CSCI 561 Foundation for Artificial Intelligence

Probabilistic Decision Making

Professor Wei-Min Shen

University of Southern California

Outline

- Probabilistic decision making
 - Motivation
 - Decision Problems
 - Markov Decision Process (MDP)
 - Value Iteration
 - Policy Iteration

Slides contributions from: Brian C. Williams (MIT 16.410), Manuela Veloso, Reid Simmons, & Tom Mitchell, CMU

How Might a Mouse Search a Maze for Cheese?

- State Space Search?
- As a Constraint Satisfaction Problem?
- Goal-directed Planning?
- Linear Programming?

What is missing?

Action and Sensor Models (review)

- 1. Actions
- 2. Percepts (observations)
- 3. States
- 4. Appearance: states → observations
- 5. Transitions: (states, actions) → states
- 6. Current State

•What about the goals?

Utility Value of States ⇔ Goal Information

- 1. Actions
- 2. Percepts (observations)
- 3. States
- 4. Appearance: states → observations
- 5. Transitions: (states, actions) → states
- 6. Current State
- 7. Rewards: R(s) or R(s,a) (related to the goals, given to the agent from env)
- (8) Utility Value of States: U(s) (how good for the goals, must compute)

The Key Representations

- Model the environment by States, Actions, Percepts, and
- Transition model $\phi = P(s_{t+1}|s_t,a_t)$ may be probabilistic
- Sensor Model $\theta = P(z|s)$ may be probabilistic
- States may have Utility Value U(s) or V(s)
- Agents may receive Reward r (implicit "goals")
 - When entering a state: s → r
 - When performing an action in a state: (s, a) → r
- Behaviors may be represented as Policy: s → a
- Objective: find the optimal policy based on utilities or rewards

Sequential Decision Problems

Markov Decision Process (MDP)

- A MDP consists of
 - State S
 - Actions A
 - Transition Model Φ(s'|s,a)
 - Initial State s₀ Probability Distribution π
 - Sensor Model θ(z|s)
 - A reward function R(s) or R(s, a)

// a typical MDP has no sensor model

// we use R(s, a) in today's lecture

Maximum Expected Utility (MEU) and Rational Agents

- Every state has a utility value U(s)
- The <u>expected utility of an action given</u> the current evidence or observation e, is the average utility value of the outcomes, weighted by the probability that the outcome occurs:

 The principle of maximum expected utility (MEU) is that a rational agent should choose the action that maximizes its expected utility:

$$action = \arg \max EU(a \mid e)$$

POMDP: Sensor Model, Belief States

- A Partially Observable MDP (POMDP) is defined as follows:
 - A set of states S (with an initial state s₀)
 - A set of Actions: A(s) of actions in each state s
 - A transition model P(s'|s,a), or T(s,a,s')
 - A reward function R(s), or R(s,a)
 - A sensor model P(e|s)

• A belief of what the current state is *b*(*s*) ← ←

- Belief States (where am I now? What is my current state?):
 - If *b*(*s*) was the previous belief state, and the robot does action "*a*" and then perceives a new evidence "*e*", then the new belief state:

$$b'(s') = \alpha P(e \mid s') \sum P(s' \mid s, a) b(s)$$

where α is a normalization constant making the belief states sum to 1

Goals, Rewards, Utilities, Policies

- Goals
- Given to the agent from the problem statements
- Rewards
 - Given to the agent, designed based on the goals
- Utility values for states
 - Computed by the agent, based on the rewards
- Policies
 - · Computed or learned by the agent
 - Used by the agent to select its actions
 - The better a policy, the more rewards it collects

Compute Utilities from Rewards over Time

- Utility Value = sum of all future rewards
 - Add the rewards as they are

$$U_h = ([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) + ...$$

Discount the far-away rewards in the future

$$U_h = ([s_0, s_1, s_2, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$$

• The expected future utility value $U^{\pi}(s)$ obtained by executing a policy π starting from s

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right] \qquad \text{The Optimal Policy} \\ \pi_{s}^{*} = \arg\max_{\pi} U^{\pi}(s)$$

Ideas in this lecture

- Problem is to accumulate rewards, rather than to achieve goal states.
- Approach is to generate reactive policies for how to act in all situations, rather than plans for a single starting situation.
- Policies fall out of value functions, which describe the greatest lifetime reward achievable at every state.
- Value functions are iteratively approximated.

MDP Examples: TD-Gammon [Tesauro, 1995] Learning Through Reinforcement

Learns to play Backgammon

States:

• Board configurations (10²⁰)

Actions:

Moves

Rewards:

- +100 if win
- 100 if lose
- 0 for all other states
- Trained by playing 1.5 million games against self.
- Currently, roughly equal to best human player.

