Planteamiento del problema

Enunciado

En una empresa de cereales se producen y venden tres tipos de productos: granola (x), arroz tostado (y) y cereal endulzado (z).

- Se sabe que:
 - En el primer trimestre del año se produjeron 16 toneladas de granola, 14 toneladas de arroz tostado y 12 toneladas de cereal endulzado.
 - En el segundo trimestre, la produccion total de los tres cereales fue de 58 toneladas
 - En el ultimo trimestre, dos veces la cantidad de granola mas tres veces la de arroz tostado fue igual a la cantidad de cereal endulzado fabricado.

Instrucciones:

- Plantee el sistema de ecuaciones.
- Resuelvalo utilizando el metodo de Gauss-Jordan.

Datos organizados

Resumen de los datos

Trimestre	Produccion	Ecuacion
1er Trimestre	x = 16, $y = 14$, $z = 12$	-
2do Trimestre	x + y + z = 58	x + y + z = 58
3er Trimestre	2x + 3y = z	2x + 3y - z = 0

Parte a: Sistema de ecuaciones

Planteamiento

Diferencia entre el primer y segundo trimestre:

$$(x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1) = 58 - (16 + 14 + 12)$$

 $-x + y + z = 10$ (Ecuación 1)

Sistema completo:

$$-x + y + z = 10$$
$$x + y + z = 58$$
$$2x + 3y - z = 0$$

Matriz aumentada

$$\left[\begin{array}{ccc|c} -1 & 1 & 1 & 10 \\ 1 & 1 & 1 & 58 \\ 2 & 3 & -1 & 0 \end{array}\right]$$

Paso 1: Eliminacion de x

Operaciones

$$R_2 \leftarrow R_2 + R_1$$
$$R_3 \leftarrow R_3 + 2R_1$$

Resultado

$$\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 10 \\
0 & 2 & 2 & 68 \\
0 & 5 & 1 & 20
\end{array}\right]$$

Paso 2: Eliminacion de y en R_3

Operaciones

$$R_2 \leftarrow \frac{1}{2}R_2$$

$$R_3 \leftarrow R_3 - 5R_2$$

Resultado

$$\left[\begin{array}{ccc|ccc}
-1 & 1 & 1 & 10 \\
0 & 1 & 1 & 34 \\
0 & 0 & -4 & -150
\end{array} \right]$$

Paso 3: Eliminacion de z

Operaciones

$$R_3 \leftarrow -\frac{1}{4}R_3$$

$$R_1 \leftarrow R_1 - R_3$$

$$R_2 \leftarrow R_2 - R_3$$

Resultado

$$\left[\begin{array}{ccc|c} -1 & 1 & 0 & -27.5 \\ 0 & 1 & 0 & -3.5 \\ 0 & 0 & 1 & 37.5 \end{array}\right]$$

Paso 4: Solucion final

Último paso

$$R_1 \leftarrow R_1 - R_2$$

Matriz final

$$\left[\begin{array}{cc|cc|c}
-1 & 0 & 0 & -24 \\
0 & 1 & 0 & -3,5 \\
0 & 0 & 1 & 37,5
\end{array}\right]$$

Solucion

$$x = 24 \text{ t}$$

 $y = -3.5 \text{ t}$
 $z = 37.5 \text{ t}$

Verificacion del sistema

Sustitucion en las ecuaciones

$$-x + y + z = -24 + (-3.5) + 37.5 = 10$$
 \checkmark

•
$$x + y + z = 24 + (-3.5) + 37.5 = 58$$
 \checkmark

•
$$2x + 3y - z = 48 + (-10,5) - 37,5 = 0$$
 \checkmark

Nota importante

El valor negativo de y indica una posible inconsistencia en los datos reportados. Se recomienda verificar el planteamiento original.

Analisis de resultados

Valores finales

- Granola: 24 t
- Arroz tostado: -3.5 t
- Endulzado: 37.5 t

Causas posibles

- Error en los datos
- Deficit real de produccion
- Mala planificacion

Conclusion

- El metodo Gauss-Jordan permite detectar inconsistencias.
- Es fundamental verificar los datos iniciales.
- Resultados negativos deben analizarse cuidadosamente.