Прикладной статистический анализ данных.

3. Непараметрическая проверка гипотез.

Рябенко Евгений riabenko.e@gmail.com

I/2015

Виды задач

Двухвыборочные:

Варианты двухвыборочных гипотез

О положении:

$$\begin{split} H_0 \colon \mathbb{E} X_1 &= \mathbb{E} X_2, & H_1 \colon \mathbb{E} X_1 < \neq > \mathbb{E} X_2; \\ H_0 \colon \operatorname{med} X_1 &= \operatorname{med} X_2, & H_1 \colon \operatorname{med} X_1 < \neq > \operatorname{med} X_2; \\ H_0 \colon p\left(X_1 > X_2\right) &= 0.5, & H_1 \colon p\left(X_1 > X_2\right) < \neq > 0.5; \\ H_0 \colon F_{X_1}\left(x\right) &= F_{X_2}\left(x\right), & H_1 \colon F_{X_1}\left(x\right) &= F_{X_2}\left(x + \Delta\right), \Delta < \neq > 0; \\ H_0 \colon F_{X_1}\left(x\right) &= F_{X_2}\left(x\right), & H_1 \colon F_{X_1}\left(x\right) < \neq > F_{X_2}\left(x\right). \end{split}$$

О рассеянии:

$$\begin{split} H_0 \colon \mathbb{D}X_1 &= \mathbb{D}X_2, & H_1 \colon \mathbb{D}X_1 < \neq > \mathbb{D}X_2; \\ H_0 \colon F_{X_1}\left(x\right) &= F_{X_2}\left(x+\Delta\right), & H_1 \colon F_{X_1}\left(x\right) &= F_{X_2}\left(\sigma x + \Delta\right), \sigma < \neq > 1. \end{split}$$

выборка:
$$X^n = (X_1, \dots, X_n), X_i \neq m_0;$$

нулевая гипотеза: $H_0 : \text{med } X = m_0;$

альтернатива:
$$H_1$$
: $\operatorname{med} X < \neq > m_0$;

статистика:
$$T(X^n) = \begin{cases} n_1 = \sum\limits_{i=1}^n \left[X_i > m_0\right], & H_1 \colon \operatorname{med} X_i > m_0, \\ n_2 = \sum\limits_{i=1}^n \left[X_i < m_0\right], & H_1 \colon \operatorname{med} X_i < m_0, \\ \operatorname{min}\left(n_1, n_2\right), & H_1 \colon \operatorname{med} X_i \neq m_0; \end{cases}$$

$$T(X^n) \sim Bin(n, \frac{1}{2})$$
 при H_0 .

Редукция до знаков

Пример 1 (Капјі, критерий 45): предполагается, что стоимость материала, получаемого при переработке строительной конструкции, составляет в среднем 0.28 долларов. Взята случайная выборка из 10 конструкций, все они переработаны; стоимость в долларах полученного из каждой конструкции материала составила:

$$\{0.28, 0.18, 0.24, 0.30, 0.40, 0.36, 0.15, 0.42, 0.23, 0.48\}.$$

Правомерно ли использовать гипотезу о том, что она взята из популяции с медианой стоимости переработанного материала 0.28 долларов?

 H_0 : медиана стоимости переработанного материала составляет 0.28 долларов.

 H_1 : медиана стоимости переработанного материала отличается от 0.28 долларов $\Rightarrow p=1,~95\%$ доверительный интервал для медианы — [0.196,0.414] .

Пример 2: (Shervin, 2004): 16 лабораторных мышей были помещены в двухкомнатные клетки, в одной из комнат висело зеркало. Измерялось доля времени, которое каждая мышь проводила в каждой из своих двух клеток.

Общая постановка:

 H_0 : мышам всё равно, висит в клетке зеркало или нет.

 H_1 : у мышей есть какие-то предпочтения насчёт зеркала.

 $H_0\colon$ медиана доли времени, проводимого в клетке с зеркалом, равна $\frac{1}{2}.$ $H_1\colon$ медиана доли времени, проводимого в клетке с зеркалом, не равна $\frac{1}{2}.$

Редуцированные данные: 0 — мышь провела больше времени в комнате с зеркалом, 1 — в комнате без зеркала.

Статистика: T — число единиц в выборке.

13 из 16 мышей провели больше времени в комнате без зеркала.

