Kourtney Brown

Mechanical Engineer, Portfolio

kourtneymakayla@gmail.com

562-673-8054

<u>LinkedIn</u>

Thermal Cutoff Electronic - Bourns Inc.

Action

 Developed a device to regulate the thermal activity for a Battery Management System trailer.

Objective

 Engineered to cutoff electric current flow when the batteries exceed 80F.

- Assembled the electric
- thermal cutoff device to a ring connector in order to connect with battery.
- Used SolidWorks CAD to model a standard ring connector. Then soldered the thermal cutoff to the connector.

Result

- Applied direct heat to the ring connector with a soldering iron and a digital multimeter to track the electric current measurement.
- Digital multimeter read 0
 amps from the device after
 it reached 80F for 3+ trials.

Surge Protector - Bourns Inc.

Objective

- Conceptualized a method to mass manufacture a surface mounted version of a electronic surge protector.
- Integrating the different components (PCBs, wires, and surge protector) of the product along with exterior casing.

Action

- Used SolidWorks CAD to design assembly fixtures.
- Fabricated fixtures using SLA 3D printing. Then thermally cured.
- Soldered all components to the PCB. Fixtures were used to thermally cure 5 models through a soldering oven.

Result

- Encased in an epoxy exterior.
- Finished 15 models of a 5 mm version and 10 mm version.
- Trial products were sent off to another facility for shock testing.

Car Suspension Simulation Project - Feedback Control

- Analyzing the forces applied to a car and wheel in this active suspension scheme.
- The concepts of feedback control are used to analyze this linear system using MATLAB.

vehicle mass = G1(s) and wheel mass = G2(s)

Control Block Diagram

Root Locus Plot

Step and Impulse Response

Bode Plot

Car Suspension Simulation Project - Feedback Control

vehicle mass = G1(s) and wheel mass = G2(s)

MATLAB Script:

clear all; subplot(2, 1, 2) % impulse response clc; impulse(tf_G1); % define numerical values given from chart title('Impluse response of G1'); m1= 2500; grid on; m2= 320; xlabel('time(s)'); k1= 80000; ylabel('Amplitude'); k2= 500000; xlim([010]); b1= 350; hold on; b2=15000; %% G2 plots % need to define the denominator deltas for %G2 Step both G(s)1 and G(s)2 subplot (2, 1, 1); %step response delta_s= [(m1*m2), (m1*b1+m1*b2+b1*m2), step(tf_G2); (m1*k1+m1*k2+b1*b2+k1*m2), (b1*k2 + k1*b2), title('Step response of G2'); k1*k2]; grid on; %numerators/coeffs -(m1+m2)s^2 - b2s - k2 xlabel('time(s)'); num G1 = [(-m1+m2), -b2, -k2]; %ylabel('Amplitude'); num_G2 = [(-m1*b2), (-m1*k2), 0, 0]; %xlim([0 10]); m1b2s^3 - m1k2s^2 subplot(2, 1, 2) % impulse response %transfer func impulse(tf_G2); tf_G1 = tf(num_G1, delta_s); title('Impluse response of G2'); tf_G2 = tf(num_G2, delta_s); grid on; %% G1 plots xlabel('time(s)'); %G1 Step ylabel('Amplitude'); subplot (2, 1, 1); %step response xlim([010]); step(tf G1); title ('Step response of G1'); grid on; xlabel('time(s)'); ylabel('Amplitude'); xlim([010]);

Various Lab Coursework Assignments (Circuits, Digital Multimeters, Oscilloscopes, Power Supplies, etc.)

Resistor/Capacitor Lab

- **Objective -** created a low pass system with a starting parameter of 100 Hz, 5V amp, 10 kOhm resistor, and an unknown capacitor.
- **Instruments used -** Oscilloscopes, function generator, and Digital Multimeter.

Various Lab Coursework Assignments (Circuits, Digital Multimeters, Oscilloscopes, Power Supplies, etc.)

Amplifier Lab

- **Objective -** created a Inverting and Non-Inverting Amplifier circuit system with 200 mVamp and 100 Hz.
- Instruments used Operational Amplifier,
 Oscilloscopes, Function Generator, and Digital Multimeter.

Wheatstone Bridge Lab

- Objective created a Wheatstone Bridge Circuit Bridge with 3 120 Ohm resistors and a Decade Resistance Box. Input voltage of 5V.
- Instruments used DC Power Supply, Digital Multimeter, Decade Resistance Box.