Matemática Discreta

Relações binárias

Universidade de Aveiro 2020/2021

Moodle http://elearning.ua.pt

MS Teams http://bit.ly/30oFHIB

Pares ordenados e produto cartesiano

Definição (de par ordenado)

Dados x e y, designa-se por par ordenado e denota-se por (x,y) o conjunto $\{\{x\},\{x,y\}\}$, ou seja, $(x,y)=\{\{x\},\{x,y\}\}$. Adicionalmente, dizemos que x é o primeiro elemento e y o segundo.

Pares ordenados e produto cartesiano

Definição (de par ordenado)

Dados x e y, designa-se por par ordenado e denota-se por (x,y) o conjunto $\{\{x\},\{x,y\}\}$, ou seja, $(x,y)=\{\{x\},\{x,y\}\}$. Adicionalmente, dizemos que x é o primeiro elemento e y o segundo.

Mais geralmente, temos o n-uplo ordenado:

$$(x_1, x_2, x_3, \dots, x_n) = (x_1, (x_2, x_3, \dots, x_n)), n \ge 3$$

$$= \{\{x_1\}, \{x_1, (x_2, x_3, \dots, x_n)\}\}$$

$$= \{\{x_1\}, \{x_1, \{\{x_2\}, \{x_2, (x_3, \dots, x_n)\}\}\}\}.$$

Produto cartesiano

Relações binárias

000000

Definição (produto cartesiano)

Sejam A e B dois conjuntos. Designa-se por produto cartesiano de A e B e denota-se por $A \times B$, o conjunto

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

Produto cartesiano

Relações binárias

0000000

Definição (produto cartesiano)

Sejam $A \in B$ dois conjuntos. Designa-se por produto cartesiano de $A \in B$ e denota-se por $A \times B$, o conjunto

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

• Se A = B, então $A^2 = A \times A = \{(x, y) : x \in A \land y \in A\}.$

Definição de relação binária (relação)

Uma relação binária (ou relação) \mathcal{R} entre os conjuntos $A \in \mathcal{B}$ é um subconjunto do produto cartesiano $A \times \mathcal{B}$.

Definição de relação binária (relação)

Uma relação binária (ou relação) \mathcal{R} entre os conjuntos A e B é um subconjunto do produto cartesiano $A \times B$.

Particões

• Notação: escreve-se xRy para indicar $(x, y) \in R$.

Relações binárias

Definição de relação binária (relação)

Uma relação binária (ou relação) \mathcal{R} entre os conjuntos A e B é um subconjunto do produto cartesiano $A \times B$.

- Notação: escreve-se xRy para indicar $(x, y) \in R$.
- Exemplo 1: Sendo $A = \{1, 2\}$ e $B = \{a, b, c\}$, então

$$A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\},\$$

е

$$\mathcal{R} = \{(1, a), (1, c), (2, a)\} \subseteq A \times B$$

é uma relação entre A e B.

0000000

• Se A = B, designamos $\mathcal{R} \subseteq A^2$ por relação binária definida em A (ou sobre A).

Casos particulares

Relações binárias

- Se A = B, designamos $\mathcal{R} \subseteq A^2$ por relação binária definida em A (ou sobre A).
- Exemplo 2: a relação ≤ definida em A = {1,2,3} é o subconjunto de A2:

$$\leq = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}.$$

Casos particulares

Relações binárias

- Se A = B, designamos $\mathcal{R} \subseteq A^2$ por relação binária definida em A (ou sobre A).
- Exemplo 2: a relação \leq definida em $A = \{1, 2, 3\}$ é o subconjunto de A2:

$$\leq = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}.$$

• Nota: usualmente, $(x, y) \in \subseteq$ denota-se por $x \subseteq y$.

