

螺纹连接的设计,除了按强度计算合理选择标准件外,还应注意结构设计上的一些问题。

- > 避免或减小附加载荷
- > 防止松脱
- > 减小横向载荷
- > 合理进行结构设计

> 避免或减小附加载荷

若被连接件与螺母接触的表面不平 或倾斜,螺栓就会受到附加载荷,致 使连接的承载能力下降。

面垫片、斜垫片。

▶ 防止松脱

连接用螺纹标准件都能满足自锁条件。连接拧紧后,螺 母或螺栓与被连接件支承面间的摩擦也有助于防止连接松 脱。但这仅是在静载荷和工作温度变化不大的情况。

若温度变化较大,或连接受到冲击、振动和不稳定载荷的作用,预紧力和摩擦力就会减小,甚至消失,致使连接松脱。因此在设计螺纹连接时必须考虑防松。

防松的根本问题,在于<u>防止螺旋副的相对转动</u>。 防松的方法,按工作原理可分为:

1、摩擦防松 2、机械防松 3、永久防松和化学防松

▶ 防止松脱——摩擦防松

利用摩擦防松:

理措螺的不的波化保的擦采的施旋摩随外动,持防力用结,副擦联载而始较松短合构使中力接荷变终大摩

对顶螺母

利用两螺母对顶拧紧,螺 栓旋合段承受拉力而螺母受 压,从而使螺纹间始终保持 相当大的正压力和摩擦力

结构简单,可用于低速重 载场合。但螺栓和螺纹部分 均需加长,不够经济,且增 加了外廊尺寸和重量

弹簧垫圈

弹簧垫圈的材料为高强度 锰钢,装配后弹簧垫圈被压 平,其反弹力使螺纹间保持 一定的压紧力和摩擦力,且 垫圈切口处的尖角也能阻止 螺母转动松脱

结构简单,使用方便。但 垫圈弹力不均,因而不十分 可靠,多用于不重要的联接

弹性锁紧螺母

在螺母的上部做成有槽的弹性结构,装配前这一部分的内螺纹尺寸略小于螺栓的外螺纹。装配时螺母稍有扩张,螺纹之间由于得到紧密的配合而保持持久的表面摩擦力

结构简单,防松可靠,可多次装拆 而不降低防松性能

▶ 防止松脱——机械防松 ^{防 松 方 法 及 特 点}

机械方 法防松:

利用便 于更换的 金属元件 约束螺旋 副, 使之 不能相对 转动

开口销与开槽螺母

开槽螺母旋紧后,将开口 销穿过螺母上的径向槽和螺 栓末端的孔, 从而把螺母与 螺栓固联在一起

防松可靠, 可用于承受冲 击或载荷变化较大的联接

止动垫圈

止动垫圈的形式很多,图 示是将止动垫圈的一个弯耳 折起紧贴在螺母的侧面上, 另一弯耳折下贴在被联接件 的侧壁上, 从而避免螺母转 动而松脱

防松可靠, 但只能用于联 接部分可容纳弯耳的场合

串联钢丝

将钢丝依次穿过相邻螺栓头部的横 孔,两端拉紧打结。安装时保证钢丝 正确的穿联方向, 使螺栓的松脱方向 与钢丝拉紧方向相反, 确保联接不能 松动

防松效果好,但安装较费工时,主 要用于螺栓数目不多且排列较密的螺 钉联接

▶ 防止松脱——永久防松

防松原理 防 松方法及特点 破坏螺 旋副关系 防松: 拧紧联 接后,用 涂粘结剂 点焊、点 冲或在螺 栓旋合部 分涂粘合 剂的办法 把螺旋副 转变为非 运动副, 从而排除 侧面焊死 端面冲点 粘合法 相对转动 的可能 防松效果良好,但都属于不可拆的防松方法

防松效果:永久防松 > 机械防松 > 摩擦防松

> 减小横向载荷

受横向载荷的普通螺栓连接,被连接件间要获得足够的摩擦力以平衡外载荷。当外载荷较大时,螺栓要承受较大的预紧力,所需的螺栓直径很大。

为了避免这个缺点,可在被连接件之间加上套筒、键、销或制 作止口等减载装置,以减小螺纹连接所承受的横向载荷。

> 合理进行结构设计

螺栓一般成组使用,在确定一组螺栓的平面位置和数目时,应使连接结构受力合理,力求各螺栓受力均匀,便于加工和装配。从以下几个方面提高设计质量:

