

빅데이터 분석 특론 Python Scikit-learn 실습

Contents

- 1. Anaconda설치 및 실행
- 2. 패키지 설치
- 3. Numpy 사용법
- 4. Data Preprocessing
- 5. Regression
 - Least Squares
 - Ridge
 - Lasso

Anaconda 설치 및 실행

> 설치 방법

- <u>www.anaconda.com/download/</u> 접속
- Python 3.7 설치
- 자신의컴퓨터사양에맞는것을 선택하여설치

- ▶ 설치 방법
 - 설치파일실행시아래와 같은화면이나타남

> 설치 방법

> 설치 방법

Just Me

• 개인만 사용하는 컴퓨터가 아니라 여러 명이 사용하는 컴퓨터의 경우, 자신이 권한을 갖는 경로에 anaconda를 설치해야하므로 just me를 선택

All Users

 모든 계정에 anaconda를 설치하기를 원하거나 개인만 사용하는 컴퓨터라면
 All Users를 체크해도 무방함

> 설치 방법

Just Me

- C: \ Users \ MY_USERNAME \ AppData \ Local \ ~
- · 위와 같은 경로에 설치되는 것을 확인할 수 있음

All Users

- C: \ ProgramData \ Anaconda3
- 위와 같은 경로에 설치되는 것을 확인할 수 있음

▶ 설치 방법

- Anaconda 이외에 다른 python 인터프리터를
 환경변수에 등록해서 사용하고 있다면 해제
- 아나콘다만 사용하거나 윈도우 cmd창에서 파이썬을 실행할 경우 선택
- 아나콘다를 기본 파이썬 실행파일로 등록할지여부
- 개발 도구나 에디터에서 아나콘다를 파이썬으로 인식

> 설치 방법

> 설치 방법

> Cmd창에서 Anaconda 실행

■ Cmd창에서 anaconda를 실행가능함

- conda activate
- python
- 순서대로 입력

NOS 1398 1398 2 H STATE

> Spyder editor 실행

패키지설치

> Cmd창을 이용하여 패키지 설치

■ Cmd창에서 python package를 설치할 수 있음

• pip install [Package name] 입력

> Anaconda prompt를 이용하여 패키지 설치

Anaconda Prompt에서도
 Package를 설치할 수 있음

• pip install [Package name] 입력

패키지 설치

> scikit-learn

- 파이썬 머신러닝 라이브러리
- Numpy와 Scipy를 사용
- 사용자 가이드 : http://scikit-learn.org/stable/user_guide.html
- API 문서: http://scikit-learn.org/stable/modules/classes.html
- pip install scikit-learn

패키지 설치

> Numpy

- 다차원 배열을 위한 기능과 선형 대수 연산 등을 지원
- scikit-learn에서 numpy배열이 기본 데이터 구조
- pip install numpy
- example

```
import numpy as np

x = np.array([[1,2,3], [4,5,6]])
print("x: \n {}".format(x))
In [2]: runfile('C:/Users/shema/Downloads/prepro.py', wdir='C:/Users/shema/Downloads')
x:
[[1 2 3]
[4 5 6]]
```

패키지 설치

> matplotlib

- 파이썬 그래프 라이브러리
- User guide: https://matplotlib.org/3.1.1/users/index.html
- pip install matplotlib
- example

```
import numpy as np
import matplotlib.pyplot as plt

#-10 에서 10까지 100개의 간격으로 나눌 배열을 생성

x = np.linspace(-10, 10, 100)

#사일(sin) 할수를 사용하여 y 배열을 생성

y = np.sin(x)

#플롯(plot) 할수는 한 배열의 값을 다른 배열에 대응해서 전 그래프를 그립니다.
plt.plot(x, y, marker = "x")
```

