A Book of Abstract Algebra (2nd Edition)

Chapter 32,	Problem 2EA
-------------	-------------

Bookmark

Show all steps:

ON

Problem

Find the degree of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}

Step-by-step solution

Step 1 of 2

The objective is to find the degree of $\mathbb{Q}(i,\sqrt{2})$ over \mathbb{Q} .

Comment

Step 2 of 2

The minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is x^2-2 as it is monic and irreducible with $\sqrt{2}$ as a root.

Hence,
$$\mathbb{Q}(\sqrt{2}):\mathbb{Q}=2$$
; a basis is $\{1,\sqrt{2}\}$.

Show that $i \notin \mathbb{Q}(\sqrt{2})$.

Assume that $i \in \mathbb{Q}(\sqrt{2})$.

Then i must have the form $a+b\sqrt{2}$, for some $a,b\in\mathbb{Q}$.

It follows that $(a+b\sqrt{2})^2 = -1$ and thus $a^2 + 2\sqrt{2}ab + 2b^2 + 1 = 0$

Since $\{1,\sqrt{2}\}$ is a linear independent set as it is a basis for $\mathbb{Q}(\sqrt{2})$ as a vector space over \mathbb{Q} , either a=0 or b=0.

If a=0 then $b=\pm \frac{1}{\sqrt{2}}i$ and if b=0 then $a=\pm i$.

This is a contradiction to $a, b \in \mathbb{Q}$.

Hence $_{}^{}$, $_{x^{2}+1}^{}$ is irreducible over $\mathbb{Q}\left(\sqrt{2}\right)$; it is a minimal polynomial over $\mathbb{Q}\left(\sqrt{2}\right)$. So $_{}^{}$, $\left[\mathbb{Q}\left(i,\sqrt{2}\right):\mathbb{Q}\left(\sqrt{2}\right)\right]=2$ and that $\left\{1,i\right\}$ is a basis for $\mathbb{Q}\left(i,\sqrt{2}\right)$ over $\mathbb{Q}\left(\sqrt{2}\right)$. Therefore $_{}^{}$, $\left[\mathbb{Q}\left(i,\sqrt{2}\right):\mathbb{Q}\right]=\left[\mathbb{Q}\left(i,\sqrt{2}\right):\mathbb{Q}\left(\sqrt{2}\right)\right]\left[\mathbb{Q}\left(\sqrt{2}\right):\mathbb{Q}\right]$ = $2\cdot 2$ = 4.

Comment