Nebula: Mining Cluster Christoph Amrein (dieser Bereich kann von den Diplomanden zur freien Gestaltung verwendet werden) TSBE Nr. 31 Klasse 16 / Praktische Diplomarbeit 2018

Management Summary

Inhaltsverzeichnis

1	Initialisierung	1
1.1	Ausgangslage	1
1.1.1	Weshalb soll das Projekt realisiert werden?	1
1.1.2	Für wen ist das Projekt gedacht?	1
1.2	Situationsanalyse	1
1.2.1	Stärken	2
1.2.2	Schwächen	2
1.3	Ziele	2
1.3.1	Vorgehensziele	2
1.3.2	Projektziele	3
1.3.3	Lieferobjekte	4
1.3.4	Rahmenbedingungen	4
1.3.5	Abgrenzungen	4
1.4	Lösungsbeschreibung	Ę
1.5	Kosten	E
1.5.1	Einmalige Kosten	E
1.5.2	Betriebskosten (Repetitiv)	6
1.5.3	Gesamtkosten	6
1.6	Wirtschaftlichkeit	6
1.6.1	Spekulation	7
1.6.2	Infrastruktur	7
1.7	Planung	8
1.7.1	Grober Projektplan	8
1.7.2	Termine	ç
1.8	Ressourcen	ç
1.8.1	Budget	Ć
1.8.2	Sachmittel	Ś
1.9	Organisation	10
1.9.1	Projektorganisation	10
1.9.2	Projektablage	10
1.10	Cluster-Software evaluation	11
1.10.1	Cluster Software Kriterien	11
1.10.2	Informationsbeschaffung	11
1.11	Lösungsvarianten	12
1.11.1	Variantenübersicht	12
1.11.2	Variante V1 «OpenHPC»	12

Nebula - Mining Cluster

Basierend auf der ARMv8 Architektur

T .	, .	7.				7	
Ini	hai	It e	1101	2701	201	hn	10

1.11.3	Variante V2 «TinyTitan»	12
1.11.4	Variante V3 «Minimale Lösung»	13
1.11.5	Anforderungsabdeckung der Varianten	13
1.12	Bewertung der Varianten	14
1.13	Variantenentscheid	14
1.14	Risiken	14
2	Konzept	16
2.1	Physikalischer Überblick	16
2.2	Physikalische Verbindungen	17
2.2.1	Stromversorgung Managementnode	17
2.2.2	Computenodes	17
2.2.3	übrige Geräte	17
2.2.4	Netzwerkverbindungen	17
2.3	Technischer Überblick	18
2.3.1	Verwendete Protokolle	19
2.4	Technische Verbindungen & Kommunikation	19
2.5	Komponentenbeschreibung	20
2.5.1	Router	20
2.5.2	PC	20
2.5.3	Managementnode	20
2.5.4	Netzteil Managementnode	20
2.5.5	NAS	20
2.5.6	Switch	20
2.5.7	Computenodes	21
2.5.8	Schaltnetzteil Computenodes	21
2.6	Tests	21
2.6.1	Testobjekte	21
2.6.2	Testarten	22
2.6.3	Testvoraussetzungen	22
2.6.4	Fehlerklassen	23
2.6.5	Testhilfsmittel	23
2.6.6	Testfälle	23
2.7	Monitoring	28
2.7.1	Service Monitoring - Nagios	28
2.7.2	Performance Monitoring - Ganglia	28
2.8	Mining	28
2.8.1	Kryptowährungen	29
2.9	Hostnamen	29
2.9.1	Managementnode Name	29
2.9.2	Reservenode Name	29

Nebula - Mining Cluster

Basierend auf der ARMv8 Architektur

T	7	7.			
In	h.a.	l.t.s	verz	e.2.C.	nnns

2.9.3	Computenode Namen	30
3	Realisierung	31
3.1	Physischer Aufbau	31
3.1.1	Komponenten Platzierung	31
3.1.2	Kühlung	32
3.1.3	Stromversorgung	32
3.1.4	Kommunikation	32
3.2	Technischer Aufbau	32
3.2.1	Betriebssystem	32
3.2.2	Vorbereitungen	33
3.2.3	Installation	33
4	Schlussbetrachtung	33
4.1	Arbeiten nach dem Projekt	34
4.2	Persönliche Betrachtung	34
4.3	Danksagung	34
5	Authentizität	34
\mathbf{A}	Anhang	j
В	Vorbereitungen	ii
B.1	Betriebssystem installieren	ii
B.2	Betriebssystem & SD Karte konfigurieren	ii
\mathbf{C}	Installation	iv
C.1	Vorbereiten der Raspberry PI's	iv
C.2	Quellenverzeichnis	vi
D	Diplomeingabe	vi
${f E}$	Testprotokoll	X
E.1	Testobjekte	xii
E.2	Arbeitsjournal	xiii
E.3	Protkolle	xiii
E.4	Datenblätter	xiv
E.5	Produktinformationen	xiv
E.6	Benutzerdokumentation	xiv
Abkürz	zungsverzeichnis	xiv
Abbild	ungsverzeichnis	xv
Tabelle	enverzeichnis	xvi

Listings xviii

1 Initialisierung

1.1 Ausgangslage

Die aktuelle Umgebung ist nicht auf das Schürfen von Kryptowährungen ausgelegt. Das System hat eine Uptime von maximal 40%. Auch der Standort, der Lärm und die Hitze des Systems und Raumes werden als störend empfunden. Dadurch wurden hauptsächlich Tokens auf Börsen gekauft, welche nicht geschürft werden können. Die Sicherung der Daten ist ebenfalls nicht gewährleistet. Zudem existieren keine Monitoring Tools, welche den Status des Schürfens und der Hardware zu erkennen geben. Dabei wird das Analysieren von Problemen als schwierig erachtet, da keine Logdaten existieren, oder diese mit viel Aufwand zusammengesucht werden müssen.

1.1.1 Weshalb soll das Projekt realisiert werden?

Es soll eine stabile Lösung zum Schürfen von Kryptowährungen auf CPU Basis erschaffen werden, welche permanent in Betrieb sein kann und Profit generiert.

1.1.2 Für wen ist das Projekt gedacht?

Das Projekt wird in eigenem Interesse aufgebaut. Es existieren demnach keine Kunden und Abhängigkeiten zu anderen Personen oder Unternehmen.

1.2 Situationsanalyse

Für das Schürfen von Kryptowährungen werden folgende Komponenten eingesetzt:

Nr.	Typ	Komponente	Modell Version
1	$_{\mathrm{HW}}$	Prozessor (CPU)	Intel Core i7-4700, 3.40 GHz Quad Core
2	HW	Grafikkarte (GPU)	NVIDIA GeForce GTX 1070 Ti
3	HW	Festplatte (HDD)	TOSHIBA DT01ACA200
4	SW	Schürf-Software	Minergate, Version 7.2
5	SW	Betriebssystem (OS)	Windows 10 EDU, Version 1709

Tabelle 1: Situationsanalyse Komponenten

Legende: HW = Hardware, SW = Software

1.2.1 Stärken

Nr.	Kategorie	Beschreibung
1	Bedienbarkeit	Das Schürfen der Währungen kann über ein GUI gestartet
		werden.
2	Wartung	Es existieren keine Umsysteme

Tabelle 2: Situationsanalyse Stärken

1.2.2 Schwächen

Nr.	Kategorie	Beschreibung	
1	Flexibilität	Während des Schürfens, ist der Computer für andere Tätig-	
		keiten blockiert.	
2	Kosten	die Betriebskosten sind höher als der Ertrag	
3	Betriebszeit	Es kann nicht durchgehend Kryptowährungen geschürft wer-	
		den.	

Tabelle 3: Situationsanalyse Stärken

1.3 Ziele

1.3.1 Vorgehensziele

Zeitplan

Während der Initialisierungsphase wurde eine Projektplanung mit den Aufgaben und den vorgesehenen Aufwänden während des Projektes erstellt. Die definierten Soll-Aufwände sollen mit den stetig nachgeführten IST-Aufwänden verglichen werden. Die Abweichungen werden im Projektplan direkt errechnet.

Meilensteine

Die Meilensteine wurden in der Zeitplanung des Projektes berücksichtigt und definiert. Die Aufwände werden jeweils im Projektplan nachgeführt, dies ermöglicht einen Ist- und Soll-Aufwand Vergleich

Arbeitsjournal

Das Arbeitsjournal wird alle 2 Wochen an die Experten versendet. Diese haben die Möglichkeit die Aufwände und investierte Zeit zu prüfen.

Beweiserbringung

Alle geleisteten Arbeiten sollen in dokumentarischer Form, Präsentation oder einem Gespräch bewiesen werden können.

1.3.2 Projektziele

Nr.	Ziel	Messgrösse	Kat.	Prio.
01	Die CPU des Clusters soll zu 90% zum Schürfen von Kryptowährung beansprucht werden	Log und Monitoring Auswertungen nach dem Testlauf	LZ	M
02	Die Daten werden auf einem NAS mit RAID I gesichert	Die Festplatten werden einzeln über- prüft, der Datenbestand muss iden- tisch sein	BZ TZ	M
03	Der Cluster soll eine Verfügbarkeit von 98% aufweisen	Dies kann erst nach dem Testlauf durch ein Monitoring der Laufzeit gemessen werden	LZ BZ TZ	M
04	Es können während des Betriebs neue Computenodes hinzugefügt werden & ausfallende Computeno- des verursachen keinen Unterbruch des Betriebs	Während der Testphase werden neue Computenodes hinzugefügt und Computenodes vom Cluster getrennt	LZ BZ TZ	M
05	Der Cluster kann für verschiedene Anwendungsgebiete eingesetzt wer- den	Während der Testphase werden andere Applikationen welche die Cluster Ressourcen verwenden sollen installiert	BZ	M
06	Das Betriebssystem soll über das Netzwerk an die Computenodes ver- teilt werden um SD-Karten zu spa- ren und ein Betriebssystem zentral verwalten zu können	Wird während der Installation über Systemlogdateien ausgelesen und mit SSH-Zugriffen getestet.	WZ BZ TZ	M
07	Das Schürfprogramm soll automatisiert die gewinnbringendste Währung abbauen	Nach der Testphase werden die Log- dateien und Wallets ausgewertet und mit Daten der Währungskurse abge- glichen	LZ WZ	K
08	Mit der geschürften Währung soll auf Börsen gehandelt werden können	Kann nach der Realisierung durch Transaktionslogdaten gemessen wer- den	LZ WZ	K
09	Die Wartungsarbeiten sollen pro Monat nicht mehr als 3 Stunden betragen	Wird durch ein Eingriffsprotokoll nach der Realisierungsphase festge- halten	BZ	K
10	Der Cluster soll einfach transportier- bar und wiederaufbaubar sein	Der Cluster wird nach der Testphase physisch verschoben und neu Aufge- baut, dabei wird die Zeit des Wie- deraufbaus gemessen	TZ	K

Tabelle 4: Projektziele

Legende: LZ = Leistungsziel, WZ = Wirtschaftsziel, BZ = Betriebsziel, TZ = Technisches Ziel, M = Muss-Kriterium, K = Kann-Kriterium

1.3.3 Lieferobjekte

Folgende Dokumente werden während des Projektes erstellt und geliefert.

