out the probability above using the second-order Markov assumption.
tion 2: Consider the following training corpus T of sentences:
uon 2. Consider the following training corpus 1 of sentences.
START Karlsson is round STOP
START He lives on the roof STOP
START He is happy STOP
START On the roof STOP
START Karlsson lives happily STOP
(b) Compute the following maximum likelihood parameters:
o(Karlsson START)=
p(Karlsson lives,happily)=
p(STOP happy)=

START Karlsson lives on the roof STOP

Question 3: We have the following training corpus:

the green book STOP my blue book STOP his green house STOP book STOP

Assume we have a language model based on this corpus using linear interpolation with $\lambda_i = 1/3$ for all i. Compute the value of the parameter p(book|the green) under this model. Assume STOP as part of your unigram model.

p(book|the green)