第十一章 样本自选择模型

杨宇彤

CIRG, 2020/12/10

本章框架

- 11.1: 样本自选择偏差产生原因的直观理解
- 11.2: 样本自选择偏差解决办法的直观理解
- 11.3: 传统Heckman样本选择模型

1、样本自选择偏差产生原因的直观理解

- 假设我们要研究智商对大学学习成绩的影响
- 随机分配样本: 对总体随机抽样
 - $Score_i = \alpha + \beta IQ_i + e_i$
 - 假设其中不可观测特征 e_i 是个体的学习动力: $e_i = Motivation$,并且Motivation_i和 IQ_i 不相关
 - 变量路径图随机:

1.1 一个例子

表1 随机分配上大学的个体情况

Score(成绩) (可观测到)	IQ(智商) (可观测到)	Motivation(学习动 力) (不可观测到)
73	90	-5
78	90	0
83	90	5
75	100	-5
80	100	0
85	100	5
77	110	-5
82	110	0
87	110	5

1.1 一个例子

• 回归分析:

由于 $\mathbb{E}(e_i|IQ_i) = \mathbb{E}(Motivation_i|IQ_i) = 0$,系数 β 不会受到于扰项的影响,它反映了IQ对Score的因果影响

• 回归结果: $Score_i = 60 + 0.2IQ_i + e_i$

1.2 自选择样本

- 如果上大学与否并非随机分配,而是由个体自己选择 决定,那么上大学样本里的个体特征(IQ和Score) 的分布就会与总体不一样。这种情况下的样本称为自 选择样本
- 样本的自选择(sample self-selection)有两种情况:
 - 基于可观测变量选择(selection on observables)
 - 基于不可观测变量选择(selection on unobservables)

1.2.1 基于可观测变量选择

- 不会导致估计结果偏差
- 假设个体i上大学的效用Utility取决于个体可观测特征智商 IQ_i ,即 $Utility_i = IQ_i 100$
- 假设当 $Utility \ge 0$,个体会选择上大学

1.2.1 基于可观测变量选择

- 回归结果与随机分配上大学的结果一样 $Score_i = 60 + 0.2IQ_i + e_i$
- 虽然造成了样本与总体不一致,但由于是可观测变量造成的,在结果方程里通过控制可观测变量就避免了偏差
- 基于可观测变量自选择的样本的变量路径

1.2.2 基于不可观测变量选择

如果个体i上大学的效用不仅取决于个体可观测特征 智商,还取决于个体不可观测特征学习动力,假设效 用函数为:

$$Utility_i = -9 + 0.1IQ_i + Motivation_i$$

- 当Utility > 0, 个体才会选择上大学
- 此时, $Score_i = \alpha + \beta IQ_i + e_i$ 中的 IQ_i 和干扰项 e_i 在样本里是相关的,虽然它们在总体里是不相关的

1.2.2 基于不可观测变量选择

● 基于不可观测变量自选择的样本的变量路径

- 变量Utility_i是一个对撞变量
- IQ_i 和 $Score_i$ 之间存在因果路径 $IQ_i \rightarrow Score_i$ 和衍生路 径 $Motivation_i \cdots Score_i$

表2 (基于不可观测变量) 自选择上大学的个体情况

Score (成绩) (可观测到)	IQ(智商) (可观测到)
	90
	90
83	90
	100
80	100
85	100
	110
82	110
87	110

• 回归结果: Score $_i = 73 + 0.092IQ<math>_i + e_i$

由于自选择缺失的样本点,造成自选择样本回归线的 斜率比总体回归线的斜率小

- 要通过自选择样本去"倒推"总体的因果关系,必须知道选择方程,即个体如何自选择进入样本 $Utility_i = -9 + 0.1IQ_i + Motivation_i$
- 虽然我们观测不到每个个体的Motivation_i,但我们 知道Motivation的分布,即其有三个可能值(-5,0,5)
- $Utility_i > 0 \Rightarrow Motivation_i \ge 9 0.1 \times IQ_i$

表3 通过选择方程推断的样本个体智商和学习动力的分布

	成 绩			人数分布		
	(1)	(2)	(3)	(4)	(5)	(6)
	Motivation (学习动力)			Motivation (学习动力)		
IQ (智商)	-5	0	5	-5	0	5
90			83	0	0	1
100	•	80	85	0	1	1
110	•	82	87	0	1	1

• 由表3的信息,我们可以计算样本中不同IQ的人的平均学习动力

$$\mathbb{E}(Motivation_i|IQ_i = 90, X) = 5$$

$$\mathbb{E}(Motivation_i|IQ_i = 100, X) = 2.5$$

$$\mathbb{E}(Motivation_i|IQ_i = 110, X) = 2.5$$

• 智商与学习动力的相关性方程:

$$\mathbb{E}(Motivation_i|IQ_i,X) = f(IQ_i)$$

- \bullet 在回归方程中将智商与学习动力的相关性"控制"掉,剩下的干扰项 v_i 与自变量不相关
 - $Score_i = \alpha + \beta IQ_i + \mathbb{E}(Motivation_i|IQ_i,X) + v_i$
- 把E(Motivation_i|IQ_i,X)称为调整项Adjust_i

表4 增添调整项的自选择样本数据

Score (成绩)	IQ(智商)	$\mathbb{E}(Motivation_i IQ_i)$
	90	
	90	
83	90	5.0
	100	
80	100	2.5
85	100	2.5
	110	
82	110	2.5
87	110	2.5

