

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

پایاننامه کارشناسی ارشد مهندسی رایانش امن

بهبود کارایی روشهای تشخیص برنامکهای اندرویدی بازبستهبندی شده

نگارش

مجتبى موذن

استاد راهنما

دكتر مرتضى اميني

بهمن ۱۴۰۱

به نام خدا دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

پایاننامه کارشناسی ارشد

این پایاننامه به عنوان تحقق بخشی از شرایط دریافت درجه کارشناسی ارشد است.

عنوان: بهبود کارایی روشهای تشخیص برنامکهای اندرویدی بازبستهبندی شده

نگارش: مجتبی موذن

كميته ممتحنين

استاد راهنما: دكتر مرتضى امينى امضاء:

استاد مشاور: استاد مشاور

استاد مدعو: استاد ممتحن امضاء:

تاريخ:

سپاس

از استاد بزرگوارم که با کمکها و راهنماییهای بی دریغشان، مرا در به سرانجام رساندن این پایاننامه یاری دادهاند، تشکر و قدردانی میکنم. همچنین از همکاران عزیزی که با راهنماییهای خود در بهبود نگارش این نوشتار سهیم بودهاند، صمیمانه سپاسگزارم.

با گسترش روزافزون استفاده از برنامکهای اندرویدی در سالیان اخیر حملات موجود بر روی این سیستمعامل با افزایش قابل توجهی همراه بودهاست. متنباز بودن برنامکهای اندرویدی و در نتیجه، دسترسی به کد منبع این دسته از برنامکها، در کنار افزایش حملات بر روی آنها ، لزوم توجه به مقابله با حملات مطروحه در این زمینه را افزایش دادهاست.حملات بازبسته بندی روی برنامکهای اندرویدی، نوعی از حملات هستند که در آن مهاجم، پس از دسترسی به کد منبع برنامک و کپیکردن آن و یا ایجاد تغییراتی که مدنظر مهاجم است، مجدداً آنرا بازبستهبندی میکند. تغییر کدهای برنامک، اهداف متفاوتی نظیر تغییر کتابخانههای تبلیغاتی، نقض امنیت کاربر و یا ضربه به شرکتهای تولید برنامک از تغییر گسترش برنامکهای جعلی را دنبال می کند. بازبسته بندی برنامکهای اندرویدی علاوه بر ماهیت تهدید کاربران و شرکتها، ماهیتی پیشگیرانه نیز دارد. در این حالت توسعه دهندگان نرمافزار از طریق ایجاد مبهمنگاری در برنامکهای اندرویدی، سعی در پیشگیری از بازبستهبندی به وسیلهی مهاجمان دارند. تشخیص بازبستهبندی در برنامکهای اندرویدی از آنجهت دارای اهمیت است که هم کاربران و هم شرکتهای توسعهدهنده، میتوانند از این موضوع ذینفع،باشند. تشخیص برنامکهای بازبسته بندی شده، به جهت چالشهای پیشرو، نظیر مبهمنگاری کدهای برنامک جعلی به دست مهاجم و همچنین تشخیص و جداسازی صحیح کدهای کتابخانهای مسئلهای چالشی محسوب میشود. پژوهشهای اخیر در این زمینه به صورت کلی، از روشهای تشخیص مبتنی بر شباهت سنجی کدهای برنامک و یا طبقه بندی برنامکهای موجود استفاده کرده اند. از طرفی برقراری حدواسطی میان سرعت و دقت در تشخیص برنامکهای جعلی، چالشی است که استفاده از این دست پژوهشها را در یک محیط صنعتی ناممکن ساختهاست. در این پژوهش پساز استخراج کدهای برنامک به وسیلهی چارچوب سوت و ابزارهای دیساسمبل، در یک روش دو مرحلهای کدهای برنامکهای موجود با یکدیگر مقایسه می شود. پس از دیس اسمبل کدهای هر برنامک، در طی یک فرایند طبقه بندی مبتنی بر ویژگیهای انتزاعی و دیداری، برنامکهای کاندید برای هر برنامک مبدا استخراج میشود. سپس برای هر کلاس برنامک اندرویدی، امضایی متشکل از مهمتری ویژگیهای کدیایه از آن استخراج و پس از انجام مقایسه با کلاسهای کتابخانههای اندرویدی موجود در مخزن، کتابخانههای اندرویدی حذف میشوند و در نهایت با مقایسهی کدهای اصلی، برنامک بازبسته بندی شده مشخص می شود. در قسمت آزمون روش پیشنهادی در این پژوهش، توانستیم روش موجود در این زمینهرا با بهبود امضای تولیدشده از هر برنامک و اضافه شدن مرحلهی پیش پردازش، سرعت تشخیص را ۴ برابر افزایش داده و در عین حال دقت روش موجود را نيز حفظ كنيم.

كليدواژهها: پاياننامه، حروفچيني، قالب، زيپرشين

فهرست مطالب

١	مقدمه - مقدمه	١
۶	مفاهيم اوليه	4
۶	۱-۲ نحوهی نگارش	
۶	۲_۱_۱ پروندهها	
۶	۲ ـ ۱ ـ ۲ عبارات ریاضی	
٧	۲_۱_۳ علائم ریاضی پرکاربرد	
٨	۲_۱_۴ لیستها	
٨	۲_۱_۵ درج شکل	
٩	۲_۱_۶ درج جدول	
٩	۲_۱_۷ درج الگوريتم	
٩	۲_۱_۸ محیطهای ویژه	
١.	۲-۲ برخی نکات نگارشی	
١.	۲_۲_۱ فاصلهگذاری	
١.	۲_۲_۲ شکل حروف	
١١	۲_۲_۳ جدانویسی	
۱۳	کارها ی پیشین	٣
٧, ٣		

k خوشهبندی k مرکز k خوشهبندی روز k
٣٣ مدل جويبار داده
۳_۴ تقریبپذیری
۴ نتایج جدید
۵ نتیجهگیری
۶ نتیجهگیری
مر اجع مرا جع
<u>واژ</u> هنامه
آ مطالب تکمیلہ

فهرست جدولها

٩	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•		•				•	٠ (ءاي	بسا	قاب) م	ای	ئرھ	لگ	عم	١	-	۲
١٨										. (ندې	لەن	، شہ	خه	,	سائا	می	(ر ;	ىذ	ے	. د	تقر	٠,٠	ىب	ن يا	. ار	2	;		ھاد	، نه	نمه	١		٣

فهرست شكلها

٨											•		•				į	آن	سى	رأس	ی ر	ىشر	وش	و پ		اف	گر	ی	یک	١.	_ `	۲
٨					•			•	•			I_{j}	pe	ار	افز	نرم	ن	ط	وس	ه ت	بده	دش	جا	اي	ئل	نیک	4 ند	ونا	نه	۲.	_ `	۲
۱۵														•				کز	مر	_	۲	،ی	ىئل	مس	ز	ں ا	Sla	ىونا	نه	١.	۱-	٣
18												, ت	ی د	ماء	دهد	دا	یا	, ;	ر درک	_ ہ	۲.	ی	ئلە	·	; م	ی ا	Sla	بو نا	نه	۲.	_١	۳