Particões

Casos particulares

Relações binárias

- Se A = B, designamos R ⊆ A² por relação binária definida em A (ou sobre A).
- Exemplo 2: a relação ≤ definida em A = {1,2,3} é o subconjunto de A²:

$$\leq = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}.$$

- Nota: usualmente, $(x, y) \in \leq$ denota-se por $x \leq y$.
- Exemplo 3: igualmente se conclui que sendo ≤ uma relação binária definida em N,

$$\leq = \{(x, y) \in \mathbb{N}^2 : x \leq y\} \subseteq \mathbb{N}^2.$$

- Se A = B, designamos $\mathcal{R} \subseteq A^2$ por relação binária definida em A (ou sobre A).
- Exemplo 2: a relação \leq definida em $A = \{1, 2, 3\}$ é o subconjunto de A²:

$$\leq = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}.$$

- Nota: usualmente, $(x, y) \in \subseteq$ denota-se por $x \subseteq y$.
- Exemplo 3: igualmente se conclui que sendo < uma relação binária definida em N.

$$\leq = \{(x,y) \in \mathbb{N}^2 : x \leq y\} \subseteq \mathbb{N}^2.$$

 A relação I = {(x, x) : x ∈ A} designa-se por relação identidade de A ou definida em A.

Domínio e imagem

Relações binárias

Definição (de domínio e imagem)

Sejam A e B dois conjuntos e R uma relação binária entre A e В.

Designa-se por domínio de \mathcal{R} e denota-se por dom (\mathcal{R}) , o conjunto

$$dom(\mathcal{R}) = \{x \in A : (x, y) \in \mathcal{R} \text{ para algum } y \in B\}.$$

 Designa-se por imagem (ou contradomínio) de R e denota-se por $img(\mathcal{R})$, o conjunto

$$img(\mathcal{R}) = \{ y \in B : (x, y) \in \mathcal{R} \text{ para algum } x \in A \}.$$

Imagem e imagem recíproca

Relações binárias

Definição (de imagem e imagem recíproca de um elemento)

Considere a relação binária $\mathcal{R} \subseteq A \times B$.

• Designa-se por imagem de $x \in A$ por \mathcal{R} e denota-se por $\mathcal{R}(x)$, o conjunto

$$\mathcal{R}(x) = \{ y \in B : (x, y) \in \mathcal{R} \}.$$

• Designa-se por imagem recíproca de $y \in B$ por \mathcal{R} e denota-se por $\mathbb{R}^{-1}(y)$, o conjunto

$$\mathcal{R}^{-1}(y) = \{ x \in A : (x, y) \in \mathcal{R} \}.$$

Imagem e imagem recíproca

Relações binárias

Definição (de imagem e imagem recíproca de um elemento)

Considere a relação binária $\mathcal{R} \subseteq A \times B$.

Designa-se por imagem de x ∈ A por R e denota-se por R(x), o conjunto

$$\mathcal{R}(x) = \{ y \in B : (x, y) \in \mathcal{R} \}.$$

Designa-se por imagem recíproca de y ∈ B por R e denota-se por R⁻¹(y), o conjunto

$$\mathcal{R}^{-1}(y) = \{x \in A : (x,y) \in \mathcal{R}\}.$$

Relação inversa de $\mathcal{R}: \mathcal{R}^{-1} = \{(y, x) \in B \times A : (x, y) \in \mathcal{R}\}.$

Composição

Relações binárias

000000

Definição (de composição de relações)

Dadas duas relações \mathcal{R}_1 entre A e B e \mathcal{R}_2 entre B e C designa-se por composição de \mathcal{R}_1 com \mathcal{R}_2 (e escreve-se $\mathcal{R}_2 \circ \mathcal{R}_1$), a relação entre A e C definida por

$$\mathcal{R}_2 \circ \mathcal{R}_1 = \{(a,c) \in A \times C : \text{ existe } b \in B \text{ tal que } (a,b) \in \mathcal{R}_1 \\ \land (b,c) \in \mathcal{R}_2\}$$

Composição

Relações binárias

0000000

Definição (de composição de relações)

