RIO MAROCASO Taller 6 – Modelo Heurístico

Moisés Carvajal Angarita

2023-S2

Generalidades

La cuenca del río Marocaso se encuentra en el Departamento de la Guajira a una altitud de aproximadamente 658 m.s.n.m., entre los municipios de Rihoacha y San Juan del Cesar.

Nace directamente desde las montañas de la Sierra Nevada de Santa Marta y es un afluente directo del Rio Ranchería.

Modelo heurístico

Se planea principalmente realizar un Índice de Susceptibilidad, como se indica a continuación:

$$IS = W_1 a_c + W_2 b_c + W_3 c_c$$

En donde:

- W es el peso de las variables, como por ejemplo la Geología.
- a,b y c es el peso de las clases, como, por ejemplo R. ígneas, sedimentarias y metamórficas.

Para establecer dichos pesos, se utilizarán 2 métodos en específico:

- Método APH para el peso de las variables.
- *Método de asignación directa* para el peso de las clases.

Se pretende hallar el Radio de Consistencia (CR), como se indica a continuación:

$$CR = \frac{CI}{ICA}$$

En donde:

- CI: Índice de Consistencia.
- ICA: Índice de Consistencia aleatorio.

El Índice de Consistencia se establece así:

$$CI = \frac{ValorPropio_{max} - n}{n - 1}$$

Con n = orden de la matriz-

El Índice de Consistencia aleatorio se establece así:

Matrix sizes (n)	1	2	3	4	5	6	7	8	9	10
RI Value	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

(iv) Data analysis: The degree of consistency is satisfactory when CR values are less than 0.1 (SAAT)

Para hallar el valor propio máximo se crea la matriz con la escala de Saaty.

Jerarquización de variables						
Escala numérica	Escala verbal	al Explicación				
1	Igualmente preferida	Dos elementos contribuyen en igual medida al objetivo				
2		Valor intermedio				
3	Moderadamente preferida	La experiencia y juicio favorecen levemente a un elemento sobre otro				
4		Valor intermedio				
5	Fuertemente preferida	La experiencia y juicio favorecen fuertemente a un elemento sobre otro				
6		Valor intermedio				
7	Preferencia muy fuerte o demostrada	Un elemento es mucho más favorecido que el otro, predominancia demostrada en la práctica				
8		Valor intermedio				
9	Extremadamente preferida	La evidencia que favorece una sobre la otra es la más alta posible				
Valores recíprocos	Cuando se asigna uno de los valor recíproco.	s valores anteriores al elemento i respecto de j , el elemento j tendrá el				

Estos valores fueron asignados teniendo en cuenta los valores estadísticos arrojados en el taller 5.

```
Estos son los valores propios:

[ 7.63718313+0.j -0.19089618+1.92305777j -0.19089618-1.92305777j -0.02397119+0.87613592j -0.02397119-0.87613592j -0.1037242 +0.49527008j -0.1037242 -0.49527008j]
```

Posteriormente, se halla CR como se muestra a continuación:

En donde valores[o] es el máximo valor propio, como se mostró en la diapositiva anterior.

Finalmente, se estipula que la matriz A se generó correctamente, ya que CR obtuvo un valor inferior al 10%

Finalmente, con el vector propio normalizado, se obtienen los pesos para cada variable.

```
geologia: (0.05927837617095107+0j)
geomorfologia: (0.034674763051279395+0j)
pendiente: (0.27646543364695597+0j)
curvatura: (0.2737535663357603+0j)
aspecto: (0.09508619201141219+0j)
flujo acumulado: (0.16176555802728804+0j)
altitud: (0.04616332948606875+0j)
```

