Liczby $\mathfrak{p}\text{-adyczne}$

R. S.

 $28~\mathrm{marca}~2016$

Spis treści

1	Nie	uporządkowane	2
	1.1	Normy	2
	1.2	Twierdzenie Ostrowskiego	3
	1.3	Uzupełnianie	4

Rozdział 1

Nieuporządkowane

1.1 Normy

Definicja 1.1.1. Norma na ciele K to funkcja $|\cdot|: K \to \mathbb{R}_+$ spełniająca trzy warunki:

- 1. |x| = 0, wtedy i tylko wtedy gdy x = 0
- 2. |xy| = |x||y| dla wszystkich $x, y \in K$
- 3. $|x + y| \le |x| + |y|$ dla wszystkich $x, y \in K$

Mówimy, że norma jest niearchimedesowa, jeżeli zachodzi dodatkowo

4.
$$|x + y| \le \max(|x|, |y|)$$
 dla wszystkich $x, y \in K$,

w przeciwnym razie mamy do czynienia z normą archimedesową.

Definicja 1.1.2. Waluacja \mathfrak{p} -adyczna (dla ustalonej liczby pierwszej $\mathfrak{p} \in \mathbb{Z}$) to funkcja $\mathfrak{v}_{\mathfrak{p}} \colon \mathbb{Z} \setminus \{0\} \to \mathbb{R}$ określona w następujący sposób: $\mathfrak{v}_{\mathfrak{p}}(\mathfrak{n})$ to jedyna dodatnia liczba całkowita, dla której zachodzi równość $\mathfrak{n} = \mathfrak{p}^{\mathfrak{v}_{\mathfrak{p}}(\mathfrak{n})}\mathfrak{n}'$, przy czym \mathfrak{p} nie dzieli \mathfrak{n}' . Przedłuża się ją do całego ciała \mathbb{Q} wzorem

$$v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b),$$

 $z \ umowq, \ \dot{z}e \ v_p(0) = +\infty.$

Tak określona funkcja jest dobrze określona (udowodnić).

Lemat 1.1.3. Dla wszystkich x oraz $y \in \mathbb{Q}$ mamy

- 1. $v_p(xy) = v_p(x) + v_p(y)$
- 2. $v_p(x+y) \ge \min(v_p(x), v_p(y))$.

Definicja 1.1.4. Dla dowolnej liczby wymiernej $x \neq 0$ określamy jej normę p-adyczną przez wzór $|x|_p = p^{-\nu_p(x)}$. Dodatkowo $|0|_p = 0$.

Fakt 1.1.5. Tak określona norma jest niearchimedesowa.

Fakt 1.1.6. Norma na ciele K jest niearchimedesowa, wtedy i tylko wtedy gdy $|a| \le 1$ dla wszystkich $a \in \mathbb{Z}$ (po włożeniu w K).

Fakt 1.1.7. W ciele z niearchimedesową normą " $x,y \in K$, $|x| \neq |y|$ " pociąga " $|x+y| = \max(|x|,|y|)$ ".

 $\begin{array}{ll} \textit{Dow\'od}. \ \|\mathbf{x}\| > \|\mathbf{y}\| \ \text{pociąga} \ \|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| = \max\{\|\mathbf{x}\|, \|\mathbf{y}\|\}. \ \ \text{Ale} \ \mathbf{x} = \mathbf{x} + \mathbf{y} - \mathbf{y}, \ \text{więc} \ \|\mathbf{x}\| \leq \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{y}\|\}. \ \ \text{Nier\'owno\'s\'c} \ \text{zachodzi} \ \text{tylko} \ \text{wtedy, gdy} \ \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{y}\|\} = \|\mathbf{x} + \mathbf{y}\|. \ \ \text{To} \ \text{daje} \ \|\mathbf{x}\| \leq \|\mathbf{x} + \mathbf{y}\|. \end{array}$

Fakt 1.1.8. W niearchimedesowym ciele K każdy punkt kuli (otwartej, domkniętej) jest jej środkiem. Jeśli r > 0, to kula jest otwarnięta. Dwie kule (domknięte, otwarte) są rozłączne lub zawarte jedna w drugiej.

Dowód. 1. Jeśli $b \in B(a,r)$, to ||b-a|| < r. Biorąc dowolny x, że |x-a| < r, dostajemy |x-b| < r (niearchimedesowo), zatem $B(a,r) \subset B(b,r)$. Podobnie w drugą stronę.

