#### In [1]:

```
import numpy as np
import pandas as pd
import datetime
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px

import warnings
warnings.filterwarnings('ignore')
```

#### In [2]:

```
#Loading the data from csv files.
df=pd.read_csv('Daily_Order_Data_July_2022_Consolidated',parse_dates=['Date'])
df.head()
```

#### Out[2]:

| Date           | RiderCustomerId | Rider Name     | LLEmpld | Order<br>Type | Order<br>Allocated | Delivered<br>Orders | Revenue | Custom   |
|----------------|-----------------|----------------|---------|---------------|--------------------|---------------------|---------|----------|
| 2022-<br>07-01 | 12339           | Chandrashekhar | 12339   | Trip<br>Order | 11.0               | 3.0                 | 415     | Porter 2 |
| 2022-<br>07-01 | 13617           | Deepak D       | 13617   | Trip<br>Order | 25.0               | 2.0                 | 294     | Porter 2 |
| 2022-<br>07-01 | 11874           | Girish S       | 11874   | Trip<br>Order | 18.0               | 9.0                 | 1263    | Porter 2 |
| 2022-<br>07-01 | 12008           | Golam Ahmed    | 12008   | Trip<br>Order | 16.0               | 6.0                 | 776     | Porter 2 |
| 2022-<br>07-01 | 14160           | Harish R       | 14160   | Trip<br>Order | 16.0               | 3.0                 | 500     | Porter 2 |
| 4              |                 |                |         |               |                    |                     |         | <b>•</b> |

#### In [3]:

df.shape

#### Out[3]:

(46420, 14)

```
In [4]:
```

```
missing values count=df.isnull().sum()
missing_values_count[0:10]
Out[4]:
Date
                       0
RiderCustomerId
                    6634
Rider Name
                      42
LLEmpId
                    5170
Order Type
                       2
Order Allocated
                       3
                       3
Delivered Orders
Revenue
                       2
Customer
                       0
                       0
City
dtype: int64
In [5]:
df.shape
Out[5]:
(46420, 14)
In [6]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 46420 entries, 0 to 46419
Data columns (total 14 columns):
     Column
                       Non-Null Count
 #
                                        Dtype
     _____
                       -----
 0
     Date
                       46420 non-null
                                        datetime64[ns]
 1
     RiderCustomerId
                       39786 non-null object
 2
     Rider Name
                       46378 non-null object
 3
     LLEmpId
                       41250 non-null object
 4
     Order Type
                       46418 non-null
                                        object
 5
     Order Allocated
                                       float64
                       46417 non-null
     Delivered Orders 46417 non-null
                                       float64
 6
 7
     Revenue
                       46418 non-null
                                        object
 8
     Customer
                       46420 non-null
                                        object
 9
     City
                       46420 non-null
                                        object
     Vehicle type
 10
                       46363 non-null
                                        object
 11
     Hub Name
                       46136 non-null
                                        object
 12
     Area
                       24138 non-null
                                        object
     Pincode
                       8203 non-null
                                        object
dtypes: datetime64[ns](1), float64(2), object(11)
memory usage: 5.0+ MB
In [7]:
df['Revenue'] = pd.to_numeric(df['Revenue'],errors='coerce')
```

```
In [8]:
df.dtypes
Out[8]:
                     datetime64[ns]
Date
RiderCustomerId
                             object
Rider Name
                             object
LLEmpId
                             object
Order Type
                             object
Order Allocated
                            float64
                            float64
Delivered Orders
                            float64
Revenue
Customer
                             object
                             object
City
Vehicle type
                             object
Hub Name
                             object
Area
                             object
Pincode
                             object
dtype: object
In [9]:
df1=df.copy()
In [10]:
df1.shape
Out[10]:
(46420, 14)
In [11]:
df1['Vehicle type'].unique()
Out[11]:
array(['EV', 'ICE', 'VAN', 'Van', nan], dtype=object)
In [12]:
df1=df1.drop(['LLEmpId','RiderCustomerId','Pincode','Area'],axis='columns')
In [13]:
df1.shape
Out[13]:
(46420, 10)
In [14]:
# bool_series = pd.isnull(df1["Revenue"])
# df1[bool_series]
```

#### In [15]:

```
df1.isnull().sum()
```

#### Out[15]:

Date 0 42 Rider Name Order Type 2 3 Order Allocated Delivered Orders 3 1105 Revenue Customer 0 0 City Vehicle type 57 Hub Name 284 dtype: int64

#### In [16]:

df1.sample(10)

#### Out[16]:

|       | Date           | Rider Name                  | Order<br>Type | Order<br>Allocated | Delivered<br>Orders | Revenue | Customer  | City      |
|-------|----------------|-----------------------------|---------------|--------------------|---------------------|---------|-----------|-----------|
| 11908 | 2022-<br>07-16 | Dhanush RoopR               | Normal        | 47.0               | 42.0                | 714.0   | Flipkart  | Bangalore |
| 36167 | 2022-<br>07-26 | Muneeb Muneeb               | Normal        | 57.0               | 48.0                | 792.0   | Flipkart  | Kerala    |
| 12042 | 2022-<br>07-16 | Chakali<br>.Chennakeshavulu | Normal        | 28.0               | 24.0                | 1128.0  | BigBasket | Bangalore |
| 44374 | 2022-<br>07-28 | VAMSHI<br>KRISHNA           | Normal        | 20.0               | 20.0                | 1040.0  | BigBasket | Hyderabad |
| 31605 | 2022-<br>07-23 | radha Krishna               | Normal        | 19.0               | 19.0                | 912.0   | BigBasket | Chennai   |
| 3075  | 2022-<br>07-04 | NITISH<br>NAMASUTRA         | Normal        | 18.0               | 18.0                | 756.0   | SFX Food  | Bangalore |
| 8415  | 2022-<br>07-12 | Shivu M                     | Trip<br>Order | 3.0                | 3.0                 | 971.0   | Porter    | Bangalore |
| 9145  | 2022-<br>07-13 | Girish S                    | Trip<br>Order | 6.0                | 6.0                 | 582.0   | Porter 2W | Bangalore |
| 12682 | 2022-<br>07-17 | SameerAhmed                 | Normal        | 117.0              | 53.0                | 1166.0  | Flipkart  | Bangalore |
| 25812 | 2022-<br>07-07 | Karthi                      | Trip<br>Order | 5.0                | 5.0                 | 602.0   | Porter 2W | Chennai   |
| 4     |                |                             |               |                    |                     |         |           | <b>→</b>  |

