Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercício 1 Considere o campo vectorial

$$F(x, y, z) = \left(-\frac{2x}{(x^2 - y^2)^2}, \frac{2y}{(x^2 - y^2)^2}, z^2\right).$$

Calcule o integral de linha $\int_C F$ onde C é a curva descrita pelo caminho

$$g(t) = (e^t, \text{sen } t, t) , \quad 0 \le t \le \frac{\pi}{2}.$$

Resolução: O domínio do campo F é o conjunto

$$\mathbb{R}^3 \setminus (\{(x, y, z) \in \mathbb{R}^3 : x = y\} \cup \{(x, y, z) \in \mathbb{R}^3 : x = -y\})$$

que é a união de 4 conjuntos em estrela, limitados pelos planos x=y e x=-y, tal como se mostra na Figura 1, em que não se apresenta a dependência em z.

Sendo $e^t > |\sin t|$, t > 0, então a curva C está contida no conjunto em estrela

$$S = \{(x, y, z) \in \mathbb{R}^3 : x > |y|\}.$$

Figura 1: Esboço do domínio do campo ${\cal F}$

Sendo ${\cal F}$ um campo fechado, já que

$$\begin{array}{lclcrcl} \frac{\partial}{\partial y} \left(-\frac{2x}{(x^2 - y^2)^2} \right) & = & -\frac{8xy}{(x^2 - y^2)^3} & = & \frac{\partial}{\partial x} \left(\frac{2y}{(x^2 - y^2)^2} \right) \\ \frac{\partial}{\partial z} \left(-\frac{2x}{(x^2 - y^2)^2} \right) & = & 0 & = & \frac{\partial}{\partial x} \left(z^2 \right) \\ \frac{\partial}{\partial z} \left(\frac{2y}{(x^2 - y^2)^2} \right) & = & 0 & = & \frac{\partial}{\partial y} \left(z^2 \right), \end{array}$$

e sendo S um conjunto em estrela, concluimos que F é um campo gradiante em S. Portanto, pelo Teorema Fundamental do Cálculo, temos

$$\int_{C} F = V(g(\frac{\pi}{2})) - V(g(0)),$$

em que V designa um potencial escalar para F em S.

Para determinar um potencial V(x, y, z) deveremos resolver a equação $\nabla V = F$, ou seja,

$$\begin{cases} \frac{\partial V}{\partial x} &= -\frac{2x}{(x^2 - y^2)^2} \\ \frac{\partial V}{\partial y} &= \frac{2y}{(x^2 - y^2)^2} \\ \frac{\partial V}{\partial z} &= z^2. \end{cases}$$

Da primeira equação obtemos,

$$V(x, y, z) = \frac{1}{x^2 - y^2} + k_1(y, z).$$

Da segunda,

$$\frac{\partial k_1}{\partial y}(y,z) = 0 \Leftrightarrow k_1(y,z) = k_2(z).$$

Finalmente, da terceira equação obtemos

$$k_2'(z) = z^2 \Leftrightarrow k_2(z) = \frac{z^3}{3} + k_3.$$

Portanto o potencial tem a forma

$$V(x, y, z) = \frac{1}{x^2 - y^2} + \frac{z^3}{3} + k_3$$

onde k_3 é uma constante.

Então,

$$\begin{split} \int_C F &= V(g(\frac{\pi}{2})) - V(g(0)) \\ &= V(e^{\frac{\pi}{2}}, 0, \frac{\pi}{2}) - V(1, 0, 0) \\ &= e^{-\pi} + \frac{\pi^3}{24} - 1 \end{split}$$

Exercício 2 Considere o campo definido em $\mathbb{R}^2 \setminus \{(0,0)\}$ por

$$F(x,y) = \left(\frac{y}{x^2 + 4y^2}, -\frac{x}{x^2 + 4y^2}\right).$$

 $Calcule\ o\ integral\ de\ linha\ de\ F\ ao\ longo\ da\ circunferência\ de\ raio\ 1\ centrada\ na\ origem\ e\ percorrida\ no\ sentido\ directo.$

Resolução: Se tentarmos calcular o integral de linha pela definição verificaremos imediatamente que não é uma tarefa fácil. Como alternativa podemos utilizar o Teorema de Green.

Note-se que o campo F é fechado. De facto, temos

$$\frac{\partial}{\partial y} \left(\frac{y}{x^2 + 4y^2} \right) = \frac{x^2 - 4y^2}{(x^2 + 4y^2)^2} = \frac{\partial}{\partial x} \left(-\frac{x}{x^2 + 4y^2} \right).$$

Consideremos uma região S, limitada pela circunferência C, de raio 1, centrada na origem e percorrida no sentido directo e por outra linha L regular, fechada e percorrida no sentido directo, tal como se ilustra na Figura 2.