فصل ١

مقدمه

سیستمعامل اندروید به دلیل سهولت در توسعه توسط توسعهدهندگان موبایلی و در نتیجه فراوانی استفاده از آن در تلفنهای همراه، تلوزیونهای هوشمند و دیگر دستگاههای موجود، حجم بالایی از بازار سیستم عاملهای موبایلی را به خود اختصاص دادهاست. بر طبق گزارش پایگاه استاتیستا [۱] سیستمعامل اندروید سهمی معادل ۷۱ درصدی از سیستم عامل های موبایلی را در سه ماهه ی پایانی سال ۲۰۲۲ به خود اختصاص دادهاست. در سالهای اخیر به دلیل گسترش استفاده از این پلتفرم، فروشگاههای اندرویدی زیادی به جهت ارائهی خدمات به کاربران به وجود آمدهاست. برخی از فروشگاههای رسمی مانند فروشگاه اندرویدی گوگل، از ابزارهایی نظیر پلی پروتکت[۲] برای بررسی برنامکهای اندرویدی موجود در فروشگاه استفاده میکنند. علاوه بر این، در سالهای اخیر فروشگآههای متعدد رایگانه به وجود آمدهاند که صرفا برنامکهای اندرویدی موجود در سطح وب را غربان و آن را به کاربران ارائه میدهند. فروشگاههای رایگان غالباً ابزارهای مشخصی را برای حفظ امنیت کاربران استفاده نمیکنند و امنیت کاربران این دسته از فروشگاههای اندرویدی، ، همواره تهدید می شود یکی از راههای مورد استفاده توسط مهاجمان برای وارد ساختن بدافزار به تلفنهای همراه، بازبستهبندی نرمافزار است. مطابق تعریف، بازبستهبندی شامل دانلود یک برنامک، دسترسی به محتوای کدهای برنامک اصلی از طریق روشهای مهندسی معکوس و در نهایت بازبسته بندی به همراه تغییر و یا بدون تغییر دادن کدهای برنامک اصلی است. زبان اصلی توسعه در برنامکهای اندرویدی، زبان جاوا می باشد که یک زبان سطح بالا محسوب می شود. در طی فرآیند کامپایل برنامکهای اندرویدی، مجموعهی کدهای منبع در طی فرایندی به بایت کدهای دالویک تبدیل می شوند و در ادامه ماشین مجازی جاوا، بایت کدها را برروی ماشین مقصد اجرا میکند[۳]. فهم و در نتیجه مهندسی معکوس زبان میانی دالویک بایتکدها آسان است و به همین علت موجب سهولت در بازبسته بندی برنامک های اندرویدی می شود.

به طور کلی بازبستهبندی را میتوان از دو جهت مورد بررسی قرار داد، از دید توسعهدهندگان، بازبستهبندی

شامل فرآیندی است که توسعه دهنده با انجام مبهم نگاری در برنامک مورد توسعه، فهم بدنه ی اصلی برنامک را برای مهاجم سخت میکند. از این دید، بازبسته بندی یک روش تدافعی تلقی می شود تا مهاجم پس از دسترسی به کد برنامک اصلی، نتواند بدنه ی برنامک اصلی برنامک را شناسایی و در نتیجه آن را تغییر دهد. از حهت دیگر، بازبسته بندی توسط فردی که برنامک اصلی، بسته به هدف او، برنامک را مجددا بازبسته بندی در این حالت، مهاجم پس از دسترسی به کد برنامک اصلی، بسته به هدف او، برنامک را مجددا بازبسته بندی میکند و آن را در فروشگاههای اندرویدی خصوصا فروشگاههایی که نظارت کمتری بر روی آنها وجود دارد منتشر میکند. در این حالت مهاجم به جهت اهدافی متفاوتی نظیر تغییر کدهای تبلیغاتی در برنامک اصلی، تغییر درگاههای پرداخت و یا بازپخش بدافزار، اقدام به بازبسته بندی میکند. بازبسته بندی یکی از راههای تغییر درگاههای پرداخت و یا بازپخش بدافزارهای موجود، از طریق بازبسته بندی منتشر می شوند. همانطور محبوب مهاجمان برای انتقال بدافزارهای توسعه داده شده به تلفن همراه قربانی است [۴]. مطابق پژوهش که گفته شد، برخی فروشگاهای اندرویدی نظیر گوگل، سازوکار مشخصی را برای تشخیص بازبسته بندی ارائه داده اند اما بسیاری از فروشگاههای اندرویدی فعال و پربازدید، خصوصا فروشگاههای رایگان، یا از همیچ ابزاری استفاده نمی کنند و یا در صورت توسعه ی نرم افزار بومی خود برای شناسایی برنامکهای بازبسته بندی شده، مشخصات و یا دقت آن را گزارش نکرده اند.

همانطور که اشاره شد، محبوبیت و در نهایت استفاده ی زباد برنامکهای اندرویدی و همچنین نظارت کم در فروشگاه های اندرویدی، بازبسته بندی، یک روش پر استفاده به جهت انتقال بدافزار به تلفن همراه کاربران است. آقای خانمحمدی و همکاران[۶]، پس از بررسی پایگاه داده ای برنامکهای اندرویدی اندروزو، دریافتند که ۲۲۲۲٪ و زبرنامکهای موجود در این مخزن توسط ویروس توتال، بدافزار شناسایی شده اند. ویروس توتال، ابزاری متشکل از ۳۰ ضدبدافزار برای بررسی یک برنامک اندرویدی اندرویدی است. مطابق این پژوهش، ۲۷/۸۴ از برنامکهای این مخزن داده که بازبسته بندی شده اند، دارای نوعی از بدافزار ضد تبلیغاتی بوده اند که موجب می شود تبلیغات موجود در برنامک تغیر و اهداف مالی و امنیتی کاربران و توسعه دهندگان مخدوش شود . علاوه بر این، مطابق پژوهشی که توسط ویداس و همکاران[۷] انجام شده است، پس از پیاده سازی ۷ روش پربازدید به جهت تشخیص بازبسته بندی، در بهترین حالت، روش های موجود قادر به تشخیص گربران برنامکهای بازبسته بندی شده ی سه فروشگاه مطرح اندرویدی است. بنابراین مشخص است که تشخیص برنامکهای بازبسته بندی شده ی به چه میزان می تواند اهداف مالی و امنیتی توسعه دهندگان و کاربران برنامکهای را ارضا کند. در سالهای اخیر ارائه ی یک راهکار پرسرعت به امنیتی توسعه دهندگان و کاربران برنامکهای مهم پژوهش کنندگان در این زمینه بوده است.