In [3]: runfile('C:/Users/shema/Downloads/prepro.py', wdir-

Numpy 사용법

배열생성

▶ 파이썬의 리스트를 중첩해 Numpy 배열을 초기화 할 수 있고, 대괄호를 통해 각 요소에 접근할 수 있음

```
import numpy as np

a = np.array([1, 2, 3]) # rank가 1인 배열 생성

print type(a) # 출력 "<type 'numpy.ndarray'>"

print a.shape # 출력 "(3,)"

print a[0], a[1], a[2] # 출력 "1 2 3"

a[0] = 5 # 요소를 변경

print a # 출력 "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]]) # rank가 2인 배열 생성

print b.shape # 출력 "(2, 3)"

print b[0, 0], b[0, 1], b[1, 0] # 출력 "1 2 4"
```


배열생성

> 리스트가 아니더라도 다양한 함수를 통해 배열 생성 가능

```
import numpy as np
a = np.zeros((2,2)) # 모든 값이 0인 배열 생성
        # 출력 "[[ 0. 0.]
print a
              # [ 0. 0.]]"
b = np.ones((1,2)) # 모든 값이 1인 배열 생성
        # 출력 "[[ 1. 1.]]"
print b
c = np.full((2,2), 7) # 모든 값이 특정 상수인 배열 생성
print c
         # 출력 "[[ 7. 7.]
               # [ 7. 7.]]"
          # 2x2 단위행렬 생성
d = np.eye(2)
       # 출력 "[[ 1. 0.]
print d
              # [ 0. 1.77"
e = np.random.random((2,2)) # 일의의 값으로 채워진 배열 생성
print e
                    # 일의의 값 출력 "[[ 0.91940167 0.08143941]
```


배열인덱싱

> 슬라이싱: 리스트 자료형의 방식과 동일

```
import numpy as np
# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
# 슬라이싱을 이용하여 첫 두 행과 1열, 2열로 이루어진 부분배열을 만들어 봅시다;
# b는 shape가 (2,2)의 배열이 됩니다:
# [[2 3]
# [6 7]]
b = a[:2, 1:3]
# 슬라이싱된 배열은 원본 배열과 같은 데이터를 참조합니다,
# 즉 슬라이성된 배열을 수정하면 원본 배열 역시 수정됩니다.
print a[0, 1] # 查尋 "2"
b[0, 0] = 77 # b[0, 0]은 a[0, 1]과 같은 데이터입니다
print a[0, 1] # 출력 "77"
```


배열인덱싱

> 정수 배열 인덱싱 : 원본과 다른 배열을 만들 수 있음

```
import numpy as np
a = np.array([[1,2], [3, 4], [5, 6]])
# 정수 배열 인덱싱의 예.
# 반환되는 배열의 shape는 (3,)
print a[[0, 1, 2], [0, 1, 0]] # 查号 "[1 4 5]"
# 위에서 본 정수 배열 인덱성 예제는 다음과 동일합니다:
print np.array([a[0, 0], a[1, 1], a[2, 0]]) #  \vec{s} = (1, 4, 5)
# 정수 배열 인덱싱을 사용할 때,
# 원본 배열의 같은 요소를 재사용할 수 있습니다:
print a[[0, 0], [1, 1]] # 查号 "[2 2]"
# 위 예제는 다음과 동일합니다
print np.array([a[0, 1], a[0, 1]]) # 查号 "[2 2]"
```