Sendo F um campo fechado, aplicando o Teorema de Green à região S, obtemos

$$0 = \int_{S} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx dy = \oint_{L} F - \oint_{C} F,$$

ou seja,

$$\oint_C F = \oint_L F.$$

Portanto, em vez de calcular o integral de F em C podemos calcular o integral de F em L. Assim, deveremos escolher L de tal forma que o cálculo do integral $\oint_L F$ seja simples.

Figura 2: Esboço da região S limitada por C e por L

A expressão do campo sugere que consideremos curvas onde $x^2 + 4y^2$ seja constante, isto é, elipses. Consideremos, por exemplo, o caminho

$$h(t) = (4\cos t, 2\sin t), \quad 0 \le t \le 2\pi$$

que descreve a elipse $x^2 + 4y^2 = 16$, uma vez no sentido directo, tal como se mostra na Figura 2. Portanto, o integral de linha de F ao longo de L será dado por

$$\oint_L F.dh = \int_0^{2\pi} \left(\frac{2 \sin t}{16}, -\frac{4 \cos t}{16} \right) \cdot (-4 \sin t, 2 \cos t) dt = \int_0^{2\pi} -\frac{1}{2} dt = -\pi.$$

Exercício 3 Considere o campo vectorial $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ definido por

$$f(x, y, z) = (yze^{xyz}, xze^{xyz}, xye^{xyz}).$$

- a) Sabendo que f define uma força conservativa, encontre um potencial ϕ para f.
- b) Calcule o trabalho de f ao longo da espiral descrita pelo caminho

$$g(t) = (5\cos t, 5\sin t, t^2), \quad t \in \left[0, \frac{\pi}{4}\right].$$

Resolução:

a) O potencial ϕ satisfaz a condição $\nabla \phi = f$, ou seja, verifica as equações

$$\frac{\partial \phi}{\partial x} = yze^{xyz}$$
, $\frac{\partial \phi}{\partial y} = xze^{xyz}$, $\frac{\partial \phi}{\partial z} = xye^{xyz}$.

Integrando a primeira equação, obtemos

$$\phi(x, y, z) = e^{xyz} + g(y, z).$$

Substituindo na segunda e terceira equações, concluimos que

$$\frac{\partial g}{\partial u} = \frac{\partial g}{\partial z} = 0$$

e, portanto, g = k é uma constante.

Assim, podemos tomar $\phi(x, y, z) = e^{xyz} + k$, em que k é uma constante.

Também é possível determinar ϕ recorrendo ao Teorema Fundamental do Cálculo para integrais de linha, segundo o qual, sendo f conservativa e escolhendo-se um ponto base p_0 , se tem

$$\phi(p) = \int_{L} f,$$

onde o integral é calculado ao longo de um caminho diferenciável L qualquer que ligue p_0 a um ponto genérico p=(x,y,z). No nosso caso podemos escolher $p_0=0$ e o caminho como sendo o segmento de recta entre p_0 e p, definido por h(t)=(tx,ty,tz), com $t\in[0,1]$. Obtemos então,

$$\begin{split} \phi(x,y,z) &= \int_0^1 f(h(t)) \cdot h'(t) dt = \\ &= \int_0^1 (t^2 y z e^{t^3 x y z}, t^2 x z e^{t^3 x y z}, x y t^2 e^{t^3 x y z}) \cdot (x,y,z) dt = \\ &= \int_0^1 3 x y z t^2 e^{t^3 x y z} dt = \\ &= e^{x y z} - 1 \end{split}$$

que, a menos de uma constante, é o resultado obtido acima.

b) Para calcular o trabalho de f ao longo da espiral vamos utilizar o Teorema Fundamental do Cálculo,

$$\begin{split} W &= \int f dg = \int \nabla \phi &= \phi(g(\frac{\pi}{4})) - \phi(g(0)) = \\ &= \phi(5\frac{\sqrt{2}}{2}, 5\frac{\sqrt{2}}{2}, \frac{\pi^2}{16}) - \phi(5, 0, 0) = \\ &= e^{\frac{25\pi^2}{32}} - 1. \end{split}$$

Note-se que seria muito mais difícil efectuar este cálculo directamente, utilizando a definição de trabalho.

