# Calculating Option Greeks using Black-Scholes Model

### Overview

This notebook provides a comprehensive implementation of the Black-Scholes option pricing model, demonstrating the calculation of key option Greeks. Option Greeks are sensitivity measurements that describe how the price of an option changes in response to various factors.

## **Key Components**

- Option Pricing
- Delta Calculation
- Gamma Calculation
- Vega Calculation
- Theta Calculation
- Rho Calculation

### **Required Libraries**

```
In [1]: import numpy as np
    from scipy.stats import norm
    import matplotlib.pyplot as plt

plt.style.use('ggplot')
```

## **Model Parameters**

### Black-Scholes Option Pricing Function

```
- S: Current stock price
            - K: Strike price
            - T: Time to expiration (in years)
            - sigma: Volatility of the underlying asset
            - type: Option type - 'c' for Call, 'p' for Put
            Returns:
            - Theoretical option price
            # Calculate d1 and d2 parameters
            d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))
            d2 = d1 - sigma * np.sqrt(T)
            try:
                if type == "c":
                    # Call option pricing formula
                    price = S * norm.cdf(d1, 0, 1) - K * np.exp(-r * T) * norm.cd
                elif type == "p":
                    # Put option pricing formula
                    price = K * np.exp(-r * T) * norm.cdf(-d2, 0, 1) - S * norm.c
                return price
            except:
                print("Please confirm option type, either 'c' for Call or 'p' for
In [4]: # Calculate call and put option prices
        call_prices = [blackScholes(r, S, K, T, sigma, type="c") for K in K_range
        put_prices = [blackScholes(r, S, K, T, sigma, type="p") for K in K range]
        # Plot the results
        plt.figure(figsize=(10, 6))
        plt.plot(K range, call prices, label="Call Option Price", color="blue")
        plt.plot(K_range, put_prices, label="Put Option Price", color="red")
        plt.axvline(x=K, color="gray", linestyle="--", label="Strike Price (K)")
```

plt.title("Black-Scholes Option Pricing")

plt.xlabel("Strike Price (K)")
plt.ylabel("Option Price")

plt.legend()
plt.show()



# **Option Greeks Calculation Functions**

### Delta

Delta measures the rate of change of the theoretical option value with respect to changes in the underlying asset's price.

$$egin{aligned} \Delta &= rac{\partial V}{\partial S} \ \Delta_{call} &= \Phi(d1) \ \Delta_{put} &= -\Phi(-d1) \end{aligned}$$

```
In [5]: def delta_calc(r, S, K, T, sigma, type="c"):
    """
    Calculate Delta: Rate of change of option price with respect to under

Delta represents the hedge ratio or the equivalent stock position of
    For calls: Ranges from 0 to 1
    For puts: Ranges from -1 to 0

Parameters same as Black-Scholes function

Returns:
    Delta value
    """

d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))
    try:
        if type == "c":
            delta_calc = norm.cdf(d1, 0, 1)
        elif type == "p":
            delta_calc = -norm.cdf(-d1, 0, 1)
```

```
return delta_calc
except:
   print("Please confirm option type, either 'c' for Call or 'p' for
```

```
In [6]: # Calculate Delta values for calls and puts
    call_deltas = [delta_calc(r, S, K, T, sigma, type="c") for K in K_range]
    put_deltas = [delta_calc(r, S, K, T, sigma, type="p") for K in K_range]

# Plot the results
    plt.figure(figsize=(10, 6))
    plt.plot(K_range, call_deltas, label="Delta (Call)", color="blue")
    plt.plot(K_range, put_deltas, label="Delta (Put)", color="red")
    plt.axvline(x=K, color="gray", linestyle="--", label="Strike Price (K)")
    plt.title("Delta vs Strike Price (K)")
    plt.xlabel("Strike Price (K)")
    plt.ylabel("Delta")
    plt.legend()
    plt.show()
```



#### Gamma

Gamma measures the rate of change in the delta with respect to changes in the underlying price.

$$\Gamma = rac{\partial \Delta}{\partial S} = rac{\partial^2 V}{\partial S^2}$$
  $\Gamma = rac{\phi(d1)}{S\sigma\sqrt{ au}}$ 

```
In [7]: def gamma_calc(r, S, K, T, sigma, type="c"):
    """
    Calculate Gamma: Rate of change of Delta with respect to underlying a
```

```
Gamma measures the curvature of the option price's relationship to th
- Highest near the money
- Symmetric for calls and puts

Parameters same as Black-Scholes function

Returns:
- Gamma value
"""

d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))

try:
    gamma_calc = norm.pdf(d1, 0, 1) / (S * sigma * np.sqrt(T))
    return gamma_calc

except:
    print("Please confirm option type, either 'c' for Call or 'p' for
```

```
In [8]: # Calculate Gamma values for the stock price range
gamma_values = [gamma_calc(r, S, K, T, sigma) for K in K_range]

# Plot the results
plt.figure(figsize=(10, 6))
plt.plot(K_range, gamma_values, label="Gamma (Call & Put)", color="purple
plt.axvline(x=K, color="gray", linestyle="--", label="Strike Price (K)")
plt.title("Gamma vs Strike Price (K)")
plt.xlabel("Strike Price (K)")
plt.ylabel("Gamma")
plt.legend()
plt.show()
```



### Vega

Vega measures sensitivity to volatility. Vega is the derivative of the option value with respect to the volatility of the underlying asset.