Критерий знаков: $p=0.0213,\,95\%$ доверительный интервал для вероятности (что мышь проведёт больше времени в комнате без зеркала) — [0.54,0.96].

Средняя доля времени, проводимого в клетке с зеркалом — $47.6 \pm 4.7\%$.

Двухвыборочный критерий знаков

выборки:
$$X_1^n = (X_{11}, \dots, X_{1n}),$$
 $X_2^n = (X_{21}, \dots, X_{2n}), X_{1i} \neq X_{2i},$ выборки связанные:

выборки связанные; нулевая гипотеза: $H_0: p(X_1 > X_2) = \frac{1}{2};$

нулевая гипотеза:
$$H_0: p\left(X_1 > X_2\right) = \frac{1}{2};$$
 альтернатива: $H_1: p\left(X_1 > X_2\right) < \neq > \frac{1}{2};$

статистика:
$$T\left(X_1^n,X_2^n\right) = \begin{cases} n_1 = \sum\limits_{i=1}^n \left[X_{1i} > X_{2i}\right], & H_1 \colon >, \\ n_2 = \sum\limits_{i=1}^n \left[X_{1i} < X_{2i}\right], & H_1 \colon <, \\ \min\left(n_1,n_2\right), & H_1 \colon \neq; \end{cases}$$

 $T\left(X_1^n,X_2^n
ight)\sim \mathring{Bin}(n,rac{1}{2})$ при $H_0.$

Двухвыборочный критерий знаков

Пример 1 (Hollander & Wolfie, 29f): депрессивность 9 пациентов была измерена по шкале Гамильтона до и после первого приёма транквилизатора. Подействовал ли транквилизатор?

 H_0 : уровень депрессивности не изменился.

 H_1 : уровень депрессивности снизился $\Rightarrow p=0.09,\,95\%$ односторонний доверительный интервал для медианы изменения:

- [0.01, ∞] консервативный.

Двухвыборочный критерий знаков

Пример 2: (Laureysens et al., 2004): для 13 разновидностей тополей, растущих в зоне интенсивного загрязнения, в августе и ноябре измерялась средняя концентрация алюминия в микрограммах на грамм древесины.

000

концентрация алюминия не менялась. H_1 : концентрация алюминия изменилась.

Для тополей 10 из 13 разновидностей концентрация алюминия увеличилась.

Критерий знаков: p=0.0923, 95% доверительный интервал для медианы изменения — [0.687, 10.107].

Причины использовать критерий знаков

- Точные разности Δx_i неизвестны, известны только их знаки (сравнение агрессивности комаров).
- Разности Δx_i при H_1 могут быть небольшими по модулю, но иметь систематический характер по знаку (пример с мышами).
- Разности Δx_i при H_0 могут быть большими по модулю, но случайными но знаку (влияние меди на число личинок комаров).

Редукция до знаков

$$X_1,\ldots,X_n \quad \Rightarrow \quad X_{(1)} \leq \ldots < \underbrace{X_{(k_1)} = \ldots = X_{(k_2)}}_{\text{CBR3KA DA3MeDA } k_2 - k_1 + 1} < \ldots \leq X_{(n)}$$

Ранг наблюдения X_i :

$$rank(X_i) = \mathbb{E}\left\{r \mid X_i = X_{(r)}\right\}$$

т. е. если X_i не в связке, то ранг — номер X_i в вариационном ряду, если X_i в связке $X_{(k_1)},\dots,X_{(k_2)}$, то $\mathrm{rank}\,(X_i)=\frac{k_1+k_2}{2}$.

выборка:
$$X^n = (X_1, \dots, X_n), X_i \neq m_0,$$

F(X) симметрично относительно медианы;

нулевая гипотеза: $H_0 : \text{med } X = m_0;$

альтернатива: $H_1 : \operatorname{med} X < \neq > m_0;$

статистика: $W(X^n) = \sum_{i=1}^n \text{rank}(|X_i - m_0|) \cdot \text{sign}(X_i - m_0);$

 $W\left(X^{n}\right)$ имеет табличное распределение при $H_{0}.$

Откуда берётся табличное распределение?

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	W
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-120
+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-118
-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-116
+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-114
-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-114
+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-112
-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-110
+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-108
-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-112
+	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-110
-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	110
+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	112
-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	108
+	-	-	+	+	+	+	+	+	+	+	+	+	+	+	110
-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	112
+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	114
-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	114
+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	116
-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	118
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	120

Аппроксимация для n > 20:

$$W \sim N\left(0, \frac{n(n+1)(2n+1)}{6}\right).$$

Обработка связок: зависит от реализации.

