3

4

\int_{0}^{1}	CLAIMS
(J) #	A method of detecting one of a set of preamble sequences in a spread
3	s gnal comprising the steps of:
4	(a) correlating the received spread signal with sequences of a first orthogonal
5	Gold code (OGC) set in accordance with a first fast transform to provide a preamble
6	signal;
7 ·	(b) correlating the preamble signal with the set of preamble sequences in
8	accordance with a second fast transform to generate a set of index values;
9	(c) forming a decision statistic based on the set of index values; and
10	(d) selecting, as the detected one of the set of preamble sequences, a preamble
11	sequence corresponding to the decision statistic.
1	2. The invention as recited in claim 1, wherein, for step (a), the first fast
2	transform method is a fast orthogonal Gold code transform (FOGT) comprising the steps
3	of
4	1) multiplying the received spread signal with a first sequence vector and a
5	forward permutation vector to generate a permuted sequence signal, wherein:
6	the first OGC set is generated from the first sequence vector and a cyclic
7	shift matrix of a second sequence vector, and the forward permutation vector
8	maps between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard
9	sequences; and
10	2) applying the fast Hadamaard transform to the permuted sequence signal to
11	generate a set of correlated signals the preamble signal selected as one of the set of
12	correlated signals based on a predetermined decision criterion.
1	3. The invention as recited in claim 1, wherein:
2	for step (b), the set of preamble sequences are selected from a second OGC set

formed from first and second sequence vectors, the second OGC set generated from the

first sequence vector and a cyclic shift matrix of a second sequence vector; and wherein

5	the second fast transform is a fast orthogonal Gold code transform (FOGT)
6	comprising the steps of
7	1) multiplying the preamble signal with a first sequence vector and a
8	forward permutation vector to generate a permuted preamble signal, the forward
9	permutation vector mapping between i) the cyclic shift matrix and ii) a matrix of
10	Walsh-Hadamaard sequences, and
11	2) applying the fast Hadamaard transform to the permuted preamble signal
12	to generate the set of index values.
1	4. The invention as recited in claim 1, wherein, for step (b), the set of
2	preamble sequences are selected from set of Walsh-Hadamaard sequences, and the second
3	fast transform is a fast Hadamaard transform.
1	5. The invention as recited in claim 1, wherein, for step (a), the received
l 2	,,,,,,,,,,,
2	spread signal is a burst of a random-access channel in a code-division, multiple-access
3	communication system.
1	6. The invention as recited in claim 1, wherein step (c) comprises the steps
2	of:
3	1) forming an initial decision statistic based on the relative maximum index of the
4	set of index values;
5	2) selecting the signal generated by the preamble sequence combined with the
6	preamble signal corresponding to the initial decision statistic;
7	3) adjusting, in one or more of amplitude and phase, the signal selected in step 2);
8	and
9	4) forming the decision statistic based on the adjusted signal.
1	7. The invention as recited in claim 6, wherein step (c3) adjusts the selected
2	signal by estimating a channel response from the preamble signal, forming a de-rotation
3	signal from the preamble signal, and combining the de-rotation signal with the preamble
4	signal for coherent sequence detection.

11.

1	8. The invention as redited in claim 6, wherein step (c2) employs the initia
2	decision statistic to locally generate a corresponding preamble sequence, the locally
3	generated preamble sequence being combined with the preamble signal for coherent
4	sequence detection.
1	A method of detecting one of a set of preamble sequences in a spread
2	signal comprising the steps of:
3	(a) correlating the received spread signal with a set of orthogonal sequences to
4	provide a preamble signal;
5	(b) correlating the preamble signal with one or more preamble sequences of an
6	orthogonal Gold code (OGC) set in accordance with a fast transform to generate a set of
7	index values;
8	(c) forming a decision statistic based on the set of index values; and
9	(d) selecting, as the detected one of the set of preamble sequences, a preamble
10	sequence corresponding to the decision statistic.
1	10. The invention as recited in claim 9, wherein:
2	for step (b), each preamble sequence is selected from the OGC set formed from
3	first and second sequence vectors, wherein the OGC set is generated from the first
4	sequence vector and a cyclic shift matrix of a second sequence vector; and wherein
5	the fast transform is a fast orthogonal Gold code transform (FOGT) comprising
6	the steps of
7	1) multiplying the preamble signal with a first sequence vector and a forward
8	permutation vector to generate a permuted preamble signal, the forward permutation
9	vector mapping between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard
10	sequences; and
11	2) applying the fast Hadamaard transform to the permuted preamble signal to
12	generate the set of index values.
	Benefitte the set of mach values.

