第4章 词法分析

第1题

构造下列正规式相应的 DFA.

- (1) 1(0|1) *101
- (2) 1 (1010*|1(010)*1) *0
- (3) a((a|b)*|ab*a)*b
- (4) b((ab)*|bb)*ab

答案:

(1) 先构造 NFA:

用子集法将 NFA 确定化

	0	1
X		A
A	A	AB
AB	AC	AB
AC	A	ABY
ABY	AC	AB

除 X, A 外, 重新命名其他状态, 令 AB 为 B、AC 为 C、ABY 为 D, 因为 D 含有 Y (NFA 的终态), 所以 D 为终态。

	0	1
X		A
A	A	В
В	C	В
C	A	D
D	С	В

(2)先构造 NFA:

用子集法将 NFA 确定化

_			
	3	0	1
X	X		
$T_0=X$			A
A	ABFL		
$T_1 = ABFL$		Y	CG
Y	Y		
CG	CGJ		
$T_2 = Y$			
$T_3 = CGJ$		DH	K
DH	DH		
K	ABFKL		
T ₄ = DH			EI
EI	ABEFIL		
T ₅ = ABFKL		Y	CG
T ₆ = ABEFIL		EJY	CG
EJY	ABEFGJLY		
T ₇ = ABEFGJLY		EHY	CGK
ЕНҮ	ABEFHLY		
CGK	ABCFGJKL		
T ₈ = ABEFHLY		EY	CGI
EY	ABEFLY		
CGI	ССЛ		
T ₉ = ABCFGJKL		DHY	CGK
DHY	DHY		
T ₁₀ = ABEFLY		EY	CG
T ₁₁ = CGJI		DHJ	K
DHJ	DHJ		
T ₁₂ = DHY			EI
T ₁₃ = DHJ			EIK
EIK	ABEFIKL		
T ₁₄ = ABEFIKL		EJY	CG

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 、 T_6 、 T_7 、 T_8 、 T_9 、 T_{10} 、 T_{11} 、 T_{12} 、 T_{13} 、 $T_{14</sub>重新命名,分别用 <math>0$ 、1、2、3、4、5、6、7、8、9、10、11、12 、13 、14 表示。因为 2、7、8 、10 、12 中含有Y,所以它们都为终态。

		1
	0	1
0		1
1	2	3
2		
3	4	5
4		6
5	2	3
6	7	3
7	8	9
8	10	11
9	12	9
10	10	3
11	13	5
12		6
13		14
14	7	3

(3) 先构造 NFA:

用子集法将 NFA 确定化

	ε	a	b
X	X		
$T_0=X$		A	
A	ABCD		
T ₁ =ABCD		BE	BY
BE	ABCDE		
BY	ABCDY		
T ₂ =ABCDE		BEF	BEY
BEF	ABCDEF		
BEY	ABCDEY		
T ₃ =ABCDY		BE	BY
T ₄ =ABCDEF		BEF	BEY
T ₅ =ABCDEY		BEF	BEY

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 重新命名,分别用 0、1、2、3、4、5 表示。因为 3、5 中含有Y,所以它们都为终态。

	a	b
0	1	
1	2	3
2	4	5
3	2	3
4	4	5
5	4	5

(4) 先构造 NFA:

用子集法将 NFA 确定化:

	3	a	b
X	X		
$T_0=X$			A
A	ABDEF		
T ₁ =ABDEF		CI	G
CI	CI		
G	G		
T ₂ =CI			DY
DY	ABDEFY		
$T_3=G$			Н
Н	ABEFH		
T ₄ =ABDEFY		CI	G
T ₅ =ABEFH		CI	G

将 T_0 、 T_1 、 T_2 、 T_3 、 T_4 、 T_5 重新命名,分别用 0、1、2、3、4、5 表示。因为 4 中含有Y,所以它为终态。

	a	ь
0		1
1	2	3
2		4
3		5
4	2	3
5	2	3

第2题

已知 NFA= $(\{x,y,z\},\{0,1\},M,\{x\},\{z\})$,其中: $M(x,0)=\{z\}$, $M(y,0)=\{x,y\}$,, $M(z,0)=\{x,z\}$, $M(x,1)=\{x\}$, $M(y,1)=\Phi$, $M(z,1)=\{y\}$,构造相应的 DFA。

