

Que	stions							J	EE Main Crash	Cour	se
1.	On the interval $[0,\ 1]$, the function $X^{25}(1-x)^{75}$ takes its maximum value $(1)\ 0$	at the									
///. 2.	(3) $\frac{1}{2}$ The minimum value of the function $f(x) = x \log x$ is										
///. 3.	(1) $-\frac{1}{e}$ (3) $\frac{1}{e}$ ongo /// mathongo /// mathongo /// mathongo /// Let the function $f(x)$ be define as follows	` ′	-e e _{athongo}								
	$f(x) = \begin{cases} x^3 + x^2 - 10x, & -1 \le x < 0 \\ \cos x, & \cot 0 \le x < \frac{\pi}{2}. & \text{then } f(x) \\ 1 + \sin x, & \frac{\pi}{2} \le x \le \pi \end{cases}$										
	(1) a local minimum at $x = \frac{\pi}{2}$ (3) absolute minimum at $x = -1$ /// mathongo /// mathongo	(2)	a local maxin	num	at $x = \frac{\pi}{2}$						
4.	Suppose $f\left(x\right) = \begin{cases} x-1 + a & \text{if } x \leq 1 \\ 2x+3 & \text{if } x > 1 \end{cases}$, if $f(x)$ has a local minimum at x	= 1,	then which of	the	following is mo	st ap	propriate -				
		(2)	$a \geq 5$ $a \geq 0$		mathongo	/4.	mathongo				
5		()	_	then	the complete se	et of n	ositive values	of a i	S		
74.	If the function $f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 2$ has a positive p (1) (3, 5] (3) (2,3]	(2)	$\left(3, \frac{29}{7}\right)$ $(0, \infty)$	///.	mathongo	///.	mathongo	///.	mathongo		
6/				/ 2	nTtrile etcerne	~ 1/4 6	routhongo				
0.	Let $f:(1, 3) \to R$, be a function defined by $f(x) = \frac{x x }{1+x^2}$, where $[x]$, denotes $(1) \left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$	(2)	$\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}\right)$	$, \frac{4}{5}$							
14.	(3) $\left(\frac{2}{5}, \frac{4}{5}\right)$ /// mathongo /// mathongo		$(\frac{5}{5},\frac{1}{5})$								
7.	If $x=1$ is a critical point of the function $f(x)=(3x^2+ax-2-a)e^x$, the (1) $x=1$ and $x=-\frac{2}{3}$ are local minima of f (3) $x=1$ is a local maxima and $x=-\frac{2}{2}$ is a local minima of f	(2)			$\frac{2}{3}$ is a local max $\frac{2}{3}$ inima and $x=$			na of j	fmathongo		
8.	The largest term in the sequence $a_n = \frac{n^2}{n^3 + 200}$ is given by										
	(1) $\frac{(400)^{2/3}}{600}$ // mathongo // mathongo // mathongo //	(2) (4)									
9.	The set of values of b for which local extremum values of the function $f(x)$	are p	ositive where	f(x)	$=\frac{2}{3}a^2x^3-\frac{5}{3}$	$\frac{a}{2} x^2$	+3x+b and a	naxin	na occurs at x	$=\frac{1}{3}i$	s
	(1) $(-4, \infty)$ mathongo mathongo mathongo (3) $\left(-10, \frac{3}{8}\right)$	(2)	$\left(-\frac{3}{8}, \infty\right)$ None of these		mathongo	14.				141.	
10.	The volume of the largest possible right circular cylinder that can be inscribed (1) 4π	ed in			$\sqrt{3}$ is nongo						
	(3) $\frac{8}{3}\sqrt{3}\pi$ mathongo /// mathongo /// mathongo	(4)	2π mathongo								