0.917"
##	"-0.78"	"0"	"0.78"	"0.824"
##	"-0.78"	"0"	"0.78"	"0.824"
##	"-0.78"	"0"	"0.78"	"0.905"
##	"-0.78"	"0"	"0.78"	"0.824"
##	"-0.78"	"0"	"0.78"	"0.883"
##	"-0.78"	"0"	"0.78"	"0.811"
##	"-0.782"	"7"	"9.29"	"2.928"
##	"-0.782"	"12"	"14.61"	"3.336"
##	"-0.783"	"2"	"3.57"	"2.006"
##	"-0.784"	"7"	"9.68"	"3.417"
##	"-0.788"	"2"	"3.39"	"1.763"
##	"-0.789"	"9"	"11.51"	"3.18"
##	"-0.79"	"11"	"14.05"	"3.862"
##	"-0.79"	"2"	"3.36"	"1.72"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.82"
##	"-0.79"	"0"	"0.79"	"0.808"
##	"-0.79"	"0"	"0.79"	"0.844"
##	"-0.79"	"0"	"0.79"	"0.715"
##	"-0.79"	"0"	"0.79"	"0.808"
##	"-0.79"	"4"	"5.84"	"2.33"
##	"-0.79"	"0"	"0.79"	"0.946"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.924"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"11"	"14.05"	"3.862"
##	"-0.79"	"0"	"0.79"	"0.844"
##	"-0.791"	"1"	"2.06"	"1.34"
##	"-0.792"	"2"	"3.5"	"1.894"
##	"-0.792"	"88"	"96.36"	"10.554"
##	"-0.793"	"0"	"0.81"	"1.022"
##	"-0.794"	"3"	"4.82"	"2.294"
##	"-0.794"	"0"	"0.83"	"1.045"
##	"-0.795"	"22"	"25.97"	"4.992"
##	"-0.796"	"15"	"17.79"	"3.506"
##	"-0.796"	"4"	"5.81"	"2.273"

##	"-0.796"	"1"	"2.35"	"1.696"
##	"-0.796"	"1"	"2.35"	"1.696"
##	"-0.797"	"2"	"3.53"	"1.92"
##	"-0.797"	"8"	"10.31"	"2.898"
##	"-0.798"	"1"	"2.29"	"1.616"
##	"-0.798"	"1"	"2.22"	"1.528"
##	"-0.798"	"115"	"124.61"	"12.043"
##	"-0.799"	"1"	"2.09"	"1.364"
##	"-0.799"	"1"	"2.09"	"1.364"
##	"-0.799"	"2"	"3.47"	"1.839"
##	"-0.799"	"1"	"2.09"	"1.364"
##	"-0.8"	"0"	"0.8"	"0.899"
##	"-0.8"	"0"	"0.8"	"0.974"
##	"-0.8"	"0"	"0.8"	"0.943"
##	"-0.8"	"276"	"289.32"	"16.642"
##	"-0.8"	"2"	"3.52"	"1.899"
##	"-0.8"	"0"	"0.8"	"0.876"
##	"-0.8"	"0"	"0.8"	"0.865"
##	"-0.8"	"0"	"0.8"	"0.829"
##	"-0.8"	"0"	"0.8"	"0.791"
##	"-0.8"	"0"	"0.8"	"0.888"
##	"-0.8"	"0"	"0.8"	"0.765"
##	"-0.8"	"0"	"0.8"	"0.791"
##	"-0.8"	"0"	"0.8"	"0.921"
##	"-0.8"	"0"	"0.8"	"0.964"
##	"-0.8"	"1"	"2.06"	"1.324"
##	"-0.8"	"0"	"0.8"	"0.853"
##	"-0.801"	"1"	"2.23"	"1.536"
##	"-0.801"	"1"	"2.23"	"1.536"
##	"-0.801"	"1"	"2.18"	"1.473"
##	"-0.801"	"1"	"2.23"	"1.536"
##	"-0.804"	"2"	"3.41"	"1.753"
##	"-0.804"	"1"	"2.15"	"1.431"
##	"-0.804"	"12"	"14.81"	"3.495"
##	"-0.805"	"3"	"4.57"	"1.95"
##	"-0.806"	"14"	"17.35"	"4.155"
##	"-0.806"	"7"	"9.36"	"2.929"
##	"-0.806"	"7"	"9.36"	"2.929"
##	"-0.806"	"7"	"9.36"	"2.929"
##	"-0.809"	"21"	"24.98"	"4.917"
##	"-0.809"	"1"	"2.27"	"1.569"
##	"-0.81"	"2"	"3.36"	"1.679"
##	"-0.81"	"2"	"3.36"	"1.679"
##	"-0.81"	"2"	"3.36"	"1.679"
##	"-0.81"	"0"	"0.81"	"0.907"
##	"-0.81"	"2"	"3.36"	"1.679"
##	"-0.81"	"2"	"3.36"	"1.679"
##	"-0.81"	"0"	"0.81"	"0.918"
##	"-0.81"	"0"	"0.81"	"0.907"
##	"-0.81"	"0"	"0.81"	"0.849"
##	"-0.81"	"0"	"0.81"	"0.929"
##	"-0.81"	"0"	"0.81"	"0.918"
##	"-0.812"	"31"	"36.03"	"6.191"
##	"-0.812"	"1"	"2.09"	"1.342"

##	"-0.813"	"1"	"2.27"	"1.563"
##	"-0.813"	"1"	"2.18"	"1.452"
##	"-0.813"	"1"	"2.18"	"1.452"
##	"-0.813"	"19"	"22.51"	"4.319"
##	"-0.814"	"13"	"15.88"	"3.537"
##	"-0.814"	"49"	"54.65"	"6.937"
##	"-0.814"	"2"	"3.29"	"1.585"
##	"-0.815"	"19"	"22.55"	"4.354"
##	"-0.816"	"48"	"53.74"	"7.038"
##	"-0.816"	"60"	"66.48"	"7.939"
##	"-0.816"	"31"	"35.57"	"5.602"
##	"-0.817"	"464"	"483.16"	"23.461"
##	"-0.819"	"5"	"7.05"	"2.504"
##	"-0.82"	"0"	"0.82"	"0.857"
##	"-0.82"	"0"	"0.82"	"0.903"
##	"-0.82"	"0"	"0.82"	"0.857"
##	"-0.82"	"0"	"0.82"	"0.869"
##	"-0.82"	"0"	"0.82"	"0.809"
##	"-0.82"	"0"	"0.82"	"0.903"
##	"-0.82"	"0"	"0.82"	"0.869"
##	"-0.82"	"0"	"0.82"	"0.809"
##	"-0.82"	"0"	"0.82"	"0.936"
##	"-0.82"	"0"	"0.82"	"0.936"
##	"-0.82"	"0"	"0.82"	"0.968"
##	"-0.82"	"0"	"0.82"	"0.857"
##	"-0.821"	"2"	"3.29"	"1.572"
##	"-0.822"	"15"	"18.56"	"4.331"
##	"-0.822"	"1"	"2.37"	"1.668"
##	"-0.822"	"41"	"46.23"	"6.363"
##	"-0.822"	"3"	"4.83"	"2.225"
##	"-0.825"	"2"	"3.5"	"1.817"
##	"-0.825"	"3"	"4.64"	"1.987" "2.764"
##	"-0.825" "-0.825"	"5" "12"	"7.28" "14.75"	"3.334"
##	"-0.825" "-0.826"	"12"	"14.75" "3.55"	
## ##	"-0.828"	"0"	"3.55" "0.87"	"1.877" "1.051"
##	"-0.828"	"0"	"0.87"	"1.051"
##	"-0.828"	"0"	"0.87"	"1.051"
##	"-0.828"	"5"	"7.38"	"2.874"
##	"-0.828"	"1"	"2.26"	"1.522"
##	"-0.829"	"11"	"13.94"	"3.547"
##	"-0.829"	"1"	"2.02"	"1.231"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.83"	"0"	"0.83"	"0.9"
##	"-0.83"	"0"	"0.83"	"0.842"
##	"-0.83"	"0"	"0.83"	"0.865"
##	"-0.83"	"0"	"0.83"	"0.922"
##	"-0.83"	"0"	"0.83"	"0.817"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.83"	"1"	"2.27"	"1.53"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.83"	"0"	"0.84"	"1.012"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.83"	"0"	"0.83"	"0.911"

##	"-0.83"	"0"	"0.83"	"0.829"
##	"-0.83"	"0"	"0.83"	"0.829"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.831"	"3"	"4.65"	"1.987"
##	"-0.832"	"6"	"8.31"	"2.777"
##	"-0.833"	"243"	"255.46"	"14.964"
##	"-0.833"	"1"	"2.15"	"1.381"
##	"-0.833"	"1"	"2.15"	"1.381"
##	"-0.833"	"1"	"2.15"	"1.381"
##	"-0.834"	"1"	"2.29"	"1.546"
##	"-0.835"	"1"	"2.47"	"1.761"
##	"-0.835"	"172"	"183.02"	"13.2"
##	"-0.835"	"1"	"2.31"	"1.568"
##	"-0.835"	"1"	"2.31"	"1.568"
##	"-0.835"	"1"	"2.07"	"1.281"
##	"-0.835"	"1"	"2.24"	"1.485"
##	"-0.835"	"1"	"2.07"	"1.281"
##	"-0.835"	"1"	"2.07"	"1.281"
##	"-0.836"	"1"	"2.28"	"1.531"
##	"-0.836"	"18"	"21.97"	"4.747"
##	"-0.837"	"31"	"35.82"	"5.757"
##	"-0.837"	"61"	"66.44"	"6.5"
##	"-0.839"	"1"	"2.28"	"1.525"
##	"-0.839"	"2"	"3.63"	"1.942"
##	"-0.839"	"2"	"3.52"	"1.812"
##	"-0.84"	"0"	"0.84"	"0.896"
##	"-0.84"	"0"	"0.84"	"0.884"
##	"-0.84"	"0"	"0.84"	"0.861"
##	"-0.84"	"1"	"2.3"	"1.547"
##	"-0.84"	"0"	"0.84"	"0.884"
##	"-0.841"	"43"	"48.32"	"6.326"
##	"-0.845"	"1"	"2.06"	"1.254"
##	"-0.845"	"1"	"2.32"	"1.563"
##	"-0.845"	"1"	"2.06"	"1.254"
##	"-0.846"	"1"	"2.07"	"1.265"
##	"-0.847"	"23"	"27.48"	"5.289"
##	"-0.847"	"0"	"0.86"	"1.015"
##	"-0.847"	"0"	"0.86"	"1.015"
##	"-0.847"	"0"	"0.86"	"1.015"
##	"-0.848"	"34"	"38.94"	"5.824"
##	"-0.848"	"5"	"7.05"	"2.418"
##	"-0.848"	"5"	"7.05"	"2.418"
##	"-0.849"	"5"	"7.15"	"2.532"
##	"-0.849"	"138"	"148.02"	"11.803"
##	"-0.85"	"58"	"64.11"	"7.187"
##	"-0.85"	"0"	"0.85"	"0.936"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"1"	"2.14"	"1.341"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"0"	"0.85"	"0.936"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"1"	"2.14"	"1.341"
##	"-0.85"	"0"	"0.85"	"0.857"

##	"-0.85"	"0"	"0.85"	"0.845"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"0"	"0.85"	"0.892"
##	"-0.85"	"0"	"0.85"	"0.989"
##	"-0.851"	"37"	"42.14"	"6.04"
##	"-0.851"	"53"	"59.32"	"7.425"
##	"-0.851"	"6"	"8.65"	"3.115"
##	"-0.852"	"2"	"3.5"	"1.761"
##	"-0.853"	"1"	"2.43"	"1.677"
##	"-0.854"	"3"	"4.8"	"2.108"
##	"-0.855"	"13"	"16.24"	"3.788"
##	"-0.855"	"43"	"48.26"	"6.152"
##	"-0.857"	"20"	"24.23"	"4.938"
##	"-0.857"	"1"	"2.31"	"1.529"
##	"-0.857"	"1"	"2.2"	"1.4"
##	"-0.858"	"2"	"3.59"	"1.854"
##	"-0.858"	"1"	"2.17"	"1.364"
##	"-0.859"	"13"	"16.32"	"3.866"
##	"-0.859"	"19"	"23.19"	"4.88"
##	"-0.86"	"0"	"0.86"	"0.932"
##	"-0.86"	"0"	"0.86"	"0.841"
##	"-0.86"	"0"	"0.86"	"0.865"
##	"-0.86"	"0"	"0.86"	"0.899"
##	"-0.86"	"0"	"0.86"	"0.804"
##	"-0.86"	"0"	"0.86"	"0.829"
##	"-0.86"	"0"	"0.86"	"0.865"
##	"-0.86"	"0"	"0.86"	"0.804"
##	"-0.86"	"0"	"0.86"	"0.829"
##	"-0.86"	"0"	"0.86"	"0.804"
##	"-0.86"	"0"	"0.86"	"0.841"
##	"-0.86"	"0"	"0.86"	"0.853"
##	"-0.86"	"0"	"0.86"	"0.954"
##	"-0.861"	"1"	"2.33"	"1.544"
##	"-0.861"	"10"	"12.99"	"3.471"
##	"-0.861"	"1"	"2.33"	"1.544"
##	"-0.865"	"12"	"15.21"	"3.71"
##	"-0.866"	"5"	"7.24"	"2.586"
##	"-0.867"	"3"	"4.97"	"2.272"
##	"-0.867"	"1"	"2.4"	"1.614"
##	"-0.867"	"10"	"12.93"	"3.379"
##	"-0.868"	"14"	"17.53"	"4.066"
##	"-0.869"	"2"	"3.76"	"2.026"
##	"-0.869"	"91"	"99.23"	"9.473"
##	"-0.87"	"0"	"0.87"	"0.971"
##	"-0.87"	"0"	"0.87"	"0.884"
##	"-0.87"	"0"	"0.87"	"0.837"
##	"-0.87"	"0"	"0.87"	"0.95"
##	"-0.87"	"0"	"0.87"	"0.981"
##	"-0.87"	"0"	"0.87"	"0.981"
##	"-0.87"	"0"	"0.87"	"0.939"
##	"-0.87"	"0"	"0.87"	"0.971"
##	"-0.87"	"0"	"0.87"	"0.884"
##	"-0.87"	"0"	"0.87"	"0.837"
##	"-0.87"	"0"	"0.87"	"0.971"

##	"-0.871"	"2"	"3.74"	"1.998"
##	"-0.871"	"4"	"6.2"	"2.527"
##	"-0.871"	"11"	"14.07"	"3.523"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"8"	"10.64"	"3.027"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.872"	"6"	"8.49"	"2.855"
##	"-0.873"	"0"	"0.88"	"1.008"
##	"-0.875"	"10"	"13.23"	"3.69"
##	"-0.876"	"92"	"100.75"	"9.987"
##	"-0.876"	"3"	"5.07"	"2.362"
##	"-0.878"	"34"	"39.26"	"5.991"
##	"-0.878"	"6"	"8.62"	"2.984"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.967"
##	"-0.88"	"0"	"0.88"	"0.844"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.924"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.879"
##	"-0.88"	"0"	"0.96"	"1.091"
##	"-0.88"	"0"	"0.88"	"0.967"
##	"-0.88"	"0"	"0.88"	"0.946"
##	"-0.88"	"1"	"2.13"	"1.284"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.88"	"0"	"0.88"	"0.946"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.882"	"3"	"4.83"	"2.075"
##	"-0.882"	"7"	"9.04"	"2.313"
##	"-0.884"	"276"	"295.39"	"21.944"
##	"-0.885"	"80"	"89.04"	"10.213"
##	"-0.885"	"1"	"2.4"	"1.583"
##	"-0.885"	"6"	"8.29"	"2.587"
##	"-0.885"	"0"	"0.94"	"1.062"
##	"-0.885"	"0"	"0.94"	"1.062"
##	"-0.886"	"0"	"0.89"	"1.004"
##	"-0.886"	"0"	"0.89"	"1.004"
##	"-0.886"	"0"	"0.89"	"1.004"
##	"-0.887"	"6"	"8.56"	"2.886"
##	"-0.888"	"0"	"0.99"	"1.115"
##	"-0.889"	"74"	"81.7"	"8.658"
##	"-0.889"	"112"	"121.13"	"10.265"
##	"-0.889"	"2"	"3.88"	"2.114"
##	"-0.89"	"0"	"0.89"	"0.886"
##	"-0.89"	"0"	"0.89"	"0.994"
##	"-0.89"	"0"	"0.89"	"0.92"

##	"-0.89"	"0"	"0.89"	"0.994"
##	"-0.89"	"0"	"0.89"	"0.863"
##	"-0.89"	"18"	"21.65"	"4.101"
##	"-0.89"	"0"	"0.89"	"0.973"
##	"-0.89"	"0"	"0.89"	"0.92"
##	"-0.89"	"29"	"34.3"	"5.952"
##	"-0.89"	"0"	"0.89"	"0.973"
##	"-0.89"	"0"	"0.89"	"0.863"
##	"-0.89"	"0"	"0.89"	"0.79"
##	"-0.89"	"0"	"0.89"	"0.815"
##	"-0.89"	"0"	"0.89"	"0.931"
##	"-0.891"	"15"	"18.73"	"4.187"
##	"-0.892"	"15"	"18.46"	"3.881"
##	"-0.892"	"33"	"38.99"	"6.713"
##	"-0.893"	"1"	"2.46"	"1.636"
##	"-0.893"	"1"	"2.39"	"1.556"
##	"-0.895"	"1"	"2.43"	"1.597"
##	"-0.896"	"0"	"0.91"	"1.016"
##	"-0.896"	"22"	"26.13"	"4.609"
##	"-0.896"	"7"	"9.97"	"3.313"
##	"-0.898"	"167"	"177.52"	"11.711"
##	"-0.898"	"24"	"28.63"	"5.157"
##	"-0.9"	"0"	"0.9"	"0.948"
##	"-0.9"	"0"	"0.9"	"0.98"
##	"-0.9"	"1"	"2.33"	"1.477"
##	"-0.9"	"24"	"27.84"	"4.268"
##	"-0.9"	"0"	"0.9"	"0.948"
##	"-0.9"	"0"	"0.9"	"0.847"
##	"-0.9"	"0"	"0.9"	"0.835"
##	"-0.9"	"0"	"0.9"	"0.835"
##	"-0.9"	"0"	"0.9"	"0.99"
##	"-0.9"	"0"	"0.9"	"0.927"
##	"-0.9"	"0"	"0.9"	"0.893"
##	"-0.9"	"0"	"0.9"	"0.948"
##	"-0.901"	"11"	"14.52"	"3.907"
##	"-0.901"	"11"	"14.52"	"3.907"
##	"-0.901"	"11"	"14.52"	"3.907"
##	"-0.902"	"1"	"2.38"	"1.529"
##	"-0.904"	"15"	"18.72"	"4.117"
##	"-0.904"	"15"	"18.27"	"3.618"
##	"-0.904"	"5"	"7.25"	"2.488"
##	"-0.904"	"1"	"2.55"	"1.714"
##	"-0.905"	"0"	"0.91"	"1.006"
##	"-0.905"	"5"	"7.56"	"2.83"
##	"-0.905"	"0"	"0.91"	"1.006"
##	"-0.906"	"0"	"0.95"	"1.048"
##	"-0.908"	"62"	"69.69"	"8.469"
##	"-0.909"	"1"	"2.31"	"1.44"
##	"-0.91"	"0"	"0.91"	"0.911"
##	"-0.91"	"0"	"0.91"	"0.83"
##	"-0.91"	"0"	"0.91"	"0.933"
##	"-0.91"	"0"	"0.91"	"0.933"
##	"-0.91"	"0"	"0.91"	"0.922"
##	"-0.91"	"101"	"111.23"	"11.243"

##	"-0.91"	"0"	"0.91"	"0.954"
##	"-0.91"	"0"	"0.91"	"0.996"
##	"-0.91"	"0"	"0.91"	"0.975"
##	"-0.91"	"0"	"0.91"	"0.83"
##	"-0.91"	"0"	"0.91"	"0.922"
##	"-0.915"	"1"	"2.45"	"1.585"
##	"-0.916"	"0"	"1"	"1.092"
##	"-0.916"	"0"	"0.97"	"1.058"
##	"-0.917"	"2"	"3.93"	"2.105"
##	"-0.917"	"67"	"73.71"	"7.316"
##	"-0.918"	"3"	"4.92"	"2.092"
##	"-0.918"	"16"	"20.03"	"4.389"
##	"-0.919"	"0"	"0.94"	"1.023"
##	"-0.919"	"0"	"0.94"	"1.023"
##	"-0.92"	"0"	"0.92"	"0.907"
##	"-0.92"	"0"	"0.92"	"0.918"
##	"-0.92"	"0"	"0.92"	"0.971"
##	"-0.92"	"0"	"0.92"	"0.929"
##	"-0.92"	"0"	"0.92"	"0.971"
##	"-0.92"	"0"	"0.92"	"0.918"
##	"-0.92"	"0"	"0.92"	"0.918"
##	"-0.92"	"0"	"0.92"	"0.918"
##	"-0.92"	"0"	"0.92"	"0.872"
##	"-0.92"	"0"	"0.92"	"0.961"
##	"-0.92"	"0"	"0.92"	"0.918"
##	"-0.921"	"4"	"6.53"	"2.747"
##	"-0.921"	"4"	"6.53"	"2.747"
##	"-0.921"	"4"	"6.53"	"2.747"
##	"-0.922"	"58"	"66.32"	"9.023"
##	"-0.922"	"0"	"0.98"	"1.063"
##	"-0.923"	"1"	"2.36"	"1.474"
##	"-0.925"	"1"	"2.41"	"1.525"
##	"-0.925"	"0"	"0.97"	"1.049"
##	"-0.926"	"6"	"8.38"	"2.569"
##	"-0.927"	"1"	"2.36"	"1.467"
##	"-0.927"	"1"	"2.36"	"1.467"
##	"-0.927"	"1"	"2.2"	"1.295"
##	"-0.93"	"0"	"0.93"	"0.756"
##	"-0.93"	"0"	"0.93"	"0.956"
##	"-0.93"	"0"	"0.93"	"0.891"
##	"-0.93"	"0"	"0.93"	"0.967"
##	"-0.93"	"0"	"0.93"	"0.967"
##	"-0.93"	"0"	"0.93"	"0.856"
##	"-0.93"	"1"	"2.29"	"1.387"
##	"-0.93"	"0"	"0.93"	"0.977"
##	"-0.93"	"0"	"0.93"	"0.756"
##	"-0.93"	"0"	"0.93"	"0.756"
##	"-0.93"	"0"	"0.93"	"0.756"
##	"-0.93"	"0"	"0.93"	"0.756"
##	"-0.93"	"0"	"0.93"	"0.891"
##	"-0.93"	"0"	"0.93"	"0.891"
##	"-0.931"	"1"	"2.4"	"1.504"
##	"-0.931"	"2"	"3.95"	"2.096"
##	"-0.932"	"125"	"135.58"	"11.347"

##	"-0.932"	"12"	"15.71"	"3.98"
##	"-0.932"	"104"	"113.09"	"9.756"
##	"-0.933"	"21"	"24.76"	"4.03"
##	"-0.933"	"1"	"2.41"	"1.512"
##	"-0.933"	"0"	"0.97"	"1.039"
##	"-0.933"	"0"	"0.97"	"1.039"
##	"-0.934"	"0"	"1.06"	"1.135"
##	"-0.934"	"0"	"1.06"	"1.135"
##	"-0.935"	"3"	"4.95"	"2.086"
##	"-0.936"	"37"	"42.33"	"5.696"
##	"-0.937"	"0"	"0.94"	"1.003"
##	"-0.937"	"6"	"9.02"	"3.222"
##	"-0.938"	"2"	"4.05"	"2.185"
##	"-0.939"	"3"	"4.93"	"2.056"
##	"-0.939"	"0"	"1.13"	"1.203"
##	"-0.94"	"0"	"0.94"	"0.874"
##	"-0.94"	"11"	"14.45"	"3.672"
##	"-0.94"	"0"	"0.94"	"0.93"
##	"-0.94"	"0"	"0.94"	"0.908"
##	"-0.941"	"5"	"7.49"	"2.646"
##	"-0.945"	"6"	"8.49"	"2.634"
##	"-0.945"	"3"	"5.17"	"2.296"
##	"-0.946"	"1"	"2.45"	"1.533"
##	"-0.946"	"1"	"2.58"	"1.671"
##	"-0.947"	"1"	"2.64"	"1.732"
##	"-0.948"	"0"	"1.03"	"1.087"
##	"-0.948"	"16"	"20.5"	"4.745"
##	"-0.949"	"2"	"3.75"	"1.844"
##	"-0.95"	"0"	"0.95"	"0.999"
##	"-0.95"	"0"	"0.95"	"0.925"
##	"-0.95"	"1"	"2.57"	"1.653"
##	"-0.95"	"0"	"0.95"	"0.88"
##	"-0.95"	"1"	"2.33"	"1.4"
##	"-0.95"	"0"	"0.95"	"0.925"
##	"-0.95"	"0"	"0.95"	"0.947"
##	"-0.951"	"11"	"14.81"	"4.007"
##	"-0.951"	"1"	"2.6"	"1.682"
##	"-0.952"	"4"	"6.01"	"2.111"
##	"-0.953"	"12"	"15.57"	"3.745"
##	"-0.954"	"0"	"1.07"	"1.121"
##	"-0.954"	"0"	"1.01"	"1.059"
##	"-0.955"	"0"	"1.11"	"1.163"
##	"-0.956"	"0"	"1.03"	"1.077"
##	"-0.956"	"231"	"244.08"	"13.677"
##	"-0.956"	"0"	"1.18"	"1.234"
##	"-0.956"	"0"	"1.18"	"1.234"
##	"-0.956"	"0"	"1.18"	"1.234"
##	"-0.957"	"0"	"1"	"1.044"
##	"-0.957"	"2"	"3.75"	"1.828"
##	"-0.958"	"1"	"2.45"	"1.513"
##	"-0.96"	"12"	"15.67"	"3.822"
##	"-0.96"	"1"	"2.28"	"1.334"
##	"-0.96"	"0"	"0.96"	"0.963"
##	"-0.96"	"0"	"0.96"	"0.909"

шш	"-0.96"	"0"	"0.96"	"0.963"
##				
##	"-0.96"	"0"	"0.96"	"0.84"
##	"-0.962"	"14"	"18.33"	"4.502"
##	"-0.963"	"6"	"8.48"	"2.576"
##	"-0.963"	"7"	"9.81"	"2.919"
##	"-0.963"	"0"	"1.01"	"1.049"
##	"-0.964"	"1"	"2.62"	"1.68"
##	"-0.964"	"0"	"1.03"	"1.068"
##	"-0.964"	"1"	"2.62"	"1.68"
##	"-0.964"	"1"	"2.62"	"1.68"
##	"-0.964"	"1"	"2.62"	"1.68"
##	"-0.965"	"0"	"1.14"	"1.181"
##	"-0.965"	"1"	"2.48"	"1.534"
##	"-0.966"	"3"	"5.56"	"2.649"
##	"-0.966"	"0"	"0.98"	"1.015"
##	"-0.966"	"10"	"13.46"	"3.58"
##	"-0.966"	"0"	"0.98"	"1.015"
##	"-0.966"	"117"	"126.15"	"9.472"
##	"-0.967"	"67"	"76.12"	"9.428"
##	"-0.969"	"0"	"1.39"	"1.435"
##	"-0.969"	"4"	"6.36"	"2.435"
##	"-0.969"	"7"	"10.04"	"3.136"
##	"-0.969"	"0"	"1.39"	"1.435"
##	"-0.97"	"0"	"0.97"	"0.969"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"1"
##	"-0.97"	"0"	"0.97"	"0.979"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"1"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.971"	"0"	"1.1"	"1.133"
##	"-0.971"	"4"	"6.79"	"2.872"
##	"-0.972"	"31"	"37.11"	"6.288"
##	"-0.973"	"1"	"2.56"	"1.604"
##	"-0.975"	"0"	"0.98"	"1.005"
##	"-0.976"	"0"	"1"	"1.025"
##	"-0.976"	"1"	"2.66"	"1.701"
##	"-0.977"	"0"	"1.02"	"1.044"
##	"-0.977"	"27"	"32.88"	"6.021"
##	"-0.978"	"12"	"14.81"	"2.873"
##	"-0.978"	"1"	"2.62"	"1.656"
##	"-0.978"	"1"	"2.46"	"1.494"
##	"-0.979"	"0"	"1.1"	"1.124"
##	"-0.98"	"0"	"0.98"	"0.995"
##	"-0.98"	"0"	"0.98"	"0.985"
##	"-0.98"	"0"	"0.98"	"0.985"
##	"-0.98"	"0"	"0.98"	"0.995"
##	"-0.98"	"0"	"0.98"	"0.91"
##	"-0.981"	"1"	"2.22"	"1.244"
##	"-0.982"	"2"	"3.95"	"1.987"
##	"-0.982"	_ "1"	"2.48"	"1.507"
##	"-0.984"	"0"	"1.05"	"1.067"
	0.001	•	1.00	1.001

##	"-0.984"	"0"	"1.08"	"1.098"
##	"-0.985"	"6"	"8.53"	"2.568"
##	"-0.986"	"0"	"1.15"	"1.167"
##	"-0.986"	"20"	"24.87"	"4.941"
##	"-0.986"	"1"	"2.37"	"1.39"
##	"-0.986"	"6"	"8.78"	"2.82"
##	"-0.987"	"1"	"2.38"	"1.398"
##	"-0.988"	"8"	"11.1"	"3.138"
##	"-0.989"	"0"	"1.06"	"1.071"
##	"-0.99"	"0"	"0.99"	"0.859"
##	"-0.99"	"0"	"0.99"	"1"
##	"-0.99"	"0"	"0.99"	"0.969"
##	"-0.99"	"0"	"0.99"	"0.98"
##	"-0.99"	"0"	"0.99"	"0.959"
##	"-0.99"	"12"	"15.97"	"4.011"
##	"-0.991"	"3"	"5.29"	"2.311"
##	"-0.992"	"0"	"1.16"	"1.17"
##	"-0.992"	"33"	"40.09"	"7.148"
##	"-0.992"	"5"	"7.55"	"2.572"
##	"-0.993"	"1"	"2.51"	"1.521"
##	"-0.993"	"0"	"1.05"	"1.058"
##	"-0.996"	"0"	"1.19"	"1.195"
##	"-0.996"	"0"	"1.13"	"1.134"
##	"-0.997"	"34"	"40.78"	"6.801"
##	"-0.997"	"2"	"4.22"	"2.227"
##	"-0.998"	"0"	"1.12"	"1.122"
##	"-0.998"	"0"	"1.12"	"1.122"
##	"-0.999"	"8"	"11.44"	"3.445"
##	"-0.999"	"1"	"2.63"	"1.631"
##	"-1"	"0"	"1"	"0.943"
##	"-1"	"0"	"1.23"	"1.23"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"0"	"1"	"0.932"
##	"-1"	"0"	"1"	"0.985"
##	"-1"	"1"	"2.48"	"1.48"
##	"-1.001"	"6"	"8.42"	"2.417"
##	"-1.001"	"0"	"1.03"	"1.029"
##	"-1.002"	"0"	"1.05"	"1.048"
##	"-1.002"	"0"	"1.05"	"1.048"
##	"-1.002"	"0"	"1.05"	"1.048"
##	"-1.003"	"1"	"2.89"	"1.885"
##	"-1.004"	"16"	"20.88"	"4.862"
##	"-1.004"	"17"	"21.74"	"4.72"
##	"-1.004"	"2"	"3.59"	"1.583"
##	"-1.005"	"139"	"150.91"	"11.849"
##	"-1.005"	"1"	"2.83"	"1.821"
##	"-1.005"	"2"	"4.04"	"2.03"
##	"-1.005"	"1"	"2.46"	"1.452"
##	"-1.006"	"1"	"2.36"	"1.352"

##	"-1.006"	"6"	"8.99"	"2.973"
##	"-1.006"	"0"	"1.09"	"1.083"
##	"-1.006"	"75"	"83.05"	"8.004"
##	"-1.007"	"1"	"2.86"	"1.848"
##	"-1.007"	"1"	"2.41"	"1.401"
##	"-1.007"	"1"	"2.41"	"1.401"
##	"-1.007"	"1"	"2.41"	"1.401"
##	"-1.008"	"1"	"2.88"	"1.866"
##	"-1.008"	"1"	"2.88"	"1.866"
##	"-1.008"	"1"	"2.88"	"1.866"
##	"-1.008"	"7"	"10.28"	"3.254"
##	"-1.008"	"10"	"14.2"	"4.168"
##	"-1.009"	"1"	"2.84"	"1.824"
##	"-1.009"	"1"	"2.84"	"1.824"
##	"-1.009"	"5"	"7.83"	"2.804"
			"1.19"	"1.178"
##	"-1.01"	"0"		
##	"-1.01"	"0"	"1.01"	"0.859"
##	"-1.01"	"0"	"1.01"	"1"
##	"-1.01"	"0"	"1.14"	"1.128"
##	"-1.011"	"7"	"10.28"	"3.245"
##	"-1.012"	"11"	"15.41"	"4.356"
##	"-1.013"	"0"	"1.17"	"1.155"
##	"-1.013"	"1"	"2.92"	"1.895"
##	"-1.013"	"0"	"1.07"	"1.057"
##	"-1.014"	"5"	"7.42"	"2.388"
##	"-1.015"	"1"	"2.84"	"1.813"
##	"-1.015"	"0"	"1.12"	"1.104"
##	"-1.015"	"0"	"1.12"	"1.104"
##	"-1.015"	"0"	"1.21"	"1.192"
##	"-1.016"	"1"	"3.21"	"2.176"
##	"-1.016"	"7"	"10.18"	"3.131"
##	"-1.016"	"7"	"10.18"	"3.131"
##	"-1.016"	"9"	"12.8"	"3.739"
##	"-1.016"	"7"	"10.23"	"3.178"
##	"-1.017"	"2"	"4.34"	"2.302"
##	"-1.017"	"1"	"2.79"	"1.76"
##	"-1.018"	"2"	"3.91"	"1.875"
##	"-1.018"	"0"	"1.08"	"1.061"
##	"-1.018"	"1"	"2.64"	"1.611"
##	"-1.018"	"1"	"2.64"	"1.611"
##	"-1.018"	"1"	"2.64"	"1.611"
##	"-1.018"	"0"	"1.08"	"1.061"
##	"-1.018"	"1"	"2.64"	"1.611"
##	"-1.018"	"1"	"2.64"	"1.611"
##	"-1.018"	"0"	"1.08"	"1.061"
##	"-1.019"	"1"	"2.86"	"1.826"
##	"-1.02"	"0"	"1.02"	"0.943"
##	"-1.02"	"0"	"1.02"	"0.985"
##	"-1.02"	"0"	"1.02"	"0.995"
##	"-1.02"	"0"	"1.02"	"0.985"
##	"-1.02"	"0"	"1.24"	"1.215"
##	"-1.02"	"0"	"1.03"	"1.01"
##	"-1.02"	"0"	"1.03"	"1.01"
##	"-1.02"	"0"	"1.02"	"0.974"
	1.02	J	1.02	0.014

##	"-1.02"	"0"	"1.02"	"0.864"
##	"-1.02"	"0"	"1.03"	"1.01"
##	"-1.02"	"1"	"2.57"	"1.539"
##	"-1.021"	"0"	"1.1"	"1.078"
##	"-1.021"	"0"	"1.1"	"1.078"
##	"-1.021"	"0"	"1.1"	"1.078"
##	"-1.021"	"15"	"19.43"	"4.34"
##	"-1.022"	"0"	"1.16"	"1.135"
##	"-1.024"	"5"	"8.11"	"3.038"
##	"-1.024"	"0"	"1.15"	"1.123"
##	"-1.024"	"1"	"2.53"	"1.494"
##	"-1.025"	"0"	"1.04"	"1.014"
##	"-1.027"	"6"	"9.01"	"2.932"
##	"-1.028"	"4"	"6.24"	"2.179"
##	"-1.028"	"17"	"21.76"	"4.63"
##	"-1.028"	"6"	"8.86"	"2.782"
##	"-1.029"	"0"	"1.17"	"1.138"
##	"-1.03"	"0"	"1.03"	"0.989"
##	"-1.03"	"0"	"1.1"	"1.068"
##	"-1.03"	"1"	"2.46"	"1.417"
##	"-1.03"	"0"	"1.03"	"0.989"
##	"-1.03"	"0"	"1.03"	"0.979"
##	"-1.031"	"0"	"1.05"	"1.019"
##	"-1.031"	"19"	"23.63"	"4.492"
##	"-1.031"	"0"	"1.05"	"1.019"
##	"-1.031"	"1"	"2.83"	"1.776"
##	"-1.031"	"1"	"2.54"	"1.494"
##	"-1.031"	"0"	"1.05"	"1.019"
##	"-1.033"	"0"	"1.15"	"1.114"
##	"-1.033"	"7"	"9.79"	"2.702"
##	"-1.033"	"0"	"1.15"	"1.114"
##	"-1.033"	"0"	"1.19"	"1.152"
##	"-1.035"	"16"	"20.63"	"4.474"
##	"-1.035"	"0"	"1.11"	"1.072"
##	"-1.035"	"0"	"1.23"	"1.188"
##	"-1.035"	"9"	"12.44"	"3.325"
##	"-1.036"	"3"	"5.42"	"2.336"
##	"-1.037"	"0"	"1.17"	"1.129"
##	"-1.038"	"35"	"43.05"	"7.754"
##	"-1.038"	"0"	"1.21"	"1.166"
##	"-1.038"	"0"	"1.13"	"1.089"
##	"-1.038"	"2"	"4.1"	"2.023"
##	"-1.038"	"0"	"1.13"	"1.089"
##	"-1.04"	"2"	"3.96"	"1.885"
##	"-1.04"	"0"	"1.04"	"0.898"
##	"-1.04"	"39"	"45.49"	"6.243"
##	"-1.04"	"0"	"1.04"	"0.942"
##	"-1.04"	"0"	"1.04"	"0.931"
##	"-1.04"	"3"	"5.19"	"2.107"
##	"-1.04"	"2"	"4.22"	"2.135"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.07"	"1.027"

##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.15"	"1.104"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.19"	"1.143"
##	"-1.042"	"1"	"2.71"	"1.641"
##	"-1.045"	"1"	"2.87"	"1.79"
##	"-1.046"	"5"	"7.86"	"2.734"
##	"-1.047"	"0"	"1.13"	"1.079"
##	"-1.047"	"7"	"10.49"	"3.335"
##	"-1.048"	"0"	"1.1"	"1.049"
##	"-1.048"	"0"	"1.1"	"1.049"
##	"-1.048"	"1"	"2.55"	"1.48"
##	"-1.049"	"0"	"1.44"	"1.373"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"35"	"41.19"	"5.894"
##	"-1.05"	"17"	"21.65"	"4.43"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"0"	"1.05"	"0.989"
##	"-1.05"	"1"	"2.54"	"1.466"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.051"	"21"	"26.46"	"5.196"
##	"-1.051"	"16"	"20.55"	"4.328"
##	"-1.051"	"1"	"2.49"	"1.418"
##	"-1.051"	"1"	"2.67"	"1.589"
##	"-1.051"	"16"	"20.94"	"4.699"
##	"-1.051"	"0"	"1.23"	"1.171"
##	"-1.052"	"1"	"2.69"	"1.606"
##	"-1.052"	"1"	"2.69"	"1.606"
##	"-1.052"	"1"	"2.69"	"1.606"
##	"-1.052"	"16"	"20.5"	"4.279"
##	"-1.053"	"1"	"2.68"	"1.595"
##	"-1.054"	"1"	"2.85"	"1.755"
##	"-1.054"	"10"	"13.57"	"3.388"
##	"-1.055"	"0"	"1.26"	"1.194"
##	"-1.055"	"0"	"1.26"	"1.194"
##	"-1.055"	"3"	"5.13"	"2.018"
##	"-1.055"	"0"	"1.26"	"1.194"
##	"-1.055"	"14"	"17.97"	"3.762"
##	"-1.055"	"3"	"5.13"	"2.018"
##	"-1.055"	"3"	"5.13"	"2.018"
##	"-1.056"	"1"	"2.73"	"1.638"
##	"-1.056"	"52"	"59.72"	"7.313"
##	"-1.057"	"4"	"7.08"	"2.915"
##	"-1.057"	"0"	"1.06"	"1.003"
##	"-1.057"	"0"	"1.24"	"1.173"
##	"-1.058"	"8"	"11.46"	"3.27"
##	"-1.058"	"5"	"7.7"	"2.552"
##	"-1.059"	"7"	"10.11"	"2.937"
##	"-1.059"	"7"	"10.18"	"3.003"
##	"-1.06"	"0"	"1.06"	"0.973"
##	"-1.06"	"0"	"1.06"	"0.983"

##	"-1.06"	"0"	"1.06"	"0.983"
##	"-1.06"	"0"	"1.06"	"0.993"
##	"-1.06"	"0"	"1.06"	"0.973"
##	"-1.06"	"0"	"1.06"	"0.919"
##	"-1.06"	"0"	"1.06"	"0.93"
##	"-1.06"	"0"	"1.06"	"0.93"
##	"-1.062"	"0"	"1.26"	"1.186"
##	"-1.062"	"6"	"9.25"	"3.06"
##	"-1.062"	"2"	"4.29"	"2.157"
##	"-1.063"	"1"	"2.74"	"1.637"
##	"-1.063"	"1"	"3.08"	"1.958"
##	"-1.063"	"5"	"7.83"	"2.663"
##	"-1.064"	"4"	"6.59"	"2.433"
##	"-1.064"	"0"	"1.25"	"1.175"
##	"-1.064"	"0"	"1.47"	"1.381"
##	"-1.064"	"0"	"1.25"	"1.175"
##	"-1.064"	"0"	"1.25"	"1.175"
##	"-1.065"	"0"	"1.24"	"1.164"
##	"-1.066"	"3"	"5.36"	"2.213"
##	"-1.066"	"0"	"1.34"	"1.257"
##	"-1.066"	"0"	"1.34"	"1.257"
##	"-1.067"	"0"	"1.38"	"1.293"
##	"-1.067"	"0"	"1.08"	"1.012"
##	"-1.068"	"136"	"148.56"	"11.761"
##	"-1.068"	"0"	"1.1"	"1.03"
##	"-1.068"	"3"	"5.38"	"2.228"
##	"-1.068"	"0"	"1.22"	"1.142"
##	"-1.068"	"62"	"70.35"	"7.82"
##	"-1.068"	"0"	"1.28"	"1.198"
##	"-1.068"	"7"	"10.65"	"3.418"
##	"-1.07"	"0"	"1.07"	"0.987"
##	"-1.07"	"1"	"2.8"	"1.682"
##	"-1.07"	"15"	"19.95"	"4.626"
##	"-1.07"	"0"	"1.07"	"0.977"
##	"-1.07"	"0"	"1.07"	"0.935"
##	"-1.07"	"0"	"1.21"	"1.131"
##	"-1.07"	"0"	"1.07"	"0.967"
##	"-1.07"	"0"	"1.07"	"0.856"
##	"-1.07"	"6"	"9.22"	"3.01"
##	"-1.07"	"0"	"1.07"	"0.977"
##	"-1.07"	"0"	"1.07"	"0.987"
##	"-1.07"	"0"	"1.07"	"0.967"
##	"-1.07"	"0"	"1.07"	"0.987"
##	"-1.071"	"6"	"9.34"	"3.118"
##	"-1.072"	"1"	"2.99"	"1.856"
##	"-1.072"	"6"	"8.65"	"2.472"
##	"-1.072"	"10"	"13.67"	"3.423"
##	"-1.072"	"1"	"2.7"	"1.586"
##	"-1.074"	"1"	"2.64"	"1.528"
##	"-1.074"	"0"	"1.31"	"1.22"
##	"-1.075"	"4"	"7.13"	"2.912"
##	"-1.075"	"0"	"1.13"	"1.051"
##	"-1.075"	"2"	"4.38"	"2.215"
##	"-1.075"	"1"	"2.71"	"1.591"

##	"-1.075"	"1"	"2.71"	"1.591"
##	"-1.075"	"0"	"1.13"	"1.051"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.078"	"0"	"1.1"	"1.02"
##	"-1.078"	"0"	"1.1"	"1.02"
##	"-1.078"	"0"	"1.26"	"1.169"
##	"-1.078"	"0"	"1.15"	"1.067"
##	"-1.078"	"0"	"1.1"	"1.02"
##	"-1.08"	"2"	"4.19"	"2.029"
##	"-1.08"	"0"	"1.08"	"0.981"
##	"-1.08"	"0"	"1.32"	"1.222"
##	"-1.08"	"0"	"1.12"	"1.037"
##	"-1.08"	"0"	"1.08"	"0.981"
##	"-1.08"	"0"	"1.37"	"1.269"
##	"-1.08"	"0"	"1.08"	"0.981"
##	"-1.081"	"13"	"17.05"	"3.748"
##	"-1.081"	"0"	"1.31"	"1.212"
##	"-1.082"	"1"	"3.07"	"1.914"
##	"-1.083"	"1"	"2.87"	"1.727"
##	"-1.083"	"5"	"7.96"	"2.734"
##	"-1.084"	"0"	"1.09"	"1.006"
##	"-1.085"	"33"	"38.34"	"4.922"
##	"-1.085"	"7"	"10.6"	"3.318"
##	"-1.085"	"1"	"3.04"	"1.88"
##	"-1.085"	"4"	"6.86"	"2.636"
##	"-1.085"	"0"	"1.13"	"1.041"
##	"-1.086"	"0"	"1.67"	"1.538"
##	"-1.086"	"2"	"4.08"	"1.916"
##	"-1.087"	"10"	"13.54"	"3.258"
##	"-1.087"	"2"	"4.3"	"2.115"
##	"-1.087"	"0"	"1.18"	"1.086"
##	"-1.087"	"0"	"1.15"	"1.058"
##	"-1.089"	"0"	"1.31"	"1.203"
##	"-1.09"	"0"	"1.17"	"1.074"
##	"-1.09"	"0"	"1.44"	"1.321"
##	"-1.09"	"0"	"1.12"	"1.028"
##	"-1.09"	"0"	"1.09"	"0.965"
##	"-1.09"	"0"	"1.09"	"0.954"
##	"-1.09"	"0"	"1.44"	"1.321"
##	"-1.091"	"0"	"1.28"	"1.173"
##	"-1.091"	"2"	"4.1"	"1.925"
##	"-1.091"	"4"	"7"	"2.749"
##	"-1.092"	"16"	"20.54"	"4.157"
##	"-1.092"	"3"	"5.14"	"1.959"
##	"-1.092"	"2"	"4.2"	"2.015"
##	"-1.092"	"0"	"1.46"	"1.337"
##	"-1.093"	"0"	"1.27"	"1.162"
##	"-1.093"	"0"	"1.19"	"1.089"
##	"-1.093"	"0"	"1.19"	"1.089"

```
"-1.093"
                                   "0"
##
                                           "1.19"
                                                      "1.089"
                       "-1.094"
                                   "0"
                                           "1.34"
                                                      "1.224"
##
##
                       "-1.094"
                                   "1"
                                           "2.95"
                                                      "1.783"
                       "-1.094"
                                   "0"
                                           "1.34"
                                                      "1.224"
##
##
                       "-1.095"
                                   "6"
                                           "9.2"
                                                      "2.923"
                       "-1.095"
                                   "3"
                                           "5.54"
                                                      "2.32"
##
                       "-1.096"
                                   "0"
                                           "1.13"
                                                      "1.031"
##
                                                      "1.195"
                       "-1.096"
                                   "0"
                                           "1.31"
##
##
                       "-1.096"
                                   "0"
                                           "1.13"
                                                      "1.031"
                                           "1.25"
                       "-1.096"
                                   "0"
                                                      "1.14"
##
##
                       "-1.097"
                                   "1"
                                           "3.18"
                                                      "1.987"
                                   "29"
                                           "35.38"
                                                      "5.808"
##
                       "-1.098"
                       "-1.099"
                                   "1"
                                           "2.46"
                                                      "1.329"
##
                                   "0"
                                           "1.17"
                       "-1.099"
                                                      "1.064"
##
##
                       "-1.099"
                                   "64"
                                           "73.27"
                                                      "8.436"
                                   "2"
                                           "4.23"
                                                      "2.029"
##
                       "-1.099"
                       "-1.099"
                                   "0"
                                           "1.17"
                                                      "1.064"
##
                                   "0"
                                           "1.1"
##
                       "-1.1"
                                                      "0.959"
##
                       "-1.1"
                                   "0"
                                           "1.1"
                                                      "0.835"
                                           "1.1"
                                   "0"
                                                      "0.835"
##
                       "-1.1"
##
                       "-1.1"
                                   "0"
                                           "1.1"
                                                      "0.893"
##
                       "-1.1"
                                   "0"
                                           "1.1"
                                                      "0.959"
                        "-1.1"
                                   "0"
                                           "1.1"
                                                      "0.959"
##
                        "-1.1"
                                   "0"
                                           "1.1"
                                                      "1"
##
                       "-1.101"
                                   "4"
                                           "7.15"
                                                      "2.862"
##
##
                       "-1.101"
                                   "0"
                                           "1.36"
                                                      "1.235"
##
                       "-1.101"
                                   "1"
                                           "2.89"
                                                      "1.717"
                       "-1.102"
                                   "16"
                                           "20.56"
                                                      "4.14"
##
                                           "1.43"
                                                      "1.297"
                       "-1.103"
                                   "0"
##
                       "-1.103"
                                   "0"
                                           "1.26"
                                                      "1.143"
##
                       "-1.103"
                                   "0"
                                           "1.43"
                                                      "1.297"
##
##
                       "-1.103"
                                   "134"
                                           "147.23"
                                                      "11.992"
                       "-1.104"
                                   "4"
                                           "6.73"
                                                      "2.474"
##
                       "-1.105"
                                   "2"
                                           "4.27"
                                                      "2.054"
##
                                   "0"
                                           "1.18"
                                                      "1.067"
##
                       "-1.106"
##
                       "-1.106"
                                   "2"
                                           "4.06"
                                                      "1.863"
##
                       "-1.106"
                                   "0"
                                           "1.13"
                                                      "1.022"
##
                        "-1.106"
                                   "0"
                                           "1.18"
                                                      "1.067"
##
                       "-1.106"
                                   "0"
                                           "1.13"
                                                      "1.022"
                                   "0"
                                          "1.18"
                                                      "1.067"
                       "-1.106"
##
                       "-1.106"
                                   "1"
                                           "2.71"
                                                      "1.546"
##
                                                      "1.067"
##
                       "-1.106"
                                   "0"
                                           "1.18"
                       "-1.106"
                                   "0"
                                           "1.18"
                                                      "1.067"
##
                       "-1.107"
                                   "1"
                                           "3.21"
                                                      "1.996"
##
                       "-1.107"
                                   "1"
                                           "2.56"
                                                      "1.409"
##
                                   "1"
                                                      "1.914"
                       "-1.108"
                                           "3.12"
##
                       "-1.108"
                                   "32"
                                           "38.23"
                                                      "5.624"
##
                       "-1.108"
                                   "1"
                                           "2.79"
                                                      "1.616"
##
                                   "1"
                                           "2.79"
##
                       "-1.108"
                                                      "1.616"
                                                      "5.038"
                       "-1.108"
                                   "21"
                                           "26.58"
##
##
                       "-1.109"
                                   "0"
                                           "1.17"
                                                      "1.055"
                       "-1.109"
                                   "2"
                                           "4.48"
                                                      "2.236"
##
##
                        "-1.109"
                                   "0"
                                           "1.57"
                                                      "1.416"
                        "-1.109"
                                   "107"
                                          "120.2"
                                                      "11.907"
##
```

```
"0"
                                           "1.5"
                                                      "1.352"
##
                       "-1.109"
                       "-1.109"
                                   "2"
                                          "4.81"
                                                      "2.533"
##
##
                       "-1.11"
                                   "0"
                                          "1.11"
                                                      "0.973"
                       "-1.11"
                                   "0"
                                           "1.11"
                                                      "0.973"
##
##
                       "-1.111"
                                   "39"
                                           "45.51"
                                                      "5.858"
                       "-1.111"
                                   "6"
                                          "9.27"
                                                      "2.943"
##
                       "-1.111"
                                   "21"
                                          "26.01"
                                                      "4.509"
##
                                   "0"
                                                      "1.07"
                       "-1.112"
                                           "1.19"
##
##
                       "-1.113"
                                   "8"
                                           "11.37"
                                                      "3.027"
                       "-1.113"
                                   "12"
                                          "16.32"
                                                      "3.882"
##
##
                       "-1.113"
                                   "2"
                                           "4.68"
                                                      "2.407"
                       "-1.113"
                                   "2"
                                           "4.11"
                                                      "1.896"
##
                       "-1.114"
                                   "0"
                                          "1.16"
                                                      "1.042"
##
                       "-1.114"
                                   "3"
                                          "5.49"
                                                      "2.236"
##
##
                       "-1.114"
                                   "1"
                                           "3.08"
                                                      "1.868"
                                                      "1.237"
##
                       "-1.115"
                                   "0"
                                           "1.38"
                       "-1.115"
                                   "100"
                                          "113.25"
                                                      "11.878"
##
                                   "0"
                                           "1.38"
                                                      "1.237"
##
                       "-1.115"
##
                       "-1.115"
                                   "0"
                                           "1.38"
                                                      "1.237"
                                           "1.21"
                                                      "1.085"
##
                       "-1.115"
                                   "0"
##
                       "-1.115"
                                   "0"
                                          "1.38"
                                                      "1.237"
##
                       "-1.115"
                                   "8"
                                          "11.66"
                                                      "3.282"
                        "-1.116"
                                   "0"
                                          "1.24"
                                                      "1.111"
##
                       "-1.116"
                                   "1"
                                           "2.79"
                                                      "1.604"
##
                       "-1.116"
                                   "0"
                                          "1.37"
                                                      "1.228"
##
##
                       "-1.116"
                                   "1"
                                           "2.79"
                                                      "1.604"
                                           "4.19"
                                                      "1.963"
##
                       "-1.116"
                                   "2"
                       "-1.117"
                                   "2"
                                           "4.22"
                                                      "1.988"
##
                                          "23.2"
                       "-1.117"
                                   "18"
                                                      "4.654"
##
                       "-1.118"
                                   "2"
                                           "4.05"
                                                      "1.833"
##
                                                      "1.1"
                                   "0"
                                           "1.23"
##
                       "-1.119"
                                          "180.69"
##
                       "-1.119"
                                   "166"
                                                      "13.127"
                       "-1.12"
                                   "0"
                                           "1.12"
                                                      "0.924"
##
                       "-1.12"
                                   "0"
                                           "1.12"
                                                      "0.924"
##
                       "-1.12"
                                   "0"
                                           "1.12"
                                                      "0.924"
##
##
                       "-1.12"
                                   "0"
                                          "1.12"
                                                      "0.956"
##
                       "-1.12"
                                   "0"
                                          "1.12"
                                                      "0.956"
##
                        "-1.121"
                                   "10"
                                          "13.83"
                                                      "3.417"
                                   "2"
##
                        "-1.121"
                                           "4.3"
                                                      "2.052"
                                   "2"
                                          "4.29"
                                                      "2.041"
                       "-1.122"
##
                       "-1.122"
                                   "2"
                                           "4.29"
                                                      "2.041"
##
                                                      "1.015"
##
                       "-1.123"
                                   "0"
                                           "1.14"
                       "-1.123"
                                   "0"
                                          "1.42"
                                                      "1.265"
##
                       "-1.123"
                                   "0"
                                          "1.42"
                                                      "1.265"
##
                       "-1.124"
                                   "1"
                                          "2.84"
                                                      "1.637"
##
                                          "7.94"
                                                      "2.612"
                       "-1.125"
                                   "5"
##
                        "-1.125"
                                   "1"
                                           "2.83"
                                                      "1.627"
##
                       "-1.125"
                                   "0"
                                          "1.21"
                                                      "1.076"
##
                                   "0"
                                                      "1.048"
##
                       "-1.126"
                                           "1.18"
                       "-1.126"
                                   "0"
                                           "1.18"
                                                      "1.048"
##
##
                       "-1.126"
                                   "12"
                                          "15.68"
                                                      "3.269"
                       "-1.126"
                                   "0"
                                          "1.18"
                                                      "1.048"
##
##
                        "-1.126"
                                   "0"
                                           "1.18"
                                                      "1.048"
                        "-1.127"
                                   "0"
                                           "1.27"
                                                      "1.127"
##
```

##	"-1.128"	"7"	"10.76"	"3.334"
##	"-1.128"	"2"	"4.33"	"2.065"
##	"-1.129"	"0"	"1.31"	"1.161"
##	"-1.13"	"0"	"1.13"	"0.939"
##	"-1.13"	"0"	"1.13"	"0.971"
##	"-1.13"	"0"	"1.13"	"0.95"
##	"-1.13"	"0"	"1.62"	"1.434"
##	"-1.13"	"0"	"1.13"	"0.95"
##	"-1.13"	"0"	"1.3"	"1.15"
##	"-1.13"	"0"	"1.13"	"0.939"
##	"-1.13"	"0"	"1.13"	"0.939"
##	-1.13 "-1.13"		"1.13"	"0.939"
		"0"		
##	"-1.133"	"1"	"2.88"	"1.659"
##	"-1.133"	"27"	"32.71"	"5.04"
##	"-1.134"	"0"	"1.14"	"1.005"
##	"-1.135"	"6"	"9.04"	"2.678"
##	"-1.135"	"0"	"1.21"	"1.066"
##	"-1.135"	"0"	"1.21"	"1.066"
##	"-1.135"	"0"	"1.5"	"1.322"
##	"-1.135"	"0"	"1.21"	"1.066"
##	"-1.135"	"1"	"2.91"	"1.682"
##	"-1.135"	"0"	"1.21"	"1.066"
##	"-1.137"	"0"	"1.43"	"1.257"
##	"-1.137"	"2"	"4.16"	"1.9"
##	"-1.137"	"0"	"1.4"	"1.231"
##	"-1.137"	"0"	"1.4"	"1.231"
##	"-1.137"	"0"	"1.41"	"1.24"
##	"-1.138"	"0"	"1.2"	"1.054"
пп	1.100	U	1.2	1.004
##	"-1.138"	"15"	"20.04"	"4.429"
##	"-1.138"	"15"	"20.04"	"4.429"
## ##	"-1.138" "-1.138"	"15" "0"	"20.04" "1.23"	"4.429" "1.081"
## ## ##	"-1.138" "-1.138" "-1.139"	"15" "0" "1" "0"	"20.04" "1.23" "3.06"	"4.429" "1.081" "1.808"
## ## ##	"-1.138" "-1.138" "-1.139" "-1.14"	"15" "0" "1" "0" "1"	"20.04" "1.23" "3.06" "1.15"	"4.429" "1.081" "1.808" "1.009"
## ## ## ##	"-1.138" "-1.138" "-1.139" "-1.14" "-1.14"	"15" "0" "1" "0" "1" "2"	"20.04" "1.23" "3.06" "1.15" "2.81"	"4.429" "1.081" "1.808" "1.009" "1.587"
## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "2"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287"
## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141"	"15" "0" "1" "0" "1" "2" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517"
## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "2" "1" "0"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174"
## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "2" "1" "0" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "2" "1" "0" "1" "0" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "2" "1" "0" "1" "0" "1" "2"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.517" "1.517" "1.971"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "2" "2"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.517" "1.971" "1.971"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "2" "1" "0" "1" "0" "1" "2" "4"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "2.507"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "2" "1" "0" "1" "0" "1" "2" "4" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "2.507" "1.735"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141"	"15" "0" "1" "2" "1" "0" "1" "0" "1" "2" "4" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.96"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.517" "1.971" "1.971" "2.507" "1.735" "1.717"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.142"	"15" "0" "1" "2" "1" "0" "1" "2" "1" "2" "1" "2" "1" "1" "1" "1	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.98" "2.96"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.735" "1.717" "1.55"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.142" "-1.143"	"15" "0" "1" "2" "1" "0" "1" "2" "1" "2" "1" "2" "1" "1" "1" "1	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.98" "2.96" "1.28"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.517" "1.971" "1.971" "1.971" "1.735" "1.717" "1.55" "1.717"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.142" "-1.143" "-1.143"	"15" "0" "1" "0" "1" "0" "1" "0" "1" "2" "4" "1" "1" "1" "1" "1" "0" "0"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.96" "1.28" "1.33"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.517" "1.971" "1.971" "2.507" "1.735" "1.717" "1.55" "1.12" "1.164"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.143" "-1.143" "-1.144"	"15" "0" "1" "2" "1" "0" "1" "0" "1" "2" "4" "1" "1" "1" "1" "1" "0" "0"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.96" "1.28" "1.38" "1.24"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.971" "1.971" "1.971" "1.735" "1.717" "1.55" "1.164" "1.084"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.142" "-1.143" "-1.143" "-1.144" "-1.144" "-1.145"	"15" "0" "1" "2" "1" "0" "1" "0" "1" "2" "4" "1" "1" "1" "1" "1" "0" "0" "6"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "6.86" "2.98" "2.96" "1.33" "1.24" "9.39"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.971" "1.55" "1.717" "1.55" "1.12" "1.164" "1.084" "2.961"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.143" "-1.143" "-1.144" "-1.145"	"15" "0" "1" "2" "1" "0" "1" "2" "4" "1" "1" "1" "0" "0" "1" "1" "1" "1" "1	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "4.25" "4.25" "1.34" "2.73" "1.28" "1.38" "1.24" "9.39" "2.78"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.971" "1.5507" "1.735" "1.717" "1.55" "1.12" "1.164" "1.084" "2.961" "1.554"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.143" "-1.143" "-1.144" "-1.145" "-1.145"	"15" "0" "1" "2" "1" "0" "1" "2" "4" "1" "1" "0" "0" "6" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "4.25" "4.25" "1.28" "1.24" "9.39" "2.78" "2.58"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.971" "1.735" "1.717" "1.55" "1.12" "1.164" "1.084" "2.961" "1.554" "1.379"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.143" "-1.143" "-1.145" "-1.145" "-1.145"	"15" "0" "1" "2" "1" "0" "1" "2" "4" "1" "1" "0" "0" "6" "1" "1" "0"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "4.25" "6.86" "2.98" "2.96" "2.77" "1.28" "1.33" "1.24" "9.39" "2.78" "2.58" "1.41"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.735" "1.717" "1.55" "1.717" "1.55" "1.12" "1.164" "1.084" "1.554" "1.379" "1.232"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.138" "-1.139" "-1.14" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.141" "-1.142" "-1.143" "-1.143" "-1.144" "-1.145" "-1.145"	"15" "0" "1" "2" "1" "0" "1" "2" "4" "1" "1" "0" "0" "6" "1"	"20.04" "1.23" "3.06" "1.15" "2.81" "4.61" "2.73" "1.34" "2.62" "1.34" "2.73" "4.25" "4.25" "4.25" "4.25" "1.28" "1.24" "9.39" "2.78" "2.58"	"4.429" "1.081" "1.808" "1.009" "1.587" "2.287" "1.517" "1.174" "1.42" "1.174" "1.517" "1.971" "1.971" "1.971" "1.735" "1.717" "1.55" "1.12" "1.164" "1.084" "2.961" "1.554" "1.379"

##	"-1.145"	"0"	"1.21"	"1.057"
##	"-1.145"	"0"	"1.21"	"1.057"
##	"-1.146"	"49"	"57.15"	"7.111"
##	"-1.146"	"1"	"3.19"	"1.911"
##	"-1.146"	"0"	"1.31"	"1.143"
##	"-1.146"	"1"	"2.38"	"1.204"
##	"-1.147"	"1"	"2.83"	"1.596"
##	"-1.147"	"0"	"1.49"	"1.299"
##	"-1.147"	"0"	"1.48"	"1.291"
##	"-1.147"	"0"	"1.49"	"1.291
##	"-1.148"	"1"	"2.91"	"1.664"
##	"-1.148"	"0"	"1.26"	"1.004
##	"-1.146 "-1.15"	"0"	"1.15"	"0.957"
##	"-1.15"	"0"	"1.15"	"0.989"
##	"-1.15"	"3"	"5.58"	"2.244"
##	"-1.151"	"0"	"1.22"	"1.06"
##	"-1.151"	"1"	"2.87"	"1.625"
##	"-1.151"	"16"	"21.12"	"4.448"
##	"-1.151"	"1"	"2.73"	"1.503"
##	"-1.151"	"21"	"27.01"	"5.219"
##	"-1.153"	"0"	"1.46"	"1.267"
##	"-1.153"	"0"	"1.46"	"1.267"
##	"-1.153"	"1"	"2.72"	"1.491"
##	"-1.153"	"0"	"1.47"	"1.275"
##	"-1.153"	"2"	"4.51"	"2.177"
##	"-1.154"	"2"	"4.48"	"2.148"
##	"-1.154"	"1"	"2.74"	"1.508"
##	"-1.155"	"0"	"1.31"	"1.134"
##	"-1.155"	"0"	"1.31"	"1.134"
##	"-1.155"	"0"	"1.37"	"1.186"
##	"-1.155"	"0"	"1.21"	"1.047"
##	"-1.156"	"1"	"2.83"	"1.583"
##	"-1.157"	"0"	"1.35"	"1.167"
##	"-1.158"	"59"	"68.83"	"8.49"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"0"	"1.18"	"1.019"
##	"-1.158"	"0"	"1.23"	"1.062"
##	"-1.158"	"4"	"6.53"	"2.186"
##	"-1.159"	"0"	"1.29"	"1.113"
##	"-1.16"	"0"	"1.33"	"1.146"
##	"-1.16"	"0"	"1.43"	"1.233"
##	"-1.16"	"0"	"1.45"	"1.25"
##	"-1.16"	"0"	"1.43"	"1.233"
##	"-1.161"	"0"	"1.48"	"1.275"
##	"-1.161"	"1"	"2.97"	"1.696"
##	"-1.161"	"1"	"2.75"	"1.507"
##	"-1.162"	"0"	"1.5"	"1.291"
##	"-1.162"	"0"	"1.28"	"1.102"

##	"-1.162"	"336"	"363.73"	"23.857"
##	"-1.163"	"1"	"2.88"	"1.616"
##	"-1.163"	"7"	"10.68"	"3.165"
##	"-1.164"	"0"	"1.19"	"1.022"
##	"-1.165"	"0"	"1.27"	"1.09"
##	"-1.165"	"7"	"10.86"	"3.312"
##	"-1.166"	"0"	"1.54"	"1.321"
##	"-1.166"	"0"	"1.21"	"1.038"
##	"-1.166"	"0"	"1.21"	"1.038"
##	"-1.166"	"0"	"1.21"	"1.038"
##	"-1.166"	"0"	"1.21"	"1.038"
##	"-1.167"	"37"	"44.65"	"6.557"
##	"-1.167"	"26"	"32.08"	"5.21"
##	"-1.167"	"1"	"3.67"	"2.288"
##	"-1.167"	"0"	"1.6"	"1.371"
##	"-1.168"	"0"	"1.41"	"1.207"
##	"-1.168"	"33"	"40.22"	"6.182"
##	"-1.168"	"0"	"1.43"	"1.225"
##	"-1.169"	"0"	"1.43	"1.104"
##	"-1.169"	"1"	"2.97"	"1.684"
##	"-1.169"	"1"	"3.49"	"2.13"
##	"-1.10 <i>9</i>	"0"	"1.17"	"0.888"
##	-1.17 "-1.17"	"3"	"5.93"	"2.504"
## ##	"-1.17"	"42"	"50.35"	"7.138"
## ##	"-1.17"	"1"	"2.83"	"1.564"
	"-1.17" "-1.17"	"0"	"1.18"	"1.009"
## ##	"-1.17"	"0"	"1.18"	"1.009"
		-	"1.18"	
##	"-1.17"	"0"	"1.16"	"1.009"
##	"-1.171"	"0"	"1.25" "1.25"	"1.067"
##	"-1.171"	"0"		"1.067"
##	"-1.171"	"0"	"1.25"	"1.067"
##	"-1.172"	"0"	"1.71"	"1.458"
##	"-1.172"	"4"	"7.41"	"2.91"
##	"-1.172"	"1"	"3.05"	"1.749"
##	"-1.173"	"0"	"1.69"	"1.44"
##	"-1.173"	"3" "22"	"5.86"	"2.437" "4.963"
##	"-1.173"		"27.82"	
##	"-1.173" "-1.173"	"1"	"2.92"	"1.637"
##	"-1.173" "-1.174"	"0"	"1.22" "4.81"	"1.04"
##	1.1.1	"2"	"4.81" "3.28"	"2.394"
##	"-1.176"	"1"	0.20	"1.939"
##	"-1.176"	"1"	"3.28"	"1.939"
##	"-1.176"	"1"	"3.28"	"1.939"
##	"-1.176"	"1"	"3.28"	"1.939"
##	"-1.176"	"1"	"3.28"	"1.939"
##	"-1.178"	"7"	"10.62"	"3.074"
##	"-1.179"	"0"	"1.23"	"1.043"
##	"-1.18"	"10"	"14.7"	"3.984"
##	"-1.181"	"1"	"2.99"	"1.685"
##	"-1.181"	"3"	"5.66"	"2.253"
##	"-1.182"	"0"	"1.2"	"1.015"
##	"-1.183"	"0"	"1.46"	"1.234"
##	"-1.183"	"0"	"1.31"	"1.107"
##	"-1.183"	"0"	"1.31"	"1.107"

##	"-1.183"	"0"	"1.47"	"1.243"
##	"-1.183"	"0"	"1.31"	"1.107"
##	"-1.183"	"0"	"1.47"	"1.243"
##	"-1.183"	"0"	"1.75"	"1.48"
##	"-1.185"	"1"	"2.83"	"1.544"
##	"-1.185"	"14"	"18.61"	"3.89"
##	"-1.186"	"2"	"4.37"	"1.998"
##	"-1.186"	"0"	"1.3"	"1.096"
##	"-1.186"	"2"	"4.71"	"2.284"
##	"-1.186"	"0"	"1.3"	"1.096"
##	"-1.186"	"0"	"1.24"	"1.046"
##	"-1.187"	"2"	"5.03"	"2.552"
##	"-1.187"	"0"	"1.39"	"1.171"
##	"-1.187"	"0"	"1.7"	"1.432"
##	"-1.188"	"1"	"3.16"	"1.819"
##	"-1.188"	"0"	"1.19"	"1.002"
##	"-1.188"	"8"	"12.06"	"3.417"
##	"-1.189"	"0"	"1.81"	"1.522"
##	"-1.189"	"0"	"1.81"	"1.522"
##	"-1.189"	"1"	"3.02"	"1.7"
##	"-1.19"	"0"	"1.32"	"1.109"
##	"-1.19"	"0"	"1.37"	"1.152"
##	"-1.19"	"0"	"1.32"	"1.109"
##	"-1.19"	"2"	"4.29"	"1.924"
##	"-1.191"	"30"	"35.87"	"4.929"
##	"-1.191"	"0"	"1.49"	"1.251"
##	"-1.191"	"0"	"1.45"	"1.218"
##	"-1.191"	"0"	"1.69"	"1.419"
##	"-1.191"	"3"	"5.3"	"1.931"
##	"-1.192"	"0"	"1.51"	"1.267"
##	"-1.192"	"0"	"1.51"	"1.267"
##	"-1.192"	"0"	"1.51"	"1.267"
##	"-1.192"	"0"	"1.51"	"1.267"
##	"-1.193"	"12"	"17.08"	"4.259"
##	"-1.193"	"1"	"2.9"	"1.592"
##	"-1.193"	"6"	"9.12"	"2.614"
##	"-1.193"	"0"	"1.42"	"1.191"
##	"-1.193"	"6"	"9.12"	"2.614"
##	"-1.195"	"0"	"1.83"	"1.531"
##	"-1.195"	"9"	"13.18"	"3.497"
##	"-1.196"	"0"	"1.3"	"1.087"
##	"-1.196"	"33"	"41.09"	"6.765"
##	"-1.197"	"10"	"14.22"	"3.526"
##	"-1.197"	"0"	"1.24"	"1.036"
##	"-1.198"	"0"	"1.63"	"1.361"
##	"-1.199"	"0"	"1.26"	"1.05"
##	"-1.2"	"0"	"1.86"	"1.551"
##	"-1.2"	"0"	"1.53"	"1.275"
##	"-1.2"	"15"	"20.49"	"4.574"
##	"-1.201"	"61"	"69.71"	"7.252"
##	"-1.201"	"284"	"310.7"	"22.232"
##	"-1.202"	"1"	"3.21"	"1.838"
##	"-1.202"	"1"	"3.15"	"1.789"
##	"-1.202"	"2"	"4.68"	"2.229"

```
"-1.202"
                                   "1"
                                           "2.95"
                                                      "1.623"
##
                       "-1.203"
                                   "1"
                                          "2.84"
                                                      "1.529"
##
##
                       "-1.203"
                                   "0"
                                          "1.4"
                                                      "1.163"
                       "-1.205"
                                   "3"
                                           "5.65"
                                                      "2.199"
##
##
                       "-1.205"
                                   "0"
                                           "1.92"
                                                      "1.593"
                       "-1.206"
                                   "1"
                                          "3.16"
                                                      "1.791"
##
                       "-1.206"
                                   "1"
                                          "2.91"
                                                      "1.583"
##
                                                      "1.36"
                       "-1.206"
                                   "0"
                                           "1.64"
##
##
                       "-1.206"
                                   "0"
                                           "1.3"
                                                      "1.078"
                       "-1.206"
                                   "5"
                                          "8.18"
                                                      "2.638"
##
##
                       "-1.206"
                                   "0"
                                           "1.59"
                                                      "1.319"
                       "-1.206"
                                   "0"
                                           "1.59"
                                                      "1.319"
##
                       "-1.206"
                                   "0"
                                          "1.59"
                                                      "1.319"
##
                                          "1.48"
                                                      "1.227"
                       "-1.207"
                                   "0"
##
                                   "13"
##
                       "-1.207"
                                           "17.45"
                                                      "3.688"
                                                      "1.21"
##
                       "-1.207"
                                   "0"
                                           "1.46"
                       "-1.207"
                                   "1"
                                          "2.99"
                                                      "1.648"
##
                                   "6"
##
                       "-1.207"
                                          "9.57"
                                                      "2.958"
##
                       "-1.208"
                                   "1"
                                           "2.76"
                                                      "1.457"
                                   "20"
                                          "25.22"
                                                      "4.32"
##
                       "-1.208"
##
                       "-1.209"
                                   "3"
                                          "5.76"
                                                      "2.284"
##
                       "-1.209"
                                   "101"
                                          "113.01"
                                                      "9.938"
                       "-1.21"
                                   "0"
                                           "1.42"
                                                      "1.174"
##
                       "-1.21"
                                   "0"
                                           "1.32"
                                                      "1.091"
##
                       "-1.21"
                                   "0"
                                          "1.62"
                                                      "1.339"
##
##
                       "-1.21"
                                   "0"
                                           "1.62"
                                                      "1.339"
                       "-1.21"
##
                                   "0"
                                           "1.42"
                                                      "1.174"
                       "-1.211"
                                   "2"
                                           "5.14"
                                                      "2.594"
##
                                          "1.26"
                       "-1.211"
                                   "0"
                                                      "1.041"
##
                       "-1.211"
                                   "0"
                                           "1.26"
                                                      "1.041"
##
                       "-1.211"
                                   "106"
                                          "117.01"
                                                      "9.093"
##
##
                       "-1.211"
                                           "1.26"
                                                      "1.041"
                       "-1.211"
                                   "3"
                                           "6.48"
                                                      "2.873"
##
                       "-1.212"
                                   "0"
                                           "1.35"
                                                      "1.114"
##
                                   "0"
                                           "1.35"
                                                      "1.114"
##
                       "-1.212"
##
                       "-1.214"
                                   "40"
                                          "47.39"
                                                      "6.088"
##
                       "-1.214"
                                   "0"
                                          "1.39"
                                                      "1.145"
##
                       "-1.214"
                                   "1674" "1731.6"
                                                      "47.454"
##
                       "-1.214"
                                   "23"
                                           "29.83"
                                                      "5.625"
                                           "6.01"
                       "-1.214"
                                   "3"
                                                      "2.48"
##
                       "-1.216"
                                   "8"
                                           "12.26"
                                                      "3.504"
##
                                                      "1.332"
##
                       "-1.217"
                                   "1"
                                           "2.62"
                       "-1.217"
                                   "7"
                                          "10.47"
                                                      "2.851"
##
                       "-1.218"
                                   "0"
                                          "1.7"
                                                      "1.396"
##
                       "-1.218"
                                   "0"
                                          "1.7"
                                                      "1.396"
##
                                           "1.8"
                                                      "1.477"
                       "-1.219"
                                   "0"
##
                       "-1.219"
                                   "0"
                                           "1.22"
                                                      "1.001"
##
                       "-1.22"
                                   "0"
                                          "1.64"
                                                      "1.345"
##
                       "-1.22"
                                   "0"
                                           "1.59"
                                                      "1.303"
##
                                                      "0.98"
                       "-1.22"
                                   "0"
                                           "1.22"
##
                                   "0"
##
                       "-1.221"
                                          "1.6"
                                                      "1.31"
                                   "7"
                                          "10.67"
                       "-1.221"
                                                      "3.005"
##
##
                       "-1.221"
                                   "0"
                                           "1.6"
                                                      "1.31"
                       "-1.221"
                                   "0"
                                           "1.29"
                                                      "1.057"
##
```

##	"-1.221"	"0"	"1.32"	"1.081"
##	"-1.221"	"1"	"3.62"	"2.145"
##	"-1.222"	"2"	"4.56"	"2.095"
##	"-1.222"	"0"	"1.4"	"1.146"
##	"-1.222"	"0"	"1.69"	"1.383"
##	"-1.222"	"0"	"1.69"	"1.383"
##	"-1.222"	"0"	"1.69"	"1.383"
##	"-1.222"	"0"	"1.69"	"1.383"
##	"-1.222"	"33"	"40.29"	"5.963"
##	"-1.223"	"4"	"7.88"	"3.173"
##	"-1.223"	"0"	"1.47"	"1.201"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.224"	"0"	"1.55"	"1.266"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.225"	"3"	"6.09"	"2.523"
##	"-1.225"	"1"	"3"	"1.633"
##	"-1.225"	"2"	"4.66"	"2.171"
##	"-1.225"	"10"	"14.8"	"3.918"
##	"-1.227"	"0"	"1.25"	"1.019"
##	"-1.227"	"12"	"16.64"	"3.781"
##	"-1.227"	"3"	"5.87"	"2.338"
##	"-1.227"	"34"	"42.58"	"6.995"
##	"-1.227"	"27"	"33.37"	"5.191"
##	"-1.227"	"0"	"1.74"	"1.419"
##	"-1.228"	"1"	"2.85"	"1.507"
##	"-1.228"	"0"	"1.42"	"1.156"
##	"-1.228"	"0"	"1.77"	"1.441"
##	"-1.228"	"2"	"4.49"	"2.028"
##	"-1.228"	"0"	"1.77"	"1.441"
##	"-1.229"	"2"	"4.81"	"2.286"
##	"-1.229"	"52"	"60.56"	"6.965"
##	"-1.23"	"0"	"1.36"	"1.106"
##	"-1.23"	"1"	"3.45"	"1.992"
##	"-1.23"	"0"	"1.84"	"1.496"
##	"-1.23"	"0"	"1.41"	"1.147"
##	"-1.23"	"0"	"1.23"	"0.983"
##	"-1.231"	"2"	"5.02"	"2.454"
##	"-1.231"	"8"	"11.93"	"3.192"
##	"-1.232"	"0"	"1.24"	"1.006"
##	"-1.232"	"118"	"131.51"	"10.966"
##	"-1.232"	"9"	"13.11"	"3.336"
##	"-1.232"	"0"	"1.29"	"1.047"
##	"-1.233"	"0"	"1.35"	"1.095"
##	"-1.233"	"6"	"9.92"	"3.18"
##	"-1.235"	"0"	"1.44"	"1.166"
##	"-1.236"	"0"	"1.34"	"1.085"
##	"-1.236"	"0"	"1.34"	"1.085"
##	"-1.236"	"0"	"1.34"	"1.085"
##	"-1.236"	"0"	"1.86"	"1.504"
##	"-1.236"	"0"	"1.42"	"1.504"
##	"-1.23 <i>1</i> "	"1"	"3.17"	"1.753"
##	"-1.239"	"0"	"1.51"	"1.753"
##	"-1.239" "-1.239"	"0"	"1.51"	"1.219"
##	-1.239"		1.54	1.243"

##	"-1.24"	"0"	"1.24"	"0.911"
##	"-1.24"	"0"	"1.24"	"0.996"
##	"-1.24"	"48"	"56.7"	"7.016"
##	"-1.24"	"0"	"1.68"	"1.355"
##	"-1.24"	"0"	"1.48"	"1.193"
##	"-1.24"	"1"	"2.92"	"1.548"
##	"-1.242"	"4"	"7.86"	"3.108"
##	"-1.242"	"2"	"4.14"	"1.723"
##	"-1.242"	"2"	"4.5"	"2.013"
##	"-1.243"	"0"	"1.6"	"1.287"
##	"-1.243"	"0"	"1.29"	"1.038"
##	"-1.243"	"0"	"1.35"	"1.086"
##	"-1.244"	"10"	"14.63"	"3.722"
##	"-1.245"	"1"	"2.79"	"1.438"
##	"-1.247"	"0"	"1.68"	"1.348"
##	"-1.247"	"4"	"6.96"	"2.374"
##	"-1.247"	"0"	"1.42"	"1.139"
##	"-1.247"	"0"	"1.42"	"1.139"
##	"-1.247"	"0"	"1.42"	"1.139"
##	"-1.247"	"1"	"3.49"	"1.997"
##	"-1.248"	"0"	"1.5"	"1.202"
##	"-1.248"	"0"	"1.28"	"1.026"
##	"-1.248"	"0"	"1.55"	"1.242"
##	"-1.248"	"0"	"1.51"	"1.21"
##	"-1.249"	"292"	"315.27"	"18.624"
##	"-1.25"	"0"	"1.3"	"1.04"
##	"-1.25"	"6"	"9.68"	"2.944"
##	"-1.25"	"0"	"1.3"	"1.04"
##	"-1.25"	"1"	"3.25"	"1.8"
##	"-1.25"	"1"	"3.25"	"1.8"
##	"-1.25"	"2"	"4.12"	"1.695"
##	"-1.25" "-1.251"	"1"	"3.12"	"1.695"
##	"-1.251"	"1" "1"	"3.11" "3.11"	"1.687" "1.687"
##	"-1.251"	"0"	"3.11" "1.4"	"1.687"
## ##	"-1.251"	"0"	"1.4"	"1.119"
##	"-1.251 "-1.251"	"0"	"1.4"	"1.119"
##	"-1.251"	"2"	"4.83"	"2.261"
##	"-1.252"	"3"	"6.57"	"2.851"
##	"-1.253"	"0"	"1.27"	"1.014"
##	"-1.254"	"37"	"45.92"	"7.113"
##	"-1.255"	"1"	"3.11"	"1.681"
##	"-1.255"	"0"	"1.78"	"1.418"
##	"-1.256"	"14"	"19.54"	"4.409"
##	"-1.256"	"0"	"1.51"	"1.202"
##	"-1.257"	"0"	"1.58"	"1.257"
##	"-1.257"	"4"	"7.67"	"2.92"
##	"-1.257"	"2"	"4.59"	"2.06"
##	"-1.257"	"0"	"1.58"	"1.257"
##	"-1.257"	"3"	"5.9"	"2.307"
##	"-1.257"	"0"	"1.58"	"1.257"
##	"-1.257"	"7"	"11.09"	"3.254"
##				
	"-1.257"	"0"	"1.7"	"1.352"
##	"-1.257" "-1.257"	"0" "2"	"1.7" "4.59"	"1.352" "2.06"

```
"-1.258"
                                   "84"
                                           "95.75"
                                                      "9.341"
##
                       "-1.258"
                                   "0"
                                           "1.66"
                                                      "1.32"
##
##
                       "-1.258"
                                   "0"
                                           "1.66"
                                                      "1.32"
                       "-1.258"
                                   "0"
                                           "1.97"
                                                      "1.566"
##
##
                       "-1.259"
                                   "20"
                                           "27"
                                                      "5.561"
                       "-1.259"
                                   "1"
                                           "3.27"
                                                      "1.803"
##
                       "-1.259"
                                   "1"
                                           "3.27"
                                                      "1.803"
##
                                           "25.42"
                                                      "5.099"
                       "-1.259"
                                   "19"
##
##
                       "-1.259"
                                   "0"
                                           "1.71"
                                                      "1.358"
                                   "0"
                                           "1.62"
                       "-1.26"
                                                      "1.285"
##
##
                       "-1.261"
                                   "11"
                                           "16.11"
                                                      "4.052"
                       "-1.263"
                                   "0"
                                           "1.94"
                                                      "1.536"
##
                       "-1.263"
                                   "0"
                                           "2.18"
                                                      "1.726"
##
                                   "22"
                                           "28.35"
                       "-1.263"
                                                      "5.028"
##
                                                      "1.345"
##
                       "-1.264"
                                   "0"
                                           "1.7"
                                           "2.1"
                                                      "1.661"
##
                       "-1.265"
                                   "0"
                       "-1.265"
                                   "0"
                                           "1.55"
                                                      "1.226"
##
                                   "0"
                                           "1.38"
                                                      "1.09"
##
                       "-1.266"
                       "-1.266"
                                   "0"
                                           "1.8"
                                                      "1.421"
##
                                           "1.38"
                                                      "1.09"
##
                       "-1.266"
                                   "0"
##
                       "-1.266"
                                   "0"
                                           "1.38"
                                                      "1.09"
##
                       "-1.266"
                                   "6"
                                           "9.77"
                                                      "2.978"
                        "-1.267"
                                   "0"
                                           "1.75"
                                                      "1.381"
##
                       "-1.267"
                                   "14"
                                           "19.27"
                                                      "4.161"
##
                       "-1.267"
                                   "109"
                                           "121.81"
                                                      "10.113"
##
##
                       "-1.268"
                                   "1"
                                           "3.36"
                                                      "1.861"
                                           "3.28"
##
                       "-1.268"
                                   "1"
                                                      "1.798"
                       "-1.268"
                                   "1"
                                           "3.36"
                                                      "1.861"
##
                       "-1.268"
                                   "1"
                                           "3.36"
                                                      "1.861"
##
                       "-1.268"
                                   "1"
                                           "3.46"
                                                      "1.941"
##
                                           "1.37"
                                                      "1.079"
##
                       "-1.269"
                                   "0"
##
                       "-1.269"
                                   "7"
                                           "11.14"
                                                      "3.263"
                       "-1.269"
                                   "0"
                                           "1.47"
                                                      "1.159"
##
                       "-1.27"
                                   "0"
                                           "1.27"
                                                      "0.962"
##
                                   "0"
                                           "1.27"
                                                      "0.962"
##
                       "-1.27"
##
                       "-1.27"
                                   "0"
                                           "1.27"
                                                      "0.962"
##
                       "-1.27"
                                   "0"
                                           "1.27"
                                                      "0.962"
##
                        "-1.27"
                                   "0"
                                           "1.27"
                                                      "0.962"
##
                        "-1.272"
                                   "0"
                                           "1.77"
                                                      "1.392"
                                   "0"
                                           "1.77"
                                                      "1.392"
                       "-1.272"
##
                       "-1.273"
                                   "8"
                                           "12.08"
                                                      "3.206"
##
                                                      "1.131"
##
                       "-1.273"
                                   "0"
                                           "1.44"
                       "-1.273"
                                   "1"
                                           "3.43"
                                                      "1.908"
##
                                   "5"
                       "-1.273"
                                           "8.57"
                                                      "2.804"
##
                       "-1.274"
                                   "24"
                                           "30.39"
                                                      "5.017"
##
                                           "1.75"
                                                      "1.373"
                       "-1.274"
                                   "0"
##
                       "-1.274"
                                   "0"
                                           "1.89"
                                                      "1.483"
##
                       "-1.275"
                                   "0"
                                           "1.5"
                                                      "1.176"
##
                                   "0"
                                           "1.5"
                                                      "1.176"
##
                       "-1.275"
                                                      "3.623"
                       "-1.275"
                                   "9"
                                           "13.62"
##
##
                       "-1.275"
                                   "11"
                                           "16.1"
                                                      "3.999"
                       "-1.275"
                                   "0"
                                           "1.72"
                                                      "1.349"
##
##
                        "-1.275"
                                   "0"
                                           "1.43"
                                                      "1.121"
                        "-1.275"
                                   "0"
                                           "1.5"
                                                      "1.176"
##
```

##	"-1.276"	"0"	"1.35"	"1.058"
##	"-1.276"	"1"	"3.18"	"1.708"
##	"-1.276"	"0"	"1.49"	"1.168"
##	"-1.276"	"0"	"1.49"	"1.168"
##	"-1.276"	"7"	"10.64"	"2.852"
##	"-1.277"	"0"	"1.38"	"1.08"
##	"-1.278"	"0"	"1.82"	"1.424"
##	"-1.279"	"32"	"39.24"	"5.659"
##	"-1.279"	"74"	"83.88"	"7.725"
##	"-1.279"	"0"	"1.74"	"1.36"
##	"-1.28"	"74"	"85.33"	"8.852"
##	"-1.28"	"0"	"2.4"	"1.875"
##	"-1.281"	"1"	"3.38"	"1.857"
##	"-1.282"	"1"	"2.81"	"1.412"
##	"-1.282"	"0"	"1.55"	"1.209"
##	"-1.282"	"0"	"1.53"	"1.193"
##	"-1.283"	"0"	"1.88"	"1.465"
##	"-1.283"	"0"	"1.61"	"1.254"
##	"-1.283"	"0"	"1.6"	"1.247"
##	"-1.285"	"2"	"4.84"	"2.21"
##	"-1.285"	"1"	"3.38"	"1.852"
##	"-1.285"	"6"	"10.29"	"3.337"
##	"-1.286"	"1"	"3.69"	"2.092"
##	"-1.286"	"5"	"9.32"	"3.36"
##	"-1.286"	"0"	"1.8"	"1.4"
##	"-1.286"	"0"	"1.8"	"1.4"
##	"-1.287"	"0"	"1.93"	"1.499"
##	"-1.287"	"1"	"3.25"	"1.749"
##	"-1.287"	"0"	"2.26"	"1.756"
##	"-1.288"	"26"	"32.03"	"4.683"
##	"-1.288"	"0"	"1.71"	"1.328"
##	"-1.289"	"11"	"16.13"	"3.979"
##	"-1.29"	"0"	"1.29"	"0.967"
##	"-1.29"	"0"	"2"	"1.55"
##	"-1.29"	"1"	"3.93"	"2.271"
##	"-1.29"	"4"	"7.75"	"2.907"
##	"-1.29"	"6"	"9.98"	"3.085"
##	"-1.29"	"0"	"1.46"	"1.132"
##	"-1.29"	"0"	"1.46"	"1.132"
##	"-1.291"	"8"	"12.92"	"3.81"
##	"-1.291"	"1"	"3.43"	"1.882"
##	"-1.291"	"0"	"1.57"	"1.217"
##	"-1.291"	"0"	"1.55"	"1.217
##	"-1.291"	"4"	"7.12"	"2.413"
##	"-1.293"	"2"	"4.67"	"2.065"
## ##	"-1.293"	"0"	"1.8"	"1.393"
	"-1.293"	"83"	"96.71"	"10.602"
## ##	"-1.293" "-1.294"	"83" "15"	"96.71"	"4.048"
##	"-1.294"	"1"	"3.41"	"1.859"
##	"-1.296" "-1.296"	"1"	"3.41"	"1.859"
##	"-1.296" "-1.296"	"2"	"5.28"	"2.531"
##	"-1.296" "-1.296"	"2" "11"	"5.28" "16.26"	"4.059"
##	"-1.296" "-1.297"	"0"	"10.26"	"4.059"
	"-1.297" "-1.298"	"79"	"1.33" "89.92"	"8.413"
##	-1.298"	19"	89.92"	0.413"

##	"-1.299"	"0"	"1.8"	"1.385"
##	"-1.3"	"11"	"15.54"	"3.491"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.3"	"0.99"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.301"	"12"	"17.55"	"4.265"
##	"-1.301"	"0"	"1.62"	"1.245"
##	"-1.301"	"0"	"1.62"	"1.245"
##	"-1.301"	"0"	"1.62"	"1.245"
##	"-1.302"	"8"	"11.93"	"3.019"
##	"-1.303"	"0"	"2.32"	"1.78"
##	"-1.303"	"11"	"16.25"	"4.029"
##	"-1.303"	"2"	"4.37"	"1.818"
##	"-1.304"	"0"	"1.76"	"1.349"
##	"-1.304"	"39"	"47.48"	"6.505"
##	"-1.304"	"17"	"23.55"	"5.022"
##	"-1.304"	"35"	"43.5"	"6.517"
##	"-1.305"	"13"	"18.25"	"4.024"
##	"-1.306"	"86"	"99.74"	"10.521"
##	"-1.306"	"0"	"1.68"	"1.286"
##	"-1.308"	"13"	"18.58"	"4.264"
##	"-1.308"	"18"	"24.28"	"4.801"
##	"-1.309"	"0"	"1.7"	"1.299"
##	"-1.309"	"1"	"3.42"	"1.849"
##	"-1.309"	"0"	"1.62"	"1.237"
##	"-1.31"	"0"	"1.75"	"1.336"
##	"-1.31"	"0"	"1.63"	"1.244"
##	"-1.311"	"0"	"1.89"	"1.442"
##	"-1.311"	"0"	"1.89"	"1.442"
##	"-1.312"	"2"	"4.44"	"1.86"
##	"-1.312" "-1.312"	"9"	"14.7"	"4.345"
##	"-1.312" "-1.313"	"0" "0"	"1.72" "1.51"	"1.311" "1.15"
## ##	"-1.313" "-1.313"	"0"	"1.51"	"1.15" "1.15"
##	"-1.313"	"0"	"1.92"	"1.461"
##	"-1.314"	"54"	"64.33"	"7.854"
##	"-1.316"	"0"	"1.78"	"1.353"
##	"-1.316"	"0"	"2.01"	"1.527"
##	"-1.316"	"0"	"1.84"	"1.398"
##	"-1.316"	"42"	"51.26"	"7.035"
##	"-1.316"	"9"	"14.06"	"3.845"
##	"-1.317"	"2"	"4.72"	"2.065"
##	"-1.317"	"0"	"1.7"	"1.291"
##	"-1.317"	"0"	"2.07"	"1.572"
##	"-1.317"	"13"	"18.62"	"4.266"
##	"-1.318"	"6"	"10.51"	"3.422"
##	"-1.318"	"0"	"1.79"	"1.358"
##	"-1.32"	"1"	"3.6"	"1.969"
##	"-1.32"	"0"	"1.32"	"0.994"
##	"-1.321"	"0"	"1.42"	"1.075"
##	"-1.322"	"10"	"14.92"	"3.722"
##	"-1.322"	"0"	"2.04"	"1.543"
		-		

##	"-1.322"	"76"	"87.97"	"9.056"
##	"-1.323"	"6"	"10.03"	"3.047"
##	"-1.324"	"1"	"3.1"	"1.586"
##	"-1.327"	"0"	"1.63"	"1.228"
##	"-1.328"	"1"	"3.62"	"1.973"
##	"-1.328"	"0"	"2.19"	"1.65"
##	"-1.328"	"0"	"1.64"	"1.235"
##	"-1.329"	"4"	"7.64"	"2.74"
##	"-1.329"	"0"	"1.54"	"1.158"
##	"-1.329"	"3"	"6.35"	"2.52"
##	"-1.33"	"0"	"1.33"	"0.995"
##	"-1.33"	"0"	"1.34"	"1.007"
##	"-1.332"	"0"	"2.08"	"1.561"
##	"-1.333"	"4"	"7.47"	"2.603"
##	"-1.333"	"1"	"3.69"	"2.019"
##	"-1.333"	"0"	"2.19"	"1.643"
##	"-1.333"	"128"	"144.67"	"12.501"
##	"-1.333"	"81"	"92.74"	"8.806"
##	"-1.333"	"4"	"7.47"	"2.603"
##	"-1.334"	"13"	"18.35"	"4.011"
##	"-1.334"	"1"	"3.6"	"1.949"
##	"-1.335"	"0"	"2.03"	"1.521"
##	"-1.335"	"0"	"1.8"	"1.348" "4.922"
##	"-1.335" "-1.335"	"20"	"26.57"	
##	"-1.335"	"66" "1"	"77.86" "3.61"	"8.882" "1.953"
## ##	"-1.336"	"0"	"1.38"	"1.953"
##	"-1.336"	"0"	"2"	"1.497"
##	"-1.336"	"0"	"1.41"	"1.457
##	"-1.336"	"1"	"3.36"	"1.767"
##	"-1.337"	"0"	"2.02"	"1.511"
##	"-1.338"	"14"	"20.12"	"4.575"
##	"-1.338"	"2"	"4.58"	"1.929"
##	"-1.338"	"0"	"1.56"	"1.166"
##	"-1.338"	"4"	"7.52"	"2.63"
##	"-1.339"	"0"	"1.67"	"1.248"
##	"-1.339"	"1"	"3.34"	"1.748"
##	"-1.339"	"1"	"3.34"	"1.748"
##	"-1.339"	"5"	"8.63"	"2.71"
##	"-1.339"	"0"	"1.55"	"1.158"
##	"-1.34"	"61"	"72.24"	"8.388"
##	"-1.34"	"0"	"1.34"	"0.997"
##	"-1.34"	"0"	"1.92"	"1.433"
##	"-1.341"	"1"	"3.51"	"1.872"
##	"-1.341"	"0"	"1.47"	"1.096"
##	"-1.341"	"0"	"1.47"	"1.096"
##	"-1.341"	"0"	"1.43"	"1.066"
##	"-1.342"	"8"	"12.71"	"3.508"
##	"-1.342"	"0"	"2.2"	"1.639"
##	"-1.342"	"0"	"1.52"	"1.132"
##	"-1.342"	"4"	"7.57"	"2.66"
##	"-1.342"	"1"	"3.31"	"1.721"
##	"-1.343"	"6"	"10.04"	"3.008"
##	"-1.343"	"0"	"1.95"	"1.452"

##	"-1.344"	"0"	"1.77"	"1.317"
##	"-1.344"	"28"	"36.89"	"6.616"
##	"-1.344"	"0"	"1.72"	"1.28"
##	"-1.345"	"31"	"39.09"	"6.014"
##	"-1.345"	"3"	"6.41"	"2.535"
##	"-1.346"	"0"	"2.24"	"1.664"
##	"-1.346"	"0"	"2.24"	"1.664"
##	"-1.346"	"1"	"3.23"	"1.657"
##	"-1.347"	"9"	"13.88"	"3.622"
##	"-1.347"	"0"	"1.57"	"1.166"
##	"-1.347"	"139"	"154.38"	"11.417"
##	"-1.347"	"5"	"8.89"	"2.888"
##	"-1.347"	"8"	"12.7"	"3.489"
##	"-1.348"	"0"	"1.75"	"1.298"
##	"-1.348"	"54"	"65.1"	"8.232"
##	"-1.348"	"1"	"3.83"	"2.099"
##	"-1.349"	"2"	"5.11"	"2.305"
##	"-1.349"	"20"	"27.11"	"5.272"
##	"-1.349"	"1"	"3.12"	"1.572"
##	"-1.349"	"10"	"15.16"	"3.824"
##	"-1.352"	"1"	"3.2"	"1.627"
##	"-1.353"	"0"	"2.06"	"1.523"
##	"-1.353"	"366"	"399.91"	"25.06"
##	"-1.353"	"45"	"54.92"	"7.334"
##	"-1.354"	"1"	"3.52" "1.73"	"1.861" "1.278"
## ##	"-1.354" "-1.355"	"0" "0"	"1.73" "1.64"	"1.278"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"22"	"29.19"	"5.308"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"2"	"4.26"	"1.667"
##	"-1.355"	"2"	"4.26"	"1.667"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"0"	"1.74"	"1.284"
##	"-1.355"	"2"	"4.26"	"1.667"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.355"	"0"	"1.64"	"1.21"
##	"-1.356"	"2"	"5.05"	"2.249"
##	"-1.356"	"1"	"3.22"	"1.637"
##	"-1.357"	"25"	"33.03"	"5.916"
##	"-1.357"	"0"	"1.91"	"1.408"
##	"-1.358"	"1"	"3.37"	"1.745"
##	"-1.358"	"0"	"1.89"	"1.392"
##	"-1.359"	"7"	"11.1"	"3.017"
##	"-1.359"	"10"	"15.3"	"3.899"
##	"-1.359"	"0"	"1.84"	"1.354"
##	"-1.36"	"0"	"2"	"1.47"
##	"-1.36"	"0"	"1.71"	"1.258"
##	"-1.36"	"0"	"1.71"	"1.258"
##	"-1.36"	"0"	"2"	"1.47"
##	"-1.36"	"0"	"1.71"	"1.258"
##	"-1.361"	"0"	"1.54"	"1.132"

##	"-1.362"	"10"	"15.74"	"4.215"
##	"-1.362"	"1"	"3.89"	"2.122"
##	"-1.362"	"0"	"1.53"	"1.123"
##	"-1.363"	"0"	"1.99"	"1.46"
##	"-1.363"	"14"	"20.14"	"4.504"
##	"-1.364"	"5"	"9.34"	"3.182"
##	"-1.365"	"0"	"2.06"	"1.51"
##	"-1.365"	"0"	"1.6"	"1.172"
##	"-1.365"	"2"	"4.68"	"1.964"
##	"-1.367"	"4"	"7.37"	"2.465"
##	"-1.367"	"0"	"1.87"	"1.368"
##	"-1.367"	"11"	"17.61"	"4.834"
##	"-1.367"	"1"	"3.84"	"2.078"
##	"-1.367"	"0"	"2.15"	"1.572"
##	"-1.368"	"1"	"5.39"	"3.21"
##	"-1.369"	"3"	"6.13"	"2.286"
##	"-1.369"	"13"	"18.55"	"4.054"
##	"-1.37"	"0"	"1.82"	"1.329"
##	"-1.37"	"1"	"3.26"	"1.649"
##	"-1.371"	"0"	"1.54"	"1.123"
##	"-1.372"	"0"	"1.83"	"1.334"
##	"-1.372"	"0"	"1.83"	"1.334"
##	"-1.373"	"0"	"1.96"	"1.428"
##	"-1.373"	"1"	"3.7"	"1.967"
##	"-1.373"	"0"	"2.15"	"1.566"
##	"-1.374"	"0"	"1.63"	"1.186"
##	"-1.376"	"3"	"6.85"	"2.797"
##	"-1.376"	"0"	"1.59"	"1.156"
##	"-1.376"	"0"	"1.77"	"1.286"
##	"-1.377"	"0"	"1.88"	"1.365"
##	"-1.377"	"8"	"12.66"	"3.385"
##	"-1.378"	"6"	"10.84"	"3.513"
##	"-1.379"	"385"	"420.01"	"25.381"
##	"-1.379"	"0"	"1.43"	"1.037"
##	"-1.379"	"34"	"42.29"	"6.012"
##	"-1.379"	"0"	"1.98"	"1.435"
##	"-1.38"	"0"	"1.83"	"1.326"
##	"-1.38"	"14"	"20.71"	"4.862"
##	"-1.38"	"0"	"1.83"	"1.326"
##	"-1.38"	"0"	"1.83"	"1.326"
##	"-1.38"	"0"	"1.83"	"1.326"
##	"-1.381"	"1"	"3.18"	"1.579"
##	"-1.382"	"0"	"1.9"	"1.374"
##	"-1.383"	"0"	"2.01"	"1.453"
##	"-1.383"	"0"	"2.01"	"1.453"
##	"-1.383"	"0"	"2.01"	"1.453"
##	"-1.383"	"91"	"104.47"	"9.741"
##	"-1.385"	"13"	"19.27"	"4.526"
##	"-1.385"	"0"	"1.69"	"1.22"
##	"-1.385"	"0"	"1.69"	"1.22"
##	"-1.385"	"0"	"1.69"	"1.22"
##	"-1.385"	"45"	"54.58"	"6.918"
##	"-1.385"	"8"	"12.97"	"3.589"
##	"-1.386"	"26"	"34.14"	"5.872"
	1.500	20	J 1 . 1 1	0.012

##	"-1.386"	"0"	"2.18"	"1.572"
##	"-1.387"	"22"	"29.4"	"5.335"
##	"-1.387"	"11"	"17.3"	"4.543"
##	"-1.387"	"0"	"1.86"	"1.341"
##	"-1.387"	"0"	"1.89"	"1.363"
##	"-1.388"	"68"	"80.16"	"8.759"
##	"-1.388"	"0"	"1.83"	"1.319"
##	"-1.388"	"0"	"1.83"	"1.319"
##	"-1.388"	"0"	"1.92"	"1.383"
##	"-1.39"	"0"	"1.84"	"1.324"
##	"-1.39"	"0"	"1.9"	"1.367"
##	"-1.391"	"15"	"20.93"	"4.262"
##	"-1.392"	"8"	"12.7"	"3.377"
##	"-1.392"	"16"	"22.59"	"4.736"
##	"-1.392"	"0"	"1.85"	"1.329"
##	"-1.393"	"0"	"2"	"1.435"
##	"-1.393"	"30"	"37.03"	"5.046"
##	"-1.395"	"1"	"3.48"	"1.778"
##	"-1.396"	"6"	"10.51"	"3.23"
##	"-1.396"	"0"	"1.53"	"1.096"
##	"-1.396"	"5"	"9.46"	"3.195"
##	"-1.397"	"56"	"66.02"	"7.173"
##	"-1.397"	"1"	"3.46"	"1.761"
##	"-1.397"	"1"	"3.46"	"1.761"
##	"-1.397"	"0"	"2.25"	"1.61"
##	"-1.397"	"1"	"3.46"	"1.761"
##	"-1.398"	"0"	"2.24"	"1.603"
##	"-1.398"	"13"	"18.16"	"3.692"
##	"-1.4"	"0"	"2.02"	"1.442"
##	"-1.4"	"0"	"1.4"	"0.995"
##	"-1.4"	"1"	"3.58"	"1.843"
##	"-1.4"	"0"	"2.13"	"1.522"
##	"-1.4"	"0"	"1.85"	"1.321"
##	"-1.401"	"0"	"2.38"	"1.698"
##	"-1.401"	"0"	"2.38"	"1.698"
##	"-1.401"	"0"	"2.12"	"1.513"
##	"-1.401"	"0"	"2.12"	"1.513"
##	"-1.401"	"2"	"5.22"	"2.299"
##	"-1.401"	"0"	"2.38"	"1.698"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.402"	"8"	"13.11"	"3.646"
##	"-1.402"	"8"	"13.11"	"3.646"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.402"	"2"	"5.85"	"2.746"
##	"-1.402"	"15"	"21.3"	"4.494"
##	"-1.402"	"0"	"1.56"	"1.113"
##	"-1.403"	"0"	"1.86"	"1.326"
##	"-1.404"	"0"	"2.08"	"1.482"
##	"-1.404"	"0"	"1.78"	"1.268"
##	"-1.404"	"0"	"1.65"	"1.175"
##	"-1.405"	"2"	"5.72"	"2.648"

##	"-1.405"	"0"	"1.71"	"1.217"
##	"-1.405"	"3"	"6.07"	"2.185"
##	"-1.406"	"4"	"7.85"	"2.739"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.408"	"0"	"1.88"	"1.335"
##	"-1.409"	"1"	"3.86"	"2.03"
##	"-1.409"	"0"	"2.86"	"2.03"
##	"-1.409"	"0"	"2.86"	"2.03"
##	"-1.41"	"5"	"9.08"	"2.894"
##	"-1.41"	"1"	"4.03"	"2.148"
##	"-1.41"	"8"	"14.01"	"4.263"
##	"-1.41"	"0"	"1.89"	"1.34"
##	"-1.41"	"0"	"1.41"	"0.996"
##	"-1.412"	"1"	"3.21"	"1.565"
##	"-1.412"	"5"	"9.02"	"2.846"
##	"-1.412"	"2"	"5.53"	"2.5"
##	"-1.412"	"1"	"3.21"	"1.565"
##	"-1.413"	"3"	"6.39"	"2.399"
##	"-1.415"	"0"	"1.55"	"1.095"
##	"-1.415"	"12"	"17.67"	"4.008"
##	"-1.416"	"0"	"2.23"	"1.575"
##	"-1.416"	"1"	"4.11"	"2.197"
##	"-1.416"	"6"	"9.87"	"2.733"
##	"-1.417"	"12"	"17.16"	"3.642"
##	"-1.418"	"0"	"2.27"	"1.601"
##	"-1.418"	"1"	"4.23"	"2.278"
##	"-1.419"	"1"	"3.44"	"1.719"
##	"-1.419"	"0"	"1.82"	"1.282"
##	"-1.42"	"0"	"1.59"	"1.12"
##	"-1.421"	"0"	"2.02"	"1.421"
##	"-1.421"	"0"	"2.02"	"1.421"
##	"-1.422"	"4"	"8.35"	"3.06"
##	"-1.422"	"0"	"1.78"	"1.252"
##	"-1.422"	"0"	"1.78"	"1.252"
##	"-1.422"	"0"	"1.78"	"1.252"
##	"-1.423"	"0"	"2.98"	"2.094"
##	"-1.423"	"3"	"6.54"	"2.488"
##	"-1.423"	"9"	"14.96"	"4.19"
##	"-1.424"	"6"	"10.79"	"3.364"
##	"-1.424"	"4"	"7.87"	"2.718"
##	"-1.424"	"0"	"1.67"	"1.173"
##	"-1.425"	"0"	"1.72"	"1.207"
##	"-1.426"	"27"	"35.79"	"6.165"
##	"-1.426"	"2"	"5.66"	"2.567"
##	"-1.426"	"1"	"4.02"	"2.118"
##	"-1.426"	"0"	"1.89"	"1.325"
##	"-1.426"	"0"	"1.63"	"1.143"
##	"-1.427"	"11"	"16.62"	"3.938"
##	"-1.427"	"2"	"4.97"	"2.081"
##	"-1.428"	"131"	"148.18"	"12.027"
##	"-1.428"	"0"	"2.71"	"1.898"
##	"-1.431"	"4"	"8.42"	"3.089"

##	"-1.431"	"26"	"33.45"	"5.208"
##	"-1.432"	"7"	"12.51"	"3.847"
##	"-1.432"	"0"	"2.19"	"1.529"
##	"-1.432"	"0"	"2.03"	"1.417"
##	"-1.432"	"0"	"2.01"	"1.403"
##	"-1.432"	"0"	"2.19"	"1.529"
##	"-1.433"	"51"	"60.5"	"6.631"
##	"-1.434"	"4"	"8.72"	"3.291"
##	"-1.434"	"184"	"204.55"	"14.333"
##	"-1.434"	"1"	"3.61"	"1.82"
##	"-1.436"	"38"	"47.28"	"6.462"
##	"-1.436"	"0"	"1.65"	"1.149"
##	"-1.436"	"0"	"2"	"1.393"
##	"-1.436"	"2"	"5.49"	"2.431"
##	"-1.436"	"0"	"1.65"	"1.149"
##	"-1.437"	"0"	"1.75"	"1.218"
##	"-1.437"	"2"	"5.51"	"2.443"
##	"-1.437"	"3"	"6.26"	"2.268"
##	"-1.437"	"0"	"2.91"	"2.026"
##	"-1.438"	"0"	"1.87"	"1.3"
##	"-1.439"	"2"	"5.8"	"2.64"
##	"-1.439"	"1"	"3.93"	"2.036"
##	"-1.441"	"0"	"1.84"	"1.277"
##	"-1.442"	"1"	"3.63"	"1.824"
##	"-1.442"	"2"	"5.31"	"2.295"
##	"-1.442"	"3"	"6.31"	"2.295"
##	"-1.442"	"15"	"21.7"	"4.646"
##	"-1.442"	"1"	"3.68"	"1.858"
##	"-1.443"	"3"	"6.29"	"2.28"
##	"-1.443"	"0"	"1.89"	"1.31"
##	"-1.443"	"2"	"4.5"	"1.732"
##	"-1.444"	"0"	"2.08"	"1.44"
##	"-1.444"	"0"	"2"	"1.385"
##	"-1.444"	"1"	"3.64"	"1.829"
##	"-1.444"	"6"	"11.06"	"3.504"
##	"-1.444"	"6"	"10.89"	"3.387"
##	"-1.445"		"56.63"	"7.356"
##	"-1.445"	"14"	"20.63"	"4.59"
##	"-1.446"	"16"	"23.24"	"5.005"
##	"-1.446"	"1"	"3.6"	"1.798"
##	"-1.447"	"0"	"1.57"	"1.085"
##	"-1.447"	"2"	"5.19"	"2.205"
##	"-1.447"	"0"	"2.03"	"1.403"
##	"-1.447"	"0"	"2.05"	"1.417"
##	"-1.447"	"0"	"1.87"	"1.292"
##	"-1.448"	"0"	"1.83"	"1.264"
##	"-1.448"	"0"	"1.83"	"1.264"
##	"-1.448"	"0"	"1.83"	"1.264"
##	"-1.448"	"0"	"1.83"	"1.264"
##	"-1.449"	"78"	"91.06"	"9.014"
##	"-1.449"	"0"	"1.97"	"1.359"
##	"-1.45"	"5"	"9.76"	"3.282"
##	"-1.45"	"4"	"8.89"	"3.372"
##	"-1.45"	"0"	"2.24"	"1.545"
	1.10	v	2.21	1.040

```
"-1.451"
                                   "11"
                                           "16.38"
                                                      "3.709"
##
                       "-1.451"
                                   "0"
                                           "2.16"
                                                      "1.489"
##
##
                       "-1.451"
                                   "153"
                                           "173.85"
                                                      "14.368"
                       "-1.451"
                                   "0"
                                           "2.08"
                                                      "1.433"
##
##
                       "-1.451"
                                   "0"
                                           "2.13"
                                                      "1.468"
                       "-1.451"
                                   "0"
                                          "2.13"
                                                      "1.468"
##
                       "-1.451"
                                   "0"
                                           "2.08"
                                                      "1.433"
##
                                                      "2.121"
                       "-1.452"
                                   "2"
                                           "5.08"
##
##
                       "-1.452"
                                   "1"
                                           "4.09"
                                                      "2.128"
                       "-1.452"
                                   "19"
                                           "25.63"
                                                      "4.565"
##
##
                       "-1.452"
                                   "1"
                                           "3.61"
                                                      "1.797"
                       "-1.453"
                                   "6"
                                           "10.64"
                                                      "3.193"
##
                       "-1.453"
                                   "5"
                                           "9.53"
                                                      "3.119"
##
                       "-1.453"
                                   "15"
                                           "21.38"
                                                      "4.392"
##
##
                       "-1.453"
                                   "1"
                                           "3.69"
                                                      "1.852"
                       "-1.453"
                                                      "1.852"
##
                                   "1"
                                           "3.69"
                       "-1.454"
                                   "247"
                                           "268.1"
                                                      "14.511"
##
                                   "55"
##
                       "-1.456"
                                           "66.65"
                                                      "8.003"
                       "-1.456"
                                   "0"
                                           "1.94"
                                                      "1.332"
##
                                   "1"
                                           "4.25"
                                                      "2.231"
##
                       "-1.457"
##
                       "-1.457"
                                   "54"
                                           "65.46"
                                                      "7.863"
##
                       "-1.457"
                                   "14"
                                           "20.83"
                                                      "4.686"
                                   "0"
                                           "1.65"
                                                      "1.132"
                        "-1.458"
##
                       "-1.458"
                                   "0"
                                           "2.08"
                                                      "1.426"
##
                       "-1.459"
                                   "0"
                                           "2.42"
                                                      "1.659"
##
##
                       "-1.459"
                                   "6"
                                           "11.35"
                                                      "3.666"
                                           "2.51"
##
                       "-1.459"
                                   "0"
                                                      "1.72"
                        "-1.459"
                                   "0"
                                           "2.42"
                                                      "1.659"
##
                       "-1.459"
                                   "0"
                                           "1.84"
                                                      "1.261"
##
                       "-1.46"
                                   "0"
                                           "2.44"
                                                      "1.672"
##
                                           "2.44"
                                                      "1.672"
##
                        "-1.46"
                                   "0"
##
                       "-1.46"
                                   "0"
                                           "2.15"
                                                      "1.473"
                       "-1.46"
                                   "0"
                                           "2.45"
                                                      "1.678"
##
                       "-1.46"
                                   "0"
                                           "2.45"
                                                      "1.678"
##
                                   "0"
                                           "2.45"
                                                      "1.678"
##
                       "-1.46"
##
                       "-1.46"
                                   "0"
                                           "2.45"
                                                      "1.678"
##
                       "-1.461"
                                   "0"
                                           "2.75"
                                                      "1.882"
##
                        "-1.461"
                                   "28"
                                           "36.56"
                                                      "5.859"
##
                       "-1.461"
                                   "0"
                                           "2.32"
                                                      "1.588"
                                   "2"
                                                      "1.963"
                       "-1.462"
                                           "4.87"
##
                       "-1.463"
                                   "1"
                                           "3.81"
                                                      "1.921"
##
                                                      "2.719"
##
                       "-1.464"
                                   "5"
                                           "8.98"
                       "-1.465"
                                   "1"
                                           "3.6"
                                                      "1.775"
##
                       "-1.465"
                                   "0"
                                           "2.35"
                                                      "1.604"
##
                       "-1.465"
                                   "1"
                                           "3.6"
                                                      "1.775"
##
                                           "1.97"
                                                      "1.344"
                        "-1.465"
                                   "0"
##
                        "-1.465"
                                   "0"
                                           "2.06"
                                                      "1.406"
##
                       "-1.465"
                                   "1"
                                           "3.66"
                                                      "1.816"
##
##
                        "-1.465"
                                   "0"
                                           "2.06"
                                                      "1.406"
                       "-1.466"
                                   "8"
                                           "13.96"
                                                      "4.065"
##
                                   "5"
##
                       "-1.466"
                                           "9.39"
                                                      "2.995"
                       "-1.467"
                                   "0"
                                           "1.88"
                                                      "1.281"
##
##
                        "-1.469"
                                   "0"
                                           "2.6"
                                                      "1.77"
                        "-1.47"
                                   "9"
                                           "14.13"
                                                      "3.489"
##
```

##	"-1.47"	"9"	"14.13"	"3.489"
##	"-1.47"	"9"	"14.13"	"3.489"
##	"-1.47"	"0"	"3.3"	"2.245"
##	"-1.471"	"5"	"9.39"	"2.984"
##	"-1.471"	"0"	"1.93"	"1.312"
##	"-1.472"	"0"	"2.33"	"1.583"
##	"-1.472"	"7"	"12.67"	"3.851"
##	"-1.472"	"0"	"2.74"	"1.862"
##	"-1.472"	"0"	"2.74"	"1.862"
##	"-1.472"	"1"	"3.72"	"1.848"
##	"-1.472"	"0"	"2.74"	"1.862"
##	"-1.473"	"7"	"11.95"	"3.362"
##	"-1.473"	"7"	"11.95"	"3.362"
##	"-1.473"	"2"	"5.03"	"2.057"
##	"-1.473"	"3"	"6.68"	"2.498"
##	"-1.474"	"0"	"2.3"	"1.56"
##	"-1.474"	"8"	"12.53"	"3.073"
##	"-1.474"	"0"	"2.25"	"1.527"
##	"-1.474"	"5"	"9.25"	"2.883"
##	"-1.474"	"0"	"2.21"	"1.499"
##	"-1.475"	"1"	"3.81"	"1.905"
##	"-1.475"	"22"	"30.18"	"5.546"
##	"-1.475"	"0"	"2"	"1.356"
##	"-1.476"	"124"	"140.92"	"11.462"
##	"-1.476"	"24"	"31.9"	"5.353"
##	"-1.476"	"0"	"1.83"	"1.24"
##	"-1.476"	"1"	"4.14"	"2.127"
##	"-1.477"	"12"	"17.91"	"4"
##	"-1.477"	"0"	"2.03"	"1.374"
##	"-1.478"	"0"	"2.01"	"1.36"
##	"-1.478"	"4"	"8.01"	"2.714"
##	"-1.478"	"0"	"2.16"	"1.461"
##	"-1.478"	"0"	"1.74"	"1.177"
##	"-1.479"	"2"	"5.12"	"2.11"
##	"-1.479"	"2"	"5.73"	"2.522"
##	"-1.479"	"0"	"2.22"	"1.501"
##	"-1.48"	"1"	"3.74"	"1.851"
##	"-1.48"	"1"	"3.57"	"1.736"
##	"-1.48"	"1"	"3.76"	"1.865"
##	"-1.48"	"0"	"1.85"	"1.25"
##	"-1.481"	"19"	"24.83"	"3.937"
##	"-1.481"	"0"	"2.1"	"1.418"
##	"-1.481"	"0"	"2.15"	"1.452"
##	"-1.481"	"50"	"60.04"	"6.779"
##	"-1.483"	"3"	"6.68"	"2.482"
##	"-1.483"	"3"	"7.22"	"2.845"
##	"-1.483"	"0"	"2.14"	"1.443"
##	"-1.483"	"0"	"2.14"	"1.443"
##	"-1.484"	"1"	"4.35"	"2.258"
	"-1.484" "-1.485"	"1" "24"	"4.35"	"5.537"
##	2.100		"32.22"	
##	"-1.485"	"0"		"1.313"
##	11_1 4061	แบดวาเ	11210 /11	1100 00711
##	"-1.486"	"283"	"318.41"	"23.827"
## ##	"-1.486" "-1.487" "-1.488"	"283" "0" "0"	"318.41" "2.01" "2.15"	"23.827" "1.352" "1.445"

##	"-1.488"	"1"	"3.55"	"1.714"
##	"-1.488"	"0"	"2.15"	"1.445"
##	"-1.488"	"0"	"1.93"	"1.297"
##	"-1.489"	"1"	"4.08"	"2.068"
##	"-1.489"	"7"	"12.42"	"3.641"
##	"-1.489"	"2"	"5.23"	"2.169"
##	"-1.489"	"0"	"2.04"	"1.37"
##	"-1.489"	"0"	"2.28"	"1.531"
##	"-1.49"	"0"	"2.02"	"1.356"
##	"-1.49"	"1"	"4.07"	"2.061"
##	"-1.49"	"1"	"4.07"	"2.061"
##	"-1.491"	"0"	"1.94"	"1.301"
##	"-1.491"	"1"	"3.62"	"1.757"
##	"-1.492"	"0"	"2.44"	"1.635"
##	"-1.492"	"0"	"2"	"1.341"
##	"-1.493"	"65"	"78.37"	"8.954"
##	"-1.493"	"0"	"2.66"	"1.782"
##	"-1.494"	"0"	"2.21"	"1.479"
##	"-1.494"	"0"	"2.21"	"1.479"
##	"-1.494"	"1"	"3.98"	"1.995"
##	"-1.494"	"0"	"2.21"	"1.479"
##	"-1.494"	"0"	"2.21"	"1.479"
##	"-1.495"	"0"	"1.92"	"1.285"
##	"-1.496"	"0"	"2.06"	"1.377"
##	"-1.496"	"0"	"2.06"	"1.377"
##	"-1.497"	"1"	"4.19"	"2.131"
##	"-1.497"	"0"	"2.04"	"1.363"
##	"-1.498"	"51"	"61.52"	"7.024"
##	"-1.498"	"1"	"3.82"	"1.882"
##	"-1.498"	"1"	"3.98"	"1.99"
##	"-1.498"	"16"	"22.87"	"4.585"
##	"-1.499"	"0"	"1.62"	"1.08"
##	"-1.499"	"213"	"236.69"	"15.805"
##	"-1.499"	"0"	"1.97"	"1.314"
##	"-1.5"	"5"	"9.23"	"2.821"
##	"-1.501"	"0"	"2.18"	"1.452"
##	"-1.501"	"0"	"2.13"	"1.419"
##	"-1.502"	"0"	"2.33"	"1.551"
##	"-1.504"	"0"	"2.44"	"1.623"
##	"-1.504"	"2"	"5.65"	"2.426"
##	"-1.504"	"2"	"5.65"	"2.426"
##	"-1.505"	"3"	"6.64"	"2.418"
##	"-1.505"	"0"	"1.82"	"1.209"
##	"-1.505"	"56"	"68.47"	"8.285"
##	"-1.505"	"1"	"4.05"	"2.027"
##	"-1.505"	"0"	"1.82"	"1.209"
##	"-1.505"	"0"	"1.96"	"1.302"
##	"-1.505"	"0"	"1.88"	"1.249"
##	"-1.505"	"0"	"1.82"	"1.209"
##	"-1.506"	"7"	"12.12"	"3.4"
##	"-1.507"	"1"	"4.31"	"2.196"
##	"-1.507"	"0"	"2.02"	"1.341"
##	"-1.507"	"1"	"4.17"	"2.104"
##	"-1.509"	"22"	"29.69"	"5.094"

##	"-1.509"	"0"	"1.94"	"1.286"
##	"-1.509"	"0"	"2"	"1.326"
##	"-1.509"	"8"	"14.06"	"4.017"
##	"-1.51"	"0"	"2.46"	"1.629"
##	"-1.51"	"24"	"32.79"	"5.819"
##	"-1.51"	"2"	"4.93"	"1.94"
##	"-1.511"	"0"	"2.38"	"1.575"
##	"-1.511"	"6"	"10.28"	"2.832"
##	"-1.511"	"0"	"2.39"	"1.582"
##	"-1.512"	"0"	"2.36"	"1.56"
##	"-1.512"	"0"	"2.36"	"1.56"
##	"-1.512"	"22"	"29.59"	"5.021"
##	"-1.512"	"2"	"5.69"	"2.44"
##	"-1.512"	"0"	"2.36"	"1.56"
##	"-1.512"	"0"	"2.36"	"1.56"
##	"-1.512"	"0"	"2.36"	"1.56"
##	"-1.513"	"2"	"6.28"	"2.829"
##	"-1.513"	"0"	"2.53"	"1.672"
##	"-1.513"	"13"	"20.3"	"4.825"
##	"-1.514"	"0"	"2.83"	"1.87"
##	"-1.514"	"0"	"1.69"	"1.116"
##	"-1.515"	"0"	"2.28"	"1.505"
##	"-1.515"	"0"	"2.78"	"1.834"
##	"-1.515"	"1"	"3.68"	"1.769"
##	"-1.515"	"0"	"2.02"	"1.333"
##	"-1.516"	"0"	"2.4"	"1.583"
##	"-1.516"	"10"	"15.88"	"3.878"
##	"-1.517"	"3"	"6.52"	"2.32"
##	"-1.518"	"2"	"5.39"	"2.233"
##	"-1.519"	"0"	"2.17"	"1.429"
##	"-1.52"	"0"	"2.22"	"1.46"
##	"-1.52"	"0"	"2.22"	"1.46"
##	"-1.521" "-1.521"	"0"	"1.91"	"1.256"
##	"-1.521" "-1.521"	"1"	"4.2" "2.25"	"2.103"
## ##	"-1.521" "-1.521"	"0" "1"	"2.25" "3.57"	"1.48" "1.689"
##	"-1.521	"0"	"1.76"	"1.156"
##	"-1.523"	"15"	"21.1"	"4.006"
##	"-1.523"	"0"	"2.18"	"1.431"
##	"-1.523"	"0"	"1.92"	"1.261"
##	"-1.523"	"4"	"8.81"	"3.158"
##	"-1.524"	"0"	"2.13"	"1.397"
##	"-1.524"	"0"	"1.96"	"1.286"
##	"-1.524"	"0"	"1.88"	"1.233"
##	"-1.525"	"19"	"27.2"	"5.379"
##	"-1.525"	"0"	"2.65"	"1.737"
##	"-1.525"	"1"	"3.68"	"1.757"
##	"-1.526"	"150"	"168.34"	"12.022"
##	"-1.527"	"3"	"7.41"	"2.889"
##	"-1.527"	"1"	"3.46"	"1.611"
##	"-1.527"	"1"	"3.81"	"1.841"
##	"-1.527"	"3"	"7.09"	"2.678"
##	"-1.529"	"2"	"5.48"	"2.276"
##	"-1.529"	"2"	"5.48"	"2.276"

##	"-1.529"	"2"	"5.72"	"2.433"
##	"-1.529"	"2"	"5.48"	"2.276"
##	"-1.53"	"1"	"3.86"	"1.87"
##	"-1.53"	"0"	"2.54"	"1.66"
##	"-1.531"	"6"	"11"	"3.266"
##	"-1.531"	"241"	"264.59"	"15.408"
##	"-1.531"	"2"	"5.45"	"2.254"
##	"-1.531"	"2"	"5.45"	"2.254"
##	"-1.531"	"6"	"10.79"	"3.128"
##	"-1.532"	"305"	"339.51"	"22.521"
##	"-1.532"	"3"	"6.71"	"2.422"
##	"-1.532"	"0"	"2.09"	"1.364"
##	"-1.532"	"5"	"9.1"	"2.676"
##	"-1.533"	"1"	"3.95"	"1.925"
##	"-1.533"	"0"	"2.63"	"1.715"
##	"-1.533"	"1"	"3.7"	"1.761"
##	"-1.534"	"0"	"3.59"	"2.34"
##	"-1.534"	"130"	"147.73"	"11.558"
##	"-1.535"	"0"	"2.52"	"1.642"
##	"-1.535"	"1"	"4.17"	"2.065"
##	"-1.537"	"58"	"69.66"	"7.585"
##	"-1.537"	"1"	"4.32"	"2.16"
##	"-1.537"	"0"	"2.87"	"1.868"
##	"-1.538"	"2"	"5.56"	"2.315"
##	"-1.538"	"0"	"1.83"	"1.19"
##	"-1.539"	"0"	"2.97"	"1.93"
##	"-1.539"	"0"	"2.46"	"1.598"
##	"-1.539"	"0"	"2.97"	"1.93"
##	"-1.54"	"0"	"2.2"	"1.428"
##	"-1.54"	"50"	"62.7"	"8.247"
##	"-1.54"	"5"	"9.51"	"2.928"
##	"-1.54"		"24.32"	"4.752"
##	"-1.541"	"0"	"2.6"	"1.688"
##	"-1.541"	"2"	"5.32"	"2.155"
##	"-1.542"	"0"	"2.17"	"1.407"
##	"-1.543"	"12"	"18.28"	"4.07"
##	"-1.543"	"1"	"4.16"	"2.049"
##	"-1.543"	"0"	"2.32"	"1.503"
##	"-1.544"	"20"	"27.97"	"5.161"
##	"-1.544"	"2"	"5.5"	"2.267"
##	"-1.545"	"0"	"2.16"	"1.398"
##	"-1.545"	"7"	"11.91"	"3.179"
##	"-1.545"	"0"	"2.64"	"1.709"
##	"-1.546"	"80"	"95.37"	"9.939"
##	"-1.546"	"0"	"2.35"	"1.52"
##	"-1.546"	"1"	"4.19"	"2.063"
##	"-1.546"	"3"	"7.36"	"2.82"
##	"-1.547"	"0"	"1.89"	"1.222"
##	"-1.547"	"0"	"2.54"	"1.642"
##	"-1.548"	"0"	"2.88"	"1.86"
##	"-1.549"	"0"	"2.11"	"1.363"
##	"-1.549"	"0"	"2.11"	"1.363"
##	"-1.549"	"0"	"2.11"	"1.363"
##	"-1.55"	"0"	"2.17"	"1.4"
			•	

##	"-1.551"	"17"	"24.86"	"5.067"
##	"-1.552"	"2"	"5.78"	"2.435"
##	"-1.552"	"1"	"4.28"	"2.113"
##	"-1.552"	"1"	"4.28"	"2.113"
##	"-1.552"	"0"	"2.31"	"1.489"
##	"-1.552"	"0"	"2.24"	"1.443"
##	"-1.553"	"0"	"2.1"	"1.352"
##	"-1.553"	"1"	"3.53"	"1.63"
##	"-1.554"	"1"	"4.4"	"2.188"
##	"-1.554"	"3"	"6.8"	"2.445"
##	"-1.554"	"7"	"12.93"	"3.817"
##	"-1.554"	"0"	"1.87"	"1.203"
##	"-1.554"	"0"	"2.18"	"1.403"
##	"-1.554"	"0"	"2.7"	"1.738"
##	"-1.555"	"18"	"25.33"	"4.714"
##	"-1.555"	"0"	"2.74"	"1.762"
##	"-1.556"	"57"	"70.26"	"8.524"
##	"-1.556"	"0"	"2.94"	"1.89"
##	"-1.556"	"5"	"10.1"	"3.277"
##	"-1.556"	"94"	"110.21"	"10.417"
##	"-1.556"	"0"	"2.38"	"1.529"
##	"-1.557"	"0"	"2.25"	"1.445"
##	"-1.557"	"3"	"6.92"	"2.517"
##	"-1.557"	"0"	"2.01"	"1.291"
##	"-1.558"	"0"	"3.24"	"2.08"
##	"-1.559"	"0"	"2.7"	"1.732"
##	"-1.559"	"0"	"2.7"	"1.732"
##	"-1.559"	"0"	"2.54"	"1.629"
##	"-1.56"	"6"	"11.16"	"3.308"
##	"-1.561"	"11"	"17.32"	"4.05"
##	"-1.562"	"0"	"2.1"	"1.345"
##	"-1.562"	"0"	"2.1"	"1.345"
##	"-1.562"	"4"	"9"	"3.2"
##	"-1.564"	"0"	"2.5"	"1.599"
##	"-1.564"	"9"	"15.2"	"3.964"
##	"-1.564"	"0"	"2.49"	"1.592"
##	"-1.564"	"0"	"2.49"	"1.592"
##	"-1.564"	"2"	"6.08"	"2.608"
##	"-1.566"	"0"	"2.57"	"1.641"
##	"-1.566"	"29"	"37.64"	"5.519"
##	"-1.566"	"0"	"2.31"	"1.475"
##	"-1.566"	"27"	"35.83"	"5.639"
##	"-1.566"	"0"	"2.56"	"1.635"
##	"-1.567"	"0"	"2.41"	"1.538"
##	"-1.568"	"1"	"4.31"	"2.112"
##	"-1.569"	"5"	"10.32"	"3.39"
##	"-1.569"	"0"	"2.85"	"1.817"
##	"-1.569"	"0"	"2.73"	"1.74"
##	"-1.57"	"9"	"14.81"	"3.7"
##	"-1.57"	"0"	"2.23"	"1.42"
##	"-1.571"	"3"	"7.02"	"2.558"
##	"-1.571"	"3"	"7.54"	"2.89"
##	"-1.571"	"1"	"3.84"	"1.808"
##	"-1.573"	"0"	"2.42"	"1.539"

##	"-1.573"	"0"	"2.22"	"1.411"
##	"-1.574"	"0"	"2.35"	"1.493"
##	"-1.575"	"14"	"21.86"	"4.991"
##	"-1.575"	"3"	"6.93"	"2.495"
##	"-1.576"	"5"	"9.79"	"3.039"
##	"-1.576"	"9"	"14.58"	"3.54"
##	"-1.576"	"1"	"3.74"	"1.739"
##	"-1.576"	"1"	"4.05"	"1.935"
##	"-1.576"	"1"	"4.71"	"2.354"
##	"-1.576"	"0"	"3.22"	"2.043"
##	"-1.577"	"5"	"9.44"	"2.815"
##	"-1.577"	"0"	"2.07"	"1.312"
##	"-1.577"	"0"	"2.33"	"1.477"
##	"-1.577"	"1"	"4.62"	"2.295"
##	-1.577 "-1.577"	"0"	"2.33"	"1.477"
##	"-1.578"	"0"	"3.03"	"1.92"
##	"-1.578"	"3"	"6.41"	"2.161"
##	"-1.579"	"4"	"8.77"	"3.021"
##	"-1.579"	"5"	"10.57"	"3.528"
##	"-1.58"	"4"	"8.23"	"2.677"
##	"-1.58"	"0"	"2.41"	"1.525"
##	"-1.58"	"5"	"8.97"	"2.512"
##	"-1.58"	"0"	"2.05"	"1.298"
##	"-1.58"	"0"	"2.05"	"1.298"
##	"-1.58"	"0"	"2.59"	"1.64"
##	"-1.583"	"15"	"22.42"	"4.689"
##	"-1.583"	"0"	"1.96"	"1.238"
##	"-1.583"	"0"	"2.06"	"1.301"
##	"-1.584"	"2"	"5.75"	"2.367"
##	"-1.584"	"0"	"2.91"	"1.837"
##	"-1.587"	"0"	"2.16"	"1.361"
##	"-1.587"	"12"	"18.69"	"4.216"
##	"-1.588"	"3"	"7.56"	"2.872"
##	"-1.589"	"0"	"2.02"	"1.271"
##	"-1.589"	"5"	"9.42"	"2.782"
##	"-1.59"	"2"	"5.72"	"2.34"
##	"-1.591"	"0"	"2.15"	"1.351"
##	"-1.591"	"1"	"4.34"	"2.1"
##	"-1.591"	"0"	"2.9"	"1.823"
##	"-1.591"	"0"	"2.15"	"1.351"
##	"-1.591"	"0"	"2.79"	"1.754"
##	"-1.591"	"1"	"3.92"	"1.835"
##	"-1.591"	"0"	"2.79"	"1.754"
##	"-1.592"	"1"	"4.25"	"2.042"
##	"-1.593"	"6"	"10.34"	"2.724"
##	"-1.593"	"0"	"2.42"	"1.519"
##	"-1.593"	"1"	"4.32"	"2.084"
##	-1.593 "-1.593"	"0"	"2.06"	"1.293"
## ##	"-1.594"	"0"	"2.36"	"1.481"
##	"-1.594" "-1.594"	"1"	"2.36"	"1.481"
	"-1.594" "-1.594"	"1"	"3.68"	"1.681"
##	"-1.594" "-1.594"	_	"3.68" "3.68"	"1.681"
##		"1"		
##	"-1.596"	"2"	"5.97"	"2.488"
##	"-1.596"	"0"	"3.12"	"1.955"

##	"-1.596"	"67"	"81.37"	"9.006"
##	"-1.596"	"8"	"13.67"	"3.554"
##	"-1.596"	"0"	"3.12"	"1.955"
##	"-1.596"	"1"	"4.58"	"2.244"
##	"-1.596"	"0"	"2.69"	"1.686"
##	"-1.596"	"0"	"2.35"	"1.473"
##	"-1.597"	"7"	"12.46"	"3.418"
##	"-1.597"	"0"	"1.76"	"1.102"
##	"-1.597"	"0"	"2.34"	"1.465"
##	"-1.597"	"1"	"3.57"	"1.61"
##	"-1.598"	"0"	"2.74"	"1.715"
##	"-1.598"	"0"	"2.74"	"1.715"
##	"-1.598"	"0"	"2.74"	"1.715"
##	"-1.598"	"0"	"2.74"	"1.715"
##	"-1.598"	"0"	"2.1"	"1.314"
##	"-1.599"	"0"	"2.02"	"1.263"
##	"-1.6"	"1"	"4.03"	"1.893"
##	"-1.6"	"0"	"2.08"	"1.3"
##	"-1.601"	"0"	"2.13"	"1.331"
##	"-1.601"	"0"	"2.79"	"1.742"
##	"-1.601"	"1"	"3.76"	"1.724"
##	"-1.601"	"0"	"2.13"	"1.331"
##	"-1.601"	"5"	"10.15"	"3.217"
##	"-1.602"	"1"	"4.58"	"2.235"
##	"-1.603"	"0"	"2.85"	"1.777"
##	"-1.603"	"0"	"2.49"	"1.554"
##	"-1.603"	"0"	"2.85"	"1.777"
##	"-1.603"	"0"	"2.85"	"1.777"
ππ	1.003	U	2.00	1.111
##	"-1.604"	"0"	"2.59"	"1.615"
		-		
##	"-1.604"	"0"	"2.59"	"1.615"
## ##	"-1.604" "-1.604"	"0" "132"	"2.59" "153.56"	"1.615" "13.443"
## ## ##	"-1.604" "-1.604" "-1.605"	"0" "132" "2"	"2.59" "153.56" "6.07"	"1.615" "13.443" "2.536"
## ## ##	"-1.604" "-1.604" "-1.605" "-1.605"	"0" "132" "2" "0"	"2.59" "153.56" "6.07" "2.45"	"1.615" "13.443" "2.536" "1.527"
## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605"	"0" "132" "2" "0" "1"	"2.59" "153.56" "6.07" "2.45" "4.56"	"1.615" "13.443" "2.536" "1.527" "2.217"
## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606"	"0" "132" "2" "0" "1" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794"
## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607"	"0" "132" "2" "0" "1" "0" "2"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247"
## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608"	"0" "132" "2" "0" "1" "0" "2" "2"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351"
## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.606" "-1.608" "-1.608"	"0" "132" "2" "0" "1" "0" "2" "2" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505"
## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608" "-1.608" "-1.609" "-1.609"	"0" "132" "2" "0" "1" "0" "2" "2" "0" "3"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "1.467"
## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608" "-1.608" "-1.609"	"0" "132" "2" "0" "1" "0" "2" "2" "0" "3" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "2.36" "23.9"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608" "-1.608" "-1.609" "-1.609"	"0" "132" "0" "1" "0" "2" "0" "3" "0" "3" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "2.36"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "1.467"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608" "-1.608" "-1.609" "-1.609" "-1.609"	"0" "132" "0" "1" "0" "2" "0" "3" "0" "3" "0" "16"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "2.36" "23.9"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.607" "-1.608" "-1.608" "-1.609" "-1.609" "-1.609" "-1.611"	"0" "132" "0" "1" "0" "2" "0" "3" "0" "16" "2"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "4.908" "2.29"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.609" "-1.611"	"0" "132" "0" "1" "0" "2" "0" "3" "0" "16" "2" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "2.36" "23.9" "5.69" "2.9"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.609" "-1.611" "-1.611"	"0" "132" "2" "0" "1" "0" "2" "0" "3" "0" "16" "2" "0" "11" "0" "10" "1" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612"	"0" "132" "2" "0" "1" "0" "2" "0" "3" "0" "16" "2" "0" "16" "2" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612"	"0" "132" "2" "0" "1" "0" "2" "0" "3" "0" "16" "2" "0" "11" "0" "10" "1" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613"	"0" "132" "2" "0" "1" "0" "3" "0" "16" "2" "0" "16" "2" "0" "1" "0" "1" "0" "2"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23" "5.94" "2.44" "4.07"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613" "-1.613"	"0" "132" "0" "1" "0" "2" "0" "3" "0" "16" "2" "0" "11" "0" "1" "0" "2" "0" "1" "0"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23" "5.94" "2.44"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "2.351" "1.505" "2.58" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613"	"0" "132" "2" "0" "1" "0" "3" "0" "16" "2" "0" "11" "0" "1" "0" "1" "0" "1"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "23.9" "4.31" "2.03" "3.23" "5.94" "4.07" "6.29" "3.93"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513" "1.903" "2.666" "1.816"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613" "-1.613"	"0" "132" "2" "0" "1" "0" "3" "0" "16" "2" "0" "11" "0" "1" "1" "1" "1"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23" "5.94" "4.07" "6.29" "3.93" "4.26"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513" "1.903" "2.66" "1.816" "2.018"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613" "-1.613"	"0" "132" "2" "0" "1" "0" "3" "0" "16" "2" "0" "11" "0" "1" "0" "1" "1" "1" "1"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "23.9" "4.31" "2.03" "3.23" "5.94" "4.07" "6.29" "3.93"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513" "1.903" "2.66" "1.816" "2.018" "3.226"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.604" "-1.604" "-1.605" "-1.605" "-1.606" "-1.606" "-1.608" "-1.608" "-1.609" "-1.609" "-1.611" "-1.611" "-1.612" "-1.612" "-1.612" "-1.613" "-1.613" "-1.613" "-1.613"	"0" "132" "2" "0" "1" "0" "3" "0" "16" "2" "0" "11" "0" "1" "1" "1" "1"	"2.59" "153.56" "6.07" "2.45" "4.56" "2.88" "5.61" "5.78" "2.42" "7.15" "2.36" "23.9" "5.69" "2.9" "4.31" "2.03" "3.23" "5.94" "4.07" "6.29" "3.93" "4.26"	"1.615" "13.443" "2.536" "1.527" "2.217" "1.794" "2.247" "1.505" "2.58" "1.467" "1.467" "4.908" "2.29" "1.801" "2.053" "1.259" "2.004" "2.445" "1.513" "1.903" "2.66" "1.816" "2.018"

##	"-1.615"	"1"	"3.83"	"1.753"
##	"-1.615"	"1"	"3.83"	"1.753"
##	"-1.615"	"1"	"3.83"	"1.753"
				"1.753"
##	"-1.615"	"1"	"3.83"	
##	"-1.616"	"1"	"4.65"	"2.258"
##	"-1.617"	"13"	"19.58"	"4.068"
##	"-1.617"	"4"	"9.97"	"3.691"
##	"-1.617"	"6"	"11.45"	"3.371"
##	"-1.619"	"0"	"2.23"	"1.377"
##	"-1.619"	"0"	"2.13"	"1.315"
##	"-1.619"	"0"	"2.63"	"1.625"
##	"-1.62"	"7"	"12.32"	"3.284"
##	"-1.62"	"60"	"72.79"	"7.894"
##	"-1.62"	"4"	"8.6"	"2.839"
##	"-1.62"	"1"	"3.65"	"1.635"
##	"-1.622"	"27"	"35.81"	"5.432"
##	"-1.623"	"372"	"410.36"	"23.633"
##	"-1.623"	"0"	"2.16"	"1.331"
##	"-1.623"	"0"	"2.79"	"1.719"
##	"-1.624"	"13"	"19.92"	"4.261"
##	"-1.624"	"0"	"2.47"	"1.521"
##	"-1.624"	"5"	"10.56"	"3.424"
##	"-1.625"	"3"	"7.18"	"2.572"
##	"-1.626"	"3"	"7.28"	"2.633"
##	"-1.626"	"0"	"2.39"	"1.47"
##	"-1.628"	"0"	"2.31"	"1.419"
##	"-1.629"	"1"	"4.2"	"1.964"
##	"-1.63"	"16"	"23.8"	"4.784"
##	"-1.63"	"17"	"24.52"	"4.613"
##	"-1.63"	"11"	"17.11"	"3.749"
##	"-1.631"	"0"	"3.66"	"2.244"
##	"-1.631"	"0"	"2.9"	"1.778"
##	"-1.631"	"1"	"4.17"	"1.944"
##	"-1.631"	"5"	"10.27"	"3.231"
##	"-1.631"	"0"	"2.92"	"1.79"
##	"-1.631"	"5"	"10.27"	"3.231"
##	"-1.632"	"0"	"2.4"	"1.47"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.632"	"155"	"178.22"	"14.23"
##	"-1.632"	"0"	"2.46"	"1.507"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.633"	"1"	"5.33"	"2.652"
##	"-1.634"	"3"	"7.27"	"2.613"
##	"-1.634"	"0"	"3.05"	"1.866"
##	"-1.635"	"0"	"2.26"	"1.383"
##	"-1.635"	"0"	"2.53"	"1.547"
##	"-1.636"	"0"	"2.31"	"1.412"
##	"-1.636"	"3"	"7.04"	"2.47"
##	"-1.636"	"14"	"21.94"	"4.853"
##	"-1.636"	"0"	"2.92"	"1.785"
##	"-1.636"	"1"	"4.01"	"1.839"
	: -		-	-

##	"-1.636"	"9"	"14.79"	"3.54"
##	"-1.638"	"2"	"6.86"	"2.968"
##	"-1.638"	"40"	"50.38"	"6.339"
##	"-1.638"	"10"	"15.83"	"3.559"
##	"-1.638"	"87"	"103.69"	"10.187"
##	"-1.638"	"23"	"31.6"	"5.251"
##	"-1.64"	"0"	"2.05"	"1.25"
##	"-1.64"	"0"	"2.05"	"1.25"
##	"-1.64"	"0"	"2.05"	"1.25"
##	"-1.64"	"0"	"3.17"	"1.934"
##	"-1.64"	"2"	"6.3"	"2.623"
##	"-1.641"	"0"	"2.32"	"1.413"
##	"-1.641"	"6"	"10.6"	"2.803"
##	"-1.641"	"1"	"4.21"	"1.956"
##	"-1.641"	"14"	"21.72"	"4.703"
		"9"	"15.92"	"4.213"
##	"-1.642"			
##	"-1.643"	"2"	"5.56"	"2.166"
##	"-1.643"	"0"	"2.6"	"1.583"
##	"-1.645"	"0"	"2.21"	"1.343"
##	"-1.645"	"0"	"2.19"	"1.331"
##	"-1.646"	"9"	"15.06"	"3.681"
##	"-1.646"	"0"	"3.04"	"1.847"
##	"-1.646"	"0"	"2.85"	"1.731"
##	"-1.647"	"23"	"30.71"	"4.68"
##	"-1.65"	"8"	"14.96"	"4.219"
##	"-1.65"	"0"	"2.7"	"1.636"
##	"-1.651"	"7"	"12.42"	"3.282"
##	"-1.651"	"0"	"2.64"	"1.599"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.653"	"1"	"4.76"	"2.275"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.655"	"0"	"3.46"	"2.091"
##	"-1.656"	"0"	"3.32"	"2.004"
##	"-1.656"	"0"	"2.59"	"1.564"
##	"-1.656"	"0"	"3.67"	"2.216"
##	"-1.657"	"12"	"18.44"	"3.886"
##	"-1.657"	"0"	"2.63"	"1.587"
##	"-1.657"	"11"	"17.28"	"3.79"
##	"-1.657"	"0"	"2.63"	"1.587"
##	"-1.657"	"17"	"25.77"	"5.293"
##	"-1.657"	"8"	"13.68"	"3.429"
##	"-1.657"	"0"	"2.85"	"1.72"
##	"-1.657"	"23"	"31.98"	"5.418"
##	"-1.659"	"0"	"2.66"	"1.603"
##	"-1.659"	"0"	"2.49"	"1.501"
##	"-1.66"	"1"	"3.73"	"1.644"
##	"-1.66"	"1"	"4.2"	"1.928"
##	"-1.66"	"0"	"2.42"	"1.458"
##	"-1.66"	"2"	"5.48"	"2.096"
##	"-1.661"	"0"	"3.49"	"2.101"
##	"-1.662"	"0"	"3.82"	"2.298"
	1.002	J	0.02	2.200

```
"-1.663"
                                   "6"
                                          "11.07"
                                                      "3.049"
##
                       "-1.664"
                                   "0"
                                          "2.53"
                                                      "1.521"
##
##
                       "-1.664"
                                   "0"
                                          "2.76"
                                                      "1.658"
                       "-1.665"
                                   "0"
                                          "2.65"
                                                      "1.591"
##
##
                       "-1.666"
                                   "7"
                                          "13.14"
                                                      "3.685"
                       "-1.667"
                                   "0"
                                          "2.87"
                                                      "1.721"
##
                       "-1.667"
                                   "0"
                                          "2.68"
                                                      "1.607"
##
                                   "39"
                       "-1.668"
                                          "50.52"
                                                      "6.906"
##
##
                       "-1.67"
                                   "0"
                                          "2.62"
                                                      "1.569"
                       "-1.671"
                                   "0"
                                          "3.41"
                                                      "2.04"
##
##
                       "-1.671"
                                   "114"
                                          "132.37"
                                                      "10.993"
                       "-1.671"
                                   "0"
                                          "2.54"
                                                      "1.52"
##
                       "-1.671"
                                   "1"
                                          "4.04"
                                                      "1.82"
##
                                   "0"
                                          "2.63"
                                                      "1.574"
                       "-1.671"
##
                                   "21"
                                                      "5.464"
##
                       "-1.671"
                                          "30.13"
                                   "2"
                                                      "2.292"
##
                       "-1.671"
                                          "5.83"
                       "-1.672"
                                   "2"
                                          "5.64"
                                                      "2.177"
##
                                   "0"
                                          "2.77"
##
                       "-1.672"
                                                      "1.657"
                       "-1.672"
                                   "0"
                                          "2.51"
                                                      "1.501"
##
                                   "300"
                                          "338.79"
                                                     "23.185"
##
                       "-1.673"
##
                       "-1.673"
                                   "1"
                                          "3.87"
                                                      "1.715"
##
                       "-1.674"
                                   "0"
                                          "2.49"
                                                      "1.487"
                                   "0"
                                          "2.7"
                                                      "1.611"
                       "-1.676"
##
                       "-1.676"
                                   "0"
                                          "2.42"
                                                      "1.444"
##
                       "-1.676"
                                   "0"
                                          "2.42"
                                                      "1.444"
##
##
                       "-1.676"
                                   "0"
                                          "2.42"
                                                      "1.444"
##
                       "-1.676"
                                   "0"
                                          "2.95"
                                                      "1.76"
                       "-1.676"
                                   "0"
                                          "2.42"
                                                      "1.444"
##
                       "-1.678"
                                   "0"
                                          "2.41"
                                                      "1.436"
##
                       "-1.678"
                                   "0"
                                          "2.55"
                                                      "1.52"
##
                                          "2.96"
                                                      "1.763"
##
                       "-1.679"
                                   "0"
##
                       "-1.679"
                                   "2"
                                          "5.93"
                                                      "2.341"
                       "-1.679"
                                   "1"
                                          "4.52"
                                                      "2.096"
##
                       "-1.68"
                                   "3"
                                          "6.84"
                                                      "2.286"
##
                                   "0"
                                          "2.74"
                                                      "1.631"
##
                       "-1.68"
##
                       "-1.68"
                                   "58"
                                          "71.66"
                                                      "8.129"
##
                       "-1.68"
                                   "3"
                                          "7.8"
                                                      "2.857"
##
                       "-1.68"
                                   "0"
                                          "2.4"
                                                      "1.428"
##
                       "-1.681"
                                   "1"
                                          "4.65"
                                                      "2.171"
                                   "2"
                                                      "2.665"
                       "-1.681"
                                          "6.48"
##
                       "-1.682"
                                   "4"
                                          "8.64"
                                                      "2.758"
##
##
                       "-1.682"
                                   "1"
                                          "4.36"
                                                      "1.998"
                       "-1.683"
                                   "0"
                                          "2.89"
                                                      "1.717"
##
                       "-1.683"
                                   "0"
                                          "2.48"
                                                      "1.474"
##
                       "-1.683"
                                   "3"
                                          "7.59"
                                                      "2.727"
##
                                                      "2.096"
                       "-1.684"
                                   "3"
                                          "6.53"
##
                       "-1.685"
                                          "2.65"
                                                      "1.572"
##
                       "-1.685"
                                   "1"
                                          "5.17"
                                                      "2.474"
##
                                   "2"
                                          "5.91"
##
                       "-1.686"
                                                      "2.319"
                       "-1.686"
                                   "310"
                                          "352.19"
                                                      "25.027"
##
##
                       "-1.686"
                                   "4"
                                          "7.72"
                                                      "2.207"
                       "-1.686"
                                   "8"
                                          "15.43"
                                                      "4.407"
##
##
                       "-1.687"
                                   "0"
                                          "3.16"
                                                      "1.873"
                       "-1.687"
                                   "43"
                                          "55.03"
                                                      "7.13"
##
```

##	"-1.69"	"2"	"6.21"	"2.492"
##	"-1.69"	"1"	"5.94"	"2.923"
##	"-1.691"	"0"	"3.3"	"1.951"
##	"-1.691"	"3"	"7.46"	"2.638"
##	"-1.691"	"0"	"3.21"	"1.898"
##	"-1.691"	"0"	"2.58"	"1.525"
##	"-1.691"	"0"	"2.58"	"1.525"
##	"-1.692"	"0"	"3.06"	"1.808"
##	"-1.693"	"0"	"2.35"	"1.388"
##	"-1.694"	"37"	"48.71"	"6.913"
##	"-1.696"	"0"	"2.37"	"1.397"
##	"-1.696"	"3"	"7.37"	"2.577"
##	"-1.696"	"6"	"11.63"	"3.32"
##	"-1.696"	"0"	"2.37"	"1.397"
##	"-1.697"	"11"	"18.08"	"4.172"
##	"-1.697"	"3"	"7.62"	"2.722"
##	"-1.698"	"1"	"4.71"	"2.185"
##	"-1.699"	"0"	"2.93"	"1.725"
##	"-1.699"	"0"	"2.93"	"1.725"
##	"-1.699"	"11"	"17.55"	"3.854"
##	"-1.699"	"0"	"2.93"	"1.725"
##	"-1.7"	"0"	"2.67"	"1.57"
##	"-1.7"	"9"	"15.35"	"3.735"
##	"-1.7"	"1"	"5.19"	"2.465"
##	"-1.701"	"0"	"2.98"	"1.752"
##	"-1.701"	"0"	"2.94"	"1.728"
##	"-1.701"	"0"	"3.02"	"1.775"
##	"-1.702"	"103"	"124.07"	"12.381"
	1.102	100	124.07	12.001
##	"-1.702"	"2"	"7.32"	"3.127"
## ##				
	"-1.702"	"2"	"7.32"	"3.127"
##	"-1.702" "-1.703"	"2" "0"	"7.32" "2.41"	"3.127" "1.415"
## ##	"-1.702" "-1.703" "-1.703"	"2" "0" "0"	"7.32" "2.41" "2.71"	"3.127" "1.415" "1.591"
## ## ##	"-1.702" "-1.703" "-1.703" "-1.703"	"2" "0" "0" "16"	"7.32" "2.41" "2.71" "24.79"	"3.127" "1.415" "1.591" "5.161"
## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703"	"2" "0" "16" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71"	"3.127" "1.415" "1.591" "5.161" "1.474"
## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703"	"2" "0" "16" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591"
## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703"	"2" "0" "16" "0" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.591"
## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704"	"2" "0" "16" "0" "0" "0" "0" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "2.99"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.591" "1.755"
## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704"	"2" "0" "16" "0" "0" "0" "0" "0" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "3.71" "3.73"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.591" "1.595" "1.896"
## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704"	"2" "0" "16" "0" "0" "0" "0" "0" "0" "0" "7"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.595" "1.755" "1.896" "3.192"
## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704"	"2" "0" "16" "0" "0" "0" "0" "0" "0" "0" "0" "0" "	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04"
## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705"	"2" "0" "16" "0" "0" "0" "0" "0" "0" "1"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42"	"3.127" "1.415" "1.591" "5.161" "1.474" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705"	"2" "0" "16" "0" "0" "0" "0" "0" "1" "1" "14"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706"	"2" "0" "16" "0" "0" "0" "0" "0" "1" "1" "14"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "1.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706"	"2" "0" "16" "0" "0" "0" "0" "0" "7" "9" "14" "8"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "1.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706"	"2" "0" "16" "0" "0" "0" "0" "0" "7" "9" "1" "14" "8" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "1.39" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.706"	"2" "0" "16" "0" "0" "0" "0" "0" "7" "9" "1" "14" "8" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "1.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.707" "-1.708"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.708" "-1.708"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "0"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37" "80.5"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973" "9.074"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.708" "-1.708" "-1.708" "-1.708" "-1.709"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "65"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37" "80.5" "12.22"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973" "9.074" "3.639"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.707" "-1.708" "-1.708" "-1.708" "-1.709" "-1.709"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "65" "6" "1"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37" "80.5" "12.22" "4.75"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973" "9.074" "3.639" "2.194"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.707" "-1.708" "-1.708" "-1.709" "-1.709" "-1.709"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "65" "6" "1"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "2.71" "15.89" "4.42" "15.89" "4.42" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37" "80.5" "12.22" "4.75" "24.55"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973" "9.074" "3.639" "2.194" "4.418"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.702" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.703" "-1.704" "-1.704" "-1.705" "-1.705" "-1.706" "-1.706" "-1.706" "-1.706" "-1.707" "-1.707" "-1.708" "-1.708" "-1.708" "-1.709" "-1.709"	"2" "0" "16" "0" "0" "0" "0" "7" "9" "14" "8" "0" "4" "0" "65" "6" "1"	"7.32" "2.41" "2.71" "24.79" "2.51" "2.71" "2.71" "2.71" "2.71" "2.71" "2.99" "3.23" "12.44" "15.89" "4.42" "21.63" "13.82" "2.58" "9.26" "3.12" "3.02" "3.37" "80.5" "12.22" "4.75"	"3.127" "1.415" "1.591" "5.161" "1.591" "1.591" "1.591" "1.591" "1.755" "1.896" "3.192" "4.04" "2.006" "4.476" "3.412" "1.512" "3.083" "1.827" "1.769" "1.973" "9.074" "3.639" "2.194"

##	"-1.71"	"0"	"3.08"	"1.802"
##	"-1.711"	"17"	"25.19"	"4.786"
##	"-1.711"	"52"	"65.83"	"8.083"
##	"-1.711"	"2"	"6.63"	"2.707"
##	"-1.713"	"27"	"37.17"	"5.936"
##	"-1.713"	"12"	"20.24"	"4.81"
##	"-1.713"	"0"	"2.63"	"1.535"
##	"-1.714"	"1"	"5.56"	"2.66"
##	"-1.715"	"4"	"9.54"	"3.23"
##	"-1.715"	"22"	"31.65"	"5.625"
##	"-1.715"	"0"	"3.03"	"1.766"
##	"-1.716"	"0"	"3.66"	"2.133"
##	"-1.716"	"0"	"2.7"	"1.573"
##	"-1.717"	"4"	"9.28"	"3.075"
##	"-1.717"	"0"	"2.36"	"1.375"
##	"-1.718"	"0"	"3"	"1.747"
##	"-1.718"	"3"	"7.38"	"2.55"
##	-1.718 "-1.718"	"0"	"2.24"	"1.304"
##	"-1.72"	"2"	"6.51"	"2.623"
				"1.907"
##	"-1.72"	"0"	"3.28"	
##	"-1.72"	"0"	"2.83"	"1.646"
##	"-1.722"	"1"	"3.93"	"1.701"
##	"-1.723"	"5"	"11.42"	"3.726"
##	"-1.724"	"7"	"12.86"	"3.399"
##	"-1.724"	"0"	"3.69"	"2.14"
##	"-1.725"	"0"	"2.72"	"1.577"
##	"-1.725"	"0"	"2.72"	"1.577"
##	"-1.725"	"17"	"25.35"	"4.842"
##	"-1.725"	"0"	"2.72"	"1.577"
##	"-1.725"	"0"	"2.72"	"1.577"
##	"-1.726"	"0"	"3.36"	"1.946"
##	"-1.726"	"0"	"3.39"	"1.964"
##	"-1.726"	"0"	"2.31"	"1.339"
##	"-1.727"	"1"	"4.25"	"1.882"
##	"-1.727"	"1"	"4.13"	"1.813"
##	"-1.727"	"1"	"4.13"	"1.813"
##	"-1.728"	"31"	"41.26"	"5.937"
##	"-1.728"	"1"	"5.74"	"2.744"
##	"-1.729"	"88"	"105.51"	"10.128"
##	"-1.729"	"4"	"8.52"	"2.615"
##	"-1.729"	"0"	"3.18"	"1.839"
##	"-1.731"	"1"	"3.94"	"1.699"
##	"-1.731"	"3"	"6.84"	"2.219"
##	"-1.731"	"9"	"15.92"	"3.997"
##	"-1.731"	"3"	"6.84"	"2.219"
##	"-1.731"	"3"	"6.84"	"2.219"
##	"-1.731"	"3"	"6.84"	"2.219"
##	"-1.732"	"0"	"2.18"	"1.258"
##	"-1.732"	"11"	"17.63"	"3.829"
##	"-1.733"	"0"	"2.73"	"1.575"
##	"-1.733"	"5"	"9.73"	"2.73"
##	"-1.733"	"0"	"2.73"	"1.575"
##	"-1.734"	"0"	"2.93"	"1.689"
##	"-1.734"	"0"	"2.27"	"1.309"
	1.104	v	2.21	1.000

##	"-1.734"	"0"	"2.27"	"1.309"
##	"-1.736"	"1"	"4.78"	"2.177"
##	"-1.736"	"0"	"3.64"	"2.096"
##	"-1.736"	"0"	"3.17"	"1.826"
##	"-1.736"	"0"	"2.42"	"1.394"
##	"-1.737"	"4"	"8.44"	"2.556"
##	"-1.737"	"1"	"5.04"	"2.326"
##	"-1.737"	"1"	"5.04"	"2.326"
##	"-1.738"	"1"	"4.68"	"2.117"
##	"-1.738"	"1"	"4.68"	"2.117"
##	"-1.738"	"1"	"4.68"	"2.117"
##	"-1.739"	"3"	"6.95"	"2.271"
##	"-1.74"	"1"	"4.36"	"1.931"
##	"-1.74"	"0"	"3.37"	"1.937"
##	"-1.74"	"6"	"10.91"	"2.822"
##	"-1.74"	"1"	"4.98"	"2.287"
##	"-1.741"	"0"	"3.17"	"1.821"
##	"-1.741"	"0"	"3.35"	"1.925"
##	"-1.742"	"1"	"4.86"	"2.216"
##	"-1.742"	"4"	"8.88"	"2.801"
##	"-1.742"	"3"	"6.86"	"2.216"
##	"-1.743"	"42"	"54.32"	"7.067"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"3.1"	"1.778"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.743"	"9"	"16.66"	"4.395"
##	"-1.744"	"3"	"7.61"	"2.643"
##	"-1.744"	"0"	"2.61"	"1.497"
##	"-1.744"	"0"	"2.77"	"1.588"
##	"-1.744"	"0"	"2.67"	"1.531"
##	"-1.744"	"0"	"2.05"	"1.175"
##	"-1.744"	"0"	"2.61"	"1.497"
##	"-1.744"	"0"	"2.61"	"1.497"
##	"-1.745"	"11"	"17.78"	"3.886"
##	"-1.745"	"0"	"3.12"	"1.788"
##	"-1.746"	"1"	"4.47"	"1.987"
##	"-1.747"	"1"	"5.13"	"2.364"
##	"-1.748"	"11"	"17.82"	"3.901"
##	"-1.748"	"7"	"12.89"	"3.369"
##	"-1.748"	' "11"	"18.98"	"4.566"
##	"-1.749"	"0"	"4.61"	"2.636"
##	"-1.749"	"31"	"42.13"	"6.362"
##	-1.749 "-1.749"	"67"	"81.04"	"8.029"
##	"-1.74 <i>9</i>	"0"	"2.3"	"1.314"
## ##	"-1.75"	"0"	"2.81"	"1.606"
##	"-1.75"	"0"	"2.3"	"1.314"
##	-1.75 "-1.75"	"0"	"2.3"	"1.314"
## ##	"-1.75"	"0"	"3.27"	"1.869"
##	-1.75	U	3.21	1.009.

