Dimensione Cognitiva

2. Macchine che Imparano

Introduzione al Machine Learning

Giovanni Della Lunga giovanni.dellalunga@unibo.it

A lezione di Intelligenza Artificiale

Siena - Giugno 2025

Indice

- Algoritmi Tradizionali vs Machine Learning
- 2 Tutto comincia con una Retta...
- 3 Il Processo di Addestramento
- Dalla Regressione alla Classificazione
- 5 Un Salto Concettuale: Dai Numeri alla Geometria

Algoritmi Tradizionali vs Machine Learning

Algoritmo Tradizionale: Dalle Regole al Codice

Definizione

Un algoritmo tradizionale è una sequenza di istruzioni precise e predefinite che il computer esegue passo dopo passo per risolvere un problema specifico.

Caratteristiche:

- Le regole sono scritte esplicitamente dal programmatore
- Il comportamento è completamente spiegabile e prevedibile
- Infatti la logica è trasparente e verificabile

Esempio concreto - Calcolo dello sconto:

- SE il cliente spende più di 100€ ALLORA applica sconto 10%
- ALTRIMENTI nessuno sconto
- Il programmatore ha definito esattamente quando e come applicare lo sconto

Algoritmo Tradizionale: Dalle Regole al Codice

Algoritmo Tradizionale: Dalle Regole al Codice

Un gioco più complicato ...

Machine Learning: Apprendimento dai Dati

Definizione

Il Machine Learning è un approccio in cui l'algoritmo scopre automaticamente le regole analizzando grandi quantità di dati, senza che queste regole vengano programmate esplicitamente.

Caratteristiche:

- Le regole emergono dall'analisi dei dati
- Il comportamento può variare in base ai dati di addestramento
- L'algoritmo può gestire situazioni non previste dal programmatore
- La logica interna è spesso complessa e non direttamente interpretabile

Esempio concreto - Rilevamento frodi:

- L'algoritmo analizza milioni di transazioni passate
- Identifica automaticamente pattern sospetti
- Impara a distinguere transazioni normali da quelle fraudolente
- Non esistono regole esplicite scritte dal programmatore

Confronto Diretto: Riconoscimento di Spam

Approccio Tradizionale

- Il programmatore scrive regole:
 - Se contiene "GRATIS" \rightarrow spam
 - Se ha più di 5 punti esclamativi ightarrow spam
 - ullet Se mittente sconosciuto o spam
- Ogni regola è esplicita
- Facile da capire ma limitato
- Non si adatta a nuovi tipi di spam

Machine Learning

- L'algoritmo analizza:
 - 100.000 email spam
 - 100.000 email legittime
- Scopre automaticamente pattern:
 - Frequenza di certe parole
 - Struttura del testo
 - Caratteristiche del mittente
- Si adatta a nuovi tipi di spam

Tutto comincia con una Retta...

ESEMPIO PRATICO

Il Problema: Valutare un Appartamento

Esempio pratico

Come può un computer determinare il prezzo di un appartamento?

- Analizzando migliaia di vendite passate
- Identificando le caratteristiche che influenzano il prezzo
- Creando un modello predittivo

Il Problema: Valutare un Appartamento

Caratteristiche dell'appartamento:

- Superficie (m²)
- Numero di stanze
- Piano
- Zona della città
- Età dell'edificio

Domanda:

Quanto vale questo appartamento?

Approccio tradizionale:

- Perizia manuale
- Confronto con vendite simili
- Esperienza dell'agente

Soluzione: Regressione Lineare

Idea base: Trovare una relazione matematica tra caratteristiche e prezzo

Modello Semplificato (una variabile)

 $\mathsf{Prezzo} = a \times \mathsf{Superficie} + b$

Modello Completo (più variabili)

 $\mathsf{Prezzo} = a_1 \times \mathsf{Superficie} + a_2 \times \mathsf{Stanze} + a_3 \times \mathsf{Piano} + b$

L'algoritmo impara:

- I **coefficienti** a_1, a_2, a_3, \ldots (quanto influisce ogni caratteristica)
- L'intercetta *b* (prezzo base)

Come Funziona l'Apprendimento?

