New Analysis Tools for Excited-State Quantum Chemistry: Turning Numbers into Chemical Insight

Felix Plasser

Department of Chemistry, Loughborough University

VISTA - 17 December 2020

Introduction

Computational Photochemistry

- Accurate numbers
- © Quantum chemical methods: TDDFT, CC, ADC, CASSCF, DMRG, MRCI, CASPT2
- © Multiscale models: QM/MM, PCM, density embedding, ...
- © Algorithmic efforts: Linear scaling, density fitting, parallelization, GPUs, ...
 - ► Comparison to experiment
- © Linear and non-linear optical properties
- © Static and time-resolved experiments
- ► Chemical insight
- C Look at some blobs of colour
- ... derived as intermediates in an approximate theory

Computational Photochemistry

- ? Can we assign excited-state character in a completely automated way
 - Save time and analyse larger data sets
 - Remove personal bias
- ? Can we learn about physics beyond the MO picture
 - Cross-links to other models
- → Valence-bond theory
- → Exciton theory

Outline

- Transition metal complexes
 - \rightarrow Automatic assignment of state character
- 2 Naphthalene
 - → Connection to valence-bond theory
- Conclusions

Rhenium complex

Re(bpy)(CO)₃Cl

- ▶ Well-studied complex¹
- → Ultrafast intersystem crossing
- Which types of states are involved
 - ► MS-CASPT2 computations OpenMolcas
 - CAS(12,12)
 - Cholesky decomposition
 - 19 singlets, 18 triplets
- (!) How do we characterise so many states

¹J. Eng. C. Gourlaouen, E. Gindensperger, C. Daniel, Acc. Chem. Res 2015, 48, 809.

Electron/hole densities

Transition density matrix (1TDM)

$$D_{\mu\nu}^{0I} = \langle \Psi_0 | \hat{\mathbf{a}}_{\mu}^{\dagger} \hat{\mathbf{a}}_{\nu} | \Psi_I \rangle$$
$$\gamma^{0I}(r_h, r_e) = \sum_{\mu\nu} D_{\mu\nu}^{0I} \chi_{\mu}(r_h) \chi_{\nu}(r_e)$$

 Ψ_0, Ψ_I Ground and excited state wavefunctions $\hat{\mathbf{a}}_p^{\dagger}, \hat{\mathbf{a}}_q$ Creation and annihilation operators r_h, r_e Coordinates of hole and electron χ_μ, χ_ν Basis functions

Density for the excited electron / excitation hole

$$\rho_e(r_e) = \int \gamma^{0I}(\mathbf{r_h}, r_e)^2 d\mathbf{r_h}$$
$$\rho_h(\mathbf{r_h}) = \int \gamma^{0I}(\mathbf{r_h}, r_e)^2 d\mathbf{r_e}$$

▶ Equivalent to weighted sums over natural transition orbitals

Electron/hole densities

- ightharpoonup Analysis of S_1 state
- Hole on Re and Cl
- Electron on bpy ligand
- Compact description
- Well-defined for exact solution
- → Not *observable* but part of *physical reality*
- Still looking at blobs of colour

¹I. Fdez. Galván, et al., *JCTC* **2019**, 15, 5925.

Charge Transfer Numbers

- General classification
- Different formal state characters correspond to different blocks of the 1TDM
- Summation over these blocks
- → Automatic classification of state character
- → Quantification of state mixing

¹FP, A. Dreuw, *JPCA* **2015**, 119,1023.

²S. Mai, FP, J. Dorn, M. Fumanal, C. Daniel, L. González, CCR 2018, 361, 74.

Fragment decomposition

- Division into three fragments
- Re(CO)₃, bpy, Cl
- → Quantify excitations between them
 - For singlets and triplets
- **▶** Discussion
- \rightarrow More Cl \rightarrow bpy for singlets
- → More bpy for triplets

¹I. Fdez. Galván, et al., *JCTC* **2019**, 15, 5925.

