Ex2.1 Grothendieck Vanithing Thm is Best Possible.

(a) Let
$$X = \mathbb{A}^1, U = X - \{P, Q\}.$$
 $H^1(X, \mathbb{Z}_U) \neq 0.$

k :: infinite field, $X=\mathbb{A}^1_k,\ P,Q\in X$:: distinct closed points, $Y=\{P,Q\}, U=X-Y$ とおく. # $Y<\#k=\infty$ なので # $U=\infty$.

次の完全列が成り立つ.

$$0 \longrightarrow \mathbb{Z}_U \longrightarrow \mathbb{Z}_X \longrightarrow \mathbb{Z}_Y \longrightarrow 0.$$

ここから次の長完全列が誘導される.

$$0 \longrightarrow \Gamma(X, \mathbb{Z}_U) \longrightarrow \Gamma(X, \mathbb{Z}_X) \longrightarrow \Gamma(X, \mathbb{Z}_Y)$$

$$\longrightarrow H^1(X, \mathbb{Z}_U) \longrightarrow H^1(X, \mathbb{Z}_X) \longrightarrow H^1(X, \mathbb{Z}_Y)$$

→..

完全列であるから, $H^1(X,\mathbb{Z}_U)=0$ は $\Gamma(X,\mathbb{Z}_X)\to\Gamma(X,\mathbb{Z}_Y)$ が全射であることと同値である.一方, $\#U=\infty,\#Y=2$ であるから,

$$\Gamma(X, \mathbb{Z}_X) = \mathbb{Z}, \qquad \Gamma(X, \mathbb{Z}_Y) = \Gamma(\{P\} \sqcup \{Q\}, \mathbb{Z}_Y) = \mathbb{Z} \oplus \mathbb{Z}.$$

(\sqcup は disjoint union を意味する.) よって全射にはなり得ない. したがって $H^1(X,\mathbb{Z}_U) \neq 0$.

(b) Generalization for \mathbb{A}^n .

k :: infinite field, $X=\mathbb{A}^n_k,\ H_1,\dots,H_{n+1}$:: hyperplanes, $Y=\bigcup_{i=1}^{n+1}H_i, U=X-Y$ とおく. $H^n(X,\mathbb{Z}_U)\neq 0$ を示す。 n=1 の場合については (a) で示したから, n>1 とする。 完全列

$$0 \longrightarrow \mathbb{Z}_U \longrightarrow \mathbb{Z}_X \longrightarrow \mathbb{Z}_Y \longrightarrow 0$$

から誘導される長完全列の一部は次の様になる.

$$H^{n-1}(X, \mathbb{Z}_X) \longrightarrow H^{n-1}(X, \mathbb{Z}_Y) \longrightarrow H^n(X, \mathbb{Z}_U) \longrightarrow H^n(X, \mathbb{Z}_X).$$

また、 \mathbb{Z}_X :: constant sheaf on irreducible space なので \mathbb{Z}_X :: flasque (II, Ex1.16a), acyclic (Prop2.5). 今 n > 1 だから $H^{n-1}(X, \mathbb{Z}_X) = H^n(X, \mathbb{Z}_X) = 0$. よって $H^{n-1}(X, \mathbb{Z}_Y) \cong H^n(X, \mathbb{Z}_U)$ が得られる. なので我々は $H^{n-1}(X, \mathbb{Z}_Y) \neq 0$ を示すことにする.

Ex2.2 $\mathcal{O}_{\mathbb{P}^1_k}$:: acyclic.

Ex2.3 Cohomology with Supports.

X:: topological space, Y:: closed subset of X, U = X - Y, \mathcal{F} :: sheaf of abelian group on X と する. この時, $\Gamma_Y(X,\mathcal{F})$ を以下で定める.

$$\Gamma_Y(X,\mathcal{F}) = \{ s \in \Gamma(X,\mathcal{F}) \mid \operatorname{Supp} s \subseteq Y \} = \{ s \in \Gamma(X,\mathcal{F}) \mid s|_{X-Y} = 0 \}.$$

(a) $\Gamma_Y(X,-): \mathfrak{Ab}(X) \to \mathfrak{Ab} ::$ left exact functor.

