14.4 GRADIENTS AND DIRECTIONAL DERIVATIVES IN THE PLANE

The Rate of Change in an Arbitrary Direction: The Directional Derivative

Screen clipping taken: 03/06/2024 3:12 pm

Screen clipping taken: 03/06/2024 3:12 pm

Figure 14.36

Figure 14.40

Figure 14.29: Displacement of $h\vec{u}$ from the point (a,b)

Taking the limit as $h \to 0$ gives the instantaneous rate of change and the following definition:

Directional Derivative of f at (a,b) in the Direction of a Unit Vector \vec{u}

If $\vec{u}=u_1\vec{i}+u_2\vec{j}$ is a unit vector, we define the directional derivative, $f_{\vec{u}}$, by

Rate of change of
$$f$$
 in direction
$$= \lim_{h \to 0} \frac{f(a + hu_1, b + hu_2) - f(a, b)}{h},$$

provided the limit exists.

Screen clipping taken: 03/06/2024 3:13 pm

Example 2 For each of the functions f, g, and h in Figure 14.30, decide whether the directional derivative at the indicated point is positive, negative, or zero, in the direction of the vector $\vec{v} = \vec{i} + 2\vec{j}$, and in the direction of the vector $\vec{w} = 2\vec{i} + \vec{j}$.

Figure 14.30: Contour diagrams of three functions with direction vectors $\vec{v} = \vec{i} + 2\vec{j}$ and $\vec{w} = 2\vec{i} + \vec{j}$ marked on each

The Gradient Vector of a differentiable function f at the point (a, b) is

$$\operatorname{grad} f(a,b) = f_x(a,b)\vec{i} + f_y(a,b)\vec{j}$$

Screen clipping taken: 03/06/2024 3:15 pm

The Directional Derivative and the Gradient

If f is differentiable at (a,b) and $\vec{u}=u_1\vec{i}+u_2\vec{j}$ is a unit vector, then

$$f_{\vec{u}}\left(a,b\right) = f_x(a,b)u_1 + f_y(a,b)u_2 = \operatorname{grad} f(a,b) \cdot \vec{u} \,.$$

Screen clipping taken: 03/06/2024 3:15 pm

Example 3 Calculate the directional derivative of $f(x,y) = x^2 + y^2$ at (1,0) in the direction of the vector $\vec{i} + \vec{j}$.

Screen clipping taken: 03/06/2024 3:14 pm

Example 5 Find the gradient vector of $f(x, y) = x + e^y$ at the point (1, 1).

Screen clipping taken: 03/06/2024 3:15 pm

showing the gradient is perpendicular to the contours

Figure 14.33: A temperature map showing directions and relative magnitudes of two gradient vectors

Screen clipping taken: 03/06/2024 3:16 pm

Example 7 Use the gradient to find the directional derivative of $f(x,y)=x+e^y$ at the point (1,1) in the direction of the vectors $\vec{i}-\vec{j}$, $\vec{i}+2\vec{j}$, $\vec{i}+3\vec{j}$.

Double Integral:

$$\int_{a}^{b} f(x) \ dx$$

To get the exact area we then took the limit as n goes to infinity and this was also the definition of the definite integral.

$$\int_{a}^{b}f\left(x
ight) \,dx=rac{1}{n
ightarrow\infty}\qquad f\left(x_{i}^{st}
ight) \Delta x$$

We will start out by assuming that the region in \mathbb{R}^2 is a rectangle which we will denote as follows,

$$R = [] \times []$$

This means that the ranges for x and y are $a \le x \le b$ and $c \le y \le d$.

Also, we will initially assume that $f(x,y) \ge 0$ although this doesn't really have to be the case. Let's start out with the graph of the surface S given by graphing f(x,y) over the rectangle R.

Now, over each of these smaller rectangles we will construct a box whose height is given by $f\left(x_i^*,y_j^*
ight)$. Here is a sketch of that.

