Installation

Get the required software

1.

https://www.anaconda.com/distribution/

2.

Open **Terminal (**MacOS**) / Command Prompt (**Windows**), Type and enter:** jupyter notebook

INFO 1998: Introduction to Machine Learning

Lecture 1: Introduction

INFO 1998: Introduction to Machine Learning

Agenda

- **1. Meet the Team**: Who are we?
- **2. Introduction**: What is Data Science / Machine Learning?
- 3. Course Syllabus: What will we learn?
- **4.** Course Logistics: How will we learn?
- **5. Getting Started**: Software & Demo

Who are we?

Cornell Data Science

Proi	iact	Team
	COL	Icaiii

Intelligent Systems

Insights

Data Engineering

Algorithmic Trading

Community Outreach

Education

INFO 1998

Workshops

Online Tutorials

Course Manager

Who you'll have to bear with

Samantha (Sam) Cobado

ECE '22 sec322@cornell.edu Took INFO 1998 in Fall 2018

Course Instructors

Backbone of INFO 1998

Emily Weed Stats '22

Jerry Sun CS '23

Kevin Jiang ORIE '23

"By "Data Science", we mean almost everything that has something to do with data: Collecting, analyzing, modeling..... yet the most important part is its applications --- all sorts of applications."

Journal of Data Science

Conway's Data Science Venn Diagram

Conway's Data Science Venn Diagram

Data Science ≠ Machine Learning

Applications of Data Science

We'll be back to this slide!

Predictive	Stock Prices
Predictive	Netflix Recommendations
Preventive	Medical Diagnosis
Preventive	Social Impact Analytics
Real-Time	Digital Advertising
neai-Time	Autonomous Vehicles

Getting to know your classmates

Spend 5 minutes going over the following:

- Name
- Major
- Why you are taking this course
- An application of data science you find interesting

Course Objectives and Syllabus

What you should aim to understand by the end of the course

OBJECTIVES	SYLLABUS
Manipulating Data	Data Manipulation / Visualization Lectures 1-3
Communicating Data	
Understanding of ML as a concept	Fundamentals of Machine Learning Lectures 4-5
Intuitive understanding of ML models	
Implementation of ML models	Supervised Learning Lectures 6-8
Comfort Using Python	
Applications in Industry	Unsupervised Learning Lecture 9
Project Experience	

Syllabus is posted on our website under "syllabus"

FAQs

Is this class a good fit for you?

1) Will I become a Data Scientist / Machine Learning Engineer?

No, you will not. The course covers a breadth of concepts, helps build intuitive understanding of some models, but does not dive too deep into the mathematical complexities (since this is a 1000-level course). However, feel free to come to office hours if you're interested in learning more.

2) How much time commitment is this course?

Depends. If you want to have a strong command over the material so that you can get a head start in this field, you will have to read a little more and be prepared to spend time with our TAs to go over concepts in more depth. If you want to acquire just street-fighting machine learning skills, that's fine too – it'll require little more than 1 hour per week.

3) I have no background in CS / Stats – am I underprepared?

Not at all! We'll teach you everything you need to know, but you may have to spend a little more time getting comfortable with Python. A number of non-STEM graduate students have taken this class in the past to understand basics that they could apply to their research. A large number of freshmen also take the course because they're excited to learn more about the field. TL;DR: If you're interested, give it a shot!

Course Logistics

How is the class structured (and graded)?

10 assignments (1 assignment per lecture) 60%

Drop lowest score!

Project 40%

2-3 students or individual

Passing Grade: 70%

Project Details

More details to come on the final project rubric and our website

Pre-Processing and Manipulation

Any necessary cleaning and manipulation of the dataset

Visualizations

At least two visualizations. Visualizations are clearly visible, clean, well-labeled, and serve a clear purpose for your question(s).

Models

Machine learning models that are chosen wisely, implemented correctly, and give meaningful results. For example, you won't get points if you run a linear regression for a classification problem. If applicable, the results of the models are compared.

Feel free to stay after class to form groups!

Sample Final Projects

"0 - 100, Real Quick" - Drake

- (1) Determining indicators for a candidate's success in Canadian Elections

 Kevin Zhou, Jerry Sun
- (2) Predicting the amount of solar radiation the Earth gets

Raye Liu, Justin Lee

Enrollment

Let's get this credit

1

Fill out tiny.cc/info1998_fa21_enroll

Enrollment

Let's get this credit

1

Fill out tiny.cc/info1998_fa21_enroll

2

Enroll in Ed Discussion https://edstem.org/us/join/NkpBYS

You will be added to CMS over the weekend

Enrollment

Let's get this credit

1

Fill out tiny.cc/info1998_fa21_enroll

2

Enroll in Ed Discussion https://edstem.org/us/join/NkpBYS

You will be added to CMS over the weekend

3

Enroll through
Student Center after
obtaining pins

Enrollment on Student Center

Let's get this credit

- Get enrollment pin via email (sometime this weekend)
- Add INFO 1998 Section 602 under David Mimno
- Deadline to enroll is October 1st (need to double check)

Where can I find course information?

Asking Questions: Ed Discussion

https://edstem.org/us/courses/13592/discussion/

Assignment File & Submitting Assignments: CMS

https://cmsx.cs.cornell.edu/

Lecture Recordings & Assignment Files: Course Website

https://cornelldatascience.github.io/info1998/

Python Demo

Feel free to follow along in Jupyter Notebook

Next Steps

- Installation: Seek help at Office Hours!
- Assignment 1: Due at 4:30pm on Wednesday, Sept 29, 2021 on CMS
- Python Workshop: Can find on our website or come to office hours!
- **R Workshop:** this Saturday 3:30-4:30pm in Upson 152
- Enroll on Student Center: Will receive a pin through your Cornell email this weekend
- Next Lecture: Data Manipulation