배열인덱싱

▶ 불리언 배열 인덱싱 : 특정 조건을 만족하게 하는 요소만 선택할 때 자주

```
쓰임
             import numpy as np
              a = np.array([[1,2], [3, 4], [5, 6]])
              bool_idx = (a > 2) # 2보다 큰 a의 요소를 찾습니다;
                             # 이 코드는 a와 shape가 같고 불리의 자료형을
                             # 요소로 하는 numpy 배열을 반환합니다,
                             # bool_idx의 각 요소는 동일한 위치에 있는 a의
                             # 요소가 2보다 큰지를 말해줍니다.
             print bool_idx
                             # 출력 "[[False False]
                                 [ True True]
                                   [ True True]]"
             # 불리언 배열 인덱성을 통해 bool_idx에서
             # 참 값을 가지는 요소로 구성되는
             # rank 1인 배열을 구성할 수 있습니다.
              print a[bool_idx] # 출력 "[3 4 5 6]"
              # 위에서 한 모든것을 한 문장으로 할 수 있습니다:
             print a[a > 2] # 출력 "[3 4 5 6]"
```



```
import numpy as np
x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)
# 요소별 합; 둘 다 다음의 배열을 만듭니다
# [[ 6.0 8.0]
# [10.0 12.0]]
print x + y
print np.add(x, y)
# 요소별 차; 둘 다 다음의 배열을 만듭니다
# [[-4.0 -4.0]
# [-4.0 -4.0]]
print x - y
print np.subtract(x, y)
```

```
# 요소별 곱; 둘 다 다음의 배열을 만듭니다
# [[ 5.0 12.0]
# [21.0 32.0]]
print x * y
print np.multiply(x, y)
# 요소별 나눗셈; 둘 다 다음의 배열을 만듭니다
# [ 0.42857143 0.5 ]]
print x / y
print np.divide(x, y)
# 요소별 제곱근; 다음의 배열을 만듭니다
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print np.sqrt(x)
```


> 벡터의 내적, 벡터와 행렬의 곱을 위해서는 dot함수를 사용해야 함

```
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])
v = np.array([9,10])
w = np.array([11, 12])
# 벡터의 내작; 둘 다 결과는 219
print v.dot(w)
print np.dot(v, w)
# 행렬과 벡터의 곱; 둘 다 결과는 rank 1인 배열 [29 67]
print x.dot(v)
print np.dot(x, v)
# 행렬곱; 둘 다 결과는 rank 2인 배열
# [[19 22]
# [43 50]]
print x.dot(y)
print np.dot(x, y)
```


Data Preprocessing

Data Preprocessing

> Read Data File

- np.loadtxt("파일경로, 파일에서 사용한 구분자, 데이터 타입")를 활용
- 또는 np.genfromtxt("파일경로, 파일에서 사용한 구분자, 데이터타입")을 활용
- example

```
import numpy as np
data = np.loadtxt('test.csv', delimiter = ',', dtype=float)
print(data.shape)
```

NOS 1398 1398 PH STA

Data Preprocessing

> label encoding

- Encode labels with value between 0 and n_classes-1.
- sklearn.preprocessing.LabelEncoder()
- example

```
In [94]: le = LabelEncoder()
    ...: le.fit(["paris", "paris", "tokyo", "amsterdam"])
    ...: LabelEncoder()
    ...: list(le.classes_)
    ...:
Out[94]: ['amsterdam', 'paris', 'tokyo']
In [95]: le.transform(["tokyo", "tokyo", "paris"])
Out[95]: array([2, 2, 1], dtype=int64)
```


- > One hot encoding
 - Encode categorical integer features as a one-hot numeric array
 - sklearn.preprocessing.OneHotEncoder()를 활용
 - example

```
In [99]: import numpy as np
    ...: from sklearn.preprocessing import OneHotEncoder
    ...: enc = OneHotEncoder(categorical_features=[0], sparse=False)
    ...: X = np.array([[2, 4], [1, 1], [0, 50], [2, 25]])
    ...: print(X)
    ...:
[[ 2     4]
     [1     1]
     [ 0     50]
     [ 2     25]]

In [100]: X = enc.fit_transform(X)
    ...:
[[ 0.     0.     1.     4.]
     [ 0.     1.     4.]
     [ 0.     1.     0.     50.]
     [ 0.     0.     1.     25.]]
```

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html31

Data Preprocessing

> Shuffle

- np.random.shuffle("데이터")를 활용
- example

Data Preprocessing

- > Split datasets into random train and test subsets
 - sklearn.model_selection.train_test_split("데이터")를 활용
 - example

```
In [79]: import numpy as np
    ...: from sklearn.model_selection import train_test_split
    ...: X, y = np.arange(10).reshape((5, 2)), range(5)
    ...: print(X)
[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]
In [80]: X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.33, random_state=42)
    ...:
In [81]: X_train
Out[81]:
array([[4, 5],
       [0, 1],
       [6, 7]])
```


