Domanda 10 (8 punti)

Si consideri il seguente frammento di codice C:

```
for (i = 0; i < 100; i++) {
    v7[i] = (v1[i]*v2[i]);
    v8[i] = (v3[i]*v4[i]);
    v9[i] = (v5[i]*v6[i]);
}</pre>
```

dove i vettori v1[]... v6[] contengono numeri Floating Point (FP), sono lunghi 100 e sono stati salvati in precedenza nella memoria. Inoltre sono stati allocati in memoria i vettori vuoti v7[], v8[] e v9[].

Si eseguano le seguenti operazioni:

- 1) Con riferimento al programma riportato nel seguito, scritto per l'architettura del processore MIPS64 (descritta sotto), ed utilizzando gli spazi a ciò appositamente destinati, si calcoli il numero di colpi di clock richiesti per l'esecuzione dell'intero programma. L'architettura da considerare ha le seguenti caratteristiche:
 - L'unità di moltiplicazione FP è un'unità pipelined a 10 stadi
 - L'unità aritmetica FP è un'unità pipelined a 2 stadi
 - L'unità di divisione FP è un'unico blocco con una latenza pari a 10 colpi di clock
 - Il branch delay slot è pari ad 1 colpo di clock
 - Il delay slot non è abilitato (ossia, la pipeline viene svuotata se il salto viene preso)
 - Il data forwarding è abilitato.

Si assuma che le diverse unità funzionali che compongono lo stadio di EX possano lavorare in parallelo su istruzioni diverse: l'architettura considerata può quindi implementare un meccanismo che permette il completamento out-of-order delle istruzioni.

- 2) Si ottimizzi il programma utilizzando la tecnica di *scheduling statico*, *register renaming* e abilitando il *branch delay slot* in maniera tale che il programma esegua lo stesso calcolo; infine, si esegua lo stesso calcolo dei colpi di clock del punto 1 con il nuovo programma evidenziando il miglioramento delle prestazioni.
- 3) Con riferimento all'architettura di un processore MIPS che implementa la strategia multiple-issue con speculazione (descritta sotto), si calcoli il numero di colpi di clock necessari all'esecuzione di 2 cicli del programma proposto. L'architettura da considerare ha le seguenti caratteristiche:
 - può eseguire l'issue di 2 istruzioni per colpo di clock
 - in presenza di un'istruzione di salto, viene eseguita una sola issue
 - può eseguire il commit di 2 istruzioni per colpo di clock
 - sono disponibili le seguenti unità funzionali indipendenti:
 - i. 1 unità Memory address
 - ii. 1 unità per operazioni intere (ALU)
 - iii. 1 unità per il calcolo dei salti
 - iv. 1 unità di moltiplicazione FP pipelined (latenza 10)
 - v. 1 unità di divisione FP no pipelined (latenza 10)
 - vi. 1 unità di somma e sottrazione FP pipelined (latenza 2)
 - la previsione sui salti è sempre corretta
 - le cache non produce mai situazioni di miss
 - sono disponibili due CDB (Common Data Bus).

Punto ; ****	1): calcolo durata ********	programma origin ** WinMIPS64		******
;		Commenti	Calmi di algale	1
;		Commenti	Colpi di clock	
.data				
V1: .double "100 valori"				
 V6: .double "100 valori"				
V7: .double "100 zeri"				
V8: .double "100 zeri"				
V9: .double "100 zeri" .text				
main:	daddui r1,r0,0	r1 <= puntatore	5	
	daddui r2,r0,100	r2 <= 100	1	
loop:	1.d f1,v1(r1)	f1 <= v1[i]	1	
	1.d $f2,v2(r1)$	$f2 \ll v2[i]$	1	
	mul.d f7,f1,f2	$f7 \le v1[i]*v2[i]$	11	
	s.d $f7,v7(r1)$	f7 => v7[i]	1	
	1.d f3,v3(r1)	$f3 \ll v3[i]$	1	
	1.d f4,v4(r1)	f4 <= v4[i]	1	
	mul.d f7,f3,f4	$f7 \le v3[i]*v4[i]$	11	
	s.d f7,v8(r1)	$f7 \Rightarrow v8[i]$	1	
	1.d f5,v5(r1)	$f5 \ll v5[i]$	1	
	l.d f6,v6(r1)	f6 <= v6[i]	1	
	mul.d f7,f5,f6	$f7 \le v5[i]*v6[i]$	11	
	s.d f7,v9(r1)	f7 => v9[i]	1	
	daddui r1,r1,8	r1 <= r1 + 8	1	
	daddi r2,r2,-1	$r2 \le r2 - 1$	1	
	bnez r2,loop		2	
	halt		1	
	total			

Punto 2): ottimizzazione del programma

Punto 3): calcolo durata su architettura superscalare

#	alcolo durata su archit 		uper scarary			
iterazione		Issue	EXE	MEM	CDB x2	COMMIT x2
1	1.d f1,v1(r1)	1	2	3	4	5
1	1.d f2,v2(r1)	1	3	4	5	6
1	mul.d f7,f1,f2	2	6		16	17
1	s.d f7,v7(r1)	2	4			17
1	1.d f3,v3(r1)	3	5	6	7	18
1	1.d f4,v4(r1)	3	6	7	8	18
1	mul.d f7,f3,f4	4	9		19	20
1	s.d f7,v8(r1)	4	7			20
1	1.d f5,v5(r1)	5	8	9	10	21
1	1.d f6,v6(r1)	5	9	10	11	21
1	mul.d f7,f5,f6	6	12		22	23
1	s.d f7,v9(r1)	6	10			23
1	daddui r1,r1,8	7	8		9	24
1	daddi r2,r2,-1	7	9		10	24
1	bnez r2,loop	8	11			25
2	1.d f1,v1(r1)	9	11	12	13	25
2	1.d f2,v2(r1)	9	12	13	14	26
2	mul.d f7,f1,f2	10	15		25	26
2	s.d f7,v7(r1)	10	13			27
2	1.d f3,v3(r1)	11	14	15	16	27
2	1.d f4,v4(r1)	11	15	16	17	28
2	mul.d f7,f3,f4	12	18		28	28
2	s.d f7,v8(r1)	12	16			29
2	1.d f5,v5(r1)	13	17	18	19	29
2	1.d f6,v6(r1)	13	18	19	20	30
2	mul.d f7,f5,f6	14	21		31	32
2	s.d f7,v9(r1)	14	19			32
2	daddui r1,r1,8	15	16		17	33
2	daddi r2,r2,-1	15	17		18	33
2	bnez r2,loop	16	19			34

I primi 2 cicli sono eseguiti in _____ colpi di clock.