

Algoritmos

Maratona de Programação

Sumário

1	Introdução	4
	1.1 Bugs do Milênio	4
	1.2 Recomendações gerais	5
	1.3 Os 1010 mandamentos	5
	1.4 Limites da representação de dados	6
	1.5 Quantidade de números primos de 1 até 10 ⁿ	6
	1.6 Triângulo de Pascal	
	1.7 Fatoriais	
	1.8 Tabela ASCII	
	1.9 Primos até 10.000	
2	C++ e Biblioteca STD	10
	2.1 Complex	10
	2.2 Pair	
	2.3 List	
	2.4 Vector	
	2.5 Deque	
	2.6 Queue	
	2.7 Stack	
	2.8 Map	
	2.9 Set	
	2.10 Priority Queue	
	2.11 Bitset	
	2.12 Algorithm	11
3	Estruturas de dados	12
	3.1 Heap	
	3.2 Union-Find	
	3.3 Binary Indexed Tree / Fenwick Tree	13
	3.4 Binary Indexed Tree / Fenwick Tree com range updates e queries	
	3.5 Segment Tree	14
	3.6 Segment Tree com Lazy Propagation	14
	3.7 2D Binary Indexed Tree / Fenwick Tree	15
	3.8 2D Segment Tree	15
	3.9 Persistent Segment Tree	16
	3.10 Sparse Table	
	<u> </u>	
	3.11 Treap / Cartesian Tree	17
	3.11 Treap / Cartesian Tree	
	3.12 Treap / Cartesian Tree implícita	18
	3.12 Treap / Cartesian Tree implícita	
	3.12 Treap / Cartesian Tree implícita	
	3.12 Treap / Cartesian Tree implícita 3.13 Splay Tree 3.14 Link Cut Tree 3.15 Link Cut Tree não direcionada	
	3.12 Treap / Cartesian Tree implícita 3.13 Splay Tree 3.14 Link Cut Tree 3.15 Link Cut Tree não direcionada 3.16 AVL Tree	
	3.12 Treap / Cartesian Tree implícita	
	3.12 Treap / Cartesian Tree implícita 3.13 Splay Tree	
	3.12 Treap / Cartesian Tree implícita 3.13 Splay Tree 3.14 Link Cut Tree 3.15 Link Cut Tree não direcionada 3.16 AVL Tree 3.17 Heavy-Light Decomposition 3.18 Centroid Decomposition 3.19 Convex Hull Trick	
	3.12 Treap / Cartesian Tree implícita 3.13 Splay Tree	

SUMÁRIO 2

	3.22 Código de Huffman		
4	Paradigmas		27
	4.1 Merge Sort		
	4.2 Quick Sort		
	4.3 Longest Increasing Subsequence (LIS)		
	4.4 Maximum Sum Increasing Subsequence		
	4.6 Otimização de Dois Ponteiros		
	4.7 Otimização de Convex Hull Trick		
	4.8 Otimização de Slope Trick		
	4.9 Otimização de Divisão e Conquista		
	4.10 Otimização de Knuth		
_			
5	Grafos		31
	5.1 DFS e BFS		
	5.2 DFS Spanning Tree		
	5.3 Pontos de articulação e Pontes		
	5.4 Ordenação Topológica		
	5.5 Componentes Fortemente Conexos: Algoritmo de Tarjan.		
	5.6 Componentes Fortemente Conexos: Algoritmo de Kosaraju		
	5.7 Caminho mínimo: Algoritmo de Dijkstra		
	5.8 Caminho mínimo: Algoritmo de Floyd-Warshall		
	5.9 Caminho mínimo: Algoritmo de Bellman-Ford		
	5.10 Caminho mínimo: Shortest Path Faster Algorithm (SPFA)		
	5.11 Árvore Geradora Mínima: Algoritmo de Kruskal	• • • • • • • • • • • • • • • • • • • •	
	5.12 Árvore Geradora Mínima: Algoritmo de Prim		
	5.13 2-SAT		
	5.14 Fluxo Máximo: Algoritmo de Edmonds-Karp		
	5.15 Fluxo Máximo: Algoritmo de Dinic		
	5.16 Maximum Matching: Algoritmo húngaro		
	5.17 Maximum Matching: Algoritmo de Hopcroft-Karp		
	5.18 Maximum Matching: Algoritmo Blossom		
	5.19 Corte Mínimo Global: Algoritmo de Stoer-Wagner		
	5.20 Min Cost Max Flow		
	5.21 Euler Tour: Algoritmo de Fleury 5.22		
	Dominator Tree		
	Grafos notáveis		
6	Matemática		42
	6.1 Aritmética Modular		
	6.2 Números primos		
	6.3 Fórmula de Legendre		
	6.4 Números de Catalan		
	6.5 Números de Stirling de primeira espécie		
	6.6 Números de Stirling de segunda espécie 6.7		
	Lamma da Premaida	• • • • • • • • • • • • • • • • • • • •	
	Lemma de Burnside	• • • • • • • • • • • • • • • • • • • •	
	6.8 Algoritmo de Pollard-Rho		
	6.9 Baby-Step Giant-Step para Logaritmo Discreto		45
	6.10 Código de Gray 6.11		
	Triplas Pitagóricas		45
	6.12 Teorema Chinês dos Restos 6.13		
	Matrizes		
	6.14 Exponenciação de matrizes e Fibonacci		
	6.15 Sistemas Lineares: Determinante e Eliminação de Gauss.		
	6.16 Multiplicação de matriz esparsa		
	6.17 Método de Gauss-Seidel		
	6.18 Eliminação de Gauss com o XOR		
	6.19 Fast Fourier Transform (FFT)		
	0.1. 1 abt 1 out 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

	6.20 Number Theoretic Transform (NTT)	10
	6.21 Convolução circular	
	6.22 Convolução com CRT	
	6.23 Convolução com Decomposição SQRT	
	6.24 Ciclos em sequências: Algoritmo de Floyd	
	6.25 Bignum em C++	
	6.26 BigInteger em Java	
	6.27 Jogo de Nim	52
7	Processamento de Strings	53
′	7.1 Knuth-Morris-Pratt (KMP)	
	7.1 Kituur-Worns-Fratt (KWF)	
	7.4 Suffix Array	
	7.5 Suffix Array: string matching	
	7.6 Suffix Array: Longest Common Prefix	
	7.7 Suffix Array: Longest Repeated Substring	
	7.8 Suffix Array: Longest Common Substring	
	7.9 Longest Palindromic Substring: Algoritmo de Manacher	
	7.10 Aho Corasick	
	7.11 Longest Common Subsequence	
	7.12 Função Z e Algoritmo Z	57
8	Geometria Computacional	58
O	8.1 Ponto 2D	
	8.2 Linha 2D	
	8.3 Círculo 2D	
	8.4 Triângulo 2D	
	8.5 Polígono 2D	
	8.6 Convex Hull	
	8.7 Ponto dentro de polígono convexo	
	8.9 Minimum Enclosing Circle	
	8.11 Ponto 3D	
	8.12 Triângulo 3D	
	8.13 Linha 3D	
		64
	8.15 Coordenadas polares, cilíndricase esféricas	
	8.16 Cálculo Vetorial 2D	
	8.17 Cálculo Vetorial 3D	
	8.18 Geometria Analítica	
	8.19 Ponto ótimo numa linha	
	8.20 Equação da reta	66
9	Miscelânea	67
7		
	9.1 Algoritmo de Mo	
	9.3 Iteração sobre polyominos	
	9.4 Quadrádo Mágico Ímpar	
	9.5 Expressão Parentética para Polonesa	
	9.6 Problema do histograma	
	9.7 Problema do casamento estável	
	9.8 Teoremas e Fórmulas	70

Capítulo 1

Introdução

1.1 Bugs do Milênio

Erros teóricos:

- · Não ler o enunciado do problema com calma.
- · Assumir algum fato sobre a solução na pressa.
- · Não reler os limites do problema antes de submeter.
- Quando adaptar um algoritmo, atentar para todos os detalhes da estrutura do algoritmo, se devem (ou não) ser modificados (ex:marcação de vértices/estados).
- Oproblema pode ser NP, disfarçado ou mesmo sem limites especificados. Nesse caso a solução é bronca mesmo.
 Não é hora de tentar ganhar o prêmio nobel.

Erros com valor máximo de variável:

- Verificar com calma (fazer as contas direito) para ver se o infinito é tão infinito quanto parece.
- Verificar se operações com infinito estouram 31 bits.
- Usar multiplicacao de *int*'s e estourar 32 bits (por exemplo, checar sinais usando a * b > 0).

Erros de casos extremos:

- Testou caso n = 0? n = 1? n = MAXN? Muitas vezes tem que tratar separado.
- Pense em todos os casos que podem ser considerados casos extremos ou casos isolados.
- Casos extremos podem atrapalhar não só no algoritmo, mas em coisas como construir alguma estrutura (ex: lista de adj em grafos).
- · Não esquecer de self-loops ou multiarestas em grafos.
- Em problemas de caminho Euleriano, verificar se o grafo é conexo.

Erros de desatenção em implementação:

- Errar ctrl-C/ctrl-V em código. Muito comum.
- · Colocarigualdade dentro de if? (if(a=0)continue;)
- · Esquecer de inicializar variável.
- · Trocar break por continue (ou vice-versa).

• Declarar variável global e variável local com mesmo nome (é pedir pra dar merda...).

Erros de implementação:

- Definir variável com tipo errado (int por double, int por char).
- · Não usar variável com nome max e min.
- Não esquecer que .size() é unsigned.
- Lembrar que 1 é int, ou seja, se fizer long long a = 1 << 40;, não irá funcionar (o ideal é fazer long long a = 1LL << 40;).

Erros em limites:

- Qual o ordem do tempo e memória? 10⁸ é uma referência para tempo. Sempre verificar rapidamente a memória, apesar de que o limite costuma ser bem grande.
- A constante pode ser muito diminuída com um algoritmo melhor (ex: húngaro no lugar de fluxo) ou com operações mais rápidas (ex: divisões são lentas, bitwise é rápido)?
- O exercício é um caso particular que pode (e está precisando) ser otimizado e não usar direto a biblioteca?

Erros em doubles:

- Primeiro, evitar (a não ser que seja necessário ou mais simples a solução) usar *float/double*. E.g. conta que só precisa de 2 casas decimais pode ser feita com inteiro e depois %100.
- Sempre usar double, não float (a não ser que o enunciado peça explicitamente).
- Testar igualdade com tolerância (absoluta, e talvez relativa).
- · Cuidado com erros de imprecisão, em particular evitar ao máximo subtrair dois números praticamente iguais.

Outros erros:

 Evitar (a não ser que seja necessário) alocação dinâmica de memória.

- Não usar STL desnecessariamente (ex: vector quando um array normal dá na mesma), mas usar se facili- tar (ex: nomes associados a vértices de um grafo - map < string, int >) ou se precisar (ex: um algoritmo O(nlogn) que usa < set > é necessário para passar no tempo).
- · Não inicializar variável a cada teste (zerou vetores? ze-
- rou variável que soma algo? zerou com zero? era pra zerar com zero, com -1 ou com INF?).
- · Saída está formatada corretamente?
- Declarou vetor com tamanho suficiente?
- Cuidado ao tirar o módulo de número negativo. Ex.:
 x%n não dá o resultado esperado se x é negativo, fazer
 (x%n + n)%n.

1.2 Recomendações gerais

Cortesia da PUC-RI.

ANTES DA PROVA

- · Revisar os algoritmos disponíveis na biblioteca.
- · Revisar a referência STL.
- · Reler este roteiro.
- · Ouvir o discurso motivacional do técnico.

ANTES DE IMPLEMENTAR UM PROBLEMA

- · Quem for implementar deve relê-lo antes.
- · Peça todas as clarifications que forem necessárias.
- · Marque as restrições e faça contas com os limites da entrada.
- · Teste o algoritmo no papel e convença outra pessoa de que ele funciona.
- · Planeje a resolução para os problemas grandes: a equipe se junta para definir as estruturas de dados, mas cada pessoa escreve uma função.

DEBUGAR UM PROGRAMA

- · Ao encontrar um bug, escreva um caso de teste que o dispare.
- · Reimplementar trechos de programas entendidos errados.
- Em caso de RE, procure todos os [, / e %.

1.3 Os 1010 mandamentos

Também cortesia da PUC-RJ.

- 0. Não dividirás por zero.
- 1. Não alocarás dinamicamente.
- 2. Compararás números de ponto flutuante usando EPS.
- 3. Verificarás se o grafo pode ser desconexo.
- 4. Verificarás se as arestas do grafo podem ter peso negativo.
- 5. Verificarás se pode haver mais de uma aresta ligando dois vértices.
- 6. Conferirás todos os índices de uma programação dinâmica.
- 7. Reduzirás o branching factor da DFS.
- 8. Farás todos os cortes possíveis em uma DFS.
- 9. Tomarás cuidado com pontos coincidentes e com pontos colineares.

1.4 Limites da representação de dados

		1		
tipo	bits	mínimo	 máximo	precisão decimal
char	8	0	 127	2
signed char	8	-128	 127	2
unsigned char	8	0	 255	2
short	16	-32.768	 32.767	4
unsigned short	16	0	 65.535	4
int	32	-2×10^{9}	 2×10^9	9
unsigned int	32	0	 4×10^9	9
long long	64	-9×10^{18}	 9×10^{18}	18
unsigned long long	64	0	 18×10^{18}	19

tipo	bits	expoente	precisão decimal
float	32	38	6
double	64	308	15
long double	80	19.728	18

1.5 Quantidade de números primos de \mid até \mid 0ⁿ

É sempre verdade que n/ln(n) < pi(n) < 1.26 * n/ln(n).

$pi(10^1) = 4$	$pi(10^2) = 25$	$pi(10^3) = 168$
$pi(10^4) = 1.229$	$pi(10^5) = 9.592$	$pi(10^6) = 78.498$
$pi(10^7) = 664.579$	$pi(10^8) = 5.761.455$	$pi(10^9) = 50.847.534$

1.6 Triângulo de Pascal

$n \setminus p$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

C(33, 16)	1.166.803.110	limite do int
C(34, 17)	2.333.606.220	limite do unsigned int
C(66, 33)	7.219.428.434.016.265.740	limite do long long
C(67, 33)	14.226.520.737.620.288.370	limite do unsigned long long

1.7 Fatoriais

Fatoriais até 20 com os limites de tipo.

9!	1	
1!	1	
2!	2	
3!	6	
4!	24	
5!	120	
6!	720	
7!	5.040	
8!	40.320	
9!	362.880	
10!	3.628.800	
11!	39.916.800	
12!	479.001.600	limite do unsigned int
13!	6.227.020.800	
14!	87.178.291.200	
15!	1.307.674.368.000	
16!	20.922.789.888.000	
17!	355.687.428.096.000	
18!	6.402.373.705.728.000	
19!	121.645.100.408.832.000	
20!	2.432.902.008.176.640.000	limite do unsigned long long

1.8 Tabela ASCII

Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex
(nul)	0	0000	0x00	I	(gp)	32	0040	0x20	Ī	0	64	0100	0x40	Ī		96	0140	0x60
(soh)	1	0001	0x01	1	!	33	0041	0x21	1	A	65	0101	0x41	Î	a	97	0141	0x61
(stx)	2	0002	0x02	1	"	34	0042	0x22	1	В	66	0102	0x42	1	b	98	0142	0x62
(etx)	3	0003	0x03	-1	#	35	0043	0x23	1	C	67	0103	0x43	1	c	99	0143	0x63
(eot)	4	0004	0x04	-1	Ş	36	0044	0x24	1	D	68	0104	0x44	1	d	100	0144	0x64
(enq)	5	0005	0x05	-1	ક	37	0045	0x25	1	E	69	0105	0x45	1	e	101	0145	0x65
(ack)	6	0006	0x06	1	&	38	0046	0x26	1	F	70	0106	0x46	1	£	102	0146	0x66
(bel)	7	0007	0x07	1	1	39	0047	0x27	1	G	71	0107	0x47	1	g	103	0147	0x67
(bs)	8	0010	0x08	1	(40	0050	0x28	1	H	72	0110	0x48	1	h	104	0150	0x68
(ht)		0011)		0051		1	I		0111		1	i		0151	
(nl)	10	0012			*	42	0052		1	J		0112		1	j		0152	
(vt)	11	0013			+	43	0053	2	1	K	-	0113		1	k		0153	
(np)		0014			,		0054		1	L		0114		1	1	(TEXTER)	0154	57777
(cr)	13	0015	0x0d	. 1	-	45	0055	0x2d	1	M	77	0115	0x4d	1	m	109	0155	0x6d
(so)	14	0016	0x0e	-1	•	46	0056	0x2e	1	N		0116		1	n		0156	
(si)	15	0017	0x0f	- 1	1	47	0057	0x2f	1	0	79	0117	0x4f	1	0	111	0157	0x6f
(dle)	16	0020	0x10	1	0	48	0060	0x30	1	P	80	0120	0x50	1	p	112	0160	0x70
(dc1)	17	0021	0x11	-1	1	49	0061	0x31	1	Q	81	0121	0x51	1	q	113	0161	0x71
(dc2)	18	0022	0x12	1	2	50	0062	0x32	1	R	82	0122	0x52	1	r	114	0162	0x72
(dc3)	19	0023	0x13	-1	3	51	0063	0x33	1	S	83	0123	0x53	1	s	115	0163	0x73
(dc4)	20	0024	0x14	-1	4	52	0064	0x34	1	T	84	0124	0x54	1	t	116	0164	0x74
(nak)	21	0025	0x15	- 1	5	53	0065	0x35	1	U	85	0125	0x55	1	u	117	0165	0x75
(syn)	22	0026	0x16	1	6	54	0066	0x36	1	V	86	0126	0x56	1	v	118	0166	0x76
(etb)	23	0027	0x17	1	7	55	0067	0x37	1	W	87	0127	0x57	1	W	119	0167	0x77
(can)	24	0030	0x18	1	8	56	0070	0x38	1	X	88	0130	0x58	1	x	120	0170	0x78
(em)	25	0031	0x19	1	9	57	0071	0x39	1	Y	89	0131	0x59	1	У	121	0171	0x79
(sub)		0032			:	58	0072	0x3a	1	Z		0132		1	z	122	0172	0x7a
(esc)	27	0033	0x1b	1	;	59	0073	0x3b	1	[91	0133	0x5b	1	{	123	0173	0x7b
(fs)	28	0034	0x1c	- 1	<	60	0074	0x3c	1	1	92	0134	0x5c	1	1	124	0174	0x7c
(gs)	29	0035	0x1d	1	=	61	0075	0x3d	1]	93	0135	0x5d	1	}	125	0175	0x7d
(rs)	30	0036	0x1e	1	>	62	0076	0x3e	1	^	94	0136	0x5e	1	~	126	0176	0x7e
(us)	31	0037	0x1f	1	?	63	0077	0x3f	1	_	95	0137	0x5f	1	(del)	127	0177	0x7f

1.9 Primos até 10.000

Existem 1.229 números primos até 10.000.

2	3	5	7	11	13	17	19	23	29	31
37	41	43	47	53	59	61	67	71	73	79
83	89	97	101	103	107	109	113	127	131	137
139	149	151	157	163	167	173	179	181	191	193
197	199	211	223	227	229	233	239	241	251	257
263	269	271	277	281	283	293	307	311	313	317
331	337	347	349	353	359	367	373	379	383	389
397	401	409	419	421	431	433	439	443	449	457
461	463	467	479	487	491	499	503	509	521	523
541	547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659	661
673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823
827	829	839	853	857	859	863	877	881	883	887
907	911	919	929	937	941	947	953	967	971	977
983	991	997	1009	1013	1019	1021	1031	1033	1039	1049
1051	1061	1063	1069	1087	1091	1093	1097	1103	1109	1117
1123	1129	1151	1153	1163	1171	1181	1187	1193	1201	1213
1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289
1291	1297	1301	1303	1307	1319	1321	1327	1361	1367	1373
1381	1399	1409	1423	1427	1429	1433	1439	1447	1451	1453
1459	1471	1481	1483	1487	1489	1493	1499	1511	1523	1531
1543	1549	1553	1559	1567	1571	1579	1583	1597	1601	1607
1609	1613	1619	1621	1627	1637	1657	1663	1667	1669	1693
1697	1699	1709	1721	1723	1733	1741	1747	1753	1759	1777
1783	1787	1789	1801	1811	1823	1831	1847	1861	1867	1871
1873	1877	1879	1889	1901	1907	1913	1931	1933	1949	1951
1973	1979	1987	1993	1997	1999	2003	2011	2017	2027	2029
2039	2053	2063	2069	2081	2083	2087	2089	2099	2111	2113
2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213
2221	2237	2239	2243	2251	2267	2269	2273	2281	2287	2293
2297	2309	2311	2333	2339	2341	2347	2351	2357	2371	2377
2381	2383	2389	2393	2399	2411	2417	2423	2437	2441	2447
2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551
2557	2579	2591	2593	2609	2617	2621	2633	2647	2657	2659
2663	2671	2677	2683	2687	2689	2693	2699	2707	2711	2713
2719	2729	2731	2741	2749	2753	2767	2777	2789	2791	2797
2801	2803	2819	2833	2837	2843	2851	2857	2861	2879	2887
2897	2903	2909	2917	2927	2939	2953	2957	2963	2969	2971
2999	3001	3011	3019	3023	3037	3041	3049	3061	3067	3079
3083	3089	3109	3119	3121	3137	3163	3167	3169	3181	3187
3191	3203	3209	3217	3221	3229	3251	3253	3257	3259	3271
3299	3301	3307	3313	3319	3323	3329	3331	3343	3347	3359
3361	3371	3373	3389	3391	3407	3413	3433	3449	3457	3461
3463	3467	3469	3491	3499	3511	3517	3527	3529	3533	3539
3541	3547	3557	3559	3571	3581	3583	3593	3607	3613	3617
3623	3631	3637	3643	3659	3671	3673	3677	3691	3697	3701
3709	3719	3727	3733	3739	3761	3767	3769	3779	3793	3797
3803	3821	3823	3833	3847	3851	3853	3863	3877	3881	3889
3907	3911	3917	3919	3923	3929	3931	3943	3947	3967	3989
4001	4003	4007	4013	4019	4021	4027	4049	4051	4057	4073
4079	4091	4093	4099	4111	4127	4129	4133	4139	4153	4157

4159	4177	4201	4211	4217	4219	4229	4231	4241	4243	4253
4259	4261	4271	4273	4283	4289	4297	4327	4337	4339	4349
4357	4363	4373	4391	4397	4409	4421	4423	4441	4447	4451
4457	4463	4481	4483	4493	4507	4513	4517	4519	4523	4547
4549	4561	4567	4583	4591	4597	4603	4621	4637	4639	4643
4649	4651	4657	4663	4673	4679	4691	4703	4721	4723	4729
4733	4751	4759	4783	4787	4789	4793	4799	4801	4813	4817
4831	4861	4871	4877	4889	4903	4909	4919	4931	4933	4937
4943	4951	4957	4967	4969	4973	4987	4993	4999	5003	5009
5011	5021	5023	5039	5051	5059	5077	5081	5087	5099	5101
5107	5113	5119	5147	5153	5167	5171	5179	5189	5197	5209
5227	5231	5233	5237	5261	5273	5279	5281	5297	5303	5309
5323	5333	5347	5351	5381	5387	5393	5399	5407	5413	5417
5419	5431	5437	5441	5443	5449	5471	5477	5479	5483	5501
5503	5507	5519	5521	5527	5531	5557	5563	5569	5573	5581
5591	5623	5639	5641	5647	5651	5653	5657	5659	5669	5683
5689	5693	5701	5711	5717	5737	5741	5743	5749	5779	5783
5791	5801	5807	5813	5821	5827	5839	5843	5849	5851	5857
5861	5867	5869	5879	5881	5897	5903	5923	5927	5939	5953
5981	5987	6007	6011	6029	6037	6043	6047	6053	6067	6073
6079	6089	6091	6101	6113	6121	6131	6133	6143	6151	6163
6173	6197	6199	6203	6211	6217	6221	6229	6247	6257	6263
6269	6271	6277	6287	6299	6301	6311	6317	6323	6329	6337
6343	6353 6451	6359 6469	6361 6473	6367 6481	6373 6491	6379 6521	6389 6529	6397 6547	6421 6551	6427 6553
6449 6563	6569	6571	6577	6581	6599	6607	6619	6637	6653	6659
6661	6673	6679	6689	6691	6701	6703	6709	6719	6733	6737
6761	6763	6779	6781	6791	6793	6803	6823	6827	6829	6833
6841	6857	6863	6869	6871	6883	6899	6907	6911	6917	6947
6949	6959	6961	6967	6971	6977	6983	6991	6997	7001	7013
7019	7027	7039	7043	7057	7069	7079	7103	7109	7121	7127
7129	7151	7159	7177	7187	7193	7207	7211	7213	7219	7229
7237	7243	7247	7253	7283	7297	7307	7309	7321	7331	7333
7349	7351	7369	7393	7411	7417	7433	7451	7457	7459	7477
7481	7487	7489	7499	7507	7517	7523	7529	7537	7541	7547
7549	7559	7561	7573	7577	7583	7589	7591	7603	7607	7621
7639	7643	7649	7669	7673	7681	7687	7691	7699	7703	7717
7723	7727	7741	7753	7757	7759	7789	7793	7817	7823	7829
7841	7853	7867	7873	7877	7879	7883	7901	7907	7919	7927
7933	7937	7949	7951	7963	7993	8009	8011	8017	8039	8053
8059	8069	8081	8087	8089	8093	8101	8111	8117	8123	8147
8161	8167	8171	8179	8191	8209	8219	8221	8231	8233	8237
8243	8263	8269	8273	8287	8291	8293	8297	8311	8317	8329
8353	8363	8369	8377	8387	8389	8419	8423	8429	8431	8443
8447	8461	8467	8501	8513	8521	8527	8537	8539	8543	8563
8573	8581	8597	8599	8609	8623	8627	8629	8641	8647	8663
8669	8677	8681	8689	8693	8699	8707	8713	8719	8731	8737
8741	8747	8753	8761	8779	8783	8803	8807	8819	8821	8831
8837	8839	8849	8861	8863	8867	8887	8893	8923	8929	8933
8941	8951	8963	8969	8971	8999	9001	9007	9011	9013	9029
9041	9043	9049	9059	9067	9091	9103	9109	9127	9133	9137
9151	9157	9161	9173	9181	9187	9199	9203	9209	9221	9227
9239	9241	9257	9277	9281	9283	9293	9311	9319	9323	9337
9341	9343	9349	9371	9377	9391	9397	9403	9413	9419	9421
9431	9433	9437	9439	9461	9463	9467	9473	9479	9491	9497
9511	9521	9533	9539	9547	9551	9587	9601	9613	9619	9623
9629 9733	9631 9739	9643 9743	9649 9749	9661 9767	9677 9769	9679 9781	9689 9787	9697 9791	9719 9803	9721 9811
9733 9817	9829	9833	9839	9767 9851	9769	9859	9871	9883	9803	9901
9907	9923	9929	9931	9941	9949	9967	9973	9003	9001	9901
3301	3323	3323	9 9 0 I	9 34 I	2343	9901	9913			

Capítulo 2

C++ e Biblioteca STD

2.1 Complex

Exemplo: **#include <complex>**, **complex<double> point**:

Funções: real, imag, abs, arg, norm, conj, polar

2.2 Pair

#include <utility>
pair<tipo1, tipo2> P;
tipo1 first, tipo2 second

2.3 List

list<Elem> c //Cria uma lista vazia.

list<Elem> c1(c2) //Cria uma cópia de uma outra lista do mesmo tipo (todos os elementos são copiados).

list<Elem> c(n) //Cria uma lista com *n* elementos definidos pelo construtor default.

list<Elem> c(n,elem) //Cria uma lista inicializada com *n* cópias do elemento *elem*.

list<Elem> c(beg,end) //Cria uma lista com os elementos no intervalo [beg, end).

c.list<Elem>() //Destrói todos os elementos e libera a memória.

Membros de list:

begin, end, rbegin, rend, size, empty, clear, swap.

front //Retorna o primeiro elemento.

back //Retorna o último elemento.

push_back //Coloca uma cópia de *elem* no final da lista.
pop_back //Remove o último elemento e não retorna ele.
push_front//Insere uma cópia de *elem* no começo da lista.
pop_front //Remove o primeiro elemento da lista e não retorna ele

swap //Troca duas list's em O(1).

erase (it)//Remove o elemento na posição apontada pelo iterador *it* e retorna a posição do próximo elemento.

erase (beg,end)//Remove todos os elementos no range [beg, end) e retorna a posição do próximo elemento;

insert (it, pos)//Insere o elemento *pos* na posição anterior à apontada pelo iterador *it*.

2.4 Vector

#include <vector>
vector<tipo> V;

Membros de vector:

begin, end, rbegin, rend, size, empty, clear, swap. reserve //Seta a capacidade mínima do vetor. front //Retorna a referência para o primeiro elemento. back //Retorna a referência para o último elemento. erase //Remove um elemento do vetor. pop_back //Remove o último elemento do vetor. push_back //Adiciona um elemento no final do vetor. swap //Troca dois vector's em O(1).

2.5 Deque

#include <queue>
deque<tipo> Q;
Q[50] // Acesso randômico.

Membros de deque:

begin, end, rbegin, rend, size, empty, clear, swap.
front //Retorna uma referência para o primeiro elemento.
back //retorna uma referência para o último elemento.
erase //Remove um elemento do deque.
pop_back //Remove o último elemento do deque.
pop_front //Remove o primeiro elemento do deque.
push_back //Insere um elemento no final do deque.
push_front//Insere um elemento no começo do deque.

2.6 Queue

#include <queue>
queue<tipo> Q;

Membros de queue:

back //Retorna uma referência ao último elemento da fila. empty //Retorna se a fila está vazia ou não.

front // Retorna uma referência ao primeiro elemento da fila. **pop** // Retorna o primeiro elemento da fila.

push //Insere um elemento no final da fila.size //Retorna o número de elementos da fila.

2.7 Stack

#include <stack>
stack<tipo> P;

Membros de stack:

empty //Retorna se pilha está vazia ou não.

pop //Remove o elemento no topo da pilha.

push //Insere um elemento na pilha.

size //retorna o tamanho da pilha.

top //Retorna uma referÊncia para o elemento no topo da pilha.

2.8 Map

#include <map>
#include <string>
map<string, int> si;

Membros de map:

begin, end, rbegin, rend, size, empty, clear, swap, count.

erase //Remove um elemento do mapa.

ftnd //retorna um iterador para um elemento do mapa que tenha a chave.

lower_bound //Retorna um iterador para o primeiro elemento maior que a chave ou igual à chave.

upper_bound //Retorna um iterador para o primeiro elemento maior que a chave.

Map é um set de pair, ao iterar pelos elementos de map, i-> first é a chave e i-> second é o valor.

