Module-5: Linear Algebra

Introduction of linear algebra related to EC & EE engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications: Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3)

L1-Elementary row transformation of a matrix, Rank of a matrix

Recall:

- 1. What is a Matrix and their types.
- 2. What are the properties of a Matrix.
- 3. What is Elementary row transformation of a matrix.
- 4. What is a Minor and order of a Matrix.

Elementary transformation of a matrix:

- 1. The interchange of any two rows (columns)
- 2. The multiplication of any row (column) by a non-zero number.
- 3. The addition of a constant multiple of the elements of any row (column) to the corresponding elements of any other row (column)

Two matrices A and B are said to be **equivalent** if one can be obtained from the other by a sequence of Elementary transformation. Equivalent matrices are denoted by $A \sim B$.

A matrix is obtained from the unit matrix by any one of the elementary transformations is called **Elementary matrix**.

Rank: A matrix is said to be of rank r, if it has at least one nonzero minor of order r and every minor of order higher then r vanishes. Rank of A is denoted by $\rho(A)$.

Note: 1. If a matrix has nonzero minor of order r, then its rank is $\geq r$.

- 2. If all the minors of order r+1 are zero, then its rank is $\leq r$.
- 3. Elementary transformations do not change the rank of a matrix.

Echelon Form: A rectangular matrix is in echelon form if,

- 1. All nonzero rows are above any zero rows.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero.

Row reduced Echelon Form: An echelon form is said to be row reduced if, the leading entry in each nonzero row is 1 and each leading 1 is the only nonzero entry in its column.

If a matrix A is equivalent to an echelon matrix E, then $\rho(A)$ = Number of nonzero rows in E.

Examples: Find the rank of the following matrix:

$$1.\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix} \quad 2.\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix} \quad 3.\begin{bmatrix} 90 & 91 & 92 & 93 & 94 \\ 91 & 92 & 93 & 94 & 95 \\ 92 & 93 & 94 & 95 & 96 \\ 93 & 94 & 95 & 96 & 97 \\ 94 & 95 & 96 & 97 & 98 \end{bmatrix} \quad 4.\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

Solutions: 1. $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

$$2. \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix} \xrightarrow{R_4 = R_4 - (R_1 + R_2 + R_3)} \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly reduced matrix is in echelon form with 3 nonzero rows. $\therefore \rho(A) = 3$.

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

4.
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_4} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix}$$

$$\begin{array}{c} R_2 = R_2 - R_1 \\ R_3 = -\frac{1}{2}(R_3 - 3R_1) \end{array} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \end{bmatrix} \begin{array}{c} R_4 = R_4 + R_2 \\ R_3 = R_3 + R_2 \end{array} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

Review:

- 1. What is an Elementary matrix.
- 2. What are the Elementary transformation of a matrix.
- 3. What is a Rank of a matrix.
- 4. What is Echelon and row reduced echelon form.

L2- Consistency and Solution of system of linear equations

Recall:

- 1. What are the three types of elementary row operations? Provide an example of each.
- 2. How does applying an elementary row transformation affect the determinant of a matrix?
- 3. Can the rank of a matrix change when applying row transformations? Justify your answer.
- 4. When adding a multiple of one row to another, does it alter the rank of the matrix?

Consistency of Homogeneous linear equations, AX = 0:

X = 0 is the trivial solution. Thus the homogeneous system is always consistent.

Note: 1. If $\rho(A)$ = number of unknowns, then the system has only trivial solution.

2. If $\rho(A)$ < number of unknowns, then the system has an infinite number of solutions.

Consistency of non-homogeneous linear equations, AX = B:

- 1. If $\rho(A) = \rho(A|B) =$ number of unknowns, then the system has unique solution.
- 2. If $\rho(A) = \rho(A|B)$ < number of unknowns, then the system has an infinite number of solutions.
- 3. If $(A) \neq \rho(A|B)$, then system has no solution.

Examples:

1. Test for consistency and solve the system x + 4 + 3z = 0, x - y + z = 0, 2x - y + 3z = 0. Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 4 & 3 & 0 \\ 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 0 \end{bmatrix}$$

$$\frac{R_2 = -(R_2 - R_1)}{R_3 = -(R_3 - 2R_1)} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 9 & 3 & 0 \end{bmatrix}$$

$$\frac{R_3 = 5R_3 - 9R_2}{R_3 = 6R_3 - 9R_2} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix}$$

Clearly $\rho(A) = \rho(A|B) = 3$ = number of unknowns, the system has unique solution that is trivial.

$$x = y = z = 0.$$

2. For what values of λ and μ do the system of equations: x + y + z = 6, x + 2y + 3z = 10,

 $x + 2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.

Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 1 & 2 & 3 & | & 10 \\ 1 & 2 & \lambda & | & \mu \end{bmatrix}$$

$$\begin{array}{c|ccccc} R_2 = R_2 - R_1 \\ \hline R_3 = R_3 - R_1 \end{array} \qquad \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & \lambda - 1 & \mu - 6 \end{bmatrix}$$

(i) If $(A) \neq \rho(A|B)$, then the system has no solution.

If
$$\lambda - 3 = 0$$
 and $\mu - 10 \neq 0$ then $\rho(A) = 2 \neq \rho(A|B) = 3$.

Therefore, if $\lambda = 3$ and $\mu \neq 10$ then the system has no solution

(ii) If $\rho(A) = \rho(A|B) =$ number of unknowns, then the system has unique solution.

If $\lambda - 3 \neq 0$ and for any value of μ , $\rho(A) = \rho(A|B) = 3$ = number of unknowns.

Hence for $\lambda \neq 3$, the system has unique solution.