#### In [17]:

```
# bool_series = pd.isnull(df1["Vehicle type"])
# df1[bool_series]
```

```
In [18]:
```

```
# df1[df1['Revenue']==0]
```

- Some of Riders are getting Order Allocated but they have had not delivery orders.
- · Some of Riders are getting orders but they are keeping themselves.

```
In [19]:
df1.loc[2385, 'Revenue'] = 900
In [20]:
df1.loc[12024, 'Revenue'] = 900
In [21]:
#Number of 0 values
for column_name in df1.columns:
   column = df1[column_name]
   # Get the count of Zeros in column
   count = (column == 0).sum()
   print('Count of zeros in column ', column_name, ' is : ', count)
Count of zeros in column Date is:
Count of zeros in column Rider Name is: 0
Count of zeros in column Order Type is: 0
Count of zeros in column Order Allocated is:
Count of zeros in column Delivered Orders is: 520
Count of zeros in column Revenue is: 470
Count of zeros in column Customer
                                    is: 0
Count of zeros in column City is:
Count of zeros in column Vehicle type is:
Count of zeros in column Hub Name is: 0
In [22]:
df1['Customer '].unique()
Out[22]:
array(['Porter 2W', 'Flipkart', 'Flipkart_ROK', 'TOW', 'Amazon_Fresh',
       'Delhivery', 'Masthysa Dharshini', 'Lilac', 'Mapple Tree',
       'Flipkart Grocery', 'SFX E-com', 'BigBasket', 'SFX Food', 'BB NOW',
       'Grofers', 'Porter', 'Flipkart ROTN', 'Xpressbees', 'Bluedart',
       'Amazon'], dtype=object)
In [23]:
df1['Vehicle type'].unique()
Out[23]:
array(['EV', 'ICE', 'VAN', 'Van', nan], dtype=object)
In [24]:
df1['Vehicle type']=df1['Vehicle type'].str.replace("Van","VAN")
```

#### In [25]:

```
df1.sample(10)
```

#### Out[25]:

|       | Date           | Rider Name             | Order<br>Type | Order<br>Allocated | Delivered<br>Orders | Revenue | Customer     | City      | Ve |
|-------|----------------|------------------------|---------------|--------------------|---------------------|---------|--------------|-----------|----|
| 2461  | 2022-<br>07-04 | Arun kumar<br>R        | Normal        | 87.0               | 71.0                | 1101.0  | Flipkart_ROK | Bangalore |    |
| 25750 | 2022-<br>07-06 | janagiraman            | Normal        | 15.0               | 15.0                | 720.0   | BigBasket    | Chennai   |    |
| 10393 | 2022-<br>07-14 | Arun<br>NijaguniBilagi | Normal        | 77.0               | 71.0                | 1562.0  | Flipkart     | Bangalore |    |
| 12588 | 2022-<br>07-17 | GajendraG              | Normal        | 18.0               | 15.0                | 255.0   | Flipkart     | Bangalore |    |
| 40234 | 2022-<br>07-05 | PANDARI<br>MUDHIRAJ    | Normal        | 30.0               | 21.0                | 672.0   | Amazon       | Hyderabad |    |
| 7368  | 2022-<br>07-10 | Keerthi S              | Normal        | 33.0               | 27.0                | 459.0   | Flipkart     | Bangalore |    |
| 5148  | 2022-<br>07-07 | RanjithA               | Normal        | 57.0               | 51.0                | 867.0   | Flipkart     | Bangalore |    |
| 5567  | 2022-<br>07-08 | Rudra<br>Gowda         | Normal        | 41.0               | 32.0                | 544.0   | Flipkart     | Bangalore |    |
| 10180 | 2022-<br>07-14 | R K Imtiyaz<br>Ahmed   | Normal        | 35.0               | 16.0                | 272.0   | Flipkart     | Bangalore |    |
| 20805 | 2022-<br>07-28 | Shrinivas<br>Naik      | Normal        | 85.0               | 77.0                | 1309.0  | Flipkart     | Bangalore |    |
| 4     |                |                        |               |                    |                     |         |              |           | •  |

```
In [26]:
```

```
# t=pd.isnull(df1['Rider Name'])
# df1[t]
```

