

Unsupervised Voice Activity Detection by Modeling Source and System Information using Zero Frequency Filtering

Eklavya Sarkar^{1,2}, RaviShankar Prasad¹, Mathew Magimai Doss^{1,2}

¹Idiap Research Institute, Martigny, Switzerland ²École polytechnique fédérale de Lausanne, Switzerland

Aims

- This paper investigates the potential of zero-frequency filtering for jointly modeling voice source and vocal tract system information, and proposes two approaches for VAD:
- 1. Demarcating voiced regions using a composite signal composed of different zero-frequency filtered signals.
- 2. Feeding the composite signal as input to the rVAD algorithm.
- These are compared with other supervised and unsupervised VAD methods in the literature, and evaluated on the Aurora-2 database across a range of SNRs (20 to -5 dB).

Zero Frequency Filtering

• ZFF transforms the speech signal into filtered ones which contain f_0 , F_1 , and F_2 evidences.

$$y[n] = x[n] - \frac{1}{2N+1} \sum_{k=n-N}^{n+N} x[k]; \qquad N+1 \le n \le L-N.$$
 (2)

Figure 1. (a1) Speech signal. (a2) Filtered output. (a3-a4) ZFF signals $y_0(n)$, $y_1(n)$, $y_2(n)$. GCI locations (- -). (b1) $S(\omega)$ (-) and its envelope (-). Formant peaks (•). Fundamental frequency peak (•). (b3-b4) $Y_0(\omega)$, $Y_1(\omega)$, $Y_2(\omega)$ (-), and respective peaks (•).

Proposed Method

Pipeline of proposed method to derive a decision boundary for voice activity detection:

Principal components of the ZFF-VAD technique:

Figure 2. a) Naturally corrupted speech signal s and final decision boundary. b) Accumulated ZFF signals r_c c) Inverse spectral entropy $1/e_h$ d) Decision surface y_{ds} and dynamic threshold θ_{ds} .

Experimental Setup

Results

Classification performance of methods across all SNRs in different sets of Aurora-2:

• Standard deviation of the F1-scores of each method, across all SNRs of entire *Test* set.

 $V_{\rm DWT}$ $V_{\rm LSD}$ $V_{\rm LTSD}$ $V_{\rm ZFF}$ $V_{\rm LSE}$ $V_{\rm RVP}$ $V_{\rm ZFF-ON-RVP}$ $V_{\rm TEO}$ $V_{\rm RVS}$ $V_{\rm FUS}$ $V_{\rm GP}$ 1.6 1.7 2.0 2.2 2.8 3.0 3.2 3.7 4.3 4.5 5.7

Decision boundaries of all methods for a noisy speech sample (SNR = 10 dB):

- $ightharpoonup V_{\rm ZFF}$ remains invariant to added interferences across a range of SNRs.
- $ightharpoonup V_{\rm ZFF}$ segments the signal into significantly granular intervals than the other methods, as well as those given in the ground truth.

Conclusions

- \blacktriangleright VAD can be effectively performed with the proposed method i.e. by combining the ZFF filter outputs together to compose a composite signal carrying f_0 , F_1 , and F_2 related information, or else by passing the composite signal to another VAD.
- The composite signal, obtained by modulation of trend removal in the zero-frequency filtering, is an effective representation of speech characteristics, and can be used in conjunction with other VADs.
- ★ This work was funded by the Swiss National Science Foundation's NCCR Evolving language (grant agreement no. 51NF40_180888) and Towards Integrated processing of Physiological and Speech signals (TIPS) (grant agreement no. 200021_188754).