Exercício 4 Considere o campo vectorial $F : \mathbb{R}^2 \setminus \{(0,0),(0,1)\} \to \mathbb{R}^2$ definido por

$$F(x,y) = \left(-\frac{y}{x^2 + y^2} - \frac{y-1}{x^2 + (y-1)^2}, \, \frac{x}{x^2 + y^2} + \frac{x}{x^2 + (y-1)^2}\right).$$

Determine o integral de linha do campo F ao longo do caminho que descreve a fronteira do quadrado com vértices nos pontos (2,2), (-2,2), (-2,-2), (2,-2), no sentido directo.

Resolução: Designemos por γ o caminho que descreve a fronteira Γ do quadrado e sejam $g_1:[0,2\pi]\to\mathbb{R}^2$ e $g_2:[0,2\pi]\to\mathbb{R}^2$ os caminhos definidos por

$$g_1(t) = (\frac{1}{4}\cos t, \frac{1}{4}\sin t)$$

 $g_2(t) = (\frac{1}{4}\cos t, \frac{1}{4}(\sin t + 1))$

ou seja, g_1 descreve a circunferência C_1 de raio 1/4 e centro na origem no sentido positivo e g_2 descreve a circunferência C_2 de raio 1/4 e centro no ponto (0,1) no sentido positivo, tal como se ilustra na Figura 3.

Figura 3: As linhas Γ , C_1 , C_2

O campo F pode ser decomposto na soma de dois campos $F = F_1 + F_2$, em que

$$F_1(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right),$$

$$F_2(x,y) = \left(-\frac{y - 1}{x^2 + (y - 1)^2}, \frac{x}{x^2 + (y - 1)^2}\right).$$

Facilmente se verifica que os campos F_1 e F_2 são fechados, ou seja, o campo F é fechado. Portanto, aplicando o Teorema de Green à região limitada pelas circunferências C_1 e C_2 e pela fronteira Γ do quadrado, obtemos

$$0 = \int_{\Gamma} F \cdot d\gamma - \int_{C_1} F \cdot dg_1 - \int_{C_2} F \cdot dg_2,$$

ou seja,

$$\int_{\Gamma} F \cdot d\gamma = \int_{C_1} (F_1 + F_2) \cdot dg_1 + \int_{C_2} (F_1 + F_2) \cdot dg_2.$$

Por outro lado, o círculo limitado pela circunferência C_2 não contém a origem, pelo que

$$\int_{C_2} F_1 \cdot dg_2 = 0.$$

Do mesmo modo, o círculo limitado pela cicunferência C_1 não contém o ponto (0,1) e, portanto, concluimos que

$$\int_{C_1} F_2 \cdot dg_1 = 0.$$

Assim, temos

$$\int_{\Gamma} F \cdot d\gamma = \int_{C_1} F_1 \cdot dg_1 + \int_{C_2} F_2 \cdot dg_2.$$

Da definição de integral de linha de um campo vectorial obtemos

$$\int_{C_1} F_1 \cdot dg_1 = \int_0^{2\pi} (-\sin t, \cos t) \cdot (-\sin t, \cos t) dt = 2\pi$$

$$\int_{C_2} F_2 \cdot dg_2 = \int_0^{2\pi} (-\sin t, \cos t) \cdot (-\sin t, \cos t) dt = 2\pi.$$

Logo,

$$\int_{\Gamma} F \cdot d\gamma = 2\pi + 2\pi = 4\pi.$$

Exercício 5 Considere o campo vectorial

$$f(x,y) = \left(\frac{-y}{(x+1)^2 + y^2} + \frac{3(x-1)}{(x-1)^2 + y^2}, \frac{x+1}{(x+1)^2 + y^2} + \frac{3y}{(x-1)^2 + y^2} + x\right).$$

Calcule o trabalho de f ao longo da elipse definida pela equação $\frac{x^2}{25} + \frac{y^2}{16} = 1$ percorrida no sentido directo.

Resolução: Para facilitar a análise, o campo f pode ser escrito na forma: f = h + g + l, em que

$$h(x,y,z) = \left(\frac{-y}{(x+1)^2 + y^2}, \frac{x+1}{(x+1)^2 + y^2}\right),$$

$$g(x,y,z) = \left(\frac{3(x-1)}{(x-1)^2 + y^2}, \frac{3y}{(x-1)^2 + y^2}\right),$$

$$l(x,y,z) = (0,x).$$

O campo h é fechado, é singular no ponto (-1,0) e não é um gradiante. De facto, seja C a circunferência de raio 1 centrada em (-1,0). Por cálculo directo, facilmente se verifica que o trabalho de h ao longo de C, percorrida no sentido directo, é igual a 2π , ou seja, o campo h não é conservativo.

Figura 4:

O campo g é radial com centro no ponto (1,0), pelo que g é um gradiante em $\mathbb{R}^2 \setminus \{(1,0)\}$.

