

UNIUBE - CAMPUS VIA CENTRO - Uberlândia/MG

Cursos de Engenharia Elétrica Disciplina: Materiais Elétricos

Aula 4 Dielétricos

Revisão 1, de 22/04/2024

Prof. João Paulo Seno joao.seno@uniube.br

1

Referência para esta aula

 Capítulo 4, "Dielétricos", páginas 65 a 74, do livro ROCHA, M.F. et al. Materiais Elétricos. Porto Alegre: SAGAH, 2018. Disponível na Biblioteca A, acessível via AVA.

WUniube

Introdução

- Dielétrico é o nome dado aos materiais que têm propriedades isolantes (então, pode-se dize que são materiais isolantes);
- Geralmente são meios que dificultam a formação de correntes elétricas;
- A polarização de suas partículas elementares é uma propriedade fundamental de todos os dielétricos;
- Os dielétricos polarizam-se quando sujeitos a um campo elétrico externo, essa propriedade permite a esses materiais diversas aplicações tecnológicas nas áreas de eletrônica, óptica, biofísica etc.

3

四Uniube

Introdução

- Os dielétricos ou materiais isolantes se caracterizam por oferecer uma considerável resistência à passagem da corrente elétrica quando comparados a um material condutor.
- Outra definição considera como dielétrico todo material isolante na presença de um campo elétrico.
- A propriedade de polarização de suas moléculas, como foi dito, torna alguns materiais especialmente úteis para a utilização em componentes ou dispositivos, como os capacitores.

Uniube

Os dielétricos e os capacitores

- Para que são utilizados nos capacitores?
 - Manter as duas placas separadas por uma pequena distância;
 - Para tornar possível aumentar a diferença de potencial máxima entre as duas placas;
 - Para aumentar a capacitância do capacitor;
- Propriedades comuns aos materiais dielétricos:
 - · Constante dielétrica;
 - · Rigidez dielétrica;
 - Fator de perda.

5

Uniube Tipos de capacitores, de acordo com o dielétrico utilizado Cerâmicos Eletrolíticos Papel Poliéster Ar (variáveis) Oleo 6

Uniube

Constante dielétrica

 Veja a figura abaixo, que apresenta o diagrama esquemático de um capacitor de placas paralelas:

- A carga q é diretamente proporcional à tensão aplicada V. Tem-se: $q = C \cdot V$.
- Onde: C é a constante de proporcionalidade denominada capacitância do capacitor, expressa em Farad (F);
 q é a carga elétrica das placas, expressa em Coulombs (C);
 V é a tensão aplicada às placas, expressa em Volts (V).

WUniube

Constante dielétrica

- Quanto maior a capacitância, maior a capacidade do dispositivo de armazenar carga. Também, quanto maior a tensão V, maior a carga armazenada.
- Considerando as características construtivas, se um capacitor de placas paralelas possui as placas com dimensões muito maiores do que a distância que as separa, sua capacitância é dada por:

$$C = \epsilon_0 \cdot \frac{A}{d}$$

• Onde: C — Capacitância, expressa em Farad (F);

 ϵ_0 — Permissividade do vácuo = 8,854x10⁻¹²,

expressa em Farad por metro (F/m);

A — Área das placas, expressa em metros quadrados (m²);

d — Distância entre as placas, expressa em metros (m).

Constante dielétrica

 Agora, finalmente, se inserirmos um dielétrico entre as placas, a capacitância é aumentada de um fator k, chamado de constante dielétrica do material. Então, teremos:

$$C = k \cdot \epsilon_0 \cdot \frac{A}{d}$$

• Com a utilização dos dielétricos, pode-se obter capacitores pequenos, com alto valor de capacitância! De forma ilustrativa, temos:

9

四	Ur	iii	h	6
	OI.	IIU		

Material	Resistividade volumétrica (Ω . m)	Rigidez dielétrica		Constante dielétrica, k		Fator de perda	
		V/ mil	kV/ mm	60 Hz	10 ⁶ Hz	60 Hz	10 °Hz
Isolantes elétricos de porcelana	101 –1013	55- 300	2-12	6	220	0.06	
Isolantes de esteatite	102	145- 280	6-11	6	6	0,008- 0,090	0,007- 0,025
Isolantes de fosterita	102	250	9,8		6	225	0.001- 0.002
Isolantes de alumina	10 ²	250	9,8	ioni	9		0,0008- 0,009
Vidro sodo- cáustico				- E	7,2		0,009
Sílica fundida		8	340		3,8	994.1	0,00004

onte: Adaptada de Smith e Hashemi (2012, p. 570).

