INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

COORDENADORIA DE ELETRÔNICA

Projeto Final

Montagem do relógio com FF JK

Relatório Técnico apresentado como requisito parcial para obtenção de aprovação na disciplina de Sistemas Digitais

Prof. Edson Barbosa.

Autor: Daniel Antonio de Jesus Melo, Icaro Meneses Ferreira de Santana e Mateus Costa Teles

Aracaju/ Sergipe

Sumário

1 - INTRODUÇÃO	1
1.1 - Flip-Flop Jk	1
2 - MATERIAIS E MÉTODOS	2
2.1 - Tabela verdade e mapas K da contagem das Horas	
2.1.1Contador de 0 a 9 (Unidades)	
2.1.2Contador de 0 a 2 (Dezenas)	3
2.1.3Mapas K das Unidades das Horas	3
2.1.4Mapas K das Dezenas das Horas	
2.1.5Circuito combinacional do reset no número 23	6
2.2 - Tabela verdade e mapas K da contagem dos minutos	7
2.2.1Contador de 0 a 9 (Unidades)	7
2.2.2Contador de 0 a 5 (Dezenas)	7
2.2.3Mapas K das unidades dos minutos	
2.2.4Mapas K das dezenas dos minutos	8
2.3 - Tabela verdade e mapas K da contagem dos segundos	
2.4 - Funcionamento do circuito do relógio	g
3 - CONCLUSÃO	
4 - REFERÊNCIAS BIBLIOGRÁFICAS	13
5 - Anexo	

1 INTRODUÇÃO

1.1 Flip-Flop Jk

O flip-flop J-K aprimora o funcionamento do flip-flop R-S interpretando a condição S = R = 1 como um comando de inversão. Especificamente, a combinação J = 1, K = 0 é um comando para ativar (set) a saída do flip-flop; a combinação J = 0, K = 1 é um comando para desativar (reset) a saída do flip-flop; e a combinação J = K = 1 é um comando para inverter o flip-flop, trocando o sinal de saída pelo seu complemento. Fazendo J = K o flip-flop J-K se torna um flip-flop T(Toggle). [1]

2 MATERIAIS E MÉTODOS

Para projetar o relógio foram usados contadores síncronos: para horas, minutos e segundos. Para tal, foram projetados circuitos combinacionais responsáveis pela contagem, usando o método da tabela verdade e mapas de Karnaugh. As tabelas verdades e mapas K que se seguem são separadas nos contadores de horas, minutos e segundos.

2.1 Tabela verdade e mapas K da contagem das Horas

Para a contagem das horas, foi feito dois contadores: um contador de 0 a 9 outro de 0 a 2, e um circuito combinacional de controle para resetar a contagem no 23.

2.1.1 Contador de 0 a 9 (Unidades)

Q3	Q2	Q1	Q0	J3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	Х	0	Х	0	Х	1	Х
0	0	0	1	0	Х	0	X	1	Х	X	1
0	0	1	0	0	Х	0	X	X	0	1	X
0	0	1	1	0	Х	1	X	Х	1	X	1
0	1	0	0	0	Х	X	0	0	X	1	X
0	1	0	1	0	Х	X	0	1	X	X	1
0	1	1	0	0	Х	X	0	X	0	1	Х
0	1	1	1	1	Х	X	1	X	1	X	1
1	0	0	0	X	0	X	X	0	X	1	Х
1	0	0	1	Х	1	0	X	0	X	X	1
1	0	1	0	Х	X	X	X	X	X	X	X
1	0	1	1	Х	Х	Х	Х	Х	Х	Х	Х
1	1	0	0	Х	Х	X	Х	Х	X	X	X
1	1	0	1	Х	Х	X	X	Х	X	X	X

1	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х
1	1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

2.1.2 Contador de 0 a 2 (Dezenas)

Q1	Q0	J1	K1	J0	K0
0	0	0	X	1	X
0	1	1	Х	X	1
1	0	Х	1	1	X
1	1	Х	Х	X	Х

2.1.3 Mapas K das Unidades das Horas

Segue abaixo os mapas de Karnaugh para simplificação lógica e as expressões lógicas do circuito combinacional.

	00	01	11	10
00	0	0	-	-
	0	4	12	8
01	0	0	-	-
	1	5	13	9
11	0	1	-	-
	3	7	15	11
10	0	0	-	-
	2	6	14	10

	00	01	11	10
00	-	-	-	0
	0	4	12	8
01	-	-	-	1
	1	5	13	9
11	-	-	-	_
	3	7	15	11
10	-	-	-	_
	2	6	14	10

$$J_3 = Q_2 \cdot Q_1 \cdot Q_0$$

	99	01	11	10
00	0	-	-	-
	0	4	12	8
01	0	-	-	0
	1	5	13	9
11	1	-	-	-
	3	7	15	11
10	0	_	_	-
	2	6	14	10

$$J_2 = Q_1 \cdot Q_0$$

$$K_3 = Q_0$$

	99	01	11	10
99	-	0	-	-
	0	4	12	8
01	-	0	-	-
	1	5	13	9
11	-	1	-	-
	3	7	15	11
10	-	0	-	-
	2	6	14	10

$$K_2 = Q_1 \cdot Q_0 = J_2$$

	00	01	11	10
99	0	0	-	0
	0	4	12	8
01	1	1	-	0
	1	5	13	9
11	-	-	-	-
	3	7	15	11
10	-	-	-	-
	2	6	14	10