Seja E a elipse descrita pela equação $\frac{x^2}{25} + \frac{y^2}{16} = 1$ e percorrida no sentido directo. Aplicando o Teorema de Green à região contida entre as curvas C e E, sendo h um campo fechado, concluimos que

$$\int_E h = \int_C h = 2\pi.$$

Por outro lado, como g é gradiante em $\mathbb{R}^2 \setminus \{(1,0)\}$, temos

$$\int_{E} g = 0.$$

O campo l = (0, x) é de classe C^1 na região A limitada pela elipse E. Pelo Teorema de Green

$$\int_{E} l = \int_{A} \left(\frac{\partial l_{2}}{\partial x} - \frac{\partial l_{1}}{\partial y}\right) dx dy = \int_{A} dx dy = 20\pi,$$

pois o último integral representa a área da eli

Portanto,

$$\int_{E} f = \int_{E} h + \int_{E} g + \int_{E} l = 2\pi + 0 + 20\pi = 22\pi.$$

Exercício 6 Seja $F: \mathbb{R}^2 \setminus \{(-1,0), (1,1), (0,0)\} \to \mathbb{R}^2$ o campo vectorial F = (P,Q) definido por

$$P(x,y) = \frac{y}{(x+1)^2 + y^2} - \frac{y-1}{(x-1)^2 + (y-1)^2} + \frac{5x}{\sqrt{x^2 + y^2}}$$

$$Q(x,y) = -\frac{x+1}{(x+1)^2 + y^2} + \frac{x-1}{(x-1)^2 + (y-1)^2} + \frac{5y}{\sqrt{x^2 + y^2}}$$

- 1. Calcule o integral $\int_C Pdx + Qdy$ onde C é a elipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$ percorrida uma vez no
- 2. Decida, justificadamente, se o campo F é um gradiante no conjunto

$$S = \mathbb{R}^2 \setminus \left(\{ (x, y) \in \mathbb{R}^2 : y = \frac{1}{2}x + \frac{1}{2}; -1 \le x \le 1 \} \cup \{ (0, 0) \} \right).$$

Resolução:

1. Se definirmos

$$F_1(x,y) = \left(\frac{y}{(x+1)^2 + y^2}, -\frac{x+1}{(x+1)^2 + y^2}\right),$$

$$F_2(x,y) = \left(-\frac{y-1}{(x-1)^2 + (y-1)^2}, \frac{x-1}{(x-1)^2 + (y-1)^2}\right),$$

$$F_3(x,y) = \left(\frac{5x}{\sqrt{x^2 + y^2}}, \frac{5y}{\sqrt{x^2 + y^2}}\right),$$

então,

$$F = F_1 + F_2 + F_3$$

e, portanto,

$$\oint_C F \cdot dg = \oint_C F_1 \cdot dg + \oint_C F_2 \cdot dg + \oint_C F_3 \cdot dg.$$

O campo F_3 é radial. De facto, sendo r = (x, y), temos

$$F_3(r) = 5 \frac{r}{|r|},$$

pelo que F_3 é um campo gradiante com potencial

$$V(x,y) = 5|r| = 5\sqrt{x^2 + y^2}.$$

Assim, temos $\oint_C F_3 \cdot dg = 0$.

O campo F_1 obtem-se do campo

$$G(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

fazendo a substituição $x\mapsto x-(-1)$ e multiplicando por -1, enquanto que F_2 se obtem de G fazendo a substituição $x\mapsto x-1, y\mapsto y-1$. Portanto, tal como $G,\ F_1$ e F_2 são campos fechados mas não gradiantes.

Para calcular o integral de ${\cal F}_1$ ao longo de ${\cal C}$ consideremos a região

$$D = \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 \ge 1, \frac{x^2}{9} + \frac{y^2}{16} \le 1\}$$

que se encontra representada na Figura 5.

Figura 5:

Aplicando o Teorema de Green à região D, concluimos que o integral de F_1 ao longo de C coincide com o integral de F_1 ao longo da circunferência C_1 de raio 1, centrada em (-1,0), percorrida no sentido directo e descrita pelo caminho

$$g(t) = (-1 + \cos t, \sin t), \quad 0 \le t \le 2\pi.$$

Portanto,

$$\oint_C F_1 \cdot dg = \int_0^{2\pi} F_1(-1 + \cos t, \sin t) \cdot (-\sin t, \cos t) dt$$
$$= \int_0^{2\pi} -1 dt = -2\pi.$$

Da mesma maneira, podemos aplicar o Teorema de Green para concluir que o integral de F_2 ao longo de C coincide com o integral de F_2 ao longo da circunferência C_2 de centro em (1,1) e de raio 1 percorrida no sentido directo, tal como se mostra na Figura 5.