Map com comparador personalizado: Utilizar **struct** com **bool operator<(tipoStruct s) const** . Cuidado pra diferenciar os elementos!

2.9 Set

#include <set>
set<tipo> S;

Membros de set:

begin, end, rbegin, rend, size, empty, clear, swap.

erase //Remove um elemento do set.

ftnd //Retorna um iterador para um elemento do set.

insert //Insere um elemento no set.

lower_bound //Retorna um iterador para o primeiro elemento maior que um valor ou igual a um valor.

upper_bound //Retorna um iterador para o primeiro elemento maior que um valor.

Criando set com comparador personalizado: Utilizar struct cmp com bool operator()(tipo, tipo) const e declarar set<tipo, vector<tipo>, cmp()> S. Cuidado pra diferenciar os elementos!

2.10 Priority Queue

#include <queue>
priority_queue<tipo> pq

Membros: empty, size, top, push, pop.
Utilizar struct cmp com bool operator ()(tipo, tipo)
e declarar priority_queue<tipo, vector<tipo>, cmp()>
pq

Maior vem antes!

2.11 Bitset

#include <bitset>
bitset<MAXN> bs

Membros: empty, size, count, to_string, to_ulong, to_ullong.

set //Seta todos os elementos para 1.

reset //Seta todos os elementos para 0.

flip(n) // Alterna o bit n.

flip //Alterna todos os bits.

2.12 Algorithm

#include <algorithm>

int a = max(5,13); //Retorna o maior valor (templatizado).

int a = min(5,13); //Retorna o menor valor.

vector <int> v;

sort(v.begin(), v.end()); //Ordena de acordo com o operador <.</pre>

int vv[MAXN];

stable_sort(&vv[0], &vv[MAXN]); //Ordena mantendo a ordem de elementos iguais.

reverse(v.begin(), v.end()); //Inverte a ordem.

Nas funções abaixo pode-se mandar uma função de comparação *comp* customizada mandando *&comp* como último parâmetro.

next_permutation(v.begin(), v.end()); //Reordena *v* para a próxima permutação segundo a ordenação lexicográfica. *O*(*n*). Retorna *false* se não existir.

prev_permutation(v.begin(), v.end()); //Reordena *v* para a permutação anterior segundo a ordenação lexicográfica. *O*(*n*). Retorna *false* se não existir.

nth_element(v.begin(), v.begin()+n, v.end()); //Coloca o n-ésimo elemento na posição correta, todos os menores que ele antes e todos os maiores depois. *Expected O(n)*.

Capítulo 3

Estruturas de dados

.

3.1 Heap

Árvore de prioridade ou priority_queue. Suporta o update e ordena pelo menor dist[u]. Comparador equivale a 'menor que'. O vetor heap $\acute{e}1$ -indexed.

```
#define swap (a, b) \{ int _x = a; a=b; b=_x; \}
                                                                            k >>= 1;
#define MAXN 100009
                                                                         else break;
int dist[MAXN];
bool comp (int a, int b) {
   return dist[a] < dist[b];</pre>
                                                               public:
                                                                  Heap () { heapsize = 0; }
                                                                  void clear() { heapsize = 0; }
class Heap{
                                                                  bool empty () { return h e a p s i z e ==0; }
private:
                                                                  void update(int n){
   int heap [MAXN];
                                                                      if (inv[n]>heapsize) return;
                                                                      sifup(inv[n]);
    int inv [MAXN];
    int heapsize;
                                                                        s i fdow n (inv[n]);
    void sifup(int n){
       int k = n \ll 1;
                                                                  void push(int n){
       while (k <= heapsize) {
                                                                      heap[++heapsize] = n;
          if (k < heapsize && comp(heap[k+1], heap[k
                                                                        inv[n] = heapsize;
               ])) k++;
                                                                      sifdown(heapsize);
           if (comp (heap [k], heap [n])) {
              swap ( heap [ n ] , heap [ k ] );
                                                                  bool count (int n) {
              inv [ heap [ n ] ] = n;
                                                                      int k = inv[n];
              n = inv [heap [k]] = k;
                                                                      return k \le h e a p s i z e \&\& k > 0 \&\& heap [k] == n;
              k <<= 1;
                                                                      if (heapsize \le 0) return -1;
           else break;
       }
                                                                      return heap [1];
    void s i fdow n (int n) {
                                                                  void pop(){
       int k = n >> 1;
                                                                      if (heapsize \le 0) return;
       while (k) {
                                                                      heap[1] = heap[heapsize --];
                                                                      inv [ heap [ 1 ] ] = 1;
           if (comp(heap[n], heap[k])){
              swap ( heap [ n ] , heap [ k ] );
                                                                      sifup(1);
              inv [ heap [ n ] ] = n;
                                                               };
              n = inv[heap[k]] = k;
```

3.2 Union-Find

Disjoint sets em tempo *O*(*logn*)

```
#include <c s td i o >
                                                                      return i;
#include <vector >
                                                                   bool is Same Set ( int i , int j ) {
using namespace std:
                                                                      return find(i) == find(j);
class UnionFind {
private:
                                                                   void union Set (int i, int j) {
    vector <int> parent, rank;
                                                                      if (is Same Set (i, j)) return;
public:
                                                                      int x = find(i), y = find(j);
   UnionFind (int N) {
                                                                      if (rank[x] > rank[y]) parent[y] = x;
       rank.assign(N+1,0);
                                                                      else {
       parent. a s s i g n (N+1, 0);
                                                                          parent[x] = y;
       for (int i = 0; i \le N; i ++) parent [i] = i;
                                                                          if (rank[x] == rank[y]) rank[y]++;
    int f i n d ( int i ) {
                                                                  }
       while (i != parent[i]) i = parent[i];
                                                               };
```

3.3 Binary Indexed Tree/Fenwick Tree

Resolve queries do tipo RSQ de 1 a n (1-indexed) em O(logn). Update pontual em O(logn).

```
#include <vector >
                                                                      while (i > 0) {
                                                                          sum = comp(sum, ft[i]);
i = (i & -i);
using namespace std;
const int neutral = 0:
int comp(int a, int b){
                                                                      return sum:
   return a+b;
                                                                   int rs q (int i, int j) {
                                                                      return rsq(j) - rsq(i-1);
class FenwickTree {
private:
                                                                   void update(int i, int v) {
    vector <int> ft;
                                                                      while (i < (int) ft.size())
                                                                          ft[i] = comp(v, ft[i]);
public:
                                                                          i += (i & -i);
   FenwickTree ( int n ) {
       ft.assign(n + 1, 0); //1-indexed
                                                                  }
    int rs q (int i) { // returns RSQ(1, i)
                                                               };
       int sum = n e u tr a 1;
```

3.4 Binary Indexed Tree / Fenwick Tree com range updates e queries

Resolve queries do tipo RSQ de i a j (1-indexed) em O(logn). Range updates (a[i...j]+=v) em O(logn).

```
#include <vector >
using namespace std;
                                                                  FenwickTree ( int n ) {
class FenwickTree {
                                                                      ft1.assign(n + 1, 0);
                                                                                                  //1- indexed
                                                                      ft2.assign(n + 1, 0);
private:
                                                                                                 //1- indexed
    vector <int> ft1, ft2;
   int rs q (vector \leq int \geq & ft, int i) {
                                                                  void update (int i, int j, int v) { update (
       int sum = 0;
                                                                      ft1, i, v);
       while (i > 0)
                                                                      update (ft1,j+1,-v);
          sum += ft[i];
                                                                      update (ft2, i, v * (i-1));
           i = (i \& -i);
                                                                      update (ft2, j+1, -v*j);
                                                                  int rsq(int i) {
       return sum;
                                                                      return rsq(ft1, i)*i - rsq(ft2, i);
   void update (vector <int> & ft, int i, int v) {
       while (i < (int) ft.size()) { f
                                                                  int rs q (int i, int j) {
           t[i] += v;
                                                                      return rs q(j) - rs q(i-1);
           i += (i \& -i);
       }
                                                               };
```

3.5 Segment Tree

Årvore de segmentos em 1D.

```
#include <c s td i o >
                                                                          int find(int p, int 1, int r, int a, int b) {
   if (a > r | | b < 1) return neutral;</pre>
#include <vector >
#include <algorithm >
#define INF (1<<30)
                                                                              if (1 \ge a \&\& r \le b) return st[p];
                                                                             int p1 = find(left(p), 1, (1+r) / 2, a, b);
int p2 = find(right(p), (1+r) / 2 + 1, r, a, b)
using namespace std;
const int neutral = 0;
                                                                                   );
int comp(int a, int b){
                                                                             return comp (p1, p2);
    return a+b;
                                                                      public:
                                                                          SegmentTree ( int * begin , int * end ) { s i}
class SegmentTree {
                                                                              z = (int) (end - begin);
                                                                             st.assign(4 * size, neutral);
pos.assign(size + 9, 0);
    vector <int> st, pos;
    int size;
                                                                              build(1, 0, size - 1, begin);
#define parent (p) (p >> 1)
                                                                          int query (int a, int b) { return find(1, 0, size)
#define left(p) (p << 1)
#define right(p) ((p << 1) + 1)
                                                                               - 1, a, b);}
    void build(int p, int l, int r, int * A){
                                                                          void update (int n, int num) {
        if (1 == r) {
st[p] = A[1];
                                                                              st[pos[n]] = num;
                                                                              n = parent(pos[n]);
            pos[1] = p;
                                                                              while (n>0) {
        }
                                                                                  st[n] = comp(st[left(n)], st[right(n)]);
         else {
                                                                                 n = parent(n);
            build(left(p), 1, (1 + r) / 2, A);
build(right(p), (1 + r) / 2 + 1, r, A);
            st[p] = comp(st[left(p)], st[right(p)]);
                                                                      };
        }
```

3.6 Segment Tree com Lazy Propagation

```
#include <c s td i o >
#include <vector >
#include <algorithm >
#define INF (1<<30)
using namespace std;
const int neutral = 0; //comp(x, neutral) = x
int comp(int a, int b){
    return a + b;
class SegmentTree {
private:
    vector <int> st, lazy;
    int size;
#define parent (p) (p >> 1)
#define left(p) (p << 1)
#define right(p) ((p << 1) + 1)
    void build(int p, int 1, int r, int * A){
   if (1 == r){
            st[p] = A[1];
        }
        else {
            build(left(p), 1, (l + r) / 2, A);
build(right(p), (l + r) / 2 + 1, r, A);
                                                                         public:
            st[p] = comp(st[left(p)], st[right(p)]);
    \textbf{void} \ push\,(\,\textbf{int}\ p\,,\ \,\textbf{int}\ 1\,,\ \,\textbf{int}\ r\,)\,\,\{
        st[p] += (r - 1 + 1) * lazy[p]; // Caso RSQ
        //st[p] += lazy[p];
        if (1 != r) {
            lazy[right(p)] += lazy[p];
            lazy[left(p)] += lazy[p];
        lazy[p] = 0;
                                                                         };
```

```
void update(int p, int 1, int r, int a, int b,
    int k) {
   push(p, 1,r);
   if (a > r | b < 1) return;
   else if (1 >= a && r <= b) {
      lazy[p] = k; push(p, 1, r);
       update (left(p), l, (l + r) / 2, a, b, k);
       update(right(p),(l+r)/2+1,r,a,b,
          k);
       st[p] = comp(st[left(p)], st[right(p)]);
int query (int p, int 1, int r, int a, int b) {
   push (p, 1, r);
   if (a > r | | b < 1) return neutral;
   if (1 \ge a \&\& r \le b) return st[p];
   int p1 = query (left(p), l, (l+r)/2, a, b);
int p2 = query (right(p), (l+r)/2+1, r,a
        , b);
   return comp (p1, p2);
SegmentTree ( int * begin , int * end ) { si}
   z = (int) (end - begin);
   st.assign(4 * size, neutral);
   lazy.assign(4 * size, 0);
   build(1, 0, size - 1, begin);
int query (int a, int b) { return query (1, 0, size
     -1, a, b);}
void update (int a, int b, int k) { update (1, 0, siz
    e - 1, a, b, k); }
```

3.7 2D Binary Indexed Tree / Fenwick Tree

```
#include <vector >
                                                                                       sum = comp(sum, ft[i][j]);
using namespace std;
                                                                                       j = (j \& -j);
const int neutral = 0;
int comp(int a, int b){
                                                                                   i = (i \& -i);
    return a+b;
                                                                               }
                                                                               return sum;
class FenwickTree2D {
private:
                                                                           void update(int i, int j, int v) {
                                                                              int _j = j;
while (i < (int) ft.size()) { j = _j;
while (j < (int) ft[i].size()) {</pre>
    vector < vector <int> > f t;
public:
    FenwickTree2D\ (\ \textbf{int}\ \ n\ ,\ \ \textbf{int}\ m)\ \{
        ft.assign(n + 1, vector < int > (m + 1, 0)); //1-
                                                                                       ft[i][j] = comp(v, ft[i][j]);
                                                                                       j += (j \& -j);
             indexed
    int rs q (int i, int j) { // returns RSQ((1,1), (i,
                                                                                   i += (i \& -i);
         j))
        int sum = 0, _j = j;
while (i > 0) { j = _j;
                                                                           }
                                                                       };
            while (j > 0)
```

};

3.8 **2D Segment Tree**

```
#include <vector >
using namespace std;
#define INF (1<<30)
const int neutral = 0;
int comp(int a, int b) {
    return a+b;
{\bf class} \ {\bf SegmentTree2D} \ \{
    int s i z e x , s i z e y , ix , jx , iy , jy , x , y , v ; vector
    < vector <int>> s t;
#define parent (p) (p >> 1)
#define left(p) (p << 1)
#define right(p) ((p << 1) + 1)
    void bu i l d x ( int px, int lx, int rx, vector < vector
         <int> > & A) {
        if(1x != rx){
           int mx = (1x + rx) / 2;
           buildx(left(px), lx, mx, A);
           build x (right(px), mx+1, rx, A);
        buildy(px, lx, rx, 1, 0, sizey-1, A);
    void buildy (int px, int lx, int rx, int py, int
        ly, int ry, vector < vector < int> > & A) {
        if(1y == ry) {
           if(1x == rx) st[px][py] = A[1x][1y];
           else st[px][py] = comp(st[left(px)][py], st
                [right(px)][py]);
        else {
           int my = (1y + ry) / 2;
buildy(px, lx, rx, left(py), ly, my, A);
buildy(px, lx, rx, right(py), my+1, ry, A);
           st[px][py] = comp(st[px][left(py)], st[px][
                right(py)]);
        }
    int queryx ( int px , int lx , int rx ) {
        if (1x > jx \mid | rx < ix) return neutral;
        if(1x \ge ix \&\& rx \le jx) return queryy (px, 1,
            0, sizey -1);
        int mx = (1x + rx) / 2;
        int p1x = queryx (left(px), lx, mx); int
        p2x = queryx (right(px), mx+1, rx);
        return comp (p1x, p2x);
    int queryy (int px, int py, int ly, int ry) {
        if (1y > jy \mid | ry < iy) return neutral;
```

```
if(1y \ge iy \&\& ry \le jy) return st[px][py];
      int my = (1y + ry) / 2;
      int p1y = queryy(px, left(py), ly, my);
      int p2y = queryy (px, right(py), my+1, ry);
      return comp (p1y, p2y);
   void updatex (int px, int lx, int rx) {
      if (1x > x \mid | rx < x) return;
      if(1x < rx){
         int mx = (1x + rx) / 2;
          updatex (left(px),lx,mx);
          updatex(right(px), mx+1, rx);
      updatey (px, lx, rx, 1, 0, sizey -1);
   void updatey (int px, int lx, int rx, int py, int
      if(lx == rx) st[px][py] = v;
          else st[px][py] = comp(st[left(px)][py], st[
              right(px)][py]);
      else {
          int my = (1y + ry) / 2;
          updatey (px, lx, rx, left (py), ly, my); updatey
          (px, lx, rx, right(py), my+1, ry);
          st[px][py] = comp(st[px][left(py)], st[px][
              right(py)]);
      }
public :
  SegmentTree2D (vector < vector < int> > & A) \{ s i z
      ex = A.size();
      sizey = A[0].size();
      st.assign(4*sizex+9, vector<int>(4*sizey+9));
      buildx(1, 0, sizex -1, A);
  void update (int _x, int _y, int _v) {
    x = _x; y = _y; v = _v;
    updatex (1, 0, sizex - 1);
  int query (int lx, int rx, int ly, int ry) {
    ix = 1x; jx = rx; iy = ly; jy = ry;
      return queryx (1, 0, sizex - 1);
  }
```

3.9 Persistent Segment Tree

Segment Tree Persistente. Ao começar a usar a árvore, chamar o construtor com o tamanho exato. *update* retorna o número da nova versão. *MAXS* deve ser da ordem de 2*N* + *QlogN*. As versões são indexadas em 0, sendo 0 a versão original.

```
#include <vector >
                                                                         left[p] = newnode();
#include <algorithm >
                                                                        update(left[prv], left[p], 1, m, i, k);
st[p] = comp(st[left[p]], st[right[p]]);
#define INF (1<<30)
using namespace std;
#define MAXS 2000009
                                                                         left[p] = left[prv];
const int neutral = 0; //comp(x, neutral) = x
                                                                         right[p] = newnode();
                                                                         update(right[prv], right[p], m+1, r, i,k);
int comp(int a, int b){
    return a+b;
                                                                         st[p] = comp(st[left[p]],st[right[p]]);
class PersistentSegmentTree {
                                                                 int query (int p, int 1, int r, int a, int b) {
                                                                     if (a > r \mid b < 1 \mid 1 > r) return neutral;
private:
    int \ st [MAXS], vro ot [MAXS];
                                                                     if (1 \ge a & r \le b) return st[p];
                                                                     int p1 = query (left[p], 1, (1+r) / 2, a, b);
int p2 = query (right[p], (1+r) / 2 + 1, r, a
    int left [MAXS], right [MAXS];
    int size, nds, nv;
    int newnode(){
                                                                         , b);
       left[nds] = right[nds] = -1; s
                                                                     return comp (p1, p2);
       t [nds++] = neutral;
                                                                 }
                                                              public:
       return nds -1;
                                                                 Persistent Seg ment Tree () { size = nds = nv = 0; }
                                                                 PersistentSeg ment Tree (int * begin , int * end ) {
    void build(int p, int 1, int r, int * A){
       if (1 == r) {
                                                                     nds = nv = 0; size = (int)(end-begin);
          \hat{st}[p] = \hat{A} ? A[1] : neutral;
                                                                     vro o t [nv++] = newnode ();
                                                                     build(vroot[0], 0, size-1, begin);
          left[p] = newnode();
                                                                  PersistentSegmentTree(int _size) {
                                                                     nds = nv = 0; size = _size; vro
          right[p] = newnode();
          int m = (1 + r) / 2;
                                                                     ot[nv++] = newnode();
          build(left[p], 1, m, A);
                                                                     build(vroot[0], 0, size-1, NULL);
          build(right[p], m+1, r, A);
          st[p] = comp(st[left[p]], st[right[p]]);
                                                                  int query (int a, int b, int v) { return query (vro o t
                                                                      [v], 0, size-1, a, b); 
       }
                                                                  int update(int i, int v, int k) {
                                                                     vro o t [nv++] = newnode ();
    void update(int prv, int p, int 1, int r, int i ,
        int k) {
                                                                     update (vro ot [v], vro ot [nv-1], 0, size -1, i, k)
       if (i > r
                  | | i < 1 | | 1 > r ) return;
       int m = (1 + r) / 2;
                                                                     return nv -1;
       if (1 == r) st[p] = k;
       else if (i \le m)
                                                                  int nver() { return nv; }
          right[p] = right[prv];
                                                              };
```

3.10 Sparse Table

Resolve queries do tipo RMQ de l a r em O(1). Pré-processamento O(nlogn).

```
size = end - begin;
for ( int i =0; i <s i z e; i ++){
#include <c s td i o >
#include <cmath>
#define MAXN 100009
                                                                                     SpT[i][0] = begin[i];
#define MAXLOGN 20
                                                                                 for (int j = 1; 1 << j <= size; j++){}
                                                                                     for (int i = 0; i + (1 << j) <= size; i ++){
// comparison function , can re c I ace with min , max, gcd
                                                                                         SpT[i][j] = comp(SpT[i][j-1], SpT[i]
\quad \textbf{int} \  \, comp \, \, (\, \textbf{int} \  \, a \, , \  \, \textbf{int} \  \, b \, ) \, \{ \,
    return min(a,b);
                                                                                              +(1 << (j-1)) ] [j-1]);
                                                                                 }
class Sparse Table {
                                                                             int query(int 1, int r){
private:
    int SpT [MAXN] [ MAXLOGN];
                                                                                 int k = (int) floor(log((double)r-l+1) / log
                                                                                       (2.0); // 2^k \le (j-i+1)
public:
                                                                                 return comp (SpT [1][k], SpT [r-(1 << k)+1][k]);
    Sparse Table (int * begin, int * end) {
                                                                         };
```

3.11 Treap/Cartesian Tree

Treap simples, suporta operações da BST (insert, count, erase, nth_element). Propriedades:

- É 10 vezes mais lento que Red-Black Tree, só usar se for estritamente necessário.
- · Se os valores de y forem os valores de uma array e x a posição, as queries de máximo se tornam queries de LCA.
- · IMPORTANTE: *split*separa entre k-1 e k.
- · nth_element é 1-indexed.
- Não suporta valores repetidos de x.

```
#include <c s td i o >
                                                                                return b;
#include <set>
                                                                            }
                                                                        }
#include <algorithm >
using namespace std;
                                                                        node * count ( node * t , int k ) {
                                                                            if (t == NULL) return NULL;
                                                                            else i f ( k < t->x ) return count ( t->l , k );
struct node {
    int x, y, size;
                                                                            else if (k == t -> x) return t;
    node *1, *r;
                                                                            else return count (t->r, k);
    node ( int _x) {
                                                                        int size(node * t) {
   if (t == NULL) return 0;
       x = x;
       y = rand(); s
        ize = 1;
                                                                            else return t - > s i z e;
        1 = r = NULL;
    }
                                                                        node * nth_element (node * t, int n) {
                                                                            if (t == NULL) return NULL;
};
                                                                            \label{eq:force_force} \textbf{i}\,\textbf{f}\,\big(\,n \mathrel{<=} \, s\,i\,z\,e\,\big(\,t \mathrel{->} l\,\big)\,\big)\,\,\textbf{return}\,\,\,nth\_element\,\big(\,t \mathrel{->} l\,,\,n
class Treap{
private:
                                                                            else if (n == size(t->1) + 1) return t;
    node * root;
                                                                            else return nth_element (t->r, n-s i z e (t->l)-1);
    void refresh(node * t){
       if(t == NULL) return;
                                                                        void d e l ( node * &t ) {
                                                                            if (t == NULL) return;
if (t->1!= NULL) del(t->1);
        t->s i z e = 1;
        if (t->1 != NULL)
                                                                            i f ( t->r!= NULL) d e l ( t->r );
           t - size + = t - size;
        if (t->r != NULL)
                                                                            delete t;
           t - size + = t - size;
                                                                            t = NULL;
    void s p l i t ( node * &t , int k , node * &a , node * &b ) {
                                                                     public:
        node * aux;
                                                                        Treap () { root = NULL; }
        if(t == NULL) 
                                                                        ~Treap () { clear(); }
           a = b = NULL;
                                                                        void clear() { del(root); }
                                                                        int size(){ return size(root); }
           return;
                                                                        bool count ( int k ) { return count ( root , k ) != NULL;
        else if (t->x < k) {
                                                                        bool insert(int k){
           split(t->r,k,aux,b);
                                                                            if (count (root, k)!= NULL) return false;
           t->r = aux;
           refresh(t);
                                                                            node *a, *b, *c,*d;
           a = t;
                                                                            split(root, k, a, b);
                                                                            c = new node(k);
        else{
                                                                            d = merge(a, c);
           split(t->l,k,a,aux);
                                                                            root = merge(d, b);
           t->1 = aux;
                                                                            return true;
           refresh(t);
           b = t:
                                                                        bool erase(int k){
        }
                                                                            node * f = count(root, k);
                                                                            if(f == NULL) return false;
    node * merge ( node * &a , node * &b ) {
                                                                            node *a, *b, *c,*d;
                                                                            split(root, k, a, b);
split(b, k+1, c, d);
        node * aux;
        if(a == NULL) return b;
        else if (b == NULL) return a;
                                                                            root = merge(a, d);
        i f (a->y < b->y) {
                                                                            delete f;
           aux = merge(a->r,b);
                                                                            return true;
           a \rightarrow r = aux;
           refresh(a);
                                                                        int nth_element ( int n ) {
           return a;
                                                                            node * ans = nth_element (root, n);
if (ans == NULL) return -1;
        else{
                                                                            else return ans->x;
           aux = merge(a, b->1);
           b->1 = aux;
                                                                     };
           refresh(b);
```

3.12 Treap/Cartesian Tree implícita

Suporta operações do vector, da SegmentTree e reverse em O(logn) (insertAt, erase, at, query, reverse). Propriedades:

- · Pode trocar trechos do vetor de lugar com *split* e *merge*.
- · IMPORTANTE: split separa em árvores de tamanho k e size k.
- at é 0-indexed.

```
#include <cstdio>
#include <algorithm>
#define INF (1 << 30)
                                                                    node * merge(node * &a, node * &b){
using namespace std;
                                                                        refresh(a);
                                                                        refresh(b);
                                                                        node * aux;
const int n e u tr a 1 = 0; //comp(x, neutral) = x
                                                                        if(a == NULL) return b;
else if(b == NULL) return a;
int comp(int a, int b){
    return a + b;
                                                                        i f (a->y < b->y)
}
                                                                           aux = merge(a - > r, b);
struct node {
                                                                           a \rightarrow r = aux;
                                                                           refresh(a);
    int y, v, sum, size;
    bool swap; node
                                                                           return a;
    * 1 , * r ; node (
    int _v) {
                                                                        else{
                                                                           aux = merge(a, b->1);
       v = sum = v;
       y = rand();
                                                                           b->1 = aux;
       size = 1;
                                                                           refresh(b);
       1 = r = NULL;
                                                                           return b;
       swap = false;
                                                                    }
    }
};
                                                                    node * at (node * t, int n) {
                                                                        if (t == NULL) return NULL;
                                                                        r e f r e s h (t);
class ImplicitTreap{
private:
                                                                        if(n < size(t->l)) return at (t->l, n);
                                                                        else if (n == size(t->1)) return t; else
    node * root;
    void refresh(node * t){
                                                                        return at (t->r, n-s i z e (t->l)-1);
       if(t == NULL) return;
       t - size = 1;
                                                                    int size(node * t) {
   if (t == NULL) return 0;
       t \rightarrow sum = t \rightarrow v
       i f (t->1 != NULL) {
                                                                        else return t - > s i z e;
           t - size + = t - size;
           t \rightarrow sum = comp(t \rightarrow sum, t \rightarrow l \rightarrow sum);
                                                                    void del(node * &t) {
           t->1->swap \stackrel{\wedge}{=} t->swap;
                                                                        if (t == NULL) return;
                                                                        if (t->l!= NULL) del(t->l);
       if (t->r != NULL) {
                                                                        i f (t->r!= NULL) d e l (t->r);
           t - size + = t - r - size;
                                                                        delete t;
           t->sum = comp(t->sum,t->r->sum);
                                                                        t = NULL;
           t \rightarrow r \rightarrow swap = t \rightarrow swap;
                                                                 public :
       if (t->swap) {
                                                                    Im plicitTreap() { root = NULL; }
           swap (t->l, t->r);
                                                                    ~ ImplicitTreap() { clear(); }
           t \rightarrow swap = false;
                                                                    void clear() { del(root); }
                                                                    int size(){ return size(root); }
                                                                    boolinsertAt(int n,int v){
    void s p l i t (node * &t, int k, node * &a, node * &b) { r
                                                                        node *a, *b, *c,*d;
       efresh(t);
                                                                        split(root, n, a, b);
                                                                        c = new node(v);
       node * aux;
       if(t == NULL) 
                                                                        d = merge(a, c);
           a = b = NULL;
                                                                        root = merge(d, b);
                                                                        return true;
           return;
       else i f ( s i z e (t->1) < k ) {
                                                                    bool erase(int n){
           split(t->r, k-size(t->l)-1, aux, b);
                                                                        node *a,*b,*c,*d;sp
           t->r = aux;
                                                                        lit(root, n, a, b);
           refresh(t);
                                                                        split(b, 1, c, d);r
           a = t;
                                                                        oot = merge(a, d);
                                                                        if (c == NULL) return false;
                                                                        delete c;
           split(t->l,k,a,aux);
                                                                        return true;
           t->1 = aux;
           refresh(t);
                                                                    int at (int n) {
           b = t;
                                                                        node * ans = at(root, n);
```

```
if (ans == NULL) return -1;
   else return ans->v;
                                                            void reverse(int 1, intr){
                                                               if(1>r) swap (1, r); node
int query (int 1, int r) { i f
                                                               *a, *b, * c, *d; split(
                                                               root, 1, a, d);
   (1>r) swap (1, r); node
                                                               split(d, r-l+1, b, c);
   *a, *b, *c, *d;
   split(root, 1, a, d);
                                                               if(b = NULL)b \rightarrow swap ^= 1;
   split(d, r-l+1, b, c);
                                                               d = merge(b, c);
   int ans = (b != NULL ? b->sum : neutral);
                                                               root = merge(a, d);
   d = merge(b, c);
                                                            }
   root = merge(a, d);
                                                         };
   return ans:
```