(iii) If $\rho(A) = \rho(A|B)$ < number of unknowns, then the system has an infinite number of solutions.

If
$$\lambda - 3 = 0$$
 and $\mu - 10 = 0$ then $\rho(A) = 2 = \rho(A|B) < 3$.

Therefore if $\lambda = 3$ and $\mu = 10$ then the system has an infinite number of solutions.

3. Show that if $\lambda \neq -5$, the system 3x - y + 4z = 3, x + 2y - 3z = -2, $6x + 5y + \lambda z = -3$ have a unique solution. Find the solution if $\lambda = -5$.

Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 2 & -3 & | & -2 \\ 3 & -1 & 4 & | & 3 \\ 6 & 5 & \lambda & | & -3 \end{bmatrix}$$

$$R_2 = R_2 - 3R_1$$

$$R_3 = R_3 - 6R_1$$

$$\begin{bmatrix} 1 & 2 & -3 & | & -2 \\ 0 & -7 & 13 & | & 9 \\ 0 & -7 & \lambda + 18 & | & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -3 & | & -2 \\ 0 & -7 & \lambda + 18 & | & 9 \\ 0 & 0 & \lambda + 5 & | & 0 \end{bmatrix}$$

Clearly if $\lambda + 5 \neq 0$, $\rho(A) = \rho(A|B) = 3 =$ number of unknowns.

Therefore if $\lambda \neq -5$ then the system has unique solution.

if $\lambda = -5$ then $\rho(A) = 2 = \rho(A|B) < 3$, the system has an infinite number of solutions.

$$x + 2y - 3z = -2$$
 and $-7y + 13z = 9 \implies y = \frac{13z - 9}{7}$, $x = -2 - 2\left(\frac{13z - 9}{7}\right) + 3z = \frac{4 - 5z}{7}$

Therefore solutions are $\begin{pmatrix} \frac{4-5z}{7} \\ \frac{13z-9}{7} \\ z \end{pmatrix}$ for any value of z.

Review:

- 1. What is the trivial solution of the homogeneous system AX=0.
- 2. If the Rank of a matrix is equal to the number of unknowns, what type of solution does the homogeneous system have.
- 3. If the Rank of a matrix is less then the number of unknowns, what type of solution does the homogeneous system have.
- 4. Give the condition for nonhomogeneous system to be consistent.

L3- Gauss-elimination method

Recall:

- 1. When we say that the system of equation AX = B has a unique solution?
- 2. What is the condition for system of equation AX = B to have infinitely many solutions?

- 3. If the Rank of a matrix is less then the number of unknowns, what type of solution does the homogeneous system have.
- 4. What is the maximum rank a m×n matrix can have?
- 5. What is the condition for the system of equation to have no solution?

Solution of linear simultaneous equations:

1. Gauss elimination method:

Consider the equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$. Reduce augmented matrix into an upper triangular matrix as below

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix}$$

$$\frac{R_2 = a_1 R_2 - a_2 R_1}{R_3 = a_1 R_3 - a_3 R_1}$$

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ 0 & b'_2 & c'_2 & d'_2 \\ 0 & b'_3 & c'_3 & d'_3 \end{bmatrix}$$

Example: 1. Solve by Gauss elimination method,

$$2x - 3y + z = -1$$
, $x + 4y + 5z = 25$, $3x - 4y + z = 2$.

Solution: Augmented matrix is

$$\begin{bmatrix} 2 & -3 & 1 & | & -1 \\ 1 & 4 & 5 & | & 25 \\ 3 & -4 & 1 & | & 2 \end{bmatrix}$$

$$\frac{R_2 = 2R_2 - R_1}{R_3 = 2R_3 - 3R_1}$$

$$\begin{bmatrix} 2 & -3 & 1 & | & -1 \\ 0 & 11 & 9 & | & 51 \\ 0 & 1 & -1 & | & 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 & 1 & | & -1 \\ 0 & 11 & 9 & | & 51 \\ 0 & 0 & -20 & | & 26 \end{bmatrix}$$

$$z = -\frac{26}{20} = -1.3$$
, $y = \frac{51 - 9 \times (-1.3)}{11} = 5.7$ and $z = \frac{-1 + 3 \times 5.7 + 1.3}{2} = 8.7$

2. Solve by Gauss elimination method, 2x + 3y + z = -1, x - y + z = 6, 3x + 2y - z = -4. Solution: Augmented matrix is

$$\begin{bmatrix} 1 & -1 & 1 & 6 \\ 2 & 3 & 1 & -1 \\ 3 & 2 & -1 & -4 \end{bmatrix}$$

$$R_2 = R_2 - 2R_1$$

$$R_3 = R_3 - 3R_1$$

$$\begin{bmatrix} 1 & -1 & 1 & 6 \\ 0 & 5 & -1 & -13 \\ 0 & 5 & -4 & -22 \end{bmatrix}$$

$$\therefore$$
 -3z = -9, 5y-z = -13, x-y+z=6 \implies z = 3, y = -2, and x = 1.

Review:

- 1. What is the primary goal of the Gauss Elimination method.
- 2. In the Gauss Elimination method, what is the first step typically performed on the augmented matrix.
- 3. Discuss how Gauss- elimination can fail if the pivot element is zero. How is this issue resolved?
- 4. In Gauss- elimination, does the rank of a matrix change during row operations?

L4- Gauss-Jordan method

Recall:

- 1. Define the role of pivot elements in Gaussian elimination.
- 2. In the Gauss Elimination method, what is the first step typically performed on the augmented matrix.
- 3. State the condition under which Gauss-elimination can be applied to solve a linear system.
- 4. What is the main objective of the Gauss-elimination method?

