Latest results

T dependence ON Only last orbit is considered!

K5

Final state Cold start

T dependence ON
Only last orbit
K5

0 obliquity case leads to larger "warm region"

Cold start

Cold start

Cold start

Somehow it seems that at 23.5 obliquity we reach pretty low temperatures for some cases

Final state Warm start

T dependence ON
Only last orbit
K5

0 obliquity case slightly less prone to have permanent CO2 ice condensation

Warm start

Warm start

Warm start

T dependence ON
Only last orbit
K5

Also here it seems that at 23.5 obliquity pretty low temperatures are reached

Sun

Final state Cold start

T dependence ON
Only last orbit
Sun

Less permanent CO2 ice collapse at 0 obliquity

Cold start

Cold start

Cold start

T dependence ON
Only last orbit
Sun

Again, pretty low temperatures reached at 23.5 obliquities

Final state Warm start

T dependence ON
Only last orbit
Sun

0 obliquity case leads to larger region with no permanent CO2 ice

Warm start

Warm start

T dependence ON
Only last orbit
Sun

White regions: temperature difference is higher than 100 K (to be corrected in analysis code)

Warm start

Again, pretty low temperatures reached at 23.5 obliquities