#### In [27]:

```
# t=pd.isnull(df1['Order Type'])
# # df1[t]
```

#### In [28]:

```
df1.loc[45881, 'Order Type'] = 'Normal'
```

#### In [29]:

```
df1.loc[45907, 'Order Type'] = 'Normal'
```

#### In [30]:

```
df1=df1.dropna(subset=['Rider Name','Order Allocated','Revenue','Vehicle type'],axis=0)
```

```
In [31]:
df1.isnull().sum()
Out[31]:
Date
                       0
Rider Name
                       0
Order Type
                       0
Order Allocated
Delivered Orders
                       0
Revenue
Customer
                       0
City
Vehicle type
                       0
Hub Name
                     245
dtype: int64
In [32]:
# df1[df1['Rider Name']=='Do Not Delete'].head()
In [33]:
# df1[df1['Rider Name']=='donot delete'].head()
In [34]:
# df1[df1['Rider Name']=='DON NOT DELETE']
In [35]:
df1=df1[~((df1['Rider Name']=='Do Not Delete')|(df1['Rider Name']=='donot delete')|(df1['Ri
In [36]:
df1.shape
Out[36]:
(45187, 10)
In [37]:
df1["Order Allocated"].isnull().sum()
Out[37]:
0
In [38]:
# df1[(df1['Order Allocated']==0)]
In [39]:
df1=df1[~(df1['Order Allocated']==0)]
```

```
In [40]:
df1.shape
Out[40]:
(44963, 10)
In [41]:
df1.isnull().sum()
Out[41]:
Date
                       0
Rider Name
                       0
Order Type
                       0
Order Allocated
                       0
Delivered Orders
                       0
Revenue
                       0
Customer
                       0
City
                       0
Vehicle type
                       0
Hub Name
                     241
dtype: int64
In [42]:
df1=df1[~(df1['Revenue']==0)]
In [43]:
# df1[(df1['Revenue']==800)]
In [44]:
# df1.hist(figsize=(15,10))
In [45]:
df1.shape
Out[45]:
(44750, 10)
```

#### In [46]:

df1.describe()

#### Out[46]:

|       | Order Allocated | <b>Delivered Orders</b> | Revenue      |
|-------|-----------------|-------------------------|--------------|
| count | 44750.000000    | 44750.000000            | 44750.000000 |
| mean  | 39.509698       | 33.279642               | 823.509497   |
| std   | 29.701039       | 24.811964               | 436.343591   |
| min   | 1.000000        | 0.000000                | 15.000000    |
| 25%   | 17.000000       | 16.000000               | 520.000000   |
| 50%   | 30.000000       | 26.000000               | 768.000000   |
| 75%   | 58.000000       | 47.000000               | 1040.000000  |
| max   | 270.000000      | 364.000000              | 6188.000000  |

#### In [47]:

list(df1)

#### Out[47]:

```
['Date',
  'Rider Name',
  'Order Type',
  'Order Allocated',
  'Delivered Orders',
  'Revenue',
  'Customer',
  'City',
  'Vehicle type',
  'Hub Name']
```

#### In [48]:

```
df1.rename( columns=({ 'Customer ': 'Client'}),
  inplace=True)
df1.head()
```

## Out[48]:

|   | Date           | Rider Name     | Order<br>Type | Order<br>Allocated | Delivered<br>Orders | Revenue | Client       | City      | Vehicle<br>type |     |
|---|----------------|----------------|---------------|--------------------|---------------------|---------|--------------|-----------|-----------------|-----|
| 0 | 2022-<br>07-01 | Chandrashekhar | Trip<br>Order | 11.0               | 3.0                 | 415.0   | Porter<br>2W | Bangalore | EV              |     |
| 1 | 2022-<br>07-01 | Deepak D       | Trip<br>Order | 25.0               | 2.0                 | 294.0   | Porter<br>2W | Bangalore | EV              |     |
| 2 | 2022-<br>07-01 | Girish S       | Trip<br>Order | 18.0               | 9.0                 | 1263.0  | Porter<br>2W | Bangalore | EV              | BAI |
| 3 | 2022-<br>07-01 | Golam Ahmed    | Trip<br>Order | 16.0               | 6.0                 | 776.0   | Porter<br>2W | Bangalore | EV              | II. |
| 4 | 2022-<br>07-01 | Harish R       | Trip<br>Order | 16.0               | 3.0                 | 500.0   | Porter<br>2W | Bangalore | EV              |     |

localhost:8888/notebooks/%23Work\_lightninglogistics/Orders\_LL/Daily Order Data July 2022.ipynb

#### In [49]:

```
df1.sample(10)
```

#### Out[49]:

|       | Date           | Rider<br>Name     | Order<br>Type | Order<br>Allocated | Delivered<br>Orders | Revenue | Client    | City      | Vehicle<br>type |
|-------|----------------|-------------------|---------------|--------------------|---------------------|---------|-----------|-----------|-----------------|
| 9154  | 2022-<br>07-13 | N Heera<br>Sunar  | Trip<br>Order | 2.0                | 2.0                 | 720.0   | Porter 2W | Bangalore | EV              |
| 44112 | 2022-<br>07-26 | DINESH            | Normal        | 70.0               | 70.0                | 1805.0  | Amazon    | Hyderabad | ICE             |
| 22961 | 2022-<br>07-30 | Naveen<br>Kumar S | Normal        | 15.0               | 15.0                | 705.0   | BigBasket | Bangalore | EV              |
| 1121  | 2022-<br>07-02 | Nandish<br>N      | Normal        | 61.0               | 48.0                | 816.0   | Flipkart  | Bangalore | EV              |
| 40643 | 2022-<br>07-07 | ATIF              | Normal        | 12.0               | 11.0                | 652.0   | Amazon    | Hyderabad | EV              |
| 35441 | 2022-<br>07-01 | Basil<br>Eldhose  | Normal        | 45.0               | 36.0                | 594.0   | Flipkart  | Kerala    | ICE             |
| 44465 | 2022-<br>07-28 | THARUN            | Normal        | 18.0               | 18.0                | 810.0   | BB NOW    | Hyderabad | EV              |
| 40577 | 2022-<br>07-07 | B AMAR            | Normal        | 21.0               | 21.0                | 1092.0  | BigBasket | Hyderabad | EV              |
| 15114 | 2022-<br>07-20 | ABDUL<br>REHMAN   | Normal        | 2.0                | 2.0                 | 84.0    | SFX Food  | Bangalore | EV              |
| 26219 | 2022-<br>07-08 | Thufail<br>Ahmed  | Normal        | 4.0                | 4.0                 | 550.0   | BB NOW    | Chennai   | EV              |
| 4     |                |                   |               |                    |                     |         |           |           | •               |