- **1 Training**: Raccogliamo dati di appartamenti già venduti
 - Es: 90m², 3 stanze, 2° piano → venduto a €180.000
- Algoritmo: Trova la retta che meglio approssima i dati
 - Minimizza l'errore tra prezzi reali e predetti
- Predizione: Utilizziamo il modello per nuovi appartamenti
 - Es: 75m², 2 stanze, 1° piano → prezzo stimato?

Esempio Numerico

Se il modello impara: Prezzo = $2000 \times \text{Superficie} + 15000 \times \text{Stanze} + 5000$

Per 75m², 2 stanze: Prezzo = $2000 \times 75 + 15000 \times 2 + 5000 =$ €185.000

Un esempio semplice, ma completo!

Sebbene l'esempio della regressione lineare sia molto semplice, esso contiene tutti gli ingredienti fondamentali del Machine Learning:

Data-Driven (Guidato dai Dati)

- Le decisioni non sono programmate manualmente
- Il modello impara direttamente dai dati storici di vendita

Funzione di Errore

- Misuriamo quanto le nostre predizioni si discostano dalla realtà
- Es: Errore Quadratico Medio (MSE)

Metodo di Ottimizzazione

- Algoritmo che cerca i parametri che minimizzano l'errore
- Es: Gradient Descent, Least Squares

Il Processo di Addestramento

Addestramento: Definizione Tecnica

Che cos'è l'addestramento

L'addestramento è il processo computazionale attraverso cui un algoritmo di machine learning analizza un dataset per identificare pattern statistici e costruire un modello matematico capace di fare predizioni su dati nuovi.

Componenti essenziali:

- **1** Dataset di addestramento: Insieme di esempi con input e output desiderati
- Algoritmo di apprendimento: Procedura matematica che trova i pattern
- 3 Funzione di costo: Misura quanto l'algoritmo sbaglia
- **Ottimizzazione:** Processo per ridurre gli errori

Fasi del Processo di Addestramento

1. Inizializzazione

- L'algoritmo inizia con parametri casuali
- Non sa ancora come risolvere il problema

2. Presentazione dei dati

- L'algoritmo riceve un esempio dal dataset
- Prova a fare una predizione con i parametri attuali

3. Calcolo dell'errore

- Confronta la sua predizione con la risposta corretta
- Calcola numericamente quanto ha sbagliato

4. Aggiornamento dei parametri

- Modifica leggermente i suoi parametri interni
- L'obiettivo è ridurre l'errore per esempi simili

5. Iterazione

- Ripete il processo per tutti gli esempi nel dataset
- Continua per molti cicli (epoche) fino a convergenza

Esempio Dettagliato: Predizione Prezzi Case

Dataset: 10.000 case con caratteristiche e prezzi reali Input per ogni casa:

• Superficie (mg), Numero stanze, Età, Distanza dal centro

Output: Prezzo di vendita

Processo di addestramento:

L'algoritmo inizia con una formula con parametri casuali:

$$Prezzo = a \times Superficie + b \times Stanze + c \times Eta + d$$

- Per la prima casa (100mg, 3 stanze, 10 anni): predice 150.000 EUR
- 1 prezzo reale era 200.000 EUR \rightarrow errore di 50.000 EUR
- Aggiusta i coefficienti a, b, c, d per ridurre questo errore
- Sipete per tutte le 10.000 case
- Dopo molte iterazioni, la formula diventa accurata

Un po' di Lessico: Features e Labels

25 / 48

Regressione

- Predice valori continui
- Output: numeri reali
- Esempio: prezzo €185.000

Formula

$$y = w_1x_1 + w_2x_2 + b$$

dove $y \in \mathbb{R}$

Classificazione

- Predice categorie
- Output: classi discrete
- Esempio: "Spam" o "Non Spam"

Stesso Principio!