> Normalization

- sklearn.preprocessing안에 있는 클래스를 활용
 - ✓ StandardScaler(X): 평균이 0, 표준편차가 1이 되도록 변환
 - ✓ MinMaxScaler(X): 최대값, 최소값이 각각 1, 0 이 되도록 변환
 - ✓ MaxAbsScaler(X): 0을 기준으로 절대값이 가장 큰 수가 1 또는 -1이 되도록 변환

■ 사용법

- ✓ fit() 를 실행해서 학습용 데이터로 분포 모수를 객체에 저장
- ✓ transform() 을 실행해서 확습용 데이터를 변환
- ✓ fit_transform() 을 실행해서 동시에 실행 가능

Data Preprocessing

> Normalization

example

```
import numpy as np
from sklearn.preprocessing import StandardScaler
X = (np.arange(9, dtype=np.float) - 3).reshape(-1, 1) # -3 早日 5 小 八의 是至
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)

In [38]: np.mean(X_scaled), np.std(X_scaled)
Out[38]: (0.0, 1.0)
```


Regression

Least Squares

Least squares practice

> Import package

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```

Load dataset & Preprocess

```
data = np.loadtxt("weight-height.csv", delimiter = ',', skiprows = 1, usecols = (1,2))
X = data[:int(data.shape[0]/2),0]
y = data[:int(data.shape[0]/2),1]
# of data points = 5000
Features: height
Label: weight
```


> Split the dataset into train & test sets

```
X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size = 0.2, random_state = 42)
```

Change the data shape

```
X_train = X_train.reshape(-1,1)
X_test = X_test.reshape(-1,1)
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
```

Change the data into one dimensional array

> Train the model, and predict the label

```
# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(X_train, y_train)

# Make predictions using the testing set
prediction = regr.predict(X test)
```

Least squares practice

NERS/7

> result

```
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
      % mean squared error(y test, prediction))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(y_test, prediction))
# Plot outputs
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, prediction, color='blue', linewidth=3)
plt.xlabel("height")
plt.ylabel("weight")
plt.xticks(())
plt.yticks(())
plt.show()
```

Least squares objective function

$$J_{\boldsymbol{w}} = \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2}$$

Mean squared error

$$ext{MSE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2.$$

• r2_score
$$R^2(y,\hat{y}) = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

> result

Coefficients: [[5.96322428]]

Mean squared error: 99.71

Variance score: 0.74

height

Ridge

> Split the data into train, validation, test sets (3:1:1)

Change the data shape

```
X_train = X_train.reshape(-1,1)
X_test = X_test.reshape(-1,1)
X_val = X_val.reshape(-1,1)
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
y_val = y_val.reshape(-1,1)
```

Change the data into one dimensional array

> Find best parameter alpha using validation set

Linear regression(Ridge) objective function

$$J_{\mathbf{w}} = \underbrace{\frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_{2}^{2}}_{\text{L}_{2}-\text{regularization}} + \underbrace{\frac{\lambda}{\|\mathbf{w}\|_{2}^{2}}}_{\text{L}_{2}-\text{regularization}}$$

```
alphas = [0.0001, 0.001, 0.01, 0.1, 1]
mseList = []

for alpha in alphas:
    ridge = linear_model.Ridge(alpha = alpha)
    ridge.fit(X_train, y_train)
    prediction = ridge.predict(X_val)
    mse = mean_squared_error(y_val, prediction)
    mseList.append(mse)

idx = mseList.index(min(mseList))
```

Linear regression(Lasso) parameter:

- alpha float
 - Regularization strength; reduces variance of the estimates
 - larger value specify stronger regularization
- normalize: Boolean
 - if True, data will be normalized before regression
 - subtracting the mean and dividing by the I2-norm
- random_state: int
 - random seed of shuffling data

Example:

Regr = linear_model.Ridge(alpha = 0.1, normalize = True, random_state = 10)

