LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA

Instrukcja do ćwiczenia nr 48

Temat: Wyznaczanie ogniskowej soczewki metodą Bessela

I. Wymagania do ćwiczenia

- 1. Równanie dla cienkiej soczewki
- 2. Konstruowanie obrazów za pomocą soczewek.
- 3. Rodzaje obrazów.

Literatura

Skrypt PRz, Fizyka I pracownia, Rzeszów 2017, str. 174-178, str. 236-250 D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, t. 4, PWN, W-wa, 2015, str. 53-59 J.R. Meyer-Arendt, Wstep do optyki, PWN, Warszawa 1977, str. 43-52

II. Wprowadzenie do tematyki ćwiczenia

Skrypt PRz, Fizyka I pracownia, Rzeszów 2015, str. 174-178.

III. Metodologia wykonania pomiarów

- 1. Ustawić układ pomiarowy jak na podanym rysunku, odczytać ze skali odległość *e* między przedmiotem P a ekranem E z dokładnością do 1 mm.
- 2. Przesuwając soczewkę w kierunku przedmiotu znaleźć takie jej położenie y_1 , aby na ekranie widoczny był powiększony ostry obraz przedmiotu. Zmierzyć y_1 z dokładnością 1 mm oraz wysokość H_1 powstałego obrazu z dokładnością 1 mm.
- 3. Przesuwając soczewkę w kierunku ekranu przy niezmienionym e, znaleźć drugie jej położenie y_2 takie, aby na ekranie powstał pomniejszony ostry obraz przedmiotu. Zmierzyć podobnie jak poprzednio y_2 i H_2 .
- 4. Czynności wymienione w punktach 2 ÷ 3 powtórzyć 10 razy i wyniki pomiarów zestawić w tabeli.

Tabela pomiarowa

e	<i>y</i> ₁	<i>y</i> ₂	$a \pm u(a)$	$f \pm u(f)$	$D \pm u(D)$	H_1	H_2	$h \pm u(h)$	$p \pm u(p)$
[cm]	[cm]	[cm]	[cm]	[cm]	[D]	[cm]	[cm]	[cm]	[-]
									$p_1 =$
									$p_2 =$

IV. Obliczenia

- 1. Obliczyć średnie wartości y_1 i y_2 , obliczyć niepewności $u(y_1)$ i $u(y_2)$ metodą typu A. Obliczyć niepewność u(e) metodą typu B.
- 2. Korzystając z zależności (4) obliczyć wielkość *a*, z zależności (5) ogniskową soczewki *f* oraz z zależności (3) zdolność skupiającą soczewki *D*.
- 3. Obliczyć niepewności u(a), u(f) i u(D) metodą przenoszenia niepewności.
- 4. Obliczyć średnie wartości H_1 i H_2 , obliczyć niepewności $u(H_1)$ i $u(H_2)$ metodą typu A.
- 5. Z zależności (9) obliczyć wysokość przedmiotu h. Obliczyć powiększenia p_1 i p_2 z definicji, czyli z pierwszych części zależności (6) i (7) (Co oznacza p < 1?).
- 6. Niepewność u(h) obliczyć metodą przenoszenia niepewności.
- 7. Niepewności $u(p_1)$ i $u(p_2)$ obliczyć metodą przenoszenia niepewności. Jednak ponieważ we wzorach wielkości H_1 i h, jak również wielkości H_2 i h, są skorelowane, bo $h = \sqrt{H_1} \cdot \sqrt{H_1}$, to do obliczenia $u(p_1)$ i $u(p_2)$ wykorzystać przekształcone z (6) i (7) wzory: $p_1 = \sqrt{\frac{H_1}{H_2}}$, $p_2 = \sqrt{\frac{H_2}{H_1}}$.
- 8. Obliczyć powiększenia p'_1 i p'_2 z twierdzenia, czyli z drugich części zależności (6) i (7), tzn. ze wzoru $p = \frac{y}{x} = \frac{y}{e y}$.
- 9. Niepewności $u(p'_1)$ i $u(p'_2)$ obliczyć metodą przenoszenia niepewności.
- 10. We wnioskach przede wszystkim zapisać poprawnie ostateczne wyniki pomiaru. Porównać też poprawnie powiększenia *p* i *p*' otrzymane z definicji i z twierdzenia.