GALERKIN APPROXIMATIONS OF DELAY DIFFERENTIAL EQUATIONS

HONGHU LIU AND TREVOR NORTON

Abstract.

- 1. Introduction.
- 2. Preliminaries.
- **2.1.** The type of DDE. We are interested in approximating the solution to the following autonomous scalar DDE of dimension 1:

(2.1)
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = ax(t) + bx(t-\tau) + F(x(t-\tau)), \quad t > 0$$
$$x(t) = \varphi(t), \qquad t \in [-\tau, 0]$$

for $\varphi \in L^2([-\tau, 0]; \mathbb{R})$, $a, b \in \mathbb{R}$, and where $F : \mathbb{R} \to \mathbb{R}$ is Lipschitz with constant L. It is appropriate to formulate this problem into the Hilbert space

(2.2)
$$\mathcal{H} := L^2([-\tau, 0); \mathbb{R}) \times \mathbb{R},$$

where the inner product is defined for $(f_1, \gamma_1), (f_2, \gamma_2) \in \mathcal{H}$, as:

(2.3)
$$\langle (f_1, \gamma_1), (f_2, \gamma_2) \rangle_{\mathcal{H}} := \frac{1}{\tau} \int_{-\tau}^0 f_1(\theta) f_2(\theta) d\theta + \gamma_1 \gamma_2.$$

Let us denote by x_t the time evolution of the history segments of a solution to (2.1), i.e.,

$$(2.4) x_t(\theta) := x(t+\theta), t \ge 0, \theta \in [-\tau, 0].$$

Then by introducing

$$(2.5) u(t) := (x_t, x_t(0)),$$

we can rewrite (2.1) as the following abstract ODE on \mathcal{H} :

(2.6)
$$\frac{\mathrm{d}u}{\mathrm{d}t} = \mathcal{A}u + \mathcal{F}(u).$$

The linear operator $\mathcal{A}: D(\mathcal{A}) \to \mathcal{H}$ is defined by

(2.7)
$$[\mathcal{A}\Psi](\theta) := \begin{cases} \frac{\mathrm{d}^+ \Psi^D}{\mathrm{d}\theta}, & \theta \in [-\tau, 0), \\ a\Psi^S + b\Psi^D(-\tau), & \theta = 0, \end{cases}$$

for any $\Psi = (\Psi^D, \Psi^S)$ that lives in the domain, $D(\mathcal{A})$, defined as

$$(2.8) D(\mathcal{A}) := \left\{ \Psi \in \mathcal{H} : \Psi^D \in H^1([-\tau, 0); \mathbb{R}^d), \lim_{\theta \to 0^-} \Psi^D(\theta) = \Psi^S \right\}.$$

The nonlinear operator $\mathcal{F}:\mathcal{H}\to\mathcal{H}$ is defined by

(2.9)
$$[\mathcal{F}(\Psi)](\theta) := \begin{cases} 0, & \theta \in [-\tau, 0), \\ F(\Psi^D(-\tau)), & \theta = 0, \end{cases} \quad \forall \, \Psi = (\Psi^D, \Psi^S) \in \mathcal{H}.$$

2.2. Properties and Basic Results of Koornwinder Polynomials. From [2, Eq. (2.1)], the sequence of Koornwinder polynomials $\{K_n\}$ can be built from the Legendre polynomials L_n by

(2.10)
$$K_n(s) := -(1+s)\frac{d}{ds}L_n(s) + (n^2+n+1)L_n(s), \quad s \in [-1,1], \ n \in \mathbb{N}_0.$$

Furthermore, we reproduce from [1, Prop. 3.1] some simple properties that $\{K_n\}$ satisfy.

PROPOSITION 2.1. The polynomial K_n defined in (2.10) is of degree n and admits the following expansion in terms of the Legendre polynomials:

(2.11)
$$K_n(s) = -\sum_{j=0}^{n-1} (2j+1)L_j(s) + (n^2+1)L_n(s), \qquad n \in \mathbb{N}_0;$$

and the following normalization property holds:

$$(2.12) K_n(1) = 1, n \in \mathbb{N}_0.$$

Moreover, the sequence given by

$$\{\mathcal{K}_n := (K_n, K_n(1)) : n \in \mathbb{N}_0\}$$

forms an orthogonal basis of the product space

(2.14)
$$\mathcal{E} := L^2([-1,1); \mathbb{R}) \times \mathbb{R},$$

where \mathcal{E} is endowed with the following inner product:

$$(2.15) \qquad \langle (f,a), (g,b) \rangle_{\mathcal{E}} = \frac{1}{2} \int_{-1}^{1} f(s)g(s) \, \mathrm{d}s + ab, \quad (f,a), (g,b) \in \mathcal{E}.$$

