

Proyecto de Pasantía

Realizado en el Centro de Distribución de Artisan

Migración a una cámara de frío: Optimización de *Layout* dinámico con integración de *forecast*ing en la gestión de inventarios

Eduardo Andrés Pérez Durán

Proyecto para optar al título de Ingeniería Civil Industrial de la Facultad de Ingeniería y Ciencias de la Universidad Adolfo Ibáñez

Profesor Guía:

Raimundo Sánchez

Santiago, Chile 2023

Resumen Ejecutivo

El presente proyecto aborda el desafío logístico de optimizar la distribución de productos en la cámara de frío de la empresa Artisan. Se propone una solución integral que combina el modelo de asignación mediante programación lineal con la predicción de la demanda a corto y largo plazo utilizando el método de Holt-Winters.

La metodología se inicia con la extracción y análisis de datos de órdenes de compra, identificando los productos clave. Se emplea el Test de Tukey para evaluar diferencias significativas de medias en la demanda y se aplica el modelo de Holt-Winters para prever el requerimiento de espacio a largo plazo, minimizando el error cuadrático medio.

Se contempla una fase inicial de extracción y tratamiento de datos, seguida por el desarrollo de modelos y validación, concluyendo con la entrega de resultados y mejoras continuas. La matriz de riesgos identifica posibles obstáculos y propone estrategias de mitigación.

El impacto económico se refleja en un ahorro de hasta 113.4 horas operativas mensuales al optimizar los procesos logísticos. Este enfoque innovador no solo promete eficiencia operativa, sino también la mejora continua mediante simulaciones y ajustes a las predicciones.

En la fase final, se desarrolla un modelo de programación lineal para la asignación óptima de productos en la cámara de frío, integrando el pronóstico a corto plazo. Los resultados indican una reducción del 53.72% en el flujo operativo medido sobre la situación actual, destacando la eficiencia del nuevo diseño.

El proyecto ofrece una solución integral y escalable para la optimización logística de Artisan, aprovechando la predicción de la demanda y la programación lineal para mejorar significativamente la eficiencia en la distribución de productos en la cámara de frío.

Palabras claves: Centro de distribución, logística, eficiencia, problema de asignación, Layout dinámico, Holt-Winters, cámara de frío, Región Metropolitana.

Abstract

This project addresses the logistical challenge of optimizing product distribution in Artisan's cold storage facility. It proposes a comprehensive solution that combines a linear programming allocation model with short and long-term demand prediction using the Holt-Winters method.

The methodology begins with the extraction and analysis of purchase order data to identify key products. The Tukey Test is employed to assess significant differences in demand means, and the Holt-Winters model is applied to forecast long-term space requirements, minimizing mean squared error.

The project includes an initial phase of data extraction and processing, followed by model development and validation, concluding with result delivery and continuous improvements. The risk matrix identifies potential obstacles and proposes mitigation strategies.

The economic impact is reflected in savings of up to 113.4 operational hours per month by optimizing logistical processes. This innovative approach promises not only operational efficiency but also continuous improvement through simulations and adjustments to predictions.

In the final phase, a linear programming model is developed for the optimal allocation of products in the cold storage facility, integrating short-term forecasts. Results indicate a 53.72% reduction in operational flow compared to the current situation, highlighting the efficiency of the new design.

The project offers a comprehensive and scalable solution for Artisan's logistical optimization, leveraging demand prediction and linear programming to significantly enhance efficiency in the distribution of products within the cold storage facility.

Keywords: Distribution center, logistics, efficiency, allocation problem, dynamic layout, Holt-Winters, cold storage, Metropolitan Region.

<u>Índice</u>

1.		Introducción	4
	a.	Contexto de la empresa	4
	b.	Contexto del problema	5
	c.	Contexto de la oportunidad	6
2.		Objetivos	7
	a.	Objetivo general	7
	b.	Objetivos específicos	7
	c.	Medidas de desempeño	7
3.		Estado del arte	8
4.		Solución	14
	a.	Alternativas de solución	14
	b.	Solución escogida	15
5.		Metodologías	16
	a.	Metodología para desarrollar la solución	16
	b.	Desarrollo del proyecto	20
	c.	Plan de implementación	25
	d.	Análisis de riesgo	25
	e.	Evaluación económica	26
6.		Resultados	27
7.		Conclusión	31
8.		Discusión	32
9.		Referencias	33
10).	Anexos	34

1. Introducción

a. Contexto de la empresa

Artisan es una empresa que surge el 2009 dedicada a la elaboración y comercialización de productos lácteos y de origen vegetal, destacando dentro de sus líneas de producto los quesos, yogures y postres, contando además con una línea vegana. Actualmente, de sus clientes, tiene presencia en empresas de tipo retail incluyendo Walmart, Cencosud, Unimarc y Tottus; también se desglosan sus clientes en canales de horeca (hoteles, restaurantes y catering), navieras y ventas al detalle. Actualmente comercializan 35 productos distintos distribuidos en yogures, quesos y postres.

Cuenta con dos plantas productivas, la primera ubicada en Valdivia y la segunda en San Felipe, divididas sus producciones por línea de producto. En Valdivia son producidos quesos a partir de leche de vaca y yogures; mientras que en la planta de San Felipe son elaborados productos de la línea vegana y quesos de leche de cabra. Los productos son empaquetados en cuatro tipos de cajas, dependiendo de la línea de producto.

El producto terminado proveniente de las plantas se recibe en el centro de distribución (en adelante, "CD") ubicado en Santiago, en la comuna de Quilicura. El CD hace recibimiento de la mercadería cuatro veces por semana, dado que se realizan dos despachos semanales por planta. La unidad de carga de envío de productos desde las plantas son pallets completos envueltos en *stretch film*, que contienen las cajas con los productos a almacenar para su posterior distribución. El CD está equipado con diez refrigeradores industriales de dos y tres puertas, dedicados a almacenar las cajas con productos. Cabe destacar que, como se trata de productos refrigerados, es importante mantener la cadena de frío, siendo necesario almacenar correctamente cada uno de los productos que llegan desde las plantas.

b. Contexto del problema

Actualmente, se presentan problemas en torno al sistema JIT que se maneja en el CD, tanto por capacidad de la bodega y su requerimiento de disponibilidad frente a cualquier eventualidad (como rechazo de productos, pedidos extraordinarios o cualquier otro imprevisto), como también para mantener inventario de seguridad para satisfacer a la demanda.

Además de la necesidad de aumentar la capacidad de almacenamiento del CD, se suma que los refrigeradores están constantemente arriba del 90% de su capacidad, lo que genera merma en el producto almacenado. Esta merma, es ocasionada por la condensación que se produce por sobrecarga y el impedimento del flujo correcto de aire; además del derretimiento del hielo producido por aumento de la temperatura debido a la constante apertura de las puertas para poder almacenar los productos.

Bajo este sistema, el proceso de almacenar las cajas provenientes de los pallets que envían las plantas se traduce en procesos costosos y poco eficientes para la empresa, debido a los recursos utilizados en realizar estas labores de almacenaje, arreglo del *packaging* dañado, devoluciones por el estado de las cajas y proceso de armado de pallets desde el CD para su distribución. Los productos tienen sus asignaciones definidas en los refrigeradores, por lo que se procura almacenar siguiendo esta base, sin embargo, la asignación no varía en torno a los requerimientos de demanda y se producen asignaciones que no son óptimas, produciendo mayores tiempos de carga y descarga, así como de recogida de productos (*picking*).

Frente a los antecedentes propuestos, Artisan desea implementar una cámara de frío (o *cold room*, en adelante, "CR") para solventar estos problemas. La forma en la que se desea operar con el CR busca poder mantener una sinergia con la metodología de producción JIT y almacenar pallets con productos durante mayor cantidad de días o semanas, además de poder almacenar pallets con los pedidos armados para retail desde las plantas según se requiera. No obstante, el problema de dónde asignar las unidades de carga (UC) para disponerlas y movilizarlas de manera eficiente surge como una problemática a considerar frente a la migración hacia un sistema que opere con CR, frente a la incertidumbre de los requerimientos de productos por parte de la demanda. Por otro lado, también existe la problemática de estimar los productos que serán demandados, debido a que no se posee un horizonte de más de una semana, en la mayoría de los casos, sobre las órdenes de compra. Esto supone una doble problemática, primero, los productos son enviados desde las plantas previo a las órdenes de compra para

satisfacer la demanda; y la segunda problemática emerge debido a la incertidumbre de los productos que se solicitarán dificulta la asignación apropiada para el almacenaje. En la *Figura* 1.1 se puede apreciar los cambios en los pallets almacenados por mes desde el año 2022 hasta octubre de 2023.

Figura 1.1: Gráfico de pallets almacenados. (Elaboración propia).

c. Contexto de la oportunidad

El proyecto surge frente a la necesidad de implementar un CR que cumpla con las necesidades actuales y futuras de la empresa Artisan, permitiéndole realizar esta migración al nuevo sistema de la manera más pulcra posible, atacando el dolor de definir frente a incertidumbre dónde asignar los pallets con productos. Actualmente, Artisan posee capacidad para almacenar aproximadamente 6 pallets de productos, logrando solventar la creciente demanda con una alta rotación de inventario y despachos de bajo lead time. Sin embargo, el reducido espacio y las ineficiencias provocadas por el uso de refrigeradores sin una guía establecida provoca una operación sin orden e ineficiente.

Frente a esto, surge la oportunidad de aprovechar la migración que se desea realizar hacia el CR para poder definir de manera óptima y certera las asignaciones de productos frente a la incertidumbre de la demanda, mejorando así las operaciones y flujo logístico de Artisan.

2. Objetivos

Los fines del proyecto están enfocados en orientar la asignación de los productos dentro de la empresa frente a la implementación de un CR sujeto a una demanda incierta, generando así un ahorro en el costo intangible relacionado a los procesos operativos inherentes a ella.

a. Objetivo general

Optimizar Layout dinámico con integración de forecasting para lograr una correcta migración a una cámara de frío, que permita disminuir el costo del flujo en torno a la distancia recorrida luego de su implementación.

b. Objetivos específicos

- Elaborar Modelo que permita asignar las UC a los espacios disponibles en el CR bajo demanda incierta de manera óptima.
- II. Disminuir el costo del flujo asociado al transporte de productos frente a la situación actual en el CD.
- III. Disminuir horas operativas destinadas a procesos de bodegaje.

c. Medidas de desempeño

Para la medición de impacto del proyecto, se fijarán medidas de desempeño para el objetivo general como para los objetivos específicos. Para el objetivo general, debido a que se requiere un método eficaz, se medirá en torno al cumplimiento de los objetivos específicos que lo conforman y se evaluará el desempeño del modelo mediante la métrica de error *MAPE*, definiendo el indicador bajo 10% como aceptable (Lewis, 2012).

Para los objetivos específicos, se requerirá la elaboración de un modelo que será medido en torno al costo del flujo utilizando distancia Manhattan [m] para el movimiento de productos, en el que se esperará que la métrica $\frac{costo\ flujo\ situación\ optimizada}{costo\ flujo\ situación\ actual} \le 1$. Se espera, además, disminuir horas operativas de procesos asociados a bodegaje con la implementación del CR frente a la situación actual.

3. Estado del arte

Con el propósito de abordar de manera efectiva este proyecto, se realizaron exhaustivas investigaciones de diversos casos de estudio. El objetivo fue comprender cómo se han enfrentado problemáticas similares a las que plantea nuestro proyecto. En este proceso, se identificaron tres casos potenciales con soluciones viables.

