KM6164000B Family

Document Title

256Kx16 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	<u>Draft Data</u>	<u>Remark</u>
0.0	Initial draft	June 28, 1996	Advance
0.1	Revise - Die name change ; A to B	September 19, 1996	Preliminary
1.0	Finalize	December 17, 1996	Final
2.0	Revise - Operating current update and release. Icc(Read/Write) = $30/60 \rightarrow 15/75$ mA Icc1(Read/Write) = $30/60 \rightarrow 15/75$ mA Icc2 = $160 \rightarrow 130$ mA	February 17, 1997	Final
3.0	Revise - Change datasheet format - Remove Icc write value from table.	February 17, 1998	Final
4.0	Revise - Change test load at 55ns: 100pF → 50pF	June 22, 1998	Final
4.01	Errarta correction	August 8, 1998	

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

256Kx16 bit Low Power CMOS Static RAM

FEATURES

Process Technology : TFTOrganization : 256Kx16

Power Supply Voltage: 4.5~5.5V
Low Data Retention Voltage: 2V(Min)
Three state output and TTL Compatible
Package Type: 44-TSOP2-400F/R

GENERAL DESCRIPTION

The KM616V4000B families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and small package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Dis	ssipation	
Product Family	Operating Temperature	Vcc Range	Speed(ns)	Standby Operating (ISB1, Max) (ICC2, Max)		PKG Type
KM6164000BL-L	Commercial(0~70°C)	4.5~5.5V	551)/70	20μΑ	130mA	44-TSOP2-F/R
KM6164000BLI-L	Industrial(-40~85°C)	4.5~5.5V	70/100	50μΑ	ToomA	44-1001 Z-1710

^{1.} The parameter is measured with 50pF test load.

PIN DESCRIPTION

A4 □ 1 △	, []	44 🗆 A5	A5 44	Į J	∩1
A3 🔲 2	,	43 A6	A6 43	_	2 A3
A2 3		42 A7	A7 42		3 A2
A1 4		41 OE	OE 41		4 A1
A0 5		40 UB	UB ☐ 40	~	5 A0
CS 6		39 LB	LB 39		6 CS
I/OI 7		38 I/O16	I/O16 38		7 1/01
I/O2 8		37 1/015	I/O15 37		8 1/02
I/O3 9		36 1/014	I/O14 36		9 1/03
I/O4 10		35 1/013	I/O13 35		10 1/04
Vcc 11	44-TSOP2	34 Vss	Vss 34	44-TSOP2	11 Vcc
Vss 12		33 Vcc	Vcc 33		12 Vss
I/O5 13	Forward	32 1/012	I/O12 32	Reverse	13 1/05
I/O6 14		31 1/011	I/O11 31		14 1/06
I/O7 15		30 1/010	I/O10 30		15 1/07
I/O8 16		29 1/09	1/09 29		16 1/08
WE 17		28 N.C	N.C = 28		17 WE
A17 🗆 18		27 A8	A8 27		18 A17
A16 🗆 19		26 A9	A9 🗆 26	0	19 A16
A15 20		25 A10	A10 25		20 A15
A14 21		24 A11	A11 = 24		21 A14
A13 22		23 A12	A12 23		22 A13
		20			

Name	Function	Name	Function
CS	Chip Select Input	Vcc	Power
ŌĒ	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O _{9~16})
A0~A17	Address Inputs	LB	Lower Byte (I/O _{1~8})
I/O1~I/O16	Data Inputs/Outputs	N.C	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Tempera	ature Product(0~70°C)	Industrial Tempera	ture Products(-40~85°C)
Part Name	Function	Part Name	Function
KM6164000BLT-5L	44-TSOP2-F, 55ns, LL-pwr	KM6164000BLTI-7L	44-TSOP2-F, 70ns, LL-pwr
KM6164000BLT-7L	44-TSOP2-F, 70ns, LL-pwr	KM6164000BLTI-10L	44-TSOP2-F, 100ns, LL-pwr
KM6164000BLR-5L	44-TSOP2-R, 55ns, LL-pwr	KM6164000BLRI-7L	44-TSOP2-R, 70ns, .LL-pwr
KM6164000BLR-7L	44-TSOP2-R, 70ns, LL-pwr	KM6164000BLRI-10L	44-TSOP2-R, 100ns, LL-pwr