همانطور که گفته شد، بازبسته بندی برنامکهای اندرویدی از دو دیدگاه تهاجمی و تدافعی قابل بررسی است. در حالتی که کاربر متقلب، برنامک اندرویدی اصلی را دجار تغییراتی میکند و آن را در اختیار عموم قرار می دهد، تشخیص بازبسته بندی، با استفاده از مقایسه ی برنامک اصلی و برنامک جعلی صورت می گیرد.

تشخیص بازبسته بندی در این حالت را می تواند در حالت کلی به دو طبقه تقسیم کرد. در حالت اول توسعه دهنده روش خود را مبتنی بر تحلیل برنامک مبدا و مقصد پیاده سازی می کند. عمده ی روشهای موجود در این طبقه مبتنی بر تحلیل ایستای جفت برنامک ها است و استفاده از تحلیل پویا به جهت سرعت پایین آن، محبوبیت فراوانی ندارد و بیشتر از تحلیل ایستای برنامک های اندرویدی استفاده می شود [۸]. در سمت دیگر طبقه بندی برنامک های اندرویدی وجود دارد. روشهای موجود در این دسته، عمدتا سرعت بالایی دارند اما در تشخیص جفت بازبسته بندی شده دقت پایینی را ارائه می دهند.

برنامکهای اندرویدی متشکل از دو قسمت اصلی کدهای برنامک و منابع آن هستند. کدهای برنامک، منطق برنامک را تشکیل میدهند و رفتار برنامک با توجه به این قسمت مشخص می شود. از طرفی منابع برنامک، ظاهر آن را تشکیل میدهند. روشهای مبتنی بر تحلیل برنامک و یا طبقه بندی آن، عمدتاً از ویژگیهای موجود در منابع و یا کد استفاده می کنند. مهاجم در حالاتی که می خواهد از محبوبیت برنامک مبدا استفاده کند، سعی در یکسان سازی ظاهر برنامکهای مبدا و مقصد دارد به همین جهت از منابع برنامک مبدا استفاده می کند و منطق برنامک را مطابق با اهداف خود تغییر می دهد. در حالتی دیگر، متقلب سعی می کند که با استفاده از تغییر منابع برنامک و تولید یک برنامک تقلبی و گاهاً بدون هیچ تغییری در کد برنامک، ادعای توسعه ی یک برنامک جدید را اثبات کند. لازم به ذکر است استفاده از ویژگی های کدپایه و منبع پایه، به و فور در پژوهشهای سالهای اخیر یافت می شود که هر کدام معایب و مزایای خود را دارد.

در روشهای مبتنی بر طبقه بندی عمدتا تعریف تشخیص بازبسته بندی محدود به تشخیص دسته ی مشکوک و یا دسته ای از برنامکها است که احتمال بازبسته بندی بودن جفتهای داخل این دسته ، بیش از سایر دسته ها است. بنابراین تشخیص بازبسته بندی در این روشها، محدود به تشخیص طبقه ی برنامک ورودی می باشد و جفت بازبسته بندی شده مشخص نمی شود. از طرفی در روشهای مبتنی بر تحلیل ایستا، بررسی دوبه دوی برنامکهای ورودی و مجموعه داده مدنظر است. در این روشها تعریف تشخیص بازبسته بندی گسترش یافته و یافتن جفت بازبسته بندی به صورت مشخیص، هدف پژوهش می شود. تغییر منابع برنامک و همچنین مبهم نگاری در برنامک بازبسته بندی شده، دو جالش مهم در راستای تشخیص بازبسته بندی است. متقلب پس از بازبسته بندی برنامک با استفاده از مبهم نگاری سعی می کند تغیرات خود و شباهت ساختار منطقی برنامک تقلبی با برنامک اصلی را پنهان کند. به همین جهت، تشخیص بازبسته بندی نیازمند ویژگی هایی برنامک تقلبی با برنامک اصلی را پنهان کند. به همین جهت، تشخیص بازبسته بندی نیازمند ویژگی هایی است که مقاومت بالایی مقابل مبهم نگاری داشته باشد بدین معنا که تغییر و ایجاد ابهام در کد، به راحتی در این ویژگی ها قابل انجام نباشد.

در هنگار کامپایل برنامکهای اندرویدی، کتابخانههایی که در برنامک مورد استفاده قرار گرفتهاند به همراه کد مورد توسعه، کامپایل شده و دالویک بایتکدهای آن در کنار برنامک قرار میگیرد. بر اساس پژوهش آقای زیانگ و همکاران [۹] //۵۷ از کدهای برنامکهای مورد بررسی در این پژوهش، شامل کدهای کتابخانهای بودند که دجار مبهمنگاری نشدهاند. بنابراین تشخیص کدهای بازبسته بندی شده بدون تشخیص درست

و دقیق و جداسازی کدهای کتابخانهای امکانپذیر نیست و میتواند نتایج منفی غلط و مثبت غلط را کاهش دهد. به صورت کلی دو روش برای تشخیص کدهای کتابخانهای استفاده میشود، روش مبتنی بر لیست سفید و یا روش تشخیص مبتنی بر شباهت سنجی. در روش لیست سفید، لیسیتی از مشهور ترین کتابخانههای موجود در مخازن کتابخانههای اندرویدی نظیر ماون را جمع آوری میشود و با استفاده از نام کلاسها و بستههای موجود کلاسهای کتابخانه ای تشخیصداده میشود. مشخص است که این روش مقاومت بسیار کمی مقابل ساده ترین روشهای مبهم نگاری در کتابخانههای اندرویدی دارد. در حالت دیگر از روشهای مبتنی بر شباهت سنجی برای تشخیص کدهای کتابخانهای استفاده میشود که در این روش، تحلیل ایستا روی کدهای برنامک مبدا و مخزن کتابخانههای اندرویدی صورت میگیرد و در نهایت با یکدیگر مقایسه میشوند. مشخص است که روشهای مبتنی بر شباهت سنجی از دقت بیشتری برخوردار با یکدیگر مقایسه میشوند. مشخص است که روشهای مبتنی بر شباهت سنجی از دقت بیشتری برخوردار با یکدیگر مقایسه میشوند. مشخص است که روشهای مبتنی بر شباهت سنجی از دقت بیشتری برخوردار با یکدیگر مقایسه میشوند. مشخص است که روشهای مبتنی بر شباهت سنجی از دقت بیشتری برخوردار باینگونه روشها سرعت یابنی دارند.