#### In [54]:

```
print('Mean is',np.round(df1['Revenue'].mean()),
'\n Median is ',df1['Revenue'].median(),
'\n Mode is',df1['Revenue'].mode()[0])
```

Mean is 824.0 Median is 768.0 Mode is 550.0

#### In [55]:

Mean is 40.0 Median is 30.0 Mode is 20.0

```
In [56]:
print('Mean is',np.round(df1['Delivered Orders'].mean()),
'\n Median is ',df1['Delivered Orders'].median(),
'\n Mode is ',df1['Delivered Orders'].mode()[0])
Mean is 33.0
Median is 26.0
Mode is 20.0
In [57]:
df1['Delivered Orders'].std()
Out[57]:
24.811964219778044
In [58]:
list(df1)
Out[58]:
['Date',
 'Rider Name',
 'Order Type',
 'Order Allocated',
 'Delivered Orders',
 'Revenue',
 'Client',
 'City',
 'Vehicle type',
 'Hub Name']
In [59]:
df1.Client.unique()
Out[59]:
array(['Porter 2W', 'Flipkart', 'Flipkart_ROK', 'TOW', 'Amazon_Fresh',
        'Delhivery', 'Lilac', 'Mapple Tree', 'Flipkart Grocery', 'SFX E-com', 'BigBasket', 'SFX Food', 'BB NOW', 'Grofers',
```

'Porter', 'Flipkart ROTN', 'Xpressbees', 'Bluedart', 'Amazon'],

```
localhost:8888/notebooks/%23Work lightninglogistics/Orders LL/Daily Order Data July 2022.ipynb
```

dtype=object)

#### In [60]:

```
df_city=np.round(df1.groupby('City')['Revenue'].agg(['count','mean','median','std']))
df_city
```

#### Out[60]:

|             | count | mean  | median | std   |
|-------------|-------|-------|--------|-------|
| City        |       |       |        |       |
| Bangalore   | 23499 | 842.0 | 799.0  | 463.0 |
| Chennai     | 11498 | 817.0 | 776.0  | 381.0 |
| Delhi       | 1891  | 574.0 | 525.0  | 204.0 |
| Gujarat     | 26    | 353.0 | 342.0  | 141.0 |
| Hyderabad   | 5643  | 923.0 | 832.0  | 469.0 |
| Kerala      | 874   | 637.0 | 611.0  | 243.0 |
| Madurai     | 581   | 680.0 | 624.0  | 336.0 |
| Mysore      | 711   | 575.0 | 527.0  | 363.0 |
| maharashtra | 27    | 537.0 | 517.0  | 69.0  |

#### In [61]:

```
df_client=np.round(df1.groupby('Client')['Revenue'].agg(['count','mean','median','std']))
df_client
```

#### Out[61]:

|                  | count | mean   | median | std   |
|------------------|-------|--------|--------|-------|
| Client           |       |        |        |       |
| Amazon           | 1841  | 1003.0 | 850.0  | 520.0 |
| Amazon_Fresh     | 243   | 1025.0 | 957.0  | 537.0 |
| BB NOW           | 1812  | 690.0  | 600.0  | 256.0 |
| BigBasket        | 10972 | 927.0  | 893.0  | 396.0 |
| Bluedart         | 5     | 814.0  | 770.0  | 211.0 |
| Delhivery        | 48    | 878.0  | 908.0  | 229.0 |
| Flipkart         | 21234 | 808.0  | 731.0  | 461.0 |
| Flipkart Grocery | 374   | 822.0  | 810.0  | 271.0 |
| Flipkart ROTN    | 1450  | 602.0  | 561.0  | 287.0 |
| Flipkart_ROK     | 1119  | 784.0  | 744.0  | 369.0 |
| Grofers          | 35    | 1070.0 | 1100.0 | 458.0 |
| Lilac            | 22    | 900.0  | 900.0  | 0.0   |
| Mapple Tree      | 87    | 1800.0 | 1800.0 | 0.0   |
| Porter           | 1166  | 948.0  | 880.0  | 427.0 |
| Porter 2W        | 721   | 575.0  | 585.0  | 265.0 |
| SFX E-com        | 1246  | 857.0  | 817.0  | 388.0 |
| SFX Food         | 1945  | 484.0  | 462.0  | 288.0 |
| TOW              | 369   | 830.0  | 825.0  | 28.0  |
| Xpressbees       | 61    | 334.0  | 238.0  | 216.0 |

#### In [62]:

df\_vehicle=np.round(df1.groupby('Vehicle type')['Revenue'].agg(['count','mean','median','st
df\_vehicle

#### Out[62]:

|              | count | mean   | median | std   |
|--------------|-------|--------|--------|-------|
| Vehicle type |       |        |        |       |
| EV           | 33029 | 802.0  | 765.0  | 402.0 |
| ICE          | 9890  | 834.0  | 731.0  | 492.0 |
| VΔN          | 1831  | 1156.0 | 1045.0 | 558.0 |

#### In [63]:

```
df_hubname=np.round(df1.groupby('Hub Name')['Revenue'].agg(['count','mean','median','std'])
df_hubname
```

