

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
14 November 2002 (14.11.2002)

PCT

(10) International Publication Number  
**WO 02/090551 A2**

- (51) International Patent Classification<sup>7</sup>: C12N 15/52      (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (21) International Application Number: PCT/EP02/04942
- (22) International Filing Date: 3 May 2002 (03.05.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:  
01201631.7                    3 May 2001 (03.05.2001) EP  
01204785.8                    7 December 2001 (07.12.2001) EP
- (71) Applicant (*for all designated States except US*): VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).
- (72) Inventor; and
- (75) Inventor/Applicant (*for US only*): STEIDLER, Lothar [BE/BE]; Bokslaanstraat 41, B-9160 Lokeren (BE).
- (74) Common Representative: VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/090551 A2

- (54) Title: SELF-CONTAINING LACTOCOCCUS STRAIN

(57) Abstract: The invention relates to a recombinant *Lactococcus* strain, with environmentally limited growth and viability. More particularly, it relates to a recombinant *Lactococcus* that can only survive in a medium, where well-defined medium compounds are present. A preferred embodiment is a *Lactococcus* that may only survive in a host organism, where said medium compounds are present, but cannot survive outside the host organism in absence of said medium compounds.

**SELF-CONTAINING *Lactococcus* STRAIN****Field of the invention**

The invention relates to a recombinant *Lactococcus* strain, with environmentally limited growth and viability. More particularly, it relates to a recombinant *Lactococcus* that can only survive in a medium, where well-defined medium compounds are present. A preferred embodiment is a *Lactococcus* that may only survive in a host organism, where said medium compounds are present, but cannot survive outside the host organism in absence of said medium compounds. Moreover, said *Lactococcus* can be transformed with prophylactic and/or therapeutic molecules and can, as such, be used to treat diseases such as inflammatory bowel diseases.

**Background of the invention**

Lactic acid bacteria have long time been used in a wide variety of industrial fermentation processes. They have generally-regarded-as-safe status, making them potentially useful organisms for the production of commercially important proteins. Indeed, several heterologous proteins, such as Interleukin-2, have been successfully produced in *Lactococcus* spp (Steidler *et al.*, 1995). It is, however, unwanted that such genetically modified micro organisms are surviving and spreading in the environment.

To avoid unintentional release of genetically modified microorganisms, special guidelines for safe handling and technical requirements for physical containment are used. Although this may be useful in industrial fermentations, the physical containment is generally not considered as sufficient, and additional biological containment measures are taken to reduce the possibility of survival of the genetically modified microorganism in the environment. Biological containment is extremely important in cases where physical containment is difficult or even not applicable. This is, amongst others, the case in applications where genetically modified microorganisms are used as live vaccines or as vehicle for delivery of therapeutic compounds. Such applications have been described e.g. in WO 97/14806, which discloses the delivery of biologically active peptides, such as cytokines, to a subject, by recombinant non-invasive or non-pathogenic bacteria. WO 96/11277 describes the delivery of therapeutic compounds to an animal – including humans - by administration of a recombinant bacterium, encoding the therapeutic protein. Steidler *et al.* (2000) describe the treatment of colitis by administration of a recombinant *Lactococcus lactis*, secreting interleukin-10. Such a

usage of a self-containing and transform d *Lactococcus* to deliver prophylactic and/or therapeutic molecules in order to prevent and/or treat diseases.

#### Brief description of the figures

5 **Figure 1:** Map of the MG1363 *thyA* locus

**Figure 2:** Schematic representation of the different expression modules as present on pOThy plasmids ands genomic integrants of hIL-10. Black parts represent original *L. lactis* MG1363 genetic information, white parts represent recombinant genetic information.

10 **Figure 3:** PCR identification of Thy11 (Thy11 1.1 and Thy11 7.1 represent individually obtained, identical clones). Standard PCR reactions were performed by using aliquots of saturated cultures of the indicated strains as a source of DNA template. Panel A shows an agarose gel of the products of the indicated PCR reactions. Panel B shows the positions at which primers attach in the *thyA* (1), upstream (2) or downstream (3)

15 PCR's. Oligonucleotide primers used: (1): ATgACTTACgCAgATCAA~~Ag~~TTTTT and TTAAATTgCTAAATCAAATTCAATTg (2): TCTgATTgAgTACCTTgACC and gCAATCATAATTggTTTTATTg (3): CTTACATgACTATgAAAATCCg and cTTTTTTATTATTAgggAAAGCA.

20 **Figure 4:** PCR identification of Thy11, Thy12, Thy15 and Thy16. Standard PCR reactions were performed by using three days old colonies of the indicated strains as a source of DNA template.

Panel A shows the positions at which primers attach in the upstream (1), downstream (2) or *thyA* (3), PCR's. Oligonucleotide primers used: (1): ATgACTTACgCAgATCAA~~Ag~~TTTTT and TTAAATTgCTAAATCAAATTCAATTg (2): TCTgATTgAgTACCTTgACC and gCAATCATAATTggTTTTATTg (3): CTTACATgACTATgAAAATCCg and cTTTTTTATTATTAgggAAAGCA

25 Panel B shows an agarose gel of the products of the indicated PCR reactions.

**Figure 5:** Southern blot analysis of the indicated strains. Chromosomal DNA was extracted and digested with the indicated restriction enzymes. Following agarose gel electrophoresis the DNA was transferred to a membrane and the chromosome structure around the *thyA* locus was revealed by use of DIG labelled *thyA* or hIL-10 DNA fragments (panel A). Panel B shows a schematic overview of the predicted structure of the *thyA* locus in both MG1363 and Thy11.

diluted in TFM or TFM supplemented with 50µg/ml of thymidine (T50). CFU counts were determined at different time points: t=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 20 hours. This shows that Thy12 viability is severely impaired in the absence of thymidine.

**Figure 12:** Intestinal passage and viability: *L. lactis* MG1363 was transformed with the plasmid pLET2N which carries a chloramphenicol (Cm) resistance marker. *L. lactis* Thy12 was transformed with the plasmid pT1NX which carries an erythromycin (Em) resistance marker. Of both strains 10<sup>9</sup> bacteria were resuspended in BM9 (6 g/l Na<sub>2</sub>HPO<sub>4</sub>, 3 g/l KH<sub>2</sub>PO<sub>4</sub>, 1 g/l NH<sub>4</sub>Cl, 0,5 g/l NaCl in 25 mM NaHCO<sub>3</sub> + 25 mM Na<sub>2</sub>CO<sub>3</sub>), mixed and inoculated in three mice at t=0h. Faeces were collected of the time intervals -1 to 0, 0 to 1, 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9, 9 to 10 and 10 to overnight. All samples were resuspended in isotonic buffer and appropriate dilutions were plated on GM17 (M17 medium, Difco, St.Louis supplemented with 0,5% glucose) plates containing either Cm, Em or Em+ 50µg/ml thymidine. Colony forming units for the different plates are represented in the graph.

15

#### Description of the invention

It is the objective of the present invention to provide a suitable biological containment system for *Lactococcus*.

A first aspect of the invention is an isolated strain of *Lactococcus* sp. comprising a defective thymidylate synthase gene. Preferably, said defective thymidylate synthase gene is inactivated by gene disruption. Even more preferably, said *Lactococcus* sp. is *Lactococcus lactis*. A special embodiment is a *Lactococcus* sp. strain, preferably *Lactococcus lactis*, more preferably a *Lactococcus lactis* MG1363 derivative, whereby the thymidylate synthase gene has been disrupted and replaced by an interleukin-10 expression unit. Said interleukin-10 expression unit is preferably, but not limited to, a human interleukin-10 expression unit or gene encoding for human interleukin-10.

Another aspect of the invention is the use of a strain according to the invention as host strain for transformation, whereby the transforming plasmid does not comprise an intact thymidylate synthase gene. Still another aspect of the invention is a transformed strain of *Lactococcus* sp. according to the invention, comprising a plasmid that does not comprise an intact thymidylate synthase gene. Another aspect of the invention relates to a transformed strain of *Lactococcus* sp. comprising a gene or expression unit encoding a prophylactic and/or therapeutic molecule such as interleukin-10. Consequently, the present invention also relates to the usage of a transformed strain

invention further demonstrates that the transformed strains surprisingly pass the gut at the same speed as the control strains and shows that their loss of viability is indeed not different from that of the control strains. However, once said strain is secreted in the environment, e.g. in the faeces, it is not able to survive any longer.

- 5 The transforming plasmid can be any plasmid, as long as it cannot complement the *thyA* mutation. It may be a selfreplicating plasmid that preferably carries one or more genes of interest and one or more resistance markers, or it may be an integrative plasmid. In the latter case, the integrative plasmid itself may be used to create the mutation, by causing integration at the *thyA* site, whereby the *thyA* gene is inactivated.
- 10 Preferably, the active *thyA* gene is replaced by double homologous recombination by a cassette comprising the gene or genes of interest, flanked by targeting sequences that target the insertion to the *thyA* target site. It is of extreme importance that these sequences are sufficiently long and sufficiently homologous to obtain to integrate the sequence into the target site. Preferably, said targeting sequences consist of at least
- 15 100 contiguous nucleotides of SEQ ID N°1 at one side of the gene of interest, and at least 100 contiguous nucleotides of SEQ ID N°2 at the other side; more preferably, said targeting sequences consists of at least 500 contiguous nucleotides of SEQ ID N°1 at one side of the gene of interest, and at least 500 contiguous nucleotides of the SEQ ID N° 2 at the other side; most preferably, said targeting sequences consists of
- 20 SEQ ID N°1 at one side of the gene of interest and SEQ ID N°2 at the other side, or said targeting sequences consist of at least 100 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 100 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest, preferably
- 25 said targeting sequences consist of at least 500 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 500 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest, most preferably said targeting sequences consist of at least 1000 nucleotides that are at
- 30 least 80% identical, preferably 90% identical to a region of SEQ ID N° 1 at one side of the gene of interest, and of at least 1000 nucleotides that are at least 80% identical, preferably 90% identical to a region of SEQ ID N° 2 at the other side of the gene of interest . The percentage identity is measured with BLAST, according to Altschul *et al.* (1997). A preferred example of a sequence, homologous to SEQ ID N°1 is given in

locus as determined in the present invention are given by SEQ ID N° 19, 20, 21, 22 respectively.

The *thyA* replacement is performed by making suitable replacements in a plasmid borne version of the *thyA* target, as described below. The carrier plasmid is a

5 derivative of pORI19 (Law *et al.*, 1995) a replication defective plasmid, which only transfers the erythromycin resistance to a given strain when a first homologous recombination, at either the 5' 1000bp or at the 3'1000bp of the *thyA* target. A second homologous recombination at the 3' 1000bp or at the 5' 1000bp of the *thyA* target yields the desired strain.

10 The *thyA* gene is replaced by a synthetic gene encoding a protein which has the *L. lactis* Usp45 secretion leader (van Asseldonk *et al.*, 1990) fused to a protein of identical amino acid sequence than: (a) the mature part of human-interleukin 10 (hIL-10) or (b) the mature part of hIL-10 in which proline at position 2 had been replaced with alanine or (c) the mature part of hIL-10 in which the first two amino acids had 15 been deleted; (a), (b) and (c) are called hIL-10 analogs, the fusion products are called Usp45-hIL-10.

15 The *thyA* gene is replaced by an expression unit comprising the lactococcal P1 promotor (Waterfield *et al.*, 1995), the *E. coli* bacteriophageT7 expression signals: putative RNA stabilising sequence and modified gene10 ribosomal binding site (Wells and Schofield, 1996).

20 At the 5' end the insertion is performed in such way that the ATG of *thyA* is fused to the P1-T7Usp45-hIL-10 expression unit.

