Objectius.

- Aprofundir en la noció de sèrie numèrica convergent.
- Calcular la suma d'algunes sèries per mètodes directes.
- Utilitzar els criteris de comparació de sèries.

Requisits.

S'utilitzaran la condició necessària de convergència i els criteris de comparació de sèries:

- Condició necessària de convergència. Si a_n no convergeix a 0 aleshores $\sum a_n$ és divergent.
- Criteri de Comparació directa per a sèries de termes positius.
 - 1. Si $0 \le a_n \le b_n$ i $\sum b_n$ és convergent aleshores $\sum a_n$ és convergent.
 - 2. Si $a_n \geq b_n \geq 0$ i $\sum b_n$ és divergent aleshores $\sum a_n$ és divergent.
- Criteri de Comparació en el límit per a sèries de termes positius. Suposem que $b_n > 0$ i $\lim_n \frac{a_n}{b_n} = l$.
 - 1. Si $0 < l < +\infty$, $\sum a_n$ és convergent $\Leftrightarrow \sum b_n$ és convergent.
 - 2. Si l = 0, $\sum b_n$ convergent $\Rightarrow \sum a_n$ convergent.
 - 3. Si $l = +\infty$, $\sum b_n = +\infty \Rightarrow \sum a_n = +\infty$

ACTIVITATS

- 1. Calculeu la suma de les sèries següents:
 - (a) $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{5}{2^n} \frac{2}{3^n} \right)$ (b) $\sum_{n=1}^{\infty} \frac{n+12}{n^3 + 5n^2 + 6n}$ (c) $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$

2. Estudieu la convergència de les sèries següents:

(a)
$$\sum_{n=1}^{\infty} \log \left(\frac{2n}{7n-5} \right)$$

(b)
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$

(a)
$$\sum_{n=1}^{\infty} \log \left(\frac{2n}{7n-5} \right)$$
 (b) $\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$ (c) $\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n} \right) \arcsin \left(\frac{1}{\sqrt{n}} \right)$ (d) $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$ (e) $\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$ (f) $\sum_{n=1}^{\infty} \cos^{2n} \left(\frac{n\pi}{2n+4} \right)$ (g) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ (h) $\sum_{n=1}^{\infty} \frac{12 \cdot 14 \cdots (10 + 2n)}{1 \cdot 4 \cdot 7 \cdots (3n-2)}$

(d)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$$

(e)
$$\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$$

(f)
$$\sum_{n=1}^{\infty} \cos^{2n} \left(\frac{n\pi}{2n+4} \right)^{n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(h)
$$\sum_{n=1}^{\infty} \frac{12 \cdot 14 \cdots (10 + 2n)}{1 \cdot 4 \cdot 7 \cdots (3n-2)}$$

3. Per a cadascuna de les successions (x_n) següents trobeu un infinitèssim equivalent i estudieu la convergència de la sèrie $\sum_{n} x_n$

Successió (x_n)	Infinitèssim equivalent	Caràcter de $\sum_{n} x_n$
$x_n = 1 - \cos(\frac{1}{\sqrt[3]{n^2}})$		
$x_n = \frac{\tan\left(\frac{1}{n}\right)}{\sqrt{n}}$		
$x_n = 1 - \sec\left(\frac{1}{n}\right)$ $x_n = 1 - e^{-\sin\left(\frac{1}{n}\right)}$		
$x_n = 1 - e^{-\sin(\frac{1}{n})}$		
$x_n = \frac{\pi}{2} - \arctan n$		
$x_n = \log\left(\frac{n^3 + n + 1}{n^3}\right)$		
$x_n = \frac{1}{4^n} (2^n + 3^n + n^4)$ $x_n = \frac{1}{n^3} (1 + 2 + \dots + n)$		
$x_n = \frac{1}{n^3}(1 + 2 + \dots + n)$		