A Behavioral New Keynesian Model: Dynare Implementation

Carlos Montoya, Patrick Molligo, and Clemens Stiewe

Current Research in Macroeconomics

January 14, 2017

Overview

Model Recap

2 The Forward Guidance Puzzle

3 The Zero Lower Bound

Gabaix' Behavioral Approach

- Attempts to tackle some of the puzzling "aggregate outcomes" of the traditional New Keynesian model
- Addition of a new parameter "M" representing myopia of economic agents. Large consequences for monetary and fiscal policy!
 - Myopia = "Short-sightedness" agents can't see very far into the future
- New version of the paper posted on December 26th
 - Minor changes to the main model, mostly involving parameter specification

Five Major Implications

- Forward Guidance Puzzle: FG is now less powerful.
- Fiscal Policy: Traditionally Ricardian Equivalence no longer holds, so lump-sum tax cuts do have an effect on consumption.
- Zero Lower Bound: Recessions are only "boundedly costly" at the ZLB
- Equilibrium Selection: The model is now "deterministic".
- Neo-Fisherian Paradox: Inflationary effects of monetary policy are now "Keynesian" in the short-run and "Fisherian" in the long-run.

Five Major Implications

- In his new version, Gabaix describes two additional implications of his model:
 - Explains why economies at the ZLB can be stable
 - Qualitative changes in optimal policy when firms are behavioral
- For today, we will focus on the implications of the model for Forward Guidance and the Costliness of the Zero Lower Bound

Behavioral NK Model Synthesis

• The Behavioral IS-Curve:

$$x_t = ME_t[x_{t+1}] - \sigma(i_t - E_t \pi_{t+1} - r_t^n)$$

The Behavioral Phillips Curve:

$$\pi_t = \beta \mathbf{M}^f E_t[\pi_{t+1}] + \kappa \mathbf{x}_t$$

Breakdown of 'M'

There are three main behavioral parameters:

$$M = rac{ar{m}}{R - m_y(R-1)}$$
 $\sigma = rac{m_r}{(\gamma R(R-(R-1)m_y))}$ $M^f = ar{m}(heta + m_\pi^f(1- heta))$

Kappa also has a behavioral component:

$$\kappa = (\frac{1}{\theta} - 1)(1 - \beta\theta)(\gamma + \phi)m_{\mathsf{x}}^f$$

• What about the other parameters \bar{m} , m_y , m_r , m_π^f , and m_χ^f ?

7 / 17

Parameterization

Parameter	Traditional Model	Behavioral Model
- m	1	0.85
m_y	1	1
m_r	0.2	0.2
m_π^f	1	1
m_{χ}^{f}	0.2	0.2
β	0.99	0.99
ϕ	1	1
θ	0.7	0.7
γ	1	1
ho	0.5	0.5

Table: Left: Rational households; Right: Myopic households

Dynare Implementation

- Focus on the Forward Guidance Puzzle and the Costliness of the ZLB
- For each analysis, we looked at the effects of shocks across three cases:
 - Traditional Model (M=1)
 - ② Household Myopia (M < 1 for individual households)
 - **3** Household & Firm Myopia (M < 1 for household and $M^f < 1$ firms)??

Forward Guidance in Dynare

- Gabaix uses a more general approach to Forward Guidance that is independent of the ZLB
- He follows the approach used by McKay, Nakamura, and Steinsson in their 2016 papers on the Euler Equation and Forward Guidance Puzzle:
 - ▶ The central bank follows a "naive" interest rate rule:

$$r_t = i_t - E_t \pi_{t+1} = r_t^n + \epsilon_{t,t-j}$$

- $ightharpoonup \epsilon_{t,t-j}$: A shock to period t, becomes known in period t-j
- e.g. A one-time 1% rate cut is announced to take place several years in the future

Forward Guidance in Dynare

figures

ZLB in Dynare

- We implemented the ZLB using a large, negative technology shock in conjunction with the max operator in MATLAB
- The simulation implements a ZLB for 40 periods (10 years), with a lift-off in period 41
- The same "naive" central bank policy rule from McKay, Nakamura, and Steinsson (2016) applies here as well

ZLB in Dynare

 The response of the output gap when the economy is at the ZLB for 40 periods:

Tradtional Model: A Closer Look

• Qualitatively we observe a potentially unbounded recession:

Behavioral Model: A Closer Look

• The shape of the the behavioral response tells the opposite story:

Final Thoughts

- We were able to successfully reproduce Gabaix' results using Dynare
- However, his approach to modeling central bank policy-making seems overly simplified and serves mainly to explain his underlying concept

References

Bank of Japan (2016), "Output Gap and Potential Growth Rate," Research Data, https://www.boj.or.jp/en/research/research_data/gap/gap.pdf.

Gabaix, Xavier (2016), "A Behavioral New Keynesian Model," Unpublished manuscript.

McKay, Alisdair, Emi Nakamura, and Jon Steinsson (2016a), "The Power of Forward Guidance Revisited," *American Economic Review*, 106 (10): 3133-3158.

McKay, Alisdair, Emi Nakamura, and Jon Steinsson (2016b), "The Discounted Euler Equation: A Note," *National Bureau of Economic Research*, Working Paper No. 22129.