Rigidez dielétrica

- É a propriedade do material de reter energias à altas voltagens;
- Determina o valor máximo do campo elétrico que o dielétrico consegue suportar, sem que haja ruptura do material isolante;
- É medida em Volts/milímetro ou kVolts/milímetro (veja o quadro mostrado anteriormente);
- Acima da rigidez dielétrica, os elétrons podem atravessar o material!

11

Fator de perda

• O fator de perda é dado por:

Fator de Perda = $k \cdot tg \delta$

- Onde: K constante dielétrica do material (é uma medida adimensional);
 - δ ângulo de perda dielétrica expresso em graus (°);
- Diz respeito à um consumo de energia que se apresenta sob a forma de calor, aparece tanto em corrente contínua quanto em corrente alternada, causado pela circulação de uma correntes elétrica transversal, pelo material isolante;
- Perdas dielétricas acima dos suportáveis geram um aquecimento do isolante.

Uniube

Tipo de dielétrico e utilização

· Dielétricos gasosos

O isolante gasoso de maior uso é sem dúvida o ar. Ele é amplamente utilizado para isolar condutores pelo simples afastamento, o ar ao redor deles se torna um isolante gasoso, por exemplo, nas redes elétricas de transmissão e eventualmente de distribuição, onde os condutores são fixados a certa altura através de cruzetas, ou de braços, os quais, fixos a postes ou torres, são equipados com isoladores (de porcelana, vidro ou resina com borracha).

13

四Uniube

Tipo de dielétrico e utilização

· Dielétricos líquidos

Segundo Schmidt (2010), os isolantes líquidos atuam geralmente em duas áreas, ou seja, a refrigeração e a isolação. Seu efeito refrigerante é o de retirar o calor gerado internamente no elemento condutor, transferindo-o aos radiadores de calor, mantendo, assim, dentro de níveis admissíveis, o aquecimento do equipamento.

Podemos destacar os óleos como os principias dielétricos líquidos, utilizados para isolamentos e refrigeração de transformadores e cabos elétricos, entre outras utilizações.

Tipo de dielétrico e utilização

• Dielétricos pastosos e ceras

As pastas ou ceras utilizadas eletricamente caracterizam-se por um baixo ponto de fusão, podendo ter uma estrutura cristalina, baixa resistência mecânica e baixa higroscopia. Podemos destacar:

- Parafina: altamente anti-higroscópico ou repelente à água, o que mantém elevada sua rigidez dielétrica e a resistividade superficial e transversal e o recomenda como material de recobrimento de outros isolantes.
- Pasta de silicone: com uma estrutura molecular semelhante à dos óleos de silicone, é usada mais com finalidades lubrificantes do que elétricas, mas quando usada em eletricidade protege as partes nas quais se deve reduzir a oxidação, tal como nas peças de contato, em articulações condutoras.

15

Tipo de dielétrico e utilização

Materiais isolantes sólidos

- Mica: a mica isolante é derivada de uma classe de mineral que possui uma estrutura laminada muito fina e facilmente suscetível a rachaduras, os flocos são flexíveis e consistentes e extremamente resistentes ao calor, muito utilizado para o isolamento em resistências de aquecimento de diversos equipamentos elétricos, como exemplo o ferro de passar roupa.
- Papel: desde há muito tempo (1920-1925) o papel representa um material indicado para isolamento elétrico, tendo substituído a proteção de algodão nos enrolamentos dos transformadores. Além de ser um material relativamente barato, sua estrutura permite-lhe ser facilmente impregnado e sua associação com um impregnante bem escolhido confere-lhe ótimas propriedades. O impregnante atualmente associado ao papel é, mais frequentemente, um óleo mineral.

Tipo de dielétrico e utilização

- Materiais isolantes sólidos (continuação)
 - Fenolite: é formado de conjuntos de lâminas de papel kraft aglutinado com resina fenólica, prensado sob condições específicas de pressão e temperatura e, posteriormente, curado. Possui ótimas qualidades mecânicas e elétricas, além de ser de fácil transformação. É usado em corpos de anéis estáticos, na estrutura de comutadores lineares, em cunhas do núcleo e em alguns calços.