Nr.	Dokument	Phase	Termin
1	Projektplan	Initialisierung	15.02.2018
2	Projektlogo	Initialisierung	20.02.2018
3	Projektauftrag	Initialisierung	20.02.2018
4	Studie	Initialisierung	25.02.2018
5	Detailkonzept	Konzept	17.03.2018
6	Testkonzept	Konzept	22.03.2018
7	Installationshandbuch	Realisierung	10.05.2018
8	Testprotokoll	Realisierung	03.05.2018
9	Betriebshandbuch	Realisierung	13.05.2018
10	Diplombericht	Einführung	22.05.2018

Tabelle 5: Lieferobjekte

1.3.4 Rahmenbedingungen

Folgende Bedingungen gelten für die Durchführung des Projektes:

- Dem Projekt stehen 294 Stunden Arbeitszeit zur Verügung.
- Es wird nach der Projektmethode HERMES gearbeitet.
- Der Stundenansatz der involvierten Personen ist auf 120.00 CHF angesetzt.
- Neue Anforderungen werden erst nach dem Projektabschluss berücksichtigt.

1.3.5 Abgrenzungen

- Das Projekt wird für den privaten Nutzen durchgeführt.
- Die Experten sind in den Kostrenrechnungen nicht berücksichtigt.
- Der Cluster wird aus Kosten- und Leistungsgründen nicht redundant aufgebaut.
- Neue Anforderungen können während des Projektes nicht berücksichtigt werden.
- Das Projektbudget kann aus finanziellen Gründen nicht erhöht werden.
- Defekte Computenodes werden während des Projektes nicht ersetzt.

1.4 Lösungsbeschreibung

Es wird physisch ein Cluster aus mindestens 40 aktiven RPI's aufgebaut. Der Cluster soll aus finanziellen Gründen mit möglichst wenigen Komponenten wie, Netzteile, USB Kabel & Speicherkarten in Betrieb genommen werden. Dabei wird das Betriebssystem zentral verwaltet und über das Netzwerk an die einzelnen Raspberry PI's verteilt. Zugleich wird zur Datensicherheit ein Netzwerkshare (NAS) mit RAID I installiert. Zusätzlich soll die rentabelste Währung automatisch für eine Woche geschürft werden, bevor eine erneute Prüfung auf die rentabelste Währung geschieht. Die geschürften Kryptowährungen werden jeweils in die entsprechenden verschlüsselten Wallets transferiert. Durch die geschürften Währungen soll an Börsen gehandelt werden können, welche es ermöglichen sollen Profit zu erzielen. Durch eine Monitoring, Alarming und Logdaten Lösung soll auf Missstände des Clusters aufmerksam gemacht werden. Die Tools bieten sich sogleich für eine Analyse der Probleme an und sind über einen Webbrowser aufrufbar.

1.5 Kosten

1.5.1 Einmalige Kosten

Beschaffungskosten

Anzahl	Komponente	St"uckpreis(CHF)	Gesamtwert(CHF)
40	Raspberry PI Model B+	33.00	1320.00
1	Schaltnetzteil	229.00	229.00
1	TTL Serial Kabel	30.00	30.00
40	Patchkabel Cat. 5e	1.00	40.00
1	TP-Link Switch	220.00	220.00
1	Synology NAS DS216	600.00	600.00
1	Diverse Kabel, Schrauben	50.00	50.00
-	Total	-	2'489.00

Tabelle 6: Beschaffungskosten

Aufwandskosten

Stunden	Phase	Stundenansatz(CHF)	Gesamtkosten(CHF)
30	Initialisierung	120.00	3'600.00
50	Konzept	120.00	6'000.00
142	Realisierung	120.00	17'040.00
22	Einführung	120.00	2'640
25	Periodische Arbeiten	120.00	3'000.00
25	Reserve	120.00	3'000.00
294	Total	120.00	35'280.00

Tabelle 7: Aufwandskosten

1.5.2 Betriebskosten (Repetitiv)

Folgende Voraussetzungen sind für die folgenden Berechnungen definiert.

- 1000 Watt die Stunde kosten 0.2894 CHF.
- Ein Monat hat 30 Tage
- Ein Jahr hat 360 Tage

Wartungskosten

Pro Monat sind 3 Stunden Wartungsaufwand einzuberechnen, dadurch ergeben sich mit dem definierten Stundenansatz jährliche Wartungskosten von 4'320.00 CHF.

Stromkosten Der Strom wird durch die BKW über den Vertrag Energy Blue bezogen.

Anzahl	${f Leistung}$	Kosten in C	CHF		
RPI	kW	Stunde	Tag	Monat	Jahr
40	0.4	0.11576	2.78	83.35	1000.17

Tabelle 8: Stromkostenrechnung

1.5.3 Gesamtkosten

Jährliche Kosten

Das Projekt ist Anfangs Juni abgeschlossen. Deshalb belaufen sich die Wartungs- und Stromkosten im 1. Jahr auf die Hälfte gegenüber den Folgejahren. Der Cluster soll innerhalb von 3 Jahren gewinnbringend wirken. Die jährlichen sowie täglichen Kosten sind unten zu entnehmen.

Kostengrund	Kosten 1.Jahr	Kosten 2.Jahr	Kosten 3.Jahr
Beschaffung	2'489.00	-	-
Aufwand	35'280.00	-	-
Wartungskosten	2'160.00	4'320.00	4'320.00
Stromkosten	500.00	1000.00	1000.00
Total	40'429.00	45'749.00	51'069.00

Tabelle 9: Gesamtkosten

Tägliche Kosten Auf 3 Jahre ausgerechnet muss täglich ein Ertrag von 47.29 CHF erwirtschaftet werden um die investierten Aufwände und Kosten zu decken.

1.6 Wirtschaftlichkeit

Das Projekt wird für den privaten Nutzen und aus eigenem Interesse aufgebaut, aus diesem Grunde ist die Wirtschaftlichkeit kein Kernpunkt des Clusters.

1.6.1 Spekulation

Das Ziel des Clusters ist es täglich **30 CHF** zu erwirtschaften. Dieser Wert ist nicht deckungsgleich mit den täglichen Kosten, soll aber über Marktspekulationen gedeckt werden. durch die volatilen Märkte sind Kursschwankungen in beide Richtungen möglich. Es ist jedoch davon auszugehen, dass die Währungen in Zukunft noch an Wert zulegen werden, sobald diese einmal als geltende Zahlungsmittel aufgenommen werden. Durch reine Betriebskosten ohne Spekulation ergibt sich ein tägliches Defizit von **17.29 CHF** welches einem Verlust von **36.56**% entspricht.

1.6.2 Infrastruktur

Beim Projekt wird der Fokus der Wirtschaftlichkeit hauptsächlich auf den Aufbau gelegt, hier gilt es möglichst wenige überflüssige Komponenten zu benutzen. Es wurde darauf geachtet, dass die Komponenten durch eine zentrale Stelle versorgt werden. Dabei werden die Raspberry PI's mit nur einem Netzteil versorgt und das Betriebssystem wird über das Netzwerk verteilt welches Speicherkarten einspart.

Anzahl	Komponente	Stückpreis in CHF	Gesamtwert in CHF
Standardle	ösung		700.00
4	USB-HUB 10 Ports	35.00	140.00
40	Mini-USB Kabel	6.00	240.00
40	MicroSD Karte	8.00	320.00
Projektlösung			268.00
1	Netzteil	230.00	230.00
1	MicroSD Karte	8.00	8.00
_	Diverse Stromkabel	30.00	30.00
Differenz	der Lösungen	432.00	

Tabelle 10: Wirtschaftlichkeit Hardware

Durch die vorgesehene Hardwarelösung können 432.00 CHF eingespart werden. Dies entspricht einer Einsparung von 261%.

1.7 Planung

1.7.1 Grober Projektplan

Die folgende Tabelle zeigt die Arbeiten an, welche während des Projektes erledigt werden sollen. Ein grafischer und detailierter Projektplan ist dem Anhang zu entnehmen.

Aufg	Aufgabe		Ende		Dauer in Stunde	
				Soll	Ist	Abw.
0.0	Initialisierung			30		
0.1	Projektplan erstellen	06.02.2018	15.02.2018	4		
0.2	Projektlogo erstellen	06.02.2018	20.02.2018	2		
0.3	Studie: durchführen	06.02.2018	20.02.2018	18		
0.4	Projektauftrag erstellen	20.02.2018	25.02.2018	5		
0.5	Diplombericht erstellen	25.02.2018	28.02.2018	4		
1.0	Konzept			50		
1.1	Zwischen-Meeting	01.03.2018	01.03.2018	6		
1.2	Detailkonzept erstellen	05.03.2018	17.03.2018	12		
1.3	Testkonzept erstellen	18.03.2018	22.03.2018	11		
1.4	Dokumenten Review	24.03.2018	26.03.2018	12		
2.0	Realisierung			142		
2.1	Physischer Aufbau	03.04.2018	07.04.2018	20		
2.2	Stromversorgung einrichten	08.04.2018	09.04.2018	8		
2.3	Raspberry PI's vorbereiten	17.04.2018	17.04.2018	4		
2.4	Netzwerkboot einrichten	21.04.2018	23.04.2018	8		
2.5	Cluster Software installieren	24.04.2018	25.04.2018	20		
2.6	Schürf Software installieren	26.04.2018	26.04.2018	12		
2.7	Entwickeln von Tools und Automatismen	02.04.2018	28.04.2018	30		
2.8	Monitoring einrichten	01.05.2018	10.05.2018	14		
2.9	Periodische Systemtests	10.04.2018	13.05.2018	7		
3.0	Installationshandbuch erstellen	02.04.2018	10.05.2018	8		
3.1	Testprotokoll erstellen	02.05.2018	03.05.2018	3		
3.2	Produktdokumentation	02.04.2018	10.05.2018	3		
3.3	Betriebshandbuch	01.05.2018	13.05.2018	5		
3.4	Freigabe zur Einführung	07.05.2018	15.05.2018	0		
4.0	Einführung			22		
4.1	Abschlussbericht	17.05.2018	22.05.2018	6		
4.2	Management Summary	20.05.2018	24.05.2018	8		
4.3	Vorbereitung Abschluss Meeting	22.05.2018	27.05.2018	3		
4.4	Drucken und Binden	24.05.2018	01.06.2018	2		
4.5	Abschluss-Meeting	02.06.2018	02.06.2018	2		
4.6	Projektabschluss	03.06.2018	03.06.2018	1		

Tabelle 11: Grober Projektplan

1.7.2 Termine

Ereignis	Datum	Teilnehmer	Standort
Einmalige Ereignisse			
Kick-Off Meeting	05.02.2018	Projektleiter & Experten	Post IT, Zollikofen
Zwischenmeeting	01.03.2018	Projektleiter & Experten	GIBB (TSBE), Bern
Abgabe des Diplomberichts	01.06.2018	Projektleiter	-
Abschlussmeeting	07.06.2018	Projektleiter & Experten	GIBB (TSBE), Bern
Periodische Ereignisse			
Statusbericht	Monatlich	Projektleiter	-
Arbeitsjournal	2-Wöchentlich	Projektleiter	-

Tabelle 12: Termine

1.8 Ressourcen

1.8.1 Budget

Dem privaten Projekt steht ein Budget von 3'250 CHF zu. Die Aufwände werden hierbei nicht berücksichtigt, da keine Löhne bezahlt werden müssen.

