

Funções de produção

Vinicius Santos

Economia - ENG1 07067

08 de Maio de 2025

Função de produção com dois insumos

- A atividade principal de qualquer empresa é transformar insumos em produtos.
- Removendo a complexidade relacionada à engenharia envolvida no processo de escolhas, trabalhamos com um modelo abstrato de producão.
- A função de produção de uma empresa para determinado bem q

$$q = f(K, L), \tag{1}$$

mostra a quantidade máxima do bem que pode ser produzida utilizando-se combinações alternativas de capital (K) e trabalho (L).

- Os termos capital e trabalho s\u00e3o usados apenas por conveni\u00e9ncia; poder\u00edamos analisar quaisquer dois insumos que sejam inerentes ao processo de produ\u00e7\u00e3o de determinado bem.
- Também é relativamente simples generalizar a discussão para casos envolvendo mais de dois insumos

Vinicius Santos Funções de produção 08 de Maio de 2025 2/18

Produto marginal

- O produto marginal de um insumo é definido como a quantidade extra de produto produzida por se empregar uma unidade adicional desse insumo, enquanto se mantém todos os outros insumos constantes.
- Para nossos dois principais insumos, capital e trabalho, o produto marginal do trabalho (PMg_L) é a produção adicional obtida ao empregar mais um trabalhador, mantendo constante o nível de capital.
- De forma semelhante, o produto marginal do capital (PMg_K) é a produção adicional obtida ao utilizar mais uma máquina, mantendo constante o número de trabalhadores.
- Como ilustração dessas definições, considere o caso de um agricultor que contrata mais uma pessoa para colher uma safra, mantendo todos os outros insumos constantes.
- A produção extra gerada quando essa pessoa é adicionada à equipe de produção é o produto marginal do insumo trabalho.
- O conceito é medido em quantidades físicas como sacas de trigo, caixas de laranjas ou pés de alface.
- Podemos observar, por exemplo, que 25 trabalhadores em um pomar de laranjas conseguem produzir 10.000 caixas de laranjas por semana, enquanto 26 trabalhadores (com as mesmas árvores e equipamentos) conseguem produzir 10.200 caixas.
- O produto marginal do 26º trabalhador é de 200 caixas por semana.

Produto marginal decrescente

- Podemos esperar que o produto marginal de um insumo dependa de quanto dele está sendo utilizado.
- Por exemplo, trabalhadores não podem ser adicionados indefinidamente à colheita de laranjas (mantendo fixos o número de árvores, a quantidade de equipamentos, fertilizantes etc.) sem que o produto marginal eventualmente se deteriore.
- Essa possibilidade é ilustrada na Figura 1.
- O painel (a) da figura mostra a relação entre a produção por semana e o insumo trabalho durante a semana, quando o nível de capital é mantido fixo.
- Inicialmente, a adição de novos trabalhadores aumenta significativamente a produção, mas esses ganhos diminuem à medida que ainda mais trabalho é adicionado e a quantidade fixa de capital se torna sobreutilizada.
- O formato côncavo da curva de produto total no painel a reflete, portanto, o princípio econômico do produto marginal decrescente.

Produto marginal decrescente

Figura 1. Relacionamento entre produto e trabalho

Vinicius Santos Funções de produção 08 de Maio de 2025

Curva do produto marginal

- Uma interpretação geométrica do conceito de produto marginal é direta trata-se da inclinação da curva de produto total, mostrada no painel a da Figura 1.
- A inclinação decrescente da curva mostra o produto marginal decrescente.
- Para valores mais altos do insumo trabalho, a curva total é quase plana adicionar mais trabalho aumenta a produção apenas levemente.
- O painel (b) ilustra essa inclinação diretamente por meio da curva do produto marginal do trabalho (PMg_I).
- Inicialmente, PMg_L é alto porque adicionar trabalho extra resulta em um aumento significativo da produção.
- À medida que o insumo trabalho aumenta, entretanto, PMgL cai.
- De fato, em L*, insumo de trabalho adicional não aumenta em nada a produção total.
- Pode ser o caso de que 50 trabalhadores consigam produzir 12.000 caixas de laranja por semana, mas a adição de um 51º trabalhador (com o mesmo número de árvores e equipamentos) não aumente essa produção.
- Isso pode ocorrer porque o trabalhador não tem nada útil a fazer em um pomar já lotado.
- O produto marginal desse novo trabalhador é, portanto, zero.