#### Out[63]:

|                | count | mean   | median | std   |
|----------------|-------|--------|--------|-------|
| Hub Name       |       |        |        |       |
| Pallavaram     | 14    | 550.0  | 550.0  | 0.0   |
| 3w west        | 28    | 825.0  | 825.0  | 0.0   |
| AJAY           | 1     | 825.0  | 825.0  | NaN   |
| ATTAPUR        | 115   | 590.0  | 594.0  | 229.0 |
| AdimalyHub_ADL | 8     | 386.0  | 289.0  | 251.0 |
|                |       |        |        |       |
| soukya road    | 1     | 564.0  | 564.0  | NaN   |
| tambaram       | 1     | 1305.0 | 1305.0 | NaN   |
| vanagaram      | 1024  | 864.0  | 840.0  | 317.0 |
| vedapatti      | 9     | 416.0  | 500.0  | 277.0 |
| vepery         | 14    | 276.0  | 238.0  | 85.0  |

483 rows × 4 columns

#### In [64]:

```
df_date=np.round(df1.groupby('Date')['Revenue'].agg(['count','mean','median','std']))
df_date
```

#### Out[64]:

|            | count | mean  | median | std   |
|------------|-------|-------|--------|-------|
| Date       |       |       |        |       |
| 2022-07-01 | 1435  | 762.0 | 697.0  | 417.0 |
| 2022-07-02 | 1452  | 772.0 | 710.0  | 421.0 |
| 2022-07-03 | 1308  | 809.0 | 748.0  | 436.0 |
| 2022-07-04 | 1438  | 859.0 | 798.0  | 457.0 |
| 2022-07-05 | 1424  | 838.0 | 782.0  | 457.0 |
| 2022-07-06 | 1474  | 819.0 | 752.0  | 447.0 |
| 2022-07-07 | 1448  | 798.0 | 752.0  | 436.0 |
| 2022-07-08 | 1439  | 843.0 | 792.0  | 456.0 |
| 2022-07-09 | 1426  | 802.0 | 738.0  | 438.0 |

#### In [ ]:

#### **Pie Chart**

```
In [65]:
```

```
data = {'Revenue':'sum_revenue'}
agg_data = {'Revenue':'sum'}
data_bar = df1.groupby(['Vehicle type'], as_index=False).agg(agg_data).rename(columns=data)
```

#### In [66]:

```
data_bar
```

#### Out[66]:

# Vehicle type sum\_revenue 0 EV 26485266.0 1 ICE 8249242.0

**2** VAN 2117542.0

#### In [67]:

```
df1.Revenue.sum()
```

#### Out[67]:

36852050.0

#### Vehicle type | Values | Percentage

EV | 26485266 | 71.87%

ICE | 8249242 | 22.38%

VAN | 2117542 | 5.75%

#### In [68]:

# Revenue split based on vehicle type



#### In [69]:

```
data = {'Revenue':'sum_revenue'}
agg_data = {'Revenue':'sum'}
data_bar = df1.groupby(['City'], as_index=False).agg(agg_data).rename(columns=data).sort_in
```

#### In [70]:

data\_bar

#### Out[70]:

|   | City        | sum_revenue |
|---|-------------|-------------|
| 0 | Bangalore   | 19786304.0  |
| 1 | Chennai     | 9388193.0   |
| 2 | Delhi       | 1084743.0   |
| 3 | Gujarat     | 9177.0      |
| 4 | Hyderabad   | 5208231.0   |
| 5 | Kerala      | 556962.0    |
| 6 | Madurai     | 394909.5    |
| 7 | Mysore      | 409039.5    |
| 8 | maharashtra | 14491.0     |

#### In [71]:

```
# plt.figure(figsize=(10,10))
# palette_color = sns.color_palette('Greens')
# plt.pie(data_bar.sum_revenue, colors=palette_color,labels=data_bar['City'], rotatelabels
# autopct='%.1f%%',counterclock=False)
# plt.title('Pie chart for City with revenue in SUM',fontsize=20)
# plt.show()
```

#### In [72]:

```
data = {'Revenue':'sum_revenue'}
agg_data = {'Revenue':'sum'}
data_bar = df1.groupby(['Client'], as_index=False).agg(agg_data).rename(columns=data)
```

# In [73]:

| data | _bar             |            |
|------|------------------|------------|
| 5    | Delhivery        | 42150.0    |
| 6    | Flipkart         | 17156793.5 |
| 7    | Flipkart Grocery | 307260.0   |
| 8    | Flipkart ROTN    | 872473.5   |
| 9    | Flipkart_ROK     | 877354.0   |
| 10   | Grofers          | 37455.0    |
| 11   | Lilac            | 19800.0    |
| 12   | Mapple Tree      | 156600.0   |
| 13   | Porter           | 1105873.0  |
| 14   | Porter 2W        | 414335.0   |
| 15   | SFX E-com        | 1067476.0  |
| 16   | SFX Food         | 941807.0   |
| 17   | TOW              | 306185.0   |

#### In [74]:

```
plt.figure(figsize=(10,10))
index = np.arange(len(data_bar['Client']))
palette_color = sns.color_palette('husl')

plt.bar(index, data_bar.sum_revenue,color=palette_color)
plt.xlabel('Client', fontsize=10)
plt.ylabel('Accumulated Values', fontsize=10)
plt.xticks(index, data_bar['Client'], fontsize=10, rotation=75)
plt.title('Bar chart for Client with revenue in SUM',fontsize=20)
plt.show()
```



# In [75]:

np.round(df1.groupby(['Vehicle type','City'])['Revenue'].agg(['count','mean','median','std'
Out[75]:

|              |           | count | mean  | median | std   |
|--------------|-----------|-------|-------|--------|-------|
| Vehicle type | City      |       |       |        |       |
| EV           | Bangalore | 17660 | 801.0 | 765.0  | 433.0 |
|              | Chennai   | 9173  | 849.0 | 816.0  | 380.0 |
|              | Delhi     | 940   | 540.0 | 500.0  | 201.0 |
|              | Hyderabad | 4148  | 811.0 | 780.0  | 309.0 |
|              | Madurai   | 399   | 708.0 | 636.0  | 338.0 |
|              | Mysore    | 709   | 576.0 | 527.0  | 364.0 |
| ICE          | Bangalore | 4871  | 909.0 | 850.0  | 510.0 |
|              | Chennai   | 2087  | 674.0 | 611.0  | 352.0 |
|              | Delhi     | 582   | 542.0 | 460.0  | 177.0 |