- 1、连接接合面的几何形状应尽量简单。
- 2、螺栓的布置应使各螺栓的受力合理。
- 3、螺栓排列应有合理的间距、边距。布置螺栓时,螺栓与螺栓、螺栓与机体侧壁间要留有足够的扳手空间。
- 4、分布在同一圆周上的螺栓数目应尽量采用3、4、6、8、12等,以便于分度和画线。

◆ 螺栓的布置——通常设计成对称的几何形状,螺栓要均匀布置,尽可能使螺栓组的形心与联接接合面的形心重合。

◆ 螺栓的布置

受剪螺栓不要在外力方向上成排布置八个以上,以免载荷

分布过于不均。

当连接承受弯矩或扭矩时,螺栓的位置<mark>应靠近结合面的边缘,以减小螺栓受力。</mark>

◆ 螺栓的布置——留有足够的扳手空间尺寸

具体尺寸可以查阅机械设计手册

- ◆ 螺栓的布置——留有足够的扳手空间尺寸
- 1)相邻螺栓的中心间距一般应小于10d(d) 螺栓公称直径);
- 2)对压力容器等有密封性要求的重要连接,螺栓的间距 t_0 一般不得大于下表推荐的数值。

螺栓最大间距 t_{0max}

	- -	工作压力	<i>p</i> / MP	a	
≤1.6	1.6 ~ 4	4~10	10~16	16~20	20~30
		t_{0n}	nax		
7 <i>d</i>	4.5 <i>d</i>	4.5 <i>d</i>	4 <i>d</i>	3.5 <i>d</i>	3 <i>d</i>

螺纹连接:利用螺纹把两个或两个以上的零件连接在一起。"静连接"采用普通螺纹(三角形)

螺旋传动: 把回转运动转变为直线运动, 同时也可以承受载荷或传递动力。"动连接" 采用矩形、梯形和锯齿形

滑动螺旋传动组成:由螺杆和螺母组成,利用螺纹副来传递运动和动力。

1. 螺旋传动的分类

按使用要求不同,螺旋传动可分为:

传力螺旋:主要用于传递动力,如千斤顶

传导螺旋: 主要用于传递运动, 如机床刀架的进给机构

调整螺旋: 主要用于调整并固定零件或部件之间的相对位置

按摩擦性质不同,螺旋传动可分为:

滑动螺旋传动 (螺旋副中产生滑动摩擦)

滚动螺旋传动 (螺旋副中产生滚动摩擦)

▶ 传力螺旋

以传递动力为主,要求用较小的力矩转动螺杆或螺母, 使其中之一产生轴向运动和较大的轴向力,用于起重或加 压,传力螺旋要求自锁。 如千斤顶、压力机。

千斤顶 (用于举起重物)

压力机(给工件施加很大的压力)

> 传导螺旋

以传递运动为主,要求具有很高的运动精度,常用于机 床刀架或工作台的进给机构。

机床进给机构

> 调整螺旋

用于调整或固定零件(或部件) 之间的相对位置,如带传动调整中 心距的张紧螺旋,一般不经常转动。

> 滑动螺旋传动

滑动螺旋传动由螺杆和螺母组成, 结构简单;螺杆和螺母的啮合连续进行, 工作平稳、无噪声;啮合时接触面积大, 承载能力较高。

螺纹牙型通常采用矩形、梯形和锯齿形等。<mark>梯形螺纹</mark>加工比较容易,能够铣切和磨削,应用广泛。

螺纹的旋向和线数根据运动要求,考虑自锁和效率确定。

缺点:螺旋副间摩擦力大,效率低。

> 滚动螺旋传动

滚动螺旋:在螺杆和螺母之间的螺纹滚道内填充<mark>滚珠</mark>,当螺杆和螺母相对转动时,滚珠沿滚道滚动。为了使滚珠循环滚动,螺母上要设置回程通道。

特点:效率高,一般在90%以上;利用预紧 消除螺杆与螺母之间的轴向间隙,可得到较 高的传动精度和轴向刚度;静、动摩擦力相 差甚微,起动时无颤动,传动平稳;工作寿 命长。滚珠与滚道理论上为点接触,传递载

