CSL003P1M: Probability and Statistics

Semester-1: 2024-2025 Instructor: Nitin Kumar

Last date of submission: No need to submit

Practice Set-3

- 1. Let $X \sim Poisson(1)$ and $Y \sim Poisson(2)$ be independent random variables. Find the conditional distribution of X given X + Y = t, $t \in \{0, 1, 2...\}$.
- 2. Let X_1, X_2, X_3 and X_4 be four mutually independent random variables each having p.d.f. $f(x) = \begin{cases} 3(1-x)^2, & 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}$ Find the p.d.f. of $Y = \min(X_1, X_2, X_3, X_4)$ and $Z = \max(X_1, X_2, X_3, X_4)$.
- 3. Let X_1 and X_2 be i.i.d U(0,1). Define two new random variables as $Y_1 = X_1 + X_2$ and $Y_2 = X_2 X_1$. Find the joint probability density function of Y_1 and Y_2 and also marginal probability density of Y_1 and Y_2 .
- 4. Let X and Y be i.i.d N(0,1). Find the probability density function of $Z = \frac{X}{Y}$.
- 5. Let X and Y be i.i.d random variables with common probability density function $f(x) = \begin{cases} \frac{c}{1+x^4}, & -\infty < x < \infty \\ 0, & \text{Otherwise.} \end{cases}$ where, c is a normalizing constant. Find the p.d.f. of $Z = \frac{X}{Y}$
- 6. Let X and Y be i.i.d N(0,1). Define the random variables R and θ by $X = Rcos(\theta)$, $Y = Rsin(\theta)$
 - (a) Show that R and θ are independent with $\frac{R^2}{2} \sim Exp(1)$ and $\theta \sim U(0, 2\pi)$.
 - (b) Show that $X^2 + Y^2$ and $\frac{X}{Y}$ are independently distributed.
- 7. Let U_1 and U_2 be i.i.d U(0,1) random variables. Show that $X_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$ and $X_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$ are i.i.d N(0,1) random variables.
- 8. Let X_1, X_2 and X_3 be i.i.d with p.d.f. $f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{otherwise.} \end{cases}$ Find the p.d.f. of Y_1, Y_2, Y_3 ; where $Y_1 = \frac{X_1}{X_1 + X_2}, Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}, Y_3 = X_1 + X_2 + X_3.$
- 9. X and Y are i.i.d. random variables each with p.m.f $P(X = x) = \begin{cases} (1-p)^x p, & x = 0, 1, \dots \\ 0, & \text{Otherwise.} \end{cases}$ Identify the distribution of $\frac{X}{X+Y}$. Further find the p.m.f of $Z = \min(X,Y)$.