#### In [76]:

```
np.round(df1.groupby(['City','Client'])['Revenue'].agg(['count','mean','median','std']))
```

#### Out[76]:

|           |                  | count | mean   | median | std   |
|-----------|------------------|-------|--------|--------|-------|
| City      | Client           |       |        |        |       |
| Bangalore | Amazon_Fresh     | 243   | 1025.0 | 957.0  | 537.0 |
|           | BB NOW           | 197   | 754.0  | 760.0  | 228.0 |
|           | BigBasket        | 3765  | 914.0  | 893.0  | 385.0 |
|           | Delhivery        | 48    | 878.0  | 908.0  | 229.0 |
|           | Flipkart         | 14384 | 861.0  | 799.0  | 494.0 |
|           | Flipkart Grocery | 148   | 811.0  | 855.0  | 140.0 |
|           | Flipkart_ROK     | 1119  | 784.0  | 744.0  | 369.0 |
|           | Grofers          | 35    | 1070.0 | 1100.0 | 458.0 |
|           | Lilac            | 22    | 900.0  | 900.0  | 0.0   |

#### In [77]:

```
a = np.round(df1.groupby(['City','Client'])['Revenue'].agg(['count','mean','median','std'])
```

#### In [78]:

a.head()

#### Out[78]:

|   | City      | Client       | count | mean   | median | std   |
|---|-----------|--------------|-------|--------|--------|-------|
| 0 | Bangalore | Amazon_Fresh | 243   | 1025.0 | 957.0  | 537.0 |
| 1 | Bangalore | BB NOW       | 197   | 754.0  | 760.0  | 228.0 |
| 2 | Bangalore | BigBasket    | 3765  | 914.0  | 893.0  | 385.0 |
| 3 | Bangalore | Delhivery    | 48    | 878.0  | 908.0  | 229.0 |
| 4 | Bangalore | Flipkart     | 14384 | 861.0  | 799.0  | 494.0 |

## In [79]:

```
city_df = a[a['City'] == 'Bangalore']
city_df.sort_values('count', ascending=False)
```

#### Out[79]:

|    | City      | Client           | count | mean   | median | std   |
|----|-----------|------------------|-------|--------|--------|-------|
| 4  | Bangalore | Flipkart         | 14384 | 861.0  | 799.0  | 494.0 |
| 2  | Bangalore | BigBasket        | 3765  | 914.0  | 893.0  | 385.0 |
| 13 | Bangalore | SFX Food         | 1757  | 509.0  | 504.0  | 286.0 |
| 6  | Bangalore | Flipkart_ROK     | 1119  | 784.0  | 744.0  | 369.0 |
| 11 | Bangalore | Porter 2W        | 661   | 594.0  | 601.0  | 261.0 |
| 10 | Bangalore | Porter           | 564   | 1157.0 | 1179.0 | 452.0 |
| 14 | Bangalore | TOW              | 369   | 830.0  | 825.0  | 28.0  |
| 0  | Bangalore | Amazon_Fresh     | 243   | 1025.0 | 957.0  | 537.0 |
| 1  | Bangalore | BB NOW           | 197   | 754.0  | 760.0  | 228.0 |
| 5  | Bangalore | Flipkart Grocery | 148   | 811.0  | 855.0  | 140.0 |
| 12 | Bangalore | SFX E-com        | 100   | 671.0  | 656.0  | 263.0 |
| 9  | Bangalore | Mapple Tree      | 87    | 1800.0 | 1800.0 | 0.0   |
| 3  | Bangalore | Delhivery        | 48    | 878.0  | 908.0  | 229.0 |
| 7  | Bangalore | Grofers          | 35    | 1070.0 | 1100.0 | 458.0 |
| 8  | Bangalore | Lilac            | 22    | 900.0  | 900.0  | 0.0   |

```
In [80]:
```

```
city_df['client%'] = city_df['count']*100/city_df['count'].sum()
```

#### In [81]:

```
city_df['Client_new'] = np.where(city_df['client%'] < 2, 'Others', city_df['Client'])</pre>
```

#### In [82]:

```
b = city_df.groupby('Client_new')['count'].mean().reset_index()
```

# In [83]:

b

# Out[83]:

|   | Client_new   | count        |
|---|--------------|--------------|
| 0 | BigBasket    | 3765.000000  |
| 1 | Flipkart     | 14384.000000 |
| 2 | Flipkart_ROK | 1119.000000  |
| 3 | Others       | 138.777778   |
| 4 | Porter       | 564.000000   |
| 5 | Porter 2W    | 661.000000   |
| 6 | SFX Food     | 1757.000000  |

#### In [84]:

# Pie chart for City with revenue in SUM



#### In [89]:

```
a_1=df1.groupby(['Vehicle type','City'])['Revenue'].agg(['sum']).reset_index()
vehicle_df = a_1[a_1['Vehicle type'] == 'EV']
vehicle_df.sort_values('sum', ascending=False)
vehicle_df['City%'] = vehicle_df['sum']*100/vehicle_df['sum'].sum()
vehicle_df.head()
```

