Disciplina: Matemática Computacional

Aula 1: Teoria dos Conjuntos

Apresentação

Seja bem-vindo(a) ao curso de Matemática Computacional!

Tempo de novidades, desafios, expectativas e transformações em sua vida. Certamente, isto não é simples e você já está percebendo o tamanho do desafio... Será que é motivo de pânico? Claro que não, mas é hora de muito estudo e dedicação para obtenção, compreensão e aplicação de uma série de nossos fundamentos e conceitos.

Nesta primeira aula, você compreenderá a importância da Teoria dos Conjuntos para investigação e modelagem das leis que regem a natureza. Serão apresentados diversos conceitos associados a esta teoria, como notação, propriedades, tipos especiais, operações elementares, conjuntos e intervalos numéricos, princípios da inclusão e da exclusão e valor absoluto de um número. Cada um destes temas será intercalado com exemplos e exercícios, para que você possa compreender ainda melhor a importância deles na área tecnológica.

Objetivos

- Reconhecer a importância da Teoria dos Conjuntos;
- Reconhecer os tipos e operações mais relevantes em conjuntos numéricos;
- Identificar os conceitos fundamentais e as propriedades associadas a intervalos numéricos e ao valor absoluto de um número.

Introdução à Teoria dos Conjuntos - notação e propriedades

Vamos começar com uma definição que pode soar muito vaga. Afinal:

O que é um conjunto?

Pode ser definido como uma coleção não ordenada de entidades relacionadas porque obedecem a uma determinada regra.

O que é uma entidade?

Entidade pode ser, literalmente, qualquer coisa: números, pessoas, formas, cidades, pedaços de texto, dentre outras — a lista é bem ampla mesmo.

O mais importante na definição apresentada é que a "regra" deve estar bem definida. Em outras palavras, a regra deve descrever claramente o que as entidades obedecem.

Exemplo

Vamos ver alguns exemplos de regras?

Se as entidades sobre as quais estamos falando são esportes, por exemplo, uma regra bem definida é: *X é arte marcial*.

No entanto, existem também regras que não são bem definidas e que, portanto, não podem ser usada para definir um conjunto, como *X é difícil de aprender*, onde X é qualquer idioma.

Uma entidade que pertence a um determinado conjunto é chamada de <u>elemento</u> desse conjunto. Por exemplo, **judô** é um elemento do conjunto das **artes marciais**.

Como representar os elementos de um conjunto?

Conjuntos

Geralmente são representados usando **letras maiúsculas**: A, B, C etc.

Elementos

Geralmente são representados por meio de **letras minúsculas**: a, b, c etc.

Saiba mais

Para listar os elementos de um conjunto, **os colocamos entre chaves**, separados por vírgulas:

 $S = \{-2, -1, 0, 1, 2\}$

Os elementos de um conjunto também podem ser descritos explicitamente por meio de uma regra, como:

S = {inteiros entre -3 e 3}

A notação do construtor do conjunto pode ser usada para descrever conjuntos que são muito tediosos para listar explicitamente.

Para denotar qualquer conjunto particular, usamos alguma letra como variável.

Veja o caso a seguir:

 $S = \{x \mid x \text{ \'e inteiro e } |x| < 3\}, \text{ que \'e equivalente a } \{x \mid x \text{ \^l } Z \text{ e } |x| < 3\}.$

Diagrama de Venn

Outra maneira de se apresentar os elementos de um conjunto é por meio do **Diagrama de Venn**.

Segundo Brochi (2016), trata-se de uma forma gráfica de representação de conjuntos, facilitando a resolução de problemas e representações de operações entre conjuntos.

Desta forma, o conjunto S apresentado anteriormente pode ser representado da seguinte forma:

Conjuntos especiais

Para entender melhor os exemplos que serão apresentados, é necessário que você saiba alguns conceitos preliminares.

Em primeiro lugar, destacamos o conceito de **subconjunto de um conjunto**.

Segundo Brochi (2016), trata-se do conjunto formado somente por elementos que pertencem ao conjunto original.

Por exemplo, considere o conjunto D composto dos dias da semana, de modo que:

D = {domingo, segunda, terça, quarta, quinta, sexta, sábado}

Assim, um subconjunto Q, composto pelos dias da semana que começam com a letra "q", seria composto da seguinte forma:

Q = {quarta, quinta}

Também podemos perceber com os exemplos apresentados que existem relações entre conjuntos, bem como entre elementos e conjuntos.

Por exemplo, os elementos de Q também fazem parte de D, mas o contrário nem sempre é verdade.

Por sua vez, percebe-se que o elemento "sexta" não faz parte do conjunto Q, mas faz parte do conjunto D.

Como descrever tais relações?

Clique nos botões para ver as informações.

Relação entre um elemento e um conjunto

A relação entre um elemento e um conjunto é a dita relação de pertinência.

Deste modo, diz-se que um determinado elemento pertence (Î) ou não pertence (Ï) a determinado conjunto.

Aproveitando o elemento do caso anterior, vemos que "sexta" Î D, mas "sexta" Ï Q.