Moreover $\left\{\frac{\mathcal{K}_n}{\|\mathcal{K}_n\|_{\mathcal{E}}}\right\}$ forms a Hilbert basis of \mathcal{E} where the norm $\|\mathcal{K}_n\|_{\mathcal{E}}$ of \mathcal{K}_n induced by $\langle\cdot,\cdot\rangle_{\mathcal{E}}$ possesses the following analytic expression:

(2.16)
$$\|\mathcal{K}_n\|_{\mathcal{E}} = \sqrt{\frac{(n^2+1)((n+1)^2+1)}{2n+1}}, \qquad n \in \mathbb{N}_0.$$

Suppose that Π_N is the N-dimensional standard projection into span $\{\mathcal{K}_n : n \leq N\} \subset \mathcal{E}$. It will be relevant to discuss when we have convergence of $[\Pi_N u]^D$ for $u \in \mathcal{E}$. In particular, we will focus on uniform convergence. We define for $f \in L^2([-1,1],\mathbb{R})$ the following:

(2.17)
$$a_n(f) := \frac{2n+1}{2} \int_{-1}^1 f(x) L_n(x) \, \mathrm{d}x.$$

PROPOSITION 2.2. Let $f \in \mathcal{C}^2([-1,1];\mathbb{R})$ and denote $\psi = (f,f(0)) \in \mathcal{E}$. Then the series

$$[\Pi_N \psi]^D = \sum_{n=0}^N \frac{\langle \psi, \mathcal{K}_n \rangle_{\mathcal{E}}}{\|\mathcal{K}_n\|_{\mathcal{E}}^2} K_n$$

converges uniformly to f.

Proof. It is easy to show based on (2.11) we have for $\theta \in [-1, 1]$

$$|K_n(\theta)| \le (n^2 + 1)|L_n(\theta)| + \sum_{j=0}^{n-1} (2j+1)|L_j(\theta)|$$

$$\le (n^2 + 1) + \sum_{j=0}^{n-1} (2j+1)$$

$$= 2n^2 + 1,$$

i.e., $||K_n||_{\infty} \leq 2n^2 + 1$. By the definition of $\langle \cdot, \cdot \rangle_{\mathcal{E}}$ and the Koornwinder polynomials, we have that for $n \in \mathbb{N}_0$

(2.20)
$$\langle \psi, \mathcal{K}_n \rangle_{\mathcal{E}} = \frac{1}{2} \int_{-1}^1 f(x) K_n(x) \, \mathrm{d}x + f(1) \\ = \frac{1}{2} \left[-\int_{-1}^1 f(x) (1+x) L'_n(x) \, \mathrm{d}x + (n^2+n+1) \int_{-1}^1 f(x) L_n(x) \, \mathrm{d}x \right] + f(1).$$

If we use integration by parts, we find that

$$(2.21) - \int_{-1}^{1} f(x)(1+x)L'_n(x) dx = -2f(1) + \int_{-1}^{1} f'(x)(1+x)L_n(x) dx + \int_{-1}^{1} f(x)L_n(x) dx.$$

Applying (2.21) to (2.20) gives that

(2.22)
$$\langle \psi, \mathcal{K}_n \rangle_{\mathcal{E}} = \frac{1}{2} \int_{-1}^1 f'(x)(1+x)L_n(x) \, \mathrm{d}x + \frac{n^2+n+2}{2} \int_{-1}^1 f(x)L_n(x) \, \mathrm{d}x \\ = \frac{1}{2} \int_{-1}^1 f'(x)(1+x)L_n(x) \, \mathrm{d}x + \frac{n^2+n+2}{2n+1} a_n(f).$$

We can also note that by applying the Holder inequality we get

(2.23)
$$\left| \int_{-1}^{1} f'(x)(1+x)L_n(x) \, \mathrm{d}x \right| \le \|f'\|_{\infty} \left(\int_{-1}^{1} (1+x) \, \mathrm{d}x \right)^{1/2} \|L_n\|_{L^2}$$
$$= \frac{4\|f'\|_{\infty}}{\sqrt{6n+3}}.$$

Furthermore, from [4, Thm. 2.1] we have

$$(2.24) |a_n(f)| \le \frac{V_1}{n - \frac{1}{2}} \sqrt{\frac{\pi}{2n}},$$

where $V_1 := \int_{-1}^{1} \frac{f''(x)}{\sqrt{1-x^2}} dx < \infty$. Thus,

(2.25)
$$|\langle \psi, \mathcal{K}_n \rangle_{\mathcal{H}}| \leq \frac{2||f'||_{\infty}}{\sqrt{6n+3}} + V_1 \sqrt{2\pi} \frac{n^2 + n + 2}{\sqrt{n}(4n^2 + 1)},$$

and so

(2.26)
$$\frac{|\langle \psi, \mathcal{K}_n \rangle_{\mathcal{H}}|}{\|\mathcal{K}_n\|_{\mathcal{H}}^2} \|K_n\|_{\infty} \leq \left[\frac{2\|f'\|_{\infty}}{\sqrt{6n+3}} + V_1 \sqrt{2\pi} \frac{n^2 + n + 2}{\sqrt{n}(4n^2 + 1)} \right] \times \left[\frac{(2n+1)(2n^2 + 1)}{(n^2 + 1)((n+1)^2 + 1)} \right]$$

$$= O\left(\frac{1}{n^{3/2}}\right).$$

By the Weierstrass M-test, the series (2.18) converges uniformly.