Dadas duas relações \mathcal{R}_1 entre A e B e \mathcal{R}_2 entre B e C designa-se por composição de \mathcal{R}_1 com \mathcal{R}_2 (e escreve-se $\mathcal{R}_2 \circ \mathcal{R}_1$), a relação entre A e C definida por

$$\mathcal{R}_2 \circ \mathcal{R}_1 = \{(a,c) \in A \times C : \text{ existe } b \in B \text{ tal que } (a,b) \in \mathcal{R}_1 \\ \land (b,c) \in \mathcal{R}_2\}$$

Exemplo: sendo $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ e $C = \{\alpha, \beta\}$ e considerando as relações $\mathcal{R}_1 = \{(1, a), (1, b), (2, b)\} \subseteq A \times B$ e $\mathcal{R}_2 = \{(b, \beta), (c, \alpha)\} \subseteq B \times C$, vamos determinar

$$\mathcal{R}_2 \circ \mathcal{R}_1$$
.

Propriedades das relações binárias

Dada uma relação binária $\mathcal R$ definida num conjunto A, dizemos que $\mathcal R$ é

• reflexiva: se $(x, x) \in \mathcal{R}$ para todo $x \in A$ ou, de modo equivalente, se $I \subseteq \mathcal{R}$, onde I denota a relação identidade;

Propriedades das relações binárias

Dada uma relação binária \mathcal{R} definida num conjunto A, dizemos que R é

- reflexiva: se $(x, x) \in \mathcal{R}$ para todo $x \in A$ ou, de modo equivalente, se $I \subseteq \mathcal{R}$, onde I denota a relação identidade;
- simétrica: se $(x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathcal{R}^{-1} \subseteq \mathcal{R}$;

Propriedades das relações binárias

Relações binárias

Dada uma relação binária \mathcal{R} definida num conjunto A, dizemos que R é

- reflexiva: se $(x, x) \in \mathcal{R}$ para todo $x \in A$ ou, de modo equivalente, se $I \subseteq \mathcal{R}$, onde I denota a relação identidade;
- simétrica: se $(x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathcal{R}^{-1} \subseteq \mathcal{R}$:
- Anti-simétrica: se $[(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R}] \Rightarrow x = y$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathbb{R}^{-1} \cap \mathbb{R} \subseteq I$:

Dada uma relação binária \mathcal{R} definida num conjunto A, dizemos que \mathcal{R} é

- reflexiva: se $(x, x) \in \mathcal{R}$ para todo $x \in A$ ou, de modo equivalente, se $I \subseteq \mathcal{R}$, onde I denota a relação identidade;
- simétrica: se (x, y) ∈ R ⇒ (y, x) ∈ R, para todos x, y ∈ A ou, de modo equivalente, se R⁻¹ ⊆ R;
- Anti-simétrica: se $[(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R}] \Rightarrow x = y$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathcal{R}^{-1} \cap \mathcal{R} \subseteq I$;
- Transitiva: se $[(x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R}] \Rightarrow (x, z) \in \mathcal{R}$, para todos $x, y, z \in A$ ou, de modo equivalente, se $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Relação de ordem parcial e conjunto parcialmente ordenado

Definição (de ordem parcial)

Uma relação binária diz-se uma relação de ordem parcial se é reflexiva, anti-simétrica e transitiva.

Particões

Relação de ordem parcial e conjunto parcialmente ordenado

Definição (de ordem parcial)

Uma relação binária diz-se uma relação de ordem parcial se é reflexiva, anti-simétrica e transitiva.

- Exemplos de relações de ordem parcial:
 - A relação ≤ definida em N.
 - A relação | (divide) definida no conjunto
 A = {1,2,3,6,9,18}.

Relação de ordem parcial e conjunto parcialmente ordenado

Definição (de ordem parcial)

Uma relação binária diz-se uma relação de ordem parcial se é reflexiva, anti-simétrica e transitiva.