Ridge practice

> Train & Test using best alpha value

```
# Create linear regression object
                                                  # Plot outputs
                                                  plt.scatter(X_test, y_test, color='black')
ridge = linear_model.Ridge(alphas[idx])
                                                  plt.plot(X_test, prediction, color='blue', linewidth=3)
                                                  plt.xlabel("height")
# Train the model using the training sets
                                                  plt.ylabel("weight")
ridge.fit(X_train, y_train)
                                                  plt.xticks(())
# Make predictions using the testing set
                                                  plt.yticks(())
prediction = ridge.predict(X_test)
                                                  plt.show()
# The best alpha
print("Best alpha: \n", alphas[idx])
# The coefficients
print('Coefficients: \n', ridge.coef_)
# The mean squared error
print("Mean squared error: %.2f"
      % mean_squared_error(y_test, prediction))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(y_test, prediction))
```


> result

Best alpha: 0.0001 Coefficients: [[5.9325298]] Mean squared error: 99.72

Variance score: 0.74

height

Lasso

> Split the data into train, validation, test sets (3:1:1)

> Change the data shape

```
X_train = X_train.reshape(-1,1)
X_test = X_test.reshape(-1,1)
X_val = X_val.reshape(-1,1)
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
y_val = y_val.reshape(-1,1)
```

Change the data into one dimensional array

> Find best parameter alpha using validation set

```
alphas = [0.0001, 0.001, 0.01, 0.1, 1]
mseList = []

for alpha in alphas:
    lasso = linear_model.Lasso(alpha = alpha)
    lasso.fit(X_train, y_train)
    prediction = lasso.predict(X_val)
    mse = mean_squared_error(y_val, prediction)
    mseList.append(mse)

idx = mseList.index(min(mseList))
```

Linear regression(Lasso) objective function

$$J_{\mathbf{w}} = \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} + \frac{\lambda \|\mathbf{w}\|_{1}}{L_{1} - regularization}$$

Linear regression(Lasso) parameter:

- alpha float
 - Regularization strength; reduces variance of the estimates
 - larger value specify stronger regularization
- normalize: Boolean
 - if True, data will be normalized before regression
 - subtracting the mean and dividing by the I2-norm
- random_state: int
 - random seed of shuffling data

Example:

Regr = linear_model.Lasso(alpha = 0.1, normalize = True, random_state = 10)

Lasso practice

> Train & Test using best alpha value

```
# Create linear regression object
                                                          # Plot outputs
                                                          plt.scatter(X_test, y_test, color='black')
lasso = linear_model.Lasso(alphas[idx])
                                                          plt.plot(X_test, prediction, color='blue', linewidth=3)
                                                          plt.xlabel("height")
# Train the model using the training sets
                                                          plt.ylabel("weight")
lasso.fit(X_train, y_train)
                                                          plt.xticks(())
# Make predictions using the testing set
                                                          plt.yticks(())
prediction = lasso.predict(X_test)
                                                          plt.show()
# The best alpha
print("Best alpha: \n", alphas[idx])
# The coefficients
print('Coefficients: \n', lasso.coef_)
# The mean squared error
print("Mean squared error: %.2f"
      % mean_squared_error(y_test, prediction))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(y_test, prediction))
```


> result

Best alpha: 0.0001 Coefficients: [5.93251779]

Mean squared error: 99.72

Variance score: 0.74

height

Exercise

Regression exercise

- ➤ Least squares, Ridge, Lasso regression 과 주어진 데이터를 활용하여 부동산 값을 예측하는 모델을 만드시오
 - Dataset : Taipei, Sindian 지역의 부동산 거래 내역
 - ✓ UCI Repository: https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
 - ✓ 2-7 column 을 feature, 8 번째 column 을 label(가격)으로 활용해야 함
 - ✓ 데이터 별로 단위가 다르기 때문에 feature별 normalization(StandardScaler) 이 필요함
 - ✓ Train set과 validation set, test set의 비율은 3:1:1로 할 것

