Write your name here	Other r	namas
Surname	Other	names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 1: The Core Prin	ry	mistry
Friday 22 May 2015 – Morr Time: 1 hour 30 minutes	ning	Paper Reference WCH01/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box 🔀 and then mark your new answer with a cross \boxtimes .

- In which order do the electrons fill the orbitals of an atom?

 - ☑ B 1s 2s 2p 3s 3d 3p 4s 4p

 - ☑ D 1s 2s 2p 3s 3p 4s 3d 4p

(Total for Question 1 = 1 mark)

- **2** Ions are separated in the mass spectrometer by
 - A a vacuum pump.
 - **B** a magnetic field.
 - **C** an ionization chamber.
 - **D** electron bombardment.

(Total for Question 2 = 1 mark)

- **3** Which of the following contains one mole of neutrons?
 - \triangle A 1 g of 1 H
 - \boxtimes **B** 1 g of ${}^{12}_{6}$ C
 - \square **C** 2 g of ${}_{12}^{24}$ Mg
 - \square **D** 2 g of $^{22}_{10}$ Ne

(Total for Question 3 = 1 mark)

Λ.	displacement.
⊠ B	neutralization.
⊠ C	oxidation.
⊠ D	precipitation.
	(Total for Question 4 = 1 mark)
The A	vogadro constant is numerically equal to the number of
⊠ A	ions in 1 mol of sodium chloride, NaCl
	atoms in 1 mol of hydrogen gas, H ₂
⊠ C	electrons in 1 mol of helium gas, He
⊠ D	molecules in 1 mol of oxygen gas, O ₂
	(Total for Question 5 = 1 mark)
_	of magnesium is added to 1 dm³ of 1 mol dm⁻³ copper(II) sulfate solution and ixture is stirred until no further reaction occurs.
Which	of the following is a result of this reaction?
⊠ A	The resulting solution is colourless.
	10 g of copper is displaced.
⋈ C	63.5 g of copper is displaced.
	All all
⊠ D	All the magnesium reacts.

7 Which of the following gas samples has the same volume as 7.0 g of carbon monoxide?

All volumes are measured at the same temperature and pressure.

- A 1.0 g of hydrogen
- **■ B** 3.5 g of nitrogen
- **D** 35.5 g of chlorine

(Total for Question 7 = 1 mark)

- **8** Which of the following aqueous solutions contains the greatest number of **negative** ions?
 - \triangle A 500 cm³ of 0.10 mol dm⁻³ Na₂SO₄(aq)
 - \blacksquare **B** 250 cm³ of 0.12 mol dm⁻³ BaCl₂(aq)
 - \square **C** 250 cm³ of 0.15 mol dm⁻³ KI(aq)
 - \square **D** 500 cm³ of 0.10 mol dm⁻³ Zn(NO₃)₂(aq)

(Total for Question 8 = 1 mark)

9 In an experiment carried out at 200 °C and 1 atm pressure, 20 cm³ of ammonia gas reacted with an excess of heated copper(II) oxide.

$$3CuO(s) + 2NH_3(g) \rightarrow 3Cu(s) + 3H_2O(g) + N_2(g)$$

If all measurements were made at 200 °C and 1 atm pressure, what would be the total volume, in cm³, of gaseous products?

- B 20
- **C** 30

(Total for Question 9 = 1 mark)

10 Ammonia is manufactured from hydrogen and nitrogen in the Haber process.

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

- If 60 tonnes of hydrogen produces 80 tonnes of ammonia, what is the percentage yield in the reaction?
- \triangle **A** $\frac{80}{170} \times 100\%$
- \square **B** $\frac{80}{340} \times 100\%$
- \square **C** $\frac{30}{80} \times 100\%$
- \square **D** $\frac{60}{80} \times 100\%$

(Total for Question 10 = 1 mark)

- 11 Which of the following compounds has the greatest ionic character?
 - A Caesium fluoride
 - **B** Caesium iodide
 - **C** Potassium fluoride
 - **D** Potassium iodide

(Total for Question 11 = 1 mark)

- 12 Which species has a dative covalent bond?

 - \blacksquare **B** H₂O
 - C OH-
 - \square **D** O_2

(Total for Question 12 = 1 mark)

13 The atomic radius of potassium is larger than that of sodium because potassium has

- A a larger nuclear charge.
- B a larger nucleus.
- **D** a smaller first ionization energy.