荷较小,抗冲击能力较差,结构复杂,对材料要求较高,制造困难。

应用:对传动精度要求较高的场合,如精密机床的进给机构等。

滑动螺旋传动应用 广泛,重点介绍。

2. 螺旋副的材料

材料要求:有足够的强度、耐磨性,还要求两者配合时摩擦因数小。

螺杆材料:一般可选用45、50钢等,重要螺杆(如高精度机床丝杠)可选用T12(碳素工具钢,C含量为1.2%)、40Cr、65Mn等,并进行热处理。

螺母材料:有铸造锡青铜ZCuSn10Pb1或ZCuSn5Pb5Zn5;低速、重载时可选用强度较高的铸造铝铁青铜ZCuAl10Fe3;低速、轻载时可选用耐磨铸铁。

二、滑动螺旋传动的设计

螺旋传动的受力情况和强度问题类似于螺纹连接,但由于其在工作时处于运动状态,对精度又有较高的要求,故<mark>螺</mark>旋副的磨损是其主要失效形式。"动连接"

设计准则:通常先按耐磨性条件确定螺杆的直径和螺母的高度,并参照标准确定螺旋副的其余各主要参数,然后对可能发生的其他失效形式进行校核。

1. 螺旋副的耐磨性计算

影响磨损的因素很多,目前还没有完善的计算方法,通常是根据限制螺纹接触面的平均压强 p进行条件性计算。若按螺纹的旋合圈数z将螺纹 沿中径d₂展开,则

耐磨性校核公式
$$p = \frac{F}{\pi d_2 hz} = \frac{FP}{\pi d_2 hH'} \le [p]$$

令螺母高径比为 ϕ

$$\varphi = H'/d_2 \Rightarrow H' = \varphi d_2$$

耐磨性设计公式:

$$d_2 \ge \sqrt{\frac{FP}{\pi\varphi h[p]}}$$

F为螺杆所受的轴向力;h是螺纹工作高度,梯形和矩形螺纹h=0.5P,锯齿形螺纹h=0.75P,P是螺距;z是旋合圈数,z=H'/P;H'是螺母旋合段的高度;[p]是螺旋副的许用压强。

$d_2 \ge \sqrt{\frac{FP}{\pi \varphi h[p]}}$

1. 螺旋副的耐磨性计算

计算出中径42后,应按标准选取相应的公称直径4。

对有自锁要求的螺旋副,还需验算所选螺纹参数能否满足

自锁条件。

表6-10	螺旋副的询	年用压强
-------	-------	------

螺杆—螺母材料		钢一	青铜		淬火钢—青铜	钢—	铸铁
滑动速度 v/(m·min ⁻¹)	低速	€3.0	6~12	>15	6~12	<2.4	6~12
许用压强 [p] / MPa	18~25	11~18	7~10	1~2	10~13	13~18	4~7

- 注: 1. 对于精密传动或要求使用寿命长时,可取表中值的 1/2~1/3。
 - 2. 表中数值适用于 $\varphi = 2.5 \sim 4$ 的情况。当 $\varphi < 2.5$ 时,[p] 值可提高 20%;若为剖分式螺母时,则 [p] 值应 降低 $15\% \sim 20\%$ 。

2. 螺纹牙的强度计算

由于螺母材料的强度通常低于螺杆材料的强度,所以螺纹牙的剪切和弯曲破坏多发生在螺母上。

将螺母一圈螺纹沿螺纹大径D处展开,即可视为一<mark>悬壁梁</mark>,每圈螺纹承受的平均压力F/z作用在中径 D_2

的圆周上,则螺纹牙的剪切强度和弯曲强度条件分别为:

$$\tau = \frac{F/z}{\pi Da} = \frac{F}{\pi Daz} \le [\tau]$$

a是螺纹牙根宽度,梯形螺纹a = 0.65P,锯齿形螺纹a = 0.74P,矩形螺纹a = 0.5P

$$\boldsymbol{\sigma}_{w} = \frac{\frac{F}{z} \cdot \frac{h}{2}}{\frac{1}{6} \pi D a^{2}} = \frac{3Fh}{\pi D a^{2} z} \leq [\boldsymbol{\sigma}_{w}]$$

3. 螺杆的强度计算

在轴向力F作用下,螺杆产生轴向压(或拉)应力;同

时由于转矩 T 的作用使螺杆的横截面内产生扭切应力。根据第四强度理论,螺杆危险截面的当量应力 σ_{v} 及强度条件为:

$$\sigma_{v} = \sqrt{\left(\frac{4F}{\pi d_{1}^{2}}\right)^{2} + 3\left(\frac{T}{0.2d_{1}^{3}}\right)^{2}} \le [\sigma]$$

