数理逻辑笔记

陈鸿峥

2020.05*

目录

 1 命题逻辑
 1.1 自然推断
 1.1 自然推断

1 命题逻辑

1.1 自然推断

定义 $\mathbf{1}$ (命题(proposition)). 命题或声明式句子是指可判断为真或者假的句子。不可被分解的(indecomposable)命题为原子命题。

关于命题公式的定义在这里不再给出,注意—是右结合(right-associative)的,如 $p \to q \to r$ 等价于 $p \to (q \to r)$ 。

定义 2 (自然推断(deduction)). 假设有一系列前提(premise)公式 $\phi_1,\phi_2...,\phi_n$, 及结论 ψ , 那么推断过程可记为

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

这一表达式称为一个序列(sequent),若一个证明可以被找到则称它是合法的(valid)。

推理的基本规则:

• and-introduction ($\wedge i$): 前提与前提为真

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

• and-elimination ($\wedge e_i$): 前提与中子成分为真

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

^{*}Build 20200517

• negation-introduction
$$(\neg \neg i)$$

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

• negation-elimination $(\neg \neg e)$

$$\frac{\neg \neg \phi}{\phi} \neg \neg \epsilon$$

• implication-elimination $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \to \epsilon$$

• implies-introduction $\rightarrow i$

ullet or-introduction $\vee e$

• bottom/not-elimination

$$\frac{\perp}{\phi} \perp e$$
 $\frac{\phi}{\perp} \neg \phi \neg e$

• negation

例 1. 证明 $p \wedge q, r \vdash q \wedge r$ 是合法的。

分析. 推理过程如下

$$\begin{array}{cccc} 1 & p \wedge q & premise \\ 2 & r & premise \\ 3 & q & \wedge e_2 & 1 \\ 4 & q \wedge r & \wedge i & 3, 2 \\ \\ & & \frac{p \wedge q}{q} \wedge e_2 & r \\ & & q \wedge r \end{array} \wedge i$$

定义 $\mathbf{3}$ (定理(theorem)). 有着合法序列 $\vdash \phi$ 的逻辑公式 ϕ 称为定理。

三条进阶推理规则:

• 拒取式(modus tollens, MT)

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} MT$$

• 反证法(proof by contradition, PBC)

• 排中律(the law of the excluded middle, LEM)

$$\phi \lor \neg \phi$$
必有一个为真

定义 4 (可证明等价性(provably equivalent)). 令 ϕ 和 ψ 为命题逻辑公式, ϕ 和 ψ 是可证明等价的当且仅当序列 $\phi \vdash \psi$ 和 $\psi \vdash \phi$ 都是合法的,或者 $\phi \dashv \!\!\! \vdash \psi$