(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-201855

(43)公開日 平成7年(1995)8月4日

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出願番号	特願平5-336434	(71)出願人	000005223
			富士通株式会社
(22)出廢日	平成5年(1993)12月28日		神奈川県川崎市中原区上小田中1015番地
		(71)出顧人	000237617
			富士通ヴィエルエスアイ株式会社
			愛知県春日井市高蔵寺町2丁目1844番2
		(72)発明者	岩瀬 章弘
			愛知県春日井市高蔵寺町二丁目1844番2
			富士通ヴィエルエスアイ株式会社内
		(72)発明者	伊藤 栄作
			愛知県春日井市高蔵寺町二丁目1844番2
			富士通ヴィエルエスアイ株式会社内
		(74)代理人	弁理士 井桁 貞一
			最終頁に続く

(54) 【発明の名称】 半導体装置

(57)【要約】

【目的】 本発明は、半導体チップの周縁と配線パッドの間の領域に、例えば耐湿性向上のために使用されるガードリング等の細長い導体膜を有する半導体装置に関し、半導体チップのモールド封止の際に、ガードリングにクラックを生ずる外部応力を低減して、クラックによる特性不良を改善し、耐湿性の向上を行う。

【構成】 半導体チップ1の周縁と配線パッド2間の領域に設けられた導電膜3からなるガードリング4が、蛇行状に屈曲、或いは湾曲したパターンからなる。

本発明の原理説明図

【特許請求の範囲】

【請求項1】 半導体チップ(1) の周縁と配線パッド (2) 間の領域に設けられた導電膜(3) からなるガードリ ング(4) が、蛇行状に屈曲、或いは湾曲したパターンか らなることを特徴とする半導体装置。

【請求項2】 前記ガードリング(4) が複数層の導電膜 (3) からなり、該導電膜(3) は層間絶縁膜(7) のスルー ホール(8) を介して互いに接続されてなることを特徴と する請求項1記載の半導体装置。

【請求項3】 前記複数層の導電膜(3) は少なくとも上 10 層の導電膜(3a)が下層の導電膜(3b)に覆い被さるよう に積層してなることを特徴とする請求項1または2記載 の半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体基板の周辺部に細 長い導体膜を有する半導体装置に関し、例えば耐湿性向 上のために使用されるガードリングの形成技術に関す る。

[0002]

【従来の技術】図3は従来例の説明図である。図におい て、1は半導体チップ、2は配線パッド、3は導電膜、 4はガードリング、9は四隅部、10はスリットである。 【0003】従来、半導体チップ1をモールド樹脂で封 止した場合、図3(a)に示したような半導体チップ1 の周縁と配線パッド2間の領域に設けられた導電膜3か らなる直線状のガードリング4のパターンでは、モール ド樹脂による強い応力が特に半導体チップ1周縁の四隅 部9に大きく加わり、半導体チップ1の周縁に設けられ たガードリング4の上、及び周辺でガードリング4の導 30 基板である。 電膜3を覆った図示しないパッシベーション膜にクラッ クが生ずることが知られている。

【0004】そこで、特開平2-77132号公報で は、図3(b)に示すように、ガードリング4に延在す るリング方向に平行なスリット10を設けて、上記の欠点 の改良を行っている。

[0005]

【発明が解決しようとする課題】ところが、半導体装置 の微細化にともない、ガードリングの幅も非常に細くな り、スリットを入れることにより配線幅はより細くなっ 40 て、目的とは逆にパッシベーション膜のクラックによる ガードリングの断線を招くようになってきた。

【0006】本発明は、以上のような点を鑑み、モール ド樹脂成形時のガードリング上のパッシベーション膜 の、外部応力によるクラック等に起因する特性不良の改 善や、耐湿性の向上を達成することができる半導体装置 を提供することを目的とする。

[0007]