Пример 1 (Капјі, критерий 47): значение депозитной ставки измеряется на выборке из 10 инвесторов после рекламной кампании; среднее значение ставки до начала кампании — 0.28. Значения депозитной ставки после кампании:

$$\{0.28, 0.18, 0.24, 0.30, 0.40, 0.36, 0.15, 0.42, 0.23, 0.48\}.$$

Изменилось ли среднее значение депозитной ставки?

 H_0 : среднее значение депозитной ставки после кампании осталось прежним.

 H_1 : среднее значение депозитной ставки после кампании изменилось $\Rightarrow p=0.5536,\,$ 95% доверительный интервал для медианы — [0.20,0.41].

Пример 2 (зеркала в клетках мышей):

 H_0 : медиана доли времени, проводимого в клетке с зеркалом, равна $\frac{1}{2}$.

 H_1 : медиана доли времени, проводимого в клетке с зеркалом,

не равна $\frac{1}{2} \Rightarrow p = 0.0703$.

Критерий знаковых рангов Уилкоксона для связанных выборок

выборки:
$$X_1^n = (X_{11}, \dots, X_{1n}),$$

$$X_2^n = (X_{21}, \dots, X_{2n}), X_{1i} \neq X_{2i},$$

выборки связанные;

нулевая гипотеза: H_0 : $med(X_1 - X_2) = 0$;

альтернатива: $H_1 : \text{med}(X_1 - X_2) < \neq > 0;$

статистика:
$$W(X_1^n, X_2^n) = \sum_{i=1}^n \operatorname{rank}(|X_{1i} - X_{2i}|) \cdot \operatorname{sign}(X_{1i} - X_{2i});$$

 $W\left(X_1^n,X_2^n
ight)$ имеет табличное распределение при $H_0.$

Критерий знаковых рангов Уилкоксона для связанных выборок

Пример 1 (Kanji, критерий 48): управляемый вручную станок на каждом шаге процесса производит пару пружин. Для 14 пар измерена прочность:

$$X_1$$
: {1.38, 0.39, 1.42, 0.54, 5.94, 0.59, 2.67, 2.44, 0.56, 0.69, 0.71, 0.95, 0.50, 9.69}, X_2 : {1.42, 0.39, 1.46, 0.55, 6.15, 0.61, 2.69, 2.68, 0.53, 0.72, 0.72, 0.93, 0.53, 10.37}.

Одинакова ли прочность пружин в паре?

 H_0 : средние значение прочности пружин в паре равны.

 H_1 : средние значение прочности пружин в паре не равны $\Rightarrow p = 0.0142$,

95% доверительный интервал для медианной разности — [0.005, 0.14] .

Критерий знаковых рангов Уилкоксона для связанных выборок

Пример 2 (алюминий в тополях):

 H_0 : медиана изменения концентрации алюминия равна нулю.

 H_1 : медиана изменения концентрации алюминия не равна нулю $\Rightarrow 0.0398$,

95% доверительный интервал для медианы изменения — [0.35, 9.3] .

выборки:
$$X_1^{n_1} = (X_{11}, \dots, X_{1n_1}),$$

$$X_2^{n_2} = (X_{21}, \dots, X_{2n_2}),$$

выборки независимые;

 $H_0: p(X_1 > X_2) = \frac{1}{2};$ нулевая гипотеза:

 $H_1: p(X_1 > X_2) < \neq > \frac{1}{2};$ альтернатива:

 $X_{(1)} \leq \ldots \leq X_{(n_1+n_2)}$ — вариационный ряд статистика:

объединённой выборки $X = X_1^{n_1} \bigcup X_2^{n_2}$,

$$R_1(X_1^{n_1}, X_2^{n_2}) = \sum_{i=1}^{n_1} \operatorname{rank}(X_{1i});$$

 $R_1(X_1^{n_1}, X_2^{n_2})$ имеет табличное распределение при H_0 .

Откуда берётся табличное распределение?