Note also that (2.18) is simply the functional part of the Koornwinder expansion of ψ in \mathcal{H} . So the series converges in $L^2([-1,1];\mathbb{R})$ to $\psi^D = f$. Therefore, since the series converges uniformly, it must converge uniformly to f.

It will also be necessary to prove certain properties of the series of Koornwinder polynomials

(2.27)
$$S_N(x) := \sum_{n=0}^N \frac{K_n}{\|K_n\|_{\mathcal{E}}^2}, \quad N \in \mathbb{N}_0, \ x \in [-1, 1].$$

If we were to denote $\psi = (0,1) \in L^2([-1,1)) \times \mathbb{R}$, then S_N would simply be the functional part of $\Pi_N \psi$. The following lemma allows us to express S_N in terms of Legendre Polynomials.

Lemma 2.1. The functions S_N defined in (2.27) can be expressed as

(2.28)
$$S_N(x) = \frac{1}{(N+1)^2 + 1} \sum_{n=0}^{N} (2n+1)L_n, \quad x \in [-1, 1].$$

Proof. Using (2.11), we can show that for $m \leq N \in \mathbb{N}_0$

(2.29)
$$\int_{-1}^{1} S_{N}(x) L_{m}(x) dx = \sum_{n=0}^{N} \frac{1}{\|\mathcal{K}_{n}\|_{\mathcal{E}}^{2}} \int_{-1}^{1} K_{n}(x) L_{m}(x) dx$$
$$= \|L_{m}\|_{L^{2}([-1,1])}^{2} \left[(m^{2} + 1) \frac{1}{\|\mathcal{K}_{m}\|_{\mathcal{E}}^{2}} - (2m + 1) \sum_{k=m+1}^{N} \frac{1}{\|\mathcal{K}_{k}\|_{\mathcal{E}}^{2}} \right],$$

and so

(2.30)
$$S_N(x) = \sum_{n=0}^N \left[\frac{n^2 + 1}{\|\mathcal{K}_n\|_{\mathcal{E}}^2} - (2n+1) \sum_{m=n+1}^N \frac{1}{\|\mathcal{K}_m\|_{\mathcal{E}}^2} \right] L_n(x).$$

It is easy to show that

(2.31)
$$\sum_{n=0}^{N} \frac{1}{\|\mathcal{K}_n\|_{\mathcal{E}}^2} = \sum_{n=0}^{N} \frac{2n+1}{(n^2+1)((n+1)^2+1)}$$
$$= \sum_{n=0}^{N} \left[\frac{1}{n^2+1} - \frac{1}{(n+1)^2+1} \right]$$
$$= 1 - \frac{1}{(N+1)^2+1}$$

and

(2.32)
$$\sum_{m=n+1}^{N} \frac{1}{\|\mathcal{K}_m\|_{\mathcal{E}}^2} = \sum_{m=0}^{N} \frac{1}{\|\mathcal{K}_m\|_{\mathcal{E}}^2} - \sum_{m=0}^{n} \frac{1}{\|\mathcal{K}_m\|_{\mathcal{E}}^2} = \frac{1}{(n+1)^2 + 1} - \frac{1}{(N+1)^2 + 1}.$$

Applying (2.32) to (2.30) gives

$$S_{N}(x) = \sum_{n=0}^{N} \left[\frac{n^{2}+1}{\|\mathcal{K}_{n}\|_{\mathcal{E}}^{2}} - (2n+1) \left(\frac{1}{(n+1)^{2}+1} - \frac{1}{(N+1)^{2}+1} \right) \right] L_{n}(x)$$

$$= \sum_{n=0}^{N} \left[\frac{2n+1}{(n+1)^{2}+1} - \frac{2n+1}{(n+1)^{2}+1} + \frac{2n+1}{(N+1)^{2}+1} \right] L_{n}(x)$$

$$= \sum_{n=0}^{N} \frac{2n+1}{(N+1)^{2}+1} L_{n}(x).$$

Now that we have this expression, we can prove the properties of S_N that will be useful when showing the main result.