5' agataggaaaattcatgacttacgcagatcaagtttt...thyA wild type  
gattaagtcatcttacctctt...P1-T7-usp45-hIL10

25 5' agataggaaaattcatggattaagtcatcttacctctt...thyA<sup>-</sup>, P1-T7-usp45-hIL10

Alternatively, at the 5' end the insertion is performed in such way that the *thyA* ATG is not included:

30 5' agataggaaaattcacttacgcagatcaagtttt...thyA wild type  
gattaagtcatcttacctctt...P1-T7-usp45-hIL10

5' agataggaaaattcgattcatcttacctctt...thyA<sup>-</sup>, P1-T7-usp45-hIL10

integrative plasmid pT1HIL10apxa. Figure 8 (panel A and B) further demonstrates that all mutants produce a significant amount of h-IL 10.

Figure 9 shows the production of hIL-10 by the *L. lactis* strains LL108 carrying either pOThy11, pOThy12, or pOThy16. Quantification (by ELISA) of hIL-10 present in the

- 5 culture supernatant of the indicated strains. The N-terminal protein sequence of the recombinant hIL-10 was determined by Edman degradation and was shown identical to the structure as predicted for the mature, recombinant hIL-10. The protein showed full biological activity. LL108 is a *L. lactis* strain carrying a genomic integration of the repA gene, required for replication of pORI19 derived plasmids such as pOThy11,  
10 pOThy12, pOThy15 or pOThy16. This strain was kindly donated by dr. Jan Kok, University of Groningen. The plasmids pOThy11, pOThy12, pOThy15 and pOThy16 carry the synthetic human IL-10 gene in different promotor configurations (see Fig. 2), flanked by approximately 1kB of genomic DNA derived from the thyA locus, upstream and downstream from thyA. These plasmids were used for the construction of the  
15 genomic integration as described.

The effect of the thymidilate synthase deletion on the growth in thymidine less and thymidine supplemented media was tested; the results are summarized in figures 10 and 11. Absence of thymidine in the medium strongly limits the growth of the mutant,

- 20 and even results in a decrease of colony forming units after four hours of cultivation. Addition of thymidine to the medium results in an identical growth curve and amount of colony forming units, compared to the wild type strain, indicating that the mutant doesn't affect the growth or viability in thymidine supplemented medium. Fig. 11 clearly demonstrates that Thy12 viability is severely impaired in the absence of thymidine.

- 25 Fig. 12 finally shows that *L. lactis* Thy12 passes the intestine of the mice at the same speed as MG1363. Loss of viability does not appear different between Thy12 and MG1363. Thy12 appear fully dependent on thymidine for growth, indicating that no Thy12 bacteria had taken up a foreign thyA gene.

**Claims**

1. An isolated strain of *Lactococcus* sp. comprising a defective thymidylate synthase gene.
2. An isolated strain of *Lactococcus* sp. according to claim 1, whereby said gene is inactivated by gene disruption.
- 5 3. An isolated strain of *Lactococcus* sp. according to claim 1 or 2, whereby said *Lactococcus* sp. is *Lactococcus lactis*.
4. The use of a strain of *Lactococcus* sp. according to any of the claims 1-3 as host strain for transformation, whereby the transforming plasmid does not comprise an intact thymidylate synthase gene.
- 10 5. A transformed strain of *Lactococcus* sp. according to any of the claims 1-3, comprising a transforming plasmid that does not comprise an intact thymidylate synthase gene.
6. A transformed strain of *Lactococcus* sp. according to any of the claims 1-4 comprising a gene encoding a prophylactic and/or therapeutic molecule.
- 15 7. A transformed strain of *Lactococcus* sp. according to claim 6 wherein said prophylactic and/or therapeutic molecule is interleukin-10.
8. The use of a transformed strain of *Lactococcus* sp. according to any of the claims 5-7 for the delivery of prophylactic and/or therapeutic molecules.
- 20 9. A pharmaceutical composition comprising a transformed strain of *Lactococcus* sp. according to any of the claims 5-7.
10. The use of a transformed strain of *Lactococcus* sp. according to any of the claims 6-7 for the preparation of a medicament to treat inflammatory bowel diseases.

25

30



2/9

Figure 2:



3/9

Figure 3:

**A**

— 1 —

**B**

4/9

Figure 4:

**A****B**

5/9

Figure 5:

**A**

6/9

Figure 6:

**A****B**

7/9

Figure 7:



Figure 8:



8/9

Figure 9:



Figure 10:



9/9

Figure 11:



Figure 12:



V085.ST25.txt  
SEQUENCE LISTING

<110> VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW

<120> SELF-CONTAINING LACTOCOCCUS STRAIN

<130> LS/ThyA/V085

<150> EP01201631.7

<151> 2001-05-03

<150> EP01204785.8

<151> 2001-12-07

<160> 26

<170> PatentIn version 3.1

<210> 1

<211> 1000

<212> DNA

<213> Lactococcus lactis

<400> 1

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tatataacaat tgagcaaaag aaattttagtt attaaattac cagctggagt tcctccaatg | 60   |
| gtttagatt cactaagtcc agcaattatt tcaatggta tttctgttt gatgttcggg      | 120  |
| attcgtgtgg gattctctta tacgccattc catgatattt tcaatttctc aacacaacta   | 180  |
| attcaaggcac cgttgactgg tgctgtggca aatccatggg ttcttatggg catcttacc   | 240  |
| tttggtaatt tcttatggtt ctgggtatc caccctaatt taattgggg aattttaaat     | 300  |
| ccattgttat taacaatgtc atatgctaattt attgatgcct atgctgccgg aaaacctgta | 360  |
| ccatacttac aaatgatgat tgggttgct gtgggtgcga acgcatgggg cggaagtggaa   | 420  |
| aatacttagt ggtagttat ttcaatgttt acggcaaaat ctgaacgcta taaaacaatta   | 480  |
| ttaaaaattag gtcaattcc tagtattttc aatatcagtg aaccattact ttttggtctt   | 540  |
| ccaatgatgt taaatccctt ttttttattt cctttggttt tccaaccaggc aatttttagga | 600  |
| actgttagcat tgggcttggc aaagatatta tatattacaa atctgaatcc aatgacggca  | 660  |
| cttcttcctt ggacgacacc agcacctgtg agaatggcca tttcaggtgg acttccattt   | 720  |
| ttgattattt ttgcaatctg ttttgtttt aatgttcttta ttactaccc attctttaag    | 780  |
| gtggcgtata ataaagcttt agaagaagaa aaagcagctg ttgaattaga gggttcagaa   | 840  |
| actgcctgat ggatattttt tataaatctg gtttgaacaa attatattga catctttttt   | 900  |
| tctatccctga taattctgag aggttattttt gggaaatact attgaaccat atcgaggtgt | 960  |
| gtggtataat gaaggaaatt aaaaaagata gggaaatttc                         | 1000 |

<210> 2

<211> 1000

<212> DNA

<213> Lactococcus lactis

<400> 2

|                                                                   |    |
|-------------------------------------------------------------------|----|
| taaattaatc tataagttac tgacaaaaact gtcagtaact tttttgtgg gaaaaatgta | 60 |
|-------------------------------------------------------------------|----|

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| tttttatgac cgtaaagaat ctgtcagtag aagtctgaaa ttctgtttaaa aatcgactag | 120 |
|--------------------------------------------------------------------|-----|

## V085.ST25.txt

<221> misc\_feature  
<222> (7110)..(7110)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7117)..(7141)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7143)..(7147)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7149)..(7156)  
<223> 'n' may be any base

|             |             |                                                   |      |
|-------------|-------------|---------------------------------------------------|------|
| <400>       | 3           |                                                   |      |
| gnagnggtt   | tccca       | gtccg acgttgtaaa acgacggcca gtgaattcat taacagcctt | 60   |
| ttgagcagct  | agctcattat  | tttgaataa atcataaatt tcttcccac tatctgattt         | 120  |
| atgattgcta  | gcataattgt  | tgtataatcg aacgagtcca ttttgaacag atccatatag       | 180  |
| attgagtgaa  | ctataaaata  | catctatatac atagttgagt ttgttcacaa tcagtagacc      | 240  |
| aaattctcca  | gcatttcgtg  | tagaaccacg ataaagctgt ttattnagca aaatggcacc       | 300  |
| tccgacacct  | gtacctaaag  | tcatgcaa ataaattttgg ctttcttgc cattccctag         | 360  |
| ccaaagttca  | gctagacactg | cacaatttgc atcattttca acataaaccg gaagatttaa       | 420  |
| atgttttgt   | agttctgtcc  | ccaatggata gccataaaga tcagtttagag ctccctgccag     | 480  |
| taataatgtt  | cccttttgt   | cagaagttcc gggAACACTT acaccaattt cagatactga       | 540  |
| atgatgagct  | tttaactgat  | aatattttgt gagcaagcta tccataattt tttctttttt       | 600  |
| taatgggtt   | ggaacttgta  | aatgttgtat gatcggttcca tcactagttt caagaccaaa      | 660  |
| ttttataat   | gtaccaccga  | tatcaattcc tattgaataa tgcatctttt attacctttt       | 720  |
| tctctaattt  | gttttagtat  | agcaaaatca aaaaattaat tatgttatgc attatagata       | 780  |
| tgttgtataa  | tttcacaaa   | aacggagaaa actatgaaaa caatagaaca gctcatgata       | 840  |
| gattcagcag  | atthaatgtc  | agattttattt caattgacaa tttttatatt ccgcaaggag      | 900  |
| gattttcaac  | tttttatag   | gagtgtgaa gaagagcaag cttttcaag gtaatgactc         | 960  |
| caacttattt  | atagtttttt  | atgttcagat aatgcccgtat gactttgtca tgcatgttcca     | 1020 |
| ccgattttga  | gaacgacagc  | gacttccgtc ccagccgtgc caggtgtgc ctcagattca        | 1080 |
| ggttatgccg  | ctcaatttgc  | tgcatgtatc gttgtgtat tacgtgcagc tttcccttca        | 1140 |
| ggcgggattc  | atacagcgcc  | cagccatccg tcatccatat caccacgtca aagggtgaca       | 1200 |
| gcagggctcat | aagacgcccc  | agcgtcgcca tagtgcgttc accgaatacg tgcccaacaa       | 1260 |
| ccgtcttccg  | gagactgtca  | tacgcgtaaa acagccagcg ctggcgcgat ttagccccga       | 1320 |