Nr.	Verwendungszweck	Budget in CHF
1	Beschaffungen	3'000.00
2	Apéro	150.00
3	Drucken & Binden	100.00
	Total	3'250.00

Tabelle 13: Projektbudget

1.8.2 Sachmittel

Die aufgelisteten Komponenten werden für die Lösung benötigt.

Nr.	Anzahl	Komponenten	Modell / Spezifikationen
1	40	Mini Computer	Raspberry PI 3 Model B+
2	1	Schaltnetzteil	RSP-750-5, Mean Well
3	1	USB zu TTL Serial-Kabel	Adafruit USB zu TTL Seriel Kabel, 75cm
4	40	Ethernetkabel	FTP Cat.5e Patchkabel
5	1	Switch	TL-SL3452 48-Port 10/100, TP-Link
6	1	Datenspeicher	Synology NAS DS218
7	*	Diverse Kabel & Befestigungsmaterialien	*

Tabelle 14: Sachmittel

^{*} Anzahl und Hertseller unbekannt. Die Artikel wurden in lokalen Baumärkten eingekauft

1.9 Organisation

1.9.1 Projektorganisation

Die Projektorganisation ist wie folgt aufgebaut.

Rolle	Verantwortlichkeit
Auftraggeber	Erstellt den Auftrag und übergibt diesen an den Projektleiter
Projektleiter	Organisiert die Planung, Durchführung und präsentiert das Projekt.
Experte	Stehen in Kontakt mit dem Projektleiter und beraten ihn bei Schwierigkeiten
Engineering	Stellt dem Betreiber zu implementierende Applikationen zur Verfügung
Betreiber	Setzt die Lösung technisch um
Tester	Testet die Lösung auf Fehler

Tabelle 15: Organisation

1.9.2 Projektablage

Nr.	Was	Wo
1	Allgmeine Ablage	wiki.influ.ch
2	Dokumentation	https://github.com/amreinch/Nebula_AMC
3	Snapshots	Lokal, D:\Diplomarbeit\CentOS_works
4	Skripte, Entwürfe	https://github.com/amreinch/OpenHPC_Install_Nebula

Tabelle 16: Projektablage

1.10 Cluster-Software evaluation

1.10.1 Cluster Software Kriterien

Es wurden drei Cluster Software Produkte evaluiert, dabei mussten die Muss Kriterien erfüllt werden um in die Auswahl zu kommen. Diese Kriterien werden für den Entscheid der Software nicht berücksichtigt, grenzt aber die Auswahlmöglichkeit der Produkte ein.

Nr.	Anforderung	Prio.
01	Ist die Software HPC tauglich?	M
02	Kann das Produkt innerhalb des vorgesehenen Zeitraumes installiert werden?	M
03	Ist die Lösung skalierbar?	M
04	Existieren Dokumentationen?	S
05	Kann Support beansprucht und bezogen werden?	S
06	Ist die Lösung benutzerfreundlich?	S
07	existieren Verwaltungstools?	S
08	Fallen zusätzliche Kosten an?	S

Tabelle 17: Software Kriterien

1.10.2 Informationsbeschaffung

Es wurde nach einer Lösung gemäss der oben definierten Kriterien gesucht. Dabei bin ich auf den Wikipedia Eintrag https://en.wikipedia.org/wiki/Comparison_of_cluster_software gestossen, welcher die verschiedenen Cluster Software Angebote auflistet. Dabei wurde nur nach einer HPC Lösung gefiltert. Durch diese Analyse hat sich die OpenHPC Lösung der Linux Foundation herauskristalisiert. Weiterhin wurden Suchbegriffe wie "HPC Raspberry PI" über Suchmaschinen eingegeben da die Computenodes des Cluster Raspberry PI's sein sollen. Folgender Artikel habe ich als interessant erachtet und wurde genauer betrachtet.http://www.hpctoday.com/best-practices/tinytitan-a-raspberry-pi-computing-based-cluster/ Mit einer weiteren Suche(hpc cluster software raspberry) bin ich auf einen Guide gestossen, der relativ simpel aussieht und einfach umzusetzen ist.http://thundaxsoftware.blogspot.ch/2016/07/creating-raspberry-pi-3-cluster.html. Es gab durchaus noch weitere Guides und Softwarelösungen, welche ich aber nach einer genaueren Analyse der Installationsanleitung verworfen habe, da diese mir zum Teil zu wenig Informationen lieferten. Während der Informationsbeschaffung wurden alle Installationsskripte und Anleitungen sorgfältig durchgelesen um diese als mögliche Variante zu empfehlen. Während der Informationsbeschaffung bin ich auf zwei Fachbegriffe (MPI & SLURM) welche meistens in Zusammenhang mit HPC stehen gestossen. Diese musste ich ebenfalls noch in Erfahrung bringen.

1.11 Lösungsvarianten

1.11.1 Variantenübersicht

Die Informationen wurden über die folgenden Produkte gesammelt und zusammengestellt:

Nr.	Variante	Bezeichnung
01	OpenHPC	HPC Lösung entwickelt von der Linux Foundation
02	TinyTitan	Open Source Lösung entwickelt von Oak Ridge Leadership Com-
		puting Facility
03	Minimale Lösung	Simple 32-Bit Architekturlösung

Tabelle 18: Variantenübersicht

1.11.2 Variante V1 «OpenHPC»

Beschreibung

OpenHPC gilt als vorangeschrittenes OpenSource Projekt der Linux Foundation. Das Produkt steht in direkter Verbindung mit diversen grossen IT Unternehmen weltweit. Das Ziel der Linux Foundation ist es, durch OpenHPC eine kostengünstige sowie schnell zu installierende HPC-Umgebung aufzubauen. Durch viele zusätzliche OpenSource Tools rundet sich das Produkt ab und gilt als ernstzunehmender Konkurrent gegenüber kostenpflichtiger Software.

Installation und Betrieb

Es existieren diverse Guides, Foren und Chats sowie eine E-Mail-Liste zu OpenHPC. Dadurch scheint die Unterstützung bei allfälligen Problemen vorhanden zu sein. Die Installati-onsanleitung, welche von der Linux Foundation geschrieben wurde, liest sich sehr gut und ist absolut ausreichend für die Installation. Der Betriebsaufwand wird als gering eingeschätzt, da es ein sehr ausgereiftes Produkt, welches stetig weiterentwickelt wird, ist.

Voraussetzungen, Abhängigkeiten

Für die Cluster Software werden mindestens ein Masternode und 4 Computenodes voraus-gesetzt. Das Betriebssystem bezieht sich hierbei auf ein CentOS7x. Jeder Computenode be-nötigt 2 Netzwerkschnittstellen. Das eine Interface wird für den Standard Ethernet Zugriff verwendet und das zweite Interface wird für die Kommunikation zu jedem BMC Host ver-wendet. Es werden zusätzliche Intel Bibliotheken benötigt. Dazu müssen Lizenzen für Parallel Studio XE von Intel besorgt werden. Die Lizenzen können mit einer offiziellen E-Mail-Adresse der Schule gratis bezogen werden. Die Linux Foundation erwähnt in ihrem Guide, dass sie die «Bring your own Licence» Strategie verfolgt.

1.11.3 Variante V2 «TinyTitan»

Beschreibung

Das Produkt wurde von der Firma «Oak Ridge Facility» entwickelt. Die Software ist unter anderem

1 Initialisierung

für RPI's entwickelt worden. TinyTitan wurde für das Durchführen wissenschaftli-cher Berechnungen entworfen. Jedoch wurde seit geraumer Zeit an dem Produkt nicht mehr weitergearbeitet, wie dem offiziellen GitHub Repository zu entnehmen ist. Die Community selbst erweist sich ebenfalls als sehr klein.

Installation und Betrieb

Für die Installation des Produktes wird ein XServer vorausgesetzt, da empfohlen wird Tiny-Titan über ein GUI zu installieren. Der Installationsanleitung ist ebenfalls zu entnehmen, dass sich die Entwickler viele Gedanken über das Look a Like des Clusters gemacht haben, zum Beispiel wird ein Thema dem Einbinden von LED's gewidmet. Die Installation findet aus-schliesslich durch vordefinierte Scripts statt. Durch die kleine Community und nicht mehr ge-pflegte Software kann nichts über den Betriebsaufwand in Erfahrung gebracht werden.

Voraussetzungen, Abhängigkeiten

Laut Guides werden lediglich 2 RPI's benötigt.

1.11.4 Variante V3 «Minimale Lösung»

Beschreibung

Die Minimale Installation ist eine zum Teil Eigenbau Lösung, welche sich nahe an diverse Guides aus dem Internet bezieht. Jedoch wird diese auf eigene Bedürfnisse angepasst.

Installation und Betrieb

Da es bei dieser Lösung selber zu entscheiden gibt, was und wie die Lösung installiert und umgesetzt werden soll, kann während der Installation darauf geachtet werden, was den grössten Vorteil für den Betrieb danach mit sich bringt. Während dem Projekt soll die Installation aber klein gehalten werden und nur das nötigste wird umgesetzt.

Voraussetzungen, Abhängigkeiten

Es werden 2 RPI's benötigt.

1.11.5 Anforderungsabdeckung der Varianten

Nr.	Kriterium	Gewichtung	Begründung
1	Installation	40%	Die Installation soll keine Hürden aufwei-sen, da der Zeitplan
			ansonsten nicht eingehalten werden kann.
2	Partner	10%	Je mehr Partner vorhanden sind, desto grösser und innova-
			tiver ist die Software. Die Software hat dadurch einen fixen
			Standpunkt auf dem Markt und wird wei-terentwickelt.
3	Aktualität	20%	Fördert den LifeCycle und die Sicherheit der Cluster-Software.
4	Tools	30%	Mitgelieferte Tools

Tabelle 19: Anforderungsabdeckung

1 Initialisierung

Nr.	Kriterium	Note	Begründung
1	Installation	0/3/5	5 = Kann gemäss Anleitung direkt installiert werden
			3 = Veraltete Anleitung, es wird mit Kompatibilitätsproblemen gerechnet
			0 = Keine Anleitung vorhanden
2	Partner	0/2	2 = Viele Partner vorhanden
			0 = keine Partner vorhanden
3	Aktualität	0/3/5	5 = Releases in den letzten 2 Monaten
			3 = Releases in den letzten 6 Monaten
			0 = Keine Releases seit einem Jahr
4	Tools	0/5	5 = Es werden Tools angeboten
			0 = Es werden keine angeboten

Tabelle 20: Bewertung der Varianten

1.12 Bewertung der Varianten

Kriterium	Gewicht	Variante 1	Variante 2	Variante 3
Installation	40%	5x40 = 200	4x40 = 160	5x40 = 200
Partner	10%	2x10 = 20	0x10 = 0	0x10 = 0
Aktualität	20%	5x20 = 100	0x20 = 0	5x20 = 100
Tools	30%	5x30 = 150	0x30 = 0	0x30 = 0
Total	100%	470	160	260

Tabelle 21: Bewertung der Varianten

1.13 Variantenentscheid

Anhand der Bewertung wird empfohlen, die OpenHPC Lösung der Linux Foundation zu ver-wenden. Die Installation kann gemäss Anleitung in kürzester Zeit umgesetzt werden. Die Releases können mit kleinerem Aufwand installiert werden. Zudem runden die Möglichkeiten der Schnittstellen und Komponenten den Entscheid ab. Es ist möglich, Administrations- sowie Performance Monitoring Tools einzusetzen, welche mit der Lösung harmonieren. Als Hürde sehe ich die möglichen anfallenden Lizenzen und das zweite Netzwerk Interface, welches man für die Kommunikation unter den RPI's benötigt.