式中, $[\sigma]$ 是螺杆材料的许用应力。

4. 螺杆的稳定性计算

细长螺杆受到较大轴向压力时,可能发生侧弯而丧失稳 定性。螺杆受压时的稳定性条件为:

$$\frac{F_{cr}}{F} \ge 2.5 \sim 4$$

 F_{cr} 是螺杆的稳定临界载荷,它与螺杆的材料、螺杆的长细比(即柔度) λ 有关。

4. 螺杆的稳定性计算

螺杆的长细比 λ : $\lambda = \frac{\beta l}{i}$

式中, β 是长度系数,与两端支承形式有关:两端固定时 β =0.5,一端固定、一端铰支时 β =0.7,两端铰支时 β =1,一端固定、一端自由时 β =2;l 是螺杆的最大工作长度;i 是螺杆危险截面惯性半径。

若螺杆危险截面的惯性矩 $I = \frac{\pi d_1^4}{64}$,截面面积 $A = \frac{\pi d_1^2}{4}$,

$$i = \sqrt{\frac{I}{A}} = \frac{d_1}{4}$$

4. 螺杆的稳定性计算

$$\lambda \ge 100$$
时,

$$\lambda \ge 100$$
时,
$$F_{cr} = \frac{\pi^2 EI}{(\beta l)^2}$$

式中, E是螺杆材料的弹性模量(MPa), 对于钢, 取E=2.06×105MPa

 λ <100时。

对 $\sigma_b \ge 370 \text{MPa}$ 的普通碳素钢,如Q235等,取

$$F_{cr} = (304 \sim 1.12\lambda) \frac{\pi d_1^2}{4}$$

对 $\sigma_b \ge 470 \text{MPa}$ 的优质碳素钢,如35,45钢等,取

$$F_{cr} = (461 \sim 2.57\lambda) \frac{\pi d_1^2}{4}$$

λ<40时,不必进行稳定性校核。

键连接、花键连接和过盈连接是轴与 轴上零件周向固定的主要方式,用来传递 回转运动和转矩。

一、键连接

组成:由键、轴与轮毂所组成。

原理: 依靠键与键槽侧面的挤压

传递转矩。键的上表面与轮毂上

的键槽底部之间留有间隙,键不会影响轴与轮毂的同心精度。

类型: 平键、半圆键、楔键,均为标准化零件。

▶ 平键

两侧面是工作面,工作时靠键与键槽互相挤压传递转矩。

特点: 定心性好, 装拆方便, 能承受冲击或变载荷。

类型: 普通平键、导向型平键、滑键。

◆ 普通平键——应用最广

按端部形状不同,分为 A型(圆头)、B型(方头)

、和C型(单圆头)。

C型键用于轴的端部,A型和C型键在轴的键槽中固

圆头 方头 单圆头

定良好,但轴上键槽引起的应力集中较B型大。

◆ 导向型平键——用于动连接,轮毂可以沿轴线相对移动

为<u>防止松动</u>,用两个圆柱头螺钉将键固定在轴槽中;为 拆卸方便,在键中部制有起键螺孔。

◆ 滑键

滑键固定在轮毂上,与轮毂一起可沿轴上键槽移动,适用于轮毂沿轴向移动距离较长的场合。

▶ 半圆键

半圆键也是以两侧面为工作面,用于静连接。

优点:能在轴上键槽中摆动,以适应轮毂键槽底面的倾斜, 便于安装且有良好的对中作用。

缺点:键槽较深,对轴的削弱较大,故只适用于轻载连接, 常用在锥形轴端与毂孔的联接中。

▶ 楔键——上、下面是工作面

常用的有: 普通楔键和钩头楔键两种。

键的上表面和轮毂键槽底面各有1:100的斜度,装配时把楔键打入轴和轮毂键槽内,使连接在工作面上产生很大的压紧力 F_N ,工作时靠楔紧的摩擦力 μF_N 传递转矩,并能承受单方向的轴向力。

由于楔键打入时迫使轴和轮毂产生偏心,故多用于对中性要求不高、载荷平稳和转速较低的场合。

2. 平键连接的设计

设计准则:通常是根据工作条件和使用要求首先选定键的类型,然后根据轴的直径查标准,确定键的横截面尺寸,根据轮毂长度确定键的长度。在确定了结构和尺寸之后,校核键连接的强度。