3.13 Splay Tree

Árvore de busca binária em que, para todas as operações, rotaciona-se a raíz até o elemento desejado chegar na raíz.

```
struct node {
                                                                             }
   int key;
                                                                         }
   node * left, * right;
                                                                         void d \in l \pmod{* p} {
                                                                             if (!p) return;
   node (int k) {
                                                                             del(p->left); del(p->right);
       key = k; left = right = 0;
                                                                             delete p;
};
                                                                      public :
 class Splay Tree {
private:
                                                                         Splay Tree () \{ root = 0; \}
                                                                         ~Splay Tree() { del(root); }
   node * root;
                                                                         bool empty () { return root == NULL; }
   node * rotateright (node * p) {
       node * q = p \rightarrow left;
                                                                         void clear() {
       p->l e f t = q->r i g h t;
                                                                             del(root);
                                                                             root = 0;
       q \rightarrow right = p;
       return q;
                                                                         void insert(int key) {
   }
   node * rotateleft (node * q) {
                                                                             if (!root){
                                                                                 root = new node(key);
       node * p = q - right;
       q - r i g h t = p - r i g h t = p - r i g h t = p - r i g h t = p - r i g h t ;
                                                                                 return;
       p \rightarrow left = q;
                                                                             node * p = s p l ay (root, key);
if (p->key == key) return;
       return p;
   node * s p l ay ( node * p , int key ) {
    if (p == NULL | | p->key == key ) return p;
                                                                             r \circ o t = new \text{ node (key)};
                                                                             if (p->key > key) {
       if (p->key > key) {
                                                                                root - right = p;
                                                                                root \rightarrow1 eft = p \rightarrow1 eft;
           if (!p->left) return p;
           if (p->left->key > key) {
                                                                                p->1 e f t = NULL;
               p \rightarrow left \rightarrow left = splay(p \rightarrow left \rightarrow left, key)
                    );
               p = rotateright(p);
                                                                                 root -> left = p;
                                                                                 root ->right=p->right;
                                                                                p \rightarrow r i g h \bar{t} = NULL;
           else if (p->l e f t ->key < key) {
               p \rightarrow left \rightarrow right = splay(p \rightarrow left \rightarrow right,
                    key);
                                                                         void erase(int key) {
               if (p->left->right)
                   p->left = rotateleft(p->left);
                                                                             node * p = splay(root, key);
                                                                             if (p \stackrel{!}{=} NULL \&\& p->key \stackrel{!}{=} key) return;
                                                                             if (!p->right) {
           return (p->left == NULL) ? p : rotateright(
                                                                                 root = p->left;
                p);
                                                                                 delete p;
       else {
                                                                                 return ;
           if (!p->right) return p;
                                                                             node * q = s p l ay (p -> r i g h t, key);
           if (p->r ight ->key > key) {
                                                                             q \rightarrow left = p \rightarrow left;
               p->right ->left = splay (p->right ->left,
                                                                             root = q;
                                                                             delete p;
               if (p->right->left)
                   p->right = rotateright(p->right);
                                                                         bool count(int key) {
                                                                             if(!root) return false;ro
           else if (p-right) = key (key)
                                                                             o t = s p l ay (root, key);
               p->right->right = splay(p->right->right,
                                                                             return root ->key == key;
                     key);
               p = rotateleft(p);
                                                                     };
           return (p->right == NULL) ? p : rotateleft(
                p);
```

3.14 Link Cut Tree

Estrutura de dados semelhante a disjoint sets que permite conectar vértices sem pai a algum outro vértice, cortar relação com o pai e queries de raíz da árvore e LCA. Tudo em $O(log^2n)$.

```
#include <vector >
                                                                                                                                              else {
                                                                                                                                                     if (p == q->right) rotateleft(q),
using namespace std;
#define INF (1<<30)
                                                                                                                                                             rotateleft(p);
                                                                                                                                                     else rotateright(p), rotateleft(p);
struct node
                                                                                                                                       }
        int size, id, w;
         node *par, *ppar, *left, *right;
                                                                                                                                  update (p);
         node () {
            par = ppar = left = right = NULL; w
              = size = INF;
                                                                                                                           node * access (node * p) {
                                                                                                                                  splay(p);
                                                                                                                                  if (p->r i g h t != NULL) {
class LinkCutTree
                                                                                                                                       \hat{p}->r i g \bar{h} t ->ppar = p
                                                                                                                                       p->rightarrow p + rightarrow p + r
                                                                                                                                       p \rightarrow rightarrow rightarrow p
       vector <node>1ct:
                                                                                                                                        update (p);
       void update (node *p) {
                                                                                                                                  node * last = p;
             p->s i z e = p->w;
                                                                                                                                 while (p->ppar != NULL) {
             if (p->left) p->size += p->left->size;
                                                                                                                                        node * q = p - ppar;
             if (p->right) p->size += p->right->size;
                                                                                                                                        last = q;
                                                                                                                                        splay(q);
       void rotateright(node*p){
                                                                                                                                        if(q->right!=NULL){
                                                                                                                                              q \rightarrow rightarrow rightarrow q - > rightarrow q + q ;
             node *q, *r;
             q = p - par, r = q - par;
                                                                                                                                              q - right - par = NULL;
             if((q-)ieft=p-\hat{r}ight))q-left-par=q;
             p \rightarrow right = q, q \rightarrow par = p;
                                                                                                                                        q->r i g h t = p;
             if ((p->par = r)) {
                                                                                                                                       p->par=q;
                    if (q == r->left) r->left = p;
                                                                                                                                       p->ppar = NULL;
                    else r - right = p;
                                                                                                                                        update (q);
                                                                                                                                        splay(p);
             p->ppar = q->ppar;
             q - ppar = NULL;
                                                                                                                                 return last;
             update (q);
                                                                                                                           }
                                                                                                                     public:
       void rotateleft(node * p) {
                                                                                                                             LinkCutTree () { }
                                                                                                                             LinkCutTree ( int n ) {
             node *q, *r;
             q = p \rightarrow par, r = q \rightarrow par;
                                                                                                                                 lct.resize(n+1);
             if((q-right = p-right)) q-right-par = q;
                                                                                                                                     for (int i = 0; i \le n; i ++){
             p - 1eft = q, q - par = p;
                                                                                                                                        lct[i].id = i;
             if((p->par=r))
                                                                                                                                              update(& l c t [ i ] );
                    if (q == r -> left) r -> left = p;
                    else r - r i g h t = p;
                                                                                                                           void link(int u, int v, int w) { //u becomes
             p->ppar = q->ppar;
                                                                                                                                   child of v
             q - ppar = 0;
                                                                                                                                 node *p = \&lct[u], *q = \&lct[v]; a
             update (q);
                                                                                                                                 ccess(p);
                                                                                                                                  access(q);
                                                                                                                                 p \rightarrow left=q;
       void s p l ay ( node * p ) {
                                                                                                                                 q->par=p;
             node *q, *r;
                                                                                                                                 p \rightarrow w = w;
             while (\bar{p} - par != NULL) {
                                                                                                                                 update (p);
                    q = p - par;
                    if (q->par == NULL) {
                                                                                                                           \textbf{void} \ 1 \, i \, n \, k \, (\, \textbf{int} \, u \, , \, \, \textbf{int} \, v \, ) \ \{ \ \textit{//unweighted}
                          if (p == q->left) rotateright(p);
                          else rotateleft(p);
                                                                                                                                 link(u, v, 1);
                    else {
                          r = q->par;
                                                                                                                             void cut(int u) { node
                          if (q = r - > left)
                                                                                                                                  * p = &l c t [ u ]; a c c
                                 if (p == q->left) rotateright(q),
                                                                                                                                 ess(p);
                                        rotateright(p);
                                                                                                                                 p->l e f t ->par = NULL;
                                                                                                                                 p \rightarrow left = NULL;
                                 else rotateleft(p), rotateright(p);
                                                                                                                                 update (p);
```

```
}
                                                       }
int findroot(int u) {
                                                         int depth(int u) {
   node *p = \&lct[u];
                                                          access(&lct[u]);
   access(p);
                                                          return lct[u].size - lct[u].w;
   while (p->left) p = p->left;
   splay(p);
   return p->id;
                                                        int LCA(int u, int v) { a
                                                          ccess(&lct[u]);
                                                           return access(&lct[v])->id;
bool IsSameTree(int u, int v) {
   return findroot(u) == findroot(v);
                                                    };
```

3.15 Link Cut Tree não direcionada

Semelhante a LinkCutTree, porém permite o link e o cut de quaisquer vértices de forma não direcionada.. Tudo em $O(log^2n)$.

```
struct node { ... };
class LinkCutTree { ...};
                                                                    void link(intu, int v) {
                                                                       if (lct.depth(u) < lct.depth(v)) {
class Undirected Link Cut Tree
                                                                           invert(u);
                                                                           lct.link(u,v);
   LinkCutTree l c t;
                                                                          par[u] = v;
   vector <int> par;
                                                                       else{
   void invert(intu) {
                                                                           invert(v);
                                                                           lct.link(v,u);
       if (par[u] == -1) return;
       int v = par[u];
                                                                           par[v] = \dot{u};
       invert(v);
       1 c t . cut ( u );
       par [ u ] = -1;
                                                                   void cut(int u, int v){
   if (par[v] == u) u = v;
       lct.link(v, u);
       par[v] = u;
                                                                       1 c t . cut (u);
                                                                       par [u] = -1;
public:
   Undirected Link Cut Tree () {}
                                                                   bool Is Same Tree (int u, int v) {
   Undirected Link Cut Tree ( int n ) {
                                                                       return 1 c t. Is Same Tree (u, v);
       lct = LinkCutTree(n);
       par.assign(n+1, -1);
                                                                };
```

3.16 AVL Tree

```
struct node {
                                                                                                                          if (p \rightarrow left == 0) return p \rightarrow right;
      int key, height, size;
                                                                                                                          p \rightarrow left = removemin(p \rightarrow left);
      node * left, * right;
                                                                                                                          return balance (p);
      node (int k) {
            key = k; left = right = 0;
                                                                                                                    node * remove (node * p, int k) \{
            height = size = 1;
                                                                                                                          if (!p) return 0;
                                                                                                                          if (k  key) p > left = remove(p > left, k);
                                                                                                                          else if (k > p - key) p->right = remove (p - key)
};
                                                                                                                                 right, k);
class AVLtree {
                                                                                                                          else {
private:
                                                                                                                                node *1 = p -> 1 e f t;
                                                                                                                                node * r = p -> r ight;
      node * root;
                                                                                                                                delete p;
      int s ize_;
                                                                                                                                if (!r) return 1;
      int height(node * p) {
            return p ? p->height: 0;
                                                                                                                                node * \min = f \text{ indmin } (r);
                                                                                                                                min-rightarrow rightarrow right
      int size (node * p) {
                                                                                                                                \min -> left = 1;
           return p ? p \rightarrow size : 0;
                                                                                                                                return balance (min);
      int bfactor(node * p) {
                                                                                                                          return balance (p);
            return height(p->right) - height(p->left);
                                                                                                                    bool find(node * p, int k) {
      void fixheight(node * p) {
                                                                                                                          if (!p) return false;
            int h1 = height(p->left);
                                                                                                                          if (p->key == k) return true;
            int hr = h e i g h t (p -> r i g h t);
                                                                                                                          else if (k \le p \ge key) return find(p \ge left, k);
                                                                                                                          else return find (p->right,k);
            p->h e i g h t = (hl>hr ? h l : hr) + 1;
            p->size = 1 + size(p->left) + size(p->right);
                                                                                                                    void del(node* p) {
                                                                                                                          if (!p) return; de
1(p->left);
      node * rotateright (node * p) {
           node * q = p->left;
p->left = q->right;
                                                                                                                          del(p->right);
            q - right = p;
                                                                                                                          delete p;
            fixheight(p);
            fixheight(q);
                                                                                                                    node * nth (node * p, int n) {
            return q;
                                                                                                                          if (!p) return p;
                                                                                                                          if (size(p->left) + 1 > n) return nth(p->left)
      node * rotateleft(node * q) {
           node * p = q - right;

q - right = p - right;
                                                                                                                          if (size(p->left) + 1 < n) return nth(p->right)
                                                                                                                                  , n - size(p->left) - 1);
           p \rightarrow left = q;
                                                                                                                          else return p;
            fixheight(q);
            fixheight(p);
            return p;
                                                                                                              public :
                                                                                                                    AVLtree () { root = 0; size_= 0; }
                                                                                                                    ~AVLtree() { del(root); }
      node * balance (node * p) { f}
            ixheight(p);
                                                                                                                    bool empty () { return size_ == 0;}
            if (bfactor(p) == 2) {
                                                                                                                    int size() { return size_;}
                  if (bfactor(p->right)<0)
                                                                                                                    void clear() {
                    p->right = rotateright(p->right);
                                                                                                                          size_{-} = 0;
                  return rotateleft(p);
                                                                                                                          del(root);
                                                                                                                          root = 0;
            if (bfactor(p) == -2) {
                  if (bfactor(p->left)>0)
                                                                                                                    void insert (int key) {s
                       p->left = rotateleft(p->left);
                                                                                                                          ize ++;
                  return rotateright(p);
                                                                                                                          root = build(root, key);
            return p;
                                                                                                                    void erase(int key){
                                                                                                                          size_ --;
      node * build (node * p, int k) {
                                                                                                                          r \circ o t = remove (root, key);
            if (!p) return new node (k);
if (p->key == k) return p;
                                                                                                                    bool count(int key) {
            else if (k \le p - \ge key) p - \ge left = build(p - \ge left, k)
                                                                                                                          return find(root, key);
            else p \rightarrow right = build(p \rightarrow right, k);
                                                                                                                    int nth_element ( int n ) { node
            return balance (p);
                                                                                                                          *p = nth(root,n); if(p)
                                                                                                                          ) return p->key; else
                                                                                                                          return -1;
      node * f indmin (node * p)  {
            return p->left ? findmin(p->left): p;
                                                                                                                           //1-indexed
      node * removemin (node * p)
```

3.17 Heavy-Light Decomposition

Decomposição Heavy-light de uma árvore em O(n). Query de LCA em O(logn). chain[i] é a i-ésima cadeia. nchs é o número de cadeias. nchain[u] é o índice da cadeia a qual u pertence. up[i] é o índice do nó do qual a i-ésima cadeia é filha. io[u] é o índice de nó u dentro de sua cadeia. fson[u] é o filho de u por onde a cadeia atual prossegue. depth[i] é a profundidade do nó mais alto da i-ésima cadeia. Para queries de distância e outras, montar SegTrees, BIT's ou somas parciais por cadeia.

```
#include <vector >
                                                                       if (v == par[u]) continue;
                                                                       if (v == fson[u]) builddfs(v, ch, h+1);
using namespace std;
#define MAXN 100009
                                                                       else {
                                                                          up [ nchs ] = u ; depth [ nchs ] = h ;
int par [MAXN], size [MAXN];
                                                                           chain [ nchs ] . c l e a r ();
vector < int > adjList [MAXN];
                                                                           builddfs(v, nchs++, h+1);
int root , N, up [MAXN] , f s o n [MAXN] ;
vector <int> chain [MAXN];
                                                                   }
int nchs, nchain [MAXN], i d [MAXN], depth [MAXN];
                                                                }
int sizedfs(int u, int p) {
                                                                void heavylightdecomposition(int _root) {
    size[u] = 1; fson[u] = -1; par[u] = p;
                                                                   root = _root;
                                                                   sizedfs(root, -1);
nchs = 0; chain[0].clear();
    int msz = 0;
    for (int i=0; i<(int)adjList[u].size(); i++) {</pre>
                                                                   up [ nchs ] = -1; depth [ nchs ] = 0; b
       int v = a dj List[u][i];
       if (v == p) continue;
size[u] += sizedfs(v, u);
                                                                   uilddfs(root, nchs++, 1);
                                                                }
       if (size[v] > msz) {
                                                                int LCA(int u, int v){
           fson[u] = v; msz = size[v];
                                                                   int cu = nchain[u], cv = nchain[v];
                                                                   while ( cu != cv ) {
    return size[u];
                                                                       if (depth [cu] > depth [cv]) u = up [cu];
}
                                                                       else v = up[cv];
                                                                       cu = nchain[u]; cv = nchain[v];
void builddfs(int u, int ch, int h) {
                                                                   if (id[u] < id[v]) return u;
    nchain [u] = ch; id[u] = chain[ch].size(); chain
    [ch].push_back(u);
                                                                   else return v;
    for (int i=0; i < (int) adjList[u].size(); i++){</pre>
                                                                }
       int v = a dj List[u][i];
```

3.18 Centroid Decomposition

Realiza a decomposição em O(nlogn) e retorna a raíz da decomposição. csons[i] são os filhos do i-ésimo nó segundo a decomposição. par[i] é o pai do i-ésimo nó segundo a decomposição. label[i] é a profundidade do i-ésimo nó na decomposição, iniciando em 0. size[i] no final do algoritmo contém o tamanho da subárvore de centróides com raíz i. CUIDADO: o pai da raiz da árvore centróide é ele mesmo.

```
#include <c s tr i n g >
                                                                           return findcentroid(v, u, nn);
#include <vector >
                                                                    }
using namespace std;
                                                                    return u;
#define MAXN 100009
                                                                int decompose (int root, int par) {
typedef long long 11;
                                                                    subsize(root, -1);
typedef pair <11 , int> ii;
int clevel[MAXN], cpar [MAXN], csize[MAXN];
                                                                    int u = findcentroid(root, -1, csize[root]);
                                                                    cpar[u] = par;
vector <int> cs o n s [MAXN];
                                                                    clevel[u] = par >= 0 ? clevel[par]+1 : 0;c
vector <i i > a d j L i s t [MAXN];
                                                                    size[u] = 1;
                                                                    for (int i =0; i <(int) a dj List[u].size(); i++){
int N, K;
                                                                       int v = a d j L i s t [u][i]. second;
int subsize(int u, int p){
                                                                       if(v != par \&\& clevel[v] < 0) {
    c s i z e [u] = 1;
                                                                           v = decompose(v, u);
    for (int i =0; i <(int) a d j L i s t [u]. s i z e (); i ++){
                                                                           cs o n s [ u ] . push_back ( v );
       int v = a d j L i s t [u][i]. second;
                                                                           csize[u] += csize[v];
       if (v != p \&\& clevel[v] < 0)
           csize[u] += subsize(v, u);
                                                                    }
                                                                    return u;
    return csize[u];
                                                                int centroiddecomposition(int root){
int findcentroid (int u, int p, int nn) {
                                                                    memset(&clevel, -1, sizeof clevel);
                                                                    for (int i = 0; i \le N; i + +) cs on s[i].clear();
    for (int i = 0; i < (int) a dj List[u].size(); i + +){
       int v = a d j L i s t [u][i]. second;
                                                                    return decompose (root, -1);
       if (v != p \&\& clevel[v] < 0 \&\& csize[v] > nn
                                                                }
            /2)
```

3.19 Convex Hull Trick

Para queries de mínimo, sete maxCH = false e insira retas do tipo y = mx + n na ordem decrescente de m. Resolve queries de min(y(x)) para todas as retas inseridas em tempo O(logn).

Para queries de máximo, sete maxCH = true e insira retas do tipo y = mx + n na ordem crescente de m. Resolve queries de max(y(x)) para todas as retas inseridas em tempo O(logn).

```
#include <c s td i o >
                                                                              p \cdot back() \ge i n t e r (nm, nn, m. back(), n.
#include <vector >
                                                                                  back () ) ) ) {
#define INF (1<<30)
                                                                              m. pop_back(); n.pop_back(); p.pop_back()
#define MAXN 1009
using namespace std;
                                                                         p.push\_back(p.empty()?-INF:inter(nm, nn,
typedef long long int 11;
                                                                             m. back (), n. back ()));
                                                                         m. push_back (nm); n. push_back (nn);
class CHTrick{
                                                                    }
11 query (11x) {
private:
                                                                         if (p.empty ()) return (maxCH? -1:1) *INF; double dx = (double) x;
     vector < l l > m, n;
     vector <double> p;
                                                                         11 high = p.size()-1, low = 0, mid;
     bool maxCH:
                                                                         if (dx \ge p [high]) return m[high] * x + n [high]
     CHTrick ( bool _maxCH) { maxCH = _maxCH; }
     void clear() {
                                                                         while ( high > low +1){ mid
                                                                              = (high+low) / 2;
         m.clear(); n.clear(); p.clear();
                                                                              if (dx < p[mid]) high = mid;
     double inter (double nm, double nn, double lm,
                                                                              else low = mid;
         double 1n) {
          return (1n - nn) / (nm - lm);
                                                                         return m[low] * x + n [low];
                                                                    }
     void push(11 nm, 11 nn){
                                                                };
          while (! p . empty () &&
              ((nm == m. back () && (maxCH? -1:1) *nn <= (
                   maxCH? -1:1) *n . back () ) | |
```

3.20 Lowest Commom Ancestor (LCA) e distância na árvore

P[I][J] = 0 2^{J} -ésimo pai do i-ésimo nó. *computeP* (*root*) computa a matriz P em O(nlogn). A partir de P, pode-se calcular o LCA de dois nós em $O(log^2n)$ para uma árvore qualquer com raiz em *root. dist* usa LCA pra calcular a query de distância em $O(log^2n)$.

```
#include <vector >
#include <iostream>
using namespace std;
#define MAXN 100009
#define MAXLOGN 20
typedef pair <int, int> ii;
vector <ii> adjList [MAXN];
int depth [MAXN] , level[MAXN];
int P[MAXN] [ MAXLOGN] , N;
{f void}\ d\ e\ p\ thd\ f\ s\ ({\ f int}\ u\ )\ \{
    for (int i = 0; i < (int) adjList[u]. size(); i++){</pre>
        int v = a d j L i s t [ u ] [ i ] . f i r s t;
        int w = a dj List[u][i]. second;
        if (v == P[u][0]) continue;
       P[v][0] = u;
        level[v] = 1 + level[u];
        depth[v] = w + depth[u]; d
        epthdfs(v);
void computeP(int root){
```

```
level[root]=depth[root]=0;
   P[root][0] = root;
   depthdfs(root);
   for (int j = 1; j < MAXLOGN; j++)
for (int i = 1; i <= N; i++)
          P[i][j] = P[P[i][j-1]][j-1];
int LCA(int a, int b){
   if(level[a] > level[b]) swap(a, b);
   int d = level[b] - level[a];
   for ( int i =0; i <MAXLOGN; i ++){
       if((d & (1 << i)) != 0) b = P[b][i];
   if(a == b) return a;
   for (int i = MAXLOGN-1; i \ge 0; i - -)
       while (P[a][i] != P[b][i]) {
         a=P[a][i]; b=P[b][i];
   return P[a][0];
int dist(int u, int v){
   return depth [u] + depth [v] – 2* depth [LCA(u, v)];
}
```

3.21 Merge Sort Tree

Constrói a árvore de recursão do merge-sort. O(nlogn) em espaço e em tempo de contrução. Queries:

- · O número de elementos menores que k em um intervalo (a, b) em $O(log^2 n)$.
- · O n-ésimo elemento 0-indexed em um intervalo (a, b) em $O(log^3 n)$.

```
#include <vector >
                                                                      if (st[p][0] >= k | | a > r | | b < 1) return 0;
#define INF (1<<30)
                                                                      if (1 \ge a \&\& r \le b) {
                                                                         l = 0; r = (int)st[p].size();
using namespace std;
                                                                         int m;
                                                                         while (r > 1 + 1) {
class Merge SortTree {
                                                                            m = (r+1)/2;
    vector < vector <int> > s t;
                                                                            if (st[p][m] < k) 1 = m;
    int size;
                                                                             else r = m;
   #define parent (p) (p >> 1)
   #define left(p) (p << 1)
#define right(p) ((p << 1) + 1)
                                                                         return r;
    void build(int p, int 1, int r, int *A) { //O(n)}
                                                                     int p1 = less(left(p), l, (l+r)/2, a, b, k);
                                                                      int p2 = less(right(p), (l+r)/2+1, r, a, b, k)
       st[p].resize(r-l+1);
       if(1 == r)
          st[p][0] = A[1];
                                                                     return p1+p2;
       else {
                                                               public:
                                                                  Merge SortTree ( int \, * \, begin , int \, * \, end ) { s i
          int pl = left(p), pr = right(p), m = (l+r)
                                                                      z = (int)(end-begin);
               /2;
                                                                     st.assign(4*size, vector < int >());
build(1, 0, size -1, begin);
          build(pl , 1, m, A);
          build(pr, m+1, r, A);
           unsigned int i = 0, j = 0, k = 0;
           while ( i < st[p1].size() && j < st[pr].size()
                                                                  int less(int a, int b, int k){
                                                                      return less(1, 0, size-1, a, b, k);
              if(st[p1][i] < st[pr][j]) st[p][k++] =
                  st[pl][i++];
                                                                  int nth_element(int a, int b, int n){
                                                                     int 1 = -INF, r = INF, m;
              else st[p][k++] = st[pr][j++];
                                                                      while (r > 1 + 1){
          }
                                                                         \dot{m} = (r+1) / 2;
           while (i \le st[p1].size()) st[p][k++] = st[p1]
                                                                         if (less(a,b,m) \le n) 1 = m;
                ] [ i ++];
           while (j < st[pr].size()) st[p][k++] = st[pr
                                                                         else r = m;
               ] [ j ++];
       }
                                                                     return 1;
                                                                  }
    int less (int p, int 1, int r, int a, int b, int k
                                                               };
        ) { // O(log n)
```

3.22 Código de Huffman

Constrói o autômato de Huffman: dado um conjunto de elementos, montar uma árvore cujas folhas são os elementos desse conjunto, o pai é a soma dos filhos e a soma de todos os nós é mínima. Propriedades:

- · O caminho da raíz até a folha é o código de Huffman (filho esquerdo -> menor nó -> 0, filho direito -> maior nó -> 1);
- · Nenhum código é o prefixo de outro;
- Essencialmente ele minimiza: $cost = \bigcap_{i=0}^{n-1} a[i] \times depth[i]$

```
#include <queue>
#in clude <vector >
using namespace std;
#d:fine MAXN 100009
#d:fine INF (1 LL<<60)
ty edef long long 11;
ty edef pair <ll , int> ii;
cla ss HuffmanTree{
    vector <int> left, right, par;
    int root, size;1
    lcost;
pu blic :
    HuffmanTree(int*begin, int*end)
       size = (int)(end - begin);
       int u, v;
       cost = 0;
       11 cu, cv;
       left.assign(2*size+9, -1);
       right.assign(2 * size + 9, -1);
       par. a s s i g n (2 * s i z e + 9, -1);
       priority_queue <i i > pq;
       for (int i = 0; i < s i z e; i + +){
           pq.push(ii(-begin[i], i));
       while (pq.size() > 1) {
           u = pq \cdot top() \cdot second;
```

```
cu = -pq \cdot top() \cdot first;
       pq.pop();
       v = pq \cdot top () . second; cv
       = -pq \cdot top() \cdot first; pq
       . pop ();
       root = size ++;
       left[root] = u; par[u] = root;
       right[root] = v; par[v] = root;
       cost += cu + cv;
       pq.push(ii(-cu-cv,root));
11 get Cost () { return cost; }
in t getSize() { return size; }
void getCode (int u, char * buffer) {
   vector <int> s;
   while (par [u] >= 0)
       if (left[par[u]] == u) s.push_back(0);
       else s.push_back(1);
       u = par[u];
   while (!s.empty()) {
       * b u f f e r = s . back () + '0';
b u f f e r ++; s . pop_back ();
    *buffer = ' \setminus 0';
```

Capítulo 4

Paradigmas

4.1 Merge Sort

Algoritmo *O*(*nlogn*) para ordenar o vetor em [*a*, *b*]. *inv* conta o número de inversões do bubble-sort nesse trecho.

```
#include <c s td i o >
                                                                       int p=a, q=mid+1, k=a;
                                                                    while (p \le mid \&\& q \le b) \{
#define MAXN 100009
                                                                       if (vet[p]>vet[q]){
typedef long long int 11;11
                                                                           aux [k++]=vet [q++];
                                                                           inv += (11)(q-k);
int N, vet [MAXN], aux [MAXN];
                                                                        else aux [ k++]=vet [ p++];
void merg esort (int a, int b) {
    if (a==b) return;
                                                                    while (p \le mid) aux [k++]=vet[p++];
                                                                    while (q \le b) aux [k++]=vet [q++];
    int mid = (a+b)/2;
    merg esort (a, mid);
                                                                   for (int i=a; i <=b; i++) vet [i] = aux [i];
    mergesort (mid+1, b);
```

4.2 Quick Sort

Algoritmo Expected O(nlogn) para ordenar o vetor em [a, b]. É o mais rápido conhecido.

```
while (i \le j) {
#include < c s td i o >
                                                                       while ( i <= j && a r r [ i ] <= p i v o t ) i ++;
#include <algorithm >
                                                                       while (i \le j \&\& arr[j] > pivot) j --;
using namespace std;
                                                                       if (i < j) swap(arr[i], arr[j]);</pre>
void quicksort(int * arr, int 1, int r){
                                                                  swap(arr[i-1], arr[l]);
     if (1 \ge r) return;
     int mid = 1 + (r - 1) / 2;
                                                                  quicksort(arr, 1, i-2);
     int pivot = arr[mid];
                                                                   quicksort(arr, i, r);
     swap (arr[mid], arr[1]);
                                                              }
     int i = 1 + 1, j = r;
```

4.3 Longest Increasing Subsequence (LIS)

O(nlogn). M[i] representa o índice do menor elemento tal que existe uma sequência de tamanho i que termina nele.

```
#define MAXN 100009
                                                                         m = (1+h)/2;
                                                                         if (arr[M[m]] < arr[i]) l = m; //</pre>
int LIS(int * arr, int n){int
                                                                              estritamente crescente
   M[n+1], L=1,1,h, m; M[1]
                                                                         //if (arr [M[m]]<= arr [i]) I = m; //
   = 0;
                                                                              crescente
    for ( int i = 1; i < n; i + +){
                                                                         else h = m;
       if (arr[i] < arr[M[1]]) {</pre>
                                      // estritamente
           crescente
                                                                      if (h>L) L=h;
       //if (arr[i]<=arr[M[1]]){ //crescente</pre>
                                                                     M[h] = i;
          M[1] = i; continue;
                                                                  return L:
       l = 1; h = L+1;
                                                               }
       while (h>l+1){
```

4.4 Maximum Sum Increasing Subsequence

O(nlogn). MIS[k] é o maior soma de uma subsequência crescente que termina em k. rank[i] é o valor do índice de arr[i] quando ordenada. A[i] = MIS[k], rank[k] = i.

```
else return arr[a] < arr[b];</pre>
#include <vector >
#include <algorithm >
                                                               }
#include <c s tr i n g >
                                                               int MSIS () {
#define MAXN 100009
                                                                   for (int i = 1; i <= N; i ++) invrank [i] = i; s
using namespace std;
                                                                   ort(invrank+1, invrank+1+N, &rankcomp);
int comp(int a, int b){
                                                                   for ( int i =1; i <=N; i ++) rank [ invrank [ i ] ] = i;
                                                                   memset(&A, 0, sizeof A);
    return max(a,b);
                                                                   FenwickTree ft(N);
                                                                   for (int i = 1, j; i \le N; i + +)
class FenwickTree { ... };
                                                                      j = rank[i];
                                                                      A[j] = arr[i] + ft.rsq(j-1);
int arr[MAXN], A[MAXN];
                                                                      f t . update (j, A[j]);
int rank [MAXN], invrank [MAXN], N;
                                                                   return ft.rsq(N);
bool rankcomp (int a, int b){
                                                               }
   //if (arr[a] == arr[b]) return a<b; // crescente</pre>
    if (arr[a] == arr[b]) return a>b;
        estritamente crescente
```