答案:

先构造其矩阵

	0	1
X	Z	X
у	x,y	
z	x,z	у

用子集法将 NFA 确定化:

	0	1
X	Z	X
Z	XZ	y
xz	xz	xy
у	xy	
xy	xyz	X
xyz	xyz	xy

将 x、z、xz、y、xy、xyz 重新命名,分别用 A、B、C、D、E、F 表示。因为 B、C、F中含有 z,所以它为终态。

1 1 1 - 7 7 1 2 2 4 1 1 2 1		
	0	1
A	В	A
В	C	D
С	С	Е
D	Е	
Е	F	A
F	F	E

盛威网(<u>www.snwei.com</u>)专业的计算机学习网站

第3题

将下图确定化:

答案:

用子集法将 NFA 确定化:

	0	1
S	VQ	QU
VQ	VZ	QU
QU	V	QUZ
VZ	Z	Z
V	Z	
QUZ	VZ	QUZ
Z	Z	Z

重新命名状态子集,令 VQ 为 A、QU 为 B、VZ 为 C、V 为 D、QUZ 为 E、Z 为 F。

	0	1
S	A	В
A	C	В
В	D	Е
C	F	F
D	F	
Е	C	Е
F	F	F

第4题

将下图的(a)和(b)分别确定化和最小化:

答案:

初始分划得

Π0: 终态组{0}, 非终态组{1,2,3,4,5}

对非终态组进行审查:

 $\{1,2,3,4,5\}a \subset \{0,1,3,5\}$

而{0,1,3,5}既不属于{0},也不属于{1,2,3,4,5}

∵{4} a ⊂{0}, 所以得到新分划

 $\Pi1: \{0\}, \{4\}, \{1,2,3,5\}$

对{1,2,3,5}进行审查:

: {1,5} b ⊂{4}

{2,3} b ⊂{1,2,3,5}, 故得到新分划

 $\Pi 2: \{0\}, \{4\}, \{1,5\}, \{2,3\}$

 $\{1,5\}$ a $\subset \{1,5\}$

{2,3} a ⊂{1,3}, 故状态 2 和状态 3 不等价, 得到新分划

 $\Pi 3: \{0\}, \{2\}, \{3\}, \{4\}, \{1,5\}$

这是最后分划了

最小 DFA:

第5题

构造一个 DFA, 它接收 Σ ={0,1}上所有满足如下条件的字符串: 每个 1 都有 0 直接跟在右边。并给出该语言的正规式。

答案:

按题意相应的正规表达式是(0*10)*0*, 或 0*(0 | 10)*0* 构造相应的 DFA, 首先构造 NFA 为

用子集法确定化:

I	IO	I1
{X,0,1,3,Y}	{0,1,3,Y}	{2}
{0,1,3,Y}	{0,1,3,Y}	{2}
{2}	{1,3,Y}	
{1,3,Y}	{1,3,Y}	{2}

重新命名状态集:

S	0	1
1	2	3
2	2	3
3	4	
4	4	3

DFA 的状态图:

可将该 DFA 最小化:

终态组为 $\{1,2,4\}$,非终态组为 $\{3\}$, $\{1,2,4\}$ 0 $\{1,2,4\}$, $\{1,2,4\}$ 1 $\{3\}$,所以1,2,4为等价状态,可合并。

第6题

设无符号数的正规式为θ:

```
θ =dd*|dd*. dd*|. dd*|dd*10(s| ε)dd*
|10(s| ε)dd*|. dd*10(s| ε)dd*
|dd*. dd*10(s| ε)dd*

化简θ, 画出θ的DFA, 其中d={0,1,2,…,9}, s={+, -}
```

答案:

先构造 NFA:

用子集法将 NFA 确定化:

		1	1	ı	
	ε	•	S	10	d
X	XA				
$T_0=XA$		В		F	A
В	В				
F	FG				
A	A				
$T_1=B$					С
С	С				
T ₂ =FG			G		Н
G	G				
Н	Н				
$T_3=A$		В		F	A
$T_4=C$				D	С
D	DE				
$T_5=G$					Н
T ₆ =H					Н
T ₇ =DE			Е		Y
Е	Е				
Y	Y				
T ₈ =E					Y
$T_9=Y$					Y

将 XA、B、FG、A、C、G、H、DE、E、Y 重新命名,分别用 0、1、2、3、4、5、6、7、8、9 表示。终态有 0、3、4、6、9。

	•	S	10	d
0	1		2	3
1				4
2		5		6
3	1		2	3
4			7	4
5				6
6				6
7		8		9
8			_	9
9				9

第7题

给文法 G[S]:

S→aA|bQ

 $A \rightarrow aA|bB|b$

B→bD|aQ

 $Q \rightarrow aQ|bD|b$

D→bB|aA

E→aB|bF

F→bD|aE|b

构造相应的最小的 DFA。

答案:

先构造其 NFA:

用子集法将 NFA 确定化:

	a	b
S	A	Q
A	A	BZ
Q	Q	DZ
BZ	Q	D
DZ	A	В
D	A	В
В	Q	D

将 S、A、Q、BZ、DZ、D、B 重新命名,分别用 0、1、2、3、4、5、6 表示。因为 3、4中含有 z,所以它们为终态。

	a	b
0	1	2
1	1	3
2	2	4
3	2	5
4	1	6
5	1	6
6	2	5

DFA 的状态图:

令P₀= ({0,1,2,5,6}, {3,4}) 用b进行分割:

P₁= ({0,5,6}, {1,2}, {3,4}) 再用b进行分割:

 $P_2 = (\{0\}, \{5, 6\}, \{1, 2\}, \{3, 4\})$ 再用a、b 进行分割,仍不变。

再令 { 0 } 为 A, {1, 2} 为 B, {3, 4} 为 C, {5, 6} 为 D。

最小化为:

第8题

给出下述文法所对应的正规式:

 $S \rightarrow 0A|1B$

 $A \rightarrow 1S|1$

 $B\rightarrow 0S|0$

答案:

解方程组 S 的解:

S=0A|1B

A=1S|1

B=0S|0

将A、B产生式的右部代入S中

S=01S|01|10S|10=(01|10) S|(01|10)

所以: S=(01|10)*(01|10)

第9题

将下图的 DFA 最小化,并用正规式描述它所识别的语言。

盛威网(<u>www.snwei.com</u>)专业的计算机学习网站

答案:

令 P_0 =({1,2,3,4,5},{6,7})用b进行分割: P_1 =({1,2},{3,4},{5},{6,7})再用a、b、c、d进行分割,仍不变。再令{1,2}为A,{3,4}为B,{5}为C,{6,7}为D。最小化为:

 $r=b^*a(c|da)^*bb^*=b^*a(c|da)^*b^+$

附加题

问题 1:

为下边所描述的串写正规式,字母表是 {a,b}.

- a) 以 ab 结尾的所有串
- b) 包含偶数个 b 但不含 a 的所有串
- c) 包含偶数个 b 且含任意数目 a 的所有串
- d) 只包含一个 a 的所有串
- e) 包含 ab 子串的所有串
- f) 不包含 ab 子串的所有串

答案:

注意 正规式不唯一

- a) (a|b)*ab
- b) (bb)*
- c) (a*ba*ba*)*
- d) b*ab*
- e) (a|b)*ab(a|b)*
- f) b*a*

问题2:

请描述下面正规式定义的串. 字母表 {0,1}.

- a) $0*(10^+)*0*$
- b) (0|1)*(00|11) (0|1)*
- c) 1(0|1)*0

答案:

- a) 每个 1 至少有一个 0 跟在后边的串
- b) 所有含两个相继的0或两个相继的1的串
- c) 必须以 1 开头和0结尾的串

问题3:

构造有穷自动机.