MDP Examples: Aerial Robotics [Feron et al.] Computing a Solution from a Continuous Model

Markov Decision Processes

- Motivation
- What are Markov Decision Processes (MDPs)?
 - Models
 - Lifetime Reward
 - Policies
- Computing Policies From a Model
- Summary

Example MDP

Model $M^a_{ij} \equiv P(j|i,a) = \text{probability that doing } a \text{ in } i \text{ leads to } j$

Each state has a reward R(i)

- = -0.04 (small penalty) for nonterminal states
- $=\pm 1$ for terminal states

Example MDP

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal *policy*i.e., best action for every possible state
(because can't predict where one will end up)

Optimal policy and state values for the given R(i):

MDP Problem

Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

MDP Problem: Model

Given an environment <u>model as a MDP</u> create a policy for acting that maximizes <u>lifetime reward</u>

Markov Decision Processes (MDPs)

Model:

- Finite set of states, S
- Finite set of actions, A
- (Probabilistic) state transitions, δ(s,a)
- Reward for each state and action, *R*(*s*,*a*)

Process:

- Observe state s_t in S
- Choose action a_t in A
- Receive immediate reward r_t
- State changes to s_{t+1}

Example:

- Legal transitions shown
- Reward on unlabeled transitions is 0.

MDP Environment Assumptions

- Markov Assumption:
 Next state and reward is a function only of the current state and action:
 - $s_{t+1} = \delta(s_t, a_t)$
 - $r_t = r(s_t, a_t)$
- Uncertain and Unknown Environment: δ and r may be nondeterministic and unknown

MDP Problem: Model

Given an environment <u>model as a MDP</u> create a policy for acting that maximizes <u>lifetime reward</u>

MDP Problem: Lifetime Reward

Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

Utility (aka value)

In sequential decision problems, preferences are expressed between sequences of states

Usually use an *additive* utility function:

$$U([s_1, s_2, s_3, \dots, s_n]) = R(s_1) + R(s_2) + R(s_3) + \dots + R(s_n)$$
 (cf. path cost in search problems)

Utility of a state (a.k.a. its value) is defined to be $U(s_i) = \underbrace{\text{expected sum of rewards until termination}}_{\text{assuming optimal actions}}$

Given the utilities of the states, choosing the best action is just MEU: choose the action such that the expected utility of the immediate successors is highest.

Lifetime Reward

- Finite horizon:
 - Rewards accumulate for a fixed period.
 - \$100K + \$100K + \$100K = \$300K
- Infinite horizon:
 - Assume reward accumulates for ever
 - \$100K + \$100K + . . . = infinity
- Discounting:
 - Future rewards not worth as much (a bird in hand ...)
 - Introduce discount factor γ \$100K + γ \$100K + γ \$100K. . . converges
 - Will make the math work

MDP Problem: Lifetime Reward

Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

MDP Problem: Policy

Given an environment model as a MDP create a <u>policy</u> for acting that maximizes lifetime reward

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

Assume deterministic world

Policy $\pi: S \rightarrow A$

Selects an action for each state.

Optimal policy $\pi^*: S \rightarrow A$

Selects action for each state that maximizes lifetime reward.

- There are many policies, not all are necessarily optimal.
- There may be several optimal policies.

A sequential decision problem for a fully Observable stochastic environment with Markovian transition model and additive Rewards is called an MDP

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration (appendix)
- Summary

Value Function V^{π} for a Given Policy π

• $V^{\pi}(s_t)$ is the accumulated lifetime reward resulting from starting in state s_t and repeatedly executing policy π :

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \dots$$
$$V^{\pi}(s_t) = \sum_{i} \gamma^i r_{t+i}$$

where r_t , r_{t+1} , r_{t+2} . . . are generated by following π , starting at s_t .

An Optimal Policy π^* Given Value Function V^*

Idea: Given state s

- 1. Examine all possible actions a_i in state s.
- Select action a_i with greatest lifetime reward.

