Accelerating Biomolecular Nuclear Magnetic Resonance Assignment with A*

Joel Venzke, Paxten Johnson, Rachel Davis, John Emmons, Katherine Roth, David Mascharka, Leah Robison, Timothy Urness and Adina Kilpatrick

> Department of Mathematics and Computer Science Drake University

> > joel.venzke@drake.edu

April 10,2014

Overview

- Introduction
 - Motivation
 - Nuclear Magnetic Resonance Spectroscopy
- NMR Assignment Overview
 - Data Collection and Manual Assignment
- Automation Algorithm
 - Preprocessing
 - Assignment
 - Goal State
- Conclusion
 - Results
 - Outlook

Introduction

Motivation

- Nuclear Magnetic Resonance Spectroscopy
 - Gain knowledge about protein structure
 - Study how mutations lead to diseases
- Problems
 - Generates large amounts of data
 - Data analysis is slow and error prone
- Goal
 - Automate the assignment process
 - Decrease human error
 - Increase productivity

Introduction •0

Nuclear Magnetic Resonance (NMR)

- Used to obtain structural information
 - Chemical shift values
- HNCACB experiment
 - Generates C_{α} and C_{β} residue i and i-1
- CBCA(CO) NH experiment
 - Generates C_{α} and C_{β} for residue i
 - Confirms residue data

Nuclear Magnetic Resonance Spectroscopy

Introduction 0

Chemical Shift Values

HNCACB

Data Collection and Manual Assignment

Timeline

NMR Assignment with A*

Data Collection and Manual Assignment

Manual Methods

- Most time consuming part
- Prone to human error
- Missing and ambiguous data forces chunks to be skipped

Preprocessing

Initialization

- Input
 - Expected amino acid sequence
 - Covered to expectation chemical shift values
 - Stored as the protein chain
 - NMR chemical shift data
 - C_{α} and C_{β} for residue i and i-1
 - Stored in a tile
- Missing data
 - Place holder tile generation
- Grouping

00 0000 000

Preprocessing

Grouping

Assignment

Starting the assignment

13 11 9 Tiles to assign: 9 13

Protein Chain		Tiles	
11.5	13 9	11 13	9
12.5			
9.6			

Assignment

Cost Calculation

- Accuracy matching the protein chain residue
- Accuracy matching the tile above current tile
- Cost of all tiles place before current tile

Automation Algorithm

OO
OO
OO

Conclusion 0 0000

Assignment

Generating child nodes

Tiles to assign: $\begin{bmatrix} 13 \\ 9 \end{bmatrix} \begin{bmatrix} 11 \\ 13 \end{bmatrix} \begin{bmatrix} 9 \\ 12 \end{bmatrix}$

Protein Chain		Tiles	
11.5	13 9 1.5	11 13 0.5	9 12 2.5
12.5			
9.6			

Assignment

Generating child nodes

Goal State

Goal State

1.6

Goal State

Goal State

9.6

Goal State

Solution State

13

1.0

1.6

8.0

5.0

11.5

12.5

9.6

6.0

13

Results

Time of Assignment

Future Goals

- Parallelization
 - Decrease assignment time
 - Allow for larger data sets
- Machine learning
 - Increase accuracy of assignment
 - Optimize cost calculation

Outlook

Acknowledgments

- Dr. Tim Urness (Mathematics and Computer Science)
- Dr. Adina Kilpatrick (Physics)
- Rachel Davis (research colleague)
- John Emmons (research colleague)
- Katherine Roth (research colleague)
- David Mascharka (research colleague)
- Leah Robison (research colleague)

Outlook

Bibliography

Sean Cahill and Mark Girvin. Introduction to 3d triple resonance experiments. 2012

Outlook

Thank You