$$v = \frac{\partial V}{\partial \sigma}$$

```
In [9]: def vega_calc(r, S, K, T, sigma, type="c"):
    """
    Calculate Vega: Sensitivity of option price to volatility changes

    Vega measures how much an option's price changes with volatility
        - Highest for at-the-money options
        - Multiplied by 0.01 to represent percentage point change

    Parameters same as Black-Scholes function

Returns:
        - Vega value
    """

    d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))
        try:
            vega_calc = S * norm.pdf(d1, 0, 1) * np.sqrt(T)
            return vega_calc * 0.01 # Convert to percentage points
    except:
            print("Please confirm option type, either 'c' for Call or 'p' for
```





### Theta

Theta measures the sensitivity of the value of the derivative to the passage of time - time decay.

$$egin{aligned} \Theta &= -rac{\partial V}{\partial au} \ \\ \Theta_{call} &= -rac{S\phi(d1)\sigma}{2 au} - rK\exp{(-rT)}\Phi(d2) \ \\ \Theta_{put} &= -rac{S\phi(d1)\sigma}{2 au} + rK\exp{(-rT)}\Phi(-d2) \end{aligned}$$

```
In [11]: def theta calc(r, S, K, T, sigma, type="c"):
             Calculate Theta: Rate of time decay of the option
             Theta measures how much value an option loses as time passes
             - Typically negative (option loses value as expiration approaches)
             - Divided by 365 to get daily time decay
             Parameters same as Black-Scholes function
             Returns:

    Theta value (daily time decay)

             d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))
             d2 = d1 - sigma * np.sqrt(T)
             try:
                 if type == "c":
                     theta_calc = -S * norm.pdf(d1, 0, 1) * sigma / (2 * np.sqrt(T))
                 elif type == "p":
                     theta_calc = -S * norm.pdf(d1, 0, 1) * sigma / (2 * np.sqrt(T
                 return theta calc / 365 # Daily time decay
             except:
                 print("Please confirm option type, either 'c' for Call or 'p' for
In [12]: # Calculate Theta values for the strike price range
         theta_values_call = [theta_calc(r, S, K, T, sigma, type="c") for K in K_r
         theta_values_put = [theta_calc(r, S, K, T, sigma, type="p") for K in K_ra
         # Plot the results
         plt.figure(figsize=(10, 6))
         plt.plot(K_range, theta_values_call, label="Theta (Call)", color="blue")
         plt.plot(K_range, theta_values_put, label="Theta (Put)", color="red")
         plt.axvline(x=S, color="gray", linestyle="--", label="Stock Price (S)")
         plt.title("Theta vs Strike Price (K)")
         plt.xlabel("Strike Price (K)")
         plt.ylabel("Theta")
         plt.legend()
         plt.show()
```



### Rho

Rho measures the sensitivity to the interest rate.

$$\begin{split} \rho &= \frac{\partial V}{\partial r} \\ \rho_{call} &= K \tau \exp{(-rT)} \Phi(d2) \\ \rho_{vut} &= -K \tau \exp{(-rT)} \Phi(-d2) \end{split}$$

```
In [13]: def rho_calc(r, S, K, T, sigma, type="c"):
             Calculate Rho: Sensitivity of option price to interest rate changes
             Rho measures how much an option's price changes with interest rates
             - Multiplied by 0.01 to represent percentage point change
             Parameters same as Black-Scholes function
             Returns:
             - Rho value
             d1 = (np.log(S / K) + (r + sigma**2 / 2) * T) / (sigma * np.sqrt(T))
             d2 = d1 - sigma * np.sqrt(T)
             try:
                 if type == "c":
                      rho_{calc} = K * T * np.exp(-r * T) * norm.cdf(d2, 0, 1)
                 elif type == "p":
                      rho_{calc} = -K * T * np.exp(-r * T) * norm.cdf(-d2, 0, 1)
                 return rho_calc * 0.01 # Convert to percentage points
             except:
                 print("Please confirm option type, either 'c' for Call or 'p' for
```

```
In [14]: # Calculate Rho values for the strike price range
    rho_values_call = [rho_calc(r, S, K, T, sigma, type="c") for K in K_range
    rho_values_put = [rho_calc(r, S, K, T, sigma, type="p") for K in K_range]

# Plot the results
    plt.figure(figsize=(10, 6))
    plt.plot(K_range, rho_values_call, label="Rho (Call)", color="blue")
    plt.plot(K_range, rho_values_put, label="Rho (Put)", color="red")
    plt.axvline(x=S, color="gray", linestyle="--", label="Stock Price (S)")
    plt.title("Rho vs Strike Price (K)")
    plt.ylabel("Strike Price (K)")
    plt.ylabel("Rho")
    plt.legend()
    plt.show()
```



# Comprehensive Option Greeks Calculation

```
In [15]:
         # Option type selection
         option_type = "p" # Put option in this example
         # Calculate and print all Greeks
         print("Option Type: ", "Put" if option_type == "p" else "Call")
                      Price: ", round(blackScholes(r, S, K, T, sigma, option_type)
         print("
                      Delta: ", round(delta_calc(r, S, K, T, sigma, option_type),
         print("
         print("
                      Gamma: ", round(gamma_calc(r, S, K, T, sigma, option_type),
                      Vega : ", round(vega_calc(r, S, K, T, sigma, option_type), 3
         print("
                      Theta: ", round(theta_calc(r, S, K, T, sigma, option_type),
         print("
         print("
                      Rho : ", round(rho calc(r, S, K, T, sigma, option type), 3)
```

Option Type: Put

Price: 23.9
Delta: -0.337
Gamma: 0.004
Vega: 2.192
Theta: -0.015
Rho: -2.263

### **Additional Notes**

- This implementation uses the standard Black-Scholes model assumptions
- Assumes European-style options
- Does not account for dividends
- Requires further validation for real-world trading

# References

- Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities
- Hull, J. C. (2017). Options, Futures, and Other Derivatives