- ² Schlaikjer, E. M., Mus. Comp. Zoöl. Bull., 76, 83-84 (1935).
- ³ Peterson, O. A., Ann. Carnegie Mus., 20, art. 14 (1931).

DIFFERENTIABLE MANIFOLDS IN EUCLIDEAN SPACE¹

BY HASSLER WHITNEY

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated June 12, 1935

We present here a summary of some theorems on the imbedding of abstract differentiable manifolds in Euclidean space E^n and on the approximation to such manifolds by analytic manifolds. As a corollary it is noted that any differentiable manifold may be given an analytic Riemannian metric.

I. The Imbedding of a Differentiable Manifold in Euclidean Space.— Let M be a topological space with neighborhoods U_1, U_2, \ldots . Let each U_i be homeomorphic with the interior of the unit m-sphere S^m . If U_i and U_j have common points U_{ij} , then the homeomorphisms of U_i and U_j with S^m induce a mapping of one part of S^m on another part. If all such maps are of class C^r (i.e., have continuous partial derivatives through the rth order), $r \geq 1$, with non-vanishing Jacobian, we say M is differentiable, and of class C^r .

If M is in E^n and each point of M is in a neighborhood which may be defined by expressing n-m of the coördinates in terms of the remaining m, the functions being of class C^r , then M is of class C^r in the above sense; we say M is of class C^r in E^n . Suppose M is of class C^r , and is mapped into E^n . The n coördinates at points of M are n functions defined over M. If these functions are of class C^s (with the obvious definition for $s \leq r$), and are independent (so that m independent directions at any point of M go into m independent directions in E^n), we call the map of M in E^n a regular C^r -map. Such a map is locally one-one: a neighborhood of any point of M is mapped in a one-one manner in E^n .

THEOREM I. Any m-manifold of class C^r ($r \ge 1$ finite or infinite) may be imbedded by a regular C^r -map in E^{2m} , and by such a map in a one-one manner in E^{2m+1} .

The proof runs as follows: If M is closed, a finite number of neighborhoods U_1, \ldots, U_r cover M. Corresponding to these neighborhoods we define functions $f_1, \ldots, f_{\mu}, \mu = (m+1)\nu$, of class C^r over M, which, used as coördinates, map M in a regular C^r -manner in E^{μ} . If r=1, we next approximate to M by a manifold of class C^2 . We now project M or the new manifold along straight lines into spaces of lower dimension, till we

have it in E^{2m+1} or in E^{2m} . If M is not closed, we define such a map successively over larger and larger parts of M.

II. Approximations to Differentiable Manifolds by Analytic Manifolds.—A manifold of class C^r in E^n was defined above; it is analytic if the functions defining its neighborhoods are analytic. If M and M^* are homeomorphic manifolds in E^n and $\eta(p)$ is a positive continuous function defined on M, we say M^* approximates to M through the rth order with an error $< \eta(p)$ if the distance from any point p of M to the corresponding point p^* of M^* is $< \eta(p)$, and corresponding partial derivatives of order $\leq r$ (in a suitable coördinate system) differ by $< \eta(p)$.

THEOREM II. Let M be of class C^r in E^n ($r \ge 1$ finite), and let $\eta(p)$ be a positive continuous function defined on M. Then there is an analytic manifold M^* in E^n which approximates to M through the rth order with an error $< \eta(p)$.

To prove the theorem, we first define a positive function f, analytic in $E^n - M$, and approaching 0 as we approach M. The points f = c > 0 define a "tube" about M; the (n - m)-plane orthogonal to M at p cuts f = c in an (n - m - 1)-sphere. We define in an analytic fashion a "center" to the tube; the set of center points form M^* .

From theorems I and II follows

THEOREM III. Any m-manifold of class C^r ($r \ge 1$ finite) is homeomorphic with an analytic manifold in E^{2m+1} , the homeomorphism being of class C^r .

