Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E

4200.000
4000.000
3800.000
3400.000
3200.000
3000.000 -

1000

Tidspunkt for observasjon (timer)

1500

2000

2500

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 6.80e+09.

ò

500

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE B) kjernen består av helium og er degenerert

STJERNE C) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE D) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE E) radiusen er 1000 ganger solas radius.

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet $8.076\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 16 millioner K.

Kjernen i stjerne B har massetet
thet 5.599e+06 kg/m3 og temperatur 28 millioner K.

Kjernen i stjerne C har massetet
thet 1.709e+06 kg/m3 og temperatur 18 millioner K.

Kjernen i stjerne D har massetet
thet 3.944e+06 kg/m3 og temperatur 21 millioner K.

Kjernen i stjerne E har massetet
thet 2.837e+06 kg/m3̂ og temperatur 24 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 3: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Figur A tilsynelatende størrelseklasse 11.86

$Filen \ 1L/1L_Figure_B.png$

1.20

1.10

1.00

21.10

Figure 14: Figur fra filen 1L/1L-Figure-B.png

21.20

Bølgelgende (cm)

21.25

21.30

21.15

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figur E tilsynelatende størrelseklasse 17.40 1.70 1.60 1.50 1.40 Relativ fluks 1.30 1.20 1.10 1.00 21.12 21.18 21.15 21.20 21.23 21.25 21.28

Bølgelgende (cm)

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.648e+05 kg/m3̂ og temperatur 17.85 millioner K.

Kjernen i stjerne B har massetet
thet 1.468e+05 kg/m3̂ og temperatur 19.43 millioner K.

Kjernen i stjerne C har massetet
thet 2.022e+05 kg/m $\hat{3}$ og temperatur 35.43

millioner K.

Kjernen i stjerne D har massetet
thet $4.864\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 31.91 millioner K.

Kjernen i stjerne E har massetet
thet 1.484e+05 kg/m3̂ og temperatur 25.10 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_.png$

Observasjon er gjort 125.76 dager etter første observasjon.

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 167.68 dager etter første observasjon.

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.00 buesekunder i løpet av et millisekund. 45.11 40.10 y-posisjon (10⁻⁶ buesekunder) 35.09 30.07 25.06 20.05 15.04 10.02 5.01 0.00 5.01 10.02 15.04 20.05 25.06 30.07 35.09 40.10 45.11 x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.82320 km/t.

Filen 3E.txt

Tog1 veier 53300.00000 kg og tog2 veier 52700.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 494 km/s.

Filen 4E.txt

Massen til gassklumpene er 9800000.00 kg.

Hastigheten til G1 i x-retning er 13200.00 km/s.

Hastigheten til G2 i x-retning er 16680.00 km/s.

Filen 4G.txt

Massen til stjerna er 43.15 solmasser og radien er 2.69 solradier.