یژوهشهای ارائهشده در زمینهی تشخیص برنامکهای بازبستهبندی شده در سالهای اخیر، عمدتاً در تلاش برای بهبود دقت و سرعت روشهای پیشین بودهاند.مبهمنگاری باعث میشود که دقت روشهای تشخیص مبتنی بر تحلیل ایستا و شباهت سنجی پایین بیاید و استفاده از ویژگیهایی را که مقاومت بالایی مقابل مبهمنگاری داشته باشند را واجب کند. از طرفی استفاده از ویزگیهای مقاوم به مبهمنگاری، میتواند سرعت تشخیص را بسیار پایین آورده تا حدی که عملا استفاده از این روشها در یک محیط صنعتی را غیر ممکن سازد. در این پژوهش ما با استفاده از ترکیب روشهای تحلیل ایستا و طبقهبندی منابع، به همراه شباهتسنجی، روشی را ارائه کردهایم که در حالی که مقاومت بالایی نسبت به مبهمنگاری داشته باشد، سرعت روشهای پیشین را نیز افزایش دهد. در این پژوهش به عنوان پیشپردازش، از یک طبقهبند نزدیک ترین همسایه برای کاهش فضای مقایسهی دودویی و با استفاده از ویژگیهای مبتنی بر منبع، استفاده شدهاست. با کاهش فضای مقایسهی دودویی و طبقهبندی برنامکهای مشکوک در یک دسته، مقایسهی برنامکهای موجود در آن دسته آغاز میشود. مقایسهی دودویی در هر دسته مبتنی بر تحلیل ایستا و شباهت سنجی کدهای برنامک انجام می شود. ابتدا ویژگی هایی از هر کلاس و متد در بسته های برنامک استخراج شده و امضای هر کلاس ساخته میشود به طوری که امضای هر کلاس منحصر به فرد و تا حد امکان مختص همان کلاس باشد. نوآوری روش مطروحه، ترکیب روشهای مبتنی بر طبقهبندی و روشهای مبتنی بر تحلیل میباشد که در نهایت منجر به افزایش سرعت و در عین حال دقت خوب در تشخیص برنامکهای بازبسته بندی شده است. حذف کدهای کتابخانه ای با استفاده از روشی مبتنی بر مقایسهی کدهای موجود در مخزن کتابخانهها و کلاسهای برنامک انجام میشود. مخزن کتابخانهها متشکل از ۴۵۳ کتابخانهی اندرویدی جمع آوری شده از مخزن ماون مبباشد. در نهایت پس از تشخیص کلاسهای کتابخانههای اندرویدی و حذف آنها از کد برنامک، کدهای مورد توسعه به عنوان ورودی برای

مقایسهی دودویی مورد تحلیلی قرار میگیرند.

در ادامه ی این نگارش، در فصل ۲ به بررسی و تعریف مفاهیم اولیه ی مورد نیاز در این پژوهش می پردازیم. در فصل ۳ به تعریف مسئله می پردازیم و همچنین مروری از کارهای پیشین را خواهیم داشت. در ادامه و در فصل ۴ روش مورد استفاده در این پژوهش، شرح داده خواهد شد و در فصل ۵ مقایسه و ارزیابی روش پیشنهادی خود را ارائه می دهیم. در نهایت و در فصل ۶ ضمن جمع بندی این گزارش علمی، به بررسی نقاط ضعف و قوت این پژوهش و همچنین ارائه ی پیشنهاداتی جهت بهبود این پژوهش می پردازیم.

فصل ۲

مفاهيم اوليه

دومین فصل پایاننامه به طور معمول به معرفی مفاهیمی میپردازد که در پایاننامه مورد استفاده قرار میگیرند. در این فصل به عنوان یک نمونه، نکات کلی در خصوص نحوهی نگارش پایاننامه و نیز برخی نکات نگارشی به اختصار توضیح داده میشوند.

۱_۲ نحوهی نگارش

۲_۱_۱ پروندهها

پرونده ی اصلی پایاننامه در قالب استاندارد thesis.tex نام دارد. به ازای هر فصل از پایاننامه، یک پرونده در شاخهی chapters ایجاد نموده و نام آن را در thesis.tex (در قسمت فصل ها) درج نمایید. برای مشاهده ی خروجی، پرونده ی thesis.tex را با زیلاتک کامپایل کنید. مشخصات اصلی پایاننامه را می توانید در پرونده و front/info.tex ویرایش کنید.

۲_۱_۲ عبارات ریاضی

برای درج عبارات ریاضی در داخل متن از ... و برای درج عبارات ریاضی در یک خط مجزا از ... و برای درج عبارات ریاضی در داخل متن و عبارت زیر یا محیط equation استفاده کنید. برای مثال عبارت x + y در داخل متن و عبارت زیر

$$\sum_{k=0}^{n} \binom{n}{k} = \mathbf{Y}^n \tag{1-Y}$$

ا قالب استاندارد از گیتهاب به نشانی github.com/zarrabi/thesis-template قابل دریافت است.

در یک خط مجزا درج شده است. دقت کنید که تمامی عبارات ریاضی، از جمله متغیرهای تک حرفی مانند y و y باید در محیط ریاضی یعنی محصور بین دو علامت y باشند.

۲_۱_۳ علائم ریاضی پرکاربرد

برخی علائم ریاضی پرکاربرد در زیر فهرست شدهاند. برای مشاهدهی دستور معادل پروندهی منبع را ببینید.

- $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^+, \mathbb{Q}, \mathbb{R}, \mathbb{C}$: as a same of $\mathbb{N}, \mathbb{Z}, \mathbb{Z}^+$
 - مجموعه: {1, ۲, ٣}
 - دنباله: (۱,۲,۳)
 - [x], [x]
 - اندازه و متمم: \overline{A} اندازه
- $a \equiv \mathsf{N} \ (n \ \mathsf{yaling})$ يا $a \equiv \mathsf{N} \ (n \ \mathsf{yaling})$ همنهشتی: $a \equiv \mathsf{N} \ (n \ \mathsf{yaling})$
 - ضرب و تقسیم: ÷,٠,×
 - $\mathbf{1}, \mathbf{7}, \dots, n$ سهنقطه:
 - $\frac{n}{k}$, $\binom{n}{k}$: کسر و ترکیب
 - $A \cup (B \cap C)$: اجتماع و اشتراک
 - $\neg p \lor (q \land r)$ عملگرهای منطقی:
 - $\rightarrow,\Rightarrow,\leftarrow,\Leftarrow,\leftrightarrow,\Leftrightarrow$: پیکانها \bullet
 - \neq , \leqslant , \geqslant , \geqslant عملگرهای مقایسهای: \leqslant
- عملگرهای مجموعهای: \subsetneq , \searrow , \supset , \supseteq , \supseteq
 - $\sum_{i=1}^n a_i, \prod_{i=1}^n a_i$ جمع و ضرب چندتایی •
 - $\bigcup_{i=1}^n A_i, \bigcap_{i=1}^n A_i$ اجتماع و اشتراک چندتایی:
 - $\infty,\emptyset,\forall,\exists,\triangle,\angle,\ell,\equiv,$ نمادها: ... في نمادها: •

٢_١_٢ لبستها

برای ایجاد یک لیست می توانید از محیطهای «فقرات» و «شمارش» همانند زیر استفاده کنید.

