Лабораторная работа № 5

Дискретная случайная величина

Дискретной случайной величиной (X) называется случайная величина, которая в результате испытания принимает отдельные значения ($x_1, x_2, ..., x_n$) с определёнными вероятностями ($p_1, p_2, ..., p_n$). Число возможных значений дискретной случайной величины может быть конечным и бесконечным.

Соотношение, устанавливающее связь между отдельными возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения дискретной случайной величины:

X	x_1	x_2		X_n
P	p_1	p_2	•••	p_{n}

Выполняется условие: $\sum_{i=1}^{n} p_{i} = 1$.

Закон (ряд) распределения можно изобразить графически, в виде точек с координатами (x_i, p_i) , соединённых отрезками. Получим многоугольник распределения вероятностей (полигон распределения).

Дискретная случайная величина может быть задана функцией распределения. Функцией распределения случайной величины X называется функция F(x), выражающая вероятность того, что X примет значение, меньшее чем x:

$$F(x) = P(X < x)$$

Пример. Закон распределения случайной величины X:

X	0	1	2	3	
P	0,198	0,457	0,293	0,052	

Проверка: $\sum_{i=1}^{4} p_i = 0,198 + 0,457 + 0,293 + 0,052 = 1$

Функция распределения вероятностей F(x) случайной величины X :

$$F(x) = \begin{cases} 0, & x \le 0 \\ 0,198, & 0 < x \le 1 \end{cases}$$
$$0,198 + 0,457 = 0,655, & 1 < x \le 2 \\ 0,198 + 0,457 + 0,293 = 0,948, & 2 < x \le 3 \\ 0,198 + 0,457 + 0,293 + 0,052 = 1, & x > 3 \end{cases}$$

$$F(x) = \begin{cases} 0, & x \le 0 \\ 0,198, & 0 < x \le 1 \\ 0,655, & 1 < x \le 2 \\ 0,948, & 2 < x \le 3 \\ 1, & x > 3 \end{cases}$$

График функции распределения.

Числовые характеристики дискретной случайной величины.

Математическое ожидание случайной величины X.

$$M(X) = \sum_{i=1}^{n} p_i \cdot x_i$$

Дисперсия случайной величины X:

$$D(X) = M((X - M(X))^{2}) = M(X^{2}) - (M(X))^{2} = \sum_{i=1}^{n} p_{i} \cdot x_{i}^{2} - (M(X))^{2}$$

Среднее квадратичное отклонение: $\sigma(X) = \sqrt{D(X)}$.

Обобщёнными числовыми характеристиками для случайных величин в теории вероятностей, а также математической статистике являются начальные и центральные моменты. Начальным моментом k-го порядка случайной величины X называют математическое ожидание от величины в k-ой степени:

$$v_k = M(X^k) = \sum_{i=1}^n p_i \cdot x_i^k, \ k = 1, 2, 3, ...$$

Начальный момент первого порядка: $v_1 = M(X) = \sum_{i=1}^n p_i \cdot x_i$

Начальный момент второго порядка: $v_2 = M(X^2) = \sum_{i=1}^n p_i \cdot x_i^2$

Начальный момент третьего порядка: $v_3 = M(X^3) = \sum_{i=1}^n p_i \cdot x_i^3$

Центральным моментом k-го порядка случайной величины X называют математическое ожидание от величины $(X-M(X))^k$:

$$\mu_k = M((X - M(X))^k) = \sum_{i=1}^n p_i \cdot (x_i - M(X))^k, \ k = 1, 2, 3, ...$$

Центральный момент первого порядка: $\mu_1 = M(X - M(X)) = M(X) - M(X) = 0$ Центральный момент второго порядка:

$$\mu_2 = M((X - M(X))^2) = \sum_{i=1}^n p_i \cdot (x_i - M(X))^2 = D(X) = M(X^2) - (M(X))^2 = inu_2 - inu_1^2$$

Центральный момент третьего порядка:

$$\mu_3 = M((X - M(X))^3) = \sum_{i=1}^n p_i \cdot (x_i - M(X))^3$$

Задания для лабораторной работы

1. Построить многоугольник распределения.