PROPOSITION 2.3. For the functions S_N defined in (2.27), we have that

$$(2.34) |S_N(x)| < 1, \quad \forall N \in \mathbb{N}_0, \ \forall x \in [-1, 1].$$

Furthermore,

(2.35)
$$\lim_{N \to \infty} S_N(x) = 0, \quad \forall x \in (-1, 1).$$

Proof. It is known that

$$(2.36) |L_n(x)| \le 1, \quad \forall x \in [-1, 1], \ \forall n \in \mathbb{N}_0.$$

Thus for $x \in [-1,1]$ and $N \in \mathbb{N}_0$

$$|S_N(x)| \le \frac{1}{(N+1)^2 + 1} \sum_{n=0}^N (2n+1)|L_n(x)|$$

$$\le \frac{1}{(N+1)^2 + 1} \sum_{n=0}^N (2n+1)$$

$$= \frac{N^2 + 1}{(N+1)^2 + 1}$$

$$< 1.$$

From [3, Thm. 61], we also have that for $n \ge 1$ and $x \in (-1, 1)$

(2.38)
$$|L_n(x)| < \sqrt{\frac{\pi}{2n(1-x^2)}}.$$

Then for $x \in (-1,1)$ and $N \in \mathbb{N}_0$

$$|S_N(x)| \le \frac{1}{(N+1)^2 + 1} \left[1 + \sum_{n=1}^N (2n+1)|L_n(x)| \right]$$

$$\le \frac{1}{(N+1)^2 + 1} \left[1 + 3\sum_{n=1}^N n \cdot \sqrt{\frac{\pi}{2n(1-x^2)}} \right]$$

$$= \frac{1}{(N+1)^2 + 1} \left[1 + 3 \cdot \sqrt{\frac{\pi}{2(1-x^2)}} \cdot \sum_{n=1}^N \sqrt{n} \right].$$

We can note that

(2.40)
$$\sum_{n=1}^{N} \sqrt{n} \le \int_{1}^{N+1} \sqrt{x} \, dx$$
$$= \frac{2}{3} (N+1)^{3/2} - \frac{2}{3}.$$

So

$$(2.41) |S_N(x)| \le \frac{1}{(N+1)^2 + 1} \left[1 + \sqrt{\frac{2\pi}{1-x^2}} \left((N+1)^{3/2} - 1 \right) \right],$$

where the right-hand side converges to 0 as $N \to \infty$ for fixed $x \in (-1,1)$. Thus $S_N(x) \to 0$ as $N \to \infty$ for $x \in (-1,1)$.

2.3. The Space X. We define the following inner product space with elements in

$$(2.42) X := \mathcal{C}([-\tau, 0); \mathbb{R}) \times \mathbb{R}$$

and the inner product defined by

$$(2.43) \qquad (\Phi, \Psi)_X := \Phi^S \Psi^S + \frac{1}{\tau} (\Phi^D, \Psi^D)_{L^2([-\tau, 0)} + \Phi^D(-\tau) \Psi^D(-\tau), \quad \Phi, \Psi \in X.$$

It is relatively straight-forward to verify that $(\cdot, \cdot)_X$ is symmetric, bilinear, and positive definite and thus is an inner product. We will also make use of the norm $\|\cdot\|_X$ induced from this inner product. Note that X is **not** a Banach space since Cauchy sequences might not converge in X.

- 3. Uniform Convergence of Galerkin Solutions.
- **3.1. Pointwise Convergence in** X**.** It will be helpful to prove a lemma.

LEMMA 3.1. There is C > 0 such that for any $N \in \mathbb{N}_0$.

$$(3.1) ||T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))||_X \le C||u(s) - u_N(s)||_X,$$

where $t \in [0,T]$ and $s \in [0,t]$.

Proof. We have that

(3.2)
$$||T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))||_X^2 = ||T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))||_{\mathcal{H}}^2 + |[T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))]^D(-\tau)|^2.$$

Note that for the first term on the right-hand side of (3.2), we have that

$$||T_{N}(t-s)\Pi_{N}(\mathcal{F}(u(s)) - \mathcal{F}(u_{N}(s)))||_{\mathcal{H}} \leq Me^{\omega(t-s)}||\mathcal{F}(u(s)) - \mathcal{F}(u_{N}(s))||_{\mathcal{H}}$$

$$\leq Me^{\omega T}||\mathcal{F}(u(s)) - \mathcal{F}(u_{N}(s))||_{\mathcal{H}}$$

$$= Me^{\omega T} |f([u(s)]^{D}(-\tau)) - f([u_{N}(s)]^{D}(-\tau))|$$

$$\leq LMe^{\omega T} |[u(s)]^{D}(-\tau) - [u_{N}(s)]^{D}(-\tau)|$$

$$\leq LMe^{\omega T}||u(s) - u_{N}(s)||_{X}.$$

For the second term on the right-hand side of (3.2), we consider first the case when $t - s \ge \tau$. Then

$$|[T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))]^D(-\tau)| \leq ||T_N(t-s-\tau)\Pi(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))||_{\mathcal{H}}$$