##	"-1.751"	"0"	"3.21"	"1.833"
##	"-1.751"	"1"	"4.21"	"1.833"
##	"-1.751"	"0"	"2.4"	"1.371"
##	"-1.751"	"1"	"5.35"	"2.484"
##	"-1.751"	"1"	"4.33"	"1.902"
##	"-1.751"	"11"	"18.23"	"4.129"
##	"-1.752"	"0"	"3.56"	"2.032"
##	"-1.752"	"137"	"160.16"	"13.218"
##	"-1.752"	"3"	"6.96"	"2.26"
##	"-1.753"	"0"	"3.04"	"1.734"
##	"-1.755"	"0"	"2.74"	"1.561"
##	"-1.755"	"0"	"2.91"	"1.658"
##	"-1.756"	"0"	"2.94"	"1.675"
##	"-1.756"	"5"	"10.06"	"2.881"
##	"-1.756"	"0"	"2.94"	"1.675"
##	"-1.756"	"1"	"4.48"	"1.982"
##	"-1.757"	"0"	"4.31"	"2.452"
##	"-1.757"	"0"	"3.51"	"1.997"
##	"-1.758"	"3"	"8.27"	"2.998"
##	"-1.758"	"5"	"9.95"	"2.815"
##	"-1.759"	"3"	"8.51"	"3.132"
##	"-1.759"	"1"	"5"	"2.274"
##	"-1.759"	"25"	"34.35"	"5.315"
##	"-1.76"	"0"	"2.7"	"1.534"
##	"-1.76"	"0"	"2.93"	"1.665"
##	"-1.761"	"52"	"66.42"	"8.19"
##	"-1.761"	"0"	"3.26"	"1.851"
##	"-1.762"	"0"	"3.51"	"1.992"
##	"-1.762"	"3"	"7.82"	"2.735"
##	"-1.762"	"13"	"20.73"	"4.387"
##	"-1.762"	"13"	"21.59"	"4.876"
##	"-1.762"	"0"	"3.05"	"1.731"
##	"-1.763"	"0"	"2.85"	"1.617"
##	"-1.764"	"0"	"3.37"	"1.91"
##	"-1.764"	"0"	"2.95"	"1.672"
##	"-1.765"	"0"	"3.06"	"1.734"
##	"-1.766"	"6"	"10.71"	"2.668"
##	"-1.766"	"0"	"3.61"	"2.044"
##	"-1.767"	"0"	"2.62"	"1.482"
##	"-1.767"	"0"	"3.53"	"1.997"
##	"-1.767"	"0"	"2.69"	"1.522"
##	"-1.768"	"2"	"5.69"	"2.087"
##	"-1.769"	"0"	"3.09"	"1.747"
##	"-1.769"	"0"	"3.28"	"1.854"
##	"-1.769"	"15"	"24.32"	"5.268"
##	"-1.77"	"0"	"3.23"	"1.825"
##	"-1.77"	"0"	"4.36"	"2.464"
##	"-1.771"	"0"	"3.04"	"1.717"
##	"-1.772"	"0"	"4.07"	"2.297"
##	"-1.772"	"0"	"3.18"	"1.794"
##	"-1.773"	"54"	"68.33"	"8.082"
##	"-1.773"	"0"	"2.77"	"1.563"
##	"-1.773"	"8"	"13.91"	"3.334"
##	"-1.774"	"7"	"12.76"	"3.248"

##	"-1.775"	"0"	"3.91"	"2.202"
##	"-1.775"	"0"	"2.64"	"1.487"
##	"-1.777"	"1"	"5.59"	"2.582"
##	"-1.777"	"6"	"12.38"	"3.589"
##	"-1.778"	"0"	"3.95"	"2.222"
##	"-1.778"	"3"	"7.74"	"2.665"
##	"-1.779"	"1"	"5.54"	"2.552"
##	"-1.78"	"0"	"2.96"	"1.663"
##	"-1.781"	"0"	"2.99"	"1.679"
##	"-1.781"	"25"	"34.48"	"5.323"
##	"-1.782"	"29"	"38.76"	"5.476"
##	"-1.782"	"0"	"3.6"	"2.02"
##	"-1.782"	"0"	"3.32"	"1.863"
##	"-1.783"	"0"	"3.18"	"1.783"
##	"-1.783"	"5"	"10.93"	"3.325"
##	"-1.783"	"0"	"2.67"	"1.498"
##	"-1.783"	"2"	"6.25"	"2.384"
##	"-1.784"	"4"	"9.1"	"2.859"
##	"-1.785"	"1"	"4.92"	"2.196"
##	"-1.785"	"1"	"4.17"	"1.776"
##	"-1.785"	"1"	"5.08"	"2.286"
##	"-1.785"	"0"	"3.24"	"1.815"
##	"-1.786"	"0"	"3.27"	"1.83"
##	"-1.786"	"25"	"36.05"	"6.188"
##	"-1.787"	"0"	"2.58"	"1.444"
##	"-1.787"	"0"	"2.58"	"1.444"
##	"-1.788"	"0"	"2.47"	"1.381"
##	"-1.788"	"0"	"3.39"	"1.896"
##	"-1.788"	"0"	"3.39"	"1.896"
##	"-1.788"	"0"	"2.47"	"1.381"
##	"-1.789"	"9"	"15.35"	"3.549"
##	"-1.789"	"1"	"4.92"	"2.191"
##	"-1.79"	"0"	"3.73"	"2.083"
##	"-1.791"	"30"	"40.64"	"5.94"
##	"-1.791"	"0"	"3.28"	"1.832"
##	"-1.791"	"1"	"4.86"	"2.156"
##	"-1.791"	"3"	"7.04"	"2.256"
##	"-1.792"	"0"	"2.81"	"1.568"
##	"-1.794"	"6"	"12.1"	"3.401"
##	"-1.795"	"64"	"79.33"	"8.539"
##	"-1.795"	"0"	"2.97"	"1.654"
##	"-1.795"	"11"	"18.72"	"4.302"
##	"-1.795"	"11"	"18.72"	"4.302"
##	"-1.796"	"0"	"4.07"	"2.266"
##	"-1.797"	"5"	"11.27"	"3.49"
##	"-1.797"	"0"	"3.87"	"2.154"
##	"-1.797"	"0"	"3.17"	"1.764"
##	"-1.797"	"4"	"9.66"	"3.15"
##	"-1.797"	"2"	"6.81"	"2.677"
##	"-1.798"	"1"	"4.5"	"1.946"
##	"-1.798"	"1"	"4.8"	"2.113"
##	"-1.798"	"5"	"11.24"	"3.47"
##	"-1.8"	"0"	"3.01"	"1.673"
##	"-1.8"	"0"	"3.13"	"1.739"

##	"-1.8"	"0"	"3.9"	"2.167"
##	"-1.801"	"0"	"3.18"	"1.766"
##	"-1.801"	"0"	"3.18"	"1.766"
##	"-1.802"	"313"	"355.88"	"23.795"
##	"-1.803"	"0"	"2.45"	"1.359"
##	"-1.804"	"0"	"3.14"	"1.741"
##	"-1.804"	"0"	"3.37"	"1.868"
##	"-1.805"	"0"	"3.36"	"1.861"
##	"-1.805"	"5"	"12.03"	"3.894"
##	"-1.805"	"0"	"2.85"	"1.579"
##	"-1.805"	"2"	"6.68"	"2.593"
##	"-1.805"	"0"	"2.85"	"1.579"
##	"-1.805"	"0"	"2.85"	"1.579"
## ##			"7.77"	"2.639"
	"-1.807"	"3"		
##	"-1.807"	"0"	"3.8"	"2.103"
##	"-1.808"	"0"	"3.1"	"1.714"
##	"-1.808"	"1"	"5.05"	"2.24"
##	"-1.81"	"1"	"4.75"	"2.071"
##	"-1.81"	"29"	"39.71"	"5.916"
##	"-1.811"	"0"	"3.29"	"1.816"
##	"-1.811"	"2"	"6.75"	"2.622"
##	"-1.811"	"1"	"4.29"	"1.816"
##	"-1.812"	"4"	"9.58"	"3.079"
##	"-1.812"	"0"	"2.49"	"1.374"
##	"-1.813"	"0"	"3.24"	"1.787"
##	"-1.813"	"1"	"4.64"	"2.008"
##	"-1.814"	"0"	"3.27"	"1.803"
##	"-1.815"	"0"	"2.3"	"1.267"
##	"-1.815"	"0"	"3.02"	"1.664"
##	"-1.816"	"4"	"9.37"	"2.956"
##	"-1.816"	"75"	"90.95"	"8.783"
##	"-1.816"	"3"	"8.3"	"2.918"
##	"-1.816"	"1"	"5.49"	"2.472"
##	"-1.816"	"1"	"5.49"	"2.472"
##	"-1.816"	"1"	"5.49"	"2.472"
##	"-1.817"	"9"	"16.26"	"3.997"
##	"-1.817"	"0"	"2.83"	"1.557"
##	"-1.817"	"3"	"7.52"	"2.488"
##	"-1.818"	"0"	"3.03"	"1.666"
##	"-1.819"	"13"	"20.09"	"3.898"
##	"-1.819"	"0"	"3.01"	"1.654"
##	"-1.82"	"122"	"144.17"	"12.18"
##	"-1.82"	"6"	"12.31"	"3.466"
##	"-1.82"	"0"	"2.6"	"1.428"
##	"-1.82"	"17"	"26.31"	"5.116"
##	"-1.821"	"1"	"4.91"	"2.147"
##	"-1.821"	"3"	"8.25"	"2.883"
##	"-1.822"	"0"	"2.49"	"1.367"
##	"-1.822"	"0"	"2.81"	"1.542"
##	"-1.823"	"92"	"110.93"	"10.384"
##	"-1.824"	"105"	"124.98"	"10.954"
##	"-1.824"	"3"	"7.95"	"2.713"
##	"-1.824"	"8"	"14.63"	"3.634"
##	"-1.824"	"0"	"3.33"	"1.826"

##	"-1.824"	"0"	"3.18"	"1.743"
##	"-1.825"	"0"	"3.27"	"1.791"
##	"-1.825"	"2"	"6.67"	"2.559"
##	"-1.825"	"2"	"6.67"	"2.559"
##	"-1.825"	"5"	"10.11"	"2.799"
	"-1.827"	"0"	"3.35"	"1.833"
##				
##	"-1.827"	"4"	"9.66"	"3.098"
##	"-1.827"	"2"	"6.82"	"2.638"
##	"-1.828"	"0"	"3.46"	"1.893"
##	"-1.828"	"0"	"3.19"	"1.745"
##	"-1.829"	"15"	"23.88"	"4.856"
##	"-1.829"	"7"	"12.29"	"2.893"
##	"-1.829"	"16"	"25"	"4.92"
##	"-1.83"	"36"	"48.27"	"6.706"
##	"-1.83"	"2"	"7.28"	"2.885"
##	"-1.83"	"19"	"29.03"	"5.482"
##	"-1.83"	"4"	"8.79"	"2.618"
##	"-1.83"	"20"	"31.14"	"6.089"
##	"-1.83"	"0"	"3.21"	"1.754"
##	"-1.83"	"39"	"52.33"	"7.282"
##	"-1.831"	"0"	"3.74"	"2.043"
##	"-1.832"	"0"	"3.15"	"1.72"
##	"-1.832"	"0"	"3.15"	"1.72"
##	"-1.832"	"0"	"2.95"	"1.61"
##	"-1.832"	"3"	"7.29"	"2.341"
##	"-1.833"	"0"	"2.22"	"1.211"
##	"-1.833"	"0"	"2.22"	"1.211"
##	"-1.833"	"0"	"2.22"	"1.211"
##	"-1.834"	"0"	"3.29"	"1.794"
##	"-1.834"	"1"	"4.62"	"1.973"
##	"-1.835"	"8"	"15.36"	"4.011"
##	"-1.835"	"0"	"3.04"	"1.657"
##	"-1.835"	"0"	"3.04"	"1.657"
##	"-1.837"	"1"	"5.74"	"2.581"
##	"-1.837"	"0"	"2.86"	"1.557"
##	"-1.838"	"4"	"9.84"	"3.177"
##	"-1.838"	"0"	"3.3"	"1.795"
##	"-1.839"	"2"	"7.06"	"2.752"
##	"-1.84"	"0"	"3.29"	"1.788"
##	"-1.84"	"0"	"4.33"	"2.353"
##	"-1.841"	"3"	"8.06"	"2.748"
##	"-1.841"	"0"	"2.7"	"1.467"
##	"-1.841"	"75"	"92.49"	"9.498"
##	"-1.842"	"0"	"2.84"	"1.542"
##	"-1.842"	"11"	"18.89"	"4.283"
##	"-1.842"	"19"	"27.51"	"4.62"
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"2"	"6.22"	"2.29"
##	"-1.843"	"2"	"6.22"	"2.29"
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"0"	"3.88"	"2.105"
== ==	010	•	0.00	

##	"-1.845"	"39"	"51.62"	"6.84"
##	"-1.846"	"0"	"3.75"	"2.032"
##	"-1.846"	"6"	"12.82"	"3.694"
##	"-1.846"	"7"	"13.46"	"3.5"
##	"-1.847"	"4"	"10.75"	"3.655"
##	"-1.847"	"0"	"3.08"	"1.668"
##	"-1.847"	"0"	"3.32"	"1.797"
##	"-1.848"	"9"	"16.95"	"4.303"
##	"-1.849"	"8"	"14.34"	"3.43"
##	"-1.849"	"8"	"14.34"	"3.43"
##	"-1.849"	"8"	"14.34"	"3.43"
##	"-1.85"	"1"	"5.32"	"2.335"
##	"-1.85"	"0"	"3.11"	"1.681"
##	"-1.85"	"0"	"2.75"	"1.486"
##	"-1.85"	"0"	"3.11"	"1.681"
##	"-1.85"	"0"	"3.11"	"1.681"
##	"-1.851"	"0"	"3.34"	"1.805"
##	"-1.851"	"0"	"2.85"	"1.54"
##	"-1.851"	"0"	"3.34"	"1.805"
##	"-1.851"	"0"	"3.34"	"1.805"
##	"-1.853"	"1"	"5.39"	"2.369"
##	"-1.854"	"57"	"71.94"	"8.06"
##	"-1.856"	"9"	"16.5"	"4.041"
##	"-1.856"	"0"	"3.18"	"1.714"
##	"-1.857"	"0"	"3.11"	"1.675"
##	"-1.858"	"5"	"11.71"	"3.611"
##	"-1.858"	"0"	"2.72"	"1.464"
##	"-1.859"	"0"	"3.28"	"1.764"
##	"-1.86"	"0"	"3.43"	"1.844"
##	"-1.861"	"0"	"3.21"	"1.725"
##	"-1.862"	"2"	"6.99"	"2.68"
##	"-1.862"	"0"	"2.3"	"1.235"
##	"-1.862"	"0"	"3.4"	"1.826"
##	"-1.863"	"16"	"24.93"	"4.793"
##	"-1.864"	"1"	"5.84"	"2.597"
##	"-1.865"	"14"	"23.89"	"5.303"
##	"-1.865"	"0"	"3.17"	"1.7"
##	"-1.865"	"1"	"4.22"	"1.727"
##	"-1.865"	"2"	"6.09"	"2.193"
##	"-1.865"	"2"	"7.48"	"2.939"
##	"-1.865"	"0"	"3.94"	"2.112"
##	"-1.868"	"2"	"7.54"	"2.966"
##	"-1.868"	"0"	"3.01"	"1.611"
##	"-1.868"	"1"	"4.34"	"1.788"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"4.02"	"2.151"
##	"-1.869"	"0"	"2.95"	"1.579"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"
##	"-1.869"	"0"	"3.33"	"1.781"

##	"-1.87"	"3"	"7.91"	"2.625"
##	"-1.87"	"14"	"22.4"	"4.492"
##	"-1.87"	"0"	"3.56"	"1.903"
##	"-1.87"	"1"	"4.79"	"2.027"
##	"-1.871"	"7"	"14.25"	"3.875"
##	"-1.871"	"0"	"4.24"	"2.266"
##	"-1.871"	"49"	"63.73"	"7.873"
##	"-1.871"	"1"	"4.98"	"2.127"
##	"-1.872"	"25"	"35.92"	"5.834"
##	"-1.873"	"1"	"4.67"	"1.959"
##	"-1.873"	"8"	"16.01"	"4.277"
##	"-1.873"	"17"	"25.74"	"4.666"
##	"-1.873"	"0"	"4.13"	"2.205"
##	"-1.874"	"130"	"150.46"	"10.92"
##	"-1.874"	"1"	"4.94"	"2.103"
##	"-1.875"	"25"	"35.18"	"5.428"
##	"-1.875"	"1"	"4.82"	"2.037"
##	"-1.875"	"0"	"4.04"	"2.155"
##	"-1.875"	"8"	"14.81"	"3.631"
##	"-1.875"	"2"	"6.99"	"2.661"
##	"-1.875"	"0"	"4.04"	"2.155"
##	"-1.876"	"181"	"208.55"	"14.687"
##	"-1.876"	"1"	"5.03"	"2.148"
##	"-1.877"	"7"	"13.66"	"3.548"
##	"-1.877"	"6"	"11.69"	"3.031"
##	"-1.877"	"0"	"2.55"	"1.359"
##	"-1.878"	"0"	"2.99"	"1.592"
##	"-1.878"	"0"	"3.02"	"1.608"
##	"-1.879"	"0"	"3.79"	"2.017"
##	"-1.879"	"0"	"3.4"	"1.809"
##	"-1.879"	"0"	"3.79"	"2.017"
##	"-1.879"	"0"	"3.4"	"1.809"
##	"-1.879"	"0"	"3.4"	"1.809"
##	"-1.879"	"0"	"3.4"	"1.809"
##	"-1.879"	"0"	"3.4"	"1.809"
##	"-1.88"	"0"	"3.69"	"1.963"
##	"-1.881"	"1"	"5.73"	"2.514"
##	"-1.881"	"0"	"3.55"	"1.888"
##	"-1.882"	"2"	"6.17"	"2.216"
##	"-1.883"	"154"	"178.08"	"12.786"
##	"-1.883"	"10"	"16.61"	"3.51"
##	"-1.883"	"1"	"4.6"	"1.912"
##	"-1.884"	"0"	"2.86"	"1.518"
##	"-1.884"	"2"	"6.87"	"2.585"
##	"-1.885"	"13"	"21.01"	"4.249"
##	"-1.887"	"2"	"6.45"	"2.359"
##	"-1.887"	"1"	"4.86"	"2.045"
##	"-1.888"	"45"	"60.04"	"7.967"
##	"-1.888"	"1"	"5.1"	"2.172"
##	"-1.888"	"0"	"3"	"1.589"
##	"-1.889"	"6"	"12.47"	"3.424"
##	"-1.891"	"1"	"5.47"	"2.363"
##	"-1.891"	"2"	"6.9"	"2.592"
##	"-1.891"	"7"	"14.36"	"3.891"

##	"-1.891"	"2"	"6.39"	"2.322"
##	"-1.891"	"3"	"7.94"	"2.612"
##	"-1.891"	"2"	"6.39"	"2.322"
##	"-1.891"	"0"	"3.31"	"1.751"
##	"-1.891"	"2"	"6.39"	"2.322"
##	"-1.891"	"2"	"6.39"	"2.322"
##	"-1.892"	"14"	"24.88"	"5.751"
##	"-1.892"	"2"	"6.55"	"2.405"
##	"-1.893"	"4"	"11"	"3.698"
##	"-1.894"	"1"	"5.12"	"2.176"
##	"-1.894"	"3"	"8.25"	"2.772"
##	"-1.894"	"0"	"3.33"	"1.758"
##	"-1.895"	"4"	"9.37"	"2.834"
##	"-1.896"	"1"	"5.29"	"2.262"
##	"-1.896"	"2"	"7.62"	"2.964"
##	"-1.896"	"0"	"3.65"	"1.925"
##	"-1.897"	"0"	"3.75"	"1.977"
##	"-1.897"	"3"	"8.37"	"2.831"
##	"-1.897"	"2"	"6.28"	"2.257"
##	"-1.898"	"1"	"4.91"	"2.06"
##	"-1.899"	"0"	"4.87"	"2.565"
##	"-1.9"	"1"	"5.6"	"2.42"
##	"-1.9"	"0"	"3.07"	"1.616"
##	"-1.901"	"15"	"24.06"	"4.765"
##	"-1.902"	"23"	"33.32"	"5.427"
##	"-1.902"	"11"	"18.29"	"3.833"
##	"-1.904"	"1"	"5.28"	"2.248"
##	"-1.904"	"1"	"5.28"	"2.248"
##	"-1.906"	"3"	"7.85"	"2.544"
##	"-1.906"	"28"	"38.95"	"5.744"
##	"-1.906"	"7"	"14.41"	"3.888"
##	"-1.906"	"25"	"35.89"	"5.714"
##	"-1.907"	"0"	"3.07"	"1.61"
##	"-1.907"	"0"	"3.37"	"1.768"
##	"-1.907"	"0"	"4.53"	"2.376"
##	"-1.908"	"2"	"6.76"	"2.495"
##	"-1.908"	"4"	"9.77"	"3.025"
##	"-1.909"	"4"	"9.19"	"2.718"
##	"-1.909"	"2"	"6.26"	"2.232"
##	"-1.909"	"0"	"3.4"	"1.781"
##	"-1.91"	"0"	"3.83"	"2.005"
##	"-1.91"	"1"	"6.38"	"2.817"
##	"-1.91"	"150"	"175.28"	"13.232"
##	"-1.91"	"7"	"15.28"	"4.335"
##	"-1.911"	"9"	"16.79"	"4.076"
##	"-1.911"	"1"	"4.95"	"2.066"
##	"-1.913"	"6"	"12.37"	"3.329"
##	"-1.913"	"32"	"43.75"	"6.142"
##	"-1.914"	"0"	"2.62"	"1.369"
##	"-1.914"	"0"	"3.76"	"1.965"
##	"-1.914"	"8"	"16.57"	"4.477"
##	"-1.915"	"12"	"21.03"	"4.715"
##	"-1.916"	"0"	"3.62"	"1.89"
##	"-1.917"	"5"	"11.79"	"3.543"

##	"-1.917"	"0"	"3.64"	"1.899"
##	"-1.918"	"0"	"2.96"	"1.543"
##	"-1.918"	"2"	"6.44"	"2.315"
##	"-1.919"	"28"	"38.26"	"5.348"
##	"-1.92"	"0"	"2.87"	"1.495"
##	"-1.92"	"1"	"5.99"	"2.6"
##	"-1.92"	"2"	"6.74"	"2.468"
##	"-1.92"	"0"	"3.36"	"1.75"
##	"-1.92"	"0"	"3.36"	"1.75"
##	"-1.921"	"5"	"11.38"	"3.321"
##	"-1.921"	"3"	"7.89"	"2.546"
##	"-1.921"	"13"	"22.39"	"4.888"
##	"-1.921"	"0"	"3.09"	"1.609"
##	"-1.921"	"0"	"3.01"	"1.567"
##	"-1.921"	"5"	"11.5"	"3.383"
##	"-1.922"	"0"	"3.23"	"1.681"
##	"-1.922"	"2"	"7"	"2.601"
##	"-1.923"	"28"	"39.87"	"6.174"
##	"-1.924"	"0"	"4"	"2.079"
##	"-1.924"	"0"	"3.34"	"1.736"
##	"-1.924"	"3"	"8.73"	"2.978"
##	"-1.925"	"1"	"4.56"	"1.849"
##	"-1.925"	"1"	"5.44"	"2.306"
##	"-1.926"	"15"	"23.97"	"4.657"
##	"-1.926"	"8"	"16.49"	"4.407"
##	"-1.927"	"66"	"82.47"	"8.546"
##	"-1.927"	"90"	"110.03"	"10.397"
##	"-1.927"	"0"	"3.19"	"1.656"
##	"-1.927"	"14"	"22.31"	"4.313"
##	"-1.927"	"0"	"3.7"	"1.92"
##	"-1.928"	"1"	"4.9"	"2.023"
##	"-1.93"	"1"	"5.76"	"2.466"
##	"-1.93"	"1"	"5.76"	"2.466"
##	"-1.93"	"1"	"4.38"	"1.751"
##	"-1.93"	"0"	"2.39"	"1.238"
##	"-1.93"	"1"	"4.38"	"1.751"
##	"-1.933"	"0"	"2.58"	"1.335"
##	"-1.934"	"0"	"3.46"	"1.789"
##	"-1.935"	"10"	"17.39"	"3.819"
##	"-1.935"	"1"	"5.73"	"2.445"
##	"-1.935"	"0"	"3.11"	"1.607"
##	"-1.936"	"8"	"15.84"	"4.049"
##	"-1.938"	"3"	"8.02"	"2.59"
##	"-1.938"	"1"	"5.1"	"2.115"
##	"-1.939"	"12"	"20.36"	"4.312"
##	"-1.94"	"1"	"5.7"	"2.423"
##	"-1.941"	"1"	"5.77"	"2.457"
##	"-1.941"	"7"	"14.61"	"3.921"
##	"-1.941"	"0"	"2.79"	"1.438"
##	"-1.942"	"0"	"3.56"	"1.833"
##	"-1.942"	"4"	"9.53"	"2.848"
##	"-1.943"	"1"	"4.85"	"1.982"
##	"-1.945"	"4"	"9.8"	"2.981"
##	"-1.945"	"5"	"11.35"	"3.264"

```
"8"
                                           "16.13"
                                                      "4.177"
##
                       "-1.946"
                       "-1.946"
                                   "0"
                                          "4.11"
                                                      "2.112"
##
                                           "4.51"
##
                       "-1.947"
                                   "0"
                                                      "2.316"
                       "-1.947"
                                   "11"
                                           "18.85"
                                                      "4.031"
##
##
                       "-1.947"
                                   "31"
                                           "41.82"
                                                      "5.557"
                       "-1.948"
                                   "1"
                                          "4.57"
                                                      "1.833"
##
                       "-1.948"
                                   "0"
                                           "3.57"
                                                      "1.833"
##
                                           "7"
                                                      "2.566"
                       "-1.948"
                                   "2"
##
##
                       "-1.948"
                                   "0"
                                           "3.9"
                                                      "2.003"
                                          "3.43"
                       "-1.949"
                                   "0"
                                                      "1.76"
##
##
                       "-1.951"
                                   "22"
                                           "32.28"
                                                      "5.269"
                       "-1.952"
                                   "24"
                                           "34.71"
                                                      "5.487"
##
                       "-1.952"
                                   "0"
                                           "4.27"
                                                      "2.187"
##
                                          "3.46"
                                                      "1.772"
                       "-1.953"
                                   "0"
##
##
                       "-1.954"
                                   "0"
                                           "3.57"
                                                      "1.827"
                                           "7.93"
                                                      "2.52"
##
                       "-1.957"
                                   "3"
                       "-1.957"
                                   "42"
                                           "55.25"
                                                      "6.769"
##
                                           "5.37"
##
                       "-1.958"
                                   "1"
                                                      "2.232"
##
                       "-1.958"
                                   "1"
                                           "5.41"
                                                      "2.252"
                                   "0"
                                           "3.91"
                                                      "1.995"
##
                       "-1.959"
##
                       "-1.96"
                                   "0"
                                          "3.62"
                                                      "1.847"
##
                       "-1.962"
                                   "0"
                                          "3.01"
                                                      "1.534"
                       "-1.962"
                                   "0"
                                           "4.34"
                                                      "2.212"
##
                       "-1.962"
                                   "3"
                                           "7.42"
                                                      "2.253"
##
                       "-1.963"
                                   "0"
                                          "3.49"
                                                      "1.778"
##
##
                       "-1.965"
                                   "0"
                                           "3.25"
                                                      "1.654"
                                           "61.06"
                                                      "7.664"
##
                       "-1.965"
                                   "46"
                       "-1.966"
                                   "1"
                                           "5.6"
                                                      "2.34"
##
                                          "158.64"
                       "-1.966"
                                   "135"
                                                      "12.024"
##
                       "-1.966"
                                   "2"
                                           "7.64"
                                                      "2.869"
##
                                   "1"
                                           "5.6"
                                                      "2.34"
##
                       "-1.966"
##
                       "-1.966"
                                   "1"
                                          "5.6"
                                                      "2.34"
                       "-1.967"
                                   "0"
                                          "3.09"
                                                      "1.571"
##
                       "-1.967"
                                   "0"
                                           "3.09"
                                                      "1.571"
##
                                   "5"
                                           "12.04"
                                                      "3.579"
##
                       "-1.967"
##
                       "-1.968"
                                   "0"
                                          "3.85"
                                                      "1.956"
##
                       "-1.969"
                                   "21"
                                          "33.9"
                                                      "6.553"
##
                       "-1.97"
                                   "1"
                                           "4.96"
                                                      "2.01"
                                                      "2.01"
##
                       "-1.97"
                                   "1"
                                           "4.96"
                                   "1"
                                                      "2.01"
##
                       "-1.97"
                                          "4.96"
                       "-1.971"
                                   "2"
                                           "6.7"
                                                      "2.385"
##
                                           "4.09"
                                                      "2.075"
##
                       "-1.971"
                                   "0"
                       "-1.971"
                                   "2"
                                           "7.41"
                                                      "2.745"
##
                       "-1.972"
                                   "2"
                                          "7.39"
                                                      "2.734"
##
                       "-1.973"
                                   "0"
                                           "3.65"
                                                      "1.85"
##
                                           "211.6"
                                                      "11.955"
                       "-1.974"
                                   "188"
##
                       "-1.975"
                                   "4"
                                           "11.29"
                                                      "3.691"
##
                       "-1.975"
                                   "2"
                                           "6.45"
                                                      "2.254"
##
                                   "2"
                                                      "2.254"
##
                       "-1.975"
                                           "6.45"
                                                      "2.254"
                       "-1.975"
                                   "2"
                                           "6.45"
##
                                   "2"
##
                       "-1.975"
                                          "6.45"
                                                      "2.254"
                       "-1.977"
                                   "0"
                                          "3.42"
                                                      "1.73"
##
##
                       "-1.978"
                                   "0"
                                           "3.97"
                                                      "2.007"
                       "-1.978"
                                   "664"
                                          "736.44"
                                                      "36.627"
##
```

```
"-1.978"
                                   "1"
                                           "5.03"
                                                      "2.037"
##
                       "-1.978"
                                   "0"
                                           "3.57"
                                                      "1.805"
##
##
                       "-1.979"
                                   "1"
                                           "5.96"
                                                      "2.506"
                       "-1.979"
                                   "4"
                                           "10.58"
                                                      "3.325"
##
##
                       "-1.979"
                                   "3"
                                           "8.63"
                                                      "2.845"
                       "-1.981"
                                   "3"
                                           "10.26"
                                                      "3.664"
##
                       "-1.982"
                                   "2"
                                           "7.72"
                                                      "2.885"
##
                                           "3.9"
                                                      "1.967"
                       "-1.983"
                                   "0"
##
##
                       "-1.983"
                                   "0"
                                           "3.9"
                                                      "1.967"
                       "-1.983"
                                   "0"
                                           "3.9"
                                                      "1.967"
##
##
                       "-1.983"
                                   "0"
                                           "3.48"
                                                      "1.755"
                       "-1.983"
                                   "0"
                                           "3.48"
                                                      "1.755"
##
                       "-1.983"
                                   "0"
                                           "3.48"
                                                      "1.755"
##
                       "-1.983"
                                   "0"
                                           "3.48"
                                                      "1.755"
##
##
                       "-1.983"
                                   "0"
                                           "3.48"
                                                      "1.755"
                                                      "2.097"
##
                       "-1.984"
                                   "0"
                                           "4.16"
                       "-1.984"
                                   "4"
                                           "10.72"
                                                      "3.388"
##
                                   "0"
                                           "3.72"
##
                       "-1.984"
                                                      "1.875"
##
                       "-1.985"
                                   "134"
                                           "161.65"
                                                      "13.929"
                                   "1"
                                           "4.91"
                                                      "1.97"
##
                       "-1.985"
##
                       "-1.987"
                                   "1"
                                           "5.21"
                                                      "2.119"
##
                       "-1.987"
                                   "7"
                                           "14.2"
                                                      "3.624"
                                   "0"
                                           "4.13"
                                                      "2.078"
                        "-1.988"
##
                       "-1.989"
                                   "0"
                                           "4.07"
                                                      "2.046"
##
                       "-1.989"
                                   "0"
                                           "3.48"
                                                      "1.749"
##
##
                       "-1.989"
                                   "0"
                                           "3.35"
                                                      "1.684"
                                                      "2.699"
##
                       "-1.989"
                                   "0"
                                           "5.37"
                       "-1.99"
                                   "9"
                                           "17.21"
                                                      "4.125"
##
                                   "1"
                                                      "2.367"
                       "-1.99"
                                           "5.71"
##
                       "-1.99"
                                   "0"
                                           "3.98"
                                                      "2"
##
                                   "22"
                                           "33.52"
                                                      "5.788"
##
                       "-1.99"
##
                       "-1.991"
                                   "0"
                                           "3.54"
                                                      "1.778"
                       "-1.991"
                                   "6"
                                           "13.61"
                                                      "3.822"
##
                                   "2"
                                                      "2.758"
                       "-1.991"
                                           "7.49"
##
                                   "0"
                                           "4.55"
                                                      "2.285"
##
                       "-1.992"
                                          "357.72"
##
                       "-1.993"
                                   "311"
                                                      "23.443"
##
                       "-1.994"
                                   "2"
                                           "8.01"
                                                      "3.013"
##
                        "-1.994"
                                   "1"
                                           "5.4"
                                                      "2.207"
##
                       "-1.994"
                                   "3"
                                           "9.96"
                                                      "3.49"
                                   "1"
                                           "5.64"
                                                      "2.325"
                       "-1.996"
##
##
                       "-1.998"
                                   "3"
                                           "8.64"
                                                      "2.823"
##
                       "-1.998"
                                   "11"
                                           "19.96"
                                                      "4.485"
                       "-1.998"
                                   "0"
                                           "4.28"
                                                      "2.142"
##
                       "-1.999"
                                   "5"
                                           "13.01"
                                                      "4.006"
##
                       "-1.999"
                                   "0"
                                           "3.7"
                                                      "1.85"
##
                        "-2"
                                                      "2.87"
                                   "3"
                                           "8.74"
##
                        "-2"
                                   "8"
                                           "15.32"
                                                      "3.659"
##
                       "-2"
                                   "30"
                                           "42.04"
                                                      "6.02"
##
                                   "5"
                                           "11.5"
                                                      "3.249"
##
                        "-2.001"
                       "-2.002"
                                   "6"
                                           "12.77"
                                                      "3.381"
##
                                   "38"
                                                      "7.57"
##
                       "-2.003"
                                           "53.16"
                       "-2.003"
                                   "1"
                                           "5.1"
                                                      "2.047"
##
##
                       "-2.004"
                                   "0"
                                           "4.15"
                                                      "2.071"
                        "-2.004"
                                   "2"
                                           "6.97"
                                                      "2.48"
##
```

##	"-2.005"	"13"	"23.52"	"5.246"
##	"-2.005"	"0"	"3.88"	"1.935"
##	"-2.006"	"8"	"15.26"	"3.62"
##	"-2.006"	"6"	"13.25"	"3.614"
##	"-2.007"	"0"	"3.72"	"1.854"
##	"-2.007"	"1"	"5.1"	"2.042"
##	"-2.007"	"0"	"4.46"	"2.222"
##	"-2.008"	"10"	"17.87"	"3.92"
##	"-2.008"	"4"	"9.18"	"2.58"
##	"-2.008"	"1"	"5.22"	"2.101"
##	"-2.009"	"0"	"4.62"	"2.3"
##	"-2.009"	"0"	"5.3"	"2.638"
##	"-2.009"	"0"	"4.58"	"2.279"
##	"-2.009"	"17"	"28.62"	"5.785"
##	"-2.01"	"0"	"3.56"	"1.771"
##	"-2.011"	"1"	"5.41"	"2.193"
##	"-2.011"	"14"	"23.35"	"4.65"
##	"-2.012"	"3"	"9.14"	"3.052"
##	"-2.013"	"4"	"10.85"	"3.403"
##	"-2.014"	"2"	"7.23"	"2.597"
##	"-2.014"	"7"	"14.41"	"3.679"
##	"-2.014"	"2"	"6.82"	"2.393"
##	"-2.015"	"0"	"3.61"	"1.792"
##	"-2.015"	"0"	"3.59"	"1.781"
##	"-2.015"	"2"	"7.52"	"2.739"
##	"-2.015"	"0"	"3.59"	"1.781"
##	"-2.016"	"7"	"14.72"	"3.83"
##	"-2.016"	"0"	"3.48"	"1.726"
##	"-2.017"	"11"	"20.93"	"4.924"
##	"-2.017"	"101"	"122.18"	"10.5"
##	"-2.017"	"13"	"22.1"	"4.511"
##	"-2.018"	"13"	"23.84"	"5.372"
##	"-2.019"	"0"	"3.97"	"1.967"
##	"-2.019"	"0"	"3.03"	"1.501"
##	"-2.019"	"144"	"168.83"	"12.299"
##	"-2.019"	"0"	"3.03"	"1.501"
##	"-2.019"	"0"	"3.03"	"1.501"
##	"-2.019"	"0"	"3.17"	"1.57"
##	"-2.02"	"0"	"4.37"	"2.163"
##	"-2.022"	"2"	"7.13"	"2.537"
##	"-2.022"	"1"	"5.67"	"2.31"
##	"-2.022"	"0"	"3.59"	"1.776"
##	"-2.023"	"0"	"3.48"	"1.72"
##	"-2.023"	"0"	"4.05"	"2.002"
##	"-2.023"	"0"	"3.36"	"1.661"
##	"-2.024"	"1"	"4.92"	"1.937"
##	"-2.026"	"0"	"3.35"	"1.654"
##	"-2.026"	"1"	"4.93"	"1.94"
##	"-2.029"	"0"	"3.4"	"1.676"
##	"-2.03"	"14"	"23.08"	"4.474"
##	"-2.03"	"4"	"10.61"	"3.256"
##	"-2.03"	"4"	"10.61"	"3.256"
##	"-2.031"	"0"	"4.08"	"2.008"
##	"-2.031"	"3"	"8.54"	"2.728"

##	"-2.032"	"2"	"6.62"	"2.273"
##	"-2.032"	"0"	"5.06"	"2.49"
			"4.18"	
##	"-2.032"	"0"		"2.057"
##	"-2.033"	"5"	"11.47"	"3.183"
##	"-2.033"	"4"	"10.53"	"3.211"
##	"-2.033"	"19"	"28.98"	"4.909"
##	"-2.034"	"35"	"49.39"	"7.075"
##	"-2.034"	"2"	"7.33"	"2.621"
##	"-2.035"	"2"	"7.24"	"2.575"
##	"-2.035"	"2"	"7.84"	"2.87"
##	"-2.036"	"3"	"9.13"	"3.011"
##	"-2.037"	"0"	"4.31"	"2.116"
##	"-2.037"	"3"	"8.41"	"2.656"
##	"-2.037"	"3"	"8.41"	"2.656"
##	"-2.038"	"3"	"9.12"	"3.003"
##	"-2.038"	"3"	"9.12"	"3.003"
##	"-2.038"	"3"	"9.63"	"3.253"
##	"-2.039"	"4"	"10.33"	"3.104"
##	"-2.041"	"0"	"3.61"	"1.769"
##	"-2.041"	"0"	"3.45"	"1.69"
##	"-2.041"	"0"	"3.63"	"1.779"
##	"-2.041"	"6"	"13.57"	"3.71"
##	"-2.041"	"1"	"5.43"	"2.171"
##	"-2.043"	"2"	"7.91"	"2.892"
##	"-2.043"	"0"	"3.27"	"1.601"
##	"-2.043"	"2"	"8.62"	"3.24"
##	"-2.045"	"5"	"12.77"	"3.8"
##	"-2.045"	"30"	"42.63"	"6.175"
##	"-2.046"	"1"	"5.49"	"2.195"
##	"-2.046"	"0"	"4.19"	"2.048"
##	"-2.047"	"12"	"21.96"	"4.866"
##	"-2.047"	"298"	"344.91"	"22.918"
##	-2.047 "-2.047"	"0"	"3.77"	"1.841"
##	-2.047 "-2.048"	"33"	"46.12"	"6.408"
	"-2.049"			
##		"9"	"17.13"	"3.969"
##	"-2.049"	"1"	"5.94"	"2.411"
##	"-2.051"	"0"	"3.8"	"1.853"
##	"-2.051"	"0"	"3.8"	"1.853"
##	"-2.052"	"0"	"4.15"	"2.022"
##	"-2.053"	"7"	"16.21"	"4.486"
##	"-2.053"	"9"	"16.03"	"3.424"
##	"-2.053"	"0"	"3.31"	"1.612"
##	"-2.053"	"0"	"3.31"	"1.612"
##	"-2.053"	"0"	"3.31"	"1.612"
##	"-2.054"	"2"	"8.84"	"3.329"
##	"-2.054"	"0"	"3.46"	"1.684"
##	"-2.055"	"1"	"5.07"	"1.981"
##	"-2.057"	"2"	"5.97"	"1.93"
##	"-2.057"	"2"	"8.11"	"2.971"
##	"-2.059"	"211"	"242.02"	"15.066"
##	"-2.059"	"96"	"118.22"	"10.791"
##	"-2.06"	"4"	"9.65"	"2.743"
##	"-2.06"	"4"	"9.65"	"2.743"
##	"-2.06"	"4"	"9.65"	"2.743"

##	"-2.06"	"4"	"9.65"	"2.743"
##	"-2.06"	"4"	"9.65"	"2.743"
##	"-2.06"	"7"	"14.82"	"3.796"
##	"-2.061"	"0"	"5.3"	"2.572"
##	"-2.062"	"3"	"8.6"	"2.715"
##	"-2.062"	"1"	"5.63"	"2.246"
##	"-2.062"	"0"	"4.13"	"2.003"
##	"-2.062"	"0"	"3.12"	"1.513"
##	"-2.063"	"0"	"3.24"	"1.571"
##	"-2.063"	"1"	"6.02"	"2.433"
##	"-2.063"	"0"	"4.41"	"2.137"
##	"-2.064"	"0"	"4.23"	"2.049"
##	"-2.064"	"1"	"4.55"	"1.72"
##	"-2.065"	"14"	"21.41"	"3.588"
##	"-2.067"	"9"	"17.74"	"4.227"
##	"-2.067"	"0"	"4.21"	"2.037"
##	"-2.069"	"0"	"3.46"	"1.672"
##	"-2.069"	"0"	"3.85"	"1.861"
##	"-2.069"	"1"	"4.8"	"1.837"
##	"-2.07"	"0"	"5.33"	"2.574"
##	"-2.07"	"0"	"4.37"	"2.111"
##	"-2.071"	"0"	"4.25"	"2.052"
##	"-2.071"	"0"	"3.93"	"1.898"
##	"-2.073"	"1"	"5.88"	"2.354"
##	"-2.073"	"0"	"3.44"	"1.659"
##	"-2.073"	"4"	"9.46"	"2.634"
##	"-2.074"	"0"	"4.23"	"2.039"
##	"-2.074"	"1"	"5.38"	"2.112"
##	"-2.075"	"0"	"4.14"	"1.995"
##	"-2.075"	"1"	"5.85"	"2.337"
##	"-2.075"	"2"	"5.8"	"1.831"
##	"-2.075"	"1"	"6.72"	"2.756"
##	"-2.075"	"0"	"4.72"	"2.274"
##	"-2.076"	"1"	"6.87"	"2.827"
##	"-2.077"	"49"	"64.8"	"7.608"
##	"-2.078"	"9"	"17.32"	"4.005"
##	"-2.079"	"0"	"4.85"	"2.333"
##	"-2.079"	"7"	"14.83"	"3.766"
##	"-2.08"	"0"	"3.66"	"1.759"
##	"-2.08"	"4"	"11.32"	"3.519"
##	"-2.08"	"2"	"7.86"	"2.818"
##	"-2.081"	"0"	"4.48"	"2.153"
##	"-2.083"	"0"	"3.86"	"1.853"
##	"-2.083"	"0"	"3.86"	"1.853"
##	"-2.083"	"6"	"13.39"	"3.547"
##	"-2.083"	"2"	"7.47"	"2.626"
##	-2.063 "-2.083"	"0"	"3.58"	"1.718"
##	"-2.084"	"10"	"19.14"	"4.386"
##	"-2.084"	"5"	"19.14"	"3.023"
	"-2.084"	"5" "94"	"11.3" "117.19"	"3.023"
##			"117.19" "4.19"	
##	"-2.086"	"0"	"4.19" "6.12"	"2.009"
##	"-2.086" "-2.087"	"1"	"6.12" "4.16"	"2.455"
##		"0"		"1.994"
##	"-2.088"	"0"	"3.35"	"1.604"

##	"-2.089"	"288"	"324.44"	"17.443"
##	"-2.089"	"4"	"9.72"	"2.738"
##	"-2.09"	"0"	"4.45"	"2.129"
##	"-2.09"	"0"	"4.45"	"2.129"
##	"-2.09"	"0"	"3.05"	"1.459"
##	"-2.09"	"0"	"3.05"	"1.459"
##	"-2.09"	"0"	"4.45"	"2.129"
##	"-2.09"	"0"	"4.53"	"2.167"
##	"-2.09"	"0"	"3.05"	"1.459"
##	"-2.09"	"0"	"4.45"	"2.129"
##	"-2.091"	"69"	"89"	"9.566"
##	"-2.091"	"4"	"10.18"	"2.955"
##	"-2.091"	"3"	"9.77"	"3.238"
##	"-2.092"	"0"	"3.84"	"1.835"
##	"-2.092"	"5"	"12.53"	"3.6"
##	"-2.092"	"8"	"17.28"	"4.436"
##	"-2.094"	"1"	"5.89"	"2.335"
##	"-2.094"	"1"	"6.6"	"2.674"
##	"-2.094"	"0"	"4.37"	"2.087"
##	"-2.096"	"21"	"33.01"	"5.729"
##	"-2.096"	"0"	"3.74"	"1.784"
##	"-2.097"	"0"	"5.36"	"2.557"
##	"-2.097"	"1"	"6.45"	"2.599"
##	"-2.097"	"0"	"3.83"	"1.826"
##	"-2.098"	"5"	"13.16"	"3.889"
##	"-2.098"	"0"	"4"	"1.907"
##	"-2.099"	"0"	"4.27"	"2.034"
##	"-2.099"	"0"	"3.2"	"1.524"
##	"-2.1"	"0"	"3.5"	"1.667"
##	"-2.101"	"1"	"4.9"	"1.856"
##	"-2.101"	"1"	"5.42"	"2.104"
##	"-2.102"	"0"	"5.19"	"2.469"
##	"-2.102"	"0"	"5.19"	"2.469"
##	"-2.102"	"1"	"6.73"	"2.726"
##	"-2.102"	"8"	"17.11"	"4.334"
##	"-2.103"	"3"	"8.72"	"2.719"
##	"-2.104"	"0"	"4.52"	"2.148"
##	"-2.104"	"0"	"4.52"	"2.148"
##	"-2.104"	"0"	"4.52"	"2.148"
##	"-2.104"	"0"	"4.52"	"2.148"
##	"-2.104"	"0"	"4.18"	"1.987"
##	"-2.104"	"0"	"4.18"	"1.987"
##	"-2.104"	"0"	"4.13"	"1.963"
##	"-2.105"	"15"	"24.4"	"4.465"
##	"-2.106"	"0"	"5.09"	"2.417"
##	"-2.106"	"11"	"19.5"	"4.036"
##	"-2.108"	"44"	"61.58"	"8.339"
##	"-2.109"	"6"	"12.93"	"3.285"
##	"-2.109"	"1"	"5.98"	"2.361"
##	"-2.11"	"8"	"15.67"	"3.635"
##	"-2.111"	"8"	"15.54"	"3.572"
##	"-2.111"	"2"	"7.12"	"2.426"
##	"-2.111"	"14"	"24.63"	"5.035"
##	"-2.112"	"2"	"7.15"	"2.439"

##	"-2.113"	"0"	"3.1"	"1.467"
##	"-2.114"	"3"	"8.41"	"2.559"
##	"-2.115"	"26"	"37.57"	"5.47"
##	"-2.115"	"0"	"3.97"	"1.877"
##	"-2.116"	"0"	"5.33"	"2.519"
##	"-2.116"	"1"	"5.05"	"1.914"
##	"-2.117"	"0"	"4.39"	"2.074"
##	"-2.117"	"0"	"4.39"	"2.074"
##	"-2.118"	"0"	"4.32"	"2.039"
##	"-2.118"	"0"	"4.79"	"2.262"
##	"-2.119"	"1"	"6.11"	"2.412"
##	"-2.119"	"13"	"22.36"	"4.416"
##	"-2.12"	"0"	"4.83"	"2.279"
##	"-2.121"	"3"	"9.69"	"3.155"
##	"-2.121"	"1"	"6.23"	"2.465"
##	"-2.121"	"1"	"6.23"	"2.465"
##	"-2.122"	"0"	"3.67"	"1.729"
##	"-2.122"	"2"	"6.39"	"2.069"
##	"-2.122"	"97"	"118.37"	"10.072"
##	"-2.123"	"0"	"3.75"	"1.766"
##	"-2.124"	"0"	"3.3"	"1.554"
##	"-2.124"	"0"	"3.3"	"1.554"
##	"-2.124"	"1"	"6.57"	"2.622"
##	"-2.124"	"0"	"3.3"	"1.554"
##	"-2.124"	"0"	"3.3"	"1.554"
##	"-2.124"	"0"	"3.3"	"1.554"
##	"-2.126"	"0"	"3.11"	"1.463"
##	"-2.126"	"0"	"3.11"	"1.463"
##	"-2.126"	"0"	"3.11"	"1.463"
##	"-2.127"	"0"	"4.99"	"2.346"
##	"-2.127"	"0"	"3.48"	"1.636"
##	"-2.128"	"6"	"13.35"	"3.454"
##	"-2.128"	"7"	"14.61"	"3.576"
##	"-2.128"	"6"	"13.22"	"3.392"
##	"-2.129"	"2"	"8.79"	"3.189"
##	"-2.13"	"0"	"4.67"	"2.193"
##	"-2.13"	"2"	"6.41"	"2.07"
##	"-2.13"	"1"	"6.08"	"2.385"
##	"-2.131"	"3"	"10.27"	"3.411"
##	"-2.131"	"7"	"14.79"	"3.655"
##	"-2.131"	"1"	"6.82"	"2.732"
##	"-2.131"	"3"	"8.66"	"2.656"
##	"-2.131"	"1"	"6.66"	"2.656"
##	"-2.131"	"4"	"11.29"	"3.421"
##	"-2.132"	"6"	"14.51"	"3.991"
##	"-2.132"	"1"	"5.83"	"2.265"
##	"-2.132"	"2"	"7.67"	"2.659"
##	"-2.132"	"7"	"14.48"	"3.509"
##	"-2.133"	"2"	"8.62"	"3.104"
##	"-2.133"	"17"	"27.44"	"4.893"
##	"-2.133"	"6"	"13.82"	"3.666"
##	"-2.133"	"8"	"16.32"	"3.9"
##	"-2.134"	"3"	"9.57"	"3.079"
##	"-2.134"	"132"	"158.67"	"12.497"

## "-2.136" "58" "76.88" ## "-2.136" "3" "9.18" ## "-2.136" "11" "21.33" ## "-2.137" "1" "6.31" ## "-2.137" "25" "36.42" ## "-2.139" "0" "4.25" ## "-2.139" "0" "4.25" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "0" "3.59" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.53"	"8.84" "2.893" "4.837" "2.485" "5.343" "1.987" "2.417" "3.433" "2.096" "3.333" "2.096" "2.115" "4.631" "1.676"
## "-2.136" "11" "21.33" ## "-2.137" "1" "6.31" ## "-2.137" "25" "36.42" ## "-2.139" "0" "4.25" ## "-2.139" "0" "5.17" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"4.837" "2.485" "5.343" "1.987" "2.417" "3.433" "2.096" "3.333" "2.096" "2.115" "4.631"
## "-2.137" "1" "6.31" ## "-2.137" "25" "36.42" ## "-2.139" "0" "4.25" ## "-2.139" "0" "5.17" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"2.485" "5.343" "1.987" "2.417" "3.433" "2.096" "3.333" "2.096" "2.115" "4.631"
## "-2.137" "25" "36.42" ## "-2.139" "0" "4.25" ## "-2.139" "0" "5.17" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"5.343" "1.987" "2.417" "3.433" "2.096" "3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.139" "0" "4.25" ## "-2.139" "0" "5.17" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"1.987" "2.417" "3.433" "2.096" "3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.139" "0" "5.17" ## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"2.417" "3.433" "2.096" "3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.141" "3" "10.35" ## "-2.142" "0" "4.49" ## "-2.142" "6" "13.14" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"3.433" "2.096" "3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.142" "0" "4.49" ## "-2.142" "6" "13.14" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "6" "13.32" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"2.096" "3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.142" "6" "13.14" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"3.333" "2.096" "2.096" "2.115" "4.631"
## "-2.142" "0" "4.49" ## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.54"	"2.096" "2.096" "2.115" "4.631"
## "-2.142" "0" "4.49" ## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	"2.096" "2.115" "4.631"
## "-2.142" "0" "4.53" ## "-2.142" "6" "15.92" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	"2.115" "4.631"
## "-2.142" "6" "15.92" ## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	"4.631"
## "-2.142" "0" "3.59" ## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	
## "-2.142" "6" "13.32" ## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	"1.676"
## "-2.142" "0" "4.54" ## "-2.142" "0" "4.49"	
## "-2.142" "0" "4.49"	"3.417"
	"2.12"
## "-2.142" "0" "4.53"	"2.096"
	"2.115"
## "-2.142" "0" "4.49"	"2.096"
## "-2.142" "0" "4.49"	"2.096"
## "-2.142" "0" "4.49"	"2.096"
## "-2.142" "0" "4.49"	"2.096"
## "-2.143" "0" "4.67"	"2.179"
## "-2.143" "7" "14.62"	"3.556"
## "-2.143" "5" "12.66"	"3.574"
## "-2.144" "6" "13.46"	"3.48"
## "-2.144" "2" "7.98"	"2.789"
## "-2.144" "2" "8.76"	"3.153"
## "-2.144" "0" "3.67"	"1.712"
## "-2.145" "0" "4.64"	"2.163"
## "-2.145" "3" "9.98"	"3.254"
## "-2.146" "1" "5.95"	"2.307"
## "-2.146" "1" "6.52"	"2.572"
## "-2.147" "36" "49.03"	"6.068"
## "-2.147" "8" "15.7"	"3.586"
## "-2.147" "8" "15.7"	"3.586"
## "-2.147" "8" "15.7"	"3.586"
## "-2.148" "19" "29.24"	"4.768"
## "-2.148" "6" "12.39"	"2.974"
## "-2.149" "2" "8.9" ## "-2.15" "0" "4.86"	"3.211"
## "-2.15" "0" "4.86"	"2.261"
2,120	"1.882" "2.69"
## "-2.152" "1" "5.05"	"2.69"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79"	
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3"	"1.997"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31"	"1.997" "4.324"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03"	"1.997" "4.324" "8.84"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74"	"1.997" "4.324" "8.84" "10.096"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74" ## "-2.153" "0" "4.47"	"1.997" "4.324" "8.84" " "10.096" "2.077"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74" ## "-2.153" "0" "4.47" ## "-2.153" "0" "5.08"	"1.997" "4.324" "8.84" "10.096" "2.077" "2.36"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74' ## "-2.153" "0" "4.47" ## "-2.153" "0" "5.08" ## "-2.154" "85" "106.95'	"1.997" "4.324" "8.84" " "10.096" "2.077" "2.36" " "10.191"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74' ## "-2.153" "0" "4.47" ## "-2.153" "0" "5.08" ## "-2.154" "85" "106.95' ## "-2.154" "0" "4.18"	"1.997" "4.324" "8.84" " "10.096" "2.077" "2.36" " "10.191" "1.94"
## "-2.152" "1" "5.05" ## "-2.152" "1" "6.79" ## "-2.153" "0" "4.3" ## "-2.153" "10" "19.31" ## "-2.153" "62" "81.03" ## "-2.153" "88" "109.74' ## "-2.153" "0" "4.47" ## "-2.153" "0" "5.08" ## "-2.154" "85" "106.95'	"1.997" "4.324" "8.84" " "10.096" "2.077" "2.36" " "10.191"

##	"-2.155"	"2"	"5.87"	"1.796"
##	"-2.156"	"0"	"4.15"	"1.925"
##	"-2.156"	"3"	"8.91"	"2.742"
##	"-2.157"	"1"	"7.63"	"3.074"
##	"-2.157"	"19"	"30.71"	"5.43"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.158"	"6"	"12.64"	"3.077"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.16"	"4"	"10.67"	"3.088"
##	"-2.16"	"0"	"4.87"	"2.255"
##	"-2.161"	"82"	"106.22"	"11.207"
##	"-2.161"	"30"	"42.2"	"5.644"
##	"-2.161"	"7"	"14.66"	"3.545"
##	"-2.162"	"0"	"4.11"	"1.901"
##	"-2.162"	"16"	"27.55"	"5.344"
##	"-2.164"	"0"	"3.6"	"1.664"
##	"-2.164"	"5"	"12.04"	"3.253"
##	"-2.165"	"3"	"9.23"	"2.877"
##	"-2.168"	"1"	"5.11"	"1.896"
##	"-2.168"	"9"	"16.47"	"3.445"
##	"-2.169"	"0"	"4.19"	"1.932"
##	"-2.169"	"0"	"4.38"	"2.019"
##	"-2.17"	"9"	"18.02"	"4.156"
##	"-2.171"	"3"	"9.65"	"3.063"
##	"-2.173"	"3"	"8.29"	"2.434"
##	"-2.173"	"1"	"5.98"	"2.292"
##	"-2.173"	"9"	"17.9"	"4.096"
##	"-2.173"	"1"	"5.4"	"2.025"
##	"-2.173"	"1"	"5.62"	"2.126"
##	"-2.175"	"1"	"6.2"	"2.391"
##	"-2.177"	"0"	"4.23"	"1.943"
##	"-2.177"	"0"	"4.16"	"1.911"
##	"-2.178"	"56"	"73.67"	"8.113"
##	"-2.179"	"2"	"8.01"	"2.758"
##	"-2.179"	"6"	"13.45"	"3.418"
##	"-2.18"	"0"	"5.79"	"2.656"
##	"-2.18"	"6"	"14.62"	"3.954"
##	"-2.181"	"0"	"3.71"	"1.701"
##	"-2.183"	"0"	"3.65"	"1.672"
##	"-2.184"	"2"	"7.73"	"2.624"
##	"-2.184"	"14"	"22.57"	"3.924"
##	"-2.184"	"0"	"4.76"	"2.179"
##	"-2.184"	"0"	"4.91"	"2.248"
##	"-2.184"	"0"	"4.95"	"2.267"
##	"-2.185"	"0"	"3.45"	"1.579"
##	"-2.186"	"2"	"6.68"	"2.141"
##	"-2.188"	"0"	"4.21"	"1.924"
	"-2.188" "-2.189"		"4.21"	"1.924"
##		"0"	"4.16"	
##	"-2.19"	"0"		"2.132"
##	"-2.19"	"36"	"51.49"	"7.072"
##	"-2.191"	"2"	"8.01"	"2.743"

##	"-2.192"	"0"	"3.24"	"1.478"
##	"-2.193"	"9"	"16.8"	"3.556"
##	"-2.193"	"10"	"18.34"	"3.804"
##	"-2.194"	"3"	"8.76"	"2.625"
##	"-2.194"	"1"	"6.2"	"2.37"
##	"-2.194"	"6"	"14.93"	"4.071"
##	"-2.194"	"0"	"4.72"	"2.151"
##	"-2.195"	"0"	"4.77"	"2.174"
##	"-2.195"	"20"	"32.9"	"5.877"
##	"-2.197"	"0"	"4.58"	"2.085"
##	"-2.197"	"1"	"5.93"	"2.244"
##	"-2.2"	"0"	"5.68"	"2.582"
##	"-2.2"	"3"	"10.9"	"3.592"
##	"-2.201"	"11"	"20.89"	"4.494"
##	"-2.202"	"0"	"3.99"	"1.812"
##	"-2.203"	"0"	"5.29"	"2.401"
##	"-2.204"	"1"	"6.18"	"2.35"
##	"-2.204"	"5"	"12.05"	"3.198"
##	"-2.207"	"26"	"39.13"	"5.949"
##	"-2.207"	"5"	"12.43"	"3.367"
##	"-2.207"	"5"	"12.43"	"3.367"
##	"-2.207"	"5"	"12.43"	"3.367"
##	"-2.208"	"0"	"5.04"	"2.283"
##	"-2.208"	"9"	"17.34"	"3.777"
##	"-2.208"	"1"	"5.89"	"2.215"
##	"-2.209"	"8"	"17.46"	"4.282"
##	"-2.209"	"0"	"6.01"	"2.721"
##	"-2.209"	"0"	"5.14"	"2.327"
##	"-2.209"	"2"	"7.7"	"2.58"
##	"-2.209"	"1"	"7.28"	"2.843"
##	"-2.21"	"25"	"37.69"	"5.743"
##	"-2.21"	"2"	"7.73"	"2.593"
##	"-2.211"	"0"	"4.29"	"1.94" "2.677"
##	"-2.212" "-2.212"	"1"	"6.92"	"2.077"
## ##	"-2.212"	"1" "20"	"5.89" "33.36"	"6.039"
##	-2.212 "-2.212"	"1"	"6.92"	"2.677"
##	"-2.212	"0"	"4.31"	"1.947"
##	"-2.213"	"3"	"9.78"	"3.064"
##	"-2.214"	"15"	"26.02"	"4.977"
##	"-2.216"	"17"	"28.61"	"5.24"
##	"-2.217"	"0"	"4.15"	"1.872"
##	"-2.217"	"2"	"8.23"	"2.81"
##	"-2.218"	"0"	"3.34"	"1.506"
##	"-2.219"	"305"	"358.1"	"23.926"
##	"-2.222"	"0"	"5.3"	"2.385"
##	"-2.222"	"0"	"4.22"	"1.899"
##	"-2.225"	"4"	"12.22"	"3.694"
##	"-2.226"	"0"	"5.8"	"2.605"
##	"-2.227"	"0"	"5.64"	"2.533"
##	"-2.227"	"0"	"5.1"	"2.29"
##	"-2.228"	"18"	"30.38"	"5.556"
##	"-2.229"	"0"	"3.56"	"1.597"
##	"-2.229"	"0"	"4.52"	"2.027"

##	"-2.23"	"1"	"6.76"	"2.582"
##	"-2.231"	"6"	"14.11"	"3.635"
##	"-2.231"	"13"	"24.63"	"5.214"
##	"-2.232"	"24"	"37.39"	"5.998"
##	"-2.232"	"1"	"6.1"	"2.285"
##	"-2.233"	"2"	"7.88"	"2.633"
##	"-2.233"	"0"	"5.73"	"2.566"
##	"-2.233"	"0"	"6.35"	"2.844"
##	"-2.233"	"4"	"12.22"	"3.681"
##	"-2.234"	"374"	"430.47"	"25.281"
##	"-2.234"	"0"	"4.55"	"2.037"
##	"-2.234"	"1"	"8.19"	"3.218"
##	"-2.234"	"6"	"13.3"	"3.268"
##	"-2.235"	"0"	"4.89"	"2.188"
##	"-2.235"	"8"	"17.32"	"4.17"
##	"-2.235"	"2"	"7.39"	"2.412"
##	"-2.236"	"18"	"29.98"	"5.358"
##	"-2.236"	"1"	"6.58"	"2.495"
##	"-2.239"	"3"	"10"	"3.127"
##	"-2.24"	"136"	"165.13"	"13.002"
##	"-2.24"	"4"	"10.61"	"2.95"
##	"-2.24"	"6"	"14.27"	"3.692"
##	"-2.24"		"9.91"	"3.085"
##	"-2.241"		"11.17"	"3.646"
##	"-2.242"	"0"	"5.25"	"2.341"
##	"-2.242"	"0"	"4.93"	"2.199"
##	"-2.243"	"0"	"5.02"	"2.238"
##	"-2.243"	"1"	"6.29"	"2.358"
##	"-2.243"	"0"	"4.38"	"1.953"
##	"-2.243"	"31"	"44.2"	"5.886"
##	"-2.243"	"3"	"8.92"	"2.639"
##	"-2.244"	"0"	"5.51"	"2.456"
##	"-2.245"	"4"	"11.01"	"3.122"
##	"-2.247"	"0"	"4.5"	"2.003"
##	"-2.247"	"104"	"126.23"	"9.893"
##	"-2.247"	"3"	"10.76"	"3.453"
##	"-2.247"	"3"	"10.56"	"3.364"
##	"-2.248"	"15"	"27.04"	"5.356"
##	"-2.248"	"54"	"72.81"	"8.367"
##	"-2.248"	"4"	"10.77"	"3.011"
##	"-2.249"	"0"	"3.48"	"1.547"
##	"-2.249"	"3"	"9.76"	"3.005"
##	"-2.25"	"0"	"3.64"	"1.618"
##	"-2.25"	"0"	"4.19"	"1.862"
##	"-2.251"	"0"	"3.95"	"1.755"
##	"-2.251"	"0"	"3.95"	"1.755"
##	"-2.251"	"0"	"3.95"	"1.755"
##	"-2.252"	"33"	"46.48"	"5.986"
##	"-2.252"	"5"	"11.13"	"2.722"
##	"-2.253"	"0"	"5.8"	"2.574"
##	"-2.253"	"0"	"4.39"	"1.948"
##	"-2.253"	"0"	"5.32"	"2.361"
##	"-2.254"	"5"	"12.47"	"3.313"
##	"-2.254"	"46"	"62.69"	"7.404"
	-			-

##	"-2.255"	"3"	"9.28"	"2.786"
##	"-2.255"	"2"	"7.37"	"2.381"
##	"-2.257"	"5"	"12.58"	"3.358"
##	"-2.258"	"3"	"8.83"	"2.582"
##	"-2.258"	"3"	"8.83"	"2.582"
##	"-2.258"	"0"	"4.51"	"1.997"
##	"-2.258"	"26"	"37.98"	"5.307"
##	"-2.258"	"12"	"21.11"	"4.035"
##	"-2.258"	"0"	"4.51"	"1.997"
##	"-2.258"	"3"	"8.83"	"2.582"
##	"-2.258"	"3"	"8.83"	"2.582"
##	"-2.259"	"43"	"62.13"	"8.468"
##	"-2.259"	"4"	"10.92"	"3.064"
##	"-2.259"	"0"	"5.18"	"2.294"
##	"-2.26"	"0"	"5.69"	"2.517"
##	"-2.261"	"0"	"4.9"	"2.167"
##	"-2.262"	"0"	"3.57"	"1.578"
##	"-2.262"	"1"	"7.56"	"2.9"
##	"-2.263"	"0"	"5.15"	"2.276"
##	"-2.264"	"1"	"6.09"	"2.248"
##	"-2.264"	"3"	"10.78"	"3.437"
##	"-2.265"	"10"	"20.58"	"4.671"
##	"-2.265"	"1"	"7.01"	"2.653"
##	"-2.266"	"0"	"4.9"	"2.163"
##	"-2.268"	"3"	"9.93"	"3.056"
##	"-2.27"	"0"	"5.48"	"2.414"
##	"-2.27"	"6"	"14.85"	"3.899"
##	"-2.27"	"1"	"6.84"	"2.573"
##	"-2.27"	"6"	"15.46"	"4.167"
##	"-2.27"	"22"	"34.92"	"5.692"
##	"-2.271"	"0"	"4.79"	"2.11"
##	"-2.273"	"8"	"17.39"	"4.131"
##	"-2.273"	"4"	"11.55"	"3.322"
##	"-2.274"	"0"	"5.43"	"2.388"
##	"-2.274"	"8"	"15.54"	"3.316"
##	"-2.275"	"8"	"16.66"	"3.806"
##	"-2.275"	"0"	"5.04"	"2.215"
##	"-2.275"	"0"	"6.51"	"2.862"
##	"-2.276"	"1"	"7.22"	"2.732"
##	"-2.277"	"0"	"4.1"	"1.801"
##	"-2.277"	"1"	"7.38"	"2.803"
##	"-2.278"	"13"	"24.08"	"4.863"
##	"-2.278"	"560"	"615.43"	"24.336"
##	"-2.28"	"1"	"6.37"	"2.356"
##	"-2.281"	"6"	"14.16"	"3.578"
##	"-2.282"	"3"	"10.54"	"3.304"
##	"-2.283"	"6"	"15.06"	"3.969"
##	"-2.283"	"0"	"4.65"	"2.037"
##	"-2.285"	"5"	"11.36"	"2.784"
##	"-2.286"	"8"	"17.4"	"4.112"
##	"-2.286"	"5"	"12.02"	"3.071"
##	"-2.287"	"86"	"115.41"	"12.861"
##	"-2.287"	"0"	"5.23"	"2.287"
##	"-2.288"	"1"	"6.38"	"2.352"

##	"-2.288"	"26"	"42.12"	"7.044"
##	"-2.289"	"0"	"6.51"	"2.844"
##	"-2.291"	"9"	"18.64"	"4.208"
##	"-2.291"	"14"	"24.57"	"4.613"
##	"-2.291"	"10"	"19.72"	"4.243"
##	"-2.292"	"70"	"95.38"	"11.073"
##	"-2.292"	"210"	"248.04"	"16.594"
##	"-2.292"	"0"	"4.74"	"2.068"
##	"-2.293"	"0"	"5.22"	"2.277"
##	"-2.293"	"0"	"4.51"	"1.967"
##	"-2.294"	"9"	"19.9"	"4.751"
##	"-2.296"	"0"	"4.39"	"1.912"
##	"-2.296"	"74"	"95.1"	"9.189"
##	"-2.298"	"5"	"12.2"	"3.133"
##	"-2.298"	"0"	"4.46"	"1.941"
##	"-2.299"	"0"	"5.33"	"2.318"
##	"-2.3"	"2"	"9.48"	"3.252"
##	"-2.301"	"0"	"5.92"	"2.573"
##	"-2.302"	"5"	"12.34"	"3.188"
##	"-2.302"	"3"	"10.33"	"3.185"
##	"-2.302"	"0"	"6.01"	"2.611"
##	"-2.303"	"3"	"9.26"	"2.718"
##	"-2.303"	"1"	"6.67"	"2.462"
##	"-2.304"	"5"	"11.59"	"2.861"
##	"-2.304"	"5"	"11.59"	"2.861"
##	"-2.304"	"5"	"11.59"	"2.861"
##	"-2.304"	"5"	"11.59"	"2.861"
##	"-2.306"	"0"	"4.58"	"1.986"
##	"-2.306"	"22"	"36.02"	"6.08"
##	"-2.306"	"0"	"4.5"	"1.951"
##	"-2.307"	"1"	"6.97"	"2.588"
##	"-2.308"	"3"	"9.49"	"2.812"
##	"-2.309"	"11"	"19.94"	"3.871"
##	"-2.309"	"0"	"6.37"	"2.758"
##	"-2.309"	"0"	"5.32"	"2.304"
##	"-2.31"	"3"	"10.44"	"3.22"
##	"-2.311"	"14"	"25.37"	"4.921"
##	"-2.311"	"0"	"7.53"	"3.258"
##	"-2.312"	"1"	"7.19"	"2.677"
##	"-2.313"	"2"	"9.1"	"3.07"
##	"-2.314"	"10"	"19.28"	"4.01"
##	"-2.314"	"0"	"4.13"	"1.785"
##	"-2.315"	"25"	"37.46"	"5.383"
##	"-2.315" "-2.315"	"4"	"10.11"	"2.64"
##	"-2.315" "-2.316"	"115"	"139.71"	"10.674"
##		"3"	"11.32"	"3.593"
##	"-2.317"	"0"	"4.87"	"2.102"
##	"-2.317"	"22"	"32.99"	"4.743"
##	"-2.318"	"76"	"98.72"	"9.803"
##	"-2.318"	"1"	"6.66"	"2.442"
##	"-2.319"	"2"	"8.79"	"2.928"
##	"-2.32" "-2.32"	"0"	"4.92"	"2.121" "1.914"
##	"-2.32" "-2.321"	"0"	"4.44" "5.05"	"1.914" "2.176"
##	··-2.321"	"0"	5.05"	~2.1/6"

##	"-2.322"	"0"	"4.53"	"1.951"
##	"-2.322"	"0"	"4.87"	"2.097"
##	"-2.322"	"0"	"3.96"	"1.705"
##	"-2.323"	"0"	"4.46"	"1.92"
##	"-2.324"	"4"	"11.19"	"3.093"
##	"-2.324"	"12"	"21.88"	"4.25"
##	"-2.324"	"32"	"47.64"	"6.729"
##	"-2.325"	"6"	"13.39"	"3.178"
##	"-2.325"	"109"	"134.19"	"10.835"
##	"-2.328"	"2"	"7.56"	"2.388"
##	"-2.328"	"3"	"12.91"	"4.257"
##	"-2.329"	"81"	"106.53"	"10.963"
##	"-2.329"	"8"	"17.44"	"4.053"
##	"-2.329"	"1"	"6.42"	"2.328"
##	"-2.329"	"21"	"36.24"	"6.543"
##	"-2.329"	"2"	"8.8"	"2.92"
##	"-2.329"	"5"	"13.15"	"3.5"
##	"-2.33"	"0"	"2.96"	"1.271"
##	"-2.33"	"8"	"16.98"	"3.853"
##	"-2.331"	"0"	"4.3"	"1.845"
##	"-2.331"	"0"	"5.76"	"2.471"
##	"-2.332"	"1"	"6.54"	"2.376"
##	"-2.333"	"6"	"13.55"	"3.236"
##	"-2.333"	"0"	"4.19"	"1.796"
##	"-2.333"	"2"	"8.95"	"2.979"
##	"-2.333"	"0"	"4.19"	"1.796"
##	"-2.334"	"3"	"10.62"	"3.265"
##	"-2.334"	"1"	"6.88"	"2.52"
##	"-2.334"	"3"	"10.64"	"3.274"
##	"-2.335"	"0"	"5.62"	"2.407"
##	"-2.335"	"4"	"10.96"	"2.981"
##	"-2.339"	"4"	"10.73"	"2.877"
##	"-2.339"	"0"	"5.02" "4.27"	"2.146"
##	"-2.34" "-2.341"	"0" "0"		"1.825" "2.213"
## ##	"-2.341"	"0"	"5.18" "4.6"	"1.964"
##	"-2.342"	"16"	"26.96"	"4.679"
##	"-2.342"	"7"	"15.28"	"3.534"
##	-2.343 "-2.343"	"2"	"9.11"	"3.035"
##	-2.343 "-2.344"	"O"	"4.94"	"2.107"
##	-2.344 "-2.346"	"78"	"102.88"	"10.607"
##	"-2.340"	"1"	"8.53"	"3.208"
##	"-2.347"	"6"	"15.53"	"4.061"
##	"-2.348"	"0"	"5.5"	"2.342"
##	"-2.348"	"0"	"5.08"	"2.163"
##	"-2.35"	"2"	"9.84"	"3.336"
##	"-2.351"	"24"	"37.08"	"5.564"
##	"-2.351"	"28"	"44.22"	"6.9"
##	"-2.351"	"0"	"4.89"	"2.079"
##	-2.352 "-2.352"	"3"	"10.26"	"3.087"
##	"-2.352"	"O"	"6.45"	"2.743"
##	-2.352 "-2.353"	"0"	"3.35"	"1.424"
##	"-2.354"	"2"	"8.23"	"2.647"
##	"-2.354"	"0"	"4.23"	"1.797"
	2.004	J	1.20	1.701

##	"-2.354"	"9"	"17.78"	"3.73"
##	"-2.355"	"27"	"42.07"	"6.398"
##	"-2.355"	"6"	"16.02"	"4.254"
##	"-2.356"	"0"	"5.4"	"2.292"
##	"-2.356"	"22"	"35.71"	"5.819"
##	"-2.358"	"10"	"20.39"	"4.406"
##	"-2.359"	"72"	"97.03"	"10.609"
##	"-2.361"	"1"	"6.74"	"2.431"
##	"-2.361"	"0"	"6.22"	"2.635"
##	"-2.361"	"9"	"20.54"	"4.887"
##	"-2.363"	"0"	"3.79"	"1.604"
##	"-2.365"	"2"	"8.75"	"2.855"
##	"-2.365"	"24"	"38.35"	"6.068"
##	"-2.366"	"5"	"12.53"	"3.183"
##	"-2.366"	"3"	"11.43"	"3.563"
##	"-2.368"	"3"	"11.65"	"3.653"
##	"-2.368"	"1"	"7.54"	"2.761"
##	"-2.368"	"2"	"9.29"	"3.079"
##	"-2.368"	"0"	"4.47"	"1.888"
##	"-2.368"	"0"	"4.47"	"1.888"
##	"-2.369"	"0"	"4.96"	"2.093"
##	"-2.37"	"6"	"14.53"	"3.6"
##	"-2.371"	"0"	"4.33"	"1.826"
##	"-2.371"	"2"	"9.07"	"2.982"
##	"-2.371"	"19"	"32.67"	"5.767"
##	"-2.373"	"62"	"83.28"	"8.966"
##	"-2.373"	"19"	"31"	"5.057"
##	"-2.374"	"4"	"13.25"	"3.896"
##	"-2.374"	"0"	"5.65"	"2.38"
##	"-2.374"	"5"	"13.96"	"3.774"
##	"-2.375"	"2"	"8.94"	"2.923"
##	"-2.375"	"0"	"4.43"	"1.865"
##	"-2.375"	"3"	"11.2"	"3.452"
##	"-2.376"	"3"	"11.04"	"3.384"
##	"-2.377"	"3"	"10.99"	"3.362"
##	"-2.377"	"0"	"3.99"	"1.679"
##	"-2.378"	"42"	"56.49"	"6.093"
##	"-2.379"	"0"	"4.92"	"2.068"
##	"-2.379"	"19"	"34.38"	"6.465"
##	"-2.381"	"22"	"34.3"	"5.165"
##	"-2.383"	"0"	"4.91"	"2.06"
##	"-2.383"	"0"	"4.56"	"1.914"
##	"-2.384"	"3"	"11.02"	"3.363"
##	"-2.384"	"21"	"35.84"	"6.224"
##	"-2.385"	"0"	"5.74"	"2.406"
##	"-2.385"	"2"	"8.22"	"2.608"
##	"-2.385"	"9"	"17.31"	"3.484"
##	"-2.386"	"0"	"5.44"	"2.28"
##	"-2.386"	"0"	"4.38"	"1.836"
##	"-2.386"	"4"	"10.82"	"2.858"
##	"-2.387"	"27"	"41.61"	"6.121"
##	"-2.388"	"4"	"12.11"	"3.396"
##	"-2.389"	"0"	"6.57"	"2.75"
##	"-2.389"	"5"	"13.17"	"3.42"

##	"-2.39"	"6"	"13.71"	"3.226"
##	"-2.39"	"54"	"72.45"	"7.719"
##	"-2.39"	"0"	"6.02"	"2.519"
	-2.39 "-2.391"	"5"	"12.9"	"3.304"
##				
##	"-2.393"	"76"	"99.83"	"9.96"
##	"-2.393"	"5"	"12.19"	"3.004"
##	"-2.396"	"0"	"4.72"	"1.97"
##	"-2.396"	"3"	"10.4"	"3.088"
##	"-2.396"	"0"	"4.67"	"1.949"
##	"-2.397"	"15"	"28.02"	"5.433"
##	"-2.398"	"33"	"46.63"	"5.683"
##	"-2.398"	"12"	"23.21"	"4.674"
##	"-2.4"	"0"	"5.83"	"2.429"
##	"-2.4"	"0"	"5.12"	"2.133"
##	"-2.4"	"19"	"32.37"	"5.57"
##	"-2.401"	"0"	"6.16"	"2.565"
##	"-2.401"	"3"	"9.75"	"2.812"
##	"-2.402"	"21"	"35.58"	"6.069"
##	"-2.402"	"1"	"6.6"	"2.331"
##	"-2.404"	"0"	"7.32"	"3.045"
##	"-2.405"	"2"	"8.65"	"2.765"
##	"-2.406"	"1"	"6.92"	"2.461"
##	"-2.408"	"3"	"11.44"	"3.506"
##	"-2.409"	"0"	"4.66"	"1.934"
##	"-2.41"	"0"	"5.94"	"2.465"
##	"-2.41"	"7"	"17.1"	"4.191"
##	"-2.411"	"0"	"6.48"	"2.687"
##	"-2.411"	"0"	"5.59"	"2.319"
##	"-2.412"	"6"	"14.08"	"3.351"
##	"-2.412"	"0"	"5.2"	"2.156"
##	"-2.412"	"16"	"28.03"	"4.988"
##	"-2.413"	"8"	"20.1"	"5.014"
##	"-2.414"	"0"	"5.92"	"2.452"
##	"-2.414"	"13"	"24.28"	"4.673"
##	"-2.415"	"6"	"16.17"	"4.212"
##	"-2.415"	"40"	"52.41"	"5.139"
##	"-2.416"	"0"	"6.8"	"2.814"
##	"-2.416"	"3"	"9.75"	"2.794"
##	"-2.416"	"0"	"4.13"	"1.709"
##	"-2.416"	"9"	"19.85"	"4.491"
##	"-2.416"	"0"	"4.13"	"1.709"
##	"-2.418"	"3"	"11.75"	"3.619"
##	"-2.418"	"15"	"27.11"	"5.009"
##	"-2.421"	"3"	"10.18"	"2.966"
##	"-2.421"	"14"	"25.65"	"4.812"
##	"-2.423"	"15"	"28.35"	"5.509"
##	"-2.423"	"4"	"12.03"	"3.313"
##	"-2.423"	"0"	"5.28"	"2.179"
##	"-2.424"	"2"	"9.91"	"3.263"
##	"-2.424"	"35"	"52.44"	"7.196"
##	"-2.425"	"1"	"8.31"	"3.014"
##	"-2.425"	"3"	"10.57"	"3.121"
##	"-2.427"	"4"	"12.9"	"3.667"
##	"-2.428"	"45"	"60.93"	"6.56"

##	"-2.428"	"0"	"5.2"	"2.141"
##	"-2.429"	"1"	"7.27"	"2.581"
##	"-2.43"	"0"	"4.86"	"2"
##	"-2.43"	"2"	"9.03"	"2.894"
##	"-2.431"	"5"	"14.74"	"4.007"
##	"-2.431"	"3"	"10.68"	"3.159"
##	"-2.432"	"0"	"4.88"	"2.006"
##	"-2.432"	"0"	"4.35"	"1.789"
##	"-2.432"	"18"	"31.93"	"5.728"
##	"-2.432"	"33"	"48.79"	"6.492"
##	"-2.433"	"49"	"67.83"	"7.741"
##	"-2.433"	"2"	"9.51"	"3.086"
##	"-2.433"	"0"	"5.39"	"2.215"
##	"-2.434"	"0"	"4.97"	"2.042"
##	"-2.434"	"21"	"34.67"	"5.616"
##	"-2.435"	"0"	"4.39"	"1.803"
##	"-2.439"	"1"	"7.03"	"2.472"
	-2.439 "-2.44"		7.03 "5.51"	"2.259"
##		"0"		
##	"-2.44"	"10"	"22.34"	"5.058"
##	"-2.441"	"11"	"22.02"	"4.515"
##	"-2.441"	"1"	"6.78"	"2.368"
##	"-2.442"	"1"	"7.49"	"2.657"
##	"-2.442"	"1"	"8.88"	"3.226"
##	"-2.443"	"8"	"18.38"	"4.249"
##	"-2.443"	"3"	"10.87"	"3.221"
##	"-2.443"	"2"	"9.39"	"3.025"
##	"-2.443"	"2"	"9.39"	"3.025"
##	"-2.444"	"0"	"6.53"	"2.672"
##	"-2.444"	"8"	"18.01"	"4.096"
##	"-2.445"	"2"	"9.21"	"2.948"
##	"-2.445"	"1"	"7.02"	"2.462"
##	"-2.445"	"118"	"145.29"	"11.159"
##	"-2.445"	"3"	"9.46"	"2.642"
##	"-2.446"	"82"	"107.49"	"10.419"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"0"	"5.15"	"2.105"
##	"-2.446"	"19"	"33.16"	"5.789"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"0"	"5.15"	"2.105"
##	"-2.446"	"9"	"18.87"	"4.034"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.446"	"1"	"6.96"	"2.437"
##	"-2.448"	"6"	"14.96"	"3.66"
##	"-2.448"	"0"	"6.32"	"2.582"
##	"-2.451"	"4"	"13.19"	"3.749"
##	"-2.452"	"5"	"13.49"	"3.463"
##	"-2.452"	"14"	"29.97"	"6.513"
##	"-2.453"	"0"	"4.98"	"2.03"
##	"-2.454"	"33"	"49.84"	"6.862"
##	"-2.455"	"33"	"49.86"	"6.867"

##	"-2.457"	"19"	"31.84"	"5.226"
##	"-2.458"	"7"	"18.14"	"4.533"
##	"-2.459"	"45"	"63.22"	"7.411"
##	"-2.46"	"0"	"6.39"	"2.597"
##	"-2.46"	"1"	"6.38"	"2.187"
##	"-2.46"	"10"	"22.49"	"5.078"
##	"-2.46"	"6"	"13.97"	"3.239"
##	"-2.461"	"9"	"18.01"	"3.661"
##	"-2.462"	"1"	"6.88"	"2.388"
##	"-2.465"	"0"	"6.07"	"2.463"
##	"-2.465"	"132"	"158.65"	"10.812"
##	"-2.465"	"1"	"7.65"	"2.698"
##	"-2.466"	"38"	"56.18"	"7.374"
##	"-2.467"	"109"	"139.72"	"12.454"
##	"-2.467"	"0"	"7.37"	"2.987"
##	"-2.467"	"15"	"27.07"	"4.893"
##	"-2.468"	"33"	"50.07"	"6.915"
##	"-2.468"	"88"	"117.31"	"11.875"
##	"-2.468"	"0"	"4.86"	"1.97"
##	"-2.469"	"0"	"5.97"	"2.418"
##	"-2.469"	"0"	"5.75"	"2.328"
##	"-2.47"	"0"	"6.02"	"2.437"
##	"-2.471"	"0"	"6.06"	"2.453"
##	"-2.471"	"0"	"5.88"	"2.38"
##	"-2.475"	"3"	"9.78"	"2.74"
##	"-2.476"	"11"	"23.5"	"5.048"
##	"-2.476"	"4"	"11.46"	"3.013"
##	"-2.477"	"0"	"5.37"	"2.168"
##	"-2.48"	"1"	"8.21"	"2.907"
##	"-2.482"	"1"	"7.49"	"2.615"
##	"-2.483"	"27"	"44.3"	"6.968"
##	"-2.483"	"4"	"12.7"	"3.503"
##	"-2.485"	"70"	"93.92"	"9.626"
##	"-2.486"	"0"	"6.09"	"2.45"
##	"-2.489"	"147"	"175.77"	"11.557"
##	"-2.489"	"6"	"16.22"	"4.106"
##	"-2.491"	"1"	"5.82"	"1.935"
##	"-2.492"	"0"	"6.72"	"2.697"
##	"-2.494"	"5"	"15.31"	"4.133"
##	"-2.496"	"0"	"5.39"	"2.16"
##	"-2.496"	"6"	"15.66"	"3.87"
##	"-2.496"	"2"	"9.01"	"2.809"
##	"-2.496"	"4"	"11.53"	"3.017"
##	"-2.499"	"64"	"87.03"	"9.217"
##	"-2.5"	"33"	"50.09"	"6.837"
##	"-2.5"	"73"	"96.07"	"9.227"
##	"-2.5"	"1"	"7.08"	"2.432"
##	"-2.501"	"3"	"10.81"	"3.123"
##	"-2.502"	"2"	"10.78"	"3.509"
##	"-2.502"	"9"	"19.55"	"4.217"
##	"-2.503"	"10"	"19.87"	"3.943"
##	"-2.503"	"2"	"9.7"	"3.076"
##	"-2.504"	"6"	"14.58"	"3.427"
##	"-2.505"	"97"	"127.23"	"12.068"

##	"-2.505"	"0"	"6.88"	"2.746"
##	"-2.506"	"15"	"27.58"	"5.02"
##	"-2.508"	"73"	"98.49"	"10.162"
##	"-2.509"	"15"	"28.79"	"5.496"
##	"-2.51"	"21"	"34.89"	"5.534"
##	"-2.511"	"0"	"6.09"	"2.425"
##	"-2.511"	"6"	"15.57"	"3.812"
##	"-2.511"	"4"	"12.51"	"3.389"
##	"-2.512"	"1"	"7.67"	"2.655"
##	"-2.513"	"3"	"11.58"	"3.415"
##	"-2.513"	"0"	"5.76"	"2.292"
##	"-2.514"	"1"	"9.15"	"3.242"
##	"-2.516"	"5"	"13.17"	"3.248"
##	"-2.517"	"5"	"14.51"	"3.778"
##	"-2.518"	"8"	"18.41"	"4.134"
##	"-2.52"	"3"	"11.03"	"3.186"
##	"-2.52"	"3"	"10.21"	"2.861"
##	"-2.523"	"3"	"11.78"	"3.48"
##	"-2.524"	"5"	"13.06"	"3.193"
##	"-2.524"	"13"	"24.97"	"4.743"
##	"-2.524"	"1"	"8.61"	"3.015"
##	"-2.524"	"25"	"40.68"	"6.213"
##	"-2.524"	"7"	"16.97"	"3.95"
##	"-2.525"	"0"	"6.41"	"2.539"
##	"-2.525"	"0"	"6.25"	"2.476"
##	"-2.526"	"911"	"995.16"	"33.311"
##	"-2.527"	"6"	"17.53"	"4.563"
##	"-2.528"	"6"	"16.23"	"4.047"
##	"-2.529"	"0"	"5.43"	"2.147"
##	"-2.529"	"28"	"42.42"	"5.702"
##	"-2.529"	"1"	"7.6"	"2.609"
##	"-2.529"	"12"	"25.94"	"5.512"
##	"-2.53"	"0"	"7.47"	"2.952"
##	"-2.532"	"6"	"16.33"	"4.08"
##	"-2.532"	"2"	"9.22"	"2.852"
##	"-2.532"	"0"	"5.95"	"2.35"
##	"-2.533"	"1"	"6.49"	"2.167"
##	"-2.534"	"1"	"6.99"	"2.363"
##	"-2.537"	"4"	"13.59"	"3.78"
##	"-2.537"	"3"	"11.24"	"3.248"
##	"-2.54"	"11"	"23.56"	"4.945"
##	"-2.541"	"33"	"50.84"	"7.022"
##	"-2.541"	"1"	"7.29"	"2.475"
##	"-2.543"	"0"	"6.69"	"2.631"
##	"-2.543"	"3"	"11.93"	"3.511"
##	"-2.544"	"3"	"11.13"	"3.196"
##	"-2.545"	"0"	"7.12"	"2.797"
##	"-2.545"	"1"	"8.59"	"2.982"
шш				
##	"-2.545"	"1"	"6.43"	"2.133"
## ##	"-2.545" "-2.546"	"1" "21"	"6.43" "35.77"	"2.133" "5.801"
		_		
##	"-2.546"	"21"	"35.77"	"5.801"
## ##	"-2.546" "-2.548"	"21" "9"	"35.77" "21.2"	"5.801" "4.788"
## ## ##	"-2.546" "-2.548" "-2.548"	"21" "9" "7"	"35.77" "21.2" "18.03"	"5.801" "4.788" "4.329"

##	"-2.552"	"22"	"39.69"	"6.932"
##	"-2.553"	"16"	"31.77"	"6.177"
##	"-2.554"	"53"	"75.05"	"8.634"
##	"-2.554"	"0"	"4.92"	"1.926"
##	"-2.554"	"3"	"11.27"	"3.238"
##	"-2.556"	"10"	"20.37"	"4.057"
##	"-2.556"	"0"	"6.07"	"2.375"
##	"-2.557"	"93"	"120.18"	"10.629"
##	"-2.557"	"0"	"6.68"	"2.613"
##	"-2.558"	"1"	"7.99"	"2.732"
##	"-2.558"	"0"	"6.5"	"2.541"
##	"-2.559"	"8"	"19.62"	"4.541"
##	"-2.559"	"13"	"25.2"	"4.767"
##	"-2.559"	"13"	"24.08"	"4.329"
##	"-2.559"	"0"	"5.63"	"2.2"
##	"-2.559"	"17"	"28.74"	"4.587"
##	"-2.56"	"1"	"8.63"	"2.98"
##	"-2.563"	"2"	"10.64"	"3.371"
##	"-2.563"	"33"	"50.91"	"6.988"
##	"-2.564"	"16"	"30.95"	"5.832"
##	"-2.564"	"93"	"118.5"	"9.945"
##	"-2.565"	"10"	"22.25"	"4.777"
##	"-2.565"	"0"	"5.98"	"2.331"
##	"-2.566"	"33"	"53.68"	"8.06"
##	"-2.567"	"13"	"24.3"	"4.403"
##	"-2.567"	"151"	"188.2"	"14.493"
##	"-2.567"	"0"	"6.56"	"2.556"
##	"-2.567"	"3"	"10.96"	"3.101"
##	"-2.567"	"0"	"6.56"	"2.556"
##	"-2.567"	"0"	"6.56"	"2.556"
##	"-2.567"	"0"	"6.56"	"2.556"
##	"-2.569"	"8"	"19.79"	"4.589"
##	"-2.569"	"10"	"21.35"	"4.418"
##	"-2.569"	"1"	"8.24"	"2.818"
##	"-2.57"	"1"	"8.68"	"2.988"
##	-2.57 "-2.57"	"5"	"14.02"	"3.51"
##	-2.57 "-2.57"	"0"	"4.7"	"1.829"
	-2.57 "-2.57"	"1"		"2.997"
## ##	-2.57 "-2.57"	"0"	"8.7" "5.95"	"2.315"
##	-2.57 "-2.572"	"0"	"4.95"	"1.925"
##	"-2.572"	"51"	"73.78"	"8.858"
##	"-2.573"	"0"	"5.77"	"2.242"
##	"-2.574"	"46"	"64.44"	"7.165"
## ##	"-2.574" "-2.575"	"0"	"6.85"	"2.661"
	"-2.575"	"2"	"8.56"	"2.548"
##	2.0.0	"∠" "11"		"4.798"
##	"-2.576"		"23.36"	
##	"-2.577"	"65" "4"	"88.33"	"9.052"
##	"-2.578"	"4"	"14.02"	"3.887"
##	"-2.578"	"28"	"45.89"	"6.938"
##	"-2.578"	"192"	"234.55"	"16.503"
##	"-2.579"	"52"	"72.23"	"7.846"
##	"-2.579"	"20"	"34.38"	"5.576"
##	"-2.579"	"6"	"16.12"	"3.924"
##	"-2.58"	"5"	"14.53"	"3.694"

44	"-2.581"	"0"	"5.28"	"2.045"
##			"11.48"	
##	"-2.581"	"3"		"3.286"
##	"-2.581"	"7"	"17.62"	"4.114"
##	"-2.581"	"4"	"12.1"	"3.138"
##	"-2.582"	"21"	"36.39"	"5.961"
##	"-2.583"	"17"	"32.62"	"6.047"
##	"-2.583"	"4"	"12.19"	"3.171"
##	"-2.583"	"13"	"25.91"	"4.997"
##	"-2.583"	"0"	"5.91"	"2.288"
##	"-2.584"	"1"	"8.82"	"3.026"
##	"-2.586"	"2"	"11.05"	"3.5"
##	"-2.587"	"0"	"5.22"	"2.018"
##	"-2.587"	"5"	"14.5"	"3.672"
##	"-2.588"	"2"	"9.55"	"2.918"
##	"-2.588"	"1"	"7.94"	"2.681"
##	"-2.589"	"14"	"27.58"	"5.246"
##	"-2.593"	"53"	"74.02"	"8.108"
##	"-2.593"	"0"	"8.48"	"3.271"
##	"-2.594"	"1"	"7.83"	"2.633"
##	"-2.594"	"0"	"6.93"	"2.671"
##	"-2.594"	"1"	"8.61"	"2.933"
##	"-2.595"	"1"	"7.56"	"2.528"
##	"-2.596"	"6"	"15.82"	"3.783"
##	"-2.596"	"1"	"7.68"	"2.574"
##	"-2.596"	"2"	"10.2"	"3.159"
##	"-2.596"	"2"	"10.2"	"3.159"
##	"-2.596"	"2"	"10.2"	"3.159"
##	"-2.596"	"4"	"12.69"	"3.348"
##	-2.590 "-2.597"	"6"	"15.83"	"3.785"
##	-2.59 <i>1</i> "-2.598"	"3"	"11.05"	"3.099"
## ##	"-2.599"	"63"	"84.1"	"8.118"
	"-2.6"		"7.46"	"2.869"
##	"-2.6"	"0"		"2.62"
##		"0"	"6.81"	
##	"-2.602"	"1"	"7.2"	"2.383"
##	"-2.603"	"1"	"8.12"	"2.735"
##	"-2.603"	"0"	"5.61"	"2.155"
##	"-2.603"	"0"	"5.94"	"2.282"
##	"-2.604"	"31"	"46.42"	"5.921"
##	"-2.606"	"0"	"5.85"	"2.245"
##	"-2.606"	"0"	"5.85"	"2.245"
##	"-2.607"	"0"	"7.77"	"2.981"
##	"-2.608"	"0"	"5.68"	"2.178"
##	"-2.609"	"4"	"14.36"	"3.971"
##	"-2.611"	"0"	"6.77"	"2.593"
##	"-2.611"	"0"	"6.77"	"2.593"
##	"-2.613"	"0"	"5.45"	"2.086"
##	"-2.613"	"7"	"16.71"	"3.715"
##	"-2.615"	"80"	"104.29"	"9.288"
##	"-2.615"	"4"	"12.56"	"3.273"
##	"-2.616"	"0"	"5.78"	"2.209"
##	"-2.616"	"0"	"6.56"	"2.508"
##	"-2.617"	"8"	"18.61"	"4.055"
##	"-2.622"	"2"	"10.67"	"3.306"
##	"-2.624"	"2"	"10.03"	"3.06"

##	"-2.625"	"0"	"5.92"	"2.255"
##	"-2.627"	"2"	"11.84"	"3.746"
##	"-2.628"	"73"	"95.64"	"8.615"
##	"-2.628"	"7"	"19.26"	"4.666"
##	"-2.629"	"3"	"12.3"	"3.538"
##	"-2.629"	"15"	"29.62"	"5.561"
##	"-2.63"	"10"	"22.08"	"4.594"
##	"-2.631"	"12"	"24.66"	"4.812"
##	"-2.632"	"0"	"6.44"	"2.447"
##	"-2.633"	"4"	"14.09"	"3.833"
##	"-2.633"	"3"	"11.65"	"3.286"
##	"-2.635"	"0"	"6.65"	"2.524"
##	"-2.635"	"101"	"127.95"	"10.228"
##	"-2.636"	"1"	"8.63"	"2.894"
##	"-2.636"	"0"	"6.15"	"2.333"
##	"-2.637"	"27"	"44.62"	"6.681"
##	"-2.638"	"5"	"15.25"	"3.886"
##	"-2.64"	"3"	"10.58"	"2.872"
##	"-2.64"	"9"	"20.83"	"4.481"
##	"-2.642"	"23"	"38.55"	"5.885"
##	"-2.642"	"62"	"83.76"	"8.235"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.645"	"5"	"14.64"	"3.645"
##	"-2.649"	"64"	"86.34"	"8.432"
##	"-2.649"	"5"	"14.52"	"3.594"
##	"-2.649"	"2"	"9.99"	"3.017"
##	"-2.65"	"37"	"55.67"	"7.045"
##	"-2.65"	"5"	"15.41"	"3.929"
##	"-2.652"	"0"	"9"	"3.393"
##	"-2.653"	"1"	"10.04"	"3.408"
##	"-2.653"	"6"	"14.27"	"3.117"
##	"-2.656"	"0"	"5.54"	"2.086"
##	"-2.658"	"13"	"27.22"	"5.35"
##	"-2.658"	"7"	"15.35"	"3.141"
##	"-2.658"	"2"	"9.67"	"2.885"
##	"-2.659"	"9"	"21"	"4.513"
##	"-2.659"	"51"	"74.27"	"8.751"
##	"-2.66"	"368"	"419.87"	"19.503"
##	"-2.662"	"3"	"12"	"3.381"
##	"-2.662"	"0"	"6.8"	"2.554"
##	"-2.662"	"0"	"6.8"	"2.554"
##	"-2.664"	"9"	"20.56"	"4.34"
##	"-2.665"	"0"	"6.99"	"2.623"
##	"-2.666"	"5"	"16.6"	"4.351"
##	"-2.667"	"1"	"9.38"	"3.142"
##	"-2.668"	"1"	"9.59"	"3.22"
##	"-2.67"	"7"	"17.01"	"3.748"
##	"-2.671"	"112"	"141.48"	"11.036"
##	"-2.671"	"6"	"13.31"	"2.737"
##	"-2.671"	"19"	"34.95"	"5.972"
##	"-2.671"	"30"	"48.75"	"7.019"
##	"-2.672"	"0"	"5.78"	"2.163"

##	"-2.672"	"0"	"5.78"	"2.163"
##	"-2.672"	"1"	"7.61"	"2.474"
##	"-2.672"	"1"	"7.61"	"2.474"
##	"-2.672"	"1"	"7.61"	"2.474"
##	"-2.672"	"1"	"7.61"	"2.474"
##	"-2.672"	"0"	"5.78"	"2.163"
##	"-2.673"	"0"	"4.67"	"1.747"
##	"-2.673"	"1"	"8.12"	"2.664"
##	"-2.673"	"0"	"7.17"	"2.682"
##	"-2.674"	"19"	"33.92"	"5.579"
##	"-2.675"	"4"	"12.21"	"3.069"
##	"-2.675"	"1"	"7.69"	"2.501"
##	"-2.676"	"0"	"5.97"	"2.231"
##	"-2.677"	"10"	"19.47"	"3.538"
##	"-2.677"	"7"	"17.09"	"3.769"
##	"-2.678"	"105"	"133.94"	"10.806"
##	"-2.678"	"125"	"158.98"	"12.687"
##	"-2.679"	"2"	"11.5"	"3.546"
##	"-2.679"	"2"	"10.55"	"3.192"
##	"-2.679"	"0"	"7.75"	"2.893"
##	"-2.679"	"144"	"179.95"	"13.418"
##	"-2.681"	"1"	"7.99"	"2.607"
##	"-2.683"	"11"	"24.58"	"5.062"
##	"-2.683"	"1"	"10.17"	"3.417"
##	"-2.683"	"6"	"16.07"	"3.753"
##	"-2.684"	"0"	"6.25"	"2.328"
##	"-2.684"	"6"	"15.86"	"3.674"
##	"-2.685"	"1"	"8.75"	"2.886"
##	"-2.686"	"18"	"33.26"	"5.681"
##	"-2.687"	"0"	"5.28"	"1.965"
##	"-2.687"	"1"	"8.8"	"2.902"
##	"-2.688"	"0"	"6.38"	"2.373"
##	"-2.689"	"1"	"7.71"	"2.496"
##	"-2.689"	"3"	"11.49"	"3.157"
##	"-2.69"	"3"	"9.95"	"2.583"
##	"-2.69"	"1"	"10.09"	"3.379"
##	"-2.69"	"3"	"9.95"	"2.583"
##	"-2.691"	"5"	"15.25"	"3.81"
##	"-2.692"	"153"	"186.69"	"12.514"
##	"-2.692"	"140"	"174.48"	"12.81"
##	"-2.692"	"0"	"5.97"	"2.218"
##	"-2.692"	"4"	"13.06"	"3.366"
##	"-2.694"	"0"	"8.24"	"3.059"
##	"-2.694"	"6"	"16.74"	"3.986"
##	"-2.695"	"0"	"7.28"	"2.701"
##	"-2.695"	"1"	"7.62"	"2.457"
##	-2.695 "-2.695"	"0"	"7.24"	"2.686"
## ##	"-2.695"	"0"	"5.66"	"2.000"
## ##	"-2.696"	"61"	"83.96"	"2.1" "8.517"
##	"-2.696" "-2.697"	0	"83.96" "6"	"2.225"
	"-2.697" "-2.697"	"0"	"5.97"	"2.225"
## ##	"-2.697" "-2.699"	"3"	"5.97" "12.88"	"2.213"
	"-2.699" "-2.702"	"3" "6"	"12.88"	"4.226"
##			"17.42" "8.86"	
##	"-2.702"	"1"	"8.86"	"2.909"

##	"-2.704"	"16"	"28.81"	"4.737"
##	"-2.706"	"0"	"7.63"	"2.82"
##	"-2.708"	"3"	"11.93"	"3.298"
##	"-2.708"	"0"	"5.58"	"2.061"
##	"-2.709"	"2"	"9.82"	"2.886"
##	"-2.709"	"25"	"40.7"	"5.795"
##	"-2.71"	"207"	"248.63"	"15.362"
##	"-2.712"	"0"	"7.61"	"2.807"
##	"-2.712"	"0"	"7.61"	"2.807"
##	"-2.712"	"0"	"7.61"	"2.807"
##	"-2.713"	"1"	"7.66"	"2.455"
##	"-2.714"	"5"	"14.59"	"3.534"
##	"-2.715"	"5"	"15.92"	"4.022"
##	"-2.715"	"3"	"12.38"	"3.455"
##	"-2.716"	"2"	"10.69"	"3.199"
##	"-2.717"	"0"	"7.43"	"2.735"
##	"-2.718"	"2"	"11.44"	"3.474"
##	"-2.72"	"2"	"11.38"	"3.449"
##	"-2.722"	"0"	"6.32"	"2.322"
##	"-2.723"	"0"	"7.48"	"2.747"
##	"-2.724"	"0"	"6.46"	"2.372"
##	"-2.726"	"4"	"12.98"	"3.294"
##	"-2.727"	"4"	"14.23"	"3.752"
##	"-2.727"	"4"	"14.23"	"3.752"
##	"-2.727"	"0"	"7.49"	"2.747"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.728"	"7"	"16.6"	"3.519"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.729"	"2"	"8.72"	"2.462"
##	"-2.729"	"3"	"11.4"	"3.078"
##	"-2.729"	"9"	"19.32"	"3.782"
##	"-2.729"	"5"	"15.52"	"3.855"
##	"-2.731"	"1"	"8.04"	"2.578"
##	"-2.732"	"6"	"15.65"	"3.532"
##	"-2.734"	"16"	"32.91"	"6.184"
##	"-2.735"	"4"	"11.84"	"2.866"
##	"-2.738"	"9"	"19.19"	"3.722"
##	"-2.738"	"1"	"9.26"	"3.017"
##	"-2.741"	"143"	"174.33"	"11.431"
##	"-2.741"	"1"	"9.38"	"3.058"
##	"-2.741"	"1"	"8.86"	"2.868"
##	"-2.742"	"9"	"20.63"	"4.242"
##	"-2.742"	"15"	"26.68"	"4.259"
##	"-2.745"	"5"	"14.92"	"3.614"
##	"-2.745"	"3"	"11.01"	"2.918"
##	"-2.746"	"14"	"27.06"	"4.756"
##	"-2.747"	"6"	"18.28"	"4.47"
##	"-2.747"	"1"	"11.6"	"3.859"
##	"-2.748"	"0"	"8.23"	"2.994"
##	"-2.748"	"1"	"7.53"	"2.376"
##	"-2.748"	"1"	"7.84"	"2.489"
##	"-2.748"	"39"	"58.08"	"6.942"

##	"-2.748"	"4"	"15.03"	"4.014"
##	"-2.751"	"6"	"16.64"	"3.868"
##	"-2.754"	"0"	"7.24"	"2.629"
##	"-2.754"	"0"	"6"	"2.179"
##	"-2.754"	"2"	"10.56"	"3.109"
##	"-2.754"	"3"	"10.36"	"2.672"
##	"-2.755"	"0"	"6.31"	"2.29"
##	"-2.755"	"0"	"8.63"	"3.132"
##	"-2.755"	"4"	"11.81"	"2.834"
##	"-2.757"	"3"	"10.72"	"2.8"
##	"-2.757"	"25"	"40.61"	"5.662"
##	"-2.758"	"12"	"25.45"	"4.877"
##	"-2.758"	"2"	"10.92"	"3.234"
##	"-2.76"	"12"	"26.59"	"5.286"
##	"-2.76"	"113"	"147.07"	"12.343"
##	"-2.762"	"39"	"57.74"	"6.785"
##	"-2.762"	"1"	"8.63"	"2.762"
##	"-2.764"	"2"	"9.01"	"2.537"
##	"-2.766"	"1"	"8"	"2.531"
##	"-2.766"	"3"	"14.02"	"3.985"
##	"-2.767"	"11"	"25.17"	"5.121"
##	"-2.767"	"4"	"14.61"	"3.835"
##	"-2.767"	"0"	"6.48"	"2.342"
##	"-2.768"	"2"	"11.71"	"3.508"
##	"-2.768"	"5"	"13.98"	"3.244"
##	"-2.769"	"3"	"13.14"	"3.663"
##	"-2.769"	"1"	"8.37"	"2.662"
##	"-2.769"	"1"	"8.37"	"2.662"
##	"-2.769"	"1"	"8.37"	"2.662"
##	"-2.77"	"0"	"7.27"	"2.624"
##	"-2.771"	"8"	"20.27"	"4.429"
##	"-2.775"	"1"	"8.97"	"2.873"
##	"-2.776"	"5"	"15.51"	"3.786"
##	"-2.777"	"0"	"9.46"	"3.407"
##	"-2.78"	"1"	"8.68"	"2.763"
##	"-2.781"	"0"	"5.94"	"2.136"
##	"-2.781"	"3"	"12.54"	"3.43"
##	"-2.782"	"296"	"344.03"	"17.262"
##	"-2.782"	"2"	"12.83"	"3.893"
##	"-2.784"	"22"	"40.17"	"6.526"
##	"-2.784"	"0"	"7.47"	"2.683"
##	"-2.787"	"115"	"146.91"	"11.45"
##	"-2.787"	"1"	"8.3"	"2.619"
##	"-2.788"	"1"	"10.75"	"3.497"
##	"-2.789"	"11"	"22.54"	"4.138"
##	"-2.79"	"0"	"8.58"	"3.075"
##	"-2.791"	"1"	"8.57"	"2.713"
##	"-2.792"	"2"	"10.61"	"3.084"
##	"-2.792"	"1"	"10.16"	"3.281"
##	"-2.792"	"1"	"10.39"	"3.363"
##	"-2.793"	"1"	"7.26"	"2.241"
##	"-2.796"	"2"	"11.72"	"3.476"
##	"-2.796"	"16"	"30.98"	"5.358"
##	"-2.796"	"4"	"12.51"	"3.043"

##	"-2.797"	"5"	"17.1"	"4.326"
##	"-2.797"	"2"	"11.36"	"3.347"
##	"-2.799"	"0"	"8.51"	"3.04"
##	"-2.8"	"139"	"177.9"	"13.895"
##	"-2.802"	"1"	"10.05"	"3.23"
##	"-2.802"	"5"	"15.41"	"3.715"
##	"-2.802"	"3"	"11.86"	"3.162"
##	"-2.802"	"9"	"21.41"	"4.429"
##	"-2.803"	"2"	"10.34"	"2.975"
##	"-2.803"	"0"	"7.91"	"2.822"
##	"-2.803"	"0"	"6.88"	"2.455"
##	"-2.806"	"8"	"22.08"	"5.019"
##	"-2.809"	"132"	"168.71"	"13.067"
##	"-2.809"	"0"	"6.8"	"2.42"
##	"-2.809"	"1"	"8.16"	"2.549"
##	"-2.811"	"0"	"7"	"2.49"
##	"-2.811"	"49"	"72.52"	"8.368"
##	"-2.811"	"7"	"19.13"	"4.315"
##	"-2.811"	"8"	"20.68"	"4.51"
##	"-2.814"	"0"	"7.91"	"2.811"
##	"-2.814"	"48"	"69.3"	"7.57"
##	"-2.816"	"30"	"46.5"	"5.859"
##	"-2.818"	"3"	"14.29"	"4.006"
##	"-2.82"	"7"	"19.55"	"4.45"
##	"-2.82"	"18"	"32.38"	"5.099"
##	"-2.82"	"0"	"6.29"	"2.231"
##	"-2.822"	"14"	"27.2"	"4.677"
##	"-2.823"	"2"	"11.5"	"3.365"
##	"-2.823"	"9"	"21.91"	"4.573"
##	"-2.824"	"0"	"10.32"	"3.654"
##	"-2.824"	"13"	"28.18"	"5.376"
##	"-2.824"	"0"	"6.32"	"2.238"
##	"-2.824"	"5"	"15.37"	"3.673"
##	"-2.827"	"24"	"43.47"	"6.888"
##	"-2.828"	"9"	"21.98"	"4.59"
##	"-2.829"	"7"	"17.52"	"3.719"
##	"-2.831"	"0"	"8.55"	"3.02"
##	"-2.832"	"79"	"109.05"	"10.612"
##	"-2.832"	"0"	"6.77"	"2.39"
##	"-2.833"	"11"	"23.68"	"4.476"
##	"-2.834"	"0"	"8.05"	"2.84"
##	"-2.835"	"0"	"6.16"	"2.173"
##	"-2.836"	"2"	"13.09"	"3.911"
##	"-2.837"	"0"	"5.93"	"2.09"
##	"-2.84"	"0"	"6.65"	"2.341"
##	"-2.84"	"1"	"9.91"	"3.137"
##	"-2.842"	"0"	"6.27"	"2.206"
##	"-2.842"	"0"	"9.46"	"3.329"
##	"-2.842"	"1"	"7.37"	"2.241"
##	"-2.844"	"2"	"9.94"	"2.792"
##	"-2.845"	"0"	"7.99"	"2.809"
##	"-2.845"	"6"	"17.86"	"4.168"
##	"-2.845"	"40"	"59.81"	"6.963"
##	"-2.846"	"8"	"21.61"	"4.782"

##	"-2.846"	"4"	"18"	"4.92"
##	"-2.847"	"4"	"13.51"	"3.341"
##	"-2.849"	"11"	"24.26"	"4.655"
##	"-2.849"	"0"	"8.49"	"2.98"
##	"-2.85"	"20"	"37.51"	"6.144"
##	"-2.85"	"0"	"6.12"	"2.147"
##	"-2.852"	"14"	"28.91"	"5.228"
##	"-2.853"	"1"	"9.52"	"2.986"
##	"-2.854"	"1"	"9.13"	"2.849"
##	"-2.854"	"11"	"25.64"	"5.13"
##	"-2.856"	"2"	"13.61"	"4.065"
##	"-2.856"	"2"	"13.61"	"4.065"
##	"-2.857"	"44"	"67.22"	"8.128"
##	"-2.857"	"9"	"24.07"	"5.275"
##	"-2.858"	"0"	"8.18"	"2.862"
##	"-2.858"	"24"	"39.65"	"5.476"
##	"-2.859"	"6"	"16.11"	"3.536"
##	"-2.859"	"2"	"13.44"	"4.001"
##	"-2.859"	"0"	"8.46"	"2.959"
##	"-2.862"	"0"	"7.12"	"2.487"
##	"-2.863"	"0"	"6.6"	"2.305"
##	"-2.863"	"0"	"6.6"	"2.305"
##	"-2.863"	"2"	"10.53"	"2.98"
##	"-2.864"	"13"	"29.29"	"5.688"
##	"-2.865"	"21"	"36.67"	"5.47"
##	"-2.865"	"2"	"10.6"	"3.002"
##	"-2.865"	"1"	"10.52"	"3.323"
##	"-2.866"	"17"	"35.7"	"6.525"
##	"-2.867"	"1"	"8.52"	"2.623"
##	"-2.869"	"2"	"11.27"	"3.231"
##	"-2.869"	"49"	"69.68"	"7.208"
##	"-2.87"	"17"	"33.26"	"5.665"
##	"-2.873" "-2.873"	"0" "154"	"8.43"	"2.934" "12.828"
##		"154" "2"	"190.85"	"3.225"
## ##	"-2.874" "-2.874"	"18"	"11.27" "31.19"	"4.59"
##	-2.874 "-2.875"	"9"	"21.03"	"4.184"
##	"-2.875"	"11"	"25.3"	"4.974"
##	"-2.875"	"12"	"26.46"	"5.03"
##	"-2.879"	"5"	"15.46"	"3.633"
##	"-2.88"	"0"	"8.02"	"2.785"
##	"-2.881"	"4"	"14.62"	"3.687"
##	"-2.882"	"2"	"11.48"	"3.289"
##	"-2.883"	"6"	"17.29"	"3.917"
##	"-2.885"	"8"	"21.79"	"4.781"
##	"-2.885"	"5"	"14.7"	"3.362"
##	"-2.887"	"2"	"11"	"3.117"
##	"-2.887"	"10"	"26.5"	"5.715"
##	"-2.888"	"1"	"9.12"	"2.812"
##	"-2.889"	"1"	"10.74"	"3.371"
##	"-2.889"	"9"	"20.87"	"4.109"
##	"-2.89"	"1"	"9.29"	"2.868"
##	"-2.891"	"1"	"12.5"	"3.978"
##	"-2.892"	"11"	"24.87"	"4.796"

##	"-2.893"	"2"	"10.45"	"2.921"
##	"-2.893"	"0"	"8.22"	"2.841"
##	"-2.893"	"14"	"30.99"	"5.873"
##	"-2.894"	"1"	"9.41"	"2.906"
##	"-2.897"	"0"	"6.23"	"2.15"
##	"-2.897"	"8"	"21.62"	"4.701"
##	"-2.901"	"1"	"9.16"	"2.813"
##	"-2.902"	"1"	"8.51"	"2.588"
##	"-2.903"	"2"	"9.06"	"2.432"
##	"-2.903"	"1"	"9.57"	"2.952"
##	"-2.905"	"6"	"16.91"	"3.755"
##	"-2.906"	"1"	"9.27"	"2.846"
##	"-2.906"	"41"	"64.49"	"8.084"
##	"-2.907"	"33"	"52.96"	"6.865"
##	"-2.908"	"2"	"11.29"	"3.195"
##	"-2.91"	"5"	"15.58"	"3.635"
##	"-2.911"	"8"	"23.06"	"5.173"
##	"-2.914"	"14"	"29.93"	"5.467"
##	"-2.914"	"3"	"15.06"	"4.139"
##	"-2.914"	"185"	"228.04"	"14.772"
##	"-2.915"	"0"	"8.62"	"2.957"
##	"-2.918"	"100"	"134.66"	"11.878"
##	"-2.918"	"1"	"8.46"	"2.556"
##	"-2.919"	"6"	"18.05"	"4.128"
##	"-2.919"	"2"	"10.39"	"2.874"
##	"-2.919"	"29"	"47.02"	"6.174"
##	"-2.92"	"3"	"16.09"	"4.484"
##	"-2.92"	"0"	"8.89"	"3.045"
##	"-2.921"	"0"	"8.31"	"2.845"
##	"-2.922"	"0"	"7.65"	"2.618"
##	"-2.923"	"2"	"14.13"	"4.15"
##	"-2.923"	"0"	"7.93"	"2.713"
##	"-2.923"	"0"	"7.93"	"2.713"
##	"-2.924"	"16"	"30.89"	"5.093"
##	"-2.926"	"0"	"7.95"	"2.717"
##	"-2.927"	"0"	"8.96"	"3.061"
##	"-2.928"	"0"	"6.48"	"2.213"
##	"-2.93"	"10"	"23.1"	"4.471"
##	"-2.931"	"230"	"273.49"	"14.835"
##	"-2.933"	"4"	"14.72"	"3.654"
##	"-2.933"	"1"	"9.78"	"2.994"
##	"-2.934"	"22"	"43.31"	"7.262"
##	"-2.934"	"1"	"8.81"	"2.662"
##	"-2.935"	"5"	"16.06"	"3.768"
##	"-2.936"	"1"	"11.63"	"3.62"
##	"-2.936"	"1"	"11.63"	"3.62"
##	"-2.936"	"1"	"11.63"	"3.62"
##	"-2.936"	"1"	"11.96"	"3.733"
##	"-2.936"	"1"	"9.62"	"2.936"
##	"-2.936"	"12"	"24.66"	"4.312"
##	"-2.937"	"0"	"7.34"	"2.499"
##	"-2.938"	"22"	"38.42"	"5.589"
##	"-2.938"	"1"	"8.45"	"2.536"
##	"-2.938"	"16"	"34.04"	"6.14"
	2.000	10	04.04	0.14

##	"-2.938"	"12"	"26.9"	"5.072"
##	"-2.938"	"1"	"8.45"	"2.536"
##	"-2.94"	"0"	"7.04"	"2.395"
##	"-2.94"	"0"	"6.04"	"2.054"
##	"-2.941"	"1"	"10.91"	"3.37"
##	"-2.942"	"7"	"19.12"	"4.12"
##	"-2.944"	"1"	"9.88"	"3.016"
##	"-2.945"	"0"	"8.25"	"2.801"
##	"-2.945"	"44"	"67.4"	"7.947"
##	"-2.946"	"2"	"11.81"	"3.329"
##	"-2.946"	"2"	"10.44"	"2.865"
##	"-2.948"	"22"	"40.41"	"6.244"
##	"-2.948"	"28"	"47.23"	"6.524"
##	"-2.949"	"7"	"18.67"	"3.957"
##	"-2.95"	"0"	"6.35"	"2.153"
##	"-2.951"	"0"	"6.98"	"2.365"
##	"-2.951"	"21"	"42.53"	"7.295"
##	"-2.951"	"2"	"14.8"	"4.337"
##	"-2.952"	"37"	"60.92"	"8.104"
##	"-2.952"	"22"	"41.59"	"6.636"
##	"-2.954"	"9"	"21.78"	"4.327"
##	"-2.955"	"0"	"8.34"	"2.822"
##	"-2.955"	"2"	"10.35"	"2.826"
##	"-2.955"	"2"	"10.35"	"2.826"
##	"-2.955"	"2"	"10.35"	"2.826"
##	"-2.957"	"1"	"8.17"	"2.425"
##	"-2.957"	"2"	"12.71"	"3.622"
##	"-2.96"	"3"	"15.22"	"4.128"
##	"-2.96"	"1"	"9.62"	"2.912"
##	"-2.96"	"0"	"6.36"	"2.149"
##	"-2.96"	"0"	"5.88"	"1.986"
##	"-2.96"	"34"	"54.94"	"7.074"
##	"-2.961"	"4"	"16.37"	"4.177"
##	"-2.966"	"0"	"8.24"	"2.778"
##	"-2.966"	"0"	"8.54"	"2.879"
##	"-2.967"	"21"	"38.51"	"5.901"
##	"-2.969"	"5"	"17.73"	"4.287"
##	"-2.972"	"23"	"43.05"	"6.747"
##	"-2.972"	"2"	"13.04"	"3.714"
##	"-2.972"	"0"	"7.98"	"2.685"
##	"-2.976"	"10"	"26.34"	"5.491"
##	"-2.977"	"0"	"9.05"	"3.04"
##	"-2.977"	"864"	"980.49"	"39.129"
##	"-2.978"	"0"	"8.16"	"2.74"
##	"-2.978"	"0"	"8.27"	"2.777"
##	"-2.979"	"11"	"26.91"	"5.341"
##	"-2.98"	"1"	"8.68"	"2.578"
##	"-2.981"	"0"	"9.18"	"3.079"
##	"-2.984"	"0"	"9.18"	"3.076"
##	"-2.984"	"0"	"9.05"	"3.033"
##	"-2.985"	"0"	"7.29"	"2.442"
##	"-2.985"	"22"	"40.57"	"6.222"
##	"-2.985"	"0"	"7.29"	"2.442"
##	"-2.986"	"11"	"24.18"	"4.414"

##	"-2.987"	"5"	"16.74"	"3.93"
##	"-2.987"	"1"	"11.76"	"3.602"
##	"-2.989"	"491"	"587.67"	"32.337"
##	"-2.99"	"61"	"86.59"	"8.558"
##	"-2.99"	"2"	"11.81"	"3.28"
##	"-2.991"	"0"	"7.26"	"2.427"
##	"-2.993"	"1"	"11.1"	"3.374"
##	"-2.994"	"25"	"40.3"	"5.11"
##	"-2.994"	"0"	"8.33"	"2.782"
##	"-2.995"	"2"	"10.98"	"2.998"
##	"-2.995"	"20"	"36.02"	"5.348"
##	"-2.996"	"0"	"7.48"	"2.496"
##	"-2.997"	"1"	"8.92"	"2.643"
##	"-2.998"	"2"	"10.82"	"2.942"
##	"-3.001"	"1"	"9.88"	"2.959"
##	"-3.001"	"0"	"6.46"	"2.153"
##	"-3.001"	"0"	"7.54"	"2.512"
##	"-3.001"	"0"	"8.24"	"2.746"
##	"-3.002"	"2"	"12.98"	"3.657"
##	"-3.002"	"6"	"16.83"	"3.607"
##	"-3.003"	"0"	"9.41"	"3.134"
##	"-3.003"	"40"	"61.94"	"7.307"
##	"-3.003"	"12"	"27.77"	"5.251"
##	"-3.003"	"5"	"16.83"	"3.939"
##	"-3.003"	"0"	"8.62"	"2.87"
##	"-3.004"	"9"	"23.14"	"4.708"
##	"-3.007"	"367"	"443.45"	"25.42"
##	"-3.007"	"5"	"17.22"	"4.064"
##	"-3.008"	"2"	"9.97"	"2.649"
##	"-3.008"	"0"	"7.59"	"2.523"
##	"-3.009"	"1"	"10.48"	"3.151"
##	"-3.01"	"2"	"15.4"	"4.452"
##	"-3.011"	"39"	"64.82"	"8.575"
##	"-3.011"	"4"	"14.62"	"3.527"
##	"-3.012"	"9"	"22.26"	"4.403"
##	"-3.013"	"10"	"23.64"	"4.527"
##	"-3.014"	"5"	"16.09"	"3.679"
##	"-3.014"	"0"	"9.03"	"2.996"
##	"-3.015"	"1"	"10.44"	"3.131"
##	"-3.018"	"6"	"18.73"	"4.218"
##	"-3.018"	"4"	"14.99"	"3.642"
##	"-3.019"	"33"	"53.11"	"6.66"
##	"-3.019"	"1"	"11.47"	"3.468"
##	"-3.019"	"5"	"16.96"	"3.962"
##	"-3.02"	"0"	"9.29"	"3.076"
##	"-3.02"	"24"	"40.42"	"5.437"
##	"-3.021"	"3"	"12.33"	"3.088"
##	"-3.021"	"4"	"14.01"	"3.314"
##	"-3.022"	"0"	"10.49"	"3.471"
##	"-3.022"	"345"	"420.51"	"24.983"
##	"-3.022"	"3"	"16.85"	"4.582"
##	"-3.022"	"0"	"7.26"	"2.402"
##	"-3.024"	"0"	"8.74"	"2.891"
##	"-3.024"	"14"	"33.18"	"6.343"