(Total for Question 13 = 1 mark)

14 Consider the following data.

$$S(s) + H_2(g) \rightarrow H_2S(g)$$

$$\Delta H^{\oplus} = a$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$

$$\Delta H^{\ominus} = \mathbf{b}$$

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

$$\Delta H^{\odot} = c$$

$$H_2S(g) + 1\frac{1}{2}O_2(g) \rightarrow H_2O(I) + SO_2(g)$$

$$\Delta H^{\oplus} = d$$

What is the relationship between a, b, c and d?

$$\triangle$$
 A $a = b + c - d$

$$\boxtimes$$
 B $a = d - b - c$

$$\triangle$$
 C $a = b - c - d$

$$\square$$
 D $a = d + c - b$

(Total for Question 14 = 1 mark)

15 In which of the following does X represent the mean bond enthalpy for the O–H bond in water?

$$\square$$
 A $H_2O(g) \rightarrow O(g) + H_2(g)$

$$\Delta H = 2X$$

$$\square$$
 B H₂O(g) \rightarrow O(g) + 2H(g) $\Delta H = 2X$

$$\Delta H = 2X$$

$$\square$$
 C $H_2O(g) \rightarrow O(g) + H_2(g)$ $\Delta H = X$

$$\Delta H = \mathbf{X}$$

$$\square$$
 D $H_2O(g) \rightarrow O(g) + 2H(g)$ $\Delta H = X$

$$\Delta H = \mathbf{X}$$

(Total for Question 15 = 1 mark)

16 Which of the following is a step in the propagation stage of the chlorination of methane?

$$\square$$
 A $Cl_2 \rightarrow Cl^{\bullet} + Cl^{\bullet}$

$$\square$$
 C $CH_3^{\bullet} + CI_2 \rightarrow CH_3CI + CI^{\bullet}$

$$\square$$
 D CH₄ + Cl• \rightarrow CH₃Cl + H•

(Total for Question 16 = 1 mark)

17 A molecule of **Z** has the following structure:

Molecule of **Z**

What are the total numbers of σ -bonds and π -bonds in a molecule of **Z**?

	Number of σ -bonds	Number of π -bonds
⊠ A	3	11
⊠B	8	3
⊠ C	11	3
⊠ D	14	6

(Total for Question 17 = 1 mark)

18 Which is the structure of *Z*-1,2-dibromoprop-1-ene?

 \boxtimes A

$$C = C$$
 $C = C$
 $C = C$
 $C = C$
 $C = C$

 \bowtie B

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

X C

$$\begin{array}{ccc} H & CH_3 \\ C = C & Br \end{array}$$

□ D

(Total for Question 18 = 1 mark)

19 The skeletal formula of 3-methylcyclobut-1-ene is shown below.

What is the skeletal formula of 1-ethyl-3-methylcyclopent-1-ene?

⊠ A

 \times B

 \times C

⊠ D

(Total for Question 19 = 1 mark)

20	20 Which of the following fuels, when burned, would make no significant contribution to climate change?				
	X	A	Hydrogen		
	X	В	Methane		
	X	C	Petrol		
	×	D	Coal		
			(Total for Question 20 = 1 mark)		
	_	_			

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 21 A propellant for a rocket consists of a fuel, kerosene, and an oxidizer, liquid oxygen.
 - (a) The formulae of some hydrocarbons present in kerosene are shown in the table below.

Hydrocarbon	Formula
A	
В	CH ₃ (CH ₂) ₁₀ CH ₃
C	
D	
E	

(i) Name the homologous series to which the compounds **A**, **B**, **C** and **E** belong.

(1)

(ii) Name the compound A .	(1)
(iii) Explain the term structural isomers , by reference to two molecules selected from the table in part (a).	(3)
(iv) Give the molecular formula of the compound D .	(2)

(b) In the petrochemical industry, other fuels are obtained by the cracking and reforming of kerosene.		
Using appropriate letters, ${\bf A}$ to ${\bf D}$, identify a molecule listed in the table that could be formed from ${\bf E}$ by	ł	
(i) cracking alone		
	(1)	
(ii) cracking and then reforming	(1)	
	()	
(c) Suggest how engine performance is improved by using a fuel containing the molecule that you have identified in (b)(ii).		
morecare that you have rachemed in (5)(ii).	(1)	
(d) The energy density of a fuel is defined as the energy produced per kilogram of f	uel.	
Calculate the energy density of dodecane, $C_{12}H_{26}$, in kJ kg $^{-1}$. Give your answer to two significant figures.		
The enthalpy change of combustion of dodecane is $-8086 \text{ kJ mol}^{-1}$.		
[Molar mass: $C_{12}H_{26} = 170 \text{ g mol}^{-1}$]	(0)	
	(3)	
energy density =		kJ kg ⁻¹
(Total for Question 21 = 13 m	arks)	

BLANK PAGE

- 22 Born-Haber cycles can be used to determine experimental values of lattice energies.
 - (a) The diagram below shows a Born-Haber cycle for the formation of strontium chloride from strontium and chlorine.