$$\leq Me^{\omega T}||\mathcal{F}(u(s)) - \mathcal{F}(u_N(s))||_{\mathcal{H}}$$

$$\leq LMe^{\omega T}||u(s) - u_N(s)||_{X}.$$

Now consider the case when $t - s < \tau$. So we have that

$$|[T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))]^D(-\tau)| = |[\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))]^D(t-s-\tau)|$$

$$= |f([u(s)]^D(-\tau)) - f([u_N(s)]^D(-\tau))| \cdot |S_N^{\tau}(t-s-\tau)|$$

$$\leq L |[u(s)]^D(-\tau) - [u_N(s)]^D(-\tau)|$$

$$\leq L ||u(s) - u_N(s)||_X.$$

If we define

(3.6)
$$C := \sqrt{2} \cdot \max\{L, LMe^{\omega T}\}\$$

and apply (3.3), (3.4), and (3.5) to (3.2), then we get that

$$(3.7) ||T_N(t-s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))||_X \le C||u(s) - u_N(s)||_X. \Box$$

We introduce the following definitions:

(3.8)
$$r_N(t) := ||u(t) - u_N(t)||_X,$$

$$\epsilon_N(t) := ||T(t)u_0 - T_N(t)\Pi_N u_0||_X,$$

$$d_N(t,s) := ||(T(t-s) - T_N(t-s)\Pi_N)\mathcal{F}(u(s))||_X.$$

One can apply the variation-of-constants formula and the above definitions to get that

(3.9)
$$r_N(t) \le \epsilon_N(t) + \int_0^t d_N(t, s) \, \mathrm{d}s + \int_0^t \|T_N(t - s)\Pi_N(\mathcal{F}(u(s)) - \mathcal{F}(u_N(s)))\|_X \, \mathrm{d}s$$

$$\le \epsilon_N(t) + \int_0^t d_N(t, s) \, \mathrm{d}s + C \int_0^t r_N(s) \, \mathrm{d}s.$$

Applying Grönwall's inequality to (3.9) gives

(3.10)
$$r_N(t) \le \left[\epsilon_N(t) + \int_0^t d_N(t,s) \, \mathrm{d}s\right] + \int_0^t Ce^{C(t-s)} \left[\epsilon_N(s) + \int_0^s d_N(s,r) \, \mathrm{d}r\right] \, \mathrm{d}s$$
$$\le \left[\epsilon_N(t) + \int_0^t d_N(t,s) \, \mathrm{d}s\right] + Ce^{CT} \int_0^t \left[\epsilon_N(s) + \int_0^s d_N(s,r) \, \mathrm{d}r\right] \, \mathrm{d}s.$$

We wish to show that $r_N(t) \to 0$ as $N \to \infty$ for each fixed $t \in [0, T]$. To this end, we show that each term on the right-hand side of (3.10) converges to 0 as $N \to \infty$ and $t \in [0, T]$ fixed. The following propositions will show this.

PROPOSITION 3.1. For fixed $t \in [0, T]$,

(3.11)
$$\epsilon_N(t) \to 0 \text{ and } \int_0^t \epsilon_N(s) \, \mathrm{d}s \to 0$$

as $N \to \infty$.

Proof. From the definition of the X norm, we have that

The first term on the right-hand side converges uniformly to 0 by the Trotter-Kato theorem. For the second case, we again consider the case when $t \geq \tau$. Here we can apply the Trotter-Kato theorem again to $||T(t-\tau)u_0 - T_N(t-\tau)\Pi_N u_0||_{\mathcal{H}}^2$ to get the term converges to zero. When $t < \tau$, the second term becomes

$$|u_0^D(t-\tau) - [\Pi_N u_0]^D(t-\tau)|^2$$

which converges to 0 uniformly by Proposition 2.2. This gives that $\epsilon_N(t) \to 0$.

To show the other convergence, note that $\epsilon_N(s)$ converges pointwisely to 0 on [0,t]. Furthermore, we may uniformly bound $\epsilon_N(s)$ by again observing the equality (3.12) and applying the uniform bounds on $\|T_N(\cdot)\|_{\mathcal{H}}$ and on $[\Pi_N u_0]^D$. Then by the Bounded Convergence Theorem, we have $\int_0^t \epsilon_N(s) ds \to 0$.

Proposition 3.2. For fixed $t \in [0, T]$,

(3.14)
$$\int_0^t d_N(t,s) \, \mathrm{d}s \to 0 \text{ and } \int_0^t \int_0^s d_N(s,r) \, \mathrm{d}r \, \mathrm{d}s \to 0,$$

as $N \to \infty$.

