编译原理与技术 H4-1

PB18111697 王章瀚

3.19

考虑下面的文法

$$E \to E + T|T$$

$$T \to TF|F$$

$$F \to F * |a|b$$

(a). 为此文法构造SLR分析表

为了构造SLR分析表,首先需要求出其LR(0)项目集规范族.

• 首先写出拓广的表达式文法

$$E' \rightarrow E$$

$$1 \quad E \rightarrow E + T$$

$$2 \quad E \rightarrow T$$

$$3 \quad T \rightarrow TF$$

$$4 \quad T \rightarrow F$$

$$5 \quad F \rightarrow F*$$

$$6 \quad F \rightarrow a$$

$$7 \quad F \rightarrow b$$

• 求 $Closure(\{[E' \rightarrow E]\})$ $I_0 = Closure(\{[E' \rightarrow E]\})$ 应含有:

$$I_0 \left\{ \begin{array}{ll} E' \rightarrow \bullet E & T \rightarrow \bullet F \\ E \rightarrow \bullet E + T & F \rightarrow \bullet F * \\ E \rightarrow \bullet T & F \rightarrow \bullet a \\ T \rightarrow \bullet TF & F \rightarrow \bullet b \end{array} \right.$$

• 开始求相应LR(0)项目集规范族

$$-$$
 从 $I = I_0$ 出发: * 对 $X = E$, 得到 I_1 :

$$I_1 \left\{ \begin{array}{l} E' \to E \bullet \\ E \to E \bullet + T \end{array} \right.$$

1

* 对X = T, 得到 I_2 :

$$I_{2} \left\{ \begin{array}{ll} E \to T \bullet & F \to \bullet a \\ T \to T \bullet F & F \to \bullet b \\ & F \to \bullet F * \end{array} \right.$$

* $\forall X = F$, 得到 I_3 :

$$I_3 \left\{ \begin{array}{l} T \to F \bullet \\ F \to F \bullet * \end{array} \right.$$

* 对X = a或X = a, 得到 I_4 , I_5 :

$$I_4: \{F \to a \bullet \}$$

$$I_5: \{F \to b \bullet \}$$

- 从*I*₁, *I*₂, *I*₃出发:
 - * 从 I_1 出发, 若X = +, 则能得到 I_6

$$I_{6} \begin{cases} E \to E + \bullet T & F \to \bullet F * \\ T \to \bullet TF & F \to \bullet a \\ T \to \bullet F & F \to \bullet b \end{cases}$$

* 从I₂出发,

· 若X = F, 得到 I_7 :

$$I_7 \left\{ \begin{array}{l} T \to TF \bullet \\ F \to F \bullet * \end{array} \right.$$

- · 若X = a或X = b, 分别得到 I_6, I_7
- * 从 I_3 出发, X = *时得到 I_8 :

$$I_8 \left\{ F \to F * \bullet \right.$$

- 从 I_7 , I_8 出发均已不能得到新的项目集, 从 I_6 出发, 若X = T, 得到 I_9 :

$$I_{9} \left\{ \begin{array}{ll} E \to E + T \bullet & F \to \bullet a \\ T \to T \bullet F & F \to \bullet b \\ & F \to \bullet F * \end{array} \right.$$

• 至此, 完成了该文法的LR(0)项目集规范族的构造, 下一步画出其对应的DFA转换图

- 之后就可以直接构造表了:
 - (1) 前面已经构造了项目集规范族
 - (2) 构造action函数,这里用表的形式写出.此前,先给出各个FOLLOW

$$FOLLOW(E) = \{+,\$\}$$

 $FOLLOW(T) = \{a,b,+,\$\}$
 $FOLLOW(F) = \{a,b,*,+,\$\}$
 $FOLLOW(TF) = FOLLOW(F) = \{a,b,*,+,\$\}$
 $FOLLOW(F*) = FOLLOW(F) = \{a,b,*,+,\$\}$

	a	b	+	*	\$
I_0	s4	s5			
I_1			s6		acc
I_2	s4	s5	r2		r2
I_3	r4	r4	r4	s8	r4
I_4	r6	r6	r6	r6	r6
I_5	r7	r7	r7	r7	r7
I_6	s4	s5			
I_7	r3	r3	r3	s8	r3
I_8	r5	r5	r5	r5	r5
I_9	s4	s5	r1		r1

• 构造goto函数

	Е	Т	F
I_0	1	2	3
I_1			
I_2			7
I_3			
I_4			
I_5			
I_6		9	3
I_7			
I_8			
I_9			7

• 至此, 该文法的SLR(1)分析表构造完毕

(b). 为此文法构造LALR分析表

• 首先写出拓广的表达式文法

$$E' \to E$$

1
$$E \rightarrow E + T$$

$$2 \quad E \to T$$

$$3 \quad T \to TF$$

$$4 \quad T \to F$$

$$5 \quad F \to F*$$

6
$$F \rightarrow a$$

7
$$F \rightarrow b$$

- 然后构造LR(1)项目集规范族, 顺便求出action和goto函数
 - 先写出*I*₀

$$I_{0} \begin{cases} E' \to \bullet E & ,\$ \\ E \to \bullet E + T & ,+/\$ \\ E \to \bullet T & ,+/\$ \\ T \to \bullet TF & ,a/b/+/\$ \\ T \to \bullet F & ,a/b/+/\$ \\ F \to \bullet F* & ,a/b/+/*/\$ \\ F \to \bullet a & ,a/b/+/*/\$ \\ F \to \bullet b & ,a/b/+/*/\$ \end{cases}$$