A preamble detector for detecting one of a set of preamble sequences in a

2	spread signal, the preamble detector comprising:
3	a first correlator correlating the received spread signal with sequences of a first
4	orthogonal Gold code (OGC) set in accordance with a first fast transform to provide a
5	preamble signal;
6	a second correlator correlating the preamble signal with the set of preamble
7	sequences in accordance with a second fast transform method to generate a set of index
8	values;
9	a circuit forming a decision statistic based on the set of index values; and
10	a selector selecting, as the detected one of the set of preamble sequences, a
11	preamble sequence corresponding to the decision statistic.
1	12. The invention as recited in claim 11, wherein the first fast transform is a
2	fast orthogonal Gold code transform (FOGT), the first OGC set is generated from a first
3	sequence vector and a cyclic shift matrix of a second sequence vector, and the forward
4	permutation vector maps between i) the cyclic shift matrix and ii) a matrix of Walsh-
5	Hadamaard sequences; and wherein:
6	the first correlator comprises:
7	a multiplier multiplying the received spread signal with the first sequence
8	vector and a forward permutation vector to generate a permuted sequence signal;
9	and
10	a combiner applying the fast Hadamaard transform to the permuted
11	sequence signal to generate a set of correlated signals, the preamble signal
12	selected as one of the set of correlated signals based on a predetermined decision
13	criterion.
1	13. The invention as regited in claim 11, wherein:
2	the set of preamble sequences is selected from a second OGC set formed from
3	first and second sequence vectors, the second OGC set generated from the first sequence
4	vector and a cyclic shift matrix of a second sequence vector; and the second fast

5	transform is a fast orthogonal Gold code transform (FOGT); and wherein:
6	the second correlator comprises:
7	a multiplier multiplying the preamble signal with a first sequence vector
8	and a forward permutation vector to generate a permuted preamble signal, the
9	forward permutation vector mapping between i) the cyclic shift matrix and ii) a
10	matrix of Walsh-Hadamaard sequences, and
11	a combiner applying the fast Hadamaard transform to the permuted
12	preamble signal to generate the set of index values.
1	14. The invention as recited in claim 11, wherein the set of preamble
2	sequences is selected from a set of Walsh-Hadamaard sequences, and the second fast
3	transform is a fast Hadamaard transform.
1	15. The invention as recited in claim 11, wherein the received spread signal is
2	a burst of a random-access channel in a code-division, multiple-access communication
3	system.
1	16. The invention as recited in claim 11, wherein the circuit forming the
2	decision statistic comprises:
3	a first magnitude detector forming an initial decision statistic based on the relative
4	maximum index of the set of index values;
5	a signal selector selecting the signal generated by the preamble sequence
6	combined with the preamble signal corresponding to the initial decision statistic;
7	a coherent detector adjusting, in one or more of amplitude and phase, the signal
8	selected in step 2); and
9	a second magnitude detector forming the decision statistic based on the adjusted
10	signal.
1	17. The invention as recited in claim 16, wherein the coherent detector
2	includes a channel estimator for i) estimating a channel response from the preamble
3	signal, and ii) forming a de-rotation signal from the preamble signal, and a combiner for

4

5

4	combining the de-rotation signal with the preamble signal for coherent sequence
5	detection.
1	18. The invention as recited in claim 16, wherein the coherent detector
2	includes a sequence generator, the sequence generator employing the initial decision
3	statistic to locally generate a corresponding preamble sequence; and a combiner
4	combining the locally generated preamble sequence with the preamble signal for coheren
5	sequence detection.
1	19. The invention as recited in claim 11, wherein the preamble detector is
2	embodied in an integrated circuit.
1	26. A preamble detector for detecting one of a set of preamble sequences in a
2	spread signal comprising the steps of:
3	a first correlator correlating the received spread signal with a set of orthogonal
4	sequences to provide a preamble signal;
5	a second correlator correlating the preamble signal with one or more preamble
6	sequences of an orthogonal Gold code (OGC) set in accordance with a fast transform to
7	generate a set of index values;
8	a circuit forming a decision statistic based on the set of index values; and
9	a selector selecting, as the detected one of the set of preamble sequences, a
0	preamble sequence corresponding to the decision statistic.
1	21. The invention as recited in claim 20, wherein:
2	each preamble sequence is selected from the OGC set formed from first and
2	second sequence vectors, wherein the OCC set is concreted from the first sequence years