Proof. We can again apply the definition of $\|\cdot\|_X$ to get that

(3.15)
$$d_N^2(t,s) = \| (T(t-s) - T_N(t-s)\Pi_N) \mathcal{F}(u(s)) \|_{\mathcal{H}}^2 + |[T(t-s)\mathcal{F}(u(s))]^D(-\tau) - [T_N(t-s)\Pi_N \mathcal{F}(u(s))]^D(-\tau)|^2.$$

For fixed t and s, the first term of the right-hand side converges to zero. For $t - s \ge \tau$ the second term will similarly converge to 0. For $t - s < \tau$, the second term will become

$$(3.16) |0 - [\Pi_N \mathcal{F}(u(s))]^D(t - s - \tau)| = |f([u(s)]^D(-\tau))| \cdot |S_N(t - s - \tau)|,$$

which converges a.e. to 0 by (2.35). So for fixed t, $d_N(t,s)$ converges a.e. to 0 for $s \in [0,t]$. Furthermore, we can uniformly bound $d_N(t,s)$ by (2.34). Thus by the Bounded Convergence Theorem, we have $\int_0^t d_N(t,s) ds \to 0$ as $N \to \infty$.

The second convergence follows by the observations that $\int_0^r d_N(\cdot, r) dr$ converges pointwise to 0 by our earlier work and can uniformly bounded on [0, t]. This allows us to apply the Bounded Convergence Theorem to get that $\int_0^t \int_0^s d_N(s, r) dr ds \to 0$ as $N \to \infty$.

We may now state our result.

THEOREM 3.3. For $t \in [0, T]$,

(3.17)
$$\lim_{N \to \infty} ||u(t) - u_N(t)||_X = 0.$$

Proof. Apply propositions (3.1) and (3.2) to the inequality in (3.10).

3.2. Uniform Convergence.

Lemma 3.2. The following convergences hold:

(3.18)
$$\lim_{N \to \infty} \int_0^T |[u_N(s)]^D(-\tau) - [u(s)]^D(-\tau)|^2 ds,$$

and

(3.19)
$$\lim_{N \to \infty} \int_0^T \|\mathcal{F}(u_N(s)) - \mathcal{F}(u(s))\|_{\mathcal{H}} \, \mathrm{d}s = 0.$$

Proof. Note that

(3.20)
$$\int_0^T \left| [u_N(s)]^D(-\tau) - [u(s)]^D(-\tau) \right|^2 ds \le \sum_{k=0}^m \int_{-\tau}^0 \left| [u_N(k\tau)]^D(\theta) - [u(k\tau)]^D(\theta) \right|^2 d\theta,$$

for m such that $T - \tau \leq m\tau < T$. In other words,

It is a simple corollary of Theorem 3.3 that $||[u_N(t)]^D - [u(t)]^D]||_{L^2([0,T];\mathbb{R})} \to 0$ as $N \to \infty$ for any $t \in [0,T]$. This gives that the right side of (3.21) converges to 0 as $N \to \infty$, and thus the left side of (3.21) also converges to 0 as $N \to \infty$. This proves (3.18).

To prove the other convergence, note that

(3.22)
$$\int_{0}^{T} \|\mathcal{F}(u_{N}(s)) - \mathcal{F}(u(s))\|_{\mathcal{H}} ds = \int_{0}^{T} \left| f\left([u_{N}(s)]^{D}(-\tau) \right) - f\left([u(s)]^{D}(-\tau) \right) \right| ds$$
$$\leq L \int_{0}^{T} \left| [u_{N}(s)]^{D}(-\tau) - [u(s)]^{D}(-\tau) \right| ds$$
$$= L \|[u_{N}(\cdot)]^{D}(-\tau) - [u(\cdot)]^{D}(-\tau)\|_{L^{1}([0,T]:\mathbb{R})}.$$

Noting that $L^2([0,T];\mathbb{R})$ is continuously embedded in $L^1([0,T];\mathbb{R})$ and applying (3.18) proves that (3.19) holds.

THEOREM 3.4. The sequence of functions $\{u_N\}_{N=0}^{\infty}$, where

$$(3.23) u_N: [0,T] \mapsto \mathcal{H}, N \in \mathbb{N}_0,$$

is uniformly equicontinuous.

Proof. Suppose $t_0, t_1 \in [0, T]$ and $t_0 \leq t_1$. Denote $\delta := t_1 - t_0$. Applying the variation-of-constants formula, we have that for $N \in \mathbb{N}_0$

$$||u_{N}(t_{0}) - u_{N}(t_{1})||_{\mathcal{H}} \leq \underbrace{\|(T_{N}(t_{0}) - T_{N}(t_{0} + \delta))\Pi_{N}u_{0}\|_{\mathcal{H}}}_{I(\delta,N)} + \underbrace{\|\int_{0}^{t_{0}} [T_{N}(t_{0} - s) - T_{N}(t_{0} + \delta - s)]\Pi_{N}\mathcal{F}(u_{N}(s)) \,\mathrm{d}s\|_{\mathcal{H}}}_{II(\delta,N)} + \underbrace{\|\int_{t_{0}}^{t_{0}+\delta} T_{N}(t_{0} + \delta - s)\Pi_{N}\mathcal{F}(u_{N}(s)) \,\mathrm{d}s\|_{\mathcal{H}}}_{III(\delta,N)}.$$

We show that for each of these terms, the dependence on δ and N can be separated.