Lifetime reward $Q(s, a_i)$ is:

- the immediate reward for taking action r(s,a) ...
- plus lifetime reward starting in target state V(δ(s, a)) ...
- discounted by γ.

$$\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

Must Know:

- Value function
- Environment model.
 - $\delta: S \times A \rightarrow S$
 - $r: S \times A \rightarrow \Re$

Example: Mapping Value Function to Policy

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

Example: Mapping Value Function to Policy

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$y = 0.9$$

- a: $0 + 0.9 \times 100 = 90$
- b: $0 + 0.9 \times 81 = 72.9$
- > select a

 π :

Example: Mapping Value Function to Policy

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$y = 0.9$$

- a: $100 + 0.9 \times 0 = 100$
- b: $0 + 0.9 \times 90 = 81$
- > select a

 π :

Example: Mapping Value Function to Policy

• Agent selects optimal action from *V*:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

$$\gamma = 0.9$$

- a: ?b: ?
- c: ?
- > select?

 π :

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration
- Summary

• Optimal value function for a one step horizon:

$$V_{1}^{*}(s) = \max_{a_{i}} [r(s, a_{i})]$$

Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

Example

Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

➤ Optimal value function for an infinite horizon:

$$V^*(s) = \max_{a_i} \left[r(s, a_i) + \gamma V^*(\delta(s, a_i)) \right]$$

Bellman equation

Definition of utility of states leads to a simple relationship among utilities of neighboring states:

expected sum of rewards

- = current reward
 - + expected sum of rewards after taking best action

Model
$$M_{ij}^a \equiv P(j|i,a) = \text{probability that doing } a \text{ in } i \text{ leads to } j$$

$$U(i) = R(i) + \max_{a} \sum_{j} U(j) M_{ij}^{a}$$

$$U(1,1) = -0.04$$

$$+ \max\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), up \\ 0.9U(1,1) + 0.1U(1,2)$$
 left

$$0.9U(1,1) + 0.1U(2,1)$$
 down

$$0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)$$
 right

One equation per state = n <u>nonlinear</u> equations in n unknowns

Value iteration algorithm

Idea: Start with arbitrary utility values

Update to make them <u>locally consistent</u> with Bellman eqn.

Everywhere locally consistent \Rightarrow global optimality

repeat until "no change"

$$U(i) \leftarrow R(i) + \max_{a} \sum_{j} U(j) M_{ij}^{a}$$
 for all i

Solving MDPs by Value Iteration

Insight: Can calculate optimal values iteratively using Dynamic Programming.

Algorithm:

Iteratively calculate value using Bellman's Equation:

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s, a))]$$

Terminate when values are "close enough"

$$|V^*_{t+1}(s) - V^*_{t}(s)| < \varepsilon$$

Agent selects optimal action by one step lookahead on V*:

$$\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

Convergence of Value Iteration

If terminate when values are "close enough"

$$|V_{t+1}(s) - V_t(s)| < \varepsilon$$

Then:

$$\text{Max}_{s \text{ in } S} |V_{t+1}(s) - V^*(s)| < 2\varepsilon \gamma/(1 - \gamma)$$

- Converges in polynomial time.
- Convergence guaranteed even if updates are performed infinitely often, but asynchronously and in any order.

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s, a))]$$

$$y = 0.9$$

- a: $0 + 0.9 \times 0 = 0$
- b: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$\gamma = 0.9$$

• c: $0 + 0.9 \times 0 = 0$

> Max = 100

18

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s, a))]$$

- a: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s, a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s, a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s, a))]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s, a))]$$

$$V^*_{t+1}(s) \leftarrow \max_{a} \left[r(s,a) + \gamma V^*_{t}(\delta(s,a)) \right]$$

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing policies from a modelValue Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration
- Summary

Policy iteration

Idea: search for optimal policy and utility values simultaneously

Algorithm:

```
\pi \leftarrow an arbitrary initial policy
repeat until no change in \pi
compute utilities given \pi
update \pi as if utilities were correct (i.e., local MEU)
```

To compute utilities given a fixed π :

$$U(i) = R(i) + \sum_{i} U(j) M_{ij}^{\pi(i)} \qquad \text{for all } i$$

i.e., n simultaneous <u>linear</u> equations in n unknowns, solve in $O(n^3)$

•Why use policy iteration? May converge faster; convergence guarantees.

Policy Iteration

Idea: Iteratively improve the policy

- 1. Policy Evaluation: Given a policy π_i calculate $V_i = V^{\pi i}$, the utility of each state if π_i were to be executed.
- 2. Policy Improvement: Calculate a new maximum expected utility policy π_{i+1} using one-step look ahead based on V_i .
- π_i improves at every step, converging if $\pi_i = \pi_{i+1}$.
- Computing V_i is simpler than for Value iteration (no max):

$$V^*_{t+1}(s) \leftarrow r(s, \pi_i(s)) + \gamma V^*_{t}(\delta(s, \pi_i(s)))]$$

- Solve linear equations in O(N³)
- Solve iteratively, similar to value iteration.