2. Gauss Jordan method:

Reduce augmented matrix into a diagonal matrix as below

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

$$\begin{array}{c|c} R_1 = b'_2 R_1 - b_1 R_2 \\ R_3 = b'_2 R_3 - b'_3 R_2 \end{array} \qquad \begin{bmatrix} a'_1 & 0 & c'_1 & d'_1 \\ 0 & b'_2 & c'_2 & d'_2 \\ 0 & 0 & c''_3 & d''_3 \end{bmatrix}$$

$$\begin{array}{c} R_1 = c^{\prime\prime}{}_3 R_1 - c^{\prime}{}_1 R_3 \\ R_2 = c^{\prime\prime}{}_3 R_2 - c^{\prime}{}_2 R_3 \end{array} \qquad \begin{bmatrix} a^{\prime\prime}{}_1 & 0 & 0 & d^{\prime\prime}{}_1 \\ 0 & b^{\prime\prime}{}_2 & 0 & d^{\prime\prime}{}_2 \\ 0 & 0 & c^{\prime\prime}{}_3 & d^{\prime\prime}{}_3 \end{bmatrix}$$

Then
$$x = \frac{dv_1}{av_1}$$
, $y = \frac{dv_2}{bv_2}$ and $z = \frac{dv_3}{cv_3}$.

Example:

1. Solve by Gauss Jordan method, 2x - y + 3z = 1, -3x + 4y - 5z = 0, x + 3y - 6z = 0. Solution: Augmented matrix is

$$\begin{bmatrix} 2 & -1 & 3 & 1 \\ -3 & 4 & -5 & 0 \\ 1 & 3 & -6 & 0 \end{bmatrix}$$

$$R_{2} = 2R_{2} + 3R_{1}
R_{3} = 2R_{3} - R_{1}$$

$$\begin{bmatrix} 2 & -1 & 3 & 1 \\ 0 & 5 & -1 & 3 \\ 0 & 7 & -15 & -1 \end{bmatrix}$$

$$R_{1} = 5R_{1} + R_{2}
R_{3} = 5R_{3} - 7R_{2}$$

$$\begin{bmatrix} 10 & 0 & 14 & 8 \\ 0 & 5 & -1 & 3 \\ 0 & 0 & -68 & -26 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 0 & 7 & 4 \\ 0 & 5 & -1 & 3 \\ 0 & 0 & 34 & 13 \end{bmatrix}$$

$$R_{1} = 34R_{1} - 7R_{3}
R_{2} = 34R_{2} + R_{3}$$

$$\begin{bmatrix} 170 & 0 & 0 & 45 \\ 0 & 170 & 0 & 115 \\ 0 & 0 & 34 & 13 \end{bmatrix}$$

$$\therefore x = \frac{45}{170} = \frac{9}{34} = 0.2647$$
, $y = \frac{115}{170} = \frac{23}{34} = 0.6765$ and $z = \frac{13}{34} = 0.3824$.

2. Solve by Gauss Jordan method, 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.

Solution: Augmented matrix is

$$\begin{bmatrix} 2 & 1 & 1 & | & 10 \\ 3 & 2 & 3 & | & 18 \\ 1 & 4 & 9 & | & 16 \end{bmatrix}$$

$$R_2 = 2R_2 - 3R_1$$

$$R_3 = 2R_3 - R_1$$

$$\begin{bmatrix} 2 & 1 & 1 & | & 10 \\ 0 & 1 & 3 & | & 6 \\ 0 & 7 & 17 & | & 22 \end{bmatrix}$$

$$R_1 = \frac{1}{2}(R_1 - R_2)$$

$$R_3 = -\frac{1}{4}(R_3 - 7R_2)$$

$$\begin{bmatrix} 1 & 0 & -1 & | & 2 \\ 0 & 1 & 3 & | & 6 \\ 0 & 0 & 1 & | & 5 \end{bmatrix}$$

$$R_1 = R_1 + R_3$$

$$R_2 = R_2 - 3R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 7 \\ 0 & 1 & 0 & | & 7 \\ 0 & 0 & 1 & | & 5 \end{bmatrix}$$

 $\therefore x = 7, \quad y = -9 \text{ and } z = 5.$

Review:

- 1. How does the Gauss-Jordan method differ from Gauss- elimination?
- 2. What is the primary advantage of converting a matrix to reduced row echelon form using the Gauss-Jordan method?
- 3. What are the additional steps in Gauss-Jordan compared to Gauss-elimination?
- 4. State one real-world application of the Gauss-Jordan method.

T1- Problems on system of linear equations

- 1. Test for consistency and solve the system x + y + z = 3, 2x y + 3z = 10, 4x + y + 5z = 16.
- 2. For what values of λ and μ do the system of equations: 2x + 3y + 5z = 9, 7x + 3y 2z = 8, $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.
- 3. Test for consistency of the system x + y + z = 3, 2x + y + 3z = 5, x + 2y = 3.
- 4. Applying Gauss elimination method solve

- 1. 2x + 3y z = 5, 4x + 4y 3z = 3, 2x 3y + 2z = 2.
- 2. x + y + z = 6, x 2y + 3z = 8, 2x + y z = 3.
- 5. Applying Gauss Jordan method solve 1. 2x + 3y z = 5, 4x + 4y 3z = 3, 2x 3y + 2z = 2. $2. x + y + z = 6, \quad x - 2y + 3z = 8, \quad 2x + y - z = 3$

L5- Approximate solution by Gauss-Seidel method.

