Homework 2: Nondeterminism and Pumping Lemma

Due:9/15/2022

1. **Nondeterminism** (4 points)

(2 points - Section A) For any regular language L, give a NFA that accepts $L_1 = \{axb \mid x \in L, a, b \in \Sigma^*\}$, i.e. the set of all strings that contain a string from L as a substring.

Solution:

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize L_1 .

- (a) $Q = Q_1 \cup q_0 \cup F$
- (b) $\Sigma = \Sigma$
- (c) The state q_0 is the new start state.
- (d) Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$:

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in L \text{ and } a \neq \varepsilon \\ \{F\} & q \in F_1 \text{ and } a = \varepsilon \\ \{F\} & q \in F \text{ and } a \neq \varepsilon \\ \{q_0\} & q = q_0 \text{ and } a \neq \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \end{cases}$$

(e) F is a new final state which is also accepting.

(2 points - Both) For any regular language L, prove that $L' = \{xay \mid xy \in L, a \in \Sigma, x, y \in \Sigma^*\}$ is regular, i.e. the set of all strings from which deleting exactly one character gives a string from L. For example, if L were binary palindromes (words that are the same when reversed), some words in L' would include 10010, 100, 1110001011, since deleting the red character from each string produces a palindrome.

Solution:

We create 2 copies of M, denoted as M_1 and M_2 . Let $M_1 = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{0_2}, F_2)$ recognize L.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize L'.

(a) $Q = Q_1 \cup Q_2$

For each state q_i in Q, we write q_{i_1} as the corresponding state in M_1 and q_{i_2} as the corresponding state in M_2 . Let Q_1 and Q_2 be the set of states for M_1 and M_2 respectively.

- (b) $\Sigma = \Sigma$
- (c) $q_0 = q_{0_1}$

```
 \text{(d)} \ \delta(q,a) = \begin{cases} \delta_1(q_{i_1},a) & q_i \in Q_1 \text{ and } a \neq \varepsilon \\ \delta_2(q_{i_2},a) & q_i \in Q_2 \text{ and } a \neq \varepsilon \\ \{r_{i_0}\} & \text{r is a temporary state, } q_i \in Q_1 \text{ and } a = \varepsilon \\ \{r_{i_1}\} & q_i = r_{i_0} \text{ and } a \in \Sigma \\ \{q_{i_2}\} & \text{q is the corresponding state in } Q_2, \, q_i = r_{i_1} \text{ and } a = \varepsilon \end{cases}  (e) F = F_2 (the accepting states in M_2 only).
```

(2 points - Section X) Let L be a regular language, and let $L^{\#}$ be the set $\{x \in \Sigma^* \mid \text{for some } y \in L, y \text{ has the same number of 1's as x}\}$. Prove that, if L is regular, $L^{\#}$ is regular.

2. Regular Expressions **Both Sections**(4 points)

(2 points) Give a regular expression for each of the following languages:

- The set of all strings with an even number of 1's.
- The set of all even length strings with at most two 0's

Solution:

- 0*(10*1)*0*
- $\bullet \hspace{0.2cm} (11)^* \cup (11)^* 10(11)^* \cup (11)^* 01(11)^* \cup (11)^* 0(11)^* 0(11)^* \cup (11)^* 10(11)^* 01(11)^* \cup (11)^* \cup (11)^* 01(11)^* \cup (11)^* \cup ($

(2 points) Give an equivalent NFA for the following regular expression: $((01 \cup 10^*1 \cup 10)1)^*(00)^*$

3. Pumping Lemma (4 points)

(Section A) Prove that $L_1 = \{a^i b^j \mid |i - j| \text{ is prime}\}\$ is not regular.

Proof. by contradiction.

Assume that L_1 is regular. Let p be the pumping length given by the pumping lemma. Choose s to be the string $a^pb^{p-k} \in L_1$ where k is prime and k >= 2 since 2 is the smallest prime. Because s is a member of L_1 and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string xy^iz is in L_1 . Take $x = a^{p-1}, y = a, z = b^{p-k}$. We consider the following case to show that this result is impossible.

The string y consists only of only the letter a. In this case, the string xy^kz now has k more a's than letter b's, specifically $a^{p+k}b^{p-k}$ which is $\notin L_1$ since (x+k)-(x-k)=2k which can never be prime.

