Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★

On pose $\mathcal{P} = \{z \in \mathbb{C}, \ \operatorname{Im}(z) > 0\}$ et $\mathcal{D} = \{z \in \mathbb{C}, \ |z| < 1\}$. On rappelle que $\mathbb{U} = \{z \in \mathbb{C}, \ |z| = 1\}$. Les trois questions sont complètement indépendantes.

- **1.** On définit l'application $f: \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{-i\} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{iz+1}{z+i} \end{array} \right.$
 - **a.** L'application f est-elle injective?
 - **b.** Montrer que Im $f = \mathbb{C} \setminus \{i\}$. L'application f est-elle surjective?
 - **c.** Montrer que $f(\mathcal{P}) \subset \mathcal{D}$.
 - **d.** Montrer que f induit une bijection de \mathcal{P} sur \mathcal{D} .
 - **e.** Déterminer $f^{-1}(\mathbb{U})$.
- **2.** On définit l'application g : $\left\{ \begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & -\frac{1}{z} \end{array} \right. .$
 - **a.** Montrer que l'application g est bien définie, autrement dit que $g(z) \in \mathcal{P}$ pour tout $z \in \mathcal{P}$.
 - **b.** Montrer que g est bijective.
- 3. Pour $\theta \in \mathbb{R}$, on définit l'application A_{θ} : $\begin{cases} \mathcal{P} & \longrightarrow & \mathcal{P} \\ z & \longmapsto & \frac{z\cos\theta \sin\theta}{z\sin\theta + \cos\theta} \end{cases}.$
 - **a.** Soit $\theta \in \mathbb{R}$. Vérifier que l'application A_{θ} est bien définie, autrement dit que pour tout $z \in \mathcal{P}$, $A_{\theta}(z)$ est bien défini et $A_{\theta}(z) \in \mathcal{P}$.
 - **b.** Que vaut A_0 ?
 - **c.** Soit $(\theta, \varphi) \in \mathbb{R}^2$. Montrer que $A_{\theta} \circ A_{\varphi} = A_{\theta + \varphi}$.
 - **d.** Soit $\theta \in \mathbb{R}$. Montrer que A_{θ} est bijective et déterminer sa bijection réciproque.

Exercice 2 ★★

On souhaite montrer que

$$\forall z \in \mathbb{U}, \ \sqrt{3} \le |1+z| + |1-z+z^2| \le \frac{13}{4}$$

On pose pour $z \in \mathbb{U}$,

$$f(z) = |1 + z| + |1 - z + z^2|$$

1

© Laurent Garcin MP Dumont d'Urville

1. On se donne $z \in \mathbb{U}$ et on note θ un de ses arguments. Montrer que

$$f(z) = 2\left|\cos\left(\frac{\theta}{2}\right)\right| + \left|4\cos^2\left(\frac{\theta}{2}\right) - 3\right|$$

2. On pose pour $t \in \mathbb{R}$

$$g(t) = 2|t| + |4t^2 - 3|$$

Déterminer le minimum et le maximum de f sur l'intervalle [-1, 1].

3. En déduire l'inégalité demandée.