##	"-3.026"	"2"	"12.95"	"3.619"
##	"-3.026"	"44"	"71.45"	"9.073"
##	"-3.029"	"28"	"48.45"	"6.752"
##	"-3.029"	"1"	"9.22"	"2.714"
##	"-3.03"	"9"	"22.71"	"4.524"
##	"-3.031"	"4"	"16.34"	"4.071"
##	"-3.032"	"31"	"50.4"	"6.398"
##	"-3.032"	"3"	"15.89"	"4.252"
##	"-3.032"	"0"	"7.31"	"2.411"
##	"-3.034"	"5"	"15.93"	"3.602"
##	"-3.035"	"41"	"63.14"	"7.296"
##	"-3.035"	"1"	"9.03"	"2.646"
##	"-3.037"	"0"	"9.63"	"3.171"
##	"-3.038"	"0"	"6.74"	"2.218"
##	"-3.038"	"22"	"41.86"	"6.538"
##	"-3.039"	"331"	"411.71"	"26.561"
##	"-3.039"	"2"	"11.67"	"3.182"
##	"-3.04"	"2"	"14.48"	"4.106"
##	"-3.041"	"1"	"9.34"	"2.742"
##	"-3.041"	"1"	"9.34"	"2.742"
##	"-3.043"	"12"	"28.28"	"5.351"
##	"-3.045"	"4"	"14.78"	"3.541"
##	"-3.045"	"4"	"14.78"	"3.541"
##	"-3.047"	"0"	"9.21"	"3.023"
##	"-3.048"	"5"	"17.24"	"4.015"
##	"-3.049"	"10"	"24.53"	"4.766"
##	"-3.052"	"241"	"290.48"	"16.213"
##	"-3.052"	"1"	"9.77"	"2.874"
##	"-3.053"	"1"	"9.25"	"2.702"
##	"-3.054"	"2"	"12.53"	"3.448"
##	"-3.055"	"17"	"32.58"	"5.099"
##	"-3.057"	"0"	"6.02"	"1.969"
##	"-3.058"	"11"	"25.27"	"4.666"
##	"-3.06"	"0"	"7.55"	"2.467"
##	"-3.062"	"3"	"15.41"	"4.053"
##	"-3.063"	"29"	"48.34"	"6.314"
##	"-3.063"	"0"	"9.43"	"3.079"
##	"-3.064"	"365"	"442.82"	"25.397"
##	"-3.064"	"5"	"19.53"	"4.743"
##	"-3.065"	"22"	"38.58"	"5.409"
##	"-3.066"	"0"	"7.63"	"2.489"
##	"-3.066"	"1"	"9.03"	"2.619"
##	"-3.067"	"225"	"275.05"	"16.32"
##	"-3.067"	"3"	"13.14"	"3.306"
##	"-3.068"	"2"	"10.36"	"2.725"
##	"-3.069"	"39"	"65.87"	"8.757"
##	"-3.07"	"0"	"7.12"	"2.319"
##	"-3.07"	"0"	"7.12"	"2.319"
##	"-3.07"	"0"	"7.12"	"2.319"
##	"-3.071"	"3"	"14.72"	"3.817"
##	"-3.071"	"10"	"24.76" "8.36"	"4.806" "2.721"
##	"-3.072"	"O"		"2.721" "3.384"
##	"-3.073"	"4"	"14.4"	
##	"-3.074"	"5"	"19.31"	"4.655"

##	"-3.075"	"22"	"38.42"	"5.339"
##	"-3.076"	"43"	"65.71"	"7.382"
##	"-3.078"	"1"	"9.23"	"2.674"
##	"-3.078"	"1"	"11.53"	"3.421"
##	"-3.078"	"63"	"88.61"	"8.319"
##	"-3.079"	"25"	"46.26"	"6.906"
##	"-3.079"	"4"	"16.09"	"3.926"
##	"-3.08"	"1"	"12.23"	"3.646"
##	"-3.08"	"0"	"10.89"	"3.536"
##	"-3.081"	"0"	"8.06"	"2.616"
##	"-3.082"	"2"	"10.82"	"2.862"
##	"-3.083"	"5"	"18.31"	"4.317"
##	"-3.084"	"0"	"8.56"	"2.776"
##	"-3.084"	"1"	"9.3"	"2.691"
##	"-3.084"	"1"	"10.83"	"3.188"
##	"-3.084"	"0"	"9.93"	"3.22"
##	"-3.086"	"4"	"15.31"	"3.664"
##	"-3.087"	"3"	"15.49"	"4.046"
##	"-3.088"	"3"	"14.22"	"3.634"
##	"-3.09"	"7"	"19.55"	"4.061"
##	"-3.09"	"13"	"26.87"	"4.489"
##	"-3.091"	"0"	"8.83"	"2.857"
##	"-3.092"	"0"	"9.57"	"3.095"
##	"-3.096"	"12"	"25.3"	"4.296"
##	"-3.097"	"0"	"10.42"	"3.364"
##	"-3.097"	"34"	"57.5"	"7.589"
##	"-3.097"	"1"	"12.16"	"3.603"
##	"-3.098"	"63"	"92.12"	"9.4"
##	"-3.098"	"51"	"74.32"	"7.528"
##	"-3.099"	"37"	"61.93"	"8.046"
##	"-3.1"	"9"	"24.5"	"5"
## ##	"-3.102" "-3.103"	"85" "3"	"115.77" "13.56"	"9.92" "3.403"
## ##	"-3.103"	"25"	"42.31"	"5.579"
## ##	"-3.105"	"15"	"30.61"	"5.027"
##	-3.105 "-3.105"	"6"	"17.36"	"3.658"
##	"-3.105"	"5"	"16.61"	"3.739"
##	"-3.106"	"19"	"39.26"	"6.524"
##	"-3.107"	"0"	"7.5"	"2.414"
##	"-3.109"	"2"	"11.73"	"3.13"
##	"-3.11"	"1"	"9.53"	"2.743"
##	"-3.111"	"0"	"8.36"	"2.687"
##	"-3.112"	"1"	"11.71"	"3.442"
##	"-3.112"	"0"	"6.91"	"2.221"
##	"-3.114"	"42"	"68.67"	"8.565"
##	"-3.114"	"4"	"14.4"	"3.339"
##	"-3.114"	"3"	"15.66"	"4.066"
##	"-3.115"	"1"	"10.38"	"3.011"
##	"-3.116"	"10"	"24.83"	"4.759"
##	"-3.117"	"2"	"10.47"	"2.717"
##	"-3.123"	"0"	"10.13"	"3.243"
##	"-3.125"	"6"	"20.19"	"4.541"
##	"-3.125"	"54"	"79.79"	"8.253"
##	"-3.126"	"2"	"12.39"	"3.324"

##	"-3.129"	"1"	"11.24"	"3.273"
##	"-3.131"	"8"	"20.14"	"3.877"
##	"-3.131"	"4"	"16.74"	"4.069"
##	"-3.133"	"21"	"36.38"	"4.909"
##	"-3.135"	"20"	"37.56"	"5.602"
##	"-3.136"	"1"	"11.19"	"3.25"
##	"-3.137"	"0"	"12.17"	"3.88"
##	"-3.137"	"4"	"16.09"	"3.854"
##	"-3.138"	"1"	"9.55"	"2.724"
##	"-3.139"	"0"	"8.07"	"2.571"
##	"-3.139"	"8"	"23.31"	"4.878"
##	"-3.14"	"0"	"6.55"	"2.086"
##	"-3.14"	"4"	"16.28"	"3.911"
##	-3.14 "-3.14"	"4"	"16.28"	"3.911"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.141"	"1"	"10.32"	"2.967"
##	"-3.142"	"0"	"8.91"	"2.836"
##	"-3.143"	"19"	"36.68"	"5.624"
##	"-3.143"	"1"	"11.96"	"3.487"
##	"-3.144"	"27"	"49.84"	"7.265"
##	"-3.145"	"0"	"7.95"	"2.528"
##	"-3.146"	"41"	"63.73"	"7.225"
##	"-3.147"	"17"	"34.69"	"5.62"
##	"-3.147"	"15"	"31.4"	"5.211"
##	"-3.148"	"1"	"11.75"	"3.415"
##	"-3.15"	"3"	"14.66"	"3.702"
##	"-3.152"	"9"	"27.55"	"5.885"
##	"-3.154"	"27"	"47.24"	"6.417"
##	"-3.155"	"1"	"9.89"	"2.817"
##	"-3.158"	"3"	"12.72"	"3.078"
##	"-3.158"	"5"	"19.29"	"4.524"
##	"-3.159"	"0"	"10.17"	"3.219"
##	"-3.16"	"4"	"16.39"	"3.921"
##	"-3.16"	"0"	"10.33"	"3.269"
##	"-3.16"	"9"	"23.34"	"4.538"
##	"-3.161"	"18"	"37.66"	"6.219"
##	"-3.162"	"21"	"43.35"	"7.069"
##	"-3.164"	"4"	"15.63"	"3.675"
##	"-3.164"	"6"	"19.41"	"4.238"
##	"-3.164"	"1"	"11.1"	"3.192"
##	"-3.166"	"9"	"25.53"	"5.221"
##	"-3.167"	"0"	"10.57"	"3.337"
##	"-3.168"	"3"	"13.95"	"3.456"
##	"-3.168"	"2"	"12.87"	"3.431"
##	"-3.17"	"30"	"51.08"	"6.649"
##	"-3.17"	"2"	"11.8"	"3.091"
##	"-3.174"	"1"	"9.25"	"2.599"
##	"-3.175"	"0"	"9.45"	"2.976"
##	"-3.18"	"0"	"8.38"	"2.635"
##	"-3.181"	"4"	"15.86"	"3.728"
##	"-3.181"	"3"	"14.93"	"3.75"
##	"-3.184"	"15"	"31.35"	"5.135"
##	"-3.186"	"11"	"24.37"	"4.196"
	0.100		21.01	1.100

##	"-3.187"	"0"	"9.56"	"2.999"
##	"-3.187"	"8"	"24.93"	"5.313"
##	"-3.189"	"9"	"23.46"	"4.534"
##	"-3.19"	"3"	"13.09"	"3.163"
##	"-3.19"	"3"	"13.62"	"3.33"
##	"-3.19"	"1"	"12.96"	"3.75"
##	"-3.19"	"146"	"190.92"	"14.08"
##	"-3.191"	"3"	"15.12"	"3.799"
##	"-3.191"	"6"	"18.32"	"3.861"
##	"-3.194"	"2"	"12.37"	"3.246"
##	"-3.195"	"3"	"13.04"	"3.143"
##	"-3.195"	"8"	"24.27"	"5.093"
##	"-3.195"	"1"	"11.18"	"3.186"
##	"-3.195"	"3"	"13.04"	"3.143"
##	"-3.196"	"2"	"11.36"	"2.929"
##	"-3.199"	"3"	"12.82"	"3.069"
##	"-3.199"	"0"	"9.43"	"2.948"
##	"-3.202"	"0"	"7.91"	"2.47"
##	"-3.202"	"5"	"18.67"	"4.269"
##	"-3.203"	"10"	"28.81"	"5.872"
##	"-3.204"	"7"	"23.79"	"5.24"
##	"-3.204"	"7"	"23.79"	"5.24"
##	"-3.205"	"1"	"10.93"	"3.099"
##	"-3.206"	"20"	"38.17"	"5.668"
##	"-3.206"	"3"	"14.74"	"3.661"
##	"-3.206"	"10"	"25.81"	"4.931"
##	"-3.207"	"2"	"13.08"	"3.454"
##	"-3.211"	"1"	"11.69"	"3.329"
##	"-3.213"	"3"	"13.38"	"3.231"
##	"-3.214"	"12"	"26.61"	"4.546"
##	"-3.215"	"39"	"62.33"	"7.256"
##	"-3.215"	"0"	"10"	"3.111"
##	"-3.218"	"4"	"16.08"	"3.754"
##	"-3.221"	"37"	"60.17"	"7.194"
##	"-3.222"	"45"	"67.99"	"7.136"
##	"-3.225"	"5"	"18.84"	"4.292"
##	"-3.226"	"1"	"12.9"	"3.689"
##	"-3.228"	"10"	"25.27"	"4.731"
##	"-3.229"	"53"	"83.09"	"9.319"
##	"-3.231"	"12"	"29.56"	"5.435"
##	"-3.232"	"32"	"53.56"	"6.672"
##	"-3.234"	"1"	"11.62"	"3.284"
##	"-3.235"	"22"	"41.07"	"5.895"
##	"-3.235"	"5"	"20.01"	"4.64"
##	"-3.236"	"8"	"20.05"	"3.724"
##	"-3.237"	"1"	"13.45"	"3.846"
##	"-3.237"	"2"	"13.4"	"3.522"
##	"-3.238"	"23"	"45.41"	"6.921"
##	-3.236 "-3.239"	"10"	"23.49"	"4.165"
##	-3.23 <i>9</i> "-3.24"	"2"	"16.45"	"4.459"
##	"-3.24"	"1"	"12.96"	"3.69"
##	"-3.241"	"11"	"27.85"	"5.198"
##	"-3.242"	"7"	"19.02"	"3.706"
##	"-3.244"	"92"	"128.63"	"11.291"
##	-3.244	32	120.03	11.291

			" 47 07"	0741
##	"-3.247"	"27"	"47.37"	"6.274"
##	"-3.249"	"24"	"44.3"	"6.248"
##	"-3.25"	"0"	"8.1"	"2.492"
##	"-3.251"	"6"	"18.87"	"3.959"
##	"-3.253"	"424"	"500.15"	"23.412"
##	"-3.255"	"0"	"11.61"	"3.567"
##	"-3.256"	"99"	"132.52"	"10.294"
##	"-3.257"	"5"	"18.02"	"3.997"
##	"-3.258"	"2"	"13.67"	"3.582"
##	"-3.259"	"56"	"85.99"	"9.201"
##	"-3.26"	"171"	"215.59"	"13.676"
##	"-3.261"	"1"	"11.68"	"3.275"
##	"-3.262"	"8"	"24.59"	"5.085"
##	"-3.263"	"0"	"8.58"	"2.629"
##	"-3.265"	"5"	"19.81"	"4.536"
##	"-3.266"	"44"	"72.79"	"8.815"
##	"-3.266"	"4"	"18.25"	"4.363"
##	"-3.269"	"5"	"17.35"	"3.778"
##	"-3.269"	"0"	"10.39"	"3.178"
##	"-3.273"	"0"	"9.56"	"2.921"
##	"-3.273"	"3"	"14.35"	"3.468"
##	"-3.274"	"9"	"25.08"	"4.911"
##	"-3.275"	"0"	"11.94"	"3.645"
##	"-3.276"	"4"	"16.4"	"3.785"
##	"-3.277"	"2"	"15"	"3.967"
##	"-3.278"	"8"	"23.93"	"4.86"
##	"-3.278"	"27"	"49.99"	"7.013"
##	"-3.279"	"1"	"11.66"	"3.251"
##	"-3.28"	"47"	"71.43"	"7.447"
##	"-3.281"	"9"	"23.72"	"4.486"
##	"-3.283"	"4"	"17.69"	"4.17"
##	"-3.285"	"38"	"62.45"	"7.442"
##	"-3.286"	"24"	"43.88"	"6.049"
##	"-3.287"	"83"	"119.82"	"11.203"
##	"-3.288"	"1"	"15.33"	"4.358"
##	"-3.288"	"8"	"20.5"	"3.802"
##	"-3.291"	"2"	"11.5"	"2.887"
##	"-3.294"	"5"	"18.73"	"4.168"
##	"-3.294"	"4"	"17.61"	"4.131"
##	"-3.294"	"5"	"18.79"	"4.186"
##	-3.294 "-3.295"	"4"	"16.43"	"3.772"
##	-3.295 "-3.296"	"25"	"44.05"	"5.779"
##	"-3.290"	"4"	"15.52"	"3.495"
##	"-3.297"	"7"	"22.75"	"4.772"
	"-3.3" "-3.3"		"8.21"	"2.488"
##		"0"	"9.92"	"2.400"
##	"-3.3"	"1"	0.02	
##	"-3.3"	"3"	"15.44"	"3.769"
##	"-3.301"	"19"	"37.92"	"5.731"
##	"-3.304"	"0"	"11.98"	"3.626"
##	"-3.305"	"47"	"73.75"	"8.093"
##	"-3.305"	"2"	"13.05"	"3.344"
##	"-3.307"	"12"	"30.72"	"5.661"
##	"-3.308"	"2"	"13.71"	"3.54"
##	"-3.309"	"1"	"11.4"	"3.143"

## ## ##	"-3.309"			
## ##	0.000	"7"	"21.65"	"4.428"
##	"-3.309"	"18"	"39.02"	"6.352"
	"-3.309"	"88"	"120.47"	"9.812"
	"-3.309"	"1"	"11.4"	"3.143"
##	"-3.31"	"0"	"10.07"	"3.043"
##	"-3.31"	"81"	"111.73"	"9.283"
##	"-3.31"	"8"	"26.95"	"5.725"
##	"-3.311"	"36"	"58.6"	"6.825"
##	"-3.311"	"2"	"12.78"	"3.255"
##	"-3.311"	"5"	"15.95"	"3.307"
##	"-3.313"	"0"	"10.34"	"3.121"
##	"-3.313"	"7"	"20.48"	"4.069"
##	"-3.313"	"3"	"18.28"	"4.612"
##	"-3.314"	"46"	"72.24"	"7.919"
##	"-3.314"	"6"	"20.28"	"4.309"
##	"-3.315"	"0"	"7.8"	"2.353"
##	"-3.316"	"5"	"18.5"	"4.071"
##	"-3.319"	"2"	"11.03"	"2.721"
##	"-3.32"	"1"	"10.91"	"2.985"
##	"-3.321"	"0"	"10.78"	"3.246"
##	"-3.323"	"2"	"13.97"	"3.603"
##	"-3.326"	"38"	"63.26"	"7.594"
##	"-3.328"	"0"	"7.79"	"2.341"
##	"-3.329"	"1"	"10.27"	"2.785"
##	"-3.329"	"1"	"11.19"	"3.061"
##	"-3.331"	"2"	"13.82"	"3.549"
##	"-3.334"	"3"	"14.26"	"3.377"
##	"-3.336"	"1"	"15.28"	"4.281"
##	"-3.337"	"7"	"21.02"	"4.202"
##	"-3.338"	"0"	"8.66"	"2.595"
##	"-3.338"	"3"	"15.76"	"3.822"
	"-3.34"	1116611		
##		"166"	"211.95"	"13.757"
##	"-3.341"	"3"	"13.45"	"3.128"
## ##	"-3.341" "-3.341"	"3" "15"	"13.45" "33.1"	"3.128" "5.417"
## ## ##	"-3.341" "-3.341" "-3.342"	"3" "15" "31"	"13.45" "33.1" "56.37"	"3.128" "5.417" "7.591"
## ## ##	"-3.341" "-3.341" "-3.342" "-3.342"	"3" "15" "31" "4"	"13.45" "33.1" "56.37" "16.31"	"3.128" "5.417" "7.591" "3.684"
## ## ## ##	"-3.341" "-3.341" "-3.342" "-3.342"	"3" "15" "31" "4"	"13.45" "33.1" "56.37" "16.31" "78.39"	"3.128" "5.417" "7.591" "3.684" "9.093"
## ## ## ## ##	"-3.341" "-3.341" "-3.342" "-3.342" "-3.342" "-3.346"	"3" "15" "31" "4" "48" "94"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891"
## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.346"	"3" "15" "31" "4" "48" "94"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971"
## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.35"	"3" "15" "31" "4" "48" "94" "1"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967"
## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351"	"3" "15" "31" "4" "48" "94" "1" "0"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "19.7"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387"
## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351"	"3" "15" "31" "4" "48" "94" "1" "0" "5"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "19.7" "17.5"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "19.7" "17.5" "11.01"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "19.7" "17.5" "11.01" "11.62"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "1"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "19.7" "17.5" "11.01" "11.62" "12.42"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.357"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "2" "0"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.62" "12.42" "7.39"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.353" "-3.353" "-3.357" "-3.36"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "2" "0" "53"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "12.42" "7.39" "80.41"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.353" "-3.353" "-3.357" "-3.361"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "1" "2" "0" "53" "4"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "7.39" "80.41" "16.46"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159" "3.708"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.353" "-3.353" "-3.361" "-3.361" "-3.361"	"3" "15" "31" "4" "48" "94" "1" "5" "4" "1" "1" "2" "0" "53" "4" "0"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "12.42" "7.39" "80.41" "16.46" "11.47"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159" "3.708" "3.413"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.357" "-3.361" "-3.361" "-3.362"	"3" "15" "31" "4" "48" "94" "1" "5" "4" "1" "1" "2" "0" "53" "4" "0"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "12.42" "7.39" "80.41" "16.46" "11.47" "22.97"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159" "3.708" "3.413" "4.453"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.357" "-3.361" "-3.361" "-3.362" "-3.364"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "2" "0" "53" "4" "0" "8"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "12.42" "7.39" "80.41" "16.46" "11.47" "22.97" "23.59"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159" "3.708" "3.413" "4.453" "4.634"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.352" "-3.353" "-3.361" "-3.361" "-3.362" "-3.362" "-3.362" "-3.362" "-3.365"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "2" "0" "53" "4" "0" "8" "8"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.62" "11.62" "12.42" "7.39" "80.41" "16.46" "11.47" "22.97" "23.59" "10.76"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.971" "2.967" "4.387" "4.029" "2.986" "3.168" "3.168" "2.201" "8.159" "3.708" "3.413" "4.453" "4.634" "3.198"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-3.341" "-3.342" "-3.342" "-3.342" "-3.346" "-3.351" "-3.351" "-3.352" "-3.352" "-3.353" "-3.357" "-3.361" "-3.361" "-3.362" "-3.364"	"3" "15" "31" "4" "48" "94" "1" "0" "5" "4" "1" "1" "2" "0" "53" "4" "0" "8"	"13.45" "33.1" "56.37" "16.31" "78.39" "130.44" "10.94" "9.94" "17.5" "11.01" "11.62" "12.42" "7.39" "80.41" "16.46" "11.47" "22.97" "23.59"	"3.128" "5.417" "7.591" "3.684" "9.093" "10.891" "2.967" "4.387" "4.029" "2.986" "3.168" "3.108" "2.201" "8.159" "3.708" "3.413" "4.453" "4.634"

##	"-3.368"	"2"	"13.04"	"3.278"
##	"-3.37"	"1"	"12.95"	"3.546"
##	"-3.371"	"2"	"14.33"	"3.657"
##	"-3.372"	"2"	"14.3"	"3.647"
##	"-3.375"	"1"	"12.88"	"3.52"
##	"-3.377"	"12"	"26.71"	"4.356"
##	"-3.38"	"11"	"26.82"	"4.68"
##	"-3.38"	"0"	"7.74"	"2.29"
##	"-3.383"	"0"	"11.29"	"3.337"
##	"-3.384"	"1"	"11.93"	"3.229"
##	"-3.385"	"0"	"9.86"	"2.913"
##	"-3.39"	"6"	"18.91"	"3.809"
##	"-3.39"	"17"	"36.98"	"5.893"
##	"-3.391"	"5"	"16.12"	"3.279"
##	"-3.391"	"1"	"13.57"	"3.707"
##	"-3.393"	"15"	"32.46"	"5.145"
##	"-3.395"	"4"	"17.17"	"3.88"
##	"-3.397"	"2"	"14.64"	"3.721"
##	"-3.398"	"79"	"110.99"	"9.415"
##	"-3.399"	"1"	"12.52"	"3.389"
##	"-3.403"	"14"	"33.78"	"5.813"
##	"-3.403"	"13"	"32.46"	"5.718"
##	"-3.403"	"4"	"19.35"	"4.511"
##	"-3.405"	"3"	"17"	"4.112"
##	"-3.405"	"13"	"30.45"	"5.125"
##	"-3.408"	"24"	"43.34"	"5.675"
##	"-3.409"	"3"	"14.21"	"3.288"
##	"-3.41"	"1"	"12.69"	"3.428"
##	"-3.41"	"7"	"21.95"	"4.384"
##	"-3.411"	"15"	"34.06"	"5.588"
##	"-3.414"	"14"	"31.16"	"5.027"
##	"-3.416"	"0"	"11.43"	"3.346"
##	"-3.419"	"34"	"60.13"	"7.642"
##	"-3.419"	"14"	"34.12"	"5.885"
##	"-3.419"	"2"	"12.29"	"3.009"
##	"-3.419"	"2"	"16.41"	"4.214"
##	"-3.42"	"1"	"11.44"	"3.053"
##	"-3.42"	"8"	"24.79"	"4.91"
##	"-3.421"	"4"	"15.19"	"3.271"
##	"-3.422"	"18"	"42.24"	"7.084"
##	"-3.426"	"2"	"12.41"	"3.039"
##	"-3.427"	"110"	"156.39"	"13.535"
##	"-3.427"	"3"	"13.76"	"3.14"
##	"-3.429"	"249"	"310.48"	"17.932"
##	"-3.43"	"0"	"11.84"	"3.452"
##	"-3.43"	"0"	"10.27"	"2.994"
##	"-3.431"	"4"	"17.88"	"4.046"
##	"-3.433"	"0"	"9.03"	"2.63"
##	"-3.435"	"1"	"12.66"	"3.394"
##	"-3.436"	"0"	"9.67"	"2.814"
##	"-3.437"	"68"	"98.99"	"9.016"
##	"-3.444"	"18"	"36.49"	"5.368"
##	"-3.444"	"1"	"11.56"	"3.066"
##	"-3.445"	"0"	"9.45"	"2.743"

##	"-3.446"	"69"	"103.64"	"10.053"
##	"-3.451"	"9"	"27.4"	"5.331"
##	"-3.452"	"2"	"16.32"	"4.148"
##	"-3.452"	"7"	"24.3"	"5.012"
##	"-3.453"	"9"	"21.14"	"3.516"
##	"-3.456"	"81"	"116.75"	"10.343"
##	"-3.456"	"1"	"13.99"	"3.759"
##	"-3.456"	"33"	"56.88"	"6.91"
##	"-3.458"	"7"	"24.78"	"5.142"
##	"-3.46"	"131"	"177.12"	"13.329"
##	"-3.46"	"15"	"33.62"	"5.382"
##	"-3.461"	"1"	"10.01"	"2.603"
##	"-3.463"	"2"	"15.22"	"3.818"
##	"-3.463"	"4"	"16.01"	"3.468"
##	"-3.465"	"44"	"71.46"	"7.924"
##	"-3.467"	"0"	"13.08"	"3.773"
##	"-3.468"	"115"	"158.12"	"12.435"
##	"-3.468"	"54"	"83.03"	"8.371"
##	"-3.469"	"1"	"16.25"	"4.396"
##	"-3.472"	"5"	"20.46"	"4.453"
##	"-3.472"	"11"	"25.32"	"4.124"
##	"-3.474"	"133"	"180.64"	"13.713"
##	"-3.476"	"1"	"10.85"	"2.833"
##	"-3.478"	"66"	"93.63"	"7.945"
##	"-3.479"	"17"	"39.17"	"6.372"
##	"-3.483"	"0"	"8.81"	"2.529"
##	"-3.483"	"43"	"70.55"	"7.909"
##	"-3.484"	"21"	"42.79"	"6.254"
##	"-3.485"	"8"	"23.55"	"4.462"
##	"-3.488"	"15"	"35.75"	"5.948"
##	"-3.49"	"30"	"52.46"	"6.436"
##	"-3.49"	"3"	"15.2"	"3.496"
##	"-3.493"	"2"	"15.79"	"3.947"
##	"-3.495"	"3"	"17.48"	"4.143"
##	"-3.497"	"1"	"12.47"	"3.28"
##	"-3.498"	"0"	"11.08"	"3.168"
##	"-3.5"	"5"	"21.29"	"4.654"
##	"-3.501"	"7"	"23.89"	"4.824"
##	"-3.504"	"21"	"41.98"	"5.988"
##	"-3.505"	"130"	"170.1"	"11.44"
##	"-3.506"	"1"	"12.18"	"3.189"
##	"-3.506"	"11"	"29.49"	"5.273"
##	"-3.507"	"0"	"11.86"	"3.382"
##	"-3.508"	"8"	"23.23"	"4.341"
##	"-3.509"	"1"	"12.56"	"3.295"
##	"-3.513"	"6"	"21.76"	"4.486"
##	"-3.513"	"38"	"61.12"	"6.582"
##	"-3.514"	"4"	"16.51"	"3.56"
##	"-3.515"	"1"	"15.3"	"4.069"
##	"-3.515"	"0"	"12.24"	"3.482"
##	"-3.516"	"2"	"18.07"	"4.571"
##	"-3.516"	"93"	"125.6"	"9.271"
##	"-3.516"	"1"	"11.5"	"2.987"
##	"-3.517"	"10"	"30.79"	"5.911"

```
"-3.519"
                                  "3"
                                          "18.26"
                                                     "4.336"
##
                       "-3.52"
                                  "1"
                                          "13.65"
                                                     "3.594"
##
                       "-3.522"
##
                                  "1"
                                          "12.19"
                                                     "3.177"
                       "-3.522"
                                  "3"
                                          "17.18"
                                                     "4.026"
##
##
                       "-3.522"
                                  "1"
                                          "13.55"
                                                     "3.563"
                       "-3.523"
                                  "2"
                                          "16.35"
                                                     "4.074"
##
                       "-3.524"
                                  "1"
                                          "11.26"
                                                     "2.912"
##
                       "-3.525"
                                  "0"
                                          "10.43"
                                                     "2.958"
##
##
                       "-3.526"
                                  "1"
                                          "12.52"
                                                     "3.267"
                                  "51"
                       "-3.526"
                                          "79.43"
                                                     "8.062"
##
##
                       "-3.526"
                                  "19"
                                          "38.49"
                                                     "5.528"
                       "-3.529"
                                  "3"
                                          "16.72"
                                                     "3.888"
##
                       "-3.531"
                                  "79"
                                          "114.74"
                                                     "10.123"
##
                                  "25"
                       "-3.531"
                                          "48.83"
                                                     "6.75"
##
##
                       "-3.531"
                                  "73"
                                          "103.66"
                                                     "8.682"
##
                       "-3.531"
                                  "3"
                                          "14.45"
                                                     "3.242"
                       "-3.535"
                                  "16"
                                          "35.35"
                                                     "5.474"
##
                                          "25.18"
##
                       "-3.538"
                                  "8"
                                                     "4.856"
                       "-3.539"
                                  "762"
                                          "866.64"
                                                     "29.568"
##
                                  "16"
                                          "36.33"
                                                     "5.744"
##
                       "-3.539"
##
                       "-3.544"
                                  "125"
                                          "170.24"
                                                     "12.767"
##
                       "-3.544"
                                  "1"
                                          "15.38"
                                                     "4.057"
                                  "5"
                                          "21.39"
                                                     "4.623"
                       "-3.545"
##
                       "-3.546"
                                  "144"
                                          "195.19"
                                                     "14.437"
##
                       "-3.547"
                                  "3"
                                          "17.09"
                                                     "3.972"
##
##
                       "-3.547"
                                  "15"
                                          "38.51"
                                                     "6.628"
                                                     "3.064"
##
                       "-3.548"
                                  "0"
                                          "10.87"
                       "-3.549"
                                  "0"
                                          "12.68"
                                                     "3.573"
##
                       "-3.549"
                                  "1"
                                          "11.22"
                                                     "2.88"
##
                       "-3.55"
                                  "13"
                                          "34.83"
                                                     "6.15"
##
                                  "2"
                                          "14.53"
                                                     "3.529"
##
                       "-3.551"
##
                       "-3.553"
                                  "0"
                                          "8.18"
                                                     "2.302"
                       "-3.553"
                                  "27"
                                          "53.61"
                                                     "7.49"
##
                       "-3.554"
                                  "9"
                                          "27.51"
                                                     "5.208"
##
                                  "49"
                                                     "10.028"
##
                       "-3.559"
                                          "84.69"
##
                       "-3.56"
                                  "4"
                                          "19.29"
                                                     "4.295"
##
                       "-3.567"
                                  "40"
                                          "64.57"
                                                     "6.888"
##
                       "-3.567"
                                  "31"
                                          "56.38"
                                                     "7.115"
##
                       "-3.567"
                                  "14"
                                          "31.12"
                                                     "4.8"
                       "-3.569"
                                  "22"
                                          "48.36"
                                                     "7.385"
##
                       "-3.569"
                                  "0"
                                          "13.14"
                                                     "3.682"
##
                                  "2"
                                                     "3.825"
##
                       "-3.571"
                                          "15.66"
                       "-3.572"
                                  "3"
                                          "14.73"
                                                     "3.284"
##
                       "-3.573"
                                  "32"
                                          "54.98"
                                                     "6.432"
##
                       "-3.574"
                                  "0"
                                          "9.47"
                                                     "2.649"
##
                                          "40.97"
                       "-3.575"
                                  "23"
                                                     "5.026"
##
                       "-3.579"
                                  "219"
                                          "286.3"
                                                     "18.805"
##
                       "-3.58"
                                  "477"
                                          "557.78"
                                                     "22.566"
##
                                  "25"
                                                     "5.727"
##
                       "-3.581"
                                          "45.51"
                                          "268"
                       "-3.583"
                                  "212"
                                                     "15.631"
##
                                          "62.78"
##
                       "-3.583"
                                  "36"
                                                     "7.475"
                       "-3.583"
                                  "83"
                                          "120.43"
                                                     "10.447"
##
##
                       "-3.585"
                                  "8"
                                          "26.27"
                                                     "5.097"
                       "-3.588"
                                  "0"
                                          "14.07"
                                                     "3.922"
##
```

##	"-3.588"	"0"	"11.83"	"3.297"
##	"-3.592"	"37"	"62.41"	"7.074"
##	"-3.592"	"2"	"13.23"	"3.126"
##	"-3.593"	"9"	"25.27"	"4.528"
##	"-3.594"	"36"	"62.06"	"7.251"
##	"-3.594"	"5"	"19.33"	"3.987"
##	"-3.597"	"44"	"72.37"	"7.888"
##	"-3.597"	"3"	"18.3"	"4.253"
##	"-3.598"	"28"	"48.6"	"5.726"
##	"-3.598"	"16"	"37.86"	"6.075"
##	"-3.599"	"1"	"13.96"	"3.601"
##	"-3.603"	"3"	"18.6"	"4.33"
##	"-3.603"	"28"	"50.55"	"6.259"
##	"-3.604"	"3"	"16.04"	"3.618"
##	"-3.605"	"0"	"11.33"	"3.143"
##	"-3.606"	"2"	"16.83"	"4.112"
##	"-3.606"	"2"	"16.83"	"4.112"
##	"-3.607"	"10"	"30.66"	"5.728"
##	"-3.608"	"0"	"12.71"	"3.523"
##	"-3.608"	"6"	"24.59"	"5.152"
##	"-3.609"	"16"	"34.3"	"5.07"
##	"-3.61"	"12"	"28.41"	"4.546"
##	"-3.614"	"100"	"136.39"	"10.069"
##	"-3.616"	"0"	"13.98"	"3.866"
##	"-3.616"	"5"	"20.86"	"4.386"
##	"-3.617"	"2"	"13.61"	"3.21"
##	"-3.619"	"16"	"38.93"	"6.336"
##	"-3.62"	"1"	"13.48"	"3.448"
##	"-3.62"	"1"	"13.11"	"3.345"
##	"-3.62"	"70"	"108.73"	"10.7"
##	"-3.622"	"1"	"14.03"	"3.597"
##	"-3.624"	"38"	"70.93"	"9.086"
##	"-3.629"	"0"	"14.99"	"4.13"
##	"-3.631"	"124"	"175.94"	"14.305"
##	"-3.632"	"18"	"38.73"	"5.708"
##	"-3.633"	"1"	"14.29"	"3.658"
##	"-3.634"	"113"	"161.49"	"13.344"
##	"-3.634"	"0"	"12.05"	"3.316"
##	"-3.634"	"54"	"84.3"	"8.338"
##	"-3.635"	"4"	"20.32"	"4.49"
##	"-3.636"	"1"	"13.18"	"3.35"
##	"-3.637"	"3"	"17.76"	"4.058"
##	"-3.64"	"39"	"65.67"	"7.328"
## ##	"-3.643"	"8"	"26.52"	"5.084"
##	"-3.643"	"2"	"16.32"	"3.931"
##	"-3.644"	"3"	"19.42"	"4.506"
##	"-3.645"	"54"	"90.33"	"9.967"
## ##	"-3.646"	"2"	"15.83"	"3.793"
## ##	"-3.647"	"89"	"132.38"	"11.893"
## ##	"-3.65"	"2"	"18.01"	"4.387"
## ##	"-3.65"	"13"	"33.75"	"4.387" "5.684"
## ##	"-3.65" "-3.65"	"13"	"33.75" "14.15"	"5.684" "3.328"
## ##	"-3.65" "-3.653"	"2"	"14.15" "16.07"	"3.328" "3.851"
##	"-3.653" "-3.654"	"2"	"16.07"	"3.851" "3.416"
##	-3.054"	2	14.40	3.410

```
"-3.654"
                                  "4"
                                          "19.55"
                                                     "4.255"
##
                       "-3.654"
                                  "0"
                                          "11.14"
                                                     "3.048"
##
                                                     "5.33"
##
                       "-3.654"
                                  "16"
                                          "35.48"
                       "-3.661"
                                  "1"
                                          "13.75"
                                                     "3.483"
##
##
                       "-3.661"
                                  "13"
                                          "33.83"
                                                     "5.689"
                       "-3.661"
                                  "1"
                                          "14.58"
                                                     "3.71"
##
                       "-3.661"
                                  "2"
                                          "12.93"
                                                     "2.986"
##
                       "-3.662"
                                  "1"
                                          "13.62"
                                                     "3.446"
##
##
                       "-3.665"
                                  "486"
                                          "570.67"
                                                     "23.105"
                                  "58"
                       "-3.668"
                                          "91.43"
                                                     "9.115"
##
##
                       "-3.671"
                                  "50"
                                          "83.83"
                                                     "9.215"
                       "-3.676"
                                  "1"
                                          "13.01"
                                                     "3.268"
##
                       "-3.677"
                                  "0"
                                          "11.56"
                                                     "3.144"
##
                                  "15"
                       "-3.68"
                                          "36.73"
                                                     "5.905"
##
                                  "16"
##
                       "-3.68"
                                          "38.47"
                                                     "6.106"
                                  "13"
##
                       "-3.681"
                                          "34.49"
                                                     "5.839"
                       "-3.686"
                                  "24"
                                          "48.51"
                                                     "6.649"
##
                                  "61"
##
                       "-3.687"
                                          "96.24"
                                                     "9.559"
                       "-3.687"
                                  "5"
                                          "22.25"
                                                     "4.678"
##
                                  "0"
                                                     "3.77"
##
                       "-3.687"
                                          "13.9"
##
                       "-3.688"
                                  "4"
                                          "17.72"
                                                     "3.72"
##
                       "-3.689"
                                  "1"
                                          "13.08"
                                                     "3.274"
                       "-3.69"
                                  "2"
                                          "16.29"
                                                     "3.872"
##
                       "-3.691"
                                  "7"
                                          "27.99"
                                                     "5.686"
##
                                  "0"
                       "-3.695"
                                          "11.26"
                                                     "3.047"
##
##
                       "-3.696"
                                  "4"
                                          "22.17"
                                                     "4.916"
                                                     "3.653"
##
                       "-3.696"
                                  "2"
                                          "15.5"
                       "-3.698"
                                  "0"
                                          "13.53"
                                                     "3.658"
##
                       "-3.698"
                                  "16"
                                          "36"
                                                     "5.409"
##
                       "-3.703"
                                  "6"
                                          "24.85"
                                                     "5.09"
##
                                  "2"
                                                     "3.41"
##
                       "-3.707"
                                          "14.64"
##
                       "-3.708"
                                  "2"
                                          "12.94"
                                                     "2.95"
                       "-3.708"
                                  "21"
                                          "44.94"
                                                     "6.455"
##
                       "-3.71"
                                  "0"
                                          "13.14"
                                                     "3.542"
##
                       "-3.71"
                                  "1"
                                          "15.9"
                                                     "4.016"
##
##
                       "-3.71"
                                  "59"
                                          "94.68"
                                                     "9.618"
##
                       "-3.711"
                                  "90"
                                          "129.82"
                                                     "10.73"
##
                       "-3.711"
                                  "425"
                                          "506.1"
                                                     "21.853"
                                  "2"
##
                       "-3.72"
                                          "18.05"
                                                     "4.314"
##
                       "-3.721"
                                  "14"
                                          "33.92"
                                                     "5.354"
                       "-3.729"
                                  "98"
                                          "138.05"
                                                     "10.742"
##
                                  "0"
                                                     "3.551"
##
                       "-3.729"
                                          "13.24"
                       "-3.729"
                                  "22"
                                          "49.7"
                                                     "7.428"
##
                       "-3.73"
                                  "5"
                                          "20.69"
                                                     "4.206"
##
                       "-3.734"
                                  "2"
                                          "15.86"
                                                     "3.712"
##
                                  "0"
                       "-3.735"
                                          "15.15"
                                                     "4.056"
##
                       "-3.739"
                                  "68"
                                          "102.87"
                                                     "9.326"
##
                       "-3.741"
                                  "0"
                                          "13.53"
                                                     "3.617"
##
                       "-3.742"
                                          "760.17"
                                                     "27.302"
##
                                  "658"
                       "-3.745"
                                  "109"
                                          "156.02"
                                                     "12.555"
##
                                  "23"
##
                       "-3.746"
                                          "49.76"
                                                     "7.144"
                       "-3.748"
                                  "19"
                                          "43.64"
                                                     "6.574"
##
##
                       "-3.748"
                                  "10"
                                          "28"
                                                     "4.803"
                       "-3.75"
                                  "1"
                                          "15.38"
                                                     "3.834"
##
```

##	"-3.754"	"30"	"60.1"	"8.018"
##	"-3.754"	"54"	"83.23"	"7.787"
##	"-3.754"	"81"	"124.94"	"11.706"
##	"-3.755"	"3"	"14.87"	"3.161"
##	"-3.755"	"2"	"18.73"	"4.456"
##	"-3.758"	"18"	"43.37"	"6.75"
##	"-3.762"	"13"	"35.58"	"6.002"
##	"-3.762"	"1"	"17.67"	"4.431"
##	"-3.765"	"7"	"23.79"	"4.459"
##	"-3.766"	"0"	"12.63"	"3.353"
##	"-3.769"	"5"	"24.56"	"5.19"
##	"-3.769"	"7"	"27.93"	"5.553"
##	"-3.77"	"1"	"15.53"	"3.855"
##	"-3.773"	"26"	"52"	"6.892"
##	"-3.773"	"11"	"30.19"	"5.087"
##	"-3.774"	"0"	"12.57"	"3.331"
##	"-3.778"	"2"	"16.55"	"3.852"
##	"-3.778"	"24"	"52.87"	"7.642"
##	"-3.78"	"22"	"50.42"	"7.519"
##	"-3.781"	"0"	"14.78"	"3.91"
##	"-3.782"	"0"	"13.05"	"3.451"
##	"-3.782"	"4"	"17.54"	"3.58"
##	"-3.783"	"44"	"75.57"	"8.345"
##	"-3.784"	"45"	"77.03"	"8.464"
##	"-3.785"	"1"	"15.22"	"3.757"
##	"-3.785"	"1"	"14.23"	"3.496"
##	"-3.786"	"10"	"29.65"	"5.19"
##	"-3.786"	"11"	"29.33"	"4.841"
##	"-3.788"	"0"	"14.36"	"3.791"
##	"-3.79"	"55"	"85.07"	"7.934"
##	"-3.792"	"1"	"15.97"	"3.948"
##	"-3.794"	"15"	"37.61"	"5.959"
##	"-3.795"	"10"	"32.33"	"5.885"
##	"-3.795"	"15" "3"	"38.19" "19.02"	"6.111" "4.221"
## ##	"-3.795" "-3.796"	"1"	"19.02"	"3.461"
##	"-3.797"	"11"	"29.47"	"4.865"
##	-3.797 "-3.797"	"106"	"151.35"	"11.945"
##	-3.797 "-3.801"	"15"	"37.25"	"5.854"
##	"-3.801"	"9"	"31.08"	"5.806"
##	"-3.808"	"4"	"19.91"	"4.178"
##	"-3.809"	"0"	"10.8"	"2.836"
##	"-3.812"	"15"	"38.4"	"6.138"
##	"-3.812"	"6"	"26.84"	"5.467"
##	"-3.813"	"62"	"100.95"	"10.215"
##	"-3.816"	"12"	"35.86"	"6.252"
##	"-3.817"	"3"	"19.88"	"4.423"
##	"-3.817"	"23"	"50.33"	"7.159"
##	"-3.818"	"1"	"16.71"	"4.115"
##	"-3.82"	"25"	"52.88"	"7.298"
##	"-3.821"	"2"	"17.44"	"4.041"
##	"-3.822"	"1"	"13.79"	"3.346"
##	"-3.822"	"15"	"35.79"	"5.439"
##	"-3.822"	"10"	"32.31"	"5.837"
			- · · - -	- · •

##	"-3.826"	"31"	"56.22"	"6.591"
##	"-3.827"	"5"	"21.53"	"4.319"
##	"-3.827"	"4"	"20.33"	"4.267"
##	"-3.829"	"78"	"110.21"	"8.413"
##	"-3.832"	"4"	"19.93"	"4.157"
##	"-3.832"	"5"	"24.6"	"5.115"
##	"-3.835"	"4"	"24.29"	"5.29"
##	"-3.836"	"15"	"36.8"	"5.684"
##	"-3.836"	"1"	"19.58"	"4.843"
##	"-3.846"	"11"	"36.39"	"6.601"
##	"-3.848"	"1"	"16.54"	"4.039"
##	"-3.85"	"12"	"32.09"	"5.219"
##	"-3.85"	"23"	"49.61"	"6.912"
##	"-3.85"	"1"	"18.4"	"4.519"
##	"-3.857"	"14"	"38.59"	"6.376"
##	"-3.857"	"2"	"19.12"	"4.439"
##	"-3.858"	"9"	"28.43"	"5.036"
##	"-3.859"	"4"	"19.8"	"4.095"
##	"-3.86"	"1"	"19.51"	"4.796"
##	"-3.863"	"163"	"217.8"	"14.184"
##	"-3.864"	"3"	"19.78"	"4.343"
##	"-3.864"	"3"	"19.75"	"4.335"
##	"-3.867"	"4"	"19.06"	"3.895"
##	"-3.869"	"58"	"91.06"	"8.546"
##	"-3.872"	"1"	"16.85"	"4.093"
##	"-3.873"	"12"	"34.69"	"5.858"
##	"-3.874"	"10"	"31.47"	"5.542"
##	"-3.874" "-3.874"	"0"	"12.16" "21.63"	"3.139" "4.809"
## ##	"-3.874"	"3" "24"	"47.68"	"4.809" "6.11"
##	"-3.876"	"3"	"18.17"	"3.913"
##	-3.877"	"154"	"212.37"	"15.055"
##	"-3.877"	"20"	"45.75"	"6.641"
##	"-3.878"	"1"	"14.97"	"3.603"
##	"-3.884"	"100"	"149.88"	"12.842"
##	"-3.885"	"8"	"27.75"	"5.084"
##	"-3.889"	"238"	"304.98"	"17.222"
##	"-3.892"	"40"	"66.28"	"6.753"
##	"-3.895"	"4"	"19.98"	"4.102"
##	"-3.895"	"3"	"20.31"	"4.444"
##	"-3.896"	"30"	"59.98"	"7.695"
##	"-3.897"	"9"	"30.29"	"5.463"
##	"-3.898"	"14"	"34.38"	"5.228"
##	"-3.9"	"115"	"165.51"	"12.951"
##	"-3.901"	"5"	"20.99"	"4.099"
##	"-3.903"	"6"	"24.35"	"4.702"
##	"-3.905"	"8"	"30.45"	"5.75"
##	"-3.906"	"18"	"41.64"	"6.053"
##	"-3.909"	"2"	"16.67"	"3.753"
##	"-3.912"	"323"	"388.17"	"16.658"
##	"-3.919"	"1"	"17.46"	"4.201"
##	"-3.919"	"1"	"11.53"	"2.687"
##	"-3.929"	"5"	"20.36"	"3.909"
##	"-3.93"	"6"	"26.25"	"5.153"

##	"-3.93"	"2"	"21.86"	"5.053"
##	"-3.933"	"2"	"16.6"	"3.712"
##	"-3.934"	"2"	"19.61"	"4.476"
##	"-3.934"	"159"	"213.42"	"13.832"
##	"-3.935"	"7"	"28.82"	"5.546"
##	"-3.937"	"46"	"73.95"	"7.1"
##	"-3.939"	"1"	"16.15"	"3.846"
##	"-3.94"	"5"	"23.91"	"4.799"
##	"-3.943"	"0"	"16.68"	"4.23"
##	"-3.943"	"9"	"32.64"	"5.996"
##	"-3.943"	"42"	"78.73"	"9.315"
##	"-3.946"	"9"	"32.59"	"5.978"
##	"-3.948"	"4"	"24.05"	"5.078"
##	"-3.949"	"15"	"40.92"	"6.564"
##	"-3.949"	"14"	"41.2"	"6.887"
##	"-3.953"	"110"	"159.24"	"12.458"
##	"-3.955"	"1"	"18.4"	"4.399"
##	"-3.958"	"1"	"18"	"4.295"
##	"-3.96"	"1"	"17.7"	"4.218"
##	"-3.962"	"13"	"35.92"	"5.785"
##	"-3.967"	"0"	"14.26"	"3.595"
##	"-3.967"	"43"	"71.59"	"7.207"
##	"-3.967"	"60"	"109.31"	"12.43"
##	"-3.967"	"2"	"15.39"	"3.375"
##	"-3.97"	"7"	"23.55"	"4.169"
##	"-3.973"	"1"	"16.47"	"3.894"
##	"-3.974"	"20"	"45.77"	"6.485"
##	"-3.974"	"0"	"12.72"	"3.201"
##	"-3.975"	"10"	"29.18"	"4.825"
##	"-3.975"	"184"	"251.41"	"16.958"
##	"-3.976"	"239"	"301.88"	"15.817"
##	"-3.98"	"1"	"15.62"	"3.673"
##	"-3.984"	"20"	"50.07"	"7.548"
##	"-3.986" "-3.988"	"3" "8"	"18.53" "28.03"	"3.896" "5.022"
## ##	"-3.989"	"1"	"17.69"	"4.184"
##	-3.909 "-3.99"	"15"	"32.16"	"4.301"
##	"-3.99"	"9"	"28.87"	"4.98"
##	"-3.996"	"44"	"76.32"	"8.088"
##	"-4"	"59"	"95.32"	"9.081"
##	"-4.001"	"68"	"107.74"	"9.932"
##	"-4.002"	"56"	"91.58"	"8.89"
##	"-4.002"	"1"	"14.98"	"3.493"
##	"-4.003"	"2"	"16.49"	"3.62"
##	"-4.005"	"4"	"23.62"	"4.899"
##	"-4.007"	"1"	"17.82"	"4.198"
##	"-4.008"	"0"	"13.86"	"3.458"
##	"-4.014"	"3"	"20.31"	"4.313"
##	"-4.016"	"6"	"22.49"	"4.106"
##	"-4.017"	"17"	"42.42"	"6.328"
##	"-4.019"	"106"	"155.3"	"12.267"
##	"-4.024"	"1"	"18.32"	"4.304"
##	"-4.025"	"0"	"12.84"	"3.19"
##	"-4.026"	"23"	"54.51"	"7.827"

```
"-4.026"
                                  "34"
                                          "63.71"
                                                     "7.379"
##
                       "-4.028"
                                  "0"
                                          "12.47"
                                                     "3.096"
##
##
                       "-4.029"
                                   "130"
                                          "179.75"
                                                     "12.349"
                       "-4.03"
                                   "5"
                                          "23.31"
                                                     "4.543"
##
                                  "19"
##
                       "-4.032"
                                          "46.27"
                                                     "6.763"
                       "-4.036"
                                  "3"
                                          "21.39"
                                                     "4.557"
##
                       "-4.037"
                                   "4"
                                          "19.53"
                                                     "3.847"
##
                                          "623.7"
                       "-4.042"
                                   "525"
                                                     "24.42"
##
##
                       "-4.047"
                                   "9"
                                          "31.59"
                                                     "5.582"
                       "-4.053"
                                   "4"
                                          "20.03"
                                                     "3.955"
##
##
                       "-4.053"
                                   "4"
                                          "21.33"
                                                     "4.276"
                       "-4.056"
                                   "16"
                                          "40.64"
                                                     "6.074"
##
                       "-4.056"
                                   "35"
                                          "69.46"
                                                     "8.496"
##
                                  "8"
                                          "29.17"
                       "-4.057"
                                                     "5.219"
##
##
                       "-4.061"
                                   "1"
                                          "16.1"
                                                     "3.719"
                                          "24.07"
##
                       "-4.067"
                                   "6"
                                                     "4.443"
                       "-4.071"
                                   "0"
                                          "15.71"
                                                     "3.859"
##
                                  "18"
                                                     "5.856"
##
                       "-4.071"
                                          "41.84"
                       "-4.072"
                                   "5"
                                          "23.9"
                                                     "4.642"
##
                                   "1"
                                                     "4.382"
##
                       "-4.074"
                                          "18.85"
##
                       "-4.075"
                                  "0"
                                          "14.33"
                                                     "3.516"
##
                       "-4.08"
                                   "10"
                                          "31.9"
                                                     "5.368"
                       "-4.083"
                                   "0"
                                          "11.04"
                                                     "2.704"
##
                                  "76"
                       "-4.085"
                                          "116.41"
                                                     "9.891"
##
                                  "12"
                       "-4.091"
                                          "35.3"
                                                     "5.695"
##
##
                       "-4.091"
                                   "102"
                                          "147.86"
                                                     "11.209"
                                          "16.46"
                                                     "4.019"
##
                       "-4.096"
                                   "0"
                       "-4.098"
                                   "36"
                                          "62.84"
                                                     "6.55"
##
                                   "37"
                       "-4.1"
                                          "72.12"
                                                     "8.566"
##
                       "-4.102"
                                  "12"
                                          "32.81"
                                                     "5.073"
##
                       "-4.107"
                                   "90"
                                          "135.22"
                                                     "11.009"
##
##
                       "-4.107"
                                   "20"
                                          "53.34"
                                                      "8.118"
                       "-4.109"
                                   "271"
                                          "343.87"
                                                     "17.734"
##
                       "-4.11"
                                   "8"
                                           "30.38"
                                                     "5.445"
##
                                  "3"
                       "-4.11"
                                          "19.31"
                                                     "3.969"
##
##
                       "-4.112"
                                  "38"
                                          "76.99"
                                                     "9.481"
##
                       "-4.115"
                                   "3"
                                          "17"
                                                     "3.402"
##
                       "-4.115"
                                   "3"
                                          "17"
                                                     "3.402"
                                          "17"
##
                       "-4.115"
                                   "3"
                                                     "3.402"
                       "-4.122"
                                   "123"
                                          "171.42"
                                                     "11.747"
##
                       "-4.125"
                                   "84"
                                          "127.3"
                                                     "10.497"
##
                                   "2"
                                          "19.3"
                                                     "4.194"
##
                       "-4.125"
                       "-4.128"
                                   "12"
                                          "38.6"
                                                     "6.443"
##
                       "-4.132"
                                  "19"
                                          "42.41"
                                                     "5.666"
##
                       "-4.133"
                                   "3"
                                          "21.46"
                                                     "4.466"
##
                                                     "2.827"
                       "-4.135"
                                   "0"
                                          "11.69"
##
                       "-4.139"
                                   "2"
                                          "17.73"
                                                     "3.8"
##
                       "-4.152"
                                   "0"
                                          "14.2"
                                                     "3.42"
##
                                   "1"
                                          "19.64"
##
                       "-4.152"
                                                     "4.489"
                                          "23.2"
                                                     "4.381"
                       "-4.154"
                                   "5"
##
##
                                   "6"
                       "-4.155"
                                          "30.83"
                                                     "5.976"
                       "-4.162"
                                   "114"
                                          "163.94"
                                                     "12"
##
                                   "2"
##
                       "-4.166"
                                          "18.87"
                                                      "4.049"
                       "-4.167"
                                   "5"
                                           "27.95"
                                                     "5.507"
##
```

```
"-4.169"
                                  "200"
                                          "261.83"
                                                     "14.832"
##
                       "-4.169"
                                  "17"
                                          "44.86"
                                                     "6.683"
##
##
                       "-4.17"
                                   "14"
                                          "41.43"
                                                     "6.579"
                       "-4.171"
                                   "5"
                                          "24.77"
                                                     "4.739"
##
##
                       "-4.174"
                                   "5"
                                          "27.29"
                                                     "5.34"
                       "-4.176"
                                  "7"
                                          "30.79"
                                                     "5.697"
##
                       "-4.178"
                                   "6"
                                          "24.65"
                                                     "4.464"
##
                       "-4.178"
                                   "16"
                                          "41.64"
                                                     "6.137"
##
##
                       "-4.179"
                                   "4"
                                          "24.7"
                                                     "4.953"
                                          "30.14"
                       "-4.18"
                                   "9"
                                                     "5.057"
##
##
                       "-4.181"
                                   "29"
                                          "61.47"
                                                     "7.766"
                       "-4.182"
                                   "37"
                                          "65.85"
                                                     "6.898"
##
                       "-4.187"
                                   "26"
                                          "53.37"
                                                     "6.538"
##
                                  "2"
                       "-4.192"
                                          "18.83"
                                                     "4.015"
##
##
                       "-4.195"
                                   "92"
                                          "136.81"
                                                     "10.681"
##
                       "-4.197"
                                   "0"
                                          "15.56"
                                                     "3.707"
                       "-4.199"
                                   "66"
                                          "106.8"
                                                     "9.716"
##
                                   "2"
##
                       "-4.202"
                                          "20.32"
                                                     "4.36"
                       "-4.204"
                                   "315"
                                          "408.66"
                                                     "22.279"
##
                                   "2"
                       "-4.208"
                                          "20.36"
##
                                                     "4.364"
##
                       "-4.211"
                                  "5"
                                          "24.36"
                                                     "4.598"
##
                       "-4.214"
                                   "45"
                                          "79.58"
                                                     "8.206"
                       "-4.215"
                                   "4"
                                          "25.64"
                                                     "5.134"
##
                       "-4.216"
                                   "27"
                                          "56.7"
                                                     "7.045"
##
                                   "7"
                       "-4.218"
                                          "23.49"
                                                     "3.909"
##
##
                       "-4.229"
                                   "0"
                                          "16.66"
                                                     "3.939"
                                                     "3.409"
##
                       "-4.23"
                                   "0"
                                          "14.42"
                       "-4.23"
                                   "5"
                                          "24.07"
                                                     "4.509"
##
                                  "10"
                       "-4.234"
                                          "28.4"
                                                     "4.346"
##
                       "-4.235"
                                   "6"
                                          "22.26"
                                                     "3.839"
##
                       "-4.237"
                                   "7"
                                          "29.85"
                                                     "5.392"
##
##
                       "-4.241"
                                   "8"
                                          "28.96"
                                                     "4.942"
                       "-4.241"
                                   "1"
                                          "16.55"
                                                     "3.666"
##
                                   "1"
                       "-4.243"
                                          "22.48"
                                                     "5.062"
##
                                   "17"
                                          "44.7"
                                                     "6.525"
##
                       "-4.245"
##
                       "-4.246"
                                  "1"
                                          "17.42"
                                                     "3.867"
##
                       "-4.247"
                                   "68"
                                          "103.39"
                                                     "8.334"
##
                       "-4.25"
                                   "2"
                                          "20.66"
                                                      "4.391"
                                   "227"
##
                       "-4.252"
                                          "297.54"
                                                     "16.589"
                       "-4.252"
                                  "10"
                                                     "6.094"
                                          "35.91"
##
                       "-4.257"
                                   "11"
                                          "36.21"
                                                     "5.923"
##
                                   "2"
                                          "22.57"
##
                       "-4.26"
                                                     "4.829"
                       "-4.262"
                                   "111"
                                          "162.28"
                                                     "12.033"
##
                       "-4.269"
                                  "0"
                                          "15.99"
                                                     "3.746"
##
                       "-4.271"
                                   "3"
                                          "20.06"
                                                     "3.994"
##
                       "-4.278"
                                   "18"
                                          "50.75"
                                                      "7.655"
##
                       "-4.284"
                                   "515"
                                          "642.4"
                                                     "29.739"
##
                                          "77.13"
                       "-4.29"
                                   "38"
                                                     "9.121"
##
                                   "33"
                                                     "7.536"
##
                       "-4.291"
                                          "65.34"
                                          "55.12"
                       "-4.292"
                                   "24"
                                                     "7.251"
##
                                   "2"
##
                       "-4.294"
                                          "19.23"
                                                     "4.012"
                       "-4.297"
                                   "11"
                                          "33.34"
                                                     "5.199"
##
##
                       "-4.31"
                                   "9"
                                          "33.96"
                                                      "5.791"
                       "-4.31"
                                   "10"
                                          "33.96"
                                                     "5.559"
##
```

```
"-4.311"
                                   "14"
                                          "35.02"
                                                      "4.876"
##
                       "-4.314"
                                   "3"
                                          "21.03"
                                                      "4.179"
##
                       "-4.314"
                                                      "5.839"
##
                                   "11"
                                          "36.19"
                       "-4.315"
                                   "97"
                                          "147.24"
                                                      "11.642"
##
                                   "2"
##
                       "-4.32"
                                          "17.9"
                                                      "3.68"
                       "-4.321"
                                   "84"
                                          "132.18"
                                                     "11.151"
##
                       "-4.323"
                                   "92"
                                          "137.61"
                                                      "10.55"
##
                       "-4.324"
                                   "38"
                                           "69.83"
                                                      "7.361"
##
##
                       "-4.324"
                                   "2"
                                          "17.86"
                                                      "3.668"
                       "-4.325"
                                   "7"
                                          "28.91"
                                                      "5.065"
##
##
                       "-4.328"
                                   "6"
                                          "28.64"
                                                      "5.231"
                       "-4.334"
                                   "0"
                                          "14.92"
                                                      "3.443"
##
                       "-4.334"
                                   "3"
                                          "26.28"
                                                      "5.371"
##
                                   "14"
                                          "41"
                                                      "6.228"
                       "-4.335"
##
                                                      "4.529"
##
                       "-4.336"
                                   "5"
                                          "24.64"
                                   "21"
                                          "50.01"
                                                      "6.684"
##
                       "-4.34"
                       "-4.341"
                                   "31"
                                          "62.3"
                                                      "7.21"
##
                       "-4.348"
                                   "13"
                                          "36.7"
##
                                                      "5.45"
                       "-4.349"
                                   "151"
                                          "210.7"
                                                      "13.728"
##
                                   "2"
                       "-4.351"
                                          "18.41"
                                                      "3.771"
##
##
                       "-4.352"
                                   "284"
                                          "371.72"
                                                      "20.156"
##
                       "-4.353"
                                   "27"
                                          "60.23"
                                                      "7.634"
                       "-4.354"
                                   "5"
                                          "28.68"
                                                      "5.438"
##
                       "-4.357"
                                   "3"
                                          "21.56"
                                                      "4.26"
##
                       "-4.358"
                                   "85"
                                          "135.71"
                                                      "11.636"
##
##
                       "-4.36"
                                   "94"
                                          "144.01"
                                                      "11.469"
                       "-4.362"
##
                                   "6"
                                          "28.29"
                                                      "5.109"
                       "-4.362"
                                   "8"
                                          "28.53"
                                                      "4.706"
##
                                   "4"
                       "-4.365"
                                          "24.57"
                                                      "4.712"
##
                       "-4.371"
                                   "13"
                                          "42.85"
                                                      "6.829"
##
                       "-4.371"
                                   "61"
                                          "105.1"
                                                      "10.09"
##
##
                       "-4.374"
                                   "15"
                                          "42.15"
                                                      "6.207"
                       "-4.376"
                                   "1"
                                          "19.85"
                                                      "4.307"
##
                                   "5"
                       "-4.379"
                                           "28.81"
                                                      "5.438"
##
                       "-4.379"
                                   "34"
                                          "74.3"
                                                      "9.202"
##
##
                       "-4.38"
                                   "40"
                                          "85.46"
                                                      "10.378"
##
                       "-4.381"
                                   "3"
                                          "21.82"
                                                      "4.296"
##
                       "-4.387"
                                   "26"
                                          "57.49"
                                                      "7.178"
##
                       "-4.388"
                                   "61"
                                          "95.36"
                                                      "7.831"
                       "-4.389"
                                   "12"
                                          "38.85"
                                                      "6.117"
##
                       "-4.391"
                                   "8"
                                          "31.54"
                                                      "5.361"
##
                                   "224"
                                                      "19.099"
##
                       "-4.392"
                                          "307.88"
                       "-4.396"
                                   "125"
                                          "183.27"
                                                      "13.255"
##
                       "-4.397"
                                   "15"
                                          "40.64"
                                                      "5.832"
##
                       "-4.399"
                                   "8"
                                          "33.08"
                                                      "5.701"
##
                                   "11"
                       "-4.403"
                                          "34.69"
                                                      "5.38"
##
                       "-4.403"
                                   "13"
                                           "39.41"
                                                      "5.998"
##
                       "-4.404"
                                   "3"
                                          "20.89"
                                                      "4.062"
##
                                                      "9.007"
##
                       "-4.404"
                                   "59"
                                          "98.67"
                                          "28.2"
                       "-4.405"
                                   "8"
                                                      "4.586"
##
                                   "7"
##
                       "-4.406"
                                          "30.81"
                                                      "5.404"
                       "-4.412"
                                   "21"
                                          "51.88"
                                                      "7"
##
##
                       "-4.414"
                                   "13"
                                          "37.71"
                                                      "5.598"
                       "-4.425"
                                   "9"
                                           "31.48"
                                                      "5.08"
##
```

```
"-4.426"
                                  "2"
                                          "25.02"
                                                     "5.201"
##
                       "-4.426"
                                  "24"
                                          "58.01"
                                                     "7.684"
##
                                          "20.34"
                                                     "4.37"
##
                       "-4.426"
                                   "1"
                       "-4.428"
                                   "30"
                                          "63.29"
                                                     "7.517"
##
##
                       "-4.428"
                                   "74"
                                          "117.94"
                                                     "9.924"
                       "-4.429"
                                  "1"
                                          "20.21"
                                                     "4.338"
##
                       "-4.429"
                                   "0"
                                          "21.13"
                                                     "4.771"
##
                                                     "4.733"
                       "-4.432"
                                   "0"
                                          "20.98"
##
##
                       "-4.437"
                                   "1"
                                          "20.12"
                                                     "4.309"
                       "-4.438"
                                  "12"
                                          "41.67"
                                                     "6.685"
##
##
                       "-4.442"
                                   "15"
                                          "42.66"
                                                     "6.227"
                       "-4.444"
                                   "374"
                                          "463.16"
                                                     "20.061"
##
                       "-4.453"
                                   "14"
                                          "38.14"
                                                     "5.422"
##
                                  "8"
                       "-4.453"
                                          "33.89"
                                                     "5.813"
##
##
                       "-4.454"
                                   "17"
                                          "40.45"
                                                     "5.265"
                                   "79"
##
                       "-4.455"
                                          "136.52"
                                                     "12.91"
                       "-4.456"
                                   "1"
                                          "22.52"
                                                     "4.829"
##
                                   "1"
##
                       "-4.456"
                                          "16.74"
                                                     "3.532"
                       "-4.456"
                                   "31"
                                          "65.89"
                                                     "7.83"
##
                                   "0"
                                          "17.35"
                                                     "3.891"
##
                       "-4.459"
##
                       "-4.463"
                                  "14"
                                          "40.74"
                                                     "5.991"
##
                       "-4.465"
                                   "37"
                                          "68.83"
                                                     "7.128"
                       "-4.471"
                                  "18"
                                          "49.19"
                                                     "6.976"
##
                       "-4.486"
                                   "48"
                                          "90.64"
                                                     "9.504"
##
                                  "2"
                       "-4.491"
                                          "20.83"
                                                     "4.192"
##
##
                       "-4.493"
                                   "32"
                                          "67.2"
                                                     "7.834"
                                  "181"
                                          "240.69"
##
                       "-4.494"
                                                     "13.281"
                       "-4.505"
                                   "6"
                                          "31.18"
                                                     "5.589"
##
                                   "2"
                       "-4.51"
                                          "21.59"
                                                     "4.344"
##
                       "-4.51"
                                   "0"
                                          "15.26"
                                                     "3.383"
##
                       "-4.513"
                                  "14"
                                          "40.93"
                                                     "5.967"
##
##
                       "-4.513"
                                   "7"
                                          "32.46"
                                                     "5.642"
                       "-4.514"
                                   "2"
                                          "18.96"
                                                     "3.758"
##
                                   "37"
                       "-4.515"
                                          "72.6"
                                                     "7.884"
##
                                   "9"
                                          "30.11"
                                                     "4.675"
##
                       "-4.515"
                                  "5"
##
                       "-4.516"
                                          "28.52"
                                                     "5.208"
##
                       "-4.517"
                                   "10"
                                          "33.55"
                                                     "5.213"
##
                       "-4.518"
                                   "5"
                                          "26.28"
                                                     "4.71"
##
                       "-4.534"
                                   "12"
                                          "45.52"
                                                     "7.393"
                                  "6"
                                                     "5.364"
                       "-4.536"
                                          "30.33"
##
                       "-4.541"
                                   "17"
                                          "44.98"
                                                     "6.161"
##
##
                       "-4.542"
                                   "5"
                                          "28.42"
                                                     "5.157"
                       "-4.546"
                                   "450"
                                          "580"
                                                     "28.594"
##
                       "-4.55"
                                   "45"
                                          "85.81"
                                                     "8.97"
##
                       "-4.552"
                                  "28"
                                          "62.79"
                                                     "7.643"
##
                                   "60"
                                                     "8.823"
                       "-4.554"
                                          "100.18"
##
                       "-4.56"
                                   "75"
                                          "126.13"
                                                     "11.212"
##
                       "-4.561"
                                  "38"
                                          "77.44"
                                                     "8.647"
##
                       "-4.564"
                                   "72"
                                          "120.76"
##
                                                     "10.684"
                                                     "8.369"
                       "-4.564"
                                   "45"
                                          "83.2"
##
##
                       "-4.565"
                                  "15"
                                          "44.03"
                                                     "6.359"
                       "-4.567"
                                   "7"
                                          "30.86"
                                                     "5.224"
##
##
                       "-4.569"
                                   "4"
                                          "23.23"
                                                     "4.209"
                       "-4.569"
                                   "9"
                                          "36.79"
                                                     "6.082"
##
```

```
"-4.571"
                                  "88"
                                          "146.89"
                                                     "12.885"
##
                       "-4.582"
                                  "98"
                                          "140.13"
                                                     "9.196"
##
##
                       "-4.585"
                                  "0"
                                          "12.44"
                                                     "2.713"
                       "-4.585"
                                  "8"
                                          "33.33"
                                                     "5.525"
##
##
                       "-4.586"
                                  "7"
                                          "31.32"
                                                     "5.303"
                       "-4.589"
                                  "95"
                                          "148.81"
                                                     "11.726"
##
                       "-4.592"
                                  "4"
                                          "24.04"
                                                     "4.365"
##
                                  "20"
                       "-4.593"
                                          "52.09"
                                                     "6.986"
##
##
                       "-4.603"
                                  "194"
                                          "254.37"
                                                     "13.115"
                       "-4.603"
                                  "9"
                                          "39.58"
                                                     "6.644"
##
##
                       "-4.603"
                                  "1"
                                          "23.31"
                                                     "4.847"
                       "-4.607"
                                  "35"
                                          "68.57"
                                                     "7.287"
##
                       "-4.609"
                                  "48"
                                          "97.69"
                                                     "10.782"
##
                                  "3"
                                          "25.18"
                                                     "4.806"
                       "-4.615"
##
##
                       "-4.615"
                                  "16"
                                          "49.46"
                                                     "7.251"
##
                       "-4.619"
                                  "5"
                                          "29.2"
                                                     "5.24"
                       "-4.619"
                                  "28"
                                          "58.79"
                                                     "6.666"
##
                                  "12"
                                                     "6.36"
##
                       "-4.632"
                                          "41.46"
                       "-4.634"
                                  "20"
                                          "48.88"
                                                     "6.232"
##
                                  "8"
                                          "37.33"
                                                     "6.317"
##
                       "-4.643"
##
                       "-4.646"
                                  "7"
                                          "33.32"
                                                     "5.666"
##
                       "-4.647"
                                  "12"
                                          "36.89"
                                                     "5.356"
                       "-4.648"
                                  "23"
                                          "56.83"
                                                     "7.278"
##
                       "-4.65"
                                  "13"
                                          "36.5"
                                                     "5.054"
##
                                  "0"
                       "-4.652"
                                          "22.36"
                                                     "4.806"
##
##
                       "-4.662"
                                  "38"
                                          "81.54"
                                                     "9.339"
                                          "29.49"
                                                     "5.681"
##
                       "-4.663"
                                  "3"
                       "-4.665"
                                  "16"
                                          "46.13"
                                                     "6.458"
##
                       "-4.668"
                                  "13"
                                          "42.68"
                                                     "6.358"
##
                       "-4.675"
                                  "1"
                                          "18.39"
                                                     "3.72"
##
                                  "8"
                                          "34.14"
                                                     "5.59"
##
                       "-4.676"
##
                       "-4.679"
                                  "9"
                                          "38.25"
                                                     "6.251"
                       "-4.687"
                                  "0"
                                          "22.3"
                                                     "4.758"
##
                                  "0"
                       "-4.69"
                                          "18.56"
                                                     "3.958"
##
                                          "164.38"
                                  "98"
                                                     "14.149"
##
                       "-4.691"
##
                       "-4.691"
                                  "22"
                                          "54.23"
                                                     "6.871"
##
                       "-4.698"
                                  "11"
                                          "41.34"
                                                     "6.458"
##
                       "-4.71"
                                  "5"
                                          "30.49"
                                                     "5.411"
                                  "28"
##
                       "-4.718"
                                          "63.72"
                                                     "7.571"
                       "-4.719"
                                  "21"
                                          "49.86"
                                                     "6.115"
##
                       "-4.724"
                                  "1"
                                          "19.94"
                                                     "4.01"
##
##
                       "-4.731"
                                  "15"
                                          "42.57"
                                                     "5.828"
                       "-4.735"
                                  "3"
                                          "28.98"
                                                     "5.486"
##
                       "-4.737"
                                  "112"
                                          "167.74"
                                                     "11.767"
##
                       "-4.739"
                                  "60"
                                          "108.56"
                                                     "10.248"
##
                       "-4.74"
                                  "7"
                                          "32.99"
                                                     "5.484"
##
                       "-4.744"
                                  "10"
                                          "32.57"
                                                     "4.757"
##
                       "-4.745"
                                  "1549" "1731.95" "38.553"
##
                       "-4.746"
                                  "52"
                                          "93.94"
                                                     "8.836"
##
                       "-4.753"
                                  "5"
                                          "29.64"
                                                     "5.185"
##
##
                       "-4.753"
                                  "19"
                                          "48.39"
                                                     "6.184"
                       "-4.754"
                                  "14"
                                          "41.38"
                                                     "5.759"
##
##
                       "-4.758"
                                  "53"
                                          "97.78"
                                                     "9.412"
                       "-4.761"
                                  "67"
                                          "113.28"
                                                     "9.721"
##
```

```
"-4.769"
                                  "15"
                                          "47.23"
                                                     "6.758"
##
                       "-4.771"
                                  "20"
                                          "54.27"
                                                     "7.183"
##
                       "-4.774"
                                                     "6.805"
##
                                  "31"
                                          "63.49"
                       "-4.777"
                                  "7"
                                          "36.83"
                                                     "6.244"
##
##
                       "-4.778"
                                  "1"
                                          "25.73"
                                                     "5.175"
                       "-4.784"
                                  "106"
                                          "159.73"
                                                     "11.23"
##
                       "-4.79"
                                  "1"
                                          "15.08"
                                                     "2.939"
##
                                  "0"
                       "-4.794"
                                          "20.76"
                                                     "4.33"
##
##
                       "-4.8"
                                  "295"
                                          "380.8"
                                                     "17.875"
                       "-4.807"
                                  "47"
                                          "88.38"
                                                     "8.609"
##
##
                       "-4.809"
                                  "8"
                                          "31.65"
                                                     "4.918"
                       "-4.812"
                                  "1"
                                          "20.63"
                                                     "4.079"
##
                       "-4.821"
                                  "10"
                                          "35.3"
                                                     "5.248"
##
                                  "1"
                                          "29.95"
                       "-4.823"
                                                     "6.002"
##
##
                       "-4.823"
                                  "17"
                                          "45.06"
                                                     "5.819"
                                          "510.82"
##
                       "-4.827"
                                  "385"
                                                     "26.065"
                       "-4.832"
                                  "6"
                                          "29.74"
                                                     "4.913"
##
                                  "3"
##
                       "-4.832"
                                          "23.42"
                                                     "4.226"
                       "-4.84"
                                  "27"
                                          "69.28"
                                                     "8.735"
##
                                  "11"
                                          "40.73"
                                                     "6.135"
##
                       "-4.846"
##
                       "-4.846"
                                  "2"
                                          "20.15"
                                                     "3.745"
##
                       "-4.846"
                                  "4"
                                          "28.81"
                                                     "5.12"
                       "-4.847"
                                  "49"
                                          "95.82"
                                                     "9.66"
##
                       "-4.851"
                                  "11"
                                          "38.63"
                                                     "5.695"
##
                       "-4.857"
                                  "63"
                                          "121.06"
                                                     "11.954"
##
##
                       "-4.867"
                                  "61"
                                          "116.45"
                                                     "11.392"
                                  "160"
                                          "228.62"
                                                     "14.074"
##
                       "-4.876"
                       "-4.877"
                                  "22"
                                          "63.14"
                                                     "8.435"
##
                                  "34"
                                          "69.97"
                       "-4.877"
                                                     "7.375"
##
                       "-4.878"
                                  "20"
                                          "55"
                                                     "7.175"
##
                                  "122"
                                          "187.25"
                                                     "13.371"
##
                       "-4.88"
##
                       "-4.881"
                                  "95"
                                          "148.48"
                                                     "10.957"
                       "-4.886"
                                  "5"
                                          "30.95"
                                                     "5.311"
##
                       "-4.902"
                                  "20"
                                          "46.95"
                                                     "5.498"
##
                                  "4"
                                          "28.05"
##
                       "-4.902"
                                                     "4.906"
##
                       "-4.907"
                                  "8"
                                          "38.8"
                                                     "6.276"
                                  "6"
##
                       "-4.907"
                                          "28.23"
                                                     "4.53"
##
                       "-4.928"
                                  "2"
                                          "28"
                                                     "5.276"
##
                       "-4.931"
                                  "1"
                                          "22.99"
                                                     "4.46"
                                  "6"
                       "-4.932"
                                          "33.48"
                                                     "5.571"
##
                       "-4.934"
                                  "167"
                                          "239.74"
                                                     "14.741"
##
                                          "212.3"
##
                       "-4.935"
                                  "140"
                                                     "14.65"
                       "-4.936"
                                  "42"
                                          "85.24"
                                                     "8.76"
##
                       "-4.937"
                                  "0"
                                          "27.41"
                                                     "5.552"
##
                       "-4.938"
                                  "14"
                                          "43.01"
                                                     "5.875"
##
                                                     "7.071"
                       "-4.947"
                                  "18"
                                          "52.98"
##
                       "-4.952"
                                  "3"
                                          "21.56"
                                                     "3.748"
##
                       "-4.953"
                                  "4"
                                          "33.07"
                                                     "5.869"
##
                                  "13"
                                          "43.85"
##
                       "-4.961"
                                                     "6.219"
                       "-4.974"
                                  "68"
                                          "121.79"
                                                     "10.815"
##
##
                       "-4.974"
                                  "113"
                                          "175.76"
                                                     "12.616"
                                  "1"
                       "-4.974"
                                          "22.52"
                                                     "4.326"
##
##
                       "-4.98"
                                  "112"
                                          "183.01"
                                                     "14.26"
                       "-4.982"
                                  "11"
                                          "40.56"
                                                     "5.933"
##
```

```
"-4.983"
                                  "25"
                                          "57.82"
                                                      "6.586"
##
                       "-4.984"
                                  "4"
                                          "24.98"
                                                     "4.209"
##
##
                       "-4.985"
                                   "24"
                                          "65.96"
                                                     "8.417"
                       "-4.988"
                                   "44"
                                          "88.91"
                                                     "9.003"
##
##
                       "-4.996"
                                   "4"
                                          "25.95"
                                                     "4.393"
                       "-4.996"
                                  "6"
                                          "29.02"
                                                     "4.608"
##
                       "-5.005"
                                   "3"
                                          "27.13"
                                                     "4.821"
##
                       "-5.006"
                                   "6"
                                          "29.76"
                                                     "4.746"
##
##
                       "-5.007"
                                   "7"
                                          "38.81"
                                                     "6.353"
                       "-5.01"
                                   "3"
                                          "23.78"
                                                     "4.148"
##
##
                       "-5.015"
                                   "8"
                                          "33.83"
                                                     "5.15"
                       "-5.016"
                                   "4"
                                          "28.97"
                                                     "4.978"
##
                       "-5.016"
                                   "12"
                                          "38.82"
                                                     "5.347"
##
                                  "76"
                                                     "10.548"
                       "-5.024"
                                          "128.99"
##
##
                       "-5.025"
                                   "192"
                                          "267.47"
                                                     "15.018"
                                   "27"
##
                       "-5.026"
                                          "68.63"
                                                      "8.284"
                       "-5.027"
                                   "4"
                                          "30.46"
                                                     "5.264"
##
                                  "17"
                                          "56.59"
                                                     "7.854"
##
                       "-5.041"
                       "-5.05"
                                   "51"
                                          "106.1"
                                                     "10.911"
##
                                   "8"
                                          "31.58"
                                                     "4.669"
##
                       "-5.05"
##
                       "-5.061"
                                  "18"
                                          "50.11"
                                                     "6.345"
##
                       "-5.063"
                                  "513"
                                          "629.78"
                                                     "23.066"
                       "-5.064"
                                   "16"
                                          "54.94"
                                                      "7.689"
##
                       "-5.066"
                                   "73"
                                          "124.47"
                                                     "10.16"
##
                       "-5.082"
                                  "98"
                                          "168.46"
                                                     "13.865"
##
##
                       "-5.083"
                                   "27"
                                          "67.31"
                                                     "7.93"
                                          "54.83"
##
                       "-5.086"
                                   "23"
                                                      "6.259"
                       "-5.087"
                                  "13"
                                          "46.41"
                                                     "6.568"
##
                                          "26.88"
                       "-5.09"
                                   "0"
                                                     "5.281"
##
                       "-5.092"
                                   "540"
                                          "654.35"
                                                     "22.458"
##
                                   "15"
                                                     "5.702"
##
                       "-5.095"
                                          "44.05"
                                  "29"
##
                       "-5.097"
                                          "78.57"
                                                     "9.725"
                       "-5.1"
                                   "0"
                                          "24.21"
                                                     "4.747"
##
                                   "2"
                       "-5.104"
                                          "33.56"
                                                     "6.183"
##
                                   "3"
                                          "25.67"
                                                     "4.438"
##
                       "-5.108"
                                  "1"
##
                       "-5.112"
                                          "22.56"
                                                     "4.217"
##
                       "-5.113"
                                   "78"
                                          "140.29"
                                                     "12.183"
##
                       "-5.118"
                                   "18"
                                          "50.76"
                                                      "6.401"
##
                       "-5.126"
                                   "17"
                                          "48.35"
                                                      "6.116"
                       "-5.129"
                                   "406"
                                          "506.26"
                                                     "19.548"
##
                       "-5.133"
                                   "12"
                                          "47.12"
                                                     "6.842"
##
                                  "12"
                                                     "6.29"
##
                       "-5.134"
                                          "44.29"
                       "-5.138"
                                   "12"
                                          "48.68"
                                                     "7.139"
##
                       "-5.141"
                                  "2"
                                          "29.91"
                                                     "5.429"
##
                       "-5.143"
                                   "32"
                                          "78.52"
                                                     "9.046"
##
                                   "30"
                       "-5.148"
                                          "70.56"
                                                     "7.878"
##
                       "-5.153"
                                   "15"
                                          "48.81"
                                                     "6.561"
##
                       "-5.155"
                                   "3"
                                          "26.85"
                                                     "4.626"
##
                                   "1"
                                                     "4.008"
##
                       "-5.158"
                                          "21.67"
                                                     "8.982"
                       "-5.178"
                                   "52"
                                          "98.51"
##
##
                       "-5.195"
                                   "6"
                                          "34.12"
                                                     "5.413"
                       "-5.195"
                                   "12"
                                          "42.1"
                                                     "5.794"
##
                                   "29"
##
                       "-5.195"
                                          "69.59"
                                                     "7.814"
                       "-5.2"
                                   "216"
                                          "296.96"
                                                     "15.569"
##
```

```
"-5.2"
                                  "64"
                                          "118.83"
##
                                                     "10.544"
                       "-5.203"
                                  "13"
                                          "44.45"
                                                     "6.044"
##
                       "-5.21"
                                          "78.12"
                                                     "8.276"
##
                                  "35"
                       "-5.212"
                                  "94"
                                          "153.25"
                                                     "11.367"
##
                                  "8"
##
                       "-5.221"
                                          "41.23"
                                                     "6.364"
                       "-5.221"
                                  "3"
                                          "26.31"
                                                     "4.465"
##
                       "-5.224"
                                  "210"
                                          "288.56"
                                                     "15.04"
##
                                  "67"
                       "-5.229"
                                          "121.05"
                                                     "10.337"
##
##
                       "-5.23"
                                  "0"
                                          "23.67"
                                                     "4.526"
                       "-5.232"
                                  "23"
                                          "64.7"
                                                     "7.97"
##
##
                       "-5.242"
                                  "43"
                                          "84.69"
                                                     "7.953"
                       "-5.246"
                                  "29"
                                          "75.23"
                                                     "8.812"
##
                       "-5.257"
                                  "438"
                                          "563.11"
                                                     "23.799"
##
                                  "7"
                       "-5.258"
                                          "39.17"
                                                     "6.118"
##
##
                       "-5.263"
                                  "70"
                                          "128.34"
                                                     "11.085"
##
                       "-5.264"
                                  "98"
                                          "160.38"
                                                     "11.85"
                       "-5.269"
                                  "25"
                                          "67.72"
                                                     "8.108"
##
                                  "7"
##
                       "-5.27"
                                          "32.28"
                                                     "4.797"
                       "-5.274"
                                  "209"
                                          "287.45"
                                                     "14.875"
##
                                  "864"
                                          "1023.99" "30.272"
##
                       "-5.285"
##
                       "-5.299"
                                  "27"
                                          "70.21"
                                                     "8.154"
##
                       "-5.31"
                                  "93"
                                          "156.34"
                                                     "11.928"
                       "-5.31"
                                  "38"
                                          "77.34"
                                                     "7.409"
##
                       "-5.311"
                                  "30"
                                          "70.34"
                                                     "7.596"
##
                       "-5.321"
                                  "18"
                                          "55.71"
                                                     "7.087"
##
##
                       "-5.339"
                                  "154"
                                          "247.88"
                                                     "17.583"
                                          "312.08"
                                                     "16.499"
##
                       "-5.339"
                                  "224"
                       "-5.339"
                                  "3"
                                          "34.43"
                                                     "5.887"
##
                                  "1169" "1378.31" "39.166"
                       "-5.344"
##
                       "-5.349"
                                  "19"
                                          "58.39"
                                                     "7.363"
##
                                  "81"
                                                     "10.83"
##
                       "-5.357"
                                          "139.02"
##
                       "-5.365"
                                  "7"
                                          "37.14"
                                                     "5.617"
                       "-5.365"
                                  "14"
                                          "49.1"
                                                     "6.542"
##
                       "-5.366"
                                  "37"
                                          "85.12"
                                                     "8.968"
##
                       "-5.375"
                                  "1"
                                          "27.16"
                                                     "4.867"
##
##
                       "-5.378"
                                  "47"
                                          "99.7"
                                                     "9.8"
##
                       "-5.384"
                                  "5"
                                          "38.08"
                                                     "6.144"
##
                       "-5.385"
                                  "2"
                                          "28.59"
                                                     "4.938"
                                  "3"
##
                       "-5.386"
                                          "31.36"
                                                     "5.266"
                                  "10"
                                          "41.6"
                                                     "5.867"
                       "-5.386"
##
                       "-5.388"
                                  "0"
                                          "26.03"
                                                     "4.831"
##
                                  "4"
                                                     "6.124"
##
                       "-5.39"
                                          "37.01"
                       "-5.39"
                                  "19"
                                          "56.86"
                                                     "7.024"
##
                       "-5.393"
                                  "0"
                                          "28.13"
                                                     "5.216"
##
                       "-5.393"
                                  "1"
                                          "24.59"
                                                     "4.374"
##
                                  "152"
                                          "225.85"
                                                     "13.68"
                       "-5.398"
##
                       "-5.399"
                                  "6"
                                          "39.11"
                                                     "6.133"
##
                       "-5.399"
                                  "9"
                                          "47.15"
                                                     "7.066"
##
##
                       "-5.403"
                                  "60"
                                          "116.68"
                                                     "10.491"
                                                     "11.698"
                       "-5.404"
                                  "54"
                                          "117.21"
##
##
                                  "7"
                       "-5.409"
                                          "41.94"
                                                     "6.46"
                       "-5.409"
                                  "15"
                                          "58.97"
                                                     "8.128"
##
##
                       "-5.461"
                                  "136"
                                          "207.85"
                                                     "13.156"
                       "-5.462"
                                  "44"
                                          "96.3"
                                                     "9.575"
##
```

```
"-5.462"
                                  "27"
                                          "70.78"
                                                     "8.016"
##
                       "-5.463"
                                  "15"
                                          "45.01"
                                                     "5.493"
##
##
                       "-5.468"
                                  "45"
                                          "92.99"
                                                     "8.776"
                       "-5.469"
                                  "130"
                                          "210.67"
                                                     "14.751"
##
##
                       "-5.474"
                                  "67"
                                          "117"
                                                     "9.134"
                       "-5.476"
                                  "2"
                                          "30.95"
                                                     "5.286"
##
                       "-5.485"
                                  "29"
                                          "78.06"
                                                     "8.944"
##
                                  "2"
                       "-5.492"
                                          "33.63"
                                                     "5.759"
##
##
                       "-5.494"
                                  "14"
                                          "55.19"
                                                     "7.498"
                                                     "10.231"
                       "-5.505"
                                  "44"
                                          "100.32"
##
##
                       "-5.522"
                                  "11"
                                          "44.38"
                                                     "6.045"
                       "-5.528"
                                  "10"
                                          "39.67"
                                                     "5.367"
##
                       "-5.556"
                                  "80"
                                          "133.08"
                                                     "9.553"
##
                                  "1"
                                                     "6.039"
                       "-5.559"
                                          "34.57"
##
##
                       "-5.568"
                                  "14"
                                          "51.87"
                                                     "6.801"
                                                     "7.011"
##
                       "-5.569"
                                  "18"
                                          "57.04"
                       "-5.569"
                                  "26"
                                          "65.8"
                                                     "7.146"
##
                       "-5.591"
                                          "282.75"
                                                     "15.515"
##
                                  "196"
                       "-5.592"
                                  "39"
                                          "83.53"
                                                     "7.963"
##
                       "-5.597"
                                  "189"
                                          "274.12"
                                                     "15.208"
##
##
                       "-5.605"
                                  "23"
                                          "73.93"
                                                     "9.087"
##
                       "-5.605"
                                  "50"
                                          "98.59"
                                                     "8.669"
                       "-5.609"
                                  "56"
                                          "123.02"
                                                     "11.949"
##
                       "-5.614"
                                  "9"
                                          "49.01"
                                                     "7.127"
##
                       "-5.623"
                                  "64"
                                          "134.67"
                                                     "12.567"
##
##
                       "-5.626"
                                  "67"
                                          "132.34"
                                                     "11.614"
                                          "58.91"
##
                       "-5.63"
                                  "15"
                                                     "7.799"
                       "-5.645"
                                  "7"
                                          "33.47"
                                                     "4.689"
##
                                  "0"
                       "-5.649"
                                          "23.93"
                                                     "4.236"
##
                       "-5.652"
                                  "11"
                                          "58.69"
                                                     "8.438"
##
                                  "11"
                                                     "5.944"
##
                       "-5.654"
                                          "44.61"
##
                       "-5.659"
                                  "19"
                                          "56.33"
                                                     "6.597"
                       "-5.669"
                                  "11"
                                          "44.15"
                                                     "5.847"
##
                                  "22"
                                                     "7.533"
                       "-5.686"
                                          "64.83"
##
                                  "4"
                                          "35.13"
                                                     "5.46"
##
                       "-5.702"
##
                       "-5.702"
                                  "10"
                                          "46.78"
                                                     "6.45"
##
                       "-5.724"
                                  "12"
                                          "55.23"
                                                     "7.553"
##
                       "-5.732"
                                  "18"
                                          "61.63"
                                                     "7.611"
                                                     "6.45"
##
                       "-5.732"
                                  "8"
                                          "44.97"
                       "-5.745"
                                  "29"
                                          "84.62"
                                                     "9.682"
##
                       "-5.745"
                                  "21"
                                          "63.97"
                                                     "7.48"
##
                                  "20"
##
                       "-5.748"
                                          "50.53"
                                                     "5.311"
                       "-5.757"
                                  "21"
                                          "68.99"
                                                     "8.336"
##
                       "-5.763"
                                  "76"
                                          "132.56"
                                                     "9.814"
##
                       "-5.774"
                                  "14"
                                          "57.49"
                                                     "7.532"
##
                       "-5.778"
                                  "43"
                                          "96.23"
                                                     "9.212"
##
                       "-5.79"
                                  "27"
                                          "82.8"
                                                     "9.637"
##
                       "-5.795"
                                  "86"
                                          "160.01"
                                                     "12.772"
##
                       "-5.812"
                                          "717.97"
                                                     "25.632"
##
                                  "569"
                                                     "5.909"
                       "-5.815"
                                  "10"
                                          "44.36"
##
##
                       "-5.817"
                                  "66"
                                          "135.31"
                                                     "11.914"
                       "-5.824"
                                  "60"
                                          "129.92"
                                                     "12.006"
##
                                  "33"
##
                       "-5.837"
                                          "84.5"
                                                     "8.823"
                       "-5.84"
                                  "550"
                                          "733.18"
                                                     "31.367"
##
```

```
"-5.842"
                                   "15"
                                          "59.63"
                                                      "7.639"
##
                       "-5.843"
                                   "6"
                                          "41.19"
                                                     "6.023"
##
##
                       "-5.844"
                                   "64"
                                          "130.49"
                                                     "11.378"
                       "-5.845"
                                   "0"
                                          "28.52"
                                                     "4.879"
##
##
                       "-5.861"
                                   "0"
                                          "24"
                                                     "4.095"
                       "-5.879"
                                   "8"
                                          "45.55"
                                                     "6.387"
##
                       "-5.884"
                                   "4"
                                          "39.18"
                                                     "5.979"
##
                       "-5.89"
                                   "216"
                                          "326.99"
                                                     "18.845"
##
##
                       "-5.898"
                                   "21"
                                           "67.72"
                                                      "7.921"
                       "-5.899"
                                  "1"
                                          "38.66"
                                                     "6.384"
##
##
                       "-5.904"
                                   "51"
                                          "110.7"
                                                     "10.111"
                       "-5.905"
                                   "4"
                                           "38.02"
                                                     "5.761"
##
                       "-5.907"
                                   "120"
                                          "198.16"
                                                     "13.233"
##
                       "-5.917"
                                  "4"
                                          "38.35"
                                                     "5.806"
##
##
                       "-5.923"
                                   "31"
                                          "85.12"
                                                     "9.137"
##
                       "-5.957"
                                   "4"
                                           "31.22"
                                                     "4.57"
                       "-5.958"
                                   "79"
                                          "139.04"
                                                     "10.076"
##
                                   "36"
                                          "85.74"
##
                       "-5.963"
                                                     "8.342"
                       "-5.967"
                                   "4"
                                           "37.47"
                                                      "5.609"
##
                                          "858.19"
                                                     "33.03"
##
                       "-5.97"
                                   "661"
##
                       "-5.983"
                                  "30"
                                          "88.27"
                                                     "9.739"
##
                       "-6.02"
                                   "225"
                                          "338.7"
                                                     "18.886"
                       "-6.022"
                                   "12"
                                           "52.12"
                                                      "6.663"
##
                       "-6.043"
                                   "26"
                                           "81.22"
                                                     "9.138"
##
                                   "2"
                       "-6.05"
                                          "35.87"
                                                     "5.599"
##
##
                       "-6.069"
                                   "9"
                                          "41.17"
                                                     "5.301"
##
                       "-6.076"
                                   "19"
                                          "60.32"
                                                     "6.8"
                       "-6.086"
                                   "19"
                                          "61.94"
                                                     "7.055"
##
                                  "2"
                       "-6.086"
                                          "44.22"
                                                     "6.938"
##
                       "-6.095"
                                   "17"
                                          "62.48"
                                                     "7.462"
##
                                   "5"
                                           "42.02"
                                                     "6.067"
##
                       "-6.102"
##
                       "-6.106"
                                   "21"
                                          "66.18"
                                                     "7.4"
                       "-6.108"
                                   "283"
                                          "398.34"
                                                     "18.884"
##
                                   "26"
                       "-6.115"
                                           "84.79"
                                                     "9.614"
##
                                   "59"
                                          "121.5"
                                                     "10.218"
##
                       "-6.116"
##
                       "-6.121"
                                   "89"
                                          "162.91"
                                                     "12.076"
##
                       "-6.123"
                                   "24"
                                          "81.19"
                                                     "9.341"
##
                       "-6.128"
                                   "156"
                                          "259.46"
                                                     "16.882"
##
                       "-6.129"
                                   "26"
                                           "70.57"
                                                      "7.271"
                       "-6.14"
                                   "8"
                                          "51.29"
                                                     "7.05"
##
                       "-6.143"
                                   "85"
                                          "159.11"
                                                     "12.064"
##
                                   "56"
                                                     "12.797"
##
                       "-6.149"
                                          "134.69"
                       "-6.15"
                                   "202"
                                          "310.6"
                                                     "17.66"
##
                       "-6.156"
                                  "39"
                                          "102.64"
                                                     "10.338"
##
                       "-6.166"
                                   "506"
                                          "663.55"
                                                     "25.551"
##
                                   "23"
                                           "79.3"
                       "-6.179"
                                                      "9.112"
##
                       "-6.184"
                                   "11"
                                           "44.13"
                                                      "5.357"
##
                                          "72.37"
                       "-6.186"
                                   "25"
                                                     "7.658"
##
                       "-6.201"
                                   "19"
                                                     "7.206"
##
                                           "63.69"
                                                     "8.867"
                       "-6.21"
                                   "33"
                                          "88.07"
##
##
                       "-6.215"
                                  "19"
                                          "64.61"
                                                     "7.339"
                       "-6.219"
                                   "18"
                                          "57.68"
                                                     "6.38"
##
##
                       "-6.24"
                                   "11"
                                           "55.51"
                                                     "7.133"
                       "-6.245"
                                   "24"
                                           "80.02"
                                                      "8.97"
##
```

```
"-6.266"
                                  "75"
                                          "144.2"
                                                     "11.044"
##
                       "-6.27"
                                  "2"
                                          "42.45"
                                                     "6.452"
##
                       "-6.291"
                                          "153"
##
                                  "74"
                                                     "12.558"
                       "-6.293"
                                  "62"
                                          "144.12"
                                                     "13.049"
##
##
                       "-6.295"
                                  "45"
                                          "109.53"
                                                     "10.251"
                       "-6.321"
                                  "38"
                                          "112.24"
                                                     "11.745"
##
                       "-6.338"
                                  "88"
                                          "157.81"
                                                     "11.015"
##
                                  "53"
                                          "127.14"
                                                     "11.667"
                       "-6.355"
##
##
                       "-6.363"
                                  "10"
                                          "49.09"
                                                     "6.143"
                                          "259.13"
                       "-6.367"
                                  "158"
                                                     "15.884"
##
##
                       "-6.38"
                                  "63"
                                          "134.35"
                                                     "11.184"
                       "-6.382"
                                  "1"
                                          "26.36"
                                                     "3.973"
##
                       "-6.405"
                                  "15"
                                          "63.63"
                                                     "7.593"
##
                                          "1217.53" "34.265"
                       "-6.407"
                                  "998"
##
##
                       "-6.408"
                                  "30"
                                          "88.58"
                                                     "9.141"
                                                     "9.391"
##
                       "-6.418"
                                  "44"
                                          "104.27"
                       "-6.419"
                                  "354"
                                          "487.25"
                                                     "20.759"
##
                                  "51"
##
                       "-6.428"
                                          "112.4"
                                                     "9.552"
                       "-6.432"
                                  "563"
                                          "716.37"
                                                     "23.843"
##
                       "-6.437"
                                  "28"
                                          "87.22"
                                                     "9.2"
##
##
                       "-6.456"
                                  "321"
                                          "442.51"
                                                     "18.821"
##
                       "-6.499"
                                  "12"
                                          "53.53"
                                                     "6.39"
                       "-6.5"
                                  "68"
                                          "139.11"
                                                     "10.94"
##
                       "-6.502"
                                  "269"
                                          "376.3"
                                                     "16.504"
##
                                  "99"
                       "-6.514"
                                          "178.52"
                                                     "12.208"
##
##
                       "-6.531"
                                  "387"
                                          "528.21"
                                                     "21.621"
##
                       "-6.562"
                                  "22"
                                          "75.67"
                                                     "8.179"
                       "-6.575"
                                  "37"
                                          "94.19"
                                                     "8.698"
##
                                          "251.01"
                       "-6.58"
                                  "160"
                                                     "13.83"
##
                       "-6.594"
                                  "33"
                                          "93.28"
                                                     "9.142"
##
                                  "4"
                                          "38.47"
                                                     "5.212"
##
                       "-6.614"
##
                       "-6.62"
                                  "2"
                                          "39.3"
                                                     "5.634"
                       "-6.623"
                                  "57"
                                          "126.55"
                                                     "10.502"
##
                       "-6.633"
                                  "49"
                                          "103.6"
                                                     "8.231"
##
                                          "52"
                       "-6.634"
                                  "6"
                                                     "6.934"
##
##
                       "-6.634"
                                  "68"
                                          "132.45"
                                                     "9.716"
##
                       "-6.692"
                                  "25"
                                          "94.12"
                                                     "10.329"
##
                       "-6.704"
                                  "47"
                                          "109.81"
                                                     "9.369"
                                  "155"
                                          "257.16"
##
                       "-6.721"
                                                     "15.201"
                       "-6.743"
                                  "15"
                                          "60.32"
                                                     "6.721"
##
                       "-6.765"
                                  "8"
                                          "56.1"
                                                     "7.11"
##
                                  "26"
                                          "91.57"
##
                       "-6.775"
                                                     "9.678"
                       "-6.784"
                                  "26"
                                          "81.82"
                                                     "8.228"
##
                       "-6.79"
                                  "66"
                                          "154.16"
                                                     "12.984"
##
                       "-6.859"
                                  "626"
                                          "785.1"
                                                     "23.195"
##
                                  "3"
                                          "52.49"
                       "-6.889"
                                                     "7.184"
##
                       "-6.895"
                                  "34"
                                          "90.67"
                                                     "8.219"
##
                       "-6.908"
                                  "176"
                                          "291.46"
                                                     "16.715"
##
                                          "746.77"
                                                     "26.897"
##
                       "-6.944"
                                  "560"
                                                     "5.405"
                       "-6.991"
                                  "6"
                                          "43.79"
##
##
                       "-7.104"
                                  "96"
                                          "196.26"
                                                     "14.113"
                       "-7.126"
                                  "1"
                                          "51.22"
                                                     "7.048"
##
##
                       "-7.138"
                                  "10"
                                          "52.63"
                                                     "5.972"
                       "-7.171"
                                  "88"
                                          "173.19"
                                                     "11.88"
##
```

```
"-7.207"
                                  "22"
                                          "80.24"
                                                     "8.081"
##
                       "-7.228"
                                  "7"
                                          "49.38"
                                                     "5.863"
##
##
                       "-7.23"
                                  "11"
                                          "56.15"
                                                     "6.245"
                       "-7.241"
                                  "102"
                                          "189.18"
                                                     "12.039"
##
                                  "13"
##
                       "-7.244"
                                          "69.66"
                                                     "7.822"
                                          "142.45"
                       "-7.244"
                                  "58"
                                                     "11.658"
##
                       "-7.272"
                                  "176"
                                          "290.67"
                                                     "15.769"
##
                                  "55"
                       "-7.284"
                                          "122.07"
                                                     "9.208"
##
##
                       "-7.321"
                                  "45"
                                          "130.57"
                                                     "11.689"
                       "-7.323"
                                  "17"
                                          "76.09"
                                                     "8.069"
##
##
                       "-7.325"
                                  "19"
                                          "74.53"
                                                     "7.58"
                       "-7.327"
                                  "35"
                                          "102.74"
                                                     "9.245"
##
                       "-7.334"
                                  "91"
                                          "203.73"
                                                     "15.371"
##
                                  "69"
                                                     "9.899"
                       "-7.334"
                                          "141.6"
##
##
                       "-7.407"
                                  "6"
                                          "58.82"
                                                     "7.131"
                                  "44"
                                                     "11.23"
##
                       "-7.413"
                                          "127.24"
                       "-7.427"
                                  "4"
                                          "67.81"
                                                     "8.591"
##
                       "-7.435"
                                  "1"
                                          "46.52"
##
                                                     "6.122"
                       "-7.521"
                                  "139"
                                          "241.47"
                                                     "13.624"
##
                       "-7.522"
                                  "48"
                                          "136.74"
                                                     "11.797"
##
##
                       "-7.531"
                                  "6"
                                          "55.49"
                                                     "6.571"
##
                       "-7.565"
                                  "693"
                                          "977.94"
                                                     "37.667"
                       "-7.573"
                                  "16"
                                          "83.33"
                                                     "8.891"
##
                       "-7.583"
                                  "37"
                                          "109.79"
                                                     "9.599"
##
                       "-7.755"
                                  "39"
                                          "106.64"
                                                     "8.722"
##
##
                       "-7.786"
                                  "4"
                                          "56.66"
                                                     "6.763"
##
                       "-7.826"
                                  "302"
                                          "460.75"
                                                     "20.285"
                       "-7.827"
                                  "9"
                                          "74.84"
                                                     "8.412"
##
                                  "6"
                       "-7.841"
                                          "80.73"
                                                     "9.53"
##
                       "-7.851"
                                  "68"
                                          "158.16"
                                                     "11.484"
##
                       "-7.876"
                                  "251"
                                          "399.91"
                                                     "18.907"
##
##
                       "-7.936"
                                  "31"
                                          "104.68"
                                                     "9.284"
                       "-7.986"
                                  "20"
                                          "95.57"
                                                     "9.463"
##
                       "-8.022"
                                  "16"
                                          "77.72"
                                                     "7.694"
##
                                  "176"
                                         "320.14"
                                                     "17.882"
##
                       "-8.061"
                                  "50"
##
                       "-8.092"
                                          "144.85"
                                                     "11.722"
##
                       "-8.102"
                                  "828"
                                         "1108.54" "34.627"
##
                       "-8.105"
                                  "104"
                                          "241.8"
                                                     "17.002"
##
                       "-8.111"
                                  "3"
                                          "53.95"
                                                     "6.282"
                                         "442.11"
                       "-8.134"
                                  "267"
                                                     "21.528"
##
                       "-8.187"
                                  "157"
                                          "303.86"
                                                     "17.938"
##
                                  "34"
                                          "119.98"
                                                     "10.481"
##
                       "-8.203"
                       "-8.206"
                                  "53"
                                          "157.61"
                                                     "12.748"
##
                       "-8.255"
                                  "75"
                                          "183.95"
                                                     "13.198"
##
                       "-8.312"
                                  "67"
                                          "172.68"
                                                     "12.714"
##
                                  "59"
                       "-8.348"
                                          "157.5"
                                                     "11.799"
##
                       "-8.412"
                                  "218"
                                          "379.94"
                                                     "19.252"
##
                       "-8.459"
                                  "0"
                                          "62.26"
                                                     "7.36"
##
                       "-8.467"
                                  "4"
                                          "69.18"
                                                     "7.698"
##
                       "-8.529"
                                  "165"
                                          "321.54"
                                                     "18.354"
##
                                  "17"
##
                       "-8.551"
                                          "110.63"
                                                     "10.95"
                       "-8.568"
                                  "31"
                                          "117.52"
                                                     "10.098"
##
##
                       "-8.569"
                                  "25"
                                          "115.14"
                                                     "10.519"
                       "-8.639"
                                  "63"
                                          "182.45"
                                                     "13.827"
##
```

```
"-8.857"
                                 "7"
                                         "82.89"
                                                   "8.568"
##
                      "-9.005"
                                 "347"
                                        "569.6"
                                                   "24.719"
##
                                 "38"
                                                   "11.4"
##
                      "-9.044"
                                         "141.1"
                      "-9.068"
                                 "133"
                                        "286.49"
                                                   "16.927"
##
##
                      "-9.115"
                                 "214"
                                        "368.99"
                                                   "17.003"
                      "-9.13"
                                 "52"
                                        "160.57"
                                                   "11.891"
##
                      "-9.138"
                                 "31"
                                         "114.35"
                                                   "9.121"
##
                                 "90"
                                         "224.15"
                                                   "14.673"
                      "-9.143"
##
##
                      "-9.181"
                                 "41"
                                         "134.2"
                                                   "10.151"
                                 "819"
                      "-9.221"
                                        "1182.66" "39.439"
##
##
                      "-9.239"
                                 "169"
                                         "338.54"
                                                   "18.351"
                      "-9.351"
                                 "108"
                                         "252.55"
                                                   "15.458"
##
                      "-9.384"
                                 "117"
                                        "259.63"
                                                   "15.199"
##
                                 "247"
                                        "425.05"
                                                   "18.923"
                      "-9.409"
##
##
                      "-9.576"
                                 "1"
                                         "80.78"
                                                   "8.331"
                                        "597.4"
                                                   "23.821"
##
                      "-9.798"
                                 "364"
                      "-9.802"
                                 "204"
                                        "409.34"
                                                   "20.948"
##
                                 "168"
                                        "340.86"
                                                   "17.502"
##
                      "-9.877"
                      "-9.947"
                                 "226"
                                         "429.03"
                                                   "20.412"
##
                      "-10.001" "796"
                                                   "33.058"
##
                                        "1126.6"
##
                      "-10.026" "20"
                                        "111.43"
                                                   "9.119"
##
                      "-10.08" "440"
                                        "722.83"
                                                   "28.059"
                      "-10.106" "70"
                                         "204.15"
                                                   "13.274"
##
                      "-10.163" "94"
                                         "232.19"
                                                   "13.597"
##
                      "-10.164" "235"
                                        "472.51"
                                                   "23.367"
##
##
                      "-10.197" "178"
                                        "379.58"
                                                   "19.768"
##
                      "-10.259" "50"
                                         "203.11"
                                                   "14.925"
                      "-10.326" "60"
                                         "184.57"
                                                   "12.063"
##
                      "-10.582" "170"
                                        "347.57"
                                                   "16.78"
##
                      "-10.622" "26"
                                         "155.76"
                                                   "12.216"
##
                      "-10.694" "1"
                                         "115.27"
                                                   "10.685"
##
##
                      "-10.723" "37"
                                         "168.96"
                                                   "12.307"
                      "-10.842" "63"
                                         "184.13"
                                                   "11.172"
##
                      "-10.87"
                                "322"
                                         "533.69"
                                                   "19.475"
##
                      "-10.924" "166"
                                        "358.38"
                                                   "17.611"
##
                      "-11.518" "643"
##
                                        "984.58"
                                                   "29.655"
##
                      "-11.605" "63"
                                         "229.02"
                                                   "14.305"
##
                      "-11.62" "156"
                                         "366.96"
                                                   "18.154"
                      "-11.777" "161"
##
                                        "398.83"
                                                   "20.195"
                      "-11.798" "81"
                                         "239.49"
                                                   "13.433"
##
                      "-11.836" "0"
                                         "105.01"
                                                   "8.872"
##
                      "-12.026" "132"
                                        "382.59"
                                                   "20.838"
##
                      "-12.157" "35"
                                         "201.1"
                                                   "13.663"
##
                      "-12.311" "468"
                                        "753.39"
                                                   "23.182"
##
                      "-12.878" "4"
                                         "179.58"
                                                   "13.634"
##
                      "-13.121" "248"
                                                   "23.233"
                                         "552.84"
##
                      "-13.217" "164"
                                         "368.49"
                                                   "15.471"
##
                      "-13.518" "61"
                                         "310.53"
                                                   "18.46"
##
                      "-13.556" "51"
                                         "265.51"
##
                                                   "15.824"
                      "-13.589" "13"
                                         "201.38"
                                                   "13.863"
##
                      "-13.621" "38"
##
                                        "195.79"
                                                   "11.584"
                      "-13.847" "233"
                                        "508.05"
                                                   "19.864"
##
                      "-13.898" "98"
##
                                         "326.7"
                                                   "16.456"
                      "-13.973" "795"
                                        "1270.48" "34.028"
##
```

```
"-14.075" "176" "482.56" "21.781"
##
                      "-14.127" "980" "1519.79" "38.209"
##
                      "-14.767" "22"
##
                                       "195.4"
                                                  "11.742"
                      "-14.796" "140" "476.01"
                                                  "22.71"
##
##
                      "-14.878" "141"
                                       "450.18"
                                                  "20.78"
                      "-15.211" "18"
                                       "209.76" "12.607"
##
                      "-15.284" "476" "882.77" "26.614"
##
                      "-15.351" "984"
##
                                       "1542.46" "36.381"
##
                      "-15.528" "291"
                                       "710.55"
                                                  "27.019"
                      "-15.834" "379" "891.67"
##
                                                  "32.378"
##
                      "-16.039" "1553" "2269.06" "44.646"
                      "-16.635" "903"
                                                  "36.285"
                                       "1506.6"
##
                      "-16.885" "806" "1383.55" "34.204"
##
                      "-17.713" "203" "623.19" "23.722"
##
                      "-18.117" "9"
##
                                        "262.02"
                                                  "13.966"
                      "-18.562" "82"
##
                                       "451.78"
                                                  "19.922"
                      "-19.363" "1824" "2774.59" "49.093"
##
##
                      "-20.09" "604" "1450.03" "42.111"
##
                      "-32.463" "766" "2003.35" "38.116"
                      "-38.401" "293" "1765.44" "38.344"
##
##
                      "-38.666" "1234" "3048.76" "46.934"
write.table(bp.enriched.terms, file="output/genes.bp.txt", sep="\t", row.names = F, col.names = F, quot
cc.enriched.terms <- c("GO.ID", "GO.Term", "zscore", "obs", "mean", "std")
for (i in 1:length(cc.enrich.list)) {
  id <- as.character(cc.enrich.list[i])</pre>
  term <- Term(GOID(id))</pre>
  z.gene <- z.cc[i]</pre>
  cc.enriched.terms <- rbind(cc.enriched.terms, c(id, term, z.gene, cc.obs[i], cc.mean[i], cc.std[i]))</pre>
}
cc.enriched.terms
##
## cc.enriched.terms "GO.ID"
                      "GO:0005747"
##
                      "GD:0005743"
##
##
                      "GD:0005739"
##
                      "GO:0005759"
                      "GO:0005751"
##
##
                      "GD:0030964"
##
                      "GD:0005746"
##
                      "GD:0005750"
##
                      "GO:0045277"
                      "GO:0031966"
##
                      "GO:0005758"
##
##
                      "GD:0005762"
##
                      "GD:0097249"
##
                      "GD:0070469"
                      "GO:0031305"
##
                      "GD:0043209"
##
##
                      "GO:0005763"
##
                      "GD:0005761"
                      "GO:0031314"
##
                      "GD:0005744"
```

##

##	"GD:0016471"
##	"GO:0016469"
##	"GO:0042645"
##	"GO:0030678"
##	"GO:0005753"
##	"GO:0045272"
##	"GO:0033179"
##	"GD:0000276"
##	"GO:1904813"
##	"GO:0022624"
##	"GO:0005749"
##	"GO:0034774"
##	"GO:0045254"
##	"GO:0042721"
##	"GO:0033180"
##	"GO:0000221"
##	"GO:0045252"
##	"GD:0070062"
##	"GO:0016021"
##	"GO:0005774"
##	"GO:0035577"
##	"GD:0046930"
##	"GD:0001405"
##	"GD:0045263"
##	"GO:0099512"
##	"GO:0016234"
##	"GD:0000502"
##	"GO:0042719"
##	"GO:0005838"
##	"GO:0033178"
##	"GO:0033181"
##	"GD:0009368"
##	"GO:0005742"
##	"GO:0008540"
##	"GO:0098826"
##	"GO:0005960"
##	"GO:0008541"
##	"GO:0005765"
##	"GO:0071817"
##	"GO:0042470"
##	"GO:0098993"
##	"GO:0005741"
##	"GO:0005811"
##	"GO:0000408"
##	"GO:0045244"
##	"GO:0061617"
##	"GO:0005778"
##	"GO:0043159"
##	"GO:0005640"
##	"GO:0061827"
##	"GO:0031674"
##	"GO:0005777"
##	"GD:0030670"
##	"GD:0005967"

##	"GO:0072492"
##	"GO:0030135"
##	"GO:0031597"
##	"GO:0002199"
##	"GO:0032419"
##	"GO:0005832"
##	"GD:0000220"
##	"GO:0031307"
## ##	"GD:0001401" "GD:0000015"
## ##	"GO:0005782"
## ##	"GO:0005782"
##	"GD:00003902
##	"GO:0000274"
##	"GO:0043273
##	"GD:0044297"
##	"GD:0031304"
##	"GO:0035578"
##	"GD:0032593"
##	"GD:0097226"
##	"GO:0005757"
##	"GO:0072562"
##	"GO:0009331"
##	"GO:0070069"
##	"GO:0031095"
##	"GO:0099523"
##	"GO:0005945"
##	"GO:0033176"
##	"GO:0005771"
##	"GO:0032592"
##	"GO:0005947"
##	"GO:0033185"
##	"GO:0005874"
##	"GO:0005770"
##	"GO:0005914"
##	"GO:0031595"
##	"GO:1990221"
##	"GO:0045282" "GO:1904724"
## ##	"GO:0005764"
## ##	"GO:0003764"
## ##	"GO:0005853"
##	"GD:0005769"
##	"GO:0003709
##	"GD:0045239"
##	"GO:0010233
##	"GD:0048269"
##	"GD:0033017"
##	"GD:0005740"
##	"GO:0005783"
##	"GO:0030315"
##	"GO:0072687"
##	"GO:0030864"
##	"GO:0009353"

##	"GO:0044233"
##	"GD:0000159"
##	"GO:0042643"
##	"GO:0071439"
##	"GO:0032302"
##	"GD:0046696"
##	"GD:0098850"
##	"GO:0098753"
##	"GD:0009841"
##	"GD:0033162"
## ##	"GD:0000786"
## ##	"GO:0036128" "GO:0005854"
## ##	"GD:0008854"
## ##	"GD:0096562"
##	"GO:0031312
##	"GD:0005776"
##	"GD:0005776
##	"GD:0072546"
##	"GD:0012540
##	"GD:0010020
##	"GD:0030485"
##	"GD:0000421"
##	"GD:0097228"
##	"GD:0030175"
##	"GD:0098554"
##	"GD:0019907"
##	"GD:0032301"
##	"GD:0000275"
##	"GD:0097433"
##	"GO:0031306"
##	"GO:0005851"
##	"GO:0014802"
##	"GD:0097227"
##	"GD:0044306"
##	"GO:0044300"
##	"GO:0043195"
##	"GO:0005955"
##	"GO:0015630"
##	"GO:0030137"
##	"GO:0097413"
##	"GD:0032300"
##	"GD:0016324"
##	"GD:0097145"
##	"GO:0030130"
##	"GD:0017087"
##	"GO:0061825"
##	"GO:0005784"
##	"GO:1902937"
##	"GO:1990425"
##	"GD:0009328"
##	"GO:0098575"
##	"GD:0030863"
##	"GD:0010008"

##	"GO:0099524"
##	"GD:0033269"
##	"GD:0032839"
##	"GO:0031588"
##	"GD:0034669"
##	"GD:0002169"
##	"GO:1905202"
##	"GO:0032311"
##	"GD:0097443"
##	"GO:0098559"
##	"GO:0016281"
##	"GO:0071065"
##	"GO:0017101"
##	"GO:0030140"
##	"GO:0044753"
##	"GD:0001673"
##	"GD:0097361"
##	"GD:0044284"
##	"GD:0034663"
##	"GD:0016235"
##	"GD:0098799"
##	"GD:0005922"
##	"GD:0070765"
##	"GD:1990730"
##	"GD:0032432"
##	"GD:0008180"
##	"GD:0044309"
##	"GD:0008328"
##	"GO:0031514"
##	"GO:0031045"
##	"GD:0030017"
##	"GD:0008021"
##	"GD:0043293"
##	"GO:0031143"
##	"GD:0030663"
##	"GO:0098842"
##	"GO:0043033"
##	"GO:0016442"
##	"GO:0034274"
##	"GO:0061830"
##	"GD:0030176"
##	"GO:0034705"
##	"GD:0005890"
##	"GO:0005829"
##	"GO:0098871"
##	"GO:0005795"
##	"GO:1902912"
##	"GO:0031093"
##	"GO:0032473"
##	"GD:0099400"
##	"GD:0030867"
##	"GD:0098793"
##	"GO:1904949"
##	"GO:0070418"

##	"GO:0045298"
##	"GO:0016222"
##	"GO:0008250"
##	"GO:1990917"
##	"GO:1990913"
##	"GO:1990393"
##	"GO:0008076"
##	"GO:0005940"
##	"GO:0031105"
##	"GO:0032160"
## ##	"GD:0035976" "GD:0001669"
## ##	"GD: 1902560"
## ##	"GD:1902560" "GD:0031467"
##	"GD:0031467
##	"GD:0097235"
##	"GD:0043023
##	"GD:0070371
##	"GD:0005790"
##	"GO:0033391"
##	"GO:0070552"
##	"GO:0034751"
##	"GD:0044224"
##	"GO:0002189"
##	"GO:0034399"
##	"GO:0097136"
##	"GO:0030136"
##	"GO:0005971"
##	"GO:0097452"
##	"GO:0005798"
##	"GO:0097123"
##	"GO:0090619"
##	"GO:0005789"
##	"GO:0031982"
##	"GO:0097487"
##	"GO:0008282"
##	"GO:0005745"
##	"GD:0060091"
##	"GO:0071339"
##	"GO:0043529"
##	"GO:0097224"
##	"GO:0017177"
## ##	"GD:0034657" "GD:0044305"
## ##	"GD:0044305" "GD:0012506"
## ##	"GD:0012506" "GD:0005930"
## ##	"GD:0005930"
## ##	"GD:0034045"
## ##	"GD:0097546" "GD:0061202"
## ##	"GD:0081202"
## ##	"GD:0071818"
## ##	"GD:0016010"
##	"GD:0042565"
##	"GD:0042303
	22.0000110

##	"GO:1990246"
##	"GO:0030126"
##	"GO:0098839"
##	"GO:0071437"
##	"GO:0035267"
##	"GD:0030672"
##	"GO:0030118"
##	"GD:0032281"
##	"GO:1990130"
##	"GO:0098837"
##	"GD:0005833"
##	"GO:0008352" "GO:0043291"
## ##	"GD:0043291" "GD:0044322"
##	"GD:0044322"
##	"GD:0036513"
##	"GD:1990498"
##	"GO:0071782"
##	"GO:0071782
##	"GD:0097489"
##	"GD:0034098"
##	"GD:0035686"
##	"GD:0097144"
##	"GO:0042587"
##	"GD:0033256"
##	"GO:0032021"
##	"GD:0005845"
##	"GD:0008385"
##	"GO:0034704"
##	"GO:0098857"
##	"GO:1990836"
##	"GO:0097149"
##	"GO:1905370"
##	"GO:0097637"
##	"GO:0000110"
##	"GO:0030688"
##	"GO:1902554"
##	"GO:0015629"
##	"GD:0000812"
##	"GO:0070195"
##	"GD:0020018"
##	"GO:0005737"
##	"GO:0070274"
##	"GO:0031526"
##	"GD:0099073"
##	"GO:0071944"
##	"GO:0097196"
##	"GO:1990674"
##	"GO:0043292"
##	"GO:0005858"
##	"GO:0019897"
##	"GO:0045121" "GO:1990357"
##	"GU:1990357" "GD:0016012"
##	GU:0016012"

##	"GD:0070381"
##	"GD:0005916"
##	"GO:0031088"
##	"GD:0016020"
##	"GD:0097135"
##	"GO:0005944"
##	"GD:0030659"
##	"GD:0005850"
##	"GD:0000806"
##	"GD:0005827"
##	"GO:0030132"
##	"GD:0000109"
##	"GO:0032838"
##	"GO:0097124"
##	"GO:0061474"
##	"GO:0098992"
##	"GO:1903561"
##	"GD:0070931"
##	"GO:0001520"
##	"GO:0044853"
##	"GD:0016602"
##	"GD:0000835"
##	"GO:1902773"
##	"GD:0071203"
##	"GD:0005643"
##	"GD:0031902"
##	"GO:0005588"
##	"GO:0097208"
##	"GO:0005791"
##	"GO:0005592"
##	"GO:0098745"
##	"GO:0044294"
##	"GO:0033257"
##	"GO:0032589"
##	"GO:0043196"
##	"GO:0042612"
##	"GD:0030956"
##	"GO:0097134"
##	"GD:0030891"
##	"GO:0005731"
##	"GD:0000805"
##	"GD:0033065"
##	"GO:0005712"
##	"GO:0005715"
##	"GD:0000137"
##	"GD:0060076"
##	"GD:0031233"
##	"GD:0010494"
##	"GD:0009898"
##	"GD:0019774"
##	"GO:1990745"
##	"GO:0031461"
##	"GD:0120043"
##	"GO:0120044"

##	"GO:0070522"
##	"GO:0005793"
##	"GO:0044295"
##	"GD:0000803"
##	"GO:0030131"
##	"GO:0016272"
##	"GO:0070557"
##	"GO:0097486"
##	"GD:0005964"
##	"GO:0042824"
##	"GO:0031901"
##	"GO:0002081"
##	"GD:0009360"
##	"GO:0045179"
##	"GD:0032807"
##	"GD:0043626"
##	"GO:0015934"
##	"GO:0035032"
##	"GO:0070435"
##	"GD:0033018"
##	"GD:0097470"
##	"GO:1990332"
##	"GD:0043025"
##	"GD:0000938"
##	"GD:0043186"
##	"GD:0005690"
##	"GD:0033106"
##	"GO:0031315"
##	"GD:0005605"
##	"GD:0005618"
##	"GD:0005754"
##	"GD:0008074"
##	"GO:0014801"
##	"GO:0014804"
##	"GD:0030662"
##	"GD:0030880"
##	"GO:0031231"
##	"GO:0031259"
##	"GO:0043160"
##	"GO:0043601"
##	"GO:0044299"
##	"GO:0045259"
##	"GO:0045261"
##	"GO:0046611"
##	"GO:0061702"
##	"GO:0061832"
##	"GD:0070442"
##	"GO:0070449"
##	"GO:0071133"
##	"GO:0097545"
##	"GD:0097649"
##	"GO:1903767"
##	"GO:1990512"
##	"GO:1990718"

##	"GO:0035579"
##	"GO:0001534"
##	"GO:0005954"
##	"GO:0036053"
##	"GO:0036117"
##	"GO:0042827"
##	"GO:0043227"
##	"GO:0052718"
## ##	"GO:0071914" "GO:0097728"
## ##	"GD:0097728"
##	"GD:1904602"
##	"GD:1990005"
##	"GD:0033010"
##	"GD:0033010"
##	"GD:0008287"
##	"GD:0060473"
##	"GD:0061851"
##	"GD:0001536"
##	"GO:0034358"
##	"GD:0034466"
##	"GD:0034998"
##	"GO:0070722"
##	"GO:0000788"
##	"GD:0005600"
##	"GO:0097541"
##	"GO:1990204"
##	"GO:0019867"
##	"GO:0044599"
##	"GO:0044194"
##	"GO:0034678"
##	"GD:0000789"
##	"GO:0033011"
##	"GO:0034679"
##	"GO:0036156"
##	"GO:0042568"
##	"GO:1990030"
##	"GD:0030061"
##	"GO:0120001"
##	"GO:0005794"
##	"GO:0042589" "GO:0005597"
##	"GD:0005597"
## ##	"GD:1990696"
##	"GD:0034388"
##	"GD:0005898"
##	"GD:0005898
##	"GD:0003927
##	"GD:0013666"
##	"GD:0170176
##	"GD:0043513"
##	"GD:0090658"
##	"GD:0097232"
##	"GD:0097233"
	20.000,200

##	"GO:0098891"
##	"GO:1990716"
##	"GO:1990429"
##	"GO:1990843"
##	"GO:1990844"
##	"GO:0016028"
##	"GO:0033165"
##	"GD:0034423"
## ##	"GO:0035003" "GO:0099243"
## ##	"GD:1990879"
## ##	"GD: 0000262"
##	"GD:0000202
##	"GD:0001074
##	"GD:0033557"
##	"GD:0033337
##	"GD:0034271"
##	"GD:0031085"
##	"GO:0031501"
##	"GO:0071575"
##	"GD:0090534"
##	"GO:0035355"
##	"GO:0035805"
##	"GD:0036266"
##	"GO:0071021"
##	"GD:0097229"
##	"GO:0098595"
##	"GO:0005675"
##	"GO:0043509"
##	"GO:0097209"
##	"GO:0070826"
##	"GD:0000329"
##	"GO:0032798"
##	"GO:0005582"
##	"GO:0032144"
##	"GO:0099503"
##	"GD:0034777"
##	"GO:0090651"
##	"GO:0099617"
##	"GD:0098843"
##	"GO:0016935" "GO:0097058"
##	
## ##	"GD:0098999" "GD:0043034"
##	"GD:0043034
##	"GD:0003393
##	"GD:0038019
##	"GD:0037708
##	"GD:0010307
##	"GD:0030127
##	"GD:0005968"
##	"GD:0031302"
##	"GD:0042720"
##	"GD:0017059"
	20.001.000

##	"GO:0001651"
##	"GO:0098998"
##	"GO:0005921"
##	"GD:0031260"
##	"GO:0032127"
##	"GO:0120003"
##	"GO:1990742"
##	"GO:0045335"
##	"GD:0033150"
##	"GO:0043512"
##	"GO:0045098"
##	"GO:0036057"
##	"GO:0000152"
##	"GO:0070545"
##	"GO:0042765"
##	"GO:1990452"
##	"GO:0031227"
##	"GO:0034688"
##	"GD:0005668"
##	"GD:0036024"
##	"GD:0036025"
##	"GD:0036026"
##	"GD:0036027"
##	"GD:0036028"
##	"GD:0036029"
##	"GD:0036030"
##	"GO:0097181"
##	"GO:0097182"
##	"GD:0097183"
##	"GD:0099033"
##	"GD:0043265"
##	"GO:0097631"
##	"GD:0035693"
##	"GD:0031906"
##	"GD:0016035"
##	"GO:0017090"
##	"GD:0031462"
##	"GO:0055120"
##	"GO:0099031"
##	"GO:0016533"
##	"GO:0150034"
##	"GO:0071750"
##	"GO:0098855"
##	"GO:0032002"
##	"GO:0034687"
##	"GO:0044316"
##	"GO:0099023"
##	"GO:0031011"
##	"GO:0097454"
##	"GD:0099066"
##	"GD:0090537"
##	"GD:0034677"
##	"GD:0000120"
##	"GD:0098830"

##	"GO:0030894"
##	"GO:0071595"
##	"GD:0000802"
##	"GO:0035658"
##	"GO:0034681"
##	"GD:0034680"
##	"GD:0034668"
##	"GO:1990971"
##	"GD:0032994"
##	"GO:0072534"
##	"GO:1990131"
##	"GO:0097453"
##	"GO:0005577"
##	"GO:0031985"
##	"GO:0030055"
##	"GO:0034685"
##	"GD:0099629"
##	"GO:0019035"
##	"GO:0043540"
##	"GD:0098560"
##	"GO:1990070"
##	"GO:0030479"
##	"GO:0005884"
##	"GO:0002947"
##	"GO:0005586"
##	"GO:0005591"
##	"GO:0031477"
##	"GO:1990435"
##	"GO:0071561"
##	"GO:0031235"
##	"GD:0034686"
##	"GD:0000138"
##	"GD:0030868"
##	"GO:0097014"
##	"GD:0099569"
##	"GD:0099634"
##	"GD:0099065"
##	"GO:0030424"
##	"GO:0031533"
##	"GO:0045111"
##	"GO:0098845"
##	"GD:0000308"
##	"GD:0030895"
##	"GD:0035631"
##	"GO:0097525"
##	"GD:0036126"
##	"GO:0042022"
##	"GD:0070860"
##	"GO:1990047"
##	"GO:0101003"
##	"GO:0002141"
##	"GD:0005596"
##	"GD:0030677"
##	"GO:0031380"

##	"GO:0090498"
##	"GO:0032156"
##	"GD:0030897"
##	"GO:0035657"
##	"GO:0042599"
##	"GD:0035838"
##	"GD:0044231"
##	"GO:0097180"
##	"GO:1905286"
##	"GD:0097356"
##	"GO:1990682"
##	"GD:0070695"
##	"GD:0005889"
##	"GO:0034702"
##	"GO:0002178"
##	"GO:0043229"
##	"GO:0043514"
## ##	"GO:0097733" "GO:0032545"
##	"GO:0032545"
##	"GO:0034456"
##	"GO:0043177
##	"GO:0002142
##	"GD:0017071
##	"GO:1902495"
##	"GD:0005666"
##	"GD:0003000
##	"GD:0034667"
##	"GD:0031391"
##	"GD:0070578"
##	"GD:0005641"
##	"GD:0098547"
##	"GD:0036502"
##	"GD:0000306"
##	"GD:0070772"
##	"GD:0005585"
##	"GD:0019008"
##	"GO:0060187"
##	"GD:0000333"
##	"GO:0031379"
##	"GO:0042583"
##	"GD:0099029"
##	"GO:1990572"
##	"GD:0044232"
##	"GO:0046691"
##	"GO:0070554"
##	"GO:0070743"
##	"GO:0097013"
##	"GO:0097059"
##	"GO:0098683"
##	"GO:0030016"
##	"GO:0031527"
##	"GO:0034451"
##	"GO:0044228"

##	"GO:0034718"
##	"GO:0055037"
##	"GD:0070821"
##	"GO:1990026"
##	"GO:0031415"
##	"GO:0097575"
##	"GD:0019034"
##	"GD:0031680"
##	"GO:0035101"
##	"GO:0044214"
##	"GO:0031417"
##	"GO:0034245"
##	"GO:0061495"
##	"GD:0030692"
##	"GD:0001740"
##	"GO:0016593"
##	"GO:0031084"
##	"GO:0043541"
##	"GD:0072536"
##	"GD:0090533"
##	"GD:1990032"
##	"GD:0106003"
##	"GD:0072589"
##	"GD:0090661"
##	"GO:1990777"
##	"GO:0005885"
##	"GD:0005691"
##	"GD:0071002"
##	"GD:0099078"
##	"GD:0065010"
##	"GD:0070685"
##	"GD:0005583"
##	"GD:0044291"
##	"GO:0043657"
##	"GD:0034665"
##	"GO:0070701"
##	"GD:0071682"
##	"GD:0030686"
##	"GO:0061845"
##	"GO:0061846"
##	"GO:0032777"
##	"GO:0097344"
##	"GD:0070820"
##	"GO:0044301"
##	"GO:0097729"
##	"GO:0140007"
##	"GO:0016591"
##	"GO:0012510"
##	"GO:0070702"
##	"GD:0070703"
##	"GD:0098875"
##	"GO:0033167"
##	"GO:0046695"
##	"GO:0071953"

##	"GO:0005736"
##	"GO:0031515"
##	"GO:0071986"
##	"GO:1990923"
##	"GD:0002079"
##	"GO:0031905"
##	"GO:0034752"
##	"GO:0034455"
##	"GO:0005953"
##	"GO:0031594"
##	"GO:0001652"
##	"GO:0035354"
##	"GO:0030687" "GO:0090571"
## ##	"GO:0090571"
## ##	"GO:0031431" "GO:0030915"
##	"GD:0030915"
##	"GD:0036284"
##	"GD:0097543
##	"GD:0003003
##	"GD:0000347
##	"GO:0030500
##	"GD:0098686"
##	"GO:0035339"
##	"GD:0000791"
##	"GD:0030289"
##	"GD:0030526"
##	"GO:1990666"
##	"GO:0002144"
##	"GO:0016590"
##	"GO:0031301"
##	"GO:0032426"
##	"GO:0097225"
##	"GO:0019908"
##	"GO:0014704"
##	"GO:0043614"
##	"GO:0090725"
##	"GO:0031499"
##	"GO:0042564"
##	"GO:0000795"
##	"GD:0000932"
##	"GO:0016586"
##	"GD:0030849"
##	"GD:0016011"
##	"GD:0032996"
##	"GO:0005797"
##	"GD:0020003"
##	"GO:0005713"
##	"GO:0036457"
##	"GO:0043204"
##	"GO:1990072"
##	"GO:0030119"
##	"GO:0034448"
##	"GD:0032580"

##	"GO:0072558"
##	"GD:0044393"
##	"GO:0014705"
##	"GO:0072487"
##	"GO:0097179"
##	"GO:0001739"
##	"GD:0000127"
##	"GD:0097362"
##	"GD:0034066"
##	"GD:0098690"
##	"GD:0030018"
##	"GD:0070724"
##	"GO:0001741"
##	"GO:0031094"
##	"GD:0030057"
##	"GD:0044207"
##	"GD:1990462"
##	"GD:0005594"
##	"GD:0097598"
##	"GO:0043190"
##	"GO:0031258"
##	"GD:0005638"
##	"GO:0097025"
##	"GD:0030904"
##	"GD:0032998"
##	"GD:0033193"
##	"GO:0150002"
##	"GO:0150014"
##	"GD:0045323"
##	"GO:1990071"
##	"GD:0032421"
##	"GD:0030906"
##	"GD:0031838"
##	"GO:0097451"
##	"GO:0016282"
##	"GO:0036157"
##	"GO:0032116"
##	"GD:0090694"
##	"GD:0009330"
##	"GO:0097447"
##	"GO:1990712"
##	"GO:0043527"
##	"GD:0036021"
##	"GO:0019185"
##	"GO:0034673"
##	"GD:0099025"
##	"GD:0032389"
##	"GO:0072517"
##	"GD:0061689"
##	"GO: 10045334"
##	"GO:1990752"
##	"GD:0030690"
##	"GD:0030691" "GD:0031429"
##	GU:0031429"

##	"GO:0005852"
##	"GO:0071819"
##	"GO:0043020"
##	"GO:0044327"
##	"GO:0090724"
##	"GO:0097442"
##	"GO:0072557"
##	"GO:0017109"
##	"GO:0034676"
##	"GO:0060205"
##	"GO:0005900"
##	"GO:0008622"
##	"GO:0070209"
##	"GO:0071556"
##	"GO:0061828"
##	"GO:0061829"
##	"GO:0031528"
##	"GO:0097197"
##	"GD:0099026"
##	"GO:0008623"
##	"GO:0031422"
##	"GD:0036020"
##	"GO:0072563"
##	"GO:1902911"
##	"GO:0000811"
##	"GD:0060342"
##	"GO:0005892"
##	"GD:0030990"
##	"GO:0044317"
##	"GO:0043257"
##	"GO:0036195"
##	"GO:0034708"
##	"GO:1990769"
##	"GO:0000153"
##	"GD:0005663"
##	"GD:0098636"
##	"GO:0099182"
##	"GD:0032983"
##	"GO:0097427"
##	"GO:1904423"
##	"GO:1990667"
##	"GD:0044220"
##	"GO:0031251"
##	"GO:0005615"
##	"GD:0033263"
##	"GD:0098888"
##	"GO:0005590"
##	"GO:0000815"
##	"GO:0030128"
##	"GO:0035692"
##	"GO:0019898"
##	"GO:0017102"
##	"GO:0005924"
##	"GO:0097165"

##	"GO:0000445"
##	"GO:0042825"
##	"GO:0071438"
##	"GO:0005905"
##	"GO:0031416"
##	"GO:0030121"
##	"GD:0005969"
##	"GO:0045202"
##	"GO:0031932"
##	"GO:0032173"
## ##	"GD:0099160" "GD:0099738"
## ##	"GD:0099738"
## ##	"GD:0009346"
##	"GD:000796"
##	"GD:0034703"
##	"GD:0032010"
##	"GD:0035068"
##	"GD:0033000
##	"GD:0036396"
##	"GO:0016013"
##	"GO:0031264"
##	"GO:0071821"
##	"GO:0072559"
##	"GO:0097731"
##	"GO:0005896"
##	"GO:0017054"
##	"GO:0000839"
##	"GO:0071748"
##	"GO:0071751"
##	"GO:0071752"
##	"GO:0005602"
##	"GO:0098688"
##	"GD:0000506"
##	"GO:0005956"
##	"GO:0070985"
##	"GO:0071458"
##	"GD:0031309"
##	"GO:0016942"
##	"GO:0035525"
##	"GO:0070877"
##	"GO:0071547"
## ##	"GD:0032398" "GD:0030666"
## ##	"GD:0030666"
## ##	"GD:1990031"
## ##	"GO: 0044218"
## ##	"GD:0044218" "GD:0034683"
## ##	"GD:0034683"
## ##	"GD:0000797"
## ##	"GD:0034995"
## ##	"GD:0009295"
##	"GD:0003903"
##	"GD:1990112"

##	"GO:0075341"
##	"GO:1990707"
##	"GO:0071756"
##	"GO:0071757"
##	"GO:0005589"
##	"GD:0042567"
##	"GO:0045092"
##	"GO:0016938"
##	"GO:0031475"
##	"GO:0002945"
##	"GO:0098592"
##	"GO:1902636"
##	"GO:0017146"
##	"GO:0005825"
##	"GD:0071001"
##	"GO:0030124"
##	"GO:0071012"
##	"GD:0032009"
##	"GO:1905103"
##	"GD:0043625"
##	"GD:0005607"
##	"GD:0034684"
##	"GO:0051286"
##	"GO:0097457"
##	"GO:0048788"
##	"GD:0035363"
##	"GD:0016461"
##	"GD:0099053"
##	"GO:0030314"
##	"GO:0098835"
##	"GO:0005881"
##	"GO:0043224"
##	"GO:0061850"
##	"GO:0000814"
##	"GD:0000417"
##	"GO:0043202"
##	"GO:0001772"
##	"GD:0099572"
##	"GD:0034706"
##	"GO:0000145"
##	"GO:0000346"
##	"GO:0070110"
##	"GO:0031021"
##	"GO:0098833"
##	"GO:0071546"
##	"GO:1990565"
##	"GO:0046581"
##	"GO:0010370"
##	"GO:1902737"
##	"GO:0019815"
##	"GO:0071062"
##	"GO:0098594"
##	"GD:0044216"
##	"GO:0001725"

##	"GO:0002133"
##	"GO:0071008"
##	"GO:0150001"
##	"GO:0033290"
##	"GD:0005606"
##	"GO:0097505"
##	"GO:0036464"
##	"GO:1990584"
##	"GO:1990851" "GO:0033593"
## ##	"GD:1990124"
## ##	"GD:1990124"
##	"GD:0097449
##	"GD:0033033"
##	"GD:0031531
##	"GD:1990589"
##	"GD:0001726"
##	"GD:0001720"
##	"GO:000118"
##	"GD:0000941"
##	"GO:0032299"
##	"GO:0055028"
##	"GO:1905720"
##	"GO:0005802"
##	"GO:0008043"
##	"GO:0005848"
##	"GO:0035868"
##	"GO:0071020"
##	"GO:0000836"
##	"GO:0070876"
##	"GD:0000407"
##	"GD:0031466"
##	"GO:0035770"
##	"GO:0071665"
##	"GO:0031933"
##	"GO:0071920"
##	"GO:0035867"
##	"GD:0070762"
##	"GO:0035517"
##	"GD:0044609"
##	"GD:0005680" "GD:0002944"
##	"GD:0002944" "GD:0005587"
## ##	"GD:0008537"
##	"GD:0008337
##	"GD:0000124
##	"GD:0005664"
##	"GD:0003004"
##	"GD:0043336
##	"GD:0098684"
##	"GD:0003373
##	"GD:0098985"
##	"GD:1990590"
##	"GO:0005584"

##	"GD:0097422"
##	"GO:0005901"
##	"GD:0097342"
##	"GD:0032437"
##	"GD:0098983"
##	"GD:0031390"
##	"GD:0005684"
##	"GD:0000111"
##	"GD:0044613"
##	"GO:1990008"
##	"GO:0016914"
##	"GD:0060077"
##	"GO:0005610"
##	"GO:0031228"
##	"GO:0035985"
##	"GD:0002193"
##	"GD:0070044"
##	"GO:0072380"
##	"GD:0034365"
##	"GD:0032809"
##	"GD:0036501"
##	"GD:0005673"
##	"GO:0030914"
##	"GD:0005614"
##	"GO:0016513"
##	"GD:0042406"
##	"GD:0060053"
##	"GD:0097057"
##	"GD:0030139"
##	"GD:0070390"
##	"GD:0005642"
##	"GD:0000125"
##	"GD:0014701"
##	"GD:0031089"
##	"GO:0005719"
##	"GO:0097169"
##	"GD:0034506"
##	"GO:0097512"
##	"GO:0030117"
##	"GO:0005895"
##	"GO:0097632"
##	"GD:0097629"
##	"GO:1990622"
##	"GO:0014731"
##	"GD:0044326"
##	"GO:1901588"
##	"GO:0005880"
##	"GO:0031372"
##	"GD:0005576"
##	"GO:0032541"
##	"GO:0032449"
##	"GO:1990597"
##	"GO:0097679"
##	"GO:0043218"