Método de asignación directa

Para este método, el experto deberá decidir que valores deberán asignarse a cada clase, Cómo se muestra a continuación.

```
geologiaReclass = np.where(geologiaB1 == 1, 0.1, geologiaB1)
geologiaReclass = np.where(geologiaB1 == 2, 1, geologiaReclass)
geologiaReclass = np.where(geologiaB1 == 3, 0.5, geologiaReclass)
```

```
geomorfologiaReclass = np.where(geomorfologiaB1 == 6, 0.1, geomorfologiaB1)
geomorfologiaReclass = np.where(geomorfologiaReclass == 7, 0.1, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 8, 0.3, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 4, 0.4, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 2, 0.4, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 1, 0.5, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 10, 0.7, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 5, 0.8, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 9, 1, geomorfologiaReclass)
geomorfologiaReclass = np.where(geomorfologiaReclass == 3, 1, geomorfologiaReclass)
```

```
# Geologia Conocida
# 1: Granito granofírico
# 2: Granito
# 3: Cuarzo monzonita
```

```
# Geomorfología Conocida

# 1: Ladera contrapendiente

# 2: Lomo de falla

# 3: Espolón moderado de longitud larga

# 4: Espolón bajo de longitud media

# 5: Lomo denudado bajo de longitud larga

# 6: Planicie aluvial confinada

# 7: Montículos y ondulaciones denudadas

# 8: Ladera ondulada

# 9: Espolón faceteado bajo de longitud media

# 10: Sierra
```

Método de asignación directa

Para este método, el experto deberá decidir que valores deberán asignarse a cada clase, Cómo se muestra a continuación. Para los datos continuos, se tuvo en cuenta los Natural Breaks en los histogramas de densidad.

```
pendienteReclass = np.where ( (np.logical_and (pendienteB1 >= 0, pendienteB1 < 9 )), 0.1, pendienteB1 );
pendienteReclass = np.where ( (np.logical_and (pendienteReclass >= 7, pendienteReclass < 19)), 0.3, pendienteReclass);
pendienteReclass = np.where ( (np.logical_and (pendienteReclass >= 19, pendienteReclass < 29 )), 0.5, pendienteReclass);
pendienteReclass = np.where ( (np.logical_and (pendienteReclass >= 29, pendienteReclass < 36 )), 1, pendienteReclass);
pendienteReclass = np.where ( pendienteReclass >= 36, 0.8, pendienteReclass);
```

```
curvaturaReclass = np.where ( (np.logical_and (curvaturaB1 > p40, curvaturaB1 < p60)), 0.1, curvaturaB1)
curvaturaReclass = np.where(curvaturaReclass >= p60, 0.4, curvaturaReclass)
curvaturaReclass = np.where(curvaturaReclass <= p40, 1, curvaturaReclass)</pre>
```

```
aspectoReclass = np.where ( aspectoB1 < 125, 0.1, aspectoB1);
aspectoReclass = np.where ( (np.logical_and (aspectoReclass >= 125, aspectoReclass < 230)), 1, aspectoReclass)
aspectoReclass = np.where ( aspectoReclass >= 230, 0.4, aspectoReclass);
```

Método de asignación directa

Para este método, el experto deberá decidir que valores deberán asignarse a cada clase, Cómo se muestra a continuación. Para los datos continuos, se tuvo en cuenta los Natural Breaks en los histogramas de densidad.

```
flujoAcumReclass = np.where ( flujoAcumB1 < 100, 0.3, flujoAcumB1)
flujoAcumReclass = np.where ( (np.logical_and (flujoAcumReclass >= 100, flujoAcumReclass < 6000)), 0.6, flujoAcumReclass)
flujoAcumReclass = np.where ( flujoAcumReclass > 6000, 0.1, flujoAcumReclass);
```

```
altitudReclass = np.where ( altitudB1 < 700, 0.1, altitudB1)
altitudReclass = np.where ( (np.logical_and (altitudReclass >= 700, altitudReclass < 1000)), 0.4, altitudReclass)
altitudReclass = np.where ( (np.logical_and (altitudReclass >= 1000, altitudReclass < 1700)), 0.9, altitudReclass)
altitudReclass = np.where ( (np.logical_and (altitudReclass >= 1700, altitudReclass < 2100)), 0.2, altitudReclass)
altitudReclass = np.where ( (np.logical_and (altitudReclass >= 2100, altitudReclass < 2550)), 0.7, altitudReclass)
altitudReclass = np.where ( altitudReclass >= 2550, 0.1, altitudReclass)
```

Mapa de susceptibilidad

A continuación, se muestra el mapa de susceptibilidad obtenido haciendo uso del método heurístico.

Mapa d