Evolution of 3-Dimensional Soft Robots

Corbin Frisvold

Jim Thorpe Area School District

Feb 29, 2020

Corbin Frisvold Soft Robotics Feb 29, 2020 1/19

Background

Why did I choose this project?

- Intersection of Computer Science, Mathematics, and Biology.
- ② Interest in 3D Printing, 3D Design, and evolutionary design.
- Expansion upon work of MIT's Karl Sims

Corbin Frisvold Soft Robotics Feb 29, 2020 2 / 19

Terminology

- Soft Robots
- 2 Compositional Pattern Producing Network
- Fitness

Objectives

- Develop a way to generate and simulate soft robots
- Evaluate fitness of said robots, and explore 'peaks'
- Oreate an evolutionary algorithm to create and refine robots

Corbin Frisvold Soft Robotics Feb 29, 2020 4/19

Materials

Materials used for the program

- Open Python 2.7
 - NumPy
- VoxCad Soft Robotics Library
- **QT** 5.14.1

Corbin Frisvold Soft Robotics Feb 29, 2020 5/19

Programming and Methods

There were three main sections to my program

- Setup VoxCad with QT
- Implement physics engine into Python
- Obesign a CPPN for evolution

Program Flow

Final Program

```
......
----- GENERATION θ ------
Launched 15 voxelyze calls, out of 15 individuals
Rerunning voxelyze for: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
softbotsOutput -- id_00007.xml fit = 0.684705 (1 / 15)
softbotsOutput--id 00003.xml fit = 0.192421 (2 / 15)
softbotsOutput--id 00005.xml fit = 0.587601 (3 / 15)
softbotsOutput--id 66664.xml fit = 0.0978188 (4 / 15)
softbotsOutput--id 88881.xml fit = 1.31187 (5 / 15)
softbotsOutput--id 00000.xml fit = 3.73716 (6 / 15)
softbotsOutput--id 00002.xml fit = 0.192955 (7 / 15)
softbotsOutput--id_00006.xml fit = 0.792697 (8 / 15)
softbotsOutput--id 00008.xml fit = 0.67888 (9 / 15)
softbotsOutput--id 66669.xml fit = 1.431 (16 / 15)
softbotsOutput--id_00010.xml fit = 0.388955 (11 / 15)
softbotsOutput--id 00011.xml fit = 0.092223 (12 / 15)
softbotsOutput--id 00012.xml fit = 0.807465 (13 / 15)
softbotsOutput--id 00013.xml fit = 2.13131 (14 / 15)
softbotsOutput--id 00014.xml fit = 1.13828 (15 / 15)
All Voxelyze evals finished in 186,18552804 seconds
num evaluated this gen: 15
total evaluations: 15
                                                                          parent_fitness
                                                                                                                                                    parent_id
                                                                                                                                                                             variation_type
                                                                                                                            parent_age
                        3.73716
                                                 -100000000.0
                                                                                                                                            newly_generated
                                                 -10000000.0
-100000000.0
                                                                                                  10000000.0
100000000.0
100000000.0
                                                                                                                                            newly generated
                                                                                                                                            newly generated
                        1.31187
                        1.13828
                                                                                                                                            newly_generated
                        0.807465
                                                 -10000000.0
                                                                                                   10000000.0
                                                                                                                                            newly generated
                       8.792697
                                                 -100000000.0
                                                                                                   10000000.0
                                                                                                                                            newly generated
                       0.684705
                                                 -100000000.0
                                                                                                   10000000.0
                                                                                                                                            newly generated
                        0.67888
                                                 -100000000.0
                                                                                                   10000000.0
                                                                                                                                            newly_generated
                        0.587601
                                                 -100000000.0
                                                                                                   10000000.0
                                                                                                                                            newly generated
                        8.388955
                                                  100000000.0
                                                                                                   100000000.0
                                                                                                                                            newly_generated
                                                                                                  1000000.0
10000000.0
10000000.0
                                                                                                                                            newly generated
                        8.192955
                        8.192421
                                                                                                                                            newly generated
                                                                                                                                            newly_generated
                        0.0978188
                       0.092223
                                                 -10000000.0
                                                                                                   10000000.0
                                                                                                                                            newly generated
Saving checkpoint at generation 1
                                         (time from start: 186,67s 3,11m 0,05h)
Creating folders structure for this generation
```

4 D F 4 B F 4 B F

Basic Robot

Begin with a set of 15 6 \times 6 \times 6 cube robots, evolve its shape alone.

Basic Robot Evolution

After 50 generations, best fitness was 5.9961, plateau after 25

Best basic robot fitness over 50 generations

Advanced Robot

Begin with another 15 basic robots, except allow them to change densities, material stiffness, and size.

Advanced Robot Evolution

After 50 generations, best fitness was 3.7372, didn't plateau during trials.

Best advanced robot fitness over 50 generations

Analysis: Basic vs Advanced Robot

Look at the Basic Robot vs. Growth Robot

Basic robot versus advanced robot

Analysis: Factors Affecting Evolutionary Plateau

- Size and shape
- Control over material types
- Control over material densities
- Opening Possibility of environment

Corbin Frisvold Soft Robotics Feb 29, 2020 14 / 19

Possible Errors

- Physics engine error
 - Speed increase
 - 2 Large batch size
- Material wear
- Servironment
 - Temperature
 - Orag

Real World Applications

- Military
 - Nuclear extraction
- Medical
 - Surgery
 - Physical therapy
- Civilian
 - 3D-Printing
 - Research

Conclusion

- The program successfully simulates and evolves robots
- Generally user friendly, libraries can be cleaner
- VoxCad interface makes analysis easy, all data in XML
- Wide range of applications, from military to household
- Possible future improvements include:
 - More environmental factors, currently only temperature
 - Material wear simulation
 - Other neural network types may work better for evolution

Resources

- Dynamic Simulation of Soft Multimaterial 3D-Printed Objects (2014)
 Jonathan Hiller and Hod Lipson
- https://www.python.org/
- http://www.numpy.org/
- https://www.qt.io/
- https://www.creativemachineslab.com/voxcad.html

Corbin Frisvold Soft Robotics Feb 29, 2020 18 / 19

Questions?

Corbin Frisvold Soft Robotics Feb 29, 2020 19 / 19