P

0,05

0,07

0,12

0,26

0,18

0,14

0,07

0,05

0,04

0,02

- 2. Составить функцию распределения и построить её график.
- 3. Найти начальные и центральные моменты первого, второго и третьего порядка.
- 4. Найти числовые характеристики случайной величины (математическое ожидание, дисперсию, среднее квадратичное отклонение).

Исходные данные к заданиям

Вариант № 1											
X	23	28	34	45	47	52	56	67	69	73	
P	0,01	0,03	0,04	0,13	0,15	0,28	0,16	0,08	0,06	0,06	
	Вариант № 2										
X	35	40	46	57	59	64	68	79	81	85	
P	0,05	0,07	0,14	0,31	0,18	0,11	0,05	0,04	0,03	0,02	
	Вариант № 3										
X	65	115	175	285	305	355	395	505	525	565	
P	0,02	0,03	0,04	0,11	0,13	0,15	0,16	0,24	0,09	0,03	
1	0,02	0,03	0,01	0,11	0,13	0,13	0,10	0,21	0,07	0,03	
				Ва	риант №	2 4					
X	64	79	97	130	136	151	163	196	202	214	
P	0,01	0,04	0,08	0,13	0,34	0,18	0,12	0,07	0,02	0,01	
				Ba	риант М	, 5					
X	61	71	83	105	109	119	127	149	153	161	
P	0,01	0,02	0,04	0,25	0,19	0,18	0,16	0,08	0,04	0,03	
	1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1										
	Вариант № 6										
X	14	18	25	36	42	54	63	69	75	82	
P	0,02	0,03	0,04	0,12	0,15	0,26	0,15	0,09	0,08	0,06	
	Вариант № 7										
X	26	30	37	48	54	66	75	81	87	94	

Вариант № 8

Вариант № 8											
X	5	25	60	115	145	205	250	280	310	345	
P	0,02	0,03	0,05	0,12	0,14	0,15	0,17	0,19	0,09	0,04	
Вариант № 9											
X	37	49	70	103	121	157	184	202	220	241	
P	0,01	0,03	0,06	0,13	0,24	0,22	0,15	0,09	0,04	0,03	
	Вариант № 10										
X	43	51	65	87	99	123	141	153	165	179	
P	0,03	0,04	0,08	0,23	0,17	0,14	0,12	0,09	0,06	0,04	
	1	,	,			,	,	<u> </u>		,	
Вариант № 11											
X	55	58	64	71	77	83	89	92	97	103	
P	0,01	0,03	0,04	0,13	0,15	0,28	0,16	0,08	0,06	0,06	
										_	
	T.	I	I	1	риант №	12	I		T		
X	67	70	76	83	89	95	101	104	109	115	
P	0,05	0,07	0,14	0,31	0,18	0,11	0,05	0,04	0,03	0,02	
				Ra	риант №	13					
X	0	9	27	48	66	84	102	111	126	144	
P	0,02	0,03	0,04	0,11	0,13	0,15	0,16	0,24	0,09	0,03	
	0,02	0,00	0,01	0,11	0,10	3,10	0,10	, <u>-</u> :	0,00	0,00	
Вариант № 14											
X	160	169	187	208	226	244	262	271	286	304	
P	0,01	0,04	0,08	0,13	0,34	0,18	0,12	0,07	0,02	0,01	
	Вариант № 15										
X	125	131	143	157	169	181	193	199	209	221	
P	0,01	0,02	0,04	0,25	0,19	0,18	0,16	0,08	0,04	0,03	

Литература

- 1. Гмурман, В. Е. Теория вероятностей и математическая статистика : учебник для прикладного бакалавриата / В. Е. Гмурман. 12-е изд. М. : Издательство Юрайт, 2018. 479 с. (Серия : Бакалавр. Прикладной курс). ISBN 978-5-534-00211-9.
- 2. Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике : учебное пособие для прикладного бакалавриата / В. Е. Гмурман. 11-е изд., перераб. и доп. М. : Издательство Юрайт, 2018. 404 с. (Серия : Бакалавр. Прикладной курс). ISBN 978-5-534-00247-8.