1.14 Risiken

In der untenstehenden Abbildung kann entnommen werden, welche Risiken während des Projekts existieren. Dabei sind Eintrittswahrscheinlichkeit und Auswirkungen tabularisch aufgelistet.

Abbildung 1: Risiken

Nr.	Beschreibung	Massnahmen zur Problemlösung
1	Der Terminplan kann nicht einge-	- Zeitplan anpassen
	halten werden	- Experten informieren und nach einer Lösung suchen
2	Ausfall durch Unfall	Experten informieren und nach einer Lösung suchen
3	Technische Umsetzungsprobleme	- Informieren der Experten
		- Hilfe der Experten einholen
		- Alternative Lösung umsetzen
4	Defekte Hardware (Switch, Netz-	Hardware muss umgehend neu beschafft werden
	teil)	
5	Softwarefehler	Patches einspielen, Kontakt mit Lieferanten aufneh-
		men

Tabelle 22: Risiken

2 Konzept

Das Konzept beschreibt den vorgesehenen Aufbau des Clusters und beinhaltet die Testfälle welche bei der Abnahme nach der Realisierung berücksichtigt werden müssen.

2.1 Physikalischer Überblick

Durch die aufgeführte Abbildung ist eine Übersicht der vorhandenen und angeschlossenen Komponenten des Projektes ersichtlich.

Abbildung 2: Physikalischer Überblick

Beschreibung

Der grün markierte Teil beinhaltet das Vorhaben. Diese Komponenten werden neu in das Netzwerk eingebunden und aufgebaut. Die Komponenten ausserhalb des grünen Bereiches existieren bereits und es müssen für die Umsetzung konfigurationen vorgenommen werden.

Verbindung 1

Der Managementnode wird über ein herkömmliches Netzteil per Micro USB mit Stom versorgt.

Verbindung 2

Die Computenodes werden über ein Schaltnetzteil über die GPIO Pins mit Stom betrieben.

2.2 Physikalische Verbindungen

2.2.1 Stromversorgung Managementnode

Der Managementnode wird über den Micro USB Anschluss mit Strom versorgt. Dabei muss darauf geachtet werden, dass ein mindest Strom von 2 Ampere fliesst. Zudem wird eine konstante Spannung von 5 Volt benötigt. Deshalb wird ein Netzteil mit einer Leistung von 10 Watt verwendet. Das Netzteil wird über eine Stromschiene an das Stromnetz angeschlossen.

2.2.2 Computenodes

Die Managementnodes werden über die GPIO Pins via Jumperkabel über ein gemeinsames Netzteil mit Strom versorgt . Da es sich hierbei um eine Anzahl von mindestens 45 Raspberry's handelt ist ein Netzteil mit einer Leistung von 500W vorgesehen. Das Netzteil wird über die Stromschiene an das Stomnetz angeschlossen.

2.2.3 übrige Geräte

Die übrigen Geräte werden über den herkömmlichen Weg mit Strom über eine Stromschiene versorgt.

2.2.4 Netzwerkverbindungen

Die folgenden Komponenten sind über den Switch in das lokale Netzwerk eingebunden, die nicht aufgelisteten Geräte werden direkt über Powerline oder WLAN mit dem Router verbunden.

- Managementnode
- Computenodes
- NAS

2.3 Technischer Überblick

Abbildung 3: Technischer Überblick

Beschreibung

Der grün markierte Teil beinhaltet das Vorhaben. Diese Komponenten werden neu in das Netzwerk eingebunden und aufgebaut. Die Komponenten ausserhalb des grünen Bereiches existieren bereits und es müssen für die Umsetzung konfigurationen vorgenommen werden.

Verbindung 1

Der PC kann mit dem **SSH Protokoll** auf den Managementnode zugreifen. Dadurch kann die Installation vorgenommen werden. Zugleich wird über **HTTP** via Webbrowser der Zugriff auf diverse Applikationen wie z.B. Nagios & Ganglia ermöglicht.

Verbindung 2

Der Managementnode verteilt via **dnsmasq** und **TFTP** das Betriebssystem an die Computenodes über das Netzwerk. Sogleich ist auch der **Slurm Controller** für die Jobsteuerung auf dem Managementnode installiert, welcher mit den **Slurm Daemons** auf den Computenodes kommuniziert. Weiterhin sind die Monitoring Komponenten **Ganglia und Nagios** auf dem Managementnode installiert, welche Monitoringdaten der Computenodes sammeln und zur Auswertung verarbeiten.

Verbindung 3

Der Router verteilt via **DHCP** statische IP Adressen und Hostnamen welche über die MAC Adressen definiert sind.

Verbindung 4

Der NAS Share wird über SMB auf den Computenodes und dem Masternode angehängt.

2.3.1 Verwendete Protokolle

Verbindur	ng Protokoll	Protokollfamilie	Ports
1	SSH	TCP	22
2	SMTP	TCP	25
3	DHCP	UDP	67 / 78
4	TFTP	UDP	69
5	HTTP	TCP	80
6	SMB	TCP	445

Tabelle 23: Protokolle

2.4 Technische Verbindungen & Kommunikation

Nr.	Quelle	Ziel	Betrifft	Beschreibung
1	NAS	Mgmt	Datenablage	Der NAS Share wird über das SMB Protkoll ange-
				hängt.
2	NAS	Compute	Datenablage	Der NAS Share wird über das SMB Protkoll ange-
				hängt.
3	Router	Mgmt	IP Adresse	Anhand der MAC Adresse wird eine statische IP
				Adresse zugewiesen.
4	Router	Compute	IP Adressen	Anhand der MAC Adressen werden statische IP
				Adressen zugewiesen.
5	Router	Mgmt	Hostname	Es wird über den Router ein definierter Hostname
				verteilt.
6	Router	Compute	Hostnamen	Es werden über den Router definierte Hostnamen
				verteilt.
7	Mgmt	Compute	Netzwerkboot	Der Managementnode beliefert die Computenodes
				über das TFT Protkoll mit dem Betriebssystem
8	Internet	Mgmt	Zeitserver	Die aktuelle Zeit wird mit NTP über das Internet
				synchronisiert.
8	Mgmt	Compute	Zeitserver	Die Computenodes beziehen die aktuelle Zeit über
				NTP.
9	Internet	Compute	Internetzugriff	Die Computenodes können über ein routing über den
				Mgmt auf das Internet zugreifen.
10	PC	Mgmt	Zugriff	Verbindungen über den PC können mit dem SSH
				Protokoll aufgebaut werden.
11	PC	Compute	Zugriff	Verbindungen über den PC können mit dem SSH
				Protokoll aufgebaut werden.

Tabelle 24: Verbindungen & Kommunikation

Legende: Mgmt = Managementnode, Compute = Computenode, PC = Home Computer

2.5 Komponentenbeschreibung

2.5.1 Router

Bei dem Router handelt es sich um eine Internet-Box Plus von Swisscom. Das Admin Interface ist über http://internetbox aufrufbar.

2.5.2 PC

Der PC ist selbst zusammengestellt und wird für den SSH Zugriff auf den Managementnode und für Zugriffe auf die Webanwendungen des Clusters benötigt.

2.5.3 Managementnode

Der Managementnode dient der Jobsteuerung sowie Clusterverwaltung. Alle zentralen Programme sind auf diesem Node installiert.

Hostname	nebula
Modell	Raspberry PI 3 B
Betriebssystem	Centos 7.4
CPU	Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
RAM	1GB

Tabelle 25: Komponente Managementnode

2.5.4 Netzteil Managementnode

Das Netzteil liefert eine konstante Spannung von 5V und Strom von mindestens 2 Ampere. Dabei handelt es sich um ein Noname Netzeil welches eine Mindestleistug von 10 Watt aufbringen muss.

2.5.5 NAS

Das NAS ist von der Firma Synology, das Modell lautet DS216 und wird als redundanter Datenspeicher benutzt.

2.5.6 Switch

Der Managed Switch TL-SL3428 von TP-Link wird für die Kommunikation zwischen NAS, Router, Managementnode und den Computenodes benötigt. Auf die Managed Funktion wird allerdings während des Aufbaus und Betriebs verzichtet.

2.5.7 Computenodes

Die Computenodes erhalten über das Netzwerk das Betriebssystem durch den Managementnode zugestellt. Dabei sind alle Hostnamen der Computenodes mit dem Prefix "c"versehen und werden aufnummeriert. Dabei sind die Computenodes in aktiv und passiv (Fallback, Reserve) aufgeteilt, die passiven Computenodes sollen ausgefallene aktive Computenodes ersetzen und deren Arbeiten übernehmen und die Leistung des Clusters konstant halten.

Aktiv

Hostname	c[1-40]
Modell	Raspberry PI 3 B
Betriebssystem	Centos 7.4
CPU	Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
RAM	1GB

Tabelle 26: Komponente aktive Copmputenodes

Passiv

Hostname	c[41-45]
Modell	Raspberry PI 3 B
Betriebssystem	Centos 7.4
CPU	Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
RAM	1GB

Tabelle 27: Komponente passive Copmputenodes

2.5.8 Schaltnetzteil Computenodes

Das Schaltnetzteil RSP-750-5 von Mean Well liefert konstante 5 Volt aus Ausgangsspannung und kann eine Leistung bis zu 500 Watt aufbringen, daraus kénnen 100 Ampere auf die Nodes verteilt werden.

2.6 Tests

2.6.1 Testobjekte

Die folgende Hardware ist für die Tests der Funktionsfähigkeit des Clusters im Scope vorgesehen.

2 Konzept

Nr.	Objekt	Beschreibung
1	Managementnodes	Raspberry PI 3
2	Computenodes	Raspberry PI 3
3	NAS	Synology NAS DS216+
4	Switch	TP-Link TL-SL3428

Tabelle 28: Testobjekte

2.6.2 Testarten

Die Tests werden in folgende Kategorien eingestuft:

Nr.	Testart	Beschreibung	
1	Komponentetest	Die Lauffähigkeit und Erreichbarkeit der einzelnen Hardware Kompo-	
		nenten wird überprüft.	
2	Integrationstest	Es wird die Zusammenarbeit der aktiven und neu Integrierten abhängi-	
		gen Komponenten überprüft.	
3	Systemtest	Das System wird als Komplettlösung getestet. Hierbei soll geprüft wer-	
		den ob die Lösung den Anforderungen der Anwendbarkeit und Nutzbar-	
		keit dem Auftrag entspricht.	