- second sequence vectors, wherein the OGC set is generated from the first sequence vector and a cyclic shift matrix of a second sequence vector and the fast transform is a fast orthogonal Gold code transform (FOGT); and wherein
- 6 the second correlator comprises:
- a multiplier multiplying the preamble signal with a first sequence vector and a forward permutation vector to generate a permuted preamble signal, the forward

9	permutation vector mapping between if the cyclic shift matrix and ii) a matrix of Walsh-
10	Hadamaard sequences; and
11	a combiner applying the fast Hadamaard transform to the permuted preamble
12	signal to generate the set of index values.
1	22. The invention as recited in claim 20, wherein the preamble detector is
2	embodied in an integrated circuit.
1	26. A computer-readable medium having stored thereon a plurality of
2	instructions, the plurality of instructions including instructions which, when executed by
3	a processor, cause the processor to implement a method of detecting one of a set of
4	preamble sequences in a spread signal, the method comprising the steps of:
5	(a) correlating the received spread signal with sequences of a first orthogonal
6	Gold code (OGC) set in accordance with a first fast transform to provide a preamble
7	signal;
8	(b) correlating the preamble signal with the set of preamble sequences in
9	accordance with a second fast transform to generate a set of index values;
10	(c) forming a decision statistic based on the set of index values; and
11	(d) selecting, as the detected one of the set of preamble sequences, a preamble
12	sequence corresponding to the decision statistic.
1	24. The invention as recited in claim 23, wherein, for step (a), the first fast
2	transform method is a fast orthogonal Gold code transform (FOGT) comprising the steps
3	of
4	1) multiplying the received spread signal with a first sequence vector and a
5	forward permutation vector to generate a permuted sequence signal, wherein:
6	the first OGC set is generated from the first sequence vector and a cyclic
7	shift matrix of a second sequence vector, and the forward permutation vector
8	maps between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard
9	sequences; and

10	2) applying the fast Hadam ard transform to the permuted sequence signal to
11	generate a set of correlated signals, the preamble signal selected as one of the set of
12	correlated signals based on a predetermined decision criterion.
1	25. The invention as recited in claim 23, wherein:
2	for step (b), the set of preamble sequences are selected from a second OGC set
3	formed from first and second sequence vectors, the second OGC set generated from the
4	first sequence vector and a cyclic shift matrix of a second sequence vector; and wherein
5	the second fast transform is a fast orthogonal Gold code transform (FOGT)
6	comprising the steps of
7	1) multiplying the preamble signal with a first sequence vector and a
8	forward permutation vector to generate a permuted preamble signal, the forward
9	permutation vector mapping between i) the cyclic shift matrix and ii) a matrix of
10	Walsh-Hadamaard sequences, and
11	2) applying the fast Hadamaard transform to the permuted preamble signal
12	to generate the set of index values.
1	26. A computer-readable medium having stored thereon a plurality of
2	instructions, the plurality of instructions including instructions which, when executed by
3	a processor, cause the processor to implement a method of detecting one of a set of
4	preamble sequences in a spread signal, the method comprising the steps of:
5	(a) correlating the received spread signal with a set of orthogonal sequences to
6	provide a preamble signal;
7	(b) correlating the preamble signal with one or more preamble sequences of an
8	orthogonal Gold code (OGC) set in accordance with a fast transform to generate a set of
9	index values;
10	(c) forming a decision statistic based on the set of index values; and
11	(d) selecting, as the detected one of the set of preamble sequences, a preamble
12	sequence corresponding to the decision statistic.

1	27. The invention as recited in claim 26, wherein:
2	for step (b), each preamble sequence is selected from the OGC set formed from
3	first and second sequence vectors, wherein the OGC set is generated from the first
4	sequence vector and a cyclic shift matrix of a second sequence vector; and wherein
5	the fast transform is a fast orthogonal Gold code transform (FOGT) comprising
6	the steps of
7	1) multiplying the preamble signal with a first sequence vector and a forward
8	permutation vector to generate a permuted preamble signal, the forward permutation
9	vector mapping between i) the cyclic shift matrix and ii) a matrix of Walsh-Hadamaard
10	sequences; and
11	2) applying the fast Hadamaard transform to the permuted preamble signal to
12	generate the set of index values.
1	28. A transmitter in a code-division, multiple access communication system
2	generating data including a preamble sequence in a random access, burst channel, the
3	transmitter comprising a spreader combining the preamble sequence with a selected one
4	of a first set of orthogonal Gold code sequences.
1	29. The invention as recited in claim 28, wherein the preamble sequence is a
2	selected one of a second set of orthogonal Gold code sequences.