Первая выборка	Вторая выборка	R_1
{1,2,3}	{4,5,6,7}	6
{1,2,4}	{3,5,6,7}	7
{1,2,5}	{3,4,6,7}	8
{1,2,6}	{3,4,5,7}	9
$\{1,2,7\}$	{3,4,5,6}	10
{1,3,4}	{2,5,6,7}	8
{1,3,5}	{2,4,6,7}	9
{1,3,6}	{2,4,5,7}	10
{1,3,7}	{2,4,5,6}	11
{1,4,5}	{2,3,6,7}	6
{3,4,5}	{1,2,6,7}	12
{3,4,6}	{1,2,5,7}	13
{3,4,7}	{1,2,5,6}	14
{3,5,6}	{1,2,4,7}	14
{3,5,7}	{1,2,4,6}	15
{3,6,7}	{1,2,4,5}	16
{4,5,6}	{1,2,3,7}	15
{4,5,7}	{1,2,3,6}	16
{4,6,7}	{1,2,3,5}	17
{5,6,7}	{1,2,3,4}	18

Аппроксимация для $n_1, n_2 > 10$:

$$R_1 \sim N\left(\frac{n_1(n_1+n_2+1)}{2}, \frac{n_1n_2(n_1+n_2+1)}{12}\right).$$

Перестановочные критерии

Обработка связок: зависит от реализации.

$$p(X_1 > X_2) = \frac{1}{2} \implies \text{med}(X_1 - X_2) = 0 \implies \text{med} X_1 = \text{med} X_2.$$

Пример 1 (Капјі, критерий 52): сотрудник налоговой службы хочет сравнить средние значения в двух выборках заявленных трат на компенсацию командировочных расходов в одной и той же компании в двух разных периодах (расходы скорректированы на инфляцию).

$$X_1$$
: {50.5, 37.5, 49.8, 56.0, 42.0, 56.0, 50.0, 54.0, 48.0}, X_2 : {57.0, 52.0, 51.0, 44.2, 55.0, 62.0, 59.0, 45.2, 53.5, 44.4}.

Равны ли средние расходы?

 H_0 : средние расходы равны.

 H_1 : средние расходы не равны $\Rightarrow p=0.3072,\,95\%$ доверительный интервал для медианной разности — [-9,4].

Пример 2: RER (респираторный обмен)— соотношение числа молекул CO_2 и O_2 в выдыхаемом воздухе. Является косвенным признаком того, из жиров или углеводов вырабатывается энергия в момент измерения. Изучалось влияние кофеина на мышечный метаболизм. В эксперименте принимало участие 18 испытуемых, респираторный обмен которых измерялся в процессе физических упражнений. За час до этого 9 из них получили таблетку кофеина, оставшиеся 9- плацебо. Повлиял ли кофеин на значение показателя респираторного обмена?

 H_0 : среднее значение показателя респираторного обмена не отличается в двух группах.

 H_1 : среднее значение показателя респираторного обмена отличается в двух группах.

Ранг	Наблюдение	Номер наблюдения	Наблюдение	Ранг
16.5	105	1	96	9
18	119	2	99	13
14	100	3	94	5.5
11	97	4	89	3
9	96	5	96	9
15	101	6	93	4
5.5	94	7	88	1.5
7	95	8	105	16.5
12	98	9	88	1.5

Статистика R_1 — сумма рангов в одной из групп.

 $p=0.0521,\,95\%$ доверительный интервал для медианной разности — $[-0.00005,\,1.2].$

Критерий Зигеля-Тьюки

Редукция до знаков

 $X_1^{n_1} = (X_{11}, \dots, X_{1n_1}),$ $X_2^{n_2} = (X_{21}, \dots, X_{2n_2}),$ выборки:

выборки независимые:

 $\operatorname{med} X_1 = \operatorname{med} X_2$:

 $H_0: \mathbb{D}X_1 = \mathbb{D}X_2$: нулевая гипотеза:

альтернатива: $H_1: \mathbb{D}X_1 < \neq > \mathbb{D}X_2:$

 $X_{(1)} \leq \ldots \leq X_{(N)}$ — вариационный ряд статистика:

объединённой выборки $X^N = X_1^{n_1} \bigcup X_2^{n_2}, N = n_1 + n_2,$

$$R_1(X_1^{n_1}, X_2^{n_2}) = \sum_{i=1}^{n_1} \widetilde{\operatorname{rank}}(X_{1i});$$

