МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23.05.2013 Г. – <u>ВА</u>РИАНТ 1

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

1. Най-малко е числото:

A)
$$\left(\frac{7}{6}\right)^2$$

B)
$$\left(\frac{5}{3}\right)^{-\frac{1}{2}}$$

$$\Gamma$$
) $\left(\frac{3}{4}\right)^{\frac{1}{2}}$

2. Стойността на израза $\frac{x+3}{x^2-9} - \frac{1}{x-3} + \frac{x-2013}{x+3}$ за x = 2013 е равна на:

3. Допустимите стойности на израза $\frac{\sqrt{|x|}}{x}$ са:

A)
$$\left(-\infty;+\infty\right)$$

b)
$$[0; +\infty)$$

B)
$$(-\infty; 0]$$

B)
$$(-\infty; 0]$$
 Γ) $(-\infty; 0) \cup (0; +\infty)$

4. Числото $\log_2 3$ е корен на уравнението:

A)
$$3^x = 2$$

b)
$$2^x = 3$$

B)
$$3^x = \frac{1}{2}$$

B)
$$3^x = \frac{1}{2}$$
 Γ) $2^x = \frac{1}{3}$

5. На кое от уравненията сборът от реалните корени е 2,5?

A)
$$2x^2 - 5x + 5 = 0$$

b)
$$2x^2 - 5x + 3 = 0$$

B)
$$2x^2 - 2x + 5 = 0$$

$$\Gamma) \ 2x^2 + 5x - 3 = 0$$

6. Решенията на неравенството $x^2 - 2x + 3 > 0$ са:

A)
$$x \in \emptyset$$

b)
$$x \in (-\infty; -1) \cup (3; \infty)$$

B)
$$x \in (-\infty; -3) \cup (1; \infty)$$

$$\Gamma) \ x \in \left(-\infty; \infty\right)$$

- 7. Стойността на sin 240° e:
- **A)** $-\frac{\sqrt{3}}{2}$

b) $-\frac{1}{2}$

B) $\frac{1}{2}$

- Γ) $\frac{\sqrt{3}}{2}$
- 8. В равнобедрен $\triangle ABC(AC = BC)$ е вписана окръжност k с център O. Лъчът BO^{\rightarrow} пресича страната AC в точка P, като AP = 6 ст и PC = 12 ст. Периметърът на $\triangle ABC$ е :

A) 72 cm

Б) 45 cm

B) 9 cm

- Г) невъзможно да се определи
- 9. В $\triangle ABC$ AB = 7 cm, а AC = 5 cm. Ако $\angle ACB = 120^{\circ}$, то дължината на страната BC e:
- **A)** 3 cm

Б) 6 cm

B) $\sqrt{39}$ cm

- Γ) 8 cm
- **10.** Ако общият член на числова редица е $a_n = \left(-1\right)^{n+1}(n+1) 3.(-1)^n$, то a_{13} е равен на:
- **A)** -16

b) -11

B) 10

- **Г**) 17
- **11.** Дадена е крайна геометрична прогресия с $a_1 = 729$, $q = \frac{1}{3}$ и $a_n = \frac{1}{9}$. Броят n на членовете на прогресията е:
- **A)** 5

Б) 7

B) 8

- **F**) 9
- **12.** Наредените двойки числа (x; y), които са решения на системата $\begin{vmatrix} y = 6 x^2 \\ y = -x \end{vmatrix}$, са
- разположени:
- А) само в първи квадрант

- Б) само в четвърти квадрант
- В) във втори и в четвърти квадрант
- Г) в първи и в трети квадрант

13. Разходите на фирма за един месец са $18\,000\,$ лв. Тяхното разпределение е представено чрез кръговата диаграма. Ако $\angle AOB = 170^{\circ}$ и $\angle BOC = 64^{\circ}$, то разходите за заплати са:

- А) 3200 лв.
- **Б**) 6000 лв.
- **B**) 6300 лв.
- Г) 8500 лв.

