Facial Keypoints Recognition

Harry Xu, Noah Randolph, and Chet Gutwein

Introduction

- Facial keypoints recognition can be used as a building block in several areas, such as information security and medical diagnosis
- Large amount of variation due to 3D pose, size, position, viewing angle, and illumination conditions
- Training and tuning models for keypoint recognition is computationally demanding due to multiple points to classify, total features = all image pixels, continuous data in each feature, and large training set needed

Data, Labels, and Feature Engineering

```
left eye center x
                             0.999
                             0.999
left eye center y
right eye center x
                             0.998
right eye center y
                             0.998
                             0.322
left eye inner corner x
left eye inner corner y
                             0.322
left eye outer corner x
                             0.322
left eye outer corner y
                             0.322
right eye inner_corner_x
                             0.322
right eye inner corner y
                             0.322
right eye outer corner x
                             0.322
right eye outer corner y
                             0.322
left eyebrow inner end x
                             0.322
left eyebrow inner end y
                             0.322
left eyebrow outer end x
                             0.316
left eyebrow outer end y
                             0.316
                             0.322
right eyebrow inner end x
right eyebrow inner end y
                             0.322
right eyebrow outer end x
                             0.317
right eyebrow outer end y
                             0.317
nose tip x
                             1.000
                             1.000
nose tip v
mouth left corner x
                             0.322
mouth left corner y
                             0.322
mouth right corner x
                             0.322
                             0.322
mouth right corner y
mouth center top lip x
                             0.323
mouth center top lip y
                             0.323
mouth center bottom lip x
                             0.995
mouth center bottom lip y
                             0.995
```

Training data contained in .csv file, each row containing 30 data labels and a string containing image data

Labels

- Used 1,000 samples for dev set with 6,049 training samples left
- Inconsistencies in training labels only 4 of 15 keypoint labels present in more than 50% of samples

Training Data

- Grayscale image with size of 96 X 96 pixels for a total of 9,216 features
- Pixel values normalized initially by dividing each value by 255.0
- Later used from sklearn.preprocessing import StandardScaler

Blurring & Generating Training Samples

- Removing incomplete training samples: problematic because we significantly reduce the size of training data!!!!
- <u>Using Average Replacement</u>: rather than discard, use the average value of each training sample as a replacement
- <u>Blurring:</u> applying a gaussian blur to an image can help model performance
- Generate artificial training samples: with a scarcity of training data, we attempted to generate additional training samples
 - Flipped image on y axis
 - Adapted keypoint labels
 - Doubled the size of our training data
 - Slight decrease in model performance, introduced unwanted bias

Baseline Submission

 Predicted each facial keypoint location, x and y, to be the average of 96 pixel positions, or pixel (x = 48, y = 48)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^2)^2}$$
, Score 17.79095

158	^ 1	Francis Mitra		12.12504
159	₹89	axon	7	17.92907
160	4	iulian		24.95756

kNN Regression Model

Model	RMSE on Dev	RMSE on Test	
Only complete labels	2.57	3.55	
Missing labels filled by average	1.86	3.47	
Missing labels filled by average and image blurred	1.82	3.45	

- We used GridSearch to find k=3 to be the optimal hyperparameter for our model
- The model is using uniform weights and standard Euclidean distance
- Produces decent results on our Dev data set, but does not produce as satisfactory results on Test data

RMSE of 1.06332539756

Neural Net (MLPRegressor) Model

- We are using a Feed Forward Neural Network with two hidden layers sized (1000, 500)
- Input layer of 9216 (number of pixels) and output layer of 30 (number of x,y keypoints)
- Our activation function is the Rectified Linear Unit (ReLu)
- Our learning rate is held constant
- We are using the 'Adam's' Optimizer which is a form of Stochastic Gradient Descent

Model	RMSE on Dev	RMSE on Test	
Only complete labels	2.59	3.33	
Missing labels filled by average	2.55	3.28	
Missing labels filled by average and image blurred	2.27	3.6	

Final Outcome

Results:

- RMSE better on dev set for k NN (1.82 vs. 2.27)
- RMSE better on test set for MLPRegressor (3.28 vs. 3.45)

If we had more time:

- Build a more complex neural net with convolutional hidden layers
- Feature engineering: more complex model to predict missing labels based on full sets of labels than just taking the average

66	^ 7	ManonRomain		3.27156	11	
67	▼ 2	houzhuding	9	3.29517	4	
			EXT.			

Thank you - Any Questions?

Harry Xu Slack: **@harryxu**

E-mail: harryxu@berkeley.edu

Noah Randolph Slack: @noahrandolph E-mail: noah randolph@berkeley.edu

Chet Gutwein Slack: @cgutwein

E-mail: chet_gutwein@berkeley.edu