用添加调整项的表4中的样本数据回归调整的结果方程:

● 新的方程回归得到的IQ_i系数等于0.2,与用原方程对 随机分配回归得到的IQ系数是一样的

3、传统Heckman样本选择模型

- 模型设置
- Heckman模型如何解决样本选择偏差

3.1 模型设置

• 结果方程:

$$Y_i^* = \alpha + X_i' \beta + e_{1i}$$

• 选择方程:

$$D_i^* = \mathbf{Z}_i' \mathbf{\gamma} + e_{2i}$$
 $\begin{cases} D_i = 1, & \text{supp} D_i^* > 0 \\ D_i = 0, & \text{supp} D_i^* \leq 0 \end{cases}$

• 样本中观测到的结果为:

$$\begin{cases} Y_i = Y_i^*, \quad \text{如果} D_i = 1 \\ Y_i 缺失, \quad \text{如果} D_i = 0 \end{cases}$$

用上述模型描述前一节的例子

• 结果方程:

$$Score_i^* = \alpha + \beta IQ_i + e_{1i}$$

• 选择方程:

$$Utility_i^* = \gamma_0 + \gamma_1 IQ_i + \gamma_2 Parent\ Education_i + e_{2i}$$

$$\begin{cases} D_i = 1, & \text{如果}Utility_i^* > 0 \\ D_i = 0, & \text{如果}Utility_i^* \leq 0 \end{cases}$$

用上述模型描述前一节的例子

• 样本中观测到的结果为:

$$\begin{cases} Score_i = Score_i^*, \ \text{如果}D_i = 1 \\ Score_i$$
缺失,如果 $D_i = 0$

- 假设 e_{1i} 和 e_{2i} 包含相同的不可观测变量(如Motivation变量),二者是相关的
- Heckman选择模型假设二者的相关关系如下:

$$\begin{pmatrix} e_{1i} \\ e_{2i} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho \sigma \\ \rho \sigma & 1 \end{pmatrix}$$

3.2 Heckman模型如何解决样本选择偏差

• 自选择样本观测结果的条件期望函数:

$$\mathbb{E}(Y_i \mid \sharp \stackrel{\star}{\Rightarrow}, X_i)$$

$$= \mathbb{E}(Y_i \mid D_i = 1, X_i)$$

$$= \mathbb{E}(Y_i^* \mid D_i^* > 0, X_i)$$

$$= \mathbb{E}(\alpha + X_i'\beta + e_{1i} \mid Z_i'\gamma + e_{2i} > 0, X_i)$$

$$= \alpha + X_i'\beta + \mathbb{E}(e_{1i} \mid e_{2i} > -Z_i'\gamma, X_i)$$

$$= \alpha + X_i'\beta + \mathbb{E}(e_{1i} \mid e_{2i} > -Z_i'\gamma)$$

3.2 Heckman模型如何解决样本选择偏差

• 增加控制变量后样本结果回归方程为:

$$Y_i = \alpha + \mathbf{X}_i' \boldsymbol{\beta} + \mathbb{E}(e_{1i} \mid e_{2i} > -\mathbf{Z}_i' \boldsymbol{\gamma}) + v_i$$

• 此时, $\mathbb{E}(v_i \mid 样本, X_i') = 0$

$$\mathbb{E}(e_{1i} \mid e_{2i} > -\mathbf{Z}_{i}' \boldsymbol{\gamma}) = \rho \sigma \lambda(\mathbf{Z}_{i}' \boldsymbol{\gamma}) = \rho \sigma \frac{\phi\left(\frac{-\mathbf{Z}_{i}' \boldsymbol{\gamma}}{\sigma}\right)}{1 - \Phi\left(\frac{-\mathbf{Z}_{i}' \boldsymbol{\gamma}}{\sigma}\right)}$$

逆米尔斯比例 (IMR)

• 其中:

$$\lambda_i = \lambda(\mathbf{Z}_i' \mathbf{\gamma}) = \frac{\phi\left(\frac{-\mathbf{Z}_i' \mathbf{\gamma}}{\sigma}\right)}{1 - \phi\left(\frac{-\mathbf{Z}_i' \mathbf{\gamma}}{\sigma}\right)}$$

● 增加逆米尔斯比例项λ的样本结果回归方程变为:

$$Y_i = \alpha + X_i' \beta + \rho \sigma \lambda_i + v_i$$

两阶段估计法

- 第一阶段,使用Probit模型估计样本选择方程: $Pr(D_i = 1 \mid Z_i) = Pr(e_{2i} > -Z_i\gamma \mid Z_i) = \Phi(Z_i\gamma)$
- 把 γ 的估计值 $\hat{\gamma}$ 带入IMR公式:

$$\lambda_{i} = \lambda(\mathbf{Z}_{i}'\widehat{\boldsymbol{\gamma}}) = \frac{\phi\left(\frac{-\mathbf{Z}_{i}'\widehat{\boldsymbol{\gamma}}}{\sigma}\right)}{1 - \phi\left(\frac{-\mathbf{Z}_{i}'\widehat{\boldsymbol{\gamma}}}{\sigma}\right)}$$

两阶段估计法

- 第二阶段,使用样本数据,将 Y_i 对 X_i' β和 λ_i 进行回归: $Y_i = \alpha + X_i'$ β + ρ σ λ_i + ν_i
- 两阶段法通过在回归方程中加入IMR,修正了样本选择偏差,得到的 $\hat{\beta}$ 总体 $\hat{\beta}$ 的一致估计值