Using symbols from ΔH_1 to ΔH_7 as appropriate, identify the

(i) enthalpy change of atomization of strontium

(1)

(ii) bond enthalpy of chlorine

(1)

(iii) first electron affinity of chlorine

(1)

(iv) enthalpy change of formation of strontium chloride

(1)

(b) The table below shows the energy changes that are needed to determine the lattice energy of strontium chloride, SrCl₂.

Energy change	ΔH / kJ mol ⁻¹
enthalpy change of atomization of strontium	+164
first ionization energy of strontium	+550
second ionization energy of strontium	+1064
enthalpy change of atomization of chlorine, ½Cl ₂	+122
first electron affinity of chlorine	-349
enthalpy change of formation of strontium chloride	-829

(i) Define the term lat		(2)
	e energy of strontium chloride, in kJ mol $^{-1}$.	(2)

lattice energy =kJ mol⁻¹

*(c)	The lattice energies of sodium fluoride and magnesium fluoride are shown in the
	table below.

Compound	Lattice energy / kJ mol ⁻¹
Sodium fluoride, NaF	-918
Magnesium fluoride, MgF ₂	-2957

Explain, in terms of the sizes and charges of the ions involved, why the lattice energy of MgF_2 is more negative than that of NaF.

(Total for Question 22 = 11	
	(3)
	(2)

BLANK PAGE

23	This question is about alkenes.	
	(a) Give the general formula for the homologous series of alkenes.	(1)
	(b) Give the structural formula of the organic product formed when ethene , CH ₂ =CH ₂ , reacts with	
	(i) hydrogen	(1)
	(ii) chlorine	(1)
	(iii) acidified aqueous potassium manganate(VII)	(1)
	(iv) bromine water	(1)

(c)	When propene , CH ₃ CH=CH ₂ , reacts with hydrogen chloride, there are two
	possible products, a major product and a minor product.

(i)	Draw tho	displayed	formulae	of those	products
(1)	Draw the	aispiaved	Tormulae	or these	products.

(2)

Major product	Minor product
· ·	·

(ii) Give the mechanism for the reaction of **propene** with hydrogen chloride which forms the major product.

(3)

(d) Propene can be polymerized.	
 (i) Write a balanced equation for the polymerization of propene to form poly(propene), drawing the displayed formula of the repeat unit of poly(propene). 	
	(3)
(ii) State a problem associated with the disposal of waste poly(propene).	
	(1)

(e) Standard enthalpy changes of combustion can be used to calculate the standard enthalpy change of formation of propene.

$$3C(s) + 3H_2(g) \longrightarrow C_3H_6(g)$$

Values for some standard enthalpy changes of combustion, ΔH_c^{\ominus} , are shown in the table below.

Substance	$\Delta H_{\rm c}^{\ominus}$ / kJ mol $^{-1}$
C(s)	-394
H ₂ (g)	-286
C₃H ₆ (g)	-2058

(i) Complete the Hess cycle below to enable you to calculate $\Delta H_{\rm f}^{\ominus}$ from combustion data.

(1)

$$3C(s) + 3H_2(g)$$
 \longrightarrow $C_3H_6(g)$

(ii) Calculate $\Delta H_{\rm f}^{\oplus}$, in kJ mol⁻¹.

(2)

standard enthalpy change of formation of propene =kJ mol⁻¹

(Total for Question 23 = 17 marks)

24 The diagram below shows the pattern in the first ionization energies of the first 18 elements.

(a) Give the equation, including state symbols, for the first ionization energy of fluorine.

(2)

*(b) Explain why there is a **general** increase in the first ionization energies from sodium to argon.

(3)

	by the first ionization of th	zation energy		JM (Z = 13) IS 16		(2)
-	by the first ionizes $(Z = 15)$.	zation energy	of sulfur (Z	= 16) is less th	an that of	(2)
(d) The table belo	ow, which is inc	omplete, refer	rs to the ele	ements sodium	to sulfur.	
Element	Na	Mg	Al	Si	Р	S
Melting	Na	Mg high	Al	Si	Р	S
Element Melting temperature Structure			Al	Si	P	S
Melting temperature Structure Electrical		high	Al	Si	P	S
Melting temperature Structure Electrical conductivity	low the melting te	high giant high				S
Melting temperature Structure Electrical conductivity (i) Complete 'high' or 'lo	the melting te	high giant high mperature ro	ow by using	g only the word	ls	(2)
Melting temperature Structure Electrical conductivity (i) Complete 'high' or 'lo	low the melting te	high giant high mperature ro	ow by using	g only the word	ls nolecular'.	

