Задача проверки модели

Евтушенко Н.В., Винарский Е.М.

по всем вопросам писать на vinevg2015@gmail.com

9 ноября 2018 г.

Содержание

- 1 LTL-формулы
- 2 Структура Крипке
- Проверка модели (Model Checking)
- 4 Схема решения задачи проверки модели
- ⑤ Автоматы Бюхи

Algorithm 1 "Текущий пример"

- 1: i = 0
- 2: for true do
- 3: i = i + 2
- 4: i = i 1
- 5: i = i 1
- 6: end for

LTL-формулы

- Трасса run бесконечная последовательность событий
- run[i] i-ое событие трассы τ
- run^{j} суффикс трассы τ , начинающийся с j-ого события
- АР множество атомарных высказываний

В "текущем примере"

- \bullet события $\{i=0; i=1; i=2\}$
- $AP = \{[i == 0], [i == 1], [i == 2]\}$

LTL-формула

- $\phi = a \in AP$
- ullet ϕ *LTL*-формула, тогда $\neg \phi$ *LTL*-формула
- ϕ_1, ϕ_2 *LTL*-формулы, тогда $\phi_1 \wedge \phi_2$ *LTL*-формула
- ullet ϕ LTL-формула, тогда $\mathbb{X}\phi$ LTL-формула
- ϕ_1,ϕ_2 *LTL*-формулы, тогда $\phi_1\mathbb{U}\phi_2$ *LTL*-формула
- ullet ϕ LTL-формула, тогда $\mathbb{F}\phi$ LTL-формула
- ullet ϕ LTL-формула, тогда $\mathbb{G}\phi$ LTL-формула

LTL-формулы (2)

- $run \models a$: выполняется если и только если $a \in run[0]$
- $run \models \neg \phi$: выполняется если и только если $run \not\models \phi$
- $run \models \psi_1 \land \psi_2$: выполняется если и только если $run \models \psi_1$ и $run \models \psi_1$
- $run \models \mathbb{X} \phi$: выполняется если и только если $run^1 \models \phi$ (формула выполнима в следующий момент времени)
- $run \models \psi_1 \mathbb{U} \psi_2$: выполняется если и только если $\exists k, k \geq 0$: $run^k \models \psi_2 \ run^m \models \psi_1$ для всех $m \in [0, k)$ (в какой-то момент времени выполнится ϕ_2 , а до этого всегда выполняется ϕ_1)
- $run \models \mathbb{F} \phi$: выполняется если и только если $\exists k \geq 0$: $run^k \models \phi$ (когда-то в будущем выполнится ϕ)
- $run \models \mathbb{G}\phi$: выполняется если и только если $\forall k \geq 0$: $run^k \models \phi$ (всегда в будущем выполнится ϕ)

LTL-формулы описывают требования к верифицируемой системе

• Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ

LTL-формулы описывают требования к верифицируемой системе

• Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ $\mathbb{G}(send \Rightarrow \mathbb{X}(\neg send \mathbb{U}recieve))$

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ $\mathbb{G}(send \Rightarrow \mathbb{X}(\neg send \mathbb{U}recieve))$
- Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой" ситуации всегда

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ $\mathbb{G}(send \Rightarrow \mathbb{X}(\neg send \mathbb{U} recieve))$
- Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой" ситуации всегда

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ $\mathbb{G}(send \Rightarrow \mathbb{X}(\neg send \mathbb{U}recieve))$
- Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой"ситуации всегда $\mathbb{G}(deadlock_flag == false)$
- Если система послала сообщение, то ответ будет обязательно получен, и не наступит момента, когда мы больше не сможем отправлять сообщения

- Если мы отправили запрос, то когда-нибудь в будущем обязательно получим ответ $\mathbb{G}(request \Rightarrow \mathbb{F}reply)$
- Если мы отправили сообщение, то не сможем отправить следующее, до тех пор, пока не получим ответ $\mathbb{G}(send \Rightarrow \mathbb{X}(\neg send \mathbb{U}recieve))$
- Флаг, отвечающий за то, что система никогда не будет находиться в "тупиковой"ситуации всегда $\mathbb{G}(deadlock_flag == false)$
- Если система послала сообщение, то ответ будет обязательно получен, и не наступит момента, когда мы больше не сможем отправлять сообщения $\mathbb{G}((send \Rightarrow \mathbb{XF}) \land \mathbb{F}send)$

