Relatório Do Processador Sagui Luiz Henrique Murback Wiedmer

1.Introdução

Este relatório tem como intenção relatar a confecção de um processador Sagui baseado em uma arquitetura de 8 bits, load-store endereçada por byte, projetado no software Logisim Evolution.

O processador tem como seus principais componentes uma Memória de Programa, um Program Counter que a controla, uma Memória de Controle para controlar muxes e bits de enable, um Banco de Registradores(4 X 8b), uma ULA, uma Memória de Dados e alguns circuitos auxiliares.

Figura 1: Diagrama de Caixas do Sagui

2.ULA

A ULA(Figura 2) foi projetada de maneira a realizar 10 operações diferentes, sendo elas: soma, subtração, and lógico, or lógico, negação, deslocamento de bits para a esquerda ou para a direita, concatenação dos bits do imediato para a parte da alta ou baixa do registrador e comparação com a constante 0 para a realização do branch. Além dessas operações, uma das possíveis saídas é a entrada B, utilizada na operação de Move Register. A saída dessa ULA é controlada por um mux com seletor de 4 bits.

Figura 2

3.Programa

Um programa de teste foi feito em assembly e transcrito em base hexadecimal para a Memória de Programa do Sagui para que fosse possível analisar o funcionamento do circuito no Logisim Evolution.

Para instruções do tipo R os 4 bits mais importantes representam o opcode, os 2 próximos representam o endereço do registrador a, e os últimos 2 representam o endereço do registrador B.

Para instruções do tipo I os 4 bits mais importante representam o opcode, e os outros 4 representam um imediato.

PC	Tipo	Assembly	Binario
	0 Tipo I	Movl 5	10000101
	1 Tiipo R	Movr r1, r0	01100100
	2 Tipo I	Movl 2	10000010
	3 Tipo R	Movr r2, r0	01101000
	4 Tipo R	Movr r3, r2	01101110
	5 Tipo R	Add r2, r1	10011001
	6 Tipo I	Movh 1	01110001
	7 Tipo R	Sub r0, r2	10100010
	8 Tipo R	And r1, r2	10110110
	9 Tipo R	Or r3, r0	11001100
	10 Tipo R	Not r3, r3	11011111
	11 Tipo R	Slr r3, r1	11101101
	12 Tipo R	Srr r3, r1	11111101
	13 Tipo R	St r0, r3	01010011
	14 Tipo R	Ld r2, r3	01001011
	15 Tipo I	Movl 5	10000101
	16 Tipo I	Movh 1	01110001
	17 Tipo R	Movr r1, r0	01100100
	18 Tipo I	Movh 0	01110000
	19 Tipo I	Movl 0	10000000
	20 Tipo R	Brzr r1, r0	00000100
	21 Tipo I	Brzi 1	00010001
	22 Tipo I	Movh 1	01110001
	23 Tipo I	Movl 9	10001001
	24 Tipo R	Jr r0	00100100
	25 Tipo I	Ji 1	00110001
	26 Tipo I	Movh 0	01110000
	27 Tipo I	Movl 0	10000000
	28 Tipo R	Movr r1, r0	01100100
	29 Tipo R	Movr r2, r0	01101000
	30 Tipo R	Movr r3, r0	01101100
	31 Tipo I	Movl 4	10000100
	32 Tipo R	St r3, r0	01011100
	33 Tipo R	Movr r1, r0	1100100
	34 Tipo I	Movh 2	01110010
	35 Tipo I	Movl 13	10001101
	36 Tipo R	Movr r2, r0	01101000
	37 Tipo I	Movl 9	10001001
	38 Tipo R	Movr r3, r0	01101100
	39 Tipo I	Movh 0	01110000
	40 Tipo I	Movl 1	10000001
	41 Tipo R	Brzr r1, r2	00000110
	42 Tipo R	St r1, r1	01010101
	43 Tipo R	Sub r1, r0	10100100
	44 Tipo R 45 Tipo R	Jr r3, r3 Jr r2, r2	00101111 00101010
	-0 Tibo V	J1 14, 14	00101010

4.Conclusão

Ao fim do processo temos um processador Sagui funcional com uma ROM programável, e uma memória RAM conectada ao processador, permitindo que um programador posso programá-lo uma vez utilizando as 16 instruções nativas.