El primer caso trata sobre un almacén de alimentos en Portugal, en el que se distribuye a más de 200 tiendas y se posee un sistema *Just in Time*. En el paper, se buscará mejorar el sistema de almacenamiento del almacén a través de un modelamiento de Layout mediante el uso de programación lineal entera, asignando a cada espacio disponible dentro del almacén los productos que se requieran a partir de la demanda. Para estos fines, se definirá un Layout flexible que cambiará día a día según la actividad que se prevea. De esta manera, se buscará minimizar la distancia recorrida dentro del almacén, modelando el problema de costo mínimo de flujo y asumiendo que los lugares destinados a envío y recepción son conocidos de antemano. Las distancias a recorrer dentro del almacén fueron divididas en dos secciones: la distancia recorrida para recoger el pedido (*picking*) y la distancia recorrida para enviar el pedido (*shipping*). El modelo elaborado, considera la capacidad del almacén que se otorga para cada espacio, las prioridades de envío para ciertas tiendas y la división por unidad logística, correspondiente a si se almacenan cajas de cartón o plásticas. El modelo tiene la siguiente formulación de parámetros:

f: Conjunto de ubicaciones disponibles en el almacén, $f \in F$

s: Conjunto de tiendas para asignar a las ubicaciones disponibles, $s \in S$

cl: Conjunto de clusters de ubicaciones en el almacén, $cl \in CL$

HS: Conjunto de tiendas con alta prioridad de envío; $HS \subseteq S$

LS: Conjunto de tiendas con baja prioridad de envío, $LS \subseteq S$; $HS \cup LS = S$

 cap_f : Capacidad del piso en pallets de ubicación f para un periodo determinado;

 $y_{cl,f}$: Indica asignación de ubicación f en cluster cl;

distSf: Distancia de la ubicación f a la zona de shipping;

distPcbcl: Distancia de recolección de cajas de cartón en cluster cl;

distPpbcl: Distancia de recolección de cajas de plástico en cluster *cl*;

PSs: Número de pallets enviados a tienda s en un determinado periodo de tiempo;

Ds: Pallets promedios requeridos para tienda s en determinado periodo de tiempo;

Rs: Espacio promedio requerido (en número de espacios del almacén) para tienda s en determinado periodo de tiempo; Para Rs, se define: Rs = Dscapf, $\forall s \in S$, indicando la proporción de pallets requeridos;

ppb: Porcentaje de cajas plásticas recolectadas frente al total de cajas recolectadas en un periodo de tiempo;

 $pexp_{s,f}$: Indica los posibles espacios f disponibles en el que una tienda s puede ser asignada según prioridad de envío

 $pexp_{s,f}$: {1 si tienda s puede ser asignada a espacio f; 0 en otro caso}

 NS_s : número de recolecciones de la tienda s por un periodo de tiempo determinado

 $oldsymbol{x_{s,f}}$: Variable binaria. Asigna valor 1 si tienda $oldsymbol{s}$ está asignada a la ubicación $oldsymbol{f}$

NVcl: Variable entera no negativa que indica el número de visitas al *cluster cl*;

Ecuación 3.1: Parámetros y conjuntos de Modelo de programación lineal entera para asignación (Horta, Coelho y Rivas, 2016)

Siguiendo el siguiente modelo:

$$\begin{aligned} & \textit{Min } \sum_{cl \in CL} [\textit{distPcb}_{cl} \times \textit{NV}_{cl} \times (1 - \textit{ppb}) + \textit{distPpb}_{cl} \times \textit{NV}_{cl} \times \textit{ppb}] + \\ & \sum_{f \in A} \sum_{s \in S} [\textit{distS}_{-f} \times x_{s,f} \times \textit{PS}_{s}] \end{aligned} \tag{1}$$

$$& \textit{NV}_{cl} \geq \textit{NS}_{s} \times x_{sf} \text{, } \forall \textit{cl}, f : y_{cl,f} = 1, \ \forall s \in S$$

$$& \sum_{s \in S} x_{s,f} \leq 1 \text{, } \forall f \in F$$

$$& (3)$$

$$& \sum_{f \in F} x_{s,f} \leq R_{s} \text{, } \forall s \in S$$

$$& (4)$$

$$& x_{s,f} \leq \textit{pexp}_{s,f} \text{, } \forall s \in S, \ \forall f \in F$$

$$& (5)$$

$$& \sum_{f \in F} x_{s,f} \times \textit{cap}_{f} \geq D_{s} \text{, } \forall s \in S$$

$$& (6)$$

$$& x_{s,f} \leq x_{s,f+1} + x_{s,f-1}, \ \forall s : R_{s} \geq 2, \ \forall f \in F$$

$$& x_{s,f} \in \{0,1\}$$

$$& \textit{NV}_{cl} \in \mathbb{Z}^{+}$$

$$& (9)$$

Ecuación 3.2: Modelo de programación lineal entera para asignación (Horta, Coelho y Rivas, 2016)

Según los autores, la función objetivo del modelo (2) pretende minimizar la distancia total recorrida en el almacén. El primer término apunta a la distancia recorrida en el picking de productos en cajas de cartón, mientras que el segundo término lo hace para cajas de plástico. El último término se relaciona con la distancia recorrida en el almacén para efectos de shipping. Por otro lado, la restricción (3) se asegura de que el número de visitas a un *cluster* sea mayor o igual al mayor número de picking de la tienda asignada a dicho cluster. Para garantizar que el número de visitas al cluster sea igual al número de pickings de la tienda con mayor recurrencia en el cluster, se minimiza esta variable en la función objetivo, estableciendo una formulación Min Max. Por otro lado, restricciones (4) y (5) indican que cada espacio disponible en el almacén debe ser asignado a una sola tienda, y se limita el número de espacios que pueden ser asignados por tienda, respectivamente. Restricción (5) también se asegura de que el espacio asignado a una tienda será mayor o igual al requerimiento de espacio promedio. Restricción (6) limita el espacio asignado a una tienda según su prioridad de envío o shippina, asignando los que tienen mayor prioridad cerca de la zona de envío. Restricción (7) garantiza que cada tienda es asignada a uno o más espacios en el almacén, asegurando que se posea un espacio igual o mayor que el requerido. Restricción (8) indica que, si una tienda requiere ser asignada en 2 ubicaciones distintas, estas ubicaciones serán contiguas. Por último, (9) y (10) definen la naturaleza de las variables. (Horta, Coelho y Rivas, 2016)

En este caso, se concluye tras aplicar el modelo que la distancia recorrida mensual dentro del almacén se puede reducir en un 23% y, además, reducir 20,8 horas de operación diaria. En consecuencia, según se señala en el paper, asumiendo que los trabajadores operan durante 7,5 horas por día, es posible una potencial reducción de personal de hasta 2 empleados manteniendo la misma actividad dentro del almacén.

El segundo caso de estudio aborda la problemática de diseñar una bodega con cámara de frío para el almacenaje de pallets. En el paper, es indicada la metodología para desarrollar el proceso de diseño, en el cual se señala que la parte más importante es el montaje de los racks en el que serán dispuestos los pallets; luego, también es importante el equipamiento e instrumentos disponibles para la operación dentro de la bodega. Solventados estos temas, se procede con la siguiente metodología:

Diagrama 3.1: Fases y pasos básicos en el diseño de un sistema de bodega. (Saderova et al., 2021)

De esta forma, en la primera fase se identifica el proyecto incluyendo objetivos, áreas involucradas, distribuciones, tipos de elementos a almacenar, los datos a utilizar y las restricciones inherentes a la situación de la bodega. En la segunda fase, se selecciona el enfoque que se dispondrá para la elaboración del diseño en la bodega, teniendo en consideración

aspectos como incrementos productivos, magnitud del sistema a cambiar según requerimientos. En una tercera fase, se escoge el tipo de análisis según la naturaleza del problema, destacando heurísticas, estadística, análisis multifactoriales y todo aquello que sea de ayuda al tomador de decisión, con el fin de analizar las posibilidades teóricas y recopilar información crucial para el proceso de diseño. En una cuarta etapa, se determina el diseño y creación del sistema de almacenamiento, definiendo la unidad de almacenamiento, la disposición de los racks y el equipamiento necesario. Finalmente, en la quinta fase se evalúa integralmente el proyecto, destacando el cumplimiento de objetivos, beneficios, aspectos técnicos y capacidad de almacenaje, así como también la integración con otras actividades que son llevadas a cabo en la bodega.

En el paper, también son propuestas dos alternativas de diseño, la primera utilizando pasillos anchos con racks hacia los muros y entre pasillos; la segunda, utilizando racks de flujo dinámicos como se muestra en la *Figura 3.1*:

Figura 3.1: Alternativas del sistema de bodega, (A1) - Rack estándar con pasillos anchos, (A2) - Racks de flujo dinámico. (Saderova et al., 2021)

Además, se incluyen los flujos según disposición a escoger:

Figura 3.2: Flujo de montacargas en el sistema de bodega para alternativas (A1) y (A2) (Saderova et al., 2021)

Así, la disposición *(A1)* puede ser útil para almacenar distintos tipos de productos en menor cantidad de pallets, mientras que la disposición (A2) permite almacenar mayor cantidad de pallets por producto siguiendo el sistema FIFO.

El tercer caso de estudio corresponde a la comparación de aplicar el modelo de *Holt-Winters* y *Arima* a productos lácteos perecederos de una empresa minorista en Brasil. Las métricas utilizadas fueron *MAPE* y *U-theil*. Para la aplicación de los modelos, se seleccionaron los *SKU* que representan el 70% de las ventas. Los resultados obtenidos, indican que *Holt-Winters* obtuvo mejores métricas, adaptándose mejor al factor estacional de la demanda. Los resultados se indican en la siguiente *Tabla 3.1*:

Modelo	MAPE	U-Theil
Arima	5,66	0,031
Holt-Winters	4,97	0,019

Tabla 3.1: Desempeño de modelos Arima Y Holt-Winters. (Da Veiga et al., 2014)

De esta forma, notamos que, si bien ambos modelos presentaron un buen desempeño, considerando que según Lewis (2012) un *MAPE* debajo del 10% es considerado un buen forecast, y para el *U-Theil* mientras sea más cercano a 0 más preciso es la predicción, es *Holt-Winters* quien obtiene mejores resultados. La predicción y la demanda real se presentan a continuación (*Figura 3.3*):

Figura 3.3: Demanda actual y aplicación de modelos Arima y Holt-Winters (Da Veiga et al., 2014)

Finalmente, se concluye según los autores, que el modelo de ARIMA no posee siempre la precisión deseada para un rango determinado, además de no incluir incertidumbre en la estimación de los parámetros, produciendo intervalos más estrechos que evitan la agregación de mayor incertidumbre. Por otro lado, *Holt-Winters* se presenta como un modelo simple con resultados de pronósticos precisos, con la limitante de que el horizonte de predicción no supere el ciclo estacional de la serie ya que tiende a disminuir su precisión. (Da Veiga et al., 2014)

4. Solución

a. Alternativas de solución

Las investigaciones realizadas desprenden múltiples soluciones viables, sin embargo, es necesario adaptarlas al contexto de la empresa Artisan para su correcta implementación. Cada una de ellas, si bien aporta a mitigar el problema de distribución dentro de la cámara de frío, no lo soluciona de manera total.

Para el primer caso analizado, la aplicación de un modelo que solucione el problema de asignación sería provechoso para poder determinar qué productos asignar a cada espacio dentro de la cámara de frío. Sin embargo, en dicho caso se asume que la demanda es conocida, tanto en requerimientos de productos como el destino y recepción de estos. Esto supone un problema, dado que en el contexto de Artisan, los pedidos no necesariamente son despachados el mismo día ni todos los pedidos son conocidos de antemano, tanto en fecha de envío como en cantidad de productos.

En el segundo caso, la metodología de diseño de la bodega puede ser considerada dentro de la metodología del presente proyecto, ya que contempla bases teóricas y es adaptable según el contexto actual, complementando en la elaboración de restricciones para los modelos. En el apartado de las alternativas del sistema de bodega, si bien el sistema (A2) es el que mejor encajaría dentro de las operaciones de Artisan debido a su afinidad con el sistema FIFO, es costoso de implementar debido a que se poseen más de 40 SKU distintos y requeriría una superficie mayor en la cámara de frío para disponer de una cantidad considerable de racks, además de que su implementación se dificulta en costos dado la arquitectura, elementos de seguridad y tecnología necesaria para su funcionamiento. Por esta razón, la opción (A1) es más viable en términos de simplicidad y costos asociados.

En el último caso, la aplicación de *Holt-Winters* puede ser provechosa para definir los productos que requerirán mayor movimiento y espacio dentro de la cámara de frío para un determinado periodo de tiempo a corto plazo, aprovechando la simplicidad y adaptabilidad del modelo. Sin embargo, el modelo solo nos indicará las predicciones de demanda y no las disposiciones a utilizar dentro de la cámara de frío. Si bien, es un factor determinante el saber de antemano los requerimientos de almacenamiento en bodega, pierde el sentido si no se posee un sistema que permita determinar la ubicación de los productos de manera eficiente.

b. Solución escogida

Dado los aportes y puntos faltantes de cada una de las soluciones, se puede apreciar que, si bien cada una por separado presenta deficiencias en abordar la problemática en su completitud, las tres funcionan bien como complemento entre ellas. En consecuencia, la solución escogida será elaborar un *Layout* flexible mediante el desarrollo de un problema de asignación utilizando programación lineal, cuyos datos de demanda provengan de un *forecast* derivado de *Holt-Winters*. Los espacios para destinar al problema de asignación se seguirán con la integración de restricciones y elaborando el modelo según las indicatrices otorgadas en el caso 2. Esto supondrá un *Layout* dinámico, que se retroalimenta de las predicciones realizadas siguiendo los requerimientos técnicos y tecnológicos necesarios para su implementación, de una manera robusta, asertiva y realizable (*Ver Figura 4.1*).

Figura 4.1: Diagrama de solución. Modelo de programación lineal para resolver el problema de asignación incluyendo forecast con requerimiento de pallets de productos para definición de Layout óptimo. (Elaboración propia)

5. Metodologías

La problemática del proyecto depende en gran medida de los requerimientos de almacenaje de cada producto en un periodo determinado. Para la correcta implementación de los modelos, se utilizará como unidad de almacenaje en el que se dispondrán los productos, pallets que contienen cajas de cartón. Los pallets a utilizar son pallets americanos, con medidas de 1 x 1,2 m. Un pallet completo, alcanza una altura promedio de 1,6 m, por lo que su volumen corresponde a 1,92 M3, correspondiente a una unidad de almacenaje o carga. Estas unidades de carga son las que se buscará predecir e incorporar al modelo del problema de asignación, es decir, conocer cuál es el requerimiento de espacio de un determinado producto para el siguiente periodo.