4.5 Problema dos Pares mais Próximos

Algoritmo *O*(*nlogn*) para achar os pares mais próximos segundo a distância euclidiana em uma array de pontos no espaço.

```
double dr = dist(pr.first, pr.second); double
#include <c s td i o >
#include <algorithm >
                                                                  dl = dist(pl.first, pl.second); double d
                                                                  = min ( dl , dr );
#include <iostream>
#include <cmath>
                                                                  double midx = 0.5 * (points[mid].x + points[mid]
#include <set>
                                                                      +1].x);
                                                                  int k = 0, kr;
#define EPS 1e-9
#define INF 1 e+9
                                                                  for ( int i=a; i<=mid; i++){
                                                                       if (points[i].x \ge midx - d - EPS) aux[kl++]
#define MAXN 100009
using namespace std;
                                                                            = points[i];
                                                                  kr = k1;
struct point {
    double x, y;
point() { x = y = 0.0;}
                                                                  for (int i=mid+1; i \le b; i ++){
                                                                       if (points[i].x \le midx + d + EPS) aux[kr++]
     p \circ i n t (double \_x, double \_y) : x (\_x), y (\_y) {}
                                                                            = p o i n ts [i];
                                                                       else break;
double dist(point p1, point p2) {
                                                                  sort(aux, aux+kl, &compy);
     return hypot (p1.x - p2.x, p1.y - p2.y);
                                                                  sort(aux+kl, aux+kr, &compy);
                                                                  for ( int i = 0, k=k l; i < k l; i ++ ) {
for ( int j=k; j < kr; j++ ) {}
typedef pair <point, point> pp;
                                                                           if (aux[i].y - aux[j].y > d + EPS) k=j
                                                                                +1;
bool compx(point a, point b){
                                                                           else if (aux[j].y - aux[i].y > d + EPS)
     if (fabs(a.x - b.x) \le EPS) return a.y \le b.y;
                                                                               break;
                                                                           else if (dist(ans.first, ans.second) > di
     else return a.x < b.x;
                                                                                st(aux[i], aux[j])) ans =
                                                                               make_pair (aux[i], aux[j]);
bool compy(point a, point b){
                                                                      }
     if(fabs(a.y-b.y) \le PS) return a.x \le b.x;
     else return a.y < b.y;
                                                                  if (dr < dist(ans.first, ans.second)) ans = pr;</pre>
                                                                  if (dl < dist(ans.first, ans.second)) ans = pl;</pre>
pp closestPair(point* points, point* aux, int a, int
     b){
     pp pl, pr, ans = make_pair(point(-INF, 0), point
                                                             pp closestPair(point* points, int n){
         (0, INF));
                                                                  point aux[n];
     if (a == b) return ans;
                                                                  sort(points, points+n, &compx);
                                                                  return closest Pair (points, aux, 0, n-1);
     int mid = (a+b)/2;
     pl = closestPair(points, aux, a, mid);
                                                              }
     pr = closestPair(points, aux, mid+1, b);
```

4.6 Otimização de Dois Ponteiros

Reduz a complexidade de $O(n^2k)$ para O(nk) de PD's da seguinte forma (e outras variantes):

$$dp[i][j] = 1 + \min_{1 \le k \le i} (\max(dp[k-1][j-1], dp[i-k][j])), \text{ caso base : } dp[0][j], dp[i][0]$$
(4.1)

- · A[i][j] = k ótimo que minimiza dp[i][j].
- É necessário que dp[i][j] seja crescente em i: $dp[i][j] \le dp[i+1][j]$.
- · Este exemplo é o problema dos ovos e dos prédios.

```
#include <algorithm >
                                                                   for (int j =1; j<=K; j++) {
                                                                      dp[i][j] = INF;
using namespace std;
#define MAXN 1009
                                                                       for (int k=A[i-1][j]; k \le i; k++) {
                                                                          int cur = 1 + \max(dp[k-1][j-1], dp[i-k][
#define MAXK 19
#define INF (1<<30)
                                                                          if (dp[i][j] > cur){
int dp [MAXN] [MAXK], A[MAXN] [MAXK], N, K;
                                                                             dp[i][j] = cur;
                                                                             A[i][j] = k;
void twopointer() {
   for ( int i = 0; i <= N; i ++) dp[i][0] = INF;
                                                                          if (dp[k-1][j-1] > dp[i-k][j]) break;
   for (int j = 0; j \le K; j + +) dp [0][j] = 0, A [0][j] =
                                                                   }
   dp[0][0] = 0;
                                                               }
   for (int i = 1; i <= N; i ++) {
                                                            }
```

4.7 Otimização de Convex Hull Trick

Reduz a complexidade de $O(n^2k)$ para O(nklogn) de uma PD da seguinte forma (e outras variantes):

$$dp[i][j] = \min_{0 \le k \le i} (A[k] * x[i] + dp[k][j-1]), \text{ caso base : } dp[0][j], dp[i][0]$$
(4.2)

É necessário que A seja decrescente: $A[i] \ge A[i+1]$.

```
for ( int i = 0; i \le N; i + + dp[i][0] = 0;
#include <vector >
#define INF (1<<30)
                                                                     CHTrick cht (false);
#define MAXN 1009
                                                                     for (int j = 1; j <= K; j ++ ){
                                                                          dp[0][j] = 0;
using namespace std;
                                                                          cht.clear();
typedef long long 11;
                                                                          for (int i = 1; i <= N; i ++){
class CHTrick{ . . . };
                                                                               cht . push (A[i-1], dp[i-1][j-1]);
                                                                               dp[i][j] = cht.query(x[i]);
11 \times [MAXN], A[MAXN], dp [MAXN][MAXN];
int N, K;
                                                                 }
void solve() {
```

4.8 Otimização de Slope Trick

Reduz a complexidade de $O(nS^2)$ para O(nlogn) da seguinte PD, onde $f[i] = \min_i (dp[i][j])$ e opt[i] = j que otimiza f[i]:

```
dp[i][j] = \min(dp[i-1][k] + |a[i] - k|), \text{ caso base : } dp[0][j] = \max(0, a[i] - j) 
k \le i 
(4.3)
```

```
#include <queue>
                                                                  pq.push(a[0]);
                                                                  for (int i = 1; i < N; i + +){
#include <algorithm >
                                                                      pq.push(a[i]);
using namespace std;
#define MAXN 3009
                                                                      f[i] = f[i-1] + abs(a[i] - pq.top());
                                                                      if (a[i] < pq.top())
typedef long long 11;
                                                                           pq.pop(); pq.push(a[i]);
int N:
11 a [MAXN], f [MAXN], opt [MAXN];
                                                                      opt[i] = pq.top();
11 slope() {
                                                                  return f [ N-1];
     priority_queue <11> pq; opt [
                                                             }
     [0] = a[0]; f[0] = 0;
```

4.9 Otimização de Divisão e Conquista

Reduz a complexidade de $O(n^2k)$ para O(nklogn) de PD's das seguintes formas (e outras variantes):

$$dp[i][j] = \min_{0 \le k < i} (dp[k][j-1] + C[k][i]), caso base: dp[0][j], dp[i][0]$$
(4.4)

- · C[i][k] = custo que só depende de i e de k.
- · A[i][j] = k ótimo que minimiza dp[i][j].

É necessário que A seja crescente ao longo de cada coluna: $A[J][J] \leq A[I+1][J]$.

```
#include <c s td i o >
                                                                                           ans = dp[k][j-1] + C[k][i];
#include <algorithm >
                                                                                      }
using namespace std;
                                                                                 }
                                                                                 dp[i][j] = ans;
#define MAXN 1009
                                                                                 calculatedp(min_i, i-1, j, min_k, opt);
#define INF (1 << 30)
                                                                                  calculatedp(i+1, max_i, j, opt, max_k);
int dp [MAXN] [MAXN], C[MAXN] [MAXN], N, K;
                                                                             void solve() {
 \begin{tabular}{ll} \textbf{void} & calculated p (\textbf{int} & min\_i \ , & \textbf{int} & max\_i \ , & \textbf{int} \ j \ , & \textbf{int} \ \\ \end{tabular} 
      min_k , int max_k) {
                                                                                  for (int i =0; i <=N; i ++) dp[i][0] = 0;
     i f ( min_i > max_i ) return ; int
                                                                                  for (int j = 0; j \le K; j + +) dp \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} j \end{bmatrix} = 0; for
     i = (min_i + max_i) / 2; int
                                                                                  (int j = 1; j < K; j + +)
     ans = INF, opt;
                                                                                      calculatedp(1, N, j, 0, N-1);
     for (int k=\min_{k}; k \le \min_{k} (\max_{k}, i-1); k++){
         if(ans > dp[k][j-1] + C[k][i]){
                                                                             }
```

4.10 Otimização de Knuth

Reduz a complexidade de $O(n^3)$ para $O(n^2)$ de PD's das seguintes formas (e outras variantes):

$$dp[i][j] = C[i][j] + \min_{i < k < j} (dp[i][k] + dp[k][j]), caso base: dp[i][j], j = i < S$$
(4.5)

$$dp[\mathbf{i}][\mathbf{j}] = \min_{\mathbf{i} < \mathbf{k} < \mathbf{j}} (dp[\mathbf{i}][\mathbf{k}] + C[\mathbf{i}][\mathbf{k}]), \text{ caso base} : dp[\mathbf{i}][\mathbf{j}], \mathbf{j} _ \mathbf{i} < S$$

$$(4.6)$$

- S é uma constante definida, normalmente 1 (caso base dp[/][/]).
- · C[i][j] = custo que só depende de ie de j.
- · A[i][j] = k ótimo que minimiza dp[i][j].

É necessário que se satisfaçam as seguintes condições:

- · Designaldade quadrangular sobre C: $C[a][c] + C[b][d] \le C[a][d] + C[b][c]$, $a \le b \le c \le d$.
- Monotonicidade sobre $C: C[b][c] \le C[a][d]$, $a \le b \le c \le d$.

Ou a seguinte condição:

• A crescente nas linhas e nas colunas: $A[i][j-1] \le A[i][j] \le A[i+1][j]$.

```
#include <c s td i o >
                                                                         A[i][j] = i;
#define MAXN 1009
                                                                         continue;
#define INF (1LL << 60)
                                                                      dp[i][j] = INF;
typedef long long 11;
                                                                      for (int k = A[i][j-1]; k \le A[i+1][j]; k++)
11 dp [MAXN] [MAXN] , C[MAXN] [MAXN] ;
                                                                          cur = C[i][j] + dp[i][k] + dp[k][j];
int A[MAXN][MAXN], N, S;
                                                                          if (dp[i][j] > cur) \{
                                                                             dp[i][j] = cur;
                                                                             A[i][j] = k;
void knuth(){
    11 cur:
                                                                         }
                                                                 }
    for (int s = 0; s < N; s++){
       for (int i = 0, j; i + s < N; i + +){
          j = i + s;
                                                               }
          if (s < S) \{ // Caso base
                                                            }
             dp[i][j] = 0;
```

Capítulo 5

Grafos

5.1 DFS e BFS

```
#include <stack>
                                                                             v = adjList[u][i];
#include <queue>
                                                                             if (!vis[v]){
using namespace std;
                                                                                 vis[v] = true;
#define MAXN 1009
                                                                                s. push (v);
                                                                             }
                                                                         }
int vis[MAXN];
vector <int> adjList[MAXN];
                                                                     }
                                                                  }
void dfs(int u){
    v i s [u] = true;
                                                                  void bfs(){
                                                                     memset(& v i s , false , sizeof v i s );
    /* atividades neste no */
    int v:
                                                                     queue < int > q;
    for (int i =0; i < (int) a dj List[u].size(); i++){
                                                                     q.push(root);
       \dot{v} = a dj List[u][i];
                                                                     int u, v;
                                                                      while (! q . empty ()) {
       if (!vis[v]) dfs(v);
                                                                         u = q \cdot top();
}
                                                                         q.pop();
                                                                         /* atividades neste no */
for (int i =0; i <(int) a d j L i s t [ u ] . s i z e (); i ++){</pre>
void dfsstack() {
    memset(& v i s , false , sizeof v i s ) ; stack
                                                                             v = adjList[u][i];
    <int> s;
                                                                             if (!vis[v]){
    s.push(root);
                                                                                vis[v] = true;
    int u, v;
                                                                                q.push(v);
    while (!s.empty()) {
       u = s \cdot top();
                                                                         }
                                                                     }
       s.pop();
                                                                  }
       /* atividades neste no */
       for (int i=0; i < (int) adjList[u].size(); i++){
```

5.2 DFS Spanning Tree

```
if (vis[v] == UNVISITED) {
#include <vector >
                                                                        printf(", Tree , Edge , (%d, , %d) \ n", u, v);
using namespace std;
#define MAXN 1009
                                                                        parent [v] = u; // parent of this children
#define UNVISITED −1
                                                                            i s me
                                                                        graphCheck (v);
#define EXPLORED -2
#define VISITED -3
                                                                    else if (vis[v] == EXPLORED) {
int v i s [MAXN], parent [MAXN];
                                                                        printf("BackEdge(%d,%d)(Cycle)\n",u,
vector <int> a d j L i s t [MAXN];
                                                                    else if (vis[v] == VISITED)
void graphCheck (int u) { // DFS f or checking graph edge p ro
                                                                        printf("\_Forward/Cross\_Edge\_(\%d,\_\%d) \setminus n", u,
    perties
    vis[u] = EXPLORED;
                                                                             v);
    for (int j = 0, v; j < (int) a d j L i s t [u].s i z e (); j
                                                                 vis[u] = VISITED;
        ++) {
       v = adjList[u][j];
                                                             }
```

5.3 Pontos de articulação e Pontes

```
#include <vector >
                                                                else if (v != parent[u])
#include <algorithm >
                                                                   low[u] = min(low[u], num[v]);
#include <c s tr i n g >
                                                         }
using namespace std;
#define MAXN 1009
                                                         int main () { co
#define UNVISITED -1
                                                             u nter = 0;
int num [MAXN], N, low [MAXN], parent [MAXN], counter,
                                                             memset(&num, UNVISITED, sizeof num)
    rootChildren, articulationVertex[MAXN], root;
                                                             memset(&low, 0, sizeof low);
                                                             memset(& parent , 0 , size of parent );
vector <int> adjList[MAXN];
                                                             memset(&articulationVertex, 0, size of
void tarjan(int u) {
                                                                 articulationVertex);
   low [ u ] = num [ u ] = co u nter++;
                                                             printf("Bridges:\n");
                                                             for (int i = 0; i < N; i + +)
   for (int j = 0, v; j < (int) a dj List[u].size();j
       ++) {
                                                                if (num[i] == UNVISITED) {
       v = adjList[u][j];
                                                                   root = i; rootChildren = 0; tarjan(i);
       if (num [v] == UNVISITED) {
                                                                   articulationVertex[root] = 6rotChildren>
          parent[v] = u;
                                                                       1);
          if (u == root) rootChildren++;
                                                             } // specialcase
printf("Articulation Points:\n");
          tarjan(v);
                                                             for (int i = 0; i < N; i ++)
          if (low[v] >= num[u]) articulationVertex[u]
                                                                if (articulationVertex[i])
               = true;
          printf(", Vertex, %d n", i);
                                                             return 0;
          low [u] = min (low [u], low [v]);
       }
```

5.4 Ordenação Topológica

Inicializar vis como false. toposort guarda a ordenação na ordem inversa!

```
#include <vector >
    using namespace std;
#define MAXN 1009

int vis[MAXN];
vector <int> a dj List[MAXN];
vector <int> to posort; //Ordem reversa!

vis[u] = true;
for (int j = 0, v; j < (int) a dj List[u].size(); j
++) {
    v = a dj List[u][j];
    if (!vis[v]) ts(v);
}
to posort.push_back(u);
}

void ts (int u) {</pre>
```

5.5 Componentes Fortemente Conexos: Algoritmo de Tarjan

```
if (vis[v]) low[u] = min(low[u], low[v]);
#include <vector >
#include <stack>
#include <algorithm >
                                                                   if (low [u] == num [u]) {
#include <c s tr i n g >
                                                                      while (true) {
                                                                          v = \hat{S} \cdot top(); S \cdot pop(); v i s [v] = 0;
using namespace std;
#define MAXN 100009
                                                                          component [ v ] = numSCC;
                                                                          if (u == v) break;
#define UNVISITED −1
int num [MAXN], v i s [MAXN], component [MAXN], N, M, low
                                                                      numSCC++;
     [MAXN], counter, root, numSCC;
                                                                  }
stack <int> S:
                                                               }
vector <int> adjList[MAXN];
                                                               void tarjan() {
                                                                  co u nter = numSCC = 0;
void dfs(intu){
                                                                  memset(&num, UNVISITED, sizeof num);
   low [u] = num [u] = co u nter++; S
                                                                   memset(& v i s , 0 , sizeof v i s ); memset(&low
   . push ( u );
                                                                    0, sizeof low);
   vis[u] = 1;
                                                                   for (int i = 0; i < N; i ++){
   for (int j = 0; j < (int) a d j L i s t [u] . s i z e (); <math>j++)
                                                                      if (num[i] == UNVISITED)
                                                                          dfs(i);
       v = adjList[u][j];
       if (num[v] == UNVISITED) dfs(v);
                                                               }
```

5.6 Componentes Fortemente Conexos: Algoritmo de Kosaraju

```
#include <vector >
                                                                  component [ u ] = parent;
#include <c s tr i n g >
                                                                  for (int i=0, v; i < (int) adjList[u]. size(); <math>i++){
#define MAXN 100009
                                                                    v = adjList[u][i];
using namespace std;
                                                                       if(!num[v]) dfs(v);
vector < int > adjList [MAXN], revAdjList [MAXN],
                                                             }
    toposort;
bool num [MAXN];
                                                              void kosaraju() {
int component [MAXN], parent = 0, N, M, numSCC;
                                                                   memset(&num, false, sizeof num);
                                                                  for (int i = 0; i < N; i + +)
void revdfs(intu){
                                                                       if(!num[i]) revdfs(i);
    num [ u ] = true;
     for (int i=0, v; i<(int) revAdjList[u]. size(); i
                                                                  memset(&num, false, sizeof num);
                                                                  numSCC = 0;
         ++){
       v = revAdjList[u][i];
                                                                  for (int i=N-1; i \ge 0; i - -)
         if(!num[v]) revdfs(v);
                                                                       if(!num[toposort[i]]) {
                                                                           parent = to p \circ s \circ r t [i];
     to posort.push_back(u);
                                                                           dfs(toposort[i]);
                                                                           numSCC++;
}
void dfs(int u) {
                                                                  }
    num [ u ] = true;
                                                              }
```

5.7 Caminho mínimo: Algoritmo de Dijkstra

Caminho mínimo entre dois nós. Funciona para arestas negativas sem ciclos negativos. O(V logV + E).

```
while (! nodes . empty ()) {
#include <set>
                                                                    int u = nodes. begin ()—>s econd;
#include <vector >
#include < c s tr i n g >
                                                                    nodes . e r a s e ( nodes . begin ( ) );
#include <iostream>
                                                                    for (int i =0; i <(int) adjList[u].size(); i++){
                                                                       int v = adjList[u][i].second;
using namespace std:
                                                                       int w = adjList[u][i].first;
#define MAXN 100009
#define INF (1<<30)
                                                                       if (dist[v] > dist[u] + w){
                                                                           if (dist[v] < INF) {
typedef pair <int, int> ii;
                                                                              nodes.erase(ii(dist[v], v));
vector <ii> adjList [MAXN];
int dist[MAXN], n, m;
                                                                           dist[v] = dist[u] + w;
                                                                          nodes.insert(ii(dist[v], v));
int dijkstra (ints, intt)
                                                                   }
    for (int i=1; i<=n; i++) dist[i] = INF;
   dist[s] = 0;
                                                                return dist[t];
   set<pair <int , int> > nodes ;
                                                             }
   nodes.insert(ii(0, s));
```

5.8 Caminho mínimo: Algoritmo de Floyd-Warshall

Caminho mínimo em $O(V^3)$. Muito rápido de codar, pode calcular caminho mínimo para ir e voltar de cada nó.

```
#define MAXN 409

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

adjMat[MAXN] [MAXN], N;

adjMat[i][j] = min (adjMat[i][j],

adjMat[i][k] + adjMat[k][j]);

void floydwarshall() {

for (int k = 0; k < N; k++)
```

5.9 Caminho mínimo: Algoritmo de Bellman-Ford

Caminho mínimo em grafos com ciclo negativo. O(V E).

```
#include <vector >
                                                                    for (int u = 0; u < N; u++) {
#include <c s tr i n g >
                                                                       for (int j = 0; j < (int)adjList[u].size();</pre>
#include <iostream>
                                                                            j++) {
                                                                          v = adjList[u][j]. first;
#define MAXN 1009
                                                                          w = a d j L i s t [u][j]. second;
using namespace std;
                                                                          if(i=N-1 \&\& dist[v] > dist[u] + w)
int dist[MAXN], N;
                                                                              has Negative Weight Cycle = true;
typedef pair <int, int> ii;
                                                                           else dist[v] = min(dist[v], dist[u] + w)
vector < ii > adjList [MAXN];
                                                                       }
int bellmanford(int s, int t)
                                                                    }
   memset(&dist, 1<<20, sizeof dist);
    dist[s] = 0;
                                                                return dist[t];
   bool has Negative Weight Cycle = false;
                                                             }
   for (int i = 0, v, w; i < N; i ++){
```

5.10 Caminho mínimo: Shortest Path Faster Algorithm (SPFA)

Caminho mínimo em grafos com ciclo negativo. Worst case O(V E), caso médio igual a dijkstra.

```
#include <queue>
                                                                     while (!q.empty()) {
#include <vector >
                                                                        int u = q \cdot f r \circ n t () ; q \cdot pop () ; i
#include <c s tr i n g >
                                                                        \mathbf{f}(v i s [u] > N) return -1; inq
                                                                        [u] = false;
#include <iostream>
                                                                        for (int i = 0; i < (int)adjList[u].size(); i</pre>
using namespace std;
#define MAXN 100009
                                                                             ++) {
                                                                            int v = a d i L i s t [u][i]. second;
#define INF (1<<30)
                                                                            int w = adj List[u][i].first;
typedef pair <int, int> ii;
                                                                            if(dist[u] + w < dist[v]) {
                                                                                dist[v] = dist[u] + w;
vector <ii> adjList [MAXN];
int dist[MAXN], vis[MAXN], N, M;
                                                                                if (!inq[v]){
                                                                                   v i s [v]++; q . push (v);
inq [v] = true;
bool inq [MAXN];
int spfa(int s, intt){
    for (int i=0; i\le N; i++) dist[i] = INF;
                                                                            }
    memset(& inq , false , sizeof inq );
                                                                        }
    memset(& vis, 0, sizeof vis);
    queue<int>q;
                                                                    return dist[t];
    q.push(s); dist[s] = 0;
                                                                 }
    inq[s] = true;
```

5.11 Árvore Geradora Mínima: Algoritmo de Kruskal

```
O(ElogV).
```

```
#include <vector >
                                                                    11 \cos t = 0;
                                                                   UnionFind UF(N); pair
#include <algorithm >
                                                                    <int, ii > edge;
using namespace std:
                                                                    sort(edgeList.begin(), edgeList.end());
                                                                   for (int i = 0; i < M; i + +) {
class UnionFind {
                                                                       edge = e d g e L i s t [i];
                                                                       if(!UF. is Same Set (edge . second . first, edge .
                                                                            second . second ) ) {
typedef pair <int, int> ii;
                                                                           cost += edge.first;
typedef long long 11;
                                                                          UF. union Set (edge . second . first, edge . second .
                                                                               second):
                                                                       }
vector < pair <11, ii > > edgeList; // (weight, two
                                                                   }
     vertices) of the edge
                                                                   return cost;
                                                                }
11 kruskal(){
```

5.12 Árvore Geradora Mínima: Algoritmo de Prim

O(ElogE).

```
v = adjList[0][j];
#include <vector >
#include <queue>
                                                                         pq.push(ii(-v.second, -v.first));
#include < c s tr i n g >
#define MAXN 10009
                                                                      \textbf{while} \ (\ ! \ pq \ . \ empty \ (\ ) \ ) \ \ \{
                                                                         front = pq.top(); pq.pop();
using namespace std;
                                                                         u = -front.second; w = -front.first;
 \textbf{typedef long long} \quad 11; \\
                                                                         if (!taken[u]){
typedef pair <int, int> ii;
                                                                             cost += (11)w; taken [u] = true;
vector <ii> adjList [MAXN];
                                                                             for (int j = 0; j < (int) adjList[u]. size();
int N, M;
                                                                                  j++) {
                                                                                 v = adjList[u][j];
                                                                                 if(!taken[v.first])pq.push(ii(-v.
11 prim () {
    bool taken [MAXN];
                                                                                     second, -v.first));
    memset(& taken, false, sizeof taken); taken
                                                                             }
    [0] = true;
                                                                         }
    priority_queue <i i > pq;
    ii v, front; int u, w; 11 cost = 0;
                                                                      return cost;
    for (int j = 0; j < (int) a d j L i s t [0] . s i z e (); <math>j++)
```

5.13 2-SAT

twosat() retorna se existe configuração ou não. N é o dobro do número de variáveis. Para $0 \le i < N/2$, $value[i] = x_i$ e $value[i + N/2] = !x_i$. O(N + M).

```
#include <vector >
                                                                             i f ( valu e [ v ] == −1 && ( component [ u ] ==
#include <stack>
                                                                                 component [v]
#include <set>
                                                                                 | | k == 1 \rangle \&\& !ffill(v, k)) return false;
#include <algorithm >
#include <c s tr i n g >
                                                                        return true:
using namespace std;
                                                                     }
#define MAXN 400009
#define UNVISITED −1
                                                                     bool twosat () {
#define EXPLORED −2
                                                                         ta r ja n () ;
#define VISITED -3
                                                                         for (int i = 0; i < N; i + +){
                                                                            C[i].clear(); adjComp[i].clear();
int num [MAXN], vis [MAXN], component [MAXN], low [MAXN
                                                                         for (int i = 0; i < N/2; i + + ){
     1;
int valu e [MAXN], N, M, counter, root, numSCC; stack
                                                                             if (component [i]==component [i+N/2]) return
<int> S;
                                                                                 false;
vector < int > adjList [MAXN], toposort, C[MAXN];
set<int> adjComp [MAXN];
                                                                         for (int u=0, v; u< N; u++){
                                                                            C[component [u]].push_back(u);
void dfs(int u) { ...}
                                                                            for (int i =0; i < (int) a d j L i s t [u]. s i z e (); i ++){
                                                                                v = adjList[u][i];
void tarjan() { ... }
                                                                                if (component[u]!= component[v])
                                                                                    adjComp \ [\ component \ [\ u\ ]\ ]\ .\ i\ n\ s\ e\ r\ t\ (\ component \ [\ v\ ]
void ts (int u) {
    vis[u] = VISITED;
                                                                            }
    set<int >:: iteratorit;
    for ( i t = adjComp [ u ] . begin ( ); i t !=adjComp [ u ] . end ( )
                                                                        memset(& v i s , UNVISITED, sizeof v i s ); to
                                                                         posort.clear();
        if (vis[*it] == UNVISITED) dfs(*it);
                                                                         for ( int  i =0; i <numSCC; i ++){</pre>
                                                                             if (vis[i] == UNVISITED) ts(i);
    to p \circ s \circ r t. push_back(u);
                                                                        memset(& value, -1, sizeof value);
                                                                        for (int i = 0, c, u; i < (int) to p o s o r t . s i z e (); i ++){
    c = to p o s o r t [i];</pre>
bool f f i l l (int u, int k) { valu
    e[u] = k;
                                                                            for (int j =0; j <(int)C[c].size(); j++){ u
    int v = (u \ge N/2 ? u - N/2 : u + N/2);
if (valu e [v] = valu e [u]) return false;
                                                                                = C[ c ] [ j ] ;
                                                                                if (value[u] == -1 \&\& !ffill(u, 1))
    if(value[v] == -1 &&! ffill(v, 1-k)) return false
                                                                                    return false;
                                                                            }
    for (int i =0; i <(int) a dj List[u].size(); i++){
        v = adjList[u][i];
                                                                         return true;
        if (value[v] == 0 && k == 1) return false;
                                                                     }
```

5.14 Fluxo Máximo: Algoritmo de Edmonds-Karp

Fluxo máximo de s a t. $O(VE^2)$. Usar *add* (precisa adicionar ida e volta na lista de adjacência).

```
#inc lude <queue> lude
                                                                return f;
#inc <c s tr i n g > ine
#defINF (1<<30)
                                                            bool bfs (int s, int t) {
#define MAXN 103000
                                                                intu, v;
#def ine MAXM 900000
                                                                memset(& dist, -1, si zeof dist);
                                                                dist[s] = 0;
using namespace std:
                                                                queue <int> q; q. push(s);
int N, M, ned, prv[MAXN], first[MAXN];
                                                                memset(&prv, -1, siz qeof prv);
int cap [MAXM], to [MAXM], nxt [MAXM], dist[MAXN];
                                                                while (!. empty ()) {
                                                                   u = q \cdot front(); q.pop();
                                                                   if (u == t) break
void init(){
                                                                   for (int e = first [u]; e!= -1; e = nxt[e]) {
    nemset (first, -1, sizeof first); ed
                                                                       v = to[e];
   n=0;
                                                                      if (dist[v] <0 && cap[e] > 0){
                                                                          dist[v] = dist[u] + 1;
void add (int u, int v, int f) { to
    [ned] = v, cap[ned] = f;
                                                                          q.push(v);
    nxt[ned] = first[u];
                                                                          prv[v] = e;
     first[u] = ned++;
    to [ned] = u, cap [ned] = 0;
nxt[ned] = first[v];
                                                                   }
     first[v] = ned++;
                                                                return dist[t] >= 0;
                                                            int edmondskarp (ints,
    augment (int v, int mi nEdge, int s) {
                                                                int result = 0;
                                                                                      int t ) {
int nt e = prv[v];
                                                                while (b f s (s, t)) {
   if (e = -1) return mi nEdge;
                                                                   result += augment
   int f = augment(to[e^1], min(minEdge, cap[e]), s)
                                                                                      (t, INF, s);
                                                                return result;
    ap [e] -= f;
    ap[e^{1}] += f;
```

5.15 Fluxo Máximo: Algoritmo de Dinic

Fluxo máximo de s a t. $O(V^2E)$. Usar add (precisa adicionar ida e volta na lista de adjacência).

```
#include <queue>
#include <c s tr i n g >
#define INF (1<<30)
#define MAXN 103000
#define MAXM 900000
using namespace std;
int\ N,\ M,\ ned,\ first[MAXN];
int~cap\,[MAXM] , ~to\,[MAXM] , ~nxt\,[MAXM] , ~d\,i\,s\,t\,[MAXN] ;
void init(){
   memset (first, -1, sizeof first); ned
    = 0:
void add (int u, int v, int f) { to
     [ ned ] = v , cap [ ned ] = f ; nxt [
     ned] = first[u];
     first[u] = ned++;
     to [ned] = u, cap [ned] = 0; nxt
     [ned] = first[v];
     first[v] = ned++;
}
int dfs(int u, int f, int s, int t) {
    if (u == t) return f;
    int v, df;
    for (int e = first[u]; e!=-1; e = nxt[e]) {
         v = to [e];
       if(dist[v] == dist[u] + 1 && cap[e] > 0) {
           df = dfs(v, min(f, cap[e]), s, t);
           if (df > 0) {
              cap [e] -= df;
```

```
cap[e^{1}] += df;
             return df;
      }
   return 0;
boolbfs(in t s, int t){
   int u, v
   memset(& dist, -1, sizeof
                              dist);
   dist[s] = 0;
   queue<in t> q; q. push(s);
   while (! q . empty () ) {
      u = q.front(); q.pop();
for(int e = first[u]; e!= -1; e = nxt[e]){
          v = to[e];
          if (dist[v] < 0 && cap[e] > 0){
             dist[v] = dist[u] + 1;
             q. push(v);
          }
      }
   return dist[t] >= 0;
int dinic (int s, int t) {1
   int resut = 0, f;
   while (bfs(s, t)){
       while (f = dfs(s, INF, s, t)) result += f;
    return result;
}
```