【課題を解決するための手段】図1は本発明の原理説明 図である。図において、1は半導体チップ、2は配線パ 50

ッド、3は導電膜、4はガードリング、5は直線状パタ ーン、6は屈曲部である。

【0008】上記問題点を解決するために、チップの周 縁に設けたガードリング4の直線部分を少なくするため に直線状パターン5をより短くして、複数の屈曲部6を 設けると良い。

【0009】即ち、本発明の目的は、図1に示すよう に、半導体チップ1の周縁と配線パッド2間の領域に設 けられた導電膜3からなるガードリング4が、蛇行状に 屈曲、或いは湾曲したパターンからなることにより、ま た、後述の実施例と図2で説明するように、前記ガード リング4が複数層の導電膜3からなり、上層と下層の導 電膜3は層間絶縁膜7のスルーホール8を介して互いに 接続されてなることにより、更に、前記複数層の導電膜 3は少なくとも上層の導電膜3aが、下層の導電膜3bに覆 い被さるように積層してなることにより達成される。

[0010]

【作用】本発明の手段によれば、上記ガードリングの導 電膜の直線状パターンを短くし、複数の屈曲部を設けて 20 いるので、外部応力を短い直線状パターンの部分に分割 し、大きな応力を分散させるとともに、複数の屈曲部を 設け、そのバネの原理を利用して、応力を吸収し、クラ ックの発生を緩和する。

[0011]

【実施例】図2は本発明の一実施例の模式断面図であ る。図において、1は半導体チップ、2は配線パッド、 3は導電膜、3aは上層の導電膜、3bは下層の導電膜、4 はガードリング、5は直線状パターン、6は屈曲部、7 は層間絶縁膜、8はスルーホール、9は四隅部、11はSi

【0012】図2を用いて、本発明の一実施例について 説明する。図2(a)に示すように、ガードリング4に ポリSi膜からなる上層の導電膜3a、AI膜からなる下層の 導電膜3bを使用し、50μm程度の間隔でSiO2膜からなる 層間絶縁膜7にスルーホール(導通窓)8を設けて上層 の導電膜3aと下層の導電膜3bとを接続させている。

【0013】ガードリング4の直線状パターン5は出来 るだけ短くし、多くの屈曲部6を持たせる。屈曲部6の 内角は 135°としているが、この屈曲部6は多角形化 し、円周に近い形がより効果的である。

【0014】図2(b)は図2(a)のA-A'間の断 面図である。二層目の上層の導体膜3aは一層目の下層の 導体膜3bより外側に覆い被せてある。このような構造に おいて、例えば、大きな応力がチップの四隅部9から加 わったとしても、ガードリング4のパターンは短い直線 状パターン5に分散され、且つ、a~a"系列、及び、 c~c"の系列はバネの作用をして、下層の導電膜3bを 被覆する図示しないパッシベーション膜のクラックや、 それによるガードリング4の断線を防止出来る。

【0015】

3

【発明の効果】本発明によれば、スリットの形成が困難な細いガードリングであっても、短い直線部と複数の屈曲部を形成することにより、パッシベーション膜に加わる応力を緩和でき、ガードリングの断線率を低下させ、半導体装置の外部応力による特性不良の改善、耐湿性の向上を達成でき、半導体装置の信頼性の向上に著しく寄与する。

【図面の簡単な説明】

【図1】 本発明の原理説明図

【図2】 本発明の一実施例の説明図

【図3】 従来例の説明図

【符号の説明】

【図1】

本発明の原 理 説 明 図

1 半導体チップ

- 2 配線パッド
- 3 導電膜
- 3a 上層の導電膜
- 3b 下層の導電膜
- 4 ガードリング
- 5 直線状パターン
- 6 屈曲部
- 7 層間絶縁膜
- 10 8 スルーホール
 - 11 Si基板

【図2】

木発明の一実 施例の説明 図

【図3】 従来例の説明 図

フロントページの続き

(72)発明者 永井 真二

愛知県春日井市高蔵寺町二丁目1844番2 富士通ヴィエルエスアイ株式会社内