- 2. Każda otwarta kula jest otwartym zbiorem. Weźmy x z brzegu B(a,r), do tego $s \le r$. Wtedy pewien y jest w $B(a,r) \cap B(x,s)$ (przekrój jest niepusty). To oznacza, że |y-a| < r oraz $|y-x| < s \le r$, więc $|x-s| \le r$ i $x \in B(a,r)$.
- 3. Weźmy nierozłączne B(a,r), B(b,s), że $r \le s$. Wtedy pewien c leży w obydwu kulach. Ale B(a,r) = B(c,r) zawiera się w B(c,s) = B(b,s).

1.2 Twierdzenie Ostrowskiego

Lemat 1.2.1. Wartości bezwzględne $\|\cdot\|_i$ na K są równoważne wtedy i tylko wtedy, gdy $\|\mathbf{x}\|_1 < 1 \Leftrightarrow \|\mathbf{x}\|_2 < 1$ (inaczej: dla pewnej $\alpha > 0$ i każdego x zachodzi $\|\mathbf{x}\|_1 = \|\mathbf{x}\|_2^{\alpha}$). Tutaj i = 1, 2.

Dowód. Dowód polegał będzie na pokazaniu ciągu implikacji.

- $3 \Rightarrow 1 \|x a\|_1 < r \text{ wtedy i tylko wtedy, gdy } \|x a\|_2 < r^{1/\alpha}$; "otwarte kule są nadal otwarte".
- $1\Rightarrow 2$ Dla równoważnych wartości bezwzględnych mamy jedną zbieżność; $\lim_n x^n=0$ jest równoważne $\|x\|<1$.
- $2 \Rightarrow 3$ Wybierzmy $x_0 \in K$ różne od 0, że $|x_0|_1 < 1$. Warunek nr 2 mówi, że $|x_0|_2$ też jest mniejsze od jeden, czyli możemy wybrać $\alpha > 0$ takie, żeby $|x_0|_1 = |x_0|_2^{\alpha}$.

Wybierzmy jeszcze jeden $x \in K \setminus \{0\}$. Jeśli $|x|_1 = |x_0|_1$, to $|x|_2 = |x_1|_2$ (gdyby tak nie było, to normy ilorazów byłyby zepsute). Podobnie dla $|x|_1 = 1$.

Bez straty ogólności zakładamy, że $1 > |x|_1 \neq |x_0|_1$. Znów istnieje $\beta > 0$, że $|x|_1 = |x|_2^{\beta}$, ale czy $\alpha = \beta$? Niech n, m będą naturalne. Wtedy $|x|_1^n < |x_0|_1^m \iff |x|_2^n < |x_0|_2^m$. Wzięcie logarytmów daje (po drobnych przekształceniach)

$$\frac{n}{m} < \frac{\log |x_0|_1}{\log |x|_1} \iff \frac{n}{m} < \frac{\log |x_0|_2}{\log |x|_2}.$$

Oznacza to, że ułamki po prawych stronach są równe. Po podłożeniu $|x_0|_1 = |x_0|_2^{\alpha}$ okaże się, że rzeczywiście $\alpha = \beta$.

Twierdzenie 1.2.2 (Ostrowski, 1916). Na \mathbb{Q} wartość bezwzględna musi być równoważna z jedną z wartości bezwzględnych $\|\cdot\|_{\mathfrak{p}}$, gdzie \mathfrak{p} jest \mathfrak{l} . pierwszą lub $\mathfrak{p}=\infty$ (lub dyskretną).

Dowód. Niech |·| będzie nietrywialną normą na ℚ. Pierwszy przypadek: archimedesowa (odpowiada jej |·|_∞). Weźmy więc najmniejsze dodatnie całkowite n_0 , że $|n_0| > 1$. Wtedy $|n_0| = n_0^{\alpha}$ dla pewnej $\alpha > 0$. Wystarczy uzasadnić, dlaczego $|x| = |x|_{\infty}^{\alpha}$ dla każdej $x \in \mathbb{Q}$, a właściwie tylko dla $x \in \mathbb{Z}_{>0}$ (bo norma jest multiplikatywna). Dowolną liczbę n można zapisać w systemie o podstawie n_0 : $n = a_0 + a_1 n_0 + \cdots + a_k n_0^k$, gdzie $a_k \neq 0$ i $0 \leq a_i \leq n_0 - 1$.