V085.ST25.txt

|                         |                                             |                     |                             |                 |             |      |
|-------------------------|---------------------------------------------|---------------------|-----------------------------|-----------------|-------------|------|
| gaaatccgcgttagttgaca    | gtgtgtcaaa                                  | tgttgaaagca         | tttcaaacgg                  | tatacacggg      | 3420        |      |
| tagcacagga              | ttaattttag                                  | caatcataat          | tggtttatt                   | gtttcattag      | tctatataca  | 3480 |
| atcgaaa                 | agaaaatttag                                 | ttattaaatt          | accagctgga                  | gttcctccaa      | tggttgtaga  | 3540 |
| ttcactaagt              | ccagcaatta                                  | tttcaatgg           | gattttctgt                  | ttgatgttcg      | ggattcgtgt  | 3600 |
| gggattctct              | tatacgccat                                  | tccatgatat          | tttcaatttc                  | tcaacacaac      | taattcaagc  | 3660 |
| accgttgact              | ggtgctgtgg                                  | caaatccatg          | ggttcttatg                  | ggcatcttta      | cctttggtaa  | 3720 |
| tttcttatgg              | ttctttggta                                  | tccaccctaa          | tttaattggg                  | ggaattttaa      | atccattgtt  | 3780 |
| atccaatg                | tcatatgcta                                  | atattgatgc          | ctatgctgcc                  | ggaaaacctg      | taccatactt  | 3840 |
| acaaatgatg              | attgtgtttg                                  | ctgtgggtgc          | gaacgcatgg                  | ggcggaaagtg     | gaaatactta  | 3900 |
| tgggttagtt              | atttcaatgt                                  | ttacggcaaa          | atctgaacgc                  | tataaacaat      | tattaaatt   | 3960 |
| aggtgcaatt              | cctagtat                                    | tcaatatcag          | tgaaccatta                  | cttttggtc       | ttccaatgat  | 4020 |
| gtttaaatcct             | cttttcttta                                  | ttcctttgg           | tttccaacca                  | gcaattttag      | gaactgttagc | 4080 |
| attgggcttg              | gcaaagat                                    | tatataattac         | aaatctgaat                  | ccaatgacgg      | cacttcttcc  | 4140 |
| ttggacgaca              | ccagcacctg                                  | tgagaatggc          | catttcaggt                  | ggacttccat      | tttgattat   | 4200 |
| tttgcaatc               | tgtttagtct                                  | tgaatgttct          | tattractac                  | ccattcttta      | aggtggcgta  | 4260 |
| taataaagct              | ttagaagaag                                  | aaaaagcagc          | tgttgaatta                  | gagggttcag      | aaactgcctg  | 4320 |
| atggatattt              | tttataaatac                                 | tggtttgaac          | aaattatatt                  | gacatctctt      | tttctatcct  | 4380 |
| gataattctg              | agaggttatt                                  | ttggaaata           | ctattgaacc                  | atatcgaggt      | gtgtggtata  | 4440 |
| atgaaggaa               | ttaaaaaaga                                  | tagaaaaatt          | tc atg act tac              | gca gat caa gtt |             | 4493 |
|                         |                                             |                     | Met Thr Tyr Ala Asp Gln Val |                 |             |      |
|                         |                                             |                     | 1                           | 5               |             |      |
| ttt aaa caa aat atc     | caa aat atc cta                             | gat aat ggt         | gtt ttt tca gaa             |                 |             | 4541 |
| Phe Lys Gln Asn Ile     | Gln Asn Ile Leu Asp Asn Gly                 | Val Asn             | Val Phe Ser Glu             |                 |             |      |
| 10                      | 15                                          | 20                  |                             |                 |             |      |
| aat gca aga cca aag tat | aag gat ggt                                 | caa atg gcg         | aat agc aaa tat             |                 |             | 4589 |
| Asn Ala Arg Pro Lys     | Tyr Lys Asp Gly Gln Met                     | Ala Asn Ser Lys Tyr |                             |                 |             |      |
| 25                      | 30                                          | 35                  |                             |                 |             |      |
| gtc act ggt tca ttc     | gtt act tat gat                             | ttg caa aag ggg gag | ttt cca                     |                 |             | 4637 |
| Val Thr Gly Ser Phe     | Val Thr Tyr Asp Leu Gln Lys Gly             | Glu Phe Pro         |                             |                 |             |      |
| 40                      | 45                                          | 50                  | 55                          |                 |             |      |
| att acc act ttg cgt     | cca att cca atc                             | aaa tct gct         | att aaa gaa ttg             |                 |             | 4685 |
| Ile Thr Thr Leu Arg     | Pro Ile Pro Ile Lys Ser Ala Ile Lys Glu Leu |                     |                             |                 |             |      |
| 60                      | 65                                          | 70                  |                             |                 |             |      |
| atg tgg ata tac caa     | gac caa aca agt                             | gaa ctt tct gtt     | ctc gaa gag                 |                 |             | 4733 |
| Met Trp Ile Tyr Gln     | Asp Gln Thr Ser Glu Leu Ser Val             | Leu Glu Glu         |                             |                 |             |      |
| 75                      | 80                                          | 85                  |                             |                 |             |      |
| aag tat gga gtc aaa     | tac tgg gga gaa                             | tgg gga att ggt     | gat ggt acg                 |                 |             | 4781 |
| Lys Tyr Gly Val Lys     | Tyr Trp Gly Glu Trp Gly Ile Gly Asp Gly Thr |                     |                             |                 |             |      |
| 90                      | 95                                          | 100                 |                             |                 |             |      |
| att ggg caa cgt tat     | ggt gca aca gtc                             | aaa aaa tat         | aat atc att ggt             |                 |             | 4829 |
| Ile Gly Gln Arg Tyr     | Gly Ala Thr Val Lys Lys Tyr Asn Ile Ile Gly |                     |                             |                 |             |      |
| 105                     | 110                                         | 115                 |                             |                 |             |      |

## V085.ST25.txt

|            |               |             |            |            |            |            |      |
|------------|---------------|-------------|------------|------------|------------|------------|------|
| cttggaaat  | ta atgcaatggg | aaatcttact  | ttaatatgga | aaggggcaaa | gaatcaaacc | 6202       |      |
| tttgaactt  | g             | gcgcaggtca  | acaatttaat | ggaactgcag | atattgcctt | aaaaaatgga | 6262 |
| gagatttccc | c             | ctggtagtcc  | acttaacatt | tttgttgc   | caacagaagt | tgcttccct  | 6322 |
| aataataaaa | a             | aatggcgaa   | tagtatggca | gcggcgtt   | tttttagagt | tattccatga | 6382 |
| acaagccctc | a             | aatggcgaa   | tagtatggca | gcggcgtt   | tttttagagt | tattccatga | 6442 |
| ttatattaaa | g             | tttagaaattt | aataaaatgt | attattaaaa | agataatatt | atatcacgac | 6502 |
| aaggcgacat | c             | ctatcaactt  | taccactggt | atggaagtga | ccattattac | atcaggaaac | 6562 |
| gctaaaacgg | t             | tggttttac   | acccgtaaaa | taaataataa | aataatgtgn | aattactgac | 6622 |
| agcattttgt | c             | cagtaatttt  | ttttatcaaa | atcacacaaa | aatgttcgtt | gacgaacaaa | 6682 |
| aaaaactatg | t             | ttataataat  | tcgtatgcga | actaaaaaag | aagcgattgg | ccgactttt  | 6742 |
| aaagtagcca | a             | gcaaccaa    | atgtcgagaa | tttgataatt | ttgcagctca | acttgatttg | 6802 |
| acaggtcagc | a             | aatgtcaat   | tttagatttt | cttggaaatc | aaagcgaaga | aggttcagga | 6862 |
| aaagaaat   | tta           | gtcagacgat  | gattgaatta | gaatttaata | tccgacgttc | aacaacgacg | 6922 |
| gaaattttac | g             | agcgcatgga  | aaagcggctt | ttaattaatc | gaagaacaag | cctgaccgat | 6982 |
| ccccgccaaa | a             | atcagttga   | attaactgaa | gaagggaaaa | gatatttacc | tgaaatcagg | 7042 |
| gcttatatcc | a             | aagcacataa  | taaaaaagct | tggcgtaatc | atggtcata  | ctgttncct  | 7102 |
| ggttagnggg | g             | ccannnnnn   | nnnnnnnnnn | nnncnnnnnc | nnnnncnnnn | cnnnc      | 7157 |

<210> 4  
<211> 279  
<212> PRT  
<213> Lactococcus lactis

<220>  
<221> misc\_feature  
<222> (2)..(2)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (5)..(5)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (6612)..(6612)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7099)..(7099)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7110)..(7110)  
<223> 'n' may be any base

<220>  
<221> misc\_feature  
<222> (7117)..(7141)

## V085.ST25.txt

Phe Glu Gln Ala Asn Glu Leu Met Lys Arg Thr Ala Ser Glu Lys Glu  
 225 230 235 240

Pro Arg Leu Val Leu Asn Val Pro Asp Gly Thr Asn Phe Phe Asp Ile  
 245 250 255

Lys Pro Glu Asp Phe Glu Leu Val Asp Tyr Glu Pro Val Lys Pro Gln  
 260 265 270

Leu Lys Phe Asp Leu Ala Ile  
 275

<210> 5  
 <211> 7094  
 <212> DNA  
 <213> Lactococcus lactis

<220>  
 <221> CDS  
 <222> (4469) .. (5305)  
 <223>

|                                                                     |      |  |
|---------------------------------------------------------------------|------|--|
| <400> 5                                                             |      |  |
| ggttttccca gtccgacgtt gtaaaaacgac ggccagtcaa ttcattaaaca gccttttag  | 60   |  |
| cagctagctc attattttga aataaaatcat aaatttcttt cccactatct gatttatgtat | 120  |  |
| tgcttagcata ttgttgtat aatcgaacgaa gtccatTTG aacagatcca tatagattga   | 180  |  |
| gtgaactata aaatacatct atatcatagt tgagttgtt cacaatcatg agaccaaatt    | 240  |  |
| ctccagcatt tcgtgttagaa ccacgataaa gctgtttatt tagcaaaatg gcacctccga  | 300  |  |
| cacctgtacc taaagtcatg caaataaaat ttggcttcc ttgtccattc cctagccaaa    | 360  |  |
| gttcagctag acctgcacaa ttggcatcat ttcaacata aaccgaaaga tttaaatgtt    | 420  |  |
| ttttagtttc tgtcccaat ggatagccat aaagatcagt tagagctcct gccagtaata    | 480  |  |
| atgttccctt ttgtcagaa gttccggaa cacttacacc aattgcagat actgaatgtat    | 540  |  |
| gagctttaa ctgatgaata ttgtgagca agctatccat aattttttct ttttttaatg     | 600  |  |
| gggttggAAC ttgtaaatgt tgtatgatcg ttccatcat agttacaaga ccaaattttt    | 660  |  |
| taaatgtacc accgatatca attcctattt aataatgcat cttttattac ctctttctct   | 720  |  |
| aatttggttt agtatacgaa aatcaaaaaa ttaattatgg tatgcattat agatatgtt    | 780  |  |
| tataattttc acaaaaaacgg agaaaaactat gaaaacaata gaacagctca tgatagattc | 840  |  |
| agcagatttta atgtcagatt ttattcaatt gacaattttt atattccgca aggaggattt  | 900  |  |
| tcaactttt tataggagtg atgaagaaga gcaagctttt tcaaggtaat gactccaact    | 960  |  |
| tattgatagt gttttatgtt cagataatgc ccgatgactt tgtcatgcag ctccaccgat   | 1020 |  |
| tttgagaacg acagcgactt ccgtcccagc cgtgccaggt gctgcctcag attcaggta    | 1080 |  |
| tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt gcagcttcc ctccaggcgg    | 1140 |  |