Relação entre dois conjuntos

~

A relação entre dois conjuntos é a dita **relação de inclusão**.

Deste modo, diz-se que um determinado conjunto está contido (Ì) ou não está contido (Ë) a outro conjunto.

Além das relações de pertinência e inclusão, há outras definições importantes relacionadas à Teoria dos Conjuntos.

A Tabela 1 apresentada a seguir descreve algumas destas definições:

Conceito	Definição	Exemplo	
Conjunto universo	Conjunto de todos os elementos no contexto atual. Denotado por U	U = {, -2, -1, 0, 1, 2, 3,}	
Conjunto vazio ou nulo	Conjunto que não contém elementos. Denotado por {} ou Æ	T = {conjunto de todas as palavras em português com mais de 100 letras} = { }	
Conjunto unitário	Conjunto que possui apenas um elemento	A = {redes}	
Conjunto finito	Conjunto que possui uma quantidade limitada de elementos	S = {-2, -1, 0, 1, 2}	
Conjunto infinito	Conjunto que possui uma quantidade ilimitada de elementos	P = conjunto dos números pares = {0, 2, 4, 6,}	

Por fim, é importante destacar a existência do conjunto das partes de subconjuntos .	um conjunto, que é o conjunto de todos os seus			
Por exemplo, o conjunto B = {1, 2, 3} apresenta o conjunto de suas partes, representado como P(B), dado por:				
$P(B) = \{AE, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$				
Repare que:				
1	2			
O conjunto vazio é um dos elementos do conjunto das partes de B.	Os elementos do conjunto das partes de B também são conjuntos.			
3				
O conjunto B é um dos elementos do conjunto das partes do próprio conjunto B.				

Operações elementares em conjuntos

Podemos realizar algumas operações com conjuntos.

Dica

É importante que você guarde bem estes conceitos, pois eles serão bastante importantes na resolução de algumas situações-problema que você vai encarar pela frente.

A Tabela 2 apresenta estas operações, cada uma delas com seu significado e uma ilustração empregando o Diagrama de Venn:

Operação	Definição	Ilustração
União	Dados dois conjuntos A e B, a sua união é um conjunto formado por todo elemento que pertence a A ou a B ou a ambos. É denotada por "A ∪ B"	$A \cup B$
Interseção	Dados dois conjuntos A e B, a sua interseção é um conjunto formado por todo elemento de A que também pertence a B. É denotada por "A ∩ B"	$A \cap B$
Diferença	Dados dois conjuntos A e B, a diferença entre eles é um conjunto formado por todo elemento de A que não pertence a B. É denotada por "A – B"	A - B
Complementar	Dados dois conjuntos A e B que A \subset B, definimos o complementar de A em relação a B como o conjunto formado por todo elemento de B que não pertence a A. É denotada por C_A ou $\overline{}$	B

Tabela 2 – Operações Elementares em Conjuntos.

É importante notar que a diferença não apresenta a propriedade comutativa, diferentemente das operações de união e interseção. Isto significa que, se alterarmos a ordem dos conjuntos que estão operando, temos um novo resultado. Logo, A - B não é equivalente a B - A.

Exemplo

Estas operações são relevantes, mas, ainda assim, há situações que demandam operações um pouco mais complexas. Vamos vê-las no exemplo a seguir:

Um conjunto A tem 25 elementos e um conjunto B tem 15 elementos. Sabendo-se que a interseção de ambos tem 10 elementos, qual é a quantidade de elementos da união de A com B?

Situações como esta são resolvidas com apoio do Princípio da Inclusão e Exclusão.

Trata-se de um princípio bastante simples, indicando que:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Desta forma, neste exemplo, temos que $n(A \cup B) = 25 + 15 - 10 = 30$ elementos.

Conjuntos e intervalos numéricos

Nesta aula, já estudamos alguns tipos de conjuntos, bem como os principais tipos de operações. No entanto, há alguns conjuntos que recebem nomes especiais, em função de sua utilidade e emprego em diversas situações do dia a dia.

		3	Clique nos botões para ver as informações.
conjunto dos números	naturais		~
,	s o conjunto dos números natura rais é representado como N, de ta	is , muito útil para efetuar contag al maneira que ℕ={0,1,2,3,4,5,}.	ens.
conjunto dos números	inteiros		~
	·	o baixas ou do saldo devedor em maneira que Z={,-3,-2,-1,0,1,2,	
conjunto dos números	racionais		~
entre dois inteiros (por exempl	o, 3 e 5). Tais casos acabam por or \mathbb{Q} , de maneira que \mathbb{Q} = $\{a/b\}$, o	eão de quantidades não inteiras condescrever elementos do conjunt o onde a pertence ao conjunto dos	o dos números racionais.
conjunto dos números	irracionais		~
	·	ração entre dois números inteiro endo representados por Q' (ou se	
conjunto dos números	reais		~
<u>Por fim</u> , o conjunto dos númer	os racionais e irracionais compõ	e o denominado conjunto dos nú	meros reais , denotado por ℝ.
A Figura 2, mostrada a seguir, ilus	stra a relação entre os conjuntos	dos números naturais, inteiros, ra	acionais, irracionais e reais.
Podemos dizer que:			
1	2	3	4
O conjunto dos números inteiros contém o dos números naturais.	O conjunto dos números racionais contém o dos números inteiros.	Todo número que não é racional pertence ao conjunto dos números	A união dos conjuntos dos números racionais e irracionais forma o conjunto

irracionais.

dos números reais.