5.16 Maximum Matching: Algoritmo húngaro

Emparelhamento máximo em grafo bipartido em O(VE). Vértices enumerados de 1 a m em U e de 1 a n em V. Mais rápido de codar do que Hopcroft-Karp.

```
pair V[v] = u; pair U[u] = v;
#include <c s td i o >
#include <c s tr i n g >
                                                                              return true;
#include <vector >
                                                                         }
using namespace std;
#define MAXN 1009
                                                                    return false;
                                                                }
vector <int> adjU [MAXN];
int pair U [MAXN], pair V [MAXN];
                                                                int hungarian ()
bool vis [MAXN];
                                                                    memset(& pairU , 0 , sizeof pair U );
int m, n;
                                                                    memset(\&~pairV~,~0~, sizeof pair~V~)~; int ^{'} r
bool dfs(intu)
                                                                    esult = 0:
                                                                    for (int u = 1; u \le m; u++){
                                                                         memset(& vis, false, sizeof vis);
     vis[u] = true;
     if (u == 0) return true;
                                                                         if (pair U [u]==0 && dfs(u))
                                                                              result++;
     for (int i = 0; i != (int) adjU [u] . size(); ++i) {v =
          adjU [ u ] [ i ];
                                                                    return result;
          if (!vis[pairV[v]] && dfs(pairV[v])){
                                                               }
```

5.17 Maximum Matching: Algoritmo de Hopcroft-Karp

Emparelhamento máximo em grafo bipartido em $O(\sqrt[V]{E})$. Vértices enumerados de 1 a m em U e de 1 a n em V.

```
#include <vector>
#include <queue>
                                                                    return (dist[0] != INF);
#include <c s td i o >
#include <c s tr i n g >
                                                               }
#define INF (1<<30)
#define MAXN 1009
                                                                bool dfs(intu)
using namespace std;
                                                                    if (u == 0) return true;
vector <int> adjU [MAXN];
                                                                    int v:
\textbf{int} \ \ pair \ U \ [MAXN] \ , \ \ pair \ \bar{V} \ [MAXN] \ , \ \ d \ i \ s \ t \ [MAXN] \ ;
                                                                    for (int i = 0; i! = (int) adjU[u].size(); ++i) {v =
                                                                         adjU [ u ] [ i ];
int m, n;
                                                                         if (dist[pair V[v]] == dist[u]+1){
bool bfs()
                                                                              if (dfs(pair V[v])){
                                                                                  pair V [v] = u; pair U [u] = v;
     queue<int> q;
                                                                                  return true;
     for (int u=1; u \le m; u++){
          if (pair U [u]==0) {
                                                                         }
              dist[u] = 0;
              q.push(u);
                                                                    dist[u] = INF;
                                                                    return false;
          else dist[u] = INF;
     dist[0] = INF;
                                                                int hopcroft Karp ()
     int u, v;
     while (!q.empty()){
                                                                    memset(& pairU , 0 , sizeof pair U );
                                                                    memset(& pairV , 0 , sizeof pair V ) ; int r
         u = q. front(); q. pop();
          if (dist[u] < dist[0]) {
                                                                    esult = 0;
                                                                    while (bfs()){
              for (int i = 0; i < (int) adjU[u].size(); ++i
                  for (int u=1; u \le m; u++){
                                                                              if (pairU[u]==0 && dfs(u))
                                                                                  result++;
                        dist[pair V[v]] = dist[u] + 1;
                       q. push (pair V [v]);
                                                                    return result;
              }
                                                               }
```

5.18 Maximum Matching: Algoritmo Blossom

Recebe a matriz de adjacência de um grafo qualquer e preenche o vetor *pair* com os devidos pares de cada nó. $O(n^4)$.

```
#include <c s td i o >
                                                                             base [u]= newBase;
#include <c s tr i n g >
                                                                             if (!inQueue[u]) push(u);
#define MAXN 79
                                                               }
int n, pair [MAXN], head, tail, queue [MAXN], start,
     finish, newBase, parent [MAXN], base [MAXN];
                                                               void find Augmenting Path () {
bool adjMat [MAXN] [MAXN], inQueue [MAXN], in Path [MAXN
                                                                    int u, v
     ], in Blossom [MAXN];
                                                                    memset (inQueue, false, sizeof (inQueue));
                                                                    memset (parent, 0, sizeof (parent));
void push(int u) {
                                                                    for (u = 1; u \le n; u++) base [u]=u; head
     queue [tail++] = u;
                                                                    = 1; tail = 1;
     inQueue [ u ] = true;
                                                                    push(start);
                                                                    finish = 0;
}
                                                                    while (head < tail) {
int findCommonAncestor ( int u , int v ) {
                                                                        u = queue [head ++];
                                                                        for (v = 1; v \le n; v++)
    memset (inPath, 0, sizeof (in Path));
                                                                             if (adjMat[u][v] && base[u]!= base[v] && p
     while (true) {
         u = base[u]; in
                                                                                 air[u]!=v)
                                                                                  if (v == start | | (pair [v] > 0 &&
         Path [u] = true;
         if (u == start) break;
                                                                                      parent [pair[v]] > 0) blossom
                                                                                      Contract (u, v);
         u = parent[pair[u]];
                                                                                  else i f ( parent [ v ] == 0 ) {
     while (true) {
                                                                                      parent [v] = u;
         v = base[v];
                                                                                      if(pair[v] > 0) push(pair[v]);
         if (in Path [v]) break;
                                                                                      else { finish = v; return;}
                                                                                 }
         v = parent[pair[v]];
    return v;
}
                                                               void augmentPath(){
void resetTrace(int u) {
                                                                   int u, v, w;
                                                                   u = finish;
     while (base [u]!= newBase) {v
                                                                    while (u > 0)
                                                                        v = parent[u]; w = pair[v];
         = pair[u];
         in Blossom [base [u]] = 1; in
                                                                        pair[v] = u; pair[u] = v; u = w;
         Blossom [base [v]] = 1; u =
         parent [ v ] ;
         if (base [u] != newBase) parent [u] = v;
                                                               void edmondskarpmaxmatch () {
}
                                                                    memset (pair, 0, sizeof (pair));
                                                                    for (u = 1; u \le n; u++)
\boldsymbol{void} blossom Contract ( \boldsymbol{int}\;u , \boldsymbol{int}\;v ) { newBase
                                                                        if (pair[u] == 0)
     = findCommonAncestor ( u , v );
    memset(inBlossom, 0, sizeof(inBlossom));
                                                                             s t a r t = u;
     resetTrace(u);
     resetTrace(v);
                                                                             findAugmentingPath();
     i\,f ( base [ u ] != newBase ) parent [ u]= v ; i\,f (
                                                                             if(finish > 0) augmentPath();
     base [v] != newBase) parent [v]= u; for (
                                                                        }
     u=1;u<=n;u++)
                                                               }
         if (in Blossom [base [u]]) {
```

5.19 Corte Mínimo Global: Algoritmo de Stoer-Wagner

Calcula o corte mínimo global em $O(V^3)$: dado um grafo representado com matriz de adjacência, calcula o custo mínimo para desconectar o grafo. Esta implementação modifica o grafo, logo se precisar dele depois deve-se fazer uma cópia.

```
#include <c s td i o >
                                                                int mincut(){
                                                                     int best Cost = INF;
#include <vector >
#include <c s tr i n g >
                                                                     vector <int> v [MAXN];
                                                                     for (int i = 0; i < n; ++i)
using namespace std;
#define MAXN 509
                                                                          v[i].assign (1, i);
                                                                     int w[MAXN], sel;
#define INF (1<<30)
                                                                     bool e x i s t [MAXN], added [MAXN];
int n, adj Matrix [MAXN] [MAXN];
                                                                     memset (exist, true, sizeof exist);
vector <int> bestCut;
                                                                     for ( int phase =0; phase < n-1; ++p hase ) {
                                                                          memset (added, false, sizeof added);
```

```
memset (w, 0, sizeof w);
                                                                      for (int i = 0; i < n; ++i) adj Matrix [
                                                                           prev ][i] = adj Matrix [i][prev] +=
for (int j=0, prev; j< n-phase; ++j) { s
    e 1 = -1;
                                                                            adj Matrix [sel][i];
    for (int i = 0; i < n; ++i) {
                                                                      exist[sel] = false;
         if (exist[i] && !added[i] && (sel ==
              -1 \mid \mid w[i] > w[sel]))
                                                                  else {
                                                                      added[sel] = true;
             sel = i;
                                                                      for (int i = 0; i < n; ++i) w[i] +=
                                                                          adjMatrix[sel][i];
    if (j == n-phase -1) {
         if (w[sel] < best Cost) {
                                                                      prev = sel;
             best Cost = w[sel];
             bestCut = v[sel];
                                                             }
         v[prev].insert (v[prev].end(), v[sel
                                                         return bestCost;
             ]. begin(), v[sel].end());
```

5.20 Min Cost Max Flow

O(VE(VlogV + E)). Usar função *add* para adiconar as arestas. K é o fluxo desejado, ao final do algoritmo K retorna quanto de fluxo não foi possível repassar. Para alguns problemas, pode ser necessário duplicar os nós em nó de entrada e de saída e colocar uma aresta de capacidade infinita e custo zero entre eles. Ex: problema bidirecionado. Usa dijstra modificado com função potencial.

```
#include <c s td i o >
                                                                            q.erase(q.begin());
#include <cli>i m i t s >
                                                                            for (int e = first[u]; e!=-1; e = nxt[e]) {
#include <c s tr i n g >
                                                                                 i f ( cap [ e ]<=0) continue ;
#include <queue>
                                                                                 v = to[e];
#include <set>
                                                                                 11 \text{new\_dist} = \text{dist}[u] + \text{cost}[e] + \text{pot}[u]
                                                                                       - pot[v];
                                                                                 if (new_dist < d ist[v]) {
using namespace std;
#define MAXN 103000
                                                                                      q.erase(make_pair(dist[v], v));
#define MAXM 900000
                                                                                      dist[v] = new_dist;
                                                                                     prv [v] = e;
#define INF (1LL << 60)
                                                                                      q.insert(make_pair(new_dist, v));
typedef long long 11;
int \ N, \ M, \ ned, \ prv \ [MAXN], \ first \ [MAXN];
                                                                            }
11 cap [MAXM], cost [MAXM], to [MAXM], nxt [MAXM], dist[
                                                                       return prv [t]!= -1;
    MAXN], pot [MAXN], K;
                                                                  }
void init(){
    memset (f i r s t, -1, size o f f i r s t); ned
                                                                  11 augment (int s, int t) \{1
    = 0;
                                                                       1 flow = K;
                                                                       for (int i = t; i != s; i = to[prv[i]^1]) fl
}
                                                                            ow = min(flow, cap[prv[i]]);
void add(int u, int v, 11 f, 11 c){
                                                                       for ( int i = t; i != s; i = to [prv[i]^1] (cap)
     to [ned] = v, cap [ned] = f;
                                                                            [prv[i]] -= flow;
     cost[ned] = c, nxt[ned] = first[u];
                                                                            cap [prv[i]^1] += flow;
     first[u] = ned++;
                                                                      K = flow;
                                                                       11 flow Cost = flow * (dist[t] - pot[s]+ pot[t]);

for (int i = 0; i < N; i ++)
     to [ned] = u, cap [ned] = 0;
     cost[ned] = -c, nxt[ned] = first[v]; f
                                                                            if (prv[i]!=-1) pot[i] += dist[i];
     irst[v] = ned++;
                                                                       return f low Cost;
                                                                  }
bool dijkstra(int s, int t){
     memset(prv, -1, sizeof prv);
for(int i = 0; i < N; i++) dist[i] = INF;
set< pair <11, int>> q;
                                                                  11 mincostmaxflow (int s, int t) {11
                                                                       f low Cost = 0;
                                                                       memset ( pot , 0 , sizeof ( pot ) );
     q.insert(make_pair(0LL,s));
                                                                       while (dijkstra(s, t)){
     dist[s] = prv[s] = 0;
                                                                            flowCost += augment(s, t);
     int u, v;
     while (! q . empty ()) {
                                                                       return flow Cost;
                                                                  }
          u = q. begin () ->s econd;
```

5.21 Euler Tour: Algoritmo de Fleury

Computa o Euler Tour em O(V + E). Grafo indexado em 0. Retorna array vazia se não existe caminho. Procura automaticamente o início caso haja algum nó impar. Usa a preferência passada pro caso em que todos os nós são impares ou 0 se não há preferência.

```
#include <vector >
                                                                        cntin++; s = u;
#include <stack>
                                                                        if (cntin == 2) return tour;
#define MAXN 400009
                                                                     else if (out [u] != in [u] | | in [u]==0)
using namespace std;
                                                                        return tour:
vector <int> adjList[MAXN];
int N, M;
                                                                 stack <int> d f s;
                                                                  d f s . push (s);
                                                                  while (! d f s . empty ()) {
vector < int > euler(int s = 0) {
                                                                     int u = dfs.top();
   vector \langle int \rangle work (N, 0), in (N, 0), out (N, 0), tour
                                                                     if (work[u] < (int)adjList[u].size()) {</pre>
   for (int u = 0; u < N; u++) {
                                                                        dfs.push(adjList[u][work[u]++]);
       for (int i=0; i<(int) adjList[u]. size(); i++) {
          int v = a dj List[u][i];
          out [u]++; in [v]++;
                                                                        tour.push_back(u);
                                                                        dfs.pop();
   int cntin = 0, cntout = 0;
   for (int u = 0; u < N; u++) {
                                                                 int n = tour.size();
       if(in[u] == out[u]+1){
                                                                 for (int i = 0; 2 * i < n; i + +)
          cntout++;
                                                                     swap (tour [i], tour [n-i-1]);
          if (cntout == 2) return tour;
                                                                 return tour;
                                                              }
       else if (out [u] == in [u]+1) {
```

5.22 Dominator Tree

Computa a Dominator Tree em O((V + E)logV). Precisa da lista de adjacência reversa. sdom[i] é o semi-dominator no grafo mapeado por num, dom[i] é o immediate-dominator real. dtree é a dominator tree. A origem sempre é 1.

```
dsu[u] = best[u] = sdom[u] = u;
#include <vector >
using namespace std;
#define MAXN 200009
                                                                      cnt = 0;
                                                                      dfs(1);
vector <int> adjList [MAXN], revAdjList [MAXN];
                                                                      for (int j = cnt - 1, u; u = rev[j], j > 0; j - -)
vector <int> dtree [MAXN];
int \ sdom \left[MAXN\right] , \ dom \left[M\bar{A}XN\right] , idom \left[MAXN\right] , N,M;
                                                                          for (int i = 0; i < (int) rev AdjList[u].size(); i
int dsu [MAXN], best[MAXN]; //auxiliares
int par [MAXN], num [MAXN], rev [MAXN], cnt; //dfs
                                                                              int y = num[revAdjList[u][i]];
                                                                              if (y == -1) continue;
                                                                              find(y);
int find(intx) {
    if (x == dsu[x]) return x;
                                                                              if (sdom[best[y]] < sdom[j]) sdom[j] = sdom[
    int \dot{y} = find(dsu[x]);
                                                                                   be s t [ y ] ];
    if(sdom[best[x]]) > sdom[best[dsu[x]]]) best[x] =
          be s t [ dsu [ x ] ];
                                                                          d tr e e [ sdom [ j ] ] . push_back ( j );
    return dsu[x] = y;
                                                                          int x = dsu[j] = par[j];
                                                                          for (int i = 0; i < (int) d tree[x].size(); i++) {
}
                                                                              int z = d \operatorname{tr} e e[x][i];
void dfs(intu){
                                                                              find(z);
    num[u] = cnt; rev[cnt++] = u;
                                                                              if (sdom[best[z]] < x) dom[z] = best[z];
    for (int i =0; i < (int) a dj List[u].size(); i++) {
                                                                              else dom [z] = x;
        int v = a d j L i s t [u][i];
        if(num[v] >= 0) continue;
                                                                          dtree[x].clear();
                                                                      }
        dfs(v);
        par [ num [ v ] ] = num [ u ];
                                                                      idom[1] = -1;
                                                                      for (int i = 1; i < cnt; i ++) {
                                                                          if(sdom[i]!=dom[i]) dom[i] = dom[dom[i]];
}
                                                                          idom [ rev [ i ] ] = rev [ dom [ i ] ];
void dominator(){
                                                                          d tr e e [ rev [ dom [ i ] ] ] . push_back ( rev [ i ] );
    for (int u = 1; u \le N; u++) {
                                                                      }
       num[u] = -1; dtree[u].clear();
                                                                  }
```

5.23 Grafos notáveis

Capítulo 6

Matemática

6.1 Aritmética Modular

MDC, MMC, euclides extendido, inverso modular $a^{-1}(modm)$, divisão modular (a/b)(modm), exponenciação modular $a^b(modm)$, solução inteira da equação de Diophantine ax + by = c. modMul calcula (a * b)%m sem overflow. Triângulo de Pascal até 10^6 .

```
#include <c s td i o >
#define MAXN 1000009
#define MOD 1000000007LL
template <typename T>
T gcd (T a, T b) {
    return b == 0 ? a : gcd (b, a % b) ;
template <typename T>
T lcm (Ta, Tb) {
    return a * (b / gcd(a, b));
template <typename T>
T extGcd (Ta, Tb, T& x, T& y) {
    if (b == 0) {
         x = 1; y = 0;
         return a;
     }
     else {
         T g = extGcd(b, a \%b, y, x);
         y = a / b * x;
         return g;
}
template <typename T>
T modInv (Ta, Tm) {
     extGcd(a, m, x, y);
     return (x % m + m) % m;
template <typename T>
T modDiv (Ta, Tb, Tm) {
    return ((a % m) * modInv(b, m)) % m;
```

```
template<typename T>
T modMul(T a, Tb, Tm) {
   T x = 0, y = a \% m;

while (b > 0){
      if(b\% 2 == 1) x = (x + y) \% m;
       y = (y * 2) % m;
      b /= 2;
   }
    return x % m;
}
template<typename T>
T modExp(T a, T b, T m) {
    if (b == 0) return (T) 1;
    T c = modExp(a, b / 2, m);
    c = (c * c)^{-6} m;
    if (b\% 2 != 0) c = (c*a) \% m;
    return c;
template<typename T>
void diophantine (Ta, Tb, Tc, T& x, T& y) {
    T d = extGcd(a, b, x, y);
    x *= c / d;
y *= c / d;
11 fat [MAXN];
void preprocessfat(){
    fat[0] = 1;
    for (11 i = 1; i < MAXN; i ++){
         fat[i] = (i * fat[i-1])%MOD;
template<typename T>
T pascal (int n, int k, T m) {
    return modDiv (fat[n], (fat[k] * fat[n-k])%m, m);
```

6.2 Números primos

Diversas operações com números primos. Crivo de Eristótenes, número de divisores, totiente de Euler e número de diferentes fatores primos. *isPrimoSievo* funciona em *O(¬n/logn)* se os fatores estiverem em *primos*.

```
#include <bitset>
                                                                   return true:
#include <c s td i o >
                                                               }
#include <vector >
#include <c s tr i n g >
                                                               vector <11 > prime Factors (11 N) {
                                                                  vector \langle int \rangle factors;
using namespace std;
                                                                  11 PF_idx = 0, PF = primes[PF_idx];
#define MAXN 10000009
                                                                  while (PF * PF \le N)
typedef long long int 11;
                                                                      while (N \% PF == 0)  {
11 sievesize , numDiffPF [MAXN];
                                                                        N /= PF;
bitset <MAXN>bs;
                                                                         f a c t o r s . push_back (PF);
vector <11> primes;
                                                                     PF = primes[++PF_idx];
void sieve(ll n){
    sievesize = n + 1;
                                                                  // special case if N is a prime
                                                                  if (N!=1) factors.push_back(N);
    bs.set();
   bs[0] = bs[1] = 0;
for (11 i = 2; i <= sievesize; i++) {
   if (bs[i]) {
                                                                  return factors;
          for (11 \ j = i * i; j \le (11) sievesize; j += 11 numDiv(11 N) {
                i) bs[j] = 0;
                                                                  11 PF_idx = 0, PF = primes [PF_idx], ans = 1; //st
           primes . push_back (i);
                                                                       art from ans = 1
                                                                  while (PF * PF \le N) {
       }
                                                                      11 power = 0; // count the power
   }
                                                                      while (N % PF == 0) { N /= PF; power++; } ans *= (power + 1); // according to the
}
                                                                     formula
PF = primes[++PF_idx];
bool is Prime Sieve (11 N) {
    if (N <= (11) sievesize) return bs[N];</pre>
    for ( int i = 0; i < (int) primes .size() && primes[i]
         * primes [ i ] <= N; i ++)
                                                                  // (last factor has pow = 1, we add 1 to it)
       if (N % primes[i] == 0) return false;
                                                                  if (N != 1) ans *= 2;
   return true;
                                                                  return ans;
}
                                                               }
                                                               //O(sqrt(n))
bool is Prime (11 N) {
                                                                  while (PF * PF \le N)^{-}
     if (N < 0) return is Prime (-N);
                                                                      if (N % PF == 0) ans -= ans / PF;
    for (11 i=2; i*i \le N; i++){
                                                                      while (N % PF == '0 ) N /= PF;
       if (N \% i == 0) return false;
                                                                     PF = primes[++PF_idx];
    return true;
                                                                  if (N != 1) ans -= ans / N;
}
                                                                  return ans;
//O(sqrt(n)) cortesia do Fabinho
                                                               }
bool is Prime Fast (11 n) {
                                                               void num Diff Pf () {
     if (n < 0) n = -n;
     if (n < 5' | | n \% 2 == 0 | | n \% 3 == 0)
                                                                  memset ( numDiffPF , 0 , sizeof numDiffPF );
         return (n == 2 | | n == 3);
                                                                  for (int i = 2; i < MAXN; i ++)
if (numDiffPF[i] == 0)
     11 maxP = sqrt(n) + 2;
     for (11 p = 5; p < maxP; p += 6){
                                                                         for (int j = i; j < MAXN; j += i)
          if (p < n && n % p == 0) return false;
                                                                             numDiffPF [ j ]++;
          if (p+2 < n \&\& n \% (p+2) == 0) return false;
   }
```

6.3 Fórmula de Legendre

Dados um inteiro n e um primo p, calcula o expoente da maior potência de p que divide n! em O(logn).

```
#include <c s td i o >
#include <c s tr i n g >
#include <c s tr i n g >

typedef long long 11;

prod *= p;

prod *= n) {
    ans += n/ prod;
    prod *= p;
}

ll legendre(ll n, ll p) {
    int ans = 0;
}
```

6.4 Números de Catalan

Números de Catalan podem ser computados pela recursão:

$$Cat(n) = \frac{4n-2}{n+1}Cat(n-1)$$
 $Cat(0) = 1$ (6.1)

- · Cat(n) = número de arvores binárias completas de n+1 folhas ou 2n+1 elementos;
- Cat(n) = número de combinações válidas para n pares de parêntesis;
- · Cat(n) = número de formas que o parentesiamento de n+1 elementos pode ser feito;
- · Cat(n) = número de triangulações de um polígono convexo de n+2 lados; e
- · Cat(n) = número de caminhos monotônicos discretos para ir de (0, 0) a (n, n).

6.5 Números de Stirling de primeira espécie

Números de Stirling de primeira espécie $s(n, m), n \ge m$ podem ser calculados pela recursão s(n, m) = s(n-1, m-1) - (n-1)s(n-1, m), com s(n, n) = 1 e s(n, 0) = 0, n > 0

Propriedades:

- $s(n, m) = \text{coeficiente de } x^m \text{ em } P(x) = x(x-1) \cdot \cdot \cdot (x-n+1).$
- |s(n, m)| = número de permutações de tamanho n com exatamente m ciclos.

6.6 Números de Stirling de segunda espécie

Números de Stirling de segunda espécie S(n, m), $n \ge m$ podem ser calculados pela recursão: S(n, m) = S(n - 1, m - 1) + mS(n - 1, m), com S(n, n) = 1 e S(n, 0) = 0, n > 0, ou pelo princípio da inclusão-exclusão:

$$S(n,m) = \frac{1}{m!} \int_{i=0}^{m} (-1)^{i} \int_{i}^{m} (n-i)^{n}$$
 (6.2)

Propriedades:

- · S(n,m) = número de formas de alocar n objetos em exatamente m conjuntos não vazios.
- · S(n, m)m! = número de funções sobrejetoras de um conjunto de nelementos em um de melementos.

6.7 Lemma de Burnside

Seja X um conjunto e tt um conjunto de transformações de elementos de X em outros elementos de X. Para cada transformação $g \in tt$, tem-se X^g elementos $x \in X$ tal que g(x) = x. Incluir a transformação identidade $id(x) = x \forall x \in X$. Então o subconjunto X/tt de elementos de X que não podem ser obtidos dois a dois por transformações em tt é tal que:

$$|X/tt| = \frac{1}{|x|} - |X^g|$$

$$|tt|_{g \in G}$$

$$(6.3)$$

6.8 Algoritmo de Pollard-Rho

Retorna um fator de *n*, usar para $n > 9 \times 10^{13}$.

```
int i = 0, k = 2, d;
#include <algorithm >
                                                            T x = 3, y = 3;
using namespace std;
                                                            while (++ i) {
template <typename T>
                                                               x = (mulmod(x, x, n) + n - 1) % n;
T gcd (T a, T b) { ... }
                                                               d = \gcd(abs(y-x), n);
                                                               if (d!= 1 && d!= n) return d;
template<typename T>
T modMul(T a, T b, T m) { ... }
                                                               if (i == k) y = x, k *= 2;
template<typename T>
                                                         }
T pollard(Tn) {
```

6.9 Baby-Step Giant-Step para Logaritmo Discreto

Resolve a equação $a^x = b(modm)$ em $O(\sqrt[]{m} logm)$. Retorna -1 se não há solução.

```
#include <c s td i o >
                                                                             vals[cur] = i;
#include <map>
                                                                          cur = (cur * an) % m;
using namespace std;
                                                                     for (T i = 0, cur=b; i <=n; ++i) {
template <typename T>
                                                                         if (vals.count(cur)) {
T baby (T a, T b, T m) {
                                                                            T \text{ ans} = vals[cur] * n - i;
    a %= m; b %=m;
                                                                             if (ans \leq m)
   T n = (T) sqrt (m + .0) + 1;

T an = 1;
                                                                                 return ans;
    for (T i = 0; i < n; ++i)
                                                                         cur = (cur * a) % m;
       an = (an * a) \% m;
                                                                     }
    map<T, T\stackrel{\cdot}{>} v a ls;
                                                                     return -1;
    for (T i = 1, cur=an; i <=n; ++i) {
                                                                  }
       if (!vals.count(cur))
```

6.10 Código de Gray

Converte para o cógido de gray, ida O(1) e volta O(logn).

```
int g (int n) {
    return n ^ (n >> 1);
}
int rev_g (int g) {
    int n = 0;
}
for (; g; g>>=1)
    n ^= g;
    return n;
```

6.11 Triplas Pitagóricas

Todas as triplas pitagóricas (a, b, c), $a^2 + b^2 = c^2$ podem ser geradas a partir das equações:

$$a = k(m^2 - n^2), b = 2kmn, c = k(m^2 + n^2)$$
 (6.4)

Triplas primiticas são geradas por k=1.