Para los requerimientos de almacenaje de la cámara de frío, se tomarán datos de las compras realizadas por clientes desde enero de 2022 hasta agosto de 2023, con el fin de estimar los pallets que serán necesarios almacenar y determinar las dimensiones mínimas necesarias a largo plazo de la cámara de frío. De manera similar, para la predicción a corto plazo de los pallets a almacenar por producto, se utilizará el mismo rango, pero de manera semanal, con el fin de proveer los datos necesarios al modelo de programación entera destinado a la asignación.

a. Metodología para desarrollar la solución

Para el desarrollo correcto del proyecto, se proponen las siguientes etapas:

Figura 5.1: Diagrama de flujo para etapas de desarrollo. (Elaboración Propia)

- (1) Extracción de datos desde BD Artisan de órdenes de compra y conversión a unidad de carga definida.
- (2) Identificar los productos que contribuyen al 70% de las ventas totales y análisis de medias.
- (3) Modelar Holt-Winters para la cantidad de pallets a almacenar a corto y largo plazo
- (4) Validación de modelos predictivos.
- (5) Desarrollar Modelo de asignación para Layout de la cámara de frío
- (6) Resultados finales, evaluación de la solución y mejora continua

La primera etapa, corresponderá a la extracción de datos relevantes de las órdenes de compra que han efectuado los clientes de Artisan desde enero de 2022 hasta agosto de 2023. Los datos se encuentran en dos planillas de *Google Sheets*, una para cada año, por lo que se deberá unificar la información.

La segunda etapa, hace alusión a discernir entre los productos más importantes dentro de la operación de la empresa, siguiendo el criterio propuesto por da Veiga et al. (2014) de identificar aquellos productos que contribuyan al 70% de las ventas totales.

Se procederá con Test de Tukey y ANOVA a los productos identificados para realizar la comparación de medias y significancia de los datos. Esto permitirá verificar si los datos difieren lo suficiente entre sí para reforzar el uso de *Holt-Winters* y poder dar un mejor entendimiento sobre posibles estacionalidades y tendencias, utilizando un enfoque por producto y por tiempo. Esto nos permitirá aceptar o rechazar el siguiente Test de Hipótesis

 H_0 : La demanda de pallets no presenta diferencia significativa de medias H_1 : La demanda de pallets presenta diferencia significativa de medias

Ecuación 5.1: Test de Hipótesis para diferencia de medias. Tiempo y Demanda. (Elaboración propia)

Para la tercera etapa, se definirá la capacidad de espacios que deberá tener la cámara de frío para albergar pallets. Se debe realizar una proyección del requerimiento de pallets, para determinar la cantidad de racks que deberán ser dispuestos y la cantidad de espacios requeridos a largo plazo. Para esto, se utilizará el método de *Holt-Winters* para determinar la cantidad máxima de pallets a almacenar hasta finales del año 2024. De esta manera, se utilizará el siguiente modelo:

$$S_{t} = \alpha \frac{D_{t}}{c_{t-N}} + (1 - \alpha)(S_{t-1} + G_{t-1})$$
 (1)

$$G_t = \beta(S_t - S_{t-1}) + (1 - \beta)(G_{t-1})$$
 (2)

$$c_t = \gamma \frac{D_t}{S_t} + (1 - \gamma)c_{t-N} \tag{3}$$

$$F_{t,t+\tau} = (S_t + \tau G_t)c_{t+\tau-N} \tag{4}$$

Ecuación 5.2: Método de Holt-Winters. (Nahmias, 2007)

En el que el (1) corresponderá al pronóstico sin tendencia ni estacionalidad de los pallets a utilizar mensualmente, (2) al pronóstico de la tendencia de pallets mensuales, (3) al pronóstico de la estacionalidad por pallets de producto y (4) al *forecast* resultante de integrar todo lo anterior, obteniendo el pronóstico en el periodo t para cualquier periodo t (Nahmias, 2007), utilizando periodos mensuales, ya que interesará definir el rango máximo y mínimo de pallets de productos necesarios a almacenar en la cámara de frío.

Para corroborar la veracidad de la predicción, se procederá con verificar la señal de rastreo de las mediciones esperando una distribución normal de los errores, estableciendo como límites de control $\pm 2,4~\sigma$ según sugieren Heizer y Render (2009), buscando que el 98% de los errores estén contenidos en $\pm 3MAD$. La señal de rastreo a utilizar viene dada por:

Señal de Rastreo =
$$\frac{RFSE}{MAD}$$
 (1)
Señal de Rastreo = $\frac{\sum_{\forall t} e_t}{\sum_{\forall t} |e_t|/n}$ (2)

Ecuación 5.3: Señal de rastreo. (Heizer y Render, 2009)

Con esto, buscaremos tener bajo control los errores de los pronósticos para asegurar robustez en los resultados obtenidos. En la *Ecuación 5.3*, (1) nos muestra la definición de la señal de rastreo, en el que *RFSE* corresponde a la suma acumulada del error asociado al pronóstico (*running sum of the forecast errors*) y el *MAD* nos indica el error absoluto medio de los pronósticos; mientras que (2) corresponde al detalle de la ecuación (1).

Se elaborará el modelo de *Holt-Winters* para determinar el requerimiento de pallets con productos a corto plazo. Se utilizará el mismo modelo definido en la *Ecuación 5.2*, diferenciándose en la duración del periodo t, que será en semanas. Estas predicciones, son las que alimentarán el modelo de programación lineal entera para determinar la solución al problema de asignación. Para ambos modelos, largo y corto plazo, se buscará minimizar el error

cuadrático medio (*MSE*) modificando los ponderadores de nivel (α), tendencia (β) y estacionalidad (γ), con el fin de castigar aquellas predicciones que se alejen demasiado del valor real, que son aquellas que presentan un mayor dolor por la capacidad de espacio en el centro de distribución. Los ponderadores, serán modificados resolviendo el siguiente problema:

$$\begin{aligned} &\textit{Min MSE}: \left(\frac{1}{n}\right) \sum_{i=1}^{n} e_{i}^{2} & (1) \\ &\textit{Donde}: \\ &e = D_{t} - F_{t} (2) \\ &F_{t} = \left(\alpha \frac{D_{t}}{c_{t-N}} + (1 - \alpha)(S_{t-1} + G_{t-1}) + \beta(S_{t} - S_{t-1}) + (1 - \beta)(G_{t-1})\right) \left(\gamma \frac{D_{t}}{S_{t}} + (1 - \gamma)c_{t-N}\right) & (3) \\ &s. a. & \\ &D_{t} \geq 0 & (4) \\ &F_{t} \geq 0 & (5) \\ &0 \leq \alpha \leq 1 & (6) \\ &0 \leq \beta \leq 1 & (7) \\ &0 \leq \gamma \leq 1 & (8) \end{aligned}$$

Ecuación 5.4: Problema de minimización de MSE para la demanda de pallets. (Elaboración propia).

De esta forma, la ecuación (1) buscará minimizar el MSE utilizando el error e de las predicciones para el periodo t, definida en la ecuación (2). La ecuación (3) nos muestra la desagregación del pronóstico F_t definido en la Ecuación 5.2. Finalmente, las ecuaciones (4) y (5) nos indican valores positivos para la demanda y el pronóstico, y ecuaciones (6), (7) y (8) nos indican la oscilación de los ponderadores α , β y γ entre 0 y 1.

En la quinta etapa, se definirá el modelo de programación lineal entera que resolverá el problema de asignación. Esto nos indicará, la posición en los que deberán ser ubicados los pallets con productos dentro de la cámara de frío. Es importante incluir el parámetro que contendrá la información del *forecast* a corto plazo realizado en la etapa (5). Obtenemos la siguiente formulación:

$$Min \sum_{i} \sum_{i} d_{ij} \cdot X_{ij} \cdot D_{i}$$
 (1)

Donde:

 d_i corresponde a la distancia desde la entrada hacia el espacio j

 $X_{ij}: \left\{egin{array}{ll} 1 \ si \ el \ producto \ i \ se \ asigna \ al \ espacio \ j \ 0 \ en \ otro \ caso. \end{array}
ight.$

D_i Corresponde al requerimiento de espacio del producto i pronosticada en etapa 5

s. a:

Cada producto se asigna en al menos un espacio: $\sum_i X_{ii} \geq 1$, $\forall i$

Cada espacio alberga máximo dos productos: $\sum_i X_{ij} \leq 2$, $\forall j$

Espacios asignados igual a requeridos por producto: $\sum_i X_{ij} \leq S_i$

Ecuación 5.5: Modelo de asignación con integración de demanda por pallets pronosticada. (Elaboración propia).

De esta forma, se resolverá el modelo de optimización para poder obtener las ubicaciones óptimas para cada pallet con productos. La asignación será efectuada mediante la realización de la minimización de la distancia recorrida por producto según indica la ecuación (1).

Finalmente, se presentarán los resultados obtenidos al equipo logístico. Se abrirá un espacio para *feedback* por parte del personal para tomar en consideración los aspectos que sean necesarios para que el proyecto sea provechoso y útil en su uso.

b. Desarrollo del proyecto

La primera etapa comienza con la extracción de los datos de órdenes de compra desde enero de 2022 hasta agosto de 2023.

Los productos que suponen el 70% de las ventas de Artisan, se visualizan en la *Figura 5.2*. Los productos que acumularon el 70,92% tienen los siguientes códigos de identificación: *VEV, CA1, YG3, VEF, IGF, TR1, BR1, VEN, YL3, YC3, PR1, IDF, CA2*. El detalle se puede apreciar en el *Anexo* 1. Luego se realizó la conversión para obtener los requerimientos en pallets de cada uno de los productos, utilizando el volumen de las cajas de cartón que son utilizadas actualmente, concluyendo así la primera etapa.

Figura 5.2: Porcentaje de venta por producto acumulativo. (Elaboración propia)

La segunda etapa inicia con la aplicación del Test de Tukey para verificar si existían diferencia de medias en la demanda, realizando un análisis por tiempo y por tipo de producto. Para la variable Producto, La *Figura 5.3* nos indica visualmente que los datos se ajustan a la línea de tendencia y se aproximan a una distribución normal, mientras que la *Tabla 5.1* nos indica que existe diferencia de medias significativas entre los productos analizados y que existen 5 grupos que comparten medias entre sí.

Figura 5.3: Normalidad de Demanda – Producto (Minitab). (Elaboración propia).

Producto	N	Media		Agrupaciór	1
VEF	12	4821	Α		
YG3	12	4786	Α		
CA1	12	4629	Α		
IGF	12	4394	Α	В	
TR1	12	4328	Α	В	
VEV	12	4317	Α	В	
VEN	12	3215	Α	В	С
YL3	12	3139	Α	В	С
YC3	12	3066	Α	В	С
IDF	12	3013	Α	В	С
BR1	12	2718		В	С
CA2	12	2082			С
PR1	12	1917			С

Tabla 5.1: Test de Tukey para análisis de diferencia de medias en producto y demanda. Elaboración propia.

Para el análisis en torno a la variable Mes, la *Figura 5.4* nos muestra que los datos se ajustan a la línea de tendencia y se aproximan a una distribución normal. Luego, la *Tabla 5.2* nos indica que existe una diferencia significativa de medias para al menos 1 de los grupos analizados y además tenemos 5 grupos con medias que no difieren significativamente.

Figura 5.4: Normalidad de Demanda – Mes (Minitab). (Elaboración propia)

Mes	N	Media	/	Agrupaciór	1
1	13	4868	Α		
3	13	4849	Α		
4	13	4358	Α	В	
11	13	3691	Α	В	С
12	13	3650	Α	В	С
8	13	3605	Α	В	С
2	13	3413	Α	В	С
9	13	3264	Α	В	С
10	13	2968	Α	В	С
7	13	2894		В	С
6	13	2890		В	С
5	13	2403			С

Tabla 5.2: Test de Tukey para análisis de diferencia de medias en mes y demanda. (Elaboración propia).

Una vez terminados los análisis, se procedió a verificar el test de hipótesis para mayor certeza en la significancia de los resultados obtenidos. Se obtuvieron para ambos casos el valor p menor al nivel de significancia, por lo que se rechaza la hipótesis nula (Ver *Anexo 2, 3 y 4*). Podemos notar, que tanto visualmente como con el test de Tukey poseemos un acercamiento de que existe una estacionalidad de periodo 5. Con esto se concluye la segunda etapa.

Para iniciar la tercera etapa, se aplicó el modelo definido en la *Ecuación 5.2* para obtener el requerimiento máximo y promedio de unidades de almacenaje proyectado a largo plazo y se modificaron los ponderadores (α, β, γ) minimizando el *MSE* según lo definido en la *Ecuación 5.4*. Las métricas, ponderadores y el gráfico asociado a la señal de rastreo se presentan en la *Figura 5.5*. Para la señal de rastreo, se obtienen valores que están contenidos para $\pm 3MAD$, por lo que los datos están bien comportados y son validados para continuar con los siguientes modelos.

Figura 5.5: Aplicación de Holt-Winters para requerimiento de UC a largo plazo. Se utilizan periodos mensuales, minimizando MSE modificando los ponderadores de nivel, tendencia y estacionalidad. 70% datos para entrenamiento de modelo, 30% para validación. Se incluye señal de rastreo. (Elaboración propia).