#### Out[89]:

|   | Vehicle type | City      | sum        | City%     |
|---|--------------|-----------|------------|-----------|
| 0 | EV           | Bangalore | 14138076.0 | 53.380910 |
| 1 | EV           | Chennai   | 7786871.0  | 29.400766 |
| 2 | EV           | Delhi     | 507409.0   | 1.915816  |
| 3 | EV           | Hyderabad | 3362216.0  | 12.694666 |
| 4 | EV           | Madurai   | 282383.5   | 1.066191  |

#### In [90]:

```
m=vehicle_df.groupby('City')['sum'].sum().reset_index()
```

#### In [91]:

# City split up based on the EV vehicle type



#### In [92]:

```
# df1.groupby(['Vehicle type','City'])['Revenue'].mean().sort_values(ascending=False).unsta
#
# plt.title('Bar chart for Vehicle type with revenue in MEAN',fontsize=20)
# plt.show()
```

#### In [93]:

```
# df1.groupby(['Vehicle type'])['Revenue'].sum().plot.bar(
# plt.title('Bar chart for Vehicle type with revenue in MEAN',fontsize=20)
# plt.show()
```

#### In [146]:

```
df_city_client_vehicle=df1.groupby(['Vehicle type','City','Client'])['Revenue'].agg(['mean'
```

#### In [147]:

```
df_city_client_vehicle.head()
```

#### Out[147]:

|   | Vehicle type | City      | Client       | mean        |
|---|--------------|-----------|--------------|-------------|
| 0 | EV           | Bangalore | Amazon_Fresh | 1045.081545 |
| 1 | EV           | Bangalore | BB NOW       | 753.705584  |
| 2 | EV           | Bangalore | BigBasket    | 885.119457  |
| 3 | EV           | Bangalore | Delhivery    | 878.125000  |
| 4 | EV           | Bangalore | Flipkart     | 835.644442  |

#### In [148]:

```
y=df_city_client_vehicle[df_city_client_vehicle['Vehicle type']=='EV']
```

#### In [149]:

```
y.sort_values('mean', ascending=False)
y['client%'] = y['mean']*100/y['mean'].sum()
y['Client_new'] = np.where(y['client%'] <3,'Others', y['Client'])
y</pre>
```

#### Out[149]:

|   | Vehicle type | City      | Client           | mean        | client%  | Client_new       |
|---|--------------|-----------|------------------|-------------|----------|------------------|
| 0 | EV           | Bangalore | Amazon_Fresh     | 1045.081545 | 4.417509 | Amazon_Fresh     |
| 1 | EV           | Bangalore | BB NOW           | 753.705584  | 3.185877 | BB NOW           |
| 2 | EV           | Bangalore | BigBasket        | 885.119457  | 3.741357 | BigBasket        |
| 3 | EV           | Bangalore | Delhivery        | 878.125000  | 3.711792 | Delhivery        |
| 4 | EV           | Bangalore | Flipkart         | 835.644442  | 3.532228 | Flipkart         |
| 5 | EV           | Bangalore | Flipkart Grocery | 810.912162  | 3.427686 | Flipkart Grocery |
| 6 | EV           | Bangalore | Flipkart_ROK     | 506.262357  | 2.139946 | Others           |
| 7 | EV           | Bangalore | Grofers          | 1070.142857 | 4.523442 | Grofers          |
| 8 | EV           | Bangalore | Lilac            | 900.000000  | 3.804256 | Lilac            |
| 9 | EV           | Bangalore | Porter 2W        | 593.804841  | 2.509984 | Others           |

#### In [98]:

#### Client wise split up based on the EV vehicle type include all the city wise



#### In [99]:

```
# df1.groupby(['Vehicle type','City','Client'])['Revenue'].mean().sort_values(ascending=Tru
# colormap=
# plt.title('Bar chart for Vehicle type, City and Client with revenue in MEAN',fontsize=20)
# plt.show()
```

#### In [100]:

df1.groupby(['Date','Vehicle type','City','Client'])['Revenue'].agg(['count','mean','median

#### Out[100]:

|            |              |           |              | count | mean        | median | std        |
|------------|--------------|-----------|--------------|-------|-------------|--------|------------|
| Date       | Vehicle type | City      | Client       |       |             |        |            |
| 2022-07-01 | EV           | Bangalore | Amazon_Fresh | 7     | 1076.428571 | 1000.0 | 758.011402 |
|            |              |           | BB NOW       | 10    | 776.000000  | 840.0  | 343.679437 |
|            |              |           | BigBasket    | 99    | 850.272727  | 893.0  | 278.791738 |
|            |              |           | Delhivery    | 1     | 645.000000  | 645.0  | NaN        |
|            |              |           | Flipkart     | 336   | 725.663690  | 680.0  | 388.320221 |
|            |              |           |              |       |             |        |            |
| 2022-07-31 | VAN          | Bangalore | Porter       | 7     | 1178.142857 | 1213.0 | 428.268774 |
|            |              |           | TOW          | 1     | 825.000000  | 825.0  | NaN        |
|            |              | Chennai   | Porter       | 3     | 616.333333  | 478.0  | 258.886719 |
|            |              | Delhi     | Porter       | 5     | 729.800000  | 742.0  | 196.278374 |
|            |              | Hyderabad | BigBasket    | 6     | 2076.666667 | 1925.0 | 758.674282 |

1707 rows × 4 columns

## In [112]:

order\_type=df1.groupby(['Order Type','Vehicle type','City'])['Order Allocated'].agg(['sum']
order\_type

#### Out[112]:

|   | Order Type | Vehicle type | City      | sum      |
|---|------------|--------------|-----------|----------|
| 0 | NJIT       | EV           | Chennai   | 446.0    |
| 1 | Normal     | EV           | Bangalore | 707448.0 |
| 2 | Normal     | EV           | Chennai   | 315892.0 |
| 3 | Normal     | EV           | Delhi     | 25855.0  |
| 4 | Normal     | EV           | Hyderabad | 88543.0  |
| 5 | Normal     | EV           | Madurai   | 21493.0  |
| 6 | Normal     | EV           | Mysore    | 29978.0  |
| 7 | Normal     | ICE          | Bangalore | 291770.0 |
| 8 | Normal     | ICE          | Chennai   | 102144.0 |
| 9 | Normal     | ICE          | Delhi     | 19651.0  |

