

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

INF 285 - Computación Científica Ingeniería Civil Informática

05: Raíces en 1D (II)

Secuencia de números producida al evaluar una función varias veces.

La secuencia converge a una cantidad r.

Esta cantidad se denomina punto fijo.

Definición 1

El número real r es un **punto fijo** de la función g si g(r) = r.

$$g(x) = \cos x, r \approx 0.7390851332$$

$$g(x) = x^3, r = ?$$

Algoritmo

La ecuación debe ser escrita de la forma g(x) = x.

Luego se aplica el método de punto fijo, comenzando de un punto inicial x_0 .

 $\mathbf{0}$ $x_0 = \text{punto inicial}.$

②
$$x_{i+1} = g(x_i)$$
 para $i = 0, 1, 2, ...,$ entonces

$$x_1 = g(x_0)$$

 $x_2 = g(x_1)$
 $x_3 = g(x_2)$
:

$$g(r) = g\left(\lim_{i\to\infty} x_i\right) = \lim_{i\to\infty} g(x_i) = \lim_{i\to\infty} x_{i+1} = r$$

¿Cada ecuación f(x) = 0 puede ser convertida a un problema de punto fijo g(x) = x?

Ejemplo:

$$x^3 + x - 1 = 0$$

Reescribiendo

$$x = 1 - x^3$$

y podemos definir $g(x) = 1 - x^3$.

¿Es posible obtener otras formas?

(a)
$$1 - x^3$$

(b)
$$\sqrt[3]{x-1}$$

(c)
$$\frac{1+2x^3}{1+3x^2}$$

Convergencia Lineal

Definición 2

Sea e_i el error en la iteración i de un método iterativo. Si

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=S<1$$

el método se dice que obedece una **convergencia lineal** con orden S.

Ejemplo:
$$g_1(x) = -\frac{3}{2}x + \frac{5}{2}$$
 $g_2(x) = -\frac{1}{2}x + \frac{3}{2}$

Convergencia Lineal

Teorema 1

Asuma que g es continuamente diferenciable, y que

$$g(r) = r$$
 y $S = |g'(r)| < 1$.

Entonces el método de punto fijo converge linealmente con orden S al punto fijo r para puntos iniciales suficientemente cercanos a r.

Ejemplo 1

Aplicar el método de punto fijo para resolver la ecuación:

$$\cos X = \sin X$$

Determine además el orden de convergencia.

Teorema 2 (Taylor)

Sea x y x_0 números reales, y f(x) k+1-veces continuamente diferenciable en el intervalo entre x y x_0 , entonces existe un número c entre x y x_0 tal que:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + \frac{f^{(k+1)}(c)}{(k+1)!}(x - x_0)^{k+1}$$

$$k = 1 \longrightarrow f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2$$

Algoritmo

$$x_0$$
 = punto inicial

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 para $i = 0, 1, 2, ...$

Es una iteración de punto fijo!

$$g_N(x) = x_i - \frac{f(x_i)}{f'(x_i)}$$

Ejemplo

$$x^3 + x - 1 = 0$$

Aplicamos Newton:

$$x_{i+1} = x_i - \frac{x_i^3 + x_i - 1}{3x_i^2 + 1}$$
$$= \frac{2x_i^3 + 1}{3x_i^2 + 1}$$

Tomemos $x_0 = -0.7$

Ejemplo

İ	Xi	$f(x_i)$	
0	-0.700000000000	-2.043000000000	
1	0.127125506073	-0.870820032061	
2	0.957678119176	0.836010097011	
3	0.734827794995	0.131614147030	
4	0.684591770685	0.005436583884	
5	0.682332174204	0.000010474580	
6	0.682327803844	0.00000000039	
7	0.682327803828	-0.000000000000	
8	0.682327803828	-0.00000000000	

Convergencia cuadrática

Definición 3

Sea e_i el error después de la iteración i de un método iterativo. La iteración es **cuadráticamente convergente** si

$$M = \lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} < \infty$$

Convergencia cuadrática

Teorema 3

Sea f una función continua dos veces diferenciable con f(r) = 0. Si $f'(r) \neq 0$, entonces el método de Newton es local y cuadráticamente convergente a r. El error e_i en la iteración i satisface:

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i^2}=M$$

donde

$$M=\frac{f''(r)}{2f'(r)}$$

Ejemplo

i	Xi	$f(x_i)$	$ x_i-r $	e_i/e_{i-1}^2
0	-0.700000000000	-2.043000000000	1.382327803828	
1	0.127125506073	-0.870820032061	0.555202297755	0.290555545009
2	0.957678119176	0.836010097011	0.275350315348	0.893270657937
3	0.734827794995	0.131614147030	0.052499991167	0.692449448864
4	0.684591770685	0.005436583884	0.002263966857	0.821394147405
5	0.682332174204	0.000010474580	0.000004370376	0.852665558844
6	0.682327803844	0.000000000039	0.000000000016	0.855089890131
7	0.682327803828	-0.000000000000	0.000000000000	

Para $x^3+x-1=0 \Rightarrow f'(x)=3x^2+1 \Rightarrow f''(x)=6x$. Evaluamos en $x_c\approx 0.6823$ entrega $M\approx 0.85$.