 $\mathfrak{Ab}(X)$ の完全列を考える.

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}''.$$

ここから誘導される以下の列が完全であることは II, Ex1.8 で示した.

$$0 \longrightarrow \Gamma(X, \mathcal{F}') \stackrel{f}{\longrightarrow} \Gamma(X, \mathcal{F}) \stackrel{g}{\longrightarrow} \Gamma(X, \mathcal{F}'').$$

 Γ を Γ_Y に付け替えても完全列であることを示す.

■Exact at $\Gamma_Y(X, \mathcal{F}')$. 示すべきことは次のこと.

$$\forall s \in \Gamma_Y(X, \mathcal{F}'), \quad f(s) = 0 \implies s = 0.$$

 $f:\Gamma(X,\mathcal{F}')\to\Gamma(X,\mathcal{F})$ が単射なので、その制限 $f|_{\Gamma_{V}(X,\mathcal{F}')}$ も単射. よって主張が示せた.

■Exact at $\Gamma_Y(X,\mathcal{F})$. 示すべきは次のこと.

$$\forall t \in \Gamma_Y(X, \mathcal{F}), \quad g(t) = 0 \iff \exists u \in \Gamma_Y(X, \mathcal{F}'), \quad f(u) = t.$$

 \iff は $g \circ f = 0$ から直ちに分かる. \implies は次のように示す. 元の完全列があるため, f(u) = t を満たす u が $\Gamma(X, \mathcal{F}')$ からはとれる. 今 $t \in \Gamma_Y(X, \mathcal{F})$ から t は以下を満たす.

$$\forall P \in U, \ t_P = (f(u))_P = f_P(u_P) = 0.$$

 f_P は単射であるから、任意の点 $P \in U$ について $u_P = 0$. よって $u \in \Gamma_Y(X, \mathcal{F}')$.

(b) \mathcal{F}' :: flasque then $0 \to \Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F}) \to \Gamma_Y(X, \mathcal{F}'') \to 0$ is exact.

次の完全列は成立する (II, Ex1.16b).

$$0 \longrightarrow \Gamma(X,\mathcal{F}') \stackrel{f}{\longrightarrow} \Gamma(X,\mathcal{F}) \stackrel{g}{\longrightarrow} \Gamma(X,\mathcal{F}'') \longrightarrow 0.$$

これらの Γ を Γ_Y に取り替えても良いことを示す. (a) で示したことを合わせれば、次のことを示せば良いということになる.

$$\forall t \in \Gamma_Y(X, \mathcal{F}''), \exists u \in \Gamma_Y(X, \mathcal{F}), q(u) = t.$$

元の完全列から、g(u)=t を満たす u が $\Gamma(X,\mathcal{F})$ からはとれる. 今 $t\in\Gamma_Y(X,\mathcal{F}'')$ から t は以下を満たす.

$$t|_{U} = (g(u))|_{U} = g|_{U}(u|_{U}) = 0.$$

元の完全列があるため, $f|_U(\tilde{s})=u|_U$ となる $\tilde{s}\in\Gamma(U,\mathcal{F}')$ がとれる. \mathcal{F}' :: flasque なので $s|_U=\tilde{s}$ となる $s\in\Gamma(X,\mathcal{F}')$ が存在する.構成から

$$f(s)|_{U} = u|_{U} \iff \bar{u} := u - f(s) \in \Gamma_{Y}(X, \mathcal{F}).$$

 $g\circ f=0$ なので $g(\bar{u})=g(u-f(s))=g(u)=t$. よって \bar{u} が条件を満たす.

(c) injective sheaves are acyclic for $\Gamma_Y(X, -)$.

Prop2.5(injective sheaves are acyclic for $\Gamma(X,-)$) の証明がそのまま使える. この証明では (b) の内容の他には derived functor の性質しか使わない.