Logo, sendo

$$g(t) = (1 + \cos t, 1 + \sin t), \quad 0 \le t \le 2\pi,$$

o caminho que descreve essa circunferência, teremos

$$\oint_C F_2 \cdot dg = \int_0^{2\pi} F_2(1 + \cos t, 1 + \sin t) \cdot (-\sin t, \cos t) dt$$
$$= \int_0^{2\pi} 1 dt = 2\pi.$$

Assim, obtemos

$$\oint_C Pdx + Qdy = -2\pi + 2\pi + 0 = 0.$$

2. O campo F é um gradiante no conjunto S se e só se $\int_{\alpha} F \cdot dg = 0$ para qualquer curva fechada α contida em S. Podemos, como na alínea anterior, escrever $F = F_1 + F_2 + F_3$, e uma vez que F_3 é um gradiante, basta decidir que $F_1 + F_2$ é um gradiante em S.

Note-se que $F_1 + F_2$ está definido e é fechado no conjunto

$$S \cup \{(0,0)\} = \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : y = \frac{x}{2} + \frac{1}{2}, -1 \le x \le 1\}.$$

Seja R o segmento de recta definido por

$$R = \{(x, y) \in \mathbb{R}^2 : y = \frac{x}{2} + \frac{1}{2}, -1 \le x \le 1\}$$

e representado na Figura 6.

Figura 6:

Sendo $F_1 + F_2$ um campo fechado, o integral de $F_1 + F_2$ ao longo de uma curva α será nulo desde que o segmento de recta R não esteja contido no interior do conjunto limitado por α . Note-se que as singularidades de $F_1 + F_2$ estão em R.

Se o segmento de recta R estiver contido no conjunto limitado pela curva α , então, pelo Teorema de Green, teremos

$$\oint_{\alpha} (F_1 + F_2) = \oint_{C} (F_1 + F_2) = 0.$$

Portanto, $F_1 + F_2$ é um gradiante em $S \cup \{(0,0)\}$, o que, por sua vez, implica que F é um gradiante em S.

Exercício 7 Considere o campo vectorial F = G + H, sendo

$$G(x,y,z) = \left(-\frac{x}{(x^2+y^2+z^2)^{3/2}}, -\frac{y}{(x^2+y^2+z^2)^{3/2}}, -\frac{z}{(x^2+y^2+z^2)^{3/2}}\right)$$

$$H(x,y,z) = \left(-\frac{z}{x^2+z^2}, 0, \frac{x}{x^2+z^2}\right).$$

Determine o trabalho realizado pelo campo F ao longo da linha

$$\Gamma = \{(x, y, z) \in \mathbb{R}^3 : y = 2; |x| = 1; |z| \le 1\} \cup \{(x, y, z) \in \mathbb{R}^3 : y = 2; |x| \le 1; |z| = 1\},\$$

percorrida uma vez no sentido positivo quando vista do ponto (0, -10, 0).

Resolução: É claro que o domínio de F é o conjunto $D = \mathbb{R}^3 \setminus \{(0, y, 0) : y \in \mathbb{R}\}.$

Facilmente se verifica que os campos G e H são fechados em D.

O campo G é radial e, portanto, é gradiante em $\mathbb{R}^3 \setminus \{(0,0,0)\}$, ou seja, $G = \nabla \phi$, e o respectivo potencial ϕ é a função definida por

$$\phi(x, y, z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Assim, o trabalho realizado pelo campo G ao longo de qualquer linha fechada em D é nulo e, portanto,

$$\int_{\Gamma} F \cdot d\gamma = \int_{\Gamma} H \cdot d\gamma,$$

em que γ designa uma parametrização de Γ .

A linha Γ pode ser deformada em D de modo a obter-se a circunferência C de raio um, centrada sobre o eixo Oy,

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 = 1; y = 0\},\$$

percorrida uma vez e parametrizada por

$$g(t) = (\cos t, 0, \sin t), \quad 0 \le t \le 2\pi,$$

ou seja, Γ e C são homotópicas em D. Note-se que Γ e C devem ser percorridas no sentido directo quando vistas do ponto (0,-10,0).

Então,

$$\int_{\Gamma} F \cdot d\gamma = \int_{\Gamma} H \cdot d\gamma = \int_{C} H \cdot dg = \int_{0}^{2\pi} (-\sin t, 0, \cos t) \cdot (-\sin t, 0, \cos t) dt = 2\pi.$$