Ejemplo 2

Utilizar el método de Newton para encontrar una raíz de $f(x) = x^2$

$$X_{i+1} = X_i - \frac{f(x_i)}{f'(x_i)} = X_i - \frac{x_i^2}{2x_i} = \frac{x_i}{2}$$

Tomemos $x_0 = 1$

i	Xi	$ x_i-r $	e_i/e_{i-1}
0	1.000	1.000	
1	0.500	0.500	0.500
2	0.250	0.250	0.500
3	0.125	0.125	0.500
÷			:

La convergencia es lineal con S = 1/2.

Ejemplo 3

Utilizar el método de Newton para encontrar una raíz de $f(x) = x^m$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
$$= x_i - \frac{x_i^m}{mx_i^{m-1}}$$
$$= \frac{m-1}{m}x_i$$

Además

$$r = 0 \Rightarrow e_i = |x_i - r| = x_i \Rightarrow e_{i+1} = Se_i \Rightarrow S = (m-1)/m$$

Definición 4

Asuma que r es una raíz de una función diferenciable f, es decir, f(r) = 0. Entonces si

$$0 = f(r) = f'(r) = f''(r) = \cdots f^{(m-1)}(r) = 0$$
 pero $f^{(m)}(r) \neq 0$

se dice que f tiene una raíz de multiplicidad m en r.

Ejemplo 4

Determinar la multiplicidad de la raíz r = 0 de

$$f(x) = \sin x + x^2 \cos x - x^2 - x$$

y estimar el número de iteraciones, usando el método de Newton, para obtener una convergencia de al menos 6 decimales de precisión.

$$f(x) = \sin x + x^{2} \cos x - x^{2} - x$$

$$f'(x) = \cos x + 2x \cos x - x^{2} \sin x - 2x - 1$$

$$f''(x) = -\sin x + 2\cos x - 4x \sin x - x^{2} \cos x - 2$$

$$f'''(x) = -\cos x - 6\sin x - 6x \cos x + x^{2} \sin x$$

$$f(0) = f'(0) = f''(0) = 0, f'''(0) = -1, luego m = 3.$$

Modificado

Si la multiplicidad de una raíz es conocida, entonces la convergencia del método de Newton puede ser mejorada

Teorema 4

Si f es (m+1) veces continuamente diferenciable en [a,b], el cual contiene una raíz r de multiplicidad m>1, entonces el **método de Newton modificado**

$$x_{i+1} = x_i - \frac{mf(x_i)}{f'(x_i)}$$

converge local y cuadráticamente a r.

Tomemos el ejemplo anterior con

$$f(x) = \sin x + x^2 \cos x - x^2 - x,$$

donde sabemos que la raiz r = 0 tiene multiplicidad 3, entonces:

$$x_{i+1} = x_i - \frac{3 f(x_i)}{f'(x_i)}$$

i	Xi
0	1.00000000000000
1	0.16477071958224
2	0.01620733771144
3	0.00024654143774
4	0.00000006072092
5	-0.00000000238988

Ejemplo 5

Apliquemos el método de Newton a

$$f(x) = 4x^4 - 6x^2 - 11/4$$

 $con x_0 = 1/2.$

$$f(x) = 4x^4 - 6x^2 - 11/4$$

 $f'(x) = 16x^3 - 12x$

La iteración queda:

$$x_{i+1} = x_i - \frac{4x_i^4 - 6x_i^2 - 11/4}{16x_i^3 - 12x_i}$$

Ejemplo

i	Xi
0	0.50000000000000
1	-0.500000000000000
2	0.50000000000000
3	-0.500000000000000
4	0.50000000000000
5	-0.50000000000000
6	0.50000000000000
7	-0.50000000000000
8	0.50000000000000
9	-0.50000000000000
10	0.50000000000000

Ejemplo

Ejercicio 1

Considere la siguiente ecuación

$$8x^4 - 12x^3 + 6x^2 - x = 0$$

Para cada una de las soluciones $x_1 = 0$ y $x_2 = 1/2$, decida cuál método converge más rápido (para 8 decimales de precisión), el método de Newton o de la Bisección.