Se procede con la aplicación del método de Holt-Winters definido en la Ecuación 5.3, utilizando periodos semanales para realizar las predicciones a corto plazo. Similar al forecast a largo plazo definido (Figura 5.5), se minimizará el error cuadrático medio y se comprobará la veracidad de los resultados del modelo en torno a la señal de rastreo. Se aplicó el modelo de Holt-Winters para cada uno de los productos seleccionados. Para ello, se hizo uso de matrices para calcular el nivel S_t correspondiente al nivel sin tendencia ni estacionalidad, en otra matriz se calcularon las tendencias G_t y en una tercera matriz, se calcularon las estacionalidades c_t correspondientes a cada periodo (ver desde Anexo 9 a Anexo 15). Posteriormente, extrajo el error de las mediciones, utilizando el 70% de los datos para entrenamiento del modelo. Se minimizó el MSE para cada producto, según lo establecido en la Ecuación 5.5. El cálculo de la métrica MAPE, se estableció en torno a obtener el MAPE promedio para los SKU analizados.

c. Plan de implementación

Para el desarrollo del proyecto, se contará de tres fases:

I. Fase Inicial: Extracción e identificación de datos relevantes y

Tratamiento de datos (Etapas (1), (2))

II. Fase de desarrollo: Desarrollo de modelos y validación (Etapas (3), (4) y (5))

III. Fase final: Entrega de resultados y mejora del sistema (Etapa (6))

d. Análisis de riesgo

En la implementación del proyecto, es relevante conocer de antemano los riesgos asociados y la forma de mitigarlos. Con este fin, se propone la siguiente matriz de riesgos, indicando el impacto, las posibles consecuencias y las mitigaciones correspondientes:

Riesgo	Impacto	Posibles consecuencias	Forma de mitigar riesgo
Cambios en el requerimiento de capacidad de pallets almacenados	Alto	Impacto en la asignación y <i>Layout</i> planificado; posibles pérdidas de productos Impacto negativo en el <i>Layout</i> planificado, mal aprovechamiento de espacio y aumento de flujo máximo por distancia.	Iterar semanalmente Forecasting para mantener actualizado <i>Layout</i> óptimo
Resistencia del personal frente al cambio en la operación.	Medio	Impacto negativo en la eficiencia operacional	Programa de capacitación
Mala optimización y/o asignación de productos en <i>Layout</i> por aspectos no contemplados en modelo	Alto	Disminución en indicadores clave y eficiencia operativa.	Realizar simulaciones antes de la implementación.
Errores en predicción de unidades de carga a almacenar para el periodo	Alto	Errores en asignación y en estimación de capacidad disponible	Actualizar y ajustar iterativamente el modelo

Tabla 5.3: Matriz de riesgos (elaboración propia)

Los cambios del requerimiento de capacidad de pallets a almacenar, puede producir malas asignaciones en los espacios que se disponen en el modelo de asignación. Esto puede producir ineficiencias y aumento de la distancia recorrida. La forma de mitigar esto, es iterar constantemente el modelo de *Holt-Winters*, actualizando los parámetros y el set de datos que

dispone. Ajustar continuamente el modelo, también proporciona seguridad ante el riesgo de obtener errores en la predicción de unidades de carga a almacenar. Por otra parte, puede haber aspectos no reflejados en el modelo de asignación, por lo que se deben realizar simulaciones antes de su implementación, para poder capturar todos aquellos aspectos que puedan repercutir en la correcta implementación del proyecto. Por último, puede existir resistencia del personal frente a la reestructuración de los procesos. Para mitigar esto, es importante realizar capacitaciones y hacer partícipe al personal en la implementación del proyecto.

e. Evaluación económica

El desarrollo del proyecto permitiría beneficios tanto en las horas destinadas del personal a elaborar pallets para retail, así como también en la recepción y envío de estos. Los beneficios se presentan a continuación:

Proceso	Horas destinadas al mes	Número de personal involucrado en proceso	Costo total en horas
Armado de pallet (63,3 min)	42,2	2	84,4
Descarga de pallet (43,5 min)	29	1	29

Tabla 5.4: Costos de procesos en horas (elaboración propia)

Al reducir los procesos indicados en la *Tabla 5.4* (los pallets vienen ar*mad*os desde las plantas con el pedido de retail, pallets completos), mediante una buena distribución, asignación y respetando la prioridad de espacio dentro de la cámara de frío, es posible ahorrar hasta 113,4 horas operativas con la implementación del proyecto.

Para verificar el beneficio del modelo establecido en la reducción del flujo por producto, se aplicó el modelo a los últimos 3 meses, utilizando las distancias entre los espacios para pallets de la cámara de frío, por las distancias entre cada refrigerador a la zona en la que se arman los pallets respectivamente, ya que carece de sentido analizar los flujos de distribuciones con distancias diferentes. La situación base contempla la distribución para cada producto en los refrigeradores según están asignados actualmente, y la situación optimizada mostrará el flujo de los productos asignados utilizando nuestra solución. Los resultados se muestran a continuación:

Situación Base	Situación Optimizada con CR y modelo de asignación
Z= 3930,538589	Z= 1818,671732

Tabla 5.5: Resultados de aplicar el modelo para situación base y situación optimizada. (Elaboración Propia)

En la *Tabla 5.5* podemos notar que el resultado de la función objetivo corresponde a una disminución significativa del 53,72% en el flujo. El procedimiento, deriva de utilizar las métricas definida dentro de la solución, con distancia *Manhattan* entre el refrigerador y la zona de armado de pallets. El detalle se encuentra en *Anexo 7 y 8*.

6. Resultados

Luego de desarrollar el proyecto, se determinó en la Etapa (3) que sería necesaria una cámara de frío que tenga la capacidad para albergar 12 pallets, con un promedio por semana de 7 pallets en el CR. Los análisis estadísticos realizados proveen soporte para las previsiones, otorgando más certeza y un encaminamiento hacia la forma en que opera el requerimiento de UC, otorgando 5 grupos que comparten medias de manera significativa.

Los beneficios que otorga el proyecto se definieron, primero, en torno a la eliminación de ciertos procesos como *picking* y *shipping* de órdenes de compra provenientes de retail, liberando potencialmente 103,5 horas operativas dentro del CD.

Tras la implementación de los modelos de solución, se determinó que es posible disminuir un 53,72% del flujo correspondiente a movilizar las UC dentro de la bodega producto de una correcta asignación y previsión de la demanda. El MAPE obtenido para el modelo es de 9,67%, lo cual nos sitúa dentro del rango establecido en las métricas de desempeño.

La investigación propuesta buscaba abordar la complejidad en la distribución de productos dentro de la cámara de frío de la empresa Artisan. Tras un exhaustivo análisis, se identificaron tres alternativas de solución viables, cada una con sus propias fortalezas y limitaciones.

En primer lugar, se consideró la aplicación de un modelo de programación para resolver el problema de la asignación de productos a espacios dentro de la cámara. Sin embargo, surgió la dificultad de asumir que la demanda de productos es conocida, lo cual no siempre es el caso en el entorno de Artisan, donde los pedidos pueden variar en fecha y cantidad.

La segunda alternativa se centró en la metodología de diseño de la bodega, específicamente en el sistema FIFO. Aunque este sistema se alineaba con las operaciones de Artisan, su implementación resultaba costosa debido a la amplia variedad de SKU y a los requisitos de espacio y tecnología asociados. Se propuso una opción más viable y menos costosa, adaptándose mejor a las capacidades y contexto de Artisan.

La tercera alternativa involucró la aplicación del método de Holt-Winters para prever la demanda de productos y determinar los requerimientos de almacenamiento. Aunque este método ofrecía simplicidad y adaptabilidad, carecía de un sistema eficiente para la ubicación de productos en la cámara de frío.

Dada la complementariedad de estas soluciones, se optó por una estrategia integral. Se propuso desarrollar un Layout flexible mediante un problema de asignación basado en programación lineal. Los datos de demanda se derivarían de un pronóstico Holt-Winters. Este enfoque proporcionaría un Layout dinámico, retroalimentado por predicciones precisas y adaptado a los requerimientos técnicos y tecnológicos.

En la fase de desarrollo, se extrajeron datos de órdenes de compra y se identificaron los productos clave que representaban el 70% de las ventas. Se aplicó el Test de Tukey para analizar las diferencias de medias en la demanda, se comprobó estadísticamente que existe una diferencia significativa de medias y se validaron los modelos predictivos. Luego, se desarrolló el modelo de asignación y se aplicó el método de Holt-Winters para proyectar los requerimientos de almacenaje. En la *Figura 6.1* se muestra la predicción realizada para el producto *BR1*.

Figura 6.1: Proyección de almacenamiento requerido para producto BR1 para la semana siguiente. (Elaboración propia)

Los resultados demostraron que la implementación del proyecto podría generar significativos ahorros operativos. Se estimó una reducción de hasta 113,4 horas mensuales en los procesos de armado y descarga de pallets. Además, al aplicar el modelo a los flujos de productos, se logró una disminución del 53,72% en el flujo total (ver *Figura 6.2*), indicando una optimización efectiva de la distribución, obteniendo un KPI de flujo de 0,4627.

Figura 6.2: Gráfico de columnas. Comparativa de resultado al aplicar el modelo para los últimos 3 meses. (Elaboración propia)

El plan de implementación se dividió en fases, desde la extracción de datos hasta la entrega de resultados y la mejora continua. Se identificaron riesgos potenciales, como cambios en los requerimientos de capacidad, resistencia al cambio y posibles errores en las predicciones. Además, se propusieron estrategias de mitigación para abordar estos riesgos.

En términos económicos, el proyecto ofrecería beneficios sustanciales al reducir horas operativas y mejorar la eficiencia en la distribución. La simulación de escenarios sobre la base de la situación actual mostró que la implementación del modelo podría reducir significativamente los flujos de productos, optimizando el espacio y mejorando la eficiencia operativa.

Finalmente, la combinación de modelos predictivos y soluciones de asignación basadas en programación lineal presentaría una estrategia robusta para optimizar el Layout de la cámara de frío de Artisan. La implementación exitosa de este enfoque promete mejorar la eficiencia operativa, reducir costos y brindar una solución integral a los desafíos de distribución identificados.

7. Conclusión

El presente proyecto se enfocó en mejorar la eficiencia logística de Artisan, a través de un enfoque integral que abarcó la predicción de la demanda, la asignación óptima de productos en la cámara de frío y la reducción del flujo operativo. La combinación de la metodología Holt-Winters para pronósticos, un modelo de asignación basado en programación lineal entera y la reorganización estratégica del espacio de almacenamiento resultó en un sistema robusto y adaptativo.

El proyecto resultó beneficioso en sus resultados, dando a entender que es factible incorporar predicciones de demanda en torno al problema de asignación. Se concluye con la satisfacción de las métricas de desempeño definidas, obteniendo un $\frac{costo\ flujo\ situación\ optimizada}{costo\ flujo\ situación\ actual} = 0,4627$ otorgando una mejora significativa del 53,72% en el costo del flujo para el movimiento de productos. Con la implementación de la cámara de frío, también se reducen horas operativas, por lo que también supone un beneficio extra para la empresa.

Se propone incorporar modelos computacionales más potentes y asertivos, en caso de poseer los recursos, para poder aprovechar mejor la solución e incorporar nuevos factores y variables con el fin de estimar mejor los puntos claves abarcados en este proyecto, e incorporar resultados más precisos que aporten de manera significativa a Artisan en el desarrollo de sus operaciones.

Los resultados obtenidos nos muestran una potencial disminución significativa del 53.72% en el flujo operativo, además de obtener un ahorro de 113.4 horas mensuales operativas en relación con sus procesos inherentes. La implementación potencial del modelo de asignación optimizado incluye la mejora en la disposición de los productos en la cámara de frío, maximizando la utilización del espacio y reduciendo las distancias de recorrido.

Además, se logró una predicción precisa de la demanda a corto y largo plazo, validada mediante análisis de errores y señales de rastreo. Los resultados del modelo Holt-Winters demostraron una eficacia del 90.33% en la predicción de requerimientos de almacenaje, proporcionando a Artisan una herramienta valiosa para la planificación estratégica.

La implementación de este proyecto no solo promete optimizar los procesos logísticos y mejorar la eficiencia operativa, sino que también sentó las bases para una toma de decisiones más informada y ágil. El enfoque integrado propuesto puede ser un modelo replicable y adaptable para otras empresas que enfrentan desafíos similares en la gestión de su cadena de suministro. Este proyecto no solo aporta bases técnicas, sino también otorga herramientas para la transformación y la mejora continua en la cadena de suministro de Artisan.

8. Discusión

La implementación de modelos como *Holt-Winters* y la programación lineal, demuestra ser un avance significativo en la optimización de la gestión de inventarios y distribución en el contexto de Artisan. No obstante, para un mejor aprovechamiento de estas herramientas, se sugiere considerar la integración de tecnologías que estén a la vanguardia. La adopción de técnicas como *machine learning*, inteligencia artificial u otros algoritmos más sofisticados podría mejorar la precisión de las predicciones y la asignación de recursos.

La implementación de nuevos factores y variables podría enriquecer la capacidad predictiva de los modelos. Incorporar datos en tiempo real, eventos especiales como promociones o tendencias del mercado podría ofrecer una visión más completa y precisa de la demanda futura. La integración de esta información también permitiría ajustes rápidos a las estrategias de asignación y distribución, adaptándose a cambios dinámicos en el entorno operativo.

Además, se podría explorar la sinergia con otras áreas de la cadena de suministro, como la producción y los despachos. La optimización no debe limitarse únicamente al almacenamiento; considerar la interrelación de procesos en toda la cadena operativa puede generar beneficios adicionales. Integrar los datos de producción con las predicciones de demanda puede facilitar una planificación más precisa, evitando excesos o faltantes en inventario.

Asimismo, la conexión con el área de despachos es esencial. Coordinar la asignación de productos en el almacenamiento con las rutas de entrega puede reducir los tiempos de procesamiento y mejorar la eficiencia logística. Utilizar algoritmos avanzados para la optimización de rutas y la gestión de flotas podría contribuir a una distribución más eficiente y sostenible.