 $R_1\left(X_1^{n_1},X_2^{n_2}
ight)$ имеет табличное распределение при $H_0.$

Ранги присваиваются необычным образом:

$$X_{(i)}$$
 $X_{(1)} \le X_{(2)} \le X_{(3)} \le \dots \le X_{(N-2)} \le X_{(N-1)} \le X_{(N)}$
 $\widetilde{\operatorname{rank}}(X_{(i)})$ 1 4 5 6 3 2

Критерий Зигеля-Тьюки

Пример (Kanji, критерий 53): менеджер по кейтерингу хочет проверить, одинакова ли дисперсия количества соуса в упаковке при расфасовке с помощью двух диспенсеров. Каждым из диспенсеров он наполнил 10 упаковок.

$$X_1: \{2.4, 6.1, 7.3, 8.5, 8.8, 9.4, 9.8, 10.1, 10.1, 12.6\},\$$

 $X_2: \{2.9, 3.3, 3.6, 4.2, 4.9, 7.3, 11.7, 13.1, 15.3, 16.5\}.$

Предполагается, что оба диспенсера хорошо откалиброваны, то есть, дают одинаковое среднее количество соуса в упаковке.

 $H_0\colon$ дисперсия количества соуса в упаковке не отличается для двух диспенсеров.

 H_1 : дисперсия количества соуса в упаковке для двух диспенсеров отличается $\Rightarrow p=0.0288,~95\%$ доверительный интервал для отношения дисперсий — [-11,-1.00003].

Критерий Зигеля-Тьюки

В стандартных реализациях критерия Зигеля-Тьюки в R часто бывает ошибка.

Верная реализация: https://yadi.sk/d/iilLwa1NerKeU

Перестановочные критерии

Идея: найти такую группу перестановок G исходной выборки X^n , что распределение X^n при справедливости нулевой гипотезы не отличается от распределения $qX^n, q \in G$.

Например, если в одновыборочной задаче распределение симметрично и справедлива гипотеза $H_0 \colon \mathbb{E} X = 0$, то с той же вероятностью, что и X^n , могла реализоваться выборка

$$gX^n = X^n \cdot (s_1, \dots, s_n), s_i \in \{-1, 1\}.$$

Если нулевая гипотеза заключается в том, что выборки в паре $(X_1^{n_1}, X_2^{n_2}) \equiv (X_1, \dots, X_N)$ одинаково распределены, то с той же вероятностью могла реализоваться пара

$$g(X_1^{n_1}, X_2^{n_2}) = (X_{\pi_{11}}, \dots, X_{\pi_{1n_1}}, X_{\pi_{21}}, \dots, X_{\pi_{2n_2}}) = (gX_1^{n_1}, gX_2^{n_2}),$$

где $\pi_{11},\ldots,\pi_{1n_1}$ — сочетание из $N=n_1+n_2$ по $n_1,\,\pi_{21},\ldots,\pi_{2n_2}$ — его дополнение до множества $\{1,\ldots,N\}$.

(в) Одновыборочный перестановочный критерий, гипотеза о среднем

выборка:
$$X_1^n = (X_1, \dots, X_n)$$
,

F(X) симметрично относительно матожидания;

нулевая гипотеза:
$$H_0: \mathbb{E}X = 0;$$

альтернатива: $H_1: \mathbb{E}X < \neq >0;$

статистика:
$$T(X^n) = \sum_{i=1}^n X_i$$
.

Распределение $T\left(X^{n}\right)$ при H_{0} порождается группой перестановок

$$G = \{g = (s_1, \dots, s_n)\}, s_i \in \{-1, 1\},\$$
$$|G| = 2^n.$$

Для проверки гипотезы $H_0\colon \mathbb{E} X=\mu_0$ группа строится по аналогии.

Достигаемый уровень значимости:

$$p(t) = \begin{cases} \frac{\sum\limits_{g \in G} [t(gx^n) \le \ge t(x^n)]}{2^n}, & H_1 : \mathbb{E}X <> 0, \\ \frac{\sum\limits_{g \in G} [|t(gx^n)| \ge |t(x^n)|]}{2^n}, & H_1 : \mathbb{E}X \ne 0. \end{cases}$$

Одновыборочный перестановочный критерий, гипотеза о среднем

Пример (зеркала в клетках мышей):

 H_0 : в клетке с зеркалом мыши проводят в среднем половину времени.

 H_1 : в клетке с зеркалом мыши проводят в среднем не половину времени.

