Supervisory Control under Partial Observation

Dr Rong Su S1-B1b-59, School of EEE

Nanyang Technological University

Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Outline

- Motivation
- The Concept of Observability
- Supervisor Synthesis under Partial Observation
- Example
- Conclusions

Three Main Concepts in Control

Controllability

- allows you to improve the dynamics of a system by feedback
- e.g. controllability in the RW supervisory control theory

Observability

allows you to deploy such feedback by using the system's output

Optimality

- gives rise to formal methods of control synthesis
- e.g. supremality in the RW supervisory control theory

Example (cont.)

Some Intuitions

- Supervisor can only act upon receiving observable events
- Partial observation forces a supervisor to be conservative
- We can enable or disable an unobservable event

Outline

- Motivation
- The Concept of Observability
- Supervisor Synthesis under Partial Observation
- Example
- Conclusions

Observability

- Given $G \in \phi(\Sigma)$, let $\Sigma_o \subseteq \Sigma$ and $P: \Sigma^* \to \Sigma_o^*$ be the natural projection.
- A language $K\subseteq L(G)$ is (G,P)-observable, if

$$(\forall s \in \overline{K})(\forall \sigma \in \Sigma) \ s\sigma \in L(G) - \overline{K} \Rightarrow P^{-1}P(s)\sigma \cap \overline{K} = \emptyset$$

Or equivalently ...

• $K\subseteq L(G)$ is (G,P)-observable, if for all $s\in K$, $s'\in \Sigma^*$ and $\sigma\in \Sigma$, $s\sigma\in L(G)$ - \overline{K} \wedge $s'\sigma\in L(G)$ \wedge P(s)=P(s') \Rightarrow $s'\sigma\in L(G)$ - \overline{K} or equivalently,

$$s\sigma \in \overline{K} \land s'\sigma \in L(G) \land P(s) = P(s') \Rightarrow s'\sigma \in \overline{K}$$

(Think about why they are equivalent)

- $\Sigma = \{a,b,c,d\}$
- $\Sigma_0 = \{c\}$
- $K = \{ac, bc\}$

Question: is K(G,P)-observable? yes

- $\Sigma = \{a,b,c,d\}$
- $\Sigma_{o} = \{c\}$
- $K = \{ac, bc\}$

Question: is K(G,P)-observable? no

- $\Sigma = \{a,b,c,d\}$
- $\Sigma_0 = \{a,c\}$
- $K = \{ac, bc\}$

Question: is K(G,P)-observable? yes

(G,*P*)-observability is *decidable*. But how?

Procedure of Checking Observability: Step 1

- Let $G = (X, \Sigma, \xi, x_0, X_m)$
- Suppose K is recognized by $A = (Y, \Sigma, \eta, y_0, Y_m)$, i.e. $K = L_m(A)$
- Let A' = $G \times A = (X \times Y, \Sigma, \xi \times \eta, (x_0, y_0), X_m \times Y_m)$
 - Since $K=L(A)\subseteq L(G)$, we have $L(G\times A)=L(A)$
- A state $(x,y) \in X \times Y$ is a boundary state of A' w.r.t. G, if
 - $(\exists s \in L(A')) \xi \times \eta((x_0, y_0), s) = (x, y), i.e. (x, y) is reachable from <math>(x_0, y_0)$
 - $-(\exists \sigma \in \Sigma) \xi(x,\sigma)! \wedge \neg \eta(y,\sigma)!$, where "!" denotes "is defined"
- Let B be the collection of all boundary states of A' w.r.t. G
 - B is a finite set. (Why?)

Procedure of Checking Observability: Step 2

- For each boundary state $(x,y) \in B$, we define two sets
 - $T(x,y) := \{s \in L(A') | \xi \times \eta((x_0,y_0),s) = (x,y) \}$ (T(x,y) is regular, why?)
 - $-\Sigma(x,y) := \{\sigma \in \Sigma | \xi(x,\sigma)! \land \neg \eta(y,\sigma)! \}$
- Theorem
 - K is observable w.r.t. G and P, iff for any boundary state (x,y)∈B,

$$P^{-1}P(T(x,y))\Sigma(x,y)\cap \overline{K}=\varnothing$$

- $\Sigma = \{a,b,c,d\}$
- $\Sigma_{o} = \{c\}$
- $K = \{ac, bc\}$

Example – Step 1

•
$$\Sigma = \{a,b,c,d\}$$

•
$$\Sigma_{o} = \{c\}$$

• $K = \{ac, bc\}$

•
$$B=\{(1,1),(2,2)\}$$

Example – Step 2

- For the boundary state (1,1) we have
 - $T(1,1) = \{b\}$
 - $-\Sigma(1,1) = \{c\}$
 - $-P^{-1}P(T(1,1))\Sigma(1,1)\cap \overline{K} = \{bc,ac\}\cap \{ac,ba\} = \{ac\} \neq \emptyset$
- For the boundary state (2,2) we have
 - $T(2,2) = \{a\}$
 - $-\Sigma(2,2) = \{d\}$
 - $-P^{-1}P(T(2,2))\Sigma(2,2)\cap \overline{K} = \{ad\}\cap \{ac,ba\} = \emptyset$