Produto médio

- Quando as pessoas falam sobre a produtividade dos trabalhadores, geralmente não têm em mente a noção econômica de produto marginal.
- Em vez disso, tendem a pensar em termos de "produção por trabalhador".
- ullet No nosso exemplo do pomar de laranjas, com 25 trabalhadores, a produção por trabalhador é de 400 (= 10.000 \div 25) caixas de laranja por semana.
- \bullet Com 50 trabalhadores, no entanto, a produção por trabalhador cai para 240 (= 12.000 \div 50) caixas por semana.
- Note que os valores de produção por trabalhador fornecem uma impressão enganosa sobre o quão produtivo um trabalhador adicional realmente é.
- Com 25 trabalhadores, a produção por trabalhador é de 400 caixas por semana, mas adicionar um 26º trabalhador gera apenas 200 caixas a mais.
- De fato, com 50 trabalhadores, um trabalhador adicional não gera nenhuma produção extra, mesmo que a produção por trabalhador ainda seja razoável em 240 caixas por semana.
- Como a maior parte da análise econômica envolve questões de adição ou subtração de pequenas quantidades de um insumo em uma dada situação de produção, o conceito de produto marginal é claramente o mais importante.
- Os números de produção por trabalhador (isto é, "produto médio") podem ser bastante enganosos se não refletirem com precisão essas ideias marginais.

Mapa de isoquantas

- Para representar uma função de produção inteira em duas dimensões, precisamos observar seu mapa de isoquantas.
- Podemos novamente usar uma função de produção da forma q = f(K, L), utilizando capital e trabalho como exemplos convenientes de quaisquer dois insumos que possam ser de interesse.
- Para mostrar as várias combinações de capital e trabalho que podem ser empregadas para produzir um determinado nível de produção, usamos uma isoquanta.
- ullet Por exemplo, todas as combinações de K e L que estão sobre a curva rotulada q=10 na Figura 2 são capazes de produzir 10 unidades de produto por período.
- Essa única isoquanta registra as muitas formas alternativas de produzir 10 unidades de produto.
- Uma combinação é representada pelo ponto A; uma firma poderia usar L_A e K_A para produzir 10 unidades de produto.
- Alternativamente, a firma pode preferir usar relativamente menos capital e mais trabalho e. portanto, escolher um ponto como B.
- Há infinitas isoquantas no plano K-L. Cada isoquanta representa um nível diferente de producão.
- As isoquantas registram níveis sucessivamente mais altos de produção à medida que nos movemos na direção nordeste, porque usar mais de cada insumo permite que a produção aumente.
- lacktriangle Outras duas isoquantas (para q=20 e q=30) também são mostradas na Figura 2.

Vinicius Santos Funções de produção 08 de Maio de 2025

Mapa de isoquantas

Figura 2. Mapa de isoquantas

Vinicius Santos Funções de produção 08 de Maio de 2025

Taxa marginal de substituição técnica

- A inclinação de uma isoquanta mostra como um insumo pode ser trocado por outro mantendo a produção constante.
- Examinar essa inclinação fornece informações sobre as possibilidades técnicas de substituição de trabalho por capital.
- A inclinação de uma isoquanta (ou, mais propriamente, seu valor negativo) é chamada de taxa marginal de substituição técnica do trabalho pelo capital (TMS)
- Especificamente, a TMS é definida como a quantidade pela qual o insumo capital pode ser reduzido mantendo constante a quantidade produzida quando uma unidade adicional de trabalho é utilizada.

$$TMS_{L \text{ por } K} = -(Inclinação da isoquanta)$$
 (2)

$$= -\frac{\text{Variação do capital}}{\text{Variação do trabalho}} \tag{3}$$

onde todas as variações referem-se a uma situação em que a produção (q) é mantida constante.