- 1) 平键连接的结构设计
- 2) 平键连接的受力和失效分析
- 3) 平键连接的强度校核

- 1) 平键连接的结构设计
- ① 键要有适当的长度,既利于承受载荷, 又便于轴毂安装。<u>普通平键的长度一般应稍</u>

<u>短于轮毂的长度</u>,导向平键的长度应由轮毂的长度及其滑移 距离而定,一般应适当大于轮毂的长度与其滑移距离之和。

- ② 各种键槽根部都应设置圆角,以减小轴的应力集中。
- ③ 同一轴段上需设置两个键时,两个键槽应相隔180°。 对称布置。

2) 平键连接的受力和失效形式

在切向力 F_t 作用下,键和键槽的两侧面受挤压,键的 α - α 截面受剪切。

在满足连接的挤压或磨损强度条件下,一般不会出现键的剪切破坏。因此,键连接的主要失效形式为:对于静连接,常为较弱零件(一般为轮毂)工作面的压溃;对于动连接,常为较弱零件工作

面的磨损。

3) 平键连接的强度校核

假设载荷沿键长均匀分布,平键连接的强度条件为:

静连接
$$\sigma_p = \frac{2T/d}{h'l} \approx \frac{4T}{dhl} \leq \left[\sigma_p\right]$$

动连接
$$p = \frac{2T/d}{h'l} \approx \frac{4T}{dhl} \leq [p]$$

 σ_p 是工作挤压应力;p是工作压强;T是轴传递的转矩;d是轴径;h'是键与轮毂的接触高度,取 $h'\approx h/2$;h是键的高度;l是键的工作长度,

A型键l=L-b、B型键 l=L、C型键l=L-b/2,同一轴段相隔180° 设置两个键连接时,l按一个键长的1.5倍计算; b是键宽。

3) 平键连接的强度校核

 $[\sigma_p]$ 是许用挤压应力;[p]是许用压强。

键连接的许用挤压应力[σ_p]和许用压强[p]

联接方式	轮毂材料	许用值	载 荷 性 质		
			静载荷	轻微冲击	冲击
静联接	钢	[σ] _p	120~150	100~120	60~90
	铸铁		70~80	50~60	30~45
动联接	钢	[p]	50	40	30

【例6-5】一铸铁直齿圆柱齿轮用普通平键与钢轴连接,齿轮轮毂长90mm,安装齿轮处轴的直径d=60mm。该连接传递的转矩T=500N•m,工作有轻微冲击。试确定此键连接的型号和尺寸。

【解】1. 选择键的类型、材料,确定键的尺寸根据工作要求,选择普通平键(A型)键的材料选择45钢

已知轴径d=60mm,轮毂长90mm,确定键的尺寸为:

b=18mm, h=11mm, L=80mm(小于轮毂长度,且是键的长度系列)(根据书附表6-7确定)

【解】2. 校核键连接的强度

普通平键构成静连接, 因此只需校核轮毂的挤压强度。 齿轮材料为铸铁,轻微冲击,根据表6-12,确定许用挤压 应力[$\sigma_{\rm p}$]=50~60MPa。

键的工作长度 l = L - b = 80 - 18 = 62mm

挤压应力
$$\sigma_p = \frac{4T}{dhl} = \frac{4 \times 500 \times 10^3}{60 \times 11 \times 62} = 48.88 MPa < [\sigma_p]$$

强度足够

3. 确定键的型号

GB/T 1096 键18×11×80

二、花键连接——轴毂动连接

组成: 与轴做成一体的花键和具有相应凹槽的毂孔组成。

特点:键齿对称布置,对中性、导向性、载荷分布的均匀性较好;齿数多,接触面积大,承载能力高;制造比较复杂,成本高。

二、花键连接

类型: 花键的齿形有矩形、渐开线和三角形。矩形、渐开线形应用较多, 三角形花键齿细而薄, 仅适用于轻载或薄壁零件的连接。

矩形

渐开线形

三角形

三、过盈配合连接(简称过盈连接)

过盈连接在轴与毂孔之间存在着较大的过盈量, 装配后的轴与毂孔表面之间产生很大的径向压力。工作时, 配合面上便产生摩擦力, 靠摩擦力来传递转矩和轴向力。

三、过盈配合连接(简称过盈连接)

特点:结构简单,定心精度较高,随着过盈量的增加, 连接的牢固性随之增加。

装配方法:压入法(过盈量较小时)、胀缩法(过盈量较大时)。为了便于装配,对轴与毂孔的倒角有一定要求。

 $e \ge 0.01d + 2mm$

本章小结

- > 螺纹参数
- > 螺纹连接的类型、结构特点和应用
- > 螺旋副的受力、效率和自锁
- > 螺纹连接的强度计算
- 滑动螺旋传动设计(选讲)
- > 平键连接的设计与计算