##	"GO:0055087"
##	"GO:1990406"
##	"GO:0042272"
##	"GD:0097409"
##	"GO:0097414"
##	"GO:0097462"
##	"GO:1990038"
##	"GO:0072357"
##	"GD:0000112"
##	"GD:0031463"
## ##	"GD:0000799"
## ##	"GO:1990796" "GO:0071797"
## ##	"GD:0071797"
##	"GD:0089717"
##	"GD:0005873"
##	"GD:0003873
##	"GD:0060987"
##	"GD:0000987"
##	"GD:0000439"
##	"GD:0036477"
##	"GD:0038037"
##	"GD:0038038"
##	"GD:0005760"
##	"GD:0000176"
##	"GD:1990604"
##	"GD:0043260"
##	"GD:0000177"
##	"GD:0070938"
##	"GO:0044545"
##	"GO:0060171"
##	"GD:0033063"
##	"GO:1990876"
##	"GO:0005839"
##	"GO:0032590"
##	"GO:0032982"
##	"GO:0071541"
##	"GD:0000930"
##	"GO:0001527"
##	"GO:0098982"
##	"GD:0005656"
##	"GO:0033276"
##	"GO:0030133"
##	"GD:0070852"
##	"GO:0030658"
##	"GD:0030123"
##	"GO:0072669"
##	"GD:0034666"
##	"GO:1990075"
##	"GO:0030027"
##	"GO:0150056"
##	"GD:0034366"
## ##	"GO:0033588" "GO:0035749"
##	GU.0035749"

##	"GO:0046658"
##	"GO:0005779"
##	"GO:1902494"
##	"GO:1990111"
##	"GD:0098890"
##	"GO:0044292"
##	"GO:0098794"
##	"GD:0070083"
##	"GO:0033116"
##	"GO:0044308" "GO:0005724"
## ##	"GO:0005724" "GO:0032585"
## ##	"GD:0032585"
##	"GD:0032797"
##	"GO:0033597"
##	"GO:1990298"
##	"GD:0070776"
##	"GD:0005958"
##	"GD:00003938"
##	"GD:0033565"
##	"GO:0042175"
##	"GD:0034592"
##	"GD:0099013"
##	"GD:0030991"
##	"GO:1990617"
##	"GO:1990635"
##	"GO:0034359"
##	"GO:0034360"
##	"GO:0005879"
##	"GO:0030015"
##	"GO:0070033"
##	"GO:0032783"
##	"GO:1902710"
##	"GO:0030892"
##	"GO:0031592"
##	"GD:0030660"
##	"GO:0032991"
##	"GO:0000214"
##	"GO:0031261"
##	"GD:0000792"
##	"GO:0070461"
##	"GO:0005639"
##	"GO:0035866"
##	"GO:0035841"
##	"GO:0045120"
##	"GD:0005861"
##	"GO:0042588"
##	"GO:0097524"
##	"GO:0031965"
##	"GO:0097038"
##	"GO:0099189"
##	"GO:0042585"
##	"GD:0071148"
##	"GO:0044530"

##	"GO:1903143"
##	"GO:0090543"
##	"GD:0000939"
##	"GO:0043259"
##	"GO:0000178"
##	"GO:0055038"
##	"GO:0031428"
##	"GD:0032039"
##	"GO:0048237" "GO:0005863"
## ##	"GD:00030905"
##	"GD:0030903
##	"GD:0071135
##	"GD:0097633
##	"GD:0040470
##	"GD:0033596"
##	"GD:0020005"
##	"GD:0020000
##	"GO:0071598"
##	"GD:0031091"
##	"GO:0071942"
##	"GD:0060201"
##	"GO:0000813"
##	"GO:0031253"
##	"GD:0030896"
##	"GO:0000139"
##	"GO:0031209"
##	"GO:0019773"
##	"GO:0099154"
##	"GO:0032044"
##	"GO:0005785"
##	"GO:0036488"
##	"GO:0042582"
##	"GO:0061673"
##	"GO:0097129"
##	"GD:0060203"
##	"GO:0042584"
##	"GO:0150058"
##	"GO:0071011"
##	"GO:0070939"
##	"GO:1902711"
##	"GD:0035370"
## ##	"GO:0031981" "GO:0120103"
## ##	"GD:0120103" "GD:0043220"
## ##	"GD:0043220"
##	"GD:0030008" "GD:0150057"
## ##	"GD:0150057"
## ##	"GD:0002116" "GD:0000172"
## ##	"GD:0000172"
## ##	"GD:0035748"
## ##	"GD:0003903"
##	"GD:0032937
##	"GD:1990037"
	30.100001

##	"GO:0042555"
##	"GO:0005579"
##	"GO:0032584"
##	"GD:0000793"
##	"GO:0042581"
##	"GO:0000164"
##	"GD:0099059"
##	"GO:0071149"
##	"GO:0031941"
##	"GO:0031083"
##	"GD:0000242" "GD:0043564"
## ##	"GD:0043564" "GD:0032045"
## ##	"GD:0032045"
##	"GD:0002102"
##	"GD:0002102
##	"GD:0034093
##	"GD:1990630"
##	"GD:0070618"
##	"GD:0032591"
##	"GO:1990454"
##	"GD:0036398"
##	"GO:0031265"
##	"GD:0036449"
##	"GO:0070761"
##	"GO:0016939"
##	"GO:0044611"
##	"GO:0031262"
##	"GO:0098831"
##	"GO:1990909"
##	"GO:0042383"
##	"GO:0034363"
##	"GO:1990391"
##	"GO:0016327"
##	"GO:0070187"
##	"GO:0005773"
##	"GO:1990316"
##	"GO:0044615"
##	"GO:0070032"
##	"GO:0033553"
##	"GO:1990723"
##	"GO:0000438"
## ##	"GD:0000974" "GD:0031313"
## ##	"GD:0031313" "GD:0001917"
## ##	"GO:0001917"
## ##	"GD:0002177"
## ##	"GD:0034464"
## ##	"GD:0071144" "GD:0030870"
## ##	"GD:0030870"
## ##	"GD:0034364"
## ##	"GD:10099092"
##	"GD:0005655"
##	"GD:0005875"
	22.0000010

##	"GD:0030120"
##	"GO:0034707"
##	"GD:0000322"
##	"GO:0099147"
##	"GD:0000126"
##	"GD:0030141"
##	"GD:0043083"
##	"GD:0030684"
##	"GD:0031362"
##	"GO:0000794"
##	"GO:0098577"
##	"GD:0000235"
##	"GO:0044307"
##	"GO:1990812"
##	"GD:0005652"
##	"GD:0048500"
##	"GO:1990578"
##	"GO:0032433"
##	"GO:1990423"
##	"GO:0001931"
##	"GD:0035253"
##	"GD:0031618"
##	"GO:0044354"
##	"GD:0016528"
##	"GD:0061700"
##	"GD:1990904"
##	"GD:0005816"
##	"GD:0031205"
##	"GD:0042405"
##	"GD:0000818"
##	"GD:0033291"
##	"GD:0035061"
##	"GD:0033270"
##	"GO:0031232"
##	"GD:0030681"
##	"GD:0044666"
##	"GO:0030014"
##	"GO:0032059"
##	"GO:0061574"
##	"GO:0031224"
##	"GO:0035580"
##	"GD:0005828"
##	"GO:1990356"
##	"GO:0016459"
##	"GO:0035861"
##	"GO:0098685"
##	"GD:0000923"
##	"GO:0031523"
##	"GO:0031465"
##	"GD:0099631"
##	"GO:0000151"
##	"GO:0042627"
##	"GO:0097539"
##	"GO:0098844"

##	"GO:0045211"
##	"GO:0043198"
##	"GO:0034362"
##	"GD:0099060"
##	"GO:0097440"
##	"GO:0030981"
##	"GO:0032391"
##	"GO:0071204"
##	"GO:0031252"
##	"GO:0044304"
##	"GO:1990234"
##	"GO:0097125"
##	"GO:0034361"
##	"GO:0005674"
##	"GO:0016328"
##	"GD:0033268"
##	"GO:0044798"
##	"GO:0035869"
##	"GO:0032153"
##	"GO:0005840"
##	"GD:0005883"
##	"GO:0031519"
##	"GO:0045178"
##	"GO:0030285"
##	"GO:0005732"
##	"GD:0098536"
##	"GD:0070436"
##	"GO:0005942"
##	"GD:0030667"
##	"GO:0034991"
##	"GD:0071006"
##	"GO:0018444"
##	"GD:0000808"
##	"GO:0016589"
##	"GO:0030173"
##	"GD:0030877"
##	"GO:0032154"
##	"GD:0005672"
##	"GD:0005786"
##	"GO:0032587"
##	"GD:0005677"
##	"GD:0005899"
##	"GD:0090734"
##	"GO:1990726"
##	"GD:0005862"
##	"GD:0033186"
##	"GO:0005915"
##	"GO:0005581"
##	"GO:0030125"
##	"GD:0030056"
##	"GD:0001940"
##	"GD:0030992"
##	"GO:0035189"
##	"GO:0005844"

##	"GO:0031012"
##	"GO:0005801"
##	"GO:0038039"
##	"GO:0070382"
##	"GO:0005688"
##	"GD:0042101"
##	"GO:0031464"
##	"GD:0097386"
##	"GD:0032279"
##	"GO:0048787"
##	"GD:0005657"
##	"GO:0031298"
##	"GD:0000778"
##	"GO:0044614"
##	"GO:0098556"
##	"GO:0048188"
##	"GO:0001891"
##	"GD:0080008"
##	"GO:0000444"
##	"GO:0031090"
##	"GO:1904115"
##	"GO:0005826"
##	"GO:0032420"
##	"GO:0008275"
##	"GO:0030426"
##	"GD:0000783"
##	"GO:0005846"
##	"GO:0033503"
##	"GO:0005943"
##	"GO:0045171"
##	"GD:0000942"
##	"GO:0070419"
##	"GD:0036038"
##	"GD:0008305"
##	"GO:0097444"
##	"GO:0017053"
##	"GO:0070531"
##	"GD:0032040"
##	"GO:0070847"
##	"GO:0035098"
##	"GO:0034457"
##	"GO:0097441"
##	"GO:0034518"
##	"GD:0005929"
##	"GO:0005882"
##	"GO:0042995"
##	"GD:0000940"
##	"GO:0005891"
##	"GO:0005669"
##	"GO:0031410"
##	"GO:0031225"
##	"GO:0009925"
##	"GO:0043296"
##	"GO:0032588"

##	"GO:0071014"
##	"GD:0070369"
##	"GO:0030286"
##	"GO:0001939"
##	"GO:0043194"
##	"GO:0035102"
##	"GO:0072686"
##	"GD:0032280"
## ##	"GO:0005912" "GO:0035327"
## ##	"GD:0035327"
##	"GD:0070022
##	"GD:0010000
##	"GD:0005720"
##	"GD:0043100
##	"GD:0005787"
##	"GD:0005671"
##	"GD:0030673"
##	"GD:0048179"
##	"GO:0035371"
##	"GO:0032133"
##	"GD:0048786"
##	"GO:0042105"
##	"GO:0031904"
##	"GO:0005814"
##	"GO:0043203"
##	"GO:0031256"
##	"GO:0031436"
##	"GO:0000780"
##	"GO:0070652"
##	"GO:0097513"
##	"GD:0099091"
##	"GO:0031234"
##	"GO:0043240"
##	"GD:0000307"
##	"GO:0030134"
##	"GO:0016342"
##	"GD:0031616"
##	"GO:0005768"
##	"GD:0043679"
## ##	"GD:0098981" "GD:0016460"
## ##	"GD:0016460"
## ##	"GD:0071141"
##	"GD:0042013
##	"GD:0001730
##	"GD:0005923"
##	"GD:0005859"
##	"GD:0005658"
##	"GD:0003636"
##	"GD:0002781"
##	"GD:0030893"
##	"GD:0043005"
##	"GD:0097730"
	20.0001100

##	"GO:0008274"
##	"GD:0030669"
##	"GO:0005925"
##	"GD:0030122"
##	"GD:0000779"
##	"GD:0008023"
##	"GO:0008091"
##	"GO:1990907"
##	"GO:0016605"
##	"GO:0005697"
##	"GO:0005849" "GO:0042382"
## ##	"GD:0042382" "GD:0097550"
##	"GD:0097850" "GD:0005847"
##	"GD:0005847"
##	"GD:0070937" "GD:0042622"
##	"GD:0042622"
##	"GD:0003604"
##	"GD:0043231"
##	"GD:0038091
##	"GD:0071004"
##	"GD:0010309
##	"GD:000800"
##	"GD:0070822"
##	"GD:0005869"
##	"GD:0005868"
##	"GD:0005720"
##	"GD:0005721"
##	"GO:0042571"
##	"GO:0005819"
##	"GO:0031226"
##	"GO:0034715"
##	"GO:0030665"
##	"GO:0005623"
##	"GO:0031672"
##	"GO:0042641"
##	"GO:0034709"
##	"GO:0000243"
##	"GD:1990023"
##	"GO:0030425"
##	"GO:0001533"
##	"GO:0005913"
##	"GD:0030054"
##	"GO:0005683"
##	"GD:0005662"
##	"GD:0008278"
##	"GO:0051233"
##	"GO:0015030"
##	"GO:0071005"
##	"GD:0005687"
##	"GO:0019005"
##	"GO:0005788"
##	"GO:0016580"
##	"GO:0017119"

##	"GD:0000118"
##	"GO:0001650"
##	"GO:0060170"
##	"GO:0043197"
##	"GO:0031201"
##	"GO:0012507"
##	"GO:0097431"
##	"GD:0098978"
##	"GO:0035097"
##	"GO:0016323"
##	"GO:0031080"
##	"GO:0071564"
##	"GO:0005815"
##	"GO:0090575"
##	"GO:0000123"
##	"GO:0015935"
##	"GO:0005871"
##	"GD:0000790"
##	"GO:0043235"
##	"GO:0034719"
##	"GO:0071565"
##	"GD:0005876"
##	"GD:0046540"
##	"GD:0032993"
##	"GD:0005938"
##	"GO:0097542"
##	"GO:0045095"
##	"GD:0030496"
##	"GO:0097381"
##	"GD:0000775"
##	"GO:0016592"
##	"GD:0008024"
##	"GD:0005796"
##	"GD:0000784"
##	"GD:0005682"
##	"GD:0009986"
##	"GD:0099061"
##	"GD:0014069"
##	"GO:0016581"
##	"GO:0016514"
##	"GD:0005635"
##	"GD:0099056"
##	"GO:0005685"
##	"GD:0000922"
##	"GO:0099055"
##	"GO:0042734"
##	"GO:0062023"
##	"GO:0005686"
##	"GO:0009897"
##	"GO:0005689"
##	"GO:0035145"
##	"GO:0005665"
##	"GO:0030532"
##	"GO:0016363"

```
##
                      "GD:0036064"
##
                      "GD:0000785"
##
                      "GD:0016604"
##
                      "GO:0005911"
##
                      "GO:0005834"
                      "GD:0000777"
##
                      "GD:0042788"
##
##
                      "GD:0005667"
##
                      "GD:0022627"
##
                      "GD:0005694"
##
                      "GD:0005622"
                      "GD:0000776"
##
##
                      "GD:0071007"
                      "GD:0022625"
##
##
                      "GD:0016607"
##
                      "GO:0005813"
                      "GD:0005681"
##
##
                      "GD:0005634"
##
                      "GD:0005730"
##
                      "GD:0071013"
##
                      "GO:0005654"
##
                      "GD:0005886"
##
                      "GO:0005887"
                      GD:0005747
##
## cc.enriched.terms "GO.Term"
##
                      "mitochondrial respiratory chain complex I"
##
                      "mitochondrial inner membrane"
                      "mitochondrion"
##
                      "mitochondrial matrix"
##
                      "mitochondrial respiratory chain complex IV"
##
##
                      "NADH dehydrogenase complex"
##
                      "mitochondrial respiratory chain"
                      "mitochondrial respiratory chain complex III"
##
                      "respiratory chain complex IV"
##
##
                      "mitochondrial membrane"
##
                      "mitochondrial intermembrane space"
##
                      "mitochondrial large ribosomal subunit"
##
                      "mitochondrial respiratory chain supercomplex"
                      "respiratory chain"
##
                      "integral component of mitochondrial inner membrane"
##
                      "myelin sheath"
##
                      "mitochondrial small ribosomal subunit"
##
                      "mitochondrial ribosome"
##
                      "extrinsic component of mitochondrial inner membrane"
##
                      "TIM23 mitochondrial import inner membrane translocase complex"
##
                      "vacuolar proton-transporting V-type ATPase complex"
##
                      "proton-transporting two-sector ATPase complex"
##
                      "mitochondrial nucleoid"
##
##
                      "mitochondrial ribonuclease P complex"
##
                      "mitochondrial proton-transporting ATP synthase complex"
##
                      "plasma membrane respiratory chain complex I"
                      "proton-transporting V-type ATPase, VO domain"
##
##
                      "mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)"
##
                      "ficolin-1-rich granule lumen"
```

```
##
                      "proteasome accessory complex"
                      "mitochondrial respiratory chain complex II, succinate dehydrogenase complex (ubiq
##
##
                      "secretory granule lumen"
                      "pyruvate dehydrogenase complex"
##
                      "TIM22 mitochondrial import inner membrane insertion complex"
##
                      "proton-transporting V-type ATPase, V1 domain"
##
                      "vacuolar proton-transporting V-type ATPase, V1 domain"
##
                      "oxoglutarate dehydrogenase complex"
##
##
                      "extracellular exosome"
                      "integral component of membrane"
##
##
                      "vacuolar membrane"
                      "azurophil granule membrane"
##
                      "pore complex"
##
                      "PAM complex, Tim23 associated import motor"
##
##
                      "proton-transporting ATP synthase complex, coupling factor F(o)"
##
                      "supramolecular fiber"
##
                      "inclusion body"
##
                      "proteasome complex"
##
                      "mitochondrial intermembrane space protein transporter complex"
                      "proteasome regulatory particle"
##
##
                      "proton-transporting two-sector ATPase complex, catalytic domain"
                      "plasma membrane proton-transporting V-type ATPase complex"
##
                      "endopeptidase Clp complex"
##
                      "mitochondrial outer membrane translocase complex"
##
                      "proteasome regulatory particle, base subcomplex"
##
##
                      "endoplasmic reticulum tubular network membrane"
##
                      "glycine cleavage complex"
                      "proteasome regulatory particle, lid subcomplex"
##
                      "lysosomal membrane"
##
                      "MMXD complex"
##
##
                      "melanosome"
                      "anchored component of synaptic vesicle membrane"
##
                      "mitochondrial outer membrane"
##
##
                      "lipid droplet"
                      "EKC/KEOPS complex"
##
                      "succinate-CoA ligase complex (GDP-forming)"
##
##
                      "MICOS complex"
##
                      "peroxisomal membrane"
                      "acrosomal matrix"
##
                      "nuclear outer membrane"
##
                      "sperm head"
##
##
                      "I band"
                      "peroxisome"
##
                      "phagocytic vesicle membrane"
##
                      "mitochondrial pyruvate dehydrogenase complex"
##
                      "host cell mitochondrial intermembrane space"
##
##
                      "coated vesicle"
                      "cytosolic proteasome complex"
##
##
                      "zona pellucida receptor complex"
                      "extrinsic component of lysosome membrane"
##
##
                      "chaperonin-containing T-complex"
                      "vacuolar proton-transporting V-type ATPase, VO domain"
##
##
                      "integral component of mitochondrial outer membrane"
                      "mitochondrial sorting and assembly machinery complex"
##
```

```
##
                      "phosphopyruvate hydratase complex"
##
                      "peroxisomal matrix"
##
                      "microvillus"
                      "mitochondrial proton-transporting ATP synthase, stator stalk"
##
##
                      "respiratory chain complex II"
                      "platelet alpha granule membrane"
##
                      "cell body"
##
                      "intrinsic component of mitochondrial inner membrane"
##
##
                      "azurophil granule lumen"
                      "insulin-responsive compartment"
##
                      "sperm mitochondrial sheath"
                      "mitochondrial permeability transition pore complex"
##
##
                      "blood microparticle"
                      "glycerol-3-phosphate dehydrogenase complex"
##
##
                      "cytochrome complex"
                      "platelet dense tubular network membrane"
##
##
                      "presynaptic cytosol"
                      "6-phosphofructokinase complex"
##
##
                      "proton-transporting V-type ATPase complex"
                      "multivesicular body"
##
##
                      "integral component of mitochondrial membrane"
##
                      "mitochondrial alpha-ketoglutarate dehydrogenase complex"
                      "dolichol-phosphate-mannose synthase complex"
##
                      "microtubule"
##
                      "late endosome"
##
##
                      "spot adherens junction"
##
                      "nuclear proteasome complex"
                      "L-cysteine desulfurase complex"
##
                      "plasma membrane succinate dehydrogenase complex"
##
                      "tertiary granule lumen"
##
                      "lysosome"
##
##
                      "proteasome storage granule"
                      "eukaryotic translation elongation factor 1 complex"
##
##
                      "early endosome"
##
                      "M band"
                      "tricarboxylic acid cycle enzyme complex"
##
##
                      "cytoplasmic side of lysosomal membrane"
##
                      "methionine adenosyltransferase complex"
                      "sarcoplasmic reticulum membrane"
##
##
                      "mitochondrial envelope"
                      "endoplasmic reticulum"
##
##
                      "T-tubule"
                      "meiotic spindle"
##
                      "cortical actin cytoskeleton"
##
                      "mitochondrial oxoglutarate dehydrogenase complex"
##
                      "Mitochondria-associated ER Membrane"
##
                      "protein phosphatase type 2A complex"
##
##
                      "actomyosin, actin portion"
##
                      "clathrin complex"
                      "MutSbeta complex"
##
##
                      "lipopolysaccharide receptor complex"
                      "extrinsic component of synaptic vesicle membrane"
##
                      "anchored component of the cytoplasmic side of the plasma membrane"
##
                      "mitochondrial endopeptidase Clp complex"
##
```

```
##
                      "melanosome membrane"
##
                      "nucleosome"
                      "CatSper complex"
##
                      "nascent polypeptide-associated complex"
##
##
                      "cytoplasmic side of membrane"
##
                      "extrinsic component of organelle membrane"
                      "endomembrane system"
##
                      "autophagosome"
##
##
                      "cAMP-dependent protein kinase complex"
                      "ER membrane protein complex"
##
##
                      "sarcoplasmic reticulum"
                      "autolysosome"
##
                      "smooth muscle contractile fiber"
##
                      "autophagosome membrane"
##
##
                      "sperm principal piece"
##
                      "filopodium"
                      "cytoplasmic side of endoplasmic reticulum membrane"
##
                      "cyclin-dependent protein kinase activating kinase holoenzyme complex"
##
##
                      "MutSalpha complex"
                      "mitochondrial proton-transporting ATP synthase complex, catalytic core F(1)"
##
##
                      "dense body"
                      "intrinsic component of mitochondrial outer membrane"
##
                      "eukaryotic translation initiation factor 2B complex"
##
                      "terminal cisterna"
##
##
                      "sperm annulus"
##
                      "neuron projection terminus"
##
                      "cerebellar mossy fiber"
                      "terminal bouton"
##
                      "calcineurin complex"
##
                      "microtubule cytoskeleton"
##
##
                      "COPI-coated vesicle"
##
                      "Lewy body"
                      "mismatch repair complex"
##
                      "apical plasma membrane"
##
##
                      "BAK complex"
                      "clathrin coat of trans-Golgi network vesicle"
##
                      "mitochondrial processing peptidase complex"
##
##
                      "podosome core"
                      "Sec61 translocon complex"
##
                      "inward rectifier potassium channel complex"
##
                      "ryanodine receptor complex"
##
                      "phenylalanine-tRNA ligase complex"
##
                      "lumenal side of lysosomal membrane"
##
                      "cortical cytoskeleton"
##
                      "endosome membrane"
##
                      "postsynaptic cytosol"
##
                      "internode region of axon"
##
                      "dendrite cytoplasm"
##
                      "nucleotide-activated protein kinase complex"
##
                      "integrin alpha4-beta7 complex"
##
                      "3-methylcrotonyl-CoA carboxylase complex, mitochondrial"
##
                      "methylcrotonoyl-CoA carboxylase complex"
##
                      "angiogenin-PRI complex"
##
                      "sorting endosome"
##
```

```
##
                      "cytoplasmic side of early endosome membrane"
##
                      "eukaryotic translation initiation factor 4F complex"
                      "alpha9-beta1 integrin-vascular cell adhesion molecule-1 complex"
##
                      "aminoacyl-tRNA synthetase multienzyme complex"
##
##
                      "trans-Golgi network transport vesicle"
                      "amphisome"
##
                      "male germ cell nucleus"
##
                      "CIA complex"
##
##
                      "mitochondrial crista junction"
                      "endoplasmic reticulum chaperone complex"
##
##
                      "aggresome"
                      "outer mitochondrial membrane protein complex"
##
##
                      "connexin complex"
                      "gamma-secretase complex"
##
##
                      "VCP-NSFL1C complex"
##
                      "actin filament bundle"
                      "COP9 signalosome"
##
##
                      "neuron spine"
##
                      "ionotropic glutamate receptor complex"
                      "motile cilium"
##
##
                      "dense core granule"
                      "sarcomere"
##
                      "synaptic vesicle"
##
                      "apoptosome"
##
##
                      "pseudopodium"
##
                      "COPI-coated vesicle membrane"
##
                      "postsynaptic early endosome"
                      "isoamylase complex"
##
                      "RISC complex"
##
                      "Atg12-Atg5-Atg16 complex"
##
##
                      "concave side of sperm head"
                      "integral component of endoplasmic reticulum membrane"
##
                      "potassium channel complex"
##
                      "sodium:potassium-exchanging ATPase complex"
##
##
                      "cytosol"
                      "postsynaptic actin cytoskeleton"
##
##
                      "Golgi stack"
##
                      "pyruvate kinase complex"
                      "platelet alpha granule lumen"
##
                      "cytoplasmic side of mitochondrial outer membrane"
##
                      "caveola neck"
##
##
                      "rough endoplasmic reticulum membrane"
##
                      "presynapse"
                      "ATPase complex"
##
                      "DNA-dependent protein kinase complex"
##
                      "tubulin complex"
##
                      "procollagen-proline 4-dioxygenase complex"
##
                      "oligosaccharyltransferase complex"
##
##
                      "ooplasm"
                      "sperm head plasma membrane"
##
##
                      "3M complex"
                      "voltage-gated potassium channel complex"
##
##
                      "septin ring"
                      "septin complex"
##
```

```
"septin filament array"
##
##
                      "transcription factor AP-1 complex"
##
                      "acrosomal vesicle"
                      "GMP reductase complex"
##
                      "Cul7-RING ubiquitin ligase complex"
##
                      "R2TP complex"
##
                      "mitochondrial degradosome"
##
                      "endoplasmic reticulum exit site"
##
##
                      "F-actin capping protein complex"
                      "smooth endoplasmic reticulum"
##
##
                      "chromatoid body"
                      "BRISC complex"
##
                      "aryl hydrocarbon receptor complex"
##
                      "juxtaparanode region of axon"
##
##
                      "ribose phosphate diphosphokinase complex"
##
                      "nuclear periphery"
                      "Bcl-2 family protein complex"
##
##
                      "clathrin-coated vesicle"
                      "ribonucleoside-diphosphate reductase complex"
##
##
                      "GAIT complex"
##
                      "Golgi-associated vesicle"
                      "cyclin A1-CDK2 complex"
##
                      "meiotic spindle pole"
##
                      "endoplasmic reticulum membrane"
##
                      "vesicle"
##
##
                      "multivesicular body, internal vesicle"
##
                      "inward rectifying potassium channel"
                      "m-AAA complex"
##
                      "kinocilium"
##
##
                      "MLL1 complex"
##
                      "GET complex"
##
                      "sperm connecting piece"
##
                      "glucosidase II complex"
##
                      "GID complex"
                      "calvx of Held"
##
                      "vesicle membrane"
##
##
                      "axoneme"
##
                      "phagophore assembly site membrane"
                      "ciliary base"
##
                      "clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane"
##
                      "BAT3 complex"
##
                      "dystrophin-associated glycoprotein complex"
##
                      "chaperone complex"
##
                      "RNA nuclear export complex"
##
                      "actin cap"
##
                      "uniplex complex"
##
                      "COPI vesicle coat"
##
                      "postsynaptic density membrane"
##
                      "invadopodium"
##
                      "NuA4 histone acetyltransferase complex"
##
##
                      "synaptic vesicle membrane"
                      "clathrin coat"
##
                      "AMPA glutamate receptor complex"
##
                      "GATOR1 complex"
##
```

```
"postsynaptic recycling endosome"
##
##
                      "hemoglobin complex"
                      "katanin complex"
##
                      "RAVE complex"
##
                      "endoplasmic reticulum quality control compartment"
##
##
                      "Derlin-1 retrotranslocation complex"
                      "synaptic membrane"
##
                      "mitotic spindle microtubule"
##
##
                      "endoplasmic reticulum tubular network"
                      "Sec62/Sec63 complex"
##
##
                      "multivesicular body, internal vesicle lumen"
                      "VCP-NPL4-UFD1 AAA ATPase complex"
##
                      "sperm fibrous sheath"
##
                      "BAX complex"
##
##
                      "glycogen granule"
##
                      "I-kappaB/NF-kappaB complex"
                      "NELF complex"
##
                      "mRNA cap binding complex"
##
##
                      "IkappaB kinase complex"
                      "calcium channel complex"
##
##
                      "membrane microdomain"
                      "lysosomal matrix"
##
                      "centralspindlin complex"
##
                      "serine-type endopeptidase complex"
##
                      "integral component of autophagosome membrane"
##
##
                      "nucleotide-excision repair factor 1 complex"
##
                      "preribosome, small subunit precursor"
                      "serine/threonine protein kinase complex"
##
                      "actin cytoskeleton"
##
                      "Swr1 complex"
##
##
                      "growth hormone receptor complex"
                      "ciliary pocket membrane"
##
                      "cytoplasm"
##
                      "RES complex"
##
                      "brush border membrane"
##
                      "mitochondrion-derived vesicle"
##
##
                      "cell periphery"
##
                      "Shu complex"
                      "Golgi cis cisterna membrane"
##
                      "contractile fiber"
##
                      "axonemal dynein complex"
##
                      "extrinsic component of plasma membrane"
##
                      "membrane raft"
##
                      "terminal web"
##
                      "sarcoglycan complex"
##
                      "endosome to plasma membrane transport vesicle"
##
                      "fascia adherens"
##
                      "platelet dense granule membrane"
##
##
                      "membrane"
                      "cyclin E2-CDK2 complex"
##
##
                      "phosphatidylinositol 3-kinase complex, class IB"
                      "cytoplasmic vesicle membrane"
##
                      "eukaryotic translation initiation factor 2 complex"
##
                      "Y chromosome"
##
```

```
##
                      "polar microtubule"
##
                      "clathrin coat of coated pit"
                      "nucleotide-excision repair complex"
##
                      "plasma membrane bounded cell projection cytoplasm"
##
##
                      "cyclin A2-CDK2 complex"
                      "phagolysosome membrane"
##
                      "neuronal dense core vesicle"
##
                      "extracellular vesicle"
##
##
                      "Golgi-associated vesicle lumen"
##
                      "outer dense fiber"
##
                      "plasma membrane raft"
                      "CCAAT-binding factor complex"
##
                      "ER ubiquitin ligase complex"
##
                      "GTPase activator complex"
##
##
                      "WASH complex"
##
                      "nuclear pore"
                      "late endosome membrane"
##
                      "collagen type V trimer"
##
                      "alveolar lamellar body"
##
                      "rough endoplasmic reticulum"
##
##
                      "collagen type XI trimer"
                      "Dcp1-Dcp2 complex"
##
                      "dendritic growth cone"
##
                      "Bcl3/NF-kappaB2 complex"
##
                      "neuron projection membrane"
##
##
                      "varicosity"
##
                      "MHC class I protein complex"
                      "glutamyl-tRNA(Gln) amidotransferase complex"
##
                      "cyclin E1-CDK2 complex"
##
##
                      "VCB complex"
##
                      "nucleolus organizer region"
##
                      "X chromosome"
                      "Rad51C-XRCC3 complex"
##
                      "chiasma"
##
                      "late recombination nodule"
##
                      "Golgi cis cisterna"
##
##
                      "excitatory synapse"
##
                      "intrinsic component of external side of plasma membrane"
                      "cytoplasmic stress granule"
##
                      "cytoplasmic side of plasma membrane"
##
                      "proteasome core complex, beta-subunit complex"
##
##
                      "EARP complex"
                      "cullin-RING ubiquitin ligase complex"
##
                      "stereocilium shaft"
##
                      "stereocilium base"
##
                      "ERCC4-ERCC1 complex"
##
                      "endoplasmic reticulum-Golgi intermediate compartment"
##
                      "axonal growth cone"
##
##
                      "sex chromosome"
                      "clathrin adaptor complex"
##
##
                      "prefoldin complex"
                      "PCNA-p21 complex"
##
##
                      "multivesicular body lumen"
                      "phosphorylase kinase complex"
##
```

```
"MHC class I peptide loading complex"
##
##
                      "early endosome membrane"
                      "outer acrosomal membrane"
##
                      "DNA polymerase III complex"
##
##
                      "apical cortex"
                      "DNA ligase IV complex"
##
                      "PCNA complex"
##
                      "large ribosomal subunit"
##
##
                      "phosphatidylinositol 3-kinase complex, class III"
                      "Shc-EGFR complex"
##
##
                      "sarcoplasmic reticulum lumen"
                      "ribbon synapse"
##
##
                      "Ire1 complex"
                      "neuronal cell body"
##
##
                      "GARP complex"
##
                      "P granule"
                      "U4atac snRNP"
##
##
                      "cis-Golgi network membrane"
##
                      "extrinsic component of mitochondrial outer membrane"
##
##
                      "cell wall"
                      "mitochondrial proton-transporting ATP synthase, catalytic core"
##
                      "guanylate cyclase complex, soluble"
##
                      "longitudinal sarcoplasmic reticulum"
##
                      "terminal cisterna lumen"
##
##
                      "coated vesicle membrane"
##
                      "RNA polymerase complex"
                      "intrinsic component of peroxisomal membrane"
##
                      "uropod membrane"
##
##
                      "acrosomal lumen"
##
                      "nuclear replisome"
##
                      "C-fiber"
                      "proton-transporting ATP synthase complex"
##
##
                      "proton-transporting ATP synthase complex, catalytic core F(1)"
                      "lysosomal proton-transporting V-type ATPase complex"
##
##
                      "inflammasome complex"
##
                      "basal ectoplasmic specialization"
##
                      "integrin alphaIIb-beta3 complex"
                      "elongin complex"
##
                      "alpha9-beta1 integrin-ADAM8 complex"
##
                      "axonemal outer doublet"
##
##
                      "A axonemal microtubule"
                      "sweet taste receptor complex"
##
                      "Cry-Per complex"
##
                      "axonemal central pair projection"
##
                      "specific granule membrane"
##
                      "radial spoke"
##
                      "calcium- and calmodulin-dependent protein kinase complex"
##
##
                      "glomerular endothelium fenestra"
                      "hyaluranon cable"
##
##
                      "platelet dense granule"
                      "membrane-bounded organelle"
##
##
                      "tRNA-specific adenosine-34 deaminase complex"
##
                      "prominosome"
```

```
"9+0 motile cilium"
##
##
                      "proximal portion of axoneme"
                      "serotonin-activated cation-selective channel complex"
##
                      "granular vesicle"
##
                      "paranodal junction"
##
                      "SUMO activating enzyme complex"
##
                      "protein serine/threonine phosphatase complex"
##
                      "cortical granule"
##
##
                      "leading edge of lamellipodium"
                      "radial spoke stalk"
##
##
                      "plasma lipoprotein particle"
                      "chromaffin granule lumen"
##
                      "oligosaccharyltransferase I complex"
##
                      "Tle3-Aes complex"
##
##
                      "nuclear nucleosome"
##
                      "collagen type XIII trimer"
##
                      "axonemal basal plate"
                      "oxidoreductase complex"
##
                      "outer membrane"
##
                      "AP-5 adaptor complex"
##
##
                      "cytolytic granule"
##
                      "integrin alpha8-beta1 complex"
                      "cytoplasmic chromatin"
##
                      "perinuclear theca"
##
                      "integrin alpha9-beta1 complex"
##
##
                      "inner dynein arm"
##
                      "insulin-like growth factor binary complex"
                      "pericellular basket"
##
                      "mitochondrial crista"
##
                      "apical plasma membrane urothelial plaque"
##
##
                      "Golgi apparatus"
##
                      "zymogen granule membrane"
                      "collagen type XVI trimer"
##
##
                      "secondary lysosome"
                      "USH2 complex"
##
                      "Pwp2p-containing subcomplex of 90S preribosome"
##
##
                      "interleukin-13 receptor complex"
##
                      "muscle tendon junction"
                      "organelle inner membrane"
##
##
                      "DRM complex"
                      "distal portion of axoneme"
##
                      "inhibin B complex"
##
                      "cone matrix sheath"
##
                      "lamellar body membrane"
##
                      "alveolar lamellar body membrane"
##
                      "extrinsic component of presynaptic active zone membrane"
##
                      "axonemal central apparatus"
##
                      "peroxisomal importomer complex"
##
                      "subsarcolemmal mitochondrion"
##
                      "interfibrillar mitochondrion"
##
##
                      "rhabdomere"
                      "interphotoreceptor matrix"
##
##
                      "autophagosome lumen"
                      "subapical complex"
##
```

```
##
                      "extrinsic component of synaptic membrane"
##
                      "CST complex"
##
                      "mitochondrial chromosome"
                      "female germ cell nucleus"
##
##
                      "cytoplasmic region"
                      "Slx1-Slx4 complex"
##
                      "phosphatidylinositol 3-kinase complex, class III, type I"
##
                      "phosphatidylinositol 3-kinase complex, class III, type II"
##
##
                      "BLOC-3 complex"
                      "mannosyltransferase complex"
##
##
                      "integral component of external side of plasma membrane"
                      "calcium ion-transporting ATPase complex"
##
                      "Toll-like receptor 2-Toll-like receptor 6 protein complex"
##
                      "egg coat"
##
##
                      "Cdc48p-Npl4p-Vms1p AAA ATPase complex"
##
                      "U2-type post-spliceosomal complex"
                      "sperm end piece"
##
##
                      "perivitelline space"
##
                      "transcription factor TFIIH holo complex"
##
                      "activin A complex"
##
                      "epidermal lamellar body"
                      "paraferritin complex"
##
                      "fungal-type vacuole membrane"
##
                      "Swi5-Sfr1 complex"
##
                      "collagen type XV trimer"
##
##
                      "4-aminobutyrate transaminase complex"
##
                      "secretory vesicle"
                      "recycling endosome lumen"
##
                      "apical cytoplasm"
##
                      "matrix side of mitochondrial inner membrane"
##
##
                      "postsynaptic endocytic zone"
##
                      "glycine-gated chloride channel complex"
##
                      "CRLF-CLCF1 complex"
                      "extrinsic component of postsynaptic endosome membrane"
##
##
                      "costamere"
                      "collagen type XII trimer"
##
##
                      "endolysosome"
##
                      "intracellular vesicle"
                      "mitochondrial fatty acid beta-oxidation multienzyme complex"
##
                      "COPII vesicle coat"
##
                      "striated muscle thin filament"
##
##
                      "Rab-protein geranylgeranyltransferase complex"
                      "intrinsic component of endosome membrane"
##
                      "mitochondrial inner membrane peptidase complex"
##
                      "serine C-palmitoyltransferase complex"
##
                      "dense fibrillar component"
##
                      "extrinsic component of postsynaptic early endosome membrane"
##
                      "gap junction"
##
##
                      "pseudopodium membrane"
                      "dense core granule membrane"
##
##
                      "hinge region between urothelial plaques of apical plasma membrane"
                      "microvesicle"
##
##
                      "phagocytic vesicle"
##
                      "cytoskeletal calyx"
```

```
##
                      "inhibin A complex"
##
                      "type III intermediate filament"
                      "slit diaphragm"
##
                      "nuclear ubiquitin ligase complex"
##
##
                      "PeBoW complex"
##
                      "GPI-anchor transamidase complex"
                      "Parkin-FBXW7-Cul1 ubiquitin ligase complex"
##
                      "intrinsic component of endoplasmic reticulum membrane"
##
##
                      "integrin alphaM-beta2 complex"
                      "RNA polymerase transcription factor SL1 complex"
##
##
                      "protein C inhibitor-TMPRSS7 complex"
                      "protein C inhibitor-TMPRSS11E complex"
##
                      "protein C inhibitor-PLAT complex"
##
                      "protein C inhibitor-PLAU complex"
##
##
                      "protein C inhibitor-thrombin complex"
##
                      "protein C inhibitor-KLK3 complex"
                      "protein C inhibitor-plasma kallikrein complex"
##
                      "protein C inhibitor-coagulation factor V complex"
##
##
                      "protein C inhibitor-coagulation factor Xa complex"
                      "protein C inhibitor-coagulation factor XI complex"
##
##
                      "anchored component of postsynaptic recycling endosome membrane"
                      "ectoplasm"
##
                      "integral component of omegasome membrane"
##
                      "NOS2-CD74 complex"
##
                      "late endosome lumen"
##
##
                      "zeta DNA polymerase complex"
##
                      "meprin A complex"
                      "Cul2-RING ubiquitin ligase complex"
##
                      "striated muscle dense body"
##
                      "anchored component of postsynaptic density membrane"
##
##
                      "protein kinase 5 complex"
##
                      "distal axon"
                      "dimeric IgA immunoglobulin complex"
##
                      "HCN channel complex"
##
                      "interleukin-28 receptor complex"
##
                      "integrin alphaL-beta2 complex"
##
##
                      "cone cell pedicle"
##
                      "tethering complex"
                      "Ino80 complex"
##
                      "Schwann cell microvillus"
##
                      "integral component of neuronal dense core vesicle membrane"
##
##
                      "CERF complex"
                      "integrin alpha7-beta1 complex"
##
                      "RNA polymerase I transcription factor complex"
##
                      "presynaptic endosome"
##
                      "replisome"
##
                      "Nem1-Spo7 phosphatase complex"
##
                      "transverse filament"
##
##
                      "Mon1-Ccz1 complex"
                      "integrin alpha11-beta1 complex"
##
##
                      "integrin alpha10-beta1 complex"
                      "integrin alpha4-beta1 complex"
##
##
                      "EMILIN complex"
##
                      "protein-lipid complex"
```

```
##
                      "perineuronal net"
##
                      "Gtr1-Gtr2 GTPase complex"
##
                      "mesaxon"
                      "fibrinogen complex"
##
##
                      "Golgi cisterna"
##
                      "cell-substrate junction"
                      "integrin alphav-beta6 complex"
##
                      "postsynaptic specialization of symmetric synapse"
##
##
                      "viral integration complex"
                      "6-phosphofructo-2-kinase/fructose-2,6-biphosphatase complex"
##
##
                      "cytoplasmic side of late endosome membrane"
                      "TRAPPI protein complex"
##
                      "actin cortical patch"
##
                      "actin filament"
##
                      "tumor necrosis factor receptor superfamily complex"
##
##
                      "collagen type III trimer"
                      "collagen type VIII trimer"
##
##
                      "myosin VII complex"
##
                      "upper tip-link density"
                      "nucleus-vacuole junction"
##
##
                      "intrinsic component of the cytoplasmic side of the plasma membrane"
##
                      "integrin alphav-beta8 complex"
                      "Golgi trans cisterna"
##
                      "smooth endoplasmic reticulum membrane"
##
                      "ciliary plasm"
##
##
                      "presynaptic cytoskeleton"
##
                      "postsynaptic specialization membrane"
                      "integral component of spine apparatus membrane"
##
##
                      "axon"
                      "mRNA cap methyltransferase complex"
##
##
                      "intermediate filament cytoskeleton"
##
                      "postsynaptic endosome"
                      "cytoplasmic cyclin-dependent protein kinase holoenzyme complex"
##
##
                      "apolipoprotein B mRNA editing enzyme complex"
##
                      "CD40 receptor complex"
##
                      "spliceosomal snRNP complex"
##
                      "sperm flagellum"
##
                      "interleukin-12 receptor complex"
                      "RNA polymerase I core factor complex"
##
                      "spindle matrix"
##
                      "ficolin-1-rich granule membrane"
##
##
                      "stereocilia ankle link"
                      "collagen type XIV trimer"
##
                      "ribonuclease P complex"
##
                      "nuclear RNA-directed RNA polymerase complex"
##
                      "extrinsic component of Golgi membrane"
##
                      "septin cytoskeleton"
##
                      "HOPS complex"
##
                      "eRF1 methyltransferase complex"
##
                      "lamellar body"
##
                      "growing cell tip"
##
                      "host cell presynaptic membrane"
##
                      "serine protease inhibitor complex"
##
                      "serine-type peptidase complex"
##
```

```
##
                      "perinucleolar compartment"
##
                      "CSF1-CSF1R complex"
##
                      "FHF complex"
                      "potassium:proton exchanging ATPase complex"
##
##
                      "ion channel complex"
##
                      "palmitoyltransferase complex"
                      "intracellular organelle"
##
                      "interleukin-12 complex"
##
##
                      "photoreceptor cell cilium"
                      "CURI complex"
##
##
                      "UTP-C complex"
                      "apical part of cell"
##
                      "stereocilia ankle link complex"
##
                      "intracellular cyclic nucleotide activated cation channel complex"
##
##
                      "dentate gyrus mossy fiber"
##
                      "transmembrane transporter complex"
                      "RNA polymerase III complex"
##
                      "perinuclear region of cytoplasm"
##
##
                      "integrin alpha3-beta1 complex"
                      "Elg1 RFC-like complex"
##
##
                      "RISC-loading complex"
                      "nuclear envelope lumen"
##
                      "lumenal side of Golgi membrane"
##
                      "Derlin-1-VIMP complex"
##
                      "extrinsic component of vacuolar membrane"
##
##
                      "PAS complex"
##
                      "collagen type II trimer"
                      "molybdopterin synthase complex"
##
                      "cell pole"
##
                      "telomerase catalytic core complex"
##
                      "RNA-directed RNA polymerase complex"
##
##
                      "chromaffin granule"
                      "anchored component of presynaptic active zone membrane"
##
##
                      "TERT-RMRP complex"
                      "organelle membrane contact site"
##
                      "intracellular canaliculus"
##
##
                      "synaptobrevin 2-SNAP-25-syntaxin-3-complexin complex"
##
                      "interleukin-23 complex"
                      "phagocytic vesicle lumen"
##
                      "CNTFR-CLCF1 complex"
##
                      "cochlear hair cell ribbon synapse"
##
##
                      "myofibril"
                      "filopodium membrane"
##
                      "centriolar satellite"
##
                      "host cell surface"
##
##
                      "SMN-Gemin2 complex"
                      "recycling endosome"
##
                      "tertiary granule membrane"
##
##
                      "hippocampal mossy fiber expansion"
                      "NatA complex"
##
##
                      "lateral cell cortex"
                      "viral replication complex"
##
                      "G-protein beta/gamma-subunit complex"
##
                      "FACT complex"
##
```

```
"spanning component of plasma membrane"
##
##
                      "NatC complex"
                      "mitochondrial DNA-directed RNA polymerase complex"
##
                      "gamma-tubulin small complex, mitotic spindle pole body"
##
##
                      "Noc4p-Nop14p complex"
                      "Barr body"
##
                      "Cdc73/Paf1 complex"
##
                      "BLOC-2 complex"
##
##
                      "UDP-N-acetylglucosamine transferase complex"
                      "interleukin-23 receptor complex"
##
##
                      "cation-transporting ATPase complex"
                      "parallel fiber"
##
##
                      "amyloid-beta complex"
                      "box H/ACA scaRNP complex"
##
##
                      "box H/ACA telomerase RNP complex"
##
                      "lipoprotein particle"
                      "Arp2/3 protein complex"
##
##
                      "U6atac snRNP"
##
                      "U4atac/U6atac snRNP"
                      "BORC complex"
##
##
                      "extracellular membrane-bounded organelle"
                      "macropinocytic cup"
##
                      "fibrillar collagen trimer"
##
                      "cell-cell contact zone"
##
                      "host cell"
##
##
                      "integrin alpha1-beta1 complex"
##
                      "mucus layer"
                      "endocytic vesicle lumen"
##
                      "90S preribosome"
##
                      "neuron projection branch point"
##
##
                      "dendritic spine cytoplasm"
##
                      "Piccolo NuA4 histone acetyltransferase complex"
##
                      "Rix1 complex"
                      "tertiary granule"
##
##
                      "climbing fiber"
                      "9+2 motile cilium"
##
##
                      "KICSTOR complex"
##
                      "RNA polymerase II, holoenzyme"
                      "trans-Golgi network transport vesicle membrane"
##
                      "inner mucus layer"
##
                      "outer mucus layer"
##
##
                      "epididymosome"
                      "ARC complex"
##
                      "SLIK (SAGA-like) complex"
##
                      "elastic fiber"
##
                      "RNA polymerase I complex"
##
##
                      "tRNA (m1A) methyltransferase complex"
                      "Ragulator complex"
##
##
                      "PET complex"
                      "inner acrosomal membrane"
##
##
                      "early endosome lumen"
                      "cytosolic aryl hydrocarbon receptor complex"
##
##
                      "t-UTP complex"
                      "CAAX-protein geranylgeranyltransferase complex"
##
```

```
##
                      "neuromuscular junction"
##
                      "granular component"
                      "Toll-like receptor 1-Toll-like receptor 2 protein complex"
##
                      "preribosome, large subunit precursor"
##
##
                      "RNA polymerase II transcription repressor complex"
##
                      "Dbf4-dependent protein kinase complex"
                      "Smc5-Smc6 complex"
##
                      "tubulobulbar complex"
##
##
                      "ciliary inversin compartment"
                      "laminin-3 complex"
##
##
                      "THO complex"
                      "perisynaptic extracellular matrix"
##
                      "H zone"
##
                      "hippocampal mossy fiber to CA3 synapse"
##
##
                      "SPOTS complex"
##
                      "euchromatin"
                      "protein phosphatase 4 complex"
##
                      "granulocyte macrophage colony-stimulating factor receptor complex"
##
##
                      "PCSK9-LDLR complex"
                      "cytosolic tRNA wobble base thiouridylase complex"
##
##
                      "ACF complex"
##
                      "integral component of organelle membrane"
                      "stereocilium tip"
##
                      "sperm midpiece"
##
                      "nuclear cyclin-dependent protein kinase holoenzyme complex"
##
##
                      "intercalated disc"
##
                      "multi-eIF complex"
                      "peripheral region of growth cone"
##
##
                      "TRAMP complex"
                      "NLS-dependent protein nuclear import complex"
##
                      "synaptonemal complex"
##
##
                      "P-body"
                      "RSC-type complex"
##
                      "autosome"
##
                      "dystroglycan complex"
##
                      "Bcl3-Bcl10 complex"
##
##
                      "Golgi medial cisterna"
##
                      "symbiont-containing vacuole"
                      "recombination nodule"
##
                      "keratohyalin granule"
##
                      "perikaryon"
##
##
                      "TRAPPIII protein complex"
                      "AP-type membrane coat adaptor complex"
##
                      "EGO complex"
##
                      "Golgi cisterna membrane"
##
                      "NLRP1 inflammasome complex"
##
##
                      "microspike"
                      "C zone"
##
                      "MSL complex"
##
                      "protease inhibitor complex"
##
##
                      "sex chromatin"
                      "transcription factor TFIIIC complex"
##
##
                      "MCM8-MCM9 complex"
                      "RIC1-RGP1 guanyl-nucleotide exchange factor complex"
##
```

```
"glycinergic synapse"
##
##
                      "7 disc"
                      "BMP receptor complex"
##
                      "XY body"
##
                      "platelet dense tubular network"
##
##
                      "desmosome"
                      "translation initiation ternary complex"
##
##
                      "omegasome"
##
                      "collagen type IX trimer"
                      "sperm cytoplasmic droplet"
##
##
                      "ATP-binding cassette (ABC) transporter complex"
                      "lamellipodium membrane"
##
                      "lamin filament"
##
                      "MPP7-DLG1-LIN7 complex"
##
##
                      "retromer complex"
##
                      "Fc-epsilon receptor I complex"
                      "Lsd1/2 complex"
##
##
                      "distal dendrite"
##
                      "apical distal dendrite"
##
                      "interleukin-1 receptor complex"
##
                      "TRAPPII protein complex"
                      "stereocilium bundle"
##
                      "retromer, cargo-selective complex"
##
                      "haptoglobin-hemoglobin complex"
##
##
                      "glial limiting end-foot"
##
                      "eukaryotic 43S preinitiation complex"
##
                      "outer dynein arm"
                      "SMC loading complex"
##
                      "Scc2-Scc4 cohesin loading complex"
##
                      "DNA topoisomerase complex (ATP-hydrolyzing)"
##
##
                      "dendritic tree"
                      "HFE-transferrin receptor complex"
##
                      "tRNA methyltransferase complex"
##
                      "endolysosome lumen"
##
##
                      "snRNA-activating protein complex"
##
                      "inhibin-betaglycan-ActRII complex"
##
                      "anchored component of postsynaptic membrane"
##
                      "MutLalpha complex"
                      "host cell viral assembly compartment"
##
                      "tricellular tight junction"
##
                      "clathrin-coated endocytic vesicle"
##
##
                      "microtubule end"
                      "Noc1p-Noc2p complex"
##
                      "Noc2p-Noc3p complex"
##
                      "box H/ACA snoRNP complex"
##
                      "eukaryotic translation initiation factor 3 complex"
##
##
                      "DUBm complex"
                      "NADPH oxidase complex"
##
##
                      "dendritic spine head"
##
                      "central region of growth cone"
##
                      "CA3 pyramidal cell dendrite"
                      "IPAF inflammasome complex"
##
##
                      "glutamate-cysteine ligase complex"
                      "integrin alpha6-beta4 complex"
##
```

```
"cytoplasmic vesicle lumen"
##
##
                      "oncostatin-M receptor complex"
                      "epsilon DNA polymerase complex"
##
                      "ASTRA complex"
##
                      "integral component of lumenal side of endoplasmic reticulum membrane"
##
##
                      "apical tubulobulbar complex"
                      "basal tubulobulbar complex"
##
                      "microvillus membrane"
##
##
                      "tetraspanin-enriched microdomain"
                      "anchored component of presynaptic membrane"
##
##
                      "CHRAC"
                      "RecQ helicase-Topo III complex"
##
                      "endolysosome membrane"
##
                      "endothelial microparticle"
##
##
                      "protein kinase complex"
##
                      "GINS complex"
                      "photoreceptor inner segment membrane"
##
                      "acetylcholine-gated channel complex"
##
##
                      "intraciliary transport particle"
                      "rod spherule"
##
##
                      "laminin-8 complex"
                      "muscle cell projection membrane"
##
                      "methyltransferase complex"
##
                      "proximal neuron projection"
##
                      "cytoplasmic ubiquitin ligase complex"
##
##
                      "DNA replication factor C complex"
##
                      "protein complex involved in cell adhesion"
                      "presynaptic intermediate filament cytoskeleton"
##
                      "kainate selective glutamate receptor complex"
##
                      "microtubule bundle"
##
                      "dehydrodolichyl diphosphate synthase complex"
##
##
                      "PCSK9-AnxA2 complex"
                      "host cell perinuclear region of cytoplasm"
##
##
                      "PAN complex"
                      "extracellular space"
##
##
                      "CORVET complex"
##
                      "extrinsic component of presynaptic membrane"
##
                      "collagen type VII trimer"
                      "ESCRT III complex"
##
                      "clathrin coat of endocytic vesicle"
##
                      "macrophage migration inhibitory factor receptor complex"
##
                      "extrinsic component of membrane"
##
                      "methionyl glutamyl tRNA synthetase complex"
##
                      "cell-substrate adherens junction"
##
                      "nuclear stress granule"
##
                      "THO complex part of transcription export complex"
##
                      "TAP complex"
##
                      "invadopodium membrane"
##
##
                      "clathrin-coated pit"
                      "NatB complex"
##
##
                      "AP-1 adaptor complex"
                      "serine-pyruvate aminotransferase complex"
##
##
                      "synapse"
                      "TORC2 complex"
##
```

```
##
                      "septin collar"
##
                      "postsynaptic intermediate filament cytoskeleton"
                      "cell cortex region"
##
                      "citrate lyase complex"
##
##
                      "Rad17 RFC-like complex"
##
                      "condensin complex"
                      "cation channel complex"
##
                      "phagolysosome"
##
##
                      "micro-ribonucleoprotein complex"
                      "lateral loop"
##
##
                      "RNA N6-methyladenosine methyltransferase complex"
                      "syntrophin complex"
##
                      "death-inducing signaling complex"
##
                      "FANCM-MHF complex"
##
##
                      "NLRP3 inflammasome complex"
##
                      "9+0 non-motile cilium"
                      "interleukin-6 receptor complex"
##
##
                      "negative cofactor 2 complex"
##
                      "Hrd1p ubiquitin ligase ERAD-L complex"
                      "monomeric IgA immunoglobulin complex"
##
##
                      "secretory IgA immunoglobulin complex"
                      "secretory dimeric IgA immunoglobulin complex"
##
                      "complement component C1 complex"
##
                      "parallel fiber to Purkinje cell synapse"
##
                      "glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex"
##
##
                      "protein kinase CK2 complex"
##
                      "transcription factor TFIIK complex"
                      "integral component of cytoplasmic side of endoplasmic reticulum membrane"
##
                      "integral component of nuclear outer membrane"
##
                      "insulin-like growth factor binding protein complex"
##
##
                      "NF-kappaB p50/p65 complex"
##
                      "microprocessor complex"
                      "piP-body"
##
                      "MHC class Ib protein complex"
##
##
                      "endocytic vesicle membrane"
                      "Scrib-APC-beta-catenin complex"
##
##
                      "pinceau fiber"
##
                      "other organism cell membrane"
                      "integrin alphav-beta3 complex"
##
                      "condensin core heterodimer"
##
                      "meiotic nuclear membrane microtubule tethering complex"
##
##
                      "nucleoid"
                      "protein farnesyltransferase complex"
##
                      "Gemini of coiled bodies"
##
                      "RQC complex"
##
                      "host cell PML body"
##
                      "nuclear subtelomeric heterochromatin"
##
                      "pentameric IgM immunoglobulin complex"
##
##
                      "hexameric IgM immunoglobulin complex"
                      "collagen type VI trimer"
##
##
                      "insulin-like growth factor ternary complex"
                      "interleukin-18 receptor complex"
##
##
                      "kinesin I complex"
##
                      "myosin V complex"
```

```
"cyclin K-CDK13 complex"
##
                      "cytoplasmic side of apical plasma membrane"
##
                      "kinociliary basal body"
##
                      "NMDA selective glutamate receptor complex"
##
                      "half bridge of spindle pole body"
##
##
                      "U4/U6 snRNP"
                      "AP-4 adaptor complex"
##
                      "catalytic step 1 spliceosome"
##
##
                      "early phagosome"
                      "integral component of lysosomal membrane"
##
##
                      "delta DNA polymerase complex"
                      "laminin-2 complex"
##
                      "integrin alphav-beta5 complex"
##
                      "cell tip"
##
##
                      "hippocampal mossy fiber"
##
                      "cytoskeleton of presynaptic active zone"
                      "histone locus body"
##
                      "unconventional myosin complex"
##
##
                      "activating signal cointegrator 1 complex"
                      "junctional membrane complex"
##
##
                      "presynaptic endocytic zone membrane"
                      "cytoplasmic microtubule"
##
                      "nuclear SCF ubiquitin ligase complex"
##
                      "growth cone leading edge"
##
                      "ESCRT II complex"
##
##
                      "HIR complex"
##
                      "lysosomal lumen"
                      "immunological synapse"
##
                      "postsynaptic specialization"
##
                      "sodium channel complex"
##
##
                      "exocyst"
##
                      "transcription export complex"
                      "ciliary neurotrophic factor receptor complex"
##
##
                      "interphase microtubule organizing center"
                      "presynaptic endocytic zone"
##
##
                      "pi-body"
##
                      "HSP90-CDC37 chaperone complex"
##
                      "intercellular canaliculus"
                      "perinucleolar chromocenter"
##
                      "dendritic filopodium"
##
                      "B cell receptor complex"
##
##
                      "alphav-beta3 integrin-vitronectin complex"
                      "mucin granule"
##
                      "other organism cell"
##
                      "stress fiber"
##
                      "polycystin complex"
##
                      "U2-type post-mRNA release spliceosomal complex"
##
                      "primary dendrite"
##
                      "eukaryotic 48S preinitiation complex"
##
                      "laminin-1 complex"
##
##
                      "Rad6-Rad18 complex"
                      "cytoplasmic ribonucleoprotein granule"
##
##
                      "cardiac Troponin complex"
                      "Wnt-Frizzled-LRP5/6 complex"
##
```

```
"BRCA2-MAGE-D1 complex"
##
                      "messenger ribonucleoprotein complex"
##
                      "astrocyte projection"
##
                      "integral component of synaptic membrane"
##
##
                      "TORC1 complex"
                      "eukaryotic translation initiation factor 3 complex, eIF3e"
##
                      "ATF4-CREB1 transcription factor complex"
##
                      "ruffle"
##
##
                      "astrocyte end-foot"
                      "voltage-gated sodium channel complex"
##
##
                      "condensed nuclear chromosome inner kinetochore"
                      "ribonuclease H2 complex"
##
                      "cortical microtubule"
##
                      "cytoplasmic microtubule bundle"
##
##
                      "trans-Golgi network"
##
                      "intracellular ferritin complex"
##
                      "mRNA cleavage stimulating factor complex"
                      "alphav-beta3 integrin-HMGB1 complex"
##
##
                      "post-spliceosomal complex"
                      "Hrd1p ubiquitin ligase complex"
##
##
                      "SOSS complex"
##
                      "phagophore assembly site"
                      "Cul5-RING ubiquitin ligase complex"
##
                      "ribonucleoprotein granule"
##
                      "gamma-catenin-TCF7L2 complex"
##
##
                      "telomeric heterochromatin"
##
                      "cleavage body"
                      "alphav-beta3 integrin-IGF-1-IGF1R complex"
##
##
                      "nuclear pore transmembrane ring"
                      "PR-DUB complex"
##
##
                      "DBIRD complex"
##
                      "anaphase-promoting complex"
                      "cyclin K-CDK12 complex"
##
##
                      "collagen type IV trimer"
##
                      "proteasome activator complex"
##
                      "SAGA complex"
##
                      "Mis6-Sim4 complex"
##
                      "nuclear origin of replication recognition complex"
                      "nuclear replication fork"
##
                      "photoreceptor ribbon synapse"
##
                      "cellular component"
##
                      "extrinsic component of postsynaptic specialization membrane"
##
                      "asymmetric, glutamatergic, excitatory synapse"
##
                      "ATF1-ATF4 transcription factor complex"
##
                      "collagen type I trimer"
##
                      "tubular endosome"
##
                      "caveola"
##
                      "ripoptosome"
##
##
                      "cuticular plate"
                      "symmetric, GABA-ergic, inhibitory synapse"
##
##
                      "Ctf18 RFC-like complex"
                      "U2-type spliceosomal complex"
##
                      "nucleotide-excision repair factor 2 complex"
##
                      "nuclear pore central transport channel"
##
```

```
"neurosecretory vesicle"
##
##
                      "follicle-stimulating hormone complex"
                      "inhibitory synapse"
##
                      "laminin-5 complex"
##
                      "intrinsic component of Golgi membrane"
##
                      "senescence-associated heterochromatin focus"
##
                      "MAML1-RBP-Jkappa- ICN1 complex"
##
                      "synaptobrevin 2-SNAP-25-syntaxin-1a complex"
##
##
                      "TRC complex"
                      "discoidal high-density lipoprotein particle"
##
##
                      "neuronal cell body membrane"
                      "UFD1-NPL4 complex"
##
                      "transcription factor TFIIE complex"
##
                      "STAGA complex"
##
##
                      "interstitial matrix"
##
                      "core-binding factor complex"
                      "extrinsic component of endoplasmic reticulum membrane"
##
                      "neurofilament cytoskeleton"
##
##
                      "TRAF2-GSTP1 complex"
                      "endocytic vesicle"
##
##
                      "transcription export complex 2"
##
                      "annulate lamellae"
                      "PCAF complex"
##
                      "junctional sarcoplasmic reticulum membrane"
##
                      "platelet dense granule lumen"
##
##
                      "nuclear euchromatin"
##
                      "AIM2 inflammasome complex"
                      "chromosome, centromeric core domain"
##
##
                      "cardiac myofibril"
##
                      "membrane coat"
##
                      "interleukin-5 receptor complex"
##
                      "extrinsic component of phagophore assembly site membrane"
                      "extrinsic component of omegasome membrane"
##
##
                      "CHOP-ATF3 complex"
                      "spectrin-associated cytoskeleton"
##
##
                      "dendritic spine neck"
##
                      "dendritic microtubule"
##
                      "nuclear microtubule"
##
                      "UBC13-MMS2 complex"
                      "extracellular region"
##
                      "cortical endoplasmic reticulum"
##
##
                      "CBM complex"
                      "AIP1-IRE1 complex"
##
                      "other organism cytoplasm"
##
                      "compact myelin"
##
##
                      "Ski complex"
                      "CGRP receptor complex"
##
                      "nuclear RNA export factor complex"
##
##
                      "glial cytoplasmic inclusion"
                      "classical Lewy body"
##
##
                      "Lewy neurite"
                      "Lewy body corona"
##
##
                      "PTW/PP1 phosphatase complex"
                      "nucleotide-excision repair factor 3 complex"
##
```

```
##
                      "Cul3-RING ubiquitin ligase complex"
##
                      "nuclear condensin complex"
                      "photoreceptor cell terminal bouton"
##
                      "LUBAC complex"
##
                      "RSF complex"
##
##
                      "spanning component of membrane"
                      "plus-end kinesin complex"
##
                      "activin responsive factor complex"
##
##
                      "lipid tube"
                      "central element"
##
##
                      "transcription factor TFIIH core complex"
                      "somatodendritic compartment"
##
                      "G protein-coupled receptor dimeric complex"
##
                      "G protein-coupled receptor homodimeric complex"
##
                      "gamma DNA polymerase complex"
##
##
                      "nuclear exosome (RNase complex)"
                      "IRE1-TRAF2-ASK1 complex"
##
                      "laminin-11 complex"
##
##
                      "cytoplasmic exosome (RNase complex)"
                      "contractile ring"
##
##
                      "NSL complex"
                      "stereocilium membrane"
##
                      "Rad51B-Rad51C-Rad51D-XRCC2 complex"
##
                      "cytoplasmic side of nuclear pore"
##
                      "proteasome core complex"
##
##
                      "dendrite membrane"
##
                      "myosin filament"
                      "eukaryotic translation initiation factor 3 complex, eIF3m"
##
                      "gamma-tubulin complex"
##
                      "microfibril"
##
##
                      "GABA-ergic synapse"
##
                      "nuclear pre-replicative complex"
                      "transcription factor TFTC complex"
##
##
                      "transport vesicle"
                      "cell body fiber"
##
##
                      "transport vesicle membrane"
##
                      "AP-3 adaptor complex"
##
                      "tRNA-splicing ligase complex"
                      "integrin alpha2-beta1 complex"
##
                      "periciliary membrane compartment"
##
                      "lamellipodium"
##
                      "amylin receptor complex 1"
##
                      "spherical high-density lipoprotein particle"
##
                      "Elongator holoenzyme complex"
##
                      "myelin sheath adaxonal region"
##
                      "anchored component of plasma membrane"
##
                      "integral component of peroxisomal membrane"
##
                      "catalytic complex"
##
                      "spermatoproteasome complex"
##
                      "extrinsic component of postsynaptic membrane"
##
##
                      "dendrite terminus"
                      "postsynapse"
##
                      "clathrin-sculpted monoamine transport vesicle membrane"
##
                      "endoplasmic reticulum-Golgi intermediate compartment membrane"
##
```

```
"axonal spine"
##
##
                      "nuclear telomeric heterochromatin"
                      "multivesicular body membrane"
##
                      "SMN complex"
##
##
                      "Weibel-Palade body"
##
                      "mitotic checkpoint complex"
                      "bub1-bub3 complex"
##
                      "MOZ/MORF histone acetyltransferase complex"
##
##
                      "DNA-dependent protein kinase-DNA ligase 4 complex"
                      "nuclear chromosome"
##
##
                      "ESCRT-0 complex"
                      "nuclear outer membrane-endoplasmic reticulum membrane network"
##
##
                      "synaptic vesicle lumen"
                      "neuronal dense core vesicle lumen"
##
##
                      "intraciliary transport particle A"
##
                      "CHOP-ATF4 complex"
                      "proximal dendrite"
##
##
                      "mature chylomicron"
##
                      "chylomicron remnant"
##
                      "axonemal microtubule"
##
                      "CCR4-NOT core complex"
                      "synaptobrevin 2-SNAP-25-syntaxin-1a-complexin II complex"
##
                      "ELL-EAF complex"
##
                      "GABA receptor complex"
##
                      "mitotic cohesin complex"
##
##
                      "centrosomal corona"
##
                      "Golgi-associated vesicle membrane"
                      "protein-containing complex"
##
                      "tRNA-intron endonuclease complex"
##
                      "DNA replication preinitiation complex"
##
##
                      "heterochromatin"
##
                      "SAGA-type complex"
                      "integral component of nuclear inner membrane"
##
                      "alphav-beta3 integrin-PKCalpha complex"
##
##
                      "new growing cell tip"
                      "pronucleus"
##
##
                      "troponin complex"
##
                      "zymogen granule"
                      "sperm plasma membrane"
##
                      "nuclear membrane"
##
                      "perinuclear endoplasmic reticulum"
##
##
                      "postsynaptic spectrin-associated cytoskeleton"
                      "germinal vesicle"
##
                      "TEAD-1-YAP complex"
##
                      "supraspliceosomal complex"
##
                      "adrenomedullin receptor complex"
##
                      "Flemming body"
##
                      "condensed chromosome inner kinetochore"
##
##
                      "laminin-10 complex"
                      "exosome (RNase complex)"
##
##
                      "recycling endosome membrane"
                      "box C/D snoRNP complex"
##
##
                      "integrator complex"
                      "rough endoplasmic reticulum lumen"
##
```

```
##
                      "striated muscle myosin thick filament"
##
                      "retromer, tubulation complex"
                      "NF-kappaB complex"
##
                      "extrinsic component of autophagosome membrane"
##
                      "Holliday junction resolvase complex"
##
##
                      "acrosomal membrane"
                      "TSC1-TSC2 complex"
##
                      "symbiont-containing vacuole membrane"
##
##
                      "cytoskeleton"
                      "neuronal ribonucleoprotein granule"
##
##
                      "platelet alpha granule"
                      "XPC complex"
##
                      "clathrin-sculpted acetylcholine transport vesicle membrane"
##
                      "ESCRT I complex"
##
##
                      "cell projection membrane"
                      "checkpoint clamp complex"
##
                      "Golgi membrane"
##
##
                      "SCAR complex"
                      "proteasome core complex, alpha-subunit complex"
##
                      "serotonergic synapse"
##
##
                      "DSIF complex"
                      "signal recognition particle receptor complex"
##
                      "CHOP-C/EBP complex"
##
                      "azurophil granule"
##
                      "mitotic spindle astral microtubule"
##
##
                      "cyclin D2-CDK4 complex"
##
                      "clathrin-sculpted glutamate transport vesicle membrane"
                      "chromaffin granule membrane"
##
                      "amylin receptor complex 3"
##
                      "precatalytic spliceosome"
##
                      "Dsl1/NZR complex"
##
##
                      "GABA-A receptor complex"
                      "UBC13-UEV1A complex"
##
##
                      "nuclear lumen"
##
                      "centriolar subdistal appendage"
##
                      "Schmidt-Lanterman incisure"
##
                      "TRAPP complex"
##
                      "amylin receptor complex 2"
                      "semaphorin receptor complex"
##
                      "ribonuclease MRP complex"
##
                      "myelin sheath abaxonal region"
##
##
                      "brush border"
                      "SREBP-SCAP-Insig complex"
##
                      "plasma membrane protein complex"
##
                      "Lewy body core"
##
                      "MCM complex"
##
                      "membrane attack complex"
##
                      "growth cone membrane"
##
##
                      "condensed chromosome"
                      "specific granule"
##
##
                      "protein phosphatase type 1 complex"
                      "integral component of presynaptic active zone membrane"
##
                      "TEAD-2-YAP complex"
##
                      "filamentous actin"
##
```

```
##
                      "BLOC-1 complex"
##
                      "pericentriolar material"
                      "Ku70:Ku80 complex"
##
                      "guanyl-nucleotide exchange factor complex"
##
##
                      "ubiquitin conjugating enzyme complex"
##
                      "podosome"
                      "U11/U12 snRNP"
##
                      "neurofibrillary tangle"
##
##
                      "IRE1-RACK1-PP2A complex"
                      "Grb2-Sos complex"
##
##
                      "dendritic spine membrane"
                      "L-type voltage-gated calcium channel complex"
##
                      "TCR signalosome"
##
                      "CD95 death-inducing signaling complex"
##
##
                      "microtubule minus-end"
##
                      "pre-snoRNP complex"
                      "kinesin II complex"
##
##
                      "nuclear pore inner ring"
##
                      "Ndc80 complex"
                      "presynaptic active zone cytoplasmic component"
##
##
                      "Wnt signalosome"
                      "sarcolemma"
##
                      "intermediate-density lipoprotein particle"
##
                      "DNA repair complex"
##
                      "apicolateral plasma membrane"
##
##
                      "shelterin complex"
##
                      "vacuole"
                      "Atg1/ULK1 kinase complex"
##
                      "nuclear pore nuclear basket"
##
                      "synaptobrevin 2-SNAP-25-syntaxin-1a-complexin I complex"
##
##
                      "rDNA heterochromatin"
##
                      "cytoplasmic periphery of the nuclear pore complex"
                      "core TFIIH complex portion of holo TFIIH complex"
##
##
                      "Prp19 complex"
                      "extrinsic component of endosome membrane"
##
##
                      "photoreceptor inner segment"
##
                      "manchette"
##
                      "BBSome"
                      "heteromeric SMAD protein complex"
##
                      "Mre11 complex"
##
                      "high-density lipoprotein particle"
##
##
                      "postsynaptic density, intracellular component"
                      "growth cone lamellipodium"
##
                      "nucleolar ribonuclease P complex"
##
                      "microtubule associated complex"
##
                      "vesicle coat"
##
                      "chloride channel complex"
##
                      "storage vacuole"
##
##
                      "extrinsic component of postsynaptic density membrane"
##
                      "transcription factor TFIIIB complex"
##
                      "secretory granule"
                      "synaptic cleft"
##
##
                      "preribosome"
                      "anchored component of external side of plasma membrane"
##
```

```
"condensed nuclear chromosome"
##
##
                      "inactive sex chromosome"
                      "astral microtubule"
##
                      "dendritic branch"
##
##
                      "growth cone filopodium"
                      "nuclear lamina"
##
                      "signal recognition particle"
##
                      "perinuclear endoplasmic reticulum membrane"
##
##
                      "filopodium tip"
                      "RZZ complex"
##
##
                      "uropod"
                      "ciliary rootlet"
##
                      "nuclear pericentric heterochromatin"
##
                      "macropinosome"
##
##
                      "sarcoplasm"
##
                      "GATOR2 complex"
                      "ribonucleoprotein complex"
##
                      "spindle pole body"
##
##
                      "endoplasmic reticulum Sec complex"
                      "nuclear inclusion body"
##
##
                      "nuclear MIS12/MIND complex"
##
                      "eukaryotic 80S initiation complex"
                      "interchromatin granule"
##
                      "paranode region of axon"
##
                      "extrinsic component of external side of plasma membrane"
##
##
                      "multimeric ribonuclease P complex"
##
                      "MLL3/4 complex"
                      "CCR4-NOT complex"
##
                      "bleb"
##
                      "ASAP complex"
##
##
                      "intrinsic component of membrane"
##
                      "specific granule lumen"
                      "kinetochore microtubule"
##
##
                      "sumoylated E2 ligase complex"
                      "myosin complex"
##
                      "site of double-strand break"
##
##
                      "Schaffer collateral - CA1 synapse"
##
                      "equatorial microtubule organizing center"
##
                      "Myb complex"
                      "Cul4B-RING E3 ubiquitin ligase complex"
##
                      "postsynaptic endocytic zone cytoplasmic component"
##
                      "ubiquitin ligase complex"
##
                      "chylomicron"
##
                      "ciliary transition fiber"
##
                      "postsynaptic endocytic zone membrane"
##
                      "postsynaptic membrane"
##
                      "dendritic shaft"
##
                      "low-density lipoprotein particle"
##
                      "integral component of postsynaptic specialization membrane"
##
                      "apical dendrite"
##
                      "cortical microtubule cytoskeleton"
##
                      "photoreceptor connecting cilium"
##
                      "histone pre-mRNA 3'end processing complex"
##
                      "cell leading edge"
##
```

```
"main axon"
##
                      "transferase complex"
##
                      "cyclin B1-CDK1 complex"
##
                      "very-low-density lipoprotein particle"
##
                      "transcription factor TFIIF complex"
##
                      "lateral plasma membrane"
##
                      "node of Ranvier"
##
                      "nuclear transcription factor complex"
##
##
                      "ciliary transition zone"
                      "cell division site"
##
##
                      "ribosome"
                      "neurofilament"
##
                      "PcG protein complex"
##
                      "basal part of cell"
##
##
                      "integral component of synaptic vesicle membrane"
##
                      "small nucleolar ribonucleoprotein complex"
##
                      "deuterosome"
                      "Grb2-EGFR complex"
##
                      "phosphatidylinositol 3-kinase complex"
##
                      "secretory granule membrane"
##
##
                      "nuclear meiotic cohesin complex"
##
                      "U2-type catalytic step 1 spliceosome"
                      "translation release factor complex"
##
                      "origin recognition complex"
##
                      "NURF complex"
##
##
                      "integral component of Golgi membrane"
##
                      "beta-catenin destruction complex"
                      "cleavage furrow"
##
##
                      "transcription factor TFIIA complex"
                      "signal recognition particle, endoplasmic reticulum targeting"
##
##
                      "ruffle membrane"
##
                      "chromatin silencing complex"
                      "insulin receptor complex"
##
##
                      "site of DNA damage"
                      "Lsm1-7-Pat1 complex"
##
##
                      "muscle thin filament tropomyosin"
##
                      "CAF-1 complex"
##
                      "zonula adherens"
                      "collagen trimer"
##
                      "clathrin vesicle coat"
##
                      "hemidesmosome"
##
##
                      "male pronucleus"
                      "intraciliary transport particle B"
##
                      "Rb-E2F complex"
##
                      "polysome"
##
                      "extracellular matrix"
##
                      "cis-Golgi network"
##
                      "G protein-coupled receptor heterodimeric complex"
##
                      "exocytic vesicle"
##
                      "U6 snRNP"
##
##
                      "T cell receptor complex"
                      "Cul4A-RING E3 ubiquitin ligase complex"
##
##
                      "glial cell projection"
                      "asymmetric synapse"
##
```

```
"presynaptic active zone membrane"
##
##
                      "replication fork"
                      "replication fork protection complex"
##
                      "condensed nuclear chromosome kinetochore"
##
##
                      "nuclear pore cytoplasmic filaments"
                      "cytoplasmic side of rough endoplasmic reticulum membrane"
##
                      "Set1C/COMPASS complex"
##
                      "phagocytic cup"
##
##
                      "Cul4-RING E3 ubiquitin ligase complex"
                      "MIS12/MIND type complex"
##
##
                      "organelle membrane"
                      "axon cytoplasm"
##
                      "actomyosin contractile ring"
##
                      "stereocilium"
##
##
                      "gamma-tubulin small complex"
##
                      "growth cone"
                      "nuclear telomere cap complex"
##
                      "nuclear cap binding complex"
##
##
                      "HULC complex"
                      "phosphatidylinositol 3-kinase complex, class IA"
##
##
                      "intercellular bridge"
                      "condensed nuclear chromosome outer kinetochore"
##
                      "nonhomologous end joining complex"
##
                      "MKS complex"
##
##
                      "integrin complex"
##
                      "spine apparatus"
                      "transcriptional repressor complex"
##
                      "BRCA1-A complex"
##
                      "small-subunit processome"
##
                      "core mediator complex"
##
##
                      "ESC/E(Z) complex"
##
                      "Mpp10 complex"
                      "basal dendrite"
##
                      "RNA cap binding complex"
##
                      "cilium"
##
                      "intermediate filament"
##
##
                      "cell projection"
##
                      "condensed chromosome outer kinetochore"
                      "voltage-gated calcium channel complex"
##
                      "transcription factor TFIID complex"
##
                      "cytoplasmic vesicle"
##
##
                      "anchored component of membrane"
                      "basal plasma membrane"
##
                      "apical junction complex"
##
                      "trans-Golgi network membrane"
##
                      "post-mRNA release spliceosomal complex"
##
                      "beta-catenin-TCF7L2 complex"
##
                      "dynein complex"
##
##
                      "female pronucleus"
                      "axon initial segment"
##
##
                      "PRC1 complex"
                      "mitotic spindle"
##
##
                      "symmetric synapse"
##
                      "adherens junction"
```

```
"transcriptionally active chromatin"
##
##
                      "transforming growth factor beta receptor complex"
                      "flotillin complex"
##
                      "perichromatin fibrils"
##
##
                      "basal cortex"
                      "U2AF"
##
                      "signal peptidase complex"
##
                      "Ada2/Gcn5/Ada3 transcription activator complex"
##
##
                      "axolemma"
                      "activin receptor complex"
##
##
                      "microtubule plus-end"
                      "chromosome passenger complex"
##
                      "presynaptic active zone"
##
                      "alpha-beta T cell receptor complex"
##
##
                      "endosome lumen"
                      "centriole"
##
##
                      "axon hillock"
                      "leading edge membrane"
##
##
                      "BRCA1-BARD1 complex"
                      "condensed nuclear chromosome, centromeric region"
##
##
                      "HAUS complex"
##
                      "myosin II filament"
                      "postsynaptic specialization, intracellular component"
##
                      "extrinsic component of cytoplasmic side of plasma membrane"
##
                      "Fanconi anaemia nuclear complex"
##
##
                      "cyclin-dependent protein kinase holoenzyme complex"
##
                      "COPII-coated ER to Golgi transport vesicle"
                      "catenin complex"
##
##
                      "spindle pole centrosome"
                      "endosome"
##
##
                      "axon terminus"
##
                      "cholinergic synapse"
                      "myosin II complex"
##
##
                      "SMAD protein complex"
                      "MHC class II protein complex"
##
##
                      "photoreceptor outer segment"
##
                      "nuclear inner membrane"
##
                      "bicellular tight junction"
##
                      "muscle myosin complex"
                      "alpha DNA polymerase:primase complex"
##
                      "cytosolic ribosome"
##
##
                      "chromosome, telomeric region"
                      "meiotic cohesin complex"
##
                      "neuron projection"
##
                      "non-motile cilium"
##
                      "gamma-tubulin ring complex"
##
                      "clathrin-coated endocytic vesicle membrane"
##
                      "focal adhesion"
##
##
                      "AP-2 adaptor complex"
                      "condensed chromosome, centromeric region"
##
##
                      "transcription elongation factor complex"
                      "spectrin"
##
##
                      "beta-catenin-TCF complex"
                      "PML body"
##
```

```
"telomerase holoenzyme complex"
##
##
                      "mRNA cleavage factor complex"
                      "paraspeckles"
##
                      "transcriptional preinitiation complex"
##
                      "mRNA cleavage and polyadenylation specificity factor complex"
##
                      "CRD-mediated mRNA stability complex"
##
                      "photoreceptor outer segment membrane"
##
                      "basement membrane"
##
##
                      "intracellular membrane-bounded organelle"
                      "dopaminergic synapse"
##
##
                      "U2-type prespliceosome"
                      "chromocenter"
##
                      "mast cell granule"
##
                      "lateral element"
##
##
                      "Sin3-type complex"
##
                      "dynactin complex"
##
                      "cytoplasmic dynein complex"
                      "nuclear heterochromatin"
##
                      "pericentric heterochromatin"
##
                      "immunoglobulin complex, circulating"
##
##
                      "spindle"
##
                      "intrinsic component of plasma membrane"
                      "pICln-Sm protein complex"
##
                      "clathrin-coated vesicle membrane"
##
                      "cell"
##
##
                      "A band"
##
                      "actomyosin"
                      "methylosome"
##
                      "commitment complex"
##
                      "mitotic spindle midzone"
##
                      "dendrite"
##
##
                      "cornified envelope"
                      "cell-cell adherens junction"
##
##
                      "cell junction"
                      "U7 snRNP"
##
                      "DNA replication factor A complex"
##
##
                      "cohesin complex"
##
                      "spindle midzone"
                      "Cajal body"
##
                      "U2-type precatalytic spliceosome"
##
                      "U4 snRNP"
##
##
                      "SCF ubiquitin ligase complex"
                      "endoplasmic reticulum lumen"
##
                      "Sin3 complex"
##
                      "Golgi transport complex"
##
                      "histone deacetylase complex"
##
                      "fibrillar center"
##
                      "ciliary membrane"
##
##
                      "dendritic spine"
                      "SNARE complex"
##
##
                      "ER to Golgi transport vesicle membrane"
                      "mitotic spindle pole"
##
##
                      "glutamatergic synapse"
                      "histone methyltransferase complex"
##
```

```
"basolateral plasma membrane"
##
##
                      "nuclear pore outer ring"
                      "npBAF complex"
##
                      "microtubule organizing center"
##
##
                      "RNA polymerase II transcription factor complex"
                      "histone acetyltransferase complex"
##
                      "small ribosomal subunit"
##
##
                      "kinesin complex"
##
                      "nuclear chromatin"
                      "receptor complex"
##
##
                      "SMN-Sm protein complex"
                      "nBAF complex"
##
                      "spindle microtubule"
##
                      "U4/U6 x U5 tri-snRNP complex"
##
##
                      "protein-DNA complex"
##
                      "cell cortex"
                      "ciliary tip"
##
                      "keratin filament"
##
##
                      "midbody"
                      "photoreceptor disc membrane"
##
##
                      "chromosome, centromeric region"
##
                      "mediator complex"
                      "cyclin/CDK positive transcription elongation factor complex"
##
                      "Golgi lumen"
##
                      "nuclear chromosome, telomeric region"
##
##
                      "U5 snRNP"
##
                      "cell surface"
                      "integral component of postsynaptic density membrane"
##
##
                      "postsynaptic density"
                      "NuRD complex"
##
                      "SWI/SNF complex"
##
##
                      "nuclear envelope"
                      "integral component of presynaptic membrane"
##
                      "U1 snRNP"
##
                      "spindle pole"
##
                      "integral component of postsynaptic membrane"
##
##
                      "presynaptic membrane"
##
                      "collagen-containing extracellular matrix"
                      "U2 snRNP"
##
                      "external side of plasma membrane"
##
                      "U12-type spliceosomal complex"
##
##
                      "exon-exon junction complex"
                      "RNA polymerase II, core complex"
##
                      "small nuclear ribonucleoprotein complex"
##
                      "nuclear matrix"
##
                      "ciliary basal body"
##
                      "chromatin"
##
                      "nuclear body"
##
##
                      "cell-cell junction"
                      "heterotrimeric G-protein complex"
##
##
                      "condensed chromosome kinetochore"
                      "polysomal ribosome"
##
##
                      "transcription factor complex"
                      "cytosolic small ribosomal subunit"
##
```

```
##
                       "chromosome"
##
                       "intracellular"
##
                       "kinetochore"
##
                       "U2-type catalytic step 2 spliceosome"
##
                       "cytosolic large ribosomal subunit"
##
                       "nuclear speck"
##
                       "centrosome"
##
                       "spliceosomal complex"
##
                       "nucleus"
##
                       "nucleolus"
##
                       "catalytic step 2 spliceosome"
##
                       "nucleoplasm"
##
                       "plasma membrane"
##
                       "integral component of plasma membrane"
##
   cc.enriched.terms "zscore"
                                 "obs"
                                          "mean"
                                                      "std"
                       "134.231" "1450"
                                          "97.41"
                                                      "10.077"
##
##
                       "122.28"
                                 "3629"
                                          "654.09"
                                                      "24.329"
                       "82.884"
                                 "6522"
                                          "2576.76"
                                                      "47.599"
##
                                                      "24.256"
##
                       "60.167"
                                 "2229"
                                          "769.6"
##
                      "58.068"
                                 "361"
                                          "30.69"
                                                      "5.688"
                       "42.319"
                                 "56"
                                          "2.2"
                                                      "1.271"
##
                                                      "3.476"
                       "40.056"
                                 "152"
                                          "12.76"
##
                       "39.578"
                                 "188"
                                          "21.6"
                                                      "4.204"
##
                                 "85"
                                                      "2.089"
                                          "4.6"
##
                      "38.489"
##
                       "36.287"
                                 "576"
                                          "150.18"
                                                      "11.735"
                                 "483"
                                                      "11.134"
                       "32.845"
                                          "117.3"
##
                       "32.76"
                                 "504"
                                          "131.34"
                                                      "11.375"
##
                      "28.78"
                                 "30"
                                          "1.22"
                                                      "0.938"
##
                       "28.608"
                                 "67"
                                          "5.15"
                                                      "2.162"
##
                                                      "5.032"
##
                       "23.301"
                                 "137"
                                          "19.74"
##
                       "21.947"
                                 "1939"
                                          "1045.47"
                                                      "40.714"
                                 "265"
                                          "77.92"
                                                      "8.757"
##
                      "21.364"
                       "20.647"
                                 "229"
                                          "59.2"
                                                      "8.224"
##
                                 "70"
                                          "8.63"
                                                      "3.001"
##
                      "20.453"
                      "20.281"
                                 "121"
                                          "22.11"
                                                      "4.876"
##
##
                      "19.452"
                                 "177"
                                          "49.92"
                                                      "6.533"
##
                       "19.407"
                                 "122"
                                          "28.17"
                                                      "4.835"
                       "18.693"
                                 "307"
                                          "131"
                                                      "9.415"
##
                                 "46"
                                          "7.1"
                      "17.872"
                                                      "2.177"
##
                      "17.681"
                                 "109"
                                          "21.82"
                                                      "4.931"
##
                       "16.429"
                                 "30"
                                          "2.68"
                                                      "1.663"
##
                       "16.405"
                                 "60"
                                          "9.1"
                                                      "3.103"
##
                      "16.359"
                                 "50"
                                          "5.84"
                                                      "2.699"
##
                       "16.159"
                                 "1284"
                                          "808.95"
                                                      "29.398"
##
                      "15.939"
                                 "379"
                                          "172.66"
                                                      "12.945"
##
                                 "40"
                                          "5.12"
                                                      "2.271"
##
                       "15.359"
                      "15.217"
                                 "1101"
                                          "699.12"
                                                      "26.41"
##
##
                       "15.173"
                                 "138"
                                          "43.8"
                                                      "6.208"
                                 "16"
                                          "1.17"
                                                      "1.006"
##
                      "14.748"
                      "14.622"
                                 "174"
                                          "60.91"
                                                      "7.734"
##
                                 "59"
                                          "11.1"
                                                      "3.32"
##
                      "14.429"
##
                       "14.191"
                                 "120"
                                          "36.88"
                                                      "5.857"
                                                      "109.932"
##
                       "14.033"
                                 "7763"
                                          "6220.31"
```

##	"13.779"	"2301"	"1695.98"	"43.908"
##	"13.526"	"106"	"33.87"	"5.333"
##	"13.449"	"193"	"86.13"	"7.946"
##	"13.249"	"124"	"41.52"	"6.226"
##	"13.032"	"56"	"10.87"	"3.463"
##	"12.328"	"15"	"1.13"	"1.125"
##	"12.26"	"50"	"10.9"	"3.189"
##	"11.87"	"398"	"220.65"	"14.941"
##	"11.794"	"557"	"359.63"	"16.735"
##	"11.588"	"23"	"2.77"	"1.746"
##	"11.289"	"156"	"68.94"	"7.712"
##	"11.22"	"52"	"14.18"	"3.371"
##	"10.936"	"38"	"8.21"	"2.724"
##	"10.889"	"32"	"6.42"	"2.349"
##	"10.753"	"40"	"9.49"	"2.837"
##	"10.755"	"216"	"105.7"	"10.454"
	"10.39"	"37"	"8.54"	"2.739"
##				
##	"9.73"	"11"	"1.27"	"0.993"
##	"9.72"	"133"	"57.3"	"7.788"
##	"9.715"	"760"	"563.57"	"20.22"
##	"9.673"	"89"	"37.23"	"5.352"
##	"9.651"	"767"	"536"	"23.936"
##	"9.604"	"90"	"38.37"	"5.376"
##	"9.601"	"762"	"521.52"	"25.048"
##	"9.553"	"264"	"159.27"	"10.964"
##	"9.53"	"39"	"8.63"	"3.187"
##	"9.49"	"26"	"5.58"	"2.152"
##	"9.39"	"36"	"8.69"	"2.908"
##	"9.321"	"154"	"79.44"	"7.999"
##	"9.214"	"42"	"12.11"	"3.244"
##	"9.063"	"92"	"37.08"	"6.06"
##	"9.055"	"72"	"22.96"	"5.416"
##	"8.892"	"129"	"60.92"	"7.656"
##	"8.722"	"220"	"118.91"	"11.59"
##	"8.559"	"259"	"149.22"	"12.826"
##	"8.557"	"40"	"12.42"	"3.223"
##	"8.34"	"9"	"0.66"	"0.781"
##	"8.326"	"94"	"40.67"	"6.406"
##	"8.28"	"128"	"68.65"	"7.168"
##	"8.272"	"209"	"126.46"	"9.978"
##	"8.259"	"26"	"7"	"2.301"
##	"8.137"	"201"	"121.39"	"9.783"
##	"8.113"	"47"	"14"	"4.068"
##	"7.897"	"50"	"19.42"	"3.872"
##	"7.894"	"19"	"4.13"	"1.884"
##	"7.727"	"92"	"44.61"	"6.133"
##	"7.557"	"107"	"46.27"	"8.036"
##	"7.453"	"234"	"147.3"	"11.633"
##	"7.406"	"11"	"1.84"	"1.237"
##	"7.38"	"8"	"0.62"	"0.678"
##	"7.342"	"52"	"19.28"	"4.456"
##	"7.281"	"533"	"390.87"	"19.52"
##	"7.12"	"8"	"0.88"	"0.795"
##	"7.041"	"344"	"240.53"	"14.695"

##	"6.961"	"69"	"28.95"	"5.753"
##	"6.884"	"18"	"4.75"	"1.925"
##	"6.876"	"59"	"24.08"	"5.079"
##	"6.719"	"721"	"559.94"	"23.969"
##	"6.664"	"21"	"5.94"	"2.26"
##	"6.631"	"8"	"1.12"	"1.037"
##	"6.495"	"38"	"14.13"	"3.675"
##	"6.459"	"146"	"94.75"	"7.935"
##	"6.355"	"97"	"50.15"	"7.372"
##	"6.29"	"21"	"6.58"	"2.293"
##	"6.199"	"129"	"75.03"	"8.707"
##	"6.152"	"52"	"21.11"	"5.021"
##	"6.086"	"15"	"3.03"	"1.967"
##	"6.048"	"14"	"3.25"	"1.777"
##	"6.028"	"1178"	"1009.31"	"27.985"
##	"6.019"	"387"	"287.03"	"16.609"
##	"5.91"	"22"	"6.67"	"2.594"
##	"5.833"	"64"	"31.39"	"5.59"
##	"5.81"	"6"	"0.19"	"0.419"
##	"5.477"	"8"	"1.69"	"1.152"
##	"5.462"	"117"	"66.78"	"9.194"
##	"5.422"	"466"	"371.52"	"17.426"
##	"5.298"	"53"	"26.96"	"4.915"
##	"5.277"	"103"	"64.73"	"7.253"
##	"5.25"	"633"	"524.31"	"20.702"
##	"5.137"	"122"	"73.37"	"9.467"
##	"5.096"	"11"	"2.94"	"1.582"
##	"5.079"	"91"	"57.92"	"6.513"
##	"5.047"	"38"	"17.49"	"4.064"
##	"5.046"	"64"	"36.92"	"5.367"
##	"4.993"	"21"	"7.19"	"2.766"
##	"4.887"	"1664"	"1505.75"	"32.383"
##	"4.875"	"125"	"81.26"	"8.973"
##	"4.874"	"106"	"70.55"	"7.273"
##	"4.845"	"160"	"115.37"	"9.212"
##	"4.842"	"10"	"2.24"	"1.603"
##	"4.765"	"48"	"25.37"	"4.75"
##	"4.732"	"157"	"117.44"	"8.361"
##	"4.666"	"39"	"20.8"	"3.9"
##	"4.555"	"84"	"51.1"	"7.223"
##	"4.543"	"19"	"8.26"	"2.364"
##	"4.526"	"53"	"30.33"	"5.009"
##	"4.523"	"52"	"29.2"	"5.041"
##	"4.419"	"15"	"4.91"	"2.283"
##	"4.418"	"14"	"4.66"	"2.114"
##	"4.383"	"31"	"14.34"	"3.801"
##	"4.338"	"635"	"521.86"	"26.083"
##	"4.332"	"66"	"42.35"	"5.459"
##	"4.29"	"22"	"10.26"	"2.736"
##	"4.279"	"17"	"6.34"	"2.491"
##	"4.278"	"17"	"6.14"	"2.539"
##	"4.236"	"171"	"124.1"	"11.07"
##	"4.188"	"303"	"237.14"	"15.727"
##	"4.11"	"90"	"57.72"	"7.854"

##	"4.039"	"19"	"8.11"	"2.696"
##	"4.012"	"68"	"41.86"	"6.515"
##	"4.004"	"82"	"55.03"	"6.735"
##	"3.993"	"38"	"19.95"	"4.52"
##	"3.989"	"140"	"96.22"	"10.975"
##	"3.954"	"76"	"47.83"	"7.124"
##	"3.881"	"227"	"178.32"	"12.542"
##	"3.837"	"47"	"28.37"	"4.855"
##	"3.819"	"76"	"50.29"	"6.732"
##	"3.812"	"22"	"9.84"	"3.19"
##	"3.81"	"4"	"0.19"	"0.443"
##	"3.806"	"83"	"55.9"	"7.12"
##	"3.765"	"5"	"1.14"	"1.025"
##	"3.684"	"50"	"31.52"	"5.016"
##	"3.683"	"18"	"7.61"	"2.821"
##	"3.569"	"46"	"27.11"	"5.293"
##	"3.56"	"64"	"42.71"	"5.98"
##	"3.548"	"34"	"19.46"	"4.098"
##	"3.516"	"212"	"166.13"	"13.046"
##	"3.497"	"37"	"19.94"	"4.878"
##	"3.495"	"584"	"507.98"	"21.753"
##	"3.491"	"58"	"38.12"	"5.695"
##	"3.435"	"30"	"16.02"	"4.07"
##	"3.432"	"42"	"26.1"	"4.633"
##	"3.378"	"507"	"451.42"	"16.452"
##	"3.37"	"4"	"0.63"	"0.872"
##	"3.364"	"83"	"55.4"	"8.204"
##	"3.352"	"9"	"3.93"	"1.513"
##	"3.352"	"22"	"11.3"	"3.192"
##	"3.351"	"33"	"18.39"	"4.36"
##	"3.35"	"8"	"2.59"	"1.615"
##	"3.304"	"18"	"8.33"	"2.927"
##	"3.2"	"14"	"6.06"	"2.482"
## ##	"3.134"	"71"	"51.69"	"6.161"
	"3.134"	"125"	"93.38"	"10.246"
##			"578.46"	
##	"3.076"	"662"		"27.161"
##	"3.059"	"154"	"120.34"	"11.004"
##	"3.056"	"40"	"26.88"	"4.293"
##	"3.039"	"155"	"121.49"	"11.027"
##	"2.988"	"67"	"47.48"	"6.533"
##	"2.981"	"21"	"11.85"	"3.069"
##	"2.881"	"5"	"1.49"	"1.219"
##	"2.881"	"5"	"1.49"	"1.219"
##	"2.87"	"4"	"1.13"	"0.991"
##	"2.849"	"43"	"28.16"	"5.208"
##	"2.833"	"18"	"9.55"	"2.983"
##	"2.762"	"82"	"61.09"	"7.571"
##	"2.761"	"24"	"14.29"	"3.517"
##	"2.752"	"61"	"43.95"	"6.194"
##	"2.738"	"70"	"51.99"	"6.577"
##	"2.725"	"38"	"25.52"	"4.58"
##	"2.673"	"94"	"74.28"	"7.379"
##	"2.661"	"27"	"16.74"	"3.855"
##	"2.63"	"3"	"0.37"	"0.63"

##	"2.608"	"70"	"51.13"	"7.234"
##	"2.592"	"241"	"203.92"	"14.305"
##	"2.59"	"3"	"0.41"	"0.621"
##	"2.567"	"11"	"5.56"	"2.119"
##	"2.523"	"28"	"17"	"4.36"
##	"2.52"	"46"	"31.67"	"5.685"
##	"2.503"	"31"	"20.74"	"4.099"
##	"2.48"	"414"	"360.94"	"21.394"
##	"2.477"	"36"	"25.21"	"4.356"
##	"2.43"	"43"	"30.73"	"5.049"
##	"2.382"	"147"	"121.63"	"10.651"
##	"2.381"	"28"	"18.3"	"4.074"
##	"2.362"	"176"	"152.21"	"10.074"
##	"2.334"	"242"	"208.02"	"14.562"
##	"2.331"	"4"	"1.41"	"1.111"
##	"2.319"	"104"	"81.75"	"9.593"
##	"2.317"	"22"	"13.28"	"3.763"
##	"2.311"	"18"	"10.3"	"3.332"
##	"2.308"	"6"	"2.59"	"1.478"
##	"2.27"	"69"	"52.21"	"7.397"
##	"2.26"	"12"	"6.86"	"2.274"
##	"2.236"	"20"	"12.47"	"3.368"
##	"2.216"	"121"	"102.47"	"8.361"
##	"2.214"	"8"	"3.75"	"1.919"
##	"2.187"	"22"	"14.24"	"3.548"
##	"2.185"	"13145"	"12911.71"	"106.778"
##	"2.166"	"44"	"31.74"	"5.66"
##	"2.165"	"66"	"50.38"	"7.214"
##	"2.164"	"21"	"13.52"	"3.457"
##	"2.153"	"192"	"166.33"	"11.925"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.135"	"24"	"16"	"3.747"
##	"2.127"	"230"	"202.17"	"13.084"
##	"2.107"	"39"	"27.93"	"5.254"
##	"2.096"	"6"	"2.56"	"1.641"
##	"2.056"	"18"	"11.36"	"3.23"
##	"2.048"	"19"	"12.22"	"3.311"
##	"2.037"	"36"	"25.57"	"5.121"
##	"2.029"	"52"	"40.1"	"5.866"
##	"2.02"	"52"	"40.19"	"5.846"
##	"2.008"	"56"	"43.07"	"6.439"
##	"2.007"	"117"	"101.97"	"7.489"
##	"1.99"	"34"	"23.09"	"5.483"
##	"1.99"	"34"	"23.09"	"5.483"
##	"1.99"	"34"	"23.09"	"5.483"
##	"1.966"	"63"	"49.42"	"6.908"
##	"1.953"	"152"	"131.31"	"10.591"
##	"1.93"	"2"	"0.07"	"0.256"
##	"1.92"	"53"	"42.2"	"5.626"
##	"1.88"	"56"	"43.3"	"6.756"
##	"1.879"	"3"	"1.08"	"1.022"
##	"1.876"	"70"	"55.92"	"7.506"
##	"1.874"	"28"	"19.76"	"4.397"

	"4 07"		"450 00"	"40 405"
##	"1.87"	"177"	"152.38"	"13.165"
##	"1.806"	"44"	"34.05"	"5.509"
##	"1.763"	"25"	"17.2"	"4.424"
##	"1.757"	"52"	"41.31"	"6.085"
##	"1.755"	"37"	"28.59"	"4.791"
##	"1.752"	"14"	"8.64"	"3.06"
##	"1.746"	"130"	"111.72"	"10.472"
##	"1.745"	"15"	"9.6"	"3.094"
##	"1.743"	"164"	"143.42"	"11.81"
##	"1.731"	"8"	"4.03"	"2.294"
##	"1.729"	"46"	"35.52"	"6.063"
##	"1.72"	"53"	"42.14"	"6.315"
##	"1.708"	"34"	"26.82"	"4.203"
			"1.87"	
##	"1.701"	"4"		"1.253"
##	"1.69"	"1428"	"1375.37"	"31.135"
##	"1.687"	"732"	"677.35"	"32.391"
##	"1.653"	"20"	"14.08"	"3.581"
##	"1.64"	"2"	"0.36"	"0.628"
##	"1.637"	"5"	"2.39"	"1.595"
##	"1.616"	"10"	"6.21"	"2.345"
##	"1.616"	"225"	"204.87"	"12.455"
##	"1.612"	"6"	"2.99"	"1.867"
##	"1.605"	"15"	"9.96"	"3.14"
##	"1.604"	"8"	"4.62"	"2.107"
##	"1.557"	"7"	"4.28"	"1.747"
##	"1.544"	"90"	"76.2"	"8.937"
##	"1.534"	"105"	"90.47"	"9.47"
##	"1.533"	"190"	"169.33"	"13.48"
##	"1.528"	"48"	"38.72"	"6.074"
##	"1.494"	"119"	"103.9"	"10.109"
##	"1.474"	"75"	"63.97"	"7.481"
##	"1.467"	"20"	"14.84"	"3.518"
##	"1.451"	"28"	"20.77"	"4.983"
##	"1.442"	"109"	"95.52"	"9.348"
##	"1.435"	"16"	"11.54"	"3.109"
##	"1.416"	"28"	"21.59"	"4.526"
##	"1.41"	"2"	"0.59"	"0.698"
##	"1.368"	"90"	"77.83"	"8.895"
##	"1.322"	"62"	"52.83"	"6.936"
##	"1.309"	"37"	"29.71"	"5.571"
##	"1.3"	"131"	"117.34"	"10.51"
##	"1.282"	"109"	"97.91"	"8.653"
##	"1.279"	"42"	"34.3"	"6.021"
##	"1.278"	"44"	"36.92"	"5.541"
##	"1.251"	"7"	"4.41"	"2.07"
##	"1.234"	"15"	"11.23"	"3.055"
##	"1.218"	"10"	"6.67"	"2.734"
##	"1.215"	"3"	"1.53"	"1.21"
##	"1.2"	"2"	"0.8"	"0.865"
##	"1.197"	"55"	"46.8"	"6.85"
##	"1.193" "1.187"	"47"	"39.75"	"6.079"
##		"51"	"43.69"	"6.157"
##	"1.184"	"43"	"36.17"	"5.767"
##	"1.159"	"35"	"29.61"	"4.649"

##	"1.156"	"6"	"3.78"	"1.921"
##	"1.154"	"29"	"23.54"	"4.73"
##	"1.143"	"56"	"48.79"	"6.309"
##	"1.096"	"11"	"7.65"	"3.056"
##	"1.085"	"4"	"2.47"	"1.41"
##	"1.073"	"30"	"24.38"	"5.235"
##	"1.066"	"19"	"14.64"	"4.091"
##	"1.052"	"11"	"7.94"	"2.909"
##	"1.044"	"88"	"80.13"	"7.535"
##	"1.012"	"45"	"39.15"	"5.781"
##	"1.004"	"54"	"47.32"	"6.656"
##	"0.99"	"3"	"1.69"	"1.323"
##	"0.99"	"3"	"1.69"	"1.323"
##	"0.989"	"15"	"11.63"	"3.407"
##	"0.97"	"2"	"1.03"	"0.958"
##	"0.966"	"3"	"1.71"	"1.336"
##	"0.955"	"15"	"11.37"	"3.8"
##	"0.941"	"64"	"57.11"	"7.319"
##	"0.924"	"2"	"1.05"	"1.029"
##	"0.916"	"552"	"529.89"	"24.141"
##	"0.899"	"74"	"66.97"	"7.818"
##	"0.893"	"5"	"3.54"	"1.636"
##	"0.889"	"5"	"3.43"	"1.765"
##	"0.884"	"9258"	"9172.62"	"96.59"
##	"0.881"	"3"	"1.85"	"1.306"
##	"0.877"	"85"	"77.92"	"8.078"
##	"0.872"	"10"	"7.42"	"2.958"
##	"0.863"	"119"	"109.37"	"11.163"
##	"0.86"	"1"	"0.14"	"0.349"
##	"0.86"	"1"	"0.14"	"0.377"
##	"0.853"	"13"	"10.28"	"3.188"
##	"0.84"	"1"	"0.16"	"0.395"
##	"0.838"	"51"	"45.19"	"6.929"
##	"0.809"	"666"	"644.35"	"26.769"
##	"0.808"	"9"	"7.08"	"2.377"
##	"0.797"	"2"	"1.18"	"1.029"
##	"0.794"	"11"	"8.76"	"2.822"
##	"0.776"	"31"	"27.04"	"5.103"
##	"0.76"	"6"	"4.37"	"2.145"
##	"0.745"	"5275"	"5220.25"	"73.504"
##	"0.74"	"28"	"25"	"4.055"
##	"0.739"	"2"	"1.26"	"1.001"
##	"0.73"	"218"	"207.2"	"14.8"
##	"0.729"	"30"	"26.53"	"4.762"
##	"0.728"	"29"	"26.05"	"4.051"
##	"0.72"	"47"	"42.84"	"5.78"
##	"0.716"	"42"	"37.8"	"5.864"
##	"0.7"	"17"	"14.42"	"3.685"
##	"0.655"	"4"	"2.95"	"1.604"
##	"0.634"	"31"	"27.92"	"4.859"
##	"0.614"	"3"	"2.04"	"1.563"
##	"0.582"	"12"	"10.22"	"3.06"
##	"0.581"	"182"	"174.49"	"12.924"
##	"0.58"	"1"	"0.42"	"0.654"

##	"0.576"	"20"	"17.48"	"4.373"
##	"0.571"	"48"	"44.26"	"6.547"
##	"0.553"	"7"	"5.66"	"2.421"
##	"0.544"	"3"	"2.17"	"1.525"
##	"0.527"	"4"	"3.13"	"1.649"
##	"0.517"	"13"	"11.39"	"3.114"
##	"0.505"	"357"	"347.49"	"18.826"
##	"0.498"	"175"	"168.69"	"12.678"
##	"0.495"	"4"	"3.11"	"1.797"
##	"0.473"	"4"	"3.11"	"1.88"
##	"0.467"	"181"	"174.71"	"13.477"
##	"0.463"	"2"	"1.4"	"1.295"
##	"0.463"	"3"	"2.2"	"1.729"
##	"0.416"	"91"	"87.41"	"8.64"
##	"0.399"	"5"	"4.19"	"2.029"
##	"0.39"	"1"	"0.61"	"0.777"
##	"0.388"	"11"	"9.74"	"3.246"
##	"0.379"	"22"	"20.54"	"3.854"
##	"0.37"	"1"	"0.63"	"0.787"
##	"0.366"	"28"	"26.51"	"4.076"
##	"0.359"	"39"	"36.77"	"6.216"
##	"0.343"	"16"	"14.72"	"3.736"
##	"0.315"	"29"	"27.66"	"4.26"
##	"0.315"	"6"	"5.36"	"2.033"
##	"0.312"	"7"	"6.31"	"2.214"
##	"0.312"	"7"	"6.31"	"2.214"
##	"0.305"	"15"	"13.96"	"3.411"
##	"0.294"	"43"	"41.19"	"6.148"
##	"0.29"	"1"	"0.71"	"0.844"
##	"0.281"	"325"	"320"	"17.801"
##	"0.279"	"119"	"116.36"	"9.456"
##	"0.263"	"41"	"39.31"	"6.425"
##	"0.251"	"6"	"5.4"	"2.387" "11.367"
##	"0.248"	"122" "1"	"119.18" "0.76"	"0.922"
## ##	"0.24" "0.24"	"1"	"0.76"	"0.922"
##	"0.239"	"17"	"15.95"	"4.402"
##	"0.232"	"182"	"178.73"	"14.08"
##	"0.222"	"104"	"101.93"	"9.343"
##	"0.188"	"3"	"2.69"	"1.65"
##	"0.173"	"18"	"17.29"	"4.115"
##	"0.169"	"26"	"25.13"	"5.152"
##	"0.164"	"20"	"19.33"	"4.09"
##	"0.164"	"3"	"2.75"	"1.52"
##	"0.154"	"3"	"2.78"	"1.425"
##	"0.141"	"5"	"4.71"	"2.061"
##	"0.125"	"263"	"261.4"	"12.809"
##	"0.11"	"1"	"0.89"	"0.875"
##	"0.1"	"1"	"0.9"	"0.859"
##	"0.099"	"14"	"13.64"	"3.634"
##	"0.096"	"5"	"4.79"	"2.189"
##	"0.083"	"12"	"11.72"	"3.373"
##	"0.078"	"11"	"10.73"	"3.44"
##	"0.067"	"13"	"12.77"	"3.437"

ии	"0.066"	"33"	"32.61"	"5.883"
##	"0.064"	"8"	"7.83"	"2.64"
##				
##	"0.049"	"21"	"20.77"	"4.686"
##	"0.044"	"2"	"1.94"	"1.362"
##	"0.029"	"871"	"870.15"	"28.913"
##	"0.02"	"6"	"5.95"	"2.476"
##	"0.02"	"34"	"33.87"	"6.348"
##	"0.012"	"20"	"19.95"	"4.208"
##	"0.011"	"4"	"3.98"	"1.758"
##	"0.005"	"3"	"2.99"	"1.951"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"-0.006"	"92"	"92.06"	"9.268"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"8"	"8.03"	"2.921"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.015"	"7"	"7.04"	"2.693"
##	"-0.016"	"41"	"41.09"	"5.777"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"

##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.037"	"137"	"137.47"	"12.635"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.053"	"6"	"6.12"	"2.28"
##	"-0.055"	"5"	"5.13"	"2.347"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.065"	"9"	"9.18"	"2.765"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.071"	"1464"	"1466.53"	"35.839"
##	"-0.075"	"26"	"26.36"	"4.775"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.085"	"37"	"37.47"	"5.507"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.102"	"4"	"4.19"	"1.862"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.103"	"3"	"3.16"	"1.549"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"1"	"1.12"	"0.935"
##	"-0.124"	"9"	"9.34"	"2.742"
##	"-0.127"	"11"	"11.44"	"3.471"
##	"-0.127"	"11"	"11.44"	"3.471"
##	"-0.13"	"0"	"0.13"	"0.367"

##	"-0.13"	"0"	"0.13"	"0.367"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.13"	"0"	"0.13"	"0.338"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.144"	"65"	"66.14"	"7.891"
##	"-0.15"	"0"	"0.15"	"0.458"
##	"-0.154"	"1"	"1.16"	"1.042"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.451"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.181"	"3"	"3.32"	"1.763"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.443"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.195"	"2"	"2.31"	"1.594"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.201"	"45"	"46.5"	"7.47"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.409"
##	"-0.214"	"2"	"2.31"	"1.447"
##	"-0.217"	"70"	"71.85"	"8.51"
##	"-0.218"	"51"	"52.51"	"6.929"
##	"-0.218"	"3"	"3.38"	"1.739"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.222"	"5"	"5.53"	"2.385"
##	"-0.227"	"24"	"25.13"	"4.986"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.237"	"14"	"14.82"	"3.454"
##	"-0.24"	"0"	"0.24"	"0.474"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.534"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.248"	"155"	"158.11"	"12.516"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.575"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.251"	"16"	"17.09"	"4.342"
##	"-0.252"	"1"	"1.28"	"1.111"
##	"-0.252"	"25"	"26.33"	"5.271"
##	"-0.254"	"4"	"4.47"	"1.85"
##	"-0.255"	"28"	"29.21"	"4.753"
##	"-0.256"	"4"	"4.5"	"1.951"
##	"-0.264"	"1"	"1.27"	"1.024"

шш	" 0 000"	"3"	"3.48"	U4 700U
##	"-0.268" "-0.27"		"0.27"	"1.789" "0.51"
##		"0"		
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.489"
##	"-0.28"	"4"	"4.54"	"1.93"
##	"-0.28"	"0"	"0.28"	"0.57"
##	"-0.289"	"1"	"1.35"	"1.209"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.303"	"3"	"3.54"	"1.783"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.315"	"31"	"32.75"	"5.56"
##	"-0.33"	"0"	"0.33"	"0.551"
##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.331"	"4"	"4.64"	"1.931"
##	"-0.336"	"1"	"1.43"	"1.281"
##	"-0.34"	"0"	"0.34"	"0.555"
##	"-0.34"	"0"	"0.34"	"0.517"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"1"	"1.35"	"0.978"
##	"-0.35"	"0"	"0.35"	"0.557"
##	"-0.35"	"0"	"0.35"	"0.539"
##	"-0.356"	"66"	"68.86"	"8.037"
##	"-0.36"	"5"	"5.82"	"2.28"
##	"-0.36"	"0"	"0.36"	"0.595"
##	"-0.361"	"1"	"1.38"	"1.052"
##	"-0.373"	"4"	"4.85"	"2.276"
##	"-0.374"	"2"	"2.67"	"1.793"
##	"-0.377"	"2"	"2.64"	"1.697"
##	"-0.378"	"12"	"13.34"	"3.543"
##	"-0.38"	"0"	"0.38"	"0.599"
##	"-0.39"	"0"	"0.39"	"0.65"
##	"-0.39"	"0"	"0.39"	"0.65"
##	"-0.392"	"4"	"4.91"	"2.319"
##	"-0.397"	"4"	"4.92"	"2.317"
##	"-0.4"	"0"	"0.4"	"0.586"
##	"-0.4"	"0"	"0.4"	"0.586"
##	"-0.41"	"0"	"0.41"	"0.621"
##	"-0.41"	"0"	"0.41"	"0.637"
##	"-0.414"	"6"	"7.04"	"2.51"
##	"-0.42"	"0"	"0.42"	"0.669"
##	"-0.434"	"23"	"24.74"	"4.009"
##	"-0.435"	"13"	"14.66"	"3.814"
##	"-0.437"	"7"	"8.21"	"2.768"
##	"-0.44"	"1"	"1.55"	"1.25"
##	"-0.44"	"0"	"0.44"	"0.729"
##	"-0.442"	"6"	"7.24"	"2.804"
	· · · · · ·	-		

##	"-0.45"	"0"	"0.45"	"0.609"
##	"-0.45"	"0"	"0.45"	"0.73"
##	"-0.454"	"1"	"1.53"	"1.167"
##	"-0.456"	"27"	"29.45"	"5.377"
##	"-0.459"	"247"	"254.25"	"15.78"
##	"-0.46"	"0"	"0.46"	"0.626"
##	"-0.46"	"0"	"0.46"	"0.626"
##	"-0.46"	"0"	"0.46"	"0.642"
##	"-0.46"	"0"	"0.46"	"0.61"
##	"-0.46"	"0"	"0.46"	"0.61"
##	"-0.465"	"2"	"2.73"	"1.569"
##	"-0.467"	"6"	"7.2"	"2.57"
##	"-0.474"	"1"	"1.67"	"1.415"
##	"-0.476"	"1"	"1.72"	"1.511"
##	"-0.476"	"2"	"2.72"	"1.511"
##	"-0.48"	"1"	"1.61"	"1.27"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.48"	"0"	"0.48"	"0.689"
##	"-0.482"	"1"	"1.57"	"1.183"
##	"-0.483"	"592"	"604.02"	"24.864"
##	"-0.495"	"1"	"1.56"	"1.131"
##	"-0.497"	"98"	"102.37"	"8.792"
##	"-0.507"	"3"	"4.03"	"2.032"
##	"-0.51"	"0"	"0.51"	"0.859"
##	"-0.51"	"0"	"0.51"	"0.785"
##	"-0.512"	"47"	"50.43"	"6.696"
##	"-0.519"	"8"	"9.51"	"2.911"
##	"-0.52"	"54"	"57.73"	"7.169"
##	"-0.52"	"0"	"0.52"	"0.785"
##	"-0.52"	"1"	"1.6"	"1.155"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.521"	"105"	"110.4"	"10.365"
##	"-0.53"	"0"	"0.53"	"0.643"
##	"-0.53"	"0"	"0.53"	"0.745"
##	"-0.53"	"0"	"0.53"	"0.745"
##	"-0.54"	"0"	"0.54"	"0.744"
##	"-0.542"	"1"	"1.68"	"1.254"
##	"-0.548"	"3"	"4.21"	"2.208"
##	"-0.553"	"12"	"13.98"	"3.582"
##	"-0.56"	"0"	"0.56"	"0.743"
##	"-0.567"	"2"	"2.82"	"1.445"
##	"-0.58"	"0"	"0.58"	"0.794"
##	"-0.58"	"0"	"0.58"	"0.794"
##	"-0.58"	"0"	"0.58"	"0.699"
##	"-0.58"	"0"	"0.58"	"0.755"
##	"-0.583"	"1"	"1.84"	"1.441"
##	"-0.585"	"1"	"1.77"	"1.317"
##	"-0.586"	"3"	"4.35"	"2.302"
##	"-0.59"	"0"	"0.59"	"0.83"
##	"-0.598"	"1"	"1.66"	"1.103"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.765"
##	"-0.6"	"0"	"0.6"	"0.791"
##	"-0.6"	"0"	"0.6"	"0.752"

##	"-0.602"	"9"	"11"	"3.321"
##	"-0.602"	"9"	"11"	"3.321"
##	"-0.607"	"192"	"199.99"	"13.171"
##	"-0.61"	"0"	"0.61"	"0.751"
##	"-0.61"	"0"	"0.61"	"0.723"
##	"-0.61"	"0"	"0.61"	"0.764"
##	"-0.61"	"0"	"0.61"	"0.723"
##	"-0.612"	"100"	"106.01"	"9.82"
##	"-0.614"	"1636"	"1661.14"	"40.943"
##	"-0.616"	"4"	"5.4"	"2.274"
##	"-0.618"	"11"	"13.06"	"3.336"
##	"-0.625"	"31"	"34.8"	"6.082"
##	"-0.626"	"74"	"79.18"	"8.275"
##	"-0.63"	"0"	"0.63"	"0.812"
##	"-0.632"	"1"	"1.97"	"1.534"
##	"-0.636"	"3"	"4.35"	"2.124"
##	"-0.636"	"3"	"4.35"	"2.124"
##	"-0.64"	"0"	"0.64"	"0.859"
##	"-0.64"	"0"	"0.64"	"0.785"
##	"-0.64"	"0"	"0.64"	"0.746"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"2"	"3.06"	"1.644"
##	"-0.645"	"2"	"3.12"	"1.737"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.65"	"0"	"0.65"	"0.857"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.796"
##	"-0.65"	"0"	"0.65"	"0.757"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.857"
##	"-0.672"	"80"	"86.1"	"9.073"
##	"-0.677"	"23"	"26.64"	"5.38"
##	"-0.683"	"81"	"86.88"	"8.607"
##	"-0.69"	"0"	"0.69"	"0.861"
##	"-0.698"	"1"	"1.84"	"1.204"
##	"-0.698"	"220"	"231.31"	"16.204"
##	"-0.699"	"84"	"90.33"	"9.054"
##	"-0.7"	"0"	"0.7"	"0.772"
##	"-0.702"	"8"	"10.2"	"3.133"
##	"-0.704"	"2"	"3.13"	"1.606"
##	"-0.71"	"1"	"2.08"	"1.522"
##	"-0.71"	"0"	"0.71"	"0.769"
##	"-0.713"	"7"	"9.01"	"2.819"
##	"-0.716"	"1"	"1.92"	"1.285"
##	"-0.72"	"0"	"0.72"	"0.877"
##	"-0.72"	"0"	"0.72"	"0.877"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.721"	"8"	"10.1"	"2.915"
##	"-0.722"	"11"	"13.53"	"3.503"
##	"-0.722"	"16"	"19.45"	"4.781"
##	"-0.73"	"0"	"0.73"	"0.709"
##	"-0.73"	"0"	"0.73"	"0.777"

##	"-0.73"	"0"	"0.73"	"0.863"
##	"-0.73"	"0"	"0.73"	"0.93"
##	"-0.73"	"0"	"0.73"	"0.874"
##	"-0.731"	"1"	"2.15"	"1.572"
##	"-0.735"	"17"	"20.21"	"4.368"
##	"-0.735"	"17"	"20.21"	"4.368"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.74"	"56"	"61.85"	"7.904"
##	"-0.744"	"1"	"2.02"	"1.371"
##	"-0.744"	"1"	"2.02"	"1.371"
##	"-0.749"	"3"	"4.48"	"1.977"
##	"-0.75"	"0"	"0.75"	"0.88"
##	"-0.75"	"0"	"0.75"	"0.783"
##	"-0.754"	"0"	"0.79"	"1.047"
##	"-0.754"	"18"	"20.99"	"3.963"
##	"-0.756"	"303"	"320.42"	"23.038"
##	"-0.757"	"4"	"5.9"	"2.509"
##	"-0.76"	"0"	"0.76"	"0.806"
##	"-0.761"	"87"	"94.58"	"9.958"
##	"-0.764"	"42"	"47.06"	"6.619"
##	"-0.766"	"1"	"1.97"	"1.267"
##	"-0.766"	"1"	"1.97"	"1.267"
##	"-0.767"	"17"	"20.12"	"4.068"
##	"-0.768"	"1"	"2.1"	"1.432"
##	"-0.773"	"4"	"5.75"	"2.262"
##	"-0.78"	"0"	"0.78"	"0.905"
##	"-0.78"	"0"	"0.87"	"1.116"
##	"-0.78"	"0"	"0.78"	"0.917"
##	"-0.782"	"17"	"20.39"	"4.337"
##	"-0.79"	"0"	"0.79"	"0.832"
##	"-0.79"	"0"	"0.79"	"0.902"
##	"-0.79"	"0"	"0.79"	"0.902"
##	"-0.79"	"0"	"0.79"	"0.88"
##	"-0.799"	"1"	"2.09"	"1.364"
##	"-0.8"	"9"	"11.37"	"2.963"
##	"-0.808"	"1"	"2.25"	"1.546"
##	"-0.809"	"92"	"99.94"	"9.815"
##	"-0.81"	"1"	"2.14"	"1.407"
##	"-0.81"	"5"	"6.91"	"2.357"
##	"-0.81"	"0"	"0.81"	"0.849"
##	"-0.816"	"1"	"2.12"	"1.373"
##	"-0.817"	"5"	"7.19"	"2.681"
##	"-0.82"	"0"	"0.82"	"0.881"
##	"-0.826"	"13"	"16.2"	"3.874"
##	"-0.83"	"0"	"0.83"	"0.817"
##	"-0.832"	"189"	"199.78"	"12.954"
##	"-0.839"	"18"	"21.82"	"4.551"
##	"-0.84"	"0"	"0.84"	"0.861"
##	"-0.847"	"79"	"85.83"	"8.06"
##	"-0.847"	"1"	"2.26"	"1.488"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.857"	"3"	"5.08"	"2.427"
##	"-0.858"	"3"	"5.18"	"2.54"
##	"-0.862"	"0"	"0.94"	"1.09"

##	"-0.863"	"1"	"2.21"	"1.402"
##	"-0.864"	"15"	"18.53"	"4.084"
##	"-0.88"	"0"	"0.88"	"0.946"
##	"-0.881"	"1"	"2.16"	"1.316"
##	"-0.882"	"62"	"68.79"	"7.701"
##	"-0.885"	"2"	"3.69"	"1.911"
##	"-0.891"	"28"	"32.78"	"5.367"
##	"-0.892"	"6"	"8.52"	"2.827"
##	"-0.892"	"0"	"1.01"	"1.133"
##	"-0.908"	"2"	"3.7"	"1.872"
##	"-0.91"	"0"	"0.91"	"0.922"
##	"-0.91"	"0"	"0.91"	"0.866"
##	"-0.919"	"1"	"2.42"	"1.545"
##	"-0.927"	"2"	"3.98"	"2.137"
##	"-0.944"	"37"	"43.98"	"7.394"
##	"-0.945"	"2"	"3.73"	"1.83"
##	"-0.947"	"85"	"94.89"	"10.446"
##	"-0.948"	"14"	"18.19"	"4.419"
##	"-0.951"	"1"	"2.34"	"1.409"
##	"-0.952"	"0"	"0.99"	"1.04"
##	"-0.959"	"2"	"3.69"	"1.762"
##	"-0.961"	"85"	"92.78"	"8.094"
##	"-0.965"	"264"	"279.24"	"15.799"
##	"-0.968"	"8"	"10.99"	"3.09"
##	"-0.968"	"1"	"2.41"	"1.457"
##	"-0.97"	"0"	"0.97"	"0.979"
##	"-0.97"	"0"	"0.97"	"0.969"
##	"-0.987"	"2"	"4.41"	"2.442"
##	"-0.989"	"0"	"1.09"	"1.102"
##	"-0.991"	"0"	"1.03"	"1.039"
##	"-0.993"	"0"	"1.05"	"1.058"
##	"-0.994"	"218"	"232.46"	"14.542"
##	"-0.997"	"1"	"2.41"	"1.415"
##	"-0.999"	"4"	"6.97"	"2.973"
##	"-0.999"	"6"	"8.72"	"2.723"
##	"-1.002"	"60"	"68.51"	"8.495"
##	"-1.005"	"1"	"2.56"	"1.553"
##	"-1.007"	"2"	"3.76"	"1.747"
##	"-1.01"	"0"	"1.01"	"0.98"
##	"-1.013"	"1"	"2.98"	"1.954"
##	"-1.013"	"0"	"1.17"	"1.155"
##	"-1.015"	"63"	"70.74"	"7.625"
##	"-1.016"	"7"	"10.18"	"3.131"
##	"-1.017"	"0"	"1.06"	"1.043"
##	"-1.019"	"0"	"1.28"	"1.256"
##	"-1.02"	"0"	"1.02"	"0.974"
##	"-1.021"	"232"	"248.13"	"15.802"
##	"-1.021"	"0"	"1.1"	"1.078"
##	"-1.024"	"76"	"84.63"	"8.426"
##	"-1.024"	"3"	"5.33"	"2.274"
##	"-1.025"	"27"	"32.08"	"4.958"
##	"-1.025"	"4"	"6.21"	"2.157"
##	"-1.027"	"0"	"1.18"	"1.149"
##	"-1.03"	"0"	"1.03"	"1"

##	"-1.03"	"0"	"1.03"	"0.979"
##	"-1.032"	"0"	"1.07"	"1.037"
##	"-1.04"	"25"	"29.97"	"4.777"
##	"-1.041"	"20"	"24.34"	"4.169"
##	"-1.045"	"5"	"8"	"2.871"
##	"-1.047"	"38"	"44.14"	"5.866"
##	"-1.05"	"0"	"1.05"	"0.978"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.05"	"0"	"1.05"	"0.968"
##	"-1.057"	"7"	"10.05"	"2.886"
##	"-1.058"	"1"	"2.75"	"1.654"
##	"-1.06"	"0"	"1.06"	"0.941"
##	"-1.066"	"4"	"6.86"	"2.682"
##	"-1.067"	"2"	"4.27"	"2.127"
##	"-1.072"	"4"	"6.33"	"2.174"
##	"-1.077"	"79"	"88.51"	"8.831"
##	"-1.077"	"1"	"2.96"	"1.82"
##	"-1.08"	"0"	"1.37"	"1.269"
##	"-1.08"	"0"	"1.37"	"1.269"
##	"-1.082"	"9"	"13.32"	"3.992"
##	"-1.083"	"0"	"1.29"	"1.192"
##	"-1.083"	"13"	"17.97"	"4.589"
##	"-1.084"	"0"	"1.09"	"1.006"
##	"-1.085"	"2"	"4.35"	"2.167"
##	"-1.093"	"2"	"3.91"	"1.747"
##	"-1.094"	"0"	"1.22"	"1.115"
##	"-1.095"	"0"	"1.33"	"1.215"
##	"-1.098"	"11"	"14.63"	"3.305"
##	"-1.1"	"0"	"1.1"	"0.959"
##	"-1.102"	"0"	"1.42"	"1.288"
##	"-1.103"	"102"	"114.31"	"11.162"
##	"-1.106"	"0"	"1.21"	"1.094"
##	"-1.108"	"5"	"8.03"	"2.736"
##	"-1.108"	"5"	"8.03"	"2.736"
##	"-1.108"	"17"	"22.09"	"4.595"
##	"-1.109"	"94"	"105.24"	"10.14"
##	"-1.109"	"0"	"1.23"	"1.109"
##	"-1.11"	"1"	"2.74"	"1.567"
##	"-1.111"	"23"	"29.42"	"5.777"
##	"-1.115"	"33"	"39.42"	"5.758"
##	"-1.117"	"0"	"1.13"	"1.012"
##	"-1.119"	"0"	"1.32"	"1.18"
##	"-1.123"	"0"	"1.42"	"1.265"
##	"-1.123"	"0"	"1.14"	"1.015"
##	"-1.129"	"1"	"2.88"	"1.665"
##	"-1.13"	"0"	"1.13"	"0.928"
##	"-1.138"	"7"	"10.46"	"3.04"
##	"-1.141"	"0"	"1.59"	"1.393"
##	"-1.142"	"50"	"57"	"6.132"
##	"-1.144"	"0"	"1.32"	"1.154"
##	"-1.144"	"0"	"1.32"	"1.154"
##	"-1.152"	"11"	"15.14"	"3.593"
##	"-1.154"	"0"	"1.24"	"1.074"

##	"-1.154"	"0"	"1.7"	"1.474"
##	"-1.155"	"0"	"1.21"	"1.047"
##	"-1.16"	"0"	"1.42"	"1.224"
##	"-1.166"	"62"	"71.46"	"8.111"
##	"-1.166"	"0"	"1.3"	"1.115"
##	"-1.173"	"1"	"2.92"	"1.637"
##	"-1.177"	"2"	"4"	"1.7"
##	"-1.18"	"0"	"1.18"	"0.989"
##	"-1.181"	"1"	"3.16"	"1.83"
##	"-1.186"	"1"	"2.88"	"1.585"
##	"-1.19"	"0"	"1.62"	"1.362"
##	"-1.191"	"0"	"1.49"	"1.251"
##	"-1.196"	"4"	"7.22"	"2.691"
##	"-1.209"	"1"	"3.21"	"1.827"
##	"-1.21"	"0"	"1.36"	"1.124"
##	"-1.212"	"0"	"1.73"	"1.427"
##	"-1.212"	"38"	"45.94"	"6.552"
##	"-1.215"	"0"	"1.46"	"1.201"
##	"-1.228"	"0"	"1.77"	"1.441"
##	"-1.23"	"0"	"1.23"	"0.993"
##	"-1.23"	"3"	"6.1"	"2.521"
##	"-1.232"	"0"	"1.55"	"1.258"
##	"-1.248"	"2"	"4.35"	"1.882"
##	"-1.249"	"0"	"1.57"	"1.257"
##	"-1.254"	"6"	"9.74"	"2.984"
##	"-1.258"	"1719"	"1778.45"	"47.241"
##	"-1.258"	"0"	"1.79"	"1.423"
##	"-1.262"	"1"	"3.85"	"2.258"
##	"-1.268"	"0"	"1.68"	"1.325"
##	"-1.27"	"18"	"24.19"	"4.874"
##	"-1.273"	"1"	"2.92"	"1.509"
##	"-1.277"	"1"	"3.29"	"1.794"
##	"-1.278"	"76"	"87.16"	"8.733"
##	"-1.28"	"1"	"2.87"	"1.461"
##	"-1.282"	"0"	"1.54"	"1.201"
##	"-1.282"	"45"	"54.24"	"7.208"
##	"-1.283"	"15"	"20.45"	"4.248"
##	"-1.283"	"0"	"1.76"	"1.372"
##	"-1.284"	"5"	"8.46"	"2.695"
##	"-1.29"	"207"	"224.79"	"13.788"
##	"-1.29"	"0"	"1.29"	"0.998"
##	"-1.291"	"8"	"12.99"	"3.865"
##	"-1.292"	"0"	"1.62"	"1.254"
##	"-1.292"	"559"	"591.48"	"25.141"
##	"-1.296"	"24"	"30.95"	"5.364"
##	"-1.296"	"0"	"1.43"	"1.103"
##	"-1.301"	"0"	"1.97"	"1.514"
##	"-1.303"	"41"	"50.25"	"7.1"
##	"-1.309"	"0"	"1.56"	"1.192"
##	"-1.31"	"0"	"1.33"	"1.016"
##	"-1.316"	"11"	"16.83"	"4.431"
##	"-1.318"	"0"	"1.56"	"1.183"
##	"-1.32"	"0"	"1.53"	"1.159"
##	"-1.322"	"29"	"37.8"	"6.658"

##	"-1.322"	"4"	"7.94"	"2.981"
##	"-1.326"	"5"	"8.17"	"2.391"
##	"-1.327"	"2"	"4.88"	"2.171"
##	"-1.327"	"14"	"19.56"	"4.191"
##	"-1.33"	"0"	"1.47"	"1.105"
##	"-1.333"	"2"	"4.85"	"2.139"
##	"-1.34"	"0"	"1.92"	"1.433"
##	"-1.341"	"0"	"1.53"	"1.141"
##	"-1.341"	"0"	"1.43"	"1.066"
##	"-1.347"	"2"	"4.88"	"2.138"
##	"-1.361"	"0"	"1.72"	"1.264"
##	"-1.361"	"0"	"1.72"	"1.264"
##	"-1.361"	"0"	"1.72"	"1.264"
##	"-1.362"	"0"	"1.78"	"1.307"
##	"-1.362"	"6"	"10.36"	"3.202"
## ##	"-1.366"	"0"	"1.51"	"1.105"
		-		
##	"-1.367"	"26"	"34.1"	"5.926"
##	"-1.367"	"8"	"11.87"	"2.831"
##	"-1.371"	"0"	"1.39"	"1.014"
##	"-1.374"	"0"	"1.92"	"1.398"
##	"-1.378"	"0"	"2.03"	"1.473"
##	"-1.378"	"6"	"10.84"	"3.513"
##	"-1.38"	"0"	"2.33"	"1.688"
##	"-1.382"	"0"	"1.75"	"1.266"
##	"-1.383"	"0"	"2.01"	"1.453"
##	"-1.385"	"362"	"394.74"	"23.644"
##	"-1.385"	"0"	"1.69"	"1.22"
##	"-1.387"	"0"	"1.78"	"1.284"
##	"-1.392"	"1"	"3.45"	"1.76"
##	"-1.4"	"1"	"3.58"	"1.843"
##	"-1.406"	"0"	"2.1"	"1.494"
##	"-1.408"	"5"	"8.82"	"2.713"
##	"-1.409"	"0"	"1.75"	"1.242"
##	"-1.414"		"2.09"	
		"0"		"1.478"
##	"-1.415"	"12"	"17.57"	"3.937"
##	"-1.42"	"12" "0"	"17.57" "1.59"	"3.937" "1.12"
##	"-1.42" "-1.421"	"12" "0" "1"	"17.57" "1.59" "3.63"	"3.937" "1.12" "1.851"
## ## ##	"-1.42" "-1.421" "-1.422"	"12" "0" "1" "0"	"17.57" "1.59" "3.63" "1.78"	"3.937" "1.12" "1.851" "1.252"
## ## ##	"-1.42" "-1.421" "-1.422" "-1.424"	"12" "0" "1" "0" "0"	"17.57" "1.59" "3.63" "1.78" "1.67"	"3.937" "1.12" "1.851" "1.252" "1.173"
## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.424"	"12" "0" "1" "0" "0"	"17.57" "1.59" "3.63" "1.78" "1.67"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173"
## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425"	"12" "0" "1" "0" "0" "0"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438"
## ## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425" "-1.426"	"12" "0" "1" "0" "0" "0" "0"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.438" "1.535"
## ## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425" "-1.426" "-1.427"	"12" "0" "1" "0" "0" "0" "0" "0"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.438" "1.535" "1.366"
## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425" "-1.426" "-1.427" "-1.43"	"12" "0" "1" "0" "0" "0" "0" "0" "1"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86"
## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425" "-1.426" "-1.427" "-1.43" "-1.436"	"12" "0" "1" "0" "0" "0" "0" "0" "1" "1" "2"	"17.57" "1.59" "3.63" "1.78" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.422" "-1.424" "-1.425" "-1.426" "-1.426" "-1.436" "-1.439"	"12" "0" "1" "0" "0" "0" "0" "1" "2"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.424" "-1.424" "-1.425" "-1.426" "-1.427" "-1.436" "-1.436" "-1.439" "-1.44"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.424" "-1.424" "-1.425" "-1.426" "-1.427" "-1.436" "-1.439" "-1.444" "-1.442"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1" "2" "1"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.437" "-1.436" "-1.439" "-1.444"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1" "2" "1" "0" "12"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241" "3.969"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.436" "-1.436" "-1.439" "-1.444" "-1.442" "-1.442"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1" "2" "1"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.437" "-1.436" "-1.439" "-1.444" "-1.442" "-1.442" "-1.445" "-1.451" "-1.452"	"12" "0" "1" "0" "0" "0" "0" "0" "1" "2" "1" "0" "12" "0" "12" "10"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73" "2.08" "15.54"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241" "3.969" "1.433" "3.815"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.436" "-1.439" "-1.444" "-1.442" "-1.442" "-1.451" "-1.452" "-1.453"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1" "0" "12" "0"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241" "3.969" "1.433"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.436" "-1.439" "-1.444" "-1.442" "-1.4451" "-1.451" "-1.453" "-1.453" "-1.456"	"12" "0" "1" "0" "0" "0" "0" "0" "1" "2" "1" "0" "12" "0" "12" "10"	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73" "2.08" "15.54" "1.98" "4.12"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.438" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241" "3.969" "1.433" "3.815" "1.363" "2.143"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.42" "-1.421" "-1.424" "-1.424" "-1.425" "-1.426" "-1.426" "-1.436" "-1.439" "-1.444" "-1.442" "-1.442" "-1.451" "-1.452" "-1.453"	"12" "0" "1" "0" "0" "0" "0" "1" "2" "1" "0" "12" "10" "10	"17.57" "1.59" "3.63" "1.78" "1.67" "1.67" "2.05" "2.19" "1.95" "3.66" "5.17" "5.45" "3.98" "1.79" "17.73" "2.08" "15.54" "1.98"	"3.937" "1.12" "1.851" "1.252" "1.173" "1.173" "1.535" "1.366" "1.86" "2.207" "2.397" "2.069" "1.241" "3.969" "1.433" "3.815" "1.363"

##	"-1.461"	"0"	"1.49"	"1.02"
##	"-1.465"	"5"	"9.72"	"3.223"
##	"-1.471"	"0"	"2.16"	"1.468"
##	"-1.471"	"1"	"3.58"	"1.753"
##	"-1.471"	"2"	"5.67"	"2.495"
##	"-1.477"	"0"	"2.23"	"1.51"
##	"-1.478"	"0"	"1.7"	"1.15"
##	"-1.482"	"4"	"8.19"	"2.827"
##	"-1.484"	"22"	"29.53"	"5.074"
##	"-1.486"	"1"	"3.98"	"2.005"
##	"-1.487"	"1"	"3.43"	"1.635"
##	"-1.491"	"12"	"18.03"	"4.044"
##	"-1.495"	"143"	"161.9"	"12.639"
##	"-1.5"	"8"	"13.21"	"3.474"
##	"-1.501"	"3"	"6.4"	"2.265"
##	"-1.505"	"0"	"2.65"	"1.76"
##	"-1.509"	"0"	"2"	"1.326"
##	"-1.509"	"136"	"153.82"	"11.812"
##	"-1.511"	"65"	"78.35"	"8.838"
##	"-1.511"	"1"	"4.32"	"2.197"
##	"-1.513"	"0"	"1.79"	"1.183"
##	"-1.526"	"20"	"27.69"	"5.041"
##	"-1.526"	"58"	"70.22"	"8.006"
##	"-1.526"	"0"	"1.82"	"1.192"
##	"-1.53"	"0"	"1.91"	"1.248"
##	"-1.532"	"2"	"5.52"	"2.298"
##	"-1.534"	"0"	"1.76"	"1.147"
##	"-1.535"	"4"	"8.05"	"2.638"
##	"-1.537"	"0"	"2.21"	"1.438"
##	"-1.538"	"1"	"3.7"	"1.755"
##	"-1.54"	"0"	"2.52"	"1.636"
##	"-1.559"	"4"	"8.74"	"3.041"
##	"-1.56"	"2"	"5.39"	"2.174"
##	"-1.562"	"0"	"3.07"	"1.966"
##	"-1.567"	"0"	"2.09"	"1.334"
##	"-1.575"	"152"	"172.77"	"13.188"
##	"-1.58"	"0"	"2.05"	"1.298"
##	"-1.585"	"13"	"20.13"	"4.498"
##	"-1.59"	"0"	"2.08"	"1.308"
##	"-1.593"	"72"	"86.37"	"9.02"
##	"-1.594"	"1"	"4.71"	"2.328"
##	"-1.596"	"0"	"2.64"	"1.655"
##	"-1.598"	"315"	"346.05"	"19.435"
##	"-1.601"	"0"	"2.26"	"1.411"
##	"-1.602"	"2"	"5.05"	"1.904"
##	"-1.603"	"0"	"2.85"	"1.777"
##	"-1.604"	"7"	"12.86"	"3.654"
##	"-1.607"	"42"	"53.66"	"7.256"
##	"-1.608"	"4"	"9.09"	"3.166"
##	"-1.609"	- "15"	"21.83"	"4.245"
##	"-1.609"	"10"	"17.33"	"4.555"
##	"-1.614"	"3"	"7.11"	"2.546"
##	"-1.622"	"177"	"198.72"	"13.389"
##	"-1.622"	"0"	"2.06"	"1.27"
		-		