- O valor específico dessa taxa de substituição dependerá não apenas do nível de produção, mas também das quantidades de capital e trabalho que estão sendo utilizadas.
- Em um ponto como A na Figura 2, quantidades relativamente grandes de capital podem ser dispensadas se uma unidade adicional de trabalho for empregada—nesse ponto, a TMS é um número positivo alto.
- Por outro lado, no ponto B, a disponibilidade de uma unidade adicional de trabalho não permite uma grande redução no insumo capital, e a TMS é relativamente pequena.

TMS e os produtos marginais

- Podemos usar o conceito de TMS para discutir o formato provável do mapa de isoquantas de uma firma.
- De maneira mais óbvia, parece claro que a TMS deve ser positiva; isto é, cada isoquanta deve ter inclinação negativa.
- Se a quantidade de trabalho empregada pela firma aumenta, ela deve ser capaz de reduzir o uso de capital e ainda manter a produção constante.
- Como o trabalho presumivelmente possui produto marginal positivo, a firma deveria conseguir operar com menos capital quando mais trabalho é utilizado.
- Se aumentar o trabalho exigisse, na verdade, que a firma utilizasse mais capital, isso implicaria que o produto marginal do trabalho é negativo, e nenhuma firma estaria disposta a pagar por um insumo que tivesse efeito negativo sobre a produção.
- Podemos demonstrar esse resultado de forma mais formal ao notar que a TMS é precisamente igual à razão entre o produto marginal do trabalho e o produto marginal do capital:

$$TMS_{L \text{ por } K} = \frac{PMg_L}{PM\sigma_{\nu}} \tag{4}$$

Vinicius Santos Funções de produção 08 de Maio de 2025 11/18

TMS e os produtos marginais

- Suponha, por exemplo, que $PMg_L = 2$ e $PMg_K = 1$.
- Então, se a firma emprega mais um trabalhador, isso gerará duas unidades extras de produção se o capital permanecer constante.
- Em outras palavras, a firma pode reduzir o uso de capital em duas unidades quando há um trabalhador adicional e a produção não mudará — o trabalho extra adiciona duas unidades de produção, enquanto o capital reduzido subtrai duas.
- Assim, por definição, a TMS é 2 a razão entre os produtos marginais.
- Aplicando a Equação 4, fica claro que se a TMS for negativa, um dos produtos marginais também deve ser negativo.
- Mas nenhuma firma pagaria por um insumo que reduzisse a produção.
- Portanto, ao menos nas porções das isoquantas onde as firmas de fato operam, a TMS deve ser positiva (e a inclinação da isoquanta negativa).

Vinicius Santos Funções de produção 08 de Maio de 2025 12/18

TMS decrescente

- As isoquantas da Figura 2 têm inclinação negativa e também são convexas, refletindo uma TMS decrescente.
- Quando a razão K/L é alta, a TMS é grande: é possível substituir bastante capital por uma unidade adicional de trabalho mantendo a produção constante.
- Quando já há muito trabalho, a TMS é pequena: pouco capital pode ser substituído por mais trabalho.
- Isso é intuitivamente plausível quanto mais trabalho (em relação ao capital) é utilizado, menor a capacidade do trabalho de substituir o capital.
- Uma TMS decrescente indica que o uso excessivo de um único insumo torna-o menos eficaz como substituto do outro.
- Firmas evitarão usar exclusivamente trabalho ou exclusivamente capital e buscarão uma combinação mais equilibrada dos fatores.
- Um argumento incorreto, mas instrutivo, baseado na Equação 4 sugeriria que, com a substituição de capital por trabalho ao longo da isoquanta, PMg_L cairia e PMg_K aumentaria, implicando uma queda na TMS.
- No entanto, esse raciocínio falha porque assume que é possível analisar mudanças nos produtos marginais de insumos em simultâneo, contrariando a definição de produto marginal, que requer ceteris paribus.

