CME 307/MS&E 311 Optimization Assignment 1

April 8, 2023

Due: April 21, 2023 at 5:00PM

Problem 1. Weyl's Inequalities

Recall every symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has n-real eigenvalues $\lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}), \ldots, \geq \lambda_n(\mathbf{A})$. The eigenvalues of \mathbf{A} satisfy a very important property known as the Courant-Fischer minimax principle, which states that

$$\lambda_j(\boldsymbol{A}) = \inf_{\dim(\mathcal{V})=n-j+1} \left(\sup_{v \in \mathcal{V}, \|v\|=1} \langle v, \boldsymbol{A}v \rangle \right),$$

where the infimum is taken over all (n-j+1) dimensional subspaces \mathcal{V} of \mathbb{R}^n . Using the Courant-Fischer minimax principle, prove the following special case of Weyl's inequalities:

Proposition 0.1. Suppose that A and $B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Then for all $1 \leq j \leq n$

$$\lambda_j(\mathbf{A}) + \lambda_n(\mathbf{B}) \le \lambda_j(\mathbf{A} + \mathbf{B}) \le \lambda_j(\mathbf{A}) + \lambda_1(\mathbf{B}).$$

Solultion: We first show the inequality on the right-hand side. By the Courant-Fischer minimax principle, we have

$$\begin{split} \lambda_{j}(A+B) &= \inf_{\dim(\mathcal{V}) = n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}(A+B)v \\ &\leq \inf_{\dim(\mathcal{V}) = n-j+1} \left(\sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}Av + \sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}Bv \right) \\ &\leq \inf_{\dim(\mathcal{V}) = n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}Av + \sup_{\dim(\mathcal{V}) = n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}Bv \\ &= \lambda_{j}(A) + \sup_{\dim(\mathcal{V}) = n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2} = 1} v^{\top}Bv \\ &\leq \lambda_{j}(A) + \lambda_{1}(B), \end{split}$$

where the first and forth lines come from the Courant-Fischer minimax principle, the second and third lines come from the properties of sup and inf, and the last line comes from the fact that $v^{\top}Bv \leq \lambda_1(B)$ for any v such that $||v||_2 = 1$.

Similarly, we can develop another inequality. Specifically,

$$\lambda_{j}(A+B) = \inf_{\dim(\mathcal{V})=n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}(A+B)v$$

$$\geq \inf_{\dim(\mathcal{V})=n-j+1} \left(\sup_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}Av + \inf_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}Bv \right)$$

$$\geq \inf_{\dim(\mathcal{V})=n-j+1} \sup_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}Av + \inf_{\dim(\mathcal{V})=n-j+1} \inf_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}Bv$$

$$= \lambda_{j}(A) + \inf_{\dim(\mathcal{V})=n-j+1} \inf_{v \in \mathcal{V}, \|v\|_{2}=1} v^{\top}Bv$$

$$\leq \lambda_{j}(A) + \lambda_{n}(B),$$

where the first and forth lines come from the Courant-Fischer minimax principle, the second and third lines come from the properties of sup and inf, and the last line comes from the fact that $v^{\top}Bv \geq \lambda_n(B)$ for any v such that $||v||_2 = 1$.

Problem 2. Loewner Ordering A fundamental object in matrix analysis is the Loewner ordering on the cone of $n \times n$ symmetric positive semidefinite (psd) matrices $\mathbb{S}_n^+(\mathbb{R})$. Given $A, B \in \mathbb{S}_n^+(\mathbb{R})$, we write $A \leq B$ if and only if B - A is a symmetric psd matrix. Prove the following items:

1. Let $\mathbf{A} \in \mathbb{S}_n^+(\mathbb{R})$ and $\mathbf{M} \in \mathbb{R}^{n \times k}$ be any matrix. Then

$$oldsymbol{M}^Toldsymbol{A}oldsymbol{M}\in\mathbb{S}_k^+(\mathbb{R}).$$

2. Let $A, B \in \mathbb{S}_n^+(\mathbb{R})$ and $A \leq B$. Then for each $1 \leq j \leq n$

$$\lambda_i(\mathbf{A}) \leq \lambda_i(\mathbf{B}).$$

3. Let $A, B \in \mathbb{S}_n^{++}(\mathbb{R})$ and $A \leq B$. Then

$$B^{-1} \prec A^{-1}$$
.

4. Let $A, B \in \mathbb{S}_n^{++}(\mathbb{R})$. Then

$$\lambda_n(\mathbf{A})\lambda_j(\mathbf{B}) \leq \lambda_j(\mathbf{A}\mathbf{B}) \leq \lambda_1(\mathbf{A})\lambda_j(\mathbf{B}).$$

Hint: For item 4. matrix similarity will be helpful.

Solution:

1. We show it by the definition of PSD matrices. For any $x \in \mathbb{R}^k$, since A is PSD,

$$x^{\top}(M^{\top}AM)x = (Mx)^{\top}A(Mx) \ge 0,$$

which implies $M^{\top}AM$ is also PSD.