Screen clipping taken: 3/14/2023 3:27 PM

$$Vpprox \sum_{i=1}^{n}\sum_{j=1}^{m}f\left(x_{i}^{st},y_{j}^{st}
ight)\,\Delta\,A$$

$$V = \lim_{n, \ m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}^{*}, y_{j}^{*}\right) \ \Delta \, A$$

$$\iint\limits_{R}f\left(x,y
ight) \,dA=\lim_{n,\;m
ightarrow\infty}\sum_{i=1}^{n}\sum_{j=1}^{m}f\left(x_{i}^{st},y_{j}^{st}
ight) \,\Delta A$$

$$\text{Volume} = \iint\limits_{R} f\left(x,y\right) \, dA$$

- Her Sum $\underset{i=1}{\overset{\sim}{\sum}} \int_{j=1}^{j} f(x_{ij}, y_{ij}) \Delta A$ is called DOUBLE RIEMANN SUM and is used as an approximation to the value of double integral.

EXAMPLE: Estimate the volume of the Solid Example: Estimate the square $R = [0,2] \times [0,2]$ that lies above the square $R = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the alliptic paraboloid $E = [0,2] \times [0,2]$ and below—the squares $E = [0,2] \times [0,2]$ and $E = [0,2] \times$

1. Use the Midpoint Rule to estimate the volume under $f(x,y)=x^2+y$ and above the rectangle given by $-1 \le x \le 3$, $0 \le y \le 4$ in the xy-plane. Use 4 subdivisions in the x direction and 2 subdivisions in the y direction.

$$V=\iint\limits_{R}f\left(x,y
ight) \,dA$$

$$\iint\limits_R f(x,y) \; dA pprox \sum_{i=1}^4 \sum_{j=1}^2 f\left(\overline{x}_i, \overline{y}_j
ight) \; \Delta A \qquad \; f(x,y) = x^2 + y$$

$$\Delta A =$$

$$Vpprox \sum_{i=1}^{4}\sum_{j=1}^{2}2f\left(\overline{x}_{i},\overline{y}_{j}
ight) \qquad f\left(x,y
ight)=x^{2}+y$$

$$i=1$$
 : $\sum_{i=1}^2 2f\left(\overline{x}_1,\overline{y}_j
ight) =$

$$i=2 \hspace{0.1in} : \hspace{0.1in} \sum_{j=1}^2 2f\left(\overline{x}_2,\overline{y}_j
ight) =$$

$$i=3 \hspace{0.1in} : \hspace{0.1in} \sum_{j=1}^2 2f\left(\overline{x}_3,\overline{y}_j
ight) =$$

$$i=4 \hspace{0.1in} : \hspace{0.1in} \sum_{j=1}^2 2f\left(\overline{x}_4,\overline{y}_j
ight) =$$

For reference purposes we will eventually be able to verify that the exact volume is

Fubini's Theorem

If f(x,y) is continuous on R=[a,b] imes[c,d] then,

$$\iint\limits_{\mathcal{B}} f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dy \, dx = \int_c^d \int_a^b f(x,y) \ dx \, dy$$

These integrals are called iterated integrals

Choosing order wisely!

Example 4:

$$\iint\limits_{R}x\mathbf{e}^{xy}\,dA,\,R=[-1,2] imes[0,1]$$

$$\begin{split} \iint_{R} x \mathbf{e}^{xy} \, dA &= \int_{0}^{1} \left(\frac{x}{y} \mathbf{e}^{xy} - \int \frac{1}{y} \mathbf{e}^{xy} \, dx \right) \Big|_{-1}^{2} \, dy \\ &= \int_{0}^{1} \left(\frac{x}{y} \mathbf{e}^{xy} - \frac{1}{y^{2}} \mathbf{e}^{xy} \right) \Big|_{-1}^{2} \, dy \\ &= \int_{0}^{1} \left(\frac{2}{y} \mathbf{e}^{2y} - \frac{1}{y^{2}} \mathbf{e}^{2y} \right) - \left(-\frac{1}{y} \mathbf{e}^{-y} - \frac{1}{y^{2}} \mathbf{e}^{-y} \right) \, dy \end{split}$$

EX (
$$\int_{0}^{2} \int_{1}^{2} x^{2}y \, dy \, dx$$
 where $R = \int_{0}^{2} (\pi_{1}y) \left[0 \le x \le 2, 1 \le y \le 2 \right]$

EX ($\int_{0}^{2} \left[(\pi - 3)^{2} \right] dA$ where $R = \left[1, 2 \right] \times \left[0, \pi \right]$

Screen clipping taken: 03/06/2024 4:06 pm