V085.ST25.txt

|                                                                                                                                    |      |
|------------------------------------------------------------------------------------------------------------------------------------|------|
| gtgcagttac cagtgcgcta gcaatttatg taacttataa ttttgcttat tccttatgtaa                                                                 | 3240 |
| atcgcatga atataatggc catacgcccg gtttattatc aatcgcaagt ttgttaatgc                                                                   | 3300 |
| taatgccaca aattattact gtcccctgtag taaaaaacat tccaaccgaa tttccgaaat                                                                 | 3360 |
| ccgcggtagt tgacagtgtg tcaaattgtt aagcattca aacggtatac acggtagca                                                                    | 3420 |
| caggattaat tgttagcaatc ataattgggtt ttattgtttc attagtctat atacaattga                                                                | 3480 |
| gcaaaaagaaa tttagttatt aaattaccag ctggagttcc tccaatgggtt gtagattcac                                                                | 3540 |
| taagtccagc aattatttca atggtgattt tctgtttgat gttcgggatt cgtgtgggat                                                                  | 3600 |
| tctcttatac gccattccat gatatttca atttctcaac acaactaatt caagcaccgt                                                                   | 3660 |
| tgactggtgc tgtggcaaat ccatgggttc ttatggcat ctttacctt ggttaattct                                                                    | 3720 |
| tatggttctt tggtatccac cctaatttaa ttggggaaat tttaaatcca ttgttattaa                                                                  | 3780 |
| caatgtcata tgctaataattt gatgcctatg ctgccccaaa acctgtacca tacttacaaa                                                                | 3840 |
| tgatgattgt gtttgctgtg ggtgcgaacg catggggcgg aagtggaaat acttatgggt                                                                  | 3900 |
| tagttatttc aatgtttacg gcaaaaatctg aacgctataa acaattatta aaatttagtg                                                                 | 3960 |
| caattcctag tattttcaat atcagtgaac cattacttt tggtcttcca atgatgttaa                                                                   | 4020 |
| atccctttt ctttattcct ttgggtttcc aaccagcaat ttttaggaact gtagcattgg                                                                  | 4080 |
| gcttggcaa gatattatat attacaaatc tgaatccaat gacggcactt cttccttgg                                                                    | 4140 |
| cgacaccagc acctgtgaga atggccattt caggtggact tccattttt attatttttg                                                                   | 4200 |
| caatctgttt agtcttgaat gttcttattt actaccattt ctttaaggtg gcgtataata                                                                  | 4260 |
| aagctttaga agaagaaaaa gcagctgtt aattagaggg ttcagaaaact gcctgatgga                                                                  | 4320 |
| tatttttat aaatctgggtt tgaacaaattt atattgacat ctcttttctt atcctgataaa                                                                | 4380 |
| ttctgagagg ttatttggg aaataactattt gaaccatatc gaggtgggtt ggtataatga                                                                 | 4440 |
| agggaaattaa aaaagatagg aaaatttc atg act tac gca gat caa gtt ttt<br>Met Thr Tyr Ala Asp Gln Val Phe                                 | 4492 |
| 1 5                                                                                                                                |      |
| aaa caa aat atc caa aat atc cta gat aat ggt gtt ttt tca gaa aat<br>Lys Gln Asn Ile Gln Asn Ile Leu Asp Asn Gly Val Phe Ser Glu Asn | 4540 |
| 10 15 20                                                                                                                           |      |
| gca aga cca aag tat aag gat ggt caa atg gcg aat agc aaa tat gtc<br>Ala Arg Pro Lys Tyr Lys Asp Gly Gln Met Ala Asn Ser Lys Tyr Val | 4588 |
| 25 30 35 40                                                                                                                        |      |
| act ggt tca ttc gtt act tat gat ttg caa aag ggg gag ttt cca att<br>Thr Gly Ser Phe Val Thr Tyr Asp Leu Gln Lys Gly Glu Phe Pro Ile | 4636 |
| 45 50 55                                                                                                                           |      |
| acc act ttg cgt cca att cca atc aaa tct gct att aaa gaa ttg atg<br>Thr Thr Leu Arg Pro Ile Pro Ile Lys Ser Ala Ile Lys Glu Leu Met | 4684 |
| 60 65 70                                                                                                                           |      |
| tgg ata tac caa gac caa aca agt gaa ctt tct gtt ctc gaa gag aag<br>Trp Ile Tyr Gln Asp Gln Thr Ser Glu Leu Ser Val Leu Glu Glu Lys | 4732 |
| 75 80 85                                                                                                                           |      |
| tat gga gtc aaa tac tgg gga gaa tgg gga att ggt gat ggt acg att<br>Tyr Gly Val Lys Tyr Trp Gly Glu Trp Gly Ile Gly Asp Gly Thr Ile | 4780 |

## V085.ST25.txt

|             |             |             |            |            |             |            |      |
|-------------|-------------|-------------|------------|------------|-------------|------------|------|
| attacacgga  | aagttagctt  | gagcaaaata  | gcttattgaa | tactggttgg | aaatatgggg  | 6025       |      |
| cagtagctt   | g           | gtacgggatt  | ggagtaaaaa | acgaaatgtt | aaacattgct  | caaattgtta | 6085 |
| gtggtaattt  | ttcttagtatt | gttggaaactt | ggaaagatac | ttctggaaat | atgcttgaaa  | 6145       |      |
| ttaatgcaat  | ggaaatctt   | actttaatat  | ggaaaggggc | aaagaatcaa | accttgaac   | 6205       |      |
| ttggcgcagg  | tcaacaattt  | aatggaactg  | cagatattgc | cttaaaaaat | ggagagattt  | 6265       |      |
| ccctggtag   | tccacttaac  | attttggttg  | taccaacaga | agttgcttc  | cctaataata  | 6325       |      |
| aaaaagtaga  | cgattcaact  | ggccaacaac  | gaattttgt  | gaattattct | ggtacaagcc  | 6385       |      |
| ctcaaatggc  | gaatagtatg  | gcagcggtgg  | cttttttag  | agttattcca | tgattatatt  | 6445       |      |
| aaagtttagaa | ttgaataaaa  | tgtattatta  | aaaagataat | attatatcac | gacaaggcga  | 6505       |      |
| catctatcaa  | ctttaccact  | ggtatggaag  | tgaccattat | tacatcagga | aacgctaaaa  | 6565       |      |
| cggtgtttt   | tacaccgta   | aaataaataa  | taaaataatg | tgaaattact | gacagcattt  | 6625       |      |
| tgtcagtaat  | ttttttatc   | aaaatcacac  | aaaaatgttc | gttgacgaac | aaaaaaaaact | 6685       |      |
| atgttataat  | aattcgtatg  | cgaactaaaa  | aagaagcgat | tggccgactt | ttaaaaagtag | 6745       |      |
| ccagcaacca  | aatgtctcga  | gaatttgata  | atttgcagc  | tcaacttgat | ttgacaggc   | 6805       |      |
| agcaaatgtc  | aattttagat  | tttcttggaa  | atcaaagcga | agaaggttca | ggaaaagaaa  | 6865       |      |
| ttagtcagac  | gatgattgaa  | ttagaattta  | atatccgacg | ttcaacaacg | acggaaat    | 6925       |      |
| tacagcgcac  | ggaaaagcgg  | cttttaatta  | atcgaagaac | aagcctgacc | gatccccgcc  | 6985       |      |
| aaaaatcagt  | tgaattaact  | gaagaaggga  | aaagatattt | acctgaaatc | agggcttata  | 7045       |      |
| tccaa       | gacaca      | taataaaaaa  | gcttggcgta | atcatggtca | tagctgttt   | 7094       |      |

<210> 6  
<211> 279  
<212> PRT  
<213> Lactococcus lactis

<400> 6

Met Thr Tyr Ala Asp Gln Val Phe Lys Gln Asn Ile Gln Asn Ile Leu  
1 5 10 15

Asp Asn Gly Val Phe Ser Glu Asn Ala Arg Pro Lys Tyr Lys Asp Gly  
20 25 30

Gln Met Ala Asn Ser Lys Tyr Val Thr Gly Ser Phe Val Thr Tyr Asp  
35 40 45

Leu Gln Lys Gly Glu Phe Pro Ile Thr Thr Leu Arg Pro Ile Pro Ile  
50 55 60

Lys Ser Ala Ile Lys Glu Leu Met Trp Ile Tyr Gln Asp Gln Thr Ser  
65 70 75 80

Glu Leu Ser Val Leu Glu Glu Lys Tyr Gly Val Lys Tyr Trp Gly Glu  
85 90 95

V085.ST25.txt

|             |             |            |            |             |            |      |
|-------------|-------------|------------|------------|-------------|------------|------|
| catacttaca  | aatgatgatt  | gtgtttgctg | tgggtgcgaa | cgcattgggc  | ggaagtggaa | 420  |
| atacttatgg  | gttagttatt  | tcaatgttta | cggcaaaatc | tgaacgctat  | aaacaattat | 480  |
| taaaattagg  | tgcaattcct  | agtatttca  | atatcagtga | accattactt  | tttggtcttc | 540  |
| caatgatgtt  | aaatccttctt | ttctttattc | ctttggtttt | ccaaccagca  | attttaggaa | 600  |
| ctgttagcatt | gggcttggca  | aagatattat | atattacaaa | tctgaatcca  | atgacggcac | 660  |
| ttcttccttg  | gacgacacca  | gcacctgtga | aatggccat  | ttcaggtgga  | cttcattttt | 720  |
| tgattatttt  | tgcaatctgt  | ttagtcttga | atgttcttat | ttactaccca  | ttctttaagg | 780  |
| tggcgatataa | taaagcttta  | gaagaagaaa | aagcagctgt | tgaatttagag | ggttcagaaa | 840  |
| ctgcctgatg  | gatatttttt  | ataaatctgg | tttgaacaaa | ttatattgac  | atctttttt  | 900  |
| ctatcctgat  | aattctgaga  | ggttattttt | ggaaatacta | ttgaaccata  | tcgaggtggt | 960  |
| gtggtataat  | gaagggaaatt | aaaaaagata | ggaaaatttc |             |            | 1000 |

<210> 8  
<211> 24  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> oligonucleotide primer  
  
<400> 8  
atgacttacg cagatcaagt tttt 24

<210> 9  
<211> 27  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> oligonucleotide primer  
  
<400> 9  
ttaaattgct aaatcaaatt tcaattg 27

<210> 10  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> oligonucleotide primer  
  
<400> 10  
tctgatttag taccttgacc 20

<210> 11  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> oligonucleotide primer  
  
<400> 11

## V085.ST25.txt

<213> Artificial Sequence

<220>

<223> thyA promoter not included, theA-, P1-T7-usp45-hIL10

<400> 17  
tctgagaggt tattttggga aatactagat taagtcatct tacctctt 48

<210> 18

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> thyA-, usp45-hIL10

<400> 18  
aaaatccgta actaactaga attaatctat aagttactga 40

<210> 19

<211> 6967

<212> DNA

<213> Lactococcus lactis

<220>

<221> misc\_feature

<223> Thy11

<400> 19  
attaacagcc ttttgagcag ctagctcatt attttgaat aaatcataaa tttctttccc 60  
actatctgat ttatgattgc tagcatattt gttgtataat cgaacgagtc cattttgaac 120  
agatccatat agattgagtg aactataaaa tacatctata tcatacggtga gtttggcac 180  
aatcatgaga ccaaattctc cagcatttcg tgtagaacca cgataaagct gtttatttag 240  
caaaatggca cctccgacac ctgtacctaa agtcatgcaa ataaaatttt ggctttcttg 300  
tccattccct agccaaagtt cagctagacc tgcacaattt gcattttttt caacataaac 360  
cggaagattt aaatgtttt gtatgttgtt ccccaatggta tagccataaa gatcagtttag 420  
agctcctgcc agtaataatg ttccctttt gtcagaagtt ccgggaacac ttacaccaat 480  
tgcagatact gaatgatgag ctttaactg atgaatattt gtgagcaagc tatccataat 540  
tttttctttt ttaatgggg ttggaaacttg taaatgttgtt atgatcggtt catcactagt 600  
tacaagacca aattttataa atgtaccacc gatataattt cctattgaat aatgcatttt 660  
ttattaccc tttctctaattt ttgttttagt atagcaaaat caaaaaaaaattt attatggat 720  
gcattataga tatgttgtat aattttcaca aaaacggaga aaactatgaa aacaatagaa 780  
cagctcatga tagattcagc agatttaatg tcagatttttta ttcaattgac aatttttata 840  
ttcccgcaagg aggattttca acttttttat aggagtgtat aagaagagca agcttttca 900  
aggtaatgac tccaacttat tgatagtgtt ttatgttcag ataatgccccg atgactttgt 960  
catgcagctc caccgattttt gagaacgaca gcgacttccg tcccagccgt gccaggtgct 1020  
gcctcagatt cagggttatgc cgctcaattt cgtgcgtata tcgcttgctg attacgtgca 1080