- مورد اول
- مورد دوم
- مورد سوم ۳. مورد سوم

۲_۱_۵ درج شکل

یکی از روشهای مناسب برای ایجاد شکل استفاده از نرمافزار LaTeX Draw و سپس درج خروجی آن به صورت یک فایل tex درون متن با استفاده از دستور fig یا centerfig است. شکل ۱-۲ نمونهای از اشکال ایجادشده با این ابزار را نشان می دهد.

شکل ۲ ـ ۱: یک گراف و پوشش رأسی آن

همچنین می توانید با استفاده از نرمافزار Ipe شکلهای خود را مستقیما به صورت pdf ایجاد نموده و آنها را با دستورات img یا centering درون متن درج کنید. برای نمونه، شکل ۲-۲ را ببینید.

شكل ٢ ـ ٢: نمونه شكل ايجادشده توسط نرمافزار Ipe

۲_۱_۶ درج جدول

برای درج جدول می توانید با استفاده از دستور «جدول» جدول را ایجاد کرده و سپس با دستور «لوح» آن را درون متن درج کنید. برای نمونه جدول ۲ ـ ۱ را ببینید.

جدول ۲ ـ ۱: عملگرهای مقایسهای

عنوان	عملگر
كوچكتر	<
بزرگتر	>
مساوي	==
نامساوي	<>

۲_۱_۷ درج الگوریتم

برای درج الگوریتم می توانید از محیط «الگوریتم» استفاده کنید. یک نمونه در الگوریتم ۱ آمده است.

الگوريتم ۱ پوشش رأسي حريصانه

G = (V, E) گراف

G خ**روجی:** یک پوشش رأسی از

 $C=\emptyset$ ا: قرار بده:۱

۲: تا وقتی E تهی نیست:

یال دلخواه $uv \in E$ را انتخاب کن v:

رأسهای u و v را به C اضافه کن \cdot

ن تمام یالهای واقع بر u یا v را از E حذف کن v

را برگردان $C:\mathfrak{s}$

۲_۱_۸ محیطهای ویژه

برای درج مثالها، قضیهها، لمها و نتیجهها به ترتیب از محیطهای «مثال»، «قضیه»، «لم» و «نتیجه» استفاده کنید. برای درج اثبات قضیهها و لمها از محیط «اثبات» استفاده کنید.

تعریفهای داخل متن را با استفاده از دستور «مهم» به صورت تیره نشان دهید. تعریفهای پایهای تر را درون محیط «تعریف» قرار دهید.

تعریف ۲ ـ ۱ (اصل لانه کبوتری) اگر ۱ + n کبوتر یا بیش تر درون n لانه قرار گیرند، آنگاه لانه ای وجود دارد که شامل حداقل دو کبوتر است.

۲_۲ برخی نکات نگارشی

این فصل حاوی برخی نکات ابتدایی ولی بسیار مهم در نگارش متون فارسی است. نکات گردآوری شده در این فصل به هیچ وجه کامل نیست، ولی دربردارنده ی حداقل مواردی است که رعایت آنها در نگارش پایاننامه ضروری به نظر می رسد.

۲_۲_۱ فاصلهگذاری

- 1. علائم سجاوندی مانند نقطه، ویرگول، دونقطه، نقطه ویرگول، علامت سؤال و علامت تعجب بدون فاصله از کلمه ی پیشین خود نوشته می شوند، ولی بعد از آنها باید یک فاصله قرار گیرد. مانند: من، تو، او.
- ۲. علامتهای پرانتز، آکولاد، کروشه، نقل قول و نظایر آنها بدون فاصله با عبارات داخل خود نوشته می شوند، ولی با عبارات اطراف خود یک فاصله دارند. مانند: (این عبارت) یا {آن عبارت}.
- ۳. دو کلمه ی متوالی در یک جمله همواره با یک فاصله از هم جدا می شوند، ولی اجزای یک کلمه ی مرکب باید با نیم فاصله ۲ از هم جدا شوند. مانند: کتاب درس، محبت آمیز، دوبخشی.
 - ۴. اجزای فعلهای مرکب با فاصله از یک دیگر نوشته می شوند، مانند: تحریر کردن، به سر آمدن.

٢_٢_٢ شكل حروف

۱. در متون فارسی به جای حروف «ك» و «ي» عربی باید از حروف «ک» و «ی» فارسی استفاده شود. همچنین به جای اعداد عربی مانند ۵ و 7 باید از اعداد فارسی مانند ۵ و 9 استفاده نمود. برای این

۱ «نیم فاصله» فاصلهای مجازی است که در عین جدا کردن اجزای یک کلمه ی مرکب از یک دیگر، آنها را نزدیک به هم نگه میدارد. معمولاً برای تولید این نوع فاصله در صفحه کلیدهای استاندارد از ترکیب Shift+Space استفاده می شود.

- کار، توصیه می شود صفحه کلید فارسی استاندارد^۳ را بر روی سیستم خود نصب کنید.
- ۲. عبارات نقل قول شده یا مؤکد باید درون علامت نقل قول «» قرار گیرند، نه "". مانند: «کشور ایران».
- ۳. کسره ی اضافه ی بعد از «ه» غیرملفوظ به صورت «هی» یا «هٔ» نوشته می شود. مانند: خانه ی علی، دنباله ی فیبو ناچی.
 - تبصره: اگر «ه» ملفوظ باشد، نیاز به «ی» ندارد. مانند: فرمانده دلیر، یادشه خوبان.
- ۴. پایههای همزه در کلمات، همیشه «ئ» است، مانند: مسئله و مسئول، مگر در مواردی که همزه ساکن است که در این صورت باید متناسب با اعراب حرف پیش از خود نوشته شود. مانند: رأس، مؤمن.

۲_۲_۳ جدانویسی

- 1. علامت استمرار، «می»، توسط نیمفاصله از جزء بعدی فعل جدا میشود. مانند: میرود، میتوانیم.
- ۲. شناسه های «ام»، «ای»، «ایم»، «اید» و «اند» توسط نیم فاصله، و شناسه ی «است» توسط فاصله از
 کلمه ی پیش از خود جدا می شوند. مانند: گفته ام، گفته ای، گفته است.
 - ۳. علامت جمع «ها» توسط نیمفاصله از کلمه ی پیش از خود جدا می شود. مانند: این ها، کتابها.
- ۴. «به» همیشه جدا از کلمهی بعد از خود نوشته می شود، مانند: به نام و به آنها، مگر در مواردی که «ب» صفت یا فعل ساخته است. مانند: بسزا، ببینم.
- ۵. «به» همواره با فاصله از کلمه ی بعد از خود نوشته می شود، مگر در مواردی که «به» جزئی از یک اسم
 یا صفت مرکب است. مانند: تناظر یک به یک، سفر به تاریخ.
- علامت صفت برتری، «تر»، و علامت صفت برترین، «ترین»، توسط نیمفاصله از کلمه ی پیش از خود جدا می شوند. مانند: سنگینتر، مهمترین.
 - تبصره: کلمات «بهتر» و «بهترین» را میتوان از این قاعده مستثنی نمود.
- ۷. پیشوندها و پسوندهای جامد، چسبیده به کلمهی پیش یا پس از خود نوشته می شوند. مانند: همسر، دانشکده، دانشگاه.
- تبصره: در مواردی که خواندن کلمه دچار اشکال می شود، می توان پسوند یا پیشوند را جدا کرد. مانند: هم میهن، همارزی.