Tabelle 29: Testarten

2.6.3 Testvoraussetzungen

Startbedingungen

Für den Start der Tests muss der Cluster aufgebaut sein und die einzelnen Komponenten müssen mit Strom versorgt sein.

Abbruchbedingungen

Die Tests werden abgebrochen sobald Fehler auftauchen welche Folgetests verhindern.

2.6.4 Fehlerklassen

Nr.	Fehlerklassen	Beschreibung
1	Fehlerfrei	Die Erwartungen sind erfüllt.
2	Harmloser Mangel	Es sind keine Betriebsverhinderungen zu erkennen. Die Erwartun-
		gen sind erfüllt.
3	Kleiner Mangel	Der Betrieb kann aufgenommen werden, das Problem sollte aber
		über einen Zeitraum von 6 Monaten behoben werden.
4	Schwerer Mangel	Der Cluster kann nur teilweise in Betrieb genommen werden, der
		Mangel muss innerhalb zwei Wochen behoben werden.
5	Kritischer Mangel	Der Cluster kann nicht in Betrieb genommen werden. Die Mängel
		müssen umgehend behoben werden.

Tabelle 30: Fehlerklassen

2.6.5 Testhilfsmittel

Die Dokumentation der Tests wird im Testprotokoll nachgeführt. Damit die Tests durchgeführt werden können wird ein PC oder Notebook welches auf mit Linux betrieben wird benötigt. Dieser Client muss sich im selben Netzwerk wie der Cluster befinden.

2.6.6 Testfälle

Bezeichnung	K-001	Start Managementnode	Systemstart
Beschreibung	Der Managementnode wird auf die Erreichbarkeit nach einem System-		
	start der Komponenten i	iberprüft	
Testvoraussetzung	Der Managementnode un	d der Test PC befinden sich	n im selben Netzwerk
Testschritte			
	 Managementnode starten (Strom anschliessen) 30 Sekunden warten auf Test PC mit dem Befehl "nmap -sn 192.168.1.10 grep Nmap scan report" auf erreichbare Geräte mit der IP 192.168.1.10 prüfen. 		
Erwartetes Ergebnis	Nmap scan report for ne	bula (192.168.1.10)	

Tabelle 31: Testfall K-001

Bezeichnung	K-002	Start Computenodes	Systemstart
Beschreibung	Die Computenodes werden auf die Erreichbarkeit nach einem System-		
	start überprüft		
Testvoraussetzung	Die Nodes und der Test	PC befinden sich im selber	n Netzwerk, der Ma-
	nagementnode muss bere	eits in Betrieb sein	
Testschritte			
	• Computenodes an Strom anschliessen		
	• 5 Minuten warten		
	 auf Test PC mit dem Befehl nmap -sn 192.168.1.11-55 grep Nmap scan report auf erreichbare Geräte mit der IP Range 192.168.1.11 192.168.1.55 prüfen 		
Erwartetes Ergebnis	Nmap scan report for c1	(192.168.1.11)	

Tabelle 32: Testfall K-002

Bezeichnung	K-003 Hostnamen & IP Nodes DHCP		
Beschreibung	Es wird geprüft ob alle Nodes die richtige IP Adresse und den richtigen		
	Hostnamen zugewiesen erhalten haben		
Testvoraussetzung	Die Nodes und der Test PC befinden sich im selben Netzwerk, alle Nodes		
	müssen gestartet sein. Dieser Test ist abhängig von K-001 und K-002		
Testschritte			
	 Auf dem Test PC mit dem Befehl nmap -sn 192.168.1.10-55 / 'grep Nmap scan report/MAC Address' die IP, den Hostnamen und die MAC Adressen auslesen. Die Ausgabe mit der Hostnamenliste im Anhang vergleichen, diese muss identisch sein 		
Erwartetes Ergebnis	Nmap scan report for c1.home (192.168.1.11)		
	MAC Address: B8:27:EB:32:39:A7 (Raspberry Pi Foundation)		
	Es müssen 46 Einträge vorhanden sein		

Tabelle 33: Testfall K-003

Bezeichnung	K-004	NAS-Share	SMB
Beschreibung	Es wird getest ob das NAS erreichbar ist und der Samba Dienst läuft		
Testvoraussetzung	Das NAS und der Managementnode sind gestartet		
Testschritte	Auf dem Managementnode mit dem Befehl nc -v nasbox 445 in der Shell		
	die Verbindung prüfen.		
Erwartetes Ergebnis	Ncat: Version 6.40 (http://map.orgncat)		
	Ncat: Connected to 2a02	:1205:5012:90f0:211:32ff:fe5	54:1e69:445.

Tabelle 34: Testfall K-004

Bezeichnung	I-001	Installation	Skript
Beschreibung	Das Installationsskript soll automatisiert durchlaufen. Der Cluster soll		
	danach direkt einsetzbar sein ohne zusätzliche Konfigurationen vorneh-		
	men zu müssen		
Testvoraussetzung	Alle Komponententests n	nüssen fehlerfrei durchgela	ufen sein
Testschritte			
	Das Installationssk	ript aus dem Git Reposito	ry herunterladen
	• Das Skript ausführen		
	• Installationsdurchlauf abwarten, ca. 1 Stunde		
	• Auf den Managementnode per SSH über den PC verbinden		
	• Den Befehl sinfo eingeben		
Erwartetes Ergebnis	Die Ausgabe muss die Computenodes im idle Status ausgeben.		
		MELIMIT NODES STATE	NODELIST
	normal* up infinite 1 idle	e c[1-45]	

Tabelle 35: Testfall I-001

Bezeichnung	I-002	Netzerkboot	Betriebssystem
Beschreibung	Der Managementnode verteilt das Betriebssystem an alle Computenodes		
Testvoraussetzung	Dnsmasq und die Netzer	kboot Verzeichnisse sind a	ngelegt. Der Master-
	node ist erreichbar		
Testschritte			
	Die Computenodes mit Strom versorgen		
	• 5 Minuten warten		
	• Auf dem Managementnode in der Konsole folgendes eingeben: for ((i=1; i<=45; i++)); do ssh c\$i hostname; done eingeben		
	Abwarten bis alle Computenodes durchgegangen wurden		
Erwartetes Ergebnis	Für jeden Computenode	wird der Hostname ausge	geben. c1, c2, c3,
	c45.		

Tabelle 36: Testfall I-002

Bezeichnung	I-003	NAS Share	Verbindung	
Beschreibung	Der NAS-Share ist auf dem Masternode und den Computenodes ange-			
	hängt			
Testvoraussetzung	Es ist ein NAS-Share ei	ngerichtet		
Testschritte				
	Auf den Managem	• Auf den Managementnode per SSH verbinden		
	• Den Befehl mount eingeben			
	• Den Mountpoint auf das NAS auslesen			
	• mit cd Dir in das Verzeichnis wechseln			
Erwartetes Ergebnis	Der Mountpoint wird bei der Eingabe von mount angezeigt			
_	Es kann in das Verzeichnis gewechselt werden			
	Falls bereits Daten auf d	Falls bereits Daten auf dem Share vorhanden sind werden diese mit dem		
	Befehl ls -lrtha angezeig	t.		

Tabelle 37: Testfall I-003

Bezeichnung	I-004	Computenodes Internet	Konnektivität
Beschreibung	Es wird überprüft ob die Computenodes eine Verbindung zum Internet		
	aufbauen können.		
Testvoraussetzung	Managementnode und Computenodes sind gestartet		
Testschritte	Auf jedem Computenode muss in der Kommandozeile ping google.com		
	eingeben werden		
Erwartetes Ergebnis		$8.205.46) \ 56(84)$ bytes of	
	mil04s24-in-f46.1e100.net (216.58.205.46) 64 bytes from mil04s24-in-		
	f46.1e100.net (216.58.205	.46)	

Tabelle 38: Testfall I-004

Bezeichnung	S-001	NAS Share	Existenz	
Beschreibung	Es wird überprüft ob de	Es wird überprüft ob der NAS-Share nebula vorhanden ist		
Testvoraussetzung	Das NAS ist erreichbar	und der Share ist eingerich	tet	
Testschritte				
	Logindaten eingeb	 Über den Browser auf dem PC auf http://nasbox:5000/ anmelden Logindaten eingeben Dem Pfad folgen Desktop/File Station/nebula 		
Erwartetes Ergebnis	Das Verzeichnis ist vorha	anden und kann gelesen und	l beschrieben werden	

Tabelle 39: Testfall S-001

Bezeichnung	S-002	Ausfall Computenode	Ausfallsicherheit	
Beschreibung	Es soll getestet werden o	Es soll getestet werden ob der Cluster weiterhin stabil läuft, nachdem		
	ein Computenode vom S	trom entfernt wird		
Testvoraussetzung	Der Cluster ist in Betriel	b		
Testschritte				
	• Job in Auftrag geben (srun)			
	• Die Stromzufuhr eines aktiven Computenodes unterbrechen			
	• Den Job mit sinfo	oder squeue abrufen		
Erwartetes Ergebnis	Der Job läuft weiter und	ist auf einen passiven Nod	e ausgelagert worden	

Tabelle 40: Testfall S-002

Bezeichnung	S-003	Slurm	Jobverwaltung
Beschreibung	Es soll getestet werden,	ob Slurm richtig konfiguri	ert wurde und Jobs
	auf dem Cluster gestarte	t werden können	
Testvoraussetzung	Managementnode und Co	omputenodes sind gestarte	t
Testschritte			
	 srun –nodes=40-40 der Kommandozeile squeue in der Kommandozeile 		k=4 testslurm.sh in
Erwartetes Ergebnis	Das testslrum.sh Script v	wird in der Queue angezeig	t und der Status ist
	auf Running		

Tabelle 41: Testfall S-003

Bezeichnung	S-004	Nagios	Monitoring	
Beschreibung	Die Installation und Kon	Die Installation und Konfiguration von Nagios soll überprüft werden		
Testvoraussetzung	Nagios ist installiert und	Konfiguriert		
Testschritte				
	http://nebula/nagiAnmeldedaten eing			
Erwartetes Ergebnis	Das testslrum.sh Script wird in der Queue angezeigt und der Status ist			
	auf Running			

Tabelle 42: Testfall S-004

2.7 Monitoring

Als Monitoring Lösungen werden die Applikationen Nagios und Ganglia eingesetzt. Die Einsatzgebiete sind wiefolgt definiert:

- Nagios = Service Monitoring
- Ganglia = Performance Monitoring

2.7.1 Service Monitoring - Nagios

Sämtliche Service Tests werden vom Managementnode aus, automatisiert in definierten Intervallen ausgeführt. Fehlgeschlagene Tests, sowie Statusänderungen der Überwachungsstatis generieren eine Benachrichtigungs E-Mail welche an den Systemadministrator versendet wird. Nagios ist über den Browser via http://nebula/nagios zu erreichen.