Decisione = $f(w_1x_1 + w_2x_2 + b)$

dove f trasforma in categorie

Concetto Chiave

Anche nella classificazione cerchiamo i **pesi ottimali** w_1, w_2, \ldots che minimizzano l'errore!

Esempio: Rilevamento Email Spam

Problema: Classificare automaticamente le email come "Spam" o "Non Spam"

Caratteristiche dell'Email (Features)

• x₁: Numero di parole "GRATIS"

• x₄: Lunghezza dell'email

- x₂: Numero di punti esclamativi
- x₃: Presenza di link sospetti (0 o 1)

Modello Lineare

Score =
$$w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + w_4 \cdot x_4 + b$$

Esempio: Rilevamento Email Spam

Problema: Classificare automaticamente le email come "Spam" o "Non Spam"

Caratteristiche dell'Email (Features)

- x₁: Numero di parole "GRATIS"
- x₂: Numero di punti esclamativi
- x₃: Presenza di link sospetti (0 o 1)
- x₄: Lunghezza dell'email

Regola di Decisione:

- Se Score $> 0 \rightarrow$ **SPAM**
- Se Score $< 0 \rightarrow NON SPAM$

I Pesi Raccontano una Storia

Supponiamo che l'algoritmo impari questi pesi:

Modello Appreso

Score =
$$+3.2 \cdot x_1 + +1.8 \cdot x_2 + +5.1 \cdot x_3 + -0.01 \cdot x_4 + 0.5$$

Interpretazione dei Pesi:

- $w_1 = +3.2$: Ogni "GRATIS" aumenta molto la probabilità di spam
- $w_2 = +1.8$: I punti esclamativi sono indicatori di spam
- $w_3 = +5.1$: I link sospetti sono il segnale più forte di spam
- $w_4 = -0.01$: Email più lunghe tendono a essere meno spam

I Pesi Raccontano una Storia

Supponiamo che l'algoritmo impari questi pesi:

Modello Appreso

Score =
$$+3.2 \cdot x_1 + +1.8 \cdot x_2 + +5.1 \cdot x_3 + -0.01 \cdot x_4 + 0.5$$

Esempio Concreto

Email con: 2 "GRATIS", 5 "!", 1 link sospetto, 200 parole

Score = $3.2 \times 2 + 1.8 \times 5 + 5.1 \times 1 - 0.01 \times 200 + 0.5 = 18.9 > 0 \rightarrow \text{SPAM}$

Esempio: Concessione del Credito

Lo Spazio dei Dati

Come Trovare i Pesi Ottimali?

Stesso processo della regressione, ma con funzione di errore diversa!

- Dati di Training
 - Migliaia di email già etichettate: (features, label)
 - Es: ([2, 5, 1, 200], "Spam"), ([0, 1, 0, 50], "Non Spam")
- Funzione di Errore
 - Non più errore quadratico, ma Cross-Entropy Loss
 - Penalizza classificazioni sbagliate
- Ottimizzazione
 - Gradient Descent (come nella regressione!)
 - Cerca i pesi w_1, w_2, w_3, w_4, b che minimizzano l'errore

L'Unità Fondamentale del Machine Learning

Regressione e Classificazione: Stessa Filosofia

Entrambi i problemi seguono lo stesso schema fondamentale:

1. Dati

Input + Output di training

2. Modello

Combinazione lineare $\sum w_i x_i + b$

Dimensione Cognitiva 2. Macchine che Imparano

3. Ottimizzazione

Trova i pesi w_i migliori

Differenze Principali

- Regressione: Output continuo, Errore Quadratico
- Classificazione: Output discreto, Cross-Entropy Loss
- Entrambi: Cercano pesi ottimali Minimizzando l'Errore!

