Colles semaine 10 - Applications de la diagonalisation

1 Applications en algèbre linéaire

Diagonalisation d'un endomorphisme

- ▶ Représentations matricielles d'un endomorphisme Détermination de $Mat_{\mathcal{B}}(f)$, formule de changement de bases...
- Diagonalisation et représentation matricielle diagonale dans une base de vecteurs propres.
- ▶ **La valeur propre 0** On a l'équivalence : $[0 \in Sp(f)] \iff [f \text{ pas bijectif.}].$

Étude de commutants et diagonalisation

- ▶ **Définition** Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose : $\mathcal{C}_A = \{M \in \mathcal{M}_n(\mathbb{R}), \text{ tq } A \cdot M = M \cdot A\}$. C'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
- ► Changement de variable Si $A = P \cdot A' \cdot P^{-1}$, alors, pour $M = P \cdot M' \cdot P^{-1}$, il y a équivalence : $[A \cdot M = M \cdot A] \iff [A' \cdot M' = M' \cdot A']$.

 (exemple de résolution pour A' diagonale, puis retour à A et C_A)

2 Calculs de puissances matricielles

Cas diagonalisable

- ▶ **Puissances d'une matrice diagonale** Si $D = \text{Diag}(\lambda_i)$, alors : $D^k = \text{Diag}(\lambda_i^k)$. (La puissance d'une matrice diagonale est la matrice diagonale des puissances.)
- ▶ Puissances d'une matrice diagonalisée Si $A = P \cdot D \cdot P^{-1}$, alors on a : $A^k = P \cdot D^k \cdot P^{-1}$.

Formule du binôme de Newton

- **Énoncé** Si $A,B \in \mathcal{M}_n(\mathbb{R})$, avec $A \cdot B = B \cdot A$, (commutation) alors : $(A+B)^r = \sum_{k=0}^r {r \choose k} A^k \cdot B^{r-k}$
- - ► *N* nilpotente
 - $N \cdot \Delta = \Delta \cdot N.$

 $(ici\ A, B, C)$

 A_n, B_n, C_n

3 Étude de chaînes de Markov

- une **succession d'épreuves** (pour $n \in \mathbb{N}$) aléatoires
- une évolution aléatoire sur un ensemble fini d'états
- ▶ ~ une suite de systèmes complets d'événements
- $\qquad \text{vecteur d'état probabiliste} \qquad \vec{X}_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} \mathbb{P}(A_n) \\ \mathbb{P}(B_n) \\ \mathbb{P}(C_n) \end{pmatrix}$
- ▶ matrice T des **probabilités de transition**

$$(p. ex: p_{[A \leadsto B]} = \mathbb{P}_{A_n}(B_{n+1})).$$

- Équation de transition On a : $\vec{X}_{n+1} = T \cdot \vec{X}_n$. (donnée par la formule des probabilités totales)
- ▶ Puissances de la matrice de transition On a : $\vec{X}_n = T^n \cdot \vec{X}_0$. $(\vec{X}_0 \text{ état initial})$
- ▶ **Application de la réduction** pour $T = P \cdot D \cdot P^{-1}$, on a alors : $T^n = P \cdot D^n \cdot P^{-1}$.
- ► Convergence pour $n \to \infty$ vers un état probabiliste limite. (un

(un vecteur propre pour $\lambda = 1$.)

4 Questions de cours

1. Définir : «l'endomorphisme f est diagonalisable ».

2. Montrer que le commutant d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

3. La formule du binôme de Newton matricielle.

4. Principe du calcul des puissances d'une matrice diagonalisée.

5. Expliquer la matrice de transition d'une chaîne de Markov.