$$\begin{aligned} |n| &= \left| \sum_{i=0}^{k} a_{i} n_{0}^{i} \right| \leq \sum_{i=0}^{k} |a_{i}| n_{0}^{i\alpha} \leq n_{0}^{k\alpha} \sum_{i=0}^{k} n_{0}^{-i\alpha} \\ &\leq n_{0}^{k\alpha} \sum_{i=0}^{\infty} n_{0}^{-i\alpha} = n_{0}^{k\alpha} \frac{n_{0}^{\alpha}}{n_{0}^{\alpha} - 1} = C n_{0}^{k\alpha} \end{aligned}$$

Pokazaliśmy $|\mathfrak{n}| \leq C\mathfrak{n}_0^{k\alpha} \leq C\mathfrak{n}^\alpha$ dla każdego \mathfrak{n} , a więc w szczególności dla liczb postaci \mathfrak{n}^N (bowiem C nie zależy od \mathfrak{n}): $|\mathfrak{n}| \leq C^{1/\mathfrak{n}}\mathfrak{n}^\alpha$. Przejdźmy z N do nieskończoności, dostajemy $C^{1/\mathfrak{n}} \to 1$ i $|\mathfrak{n}| \leq \mathfrak{n}^\alpha$. Teraz trzeba pokazać nierówność w drugą stronę. Skorzystamy jeszcze raz z rozwinięcia. Skoro $\mathfrak{n}_0^{k+1} > \mathfrak{n} \geq \mathfrak{n}_0^k$, to zachodzi

$$n_0^{(k+1)\alpha} = |n_0^{k+1}| = |n + n_0^{k+1} - n| \le |n| + |n_0^{k+1} - n|,$$

a stad wnioskujemy, że

$$|n| \geq n_0^{(k+1)\alpha} - |n_0^{k+1} - n| \geq n_0^{(k+1)\alpha} - (n_0^{k+1} - n)^{\alpha}.$$

Skorzystaliśmy tutaj z nierówności udowodnionej wyżej. Wiemy, że $n \geq n_0^k$, więc prawdą jest, że

$$\begin{split} |\mathfrak{n}| &\geq \mathfrak{n}_0^{(k+1)\alpha} - (\mathfrak{n}_0^{k+1} - \mathfrak{n}_0^k)^{\alpha} \\ &= \mathfrak{n}_0^{(k+1)\alpha} [1 - (1 - \frac{1}{\mathfrak{n}_0})^{\alpha}] = C' \mathfrak{n}_0^{(k+1)\alpha} > C' \mathfrak{n}^{\alpha}. \end{split}$$

Od n nie zależy $C'=1-(1-1/n_0)^{\alpha}$, jest dodatnia i przez analogię do poprzedniej sytuacji możemy pokazać $|n|\geq n^{\alpha}$. Wnioskujemy stąd, że $|n|=n^{\alpha}$ i $|\cdot|$ jest równoważna ze zwykłą wartością bezwzględną.

Załóżmy, że $|\cdot|$ jest niearchimedesowa. Wtedy $\|n\| \le 1$ dla całkowitych n. Ponieważ $|\cdot|$ jest nietrywialna, musi istnieć najmniejsza l. całkowita n_0 , że $\|n_0\| < 1$. Zacznijmy od tego, że n_0 musi być l. pierwszą: gdyby zachodziło $n_0 = a \cdot b$ dla $1 < a, b < n_0$, to |a| = |b| = 1 i $|n_0| < 1$ (z minimalności n_0) prowadziłoby do sprzeczności. Chcemy pokazać, że $|\cdot|$ jest równoważna z normą p-adyczną, gdzie $p := n_0$. W następnym kroku uzasadnimy, że jeżeli $n \in \mathbb{Z}$ nie jest podzielna przez p, to |n| = 1. Dzieląc n przez p z resztą dostajemy n = rp + s dla 0 < s < p. Z minimalności p wynika |s| = 1, zaś z $|r| \le 1$ ($|\cdot|$ jest niearchimedesowa) i |p| < 1: |rp| < 1. "Wszystkie trójkąty są równoramienne", więc |n| = 1. Wystarczy więc tylko zauważyć, że dla $n \in \mathbb{Z}$ zapisanej jako $n = p^\nu n'$ z $p \nmid n'$ zachodzi $|n| = |p|^\nu |n'| = |p|^\nu = c^{-\nu}$, gdzie $c = |p|^{-1} > 1$, co kończy dowód.

Fakt 1.2.3 ("adelic product"). Jeżeli $x \in \mathbb{Q}^{\times}$, to $\prod_{\mathfrak{v}<\infty} |x|_{\mathfrak{p}} = 1$.