Intro Trans. met. Naphthalene Conclusions

Fragment-based analysis

- ► Fragment-based analysis¹
- © State-character assignment by just pressing a button
- © Definition of fragments not always obvious
- → Real-space analysis of 1TDM interpreted as exciton wavefunction²
- → Automatic assignment of fragments³

https://fplasser.sci-public.lboro.ac.uk

¹FP, J. Chem. Phys **2020**, 152, 084108.

²S. A. Bäppler, FP, M. Wormit, A. Dreuw, *Phys. Rev. A* **2014**, 90, 052521.

³S. Mai, FP, J. Dorn, M. Fumanal, C. Daniel, L. Gonzlez, Coord. Chem. Rev. 2018, 361, 74–97.

Exciton Analysis

Exciton analysis

- Interpret the 1TDM as the wavefunction χ_{exc} of the electron-hole pair
- Use as a basis for analysis

Exciton wavefunction

$$\chi_{exc}(r_h, r_e) = \sum_{\mu\nu} D^{0I}_{\mu\nu} \chi_{\mu}(r_h) \chi_{\nu}(r_e)$$

 $D_{\mu\nu}^{0I}$ Matrix representation of the 1TDM

 χ_{μ} Atomic orbital

 r_h, r_e Coordinates of the excitation hole and the excited electron

 $^{\mathbf{1}}\mathrm{S.}$ A. Bäppler, FP, M. Wormit, A. Dreuw, Phys. Rev. A $\mathbf{2014},\,90,\,052521.$

Exciton Analysis

Operator expectation value

$$\left\langle \hat{O} \right\rangle = \frac{\left\langle \chi_{exc} \right| \hat{O} \left| \chi_{exc} \right\rangle}{\left\langle \chi_{exc} \right| \chi_{exc} \right\rangle}$$

Exciton size

$$d_{h\to e} = \langle r_e - r_h \rangle$$

- ► Average (linear) separation of the electron and hole quasi-particles
- Evaluated using analytic integration techniques
- No fragment definition
- No population analysis

¹FP, et al., J. Comput. Chem. **2015**, 36, 1609.

- Consistent trends between fragment-based and real-space analysis
- CT always larger for singlets than for triplets (x)
- ► CT reduced by **orbital relaxation**(•)

¹I. Fdez. Galván, et al., *JCTC* **2019**, 15, 5925.

Outlook

- Ruthenium complexes Ru(bpy)₃
- ? How are the excited states affected by different substituents
- → Excited electron delocalisation (EEDL)
- → Substituent induced electron localisation (SIEL)

¹P. A. Sánchez-Murcia, J. J. Nogueira, FP, L. González, Chem. Sci. **2020**, 331, 195–199.

N₂ splitting

- Binuclear complexes
- → Used for N₂ splitting
- Assign excited-state character
- Ligand-to-metal charge transfer (LMCT)
- Metal-to-ligand charge transfer (MLCT)

¹S. Rupp, FP, V. Krewald, Eur. J. Inorg. Chem **2020**, 2020, 1506.

lonic and covalent states

- Excited states in polyenes and polyacenes come in two flavours¹
- \rightarrow + states and states
 - Reason: Quasidegeneracies of orbital transitions
- Interpretation as ionic and covalent states within valence bond theory²
- **Ionic** configuration: $|\chi_A \bar{\chi}_A| |\chi_B \bar{\chi}_B|$
- **Covalent** configuration: $|\chi_A \bar{\chi}_B| |\bar{\chi}_A \chi_B|$
- Fundamental property of electronic states

https://fplasser.sci-public.lboro.ac.uk

Turning Numbers into Chemical Insight

¹R. Pariser, J. Chem. Phys **1956**, 24, 250.

²K. Schulten, I. Ohmine, and M. Karplus, J. Chem. Phys **1976**, 64, 4422.

Methodological implications

- Onic states cause problems for CASSCF
- \rightarrow Energies overestimated by > 1 eV
- B. O. Roos et al., Chem. Phys. Lett. 1992, 192, 5.
- E. R. Davidson, J. Phys. Chem. 1996, 100, 6161.
- C. Angeli, J. Comput. Chem. 2009, 30, 1319.
- \rightarrow **Dynamic** σ **polarisation** effects
- \odot lonic L_a state behaves like a hidden charge-transfer state with TDDFT
- → Energies too low
 - S. Grimme, M. Parac, ChemPhysChem 2003, 4, 292.
- R. M. Richard, J. M. Herbert, J. Chem. Theory Comput. 2011, 7, 1296.