V085.ST25.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ttttcagca gttattggtg cagttaccag tgcgttagca atttatgtaa cttataattt    | 3180 |
| tgcttattct tatgtaaatc gtcatgaata taatggccat acggccggtt tattatcaat   | 3240 |
| cgcaagttg ttaatgctaa tgccacaaat tattactgtc cctgttagtaa aaaacattcc   | 3300 |
| aaccgaattt ccgaaatccg cggttagttga cagtgtgtca aatgttgaag catttcaaacc | 3360 |
| ggtatacacg ggttagcacag gattaattgt agcaatcata attggttta ttgtttcatt   | 3420 |
| agtctatata caattgagca aaagaaaattt agttattaaa ttaccagctg gagttccctcc | 3480 |
| aatggttgta gattcactaa gtccagcaat tatttcaatg gtgattttct gtttgatgtt   | 3540 |
| cgggattcgt gtgggattct ctatatacgcc attccatgat attttcaatt tctcaacaca  | 3600 |
| actaattcaa gcaccgttga ctggtgctgt ggcaaattcca tgggttctta tgggcatttt  | 3660 |
| taccttttgt aatttcttat ggttctttgg tatccaccct aatttaattt gggaaatttt   | 3720 |
| aaatccattt tgattaaacaa tgtcatatgc taatattgat gcctatgctg ccggaaaacc  | 3780 |
| tgtaccatac ttacaaatga tgattgtgtt tgctgtgggt gcgAACGcat ggggcggaag   | 3840 |
| tggaaatact tatgggttag ttatttcaat gtttacggca aaatctgaac gctataaaca   | 3900 |
| attattaaaa ttaggtgcaa ttcctagtagt tttcaatatac agtgaaccat tacttttgg  | 3960 |
| tcttccaatg atgttaaattc ctctttctt tattcccttg gtttccaac cagcaatttt    | 4020 |
| aggaactgta gcattgggct tggcaaagat attatataatt acaaattctga atccaatgac | 4080 |
| ggcacttctt cttggacga caccaggcacc tgtgagaatg gccatccatg gtggacttcc   | 4140 |
| atttttgatt attttgcaa tctgttttagt cttgaatgtt cttatttact acccattctt   | 4200 |
| taaggtggcg tataataaag ctttagaaga agaaaaagca gctgttgaat tagagggttc   | 4260 |
| agaaaactgcc tgatggatat tttttataaa tctgggttga acaaattata ttgacatctc  | 4320 |
| tttttctatc ctgataattc tgagaggta ttttggaaa tactattgaa ccataatcgag    | 4380 |
| gtgggtgttgt ataatgaagg gaattaaaaa agataggaaa atttcatgga ttaagtcatc  | 4440 |
| ttacactctt tattagtttt ttcttataat ctaatgataa cattttata attaatctat    | 4500 |
| aaaccatatac cctctttgga atcaaaattt attatctact cctttgtaga tatgttataa  | 4560 |
| tacaagtatc agatctggga gaccacaacg gtttcccact agaaataatt ttgtttaact   | 4620 |
| ttagaaagga gatatacgca tgaaaaaaaaa gattatctca gctattttaa tgtctacagt  | 4680 |
| catactttct gctgcagccc cggtgtcagg tgtttacgcc tcagctggc aaggactca     | 4740 |
| atcagaaaaac tcatgtactc actttccagg taacttgcca aacatgctc gtgatttgcg   | 4800 |
| tgatgcttt tcacgtgtta aaactttttt tcaaattgaaa gatcaacttg ataacttgct   | 4860 |
| tttggaaagaa tcactttgg aagattttaa aggtaacctt ggttgcaga ctttgcaga     | 4920 |
| aatgatccaa ttttaccttg aagaagttat gccacaagct gaaaaccaag atccagat     | 4980 |
| caaagctcac gttaactcat tgggtgaaaa ccttaaaact ttgcgtctc gtttgcgtcg    | 5040 |
| ttgtcaccgt tttttccat gtgaaaacaa atcaaaagct gttgaacaag ttaaaaacgc    | 5100 |
| ttttaacaaa ttgcaagaaa aaggtatcta caaagctatg tcagaatttgc atatctt     | 5160 |

## V085.ST25.txt

<220>  
<221> misc\_feature  
<223> Thy12

|            |            |            |            |            |            |            |           |            |      |
|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------|
| <400> 20   |            |            |            |            |            |            |           |            |      |
| atcaa      | acagcc     | tttgaggcag | ctagctcatt | atttgaaaat | aaatcataaa | tttcttccc  | 60        |            |      |
| actat      | cgtat      | ttatgattgc | tagcatattt | gttgtataat | cgaacgagtc | catttgaac  | 120       |            |      |
| agatccat   | at         | agattgagt  | aactataaaa | tacatctata | tcatagttga | gttgttcac  | 180       |            |      |
| aatcatgaga | ccaaattctc | cagcattcg  | tgtagaacca | cgataaagct | gtttat     | tttag      | 240       |            |      |
| caaaatggca | cctccgacac | ctgtacctaa | agtcatgcaa | ataaaat    | tttgg      | ggcttcttg  | 300       |            |      |
| tccattccct | agccaaagtt | cagctagacc | tgcacaattt | gcatcattt  | caacataaac | 360        |           |            |      |
| cggaagattt | aaatgtttt  | gtagttctgt | ccccatgga  | tagccataaa | gatcagttag | 420        |           |            |      |
| agctcctgcc | agtaataatg | ttccctttt  | gtcagaagtt | ccgggaacac | ttacaccaat | 480        |           |            |      |
| tgcagatact | gaatgatgag | cttttaactg | atgaatattt | gtgagcaagc | tatccataat | 540        |           |            |      |
| ttttctttt  | tttaatgggg | ttggaacttg | taaatgttgt | atgatcg    | tccat      | gttc       | 600       |            |      |
| tacaagacca | aattttataa | atgtaccacc | gata       | tcattt     | aatgc      | atctt      | 660       |            |      |
| ttattacctc | tttctcta   | ttgttttagt | atagcaaaat | caaaaaatta | attatgg    | tat        | 720       |            |      |
| gcattataga | tatgttgat  | aattttcaca | aaaacggaga | aaactatgaa | aacaatagaa | 780        |           |            |      |
| cagctcatga | tagattcagc | agatttaatg | tca        | atttgc     | aattttata  | 840        |           |            |      |
| ttccgcaagg | aggatttca  | actttttat  | aggagt     | gtatgc     | aagaagagca | 900        |           |            |      |
| aggtaatgac | tccaacttat | tgatgtgtt  | ttatgttcag | ataatgccc  | atgactttgt | 960        |           |            |      |
| catgcagctc | caccgattt  | gagaacgaca | gcgacttccg | tcccagccgt | gccagg     | tgct       | 1020      |            |      |
| gcctcagatt | cagg       | ttatgc     | cgctcaattt | gctgcgtata | tcgcttgc   | attacgt    | 1080      |            |      |
| gtttccctt  | cagg       | gggat      | tcatacagcg | gccagccatc | cgtcatccat | atcaccacgt | 1140      |            |      |
| caaagggtga | cagcagg    | gtc        | ataagacg   | ccagcgtc   | cata       | gtgt       | 1200      |            |      |
| cgtgcgcaac | aaccgtctt  | cggagactgt | cata       | cgta       | aaacagcc   | cgctggcg   | 1260      |            |      |
| attagcccc  | gacatagccc | cactgtt    | cg         | ccatttccgc | gcagacgat  | acgt       | actgc     | 1320       |      |
| ccggctgtat | gcgcgagg   | ttt        | accgactgc  | gcctgag    | ttt        | tttaagt    | gac       | gtaaaatcg  | 1380 |
| gttgaggcca | acgcccataa | tgcccgt    | tgccc      | gc         | acgacgat   | acgt       | actgc     | 1440       |      |
| atcaatgatt | ttctgg     | tc         | ccgggtt    | aga        | acggt      | gc         | atggcca   | 1500       |      |
| tgttttacgg | cagt       | gagagc     | ag         | agat       | agc        | gtcg       | ttacg     | 1560       |      |
| caccaccccg | tca        | gt         | actgt      | gt         | acg        | tc         | ggagc     | 1620       |      |
| acctcaaaaa | caccatcata | cact       | aaatca     | gt         | atc        | cc         | ttttcaaaa | 1680       |      |
| gaaatcatcg | ctcattt    | atc        | tc         | agtt       | ggc        | ttt        | ttatat    | 1740       |      |
| cctaagataa | aaggatata  | tactt      | at         | tctgt      | at         | ttt        | tttg      | 1800       |      |
| cttattttta | aaggacaaga | aaaacttg   | ca         | aataatc    | ctt        | ccccgtt    | ga        | agtaaaacaa | 1860 |

| V085.ST25.txt                                                        |      |
|----------------------------------------------------------------------|------|
| attattaaaa ttaggtgcaa ttccctagtat ttcaatatac agtgaaccat tacttttgg    | 3960 |
| tcttccaatg atgttaaatc ctctttctt tattcccttg gtttccaac cagcaatttt      | 4020 |
| aggaactgta gcattgggct tggcaaagat attatatatt acaaatactga atccaatgac   | 4080 |
| ggcacttcctt cttggacga caccagcacc tgtgagaatg gccatttcag gtggacttcc    | 4140 |
| attttgatt attttgcaa tctgtttagt cttgaatgtt cttatTTact acccattctt      | 4200 |
| taaggtggcg tataataaaag cttagaaga agaaaaagca gctgttgaat tagagggttc    | 4260 |
| agaaaactgcc tgatggatat ttttataaa tctggttga acaaattata ttgacatctc     | 4320 |
| ttttctatc ctgataattc tgagaggtt ttttggaaa tactattgaa ccatacgag        | 4380 |
| gtgggtgtgt ataatgaagg gaattaaaaa agataggaaa attcatgaa aaaaaagatt     | 4440 |
| atctcagcta ttttatgtc tacagtcata ctttctgctg cagccccgtt gtcaggtgtt     | 4500 |
| taacgcctcag ctggcaagg tactcaatca gaaaactcat gtactcaett tccaggtaac    | 4560 |
| ttgccaaaca tgcttcgtga tttgcgtgat gcttttcac gtgttaaaac ttttttcaa      | 4620 |
| atgaaagatc aacttgataa cttgctttg aaagaatcac ttttggaaaga ttttaaaggt    | 4680 |
| taccttggtt gtcaagcttt gtcagaaatg atccaatttt accttgaaga agttatgcca    | 4740 |
| caagctgaaa accaagatcc agatatcaa gctcacgtt actcattggg tgaaaacctt      | 4800 |
| aaaactttgc gtcttcgttt gcgtcgttgt cacggtttc ttccatgtga aaacaaatca     | 4860 |
| aaagctgttg aacaagttaa aaacgctttt aacaaattgc aagaaaaagg tatctacaaa    | 4920 |
| gctatgtcag aatTTgatct ctttatcaac tacatcgaag cttacatgac tatgaaaatc    | 4980 |
| cgttaactaac tagaattaaat ctataagttt ctgacaaaac tgtcagtaac ttttttgtg   | 5040 |
| ggaaaaatgt atttttatga cctgaaagaa tctgtcagta gaagtctgaa attcgttaa     | 5100 |
| aaatcgacta gaataggctt taacgacaag atgtttaaa gagtacgctc taaatgtatt     | 5160 |
| tttgtatTTt tgTTTgatta cgaagttaa atttaattga caaatgttt aaaatgagta      | 5220 |
| taataggact tgtaaccgat tttatTTta taaaggagaa agaaagatga acaaactttt     | 5280 |
| acttggaca gcctttatag gggctagctt actgattggt gggggtgctc atgcagatca     | 5340 |
| aatgtttatc gtttgtataa tcataatact ggtgagcact ctatacaact agtgggacac    | 5400 |
| caaaaagaatg ctaatgtaaag tgcgggttgg acttatgaag gtgtcgggtt gatcgcacca  | 5460 |
| acaacaagtt caagcccagt ttaccgtgtg tacaatccaa atgcattatt acacaaaaag    | 5520 |
| caagttatgaa gcccaaagtt tagtaaataa gggttggaaa tgggataata acggaaaggc   | 5580 |
| ggtcttctat tctggaggtt ctcaagccgt atatgtcgt tataatccca atgcacaatc     | 5640 |
| tggcgctcac aattacacgg aaagtagctt tgagaaaaat agcttattga atactggttg    | 5700 |
| gaaatatggg gcagtagctt ggtacggat tggagtaaaa aacgaaatgt taaacattgc     | 5760 |
| tcaaattgtt agtggtaatt tttcttagtat tgTTTgaaact tggaaagata cttctggaaa  | 5820 |
| tatgcttgcattt attaatgcaa tggaaaatct tactttataa tggaaagggg caaagaatca | 5880 |
| aaccttgaa cttggcgcag gtcaacaatt taatggaaact gcagatattg ccttaaaaaa    | 5940 |

