Data Mining – Team MINEHeim Wine Prediction

Agenda

Research Problem

Data & Pre-Processing

Data Mining

Conclusion

01.12.2021 2

Research Problem

PROBLEM

How can you determine the quality of wine without actually drinking it? What makes a great wine ... actually great?

• Which factors/components influence the quality and taste?

GOAL

Objectively predict and classify the quality of wine based on its ingredients, components and features.

• e.g. sulphates, residual sugar, alcohol, pH-Value, type, ...

Wineries & Dealers

Old Wine

Reduce Costs

Save Time

Single Source of Truth

Data Structure

Data set related to red and white variants of Portuguese wine "Vinho Verde"

6497 samples, already gathered

13 features, mainly physiochemical properties e.g., pH-value, alcohol percentage etc.

Quality feature ranges from 0 to 10, assessed by wine tastings

Highly unbalanced data: lots of mediocre wines, few bad and excellent wines

Data & Pre-Processing

Duplicate Deletion and Replacing Null-Values

- No duplicates
- 34 rows with missing values were deleted

Column Preprocessing

- Normalization of numerical values
- Encoding of categorical values

Outlier Deletion

Deleting 57 outliers on the basis of a 90 % confidence interval

Data Separation and Splitting

- Separation of the feature and target variable
- Train and test split

01.12.2021 5

Data Mining

ML METHODS Support **K-Nearest Vector Decision** Random Neural **Neighbors** Machine Network Tree **Forest** (K-NN) (SVM) **EVALUATION** METRICS F₁-Score Precision Recall **APPROACH** 2. 1. Balancing **Default Values Feature Selection** Hyperparameter Hyperparameter (SMOTE) Tuning Tuning

K-Nearest Neighbors (K-NN)

F₁-Score Overview

TRAIN

63.1 %

63.1 %

100 %

100 %

100 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection

2. Hyperparmeter Tuning

EST

53.2 %

53.2 %

58.6 %

60 %

60 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection 2. Hyperparmeter Tuning

Improved F₁-Score

Overfitted Model

Default values (no hp)

Support Vector Machine (SVM)

F₁-Score Overview

TRAIN

38.4 %

72.0 %

88.5 %

86.4 %*

93.5 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection 2. Hyperparmeter Tuning

FST

41.2 %

57.5 %

56.5 %

56.1 %*

57.6 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection 2. Hyperparmeter Tuning

* 2 models were evaluated, the better one is listed here. Performance decreased, therefore not included in next step.

Improved F₁-Score

Overfit Tendency of Model

No Feature Selection

Decision Tree

F₁-Score Overview

TRAIN

100 %

75.9%

100 %

100 %

85.8 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection

2. Hyperparmeter Tuning

EST

58.7 %

53.8 %

55.7 %

57.5 %

51.8%

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection

2. Hyperparmeter Tuning

Poor performance

Overfitted Model

No Tuning

Random Forest

F₁-Score Overview

TRAIN

100 %

58.9 %

93.5 %

93.9 %

96.6 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection

2. Hyperparmeter Tuning

LEST

55 %

47.8 %

70.8 %

70.5 %

70.9 %

Initial State

1. Hyperparameter Tuning

With Oversampling

With Feature Selection 2. Hyperparmeter Tuning

Improved F₁-Score

Overfitted Model

No Feature Selection

Neural Network

F₁-Score Overview

Legend

VALIDATION

38.3 %

72.8 %

76.8 %

80.9 %

84.6 %

TEST

41.4 %

51.9 %

49.9 %

55.7 %

56.6 %

Improved F₁-Score

Overfitted Model

High effort, low reward

Evaluation & Conclusion

Business Use Case

Predict wine quality with the help of contents.

Results

KNN

as baseline did a reasonable job

Random Forest

performed well as an aggregation of decision trees

Decision Tree

mediocre performance on its own

SVM

also performed well as a classification algorithm

Neural Network

Efforts to create and were not rewarded with good predictions → more resources, better experience needed **Overfitted Model**

Random Forest Ψ

Other Features besides chemical characterisics might be important for the wine quality