ASSIGNMENT 04 Fixed Closing Date: 01 July 2022 Total Marks: 100 UNIQUE ASSIGNMENT NUMBER: __

1. Determine the first order partial derivative of the following functions:

(a)
$$z = \ln(x + t^2)$$

(b)
$$F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$$
 (5)

(c)
$$f(x, y, z) = xy^2 e^{-xz}$$

2. Clairaut's Theorem holds that $U_{xy} = U_{yx}$, show that the following equations obey Clairaut's Theorem.

$$(a) U = \ln(x+2y) \tag{5}$$

(b)
$$U = e^{xy} \sin y$$
 (5)

3. Laplace's equations holds that $U_{xx} + U_{yy} = 0$, verify that the second derivative of the following equation are Laplace's equation:

(a)
$$U = \ln \sqrt{x^2 + y^2}$$

(b)
$$U = x^2 - y^2$$

4. Determine the following integrals:

(a)
$$\int \left(U^6 - 2U^5 + \frac{2}{7}\right) dU$$
 (5)

(b)
$$\int \left(\frac{1+\sqrt{x}+x}{x}\right) dx$$
 (5)

$$\text{(c)} \int_{1}^{4} \left(\frac{4+6u}{\sqrt{u}}\right) du \tag{5}$$

(d)
$$\int_{0}^{2} |2x - 1| dx$$
 (5)

5. Determine the following integrals:

(a)
$$\int_{0}^{t} \sin(3\pi t) dt$$
 (5)

$$\text{(b)} \int_{0}^{1} \frac{\sin 2x}{\cos^2 x} dx \tag{5}$$

(c)
$$\int e^{\cos x} \sin x dx$$
 (5)

$$(d) \int_{0}^{4} \left| \sqrt{x} - 1 \right| dx \tag{5}$$

6. Use substitution method to determine the following integrals:

(a)
$$\int \frac{x^3}{1+x^4} dx$$

(b)
$$\int \cos^4 \theta \sin \theta d\theta$$
 (5)

(c)
$$\int_{2\pi}^{3\pi} 3\cos^2 x \sin x dx$$
 (5)

7. Let $F(x, y) = y - \sin(xy)$. Find the partial derivatives F_x and F_y . Then find $\frac{dy}{dx}$.

Confirm your answer above by finding
$$\frac{dy}{dx}$$
 using implicit differentiation. (5)

8. Let $F(x, y) = y\cos(x^2y^2) + y$, then find the first partial derivatives F_x and F_y .

Then using your answer, find
$$\frac{dy}{dx}$$
. Using implicit differentiation conform your answer. (3)

9. If $z = \sin(xe^{v})$ where $x = 3u^{2} + uv$ and $y = u^{3} - \ln v$.

Use the chain rule for partial differentiation to find
$$\frac{\partial z}{\partial u}$$
. (2)

Total: [100]