

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

7. NETWORK FLOWS I

Ford-Fulkerson pathological example

Intuition. Let r satisfy $r^2 = 1 - r$.

- Initial capacities are { 1, *r* }.
- After some augmentation, residual capacities are $\{1, r, r^2\}$.
- After some more, residual capacities are $\{1, r, r^2, r^3\}$.
- After some more, residual capacities are $\{1, r, r^2, r^3, r^4\}$. $r-r^2$

$$r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r$$

network G

augmenting path 1: $s \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = 1)

$$r^2 = 1 - r$$

augmenting path 2: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r)

$$r^2 = 1 - r$$

augmenting path 3: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)

$$r^2 = 1 - r$$

augmenting path 4: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^2)

$$r^2 = 1 - r$$

augmenting path 5: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^2)

$$r^2 = 1 - r$$

augmenting path 6: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^3)

augmenting path 7: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^3)

$$r^2 = 1 - r$$

augmenting path 8: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^4)

$$r^2 = 1 - r$$

augmenting path 9: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^4)

$$r^2 = 1 - r$$

```
after augmenting path 1: \{1-r^0, 1, r-r^1\} (flow = 1) after augmenting path 5: \{1-r^2, 1, r-r^3\} (flow = 1+2r+2r^2) after augmenting path 9: \{1-r^4, 1, r-r^5\} (flow = 1+2r+2r^2+2r^3+2r^4)
```


$$r^2 = 1 - r$$

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Pf.

• Using the given sequence of augmenting paths, after $(1 + 4k)^{th}$ such path, the value of the flow

$$= 1 + 2 \sum_{i=1}^{2k} r^{i}$$

$$\leq 1 + 2 \sum_{i=1}^{\infty} r^{i}$$

$$= 3 + 2r$$

$$< 5$$

• Value of maximum flow = 200 + 1.