Die folgenden Überwachungen sollen während der Realisierungsphase implementiert werden. Weitere Überwachungen können nach dem Projektabschluss implementiert werden.

Nr.	Überwachung	Schweregrad	Intervall	Beschreibung
1	Erreichbarkeit	Kritisch	5	Es wird mittels Ping eine Statusüberprüfung der No-
				des durchgeführt
2	SSH Zugriff	Mittel	60	Die Zugriffe auf die Computenodes sollen über den
				Managementnode stattfinden
3	CPU Last	Hoch	5	Die CPU's ständig ausgelastet sein

Tabelle 43: Service Monitoring

2.7.2 Performance Monitoring - Ganglia

Die Ganglia Applikation ist auf dem Managementnode installiert und kommuniziert mit den Ganglia Daemons auf den Computenodes. Dabei werden die übermittelten Daten als Grafen dargestellt. Ganglia ist über http://nebula/ganglia aufrufbar.

2.8 Mining

Die Kryptowährungen werden über die Miningpools von Minergate.com geschürft. Dafür wird die Cpuminer Version von tkinjo1985 verwendet. Diese Version ünterstützt die ARMv8 Prozessoren und bietet alle gängigen Algorithmen für das Schürfen der Währungen an. Zudem werden nur Währungen geschürft welche auf Börsen gehandelt werden können.

2.8.1 Kryptowährungen

Folgende Kryptowährungen werden über die Minergate Pools mit dem CryptoNight Algorithmus geschürft.

Nr.	Währung	Kürzel	Märkte
1	Bytecoin	BCN	HitBTC, Poloniex
2	Monero	XMR	HitBTC, Binance, Bitfinex, Poloniex
3	Monero Original	XMO	HitBTC
4	DigitalNote	XDN	HitBTC, Bittrex
5	Quazar Coin	QCN	HitBTC
6	DashCoin	DSH	HitBTC
7	FantomCoin	FCN	HitBTC

Tabelle 44: Kryptowährungen

2.9 Hostnamen

Die Computenamen wurden nach einem überschaulichen Konzept definiert. Jeder Computenode trägt den Prefix "c". Dies soll bei der Behebung von Problemen auf physicher Ebene, z.B. Austauschen eines Nodes dienen. Zudem werden alle Hostnamen immer in kleinen Buchstaben geschrieben.

2.9.1 Managementnode Name

Name	IP	MAC
nebula	192.168.1.10	B8:27:EB:32:A9:1C

Tabelle 45: Managementnode Name

2.9.2 Reservenode Name

Die Reservenodes sind als Fallback für ausgefallene Computenodes vorgesehen.

Nr.	Name	IP	MAC
1	c41	192.168.1.51	B8:27:EB:DE:C9:69
2	c42	192.168.1.52	B8:27:EB:7E:6F:48
3	c43	192.168.1.53	B8:27:EB:5D:DD:FE
4	c44	192.168.1.54	B8:27:EB:A6:6D:4D
5	c45	192.168.1.55	B8:27:EB:0C:63:10

Tabelle 46: Reservenode Name

2.9.3 Computenode Namen

Nr.	Name	IP	MAC
1	c1	192.168.1.11	B8:27:EB:32:39:A7
2	c2	192.168.1.12	B8:27:EB:2E:A3:D1
3	c3	192.168.1.13	B8:27:EB:50:45:3F
4	c4	192.168.1.14	B8:27:EB:0D:E6:25
5	c5	192.168.1.15	B8:27:EB:3E:96:B5
6	c6	192.168.1.16	B8:27:EB:EE:77:DA
7	c7	192.168.1.17	B8:27:EB:21:63:E6
8	c8	192.168.1.18	B8:27:EB:2E:2E:CC
9	c9	192.168.1.19	B8:27:EB:17:32:96
10	c10	192.168.1.20	B8:27:EB:B2:1C:A9
11	c11	192.168.1.21	B8:27:EB:AF:63:1F
12	c12	192.168.1.22	B8:27:EB:43:00:2C
13	c13	192.168.1.23	B8:27:EB:13:7B:18
14	c14	192.168.1.24	B8:27:EB:43:CD:29
15	c15	192.168.1.25	B8:27:EB:FF:C7:56
16	c16	192.168.1.26	B8:27:EB:CE:98:66
17	c17	192.168.1.27	B8:27:EB:5D:63:34
18	c18	192.168.1.28	B8:27:EB:91:3E:0F
19	c19	192.168.1.29	B8:27:EB:F4:65:EC
20	c20	192.168.1.30	B8:27:EB:3E:AB:DC
21	c21	192.168.1.31	B8:27:EB:66:60:F6
22	c22	192.168.1.32	B8:27:EB:37:3F:74
23	c23	192.168.1.33	B8:27:EB:18:5E:F0
24	c24	192.168.1.34	B8:27:EB:B0:23:B8
25	c25	192.168.1.35	B8:27:EB:BE:C4:94
26	c26	192.168.1.36	B8:27:EB:FB:FF:57
27	c27	192.168.1.37	B8:27:EB:4E:EC:CE
28	c28	192.168.1.38	B8:27:EB:43:1C:35
29	c29	192.168.1.39	B8:27:EB:DC:74:5F
30	c30	192.168.1.40	B8:27:EB:D1:DE:2F
31	c31	192.168.1.41	B8:27:EB:5E:90:34
32	c32	192.168.1.42	B8:27:EB:DE:80:24
33	c33	192.168.1.43	B8:27:EB:A4:79:6F
34	c34	192.168.1.44	B8:27:EB:0A:4D:C7
35	c35	192.168.1.45	B8:27:EB:5C:53:5F
36	c36	192.168.1.46	B8:27:EB:F7:AF:C2
37	c37	192.168.1.47	B8:27:EB:CE:BA:ED
38	c38	192.168.1.48	B8:27:EB:59:38:3C
39	c39	192.168.1.49	B8:27:EB:99:BB:8E
40	c40	192.168.1.50	B8:27:EB:8F:7A:0D

Tabelle 47: Computenode Namen

3 Realisierung

Dieses Kapitel beschreibt in welcher Reihenfolge der Cluster aufgebaut wurde. Einen tieferen Einblick in den Aufbau des Clusters kann dem Anhang entnommen werden.

3.1 Physischer Aufbau

3.1.1 Komponenten Platzierung

Der Cluster ist in einem Gestell welches 4 Ebenen hat implementiert, die Ebenen sind wie folgt aufgeteilt.

Abbildung 4: Physischer Aufbau

Ebene 1

24 RPI's sind auf dieser Ebene befestigt worden.

Ebene 2

Es befinden sich 21 RPI's auf dieser Ebene, es können noch 3 weitere platziert werden.

Ebene 3

Hier wurden alle übrigen Komponenten befestigt. Darunter ist das NAS, der Switch, der Managementnode und das Netzteil zu finden.

Ebene 4

Auf dieser Ebene wurde nichts installiert und kann als Reserve Ebene betrachtet werden.

3.1.2 Kühlung

Die CPU, RAM und GPU der RPI's wurden mit Aluminium Kühlkörpern ausgestattet. Die passive Kühlung soll die übertackteten CPU's der RPI's am laufen halten.

3.1.3 Stromversorgung

Computenodes

Die Computenodes wurden über die GPIO Pins 2 (5 Volt Anschluss) und 6 (GND Anschluss) über Jumperkabel und weiteren Leiterkabeln welche zur Verlängerung dienen mit dem Netzteil verbunden. Es wurde darauf geachtet das der Kabeldurchschnitt für eine Anzahl von mindestens 25 Ampere ausreicht, so dass diese nicht durchbrennen.

Netzteil

Am Netzteil wurden Kabelschuhe befestigt. Welche es ermöglichen eine Verbindung mit den Leitern in Richtung RPI's herzustellen. Das Netzteil ist an einer gewöhnlichen Stromschiene angeschlossen.

Generelle Verkabelung

Die Leiter wurden hauptsächlich mit Lüsterklemmen verlängert und auf das zusammenlöten der Komponenten wurde deswegen verzichtet. Dies bietet für neue Verkabelungen eine grössere Flexibilität.

3.1.4 Kommunikation

Alle Komponenten welche eine Netzwekverbindung benötigen sind über den Switch mit Patchkabeln zusammengeschlossen worden. Es wurde dabei keine spezielle Slot zuweisung des Switches berücksichtigt.

3.2 Technischer Aufbau

3.2.1 Betriebssystem

Es exisitiert zur Zeit kein 64-Bit CentOS Kernel welcher mit den RPI's kompatibel ist. Deswegen wurde mit einer alternativen Lösung das Gentoo Image von https://github.com/sakaki-/gentoo-on-rpi3-64bit heruntergeladen und auf die SD-Karte geschrieben. Dabei wurden zwei Partitionen erstellt. Die boot Partition, welche den Kernel und die Bootbefehle beinhaltet. Die Dateisystem-Partition beinhaltet das Dateisystem und muss mit der eines CentOS Dateisystems überschrieben werden. Dabei wurde das Dateisystem von http://mirror.centos.org/altarch/7/isos/aarch64/CentOS-7-aarch64-rootfs-7.4.1708.tar.xz heruntergeladen und auf die betreffende Partition kopiert.

3.2.2 Vorbereitungen

Netzwerk

Die IP- und Hostnamenzuweisung wurde über die Internetbox von Swisscom eingerichtet. Dabei wurden alle RPI's an das Netzwerk und den Strom angeschlossen. Nach ca. 2 Minuten wurden alle angeschlossenen Geräte im Interface aufgelistet und konnten anhand dem Hostnamenkonzept eingerichtet werden.

Netzwerkboot

Der Managementnode dient als Provider und verteilt das Betriebssystem an alle angeschlossenen Computenodes. Diese mussten vorgängig bearbeitet werden und benötigen bei einem Power On einen OTP Eintrag, dadurch wird eine Anfrage von jedem Computenode (Client) an den Managementnode gestellt ob es das Betriebssystem erhalten darf. Zeitgleich wurden noch alle MAC-Adressen ausgelesen, diese werden später für die statische Zuweisung von IP Adressen und Hostnamen benötigt.

3.2.3 Installation

Während der Realisierung wurde nach Erfolgserlebnissen jeweils ein aktueller Snapshot der SD-Karte mit dem Programm Win32DiskImager erstellt. Dadurch war es möglich ein rasches vorantreiben der Installation zu gewährleisten. Falls zuviele Änderungen am System vorgenommen wurden, welche nicht mehr rasch Rückgängig gemacht werden konnten und Probleme verursachten, wurde als Wiederherstellung eines funktionierenden Systems der letzte Snapshot wieder eingespielt.

Zudem wurde für die Installation des Clusters und deren Komponenten die Installationsanleitung (Install guide with Warewulf + Slurm) von OpenHPC verwendet. Dabei wurde der Warewulf Part zu einem grossen Teil übersprungen. Dieser hätte es ermöglicht einen vereinfachten Netzwerkboot der Computenodes einzurichten. Es ist aber leider nicht möglich die RPI's damit zu managen da Warewulf iPXE benutzt.