(d) \mathcal{F} :: flasque then $0 \to \Gamma_Y(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}) \to \Gamma(X - Y, \mathcal{F}) \to 0$ is exact.

引き続き U:=X-Y とする. $\operatorname{res}_X^U:\Gamma(X,\mathcal{F})\to\Gamma(U,\mathcal{F})$ は $\mathcal{F}::$ flasque ゆえに全射. この写像の kernel は次のような集合である.

$$\ker \operatorname{res}_X^U = \{ s \in \Gamma(X, \mathcal{F}) \mid s|_U = 0 \}.$$

これは $\Gamma_V(X,\mathcal{F})$ に他ならない.

(e) there is a long exact seq $:: \cdots \to H^i_Y(X,\mathcal{F}) \to H^i(X,\mathcal{F}) \to H^i(U,\mathcal{F}|_U) \to \cdots$.

 \mathcal{F} の injective resolution :: $0 \to \mathcal{F} \to \mathcal{I}^*$ をとる. このとき \mathcal{I}^* は flasque resolution でもある. すると (d) より次の図式が得られる.

$$0 \longrightarrow \Gamma_{Y}(X, \mathcal{I}^{0}) \xrightarrow{(d_{X}^{0})|_{\subseteq Y}} \Gamma_{Y}(X, \mathcal{I}^{1}) \xrightarrow{(d_{X}^{1})|_{\subseteq Y}} \dots$$

$$0 \longrightarrow \Gamma(X, \mathcal{I}^{0}) \xrightarrow{d_{X}^{0}} \Gamma(X, \mathcal{I}^{1}) \xrightarrow{d_{X}^{1}} \dots$$

$$\downarrow^{\operatorname{res}_{X}^{U}} \qquad \downarrow^{\operatorname{res}_{X}^{U}} \qquad \downarrow^{\operatorname{res}_{X}^{U}} \dots$$

$$0 \longrightarrow \Gamma(U, \mathcal{I}^{0}) \xrightarrow{d_{U}^{0}} \Gamma(U, \mathcal{I}^{1}) \xrightarrow{d_{U}^{1}} \dots$$

$$\downarrow^{0} \qquad 0 \qquad \dots$$

ここで \mathcal{I}^* の微分射を $d^i:\mathcal{I}^i\to\mathcal{I}^{i+1}$ とした.また $(d^i_X)|_{\subseteq Y}=(d^i_X)|_{\Gamma_Y(X,\mathcal{I}^i)}$ とした.以上の写像の定義から,それぞれの四角形が可換であることが確認できる.

まとめると, 次の exact sequence of complexs が存在する.

$$0 \to \Gamma_Y(X, \mathcal{I}^*) \to \Gamma(X, \mathcal{I}^*) \to \Gamma(X - Y, \mathcal{I}^*) \to 0.$$

よって derived functor の一般論から主張の long exact sequence が得られる.

(f) $Y \subset V$:: open in X then $H_V^i(X, \mathcal{F}) \cong H_V^i(V, \mathcal{F}|_V)$.

主張 Ex2.3.1

Y を X の閉集合, V を Y を含む X の開集合とする. 任意の $\mathcal F$:: sheaf on X of abelian group について次が成り立つ.

$$\Gamma_V(X, \mathcal{F}) \cong \Gamma_V(V, \mathcal{F}|_V).$$

(証明). 同型写像を次のように定める.

$$\rho: \quad \Gamma_Y(X, \mathcal{F}) \quad \to \quad \Gamma_Y(V, \mathcal{F}|_V)$$

$$s \qquad \mapsto \qquad s|_V$$

$$\epsilon \qquad \longleftrightarrow \qquad t$$

ただし ϵ は次のような section である:

$$\forall P \in X, \quad \epsilon_P = \begin{cases} t_P & (P \in V) \\ 0 & (P \in Y^c). \end{cases}$$

 $V \cap Y^c$ において $t_P = 0$ なのでこれは well-defined. また, ϵ は $t \in \Gamma(V, \mathcal{F})$ と $0 \in \Gamma(Y^c, \mathcal{F})$ の張り合わせであるから, gluability axiom より $\epsilon \in \Gamma(X, \mathcal{F})$. よって ρ 全体も well-defiend.