Além disso, temos os <u>intervalos numéricos</u>. Este conceito é importante, pois permite uma representação alternativa à notação de conjuntos, tanto de forma numérica como gráfica.

Esses intervalos podem ser <u>abertos</u>, <u>fechados ou semiabertos</u>.

A Tabela 3 apresenta uma ilustração destes tipos de intervalos:

Tipo	Notação	Conceito
Intervalo aberto]a, b[= $\{x \in \mathbb{R}/a < x < b\}$	Todo número real maior do que a e menor do que b
Intervalo fechado	$[a, b] = \{x \in \mathbb{R}/a \le x \le b\}$	Todo número real maior ou igual a a e menor ou igual a b
Intervalo semiaberto –	[a, b[= $\{x \in \mathbb{R}/a \leq x < b\}$	Todo número real maior ou igual a a e menor do que b
	$]a, b] = \{x \in \mathbb{R}/a < x \le b\}$	Todo número real maior do que a e menor ou igual a b
Intervalo infinito	$[a, +\infty[= \{x \in \mathbb{R}/x \geqslant a\}$ $]-\infty, a[= \{x \in \mathbb{R}/x < a\}$	Um intervalo pode ser fechado de um lado e ilimitado do outro ou, ainda, aberto de um lado e ilimitado do outro
Tabela 3 – Intervalos	numéricos.	

Por fim, para Brochi (2016), vale destacar que, em algumas aplicações, nos interessa apenas a distância de cada um deles até o zero (que é a origem da reta numérica real).

Isto quer dizer que podemos não estar interessados no "sinal" do número, mas apenas na magnitude que ele representa. Essa distância de cada número até o zero, na reta numérica, é denominada *módulo* ou *valor absoluto* desse número.

A Figura 3 mostra que o módulo de -5 é igual a 5, e que o de +3 é igual a 3:

Figura 3 – Representação do módulo ou valor absoluto de -5 e +3. Fonte: Centro de mídias.

Atividade

- 1. Dados os conjuntos $A = \{2, 4, 6, 8, 10\}, B = \{1, 3, 5, 7, 9\} e C = \{6, 8\}, determine <math>\mathbf{A} \cap (\mathbf{B} \cap \mathbf{C})$:
 - a) {6, 8}
 - b) { }
 - c) {2, 4, 6, 8, 10}
 - d) {1, 3, 5, 7, 9}
 - e) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- 2. Dados os conjuntos $A = \{x \in R / 6 \le x < 9\} e B = \{x \in R / 7 < x \le 9\}$, determine B A:
 - a) $\{x = 9\}$
 - b) $\{x \in R / 6 \le x < 7\}$
 - c) $\{x \in R / 6 \le x < 9\}$
 - d) $\{x \in R / 6 \le x \le 7\}$
 - e) $\{x \in R / 7 \le x \le 9\}$
- 3. Um levantamento socioeconômico entre os habitantes de uma cidade revelou que 18% têm casa própria; 22% têm automóvel; 8% têm casa própria e automóvel. Qual o percentual dos que não têm casa própria nem automóvel?
 - a) 40%
 - b) 32%
 - c) 68%
 - d) 60%
 - e) 52%

4. Assinale a alternativa que apresenta a solução para x − 2 = 7:
4. 7.03inaie a aitemativa que apresenta a solação para (x = 2) = 7.
a) $x = -5 e x = 9$
b) $x = 5 e x = -9$
c) $x = 9$
d) $x = -5$
e) Nenhuma das alternativas anteriores

5. (UFAL) Na figura abaixo, têm-se representados os conjuntos A, B e C, não disjuntos:

A região sombreada representa o conjunto:

a) C − (A ∩ B) b) (A ∩ B) − C

c) (A ∪ B) - C

d) $(A \cup B) \cup C$ e) $(A \cap B) \cap C$

Referências

BROCHI, A. L. C. **Matemática aplicada à Computação**. Rio de Janeiro: SESES, 2016.

Próxima aula

- Teoria da Contagem;
- Princípio das Casas de Pombo;
- Princípio da Multiplicação;
- Princípio da Adição;
- Arranjo, Permutação e Combinação.

Explore mais

Teoria dos Conjuntos. Veja algumas sugestões:

Assista aos vídeos:

- <u>Conjuntos Numéricos < https://www.youtube.com/watch?v=-AheSXxm_bE></u>;
- <u>Noções de Teoria dos Conjuntos < https://www.youtube.com/watch?v=1Lt2JyhU9Ko>;</u>
- Conjuntos Numéricos: Números Naturais e Inteiros (Aula 1 de 4) https://www.youtube.com/watch?v=Y_mYgLkuEl4.