Структура Крипке

- Требования к системе описываются на языке *LTL*-формул
- Для формального доказательства факта, что система удовлетворяет этим требованиям, необходима формальная модель системы
- В качестве такой модели выступает структура Крипке
- Задача проверки модели заключается в проверки выполнимости формулы на структуре Крипке, т.е. выполнимость формулы на всех трассах данной системы

Структура Крипке (формальное определение)

AP — множество атомарных высказываний Структура Крипке — система $M = (S, S_0, \to, L)$

- S конечное непустое множество состояний
- $S_0 \subseteq S$ конечное непустое множество начальных состояний
- ullet $\to \subseteq S imes S$ тотальное отношение переходов
- $L: S \to 2^{AP}$ функция разметки состояний

Отношение переходов *тотальное*, если для любого состояния $s \in S$ существует $s' \in S$ такое, что существует переход из s в s'

Проверка модели (Model Checking)

• Путь π из состояния s — бесконечная последовательность состояний вида $s \to s_1 \to s_2 \dots$

- Трасса $\alpha(\pi)$ пути π это бесконечная последовательность событий $L(s)L(s_1)L(s_2)\dots$
- $\Pi(M)$ множество всех путей из начальных состояний структуры Крипке M
- $Tr(M) = \{\alpha(\pi) | \pi \in \Pi(M)\}$

Задача проверки модели

- ϕ LTL-формула, M структура Крипке
 - ullet Формула ϕ *выполняется на пути* π в M ($M,\pi \models \phi$), если $lpha(\pi) \models \phi$
 - Формула ϕ выполняется на структуре M ($M \models \phi$), если она выполняется на каждом пути π множества $\Pi(M)$, т.е. $Tr(M) \subseteq Tr(\phi)$

Задача Model Checking — проверить справедливость соотношения $M \models \phi$

Схема решения задачи проверки модели

- ① По модели M строится автомат Бюхи A_M , распознающий множество бесконечных трасс Tr(M)
- ② Строится отрицание формулы ϕ , затем по ней строится автомат $A_{\neg \phi}$, распознающий множество бесконечных трасс $Tr(\neg \phi)$
- ullet Строится автомат A, распознающий множество бесконечных трасс $Tr(M) \cap Tr(\neg \phi)$
- lacktriangle анализируется язык, распознаваемый автоматом Бюхи $Tr(M) \cap Tr(
 eg \phi)$
 - ullet если язык, распознаваемый A пустой, то $M \models \phi$
 - если язык, распознаваемый A HE пустой, то $M \not\models \phi$ и слова, принадлежащие этому языку контрпримеры

Автоматы Бюхи

Автоматом Бюхи (над алфавитом Σ) называется система $A=(S,S_0,
ightarrow,F)$

- S конечное непустое множество состояний
- $S_0 \subseteq S$ конечное непустое множество начальных состояний
- ullet $\to \subseteq S imes \Sigma imes S$ отношение переходов
- $F \subseteq S$ конечное непустое множество финальных состояний

Автоматы Бюхи

inf(run) – состояния, встречающиеся бесконечно часто на трассе run

- Автомат Бюхи работает с бесконечными словами вида $\sigma_1 \sigma_2 \dots \sigma_n \dots$, где $\sigma_i \in \Sigma$
- Трасса автомата Бюхи бесконечная последовательность состояний вида: $run = s_0 \stackrel{\sigma_1}{\to} s_1 \stackrel{\sigma_1}{\to} \dots s_{n-1} \stackrel{\sigma_n}{\to} s_n \dots$
- слово принимается автоматом Бюхи, если и только если $inf(run) \cap F \neq \emptyset$

