Constitution et transformations de la matière

C2-identification d'espèces chimiques-2

Exercices

Exercice 1:

En utilisant le tableau des températures de changement d'état donné ci-dessous, indiquer, pour chaque espèce chimique, l'état dans lequel elle se trouve à la température ambiante (20 °C) et à la température de 120 °C.

Espèce chimique	Température de fusion (°C)	Température d'ébullition (°C)
Cyclohexane	6,5	81
Eau	0	100
Éthanol	-114	79
Méthane	-182,5	-161,5
Acétone	-94,6	56
Sel	801	1465

Exercice 2 : compléter le tableau suivant

Espèce chimique	Masse (g)	Volume (cm³)	Masse volu- mique (g·L ⁻¹)	Densité
Eau	20	20		
Éthanol	39,5	50		
Éther	25			0,71
Eau salée		40	1 025	

Exercice 3:

On place un tube à essai contenant un liquide *X* dans un cristallisoir contenant un mélange réfrigérant (eau, glace et sel) et on mesure la température du liquide à intervalle de temps régulier.

La courbe donnant l'évolution de la température du liquide *X* en fonction du temps est donnée ci-dessous.

- 1. Pourquoi peut-on affirmer qu'il s'agit d'un corps pur ?
- 2. Déterminer la température de fusion de ce corps pur.
- 3. En utilisant les données, en déduire le nom de ce corps pur.
 - Température de fusion de quelques corps purs :
 - $\theta_{f,eau} = 0 \, ^{\circ}\text{C}$;
- $\theta_{f,\acute{e}thanol}$ = -114 °C ;
- $\theta_{f,cyclohexane} = 6.5 \, ^{\circ}\text{C}$;
- θ_{f,éther} = -116 °C;
- $\theta_{f,pentan-3-ol} = -8 \, ^{\circ}\text{C}$;
- $\theta_{f,benz\`ene} = 5.5 \, ^{\circ}\text{C}$;
- θ_{f,méthanamide} = 2,5 °C.

Exercice 4:

La masse volumique du zinc solide est ρ zinc = 7,13 g·cm⁻³, celle du cuivre solide est ρ cuivre = 8 960 kg·m⁻³ et celle du fer ρ fer = 7,87 kg·dm⁻³.

Exercice 5:

On introduit dans une éprouvette graduée 5,0 mL d'eau et 15,0 mL d'éther. On mélange puis on laisse décanter.

- 1. Dans quel état physique ces deux espèces chimiques se trouvent-elles à la température ambiante (20 °C), et avant le mélange ? Justifier la réponse.
- 2. Déterminer les masses d'eau et d'éther introduites dans l'éprouvette.
- 3. Faire un schéma légendé de l'éprouvette graduée en indiquant la position et la composition des phases.

Données:

Espèce chimique	Température de fusion $ heta_{\mathbf{f}}$	Température d'ébullition $ heta_{ m eb}$	Masse volumique $ ho$
Eau H ₂ O	0 °C	100 °C	1,0 g⋅cm ⁻³
Éther C ₄ H ₁₀ O	-116 °C	35 °C	0,71 g⋅cm ⁻³