V085.ST25.txt

|                                                                      |      |
|----------------------------------------------------------------------|------|
| ttccgcaagg aggattttca acttttttat aggagtatg aagaagagca agcttttca      | 900  |
| aggtaatgac tccaacttat tgatagtgtt ttatgttcag ataatgcccg atgactttgt    | 960  |
| catgcagctc caccgatTTT gagaacgaca gcgacttccg tcccagccgt gccaggtgct    | 1020 |
| gcctcagatt caggttatgc cgctcaattc gctgcgtata tcgcttgctg attacgtgca    | 1080 |
| gcttccctt caggcggat tcatacagcg gccagccatc cgtcatccat atcaccacgt      | 1140 |
| caaagggtga cagcaggctc ataagacgcc ccagcgtcgc catagtgcgt tcaccgaata    | 1200 |
| cgtgcgcaac aaccgtcttc cggagactgt catacgcgtaa acacagccag cgctggcg     | 1260 |
| atttagcccc gacatagccc cactgttgcgt ccatttccgc gcagacgtat acgtcactgc   | 1320 |
| ccggctgtat gcgcgagggtt accgactgcg gcctgagttt tttaagtgac gtaaaatcg    | 1380 |
| gtttagggca acgcccataa tgccggctgt tgccggcat ccaacgccat tcatggccat     | 1440 |
| atcaatgatt ttctggtgcg taccgggttg agaagcggtg taagtgaact gcagttgcca    | 1500 |
| tgtttacgg cagttagagc agagatagcg ctgatgtccg gcgggtctt tgccgttacg      | 1560 |
| caccaccccg tcagtagctg aacaggaggg acagctgata gaaacagaag ccactggagc    | 1620 |
| acctcaaaaa caccatcata cactaaatca gtaagttggc agcatcaccc ttttcaaaaa    | 1680 |
| gaaatcatcg ctcatttata tcagttgccc ttgaaggaag aggtgaattt attttatatg    | 1740 |
| cctaagataa aaggatataat tacttatttt tctgtatttg gtaaagagga gtatcttcta   | 1800 |
| cttattttta aaggacaaga aaaacttgca aataatcctt tccccgttga agtaaaacaa    | 1860 |
| ttattaaaaa gtggtatttt actctatcaa atgatttttc aaaaaaattt agattatgaa    | 1920 |
| gaattatttg agaaaaatca gcatattatt tctccattgc ttgctgctaa accaattgaa    | 1980 |
| tggaatgattt ccaatacgtg agggaaagtaa attccataa aacatatctt tttgaaaaat   | 2040 |
| atttggggaa atgtgttatt cgtggagatg ttgcagagtt aaaaaaaagct ttttcaaaatt  | 2100 |
| atataataa aggaactgct ggaaaattat ctaataattc aatgcgacat aaaaaaaaca     | 2160 |
| ttttgatttc agtcatcaact atgactactc gttcggtat acagggagga ttacctgaag    | 2220 |
| aagaagcttt tttgatgagt gatttatata ttcaagagct tgaagaatta acggaatttag   | 2280 |
| aagaaaattag aacgcttgcc tataatgtga tgatcgatt tgcaagataaa gtgaaacagc   | 2340 |
| atcgatatttgc tcaggtttct tataaaatat tatcttgcata aaagtatatt gttaatcatt | 2400 |
| tatacgaaaa actaagtgtg agtggaaattt cagaagagct acacatgaat atttcttatt   | 2460 |
| tatcttcaca attcaaaaaa gagacagggc aaacaattac aaactttatt caggagaagc    | 2520 |
| gaatagaaga agcttagagaa ttaatccttt tctcagacta tccttttca agaatttata    | 2580 |
| ccttgttgggt tttactgcca aagtcatttt ataaaaatata ttaaaaaata tactggaata  | 2640 |
| actcccaaaa agttcaaga tcagttatatt tatcatgcct ctacatcaat atatgattga    | 2700 |
| aattaaaaaa agacctagaa tttcaaaatt gataaaatac atacctaaaa tattaattct    | 2760 |
| gtactattac gggtggagta tctactgtat aatgagggtta taaattatgg aagaagggag   | 2820 |
| taaaaactaaa ttatgtatg gttttacgaa ttaatttagga tttttttt aaaaaccaaa     | 2880 |

## V085.ST25.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| agctcacgtt aactcattgg gtgaaaacct taaaactttg cgtcttcgtt tgcgctgtt    | 4980 |
| tcaccgtttt cttccatgtg aaaacaaatc aaaagctgtt gaacaagtta aaaacgcttt   | 5040 |
| taacaaattg caagaaaaag gatatctacaa agctatgtca gaatttgata tctttatcaa  | 5100 |
| ctacatcgaa gcttacatga ctatgaaaat ccgtaactaa ctagaattaa tctataagtt   | 5160 |
| actgacaaaaa ctgtcagtaa cttttttgt gggaaaaatg tattttatg accgtaaaga    | 5220 |
| atctgtcagt agaagtctga aattcgaaaatc agaataggct ttaacgacaa            | 5280 |
| gatgtttaa agagtacgct ctaaatgtat ttttgattt ttgtttgatt acgaagttt      | 5340 |
| aatttaattg acaaattgttt taaaatgagt ataataggac ttgttaaccga ttttattttt | 5400 |
| ataaaaggaga aagaaagatg aacaaacttt tacttggAAC agcctttata ggggctagct  | 5460 |
| tactgattgg tgggggtgct catgcagatc aaatgtttat cgtttgtata atcataatac   | 5520 |
| tggtgagcac tctatacaac tagtggaca ccaaaagaat gctaatgtaa gtgcgggttg    | 5580 |
| gacttatgaa ggtgtcggtt ggatcgacacc aacaacaagt tcaagcccAG tttaccgtgt  | 5640 |
| gtacaatcca aatgcattat tacacaaaaa gcaagtatga agcccaaagt ttagtaataa   | 5700 |
| agggttggaa atgggataat aacggaaagg cggtcttcta ttctggaggt tctcaagccg   | 5760 |
| tatatgtcgc ttataatccc aatgcacaat ctggcgctca caattacacg gaaagtagct   | 5820 |
| tttagcaaaaa tagcttattt aatactggtt ggaaatatgg ggcagtagct tggtagggaa  | 5880 |
| ttggagtaaa aaacgaaatg ttAAACATTG ctcaaattgt tagtggtaat tttctagta    | 5940 |
| ttgttggAAC ttggaaagat acttctggaa atatgttGA aattaatgca atggaaatc     | 6000 |
| ttactttat atggaaaggG gcaaAGAATC aaacctttGA acttggcgcA ggtcaacaat    | 6060 |
| ttaatggAAC tgcagatatt gcctaaaaa atggagagat ttcccctggT agtccactta    | 6120 |
| acatTTTGT tgcaccaaca gaagtgcTT tccctaataa taaaaaAGTA gacgattcaa     | 6180 |
| ctgggcaaca acgaattttt gtgaattatt ctggtacaag ccctcaaATG gcgaatagta   | 6240 |
| tggcagcggT ggctttttt agagttattC catgattata ttAAAGTTAG aattgaataa    | 6300 |
| aatgtattat taaaaagata atattatTC acgacaaggc gacatctatC aactttacca    | 6360 |
| ctggtatggA agtGACCATT attacatcAG gaaACGCTAA AACGGTTGTT ttacacccG    | 6420 |
| taaaaataat aataaaaataa tgcaccaata ctgacagcat ttgtcagta atttttttta   | 6480 |
| tcaaaatcac acaaaaaatgt tcgttgacga aaaaaaaaaa ctatgttata ataattcgta  | 6540 |
| tgcgaactaa aaaAGAAGCG attggccgac tttaaaaAGT agccAGCAAC caaatgtctc   | 6600 |
| gagaatttGA taatTTGCA gctcaacttg atttgacagg tcagcaaATG tcaattttAG    | 6660 |
| atTTTCTTG AAATCAAAGC gaagaaggTT caggAAAAGA aattagtcaG acgtgattG     | 6720 |
| aattagaatt taatATCCGA CGTTCAACAA CGACGGAAAT ttacAGCGC atggAAAAGC    | 6780 |
| ggcttttaat taatcgaAGA ACAAGCCTGA CCAGTGCCTG CAAAAAATCA GTTGAATTAA   | 6840 |
| ctgaagaagg gaaaagataat ttacctgaaa tcaggcTTA tatCCAAGCA cataataaaa   | 6900 |
| aagc                                                                | 6904 |