1.3 Uzupełnianie

Lemat 1.3.1. Ciało \mathbb{Q} z nietrywialną normą nie jest zupełne.

Dowód. Dzięki twierdzeniu Ostrowskiego wystarczy sprawdzić p-adyczne normy. Niech $p \neq 2$ będzie pierwsza, zaś $a \in \mathbb{Z}$ taka, że nie jest kwadratem, nie dzieli się przez p i równanie $x^2 = a$ ma rozwiązanie w $\mathbb{Z}/p\mathbb{Z}$. Konstruujemy ciąg Cauchy'ego bez granicy: x_0 jest dowolnym rozwiązaniem równania, x_n ma być równe x_{n-1} modulo p^n oraz $x_n^2 = a$ (modulo p^{n+1}). Jest Cauchy'ego ($|x_{n+1} - x_n| = |\lambda p^{n+1}| \leq p^{-n+1} \to 0$) i nie ma granicy (kandydatem na nią jest pierwiastek z a, gdyż prosty rachunek pokazuje $|x_n^2 - a| = |\mu p^{n+1}| \leq p^{-n+1} \to 0$). Gdy p = 2, to zastępujemy pierwiastek sześciennym. □

Zbiór ciągów Cauchy'ego oznaczmy przez C. Można na nim zadać strukturę pierścienia (przemienego i z jedynką) przez punktowe dodawanie oraz mnożenie. Wprowadzamy ideał N, do którego należą ciągi zbieżne do zera.

Lemat 1.3.2. Zbiór N jest ideałem maksymalnym C.

Dowód. Ustalmy ciąg $(x_n) \in C \setminus N$ oraz ideał $I = \langle (x_n), N \rangle$. Od pewnego miejsca x_n nie jest zerem, zatem $y_n = 1/x_n$ od tego miejsca i $y_n = 0$ ma sens. Ciąg y_n jest Cauchy'ego:

$$|y_{n+1} - y_n| = \frac{|x_{n+1} - x_n|}{|x_n x_{n+1}|} \le \frac{|x_{n+1} - x_n|}{c^2} \to 0.$$

Ale
$$(1) - (x_n)(y_n) \in N$$
, to kończy dowód $(I = C)$.

Definicja 1.3.3. Ciało liczb p-adycznych to $\mathbb{Q}_p := C/N$.

Lemat 1.3.4. Ciąg $|x_n|_p$ jest stacjonarny, $gdy(x_n) \in C \setminus N$.

Dowód. Można znaleźć takie liczby c, N_1 , że $n \ge N_1$ pociąga $|x_n| \ge c > 0$. Z drugiej strony istnieje taka N_2 , że $n, m \ge N_2$ pociąga $|x_n - x_m| < c$. Połóżmy więc $N = \max\{N_1, N_2\}$. Wtedy $n, m \ge N$ pociąga $|x_n - x_m| < \max\{|x_n|, |x_m|\}$, a to oznacza, że $|x_n| = |x_m|$. □

Dzięki temu następująca definicja nie jest bez sensu:

Definicja 1.3.5. $Gdy(x_n) \in C$ reprezentuje $\lambda \in \mathbb{Q}_p$, $przyjmujemy |\lambda|_p := \lim_{n \to \infty} |x_n|_p$.

Lemat 1.3.6. Obraz $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ po włożeniu jest gęsty.

Dowód. Chcemy pokazać, że każda otwarta kula wokół $\lambda \in \mathbb{Q}_p$ kroi się z obrazem \mathbb{Q} , czyli zawiera "stały ciąg". Ustalmy kulę $B(\lambda,\epsilon)$, ciąg Cauchy'ego (x_n) dla λ i $\epsilon' < \epsilon$. Dzięki temu, że ciąg jest Cauchy'ego, możemy znaleźć dla niego indeks N, że $n, m \geq N$ pociąga $|x_n - x_m| < \epsilon'$. Rozpatrzmy stały ciąg (y) dla $y = x_N$. Wtedy $|\lambda - (y)| < \epsilon$, gdyż $\lambda - (y)$ odpowiada ciąg $(x_n - y)$. Ale $|x_n - x_N| < \epsilon'$ i w granicy

$$\lim_{n\to\infty}|x_n-y|\leq \epsilon'<\epsilon.$$

Fakt 1.3.7. Ciało \mathbb{Q}_p jest zupełne.