4 Schlussbetrachtung

Der Cluster kann parallele Berechnungen durchführen. Jedoch ist es nicht möglich Kryptowährungen mit nur einem Prozess über den Cluster hinweg zu schürfen. Jedoch ergibt es hierbei keinen unterschied ob jeweils neue Prozesse pro Node gestartet sind, oder ob diese in einen Prozess zusammengeführt sind. Dies würde erst eine Wichtigkeit erlangen, wenn es darum geht Währungen zu schürfen welche in den Blockchains diverse Bountys beinhalten, welche Belohnungen für das schürfen beinhalten.

4.1 Arbeiten nach dem Projekt

Der Cluster ist nicht rentabel und es ist vorgesehen das Anwendungsgebiet zu wechseln, dabei soll der Cluster als Entwicklerumgebung für Webanwendungen eingesetzt werden. Worauf gleichzeitig eine Virtualisierung stattfinden soll.

4.2 Persönliche Betrachtung

Generell ist es mir gelungen eine grössere Anzahl von verschiedenen Komponenten zu einem einheitlichen Produkt zu verbinden. Dadurch habe ich nun private CPU Ressourcen welche abgekoppelt von meinem PC sind. Das Produkt kann ich für meine nächsten persönlichen Vorhaben weiterhin benutzen und muss mir keine Webserver mieten.

4.3 Danksagung

An dieser Stelle möchte ich mich speziell den unten aufgeführten Personen für die Unterstützung meiner Diplomarbeit bedanken:

- Vielen Dank für die Überprüfung der Satzstellungen und das Korrigieren der Schreibfehler
- Vielen Dank für das anpassen der Schürfsoftware, welches mir ermöglicht Satistiken einzelner Nodes besser auszulesen.

5 Authentizität

Mit meiner Unterschrift bestätige ich, die vorliegende Diplomarbeit selbstständig, ohne Hilfe Dritter und nur unter Benutzung der angegebenen Quellen ohne Copyright-Verletzung, erstellt zu haben.

Schüpfen, 27.05.2018

Christoph Amrein

A Anhang

B Vorbereitungen

B.1 Betriebssystem installieren

Für die initialen Arbeiten der RPI's wird ein NOOBS Betriebssystem verwendet. Dieses wird wie folgt bezogen und installiert.

- 1. Das NOOBS Abbild von https://www.raspberrypi.org/downloads/ herunterladen.
- 2. Mit dem Win32DiskImager Tool auf dem PC das heruntergeladene Abbild auf die SD Karte schreiben.

B.2 Betriebssystem & SD Karte konfigurieren

Die RPI's werden über SSH und Hostnamen angesprochen. Beides wird über den Konfigurationsassistenten von NOOBS konfiguriert. Als Voraussetzung wird ein RPI benötigt, welches mit Strom beliefert wird und via HDMI-Kabel ein Bild auf den Monitor liefert. Zudem wird noch eine Tastatur benötigt welche direkt am RPI angeschlossen ist. Das Konfigurationsmenü wird wiefolgt aufgerufen:

pi@raspberry ~ \$ sudo raspi-config

Bei der Frage nach dem Hostnamen wird der Name testrpi eingegeben und der SSH Dienst wird aktiviert.

B.3 MAC- / Hardwareadresse auslesen

Die Hostnamen und IP Adressen werden über den Router an die MAC-Adressen gebunden. Die MAC-Adressen werden von einem Linux Client aus mit dem NMAP Tool ermittelt. Folgende Schritte sind zu unternehmen. Als Voraussetzung für die folgenden Schritte müssen die RPI's mit Strom versorgt werden und mit Patchkabeln am Netzwerk eingebunden sein.

- 1. SD Karte in das RPI einschieben
- 2. RPI starten
- 3. Über einen Linux Client die IP Range scannen und die MAC-Adresse auslesen.

nmap -sP 192.168.1.0/24

3.1. Zuerst muss über die offizielle RPI Webseite das NOOBS Betriebssystem heruntergeladen werden.

- 3.2. Mit dem Win32DiskImager Tool wird das NOOBS Betriebssystem auf die SD Karte geschrieben.
- 3.3. Die SD Karte muss in den dafür vorgesehenen RPI Slot eingeführt werden
- 3.4. Das Raspberry muss über HDMI an einen Monitor angeschlossen sein und zugleich ist es notwendig, dass ein Patchkabel für die Netzwerkverbindung sowie eine Tastatur und Maus angeschlossen ist.
- 3.5. Sobald das RPI gestartet ist, wird der SD Karte der Hostname testrpi zugewiesen und der SSH Zugriff aktiviert. Dies kann über ein Menu eingerichtet werden. Das Menü wird mit folgendem Befehl aufgerufen:

```
pi@raspberry ~ $ sudo raspi-config
```

- 4. Die SD Karte ist nun bereit und es kann für jedes einzelne RPI folgende Konfiguration vorgenommen werden. Der folgende Ablauf schreibt voraus, dass die RPI's mit einem Patchkabel und Strom versorgt sind.
 - 4.1. RPI starten (Mit SD Karte)
 - 4.2. Von einem PC oder Laptop via SSH auf testrpi verbinden.
 - 4.3. Auf dem RPI den USB Boot Modus aktivieren

```
echo program_usb_boot_mode=1 | sudo tee -a /boot/config.txt
```

- 4.4. Die Hardware Adresse der RPI's kann ab diesem Zeitpunkt von einem anderen Linux Client aus bereits mit dem folgenden Befehl ausgelesen werden. Dieser wird für die IP und Hostnamenzuweisung via Router und dnsmasq verwendet.
- 4.5. Das RPI neustarten und den erstellten OTP Eintrag testen.

```
vcgencmd otp_dump | grep 17:
```

Es wird die Ausgabe 17:3020000a erwartet.

- 4.6. Den Eintrag aus dem /boot/config.txt wieder entfernen.
- 4.7. Das RPI frägt nun im Netzwerk bei einem Start nach einem Betriebssystem an.

C Installation

C.1 Vorbereiten der Raspberry PI's

Die RPI's müssen für den Netzwerkboot eine Anfrage an das Netzwerk senden. Dafür müssen diese jeweils einen OTP Eintrag für den Start des RPI's verwenden. Als Vorarbeiten für den PXE Boot sind folgende Schritte vorzunehmen.

1. Betriebssystem

- 1.1. Zuerst muss über die offizielle RPI Webseite das NOOBS Betriebssystem heruntergeladen werden.
- 1.2. Mit dem Win32DiskImager Tool wird das NOOBS Betriebssystem auf die SD Karte geschrieben.
- 1.3. Die SD Karte muss in den dafür vorgesehenen RPI Slot eingeführt werden
- 1.4. Das Raspberry muss über HDMI an einen Monitor angeschlossen sein und zugleich ist es notwendig, dass ein Patchkabel für die Netzwerkverbindung sowie eine Tastatur und Maus angeschlossen ist.
- 1.5. Sobald das RPI gestartet ist, wird der SD Karte der Hostname testrpi zugewiesen und der SSH Zugriff aktiviert. Dies kann über ein Menu eingerichtet werden. Das Menü wird mit folgendem Befehl aufgerufen:

```
pi@raspberry ~ $ sudo raspi-config
```

- 2. Die SD Karte ist nun bereit und es kann für jedes einzelne RPI folgende Konfiguration vorgenommen werden. Der folgende Ablauf schreibt voraus, dass die RPI's mit einem Patchkabel und Strom versorgt sind.
 - 2.1. RPI starten (Mit SD Karte)
 - 2.2. Von einem PC oder Laptop via SSH auf testrpi verbinden.
 - 2.3. Auf dem RPI den USB Boot Modus aktivieren

```
echo program_usb_boot_mode=1 | sudo tee -a /boot/config.txt
```

2.4. Die Hardware Adresse der RPI's kann ab diesem Zeitpunkt von einem anderen Linux Client aus bereits mit dem folgenden Befehl ausgelesen werden. Dieser wird für die IP und Hostnamenzuweisung via Router und dnsmasq verwendet.

```
nmap -sP 192.168.1.0/24
```


 $2.5.\ \mathrm{Das}\ \mathrm{RPI}$ neustarten und den erstellten OTP Eintrag testen.

vcgencmd otp_dump | grep 17:

Es wird die Ausgabe 17:3020000a erwartet.

- 2.6. Den Eintrag aus dem /boot/config.txt wieder entfernen.
- 2.7. Das RPI frägt nun im Netzwerk bei einem Start nach einem Betriebssystem an.

C.2 Quellenverzeichnis

D Diplomeingabe

Projekt: Mining Cluster

Christoph Amrein TSBE 16B

Praktische Diplomarbeit 2018

Ausgangslage

Gemäss der Webseite coinmarketcap.com, einer Webseite zur Verfolgung der Kurse von Kryptowährungen, gibt es zurzeit 1349¹ Kryptowährungen und täglich werden es mehr. Aus diesem Grund habe ich anfangs Jahr selbst mit dem Erzeugen von Coins diverser Kryptowährungen begonnen. Jedoch bin ich mit meiner aktuellen Ausrüstung, einem leistungsstarken Computer mit einer guten Grafikkarte, nicht zufrieden. Die Stromkosten sind zu hoch und die Erträge zu gering. Aus diesem Grund will ich ein Projekt durchführen, welches meine Erträge auf ein neues Niveau heben soll. Dazu soll auf einem Cluster, der aus Raspberry Pl's besteht, ein Miner² installiert werden, welcher alle verfügbaren Ressourcen in diesem Cluster nutzt. Ich habe vor, dieses Projekt im Rahmen meiner Diplomarbeit durchzuführen. Das Projekt soll durch den Handel mit Kryptowährungen finanziert werden.

Begründung

Es soll ein skalierbarer Cluster aus ca. 40 Raspberry PI's installiert werden, auf dem eine Mining-Software betrieben wird. Das Einsatzgebiet des Clusters soll jederzeit ohne viel Aufwand angepasst werden können. Nach der Umsetzung sollen durch den Cluster möglichst effizient Coins erzeugt werden. Dabei soll der Ertrag aus den erzeugten Coins den Stromkosten gegenübergestellt werden. Ein weiteres Ziel der Projektarbeit ist es, mit diesen auf den üblichen Handelsplattformen tätig zu sein. Aus Kostengründen habe ich als optionales Ziel vorgesehen, Grafikkarten in den Cluster einzubinden und mit diesen ebenfalls möglichst effizient Coins zu erzeugen. Der Fokus der Arbeit liegt hierbei aber hauptsächlich auf dem Cluster und dessen CPU Nutzung. Die Kosten für das Projekt sollen innerhalb von 2 Jahren amortisiert werden. Danach will ich damit über längere Zeit Geld verdienen.

Themenbereiche

Es wird ein fundamentales Wissen in **Elektrotechnik** benötigt, da die Raspberry Pl's durch eine gemeinsame Stromquelle versorgt werden sollen. Damit die Kommunikation zwischen Raspberry Pl's eingerichtet werden kann, wird Wissen in **Linux** und **Netzwerktechnik** benötigt. Nach der Installation des Clusters sind Kenntnisse in **Entwicklung**, **Programmieren**, **Monitoring** und **Systempflege** von Nöten.