State of the art

- ► How do we characterise ionic and covalent states?
- ► VB wavefunctions constructed using dedicated valence-bond protocols
- → CASVB, 1 orthogonal VB, 2 VBSCF3
- \rightarrow Specific and involved computational methods
- ? Can we reconstruct ionic and covalent character from the wavefunctions
- → Application of standard quantum chemistry methods

¹K. Hirao, H. Nakano, and K. Nakayama. J., Chem. Phys. **1997**, 107, 9966.

²C. Angeli, R. Cimiraglia and J. P. Malrieu, Mol. Phys. 2013, 111, 1069.

³J. Gu, W. Wu, D. Danovich, R. Hoffmann, Y. Tsuji, and S. Shaik., *JACS* **2017**, 139, 9302.

Naphthalene

- ► Napthalene molecule
- Vertical excitations → ADC(2)/def-SV(P)
- Q-Chem
- ► Three types of labels → Multiplicity, irrep, +/-
- **▶** Bright states → Singlet, u, +
- ? Difference between B_{3u} states

Excited states					
		ΔE	f		
$\overline{}_{3}$	B_{2u}^{+} 3	.26	-		
^{3}I	B_{3u}^{+} 4	.39	-		
1]	B_{2}^{-} 4	.49	0.0002		
^{3}I	B_{1a}^{+} 4	.66	-		
3]	B_0^+ 4	.90	_		
1 7	B_{s}^{+} 5	.01	0.11		
$^{\circ}I$	B_{3u}^{-} 5	.14	_		
3	$ \begin{array}{ccc} 4_g^+ & 5 \\ 4_g^- & 6 \end{array} $.80	-		
1_{A}	4_{a}^{-} 6	.34	-		
^{1}I	B_{3u}^{+} 6	.37	1.52		
^{1}I	B_{1a}^{-} 6	.42	-		
31	B_{1a}^{-} 6	.63	-		
^{1}I		.67	0.31		

Napthalene B_{3u} states

- ▶ Focus on B_{3u} states
- All have the same orbital transitions
- $HOMO-1 \rightarrow LUMO$ and $HOMO \rightarrow LUMO+1$
- \bigcirc Only difference: signs \rightarrow no use to look at the orbitals

B3u states

$$\begin{split} ^1B_{3u}^{\pm} &= \frac{1}{2} \left(\left(\Phi_{H1,\alpha}^{L,\alpha} + \Phi_{H1,\beta}^{L,\beta} \right) \pm \left(\Phi_{H,\alpha}^{L1,\alpha} + \Phi_{H,\beta}^{L1,\beta} \right) \right) \\ ^3B_{3u}^{\pm} &= \frac{1}{2} \left(\left(\Phi_{H1,\alpha}^{L,\alpha} - \Phi_{H1,\beta}^{L,\beta} \right) \pm \left(\Phi_{H,\alpha}^{L1,\alpha} - \Phi_{H,\beta}^{L1,\beta} \right) \right) \end{split}$$

- ► Different signs lead to different superpositions
- ? How to analyse

B3u states

$${}^{1}B_{3u}^{\pm} = \frac{1}{2} \left(\left(\Phi_{H1,\alpha}^{L,\alpha} + \Phi_{H1,\beta}^{L,\beta} \right) \pm \left(\Phi_{H,\alpha}^{L1,\alpha} + \Phi_{H,\beta}^{L1,\beta} \right) \right)$$
$${}^{3}B_{3u}^{\pm} = \frac{1}{2} \left(\left(\Phi_{H1,\alpha}^{L,\alpha} - \Phi_{H1,\beta}^{L,\beta} \right) \pm \left(\Phi_{H,\alpha}^{L1,\alpha} - \Phi_{H,\beta}^{L1,\beta} \right) \right)$$

- Exactly the same canonical orbitals (in the PPP description)
- Same one-electron density matrices
- → Same densities
- → Same natural orbitals
- → Same difference densities, attachment-detachment densities
- ► Same natural transition orbitals
- Let's look at this with libwfa

ADC(2) difference, attachment, detachment¹ densities

¹M. Head-Gordon et al., *JPCA* **1995**, 99, 14261.

