Name:			
ıvame:			
r (willo.			

Answer the questions on the worksheet and not on a separate sheet of paper. Please circle your answers and justify your work for full credit.

True/False

1. Consider the following statement:

If a path $\mathbf{r}(t)$ remains at constant distance from the origin, then the velocity of $\mathbf{r}(t)$ is perpendicular to $\mathbf{r}(t)$.

Is this statement True or False? If the statement is True, give a brief reason. If the statement is False, give a counterexample, and explain how you could make a minimal change to the statement so that it is True (other than negating the statement).

Draw a Picture:

2. Consider the vector function

$$\vec{r}(t) = \langle t^3 - 3t, t^4 - 4t^2 \rangle$$

Graph this function on the interval $0 \le t \le 2$, and draw the vectors \vec{v} , \vec{a} , \vec{T} , and \vec{N} for t = 1.

Matching

- 3. Below shows the plots of three paths \mathbf{x} in \mathbb{R}^3 . Match each parametric description with the correct graph, and give a brief explanation how you know which equation corresponds to which graph.
 - 1. $\mathbf{x}(t) = \langle 15\cos(t), 23\sin(t), 4t \rangle$
 - 2. $\mathbf{x}(t) = \langle \cos(3t), \cos(5t), \sin(4t) \rangle$
 - 3. $\mathbf{x}(t) = \langle 2t\cos(t), 2t\sin(t), 4t \rangle$