##	"-1.624"	"1"	"4.33"	"2.05"
##	"-1.631"	"0"	"2.83"	"1.735"
##	"-1.632"	"0"	"1.93"	"1.183"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.632"	"0"	"2.47"	"1.514"
##	"-1.634"	"216"	"241.97"	"15.893"
##	"-1.638"	"0"	"2.7"	"1.648"
##	"-1.64"	"1"	"4.34"	"2.036"
##	"-1.641"	"2"	"5.81"	"2.321"
##	"-1.649"	"2"	"5.77"	"2.287"
##	"-1.65"	"2"	"5.39"	"2.054"
##	"-1.653"	"3"	"7.34"	"2.626"
##	"-1.654"	"40"	"51.91"	"7.201"
##	"-1.656"	"16"	"24.51"	"5.137"
##	"-1.659"	"10"	"17.83"	"4.721"
##	"-1.659"	"1"	"4.08"	"1.857"
##	"-1.675"	"0"	"2.69"	"1.606"
##	"-1.678"	"3"	"7.12"	"2.455"
##	"-1.679"	"2"	"5.98"	"2.37"
##	"-1.68"	"0"	"2.78"	"1.655"
##	"-1.682"	"1"	"4.38"	"2.009"
##	"-1.682"	"1"	"4.55"	"2.11"
##	"-1.684"	"54"	"66.72"	"7.555"
##	"-1.685"	"2"	"5.89"	"2.309"
##	"-1.689"	"0"	"3.18"	"1.882"
##	"-1.69"	"3"	"7.06"	"2.403"
##	"-1.692"	"33"	"43.78"	"6.37"
##	"-1.693"	"0"	"2.66"	"1.571"
##	"-1.696"	"27"	"36.16"	"5.401"
##	"-1.704"	"21"	"29.66"	"5.082"
##	"-1.705"	"4"	"9.38"	"3.155"
##	"-1.706"	"190"	"214.78"	"14.525"
##	"-1.706"	"2"	"5.59"	"2.104"
##	"-1.706"	"0"	"2.17"	"1.272"
##	"-1.707"	"0"	"3.12"	"1.827"
##	"-1.709"	"0"	"2.7"	"1.58"
##	"-1.71"	"2"	"6.84"	"2.831"
##	"-1.711"	"138"	"158.01"	"11.693"
##	"-1.719"	"7"	"13.53"	"3.799"
##	"-1.72"	"3"	"7.51"	"2.623"
##	"-1.72"	"0"	"2.38"	"1.384"
##	"-1.722"	"23"	"32.89"	"5.743"
##	"-1.723"	"10"	"17.22"	"4.191"
##	"-1.724"	"1"	"5.21"	"2.442"
##	"-1.727"	"14"	"22.46"	"4.9"
##	"-1.733"	"0"	"2.73"	"1.575"
##	"-1.736"	"0"	"3.64"	"2.096"
##	"-1.736"	"0"	"3.17"	"1.826"
##	"-1.747"	"0"	"2.73"	"1.563"
##	"-1.748"	"0"	"3.6"	"2.06"
##	"-1.748"	"11"	"18.98"	"4.566"
##	"-1.754"	"7"	"13.08"	"3.466"
##	"-1.755"	"6"	"11.98"	"3.408"
##	"-1.758"	"5"	"9.95"	"2.815"

##	"-1.76"	"1"	"5.23"	"2.403"
##	"-1.761"	"8"	"14.03"	"3.424"
##	"-1.762"	"0"	"2.57"	"1.458"
##	"-1.764"	"3"	"8.02"	"2.846"
##	"-1.768"	"20"	"30.33"	"5.843"
##	"-1.769"	"0"	"3.14"	"1.775"
##	"-1.786"	"1"	"4.03"	"1.696"
##	"-1.79"	"2"	"7.09"	"2.843"
##	"-1.794"	"1"	"4.51"	"1.957"
##	"-1.794"	"5"	"11.31"	"3.518"
##	"-1.813"	"110"	"128.92"	"10.437"
##	"-1.819"	"0"	"3.24"	"1.782"
##	"-1.82"	"50"	"63.65"	"7.499"
##	"-1.822"	"28"	"40.08"	"6.63"
##	"-1.823"	"1"	"4.5"	"1.92"
##	"-1.842"	"2"	"6.26"	"2.312"
##	"-1.847"	"136"	"159.11"	"12.514"
##	"-1.849"	"1"	"4.82"	"2.066"
##	"-1.861"	"0"	"3.21"	"1.725"
##	"-1.862"	"6"	"12.22"	"3.341"
##	"-1.863"	"9"	"17.49"	"4.558"
##	"-1.865"	"1"	"5.21"	"2.258"
##	"-1.865"	"1"	"5.8"	"2.574"
##	"-1.871"	"1"	"5.82"	"2.576"
##	"-1.874"	"0"	"3.4"	"1.815"
##	"-1.877"	"12"	"18.99"	"3.724"
##	"-1.88"	"0"	"3.5"	"1.861"
##	"-1.88"	"2"	"6.38"	"2.33"
##	"-1.882"	"0"	"3.23"	"1.717"
##	"-1.884"	"3"	"9.54"	"3.471"
##	"-1.887"	"2255"	"2339.72"	"44.895"
##	"-1.887"	"1"	"5.21"	"2.231"
##	"-1.904"	"0"	"4.01"	"2.106"
##	"-1.907"	"5"	"11.98"	"3.66"
##	"-1.909"	"1"	"6.15"	"2.698"
##	"-1.91"	"0"	"3.39"	"1.775"
##	"-1.916"	"2"	"8.26"	"3.268"
##	"-1.917"	"0"	"3.64"	"1.899"
##	"-1.919"	"4"	"9.82"	"3.033"
##	"-1.921"	"0"	"3.01"	"1.567"
##	"-1.921"	"0"	"3.01"	"1.567"
##	"-1.921"	"0"	"3.01"	"1.567"
##	"-1.921"	"0"	"3.01"	"1.567"
##	"-1.927"	"38"	"53.27"	"7.926"
##	"-1.93"	"1"	"5.76"	"2.466"
##	"-1.936"	"56"	"71.75"	"8.136"
##	"-1.938"	"1"	"5.77"	"2.461"
##	"-1.944"	"0"	"3.09"	"1.59"
##	"-1.953"	"2"	"6.64"	"2.376"
##	"-1.964"	"4"	"9.21"	"2.653"
##	"-1.965"	"0"	"2.94"	"1.496"
##	"-1.975"	"0"	"3.32"	"1.681"
##	"-1.976"	"11"	"18.99"	"4.044"
##	"-1.978"	"0"	"3.57"	"1.805"

##	"-1.98"	"1"	"6.29"	"2.672"
##	"-1.982"	"23"	"33.88"	"5.491"
##	"-1.984"	"15"	"23.43"	"4.248"
##	"-1.99"	"0"	"3.61"	"1.814"
##	"-1.99"	"0"	"3.61"	"1.814"
##	"-1.993"	"1"	"4.8"	"1.907"
##	"-1.995"	"26"	"36.09"	"5.057"
##	"-1.995"	"6"	"14.15"	"4.086"
##	"-1.997"	"0"	"3.66"	"1.832"
##	"-1.998"	"16"	"24.34"	"4.174"
##	"-2.004"	"1"	"5.09"	"2.04"
##	"-2.008"	"0"	"3.83"	"1.907"
##	"-2.014"	"3"	"8.19"	"2.577"
##	"-2.03"	"0"	"4.28"	"2.109"
##	"-2.032"	"0"	"3.53"	"1.738"
##	"-2.037"	"75"	"95.07"	"9.854"
##	"-2.038"	"27"	"39.43"	"6.099"
##	"-2.038"	"60"	"79.61"	"9.62"
##	"-2.039"	"30"	"42.83"	"6.291"
##	"-2.048"	"37"	"52.99"	"7.806"
##	"-2.049"	"0"	"4.03"	"1.967"
##	"-2.054"	"57"	"75.49"	"9.002"
##	"-2.057"	"2"	"5.97"	"1.93"
##	"-2.058"	"43"	"58.67"	"7.615"
##	"-2.059"	"175"	"205.75"	"14.933"
##	"-2.066"	"7"	"14.85"	"3.799"
##	"-2.067"	"29"	"40.9"	"5.757"
##	"-2.071"	"4"	"10.41"	"3.095"
##	"-2.077"	"0"	"4.54"	"2.185"
##	"-2.079"	"5"	"13.29"	"3.988"
##	"-2.082"	"0"	"3.81"	"1.83"
##	"-2.083"	"374"	"415.67"	"20.002"
##	"-2.084"	"0"	"4.06"	"1.948"
##	"-2.095"	"2"	"7.99"	"2.859"
##	"-2.098"	"0"	"4.38"	"2.088"
##	"-2.098"	"6"	"13.58"	"3.613"
##	"-2.103"	"6"	"14.82"	"4.193"
##	"-2.104"	"2"	"7.11"	"2.428"
##	"-2.108"	"11"	"20.44"	"4.477"
##	"-2.11"	"8"	"15.16"	"3.393"
##	"-2.113"	"1"	"7.45"	"3.053"
##	"-2.115"	"0"	"4"	"1.891"
##	"-2.115"	"240"	"280.19"	"19.002"
##	"-2.117"	"5"	"11.71"	"3.17"
##	"-2.119"	"122"	"148.9"	"12.693"
##	"-2.124"	"0"	"4.9"	"2.307"
##	"-2.126"	"0"	"3.11"	"1.463"
##	"-2.127"	"3"	"9.35"	"2.986"
##	"-2.128"	"11"	"20.04"	"4.247"
##	"-2.133"	"0"	"4.81"	"2.255"
##	"-2.142"	"0"	"4.51"	"2.106"
##	"-2.142"	"0"	"4.51"	"2.106" "2.167"
##	"-2.146" "-2.147"	"1" "5"	"5.65" "12.02"	"2.16 <i>7</i> " "3.269"
##	-2.14/"	5	12.02"	3.209"

##	"-2.148"	"161"	"192.59"	"14.705"
##	"-2.148"	"4"	"11.04"	"3.278"
##	"-2.158"	"0"	"4.05"	"1.877"
##	"-2.162"	"0"	"4.11"	"1.901"
##	"-2.162"	"0"	"4.11"	"1.901"
##	"-2.166"	"0"	"5.74"	"2.65"
##	"-2.174"	"0"	"4.46"	"2.052"
##	"-2.178"	"7"	"16.09"	"4.173"
##	"-2.181"	"0"	"4.24"	"1.944"
##	"-2.181"	"0"	"4.24"	"1.944"
##	"-2.188"	"4"	"10.13"	"2.802"
##	"-2.19"	"6"	"14.29"	"3.785"
##	"-2.19"	"3"	"8.89"	"2.689"
##	"-2.193"	"0"	"4.86"	"2.216"
##	"-2.197"	"0"	"5.11"	"2.326"
##	"-2.199"	"0"	"4.98"	"2.265"
##	"-2.202"	"0"	"5.16"	"2.343"
##	"-2.204"	"20"	"31.74"	"5.327"
##	"-2.206"	"2066"	"2185.39"	"54.112"
##	"-2.212"	"1"	"6.38"	"2.432"
##	"-2.215"	"1"	"4.95"	"1.783"
##	"-2.217"	"117"	"141.09"	"10.867"
##	"-2.218"	"11"	"20.55"	"4.305"
##	"-2.221"	"1"	"6.26"	"2.368"
##	"-2.223"	"4"	"10.54"	"2.942"
##	"-2.232"	"0"	"4.47"	"2.002"
##	"-2.232"	"55"	"75.37"	"9.127"
##	"-2.236"	"1"	"6.93"	"2.652"
##	"-2.244"	"3"	"9"	"2.674"
##	"-2.247"	"0"	"3.97"	"1.766"
##	"-2.249"	"616"	"664.29"	"21.468"
##	"-2.249"	"10"	"18.93"	"3.97"
##	"-2.25"	"0"	"3.64"	"1.618"
##	"-2.251"	"3"	"9.98"	"3.101"
##	"-2.253"	"0"	"4.27"	"1.896"
##	"-2.256"	"9"	"18.66"	"4.281"
##	"-2.256"	"0"	"5.53"	"2.451"
##	"-2.267"	"58"	"78.26"	"8.937"
##	"-2.269"	"1"	"7.7"	"2.952"
##	"-2.271"	"0"	"4.39"	"1.933"
##	"-2.273"	"25"	"37.46"	"5.482"
##	"-2.28"	"106"	"133.07"	"11.873"
##	"-2.287"	"35"	"50.31"	"6.695"
##	"-2.287"	"19"	"31"	"5.247"
##	"-2.297"	"1"	"5.91"	"2.137"
##	"-2.298"	"0"	"3.31"	"1.44"
##	"-2.304"	"0"	"4.21"	"1.827"
## ##	"-2.304"	"5"	"11.59"	"2.861"
## ##	"-2.304"	"0"	"6.29"	"2.728"
## ##	"-2.31"	"3"	"10.64"	"3.308"
## ##	"-2.31" "-2.312"	"8"	"10.64"	"3.824"
## ##	"-2.312" "-2.318"	"0"	"5.27"	"2.273"
## ##	"-2.318" "-2.319"	"0"	"5.27" "5.81"	"2.505"
## ##	"-2.323"	"578"	"640.35"	"26.842"
ππ	2.323	310	040.35	20.042

##	"-2.327"	"1"	"6.68"	"2.441"
##	"-2.332"	"6"	"14.34"	"3.577"
##	"-2.334"	"9"	"19.14"	"4.344"
##	"-2.336"	"2"	"8.46"	"2.765"
##	"-2.337"	"4"	"12.05"	"3.445"
##	"-2.341"	"7"	"17.35"	"4.421"
##	"-2.347"	"0"	"5.82"	"2.48"
##	"-2.351"	"918"	"982.36"	"27.372"
##	"-2.352"	"7"	"16.37"	"3.984"
##	"-2.363"	"34"	"52.55"	"7.849"
##	"-2.37"	"0"	"4.56"	"1.924"
##	"-2.377"	"3"	"10.99"	"3.362"
##	"-2.388"	"3"	"10.64"	"3.199"
##	"-2.393"	"0"	"5.56"	"2.324"
##	"-2.395"	"4"	"12.45"	"3.529"
##	"-2.396"	"1"	"6.76"	"2.404"
##	"-2.406"	"1"	"7.04"	"2.51"
##	"-2.407"	"4"	"11.53"	"3.128"
##	"-2.416"	"3"	"10.06"	"2.923"
##	"-2.416"	"0"	"4.13"	"1.709"
##	"-2.424"	"1"	"6.44"	"2.244"
##	"-2.427"	"1"	"7.81"	"2.806"
##	"-2.435"	"0"	"5.43"	"2.23"
##	"-2.44"	"3"	"11.22"	"3.368"
##	"-2.451"	"0"	"4.81"	"1.963"
##	"-2.452"	"23"	"38.34"	"6.256"
##	"-2.458"	"12"	"21.07"	"3.691"
##	"-2.459"	"7"	"16.31"	"3.786"
##	"-2.46"	"0"	"4.06"	"1.65"
##	"-2.463"	"0"	"7.13"	"2.894"
##	"-2.481"	"0"	"5.78"	"2.329"
##	"-2.481"	"6"	"16.2"	"4.112"
##	"-2.482"	"75"	"99.11"	"9.715"
##	"-2.483"	"1"	"7.08"	"2.448"
##	"-2.495"	"2"	"9.68"	"3.078"
##	"-2.5"	"0"	"6.25"	"2.5"
##	"-2.502"	"38"	"56.15"	"7.255"
##	"-2.503"	"0"	"5.54"	"2.213"
##	"-2.506"	"0"	"5.27"	"2.103"
##	"-2.507"	"70"	"98.63"	"11.421"
##	"-2.509"	"3"	"11.05"	"3.208"
##	"-2.523"	"38"	"57.61"	"7.773"
##	"-2.523"	"10"	"19.85"	"3.904"
##	"-2.525"	"0"	"5.46"	"2.162"
##	"-2.536"	"53"	"72.47"	"7.678"
##	"-2.539"	"5"	"14.84"	"3.876"
##	"-2.542"	"49"	"68.02"	"7.482"
##	"-2.558"	"6"	"15.84"	"3.847"
##	"-2.561"	"3"	"12.33"	"3.643"
##	"-2.563"	"3"	"11.5"	"3.317"
##	"-2.564"	"62"	"83.85"	"8.521"
##	"-2.564"	"1"	"8.02"	"2.738"
##	"-2.565" "-2.566"	"2" "6"	"9.99" "15.45"	"3.116" "3.683"
##	-2.500"	υ.Ο	15.45"	J.003"

##	"-2.57"	"0"	"4.7"	"1.829"
##	"-2.571"	"1"	"8.87"	"3.061"
##	"-2.576"	"0"	"7.06"	"2.741"
##	"-2.587"	"1"	"7.59"	"2.547"
##	"-2.595"	"4"	"13.53"	"3.672"
##	"-2.605"	"2"	"10.85"	"3.397"
##	"-2.614"	"18"	"32.82"	"5.67"
##	"-2.62"	"0"	"7.29"	"2.783"
##	"-2.621"	"1"	"10.21"	"3.514"
##	"-2.628"	"3"	"13.27"	"3.908"
##	"-2.629"	"5"	"15.01"	"3.807"
##	"-2.629"	"30"	"48.8"	"7.151"
##	"-2.643"	"107"	"140.32"	"12.608"
##	"-2.647"	"1"	"10.47"	"3.577"
##	"-2.651"	"10"	"21.31"	"4.266"
##	"-2.659"	"15"	"28.67"	"5.141"
##	"-2.662"	"16"	"28.31"	"4.625"
##	"-2.686"	"1"	"8.58"	"2.822"
##	"-2.693"	"1"	"10.48"	"3.52"
##	"-2.701"	"16"	"31.91"	"5.891"
##	"-2.702"	"4"	"12.27"	"3.061"
##	"-2.704"	"3"	"12.65"	"3.569"
##	"-2.71"	"5"	"13.76"	"3.232"
##	"-2.717"	"6"	"15.67"	"3.559"
##	"-2.722"	"126"	"161.05"	"12.874"
##	"-2.722"	"3"	"13.13"	"3.722"
##	"-2.729"	"73"	"97.79"	"9.084"
##	"-2.729"	"0"	"5.91"	"2.165"
##	"-2.731"	"0"	"5.87"	"2.149"
##	"-2.742"	"9"	"20.63"	"4.242"
##	"-2.743"	"10"	"23.2"	"4.812"
##	"-2.751"	"4"	"17.06"	"4.748"
##	"-2.776"	"26"	"43.87"	"6.436"
##	"-2.778"	"33"	"52.63"	"7.066"
##	"-2.78"	"0"	"8.23"	"2.961"
##	"-2.785"	"54"	"76.97"	"8.248"
##	"-2.785"	"0"	"7.82"	"2.808"
##	"-2.79"	"7"	"18.24"	"4.028"
##	"-2.792"	"6"	"15.82"	"3.517"
##	"-2.809"	"2"	"8.65"	"2.367"
##	"-2.812"	"13"	"24.57"	"4.115"
##	"-2.819"	"81"	"112.18"	"11.061"
##	"-2.826"	"2"	"10.93"	"3.16"
##	"-2.835"	"0"	"7.16"	"2.526"
##	"-2.842"	"3"	"13.53"	"3.705"
##	"-2.853"	"113"	"148.19"	"12.336"
##	"-2.856"	"2"	"13.61"	"4.065"
##	"-2.86"	"1"	"8.3"	"2.552"
##	"-2.862"	"0"	"6.62"	"2.313"
##	"-2.864"	"33"	"53.42"	"7.131"
##	"-2.865"	"1"	"11.72"	"3.742"
##	"-2.866"	"5"	"16.31"	"3.946"
##	"-2.867"	"1"	"10.34"	"3.257"
##	"-2.868"	"16"	"33.81"	"6.21"

##	"-2.877"	"1"	"8.7"	"2.676"
##	"-2.885"	"15"	"31"	"5.547"
##	"-2.885"	"40"	"60.1"	"6.968"
##	"-2.888"	"8"	"25.23"	"5.966"
##	"-2.893"	"1"	"8.17"	"2.478"
##	"-2.906"	"3"	"12.9"	"3.407"
##	"-2.907"	"8"	"21.03"	"4.482"
##	"-2.91"	"878"	"989.58"	"38.338"
##	"-2.932"	"3"	"16.13"	"4.478"
##	"-2.934"	"3"	"12.29"	"3.166"
##	"-2.934"	"54"	"84.33"	"10.339"
##	"-2.94"	"1"	"9.23"	"2.799"
##	"-2.94"	"0"	"6.04"	"2.054"
##	"-2.94"	"7"	"20.88"	"4.721"
##	"-2.943"	"1"	"10.09"	"3.088"
##	"-2.946"	"5"	"16.39"	"3.866"
##	"-2.948"	"0"	"8.39"	"2.846"
##	"-2.952"	"16"	"32.34"	"5.535"
##	"-2.957"	"19"	"35.17"	"5.468"
##	"-2.982"	"5"	"16.89"	"3.987"
##	"-2.982"	"6"	"16.4"	"3.487"
##	"-2.99"	"2"	"12.28"	"3.438"
##	"-2.994"	"59"	"83.41"	"8.153"
##	"-3.007"	"16"	"31.91"	"5.292"
##	"-3.007"	"5"	"17.22"	"4.064"
##	"-3.014"	"44"	"66.06"	"7.319"
##	"-3.02"	"113"	"147.43"	"11.4"
##	"-3.02"	"185"	"231.09"	"15.261"
##	"-3.022"	"3"	"16.85"	"4.582"
##	"-3.022"	"0"	"9.04"	"2.991"
##	"-3.025"	"17"	"33.94"	"5.599"
##	"-3.027"	"0"	"8.18"	"2.702"
##	"-3.028"	"411"	"480.53"	"22.966"
##	"-3.028"	"1"	"13.75"	"4.21"
##	"-3.037"	"13"	"31.72"	"6.165"
##	"-3.039"	"2"	"11.67"	"3.182"
##	"-3.043"	"199"	"238.98"	"13.136"
##	"-3.045"	"88"	"123.25"	"11.575"
##	"-3.049"	"3"	"14.59"	"3.801"
##	"-3.053"	"2"	"11.53"	"3.122"
##	"-3.056"	"10"	"27.22"	"5.635"
##	"-3.057"	"3"	"14.75"	"3.844"
##	"-3.067"	"38"	"58.82"	"6.789"
##	"-3.067"	"11"	"27.28"	"5.309"
##	"-3.068"	"89"	"124.27"	"11.494"
##	"-3.074"	"35"	"57.48"	"7.312"
##	"-3.076"	"7"	"20.64"	"4.435"
##	"-3.1"	"9"	"24.5"	"5"
##	"-3.108"	"1"	"15.1"	"4.536"
##	"-3.116"	"3"	"14.86"	"3.806"
##	"-3.118"	"123"	"161.89"	"12.475"
##	"-3.123"	"2"	"15.64"	"4.368"
##	"-3.129"	"6"	"19.58"	"4.34"
##	"-3.15"	"46"	"70.75"	"7.858"

##	"-3.155"	"11"	"26.52"	"4.918"
##	"-3.17"	"222"	"273.96"	"16.389"
##	"-3.176"	"0"	"8.99"	"2.83"
##	"-3.176"	"93"	"131.4"	"12.091"
##	"-3.177"	"1"	"13.81"	"4.032"
##	"-3.18"	"23"	"44.97"	"6.908"
##	"-3.196"	"29"	"49.4"	"6.383"
##	"-3.197"	"2"	"12.09"	"3.156"
##	"-3.2"	"11"	"26.56"	"4.862"
##	"-3.205"	"19"	"42.61"	"7.368"
##	"-3.21"	"131"	"170.81"	"12.401"
##	"-3.211"	"4"	"14.02"	"3.12"
##	"-3.227"	"4"	"16.58"	"3.898"
##	"-3.243"	"7"	"19.02"	"3.706"
##	"-3.258"	"2"	"13.71"	"3.594"
##	"-3.26"	"11"	"24.01"	"3.991"
##	"-3.26"	"4"	"14.55"	"3.236"
##	"-3.264"	"29"	"54.31"	"7.755"
##	"-3.265"	"121"	"162.92"	"12.838"
##	"-3.269"	"9"	"22.26"	"4.057"
##	"-3.278"	"10"	"25.58"	"4.753"
##	"-3.282"	"215"	"264.42"	"15.058"
##	"-3.3"	"8"	"23.43"	"4.676"
##	"-3.318"	"1"	"9.78"	"2.646"
##	"-3.323"	"51"	"78.91"	"8.399"
##	"-3.325"	"15"	"33.3"	"5.504"
##	"-3.341"	"1"	"14.29"	"3.978"
##	"-3.345"	"4"	"16.18"	"3.641"
##	"-3.347"	"3"	"14.73"	"3.504"
##	"-3.351"	"4"	"18.45"	"4.312"
##	"-3.353"	"0"	"11.12"	"3.316"
##	"-3.36"	"3"	"16.34"	"3.97"
##	"-3.366"	"10"	"25"	"4.456"
##	"-3.388"	"7"	"21.6"	"4.309"
##	"-3.394"	"10"	"26.69"	"4.917"
##	"-3.397"	"137"	"186.32"	"14.52"
##	"-3.408"	"121"	"166.81"	"13.442"
##	"-3.417"	"49"	"81.63"	"9.549"
##	"-3.419"	"0"	"9.62"	"2.813"
##	"-3.419"	"2"	"16.45"	"4.227"
##	"-3.433"	"23"	"44.95"	"6.393"
##	"-3.434"	"16"	"35.15"	"5.577"
##	"-3.437"	"21"	"40.92"	"5.796"
##	"-3.455"	"8"	"25.19"	"4.976"
##	"-3.467"	"4"	"15.85"	"3.418"
##	"-3.491"	"4"	"19.39"	"4.408"
##	"-3.495"	"43"	"73.36"	"8.687"
##	"-3.497"	"7"	"20.21"	"3.777"
##	"-3.499"	"11"	"31.59"	"5.885"
##	"-3.502"	"6"	"20.36"	"4.101"
##	"-3.512"	"11"	"28.01"	"4.844"
##	"-3.541"	"14"	"36.72"	"6.417"
##	"-3.543"	"29"	"52.14"	"6.532"
##	"-3.544"	"45"	"71.8"	"7.563"

##	"-3.546"	"1"	"11.78"	"3.04"
##	"-3.554"	"68"	"98.11"	"8.472"
##	"-3.558"	"61"	"93.73"	"9.2"
##	"-3.559"	"8"	"25.93"	"5.038"
##	"-3.559"	"6"	"21.73"	"4.42"
##	"-3.56"	"2"	"15.88"	"3.898"
##	"-3.563"	"174"	"225.83"	"14.547"
##	"-3.59"	"23"	"46.07"	"6.426"
##	"-3.597"	"8"	"26.26"	"5.076"
##	"-3.605"	"4"	"18.33"	"3.975"
##	"-3.607"	"1"	"14.93"	"3.862"
##	"-3.618"	"90"	"132.61"	"11.777"
##	"-3.631"	"10"	"32.5"	"6.196"
##	"-3.637"	"11"	"29.05"	"4.963"
##	"-3.655"	"30"	"56.67"	"7.298"
##	"-3.687"	"15"	"34.52"	"5.294"
##	"-3.691"	"0"	"13.91"	"3.769"
##	"-3.693"	"133"	"183.74"	"13.741"
##	"-3.698"	"9"	"27.64"	"5.04"
##	"-3.716"	"157"	"206.48"	"13.316"
##	"-3.722"	"8"	"26.28"	"4.911"
##	"-3.726"	"67"	"103.22"	"9.721"
##	"-3.729"	"0"	"11.07"	"2.969"
##	"-3.73"	"3"	"18.75"	"4.222"
##	"-3.743"	"6"	"24.54"	"4.953"
##	"-3.754"	"200"	"257.81"	"15.401"
##	"-3.758"	"67"	"107.93"	"10.891"
##	"-3.769"	"142"	"189.25"	"12.536"
##	"-3.771"	"5"	"26.44"	"5.686"
##	"-3.773"	"2"	"15.52"	"3.583"
##	"-3.787"	"187"	"238.42"	"13.577"
##	"-3.789"	"334"	"409.39"	"19.896"
##	"-3.8"	"8"	"27.53"	"5.139"
##	"-3.823"	"48"	"79.1"	"8.135"
##	"-3.825"	"12"	"30.52"	"4.842"
##	"-3.833"	"153"	"208.09"	"14.374"
##	"-3.837"	"19"	"41.63"	"5.898"
##	"-3.841"	"6"	"21.63"	"4.069"
##	"-3.885"	"35"	"64.03"	"7.473"
##	"-3.942"	"10"	"28.16"	"4.607"
##	"-3.958"	"1"	"20.2"	"4.851"
##	"-3.966"	"28"	"55.84"	"7.019"
##	"-3.979"	"196"	"260.59"	"16.233"
##	"-3.984"	"4"	"18.55"	"3.653"
##	"-3.986"	"48"	"83.48"	"8.901"
##	"-3.99"	"53"	"83.48"	"7.639"
##	"-3.991"	"0"	"14.76"	"3.699"
##	"-3.995"	"12"	"32.5"	"5.132"
##	"-4.004"	"4"	"23.71"	"4.922"
##	"-4.023"	"0"	"11"	"2.734"
##	"-4.031"	"5"	"21.34"	"4.053"
##	"-4.041"	"0"	"13.89"	"3.437"
##	"-4.044"	"21"	"44.75"	"5.873"
##	"-4.061"	"7"	"25.85"	"4.641"
		*	-	

##	"-4.064"	"0"	"12.59"	"3.098"
##	"-4.065"	"35"	"65.4"	"7.478"
##	"-4.07"	"7"	"25.79"	"4.617"
##	"-4.093"	"59"	"95.2"	"8.844"
##	"-4.094"	"2"	"17.74"	"3.845"
##	"-4.139"	"40"	"71.07"	"7.507"
##	"-4.147"	"380"	"461.48"	"19.646"
##	"-4.199"	"5"	"27.14"	"5.272"
##	"-4.22"	"4"	"21.11"	"4.055"
##	"-4.224"	"4"	"21.86"	"4.228"
##	"-4.226"	"12"	"36.64"	"5.83"
##	"-4.236"	"6"	"28"	"5.193"
##	"-4.261"	"8"	"28.54"	"4.821"
##	"-4.268"	"5"	"24.15"	"4.487"
##	"-4.276"	"89"	"134.57"	"10.658"
##	"-4.277"	"2"	"16.88"	"3.479"
##	"-4.278"	"89"	"135.29"	"10.82"
##	"-4.29"	"69"	"115.78"	"10.905"
##	"-4.295"	"12"	"37.55"	"5.948"
##	"-4.296"	"22"	"52.1"	"7.007"
##	"-4.325"	"551"	"660.76"	"25.376"
##	"-4.326"	"77"	"122.47"	"10.512"
##	"-4.365"	"0"	"14.89"	"3.411"
##	"-4.393"	"8"	"33.08"	"5.71"
##	"-4.402"	"20"	"51.68"	"7.197"
##	"-4.413"	"7"	"25.69"	"4.235"
##	"-4.422"	"33"	"68.84"	"8.105"
##	"-4.432"	"37"	"69.1"	"7.243"
##	"-4.444"	"106"	"153.98"	"10.796"
##	"-4.449"	"26"	"60.09"	"7.662"
##	"-4.47"	"1"	"16.29"	"3.421"
##	"-4.499"	"10"	"33.3"	"5.179"
##	"-4.536"	"120"	"170.32"	"11.095"
##	"-4.539"	"8"	"30.68"	"4.997"
##	"-4.546"	"428"	"537.14"	"24.009"
##	"-4.549"	"39"	"76.71"	"8.291"
##	"-4.557"	"3"	"27.18"	"5.306"
##	"-4.557"	"69"	"110.33"	"9.069"
##	"-4.582"	"1494"	"1688.71"	"42.497"
##	"-4.583"	"47"	"85.76"	"8.458"
##	"-4.584"	"8"	"28.44"	"4.459"
##	"-4.589"	"19"	"48.13"	"6.348"
##	"-4.592"	"4"	"27.23"	"5.059"
##	"-4.642"	"7"	"29.8"	"4.911"
##	"-4.657"	"340"	"434.99"	"20.399"
##	"-4.738"	"59"	"108.96"	"10.545"
##	"-4.748"	"4"	"27.6"	"4.971"
##	"-4.754"	"2"	"28.11"	"5.492"
##	"-4.797"	"25"	"60.02"	"7.3"
##	"-4.798"	"29"	"71.46"	"8.849"
##	"-4.862"	"13"	"43.78"	"6.33"
##	"-4.874"	"4"	"28.37"	"5"
##	"-4.875"	"47"	"90.74"	"8.973"
##	"-4.901"	"937"	"1103.68"	"34.013"

##	"-4.91"	"1"	"19.15"	"3.697"
##	"-4.931"	"34"	"83.05"	"9.948"
##	"-4.954"	"5"	"32.78"	"5.608"
##	"-4.958"	"12"	"48.74"	"7.41"
##	"-4.967"	"14"	"47.13"	"6.671"
##	"-4.984"	"6"	"35.2"	"5.859"
##	"-4.985"	"9"	"34"	"5.015"
##	"-5.005"	"33"	"71.23"	"7.638"
##	"-5.025"	"32"	"71.66"	"7.892"
##	"-5.037"	"8"	"34.91"	"5.343"
##	"-5.101"	"0"	"25.69"	"5.037"
##	"-5.122"	"303"	"402.94"	"19.511"
##	"-5.125"	"3"	"33.19"	"5.891"
##	"-5.157"	"6"	"36.25"	"5.866"
##	"-5.201"	"113"	"182.39"	"13.342"
##	"-5.24"	"3"	"31.03"	"5.349"
##	"-5.264"	"14"	"44.34"	"5.763"
##	"-5.278"	"33"	"72.62"	"7.507"
##	"-5.287"	"29"	"74.03"	"8.517"
##	"-5.353"	"9"	"38.2"	"5.455"
##	"-5.353"	"9"	"42.91"	"6.334"
##	"-5.386"	"751"	"921.03"	"31.569"
##	"-5.459"	"4"	"34.95"	"5.67"
##	"-5.509"	"118"	"189.82"	"13.037"
##	"-5.516"	"460"	"585.14"	"22.688"
##	"-5.533"	"6"	"36.94"	"5.592"
##	"-5.549"	"39"	"89.71"	"9.138"
##	"-5.559"	"9"	"40.35"	"5.64"
##	"-5.59"	"80"	"142.37"	"11.158"
##	"-5.666"	"125"	"216.47"	"16.143"
##	"-5.689"	"55"	"108.34"	"9.376"
##	"-5.696"	"25"	"69.65"	"7.838"
##	"-5.739"	"114"	"188.43"	"12.969"
##	"-5.748"	"242"	"358.32"	"20.237"
##	"-5.773"	"32"	"85.15"	"9.207"
##	"-5.822"	"6"	"36.93"	"5.313"
##	"-5.851"	"55"	"116.88"	"10.577"
##	"-5.851"	"248"	"350.56"	"17.528"
##	"-5.892"	"41"	"98.94"	"9.834"
##	"-6.012"	"279"	"396.91"	"19.612"
##	"-6.044"	"41"	"101.02"	"9.93"
##	"-6.051"	"101"	"172.2"	"11.766"
##	"-6.167"	"25"	"69.49"	"7.215"
##	"-6.168"	"796"	"974.52"	"28.941"
##	"-6.173"	"31"	"90.13"	"9.579"
##	"-6.201"	"194"	"303.5"	"17.658"
##	"-6.241"	"14"	"56.5"	"6.81"
##	"-6.277"	"7"	"50.95"	"7.001"
##	"-6.292"	"206"	"309.08"	"16.382"
##	"-6.315"	"115"	"210.91"	"15.188"
##	"-6.325"	"25"	"78.53"	"8.463"
##	"-6.375"	"53"	"120.2"	"10.541"
##	"-6.418"	"57"	"126.08"	"10.763"
##	"-6.536"	"849"	"1055.1"	"31.531"

```
"-6.542"
                                  "243"
                                          "367.76"
                                                      "19.071"
##
                       "-6.546"
                                  "18"
                                          "67.61"
                                                      "7.578"
##
##
                       "-6.571"
                                  "6"
                                          "51.68"
                                                      "6.951"
                       "-6.654"
                                  "81"
                                          "167.76"
                                                      "13.039"
##
##
                       "-6.698"
                                  "76"
                                          "152.83"
                                                      "11.471"
                       "-6.714"
                                 "108"
                                          "199.52"
                                                      "13.632"
##
                       "-6.762"
                                  "187"
                                          "301.51"
                                                      "16.934"
##
                                  "18"
                       "-6.778"
                                          "76.19"
                                                      "8.586"
##
##
                       "-6.832"
                                  "25"
                                          "79.98"
                                                      "8.048"
                       "-6.838"
                                  "299"
                                          "442.4"
                                                      "20.971"
##
##
                       "-6.858"
                                  "4"
                                          "40.78"
                                                      "5.363"
                       "-6.906"
                                  "98"
                                          "192.01"
                                                      "13.613"
##
                       "-6.921"
                                  "41"
                                          "99.57"
                                                      "8.463"
##
                                  "11"
                       "-7.042"
                                          "53.78"
                                                      "6.075"
##
                       "-7.053"
                                  "44"
                                          "133.11"
                                                      "12.634"
##
##
                       "-7.058"
                                  "415"
                                          "586.09"
                                                      "24.24"
                       "-7.07"
                                  "32"
                                          "99.11"
                                                      "9.492"
##
                       "-7.181"
##
                                  "656"
                                          "867.43"
                                                      "29.442"
                       "-7.201"
                                  "9"
                                          "52.05"
                                                      "5.979"
##
                       "-7.236"
                                          "607.61"
                                                      "26.48"
##
                                  "416"
##
                       "-7.319"
                                 "27"
                                          "95.47"
                                                      "9.355"
##
                       "-7.355"
                                  "10"
                                          "68.64"
                                                      "7.973"
                       "-7.373"
                                  "356"
                                          "509.68"
                                                      "20.845"
##
                       "-7.446"
                                  "25"
                                          "86.78"
                                                      "8.297"
##
                                  "37"
                       "-7.45"
                                          "104.63"
                                                      "9.077"
##
##
                       "-7.456"
                                  "205"
                                          "342.59"
                                                      "18.453"
                                  "11"
                                          "61.44"
##
                       "-7.494"
                                                      "6.73"
                       "-7.604"
                                  "16"
                                          "94.36"
                                                      "10.305"
##
                       "-7.658"
                                  "63"
                                          "151.47"
                                                      "11.553"
##
                       "-7.72"
                                  "22"
                                          "98.51"
                                                      "9.911"
##
                       "-7.965"
                                  "170"
                                          "330.06"
                                                      "20.096"
##
##
                       "-8.006"
                                  "47"
                                          "137"
                                                      "11.242"
                       "-8.089"
                                  "29"
                                          "109.28"
                                                      "9.924"
##
                       "-8.175"
                                  "70"
                                          "165.42"
                                                      "11.672"
##
                                  "20"
                                          "89.92"
                                                      "8.513"
##
                       "-8.213"
                       "-8.329"
                                 "262"
                                          "434.19"
                                                      "20.673"
##
##
                       "-8.396"
                                  "100"
                                          "199.76"
                                                      "11.883"
##
                       "-8.826"
                                  "236"
                                          "404.73"
                                                      "19.118"
##
                       "-9.085"
                                  "456"
                                          "686.43"
                                                      "25.364"
                       "-9.512"
                                  "242"
                                          "397.9"
                                                      "16.39"
##
                       "-9.724"
                                  "22"
                                          "124.79"
                                                      "10.571"
##
                                                      "17.79"
##
                       "-9.923"
                                  "106"
                                          "282.53"
                       "-9.931"
                                  "57"
                                          "178.65"
                                                      "12.249"
##
                       "-9.974"
                                 "333"
                                          "575.67"
                                                      "24.329"
##
                       "-10.133" "160"
                                          "362.04"
                                                      "19.939"
##
                       "-10.148" "146"
                                          "308.34"
                                                      "15.998"
##
                       "-10.226" "449"
                                          "733.17"
                                                      "27.788"
##
                       "-10.449" "200"
                                          "409.02"
                                                      "20.003"
##
                       "-10.689" "71"
                                          "206.4"
##
                                                      "12.667"
                       "-11.599" "165"
                                          "386.03"
                                                      "19.055"
##
##
                       "-12.849" "772"
                                          "1230.34"
                                                      "35.672"
                       "-13.056" "1045"
                                          "1523.25"
                                                      "36.632"
##
                       "-13.568" "215"
##
                                          "491.62"
                                                      "20.388"
                       "-13.621" "11061" "12657.17" "117.187"
##
```

```
##
                      "-13.892" "1963" "2647.39" "49.266"
##
                      "-16.308" "192"
                                         "555.32"
                                                    "22.278"
                      "-18.169" "7640"
##
                                         "9631.53" "109.614"
##
                      "-18.829" "4373"
                                         "5657.76"
                                                    "68.232"
                      "-19.592" "677"
                                         "1401.18" "36.963"
write.table(cc.enriched.terms, file="output/genes.cc.txt", sep="\t", row.names = F, col.names = F, quot
mf.enriched.terms <- c("GO.ID", "GO.Term", "zscore", "obs", "mean", "std")
for (i in 1:length(mf.enrich.list)) {
  id <- as.character(mf.enrich.list[i])</pre>
  term <- Term(GOID(id))</pre>
  z.gene <- z.mf[i]
  mf.enriched.terms <- rbind(mf.enriched.terms, c(id, term, z.gene, mf.obs[i], mf.mean[i], mf.std[i]))
}
mf.enriched.terms
##
## mf.enriched.terms "GO.ID"
                      "GO:0008137"
##
##
                      "GO:0003954"
                      "GO:0004129"
##
                      "GO:0004466"
##
                      "GD:0009055"
##
##
                      "GO:0008121"
##
                      "GO:0051537"
##
                      "GD:0048039"
##
                      "GO:0046961"
                      "GO:0004332"
##
                      "GD:0008553"
##
                      "GO:0017099"
##
##
                      "GO:0045155"
                      "GD:0061609"
##
                      "GO:0051539"
##
                      "GO:0048038"
##
##
                      "GO:0042625"
                      "GD:0000036"
##
##
                      "GD:0061690"
##
                      "GO:0070991"
##
                      "GD:0046933"
##
                      "GO:0047708"
##
                      "GO:0051287"
##
                      "GD:0070061"
                      "GD:0000062"
##
##
                      "GD:0050660"
##
                      "GO:0008709"
##
                      "GD:0030283"
##
                      "GO:0047015"
##
                      "GD:0005471"
                      "GO:0045153"
##
                      "GD:0008320"
##
##
                      "GO:0030170"
##
                      "GD:0022857"
                      "GD:0000035"
##
```

"GD:0003995"

##

##	"GO:0005525"
##	"GO:0008177"
##	"GD:0034604"
##	"GO:0051082"
##	"GO:0015207"
##	"GO:0015288"
##	"GD:0003924"
##	"GD:0008962"
##	"GO:0015078"
##	"GO:0004741"
##	"GO:0000104"
##	"GO:0015453"
##	"GO:0016491"
##	"GO:0031177"
##	"GD:0060961"
##	"GO:0000253"
##	"GO:0004082"
##	"GO:0016787"
##	"GO:0004591"
##	"GD:0004029"
##	"GD:0008308"
##	"GD:0005200"
##	"GO:0003746"
##	"GO:0015450"
##	"GO:0004740"
##	"GO:0016655"
##	"GO:0016208"
##	"GO:0008184"
##	"GO:0102250"
##	"GO:0102499"
##	"GO:0004619"
##	"GD:0030976"
##	"GO:0016651"
##	"GO:0051087"
##	"GO:0004303"
##	"GO:0008379"
##	"GO:0051538"
##	"GO:0001758"
##	"GO:1903136"
##	"GO:0016887"
##	"GO:0003857"
##	"GO:0050662"
##	"GO:0048029"
##	"GO:0005524"
##	"GO:0004775"
##	"GO:0004776"
##	"GO:0015038"
##	"GO:0034979"
##	"GO:0000287"
##	"GO:0072555"
##	"GO:0072582"
##	"GO:0004148"
##	"GO:0043544"
##	"GO:0031072"

##	"GO:0004459"
##	"GO:0004550"
##	"GO:0008198"
##	"GO:0008168"
##	"GO:0005504"
##	"GD:0004047"
##	"GO:0005507"
##	"GO:0010181"
##	"GD:0004368"
##	"GD:0004739"
##	"GO:0005388"
##	"GO:0004615"
##	"GO:0035243"
##	"GO:0004828"
##	"GO:0042623"
##	"GO:0003941"
##	"GO:0004360"
##	"GD:0097367"
##	"GO:0070403"
##	"GO:0030234"
##	"GO:0019003"
##	"GO:0004449"
##	"GD:0030943"
##	"GO:0044183"
##	"GO:0048487"
##	"GO:0004784"
##	"GO:0043027"
##	"GO:0098619"
##	"GO:0004634"
##	"GD:0003883"
##	"GO:0042624"
##	"GO:0016836"
##	"GD:0000049"
##	"GO:0033149"
##	"GO:0004794"
##	"GO:0051787"
##	"GO:0061663"
##	"GO:0055056"
##	"GO:0004748"
##	"GO:0004478"
##	"GO:0050661"
##	"GO:0005283"
##	"GO:0102391"
##	"GO:0004340"
##	"GO:0008865"
##	"GO:0019158"
##	"GO:0034602"
##	"GO:0005536"
##	"GO:0004030"
##	"GO:0004729"
##	"GD:0003674"
##	"GO:0004587"
##	"GO:0015035"
##	"GO:0005215"

##	"GO:0055131"
##	"GD:0000166"
##	"GD:0004614"
##	"GO:0022890"
##	"GO:0004421"
##	"GO:0004450"
##	"GD:0003983"
##	"GO:0032557"
##	"GO:0004367"
##	"GO:0052852"
## ##	"GO:0052853"
## ##	"GO:0052854" "GO:0008785"
## ##	"GD:0003994"
## ##	"GD:0003994"
##	"GD:0004736"
##	"GD:0004738"
##	"GD:0004738
##	"GD:0004427"
##	"GD:0004923
##	"GD:0001511
##	"GD:0016657"
##	"GD:0004742"
##	"GD:0009374"
##	"GD:0070095"
##	"GD:0003872"
##	"GD:0005093"
##	"GO:1904047"
##	"GO:0047952"
##	"GO:0018455"
##	"GD:0005096"
##	"GO:0022841"
##	"GD:0008106"
##	"GO:0004056"
##	"GO:0043878"
##	"GO:0048037"
##	"GO:0097177"
##	"GD:0034186"
##	"GD:0008794"
##	"GD:0031071"
##	"GD:0003934"
##	"GD:0005355"
##	"GD:0004032"
##	"GO:0004582"
##	"GD:0004347"
##	"GD:0016866"
##	"GO:0003841"
##	"GO:0003973"
##	"GD:0003938"
##	"GO:0004321"
##	"GO:0015645"
##	"GD:0047760"
##	"GD:0003996" "GD:0004364"
##	"GU:0004364"

##	"GD:0003987"
##	"GO:0033858"
##	"GO:0030544"
##	"GO:0047560"
##	"GO:0001850"
##	"GO:0004585"
##	"GO:0004176"
##	"GO:0047369"
##	"GO:0004169"
##	"GO:0051117"
##	"GD:0060072"
##	"GO:1990583"
##	"GO:0004335"
##	"GD:0004536"
##	"GO:0004090"
## ##	"GO:0032142" "GO:0001671"
## ##	"GO:0001671"
## ##	"GO:0015179"
##	"GD:0003999"
##	"GD:0003353"
##	"GD:0004353"
##	"GD:0004222"
##	"GO:0001222
##	"GD:0042288"
##	"GD:0008108"
##	"GO:0018479"
##	"GD:0002083"
##	"GD:0016765"
##	"GO:0047293"
##	"GO:0050421"
##	"GO:0070025"
##	"GO:1905394"
##	"GO:0015410"
##	"GD:0004609"
##	"GO:0016532"
##	"GO:0032051"
##	"GO:0003743"
##	"GO:0004108"
##	"GO:0004122"
##	"GD:0004124"
##	"GO:0019842"
##	"GO:0004149"
##	"GO:0004512"
##	"GO:0098601"
##	"GO:0030554"
##	"GO:0052650"
##	"GO:0004325"
##	"GO:0016653"
##	"GD:0004069"
##	"GO:0015172"
##	"GO:0015269"
##	"GO:1901612"
##	"GO:0102008"

##	"GD:0103046"
##	"GO:0072341"
##	"GD:0008092"
##	"GO:0004333"
##	"GD:0004616"
##	"GO:0046554"
##	"GO:0016212"
##	"GD:0008135"
##	"GD:0004823"
##	"GO:0032052"
##	"GO:0097573"
##	"GO:0035255"
##	"GD:0004862"
##	"GD:0004105"
##	"GO:0051990"
##	"GO:0001851"
##	"GO:0032143"
##	"GD:0070026"
##	"GD:0004766"
##	"GO:0015317"
##	"GD:0070678"
##	"GD:0047676"
##	"GD:0031405"
##	"GO:0043754"
##	"GD:0016018"
##	"GD:0004722"
##	"GO:0005534"
##	"GD:0004637"
##	"GD:0004641"
##	"GD:0004644"
##	"GD:0031406"
##	"GO:0051861"
##	"GO:0047555"
##	"GO:0010857"
##	"GD:0030060"
##	"GO:0030552"
##	"GO:0043022"
##	"GO:0003755"
##	"GD:0002060"
##	"GO:0042803"
##	"GO:0031812"
##	"GO:0030551"
##	"GO:0032181"
##	"GO:0005315"
##	"GO:0004475"
##	"GO:0016805"
##	"GO:0031625"
##	"GO:0004084"
##	"GO:0052654"
##	"GO:0052655"
##	"GD:0052656"
##	"GO:0004075"
##	"GO:0004802"
##	"GO:0005522"

##	"GD:0004013"
##	"GO:0008035"
##	"GO:0004396"
##	"GO:0017025"
##	"GO:0031697"
##	"GO:0043531"
##	"GO:0005219"
## ##	"GO:0032137" "GO:0019784"
##	"GD:0019784"
##	"GD:0018783"
##	"GD:0003237
##	"GD:0005527"
##	"GD:0019828"
##	"GD:0035605"
##	"GD:0005092"
##	"GD:0008138"
##	"GD:0047390"
##	"GD:0003974"
##	"GD:0003978"
##	"GO:0016918"
##	"GD:0004801"
##	"GO:0031775"
##	"GD:0086039"
##	"GD:0030983"
##	"GD:0004395"
##	"GO:0008425"
##	"GD:0008689"
##	"GO:0044595"
##	"GO:0044596"
##	"GO:1990715"
##	"GD:0004001"
##	"GD:0004028"
##	"GO:0042132"
##	"GO:0004735"
##	"GO:0015183"
##	"GD:0020037"
##	"GD:0003989"
##	"GO:0016971"
##	"GD:0008194"
##	"GD:0035276"
##	"GD:0005166"
##	"GO:0097718"
##	"GO:0070335"
##	"GO:0005497"
##	"GO:0004602"
##	"GO:0005272"
##	"GO:0004070"
##	"GO:0004087"
##	"GD:0004088"
##	"GO:0004151"
##	"GD:0004832"
##	"GO:0034185"
##	"GO:0015171"

##	"GD:0004645"
##	"GO:0005381"
##	"GD:0030346"
##	"GD:0061608"
##	"GO:0004673"
##	"GO:1904265"
##	"GD:0008603"
##	"GD:0004743"
##	"GO:0102339"
##	"GO:0102340"
##	"GO:0102341"
##	"GO:0102342"
##	"GO:0050561"
##	"GD:0004365"
##	"GD:0003988"
##	"GO:0005053"
##	"GO:0005528"
##	"GD:0008889"
##	"GO:0008470"
##	"GO:0003826"
##	"GD:0003863"
##	"GO:0047086"
##	"GO:0043141"
##	"GO:0004324"
##	"GO:0015039"
##	"GO:0003950"
##	"GO:0042500"
##	"GO:0047801"
##	"GO:0070324"
##	"GO:0005094"
##	"GO:0016229"
##	"GO:0047536"
##	"GO:1905502"
##	"GD:0005030"
##	"GO:0030546"
##	"GD:0016209"
##	"GO:0031249"
##	"GO:0047578"
##	"GO:0004174"
##	"GO:0010465"
##	"GO:0004128"
##	"GO:0016853"
##	"GO:0005313"
##	"GO:0004476"
##	"GO:0005087"
##	"GO:0015271"
##	"GO:0000774"
##	"GO:0008891"
##	"GO:0047969"
##	"GO:1990381"
##	"GD:0008260"
##	"GO:0035497"
##	"GO:0004372"
##	"GO:0008732"

##	"GO:0016747"
##	"GO:0004190"
##	"GO:0004439"
##	"GO:0042834"
##	"GO:0046811"
##	"GO:0008483"
##	"GO:0043014"
##	"GO:0097109"
##	"GO:0016627"
##	"GO:0050897"
##	"GO:0051400"
##	"GO:0045174"
##	"GO:0050610"
##	"GO:0004795"
##	"GO:0031690"
##	"GO:0035241"
##	"GO:0015116"
##	"GO:0036435"
##	"GO:0003756"
##	"GO:0047323"
##	"GO:0004815"
##	"GO:0005249"
##	"GO:0004046"
##	"GO:0004033"
##	"GO:0005004"
##	"GO:1990833"
##	"GO:0050811"
##	"GO:0008143"
##	"GO:0070008"
##	"GO:0008721"
##	"GO:0018114"
##	"GO:0030378"
##	"GO:1903763"
##	"GD:0086075"
##	"GD:0036470"
##	"GD:0036478"
##	"GD:0036524"
##	"GD:0045340"
##	"GO:0043121"
##	"GO:0016509"
##	"GO:0061628" "GO:0008536"
##	"GD:0008536"
## ##	
## ##	"GO:0019135" "GO:0008745"
##	"GD:0008745
##	"GD:0070905"
## ##	"GD:0004095"
## ##	"GD:0008097"
## ##	"GD:0005243"
## ##	"GD:0043024" "GD:0004849"
##	"GD:0004849" "GD:0004470"
## ##	"GD:0004470"
## ##	"GD:0033130"
пп'	GU.0004700

##	"GD:0070006"
##	"GD:0000406"
##	"GD:0008453"
##	"GO:0031957"
##	"GO:0003985"
##	"GD:0048156"
##	"GD:0048406"
##	"GD:0061629"
##	"GD:0004485"
##	"GO:0008140"
##	"GO:0004821"
##	"GO:0070840"
##	"GO:0042277"
##	"GD:0000404"
##	"GD:0004161"
##	"GD:0004337"
##	"GD:0031370"
##	"GO:0004315"
##	"GO:0042975"
##	"GO:0044325"
##	"GD:0000309"
##	"GD:0005310"
##	"GD:0001018"
##	"GD:0001727"
##	"GD:0017005"
##	"GD:0030695"
##	"GD:0004057"
##	"GO:0032549"
##	"GO:0015020"
##	"GD:0004471"
##	"GD:0004473"
##	"GD:0008131"
##	"GO:0015117"
##	"GO:0015131"
##	"GO:0015140"
##	"GO:0032139"
##	"GO:0015141"
##	"GD:0004642"
##	"GO:0004180"
##	"GO:0061578"
##	"GD:0004341"
##	"GD:0004017"
##	"GO:0102758"
##	"GO:0015291"
##	"GD:0004089"
##	"GO:0004839"
##	"GD:0003877"
##	"GO:0004824"
##	"GO:0015175"
##	"GO:0004055"
##	"GD:0052642"
##	"GO:0019894"
##	"GO:0043783"
##	"GD:0005267"

##	"GD:0008503"
##	"GO:0051920"
##	"GD:0004419"
##	"GD:0044877"
##	"GD:0032357"
##	"GD:0004601"
##	"GO:0015075"
##	"GD:0009020"
##	"GD:0052666"
##	"GD:0008266"
##	"GO:0001849"
##	"GD:0004708"
##	"GO:0004819"
##	"GD:0008565"
##	"GD:0001129"
##	"GD:0036402"
##	"GD:0004053"
##	"GD:0004723"
##	"GD:0098973"
##	"GO:0031871"
##	"GD:0003735"
##	"GD:0017022"
##	"GD:0004605"
##	"GD:0032216"
##	"GO:0043177"
##	"GD:0023026"
##	"GD:0071949"
##	"GD:0060698"
##	"GO:0047718"
##	"GD:0036042"
##	"GD:0018636"
##	"GO:0047115"
##	"GD:0034236"
##	"GO:0030742"
##	"GD:0004818"
##	"GO:0008474"
##	"GO:0015037"
##	"GO:0015369"
##	"GO:0033814"
##	"GO:0050632"
##	"GO:0030957"
##	"GD:0004133"
##	"GO:0004134"
##	"GO:0004135"
##	"GO:0102500"
##	"GO:0051433"
##	"GD:0061133"
##	"GD:0016831"
##	"GD:0050571"
##	"GO:0008113"
##	"GO:0016684"
##	"GO:0047939"
##	"GD:0005089"
##	"GD:0043295"

##	"GO:0016874"
##	"GO:0004458"
##	"GO:0031386"
##	"GO:0004704"
##	"GO:0034593"
##	"GO:0008238"
##	"GO:0009019"
##	"GO:0008948"
##	"GO:0004826"
##	"GO:0034211"
##	"GO:0036479"
##	"GO:0001530"
##	"GO:0051536"
##	"GD:0004096"
##	"GO:0016709"
##	"GO:0008170"
##	"GO:0004579"
##	"GO:0004348"
##	"GO:0031626"
##	"GO:0035800"
##	"GO:0003937"
##	"GO:0004643"
##	"GO:0015297"
##	"GO:0051998"
##	"GO:0002135"
##	"GO:0008428"
##	"GD:0003962"
##	"GO:0004123"
##	"GO:0044540"
##	"GD:0047982"
##	"GD:0080146"
##	"GO:0001179"
##	"GO:0052905"
##	"GO:0008179"
##	"GO:0017098"
## ##	"GO:0019855" "GO:0016405"
	"GO:0016405"
## ##	"GD:0018740"
##	"GD:0003725
## ##	"GD:0045139"
##	"GD:0003198
##	"GD:0002134"
##	"GD:0099320
##	"GD:0003647
##	"GD:0033012
##	"GD:0035103
##	"GD:0003340
##	"GO:1904713"
##	"GD:0008482"
##	"GD:0008482
##	"GD:0070338
##	"GD:0003920"
##	"GD:0005227"
	40.0000221

##	"GO:0015165"
##	"GO:0030272"
##	"GD:0016422"
##	"GO:0045550"
##	"GO:0035242"
##	"GD:0070039"
##	"GD:0016290"
##	"GD:0019776"
##	"GD:0004067"
##	"GD:0008236"
##	"GO:0015139"
##	"GO:0050220"
##	"GO:0008175"
##	"GO:0032977"
##	"GO:0033192"
##	"GD:0047743"
##	"GO:0015292"
##	"GD:0047042"
##	"GD:0001075"
##	"GD:0004499"
##	"GD:0042903"
##	"GD:0004749"
##	"GD:0008494"
##	"GO:0050313"
##	"GD:0019900"
##	"GD:0099186"
##	"GO:0019215"
##	"GD:0005031"
##	"GD:0043120"
##	"GO:0015125"
##	"GD:0016885"
##	"GD:0047006"
##	"GD:0047710"
##	"GD:0004300"
##	"GD:0005086"
##	"GO:0030955"
##	"GD:0042301"
##	"GD:0004656"
##	"GO:0032405"
##	"GO:0031545"
##	"GD:0016846"
##	"GD:0042626"
##	"GO:0050750"
##	"GO:0042802"
##	"GD:0004830"
##	"GD:0004109"
##	"GD:0000257"
##	"GO:0004534"
##	"GD:0016768"
##	"GO:0046923"
##	"GO:0016019"
##	"GO:0016594"
##	"GO:0051880"
##	"GO:0008139"

##	"GD:0004576"
##	"GO:0004594"
##	"GD:0004816"
##	"GO:0015105"
##	"GD:0043546"
##	"GD:0047787"
##	"GO:0015238"
##	"GD:0004164"
##	"GD:0008720"
##	"GO:0043023"
##	"GO:0030151"
##	"GO:0047023"
##	"GO:1990405"
##	"GO:0004618"
##	"GO:1905059"
##	"GD:0043274"
##	"GD:0004655"
##	"GD:0046790"
##	"GO:0015130"
##	"GD:0050560"
##	"GD:0032564"
##	"GD:0047499"
##	"GD:0008479"
##	"GD:0004525"
##	"GD:0004371"
##	"GD:0034012"
##	"GO:0050354"
##	"GD:0004699"
##	"GD:0005046"
##	"GD:0070080"
##	"GO:0052591"
##	"GD:0004177"
##	"GD:0003905"
##	"GO:0008725"
##	"GD:0043916"
##	"GO:0052821"
##	"GO:0052822"
##	"GO:0015129"
##	"GD:0008568"
##	"GO:1905056"
##	"GO:0051380"
##	"GO:0005148"
##	"GO:0043199"
##	"GO:0031489"
##	"GO:0004111"
##	"GO:0008429"
##	"GD:0033743"
##	"GD:0004175"
##	"GD:0004791"
##	"GD:0003993"
##	"GO:0016830"
##	"GO:1904288"
##	"GO:0004813"
##	"GO:0015137"

##	"GO:0004375"
##	"GO:0008271"
##	"GO:0018738"
##	"GO:0070280"
##	"GO:0004549"
##	"GO:0003678"
##	"GO:0003957"
##	"GO:0008746"
##	"GO:0008750"
##	"GO:0035718"
##	"GO:0004707"
##	"GO:0015234"
##	"GO:0004342"
##	"GO:0047374"
##	"GO:0031593"
##	"GO:0008117"
##	"GO:0050815"
##	"GO:0030547"
##	"GO:0033745"
##	"GD:0008469"
##	"GD:0047860"
##	"GD:0030414"
##	"GO:0071566"
##	"GD:0052909"
##	"GO:0004322"
##	"GO:1903135"
##	"GD:0002196"
##	"GD:0008509"
##	"GD:0043333"
##	"GD:0043430"
##	"GD:0019960"
##	"GD:0015301"
##	"GD:0050649"
##	"GD:0004622"
##	"GO:0051373"
##	"GO:0005242"
##	"GD:0043008"
##	"GO:0052917"
##	"GD:0035438"
##	"GO:0061507"
##	"GO:0055102"
##	"GO:0034458"
##	"GD:0034986"
##	"GO:0031210"
##	"GO:0005391"
##	"GO:0071164"
##	"GO:0016788"
##	"GO:0051434"
##	"GO:0008430"
##	"GO:0004020"
##	"GO:0004781"
##	"GO:0071837"
##	"GO:0004679"
##	"GD:0000298"

##	"GD:0008486"
##	"GO:0034431"
##	"GO:0034432"
##	"GO:0052840"
##	"GO:0052841"
##	"GO:0052842"
##	"GO:0052843"
##	"GO:0052844"
##	"GO:0052845"
##	"GO:0052846"
##	"GO:0052847"
##	"GO:0052848"
##	"GO:0015293"
##	"GO:0001190"
##	"GD:0005006"
##	"GO:0015194"
##	"GO:0004970"
##	"GO:0050833"
##	"GO:0008384"
##	"GO:0001760"
##	"GO:0005338"
##	"GO:0015067"
##	"GO:0015068"
##	"GO:0051750"
##	"GO:0005055"
##	"GO:0038131"
##	"GO:0034452"
##	"GO:0005461"
##	"GO:0016847"
##	"GO:0098821"
##	"GO:0070728"
##	"GO:0008374"
##	"GO:0008495"
##	"GD:0016620"
##	"GO:0019115"
##	"GD:0004814"
##	"GD:0030629"
##	"GD:0044603"
##	"GO:0052907"
##	"GO:0070733" "GO:0120048"
##	"GD:0120048"
##	
## ##	"GO:0047130"
## ##	"GO:0047131" "GO:0004085"
## ##	"GD:0004085"
## ##	"GO:0004061" "GO:0033229"
##	"GD:0033229" "GD:0015186"
	"GU:0015186" "GO:0035473"
## ##	"GO:0035473" "GO:0010521"
##	"GD:0010521" "GD:0004491"
##	"GD:0004491"
##	"GD:0005252"
##	GU.00104/8"

##	"GO:0015307"
##	"GD:0000268"
##	"GO:0005052"
##	"GO:0004392"
##	"GO:0015232"
##	"GD:0000823"
##	"GD:0000824"
##	"GO:0004411"
## ##	"GO:0008127" "GO:0047326"
## ##	"GD:0047326"
##	"GD:0008559"
##	"GD:0008359
##	"GD:0004790"
##	"GD:0004730
##	"GD:0008812"
##	"GD:0030748"
##	"GD:0102707"
##	"GD:0000179"
##	"GO:0016639"
##	"GO:0047127"
##	"GD:0008970"
##	"GO:0015631"
##	"GO:0047134"
##	"GO:0008442"
##	"GO:0030247"
##	"GO:0015276"
##	"GO:0004806"
##	"GO:0000339"
##	"GO:0004143"
##	"GO:0061750"
##	"GD:0004820"
##	"GO:0015085"
##	"GO:0016151"
##	"GO:0048040"
##	"GO:1990269"
##	"GO:0070551"
##	"GO:1990599"
##	"GO:0008422"
##	"GO:0051722"
##	"GO:0031419"
##	"GO:0070513" "GO:0004081"
## ##	"GD:0004081"
##	"GD:0004334
##	"GD:0037110
## ##	"GD:0030136"
## ##	"GD:0008700"
##	"GO:0005212
## ##	"GD:00180982"
##	"GD:0000382
##	"GD:0018779
##	"GD:0022840"
##	"GD:0102567"
	22.0102001

##	"GD:0102568"
##	"GO:0008081"
##	"GO:0016433"
##	"GD:0004165"
##	"GD:0004706"
##	"GO:0000825"
##	"GD:0008579"
##	"GO:0019825"
##	"GD:0090624"
##	"GO:0034899"
##	"GO:0055077"
##	"GO:0019166"
##	"GO:0032561"
##	"GO:0004691"
##	"GO:0019781"
##	"GO:0001729"
##	"GO:0004733"
##	"GO:0005085"
##	"GO:0008389"
##	"GD:0004919"
##	"GD:0008460"
##	"GO:0016531"
##	"GO:0043795"
##	"GD:0008705"
##	"GD:0004798"
##	"GO:0070975"
##	"GO:0015267"
##	"GD:0016309"
##	"GD:0000010"
##	"GD:0004366"
##	"GD:0004516"
##	"GD:0008775"
##	"GO:0050347"
##	"GO:0102420"
##	"GD:0098770"
##	"GD:0004397"
##	"GD:0004686"
##	"GO:0045183"
##	"GO:0015367"
##	"GD:0000215"
##	"GD:0004024"
##	"GD:0008147"
##	"GD:0001096"
##	"GD:0004362"
##	"GO:0001968"
##	"GD:0008419"
##	"GO:0047620"
##	"GO:0005250"
##	"GO:0004613"
##	"GO:0052906"
##	"GO:0089720"
##	"GO:0008253"
##	"GO:0030911"
##	"GO:0070883"

##	"GO:0031682"
##	"GO:0005220"
##	"GO:0004306"
##	"GO:0005216"
##	"GO:0050146"
##	"GO:0008521"
##	"GD:0008798"
##	"GD:0004307"
##	"GO:0008517" "GO:0031208"
## ##	"GD:0031208"
##	"GD:0004102
##	"GD:0033263
##	"GD:0004185"
##	"GD:0004103
##	"GD:0070524"
##	"GD:0070024
##	"GD:0010107
##	"GD:1990889"
##	"GD:0102390"
##	"GD:0003845"
##	"GO:0016798"
##	"GO:1990829"
##	"GO:0016429"
##	"GO:0061953"
##	"GO:0017075"
##	"GO:0008934"
##	"GO:0052832"
##	"GO:0052833"
##	"GO:0047179"
##	"GO:0004771"
##	"GD:0003908"
##	"GO:0034875"
##	"GD:0030233"
##	"GO:0030549"
##	"GO:0090422"
##	"GO:1902282"
##	"GD:0035870"
##	"GD:0036220"
##	"GD:0036222"
##	"GD:0046904" "GD:0050567"
## ##	"GD:0050567"
## ##	"GD:0005514"
##	"GD:0015301
##	"GD:1904454"
##	"GD:0045569"
##	"GD:0043309
##	"GD:0032034"
##	"GD:0097372"
##	"GD:0000246"
##	"GD:0016034"
##	"GD:0019120"
##	"GD:0050614"
	20.000011

##	"GO:0003955"
##	"GO:0015295"
##	"GO:0015077"
##	"GO:0004408"
##	"GO:0003909"
##	"GO:0004313"
##	"GO:0004316"
##	"GO:0004320"
##	"GO:0016295"
##	"GO:0016296"
##	"GO:0047117"
##	"GO:0047451"
##	"GO:0102131"
##	"GO:0102132"
##	"GO:0019237"
##	"GO:0015142"
##	"GO:0004578"
##	"GO:0016628"
##	"GO:0033961"
##	"GO:0004683"
##	"GD:0000030"
##	"GO:0004114"
##	"GD:0086008"
##	"GO:0004658"
##	"GO:0004853"
##	"GO:0016667"
##	"GO:0070404"
##	"GO:0120017"
##	"GO:0009982"
##	"GO:0001158"
##	"GO:0000155"
##	"GO:0015222"
##	"GO:0090555"
##	"GO:0001882"
##	"GO:0042586"
##	"GD:0090560"
##	"GO:0019899"
##	"GD:0004000"
##	"GO:0051032"
##	"GO:0051033" "GO:0030343"
##	"GD:0030343"
##	
##	"GO:0004309" "GO:0017137"
## ##	
	"GD:0004709"
## ##	"GO:0016860" "GO:0031267"
##	
##	"GO:0005134" "GO:0003860"
## ##	"GD:0035650"
##	"GO:0009041" "GO:0047498"
## ##	"GD:0047498" "GD:0070576"
## ##	"GD:0070576"
##	GU.0052657"

##	"GO:0004361"
##	"GO:0047485"
##	"GD:0000703"
##	"GO:0097655"
##	"GO:1990698"
##	"GO:0016829"
##	"GO:0055106"
##	"GD:0099038"
##	"GO:0102773"
##	"GO:0015432"
##	"GO:0004629"
##	"GD:0003960"
##	"GO:1990883"
##	"GO:0019912"
##	"GO:0004689"
##	"GO:0000150"
##	"GO:0036461"
##	"GO:0097200"
##	"GD:0000979"
##	"GO:0035374"
##	"GO:0004484"
##	"GO:0004558"
##	"GO:0008192"
##	"GO:0032450"
##	"GO:0050355"
##	"GO:0036317"
##	"GO:0060703"
##	"GO:0070260"
##	"GO:1902387"
##	"GO:1902388"
##	"GO:1990226"
##	"GO:0034189"
	"GD:0000248" "GD:0005049"
##	
## ##	"GD:0001181" "GD:0004022"
## ##	"GD:0004022"
##	
##	"GO:0033218" "GO:0005048"
##	"GD:0003040
##	"GD:1904854"
##	"GD:0030429"
##	"GD:0061981"
##	"GD:0090554"
##	"GD:0000900"
##	"GD:0003919"
##	"GD:0036132"
##	"GD:0036455"
##	"GD:0030400
##	"GD:0047522
##	"GO:0061599"
##	"GD:0004312"
##	"GD:0004314"
##	"GD:0016248"

##	"GO:0017127"
##	"GO:0003881"
##	"GO:0043178"
##	"GD:0046983"
##	"GD:0008940"
##	"GD:0030274"
##	"GD:0042011"
##	"GD:0042012"
##	"GO:0047045"
##	"GD:0002039"
##	"GO:0015227"
##	"GO:0019787"
##	"GO:1990930"
##	"GD:0004833"
##	"GD:0030506"
##	"GD:0032138"
##	"GD:0030621"
##	"GD:0030337"
##	"GD:0004092"
##	"GD:0016746"
##	"GO:0010314"
##	"GD:0004252"
##	"GD:0016403"
##	"GD:0004799"
##	"GD:0034039"
##	"GD:0004827"
##	"GO:0005244"
##	"GD:0004807"
##	"GD:0034512"
##	"GD:0033819"
##	"GD:0047035"
##	"GO:0102555"
##	"GO:0015272"
##	"GD:0070577"
##	"GD:0000016"
##	"GO:0000170"
##	"GO:0001595"
##	"GD:0001716"
##	"GO:0001791"
##	"GO:0001962"
##	"GD:0003830"
##	"GD:0003834"
##	"GD:0003837"
##	"GO:0003870"
##	"GD:0003940"
##	"GD:0003947"
##	"GD:0003991"
##	"GD:0004042"
##	"GO:0004112"
##	"GO:0004574"
##	"GO:0004575"
##	"GO:0004621"
##	"GD:0004968"
##	"GO:0005228"

##	"GO:0005343"
##	"GO:0005362"
##	"GO:0005395"
##	"GO:0005415"
##	"GO:0008107"
##	"GO:0008172"
##	"GO:0008252"
##	"GD:0008506"
## ##	"GO:0008507" "GO:0008508"
## ##	"GD:0008508"
##	"GD:0008318
##	"GD:0008747
##	"GD:0008839
##	"GD:0009673"
##	"GD:0009917"
##	"GD:0003317
##	"GD:0015019"
##	"GO:0015112"
##	"GO:0015132"
##	"GO:0015143"
##	"GO:0015144"
##	"GO:0015173"
##	"GO:0015190"
##	"GO:0015191"
##	"GO:0015211"
##	"GO:0015216"
##	"GO:0015370"
##	"GO:0015382"
##	"GO:0015389"
##	"GO:0015390"
##	"GO:0015552"
##	"GO:0015636"
##	"GO:0016150"
##	"GO:0016153"
##	"GO:0016412"
##	"GO:0016495"
##	"GO:0016645"
##	"GO:0016701"
##	"GO:0016803"
##	"GO:0016892"
##	"GO:0017042"
## ##	"GO:0017096" "GO:0017159"
## ##	"GO:0017159" "GO:0018733"
## ##	"GD:0018733"
## ##	"GD:0019103"
## ##	"GD:0019239" "GD:0022803"
## ##	"GD:0022803" "GD:0030110"
## ##	"GD:0030110" "GD:0030169"
## ##	"GD:0030169"
## ##	"GD:0030230"
##	"GD:0030338
##	"GD:0030407"
	30.0000403

##	"GO:0030412"
##	"GO:0030504"
##	"GD:0030729"
##	"GO:0031861"
##	"GD:0032399"
##	"GO:0033041"
##	"GO:0033787"
##	"GD:0033798"
##	"GO:0033842"
##	"GD:0033862"
##	"GO:0035730"
##	"GO:0035731"
##	"GD:0036393"
##	"GD:0036403"
##	"GD:0036458"
##	"GO:0042285"
##	"GO:0042781"
##	"GO:0043221"
##	"GO:0043250"
##	"GO:0046556"
##	"GO:0046624"
##	"GO:0046715"
##	"GO:0047058"
##	"GO:0047186"
##	"GO:0047276"
##	"GO:0047277"
##	"GO:0047341"
##	"GO:0047349"
##	"GO:0047381"
##	"GO:0047394"
##	"GO:0047402"
##	"GO:0047408"
##	"GO:0047409"
##	"GO:0047547"
##	"GO:0047613"
##	"GO:0047714"
##	"GO:0047730"
##	"GO:0047820"
##	"GO:0047837"
##	"GO:0047865"
##	"GO:0047946"
##	"GO:0050023"
##	"GO:0050113"
##	"GO:0050121"
##	"GO:0050129"
##	"GO:0050337"
##	"GO:0050479"
##	"GO:0050480"
##	"GO:0050528"
##	"GO:0051978"
##	"GO:0052597"
##	"GO:0052598"
##	"GO:0052599"
##	"GD:0052600"

##	"GO:0052894"
##	"GO:0052895"
##	"GD:0061501"
##	"GD:0070224"
##	"GD:0070566"
##	"GD:0070567"
##	"GD:0070569"
##	"GD:0071633"
##	"GO:0071795"
##	"GO:0072572"
##	"GO:0072591"
##	"GD:0090416"
##	"GO:0097383"
##	"GD:0098633"
##	"GD:0102076"
##	"GD:0102102"
##	"GO:0102116"
##	"GO:0102483"
##	"GO:0102485"
##	"GD:0102486"
##	"GO:0102487"
##	"GD:0102488"
##	"GD:0102489"
##	"GD:0102490"
##	"GD:0102491"
##	"GO:0102549"
##	"GD:0103002"
##	"GD:0103045"
##	"GD:0106105"
##	"GO:0120053"
##	"GO:0140161"
##	"GO:1901640"
##	"GO:1901641"
##	"GO:1904012"
##	"GO:1904013"
##	"GO:1990003"
##	"GO:1990081"
##	"GO:1990244"
##	"GO:1990444"
##	"GO:1990595"
##	"GO:1990817"
##	"GD:0003958"
##	"GO:0005078"
##	"GO:0004517"
##	"GO:0015607"
##	"GO:0000225"
##	"GO:0001567"
##	"GO:0004059"
##	"GO:0004339"
##	"GD:0004380"
##	"GD:0004381"
##	"GO:0004584"
##	"GO:0004773"
##	"GO:0004778"

##	"GO:0005130"
##	"GO:0005353"
##	"GO:0008480"
##	"GD:0008792"
##	"GO:0008843"
##	"GD:0009007"
##	"GO:0015350"
##	"GO:0016160"
##	"GO:0016416"
##	"GO:0017060"
##	"GO:0030387"
##	"GO:0031883"
##	"GO:0032555"
##	"GO:0042017"
##	"GO:0042018"
##	"GO:0045517"
##	"GO:0046592"
##	"GO:0047173"
##	"GO:0047734"
##	"GO:0047988"
##	"GO:0051264"
##	"GO:0051265"
##	"GO:0051429"
##	"GO:0052717"
##	"GO:0052751"
##	"GD:0052899"
##	"GO:0052901"
##	"GO:0052902"
##	"GD:0052903"
##	"GO:0052904"
##	"GO:0061811"
##	"GO:0061812"
##	"GD:0099104"
##	"GD:0102200"
##	"GO:0102279"
##	"GO:0031432"
##	"GD:0000701"
##	"GD:0003882"
##	"GO:0003884"
##	"GD:0004068"
##	"GD:0004142"
##	"GD:0004490"
##	"GD:0004744"
##	"GO:0005221"
##	"GO:0005302"
##	"GD:0005367"
##	"GD:0005477"
##	"GD:0008445"
##	"GD:0008526"
##	"GO:0010844"
##	"GO:0015361"
##	"GO:0015362"
##	"GO:0015421"
##	"GO:0015440"

##	"GO:0016307"
##	"GO:0016316"
##	"GO:0017153"
##	"GO:0017161"
##	"GO:0017172"
##	"GO:0019807"
##	"GO:0019862"
##	"GO:0022824"
##	"GD:0030380"
##	"GD:0030791"
## ##	"GD:0030792"
## ##	"GD:0030977"
## ##	"GD:0032396" "GD:0033735"
##	"GD:0034040"
##	"GD:0034040"
##	"GD:0034597"
##	"GD:0035248"
##	"GD:0035248"
##	"GD:0033043
##	"GO:0047915"
##	"GD:0050011"
##	"GD:0050429"
##	"GD:0050501"
##	"GO:0052593"
##	"GD:0052593"
##	"GD:0052594"
##	"GD:0052596"
##	"GD:0052828"
##	"GD:0052856"
##	"GO:0052857"
##	"GO:0052884"
##	"GD:0052885"
##	"GO:0052927"
##	"GD:0052928"
##	"GD:0052929"
##	"GD:0061627"
##	"GD:0070001"
##	"GD:0070002"
##	"GD:0070042"
##	"GD:0071890"
##	"GO:0072544"
##	"GD:0072590"
##	"GD:0097260"
##	"GD:0097621"
##	"GD:0098782"
##	"GD:1903924"
##	"GD:0004398"
##	"GD:0004796"
##	"GO:0005142"
##	"GD:0005275"
##	"GD:0005307"
##	"GD:0005345"
##	"GD:0005350"
	22.000000

##	"GO:0005456"
##	"GO:0008493"
##	"GO:0015111"
##	"GO:0015152"
##	"GO:0015166"
##	"GO:0015265"
##	"GD:0015633"
##	"GO:0016250"
##	"GO:0016503"
##	"GO:0016812"
## ##	"GO:0022894" "GO:0031723"
## ##	"GD:0031723" "GD:0035299"
## ##	"GD:0035299"
##	"GD:0030134"
##	"GD:0042007
##	"GD:0042008
##	"GD:0044549
##	"GD:0046943"
##	"GO:0047800"
##	"GO:0047888"
##	"GO:0047992"
##	"GO:0050512"
##	"GO:0061929"
##	"GO:0070287"
##	"GD:0080048"
##	"GO:0097160"
##	"GO:0097682"
##	"GO:0050291"
##	"GO:0002059"
##	"GO:0003875"
##	"GO:0003953"
##	"GO:0004083"
##	"GO:0004376"
##	"GO:0004493"
##	"GO:0004513"
##	"GD:0005333"
##	"GO:0005334"
##	"GO:0005457"
##	"GO:0005464"
##	"GO:0008496"
##	"GO:0008753"
## ##	"GO:0010428" "GO:0015538"
## ##	"GD:0015538" "GD:0016849"
## ##	"GD:0016849" "GD:0017065"
## ##	"GD:0017065"
## ##	"GD:0019969"
## ##	"GD:0030697"
## ##	"GD:0031687"
## ##	"GD:0034168"
## ##	"GD:0042163"
##	"GO:0042171
##	"GD:0043313"
	30.0011201

##	"GO:0047617"
##	"GO:0050104"
##	"GO:0050135"
##	"GD:0050201"
##	"GO:0051139"
##	"GD:0061768"
##	"GD:0061809"
##	"GO:0071916"
## ##	"GO:0090556" "GO:0102294"
## ##	"GD:0102294"
##	"GO:0102589
##	"GO:0102524"
##	"GD:1990699"
##	"GD:1990984"
##	"GD:0070628"
##	"GD:0070020
##	"GD:0004447"
##	"GD:0004474"
##	"GD:0004479"
##	"GD:0004492"
##	"GD:0004503"
##	"GO:0005347"
##	"GO:0008273"
##	"GO:0008455"
##	"GO:0008489"
##	"GO:0015149"
##	"GO:0015195"
##	"GO:0015204"
##	"GO:0015929"
##	"GO:0016165"
##	"GO:0016854"
##	"GO:0016920"
##	"GO:0030171"
##	"GO:0030731"
##	"GO:0033040"
##	"GO:0033885"
##	"GO:0033925"
##	"GO:0034590"
##	"GD:0042356"
## ##	"GO:0047263" "GO:0047312"
## ##	"GD:0047312"
## ##	"GD:0047316"
##	"GD:0047777
##	"GD:0047945"
##	"GD:0050577"
##	"GD:0052740"
##	"GD:0052740
##	"GD:0061798"
##	"GD:0061799"
##	"GD:0072509"
##	"GD:0097604"
##	"GO:1904492"
	20.2001102

##	"GO:1904493"
##	"GO:0004843"
##	"GO:0004021"
##	"GO:0001532"
##	"GO:0003868"
##	"GD:0003944"
##	"GO:0004034"
##	"GD:0004588"
##	"GD:0004590"
##	"GD:0004750"
##	"GO:0005412"
##	"GD:0008116"
##	"GD:0008119"
##	"GD:0008448"
##	"GD:0008523"
##	"GO:0015347"
##	"GO:0015349"
##	"GO:0015923"
##	"GO:0019150"
##	"GD:0030249"
##	"GO:0030351"
##	"GD:0033829"
##	"GO:0034417"
##	"GO:0034632"
##	"GO:0039552"
##	"GO:0047166"
##	"GO:0047658"
##	"GO:0050253"
##	"GO:0050262"
## ##	"GO:0052739" "GO:0052826"
##	"GD:0052828"
##	"GD:0001709
##	"GD:0000014"
##	"GD:0008070
##	"GD:0004003
##	"GD:0004131
##	"GD:0004603"
##	"GD:0004632"
##	"GD:0004850"
##	"GD:0004855"
##	"GD:0005144"
##	"GD:0008381"
##	"GD:0008817"
##	"GO:0015098"
##	"GO:0017064"
##	"GD:0022829"
##	"GD:0031737"
##	"GO:0035516"
##	"GD:0035755"
##	"GO:0045237"
##	"GO:0045352"
##	"GO:0045353"
##	"GD:0046873"
	-

##	"GO:0047977"
##	"GO:0051747"
##	"GO:0060229"
##	"GO:0086076"
##	"GO:0086078"
##	"GO:0086079"
##	"GO:0102077"
##	"GO:0103073"
##	"GO:1990272"
##	"GO:1990931"
##	"GO:0070037"
##	"GD:0001016"
##	"GO:0004502"
##	"GO:0004510"
##	"GO:0004838"
##	"GO:0005140"
##	"GO:0008115"
##	"GO:0008531"
##	"GO:0015182"
##	"GO:0015254"
##	"GO:0015489"
##	"GO:0015499"
##	"GO:0015660"
##	"GO:0030107"
##	"GO:0033897"
##	"GO:0033981"
##	"GO:0042131"
##	"GO:0047961"
##	"GO:0047962"
##	"GO:0050031"
##	"GO:0050080"
##	"GO:0050277"
##	"GO:0070694"
##	"GO:0070853"
##	"GO:0071424"
##	"GD:0097626"
##	"GD:0097627"
##	"GO:0005509"
##	"GD:0008276" "GD:0001861"
## ##	
## ##	"GD:0003998" "GD:0004031"
	"GD:0004031"
## ##	"GD:0004118"
## ##	"GD:0004159"
##	"GD:0004807"
## ##	"GD:0004877"
## ##	"GD:0005337"
## ##	"GD:0009032"
##	"GD:0016154" "GD:0016515"
##	"GD:0016515" "GD:0017113"
##	"GD:0017113" "GD:0019763"
## ##	"GD:0019763"
## ##	"GD:0019799"
пп'	GU.0031344

##	"GO:0038164"
##	"GO:0042947"
##	"GO:0047936"
##	"GO:0050333"
##	"GO:0051119"
##	"GO:0098599"
##	"GO:0102797"
##	"GD:0102798"
##	"GO:0019119"
##	"GO:0005146"
##	"GD:0008112"
##	"GD:0008444"
##	"GO:0008768"
##	"GO:0008803"
##	"GO:0009881"
##	"GO:0016174"
##	"GO:0016889"
##	"GO:0017089"
##	"GO:0030545"
##	"GD:0030760"
##	"GO:0034617"
##	"GD:0036094"
##	"GO:0043914"
##	"GO:0045485"
##	"GO:0050152"
##	"GO:0070191"
##	"GO:0071567"
##	"GO:0140081"
##	"GO:0008514"
##	"GO:0004505"
##	"GD:0001099"
##	"GD:0002950"
##	"GD:0003865"
##	"GO:0004152"
##	"GO:0004168"
##	"GO:0004483"
##	"GO:0004569"
##	"GO:0004800"
##	"GO:0004910"
##	"GO:0008454"
##	"GO:0030251"
##	"GO:0031718"
##	"GO:0032003"
##	"GO:0033188"
##	"GO:0035597"
##	"GO:0042931"
##	"GD:0043890"
##	"GO:0044105"
##	"GO:0047389"
##	"GO:0047493"
##	"GO:0047751"
##	"GO:0047933"
##	"GO:0048101"
##	"GO:0050038"

##	"GO:0052798"
##	"GO:0070739"
##	"GO:0099567"
##	"GO:1902444"
##	"GO:0004359"
##	"GO:0003912"
##	"GO:0004567"
##	"GD:0005139"
## ##	"GO:0005298" "GO:0005451"
## ##	"GD:0003451"
## ##	"GD:00087111"
##	"GD:0008783
##	"GD:0010348
##	"GD:0015101
##	"GD:0016891"
##	"GD:0030108"
##	"GD:0034634"
##	"GO:0035478"
##	"GO:0035515"
##	"GD:0046623"
##	"GD:0090482"
##	"GO:1902118"
##	"GO:1901981"
##	"GO:0033919"
##	"GO:0019888"
##	"GD:0000295"
##	"GO:0002058"
##	"GO:0003827"
##	"GO:0003990"
##	"GO:0005147"
##	"GD:0005290"
##	"GO:0005427"
##	"GD:0008332"
##	"GD:0008386"
##	"GO:0008555"
##	"GO:0016530"
##	"GO:0016878"
##	"GO:0030109"
##	"GO:0032217"
## ##	"GO:0033867" "GO:0044610"
## ##	"GD:0044610" "GD:0051724"
## ##	"GD:0051724"
##	"GD:0052731"
##	"GD:0032732
##	"GD:0070373
##	"GD:0080041
##	"GD:0030403"
##	"GD:0005503"
##	"GD:0003796"
##	"GD:0004620"
##	"GD:0043734"
##	"GD:0000831"

##	"GO:0001512"
##	"GD:0003948"
##	"GD:0004346"
##	"GD:0004560"
##	"GO:0004757"
##	"GO:0005462"
##	"GO:0008254"
##	"GD:0008297"
##	"GO:0008513"
##	"GO:0008973"
##	"GO:0015217"
##	"GO:0015228"
##	"GO:0015491"
##	"GO:0016661"
##	"GO:0031780"
##	"GO:0031783"
##	"GO:0035375"
##	"GO:0045515"
##	"GO:0047150"
##	"GO:0050124"
##	"GD:0060590"
##	"GO:0080122"
##	"GD:1904408"
##	"GO:1905594"
##	"GO:0048495"
##	"GO:0072542"
##	"GO:0035651"
##	"GO:0016780"
##	"GD:0001735"
##	"GO:0015333"
##	"GO:0015368"
##	"GO:0015375"
##	"GO:0016997"
##	"GO:0035673"
##	"GO:0045027"
##	"GO:0046539"
##	"GO:0047275"
##	"GO:0061685"
##	"GO:0072570"
##	"GD:0086038"
##	"GO:0098621"
##	"GO:0140036"
##	"GO:0034235"
##	"GO:0048403"
##	"GO:0004477"
##	"GO:0004487"
##	"GO:0004488"
##	"GO:0005173"
##	"GO:0001872"
##	"GO:0004103"
##	"GO:0004441"
##	"GO:0004654"
##	"GO:0004788"
##	"GO:0004854"

##	"GD:0005308"
##	"GD:0005309"
##	"GD:0008120"
##	"GO:0008458"
##	"GO:0008476"
##	"GD:0008613"
##	"GO:0015087"
##	"GO:0015094"
##	"GO:0015099"
##	"GO:0015252"
##	"GO:0015420"
##	"GO:0016213"
##	"GO:0016742"
##	"GO:0019978"
##	"GO:0030975"
##	"GD:0042602"
##	"GD:0046789"
##	"GO:0047325"
##	"GO:0047685"
##	"GO:0047757"
##	"GD:0050682"
##	"GO:0051916"
##	"GO:0052725"
##	"GO:0052726"
##	"GO:0052825"
##	"GD:0052829"
##	"GO:0052830"
##	"GO:0052831"
##	"GO:0052835"
##	"GD:0097689"
##	"GD:0101006"
##	"GO:0102769"
##	"GO:0103053"
##	"GO:1990439"
##	"GD:0004633"
##	"GO:0008324"
##	"GO:0008465"
##	"GO:0016618"
##	"GO:0016814"
##	"GO:0016933"
##	"GO:0016972"
##	"GO:0017188"
##	"GD:0030267"
##	"GO:0030586"
##	"GO:0032558"
##	"GO:0043843"
##	"GO:0050444"
##	"GO:0097603"
##	"GO:0120013"
##	"GO:1990136"
##	"GO:1990275"
##	"GO:0002151"
##	"GO:1904399"
##	"GD:0001094"

##	"GD:0030296"
##	"GD:0003867"
##	"GO:0004058"
##	"GO:0004551"
##	"GO:0004904"
##	"GO:0005335"
##	"GO:0008894"
##	"GD:0008955"
##	"GO:0015218" "GO:0015377"
## ##	"GD:0016377"
##	"GD:0010992
##	"GD:0019331
##	"GD:0030622"
##	"GD:0030022
##	"GD:0034386"
##	"GD:0036468"
##	"GD:0036436"
##	"GO:0047298"
##	"GO:0051786"
##	"GD:0099534"
##	"GO:0070182"
##	"GO:0052869"
##	"GO:0052871"
##	"GO:0052872"
##	"GO:0017024"
##	"GO:0003858"
##	"GO:0004500"
##	"GO:0004671"
##	"GO:0004875"
##	"GO:0015181"
##	"GO:0015189"
##	"GO:0016715"
##	"GO:0016790"
##	"GO:0018112"
##	"GO:0036219"
##	"GO:0043998"
##	"GO:0044713"
##	"GO:0044714"
##	"GD:0047693"
##	"GO:0048270" "GO:0050346"
##	"GD:0050346"
## ##	"GD:0019841" "GD:0051219"
##	"GD:0051219
##	"GD:0032743
##	"GD:0017080"
## ##	"GD:0005384"
##	"GD:0009384
## ##	"GD:0009000"
##	"GD:0015086"
##	"GD:0015136"
##	"GD:0015225
##	"GD:0030294"
	55.0000Z0 F

##	"GO:0046915"
##	"GO:0047545"
##	"GO:0070009"
##	"GD:0071713"
##	"GD:0031805"
##	"GO:0008504"
##	"GO:0000994"
##	"GD:0003943"
##	"GD:0004132"
##	"GO:0004835"
##	"GD:0008241"
##	"GD:0008413"
##	"GO:0008903"
##	"GO:0010309"
##	"GO:0032440"
##	"GO:0033906"
##	"GO:0035539"
##	"GO:0035594"
##	"GO:0047016"
##	"GD:0086082"
##	"GO:0030235"
##	"GO:0004137"
##	"GD:0004494"
##	"GD:0005369"
##	"GD:0008417"
##	"GO:0008418"
##	"GO:0017178"
##	"GO:0030290"
##	"GO:0032428"
##	"GO:0033857"
##	"GO:0047874"
##	"GO:0102092"
##	"GO:1990738"
##	"GO:0004758"
##	"GO:0034041"
##	"GO:0004873"
##	"GO:0017130"
##	"GO:0001855"
##	"GO:0003918"
##	"GO:0004511"
##	"GO:0004782"
##	"GO:0004920"
##	"GO:0005316"
##	"GO:0005519"
##	"GO:0008424"
##	"GO:0008441"
##	"GD:0008892"
##	"GO:0008893"
##	"GO:0010859"
##	"GO:0015651"
##	"GO:0016289"
##	"GO:0016844"
##	"GO:0016990"
##	"GO:0032556"

##	"GO:0033878"
##	"GO:0033882"
##	"GO:0043262"
##	"GO:0046921"
##	"GO:0046922"
##	"GO:0047025"
##	"GO:0047840"
##	"GO:0050459"
##	"GO:0071855"
##	"GO:0004052"
##	"GD:0004336"
##	"GO:0004363"
##	"GO:0008887"
##	"GO:0035226"
##	"GO:0047198"
##	"GO:0061654"
##	"GD:0002113" "GD:0004040"
## ##	"GD:0004040" "GD:0004104"
##	"GO:0004104" "GO:0005253"
##	"GD:0008457"
##	"GD:0008437
##	"GD:0013127
##	"GO:0044730"
##	"GD:0047256"
##	"GD:0047295"
##	"GD:0050436"
##	"GD:0070780"
##	"GO:0071568"
##	"GO:0016712"
##	"GD:0003923"
##	"GO:0030145"
##	"GD:0098808"
##	"GO:0001792"
##	"GD:0004098"
##	"GO:0004139"
##	"GO:0004198"
##	"GO:0008321"
##	"GO:0016286"
##	"GO:0034338"
##	"GO:0036054"
##	"GO:0036055"
##	"GO:0043849"
##	"GO:0061697"
##	"GO:0070736"
##	"GO:0086020"
##	"GD:0086077"
##	"GO:0090599"
##	"GO:0120153"
##	"GO:0001691"
##	"GO:0005332"
##	"GO:0016300"
##	"GO:0043715"
##	"GO:0043716"

##	"GO:0043874"
##	"GO:0047280"
##	"GO:0048244"
##	"GO:0050543"
##	"GO:2001065"
##	"GO:0047021"
##	"GO:0050221"
##	"GO:0004117"
##	"GD:0004418"
##	"GO:0004631"
##	"GO:0008554"
##	"GD:0008852"
##	"GO:0015126"
##	"GO:0051120"
##	"GO:0052692"
##	"GO:0004356"
##	"GO:0042658"
##	"GD:0000095"
##	"GO:0016411"
##	"GD:0030882"
##	"GO:0046848"
##	"GO:0050196"
##	"GD:0008028"
##	"GO:0001888"
##	"GD:0004464"
##	"GO:0004561"
##	"GO:0031751"
##	"GO:0035410"
##	"GO:0036130"
##	"GO:0036131"
##	"GO:0045703"
##	"GO:0047020"
##	"GO:0070119"
##	"GO:0003705"
##	"GO:0004515"
##	"GO:0004329"
##	"GO:0005225"
##	"GO:0032542"
##	"GO:0102521"
##	"GO:0016500"
##	"GO:0004504"
##	"GO:0004598"
##	"GO:0008823"
##	"GO:0017174"
##	"GO:0046920"
##	"GO:0052851"
##	"GO:0030735"
##	"GO:0003835"
##	"GO:0008897"
##	"GO:0047273"
##	"GO:0050353"
##	"GO:2001069"
##	"GO:0046403"
##	"GO:0002951"

##	"GO:0004454"
##	"GO:0005034"
##	"GO:0008265"
##	"GO:0015275"
##	"GO:0016206"
##	"GO:0032406"
##	"GO:0032408"
##	"GO:0035251"
##	"GO:0035485" "GO:0047220"
## ##	"GD:0047220"
##	"GD:0102084"
##	"GD:0102887
##	"GD:0102938
##	"GD:0072345"
##	"GD:0072343
##	"GD:0070679"
##	"GD:0004008"
##	"GD:0043682"
##	"GD:0101020"
##	"GO:0003975"
##	"GO:0005459"
##	"GO:0008761"
##	"GD:0008963"
##	"GO:0009384"
##	"GO:0017020"
##	"GO:0019153"
##	"GO:0047747"
##	"GO:0070123"
##	"GO:0035256"
##	"GO:0003951"
##	"GO:0005521"
##	"GO:0004777"
##	"GO:0004852"
##	"GO:0009013"
##	"GO:0015220"
##	"GO:0016430"
##	"GO:0019992"
##	"GO:0050252"
##	"GO:0005452"
##	"GD:0017034" "GD:0008336"
## ##	"GD:0008336"
## ##	"GD:0018093"
##	"GD:0030309
##	"GD:0040323
##	"GD:0052916"
##	"GD:0032920
##	"GD:0035731
##	"GD:0003323"
##	"GD:00004422
##	"GD:0003692"
##	"GD:0004051"
##	"GD:0008068"
	20.000000

##	"GD:0008829"
##	"GO:0016427"
##	"GO:0042577"
##	"GO:0042578"
##	"GO:0043175"
##	"GO:0050185"
##	"GO:0051379"
##	"GD:2001070"
##	"GD:0004486"
##	"GO:0004651"
##	"GD:0004617"
##	"GO:0005151"
##	"GO:0052735"
##	"GO:0070774"
##	"GO:0106050"
##	"GO:0016005"
##	"GO:0017057"
##	"GD:0070530"
##	"GD:0004496"
##	"GO:0005152"
##	"GD:0008048"
##	"GD:0008609"
##	"GO:0015662"
##	"GD:0016404"
##	"GD:0042806"
##	"GO:0047017"
##	"GD:0003904"
##	"GD:0003914"
##	"GD:0009882"
##	"GO:0015036"
##	"GD:0004519"
##	"GO:0001918"
##	"GO:0004657"
##	"GO:0008811"
##	"GO:0015184"
##	"GO:0016287"
##	"GO:0016723"
##	"GO:0017061"
##	"GO:0018423"
##	"GO:0047159"
##	"GO:0047191"
##	"GO:0047196"
## ##	"GO:0070735" "GO:0102966"
##	"GO:0102966"
##	"GD:0103095"
	"GD:0046982" "GD:0019207"
## ##	"GD:0019207" "GD:0004611"
##	"GD:0004611" "GD:0005090"
##	"GD:0005090"
##	"GD:0070506"
##	"GD:0030626"
##	"GD:0004339
##	"GD:0000002
пп	GU.0004012

##	"GD:0004074"
##	"GO:0015439"
##	"GO:0016615"
##	"GO:0017150"
##	"GO:0035538"
##	"GD:0051800"
##	"GO:0052794"
##	"GO:0052795"
##	"GO:0052796"
##	"GO:0098640"
##	"GD:0070273"
##	"GO:0035575"
##	"GO:0005280"
##	"GD:0000210"
##	"GO:0004377"
##	"GO:0005133"
##	"GO:0033754"
##	"GO:0035620"
##	"GO:1904121"
##	"GD:0004506"
##	"GO:0051717"
##	"GD:0004420"
##	"GO:0042282"
##	"GO:0047726"
##	"GO:0001128"
##	"GD:0000026"
##	"GD:0004462"
##	"GO:0008488"
##	"GO:0017040"
##	"GO:0031403"
##	"GO:0032575"
##	"GO:0034722"
##	"GD:0036505"
##	"GD:0099508"
##	"GO:0102121"
##	"GO:0005157"
##	"GO:0046976"
##	"GD:0004663"
##	"GO:0016524"
##	"GO:0017171"
##	"GO:0031867"
##	"GO:0032394"
##	"GO:0035252"
##	"GO:0050265"
##	"GO:1990050"
##	"GO:0019865"
##	"GO:0004797"
##	"GO:0004043"
##	"GO:0004668"
##	"GO:0004856"
##	"GO:0005141"
##	"GO:0008427"
##	"GO:0008802"
##	"GO:0016312"

##	"GO:0034594"
##	"GO:0046030"
##	"GO:0050785"
##	"GO:0098882"
##	"GO:1904599"
##	"GO:0008941"
##	"GO:0042054"
##	"GO:1905538"
##	"GO:0035501"
##	"GO:0000403"
##	"GO:1990380"
##	"GO:0004568"
##	"GO:0004572"
##	"GO:0004925"
##	"GO:0005329"
##	"GO:0008446"
##	"GO:0009918"
##	"GO:0016277"
##	"GO:0016799"
##	"GO:0022852"
##	"GO:0047237"
##	"GO:0047598"
##	"GO:0099604"
##	"GO:1990838"
##	"GO:0031870"
##	"GO:0004373"
##	"GO:0061547"
##	"GO:0019887"
##	"GO:0032090"
##	"GD:0060422"
##	"GD:0004077"
##	"GD:0004078"
##	"GD:0004079"
##	"GD:0004080"
## ##	"GO:0016941" "GO:0018271"
##	"GD:0018271"
##	"GD:0035598"
##	"GD:0047464"
##	"GD:0047404
##	"GD:0001712
##	"GD:0013404
##	"GD:0042988
##	"GO:0004145
##	"GD:0013663"
##	"GD:0001033
##	"GD:0003042
##	"GD:0004014
##	"GD:0004383"
##	"GD:0004383
##	"GD:0008061"
##	"GD:0008001
##	"GO:0016423"
##	"GO:0010425
	45.0010010

##	"GO:0047290"
##	"GO:0070401"
##	"GO:0070698"
##	"GO:0099580"
##	"GO:0004482"
##	"GO:0004597"
##	"GO:0017077"
##	"GO:0019145"
##	"GO:0033549"
##	"GO:0033737"
##	"GO:0036313"
##	"GO:0047105"
##	"GO:0052836"
##	"GO:0052839"
##	"GD:0097020"
##	"GD:0003688"
##	"GD:0008199"
##	"GD:0016679"
##	"GO:0016711"
##	"GO:0016504"
##	"GD:0002953"
##	"GD:0004577"
##	"GD:0005330"
##	"GO:0017110"
##	"GO:0018025"
##	"GD:0042281"
##	"GO:0047192"
##	"GO:0052381"
##	"GD:0098625"
##	"GD:0098626"
##	"GD:0004721"
##	"GD:0008525"
##	"GD:0008171"
##	"GD:0003952"
##	"GD:0004066"
##	"GO:0004170"
##	"GO:0004343"
##	"GO:0016517"
##	"GO:0030305"
##	"GD:0030368"
##	"GO:0051500"
##	"GD:0080019"
##	"GO:0102953"
##	"GO:0102965"
##	"GO:0103068"
##	"GO:0106018"
##	"GD:0003986"
##	"GD:0070326"
##	"GO:0015180"
##	"GO:0005483"
##	"GO:0019785"
## ##	"GO:0019966" "GO:0033204"
##	"GD:0033204" "GD:0050290"
##	GU:0050290"

##	"GO:0055103"
##	"GO:0071933"
##	"GD:0004514"
##	"GO:1990430"
##	"GD:0015230"
##	"GD:0030144"
##	"GD:0031750"
##	"GD:0031849"
##	"GD:0047225"
##	"GD:0047963"
##	"GO:0051267"
##	"GO:0052817"
##	"GO:0120092"
##	"GO:0070402"
##	"GO:0030165"
##	"GO:0004127"
##	"GO:0004489"
##	"GO:0004595"
##	"GO:0004747"
##	"GO:0005234"
##	"GO:0008510"
##	"GO:0019767"
##	"GO:0042835"
##	"GO:0015193"
##	"GO:0032182"
##	"GD:0008186"
##	"GO:0000334"
##	"GO:0004378"
##	"GD:0004649"
##	"GO:0008431"
##	"GO:0019782"
##	"GO:0042164"
##	"GO:0044213"
##	"GO:0102704"
##	"GO:0004018"
##	"GO:0070626"
##	"GO:0048408"
##	"GD:0000400"
##	"GO:0097199"
##	"GD:0003874"
##	"GD:0050473"
##	"GD:0016402"
##	"GD:0008173"
##	"GO:0000048"
##	"GO:0003963"
##	"GO:0004060"
##	"GO:0016410"
##	"GD:0036374"
##	"GO:0038102"
##	"GD:0047444"
##	"GD:0050462"
##	"GO:0005251"
##	"GD:0003880"
##	"GD:0004666"

##	"GO:0008520"
##	"GO:0015205"
##	"GO:0015229"
##	"GO:0046527"
##	"GO:0050683"
##	"GO:0061928"
##	"GO:0070890"
##	"GD:0008079"
##	"GO:0016149"
##	"GD:0030676"
##	"GO:0031755"
##	"GO:0004659"
##	"GO:0004756"
##	"GD:0008073"
##	"GO:0016641"
##	"GO:0018467"
##	"GO:0036487"
## ##	"GO:0045523" "GO:0047750"
##	"GD:0047750"
##	"GD:0051905"
##	"GD:0010393
##	"GO:0037001
##	"GD:0030379"
##	"GD:0000250"
##	"GD:0000230
##	"GD:0030550"
##	"GD:0008047"
##	"GO:0030553"
##	"GO:0017136"
##	"GO:0005543"
##	"GD:0004865"
##	"GD:0008233"
##	"GD:0000773"
##	"GD:0004608"
##	"GO:0004909"
##	"GO:0017168"
##	"GO:0042015"
##	"GO:0070984"
##	"GO:0080101"
##	"GO:1905574"
##	"GO:1905575"
##	"GO:1905577"
##	"GO:0015278"
##	"GO:0008294"
##	"GO:0004311"
##	"GD:0004638"
##	"GD:0004639"
##	"GO:0045505"
##	"GO:0034596"
##	"GO:0005175"
##	"GO:0030350"
##	"GO:0042392"
##	"GD:0033989"

##	"GO:0044594"
##	"GO:0034618"
##	"GO:0048273"
##	"GO:0004571"
##	"GD:0004326"
##	"GD:0004769"
##	"GD:0061730"
##	"GO:0072545"
##	"GO:1905030"
##	"GO:0018685"
##	"GO:1904929"
##	"GO:0003721"
##	"GD:0098680"
##	"GO:0001618"
##	"GO:0022849"
##	"GO:0016896"
##	"GO:0035175"
##	"GO:0042910"
##	"GO:0045519"
##	"GD:0046964"
##	"GO:0072320"
##	"GO:0072354"
##	"GD:0086087"
##	"GD:0086090"
##	"GO:0016934"
##	"GD:0036328"
##	"GO:0004351"
##	"GO:0050115"
##	"GD:0003964"
##	"GO:0001056"
##	"GO:1902496"
##	"GO:0052689"
##	"GD:0003939"
##	"GO:0003979"
##	"GO:0004555"
##	"GD:0004667"
##	"GO:0005171"
##	"GO:0042284"
##	"GO:0043994"
##	"GO:0046526"
##	"GO:0055105"
##	"GO:0047322"
##	"GO:0050405"
##	"GO:0004767"
##	"GO:0001614"
##	"GO:0004817"
##	"GO:0004931"
##	"GO:0016857"
##	"GO:0016917"
##	"GD:0023030"
##	"GO:0030548"
##	"GD:0032093"
##	"GO:0035381"
##	"GO:0042497"

##	"GO:0045134"
##	"GO:0051377"
##	"GD:0086059"
##	"GD:0000384"
##	"GD:0000293"
##	"GO:0019144"
##	"GO:0030375"
## ##	"GO:0019789" "GO:0052811"
## ##	"GD:0032811"
##	"GD:0004423
##	"GD:0033883"
##	"GO:0033003
##	"GO:0052855"
##	"GD:0097162"
##	"GD:0000827"
##	"GD:0000828"
##	"GD:0000829"
##	"GD:0000832"
##	"GD:0004119"
##	"GD:0004581"
##	"GD:0016758"
##	"GD:0036326"
##	"GD:0036327"
##	"GO:0036332"
##	"GO:0052723"
##	"GO:0052724"
##	"GO:1905573"
##	"GD:0097363"
##	"GD:0001226"
##	"GO:0005375"
##	"GO:0016881"
##	"GO:0031685"
##	"GD:0008160"
##	"GD:0042019"
##	"GD:0042020"
##	"GD:0086040"
##	"GO:0032451"
##	"GD:0000822"
##	"GD:0046911"
##	"GO:0000121"
##	"GD:0032767"
##	"GD:0043136"
##	"GD:0030624"
##	"GD:0046979"
##	"GO:0004157"
##	"GO:0003977"
##	"GD:0008597"
##	"GD:0008995"
##	"GO:0015247"
##	"GO:0031851"
## ##	"GD:0032393"
##	"GD:0046980" "GD:0047844"
##	GU.004/844"

##	"GO:0071617"
##	"GO:0061860"
##	"GO:0004144"
##	"GO:0004305"
##	"GO:0038021"
##	"GO:0042289"
##	"GO:0043924"
##	"GO:0044716"
##	"GO:0044717"
##	"GO:0046525"
##	"GO:0050197"
##	"GO:0070251"
##	"GO:0015643"
##	"GO:0019871"
##	"GO:0044389"
##	"GO:0005432"
##	"GO:0047631"
##	"GO:0004825"
##	"GO:0002114"
##	"GO:0046570"
##	"GO:0052815"
##	"GO:0052816"
##	"GO:0030492"
##	"GO:0034437"
##	"GD:0003997"
##	"GO:0005542"
##	"GO:0003839"
##	"GO:0004113"
##	"GO:0071207"
##	"GO:0004301"
##	"GO:0004553"
##	"GO:0004803"
##	"GO:0008649"
##	"GO:0019772"
##	"GO:0019962"
##	"GO:0070892"
##	"GO:0150025"
##	"GO:1990259"
##	"GO:0046577"
##	"GO:0050061"
##	"GO:0052814"
##	"GO:0050051"
##	"GD:0008398"
##	"GO:0047066"
##	"GD:0086060"
##	"GD:0086061"
##	"GD:0086063"
##	"GO:0001054"
##	"GO:0000213"
##	"GO:0003824"
##	"GO:0005169"
##	"GO:0005170"
##	"GO:0032190"
##	"GD:0080023"

##	"GO:0044388"
##	"GO:0090541"
##	"GD:0008900"
##	"GD:0046970"
##	"GO:0071885"
##	"GD:0004900"
##	"GD:0019780"
##	"GO:0031877"
##	"GO:0047315"
##	"GO:0005149"
##	"GD:0080025"
##	"GO:0004310"
##	"GO:0004661"
##	"GD:0004662"
##	"GO:0051996"
##	"GO:1990174"
##	"GO:0019788"
##	"GD:0023024"
##	"GO:0004583"
##	"GO:0016784"
##	"GO:1904455"
##	"GO:0097258"
##	"GO:0097259"
##	"GO:0048030"
##	"GO:0004531"
##	"GO:0004751"
##	"GO:0005129"
##	"GO:0005436"
##	"GO:0008511"
##	"GO:0008781"
##	"GD:0008808"
##	"GO:0015378"
##	"GO:0042292"
##	"GO:0043337"
##	"GD:0061604"
##	"GO:0061605"
##	"GO:0061770"
##	"GD:0004065"
##	"GO:0018773"
##	"GO:0034038"
##	"GO:0034545" "GO:0047621"
##	
##	"GD:0060230"
##	"GO:0034713"
##	"GO:0044390"
##	"GD:0003846"
##	"GO:0004146"
##	"GD:0033560"
##	"GO:0001665"
##	"GO:0015319"
##	"GO:0016603"
##	"GD:0047804"
##	"GO:1901611"
##	"GO:0017129"

##	"GO:1902122"
##	"GO:0042805"
##	"GO:0030184"
##	"GO:0035379"
##	"GD:0000983"
##	"GO:0004731"
##	"GD:0008478"
##	"GO:0016508"
##	"GO:0003945"
##	"GO:0097153"
## ##	"GO:0031720" "GO:0046870"
## ##	"GD:0046870"
## ##	"GD:0004530"
##	"GD:0031543
##	"GD:0050254"
##	"GD:0050254"
##	"GD:0032323
##	"GD:0110202
##	"GD:0016936"
##	"GD:0001730"
##	"GD:0008191"
##	"GD:0000224"
##	"GD:0008456"
##	"GD:0033699"
##	"GO:0120108"
##	"GO:1990165"
##	"GO:0004906"
##	"GO:0016722"
##	"GO:0016811"
##	"GO:0022848"
##	"GO:0070699"
##	"GO:0004430"
##	"GO:0015168"
##	"GO:0032407"
##	"GO:0035005"
##	"GO:0001002"
##	"GO:0001003"
##	"GO:0032089"
##	"GD:0086062"
##	"GO:0004874"
##	"GO:0043035"
## ##	"GD:0047704" "GD:0070579"
## ##	"GD:0070579"
## ##	"GD:0070052"
## ##	"GD:0030145"
## ##	"GD:0003976" "GD:0004921"
## ##	"GD:0004921" "GD:0008109"
## ##	"GD:0008109"
## ##	"GD:0019970"
## ##	"GD:0099181"
##	"GD:0043739
##	"GD:0070611"
	JJ. 001 001Z

##	"GO:0017128"
##	"GO:0004630"
##	"GO:0031151"
##	"GD:0004692"
##	"GD:0036139"
##	"GO:0036140"
##	"GO:0045127"
##	"GO:0102113"
##	"GO:1990175"
##	"GO:0005372"
##	"GO:0016231"
##	"GO:0102166"
##	"GO:0102167"
##	"GO:0102571"
##	"GO:0032448"
##	"GO:0045509"
##	"GO:0008329"
##	"GO:0004745"
##	"GO:0005344"
##	"GO:0004831"
##	"GO:0017125"
##	"GO:0030348"
##	"GO:0033781"
##	"GO:0004345"
##	"GO:0033142"
##	"GO:0004438"
##	"GD:0050700"
##	"GO:0070697"
##	"GO:0016362"
##	"GO:0097016"
##	"GO:0033682"
##	"GO:0043394"
##	"GO:0047372"
##	"GO:0015196"
##	"GO:0051021"
##	"GO:0005017"
##	"GO:0008267"
##	"GO:0004687"
##	"GO:0008330"
##	"GO:0019778"
##	"GO:0019779"
##	"GO:0015079"
##	"GO:0005123"
##	"GO:0086057"
##	"GD:0097161"
##	"GO:0016232"
##	"GO:0031491"
##	"GO:0061575"
##	"GO:0002094"
##	"GO:0017116"
##	"GO:0004509"
##	"GO:0004349"
##	"GO:0004350"
##	"GO:0017084"

##	"GD:0086080"
##	"GD:0008397"
##	"GD:0008403"
##	"GD:0030342"
##	"GD:0033778"
##	"GO:0047184"
##	"GD:0070290"
##	"GD:0008269"
##	"GO:0102991"
##	"GO:0001681"
##	"GD:0008240"
##	"GD:0005176"
##	"GO:0004675"
##	"GO:0015250"
##	"GD:0008387"
##	"GD:0022843"
##	"GD:0046978"
##	"GO:1990955"
##	"GO:0005549"
##	"GD:0098639"
##	"GO:0018585"
##	"GD:0004461"
##	"GD:0008466"
##	"GO:0102751"
##	"GD:0035373"
##	"GD:0047696"
##	"GO:0038132"
##	"GO:0015321"
##	"GD:0009931"
##	"GD:0030158"
##	"GD:0033871"
##	"GD:0032356"
##	"GD:0019964"
##	"GO:0035250"
##	"GD:0047288"
##	"GO:0071820"
##	"GD:0005011"
##	"GD:0008235"
##	"GO:0008176"
##	"GO:0005136"
##	"GO:0008349"
##	"GO:0061752"
##	"GD:0061896"
##	"GO:0061897"
##	"GO:0061898"
##	"GO:0061899"
##	"GD:0070740"
##	"GO:0003844"
##	"GO:0102752"
##	"GD:0004163"
##	"GO:0097472"
##	"GO:0031013"
##	"GO:0016278"
##	"GO:0045130"

##	"GO:0004903"
##	"GO:0043997"
##	"GO:0106078"
##	"GO:0050659"
##	"GD:0004064"
##	"GO:0005019"
##	"GO:0034513"
##	"GO:0008519"
##	"GO:0051731"
##	"GO:0044715"
##	"GO:0005328"
##	"GO:0050780"
##	"GO:0001540"
##	"GD:0003829"
##	"GO:0106029"
##	"GO:0004563"
##	"GO:0102148"
## ##	"GD:1990450" "GD:0005261"
##	"GO:0005261" "GO:0071558"
##	"GD:0071556"
##	"GD:0004505
##	"GD:0030310
##	"GD:0003899
##	"GD:0004337
##	"GD:00030034"
##	"GD:0043028"
##	"GD:0003921"
##	"GD:0003922"
##	"GD:0008404"
##	"GD:0008405"
##	"GO:0071614"
##	"GO:0005289"
##	"GO:0005292"
##	"GO:0016888"
##	"GO:0070180"
##	"GD:0004676"
##	"GD:0086006"
##	"GO:0004308"
##	"GO:0015081"
##	"GO:0001135"
##	"GO:0032500"
##	"GO:0038062"
##	"GO:0004573"
##	"GO:0015926"
##	"GO:0004557"
##	"GD:0004463"
##	"GO:1905576"
##	"GO:0004415"
##	"GO:0004498"
##	"GO:0031798"
##	"GO:0015018"
##	"GO:0034485"
##	"GO:0004972"

##	"GD:0004452"
##	"GO:1901707"
##	"GO:0015174"
##	"GO:0086056"
##	"GO:0044508"
##	"GO:0019107"
##	"GO:0001004"
##	"GO:0008239"
## ##	"GO:0045159"
##	"GO:0015114" "GO:0097726"
##	"GD:0000285"
##	"GD:0004465"
##	"GD:0052810"
##	"GD:1990407"
##	"GD:0050178"
##	"GD:0030899"
##	"GD:0060175"
##	"GD:0008832"
##	"GD:0016793"
##	"GD:0032567"
##	"GD:0019863"
##	"GO:0035259"
##	"GO:0016279"
##	"GD:0003972"
##	"GD:0004045"
##	"GD:0030160"
##	"GO:0016298"
##	"GO:0019840"
##	"GO:0004508"
##	"GO:0004914"
##	"GO:0047442"
##	"GD:0008263"
##	"GO:0034190"
##	"GD:0001846"
##	"GD:0008296"
##	"GO:0005018"
##	"GO:0015379"
##	"GD:0036004"
##	"GO:0005324"
##	"GO:0050509"
##	"GD:0016773"
##	"GD:0003720"
##	"GO:0004167"
##	"GO:0031721"
##	"GD:0030883"
##	"GD:0030884"
##	"GD:0004908"
##	"GD:0033746"
##	"GO:0033749" "GO:0070815"
## ##	"GD:0070815" "GD:0001733"
## ##	"GD:0001733"
##	"GD:0004912"
ππ	GU.0004312

##	"GO:0015385"
##	"GO:0030372"
##	"GO:0004915"
##	"GO:0015277"
##	"GO:0019981"
##	"GO:0042978"
##	"GO:0050508"
##	"GO:0004913"
##	"GO:0008484"
##	"GO:0045547"
##	"GD:0008408"
##	"GO:0031695"
##	"GD:0070856"
##	"GO:0016314"
##	"GD:0019206"
##	"GO:0004923"
##	"GD:0023029"
##	"GO:1990756"
##	"GO:0015386"
##	"GO:0017176"
##	"GO:0030345"
##	"GO:1990188"
##	"GO:0015299"
##	"GD:0030395"
##	"GO:0052858"
##	"GO:0070012"
##	"GD:0004596"
##	"GO:0008481"
##	"GO:0017050"
##	"GO:0070539"
##	"GD:0001165"
##	"GO:0016175"
##	"GD:0019200"
##	"GO:0004140"
##	"GO:0072587"
##	"GO:0080132"
##	"GD:0005326"
##	"GD:0008967"
##	"GO:0022850"
##	"GO:0051879"
##	"GO:0004556"
##	"GO:0005277"
##	"GO:0103025"
##	"GD:0004566"
##	"GO:0016616"
##	"GO:0015108"
##	"GD:0035663"
##	"GO:0004138"
##	"GO:0034246"
##	"GO:0038182"
##	"GO:0004586"
##	"GO:0071253"
##	"GO:0004126"
##	"GO:0008821"

##	"GO:0070615"
##	"GD:0097602"
##	"GO:0016496"
##	"GO:0017045"
##	"GO:0016263"
##	"GD:0034237"
##	"GO:0035662"
##	"GO:0035939"
## ##	"GO:0004905" "GO:0015433"
## ##	"GO:0015433"
##	"GO:0043183
##	"GD:0008426"
##	"GO:0005138"
##	"GO:0003138"
##	"GD:0030023"
##	"GD:0000033"
##	"GD:0070140"
##	"GO:1904680"
##	"GD:0004703"
##	"GD:0004978"
##	"GD:0032038"
##	"GD:0009922"
##	"GD:0016534"
##	"GD:0032422"
##	"GO:0102336"
##	"GO:0102337"
##	"GO:0102338"
##	"GO:0102756"
##	"GO:0004648"
##	"GO:0050211"
##	"GO:0004924"
##	"GO:0047238"
##	"GO:0008123"
##	"GO:0005547"
##	"GO:0042287"
##	"GO:0042799"
##	"GD:0003878"
##	"GO:0005501"
##	"GD:0019829"
##	"GO:0016519"
##	"GO:0050321"
##	"GD:0000254"
##	"GD:0034353"
##	"GD:0036041"
##	"GD:0008650"
##	"GO:0019777"
##	"GD:0102009"
##	"GO:0044378"
##	"GD:0001883"
##	"GO:0019797" "GO:0033677"
##	"GU:0033677" "GD:0047223"
## ##	"GU:0047223" "GO:0015055"

##	"GD:0097003"
##	"GO:0016274"
##	"GO:0098519"
##	"GD:0000171"
##	"GO:0070492"
##	"GO:1990763"
##	"GO:0120160"
##	"GO:0072518"
##	"GO:0101005"
##	"GD:0003873"
##	"GO:0016428"
##	"GO:0043423"
##	"GO:0016596"
##	"GO:0070139"
##	"GD:0000340"
##	"GO:0004984"
##	"GO:0016308"
##	"GO:0015279"
##	"GO:0004955"
##	"GO:0050694"
##	"GD:0050698"
##	"GO:0140030"
##	"GO:0004394"
##	"GO:0004792"
##	"GO:1904768"
##	"GD:0004964"
##	"GO:0035472"
##	"GO:0038100"
##	"GO:0038106"
##	"GO:1902379"
##	"GO:0031402"
##	"GO:0052812"
##	"GO:0004331"
##	"GO:0019826"
##	"GD:0008373"
##	"GO:0001847"
##	"GD:0009383"
##	"GD:0008378"
##	"GO:0052658"
##	"GD:0004911"
##	"GO:0019976"
##	"GO:0036310"
##	"GD:0003980"
##	"GO:0033872"
##	"GO:0048763"
##	"GD:0004647"
##	"GO:0015562"
##	"GO:0043130"
##	"GO:1990939"
##	"GD:0005262"
##	"GD:0004304"
##	"GD:0004660"
##	"GO:0031014"
##	"GD:0032028"

##	"GO:0038181"
##	"GO:0016015"
##	"GO:0032029"
##	"GO:0070990"
##	"GO:0003810"
##	"GD:0004809"
##	"GO:0005163"
##	"GD:0003696"
##	"GD:0004940"
##	"GO:0001225"
##	"GO:0050613"
##	"GO:0019136"
##	"GO:0005128"
##	"GO:0005223"
##	"GO:0005127"
##	"GO:0016964"
##	"GD:0030226"
## ##	"GO:0005222" "GO:0008124"
##	"GD:0008124"
##	"GD:0001042"
##	"GD:0003130
##	"GD:0010700
##	"GD:0004181
##	"GD:0004032
##	"GO:0055100"
##	"GD:0016783"
##	"GD:0031770"
##	"GD:0070976"
##	"GD:0030617"
##	"GO:0097158"
##	"GO:0001594"
##	"GO:0019534"
##	"GO:0050998"
##	"GD:0003876"
##	"GO:0051427"
##	"GO:0031493"
##	"GO:0000252"
##	"GO:0001616"
##	"GO:0047012"
##	"GO:0103066"
##	"GO:0103067"
##	"GO:0004019"
##	"GO:0008251"
##	"GD:0030366"
##	"GO:0030297"
##	"GD:0004027"
##	"GO:0043533"
##	"GO:0098531"
##	"GO:0017002"
##	"GO:0032794"
##	"GD:0070700"
##	"GD:0004859"
##	"GO:0004507"

##	"GO:0031856"
##	"GO:0031857"
##	"GO:0047783"
##	"GD:0008396"
##	"GO:0017017"
##	"GO:0043237"
##	"GD:0002046"
##	"GO:0034711"
##	"GO:0097159"
##	"GO:0019210"
##	"GO:0071796"
##	"GO:0005095"
##	"GO:0051424"
##	"GO:0017016"
##	"GO:0102007"
##	"GO:0008195"
##	"GO:0070325"
##	"GO:0070773"
##	"GO:0010698"
##	"GO:0017070"
##	"GO:0043225"
##	"GO:0005126"
##	"GO:0016462"
##	"GO:0031700"
##	"GO:0004520"
##	"GO:0004035"
##	"GO:0008158"
##	"GO:0016810"
##	"GO:0015052"
##	"GO:0036122"
##	"GD:0003836"
##	"GO:0043325"
##	"GO:0047057"
##	"GO:0016167"
##	"GO:0016757"
##	"GO:0003747"
##	"GO:0019212"
##	"GO:0005135"
##	"GO:0030371"
##	"GO:0016230"
##	"GO:0015106"
##	"GO:0070051"
##	"GO:0070337"
##	"GD:0099609"
##	"GO:0044548"
##	"GO:0099184"
##	"GO:0003726"
##	"GO:0046975"
##	"GO:0031433"
##	"GO:0004772"
##	"GO:0005351"
##	"GD:0060001"
##	"GO:0004379"
##	"GO:0003854"

##	"GO:0031699"
##	"GD:0008459"
##	"GO:0034584"
##	"GD:0005035"
##	"GD:0008309"
##	"GD:0016505"
##	"GO:0004883"
##	"GO:0038050"
##	"GD:0016301"
##	"GD:0003831"
##	"GO:0001587" "GO:0045296"
## ##	"GD:0045296" "GD:0070717"
##	"GD:0070717"
##	"GD:0004416
##	"GD:0004094
##	"GD:0008440
##	"GD:0035877"
##	"GD:0070891"
##	"GD:0031435"
##	"GD:0004990"
##	"GD:0000989"
##	"GD:0070491"
##	"GO:0015485"
##	"GD:0016435"
##	"GO:0034511"
##	"GO:0038052"
##	"GO:1990782"
##	"GO:0043169"
##	"GO:0071936"
##	"GO:1904928"
##	"GD:0008420"
##	"GO:0048257"
##	"GD:0008242"
##	"GD:0005020"
##	"GO:0047894"
##	"GD:0004897"
##	"GD:0019902"
##	"GD:0005199"
##	"GD:0042030"
##	"GD:0004016"
## ##	"GO:0044729" "GO:0001631"
## ##	"GD:0001631"
##	"GD:0048185
##	"GD:0030377"
##	"GD:0030377
##	"GD:0004903"
##	"GD:0038025"
##	"GD:0035025
##	"GD:0048256"
##	"GD:0051908"
##	"GD:0031835"
##	"GD:0008437"

##	"GD:0030197"
##	"GO:0004998"
##	"GO:0033570"
##	"GO:0032841"
##	"GO:0016521"
##	"GO:0030515"
##	"GO:0031858"
##	"GO:0042165" "GO:1990460"
## ##	"GO:1990460" "GO:0032813"
## ##	"GO:0032613"
##	"GD:0033639
##	"GO:0097677
##	"GD:0003383
##	"GD:0004370"
##	"GO:0004370
##	"GD:0019948
##	"GD:004997"
##	"GD:0004937
##	"GO:0005247"
##	"GO:0031854"
##	"GD:0033691"
##	"GD:0016913"
##	"GD:0050839"
##	"GD:0070320"
##	"GD:0086007"
##	"GD:0004044"
##	"GD:0005115"
##	"GD:0005008"
##	"GD:0061714"
##	"GD:0035258"
##	"GD:0005025"
##	"GO:0047144"
##	"GO:0051870"
##	"GD:0034648"
##	"GD:0031686"
##	"GO:0045032"
##	"GO:0045125"
##	"GD:0004946"
##	"GD:0004971"
##	"GD:0070097"
##	"GD:0008534"
##	"GO:0004115"
##	"GD:0004961"
##	"GD:0008310"
##	"GD:0008392"
##	"GO:0050119"
##	"GD:0005499"
##	"GD:0008311"
##	"GD:0002153"
##	"GO:0015091"
##	"GO:0004623"
##	"GO:0035173"
##	"GO:0003917"

##	"GD:0031800"
##	"GD:0031997"
##	"GD:0008607"
##	"GD:0031768"
##	"GO:0052659"
##	"GD:0035642"
##	"GD:0005007"
##	"GD:0099077"
##	"GD:0015616"
##	"GD:0033300"
##	"GD:0001596"
##	"GD:0042813"
##	"GO:0071532"
##	"GD:0005105"
##	"GD:0004298"
##	"GD:0099529"
##	"GD:0004917"
##	"GD:0019870"
##	"GO:0031752"
##	"GO:0005231"
##	"GD:0030627"
##	"GD:0010484"
##	"GD:0004996"
##	"GO:0017095"
##	"GO:0051018"
##	"GD:0031628"
##	"GO:0031711"
##	"GD:0005506"
##	"GD:0005111"
##	"GD:0097493"
##	"GO:0035715"
##	"GD:0035716"
##	"GD:0031788"
##	"GO:0031855"
##	"GD:0043236"
##	"GD:0000405"
##	"GD:0031773"
##	"GD:0050544"
##	"GD:0019911"
##	"GD:0031771"
##	"GD:0031772"
##	"GO:0008475"
##	"GD:0033823"
##	"GD:0001147"
##	"GO:0042731"
##	"GD:0005042"
##	"GD:0008193"
##	"GD:0003916"
##	"GO:0070463"
##	"GO:1990448"
##	"GO:0034595"
##	"GO:0008142"
##	"GD:0070644"
##	"GD:0004720"

##	"GO:0032266"
##	"GO:0004532"
##	"GO:0070888"
##	"GO:0016702"
##	"GO:0071889"
##	"GO:0043532"
##	"GD:0005260"
##	"GO:0071723"
##	"GO:0046404"
##	"GO:0004527"
##	"GO:0008853"
##	"GO:0017018"
##	"GD:0003785"
##	"GO:0005319"
##	"GO:0031727"
##	"GO:0016497"
##	"GO:0032934"
##	"GO:0001206"
##	"GO:0008434"
##	"GO:0038186"
##	"GO:1902098"
##	"GO:1902121"
##	"GO:0035004"
##	"GO:0015245"
##	"GO:0004714"
##	"GO:0031728"
##	"GO:0017108"
##	"GO:0031716"
##	"GD:0005009"
##	"GO:0015578"
##	"GO:0050656"
##	"GO:0001134"
##	"GO:0034736"
##	"GO:0035312"
##	"GO:0005174"
##	"GO:0008432"
##	"GO:0034056"
##	"GO:0034714"
##	"GO:0004992"
##	"GO:0017082"
##	"GO:1990239"
##	"GO:0098872"
##	"GD:0002020"
##	"GD:0008289"
##	"GO:0005248"
##	"GO:0042328"
##	"GO:0098919"
##	"GO:0016176"
##	"GO:0005072"
##	"GO:0015467"
##	"GO:0004945"
##	"GO:0017076"
##	"GO:0004711"
##	"GO:0019209"

##	"GO:0030246"
##	"GO:0031707"
##	"GO:0001161"
##	"GD:0070653"
##	"GO:0016520"
##	"GO:0030215"
##	"GO:0097108"
##	"GO:0015054"
##	"GO:0031741"
##	"GO:1990409"
##	"GO:0070974"
##	"GO:0051575" "GO:0004445"
## ##	"GO:0004445"
##	"GD:0005137"
##	"GD:0004385"
##	"GO:0008378
##	"GO:0015248
##	"GD:0051736"
##	"GD:0005010"
##	"GO:0008331"
##	"GO:0008401"
##	"GD:0030623"
##	"GO:0005172"
##	"GD:0050840"
##	"GD:0008532"
##	"GD:0004528"
##	"GO:0035325"
##	"GO:0031724"
##	"GO:0008301"
##	"GO:0019904"
##	"GO:0031715"
##	"GO:0019002"
##	"GO:0031748"
##	"GO:1990189"
##	"GO:0035402"
##	"GO:0031704"
##	"GO:0005160"
##	"GO:0019864"
##	"GO:0071813"
##	"GO:0005545"
##	"GO:0004844"
##	"GD:0043047"
##	"GO:0099582"
##	"GO:0034057"
##	"GD:0038048"
##	"GO:1990190"
##	"GD:0004876"
##	"GO:0008545"
##	"GO:0032810"
##	"GO:0045322"
##	"GD:0008144"
##	"GD:0035757"
##	"GO:0035758"

##	"GO:0038117"
##	"GO:0038121"
##	"GO:0045131"
##	"GD:0060228"
##	"GD:0061749"
##	"GO:0036143"
##	"GD:0038046"
##	"GD:0050646"
##	"GO:0050647"
##	"GO:0050648"
##	"GO:0001856"
##	"GO:0010856"
##	"GO:0031764"
##	"GO:0031765"
##	"GO:0031766"
##	"GD:0003689"
##	"GO:0044730"
##	"GO:0099511"
##	"GD:0008376"
##	"GO:1902936"
##	"GD:0001588"
##	"GO:0004878"
##	"GO:0005119"
##	"GD:0042166"
##	"GD:0032036"
##	"GD:0004939"
##	"GO:0070553"
##	"GO:0043125"
##	"GD:0004869"
##	"GO:0005132"
##	"GO:0030159"
##	"GD:0004886"
##	"GD:0061649"
##	"GO:0016361"
##	"GO:0015056"
##	"GO:0018812"
##	"GO:0035197"
##	"GD:0043404"
##	"GO:0102158"
##	"GO:0102343"
##	"GO:0102344"
##	"GO:0102345"
##	"GO:0140078"
##	"GD:0070336"
##	"GD:0001626"
##	"GO:0045545"
##	"GD:0004768"
##	"GD:0098632"
##	"GO:0061631"
##	"GO:0005237"
##	"GO:0004887"
##	"GO:0031731"
##	"GO:0050294"
##	"GO:0008094"

##	"GO:0015065"
##	"GD:0098918"
##	"GD:0001605"
##	"GD:0003956"
##	"GO:0031841"
##	"GO:0120170"
##	"GD:0003896"
##	"GD:0001047"
## ##	"GO:0042605" "GO:0051864"
##	"GD:0031698"
##	"GD:000175"
##	"GD:0000173
##	"GD:0001337
##	"GD:0043104
##	"GD:0032453"
##	"GD:0005502"
##	"GD:0031769"
##	"GD:0005520"
##	"GD:0048365"
##	"GD:0008020"
##	"GD:0001642"
##	"GD:0010855"
##	"GD:0032358"
##	"GO:0047756"
##	"GD:0030229"
##	"GD:0003779"
##	"GD:0034647"
##	"GO:0004521"
##	"GD:0070300"
##	"GO:0061849"
##	"GO:1905773"
##	"GD:0008499"
##	"GO:0022851"
##	"GD:0004497"
##	"GO:0035401"
##	"GD:0050692"
##	"GO:0015016"
##	"GO:0019958"
##	"GD:0008080"
##	"GD:0005153"
##	"GD:0043273"
##	"GD:0004948"
##	"GD:0045499"
##	"GD:0097371"
##	"GD:0016671"
##	"GD:0031896"
##	"GD:1990404"
##	"GD:0098772"
## ##	"GO:0004980" "GO:0016492"
##	"GD:0016492" "GD:0003707"
## ##	"GD:0003707"
## ##	"GD:0000182"
ππ	du.0003123"

##	"GO:0051019"
##	"GD:0017081"
##	"GD:0001972"
##	"GO:0001640"
##	"GO:0016791"
##	"GD:0070053"
##	"GO:0043559"
##	"GO:0017166"
##	"GO:1990254"
##	"GO:0071886"
##	"GD:0009008"
##	"GO:0019843"
##	"GD:0035403"
##	"GO:0032454"
##	"GD:0004979"
##	"GO:0005131"
##	"GO:0038047"
##	"GD:0016890"
##	"GD:0019959"
##	"GD:0045029"
##	"GD:0008395"
##	"GD:0050816"
##	"GD:0005183"
##	"GD:0031530"
##	"GD:0030298"
##	"GD:0031729"
##	"GO:0046817"
##	"GD:0004890"
##	"GO:0031404"
##	"GO:0030284"
##	"GO:0016247"
##	"GO:0005548"
##	"GO:0019211"
##	"GO:0017154"
##	"GO:0050786"
##	"GD:0003906"
##	"GO:0042043"
##	"GO:0005026"
##	"GD:0004937"
##	"GD:0050693"
##	"GD:0060090"
##	"GD:0098847"
##	"GD:0070016"
##	"GD:0019808"
##	"GO:0043495"
##	"GD:0061821"
##	"GD:0030306"
##	"GO:0032184"
##	"GO:0005254"
##	"GO:0071987"
##	"GD:0009378"
##	"GO:0051371"
##	"GD:0001032"
##	"GD:0042954"

##	"GO:0001102"
##	"GO:0001604"
##	"GO:0004882"
##	"GD:0052629"
##	"GD:0001069"
##	"GO:0016251"
##	"GD:0004386"
##	"GD:0016004"
##	"GO:0004935" "GO:0001785"
## ##	"GD:0001785"
##	"GD:1990932"
##	"GD:0061665"
##	"GD:0031703"
##	"GD:0031703
##	"GD:0016705"
##	"GD:0013705"
##	"GD:0043996"
##	"GD:0046972"
##	"GO:0043539"
##	"GO:0004725"
##	"GD:0031005"
##	"GD:0032027"
##	"GO:0001221"
##	"GO:0004995"
##	"GO:0019208"
##	"GO:0031732"
##	"GO:0038085"
##	"GO:0004523"
##	"GO:0000386"
##	"GD:0008467"
##	"GD:0035033"
##	"GD:0016608"
##	"GO:0031624"
##	"GO:0001011"
##	"GO:0001848"
##	"GD:0008026"
##	"GO:1990459"
##	"GD:0005496"
##	"GD:0005080"
## ##	"GD:0004402" "GD:0051213"
## ##	"GD:0051213" "GD:0010385"
## ##	"GD:0010385"
##	"GD:0031840"
##	"GD:0031040
##	"GD:0042322
##	"GD:0001633
##	"GD:00104999"
##	"GD:0004553"
##	"GD:0004958"
##	"GD:0001156"
##	"GD:0035717"
##	"GD:0043813"
	20.0010010

##	"GO:0008656"
##	"GO:0005539"
##	"GO:0016409"
##	"GO:0001632"
##	"GO:0051430"
##	"GO:0071209"
##	"GO:0005178"
##	"GO:0030273"
##	"GD:0035326"
##	"GD:0046969"
##	"GO:0005164"
##	"GO:0008190"
##	"GO:0031895"
##	"GO:0042562"
##	"GO:0099530"
##	"GO: 1000518"
##	"GO:1990518"
## ##	"GO:0017112" "GO:0000995"
##	"GD:0000995"
##	"GD:0030881"
##	"GD:0043030"
##	"GD:0030020"
##	"GD:0003021
##	"GD:003031"
##	"GD:0000551
##	"GD:0086083"
##	"GO:0045031"
##	"GO:0046965"
##	"GO:0035174"
##	"GD:0000247"
##	"GD:0004879"
##	"GO:0008312"
##	"GO:0042134"
##	"GO:0001162"
##	"GO:0001621"
##	"GO:0004977"
##	"GO:0043208"
##	"GO:0031434"
##	"GO:0090722"
##	"GO:0043395"
##	"GO:0071791"
##	"GO:0019955"
##	"GO:0035368"
##	"GO:0005143"
##	"GO:0047429"
##	"GO:0030291"
##	"GD:0004962"
##	"GO:0031418"
##	"GO:0048407"
##	"GO:0001875"
##	"GD:0099579"
##	"GD:0030021"
##	"GO:0034988"

##	"GO:0030354"
##	"GO:0045142"
##	"GO:0035500"
##	"GO:0031995"
##	"GO:0031962"
##	"GO:0097643"
##	"GD:0046914"
##	"GO:0033676"
##	"GO:1990814"
##	"GO:0005230"
## ##	"GO:0048019" "GO:0005229"
## ##	"GD:0005229" "GD:0004698"
## ##	"GD:0004698"
##	"GD:0004333
##	"GD:0008200"
##	"GD:0008200
##	"GD:004861"
##	"GD:0004705"
##	"GD:0003968"
##	"GO:0005537"
##	"GO:0031781"
##	"GO:0031782"
##	"GD:0070996"
##	"GD:0004967"
##	"GO:0004918"
##	"GO:0004951"
##	"GO:0043142"
##	"GO:0031696"
##	"GO:0031369"
##	"GO:0031859"
##	"GO:0001517"
##	"GO:0008157"
##	"GO:0004677"
##	"GO:0035254"
##	"GD:0003886"
##	"GO:0044323"
##	"GD:0031749"
##	"GO:0061656"
##	"GO:0004518"
##	"GO:0005024"
##	"GO:0005003"
## ##	"GD:0070181" "GD:0001227"
## ##	"GD:0001227" "GD:0030276"
## ##	"GD:0030276"
## ##	"GD:0033614"
## ##	"GD:0043021"
## ##	"GD:0035091" "GD:0043138"
## ##	"GD:0043138"
## ##	"GD:0010485"
## ##	"GD:0035612"
##	"GD:0001030"
##	"GD:0001031
	22.00100/f

##	"GD:0004526"
##	"GO:0004540"
##	"GO:0017049"
##	"GO:0032041"
##	"GO:0000991"
##	"GO:0036459"
##	"GO:0004697"
##	"GO:1905172"
##	"GO:0045294"
##	"GD:0061920"
##	"GO:0140065"
##	"GO:0140068"
##	"GO:0140069"
##	"GO:0004857"
##	"GO:0031730"
##	"GD:0003691"
##	"GO:0031894"
##	"GD:0005546"
##	"GO:0005516"
##	"GO:0001074"
##	"GD:0030280"
##	"GO:0031994"
##	"GD:0004864"
##	"GD:0008569"
##	"GO:0042974"
##	"GD:0019706"
##	"GO:0003887"
##	"GO:0031694"
##	"GO:0035014"
##	"GO:0099583"
##	"GD:0008353"
##	"GO:0005523"
##	"GO:0097100"
##	"GD:0002162"
##	"GO:0045236"
##	"GO:0001515"
##	"GO:0010997"
##	"GO:0070412"
##	"GO:0001641"
##	"GD:0070330"
##	"GD:0004974"
##	"GD:0070034"
##	"GD:0031802"
##	"GD:0008046"
##	"GD:0008187"
##	"GO:0005114"
##	"GO:0019838"
##	"GO:0031821"
##	"GO:0004952"
##	"GO:0008234"
##	"GO:1904315"
##	"GO:0099122"
##	"GO:0001093"
##	"GO:0140031"

##	"GO:0001097"
##	"GO:0035591"
##	"GO:0005124"
##	"GO:0004965"
##	"GO:0043398"
##	"GO:0001664"
##	"GO:0051020"
##	"GO:0098641"
##	"GO:0005185"
##	"GD:0004062"
##	"GO:0071074"
##	"GD:0042800"
##	"GO:0031691"
##	"GO:0031701"
##	"GO:0031762"
##	"GO:0017048"
##	"GO:0051425"
## ##	"GO:0031735" "GO:0032427"
##	"GD:0032427" "GD:0031726"
##	"GD:0031726"
##	"GD:0003708"
##	"GD:0071208"
##	"GD:0004197"
##	"GD:0004197
##	"GD:00016538"
##	"GD:0010000
##	"GO:0033613"
##	"GO:0051525"
##	"GO:0005047"
##	"GD:0043422"
##	"GD:0005001"
##	"GO:0017147"
##	"GO:0043426"
##	"GO:0032452"
##	"GO:0003680"
##	"GO:0043515"
##	"GO:0033592"
##	"GO:0034450"
##	"GO:0004896"
##	"GO:0005113"
##	"GD:0003676"
##	"GO:0004712"
##	"GO:0004726"
##	"GO:0001191"
##	"GO:0004938"
##	"GO:0034046"
##	"GO:0031996"
##	"GD:0061733"
##	"GO:0015026"
##	"GO:0005201"
##	"GO:0035727"
##	"GO:0005245"
##	"GO:0017111"