Статистика:
$$T = \sum_{i=1}^{n} (X_i - 0.5); t = -0.3784.$$

$$p = \frac{\#[|T| \ge |t|]}{2^n},$$

$$p = 0.2292.$$

(9) Двухвыборочный перестановочный критерий, гипотеза о средних, связанные выборки

выборки:
$$X_1^n=(X_{11},\dots,X_{1n})\,,$$
 $X_2^n=(X_{21},\dots,X_{2n})\,,$ выборки связанные; нулевая гипотеза: $H_0\colon F_{X_1}(x)=F_{X_2}(x);$ альтернатива: $H_1\colon F_{X_1}(x)<\neq>F_{X_2}(x);$ статистика: $D^n=(X_{1i}-X_{2i})\,,$ $T\left(X_1^n,X_2^n\right)=T\left(D^n\right)=\sum\limits_{i=1}^nD_i.$

Распределение $T\left(D^{n}\right)$ при H_{0} порождается группой перестановок

$$G = \{g = (s_1, \dots, s_n)\}, s_i \in \{-1, 1\},\$$

 $|G| = 2^n.$

Достигаемый уровень значимости:

$$p(t) = \begin{cases} \frac{\sum\limits_{g \in G} [t(gd^n) \le \ge t(d^n)]}{2^n}, & H_1 \colon F_{X_1}(x) <> F_{X_2}(x), \\ \frac{\sum\limits_{g \in G} [|t(gd^n)| \ge |t(d^n)|]}{2^n}, & H_1 \colon F_{X_1}(x) \ne F_{X_2}(x). \end{cases}$$

(9) Двухвыборочный перестановочный критерий, гипотеза о средних, связанные выборки

Пример (алюминий в тополях):

 H_0 : среднее изменения концентрации алюминия равна нулю.

 H_1 : среднее изменения концентрации алюминия не равна нулю.

Статистика:
$$T = \sum_{i=1}^{n} (X_{1i} - X_{2i}); t = -63.7.$$

$$p = \frac{\#[|T| \ge |t|]}{2^n}$$

$$p = 0.0054.$$

Двухвыборочный перестановочный критерий, гипотеза о средних, независимые выборки

выборки:
$$X_1^{n_1}=(X_{11},\dots,X_{1n_1})\,,\ X_2^{n_2}=(X_{21},\dots,X_{2n_2})\,,$$

нулевая гипотеза: $H_0: F_{X_1}(x) = F_{X_2}(x);$

альтернатива: $H_1: F_{X_1}(x) = F_{X_2}(x+\Delta), \Delta < \neq > 0;$

 $T(X_1^{n_1}, X_2^{n_2}) = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{1i} - \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i}.$ статистика:

Распределение $T(X_1^{n_1}, X_2^{n_2})$ при H_0 порождается группой перестановок G:

$$g\left(X_{1}^{n_{1}},X_{2}^{n_{2}}\right)=\left(X_{\pi_{11}},\ldots,X_{\pi_{1n_{1}}},X_{\pi_{21}},\ldots,X_{\pi_{2n_{2}}}\right)=\left(gX_{1}^{n_{1}},gX_{2}^{n_{2}}\right),$$

где $\pi_{11},\ldots,\pi_{1n_1}$ — сочетание из $N=n_1+n_2$ по $n_1,\,\pi_{21},\ldots,\pi_{2n_2}$ — его дополнение до множества $\{1, \ldots, N\}$.

$$|G| = C_N^{n_1} = C_N^{n_2}$$

Достигаемый уровень значимости:

$$p\left(t\right) = \begin{cases} \frac{\sum\limits_{g \in G} \left[t\left(gx_{1}^{n_{1}}, gx_{2}^{n_{2}}\right) \leq \geq t\left(x_{1}^{n_{1}}, x_{2}^{n_{2}}\right)\right]}{C^{n_{1}}}, & H_{1} \colon \Delta <> 0, \\ \frac{\sum\limits_{g \in G} \left[\left|t\left(gx_{1}^{n_{1}}, gx_{2}^{n_{2}^{N}}\right)\right| \geq \left|t\left(x_{1}^{n_{1}}, x_{2}^{n_{2}}\right)\right|\right]}{C^{n_{1}}}, & H_{1} \colon \Delta \neq 0. \end{cases}$$

(10) Двухвыборочный перестановочный критерий, гипотеза о средних, независимые выборки

Пример (кофеин и респираторный обмен): H_0 : среднее значение показателя респираторного обмена не отличается в двух группах. H_1 : среднее значение показателя респираторного обмена отличается в двух группах.