14. На страната AC на $\triangle ABC$ е взета точка D, така че $\angle DBC = \angle CAB$. Ако AD = 16 cm, DC = 2 cm и BD = 5 cm, то дължината на страната AB е равна на:

- **A)** 6 cm
- **Б**) 15 cm
- **B**) $\frac{55}{3}$ cm
- **Γ**) 36 cm
- **15.** За $\triangle ABC$ е дадено, че AB = 5 и $\sin \angle CAB : \sin \angle CBA = 3 : 2$. Ако $AC^2 + BC^2 = 117$, то периметърът на триъгълника е:
- **A)** 20

- **Б**) 18
- **B)** $5 + 3\sqrt{17}$
- Γ) 5+3 $\sqrt{85}$
- 16. Височината към хипотенузата в правоъгълен триъгълник има дължина 6 cm и сключва с един от катетите ъгъл 30° . Лицето на триъгълника е:
- **A)** 18 cm^2
- **Б**) 36 cm²
- **B**) $24\sqrt{3}$ cm²
- Γ) $48\sqrt{3}$ cm²
- 17. Около трапеца ABCD с основи AB = 40 cm и CD = 10 cm е описана окръжност. Ако в трапеца е вписана окръжност, то дължината на нейния радиус е:

Б) 15 cm

B) 20 cm

Г) друг отговор

18. Дължината на единия диагонал на ромб е 75% от дължината на другия, а лицето му е 24 cm². Радиусът на вписаната в ромба окръжност е:

A) 8 cm

b) 6 cm

B) 4,8cm

- Γ) 2,4 cm
- 19. В $\triangle ABC$ AB = 8, AC = 15 и $\angle BAC = 60^{\circ}$. Височината AH ($H \in BC$) на триъгълника е:
- **A)** $\frac{60}{13}$
- **Б**) $\frac{60\sqrt{3}}{13}$
- **B**) $\frac{60\sqrt{3}}{7}$
- $\Gamma) \frac{120\sqrt{3}}{13}$
- 20. Колко са трицифрените четни числа с различни цифри, цифрата на десетиците на които е нула?
- **A)** 32

Б) 36

- **B**) 45
- **Г**) 72

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

- **21.** Намерете решенията на неравенството $(x+6)(36-x^2) \le 0$.
- **22.** Да се реши уравнението $\frac{x}{2-x} + \frac{x+4}{x^2-x-2} = 2$.
- 23. В серия от 30 опита участник в стрелба по цел е получил 13,5 наказателни точки. Колко попадения е реализирал участникът, ако за първия пропуск наказанието е една точка, а всеки следващ пропуск се наказва с половин точка повече от предходното наказание?
- **24.** Коефициентът c на квадратното уравнение $x^2 2x + c = 0$ е цяло число от интервала [-2; 3]. Каква е вероятността уравнението да има реални корени?
- **25.** Даден е $\triangle ABC$ с ъглополовяща BD. Ако $\angle ABC = 2\angle CAB$, AC = 3CD = 18, намерете S_{ABC} .

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

- **26.** Намерете корените на уравнението $x^2 2x = t$, където t е решение на уравнението $\sqrt{t+1} \sqrt{2t-5} = 1$.
- 27. Да се докаже, че ако α, β и γ са ъгли в триъгълник, то е изпълнено тъждеството $\sin \alpha + \sin \beta \sin \gamma = 4 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}$.
- 28. В остроъгълния $\triangle ABC$ медианата AM ($M \in BC$) и височината CH ($H \in AB$) са съответно равни на $6\sqrt{5}$ cm и 12 cm. Ако страната BC = 20 cm, намерете дължината на радиуса на описаната около $\triangle ABC$ окръжност.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left| a \right| & 2^{k+1}\sqrt[3]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \quad \sqrt[n]{k} \overline{a} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \quad \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \quad \text{и} \quad m, n, k \in \mathbb{N} \\ \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \quad \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°−α	90°+α	180°-α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \cos^$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Математика – 23 май 2013 г.