##	"GO:0031852"
##	"GO:0008327"
##	"GD:0001602"
##	"GO:0019834"
##	"GO:0051011"
##	"GO:0030275"
##	"GO:0017162"
##	"GO:0044547"
##	"GO:0042610"
##	"GD:0004947"
##	"GO:0045504"
##	"GD:0070742"
##	"GD:0042609"
##	"GO:0032795"
##	"GD:0004957"
##	"GD:0008093"
##	"GO:0045503"
##	"GO:0004949"
##	"GO:0005041"
##	"GD:0000993"
##	"GD:0004969"
##	"GD:0001609"
##	"GO:0070410"
##	"GO:0004468"
##	"GO:0031708"
##	"GO:0034191"
##	"GD:0032050"
##	"GD:0038024"
##	"GO:0051393"
##	"GO:0005161"
##	"GD:0004983"
##	"GO:0032395"
##	"GD:0030292"
##	"GD:0001012"
##	"GO:0050733"
##	"GD:0030628"
##	"GD:0004867"
##	"GO:0043140"
##	"GO:0001205"
##	"GO:0005544"
##	"GD:0001076"
##	"GD:0004004"
##	"GO:0001591"
##	"GO:0005044"
##	"GD:0019905"
##	"GD:0001607"
##	"GD:0042924"
##	"GO:0005518"
##	"GD:0030620"
##	"GO:0098505"
##	"GD:0046935"
##	"GD:0004866"
##	"GD:0036033"
##	"GO:0048018"

##	"GD:0070087"
##	"GD:0047391"
##	"GD:0003724"
##	"GO:0097322"
##	"GO:0051959"
##	"GO:0001164"
##	"GO:0042393"
##	"GO:0045182"
##	"GO:0005112"
##	"GO:0004985"
##	"GO:0097027"
##	"GO:0070878"
##	"GO:0070851"
##	"GO:0031681"
##	"GO:0045295"
##	"GO:0035613"
##	"GO:0043425"
##	"GO:0032183"
##	"GO:0031826"
##	"GO:0018024"
##	"GO:0008146"
##	"GD:0035240"
##	"GO:0001786"
##	"GO:0008017"
##	"GO:0031692"
##	"GD:0019869"
##	"GO:0038191"
##	"GO:0033558"
##	"GD:0030619"
##	"GD:0050699"
##	"GO:1990247"
##	"GO:0097157"
##	"GO:0017069"
##	"GD:0004994"
##	"GD:0030618"
##	"GD:0004860"
##	"GO:0050431"
##	"GD:0000146"
##	"GO:0051022"
##	"GD:0030295"
##	"GD:0016407"
##	"GO:0051015"
##	"GD:0004982"
##	"GO:0019213"
##	"GO:0035925"
##	"GO:0005104"
##	"GD:0005000"
##	"GO:0017151"
##	"GD:0048248"
##	"GD:0030674"
##	"GD:0008409"
##	"GO:0035851"
##	"GD:0005068"
##	"GO:0015057"

##	"GO:0005159"
##	"GO:0034212"
##	"GD:0045309"
##	"GD:0042608"
##	"GD:0001046"
##	"GO:0070411"
##	"GD:0038036"
##	"GO:0001223"
##	"GO:0017056"
##	"GO:0042379"
##	"GO:0035198"
##	"GD:0004003"
##	"GD:0046966"
##	"GO:0004674"
##	"GO:0070064"
##	"GD:0070063"
##	"GO:0042826"
##	"GO:1990825"
##	"GO:0005168"
##	"GO:0005109"
##	"GO:0017091"
##	"GO:0061676"
##	"GD:0008307"
##	"GO:0034987"
##	"GO:0016494"
##	"GO:0004888"
##	"GO:0030971"
##	"GO:1990837"
##	"GO:0008574"
##	"GD:0061630"
##	"GO:0016922"
##	"GO:0032947"
##	"GO:0034459"
##	"GO:0016907"
##	"GO:1990948"
##	"GO:0035615"
##	"GO:0036312"
##	"GO:0046332"
##	"GO:0004672"
##	"GD:0004693"
##	"GO:0043522"
##	"GO:0031492"
##	"GO:0005484"
##	"GO:0030507"
##	"GD:0005005"
##	"GD:0036002"
##	"GO:0003730"
##	"GO:0042162"
##	"GD:0008066"
##	"GO:0005154"
##	"GD:0030898"
##	"GO:0045028"
##	"GD:0003697"
##	"GO:0051428"

##	"GO:0008083"
##	"GD:0004966"
##	"GO:1990446"
##	"GD:0003823"
##	"GD:0000980"
##	"GO:0003774"
##	"GO:0017134"
##	"GO:0042056"
##	"GO:0048027"
##	"GD:0035064"
##	"GO:0043015"
##	"GO:0043548"
##	"GO:0051378"
##	"GD:0004435"
## ##	"GO:0051010"
## ##	"GD:0030332" "GD:0070915"
## ##	"GD:0070915"
##	"GD:0051721"
##	"GD:0008022"
##	"GD:0043560"
##	"GD:0004407"
##	"GD:0031490"
##	"GD:0004950"
##	"GD:0004500
##	"GD:0003727"
##	"GD:0008188"
##	"GD:0001055"
##	"GD:0005158"
##	"GD:0008013"
##	"GO:0035257"
##	"GO:0042169"
##	"GO:0019903"
##	"GO:0005102"
##	"GD:0048020"
##	"GO:0001965"
##	"GO:0016303"
##	"GO:0035035"
##	"GO:0005184"
##	"GD:0003690"
##	"GO:0003712"
##	"GO:0031683"
##	"GO:0031702"
##	"GO:0005179"
##	"GO:0001077"
##	"GD:0003723"
##	"GO:0042809"
##	"GO:0003729"
##	"GO:0030374"
##	"GO:0003777"
##	"GO:0008528"
##	"GO:0001784"
##	"GO:0004715"
##	"GO:0051059"

```
##
                      "GO:0004713"
##
                      "GD:0003684"
##
                      "GD:0048306"
##
                      "GD:0000987"
##
                       "GO:0044212"
##
                      "GD:0000977"
##
                       "GD:0019957"
##
                       "GO:0008201"
##
                       "GD:0050681"
##
                      "GO:0019956"
##
                       "GO:0016493"
                       "GO:0046934"
##
                      "GD:0005088"
##
                      "GO:0001078"
##
##
                       "GO:0038023"
##
                       "GD:0001103"
##
                      "GO:0046875"
##
                      "GD:0008270"
##
                       "GD:0017046"
##
                      "GD:0000976"
##
                      "GO:0001085"
##
                      "GD:0005070"
                      "GO:0042923"
##
##
                       "GD:0004993"
##
                      "GD:0001228"
##
                       "GD:0017124"
##
                       "GO:0030594"
##
                      "GO:0003713"
##
                      "GO:0046872"
                       "GD:0019901"
##
##
                       "GD:0033038"
##
                      "GO:0003714"
##
                      "GO:1990841"
##
                       "GO:0043565"
##
                       "GD:0008009"
##
                      "GD:0004842"
##
                      "GD:0008134"
##
                       "GO:0000978"
##
                       "GO:0005515"
##
                      "GD:0003682"
##
                       "GO:0003700"
                      "GO:0003677"
##
##
                       "GD:0004930"
##
                      "GO:0000981"
##
                      GD:0008137
##
   mf.enriched.terms "GO.Term"
##
                       "NADH dehydrogenase (ubiquinone) activity"
##
                      "NADH dehydrogenase activity"
                       "cytochrome-c oxidase activity"
##
                       "long-chain-acyl-CoA dehydrogenase activity"
##
                      "electron transfer activity"
##
                       "ubiquinol-cytochrome-c reductase activity"
##
                       "2 iron, 2 sulfur cluster binding"
##
                       "ubiquinone binding"
##
```

```
"proton-transporting ATPase activity, rotational mechanism"
##
##
                      "fructose-bisphosphate aldolase activity"
                      "proton-exporting ATPase activity, phosphorylative mechanism"
##
                      "very-long-chain-acyl-CoA dehydrogenase activity"
##
                      "electron transporter, transferring electrons from CoQH2-cytochrome c reductase co
##
                     "fructose-1-phosphate aldolase activity"
##
                      "4 iron, 4 sulfur cluster binding"
##
                      "quinone binding"
##
##
                      "ATPase coupled ion transmembrane transporter activity"
                     "acyl carrier activity"
##
##
                      "lipoamidase activity"
                      "medium-chain-acyl-CoA dehydrogenase activity"
##
                     "proton-transporting ATP synthase activity, rotational mechanism"
##
                      "biotinidase activity"
##
##
                      "NAD binding"
##
                      "fructose binding"
                     "fatty-acyl-CoA binding"
##
                     "flavin adenine dinucleotide binding"
##
                     "cholate 7-alpha-dehydrogenase activity"
##
                     "testosterone dehydrogenase [NAD(P)] activity"
##
                     "3-hydroxy-2-methylbutyryl-CoA dehydrogenase activity"
##
                     "ATP:ADP antiporter activity"
##
                      "electron transporter, transferring electrons within CoQH2-cytochrome c reductase
##
                      "protein transmembrane transporter activity"
##
                     "pyridoxal phosphate binding"
##
##
                      "transmembrane transporter activity"
##
                      "acyl binding"
                      "acyl-CoA dehydrogenase activity"
##
                      "GTP binding"
##
                      "succinate dehydrogenase (ubiquinone) activity"
##
                      "pyruvate dehydrogenase (NAD+) activity"
##
##
                      "unfolded protein binding"
                      "adenine transmembrane transporter activity"
##
##
                      "porin activity"
                      "GTPase activity"
##
                     "phosphatidylglycerophosphatase activity"
##
                      "proton transmembrane transporter activity"
##
##
                      "[pyruvate dehydrogenase (lipoamide)] phosphatase activity"
                      "succinate dehydrogenase activity"
##
                     "oxidoreduction-driven active transmembrane transporter activity"
##
                      "oxidoreductase activity"
##
##
                      "phosphopantetheine binding"
                      "phospholipase D inhibitor activity"
##
                     "3-keto sterol reductase activity"
##
                      "bisphosphoglycerate mutase activity"
##
                      "hydrolase activity"
##
                      "oxoglutarate dehydrogenase (succinyl-transferring) activity"
##
                     "aldehyde dehydrogenase (NAD) activity"
##
                      "voltage-gated anion channel activity"
##
                      "structural constituent of cytoskeleton"
##
##
                     "translation elongation factor activity"
                     "P-P-bond-hydrolysis-driven protein transmembrane transporter activity"
##
                      "pyruvate dehydrogenase (acetyl-transferring) kinase activity"
##
                      "oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as accept
##
```

```
"AMP binding"
##
                      "glycogen phosphorylase activity"
##
                      "linear malto-oligosaccharide phosphorylase activity"
##
                      "SHG alpha-glucan phosphorylase activity"
##
##
                      "phosphoglycerate mutase activity"
                      "thiamine pyrophosphate binding"
##
                      "oxidoreductase activity, acting on NAD(P)H"
##
                      "chaperone binding"
##
##
                      "estradiol 17-beta-dehydrogenase activity"
                      "thioredoxin peroxidase activity"
##
##
                      "3 iron, 4 sulfur cluster binding"
                      "retinal dehydrogenase activity"
##
                      "cuprous ion binding"
##
                      "ATPase activity"
##
##
                      "3-hydroxyacyl-CoA dehydrogenase activity"
##
                      "coenzyme binding"
                      "monosaccharide binding"
##
##
                      "ATP binding"
##
                      "succinate-CoA ligase (ADP-forming) activity"
                      "succinate-CoA ligase (GDP-forming) activity"
##
##
                      "glutathione disulfide oxidoreductase activity"
                      "NAD-dependent protein deacetylase activity"
##
                      "magnesium ion binding"
##
                      "17-beta-ketosteroid reductase activity"
##
                      "17-beta-hydroxysteroid dehydrogenase (NADP+) activity"
##
##
                      "dihydrolipoyl dehydrogenase activity"
##
                      "lipoamide binding"
                      "heat shock protein binding"
##
                      "L-lactate dehydrogenase activity"
##
                      "nucleoside diphosphate kinase activity"
##
##
                      "ferrous iron binding"
                      "methyltransferase activity"
##
                      "fatty acid binding"
##
##
                      "aminomethyltransferase activity"
##
                      "copper ion binding"
##
                      "FMN binding"
##
                      "glycerol-3-phosphate dehydrogenase (quinone) activity"
##
                      "pyruvate dehydrogenase (acetyl-transferring) activity"
                      "calcium-transporting ATPase activity"
##
                      "phosphomannomutase activity"
##
                      "protein-arginine omega-N symmetric methyltransferase activity"
##
##
                      "serine-tRNA ligase activity"
                      "ATPase activity, coupled"
##
                      "L-serine ammonia-lyase activity"
##
                      "glutamine-fructose-6-phosphate transaminase (isomerizing) activity"
##
                      "carbohydrate derivative binding"
##
                      "NAD+ binding"
##
                      "enzyme regulator activity"
##
                      "GDP binding"
##
                      "isocitrate dehydrogenase (NAD+) activity"
##
##
                      "mitochondrion targeting sequence binding"
                      "protein binding involved in protein folding"
##
##
                      "beta-tubulin binding"
                      "superoxide dismutase activity"
##
```

```
##
                      "cysteine-type endopeptidase inhibitor activity involved in apoptotic process"
##
                      "selenocysteine-tRNA ligase activity"
                      "phosphopyruvate hydratase activity"
##
                      "CTP synthase activity"
##
##
                      "ATPase activity, uncoupled"
##
                      "hydro-lyase activity"
                      "tRNA binding"
##
                      "FFAT motif binding"
##
##
                      "L-threonine ammonia-lyase activity"
                      "misfolded protein binding"
##
##
                      "NEDD8 ligase activity"
                      "D-glucose transmembrane transporter activity"
##
                      "ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor"
##
                      "methionine adenosyltransferase activity"
##
##
                      "NADP binding"
##
                      "amino acid:sodium symporter activity"
                      "decanoate-CoA ligase activity"
##
##
                      "glucokinase activity"
##
                      "fructokinase activity"
##
                      "mannokinase activity"
##
                      "oxoglutarate dehydrogenase (NAD+) activity"
                      "glucose binding"
##
                      "aldehyde dehydrogenase [NAD(P)+] activity"
##
                      "oxygen-dependent protoporphyrinogen oxidase activity"
##
                      "molecular function"
##
##
                      "ornithine-oxo-acid transaminase activity"
##
                      "protein disulfide oxidoreductase activity"
                      "transporter activity"
##
                      "C3HC4-type RING finger domain binding"
##
##
                      "nucleotide binding"
                      "phosphoglucomutase activity"
##
                      "inorganic cation transmembrane transporter activity"
##
                      "hydroxymethylglutaryl-CoA synthase activity"
##
                      "isocitrate dehydrogenase (NADP+) activity"
##
##
                      "UTP:glucose-1-phosphate uridylyltransferase activity"
                      "pyrimidine ribonucleotide binding"
##
                      "glycerol-3-phosphate dehydrogenase [NAD+] activity"
##
##
                      "very-long-chain-(S)-2-hydroxy-acid oxidase activity"
                      "long-chain-(S)-2-hydroxy-long-chain-acid oxidase activity"
##
                      "medium-chain-(S)-2-hydroxy-acid oxidase activity"
##
                      "alkyl hydroperoxide reductase activity"
##
                      "aconitate hydratase activity"
##
                      "aminoacyl-tRNA editing activity"
##
                      "pyruvate carboxylase activity"
##
                      "pyruvate dehydrogenase activity"
##
                      "inorganic diphosphatase activity"
##
                      "threonine-tRNA ligase activity"
##
                      "beta2-adrenergic receptor activity"
##
##
                      "amino acid binding"
                      "long-chain fatty acid-CoA ligase activity"
##
##
                      "dihydrolipoyllysine-residue acetyltransferase activity"
                      "biotin binding"
##
##
                      "fructose-6-phosphate binding"
##
                      "6-phosphofructokinase activity"
```

```
"Rab GDP-dissociation inhibitor activity"
##
##
                     "S-adenosyl-L-methionine binding"
                      "glycerol-3-phosphate dehydrogenase [NAD(P)+] activity"
##
                      "alcohol dehydrogenase [NAD(P)+] activity"
##
##
                      "GTPase activator activity"
                     "potassium ion leak channel activity"
##
                      "alcohol dehydrogenase (NADP+) activity"
##
                      "argininosuccinate lyase activity"
##
##
                      "glyceraldehyde-3-phosphate dehydrogenase (NAD+) (non-phosphorylating) activity"
                      "cofactor binding"
##
##
                      "mitochondrial ribosome binding"
                      "apolipoprotein A-I binding"
##
                      "arsenate reductase (glutaredoxin) activity"
##
                      "cysteine desulfurase activity"
##
##
                      "GTP cyclohydrolase I activity"
##
                      "glucose transmembrane transporter activity"
                     "alditol:NADP+ 1-oxidoreductase activity"
##
                      "dolichyl-phosphate beta-D-mannosyltransferase activity"
##
##
                      "glucose-6-phosphate isomerase activity"
                      "intramolecular transferase activity"
##
##
                     "1-acylglycerol-3-phosphate O-acyltransferase activity"
                     "(S)-2-hydroxy-acid oxidase activity"
##
                     "IMP dehydrogenase activity"
##
                      "fatty-acyl-CoA synthase activity"
##
                     "fatty acid ligase activity"
##
##
                      "butyrate-CoA ligase activity"
##
                      "acyl-CoA ligase activity"
                      "glutathione transferase activity"
##
##
                      "acetate-CoA ligase activity"
                      "N-acetylgalactosamine kinase activity"
##
##
                      "Hsp70 protein binding"
##
                      "3-dehydrosphinganine reductase activity"
                      "complement component C3a binding"
##
##
                      "ornithine carbamoyltransferase activity"
                      "ATP-dependent peptidase activity"
##
                     "succinate-hydroxymethylglutarate CoA-transferase activity"
##
##
                      "dolichyl-phosphate-mannose-protein mannosyltransferase activity"
##
                      "ATPase binding"
                      "large conductance calcium-activated potassium channel activity"
##
                      "phospholipase D activator activity"
##
                      "galactokinase activity"
##
                      "deoxyribonuclease activity"
##
                      "carbonyl reductase (NADPH) activity"
##
                     "single guanine insertion binding"
##
                      "ATPase activator activity"
##
                      "L-amino acid transmembrane transporter activity"
##
##
                      "adenine binding"
                      "adenine phosphoribosyltransferase activity"
##
##
                      "glutamate dehydrogenase (NAD+) activity"
                      "glutamate dehydrogenase [NAD(P)+] activity"
##
##
                     "metalloendopeptidase activity"
                     "thyrotropin-releasing hormone receptor binding"
##
##
                      "MHC class I protein binding"
                      "UDP-glucose:hexose-1-phosphate uridylyltransferase activity"
##
```

```
"benzaldehyde dehydrogenase (NAD+) activity"
##
                     "4-hydroxybenzoate decaprenyltransferase activity"
##
                     "transferase activity, transferring alkyl or aryl (other than methyl) groups"
##
                      "4-hydroxybenzoate nonaprenyltransferase activity"
##
##
                      "nitrite reductase (NO-forming) activity"
                     "carbon monoxide binding"
##
                      "retromer complex binding"
##
                      "manganese-transporting ATPase activity"
##
##
                      "phosphatidylserine decarboxylase activity"
##
                      "superoxide dismutase copper chaperone activity"
##
                      "clathrin light chain binding"
                      "translation initiation factor activity"
##
                     "citrate (Si)-synthase activity"
##
                      "cystathionine beta-synthase activity"
##
##
                      "cysteine synthase activity"
##
                      "vitamin binding"
##
                     "dihydrolipoyllysine-residue succinyltransferase activity"
                     "inositol-3-phosphate synthase activity"
##
                      "selenomethionine adenosyltransferase activity"
##
                      "adenyl nucleotide binding"
##
                     "NADP-retinol dehydrogenase activity"
##
##
                     "ferrochelatase activity"
                      "oxidoreductase activity, acting on NAD(P)H, heme protein as acceptor"
##
                      "L-aspartate: 2-oxoglutarate aminotransferase activity"
##
                     "acidic amino acid transmembrane transporter activity"
##
##
                      "calcium-activated potassium channel activity"
##
                      "cardiolipin binding"
                      "cytosolic dipeptidase activity"
##
                      "alanylglutamate dipeptidase activity"
##
                      "modified amino acid binding"
##
                      "cytoskeletal protein binding"
##
##
                     "fumarate hydratase activity"
                      "phosphogluconate dehydrogenase (decarboxylating) activity"
##
##
                      "malate dehydrogenase (NADP+) activity"
                      "kynurenine-oxoglutarate transaminase activity"
##
##
                     "translation factor activity, RNA binding"
##
                     "leucine-tRNA ligase activity"
##
                      "bile acid binding"
                      "glutathione oxidoreductase activity"
##
                     "ionotropic glutamate receptor binding"
##
                      "cAMP-dependent protein kinase inhibitor activity"
##
                      "choline-phosphate cytidylyltransferase activity"
##
                      "(R)-2-hydroxyglutarate dehydrogenase activity"
##
                     "complement component C3b binding"
##
                      "single thymine insertion binding"
##
##
                      "nitric oxide binding"
                      "spermidine synthase activity"
##
                      "phosphate:proton symporter activity"
##
##
                      "preprotein binding"
                      "arachidonate-CoA ligase activity"
##
##
                     "lipoic acid binding"
                      "dihydrolipoyllysine-residue (2-methylpropanoyl)transferase activity"
##
##
                      "cyclosporin A binding"
                      "protein serine/threonine phosphatase activity"
##
```

```
##
                      "galactose binding"
                      "phosphoribosylamine-glycine ligase activity"
##
                      "phosphoribosylformylglycinamidine cyclo-ligase activity"
##
                      "phosphoribosylglycinamide formyltransferase activity"
##
##
                      "carboxylic acid binding"
##
                      "glycolipid binding"
                      "3',5'-cyclic-GMP phosphodiesterase activity"
##
                      "calcium-dependent protein kinase activity"
##
##
                      "L-malate dehydrogenase activity"
                      "cAMP binding"
##
                      "ribosome binding"
##
                      "peptidyl-prolyl cis-trans isomerase activity"
##
                      "purine nucleobase binding"
##
                      "protein homodimerization activity"
##
##
                      "P2Y1 nucleotide receptor binding"
                      "cyclic nucleotide binding"
##
                      "dinucleotide repeat insertion binding"
##
                      "inorganic phosphate transmembrane transporter activity"
##
                      "mannose-1-phosphate guanylyltransferase activity"
##
                      "dipeptidase activity"
##
##
                      "ubiquitin protein ligase binding"
                      "branched-chain-amino-acid transaminase activity"
##
                      "L-leucine transaminase activity"
##
                      "L-valine transaminase activity"
##
##
                      "L-isoleucine transaminase activity"
##
                      "biotin carboxylase activity"
##
                      "transketolase activity"
                      "profilin binding"
##
                      "adenosylhomocysteinase activity"
##
                      "high-density lipoprotein particle binding"
##
##
                      "hexokinase activity"
##
                      "TBP-class protein binding"
                      "beta-1 adrenergic receptor binding"
##
                      "ADP binding"
##
                      "ryanodine-sensitive calcium-release channel activity"
##
                      "guanine/thymine mispair binding"
##
##
                      "NEDD8-specific protease activity"
##
                      "transferase activity, transferring pentosyl groups"
                      "metallopeptidase activity"
##
                      "N(6)-L-threonylcarbamoyladenine synthase activity"
##
                      "macrolide binding"
##
                      "aspartic-type endopeptidase inhibitor activity"
##
                      "peptidyl-cysteine S-nitrosylase activity"
##
                      "GDP-dissociation inhibitor activity"
##
                      "protein tyrosine/serine/threonine phosphatase activity"
##
                      "glycerophosphocholine cholinephosphodiesterase activity"
##
                      "UDP-N-acetylglucosamine 4-epimerase activity"
##
                      "UDP-glucose 4-epimerase activity"
##
##
                      "retinal binding"
                      "sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate glyceronetransferase activ
##
##
                      "lutropin-choriogonadotropic hormone receptor binding"
                      "calcium-transporting ATPase activity involved in regulation of cardiac muscle cel
##
##
                      "mismatched DNA binding"
```

##

"hexaprenyldihydroxybenzoate methyltransferase activity"

```
"2-polyprenyl-6-methoxy-1,4-benzoquinone methyltransferase activity"
##
##
                      "3-demethylubiquinone-9 3-0-methyltransferase activity"
                      "decaprenyldihydroxybenzoate methyltransferase activity"
##
                      "3-demethylubiquinone-10 3-0-methyltransferase activity"
##
##
                      "mRNA CDS binding"
##
                     "adenosine kinase activity"
                      "3-chloroallyl aldehyde dehydrogenase activity"
##
                      "fructose 1,6-bisphosphate 1-phosphatase activity"
##
##
                      "pyrroline-5-carboxylate reductase activity"
                      "L-aspartate transmembrane transporter activity"
##
##
                      "heme binding"
                      "acetyl-CoA carboxylase activity"
##
                      "flavin-linked sulfhydryl oxidase activity"
##
                      "UDP-glycosyltransferase activity"
##
##
                      "ethanol binding"
##
                      "neurotrophin p75 receptor binding"
                     "disordered domain specific binding"
##
##
                      "aspartate binding"
##
                      "androgen binding"
                      "glutathione peroxidase activity"
##
##
                      "sodium channel activity"
                      "aspartate carbamoyltransferase activity"
##
                      "carbamoyl-phosphate synthase (ammonia) activity"
##
                      "carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity"
##
                     "dihydroorotase activity"
##
##
                      "valine-tRNA ligase activity"
##
                      "apolipoprotein binding"
                      "amino acid transmembrane transporter activity"
##
                      "phosphorylase activity"
##
                      "iron ion transmembrane transporter activity"
##
                      "protein phosphatase 2B binding"
##
##
                      "nuclear import signal receptor activity"
                      "protein histidine kinase activity"
##
                      "ubiquitin-specific protease activity involved in negative regulation of retrograd
##
                      "cAMP-dependent protein kinase regulator activity"
##
                      "pyruvate kinase activity"
##
##
                      "3-oxo-arachidoyl-CoA reductase activity"
##
                      "3-oxo-behenoyl-CoA reductase activity"
                      "3-oxo-lignoceroyl-CoA reductase activity"
##
                     "3-oxo-cerotoyl-CoA reductase activity"
##
                      "glutamate-tRNA(Gln) ligase activity"
##
                      "glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity"
##
                      "acetyl-CoA C-acyltransferase activity"
##
                      "peroxisome matrix targeting signal-2 binding"
##
                      "FK506 binding"
##
                      "glycerophosphodiester phosphodiesterase activity"
##
                      "isovaleryl-CoA dehydrogenase activity"
##
                      "alpha-ketoacid dehydrogenase activity"
##
                      "3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring) activity"
##
                      "ketosteroid monooxygenase activity"
##
                     "ATP-dependent 5'-3' DNA helicase activity"
##
                     "ferredoxin-NADP+ reductase activity"
##
##
                     "NADPH-adrenodoxin reductase activity"
```

"NAD+ ADP-ribosyltransferase activity"

```
"aspartic endopeptidase activity, intramembrane cleaving"
##
##
                      "L-cysteine: 2-oxoglutarate aminotransferase activity"
                      "thyroid hormone binding"
##
                      "Rho GDP-dissociation inhibitor activity"
##
##
                      "steroid dehydrogenase activity"
                     "2-aminoadipate transaminase activity"
##
                      "acetyl-CoA binding"
##
                      "neurotrophin receptor activity"
##
##
                      "receptor activator activity"
                     "antioxidant activity"
##
##
                      "denatured protein binding"
                      "4-hydroxyglutamate transaminase activity"
##
                     "electron-transferring-flavoprotein dehydrogenase activity"
##
                      "nerve growth factor receptor activity"
##
##
                      "cytochrome-b5 reductase activity, acting on NAD(P)H"
##
                      "isomerase activity"
                     "L-glutamate transmembrane transporter activity"
##
                      "mannose-6-phosphate isomerase activity"
##
##
                      "Ran guanyl-nucleotide exchange factor activity"
                      "outward rectifier potassium channel activity"
##
##
                     "adenyl-nucleotide exchange factor activity"
                      "glycolate oxidase activity"
##
                      "glyoxylate oxidase activity"
##
                      "ubiquitin-specific protease binding"
##
                     "3-oxoacid CoA-transferase activity"
##
##
                      "cAMP response element binding"
##
                      "glycine hydroxymethyltransferase activity"
                      "L-allo-threonine aldolase activity"
##
                     "transferase activity, transferring acyl groups other than amino-acyl groups"
##
                      "aspartic-type endopeptidase activity"
##
                      "phosphatidylinositol-4,5-bisphosphate 5-phosphatase activity"
##
##
                      "peptidoglycan binding"
                      "histone deacetylase inhibitor activity"
##
##
                      "transaminase activity"
##
                      "alpha-tubulin binding"
##
                     "neuroligin family protein binding"
##
                      "oxidoreductase activity, acting on the CH-CH group of donors"
##
                      "cobalt ion binding"
                      "BH domain binding"
##
                     "glutathione dehydrogenase (ascorbate) activity"
##
                      "methylarsonate reductase activity"
##
##
                      "threonine synthase activity"
                      "adrenergic receptor binding"
##
                      "protein-arginine omega-N monomethyltransferase activity"
##
                      "sulfate transmembrane transporter activity"
##
                      "K48-linked polyubiquitin modification-dependent protein binding"
##
                      "protein disulfide isomerase activity"
##
                      "[3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)] kinase activity"
##
##
                      "aspartate-tRNA ligase activity"
                      "voltage-gated potassium channel activity"
##
##
                     "aminoacylase activity"
                     "aldo-keto reductase (NADP) activity"
##
##
                      "GPI-linked ephrin receptor activity"
                      "clathrin-uncoating ATPase activity"
##
```

```
##
                      "GABA receptor binding"
##
                      "poly(A) binding"
##
                      "serine-type exopeptidase activity"
                      "D-serine ammonia-lyase activity"
##
##
                      "threonine racemase activity"
                      "serine racemase activity"
##
                      "gap junction channel activity involved in cell communication by electrical coupli
##
                      "gap junction channel activity involved in cardiac conduction electrical coupling"
##
##
                      "tyrosine 3-monooxygenase activator activity"
                      "L-dopa decarboxylase activator activity"
##
##
                      "protein deglycase activity"
                      "mercury ion binding"
##
##
                      "neurotrophin binding"
                      "long-chain-3-hydroxyacyl-CoA dehydrogenase activity"
##
##
                      "H3K27me3 modified histone binding"
##
                      "Ran GTPase binding"
##
                      "kininogen binding"
                      "deoxyhypusine monooxygenase activity"
##
##
                      "N-acetylmuramoyl-L-alanine amidase activity"
##
                      "serine binding"
##
                      "carnitine O-palmitoyltransferase activity"
                      "5S rRNA binding"
##
##
                      "gap junction channel activity"
                      "ribosomal small subunit binding"
##
                      "uridine kinase activity"
##
##
                      "malic enzyme activity"
##
                      "acetylcholine receptor binding"
                      "serine-pyruvate transaminase activity"
##
##
                      "metalloaminopeptidase activity"
                      "double-strand/single-strand DNA junction binding"
##
##
                      "alanine-glyoxylate transaminase activity"
##
                      "very long-chain fatty acid-CoA ligase activity"
##
                      "acetyl-CoA C-acetyltransferase activity"
##
                      "tau protein binding"
                      "nerve growth factor binding"
##
                      "RNA polymerase II sequence-specific DNA-binding transcription factor binding"
##
##
                      "methylcrotonoyl-CoA carboxylase activity"
##
                      "cAMP response element binding protein binding"
                      "histidine-tRNA ligase activity"
##
                      "dynein complex binding"
##
                      "peptide binding"
##
##
                      "heteroduplex DNA loop binding"
                      "dimethylallyltranstransferase activity"
##
                      "geranyltranstransferase activity"
##
                      "eukaryotic initiation factor 4G binding"
##
                      "3-oxoacyl-[acyl-carrier-protein] synthase activity"
##
                      "peroxisome proliferator activated receptor binding"
##
                      "ion channel binding"
##
                      "nicotinamide-nucleotide adenylyltransferase activity"
##
                      "dicarboxylic acid transmembrane transporter activity"
##
##
                      "mitochondrial promoter sequence-specific DNA binding"
                      "lipid kinase activity"
##
                      "3'-tyrosyl-DNA phosphodiesterase activity"
##
```

"GTPase regulator activity"

```
##
                      "arginyltransferase activity"
##
                     "ribonucleoside binding"
                      "glucuronosyltransferase activity"
##
                      "malate dehydrogenase (decarboxylating) (NAD+) activity"
##
##
                      "malate dehydrogenase (decarboxylating) (NADP+) activity"
                     "primary amine oxidase activity"
##
                      "thiosulfate transmembrane transporter activity"
##
                      "oxaloacetate transmembrane transporter activity"
##
##
                      "malate transmembrane transporter activity"
                     "dinucleotide insertion or deletion binding"
##
##
                      "succinate transmembrane transporter activity"
                      "phosphoribosylformylglycinamidine synthase activity"
##
                      "carboxypeptidase activity"
##
                      "Lys63-specific deubiquitinase activity"
##
##
                      "gluconolactonase activity"
##
                      "adenylate kinase activity"
                     "very-long-chain enoyl-CoA reductase activity"
##
                     "secondary active transmembrane transporter activity"
##
##
                      "carbonate dehydratase activity"
                      "ubiquitin activating enzyme activity"
##
##
                     "ATP adenylyltransferase activity"
                      "lysine-tRNA ligase activity"
##
                      "neutral amino acid transmembrane transporter activity"
##
                      "argininosuccinate synthase activity"
##
                      "lysophosphatidic acid phosphatase activity"
##
                      "kinesin binding"
##
##
                      "oxidoreductase activity, oxidizing metal ions with flavin as acceptor"
                      "potassium channel activity"
##
                      "benzodiazepine receptor activity"
##
##
                      "peroxiredoxin activity"
                      "hydroxymethylglutaryl-CoA lyase activity"
##
##
                      "protein-containing complex binding"
                      "oxidized purine DNA binding"
##
##
                      "peroxidase activity"
                      "ion transmembrane transporter activity"
##
                     "tRNA (guanosine-2'-0-)-methyltransferase activity"
##
##
                      "tRNA (cytosine-2'-0-)-methyltransferase activity"
##
                      "poly(U) RNA binding"
                      "complement component C1q binding"
##
                     "MAP kinase kinase activity"
##
                      "glutamine-tRNA ligase activity"
##
##
                      "protein transporter activity"
##
                     "proteasome-activating ATPase activity"
##
                      "arginase activity"
##
                      "calcium-dependent protein serine/threonine phosphatase activity"
##
                     "structural constituent of postsynaptic actin cytoskeleton"
##
                     "proteinase activated receptor binding"
##
##
                      "structural constituent of ribosome"
##
                      "myosin binding"
                      "phosphatidate cytidylyltransferase activity"
##
                      "glucosaminyl-phosphotidylinositol O-acyltransferase activity"
##
##
                      "organic acid binding"
                      "MHC class II protein complex binding"
##
```

```
"FAD binding"
##
##
                      "endoribonuclease inhibitor activity"
                      "indanol dehydrogenase activity"
##
                      "long-chain fatty acyl-CoA binding"
##
                      "phenanthrene 9,10-monooxygenase activity"
##
##
                      "trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activity"
                      "protein kinase A catalytic subunit binding"
##
                      "GTP-dependent protein binding"
##
##
                      "glutamate-tRNA ligase activity"
                      "palmitoyl-(protein) hydrolase activity"
##
##
                      "peptide disulfide oxidoreductase activity"
                      "calcium:proton antiporter activity"
##
                      "propanoyl-CoA C-acyltransferase activity"
##
                      "propionyl-CoA C2-trimethyltridecanoyltransferase activity"
##
##
                      "Tat protein binding"
##
                      "glycogen debranching enzyme activity"
                      "4-alpha-glucanotransferase activity"
##
                      "amylo-alpha-1,6-glucosidase activity"
##
##
                      "beta-maltose 4-alpha-glucanotransferase activity"
##
                      "BH2 domain binding"
##
                      "endopeptidase activator activity"
                      "carboxy-lyase activity"
##
                      "1,5-anhydro-D-fructose reductase activity"
##
                      "peptide-methionine (S)-S-oxide reductase activity"
##
##
                      "oxidoreductase activity, acting on peroxide as acceptor"
##
                      "L-glucuronate reductase activity"
##
                      "Rho guanyl-nucleotide exchange factor activity"
                      "glutathione binding"
##
                      "ligase activity"
##
                      "D-lactate dehydrogenase (cytochrome) activity"
##
##
                      "protein tag"
                      "NF-kappaB-inducing kinase activity"
##
                      "phosphatidylinositol bisphosphate phosphatase activity"
##
                      "exopeptidase activity"
##
                      "tRNA (guanine-N1-)-methyltransferase activity"
##
                      "oxaloacetate decarboxylase activity"
##
##
                      "phenylalanine-tRNA ligase activity"
##
                      "GTP-dependent protein kinase activity"
                      "peroxidase inhibitor activity"
##
                      "lipopolysaccharide binding"
##
                      "iron-sulfur cluster binding"
##
##
                      "catalase activity"
                      "oxidoreductase activity, acting on paired donors, with incorporation or reduction
##
                      "N-methyltransferase activity"
##
                      "dolichyl-diphosphooligosaccharide-protein glycotransferase activity"
##
                      "glucosylceramidase activity"
##
                      "beta-endorphin binding"
##
                      "deubiquitinase activator activity"
##
##
                      "IMP cyclohydrolase activity"
                      "phosphoribosylaminoimidazolecarboxamide formyltransferase activity"
##
##
                      "antiporter activity"
                      "protein carboxyl O-methyltransferase activity"
##
##
                      "CTP binding"
```

"ribonuclease inhibitor activity"

```
##
                      "cystathionine gamma-synthase activity"
##
                      "cystathionine gamma-lyase activity"
##
                      "L-cystine L-cysteine-lyase (deaminating)"
                      "homocysteine desulfhydrase activity"
##
##
                      "L-cysteine desulfhydrase activity"
##
                      "RNA polymerase I transcription factor binding"
                      "tRNA (guanine(9)-N(1))-methyltransferase activity"
##
                      "adenylate cyclase binding"
##
##
                      "sulfonylurea receptor binding"
                      "calcium channel inhibitor activity"
##
##
                      "CoA-ligase activity"
                      "transferase activity"
##
##
                      "double-stranded RNA binding"
                     "5'-3' DNA helicase activity"
##
##
                      "structural molecule activity"
##
                      "UTP binding"
                     "ion antiporter activity involved in regulation of presynaptic membrane potential"
##
                      "1-alkyl-2-acetylglycerophosphocholine esterase activity"
##
                     "receptor serine/threonine kinase binding"
##
                      "peroxisome membrane class-1 targeting sequence binding"
##
##
                      "hyaluronic acid binding"
                      "isoleucine-tRNA ligase activity"
##
                      "beta-catenin destruction complex binding"
##
                      "sulfite oxidase activity"
##
                     "oleic acid binding"
##
##
                      "prenylated protein tyrosine phosphatase activity"
##
                      "GMP reductase activity"
                      "calcium activated cation channel activity"
##
                      "pyrimidine nucleotide-sugar transmembrane transporter activity"
##
                      "5-formyltetrahydrofolate cyclo-ligase activity"
##
                      "mRNA (2'-0-methyladenosine-N6-)-methyltransferase activity"
##
##
                     "geranylgeranyl reductase activity"
                      "protein-arginine omega-N asymmetric methyltransferase activity"
##
                      "rRNA (guanosine-2'-0-)-methyltransferase activity"
##
                      "palmitoyl-CoA hydrolase activity"
##
                      "Atg8 ligase activity"
##
##
                      "asparaginase activity"
##
                      "serine-type peptidase activity"
                      "alpha-ketoglutarate transmembrane transporter activity"
##
                     "prostaglandin-E synthase activity"
##
                      "tRNA methyltransferase activity"
##
##
                      "membrane insertase activity"
                      "calmodulin-dependent protein phosphatase activity"
##
                     "chlordecone reductase activity"
##
                      "uniporter activity"
##
                      "androsterone dehydrogenase (B-specific) activity"
##
                      "transcription factor activity, RNA polymerase II core promoter sequence-specific
##
                      "N,N-dimethylaniline monooxygenase activity"
##
                      "tubulin deacetylase activity"
##
                      "ribose phosphate diphosphokinase activity"
##
                     "translation activator activity"
##
                     "sulfur dioxygenase activity"
##
##
                      "kinase binding"
```

"structural constituent of postsynapse"

```
##
                      "intermediate filament binding"
##
                      "tumor necrosis factor-activated receptor activity"
                      "tumor necrosis factor binding"
##
                      "bile acid transmembrane transporter activity"
##
##
                      "ligase activity, forming carbon-carbon bonds"
##
                      "17-alpha, 20-alpha-dihydroxypregn-4-en-3-one dehydrogenase activity"
                      "bis(5'-adenosyl)-triphosphatase activity"
##
                      "enoyl-CoA hydratase activity"
##
##
                      "ARF guanyl-nucleotide exchange factor activity"
##
                      "potassium ion binding"
##
                      "phosphate ion binding"
                      "procollagen-proline 4-dioxygenase activity"
##
                      "MutLalpha complex binding"
##
                      "peptidyl-proline 4-dioxygenase activity"
##
##
                      "carbon-sulfur lyase activity"
##
                      "ATPase activity, coupled to transmembrane movement of substances"
                      "low-density lipoprotein particle receptor binding"
##
##
                      "identical protein binding"
                      "tryptophan-tRNA ligase activity"
##
                      "coproporphyrinogen oxidase activity"
##
##
                      "nitrilase activity"
                      "5'-3' exoribonuclease activity"
##
                      "spermine synthase activity"
##
                      "ER retention sequence binding"
##
                      "peptidoglycan receptor activity"
##
##
                      "glycine binding"
##
                      "G-quadruplex DNA binding"
                      "nuclear localization sequence binding"
##
                      "oligosaccharyl transferase activity"
##
##
                      "pantothenate kinase activity"
##
                      "asparagine-tRNA ligase activity"
                      "arsenite transmembrane transporter activity"
##
                      "molybdopterin cofactor binding"
##
                      "delta4-3-oxosteroid 5beta-reductase activity"
##
##
                      "drug transmembrane transporter activity"
                      "diphthine synthase activity"
##
##
                      "D-lactate dehydrogenase activity"
##
                      "ribosomal large subunit binding"
                      "molybdenum ion binding"
##
                      "androsterone dehydrogenase activity"
##
                      "protein antigen binding"
##
                      "phosphoglycerate kinase activity"
##
                      "calcium-transporting ATPase activity involved in regulation of postsynaptic cytos
##
                      "phospholipase binding"
##
                      "porphobilinogen synthase activity"
##
                      "virion binding"
##
                      "mevalonate transmembrane transporter activity"
##
                      "aspartate-tRNA(Asn) ligase activity"
##
##
                      "dATP binding"
                      "calcium-independent phospholipase A2 activity"
##
##
                      "queuine tRNA-ribosyltransferase activity"
                      "ribonuclease III activity"
##
##
                      "glycerone kinase activity"
```

"FAD-AMP lyase (cyclizing) activity"

```
"triokinase activity"
##
##
                     "calcium-independent protein kinase C activity"
                      "KDEL sequence binding"
##
                     "titin Z domain binding"
##
                      "sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity"
##
                     "aminopeptidase activity"
##
                      "alkylbase DNA N-glycosylase activity"
##
                     "DNA-3-methyladenine glycosylase activity"
##
##
                      "DNA-7-methylguanine glycosylase activity"
                     "DNA-7-methyladenine glycosylase activity"
##
##
                      "DNA-3-methylguanine glycosylase activity"
                      "lactate transmembrane transporter activity"
##
                     "microtubule-severing ATPase activity"
##
                      "calcium-transporting ATPase activity involved in regulation of presynaptic cytoso
##
##
                      "norepinephrine binding"
##
                      "prolactin receptor binding"
                      "sulfate binding"
##
##
                      "myosin V binding"
##
                      "creatine kinase activity"
                      "phosphatidylethanolamine binding"
##
##
                      "peptide-methionine (R)-S-oxide reductase activity"
                      "endopeptidase activity"
##
                      "thioredoxin-disulfide reductase activity"
##
                      "acid phosphatase activity"
##
                     "carbon-carbon lyase activity"
##
##
                      "BAT3 complex binding"
##
                      "alanine-tRNA ligase activity"
                      "citrate transmembrane transporter activity"
##
                     "glycine dehydrogenase (decarboxylating) activity"
##
                      "secondary active sulfate transmembrane transporter activity"
##
                      "S-formylglutathione hydrolase activity"
##
##
                      "pyridoxal binding"
                      "tRNA-specific ribonuclease activity"
##
##
                     "DNA helicase activity"
                      "NAD(P)+ transhydrogenase (B-specific) activity"
##
##
                     "NAD(P)+ transhydrogenase activity"
##
                     "NAD(P)+ transhydrogenase (AB-specific) activity"
##
                      "macrophage migration inhibitory factor binding"
                      "MAP kinase activity"
##
                     "thiamine transmembrane transporter activity"
##
                      "glucosamine-6-phosphate deaminase activity"
##
                      "methylumbelliferyl-acetate deacetylase activity"
##
                      "polyubiquitin modification-dependent protein binding"
##
                      "sphinganine-1-phosphate aldolase activity"
##
                      "phosphoserine residue binding"
##
                      "receptor inhibitor activity"
##
                      "L-methionine-(R)-S-oxide reductase activity"
##
                      "histone-arginine N-methyltransferase activity"
##
##
                      "diiodophenylpyruvate reductase activity"
                      "peptidase inhibitor activity"
##
                     "UFM1 activating enzyme activity"
##
                     "18S rRNA (adenine(1779)-N(6)/adenine(1780)-N(6))-dimethyltransferase activity"
##
##
                      "ferroxidase activity"
                      "cupric ion binding"
##
```

```
##
                      "Ser-tRNA(Ala) hydrolase activity"
##
                     "anion transmembrane transporter activity"
                     "2-octaprenyl-6-methoxy-1,4-benzoquinone methylase activity"
##
                     "2-decaprenyl-6-methoxy-1,4-benzoquinone methyltransferase activity"
##
##
                      "C-X3-C chemokine binding"
                     "anion:anion antiporter activity"
##
                      "testosterone 6-beta-hydroxylase activity"
##
                      "lysophospholipase activity"
##
##
                      "FATZ binding"
                     "inward rectifier potassium channel activity"
##
##
                      "ATP-dependent protein binding"
                      "dol-P-Man:Man(7)GlcNAc(2)-PP-Dol alpha-1,6-mannosyltransferase activity"
##
##
                      "cyclic-di-GMP binding"
                      "cyclic-GMP-AMP binding"
##
##
                      "lipase inhibitor activity"
##
                      "3'-5' RNA helicase activity"
                      "iron chaperone activity"
##
##
                      "phosphatidylcholine binding"
##
                      "sodium:potassium-exchanging ATPase activity"
                      "RNA trimethylguanosine synthase activity"
##
##
                      "hydrolase activity, acting on ester bonds"
                      "BH3 domain binding"
##
                      "selenium binding"
##
                      "adenylylsulfate kinase activity"
##
                     "sulfate adenylyltransferase (ATP) activity"
##
##
                      "HMG box domain binding"
##
                      "AMP-activated protein kinase activity"
                      "endopolyphosphatase activity"
##
                     "diphosphoinositol-polyphosphate diphosphatase activity"
##
                      "bis(5'-adenosyl)-hexaphosphatase activity"
##
                      "bis(5'-adenosyl)-pentaphosphatase activity"
##
##
                     "inositol diphosphate tetrakisphosphate diphosphatase activity"
                     "inositol bisdiphosphate tetrakisphosphate diphosphatase activity"
##
##
                     "inositol diphosphate pentakisphosphate diphosphatase activity"
                      "inositol-1-diphosphate-2,3,4,5,6-pentakisphosphate diphosphatase activity"
##
##
                     "inositol-3-diphosphate-1,2,4,5,6-pentakisphosphate diphosphatase activity"
##
                     "inositol-5-diphosphate-1,2,3,4,6-pentakisphosphate diphosphatase activity"
##
                     "inositol-1,5-bisdiphosphate-2,3,4,6-tetrakisphosphate 1-diphosphatase activity"
                      "inositol-1,5-bisdiphosphate-2,3,4,6-tetrakisphosphate 5-diphosphatase activity"
##
                     "inositol-3,5-bisdiphosphate-2,3,4,6-tetrakisphosphate 5-diphosphatase activity"
##
                      "symporter activity"
##
##
                      "epidermal growth factor-activated receptor activity"
##
                     "L-serine transmembrane transporter activity"
##
                      "ionotropic glutamate receptor activity"
##
                      "pyruvate transmembrane transporter activity"
##
                      "IkappaB kinase activity"
##
                      "aminocarboxymuconate-semialdehyde decarboxylase activity"
##
##
                      "nucleotide-sugar transmembrane transporter activity"
                      "amidinotransferase activity"
##
                      "glycine amidinotransferase activity"
##
                      "delta3,5-delta2,4-dienoyl-CoA isomerase activity"
##
##
                      "laminin receptor activity"
##
                      "neuregulin receptor activity"
```

```
##
                      "dynactin binding"
                      "UDP-glucuronic acid transmembrane transporter activity"
##
                      "1-aminocyclopropane-1-carboxylate synthase activity"
##
                     "BMP receptor activity"
##
##
                      "leucine binding"
                     "O-acyltransferase activity"
##
                      "protoheme IX farnesyltransferase activity"
##
                      "oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NA
##
##
                      "benzaldehyde dehydrogenase activity"
                      "arginine-tRNA ligase activity"
##
##
                      "U6 snRNA 3'-end binding"
                      "protein adenylylhydrolase activity"
##
                      "23S rRNA (adenine(1618)-N(6))-methyltransferase activity"
##
                      "protein adenylyltransferase activity"
##
##
                      "U6 snRNA (adenine-(43)-N(6))-methyltransferase activity"
##
                      "saccharopine dehydrogenase activity"
                     "saccharopine dehydrogenase (NADP+, L-lysine-forming) activity"
##
                      "saccharopine dehydrogenase (NAD+, L-glutamate-forming) activity"
##
##
                      "butyryl-CoA dehydrogenase activity"
                      "DNA ligase (ATP) activity"
##
##
                     "arylformamidase activity"
                      "cysteine transmembrane transporter activity"
##
                      "L-glutamine transmembrane transporter activity"
##
                      "lipase binding"
##
                     "telomerase inhibitor activity"
##
##
                      "methylmalonate-semialdehyde dehydrogenase (acylating) activity"
                      "open rectifier potassium channel activity"
##
                      "malonate-semialdehyde dehydrogenase (acetylating) activity"
##
                      "drug:proton antiporter activity"
##
                      "peroxisome targeting sequence binding"
##
                      "peroxisome matrix targeting signal-1 binding"
##
##
                      "heme oxygenase (decyclizing) activity"
                      "heme transporter activity"
##
                      "inositol-1,4,5-trisphosphate 6-kinase activity"
##
                      "inositol tetrakisphosphate 3-kinase activity"
##
                     "homogentisate 1,2-dioxygenase activity"
##
##
                      "quercetin 2,3-dioxygenase activity"
##
                      "inositol tetrakisphosphate 5-kinase activity"
                      "co-receptor binding"
##
                     "xenobiotic transmembrane transporting ATPase activity"
##
                      "6,7-dihydropteridine reductase activity"
##
                      "thioether S-methyltransferase activity"
##
                      "sulfonylurea receptor activity"
##
                     "choline dehydrogenase activity"
##
                      "amine N-methyltransferase activity"
##
                      "S-adenosyl-L-methionine:beta-alanine N-methyltransferase activity"
##
                     "rRNA (adenine-N6,N6-)-dimethyltransferase activity"
##
                     "oxidoreductase activity, acting on the CH-NH2 group of donors, NAD or NADP as acc
##
                      "thiomorpholine-carboxylate dehydrogenase activity"
##
                      "phospholipase A1 activity"
##
                      "tubulin binding"
##
                      "protein-disulfide reductase activity"
##
##
                      "3-hydroxyisobutyrate dehydrogenase activity"
```

"polysaccharide binding"

```
##
                      "ligand-gated ion channel activity"
##
                      "triglyceride lipase activity"
##
                     "RNA cap binding"
                     "diacylglycerol kinase activity"
##
##
                      "acid sphingomyelin phosphodiesterase activity"
##
                     "glycine-tRNA ligase activity"
                      "calcium ion transmembrane transporter activity"
##
                      "nickel cation binding"
##
##
                     "UDP-glucuronate decarboxylase activity"
                     "RNA polymerase II C-terminal domain phosphoserine binding"
##
##
                      "endoribonuclease activity, cleaving siRNA-paired mRNA"
                      "3' overhang single-stranded DNA endodeoxyribonuclease activity"
##
                      "beta-glucosidase activity"
##
                      "protein C-terminal methylesterase activity"
##
##
                      "cobalamin binding"
##
                      "death domain binding"
                     "bis(5'-nucleosyl)-tetraphosphatase (asymmetrical) activity"
##
##
                      "fumarylacetoacetase activity"
##
                      "scaffold protein binding"
##
                      "benzodiazepine receptor binding"
##
                     "4-hydroxy-2-oxoglutarate aldolase activity"
                      "structural constituent of eye lens"
##
                      "magnesium ion transmembrane transporter activity"
##
                      "transcription factor activity, RNA polymerase II proximal promoter sequence-speci
##
                     "nucleotidyltransferase activity"
##
##
                      "glycine C-acetyltransferase activity"
##
                      "leak channel activity"
                      "phospholipase A2 activity (consuming 1,2-dipalmitoylphosphatidylcholine)"
##
                      "phospholipase A2 activity consuming 1,2-dioleoylphosphatidylethanolamine)"
##
                      "phosphoric diester hydrolase activity"
##
                      "rRNA (adenine) methyltransferase activity"
##
##
                     "dodecenoyl-CoA delta-isomerase activity"
                      "JUN kinase kinase kinase activity"
##
                      "inositol tetrakisphosphate 6-kinase activity"
##
                      "JUN kinase phosphatase activity"
##
                     "oxygen binding"
##
##
                      "endoribonuclease activity, cleaving miRNA-paired mRNA"
##
                      "trimethylamine monooxygenase activity"
                      "gap junction hemi-channel activity"
##
                     "trans-2-enoyl-CoA reductase (NADPH) activity"
##
                      "guanyl ribonucleotide binding"
##
                      "cAMP-dependent protein kinase activity"
##
                      "NEDD8 activating enzyme activity"
##
                     "ceramide kinase activity"
##
                      "pyridoxamine-phosphate oxidase activity"
##
                      "guanyl-nucleotide exchange factor activity"
##
                      "coumarin 7-hydroxylase activity"
##
                     "interleukin-9 receptor activity"
##
                      "dTDP-glucose 4,6-dehydratase activity"
##
                      "copper chaperone activity"
##
                      "glyceraldehyde oxidoreductase activity"
##
                      "methionine synthase activity"
##
##
                      "thymidylate kinase activity"
```

"FHA domain binding"

```
"channel activity"
##
                     "1-phosphatidylinositol-5-phosphate 4-kinase activity"
##
                      "trans-hexaprenyltranstransferase activity"
##
                      "glycerol-3-phosphate O-acyltransferase activity"
##
##
                      "nicotinate phosphoribosyltransferase activity"
                     "acetate CoA-transferase activity"
##
                      "trans-octaprenyltranstransferase activity"
##
                      "sn-1-glycerol-3-phosphate C16:0-DCA-CoA acyl transferase activity"
##
##
                      "FBXO family protein binding"
                     "histidine ammonia-lyase activity"
##
##
                      "elongation factor-2 kinase activity"
                      "translation factor activity, non-nucleic acid binding"
##
                     "oxoglutarate:malate antiporter activity"
##
                      "tRNA 2'-phosphotransferase activity"
##
##
                      "alcohol dehydrogenase activity, zinc-dependent"
##
                      "structural constituent of bone"
                     "TFIIF-class transcription factor complex binding"
##
                      "glutathione-disulfide reductase activity"
##
##
                      "fibronectin binding"
                      "RNA lariat debranching enzyme activity"
##
##
                     "acylglycerol kinase activity"
                      "A-type (transient outward) potassium channel activity"
##
                      "phosphoenolpyruvate carboxykinase (GTP) activity"
##
                      "tRNA (guanine(37)-N(1))-methyltransferase activity"
##
                     "caspase binding"
##
##
                      "5'-nucleotidase activity"
##
                     "TPR domain binding"
                      "pre-miRNA binding"
##
                      "G-protein gamma-subunit binding"
##
                      "inositol 1,4,5-trisphosphate-sensitive calcium-release channel activity"
##
##
                      "ethanolamine-phosphate cytidylyltransferase activity"
##
                     "ion channel activity"
                     "nucleoside phosphotransferase activity"
##
##
                      "acetyl-CoA transmembrane transporter activity"
##
                      "beta-aspartyl-peptidase activity"
##
                     "ethanolaminephosphotransferase activity"
##
                     "folic acid transmembrane transporter activity"
##
                     "POZ domain binding"
                      "choline O-acetyltransferase activity"
##
                     "choline binding"
##
                      "histone demethylase activity (H3-monomethyl-K4 specific)"
##
##
                      "serine-type carboxypeptidase activity"
                      "methanethiol oxidase activity"
##
                     "11-beta-hydroxysteroid dehydrogenase (NADP+) activity"
##
                      "glycine transmembrane transporter activity"
##
                      "transcription corepressor binding"
##
                      "H4K20me3 modified histone binding"
##
                     "mycophenolic acid acyl-glucuronide esterase activity"
##
                      "11-beta-hydroxysteroid dehydrogenase [NAD(P)] activity"
##
                      "hydrolase activity, acting on glycosyl bonds"
##
##
                     "C-rich single-stranded DNA binding"
                     "tRNA (adenine-N1-)-methyltransferase activity"
##
##
                      "mRNA (adenine-N1-)-methyltransferase activity"
##
                      "syntaxin-1 binding"
```

```
##
                     "inositol monophosphate 1-phosphatase activity"
                     "inositol monophosphate 3-phosphatase activity"
##
                     "inositol monophosphate 4-phosphatase activity"
##
                     "platelet-activating factor acetyltransferase activity"
##
##
                     "sterol esterase activity"
                     "methylated-DNA-[protein]-cysteine S-methyltransferase activity"
##
                     "caffeine oxidase activity"
##
                     "deoxynucleotide transmembrane transporter activity"
##
##
                     "acetylcholine receptor activator activity"
                     "thiamine pyrophosphate transmembrane transporter activity"
##
##
                     "voltage-gated potassium channel activity involved in ventricular cardiac muscle c
                     "dITP diphosphatase activity"
##
                     "ITP diphosphatase activity"
##
                     "XTP diphosphatase activity"
##
##
                     "calcium oxalate binding"
                     "glutaminyl-tRNA synthase (glutamine-hydrolyzing) activity"
##
                     "high-affinity glutamate transmembrane transporter activity"
##
                     "glutamate:sodium symporter activity"
##
                     "palmitoyl-CoA oxidase activity"
##
                     "ubiquitin-specific protease activity involved in positive regulation of ERAD path
##
                     "TRAIL binding"
##
                     "inositol monophosphate phosphatase activity"
##
                     "histone methyltransferase activity (H4-R3 specific)"
##
                     "NAD-dependent histone deacetylase activity (H3-K18 specific)"
##
                     "delta24(24-1) sterol reductase activity"
##
##
                     "maleylacetoacetate isomerase activity"
##
                     "hydrolase activity, acting on acid halide bonds, in C-halide compounds"
                     "delta24-sterol reductase activity"
##
                     "NAD(P)H dehydrogenase (quinone) activity"
##
                     "solute:proton symporter activity"
##
                     "monovalent inorganic cation transmembrane transporter activity"
##
##
                     "holocytochrome-c synthase activity"
                     "DNA ligase activity"
##
                     "[acyl-carrier-protein] S-acetyltransferase activity"
##
                     "3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) activity"
##
                     "oleoyl-[acyl-carrier-protein] hydrolase activity"
##
                     "myristoyl-[acyl-carrier-protein] hydrolase activity"
##
##
                     "palmitoyl-[acyl-carrier-protein] hydrolase activity"
                     "enoyl-[acyl-carrier-protein] reductase (NADPH, A-specific) activity"
##
                     "3-hydroxyoctanoyl-[acyl-carrier-protein] dehydratase activity"
##
                     "3-oxo-glutaryl-[acp] methyl ester reductase activity"
##
                     "3-oxo-pimeloyl-[acp] methyl ester reductase activity"
##
                     "centromeric DNA binding"
##
                     "tricarboxylic acid transmembrane transporter activity"
##
                     "chitobiosyldiphosphodolichol beta-mannosyltransferase activity"
##
                     "oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acce
##
                     "cis-stilbene-oxide hydrolase activity"
##
                     "calmodulin-dependent protein kinase activity"
##
                     "mannosyltransferase activity"
##
                     "3',5'-cyclic-nucleotide phosphodiesterase activity"
##
                     "voltage-gated potassium channel activity involved in cardiac muscle cell action p
##
                     "propionyl-CoA carboxylase activity"
##
##
                     "uroporphyrinogen decarboxylase activity"
```

##

"oxidoreductase activity, acting on a sulfur group of donors"

```
##
                      "NADH binding"
##
                      "intermembrane ceramide transfer activity"
                      "pseudouridine synthase activity"
##
                      "enhancer sequence-specific DNA binding"
##
##
                      "phosphorelay sensor kinase activity"
##
                      "phosphatidylethanolamine-translocating ATPase activity"
##
                      "nucleoside binding"
##
##
                      "peptide deformylase activity"
                      "2-(3-amino-3-carboxypropyl)histidine synthase activity"
##
##
                      "enzyme binding"
                      "adenosine deaminase activity"
##
                      "nucleic acid transmembrane transporter activity"
##
                      "RNA transmembrane transporter activity"
##
##
                      "vitamin D3 25-hydroxylase activity"
##
                      "m7G(5')pppN diphosphatase activity"
                      "exopolyphosphatase activity"
##
##
                      "Rab GTPase binding"
##
                      "MAP kinase kinase kinase activity"
                      "intramolecular oxidoreductase activity"
##
##
                      "small GTPase binding"
                      "interleukin-2 receptor binding"
##
                      "3-hydroxyisobutyryl-CoA hydrolase activity"
##
                      "AP-1 adaptor complex binding"
##
                      "uridylate kinase activity"
##
##
                      "calcium-dependent phospholipase A2 activity"
##
                      "vitamin D 24-hydroxylase activity"
                      "guanine phosphoribosyltransferase activity"
##
                      "glutaryl-CoA dehydrogenase activity"
##
##
                      "protein N-terminus binding"
##
                      "oxidized pyrimidine nucleobase lesion DNA N-glycosylase activity"
##
                      "serpin family protein binding"
                      "palmitoleoyltransferase activity"
##
                      "lyase activity"
##
                      "ubiquitin-protein transferase regulator activity"
##
                      "ceramide-translocating ATPase activity"
##
##
                      "dihydroceramide kinase activity"
##
                      "bile acid-exporting ATPase activity"
                      "phospholipase C activity"
##
                      "NADPH:quinone reductase activity"
##
                      "rRNA cytidine N-acetyltransferase activity"
##
##
                      "cyclin-dependent protein kinase activating kinase activity"
                      "phosphorylase kinase activity"
##
                      "recombinase activity"
##
                      "BLOC-2 complex binding"
##
                      "cysteine-type endopeptidase activity involved in execution phase of apoptosis"
##
                      "RNA polymerase II core promoter sequence-specific DNA binding"
##
                      "chondroitin sulfate binding"
##
##
                      "mRNA guanylyltransferase activity"
##
                      "alpha-1,4-glucosidase activity"
##
                      "RNA guanylyltransferase activity"
                      "maltose alpha-glucosidase activity"
##
##
                      "triphosphatase activity"
                      "tyrosyl-RNA phosphodiesterase activity"
##
```

```
"deoxyribonuclease inhibitor activity"
##
##
                      "5'-tyrosyl-DNA phosphodiesterase activity"
                      "ceramide 1-phosphate binding"
##
                      "ceramide 1-phosphate transporter activity"
##
##
                      "histone methyltransferase binding"
                     "very-low-density lipoprotein particle binding"
##
                      "C-5 sterol desaturase activity"
##
                      "nuclear export signal receptor activity"
##
##
                      "RNA polymerase I general transcription initiation factor activity"
                     "alcohol dehydrogenase (NAD) activity"
##
##
                      "S-adenosylmethionine-dependent methyltransferase activity"
                      "amide binding"
##
                      "signal sequence binding"
##
                      "cysteine-type carboxypeptidase activity"
##
##
                      "proteasome core complex binding"
##
                      "kynureninase activity"
                      "3-hydroxykynureninase activity"
##
                      "phosphatidylcholine-translocating ATPase activity"
##
                      "translation repressor activity, mRNA regulatory element binding"
##
                      "FMN adenylyltransferase activity"
##
##
                     "13-prostaglandin reductase activity"
                     "iron-sulfur transferase activity"
##
                     "15-oxoprostaglandin 13-oxidase activity"
##
                      "molybdopterin adenylyltransferase activity"
##
                     "molybdopterin molybdotransferase activity"
##
##
                      "fatty acid synthase activity"
                      "[acyl-carrier-protein] S-malonyltransferase activity"
##
                      "channel inhibitor activity"
##
                     "cholesterol transporter activity"
##
                      "CDP-diacylglycerol-inositol 3-phosphatidyltransferase activity"
##
##
                      "alcohol binding"
##
                     "protein dimerization activity"
                     "nitrate reductase activity"
##
##
                     "LIM domain binding"
                     "interleukin-16 binding"
##
                     "interleukin-16 receptor activity"
##
                     "testosterone 17-beta-dehydrogenase (NADP+) activity"
##
##
                      "p53 binding"
                      "acyl carnitine transmembrane transporter activity"
##
                     "ubiquitin-like protein transferase activity"
##
                      "RNA N1-methyladenosine dioxygenase activity"
##
                      "tryptophan 2,3-dioxygenase activity"
##
                      "ankvrin binding"
##
                     "single base insertion or deletion binding"
##
                      "U4 snRNA binding"
##
                      "DNA polymerase processivity factor activity"
##
                      "carnitine O-acetyltransferase activity"
##
                     "transferase activity, transferring acyl groups"
##
##
                      "phosphatidylinositol-5-phosphate binding"
                      "serine-type endopeptidase activity"
##
##
                     "dimethylargininase activity"
                      "thymidylate synthase activity"
##
                      "8-oxo-7,8-dihydroguanine DNA N-glycosylase activity"
##
                      "proline-tRNA ligase activity"
##
```

```
##
                      "voltage-gated ion channel activity"
##
                     "triose-phosphate isomerase activity"
                      "box C/D snoRNA binding"
##
                     "lipoyl(octanoyl) transferase activity"
##
                      "testosterone dehydrogenase (NAD+) activity"
##
                     "octanoyl transferase activity (acting on glycine-cleavage complex H protein)"
##
                      "ATP-activated inward rectifier potassium channel activity"
##
                      "lysine-acetylated histone binding"
##
##
                      "lactase activity"
                      "sphingosine hydroxylase activity"
##
##
                      "angiotensin receptor activity"
                      "L-amino-acid oxidase activity"
##
##
                      "IgM binding"
                      "alpha-1,3-galactosyltransferase activity"
##
##
                      "beta-1,4-mannosylglycoprotein 4-beta-N-acetylglucosaminyltransferase activity"
##
                      "beta-carotene 15,15'-monooxygenase activity"
##
                     "beta-ureidopropionase activity"
##
                      "5-aminolevulinate synthase activity"
##
                     "L-iduronidase activity"
                     "(N-acetylneuraminyl)-galactosylglucosylceramide N-acetylgalactosaminyltransferase
##
##
                     "acetylglutamate kinase activity"
##
                      "acetyl-CoA:L-glutamate N-acetyltransferase activity"
                      "cyclic-nucleotide phosphodiesterase activity"
##
                      "oligo-1,6-glucosidase activity"
##
                     "sucrose alpha-glucosidase activity"
##
##
                      "glycosylphosphatidylinositol phospholipase D activity"
                      "gonadotropin-releasing hormone receptor activity"
##
                      "intracellular sodium activated potassium channel activity"
##
                     "organic acid:sodium symporter activity"
##
                      "low-affinity glucose:sodium symporter activity"
##
                      "eye pigment precursor transporter activity"
##
##
                      "nucleoside:sodium symporter activity"
                      "galactoside 2-alpha-L-fucosyltransferase activity"
##
##
                      "S-methyltransferase activity"
                      "nucleotidase activity"
##
##
                     "sucrose:proton symporter activity"
##
                     "sodium:iodide symporter activity"
##
                      "bile acid:sodium symporter activity"
                      "folate:anion antiporter activity"
##
                     "N-acetylneuraminate lyase activity"
##
                     "exoribonuclease II activity"
##
##
                      "type II site-specific deoxyribonuclease activity"
                      "low-affinity phosphate transmembrane transporter activity"
##
                     "sterol 5-alpha reductase activity"
##
                      "carotenoid dioxygenase activity"
##
                      "heparan-alpha-glucosaminide N-acetyltransferase activity"
##
                      "nitrate transmembrane transporter activity"
##
                      "prostaglandin transmembrane transporter activity"
##
##
                      "urate transmembrane transporter activity"
                      "carbohydrate transmembrane transporter activity"
##
##
                     "aromatic amino acid transmembrane transporter activity"
                     "L-leucine transmembrane transporter activity"
##
##
                      "L-methionine transmembrane transporter activity"
##
                      "purine nucleoside transmembrane transporter activity"
```

```
"purine nucleotide transmembrane transporter activity"
##
##
                     "solute:sodium symporter activity"
                     "sodium:sulfate symporter activity"
##
                     "pyrimidine- and adenine-specific:sodium symporter activity"
##
##
                     "purine-specific nucleoside:sodium symporter activity"
                     "propionate transmembrane transporter activity"
##
                     "short-chain fatty acid transmembrane transporter activity"
##
                     "translation release factor activity, codon nonspecific"
##
##
                     "urocanate hydratase activity"
                     "serine O-acyltransferase activity"
##
##
                     "C-X3-C chemokine receptor activity"
                     "oxidoreductase activity, acting on the CH-NH group of donors"
##
                     "oxidoreductase activity, acting on single donors with incorporation of molecular
##
                     "ether hydrolase activity"
##
                     "endoribonuclease activity, producing 3'-phosphomonoesters"
##
##
                     "glycosylceramidase activity"
                     "acetylserotonin O-methyltransferase activity"
##
                     "pantetheine hydrolase activity"
##
##
                     "3,4-dihydrocoumarin hydrolase activity"
                     "pyrimidine nucleotide binding"
##
##
                     "deaminase activity"
##
                     "passive transmembrane transporter activity"
                     "HLA-C specific inhibitory MHC class I receptor activity"
##
                     "low-density lipoprotein particle binding"
##
                     "guanylate cyclase activator activity"
##
##
                     "CMP-N-acetylneuraminate monooxygenase activity"
##
                     "formimidoyltransferase activity"
                     "glutamate formimidoyltransferase activity"
##
                     "formimidoyltetrahydrofolate cyclodeaminase activity"
##
                     "inorganic diphosphate transmembrane transporter activity"
##
                     "acetoacetate-CoA ligase activity"
##
##
                     "prolactin-releasing peptide receptor binding"
                     "HECT domain binding"
##
##
                     "sweet taste receptor activity"
                     "cyanocobalamin reductase (cyanide-eliminating) activity"
##
                     "thyroxine 5-deiodinase activity"
##
##
                     "N-acetyl-beta-glucosaminyl-glycoprotein 4-beta-N-acetylgalactosaminyltransferase
##
                     "UMP kinase activity"
                     "S-nitrosoglutathione binding"
##
                     "dinitrosyl-iron complex binding"
##
                     "thiocyanate peroxidase activity"
##
                     "arachidonate 8(S)-lipoxygenase activity"
##
                     "hepatocyte growth factor binding"
##
                     "xylosyltransferase activity"
##
                     "3'-tRNA processing endoribonuclease activity"
##
                     "SMC family protein binding"
##
                     "sodium-dependent organic anion transmembrane transporter activity"
##
                     "alpha-L-arabinofuranosidase activity"
##
                     "sphingolipid transporter activity"
##
                     "active borate transmembrane transporter activity"
##
                     "vitamin-K-epoxide reductase (warfarin-insensitive) activity"
##
                     "N-acetylneuraminate 7-0(or 9-0)-acetyltransferase activity"
##
                     "N-acetyllactosaminide 3-alpha-galactosyltransferase activity"
##
                     "globoside alpha-N-acetylgalactosaminyltransferase activity"
##
```

```
"fucose-1-phosphate guanylyltransferase activity"
##
##
                     "D-ribitol-5-phosphate cytidylyltransferase activity"
                      "dodecanoyl-[acyl-carrier-protein] hydrolase activity"
##
                      "glycerophosphoinositol inositolphosphodiesterase activity"
##
##
                      "protein-glucosylgalactosylhydroxylysine glucosidase activity"
                     "alkenylglycerophosphocholine hydrolase activity"
##
                      "alkenylglycerophosphoethanolamine hydrolase activity"
##
                      "2-methylcitrate dehydratase activity"
##
##
                      "aconitate decarboxylase activity"
                      "galactolipase activity"
##
##
                      "carnosine synthase activity"
                      "D-glutamate cyclase activity"
##
                      "D-xylose 1-dehydrogenase (NADP+) activity"
##
                      "dimethylglycine dehydrogenase activity"
##
##
                      "glutamine N-acyltransferase activity"
##
                      "L-fuconate dehydratase activity"
                     "inositol oxygenase activity"
##
                      "N-acylglucosamine 2-epimerase activity"
##
##
                      "N-formylglutamate deformylase activity"
                     "thiosulfate-thiol sulfurtransferase activity"
##
##
                     "glyceryl-ether monooxygenase activity"
                      "imidazolonepropionase activity"
##
                      "acyloxyacyl hydrolase activity"
##
                      "lysophospholipid transporter activity"
##
                     "diamine oxidase activity"
##
##
                      "histamine oxidase activity"
##
                      "methylputrescine oxidase activity"
                      "propane-1,3-diamine oxidase activity"
##
##
                      "norspermine:oxygen oxidoreductase activity"
                      "N1-acetylspermine:oxygen oxidoreductase (N1-acetylspermidine-forming) activity"
##
##
                      "cyclic-GMP-AMP synthase activity"
##
                      "sulfide:quinone oxidoreductase activity"
                      "adenylyltransferase activity"
##
##
                      "cytidylyltransferase activity"
##
                      "uridylyltransferase activity"
##
                     "dihydroceramidase activity"
##
                      "K11-linked polyubiquitin modification-dependent protein binding"
##
                      "poly-ADP-D-ribose binding"
                      "citrate-L-glutamate ligase activity"
##
                     "nicotinate transmembrane transporter activity"
##
                      "dIDP diphosphatase activity"
##
##
                      "collagen fibril binding"
                      "beta, beta-carotene-9', 10'-cleaving oxygenase activity"
##
                     "homocarnosine synthase activity"
##
                      "laurate hydroxylase activity"
##
##
                      "scopolin beta-glucosidase activity"
                     "dATP phosphohydrolase activity"
##
                     "dCTP phosphohydrolase activity"
##
##
                      "dUTP phosphohydrolase activity"
                      "dTTP phosphohydrolase activity"
##
##
                     "GTP phosphohydrolase activity"
                     "8-oxo-dGTP phosphohydrolase activity"
##
##
                      "dGTP phosphohydrolase activity"
                      "1-18:1-2-16:0-monogalactosyldiacylglycerol lipase activity"
##
```

```
"16-hydroxypalmitate dehydrogenase activity"
##
##
                      "methione N-acyltransferase activity"
                     "Ala-tRNA(Thr) hydrolase activity"
##
                     "ribitol beta-1,4-xylosyltransferase activity"
##
                      "monocarboxylate:sodium symporter activity"
##
##
                     "XTP binding"
                     "ITP binding"
##
                     "platinum binding"
##
##
                      "xenon atom binding"
                     "IDP phosphatase activity"
##
##
                      "trimethylamine receptor activity"
                      "histone kinase activity (H2A-T120 specific)"
##
                     "F-box domain binding"
##
                     "mast cell secretagogue receptor activity"
##
##
                      "RNA adenylyltransferase activity"
##
                      "NADPH-hemoprotein reductase activity"
                     "MAP-kinase scaffold activity"
##
                     "nitric-oxide synthase activity"
##
##
                     "fatty-acyl-CoA transmembrane transporter activity"
                      "N-acetylglucosaminylphosphatidylinositol deacetylase activity"
##
##
                     "cholesterol 25-hydroxylase activity"
                      "aralkylamine N-acetyltransferase activity"
##
                      "glucan 1,4-alpha-glucosidase activity"
##
                      "glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase activity"
##
                     "fucosylgalactoside 3-alpha-galactosyltransferase activity"
##
##
                      "dolichyl-phosphate-mannose-glycolipid alpha-mannosyltransferase activity"
##
                      "steryl-sulfatase activity"
                      "succinyl-CoA hydrolase activity"
##
                      "granulocyte colony-stimulating factor receptor binding"
##
                      "fructose transmembrane transporter activity"
##
                      "sarcosine dehydrogenase activity"
##
##
                     "arginine decarboxylase activity"
                      "endochitinase activity"
##
                      "site-specific DNA-methyltransferase (adenine-specific) activity"
##
                      "methotrexate transmembrane transporter activity"
##
                     "amylase activity"
##
##
                      "O-palmitoyltransferase activity"
##
                      "3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase activity"
                      "fructosamine-3-kinase activity"
##
                     "taste receptor binding"
##
                      "purine ribonucleotide binding"
##
##
                      "interleukin-22 binding"
                     "interleukin-22 receptor activity"
##
                     "interleukin-20 receptor binding"
##
                      "polyamine oxidase activity"
##
                      "phosphatidylcholine-retinol O-acyltransferase activity"
##
                      "CDP-glycerol diphosphatase activity"
##
                      "hydroxyacid-oxoacid transhydrogenase activity"
##
                      "mono-olein transacylation activity"
##
                      "diolein transacylation activity"
##
                     "corticotropin-releasing hormone receptor binding"
##
                     "tRNA-specific adenosine-34 deaminase activity"
##
##
                      "GDP-mannose hydrolase activity"
                      "N(1),N(12)-diacetylspermine:oxygen oxidoreductase (3-acetamidopropanal-forming) a
##
```

```
"spermine:oxygen oxidoreductase (spermidine-forming) activity"
##
##
                     "spermidine:oxygen oxidoreductase (3-aminopropanal-forming) activity"
                     "N1-acetylspermine:oxygen oxidoreductase (3-acetamidopropanal-forming) activity"
##
                     "N1-acetylspermidine:oxygen oxidoreductase (3-acetamidopropanal-forming) activity"
##
##
                     "ADP-ribosyl cyclase activity"
                     "cyclic ADP-ribose hydrolase"
##
                     "potassium channel activator activity"
##
                     "N-acetylphosphatidylethanolamine-hydrolysing phospholipas activity"
##
##
                     "lecithin:11-cis retinol acyltransferase activity"
                     "titin binding"
##
##
                     "purine-specific mismatch base pair DNA N-glycosylase activity"
                     "CDP-diacylglycerol-serine O-phosphatidyltransferase activity"
##
                     "D-amino-acid oxidase activity"
##
                     "aspartate 1-decarboxylase activity"
##
##
                     "diacylglycerol cholinephosphotransferase activity"
##
                     "methylglutaconyl-CoA hydratase activity"
                     "retinal isomerase activity"
##
                     "intracellular cyclic nucleotide activated cation channel activity"
##
##
                     "L-tyrosine transmembrane transporter activity"
                     "myo-inositol:sodium symporter activity"
##
                     "pyruvate secondary active transmembrane transporter activity"
##
##
                     "D-aspartate oxidase activity"
                     "phosphatidylinositol transporter activity"
##
                     "recombination hotspot binding"
##
                     "low-affinity sodium:dicarboxylate symporter activity"
##
##
                     "high-affinity sodium:dicarboxylate symporter activity"
##
                     "oligopeptide-transporting ATPase activity"
                     "peptide-transporting ATPase activity"
##
##
                     "phosphatidylinositol phosphate kinase activity"
                     "phosphatidylinositol-3,4-bisphosphate 4-phosphatase activity"
##
                     "sodium:dicarboxylate symporter activity"
##
##
                     "inositol-1,3,4-trisphosphate 4-phosphatase activity"
                     "cysteine dioxygenase activity"
##
##
                     "aspartoacylase activity"
                     "IgA binding"
##
                     "transmitter-gated ion channel activity"
##
##
                     "interleukin-17E receptor binding"
##
                     "arsenite methyltransferase activity"
                     "methylarsonite methyltransferase activity"
##
                     "taurine binding"
##
                     "inhibitory MHC class I receptor activity"
##
##
                     "aspartate dehydrogenase activity"
                     "lipid-transporting ATPase activity"
##
                     "5'-3' RNA polymerase activity"
##
                     "phosphatidylinositol-4,5-bisphosphate 4-phosphatase activity"
##
                     "alpha-1,4-N-acetylgalactosaminyltransferase activity"
##
                     "L-DOPA receptor activity"
##
                     "(R)-3-amino-2-methylpropionate-pyruvate transaminase activity"
##
                     "ganglioside galactosyltransferase activity"
##
                     "itaconyl-CoA hydratase activity"
##
                     "calcium-dependent phospholipase C activity"
##
                     "hyaluronan synthase activity"
##
                     "tryptamine:oxygen oxidoreductase (deaminating) activity"
##
                     "aminoacetone:oxygen oxidoreductase(deaminating) activity"
##
```

```
##
                      "aliphatic-amine oxidase activity"
##
                      "phenethylamine:oxygen oxidoreductase (deaminating) activity"
                      "inositol-3,4-bisphosphate 4-phosphatase activity"
##
                     "NADHX epimerase activity"
##
##
                      "NADPHX epimerase activity"
                     "all-trans-retinyl-palmitate hydrolase, 11-cis retinol forming activity"
##
                     "all-trans-retinyl-ester hydrolase, 11-cis retinol forming activity"
##
                     "CTP:tRNA cytidylyltransferase activity"
##
##
                     "CTP:3'-cytidine-tRNA cytidylyltransferase activity"
                     "ATP:3'-cytidine-cytidine-tRNA adenylyltransferase activity"
##
##
                      "S-methylmethionine-homocysteine S-methyltransferase activity"
                      "aspartic-type peptidase activity"
##
                      "glutamic-type peptidase activity"
##
                     "rRNA (uridine-N3-)-methyltransferase activity"
##
##
                      "bicarbonate binding"
##
                      "L-DOPA binding"
                     "N-acetyl-L-aspartate-L-glutamate ligase activity"
##
                     "eoxin A4 synthase activity"
##
##
                     "monoamine oxidase activity"
                     "mechanosensitived potassium channel activity"
##
##
                     "estradiol binding"
                     "histidine decarboxylase activity"
##
                      "thromboxane-A synthase activity"
##
                      "interleukin-11 receptor binding"
##
                     "amine transmembrane transporter activity"
##
##
                      "choline:sodium symporter activity"
                      "purine nucleobase transmembrane transporter activity"
##
                      "pyrimidine nucleobase transmembrane transporter activity"
##
##
                      "CMP-N-acetylneuraminate transmembrane transporter activity"
                      "tetracycline transmembrane transporter activity"
##
##
                      "iodide transmembrane transporter activity"
                      "glucose-6-phosphate transmembrane transporter activity"
##
                      "polyol transmembrane transporter activity"
##
##
                      "urea channel activity"
                      "zinc-transporting ATPase activity"
##
                     "N-sulfoglucosamine sulfohydrolase activity"
##
##
                      "pheromone receptor activity"
##
                      "hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic
                      "Intermediate conductance calcium-activated potassium channel activity"
##
                     "CXCR4 chemokine receptor binding"
##
                      "inositol pentakisphosphate 2-kinase activity"
##
                     "12-hydroxyheptadecatrienoic acid synthase activity"
##
                     "interleukin-18 binding"
##
                     "interleukin-18 receptor activity"
##
                      "GTP cyclohydrolase binding"
##
                      "interleukin-22 receptor binding"
##
                      "carboxylic acid transmembrane transporter activity"
##
                      "cysteamine dioxygenase activity"
##
##
                      "fatty acid peroxidase activity"
                      "hydroxylysine kinase activity"
##
                     "lactosylceramide 4-alpha-galactosyltransferase activity"
##
                      "gamma-glutamylaminecyclotransferase activity"
##
##
                      "ferritin receptor activity"
                      "GDP-D-glucose phosphorylase activity"
##
```

```
##
                      "polychlorinated biphenyl binding"
##
                      "intracellular phosphatidylinositol-3,5-bisphosphate-sensitive cation channel acti
                      "sphingosine N-acyltransferase activity"
##
                      "thymine binding"
##
                      "ADP-ribosylarginine hydrolase activity"
##
                     "NAD+ nucleosidase activity"
##
                      "bisphosphoglycerate 2-phosphatase activity"
##
                      "glycolipid mannosyltransferase activity"
##
##
                      "methylmalonyl-CoA epimerase activity"
                     "neolactotetraosylceramide alpha-2,3-sialyltransferase activity"
##
##
                      "norepinephrine:sodium symporter activity"
##
                      "GDP-fucose transmembrane transporter activity"
##
                     "UDP-xylose transmembrane transporter activity"
##
##
                      "mannan endo-1,6-alpha-mannosidase activity"
##
                      "NADPH dehydrogenase (quinone) activity"
##
                     "methyl-CpNpG binding"
                     "sialic acid:proton symporter activity"
##
##
                      "phosphorus-oxygen lyase activity"
                      "single-strand selective uracil DNA N-glycosylase activity"
##
##
                     "interleukin-10 binding"
##
                      "S-adenosylmethionine-dependent tRNA (m5U54) methyltransferase activity"
                      "A2A adenosine receptor binding"
##
                      "apolipoprotein A-I receptor activity"
##
                     "interleukin-12 beta subunit binding"
##
##
                      "lysophosphatidic acid acyltransferase activity"
##
                      "interleukin-27 binding"
                      "lactosylceramide alpha-2,3-sialyltransferase activity"
##
                     "acyl-CoA hydrolase activity"
##
                      "L-gulonate 3-dehydrogenase activity"
##
                      "NAD(P)+ nucleosidase activity"
##
##
                     "fucokinase activity"
                     "metal ion:proton antiporter activity"
##
##
                      "magnesium:sodium antiporter activity"
                      "NAD+ nucleotidase, cyclic ADP-ribose generating"
##
                     "dipeptide transmembrane transporter activity"
##
##
                      "phosphatidylserine-translocating ATPase activity"
##
                      "cholesterol dehydrogenase activity"
                      "polyprenol reductase activity"
##
                     "tRNA 4-demethylwyosine alpha-amino-alpha-carboxypropyltransferase activity"
##
                      "tRNAPhe (7-(3-amino-3-carboxypropyl)wyosine37-C2)-hydroxylase activity"
##
##
                      "palmitoleyl hydrolase activity"
                      "tRNA demethylase activity"
##
                     "proteasome binding"
##
                      "allantoicase activity"
##
                      "iodide peroxidase activity"
##
                     "malate synthase activity"
##
                     "methionyl-tRNA formyltransferase activity"
##
                      "methylmalonyl-CoA decarboxylase activity"
##
                      "monophenol monooxygenase activity"
##
##
                     "ATP transmembrane transporter activity"
                     "calcium, potassium:sodium antiporter activity"
##
                      "alpha-1,6-mannosylglycoprotein 2-beta-N-acetylglucosaminyltransferase activity"
##
                      "UDP-galactose:glucosylceramide beta-1,4-galactosyltransferase activity"
##
```

```
"hexose transmembrane transporter activity"
##
##
                     "L-threonine transmembrane transporter activity"
                     "urea transmembrane transporter activity"
##
                     "hexosaminidase activity"
##
##
                     "linoleate 13S-lipoxygenase activity"
                     "racemase and epimerase activity"
##
                     "pyroglutamyl-peptidase activity"
##
                     "voltage-gated proton channel activity"
##
##
                     "guanidinoacetate N-methyltransferase activity"
                     "sour taste receptor activity"
##
##
                     "10-hydroxy-9-(phosphonooxy)octadecanoate phosphatase activity"
                     "mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase activity"
##
                     "L-hydroxyproline transmembrane transporter activity"
##
                     "GDP-4-dehydro-D-rhamnose reductase activity"
##
##
                     "N-acylsphingosine galactosyltransferase activity"
##
                     "L-phenylalanine:pyruvate aminotransferase activity"
##
                     "glutamine-phenylpyruvate transaminase activity"
                     "(3S)-citramalyl-CoA lyase activity"
##
##
                     "GDP-mannose 3,5-epimerase activity"
                     "L-glutamine:pyruvate aminotransferase activity"
##
##
                     "GDP-L-fucose synthase activity"
##
                     "1-acyl-2-lysophosphatidylserine acylhydrolase activity"
                     "glucose 6-phosphate:inorganic phosphate antiporter activity"
##
                     "GTP 3'.8'-cvclase activity"
##
                     "cyclic pyranopterin monophosphate synthase activity"
##
##
                     "divalent inorganic cation transmembrane transporter activity"
##
                     "temperature-gated cation channel activity"
                     "Ac-Asp-Glu binding"
##
                     "tetrahydrofolyl-poly(glutamate) polymer binding"
##
                     "thiol-dependent ubiquitin-specific protease activity"
##
##
                     "L-alanine: 2-oxoglutarate aminotransferase activity"
##
                     "interleukin-21 receptor activity"
                     "4-hydroxyphenylpyruvate dioxygenase activity"
##
                     "N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase activity"
##
##
                     "aldose 1-epimerase activity"
                     "orotate phosphoribosyltransferase activity"
##
##
                     "orotidine-5'-phosphate decarboxylase activity"
##
                     "ribulose-phosphate 3-epimerase activity"
                     "glucose:sodium symporter activity"
##
                     "prostaglandin-I synthase activity"
##
                     "thiopurine S-methyltransferase activity"
##
                     "N-acetylglucosamine-6-phosphate deacetylase activity"
##
                     "sodium-dependent multivitamin transmembrane transporter activity"
##
                     "sodium-independent organic anion transmembrane transporter activity"
##
                     "thyroid hormone transmembrane transporter activity"
##
                     "mannosidase activity"
##
                     "D-ribulokinase activity"
##
                     "guanylate cyclase regulator activity"
##
                     "inositol-1,3,4,5,6-pentakisphosphate 3-phosphatase activity"
##
                     "O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase activity"
##
##
                     "bisphosphoglycerate 3-phosphatase activity"
                     "retinol transmembrane transporter activity"
##
##
                     "RIG-I binding"
                     "1-alkenylglycerophosphoethanolamine O-acyltransferase activity"
##
```

```
##
                      "alpha-amino-acid esterase activity"
##
                      "retinyl-palmitate esterase activity"
##
                      "ribosylnicotinamide kinase activity"
                      "phosphatidylserine 1-acylhydrolase activity"
##
##
                      "inositol hexakisphosphate 2-phosphatase activity"
##
                     "ribosylnicotinate kinase activity"
                      "single-stranded DNA endodeoxyribonuclease activity"
##
                      "2,4-dienoyl-CoA reductase (NADPH) activity"
##
##
                      "aryldialkylphosphatase activity"
                      "cytosine deaminase activity"
##
##
                      "ribonuclease A activity"
                      "phenylethanolamine N-methyltransferase activity"
##
                      "phosphopantothenate--cysteine ligase activity"
##
                      "uridine phosphorylase activity"
##
##
                      "xanthine oxidase activity"
##
                      "interleukin-13 receptor binding"
                     "mechanosensitive ion channel activity"
##
                      "cob(I) yrinic acid a,c-diamide adenosyltransferase activity"
##
##
                      "molybdate ion transmembrane transporter activity"
##
                     "fatty acid amide hydrolase activity"
##
                     "wide pore channel activity"
                     "CX3C chemokine receptor binding"
##
                      "oxidative DNA demethylase activity"
##
                      "cardiolipin hydrolase activity"
##
                     "CXCR1 chemokine receptor binding"
##
##
                      "interleukin-1 type I receptor antagonist activity"
##
                     "interleukin-1 type II receptor antagonist activity"
                      "metal ion transmembrane transporter activity"
##
                      "hepoxilin-epoxide hydrolase activity"
##
                      "cytosine C-5 DNA demethylase activity"
##
##
                      "lipase activator activity"
##
                     "gap junction channel activity involved in atrial cardiac muscle cell-AV node cell
                      "gap junction channel activity involved in bundle of His cell-Purkinje myocyte ele
##
                      gap junction channel activity involved in Purkinje myocyte-ventricular cardiac mu
##
##
                      "oleamide hydrolase activity"
                     "anandamide amidohydrolase activity"
##
##
                     "anti-Mullerian hormone receptor activity"
##
                      "RNA N6-methyladenosine dioxygenase activity"
                      "rRNA (pseudouridine) methyltransferase activity"
##
                     "RNA polymerase III regulatory region DNA binding"
##
                      "kynurenine 3-monooxygenase activity"
##
##
                      "tryptophan 5-monooxygenase activity"
                      "L-tyrosine:2-oxoglutarate aminotransferase activity"
##
                     "interleukin-9 receptor binding"
##
                      "sarcosine oxidase activity"
##
##
                      "riboflavin kinase activity"
                      "L-asparagine transmembrane transporter activity"
##
                      "glycerol channel activity"
##
                      "putrescine transmembrane transporter activity"
##
                      "formate transmembrane transporter activity"
##
##
                     "formate efflux transmembrane transporter activity"
                     "HLA-A specific inhibitory MHC class I receptor activity"
##
##
                      "ribonuclease T2 activity"
##
                      "D-dopachrome decarboxylase activity"
```

```
##
                      "thiamine phosphate phosphatase activity"
##
                      "glycine N-acyltransferase activity"
                      "glycine N-benzoyltransferase activity"
##
                      "L-pipecolate oxidase activity"
##
                      "malonyl-CoA decarboxylase activity"
##
##
                      "sedoheptulokinase activity"
                      "deoxyribonucleoside 5'-monophosphate N-glycosidase activity"
##
                      "myosin VI binding"
##
##
                      "rRNA (cytosine-N4-)-methyltransferase activity"
                      "low-affinity L-arginine transmembrane transporter activity"
##
##
                      "high-affinity L-ornithine transmembrane transporter activity"
                      "calcium ion binding"
##
                      "protein methyltransferase activity"
##
                      "complement component C4b receptor activity"
##
##
                      "acylphosphatase activity"
##
                      "aldehyde oxidase activity"
                     "cGMP-stimulated cyclic-nucleotide phosphodiesterase activity"
##
                      "dihydrouracil dehydrogenase (NAD+) activity"
##
##
                      "phosphatidylcholine-sterol O-acyltransferase activity"
                      "complement component C3b receptor activity"
##
##
                      "nucleoside transmembrane transporter activity"
                      "thymidine phosphorylase activity"
##
                      "pyrimidine-nucleoside phosphorylase activity"
##
                      "interleukin-13 receptor activity"
##
                     "dihydropyrimidine dehydrogenase (NADP+) activity"
##
##
                      "immunoglobulin receptor activity"
##
                      "tubulin N-acetyltransferase activity"
                      "peptidyl-proline 3-dioxygenase activity"
##
                      "thrombopoietin receptor activity"
##
                      "glucoside transmembrane transporter activity"
##
                      "glucose 1-dehydrogenase [NAD(P)] activity"
##
##
                      "thiamin-triphosphatase activity"
                      "sugar transmembrane transporter activity"
##
##
                      "palmitoyl hydrolase activity"
                      "geranial:oxygen oxidoreductase activity"
##
                      "heptaldehyde:oxygen oxidoreductase activity"
##
##
                      "phenanthrene-9,10-epoxide hydrolase activity"
##
                      "leukemia inhibitory factor receptor binding"
                      "nicotinamide N-methyltransferase activity"
##
                     "CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase activity"
##
                      "UDP-sugar diphosphatase activity"
##
                      "bis(5'-nucleosyl)-tetraphosphatase (symmetrical) activity"
##
                      "photoreceptor activity"
##
                      "NAD(P)H oxidase activity"
##
                      "endodeoxyribonuclease activity, producing 3'-phosphomonoesters"
##
                      "glycolipid transporter activity"
##
                      "receptor regulator activity"
##
                      "pyridine N-methyltransferase activity"
##
##
                      "tetrahydrobiopterin binding"
                      "small molecule binding"
##
                     "NADPH:sulfur oxidoreductase activity"
##
                      "omega-6 fatty acid desaturase activity"
##
##
                      "omega-amidase activity"
                      "methionine-R-sulfoxide reductase activity"
##
```

```
##
                      "UFM1 hydrolase activity"
##
                      "glycosylated region protein binding"
                      "organic anion transmembrane transporter activity"
##
                      "phenylalanine 4-monooxygenase activity"
##
##
                      "basal RNA polymerase II transcription machinery binding"
                     "ceramide phosphoethanolamine synthase activity"
##
                      "3-oxo-5-alpha-steroid 4-dehydrogenase activity"
##
                      "dihydroorotate dehydrogenase activity"
##
##
                      "dolichol kinase activity"
                     "mRNA (nucleoside-2'-0-)-methyltransferase activity"
##
##
                      "glycoprotein endo-alpha-1,2-mannosidase activity"
                      "thyroxine 5'-deiodinase activity"
##
                      "interleukin-1, type II, blocking receptor activity"
##
                      "alpha-1,3-mannosylglycoprotein 4-beta-N-acetylglucosaminyltransferase activity"
##
                      "guanylate cyclase inhibitor activity"
##
##
                      "type 1 cannabinoid receptor binding"
                     "interleukin-28 receptor binding"
##
                      "sphingomyelin synthase activity"
##
##
                      "N6-isopentenyladenosine methylthiotransferase activity"
                      "enterobactin transmembrane transporter activity"
##
##
                     "N-acetylgalactosamine-6-sulfatase activity"
                      "L-xylulose reductase (NAD+) activity"
##
                      "glycerophosphocholine phosphodiesterase activity"
##
                      "ceramide cholinephosphotransferase activity"
##
                     "cholestenone 5-alpha-reductase activity"
##
##
                      "glucose-1,6-bisphosphate synthase activity"
##
                      "calcium- and calmodulin-regulated 3',5'-cyclic-GMP phosphodiesterase activity"
                      "L-xylulose reductase (NADP+) activity"
##
                     "beta-galactoside alpha-2,3-sialyltransferase activity"
##
##
                      "protein-glutamic acid ligase activity"
                      "calcium ion binding involved in regulation of postsynaptic cytosolic calcium ion
##
##
                     "riboflavin binding"
                      "glutaminase activity"
##
                      "DNA nucleotidylexotransferase activity"
##
##
                      "beta-mannosidase activity"
                     "interleukin-7 receptor binding"
##
##
                      "proline:sodium symporter activity"
##
                      "monovalent cation:proton antiporter activity"
                      "alpha-methylacyl-CoA racemase activity"
##
                      "agmatinase activity"
##
                      "lithium:proton antiporter activity"
##
##
                      "organic cation transmembrane transporter activity"
                      "cystine:glutamate antiporter activity"
##
                      "endoribonuclease activity, producing 5'-phosphomonoesters"
##
                      "HLA-A specific activating MHC class I receptor activity"
##
                      "glutathione transmembrane transporter activity"
##
                      "chylomicron binding"
##
                     "oxidative RNA demethylase activity"
##
##
                      "sphingolipid-translocating ATPase activity"
                      "vitamin transmembrane transporter activity"
##
##
                     "calcidiol binding"
                      "phosphatidylinositol phosphate binding"
##
##
                      "glucan 1,3-alpha-glucosidase activity"
##
                      "protein phosphatase regulator activity"
```

```
"adenine nucleotide transmembrane transporter activity"
##
##
                     "uracil binding"
                     "alpha-1,3-mannosylglycoprotein 2-beta-N-acetylglucosaminyltransferase activity"
##
                     "acetylcholinesterase activity"
##
##
                      "oncostatin-M receptor binding"
                     "L-histidine transmembrane transporter activity"
##
                      "proton-dependent oligopeptide secondary active transmembrane transporter activity
##
                      "low voltage-gated calcium channel activity"
##
##
                      "cholesterol monooxygenase (side-chain-cleaving) activity"
                     "chloride-transporting ATPase activity"
##
##
                      "metallochaperone activity"
                      "acid-thiol ligase activity"
##
                     "HLA-B specific inhibitory MHC class I receptor activity"
##
                     "riboflavin transmembrane transporter activity"
##
##
                      "Fas-activated serine/threonine kinase activity"
##
                      "FMN transmembrane transporter activity"
##
                     "NAD transmembrane transporter activity"
                      "phosphocholine phosphatase activity"
##
                      "phosphoethanolamine phosphatase activity"
##
                      "metallodipeptidase activity"
##
                     "voltage-gated potassium channel activity involved in SA node cell action potentia
##
##
                      "malonyl-CoA synthetase activity"
                      "protein-L-isoaspartate (D-aspartate) O-methyltransferase activity"
##
                      "all-trans retinal binding"
##
                     "lysozyme activity"
##
##
                      "phospholipase activity"
##
                      "DNA-N1-methyladenine dioxygenase activity"
                      "inositol hexakisphosphate 6-kinase activity"
##
##
                     "dihydronicotinamide riboside quinone reductase activity"
                      "N4-(beta-N-acetylglucosaminyl)-L-asparaginase activity"
##
##
                      "glucose-6-phosphatase activity"
##
                      "alpha-L-fucosidase activity"
                      "sepiapterin reductase activity"
##
                      "UDP-N-acetylglucosamine transmembrane transporter activity"
##
                      "3'-nucleotidase activity"
##
                     "single-stranded DNA exodeoxyribonuclease activity"
##
                     "secondary active organic cation transmembrane transporter activity"
##
##
                      "phosphopentomutase activity"
                      "ADP transmembrane transporter activity"
##
                     "coenzyme A transmembrane transporter activity"
##
                     "cation:cation antiporter activity"
##
                     "oxidoreductase activity, acting on other nitrogenous compounds as donors"
##
                     "corticotropin hormone receptor binding"
##
                     "type 5 melanocortin receptor binding"
##
                      "zymogen binding"
##
                      "interleukin-18 receptor binding"
##
                      "betaine-homocysteine S-methyltransferase activity"
##
                     "N-acylneuraminate-9-phosphatase activity"
##
##
                      "ATPase regulator activity"
                     "AMP transmembrane transporter activity"
##
##
                     "melatonin binding"
                     "resveratrol binding"
##
##
                      "Roundabout binding"
                      "protein phosphatase activator activity"
##
```

```
##
                      "AP-3 adaptor complex binding"
                      "phosphotransferase activity, for other substituted phosphate groups"
##
                      "prenylcysteine oxidase activity"
##
                      "peptide:proton symporter activity"
##
                      "calcium:cation antiporter activity"
##
                      "glycine:sodium symporter activity"
##
                      "alpha-sialidase activity"
##
                      "oligopeptide transmembrane transporter activity"
##
##
                      "DNA end binding"
                     "histamine N-methyltransferase activity"
##
##
                      "glucosaminylgalactosylglucosylceramide beta-galactosyltransferase activity"
                      "diphthine methylesterase activity"
##
                      "ADP-D-ribose binding"
##
                      "calcium: sodium antiporter activity involved in regulation of cardiac muscle cell:
##
##
                      "phosphoseryl-selenocysteinyl-tRNA selenium transferase activity"
##
                      "ubiquitin-dependent protein binding"
##
                     "GPI anchor binding"
                      "brain-derived neurotrophic factor binding"
##
                     "methenyltetrahydrofolate cyclohydrolase activity"
##
                      "methylenetetrahydrofolate dehydrogenase (NAD+) activity"
##
                     "methylenetetrahydrofolate dehydrogenase (NADP+) activity"
##
##
                      "stem cell factor receptor binding"
                      "(1->3)-beta-D-glucan binding"
##
                      "choline kinase activity"
##
                     "inositol-1,4-bisphosphate 1-phosphatase activity"
##
##
                      "polyribonucleotide nucleotidyltransferase activity"
##
                      "thiamine diphosphokinase activity"
                      "xanthine dehydrogenase activity"
##
                     "creatine transmembrane transporter activity"
##
                      "creatine:sodium symporter activity"
##
                      "ceramide glucosyltransferase activity"
##
##
                     "carnitine O-octanoyltransferase activity"
                      "protein-tyrosine sulfotransferase activity"
##
##
                      "diuretic hormone activity"
                      "cobalt ion transmembrane transporter activity"
##
                     "lead ion transmembrane transporter activity"
##
##
                     "nickel cation transmembrane transporter activity"
##
                      "proton channel activity"
                      "cobalamin-transporting ATPase activity"
##
                     "linoleoyl-CoA desaturase activity"
##
                      "hydroxymethyl-, formyl- and related transferase activity"
##
##
                      "interleukin-3 binding"
                     "thiamine binding"
##
                     "riboflavin reductase (NADPH) activity"
##
                      "host cell surface receptor binding"
##
                      "inositol tetrakisphosphate 1-kinase activity"
##
                     "amine sulfotransferase activity"
##
                      "chondroitin-glucuronate 5-epimerase activity"
##
                     "AF-2 domain binding"
##
                      "granulocyte colony-stimulating factor binding"
##
                     "inositol-1,3,4-trisphosphate 6-kinase activity"
##
                     "inositol-1,3,4-trisphosphate 5-kinase activity"
##
                      "inositol-1,3,4,5,6-pentakisphosphate 1-phosphatase activity"
##
                      "inositol-1,3,4-trisphosphate 1-phosphatase activity"
##
```

```
##
                      "inositol-1,3,4,6-tetrakisphosphate 6-phosphatase activity"
##
                     "inositol-1,3,4,6-tetrakisphosphate 1-phosphatase activity"
                      "inositol-3,4,6-trisphosphate 1-kinase activity"
##
                     "iron channel activity"
##
                      "protein histidine phosphatase activity"
##
                      "dihydroceramide glucosyltransferase activity"
##
                      "1-ethyladenine demethylase activity"
##
                      "MAP kinase serine/threonine phosphatase activity"
##
##
                      "phosphopantothenoylcysteine decarboxylase activity"
                      "cation transmembrane transporter activity"
##
##
                      "glycerate dehydrogenase activity"
                      "hydroxypyruvate reductase activity"
##
                      "hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic
##
                      "extracellularly glycine-gated ion channel activity"
##
##
                      "thiol oxidase activity"
##
                      "aspartate N-acetyltransferase activity"
                      "glyoxylate reductase (NADP) activity"
##
                      "[methionine synthase] reductase activity"
##
                      "adenyl deoxyribonucleotide binding"
##
                      "ADP-specific glucokinase activity"
##
##
                     "aquacobalamin reductase (NADPH) activity"
                      "temperature-gated ion channel activity"
##
                      "intermembrane lipid transfer activity"
##
                      "linoleate 9S-lipoxygenase activity"
##
                      "preribosome binding"
##
##
                      "G-quadruplex RNA binding"
##
                      "heparan sulfate binding"
                      "TFIID-class transcription factor complex binding"
##
                      "protein tyrosine kinase activator activity"
##
                      "4-aminobutyrate transaminase activity"
##
                      "aromatic-L-amino-acid decarboxylase activity"
##
##
                     "nucleotide diphosphatase activity"
                      "interferon receptor activity"
##
                      "serotonin:sodium symporter activity"
##
                      "guanosine-5'-triphosphate,3'-diphosphate diphosphatase activity"
##
                      "peptidoglycan glycosyltransferase activity"
##
##
                      "pyrimidine nucleotide transmembrane transporter activity"
##
                      "cation:chloride symporter activity"
                      "lipoate synthase activity"
##
                     "oxalate transmembrane transporter activity"
##
                      "cocaine binding"
##
##
                      "U4atac snRNA binding"
                      "succinate-semialdehyde dehydrogenase binding"
##
                      "4-aminobutyrate:2-oxoglutarate transaminase activity"
##
                      "L-dopa decarboxylase activity"
##
                      "gluconokinase activity"
##
                      "(S)-3-amino-2-methylpropionate transaminase activity"
##
                     "all-trans-retinol 13,14-reductase activity"
##
                      "calcium ion binding involved in regulation of presynaptic cytosolic calcium ion c
##
                      "DNA polymerase binding"
##
                     "arachidonic acid omega-hydroxylase activity"
##
                      "alpha-tocopherol omega-hydroxylase activity"
##
                      "tocotrienol omega-hydroxylase activity"
##
```

"myosin I binding"

```
##
                      "3-hydroxybutyrate dehydrogenase activity"
##
                      "dopamine beta-monooxygenase activity"
                      "protein C-terminal S-isoprenylcysteine carboxyl O-methyltransferase activity"
##
                      "complement receptor activity"
##
                      "arginine transmembrane transporter activity"
##
##
                     "L-lysine transmembrane transporter activity"
                      "oxidoreductase activity, acting on paired donors, with incorporation or reduction
##
                      "thiolester hydrolase activity"
##
##
                      "proline racemase activity"
                     "GTP diphosphatase activity"
##
##
                      "H2A histone acetyltransferase activity"
                      "2-hydroxy-adenosine triphosphate pyrophosphatase activity"
##
                     "2-hydroxy-(deoxy)adenosine-triphosphate pyrophosphatase activity"
##
                     "ATP diphosphatase activity"
##
##
                      "methionine adenosyltransferase regulator activity"
##
                      "trans-L-3-hydroxyproline dehydratase activity"
                     "retinol binding"
##
                      "phosphoprotein binding"
##
                      "inositol phosphate phosphatase activity"
##
                      "sodium channel regulator activity"
##
##
                     "alpha-N-acetylneuraminate alpha-2,8-sialyltransferase activity"
                      "manganese ion transmembrane transporter activity"
##
                      "selenocysteine lyase activity"
##
                      "cadmium ion transmembrane transporter activity"
##
                     "sialic acid transmembrane transporter activity"
##
##
                      "carnitine transmembrane transporter activity"
##
                      "gamma-aminobutyric acid:proton symporter activity"
                      "receptor signaling protein tyrosine kinase inhibitor activity"
##
                     "transition metal ion transmembrane transporter activity"
##
                      "2-hydroxyglutarate dehydrogenase activity"
##
##
                      "serine-type aminopeptidase activity"
                      "para-aminobenzoyl-glutamate hydrolase activity"
##
                      "type 8 metabotropic glutamate receptor binding"
##
##
                      "monoamine transmembrane transporter activity"
##
                      "RNA polymerase III core binding"
##
                     "N-acetylgalactosamine-4-sulfatase activity"
##
                      "dCMP deaminase activity"
##
                      "tubulin-tyrosine ligase activity"
                      "peptidyl-dipeptidase activity"
##
                     "8-oxo-7,8-dihydroguanosine triphosphate pyrophosphatase activity"
##
                      "hydroxypyruvate isomerase activity"
##
##
                      "acireductone dioxygenase [iron(II)-requiring] activity"
                      "2-alkenal reductase [NAD(P)] activity"
##
                     "hyaluronoglucuronidase activity"
##
                      "8-oxo-7,8-dihydrodeoxyguanosine triphosphate pyrophosphatase activity"
##
##
                      "ganglioside binding"
                      "cholest-5-ene-3-beta,7-alpha-diol 3-beta-dehydrogenase activity"
##
                     "cell adhesive protein binding involved in AV node cell-bundle of His cell communi
##
##
                      "nitric-oxide synthase regulator activity"
                      "deoxycytidine kinase activity"
##
##
                     "methylmalonyl-CoA mutase activity"
                      "taurine:sodium symporter activity"
##
##
                      "fucosyltransferase activity"
```

##

"protein-N-terminal asparagine amidohydrolase activity"

```
##
                      "diphthine-ammonia ligase activity"
##
                      "sphingolipid activator protein activity"
                      "beta-N-acetylgalactosaminidase activity"
##
                      "diphosphoinositol-pentakisphosphate kinase activity"
##
##
                      "dolichyldiphosphatase activity"
                     "5-diphosphoinositol pentakisphosphate 3-kinase activity"
##
                      "pseudouridine 5'-phosphatase activity"
##
                      "serine C-palmitoyltransferase activity"
##
##
                      "sterol-transporting ATPase activity"
                      "asialoglycoprotein receptor activity"
##
##
                      "poly(C) RNA binding"
                      "complement component C4b binding"
##
                     "DNA topoisomerase type II (ATP-hydrolyzing) activity"
##
                      "tyrosine 3-monooxygenase activity"
##
##
                      "sulfinoalanine decarboxylase activity"
##
                      "interleukin-10 receptor activity"
                     "high-affinity inorganic phosphate:sodium symporter activity"
##
                      "cytoskeletal regulatory protein binding"
##
##
                      "glycoprotein 6-alpha-L-fucosyltransferase activity"
                      "3'(2'),5'-bisphosphate nucleotidase activity"
##
##
                      "guanine deaminase activity"
                      "guanosine-3',5'-bis(diphosphate) 3'-diphosphatase activity"
##
                      "calcium-dependent cysteine-type endopeptidase inhibitor activity"
##
                      "quaternary ammonium group transmembrane transporter activity"
##
                      "CoA hydrolase activity"
##
##
                      "strictosidine synthase activity"
##
                      "arginine deiminase activity"
                      "pyrimidine deoxyribonucleotide binding"
##
                      "hormone-sensitive lipase activity"
##
                      "choloyl-CoA hydrolase activity"
##
##
                      "adenosine-diphosphatase activity"
##
                      "alpha-(1->6)-fucosyltransferase activity"
                      "peptide-0-fucosyltransferase activity"
##
                      "3-oxoacyl-[acyl-carrier-protein] reductase (NADH) activity"
##
                      "dCTP diphosphatase activity"
##
                     "ethanolamine-phosphate phospho-lyase activity"
##
                      "neuropeptide receptor binding"
##
##
                      "arachidonate 12-lipoxygenase activity"
                      "galactosylceramidase activity"
##
                      "glutathione synthase activity"
##
                      "glycerate kinase activity"
##
                      "glutamate-cysteine ligase catalytic subunit binding"
##
                      "cysteine-S-conjugate N-acetyltransferase activity"
##
                      "NEDD8 conjugating enzyme activity"
##
                      "interleukin-33 binding"
##
                      "amidase activity"
##
                      "cholinesterase activity"
##
                     "anion channel activity"
##
                      "beta-galactosyl-N-acetylglucosaminylgalactosylglucosyl-ceramide beta-1,3-acetylgl
##
                      "bilirubin transmembrane transporter activity"
##
##
                     "acid-sensing ion channel activity"
                     "acetylgalactosaminyl-O-glycosyl-glycoprotein beta-1,3-N-acetylglucosaminyltransfe
##
                      "lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase activity"
##
                      "glycerophosphoinositol glycerophosphodiesterase activity"
##
```

```
##
                     "microfibril binding"
##
                     "dihydrosphingosine-1-phosphate phosphatase activity"
                     "UFM1 transferase activity"
##
                     "oxidoreductase activity, acting on paired donors, with incorporation or reduction
##
##
                     "GPI-anchor transamidase activity"
##
                     "manganese ion binding"
                     "mRNA cap binding"
##
                     "polymeric immunoglobulin receptor activity"
##
##
                     "cerebroside-sulfatase activity"
                     "deoxyribose-phosphate aldolase activity"
##
##
                     "calcium-dependent cysteine-type endopeptidase activity"
                     "Ral guanyl-nucleotide exchange factor activity"
##
                     "small conductance calcium-activated potassium channel activity"
##
                     "short-chain carboxylesterase activity"
##
##
                     "protein-malonyllysine demalonylase activity"
##
                     "protein-succinyllysine desuccinylase activity"
                     "Ras palmitoyltransferase activity"
##
                     "protein-glutaryllysine deglutarylase activity"
##
##
                     "protein-glycine ligase activity, initiating"
                     "gap junction channel activity involved in SA node cell-atrial cardiac muscle cell
##
##
                     "gap junction channel activity involved in AV node cell-bundle of His cell electri
                     "alpha-glucosidase activity"
##
                     "calcium-dependent carbohydrate binding"
##
                     "pseudophosphatase activity"
##
                     "gamma-aminobutyric acid:sodium symporter activity"
##
##
                     "tRNA (uracil) methyltransferase activity"
##
                     "2,3-diketo-5-methylthiopentyl-1-phosphate enolase activity"
                     "2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase activity"
##
                     "acireductone synthase activity"
##
                     "nicotinamide phosphoribosyltransferase activity"
##
                     "phytanoyl-CoA dioxygenase activity"
##
##
                     "icosatetraenoic acid binding"
                     "mannan binding"
##
                     "15-hydroxyprostaglandin dehydrogenase (NADP+) activity"
##
                     "prostaglandin-E2 9-reductase activity"
##
                     "calmodulin-dependent cyclic-nucleotide phosphodiesterase activity"
##
##
                     "hydroxymethylbilane synthase activity"
##
                     "phosphomevalonate kinase activity"
                     "sodium-exporting ATPase activity, phosphorylative mechanism"
##
                     "exodeoxyribonuclease I activity"
##
                     "canalicular bile acid transmembrane transporter activity"
##
##
                     "hepoxilin A3 synthase activity"
                     "raffinose alpha-galactosidase activity"
##
                     "glutamate-ammonia ligase activity"
##
                     "MHC class II protein binding, via antigen binding groove"
##
                     "S-adenosyl-L-methionine transmembrane transporter activity"
##
                     "acylglycerol O-acyltransferase activity"
##
                     "lipid antigen binding"
##
                     "hydroxyapatite binding"
##
                     "[phosphorylase] phosphatase activity"
##
                     "monocarboxylic acid transmembrane transporter activity"
##
                     "glucuronyl-galactosyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activi
##
##
                     "leukotriene-C4 synthase activity"
```

"alpha-N-acetylglucosaminidase activity"

```
##
                      "D4 dopamine receptor binding"
##
                     "dihydrotestosterone 17-beta-dehydrogenase activity"
                      "prostaglandin H2 endoperoxidase reductase activity"
##
                      "prostaglandin D2 11-ketoreductase activity"
##
##
                      "ketoreductase activity"
                     "15-hydroxyprostaglandin-D dehydrogenase (NADP+) activity"
##
                      "ciliary neurotrophic factor binding"
##
                      "transcription factor activity, RNA polymerase II distal enhancer sequence-specifi
##
##
                      "nicotinate-nucleotide adenylyltransferase activity"
                     "formate-tetrahydrofolate ligase activity"
##
##
                      "volume-sensitive anion channel activity"
                      "sulfiredoxin activity"
##
                     "tRNA-4-demethylwyosine synthase activity"
##
                      "protein-hormone receptor activity"
##
##
                      "peptidylglycine monooxygenase activity"
##
                      "peptidylamidoglycolate lyase activity"
                      "cupric reductase activity"
##
                      "glycine N-methyltransferase activity"
##
##
                      "alpha-(1->3)-fucosyltransferase activity"
                      "ferric-chelate reductase (NADPH) activity"
##
##
                     "carnosine N-methyltransferase activity"
                      "beta-galactoside alpha-2,6-sialyltransferase activity"
##
                      "holo-[acyl-carrier-protein] synthase activity"
##
                      "galactosylgalactosylglucosylceramide beta-D-acetylgalactosaminyltransferase activ
##
                     "trimethyllysine dioxygenase activity"
##
##
                      "glycogen binding"
                      "polynucleotide 3'-phosphatase activity"
##
                      "leukotriene-C(4) hydrolase"
##
                     "ketohexokinase activity"
##
                      "osmosensor activity"
##
##
                      "Mo-molybdopterin cofactor sulfurase activity"
##
                     "stretch-activated, cation-selective, calcium channel activity"
                      "catechol O-methyltransferase activity"
##
##
                     "MutLbeta complex binding"
##
                      "MutSbeta complex binding"
##
                     "UDP-glucosyltransferase activity"
##
                      "adenine/guanine mispair binding"
##
                      "galactosylxylosylprotein 3-beta-galactosyltransferase activity"
                      "L-dopa O-methyltransferase activity"
##
                     "molybdenum cofactor sulfurtransferase activity"
##
                      "orcinol O-methyltransferase activity"
##
                      "dolichyl pyrophosphate Glc2Man9GlcNAc2 alpha-1,2-glucosyltransferase activity"
##
                      "NAADP-sensitive calcium-release channel activity"
##
                     "phosphatidylinositol-4-phosphate phosphatase activity"
##
                      "inositol 1,4,5 trisphosphate binding"
##
                      "copper-exporting ATPase activity"
##
                      "copper-transporting ATPase activity"
##
                      "estrogen 16-alpha-hydroxylase activity"
##
                      "UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase
##
                      "UDP-galactose transmembrane transporter activity"
##
##
                      "UDP-N-acetylglucosamine 2-epimerase activity"
                      "phospho-N-acetylmuramoyl-pentapeptide-transferase activity"
##
##
                      "N-acylmannosamine kinase activity"
```

"myosin phosphatase regulator activity"

```
"protein-disulfide reductase (glutathione) activity"
##
##
                      "cholate-CoA ligase activity"
                      "transforming growth factor beta receptor activity, type III"
##
                      "G protein-coupled glutamate receptor binding"
##
##
                      "NAD+ kinase activity"
##
                     "lamin binding"
                      "succinate-semialdehyde dehydrogenase (NAD+) activity"
##
                      "uroporphyrinogen-III synthase activity"
##
##
                      "succinate-semialdehyde dehydrogenase [NAD(P)+] activity"
                     "choline transmembrane transporter activity"
##
##
                      "tRNA (adenine-N6-)-methyltransferase activity"
                      "diacylglycerol binding"
##
                     "retinol O-fatty-acyltransferase activity"
##
                     "inorganic anion exchanger activity"
##
##
                      "Rap guanyl-nucleotide exchange factor activity"
##
                      "gamma-butyrobetaine dioxygenase activity"
                     "ferrous iron transmembrane transporter activity"
##
                     "ICAM-3 receptor activity"
##
                      "S-methyl-5-thioribose-1-phosphate isomerase activity"
##
                     "dol-P-Man:Man(8)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase activity"
##
##
                     "dol-P-Man:Man(6)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase activity"
                      "3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoyl-CoA 24-hydroxylase activity"
##
##
                      "NADH pyrophosphatase activity"
                      "hypoxanthine phosphoribosyltransferase activity"
##
                     "L-ornithine transmembrane transporter activity"
##
##
                      "left-handed Z-DNA binding"
                      "arachidonate 5-lipoxygenase activity"
##
                      "extracellularly glutamate-gated chloride channel activity"
##
                     "dCTP deaminase activity"
##
                      "tRNA (cytosine) methyltransferase activity"
##
##
                      "lipid phosphatase activity"
                      "phosphoric ester hydrolase activity"
##
                      "RNA polymerase core enzyme binding"
##
                      "phosphatidylinositol deacylase activity"
##
##
                      "epinephrine binding"
                     "starch binding"
##
##
                      "methylenetetrahydrofolate dehydrogenase [NAD(P)+] activity"
##
                      "polynucleotide 5'-phosphatase activity"
                      "phosphoglycerate dehydrogenase activity"
##
                     "interleukin-1, type II receptor binding"
##
                      "tRNA (cytosine-3-)-methyltransferase activity"
##
##
                      "phytoceramidase activity"
                      "tRNA 2'-0-methyltransferase activity"
##
                     "phospholipase A2 activator activity"
##
                      "6-phosphogluconolactonase activity"
##
                      "K63-linked polyubiquitin modification-dependent protein binding"
##
                      "mevalonate kinase activity"
##
                     "interleukin-1 receptor antagonist activity"
##
                      "calcium sensitive guanylate cyclase activator activity"
##
                      "alkylglycerone-phosphate synthase activity"
##
##
                     "ATPase activity, coupled to transmembrane movement of ions, phosphorylative mecha-
                     "15-hydroxyprostaglandin dehydrogenase (NAD+) activity"
##
##
                      "fucose binding"
                      "prostaglandin-F synthase activity"
##
```

```
##
                      "deoxyribodipyrimidine photo-lyase activity"
##
                     "DNA (6-4) photolyase activity"
                      "blue light photoreceptor activity"
##
                     "disulfide oxidoreductase activity"
##
##
                      "endonuclease activity"
                     "farnesylated protein binding"
##
                      "proline dehydrogenase activity"
##
                      "chloramphenicol O-acetyltransferase activity"
##
##
                      "L-cystine transmembrane transporter activity"
                     "glycerone-phosphate O-acyltransferase activity"
##
##
                      "oxidoreductase activity, oxidizing metal ions, NAD or NADP as acceptor"
                      "S-methyl-5-thioadenosine phosphorylase activity"
##
                      "protein C-terminal leucine carboxyl O-methyltransferase activity"
##
                      "1-alkenylglycerophosphocholine O-acyltransferase activity"
##
                      "1-alkylglycerophosphocholine O-acyltransferase activity"
##
##
                      "long-chain-alcohol O-fatty-acyltransferase activity"
                     "protein-glycine ligase activity"
##
                      "arachidoyl-CoA:1-dodecanol O-acyltransferase activity"
##
##
                      "wax ester synthase activity"
                      "protein heterodimerization activity"
##
##
                     "kinase regulator activity"
                      "phosphoenolpyruvate carboxykinase activity"
##
                      "Sar guanyl-nucleotide exchange factor activity"
##
                      "high-density lipoprotein particle receptor activity"
##
                     "U12 snRNA binding"
##
##
                      "alpha-mannosidase activity"
##
                      "plus-end directed microfilament motor activity"
                      "phospholipid-translocating ATPase activity"
##
                      "biliverdin reductase activity"
##
                      "heme-transporting ATPase activity"
##
##
                      "malate dehydrogenase activity"
##
                     "tRNA dihydrouridine synthase activity"
                      "carbohydrate response element binding"
##
##
                      "phosphatidylinositol-3,4-bisphosphate 3-phosphatase activity"
##
                      "exo-alpha-(2->3)-sialidase activity"
##
                     "exo-alpha-(2->6)-sialidase activity"
##
                      "exo-alpha-(2->8)-sialidase activity"
##
                      "integrin binding involved in cell-matrix adhesion"
                      "phosphatidylinositol-4-phosphate binding"
##
                     "histone demethylase activity (H4-K20 specific)"
##
                      "amino acid:proton symporter activity"
##
##
                      "NAD+ diphosphatase activity"
                      "GDP-Man: Man3GlcNAc2-PP-Dol alpha-1,2-mannosyltransferase activity"
##
                     "interferon-gamma receptor binding"
##
                      "indoleamine 2,3-dioxygenase activity"
##
##
                      "ceramide transporter activity"
                      "phosphatidylethanolamine transporter activity"
##
                      "squalene monooxygenase activity"
##
                      "inositol-1,3,4,5-tetrakisphosphate 3-phosphatase activity"
##
                      "hydroxymethylglutaryl-CoA reductase (NADPH) activity"
##
##
                      "hydroxymethylglutaryl-CoA reductase activity"
                      "iron-cytochrome-c reductase activity"
##
                      "RNA polymerase II transcription coactivator activity involved in preinitiation co
##
                      "alpha-1,2-mannosyltransferase activity"
##
```

```
##
                      "lactoylglutathione lyase activity"
##
                      "gamma-glutamyl carboxylase activity"
                      "N-acylsphingosine amidohydrolase activity"
##
                      "lithium ion binding"
##
##
                      "ATP-dependent 5'-3' RNA helicase activity"
                      "gamma-glutamyl-peptidase activity"
##
                      "prosaposin receptor activity"
##
                      "voltage-gated ion channel activity involved in regulation of presynaptic membrane
##
##
                      "ceramidase activity"
                      "macrophage colony-stimulating factor receptor binding"
##
##
                      "histone methyltransferase activity (H3-K27 specific)"
                      "Rab geranylgeranyltransferase activity"
##
                     "latrotoxin receptor activity"
##
                      "serine hydrolase activity"
##
##
                      "EP4 subtype prostaglandin E2 receptor binding"
##
                      "MHC class Ib receptor activity"
                      "UDP-xylosyltransferase activity"
##
                      "RNA uridylyltransferase activity"
##
                      "phosphatidic acid transporter activity"
##
                      "immunoglobulin binding"
##
##
                     "thymidine kinase activity"
                      "L-aminoadipate-semialdehyde dehydrogenase activity"
##
                      "protein-arginine deiminase activity"
##
                      "xylulokinase activity"
##
                     "interleukin-10 receptor binding"
##
##
                      "calcium-dependent protein kinase inhibitor activity"
##
                      "betaine-aldehyde dehydrogenase activity"
                      "inositol bisphosphate phosphatase activity"
##
                      "phosphatidylinositol trisphosphate phosphatase activity"
##
                      "inositol trisphosphate phosphatase activity"
##
                      "advanced glycation end-product receptor activity"
##
##
                     "structural constituent of presynaptic active zone"
                      "advanced glycation end-product binding"
##
                      "nitric oxide dioxygenase activity"
##
                      "histone methyltransferase activity"
##
                     "polysome binding"
##
##
                      "MH1 domain binding"
##
                      "Y-form DNA binding"
                      "Lys48-specific deubiquitinase activity"
##
                     "chitinase activity"
##
                      "mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase activity"
##
##
                      "prolactin receptor activity"
##
                     "GDP-mannose 4,6-dehydratase activity"
##
                      "sterol delta7 reductase activity"
##
                      "[myelin basic protein]-arginine N-methyltransferase activity"
##
                      "hydrolase activity, hydrolyzing N-glycosyl compounds"
##
                      "glycine-gated chloride ion channel activity"
##
                      "glucuronylgalactosylproteoglycan 4-beta-N-acetylgalactosaminyltransferase activit
##
                      "7-dehydrocholesterol reductase activity"
##
##
                     "ligand-gated calcium channel activity"
                      "poly(U)-specific exoribonuclease activity, producing 3' uridine cyclic phosphate
##
##
                      "thromboxane A2 receptor binding"
```

"glycogen (starch) synthase activity"

```
##
                      "glycogen synthase activity, transferring glucose-1-phosphate"
##
                      "protein kinase regulator activity"
                      "Pyrin domain binding"
##
                      "peptidyl-dipeptidase inhibitor activity"
##
                      "biotin-[acetyl-CoA-carboxylase] ligase activity"
##
                     "biotin-[methylcrotonoyl-CoA-carboxylase] ligase activity"
##
                      "biotin-[methylmalonyl-CoA-carboxytransferase] ligase activity"
##
                      "biotin-[propionyl-CoA-carboxylase (ATP-hydrolyzing)] ligase activity"
##
##
                      "natriuretic peptide receptor activity"
                     "biotin-protein ligase activity"
##
##
                      "N6-threonylcarbomyladenosine methylthiotransferase activity"
                      "nucleoside triphosphate adenylate kinase activity"
##
                      "heparosan-N-sulfate-glucuronate 5-epimerase activity"
##
                      "tRNA (N(6)-L-threonylcarbamoyladenosine(37)-C(2))-methylthiotransferase"
##
##
                      "acetylcholine receptor activity"
##
                      "X11-like protein binding"
                     "diamine N-acetyltransferase activity"
##
##
                      "spermidine binding"
                      "peptide receptor activity"
##
                      "1-pyrroline-5-carboxylate dehydrogenase activity"
##
##
                     "adenosylmethionine decarboxylase activity"
                      "guanosine-diphosphatase activity"
##
                      "guanylate cyclase activity"
##
                      "myo-inositol:proton symporter activity"
##
                     "chitin binding"
##
##
                      "N-acetylglucosamine-6-sulfatase activity"
##
                      "tRNA (guanine) methyltransferase activity"
                      "putrescine binding"
##
                      "(alpha-N-acetylneuraminyl-2,3-beta-galactosyl-1,3)-N-acetyl-galactosaminide 6-alp
##
##
                      "NADP+ binding"
##
                      "type I activin receptor binding"
                     "ion antiporter activity involved in regulation of postsynaptic membrane potential
##
                      "mRNA (guanine-N7-)-methyltransferase activity"
##
                      "peptide-aspartate beta-dioxygenase activity"
##
##
                      "oxidative phosphorylation uncoupler activity"
                     "aminobutyraldehyde dehydrogenase activity"
##
##
                     "MAP kinase phosphatase activity"
##
                      "1-pyrroline dehydrogenase activity"
                      "phosphatidylinositol 3-kinase catalytic subunit binding"
##
                     "4-trimethylammoniobutyraldehyde dehydrogenase activity"
##
                      "inositol 5-diphosphate pentakisphosphate 5-kinase activity"
##
                     "inositol diphosphate tetrakisphosphate kinase activity"
##
                      "COPII adaptor activity"
##
                     "DNA replication origin binding"
##
                      "ferric iron binding"
##
                      "oxidoreductase activity, acting on diphenols and related substances as donors"
##
##
                     "flavonoid 3'-monooxygenase activity"
                      "peptidase activator activity"
##
##
                      "5'-deoxynucleotidase activity"
                      "N-acetylglucosaminyldiphosphodolichol N-acetylglucosaminyltransferase activity"
##
                      "dopamine:sodium symporter activity"
##
                      "nucleoside-diphosphatase activity"
##
##
                      "calmodulin-lysine N-methyltransferase activity"
                      "dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase activity"
##
```

```
##
                      "1-alkylglycerophosphocholine O-acetyltransferase activity"
                      "tRNA dimethylallyltransferase activity"
##
                      "methylselenol reductase activity"
##
                      "methylseleninic acid reductase activity"
##
                      "phosphoprotein phosphatase activity"
##
                      "phosphatidylcholine transporter activity"
##
                      "O-methyltransferase activity"
##
                      "NAD+ synthase (glutamine-hydrolyzing) activity"
##
                      "asparagine synthase (glutamine-hydrolyzing) activity"
##
                      "dUTP diphosphatase activity"
##
##
                      "glucosamine 6-phosphate N-acetyltransferase activity"
                      "interleukin-12 receptor activity"
##
                      "heparanase activity"
##
                      "interleukin-17 receptor activity"
##
##
                      "D-tyrosyl-tRNA(Tyr) deacylase activity"
                      "fatty-acyl-CoA reductase (alcohol-forming) activity"
##
##
                     "hypoglycin A gamma-glutamyl transpeptidase activity"
                      "alcohol-forming fatty acyl-CoA reductase activity"
##
                      "leukotriene C4 gamma-glutamyl transferase activity"
##
                      "phosphatidylinositol-3,5-bisphosphate phosphatase activity"
##
##
                     "acetyl-CoA hydrolase activity"
##
                      "very-low-density lipoprotein particle receptor binding"
                     "L-alanine transmembrane transporter activity"
##
                      "soluble NSF attachment protein activity"
##
                     "ISG15-specific protease activity"
##
##
                      "interleukin-1 binding"
                      "ribonuclease P RNA binding"
##
                      "sphingomyelin phosphodiesterase D activity"
##
                     "ligase regulator activity"
##
                      "Arp2/3 complex binding"
##
                      "nicotinate-nucleotide diphosphorylase (carboxylating) activity"
##
##
                     "extracellular matrix protein binding"
                     "FAD transmembrane transporter activity"
##
                      "alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase activity"
##
                      "D3 dopamine receptor binding"
##
                     "olfactory receptor binding"
##
                      "acetylgalactosaminyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransfe
##
##
                      "glycine N-choloyltransferase activity"
                      "CP2 mannose-ethanolamine phosphotransferase activity"
##
                     "very long chain acyl-CoA hydrolase activity"
##
                      "crotonyl-CoA hydratase activity"
##
                     "NADPH binding"
##
                      "PDZ domain binding"
##
                     "cytidylate kinase activity"
##
                      "methylenetetrahydrofolate reductase (NAD(P)H) activity"
##
                      "pantetheine-phosphate adenylyltransferase activity"
##
                      "ribokinase activity"
##
                      "extracellularly glutamate-gated ion channel activity"
##
                      "sodium:bicarbonate symporter activity"
##
                      "IgE receptor activity"
##
##
                     "BRE binding"
                      "L-proline transmembrane transporter activity"
##
                      "ubiquitin-like protein binding"
##
                      "RNA-dependent ATPase activity"
##
```

```
##
                      "3-hydroxyanthranilate 3,4-dioxygenase activity"
##
                      "GDP-Man:Man1GlcNAc2-PP-Dol alpha-1,3-mannosyltransferase activity"
                      "poly(ADP-ribose) glycohydrolase activity"
##
                      "vitamin E binding"
##
##
                      "ISG15 activating enzyme activity"
##
                     "interleukin-12 alpha subunit binding"
                     "intronic transcription regulatory region DNA binding"
##
                     "GDP-Man: Man2GlcNAc2-PP-dolichol alpha-1,6-mannosyltransferase activity"
##
##
                      "N6-(1,2-dicarboxyethyl)AMP AMP-lyase (fumarate-forming) activity"
                     "(S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate AMP-lyase
##
##
                      "epidermal growth factor binding"
                      "four-way junction DNA binding"
##
                      "cysteine-type endopeptidase activity involved in apoptotic signaling pathway"
##
                      "6-pyruvoyltetrahydropterin synthase activity"
##
##
                      "arachidonate 15-lipoxygenase activity"
##
                      "pristanoyl-CoA oxidase activity"
                      "RNA methyltransferase activity"
##
                      "peptidyltransferase activity"
##
##
                      "RNA-3'-phosphate cyclase activity"
                      "arylamine N-acetyltransferase activity"
##
##
                     "N-acyltransferase activity"
                      "glutathione hydrolase activity"
##
                      "activin receptor antagonist activity"
##
                      "N-acylneuraminate-9-phosphate synthase activity"
##
                     "N-acetylneuraminate synthase activity"
##
##
                      "delayed rectifier potassium channel activity"
##
                      "protein C-terminal carboxyl O-methyltransferase activity"
                      "prostaglandin-endoperoxide synthase activity"
##
                      "L-ascorbate:sodium symporter activity"
##
                      "nucleobase transmembrane transporter activity"
##
##
                      "L-ascorbic acid transmembrane transporter activity"
##
                      "glucosyltransferase activity"
                      "AF-1 domain binding"
##
                      "glutathione specific gamma-glutamylcyclotransferase activity"
##
                      "sodium-dependent L-ascorbate transmembrane transporter activity"
##
                     "translation termination factor activity"
##
##
                     "translation release factor activity, codon specific"
##
                      "Rac guanyl-nucleotide exchange factor activity"
                      "Edg-2 lysophosphatidic acid receptor binding"
##
                     "prenyltransferase activity"
##
                      "selenide, water dikinase activity"
##
##
                      "ornithine decarboxylase inhibitor activity"
                     "oxidoreductase activity, acting on the CH-NH2 group of donors, oxygen as acceptor
##
                     "formaldehyde dehydrogenase activity"
##
                      "nitric-oxide synthase inhibitor activity"
##
                      "interleukin-27 receptor binding"
##
                      "cholestenol delta-isomerase activity"
##
                      "S-(hydroxymethyl)glutathione dehydrogenase activity"
##
##
                      "glutamate binding"
##
                      "ceramide binding"
##
                     "potassium channel regulator activity"
                      "neurotensin receptor activity, non-G protein-coupled"
##
##
                      "lanosterol synthase activity"
```

"phosphoacetylglucosamine mutase activity"

```
##
                     "acetylcholine receptor inhibitor activity"
##
                     "enzyme activator activity"
                     "cGMP binding"
##
                     "NAD-dependent histone deacetylase activity"
##
##
                     "phospholipid binding"
                     "protein serine/threonine phosphatase inhibitor activity"
##
                     "peptidase activity"
##
                     "phosphatidyl-N-methylethanolamine N-methyltransferase activity"
##
##
                     "phosphatidylethanolamine N-methyltransferase activity"
                     "interleukin-1, type I, activating receptor activity"
##
##
                     "5-oxoprolinase (ATP-hydrolyzing) activity"
                     "interleukin-20 binding"
##
                     "SET domain binding"
##
                     "phosphatidyl-N-dimethylethanolamine N-methyltransferase activity"
##
##
                     "ganglioside GM2 binding"
##
                     "ganglioside GM3 binding"
                     "ganglioside GP1c binding"
##
                     "calcium-release channel activity"
##
##
                     "calcium- and calmodulin-responsive adenylate cyclase activity"
##
                     "farnesyltranstransferase activity"
##
                     "phosphoribosylaminoimidazole carboxylase activity"
                     "phosphoribosylaminoimidazolesuccinocarboxamide synthase activity"
##
                     "dynein intermediate chain binding"
##
                     "phosphatidylinositol phosphate 4-phosphatase activity"
##
                     "CD27 receptor binding"
##
##
                     "iron-responsive element binding"
##
                     "sphingosine-1-phosphate phosphatase activity"
                     "3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-enoyl-CoA hydratase activity"
##
                     "17-beta-hydroxysteroid dehydrogenase (NAD+) activity"
##
##
                     "arginine binding"
                     "mitogen-activated protein kinase p38 binding"
##
##
                     "mannosyl-oligosaccharide 1,2-alpha-mannosidase activity"
                     "tetrahydrofolylpolyglutamate synthase activity"
##
                     "steroid delta-isomerase activity"
##
                     "C-rich strand telomeric DNA binding"
##
                     "tyrosine binding"
##
                     "voltage-gated ion channel activity involved in regulation of postsynaptic membran
##
##
                     "alkane 1-monooxygenase activity"
                     "coreceptor activity involved in Wnt signaling pathway, planar cell polarity pathw
##
                     "telomerase RNA reverse transcriptase activity"
##
                     "template-free RNA nucleotidyltransferase"
##
##
                     "virus receptor activity"
                     "glutamate-gated calcium ion channel activity"
##
                     "exoribonuclease activity, producing 5'-phosphomonoesters"
##
                     "histone kinase activity (H3-S10 specific)"
##
                     "xenobiotic transmembrane transporter activity"
##
                     "interleukin-23 receptor binding"
##
                     "3'-phosphoadenosine 5'-phosphosulfate transmembrane transporter activity"
##
                     "volume-sensitive chloride channel activity"
##
                     "histone kinase activity (H3-T3 specific)"
##
                     "voltage-gated potassium channel activity involved in bundle of His cell action po
##
                     "voltage-gated potassium channel activity involved in SA node cell action potentia
##
##
                     "extracellularly glycine-gated chloride channel activity"
```

"VEGF-C-activated receptor activity"

```
##
                      "glutamate decarboxylase activity"
##
                      "myosin-light-chain-phosphatase activity"
##
                      "RNA-directed DNA polymerase activity"
                      "RNA polymerase III activity"
##
                      "protein binding involved in negative regulation of telomere maintenance via telom
##
##
                      "carboxylic ester hydrolase activity"
                      "L-iditol 2-dehydrogenase activity"
##
                      "UDP-glucose 6-dehydrogenase activity"
##
##
                      "alpha, alpha-trehalase activity"
                      "prostaglandin-D synthase activity"
##
                      "hepatocyte growth factor receptor binding"
##
                      "sphingolipid delta-4 desaturase activity"
##
                      "histone acetyltransferase activity (H3-K23 specific)"
##
                     "D-xylulose reductase activity"
##
                      "ubiquitin-protein transferase inhibitor activity"
##
##
                      "[hydroxymethylglutaryl-CoA reductase (NADPH)] kinase activity"
                     "[acetyl-CoA carboxylase] kinase activity"
##
                      "sphingomyelin phosphodiesterase activity"
##
##
                      "purinergic nucleotide receptor activity"
##
                      "cysteine-tRNA ligase activity"
##
                     "extracellularly ATP-gated cation channel activity"
                      "racemase and epimerase activity, acting on carbohydrates and derivatives"
##
##
                      "GABA receptor activity"
                      "MHC class Ib protein binding, via antigen binding groove"
##
                     "acetylcholine receptor regulator activity"
##
##
                      "SAM domain binding"
##
                     "ATP-gated ion channel activity"
                      "triacyl lipopeptide binding"
##
                     "uridine-diphosphatase activity"
##
                      "mannose-ethanolamine phosphotransferase activity"
##
##
                      "voltage-gated calcium channel activity involved SA node cell action potential"
                     "first spliceosomal transesterification activity"
##
                     "ferric-chelate reductase activity"
##
                     "ADP-sugar diphosphatase activity"
##
                      "thyroid hormone receptor coactivator activity"
##
                     "SUMO transferase activity"
##
##
                      "1-phosphatidylinositol-3-phosphate 4-kinase activity"
##
                      "iduronate-2-sulfatase activity"
                      "myosin II head/neck binding"
##
                      "pyridoxal phosphatase activity"
##
                      "ATP-dependent NAD(P)H-hydrate dehydratase activity"
##
##
                     "ADP-dependent NAD(P)H-hydrate dehydratase activity"
                     "MADS box domain binding"
##
                     "inositol-1,3,4,5,6-pentakisphosphate kinase activity"
##
                      "inositol hexakisphosphate kinase activity"
##
                      "inositol heptakisphosphate kinase activity"
##
                     "inositol hexakisphosphate 5-kinase activity"
##
                     "cGMP-inhibited cyclic-nucleotide phosphodiesterase activity"
##
##
                      "dolichyl-phosphate beta-glucosyltransferase activity"
                      "transferase activity, transferring hexosyl groups"
##
##
                     "VEGF-A-activated receptor activity"
                     "VEGF-B-activated receptor activity"
##
                      "placental growth factor-activated receptor activity"
##
                      "inositol hexakisphosphate 1-kinase activity"
##
```

```
##
                      "inositol hexakisphosphate 3-kinase activity"
##
                      "ganglioside GM1 binding"
                      "protein O-GlcNAc transferase activity"
##
                      "RNA polymerase II transcription corepressor binding"
##
##
                      "copper ion transmembrane transporter activity"
##
                      "acid-amino acid ligase activity"
                      "adenosine receptor binding"
##
                      "protein tyrosine phosphatase activator activity"
##
##
                      "interleukin-23 binding"
                      "interleukin-23 receptor activity"
##
##
                      "sodium:proton antiporter activity involved in regulation of cardiac muscle cell m
                      "demethylase activity"
##
                      "inositol hexakisphosphate binding"
##
                      "metal chelating activity"
##
##
                      "glycerol-1-phosphatase activity"
##
                      "copper-dependent protein binding"
                      "glycerol-3-phosphatase activity"
##
                      "U6atac snRNA binding"
##
##
                      "TAP2 binding"
                      "dihydropyrimidinase activity"
##
##
                      "UDP-N-acetylglucosamine diphosphorylase activity"
                      "calcium-dependent protein serine/threonine phosphatase regulator activity"
##
                      "ribonuclease E activity"
##
                      "aminophospholipid transmembrane transporter activity"
##
                      "kappa-type opioid receptor binding"
##
##
                      "MHC class I receptor activity"
##
                      "tapasin binding"
                      "deoxycytidine deaminase activity"
##
                      "lysophospholipid acyltransferase activity"
##
                      "DNA clamp unloader activity"
##
                      "diacylglycerol O-acyltransferase activity"
##
##
                      "ethanolamine kinase activity"
                      "leptin receptor activity"
##
                      "MHC class II protein binding"
##
##
                      "suramin binding"
                      "8-oxo-GDP phosphatase activity"
##
                      "8-hydroxy-dADP phosphatase activity"
##
##
                      "xylosylprotein 4-beta-galactosyltransferase activity"
                      "phytanate-CoA ligase activity"
##
                      "pristanate-CoA ligase activity"
##
                      "toxic substance binding"
##
##
                      "sodium channel inhibitor activity"
                      "ubiquitin-like protein ligase binding"
##
                      "calcium:sodium antiporter activity"
##
                      "ADP-ribose diphosphatase activity"
##
                      "methionine-tRNA ligase activity"
##
                      "interleukin-33 receptor activity"
##
                      "methylthioribulose 1-phosphate dehydratase activity"
##
                      "medium-chain acyl-CoA hydrolase activity"
##
                      "long-chain acyl-CoA hydrolase activity"
##
##
                      "hemoglobin binding"
                      "glycoprotein transporter activity"
##
##
                      "acyl-CoA oxidase activity"
```