Статистика:
$$T = \frac{1}{n_1} \sum_{i=1}^{n_1} X_{1i} - \frac{1}{n_2} \sum_{i=1}^{n_2} X_{2i}; \ t = 6.33.$$

$$p=rac{\#\left|\left|T-T\right|\geq\left|t-T\right|
ight|}{C_{n_1+n_2}^{n_1}}.$$
 $p=0.0578,\,95\%$ доверительный интервал для сдвига — $[-0.2,13].$

(11) Двухвыборочный перестановочный критерий, гипотеза о дисперсиях, статистика Али

выборки:
$$X_1^n = (X_{11}, \dots, X_{1n}),$$

 $X_2^n = (X_{21}, \dots, X_{2n}),$

выборки независимые:

 $H_0: \mathbb{D}X_1 = \mathbb{D}X_2;$ нулевая гипотеза:

 $H_1: \mathbb{D}X_1 < \neq > \mathbb{D}X_2:$ альтернатива:

статистика: $\delta\left(D_1^{n-1}\right) = \sum_{i=1}^{n-1} i(n-i)D_{1i},$ $D_{1i} = X_{1(i+1)} - X_{1(i)}.$

Распределение $\delta\left(D_1^{n-1}\right)$ при H_0 порождается группой G попарных перестановок D_{1i} и D_{2i} :

$$g\left(D_1^{n-1},D_2^{n-1}\right) = \left(D_{\pi_11},\dots,D_{\pi_{n-1}(n-1)},D_{\pi_1'1},\dots,D_{\pi_{n-1}'(n-1)}\right) = \left(gD_1^{n-1},gD_2^{n-1}\right),$$
 где $\forall i=1,\dots,n-1$ либо $\pi_i=1,\pi_i'=2$, либо $\pi_i=2,\pi_i'=1.$

$$|G| = 2^{n-1}.$$

Достигаемый уровень значимости:

$$p\left(\delta\right) = \begin{cases} p_1 = \frac{\sum\limits_{g \in G} \left[\delta\left(gd_1^{n-1}\right) \geq \delta\left(d_1^{n-1}\right)\right]}{\sum\limits_{g \in G} \left[\delta\left(gd_1^{n-1}\right) \leq \delta\left(d_1^{n-1}\right)\right]}, & H_1 \colon \mathbb{D}X_1 > \mathbb{D}X_2, \\ p_2 = \frac{g \in G}{2} \left[\delta\left(gd_1^{n-1}\right) \leq \delta\left(d_1^{n-1}\right)\right]}, & H_1 \colon \mathbb{D}X_1 < \mathbb{D}X_2, \\ 2 \cdot \min\left(p_1, p_2\right), & H_1 \colon \mathbb{D}X_1 \neq \mathbb{D}X_2. \end{cases}$$

Особенности перестановочных критериев

 Статистику критерия можно выбрать разными способами.
 В некоторых случаях разные статистики приведут к одному и тому же достигаемому уровню значимости:

$$X^n$$
, $H_0: \mathbb{E}X = 0$, $H_1: \mathbb{E}X \neq 0$,

$$T_1(X^n) = \sum_{i=1}^n X_i \sim T_2(X^n) = \bar{X}.$$

В других случаях достигаемый уровень значимости будет зависеть от выбора статистики:

$$T_2(X^n) = \bar{X} \nsim T_3(X^n) = \frac{\bar{X}}{S/\sqrt{n}}.$$

• Если |G| слишком велико, для оценки нулевого распределения T достаточно взять случайное подмножество $G' \in G$. При этом стандартное отклонение достигаемого уровня значимости будет равно примерно $\sqrt{\frac{p(1-p)}{G'}}$.

Различия между моментами высокого порядка

$$X_1 \sim \chi_4^2, \quad X_2 \sim N\left(4, \sqrt{8}\right);$$

 $\mathbb{E}X_1 = \mathbb{E}X_2, \quad \mathbb{D}X_1 = \mathbb{D}X_2.$

Двухвыборочные критерии согласия

выборки:
$$X_1^{n_1} = (X_{11}, \dots, X_{1n_1}),$$

 $X_2^{n_2} = (X_{21}, \dots, X_{2n_2}),$ выборки независимые;

выоорки независимые;

нулевая гипотеза: H_{0} : $F_{X_{1}}\left(x\right) =F_{X_{2}}\left(x\right) ;$

альтернатива: $H_1: H_0$ неверна.