V085.ST25.txt

|            |             |             |             |             |             |      |
|------------|-------------|-------------|-------------|-------------|-------------|------|
| gaaatcatcg | ctcatttatac | tcagttgcc   | ttgaaggaag  | aggtaattt   | attttatatg  | 1740 |
| cctaagataa | aaggatata   | tacttatttt  | tctgtattt   | gtaaagagga  | gtatcttcta  | 1800 |
| cttattttta | aaggacaaga  | aaaacttgca  | aataatcett  | tccccgttga  | agtaaaacaa  | 1860 |
| ttataaaaaa | gtggtatttt  | actctatcaa  | atgattttc   | aagaaaaatt  | agattatgaa  | 1920 |
| gaattatttg | agaaaaatca  | gcatttattt  | tctccattgc  | ttgctgctaa  | accaattgaa  | 1980 |
| tggaatgatt | ccaatacgtg  | aggaaagtta  | attcccataa  | aacatatctt  | tttgaaaaat  | 2040 |
| atttggggga | atgtgttatt  | cgtggagatg  | ttgcagagtt  | aaaaaaagct  | ttttcaaatt  | 2100 |
| atatgaataa | aggaactgct  | ggaaaattat  | ctaataattc  | aatgcgacat  | aagaaaaaca  | 2160 |
| ttttgatttc | agtcatca    | atgactactc  | gttcggctat  | acagggagga  | ttacctgaag  | 2220 |
| aagaagctt  | tttgatgagt  | gatttatata  | ttcaagagct  | tgaagaatta  | acggaattag  | 2280 |
| aagaaattag | aacgcttgcc  | tataatgtga  | tgatcgattt  | tgcaagataaa | gtgaaacagc  | 2340 |
| atcgatattg | tcaggttict  | tataaaatat  | tatcttgtca  | aaagtatatt  | gttaatcatt  | 2400 |
| tatacgaaaa | actaagtgtg  | agtggaaattt | cagaagagct  | acacatgaat  | atttcttatt  | 2460 |
| tatcttcaca | attcaaaaaaa | gagacagggc  | aaacaattac  | aaactttatt  | caggagaagc  | 2520 |
| gaatagaaga | agctagagaa  | ttaatcctt   | tctcagacta  | tccttttca   | agaatttata  | 2580 |
| ccttgggt   | tttactgcca  | aagtcatttt  | ataaaaatat  | ttaaaaaata  | tactggaata  | 2640 |
| actccaaaaa | agttcaaga   | tcagtatatt  | tatcatgcct  | ctacatcaat  | atatgattga  | 2700 |
| aattaaaaaa | agacctagaa  | tttcaaaatt  | gataaaatac  | atacctaaaa  | tattaattct  | 2760 |
| gtactattac | gggtggagta  | tctactgtat  | aatgagggta  | taaattatgg  | aagaagggag  | 2820 |
| taaaactaaa | tttattgtat  | gttttacgaa  | ttaatttagga | tatTTTTT    | aaaaacccaa  | 2880 |
| gaaaacgctt | acaaacgtta  | aaggagtga   | tctaaagatg  | gacaaattt   | aaaaatggct  | 2940 |
| aaataagacc | ttgatgccac  | ttgcctcaaa  | aatgaataaa  | aatcatttca  | tttcggcatt  | 3000 |
| aagtgaagca | tttatgagat  | gtatgccctt  | aacattaggg  | attgcattat  | tgacaattat  | 3060 |
| aggatacttt | ccagttcctg  | cctgggtaga  | tttcttaaac  | tctattggac  | tggctcagca  | 3120 |
| ttttcagca  | gttattggtg  | cagttaccag  | tgcgctagca  | atttatgtaa  | cttataattt  | 3180 |
| tgcttattct | tatgtaaatc  | gtcatgaata  | taatggccat  | acggccgggt  | tattatcaat  | 3240 |
| cgcaagttt  | ttaatgctaa  | tgccacaaat  | tattactgtc  | cctgttagtaa | aaaacattcc  | 3300 |
| aaccgaattt | ccgaaatccg  | cggtagttga  | cagtgtgtca  | aatgttgaag  | cattcaaacc  | 3360 |
| ggtatacacg | ggtacacag   | gattaattgt  | agcaatcata  | attggtttta  | ttgtttcatt  | 3420 |
| agtctatata | caattgagca  | aaagaaattt  | agttattaaa  | ttaccagctg  | gagttcctcc  | 3480 |
| aatggttgt  | gattcactaa  | gtccagcaat  | tatttcaatg  | gtgattttct  | gtttgatgtt  | 3540 |
| cgggattcgt | gtgggattct  | cttatacggc  | attccatgtat | atttcaattt  | tctcaacaca  | 3600 |
| actaattcaa | gcaccgttga  | ctggtgctgt  | ggcaaatcca  | tgggttctta  | tggcatctt   | 3660 |
| tacctttgg  | aatttcttat  | ggttctttgg  | tatccaccct  | aatttaattt  | ggggaaatttt | 3720 |

V085.ST25.txt

|            |            |             |             |             |             |      |
|------------|------------|-------------|-------------|-------------|-------------|------|
| agggttggaa | atgggataat | aacggaaagg  | cggtcttcta  | ttctggaggt  | tctcaagccg  | 5820 |
| tatatgtcgc | ttataatccc | aatgcacaat  | ctggcgctca  | caattacacg  | gaaagttagct | 5880 |
| ttgagcaaaa | tagcttattg | aatactggtt  | ggaaatatgg  | ggcagtagct  | tggtacggga  | 5940 |
| ttggagtaaa | aaacgaaatg | ttaaacattg  | ctcaaattgt  | tagtgtaat   | ttttctagta  | 6000 |
| ttgttggAAC | ttggaaagat | acttctggaa  | atatgctga   | aattaatgca  | atggaaatc   | 6060 |
| ttactttaat | atggaaaggg | gcaaagaatc  | aaaccttga   | acttggcgca  | ggtcaacaat  | 6120 |
| ttaatggAAC | tgcagatatt | gcctaaaaaa  | atggagagat  | ttcccctggt  | agtccactta  | 6180 |
| acatTTTGT  | tgtaccaaca | gaagttgctt  | tccctaataa  | taaaaaagta  | gacgattcaa  | 6240 |
| ctgggcaaca | acgaattttt | gtgaattatt  | ctggtacaag  | ccctcaaatg  | gcgaatagta  | 6300 |
| tggcagcgg  | ggctttttt  | agagttattc  | catgattata  | ttaaagtttag | aattgaataa  | 6360 |
| aatgtattat | taaaaagata | atattatatc  | acgacaaggc  | gacatctatc  | aactttacca  | 6420 |
| ctggtatgga | agtgaccatt | attacatcag  | gaaacgctaa  | aacggttgtt  | tttacacccg  | 6480 |
| taaaaataat | aataaaataa | tgtgaaatta  | ctgacacgcat | tttgtcagta  | atttttttta  | 6540 |
| tcaaaatcac | acaaaaatgt | tcgttgacga  | acaaaaaaaaa | ctatgttata  | ataattcgta  | 6600 |
| tgcgaactaa | aaaagaagcg | attggccgac  | ttttaaaagt  | agccagcaac  | caaatgtctc  | 6660 |
| gagaatttga | taatTTGCA  | gctcaacttg  | atttgacagg  | ttagcaaatg  | tcaatttttag | 6720 |
| atTTCTTGG  | aatcaaagc  | gaagaagggtt | caggaaaaga  | aattagtcag  | acgtgattg   | 6780 |
| aattagaatt | taatatccga | cgttcaacaa  | cgacggaaat  | tttacagcgc  | atggaaaagc  | 6840 |
| ggcttttaat | taatcgaaga | acaaggcctga | ccgatgcccc  | ccaaaaatca  | gttgaattaa  | 6900 |
| ctgaagaagg | aaaaagatat | ttacctgaaa  | tcagggctta  | tatccaagca  | cataataaaaa | 6960 |
| aagc       |            |             |             |             |             | 6964 |

<210> 23  
<211> 4998  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> pOThy11

|          |            |            |             |            |             |            |     |
|----------|------------|------------|-------------|------------|-------------|------------|-----|
| <400> 23 | aatttcatgg | attaagtcat | cttaccttctt | ttattagttt | tttcttataa  | tctaatgata | 60  |
|          | acatTTTAT  | aattaatcta | taaaccatat  | ccctctttgg | aataaaaatt  | tattatctac | 120 |
|          | tccttttag  | atatgttata | atacaagtat  | cagatctggg | agaccacaac  | ggtttcccac | 180 |
|          | tagaaataat | tttggtaac  | tttagaaagg  | agatatacgc | atggaaaaaaa | agattatctc | 240 |
|          | agctatttta | atgtctacag | tcatactttc  | tgctgcagcc | ccgttgcag   | gtgtttacgc | 300 |
|          | ctcagctgg  | caaggtactc | aatcagaaaa  | ctcatgtact | cactttccag  | gtacttgcc  | 360 |
|          | aaacatgctt | cgtgatttgc | gtgatgcttt  | ttcacgtgtt | aaaactttt   | ttcaaatgaa | 420 |
|          | agatcaactt | gataacttgc | tttgaaaga   | atcactttg  | gaagatttta  | aaggttacct | 480 |

## V085.ST25.txt

|                        |                         |                                  |      |
|------------------------|-------------------------|----------------------------------|------|
| tttacgcta cgataacgcc   | tgtttaacg attatgccga    | taactaaacg aaataaacgc            | 2580 |
| taaaaacgtct cagaaacgat | tttgagacgt tttataaaaa   | aatcgctagt ccgaggcctc            | 2640 |
| gaccgattc acaaaaaaaata | ggcacacgaa aaacaagtta   | aggatgcag tttatgcac              | 2700 |
| ccttaactta cttattaaat  | aatttatagc tattgaaaag   | agataagaat tgttcaaage            | 2760 |
| taatattgtt taaatcgtca  | attcctgcat gtttaagga    | attgttaaat tgatfffft             | 2820 |
| taaatatccc ttgttattct  | ttgttaaccc atttcataac   | gaaataatta tacfffft              | 2880 |
| tatcttgcgt tgatattctt  | gattttttt tacttaatct    | gataagttag ctattcactt            | 2940 |
| taggtttagg atgaaaatat  | tctcttgaa ccatactaa     | tatagaaata tcaacttctg            | 3000 |
| ccataaaaag taatgccaat  | gagcggtttg tatttaataa   | tcttttagca aaccgttatt            | 3060 |
| ccacgattaa ataaatctca  | ttagctatac tatcaaaaac   | aattttgcgt attatatccg            | 3120 |
| tacttatgtt ataaggata   | ttaccatata tttatagga    | ttgggtttt gaaatttaa              | 3180 |
| actgcaatat atccttgcgtt | aaaacttggaa aattatcg    | atcaacaagt ttatfffft             | 3240 |
| tagtttgca taatttatgg   | tctatttcaa tggcagttac   | gaaatttacac ctctttacta           | 3300 |
| attcaagggt aaaatggcct  | tttcctgagc cgatttcaaa   | gatattatca tgttcattta            | 3360 |
| atcttatatt tgcattatt   | ttatctatat tatgttttga   | agtaataaag ttttgactgt            | 3420 |
| gttttatatt ttctcggttc  | attataaccc tcttaattt    | ggttatatga attttgctta            | 3480 |
| ttaacgattc attataacca  | cttattttt gtttgttga     | taatgaactg tgctgattac            | 3540 |
| aaaaatacta aaaatgccc   | tatttttcc tccttataaa    | attagtataa ttatagcacg            | 3600 |
| ggcagagatc catgttctt   | cctcggttat cccctgattc   | tgtggataac cgtattaccg            | 3660 |
| ccttgagtg agctgatacc   | gctcgccgca gccgaacgac   | cgagcgcagc gagtcagtga            | 3720 |
| gcaaggaagc ggaagagcgc  | ccaatacgca aaccgcctt    | ccccgcgt tgccgattc               | 3780 |
| attaatgcag ctggcacgac  | agtttccc actggaaagc     | ggcagttag cgcaacgc当地             | 3840 |
| ttaatgttag ttagctact   | cattaggcac cccaggctt    | acactttatg ctccggctc             | 3900 |
| gtatgttg               | tggattgtg agcggataac    | aatttcacac aggaaacagc tatgaccatg | 3960 |
| attacgcca              | gcttgcattgc ctgcaggctcg | actctagagg atcctatata caattgagca | 4020 |
| aaagaaaattt agtttataaa | ttaccagctg gagttcctcc   | aatggttgtt gattcactaa            | 4080 |
| gtccagcaat tattcaatg   | gtgatttct gttgtatgtt    | cgggattcgt gtggattct             | 4140 |
| cttatacgcc attccatgtat | attttcaatt tctcaacaca   | actaattcaa gcaccgttga            | 4200 |
| ctggcgtgt ggcaaattca   | tgggttctta tgggcatttt   | taccttttgtt aatttcttat           | 4260 |
| ggtttttgtt tatccaccc   | aatttaattt gggaaatttt   | aaatccattt ttatataacaa           | 4320 |
| tgtcatatgc taatattgtat | gcctatgtcg ccggaaaacc   | tgtaccatac ttacaaatga            | 4380 |
| tgattgtgtt tgctgtgggt  | gcaacgcatt gggcggaaag   | tggaaataact tatgggttag           | 4440 |
| ttatattcaat gtttacggca | aaatctgaac gctataaaca   | attattaaaa ttaggtgcaa            | 4500 |
| ttcctagtat ttcaatatc   | agtgaaccat tacttttgg    | tcttccaaatg atgttaaatc           | 4560 |

