Course Code	Course Title	L	Т	Р	С
PMDS506L	Database Management Systems	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			

Course Objectives

- 1. To understand the basic concepts of database, ER Modelling, normalization and query optimization.
- 2. To comprehend the concepts concurrency control, recovery and indexing.
- 3. To explore the concepts of NoSQL and main types of NoSQL databases.

Course Outcomes

At the end of the course, students will be able to:

- 1. Describe the concepts of database, construct entity-relationship (ER) model for the real world problems and transfer data model into database designs.
- 2. Analyze the fundamental concepts of normalization, transaction, concurrency control and recovery mechanisms.
- 3. Demonstrate the basic database storage structure and indexing techniques.
- 4. Organize the detailed architecture and primary benefits using NoSQL Databases.
- 5. Analyze the major types of NoSQL databases.

Module:1 DATABASE SYSTEMS CONCEPTS AND DATA 7 hours MODELING

Basic concepts of database systems- Entity Relationship Model - Structural Constraints- Relational Model- Relational Model Constraints- Mapping ER model to a Relational Schema and database integrity.

Module:2DATABASE DESIGN AND QUERY PROCESSING7 hoursGuidelinesfor Relational Schema- Functional Dependency- Normalization-TranslatingSQL Queries into Relational Algebra- Heuristic Query Optimization.

Module:3 TRANSACTION PROCESSING CONCEPTS 6 hours
Introduction to transaction processing-Transaction and system concepts -Desirable properties of transactions- Characterizing schedules based on recoverability-Characterizing schedules based on serializability- Test for serializability.

Module:4 CONCURRENCY CONTROL AND PHYSICAL 6 hours DATABASE DESIGN

Lock-based protocols- Techniques for concurrency control- Recovery concepts- File organization- and Indexing.

Module:5 NOSQL 6 hours

Database revolutions: First generation, second generation, third generation-Managing transactions and data integrity- ACID and BASE for reliable database transactions- Speeding performance by strategic use of RAM, SSD, and disk, Brewer's CAP theorem.

Module:6 KEY VALUE DATA STORES

6 hours

Essential features of key value databases- Key-Value architecture- Designing structured values- Limitations of key-value databases - Design patterns for key-value databases and Case study for Key-Value databases.

Module:7 NOSQL DATA MODEL

5 hours

Aggregate models- Document data model- Key- value data model- Columnar data model and Graph based data model.

Module:8 | Contemporary Issues

2 hours

			To	tal Lecti	ure hours	45 hours			
Text Book(s)									
1		aghu Ramakrishnan, Johannes Gehrke, Database Management Systems,							
	· · ·	2015, 4 th Edition, Tata McGraw Hill.							
Reference Book(s)									
1	Henry F Korth, Abraham Silberschatz, S. Sudharshan, Database System								
	Conce	Concepts, 2006, 5 th Edition, McGraw Hill.							
2	R. Elm	masri and S. B. Navathe, Fundamentals of Database Systems, 2016, 7th							
		Edition, Addison Wesley.							
3	Guy Harrison, Next Generation database: NoSQL New SQL and Big Data, 2015,								
	1 st Edition, Apress.								
4	Daniel G. McCreary and Ann M. Kelly, Making Sense of NoSQL, 2013, Manning								
	publisher.								
Mode of Evaluation: CAT, Assignment, Quiz and FAT									
Recommended by Board of Studies			15-02-2024						
Approved by Academic Council			No. 73	Date	14-03-202	4			