- 从I₀出发,

* 考虑 $goto(I_0, E)$

$$I_1 \left\{ \begin{array}{ll} E' \to E \bullet & ,\$ \\ E \to E \bullet + T & ,+/\$ \end{array} \right.$$

* 考虑 $goto(I_0,T)$

$$I_{2} \begin{cases} E \to T \bullet & , +/\$ \\ T \to T \bullet F & , a/b/+/\$ \\ F \to \bullet F * & , a/b/+/*/\$ \\ F \to \bullet a & , a/b/+/*/\$ \\ F \to \bullet b & , a/b/+/*/\$ \end{cases}$$

* 考虑goto(I₀, F)

$$I_3 \left\{ \begin{array}{ll} T
ightarrow F ullet & ,a/b/+/\$ \ F
ightarrow F ullet * * & ,a/b/+/*/\$ \end{array}
ight.$$

* 考虑 $goto(I_0, a)$

$$I_4 \left\{ F \to a \bullet , a/b/ + / * / \right\}$$

* 考虑 $goto(I_0, a)$

$$I_5 \left\{ F \rightarrow b \bullet , a/b/+/*/\$ \right.$$

- 从 I_1 出发,考虑 $goto(I_1, +)$

$$I_{6} \left\{ \begin{array}{ll} E \to E + \bullet T & , +/\$ \\ T \to \bullet TF & , a/b/+/\$ \\ T \to \bullet F & , a/b/+/\$ \\ F \to \bullet F* & , a/b/+/*/\$ \\ F \to \bullet a & , a/b/+/*/\$ \\ F \to \bullet b & , a/b/+/*/\$ \end{array} \right.$$

- 从I2出发
 - * 考虑goto(I₂,F)

$$I_7 \left\{ \begin{array}{ll} T \to TF \bullet & ,a/b/+/\$ \\ F \to F \bullet * & ,a/b/+/*/\$ \end{array} \right.$$

- * 考虑goto(I₂, a), 得到I₄
- * 考虑 $goto(I_2,b)$, 得到 I_5
- 从I₃出发, 考虑goto(I₃,*), 得到

$$I_8 \left\{ F \to F * \bullet \quad , a/b/ + / * / \right\}$$

- 从I₄, I₅无法继续了
- 从I₆出发
 - * 考虑 $goto(I_6,T)$, 得到

$$I_{9} \begin{cases} E \to E + T \bullet & , +/\$ \\ T \to T \bullet F & , a/b/+/\$ \\ F \to \bullet F * & , a/b/+/*/\$ \\ F \to \bullet a & , a/b/+/*/\$ \\ F \to \bullet b & , a/b/+/*/\$ \end{cases}$$

- * 考虑 goto(I₆, F), 得到I₃
- * 考虑 $goto(I_6, a)$ 和 $goto(I_6, b)$, 分别得到 I_4, I_5
- 从 I_7 出发, 考虑 $goto(I_7,*)$, 得到 I_8

- 从I8莫得出发
- 从I9
 - * 考虑goto(I₉, F), 得到I₇
 - * 考虑 $goto(I_9, a), goto(I_9, b)$ 分别得到 I_4, I_5
- 至此, 已经列出所有结果.

3.20

证明下面的文法

$$S \to SA|A$$
$$A \to a$$

是SLR(1)文法, 但不是LL(1)文法.

1. 证明是SLR(1)文法

按照前面的方法尝试构造分析表.

• 项目集规范族:

$$I_0: \left\{ \begin{array}{l} S' \to \bullet S \\ S \to \bullet SA \\ S \to \bullet A \\ A \to \bullet a \end{array} \right. \quad I_1: \left\{ \begin{array}{l} S' \to S \bullet \\ S \to S \bullet A \end{array} \right.$$

$$I_2: \left\{ S \to A \bullet \right. \qquad I_3: \left\{ A \to a \bullet \right. \right.$$

$$I_4: \left\{ S \to SA \bullet \right.$$

- 构造分析表
 - (1) 构造action函数

$$FOLLOW(S) = \{\$, a\}$$

	a	\$
I_0	s3	
I_1		acc
I_2	r2	r2
I_3		
I_4	r2	r2

显然,我们可以构造出无冲突的动作. 至此就已经可以认为,该文法是SLR(1)的了. 为了练手,再求以下goto函数

(2) 构造goto函数如右

	S	A
I_0	1	2
I_1		4
I_2		
I_3		
I_4		

(3) 至此完整构造出了分析表

综上所述,该文法是SLR(1)的.

2. 证明不是LL(1)文法

它显然不是LL(1)文法,因为LL(1)文法必然不含有左递归,而 $S \to SA$ 是左递归的.