	99	01	11	10
00	-	-	-	-
	0	4	12	8
01	-	-	-	-
	1	5	13	9
11	1	1	-	_
	3	7	15	11
10	0	0	-	-
	2	6	14	10

 $J_1 = \overline{Q_3} \cdot Q_0$

$K_1 = Q_0$

	00	01	11	10
00	1	1	-	1
	0	4	12	8
01	-	-	-	-
	1	5	13	9
11	-	-	-	-
	3	7	15	11
10	1	1	-	-
	2	6	14	10

	00	01	11	10
99	-	-	-	-
	0	4	12	8
01	1	1	-	1
	1	5	13	9
11	1	1	-	-
	3	7	15	11
10	-	-	-	-
	2	6	14	10

 $J_0=1$

$$K_0 = J_0 = 1$$

2.1.4 Mapas K das Dezenas das Horas

2.1.5 Circuito combinacional do reset no número 23

Esse circuito funciona quando a contagem está na transição para o número 24, ou seja, quando o número tiver que ser 24, o circuito terá saída igual a 1, com lógica AND e 0 com lógica NAND, dependendo do tipo de Flip-Flop JK sendo ele com Clear invertido ou não. O efeito resultante é que será realizado uma contagem de 0 a 23.

$$CLR = \overline{(Q_5 \cdot Q_2)}$$

2.2 Tabela verdade e mapas K da contagem dos minutos

Para a contagem dos minutos foram projetados doi contadores, sendo eles o das unidades que contam de 0 a 9, e o das dezenas que contam de 0 a 5. Segue abaixo a tabela verdade da contagem dos minutos e seus respectivos mapas K, tomando como partida que a lógica combinacional das unidades é igual a das horas, diferenciando apenas a tabela verdade e mapa de Karnaugh das dezenas, portanto será apresentado apenas a lógica combinacional das dezenas.

2.2.1 Contador de 0 a 9 (Unidades)

A tabela verdade é igual as unidades das horas.

2.2.2 Contador de 0 a 5 (Dezenas)

Q6	Q5	Q4	J6	K6	J5	K5	J4	K4
0	0	0	0	X	0	X	1	X
0	0	1	0	X	1	X	Х	1
0	1	0	0	X	X	0	1	X
0	1	1	1	Х	Х	1	Х	1
1	0	0	Х	0	0	Х	1	X
1	0	1	Х	1	0	Х	Х	1
1	1	0	Х	Х	Х	Х	Х	Х
1	1	1	Х	Х	Х	Х	Х	Х

2.2.3 Mapas K das unidades dos minutos

Os mapas de Karnaugh e as expressões das unidades dos minutos são iguais as unidades das horas.

2.2.4 Mapas K das dezenas dos minutos

	00	01	11	10
Θ	-	-	-	0
	0	2	6	4
1	-	-	-	1
	1	3	7	5

$$J_6 = Q_5 \cdot Q_4$$

$$K_6 = Q_4$$

	99	01	11	10
Θ	0	-	-	0
	0	2	6	4
1	1	-	-	0
	1	3	7	5

	99	01	11	10
0	-	0	-	-
	0	2	6	4
1	-	1	-	-
	1	3	7	5

$$J_5 = \overline{Q_6} \cdot Q_4$$

$$K_5 = K_6 = Q_4$$

	00	01	11	10	
0	1	1	-	1	
	0	2	6	4	
1	-	-	-	-	
	1	3	7	5	
$J_4=1$					

2.3 Tabela verdade e mapas K da contagem dos segundos

Para esse contador foi projetado contadores de 0 a 59, ou seja, é a mesma contagem dos minutos, então a tabela verdade e os mapas K das unidades e dezenas são iguais.

2.4 Funcionamento do circuito do relógio

O funcionamento do circuito segue o diagrama mostrado a seguir.

Figura 1 – Diagrama de funcionamento do circuito do relógio digital

Para realizar a montagem do relógio com FF JK foram utilizados os seguintes materiais:

- 11 Chips 7476;
- Gerador de frequência usando 555 de 1 Hz;
- 7 Chips para circuito combinacional;

A montagem do circuito com FF jk ocorreu seguindo os seguintes circuitos lógicos:

Figura 2 – Circuito do contador dos segundos

Figura 3 – Circuito contador dos minutos

A comprovação prática do circuito acima foi comprovada em laboratório e demonstrada em sala.

3 CONCLUSÃO

O circuito contador com FF jk funciona de maneira satisfatória e obedece o que foi planejado, porém ocupa demasiado espaço e isso se torna um fator importante na montagem e na averiguação de possíveis erros.

4 REFERÊNCIAS BIBLIOGRÁFICAS

- [1] http://pt.wikipedia.org/wiki/Flip-flop
- [2] Multisim.com

5 Anexo

Seguem em anexo a imagem da montagem com JK(Próxima página).

Figura 5 – Imagem do circuito montado no protoboard em funcionamento.