- Exemplos de relações de ordem parcial:
 - A relação ≤ definida em N.
 - A relação (divide) definida no conjunto $A = \{1, 2, 3, 6, 9, 18\}$

Definição (de conjunto parcialmente ordenado)

Se \mathbb{R} é uma relação de ordem parcial sobre o conjunto A, o par (A, \mathcal{R}) define um conjunto parcialmente ordenado (cpo).

Relação de ordem total e conjunto totalmente ordenado

Definição (de relação de ordem total ou linear)

Uma relação de ordem parcial, \mathcal{R} , definida num conjunto Adiz-se uma relação de ordem total (ou relação de ordem linear) se quaisquer que sejam $a, b \in A$ se verifica $(a, b) \in \mathcal{R}$ ou $(b,a) \in \mathcal{R}$.

Definição (de relação de ordem total ou linear)

Uma relação de ordem parcial, \mathcal{R} , definida num conjunto A diz-se uma relação de ordem total (ou relação de ordem linear) se quaisquer que sejam $a, b \in A$ se verifica $(a, b) \in \mathcal{R}$ ou $(b, a) \in \mathcal{R}$.

Definição (de conjunto totalmente ordenado)

Diz-se que o par (A, \mathcal{R}) define um conjunto totalmente ordenado quando \mathcal{R} é uma relação de ordem total sobre A.

Relação de ordem total e conjunto totalmente ordenado

Definição (de relação de ordem total ou linear)

Uma relação de ordem parcial, \mathcal{R} , definida num conjunto \mathcal{A} diz-se uma relação de ordem total (ou relação de ordem linear) se quaisquer que sejam $a, b \in A$ se verifica $(a, b) \in \mathcal{R}$ ou $(b,a) \in \mathcal{R}$.

Definição (de conjunto totalmente ordenado)

Diz-se que o par (A, \mathbb{R}) define um conjunto totalmente ordenado quando \mathcal{R} é uma relação de ordem total sobre A.

Nota: a proposição $(a, b) \in \mathcal{R} \vee (b, a) \in \mathcal{R}$, quaisquer que sejam $a, b \in A$, designa-se por dicotomia.

Relação de ordem total e conjunto totalmente ordenado

Definição (de relação de ordem total ou linear)

Uma relação de ordem parcial, \mathcal{R} , definida num conjunto A diz-se uma relação de ordem total (ou relação de ordem linear) se quaisquer que sejam $a, b \in A$ se verifica $(a, b) \in \mathcal{R}$ ou $(b, a) \in \mathcal{R}$.

Relações de ordem

Definição (de conjunto totalmente ordenado)

Diz-se que o par (A, \mathcal{R}) define um conjunto totalmente ordenado quando \mathcal{R} é uma relação de ordem total sobre A.

Nota: a proposição $(a, b) \in \mathcal{R} \lor (b, a) \in \mathcal{R}$, quaisquer que sejam $a, b \in A$, designa-se por dicotomia.

Exemplos: 1) (\mathbb{N}, \leq) é um conjunto totalmente ordenado;

2) | não é uma relação de ordem total em $A = \{1, 2, 3, 6, 9, 18\}$.

Relações de equivalência

Definição (de relação de equivalência)

Uma relação binária diz-se uma relação de equivalência se é reflexiva, simétrica e transitiva.

Particões

Relações de equivalência

Definição (de relação de equivalência)

Uma relação binária diz-se uma relação de equivalência se é reflexiva, simétrica e transitiva.

Exemplos:

- A relação $\mathcal{R} = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$ é uma relação de equivalência em $A = \{a, b, c\}$.
- A relação

 ^R definida por x

 ^R y se x − y é divisível por 2 é uma relação de equivalência em Z.

Relações de equivalência

Definição (de relação de equivalência)

Uma relação binária diz-se uma relação de equivalência se é reflexiva, simétrica e transitiva.