(Section X) Prove that $L_2 = \{a^i b^j \mid i, j \text{ are relatively prime}\}\$ is not regular.

4. Pumping Lemma Adjacent **Section A only** (4 points)

A minimal DFA D for a language L is a DFA such that any DFA for L has at least as many states as D. Complete the steps below to prove the following claim:

Claim: For any positive integer $n \geq 3$, there is a language whose minimal DFA contains n states.

Proof: For some $k \in \mathbb{Z}$, let $L_k = \{a^k\}$, a set with one element. Now, suppose D is a minimal DFA for L_k . You will prove that D has at least k+2 states. Let $\{q_i\}_{i=0}^k = q_0, \ldots, q_k$ be the sequence of states (not necessarily distinct!) that D follows when reading a^k .

(1 points) Explain why $\{q_i\}_{i=0}^k$ cannot contain any repeated states (hint: the proof of the pumping lemma), and conclude that D has at least k+1 states.

Solution:

Proof by contradiction.

Assume that $q_i = q_j$ for 2 states in $\{q_i\}_{i=0}^k = q_0, ..., q_k$ such that $0 \le i < j \le k$. We also know that q_k must be an accepting state to accept string a^k which contains exactly k a's. Because $q_i = q_j$, we have a loop of j - i a's. In a scenario where we traverse this loop 2 times, the DFA D can also accept a string with k + (j - i) a's. This means that DFA D also accepts the string $a^{k+(j-i)}$.

This is a contradiction. Our assumption that 2 states $q_i = q_j$ in D from $q_0 \cdots q_k$ are the same is wrong, so all states in $q_0 \cdots q_k$ must be distinct. If all states in $q_0 \cdots q_k$ are distinct then D must have k - 0 + 1 = k + 1 states to accept only the string a^k .

(1 point) Now consider the state that D ends in upon reading the string a^{k+1} , and argue that D must have at least k+2 states.

Solution:

To guarantee that D accepts only an input string a^k with k a's, there must only be one way to reach the accepting state q_k .

Let q_{k+1} be the state that D ends in when reading the string a^{k+1} . q_{k+1} must be a "trash state" that can never reach q_k because in part (a), we showed that states $q_0 \cdots q_k$ must be distinct. If q_{k+1} is the same state as one of $q_0 \cdots q_k$, then there would be a way where q_{k+1} to be able to transition to q_k again due to the loop upon reading more a's and accepting a string with more than k a's. This is a contradiction with our requirements for the DFA because we only want to accept a string with exactly k a's.

Remember in part (a), we found that there are k+1 distinct states for $q_0 \cdots q_k$. Now upon adding q_{k+1} , the "trash state", we now have a total of k+2 distinct states in D.

Additionally, we could have multiple "trash states" $q_{k+1}, q_{k+2}, q_{k+3}, etc.$ which all do not reach q_k . This means that D can have at least k+2 states. However, we can combine all of these "trash states" into one "trash state" so that DFA D has exactly k+2 states.

(1 point) Demonstrate that D has exactly k+2 states by giving an explicit construction of D.

Solution:

Let
$$D = (Q, \Sigma, \delta, q, F)$$
.

(a)
$$Q = \{q_i \mid 0 \le i \le k+1\}$$

(b)
$$\Sigma = \{a\}$$

(c)
$$\delta(q, a) = \begin{cases} q_{i+1} & 0 \le i \le k \\ q_{k+1} & i > k \end{cases}$$

(d)
$$q = q_0$$

(e)
$$F = q_k$$

(1 point) Complete the conclusion of this proof: "Therefore, we have given a constructive proof of the original claim. For any $n \in \mathbb{Z}, n \geq 3$, the language _____ has a minimal DFA with n states."

Solution:

$$L_{n-2} = \{a^{n-2}\}\$$

Note that in the previous portions of this problem, we showed that $L_k = \{a^k\}$ has k+2 states. That means that L_{n-2} will have (k+2)-2=k states.

- 5. Polynomial Length **Section X only** (4 points) Given f(n), a polynomial with non-negative integral coefficients, let $L_f = \{1^{f(n)} \mid n \in \mathbb{N}\}.$
 - For exactly which f(n) is L_f regular? Prove your answer.
 - Prove that for all other f(n), L_f is not regular.