- *tripleFromHypot*, $O(\hat{f}^{\sqrt{c}})$, onde f é o número de divisores de c ($f \le 450$ para $c \le 10^7$), retorna os possíveis pares (a, b) dado c.
- · primitiveT ripleF romHypot, $O(\sqrt[]{c})$, retorna os possíveis pares primitivos (a, b) dado c.
- · tripleF romSide, O(a), retorna os possíveis de pares (b, c) dado a.

```
#include <c s td i o >
#include <cmath>
                                                                     add Sides (ans, s, k);
                                                                     add Sides (ans, k, s);
#include <set>
#include <iostream>
using namespace std;
                                                                 return ans;
typedef pair <int, int> ii;
                                                              set<i i > primitive Triple From Hypot (int c) {
                                                                 set < ii > ans;
inline void add Sides (set<i i > & ans, int k, int s) {
                                                                 add Sides (ans, 1, c);
    for (int n=1, m, ms, a, b; n*n \le s/2; n++){
                                                                 return ans;
       ms = s - n*n:
       m = floor(sqrt(ms));
                                                              set<ii>tripleFromSide(int a){
       i f (m*m == ms \&\& m!=n) {
                                                                 set<ii>i> ans;
                                                                 for (int n = 1, m, b, c; n < a; n++){
          a = m*m - n*n;
          b = 2*m*n;
                                                                     if (a\%n != 0) continue; m
          ans.insert(ii(k*a, k*b));
                                                                    = a*a/n;
                                                                     if (m\%2 != n\%2) continue ; b
          ans.insert(ii(k*b, k*a));
                                                                     = (m-n) / 2;
   }
                                                                     c = (m+n)/2;
                                                                     ans.insert(ii(b, c));
set<ii> tripleFromHypot(int c){
    set<ii>i> ans;
                                                                 return ans;
    for (int k = 1, s; k*k \le c; k++){
                                                              }
       if (c\%k != 0) continue;
```

6.12 Teorema Chinês dos Restos

Resolve em O(nlogn) o sistema $x = a[i](mod p[i]), 0 \le i < n, gcd(a[i], a[j]) = 1$ para todo $i \neq j$.

```
template <typename T>
                                                                      TP = 1;
T \text{ extGcd}(T a, T b, T\& x, T\& y) \{ \ldots \}
                                                                      for (int i = 0; i < n; i + +) P = (P * p[i]) % m; T
                                                                      x = 0, pp;
template <typename T>
                                                                      for (int^{-1} = 0; i < n; i ++){
                                                                           pp = modDiv(P, p[i], m);
T \mod Inv (T a, T m) \{ \dots \}
                                                                           x = (x + (((a[i] * pp) % m) * modInv(pp, p[i
template <typename T>
                                                                                ])))% m;
T modDiv (T a, T b, T m) { ... }
                                                                      return x;
template<typename T>
T\ chinesert\,(T*\ a\ ,\ T*\ p\ ,\ \textbf{int}\ n\ ,\ T\ m)\ \{
```

6.13 Matrizes

```
#include <vector >
                                                                 matrix c;
#include <cmath>
                                                                  c.resize(n);
                                                                 for (int i=0; i < n; i ++){
#define EPS 1 e-5
using namespace std;
                                                                     c[i].assign(p, 0);
                                                                     for (int j = 0; j < p; j + +){
                                                                        for (int k=0; k < m; k++){
typedef long long 11;
typedef vector < vector < double > > matrix ;
                                                                            c[i][j] += a[i][k] * b[k][j];
matrix operator + (matrix a, matrix b){
                                                                     }
    int n = (int)a.size();
    int m = (int) a [0] . size();
                                                                 return c:
    matrix c;
                                                              }
    c.resize(n);
    for (int i=0; i < n; i ++){
                                                              matrix operator * (double k, matrix a) {
       c[i].resize(m);
                                                                  int n = (int) a.size();
                                                                  int m = (int) a [0] . size();
       for ( int j = 0; j < m; j++){
          c[i][j] = a[i][j] + b[i][j];
                                                                 for (int i = 0; i < n; i + +){
                                                                     for (int j = 0; j < m; j++){ a [
                                                                        i ][j] *= k;
    return c;
}
                                                                 }
                                                                 return a;
matrix operator * (matrix a, matrix b) {
    int n = (int) a.size();
    if (a[0].size() != b.size()) printf("fail\n");
                                                              matrix operator -( matrix a, matrix b) {
    int m = (int) b.size();
                                                                 return a + ((-1.0) * b);
    int p = (int)b[0].size();
```

6.14 Exponenciação de matrizes e Fibonacci

Calcula o n-ésimo termo de fibonacci em tempo O(logn). Calcula uma matriz elevado a n em $O(m^3logn)$.

```
matrix matrixExp ( matrix a , int n ) { if (
                                                                c[0].assign(2, 1);
   n == 0) return i d (a.size()); matrix
                                                                c[1].assign(2, 1);
   c = matrixExp(a, n/2);
                                                                c[1][1] = 0;
   c = c * c;
                                                                return c;
   if(n\%2 != 0) c = c * a;
                                                            }
   return c;
}
                                                            double fibo(intn){
                                                                matrix f = matrixExp(fibo(), n);
matrix fibo() {
                                                                return f [0][1];
                                                            }
   matrix c; c.resize(2);
```

6.15 Sistemas Lineares: Determinante e Eliminação de Gauss

Função para o determinante da matriz A pelo algoritmo de Chió em $O(n^3)$. gauss(A, B) retorna se o sistema Ax = B possui solução e executa a eliminação de Gauss em A e B.

```
bool comlumnHasNonZero ( matrix & a , int j ) {
   int n = (int) a . size();
   for (int i = 0; i < n; i ++){
       if (fabs(a[i][j]) > EPS) return true;
   return false;
}
bool line Has Non Zero (matrix & a, int i) {
   int m = (int) a [0] . size();
   for (int j = 0; j < m; j++){
       if (fabs(a[i][j]) > EPS) return true;
   return false;
}
bool hasNonZero (matrix & a) {
   int n = (int) a.size();
for (int i = 0; i < n; i++){
       if (line Has Non Zero (a, i)) return true;
   return false;
void switch Columns ( matrix & a , int i , int j ) {
   int n = (\hat{int}) a . size();
   for ( int k=0; k< n; k++){
       tmp = a [k][i];
       a[k][i] = a[k][j];
       a[k][j] = tmp;
   }
}
void s w i tc h L i n e s ( matrix & a , int i , int j ) {
   double tmp;
   int m = (int) a [i] . size();
   for ( int k=0; k < m; k++){
       tmp = a[i][k];
       a[i][k] = a[j][k];
a[j][k] = tmp;
}
bool fix(matrix & a, int i, int j){
   int n = (int) a . size();
   int m = (int) a [0] . size();
   int 1 = i, c = j;
   bool sw i tched = false;
   while (1 < n \&\& !1 ine Has Non Zero (a, 1))1++;
   if (1 == n) return false;
   if (i!=1) {
       switched =!switched;
       switchLines(a, i, l);
   while (c < m \&\& fabs(a[i][c]) < EPS) c++;
   if (j!=c) {
       sw i tched = ! sw i tched;
       switch Columns (a, j,c);
   return sw i tched;
matrix i d ( int n ) {
```

```
matrix c; c.resize(n);
   for (int i=0; i < n; i++){
       c[i].assign(n, 0);
       c[i][i] = 1;
   return c;
}
double det ( matrix a ) {
   int n = a.size();
    if(n == 1) return a[0][0];
   double sig = (fix(a,0,0)? -1:1);
matrix b = id(n-1);
     for (int i = 0; i < n-1; i + + ){
          for (int j=0; j< n-1; j++){
b[i][j] = a[i+1][j+1]*a[0][0] - a[i
                   +1][0]*a[0][j+1];
         }
     double d = det(b)/pow(a[0][0], n-2);
    return sig *d;
void lineSumTo (matrix & a, int i, int j,
                                                double c) {
   int m = (int) a [0] . size();
   for (int k=0; k< m; k++){
       a[i][k] += c*a[i][k];
}
void columnSumTo ( matrix & a , int i , int j
                                                , double c)
   int n = (int) a . size();
for (int k=0; k<n; k++){</pre>
       a[k][j] += c*a[k][i];
}
bool gauss (matrix & a, matrix & b) {
   int n = (int) a . size();
   int m = (int) a [0].size();
   double p;
   for (int^i i = 0, 1; i < min(n, m); i++){
       while (1 < n && fabs(a[1][i]) < EPS)1 ++;
       if (1) == n) return false; s
       witchLines(a, i, 1);
       switchLines(b, i, 1);
       for (int j=i+1; j<n; j++){ p
= -a[j][i]/a[i][i];
          lineSumTo(a,i,j,p);
           lineSumTo(b, i, j, p);
       }
   }
   lineSumTo(a,i,j,p);
           lineSumTo(b, i, j, p);
   }
   return true;
```

6.16 Multiplicação de matriz esparsa

Multiplica duas matrizes em $O(n^2m)$, onde m é o mínimo do número médio de números não nulos em cada linha e coluna.

```
vector < vector <int> > adjA, adjB;
                                                                 }
matrix sp arsemult (matrix a, matrix b) {
                                                                 matrix c;
   int \hat{n} = (int) a.size();
                                                                 c.resize(n);
   if (a[0].size() != b.size()) printf("fail\n");
                                                                 for ( int i = 0; i < n; i + + ){
   int m = (int) b.size();
                                                                    c[i].assign(p, 0);
   int p = (int)b[0].size();
                                                                    for (int j = 0; j < p; j++){
   adjA.resize(n);
                                                                          for ( int u=0, v=0, k; u<(int) adjA [ i ] . s i z e ()
                                                                            && v<(int) adjB[j].size();) {
   for (int i = 0; i < n; i + +) {
      adjA[i].clear();
                                                                           if (adjA[i][u] > adjB[j][v]) v++;
      for ( int k=0; k<m; k++) {
                                                                             else if (adjA[i][u] < adjB[j][v]) u++;
          if (fabs(a[i][k]) > EPS)
                                                                           else {
                adjA[i].push_back(k);
                                                                              k = adjA[i][u];
                                                                              c[i][j] += a[i][k]*b[k][j];
                                                                              u++; v++;
   adjB.resize(p);
   for ( int j = 0; j < p; j + +) {
                                                                        }
      adjB[j].clear();
      for (int k=0; k<m; k++) {
          if (fabs(b[k][j]) > EPS)
                                                                 return c;
                 adjB[j].push_back(k);
```

6.17 Método de Gauss-Seidel

Resolve o sistema linear iterativamente com complexidade $O(n^2 log P REC^{-1})$. É necessário que a diagonal principal seja dominante.

```
matrix gaussSeidel(matrix&a, matrix&b, double
                                                                          if (i < j) xp[i][0] = a[i][j] * xp[j][0];
   PREC) {
                                                                          if (i > j) xp[i][0] = a[i][j] * x[j][0];
   int n = (int) a \cdot size();
                                                                       }
   matrix x = b, xp = b;
                                                                      xp[i][0] /= a[i][i];
   double error;
                                                                       error = max(error, fabs(xp[i][0]-x[i][0]);
                                                                   }
      error = 0.0;
      for (int i = 0; i < n; i ++) { xp
                                                                } while (error > PREC);
         [i][0] = b[i][0];
                                                                return xp;
          for (int j = 0; j < n; j + +) {
                                                            }
```

6.18 Eliminação de Gauss com o XOR

gaussxor retorna o valor máximo de xor que é possível se obter fazendo xor entre os elementos da array. O(NlogS).

```
#include < c s td i o >
                                                                        swap(arr[i],arr[t]);
#include <algorithm >
                                                                        for (int i = 0; i < N; i + +){
                                                                            if(i!= t && (arr[i] & sig)!=0)
using namespace std;
#define MAXN 100009
                                                                               arr[i] ^= arr[t];
typedef long long 11;
                                                                        t++:
                                                                    }
11 g au ssxo r (11 * arr, int N) {1
                                                                     cur = 0;
    1 cur, sig = (1LL << 62);
                                                                     for ( int i = 0; i < N; i + + ){
    for (int j = 0, t = 0, i; sig > 0; sig >>= 1) {
                                                                        cur = cur^ a r r [ i ];
       while (i < N && (arr[i] & sig) == 0) i ++;
                                                                     return cur;
       if (i \ge N) continue;
                                                                 }
```

6.19 Fast Fourier Transform (FFT)

Usar em caso de double. Em caso de inteiro converter com fa[i].real() + 0.5. Não dá overflow.

```
base u = a[i+j], v = a[i+j+len/2] * w;
#include <vector >
#include <c s td i o >
                                                                             a[i+j] = u + v;
                                                                             a[i+j+len/2] = u - v;
#include <complex>
using namespace std;
                                                                             w *= wlen;
                                                                         }
                                                                      }
typedef complex<double> base;
void fft (vector <base> & a, bool invert) {
                                                                   if (invert)
                                                                      for (int i = 0; i < n; ++i)
   int n = (int) a . size();
   for (int i = 1, j = 0; i < n; ++i) {
                                                                         a[i] /= n;
       int bit = n >> 1;
                                                               }
       for (; j>=b i t; bit >>=1)
          j – bit;
                                                               void c o n v o l u t i o n ( vector <base> a , vector <base> b ,
       j += bit;
                                                                    vector <base> & res) {
       if (i < j) swap(a[i], a[j]);
                                                                   int n = 1;
   }
                                                                  while ( n < max( a . s i z e () , b . s i z e () ) ) n <<= 1;
                                                                  n \ll 1;
   for (int le n = 2; len <= n; len <<=1) {
                                                                  a.resize(n), b.resize(n);
       double ang = 2*M_PI/len * (invert ? -1 : 1);
                                                                  fft(a, false); fft(b, false); r
       base wlen(cos(ang), sin(ang));
                                                                   es.resize(n);
       for ( int i =0; i <n; i+=l e n ) { base
                                                                  for (int i =0; i < n; ++i) res[i] = a[i] * b[i];
           w(1):
                                                                   fft(res, true);
           for (int j = 0; j < le n / 2; ++j) {
                                                               }
```

6.20 Number Theoretic Transform (NTT)

Usar long long. Cuidado com overflow. m é o primo selecionado. O resultado é calculado mod[m]. Limite de $n = 2^{21}$.

```
#include <vector >
                                                                          for (11 i =0; i <n; i+=len) {
#include <c s td i o >
                                                                              for (11 \ j=0, w=1; j<1e n/2; ++j){
                                                                                  11 u = a[i+j], v = a[i+j+len/2] * w %
#include <c s tr i n g >
#define MAXN 100009
                                                                                     mod[m];
using namespace std;
                                                                                 a[i+j] = (u+v < mod[m] ? u+v : u+v-mod[m]
                                                                                      ]);
typedef long long 11;
                                                                                 a[i+j+len/2] = (u-v \ge 0 ? u-v : u-v+mod
                                                                                      [m]);
template <typename T>
                                                                                 w = w * wlen % mod [m];
T \text{ extGcd} (T a, T b, T\& x, T\& y) \{ \ldots \}
                                                                              }
                                                                          }
template <typename T>
\stackrel{-}{T} modInv (T a , T m) { ...}
                                                                      if(invert) {
                                                                          11 nrev = modInv (n, mod [m]);

for (11 i = 0; i < n; ++i)
const 11 mod [2] = {1004535809LL, 1092616193LL};
const 11 root[2] = {12289LL, 23747LL};
const 11 root_1[2] = {313564925LL, 642907570LL};
                                                                             a[i] = a[i] * nrev % mod[m];
                                                                      }
const 11 root_pw = 1LL<<21;
                                                                  }
void ntt (vector <11 > & a, bool invert, int m) {
                                                                   void convolution (vector < 11 > a, vector < 11 > b, vector <
    11 n = (11) a . size();
                                                                       11 > & res, int m) {
    for (11 i = 1, j = 0; i < n; ++i) {
 11 bit = n >> 1;
                                                                       11 n = 1;
                                                                      while (n < max (a.size(), b.size())) n <<= 1;
        for (; j \ge bit; bit \ge 1) j -= bit;
                                                                      n <<= 1;
        j += bit;
                                                                      a.resize(n), b.resize(n);
        if (i < j) swap(a[i], a[j]);</pre>
                                                                      ntt (a, false, m); ntt (b, false, m); res
                                                                       .resize(n);
    for (111e n = 2, wlen; len <= n; len <<=1) { wlen
                                                                      for (int i = 0; i < n; ++i) r \in s[i] = (a[i] * b[i]) % mod[m]
        = i n v e r t ? root_1 [m] : r o o t [m]; for (11
        i=len; i <root_pw; i <<=1)
                                                                      ntt (res, true, m);
                                                                   }
            wlen = (wlen * wlen % mod [m]);
```

6.21 Convolução circular

```
Utiliza FFT/NTT para computar em O(nlogn): res[i] = {n-1 \atop j=0}a[j]*b[(i-j+n)\%n]

template <typename T>
void circular convolution (vector <T> a, vector <T> b, vector <T> & res) {
int n = a.size();
b.insert(b.end(), b.begin(), b.end());

convolution(a, b, res);
res = vector <T>(res.begin()+n, res.begin()+(2*n))
;
}
```

6.22 Convolução com CRT

Utiliza o teorema chinês dos restos e duas NTT's para calcular a resposta módulo mod[0]*mod[1]=1,097,572,091,361,755,137. Este número é normalmente grande o suficiente para calcular os valores exatos se as arrays originais tiverem cada elemento menor que aproximadamente 10^6 e $n \le 2^{20}$. Implementação do teorema chinês dos restos por cortesia do IME.

6.23 Convolução com Decomposição SQRT

Se os números forem menores que aproximadamente 10⁶, separa a primeira metade de bits da segunda em cada array e executa 4 FFT's com números menores que aproximadamente 10³. Isso permite a FFT complexa com double ter precisão suficiente pra calcular de forma exata. Depois basta juntar.

```
#include <cmath>
                                                                      cb[0][i] = base(b[i] % SMOD, 0);
#define MOD 1000003LL
                                                                      cb[1][i] = base(b[i] / SMOD, 0);
#define SMOD 1024LL // ~ sq r t (MOD)
                                                                  for (int 1=0; 1<2; 1++) for (int r=0; r<2; r++)
typedef long long 11;
                                                                      convolution(ca[1], cb[r], cc[1][r]);
void sqrtConv ( vector <1 1 > a , vector <1 1 > b , vector <1 1 > & c
                                                                  c.resize(cc[0][0].size());
                                                                  for (int i = 0; i < (int) c.size(); i ++) {
     ) {
                                                                      c[i] =
    vector <base> ca[2], cb[2], cc[2][2];
    ca[0].resize(a.size());
                                                                      (((11) round (cc [1][1][i]. real ())) \mbox{$MOD*$} \mbox{$MOD*$}
    ca[1].resize(a.size());
                                                                          SMOD)%MOD)%MOD +
    for (int i = 0; i < (int) a . size(); i ++) {
                                                                      ((11) \text{ round } (cc[0][1][i].real()))%MOD*$MOD%MOD+
       ca[0][i] = base(a[i] % SMOD, 0);
                                                                      ((11) \text{ round } (\text{cc } [1][0][i].\text{real}()))%MOD*$MOD%MOD +
       ca[1][i] = base(a[i] / SMOD, 0);
                                                                      ((11) round (cc [0][0][i].real()))%MOD;
                                                                      c[i] %= MOD;
    cb[0].resize(b.size());
                                                                  }
    cb[1].resize(b.size());
                                                               }
    for (int i = 0; i < (int) b . size(); i ++) {
```

6.24 Ciclos em sequências: Algoritmo de Floyd

```
#include <iostream>
                                                              // 2nd part: find ing s tart, hare and tortoise move at
using namespace std;
                                                                  the same speed
                                                              int start = 0; hare = x0;
                                                              while (tortoise != hare) { tortoise = f(tortoise)
typedef pair <int, int> ii;
                                                                   hare = f ( hare ); start++;}
ii floyd Cycle Finding (int x0) {
                                                              // 3 rd part: finding period, hare moves, tortoises tays
   // 1st part: finding k* start, hares speed is 2xtor
                                                              int period = 1; hare = f(tortoise);
       toises
                                                              while (tortoise != hare) { hare = f(hare); period
   int tortoise = f(x0), hare = f(f(x0)); // f(x0)i
       s the node next to x0
                                                              return ii(start, period);
   while (tortoise != hare) { tortoise = f(tortoise)
       ; hare = f(f(hare));}
```

6.25 Bignum em C++

print imprime o número. *fix* remove os zeros à frente. *str2bignum* converte de string para para bignum. *int2bignum* gera um bignum a partir de um inteiro menor que a base. *bignum2int* só funciona se não der overflow. A divisão por inteiros só funciona para inteiros menores que a base. Soma, subtração, shift left e shift right em O(n), multiplicação, divisão e resto em $O(n^2)$. Divisão e resto em uma única operação, é lenta para bases muito grandes. A subtração só funciona para $a \ge b$.

```
#include <vector >
#include <algorithm >
#i nclude <c s tr i n g >
using namespace std;
typedef vector <int> bignum;
const int base = 1000 * 1000 * 1000;
void print(bignum & a){
    printf("%d", a.empty()?0:a.back());
    for (int i = (int) a \cdot size() -2; i >= 0; --i) { p}
       rintf("%09d", a[i]);
void fix(bignum & a){
    while (a.size() > 1u && a.back() == 0){
       a.pop_back();
bool comp (bignum a, bignum b) { f
    ix(a); fix(b);
    if (a.size() != b.size()) return a.size() < b.s</pre>
        ize();
    for (int i = (int) a \cdot size() -1; i >= 0; i --){
       if (a[i] != b[i]) return a[i] < b[i];</pre>
    return false;
void str 2 bignum (char * s, bignum & a) { a.
   clear():
    for (int i = (int) strlen(s); i > 0; i - = 9) { s}
       [i] = 0;
       a.push_back (atoi (i \ge 9 ? s+i -9 : s));
    fix(a);
void int2 bignum (int n, bignum & a) { a.
   clear();
if(n == 0) a.push_back(0);
    while (n > 0)
       a . push_back ( n%base );
       n /= base;
in t bignum 2 int (bignum & a) {
    int ans = 0, p=1;
    for (int i =0; i < (int) a . size(); i++){
       ans += a[i] * p;
       p *= base;
    return ans:
void sum(bignum & a, bignum & b, bignum & c) {
   int carry = 0, n = max(a.size(), b.size());
    c.resize(n);
    for (int i = 0, ai, bi; i < n; i + +) {
       ai = i < (int) a.size() ? a[i] :0;
bi = i < (int) b.size() ? b[i]:0;c
       [i] = carry + ai + bi;
       carry = c[i] / base; c
       [i] %= base;
    if (carry > 0) c.push_back(carry);
    fix(c);
}
```

```
void s u b tr a c t ( bignum & a , bignum & b , bignu int em & c ) {
   arry = 0, n = max(a.size(), b.size(c.res));
   i z e ( n );
   for (int i = 0, ai, bi; i < n; i ++) {
       ai = i < (int) a.size() ? a[i] : 0;
       bi = i < (int)b.size()? b[i]: 0;c
       [i] = carry + ai - bi;
       carry = c[i] < 0 ? 1 : 0;
       if (c[i] < 0) c[i] += base;
   fix(c);
void shiftL(bignum & a, int b, bignum & c) { c
   .resize((int)a.size()+b);
   for (int i = (int) c.size() -1; i >= 0; i --){
       if(i>=b) c[i] = a[i-b];
else c[i] = 0;
   fix(c);
void shiftR(bignum & a, int b, bignum & c){
   if (((int) a.size()) \le b) {
       c.clear(); c.push_back(0);
       return;
   c.resize((int)a.size() - b);
   for (int i = 0; i < (int) c.size(); i++){
      c[i] = a[i+b];
   fix(c);
// Mult ip I ica bignum b por int a<base
void multiply(int a, bignum & b, bignum & c ) {
   int carry = 0;
   c.resize(b.size());
   for (int i=0; i < (int)b.size() || carry; i++) {
   if (i == (int)b.size()) c.push_back(0);</pre>
       long long cur = carry + a * 111 * b[i];
       c[i] = int (cur % base);
       carry = int(cur/base);
   fix(c);
void multiply (bignum a, bignum b, bignum &
                                                  c) {
   int n = a \cdot size()+b \cdot size();
   long long carry = 0, acum; c
    resize(n);
   for (int k=0; k< n \mid | carry; k++) {
       if(k == n)c.push_back(0);
       acum = c arr y; carr y = 0;
       for (int i = 0, j = k; i \le k \& i \le i \le i \ge 0);
           i ++, j --) {
          i f (j \ge (int) b \cdot s i z e()) continue;
          acum += a[i] * 111 * b[j];
          carry += acum / base;
          acum %= base;
       c[k] = acum;
   fix(c);
}
void divide(bignum & a, int b, bignum & c) {
   int carry = 0;
```

c.resize(a.size());

```
for (int i = (int) a \cdot size() -1; i >= 0; --i)
                                                               shiftL(p, max(1u, a.size()-b.size()), p);
      long long cur = a[i] + carry * 111 * base;
                                                               shiftL(b, max(1u, a.size()-b.size()), b);
      c[i] = int (cur / b);
      carry = int (cur \% b);
                                                            while (true) {
                                                               while (comp(a, b) && comp(z, p)) {
                                                                  shiftR(p, 1, p); shiftR(b, 1, b);
   fix(a);
}
void divide(bignum a, bignum b, bignum & q, bignum & r)
                                                               if (! comp(z, p)) break;
                                                               subtract(a, b, a);
    {
   bignum z, p;
                                                               sum(q, p, q);
   int2 bignum (0,z);
   int2 bignum (1,p);
                                                            swap (a,r);
                                                         }
   int2 bignum (0,q);
   while (comp(b, a)){
```

6.26 BigInteger em Java

Sintaxe da classe BigInteger do Java.

```
BigInteger V = sc.nextBigInteger();
import java.util.Scanner;
import java. math. Big In teger;
                                                                             sum = sum \cdot add(V);
                                                                         System.out.println("Bill,#" +
class Main { /* UVa 10925 - Krakovia */
                                                                          (case No++) + ", c o s t s," + sum +
":, each, f r i e n d, should, pay," +
   public static void main(String[] args) {
       Scanner sc = new Scanner (System.in);
       int case No = 1;
                                                                          sum.divide(BigInteger.valueOf(F)));
       while (true) {
                                                                          System.out.println();
          int N = sc.nextInt(), F = sc.nextInt();
          if (N == 0 \&\& F == 0) break;
                                                                  }
          Big Integer sum = Big Integer.ZERO;
                                                               }
          for (int i = 0; i < N; i ++) {
```

6.27 Jogo de Nim

Determina se o primerio jogador tem a estratégia em um jogo de Nim. Para o jogo de Nim simples (a partir de uma pilha de tamanho u, pode-se deixar a pilha de qualquer tamanho $v \ge 0$), a soma de Nim vale $S_1 \oplus S_2 \oplus ... \oplus S_n$. Para jogos mais complexos, deve-se montar o grafo de posições alcançáveis para cada pilha. adjPos(i,u) deve retornar as posições alcançáveis a partir da posição u na pilha i. Para problemas que envolvem a separação em vários subproblemas, montar uma PD para calcular o mex de cada estado.

```
#include <vector >
                                                                              if (G[j] == g[u]) g[u]++;
#include <algorithm >
                                                                       }
using namespace std;
#define MAXN 109
                                                                       ans ^= g[S[i]];
#define MAXM 1009
                                                                    return ans != 0;
int N, S[MAXN];
vector <int> adjPos (int i, int u) {
                                                                //Mex dynamic programming
}
                                                                void stevehalim() {
                                                                    for ( int n=1; n<MAXN; n++) {
                                                                       if (n \le 2) { mex [n] = 0; conti nue;}
bool nim () {
    int ans = 0, g [MAXM];
                                                                       set<int> jo g ;
    vector <int> F, G;
                                                                       for (int i = 3; i < n-2; i + +) {
    for (int i = 0; i < N; i + + ){g}
                                                                          jog.insert(mex[i-1]^mex[n-i]);
       [0] = 0;
       for (int u=1; u \le S[i]; u++){F}
                                                                       int cnt = 0;
           = adjPos(i, u);
                                                                       while ( jo g . count ( cnt ) ) cnt++;
           G. clear();
                                                                       mex[n] = cnt;
           for (int j = 0; j < (int)F. size(); <math>j++){
                                                                   // for ( int n=1; n<MAXN; n++)
              G. push_back ( g [ F[ j ] ] );
                                                                         printf("%d,", mex[n]);
           s o r t (G. beg in (), G. end ());
           g[u] = 0;
           for (int j = 0; j < (int)G. size() &&G[j] <= g[u]
                ]; j++){
```

Capítulo 7

Processamento de Strings

7.1 Knuth-Morris-Pratt (KMP)

String matching em O(n + m). Inicializar a classe com a string a ser procurada e usar match para receber o vector com as posições de matches.

```
#include <c s td i o >
                                                                                 i ++; j++;
#include <s tr i n g >
                                                                                b[i] = j;
#include <vector >
#include <c s tr i n g >
using namespace std;
                                                                         vector <int> match ( const char * T) {
#define MAXN 100009
                                                                             n = s t r l e n (T);
                                                                             vector <int> ans;
                                                                             for (int i = 0, j = 0; i < n;) {
class KMP{
                                                                                 while (j \ge 0 \&\& T[i] != P[j]) j = b[j];
private:
                                                                                 i ++; j++;
i f (j == m) {
    char P[MAXN];
    int m, n, b [MAXN];
                                                                                    ans . push_back(i - j);
                                                                                    j = b[j];
   KMP( const char * _P) {
        s tr c p y (P, _P);
                                                                                 }
        b[0] = -1;
        m = strlen(P);
                                                                             return ans;
        for (int i = 0, j = -1; i < m;) {
while (j >= 0 \&\& P[i] != P[j]) j = b[j];
                                                                     };
```

7.2 Rabin-Karp

```
#include <c s td i o >
                                                                       p = (d*p + P[i])%MOD;
#include <c s tr i n g >
                                                                       t = (d*t + T[i])%MOD;
#include <vector >
using namespace std;
                                                                   for (int i = 0; i \le n-m; i ++){
                                                                     if(p == t \&\& strncmp(T+i, P, m) == 0){
#define d 256 //Tamanho do alfabeto
#define MOD 40031
                                                                        ans.push_back(i);
                                                                       if (i+m < n) {
vector <int> rabinkarp (const char * P, const char * T) {
                                                                            t = (d * (t - T[i] * h) + T[i+m])%MOD;

if (t < 0) t += MOD;
    vector <int> ans;
    int n = strlen(T);
    int m = strlen(P);
    int p = 0, t = 0, h = 1;
                                                                   }
     for (int i = 0; i < m-1; i ++) h = (h*d)%MOD;
                                                                  return ans;
     for (int i = 0; i < m; i++){
```

7.3 Repetend: menor período de uma string

Menor período da string em O(n).

```
#include <c s td i o >
                                                                            while (j \ge 0 \&\& s[j] != s[i - 1])
#include <c s tr i n g >
                                                                                 j = nxt[j];
                                                                            nxt[i] = j + 1;
#define MAXN 100009
                                                                       int a = n - nxt[n];
if (n % a == 0)
int repetend ( char * s ) { int
     n = strlen(s); int
     nxt[n+1];
                                                                            return a;
     nxt[0] = -1;
                                                                       return n:
     for (int i = 1; i \le n; i ++) {
                                                                  }
          int j = nxt[i - 1];
```

7.4 Suffix Array

Algoritmo O(nlogn) para computar a Suffix Array SA.

```
#define MAXN 100009
                                                                 for (i = 0; i < n; i++) tempSA [c[SA[i]+k < n]
#include <algorithm >
#include < c \, \bar{s} \, td \, i \, o >
                                                                    RA[SA[i]+k] : 0]++] = SA[i];
#include <c s tr i n g >
                                                                 for (i = 0; i < n; i++) SA [i] = tempSA [i];
using namespace std;
char str[MAXN];
                                                             void construct SA () { //O( nlogn )
intn; // the length of input string
                                                                 int i , k , r ;
int RA[MAXN] , tempRA [MAXN] ;
                                                                 for (i = 0; i < n; i++) RA[i] = str[i];
                                                                 for (i = 0; i < n; i++) SA[i] = i;
int SA [MAXN] , tempSA [MAXN] ; //SA: suffix array
                                                                 for (k = 1; k < n; k < = 1) {
int c [MAXN];
                                                                    co unting Sort (k);
void co u n ti n g So rt (int k) \{ // O(n) \}
                                                                    counting Sort (0);
   int i, sum, maxi = max(300, n);
                                                                    tempRA [SA [0]] = r = 0;
                                                                    for (i = 1; i < n; i++) tempRA [SA[i]] =
    memset (c, 0, sizeof c);
                                                                       (RA[SA[i]] == RA[SA[i-1]] && RA[SA[i]+k] == RA[SA[i-1]+k]) ? r : ++r;
    for (i = 0; i < n; i++) c[i + k < n ? RA[i + k]
         : 0]++;
    for (i = sum = 0; i < maxi; i++)
                                                                    for (i = 0; i < n; i++) RA[i] = tempRA[i];
       int t = c[i];
                                                                    if (RA[SA[n-1]] == n-1) break;
       c[i] = sum;
       sum += t;
                                                             }
```

7.5 Suffix Array: string matching

String matching em *O*(*mlogn*). Requer construção da *SA*.

```
ii s trin g Match ing ( char * P) {
  int lo = 0, hi = n-1, mid = lo;
  while (lo < hi) { // find lower bound
      mid = (lo + hi) / 2;
      int res = strncmp (str + SA [ mid ], P, m);
      if (res >= 0) hi = mid;
      else lo = mid + 1;
  }
  if (strncmp (str + SA [lo], P, m) != 0) return ii(
      -1, -1);
  i ans; ans.first = lo;
  lo = 0; hi = n - 1; mid = lo;
  while (lo < hi) { // if lower bound is found,
      find upper bound</pre>
```

7.6 Suffix Array: Longest Common Preftx

LCP [i] guarda o tamanho do maior prefixo comum entre SA[i] e SA[i-1].

```
int Phi [MAXN];
                                                               if (Phi[i] == -1) {
int LCP[MAXN], PLCP[MAXN];
                                                                  PLCP[i] = 0; continue;
// Longest Common Prefix
                                                               while (str[i+L] == str[Phi[i]+L]) L++;
SA[i] and SA[i-1]
                                                               PLCP[i] = L;
void computeLCP() { //O(n)
                                                               L = max(L-1, 0);
   int i, L;
   Phi [SA [0]] = -1;
                                                            for (i = 0; i < n; i++) LCP[i] = PLCP[SA[i]];
   for (i = 1; i < n; i++) Phi[SA[i]] = SA[i-1];
                                                        }
   for (i = L = 0; i < n; i++) {
```

7.7 Suffix Array: Longest Repeated Substring

É o valor do maior LCP.