2. By the statement of Problem 1, we have

$$\lambda_i(A) + \lambda_n(B - A) \leq \lambda_i(B)$$
.

Then, since B-A is PSD, $\lambda_n(B-A) \geq 0$, which implies

$$\lambda_i(A) < \lambda_i(B)$$
.

3. We first show a special case when B=I. If $A \leq I$ for a positive definite matrix A, we have all eigenvalues of A are in (0,1], which implies all eigenvalues of A^{-1} are larger than 1. Thus, for any $x \in \mathbb{R}^n$,

$$x^T A^{-1} x \ge x^T x = x^T I x,$$

which is equivalent to $A^{-1} \succeq I$.

Next, we show the case that $B \neq I$. By definition, $A \leq B$ implies that $B^{-1/2}AB^{-1/2} \leq I$ since for any $x \in \mathbb{R}^n$,

$$x^{\top}B^{-1/2}AB^{-1/2}x = (B^{-1/2}x)^{\top}A(B^{-1/2}x) \leq (B^{-1/2}x)^{\top}A(B^{-1/2}x) = x^{T}x.$$

Moreover, by Problem 2.1 and the condition that B is invertible, we have $B^{-1/2}AB^{-1/2}$ is still positive definite. Thus, the previous special case implies $B^{1/2}A^{-1}B^{1/2} \succeq I$. Similarly, it implies

$$A^{-1} \succ B^{-1}$$
.

4. We first show the inequality on the right-hand side that

$$\lambda_i(AB) \leq \lambda_1(A)\lambda_i(B)$$
.

It is equivalent to

$$\lambda_j(B^{1/2}AB^{1/2}) \le \lambda_j(\lambda_1(A)B).$$

since similarity operations do not change eigenvalues. By Problem 2.2, it is sufficient to show that

$$B^{1/2}AB^{1/2} \leq \lambda_1(A)B$$
,

which can be proved by definition. Specifically, for any $x \in \mathbb{R}^n$,

$$x^{\top}B^{1/2}AB^{1/2}x = (B^{1/2}x)^{\top}A(B^{1/2}x) \le \lambda_1(A)(B^{1/2}x)^{\top}(B^{1/2}x) = \lambda_1x^{\top}Bx,$$

and thus, $B^{1/2}AB^{1/2} \leq \lambda_1(A)B$.

Then, we can follow a similar proof to show the inequality on the left-hand side. Correspondingly, it is sufficient to show

$$B^{1/2}AB^{1/2} \succeq \lambda_n(A)B$$
.

To show this, for any $x \in \mathbb{R}^n$,

$$x^{\top} B^{1/2} A B^{1/2} x = (B^{1/2} x)^{\top} A (B^{1/2} x) \ge \lambda_n(A) (B^{1/2} x)^{\top} (B^{1/2} x) = \lambda_n x^{\top} B x.$$

As a result, $B^{1/2}AB^{1/2} \succeq \lambda_n(A)B$, and we finish the proof.

Problem 3. Nyström Approximation Let $A \in \mathbb{S}_n^+(\mathbb{R})$ and $X \in \mathbb{R}^{n \times k}$. Then the Nyström approximation of A with respect to X is given by

$$\hat{\boldsymbol{A}} = (\boldsymbol{A}\boldsymbol{X})(\boldsymbol{X}^T \boldsymbol{A}\boldsymbol{X})^{\dagger} (\boldsymbol{A}\boldsymbol{X})^T.$$

In the world of randomized numerical linear algebra, X is referred to as the *test matrix*. Observe as $X \in \mathbb{R}^{n \times k}$ that \hat{A} has rank at most k, hence \hat{A} yields a low-rank approximation to A. It turns out a near optimal low-rank approximation to A can be obtained by choosing X to be a suitable random matrix. Canonical choices for X include standard normal random matrices and column selection matrices (matrices that select a subset of the columns of A). Thanks to its ability to produce high-quality low-rank approximations, the randomized Nyström approximation has come to play a fundamental role in modern machine learning, with applications including large-scale kernel learning, linear system solving, and low-rank semidefinite programming.

In this problem, you will establish some of the randomized Nyström approximation's key properties.

- 1. Show that $M(M^TM)^{\dagger}M^T = \Pi_{\text{range}(M)}$, where $\Pi_{\text{range}(M)}$ is the orthogonal projector onto range(M).
- 2. Show that $\hat{A} \succeq 0$ and $\hat{A} \preceq A$. (Hint: Try and rewrite \hat{A} in a way so that you can exploit item 1.)
- 3. Show that \hat{A} and A agree on the subspace X, that is show the equality

$$\hat{A}X = AX$$
.