9. Referencias

- 1. Horta, M., Coelho, F., & Relvas, S. (2016). *Layout* design modelling for a real world just-in-time warehouse. Computers & industrial engineering, 101, 1-9.4
- Da Veiga, C. P., Da Veiga, C. R. P., Catapan, A., Tortato, U., & Da Silva, W. V. (2014). Demand forecasting in food retail: A comparison between the Holt-Winters and ARIMA models. WSEAS transactions on business and economics, 11(1), 608-614.
- 3. Saderova, J., Rosova, A., Sofranko, M., & Kacmary, P. (2021). Example of warehouse system design based on the principle of logistics. Sustainability, 13(8), 4492.
- 4. Lewis, C. (2012). Demand forecasting and inventory control. Routledge.
- 5. Nahmias, S. (2007). *ANALISIS DE LA PRODUCCION Y LAS OPERACIONES* (5a. ed., 5a. reimp.). MEXICO: S.P.I..

10. Anexos

Prod	Cant	Acum	% Acum
VEV Vegurt Vainilla	48.644	48.644	8,63%
CA1 Camembert 150G	45.372	94.016	16,68%
YG3 Griego 360 Gr	39.805	133.821	23,74%
VEF Vegurt Frutilla	39.186	173.007	30,70%
IGF Ind. Griego Frutilla 150 Gr	33.597	206.604	36,66%
TR1 Tradicional 180 Gr	33.446	240.050	42,59%
BR1 Brie 120 G	28.019	268.069	47,56%
VEN Vegurt Sin Sabor	27.369	295.438	52,42%
YL3 Descremado 360 Gr	23.726	319.164	56,63%
YC3 Clasico 360 Gr	23.276	342.440	60,76%
PR1 Provoleta 115 G	20.893	363.333	64,47%
IDF Ind. Descremado Frutilla 150 Gr	18.540	381.873	67,76%
CA2 Cam Pimienta 150 G	17.882	399.755	70,93%

Anexo 1: Tabla con información de producto y cantidades acumuladas. (Elaboración Propia).

		varianza	de Dem	ianic	ıa
Fuente	GL	SC	MC	F	Р
Mes	11	87452674	7950243	6,20	0,000
Producto	12	150286582	12523882	9,77	0,000
Error	132	169252404	1282215		
Total	155	406991660			

Anexo 2: Test de Tukey. Se utilizó Mes y Producto para el modelo, Demanda como respuesta y 95% confianza. Realizado

Anális	is d	le Varian:	za		
Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
Mes	11	87452674	7950243	3,58	0,000
Error	144	319538986	2219021		
Total	155	406991660			

Anexo 3: ANOVA de un solo factor (Mes vs Demanda). 95% de confianza. Realizado en Minitab.

Análisis de Varianza Fuente GL SC Ajust. MC Ajust. Valor F Valor p Producto 12 150286582 12523882 6,98 0,000 Error 143 256705078 1795140

Total 155 406991660

Anexo 4: ANOVA de un solo factor (Producto vs Demanda). 95% de confianza. Realizado en Minitab.

```
Agrupar información utilizando el método de Tukey y una confianza de 95%
Producto N Media Agrupación
VEF
      12 4821 A
      12 4786 A
CA1 12 4629 A
IGF
      12 4394 A B
TR1
      12 4328 A B
VEV
      12 4317 A B
VEN
      12 3215 A B C
YL3
      12 3139 A B C
YC3
      12 3066 A B C
IDF
      12 3013 A B C
BR1
      12 2718 B C
CA2
      12 2082
                  С
PR1 12 1917
                    С
 Las medias que no comparten una letra son significativamente diferentes.
```

Anexo 5: Test de Tukey para Producto vs Demanda. 95% de confianza. Realizado en Minitab.

Agrupar información utilizando el método de Tukey y una confianza de 95% Mes N Media Agrupación 1 13 4868 A 3 13 4849 A 4 13 4358 A B 11 13 3691 A B C 12 13 3650 A B C 8 13 3605 A B C 2 13 3413 A B C 9 13 3264 A B C 10 13 2968 A B C 7 13 2894 B C 6 13 2890 B C 5 13 2403 Las medias que no comparten una letra son significativamente diferentes.

Anexo 6: Test de Tukey para Tiempo vs Demanda. 95% de confianza. Realizado en Minitab.

	BR1 Brie 120 G	CA1 Camembert 150G	CA2 Cam Pimienta 150	IDF Ind. Descremado F	IGF Ind. Griego Frutilla	PR1 Provoleta 115 G	TR1 Tradicional 180 Gr	VEF Vegurt Frutilla	VEN Vegurt Sin Sabor	VEV Vegurt Vair	YC3 Clasico 360	YG3 Griego 360	YL3 Descremad	360 Gr
	0	0	0	0	0	0	0	1	1	1	0	0	0	3
	1	1	1	0	0	0	0	0	0	0	0	0	0	3
	0	0	0	0	0	1	0	0	0	0	0	0	0	1
	0	0	0	1	1	0	0	0	0	0	0	0	0	2
	0	0	0	0	0	0	0	0	0	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	1	0	1	2
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	1	1	1	
							TR1 Tradicional 180 Gr		VEN Vegurt Sin Sabor					360 Gr
	0	0	0	0	0	0	0	810	810	810	0	0	0	
	650	650	650	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	390	0	0	0	0	0	0	0	
	0	0	0	300	300	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	120	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	90	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	50	0	50	
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0,312066938	0,474326121	0,232709844	0,506987847	0,798090278	0,419010417	0,417864583	1,065190972	0,730143229	1,06061198	1,15989583	2,0499566	1,16540799	
						PR1 Provoleta 115 G	TR1 Tradicional 180 Gr	VEF Vegurt Frutilla	VEN Vegurt Sin Sabor		YC3 Clasico 360	YG3 Griego 360	YL3 Descremad	360 Gr
	0	0	0	0	0	0	0	862,8046875	591,4160156	859,095703	0	0	0	
	202,8435099	308,3119786	151,2613987	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	163,4140625	0	0	0	0	0	0	0	
	0	0	0	152,0963542	239,4270833	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	245,994792	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	37,6078125	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	57,9947917	0	58,2703993	
3	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Función objetivo:	3930,538589												

Anexo 7: Situación Base costo del flujo. Matriz de asignación y matrices De-Hacia con costo del flujo. (Elaboración propia)

Į	R1 Brie 120 G	CA1 Camembert 150G	CA2 Cam Pimienta 150	IDF Ind. Descremado F	IGF Ind. Griego Frutilla	PR1 Provoleta 115 G	TR1 Tradicional 180 G	r VEF Vegurt Frutilla	VEN Vegurt Sin Sabor	VEV Vegurt Vai	YC3 Clasico 360	YG3 Griego 360	YL3 Descrema	do 36
1	0	0	0	0	0	0	0	0	0	0	0	1	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	1	
3	0	0	0	0	0	0	0	0	0	0	1	0	0	
4	0	0	0	0	0	0	0	0	0	1	0	0	0	
5	0	0	0	0	0	0	0	0	1	0	0	0	0	
6	0	0	0	0	0	0	0	1	0	0	0	0	0	ľ
7	0	0	0	0	0	0	1	0	0	0	0	0	0	ľ
8	0	0	0	0	0	1	0	0	0	0	0	0	0	ľ
9	0	0	0	0	1	0	0	0	0	0	0	0	0	ľ
10	0	0	0	1	0	0	0	0	0	0	0	0	0	ľ
11	0	0	1	0	0	0	0	0	0	0	0	0	0	ľ
12	0	1	0	0	0	0	0	0	0	0	0	0	0	ľ
13	1	0	0	0	0	0	0	0	0	0	0	0	0	ľ
	1	1	1	1	1	1	1	1	1	1	1	1	1	
_	R1 Brie 120 G		CA2 Cam Pimienta 150						VEN Vegurt Sin Sabor					do 36
1	0	0	0	0	0	0	0	0	0	0	0	60	0	Į.
2	0	0	0	0	0	0	0	0	0	0	0	0	60	1
3	0	0	0	0	0	0	0	0	0	0	120	0	0	1
4	0	0	0	0	0	0	0	0	0	120	0	0	0	1
5	0	0	0	0	0	0	0	0	180	0	0	0	0	1
6	0	0	0	0	0	0	0	180	0	0	0	0	0	1
7	0	0	0	0	0	0	240	0	0	0	0	0	0	1
8	0	0	0	0	0	240	0	0	0	0	0	0	0	1
9	0	0	0	0	300	0	0	0	0	0	0	0	0	1
10	0	0	0	300	0	0	0	0	0	0	0	0	0	1
11	0	0	360	0	0	0	0	0	0	0	0	0	0	1
12	0	360	0	0	0	0	0	0	0	0	0	0	0	1
13	420	0	0	0	0	0	0	0	0	0	0	0	0	J
	0,257920114	0,419010219	0,161815662	0,427241843	0,629757828	0,334506717	0,32388072	0,732861941	0,784601264	0,81903625	1,49921011	4,60535497	3,30801406	5
_														
-	R1 Brie 120 G		CA2 Cam Pimienta 150						VEN Vegurt Sin Sabor					
1	0	0	0	0	0	0	0	0	0	0	0	276,321298	0	27
2	0	0	0	0	0	0	0	0	0	0	0	0	198,480843	
3	0	0	0	0	0	0	0	0	0	0	179,905213	0	0	17
4	0	0	0	0	0	0	0	0	0	98,2843495	0	0	0	98
5	0	0	0	0	0	0	0	0	141,2282275	0	0	0	0	14
6	0	0	0	0	0	0	0	131,9151495	0	0	0	0	0	13
7	0	0	0	0	0	0	77,73137374	0	0	0	0	0	0	77
8	0	0	0	0	0	80,28161209	0	0	0	0	0	0	0	4
9	0	0	0	0	188,9273484	0	0	0	0	0	0	0	0	4
10	0	0	0	128,172553	0	0	0	0	0	0	0	0	0	4
11	0	0	58,25363832	0	0	0	0	0	0	0	0	0	0	58
12	0	150,8436772	0	0	0	0	0	0	0	0	0	0	0	15
	108,3264478	0	0	0	0	0	0	0	0	0	0	0	0	10
13	108,3264478	150,8436772	58,25363832	128,172553	188,9273484	80,28161209	77,73137374	131,9151495	141,2282275	98,2843495	179,905213	276,321298	198,480843	

Anexo 8: Modelo de asignación con integración de forecast. Matriz de asignación y matrices De-Hacia con costo del flujo. (Elaboración Propia).

alpha	0,935959721	0,949534363	0,96683156	0,949931703	0,948029213	0,942797465	0,905386505	0,942533594	0,942123006	0,927398009	0,954017371	0,972664777	0,927765658	
betha	0,532302509	0,54463691	0,511936341	0,4556795	0,446136643	0,44793238	0,50852733	0,45343492	0,440386131	0,443661104	0,458589585	0,460394573	0,56561494	
gamma	0,317018668	0,554032311	0,222322523	0,40823184	0,915725858	0,464436034	0,133971835	1	1	1	1	0,537642247	1	
Suma de Cant Uni OC	made Chittli In C. Etiquetas de Columna J. T. Bill Riter 1206 C. DAL Camembert 1306 [CAZ Cam Primenta 1506 DF Ind. Descremado Frutilla 150 Gr DF Ind. Descremado 150 Gr VET Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber VEV Vescut Frutilla VEN Vescut Sin Saber V													
Etiquetas de fila 🔻	BR1 Brie 120 G	CA1 Camembert 150G	CA2 Cam Pimienta 150 G	IDF Ind. Descremado Frutilla 150 Gr	IGF Ind. Griego Frutilla 150 Gr	PR1 Provoleta 115 G	TR1 Tradicional 180 Gr	VEF Vegurt Frutilla	VEN Vegurt Sin Sabor	VEV Vegurt Vainilla	YC3 Clasico 360 Gr	YG3 Griego 360 Gr	YL3 Descremado 360 Gr	
1	297	349	260	144	298	261	160	162	90	162	87	89	3	
2	3422	6391	3195	1933	2511	2103	1839	2387	1747	1996	1858	3511	2281	
3	2053	2754	2622	2247	3217	2151	1007	3266	2971	5795	2507	3541	2285	
4	1480	3344	2431	1630	2590	1546	536	2063	2047	3602	1708	2949	1897	
5	2422	2914	2111	2362	2700	1143	673	3148	2083	2875	2192	3184	2721	
6	2275	3871	2385	816	1131	1312	923	2092	1537	3837	1250	1523	844	
7	1799	2800	2398	2220	2904	2246	663	3573	1913	3276	2072	3388	2710	
8	1344	3032	1454	1417	2260	1496	445	3228	2009	3440	2063	2615	1805	
9	1399	2922	1850	2471	3140	1179	553	3660	2398	3423	2059	3378	2225	
10	1370	1874	1926	1638	2614	1247	671	3986	2314	4051	2116	3029	1822	
11	1319	2074	1028	1944	2922	1105	1222	3749	2229	3514	1817	2259	1895	
12	1285	2040	1419	1519	2878	1558	1463	3006	2862	3525	1869	3698	1622	
13	1135	2448	1124	1801	3554	1973	2196	4226	2267	3457	2682	3189	2379	
14	1878	1949	1455	1725	2562	2463	1556	4321	3131	4488	1629	3048	1784	
15	1387	1686	1118	2077	3544	2389	2032	3570	2183	3054	1674	3019	1707	
16	1670	2819	1480	1907	3065	2936	1842	3663	3036	4500	1863	2910	1887	