صفحه کلید فارسی استاندارد برای ویندوز، تهیه شده توسط بهنام اسفهبد

۸. ضمیرهای متصل چسبیده به کلمهی پیش از خود نوشته میشوند. مانند: کتابم، نامت، کلامشان.

فصل ۳

کارهای پیشین

در فصل سوم پایاننامه، کارهای پیشین انجامشده روی مسئله به تفصیل توضیح داده می شود. نمونهای از فصل کارهای پیشین در زیر آمده است. ا

۱_۳ مسائل خوشهبندی

مسئلهی خوشهبندی ^۲ یکی از مهمترین مسائل در زمینهی دادهکاوی به حساب میآید. در این مسئله، هدف دستهبندی تعدادی شیء بهگونهای است که اشیاء درون یک دسته (خوشه)، نسبت به یکدیگر در برابر دستههای دیگر شبیه تر باشند (معیارهای متفاوتی برای تشابه تعریف میگردد). این مسئله در حوزههای مختلفی از علوم کامپیوتر از جمله دادهکاوی، جستوجوی الگو^۳، پردازش تصویر^۴، بازیابی اطلاعات و رایانش زیستی مورد استفاده قرار میگیرد [?].

تا کنون راه حلهای زیادی برای این مسئله ارائه شده است که از لحاظ معیار تشخیص خوشهها و نحوه ی انتخاب یک خوشه، با یک دیگر تفاوت بسیاری دارند. به همین خاطر مسئله ی خوشه بندی یک مسئله ی بهینه سازی چندهدفه محسوب می شود.

همان طور که در مرجع [؟] ذکر شده است، خوشه در خوشهبندی تعریف واحدی ندارد و یکی از

ا مطالب این فصل نمونه از پایاننامهی آقای بهنام حاتمی گرفته شده است.

Clustering⁷

Pattern recognition

Image analysis*

Information retrieval^a

Bioinformatics,

Multi-objective^v

دلایل وجود الگوریتمهای متفاوت، همین تفاوت تعریفها از خوشه است. بنابراین با توجه به مدلی که برای خوشهها ارائه میشود، الگوریتم متفاوتی نیز ارائه میگردد. در ادامه به بررسی تعدادی از معروفترین مدلهای مطرح میپردازیم:

- مدلهای مرکزگرا: در این مدلها، هر دسته با یک مرکز نشان داده می شود. از جمله معروف ترین روشهای خوشه بندی بر اساس این مدل، خوشه بندی k مرکز، خوشه بندی k میانه است.
- مدلهای مبتی بر توزیع نقاط: در این مدل، دسته ها با فرض پیروی از یک توزیع احتمالی مشخص می شوند. از جمله الگوریتم های معروف ارائه شده در این مدل، الگوریتم بیشینه سازی امید ریاضی است.
- مدلهای مبتنی بر تراکم نقاط: در این مدل، خوشه ها متناسب با ناحیه های متراکم نقاط در مجموعه داده مورد استفاده قرار میگیرد.
- مدلهای مبتنی بر گراف: در این مدل، هر خوشه به مجموعه از رئوس گفته می شود که تمام رئوس آن با یک دیگر همسایه باشند. از جمله الگوریتم های معروف این مدل، الگوریتم خوشه بندی HCS است.

الگوریتمهای ارائه شده تنها از نظر نوع مدل با یک دیگر متفاوت نیستند. بلکه، می توان آنها را از لحاظ نحوه ی تخصیص نقاط بین خوشه ها نیز تقسیم بندی کرد:

- تخصیص قطعی داده ها: در این نوع خوشهبندی هر داده دقیقاً به یک خوشه اختصاص داده می شود.
- تخصیص قطعی داده ها با داده ی پرت: در این نوع خوشه بندی ممکن است بعضی از داده ها به هیچ خوشه ای اختصاص می یابد.
- تخصیص قطعی داده: در این نوع خوشهبندی هر داده دقیقاً به یک خوشه اختصاص داده میشود.
- خوشهبندی همپوشان: در این نوع خوشهبندی هر داده می تواند به چند خوشه اختصاص داده شود. در گونهای از این مدل، می توان هر نقطه را با احتمالی به هر خوشه اختصاص می یابد. به این گونه از خوشه بندی، خوشه بندی نرم ۱۲ گفته می شود.

k-Means[^]

k-Median

Expectation-maximization '

Highly Connected Subgraphs'

Soft clustering 'Y

شکل ۳_۱: نمونهای از مسئلهی ۲_مرکز

• خوشهبندی سلسهمراتبی: در این نوع خوشهها، دادهها به گونهای به خوشهها تخصیص داده می شود که دو خوشه یا اشتراک ندارند یا یکی به طور کامل دیگری را می پوشاند. در واقع در بین خوشهها، رابطه ی پدر فرزندی برقرار است.

در بین دسته بندی های ذکر شده، تمرکز اصلی این پایان نامه بر روی مدل مرکزگرا و خوشه بندی قطعی با داده های پرت با مدل k مرکز است. همان طور که ذکر شد علاوه بر مسئله ی k مرکز که به تفصیل مورد بررسی قرار می گیرد، k میانه و k میانگین از جمله معروف ترین خوشه بندی های مدل مرکزگرا هستند. در خوشه بندی k میانه، هدف افراز نقاط به k خوشه است به گونه ای که مجموع مربع فاصله ی هر نقطه از میانه ی نقاط آن خوشه، کمینه گردد. در خوشه بندی k میانگین، هدف افراز نقاط به k خوشه است به گونه ای که مجموع فاصله ی هر نقطه از میانگین نقاط داخل خوشه (یا مرکز آن خوشه) کمینه گردد.

kمرکز خوشه بندی kمرکز

یکی از رویکردهای شناخته شده برای مسئله ی خوشه بندی، مسئله ی k مرکز است. در این مسئله هدف، پیدا کردن k نقطه به عنوان مرکز دسته ها است به طوری که شعاع دسته ها تا حد ممکن کمینه شود. مثالی از مسئله ی k مسئله ی k مرکز در شکل k نشان داده شده است. در این پژوهش، مسئله ی k مرکز با متریکهای خاص و برای k های کوچک مورد بررسی قرار گرفته است و هر کدام از تعریف رسمی مسئله ی k مرکز در زیر آمده است:

مسئلهی Y_- (X_- مرکز) گراف کامل بدون جهت Y_- با تابع فاصله Y_- که از نامساوی مثلثی پیروی میکند داده شده است. زیرمجموعه Y_- با اندازه Y_- با اندازه که عبارت زیر را کمینه کند:

$$\max_{v \in V} \{ \min_{s \in S} d(v, s) \}$$
 (1-4)

شکل ۳_۲: نمونهای ازمسئلهی ۲_مرکز با دادههای پرت

گونههای مختلفی از مسئله ی k مرکز با محدودیتهای متفاوت توسط پژوهشگران مورد مطالعه قرار گرفته است. از جمله ی این گونهها، می توان به حالتی که در بین دادههای ورودی، دادههای پرت وجود دارد، اشاره کرد. در واقع در این مسئله، قبل از خوشه بندی می توانیم تعدادی از نقاط ورودی را حذف نموده و سپس به خوشه بندی نقاط بپردازیم. سختی این مسئله از آنجاست که نه تنها باید مسئله ی خوشه بندی را حل نمود، بلکه در ابتدا باید تصمیم گرفت که کدام یک از دادهها را به عنوان داده ی پرت در نظر گرفت که بهترین جواب در زمان خوشه بندی به دست آید. در واقع اگر تعداد نقاط پرتی که مجاز به حذف است، برابر صفر باشد، مسئله به مسئله ی k مرکز تبدیل می شود. نمونه ای از مسئله ی k داده ی پرت را در شکل k می توانید ببینید. تعریف دقیق تر این مسئله در زیر آمده است:

مسئلهی T - Y (X - X) با تابع فاصله ی مسئله ی X - Y (X - X) مسئله مسئله ی X - Y با تابع فاصله ی مسئله ی پیروی می کند داده شده است. زیرمجموعه ی $X \subseteq X$ با اندازه ی $X \subseteq X$ و مجموعه ی $X \subseteq X$ با اندازه ی با داد ی با داد ی با داد ی با اندازه ی با داد ی ب

$$\max_{v \in V-Z} \{ \min_{s \in S} d(v, s) \}$$
 (Y_Y)

گونه ی دیگری از مسئله ی k مرکز که در سال های اخیر مورد توجه قرار گرفته است، حالت جویبار داده ی آن است. در این گونه از مسئله ی k مرکز، در ابتدا تمام نقاط در دسترس نیستند، بلکه به مرور زمان نقاط در دسترس قرار می گیرند. محدودیت دومی که وجود دارد، محدودیت حافظه است، به طوری که نمی توان تمام نقاط را در حافظه نگه داشت و بعضاً حتی امکان نگه داری در حافظه ی جانبی نیز وجود ندارد و به طور معمول باید مرتبه ی حافظه ای کمتر از مرتبه حافظه ی خطی ۱۳ متناسب با تعداد نقاط استفاده نمود. از این به بعد به چنین مرتبه ی مرتبه ی زیرخطی ۱۴ می گوییم. مدلی که ما در این پژوهش بر روی آن تمرکز داریم مدل جویبار داده تک گذره ۱۵ [؟] است. یعنی تنها یک بار می توان از ابتدا تا انتهای داده ها را بررسی

Linear 18

sublinear '*

Single pass \a

کرد و پس از عبور از یک داده، اگر آن داده در حافظه ذخیره نشده باشد، دیگر به آن دسترسی وجود ندارد. علاوه بر این، در هر لحظه باید بتوان به پرسمان (برای تمام نقاطی از جویبار داده که تاکنون به آن دسترسی داشته ایم) پاسخ داد.

مسئلهی T_k (مان جویبار داده) مجموعه ای از نقاط در فضای k_k بعدی به مرور زمان داده می شود. در هر لحظه از زمان، به ازای مجموعه ی U از نقاطی که تا کنون وارد شده اند، زیرمجموعه ی $S \subseteq U$ با اندازه ی k را انتخاب کنید به طوری که عبارت زیر کمینه شود:

$$\max_{u \in U} \{ \min_{s \in S} d(u, s) \}$$
 (Y-Y)

از آنجایی که گونه ی جویبار داده و داده پرت مسئله ی k مرکز به علت بهروز بودن مبحث دادههای حجیم 16 ، به تازگی مورد توجه قرار گرفته است. در این تحقیق سعی شده است که تمرکز بر روی این گونه ی خاص از مسئله باشد. همچنین در این پژوهش سعی می شود گونه های مسئله را برای انواع متریک ها و برای kهای کوچک نیز مورد بررسی قرار داد.

٣_٣ مدل جويبار داده

همان طور که ذکر شد مسئله ی k_- مرکز در حالت داده های پرت و جویبار داده، گونه های تعمیمیافته از مسئله ی k_- مرکز هستند و در حالت های خاص به مسئله ی k_- مرکز کاهش پیدا می کنند. مسئله ی k_- مرکز در حوزه ی مسائل ان پی سخت ۱۷ قرار می گیرد و با فرض $P \neq NP$ الگوریتم دقیق با زمان چند جمله ای برای آن وجود ندارد [؟]. بنابراین برای حل کارای ۱۸ این مسائل از الگوریتم های تقریبی ۱۹ استفاده می شود.

برای مسئله ی k مرکز، دو الگوریتم تقریبی معروف وجود دارد. در الگوریتم اول، که به روش حریصانه ۲۰ عمل می کند، در هر مرحله بهترین مرکز ممکن را انتخاب می کند به طوری تا حد ممکن از مراکز قبلی دور باشد [?]. این الگوریتم، الگوریتم تقریبی با ضریب تقریب ۲ ارائه می دهد. در الگوریتم دوم، با استفاده از مسئله ی مجموعه ی غالب کمینه ۲۱، الگوریتمی با ضریب تقریب ۲ ارائه می گردد [?]. همچنین ثابت شده است، که بهتر از این ضریب تقریب، الگوریتمی نمی توان ارائه داد مگر آن که P = NP باشد.