37 / 48

Un Salto Concettuale: Dai Numeri alla Geometria

I Dati Come Punti nello Spazio

Intuizione Chiave: Ogni dato può essere rappresentato come un **punto** in uno spazio multidimensionale

Esempio: Email Spam (2 caratteristiche)

- Email A: 3 "GRATIS", 5 "!" \rightarrow Punto (3,5)
- Email B: 0 "GRATIS", 1 "!" \rightarrow Punto (0,1)
- Email C: 8 "GRATIS", 12 "!" → Punto (8, 12)

I Dati Come Punti nello Spazio

Intuizione Chiave: Ogni dato può essere rappresentato come un **punto** in uno spazio multidimensionale

Spazio 2D

Osservazione

- Email non-spam tendono a raggrupparsi in una zona
- Email spam si raggruppano in un'altra zona
- Esiste una separazione naturale!

Generalizzazione a N Dimensioni

Il principio si estende a qualsiasi numero di caratteristiche!

Email con 4 Caratteristiche

Ogni email diventa un punto in uno spazio a 4 dimensioni:

Email =
$$(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$$

dove:

- $x_1 = \text{Numero "GRATIS"}$
- $x_2 = \text{Numero "!"}$
- $x_3 = \text{Link sospetti } (0/1)$
- $x_4 = \text{Lunghezza email}$

Generalizzazione a N Dimensioni

Il principio si estende a qualsiasi numero di caratteristiche!

Esempi Concreti

- Spam: (2,5,1,200)
- Non Spam: (0, 1, 0, 150)
- Spam: (4, 8, 1, 80)

Idea Fondamentale

Anche se non possiamo **visualizzare** 4 dimensioni, il computer può **lavorare** in questo spazio!

Il Problema Diventa Geometrico

Classificazione = Separazione geometrica nello spazio delle caratteristiche

Il Problema Diventa Geometrico

Classificazione = Separazione geometrica nello spazio delle caratteristiche

Obiettivo del Machine Learning

Trovare il confine ottimale che separa al meglio le due classi

- Confine lineare: una retta (2D), un piano (3D), un iperpiano (N-D)
- Equazione del confine: $w_1x_1 + w_2x_2 + b = 0$

Dal Confine alla Classificazione

Come usiamo il confine per classificare nuovi punti?

Equazione del Confine

$$w_1 x_1 + w_2 x_2 + b = 0$$

Regola di Classificazione

Per un nuovo punto (x_1, x_2) :

- Se $w_1x_1 + w_2x_2 + b > 0 \to \text{Classe A (Spam)}$
- Se $w_1x_1 + w_2x_2 + b < 0 \rightarrow$ Classe B (Non Spam)

Dal Confine alla Classificazione

Come usiamo il confine per classificare nuovi punti?

Esempio Numerico Se il confine è:

$$2x_1 + 3x_2 - 5 = 0$$

Per il punto arancione (2.5, 1.5):

$$2(2.5) + 3(1.5) - 5 = 4.5 > 0$$

Quindi: Spam!

Torniamo ai Pesi: La Connessione

I pesi w_1, w_2, b definiscono completamente il confine di separazione!

Collegamento Cruciale

Il **training** del modello consiste nel trovare i pesi (w_1, w_2, b) che definiscono il confine ottimale!

Processo:

- Prova diversi confini (diversi pesi)
- Misura quanti punti classifica male
- 3 Aggiusta i pesi per ridurre gli errori

Sintesi: Una Nuova Prospettiva

Abbiamo trasformato il problema!

Da: "Come classificare email spam?"

A: "Come trovare il miglior confine geometrico in uno spazio multidimensionale?"

Vantaggi di questa visione geometrica:

- Intuizione: Capiamo cosa fa veramente l'algoritmo
- Generalizzazione: Funziona per qualsiasi numero di dimensioni
- Ottimizzazione: Possiamo usare metodi geometrici potenti

Concetto Universale

Machine Learning = Trovare pattern e confini negli spazi multidimensionali!