Recall:

- 1. Compare the efficiency of the Gauss-Jordan method and Gauss-elimination for large systems.
- 2. Does the Gauss-Jordan method require back substitution? Why or why not?
- 3. Why we use Gauss-Jordan method and Gauss- elimination method?
- 4. What is the basic requirement about the rank of a matrix for solving a system of linear equations using either the Gauss-Jordan method or Gauss- elimination method?
- **3. Gauss-Seidel iteration method**: Consider the equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$ If a_1 , b_2 , c_3 are large as compared to other coefficients in their respective equations. Then iterative formula for x, y and z are given by

$$x_{n+1} = \frac{1}{a_1} (d_1 - c_1 z_n - b_1 y_n) \,, \quad y_{n+1} = \frac{1}{b_2} (d_2 - a_2 x_{n+1} - c_2 z_n) \,\,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,, \quad z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1}) \,.$$

Start with initial approximations x_0 , y_0 , z_0 (each = 0) for x, y, z respectively.

Note: Gauss-Seidel method converges if in each equation, the absolute value of the largest coefficient is Greater than the sum of the absolute values of the remaining coefficients.

Example:

54x + y + z = 110 , 2x + 15y + 6z = 72 , -x + 6y + 21z = 85by Gauss-Seidel iteration method.

$x_{n+1} = \frac{1}{54} (110 - z_n - y_n)$	$y_{n+1} = \frac{1}{15} (72 - 2x_{n+1} - 6z_n)$	$z_{n+1} = \frac{1}{21} \left(85 - 6y_{n+1} + x_{n+1} \right)$
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{1}{54} \left(110 - z_0 - y_0 \right)$	$y_1 = \frac{1}{15} (72 - 2x_1 - 6z_0)$	$z_1 = \frac{1}{21} (85 - 6y_1 + x_1)$
= 2.037	= 4.528	= 2.851
$x_2 = \frac{1}{54} \left(110 - z_1 - y_1 \right)$	$y_2 = \frac{1}{15}(72 - 2x_2 - 6z_1)$	$z_2 = \frac{1}{21} (85 - 6y_2 + x_2)$
= 1.900	= 3.406	= 3.165
$x_3 = \frac{1}{54} \left(110 - z_2 - y_2 \right)$	$y_3 = \frac{1}{15}(72 - 2x_3 - 6z_2)$	$z_3 = \frac{1}{21} (85 - 6y_3 + x_3)$
=1.915	=3.279	=3.202

$x_4 = \frac{1}{54} (110 - z_3 - y_3)$	$y_4 = \frac{1}{15} \left(72 - 2x_4 - 6z_3 \right)$	$z_4 = \frac{1}{21} (85 - 6y_4 + x_4)$
=1.917	=3.264	=3.206
$x_5 = \frac{1}{54} (110 - z_4 - y_4)$	$y_5 = \frac{1}{15}(72 - 2x_5 - 6z_4)$	$z_5 = \frac{1}{21} (85 - 6y_5 + x_5)$
=1.917	=3.262	=3.207

- x = 1.917, y = 3.262 and z = 3.207.
- 2. Use Gauss-Seidel method to solve 20x + y 2z = 17, 3x + 20y z = 18, 2x 3y + 20z = 25.

Carry out 2 iterations with $x_0 = 0$, $y_0 = 0$, $z_0 = 0$.

$x_{n+1} = \frac{1}{20} (17 + 2z_n - y_n)$	$y_{n+1} = \frac{1}{20} (18 - 3x_{n+1} + z_n)$	$z_{n+1} = \frac{1}{20} \left(25 + 3y_{n+1} - 2x_{n+1} \right)$
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{1}{20} (17 + 2z_0 - y_0)$ $= 0.85$	$y_1 = \frac{1}{20} (18 - 3x_1 + z_0)$ $= 0.7725$	$z_1 = \frac{1}{20} (25 + 3y_1 - 2x_1)$ $= 1.2809$
$x_2 = \frac{1}{20} (17 + 2z_1 - y_1)$ $= 0.9395$	$y_2 = \frac{1}{20}(18 - 3x_2 + z_1)$ $= 0.8231$	$z_2 = \frac{1}{20} (25 + 3y_2 - 2x_2)$ $= 1.2795$

x = 0.9395, y = 0.8231 and z = 1.2795.

Exercise:

Solve by Gauss-Seidel method.

- 1. 2x + y + 6z = 9, 8x + 3y + 2z = 13, x + 5y + z = 7.
- 2. 83x + 11y 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71.

Review:

- 1. For the Gauss-Seidel method to converge, what condition must be satisfied?
- 2. In the Gauss-Seidel method, how is the updated value of a variable used in the iteration process?
- 3. Discuss the conditions under which the Gauss-Seidel method converges to a solution
- 4. What are the advantages of using the Gauss-Seidel method over direct methods like Gaussian elimination?

L6- Eigenvalues and Eigen Vectors

Recall:

- 1. What type of system is suitable for solving with the Gauss-Seidel method?
- 2. Define the diagonal dominance condition and its importance for the Gauss-Seidel method.
- 3. Explain how the initial guess affects the convergence of the Gauss-Seidel method.
- 4. Compare the Gauss-Seidel method with the Jacobi method for solving linear systems.

Characteristic equation: $|A - \lambda I| = 0$ is the characteristic equation of the square matrix A. Roots are called Characteristic roots or Eigen values or latent roots of A.

Any vector X satisfying $[A - \lambda I]X = 0$ is called **Eigen vector** corresponding to the Eigen value.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then Characteristic equation is $\lambda^2 - (a+d)\lambda + (ad-cb) = 0$.

If
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
, then Characteristic equation is
$$\lambda^3 - (a_1 + b_2 + c_3)\lambda^2 + (sum\ of\ the\ minors\ of\ a_1, b_2 \& c_3)\lambda - |A| = 0\ .$$

Properties of Eigen values:

- 1) The sum of the Eigen values of a matrix is the sum of the principal diagonal elements.
- 2) The product of the Eigen values of a matrix is equal to its determinant.
- 3) If λ is the Eigen value of A, then $1/\lambda$ is Eigen value of A^{-1} .
- 4) If λ is the Eigen value of an orthogonal matrix, then $1/\lambda$ is also its Eigen value.
- 5) If λ is the Eigen value of A, then λ^n is the Eigen value of A^n . But Eigen vectors are same.