Rig data 19

NP-hard \v

Efficient \^

Approximation algorithm 19

Greedy 7°

Dominating set^{*1}

جدول ٣-١: نمونه هايي از كران پايين تقريب پذيري مسائل خوشه بندي

كران پايين تقريبپذيري	مسئله
۲[؟]	<u>k</u> مرکز
[?]١/٨٢٢	مرکز در فضای اقلیدسی k
$[\S] \frac{1+\sqrt{\lambda}}{1+\sqrt{\lambda}}$	۱ ــ مركز در حالت جويبار داده
[?]٣	مرکز با نقاط پرت و نقاط اجباری $-k$

برای مسئله ی k مرکز در حالت جویبار داده برای ابعاد بالا، بهترین الگوریتم موجود ضریب تقریب $t+\epsilon$ دارد $t+\epsilon$ دارد $t+\epsilon$ دارد $t+\epsilon$ دارد $t+\epsilon$ دارد و ثابت می شود الگوریتمی با ضریب تقریب بهتر از $t+\epsilon$ دارد داده ی پرت در حالت جویبار داده نیز، بهترین الگوریتم ارائه شده، الگوریتمی با ضریب تقریب $t+\epsilon$ است که با کران پایین $t+\epsilon$ هنوز اختلاف قابل توجهی دارد $t+\epsilon$

برای kهای کوچک به خصوص، ۲ , ۲ = ۱، الگوریتمهای بهتری ارائه شده است. بهترین الگوریتم ارائه شده برای مسئله که مسئله ۱ مرکز در حالت جویبار داده برای ابعاد بالا، دارای ضریب تقریب ۱/۲۲ است و کران پایین $\frac{1}{1} + \frac{1}{1}$ نیز برای این مسئله اثبات شده است [؟، ؟]. برای مسئله ۲ مرکز در حالت جویبار داده برای ابعاد بالا، اخیرا راه حلی با ضریب تقریب $\frac{1}{1} + \frac{1}{1}$ ارائه شده است [؟]. برای مسئله اگوریتم موجود، الگوریتمی با ضریب تقریب $\frac{1}{1} + \frac{1}{1}$ است [؟].

۳_۴ تقریبپذیری

یکی از راه کارهایی که برای کارآمد کردن راه حل ارائه شده برای یک مسئله وجود دارد، استفاده از الگوریتمهای تقریبی برای حل آن مسئله است. یکی از عمده ترین دغدغههای مطرح در الگوریتمهای تقریبی کاهش ضریب تقریب است. در بعضی از موارد حتی امکان ارائه ی الگوریتم تقریبی با ضریبی ثابت نیز وجود ندارد. به طور مثال، الگوریتم تقریبی با ضریب تقریب کمتر از Y, برای مسئله ی A مرکز وجود ندارد مگر این که P = NP باشد. برای مسائل مختلف، معمولاً میتوان کران پایینی برای میزان تقریب پذیری آنها ارائه داد. در واقع برای برخی مسائل ان پی سخت، علاوه بر این که الگوریتم کارآمدی وجود ندارد، بعضاً الگوریتم تقریبی با ضریبی تقریب کم و نزدیک به یک نیز وجود ندارد. در جدول Y میزان تقریب پذیری مسائل مختلفی که در این پایان نامه مورد استفاده قرار می گیرد را می بینید.

فصل ۴

نتايج جديد

در این فصل نتایج جدید به دست آمده در پایان نامه توضیح داده می شود. در صورت نیاز می توان نتایج جدید را در قالب چند فصل ارائه نمود. همچنین در صورت وجود پیاده سازی، بهتر است نتایج پیاده سازی را در فصل مستقلی پس از این فصل قرار داد.

فصل ۵

نتيجهگيري

در این فصل، ضمن جمعبندی نتایج جدید ارائه شده در پایاننامه یا رساله، مسائل باز باقی مانده و همچنین پیشنهادهایی برای ادامه ی کار ارائه می شوند.

فصل ۶ نتیجهگیری

مراجع

- [1] Global mobile OS market share 2022 | Statista statista.com. https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/#: ~:text=Android%20maintained%20its%20position%20as,the%20mobile% 20operating%20system%20market. [Accessed 02-Feb-2023].
- [2] Play Protect | Google Developers developers.google.com. https://developers.google.com/android/play-protect. [Accessed 02-Feb-2023].
- [3] Decompile and modify an Android application | cylab.be cylab.be. https://cylab.be/blog/69/decompile-and-modify-an-android-application. [Accessed 02-Feb-2023].
- [4] A. Dizdar. OWASP Mobile Top 10 Vulnerabilities and How to Prevent Them brightsec.com. https://brightsec.com/blog/owasp-mobile-top-10/. [Accessed 02-Feb-2023].
- [5] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu. DroidMat: Android malware detection through manifest and API calls tracing. *Proceedings of the 2012* 7th Asia Joint Conference on Information Security, AsiaJCIS 2012, pages 62–69, 2012.
- [6] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R. Khoury. Empirical study of android repackaged applications. *Empirical Software Engineering*, 24(6):3587–3629, 2019.
- [7] T. Vidas and N. Christin. Sweetening android lemon markets: Measuring and combating malware in application marketplaces. CODASPY 2013 - Proceedings of the 3rd ACM Conference on Data and Application Security and Privacy, 2011:197– 207, 2013.

- [8] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury. A study on malicious software behaviour analysis and detection techniques: Taxonomy, current trends and challenges. *Future Generation Computer Systems*, 130:1–18, 2022.
- [9] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: Fast and accurate detection of third-party libraries in android apps. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), pages 653–656, 2016.

واژهنامه

ت	الف
experimental	heuristicheuristic
density تراکم	high dimensions ابعاد بالا
approximation	اریب
partition	threshold
mesh	pigeonhole principle كبوترى
توزیعشدهdistributed	NP-Hardنپى_سخت
	transition
3	
جداپذیرseparable	ب
black box	online
data stream	السوريزى خطى linear programming
	و به ينه optimum
ح	سِيشينه
extreme	
حريصانه greedy	پ
	outlier پرت
خ	پرسمان
clusterخوشه	پوشش
linear	پیچیدگی complexity

ف	د
فاصله distance	dataداده
space	دادهکاوی
	outlier data
ق	دوبرابرسازیدوبرابرسازی
deterministic	binary
<u>g</u>	
<i>(</i>	j
S	vertex
efficient	رسم <i>ی</i>
candidate	
كمينه minimum	:
•)
٢	sublinear
مجموعه	
مجموعه هسته	w
planar nudz	amortized
موازی سازیموازی parallelization	سلسهمراتبی hierarchichal
میانگیرbuffer	
	ش
ن	pseudocode
نابه جایی inversion	شيء
invariant ناوردا	
نقطهی مرکزی	ص
half space نيم فضا	satisfiability
ھـ	;
price of anarchy (POA)	dominate
	علبهعلبه adminate
ي	
edge	

پیوست آ مطالب تکمیلی

پیوستهای خود را در صورت وجود میتوانید در این قسمت قرار دهید.

${\bf Abstract}$

We present a standard template for type setting theses in Persian. The template is based on the X_{\begin{subarray}{c} Persian package for the I \begin{subarray}{c} ETEX type setting system. This write-up shows a sample usage of this template.}

 $\mathbf{Keywords} \text{: Thesis, Type setting, Template, X}_{\overline{\mathbf{H}}} \mathbf{Persian}$

Sharif University of Technology Department of Computer Engineering

M.Sc. Thesis

Performance Improvement of Android Repackaged Applications

By:

Mojtaba Moazen

Supervisor:

Dr. Amini

february 2023