ВАРИАНТ 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1	В	2
2	В	2
3	Γ	2
4	Б	2
5	Б	2
6	Γ	2
7	\mathbf{A}	2
8	Б	2
9	\mathbf{A}	2
10	Γ	2
11	Γ	3
12	В	3
13	В	2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
14	Б	3
15	\mathbf{A}	3
16	В	3
17	A	3
18	Γ	3
19	Б	3
20	A	3
21	$x \in [6; +\infty) \cup \{-6\}$	4
22	$x_1 = -\frac{4}{3}$	4
23	24	4
24	$\frac{2}{3}$ $S_{ABC} = 54\sqrt{3}$	4
25	$S_{ABC} = 54\sqrt{3}$	4
26	$t = 3, x_1 = -1, x_2 = 3$	10
27	-	10
28	$R = \frac{10\sqrt{10}}{3}$	10

Въпроси с решения

26. Критерии за оценяване:

1. Получаване на уравнението
$$\sqrt{t+1} = 1 + \sqrt{2t-5}$$
 (1 т.)

2. Получаване на уравнението
$$2\sqrt{2t-5} = 5-t$$
 (2 т.)

3. Получаване на уравнението
$$t^2 - 18t + 45 = 0$$
 (1 т.)

4. Намиране на корените
$$t_1 = 15$$
, $t_2 = 3$ на квадратното уравнение (2 т.)

5. Проверка дали
$$t_1 = 15$$
, $t_2 = 3$ са корени на ирационалното уравнение (2 т.)

6. Намиране на корените
$$x_1 = -1$$
, $x_2 = 3$ на уравнението $x^2 - 2x = 3$ (2 т.)

Забележка. Ако решаването на съответните ирационални уравнения е свързано с еквивалентни преобразования, двете точки за проверка се добавят към получените точки за решаване на уравненията.

27. Критерии за оценяване:

1. За използване на
$$\alpha + \beta + \gamma = \pi$$
 (1 т)

2. За изразяване на
$$\gamma = \pi - (\alpha + \beta)$$
 (1 т.)

3. За преобразуване на
$$\sin \alpha + \sin \beta$$
 или $\sin \alpha - \sin \gamma$ в произведение (2 т.)

4. За изразяване на
$$\sin \gamma = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha + \beta}{2}$$
 (1 т.)

28. Критерии за оценяване:

I начин

1. Прилагане на Питагорова теорема за
$$\triangle HBC$$
 и намиране $HB = 16$ cm
Означаване $AH = x$ и $AC = y$
(1 т.)

2. Прилагане на формула за медианата АМ

$$\left(6\sqrt{5}\right)^2 = \frac{1}{4} \left[2(x+16)^2 + 2y^2 - 400\right]$$

и получаване на уравнението
$$(x+16)^2 + y^2 - 560 = 0$$
 (2 т.)

3. Прилагане на Питагорова теорема за $\triangle AHC$

и получаване на уравнението
$$x^2 + 144 = y^2$$
 (1 т.)

4. Съставяне на системата
$$\begin{vmatrix} x^2 + 144 = y^2 \\ (x+16)^2 + y^2 - 560 = 0 \end{vmatrix}$$
 (1 т.)

5. Решение на системата и намиране
$$x = 4$$
 и $y = 4\sqrt{10}$ (2 т.)

6. Намиране на
$$\sin \angle ABC = \frac{3}{5}$$
 (1 т.)

7. Прилагане на синусова теорема за
$$\triangle ABC$$
 и намиране на $R = \frac{10\sqrt{10}}{3}$ (2 т.)

II начин:

1. Прилагане на Питагорова теорема за
$$\triangle HBC$$
 и намиране $HB = 16$ cm (1 т.)

2. Изразяване на
$$\sin \angle ABC = \frac{3}{5}$$
 (1 т.)

3. Намиране на
$$\cos \angle ABC = \frac{4}{5}$$
 (2 т.)

4. Прилагане на косинусова теорема за $\triangle ABM$ и намиране на $AB = 20 \,\mathrm{cm}$ и $AH = 16 \,\mathrm{cm}$ (2 т.)

5. Прилагане на косинусова теорема за
$$\triangle ABC$$
 и намиране на $AC = 4\sqrt{10}$ cm (2 т.)

6. Прилагане на синусова теорема за
$$\triangle ABC$$
 (1 т.)

7. Намиране
$$R = \frac{10\sqrt{10}}{3}$$
 (1 т.)