V085.ST25.txt

|                                                                         |      |
|-------------------------------------------------------------------------|------|
| aaaagcaagt atgaagccca aagtttagta aataagggtt ggaaatggga taataacgga       | 1320 |
| aaggcggct tctattctgg aggttctcaa gccgtatatg tcgcttataa tcccaatgca        | 1380 |
| caatctggcg ctcacaatta cacggaaagt agctttgagc aaaatagctt attgaatact       | 1440 |
| ggttggaaat atggggcagt agcttggcac gggattggag taaaaaacga aatgttaaac       | 1500 |
| attgctaaa ttgttagtgg taattttct agtattgtt gaaactggaa agataacttct         | 1560 |
| ggaaatatgc ttgaaattaa tgcaatggga aatcttactt taatatggaa agggcaaag        | 1620 |
| aatcaaacct ttgaacttgg cgcatgtcaa caatttaatg gaactgcaga tattgcctta       | 1680 |
| aaaaatggag agatttcccc tggtagtcca cttaacattt ttgttgtacc aaçagaagt        | 1740 |
| aattcactgg ccgtcgcccc acaacgtcggt gactggaaa accctggcg taccactt          | 1800 |
| aatcgccctg cagcacatcc cccttcgccc agctggcgta atagcgaaga ggcccgacc        | 1860 |
| gatcgccctt cccaacagtt gcgcagcctg aatggcgaaat ggccgcgtat gcggtat         | 1920 |
| ctccttacgc atctgtgcgg tatttcacac cgcatatggt gcactagaac tagcgattct       | 1980 |
| gaaatcacca tttaaaaaac tccaatcaaa taatttata aagtttagtgt atcactttgt       | 2040 |
| aatcataaaa acaacaataa agctacttaa atatacgattt ataaaaaacg ttggcgaaaa      | 2100 |
| cgttggcgat tcgttggcga ttgaaaaacc cttaaaccctt tgagccagt tggatagag        | 2160 |
| cgttttggc acaaaaatttgc gcaactcgca cttaatgggg ggtcgtagta cggaagcaaa      | 2220 |
| attcgcttcc tttccccca ttttttcca aattccaaat ttttttcaaa aattttccag         | 2280 |
| cgctaccgct cggcaaaatttgc gcaagcaattt tttaaaatca aacccatgag ggaatttcat   | 2340 |
| tccctcatac tcccttgagc ctccctcaac cgaaatagaa gggcgctgctg cttattat        | 2400 |
| cattcagtca tcggcttca taatctaaca gacaacatct tcgctgcaaa gccacgctac        | 2460 |
| gctcaagggc tttacgcta cgataacgccc tgtttaacg attatgcga taactaaacg         | 2520 |
| aaataaacgc taaaacgtct cagaaacgtt tttgagacgt tttataaaaa aatcgctagt       | 2580 |
| ccgaggcctc gacccgatttca acaaaaaataa ggcacacgaa aaacaagtttta agggatgcag  | 2640 |
| tttatgcatttcc cttaactta cttattaaat aatttatagc tattgaaaag agataagaat     | 2700 |
| tgttcaaaagc taatattgtt taaatcgta attcctgcattt gtttttaagga attgttaat     | 2760 |
| tgatTTTTG taaatattttt cttgtattttt ttgttaaccc atttcataac gaaataattt      | 2820 |
| tacttttgcattt tatctttgtt tgatattttt gatTTTTTCT tacttaatct gataagttag    | 2880 |
| ctattcactt tagttttagg atgaaaatattt tctcttgaa ccataacttaa tatagaaataa    | 2940 |
| tcaacttctg ccattaaaag taatgcattt gagcgttttg tatttaataa tcttttagca       | 3000 |
| aacccgtatttcc acacgattaa ataaatctca ttatcgatatac tatcaaaaaac aatTTTGCCT | 3060 |
| attatatccg tacttatgtt ataaggtaat ttaccatata ttttatagga ttggTTTTA        | 3120 |
| ggaaatttaa actgcaatattt atccttgatttt aaaacttgaa aattatcgat gatcaacaagt  | 3180 |
| ttatTTTCTG tagtttgcattt taatTTTGTG tctatttcaaa tggcagttac gaaatttacac   | 3240 |
| ctctttacta attcaagggtt aaaatggcctt tttcctgagc cgatttcaaa gatattatca     | 3300 |



V085.ST25.txt

|             |            |             |             |             |             |      |
|-------------|------------|-------------|-------------|-------------|-------------|------|
| ctaataattga | tgcctatgct | gccggaaaaac | ctgtaccata  | cttacaaaatg | atgatttgtt  | 4380 |
| ttgctgtggg  | tgcgAACGCA | tggggcggaa  | gtggaaatac  | ttatgggtta  | gttatttcaa  | 4440 |
| tgttacggc   | aaaatctgaa | cgtataaac   | aattattaaa  | attaggtgca  | attccctaga  | 4500 |
| ttttcaatat  | cagtgaacca | ttacttttg   | gtcttccaaat | gatgtttaat  | cctctttct   | 4560 |
| ttattcctt   | ggtttccaa  | ccagcaattt  | taggaactgt  | agcattgggc  | ttggcaaaga  | 4620 |
| tattatata   | tacaaatctg | aatccaatga  | cggcacttct  | tccttggacg  | acaccagcac  | 4680 |
| ctgtgagaat  | ggccatttca | ggtggaacttc | cattttgat   | tatTTTgca   | atctgttag   | 4740 |
| tcttgaatgt  | tcttatttac | tacccattct  | ttaagggtgc  | gtataataaa  | gctttagaag  | 4800 |
| aagaaaaagc  | agctgttcaa | ttagagggtt  | cagaaactgc  | ctgatggata  | ttttttataa  | 4860 |
| atctggtttgc | aacaaattat | attgacatct  | ctttttctat  | cctgataatt  | ctgagagggtt | 4920 |
| atTTTgggaa  | atacta     |             |             |             |             | 4936 |

<210> 26  
<211> 4995  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> pOThy16

|              |            |             |             |             |             |      |
|--------------|------------|-------------|-------------|-------------|-------------|------|
| aatttcgatt   | aagtcatctt | acctttta    | ttagttttt   | cttataatct  | aatgataaca  | 60   |
| tttttataat   | taatctataa | accatatccc  | tctttggaat  | caaaatttat  | tatctactcc  | 120  |
| ttttagata    | tgttataata | caagtatcag  | atctggaga   | ccacaacggt  | ttcccaactag | 180  |
| aaataatttt   | gtttaacttt | agaaaaggaga | tatacgcatt  | aaaaaaaaaga | ttatctcagc  | 240  |
| tatTTTatg    | tctacagtca | tactttctgc  | tgcagccccg  | ttgtcaggtg  | tttacgcctc  | 300  |
| agctggtaa    | ggtactcaat | cagaaaactc  | atgtactcac  | tttccaggta  | acttgccaaa  | 360  |
| catgttcgt    | gatttgcgtg | atgcttttc   | acgtgttaaa  | acttttttc   | aatgaaaaga  | 420  |
| tcaacttgat   | aacttgctt  | tgaaagaatc  | acttttgaa   | gatTTTaaag  | gttaccttgg  | 480  |
| ttgtcaagct   | ttgtcagaaa | tgatccaatt  | ttaccttcaa  | gaagttatgc  | cacaagctga  | 540  |
| aaaccaagat   | ccagatatac | aagctcacgt  | taactcattt  | ggtggaaaacc | ttaaaacttt  | 600  |
| gcgtttcgt    | ttgcgtcggt | gtcaccgttt  | tcttccatgt  | gaaaacaaat  | caaaagctgt  | 660  |
| tgaacaagtt   | aaaaacgctt | ttaacaaatt  | gcaagaaaaaa | ggtatctaca  | aagctatgtc  | 720  |
| agaatttgc    | atctttatca | actacatcga  | agcttacatg  | actatgaaaa  | tccgtaacta  | 780  |
| actagaattt   | atctataagt | tactgacaaa  | actgtcagta  | acttttttg   | tggaaaaat   | 840  |
| gtatTTTat    | gaccgtaaag | aatctgtcag  | tagaagtctg  | aaattcggtt  | aaaaatcgac  | 900  |
| tagaataggc   | tttaacgaca | agatgtttt   | aagagtacgc  | tctaaatgtt  | ttttgtatt   | 960  |
| tttggTTTgt   | tacgaagttt | aaatttaattt | gacaaatgtt  | ttaaaatgag  | tataatagga  | 1020 |
| cttgcataaccg | atTTTatTTT | tataaaggag  | aaagaaagat  | gaacaaactt  | ttacttggaa  | 1080 |

## V085.ST25.txt

|                                                                    |      |
|--------------------------------------------------------------------|------|
| ttatgttata aggtatatta ccatatattt tataggattg gtttttagga aatttaaact  | 3180 |
| gcaatatatac cttgtttaaa acttggaaat ttcgtgatc aacaagttt tttctgttag   | 3240 |
| tttgcataa ttatggtct attcaatgg cagttacgaa attacaccctc tttactaatt    | 3300 |
| caaggtaaa atggccttt cctgagccga tttcaaagat attatcatgt tcatttaatc    | 3360 |
| ttatatttgt cattattta ttatattat gtttgaagt aataaagtt tgactgtgtt      | 3420 |
| ttatattttt ctcgttcatt ataaccctct ttaatttggt tataatgtt ttgcttattt   | 3480 |
| acgattcatt ataaccactt atttttgtt tggttataa tgaactgtgc tgattacaaa    | 3540 |
| aatactaaaa atgcccataat ttttcctcc ttataaaatt agtataattha tagcacgggt | 3600 |
| c gagatccat gtttttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct  | 3660 |
| ttgagtgagc tgataccgct cggcgagcc gaacgaccga ggcgcagcgag tcagtgagcg  | 3720 |
| aggaagcggga agagcgccca atacgcaaac cgcctctccc cgcgcgttgg ccgattcatt | 3780 |
| aatgcagctg gcacgacagg tttcccgact ggaaagcggg cagtgagcgc aacgcaatta  | 3840 |
| atgtgagtt gtcactcat taggcacccc aggcttaca ttatgttcc ttgctcgta       | 3900 |
| tgttgtgtgg aattgtgagc ggataacaat ttcacacagg aaacagctat gaccatgatt  | 3960 |
| acgccaagct tgcattgcctg caggtcgact ctataggatc ctatatacaa ttgagcaaaa | 4020 |
| gaaatttagt tattaaattha ccagctggag ttcctccat gttttagat tcactaagtc   | 4080 |
| cagcaattat ttcaatggtg atttctgtt tgatgttcgg gattcgtgtg ggattctctt   | 4140 |
| atacgccatt ccatgatatt ttcaatttct caacacaact aattcaagca ccgttgactg  | 4200 |
| gtgctgtggc aaatccatgg gtttttatgg gcatcttac ctttggtaat ttctttaggt   | 4260 |
| tctttggat ccaccctaatt ttaattgggg gaattttaaa tccattgtta ttaacaatgt  | 4320 |
| catatgctaa tattgatgcc tatgctgccc gaaaacctgt accataactt caaatgatga  | 4380 |
| ttgtgtttgc tgtgggtgcg aacgcattggg gcgaaagtgg aaatactt gggtagtta    | 4440 |
| tttcaatgtt tacggcaaaa tctgaacgct ataaacaatt attaaaattha ggtgcaattc | 4500 |
| ctagttttt caatatcagt gaaccattac tttttggctt tccaaatgtt taaaatcctc   | 4560 |
| ttttctttt tccctttgtt ttccaaaccag caattttagg aactgttagca ttgggcttgg | 4620 |
| caaagatatt atatattaca aatctgaatc caatgacggc acttcttctt tggacgacac  | 4680 |
| cagcacctgt gagaatggcc atttcagggtg gacttccatt ttgatttt tttgcaatct   | 4740 |
| gttttagtctt gaatgttctt atttactacc cattttttaa ggtggcgtat aataaagctt | 4800 |
| tagaagaaga aaaagcagct gttgaattag agggttcaga aactgcctga tggatatttt  | 4860 |
| ttataaaatct ggtttgaaca aattatattt acatctttt ttctatcctg ataattctga  | 4920 |
| gaggttattt tgggaaatac tattgaacca tatcgaggtg tttttttttt tgaaggaaat  | 4980 |
| taaaaaagat aggaa                                                   | 4995 |