Exemplos:

Relações binárias

- A relação $\mathcal{R} = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$ é uma relação de equivalência em $A = \{a, b, c\}$.
- A relação \mathcal{R} definida por $x \mathcal{R} y$ se x y é divisível por 2 é uma relação de equivalência em \mathbb{Z} .

Definição (de classe de equivalência)

Se \mathcal{R} é uma relação de equivalência definida em A e $x \in A$, então o subconjunto $[x]_{\mathcal{R}} = \{y \in A : (x, y) \in \mathcal{R}\}$ diz-se a classe de equivalência de x e x um seu representante.

Se não existem dúvidas sobre \mathbb{R} , a classe denota-se por [x].

Propriedades

Relações binárias

Teorema

Se \mathbb{R} é uma relação de equivalência definida num conjunto A, então

- 1) $[a] \neq \emptyset$, para todo $a \in A$;
- 2) $a \mathcal{R} b \Leftrightarrow [a] = [b]$, para todos $a, b \in A$;
- 3) $A = \bigcup [a]$. a∈A

Propriedades

Relações binárias

Teorema

Se \mathbb{R} é uma relação de equivalência definida num conjunto A, então

- 1) $[a] \neq \emptyset$, para todo $a \in A$;
- 2) $a \mathcal{R} b \Leftrightarrow [a] = [b]$, para todos $a, b \in A$;
- 3) A = [][a]. a∈A

Definição (de conjunto quociente)

Sendo R uma relação de equivalência definida num conjunto A, o conjunto das classes de equivalência de A designa-se por conjunto quociente e denota-se por A/\mathcal{R} , ou seja,

$$A/\mathcal{R} = \{[x] : x \in A\}$$

Partições

Relações binárias

Definição (de partição de um conjunto)

Se A é um conjunto não vazio, então uma colecção de subconjuntos $P \subseteq \mathcal{P}(A)$ tal que

- 1) $S \neq \emptyset$, para todo $S \in P$;
- 2) $S_1 \neq S_2 \Rightarrow S_1 \cap S_2 = \emptyset$, quaisquer que sejam $S_1, S_2 \in P$;
- 3) $A = \bigcup_{S \in P} S$.

diz-se uma partição de A.

Partições

Relações binárias

Definição (de partição de um conjunto)

Se A é um conjunto não vazio, então uma colecção de subconjuntos $P \subseteq \mathcal{P}(A)$ tal que

- 1) $S \neq \emptyset$, para todo $S \in P$;
- 2) $S_1 \neq S_2 \Rightarrow S_1 \cap S_2 = \emptyset$, quaisquer que sejam $S_1, S_2 \in P$;
- 3) $A = \bigcup S$. $S \in P$

diz-se uma partição de A.

Nota: os elementos de uma partição P designam-se por blocos de P.

Partições e conjuntos quociente

Teorema

Se \mathcal{R} é uma relação de equivalência definida num conjunto não vazio A, então o conjunto quociente A/\mathcal{R} é uma partição de A.

Partições e conjuntos quociente

Teorema

Se \mathbb{R} é uma relação de equivalência definida num conjunto não vazio A, então o conjunto quociente A/\mathbb{R} é uma partição de A.

Teorema

Seja P uma partição de um conjunto não vazio A e \mathcal{R} a relação definida por x \mathcal{R} y se e só se x e y pertencem ao mesmo bloco de P. Então \mathcal{R} é uma relação de equivalência em A.

Partições e conjuntos quociente

Teorema

Se \mathcal{R} é uma relação de equivalência definida num conjunto não vazio A, então o conjunto quociente A/\mathcal{R} é uma partição de A.

Teorema

Seja P uma partição de um conjunto não vazio A e $\mathcal R$ a relação definida por x $\mathcal R$ y se e só se x e y pertencem ao mesmo bloco de P. Então $\mathcal R$ é uma relação de equivalência em A.

Nas condições do teorema anterior, diz-se que \mathcal{R} é a relação induzida pela partição P.

Referências bibliográficas

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.

Referências bibliográficas

Relações binárias

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática* Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2009.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).