CONCORDIA UNIVERSITY Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	203	All
Examination	Date	Duration
Midterm Test	3 March, 2018	$1\ \mathrm{h}\ 30\ \mathrm{min}$
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

- 1. (12 marks): (a) An open rectangular box (no top) has a square base. Given that the height of the box is x and the length y of each side of the base exceeds x by $10 \, \text{cm}$, so y = x + 10, express the surface area S of the box as a polynomial function of x only (i.e. **not** of x and y). in the standard form, i.e. in order of decreasing degree of x.
 - (b) Solve for x (find the exact values,do not approximate!): $2\log_4(x) \log_4(x+3) = 1$
 - (c) Find the inverse function $f^{-1}(x)$ of $f(x) = \ln(8 x^3)$ and determine the domain and the range of $f^{-1}(x)$.
- 2. (5 marks) Find (a) all horizontal and (b) all vertical asymptotes of the graph $y = \frac{|4x 1|(x^2 + 2)}{3x^3 + 12x}$
- 3. (7 marks) Find the limit or explain why the limit does not exist:

(a)
$$\lim_{x \to -2} \frac{x^2 - 3x - 10}{x^4 - 16}$$

(b)
$$\lim_{x \to 5} \frac{|x-5|}{x^2-25}$$

4. (4 marks) Find the second derivative of the function $f(x) = x^2 e^{2x} (x^{-2} + e^{-2x})$ and calculate its **exact** (not the approximate!) value f''(1). (Hint: first simplify the function f).

(continued on the other side)

- **6.** (6 marks) Given the function $f(x) = \sqrt{2x+5}$,
 - (a) Calculate f'(x) using its definition as a limit of difference quotient.
 - (b) Write equation of the tangent line to the curve y = f(x) at the point (2,3).
- 5. (16 marks) Find the derivatives of the following functions.

(a)
$$f(x) = \frac{x + 2\sqrt{x} - 1}{x^{3/2}}$$

(b)
$$f(x) = 3^{x^2+1} + (1+2x)^5$$

(c)
$$f(x) = \frac{\cos^2(x)}{1 + \tan x} + [\cos(x)\sec(x)]^2$$

(d)
$$f(x) = \sin[x e^{2x} + \cos(x + e^{2x})]$$

Bonus Question (3 marks). Find the *n*-th derivative $f^{(n)}(x)$ if $f(x) = \frac{1}{2-x}$ and *n* is an arbitrary positive integer.