ALGEBRAIC TOPOLOGY

Dan Margalit Georgia Tech Fall '12 What is algebraic topology?

$$|Space| \rightarrow |Group|$$
 $X \rightleftharpoons T_1(X)$ fundamental group

 $X \rightarrow H_k(X)$ k-th homology group

 $X \rightarrow H^k(X)$ k-th cohomology group

What kinds of questions does it answer?

1) When are two spaces the Same (or not)?

e.g.
$$\mathbb{R}^m \neq \mathbb{R}^n$$

what about:
$$\mathbb{R}^3 - \mathbb{G}$$
 vs. $\mathbb{R}^3 - \mathbb{G}$

2 Embeddings

What is smallest N s.t. a given manifold embeds in TRN?

Unsolved for RP".

3 Fixed point theorems

Browner fixed pt theorem: every $D^2 \rightarrow D^2$ has a fixed pt.

Borsuk-Ulam theorem.

4 Actions

Which finite groups act freely on S^n ?

(known in some cases)

Note: 74/172 Cr S^{2k-1} Y n,k.

(5) Sections

What is the largest k s.t. a given manifold admits a continuously varying k-plane field?

Hairy ball theorem.

6 Group theory

Every subgroup of a free group is free. [Fn, Fn] is not finitely generated. Braid groups are torsion free.

7 Algebra

Fundamental theorem of algebra (this week!)

Basic idea of homology

 $H_k(X)$ = abelian group of k-dim holes in Xcomputable

from collapsing

example: $X = pair of parts \bigcirc \bigcirc$ $H_1(X) \cong \mathbb{Z}^2$

 $H^k(X)$ is dual to $H_k(X)$ \longrightarrow consists of functions $H_k(X) \longrightarrow \mathbb{Z}$

Big Goal: Poincaré Duality

For $X = \frac{n}{manifold}$ $H^{k}(X) \cong H_{n-k}(X)$

More precisely: the functions in H^k look like "intersect with this fixed element of H_{n-k} "

What do we mean by a space?

Cell complexes aka CW complexes

e.g.

C = closure finiteness
(closure of open cell hits
finitely many open cells)
W = weak topology

Quotient topology: $U \subseteq X/n$ is open iff its preimage in X is open.

We build CW complexes inductively

- (i) Start with a discrete set of points X°. The points are regarded as 0-cells.
- (ii) Inductively form n-skeleton X^n from X^{n-1} by attaching n-cells D_{κ} via $q_{\kappa}: \partial D_{\kappa} \longrightarrow X^{n-1}$

 X^n has quotient topology.

(iii) Either stop at a finite stage, or continue indefinitely.

In latter case, use weak topology: a set is open iff its intersection with each cell is open.

dim(X) = sup of dim of cells

Examples of CW Complexes

- 1) 1-dim CW complexes are graphs.
- 2 (4g+2)-gon with opposite sides identified

- 3 $5^{\circ} = e^{\circ} v e^{\circ}$ $e^{i} = i cell$.
- @ RP" = space of lines in R"

To see this: $\mathbb{RP}^n = \mathbb{RP}^n S^n / \text{antipodal map}$ = $\mathbb{D}^n / \text{antipodal map}$ on $\partial \mathbb{D}^n = S^{n-1}$ So on $\partial \mathbb{D}^n$ see \mathbb{RP}^{n-1} , and we glue \mathbb{D}^n to that.

6 CP = e° v e² v ··· v er exercise.

Subcomplexes

Subcomplex = dosed subsep union of cells.

A subcomplex of a CW complex is a CW complex.

example: K-skeleton.

EQUIVALENCE OF SPACES

Intuition: Two spaces are equivalent if one can be deformed into the other

Special case: A deformation retraction $X \rightarrow A$ is a continuous family $\{f_t: X \rightarrow X \mid t \in I\}$

s.t. $f_0 = id$ $f_1(x) = A$ $f_1(x) = id \quad \forall t$

Continuous means $X \times I \longrightarrow X$ $(x,t) \longmapsto f_t(x)$

is continuous.

Example: Given $f: X \rightarrow Y$, the mapping cylinder is $M_f = (X \times I) \coprod Y / N$

where $(x,1) \sim f(x)$

e.g. X = boundary Y = core

Fact: Mf deformation retracts to Y.

Homotopy Equivalence

A homotopy is a continuous family $\{f_t: X \rightarrow Y \mid t \in I\}$

examples: deformation retraction

A map $f: X \rightarrow Y$ is a homotopy equivalence if there is a $g: Y \rightarrow X$ such that fg = id and gf = id 2 homotopic

Say: X & Y are homotopy equivalent, or $X \simeq Y$ have the same homotopy type.

Exercise: This is an equivalence relation.

Fact: If A is a deformation retract of X, then $X \cong A$

Exercise: 0000 00 all homotopy equiv.

Exercise: $\mathbb{R}^n \simeq *$ Say \mathbb{R}^n is contractible.

Read: House with 2 rooms, Hatcher p. 4.