I. We have that

$$I(\delta, N) = \|T_{N}(t_{0})(I - T_{N}(\delta))\Pi_{N}u_{0}\|_{\mathcal{H}}$$

$$\leq Me^{\omega t_{0}}\|(I - T_{N}(\delta))\Pi_{N}u_{0}\|_{\mathcal{H}}$$

$$= Me^{\omega t_{0}}\|(\Pi_{N} - T_{N}(\delta)\Pi_{N})u_{0}\|_{\mathcal{H}}$$

$$\leq Me^{\omega t_{0}}\|(I - T_{N}(\delta)\Pi_{N})u_{0}\|_{\mathcal{H}}$$

$$\leq Me^{\omega T}\|(I - T_{N}(\delta)\Pi_{N})u_{0}\|_{\mathcal{H}}$$

$$\leq Me^{\omega T}\|(I - T_{N}(\delta)\Pi_{N})u_{0}\|_{\mathcal{H}}$$

$$\leq Me^{\omega T}\|(I - T(\delta))u_{0}\|_{\mathcal{H}} + \|(T(\delta) - T_{N}(\delta)\Pi_{N})u_{0}\|_{\mathcal{H}}]$$

$$\leq Me^{\omega T}\|(I - T(\delta))u_{0}\|_{\mathcal{H}} + \sup_{t \in [0,T]}\|(T(t) - T_{N}(t)\Pi_{N})u_{0}\|_{\mathcal{H}}.$$

Now define the following functions:

(3.26)
$$I^*(\delta) := Me^{\omega T} \times \|(I - T(\delta))u_0\|_{\mathcal{H}}$$

and

(3.27)
$$I^{**}(N) := Me^{\omega T} \times \sup_{t \in [0,T]} \| (T(t) - T_N(t)\Pi_N) u_0 \|_{\mathcal{H}}$$

Note that $\lim_{\delta \to 0^+} I^*(\delta) = 0$ by the continuity of T(t) and $\lim_{N \to \infty} I^{**}(N) = 0$ by the Trotter-Kato theorem.

II. We have that

$$II(\delta, N) \leq \int_{0}^{t_{0}} \| (T_{N}(t_{0} - s) - T_{N}(t_{0} + \delta - s)) \Pi_{N} \mathcal{F}(u_{N}(s)) \|_{\mathcal{H}} ds
\leq M e^{\omega T} \int_{0}^{t_{0}} \| (I - T_{N}(\delta) \Pi_{N}) \mathcal{F}(u_{N}(s)) \|_{\mathcal{H}} ds
\leq M e^{\omega T} \left[\underbrace{\int_{0}^{t_{0}} \| (I - T_{N}(\delta) \Pi_{N}) \mathcal{F}(u(s)) \|_{\mathcal{H}} ds}_{A} \right]
+ \underbrace{\int_{0}^{t_{0}} \| (I - T_{N}(\delta) \Pi_{N}) (\mathcal{F}(u_{N}(s)) - \mathcal{F}(u(s))) \|_{\mathcal{H}} ds}_{B} \right].$$

From here, we can note that

(3.29)
$$A \leq \int_{0}^{T} \|(I - T(\delta))\mathcal{F}(u(s))\|_{\mathcal{H}} ds + \int_{0}^{T} \|(T(\delta) - T_{N}(\delta))\mathcal{F}(u(s))\|_{\mathcal{H}} ds \\ \leq \int_{0}^{T} \|(I - T(\delta))\mathcal{F}(u(s))\|_{\mathcal{H}} ds + \int_{0}^{T} \sup_{t \in [0,T]} \|(T(t) - T_{N}(t))\mathcal{F}(u(s))\|_{\mathcal{H}} ds,$$

where both of these terms can easily be shown to converge to zero as $\delta \to 0$ and $N \to \infty$, respectively. Namely, we can apply the Lebesgue Dominated Convergence Theorem. Also note that

(3.30)
$$B \leq (1 + Me^{\omega T}) \int_0^T \|\mathcal{F}(u_N(s)) - \mathcal{F}(u(s))\|_{\mathcal{H}} \, \mathrm{d}s,$$

where the right-hand side converges to zero as $N \to \infty$ by (3.19). Now we set

(3.31)
$$\operatorname{II}^*(\delta) := M e^{\omega T} \int_0^T \| (I - T(\delta)) \mathcal{F}(u(s)) \|_{\mathcal{H}} \, \mathrm{d}s$$

and

(3.32)
$$II^{**}(N) := Me^{\omega T} \left[\int_0^T \sup_{t \in [0,T]} \| (T(t) - T_N(t)) \mathcal{F}(u(s)) \|_{\mathcal{H}} \, \mathrm{d}s + \left(1 + Me^{\omega T} \right) \int_0^T \| \mathcal{F}(u_N(s)) - \mathcal{F}(u(s)) \|_{\mathcal{H}} \, \mathrm{d}s \right].$$