FUNCTIONAL DESCRIPTION

cs	OE	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care. (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to7.0	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	KM6164000BL-L
Operating remperature	IA	-40 to 85	°C	KM6164000BLI-L
Soldering temperature and time	Tsolder	260°C, 10sec(Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input high voltage	ViH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.53)	-	0.8	V

Note:

- Commercial Product : TA=0 to 70°C, otherwise specified Industrial Product : TA=-40 to 85°C, otherwise specified
- 2. Overshoot : V_{CC} +3.0V in case of pulse width \leq 30ns
- 3. Undershoot : -3.0V in case of pulse width ≤ 30ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	VIN=0V	-	8	pF
Input/Output capacitance	Cio	VIO=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit		
Input leakage current	I⊔	VIN=Vss to Vcc	-1		1	μΑ		
Output leakage current	ILO	CS=VIH or OE=VIH or WE=VIL, VIO=Vss to Vcc	CS=VIH or OE=VIH or WE=VIL, VIO=Vss to Vcc					
Operating power supply	Icc	IIO=0mA, \overline{CS} =VIL, VIN=VIL or VIH, Read		-	-	15	mA	
	Cycle time=1μs, 100% duty, lio=0mA Rea		Read	-	1	15	mA	
Average operating current	Icc1	CS≤0.2V, VIN≤0.2V or VIN≥Vcc-0.2V Write		-	-	75	IIIA	
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, \overline{CS} =ViL, ViN=ViH or ViL		-	-	130	mA	
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V	
Output high voltage	Voн	IOH=-1.0mA		2.4	-	-	V	
Standby Current (TTL)	Isb	CS =VIH, Other inputs=VIL or VIH	-	-	3	mA		
Standby Current(CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc		-	-	20 ¹⁾	μА	

^{1.} Industrial Product = 50μ A

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.8 to 2.4V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL=100pF+1TTL
CL=50pF+1TTL

1. Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=4.5~5.5V, Commercial product : Ta=0 to 70°C, Industrial product : Ta=-40 to 85°C)

					Spee	d Bins			
	Parameter List	Symbol	55	ins	70	ns	100	Ons	Units
			Min	Max	Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	100	-	ns
	Address access time	tAA	-	55	-	70	-	100	ns
	Chip select to output	tco	-	55	-	70	-	100	ns
	Output enable to valid output	toe	-	25	-	35	-	50	ns
	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns
Read	Output enable to low-Z output	toLZ	5	-	5	-	5	-	ns
Read	UB, LB enable to low-Z output	tBLZ	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	0	30	ns
	OE disable to high-Z output	tonz	0	20	0	25	0	30	ns
	UB, LB disable to high-Z output	tвнz	0	20	0	25	0	30	ns
	Output hold from address change	tон	10	-	10	-	10	-	ns
	LB, UB valid to data output	tва	-	25	-	35	-	50	ns
	Write cycle time	twc	55	-	70	-	100	-	ns
	Chip select to end of write	tcw	45	-	60	-	80	-	ns
	Address set-up time	tas	0	-	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	80	-	ns
	Write pulse width	twp	45	-	55	-	70	-	ns
Write	Write recovery time	twr	0	-	0	-	0	-	ns
	Write to output high-Z	twnz	0	20	0	25	0	30	ns
	Data to write time overlap	tow	25	-	30	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	ns
	LB, UB valid to end of write	tвw	45	-	60	-	-	80	ns

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS ≥Vcc-0.2V	2.0	-	5.5	V
Data retention current	IDR	Vcc=3.0V	-	-	15 ¹⁾	μΑ
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ms
Recovery time	trdr	See data retention wavelonii	5	-	-	1115

1. Industrial Product : 20μA

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH, \overline{UB}$ or/and $\overline{LB} = VIL$)

TIMING WAVEFORM OF READ CYCLE(2) $(\overline{WE}=VIH)$

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twr is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end or write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM

PACKAGE DIMENSIONS

Unit: millimeter(inch)

4_0~8°

44 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

44 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400R)