(e)	In an experiment, 2.76 g of sodium completely reacted with water to form
	500 cm ³ of aqueous sodium hydroxide.

$$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$$

(i) Calculate the number of moles of sodium that reacted.

(1)

(ii) Calculate the maximum volume, in dm³, of hydrogen that can be formed at room temperature and pressure.

[1 mol of any gas occupies 24 dm³ at room temperature and pressure.]

(2)

(iii) Calculate the concentration, in mol dm^{-3} , of the sodium hydroxide solution, NaOH(aq), formed in the experiment.

(2)

(Total for Question 24 = 19 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

7											m	4	Ŋ	9	7	0 (8)
(2)			Key			1.0 F hydrogen					(13)	(14)	(15)	(16)	(47)	4.0 He helium 2
6.9 9.0 Li Be tithium beryllium 3 4	E	relat atc	relative atomic mass atomic symbol name atomic (proton) number	bol bol							10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen 7	16.0 O oxygen 8	19.0 F fluorine 9	20.2 Ne neon
23.0 24.3 Na Mg sodium magnesium 11 12	(3)	<u>(4)</u>	(5)	(9)	(0)	(8)	(6)	(01)	(11)	(12)	27.0 AI aluminium 13	Si Sificon 14	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 Cl chlorine 17	39.9 Ar argon 18
39.1 40.1	45.0	47.9	6'05	52.0	54.9	55.8	58.9	58.7	63.5	65.4	2.69	72.6	74.9	0.67	6.62	83.8
potassium calcium	Sc n scandium 21	Ti titanium 22	V vanadium 23	Chromium 24	Mn manganese 25	Fe iron 26	Co cobalt 27	mickel 28	Cu copper 29	Zinc 30	Ga gallium 31	Ge germanium 32	AS arsenic 33	Selenium 34	Br bromine 35	Krypton 36
85.5 87.6		91.2	92.9	62.6	[86]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131,3
Rb Sr rubidium strontium 37 38	Y m yttrium 39	Zr zirconium 40	Nobium 41	Mo Tc Ru molybdenum technetium ruthenium 42 43 44	Tc technetium 43	Ru ruthenium 44	Rh rhodium 45	Pd palladium 46	Ag silver 47	Cd cadmium 48	In indium 49	So the	Sb antimony 51	Te tellurium 52	iodine 53	Xenon xenon 54
132.9 137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	9.002	204.4	207.2	209.0	[506]	[210]	[222]
Cs Ba caesium barium 55 56	La*	Hf hafnium 72	Ta tantalum 73	W tungsten 74	Re rhenium 75	Os osmium 76	iridium 77	Pt platinum 78	Au gold 79	Hg mercury 80	T1 thallium 81	Pb lead 82	Bi bismuth 83	Po polonium 84	At astatine 85	Radon 86
[223] [226] Fr Ra francium radium 87 88	Ac* Ac* n actinium 89	Rf nutherfordhum 104	[262] Db dubmium 105	Sg seaborgium 106	[264] Bh bohrium 107	Hs Hs hassfum 108	[268] Mt meitnerium 109	[268] [271]	Rg roentgenium 1111	150	Elements with atomic numbers 112-116 have been reported but not fully authenticated	atomic nur but not f	tomic numbers 112-116 hav but not fully authenticated	116 have t	seen repor	ted
* Lanthanide series * Actinide series	sies	Ce certum	Pr Prascodymlum 59	141 144 [147] Pr Nd Pm præsexofymum promethium 59 60 61	[147] Pm promethium 61	150 Sm samarrium 62	152 Eu europium 63	157 Gd gadolinium 64	159 Tb terbium 65	163 165 Dy Ho dysprosium holmium 66 67	165 Ho holmium 67	167 Er erbium 68	Tm thulium	173 Yb ytterbium 70	175 Lu lutetium 71	
		Th thorium	[231] Pa	U uranium	Np neptunium	[237] [242] [243] Np Pu Am neptunium plutonium americium	[243] Am americium	[247] Cm curum	[245] Bk berkelium	Cf Es californium einsteinium	[254] Es	[253] Fm fermium	[256] Md mendelevium	[254] No nobelfum	[257] Lr tawrencium	