Критерий Смирнова:

статистика:
$$D\left(X_{1}^{n_{1}},X_{2}^{n_{2}}\right)=\sup_{-\infty< x<\infty}\left|F_{n_{1}X_{1}}\left(x\right)-F_{n_{2}X_{2}}\left(x\right)\right|.$$

Критерий Андерсона (модификация критерия Смирнова-Крамерафон Мизеса):

статистика:
$$T\left(X_1^{n_1}, X_2^{n_2}\right) = \frac{1}{n_1 n_2 (n_1 + n_2)} \left(n_1 \sum_{i=1}^{n_1} \left(\operatorname{rank}\left(X_{1i}\right) - i\right)^2 + \right.$$
 $\left. + n_2 \sum_{j=1}^{n_1} \left(\operatorname{rank}\left(X_{2j}\right) - j\right)^2\right) - \frac{4n_1 n_2 - 1}{6(n_1 + n_2)}.$

Статистики имеют табличные распределения при H_0 .

Вместо равномерного сдвига

$$F_{X_1}\left(x\right) = F_{X_2}\left(x + \Delta\right)$$

можно предположить, что сдвиг зависит от x:

$$F_{X_1}(x) = F_{X_2}(x + \Delta(x)).$$

Такая модель позволяет оценить эффект отдельно для разных групп популяции. Примеры:

- удобрение увеличивает крупные экземпляры растения и не влияет на рост мелких;
- гамма-облучение семян увеличивает вариабельность сельскохозяйственных растений.

На основе инвертированного распределения критерия Смирнова можно построить доверительную ленту для функции сдвига.

Функция сдвига

Пример: модельные данные https://yadi.sk/d/v0dYVpyYerWSK

Функция сдвига

Пример (Doksum, 1976): из двух групп лабораторных мышей одна живёт в обычных условиях, а вторая — в среде, обогащённой озоном. Известен прирост веса для каждой особи за фиксированный контрольный период. Есть ли различия между группами?

Функция сдвига

Критерий Уэлша: p=0.005, критерий Манна-Уитни: p=0.001.

Функция сдвига:

Примеры

Продажная стоимость недвижимости в Сиэтле (независимые выборки): https://yadi.sk/d/rGiG2AkHerKbd

Поведенческая терапия при анорексии (связные выборки): https://yadi.sk/d/CLSiAkGderUYR

Литература

- критерии знаков (sign tests) Kanji, №№ 45, 46;
- критерии знаковых рангов (signed-rank tests) Kanji, №№ 47, 48;
- критерий Манна-Уитни-Уилкоксона (Mann-Whitney-Wilcoxon test) Кобзарь, 4.2.1.1.2.2;
- перестановочные критерии (permutation tests) Good, 3.2.1, 3.6.4, 3.7.2 (с ошибкой, исправлено в Ramsey);
- двухвыборочные критерии согласия (two-sample goodness-of-fit tests) Кобзарь, 3.1.2.8;
- функция сдвига (shift function) Wilcox, 5.1.

Кобзарь А.И. Прикладная математическая статистика. — М.: Физматлит, 2006. Kanji G.K. 100 statistical tests. — London: SAGE Publications, 2006. Good P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. — New York: Springer, 2005. Ramsey P.H., Ramsey P.P. (2008). Brief investigation of tests of variability in the two-sample case. Journal of Statistical Computation and Simulation, 78(12), 1125–1131.

Wilcox R.R. Introduction to Robust Estimation and Hypothesis Testing. — Academic Press, 2012.

Doksum K.A., Sievers G.L. (1976). Plotting with confidence: Graphical comparisons of two populations. Biometrika, 63(3), 421–434.

Hollander M., Wolfe D.A. *Nonparametric statistical methods.* — John Wiley & Sons, 1973.

Laureysens I., Blust R., De Temmerman L., Lemmens C., Ceulemans R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution. 131, 485-494.

Shervin C.M. (2004) Mirrors as potential environmental enrichment for individually housed laboratory mice. Applied Animal Behaviour Science, 87(1-2), 95–103.