The major analysis methods fail!

What do we do?

Transition density matrix

Transition density matrix (1TDM)

$$\gamma_{0I}(\mathbf{r_h}, r_e) = \langle \Psi_0 | \, \hat{\mathbf{a}}_p^{\dagger} \hat{\mathbf{a}}_q | \Psi_I \rangle \, \phi_p(\mathbf{r_h}) \phi_q(r_e)$$

 Ψ_0, Ψ_I Ground and excited state wavefunctions

 $\hat{\mathbf{a}}_{p}^{\dagger}, \hat{\mathbf{a}}_{q}$ Creation and annihilation operators

 ϕ_p, ϕ_q Molecular orbitals

 r_h, r_e Coordinates of the hole and electron

Ground and excited state connected via a matrix element

Transition density

$$\rho_{0I}(r) = \gamma_{0I}(r, r)$$

¹FP, M. Wormit, A. Dreuw, *JCP* **2014**, 141, 024107.

Napthalene B_{3u} states

- ► ADC(2) transition densities
 - For triplets: Spin-difference transition densities

 ${}^{3}B_{3u}^{+}$

 ${}^{1}B_{3u}^{-}$

 ${}^{3}B_{3u}^{-}$

- \bigcirc +/- assignment clear \rightarrow + on atoms, on bonds
- ▶ Strong transition moment for ${}^{1}B_{3u}^{+}$
- What about the energies
- Why are there extra blobs for the ${}^{1}B_{3n}^{+}$ state

CIS excitation energy

$$\Delta E = \sum_{ia} |C_{ia}|^2 (\epsilon_a - \epsilon_i) + \iint \frac{\rho_{0I}(r_h)\rho_{0I}(r_e)}{r_{he}} dr_h dr_e - \iint \frac{|\gamma_{0I}(r_h, r_e)|^2}{r_{he}} dr_h dr_e$$

 C_{ia} CI coefficient

 ϵ_i Orbital energy

Hartree-Fock	Coulomb/Hartree	Exchange	
Electron/hole	Exchange repulsion	Coulomb attraction / Exciton binding	
Applicability	Only for singlets	Singlets and triplets	
TDDFT	Included	Non-local X	

¹P. Kimber, F. Plasser, *PCCP* **2020**, 22, 6058.

Exchange repulsion

$$\iint \frac{\rho_{0I}(r_h)\rho_{0I}(r_e)}{r_{he}} dr_h dr_e = \int \rho_{0I}(r_h) \int \frac{\rho_{0I}(r_e)}{r_{he}} dr_e dr_h = \left\langle \rho_{0I} \middle| \hat{V} \rho_{0I} \right\rangle$$

- ▶ Higher exchange repulsion for ${}^{1}B_{3u}^{+}$ than for ${}^{1}B_{3u}^{-}$ → higher energy
- $lack \left<
 ho_{0I}\middle|\hat{V}
 ho_{0I}
 ight>$ term lower for $^1B_{3u}^+$ than for $^3B_{3u}^+ o\sigma$ -polarisation

Conditional densities

Coulomb attraction

$$-\iint \frac{|\gamma_{0I}(r_h, r_e)|^2}{r_{he}} dr_h dr_e$$

- ► Non-local two-body term
- ? How to visualise

Conditional density for the excited electron

$$\rho_e^{h:A}(r_e) = \int_A \left| \gamma_{0I}(r_h, r_e) \right|^2 \mathrm{d}r_h$$

 $\rho_e^{h:A}(r_e)$ Conditional density for the hole localized on fragment A

¹FP, ChemPhotoChem **2019**, 3, 702.