 $0 \to \mathcal{F} \to \mathcal{I}^*$:: injective resolution of \mathcal{F} をとる. この時, $0 \to \mathcal{F}|_V \to \mathcal{I}^*|_V$ は injective/flasque resolution of $\mathcal{F}|_V$. 主張から $\Gamma_Y(X,\mathcal{I}^*) \cong \Gamma_Y(V,\mathcal{I}^*|_V)$ なので,求める cohomology group の同型が得られる.

Ex2.4 Mayer-Vietoris Sequence.

 Y_1,Y_2 :: closed subset of X とする. $\mathcal F$:: sheaf of abelian group on X について次の完全列が存在することを証明する.

$$\dots \longrightarrow H^{i}_{Y_{1} \cap Y_{2}}(X, \mathcal{F}) \longrightarrow H^{i}_{Y_{1}}(X, \mathcal{F}) \oplus H^{i}_{Y_{2}}(X, \mathcal{F}) \longrightarrow H^{i}_{Y_{1} \cup Y_{2}}(X, \mathcal{F})$$

$$\longrightarrow H^{i}_{Y_{1} \cap Y_{2}}(X, \mathcal{F}) \longrightarrow \dots$$

主張 Ex2.4.1

 \mathcal{F} :: flasque sheaf on X について、次の完全列が存在する.

$$0 \longrightarrow \Gamma_{Y_1 \cap Y_2}(X, \mathcal{F}) \longrightarrow \Gamma_{Y_1}(X, \mathcal{F}) \oplus \Gamma_{Y_2}(X, \mathcal{F}) \longrightarrow \Gamma_{Y_1 \cup Y_2}(X, \mathcal{F}) \longrightarrow 0.$$

(証明). 9-Lemma を用いる.

各列は Ex2.3d から exact. 真ん中の行は明らかに split exact sequence で、一番下の行は以下の写像で exact になる. よって一番上の行も exact.

$$0 \longrightarrow \Gamma(X - (Y_1 \cap Y_2), \mathcal{F}) \longrightarrow \Gamma(X - Y_1, \mathcal{F}) \oplus \Gamma(X - Y_2, \mathcal{F}) \longrightarrow \Gamma(X - (Y_1 \cup Y_2), \mathcal{F}) \longrightarrow 0$$

$$a \longmapsto (a|_{X - Y_1}, -a|_{X - Y_2})$$

$$(a, b) \longmapsto a|_{X - (Y_1 \cup Y_2)} + b|_{X - (Y_1 \cup Y_2)}$$

主張から次の exact sequence of complexs が得られる.

$$0 \longrightarrow \Gamma_{Y_1 \cap Y_2}(X, \mathcal{I}^*) \longrightarrow \Gamma_{Y_1}(X, \mathcal{I}^*) \oplus \Gamma_{Y_2}(X, \mathcal{I}^*) \longrightarrow \Gamma_{Y_1 \cup Y_2}(X, \mathcal{I}^*) \longrightarrow 0.$$

これから derived functor の一般論によって所望の完全列が得られる.

Ex2.5
$$H_P^i(X, \mathcal{F}) = H_P^i(X_P, \mathcal{F}_P)$$
.

Ex2.6 $\{\mathcal{I}_{\alpha}\}$:: direct system of injective sheaves then $\lim \mathcal{I}_{\alpha}$:: injective sheaf.

X:: noetherian topological space, $\{\mathcal{I}_{\alpha}\}_{{\alpha}\in A}$:: direct system of injective sheaves of abelian groups on X とする. この時, $\varinjlim_{{\alpha}\in A}\mathcal{I}_{\alpha}$:: injective であることを示す.

主張 Ex2.6.1

 ${\mathcal I}$:: sheaf of abelian groups on X とする. ${\mathcal I}$:: injective と,次の可換図式で、ar f が存在することは同値である.