#### In [113]:

```
order_type.sort_values('sum', ascending=False)
order_type['Vehicle type%'] = order_type['sum']*100/order_type['sum'].sum()
#order_type['Vehicle type'] = np.where(order_type['Vehicle type%'] <3,'Others', order_type[
order_type</pre>
```

## Out[113]:

|   | Order Type | Vehicle type | City      | sum      | Vehicle type% |
|---|------------|--------------|-----------|----------|---------------|
| 0 | NJIT       | EV           | Chennai   | 446.0    | 0.025225      |
| 1 | Normal     | EV           | Bangalore | 707448.0 | 40.012692     |
| 2 | Normal     | EV           | Chennai   | 315892.0 | 17.866598     |
| 3 | Normal     | EV           | Delhi     | 25855.0  | 1.462338      |
| 4 | Normal     | EV           | Hyderabad | 88543.0  | 5.007921      |
| 5 | Normal     | EV           | Madurai   | 21493.0  | 1.215627      |
| 6 | Normal     | EV           | Mysore    | 29978.0  | 1.695532      |
| 7 | Normal     | ICE          | Bangalore | 291770.0 | 16.502277     |
| 8 | Normal     | ICE          | Chennai   | 102144.0 | 5.777183      |
| 9 | Normal     | ICE          | Delhi     | 19651.0  | 1.111445      |

#### In [150]:

Order type split up based on the EV vehicle type include all the city wise



# Outlier on the Revenue and City wise

#### In [115]:

```
# type 3 : add avg line
fig, ax = plt.subplots(1,1,figsize=(16, 6))
sns.distplot(df1[df1['City']=='Chennai']['Revenue'],color='orange', label='Chennai')

# avg line
plt.axvline(df1[df1['City']=='Chennai']['Revenue'].mean(), color='red')

plt.legend()
plt.xticks(rotation='vertical')
plt.show()
```



#### In [116]:

```
# type 3 : add avg line
fig, ax = plt.subplots(1,1,figsize=(16, 6))
sns.distplot(df1[df1['City']=='Bangalore']['Revenue'], color='green', label='Bangalore')

# avg line
plt.axvline(df1[df1['City']=='Bangalore']['Revenue'].mean(), color='red')

plt.legend()
plt.xticks(rotation='vertical')
plt.show()
```



# **Outlier on the Revenue and Client wise**

#### In [117]:

```
# type 3 : add avg line
fig, ax = plt.subplots(1,1,figsize=(16, 6))
sns.distplot(df1[df1['Client']=='Flipkart']['Revenue'], norm_hist = True,color='blue', ax=

# avg line
plt.axvline(df1[df1['Client']=='Flipkart']['Revenue'].mean(), color='red')

plt.legend()
plt.xticks(rotation='vertical')
plt.show()
```



#### In [118]:

```
# type 3 : add avg line
fig, ax = plt.subplots(1,1,figsize=(16, 6))
sns.distplot(df1[df1['Client']=='SFX E-com']['Revenue'], norm_hist = True,color='blue', ax

# avg line
plt.axvline(df1[df1['Client']=='SFX E-com']['Revenue'].mean(), color='red')

plt.legend()
plt.xticks(rotation='vertical')
plt.show()
```



#### In [121]:

#### Out[121]:

<AxesSubplot:xlabel='Revenue', ylabel='Density'>



#### In [129]:

```
x1 = list(df1[df1['City']=='Bangalore']['Order Allocated'])
x2 = list(df1[df1['City']=='Chennai']['Order Allocated'])
x3 = list(df1[df1['City']=='Hyderabad']['Order Allocated'])
x4 = list(df1[df1['City']=='Delhi']['Order Allocated'])
x5 = list(df1[df1['City']=='Madurai']['Order Allocated'])
plt.figure(figsize=(10,8))
# Assign colors for each airline and the names
colors = ['#E69F00', '#56B4E9', '#F0E442', '#009E73', '#D55E00']
names = ['Bangalore', 'Chennai', 'Hyderabad',
         'Delhi', 'Madurai']
# Make the histogram using a list of lists
# Normalize the flights and assign colors and names
plt.hist([x1, x2, x3, x4, x5], bins = int(180/15),
         color = colors, label=names)
# Plot formatting
plt.legend()
plt.xlabel('Delay (min)')
plt.ylabel('Normalized order allocated')
plt.title('Side-by-Side Histogram with City')
```

#### Out[129]:

<matplotlib.legend.Legend at 0x1c24737e550>



# In [134]:

```
m=df1.groupby('City')['Revenue'].agg(['mean','std']).reset_index()
```

# In [135]:

from stat import \*m

# Out[135]:

|   | City        | mean       | std        |
|---|-------------|------------|------------|
| 0 | Bangalore   | 842.006213 | 463.225740 |
| 1 | Chennai     | 816.506610 | 381.041954 |
| 2 | Delhi       | 573.634585 | 203.580361 |
| 3 | Gujarat     | 352.961538 | 140.976730 |
| 4 | Hyderabad   | 922.954280 | 469.231493 |
| 5 | Kerala      | 637.256293 | 242.943633 |
| 6 | Madurai     | 679.706540 | 336.128923 |
| 7 | Mysore      | 575.301688 | 363.346453 |
| 8 | maharashtra | 536.703704 | 68.805084  |

# In [ ]: