Ch10 sequences & Infinite Series

A sequence is an unending succession of numbers, called terms. It is understood that the terms have a definite order.

 $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \dots$

(a)
$$1, 2, 3, 4, \dots$$
 (b) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ (c) $2, 4, 6, 5, \dots$ (d) $1, -1, 1, -1, \dots$

It is bother to have 2 rule or formula for generation of terms. One way of dainy this is to look for a function that relates each term in the sequence to its term number.

$$(a) 2, 4, 6, 8, \dots, 2n, \dots$$
 $f(n) = 2n$

(b)
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, ..., $\frac{n}{n+1}$, ... $f(n) = \frac{n}{n+1}$

$$(1) \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots, \frac{1}{2^n}, \dots f(n) = \frac{1}{2^n}$$

$$(d) \frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \dots, (-1)^{n+1} \frac{1}{n+1}, \dots f(n) = (-1)^{n+1} \frac{1}{n+1}$$

When the general term of a sequence as, an, an, an, is known, we only write the general term in braces:

$$\begin{cases}
\frac{1}{n+1} \\ \frac{1}{n-1} \\ \frac{1}{2^{n}} \\ \frac{1}{2^{n}} \\ \frac{1}{2^{n}} \\ \frac{1}{2^{n}} \\ \frac{1}{2^{n}} \\ \frac{1}{2^{n-1}} \\ \frac{1}{2^{n-1}} \\ \frac{1}{2^{n-1}} \\ \frac{1}{2^{n-1}} \\ \frac{1}{2^{n}} \\ \frac{1}{2^$$

<u>Definition</u>: A sequence is a function whose domain is a set of integers.

Limit of a sequences

increases without bound

05C1/12tes between 1 2nd -1 "limiting value" of 1.

tends toward a "limiting value" of 1, but do so in an oscillation fachion.

DEFINITION A sequence $\{a_n\}$ is said to *converge* to the *limit* L if given any $\epsilon > 0$, there is a positive integer N such that $|a_n - L| < \epsilon$ for $n \ge N$. In this case we write

$$\lim_{n\to +\infty} a_n = L$$

A sequence that does not converge to some finite limit is said to diverge.

$$E \times \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1} = 1$$
 L' Hospible rule

$$E \times e = [1 + 1 - \frac{1}{2}]^n = 1$$

THEOREM Suppose that the sequences $\{a_n\}$ and $\{b_n\}$ converge to limits L_1 and L_2 , respectively, and c is a constant. Then:

(a)
$$\lim_{n \to +\infty} c = c$$

(b)
$$\lim_{n \to +\infty} ca_n = c \lim_{n \to +\infty} a_n = cL_1$$

(c)
$$\lim_{n \to +\infty} (a_n + b_n) = \lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n = L_1 + L_2$$

(d)
$$\lim_{n \to +\infty} (a_n - b_n) = \lim_{n \to +\infty} a_n - \lim_{n \to +\infty} b_n = L_1 - L_2$$

(e)
$$\lim_{n \to +\infty} (a_n b_n) = \lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n = L_1 L_2$$

$$(f) \quad \lim_{n \to +\infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} b_n} = \frac{L_1}{L_2} \quad (if L_2 \neq 0)$$

If $f(x) \to L$ as $x \to +\infty$, then $f(n) \to L$ as $n \to +\infty$.

 $f(n) \to L$ as $n \to +\infty$, but f(x) diverges by oscillation as $x \to +\infty$.

$$E \times \lim_{n \to \infty} \frac{1}{2n+1} = \frac{1}{2} \quad \text{l'Hosp.}$$

$$\frac{E}{n\to\infty} \left(-1\right)^{n+1} \frac{n}{2n+1}$$
 oscillates between $l = 2n + 1$. Siverges

(b) $1, 2, 2^2, 2^3, ..., 2^n, ...$ $\ell' 2^n = \infty$, seg. {2"} diverges. Ex Firs The limit of the sequence $\begin{cases} \frac{1}{\rho^n} \\ \frac{1}{\rho^n} \\ \frac{1}{\rho^n} \end{cases}$ $\frac{h'}{n \to \infty} = \frac{n}{e^n} = 0$ L' Hospt. Ex show that I "In = 1 y= 1/2 = hy = hi - hn = hi n+20 lun lig lug = lig 1/m = 0 L' Hosp. li hy = 0 1-12 y = e = 1 e "/v = 1

$$E \times \left\{ \left(1 + \frac{1}{n} \right)^n \right\}^{+\infty}, \text{ does this sequence converge or not?}$$

$$y = \left(1 + \frac{1}{n} \right)^n \Rightarrow \text{ hay = n - ha } \left(1 + \frac{1}{n} \right) = \frac{-\ln\left(1 + \frac{1}{n} \right)}{\frac{1}{n}}$$

$$\lim_{n \to \infty} \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{n} \right)}{\frac{1}{n}}$$

$$\frac{-\frac{1}{n^2}}{1 + \frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{-\frac{1}{n^2}}{\frac{1+1/n}{-1/n^2}} = 1$$

$$\lim_{n\to\infty} \lim_{n\to\infty} = 1$$

$$\lim_{n\to\infty} y = e^{l}$$

$$\lim_{n\to\infty} (1+\frac{l}{n})^{n} = e^{l}, \text{ the sequence converges to } e.$$

THEOREM (The Sandwich Theorem for Sequences) Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences such that

 $a_n \le b_n \le c_n$ (for all values of n beyond some index N)

If the sequences $\{a_n\}$ and $\{c_n\}$ have a common limit L as $n \to +\infty$, then $\{b_n\}$ also has the limit L as $n \to +\infty$.

