МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

ОТЧЕТ ПО ПРАКТИКЕ

Программаная реализация ранга матрицы. Bapuahm 6.

1 курс, группа 1ИВТ1-2

Выполнила:	
	_ А. Н. Лисова
«»	_ 2023 г.
Руководитель:	
	_ С.В. Теплоухов
« »	2023 г.

Майкоп, 2023 г.

1. Введение

1.1. Формулировка цели

Целью данной работы является написание программы для нахождение ранга матрицы.

1.1.1. Теория

Нахождение ранга матрицы способом элементарных преобразований (методом Гаусса). Под элементарными преобразованиями матрицы понимаются следующие операции:

- 1) умножение на число, отличное от нуля;
- 2) прибавление к элементам какой-либо строки или какого-либо столбца;
- 3) перемена местами двух строк или столбцов матрицы;
- 4) удаление "нулевых"строк, то есть таких, все элементы которых равны нулю;
- 5) удаление всех пропорциональных строк, кроме одной.

Для любой матрицы A всегда можно прийти к такой матрице B, вычисление ранга которой не представляет затруднений. Для этого следует добиться, чтобы матрица B была трапециевидной. Тогда ранг полученной матрицы будет равен числу строк в ней кроме строк, полностью состоящих из нулей.

Ступенчатую матрицу называют трапециевидной или трапецеидальной, если для ведущих элементов a1k1, a2k2, ..., arkr выполнены условия k1=1, k2=2,..., kr=r, т.е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$A_{m imes n} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & \dots & a_{1n} \ 0 & a_{22} & \dots & a_{2r} & \dots & a_{2n} \ \dots & \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & a_{rr} & \dots & a_{rn} \ 0 & 0 & \dots & 0 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

2. Ход работы

2.1. Код выполненной программы

#include <iostream>
#include <vector>

```
#include <stdlib.h>
#include <Windows.h>
#include <cmath>
using namespace std;
int main()
{
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
int row, col, sum = 0, step = 0, sort1, sort2, rank;
int i, j, k, p, e;
double tempmath, eps = 0.00001;
cout << "Введите количество рядов: ";
cin >> row;
cout << "Введите количество столбцов: ";
cin >> col;
if (row <= 0 || col <= 0)
cout << "Ошибка. Неверные параметры матрицы." << endl;
return 0;
}
rank = row;
vector <vector <double>> matrix;
// ввод матрицы
for (int i = 0; i < row; i++)
vector <double> temp;
for (int j = 0; j < col; j++)
{
cout << "Введите значение элемента matrix["
<< i << "][" << j << "]: ";
cin >> e;
temp.push_back(e);
}
matrix.push_back(temp);
// вывод матрицы
cout << endl;</pre>
cout << "\nВот как Вы заполнили Вашу матрицу:\n";
for (int i = 0; i < row; i++)
for (int j = 0; j < col; j++)
```

```
cout << "[" << i << "]" << "[" << j
<< "] == " << matrix[i][j] << "\t";
cout << endl;</pre>
}
cout << "\n";
// приведение матрицы по методу Гаусса
// проверка условия для диагонали ступеней
if (col > row - 1)
for (k = 0; k < row - 1; k++)
// перенос нулей столбца в низ матрицы путём перемены строк (сортировка методом пузыр
j = k;
for (sort1 = k; sort1 < row; sort1++) {</pre>
for (sort2 = k; sort2 < row - 1; sort2++) {</pre>
if (abs(matrix[sort2][j]) < abs(matrix[sort2 + 1][j]))</pre>
for (j = 0; j < col; j++) swap(matrix[sort2][j], matrix[sort2 + 1][j]);
j = k;
}
}
// преобразования к ступенчатому виду
for (i = k + 1; i < row; i++)
{
j = k;
tempmath = matrix[i][j] / matrix[i - 1 - step][j];
if (matrix[i][j] == 0)
{
step++;
continue;
}
else
for (j = k; j < col; j++)
matrix[i - step - 1][j] = matrix[i - step - 1][j] * tempmath;
matrix[i][j] = matrix[i][j] - matrix[i - step - 1][j];
}
step++;
}
}
```

```
step = 0;
// перенос нулевых строк в самый низ и подсчёт ранга матрицы
for (p = 0; p < col; p++)
if (matrix[k + 1][p] == 0) sum++;
if (sum == col)
{
for (p = 0; p < col; p++)
swap(matrix[row - 1][p], matrix[k + 1][p]);
}
}
sum = 0;
}
}
else
{
for (k = 0; k < col; k++)
// перенос нулей столбца в низ матрицы путём перемены строк (сортировка методом пузыр
j = k;
for (sort1 = k; sort1 < row; sort1++) {</pre>
for (sort2 = k; sort2 < row - 1; sort2++) {</pre>
if (matrix[sort2][j] < matrix[sort2 + 1][j])</pre>
for (j = 0; j < col; j++) swap(matrix[sort2][j], matrix[sort2 + 1][j]);
j = k;
}
}
// преобразования к ступенчатому виду
for (i = k + 1; i < row; i++)
j = k;
tempmath = matrix[i][j] / matrix[i - 1 - step][j];
if (matrix[i][j] == 0)
{
step++;
continue;
}
else
for (j = k; j < col; j++)
```

```
{
matrix[i - step - 1][j] = matrix[i - step - 1][j] * tempmath;
matrix[i][j] = matrix[i][j] - matrix[i - step - 1][j];
step++;
}
}
step = 0;
// перенос нулевых строк в самый низ матрицы
for (p = 0; p < col; p++)
if (matrix[k + 1][p] == 0) sum++;
if (sum == col)
for (p = 0; p < col; p++)
swap(matrix[row - 1][p], matrix[k + 1][p]);
}
sum = 0;
}
}
// округление чисел близких к нулю
for (i = 0; i < row; i++)
for (j = 0; j < col; j++)
if (abs(matrix[i][j]) < eps) matrix[i][j] = 0;</pre>
}
}
// вывод приведенной матрицы
cout << "\nПриведенная матрица:" << endl;
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
cout << "[" << i << "]" << "[" << j
<< "] == " << matrix[i][j] << "\t";
cout << endl;</pre>
}
cout << "\n";
// получение ранга матрицы
```

```
for (i = 0; i < row; i++)
{
  for (j = 0; j < col; j++)
  {
    if (matrix[i][j] == 0) sum++;
  }
  if (sum == col) rank--;
  sum = 0;
}

// вывод ранга матрицы

соut << "\пРанг матрицы: " << rank << endl;
  return 0;
}

Введите количество рядов: 3

Введите количество отдобиз: 4

Введите влачение элемента matrix[0][0]: 1

Введите значение элемента matrix[0][0]: 8

Введите значение элемента matrix[0][0]: 9

[0][0]: 1 [0]: 8 [0]: 9

[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
[0][0]: 1 [0]: 9
```

Рис. 1. Результат работы

:\Users\GE70\Desktop\университет\программирование\практика\Practice\Debug\Practice.exe (процесс 6796) завершает работу : кодом 0. |тобы автоматически закрывать консоль при остановке отладки, установите параметр "Сервис" -> "Параметры" -> "Отладка" -"Автоматически закрыть консоль при остановке отладки". |тобы закрыть это окно, нажмите любую клавишу...

рица: [0][1] == 1.125 [0][2] == 0.375 [0][3] == 0.75 [1][1] == 1.875 [1][2] == -1.5625 [1][3] == 0.625 [2][1] == 0 [2][2] == 7.1875 [2][3] == 5.625

анг матрицы: 3