Christoph Amrein vii

¹ Stand 13.12.2017

² Software zum Minen der Kryptowährung

Projektziele

Operationelles Ziel

Der Cluster soll durchgehend und selbstständig funktionieren. Die Arbeiten auf dem Cluster sollen sich auf das Patching und Updaten des Betriebssystems sowie der Miner- und Cluster-Software beziehen. Bei Problemen ausserhalb der oben genannten Aufgaben soll automatisch durch die Systemüberwachung Alarm ausgelöst und eine Nachricht versendet werden.

Abwicklungsziele

- Zeitplan einhalten
 - o Es sollen keine grossen Abweichungen zum Zeitplan entstehen.
 - o Die Meilensteine müssen eingehalten werden.
- Arbeitsjournal führen
 - o Es wird ein lückenloses und verständliches Arbeitsjournal geführt.
 - o Das Arbeitsjournal soll zeitnahe geschrieben und ergänzt werden.

Wirkungs- und Nutzenziele

- Es soll das Maximale an Ressourcen aus den Raspberry Pl's herausgeholt werden.
- Der Cluster kann schnell für andere Anwendungsgebiete konfiguriert werden.
- Durch die Lösung sollen verschiedene Coins diverser Kryptowährungen erzeugt werden.
- Es soll mit den erzeugten Coins auf Handelsplattformen gehandelt werden.

Lieferobjekte

Initialisierung

- Detaillierter Projektplan
- Projektauftrag
- Dokumente zum Kick-Off-Meeting

Voranalyse

- Diplombericht
- Initiale Voranalyse
- Präsentation

Konzept

- Hostnamenkonzept der einzelnen Raspberry PI's
- Backupkonzept
- Miningkonzept
- Überwachungskonzept

Realisierung

- Dokumentation der Arbeit
- Abnahmetests, Testprotokoll
- Cluster aus Raspberry Pl's
- Transaktionsauszug der erzeugten Währung (Wallet zu Wallet)

Projektabschluss

- Management Summary
- Abschlussbericht
- Präsentation der Arbeit
- Arbeitsjournal

Christoph Amrein viii

Projektplan

Monat	Januar	Februar			März	:			Ap	ril				Mai	i .			Ju	mi	
Kalenderw oche	1 2 3 4	5 6 7	8 9	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Phasen																				
Initialisierung																				
Voranalyse																				
Konzept																				
Realisierung			M	s			Ms							Ms						
Abschluss																				
Meetings	Me					Ме												Ме		
Dokumentation																				
Meilensteine Ms	Realisierung																			
KW 9	Physischer Aufl	Physischer Aufbau und Inbetriebnahme des Raspberry PI Verbunds																		
KW 13	Erfolgreiche Ab	nahme des ir	stallie	rten	Clust	ers														
KW 20	Erste Kryptowä	hrung wird ge	eschürf	t																
Meetings Me	Terminplan der	Meetings	•																	
KW 3	Kickoff-Meeting	g																		
KW 12	Zwischen-Meet	ing																		
KW 24	Abschluss-Mee	ting																		

Organisation

Infrastruktur

Das Projekt wird bei mir zu Hause durchgeführt.

Beteiligte Personen

Funktion	Name		
Auftraggeber	Christoph Amrein		
Projektleiter	Christoph Amrein		
Ausführender	Christoph Amrein		
Begleitender Dozent	Andreas Megert, TSBE		
Begleitender Experte	Rolf Schmutz, Post CH AG		

E Testprotokoll

E.1 Testobjekte

Nr.	Objekt	Hostname	IP	\mathbf{MAC}
1	Managementnode	nebula	192.168.1.11	B8:27:EB:32:39:A7
2	Computenode 1	c1	192.168.1.11	B8:27:EB:32:39:A7
3	Computenode 2	c2	192.168.1.12	B8:27:EB:2E:A3:D1
4	Computenode 3	c3	192.168.1.13	B8:27:EB:50:45:3F
5	Computenode 4	c4	192.168.1.14	B8:27:EB:0D:E6:25
6	Computenode 5	c5	192.168.1.15	B8:27:EB:3E:96:B5
7	Computenode 6	c6	192.168.1.16	B8:27:EB:EE:77:DA
8	Computenode 7	c7	192.168.1.17	B8:27:EB:21:63:E6
9	Computenode 8	c8	192.168.1.18	B8:27:EB:2E:2E:CC
10	Computenode 9	c9	192.168.1.19	B8:27:EB:17:32:96
11	Computenode 10	c10	192.168.1.20	B8:27:EB:B2:1C:A9
12	Computenode 11	c11	192.168.1.21	B8:27:EB:AF:63:1F
13	Computenode 12	c12	192.168.1.22	B8:27:EB:43:00:2C
14	Computenode 13	c13	192.168.1.23	B8:27:EB:13:7B:18
15	Computenode 14	c14	192.168.1.24	B8:27:EB:43:CD:29
16	Computenode 15	c15	192.168.1.25	B8:27:EB:FF:C7:56
17	Computenode 16	c16	192.168.1.26	B8:27:EB:CE:98:66
18	Computenode 17	c17	192.168.1.27	B8:27:EB:5D:63:34
19	Computenode 18	c18	192.168.1.28	B8:27:EB:91:3E:0F
20	Computenode 19	c19	192.168.1.29	B8:27:EB:F4:65:EC
_21	Computenode 20	c20	192.168.1.30	B8:27:EB:3E:AB:DC
22	Computenode 21	c21	192.168.1.31	B8:27:EB:66:60:F6
23	Computenode 22	c22	192.168.1.32	B8:27:EB:37:3F:74
24	Computenode 23	c23	192.168.1.33	B8:27:EB:18:5E:F0
25	Computenode 24	c24	192.168.1.34	B8:27:EB:B0:23:B8
26	Computenode 25	c25	192.168.1.35	B8:27:EB:BE:C4:94
_27	Computenode 26	c26	192.168.1.36	B8:27:EB:FB:FF:57
28	Computenode 27	c27	192.168.1.37	B8:27:EB:4E:EC:CE
29	Computenode 28	c28	192.168.1.38	B8:27:EB:43:1C:35
30	Computenode 29	c29	192.168.1.39	B8:27:EB:DC:74:5F
31	Computenode 30	c30	192.168.1.40	B8:27:EB:D1:DE:2F
32	Computenode 31	c31	192.168.1.41	B8:27:EB:5E:90:34
33	Computenode 32	c32	192.168.1.42	B8:27:EB:DE:80:24
34	Computenode 33	c33	192.168.1.43	B8:27:EB:A4:79:6F
35	Computenode 34	c34	192.168.1.44	B8:27:EB:0A:4D:C7
36	Computenode 35	c35	192.168.1.45	B8:27:EB:5C:53:5F
37	Computenode 36	c36	192.168.1.46	B8:27:EB:F7:AF:C2
38	Computenode 37	c37	192.168.1.47	B8:27:EB:CE:BA:ED
39	Computenode 38	c38	192.168.1.48	B8:27:EB:59:38:3C
40	Computenode 39	c39	192.168.1.49	B8:27:EB:99:BB:8E
41	Computenode 40	c40	192.168.1.50	B8:27:EB:8F:7A:0D
42	Reservenode 1	c41	192.168.1.51	B8:27:EB:DE:C9:69
43	Reservenode 2	c42	192.168.1.52	B8:27:EB:7E:6F:48
44	Reservenode 3	c43	192.168.1.53	B8:27:EB:5D:DD:FE
45	Reservenode 4	c44	192.168.1.54	B8:27:EB:A6:6D:4D
46	Reservenode 5	c45	192.168.1.55	B8:27:EB:0C:63:10

E.2 Arbeitsjournal

- Tagesziel eintragen - Ereignisse - Erfahrungen, Gedanken, Ideen, Entscheidungen - Ziel erreicht?

Vorgang	Geplant	Tatsächlich	Differenz
1. Abnahmetest der Fachabteilung	1 h	1 h	

E.3 Protkolle

Christoph Amrein xiii

E.4 Datenblätter

E.5 Produktinformationen

E.6 Benutzerdokumentation

Ausschnitt aus der Benutzerdokumentation:

Symbol	Bedeutung global	Bedeutung einzeln
净	Alle Module weisen den gleichen Stand auf.	Das Modul ist auf dem gleichen Stand wie das Modul auf der vorherigen Umgebung.
©	Es existieren keine Module (fachlich nicht möglich).	Weder auf der aktuellen noch auf der vorherigen Umgebung sind Module angelegt. Es kann also auch nichts übertragen werden.
<u></u>	Ein Modul muss durch das Übertragen von der vorherigen Umgebung erstellt werden.	Das Modul der vorherigen Umgebung kann übertragen werden, auf dieser Umgebung ist noch kein Modul vorhanden.
选	Auf einer vorherigen Umgebung gibt es ein Modul, welches übertragen werden kann, um das nächste zu aktualisieren.	Das Modul der vorherigen Umgebung kann übertragen werden um dieses zu aktualisieren.
7	Ein Modul auf einer Umgebung wurde entgegen des Entwicklungsprozesses gespeichert.	Das aktuelle Modul ist neuer als das Modul auf der vorherigen Umgebung oder die vorherige Umgebung wurde übersprungen.

Abkürzungsverzeichnis

Christoph Amrein xiv

NEBULA - MINING CLUSTER Basierend auf der ARMv8 Architektur

Abbildungs verzeichnis

Abbildungsverzeichnis

1	Risiken	15
2	Physikalischer Überblick	16
3	Technischer Überblick	18
4	Physischer Aufbau	31

Tabellenverzeichnis

1	Situationsanalyse Komponenten
2	Situationsanalyse Stärken
3	Situationsanalyse Stärken
4	Projektziele
5	Lieferobjekte
6	Beschaffungskosten
7	Aufwandskosten
8	Stromkostenrechnung
9	Gesamtkosten
10	Wirtschaftlichkeit Hardware
11	Grober Projektplan
12	Termine
13	Projektbudget
14	Sachmittel
15	Organisation
16	Projektablage
17	Software Kriterien
18	Variantenübersicht
19	Anforderungsabdeckung
20	Bewertung der Varianten
21	Bewertung der Varianten
22	Risiken
23	Protokolle
24	Verbindungen & Kommunikation
25	Komponente Managementnode
26	Komponente aktive Copmputenodes
27	Komponente passive Copmputenodes
28	Testobjekte
29	Testarten
30	Fehlerklassen
31	Testfall K-001
32	Testfall K-002
33	Testfall K-003
34	Testfall K-004
35	Testfall I-001
36	Testfall I-002
37	Testfall I-003
38	Testfall I-004
39	Testfall S-001

Christoph Amrein xvi

Nebula - Mining Cluster

Basierend auf der ARMv8 Architektur

m 1 1	7	. 7	
Tahol	lenverze	orch	mie
$\pm u u u u u$	101110012	$\cup \iota \cup \iota \iota$	11000

40	Testfall S-002	27
41	Testfall S-003	27
42	Testfall S-004	27
43	Service Monitoring	28
44	Kryptowährungen	29
45	Managementnode Name	29
46	Reservenode Name	29
47	Computenode Namen	30
48	Computenode Namen	xii

Christoph Amrein xvii

Listings

Christoph Amrein xviii