If $a_n \to L$ and $c_n \to L$, then $b_n \to L$.

Ex Find the limit of
$$\{\frac{\sin(n!)}{n^2}(n+1)\}_{n=1}^{+\infty}$$

 $(n+1)(-1) \leq \frac{\sin(n!)}{n^2}(n+1) + \frac{\sin(n+1)}{n^2}$

$$-\frac{n+1}{n^2} \leqslant \frac{\leq inn!}{n^2} (n+1) \leqslant \frac{n+1}{n^2}$$

$$L' = -\left(\frac{1}{n} + \frac{1}{n^2}\right) \leqslant \frac{\leq inn!}{n^2} (n+1) \leqslant \left(\frac{1}{n} + \frac{1}{n^2}\right)$$

$$0 \qquad 0 \qquad 0$$

$$\lim_{N\to\infty}\frac{S_{lmn}!}{N^2}(n+1)=0$$

Sequences defined recursively

$$\mathcal{E} \times \chi_{n+1} = \frac{1}{2} \left(\chi_n + \frac{2}{\chi_n} \right), \quad \chi_1 = 1$$

$$\chi_2 = \frac{1}{2} \left(\chi_1 + \frac{2}{\chi_1} \right) = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2}$$

$$\chi_3 = \frac{1}{2} \left(\chi_2 + \frac{2}{\chi_1} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{3/2} \right)$$

$$\vdots$$

Monotone Sequences

SEQUENCE	DESCRIPTION
$\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$,, $\frac{n}{n+1}$,	Strictly increasing
$1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots$	Strictly decreasing
1, 1, 2, 2, 3, 3,	Increasing; not strictly increasing
$1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \dots$	Decreasing; not strictly decreasing
$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1} \frac{1}{n}, \dots$	Neither increasing nor decreasing

DIFFERENCE BETWEEN SUCCESSIVE TERMS	RATIO OF SUCCESSIVE TERMS	CONCLUSION
$a_{n+1} - a_n > 0$	$a_{n+1}/a_n > 1$	Strictly increasing
$a_{n+1} - a_n < 0$	$a_{n+1}/a_n < 1$	Strictly decreasing
$a_{n+1} - a_n \ge 0$	$a_{n+1}/a_n \ge 1$	Increasing
$a_{n+1} - a_n \le 0$	$a_{n+1}/a_n \le 1$	Decreasing

DERIVATIVE OF f FOR $x \ge 1$	CONCLUSION FOR THE SEQUENCE WITH $a_n = f(n)$	-
$f'(x) > 0$ $f'(x) < 0$ $f'(x) \ge 0$ $f'(x) \le 0$	Strictly increasing Strictly decreasing Increasing Decreasing	- -

Convergence of monotone sequences

THEOREM If a sequence $\{a_n\}$ is eventually increasing, then there are two possibilities:

- (a) There is a constant M, called an upper bound for the sequence, such that $a_n \leq M$ for all n, in which case the sequence converges to a limit L satisfying $L \leq M$.
- (b) No upper bound exists, in which case $\lim_{n \to +\infty} a_n = +\infty$.

THEOREM If a sequence $\{a_n\}$ is eventually decreasing, then there are two possibilities:

- (a) There is a constant M, called a **lower bound** for the sequence, such that $a_n \ge M$ for all n, in which case the sequence converges to a limit L satisfying $L \ge M$.
- (b) No lower bound exists, in which case $\lim_{n \to +\infty} a_n = -\infty$.

Ex Show that
$$\int \frac{\sqrt{0^{n}}}{n!} \int_{n=1}^{+\infty} Converges and find its limit.$$

$$\alpha_{n} = \frac{\sqrt{0^{n}}}{n!} \quad \alpha_{n+1} = \frac{\sqrt{0^{n+1}}}{(n+1)!} \Rightarrow \frac{\alpha_{n+1}}{\alpha_{n}} = \frac{10^{n+1}}{(n+1)!} \cdot \frac{n!}{10^{n}} = \frac{10}{n+1} < 1$$

$$\alpha_{n+1} = \frac{\sqrt{0^{n+1}}}{(n+1)!} = \frac{\sqrt{0}}{n+1} \cdot \frac{\sqrt{0^{n}}}{n!} = \frac{10}{n+1} \alpha_{n}$$

$$\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} \frac{10}{n+1} a_n$$

$$= \lim_{n\to\infty} \frac{10}{n+1} \cdot \lim_{n\to\infty} a_n = 0$$

$$L = \lim_{N \to \infty} \frac{10^N}{n!} = 0$$

$$\lim_{N\to\infty} \Omega_{n+1} = \lim_{N\to\infty} \Omega_{n} = 1$$
 Thus.

For any real value of
$$x$$
, $\frac{\chi'}{n+n} = 0$

$$\frac{\ell'}{n+\infty} \frac{\chi^n}{n!} = 0$$

Ex Does
$$\left\{\frac{N-1}{N}\right\}$$
 Converge? limit?

let us uk colubus:
$$f(x) = (1 - \frac{1}{x}) \Rightarrow \int_{1}^{1} |x| = \frac{1}{x^2} > 0$$
, $x \ge 1$

$$f(x)$$
 monotonically increases, so does the sequence. $\lim_{x\to\infty} (1-\frac{1}{x}) = 1$