Regression exercise

- ➤ Least squares, Ridge, Lasso regression 과 주어진 데이터를 활용하여 부동산 값을 예측하는 모델을 만드시오
 - Default 파라미터를 활용하여 모델을 training한 후, 모델의 coefficient 값을 분석하여 가격과 feature 사이의 관계를 파악할 것
 - 모델 별 Data normalization 전과 후의 RMSE 를 각각 report 할 것
 - Ridge, Lasso model 에서 validation set을 활용해서 alpha를 finetuning한 결과를 report할 것(alpha는 0.01, 0.1, 0.5, 1, 5, 10, 100 중에서 선택)

> Import package

```
import numpy as np
from sklearn import linear_model, preprocessing
from sklearn.metrics import mean_squared_error, r2_score
```

Data preprocessing

Y = mat[:, 6]

numpy에 존재하는 함수 genfromtxt 를 통해 파일 읽기 IDE workspace에 파일이 있어야 함

Data preprocessing

```
# train, validation, test set으로 분리/
N = mat.shape[0]
train N = int(N * 0.6)
val_N = int(N*0.8)
#feature maxtrix 분리
train_X = X[:train_N, :]
val_X = X[train_N:val_N, :]
test X = X[val N:, :]
#label maxtrix 是己
train Y = Y[:train N]
val Y = Y[train_N:val_N]
test Y = Y[val N:]
```

mat에 저장되어 있는 데이터 개수(row 개수)를 추출함

Data preprocessing

```
#normalization
scaler = preprocessing.StandardScaler()
train_X = scaler.fit_transform(train_X)
val_X = scaler.transform(val_X)
test_X = scaler.transform(test_X)
```

Train_X에 대해서만 fit_transform을 사용하고 validation과 test데이터는 train_X의 평균과 분산으로 normalization함

> Train the Least squares regression

```
#Least squares
regr = linear_model.LinearRegression()
regr.fit(train_X, train_Y)
pred_Y= regr.predict(test_X)
mse = mean_squared_error(pred_Y, test_Y)
rmse = np.power(mse, 0.5)
print("Least Squares RMSE : ", rmse)
print("Least Squares variance : ", r2_score(test_Y, pred_Y))
print(feat)
print("Least Squares coef : ", regr.coef_)
print("")
```

모델 학습을 위해 fit 함수를 사용함
• Parameter로 train data와 train data의 Jabel

• Parameter로 train data와 train data의 label을 넣어 줌

Mean_squared_error함수로 RMSE를 구함

Parameter로 data label에 대한 예측 값과, 실제 label을 넣어 줌

Andreas C. Muller, "Introduction to Machine Learning with Python", O'Reily Media

> Train the Lasso regression

```
#lasso
alphas = [0.01, 0.1, 0.5, 1, 5, 10, 100]
mse_list = []
#finetune the alpha using the validation set
for alpha in alphas:
    lasso = linear_model.Lasso(alpha=alpha)
    lasso.fit(train_X, train_Y)
    pred_Y = lasso.predict(val_X)
    mse = mean_squared_error(pred_Y, val_Y)
    mse_list.append(mse)
idx = mse_list.index(min(mse_list))
print("Lasso best alpha : ", alphas[idx])=
#evaluation
lasso = linear_model.Lasso(alpha=alphas[idx])
lasso.fit(train_X, train_Y)
pred_Y = lasso.predict(test_X)
mse = mean_squared_error(pred_Y, test_Y)
rmse = np.power(mse, 0.5)
print("Lasso RMSE : ", rmse)
print("Lasso variance : ", r2_score(test_Y, pred_Y))
print(feat)
print("Lasso coef : ", lasso.coef_)
print("")
```