Anexo 9: Extracto de matriz pronóstico corto plazo hasta semana 16 en unidades. Año 2023. Ponderadores obtenidos y demanda real. (Elaboración propia)

		1						1		1			
					Nivel St								
					14140130								
1													
2		1											
3													
4													
5													
6													
7													
8	22628,98316	58659,59599	27038,12637	21769,2619	18478,60067	12387,78654	9525,034821	35133,52469	34352,12063	37918,71958	35616,24302	102484,0048	1383915,286
9	3524,070415	7149,581644	2952,418148	4067,983928	4406,542959	2141,901477	1949,608527	7346,927019	6162,554149	10177,15022	4961,918294	7962,958134	201448,1527
10	1420,042772	2289,150788	1653,651733	1471,900109	2060,843601	1042,953671	724,3132077	3469,630453	1992,060346	3247,770926	1769,800638	2662,94997	10952,83981
11	1642,357508	1804,018782	929,0066449	1930,796776	2477,170937	1111,749253	1739,772541	4348,93631	2013,003213	3082,793262	1814,237519	2094,849812	-7453,068683
12	1047,417652	2116,908281	1436,0637	1108,636082	2368,074307	2049,99355	1825,179621	2454,625233	2453,850603	3752,742352	1462,759945	3031,514287	-4597,685827
13	948,4378867	1991,81969	1046,735679	3448,410396	6666,452878	2326,927217	1976,432875	4663,698029	2638,462178	2881,925803	3485,878889	5406,908544	2343,859981
14	1959,600002	2196,73042	1317,178409	1419,150663	2286,03656	1746,243242	1964,325546	3034,012415	2907,114265	4112,381538	1456,469909	2468,81827	659,3520247
15	10781,73236	20837,3818	10452,58362	24989,05039	27291,98106	15419,41126	10799,3106	36781,12933	35356,3787	31554,17764	27620,22769	99400,82718	1213947,607
16	2190,791939	3960,217811	1630,060581	3678,571665	5853,604405	4032,384559	2301,488357	9914,601796	10235,80131	15602,61664	6095,025782	7249,409048	295617,806
17	2289,018798	3700,930752	1133,118126	3730,294873	5938,293722	1376,908615	509,076929	5855,507891	5465,514735	6750,952613	4225,863929	5058,216317	35598,11123
18	2197,128783	1341,180612	359,5744373	4608,092268	5267,811553	1004,329894	382,1221499	9269,436838	5633,791592	6442,444391	4521,227545	4555,384081	-32313,07648
19	741,8248866	2055,620462	1716,908188	2260,33404	2467,968074	2391,356017	399,9286915	5086,25238	3068,31692	6309,514227	2386,436941	3508,005316	-21391,12042
20	1519,819162	2315,430133	1219,564873	4368,531556	8949,771987	3035,093081	1095,615861	5273,970239	3365,676274	3755,24561	4020,027754	8029,145485	-2975,424494
21	1761,944477	3714,698542	1025,53276	2525,69113	2718,446345	1650,755479	1786,860176	2954,389975	1627,520231	2746,983678	2407,234015	2773,35953	-365,2272253
22	5206,691086	27426,10564	7639,35065	27639,2927	16081,04808	5653,031159	5435,521513	43208,83536	32163,49507	30771,66232	42320,70161	98554,65739	1608861,443
23	2192,20642	6423,811492	1841,832577	4669,234667	6202,554574	3773,039553	1291,262123	15184,06123	10929,18676	13011,98805	11150,36948	8075,446113	524828,6261
24	1164,644292	3544,032519	747,1029755	821,9666808	1853,932994	1284,431795	1035,769536	3102,90057	2166,542974	3377,302951	1482,835959	1819,86935	29929,80595
25	2083,100905	3090,739059	960,0383111	2567,012625	3464,838513	1319,75821	1606,138975	4479,184553	2336,102172	2851,318825	1820,393882	2759,096104	-41787,27492
26	1279,879799	4975,898045	737,7053846	1129,944636	3162,365801	3008,001509	2081,711923	2090,086725	1403,346708	2419,670267	1072,71633	2244,218166	-28387,11267
27	1481,932833	2791,044389	1082,757496	5310,185516	6474,100862	2169,084553	2387,971974	4833,943706	3945,480356	3481,421074	2735,911039	6023,792066	-10378,50729
28	2125,653829	3575,275831	1127,714001	1522,059206	3860,394601	1892,87476	3013,663119	2807,229811	2722,082748	3004,294454	2109,636013	2641,661319	-2818,219598
29	28536,61903	62716,15805	13449,72913	21410,99979	19667,39798	19023,71274	20708,05571	41391,913	51641,62292	36916,30887	36054,08553	116978,8263	1517673,912
30	4523,30851	8888,468634	1385,333195	3118,525275	6565,923011	3844,844836	4362,867274	15393,01587	16461,50361	21008,33035	8589,764664	10470,39292	526417,8143
31	433,4951302	1108.898609	191.8063738	1406.742703	2198.937211	586.3558112	883.6491412	2575.94952	2096.183856	3487.588932	965.1649603	1230.834003	62324.3522
32	1758,835542	2292,208408	962,4082162	1245,351227	1915,282711	1782,19165	3577,604402	3532,781938	2051,370908	3152,017935	1384,920277	1807,203786	-45817,03973
33	1581,216688	2793,650946	1580,232653	1290,604618	2890,108452	3135,799467	2587,042957	2803,916611	1760,723897	4081,322426	1184,545697	2463,215953	-53289,03827
34	2644.801657	3951.584148	1412.94084	4542.064986	4836.846896	5714.003515	2331,572786	3562,455913	2337.542783	2988.694399	2517.338263	6672.982985	-19438.87077
35	2379.656849	3915,999537	1245.096555	1925.159401	3613.678185	1694.125838	2202.57161	2881,491074	2603.305827	3749.169518	1785,500132	3124.488572	-5829.856814

Anexo 10: Extracto de matriz pronóstico corto plazo en unidades hasta semana 35. Año 2023. Nivel St. (Elaboración propia)

					gt								
1													
2													
3 4													
- 4													
5													
b													
8	20664.98316	55456.31027	24837.84066	20147.54762	16285.60067	10850.35796	8696.320536	32749.09612	32582.40635	34841.14815	33948.52874	99886.14767	1382095.143
9	-504.632207	-2801.498248	-207.9019354	20147,54762	2741.936862	1400.667622	421.6925704	5300.098644	5819.272372	7075.630591	4322.332963	10382.13038	-68459.59371
10	-1355,99441 -515.8564917	-3922,868942 -2050.550519	-766,3551053 -745,0022319	395,881325 424.5961243	472,1559166 447.2487411	281,0089346 185.9517025	-415,8457831 312.011986	1138,74718 1021.107425	1419,917898 803.828697	862,1524404 406.4547642	876,2841704 494.8076673	3162,158897 1444,767871	-137484,8197 -70132,00852
11 12	-515,8564917 -557.9527653	-763.3338508	-745,0022319 -104.0275819	424,5961243 -143.525399	199.0426845	185,9517025 522.9279146	196,7771981	-300.8451305	643.9767638	523.3569476		1210.839825	-70132,00852 -28849.24956
											106,7100694		
13	-313,6402857 391.555356	-415,7219243 -77.70247345	-250,0832451 16.39291827	988,0633723 -386.8689115	2027,906637 -831.0810555	412,7391259 -32.24724795	173,6270281 79.17603174	837,2393038 -281.3505991	441,6787059 365.4801825	-95,18360519 492.9510082	985,5552201 -397.0759617	1746,994366 -409,9931779	-8605,441002 -4690.857876
15	4879.172643	10117.00393	4684.746701	-386,8689115 10529.73944	-831,0810555 10695.7628	-32,24724795 6106.852027	79,17603174 4531.744214	-281,3505991 15148.34485	14494,73379	12449.10538	11783.44576	44405.73634	684216.3246
16 17	-2291,002333 -1019.20964	-4585,016275 -2229.064481	-2230,115542 -1342.841254	-3979,195249 -2142.388342	-3640,454313 -1978.531238	-1729,222702 -2144.121521	-2094,146425 -1940.705932	-3902,665451 -3973.595575	-2951,299822 -3752,356358	-151,1656247 -4011.238356	-3491,553153 -2747.5414	-18464,43653 -10972,32339	-222207,7055 -243594.7316
					-1978,531238 -1394.962617								
18 19	-525,595077 -1020.481414	-2300,240715 -658.3344071	-1051,397141 181.7197376	-766,151616 -1486.857326	-1394,962617 -2021.731449	-1350,590139 -124.3231714	-1018,363902 -491.442913	-623,8339836 -2237,767782	-2025,763866 -2263.44502	-2368,481016 -1376.654056	-1352,096851 -1711.032054	-6152,226479 -3801.982294	-144225,4945 -56471.77865
20	-1020,481414 -63.14829274	-158,3344U/1 -158,2792534	-165.9173167	-1486,857326 151.3354666	-2021,731449 1772.007274	-124,3231714 219.7158775	-491,442913 112.2451781	-2237,767782	-2263,44502 -1135.70229	-1376,654056	-1711,032054	29.93812117	-14114.30424
21	99,34961454	690,0186927	-180,3103028	-757,369607	-1798,572809	-498,791615	406,6820627	-1673,752204	-1401,014567	-1503,878608	-835,5607039	-2403,58056	-4654,676332
22	1880,112828	13228,31654	3297,850823	11031,5016	4965,382712	1517,38217	2055,317126	17337,95672	12663,59263	11596,79371	17851,51928	42800,20465	908180,7239
23	-725,293698	-5414,937495	-1358,399048	-4462,312088	-1657,014399	-4,411550666	-1097,336965	-3231,089519	-2264,572809	-1427,529293	-4629,391224	-18560,91518	-218645,0175
24 25	-886,1919417 74.42701196	-4034,196591 -2083.904575	-1223,417076 -488.0960784	-4182,049099 -1481.193394	-2857,838991 -864.1683159	-1117,16347 -600.925933	-669,2360911 -38.86280137	-7244,020818 -3335.2736	-5126,233144 -2794.039645	-5068,7251 -3053,287623	-6939,830808 -3602.496129	-12895,60415 -6526.123079	-374898,2954 -203414.4711
26 27	-392,7472834	77,79393899	-352,0422629	-1461,086352	-613,5753247	424,467089	222,7418367	-2906,244464	-1974,355906	-1890,16834	-2293,306062	-3758,578437	-80780,87535
27	-76,13358209 307.046816	-1154,527456 -98.60780029	4,825680167 25.37010782	1109,55082 -1122,220245	1137,649475 -535.9677811	-141,443533 -201.8097044	265,2131315 448.5260531	-344,2911672 -1107.160382	14,64345299 -530.5726596	-580,5166319 -534.6465052	-478,8960143 -546.4824942	-288,0540087 -1712.550148	-24904,06918 -6541.743934
29	14202,22806	32165,405	6320,469566	8452,135015	6755,230516	7562,04442	9218,520514	16890,50754	21246,5712	14747,99712	15270,69971	51716,10894	857171,4291
30	-6139,999002	-14669,60823	-3091,411206	-3734,835281	-2103,573418	-2624,346555	-3781,324138	-2557,046242	-3602,96071	1147,133112	-4327,13565	-21129,61172	-188326,7945
31	-5048,680052	-10917,03911	-2119,815219	-2812,971635	-3113,36462	-2908,399501	-3627,694978	-7209,29764	-8342,554366	-7135,076715	-5839,318323	-15655,49593	-344304,5416
32	-1655,772968	-4326,742471	-640,1056852	-1604,700914	-1850,927246 -590.2552934	-1069,979598	-412,9630625	-3506,48911	-4688,344128	-4118,400499	-2968,972339	-8182,433043	-210727,136
33	-868,9478247	-1697,134706	3,87445825	-852,8505618		15,62368047	-706,6876259	-2247,017492	-2751,659311	-1878,930129	-1699,322241	-4113,260831	-95762,9937
34	159,7442301	-142,1593425	-83,75177632	1017,39979	541,5905762	1163,486403	-477,2312182	-884,1930872	-1285,843676	-1530,07847	-308,8259692	-281,3839696	-22451,85336
35	-66,4252712	-84,11481017	-126,8017874	-638,6786655	-245,7332082	-1158,310204	-300,1467249	-792,0423026	-602,5375961	-513,8489353	-502,8149411	-1785,543888	-2055,288077

Anexo 11: Extracto de matriz pronóstico corto plazo en unidades hasta semana 35. Año 2023. Nivel Gt. (Elaboración propia)