III. We have that

$$(3.33) \quad || III(\delta, N) \leq \int_{t_0}^{t_0 + \delta} || T_N(t_0 + \delta - s) \Pi_N \mathcal{F}(u_N(s)) ||_{\mathcal{H}} ds$$

$$\leq M e^{\omega T} \int_{t_0}^{t_0 + \delta} || \mathcal{F}(u_N(s)) ||_{\mathcal{H}} ds$$

$$\leq M e^{\omega T} \left[\int_{t_0}^{t_0 + \delta} || \mathcal{F}(u(s)) ||_{\mathcal{H}} ds + \int_{t_0}^{t_0 + \delta} || \mathcal{F}(u_N(s)) - \mathcal{F}(u(s)) ||_{\mathcal{H}} ds \right]$$

$$\leq M e^{\omega T} \left[\delta \times \sup_{t \in [0, T]} || \mathcal{F}(u(t)) ||_{\mathcal{H}} + \int_0^T || \mathcal{F}(u_N(s)) - \mathcal{F}(u(s)) ||_{\mathcal{H}} ds \right].$$

Note that $\sup_{t\in[0,T]} \|\mathcal{F}(u(t))\|_{\mathcal{H}}$ is finite since $\|\mathcal{F}(u(t))\|_{\mathcal{H}}$ is a continuous function. Now let

(3.34)
$$\operatorname{III}^*(\delta) := M e^{\omega T} \delta \times \sup_{t \in [0,T]} \| \mathcal{F}(u(t)) \|_{\mathcal{H}}$$

and

(3.35)
$$III^{**}(N) := Me^{\omega T} \int_0^T \|\mathcal{F}(u_N(s)) - \mathcal{F}(u(s))\|_{\mathcal{H}} \, \mathrm{d}s.$$

Clearly $\lim_{\delta \to 0^+} \mathrm{III}^*(\delta) = 0$. Also from (3.19) we have that $\lim_{N \to \infty} \mathrm{III}^{**}(N) = 0$. Thus,

(3.36)
$$||u_N(t_0) - u_N(t_1)||_{\mathcal{H}} \le I(\delta, N) + III(\delta, N) + IIII(\delta, N)$$

$$< [I^*(\delta) + III^*(\delta) + III^*(\delta)] + [I^{**}(N) + III^{**}(N) + III^{**}(N)].$$

Let $\epsilon > 0$. We wish to choose $\delta > 0$ such that $||u_n(t) - u_n(t')||_{\mathcal{H}} < \epsilon$ for any $n \in \mathbb{N}_0$ and $t, t' \in [0, T]$ with $|t - t'| < \delta$. Choosing δ^* small enough so that $I^*(\delta^*) + III^*(\delta^*) + III^*(\delta^*) < \epsilon/2$ and N large enough such that $I^{**}(N) + III^{**}(N) + III^{**}(N) < \epsilon/2$, we get that

$$(3.37) ||u_n(t) - u_n(t')||_{\mathcal{H}} < \epsilon,$$

where $|t-t'| < \delta^*$ and $n \ge N$. For each $n \in \mathbb{N}_0$ that are less than N, we pick $\delta_n > 0$ such that $||u_n(t) - u_n(t')||_{\mathcal{H}} < \epsilon$ for $|t-t'| < \delta_n$. This is possible since u_n is uniformly continuous on [0,T]. Let $\delta = \min\{\delta^*, \delta_0, \ldots, \delta_{N-1}\}$. Then δ satisfies the challenge from ϵ . This proves uniform equicontinuity.

Theorem 3.5. For T > 0, we have that

(3.38)
$$\lim_{N \to \infty} \sup_{t \in [0,T]} ||u_N(t) - u(t)||_{\mathcal{H}} = 0.$$

Proof. The above result follows directly from Theorem 3.3 and Theorem 3.4.

REFERENCES

- [1] M. D. CHEKROUN, M. GHIL, H. LIU, AND S. WANG, Low-dimensional galerkin approximations of nonlinear delay
- differential equations, Discrete and Continuous Dynamical Systems, 36 (2016), pp. 4133–4177. [2] T. H. KOORNWINDER, Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+x)^{\beta} + M\delta(x+1) + N\delta(x-1)$, Canadian mathematical bulletin, 27 (1984), pp. 205–214.
- [3] E. D. RAINVILLE, Special functions, Macmillan, New York, 1971.
 [4] H. WANG AND S. XIANG, On the convergence rates of legendre approximation, Mathematics of Computation, 81 (2012), pp. 861–877.