STAT 135 Lecture 13

Henry Liev

23 July 2025

Remark 0.1 (Paired Designs)

 X_1, \dots, X_n iid Y_1, \dots, Y_n iid

 $\mu_X - \mu_Y$, X_i and Y_i are related

Example 0.2 (Test Prep Course)

Student	Before	After	
1	65	80	
2	73	50	
: 100	i	:	

Solution. $H_0: \mu_X = \mu_Y$

 $H_1: \mu_X \neq \mu_Y$

 $\theta = \mu_Y - \mu_X$

 $H_0: \theta = 0$

 $H_1: \theta \neq 0$ $D_i = Y_i - X_i$ $\bar{D} \pm 1.96SE(\bar{D})$

Method 0.3 (Paired Designs are Good (11.3))

Let X_1, \ldots, X_n (Baseline) with Variance σ^2

Define $Y_i = X_i + D_i$ random variable with $\mu = \Delta, \sigma^2 = \tau^2$ Observe X_i, Y_i

 $\begin{array}{l} D_i = Y_i - X_i \\ \text{Estimate of } \hat{\Delta} = \bar{D} = \frac{1}{n} \sum_{i=1}^n D_i \end{array}$

 $\bar{D} \pm 1.96 SE(\bar{D})$

Remark 0.4 (Forget that data is paired)

Analyze as if X_i and Y_i are independent.

Still use $\bar{Y} - \bar{X} = \bar{D}$

$$SE(\bar{D}) = \sqrt{\frac{2\sigma^2 + \tau^2}{n}}$$

Still use Y - X = D $Var(\bar{D}) = Var(\bar{X}) + Var(\bar{Y})$ $Var(\bar{D}) = \frac{\sigma^2}{n} + \frac{\sigma^2 + \tau^2}{n}$ $SE(\bar{D}) = \sqrt{\frac{2\sigma^2 + \tau^2}{n}}$ If we used pairing, would estimate $SE(\sigma) = \frac{\tau}{\sqrt{n}}$

 $\sqrt{\frac{\tau^2}{2\sigma^2+ au^2}}$ much tighter estimate of confidence interval using pairing

Quantifies why paired design is better

Method 0.5 (Chi Squared Goodness of Fit Tests)

Testing does my data follow some prescribed discrete (Multinomial) Distribution

25	150	6	4	19	5
P_1	P_2	P_3	$\overline{P_4}$	P_5	P_6

Example 0.6 (5-side die)

 H_0 : Die is fair

 H_1 : Die is not fair

Roll 100 times

Side	1	2	3	4	5
Count	17	31	16	18	18

Method 0.7 (Pearson's Chi-Square)

$$T = \sum_{k=1}^{n} \frac{(E_k - O_k)^2}{E_k}$$
 E = expected counts, O = observed counts

Measure of discrepancy from expected under H_0

 $T \approx \chi^2_{5-1}$ "n-1 degrees of freedom" since last value is determined by the fixed number of observations

Observe T = t

 $P(T \ge t)$ gives our p-value $T \sim \chi_4^2$

Example 0.8

5 race categories in the US population

 P_1, P_2, \ldots, P_5

 H_0 : Employee race distribution = US race distribution

 H_1 : Employee race distribution \neq US race distribution

Category 2 3 4 5 40 Count 100 270

 $T = \frac{(500p_1 - 110)^2}{500p_1} + \dots + \frac{(500p_5 - 75)^2}{500p_1}$

Example 0.9 (Goodness of Fit with parametric)

Cells $k = 1, \dots, m$

 $H_0: P_k = f_k(\theta_1, \theta_2, \dots, \theta_r)$

Method 0.10 (Goodness of Fit with Parametric Model Playbook)

1. Estimate θ 's with MLE

2.
$$E_k = n\hat{p}_k, \, \hat{p}_k = f(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_r)$$

3.
$$T = \sum_{k=1}^{m} \frac{(E_k - O_k)^2}{E_k}$$

4.
$$T \sim \chi^2_{m-1-r}$$

Example 0.11 (Hardy-Weinberg Equilibrium)

M, MN, N

$$(1-\theta)^2$$
, $2\theta(1-\theta)$, θ^2

$$\hat{\theta}_{MLE} = \frac{2X_3 + X_2}{2n}$$

 $\chi^2_{3-1-1} H_0$: Hardy-Weinberg Equilibrium

 H_1 : Does not hold

Method 0.12 (General parameterized multinomial distribution)

Multinomial θ

 $X_1, X_2, X_2, \ldots, X_m$ counts of outcome k

$$\Lambda = \frac{\max\limits_{p \in \omega_0} \left(\frac{n!}{x_1! x_2! \cdots x_m!}\right) P_1(\theta)^{x_1} P_2(\theta)^{x_2} \cdots P_m(\theta)^{x_m}}{\max\limits_{p \in \Omega} \left(\frac{n!}{x_1! x_2! \cdots x_m!}\right) P_1(\theta)^{x_1} P_2(\theta)^{x_2} \cdots P_m(\theta)^{x_m}}$$

$$\Lambda = \frac{P_1(\hat{\theta})^{x_1} P_2(\hat{\theta})^{x_2} \cdots P_m(\hat{\theta})^{x_m}}{\hat{p}_1^{x_1} \hat{p}_2^{x_2} \cdots \hat{p}_m^{x_m}} = \prod_{i=1}^m \left(\frac{P_i(\hat{\theta})}{\hat{p}_i}\right)^{x_i}$$

$$\hat{p}_k = \frac{X_k}{n}$$

$$-2\log\Lambda = -2\sum_{i=1}^m x_i\log\left(\frac{P_i(\hat{\theta})}{\hat{p}_i}\right) = -2n\sum_{i=1}^m \hat{p}_i\log\left(\frac{P_i(\hat{\theta})}{\hat{p}_i}\right) = 2n\sum_{i=1}^m \hat{p}_i\log\left(\frac{\hat{p}_i}{P_i(\hat{\theta})}\right)$$

$$f(x) \approx (x - x_0) + \frac{1}{2}(x - x_1)^2 \cdots$$

$$-2\log \Lambda = 2n\sum_{i=1}^{m}(\hat{p}_i - P_i(\hat{\theta})) + 2n\frac{1}{2}\sum_{i=1}^{m}\frac{(\hat{p}_i - P_i(\hat{\theta}))^2}{P_i(\theta)} = \sum_{i=1}^{m}\frac{(O_i - E_i)^2}{E_i}$$