Eine Woche, ein Beispiel 10.5 cohomology of Ag and Mg

This document aims at a collection of the known results. As usual, I'm not an expert, but often I need to make these documents to clear my brain.

Ref:

[vdG11] Van Der Geer, Gerard. "The Cohomology of the Moduli Space of Abelian Varieties." arXiv:1112.2294. Preprint, arXiv, December 10, 2011. https://doi.org/10.48550/arXiv.1112.2294.

Tautological ring Ri

		0	2	4	6	8	10	12	14	•		
	R,	Q p	$Q_{_{1}}$									
	Rz	Q	Q	Q ₂	Q 2+1							
	R ₃	Ø	Q	Q	Q 3	Q 3+1	Q 3+2	3+2+1				
	R4	Q	Q	Ø	Q	Q_{μ}^{r}	Q 4+1	Q2 4+2	Q 4+3 4+2+1	Q 4+3+1	Q 4+3+2	Q 4+3+2+1
	:	:	:	÷	÷	:	:	:	:	·		
A000009 Jumber of Listinct partitions	R _∞	Q ø	Q 1	Q	Q ^t 3 2+1	Q ² 4 3 +1	6 4+1 3+2	6 5-+1 4+2 3+2+1	7 6+1 5+2 4+3 4+2+1	•••		

$$\begin{array}{ll} \text{Rmk. 1.} & \text{Ri } \not = \text{Q} \left[\lambda_{1}, \ldots, \lambda_{i} \right] / (\lambda_{1}^{2}, \ldots, \lambda_{i}^{2}) \\ & \text{Local } \\ & \text{Cor Ri } \cong \text{Q} \left[\lambda_{1}, \ldots, \lambda_{i} \right] / (\lambda_{1}^{2}, \ldots, \lambda_{i}^{2}) \\ & \text{In fact,} \\ & \text{Ri } \cong \text{Q} \left[\lambda_{1}, \ldots, \lambda_{i} \right] / \left((1 + \lambda_{1} + \cdots + \lambda_{i}) (1 - \lambda_{i} + \cdots + (-1)^{2}) - 1 \right) \end{array}$$

2. In geometry, $\lambda_i = C_i(IE) \qquad i=1,...,g \qquad \qquad |I| \qquad \downarrow \\ is the Chern class of the Hodge bundle <math>IE$. Ag [A]

When we view $R_{g-1} \subset CH_{\varnothing}(A_g)$, A_g vanishes; when we view $R_g \subset CH_{\varnothing}(A_g^{tor})$, A_g does not vanish.

toroidal compactification in Faltings - Chai

Chow Rings of Ag [wdG11, 7]

$$CH_{Q}(\widehat{A}_{1}) \cong Q[\lambda_{1}]/(\lambda_{1}^{2})$$

$$CH_{Q}(\widehat{A}_{2}) \cong Q[\lambda_{1},\lambda_{2},\sigma_{1}]/I_{2}$$

$$I_{2} = \left\langle \begin{array}{c} (1+\lambda_{1}+\lambda_{2})(1-\lambda_{1}+\lambda_{2})-1, \\ \lambda_{2}\sigma_{1}, \\ \sigma_{1}^{2}-22\lambda_{1}\sigma_{1}+|20\lambda_{1}^{2} \end{array} \right\rangle$$

$$CH_{Q}(\widehat{A}_{3}) \cong Q[\lambda_{1}, \lambda_{2}, \lambda_{3}, \sigma_{1}, \sigma_{2}]/I_{3}$$

$$(1+\lambda_{1}+\lambda_{2}+\lambda_{3})(1-\lambda_{1}+\lambda_{2}-\lambda_{3})-1,$$

$$\lambda_{3}\sigma_{1}, \lambda_{3}\sigma_{2}, \lambda_{1}^{2}\sigma_{2},$$

$$\sigma_{1}^{3}-2016\lambda_{3}+4\lambda_{1}^{2}\sigma_{1}+24\lambda_{1}\sigma_{2}-\frac{11}{3}\sigma_{2}\sigma_{1},$$

$$\sigma_{2}^{2}-360\lambda_{1}^{3}\sigma_{1}+45\lambda_{1}^{2}\sigma_{1}^{2}-15\lambda_{1}\sigma_{2}\sigma_{1},$$

$$\sigma_{1}^{2}\sigma_{2}-1080\lambda_{1}^{3}\sigma_{1}-165\lambda_{1}^{2}\sigma_{1}^{2}+47\lambda_{1}\sigma_{2}\sigma_{1}$$