"folic acid binding"

```
"gamma-glutamylcyclotransferase activity"
##
##
                      "2',3'-cyclic-nucleotide 3'-phosphodiesterase activity"
                      "histone pre-mRNA stem-loop binding"
##
                      "epoxide hydrolase activity"
##
                      "hydrolase activity, hydrolyzing O-glycosyl compounds"
##
##
                      "transposase activity"
                      "rRNA methyltransferase activity"
##
                      "low-affinity IgG receptor activity"
##
##
                      "type I interferon binding"
                     "lipoteichoic acid receptor activity"
##
##
                      "oxidised low-density lipoprotein particle receptor activity"
                      "histone-glutamine methyltransferase activity"
##
                     "long-chain-alcohol oxidase activity"
##
                      "long-chain-aldehyde dehydrogenase activity"
##
##
                      "medium-chain-aldehyde dehydrogenase activity"
##
                      "leukotriene-B4 20-monooxygenase activity"
                     "sterol 14-demethylase activity"
##
                      "phospholipid-hydroperoxide glutathione peroxidase activity"
##
##
                      "voltage-gated sodium channel activity involved in AV node cell action potential"
                      "voltage-gated sodium channel activity involved in bundle of His cell action poten
##
##
                     "voltage-gated sodium channel activity involved in SA node cell action potential"
                      "RNA polymerase I activity"
##
##
                      "tRNA-intron endonuclease activity"
                      "catalytic activity"
##
                      "neurotrophin TRKB receptor binding"
##
##
                      "neurotrophin TRKC receptor binding"
##
                      "acrosin binding"
                      "3R-hydroxyacyl-CoA dehydratase activity"
##
                      "small protein activating enzyme binding"
##
##
                      "MIT domain binding"
                      "potassium:proton exchanging ATPase activity"
##
##
                      "NAD-dependent histone deacetylase activity (H4-K16 specific)"
                     "N-terminal protein N-methyltransferase activity"
##
                      "erythropoietin receptor activity"
##
                      "FAT10 activating enzyme activity"
##
                     "somatostatin receptor binding"
##
                      "kynurenine-glyoxylate transaminase activity"
##
##
                      "interleukin-1 receptor binding"
                      "phosphatidylinositol-3,5-bisphosphate binding"
##
                     "farnesyl-diphosphate farnesyltransferase activity"
##
                      "protein geranylgeranyltransferase activity"
##
##
                      "CAAX-protein geranylgeranyltransferase activity"
                      "squalene synthase activity"
##
                      "phosphodiesterase decapping endonuclease activity"
##
                      "NEDD8 transferase activity"
##
                      "MHC class I protein complex binding"
##
                      "dolichyl-phosphate-glucose-glycolipid alpha-glucosyltransferase activity"
##
                      "3-mercaptopyruvate sulfurtransferase activity"
##
                      "ubiquitin-specific protease activity involved in negative regulation of ERAD path
##
                      "20-hydroxy-leukotriene B4 omega oxidase activity"
##
                     "20-aldehyde-leukotriene B4 20-monooxygenase activity"
##
                      "disaccharide binding"
##
##
                      "deoxyribonuclease II activity"
                      "ribose-5-phosphate isomerase activity"
##
```

```
"granulocyte macrophage colony-stimulating factor receptor binding"
##
##
                      "sodium:phosphate symporter activity"
                      "sodium:potassium:chloride symporter activity"
##
                      "N-acylneuraminate cytidylyltransferase activity"
##
##
                      "cardiolipin synthase activity"
##
                     "sodium:chloride symporter activity"
                      "URM1 activating enzyme activity"
##
                      "CDP-diacylglycerol-phosphatidylglycerol phosphatidyltransferase activity"
##
##
                      "molybdopterin-synthase sulfurtransferase activity"
                     "molybdopterin-synthase adenylyltransferase activity"
##
##
                      "translation elongation factor binding"
                      "arylsulfatase activity"
##
##
                      "acetylpyruvate hydrolase activity"
                      "deoxyhypusine synthase activity"
##
##
                      "fumarylpyruvate hydrolase activity"
##
                      "acylpyruvate hydrolase activity"
                     "lipoprotein lipase activator activity"
##
                      "type I transforming growth factor beta receptor binding"
##
##
                      "ubiquitin-like protein conjugating enzyme binding"
##
                      "2-acylglycerol O-acyltransferase activity"
##
                     "dihydrofolate reductase activity"
                      "folate reductase activity"
##
                      "alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase activity"
##
                      "sodium:inorganic phosphate symporter activity"
##
                      "glutaminyl-peptide cyclotransferase activity"
##
##
                      "cysteine-S-conjugate beta-lyase activity"
##
                      "phosphatidylglycerol binding"
                      "triglyceride binding"
##
                      "chenodeoxycholic acid binding"
##
                      "actinin binding"
##
                      "nitric oxide transmembrane transporter activity"
##
##
                     "carbon dioxide transmembrane transporter activity"
                      "transcription factor activity, RNA polymerase II core promoter sequence-specific
##
                      "purine-nucleoside phosphorylase activity"
##
##
                      "pyridoxal kinase activity"
                     "long-chain-enoyl-CoA hydratase activity"
##
##
                      "N-acetyllactosamine synthase activity"
##
                      "cysteine-type endopeptidase activity involved in apoptotic process"
                      "haptoglobin binding"
##
                      "cadmium ion binding"
##
                      "deoxyribonuclease I activity"
##
##
                      "peptidyl-proline dioxygenase activity"
                      "collagen receptor activity"
##
                     "rhodopsin kinase activity"
##
                      "dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase activity"
##
                      "protein N-acetylglucosaminyltransferase activity"
##
                      "Formylglycine-generating oxidase activity"
##
                      "galactoside binding"
##
                      "2'-5'-oligoadenylate synthetase activity"
##
                      "metalloendopeptidase inhibitor activity"
##
##
                      "peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase activity"
                      "alpha-N-acetylgalactosaminidase activity"
##
##
                      "DNA 5'-adenosine monophosphate hydrolase activity"
                      "DNA-3'-diphospho-5'-guanosine diphosphatase"
##
```

```
##
                     "single-strand break-containing DNA binding"
##
                     "interferon-gamma receptor activity"
                     "oxidoreductase activity, oxidizing metal ions"
##
                     "hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear
##
##
                     "acetylcholine-gated cation-selective channel activity"
                     "type II activin receptor binding"
##
                     "1-phosphatidylinositol 4-kinase activity"
##
                     "glycerol transmembrane transporter activity"
##
##
                     "MutSalpha complex binding"
                     "1-phosphatidylinositol-4-phosphate 3-kinase activity"
##
##
                     "RNA polymerase III type 1 promoter sequence-specific DNA binding"
                     "RNA polymerase III type 2 promoter sequence-specific DNA binding"
##
##
                     "NACHT domain binding"
                     "voltage-gated sodium channel activity involved in Purkinje myocyte action potenti
##
##
                     "aryl hydrocarbon receptor activity"
##
                     "chromatin insulator sequence binding"
                     "bile-salt sulfotransferase activity"
##
                     "methylcytosine dioxygenase activity"
##
                     "collagen V binding"
##
                     "nucleoside monophosphate kinase activity"
##
##
                     "UDP-N-acetylglucosamine-lysosomal-enzyme N-acetylglucosaminephosphotransferase ac
                     "interleukin-11 receptor activity"
##
                     "N-acetyllactosaminide beta-1,6-N-acetylglucosaminyltransferase activity"
##
                     "interleukin-11 binding"
##
                     "structural constituent of presynapse"
##
##
                     "G/U mismatch-specific uracil-DNA glycosylase activity"
##
                     "histone methyltransferase activity (H3-R2 specific)"
                     "histone methyltransferase activity (H2A-R3 specific)"
##
                     "phospholipid scramblase activity"
##
##
                     "phospholipase D activity"
##
                     "histone methyltransferase activity (H3-K79 specific)"
##
                     "cGMP-dependent protein kinase activity"
                     "peptidyl-histidine dioxygenase activity"
##
                     "peptidyl-asparagine 3-dioxygenase activity"
##
                     "N-acetylglucosamine kinase activity"
##
                     "hypoxia-inducible factor-asparagine oxygenase activity"
##
##
                     "EH domain binding"
##
                     "water transmembrane transporter activity"
                     "beta-N-acetylglucosaminidase activity"
##
                     [protein]-3-0-(N-acetyl-D-glucosaminyl)-L-threonine 0-N-acetyl-alpha-D-glucosamin
##
                     "[protein]-3-0-(N-acetyl-D-glucosaminyl)-L-serine O-N-acetyl-alpha-D-glucosaminase
##
                     "[protein]-3-0-(N-acetyl-D-glucosaminyl)-L-serine/L-threonine 0-N-acetyl-alpha-D-g
##
                     "DNA hairpin binding"
##
                     "interleukin-27 receptor activity"
##
                     "signaling pattern recognition receptor activity"
##
                     "retinol dehydrogenase activity"
##
                     "oxygen carrier activity"
##
                     "tyrosine-tRNA ligase activity"
##
                     "deoxycytidyl transferase activity"
##
                     "syntaxin-3 binding"
##
                     "cholesterol 24-hydroxylase activity"
##
                     "glucose-6-phosphate dehydrogenase activity"
##
##
                     "progesterone receptor binding"
                     "phosphatidylinositol-3-phosphatase activity"
##
```

```
##
                      "CARD domain binding"
##
                     "activin receptor binding"
                     "activin receptor activity, type II"
##
                     "L27 domain binding"
##
                     "ATP-dependent 5'-3' DNA/RNA helicase activity"
##
                     "proteoglycan binding"
##
                      "acylglycerol lipase activity"
##
                      "L-tryptophan transmembrane transporter activity"
##
##
                      "GDP-dissociation inhibitor binding"
                     "platelet-derived growth factor-activated receptor activity"
##
                      "poly-glutamine tract binding"
##
                      "myosin light chain kinase activity"
##
                      "protein tyrosine/threonine phosphatase activity"
##
                      "Atg12 activating enzyme activity"
##
##
                      "Atg8 activating enzyme activity"
##
                      "potassium ion transmembrane transporter activity"
                      "death receptor binding"
##
                      "voltage-gated calcium channel activity involved in bundle of His cell action pote:
##
##
                     "DH domain binding"
                      "HNK-1 sulfotransferase activity"
##
##
                     "nucleosome binding"
                      "cyclin-dependent protein serine/threonine kinase activator activity"
##
##
                      "polyprenyltransferase activity"
                      "single-stranded DNA-dependent ATP-dependent DNA helicase activity"
##
##
                     "steroid 21-monooxygenase activity"
##
                      "glutamate 5-kinase activity"
                      "glutamate-5-semialdehyde dehydrogenase activity"
##
                      "delta1-pyrroline-5-carboxylate synthetase activity"
##
                     "protein binding involved in heterotypic cell-cell adhesion"
##
                      "sterol 12-alpha-hydroxylase activity"
##
                      "25-hydroxycholecalciferol-24-hydroxylase activity"
##
##
                     "1-alpha, 25-dihydroxyvitamin D3 24-hydroxylase activity"
                     "7alpha-hydroxycholest-4-en-3-one 12alpha-hydroxylase activity"
##
##
                      "1-acylglycerophosphocholine O-acyltransferase activity"
                      "N-acylphosphatidylethanolamine-specific phospholipase D activity"
##
                     "JAK pathway signal transduction adaptor activity"
##
##
                      "myristoyl-CoA hydrolase activity"
##
                      "sialate O-acetylesterase activity"
                      "tripeptidyl-peptidase activity"
##
                     "ErbB-2 class receptor binding"
##
                     "transmembrane receptor protein serine/threonine kinase activity"
##
##
                     "water channel activity"
                     "steroid 7-alpha-hydroxylase activity"
##
                     "voltage-gated cation channel activity"
##
                      "TAP1 binding"
##
                     "G-rich single-stranded DNA binding"
##
##
                      "odorant binding"
                     "collagen binding involved in cell-matrix adhesion"
##
##
                     "fluorene oxygenase activity"
                     "lactose synthase activity"
##
##
                      "glycogenin glucosyltransferase activity"
                      "UDP-alpha-D-glucose:glucosyl-glycogenin alpha-D-glucosyltransferase activity"
##
##
                      "chondroitin sulfate proteoglycan binding"
```

"beta-adrenergic receptor kinase activity"

```
##
                      "neuregulin binding"
##
                      "sodium-dependent phosphate transmembrane transporter activity"
                      "calcium-dependent protein serine/threonine kinase activity"
##
                      "protein xylosyltransferase activity"
##
                      "[heparan sulfate]-glucosamine 3-sulfotransferase 2 activity"
##
                     "oxidized DNA binding"
##
                     "interferon-gamma binding"
##
                     "UDP-galactosyltransferase activity"
##
##
                      "monosialoganglioside sialyltransferase activity"
                     "N-box binding"
##
##
                      "macrophage colony-stimulating factor receptor activity"
                      "metalloexopeptidase activity"
##
                     "tRNA (guanine-N7-)-methyltransferase activity"
##
                     "interleukin-4 receptor binding"
##
##
                     "MAP kinase kinase kinase kinase activity"
##
                      "telomeric repeat-containing RNA binding"
                     "all-trans retinol 3,4-desaturase activity"
##
                     "all-trans retinal 3,4-desaturase activity"
##
##
                     "all-trans retinoic acid 3,4-desaturase activity"
##
                     "11-cis-retinal 3,4-desaturase activity"
##
                     "tubulin-glutamic acid ligase activity"
                      "1,4-alpha-glucan branching enzyme activity"
##
                     "1,4-alpha-glucan branching enzyme activity (using a glucosylated glycogenin as pr
##
                      "diphosphomevalonate decarboxylase activity"
##
##
                      "cyclin-dependent protein kinase activity"
##
                      "troponin I binding"
##
                      "lysine N-methyltransferase activity"
                      "keratan sulfotransferase activity"
##
                      "growth hormone receptor activity"
##
                      "histone acetyltransferase activity (H4-K12 specific)"
##
##
                      "histone succinyltransferase activity"
                     \verb"N-acetylgalactosamine 4-sulfate 6-0-sulfotransferase activity"
##
                      "arylesterase activity"
##
                      "platelet-derived growth factor beta-receptor activity"
##
##
                      "box H/ACA snoRNA binding"
##
                     "ammonium transmembrane transporter activity"
##
                      "polynucleotide 5'-hydroxyl-kinase activity"
##
                      "8-oxo-dGDP phosphatase activity"
                      "neurotransmitter:sodium symporter activity"
##
                     "dopamine receptor binding"
##
                      "amyloid-beta binding"
##
##
                      "beta-1,3-galactosyl-0-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransfer
                      "tRNA pseudouridine synthase activity"
##
                     "beta-N-acetylhexosaminidase activity"
##
                      "N-acetyl-beta-D-galactosaminidase activity"
##
                      "linear polyubiquitin binding"
##
                     "cation channel activity"
##
                     "histone demethylase activity (H3-K27 specific)"
##
##
                      "beta-galactosidase activity"
                      "N-acetylgalactosaminyl-proteoglycan 3-beta-glucuronosyltransferase activity"
##
##
                     "DNA-directed 5'-3' RNA polymerase activity"
                      "glutamate-cysteine ligase activity"
##
                      "histone acetyltransferase regulator activity"
##
                      "RNA polymerase II sequence-specific DNA-binding transcription factor recruiting a
##
```

```
"cysteine-type endopeptidase regulator activity involved in apoptotic process"
##
##
                      "GMP synthase activity"
                      "GMP synthase (glutamine-hydrolyzing) activity"
##
                     "arachidonic acid 14,15-epoxygenase activity"
##
                      "arachidonic acid 11,12-epoxygenase activity"
##
##
                     "linoleic acid epoxygenase activity"
                      "high-affinity arginine transmembrane transporter activity"
##
                     "high-affinity lysine transmembrane transporter activity"
##
##
                      "endodeoxyribonuclease activity, producing 5'-phosphomonoesters"
                     "large ribosomal subunit rRNA binding"
##
##
                      "3-phosphoinositide-dependent protein kinase activity"
                      "voltage-gated sodium channel activity involved in cardiac muscle cell action pote:
##
                      "exo-alpha-sialidase activity"
##
                      "sodium ion transmembrane transporter activity"
##
##
                      "RNA polymerase II transcription regulator recruiting activity"
##
                      "muramyl dipeptide binding"
                     "protein tyrosine kinase collagen receptor activity"
##
                      "mannosyl-oligosaccharide glucosidase activity"
##
##
                      "glucosidase activity"
                      "alpha-galactosidase activity"
##
##
                     "leukotriene-A4 hydrolase activity"
                      "ganglioside GT1b binding"
##
                      "hyalurononglucosaminidase activity"
##
                      "calcidiol 1-monooxygenase activity"
##
                      "type 1 metabotropic glutamate receptor binding"
##
##
                      "galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase activity"
##
                      "phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase activity"
                      "NMDA glutamate receptor activity"
##
                     "isopentenyl-diphosphate delta-isomerase activity"
##
                      "leptomycin B binding"
##
                      "basic amino acid transmembrane transporter activity"
##
##
                     "voltage-gated calcium channel activity involved in AV node cell action potential"
                      "glucagon-like peptide 1 receptor activity"
##
                      "myristoyltransferase activity"
##
                      "RNA polymerase III transcription regulator recruiting activity"
##
                     "dipeptidyl-peptidase activity"
##
##
                      "myosin II binding"
                      "phosphate ion transmembrane transporter activity"
##
                      "LEM domain binding"
##
                     "1-phosphatidylinositol-3-phosphate 5-kinase activity"
##
                      "lipoprotein lipase activity"
##
                      "1-phosphatidylinositol-5-kinase activity"
##
                      "calcitonin gene-related peptide binding"
##
                      "phenylpyruvate tautomerase activity"
##
                      "calcium-dependent ATPase activity"
##
                      "brain-derived neurotrophic factor-activated receptor activity"
##
                      "dGTPase activity"
##
                      "triphosphoric monoester hydrolase activity"
##
##
                      "dGTP binding"
                      "IgE binding"
##
                      "glucocorticoid receptor binding"
##
                      "protein-lysine N-methyltransferase activity"
##
##
                      "RNA ligase (ATP) activity"
                      "aminoacyl-tRNA hydrolase activity"
##
```

```
##
                      "GKAP/Homer scaffold activity"
##
                     "lipase activity"
                     "isoprenoid binding"
##
                     "steroid 17-alpha-monooxygenase activity"
##
##
                      "interleukin-5 receptor activity"
##
                     "17-alpha-hydroxyprogesterone aldolase activity"
                      "pyrimidine-specific mismatch base pair DNA N-glycosylase activity"
##
                      "apolipoprotein receptor binding"
##
##
                      "opsonin binding"
                     "3'-5'-exodeoxyribonuclease activity"
##
##
                      "platelet-derived growth factor alpha-receptor activity"
                      "potassium:chloride symporter activity"
##
                      "GAF domain binding"
##
                      "long-chain fatty acid transporter activity"
##
##
                      "N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity"
##
                      "phosphotransferase activity, alcohol group as acceptor"
                      "telomerase activity"
##
                      "dopachrome isomerase activity"
##
##
                      "hemoglobin alpha binding"
                      "endogenous lipid antigen binding"
##
##
                     "exogenous lipid antigen binding"
                      "interleukin-1 receptor activity"
##
                      "histone demethylase activity (H3-R2 specific)"
##
                      "histone demethylase activity (H4-R3 specific)"
##
                     "peptidyl-lysine 5-dioxygenase activity"
##
##
                      "galactosylceramide sulfotransferase activity"
##
                      "voltage-gated potassium channel activity involved in atrial cardiac muscle cell a
                      "interleukin-3 receptor activity"
##
                     "sodium:proton antiporter activity"
##
                      "high molecular weight B cell growth factor receptor binding"
##
##
                      "interleukin-6 receptor activity"
                     "kainate selective glutamate receptor activity"
##
                     "interleukin-6 binding"
##
                      "ornithine decarboxylase activator activity"
##
##
                      "glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransf
                     "interleukin-4 receptor activity"
##
##
                     "sulfuric ester hydrolase activity"
##
                      "dehydrodolichyl diphosphate synthase activity"
                      "3'-5' exonuclease activity"
##
                     "alpha-2B adrenergic receptor binding"
##
                      "myosin VI light chain binding"
##
                      "phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase activity"
##
                      "nucleoside kinase activity"
##
                     "leukemia inhibitory factor receptor activity"
##
                      "MHC class Ib protein binding"
##
                      "protein binding, bridging involved in substrate recognition for ubiquitination"
##
                      "potassium:proton antiporter activity"
##
                      "phosphatidylinositol N-acetylglucosaminyltransferase activity"
##
                      "structural constituent of tooth enamel"
##
                      "euchromatin binding"
##
##
                     "solute:proton antiporter activity"
                     "lactose binding"
##
                      "peptidyl-lysine acetyltransferase activity"
##
```

"oligopeptidase activity"

```
##
                      "peptide alpha-N-acetyltransferase activity"
##
                      "sphinganine kinase activity"
                      "D-erythro-sphingosine kinase activity"
##
                      "linoleic acid binding"
##
                      "RNA polymerase I upstream control element sequence-specific DNA binding"
##
                     "superoxide-generating NADPH oxidase activity"
##
                      "carbohydrate kinase activity"
##
                      "dephospho-CoA kinase activity"
##
##
                      "DNA topoisomerase (ATP-hydrolyzing) activator activity"
                     "fatty acid alpha-hydroxylase activity"
##
##
                      "neurotransmitter transporter activity"
                      "phosphoglycolate phosphatase activity"
##
                      "serotonin-gated cation-selective channel activity"
##
                      "Hsp90 protein binding"
##
##
                      "alpha-amylase activity"
##
                      "acetylcholine transmembrane transporter activity"
                     "alpha-amylase activity (releasing maltohexaose)"
##
##
                      "beta-glucuronidase activity"
                     "oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acce
##
                      "chloride transmembrane transporter activity"
##
##
                     "Toll-like receptor 2 binding"
                      "deoxyguanosine kinase activity"
##
                      "mitochondrial sequence-specific DNA-binding transcription factor activity"
##
                      "G protein-coupled bile acid receptor activity"
##
                     "ornithine decarboxylase activity"
##
##
                      "connexin binding"
##
                      "cytidine deaminase activity"
                      "crossover junction endodeoxyribonuclease activity"
##
##
                     "nucleosome-dependent ATPase activity"
                      "cullin family protein binding"
##
##
                      "substance P receptor activity"
                     "corticotropin-releasing hormone activity"
##
                      "glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase activity"
##
##
                      "protein kinase A regulatory subunit binding"
                      "Toll-like receptor 4 binding"
##
##
                     "microsatellite binding"
##
                      "type I interferon receptor activity"
##
                      "peptide antigen-transporting ATPase activity"
                      "vascular endothelial growth factor receptor 1 binding"
##
                     "corticotropin-releasing hormone receptor 2 binding"
##
                      "protein kinase C inhibitor activity"
##
##
                      "interleukin-6 receptor binding"
                     "vascular endothelial growth factor receptor 3 binding"
##
                     "extracellular matrix constituent conferring elasticity"
##
                      "alpha-1,3-mannosyltransferase activity"
##
                      "SUMO-specific isopeptidase activity"
##
                      "peptide transmembrane transporter activity"
##
                      "G protein-coupled receptor kinase activity"
##
##
                      "corticotropin receptor activity"
                      "myosin II heavy chain binding"
##
##
                     "fatty acid elongase activity"
                      "cyclin-dependent protein kinase 5 activator activity"
##
##
                      "purine-rich negative regulatory element binding"
                      "3-oxo-arachidoyl-CoA synthase activity"
##
```

```
"3-oxo-cerotoyl-CoA synthase activity"
##
##
                     "3-oxo-lignoceronyl-CoA synthase activity"
                      "very-long-chain 3-ketoacyl-CoA synthase activity"
##
                     "O-phospho-L-serine:2-oxoglutarate aminotransferase activity"
##
##
                      "procollagen galactosyltransferase activity"
                      "oncostatin-M receptor activity"
##
                      "glucuronosyl-N-acetylgalactosaminyl-proteoglycan 4-beta-N-acetylgalactosaminyltra
##
                      "cholesterol 7-alpha-monooxygenase activity"
##
##
                      "phosphatidylinositol-3,4,5-trisphosphate binding"
                      "MHC protein binding"
##
##
                      "histone methyltransferase activity (H4-K20 specific)"
                      "ATP citrate synthase activity"
##
                     "retinoid binding"
##
                     "cation-transporting ATPase activity"
##
##
                      "gastric inhibitory peptide receptor activity"
##
                      "tau-protein kinase activity"
                     "C-4 methylsterol oxidase activity"
##
                      "RNA pyrophosphohydrolase activity"
##
##
                      "long-chain fatty acid binding"
                      "rRNA (uridine-2'-0-)-methyltransferase activity"
##
##
                     "Atg12 transferase activity"
                      "proline dipeptidase activity"
##
                      "non-sequence-specific DNA binding, bending"
##
                      "purine nucleoside binding"
##
                      "procollagen-proline 3-dioxygenase activity"
##
##
                      "DNA/RNA helicase activity"
                      "beta-1,3-galactosyl-0-glycosyl-glycoprotein beta-1,3-N-acetylglucosaminyltransfer
##
                      "secretin receptor activity"
##
                      "adipokinetic hormone receptor activity"
##
                      "protein-arginine N-methyltransferase activity"
##
                      "nucleotide phosphatase activity, acting on free nucleotides"
##
##
                     "ribonuclease MRP activity"
                      "oligosaccharide binding"
##
##
                      "arrestin family protein binding"
                     "intraciliary transport particle A binding"
##
##
                     "Rho-dependent protein serine/threonine kinase activity"
##
                      "ubiquitinyl hydrolase activity"
##
                      "6-phosphofructo-2-kinase activity"
                      "tRNA (cytosine-5-)-methyltransferase activity"
##
                     "3-phosphoinositide-dependent protein kinase binding"
##
                      "thienylcyclohexylpiperidine binding"
##
##
                      "SUMO-specific endopeptidase activity"
                      "RNA 7-methylguanosine cap binding"
##
                     "olfactory receptor activity"
##
                      "1-phosphatidylinositol-4-phosphate 5-kinase activity"
##
                      "store-operated calcium channel activity"
##
                      "prostaglandin receptor activity"
##
                      "galactose 3-0-sulfotransferase activity"
##
                      "proteoglycan sulfotransferase activity"
##
                      "modification-dependent protein binding"
##
##
                      "heparan sulfate 2-0-sulfotransferase activity"
                      "thiosulfate sulfurtransferase activity"
##
##
                      "all-trans-retinol binding"
##
                      "luteinizing hormone receptor activity"
```

```
"choriogonadotropin hormone receptor activity"
##
##
                      "nodal binding"
                      "choriogonadotropin hormone binding"
##
                      "chemoattractant activity involved in axon guidance"
##
##
                      "sodium ion binding"
##
                      "phosphatidylinositol-3,4-bisphosphate 5-kinase activity"
                      "fructose-2,6-bisphosphate 2-phosphatase activity"
##
                      "oxygen sensor activity"
##
##
                      "sialyltransferase activity"
                      "opsonin receptor activity"
##
##
                      "rRNA (cytosine-C5-)-methyltransferase activity"
                      "galactosyltransferase activity"
##
                      "inositol-1,4,5-trisphosphate 5-phosphatase activity"
##
                      "interleukin-2 receptor activity"
##
##
                      "interleukin-2 binding"
##
                      "annealing helicase activity"
                      "UDP-glucose:glycoprotein glucosyltransferase activity"
##
                      "[heparan sulfate]-glucosamine 3-sulfotransferase 3 activity"
##
##
                      "calcium-induced calcium release activity"
##
                      "phosphoserine phosphatase activity"
##
                      "efflux transmembrane transporter activity"
                      "ubiquitin binding"
##
                      "ATP-dependent microtubule motor activity"
##
                      "calcium channel activity"
##
                      "estrone sulfotransferase activity"
##
##
                      "protein farnesyltransferase activity"
##
                      "troponin T binding"
                      "myosin head/neck binding"
##
                      "bile acid receptor activity"
##
                      "morphogen activity"
##
##
                      "myosin tail binding"
##
                      "snRNP binding"
                      "protein-glutamine gamma-glutamyltransferase activity"
##
                      "tRNA (guanine-N2-)-methyltransferase activity"
##
##
                      "nerve growth factor receptor binding"
                      "satellite DNA binding"
##
##
                      "beta1-adrenergic receptor activity"
##
                      "RNA polymerase II transcription coactivator binding"
                      "delta14-sterol reductase activity"
##
                      "deoxynucleoside kinase activity"
##
                      "erythropoietin receptor binding"
##
##
                      "intracellular cGMP-activated cation channel activity"
                      "ciliary neurotrophic factor receptor binding"
##
                      "alpha-2 macroglobulin receptor activity"
##
                      "apolipoprotein receptor activity"
##
                      "intracellular cAMP-activated cation channel activity"
##
                      "4-alpha-hydroxytetrahydrobiopterin dehydratase activity"
##
                      "RNA polymerase I core binding"
##
                      "interleukin-1, type I receptor binding"
##
                      "oxidoreductase activity, acting on paired donors, with incorporation or reduction
##
##
                      "metallocarboxypeptidase activity"
                      "polynucleotide adenylyltransferase activity"
##
##
                      "DNA N-glycosylase activity"
                      "adiponectin binding"
##
```

```
##
                      "sulfurtransferase activity"
##
                      "growth hormone-releasing hormone receptor binding"
##
                      "TIR domain binding"
                      "transforming growth factor beta receptor, inhibitory cytoplasmic mediator activit
##
##
                      "pre-mRNA intronic pyrimidine-rich binding"
                     "trace-amine receptor activity"
##
                      "toxin transmembrane transporter activity"
##
                     "nitric-oxide synthase binding"
##
##
                     "AMP deaminase activity"
                     "hormone receptor binding"
##
##
                      "nucleosomal histone binding"
                      "C-3 sterol dehydrogenase (C-4 sterol decarboxylase) activity"
##
                     "growth hormone secretagogue receptor activity"
##
                      "sterol-4-alpha-carboxylate 3-dehydrogenase (decarboxylating) activity"
##
##
                      "4alpha-carboxy-4beta-methyl-5alpha-cholesta-8-en-3beta-ol:NAD(P)+ 3-oxidoreductas
##
                      "4alpha-carboxy-5alpha-cholesta-8-en-3beta-ol:NAD(P)+ 3-dehydrogenase (decarboxyla
                     "adenylosuccinate synthase activity"
##
                      "tRNA-specific adenosine deaminase activity"
##
##
                     "molybdopterin synthase activity"
                      "transmembrane receptor protein tyrosine kinase activator activity"
##
##
                     "alcohol sulfotransferase activity"
                     "inositol 1,3,4,5 tetrakisphosphate binding"
##
                      "transcription factor activity, direct ligand regulated sequence-specific DNA bind
##
                      "activin-activated receptor activity"
##
##
                     "GTPase activating protein binding"
##
                      "BMP receptor binding"
##
                      "phospholipase inhibitor activity"
                      "steroid 11-beta-monooxygenase activity"
##
                      "parathyroid hormone receptor binding"
##
                      "type 1 parathyroid hormone receptor binding"
##
##
                      "corticosterone 18-monooxygenase activity"
##
                     "oxysterol 7-alpha-hydroxylase activity"
                      "MAP kinase tyrosine/serine/threonine phosphatase activity"
##
                      "laminin-1 binding"
##
##
                      "opsin binding"
                     "inhibin binding"
##
                      "organic cyclic compound binding"
##
##
                      "kinase inhibitor activity"
                      "K6-linked polyubiquitin modification-dependent protein binding"
##
                     "GTPase inhibitor activity"
##
                      "corticotropin-releasing hormone binding"
##
##
                      "Ras GTPase binding"
                      "acyl-L-homoserine-lactone lactonohydrolase activity"
##
                      "phosphatidate phosphatase activity"
##
                      "lipoprotein particle receptor binding"
##
                      "protein-N-terminal glutamine amidohydrolase activity"
##
                      "acetyltransferase activator activity"
##
                      "U6 snRNA binding"
##
##
                      "ATPase-coupled anion transmembrane transporter activity"
##
                      "cytokine receptor binding"
##
                      "pyrophosphatase activity"
                      "adrenomedullin receptor binding"
##
##
                      "endodeoxyribonuclease activity"
                      "alkaline phosphatase activity"
##
```

```
##
                      "hedgehog receptor activity"
##
                      "hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds"
                      "beta3-adrenergic receptor activity"
##
                      "BMP binding"
##
                      "beta-galactoside (CMP) alpha-2,3-sialyltransferase activity"
##
                      "phosphatidylinositol-3,4-bisphosphate binding"
##
                      "vitamin-K-epoxide reductase (warfarin-sensitive) activity"
##
                      "glial cell-derived neurotrophic factor receptor activity"
##
##
                      "transferase activity, transferring glycosyl groups"
                     "translation release factor activity"
##
##
                      "phosphatase inhibitor activity"
                      "interleukin-3 receptor binding"
##
##
                     "translation repressor activity"
                      "sphingomyelin phosphodiesterase activator activity"
##
##
                      "bicarbonate transmembrane transporter activity"
##
                      "fibrinogen binding"
                     "3'-flap-structured DNA binding"
##
##
                     "microtubule lateral binding"
##
                     "S100 protein binding"
                     "structural constituent of postsynaptic intermediate filament cytoskeleton"
##
##
                     "double-stranded RNA adenosine deaminase activity"
                     "histone methyltransferase activity (H3-K36 specific)"
##
##
                      "telethonin binding"
                      "sterol O-acyltransferase activity"
##
                     "carbohydrate:proton symporter activity"
##
##
                     "minus-end directed microfilament motor activity"
##
                      "glycylpeptide N-tetradecanoyltransferase activity"
                      "3-beta-hydroxy-delta5-steroid dehydrogenase activity"
##
##
                     "beta-3 adrenergic receptor binding"
                      "chondroitin 6-sulfotransferase activity"
##
##
                      "piRNA binding"
##
                      "death receptor activity"
                      "double-stranded DNA exodeoxyribonuclease activity"
##
##
                      "peptidase activator activity involved in apoptotic process"
##
                      "glucocorticoid receptor activity"
                     "RNA polymerase II transcription factor activity, glucocorticoid-activated sequenc
##
##
                      "kinase activity"
##
                      "beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase activity"
                      "Gq/11-coupled serotonin receptor activity"
##
                     "cadherin binding"
##
                      "poly-purine tract binding"
##
##
                      "hydroxyacylglutathione hydrolase activity"
                      "eukaryotic translation initiation factor 2alpha kinase activity"
##
                     "inositol-1,4,5-trisphosphate 3-kinase activity"
##
                      "troponin C binding"
##
                      "death effector domain binding"
##
##
                     "lipoteichoic acid binding"
                     "mitogen-activated protein kinase kinase kinase binding"
##
##
                      "oxytocin receptor activity"
##
##
                     "repressing transcription factor binding"
                     "cholesterol binding"
##
                     "rRNA (guanine) methyltransferase activity"
##
                      "U3 snoRNA binding"
##
```

```
"RNA polymerase II transcription factor activity, estrogen-activated sequence-spec
##
##
                      "protein tyrosine kinase binding"
                      "cation binding"
##
                      "coreceptor activity involved in Wnt signaling pathway"
##
##
                      "coreceptor activity involved in canonical Wnt signaling pathway"
##
                     "RNA polymerase II CTD heptapeptide repeat phosphatase activity"
                     "3'-flap endonuclease activity"
##
                      "omega peptidase activity"
##
##
                      "stem cell factor receptor activity"
                     "flavonol 3-sulfotransferase activity"
##
##
                      "ciliary neurotrophic factor receptor activity"
                      "phosphatase binding"
##
                      "structural constituent of cell wall"
##
                     "ATPase inhibitor activity"
##
##
                      "adenylate cyclase activity"
##
                      "hemi-methylated DNA-binding"
                     "cysteinyl leukotriene receptor activity"
##
                      "activin binding"
##
##
                     "serum response element binding"
                     "urokinase plasminogen activator receptor activity"
##
##
                     "follicle-stimulating hormone receptor activity"
                     "ligand-gated sodium channel activity"
##
                     "reelin receptor activity"
##
                      "single-stranded DNA 5'-3' exodeoxyribonuclease activity"
##
##
                     "flap endonuclease activity"
##
                     "double-stranded DNA 5'-3' exodeoxyribonuclease activity"
##
                     "substance P receptor binding"
                      "thyrotropin-releasing hormone activity"
##
                     "extracellular matrix constituent, lubricant activity"
##
                      "transferrin receptor activity"
##
##
                      "transferrin transmembrane transporter activity"
##
                     "calcitonin binding"
                     "pituitary adenylate cyclase activating polypeptide activity"
##
                      "snoRNA binding"
##
                      "pituitary adenylate cyclase-activating polypeptide receptor binding"
##
                     "neurotransmitter binding"
##
##
                     "leptin receptor binding"
##
                      "tumor necrosis factor receptor superfamily binding"
                      "purine ribonucleoside triphosphate binding"
##
                     "STAT family protein binding"
##
                     "zinc ion transmembrane transporter activity"
##
##
                      "parathyroid hormone receptor activity"
                      "glycerol kinase activity"
##
                     "SUMO activating enzyme activity"
##
                      "natural killer cell lectin-like receptor binding"
##
                      "thyrotropin-releasing hormone receptor activity"
##
                      "endoplasmic reticulum signal peptide binding"
##
                     "voltage-gated chloride channel activity"
##
                     "orexigenic neuropeptide QRFP receptor binding"
##
                      "sialic acid binding"
##
##
                     "follicle-stimulating hormone activity"
                     "cell adhesion molecule binding"
##
                     "inward rectifier potassium channel inhibitor activity"
##
                      "voltage-gated calcium channel activity involved in cardiac muscle cell action pot
##
```

```
"amidophosphoribosyltransferase activity"
##
##
                     "receptor tyrosine kinase-like orphan receptor binding"
                      "hepatocyte growth factor-activated receptor activity"
##
                     "folic acid receptor activity"
##
##
                      "steroid hormone receptor binding"
                     "transforming growth factor beta receptor activity, type I"
##
                      "2-acylglycerol-3-phosphate O-acyltransferase activity"
##
                     "methotrexate binding"
##
##
                      "histone demethylase activity (H3-dimethyl-K4 specific)"
                     "A1 adenosine receptor binding"
##
##
                      "ADP-activated adenosine receptor activity"
                      "bioactive lipid receptor activity"
##
                     "bombesin receptor activity"
##
                     "AMPA glutamate receptor activity"
##
##
                      "delta-catenin binding"
##
                      "oxidized purine nucleobase lesion DNA N-glycosylase activity"
                     "3',5'-cyclic-AMP phosphodiesterase activity"
##
##
                     "thromboxane A2 receptor activity"
                     "single-stranded DNA 3'-5' exodeoxyribonuclease activity"
##
                     "arachidonic acid epoxygenase activity"
##
##
                     "N-acetylglucosamine deacetylase activity"
                     "vitamin D binding"
##
                      "double-stranded DNA 3'-5' exodeoxyribonuclease activity"
##
                      "steroid receptor RNA activator RNA binding"
##
                     "ferric iron transmembrane transporter activity"
##
##
                      "phospholipase A2 activity"
##
                      "histone kinase activity"
                      "DNA topoisomerase type I activity"
##
                     "type 3 metabotropic glutamate receptor binding"
##
                      "N-terminal myristoylation domain binding"
##
##
                      "phosphorylase kinase regulator activity"
##
                      "ghrelin receptor binding"
                      "inositol-1,3,4,5-tetrakisphosphate 5-phosphatase activity"
##
##
                      "histone methyltransferase activity (H3-R17 specific)"
                      "fibroblast growth factor-activated receptor activity"
##
##
                     "histone-dependent DNA binding"
##
                     "DNA translocase activity"
##
                      "dehydroascorbic acid transmembrane transporter activity"
                      "angiotensin type I receptor activity"
##
                     "Wnt-activated receptor activity"
##
                      "ankyrin repeat binding"
##
##
                      "type 1 fibroblast growth factor receptor binding"
                      "threonine-type endopeptidase activity"
##
                     "neurotransmitter receptor activity involved in regulation of postsynaptic membran
##
                      "interleukin-7 receptor activity"
##
                      "potassium channel inhibitor activity"
##
                      "D5 dopamine receptor binding"
##
                     "excitatory extracellular ligand-gated ion channel activity"
##
##
                      "pre-mRNA 5'-splice site binding"
                      "H3 histone acetyltransferase activity"
##
##
                     "thyroid-stimulating hormone receptor activity"
                      "heparan sulfate 6-0-sulfotransferase activity"
##
##
                      "protein kinase A binding"
```

"opioid receptor binding"

```
##
                      "bradykinin receptor binding"
                      "iron ion binding"
##
                      "type 2 fibroblast growth factor receptor binding"
##
                      "structural molecule activity conferring elasticity"
##
##
                      "chemokine (C-C motif) ligand 2 binding"
                      "chemokine (C-C motif) ligand 12 binding"
##
                      "motilin receptor binding"
##
                      "oxytocin receptor binding"
##
##
                      "laminin binding"
                      "bubble DNA binding"
##
##
                      "kisspeptin receptor binding"
                      "arachidonic acid binding"
##
##
                      "structural constituent of myelin sheath"
##
                      "type 1 hypocretin receptor binding"
                      "type 2 hypocretin receptor binding"
##
##
                      "procollagen-lysine 5-dioxygenase activity"
                      "procollagen glucosyltransferase activity"
##
                      "transcription termination site sequence-specific DNA binding"
##
##
                      "PH domain binding"
##
                      "netrin receptor activity"
                      "tRNA guanylyltransferase activity"
##
                      "DNA topoisomerase activity"
##
                      "tubulin-dependent ATPase activity"
##
                      "exon-exon junction complex binding"
##
                      "phosphatidylinositol phosphate 5-phosphatase activity"
##
##
                      "oxysterol binding"
                      "vitamin D response element binding"
##
##
                      "protein-lysine 6-oxidase activity"
                      "phosphatidylinositol-3-phosphate binding"
##
##
                      "exoribonuclease activity"
##
                      "E-box binding"
##
                      "oxidoreductase activity, acting on single donors with incorporation of molecular
##
                      "14-3-3 protein binding"
##
                      "angiostatin binding"
                      "intracellularly ATP-gated chloride channel activity"
##
                      "lipopeptide binding"
##
##
                      "ATP-dependent polydeoxyribonucleotide 5'-hydroxyl-kinase activity"
##
                      "exonuclease activity"
                      "exodeoxyribonuclease III activity"
##
                      "myosin phosphatase activity"
##
                      "actin monomer binding"
##
                      "lipid transporter activity"
##
                      "CCR2 chemokine receptor binding"
##
                      "substance K receptor activity"
##
##
                      "sterol binding"
                      "distal enhancer DNA-binding transcription repressor activity, RNA polymerase II-s
##
                      "calcitriol receptor activity"
##
                      "lithocholic acid receptor activity"
##
##
                      "calcitriol binding"
##
                      "lithocholic acid binding"
                      "phosphatidylinositol 3-kinase activity"
##
                      "fatty acid transmembrane transporter activity"
##
##
                      "transmembrane receptor protein tyrosine kinase activity"
```

"CCR3 chemokine receptor binding"

```
"5'-flap endonuclease activity"
##
##
                     "calcitonin receptor binding"
                     "insulin-activated receptor activity"
##
                     "mannose transmembrane transporter activity"
##
                     "3'-phosphoadenosine 5'-phosphosulfate binding"
##
                     "transcription regulator recruiting activity"
##
                     "cholesterol O-acyltransferase activity"
##
                     "5'-3' exodeoxyribonuclease activity"
##
##
                      "CD40 receptor binding"
                     "JUN kinase binding"
##
##
                      "estrogen response element binding"
                      "type III transforming growth factor beta receptor binding"
##
                      "platelet activating factor receptor activity"
##
                      "mineralocorticoid receptor activity"
##
##
                      "steroid hormone binding"
##
                      "G protein-coupled neurotransmitter receptor activity involved in regulation of po
                     "protease binding"
##
##
                      "lipid binding"
##
                      "voltage-gated sodium channel activity"
                      "heparan sulfate N-acetylglucosaminyltransferase activity"
##
##
                     "structural constituent of postsynaptic density"
                      "superoxide-generating NADPH oxidase activator activity"
##
                      "transforming growth factor beta receptor, cytoplasmic mediator activity"
##
                      "G-protein activated inward rectifier potassium channel activity"
##
                     "angiotensin type II receptor activity"
##
##
                      "purine nucleotide binding"
                      "ribosomal protein S6 kinase activity"
##
                      "kinase activator activity"
##
                     "carbohydrate binding"
##
                      "endothelin A receptor binding"
##
##
                      "intronic transcription regulatory region sequence-specific DNA binding"
                     "high-density lipoprotein particle receptor binding"
##
                      "growth hormone-releasing hormone receptor activity"
##
##
                      "semaphorin receptor binding"
##
                      "hedgehog family protein binding"
##
                      "gastrin receptor activity"
##
                      "type B gastrin/cholecystokinin receptor binding"
##
                      "adrenomedullin binding"
                      "POU domain binding"
##
                     "5'-deoxyribose-5-phosphate lyase activity"
##
                      "inositol-polyphosphate 5-phosphatase activity"
##
##
                     "interleukin-5 receptor binding"
                      "guanylate kinase activity"
##
                     "acetylglucosaminyltransferase activity"
##
                      "sterol transporter activity"
##
                      "polydeoxyribonucleotide kinase activity"
##
                      "ATP-dependent polyribonucleotide 5'-hydroxyl-kinase activity"
##
                     "insulin-like growth factor-activated receptor activity"
##
                      "high voltage-gated calcium channel activity"
##
                      "retinoic acid 4-hydroxylase activity"
##
##
                     "U5 snRNA binding"
                     "vascular endothelial growth factor receptor binding"
##
##
                      "extracellular matrix binding"
                      "N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase activity"
##
```

```
##
                      "phosphodiesterase I activity"
                      "Toll-like receptor binding"
##
##
                      "CXCR5 chemokine receptor binding"
##
                      "DNA binding, bending"
##
                      "protein domain specific binding"
                      "C5L2 anaphylatoxin chemotactic receptor binding"
##
                      "GMP binding"
##
                      "D1 dopamine receptor binding"
##
##
                      "peptide-serine-N-acetyltransferase activity"
                      "histone kinase activity (H3-T11 specific)"
##
##
                      "apelin receptor binding"
                      "transforming growth factor beta receptor binding"
##
##
                      "IgG binding"
                      "lipoprotein particle binding"
##
##
                      "1-phosphatidylinositol binding"
##
                      "uracil DNA N-glycosylase activity"
                      "single-stranded telomeric DNA binding"
##
                      "neurotransmitter receptor activity involved in regulation of presynaptic cytosoli
##
                      "RNA strand-exchange activity"
##
##
                      "dynorphin receptor activity"
##
                      "peptide-glutamate-N-acetyltransferase activity"
                      "complement component C3a receptor activity"
##
                      "JUN kinase kinase activity"
##
                      "sterol response element binding"
##
##
                      "unmethylated CpG binding"
##
                      "drug binding"
##
                      "chemokine (C-C motif) ligand 19 binding"
                      "chemokine (C-C motif) ligand 21 binding"
##
                      "C-C motif chemokine 19 receptor activity"
##
                      "C-C motif chemokine 21 receptor activity"
##
##
                      "pre-mRNA branch point binding"
##
                      "phosphatidylcholine-sterol O-acyltransferase activator activity"
##
                      "forked DNA-dependent helicase activity"
                      "kringle domain binding"
##
                      "enkephalin receptor activity"
##
                      "5-oxo-6E,8Z,11Z,14Z-icosatetraenoic acid binding"
##
##
                      "5-hydroxy-6E,8Z,11Z,14Z-icosatetraenoic acid binding"
##
                      "5(S)-hydroxyperoxy-6E,8Z,11Z,14Z-icosatetraenoic acid binding"
                      "complement component C5a binding"
##
                      "adenylate cyclase activator activity"
##
                      "type 1 galanin receptor binding"
##
                      "type 2 galanin receptor binding"
##
                      "type 3 galanin receptor binding"
##
##
                      "DNA clamp loader activity"
##
                      "bone sialoprotein binding"
                      "voltage-gated calcium channel activity involved in regulation of cytosolic calcium
##
##
                      "acetylgalactosaminyltransferase activity"
                      "phosphatidylinositol bisphosphate binding"
##
                      "dopamine neurotransmitter receptor activity, coupled via Gs"
##
                      "complement component C5a receptor activity"
##
                      "smoothened binding"
##
                      "acetylcholine binding"
##
##
                      "myosin heavy chain binding"
```

"beta-adrenergic receptor activity"

```
##
                      "nicotinic acid receptor activity"
##
                     "ErbB-3 class receptor binding"
                      "cysteine-type endopeptidase inhibitor activity"
##
                      "type I interferon receptor binding"
##
                      "receptor signaling complex scaffold activity"
##
                     "9-cis retinoic acid receptor activity"
##
                      "ubiquitin modification-dependent histone binding"
##
                      "activin receptor activity, type I"
##
##
                      "corticotrophin-releasing factor receptor activity"
                     "3-hydroxyacyl-CoA dehydratase activity"
##
##
                      "siRNA binding"
                      "corticotropin-releasing hormone receptor activity"
##
                     "very-long-chain 3-hydroxyacyl-CoA dehydratase activity"
##
                     "3-hydroxy-arachidoyl-CoA dehydratase activity"
##
##
                      "3-hydroxy-behenoyl-CoA dehydratase activity"
##
                      "3-hydroxy-lignoceroyl-CoA dehydratase activity"
                     "class I DNA-(apurinic or apyrimidinic site) endonuclease activity"
##
##
                     "flap-structured DNA binding"
                     "nociceptin receptor activity"
##
##
                      "syndecan binding"
##
                     "stearoyl-CoA 9-desaturase activity"
                      "cell-cell adhesion mediator activity"
##
                      "ubiquitin conjugating enzyme activity"
##
                      "inhibitory extracellular ligand-gated ion channel activity"
##
                     "thyroid hormone receptor activity"
##
##
                      "CCR6 chemokine receptor binding"
##
                      "steroid sulfotransferase activity"
                      "DNA-dependent ATPase activity"
##
##
                     "uridine nucleotide receptor activity"
##
                      "structural constituent of synapse"
##
                      "adrenomedullin receptor activity"
##
                     "NAD(P)+-protein-arginine ADP-ribosyltransferase activity"
##
                     "neuropeptide Y receptor binding"
##
                      "intraciliary transport particle B binding"
##
                      "DNA primase activity"
##
                     "core promoter binding"
##
                      "peptide antigen binding"
##
                     "histone demethylase activity (H3-K36 specific)"
                      "beta-2 adrenergic receptor binding"
##
                     "3'-5'-exoribonuclease activity"
##
                     "N-acetylgalactosamine 4-0-sulfotransferase activity"
##
##
                     "vascular endothelial growth factor receptor 2 binding"
                     "ISG15 transferase activity"
##
                     "histone demethylase activity (H3-K4 specific)"
##
                      "11-cis retinal binding"
##
##
                      "glucagon receptor binding"
                      "insulin-like growth factor binding"
##
                     "Rac GTPase binding"
##
                      "G protein-coupled photoreceptor activity"
##
                      "group III metabotropic glutamate receptor activity"
##
##
                     "adenylate cyclase inhibitor activity"
                     "oxidized pyrimidine DNA binding"
##
                      "chondroitin 4-sulfotransferase activity"
##
                      "very-low-density lipoprotein particle receptor activity"
##
```

```
##
                      "actin binding"
                     "histone demethylase activity (H3-trimethyl-K4 specific)"
##
                     "endoribonuclease activity"
##
                      "phosphatidic acid binding"
##
##
                      "telomeric G-quadruplex DNA binding"
                     "8-hydroxy-2'-deoxyguanosine DNA binding"
##
                      "UDP-galactose:beta-N-acetylglucosamine beta-1,3-galactosyltransferase activity"
##
                      "GABA-gated chloride ion channel activity"
##
##
                      "monooxygenase activity"
                     "histone kinase activity (H3-Y41 specific)"
##
##
                      "DBD domain binding"
                      "[heparan sulfate]-glucosamine N-sulfotransferase activity"
##
##
                     "C-X-C chemokine binding"
                     "N-acetyltransferase activity"
##
##
                      "interleukin-8 receptor binding"
##
                      "CTPase activity"
                     "calcitonin receptor activity"
##
                      "chemorepellent activity"
##
##
                     "MDM2/MDM4 family protein binding"
                      "oxidoreductase activity, acting on a sulfur group of donors, disulfide as accepto
##
##
                     "V2 vasopressin receptor binding"
                      "protein ADP-ribosylase activity"
##
                      "molecular function regulator"
##
                      "melanocyte-stimulating hormone receptor activity"
##
                     "G protein-coupled neurotensin receptor activity"
##
##
                      "steroid hormone receptor activity"
##
                      "rDNA binding"
                      "cytokine activity"
##
                     "mitogen-activated protein kinase binding"
##
                      "chloride channel regulator activity"
##
##
                      "retinoic acid binding"
                     "adenylate cyclase inhibiting G protein-coupled glutamate receptor activity"
##
                      "phosphatase activity"
##
##
                      "thrombospondin receptor activity"
##
                      "insulin binding"
##
                     "vinculin binding"
##
                     "keratin filament binding"
##
                     "1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine binding"
                      "DNA-methyltransferase activity"
##
                     "rRNA binding"
##
                     "histone kinase activity (H3-T6 specific)"
##
##
                     "histone demethylase activity (H3-K9 specific)"
                     "beta-endorphin receptor activity"
##
                     "growth hormone receptor binding"
##
                      "morphine receptor activity"
##
                      "site-specific endodeoxyribonuclease activity, specific for altered base"
##
                      "interleukin-8 binding"
##
                     "UDP-activated nucleotide receptor activity"
##
##
                      "steroid hydroxylase activity"
                      "phosphothreonine residue binding"
##
                      "gonadotropin hormone-releasing hormone activity"
##
                      "gonadotropin-releasing hormone receptor binding"
##
                      "receptor signaling protein tyrosine kinase activator activity"
##
                      "CCR4 chemokine receptor binding"
##
```

```
"chemokine receptor antagonist activity"
##
##
                      "GABA-A receptor activity"
                      "chloride ion binding"
##
                      "estrogen receptor activity"
##
##
                      "channel regulator activity"
##
                      "phospholipid transporter activity"
                      "phosphatase activator activity"
##
                      "semaphorin receptor activity"
##
##
                      "RAGE receptor binding"
                      "DNA-(apurinic or apyrimidinic site) endonuclease activity"
##
##
                      "neurexin family protein binding"
                      "transforming growth factor beta receptor activity, type II"
##
                      "alpha1-adrenergic receptor activity"
##
                      "LBD domain binding"
##
##
                      "molecular adaptor activity"
##
                      "sequence-specific single stranded DNA binding"
                      "armadillo repeat domain binding"
##
                      "polyamine binding"
##
                      "protein membrane anchor"
##
##
                      "telomeric D-loop binding"
##
                      "ADP-ribosylation factor binding"
                      "SUMO polymer binding"
##
                      "chloride channel activity"
##
                      "WD40-repeat domain binding"
##
                      "four-way junction helicase activity"
##
##
                      "muscle alpha-actinin binding"
                      "RNA polymerase III type 3 promoter DNA binding"
##
                      "lipoprotein transporter activity"
##
                      "RNA polymerase II activating transcription factor binding"
##
                      "urotensin II receptor activity"
##
##
                      "androgen receptor activity"
##
                      "phosphatidylinositol-3,5-bisphosphate 3-phosphatase activity"
                      "regulatory region RNA binding"
##
                      "RNA polymerase II general transcription initiation factor activity"
##
                      "helicase activity"
##
                      "phospholipase activator activity"
##
##
                      "adrenergic receptor activity"
##
                      "prostaglandin J receptor activity"
                      "prostaglandin D receptor activity"
##
                      "5.8S rRNA binding"
##
                      "SUMO ligase activity"
##
                      "type 2 angiotensin receptor binding"
##
                      "RING-like zinc finger domain binding"
##
                      "oxidoreductase activity, acting on paired donors, with incorporation or reduction
##
                      "histone acetyltransferase activity (H4-K5 specific)"
##
                      "histone acetyltransferase activity (H4-K8 specific)"
##
                      "histone acetyltransferase activity (H4-K16 specific)"
##
                      "protein serine/threonine kinase activator activity"
##
##
                      "protein tyrosine phosphatase activity"
                      "filamin binding"
##
                      "myosin light chain binding"
##
                      "transcription cofactor binding"
##
##
                      "tachykinin receptor activity"
```

"phosphatase regulator activity"

```
##
                      "CCR7 chemokine receptor binding"
##
                     "vascular endothelial growth factor binding"
                     "RNA-DNA hybrid ribonuclease activity"
##
                     "second spliceosomal transesterification activity"
##
##
                      "[heparan sulfate]-glucosamine 3-sulfotransferase 1 activity"
                     "histone deacetylase regulator activity"
##
                      "growth hormone-releasing hormone activity"
##
                      "ubiquitin conjugating enzyme binding"
##
##
                      "transcription factor activity, sequence-specific DNA binding, RNA polymerase recr
                      "complement binding"
##
##
                      "ATP-dependent helicase activity"
                      "transferrin receptor binding"
##
                     "steroid binding"
##
                      "protein kinase C binding"
##
##
                      "histone acetyltransferase activity"
##
                      "dioxygenase activity"
                     "double-stranded methylated DNA binding"
##
##
                      "type 1 neuromedin U receptor binding"
                      "type 2 neuromedin U receptor binding"
##
##
                      "neuromedin U receptor binding"
##
                     "calcitonin gene-related peptide receptor activity"
                      "orexin receptor activity"
##
                      "vasoactive intestinal polypeptide receptor activity"
##
                      "polypeptide N-acetylgalactosaminyltransferase activity"
##
                     "prostaglandin F receptor activity"
##
##
                      "TFIIIC-class transcription factor complex binding"
##
                      "chemokine (C-C motif) ligand 7 binding"
                      "phosphatidylinositol-3,5-bisphosphate 5-phosphatase activity"
##
                      "cysteine-type endopeptidase activator activity involved in apoptotic process"
##
##
                      "glycosaminoglycan binding"
##
                      "palmitoyltransferase activity"
##
                      "leukotriene B4 receptor activity"
                     "corticotropin-releasing hormone receptor 1 binding"
##
                     "U7 snRNA binding"
##
##
                     "integrin binding"
                     "melanin-concentrating hormone receptor activity"
##
##
                     "enhancer binding"
##
                     "NAD-dependent histone deacetylase activity (H3-K9 specific)"
                      "tumor necrosis factor receptor binding"
##
                     "eukaryotic initiation factor 4E binding"
##
                      "V1B vasopressin receptor binding"
##
##
                     "hormone binding"
                      "G protein-coupled receptor activity involved in regulation of postsynaptic membra
##
                     "ATP-dependent 3'-5' DNA/RNA helicase activity"
##
                      "single-stranded DNA-dependent ATP-dependent 3'-5' DNA helicase activity"
##
                      "Rab guanyl-nucleotide exchange factor activity"
##
                      "RNA polymerase III general transcription initiation factor activity"
##
                     "beta-2-microglobulin binding"
##
##
                     "UTP-activated nucleotide receptor activity"
                      "extracellular matrix structural constituent conferring tensile strength"
##
##
                     "vascular endothelial growth factor-activated receptor activity"
                     "transforming growth factor beta receptor, common-partner cytoplasmic mediator act
##
##
                      "estrogen receptor binding"
```

"melatonin receptor activity"

```
##
                      "cell adhesive protein binding involved in bundle of His cell-Purkinje myocyte com
##
                     "ATP-activated adenosine receptor activity"
                     "retinoid X receptor binding"
##
                     "histone serine kinase activity"
##
##
                      "C-8 sterol isomerase activity"
##
                     "nuclear receptor activity"
                      "7S RNA binding"
##
                      "rRNA primary transcript binding"
##
##
                      "RNA polymerase II intronic transcription regulatory region sequence-specific DNA
                     "ADP receptor activity"
##
##
                      "melanocortin receptor activity"
                      "glycosphingolipid binding"
##
                      "mitogen-activated protein kinase kinase binding"
##
                      "receptor-receptor interaction"
##
##
                      "heparan sulfate proteoglycan binding"
##
                      "chemokine (C-C motif) ligand 5 binding"
                      "cytokine binding"
##
                      "selenocysteine insertion sequence binding"
##
                     "interleukin-12 receptor binding"
##
                      "nucleoside-triphosphate diphosphatase activity"
##
##
                     "protein serine/threonine kinase inhibitor activity"
                      "endothelin receptor activity"
##
                      "L-ascorbic acid binding"
##
                      "platelet-derived growth factor binding"
##
                      "lipopolysaccharide receptor activity"
##
##
                      "G protein-coupled neurotransmitter receptor activity involved in regulation of po
##
                      "extracellular matrix structural constituent conferring compression resistance"
                      "Fc-gamma receptor I complex binding"
##
                      "melanin-concentrating hormone activity"
##
##
                      "triplex DNA binding"
##
                      "MH2 domain binding"
##
                     "insulin-like growth factor II binding"
##
                     "mineralocorticoid receptor binding"
                      "amylin receptor activity"
##
                      "transition metal ion binding"
##
                     "double-stranded DNA-dependent ATPase activity"
##
                     "DNA/DNA annealing activity"
##
##
                     "extracellular ligand-gated ion channel activity"
                      "receptor antagonist activity"
##
                     "intracellular calcium activated chloride channel activity"
##
                      "calcium-dependent protein kinase C activity"
##
                      "poly(A)-specific ribonuclease activity"
##
                      "SNARE binding"
##
                     "ion channel inhibitor activity"
##
                      "sphingolipid binding"
##
                      "cyclin-dependent protein serine/threonine kinase inhibitor activity"
##
##
                      "JUN kinase activity"
                     "RNA-directed 5'-3' RNA polymerase activity"
##
##
                      "mannose binding"
                      "type 3 melanocortin receptor binding"
##
                      "type 4 melanocortin receptor binding"
##
                      "type 1 melanocortin receptor binding"
##
##
                      "glucagon receptor activity"
##
                      "interleukin-8 receptor activity"
```

```
"cholecystokinin receptor activity"
##
##
                     "single-stranded DNA-dependent ATPase activity"
                      "alpha-2C adrenergic receptor binding"
##
                      "translation initiation factor binding"
##
##
                      "platelet activating factor receptor binding"
##
                      "N-acetylglucosamine 6-0-sulfotransferase activity"
                      "protein phosphatase 1 binding"
##
                      "DNA-dependent protein kinase activity"
##
##
                      "glutamate receptor binding"
                     "DNA (cytosine-5-)-methyltransferase activity"
##
##
                      "retinoic acid-responsive element binding"
                      "D2 dopamine receptor binding"
##
                     "SUMO conjugating enzyme activity"
##
                      "nuclease activity"
##
##
                      "transforming growth factor beta-activated receptor activity"
##
                      "ephrin receptor activity"
                     "small ribosomal subunit rRNA binding"
##
                      "DNA-binding transcription repressor activity, RNA polymerase II-specific"
##
##
                      "clathrin binding"
##
                      "snRNA stem-loop binding"
##
                     "ribonucleoprotein complex binding"
                      "phosphatidylinositol binding"
##
                     "3'-5' DNA helicase activity"
##
                      "H4 histone acetyltransferase activity"
##
                     "AP-2 adaptor complex binding"
##
##
                     "RNA polymerase III type 1 promoter DNA binding"
##
                     "RNA polymerase III type 2 promoter DNA binding"
                      "histone methyltransferase activity (H3-K9 specific)"
##
                     "ribonuclease P activity"
##
##
                      "ribonuclease activity"
##
                      "GTP-Rho binding"
##
                     "NAD-dependent histone deacetylase activity (H3-K14 specific)"
##
                      "thiol-dependent ubiquitinyl hydrolase activity"
##
##
                      "protein kinase C activity"
                      "RISC complex binding"
##
##
                      "alpha-catenin binding"
##
                      "protein propionyltransferase activity"
                      "peptide butyryltransferase activity"
##
                     "histone crotonyltransferase activity"
##
                      "histone butyryltransferase activity"
##
##
                      "enzyme inhibitor activity"
                      "CCR5 chemokine receptor binding"
##
                     "double-stranded telomeric DNA binding"
##
                      "V1A vasopressin receptor binding"
##
                      "phosphatidylinositol-4,5-bisphosphate binding"
##
##
                      "calmodulin binding"
                     "transcription factor activity, RNA polymerase II proximal promoter sequence-speci.
##
##
                      "structural constituent of epidermis"
                     "insulin-like growth factor I binding"
##
                     "protein phosphatase inhibitor activity"
##
                     "ATP-dependent microtubule motor activity, minus-end-directed"
##
##
                      "retinoic acid receptor binding"
                      "protein-cysteine S-palmitoyltransferase activity"
##
```

```
##
                      "DNA-directed DNA polymerase activity"
##
                      "alpha-2A adrenergic receptor binding"
                      "phosphatidylinositol 3-kinase regulator activity"
##
                      "neurotransmitter receptor activity involved in regulation of postsynaptic cytosol
##
                      "RNA polymerase II CTD heptapeptide repeat kinase activity"
##
                      "tropomyosin binding"
##
                      "supercoiled DNA binding"
##
                      "dystroglycan binding"
##
##
                      "CXCR chemokine receptor binding"
                      "opioid peptide activity"
##
##
                      "anaphase-promoting complex binding"
                      "R-SMAD binding"
##
                      "group II metabotropic glutamate receptor activity"
##
                      "aromatase activity"
##
##
                      "leukotriene receptor activity"
##
                      "telomerase RNA binding"
                      "type 5 metabotropic glutamate receptor binding"
##
##
                      "axon guidance receptor activity"
##
                      "poly-pyrimidine tract binding"
                      "type II transforming growth factor beta receptor binding"
##
##
                      "growth factor binding"
                      "G protein-coupled serotonin receptor binding"
##
                      "dopamine neurotransmitter receptor activity"
##
                      "cysteine-type peptidase activity"
##
                      "transmitter-gated ion channel activity involved in regulation of postsynaptic mem
##
##
                      "RNA polymerase II C-terminal domain binding"
##
                      "TFIIB-class transcription factor binding"
                      "phosphorylation-dependent protein binding"
##
##
                      "TFIIH-class transcription factor complex binding"
                      "signaling adaptor activity"
##
##
                      "scavenger receptor binding"
##
                      "G protein-coupled GABA receptor activity"
                      "HLH domain binding"
##
                      "G protein-coupled receptor binding"
##
##
                      "GTPase binding"
##
                      "cadherin binding involved in cell-cell adhesion"
##
                      "neurohypophyseal hormone activity"
##
                      "aryl sulfotransferase activity"
                      "eukaryotic initiation factor eIF2 binding"
##
                      "histone methyltransferase activity (H3-K4 specific)"
##
                      "alpha-1A adrenergic receptor binding"
##
##
                      "angiotensin receptor binding"
                      "follicle-stimulating hormone receptor binding"
##
                      "Rho GTPase binding"
##
                      "PTB domain binding"
##
                      "CCR10 chemokine receptor binding"
##
                      "GBD domain binding"
##
                      "CCR1 chemokine receptor binding"
##
##
                      "retinoic acid receptor activity"
                      "histone pre-mRNA DCP binding"
##
##
                      "Ral GTPase binding"
                      "cysteine-type endopeptidase activity"
##
##
                      "peptide YY receptor activity"
```

##

"cyclin-dependent protein serine/threonine kinase regulator activity"

```
"calcium channel regulator activity"
##
##
                      "activating transcription factor binding"
                      "NFAT protein binding"
##
                      "signal recognition particle binding"
##
##
                      "protein kinase B binding"
##
                      "transmembrane receptor protein tyrosine phosphatase activity"
                      "Wnt-protein binding"
##
                      "MRF binding"
##
##
                      "histone demethylase activity"
                      "AT DNA binding"
##
##
                      "kinetochore binding"
                      "RNA strand annealing activity"
##
                      "ubiquitin-ubiquitin ligase activity"
##
                      "cytokine receptor activity"
##
##
                      "patched binding"
##
                      "nucleic acid binding"
                      "protein serine/threonine/tyrosine kinase activity"
##
##
                      "non-membrane spanning protein tyrosine phosphatase activity"
##
                      "alpha2-adrenergic receptor activity"
##
##
                      "poly(G) binding"
                      "thioesterase binding"
##
                      "peptide-lysine-N-acetyltransferase activity"
##
                      "coreceptor activity"
##
                      "extracellular matrix structural constituent"
##
##
                      "lysophosphatidic acid binding"
##
                      "voltage-gated calcium channel activity"
                      "nucleoside-triphosphatase activity"
##
                      "mu-type opioid receptor binding"
##
##
                      "methyl-CpG binding"
                      "pancreatic polypeptide receptor activity"
##
##
                      "phospholipase A2 inhibitor activity"
                      "microtubule minus-end binding"
##
                      "LRR domain binding"
##
##
                      "aryl hydrocarbon receptor binding"
                      "DNA topoisomerase binding"
##
##
                      "CD8 receptor binding"
##
                      "bradykinin receptor activity"
                      "dynein heavy chain binding"
##
                      "C2H2 zinc finger domain binding"
##
                      "CD4 receptor binding"
##
                      "heterotrimeric G-protein binding"
##
                      "prostaglandin E receptor activity"
##
##
                      "cytoskeletal adaptor activity"
                      "dynein light chain binding"
##
                      "cannabinoid receptor activity"
##
                      "low-density lipoprotein particle receptor activity"
##
                      "RNA polymerase II complex binding"
##
##
                      "histamine receptor activity"
                      "G protein-coupled adenosine receptor activity"
##
##
                      "co-SMAD binding"
                      "lysine N-acetyltransferase activity, acting on acetyl phosphate as donor"
##
##
                      "endothelin B receptor binding"
##
                      "apolipoprotein A-I receptor binding"
```

```
##
                      "clathrin heavy chain binding"
##
                      "cargo receptor activity"
##
                      "alpha-actinin binding"
                      "platelet-derived growth factor receptor binding"
##
##
                      "neuropeptide Y receptor activity"
                      "MHC class II receptor activity"
##
                      "protein tyrosine kinase inhibitor activity"
##
                      "RNA polymerase II regulatory region DNA binding"
##
##
                      "RS domain binding"
                      "pre-mRNA 3'-splice site binding"
##
##
                      "serine-type endopeptidase inhibitor activity"
                      "ATP-dependent 3'-5' DNA helicase activity"
##
                      "distal enhancer DNA-binding transcription activator activity, RNA polymerase II-s
##
                      "calcium-dependent phospholipid binding"
##
##
##
                      "ATP-dependent RNA helicase activity"
                      "dopamine neurotransmitter receptor activity, coupled via Gi/Go"
##
                      "scavenger receptor activity"
##
                      "syntaxin binding"
##
                      "neuromedin U receptor activity"
##
##
                      "neuromedin U binding"
                      "collagen binding"
##
                      "U2 snRNA binding"
##
                      "G-rich strand telomeric DNA binding"
##
                      "1-phosphatidylinositol-3-kinase regulator activity"
##
##
                      "endopeptidase inhibitor activity"
##
                      "mediator complex binding"
                      "receptor ligand activity"
##
                      "chromo shadow domain binding"
##
                      "alkylglycerophosphoethanolamine phosphodiesterase activity"
##
##
                      "RNA helicase activity"
##
                      "7SK snRNA binding"
                      "dynein light intermediate chain binding"
##
                      "RNA polymerase I CORE element sequence-specific DNA binding"
##
                      "histone binding"
##
                      "translation regulator activity"
##
##
                      "Notch binding"
##
                      "opioid receptor activity"
                      "ubiquitin-protein transferase activator activity"
##
                      "primary miRNA binding"
##
                      "growth factor receptor binding"
##
                      "G-protein beta-subunit binding"
##
                      "gamma-catenin binding"
##
                      "RNA stem-loop binding"
##
                      "bHLH transcription factor binding"
##
                      "SUMO binding"
##
                      "type 2A serotonin receptor binding"
##
                      "histone-lysine N-methyltransferase activity"
##
##
                      "sulfotransferase activity"
                      "dopamine binding"
##
                      "phosphatidylserine binding"
##
                      "microtubule binding"
##
##
                      "alpha-1B adrenergic receptor binding"
                      "chloride channel inhibitor activity"
##
```

```
##
                      "neuropilin binding"
##
                      "protein deacetylase activity"
                      "U1 snRNA binding"
##
                      "WW domain binding"
##
                      "N6-methyladenosine-containing RNA binding"
##
##
                      "pre-mRNA intronic binding"
                      "snRNA binding"
##
                      "somatostatin receptor activity"
##
##
                      "transforming growth factor beta receptor, pathway-specific cytoplasmic mediator a
                      "protein kinase inhibitor activity"
##
##
                      "transforming growth factor beta binding"
                      "microfilament motor activity"
##
##
                      "Rho GDP-dissociation inhibitor binding"
                      "protein kinase activator activity"
##
##
                      "acetyltransferase activity"
##
                      "actin filament binding"
                      "N-formyl peptide receptor activity"
##
                      "deacetylase activity"
##
                      "mRNA 3'-UTR AU-rich region binding"
##
                      "fibroblast growth factor receptor binding"
##
##
                      "vasopressin receptor activity"
                      "DEAD/H-box RNA helicase binding"
##
                      "CXCR3 chemokine receptor binding"
##
                      "protein binding, bridging"
##
                      "5'-3' exonuclease activity"
##
##
                      "Krueppel-associated box domain binding"
##
                      "transmembrane receptor protein tyrosine kinase adaptor activity"
                      "thrombin-activated receptor activity"
##
                      "insulin-like growth factor receptor binding"
##
                      "peptide N-acetyltransferase activity"
##
##
                      "protein phosphorylated amino acid binding"
##
                      "T cell receptor binding"
                      "core promoter sequence-specific DNA binding"
##
                      "I-SMAD binding"
##
                      "sphingosine-1-phosphate receptor activity"
##
                      "transcription coactivator binding"
##
##
                      "structural constituent of nuclear pore"
##
                      "chemokine receptor binding"
                      "miRNA binding"
##
                      "ATP-dependent DNA helicase activity"
##
                      "thyroid hormone receptor binding"
##
                      "protein serine/threonine kinase activity"
##
                      "proline-rich region binding"
##
                      "RNA polymerase binding"
##
                      "histone deacetylase binding"
##
                      "sequence-specific mRNA binding"
##
                      "neurotrophin TRKA receptor binding"
##
                      "frizzled binding"
##
##
                      "AU-rich element binding"
                      "importin-alpha family protein binding"
##
##
                      "structural constituent of muscle"
                      "immunoglobulin receptor binding"
##
##
                      "C-X-C chemokine receptor activity"
```

"transmembrane signaling receptor activity"

```
##
                      "receptor tyrosine kinase binding"
##
                      "sequence-specific double-stranded DNA binding"
                      "ATP-dependent microtubule motor activity, plus-end-directed"
##
                      "ubiquitin protein ligase activity"
##
##
                      "nuclear receptor binding"
                      "protein-containing complex scaffold activity"
##
                      "ATP-dependent 3'-5' RNA helicase activity"
##
                      "G protein-coupled acetylcholine receptor activity"
##
##
                      "ubiquitin ligase inhibitor activity"
##
                      "clathrin adaptor activity"
##
                      "phosphatidylinositol 3-kinase regulatory subunit binding"
                      "SMAD binding"
##
                      "protein kinase activity"
##
                      "cyclin-dependent protein serine/threonine kinase activity"
##
##
                      "leucine zipper domain binding"
##
                      "nucleosomal DNA binding"
                      "SNAP receptor activity"
##
##
                      "spectrin binding"
##
                      "transmembrane-ephrin receptor activity"
                      "pre-mRNA binding"
##
##
                      "mRNA 3'-UTR binding"
                      "telomeric DNA binding"
##
                      "glutamate receptor activity"
##
                      "epidermal growth factor receptor binding"
##
                      "actin-dependent ATPase activity"
##
                      "G protein-coupled purinergic nucleotide receptor activity"
##
##
                      "single-stranded DNA binding"
                      "peptide hormone receptor binding"
##
                      "growth factor activity"
##
                      "galanin receptor activity"
##
##
                      "U1 snRNP binding"
##
                      "antigen binding"
                      "RNA polymerase II distal enhancer sequence-specific DNA binding"
##
                      "motor activity"
##
##
                      "fibroblast growth factor binding"
                      "chemoattractant activity"
##
##
                      "mRNA 5'-UTR binding"
##
                      "methylated histone binding"
                      "gamma-tubulin binding"
##
                      "phosphatidylinositol 3-kinase binding"
##
                      "serotonin binding"
##
##
                      "phosphatidylinositol phospholipase C activity"
                      "microtubule plus-end binding"
##
##
                      "cyclin binding"
                      "lysophosphatidic acid receptor activity"
##
                      "protein phosphatase 2A binding"
##
##
                      "protein self-association"
                      "protein C-terminus binding"
##
##
                      "insulin receptor substrate binding"
                      "histone deacetylase activity"
##
##
                      "chromatin DNA binding"
                      "chemokine receptor activity"
##
##
                      "taste receptor activity"
##
                      "single-stranded RNA binding"
```

```
##
                      "neuropeptide receptor activity"
##
                      "RNA polymerase II activity"
##
                      "insulin receptor binding"
                      "beta-catenin binding"
##
##
                      "nuclear hormone receptor binding"
                      "SH2 domain binding"
##
                      "protein phosphatase binding"
##
                      "signaling receptor binding"
##
##
                      "CCR chemokine receptor binding"
                      "G-protein alpha-subunit binding"
##
##
                      "1-phosphatidylinositol-3-kinase activity"
                      "histone acetyltransferase binding"
##
##
                      "neuropeptide hormone activity"
                      "double-stranded DNA binding"
##
##
                      "transcription coregulator activity"
##
                      "G-protein beta/gamma-subunit complex binding"
                      "type 1 angiotensin receptor binding"
##
##
                      "hormone activity"
                      "proximal promoter DNA-binding transcription activator activity, RNA polymerase II
##
##
                      "RNA binding"
##
                      "vitamin D receptor binding"
                      "mRNA binding"
##
                      "nuclear receptor transcription coactivator activity"
##
                      "microtubule motor activity"
##
                      "G protein-coupled peptide receptor activity"
##
##
                      "phosphotyrosine residue binding"
##
                      "non-membrane spanning protein tyrosine kinase activity"
                      "NF-kappaB binding"
##
                      "protein tyrosine kinase activity"
##
##
                      "damaged DNA binding"
                      "calcium-dependent protein binding"
##
##
                      "proximal promoter sequence-specific DNA binding"
                      "transcription regulatory region DNA binding"
##
                      "RNA polymerase II regulatory region sequence-specific DNA binding"
##
##
                      "C-C chemokine binding"
                      "heparin binding"
##
##
                      "androgen receptor binding"
##
                      "chemokine binding"
                      "C-C chemokine receptor activity"
##
                      "phosphatidylinositol-4,5-bisphosphate 3-kinase activity"
##
                      "Ras guanyl-nucleotide exchange factor activity"
##
                      "proximal promoter DNA-binding transcription repressor activity, RNA polymerase II
##
                      "signaling receptor activity"
##
                      "RNA polymerase II repressing transcription factor binding"
##
                      "ephrin receptor binding"
##
##
                      "zinc ion binding"
                      "peptide hormone binding"
##
                      "transcription regulatory region sequence-specific DNA binding"
##
##
                      "RNA polymerase II transcription factor binding"
                      "SH3/SH2 adaptor activity"
##
##
                      "neuropeptide binding"
                      "G protein-coupled serotonin receptor activity"
##
                      "DNA-binding transcription activator activity, RNA polymerase II-specific"
##
##
                      "SH3 domain binding"
```

```
##
                      "neurotransmitter receptor activity"
##
                      "transcription coactivator activity"
                      "metal ion binding"
##
##
                      "protein kinase binding"
##
                      "bitter taste receptor activity"
                      "transcription corepressor activity"
##
                      "promoter-specific chromatin binding"
##
##
                      "sequence-specific DNA binding"
##
                      "chemokine activity"
##
                      "ubiquitin-protein transferase activity"
##
                      "transcription factor binding"
##
                      "RNA polymerase II proximal promoter sequence-specific DNA binding"
##
                      "protein binding"
##
                      "chromatin binding"
                      "DNA-binding transcription factor activity"
##
##
                      "DNA binding"
##
                      "G protein-coupled receptor activity"
##
                      "DNA-binding transcription factor activity, RNA polymerase II-specific"
##
## mf.enriched.terms "zscore"
                                 "obs"
                                         "mean"
                                                    "std"
##
                      "137.059" "1353"
                                         "80.08"
                                                    "9.287"
##
                      "65.388"
                                "286"
                                         "19.86"
                                                    "4.07"
                      "64.787"
                                "436"
                                         "31.3"
                                                    "6.247"
##
                      "37.349"
                                 "67"
                                         "3.81"
                                                    "1.692"
##
##
                      "36.692"
                                "519"
                                         "109.3"
                                                    "11.166"
##
                      "35.985"
                                 "121"
                                         "10.63"
                                                    "3.067"
                                         "24.74"
##
                      "30.57"
                                 "172"
                                                    "4.817"
                      "30.413"
                                 "68"
                                         "5.23"
                                                    "2.064"
##
                                "382"
                                                    "10.342"
                                         "97.88"
                      "27.473"
##
                      "26.736"
                                 "116"
                                         "12.95"
                                                    "3.854"
##
                                 "219"
##
                      "26.118"
                                         "49.44"
                                                    "6.492"
##
                      "23.037"
                                 "76"
                                         "8.15"
                                                    "2.945"
                      "22.671"
                                 "53"
                                         "4.76"
                                                    "2.128"
##
                      "22.594"
                                 "57"
                                         "5.91"
                                                    "2.261"
##
                                 "233"
                                         "67.26"
##
                      "21.738"
                                                    "7.625"
                      "21.271"
                                "61"
                                         "6.91"
                                                    "2.543"
##
##
                      "20.389"
                                 "33"
                                         "2.29"
                                                    "1.506"
##
                      "20.342"
                                 "30"
                                         "1.87"
                                                    "1.383"
                      "20.316"
                                 "34"
                                         "2.85"
                                                    "1.533"
##
                                 "51"
                                         "4.83"
                                                    "2.318"
                      "19.915"
##
                      "19.882"
                                 "92"
                                         "14.48"
                                                    "3.899"
##
                      "19.611"
                                 "34"
                                         "3.13"
                                                    "1.574"
##
                      "19.118"
                                 "432"
                                         "176.46"
                                                    "13.366"
##
                      "18.836"
                                "179"
                                         "45.21"
                                                    "7.103"
##
                      "18.52"
                                 "82"
                                         "13.99"
                                                    "3.672"
##
                                 "211"
                      "18.371"
                                         "60.51"
                                                    "8.192"
##
                      "18.075"
                                 "43"
                                         "5.76"
                                                    "2.06"
##
                      "18.075"
                                 "43"
                                         "5.76"
                                                    "2.06"
##
##
                      "18.075"
                                 "43"
                                         "5.76"
                                                    "2.06"
                                 "185"
                                         "54.3"
                                                    "7.241"
##
                      "18.05"
                      "17.89"
                                 "24"
                                         "1.79"
                                                    "1.241"
##
                                 "90"
##
                      "17.483"
                                         "19.88"
                                                    "4.011"
##
                      "17.262"
                                 "296"
                                         "125.26"
                                                    "9.891"
                                 "90"
                                         "15.5"
##
                      "16.948"
                                                    "4.396"
```

##	"16.53"	"30"	"2.74"	"1.649"
##	"15.548"	"45"	"5.58"	"2.535"
##	"15.381"	"1707"	"1157.45"	"35.728"
##	"15.359"	"40"	"5.12"	"2.271"
##	"15.173"	"138"	"43.8"	"6.208"
##	"14.497"	"1230"	"791.01"	"30.281"
##	"14.411"	"140"	"41.21"	"6.855"
##	"13.668"	"113"	"35.58"	"5.664"
##	"13.605"	"1498"	"1060.47"	"32.16"
##	"13.511"	"18"	"1.55"	"1.218"
##	"13.293"	"152"	"51.92"	"7.529"
##	"13.09"	"21"	"3.24"	"1.357"
##	"13.019"	"22"	"2.57"	"1.492"
##	"12.63"	"13"	"0.37"	"0.677"
##	"12.306"	"227"	"117.94"	"8.862"
##	"12.286"	"34"	"5.29"	"2.337"
##	"12.26"	"50"	"10.9"	"3.189"
##	"12.036"	"42"	"9.73"	"2.681"
##	"11.936"	"151"	"59.83"	"7.638"
##	"11.855"	"246"	"113.75"	"11.156"
##	"11.785"	"61"	"14.21"	"3.97"
##	"11.366"	"153"	"73.41"	"7.002"
##	"11.331"	"97"	"33.18"	"5.632"
##	"11.012"	"879"	"604.34"	"24.942"
##	"10.923"	"240"	"128.19"	"10.236"
##	"10.845"	"44"	"11.25"	"3.02"
##	"10.806"	"20"	"2.46"	"1.623"
##	"10.726"	"55"	"12.85"	"3.93"
##	"10.632"	"174"	"82.33"	"8.622"
##	"10.605"	"67"	"22.15"	"4.229"
##	"10.605"	"67"	"22.15"	"4.229"
##	"10.605"	"67"	"22.15"	"4.229"
##	"10.518"	"117"	"45.36"	"6.811"
##	"10.436"	"51"	"12.98"	"3.643"
##	"10.315"	"40"	"8.28"	"3.075"
##	"10.15"	"707"	"493.43"	"21.042"
##	"10.028"	"53"	"17.06"	"3.584"
##	"9.982"	"101"	"39.15"	"6.196"
##	"9.96"	"50"	"13.7"	"3.645"
##	"9.95"	"101"	"45.12"	"5.616"
##	"9.893"	"65"	"20.09"	"4.54"
##	"9.874"	"1250"	"887.82"	"36.682"
##	"9.837"	"61"	"17.07"	"4.466"
##	"9.699"	"64"	"22.81"	"4.247"
##	"9.676"	"156"	"75.45"	"8.325"
##	"9.634"	"4916"	"4223.32"	"71.898"
##	"9.491"	"33"	"7.8"	"2.655"
##	"9.49"	"26"	"5.58"	"2.152"
##	"9.473"	"41"	"10.85"	"3.183"
##	"9.368"	"45"	"15.88"	"3.108"
##	"9.318"	"650"	"447.96"	"21.683"
##	"9.279"	"25"	"5.81"	"2.068"
##	"9.279"	"25"	"5.81"	"2.068"
##	"9.277"	"42"	"12.07"	"3.226"
	- , -			

##	"9.277"	"42"	"12.07"	"3.226"
##	"9.253"	"788"	"532.55"	"27.606"
##	"9.217"	"48"	"14.03"	"3.686"
##	"9.201"	"92"	"37.36"	"5.938"
##	"9.193"	"72"	"27.05"	"4.889"
##	"9.16"	"90"	"38.19"	"5.656"
##	"9.083"	"180"	"92.71"	"9.61"
##	"9.01"	"10"	"0.99"	"0.904"
##	"8.893"	"147"	"78.54"	"7.698"
##	"8.858"	"49"	"13.47"	"4.011"
##	"8.843"	"18"	"3.72"	"1.615"
##	"8.797"	"59"	"20.15"	"4.416"
##	"8.469"	"58"	"20.38"	"4.442"
##	"8.395"	"40"	"11.39"	"3.408"
##	"8.337"	"35"	"10.85"	"2.897"
##	"8.315"	"43"	"12"	"3.728"
##	"8.255"	"633"	"429.76"	"24.619"
##	"8.194"	"48"	"16.85"	"3.802"
##	"8.141"	"62"	"23.84"	"4.688"
##	"8.141"	"62"	"23.84"	"4.688"
##	"8.061"	"96"	"44.98"	"6.329"
##	"8.045"	"177"	"94.96"	"10.198"
##	"8.043"	"275"	"176.05"	"12.303"
##	"7.994"	"68"	"25.92"	"5.264"
##	"7.964"	"15"	"2.86"	"1.524"
##	"7.951"	"508"	"345.18"	"20.478"
##	"7.933"	"219"	"132.11"	"10.953"
##	"7.908"	"41"	"13.33"	"3.499"
##	"7.884"	"135"	"67.71"	"8.535"
##	"7.848"	"27"	"7.14"	"2.531"
##	"7.727"	"92"	"44.61"	"6.133"
##	"7.682"	"50"	"18.78"	"4.064"
##	"7.648"	"11"	"1.4"	"1.255"
##	"7.568"	"41"	"14.39"	"3.516"
##	"7.552"	"201"	"124.19"	"10.171"
##	"7.505"	"30"	"8.36"	"2.883"
##	"7.476"	"40"	"14.05"	"3.471"
##	"7.426"	"491"	"334.43"	"21.084"
##	"7.374"	"49"	"18.71"	"4.108"
##	"7.355"	"54"	"20.12"	"4.606"
##	"7.346"	"48"	"16.95"	"4.227"
##	"7.247"	"75"	"34.33"	"5.612"
##	"7.228"	"106"	"57.87"	"6.659"
##	"7.201"	"9"	"1.12"	"1.094"
##	"7.192"	"49"	"19.04"	"4.166"
##	"7.181"	"64"	"29.85"	"4.755"
##	"7.181"	"64"	"29.85"	"4.755"
##	"7.181"	"64"	"29.85"	"4.755"
##	"7.143"	"24"	"6.04"	"2.514"
##	"7.136"	"122"	"61.53"	"8.474"
##	"7.125"	"64"	"28.73"	"4.95"
##	"7.12"	"8"	"0.88"	"0.795"
##	"7.031"	"698"	"542.85"	"22.067"
##	"7.013"	"26"	"7.99"	"2.568"

##	"6.975"	"56"	"20.77"	"5.051"
##	"6.972"	"224"	"141.49"	"11.834"
##	"6.962"	"255"	"163.29"	"13.174"
##	"6.853"	"241"	"154.58"	"12.611"
##	"6.846"	"44"	"15.58"	"4.152"
##	"6.827"	"12"	"2.47"	"1.396"
##	"6.794"	"28"	"9.42"	"2.735"
##	"6.75"	"29"	"7.94"	"3.12"
##	"6.726"	"27"	"8.89"	"2.693"
##	"6.726"	"27"	"8.89"	"2.693"
##	"6.664"	"21"	"5.94"	"2.26"
##	"6.601"	"8"	"0.98"	"1.063"
##	"6.601"	"8"	"0.98"	"1.063"
##	"6.601"	"8"	"0.98"	"1.063"
##	"6.596"	"24"	"7.69"	"2.473"
##	"6.562"	"34"	"11.47"	"3.433"
##	"6.557"	"66"	"31.79"	"5.217"
##	"6.554"	"26"	"8.26"	"2.707"
##	"6.528"	"36"	"12.4"	"3.615"
##	"6.51"	"44"	"18.14"	"3.972"
##	"6.489"	"28"	"9.18"	"2.9"
##	"6.458"	"29"	"9.77"	"2.978"
##	"6.453"	"110"	"56.09"	"8.355"
##	"6.4"	"49"	"21.16"	"4.35"
##	"6.387"	"30"	"10.96"	"2.981"
##	"6.378"	"29"	"9.84"	"3.004"
##	"6.369"	"97"	"51.28"	"7.179"
##	"6.355"	"97"	"50.15"	"7.372"
##	"6.349"	"30"	"9.87"	"3.171"
##	"6.341"	"61"	"27.88"	"5.223"
##	"6.323"	"19"	"5.4"	"2.151"
##	"6.31"	"7"	"0.69"	"0.873"
##	"6.29"	"449"	"342.93"	"16.863"
##	"6.266"	"11"	"2.03"	"1.432"
##	"6.256"	"57"	"28.24"	"4.597"
##	"6.238"	"14"	"3.64"	"1.661"
##	"6.194"	"65"	"34.39"	"4.942"
##	"6.19"	"81"	"40.62"	"6.524"
##	"6.179"	"32"	"12.85"	"3.099"
##	"6.163"	"54"	"25.4"	"4.641"
##	"6.131"	"13"	"2.79"	"1.665"
##	"6.092"	"12"	"2.59"	"1.545"
##	"6.074"	"19"	"5.5"	"2.222"
##	"6.072"	"55"	"25.15"	"4.916"
##	"6.048"	"57"	"28.55"	"4.704"
##	"6.048"	"14"	"3.25"	"1.777"
##	"6.043"	"38"	"15.74"	"3.683"
##	"6.043"	"38"	"15.74"	"3.683"
##	"6.033"	"37"	"15.52"	"3.56"
##	"6.027"	"8"	"1.18"	"1.132"
##	"5.995"	"27"	"10.72"	"2.716"
##	"5.98"	"6"	"0.02"	"0.141"
##	"5.98"	"6"	"0.02"	"0.141"
##	"5.98"	"6"	"0.02"	"0.141"

##	"5.95"	"6"	"0.05"	"0.219"
##	"5.933"	"42"	"17.95"	"4.054"
##	"5.921"	"27"	"11.13"	"2.68"
	"5.902"			"3.207"
##		"33"	"14.07"	
##	"5.878"	"229"	"159.34"	"11.852"
##	"5.875"	"7"	"0.98"	"1.025"
##	"5.857"	"18"	"5.38"	"2.155"
##	"5.843"	"27"	"8.96"	"3.088"
##	"5.84"	"30"	"10.8"	"3.288"
##	"5.84"	"6"	"0.16"	"0.368"
##	"5.834"	"14"	"3.32"	"1.831"
##	"5.822"	"330"	"240.9"	"15.303"
##	"5.801"	"23"	"7.52"	"2.668"
##	"5.801"	"27"	"10.19"	"2.898"
##	"5.774"	"33"	"14.46"	"3.211"
##	"5.769"	"29"	"10.75"	"3.163"
##	"5.763"	"12"	"3.05"	"1.553"
##	"5.753"	"31"	"12.47"	"3.221"
##	"5.749"	"152"	"99.27"	"9.172"
##	"5.736"	"9"	"1.88"	"1.241"
##	"5.689"	"12"	"3.08"	"1.568"
##	"5.689"	"12"	"3.08"	"1.568"
##	"5.688"	"12"	"2.52"	"1.667"
##	"5.688"	"12"	"2.52"	"1.667"
##	"5.687"	"113"	"64.84"	"8.468"
##	"5.654"	"36"	"15.43"	"3.638"
##	"5.653"	"129"	"83.2"	"8.102"
##	"5.624"	"22"	"6.51"	"2.754"
##	"5.573"	"29"	"11.87"	"3.074"
##	"5.57"	"6"	"0.43"	"0.624"
##	"5.57"	"6"	"0.43"	"0.624"
##	"5.57"	"6"	"0.43"	"0.624"
##	"5.557"	"29"	"11.44"	"3.16"
##	"5.557"	"29"	"11.44"	"3.16"
##	"5.553"	"27"	"10.39"	"2.991"
##	"5.548"	"16"	"4.6"	"2.055"
##	"5.54"	"22"	"7.19"	"2.673"
##	"5.52"	"35"	"14.12"	"3.783"
##	"5.511"	"82"	"44.34"	"6.833"
##	"5.494"	"357"	"279.54"	"14.1"
##	"5.474"	"29"	"11.03"	"3.283"
##	"5.474"	"29"	"11.94"	"3.117"
##	"5.474"	"29"	"11.94"	"3.117"
##	"5.466"	"23"	"7.71"	"2.797"
##	"5.433"	"25"	"8.6"	"3.018"
##	"5.39"	"18"	"5.47"	"2.324"
##	"5.386"	"37"	"17.03"	"3.708"
##	"5.339"	"28"	"11.47"	"3.096"
##	"5.336"	"10"	"2.1"	"1.481"
##	"5.331"	"14"	"4.13"	"1.851"
##	"5.33"	"6"	"0.67"	"0.853"
##	"5.325"	"26"	"9.1"	"3.173"
##	"5.277"	"12"	"3"	"1.706"
##	"5.258"	"23"	"8.54"	"2.75"
		-	-	. =

##	"5.201"	"24"	"9.26"	"2.834"
##	"5.174"	"8"	"1.79"	"1.2"
##	"5.174"	"8"	"1.79"	"1.2"
##	"5.126"	"30"	"13.03"	"3.31"
##	"5.12"	"149"	"98.93"	"9.779"
##	"5.096"	"11"	"2.94"	"1.582"
##	"5.066"	"28"	"11.75"	"3.208"
##	"5.047"	"27"	"10.45"	"3.279"
##	"5.045"	"24"	"9.49"	"2.876"
##	"4.987"	"183"	"127.62"	"11.104"
##	"4.974"	"17"	"5.7"	"2.272"
##	"4.968"	"36"	"14.74"	"4.28"
##	"4.953"	"12"	"2.96"	"1.825"
##	"4.942"	"144"	"97.91"	"9.326"
##	"4.927"	"64"	"35.39"	"5.806"
##	"4.92"	"24"	"8.37"	"3.177"
##	"4.92"	"20"	"6.33"	"2.778"
##	"4.91"	"19"	"6.74"	"2.497"
##	"4.904"	"31"	"13.85"	"3.497"
##	"4.902"	"31"	"13.44"	"3.583"
##	"4.901"	"9"	"2.26"	"1.375"
##	"4.86"	"16"	"5.22"	"2.218"
##	"4.842"	"6"	"1.12"	"1.008"
##	"4.819"	"20"	"7.67"	"2.559"
##	"4.776"	"6"	"1.11"	"1.024"
##	"4.776"	"6"	"1.11"	"1.024"
##	"4.767"	"121"	"78.8"	"8.852"
##	"4.756"	"275"	"214.3"	"12.764"
##	"4.722"	"34"	"16.89"	"3.623"
##	"4.715"	"21"	"8.11"	"2.734"
##	"4.715"	"21"	"8.11"	"2.734"
##	"4.715"	"21"	"8.11"	"2.734"
##	"4.699"	"31"	"13.85"	"3.65"
##	"4.688"	"66"	"41.46"	"5.235"
##	"4.684"	"64"	"35.42"	"6.102"
##	"4.665"	"8"	"1.56"	"1.38"
##	"4.653"	"31"	"13.79"	"3.699"
##	"4.629"	"68"	"40.48"	"5.945"
##	"4.625"	"276"	"207.26"	"14.862"
##	"4.573"	"143"	"97.83"	"9.878"
##	"4.571"	"23"	"8.44"	"3.186"
##	"4.567"	"1800"	"1619.96"	"39.419"
##	"4.549"	"34"	"16.74"	"3.794"
##	"4.547"	"17"	"6.51"	"2.307"
##	"4.543"	"19"	"8.26"	"2.364"
##	"4.529"	"16"	"5.72"	"2.27"
##	"4.518"	"32"	"15.56"	"3.639"
##	"4.515"	"8"	"2.13"	"1.3"
##	"4.512"	"2288"	"2011.45"	"61.29"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.507"	"18"	"6.83"	"2.478"
##	"4.504"	"21"	"9.22"	"2.615"

##	"4.492"	"22"	"8.31"	"3.047"
##	"4.463"	"82"	"51.84"	"6.758"
##	"4.46"	"28"	"13.54"	"3.242"
##	"4.447"	"54"	"32.08"	"4.929"
##	"4.443"	"34"	"16.23"	"4"
##	"4.415"	"262"	"197.42"	"14.627"
##	"4.415"	"39"	"20.85"	"4.111"
##	"4.4"	"250"	"192.27"	"13.121"
##	"4.355"	"18"	"7.78"	"2.347"
##	"4.355"	"38"	"20.16"	"4.097"
##	"4.34"	"62"	"36.5"	"5.875"
##	"4.321"	"6"	"1.15"	"1.123"
##	"4.279"	"104"	"68.82"	"8.221"
##	"4.279"	"13"	"4.01"	"2.101"
##	"4.278"	"17"	"6.14"	"2.539"
##	"4.275"	"36"	"19.1"	"3.953"
##	"4.273"	"36"	"19.09"	"3.957"
##	"4.268"	"28"	"13.74"	"3.341"
##	"4.267"	"51"	"29.45"	"5.05"
##	"4.26"	"5"	"0.74"	"0.86"
##	"4.21"	"5"	"0.79"	"0.935"
##	"4.21"	"5"	"0.79"	"0.935"
##	"4.193"	"31"	"16.47"	"3.465"
##	"4.159"	"16"	"5.93"	"2.422"
##	"4.153"	"14"	"5.31"	"2.092"
##	"4.153"	"14"	"5.31"	"2.092"
##	"4.132"	"32"	"17.41"	"3.531"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.13"	"5"	"0.87"	"0.872"
##	"4.11"	"17"	"6.83"	"2.474"
##	"4.076"	"12"	"3.9"	"1.987"
##	"4.073"	"36"	"19.88"	"3.958"
##	"4.053"	"9"	"2.78"	"1.535"
##	"4.049"	"21"	"8.44"	"3.102"
##	"4.043"	"12"	"3.92"	"1.998"
##	"4.04"	"178"	"134.76"	"10.702"
##	"4.031"	"19"	"8.74"	"2.545"
##	"4.01"	"5"	"0.99"	"0.882"
##	"3.998"	"19"	"7.41"	"2.899"
##	"3.991"	"15"	"6.15"	"2.217"
##	"3.974"	"65"	"42.75"	"5.598"
##	"3.961"	"430"	"355.52"	"18.805"
##	"3.947"	"34"	"17.95"	"4.066"
##	"3.946"	"41"	"22.7"	"4.637"
##	"3.935"	"25"	"11.95"	"3.316"
##	"3.909"	"7"	"2.09"	"1.256"
##	"3.89"	"35"	"18.62"	"4.211"
##	"3.89"	"35"	"18.62"	"4.211"
##	"3.89"	"35"	"18.62"	"4.211"
##	"3.89"	"35"	"18.62"	"4.211"
##	"3.873"	"23"	"10.68"	"3.181"

##	"3.866"	"68"	"44.36"	"6.114"
##	"3.864"	"21"	"10.14"	"2.811"
##	"3.862"	"6"	"1.46"	"1.176"
##	"3.836"	"8"	"2.28"	"1.491"
##	"3.834"	"35"	"18.56"	"4.288"
##	"3.823"	"60"	"39.82"	"5.279"
##	"3.814"	"20"	"9.73"	"2.693"
##	"3.804"	"8"	"2.12"	"1.546"
##	"3.795"	"66"	"41.37"	"6.49"
##	"3.787"	"34"	"18.65"	"4.054"
##	"3.785"	"13"	"5.07"	"2.095"
##	"3.785"	"13"	"5.07"	"2.095"
##	"3.785"	"13"	"5.07"	"2.095"
##	"3.785"	"13"	"5.07"	"2.095"
##	"3.781"	"8"	"2.1"	"1.56"
##	"3.776"	"41"	"24.12"	"4.471"
##	"3.754"	"26"	"12.1"	"3.702"
##	"3.754"	"8"	"2.05"	"1.585"
##	"3.737"	"39"	"21.51"	"4.681"
##	"3.735"	"5"	"1.05"	"1.058"
##	"3.72"	"4"	"0.28"	"0.514"
##	"3.713"	"5"	"1.18"	"1.029"
##	"3.713"	"5"	"1.18"	"1.029"
##	"3.707"	"24"	"11.92"	"3.259"
##	"3.698"	"69"	"45"	"6.49"
##	"3.69"	"4"	"0.31"	"0.545"
##	"3.69"	"4"	"0.31"	"0.545"
##	"3.687"	"50"	"32.64"	"4.709"
##	"3.677"	"16"	"7.25"	"2.38"
##	"3.652"	"13"	"4.38"	"2.36"
##	"3.648"	"49"	"29.62"	"5.312"
##	"3.63"	"15"	"6.6"	"2.314"
##	"3.605"	"24"	"12.17"	"3.282"
##	"3.599"	"11"	"3.91"	"1.97"
##	"3.586"	"81"	"56.49"	"6.835"
##	"3.585"	"65"	"44.29"	"5.778"
##	"3.584"	"14"	"6.11"	"2.201"
##	"3.583"	"39"	"23.81"	"4.24"
##	"3.571"	"62"	"39.82"	"6.211"
##	"3.567"	"13"	"4.71"	"2.324"
##	"3.55"	"4"	"0.45"	"0.672"
##	"3.535"	"67"	"45.82"	"5.992"
##	"3.513"	"15"	"6.85"	"2.32"
##	"3.5"	"19"	"8.97"	"2.866"
##	"3.487"	"13"	"5.04"	"2.283"
##	"3.481"	"9"	"3.35"	"1.623"
##	"3.473"	"34"	"19.61"	"4.144"
##	"3.457"	"24"	"12.08"	"3.449"
##	"3.453"	"85"	"60.02"	"7.233"
##	"3.45"	"4"	"0.55"	"0.702"
##	"3.45"	"4"	"0.55"	"0.702"
##	"3.447"	"113"	"84.52"	"8.263"
##	"3.43"	"4"	"0.57"	"0.756"
##	"3.428"	"104"	"73.77"	"8.819"

##	"3.421"	"35"	"19"	"4.677"
##	"3.421"	"35"	"19"	"4.677"
##	"3.42"	"4"	"0.58"	"0.669"
##	"3.412"	"36"	"21.05"	"4.382"
##	"3.411"	"22"	"11.13"	"3.187"
##	"3.407"	"40"	"23.83"	"4.746"
##	"3.404"	"9"	"2.81"	"1.819"
##	"3.397"	"5"	"1.47"	"1.039"
##	"3.392"	"130"	"96.64"	"9.835"
##	"3.364"	"34"	"19.83"	"4.212"
##	"3.359"	"7"	"2.11"	"1.456"
##	"3.359"	"35"	"19.16"	"4.716"
##	"3.356"	"5"	"1.24"	"1.12"
##	"3.355"	"10"	"3.85"	"1.833"
##	"3.355"	"10"	"3.85"	"1.833"
##	"3.352"	"8"	"3.25"	"1.417"
##	"3.352"	"16"	"7.47"	"2.544"
##	"3.326"	"30"	"16.71"	"3.996"
##	"3.325"	"6"	"1.94"	"1.221"
##	"3.309"	"58"	"38.66"	"5.845"
##	"3.281"	"65"	"43.85"	"6.445"
##	"3.256"	"4"	"0.74"	"1.001"
##	"3.254"	"16"	"7.88"	"2.496"
##	"3.253"	"39"	"24.64"	"4.414"
##	"3.249"	"19"	"9.52"	"2.918"
##	"3.229"	"37"	"22.23"	"4.575"
##	"3.21"	"65"	"47.23"	"5.536"
##	"3.208"	"71"	"51.31"	"6.138"
##	"3.204"	"87"	"64.39"	"7.057"
##	"3.179"	"204"	"165.39"	"12.144"
##	"3.17"	"4"	"0.83"	"0.853"
##	"3.16"	"8"	"2.8"	"1.645"
##	"3.16"	"8"	"2.8"	"1.645"
##	"3.16"	"8"	"2.8"	"1.645"
##	"3.156"	"11"	"4.63"	"2.018"
##	"3.124"	"11"	"4.72"	"2.01"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.112"	"10"	"3.85"	"1.977"
##	"3.11"	"65"	"46.03"	"6.099"
##	"3.104"	"19"	"9.35"	"3.109"
##	"3.068"	"82"	"60.32"	"7.067"
##	"3.062"	"229"	"188.97"	"13.074"
##	"3.031"	"18"	"9.33"	"2.861"
##	"3.023"	"10"	"3.45"	"2.167"
##	"3.012"	"8"	"2.72"	"1.753"
##	"3.006"	"43"	"26.71"	"5.418"
##	"3.002"	"5"	"1.55"	"1.149"
##	"3.002"	"93"	"68.19"	"8.264"
##	"3"	"11"	"4.81"	"2.063"
##	"2.996"	"85"	"62.26"	"7.59"
##	"2.994"	"8"	"2.91"	"1.7"
##	"2.992"	"13"	"5.88"	"2.38"

##	"2.972"	"38"	"24.58"	"4.515"
##	"2.96"	"4"	"1.04"	"0.942"
##	"2.959"	"32"	"19.58"	"4.198"
##	"2.945"	"19"	"10.88"	"2.757"
##	"2.94"	"4"	"1.06"	"0.962"
##	"2.922"	"20"	"10.7"	"3.183"
##	"2.912"	"24"	"13.16"	"3.722"
##	"2.912"	"236"	"196.05"	"13.72"
##	"2.907"	"67"	"48.69"	"6.298"
##	"2.884"	"82"	"62.02"	"6.928"
##	"2.881"	"5"	"1.49"	"1.219"
##	"2.876"	"26"	"15.56"	"3.63"
##	"2.863"	"10"	"3.67"	"2.211"
##	"2.861"	"101"	"75.2"	"9.016"
##	"2.858"	"194"	"155.62"	"13.431"
##	"2.846"	"20"	"11.39"	"3.025"
##	"2.835"	"11"	"4.99"	"2.12"
##	"2.835"	"11"	"4.99"	"2.12"
##	"2.828"	"22"	"12.99"	"3.186"
##	"2.826"	"9"	"3.65"	"1.893"
##	"2.804"	"60"	"43.58"	"5.855"
##	"2.804"	"450"	"403.24"	"16.674"
##	"2.802"	"12"	"5.55"	"2.302"
##	"2.8"	"4"	"1.2"	"0.91"
##	"2.794"	"13"	"6.02"	"2.498"
##	"2.781"	"5"	"1.6"	"1.223"
##	"2.774"	"4"	"1.01"	"1.078"
##	"2.766"	"49"	"33.74"	"5.517"
##	"2.764"	"5"	"1.4"	"1.303"
##	"2.757"	"54"	"39.02"	"5.433"
##	"2.755"	"17"	"8.77"	"2.988"
##	"2.752"	"11"	"5.1"	"2.144"
##	"2.752"	"11"	"5.1"	"2.144"
##	"2.73"	"24"	"14.4"	"3.516"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.72"	"4"	"1.28"	"0.911"
##	"2.703"	"31"	"19.98"	"4.077"
##	"2.7"	"4"	"1.3"	"0.937"
##	"2.68"	"8"	"3.65"	"1.623"
##	"2.678"	"16"	"8.59"	"2.767"
##	"2.664"	"49"	"32.43"	"6.22"
##	"2.658"	"6"	"2.09"	"1.471"
##	"2.656"	"26"	"15.81"	"3.837"
##	"2.652"	"10"	"4.42"	"2.104"
##	"2.64"	"3"	"0.36"	"0.612"
##	"2.636"	"10"	"4.17"	"2.211"
##	"2.636"	"24"	"14.37"	"3.653"
##	"2.633"	"11"	"5.56"	"2.066"
##	"2.633"	"11"	"5.56"	"2.066"
##	"2.629"	"10"	"4.2"	"2.207"
##	"2.626"	"6"	"2.22"	"1.44"
##	"2.62"	"3"	"0.38"	"0.528"
##	"2.618"	"114"	"88.56"	"9.717"

##	"2.61"	"3"	"0.39"	"0.618"
##	"2.604"	"13"	"6.22"	"2.604"
##	"2.585"	"11"	"5.16"	"2.26"
##	"2.584"	"13"	"6.4"	"2.554"
##	"2.58"	"3"	"0.42"	"0.638"
##	"2.567"	"924"	"848.94"	"29.24"
##	"2.562"	"37"	"25.76"	"4.388"
##	"2.548"	"27"	"17.34"	"3.791"
##	"2.546"	"18"	"9.86"	"3.197"
##	"2.544"	"7"	"3.05"	"1.553"
##	"2.544"	"7"	"3.05"	"1.553"
##	"2.539"	"169"	"141.11"	"10.986"
##	"2.532"	"23"	"14.6"	"3.318"
##	"2.517"	"99"	"78.02"	"8.336"
##	"2.514"	"15"	"7.7"	"2.904"
##	"2.509"	"208"	"176.17"	"12.687"
##	"2.496"	"84"	"65.22"	"7.523"
##	"2.496"	"16"	"8.72"	"2.917"
##	"2.495"	"8"	"3.71"	"1.719"
##	"2.494"	"11"	"4.97"	"2.418"
##	"2.494"	"44"	"30.09"	"5.578"
##	"2.492"	"18"	"9.95"	"3.23"
##	"2.49"	"926"	"850.6"	"30.277"
##	"2.489"	"97"	"76.41"	"8.272"
##	"2.482"	"4"	"1.2"	"1.128"
##	"2.48"	"3"	"0.52"	"0.703"
##	"2.475"	"16"	"8.39"	"3.074"
##	"2.474"	"215"	"181.55"	"13.519"
##	"2.468"	"40"	"26.81"	"5.344"
##	"2.451"	"17"	"10.47"	"2.665"
##	"2.448"	"15"	"8.22"	"2.769"
##	"2.445"	"5"	"1.79"	"1.313"
##	"2.435"	"12"	"6.16"	"2.398"
##	"2.435"	"12"	"6.16"	"2.398"
##	"2.432"	"72"	"54.61"	"7.149"
##	"2.424"	"65"	"48.87"	"6.656"
##	"2.387"	"11"	"5.75"	"2.199"
##	"2.387"	"5"	"1.84"	"1.324"
##	"2.381"	"55"	"39.71"	"6.422"
##	"2.38"	"3"	"0.62"	"0.722"
##	"2.32"	"3"	"0.68"	"0.863"
##	"2.32"	"3"	"0.68"	"0.863"
##	"2.318"	"127"	"106.03"	"9.047"
##	"2.308"	"6"	"2.59"	"1.478"
##	"2.308"	"6"	"2.59"	"1.478"
##	"2.308"	"6"	"2.59"	"1.478"
##	"2.308"	"6"	"2.59"	"1.478"
##	"2.307"	"10"	"4.56"	"2.358"
##	"2.264"	"39"	"27.72"	"4.983"
##	"2.262"	"6"	"2.43"	"1.578"
##	"2.26"	"6"	"2.42"	"1.584"
##	"2.259"	"4"	"1.41"	"1.147"
##	"2.255"	"15"	"8.75"	"2.772"
##	"2.221"	"6"	"2.6"	"1.531"

##	"2.219"	"92"	"73.13"	"8.503"
##	"2.211"	"12"	"6.43"	"2.52"
##	"2.205"	"60"	"44.82"	"6.885"
##	"2.197"	"8"	"3.43"	"2.08"
##	"2.192"	"464"	"402.61"	"28.006"
##	"2.175"	"36"	"24.76"	"5.168"
##	"2.155"	"8"	"4.19"	"1.768"
##	"2.151"	"6"	"2.58"	"1.59"
##	"2.151"	"6"	"2.42"	"1.665"
##	"2.146"	"11"	"5.96"	"2.348"
##	"2.136"	"14"	"7.7"	"2.949"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.136"	"20"	"12.94"	"3.305"
##	"2.12"	"81"	"65.19"	"7.456"
##	"2.114"	"31"	"21.64"	"4.428"
##	"2.101"	"6"	"2.45"	"1.69"
##	"2.1"	"16"	"9.42"	"3.134"
##	"2.092"	"15"	"8.58"	"3.069"
##	"2.085"	"36"	"25.28"	"5.141"
##	"2.07"	"3"	"0.93"	"0.998"
##	"2.056"	"5"	"2.1"	"1.411"
##	"2.056"	"41"	"29.62"	"5.536"
##	"2.044"	"10"	"5.38"	"2.26"
##	"2.044"	"10"	"5.38"	"2.26"
##	"2.041"	"7"	"3.4"	"1.764"
##	"2.03"	"3"	"0.97"	"0.87"
##	"2.029"	"52"	"40.1"	"5.866"
##	"2.02"	"3"	"0.98"	"0.91"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.016"	"7"	"3.33"	"1.821"
##	"2.005"	"9"	"5.07"	"1.96"
##	"2.004"	"5"	"1.96"	"1.517"
##	"2"	"63"	"48.32"	"7.341"
##	"1.995"	"52"	"40.28"	"5.876"
##	"1.992"	"52"	"40.19"	"5.93"
##	"1.99"	"2"	"0.01"	"0.1"
##	"1.986"	"74"	"58.48"	"7.814"
##	"1.983"	"370"	"330.38"	"19.983"
##	"1.981"	"15"	"9.85"	"2.599"
##	"1.98"	"440"	"403"	"18.69"
##	"1.976"	"52"	"40.44"	"5.849"
##	"1.971"	"6"	"3.17"	"1.436"
##	"1.97"	"4"	"1.63"	"1.203"
##	"1.963"	"49"	"37.51"	"5.853"
##	"1.956"	"6"	"2.83"	"1.621"
##	"1.952"	"16"	"10.24"	"2.951"
##	"1.943"	"15"	"9.42"	"2.872"
##	"1.943"	"20"	"13.39"	"3.402"
##	"1.94"	"2"	"0.06"	"0.239"
##	"1.938"	"3"	"0.95"	"1.058"
##	"1.934"	"6"	"2.54"	"1.789"

	"4 00"	11011	"0 07"	"0 050"
##	"1.93"	"2"	"0.07"	"0.256"
##	"1.916"	"6"	"2.82"	"1.66"
##	"1.91"	"2"	"0.09"	"0.321"
##	"1.91"	"2"	"0.09"	"0.288"
##	"1.907"	"4"	"1.48"	"1.322"
##	"1.859"	"9"	"5.25"	"2.017"
##	"1.854"	"30"	"21.56"	"4.551"
##	"1.853"	"7"	"3.62"	"1.825"
##	"1.849"	"5"	"2.16"	"1.536"
##	"1.844"	"12"	"7.25"	"2.576"
##	"1.84"	"2"	"0.16"	"0.368"
##	"1.835"	"36"	"26.4"	"5.232"
##	"1.83"	"2"	"0.17"	"0.378"
##	"1.824"	"7"	"3.72"	"1.798"
##	"1.813"	"8"	"4.67"	"1.837"
##	"1.809"	"4"	"1.69"	"1.277"
##	"1.802"	"25"	"16.99"	"4.446"
##	"1.799"	"6"	"2.81"	"1.774"
##	"1.78"	"2"	"0.22"	"0.416"
##	"1.774"	"6"	"2.97"	"1.708"
##	"1.773"	"98"	"82.49"	"8.748"
##	"1.773"	"3"	"1"	"1.128"
##	"1.767"	"13"	"8.24"	"2.694"
##	"1.752"	"14"	"8.64"	"3.06"
##	"1.752"	"44"	"33.95"	"5.736"
##	"1.75"	"2"	"0.25"	"0.479"
##	"1.749"	"386"	"355.08"	"17.679"
##	"1.748"	"13"	"7.59"	"3.095"
##	"1.746"	"22"	"15.95"	"3.465"
##	"1.743"	"12"	"7.47"	"2.599"
##	"1.736"	"12"	"7.55"	"2.564"
##	"1.727"	"6"	"2.97"	"1.755"
##	"1.725"	"8"	"4.78"	"1.867"
##	"1.723"	"6"	"3"	"1.741"
##	"1.72"	"2"	"0.28"	"0.552"
##	"1.719"	"19"	"12.43"	"3.822"
##	"1.718"	"35"	"26.42"	"4.993"
##	"1.713"	"39"	"29.69"	"5.436"
##	"1.71"	"34"	"25.21"	"5.139"
##	"1.692"	"19"	"13.13"	"3.469"
##	"1.692"	"34"	"25.81"	"4.84"
##	"1.689"	"20"	"13.99"	"3.558"
##	"1.674"	"7"	"3.81"	"1.905"
##	"1.674"	"41"	"31.04"	"5.949"
##	"1.674"	"111"	"95.08"	"9.509"
##	"1.671"	"3056"	"2967.68"	"52.859"
##	"1.67"	"5"	"2.41"	"1.551"
##	"1.662"	"6"	"3.06"	"1.769"
##	"1.66"	"2"	"0.34"	"0.655"
##	"1.66"	"24"	"17.04"	"4.192"
##	"1.66"	"2"	"0.34"	"0.555"
##	"1.659"	"7"	"3.92"	"1.857"
##	"1.644"	"8"	"4.46"	"2.153"
##	"1.644"	"24"	"17.94"	"3.687"

##	"1.644"	"41"	"32.1"	"5.415"
##	"1.635"	"136"	"119.15"	"10.305"
##	"1.627"	"13"	"8.33"	"2.871"
##	"1.622"	"3"	"1.22"	"1.097"
##	"1.614"	"11"	"7.06"	"2.44"
##	"1.612"	"6"	"2.99"	"1.867"
##	"1.61"	"3"	"1.15"	"1.149"
##	"1.61"	"6"	"3.25"	"1.708"
##	"1.602"	"8"	"4.52"	"2.172"
##	"1.6"	"2"	"0.4"	"0.636"
##	"1.596"	"3"	"1.21"	"1.122"
##	"1.593"	"66"	"54.64"	"7.13"
##	"1.59"	"2"	"0.41"	"0.588"
##	"1.583"	"6"	"3.11"	"1.825"
##	"1.575"	"44"	"34.86"	"5.801"
##	"1.567"	"18"	"12.47"	"3.529"
##	"1.566"	"4"	"1.83"	"1.386"
##	"1.56"	"60"	"49.51"	"6.723"
##	"1.55"	"2"	"0.45"	"0.626"
##	"1.543"	"29"	"22.64"	"4.121"
##	"1.53"	"2"	"0.47"	"0.731"
##	"1.526"	"3"	"1.31"	"1.107"
##	"1.521"	"52"	"42.81"	"6.043"
##	"1.513"	"4"	"1.94"	"1.362"
##	"1.51"	"2"	"0.49"	"0.659"
##	"1.495"	"11"	"7.12"	"2.595"
##	"1.49"	"2"	"0.51"	"0.628"
##	"1.49"	"2"	"0.51"	"0.628"
##	"1.49"	"2"	"0.51"	"0.628"
##	"1.487"	"15"	"10.47"	"3.047"
##	"1.465"	"14"	"9.23"	"3.256"
##	"1.464"	"11"	"7.15"	"2.63"
##	"1.46"	"2"	"0.54"	"0.658"
##	"1.457" "1.454"	"34" "4"	"26.31"	"5.278" "1.328"
## ##	"1.454"	"4"	"2.07" "2.07"	"1.328"
##	"1.454"	"4"	"2.07"	"1.328"
##	"1.454"	"4"	"2.07"	"1.328"
##	"1.454"	"4"	"2.07"	"1.328"
##	"1.44"	"2"	"0.56"	"0.783"
##	"1.439"	"9"	"5.52"	"2.418"
##	"1.439"	"8"	"4.91"	"2.147"
##	"1.435"	"29"	"22.82"	"4.307"
##	"1.434"	"5"	"2.71"	"1.597"
##	"1.432"	"35"	"27.78"	"5.042"
##	"1.422"	"62"	"50.98"	"7.749"
##	"1.412"	"9"	"5.62"	"2.394"
##	"1.408"	"23"	"17.44"	"3.95"
##	"1.408"	"4"	"2.09"	"1.357"
##	"1.397"	"169"	"153.42"	"11.155"
##	"1.394"	"3"	"1.37"	"1.169"
##	"1.371"	"3"	"1.51"	"1.087"
##	"1.371"	"8"	"5.29"	"1.976"
##	"1.355"	"46"	"37.76"	"6.082"

##	"1.354"	"12"	"8"	"2.954"
##	"1.354"	"5"	"2.82"	"1.61"
##	"1.34"	"2"	"0.66"	"0.742"
##	"1.34"	"2"	"0.66"	"0.781"
##	"1.34"	"2"	"0.66"	"0.781"
##	"1.34"	"2"	"0.66"	"0.742"
##	"1.31"	"2"	"0.69"	"0.787"
##	"1.305"	"73"	"62.38"	"8.139"
##	"1.3"	"2"	"0.7"	"0.937"
##	"1.3"	"2"	"0.7"	"0.937"
##	"1.3"	"2"	"0.7"	"0.937"
##	"1.294"	"27"	"21.26"	"4.437"
##	"1.281"	"94"	"83.1"	"8.51"
##	"1.28"	"2"	"0.72"	"0.911"
##	"1.27"	"2"	"0.73"	"0.839"
##	"1.27"	"2"	"0.73"	"0.827"
##	"1.263"	"127"	"115.13"	"9.396"
##	"1.248"	"3"	"1.46"	"1.234"
##	"1.247"	"76"	"65.98"	"8.038"
##	"1.24"	"2"	"0.76"	"0.866"
##	"1.23"	"2"	"0.77"	"0.92"
##	"1.224"	"37"	"30.37"	"5.415"
##	"1.22"	"2"	"0.78"	"0.949"
##	"1.21"	"2"	"0.79"	"0.957"
##	"1.205"	"3"	"1.61"	"1.154"
##	"1.192"	"8"	"5.45"	"2.139"
##	"1.191"	"6"	"3.66"	"1.965"
##	"1.191"	"13"	"9.46"	"2.973"
##	"1.171"	"11"	"7.6"	"2.902"
##	"1.164"	"4"	"2.19"	"1.555"
##	"1.16"	"2"	"0.84"	"0.918"
##	"1.16"	"2"	"0.84"	"0.918"
##	"1.154"	"25"	"19.82"	"4.489"
##	"1.152"	"3"	"1.58"	"1.232"
##	"1.151"	"3"	"1.67"	"1.155"
##	"1.147"	"8"	"5.29"	"2.363"
##	"1.147"	"11"	"7.77"	"2.817"
##	"1.146"	"9"	"6.09"	"2.539"
##	"1.139"	"66"	"58.12"	"6.918"
##	"1.13"	"2"	"0.87"	"0.917"
##	"1.121"	"5"	"3.12"	"1.677"
##	"1.121"	"5"	"3.12"	"1.677"
##	"1.115"	"14"	"10.45"	"3.183"
##	"1.111"	"3"	"1.55"	"1.306"
##	"1.111"	"6"	"3.78"	"1.998"
##	"1.105"	"26"	"20.78"	"4.726"
##	"1.09"	"19"	"14.91"	"3.753"
##	"1.087"	"3"	"1.65"	"1.242"
##	"1.083"	"4"	"2.38"	"1.496"
##	"1.08"	"14"	"10.42"	"3.316"
##	"1.078"	"3"	"1.74"	"1.169"
##	"1.07"	"2"	"0.93"	"0.967"
##	"1.07"	"2"	"0.93"	"0.967"
##	"1.069"	"69"	"60.72"	"7.747"

##	"1.061"	"34"	"28.52"	"5.163"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.05"	"2"	"0.95"	"0.892"
	"1.05"	"2"	"0.95"	"0.892"
##				
##	"1.05"	"2"	"0.95"	"0.892"
##	"1.044"	"6"	"4.06"	"1.858"
##	"1.019"	"75"	"66.62"	"8.223"
##	"1.019"	"29"	"24.18"	"4.732"
##	"1.015"	"3"	"1.78"	"1.203"
##	"1.013"	"7"	"4.75"	"2.222"
##	"1.01"	"2"	"0.99"	"0.99"
##	"1.007"	"23"	"18.69"	"4.28"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"1"	"1"	"0"	"0"
##	"0.997"	"4"	"2.34"	"1.665"
##	"0.995"	"16"	"12.62"	"3.399"
##	"0.986"	"6"	"4.06"	"1.969"
##	"0.983"	"42"	"35.8"	"6.307"
##	"0.98"	"1"	"0.02"	"0.141"
##	"0.98"	"1"	"0.02"	"0.141"
##	"0.977"	"12"	"9.14"	"2.927"
##	"0.972"	"13"	"9.84"	"3.25"
##	"0.971"	"5"	"3.21"	"1.844"
##	"0.97"	"1"	"0.03"	"0.223"
##	"0.96"	"1"	"0.04"	"0.197"
##	"0.96"	"1"	"0.04"	"0.197"
##	"0.952"	"6"	"3.95"	"2.153"
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.95"	"1"	"0.05"	"0.219"
	"0.95"	"1"	"0.05"	"0.219"
##				"0.219"
##	"0.95"	"1"	"0.05"	
##	"0.95"	"1"	"0.05"	"0.219"
##	"0.94"	"1"	"0.06"	"0.239"
##	"0.94"	"1"	"0.06"	"0.239"
##	"0.94"	"1"	"0.06"	"0.239"
##	"0.93"	"1"	"0.07"	"0.256"
##	"0.926"	"12"	"9.17"	"3.055"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.92"	"1"	"0.08"	"0.273"
##	"0.916"	"3"	"1.8"	"1.31"
##	"0.914"	"14"	"11.06"	"3.216"
##	"0.913"	"17"	"13.94"	"3.351"
##	"0.91"	"1"	"0.09"	"0.288"

##	"0.91"	"1"	"0.09"	"0.288"
##	"0.91"	"1"	"0.09"	"0.288"
##	"0.908"	"2"	"1"	"1.101"
##	"0.898"	"5"	"3.42"	"1.759"
##	"0.898"	"5"	"3.42"	"1.759"
##	"0.897"	"3"	"1.74"	"1.404"
##	"0.895"	"4"	"2.62"	"1.543"
##	"0.89"	"1"	"0.11"	"0.345"
##	"0.89"	"1"	"0.11"	"0.345"
##	"0.89"	"1"	"0.11"	"0.314"
##	"0.89"	"1"	"0.11"	"0.314"
##	"0.89"	"1"	"0.11"	"0.345"
##	"0.887"	"21"	"17.78"	"3.631"
##	"0.881"	"3"	"1.79"	"1.373"
##	"0.88"	"1"	"0.12"	"0.356"
##	"0.87"	"1"	"0.13"	"0.338"
##	"0.87"	"1"	"0.13"	"0.393"
##	"0.87"	"1"	"0.13"	"0.393"
##	"0.87"	"1"	"0.13"	"0.338"
##	"0.87"	"1"	"0.13"	"0.338"
##	"0.869"	"8"	"6.08"	"2.21"
##	"0.86"	"1"	"0.14"	"0.427"
##	"0.86"	"1"	"0.14"	"0.427"
##	"0.855"	"2"	"1.09"	"1.065"
##	"0.854"	"123"	"114.76"	"9.643"
##	"0.851"	"9"	"6.95"	"2.409"
##	"0.85"	"1"	"0.15"	"0.386"
##	"0.848"	"8"	"5.94"	"2.428"
##	"0.841"	"57"	"51.06"	"7.059"
##	"0.837"	"4"	"2.63"	"1.637"
##	"0.836"	"86"	"79.83"	"7.376"
##	"0.834"	"3"	"1.84"	"1.391"
##	"0.83"	"1"	"0.17"	"0.403"
##	"0.823"	"8"	"6.08"	"2.334"
##	"0.821"	"7"	"5.18"	"2.217"
##	"0.82"	"1"	"0.18"	"0.479"
##	"0.82"	"1"	"0.18"	"0.458"
##	"0.811"	"8"	"5.83"	"2.674"
##	"0.81"	"10"	"7.66"	"2.889"
##	"0.806"	"14"	"11.06"	"3.648"
##	"0.805"	"2"	"1.18"	"1.019"
##	"0.804"	"4"	"2.61"	"1.729"
##	"0.8"	"2"	"1.2"	"0.995"
##	"0.798"	"8"	"6.2"	"2.256"
##	"0.795"	"8"	"6.18"	"2.289"
##	"0.79"	"1"	"0.21"	"0.456"
##	"0.772"	"252"	"240.89"	"14.384"
##	"0.764"	"3"	"1.95"	"1.373"
##	"0.76"	"1"	"0.24"	"0.515"
##	"0.754"	"17"	"14.48"	"3.341"
##	"0.754"	"15"	"12.67"	"3.091"
##	"0.752"	"80"	"73.85"	"8.174"
##	"0.751"	"14"	"11.62"	"3.168"
##	"0.75"	"1"	"0.25"	"0.479"

##	"0.75"	"1"	"0.25"	"0.5"
##	"0.745"	"5"	"3.55"	"1.946"
##	"0.745"	"5"	"3.55"	"1.946"
##	"0.743"	"6"	"4.44"	"2.1"
##	"0.74"	"1"	"0.26"	"0.525"
##	"0.738"	"3"	"1.97"	"1.396"
##	"0.737"	"10"	"7.96"	"2.767"
##	"0.73"	"1"	"0.27"	"0.566"
##	"0.73"	"1"	"0.27"	"0.566"
##	"0.726"	"47"	"42.58"	"6.087"
##	"0.718"	"13"	"10.61"	"3.327"
##	"0.71"	"1"	"0.29"	"0.574"
##	"0.71"	"1"	"0.29"	"0.518"
##	"0.709"	"2"	"1.2"	"1.128"
##	"0.7"	"3"	"2.12"	"1.258"
##	"0.699"	"51"	"46.25"	"6.799"
##	"0.686"	"2"	"1.26"	"1.079"
##	"0.681"	"2"	"1.27"	"1.072"
##	"0.678"	"2"	"1.22"	"1.151"
##	"0.669"	"169"	"160.42"	"12.816"
##	"0.664"	"2"	"1.27"	"1.1"
##	"0.66"	"1"	"0.34"	"0.639"
##	"0.66"	"1"	"0.34"	"0.572"
##	"0.66"	"1"	"0.34"	"0.572"
##	"0.655"	"4"	"2.95"	"1.604"
##	"0.65"	"1"	"0.35"	"0.592"
##	"0.64"	"1"	"0.36"	"0.612"
##	"0.632"	"6"	"4.82"	"1.866"
##	"0.626"	"7"	"5.52"	"2.363"
##	"0.624"	"3"	"2.16"	"1.346"
##	"0.62"	"1"	"0.38"	"0.599"
##	"0.62"	"1"	"0.38"	"0.565"
##	"0.62"	"1"	"0.38"	"0.678"
##	"0.62"	"1"	"0.38"	"0.616"
##	"0.62"	"1"	"0.38"	"0.599"
##	"0.62"	"1"	"0.38"	"0.565"
##	"0.619"	"13"	"10.92"	"3.36"
##	"0.61"	"1"	"0.39"	"0.567"
##	"0.61"	"1"	"0.39"	"0.53"
##	"0.61"	"1"	"0.39"	"0.634"
##	"0.604"	"2"	"1.35"	"1.077"
##	"0.6"	"1"	"0.4"	"0.636"
##	"0.6"	"1"	"0.4"	"0.682"
##	"0.6"	"1"	"0.4"	"0.586"
##	"0.575"	"4"	"3.01"	"1.72"
##	"0.57"	"1"	"0.43"	"0.714"
##	"0.565"	"43"	"39.37"	"6.424"
##	"0.56"	"1"	"0.44"	"0.592"
##	"0.56"	"1"	"0.44"	"0.625"
##	"0.557"	"2"	"1.35"	"1.167"
##	"0.555"	"3"	"2.2"	"1.443"
##	"0.54"	"1"	"0.46"	"0.626"
##	"0.533"	"9"	"7.47"	"2.869"
##	"0.532"	"3"	"2.2"	"1.504"

##	"0.532"	"97"	"91.99"	"9.42"
##	"0.53"	"19"	"16.97"	"3.831"
##	"0.527"	"4"	"3.13"	"1.649"
##	"0.524"	"4"	"3.15"	"1.623"
##	"0.52"	"1"	"0.48"	"0.717"
##	"0.52"	"4"	"3.11"	"1.711"
##	"0.52"	"1"	"0.48"	"0.674"
##	"0.508"	"2"	"1.4"	"1.181"
##	"0.5"	"1"	"0.5"	"0.659"
##	"0.49"	"1"	"0.51"	"0.689"
##	"0.49"	"1"	"0.51"	"0.703"
##	"0.484"	"30"	"27.42"	"5.334"
##	"0.48"	"1"	"0.52"	"0.703"
##	"0.48"	"1"	"0.52"	"0.703"
##	"0.48"	"1"	"0.52"	"0.731"
##	"0.474"	"3"	"2.32"	"1.435"
##	"0.47"	"1"	"0.53"	"0.658"
##	"0.46"	"1"	"0.54"	"0.822"
##	"0.458"	"4"	"3.23"	"1.681"
##	"0.457"	"114"	"109.94"	"8.885"
##	"0.442"	"9"	"7.84"	"2.624"
##	"0.44"	"1"	"0.56"	"0.656"
##	"0.43"	"1"	"0.57"	"0.832"
##	"0.43"	"1"	"0.57"	"0.756"
##	"0.429"	"2"	"1.51"	"1.141"
##	"0.423"	"3"	"2.36"	"1.514"
##	"0.423"	"3"	"2.36"	"1.514"
##	"0.409"	"55"	"51.99"	"7.368"
##	"0.408"	"2"	"1.47"	"1.298"
##	"0.408"	"2"	"1.47"	"1.298"
##	"0.408"	"2"	"1.47"	"1.298"
##	"0.406"	"2"	"1.53"	"1.159"
##	"0.387"	"2"	"1.5"	"1.291"
##	"0.384"	"2"	"1.51"	"1.275"
##	"0.382"	"6"	"5.11"	"2.331"
##	"0.38"	"1"	"0.62"	"0.789"
##	"0.38"	"4"	"3.34"	"1.736"
##	"0.38"	"1"	"0.62"	"0.789"
##	"0.377"	"3"	"2.38"	"1.644"
##	"0.37"	"1"	"0.63"	"0.761"
##	"0.37"	"1"	"0.63"	"0.761"
##	"0.37"	"1"	"0.63"	"0.761"
##	"0.37"	"1"	"0.63"	"0.884"
##	"0.37"	"1"	"0.63"	"0.787"
##	"0.36"	"1"	"0.64"	"0.759"
##	"0.36"	"1"	"0.64"	"0.759"
##	"0.357"	"4"	"3.39"	"1.711"
##	"0.352"	"2"	"1.6"	"1.137"
##	"0.35"	"4"	"3.35"	"1.855"
##	"0.35"	"1"	"0.65"	"0.903"
##	"0.347"	"22"	"20.48"	"4.384"
##	"0.343"	"16"	"14.72"	"3.736"
##	"0.34"	"1"	"0.66"	"0.807"
##	"0.34"	"1"	"0.66"	"0.934"

##	"0.34"	"1"	"0.66"	"0.934"
##	"0.34"	"1"	"0.66"	"0.807"
##	"0.33"	"1"	"0.67"	"0.726"
##	"0.328"	"2"	"1.58"	"1.281"
##	"0.322"	"2"	"1.62"	"1.179"
##	"0.318"	"2"	"1.64"	"1.133"
##	"0.312"	"13"	"11.87"	"3.62"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.309"	"4"	"3.42"	"1.876"
##	"0.302"	"27"	"25.51"	"4.933"
##	"0.301"	"2"	"1.66"	"1.13"
##	"0.3"	"1"	"0.7"	"0.847"
##	"0.3"	"1"	"0.7"	"0.847"
##	"0.3"	"1"	"0.7"	"0.759"
##	"0.289"	"52"	"49.74"	"7.813"
##	"0.282"	"3"	"2.54"	"1.629"
##	"0.282"	"4"	"3.51"	"1.738"
##	"0.282"	"3"	"2.54"	"1.629"
##	"0.28"	"1"	"0.72"	"0.922"
##	"0.28"	"1"	"0.72"	"0.842"
##	"0.28"	"1"	"0.72"	"0.817"
##	"0.28"	"1"	"0.72"	"0.792"
##	"0.28"	"1"	"0.72"	"0.889"
##	"0.275"	"14"	"13.01"	"3.606"
##	"0.272"	"36"	"34.43"	"5.776"
##	"0.27"	"1"	"0.73"	"0.952"
##	"0.27"	"1"	"0.73"	"0.886"
##	"0.27"	"1"	"0.73"	"0.79"
##	"0.258"	"12"	"11.12"	"3.406"
##	"0.25"	"1"	"0.75"	"0.892"
##	"0.25"	"1"	"0.75"	"0.999"
##	"0.247"	"1716"	"1704.69"	"45.724"
##	"0.24"	"1"	"0.76"	"0.78"
##	"0.24"	"1"	"0.76"	"0.78"
##	"0.24"	"1"	"0.76"	"0.78"
##	"0.233"	"3"	"2.66"	"1.458"
##	"0.231"	"6"	"5.49"	"2.209"
##	"0.23"	"1"	"0.77"	"0.941"
##	"0.228"	"136"	"133.4"	"11.385"
##	"0.225"	"58"	"56.16"	"8.167"
##	"0.22"	"1"	"0.78"	"0.76"
##	"0.22"	"43"	"41.5"	"6.834"
##	"0.216"	"7"	"6.43"	"2.637"
##	"0.215"	"3"	"2.67"	"1.538"
##	"0.212"	"5"	"4.57"	"2.026"
##	"0.21"	"1"	"0.79"	"0.935"
##	"0.206"	"2"	"1.71"	"1.409"

##	"0.203"	"5"	"4.56"	"2.171"
##	"0.2"	"1"	"0.8"	"0.876"
##	"0.19"	"1"	"0.81"	"0.94"
##	"0.187"	"544"	"539.95"	"21.69"
##	"0.181"	"3"	"2.7"	"1.661"
##	"0.18"	"2"	"1.75"	"1.388"
##	"0.18"	"1"	"0.82"	"0.783"
##	"0.176"	"6"	"5.6"	"2.27"
##	"0.171"	"2"	"1.76"	"1.401"
##	"0.17"	"1"	"0.83"	"0.829"
##	"0.17"	"1"	"0.83"	"0.911"
##	"0.164"	"2"	"1.78"	"1.338"
##	"0.161"	"31"	"30.16"	"5.226"
##	"0.16"	"1"	"0.84"	"0.95"
##	"0.159"	"12"	"11.52"	"3.023"
##	"0.155"	"8"	"7.61"	"2.518"
##	"0.154"	"3"	"2.78"	"1.425"
##	"0.151"	"13"	"12.5"	"3.304"
##	"0.151"	"4"	"3.72"	"1.859"
##	"0.143"	"6"	"5.67"	"2.314"
##	"0.142"	"170"	"168.19"	"12.749"
##	"0.142"	"9"	"8.58"	"2.962"
##	"0.14"	"1"	"0.86"	"0.876"
##	"0.14"	"1"	"0.86"	"0.853"
##	"0.14"	"1"	"0.86"	"0.876"
##	"0.14"	"1"	"0.86"	"0.853"
##	"0.14"	"1"	"0.86"	"0.876"
##	"0.13"	"1"	"0.87"	"0.825"
##	"0.13"	"1"	"0.87"	"0.928"
##	"0.13"	"1"	"0.87"	"0.825"
##	"0.13"	"1"	"0.87"	"0.971"
##	"0.13"	"1"	"0.87"	"0.971"
##	"0.128"	"63"	"61.96"	"8.133"
##	"0.125"	"2"	"1.83"	"1.364"
##	"0.12"	"1"	"0.88"	"0.902"
##	"0.114"	"73"	"72"	"8.801"
##	"0.11"	"1"	"0.89"	"0.92"
##	"0.11"	"1"	"0.89"	"0.973"
##	"0.109"	"20"	"19.52"	"4.423"
##	"0.105"	"6"	"5.73"	"2.574"
##	"0.104"	"25"	"24.5"	"4.8"
##	"0.102"	"2"	"1.86"	"1.378"
##	"0.101"	"2"	"1.87"	"1.284"
##	"0.097"	"2"	"1.87"	"1.338"
##	"0.097"	"2"	"1.87"	"1.338"
##	"0.096"	"2"	"1.87"	"1.361"
##	"0.094"	_ "17"	"16.56"	"4.698"
##	"0.09"	"1"	"0.91"	"0.965"
##	"0.09"	"1"	"0.91"	"0.975"
##	"0.09"	"1"	"0.91"	"0.866"
##	"0.09"	"1"	"0.91"	"0.975"
##	"0.089"	"1"	"0.91"	"1.006"
##	"0.089"	"1"	"0.91"	"1.006"
##	"0.086"	"4"	"3.82"	"2.086"
	0.000	_	0.02	2.000

##	"0.086"	"4"	"3.82"	"2.086"
##	"0.082"	"3"	"2.87"	"1.587"
##	"0.082"	"16"	"15.7"	"3.647"
##	"0.077"	"2"	"1.89"	"1.435"
##	"0.077"	"2"	"1.89"	"1.435"
##	"0.07"	"341"	"339.71"	"18.372"
##	"0.069"	"1"	"0.93"	"1.008"
##	"0.064"	"15"	"14.76"	"3.758"
##	"0.063"	"5"	"4.86"	"2.216"
##	"0.063"	"5"	"4.86"	"2.216"
##	"0.062"	"4"	"3.88"	"1.924"
##	"0.059"	"349"	"348.04"	"16.242"
##	"0.055"	"2"	"1.93"	"1.281"
##	"0.054"	"19"	"18.78"	"4.044"
##	"0.05"	"1"	"0.95"	"0.968"
##	"0.048"	"1"	"0.95"	"1.038"
##	"0.046"	"52"	"51.69"	"6.705"
##	"0.044"	"3"	"2.93"	"1.591"
##	"0.043"	"39"	"38.73"	"6.343"
##	"0.042"	"12"	"11.86"	"3.349"
##	"0.04"	"1"	"0.96"	"0.898"
##	"0.038"	"26"	"25.8"	"5.295"
##	"0.035"	"8"	"7.9"	"2.89"
##	"0.029"	"91"	"90.73"	"9.18"
##	"0.029"	"1"	"0.97"	"1.029"
##	"0.02"	"1"	"0.98"	"0.887"
##	"0.02"	"1"	"0.98"	"0.985"
##	"0.018"	"4"	"3.97"	"1.708"
##	"0.017"	"11"	"10.94"	"3.601"
##	"0.016"	"3"	"2.97"	"1.883"
##	"0.013"	"13"	"12.96"	"3.187"
##	"0.01"	"1"	"0.99"	"0.937"
##	"0.01" "0.01"	"4"	"3.98"	"2.02"
##		"1" "1"	"0.99" "0.99"	"0.937" "1.159"
## ##	"0.009" "0.009"	"85"	"84.92"	"9.065"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"2"	"2"	"1.326"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"9"	"9"	"2.825"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	"0"	"0"	"0"	"0"
##				
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"2"	"2"	"1.348"
##	"0"	"2"	"2"	"1.348"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	"0"	"0"	"0"	"0"
##				"0"
##	"0"	"0"	"0"	"0"
##	"0" "0"	"0"	"0"	-
##	•	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"

