1001011101111000001

001101100011111010100

第五章 网络层

RIP为什么会衰败

10100110100010ZO 1011110001110

DV路由可能遇到的问题

路由环路(routing loop)

计数到无穷问题(Count to infinite)

收敛慢的问题(slow Convergence)

相信错误的路由信息导致

好消息跑得快, 坏消息传得慢

(It reacts rapidly to good news, but leisurely to bad news)

错误路由消息的传播

时间	A	В	С	刷新
初始	2	1	0	信宿可达
40.0.0.0 断开	2	1	2	B→C, 1+1=2

C与B之间的对话:

- C 我得不到信宿40.0.0.0的任何路由信息, 你能告诉我如何到 达信宿吗?
- B 我可以到达信宿,距离为1。(传播了一条过时的错误信息)
- C 既然如此,我选择经过你到达信宿的路径,距离为2。

路由环

时间	A	В	С	刷新
初始	2	1	0	信宿可达
40.0.0.0 断开	2	1	2	$B \rightarrow C$, $1+1=2$
第1步	2	3	2	$C \rightarrow B$, $2+1=3$
第2步	4	3	4	B→C, 3+1=4
				B→A, 3+1=4
• • •				

这条错误的路由信息在C与B之间不断复制和修改,并 在网络中传播(殃及A),形成路径传播的环路。

计数到无穷

时间	A	В	С	刷新
初始	2	1	0	信宿可达
40.0.0.0 断开	2	1	2	$B \rightarrow C$, $1+1=2$
第1步	2	<u>3 <</u>	2	C→B, 2+1=3
第2步	4	3	4	$B \rightarrow A$, $B \rightarrow C$, $3+1=4$
第3步	4	<u></u>	4	C→B, 4+1=5
• • •			1	
第13步	14	15	14	C→B, 14+1=15
第 14 步	16	15	1 6	$B \rightarrow A, B \rightarrow C,$
				15+1=16
• • •				

解决办法

- □ 定义路径度量(代价)的最大值
- □ 提高收敛速度
 - ▶水平分割(Split Horizon)
 - ▶毒性逆转(Poison Reverse)
 - ▶抑制定时器(Hold-Down Timers)
 - ➤触发更新(Triggered Updates)

定义路径代价的最大值

到达信宿40.0.0.0的路由变化(定义Hop最大值为16)

	时间	A	В	С	刷新
	初始	2	1	0	信宿可达
4	40.0.0.0 断开	2	1	> 2	$B \rightarrow C$, $1+1=2$
	第1步	2	<u> </u>	2	$C \rightarrow B, 2+1=3$
	第2步	4	3	4	$B \rightarrow A$, $B \rightarrow C$, $3+1=4$
	第3步	4	5	4	$C \rightarrow B$, $4+1=5$
	•••			_	
	第 13 步	14		14	$C \rightarrow B$, $14+1=15$
	第 14 步	16	15) 16	$B\rightarrow A$, $B\rightarrow C$, $15+1=16$
	第 15 步	不可达	16	不可达	$C \rightarrow B$, 15+1=16
	第 16 步		不可达		扔弃

收敛!

水平分割

分析路径环产生的原因

B向C提供了一条过时的、错误的路由信息。

能否避免事件发生?

- □ B必须经由C方可到达网络40.0.0.0, B不可能向C提供任何有价值的路由信息。
- □ 修改B对C提供的路由,禁止B向C提供关于此信宿的路由信息。

水平分割

解决办法

B告诉C一条在正常情况下不真实的消息: 网络40.0.0.0不可达(距离为∞)。

水平分割如何加快收敛?

到达信宿40.0.0.0的路由变化

Ц	々	欱	Ī
-1	人	些人	÷

时间	A	В	C	刷新
初始	2	1/∞	0	信宿可达
40.0.0.0 断开	2	1/∞	8	B→C, ∞ (虚假)
第1步	2	8	8	C→B, ∞
第2步	8	8	8	B→A, ∞

链路断开时C与B之间的对话:

- C 我得不到信宿40.0.0.0的任何路由信息, 你能告诉我如何到达信宿吗?
- B 我不能到达信宿,距离为 ∞ 。
- C 既然如此,我认为信宿不可达。

毒性逆转

到达信宿40.0.0.0的路由变化

	时间	A	В	C	刷新
ULT ALL	初始	2	1	0	信宿可达
4义业(40.0.0.0 断开	2	1	8	C主动改距离为∞
	第1步	2	8	8	C→B, ∞
	第2步	8	8	8	B→A, ∞

□ 方法

 \triangleright 当C发现网络40.0.0.0发生故障时,主动将到达信宿的距离改为 ∞ 。

□ 结果

- 如果无其他到达信宿的路径,算法迅速收敛为信宿不可达。
- 如果存在其他到达信宿的路径,C根据传播过来的信息再做修改。

- □ 当C发现网络40.0.0.0发生故障时,启动抑制计时器
- □ 在抑制计时期间内, C的策略
 - \triangleright 如果网络状态转变, $down \Rightarrow up$,关闭计时器,保留原有路由信息;
 - 如果收到来自B的关于信宿的路由信息,且路径比原有路径短,则关闭 计时器,更新路由信息;
 - 如果无上述两种情况发生, 计时器到时, 更新路由为信宿不可达。

触发更新

- □ 当C发现网络40.0.0.0发生故障时,不等下一刷新周期到来,立刻更改路由为"信宿不可达"
- □ 引起全网的连锁反映,迅速刷新

路由面临的复杂情况

- □ 站得高才能看得远,确定全局最佳路径,但是站得高需要付出代价。
- □ 途经线路、站点以及目的网络都是动态变化的,最佳路径也要跟随 发生变化,需要及时获取状态变化信息。
- □ 在站得不够高、跟得不够紧的情况下,只能直接获取近邻信息,远处信息通过逐站信息传播而间接获取,有可能传播、学习到错误的、过时的信息。
- □ 最坏情况,全网传播和学习过时的信息,永远无法达到稳定状态: 算法不收敛。

小结

- □ DV、RIP的主要问题是计算到无穷,产生路由环
- □ 解决的方法: 定义路径代价的最大数
 - ▶水平分割
 - ▶毒性逆转
 - ▶抑制定时器
 - ▶触发更新

思考题

- □ DV的主要问题是什么?
- □ 定义一个路径代价的最大数产生了什么后果?
- □ 可以采用哪些方法来加快缓解路由环等问题?
- □ RIP会彻底消失吗?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!