NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR

Mid-semester Examination, March 2021

Subject Code: CS 207 Subject Name: Signal & Data Communication Semester: 4th Department of Computer Science & Engineering Duration: 1 Hour Total Marks: 20

All questions are compulsory. Each wrong answer carries -25% mark.

1. Consider the signal below. The signal is expressed by,

[1 mark] [120 sec]

A.
$$(t+1)u(t)-(t+2)u(t-2)-u(t-4)$$

C.
$$tu(t-1) - u(t-2) - u(t-4)$$

B.
$$(t-1)u(t-1) - (t-2)u(t-2) - u(t-4)$$
 D. $(t-1)u(t+1) - (t-2)u(t-2) - u(t-4)$

D.
$$(t-1)u(t+1) - (t-2)u(t-2) - u(t-4)$$

2. The even component of $x(t) = \cos(40\pi t - \pi/4)$ is given by,

[1 mark] [120 sec]

A.
$$\left(\frac{20}{\sqrt{2}}\right)\cos(40\pi t)$$

C.
$$10\cos(40\pi t)$$

B.
$$\left(\frac{20}{\sqrt{2}}\right)\cos(40\pi t - \pi/4)$$

D.
$$10\cos(40\pi t - \pi/4)$$

3. A signal is described by $x(t) = A \operatorname{rect}(t) + B \operatorname{rect}(t - 0.5)$. Signal energy is, [1 mark] [120 sec]

A.
$$A + B$$

C.
$$A^2 + B^2$$

B.
$$A-B$$

D.
$$(A + B)^2$$

4. Even and odd component of signal $x(t) = (1 + t^3)\cos(10t)$ are,

[1 mark] [120 sec]

A.
$$0, (1+t^3)\cos(10t)$$

C.
$$\cos(10t)$$
, $t^3\cos(10t)$

B.
$$t^3 \cos(10t), \cos(10t)$$

5. Consider the signal x(t) given below. Suppose a new signal $f(t) = x\left(\frac{t-3}{4}\right)$ is defined. The value of the signal $\int_{-3}^{-1} f(t)dt$ will be, [1 mark] [180 sec]

- A. $-\frac{7}{2}$ B. $-\frac{3}{2}$

- C. −2
- **D.** -3
- 6. Consider the signal x(t) given below whose one fundamental period is shown. The signal value at time t = 220 sec will be, [1 mark] [120 sec]

- A. -2
- B. 0

- C. 2
- D. 3

7. Consider the cosine signal depicted below. Total energy of the signal will be, [1 mark] [180 sec]

- A. 3π
- B. 4ω

- C. $\frac{4\pi}{3\omega}$
- $\mathbf{D.} \ \frac{3\pi}{4\omega}$
- 8. Consider the signal depicted below which is applied to a differentiator. Total energy of the output signal of the differentiator will be, [2 marks] [240 sec]

- **A.** 1
- **B.** 2

- C. ∞
- D. None of these

9. The signal $x(t) = \cos(t)u(t)$ is,

[1 mark] [120 sec]

- A. periodic, $T_0 = \frac{\pi}{2}$
- B. periodic, $T_0 = \pi$

- C. periodic, $T_0 = 2\pi$
- D. Non-periodic

10. Consider the following signal which is applied to a differentiator. The output of the differentiator as $\Delta \to 0$ is, [2 marks] [180 sec]

- A. A positive impulse appear at $t = 0^-$.
- B. A negative impulse appear at $t = 0^+$.
- C. Both impulses appear.
- D. None of these.
- 11. Consider the input (x(t)) & output (y(t)) signal of a LTI system below. The system is, [2 marks] [300 sec]

- A. Memoryless & causal
- B. Memoryless & non-causal

- C. Non-memoryless & causal
- D. Non-memoryless & non-causal

12. Consider the impulse response (h[n]) of a linear, time-invariant discrete system below. The system is subjected to input signal $x[n] = 2\delta[n] - \delta[n-2]$. System response will be, [2 marks] [300 sec]

- A. $4\delta[n] \delta[n-1] \delta[n-3] + \delta[n-4]$ C. $2\delta[n] \delta[n-1] + \delta[n-4]$
- B. $4\delta[n] \delta[n-1] \delta[n-3]$
 D. $4\delta[n] 2\delta[n-1] + \delta[n-3] \delta[n-4]$
- 13. A system is governed by the following equation. The system is,

[1 mark] [240 sec]

$$y(t)\frac{dx(t)}{dt} = x^2(t)$$

A. Homogeneous

C. Linear

B. Additive

- D. None of these
- 14. The initial balance of a loan is Rs. 20,000 and the interest rate is 1% per month (12% per year). A monthly payment of Rs. 200 is made to the loan account at the start of each month. The loan balance after payment in each month will be, [2 marks] [360 sec]
 - A. increasing linearly

C. decreasing exponentially

B. decreasing linearly

- D. will remain same
- 15. Consider the RLC circuit given below. Assuming some constants a, b, & c, the functional form of the unit step response, y(t), of the circuit will be, [Hint: current cannot change instantaneously through an inductor and voltage cannot change instantaneously across a capacitor. Also, x(t) = $i_R(t) + i_L(t) + i_C(t)$] [3 marks] [900 sec]

A. $a\cos(ct)$

C. $a e^{-bt} \cos(ct)$

B. $a \sin(ct)$

D. $a e^{-bt} \sin(ct)$