##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"1"	"1"	"0.899"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
	"0"	"0"	"0"	"0"
## ##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
			"0"	
##	"0"	"0"	"0"	"0"
##	"0"	"0"	-	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"0"	"0"	"0"	"0"
##	"-0.007"	"8"	"8.02"	"2.738"
##	"-0.007"	"12"	"12.02"	"3.028"
##	"-0.008"	"6"	"6.02"	"2.391"
##	"-0.009"	"1"	"1.01"	"1.059"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"

##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.01"	"0"	"0.01"	"0.1"
##	"-0.014"	"36"	"36.08"	"5.715"
##	"-0.015"	"12"	"12.05"	"3.4"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.974"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.887"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"

##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"1"	"1.02"	"0.974"
##	"-0.02"	"0"	"0.02"	"0.141"
##	-0.02 "-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.02"	"0"	"0.02"	"0.141"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
	0.00	v	0.00	0.111

шш		"0"	110 0011	110 47411
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
			"0.03"	
##	"-0.03"	"0"		"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.223"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.223"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.171"
##	"-0.03"	"0"	"0.03"	"0.223"
##	"-0.037"	"6"	"6.07"	"1.882"
		"0"	"0.04"	"0.197"
##	"-0.04"			
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.243"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"1"	"1.04"	"0.994"
##	"-0.04"	"1"	"1.04"	"0.963"
##	"-0.04"	"0"	"0.04"	"0.197"
		-		"0.197"
##	"-0.04"	"0"	"0.04"	.0.197"

##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"3"	"3.07"	"1.754"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"1"	"1.04"	"0.963"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.04"	"0"	"0.04"	"0.197"
##	"-0.043"	"72"	"72.36"	"8.39"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.261"
##	"-0.05"	"2"	"2.07"	"1.402"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.261"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.261"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"

##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.05"	"0"	"0.05"	"0.219"
##	"-0.055"	"172"	"172.74"	"13.36"
##	"-0.059"	"2"	"2.09"	"1.518"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"1"	"1.06"	"1.003"
##	"-0.06"	"1"	"1.06"	"1.003"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.312"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.239"
##	"-0.06"	"0"	"0.06"	"0.278"
##	"-0.067"	"19"	"19.33"	"4.952"
##	"-0.067"	"1"	"1.07"	"1.047"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07" "-0.07"	"0" "0"	"0.07" "0.07"	"0.256" "0.256"
##				"0.293"
## ##	"-0.07" "-0.07"	"0" "0"	"0.07" "0.07"	"0.256"
	"-0.07" "-0.07"	"0"	"0.07"	"0.256"
##	"-0.07" "-0.07"	"0"	"0.07"	"0.256"
##	"-0.07" "-0.07"	"0"	"0.07"	"0.256"
## ##	"-0.07" "-0.07"	"0"	"0.07"	"0.256"
## ##	"-0.07"	"0"	"0.07"	"0.256"
## ##	"-0.07"	"0"	"0.07"	"0.256"
ਜ ਜਾਂ	0.07	U	0.01	0.200

##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"1"	"1.07"	"0.998"
##	"-0.07"	"0"	"0.07"	"0.293"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.07"	"0"	"0.07"	"0.256"
##	"-0.071"	"4"	"4.13"	"1.829"
##	"-0.077"	"26"	"26.33"	"4.302"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.307"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.08"	"0"	"0.08"	"0.273"
##	"-0.081"	"577"	"578.84"	"22.819"
##	"-0.088"	"19"	"19.41"	"4.652"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"

ии	"-0.09"	"0"	"0.09"	"0.288"
##		-		
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.321"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.09"	"0"	"0.09"	"0.288"
##	"-0.096"	"1"	"1.1"	"1.04"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"4"	"4.21"	"2.1"
##	"-0.1"	"0"	"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"6"	"6.25"	"2.488"
##	-0.1 "-0.1"	"1"	"1.1"	"0.948"
##	"-0.1"	"0"	"0.1"	"0.333"
	"-0.1"	"0"	"0.1"	"0.302"
## ##	"-0.1"	"0"	"0.1"	"0.302"
##	"-0.1"	"0"	"0.1"	"0.302"
			"0.1"	"0.333"
##	"-0.1"	"0"	"0.1"	
##	"-0.1"	"0"		"0.302"
##	"-0.103"	"2"	"2.14"	"1.363"
##	"-0.106"	"4"	"4.19"	"1.785"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.373"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.399"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"

##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.314"
##	"-0.11"	"0"	"0.11"	"0.345"
##	"-0.116"	"1"	"1.12"	"1.037"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.383"
##	"-0.12"	"0"	"0.12"	"0.327"
			*	
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.383"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.356"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.409"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.12"	"0"	"0.12"	"0.327"
##	"-0.126"	"3"	"3.23"	"1.825"
##	"-0.127"	"2"	"2.19"	"1.495"
##	"-0.128"	"99"	"100.14"	"8.919"
##	"-0.13"	"0"	"0.13"	"0.338"
## ##	"-0.13" "-0.13"	"0" "0"	"0.13" "0.13"	"0.338" "0.367"
## ## ##	"-0.13" "-0.13" "-0.13"	"0" "0" "0"	"0.13" "0.13" "0.13"	"0.338" "0.367" "0.338"
## ## ##	"-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0"	"0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.338" "0.367"
## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.338" "0.367" "0.367"
## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367"
## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367"
## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367"
## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "0" "1"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991"
## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "0" "1" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.442"
## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991" "0.442" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.442"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991" "0.442" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0" "0" "0"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "1.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991" "0.367" "0.442" "0.393" "0.338" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"O"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991" "0.367" "0.442" "0.393" "0.338" "0.338"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"O"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.338"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13" "-0.13"	"O"	"0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"O"	"0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.338" "0.338" "0.338" "0.338" "0.393" "0.338"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"O"	"0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.991" "0.367" "0.442" "0.393" "0.393" "0.398" "0.398" "0.398" "0.398" "0.398" "0.398" "0.398"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"O"	"0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.338" "0.338" "0.338" "0.338" "0.393" "0.338"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"O"	"0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"0" "0" "0" "0" "0" "1" "0" "0" "0" "0"	"0.13" "0.13"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.13" "1.14"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "1.491" "1.045"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"O"	"0.13" "1.14" "1.16"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "1.491" "1.045" "1.187"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.13" "-0.13"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.13" "1.14"	"0.338" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.367" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "0.393" "1.491" "1.045"

##	"-0.138"	"1"	"1.14"	"1.015"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.377"
##	-0.14 "-0.14"	"0"	"0.14"	"0.349"
		-		
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.403"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.377"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.14"	"0"	"0.14"	"0.349"
##	"-0.142"	"2"	"2.19"	"1.339"
##	"-0.142"	"43"	"43.97"	"6.833"
##	"-0.143"	"4"	"4.3"	"2.091"
##	"-0.147"	"1"	"1.17"	"1.155"
##	"-0.15"	"0"	"0.15"	"0.386"
## ##	"-0.15" "-0.15"	"0" "0"	"0.15" "0.15"	"0.386" "0.386"
## ## ##	"-0.15" "-0.15" "-0.15"	"0" "0" "0"	"0.15" "0.15" "0.15"	"0.386" "0.386" "0.359"
## ##	"-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0"	"0.15" "0.15" "0.15" "0.15"	"0.386" "0.386" "0.359" "0.359"
## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386"
## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386"
## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.386" "0.359" "0.359" "0.386" "0.386" "0.386"
## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.359" "0.386" "0.386" "0.386"
## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.389"
## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.359" "0.386" "0.386" "0.386"
## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.389"
## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.386" "0.386"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.386" "0.359"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.360" "0.379"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.360" "0.379"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "3.26" "3.28"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.843"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "1.15"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.843" "3.08" "3.08"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.153" "-0.153"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "1	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.843" "3.08"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.153" "-0.153"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "10.47" "10.47" "10.47"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.843" "3.08" "3.08"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.153" "-0.153" "-0.157"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "0"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "10.47" "10.47" "10.47"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "1.359" "1.709" "1.843" "3.08" "3.08" "1.525"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.153" "-0.153" "-0.153" "-0.157" "-0.16"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "10" "10" "10" "10" "10" "10" "10" "10"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "10.15" "10.47" "10.47" "10.47" "2.24" "0.16"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.843" "3.08" "3.08" "1.525" "0.368"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.15" "-0.152" "-0.153" "-0.153" "-0.153" "-0.157" "-0.16"	"0" "0" "0" "0" "0" "0" "0" "0" "0" "10" "10" "10" "10" "10" "10" "10" "10" "10" "10"	"0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "0.15" "10.47" "10.47" "10.47" "2.24" "0.16"	"0.386" "0.359" "0.359" "0.386" "0.386" "0.386" "0.359" "0.359" "0.359" "0.359" "1.709" "1.709" "1.843" "3.08" "3.08" "3.08" "1.525" "0.368" "0.368"

##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.16"	"0"	"0.16"	"0.465"
##	"-0.16"	"0"	"0.16"	"0.465"
	"-0.16"	"0"	"0.16"	"0.395"
##		•		
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"1"	"1.17"	"1.064"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.16"	"0"	"0.16"	"0.395"
##	"-0.16"	"0"	"0.16"	"0.42"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.368"
##	"-0.16"	"0"	"0.16"	"0.443"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17"	"0"	"0.17"	"0.403"
##	"-0.17"	"0"	"0.17"	"0.378"
##	"-0.17"	"0"	"0.17"	"0.378"
## ##	"-0.17"	"0"	"0.17"	"0.428"
## ##	"-0.17"	"0"	"0.17"	"0.428"
##	"-0.17" "-0.174"	"5"	"5.38"	"2.182"
##	"-0.174" "-0.175"	"5" "23"	"5.38" "23.75"	"4.286"
π#	-0.175"	23	23.10"	4.200

##	"-0.175"	"3"	"3.31"	"1.768"
##	"-0.179"	"91"	"92.69"	"9.422"
##	"-0.179"	"26"	"26.93"	"5.194"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.458"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.386"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"21"	"21.79"	"4.395"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.479"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.18"	"0"	"0.18"	"0.435"
##	"-0.18"	"0"	"0.18"	"0.411"
##	"-0.183"	"135"	"136.82"	"9.947"
##	"-0.184"	"1"	"1.22"	"1.194"
##	"-0.184"	"1"	"1.22"	"1.194"
##	"-0.184"	"1"	"1.22"	"1.194"
##	"-0.188"	"1"	"1.2"	"1.064"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.465"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.394"
##	"-0.19"	"0"	"0.19"	"0.486"
##	"-0.19"	"0"	"0.19"	"0.443"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.419"
##	"-0.19"	"0"	"0.19"	"0.443"
##	"-0.192"	"1"	"1.21"	"1.094"
##	"-0.196"	"152"	"154.29"	"11.655"
##	"-0.196"	"4"	"4.37"	"1.884"
##	"-0.197"	"50"	"51.37"	"6.947"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.2"	"0"	"0.2"	"0.402"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.2"	"0"	"0.2"	"0.449"
##	"-0.2"	"0"	"0.2"	"0.449"

##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.2"	"0"	"0.2"	"0.426"
##	"-0.2"	"0"	"0.2"	"0.402"
##	"-0.2"	"0"	"0.2"	"0.492"
##	"-0.205"	"3"	"3.38"	"1.857"
##	"-0.208"	"1"	"1.25"	"1.201"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.409"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.409"
##	"-0.21"	"0"	"0.21"	"0.478"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.433"
##	"-0.21"	"0"	"0.21"	"0.456"
##	"-0.21"	"0"	"0.21"	"0.478"
##	"-0.214"	"143"	"145.53"	"11.835"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.22"	"0"	"0.22"	"0.484"
##	"-0.22"	"0"	"0.22"	"0.504"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.44"
##	"-0.22"	"0"	"0.22"	"0.462"
##	"-0.222"	"5"	"5.53"	"2.385"
##	"-0.223"	"1"	"1.24"	"1.074"
##	"-0.225"	"1"	"1.23"	"1.024"
##	"-0.226"	"29"	"30.21"	"5.343"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"12"	"12.92"	"3.997"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.489"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.446"

##	"-0.23"	"0"	"0.23"	"0.468"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.51"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.446"
##	"-0.23"	"0"	"0.23"	"0.423"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.23"	"0"	"0.23"	"0.529"
##	"-0.24"	"0"	"0.24"	"0.474"
##	"-0.24"	"0"	"0.24"	"0.452"
##	"-0.24"	"0"	"0.24"	"0.553"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.495"
##	"-0.24"	"0"	"0.24"	"0.474"
##	"-0.25"	"0"	"0.25"	"0.52"
##	"-0.25"	"0"	"0.25"	"0.52"
##	"-0.25"	"0"	"0.25"	"0.52"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.458"
##	"-0.25"	"0"	"0.25"	"0.575"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.5"
##	"-0.25"	"0"	"0.25"	"0.52"
##	"-0.25"	"0"	"0.25"	"0.479"
##	"-0.25"	"0"	"0.25"	"0.52"
##	"-0.251"	"2"	"2.4"	"1.595"
##	"-0.252"	"23"	"24.11"	"4.413"
##	"-0.254"	"4"	"4.47"	"1.85"
##	"-0.254"	"58"	"59.97"	"7.762"
##	"-0.254"	"10"	"10.85"	"3.344"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"4"	"4.6"	"2.305"
##	"-0.26"	"0"	"0.26"	"0.579"
##	"-0.26"	"0"	"0.26"	"0.543"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.441"
##	"-0.26"	"0"	"0.26"	"0.525"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.463"
##	"-0.26"	"0"	"0.26"	"0.505"
##	"-0.26"	"0"	"0.26"	"0.579"
##	"-0.27"	"0"	"0.27"	"0.468"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.566"

##	"-0.27"	"0"	"0.27"	"0.468"
##	"-0.27"	"0"	"0.27"	"0.468"
##	"-0.27"	"0"	"0.27"	"0.468"
##	"-0.27"	"0"	"0.27"	"0.489"
##	"-0.27"	"0"	"0.27"	"0.51"
##	"-0.27"	"0"	"0.27"	"0.548"
##	"-0.27"	"0"	"0.27"	"0.529"
##	"-0.271"	"1"	"1.31"	"1.143"
##	"-0.271"	"1"	"1.31"	"1.143"
##	"-0.28"	"0"	"0.28"	"0.552"
##	"-0.28"	"0"	"0.28"	"0.494"
##	"-0.28"	"0"	"0.28"	"0.514"
##	"-0.28"	"0"	"0.28"	"0.57"
##	"-0.28"	"0"	"0.28"	"0.494"
##	"-0.28"	"0"	"0.28"	"0.57"
##	"-0.28"	"0"	"0.28"	"0.533"
##	"-0.28"	"0"	"0.28"	"0.533"
##	"-0.284"	"2"	"2.45"	"1.585"
##	"-0.289"	"1"	"1.35"	"1.209"
##	"-0.29"	"0"	"0.29"	"0.556"
##	"-0.29"	"0"	"0.29"	"0.518"
##	"-0.29"	"0"	"0.29"	"0.518"
##	"-0.29"	"0"	"0.29"	"0.574"
##	"-0.29"	"0"	"0.29"	"0.537"
##	"-0.294"	"4"	"4.65"	"2.208"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"1"	"1.3"	"0.927"
##	"-0.3"	"0"	"0.3"	"0.56"
##	"-0.3"	"0"	"0.3"	"0.541"
##	"-0.3"	"0"	"0.3"	"0.503"
##	"-0.3"	"0"	"0.3"	"0.503"
## ##	"-0.3" "-0.3"	"0" "0"	"0.3" "0.3"	"0.503" "0.503"
	"-0.3"	"0"	"0.3"	"0.503"
## ##	"-0.3"	"0"	"0.3"	"0.541"
## ##	"-0.301"	"188"	"192.05"	"13.477"
##	"-0.301"	"13"	"14"	"3.324"
##	"-0.303"	"10"	"10.92"	"3.034"
##	"-0.303"	"1"	"1.34"	"1.121"
##	"-0.305"	"1"	"1.38"	"1.245"
##	"-0.307"	"1"	"1.35"	"1.14"
##	"-0.308"	"6"	"6.84"	"2.729"
##	"-0.31"	"0"	"0.31"	"0.581"
##	"-0.31"	"0"	"0.31"	"0.581"
##	"-0.31"	"0"	"0.31"	"0.506"
##	"-0.31"	"0"	"0.31"	"0.598"
##	"-0.31"	"0"	"0.31"	"0.563"
##	"-0.31"	"0"	"0.31"	"0.506"
##	"-0.311"	"1"	"1.34"	"1.094"
##	"-0.32"	"0"	"0.32"	"0.584"
##	"-0.32"	"0"	"0.32"	"0.51"
##	"-0.32"	"0"	"0.32"	"0.53"
##	"-0.32"	"0"	"0.32"	"0.548"
##	"-0.32"	"0"	"0.32"	"0.51"

##	"-0.326"	"1"	"1.37"	"1.134"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.604"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.587"
##	"-0.33"	"0"	"0.33"	"0.493"
##	"-0.33"	"0"	"0.33"	"0.57"
##	"-0.33"	"0"	"0.33"	"0.514"
##	"-0.33"	"0"	"0.33"	"0.57"
##	-0.33 "-0.33"	"0"	"0.33"	"0.57"
##	"-0.332"	"1"	"1.37"	
		=		"1.116"
##	"-0.335"	"8"	"8.97"	"2.897"
##	"-0.335"	"5"	"5.85" "2.5"	"2.536"
##	"-0.336"	"2"		"1.487"
##	"-0.336"	"2"	"2.5"	"1.487"
##	"-0.336"	"8"	"8.95"	"2.83"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.67"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.34"	"0"	"0.34"	"0.59"
##	"-0.34"	"0"	"0.34"	"0.623"
##	"-0.34"	"0"	"0.34"	"0.536"
##	"-0.343"	"4"	"4.71"	"2.071"
##	"-0.348"	"4"	"4.7"	"2.013"
##	"-0.348"	"38"	"39.95"	"5.598"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"0"	"0.35"	"0.609"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"0"	"0.35"	"0.557"
##	"-0.35"	"0"	"0.35"	"0.592"
##	"-0.35"	"5"	"5.83"	"2.374"
##	"-0.35"	"0"	"0.35"	"0.539"
##	"-0.351"	"1"	"1.43"	"1.225"
##	"-0.358"	"6"	"6.93"	"2.595"
##	"-0.36"	"0"	"0.36"	"0.56"
##	"-0.36"	"0"	"0.36"	"0.628"
##	"-0.36"	"1"	"1.36"	"0.99"
##	"-0.36"	"0"	"0.36"	"0.56"
##	"-0.36"	"0"	"0.36"	"0.578"
##	"-0.36"	"0"	"0.36"	"0.578"
##	"-0.366"	"1"	"1.5"	"1.367"
##	"-0.366"	"2"	"2.58"	"1.584"
##	"-0.367"	"1"	"1.44"	"1.2"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.597"

##	"-0.37"	"0"	"0.37"	"0.63"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"0"	"0.37"	"0.646"
##	"-0.37"	"0"	"0.37"	"0.58"
##	"-0.37"	"1"	"1.46"	"1.243"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"0"	"0.37"	"0.614"
##	"-0.37"	"0"	"0.37"	"0.597"
##	"-0.37"	"29"	"30.97"	"5.321"
##	"-0.37"	"0"	"0.37"	"0.544"
##	"-0.375"	"9"	"10.13"	"3.011"
##	"-0.375"	"1"	"1.42"	"1.121"
##	"-0.379"	"2"	"2.56"	"1.479"
##	"-0.38"	"0"	"0.38"	"0.663"
##	"-0.38"	"0"	"0.38"	"0.582"
##	"-0.38"	"0"	"0.38"	"0.678"
##	"-0.38"	"0"	"0.38"	"0.565"
##	"-0.382"	"4"	"4.88"	"2.306"
##	"-0.387"	"1"	"1.43"	"1.112"
##	"-0.387"	"60"	"62.99"	"7.719"
##	"-0.39"	"0"	"0.39"	"0.68"
##	"-0.39"	"0"	"0.39"	"0.618"
##	"-0.39"	"0"	"0.39"	"0.634"
##	"-0.39"	"0"	"0.39"	"0.634"
##	"-0.39"	"0"	"0.39"	"0.584"
##	"-0.39"	"0"	"0.39"	"0.584"
##	"-0.39"	"0"	"0.39"	"0.751"
##	"-0.39"	"0"	"0.39"	"0.567"
##	"-0.393"	"7"	"8.13"	"2.877"
##	"-0.393"	"7"	"8.13"	"2.877"
##	"-0.393"	"7"	"8.13"	"2.877"
##	"-0.393"	"15"	"16.69"	"4.296"
##	"-0.395"	"29"	"31.18"	"5.515"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.603"
##	"-0.4"	"0"	"0.4"	"0.532"
##	"-0.4"	"0"	"0.4"	"0.603"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.62"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.4"	"0"	"0.4"	"0.636"
##	"-0.405"	"1577"	"1592.89"	"39.197"
##	"-0.409"	"2"	"2.67"	"1.64"
##	"-0.41"	"0"	"0.41"	"0.668"
##	"-0.41"	"0"	"0.41"	"0.621"
##	"-0.41"	"0"	"0.41"	"0.57"
##	"-0.413"	"1"	"1.5"	"1.21"
##	"-0.417"	"2"	"2.68"	"1.632"

##	"-0.417"	"4"	"4.99"	"2.372"
##	"-0.42"	"9"	"10.45"	"3.451"
##	"-0.42"	"0"	"0.42"	"0.606"
##	"-0.42"	"0"	"0.42"	"0.654"
##	"-0.42"	"0"	"0.42"	"0.638"
##	"-0.42"	"0"	"0.42"	"0.622"
##	"-0.42"	"0"	"0.42"	"0.572"
##	"-0.42"	"5"	"6.01"	"2.406"
##	"-0.42"	"0"	"0.42"	"0.669"
##	"-0.42"	"0"	"0.42"	"0.669"
##	"-0.42"	"0"	"0.42"	"0.669"
##	"-0.42"	"0"	"0.42"	"0.606"
##	"-0.422"	"12"	"13.58"	"3.745"
##	"-0.424"	"1"	"1.44"	"1.038"
##	"-0.426"	"3"	"3.78"	"1.829"
##	"-0.43"	"0"	"0.43"	"0.573"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.655"
##	"-0.43"	"0"	"0.43"	"0.624"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.43"	"0"	"0.43"	"0.685"
##	"-0.434"	"1"	"1.55"	"1.266"
##	"-0.434"	"5"	"6.06"	"2.44"
##	"-0.436"	"2"	"2.71"	"1.629"
##	"-0.436"	"2"	"2.71"	"1.629"
##	"-0.437"	"1"	"1.55"	"1.258"
##	"-0.439"	"2"	"2.68"	"1.55"
##	"-0.44"	"0"	"0.44"	"0.625"
##	"-0.44"	"0"	"0.44"	"0.686"
##	"-0.44"	"0"	"0.44"	"0.641"
##	"-0.44"	"0"	"0.44"	"0.715"
##	"-0.44"	"1"	"1.54"	"1.226"
##	"-0.44"	"0"	"0.44"	"0.671"
##	"-0.44"	"0"	"0.44"	"0.592"
##	"-0.44"	"0"	"0.44"	"0.701"
##	"-0.44"	"0"	"0.44"	"0.701"
##	"-0.44"	"0"	"0.44"	"0.715"
##	"-0.443"	"1"	"1.54"	"1.218"
##	"-0.446"	"58"	"61.3"	"7.407"
##	"-0.448"	"3"	"3.85"	"1.898"
##	"-0.45"	"0"	"0.45"	"0.609"
##	"-0.45"	"0"	"0.45"	"0.626"
##	"-0.45"	"0"	"0.45"	"0.687"
##	"-0.45"	"0"	"0.45"	"0.592"
##	"-0.45"	"0"	"0.45"	"0.592"
##	"-0.45"	"0"	"0.45"	"0.672"
##	"-0.452"	"1"	"1.55"	"1.218"
##	"-0.454"	"5"	"6.19"	"2.62"
##	"-0.458"	"3"	"3.89"	"1.943"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.593"
##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.731"
##	"-0.46"	"0"	"0.46"	"0.717"

##	"-0.46"	"0"	"0.46"	"0.673"
##	"-0.46"	"0"	"0.46"	"0.758"
##	"-0.46"	"0"	"0.46"	"0.758"
##	"-0.46"	"0"	"0.46"	"0.758"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.46"	"0"	"0.46"	"0.642"
##	"-0.46"	"0"	"0.46"	"0.658"
##	"-0.462"	"1"	"1.58"	"1.257"
##	"-0.463"	"75"	"79.09"	"8.84"
##	"-0.465"	"18"	"20.13"	"4.576"
##	"-0.467"	"10"	"11.59"	"3.403"
##	"-0.469"	"19"	"21.04"	"4.353"
##	"-0.469"	"22"	"24.67"	"5.689"
##	"-0.47"	"0"	"0.47"	"0.594"
##	"-0.47"	"0"	"0.47"	"0.731"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.688"
##	"-0.47"	"0"	"0.47"	"0.627"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.674"
##	"-0.47"	"0"	"0.47"	"0.731"
##	"-0.47"	"0"	"0.47"	"0.784"
##	"-0.47"	"0"	"0.47"	"0.703"
##	"-0.47"	"0"	"0.47"	"0.658"
##	"-0.47"	"0"	"0.47"	"0.717"
##	"-0.47"	"0"	"0.47"	"0.703"
##	"-0.472"	"13"	"14.64"	"3.474"
##	"-0.474"	"8"	"9.49"	"3.141"
##	"-0.474"	"8"	"9.49"	"3.141"
##	"-0.476"	"85"	"89.57"	"9.592"
##	"-0.476"	"1"	"1.64"	"1.345"
##	"-0.477"	"2"	"2.84"	"1.762"
		"0"	"0.48"	"0.745"
##	"-0.48"			
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.674"
##	"-0.48"	"0"	"0.48"	"0.745"
##	"-0.48"	"0"	"0.48"	"0.659"
##	"-0.48"	"0"	"0.48"	"0.611"
##	"-0.48"	"0"	"0.48"	"0.797"
##	"-0.48"	"0"	"0.48"	"0.659"
##	"-0.481"	"1"	"1.6"	"1.247"
##	"-0.482"	"1"	"1.57"	"1.183"
##	"-0.484"	"1"	"1.58"	"1.199"
##	"-0.484"	"1"	"1.58"	"1.199"
##	"-0.49"	"0"	"0.49"	"0.703"
##	"-0.49"	"0"	"0.49"	"0.674"
##	"-0.49"	"0"	"0.49"	"0.689"
##	"-0.49"	"0"	"0.49"	"0.674"
##	"-0.49"	"0"	"0.49"	"0.703"
##	"-0.49"	"0"	"0.49"	"0.689"
##	"-0.49"	"0"	"0.49"	"0.628"
##	"-0.49"	"0"	"0.49"	"0.732"
	0.40	J	0.40	0.102

##	"-0.49"	"0"	"0.49"	"0.759"
##	"-0.49"	"0"	"0.49"	"0.689"
##	"-0.49"	"0"	"0.49"	"0.703"
##	"-0.49"	"0"	"0.49"	"0.643"
##	"-0.49"	"4"	"4.92"	"1.879"
##	"-0.49"	"0"	"0.49"	"0.643"
##	"-0.495"	"1"	"1.56"	"1.131"
##	"-0.5"	"0"	"0.5"	"0.659"
##	"-0.5"	"0"	"0.5"	"0.689"
##	"-0.5"	"0"	"0.5"	"0.704"
##	"-0.5"	"0"	"0.5"	"0.798"
##	"-0.5"	"0"	"0.5"	"0.704"
##	"-0.5"	"0"	"0.5"	"0.745"
##	"-0.5"	"0"	"0.5"	"0.704"
##	"-0.5"	"0"	"0.5"	"0.644"
##	"-0.5"	"0"	"0.5"	"0.644"
##	"-0.5"	"0"	"0.5"	"0.689"
##	"-0.503"	"87"	"91.68"	"9.299"
##	"-0.503"	"6"	"7.44"	"2.865"
##	"-0.505"	"2"	"2.89"	"1.763"
##	"-0.505"	"2"	"2.89"	"1.763"
##	"-0.508"	"78"	"82.67"	"9.193"
##	"-0.51"	"0"	"0.51"	"0.628"
##	"-0.51"	"0"	"0.51"	"0.703"
##	"-0.51"	"0"	"0.51"	"0.745"
##	"-0.51"	"0"	"0.51"	"0.732"
##	"-0.51"	"0"	"0.51"	"0.674"
##	"-0.51"	"0"	"0.51"	"0.759"
##	"-0.51"	"0"	"0.51"	"0.689"
##	"-0.51"	"0"	"0.51"	"0.759"
##	"-0.51"	"0"	"0.51"	"0.659"
##	"-0.51"	"0"	"0.51"	"0.659"
##	"-0.511"	"109"	"113.95"	"9.686"
##	"-0.515"	"1"	"1.55"	"1.067"
##	"-0.517"	"6"	"7.24"	"2.4"
##	"-0.52"	"0"	"0.52"	"0.703"
##	"-0.52"	"1"	"1.67"	"1.288"
##	"-0.52"	"0"	"0.52"	"0.659"
##	"-0.52"	"0"	"0.52"	"0.731"
##	"-0.52"	"0"	"0.52"	"0.785"
##	"-0.52"	"0"	"0.52"	"0.674"
##	"-0.52"	"0"	"0.52"	"0.759"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.52"	"0"	"0.52"	"0.689"
##	"-0.52"	"0"	"0.52"	"0.797"
##	"-0.52"	"0"	"0.52"	"0.689"
##	"-0.52"	"0"	"0.52"	"0.797"
##	"-0.52"	"0"	"0.52"	"0.717"
##	"-0.523"	"1"	"1.65"	"1.242"
##	"-0.523"	"3"	"4.12"	"2.143"
##	"-0.525" "-0.527"	"3" "3"	"4.04" "4.11"	"1.979" "2.108"
## ##	"-0.527" "-0.529"	"3" "1"	"4.11" "1.71"	"2.108"
##	"-0.529" "-0.529"	"6"	"1.71" "7.44"	"1.343"
##	-0.529"	U	1.44	2.12

##	"-0.53"	"0"	"0.53"	"0.745"
##	"-0.53"	"0"	"0.53"	"0.674"
##	"-0.53"	"0"	"0.53"	"0.703"
##	"-0.532"	"10"	"11.78"	"3.344"
##	"-0.533"	"1"	"1.7"	"1.314"
##	"-0.537"	"1"	"1.76"	"1.415"
##	"-0.54"	"0"	"0.54"	"0.717"
##	"-0.54"	"0"	"0.54"	"0.702"
##	"-0.54"	"0"	"0.54"	"0.809"
##	"-0.54"	"0"	"0.54"	"0.784"
##	"-0.54"	"0"	"0.54"	"0.797"
##	"-0.54"	"0"	"0.54"	"0.717"
##	"-0.54"	"0"	"0.54"	"0.797"
##	"-0.54"	"0"	"0.54"	"0.717"
##	"-0.54"	"0"	"0.54"	"0.784"
##	"-0.545"	"9"	"10.76"	"3.232"
##	"-0.548"	"139"	"145.33"	"11.542"
##	"-0.55"	"0"	"0.55"	"0.744"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.702"
##	"-0.55"	"0"	"0.55"	"0.857"
##	"-0.55"	"0"	"0.55"	"0.716"
##	"-0.55"	"0"	"0.55"	"0.672"
##	"-0.55"	"0"	"0.55"	"0.783"
##	"-0.55"	"0"	"0.55"	"0.845"
##	"-0.554"	"3"	"4.13"	"2.038"
##	"-0.557"	"5"	"6.4"	"2.515"
##	"-0.558"	"9"	"11.08"	"3.725"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.857"
##	"-0.56"	"0"	"0.56"	"0.808"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.56"	"0"	"0.56"	"0.686"
##	"-0.56"	"0"	"0.56"	"0.77"
##	"-0.561"	"1"	"1.73"	"1.302"
##	"-0.561"	"1"	"1.73"	"1.302"
##	"-0.563"	"34"	"37.64"	"6.471"
##	"-0.564"	"31"	"34.47"	"6.149"
##	"-0.566"	"10"	"11.98"	"3.499"
##	"-0.57"	"0"	"0.57"	"0.782"
##	"-0.57"	"0"	"0.57"	"0.868"
##	"-0.572"	"1"	"1.87"	"1.522"
##	"-0.579"	"6"	"7.61"	"2.781"
##	"-0.58"	"0"	"0.58"	"0.831"
##	"-0.58"	"0"	"0.58"	"0.794"
##	"-0.58"	"0"	"0.58"	"0.806"
##	"-0.58"	"0"	"0.58"	"0.755"
##	"-0.58"	"0"	"0.58"	"0.831"
##	"-0.58"	"0"	"0.58"	"0.768"
##	"-0.58"	"0"	"0.58"	"0.684"
##	"-0.58"	"0"	"0.58"	"0.684"
##	"-0.588"	"4"	"5.37"	"2.33"

##	"-0.59"	"0"	"0.59"	"0.753"
##	"-0.59"	"0"	"0.59"	"0.866"
##	"-0.59"	"0"	"0.59"	"0.793"
##	"-0.59"	"0"	"0.59"	"0.793"
##	"-0.59"	"0"	"0.59"	"0.793"
##	"-0.59"	"0"	"0.59"	"0.726"
##	"-0.59"	"0"	"0.59"	"0.78"
##	"-0.59"	"0"	"0.59"	"0.712"
##	"-0.59"	"0"	"0.59"	"0.793"
##	"-0.593"	"5"	"6.31"	"2.21"
##	"-0.593"	"5"	"6.31"	"2.21"
##	"-0.599"	"15"	"17.45"	"4.091"
##	"-0.599"	"1"	"1.77"	"1.286"
##	"-0.6"	"0"	"0.6"	"0.778"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.778"
##	"-0.6"	"0"	"0.6"	"0.804"
##	"-0.6"	"0"	"0.6"	"0.696"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.739"
##	"-0.6"	"0"	"0.6"	"0.696"
##	"-0.6"	"0"	"0.6"	"0.696"
##	"-0.601"	"16"	"18.4"	"3.995"
##	"-0.601"	"1"	"1.99"	"1.648"
##	"-0.604"	"120"	"126.92"	"11.463"
##	"-0.608"	"2"	"3.07"	"1.76"
##	"-0.61"	"0"	"0.61"	"0.803"
##	"-0.61"	"0"	"0.61"	"0.764"
##	"-0.61"	"0"	"0.61"	"0.777"
##	"-0.611"	"69"	"74.67"	"9.287"
##	"-0.611"	"3"	"4.2"	"1.964"
##	"-0.613"	"11"	"12.77"	"2.888"
##	"-0.615"	"161"	"169.33"	"13.538"
##	"-0.617"	"1"	"1.82"	"1.329"
##	"-0.618"	"63"	"68.61"	"9.078"
##	"-0.62"	"0"	"0.62"	"0.763"
##	"-0.62"	"0"	"0.62"	"0.763"
##	"-0.62"	"0"	"0.62"	"0.814"
##	"-0.62"	"0"	"0.62"	"0.776"
##	"-0.62"	"0"	"0.62"	"0.736"
##	"-0.62"	"1"	"1.74"	"1.194"
##	"-0.62"	"0"	"0.62"	"0.763"
##	"-0.62"	"0"	"0.62"	"0.736"
##	"-0.62"	"0"	"0.62"	"0.736"
##	"-0.62"	"0"	"0.62"	"0.736"
##	"-0.622"	"5"	"6.56"	"2.508"
##	"-0.623"	"0"	"0.63"	"1.012"
##	"-0.624"	"1"	"1.86"	"1.378"
##	"-0.626"	"1"	"1.93"	"1.486"
##	"-0.626"	"1"	"1.93"	"1.486"
##	"-0.626"	"52"	"56.78"	"7.63"
##	"-0.629"	"10"	"12.08"	"3.308"
##	"-0.63"	"0"	"0.63"	"0.734"
##	"-0.63"	"0"	"0.63"	"0.774"

##	"-0.63"	"0"	"0.63"	"0.72"
##	"-0.631"	"1"	"1.78"	"1.236"
##	"-0.631"	"1"	"1.78"	"1.236"
##	"-0.635"	"6"	"7.73"	"2.726"
##	"-0.637"	"22"	"25.29"	"5.163"
##	"-0.638"	"1"	"1.81"	"1.269"
##	"-0.64"	"0"	"0.64"	"0.811"
##	"-0.64"	"0"	"0.64"	"0.704"
##	"-0.64"	"1"	"1.94"	"1.469"
##	"-0.64"	"0"	"0.64"	"0.835"
##	"-0.64"	"0"	"0.64"	"0.871"
##	"-0.641"	"2"	"3.32"	"2.059"
##	"-0.642"	"3"	"4.47"	"2.289"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.645"	"1"	"1.92"	"1.426"
##	"-0.646"	"209"	"219.11"	"15.642"
##	"-0.648"	"12"	"14.15"	"3.319"
##	"-0.649"	"1"	"1.83"	"1.28"
##	"-0.65"	"0"	"0.65"	"0.809"
##	"-0.65"	"0"	"0.65"	"0.821"
##	"-0.65"	"0"	"0.65"	"0.796"
##	"-0.65"	"0"	"0.65"	"0.869"
##	"-0.65"	"0"	"0.65"	"0.821"
##	"-0.65"	"0"	"0.65"	"0.809"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.65"	"0"	"0.65"	"0.77"
##	"-0.66"	"0"	"0.66"	"0.89"
##	"-0.66"	"0"	"0.66"	"0.742"
##	"-0.663"	"2"	"3.26"	"1.9"
##	"-0.663"	"11"	"13.3"	"3.468"
##	"-0.667"	"1"	"1.95"	"1.424"
##	"-0.669"	"98"	"104.36"	"9.51"
##	"-0.673"	"1"	"1.98"	"1.456"
##	"-0.677"	"4"	"5.55"	"2.289"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.815"
##	"-0.68"	"1"	"2.12"	"1.647"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.764"
##	"-0.68"	"0"	"0.68"	"0.777"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.803"
##	"-0.68"	"0"	"0.68"	"0.764"
##	"-0.682"	"13"	"15.67"	"3.916"
##	"-0.682"	"13"	"15.67"	"3.916"
##	"-0.688"	"1"	"1.84"	"1.22"
##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.94"
##	"-0.69" "-0.69"	"0" "0"	"0.69" "0.69"	"0.907" "0.825"
##	"-0.69" "-0.69"	"0"	"0.69"	"0.825"
## ##	"-0.69" "-0.69"	"0"	"0.69"	"0.734"
π#	-0.09"	O ···	0.09"	0.115"

##	"-0.69"	"0"	"0.69"	"0.837"
##	"-0.69"	"0"	"0.69"	"0.787"
##	"-0.69"	"0"	"0.69"	"0.787"
##	"-0.69"	"0"	"0.69"	"0.813"
##	"-0.69"	"0"	"0.69"	"0.884"
##	"-0.698"	"5"	"6.84"	"2.635"
##	"-0.7"	"0"	"0.7"	"0.718"
##	"-0.7"	"0"	"0.7"	"0.859"
##	"-0.704"	"12"	"14.88"	"4.093"
##	"-0.705"	"165"	"173.76"	"12.417"
##	"-0.706"	"2"	"3.34"	"1.897"
##	"-0.71"	"0"	"0.71"	"0.82"
##	"-0.71"	"0"	"0.71"	"0.795"
##	"-0.71"	"0"	"0.71"	"0.743"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.71"	"0"	"0.71"	"0.891"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.911"
##	"-0.72"	"0"	"0.72"	"0.877"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.866"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.792"
##	"-0.72"	"0"	"0.72"	"0.766"
##	"-0.721"	"2"	"3.41"	"1.955"
##	"-0.722"	"2"	"3.25"	"1.731"
##	"-0.722"	"2"	"3.3"	"1.801"
##	"-0.728"	"1"	"2.06"	"1.455"
##	"-0.728"	"2"	"3.32"	"1.814"
##	"-0.73"	"0"	"0.73"	"0.874"
##	"-0.73"	"0"	"0.73"	"0.863"
##	"-0.73"	"0"	"0.73"	"0.863"
##	"-0.73"	"0"	"0.73"	"0.93"
##	"-0.733"	"10"	"12.38"	"3.247"
##	"-0.736"	"2"	"3.34"	"1.821"
##	"-0.738"	"1"	"2.09"	"1.478"
##	"-0.74"	"0"	"0.74"	"0.848"
##	"-0.74"	"2"	"3.25"	"1.69"
##	"-0.74"	"0"	"0.74"	"0.848"
##	"-0.744"	"1"	"2.02"	"1.371"
##	"-0.744"	"1"	"2.15"	"1.546"
##	"-0.748"	"1"	"2.02"	"1.363"
##	"-0.75"	"0"	"0.75"	"0.968"
##	"-0.75"	"0"	"0.75"	"0.821"
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"1"	"2.03"	"1.374"
##	"-0.75"	"0"	"0.75"	"0.925"
##	"-0.75"	"0"	"0.75"	"0.936"

##	"-0.75"	"0"	"0.75"	"0.821"
##	"-0.75"	"0"	"0.75"	"0.796"
##	"-0.75"	"0"	"0.75"	"0.914"
##	"-0.751"	"4"	"5.68"	"2.238"
##	"-0.76"	"0"	"0.76"	"0.889"
##	"-0.76"	"0"	"0.76"	"0.818"
##	"-0.76"	"0"	"0.76"	"0.83"
##	"-0.76"	"6"	"8.14"	"2.814"
##	"-0.76"	"0"	"0.76"	"0.83"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"0"	"0.76"	"0.866"
##	"-0.76"	"0"	"0.76"	"0.878"
##	"-0.76"	"0"	"0.76"	"0.878"
##	"-0.76"	"0"	"0.76"	"0.878"
##	"-0.761"	"10"	"12.7"	"3.546"
##	"-0.763"	"28"	"31.86"	"5.061"
##	"-0.767"	"75"	"82.09"	"9.25"
##	"-0.768"	"1"	"2.14"	"1.484"
##	"-0.768"	"1"	"2.23"	"1.601"
##	"-0.769"	"4"	"5.74"	"2.264"
##	"-0.77"	"0"	"0.77"	"0.839"
##	"-0.77"	"0"	"0.77"	"0.815"
##	"-0.77"	"0"	"0.77"	"0.851"
##	"-0.77"	"0"	"0.77"	"0.851"
##	"-0.771"	"1"	"2.03"	"1.337"
##	"-0.777"	"1"	"2.29"	"1.659"
##	"-0.779"	"3"	"4.8"	"2.309"
##	"-0.779"	"3"	"4.56"	"2.002"
##	"-0.78"	"0"	"0.78"	"0.848"
##	"-0.78"	"0"	"0.78"	"0.894"
##	"-0.78"	"0"	"0.78"	"0.836"
##	"-0.789"	"1"	"2.04"	"1.317"
##	"-0.789"	"1"	"2.11"	"1.406"
##	"-0.79"	"0"	"0.79"	"0.902"
##	"-0.79"	"11"	"14.05"	"3.862"
##	"-0.79"	"0"	"0.79"	"0.967"
##	"-0.79"	"0"	"0.79"	"0.795"
##	"-0.79"	"0"	"0.79"	"0.924"
##	"-0.79"	"0"	"0.79"	"0.924"
##	"-0.79"	"11"	"14.05"	"3.862"
##	"-0.798"	"1"	"2.22"	"1.528"
##	"-0.798"	"1"	"2.22"	"1.528"
##	"-0.798"	- "1"	"2.22"	"1.528"
##	"-0.799"	"2"	"3.47"	"1.839"
##	"-0.8"	"2"	"3.52"	"1.899"
##	"-0.8"	"0"	"0.8"	"0.791"
##	"-0.8"	"0"	"0.8"	"0.974"
##	"-0.8"	"0"	"0.8"	"0.974"
##	"-0.8"	"0"	"0.8"	"0.974"
##	"-0.804"	"92"	"99.91"	"9.839"
##	"-0.805"	"0"	"0.82"	"1.019"
##	"-0.806"	"13"	"16.16"	"3.923"
##	"-0.81"	"0"	"0.81"	"0.918"
##	"-0.81"	"0"	"0.81"	"0.918"
	0.01	•		0.010

##	"-0.81"	"0"	"0.81"	"0.95"
##	"-0.81"	"0"	"0.81"	"0.918"
##	"-0.812"	"56"	"62.16"	"7.582"
##	"-0.812"	"1"	"2.2"	"1.477"
##	"-0.813"	"1"	"2.45"	"1.783"
##	"-0.813"	"1"	"2.18"	"1.452"
##	"-0.815"	"2"	"3.38"	"1.692"
##	"-0.82"	"0"	"0.82"	"0.978"
##	"-0.82"	"0"	"0.82"	"0.999"
##	"-0.82"	"0"	"0.82"	"0.869"
##	"-0.82"	"0"	"0.82"	"0.989"
##	"-0.823"	"5"	"7.02"	"2.454"
##	"-0.823"	"19"	"23.07"	"4.945"
##	"-0.83"	"0"	"0.83"	"0.922"
##	"-0.83"	"0"	"0.83"	"0.817"
##	"-0.83"	"0"	"0.83"	"0.817"
##	"-0.83"	"0"	"0.83"	"0.922"
##	"-0.83"	"0"	"0.83"	"0.911"
##	"-0.839"	"14"	"17.38"	"4.027"
##	"-0.839"	"0"	"0.86"	"1.025"
##	"-0.84"	"0"	"0.84"	"0.884"
##	"-0.84"	"0"	"0.84"	"0.982"
##	"-0.84"	"0"	"0.84"	"0.849"
##	"-0.843"	"1"	"2.38"	"1.638"
##	"-0.843"	"1"	"2.38"	"1.638"
##	"-0.845"	"1"	"2.06"	"1.254"
##	"-0.85"	"0"	"0.85"	"0.936"
##	"-0.85"	"0"	"0.85"	"0.925"
##	"-0.85"	"0"	"0.85"	"0.892"
##	"-0.85"	"0"	"0.85"	"0.947"
##	"-0.85"	"0"	"0.85"	"0.968"
##	"-0.85"	"0"	"0.85"	"0.845"
##	"-0.85"	"0"	"0.85"	"0.989"
##	"-0.85"	"0"	"0.85"	"0.968"
##	"-0.85"	"1"	"2.14"	"1.341"
##	"-0.85"	"0"	"0.85"	"0.989"
##	"-0.85"	"1"	"2.14"	"1.341"
##	"-0.85"	"1"	"2.14"	"1.341"
##	"-0.857"	"1"	"2.2"	"1.4"
##	"-0.86"	"0"	"0.86"	"0.876"
##	"-0.86"	"0"	"0.86"	"0.921"
##	"-0.86"	"0"	"0.86"	"0.932"
##	"-0.86"	"0"	"0.86"	"0.921"
##	"-0.86"	"0"	"0.86"	"0.921"
##	"-0.86"	"0"	"0.86"	"0.964"
##	"-0.862"	"28"	"32.47"	"5.184"
##	"-0.867"	"16"	"19.58"	"4.13"
##	"-0.869"	"0"	"0.87"	"1.002"
##	"-0.869"	"0"	"0.87"	"1.002"
##	"-0.869"	"0"	"0.87"	"1.002"
##	"-0.87"	"0"	"0.87"	"0.872"
##	"-0.87"	"0"	"0.87"	"0.95"
##	"-0.87"	"0"	"0.87"	"0.837"
##	"-0.87"	"0"	"0.87"	"0.971"

##	"-0.878"	"0"	"0.89"	"1.014"
##	"-0.88"	"0"	"0.88"	"0.977"
##	"-0.88"	"0"	"0.88"	"0.998"
##	"-0.883"	"23"	"27.75"	"5.381"
##	"-0.886"	"0"	"0.89"	"1.004"
##	"-0.886"	"0"	"0.89"	"1.004"
##	"-0.89"	"53"	"59.98"	"7.844"
##	"-0.89"	"0"	"0.89"	"0.886"
##	"-0.89"	"0"	"0.89"	"0.92"
##	"-0.891"	"3"	"4.76"	"1.975"
##	"-0.893"	"1"	"2.42"	"1.59"
##	"-0.894"	"14"	"17.98"	"4.452"
##	"-0.895"	"2"	"3.88"	"2.1"
##	"-0.895"	"1"	"2.38"	"1.543"
##	"-0.897"	"1"	"2.26"	"1.404"
##	"-0.9"	"0"	"0.9"	"0.948"
##	"-0.9"	"0"	"0.9"	"0.859"
##	"-0.9"	"0"	"0.9"	"0.905"
##	"-0.9"	"0"	"0.9"	"0.969"
##	"-0.903"	"2"	"3.81"	"2.004"
##	"-0.903"	"0"	"0.96"	"1.063"
##	"-0.905"	"0"	"0.93"	"1.027"
##	"-0.91"	"0"	"0.91"	"0.954"
##	"-0.911"	"2"	"3.82"	"1.997"
##	"-0.919"	"0"	"0.94"	"1.023"
##	"-0.92"	"0"	"0.92"	"0.895"
##	"-0.92"	"0"	"0.92"	"0.939"
##	"-0.92"	"0"	"0.92"	"0.939"
##	"-0.92"	"0"	"0.92"	"0.939"
##	"-0.93"	"0"	"0.93"	"0.924"
##	"-0.93"	"0"	"0.93"	"0.795"
##	"-0.93"	"0"	"0.93"	"0.902"
##	"-0.93"	"1"	"2.56"	"1.678"
##	"-0.93"	"0"	"0.93"	"0.879"
##	"-0.933"	"1"	"2.52"	"1.63"
##	"-0.934"	"0"	"1.06"	"1.135"
##	"-0.935"	"10"	"13.49"	"3.732"
##	"-0.943"	"13"	"16.66"	"3.88"
##	"-0.944"	"2"	"3.65"	"1.749"
##	"-0.944"	"2"	"3.65"	"1.749"
##	"-0.946"	"0"	"1.13"	"1.195"
##	"-0.947"	"0"	"1.07"	"1.13"
##	"-0.95"	"1"	"2.36"	"1.432"
##	"-0.95"	"1"	"2.57"	"1.653"
##	"-0.95"	"0"	"0.95"	"0.925"
##	"-0.95"	"0"	"0.95"	"0.833"
##	"-0.954"	"0"	"1.07"	"1.121"
##	"-0.956"	"3"	"5.15"	"2.249"
##	"-0.959"	"0"	"1.14"	"1.189"
##	"-0.96"	"0"	"0.96"	"0.875"
##	"-0.96"	"0"	"0.96"	"0.974"
##	"-0.96"	"0"	"0.96"	"0.875"
##	"-0.96"	"0"	"0.96"	"0.963"
##	"-0.963"	"0"	"1.01"	"1.049"

##	"-0.963"	"1"	"2.65"	"1.714"
##	"-0.963"	"1"	"2.65"	"1.714"
##	"-0.964"	"2"	"3.82"	"1.888"
##	"-0.965"	"2"	"4.1"	"2.177"
##	"-0.969"	"0"	"1.39"	"1.435"
##	"-0.97"	"0"	"0.97"	"0.915"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"0.969"
##	"-0.97"	"0"	"0.97"	"0.958"
##	"-0.97"	"0"	"0.97"	"0.915"
##	"-0.975"	"0"	"1.12"	"1.148"
##	"-0.975"	"0"	"1.05"	"1.077"
##	"-0.975"	"0"	"1.05"	"1.077"
##	"-0.975"	"0"	"1.05"	"1.077"
##	"-0.975"	"0"	"1.05"	"1.077"
##	"-0.98"	"0"	"0.98"	"0.91"
##	"-0.98"	"0"	"0.98"	"0.921"
##	"-0.984"	"3"	"4.93"	"1.96"
##	"-0.985"	"1"	"2.53"	"1.553"
##	"-0.985"	"2"	"4.17"	"2.202"
##	"-0.987"	"1"	"2.44"	"1.459"
##	"-0.987"	"0"	"1.1"	"1.115"
##	"-0.987"	"4"	"5.87"	"1.894"
##	"-0.989"	"0"	"1.13"	"1.143"
##	"-0.99"	"0"	"0.99"	"0.959"
##	"-0.99"	"0"	"0.99"	"0.99"
##	"-0.992"	"13"	"17.39"	"4.426"
##	"-0.993"	"9"	"12.78"	"3.805"
##	"-0.993"	"0"	"1.05"	"1.058"
##	"-0.995"	"1"	"2.5"	"1.508"
##	"-0.999"	"5"	"7.83"	"2.832"
##	"-1"	"0"	"1"	"0.953"
##	"-1"	"6"	"9.15"	"3.151"
##	"-1"	"0"	"1"	"0.964"
##	"-1.002"	"0"	"1.05"	"1.048"
##	"-1.005"	"1"	"2.46"	"1.452"
##	"-1.007"	"1"	"2.41"	"1.401"
##	"-1.009"	"0"	"1.33"	"1.319"
##	"-1.01"	"0"	"1.03"	"1.02"
##	"-1.01"	"0"	"1.01"	"0.948"
##	"-1.01"	"0"	"1.01"	"0.859"
##	"-1.01"	"0"	"1.01"	"0.859"
##	"-1.013"	"0"	"1.17"	"1.155"
##	"-1.02"	"19"	"24.77"	"5.655"
##	"-1.02"	"0"	"1.02"	"0.953"
##	"-1.02"	"0"	"1.03"	"1.01"
##	"-1.021" "-1.021"	"0"	"1.1"	"1.078"
##	"-1.021" "-1.023"	"101"	"110.59"	"9.397"
##	"-1.023" "-1.025"	"18" "0"	"22.76" "1.04"	"4.654" "1.014"
## ##	"-1.025" "-1.025"	"0"	"1.04" "1.04"	"1.014"
	"-1.025" "-1.028"	"0"	"1.04"	"1.014"
## ##	"-1.028" "-1.03"	"0"	"1.08"	"0.989"
##	-1.03"	O	1.05	0.909

##	"-1.03"	"0"	"1.03"	"0.989"
##	"-1.03"	"0"	"1.03"	"0.989"
##	"-1.035"	"0"	"1.11"	"1.072"
##	"-1.037"	"0"	"1.08"	"1.041"
##	"-1.037"	"0"	"1.17"	"1.129"
##	"-1.037"	"0"	"1.17"	"1.129"
##	"-1.037"	"0"	"1.08"	"1.041"
##	"-1.038"	"1"	"2.94"	"1.869"
##	"-1.039"	"1"	"2.99"	"1.915"
##	"-1.04"	"0"	"1.04"	"0.984"
##	"-1.04"	"0"	"1.04"	"0.942"
##	"-1.041"	"0"	"1.07"	"1.027"
##	"-1.041"	"0"	"1.25"	"1.201"
##	"-1.041"	"6"	"8.49"	"2.389"
##	"-1.042	"11"	"14.99"	"3.826"
##	"-1.045"	"0"	"1.34"	"1.281"
		•		
##	"-1.047"	"0"	"1.27"	"1.213"
##	"-1.05"	"0"	"1.05"	"0.869"
##	"-1.052"	"1"	"2.9"	"1.806"
##	"-1.055"	"3"	"5.13"	"2.018"
##	"-1.059"	"0"	"1.33"	"1.256"
##	"-1.059"	"4"	"6.86"	"2.701"
##	"-1.06"	"0"	"1.06"	"0.983"
##	"-1.062"	"0"	"1.14"	"1.073"
##	"-1.062"	"0"	"1.17"	"1.101"
##	"-1.062"	"0"	"1.17"	"1.101"
##	"-1.063"	"1"	"2.79"	"1.684"
##	"-1.063"	"3"	"5.68"	"2.522"
##	"-1.064"	"7"	"10.11"	"2.923"
##	"-1.065"	"0"	"1.24"	"1.164"
##	"-1.07"	"10"	"13.92"	"3.664"
##	"-1.07"	"0"	"1.07"	"0.987"
##	"-1.07"	"0"	"1.07"	"0.913"
##	"-1.072"	"1"	"2.7"	"1.586"
##	"-1.074"	"0"	"1.31"	"1.22"
##	"-1.075"	"0"	"1.29"	"1.2"
##	"-1.076"	"0"	"1.28"	"1.19"
##	"-1.077"	"0"	"1.27"	"1.179"
##	"-1.078"	"0"	"1.15"	"1.067"
##	"-1.081"	"3"	"5.28"	"2.109"
##	"-1.084"	"0"	"1.09"	"1.006"
##	"-1.087"	"0"	"1.35"	"1.242"
##	"-1.087"	"0"	"1.51"	"1.389"
##	"-1.088"	"18"	"22.96"	"4.557"
##	"-1.089"	"0"	"1.1"	"1.01"
##	"-1.089"	"0"	"1.1"	"1.01"
##	"-1.089"	"0"	"1.1"	"1.01"
##	"-1.089"	"0"	"1.1"	"1.01"
##	"-1.089"	"0"	"1.31"	"1.203"
##	"-1.09"	"0"	"1.2"	"1.101"
##	"-1.09"	"0"	"1.2"	"1.101"
##	"-1.091"	"1"	"2.85"	"1.696"
##	"-1.093"	"35"	"42.15"	"6.542"
##	"-1.094"	"1"	"2.58"	"1.444"

##	"-1.095"	"0"	"1.33"	"1.215"
##	"-1.096"	"0"	"1.13"	"1.031"
##	"-1.1"	"0"	"1.1"	"0.916"
##	"-1.1"	"2"	"4.24"	"2.036"
##	"-1.1"	"2"	"4.24"	"2.036"
##	"-1.101"	"0"	"1.27"	"1.153"
##	"-1.106"	"1"	"2.71"	"1.546"
##	"-1.107"	"1"	"2.66"	"1.499"
##	"-1.108"	"17"	"22.09"	"4.595"
##	"-1.109"	"0"	"1.5"	"1.352"
##	"-1.109"	"0"	"1.2"	"1.082"
##	"-1.11"	"0"	"1.44"	"1.297"
##	"-1.115"	"0"	"1.21"	"1.085"
##	"-1.115"	"0"	"1.38"	"1.237"
##	"-1.116"	"65"	"75.21"	"9.149"
##	"-1.116"	"0"	"1.37"	"1.228"
##	"-1.116"	"0"	"1.36"	"1.219"
##	"-1.117"	"0"	"1.13"	"1.012"
##	"-1.117"	"0"	"1.13"	"1.012"
##	"-1.117"	"7"	"10.41"	"3.052"
##	"-1.118"	"0"	"1.15"	"1.029"
##	"-1.118"	"2"	"4.05"	"1.833"
##	"-1.119"	"0"	"1.23"	"1.1"
##	"-1.12"	"0"	"1.12"	"0.868"
##	"-1.122"	"192"	"206.96"	"13.333"
##	"-1.123"	"0"	"1.42"	"1.265"
##	"-1.123"	"0"	"1.25"	"1.114"
##	"-1.126"	"0"	"1.18"	"1.048"
##	"-1.126"	"0"	"1.18"	"1.048"
##	"-1.128"	"0"	"1.23"	"1.09"
##	"-1.128"	"0"	"1.23"	"1.09"
##	"-1.128"	"0"	"1.23"	"1.09"
##	"-1.128"	"0"	"1.23"	"1.09"
##	"-1.128"	"0"	"1.23"	"1.09"
##	"-1.129"	"0"	"1.15"	"1.019"
##	"-1.129"	"0"	"1.15"	"1.019"
##	"-1.13"	"0"	"1.13"	"0.939"
##	"-1.13"	"21"	"27.05"	"5.353"
##	"-1.131"	"1"	"2.92"	"1.698"
##	"-1.132"	"1"	"3.1"	"1.856"
##	"-1.134"	"0"	"1.28"	"1.129"
##	"-1.134"	"0"	"1.33"	"1.173"
##	"-1.135"	"0"	"1.69"	"1.489"
##	"-1.135"	"0"	"1.21"	"1.066"
##	"-1.136"	"0"	"1.18"	"1.038"
##	"-1.137"	"0"	"1.52"	"1.337"
##	"-1.137"	"0"	"1.52"	"1.337"
##	"-1.138"	"0"	"1.2"	"1.054"
##	"-1.14"	"0"	"1.14"	"0.932"
##	"-1.14"	"0"	"1.14"	"0.876"
##	"-1.141"	"0"	"1.34"	"1.174"
##	"-1.144"	"0"	"1.24"	"1.084"
##	"-1.144"	"0"	"1.32"	"1.154"
##	"-1.15"	"0"	"1.29"	"1.122"

##	"-1.15"	"3"	"5.39"	"2.079"
##	"-1.151"	"12"	"16.39"	"3.814"
##	"-1.155"	"0"	"1.31"	"1.134"
##	"-1.155"	"0"	"1.21"	"1.047"
##	"-1.16"	"0"	"1.2"	"1.035"
##	"-1.16"	"0"	"1.42"	"1.224"
##	"-1.161"	"1"	"3.04"	"1.758"
##	"-1.162"	"0"	"1.22"	"1.05"
##	"-1.165"	"2"	"4.27"	"1.948"
##	"-1.165"	"1"	"2.83"	"1.57"
##	"-1.166"	"2"	"4.76"	"2.366"
##	"-1.168"	"0"	"1.23"	"1.053"
##	"-1.171"	"1"	"2.58"	"1.35"
##	"-1.175"	"0"	"1.44"	"1.225"
##	"-1.175"	"0"	"1.61"	"1.37"
##	"-1.175"	"0"	"1.44"	"1.225"
##	"-1.177"	"0"	"1.82"	"1.546"
##	"-1.18"	"0"	"1.18"	"0.892"
##	"-1.181"	"1"	"3.36"	"1.998"
##	"-1.182"	"0"	"1.2"	"1.015"
##	"-1.186"	"0"	"1.3"	"1.096"
##	"-1.186"	"0"	"1.3"	"1.096"
##	"-1.186"	"0"	"1.3"	"1.096"
##	"-1.187"	"2"	"4.5"	"2.106"
##	"-1.188"	"78"	"88.37"	"8.729"
##	"-1.189"	"18"	"23.79"	"4.871"
##	"-1.19"	"0"	"1.37"	"1.152"
##	"-1.19"	"0"	"1.23"	"1.033"
##	"-1.192"	"2"	"4.33"	"1.954"
##	"-1.196"	"1"	"3.07"	"1.731"
##	"-1.197"	"0"	"1.58"	"1.319"
##	"-1.2"	"0"	"1.32"	"1.1"
##	"-1.2"	"0"	"1.53"	"1.275"
##	"-1.2"	"0"	"1.32"	"1.1"
##	"-1.201"	"0"	"1.42"	"1.182"
##	"-1.202"	"2"	"4.57"	"2.138"
##	"-1.207"	"0"	"1.46"	"1.21"
##	"-1.208"	"2"	"4.74"	"2.268"
##	"-1.21"	"0"	"1.42"	"1.174"
##	"-1.21"	"0"	"1.86"	"1.538"
##	"-1.21"	"0"	"1.21"	"0.957"
##	"-1.211"	"6"	"9.28"	"2.708"
##	"-1.212"	"0"	"1.35"	"1.114"
##	"-1.215"	"0"	"1.48"	"1.218"
##	"-1.217"	"23"	"28.79"	"4.757"
##	"-1.22"	"0"	"1.22"	"0.938"
##	"-1.22"	"0"	"1.64"	"1.345"
##	"-1.221"	"0"	"1.6"	"1.31"
##	"-1.221"	"0"	"1.6"	"1.31"
##	"-1.223"	"0"	"1.53"	"1.251"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.224"	"0"	"1.46"	"1.193"
##	"-1.226"	"1"	"3.63"	"2.145"

##	"-1.226"	"0"	"1.58"	"1.288"
##	"-1.228"	"0"	"1.97"	"1.605"
##	"-1.228"	"0"	"1.6"	"1.303"
##	"-1.229"	"0"	"1.75"	"1.424"
##	"-1.23"	"0"	"1.23"	"0.941"
##	"-1.23"	"0"	"1.23"	"0.993"
##	"-1.23"	"0"	"1.23"	"0.941"
##	"-1.23"	"0"	"1.23"	"0.908"
##	"-1.23"	"0"	"1.36"	"1.106"
##	"-1.231"	"0"	"1.54"	"1.251"
##	"-1.232"	"0"	"1.47"	"1.193"
##	"-1.232"	"0"	"1.55"	"1.258"
##	"-1.233"	"18"	"24.53"	"5.296"
##	"-1.233"	"0"	"1.46"	"1.184"
	"-1.235"	"0"	"1.72"	"1.393"
##		-		
##	"-1.236"	"5"	"8.34"	"2.701"
##	"-1.236"	"3"	"5.79"	"2.258"
##	"-1.239"	"0"	"1.3"	"1.049"
##	"-1.239"	"0"	"1.5"	"1.21"
##	"-1.239"	"0"	"1.25"	"1.009"
##	"-1.24"	"0"	"1.48"	"1.193"
##	"-1.241"	"0"	"1.4"	"1.128"
##	"-1.241"	"0"	"1.4"	"1.128"
##	"-1.241"	"3"	"6.43"	"2.764"
##	"-1.242"	"0"	"1.69"	"1.361"
##	"-1.242"	"0"	"1.32"	"1.062"
##	"-1.243"	"0"	"1.29"	"1.038"
##	"-1.243"	"2"	"4.52"	"2.027"
##	"-1.244"	"8"	"12.11"	"3.303"
##	"-1.244"	"0"	"1.44"	"1.157"
##	"-1.244"	"0"	"1.44"	"1.157"
##	"-1.245"	"0"	"1.67"	"1.341"
##	"-1.246"	"2"	"4.63"	"2.111"
##	"-1.247"	"1"	"2.82"	"1.459"
##	"-1.248"	"0"	"1.54"	"1.234"
##	"-1.25"	"0"	"1.25"	"0.989"
##	"-1.25"	"1"	"2.76"	"1.408"
##	"-1.25"	"0"	"1.3"	"1.04"
##	"-1.251"	"0"	"1.36"	"1.087"
##	"-1.251"	"0"	"1.66"	"1.327"
##	"-1.251"	"0"	"1.81"	"1.447"
##	"-1.252"	"133"	"148.07"	"12.04"
##	"-1.256"	"0"	"1.53"	"1.218"
##	"-1.256"	"0"	"2.35"	"1.872"
##	"-1.256"	"0"	"1.53"	"1.218"
##	"-1.258"	"0"	"1.49"	"1.185"
##	"-1.258"	"1"	"3.06"	"1.638"
##	"-1.262"	"5"	"8.91"	"3.098"
##	"-1.263"	"0"	"1.69"	"1.339"
##	"-1.266"	"0"	"1.38"	"1.09"
##	"-1.266"	"1"	"2.95"	"1.54"
##	"-1.266"	"0"	"1.8"	"1.421"
##	"-1.269"	"0"	"1.47"	"1.159"
##	"-1.27"	"14"	"18.84"	"3.81"

##	"-1.271"	"2"	"4.6"	"2.045"
##	"-1.274"	"15"	"20.13"	"4.027"
##	"-1.275"	"0"	"1.3"	"1.02"
##	"-1.275"	"43"	"50.5"	"5.882"
##	"-1.276"	"0"	"2.42"	"1.897"
##	"-1.276"	"0"	"1.76"	"1.379"
##	"-1.277"	"0"	"1.38"	"1.08"
##	"-1.28"	"39"	"48.24"	"7.218"
##	"-1.28"	"2"	"5.06"	"2.39"
##	"-1.281"	"0"	"2.07"	"1.616"
##	"-1.282"	"0"	"1.31"	"1.022"
##	"-1.283"	"0"	"1.76"	"1.372"
##	"-1.283"	"0"	"1.68"	"1.309"
##	"-1.285"	"0"	"1.77"	"1.377"
##	"-1.286"	"25"	"31.84"	"5.318"
##	"-1.288"	"1"	"3.85"	"2.213"
##	"-1.288"	"0"	"1.71"	"1.328"
##	"-1.291"	"1"	"3.14"	"1.658"
##	"-1.292"	"0"	"1.77"	"1.37"
##	"-1.294"	"0"	"2.01"	"1.554"
##	"-1.295"	"0"	"1.65"	"1.274"
##	"-1.297"	"3"	"6.58"	"2.76"
##	"-1.297"	"0"	"1.94"	"1.496"
##	"-1.299"	"0"	"1.42"	"1.093"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.3"	"0.99"
##	"-1.3"	"0"	"1.56"	"1.2"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.3"	"0"	"1.46"	"1.123"
##	"-1.301"	"0"	"1.53"	"1.176"
##	"-1.301"	"0"	"1.9"	"1.46"
##	"-1.304"	"0"	"1.5"	"1.15"
##	"-1.304"	"0"	"1.44"	"1.104"
##	"-1.307"	"0"	"1.31"	"1.002"
##	"-1.308"	"45"	"54.34"	"7.138"
##	"-1.308"	"0"	"1.69"	"1.293"
##	"-1.308"	"0"	"1.74"	"1.33"
##	"-1.309"	"0"	"1.56"	"1.192"
##	"-1.309"	"0"	"1.6"	"1.223"
##	"-1.31"	"0"	"1.31"	"0.982"
##	"-1.311"	"0"	"1.89"	"1.442"
##	"-1.314"	"46"	"54.55"	"6.505"
##	"-1.316"	"0"	"1.84"	"1.398"
##	"-1.318"	"0"	"1.79"	"1.358"
##	"-1.318"	"0"	"1.71"	"1.297"
##	"-1.319"	"0"	"2.06"	"1.562"
##	"-1.322"	"0"	"2.01"	"1.521"
##	"-1.322"	"0"	"1.52"	"1.15"
##	"-1.323"	"0"	"1.78"	"1.345"
##	"-1.325"	"2"	"5.09"	"2.332"
##	"-1.325"	"0"	"2.09"	"1.577"
##	"-1.325"	"0"	"2.03"	"1.524"
ππ	1.020	U	2.02	1.024

##	"-1.325"	"0"	"1.35"	"1.019"
##	"-1.328"	"0"	"1.98"	"1.491"
##	"-1.328"	"0"	"1.83"	"1.378"
##	"-1.329"	"22"	"29.41"	"5.576"
##	"-1.331"	"0"	"1.78"	"1.338"
##	"-1.333"	"0"	"1.94"	"1.455"
##	"-1.333"	"0"	"1.92"	"1.44"
##	"-1.338"	"48"	"59.05"	"8.261"
##	"-1.34"	"0"	"1.92"	"1.433"
##	"-1.341"	"0"	"1.47"	"1.096"
##	"-1.342"	"11"	"16.48"	"4.084"
##	"-1.344"	"0"	"1.84"	"1.369"
##	"-1.345"	"1"	"3.11"	"1.569"
##	"-1.346"	"0"	"2.24"	"1.664"
##	"-1.347"	"0"	"1.45"	"1.077"
##	"-1.347"	"0"	"2.06"	"1.53"
##	"-1.351"	"44"	"52.6"	"6.368"
##	"-1.351"	"1"	"5.37"	"3.234"
##	"-1.353"	"2"	"5.12"	"2.306"
##	"-1.354"	"0"	"1.9"	"1.403"
##	"-1.355"	"2"	"4.26"	"1.667"
##	"-1.356"	"0"	"1.79"	"1.32"
##	"-1.356"	"0"	"1.79"	"1.32"
##	"-1.363"	"0"	"1.74"	"1.276"
##	"-1.364"	"0"	"1.62"	"1.187"
##	"-1.364"	"1"	"3.78"	"2.038"
##	"-1.364"	"0"	"1.62"	"1.187"
##	"-1.365"	"0"	"2.06"	"1.51"
##	"-1.365"	"0"	"2.06"	"1.51"
##	"-1.365"	"0"	"1.61"	"1.18"
##	"-1.365"	"0"	"2.06"	"1.51"
##	"-1.368"	"1"	"3.58"	"1.887"
##	"-1.375"	"4"	"8.78"	"3.477"
##	"-1.375"	"0"	"1.9"	"1.382"
##	"-1.377"	"0"	"1.88"	"1.365"
##	"-1.378"	"0"	"1.57"	"1.139"
##	"-1.38"	"0"	"1.38"	"0.993"
##	"-1.381"	"0"	"1.74"	"1.26"
##	"-1.383"	"5"	"8.78"	"2.732"
##	"-1.386"	"1"	"3.97"	"2.144"
##	"-1.389"	"4"	"7.34"	"2.405"
##	"-1.391"	"0"	"2.28"	"1.64"
##	"-1.391"	"0"	"2.28"	"1.64"
##	"-1.396"	"5"	"8.6"	"2.578"
##	"-1.397"	"0"	"2.25"	"1.61"
##	"-1.401"	"0"	"2.29"	"1.635"
##	"-1.401"	"1"	"3.12"	"1.513"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.407"	"225"	"249.01"	"17.065"
##	"-1.407"	"0"	"1.73"	"1.23"
##	"-1.41"	"40"	"48.9"	"6.313"
##	"-1.412"	"0"	"2.05"	"1.452"
##	"-1.414"	"0"	"2.09"	"1.478"

##	"-1.416"	"1"	"3.9"	"2.047"
##	"-1.417"	"1"	"3.81"	"1.983"
##	"-1.418"	"0"	"2.68"	"1.89"
##	"-1.424"	"0"	"1.94"	"1.362"
##	"-1.424"	"0"	"1.94"	"1.362"
##	"-1.424"	"8"	"13.13"	"3.603"
##	"-1.425"	"1"	"3.03"	"1.425"
##	"-1.428"	"0"	"1.75"	"1.226"
##	"-1.428"	"0"	"1.75"	"1.226"
##	"-1.43"	"2"	"4.99"	"2.091"
##	"-1.431"	"0"	"2.2"	"1.537"
##	"-1.435"	"3"	"6.53"	"2.46"
##	"-1.436"	"0"	"2"	"1.393"
##	"-1.441"	"0"	"1.6"	"1.11"
##	"-1.443"	"0"	"2.11"	"1.463"
##	"-1.443"	"0"	"2.11"	"1.463"
##	"-1.445"	"0"	"1.7"	"1.176"
##	"-1.448"	"0"	"2.5"	"1.726"
##	"-1.448"	"0"	"2.5"	"1.726"
##	"-1.45"	"0"	"1.56"	"1.076"
##	"-1.45"	"1"	"3.45"	"1.69"
##	"-1.451"	"7"	"12.17"	"3.562"
##	"-1.451"	"0"	"2.02"	"1.392"
##	"-1.451"	"2"	"4.96"	"2.04"
##	"-1.452"	"1"	"4.18"	"2.19"
##	"-1.452"	"10"	"16.22"	"4.284"
##	"-1.452"	"14"	"19.32"	"3.665"
##	"-1.453"	"0"	"2.22"	"1.528"
##	"-1.454"	"1"	"3.65"	"1.822"
##	"-1.454"	"0"	"2.05"	"1.41"
##	"-1.454"	"0"	"2.43"	"1.671"
##	"-1.458"	"4"	"7.78"	"2.592"
##	"-1.46"	"0"	"2.44"	"1.672"
##	"-1.462"	"0"	"1.8"	"1.231"
##	"-1.462"	"1"	"3.54"	"1.737"
##	"-1.462"	"61"	"73.92"	"8.837"
##	"-1.463"	"0"	"2.24"	"1.532"
##	"-1.466"	"0"	"2.22"	"1.515"
##	"-1.468"	"1"	"3.55"	"1.737"
##	"-1.472"	"0"	"1.9"	"1.291"
##	"-1.472"	"0"	"2.74"	"1.862"
##	"-1.472"	"0"	"1.9"	"1.291"
##	"-1.472"	"0"	"1.9"	"1.291"
##	"-1.472"	"0"	"1.9"	"1.291"
##	"-1.474"	"0"	"1.87"	"1.269"
##	"-1.476"	"0"	"2.36"	"1.599"
##	"-1.476"	"0"	"2.17"	"1.471"
##	"-1.479"	"3"	"6.39"	"2.291"
##	"-1.481"	"0"	"2.04"	"1.377"
##	"-1.483"	"1"	"3.81"	"1.895"
##	"-1.485"	"0"	"2.09"	"1.408"
##	"-1.486"	"0"	"1.92"	"1.292"
##	"-1.487"	"61"	"71.04"	"6.754"
##	"-1.49"	"1"	"4.38"	"2.269"

##	"-1.492"	"0"	"2.31"	"1.549"
##	"-1.497"	"0"	"1.99"	"1.33"
##	"-1.497"	"0"	"1.93"	"1.289"
##	"-1.497"	"0"	"1.93"	"1.289"
##	"-1.497"	"0"	"1.99"	"1.33"
##	"-1.498"	"0"	"2.45"	"1.635"
##	"-1.499"	"0"	"2.19"	"1.461"
##	"-1.5"	"1"	"4.12"	"2.081"
##	"-1.502"	"0"	"1.91"	"1.272"
##	"-1.502"	"0"	"2.34"	"1.558"
##	"-1.502"	"5"	"9.65"	"3.096"
##	"-1.504"	"4"	"8"	"2.659"
##	"-1.505"	"0"	"2.12"	"1.409"
##	"-1.511"	"19"	"27.55"	"5.658"
##	"-1.511"	"0"	"2.23"	"1.476"
##	"-1.511	"2"	"5.87"	"2.557"
	"-1.513"	"0"	"1.92"	"1.269"
##		"2"		
##	"-1.518"	_	"5.11"	"2.049"
##	"-1.518"	"0"	"2.75"	"1.811"
##	"-1.518"	"0"	"2.37"	"1.561"
##	"-1.521"	"0"	"2.01"	"1.322"
##	"-1.521"	"54"	"65"	"7.232"
##	"-1.521"	"6"	"11.03"	"3.307"
##	"-1.523"	"1"	"3.67"	"1.753"
##	"-1.523"	"0"	"1.99"	"1.307"
##	"-1.524"	"0"	"1.96"	"1.286"
##	"-1.527"	"29"	"37.98"	"5.883"
##	"-1.53"	"0"	"2.86"	"1.87"
##	"-1.532"	"7"	"12.03"	"3.283"
##	"-1.532"	"2"	"5.61"	"2.357"
##	"-1.533"	"0"	"1.96"	"1.279"
##	"-1.533"	"1"	"3.63"	"1.715"
##	"-1.535"	"0"	"2.41"	"1.571"
##	"-1.536"	"18"	"25.48"	"4.871"
##	"-1.537"	"0"	"2.24"	"1.457"
##	"-1.54"	"0"	"2.26"	"1.468"
##	"-1.541"	"0"	"2.29"	"1.486"
##	"-1.543"	"16"	"22.11"	"3.959"
##	"-1.545"	"0"	"2.1"	"1.36"
##	"-1.546"	"0"	"2.44"	"1.578"
##	"-1.548"	"9"	"14.71"	"3.688"
##	"-1.55"	"0"	"2.28"	"1.471"
##	"-1.554"	"4"	"8.61"	"2.967"
##	"-1.554"	"2"	"5.37"	"2.168"
##	"-1.556"	"0"	"2.38"	"1.529"
##	"-1.556"	"2"	"5.81"	"2.448"
##	"-1.559"	"21"	"28.2"	"4.619"
##	"-1.559"	"0"	"2.54"	"1.629"
##	"-1.563"	"0"	"2.6"	"1.664"
##	"-1.564"	"0"	"2.73"	"1.746"
##	"-1.568"	"1"	"4.41"	"2.175"
##	"-1.573"	"0"	"2.42"	"1.539"
##	"-1.573"	"0"	"2.69"	"1.71"
##	"-1.574"	"0"	"2.17"	"1.378"

##	"-1.577"	"0"	"2.07"	"1.312"
##	"-1.578"	"0"	"2.16"	"1.369"
##	"-1.578"	"0"	"2.44"	"1.546"
##	"-1.582"	"0"	"2.27"	"1.434"
##	"-1.583"	"0"	"2.3"	"1.453"
##	"-1.587"	"0"	"2.16"	"1.361"
##	"-1.588"	"2"	"5.59"	"2.261"
##	"-1.588"	"0"	"2.4"	"1.511"
##	"-1.59"	"2"	"5.72"	"2.34"
##	"-1.59"	"2"	"5.72"	"2.34"
##	"-1.593"	"327"	"354.43"	"17.221"
##	"-1.594"	"1"	"4.61"	"2.265"
##	"-1.596"	"0"	"3.12"	"1.955"
##	"-1.598"	"1122"	"1178.24"	"35.196"
##	"-1.601"	"1"	"4.18"	"1.987"
##	"-1.605"	"0"	"2.45"	"1.527"
##	"-1.605"	"2"	"6.07"	"2.536"
##	"-1.61"	"12"	"19.02"	"4.36"
##	"-1.611"	"0"	"2.39"	"1.483"
##	"-1.613"	"3"	"7.65"	"2.883"
##	"-1.618"	"0"	"2.62"	"1.619"
##	"-1.619"	"60"	"73.15"	"8.121"
##	"-1.626"	"0"	"2.88"	"1.771"
##	"-1.628"	"0"	"2.84"	"1.745"
##	"-1.628"	"170"	"192.39"	"13.752"
##	"-1.629"	"31"	"41.33"	"6.342"
##	"-1.631"	"0"	"3.83"	"2.349"
##	"-1.632"	"22"	"31.7"	"5.943"
##	"-1.633"	"21"	"30.16"	"5.61"
##	"-1.635"	"60"	"72.28"	"7.512"
##	"-1.638"	"0"	"2.13"	"1.3"
##	"-1.638"	"0"	"2.25"	"1.373"
##	"-1.638"	"0"	"2.25"	"1.373"
##	"-1.64"	"6"	"10.75"	"2.897"
##	"-1.645"	"3"	"7.95"	"3.01"
##	"-1.65"	"0"	"2.18"	"1.321"
##	"-1.653"	"0"	"2.66"	"1.609"
##	"-1.654"	"0"	"3.22"	"1.947"
##	"-1.655"	"0"	"2.19"	"1.323"
##	"-1.657"	"101"	"118.78"	"10.732"
##	"-1.659"	"1"	"4.08"	"1.857"
##	"-1.661"	"0"	"2.47"	"1.487"
##	"-1.665"	"0"	"3.32"	"1.994"
##	"-1.665"	"1"	"4.07"	"1.844"
##	"-1.667"	"0"	"3.09"	"1.854"
##	"-1.669"	"24"	"32.11"	"4.859"
##	"-1.67"	"0"	"2.58"	"1.545"
##	"-1.67"	"0"	"2"	"1.198"
##	"-1.674"	"0"	"2.25"	"1.344"
##	"-1.674"	"0"	"2.23"	"1.332"
##	"-1.674"	"0"	"2.78"	"1.661"
##	"-1.675"	"2"	"5.79"	"2.262"
##	"-1.675"	"2"	"5.79"	"2.262"
##	"-1.675"	"2"	"5.79"	"2.262"

##	"-1.676"	"0"	"3.04"	"1.814"
##	"-1.679"	"0"	"2.96"	"1.763"
##	"-1.681"	"0"	"2.16"	"1.285"
##	"-1.686"	"1"	"4.72"	"2.207"
##	"-1.686"	"1"	"4.72"	"2.207"
##	"-1.688"	"0"	"2.24"	"1.327"
##	"-1.693"	"0"	"2.35"	"1.388"
##	"-1.693"	"86"	"102.78"	"9.909"
##	"-1.693"	"0"	"2.35"	"1.388"
##	"-1.699"	"3"	"6.67"	"2.161"
##	"-1.699"	"0"	"2.63"	"1.548"
##	"-1.704"	"0"	"3.18"	"1.866"
##	"-1.704"	"3"	"7.09"	"2.4"
##	"-1.706"	"26"	"34.24"	"4.829"
##	"-1.708"	"2"	"6.52"	"2.646"
##	"-1.709"	"2"	"5.23"	"1.89"
##	"-1.713"	"0"	"2.63"	"1.535"
##	"-1.715"	"0"	"3.01"	"1.755"
##	"-1.715"	"0"	"2.8"	"1.633"
##	"-1.721"	"0"	"2.9"	"1.685"
##	"-1.722"	"7"	"13.06"	"3.519"
##	"-1.728"	"0"	"2.63"	"1.522"
##	"-1.73"	"0"	"2.77"	"1.601"
##	"-1.733"	"0"	"2.97"	"1.714"
##	"-1.736"	"0"	"3.64"	"2.096"
##	"-1.737"	"65"	"80.51"	"8.928"
##	"-1.738"	"1"	"4.68"	"2.117"
##	"-1.738"	"0"	"3.05"	"1.755"
##	"-1.743"	"0"	"2.81"	"1.612"
##	"-1.743"	"0"	"2.66"	"1.526"
##	"-1.745"	"0"	"2.97"	"1.702"
##	"-1.75"	"0"	"2.3"	"1.314"
##	"-1.753"	"1"	"4.29"	"1.876"
##	"-1.761"	"11"	"18.24"	"4.112"
##	"-1.762"	"0"	"3.12"	"1.771"
##	"-1.763"	"0"	"3.17"	"1.798"
##	"-1.764"	"7"	"12.96"	"3.378"
##	"-1.765"	"0"	"3.06"	"1.734"
##	"-1.765"	"0"	"3.06"	"1.734"
##	"-1.765"	"0"	"2.82"	"1.598"
##	"-1.767"	"0"	"2.62"	"1.482"
##	"-1.767"	"2"	"6.81"	"2.722"
##	"-1.767"	"0"	"3.99"	"2.259"
##	"-1.772"	"9"	"14.9"	"3.329"
##	"-1.776"	"0"	"3.19"	"1.796"
##	"-1.782"	"0"	"3.6"	"2.02"
##	"-1.782"	"2"	"5.98"	"2.234"
##	"-1.784"	"9"	"15.71"	"3.761"
##	"-1.784"	"0"	"2.62"	"1.469"
##	"-1.785"	"1"	"4.72"	"2.084"
##	"-1.785"	"0"	"3.51"	"1.967"
##	"-1.789" "-1.79"	"0"	"3.87"	"2.163"
## ##	"-1.79" "-1.791"	"0" "5"	"3.59" "10.16"	"2.006" "2.881"
##	-1.791"		10.10.	.∠.001.

##	"-1.792"	"38"	"50.84"	"7.164"
##	"-1.795"	"6"	"12.58"	"3.666"
##	"-1.795"	"11"	"18.72"	"4.302"
##	"-1.795"	"11"	"18.72"	"4.302"
##	"-1.801"	"0"	"3.94"	"2.187"
##	"-1.801"	"0"	"3.18"	"1.766"
##	"-1.801"	"7"	"12.36"	"2.976"
##	"-1.804"	"0"	"3.37"	"1.868"
##	"-1.805"	"2"	"6.94"	"2.737"
##	"-1.805"	"0"	"2.85"	"1.579"
##	"-1.806"	"7"	"13.55"	"3.628"
##	"-1.807"	"0"	"3.8"	"2.103"
##	"-1.809"	"0"	"3.64"	"2.013"
##	"-1.812"	"7"	"14.07"	"3.901"
##	"-1.812"	"13"	"21.44"	"4.659"
##	"-1.813"	"0"	"3.74"	"2.063"
##	"-1.814"	"75"	"92.25"	"9.51"
##	"-1.818"	"0"	"2.77"	"1.523"
## ##	"-1.823"	"0"	"3.45"	"1.893"
	"-1.825"	"12"	"3.45" "19.76"	"4.252"
##				
##	"-1.825"	"0"	"2.39"	"1.31" "2.723"
##	"-1.829"	"2"	"6.98"	
##	"-1.829"	"1"	"5.42"	"2.417"
##	"-1.83"	"2"	"7.09"	"2.782"
##	"-1.832"	"0"	"2.95"	"1.61"
##	"-1.832"	"0"	"3.64"	"1.987"
##	"-1.833"	"33"	"44.19"	"6.105" "1.756"
##	"-1.834" "-1.835"	"0"	"3.22"	
##		"0"	"3.77"	"2.054"
##	"-1.838"	"110"	"132.42"	"12.2"
##	"-1.839"	"0"	"3.34"	"1.816"
##	"-1.84"	"1"	"4.77"	"2.049"
11.11	11 4 04011	11 0 11	110 0011	110 40 11
##	"-1.843"	"0"	"3.88"	"2.105"
##	"-1.843"	"0"	"3.88"	"2.105"
## ##	"-1.843" "-1.847"	"0" "0"	"3.88"	"2.105" "1.581"
## ## ##	"-1.843" "-1.847" "-1.847"	"0" "0" "0"	"3.88" "2.92" "3.08"	"2.105" "1.581" "1.668"
## ## ##	"-1.843" "-1.847" "-1.847" "-1.847"	"0" "0" "22"	"3.88" "2.92" "3.08" "33.37"	"2.105" "1.581" "1.668" "6.156"
## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.848"	"0" "0" "0" "22" "6"	"3.88" "2.92" "3.08" "33.37" "14.16"	"2.105" "1.581" "1.668" "6.156" "4.415"
## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852"	"0" "0" "22" "6"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501"
## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854"	"0" "0" "22" "6" "0" "4"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875"
## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.852" "-1.854" "-1.855"	"0" "0" "22" "6" "0" "4"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022"
## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.852" "-1.854" "-1.855" "-1.86"	"0" "0" "22" "6" "0" "4" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656"
## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86"	"0" "0" "22" "6" "0" "4" "0" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.86" "-1.862"	"0" "0" "22" "6" "0" "4" "0" "0" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656" "1.235"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862"	"0" "0" "22" "6" "0" "4" "0" "0" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "0" "1"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "2.3" "4.85"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235" "2.066"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863" "-1.863"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "0" "1" "2"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "6.63"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656" "1.235" "2.066" "2.485"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863" "-1.863" "-1.865"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "6.63" "3.64"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656" "1.235" "1.235" "2.066" "2.485" "1.952"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863" "-1.863" "-1.863" "-1.865" "-1.868"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "6.63" "3.64" "4.34"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656" "1.235" "1.235" "2.066" "2.485" "1.788"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863" "-1.863" "-1.868" "-1.868" "-1.868" "-1.868"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0" "1" "2"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "6.63" "3.64" "4.34" "3.64"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.656" "1.235" "1.235" "2.066" "2.485" "1.952" "1.788" "1.946"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.848" "-1.852" "-1.855" "-1.866" "-1.862" "-1.863" "-1.863" "-1.863" "-1.868" "-1.868" "-1.868" "-1.868" "-1.872"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0" "1" "2" "0" "1" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "6.63" "3.64" "4.34" "3.64" "3.74"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235" "2.066" "2.485" "1.788" "1.788" "1.946" "1.998"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.852" "-1.852" "-1.855" "-1.86" "-1.862" "-1.863" "-1.863" "-1.863" "-1.868" "-1.872" "-1.872"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0" "1" "2" "0" "1" "0" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "2.3" "4.85" "4.85" "6.63" "3.64" "4.34" "3.64" "3.64" "3.64"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235" "2.066" "1.235" "1.946" "1.998" "1.955"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.852" "-1.854" "-1.855" "-1.86" "-1.862" "-1.862" "-1.863" "-1.863" "-1.868" "-1.868" "-1.872" "-1.872" "-1.875"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0" "1" "0" "0" "0" "1" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "3.08" "2.3" "4.85" "4.85" "6.63" "3.64" "4.34" "3.64" "3.64" "3.66" "2.85"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235" "2.066" "1.235" "1.946" "1.998" "1.998" "1.955" "1.52"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.843" "-1.847" "-1.847" "-1.847" "-1.852" "-1.852" "-1.855" "-1.86" "-1.862" "-1.863" "-1.863" "-1.863" "-1.868" "-1.872" "-1.872"	"0" "0" "22" "6" "0" "4" "0" "0" "0" "1" "2" "0" "1" "2" "0" "1" "0" "0"	"3.88" "2.92" "3.08" "33.37" "14.16" "2.78" "9.33" "3.75" "3.08" "2.3" "4.85" "4.85" "6.63" "3.64" "4.34" "3.64" "3.64" "3.64"	"2.105" "1.581" "1.668" "6.156" "4.415" "1.501" "2.875" "2.022" "1.656" "1.235" "1.235" "2.066" "1.235" "1.946" "1.998" "1.955"

##	"-1.876"	"7"	"13.89"	"3.673"
##	"-1.877"	"0"	"2.55"	"1.359"
##	"-1.878"	"12"	"20.93"	"4.755"
##	"-1.88"	"21"	"31.56"	"5.616"
##	"-1.881"	"134"	"159.59"	"13.601"
##	"-1.883"	"0"	"3.61"	"1.917"
##	"-1.885"	"66"	"82.75"	"8.888"
##	"-1.89"	"0"	"3.01"	"1.592"
##	"-1.894"	"3"	"8.25"	"2.772"
##	"-1.902"	"0"	"3.91"	"2.055"
##	"-1.908"	"2"	"7.22"	"2.736"
##	"-1.914"	"6"	"12.63"	"3.463"
##	"-1.914"	"0"	"3.52"	"1.839"
##	"-1.915"	"16"	"25.74"	"5.086"
##	"-1.918"	"28"	"40.18"	"6.351"
##	"-1.919"	"1"	"5.33"	"2.257"
##	"-1.921"	"0"	"4.44"	"2.311"
##	"-1.922"	"0"	"2.89"	"1.503"
##	"-1.925"	"1"	"5.99"	"2.592"
##	"-1.93"	"2"	"7.14"	"2.663"
##	"-1.933"	"0"	"2.58"	"1.335"
##	"-1.933"	"0"	"2.58"	"1.335"
##	"-1.933"	"0"	"2.58"	"1.335"
##	"-1.933"	"0"	"2.58"	"1.335"
##	"-1.939"	"8"	"15.05"	"3.636"
##	"-1.943"	"0"	"2.84"	"1.461"
##	"-1.947"	"110"	"129.7"	"10.118"
##	"-1.947"	"0"	"4"	"2.055"
##	"-1.95"	"12"	"20.08"	"4.143"
##	"-1.955"	"0"	"3.8"	"1.944"
##	"-1.962"	"1"	"4.65"	"1.861"
##	"-1.962"	"0"	"3.01"	"1.534"
##	"-1.963"	"0"	"3.97"	"2.022"
##	"-1.965"	"0"	"3.41"	"1.736"
		•	0.41	1.730
##	"-1.966"	"0"	"4.25"	"2.162"
## ##	"-1.966" "-1.967"	-		
		"0"	"4.25"	"2.162"
##	"-1.967"	"0" "0"	"4.25" "4.19"	"2.162" "2.131"
##	"-1.967" "-1.972"	"0" "3"	"4.25" "4.19" "9.46"	"2.162" "2.131" "3.277"
## ## ##	"-1.967" "-1.972" "-1.975"	"0" "0" "3" "7"	"4.25" "4.19" "9.46" "14.59"	"2.162" "2.131" "3.277" "3.843"
## ## ##	"-1.967" "-1.972" "-1.975" "-1.975"	"0" "3" "7" "21"	"4.25" "4.19" "9.46" "14.59" "32.21"	"2.162" "2.131" "3.277" "3.843" "5.677"
## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98"	"0" "3" "7" "21"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081"
## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98" "-1.981"	"0" "3" "7" "21" "0" "1"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554"
## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98" "-1.981" "-1.983"	"0" "3" "7" "21" "0" "1" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967"
## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989"	"0" "3" "7" "21" "0" "1" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293"
## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98" "-1.981" "-1.983" "-1.989" "-1.99"	"0" "3" "7" "21" "0" "1" "0" "10"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814"
## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98" "-1.981" "-1.983" "-1.989" "-1.99" "-1.992"	"0" "3" "7" "21" "0" "1" "0" "10" "291"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.98" "-1.981" "-1.983" "-1.989" "-1.999" "-1.992" "-1.994"	"0" "3" "7" "21" "0" "1" "0" "10" "291" "165"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.975" "-1.975" "-1.98" "-1.981" "-1.983" "-1.989" "-1.999" "-1.992" "-1.994" "-1.995"	"0" "3" "7" "21" "0" "1" "0" "10" "0" "291" "165" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989" "-1.999" "-1.992" "-1.994" "-1.995" "-1.996"	"0" "3" "7" "21" "0" "1" "0" "10" "291" "165" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72" "3.48"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865" "1.744"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989" "-1.999" "-1.992" "-1.994" "-1.995" "-1.996" "-1.996"	"0" "3" "7" "21" "0" "10" "10" "291" "165" "0" "2"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72" "3.48" "7.08"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865" "1.744" "2.545"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989" "-1.999" "-1.992" "-1.996" "-1.996" "-1.996" "-1.997"	"0" "3" "7" "21" "0" "1" "0" "10" "291" "165" "0" "2" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72" "3.48" "7.08" "3.65"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865" "1.744" "2.545" "1.828"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989" "-1.999" "-1.994" "-1.995" "-1.996" "-1.996" "-1.997" "-2.009"	"0" "3" "7" "21" "0" "10" "10" "291" "165" "0" "2" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72" "3.48" "7.08" "3.65" "3.65"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865" "1.744" "2.545" "1.828" "1.817"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-1.967" "-1.972" "-1.975" "-1.975" "-1.981" "-1.983" "-1.989" "-1.992" "-1.994" "-1.995" "-1.996" "-1.996" "-2.009" "-2.002"	"0" "3" "7" "21" "0" "10" "10" "291" "165" "0" "0" "2" "0"	"4.25" "4.19" "9.46" "14.59" "32.21" "4.12" "6.06" "3.9" "18.54" "3.61" "333.12" "193.36" "3.72" "3.48" "7.08" "3.65" "3.65" "3.94"	"2.162" "2.131" "3.277" "3.843" "5.677" "2.081" "2.554" "1.967" "4.293" "1.814" "21.148" "14.224" "1.865" "1.744" "2.545" "1.828" "1.817" "1.958"

##	"-2.014"	"7"	"14.61"	"3.779"
##	"-2.014"	"10"	"17.29"	"3.619"
##	"-2.017"	"63"	"83.05"	"9.94"
##	"-2.019"	"0"	"3.03"	"1.501"
##	"-2.02"	"0"	"4.47"	"2.213"
##	"-2.02"	"0"	"4.37"	"2.163"
##	"-2.022"	"0"	"4.96"	"2.453"
##	"-2.024"	"0"	"3.47"	"1.714"
##	"-2.024"	"2"	"7.3"	"2.619"
##	"-2.032"	"0"	"2.86"	"1.407"
##	"-2.032"	"0"	"2.86"	"1.407"
##	"-2.034"	"0"	"3.64"	"1.79"
##	"-2.038"	"3"	"9.12"	"3.003"
##	"-2.041"	"17"	"28.57"	"5.668"
##	"-2.045"	"0"	"5.32"	"2.601"
##	"-2.049"	"1"	"5.7"	"2.294"
##	"-2.053"	"5"	"12.02"	"3.42"
##	"-2.061"	"2"	"8.12"	"2.969"
##	"-2.062"	"1"	"6.43"	"2.633"
##	"-2.062"	"1"	"5.71"	"2.284"
##	"-2.062"	"1"	"5.71"	"2.284"
##	"-2.064"	"1"	"5.4"	"2.132"
##	"-2.064"	"2"	"7.3"	"2.568"
##	"-2.071"	"0"	"4.25"	"2.052"
##	"-2.074"	"3"	"9.56"	"3.163"
##	"-2.081"	"1"	"5.25"	"2.042"
##	"-2.083"	"8"	"16.87"	"4.258"
##	"-2.084"	"0"	"4.08"	"1.958"
##	"-2.086"	"0"	"4.53"	"2.172"
##	"-2.088"	"4"	"10.54"	"3.132"
##	"-2.09"	"0"	"4.45"	"2.129"
##	"-2.091"	"30"	"41.9"	"5.69"
##	"-2.092"	"958"	"1020.3"	"29.776"
##	"-2.092"	"0"	"5.09"	"2.433"
##	"-2.096"	"2"	"7.02"	"2.395"
##	"-2.098"	"36"	"50.96"	"7.132"
##	"-2.099"	"1"	"6.42"	"2.583"
##	"-2.102"	"1"	"6.73"	"2.726"
##	"-2.104"	"0"	"4.18"	"1.987"
##	"-2.105"	"35"	"49.14"	"6.717"
##	"-2.108"	"0"	"5.62"	"2.666"
##	"-2.111"	"1"	"6.24"	"2.483"
##	"-2.113"	"12"	"19.97"	"3.772"
##	"-2.114"	"0"	"4.31"	"2.038"
##	"-2.116"	"25"	"37.25"	"5.79"
##	"-2.117"	"0"	"4.39"	"2.074"
##	"-2.118"	"0"	"4.32"	"2.039"
##	"-2.118"	"0"	"4.79"	"2.262"
##	"-2.121"	"1"	"6.23"	"2.465"
##	"-2.122"	"0"	"4.76"	"2.243"
##	"-2.126"	"0"	"3.39"	"1.595"
##	"-2.132"	"0"	"3.78" "10.16"	"1.773" "2.888"
##	"-2.133" "-2.136"	"4" "110"		"2.888" "12.934"
##	-∠.136"	"112"	"139.63"	12.934"

##	"-2.142"	"0"	"4.49"	"2.096"
##	"-2.142"	"0"	"4.49"	"2.096"
##	"-2.142"	"0"	"4.49"	"2.096"
##	"-2.142"	"0"	"4.49"	"2.096"
##	"-2.144"	"1"	"7.58"	"3.069"
##	"-2.144"	"1"	"6.64"	"2.631"
##	"-2.147"	"0"	"5.35"	"2.492"
##	"-2.148"	"0"	"3.54"	"1.648"
##	"-2.153"	"0"	"4.83"	"2.243"
##	"-2.153"	"0"	"4.47"	"2.077"
##	"-2.153"	"0"	"4.47"	"2.077"
##	"-2.153"	"0"	"4.47"	"2.077"
##	"-2.154"	"0"	"4.18"	"1.94"
##	"-2.154"	"13"	"23.73"	"4.98"
##	"-2.155"	"0"	"4.43"	"2.056"
##	"-2.155"	"0"	"4.43"	"2.056"
##	"-2.155"	"0"	"4.43"	"2.056"
##	"-2.157"	"26"	"38.57"	"5.826"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.158"	"0"	"3.68"	"1.705"
##	"-2.166"	"0"	"5.04"	"2.326"
##	"-2.167"	"0"	"4.01"	"1.85"
##	"-2.169"	"0"	"4.38"	"2.019"
##	"-2.169"	"0"	"4.19"	"1.932"
##	"-2.173"	"2"	"8.26"	"2.88"
##	"-2.173"	"0"	"4.62"	"2.126"
##	"-2.174"	"4"	"11.43"	"3.418"
##	"-2.177"	"0"	"4.16"	"1.911"
##	"-2.177"	"0"	"4.23"	"1.943"
##	"-2.191"	"13"	"23.37"	"4.733"
##	"-2.199"	"7"	"15.28"	"3.766"
##	"-2.2"	"1"	"5.9"	"2.227"
##	"-2.201"	"46"	"61.97"	"7.255"
##	"-2.202"	"1"	"6.81"	"2.639"
##	"-2.202"	"5"	"12.25"	"3.292"
##	"-2.208"	"0"	"4.16"	"1.884"
##	"-2.21"	"0"	"4.27"	"1.932"
##	"-2.21"	"0"	"4.33"	"1.959"
##	"-2.21"	"16"	"26.99"	"4.974"
##	"-2.21"	"0"	"4.27"	"1.932"
##	"-2.21"	"0"	"4.33"	"1.959"
##	"-2.21"	"0"	"4.33"	"1.959"
##	"-2.21"	"0"	"4.33"	"1.959"
##	"-2.21"	"0"	"4.33"	"1.959"
##	"-2.212"	"10"	"19.24"	"4.178"
##	"-2.218"	"0"	"4"	"1.803"
##	"-2.219"	"0"	"4.38"	"1.973"
##	"-2.22"	"1"	"6.6"	"2.523"
##	"-2.225"	"0"	"5.02"	"2.256"
##	"-2.228"	"2"	"7.48"	"2.46"
##	"-2.229"	"127"	"156.66"	"13.307"
##	"-2.23"	"0"	"4.08"	"1.83"
##	"-2.234"	"1"	"7.44"	"2.883"
##	"-2.237"	"0"	"4.31"	"1.926"

##	"-2.241"	"0"	"4.24"	"1.892"
##	"-2.243"	"107"	"130.73"	"10.579"
##	"-2.248"	"0"	"4.35"	"1.935"
##	"-2.25"	"0"	"3.64"	"1.618"
##	"-2.256"	"0"	"5.53"	"2.451"
##	"-2.256"	"0"	"3.46"	"1.534"
##	"-2.258"	"0"	"4.36"	"1.931"
##	"-2.262"	"0"	"5.63"	"2.489"
##	"-2.264"	"0"	"4.13"	"1.824"
##	"-2.268"	"46"	"62.34"	"7.206"
##	"-2.269"	"27"	"40.57"	"5.98"
##	"-2.27"	"1"	"6.84"	"2.573"
##	"-2.271"	"12"	"22.56"	"4.65"
##	"-2.272"	"37"	"50.89"	"6.113"
##	"-2.272"	"0"	"5.35"	"2.354"
##	"-2.273"	"1"	"7.25"	"2.75"
##	"-2.275"	"5"	"13.76"	"3.851"
##	"-2.277"	"6"	"13.33"	"3.219"
##	"-2.278"	"0"	"4.99"	"2.19"
##	"-2.284"	"0"	"5.16"	"2.26"
##	"-2.285"	"2"	"8.7"	"2.932"
##	"-2.285"	"99"	"121.58"	"9.881"
##	"-2.287"	"0"	"5.66"	"2.475"
##	"-2.298"	"0"	"4.46"	"1.941"
##	"-2.298"	"0"	"4.46"	"1.941"
##	"-2.304"	"5"	"11.59"	"2.861"
##	"-2.304"	"0"	"4.19"	"1.819"
##	"-2.306"	"0"	"5.74"	"2.489"
## ##	"-2.311"	"406"	"453.35"	"20.487"
	"-2.311" "-2.315"		"453.35" "6.34"	"20.487" "2.739"
## ## ##	"-2.311" "-2.315" "-2.316"	"406" "0" "33"	"453.35" "6.34" "48.07"	"20.487" "2.739" "6.508"
## ## ##	"-2.311" "-2.315" "-2.316" "-2.316"	"406" "0" "33" "5"	"453.35" "6.34" "48.07" "12.46"	"20.487" "2.739" "6.508" "3.221"
## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.316" "-2.32"	"406" "0" "33" "5" "3"	"453.35" "6.34" "48.07" "12.46" "10.48"	"20.487" "2.739" "6.508" "3.221" "3.224"
## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.316" "-2.32"	"406" "0" "33" "5" "3"	"453.35" "6.34" "48.07" "12.46" "10.48"	"20.487" "2.739" "6.508" "3.221" "3.224"
## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.316" "-2.32" "-2.32" "-2.32"	"406" "0" "33" "5" "3" "3"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193"
## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.320" "-2.321" "-2.322"	"406" "0" "33" "5" "3" "0" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054"
## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323"	"406" "0" "33" "5" "3" "0" "0" "24"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48"
## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323"	"406" "0" "33" "5" "3" "0" "0" "24"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48" "1.92"
## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323"	"406" "0" "33" "5" "3" "0" "0" "24" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.333" "-2.337"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "0" "3"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.333" "-2.337" "-2.342"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "0" "3" "13"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.322" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.342" "-2.347"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "0" "3" "13" "11"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.322" "-2.322" "-2.323" "-2.323" "-2.323" "-2.329" "-2.337" "-2.342" "-2.342" "-2.348"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "0" "3" "13" "11" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.337" "-2.342" "-2.342" "-2.342" "-2.342" "-2.349"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.337" "-2.342" "-2.342" "-2.348" "-2.349" "-2.351"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "3"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.329" "-2.342" "-2.342" "-2.348" "-2.349" "-2.351" "-2.357"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "3" "1" "0" "3" "6"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.315" "-2.316" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.333" "-2.337" "-2.342" "-2.342" "-2.347" "-2.348" "-2.349" "-2.357" "-2.362"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "3" "18" "1" "0" "3" "6" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.342" "-2.342" "-2.342" "-2.347" "-2.348" "-2.349" "-2.351" "-2.362" "-2.362"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "3" "6" "0" "2"	"453.35" "6.34" "48.07" "12.46" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98" "9.08"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108" "2.997"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.323" "-2.342" "-2.342" "-2.342" "-2.347" "-2.348" "-2.357" "-2.362" "-2.362" "-2.362"	"406" "0" "33" "5" "3" "0" "24" "0" "3" "13" "11" "0" "3" "6" "0" "2" "4"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98" "9.08" "11.08"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108" "2.997"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.333" "-2.337" "-2.342" "-2.342" "-2.342" "-2.345" "-2.357" "-2.362" "-2.362" "-2.362" "-2.364"	"406" "0" "33" "5" "3" "0" "24" "0" "3" "13" "11" "0" "3" "6" "0" "2" "4" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98" "9.08" "11.08"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108" "2.997" "1.832"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.321" "-2.322" "-2.323" "-2.323" "-2.323" "-2.329" "-2.337" "-2.342" "-2.342" "-2.347" "-2.348" "-2.357" "-2.362" "-2.362" "-2.362" "-2.362" "-2.365"	"406" "0" "33" "5" "3" "0" "0" "24" "0" "3" "13" "11" "0" "3" "6" "0" "2" "4" "0" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98" "9.08" "11.08" "4.33" "5.91"	"20.487" "2.739" "6.508" "3.221" "3.224" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108" "2.997" "1.832" "2.499"
## ## ## ## ## ## ## ## ## ## ## ## ##	"-2.311" "-2.316" "-2.316" "-2.32" "-2.32" "-2.322" "-2.323" "-2.323" "-2.323" "-2.333" "-2.337" "-2.342" "-2.342" "-2.342" "-2.345" "-2.357" "-2.362" "-2.362" "-2.362" "-2.364"	"406" "0" "33" "5" "3" "0" "24" "0" "3" "13" "11" "0" "3" "6" "0" "2" "4" "0"	"453.35" "6.34" "48.07" "12.46" "10.48" "10.48" "5.09" "4.77" "39.05" "4.46" "9.1" "4.48" "10.81" "23.08" "6.68" "5.17" "4.06" "9.78" "14.29" "4.98" "9.08" "11.08"	"20.487" "2.739" "6.508" "3.221" "3.224" "2.193" "2.054" "6.48" "1.92" "2.619" "1.92" "3.341" "4.303" "2.42" "2.202" "1.728" "2.884" "3.517" "2.108" "2.997" "1.832"

##	"-2.389"	"1"	"6.48"	"2.294"
##	"-2.389"	"64"	"87.97"	"10.034"
##	"-2.39"	"62"	"81.33"	"8.088"
##	"-2.393"	"6"	"14.66"	"3.619"
##	"-2.396"	"16"	"25.91"	"4.137"
##	"-2.398"	"0"	"4.61"	"1.922"
##	"-2.399"	"56"	"78.16"	"9.237"
##	"-2.401"	"0"	"6.75"	"2.812"
##	"-2.402"	"7"	"17.08"	"4.196"
##	"-2.408"	"16"	"28.72"	"5.282"
##	"-2.409"	"8"	"18.49"	"4.354"
##	"-2.411"	"0"	"6.48"	"2.687"
##	"-2.413"	"2"	"9.05"	"2.921"
##	"-2.416"	"126"	"153.64"	"11.44"
##	"-2.416"	"3"	"9.75"	"2.794"
##	"-2.421"	"8"	"16.61"	"3.556"
##	"-2.423"	"0"	"5.28"	"2.179"
##	"-2.423"	"6"	"14.18"	"3.377"
##	"-2.423"	"0"	"5.28"	"2.179"
##	"-2.425"	"1"	"6.33"	"2.198"
##	"-2.425"	"3"	"11.19"	"3.378"
##	"-2.426"	"0"	"7.42"	"3.059"
##	"-2.428"	"14"	"26.67"	"5.219"
##	"-2.43"	"18"	"31.33"	"5.487"
##	"-2.431"	"0"	"5.66"	"2.328"
##	"-2.431"	"0"	"5.66"	"2.328"
##	"-2.432"	"0"	"4.88"	"2.006"
##	"-2.432"	"0"	"4.88"	"2.006"
##	"-2.432"	"0"	"4.88"	"2.006"
##	"-2.435"	"0"	"5.43"	"2.23"
##	"-2.445"	"0"	"5.08"	"2.078"
##	"-2.446"	"22"	"37.1"	"6.173"
##	"-2.448"	"1"	"6.57"	"2.275"
##	"-2.449"	"2"	"8.41"	"2.617"
##	"-2.456"	"1"	"9.87"	"3.612"
##	"-2.463"	"0"	"7.13"	"2.894"
##	"-2.465"	"4"	"12.63"	"3.501"
##	"-2.466"	"20"	"34.54"	"5.897"
##	"-2.467"	"0"	"4.05"	"1.641"
##	"-2.468"	"1"	"6.65"	"2.289"
##	"-2.471"	"0"	"6.13"	"2.481"
##	"-2.471"	"4"	"13.44"	"3.82"
##	"-2.472"	"4"	"13.74"	"3.941"
##	"-2.474"	"2"	"9.48"	"3.023"
##	"-2.478"	"10"	"20.94"	"4.415"
##	"-2.479"	"0"	"6.94"	"2.799"
##	"-2.488"	"21"	"36.72"	"6.318"
##	"-2.494"	"3"	"11.2"	"3.288"
##	"-2.495"	"1"	"6.27"	"2.112"
##	"-2.495"	"0"	"4.31"	"1.727"
##	"-2.499"	"8"	"18.15"	"4.061"
##	"-2.5"	"25"	"40.24"	"6.095"
##	"-2.502"	"1"	"8.29"	"2.914"
##	"-2.507"	"13"	"23.81"	"4.313"

##	"-2.51"	"5"	"13.57"	"3.415"
##	"-2.513"	"1"	"6.97"	"2.376"
##	"-2.516"	"202"	"238.61"	"14.553"
##	"-2.516"	"0"	"4.88"	"1.94"
##	"-2.521"	"3"	"10.82"	"3.102"
##	"-2.529"	"0"	"6.96"	"2.752"
##	"-2.531"	"2"	"9.65"	"3.023"
##	"-2.534"	"3"	"10.23"	"2.853"
##	"-2.536"	"175"	"212.07"	"14.619"
##	"-2.542"	"1"	"8.62"	"2.998"
##	"-2.547"	"29"	"45.5"	"6.478"
##	"-2.549"	"0"	"5.71"	"2.24"
##	"-2.549"	"0"	"5.71"	"2.24"
##	"-2.557"	"1"	"6.76"	"2.252"
##	"-2.566"	"2"	"9.45"	"2.904"
##	"-2.567"	"0"	"6.56"	"2.556"
##	"-2.568"	"30"	"45.64"	"6.089"
##	"-2.57"	"0"	"6.15"	"2.393"
##	"-2.57"	"7"	"18.74"	"4.567"
##	"-2.57"	"7"	"18.74"	"4.567"
##	"-2.57"	"7"	"18.74"	"4.567"
##	"-2.573"	"50"	"69.72"	"7.665"
##	"-2.574"	"61"	"81.79"	"8.078"
##	"-2.574"	"4"	"14.12"	"3.932"
##	"-2.574"	"7"	"15.76"	"3.403"
##	"-2.576"	"1"	"7.73"	"2.613"
##	"-2.577"	"0"	"8.26"	"3.205"
##	"-2.578"	"0"	"5.27"	"2.044"
##	"-2.578"	"1"	"8.2"	"2.792"
##	"-2.579"	"2"	"9.49"	"2.904"
##	"-2.584"	"2"	"10.16"	"3.158"
##	"-2.592"	"3"	"12.4"	"3.627"
##	"-2.592"	"0"	"6.46"	"2.492"
##	"-2.595"	"0"	"5.3"	"2.042"
##	"-2.596"	"0"	"5.23"	"2.014"
##	"-2.598"	"38"	"59.59"	"8.31"
##	"-2.603"	"0"	"5.81"	"2.232"
##	"-2.612"	"0"	"5.5"	"2.106"
##	"-2.618"	"11"	"23.65"	"4.831"
##	"-2.618"	"2"	"11.52"	"3.636"
##	"-2.622"	"50"	"71.25"	"8.105"
##	"-2.625"	"145"	"175.51"	"11.622"
##	"-2.628"	"186"	"226.9"	"15.561"
##	"-2.63"	"2"	"11.38"	"3.567"
##	"-2.64"	"0"	"6.45"	"2.443"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.642"	"0"	"6.92"	"2.62"
##	"-2.644"	"1"	"6.78"	"2.186"
##	"-2.644"	"0"	"6.1"	"2.307"
##	"-2.647"	"0"	"5.99"	"2.263"
##	"-2.649"	"0"	"6.92"	"2.612"
##	"-2.661"	"0"	"7.01"	"2.634"
##	"-2.664"	"4"	"12.78"	"3.295"

##	"-2.664"	"0"	"8.64"	"3.243"
##	"-2.665"	"2"	"9.91"	"2.968"
##	"-2.666"	"14"	"27.24"	"4.967"
##	"-2.667"	"3"	"12.78"	"3.667"
##	"-2.677"	"3"	"11.46"	"3.16"
##	"-2.679"	"0"	"5.8"	"2.165"
##	"-2.679"	"1"	"8.08"	"2.643"
##	"-2.679"	"1"	"8.36"	"2.747"
##	"-2.681"	"196"	"240.61"	"16.642"
##	"-2.681"	"0"	"6.58"	"2.454"
##	"-2.686"	"23"	"38.99"	"5.954"
##	"-2.69"	"3"	"9.95"	"2.583"
##	"-2.701"	"47"	"65.89"	"6.993"
##	"-2.703"	"11"	"24.68"	"5.061"
##	"-2.719"	"0"	"7.15"	"2.63"
##	"-2.721"	"9"	"22.81"	"5.075"
##	"-2.721"	"0"	"7.41"	"2.723"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.728"	"1"	"8.84"	"2.873"
##	"-2.737"	"43"	"63.51"	"7.493"
##	"-2.739"	"10"	"21.15"	"4.071"
##	"-2.757"	"0"	"6.05"	"2.194"
##	"-2.758"	"0"	"7.27"	"2.636"
##	"-2.766"	"4"	"15.54"	"4.172"
##	"-2.767"	"0"	"6.85"	"2.476"
##	"-2.769"	"1"	"8.37"	"2.662"
##	"-2.771"	"132"	"165.7"	"12.16"
##	"-2.774"	"7"	"18.07"	"3.991"
##	"-2.774"	"1"	"9.48"	"3.057"
##	"-2.776"	"0"	"7.94"	"2.86"
##	"-2.776"	"24"	"38.1"	"5.08"
##	"-2.779"	"19"	"35.57"	"5.962"
##	"-2.784"	"0"	"6.63"	"2.381"
##	"-2.785"	"113"	"142.55"	"10.612"
##	"-2.794"	"15"	"28.58"	"4.86"
##	"-2.797"	"0"	"6.49"	"2.32"
##	"-2.798"	"3"	"14.18"	"3.996"
##	"-2.801"	"1"	"8.2"	"2.57"
##	"-2.802"	"0"	"9.75"	"3.48"
##	"-2.809"	"1"	"8.73"	"2.752"
##	"-2.81"	"16"	"30.87"	"5.293"
##	"-2.814"	"0"	"9.52"	"3.383"
##	"-2.821"	"1"	"10.13"	"3.237"
##	"-2.822"	"0"	"9.34"	"3.31"
##	"-2.823"	"11"	"24.74"	"4.867"
##	"-2.833"	"6"	"16.55"	"3.724"
##	"-2.843"	"0"	"5.79"	"2.037"
##	"-2.843"	"2"	"9.93"	"2.79"
##	"-2.844"	"4"	"14.15"	"3.569"
##	"-2.85"	"0"	"6.12"	"2.147"
##	"-2.85"	"2"	"10.41"	"2.951"
##	"-2.85"	"3"	"12.67"	"3.394"
##	"-2.86"	"0"	"7.42"	"2.594"
##	"-2.862"	"0"	"7.16"	"2.501"

##	"-2.87"	"0"	"8.42"	"2.934"
##	"-2.871"	"0"	"8.38"	"2.919"
##	"-2.873"	"0"	"7.06"	"2.457"
##	"-2.875"	"1"	"9.75"	"3.043"
##	"-2.879"	"12"	"25.39"	"4.651"
##	"-2.885"	"0"	"8.23"	"2.853"
##	"-2.887"	"2"	"11"	"3.117"
##	"-2.89"	"0"	"7.77"	"2.689"
##	"-2.891"	"34"	"55.28"	"7.361"
##	"-2.894"	"1"	"9.41"	"2.906"
##	"-2.894"	"1"	"9.41"	"2.906"
##	"-2.899"	"1"	"12.13"	"3.839"
##	"-2.902"	"11"	"23.87"	"4.435"
##	"-2.903"	"0"	"7.11"	"2.449"
##	"-2.907"	"3"	"11.99"	"3.093"
##	"-2.908"	"19"	"33.83"	"5.099"
##	"-2.911"	"91"	"124.78"	"11.604"
##	"-2.913"	"4"	"13.93"	"3.409"
##	"-2.922"	"3"	"13.64"	"3.642"
##	"-2.923"	"20"	"37.08"	"5.843"
##	"-2.928"	"2"	"10.21"	"2.804"
##	"-2.93"	"10"	"23.1"	"4.471"
##	"-2.949"	"5"	"15.22"	"3.466"
##	"-2.951"	"0"	"6.37"	"2.159"
##	"-2.951"	"0"	"6.37"	"2.159"
##	"-2.951"	"0"	"6.37"	"2.159"
##	"-2.953"	"1"	"10.18"	"3.109"
##	"-2.955"	"0"	"8.34"	"2.822"
##	"-2.96"	"0"	"5.88"	"1.986"
##	"-2.962"	"28"	"46.24"	"6.158"
##	"-2.963"	"0"	"5.93"	"2.001"
##	"-2.964"	"63"	"92.65"	"10.002"
##	"-2.973"	"2"	"11.39"	"3.159"
##	"-2.978"	"0"	"7.76"	"2.606"
##	"-2.979"	"43"	"65.09"	"7.416"
##	"-2.983"	"12"	"25.42"	"4.5"
##	"-2.998"	"2"	"14.26"	"4.089"
##	"-3.001"	"0"	"7.54"	"2.512"
##	"-3.003"	"2"	"11.03"	"3.007"
##	"-3.004"	"2"	"10.65"	"2.879"
##	"-3.007"	"5"	"17.22"	"4.064"
##	"-3.011"	"4"	"14.9"	"3.62"
##	"-3.013"	"12"	"25.74"	"4.561"
##	"-3.027"	"0"	"9.43"	"3.115"
##	"-3.027"	"23"	"40.14"	"5.662"
##	"-3.037"	"143"	"183.98"	"13.493"
##	"-3.041"	"47"	"72.45"	"8.368"
##	"-3.047"	"3"	"13.92"	"3.584"
##	"-3.048"	"165"	"207.32"	"13.883"
##	"-3.049"	"49"	"77.49"	"9.343"
##	"-3.055"	"4"	"15.35"	"3.716"
##	"-3.062"	"14"	"30.21"	"5.294"
##	"-3.062"	"8"	"22.89"	"4.864"
##	"-3.069"	"2"	"11.89"	"3.222"

##	"-3.069"	"2"	"11.89"	"3.222"
##	"-3.069"	"0"	"11.6"	"3.779"
##	"-3.077"	"1"	"11.63"	"3.454"
##	"-3.078"	"1"	"11.54"	"3.424"
##	"-3.098"	"4"	"17.8"	"4.454"
##	"-3.101"	"42"	"67.79"	"8.316"
##	"-3.103"	"2"	"11.2"	"2.964"
##	"-3.106"	"112"	"149.13"	"11.955"
##	"-3.113"	"20"	"39.94"	"6.405"
##	"-3.124"	"2"	"11.07"	"2.903"
##	"-3.128"	"14"	"31.23"	"5.508"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.14"	"4"	"16.28"	"3.911"
##	"-3.147"	"15"	"34.2"	"6.1"
##	"-3.159"	"7"	"22.04"	"4.761"
##	"-3.163"	"23"	"43.58"	"6.506"
##	"-3.166"	"0"	"9.98"	"3.153"
##	"-3.171"	"41"	"68.07"	"8.537"
##	"-3.185"	"342"	"405.18"	"19.839"
##	"-3.195"	"11"	"24.17"	"4.122"
##	"-3.196"	"0"	"9.89"	"3.094"
##	"-3.198"	"2"	"12.97"	"3.43"
##	"-3.204"	"5"	"17.37"	"3.86"
##	"-3.212"	"5"	"18"	"4.048"
##	"-3.22"	"29"	"50.39"	"6.644"
##	"-3.223"	"4"	"15.95"	"3.707"
##	"-3.224"	"16"	"36.3"	"6.297"
##	"-3.228"	"0"	"9.31"	"2.884"
##	"-3.232"	"1"	"11.91"	"3.376"
##	"-3.232"	"0"	"10.46"	"3.236"
##	"-3.238"	"74"	"107.12"	"10.228"
##	"-3.239"	"3"	"17.45"	"4.462"
##	"-3.24"	"9"	"23.18"	"4.377"
##	"-3.241"	"7"	"20.84"	"4.27"
##	"-3.247"	"0"	"8.62"	"2.654"
##	"-3.248"	"2"	"13.06"	"3.405"
##	"-3.26"	"12"	"31.75"	"6.058"
##	"-3.262"	"95"	"129.74"	"10.649"
##	"-3.266"	"0"	"9.22"	"2.823"
##	"-3.273"	"10"	"26.84"	"5.146"
##	"-3.285"	"0"	"11.69"	"3.558"
##	"-3.285"	"66"	"100.89"	"10.622"
##	"-3.296"	"5"	"19.29"	"4.335"
##	"-3.315"	"0"	"10.19"	"3.074"
##	"-3.316"	"3"	"13.64"	"3.208"
##	"-3.331"	"0"	"11.77"	"3.533"
##	"-3.332"	"27"	"51.15"	"7.248"
##	"-3.343"	"7"	"19.81"	"3.832"
##	"-3.348"	"0"	"8.8"	"2.629"
##	"-3.348"	"15"	"34.12"	"5.711"
##	"-3.35"	"1"	"11.85"	"3.239"
##	"-3.36"	"2"	"16.18"	"4.22"

##	"-3.361"	"14"	"35.22"	"6.314"
##	"-3.368"	"1"	"11.75"	"3.192"
##	"-3.379"	"5"	"21.63"	"4.921"
##	"-3.382"	"11"	"25.56"	"4.305"
##	"-3.385"	"1"	"12.14"	"3.291"
##	"-3.419"	"0"	"9.62"	"2.813"
##	"-3.423"	"8"	"24.99"	"4.963"
##	"-3.429"	"276"	"345.9"	"20.387"
##	"-3.436"	"118"	"165.66"	"13.869"
##	"-3.444"	"27"	"49.49"	"6.53"
##	"-3.448"	"0"	"10.23"	"2.967"
##	"-3.453"	"0"	"10.99"	"3.183"
##	"-3.455"	"0"	"10.56"	"3.056"
##	"-3.459"	"14"	"37.3"	"6.735"
##	"-3.468"	"4"	"20.47"	"4.749"
##	"-3.468"	"4"	"20.47"	"4.749"
##	"-3.468"	"4"	"20.47"	"4.749"
##	"-3.47"	"37"	"62.04"	"7.217"
##	"-3.474"	"34"	"60.49"	"7.626"
##	"-3.476"	"0"	"12.82"	"3.688"
##	"-3.477"	"2"	"14.22"	"3.515"
##	"-3.478"	"0"	"11.97"	"3.442"
##	"-3.484"	"4"	"15.35"	"3.258"
##	"-3.488"	"2"	"16.87"	"4.263"
##	"-3.49"	"18"	"39.35"	"6.117"
##	"-3.497"	"84"	"118.44"	"9.848"
##	"-3.512"	"0"	"12.84"	"3.656"
##	"-3.528"	"38"	"66.44"	"8.062"
##	"-3.533"	"38"	"67.08"	"8.231"
##	"-3.534"	"102"	"144.96"	"12.155"
##	"-3.538"	"8"	"26.08"	"5.11"
##	"-3.549"	"4"	"17.16"	"3.708"
##	"-3.552"	"33"	"55.34"	"6.29"
##	"-3.56"	"0"	"12.28"	"3.45"
##	"-3.572"	"7"	"24.83"	"4.991"
##	"-3.574"	"8"	"24"	"4.477"
##	"-3.593"	"10"	"29.08"	"5.31"
##	"-3.594"	"19"	"37.16"	"5.053"
##	"-3.602"	"4"	"20.26"	"4.514"
##	"-3.607"	"0"	"13.06"	"3.62"
##	"-3.607"	"20"	"42.46"	"6.227"
##	"-3.618"	"2"	"16"	"3.869"
##	"-3.635" "-3.642"	"7"	"22.58" "155.27"	"4.286" "11.058"
##		"115"		
##	"-3.655" "-3.656"	"52" "0"	"89.78" "10.8"	"10.335" "2.954"
##	"-3.663"			
## ##	"-3.663" "-3.675"	"10" "0"	"27.05" "12.6"	"4.654" "3.429"
##	"-3.675" "-3.679"	"4"	"12.6" "26.83"	"3.429" "6.205"
##	"-3.679" "-3.686"	"45"	"26.83" "71.95"	"7.312"
##	"-3.686" "-3.686"	"45" "13"	"71.95" "35.22"	"6.028"
##	"-3.686" "-3.688"	"13" "34"	"63.49"	"7.997"
## ##	"-3.688"	"34"	"71.23"	"9.004"
##	"-3.691" "-3.696"	"38"	"11.23" "11.87"	"9.004"
##	-3.090"	0	11.01"	3.212"

##	"-3.697"	"7"	"24.94"	"4.853"
##	"-3.697"	"1"	"14.94"	"3.771"
##	"-3.702"	"1"	"14.84"	"3.738"
##	"-3.714"	"23"	"51.96"	"7.798"
##	"-3.723"	"0"	"12.61"	"3.387"
##	"-3.726"	"1"	"13.19"	"3.271"
##	"-3.736"	"7"	"26.7"	"5.273"
##	"-3.738"	"4"	"22.47"	"4.941"
##	"-3.74"	"11"	"32.1"	"5.642"
##	"-3.754"	"2"	"18.46"	"4.384"
##	"-3.757"	"1"	"16.27"	"4.065"
##	"-3.762"	"0"	"13.41"	"3.565"
##	"-3.767"	"3"	"17.47"	"3.841"
##	"-3.806"	"23"	"51.16"	"7.399"
##	"-3.81"	"4"	"22.68"	"4.903"
##	"-3.815"	"0"	"14.23"	"3.73"
##	"-3.835"	"1"	"13.47"	"3.252"
##	"-3.845"	"15"	"41.54"	"6.903"
##	"-3.856"	"7"	"24.86"	"4.632"
##	"-3.874"	"0"	"12.16"	"3.139"
##	"-3.876"	"2"	"18.55"	"4.27"
##	"-3.885"	"53"	"92.44"	"10.152"
##	"-3.891"	"0"	"12.95"	"3.328"
##	"-3.912"	"1"	"18.15"	"4.384"
##	"-3.919"	"18"	"43.73"	"6.566"
##	"-3.925"	"11"	"31.35"	"5.184"
##	"-3.928"	"0"	"9.39"	"2.391"
##	"-3.928"	"2"	"16.07"	"3.582"
##	"-3.93"	"0"	"16.86"	"4.29"
##	"-3.937"	"2"	"17.07"	"3.828"
##	"-3.94"	"3"	"21.04"	"4.579"
##	"-3.947"	"10"	"29.79"	"5.014"
##	"-3.95"	"0"	"17.86"	"4.522"
##	"-3.961"	"3"	"17.32"	"3.615"
##	"-3.969"	"5"	"21.13"	"4.064"
##	"-3.974"	"7"	"26.79"	"4.979"
##	"-3.978"	"2"	"16.83"	"3.728"
##	"-3.982"	"5"	"24.04"	"4.782"
##	"-3.985"	"46"	"81.99"	"9.03"
##	"-3.985"	"7"	"26.13"	"4.8"
##	"-3.987"	"40"	"72.89"	"8.25"
##	"-3.988"	"14"	"39.45"	"6.382"
##	"-3.99"	"3"	"20.96"	"4.501"
##	"-4.005"	"62"	"101.49"	"9.86"
##	"-4.01"	"0"	"14.3"	"3.566"
##	"-4.015"	"6"	"25.55"	"4.869"
##	"-4.046"	"69"	"112.92"	"10.855"
##	"-4.054"	"0"	"13.03"	"3.214"
##	"-4.054"	"0"	"13.03"	"3.214"
##	"-4.059"	"53"	"88.39"	"8.719"
##	"-4.078"	"6"	"32.27"	"6.441"
##	"-4.08"	"46"	"79.98"	"8.328"
##	"-4.106"	"6"	"28.81"	"5.555"
##	"-4.113"	"5"	"26.25"	"5.167"

##	"-4.135"	"5"	"22.82"	"4.31"
##	"-4.136"	"2"	"20.03"	"4.359"
##	"-4.162"	"2"	"22.68"	"4.968"
##	"-4.172"	"4"	"23.73"	"4.729"
##	"-4.173"	"36"	"71.43"	"8.49"
##	"-4.186"	"5"	"21.27"	"3.887"
##	"-4.198"	"13"	"39.69"	"6.358"
##	"-4.2"	"6"	"25.54"	"4.652"
##	"-4.204"	"276"	"352.81"	"18.271"
##	"-4.225"	"52"	"93.78"	"9.889"
##	"-4.229"	"40"	"74.86"	"8.243"
##	"-4.23"	"0"	"18.86"	"4.459"
##	"-4.235"	"8"	"32.39"	"5.759"
##	"-4.24"	"25"	"56.76"	"7.49"
##	"-4.244"	"37"	"75.2"	"9.001"
##	"-4.262"	"13"	"33.53"	"4.817"
##	"-4.263"	"6"	"25.9"	"4.668"
##	"-4.278"	"17"	"44.78"	"6.494"
##	"-4.28"	"26"	"59.36"	"7.795"
##	"-4.283"	"7"	"29.68"	"5.295"
##	"-4.311"	"2"	"20.13"	"4.206"
##	"-4.312"	"29"	"68.6"	"9.183"
##	"-4.313"	"1"	"23.38"	"5.189"
##	"-4.32"	"0"	"14.43"	"3.34"
##	"-4.322"	"10"	"35.79"	"5.967"
##	"-4.335"	"377"	"467.47"	"20.869"
##	"-4.341"	"4"	"24.94"	"4.824"
##	"-4.349"	"5"	"24.19"	"4.412"
##	"-4.361"	"2"	"17.01"	"3.442"
##	"-4.429"	"36"	"75.68"	"8.959"
##	"-4.438"	"7"	"25.99"	"4.279"
##	"-4.442"	"10"	"35.29"	"5.693"
##	"-4.448"	"4"	"23.73"	"4.436"
##	"-4.449"	"11"	"44.36"	"7.499"
##	"-4.454"	"8"	"35.15"	"6.096"
##	"-4.456"	"1"	"22.52"	"4.829"
##	"-4.463"	"9"	"31.72"	"5.091"
##	"-4.475"	"21"	"48.89"	"6.233"
##	"-4.5"	"0"	"18.53"	"4.118"
##	"-4.506"	"55"	"91.74"	"8.153"
##	"-4.528"	"8"	"32.38"	"5.384"
##	"-4.544"	"10"	"34.31"	"5.35"
##	"-4.56"	"37"	"76.42"	"8.645"
##	"-4.565"	"406"	"502.77"	"21.2"
##	"-4.57"	"0"	"16.8"	"3.676"
##	"-4.571"	"10"	"38.45"	"6.224"
##	"-4.576"	"31"	"69.73"	"8.464"
##	"-4.578"	"2"	"21.47"	"4.253"
##	"-4.582"	"0"	"18.37"	"4.009"
##	"-4.589"	"5"	"26.62"	"4.711"
##	"-4.597"	"0"	"22.34"	"4.86"
##	"-4.6"	"195"	"257.75"	"13.642"
##	"-4.633"	"3"	"20.96"	"3.877"
##	"-4.669"	"6"	"28.84"	"4.892"

##	"-4.671"	"7"	"31.04"	"5.146"
##	"-4.671"	"0"	"13.35"	"2.858"
##	"-4.68"	"49"	"86.51"	"8.016"
##	"-4.741"	"5"	"28.15"	"4.883"
##	"-4.75"	"8"	"30.28"	"4.691"
##	"-4.765"	"1"	"24.99"	"5.034"
##	"-4.804"	"17"	"44.14"	"5.65"
##	"-4.845"	"25"	"65.61"	"8.382"
##	"-4.847"	"0"	"23.38"	"4.824"
##	"-4.857"	"19"	"55.34"	"7.482"
##	"-4.865"	"55"	"108.64"	"11.027"
##	"-4.866"	"1"	"24.53"	"4.836"
##	"-4.873"	"75"	"127.69"	"10.813"
##	"-4.88"	"93"	"144.63"	"10.581"
##	"-4.88"	"49"	"93.37"	"9.093"
##	"-4.927"	"846"	"993.78"	"29.993"
##	"-4.929"	"31"	"69.94"	"7.901"
##	"-4.946"	"33"	"71.53"	"7.791"
##	"-4.952"	"443"	"568.51"	"25.345"
##	"-4.968"	"11"	"36.54"	"5.141"
##	"-5.025"	"16"	"53.78"	"7.519"
##	"-5.04"	"9"	"41.4"	"6.429"
##	"-5.047"	"29"	"72.06"	"8.533"
##	"-5.105"	"6"	"34.7"	"5.622"
##	"-5.118"	"39"	"87.86"	"9.547"
##	"-5.174"	"0"	"28.06"	"5.423"
##	"-5.207"	"2"	"26.84"	"4.771"
##	"-5.21"	"142"	"223.3"	"15.605"
##	"-5.251"	"102"	"173.39"	"13.594"
##	"-5.276"	"15"	"49.55"	"6.548"
##	"-5.305"	"16"	"54.97"	"7.346"
##	"-5.314"	"416"	"546.98"	"24.65"
##	"-5.316"	"8"	"48.93"	"7.699"
##	"-5.338"	"77"	"138.96"	"11.606"
##	"-5.38"	"13"	"46.56"	"6.238"
##	"-5.393"	"0"	"28.13"	"5.216"
##	"-5.4"	"3"	"36.05"	"6.121"
##	"-5.424"	"18"	"58.61"	"7.487"
##	"-5.425"	"2"	"30.37"	"5.229"
##	"-5.428"	"101"	"172.02"	"13.084"
##	"-5.429"	"493"	"628.12"	"24.889"
##	"-5.433"	"69"	"127.57"	"10.781"
##	"-5.479"	"5"	"36.55"	"5.758"
##	"-5.494"	"181"	"282.18"	"18.416"
##	"-5.505"	"19"	"67.87"	"8.878"
##	"-5.519"	"22"	"59.78"	"6.845"
##	"-5.56"	"0"	"21.26"	"3.823"
##	"-5.561"	"27"	"81.55"	"9.81"
##	"-5.57"	"229"	"321.09"	"16.534"
##	"-5.59"	"52"	"112.22"	"10.774"
##	"-5.602"	"5"	"39.5"	"6.159"
##	"-5.621"	"41"	"89.94"	"8.707"
##	"-5.647"	"15"	"50.53"	"6.292"
##	"-5.654"	"1"	"35.74"	"6.144"

##	"-5.719"	"249"	"366.68"	"20.576"
##	"-5.741"	"1"	"33.18"	"5.606"
##	"-5.78"	"68"	"126.28"	"10.084"
##	"-5.793"	"0"	"37.59"	"6.489"
##	"-5.832"	"8"	"41.9"	"5.813"
##	"-5.899"	"2"	"43.77"	"7.081"
##	"-5.938"	"266"	"373.81"	"18.156"
##	"-5.938"	"62"	"128.53"	"11.204"
##	"-5.954"	"6"	"42.47"	"6.126"
##	"-6.049"	"2"	"34.29"	"5.338"
##	"-6.064"	"62"	"125.3"	"10.438"
##	"-6.071"	"38"	"100.45"	"10.286"
##	"-6.087"	"19"	"73.05"	"8.879"
##	"-6.129"	"25"	"81.8"	"9.268"
##	"-6.156"	"0"	"35.1"	"5.702"
##	"-6.19"	"16"	"63.67"	"7.702"
##	"-6.193"	"17"	"61.8"	"7.233"
##	"-6.212"	"90"	"157.76"	"10.907"
##	"-6.22"	"0"	"24.93"	"4.008"
##	"-6.221"	"37"	"82.69"	"7.344"
##	"-6.239"	"64"	"127.62"	"10.197"
##	"-6.255"	"601"	"749.06"	"23.669"
##	"-6.359"	"15"	"66.48"	"8.096"
##	"-6.364"	"64"	"149.75"	"13.475"
##	"-6.404"	"113"	"205.73"	"14.479"
##	"-6.405"	"0"	"51.89"	"8.101"
##	"-6.411"	"0"	"46.76"	"7.293"
##	"-6.519"	"70"	"152.54"	"12.661"
##	"-6.578"	"0"	"41.6"	"6.325"
##	"-6.665"	"59"	"124.92"	"9.89"
##	"-6.707"	"11"	"67.3"	"8.394"
##	"-6.747"	"140"	"237.55"	"14.457"
##	"-6.778"	"45"	"118.14"	"10.791"
##	"-6.817"	"45"	"114.09"	"10.136"
##	"-6.863"	"196"	"317.51"	"17.705"
##	"-6.868"	"552"	"719.61"	"24.406"
##	"-6.942"	"1"	"39.7"	"5.575"
##	"-6.99"	"8"	"55.73"	"6.828"
##	"-6.992"	"43"	"120.64"	"11.104"
##	"-7.171"	"41"	"106.83"	"9.18"
##	"-7.179"	"0"	"61.62"	"8.583"
##	"-7.313"	"157"	"277.22"	"16.438"
##	"-7.352"	"113"	"208.97"	"13.053"
##	"-7.385"	"17"	"77.89"	"8.245"
##	"-7.387"	"8"	"60.65"	"7.127"
##	"-7.517"	"30"	"126.32"	"12.814"
##	"-7.522"	"412"	"598.15"	"24.747"
##	"-7.569"	"4792"	"5501.34"	"93.718"
##	"-7.572"	"13"	"63.98"	"6.733"
##	"-7.649"	"382"	"593.41"	"27.638"
##	"-7.705"	"61"	"151.94"	"11.802"
##	"-7.714"	"31"	"112.48"	"10.562"
##	"-7.746"	"9"	"98.53"	"11.558"
##	"-7.783"	"92"	"186.54"	"12.148"

```
"-7.811" "32"
                                      "115.08" "10.636"
##
                    "-7.812" "34"
                                      "122.48" "11.326"
##
                              "227"
##
                    "-7.89"
                                      "379.06" "19.271"
                    "-7.921" "172"
                                      "276.48"
                                               "13.191"
##
##
                    "-7.936"
                              "38"
                                      "117.45"
                                               "10.011"
                    "-7.96"
                              "41"
                                      "112.78" "9.018"
##
                    "-8.058" "489"
                                      "685.17"
                                               "24.344"
##
                              "254"
                    "-8.159"
                                      "407.11"
                                               "18.766"
##
##
                    "-8.222"
                              "5"
                                      "78.61"
                                                "8.953"
                    "-8.305"
                              "108"
                                      "224"
##
                                                "13.968"
##
                    "-8.324"
                              "86"
                                      "197.05" "13.34"
                    "-8.378"
                              "2"
                                      "76.67"
                                                "8.913"
##
                              "2"
                                      "76.4"
##
                    "-8.398"
                                                "8.859"
                    "-8.417" "82"
                                      "209.45" "15.143"
##
                    "-8.584"
                              "155"
                                      "292.13" "15.975"
##
                                      "279.87" "14.671"
##
                    "-8.648"
                              "153"
                    "-8.815"
                              "103"
                                      "230.79" "14.497"
##
##
                    "-8.883"
                              "27"
                                      "121.2"
                                                "10.604"
                    "-8.957"
                              "33"
                                      "127.42" "10.542"
##
                                      "1341.62" "34.033"
##
                    "-9.274"
                              "1026"
##
                                                "9.237"
                    "-9.29"
                              "3"
                                      "88.81"
                    "-9.305"
                              "61"
                                      "173.43" "12.083"
##
                              "57"
                                      "160.77" "11.113"
                    "-9.338"
##
                    "-9.395"
                              "36"
                                      "124.06"
                                               "9.373"
##
                    "-9.45"
                              "1"
                                      "78.27"
##
                                                "8.177"
##
                    "-9.562"
                              "3"
                                      "80.47"
                                                "8.102"
                              "101"
                    "-9.617"
                                      "249.93" "15.487"
##
                    "-9.651" "100"
                                      "241.24" "14.634"
##
                    "-10.064" "3"
                                      "85.35"
                                                "8.183"
##
                    "-10.153" "555"
                                      "864.22" "30.456"
##
                    "-10.195" "2570"
                                      "3161.45" "58.016"
##
##
                    "-10.276" "1181"
                                      "1541.13" "35.047"
                    "-10.641" "0"
                                      "105.92" "9.954"
##
                    "-10.652" "254"
                                      "525.79" "25.515"
##
                    "-11.368" "91"
                                      "246.66" "13.692"
##
                    "-11.404" "321"
                                      "573.88" "22.175"
##
                    "-11.534" "2"
##
                                      "114.22" "9.729"
                    "-12.003" "468"
                                      "777.18" "25.759"
##
                    "-12.049" "810"
                                      "1174.76" "30.272"
##
                    "-12.1" "619"
                                      "1028.87" "33.874"
##
                    "-13.794" "17894" "19099.7" "87.411"
##
                    "-15.521" "686"
                                      "1156.59" "30.319"
##
                    "-19.089" "690"
                                      "1297.68" "31.833"
##
                    "-26.78" "1880" "3424.3" "57.666"
##
                    "-26.82" "14"
                                      "594.76" "21.654"
##
                    "-33.911" "852"
                                      "2379.03" "45.03"
##
```

write.table(mf.enriched.terms, file="output/genes.mf.txt", sep="\t", row.names = F, col.names = F, quot