Retornos de escala

- Funções de produção representam métodos reais de produção, por isso economistas analisam cuidadosamente suas características.
- A forma e as propriedades da função de produção de uma firma têm implicações práticas importantes.
- Essas informações podem guiar decisões empresariais, como o direcionamento de recursos de P&D para melhorias técnicas.
- Também podem embasar políticas públicas, por exemplo, ao avaliar se restrições ao tamanho das firmas afetam negativamente a eficiência econômica.
- Nesta seção, introduz-se uma terminologia útil para examinar essas questões.

Adam Smith sobre retornos de escala

- A primeira questão importante que podemos abordar sobre funções de produção é como a quantidade de produto responde a aumentos em todos os insumos simultaneamente.
- Por exemplo, suponha que todos os insumos fossem dobrados; a produção também dobraria?
- Aqui estamos perguntando sobre os retornos de escala exibidos por uma função de produção.
- Adam Smith identificou duas forças que entram em jogo quando todos os insumos são dobrados (para uma duplicação de escala).
- Primeiro, uma duplicação da escala permite uma maior "divisão do trabalho".
- Ele sugeriu que a eficiência poderia aumentar a produção poderia mais do que dobrar –
 à medida que se torna possível uma maior especialização desse tipo.
- No entanto, Smith previu que esses benefícios das operações em larga escala não se estenderiam indefinidamente.
- Ele reconheceu que grandes empresas podem enfrentar ineficiências na direção e controle gerenciais se a escala for aumentada drasticamente.
- A coordenação dos planos de produção para mais insumos pode se tornar mais difícil quando há muitas camadas de gerenciamento e muitos trabalhadores especializados envolvidos no processo produtivo.

Uma definição exata

- Qual desses dois efeitos da escala é mais importante é uma questão empírica.
- Para investigar essa questão, os economistas precisam de uma definição precisa de retornos de escala.
- Diz-se que uma função de produção exibe retornos constantes de escala se uma duplicação de todos os insumos resultar em uma duplicação precisa da produção.
- Se uma duplicação de todos os insumos resultar em menos do que uma duplicação da produção, diz-se que a função de produção exibe retornos decrescentes de escala.
- Se uma duplicação de todos os insumos resultar em mais do que uma duplicação da produção, a função de produção exibe retornos crescentes de escala.

Ilustrações gráficas

- Essas possibilidades s\u00e3o ilustradas nos tr\u00e3s gr\u00e1ficos da Figura 3.
- Em cada caso, isoquantas de produção para q=10, 20, 30 e 40 são mostradas, juntamente com um raio (rotulado como A) que mostra uma expansão uniforme de ambos os insumos capital e trabalho.
- O painel (a) ilustra retornos constantes de escala, onde à medida que os insumos capital e trabalho são sucessivamente aumentados de 1 para 2, de 2 para 3 e então de 3 para 4, a produção se expande proporcionalmente, i.e., produção e insumos crescem em uníssono.
- No painel (b) as isoquantas se afastam à medida que a produção se expande; este é um caso de retornos decrescentes de escala – uma expansão nos insumos não resulta em um aumento proporcional na produção.
- Por exemplo, a duplicação de ambos os insumos capital e trabalho de 1 para 2 unidades não é suficiente para aumentar a produção de 10 para 20; esse aumento na produção exigiria mais do que uma duplicação dos insumos.
- O painel (c) ilustra retornos crescentes de escala, onde as isoquantas se aproximam à medida que os insumos se expandem – uma duplicação dos insumos é mais do que suficiente para dobrar a produção.
- A operação em larga escala pareceria, nesse caso, ser bastante eficiente.

llustrações gráficas

Figura 3. Mapa de isoquantas e retornos de escala

Vinicius Santos Funções de produção 08 de Maio de 2025