Validation set으로 적합한 alpha를 찾음

제일 작은 mse의 index를 찾아서 alpha를 찾음

> Train the Ridge regression

```
#Ridge
#finetune the alpha using the validation set
alphas = [0.01, 0.1, 0.5, 1, 5, 10, 100]
mse list = []
for alpha in alphas:
    ridge= linear_model.Ridge(alpha=alpha)
    ridge.fit(train_X, train_Y)
    pred_Y = ridge.predict(val_X)
    mse = mean_squared_error(pred_Y, val_Y)
    mse list.append(mse)
idx = mse_list.index(min(mse_list))
print("Ridge alpha : ", alphas[idx])
#evaluation
ridge = linear_model.Ridge(alpha=alphas[idx])
ridge.fit(train_X, train_Y)
y_pred = ridge.predict(test_X)
mse = mean_squared_error(y_pred, test_Y)
rmse = np.power(mse, 0.5)
print("Ridge RMSE : ", rmse)
print("Ridge variacne : ", r2_score(test_Y, y_pred))
print(feat)
print("Ridge coef : ", ridge.coef_)
```

Validation set으로 적합한 alpha를 찾음

제일 작은 mse의 index를 찾아서 alpha를 찾는다.

> Result

```
Least Squares RMSE : 8.329080506609118
Least Squares variance : 0.5675316887713147
['X1 transaction date', 'X2 house age', 'X3 distance to the nearest MRT station', 'X4 number of convenience
stores', 'X5 latitude', 'X6 longitude']
Least Squares coef : [ 1.06694012 -2.73791507 -5.20141889 4.31355208 2.61784154 -0.18961479]
Lasso best alpha: 0.01
Lasso RMSE: 8.327283147025737
Lasso variance : 0.5677183161415046
['X1 transaction date', 'X2 house age', 'X3 distance to the nearest MRT station', 'X4 number of convenience
stores', 'X5 latitude', 'X6 longitude']
Lasso coef: [ 1.05357142 -2.7254224 -5.14083379 4.30909262 2.61887392 -0.126183 ]
Ridge alpha : 0.01
Ridge RMSE: 8.329064752925534
Ridge variacne : 0.5675333247172003
['X1 transaction date', 'X2 house age', 'X3 distance to the nearest MRT station', 'X4 number of convenience
stores', 'X5 latitude', 'X6 longitude']
Ridge coef : [ 1.06685768 -2.73779212 -5.20064144 4.31347472 2.6179507 -0.18895764]
```


Regression exercise

- ➤ Least squares, Ridge, Lasso regression 과 주어진 데이터를 활용하여 졸업 가능성을 예측하는 모델을 만드시오
 - Dataset : UCLA graduate dataset
 - ✓ Kaggle dataset :

https://www.kaggle.com/mohansacharya/graduate-admissions/downloads/graduate-admissions.zip/2

- ✓ 2-6 column 을 feature, 7 번째 column 을 label으로 활용해야 함
- ✓ 데이터 별로 단위가 다르기 때문에 feature별 normalization(MinMaxScaler) 이 필요함
- ✓ Train set과 validation set, test set의 비율은 6:1:1로 할 것

Regression exercise

- ➤ Least squares, Ridge, Lasso regression 과 주어진 데이터를 활용하여 졸업 가능성을 예측하는 모델을 만드시오
 - Train, Validation, Test set을 나눌 때 random state는 42로 설정할 것
 - Default 파라미터를 활용하여 모델을 trainin한 후, 모델의 coefficient 값을 분석하여 졸업 가능성과 feature 사이의 관계를 파악할 것
 - Ridge, Lasso model에서 validation set을 활용해서 alpha를 finetuning한 결과를 report할 것(alpha는 0.0001, 0.001, 0.01, 0.1, 1, 10 중에서 선택할 것)

> Import package

```
import numpy as np
from sklearn import linear_model
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean squared error, r2 score
```

> Load the data

Feature의 이름을 나타내는 첫 번째 row는 불러들일 필요가 없으므로 제거

Data preprocessing

```
# Split the data and label
X = data[:,1:-1]
y = data[:, -1]
```

- 첫 번째 column은 데이터가 저장된 순서를 나타내므로 의미가 없어 제거함
- Data와 Label을 나눔

```
# Shuffle the data and label
np.random.seed(0)
np.random.shuffle(X)
np.random.shuffle(y)
```