- Covalent states Reduced electron-hole overlap
- → Less exchange repulsion and Coulomb attraction
- Ionic + states: Enhanced electron-hole overlap
- → More exchange repulsion and Coulomb attraction

State	ΔE
${}^{3}B_{3u}^{+}$	4.39
${}^{3}B_{3u}^{+}$ ${}^{1}B_{3u}^{-}$ ${}^{3}B_{3u}^{-}$	4.49
${}^{3}B_{3u}^{-}$	5.14
${}^{1}B_{3u}^{+}$	6.37

Naphthalene - singlet states $\rho_e^{h:2}/\rho_h^{h:2}$ $\rho_e^{h:1}/\rho_h^{h:1}$ $\rho_e^{h:2}/\rho_h^{h:2}$ $1^1B_{3u}^-$, 4.49 eV $1^1B_{3n}^+$, 6.37 eV Vanishing $1^1 B_{2u}^+$, 5.01 eV $2^{1}B_{2u}^{+}$, 6.67 eV $1^1 A_a^-$, 6.34 eV $2^{1}A_{a}^{-}$, 7.49 eV Vanishina Vanishina $1^1B_{1q}^-$, 6.42 eV $1^1B_{1q}^+$, 7.00 eV

¹FP, ChemPhotoChem **2019**, 3, 702.

- Alternative
- Use CT measure¹
- Weight of all the charge-transfer contributions between atoms
- → Automatised analysis possible
- CT=0.9 for simple fully delocalised transition over 10 atoms
- CT<0.9 for ionic + states
- CT>0.9 for covalent states
- Singlets prefer –
- Exchange repulsion dominant
- Triplets prefer +
- Only Coulomb attraction

Term	ΔE	f	CT
$^{-3}B_{2u}^{+}$	3.26	-	0.627
${}^{3}B_{3u}^{+}$	4.39	-	0.836
$^{1}B_{3u}^{-}$	4.49	0.0002	0.980
${}^{3}B_{1a}^{+}$	4.66	-	0.621
${}^{3}B_{2u}^{+}$	4.90	-	0.776
${}^{1}B_{2u}^{+}$	5.01	0.11	0.874
${}^{3}B_{3u}^{-}$	5.14	-	0.975
$^3A_a^+$	5.80	-	0.723
${}^{1}A_{a}^{\stackrel{s}{-}}$	6.34	-	0.979
${}^{1}B_{3u}^{+}$	6.37	1.52	0.911
${}^{1}B_{1a}^{-}$	6.42	-	0.995
${}^{3}B_{1a}^{-}$	6.63	-	0.993
${}^{1}B_{2u}^{+}$	6.67	0.31	0.844

Turning Numbers into Chemical Insight

¹FP, H. Lischka, *JCTC* **2012**, 8, 2777.

²FP. ChemPhotoChem **2019**. 3, 702. https://fplasser.sci-public.lboro.ac.uk

Conclusions

- Extended wavefunction analysis toolbox for excited states and open shells
- Automated assignment of excited-state character
- Transition metal complexes
- Multichromophoric systems
- Push-pull systems
- Rydberg *vs* valence states
- Single vs double excitations
- → Use for dynamics, extended sampling, method comparison
- ► Deeper physical insight
- Valence-bond picture: lonic/covalent (+/-) states
- Excitons in conjugated polymers

Further reading

- ► Intro for practical computations¹
- User friendly analysis tools
- \rightarrow Plotting
- → Rigorous and quantitative analysis of trends
- ► Chemical theory²
- Learn about nature and/or quantum chemical methods
- New qualitative insight
- → Understanding of excitation energies via partial densities and their ESPs

¹FP, *JCP* **2020**, 152, 084108.

²P. Kimber, FP, *PCCP* **2020**, 22, 6058.

Acknowledgements

Q-Chem

S. A. Mewes

M. Wormit

A. Dreuw

E. Epifanovsky A. I. Krylov

OpenMolcas

I. Fdez. Galván

S. Vancoillie

Vienna

M. Menger L. González S. Mai

Strasbourg

M. Fumanal

E. Gindensperger

C. Daniel

Vienna/Lubbock/Tianjin

H. Lischka

Loughborough

P. Kimber

Loughborough University