Cayley-Hamilton theorem: Every square matrix satisfies its characteristic equation.

1) Find the Eigen values and Eigen vectors of the following matrices.

i)
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 ii) $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ iii) $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

Solution:

i) Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$\sum D = 1 + 5 + 1 = 7.$$
 Characteristic equation is $|A - \lambda I| = 0$.
$$\begin{vmatrix} 1 - \lambda & 1 & 3 \\ 1 & 5 - \lambda & 1 \end{vmatrix} = 0$$

$$|A| = -36$$

Characteristic equation is
$$|A - \lambda I| = 0$$
.

$$\begin{vmatrix}
1 - \lambda & 1 & 3 \\
1 & 5 - \lambda & 1 \\
3 & 1 & 1 - \lambda
\end{vmatrix} = 0$$

$$\Rightarrow \lambda^3 - (7)\lambda^2 + (0)\lambda - (-36) = 0$$

$$\Rightarrow \lambda^3 - 7\lambda^2 + 0\lambda + 36 = 0$$

Roots are -2, 3, 6

$$\lambda_{1} = -2
3x + y + 3z = 0
x + 7y + z = 0
\Rightarrow 20y = 0, and z = -x
\therefore X_{1} = [1, 0, -1]'$$

$$\lambda_{2} = 3
-2x + y + 3z = 0
x + 2y + z = 0
\Rightarrow y = -z
X_{2} = [1, -1, 1]'$$

$$\lambda_{3} = 6
-5x + y + 3z = 0
x - y + z = 0
\Rightarrow z = x
X_{3} = [1, 2, 1]'$$

Eigen values are -2, 3 and 6, the corresponding Eigen vectors are

$$[1, 0, -1]'$$
, $[1, -1, 1]'$ and $[1, 2, 1]'$ respectively.

ii) Let
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 $\sum D = 8 + 7 + 3 = 18.$

Characteristic equation is
$$|A - \lambda I| = 0$$
.

$$\Rightarrow \begin{vmatrix} 8-\lambda & -6 & 2\\ -6 & 7-\lambda & -4\\ 2 & -4 & 3-\lambda \end{vmatrix} = 0$$

$$\sum M \ D = 5 + 20 + 20 = 45$$
$$|A| = 0.$$

 $\sum D = 6 + 3 + 3 = 12.$

 $\sum M D = 8 + 14 + 14 = 36$

$$\Rightarrow \lambda^{3} - (18)\lambda^{2} + (45)\lambda - (0) = 0$$

\Rightarrow \lambda^{3} - 18\lambda^{2} + 45\lambda + 0 = 0

Roots are 0, 3, 15

$$\lambda_{1} = 0
8x - 6y + 2z = 0
-6x + 7y - 4z = 0
\Rightarrow 10x - 5y = 0 ,
\Rightarrow y = 2x$$

$$\lambda_{2} = 3
5x - 6y + 2z = 0
-6x + 4y - 4z = 0
\Rightarrow 4x - 8y = 0
\Rightarrow x = 2y$$

$$\lambda_{3} = 15
-7x - 6y + 2z = 0
-6x - 8y - 4z = 0
\Rightarrow -20x - 20y = 0
\Rightarrow y = -x$$

$$X_{2} = [2, 1, -2]'$$

$$X_{3} = [1, -1, \frac{1}{2}]'$$

Eigen values are 0, 3 and 15, the corresponding Eigen vectors are

[1, 2, 2]', [2, 1, -2]' and [2, -2, 1]' respectively.

iii) Let
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 6-\lambda & -2 & 2 \\ -2 & 3-\lambda & -1 \\ 2 & -1 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^{3} - (12)\lambda^{2} + (36)\lambda - (32) = 0$$

\Rightarrow \lambda^{3} - 12\lambda^{2} + 36\lambda - 32 = 0

Roots are 2, 2, 8

(The sum of the Eigen values of a matrix is the sum of the principal diagonal elements.

$$\lambda_1 = 2 \\ 4x - 2y + 2z = 0 \\ \text{Or } 2x - y + z = 0 \\ \text{Let } y = 0 \text{ , and } z = -2x \\ \therefore X_1 = [1, 0, -2]'$$

$$\lambda_2 = 2 \\ 4x - 2y + 2z = 0 \\ \text{Or } 2x - y + z = 0 \\ \text{Let } z = 0 \text{ , and } y = 2x \\ X_2 = [1, 2, 0]'$$

$$\lambda_3 = 8 \\ -2x - 2y + 2z = 0 \\ -2x - 5y - z = 0 \\ \Rightarrow 3y + 3z = 0 \\ X_3 = [2, -1, 1]'$$

Eigen values are 2, 2 and 8, the corresponding Eigen vectors are

$$[1, 0 -2]'$$
, $[1, 2, 0]'$ and $[2 -1 1]'$ respectively.

Review:

- 1. What is the characteristic equation of a square matrix A.
- 2. What does the term λ represent in the characteristic equation.
- 3. What are the characteristic roots of a matrix also known as.
- 4. What is an Eigen vector of a matrix A.
- 5. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the Eigen values of a matrix A, what is the product of the eigen values equal to.
- 6. What does the Cayley-Hamilton theorem state.