• 데이터의 순서가 결과에 영향을 미칠 수 있으므로 데이터를 무작위로 섞음

Data preprocessing

```
# Split the data: Train, Validation, Test set
X_train, X_test, y_train, y_test = train_test_split(
       X, y, test size = 1/8, random state = 42)
X_train, X_val, y_train, y_val = train_test_split(
        X_train, y_train, test_size = 1/7, random_state = 42)
# Normalize the data
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X val = scaler.transform(X_val)
```


> Train the Least Squares regression model

```
# Least squares
least = linear model.LinearRegression()

    fit 함수를 통해 least squares model을

                                                 학습함
least.fit(X train, y train) -
prediction = least.predict(X_test)
mse = mean_squared_error(prediction, y_test)
rmse = np.power(mse, 0.5)
                                                 • Regression모델의 evaluation metric인 root
                                                   mean squared error를 구함
print("##### Least squares results #####")
print("RMSE: {}".format(rmse))
print("variance: {}".format(r2_score(prediction, y test)))
print(feat)
print("coefficient:", least.coef_)
print("")
```


> Train the Ridge linear regression model

```
# Ridge
alphas = [0.0001, 0.001, 0.01, 0.1, 1, 10]
mseList = []
for alpha in alphas: -
    ridge = linear_model.Ridge(alpha = alpha)
    ridge.fit(X_train, y_train)
    prediction = ridge.predict(X_val)
    mse = mean_squared_error(prediction, y_val)
    mseList.append(mse)
idx = mseList.index(min(mseList))
print("##### Ridge results #####")
print("Best alpha: {}".format(alphas[idx]))
ridge = linear_model.Ridge(alphas[idx])
ridge.fit(X_train, y_train)
prediction = ridge.predict(X_test)
mse = mean_squared_error(prediction, y_test)
rmse = np.power(mse, 0.5)
print("RMSE: {}".format(rmse))
print("variance: {}".format(r2_score(prediction, y_test)))
print(feat)
print("coef : ", ridge.coef_)
print("")
```

Ridge linear regression objective function의 lambda 후보

• Alpha값을 validation set에 다르게 적용했을 때 결과를 저장하기 위한 변수

• MSE가 가장 적은 alpha값의 위치를 찾음

• 해당 alpha값을 model에 적용함

> Train the Lasso linear regression model

```
# Lasso
alphas = [0.0001, 0.001, 0.01, 0.1, 1, 10]
mseList = []
for alpha in alphas:
    lasso = linear_model.Lasso(alpha = alpha)
    lasso.fit(X_train, y_train)
    prediction = ridge.predict(X_val)
    mse = mean_squared_error(prediction, y_val)
    mseList.append(mse)
idx = mseList.index(min(mseList))
print("##### Lasso results #####")
print("Best alpha: {}".format(alphas[idx]))
lasso = linear_model.Lasso(alphas[idx])
lasso.fit(X_train, y_train)
prediction = lasso.predict(X_test)
mse = mean_squared_error(prediction, y_test)
rmse = np.power(mse, 0.5)
print("rmse: {}".format(rmse))
print("variance: {}".format(r2_score(prediction, y_test)))
print("coef : ", ridge.coef_)
```

• Ridge linear regression objective function의 lambda 후보

- Alpha값을 validation set에 다르게 적용했을 때 결과를 저장하기 위한 변수
- MSE가 가장 적은 alpha값의 위치를 찾음

· 해당 alpha값을 model에 적용함

> Result

```
##### Least squares results #####
RMSE: 0.15032341322239787
variance: -73.47422970635319
['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']
-0.00360469]
##### Ridge results #####
Best alpha: 0.0001
RMSE: 0.15032336008317196
variance: -73.47843232523361
['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']
coef: [ 0.13808101 -0.11988496  0.01421503 -0.01201925 -0.01771453 -0.04601725
 -0.00360437]
##### Lasso results #####
Best alpha: 0.0001
RMSE: 0.1499507857832885
variance: -87.84351498695084
['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']
coef: [ 0.13808101 -0.11988496  0.01421503 -0.01201925 -0.01771453 -0.04601725
 -0.00360437]
```