}

7.8 Suffix Array: Longest Common Substring

Retorna o tamanho da maior substring comum a str1 e str2.

7.9 Longest Palindromic Substring: Algoritmo de Manacher

Usado para achar a maior substring palíndromo. A função *manacher* calcula a array L. L[i] é o máximo valor possível tal que str[i+j] = str[i-j], $0 \le j \le L[i]$. Pra calcular os palíndromos pares, basta adicionar '|' entre todos os caracateres e calcular o maior valor de L da string.

```
#include <c s td i o >
#include <c s tr i n g >
#include <algorithm >
                                                                 int LPS( char * te x t ) {
#define MAXN 3009
                                                                      int n=2*strlen(text)+1;
using namespace std;
                                                                      char temp [n+1];
                                                                      for (int i=0, k=0; text[i]; i++) { temp
                                                                          [k++]='|'; temp[k++]=text[i];
void manacher ( char * s tr , int * L) {
     int n = strlen(str), c = 0, r = 0;
     for (int i = 0; i < n; i ++) {
                                                                      temp [n-1]=' \mid '; temp [n]=' \setminus 0';
          if(i < r && 2*c >= i) L[i] = min(L[2*c-i], r
                                                                      int L[n], ans =1;
                                                                      manacher (temp, L);
                                                                      for (int i =0; i <n; i++)
ans = max(ans, L[i]);
          else L[i] = 0;
          while (i - L[i] - 1 \ge 0 \&\& i + L[i] + 1 < n \&\&
               str[i-L[i]-1] == str[i+L[i]+1]) L[i]++;
                                                                      return ans;
          if(i+L[i]>r) { c=i; r=i+L[i];}
                                                                 }
```

7.10 Aho Corasick

Resolve o problema de achar ocorrências de um dicionário em um texto em O(n), onde n é o comprimento do texto. Préprocessamento: O(m), onde m é a soma do número de caracteres de todas as palavras do dicionário. Cuidado: o número de matches pode ser $Worst\ case\ O(n^2)$! Guardar apenas o número de matches, se for o que o problema pedir. Pode ser usada pra achar uma submatriz dentro de uma matriz (usar pra achar a ocorrência de cada linha dentro da outra, depois usar KMP nas colunas com a array de ids).

```
#include <c s td i o >
                                                                            x = q.front(); q.pop();
#include <c s tr i n g >
                                                                            for (int i = 0; i < (int) x - a di . s i z e (); i
                                                                                ++) {
#include <map>
#include <queue>
                                                                               y = x-n \exp[x-a \, dj[i]];
#include <vector >
                                                                               y -> f a i l = s u f f i x (x -> f a i l, x -> a dj [i]);
                                                                               y-p ats . in sert (y-p ats . end (),
using namespace std;
#define ALFA 256
                                                                                   y \rightarrow f a i l \rightarrow p ats . begin (), y \rightarrow f a i l \rightarrow p ats .
#define MOD 1000000009
                                                                                       end());
#define MAXK 70
                                                                               q.push(y);
#define MAXN 100009
                                                                        }
typedef pair <int, int> ii;
                                                                    }
                                                                     void insert(const char * s, int id){
struct node {
                                                                        int len = strlen(s);
                                                                        sizes[id] = len;
    node * fail, * next [ALFA];
    vector <char> adj;
                                                                        node *x = trie, *y;
    vector <int> pats;
                                                                        for (int i = 0; i < len; i ++) {
                                                                            y = x - next[s[i]];
    int nid;
                                                                            if (y == NULL || y == trie) {
  x->next[s[i]] = new node(size++);
    node (int _nid) {
       f a i l = NULL;
       nid = _nid;
                                                                               x-adj.push_back(s[i]);
       memset(\& next, 0, size of next);
                                                                            x = x- n ext[s[i]];
                                                                        }
};
                                                                        x->p ats . push_back (id);
class Aho Corasick
                                                                     vector \leq i \geq match ( const char * s ) {
private:
                                                                        node *x = trie;
                                                                        int len = strlen(s), id;
    node * trie;
                                                                        vector <i i > ans;
    map<int, int> sizes;
                                                                        for (int i = 0; i < len; i ++) {
    int size;
    node * suffix (node *x, char c) {
                                                                            x = suffix(x, s[i]);
       while (x != trie \&\& x->next[c] == 0) x = x->
                                                                            for (int j = 0; j < (int) x -> p ats.size(); j
                                                                                ++) {
       return (x->n ext[c] ? x->n ext[c] : trie);
                                                                                id = x->p ats[j];
                                                                               ans.push_back(ii(id, i - sizes[id]));
public:
                                                                            }
    Aho Corasick() { trie = new node(0); size = 1;}
    void clear() {
                                                                        return ans:
       node *x, *y;
       queue<node*> q; q.push(trie);
while (!q.empty()){
                                                                 //Dynamic Programming (size left, appeared, node id)
           x = q.front(); q.pop();
                                                                     int dp [MAXK] [MAXK] [MAXN];
           for (int i = 0; i < (int) x->a dj.size();i
                                                                     inline int nOnes (int mask) {
                                                                        int ans = 0;
               y = x - n ext [x - a dj [i]];
               if (y != NULL && y != trie) q.push(y);
                                                                        while ( mask > 0 ) {
                                                                            ans++;
           delete x;
                                                                            mask = (mask & -mask);
       trie = new node (0); size = 1;
                                                                        return ans;
    void setfails() {
                                                                    int DP( const int s , const int mask , node *\ x ,
       queue<node*>
                                                                         const int K) {
       node *x , *y;
                                                                        if (x == NÚLL) return 0;
                                                                        i f (dp [s] [mask] [x->n id] >= 0) return dp [s][
       for (int i = 0; i < ALFA; i ++) {
                                                                             mask][x->nid];
           x = trie -> next[i];
           if (x!= NULL &&x != trie) {
                                                                        int nmask = mask;
               x \rightarrow fail = trie;
                                                                        for (int i = 0; i < (int) x -> p ats.size(); i++)
               q.push(x);
                                                                            nmask = (1 \ll x \rightarrow pats[i]);
                                                                        }
       while (!q.empty()) {
```

```
if (nOnes (nmask) > K) return dp [s] [mask] [x->
                                                               int DP(int sz, int K) {
           \operatorname{nid}] = 0;
                                                                  return DP(sz, 0, trie, K);
      if (s == 0) return dp[s][mask][x->nid] = 1;
      int ans = 0;
                                                               void initDP(){
                                                                  for (int i = 0; i < MAXK; i++)
      for (char c = 'a'; c \le 'z'; c++) {
          ans = (ans + DP(s - 1, nmask, suffix(x, c),
                                                                      for (int j = 0; j < MAXK; j++)
              K)) % MOD;
                                                                         for (int s = 0; s < size; s++) dp
                                                                            [i][j][s] = -1;
      return dp[s][mask][x->nid] = ans;
                                                            };
public :
```

7.11 Longest Common Subsequence

Técnica com PD para calcular a maior subsequência comum a duas strings. Chamar DP(0, 0). $O(n^2)$, pode ser feito em O(nlogn) com Suffix Array.

```
#include <c std i o >
#define MAXN 109

if (i==n) return dp[i][j] = DP(i, j+1);
if (j==m) return dp[i][j] = DP(i+1,j);
dp[i][j] = DP(i+1,j);
dp[i][j] = DP(i+1,j);
if (DP(i,j+1)>dp[i][j]) dp[i][j]=dp[i][j+1];
if (DP(i,j+1)>dp[i][j]) dp[i][j]=dp[i][j+1];
if (str1[i]==str2[j]&&1+DP(i+1,j+1)>dp[i][j])
dp[i][j]=1+dp[i+1][j+1];
return dp[i][j];
if (dp[i][j]>=0) return dp[i][j];
if (i==n) return dp[i][j] = DP(i,j+1);
return dp[i][j] = DP(i,j+1);
return dp[i][j] = DP(i,j+1);
return dp[i][j] = DP(i,j+1);
return dp[i][j] = DP(i+1,j);
ret
```

7.12 Função Z e Algoritmo Z

Função Z é uma função tal que z[i] é máximo e str[j] = str[i+j], $0 \le j \le z[i]$. O algoritmo Z computa todos os z[i], $0 \le i < n$, em O(n). z[0] = 0.

Capítulo 8

Geometria Computacional

8.1 Ponto 2D

Ponto com double em 2D com algumas funcionalidades: distância, produto interno, produto vetorial (componente z), teste counter-clockwise, teste de pontos colineares, rotação em relação ao centro do plano, projeção de *u* sobre *v*.

```
double inner(point p1, point p2) {
#include <cmath>
                                                                return p1.x*p2.x+p1.y*p2.y;
#include <vector >
using namespace std;
#define EPS 1 e-9
                                                             double cross(point p1, point p2) {
struct point{
                                                                return p1.x*p2.y-p1.y*p2.x;
   double x, y;
point() { x = y = 0.0;}
    p \circ i \circ t ( double \_x, double \_y) : x (\_x), y (\_y) {}
                                                             bool ccw(point p, point q, point r) {
   double norm() { return hypot(x, y); }
                                                                return cross(q-p,r-p) > 0;
   point normalized () {
       return point(x,y) * (1.0 / norm());
                                                             bool collinear(point p, point q, point r) {
   double an gle() { return atan 2 (y, x); }
                                                                 \label{eq:constraints} \textbf{return} \ \ f \ a \ b \ s \ (\ c \ r \ o \ s \ s \ (\ p-q \ , \ \ r-p \ ) \ ) \ \leq \ EPS \ ; 
   double polar Ang l e () {
       double a = atan 2(y, x);
       return a < 0 ? a + 2*M_PI : a;
                                                             point rotate(point p, double rad) {
                                                                return point(p.x * cos(rad) - p.y * sin(rad),
   bool operator < (point other) const {
                                                                p.x * sin(rad) + p.y * cos(rad));
       if (fabs(x - other.x) > EPS)
          return x < o th er.x;
       else return y < o th e r . y;
                                                             double angle(point a, point o, point b) {
                                                                return a\cos(inner(a-o, b-o) / (dist(o,a)*dist(o,b)
   bool operator == (point other) const {
                                                                     )));
       return (fabs(x - other.x) < EPS && (fabs(y - other.y) < EPS));
                                                             point proj(point u, point v){
   point operator +(point other) const {
                                                                return v * (inner(u,v)/inner(v,v));
       return point(x + other.x, y + other.y);
   point operator - (point other) const {
                                                             bool between(point p, point q, point r) {
       return point(x - other.x, y - other.y);
                                                                  return collinear (p, q, r) && inner (p - q, r - q)
   point operator *(double k) const{
       return point(x*k, y*k);
                                                             int leftmostIndex(vector <point> &P){
                                                                int ans = 0;
                                                                 for (int i = 1; i < (int)P. size(); i++){
double dist(point p1, point p2) {
                                                                     if (P[i] < P[ans]) ans = i;
   return hypot (p1.x - p2.x, p1.y - p2.y);
                                                                 return ans;
                                                             }
```

8.2 Linha 2D

Algumas funções de reta e segmento de reta no plano 2D: dois pontos para reta, projeção e distância ponto-reta e lonto-segmento de reta. Reta representada da forma ax + by + c = 0. Se possivel fazemos b = 1.

```
struct line{
                                                             p.x = (12.b * 11.c - 11.b * 12.c) / (12.a * 11.b)
   double a, b, c;
                                                                 -11.a * 12.b);
   line() { a = b = c = NAN; }
                                                             if (fabs(11.b) > EPS) p.y = -(11.a * p.x + 11.c);
   line(double _a, double _b, double _c) : a (_a), b (
                                                             else p.y = -(12.a * p.x + 12.c);
       _b), c (_c) {}
                                                             return p:
                                                          }
line pointsToLine(point p1, point p2) {
                                                          point proj Point To Line (point u, line 1) {
                                                             point a, b;
   if (fabs(p1.x - p2.x) \le EPS && fabs(p1.y - p2.y)
                                                             if (fabs(1.b-1.0) < EPS) {
                                                                a = point(-1.c / 1.a, 0.0);

b = point(-1.c / 1.a, 1.0);
       < EPS) {
      1.a = 1.b = 1.c = NAN;
                                                             else {
   else if (f a b s (p1.x - p2.x) \le EPS) {
      1.a = 1.0; 1.b = 0.0; 1.c = -p1.x;
                                                                a = point(0, -1.c / 1.b);
                                                                b = point(1, -(1.c + 1.0) / 1.b);
   else {
                                                             }
      1.a = -(p1.y - p2.y) / (p1.x - p2.x);
                                                             return a + proj(u - a, b - a);
      1.b = 1.0;
      1.c = -(1.a * p1.x) - p1.y;
                                                          double distTo Line(point p, line 1) {
   return 1;
                                                             return dist(p, proj Point To Line(p, 1));
}
bool areParallel(line 11, line 12) {
                                                          point closest To Line Segment (point p, point a, point b
   return (fabs(11.a - 12.a) < EPS) && (fabs(11.b -
                                                              ) {
       12.b) < EPS);
                                                             double u = inner(p-a, b-a) / inner(b-a, b-a);
                                                             if (u < 0.0) return a;
                                                             if (u > 1.0) return b;
bool areSame(line l1, linel2) {
   return are Parallel (11, 12) && (fabs(11.c - 12.c)
                                                             return a + ((b - a) * u);
       < EPS);
                                                          double dist To Line Segment (point p, point a, point b)
point intersection(line 11, line 12) {
   if (areParallel(11, 12)) return point(NAN, NAN);
                                                             return dist(p, closest To Line Segment(p, a, b));
   point p;
```

8.3 Círculo 2D

```
struct circle {
                                                                      point u = point((b-a).y, -(b-a).x);
   pointc;
                                                                      point v = point((c-a).y, -(c-a).x);
   double r:
                                                                      point n = (c-b) \times 0.5;
   circle() { c = point(); r = 0; }
                                                                      double t = cross(u,n)/cross(v,u);
   circle(point_c, double_r) : c(_c), r(_r) {}
                                                                      ans.c = ((a+c)*0.5) + (v*t);
                                                                      ans.r = dist(ans.c, a);
   double area() { return M_PI*r*r; }
   double chord (double rad) { return
     / 2.0);}
                                                                      return ans;
                                             2*r*sin(rad
                                                                   }
   double sector(double rad) { return 0.5*rad*area()
                                                                   int inside Circle (point p, circle c) {
        /M_PI; }
                                                                       \textbf{if} \ (\texttt{fabs}(\texttt{dist}(\texttt{p} \ , \ \texttt{c.c}) - \texttt{c.r}) \!\!<\!\! \texttt{EPS} \!) \ \textbf{return} \ 1; \\
   bool intersects(circle other){
       return dist(c, other.c) < r + other.r;
                                                                      else if (dist(p, c.c) < c.r) return 0;
                                                                      else return 2;
   \textbf{bool} \ c \ o \ n \ ta \ i \ n \ s \ ( \ p \ o \ i \ n \ t \ p \ ) \ \{ \ \textbf{return} \ d \ i \ s \ t \ ( \ c \ , \ p \ ) <= \ r \ +
                                                                   // 0 = insid e /1 = border /2 = outside
         EPS; }
   bool is Enclosing Circle (vector < point> & p, int n) {
                                                                   circle incircle( point p1, point p2, point p3){
       for ( int i = 0; i < n; i + + ){
                                                                       double m1=dist(p2, p3);
           if (!contains(p[i])) return false;
                                                                       double m2=dist(p1, p3);
                                                                       double m3=dist(p1, p2);
                                                                       point c = (p1*m1+p2*m2+p3*m3)*(1/(m1+m2+m3));
       return true;
                                                                       double s = 0.5 * (m1+m2+m3);
};
                                                                       double r = sqrt(s*(s-m1)*(s-m2)*(s-m3))/s;
                                                                       return circle(c, r);
circle circumcircle(point a, point b, point c){
                                                                  }
   circle ans;
```

8.4 Triângulo 2D

```
struct triangle{
                                                                return circumcircle(a,b,c);
   point a, b, c;
                                                             int isInside(point p){
   triangle() { a = b = c = point(); }
   triangle(point_a, point_b, point_c): a (_a), b
                                                                double u = cross(b-a, p-a) * cross(b-a, c-a);
                                                                double v = cross(c-b, p-b) * cross(c-b, a-b);
       (_b), c (_c) {}
   double perimeter() { return dist(a,b) + dist(b,c)
                                                                double w = cross(a-c,p-c)*cross(a-c,b-c);
                                                                if (u > 0.0 \&\& v > 0.0 \&\& w > 0.0) return 0;
        + dist(c,a); }
                                                                if (u < 0.0 | | v < 0.0 | | w < 0.0) return 2;
   double semi Perimeter () { return perimeter () / 2.0;
                                                                else return 1:
                                                             // 0 = insid e / 1 = border/ 2 = outside
   double area () {
      double s = semi Perimeter () , ab = dist(a,b),
         bc = dist(b,c), ca = dist(c,a);
      return s q r t (s * (s-ab) * (s-bc) * (s-ca));
                                                         double rInCircle(point a, point b, point c) {
                                                            return triangle(a,b,c).rInCircle();
   double rInCircle() {
      return area () / semi Perimeter ();
                                                         double r Circu m Circle (point a, point b, point c) {
   circle in Circle() {
                                                            return triangle(a,b,c).rCircu m Circle();
      return incircle(a,b,c);
   double r Circu m Circle () {
                                                         int isInsideTriangle(point a, point b, point c,
      return dist(a,b)*dist(b,c)*dist(c,a)/(4.0*area
                                                             point p){
                                                            return triangle(a,b,c).isInside(p);
          ());
                                                          // 0 = insid e / 1 = border/ 2 = outside
   circle circumCircle() {
```

8.5 Polígono 2D

+2]) != i s L e f t)

Algumas funcionalidades do polígono 2D. IMPORTANTE: o último ponto de P é igual ao primeiro.

```
#include <vector >
                                                                        return false;
#include <algorithm >
                                                                }
using namespace std;
                                                                return true:
point lineIntersectSeg(point p, point q, point A,
                                                             bool in Polygon (polygon & P, point p) {
    point B) {
                                                                if(P. size() == 0u) return false;
                                                                double sum = 0.0;
   double a = B. y - A. y;
   double b = A.x - B.x;
                                                                for (int i = 0; i < (int)P. size() -1; i++) {
   double c = B.x * A.y - A.x * B.y; double
                                                                    if (ccw(p, P[i], P[i+1])) sum += angle(P[i], p
                                                                         , P[i+1]);
   u = f a b s (a * p.x + b * p.y + c); double v = f
   abs(a * q.x + b * q.y + c);
                                                                    else sum -= angle(P[i], p, P[i+1]);
   return point((p.x * v+q.x * u) / (u+v), (p.y * v+q.x * u)
        v + q \cdot y * u) / (u+v);
                                                                return fabs(fabs(sum) - 2*M_PI) < EPS;
}
                                                             polygon make_polygon (vector<point> P) {
                                                                 \mathbf{if}(!P. empty() & & !(P. back() == P. front()))
typedef vector <point> polygon;
                                                                    P. push_back(P[0]);
double perimeter (polygon & P) {
                                                                 if (signed Area (P) < 0.0) {
                                                                    for (int i = 0; 2*i < (int)P.size(); i ++){swap}
   double result = 0.0;
   for (int i = 0; i < (int)P. size() -1; i++) result
                                                                       (P[i], P[P.size()-i-1]);
       += dist(P[i], P[i+1]);
   return result;
                                                                }
                                                                return P;
double s igned Area ( polygon & P) {
   double result=0.0;
                                                             polygon cut Polygon (polygon P, pointa, pointb) {
   for (int i = 0; i < (int)P.size() -1; i++){
                                                                 vector <point> R;
       result += cross(P[i], P[i+1]);
                                                                double left1, left2;
                                                                for (int i = 0; i < (int)P.size(); i++) {
   return result/2.0;
                                                                    left1 = cross(b-a, P[i]-a);
                                                                    if (i != (int)P. size() -1)left2 = cross(b-a, P[
double area (polygon & P) {
                                                                         i +1]-a);
                                                                    else left2 = 0;
   return f a b s ( s igned Area (P) );
                                                                    if (left1 > -EPS) R. push_back (P[i]);
bool is Convex (polygon & P) {
                                                                    if (left1 * left2 < -EPS)
   int sz = (int)P. size();
                                                                       R. push_back(lineIntersectSeg(P[i], P[i+1],
   if (sz \le 3) return false;
                                                                           a, b));
   bool is L e f t = ccw (P[0], P[1], P[2]);
   for (int i = 1; i < sz - 1; i + +){
                                                                return make_polygon (R);
       if (ccw(P[i], P[i+1], P[(i+2) == sz ? 1 : i
                                                             }
```

8.6 Convex Hull

Dado um conjunto de pontos, retorna o menor polígono que contém todos os pontos. Retorna o primeiro ponto repetido.

```
#include <algorithm >
using namespace std; p
                                                                     int P0 = 1 e f tm o s t In d e x (P);
                                                                     swap (P[0], P[P0]);
oint pivot(0,0);
                                                                     pivot = P[0];
                                                                     s o r t(++P. begin (), P. end (), angleCmp);
bool angleCmp(point a, point b) {
                                                                     vector <point> S;
    if (collinear(pivot, a, b)) return dist(pivot, a)
                                                                     S. push_back(P[n-1]);
          < dist(pivot, b);
                                                                     S.push_back(P[0]);
    double d1x = a \cdot x - p i v o t \cdot x, d1y = a \cdot y - p i v o t \cdot y;
                                                                     S. push_back (P[1]);
    double d2x = b \cdot x - p i v o t \cdot x, d2y = b \cdot y - p i v o t \cdot y;
                                                                     i = 2;
    return at an 2 (d1y, d1x) - at an 2 (d2y, d2x) < 0;
                                                                     while (i < n)
                                                                         j = (int) S.size() -1;
                                                                         if (ccw(S[j-1], S[j], P[i])) S.push_back(P[i
vector<point> convexHull (vector<point> P) {
                                                                             ++]);
    int i, j, n = (int)P.size();
                                                                         else S . pop_back ();
    if (n \le 3)
                                                                     }
       if (!(P[0] == P[n-1])) P. push_back (P[0]);
                                                                     return S:
       return P;
```

8.7 Ponto dentro de polígono convexo

Dado um polígono convexo com o primeiro ponto igual ao último e um novo ponto *q*, verifica se o ponto está dentro (inclui borda) em *O(logn)*. O ponto índice 1 (pivot) deve ser um pivô válido para não quebrar *atan*2. Pode usar o *vector* retornado direto da função *convexHull*.

```
bool query (vector <point> &CH, point q) {
    int i = 2, j = CH.size() -1, m;
}

pivot = CH[1];
while (j > i +1) {
    int m = (i+j) / 2;
    if (angleCmp(q, CH[m])) j = m;
}

else i = m;
}

return is Inside Triangle (pivot, CH[i], CH[j], q)
!= 2;
}
```

8.8 Soma de Minkowski

Determina o polígono que contorna a soma de Minkowski de duas regiões delimitadas por polígonos regulares. A soma de Minkowski de dois conjuntos de pontos A e B é o conjunto $C = \{u \in R^2 | u = a + b, a \in A, b \in B\}$. Algumas aplicações interessantes:

- Para verificar se A e B possuem intersecção, basta verificar se $(0,0) \in minkowski(A, -B)$.
- $(1/n) * minkowski(A_1, A_2, ..., A_n)$ representa todos os baricentros possíveis de pontos em $A_1, A_2, ..., A_n$.

```
polygon minkowski (polygon A, polygon B) {
   polygon P;
                                                                             else if (c1 == n1 \mid | (c2 < n2 \&\& cross(v1, v2))
   A. pop_back(); B. pop_back();
                                                                                  < 0)){
   int s = 1 = 1 e f tm o s t In d e x (A), n1 = A . s i z e (); int s
                                                                                P. push_back (P. back () + v2);
   2 = 1 e f tm o s t In d e x (B), n2 = B. s i z e (); P.
                                                                                j = (j+1)\%n2; c2++;
   push_back (A[ s 1 ]+B[ s 2 ] );
   int i=s 1+1, j=s 2+1, c1=0, c2=0;
point v1, v2;
                                                                             else {
                                                                                P. push_back (P. back () + (v1+v2));
   while (c1 < n1 | c2 < n2)
                                                                                i = (i+1)\%n1; c1++;
                                                                                j = (j+1)\%n2; c2++;
       v1 = A[i] - A[(i-1+n1)\%n1];
       v2 = B[j] - B[(j-1+n2)\%n2];
if (c2 == n2 \mid | (c1 < n1 \&\& cross(v1, v2) > 0)
                                                                         }
            ) {
                                                                         return make_polygon (P);
           P. push_back(P. back() + v1);
                                                                     }
           i = (i+1)\%n1; c1++;
```

8.9 Minimum Enclosing Circle

Computa o círculo de raio mínimo que contém um conjunto de pontos. Baseado em permutação aleatória. Complexidade: expected *O*(*n*).

8.10 Ponto inteiro

Algumas funções de ponto usando apenas inteiros: *insideCircle* e o comparador polar *polarCmp* para x, $y > 10^{9}$.

```
typedef long long 11;
                                                                       11 cross(point_i a, point_i b){
                                                                          return a \cdot x * b \cdot y - a \cdot y * b \cdot x;
struct point_ i {
    11 x, y;
                                                                      int insideCircle(point_i p, point_i c, int r) {1
   point_i() { x = y = 0; }
point_i(11 _x, 11 _y) : x(_x), y(_y){}
                                                                          1 dx = p.x - c.x, dy = p.y
                                                                                                             c.v;
                                                                          11 Euc = dx * dx + dy * dy, rSq = r * r;

return Euc < rSq ? 0 : Euc == rSq ? 1 : 2;
    bool operator < (point_i other) const {if(
                                                                       // 0 = insid e /1 = border /2 = outside
        x != o th e r . x) return x < o th e r . x; else
                                                                      bool polarCmp ( point_ i a , point_ i b ) {
        return y < o th e r . y;
                                                                          if (b.y*a.y > 0) return cross(a, b) > 0;
    bool operator == ( point_i o th e r ) const {
                                                                          else i f ( b . y == 0 && b . x > 0 ) return false; else i
       return (x == o th e r . x && y == o th e r . y);
                                                                          f(a.y == 0 \&\& a.x > 0) return true; else
                                                                          return b.y < a.y;
};
```

8.11 Ponto 3D

```
#include <c s td i o >
                                                               return point (x - other.x, y - other.y, z -
#include <cmath>
                                                                   other.z);
#define EPS 1 e-9
                                                            }
                                                            point operator * (double k) const {
struct point{
                                                               return point (x*k, y*k, z*k);
   double x, y, z;
   point() \{ x = y = z = 0.0; \}
   p \circ i \circ t (double \_x, double \_y, double \_z) : x (\_x), y
                                                         double dist(point p1, point p2) {
       (y), z(z) {}
                                                            return (p1-p2). norm ();
   double norm () { return hypot(x, y, z); }
                                                         double inner(point p1, point p2) {
   point normalized () {
       return point(x,y,z) * (1.0 / norm());
                                                            return p1.x*p2.x+p1.y*p2.y+p1.z*p2.z;
   bool operator < (point other) const {
                                                         point cross (point p1, point p2) {
       if (fabs(x - other.x) > EPS) return x < other.
                                                            point ans;
                                                            ans.x = p1.y*p2.z - p1.z*p2.y;
       else if (fabs(y - other.y) > EPS) return y < o
                                                            ans.y = p1.z*p2.x - p1.x*p2.z;
           ther.y;
                                                            ans.z = p1.x*p2.y - p1.y*p2.x;
       else return z < o th er.z;
                                                            return ans;
   bool operator == (point other) const {
                                                         bool collinear(point p, point q, point r) {
      return (fabs(x - other.x) < EPS && fabs(y -
                                                            return c r o s s (p-q, r-p). norm () < EPS;
           other.y) < EPS && fabs(z - other.z) < EPS)
                                                         double angle(point a, point o, point b) {
                                                            return a\cos(inner(a-o, b-o) / (dist(o,a)*dist(o,b)
   point operator +(point other) const {
                                                                )));
      return point(x + other.x, y + other.y, z +
           other.z);
                                                         point proj(point u, point v){
                                                            return v * (inner(u,v)/inner(v,v));
   point operator - (point other) const {
```

8.12 Triângulo 3D

```
struct triangle{
                                                                 double v = proj(cross(c-b, p-b), n).normalized
                                                                     ()*proj(cross(c-b,a-b), n).normalized();
   point a, b, c;
                                                                 double w = proj(cross(a-c, p-c), n).normalized
   triangle() { a = b = c = point(); }
   triangle(point_a, point_b, point_c): a (_a), b
                                                                     ()*proj(cross(a-c,b-c), n).normalized();
                                                                 if (u > 0.0 \&\& v > 0.0 \&\& w > 0.0) return 0; else if (u < 0.0 \mid | v < 0.0 \mid | w < 0.0) return
       (_b), c(_c) {}
   double perimeter() { return dist(a,b) + dist(b,c)
                                                                      2:
       + dist(c,a); }
                                                                 else return 1;
   double semi Perimeter () { return perimeter () / 2.0;
                                                             } //0 = insid e / 1 = border/ 2 = outside
                                                              int isProjInside(point p){
   double area () {
      double s = semi Perimeter () , ab = dist(a,b),
                                                                 return is In side (p + p r o j (a - p, normal Vector ()))
         bc = dist(b,c), ca = dist(c,a);
      return sqrt(s*(s-ab)*(s-bc)*(s-ca));
                                                              // 0 = insid e / 1 = border/ 2 = outside
   double rInCircle() {
      return area() / semi Perimeter();
                                                          double rInCircle(point a, point b, point c) {
                                                             return triangle(a,b,c).rInCircle();
   double r Circu m Circle () {
      return dist(a,b)*dist(b,c)*dist(c,a)/(4.0*area
                                                          double r Circu m Circle (point a, point b, point c) {
          ());
                                                              return triangle (a, b, c). r Circu m Circle ();
   point normal Vector () {
      return c r o s s (y-x, z-x). normaliz ed ();
                                                          int isProjInsideTriangle(point a, point b, point c,
   int isInside(point p) {
                                                              point p){
      point n = normal Vector ();
                                                             return triangle(a,b,c).isProjInside(p);
      double u = proj(cross(b-a, p-a), n).normalized
                                                          ()*proj(cross(b-a,c-a), n).normalized();
```

8.13 Linha 3D

Desta vez a linha é implementada com um ponto de referência e um vetor base. *distVector* é um vetor que é perpendicular a ambas as linhas e tem como comprimento a distância entre elas. *distVector* é a "ponte" de *a* a *b* de menor caminho entre as duas linhas. *distVectorBasePoint* é o ponto da linha *a* de onde sai o *distVector*. *distVectorEndPoint* é o ponto na linha *b* onde chega a ponte.

```
struct line{
    pointr;
    point v;
    line(point_r, point_v){
        v = v; r = r;
    bool operator == (line other) const {
        return fabs(cross(r-other.r,v).norm()) < EPS
             && fabs(cross(r-other.r, other.v).norm
             () ) < EPS;
};
point distVector(line 1, point p){
    point dr = p - 1.r;
    return dr - proj(dr, l.v);
point distVectorBasePoint(line 1, point p){
    return proj(p-1.r, 1.v) + 1.r;
point dist Vector End Point (line 1, point p) {
point distVector(line a, line b){
    point dr = b.r - a.r;
    point n = cross(a.v, b.v);
if (n.norm() < EPS) {</pre>
         return dr - proj(dr, a.v);
```

```
else return proj(dr,n);
}
double dist(line a, line b){
    return distVector(a, b).norm();
point distVectorBasePoint(line a, line b) {
    if(cross(a.v, b.v).norm() < EPS) return a.r;
    point d = distVector(a, b);
    double lambda;
    if (fabs(b.v.x*a.v.y-a.v.x*b.v.y) > EPS)
         lambda = (b.v.x*(b.r.y-a.r.y-d.y) - b.v.y*(b.y.y)
             (r.x-a.r.x-d.x))/(b.v.x*a.v.y-a.v.x*b.
             v.y);
    else if (fabs(b.v.x*a.v.z - a.v.x*b.v.z) > EPS)
         lambda = (b.v.x*(b.r.z-a.r.z-d.z) - b.v.z*(b.z)
             .r.x-a.r.x-d.x))/(b.v.x*a.v.z - a.v.x*b.
    else if (fabs(b.v.z*a.v.y - a.v.z*b.v.y) > EPS)
         \overset{\cdot}{lambda} = (b.v.z*(b.r.y-a.r.y-d.y) - b.v.y*(b.y.y)
              .r.z-a.r.z-d.z))/(b.v.z*a.v.y - a.v.z*b.
             v.y);
    \textbf{return} \; a \; . \; r \; + \; (\; a \; . \; v * \; lambda \;) \; ;
point dist Vector End Point (line a, line b) {
    return distVectorBasePoint(a, b) + distVector(a,
}
```

8.14 Grande Círculo

Dado o raio da Terra e as coordenadas em latitude e longitude de dois pontos p e q, retorna o ângulo pOq. Retorna a distância mínima de viagem pela superfície.