				•	1								
					ct								
					CL								
1	0,151221996	0,108950631	0,118166472	0,088794926	0,135886913	0,169763984	0,19307016	0,067940806	0,050855667	0,052638908	0,052167209	0,034259005	0,001648222
2	1,742362525	1,99513892	1,452084145	1,191948555	1,14500684	1,367868426	2,219100155	1,001078425	0,987164998	0,648563338	1,114099709	1,351498488	1,253198336
3	1,045315682	0,859742229	1,19166342	1,385570825	1,466940264	1,399089389	1,215135321	1,369720208	1,678802067	1,88297823	1,503255097	1,363046467	1,255395966
4	0,753564155	1,04392811	1,104856512	1,005109232	1,181030552	1,005575172	0,646785037	0,865196813	1,156683888	1,170403379	1,024156245	1,135166346	1,042225885
5	1,233197556	0,909690942	0,959420854	1,456483439	1,23119015	0,743449173	0,812101362	1,320232461	1,177026154	0,934178155	1,314373822	1,225625516	1,494937603
6	1,158350305	1,208446684	1,083950136	0,503171247	0,515731874	0,853372979	1,113773487	0,877359056	0,868501776	1,246762289	0,749528868	0,586252406	0,463699867
7	0,91598778	0,874102484	1,08985846	1,368921776	1,324213406	1,460880877	0,800034477	1,498472231	1,08096545	1,0644757	1,242419051	1,304151773	1,488894121
8	0,122110445	0,07722531	0,103851001	0,079118547	0,123448353	0,147006676	0,173463225	0,091878057	0,058482561	0,090720363	0,05792301	0,029558491	0,001304271
9	1,315852456	1,116197863	1,268561541	0,953327916	0,749019412	0,988227757	1,959803902	0,498167464	0,38912437	0,336341699	0,414960481	0,852951285	0,011045026
10	1,019777923	0,836972589	1,185667746	1,274236381	1,285143353	1,304601441	1,176452226	1,148825517	1,161611396	1,247317034	1,195614893	1,241761839	0,166349552
11	0,769272321	1,102504465	1,105234855	1,005815062	1,179694372	1,000166344	0,654234626	0,862049874	1,107300766	1,139875334	1,001522668	1,104624279	-0,254257686
12	1,231177894	0,939596822	0,965800816	1,421240217	1,216669792	0,751137084	0,810689779	1,224626863	1,166330174	0,939313086	1,277721616	1,222521649	-0,352786176
13	1,170509339	1,219848795	1,081696767	0,510967813	0,531651972	0,850830814	1,113414328	0,906147862	0,85921262	1,199545108	0,769389897	0,588160273	1,014992371
14	0,9294202	0,881374258	1,093143386	1,306296557	1,137866471	1,437461945	0,798975418	1,424186657	1,07701305	1,091338427	1,118457711	1,266757141	2,705686694
15	0,124181552	0,079268009	0,104542024	0,080750599	0,129315079	0,15068868	0,175432201	0,097060641	0,061742749	0,096785916	0,060607755	0,029995857	0,001406156
16	1,140360105	0,892164744	1,188387632	0,77577965	0,542605277	0,867417449	1,804469956	0,36945508	0,296605992	0,288413162	0,305659084	0,610184705	0,006383242
17	1,042866382	0,865778378	1,199499824	1,303863414	1,325613611	1,279871376	1,186214458	1,146954308	1,137861721	1,121471359	1,217739162	1,302124428	0,152592365
18	0,776314952	1,099341159	1,118581213	1,019999363	1,194399418	1,049879378	0,697709826	0,90393841	1,1546398	1,191162784	1,034011218	1,142983341	-0,146627945
19	1,197708546	0,980171966	0,976135244	1,399842342	1,18190211	0,775368027	0,840095776	1,172375957	1,153726976	0,965367504	1,257523276	1,249401813	-0,153568394
20	1,200554077	1,234091921	1,077103006	0,520015569	0,557010149	0,856898027	1,130304317	0,931556262	0,899373485	1,170096568	0,800243231	0,597372518	-0,973978673
21	0,932913131	0,892255997	1,092914815	1,284104257	0,96969804	1,398101932	0,802599962	1,389457734	1,052521479	1,119045601	1,08630901	1,230278009	-6,940884536
22	0,12591226	0,081227239	0,105251154	0,08237693	0,135435351	0,154069621	0,17689711	0,102803049	0,06550905	0,104056777	0,063420499	0,030447382	0,001515979
23	1,085132216	0,752177944	1,143628054	0,654225768	0,477417856	0,845408318	1,683178603	0,30215895	0,240091057	0,23747332	0,240888879	0,458021133	0,004496706
24	1,036995423	0,884014577	1,202728595	1,324855783	1,229000147	1,210118206	1,199712304	0,947500551	0,928206836	0,908121079	1,018318979	1,435157205	0,04293379
25	0,790903134	1,136845616	1,131345532	1,070674053	1,271730692	1,075714168	0,705248722	1,010005269	1,315439041	1,339730922	1,233249585	1,229579723	-0,063799327
26	1,17989365	1,003193753	0,978817372	1,40101856	1,192440481	0,791995663	0,843002286	1,204734698	1,247731576	1,047250129	1,418828032	1,299967315	-0,062246556
27	1,211006219	1,204632931	1,082392027	0,531902377	0,573963701	0,842833963	1,130857769	0,997942941	0,962620431	1,247766331	0,856021985	0,608667694	-0,252155722
28	0,93976603	0,906503012	1,093211451	1,195197206	0,922394229	1,395297009	0,803944013	1,338686268	1,023113644	1,122060455	1,082651218	1,208505422	-0,715700083
29	0,128410603	0,083486434	0,105985089	0,084116316	0,14108497	0,158025194	0,178959634	0,108813526	0,069362654	0,111657967	0,06634477	0,030903776	0,001634739
30	0,886272268	0,537900038	1,027870668	0,533502231	0,404938701	0,704505929	1,545103734	0,25082804	0,189533112	0,210345131	0,183124924	0,353440997	0,003267367
31	1,143377066	1,045751578	1,293496445	1,365851496	1,16549545	1,173239457	1,205454648	0,717405363	0,635440444	0,527585113	0,850631792	1,644634325	0,028143092
32	0,853074786	1,313557376	1,157260707	1,119725011	1,366051447	1,145520933	0,722695412	1,152349642	1,642316358	1,565980937	1,501891506	1,396446864	-0,038195397
33	1,203818657	1,054246222	0,984760223	1,439557513	1,25096796	0,809244348	0,840367268	1,277498762	1,439180785	1,148647304	1,578664297	1,370446137	-0,043761345
34	1,230200022	1,230261249	1,081391943	0,542244178	0,589076487	0,853485243	1,13392169	1,049276143	1,04682576	1,273465765	0,905718565	0,620138512	-0,121251899
35	0,936126361	0,907229455	1,092648311	1,146649177	0,899781362	1,274999818	0,805723499	1,344442825	1,060574586	1,175727045	1,070288355	1,189411889	-0,371021119

Anexo 12: Extracto de matriz pronóstico corto plazo en unidades hasta semana 35. Año 2023. Nivel ct. (Elaboración propia)

					Ft								
1						1							
2													
3													
4													
5													
6													
7													
8	6547	12433	6130	3722	4724	3945	3518	4612	3404	3830	3629	6933	4559
9	5260,955981	8675,030411	3985,268478	8306,209878	8185,058291	4845,768418	5262,154632	12660,66454	11828,03976	11189,52112	10343,58162	24793,35939	166661,0409
10	66,95075768	1404,576487	1057,358935	2587,943462	3715,758983	1852,342032	374,8296632	6312,187972	5728,036128	7738,896224	3977,740474	7939,89406	158847,737
11	848,8907866	257,3614101	203,298474	2367,427149	3453,828986	1304,935861	1327,063532	4646,144723	3258,184084	4083,827681	2364,823047	4018,054871	80861,17574
12	603,6069017	1231,334399	1277,983231	1405,667727	3160,609155	1912,836335	1642,033887	2843,490405	3646,223832	3994,638555	2062,870301	5199,537444	50001,08142
13	735,317995	1904,630119	863,531514	2232,30604	4483,958327	2337,957228	2394,679716	4826,297184	2675,107828	3474,405083	3351,468944	4193,992792	2903,494284
14	2153,629577	1852,247592	1453,403993	1413,112968	1926,671584	2503,943971	1634,871716	4124,787292	3537,561531	4902,264585	1316,211223	2685,020395	6002,485362
15	1912,360081	2390,462026	1572,026905	2810,195041	4689,524395	3164,504422	2659,374217	4771,179211	2915,420741	3991,993803	2282,379371	4250,705031	2475,719383
16	131,8620937	697,3987109	761,2066462	286,5928552	1657,692381	2276,048476	406,3495274	2994,951082	2834,577049	5196,967295	1080,338253	9565,872101	810,8164382
17	1294,923347	1231,911724	248,6619481	2023,368271	5088,862435	1000,907063	1684,243128	2161,988891	1990,024294	3417,292263	1767,504432	7343,912479	34600,1447
18	1285,864614	1057,368046	764,6265659	3864,281776	4568,778095	346,3178427	416,2513843	7452,940856	3995,171866	4643,810364	3173,956227	1763,910882	44886,28863
19	343,0757569	1312,885536	1833,696399	1099,296212	542,922621	1702,852441	74,18964391	3488,330759	938,746383	4633,50011	862,9794223	359,3932198	27468,95439
20	1705,046856	2631,3979	1139,727155	2309,506566	5700,255082	2769,291754	1344,849787	3747,829684	1916,021789	2226,511395	2956,615278	4740,032817	17345,9443
21	1729,924326	3882,204385	923,9493387	2309,952317	1046,693254	1655,904216	1752,586327	1823,867226	243,9495552	1356,648332	1757,850133	468,4201513	13582,28626
22	880,0503072	3222,595083	1143,397179	3122,689818	2721,620851	1080,500122	1314,134306	5876,710468	2767,747605	4100,669845	3646,903237	4240,060293	3539,354543
23	1672,808745	900,0818107	574,5064266	160,5263253	2466,434086	3268,973689	349,9321203	4416,086119	2569,976416	3341,110378	1993,196242	6398,07285	1954,444074
24	290,3885949	424,3734555	571,3386802	4381,088533	1330,791455	214,081942	434,7872721	4749,675707	3367,718149	1896,881496	6645,196336	14421,98485	52639,55782
25	1674,921182	1106,854588	527,9057151	1107,534924	3106,238969	754,6871838	1093,503986	1034,025048	528,7528325	240,5777152	1842,713715	4305,649075	35953,42812
26	1062,526195	4953,48721	376,4593655	463,5461946	3012,420841	2661,426404	1935,961868	956,8437099	658,7887149	511,1639532	1534,919998	1892,044468	16764,75255
27	1687,738023	2019,612325	1171,439108	3338,362844	4239,822189	1737,481589	2998,90658	4182,363935	3561,630351	3394,338331	1806,160997	3426,372286	34364,477
28	2269,498375	3102,0779	1260,222706	513,4349118	3223,69017	2364,281322	2778,752897	2362,174617	2306,611439	2763,648672	1698,067752	1143,065041	64966,42614
29	5381,344822	7706,967377	2080,836229	2460,033369	3578,557952	4096,057525	5293,924859	5991,610509	4774,836337	5376,02116	3255,043474	5136,31917	3600,215426
30	1754,322936	4348,445699	1951,118675	403,205887	2130,405376	1031,819398	978,8409641	3878,503108	3087,221153	5261,331461	1026,819923	4882,147472	1520,295897
31	4785,925642	8670,539181	2318,87137	1863,050533	1123,83142	2809,947344	3292,065554	4390,099896	5797,923809	3312,360541	4963,442876	20701,6575	12106,4782
32	81,5125132	2312,95113	364,6355285	384,7463862	81,84282001	766,1365949	2231,859262	26,55589446	3468,777522	1294,692604	1953,531549	7838,852621	16367,34565
33	840,4015085	1100,018242	1550,55156	613,301557	2742,438006	2495,913465	1585,143842	670,9156918	1236,421405	2306,455617	730,3793903	2145,00441	9277,975664
34	3396,322511	4588,958569	1438,703644	2957,092531	3087,027877	5796,582083	2096,996569	2672,753482	1012,387047	1820,011846	1890,535079	3890,359833	10562,98579
35	2173,896455	3473,615048	1222,532645	1537,59818	3106,573011	747,6219517	1529,443096	2797,116378	2047,013276	3630,225284	1388,700685	1618.12191	5643.398852

Anexo 13: Extracto de matriz pronóstico corto plazo en unidades hasta semana 35. Año 2023. Resultados pronósticos Ft. (Elaboración propia)