Remark 0.2. The notation $(\mathbf{M}^T \mathbf{M})^{\dagger}$ denotes the pseudo-inverse of the matrix $\mathbf{M}^T \mathbf{M}$. If $\mathbf{M}^T \mathbf{M}$ is invertible, the pseudo-inverse corresponds with the inverse. In general, given a matrix \mathbf{B} , the pseudo-inverse of \mathbf{B} is defined using its singular value decomposition (SVD) as follows:

Definition 0.3. Let $B \in \mathbb{R}^{m \times n}$ and consider its SVD $B = U \Sigma V^T$. Then the pseudo-inverse $B^{\dagger} \in \mathbb{R}^{n \times m}$ of B, is defined to be the matrix

$$\boldsymbol{B}^{\dagger} = \boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T}.$$

Here $\Sigma^+ \in \mathbb{R}^{n \times m}$ is a diagonal matrix whose entries are computed as follows:

$$\begin{cases} (\boldsymbol{\Sigma}^{+})_{ii} = (\boldsymbol{\Sigma}_{ii})^{-1}, & \boldsymbol{\Sigma}_{ii} \neq 0, \\ (\boldsymbol{\Sigma}^{+})_{ii} = 0, & \text{otherwise.} \end{cases}$$

Solution:

1. Denote the SVD of M as $M = U\Sigma V^{\top}$. Without loss of generality, we assume there exists a positive integer $k \in [1, n]$ such that $\Sigma_{ii} \neq 0$ for $i \leq k$, and $\Sigma_{ii} = 0$ for all i > k.

Then, we have $M^{\top}M = V\Sigma^{\top}\Sigma V$, where $\Sigma^{\top}\Sigma$ is a diagonal matrix in $\mathbb{R}^{m\times m}$,

$$M(M^\top M)^\dagger M^\top = U \Sigma V^\top V (\Sigma^\top \Sigma)^+ V^\top V \Sigma U^\top = U \Sigma (\Sigma^\top \Sigma)^+ \Sigma U^\top.$$

By the definition of $(\cdot)^+$ of a diagonal matrix, we have that $\tilde{\Sigma} := \Sigma(\Sigma^\top \Sigma)^+ \Sigma$ is a diagonal matrix satisfying

$$(\tilde{\Sigma})_{ii} = \begin{cases} 1, & \text{if } i \leq k, \\ 0, & \text{if } i > k. \end{cases}$$
 (1)

Denote the column vectors of U as $u_1, ..., u_n$, and define $\tilde{U} = (u_1, ..., u_k)$. Based on inequality (1), we have

$$M(M^{\top}M)^{\dagger}M^{\top} = \tilde{U}\tilde{U}^{T},$$

which is the orthogonal projector onto the span of $u_1, ..., u_k$. Finally, we finish the proof by noticing that $\text{span}(u_1, ..., u_k) = \text{Range}(M)$.

2. We first show that $\hat{A} \succeq 0$. By the definition of the pseudo-inverse, we have that A is PSD if and only if A^{\dagger} is PSD. By Problem 2.1, we have that X^TAX is PSD, which implies $(X^TAX)^{\dagger}$ is PSD. Then, applying Problem 2.1 again, we have $\hat{A} = (AX)(X^TAX)^{\dagger}(AX)^{\top}$ is PSD.

Next, we show that $A \succeq \hat{A}$. Let $M = A^{1/2}X$ in Problem 3.1, we have

$$\hat{A} = A^{1/2} M (M^{\top} M)^{\dagger} M A^{1/2} = A^{1/2} \Pi_{\text{Range}(A^{1/2} X)} A^{1/2}.$$
(2)

For any $x \in \mathbb{R}^d$,

$$\begin{split} x^\top A x &= (A^{1/2} x)^\top (A^{1/2} x) \\ &= (A^{1/2} x)^\top (\Pi_{\text{Range}(A^{1/2} X)} + (I - \Pi_{\text{Range}(A^{1/2} X)})) (A^{1/2} x) \\ &= (A^{1/2} x)^\top \Pi_{\text{Range}(A^{1/2} X)} (A^{1/2} x) + (A^{1/2} x)^\top (I - \Pi_{\text{Range}(A^{1/2} X)}) (A^{1/2} x) \\ &\geq (A^{1/2} x)^\top \Pi_{\text{Range}(A^{1/2} X)} (A^{1/2} x) \\ &> x^\top \hat{A} x. \end{split}$$

where the first and second lines come from the direct calculation, the third line comes from the property of any orthogonal projector, the forth line comes from the fact that $(I - \Pi_{\text{Range}(A^{1/2}X)})$ is also PSD for any orthogonal projector, and the last line comes from (2).

3. We direct show it as follows:

$$\begin{split} \hat{A}X &= A^{1/2} \Pi_{\text{Range}(A^{1/2}X)} A^{1/2} X \\ &= A^{1/2} A^{1/2} X \\ &= AX, \end{split}$$

where the first line comes from (2), the second line comes from the fact that $A^{1/2}X$ is invariant under the orthogonal projection on Range($A^{1/2}X$), and the last line comes from matrix multiplication.