Energy Distribution

Alia Lescoulie

January 3, 2022

1 Configurations and Weights

For molecules in a system there is a probability that is will exits in a given energy state. In a system any individual molecule can exist in states with energies from ϵ_0 to ϵ_1 where $\epsilon_0 \equiv 0$. That lowest energy state the **zero-point energy** is the baseline for measuring other energies in the system, and must be accounted for to obtain actual energies of the system.

For a system of N molecule there will be N_0 in the ϵ_0 state, N_1 in the ϵ_1 state and so on where $\Sigma N_n = N$. The set of populations $N_0, N_1 \cdots$ in the form $\{N_0, N_1 \cdots\}$ is an **Instantaneous** Configuration. For a system of N particles there are N(N-1) configuration total and 1/2N(N-1) distinguishable configurations. Systems display the behavior of the state they are most likely to exist in. The number of ways a general configuration can be achieved the **weight** \mathscr{W} is based on number of ways each particle entered its state. For example there are N_0 ! ways for N_0 molecules to be selected. Over the entire configuration that the weight can be given by the following.

$$\mathscr{W} = \frac{N!}{N_0! N_1! \cdots}$$

This is because there are N! ways to select N particles, and for each state with N_i particles there are $N_i!$ ways for those particles to be selected. When summed over the entire system that gives the number of ways to end up with a given configuration.

 \mathcal{W} can be approximated with the natural log and using the observation that $\ln x! \approx x \ln x - x$ giving the following.

$$\ln \mathcal{W} = N \ln N - \sum_{i} N_i \ln N_i$$

1.1 Most Probable Distribution

The system will most likely exist in the configuration with the largest weight resulting it's properties matching that of the system. Since weight is a function of N_i that weight can be found by optimizing $\mathcal{W}(N_i)$. This gives the following derivative

$$d\ln \mathcal{W} = \sum_{i} \left[\frac{\partial \mathcal{W}}{\partial N_i} \right] dN_i = 0$$

Given the reality that states will not all share the same energy the configuration with the greatest weight must also satisfy the condition

$$\sum_{i} N_i \epsilon_i = E$$

meaning the total energy must remain constant as N_i changes. The number of molecules is also fixed meaning that adding a molecule to one state necessitates removing one from another.

Adding the constraints of constant total energy and number of particles to the weight differential

$$\sum_{i} \left[\frac{\partial \mathcal{W}}{\partial N_i} + \alpha - \beta \epsilon_i \right] dN_i = 0$$

where α and β are constants. By inserting the equation for $\ln \mathcal{W}$ into this equation the result is

$$\frac{N_i}{N} = e^{\alpha - \beta \epsilon_i}$$

which is close to the Boltzmann Distribution. By there canceling out α the Boltzmann Distribution is arrived at.

$$\frac{N_i}{N} = \frac{e^{-\beta \epsilon_i}}{\sum_i e^{-\beta \epsilon_i}}$$

Here $\beta = 1~kT$ where k is Boltzmann's constant. The denominator of the equation is called a **partition** coefficient

1.2 Relative Population of States

Since the partition coefficient's cancel when the ratio is taken the relative population is given by

$$\frac{N_i}{N_j} = e^{-\beta(\epsilon_i - \epsilon_j)}$$