K is not observable w.r.t. G and P

Properties of Observable Languages

- Suppose K_1 and K_2 are closed, observable w.r.t. G and P. Then
 - $K_1 \cap K_2$ is observable w.r.t. G and P
 - $K_1 \cup K_2$ may not be observable w.r.t. G and P
- Given a plant G, let
 - $O(G):=\{K\subseteq L(G)|K \text{ is closed and observable w.r.t. } G \text{ and } P\}$
- The partially ordered set (poset) $(O(G),\subseteq)$ is a meet-semi-lattice
 - The greatest element may not exist (i.e. no supremal observable sublanguage)

• $K_1 \cap K_2$ is observable, but $K_1 \cup K_2$ is not. (Why?)

Main Existence Result

- Theorem 1
 - Let K \subseteq L_m(G) and K≠Ø. There exists a proper supervisor iff
 - K is controllable with respect to G
 - K is observable with respect to G and P
 - K is $L_m(G)$ -closed, i.e. $K = \overline{K} \cap L_m(G)$

Supervision under Partial Observation

- Suppose K is controllable, observable and $L_m(G)$ -closed.
- Let $A=(Y, \Sigma_0, \eta, y_0, Y_m)$ be the canonical recognizer of P(K).
- We construct a new automaton $S=(Y,\Sigma,\lambda,y_0,Y_m)$ as follow:
 - For any y∈Y, an event σ ∈Σ-Σ₀ is *control-relevant* w.r.t. y and K, if (∃s∈ \overline{K}) $\eta(y_0,P(s))=y \wedge s\sigma$ ∈ \overline{K}
 - Let $\Sigma(y)$ be the collection of all events in $\Sigma \Sigma_0$ control-relevant w.r.t. y, K
 - We define the transition map $\lambda: Y \times \Sigma \rightarrow Y$ as follows:
 - λ is the same as η over $Y \times \Sigma_0$
 - For any $y \in Y$ and $\sigma \in \Sigma(y)$, define $\lambda(y,\sigma) := y$ (i.e. selfloop all events of $\Sigma(y)$ at y)
 - For all other (y,σ) pairs, $\lambda(y,\sigma)$ is undefined
- S is a proper supervisor of G under PO such that $L_m(S/G)=K$

•
$$\Sigma = \{a,b,c,d\}$$

•
$$\Sigma_{o} = \{c\}$$

•
$$K = \{ac, bc\}$$

$$L_m(S/G)=K$$
?

Difficulty of Synthesis

- Given a plant G and a specification SPEC, let
- $O(G,SPEC):=\{K\subseteq L_m(G)\cap L_m(SPEC)|K \text{ is controllable and observable}\}$
- Unfortunately, there is no supremal element in O(G,SPEC).

Solution 1: A New Supervisory Control Problem

- Given G, suppose we have $A \subseteq E \subseteq L(G)$ and $\Sigma = \Sigma_0 \cup \Sigma_c$.
- To synthesize a supervisor S under partial observation such that

$$A \subseteq L(S/G) \subseteq E \tag{*}$$

- Let $O(A) := \{K \subseteq A | K \text{ is closed and observable w.r.t. } G \text{ and } P\}$
- Let $C(E) := \{K \subseteq E | K \text{ is closed and controllable w.r.t. } G\}$
- Theorem (Feng Lin)
 - Assume A≠Ø. The (*) problem has a solution S iff inf $O(A)\subseteq \sup C(E)$

Solution 2 : The Concept of Normality

- Given $N \subseteq M \subseteq \Sigma^*$, we say N is (M,P)-normal if $N = M \cap P^{-1}P(N)$
 - In particular, take N=M∩ P^{-1} (K) for any K⊆ Σ_0^* . Then N is (M,P)-normal.