L7- Rayleigh's power method to find the dominant Eigenvalue and Eigenvector

Recall:

- 1. State the condition for a square matrix A to have eigenvalues.
- 2. What does it mean if an eigenvalue of a matrix is zero?
- 3. State the eigenvalues of an identity matrix of order n.
- 4. How many eigenvalues does an n×n matrix have?
- 5. If λ is an eigenvalue of A, what is an eigenvalue of kA, where k is a scalar?
- 6. How does the determinant of a matrix relate to its eigenvalues?

7. .

Determination of largest Eigen value by Rayleigh's power method:

Let A be the given square matrix and a column vector X_0 be the initial Eigen vector. Evaluate $AX_0 = \lambda_1 X_1$ where λ_1 is the first approximation of the Eigen value and X_1 is the corresponding Eigen vector.

 $AX_1 = \lambda_2 X_2$. Where λ_2 is the 2^{nd} approximation of the Eigen value and X_2 is the corresponding Eigen vector. $AX_2 = \lambda_3 X_3$. Where λ_3 is the 3^{rd} approximation of the Eigen value and X_3 is the corresponding Eigen vector. Repeat this process till $X_n - X_{n-1}$ becomes negligible.

Example:1. Find the largest Eigen value and corresponding Eigen vector of the matrix by power method.

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 taking initial eigen vector $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Solution:

$$AX_{0} = \begin{bmatrix} 1\\1\\0 \end{bmatrix} = 1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \lambda_{1}X_{1}, \qquad AX_{1} = \begin{bmatrix} 7\\3\\0 \end{bmatrix} = 7 \begin{bmatrix} 1\\0.43\\0 \end{bmatrix} = \lambda_{2}X_{2}$$

$$AX_{2} = \begin{bmatrix} 3.57\\1.86\\0 \end{bmatrix} = 3.57 \begin{bmatrix} 1\\0.52\\0 \end{bmatrix} = \lambda_{3}X_{3}, \qquad AX_{3} = \begin{bmatrix} 4.12\\2.04\\0 \end{bmatrix} = 4.12 \begin{bmatrix} 1\\0.5\\0 \end{bmatrix} = \lambda_{4}X_{4}$$

$$AX_{4} = \begin{bmatrix} 4\\2\\0 \end{bmatrix} = 4 \begin{bmatrix} 1\\0.5\\0 \end{bmatrix} = \lambda_{5}X_{5}$$

Since X_4 and X_5 are same, the largest Eigen value is 4 and the corresponding Eigen vector is [1, 0.5, 0]'

2. Find the largest Eigen value and corresponding Eigen vector of the matrix by power method.

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 taking initial Eigen vector $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Carry out 4 iterations.

Solution:

$$AX_0 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0.5 \end{bmatrix} = \lambda_1 X_1, \qquad AX_1 = \begin{bmatrix} 2.5 \\ 0 \\ 2 \end{bmatrix} = 2.5 \begin{bmatrix} 1 \\ 0 \\ 0.8 \end{bmatrix} = \lambda_2 X_2,$$

$$AX_2 = \begin{bmatrix} 2.8 \\ 0 \\ 2.6 \end{bmatrix} = 2.8 \begin{bmatrix} 1 \\ 0 \\ 0.93 \end{bmatrix} = \lambda_3 X_3,$$

$$AX_2 = \begin{bmatrix} 2.8 \\ 0 \\ 2.6 \end{bmatrix} = 2.8 \begin{bmatrix} 1 \\ 0 \\ 0.93 \end{bmatrix} = \lambda_3 X_3, \qquad AX_3 = \begin{bmatrix} 2.93 \\ 0 \\ 2.86 \end{bmatrix} = 2.93 \begin{bmatrix} 1 \\ 0 \\ 0.98 \end{bmatrix} = \lambda_4 X_4.$$

The largest Eigen value is 2.93 and the corresponding Eigen vector is [1, 0, 0.98]'.

3. Find the largest Eigen value and corresponding Eigen vector of the matrix by power method

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix},$$

$$X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
. Carry out 4 iterations.

Solution:

$$AX_{0} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \lambda_{1}X_{1}, \qquad AX_{1} = \begin{bmatrix} 2\\-2\\2 \end{bmatrix} = 2 \begin{bmatrix} 1\\-1\\1 \end{bmatrix} = \lambda_{2}X_{2},$$

$$AX_{2} = \begin{bmatrix} 3\\-4\\3 \end{bmatrix} = 4 \begin{bmatrix} 0.75\\-1\\0.75 \end{bmatrix} = \lambda_{3}X_{3}, \qquad AX_{3} = \begin{bmatrix} 2.5\\-3.5\\2.5 \end{bmatrix} = 3.5 \begin{bmatrix} 0.71\\-1\\0.71 \end{bmatrix} = \lambda_{4}X_{4}.$$

The largest Eigen value is 3.5 and the corresponding Eigen vector is [0.71, -1, 0.71]'.

Review:

- 1. What is the primary purpose of Rayleigh's method.
- 2. In Rayleigh's power method, what is the initial vector X_0 used for.
- 3. What condition indicates that the iterations in Rayleigh's power method should stop.
- 4. What is the role of normalization in Rayleigh's power method? Why is it necessary?
- 5. How can you determine the corresponding eigenvector after approximating the dominant eigenvalue?

T2-Problems on Eigenvalues, Eigen Vectors and Rayleigh's power method

1. Find the Eigen values and Eigen vectors of the following matrices.

$$\text{i)} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix} \qquad \text{ii)} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad \text{iii)} \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

2. Find the largest Eigen value and corresponding Eigen vector of the following matrix by power method.

1.
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
2.
$$\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}, X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
3.
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}, X_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
4.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, X_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

T3-Self Study: Solution of system of equations by Gauss-Jacobi iterative method and Inverse of a square matrix by Cayley- Hamilton theorem

Self-study:

Gauss-Jacobi's iteration method:

Consider the equations $a_1x + b_1y + c_1z = d_1$; $a_2x + b_2y + c_2z = d_2$; $a_3x + b_3y + c_3z = d_3$,

If a_1 , b_2 , c_3 are numerically large as compared to other coefficients in their respective equations.