- a) 构造一个 DFA, 接受字母表 . {0,1}上的以 01 结尾的所有串
- b) 构造一个DFA,接受字母表 {0,1}上的不包含01 子串的所有串.
- c) 构造一个NFA,接受字母表 {x,y}上的正规式x(x|y)*x描述的集合
- d) 构造一个NFA,接受字母表 [a, b]上的正规式(ab|a)*b+描述的集合并将其转换为等价的DFA.以及最小状态DFA

答案:

最小化的 DFA

问题 4:

设有如图所示状态转换图,求其对应的正规表达式。

可通过消结法得出正规式 R=(01)*((00|1)(0|1)*|0) 也可通过转换为正则文法,解方程得到正规式。

问题 5:

已知正规式:

(1)((a|b)*|aa)*b;

(2)(a|b)*b.

试用有限自动机的等价性证明正规式(1)和(2)是等价的,并给出相应的正规文法。

分析:

基本思路是对两个正规式,分别经过确定化、最小化、化简为两个最小 DFA,如这两个最小 DFA 一样,也就证明了这两个正规式是等价的。

答案:

状态转换表 1

	a	b
X124	1234	124Y
1234	1234	124Y
124Y	1234	124Y

状态转换表 2

	a	В
1	2	3
2	2	3
3	2	3

由于2与3完全一样,将两者合并,即见下表

	a	b
1	2	3
	2	3

而对正规式(2)可画 NFA 图,如图所示。

	a	b
X12	12	12Y
12	12	12Y
12Y	12	12Y

可化简得下表

	a	b
1	2	3
2	2	3

得 DFA 图

两图完全一样,故两个自动机完全一样,所以两个正规文法等价。 对相应正规文法,令 A 对应 1,B 对应 2 故为:

A→aA|bB|b

B→aA|bB|b

即为 S→aS|bS|B,此即为所求正规文法。

问题 6:

考虑正规表达式 r = a*b(a|b) ,构造可以生成语言 L(r) 的一个正规文法。

答案:

$$S \rightarrow a*b(a \mid b)$$

变换为
$$S \rightarrow aA, S \rightarrow b(a \mid b), A \rightarrow aA, A \rightarrow b(a \mid b)$$

变换为
$$S \rightarrow aA, S \rightarrow bB, B \rightarrow (a \mid b), A \rightarrow aA, A \rightarrow bC, C \rightarrow (a \mid b)$$

变换为
$$S \rightarrow aA, S \rightarrow bB, B \rightarrow a, B \rightarrow b, A \rightarrow aA, A \rightarrow bC, C \rightarrow a, C \rightarrow b$$

所以,一个可能的正规文法为 G[S]:

$$S \to aA,\, S \to bB,\, B \to a,\, B \to b \;,\, A \to aA \;,\, A \to bC,\, C \to a,\, C \to b$$
 或表示为:

$$S \rightarrow aA \mid bB, B \rightarrow a \mid b, A \rightarrow aA \mid bC, C \rightarrow a \mid b$$

(适当等价变换也可以,但要作说明,即要有步骤)

问题 7:

考虑下图所示的 NFA N,构造可以生成语言 L(N)的一个正规文法。

答案:

G[P]:

$$P \rightarrow 0 P \mid 1 P \mid 1 Q$$

$$Q \rightarrow 0 R \mid 1 R$$

$$R \rightarrow \varepsilon$$
0, 1

问题 8:

考虑如下文法 G[S]:

$$S \rightarrow 0S \mid 1S \mid 1A$$

 $A \rightarrow 0B \mid 1B$
 $B \rightarrow \varepsilon$

Start

p

- a) 试构造语言为 L(G) 的一个正规表达式。
- b) 试构造语言为 L(G) 的一个有限自动机。

答案:

a)

0*1(0 | 1) | 1*1(0 | 1)

b)

0, 1

Start S 1