8.15 Coordenadas polares, cilíndricas e esféricas

Coordenadas polares:

 $x = r\cos \varphi$

 $dS = rdrd\varphi$ (8.1)

(8.2)

 $x = r \cos \varphi \sin \theta$ $y = r \sin \varphi \sin \theta$ $z = r \cos \theta$ (8.8)

Coordenadas esféricas:

Coordenadas cilíndricas:

$$d\hat{\mathbf{y}} = dr\hat{\mathbf{r}} + rd\theta\hat{\mathbf{\theta}} + r\mathrm{sen}\theta d\varphi\hat{\mathbf{\phi}}$$
 (8.9)

$$x = r \cos \varphi$$
 $y = r \sin \varphi$ $z = z$

 $y = rsen\varphi$

$$d\dot{S}_r = r^2 sen\theta d\theta d\phi \hat{r} \quad d\dot{S}_\theta = r sen\theta d\phi dr \hat{\theta} \quad d\dot{S}_\phi = r dr d\theta \hat{\phi}$$

$$d\hat{y} = dr\hat{r} + rd\varphi\hat{\varphi} + dz\hat{z}$$
 $dV = rdrd\varphi dz$ (8.3)

$$dV = r^2 sen\theta dr d\theta d\varphi \qquad d\Omega = \frac{dS_r}{} = sen\theta d\theta d\varphi \qquad (8.10)$$

$$d\dot{S}_r = r d\varphi dz \hat{r}$$
 $d\dot{S}_\varphi = dr dz \hat{\varphi}$ $d\dot{S}_z = r dr d\varphi \hat{z}$ (8.4)

$$\cdot \quad \partial f \quad 1 \, \partial f_{\theta +} \quad 1 \quad \partial f_{\theta} \qquad (8.12)$$

$$\nabla f = \frac{\partial}{\partial r} \hat{r} + \frac{\partial}{\partial r} \hat{\theta} + \frac{\partial}{\partial z} \hat{z}$$
 (8.5)

$$\nabla \times F = (F_{\varphi} + F_{\varphi}) \partial_{\theta} + (F_{\varphi} + F_{\varphi}) \partial_{\theta} + (F_{\varphi} + F_{\varphi}) \partial_{\theta} + (F_{\varphi} + F_{\varphi} + F_{$$

8.16 Cálculo Vetorial 2D

Curva regular no plano e comprimento do arco:

$$R(t) = \frac{1}{|k(t)|}$$
 $\dot{C}(t) = \dot{V}(t) + \frac{\dot{N}(t)}{K(t)}$ (8.21)

(8.22)

$$\dot{\gamma}(t), C^1, \dot{\gamma}^r(t) = 0 \qquad L(\gamma) = ||\dot{\gamma}^r(t)|| dt \qquad (8.15)$$

Reta tangente e normal:

Equações de Frenet:

Referencial de Frenet:

$$T: X = \dot{\gamma}(t_0) + \lambda . \dot{\gamma}^{r}(t_0)$$
 (8.16)

$$N: \{X \in \mathbb{R}^2 : \langle X - \dot{\mathbf{y}}(t_0), \dot{\mathbf{y}}^r(t_0) >= 0\}$$
 (8.17)

 $\dot{T}^{r}(t) = K(s).\dot{N}(t)$ $\dot{N}^{r}(t) = -K(t).\dot{T}(t)$

Curva de orientação invertida:

 $\dot{y}^{-}(t) = \dot{y}(a+b-t)$ (8.18)

(8.23)

Teorema de Gauss no plano:

$$\dot{T}(t) = \frac{\dot{Y}^{r}(t)}{||\dot{Y}^{r}(t)||} \qquad \dot{N}(t) = (-T_{y}(t), T_{x}(t))$$
(8.19)

Teorema de Green:

Curvatura, raio e centro de curvatura:

$$\mathcal{K}(t) = \frac{\dot{\mathbf{y}}^{\text{rr}}(t).\dot{N}(t)}{||\dot{\mathbf{y}}^{\text{r}}(t)||^{2}}$$
(8.20)

$$\frac{\partial Q}{\partial \Omega} \partial P + Q dy = \frac{(-\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}) dx dy}{(8.24)}$$

 $\dot{F}.\dot{N}d\gamma = \int_{S}^{\infty} \nabla .Fdxdy$

8.17 Cálculo Vetorial 3D

Referencial de Frenet:

$$\dot{\mathcal{T}}(t) = \frac{\dot{\mathcal{Y}}^{r}(t)}{||\dot{\mathcal{Y}}^{r}(t)||} \quad \dot{\mathcal{B}}(t) = \frac{\dot{\mathcal{Y}}^{r}(t) \times \dot{\mathcal{Y}}^{rr}(t)}{||\dot{\mathcal{Y}}^{r}(t) \times \dot{\mathcal{Y}}^{rr}(t)||} \quad \dot{\mathcal{N}}(t) = \dot{\mathcal{B}}(t) \times \dot{\mathcal{T}}(t)$$

(8.25)

Curvatura e torção:

$$\tau(t) = \frac{\langle \dot{\gamma}^{r}(t) \times \dot{\gamma}^{rr}(t), \dot{\gamma}^{rrr}(t) \rangle}{||\dot{\gamma}^{r}(t) \times \dot{\gamma}^{rr}(t)||^{2}} \quad K(t) = \frac{||\dot{\gamma}^{r}(t) \times \dot{\gamma}^{rr}(t)||}{||\dot{\gamma}^{r}(t)||^{3}}$$
(8.26)

Plano normal a $\dot{\gamma}(t_0)$:

$$\langle X - \dot{\gamma}(t_0), T(t_0) \rangle = 0$$
 (8.27)

Equações de Frenet:

$$\dot{T}^{r}(t) = K(t).\dot{N}(t) \tag{8.28}$$

$$\hat{N}^{r}(t) = -K(t).\hat{T}(t) - \tau(t).\hat{B}(t)$$
 (8.29)

$$\dot{B}^{r}(t) = -\tau(t).\dot{N}(t) \tag{8.30}$$

Integral de linha de um campo escalar:

$$\int_{V} f dV = \int_{a}^{b} f(\dot{y}(t))||\dot{y}^{\dagger}(t)||dt \qquad (8.31)$$

Integral de linha de um campo vetorial:

$$\int_{\gamma} \dot{F} . d\dot{\gamma} = \int_{a} \dot{f}(\dot{\gamma}(t)) . \dot{\gamma}^{r}(t) dt \qquad (8.32)$$

Operador nabla:

$$\begin{array}{ccc}
 & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
\nabla & = \left(\frac{\partial}{\partial x'} & \frac{\partial}{\partial y'} & \frac{\partial}{\partial z}\right)
\end{array} (8.33)$$

Campo gradiente:

$$\dot{F}(x, y, z) = \dot{f}(x, y, z) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})(x, y, z) \qquad (8.34)$$

Campo conservativo:

$$\dot{F}(x, y, z) = \dot{\nabla} f(x, y, z) \Leftrightarrow \dot{F} . d\dot{\gamma} = 0$$
 (8.35)

Campo rotacional:

. .
$$\partial R$$
 ∂Q ∂P ∂R ∂Q ∂P

$$\nabla \times F = (\frac{1}{\partial y} - \frac{1}{\partial z}, \frac{1}{\partial z} - \frac{1}{\partial x}, \frac{1}{\partial x} - \frac{1}{\partial y})$$

Superfície parametrizada:

$$\dot{S}(u, v) = (x(u, v), y(u, v), z(u, v))$$
 (8.38)

$$S_{u}(u, v) = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right), S_{v}(u, v) = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right) \quad (8.39)$$

Vetor normal à superfície:

$$\dot{N}(u, v) = (\dot{S}_u \times \dot{S}_v)(u, v) f = \dot{0}$$
 (8.40)

Superfície diferenciável:

$$\dot{N}(u,v) f = 0 \tag{8.41}$$

Plano tangente à superfície:

$$\langle (x, y, z) - \hat{S}(u_0, v_0), \hat{N}(u_0, v_0) \rangle = 0$$
 (8.42)

$$A(S) = \int_{U} ||\dot{N}(u, v)|| dudv \qquad (8.43)$$

Integral de superfície de um campo escalar:

$$\int_{S} f dS = \int_{U} f(\dot{S}(u, v)) ||\dot{N}(u, v)|| du dv \qquad (8.44)$$

Integral de superfície de um campo vetorial:

$$\dot{F}.\dot{dS} = \dot{F}(\dot{S}(u,v)).\dot{N}(u,v)dudv \qquad (8.45)$$

Massa e centro de massa:

$$M = \int_{Y}^{\infty} \rho(t)d\dot{\gamma}, \qquad xM = \int_{Y}^{\infty} \dot{x}(t)\rho(t)d\dot{\gamma}$$
 (8.46)

$$M =$$
 $\hat{\rho}(u, v) ds \quad xM =$ $\hat{x}(u, v) \rho(u, v) ds \quad (8.47)$

$$M = \int_{V}^{S} \rho(x, y, z) dv \quad \overline{x} M = \int_{S}^{S} \dot{x}(x, y, z) \rho(z, y, z) dv$$

(9.49)

Teorema de Pappus para a área, d = distância entre \bar{x} e o eixo de rotação:

$$A(S) = 2\pi dL(C) \tag{8.49}$$

Teorema de Pappus para o volume, d = distância entre x e o

(8.36) eixo de rotação:

$$V(\Omega) = 2\pi dA(S)$$
 (8.50)
 \dot{F} é conservativo $\rightarrow \dot{\nabla} \times \dot{F} = 0$ Campo divergente:

· ·
$$\partial P \partial Q \partial R$$

 $\nabla . F = (\frac{\partial x}{\partial x}, \frac{\partial y}{\partial y}, \frac{\partial z}{\partial z})$ (8.37)

·
$$\dot{F}$$
 é solenoidal quando $\dot{\nabla}.\dot{F} = 0$
· Existe t tal que $F = \times \dot{t} \Rightarrow .\dot{F} = 0$

 $\nabla . F f = 0 \Rightarrow \text{n\~ao} \text{ existe } tt \text{ tal que } F = \nabla \times tt$

Teorema de Gauss no espaço:

$$\dot{F}.\dot{N}d\gamma = \nabla .Fdxdydz \qquad (8.51)$$

Teorema de Stokes:

$$\dot{\partial S} \dot{F}.\dot{d\dot{\gamma}} = \dot{S} \nabla \times \dot{F}.\dot{N}dS \qquad (8.52)$$

8.18 Geometria Analítica

Pontos de intersecção de dois círculos:

$$d = (x_1 - x_2)^2 + (y_1 - y_2)^2$$
(8.53)

$$d = \sqrt[3]{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$I = \frac{1 - r_2 + d}{2d}$$

$$(8.53)$$

$$(8.54)$$

$$h = r_1^2 - l^2 (8.55)$$

$$h = r_1^2 - l^2$$

$$x = -\frac{l}{q} (x_2 - x_1) \pm \frac{h}{q} (y_2 - y_1) + x_1$$

$$y = -\frac{l}{q} (y_2 - y_1) \mp \frac{l}{q} (x_2 - x_1) + y_1$$
(8.55)
$$(8.57)$$

$$y = -\frac{1}{d}(y_2 - y_1) \mp \frac{1}{d}(x_2 - x_1) + y_1$$
 (8.57)

8.19 Ponto ótimo numa linha

Dado um conjunto de pontos x[i], $0 \le i < N$, o ponto x que minimiza

$$\sum_{i=0}^{N-1} |x - x[i]|$$

é o ponto médio do vetor ordenado (mediana): x[N/2], se N é impar ou qualquer ponto em [x[N/2-1], x[N/2]], se N é par.

8.20 Equação da reta

A equação da reta que passa pelos pontos (x_1, y_1) e (x_2, y_2) é dada por:

$$(y_2 - y_1)x + (x_1 - x_2)y + (y_1x_2 - x_1y_2) = 0 (8.58)$$

Capítulo 9

Miscelânea

9.1 Algoritmo de Mo

Resolve queries offline em $O((N + Q)^{\top} \overline{N})$. É necessário que o update de queries seja O(1).

Pra usar como árvore chamar *treemo*(*root*). *arr[i]* guarda a propriedade dos nós em pre-pos ordem, *inv[i]* guarda de qual nó veio *arr[i]*. Para usar com as arestas colocar a propriedade em *c[u]* a propriedade de *e(u, parent[u])*.

CUIDADO: no modo árvore ele muda o valor de N.

```
int 1 = 1, r = 0;
#include <cmath>
#include <c s tr i n g >
                                                                  curAns = 0;
                                                                  for ( int i = 0; i < Q; i + + ){
#include <iostream>
#include <algorithm >
                                                                      query & q = q rs[i];
using namespace std;
                                                                      while (r > q \cdot r) check (r--);
#define MAXN 200009
                                                                      while (r < q \cdot r) check(++r);
                                                                      while (1 < q \cdot 1) check (1 ++);
int arr[MAXN], N, sn,Q;
                                                                      while (1 > q.1) check(--1);
bool appeared [MAXN];
                                                                      check (q.1ca);
int inv [MAXN]; //mo tree
                                                                      q . ans = curAns;
                                                                      check (q.lca);
struct query {
   int 1, r, id, lca;
                                                                  sort(qrs, qrs+Q, &idcomp);
    11 ans;
                                                               }
    query () { l=r=i d=l c a = -1; }
    query ( int _id , int _l , int _r) {
                                                               /* Codigo pra LCA aqui */
       id = _id; l = _l; r = _r; lca = -1;
                                                               //Mo para arvores
                                                               int st[MAXN], en[MAXN], cnt, c[MAXN];
} q rs [MAXN];
bool lrcomp (query a, query b) {
                                                               void prepos(int u, int p) {
   if(a.1/sn != b.1/sn) return a.1/sn < b.1/sn;
                                                                  arr[cnt] = c[u]; inv[cnt] = u; st[u] = cnt++;
    return a.r > b.r;
                                                                  for ( int i = 0; i < (int) a d j L i s t [ u ] . s i z e (); i ++) {
                                                                      int v = a d j L i s t [ u ] [ i ] . f i r s t;
                                                                      if (v != p) prepos(v, u);
bool idcomp (query a, query b) {
   return a.id < b.id;
                                                                  arr[cnt] = c[u]; inv[cnt] = u; en[u] = cnt++;
11 freq[MAXN], curAns;
void check(int i){
                                                               void treemo ( int r o o t ) {
   if (i < 0 \mid | i >= N) return;
                                                                  cnt = 0;
    //if` (appeared[i]) { //mo array
                                                                  prepos (root, -1); computeP(root);
    if (appeared[inv[i]]) {//mo tre e
                                                                  N = cnt:
       freq[arr[i]] - -;
                                                                  for ( int i = 0, u, v, lca; i < Q; i ++) {
       if (freq[arr[i]] == 0) curAns --;
                                                                      query & q = q rs[i];
                                                                      u = q.1; v = q.r; lca = LCA(u,v);
                                                                      if (st[u] > st[v]) swap(u, v);
    else {
       if (freq[arr[i]] == 0) curAns++;
                                                                      //if (lca == u) q.l = st[u]+1, q.lca = -1;
       freq[arr[i]]++;
                                                                            // propriedade na aresta
                                                                      //else\ q.l=en[u],\ q.lca=-1;
                                                                      if (1 c a == u) q.1 = s t [u], q.1 c a = -1;//
    appeared [inv [i]] = !appeared [inv [i]]; //mo tree
   //appeared[i] = !appeared[i];
                                             //mo array
                                                                          propriedade no noh
                                                                      else q.l = en[u], q.lca = st[lca];q
void mo() {
                                                                      .r = st[v];
   sn = s q r t (N);
                                                                  }
    s o r t ( qrs , q rs+Q, &lrcomp );
                                                                  mo();
    memset(& freq, 0, sizeof freq);
                                                               }
    memset(& appeared, false, sizeof appeared);
```

9.2 Algoritmo de Mo sem remoção

Algoritmo de Mo $O((N+Q)^{N})$ para responder queries sem suporte da operação de remoção (Ex: Union-find). Preencher as funções: add(i), adiciona o elemento i à estrutura; save() cria um ponto de retorno no tempo da estrutura; reset(), retorna ao último ponto salvo; clear(), limpa a estrutura. Atualizar e limpar curAns.

```
#include <algorithm >
#include <vector >
                                                                            solvequeries(l, r, bl);
using namespace std;
                                                                           reset();
#define MAXN 100009
                                                                        }
#define MAXS 320
                                                                    }
typedef pair <int, int> ii;
                                                                    void blockquery (int 1, int r, int id) {
int a r r [MAXN], N, sn, ans [i], curAns;
vector \langle i \rangle q u e r i e s [MAXN] [MAXS];
                                                                        for (int i=1; i <=r; i++) add(i); ans
                                                                        [id] = curAns;
void add (int i) { ... }
void save() { ... }
void reset() { ... }
                                                                    void mo() {
                                                                        sn = sqrt(N);
void clear() { ...}
                                                                        for (int q=1, u, v; q<=Q; q++) {
scanf("%d,%d",&u,&v);
void solvequeries(int 1, int r, int bl) {
   for(int k=0; k<(int)queries[1][bl].size(); k++) {</pre>
                                                                           if(u/sn == v/sn) blockquery(u, v, q);
        ii cur = queries[1][b1][k];
                                                                            else queries[u][v/sn].push_back(ii(v, q));
        while (r < cur. first) add(++r); ans
                                                                        for ( int i = 1; i \le N; i + +) {
        [ cur . second ] = curAns;
                                                                           for (int j = 0; j < MAXS; j++) {
}
                                                                               sort(queries[i][j].begin(),
                                                                                   queries[i][j].end());
void solveblock(int bl) {
    clear();
    int r = \min(bl * sn, N);
                                                                        for (int j = 1; j < MAXS; j++) solveblock(j);
    for (int l=r; l > 0; l--) {
                                                                    }
       add(1);
```

9.3 Iteração sobre polyominos

Itera sobre todas as possíveis figuras de polyominos em uma grade. Posições com used 1 são proibidas. Colocar borda com 1's. Neste algoritmo em específico, calcula a soma máxima. used = 2 representa as posições usadas e path guarda tais posições.

```
used[coord[n].first][coord[n].second] = 1;
#include <iostream>
#include <algorithm >
#include <vector >
                                                                      }
#include <c s tr i n g >
                                                                      vector <i i > n e i = n e i g h tb o r s (coord [n]);
#define MAXN 500
                                                                      ii next;
                                                                      int nadded = 0;
using namespace std;
                                                                      for ( int i =0; i <4; i ++){ next
typedef pair <int , int> i i ;
i i coord [MAXN] , path [MAXN] ;
                                                                           = nei[i];
                                                                          if(!used[next.first][next.second]){ used
int used [MAXN] [MAXN];
                                                                             [\text{next.first}][\text{next.second}] = 1; \text{coord}[
                                                                             nused ] = next;
int mat [MAXN] [MAXN], maxsum, N, M, nused;
                                                                              nadded++; nused++;
vector < ii > neightbors (ii pos) {
                                                                          }
    vector <ii>v;
    v.push_back(ii(pos.first+1, pos.second));
                                                                      for (int i = n+1, nextsum; i < nused; i ++){
    v.push_back(ii(pos.first -1, pos.second));
                                                                          nextsum = mat [ coord [ i ] . f i r s t ] [ coord [ i ] . second
    v.push_back(ii(pos.first, pos.second+1));
                                                                          dfs(sum + nextsum, h+1, i);
    v.push_back(ii(pos.first, pos.second -1));
    return v:
}
                                                                      while ( nadded - -> 0){
                                                                          nused --;
                                                                          next = coord [ nused ];
//0->unused, 1->to be used, 2->used
void dfs(int sum, int h, int n){
                                                                          used [ next . f i r s t ] [ next . second ] = 0;
    used [coord [n].first] [coord [n].second] = 2;
                                                                      used[coord[n].first][coord[n].second] = 1;
    path [ h ] = coord [ n ];
    if (h == M) {
                                                                   }
       maxsum = max(maxsum, sum);
```

9.4 Quadrádo Mágico Ímpar

Gera uma matriz quadrática $n \times n$ em $O(n^2)$, n ímpar, tal que a soma dos elementos ao longo de todas as linhas, de todas as colunas e das duas diagonais é a mesma. Os elementos vão de 1 a n^2 . A matriz é indexada em 0.

```
#include < c \ s \ tr \ i \ n \ g >
#define MAXN 1009

int mat [MAXN] [MAXN], n; //0-indexed

void magicsquare () {
    int i=n-1, j=n/2;
    memset(&mat, 0, sizeof mat); for
    (int k=1; k<=n*n; k++){
    mat [i] [j] = k;

if (mat[(i+1)\%n][(j+1)\%n] > 0) {
        i = (i-1+n)\%n;
        else {
            i = (i+1)\%n;
            j = (j+1)\%n;
        }
        ent [i] [j] = k;
```

9.5 Expressão Parentética para Polonesa

Dada uma expressão matemática na forma parentética, converte para a forma polonesa e retorna o tamanho da string na forma polonesa. Ex.: $(2 * 4/a \land b)/(2 * c) \rightarrow 24 * ab \land /2c * /.$

```
#include <map>
                                                                                        polish[len++] = op.top();
#include <stack>
                                                                                        op.pop();
using namespace std;
                                                                                   op . push ( paren [ i ] );
inline bool isOp ( char c ) {
     return c=='+' || c=='-' || c=='*' || c=='/' || c
                                                                              else if ( paren [ i ]== ' ( ' )
          ==' ^ ' ;
                                                                              op . push ('(');
else if ( paren [ i ]==')') {
}
                                                                                   while (op. top ()!='('){
inline bool is Carac (char c) {
                                                                                        polish [len++] = op.top();
     return (c>='a' && c<='z') || (c>='A' && c<='Z')
                                                                                        op.pop();
          | (c>='0' && c<='9');
}
                                                                                   op.pop();
int paren2polish (char * paren, char * polish) {
                                                                              else if(is Carac(paren[i]))
     map<char, int> prec;
                                                                                   polish[len++] = paren[i];
     prec ['('] = 0;
prec ['+'] = prec ['-'] = 1;
prec ['*'] = prec ['/'] = 2; prec
                                                                         while (! op . empty () ) {
                                                                              polish[len++] = op.top();
     ['^{'}] = 3;
                                                                              op.pop();
     int len = 0;
                                                                         polish[len] = 0;
     stack <char> op;
     for (int i = 0; paren [i] > 0; i + +){
                                                                         return len;
          if (isOp(paren[i])){
                                                                    }
               while (! op . empty () && prec [ op . top ()]>=
                    prec [ paren [ i ] ] ) {
```

9.6 Problema do histograma

Algoritmo O(n) para resolver o problema do retângulo máximo em um histograma.

```
if (i < n && (s.empty() | | vet[s.top()] <= vet[
#include <stack>
#define MAXN 100009
                                                                          i])) s.push(i++);
#define INF (1LL<<60)
                                                                     else {
                                                                         tp = s \cdot top();
using namespace std;
                                                                         s.pop();
typedef long long 11;
                                                                         cur = vet[tp] * (s.empty() ? i : i - s.top
                                                                             () - 1);
 11 histogram (11 * vet , int n) { stack
                                                                         if (ans < cur) ans = cur;</pre>
    <11 > s;
                                                                     }
    11 ans = 0, tp, cur;
    int i = 0;
                                                                  return ans;
                                                              }
    while (i < n \mid | !s.empty())
```

9.7 Problema do casamento estável

Resolve o problema do casamento estável em $O(n^2)$. m é o número de homens, n é o número de mulheres, L[i] é a lista de preferências do i-ésimo homem (melhor primeiro), R[i][j] é a nota que a mulher i dá ao homem j. R2L[i] == j retorna se a mulher i está casada com o homem j, L2R[i] == j retorna se o homem i está casado com a mulher j.

```
#include <c s tr i n g >
                                                                                            while ( true ) {
#define MAXN 1009
                                                                                                 wom = L [ man ] [ p [ man]++];
                                                                                                 if(R2L[wom] < 0 \mid R[wom][man] > R[
\begin{array}{lll} \mbox{int} & m, \ n \,, \ p \ [MAXN] \,; \\ \mbox{int} & L \ [MAXN] \ [MAXN] \,, \ R[MAXN] \ [MAXN] \,; \end{array}
                                                                                                      wom ] [ R2L [ wom ] ] ) break;
int R2L [MAXN], L2R [MAXN];
                                                                                           hubby = R2L [wom];
                                                                                           R2L[L2R[man] = wom] = man;
void stable Marriage () {
                                                                                           man = hubby;
     memset (R2L, -1, sizeof (R2L));
                                                                                      }
     memset (p, 0, sizeof(p));
                                                                                }
      for (int i = 0, wom, hubby; i < m; i + +){
                                                                           }
           for (int man = i; man >= 0;) {
```

9.8 Teoremas e Fórmulas

- · Fórmula de Cayley: existem n^{n-2} árvores geradoras em um grafo completo de n vértices.
- Desarranjo: o número der(n) de permutações de n elementos em que nenhum dos elementos fica na posição original é dado por: der(n) = (n-1)(der(n-1) + der(n-2)), onde der(0) = 1 e der(1) = 0.
- Teorema de Erdos Gallai: é condição suficiente para que uma array represente os graus dos vértices de um nó: $d_1 \ge d_2 \ge ... \ge d_n$, $d_i = 2k$, $d_i \le k(k-1) + k \le k(k-1$
- · Fórmula de Euler para grafos planares: V E + F = 2, onde F é o número de faces.
- · Círculo de Moser: o número de peças em que um círculo pode ser divido por cordas ligadas a n pontos tais que não se tem 3 cordas internamente concorrentes é dada por: $g(n) = C^n + C^n + C^n + 1$.
- Teorema de Pick: se I é o número de pontos inteiros dentro de um polígono, A a área do polígono e b o número de pontos inteiros na borda, então A = i + b/2 1.
- · O número de árvores geradores em um grafo bipartido completo é $m^{n-1} \times n^{m-1}$.
- · Teorema de Kirchhoff: o número de árvores geradoras em um grafo é igual ao cofator da sua matriz laplaciana L. L = D A, em que D é uma matriz diagonal em que $a_{ii} = d_i$ e A é a matriz de adjacência.
- · Teorema de Konig: a cobertura mínima de vértices em um grafo bipartido (o número mínimo de vértices a serem removidos para se remover todas as arestas) é igual ao pareamento máximo do grafo.
- Teorema de Zeckendorf: qualquer inteiro positivo pode ser representado pela soma de números de Fibonacci que não inclua dois números consecutivos. Para achar essa soma, usar o algoritmo guloso, sempre procurando o maior número de fibonacci menor que o número.
- Teorema de Dilworth: em um DAG que representa um conjunto parcialmente ordenado, uma cadeia é um subconjunto de vértices tais que todos os pares dentro dele são comparáveis; uma anti-cadeia é um subconjunto tal que todos os pares de vértices dele são não comparáveis. O teorema afirma que a partição mínima em cadeias é igual ao comprimenton da maior anti-cadeia. Para computar, criar um grafo bipartido: para cada vértice x, duplicar para u_x e v_x . Uma aresta $x \to y$ é escrita como $u_x \to v_y$. O tamanho da partição mínima, também chamada de largura do conjunto, é N-o emparelhamento máximo.
- · Teorema de Mirsky: semelhante ao teorema de Dilworth, o tamanho da partição mínima em anti-cadeias é igual ao comprimento da maior cadeia.