(証明). injective ならば \bar{f} が存在することは injective の定義から従う. 逆を示そう.

 $\alpha \in A$ と \mathcal{F}_{α} を Thm2.7 の証明の Step 3 と同様に定義する。また $\alpha' \subsetneq \alpha$ と $f: \mathcal{R} \to \mathcal{I}$ について, $f_{\alpha'} = f|_{\mathcal{R} \cap \mathcal{F}_{\alpha'}}$ と置く、 $\sum : \bigoplus_{\alpha' \subsetneq \alpha} \mathcal{F}_{\alpha'} \to \mathcal{F}_{\alpha}$ を $\sum (\bigoplus_{\alpha'} s_{\alpha'}) = \sum_{\alpha'} s_{\alpha'}$ と定めると,これは全射に成る。(2) において $f_{\alpha'}$ の拡張 $\overline{f_{\alpha'}}$ が存在すれば, $\overline{f} = (\bigoplus_{\alpha'} \overline{f_{\alpha'}}) \circ \sum^{-1}$ と置くことで(TODO: この \overline{f} は well-defined?)f の拡張が得られる(TODO).

 $\mathcal{F} = \varinjlim_{\alpha \in A} \mathcal{F}_{\alpha} \ \ \ |\alpha|$ についての帰納法を用いれば、主張が得られる.

 $U \subseteq X$:: open subset, $\mathcal{R} \subseteq \mathbb{Z}_U$:: subsheaf を任意に取る. U を irreducible component に分解し $U = \bigsqcup_i U_i$ とする. X :: noetherian ゆえ U_i は有限個しかない.

今, $\mathcal{R}(U_i)\subseteq \mathbb{Z}_U(U_i)=\mathbb{Z}$ なので $\mathcal{R}(U_i)$ は $s_i\in \mathbb{Z}$ で生成される abelian group である. V:: open subset of U_i を任意に取った時, $\mathcal{R}(V)$ は $(s_i)|_V$ で生成される。実際, $\mathcal{R}(V)\subseteq \mathbb{Z}_U(V)$ の生成元を $g\in \mathbb{Z}_U(V)$ とすると, \mathbb{Z}_{U_i} :: flasque (II, Ex1.16a) なので $\bar{g}|_V=g$ なる $\bar{g}\in \mathbb{Z}_U(U_i)$ が存在する。した がって $\bar{g}=r\cdot s_i$ となるが, $(s_i)|_V,r\cdot (s_i)|_V\in \mathcal{R}(V)$ であり, $\mathcal{R}(V)$ の生成元はただひとつなので,結局 r=1 となる。すなわち $(s_i)|_V$ が $\mathcal{R}(V)$ の生成元。以上から \mathcal{R} は有限個の元 $\{s_i\}_i$ で生成される。

 $f:\mathcal{R} \to \varinjlim \mathcal{I}_{\alpha}$ を任意に取る. すると全ての i について $\Gamma(U_i,f)(s_i) \in \Gamma(U_i,\varinjlim \mathcal{I}_{\alpha})$ なので

$$\Gamma(U_i, f)(s_i) \in \Gamma(U_i, \mathcal{I}_{\alpha_i})$$

なる α_i が存在する.したがって $f|_{U_i}:\mathcal{R}|_{U_i}\to\mathcal{I}_{\alpha_i}|_{U_i}$ が得られる.これは \mathcal{I}_{α_i} :: injective ゆえ拡張できて

$$(f|_{U_i})^-: \mathbb{Z}_{U_i} \to \mathcal{I}_{\alpha_i}|_{U_i} \to (\varinjlim \mathcal{I}_{\alpha})|_{U_i}$$

が得られる. 貼り合わせれば $\bar{f}:\mathcal{R} \to \varinjlim \mathcal{I}_{\alpha}$ となる.

Ex2.7
$$H^1(S^1, \mathbb{Z}_{S^1}) \cong \mathbb{Z}$$
.