					Error								
8	5203	9401	4676	2305	2464	2449	3073	1384	1395	390	1566	4318	2754
9	3861,955981	5753,030411	2135,268478	5835,209878	5045,058291	3666,768418	4709,154632	9000,664538	9430,039758	7766,52112	8284,581621	21415,35939	164436,0409
10	1303,049242	469,4235128	868,6410654	949,9434621	1101,758983	605,3420325	296,1703368	2326,187972	3414,036128	3687,896224	1861,740474	4910,89406	157025,737
11	470,1092134	1816,63859	824,701526	423,4271488	531,8289863	199,9358615	105,0635317	897,144723	1029,184084	569,8276815	547,8230471	1759,054871	78966,17574
12	681,3930983	808,6656014	141,016769	113,3322733	282,6091547	354,836335	179,0338865	162,5095952	784,2238324	469,6385555	193,8703015	1501,537444	48379,08142
13	399,682005	543,369881	260,468486	431,3060401	929,9583268	364,9572285	198,6797159	600,2971843	408,1078281	17,40508305	669,4689439	1004,992792	524,4942841
14	275,6295768	96,75240842	1,596006593	311,8870319	635,3284158	40,9439708	78,87171581	196,2127084	406,5615311	414,2645849	312,7887775	362,9796053	4218,485362
15	525,3600813	704,4620255	454,0269054	733,1950411	1145,524395	775,5044218	627,3742166	1201,179211	732,4207408	937,9938032	608,3793705	1231,705031	768,719383
16	1538,137906	2121,601289	718,7933538	1620,407145	1407,307619	659,9515236	1435,650473	668,0489184	201,422951	696,9672946	782,6617469	6655,872101	1076,183562
17	1206,076653	2058,088276	1165,338052	3000,631729	2805,137565	722,0929366	1048,243128	4554,011109	4228,975706	4153,707737	3378,495568	494,9124789	29168,1447
18	453,1353856	413,6319541	345,6265659	930,7182241	1730,221905	765,6821573	42,25138426	926,0591444	2509,828134	3030,189636	1501,043773	3593,089118	40148,28863
19	491,9242431	769,1144638	95,69639931	1994,703788	2366,077379	218,1475586	337,8103561	2474,669241	2601,253617	1457,49989	2138,020578	4104,60678	24183,95439
20	217,9531442	252,6021003	154,2728446	19,49343363	694,2550821	147,291754	13,15021255	1165,170316	1110,978211	2167,488605	260,3847221	119,9671827	14447,9443
21	72,92432557	535,2043847	196,0506613	852,0476834	1547,306746	577,0957841	276,5863269	2281,132774	1469,050445	1717,351668	857,149867	2856,579849	11047,28626
22	205,0503072	951,5950829	320,397179	780,6898182	534,6208511	187,500122	301,1343063	1434,710468	660,7476045	898,6698451	962,9032373	1201,060293	1100,354543
23	445,1912546	3207,918189	1243,493573	2071,473675	457,5659141	174,9736887	811,0678797	171,9138806	54,02358362	251,1103783	692,803758	3756,07285	405,5559257
24	902,6114051	2760,626545	335,6613198	3267,088533	931,2085454	1236,918058	898,2127279	1809,675707	1356,718149	1170,118504	5135,196336	11601,98485	51354,55782
25	38,07881788	2500,145412	601,0942849	1829,465076	1324,761031	704,3128162	117,4960144	3489,974952	2544,247167	3579,422285	402,2862851	707,6490754	33287,42812
26	398,4738051	130,5127902	352,5406345	1121,453805	761,5791594	221,4264044	141,9618684	1561,15629	1092,211285	2022,836047	12,91999757	1122,955532	14997,75255
27	140,2619772	1276,387675	20,56089232	422,3628438	513,8221886	55,51841123	289,9065801	641,6360649	236,3696491	949,6616688	535,8390032	298,6277139	31747,477
28	240,4983752	179,9221001	26,22270582	1109,565088	320,3098302	270,7186781	329,7528974	1395,825383	478,388561	607,3513279	585,9322476	1999,934959	62949,42614
29	1563,344822	2356,967377	620,836229	605,0333694	793,5579521	1003,057525	1311,924859	1487,610509	1192,836337	1254,02116	863,0434744	1475,31917	1119,215426
30	316,6770643	1100,445699	1088,118675	714,794113	484,5946239	1052,180602	1868,159036	17,5031076	32,77884662	842,3314606	546,1800766	2123,147472	199,7041031
31	4190,925642	7366,539181	2009,87137	141,9494665	1426,16858	2146,947344	2194,065554	2542,099896	4465,923809	1472,360541	4142,442876	18455,6575	10352,4782
32	1654,487487	1024,04887	836,3644715	1098,253614	2551,15718	1418,863405	757,1407381	4044,444106	99,77752249	3641,307396	126,4684514	5055,852621	14617,34565
33	1144,598491	1959,981758	38,44844032	1316,698443	888,5619936	104,0865347	544,8561576	2911,084308	1297,578595	2381,544383	1139,62061	1379,99559	6945,975664
34	33,32251143	354,0414311	84,29635566	426,092531	231,0278771	849,5820827	593,0034309	1065,246518	1434,612953	1985,988154	389,4649212	313,6401667	8205,985794
35	35,10354482	81,38495193	135,4673546	534,4018195	137,4269885	1177,378048	270,5569038	1076,883622	713,9867239	777,7747162	522,2993151	2046,87809	3480,398852

Anexo 14: Extracto de matriz pronóstico corto plazo en unidades hasta semana 35. Año 2023. Error absoluto. (Elaboración propia)

					Forecast UC								
emana	BR1 Brie 120 G	CA1 Camembert 150G	CA2 Cam Pimienta 150 G	IDF Ind. Descremado Frutilla 150 Gr		PR1 Provoleta 115 G		VEF Vegurt Frutilla					YL3 Descremado 360 G
8	1,022989702	1,942696038	0,957832117	1,292361111	1,640277778	0,821875	0,732916667	1,601388889	1,181944444	1,329861111	2,520138889	4,814583333	3,165972222
9	0,822041208	1,355501264	0,622710953	2,884100652	2,842034129	1,009535087	1,096282215	4,396064076	4,106958249	3,885250389	7,183042793	17,21761068	115,736834
10	0,01046127	0,219469571	0,165215717	0,89859148	1,290194091	0,38590459	0,078089513	2,191731935	1,988901433	2,687116744	2,762319774	5,513815319	110,3109285
11	0,132641902	0,040213544	0,031766037	0,822023316	1,199246176	0,271861638	0,276471569	1,613244695	1,131313918	1,417995723	1,642238227	2,790315882	56,15359427
12	0.09431551	0.19239994	0.19968897	0.488079072	1.097433734	0.39850757	0.342090393	0.987323057	1.266049942	1.387027276	1.43254882	3.610789892	34,72297321
13	0,11489579	0,297604551	0,134929563	0,775106264	1,556929975	0,487074423	0,498891607	1,675797633	0,928856885	1,206390654	2,327408989	2,912494994	2,016315475
14	0,336511513	0,289419614	0,227099025	0,490664225	0,668983189	0,521654994	0,340598274	1,43221781	1,228319976	1,702175203	0,914035571	1,864597496	4,168392612
15	0.298812383	0.373517341	0.245634235	0.975762167	1.628307082	0.659271755	0.554036295	1.656659448	1.012298868	1.386108959	1.584985674	2.951878494	1.719249571
16	0.020603874	0.10897078	0.118940974	0.099511408	0.575587632	0.474176766	0.084656152	1.03991357	0.984228142	1.804502533	0.750234898	6.642966737	0.563066971
17	0.202335917	0,192490149	0.038854225	0.702558427	1.766966123	0.208522305	0.350883985	0.750690587	0.690980658	1.186559814	1.227433634	5.099939221	24.02787826
18	0.200920461	0.165217141	0.119475348	1.341764506	1,586381283	0.072149551	0.086719038	2.587826686	1.387212454	1.612434154	2.204136269	1.224938113	31.17103377
19	0.053606685	0.205142567	0.286520931	0.381700074	0.188514799	0.354760925	0.015456176	1.211225958	0.325953605	1.608854205	0.599291266	0.249578625	19.07566277
20	0.266419028	0.411164343	0.178086015	0.801912002	1.979255237	0.576935782	0.280177039	1.301329751	0.665285343	0.773094234	2.053205054	3,291689456	12.04579465
21	0.270306212	0.606606859	0.144370041	0.802066777	0.363435158	0.344980045	0.365122151	0.633287231	0.084704707	0.471058449	1.220729259	0.325291772	9.432143237
22	0.137510677	0.503540795	0.178659468	1.084267298	0.94500724	0.225104192	0.27377798	2.040524468	0.961023474	1.423843696	2.532571693	2.944486315	2.457885099
23	0.26138172	0.140640663	0.089768468	0.055738307	0.856400724	0.681036185	0.072902525	1.533363236	0.892352922	1.16010777	1.384164057	4.443106146	1.357252829
24	0.045374147	0.06630971	0.089273497	1.521211296	0.462080366	0.044600405	0.090580682	1.649192954	1.169346579	0.658639408	4.614719678	10.01526725	36.55524849
25	0.261711795	0.172949572	0.082486957	0.384560737	1.078555197	0.157226497	0.22781333	0.359036475	0.183594734	0.083533929	1.279662302	2.99003408	24.96765841
26	0.166023118	0,773998229	0.058822981	0.16095354	1,045979459	0.554463834	0.403325389	0.332237399	0.228746082	0.177487484	1.065916665	1.31391977	11.64218927
27	0.263714467	0.315570889	0.183041109	1.159153765	1.472160482	0.361975331	0.624772204	1.4522097	1.236677205	1.178589698	1.25427847	2.379425199	23.86422014
28	0.354616384	0,484709599	0.196913831	0.178276011	1,119336865	0.492558609	0.578906854	0.82019952	0.80090675	0.959600233	1.179213717	0.793795168	45.11557371
29	0,84085235	1.204238317	0.32513732	0,854178253	1,242554844	0,452336009	1.102901012	2.080420316	1.657929284	1.866674014	2.260446857	3.566888312	2,500149602
30	0.274118573	0.679458556	0,32313732	0.140002044	0.739724089	0.214962375	0.203925201	1.346702468	1.071951789	1.826851202	0.713069391	3,390380189	1.055761039
31	0,747816198	1.354799495	0,362331072	0,646892546	0,739724089	0,585405697	0,203923201	1,524340242	2.013167989	1.150125188	3.44683533	14.37615105	8,407276529
32	0,747816198	0.361406016	0,962331072	0,646892546	0,390219243	0,585405697	0,68584699	0.009220797	1.20443664	0.449546043	1,356619131	5.443647654	11.36621226
32	0,012/36591	0,361406016	0,056975468	0,133592495	0,028417646	0,159611791	0,46497068	0,009220797	0.429312988	0,849546043	0.50720791	1,489586396	6.443038655
34	0,530686261	0,717039462	0,242278043	1.02676824	1.07188468	1.207621267	0,330238301	0.928039403	0,35152328	0,631948558	1.312871583	2.701638773	7.335406801
34 35	0,530686261	0,717039462	0,224802049	1,026/6824	1,07188468	0.155754573	0,4368/4285	0,928039403	0,35152328	1.26049489	0.964375476	1.123695771	3,91902698
									0,710768499				
36	0,395330673	0,858124922	0,178013853	0,480229804	1,046864248	0,341921607	0,373173021	1,19709984		1,128127342	1,837079743	2,93555366	1,856711431
37 38	0,350244352 0.267846309	0,197351628 0.986600304	0,006312677 0.193571508	0,463723996 0.713445556	1,512157407 0.574534312	0,377054557	0,25593203 0.019734662	1,946778144 0.52719643	1,117038892 0.590689585	1,536292529 0.297905796	0,997176044 1.929358105	1,026317835 14.6568041	1,968716398 4,744909493
39	0,154690283	0,479898669	0,305694233	0,263366416	0,197486844	0,427896821	0,214730294	0,151838115	0,896246672	0,407172206	1,770203257	4,015213387	8,366342338
40 41	0,514411951 0.221941297	0,490993225 0.288315336	0,152195882 0.244280377	0,342470538 0.632451198	0,268982675 0.711920282	0,418771913 0.398356975	0,800509277 0.25433422	0,664465102	0,236566647	0,75551794	0,310611696	0,63698996 1.160437866	5,41481638 3.465333022
42	0,166832884	0,273729526	0,012063515	0,067526609	0,437101304	0,023496532	0,231619283	0,353417541	0,424972285	0,804568391	0,276132623	0,072834599	0,612490569
43	0,304347911	0,599248518	0,276129689	0,911716632	1,666155865	0,445302965	0,480351057	1,404017211	1,204849334	1,409241255	2,034350511	3,614590925	2,21603076
44	0,139886209	0,156740264	0,080103033	0,554044559	0,977826646	0,439942069	0,307032244	1,679366481	1,489030059	1,886974914	1,79164695	0,223832038	1,901306075
45	0,155512917	0,274526818	0,005531866	0,867282849	0,232929737	0,448693517	0,307477831	0,80935609	0,43868124	1,354168923	1,484412907	18,59629531	0,970852574
46	0,34224232	0,236174561	0,025876923	0,305563967	0,392494887	0,41494043	0,273473397	0,319310821	2,521014297	1,560986954	3,427981501	6,941455815	7,899686399
47	0,070771906	0,216266263	0,182588176	0,111396222	0,047676594	0,349302114	0,331178888	0,032669027	1,152603321	0,501575279	1,735572591	2,235125211	4,687644992
48	0,402708188	0,359290724	0,241169074	0,472114832	1,286138491	0,678668892	0,335543361	0,876326322	0,040935999	0,240679924	1,047901811	1,689060373	3,303381184
49	0,227548142	0,553021369	0,166843128	0,151513269	0,433759952	0,2043776	0,628918246	0,224993814	0,093519486	0,017437111	0,318874938	0,034313406	0,980664305
50	0,297562798	0,738796376	0,305608135	0,702387442	1,046335547	0,400926196	0,569305445	1,23182841	0,69620174	1,138075078	1,556149551	2,515050398	1,330140774
51	0,166609999	0,265528316	0,011572374	0,192877542	0,382819779	0,214884441	0,205288696	0,454228942	0,416455559	0,409000693	0,875598536	0,299305537	1,386854483
52	0,08292592	0,481952818	0,062654053	0,376138124	0,338331329	0,078817474	0,06162204	0,74176193	0,250560394	0,856360563	0,11153148	12,63657236	0,588267846
53	0,333308334	0,544359464	0,348478322	0,253057969	0,438091298	0,347435111	0,256795178	0,403348424	0,986521838	0,456430339	3,430282358	6,680892569	5,370667542
54	0,44317033	0,399389682	0,292008951	0,309275462	0,390897952	0,240037328	0,296006882	0,480720506	1,101696384	0,496344358	3,475327659	5,861297855	4,336147859

Anexo 15: Extracto de matriz pronóstico corto plazo hasta semana 54. Año 2023. Conversión a unidades de carga pronósticos obtenidos. (Elaboración propia)