Properties of Normality

- Let $\mathcal{M}(E; M) := \{N \subseteq E \mid N \text{ is } (M,P)\text{-normal}\}\ \text{for some } E \subseteq \Sigma^*$
 - The poset $(\mathcal{N}(E; M),\subseteq)$ is a complete lattice
 - The union of (M,P)-normal sublanguages is normal (intuitive explanation ?)
 - The intersection of (M,P)-normal sublanguages is normal (intuitive explanation ?)
 - Lin-Brandt formula : sup $\mathcal{N}(E; M) = E P^{-1}P(M E)$
 - In TCT : N = Supnorm(E,M,Null/Image)
- Let $E\subseteq L_m(G)$, and $\mathcal{M}(E; L(G)):=\{N\subseteq E|N \text{ is } (L(G),P)\text{-normal}\}$
 - $-\mathcal{N}(E; M)$ is closed under arbitrary unions, but not under intersections

Relationship between Normality and Observability

• Let $K\subseteq L_m(G)$. Then

K is (L(G), P)-normal \Rightarrow K is observable w.r.t. G and P

- Let $\Sigma(K) := \{ \sigma \in \Sigma \mid (\exists s \in \overline{K}) \ s \sigma \in L(G) \overline{K} \}$
 - $\Sigma(K)$ is the collection of all boundary events of K w.r.t. G

K is observable w.r.t. G, $P \land \Sigma(K) \subseteq \Sigma_0 \Rightarrow K$ is (L(G),P)-normal

Supervisory Control under Normality

- Given a plant G and a specification E, let
 - $-C(G,E) := \{K \subseteq L_m(G) \cap L_m(E) | K \text{ is controllable w.r.t. } G\}$
- We define a new set

$$S(G,E) := \{K \subseteq \Sigma^* | K \in C(G,E) \land \mathcal{M}(L_m(E),L(G)) \land L_m(G)\text{-closed}\}$$

- S(G,E) is nonempty and closed under arbitrary unions. sup S(G,E) exists
- Supervisory Control and Observation Problem (SCOP)
 - to compute a proper supervisor S under partial observation such that

$$L_{m}(S/G) = \sup S(G,E)$$

The TCT Procedure for SCOP

• Given a plant G and a specification E, let

$$A = Supscop(E,G,Null/Image)$$

- $L_{m}(A) = \sup S(G,E)$
- Based on A, we construct a proper supervisor S under partial observation
 - Why can we do that? Because $\sup S(G,E)$ is controllable and observable

Warehouse Collision Control

Plant Model

- $\Sigma_1 = \{11, 12, 13, 15\}, \Sigma_{1,c} = \{11, 13, 15\}, \Sigma_{1,o} = \{11, 15\}$
- $\Sigma_2 = \{21, 22, 23, 25\}, \Sigma_{2,c} = \{21, 23, 25\}, \Sigma_{2,o} = \{21, 25\}$

Specification

- To avoid collision, C_1 and C_2 can't reach the same state together
 - States (1,1), (2,2), (3,3) should be avoided in $C_1 \times C_2$

Synthesis Procedure in TCT

• Create the plant

$$G = Sync(C_1, C_2)$$
 (25; 40)

• Create the specification

$$E = mutex(C_1, C_2, [(1,1), (2,2), (3,3)])$$
 (20; 24)

Supervisor Synthesis

$$K = Supscop(E,G,[12,13,22,23])$$
 (16; 16)

Transition Structure of K

A Proper Supervisor S under Partial Observation

Some Fact

• Perform the following TCT operation

$$W = Condat(G,K)$$

- Only events 11 and 21 are required to be disabled.
- Therefore, we only need one traffic light at Track 1.

A Slight Modification

•
$$\Sigma_{1,0} = \{11, 15\}$$

•
$$\Sigma_{1,o} = \{11, 15\}$$

• $\Sigma_{2,o} = \{21, 25\}$

$$\Sigma_{1,0} = \{11, 13\}$$

•
$$\Sigma_{1,o} = \{11, 13\}$$

• $\Sigma_{2,o} = \{21, 23\}$

Synthesis Result

• Create the plant

$$G = Sync(C_1, C_2)$$
 (25; 40)

• Create the specification

$$E = Mutex(C_1, C_2, [(1,1), (2,2), (3,3)])$$
 (20; 24)

Supervisor Synthesis

$$K = Supscop(E,G,[12,15,22,25])$$
 (empty)

Explain intuitively why this can happen (homework)

Conclusions

- Partial observation is important for implementation.
 - A supervisor can make a move only based on observations.
- The current observability is not closed under set union.
 - Thus, there is no supremal observable sublanguage (unfortunately).
- Normality is closed under set union.
 - Thus, the supremal normal sublanguage exists.
 - But the concept of normality is too conservative.