We may define ds^2 on the manifold as the ds^2 in E^{2m+1} ; hence

THEOREM IV. Any manifold M of class C^r ($r \ge 1$ finite) may be given an analytic Riemannian metric, the g_{ij} being of class C^r in terms of the original neighborhoods in M.

III. Imbedding of Manifolds in Families of Analytic Manifolds.— We state here a generalization of Theorem II for certain classes of manifolds in E^n . We say M is in regular position in E^n if there exist n-m independent continuous unit vector functions $v_1(p), \ldots, v_{n-m}(p)$ defined over M with the following property: Each point p_0 of M is in a neighborhood U of p_0 in M which is an m-cell, and such that any vector through two points of U makes an angle $> \rho(p_0)$ with the (n-m)-plane determined by the $v_i(p_0)$; $\rho(p)$ is a positive continuous function defined on M. If M is differentiable, the condition reduces to: The normal (n-m)-planes to points of M may be determined by n-m vector functions on M. The class of such (differentiable) manifolds is the same as the class of manifolds which may be determined by the simultaneous vanishing of n-m (independent) differentiable functions.²

THEOREM V. Let M be an m-manifold of class C' ($r \ge 1$ finite) in regular position in E^n , and let $\eta(p)$ be a positive continuous function on M. Then M can be imbedded in an (n-m)-parameter family of manifolds M (c_1, \ldots, c_{n-m}) , each $|c_i| < 1$, such that

- (1) $M(0, \ldots, 0) = M$.
- (2) $M(c_1, \ldots, c_{n-m})$ is analytic if $(c_1, \ldots, c_{n-m}) \neq (0, \ldots, 0)$.
- (3) Each $M(c_1, \ldots, c_{n-m})$ approximates to M through the rth order with an error $\langle \eta(p) \rangle$.
 - (4) The manifolds fill out a neighborhood of M in a one-one way.
 - ¹ Presented to the Am. Math. Society, Sept., 1935.
- ² If M is differentiable, it is in regular position if and only if the normal sphere-space is a product space. See the following paper, especially 3(C) and 8(d).

SPHERE-SPACES1

BY HASSLER WHITNEY

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated June 12, 1935

- 1. Introduction.—Spaces often occur in which the points themselves are spaces of some simple sort, for instance spheres of a given dimension. The set of all great circles on a sphere is such a space. Some general types of sphere-spaces are given in §3 below, and some specific examples in §8. Locally, sphere-spaces are product spaces (see §2); but in the large, this may no longer hold. In this note we define invariants which serve to distinguish different sphere-spaces when they have the same "base space." The proofs will be given in a later paper.
- 2. Definitions.—A sphere space is defined as follows: Let K be a topological space (usually a manifold or complex). To each point p of K let there correspond a point set S(p). Let U_1, U_2, \ldots be a set of neighborhoods covering K. To each U_i let there correspond a function $\xi_i(p, q)$, where p ranges over U_i and q ranges over the unit l-sphere S' in Euclidean space E^{l+1} ; for p fixed, $\xi_i(p, q)$ is a one-one map of S' onto S(p). Set $\xi'_i(p, q') = q$ whenever $\xi_i(p, q) = q'$. Suppose U_i and U_j have common points U_{ij} . Then $\xi_{ij}(p, q) = \xi'_j(p, \xi_i(p, q))$ for fixed p in U_{ij} is a one-one map of S' onto itself; we assume that these maps are differentiable with non-vanishing Jacobian, and that they vary continuously with p. If these conditions are satisfied, we call the resulting system a sphere-space S(K).

The space K we call the *base space*. The set of all pairs (p, q), where q is in S(p), we call the *total space* \mathfrak{S} ; if the spheres S(p) are non-intersecting (as parts of another space), we may let \mathfrak{S} be simply the points q. \mathfrak{S} is evidently a topological space.

If the maps $\xi_{ij}(p, q)$ (p fixed) are orthogonal transformations, we call the sphere-space regular. All the sphere-spaces described below are regular; in fact, we can define these maps by projecting the spheres S(p) onto $S(p_0)$ in a simple manner for p near p_0 .