Then iterative formula for x, y and z are given by

$$x = \frac{1}{a_1}(d_1 - b_1y - c_1z)$$
, $y = \frac{1}{b_2}(d_2 - a_2x - c_2x)$ and $z = \frac{1}{c_3}(d_3 - a_3x - b_3y)\cdots\cdots(1)$

If not given assume that initial value of $(x, y, z) \equiv (0, 0, 0)$. Substitute these values in (1) and find

$$x_1 = \frac{1}{a_1}(d_1)$$
, $y_1 = \frac{1}{b_2}(d_2)$ and $z_1 = \frac{1}{c_3}(d_3)$

Then find,
$$x_2 = \frac{1}{a_1}(d_1 - b_1y_1 - c_1z_1)$$
, $y_2 = \frac{1}{b_2}(d_2 - a_2x_1 - c_2z_1)$ and $z_2 = \frac{1}{c_3}(d_3 - a_3x_1 - b_3y_1)$

Continuing like this using,

$$x_{n+1} = \frac{1}{a_1}(d_1 - b_1y_n - c_1z_n), \quad y_{n+1} = \frac{1}{b_2}(d_2 - a_2x_n - c_2z_n) \text{ and } z_{n+1} = \frac{1}{c_3}(d_3 - a_3x_n - b_3y_n)$$

Until two set of values coincides.

Example:

1. Solve 54x + y + z = 110, 2x + 15y + 6z = 72, -x + 6y + 21z = 85

by Gauss-Jacobi's iteration method by taking initial values $(x, y, z) \equiv (2, 3, 4)$.

$x_{n+1} = \frac{1}{54} (110 - z_n - y_n)$	$y_{n+1} = \frac{1}{15} (72 - 2x_n - 6z_n)$	$z_{n+1} = \frac{1}{21} \left(85 - 6y_n + x_n \right)$
Let $x_0 = 2$	$y_0 = 3$	$z_0 = 4$
$x_1 = \frac{1}{54} \left(110 - z_0 - y_0 \right)$	$y_1 = \frac{1}{15} (72 - 2x_0 - 6z_0)$	$z_1 = \frac{1}{21} (85 - 6y_0 + x_0)$
= 1.907	= 2.933	= 3.286
$x_2 = \frac{1}{54} (110 - z_1 - y_1)$	$y_2 = \frac{1}{15}(72 - 2x_1 - 6z_1)$	$z_2 = \frac{1}{21} (85 - 6y_1 + x_1)$
= 1.922	= 3.231	= 3.300
$x_3 = \frac{1}{54} \left(110 - z_2 - y_2 \right)$	$y_3 = \frac{1}{15}(72 - 2x_2 - 6z_2)$	$z_3 = \frac{1}{21} (85 - 6y_2 + x_2)$
=1.916	=3.224	=3.216
$x_4 = \frac{1}{54} (110 - z_3 - y_3)$	$y_4 = \frac{1}{15} \left(72 - 2x_3 - 6z_3 \right)$	$z_4 = \frac{1}{21}(85 - 6y_3 + x_3)$
=1.918	=3.258	=3.218
$x_5 = \frac{1}{54} (110 - z_4 - y_4)$	$y_5 = \frac{1}{15}(72 - 2x_4 - 6z_4)$	$z_5 = \frac{1}{21}(85 - 6y_4 + x_4)$
=1.917	=3.257	=3.208
$x_6 = \frac{1}{54} \left(110 - z_5 - y_5 \right)$	$y_6 = \frac{1}{15}(72 - 2x_5 - 6z_5)$	$z_6 = \frac{1}{21} (85 - 6y_5 + x_5)$

=1.917	=3.261	=3.208

$$x = 1.917$$
, $y = 3.261$ and $z = 3.208$.

2. Use **Gauss-Jacobi's** iteration to solve 20x + y - 2z = 17, 3x + 20y - z = 18, 2x - 3y + 20z = 25.

with
$$x_0 = 0$$
, $y_0 = 0$, $z_0 = 1$.

$x_{n+1} = \frac{1}{20} \left(17 + 2z_n - y_n \right)$	$y_{n+1} = \frac{1}{20} \left(18 - 3x_n + z_n \right)$	$z_{n+1} = \frac{1}{20} \left(25 + 3y_n - 2x_{n+1} \right)$
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 1$
$x_1 = \frac{1}{20} (17 + 2z_0 - y_0)$ $= 0.95$	$y_1 = \frac{1}{20} (18 - 3x_0 + z_0)$ = 0.95	$z_1 = \frac{1}{20}(25 + 3y_0 - 2x_0)$
	$a_{1} = \frac{1}{2}(10 - 2u + u)$	= 1.25
$x_2 = \frac{1}{20} (17 + 2z_1 - y_1)$ $= 0.928$	$y_2 = \frac{1}{20}(18 - 3x_1 + z_1)$ = 0.820	$z_2 = \frac{1}{20}(25 + 3y_1 - 2x_1)$ $= 1.298$
$x_3 = \frac{1}{20} (17 + 2z_2 - y_2)$ $= 0.939$	$y_3 = \frac{1}{20}(18 - 3x_2 + z_2)$ = 0.826	$z_3 = \frac{1}{20}(25 + 3y_2 - 2x_2)$ $= 1.28$
$x_4 = \frac{1}{20} (17 + 2z_3 - y_3)$ $= 0.937$	$y_4 = \frac{1}{20} (18 - 3x_3 + z_3)$ $= 0.823$	$z_4 = \frac{1}{20}(25 + 3y_3 - 2x_3)$ $= 1.28$

$$x = 0.937$$
, $y = 0.823$ and $z = 1.28$.

