Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A fluorescent probe which is represented by the following formula (I):

$$R^{1}$$
 R^{2} R^{3} R^{4} (I)

(wherein, R¹ and R² each independently represents hydrogen atom, or a substituent for trapping proton, a metal ion, or an active oxygen species, provided that both of R¹ and R² do not simultaneously represent hydrogen atoms, or R¹ and R² may combine to each other to form a ring structure for trapping proton, a metal ion, or active oxygen species; R³ represents a monovalent substituent other than hydrogen atom, carboxyl group, or sulfonic acid group; R⁴ and R⁵ each independently represents hydrogen atom or a halogen atom; R⁶ represents hydrogen atom, an alkylcarbonyl

group, or an alkylcarbonyloxymethyl group, provided that a combination of R¹, R², and R³ provides:

- (1) substantially high electron density of the benzene ring to which said groups bind so that the compound represented by the formula (I) is substantially no fluorescent before the trapping of proton, a metal ion, or an active oxygen species, and
- (2) substantially reduced electron density of the benzene ring to which said groups bind so that a compound after the trapping, which is derived from the compound represented by the formula (I), is substantially highly fluorescent after the trapping of proton, a metal ion, or an active oxygen species).
- 2. (Original) The fluorescent probe according to claim 1, wherein the oxidation potential of said benzene ring before the trapping of proton, a metal ion, or an active oxygen species is less than 1.40 V, and oxidation potential of said benzene ring after trapping of proton, a metal ion, or an active oxygen species is 1.40 V or higher, and said oxidation potential of said benzene ring increases by 0.20 V or higher after the trapping, under a sufficiently basic condition so that the hydroxy group of the xanthene ring can become a complete anion when R⁶ is hydrogen atom.

- 3. (Currently Amended) The fluorescent probe according to claim 1 er-2, wherein the oxidation potential of said benzene ring before the trapping of proton, a metal ion, or an active oxygen species is less than 1.70 V, and the oxidation potential of said benzene ring after the trapping of proton, a metal ion, or an active oxygen species is 1.70 V or higher, and the oxidation potential of said benzene ring increases by 0.20 V or higher after the trapping, under a sufficiently acidic condition so that the hydroxy group of the xanthene ring can exist in a non-dissociation state when R⁶ is hydrogen atom.
- 4. (Currently Amended) The fluorescent probe according to <u>claim 1</u> any one of claims 1 to 3, wherein R³ is a lower alkyl group or a lower alkoxy group.
- 5. (Currently Amended) The fluorescent probe according to <u>claim 1</u> any one of claims 1 to 4, wherein the metal ion is an alkali metal ion, calcium ion, magnesium ion, or zinc ion.
- 6. (Currently Amended) The fluorescent probe according to <u>claim 1</u> any one of claims 1 to 4, wherein the active oxygen species is selected from the group consisting of nitrogen monoxide, hydroxy radical, singlet oxygen, and superoxide.

7. (Currently Amended) The fluorescent probe according to <u>claim 1</u> any one of claims 1 to 4, which is for measuring zinc ion or nitrogen monoxide and wherein either or both of R¹ and R² are a group represented by the following formula (A):

$$X^{1}-N-CH_{2}-CH_{2}-N$$
 $CH_{2}-CH_{2}-N$
 CH

(wherein X^1 , X^2 , X^3 , and X^4 each independently represents hydrogen atom, an alkyl group, 2-pyridylmethyl group, or a protective group of amino group, and m and n each independently represents 0 or 1).

8. (Currently Amended) The fluorescent probe according to claim 1 any one of claims 1 to 4, which is for measuring singlet oxygen and wherein R¹ and R² combine to each other to represent a ring structure represented by the following formula (B):

$$\mathbb{R}^{8}$$
 \mathbb{R}^{3}
(B)

(wherein R^7 and R^8 each independently represents a C_{1-4} alkyl group or an aryl group).

- 9. (Original) A method for designing a fluorescent probe which is represented by the aforementioned general formula (I) (wherein, R¹ and R² each independently represents hydrogen atom, or a substituent for trapping proton, a metal ion, or an active oxygen species, provided that both of R¹ and R² do not simultaneously represent hydrogen atoms, or R¹ and R² may combine to each other to form a ring structure for trapping proton, a metal ion, or an active oxygen species; R³ represents a monovalent substituent other than hydrogen atom, carboxyl group, or sulfonic acid group; R⁴ and R⁵ each independently represents hydrogen atom or a halogen atom; R⁶ represents hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxymethyl group), which comprises a step of selecting, as a combination of R¹, R², and R³, the combination which provides: (1) substantially high electron density of the benzene ring to which said groups bind so that the compound represented by the formula (I) is
- groups bind so that the compound represented by the formula (I) is substantially no fluorescent before the trapping of proton, a metal ion, or an active oxygen species, and
- (2) substantial reduced electron density of the benzene ring to which said groups bind so that a compound after the trapping, which is derived from

P26478.A01

the compound represented by the formula (I), is substantially highly fluorescent after the trapping of proton, a metal ion, or an active oxygen species.

10. (Original) A fluorescent probe obtained from the method according to claim 9.