Dowód. Dowód w czterech krokach:

- 1. Niech λ_k będzie ciągiem Cauchy'ego elementów \mathbb{Q}_p .
- 2. Skoro obraz \mathbb{Q} w \mathbb{Q}_p jest gęsty, to można znaleźć liczby wymierne l_k , że $\lim_{n\to\infty} |\lambda_n (l_n)| = 0$: granica w \mathbb{Q}_p !
- 3. Wybrane wcześniej liczby wymierne l_n same tworzą ciąg Cauchy'ego w \mathbb{Q} ; dążą do λ w \mathbb{Q}_p .
- 4. Zachodzi $\lim_{n\to\infty} \lambda_n = \lambda$.

Rozdział 2

Lemat Hensela

Twierdzenie 2.0.1 (lemat Hensela). Niech \mathfrak{K} będzie ciałem zupełnym względem wartości bezwzględnej $|\cdot|$ i niech $f(X) \in \mathfrak{D}[X]$. Załóżmy, że $\mathfrak{a}_0 \in \mathfrak{D}$ spełnia nierówność $|f(\mathfrak{a}_0)| < |f'(\mathfrak{a}_0)|^2$, gdzie f'(X) jest (formalną) pochodną. Wtedy istnieje $\mathfrak{a} \in \mathfrak{D}$, taki że $f(\mathfrak{a}) = \mathfrak{0}$.

 $Dow \acute{o}d$. Niech wielomiany $f_i(X)$ (dla $j=1,2,\ldots$) będą zdefiniowane przez tożsamość

$$f(X+Y)=f(X)+\sum_{j\geq 1}f_j(X)Y^j$$

dla niezależnych niewiadomych X, Y. Wtedy $f_1(X) = f'(X)$. Ponieważ $|f(\alpha_0)| < |f'(\alpha_0)|^2$, istnieje $b_0 \in \mathfrak{O}$, takie że $f(\alpha_0) + b_0 f_1(\alpha_0) = 0$. Istotnie,

$$|b_0| = \left|\frac{-f(\alpha_0)}{f_1(\alpha_0)}\right| = \frac{|f(\alpha_0)|}{|f_1(\alpha_0)|} < \frac{|f'(\alpha_0)|^2}{|f'(\alpha_0)|} = |f'(\alpha_0)| \le 1.$$

Zgodnie z definicją wielomianów f_i zachodzi relacja

$$|f(a_0 + b_0)| \le \max_{j \ge 2} |f_j(a_0)b_0^j|.$$

Jako że $f_i(X) \in \mathfrak{O}[X]$ i $\mathfrak{a}_0 \in \mathfrak{O}$, mamy $|f_i(\mathfrak{a}_0)| \leq 1$. Oznacza to, że

$$|f(a_0 + b_0)| \le |b_0^2| = \frac{|f(a_0)|^2}{|f'(a_0)|^2} < |f(a_0)|,$$

skorzystaliśmy tu ponownie z nierówności $|f(a_0)| < |f'(a_0)|^2$. Podobnie pokazuje się, że

$$|f_1(a_0 + b_0) - f_1(a_0)| \le |b_0| < |f_1(a_0)|,$$

a przez to

$$|f_1(a_0 + b_0)| = |f_1(a_0)|.$$

Kładziemy teraz $a_1 = a_0 + b_0$ i powtarzamy proces. Otrzymujemy w ten sposób ciąg $a_n = a_{n-1} + b_{n-1}$. Dla każdego n prawdziwa jest równość $|f_1(a_n)| = |f_1(a_0)|$, jednocześnie

$$|f(a_{n+1})| \le \frac{|f(a_n)|^2}{|f_1(a_n)|^2} = \frac{|f(a_n)|^2}{|f_1(a_0)|^2}$$

To uzasadnia zbieżność $f(\mathfrak{a}_n)$ do zera. Co więcej,

$$|a_{n+1} - a_n| = |b_n| = \frac{|f(a_n)|}{|f_1(a_n)|} = \frac{|f(a_n)|}{|f_1(a_0)|} \to 0.$$

 ${\rm Ciąg}\,\{\alpha_n\}\,{\rm jest}\,\,{\rm fundamentalny},\,z\,\,{\rm zupełności}\,\,{\rm ciała}\,\,\mathfrak{K}\,\,{\rm wynika}\,\,{\rm istnienie}\,{\rm jego}\,\,{\rm granicy}\,\,{\rm oraz}\,\,f(\alpha)=0.\quad \, \Box$