Cayley-Hamilton theorem: Every square matrix satisfies its characteristic equation.

Example: 1. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$, by Cayley-Hamilton theorem.

Solution: Characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 4 - \lambda \end{vmatrix} = 0$$
$$\Rightarrow \lambda^2 - 7\lambda + 10 = 0.$$

By Cayley-Hamilton theorem $A^2 - 7A + 10I = 0$

$$\Rightarrow 10A^{-1} = 7I - A$$

$$\therefore A^{-1} = \frac{1}{10} \left\{ \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \right\} = \frac{1}{10} \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}.$$

2. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, by Cayley-Hamilton theorem.

Solution:

i) Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

Characteristic equation is $|A - \lambda I| = 0$.

$$\begin{vmatrix} 1 - \lambda & 1 & 3 \\ 1 & 5 - \lambda & 1 \\ 3 & 1 & 1 - \lambda \end{vmatrix} = 0$$

$$|A| = -36$$

$$\Rightarrow \lambda^{3} - (7)\lambda^{2} + (0)\lambda - (-36) = 0$$

\Rightarrow \lambda^{3} - 7\lambda^{2} + 0\lambda + 36 = 0

By Cayley-Hamilton theorem
$$A^3 - 7A^2 + 36I = 0$$

$$\Rightarrow 36A^{-1} = 7A - A^2$$

Course outcome

 Solve the system of linear equations using matrix theory and compute eigenvalues and eigenvectors and demonstrate using python.

PRACTICE QUESTION BANK

MODULE 5: Introduction of linear algebra related to Computer Science & Engineering.

1. Find the **Rank** of the following Matrices:

a.
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}.$$

$$b. \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}.$$

c.
$$\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & 3 & 4 & 5 \\ 3 & 2 & 5 & 2 \\ 2 & -1 & 1 & -3 \end{bmatrix}$$
.

2. Solve the following system of equations by **Gauss elimination** method:

a.
$$2x + 3y + z = -1$$
, $x - y + z = 6$, $3x + 2y - z = -4$.

$$x-y+z=6$$

$$3x + 2y - z = -4$$

b.
$$3x + y + 2z = 3$$
, $2x - 3y - z = -3$, $x + 2y + z = 4$.

$$2x - 3y - z = -3$$

$$x + 2y + z = 4$$
.

c.
$$2x + y + 4z = 12$$
, $4x + 11y - z = 33$, $8x - 3y + 2z = 20$.

$$4x + 11y - z = 33$$

$$8x - 3y + 2z = 20$$

d.
$$2x-3y+z=-1$$
, $x+4y+5z=25$, $3x-4y+z=2$.

$$x + 4y + 5z = 25,$$

$$x - 4y + z = 2.$$

3. Solve the following system of equations by **Gauss Jordan** method:

a.
$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$.

$$3x + 2y + 3z = 18$$
,

$$x + 4v + 9z = 16$$

b.
$$x + y + z = 11$$
, $3x - y + 2z = 12$,

$$3x - y + 2z = 12$$
,

$$2x + y - z = 3.$$

c.
$$2x + 5y + 7z = 52$$
, $2x + y - z = 0$, $x + y + z = 9$.

$$2x + y - z = 0,$$

$$x + y + z = 9.$$

d.
$$2x - y + 3z = 1$$
, $-3x + 4y - 5z = 0$, $x + 3y - 6z = 0$.

$$-3x + 4y - 5z = 0$$
.

$$x + 3y - 6z = 0.$$

4. Solve the following system of equations by Gauss Seidel iterative method:

a.
$$54x + y + z = 110$$
, $2x + 15y + 6z = 72$, $-x + 6y + 21z = 85$.

$$2x + 15y + 6z = 72$$

$$-x + 6y + 21z = 85$$

b.
$$2x - 3y + 20z = 25$$
, $20x + y - 2z = 17$, $3x + 20y - z = -18$.

$$5 , 20x + y - 2z = 17$$

$$3x + 20y - z = -18.$$

c.
$$83x + 11y - 4z = 95$$
, $3x + 8y + 29z = 71$, $7x + 52y + 13z = 104$.
d. $2x + y + 6z = 9$, $8x + 3y + 2z = 13$, $x + 5y + z = 7$.

$$8x + 3y + 2z = 13$$
, $x + 5y + z = 7$.

$$x + 5y + 7 = 7$$

5. Test for **consistency** and solve the system if consistent:

a.
$$5x + 3y + 7z = 4$$

$$3x + 26y + 2z = 9$$

a.
$$5x + 3y + 7z = 4$$
, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$.

b.
$$x + y + z = 3$$
,

$$2x - y + 3z = 10$$

b.
$$x + y + z = 3$$
, $2x - y + 3z = 10$, $4x + y + 5z = 16$.

c.
$$x + y + z = 3$$
, $2x + y + 3z = 5$, $x + 2y = 3$.

$$2x + v + 3z = 5$$

$$x + 2y = 3$$

6. Find the **Eigen values and Eigen vectors** of the following matrices.

i)
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

i)
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
 ii) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ iii) $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

7. Find the largest Eigen value and corresponding Eigen vector of the matrix by **power method**:

a.
$$\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.

b.
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
, $X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

c.
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
, $X_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

d.
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
.

- 8. For what values of λ and μ do the system of equations: x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.
- 9. For what values of λ and μ do the system of equations: 2x + 3y + 5z = 9, 7x + 3y 2z = 8, $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.