EECS101 Discussion 5

Feb 10, 2017

Binary SGM Image

- Compute the SGM image
 - $\circ \mathsf{SGM} = (\frac{\partial E}{\partial x})^2 + (\frac{\partial E}{\partial y})^2$
- Use a threshold to create a binary image.

Hough Transform

- Hough transform for lines
 - $xsin(\theta)$ - $ycos(\theta)$ + $\rho = 0, \theta \in [0, \pi], \rho \in \mathbb{R}$
- Pixels on the edges satisfy the equation. In other words, given (x,y), use the equation to solve for (θ,ρ)
- One equation, two unknowns
 - Uniformly sample θ in the value range and solve the equation for ρ

Hough Transform

- Quantize (ρ, θ) parameter
- Initialize accumulate function $A(\rho, \theta)$ to zero for each bin in (ρ, θ) space
- For each edge pixel in the edge map, compute ρ , θ corresponding to the edge from its position & direction. Set $A(\rho, \theta) = A(\rho, \theta) + 1$ for computed (ρ, θ)
- Large Local Maxima in $A(\rho, \theta)$ correspond to detected lines in the image.

Construct a Voting Array

- After (θ, ρ) is found out, cast a vote at (θ, ρ) in the voting array
 - What data structure to use to represent the voting array [Best one is the 2D array since you are going to represent it as an image]
 - How large is the array [Keep track of the maximum and minimum]
 - How fine is the array [It is best to use increments of 1 for theta between 0 and 180 degrees (convert from radians to degrees first) and for rho from smallest value to largest value.]
 - \circ ρ might be negative, how to use it as an index

Reconstruct an Image from the Array

- If you output your voting array as an image, you may see some noise in it.
 - Use a threshold such that it keeps the lines that are present in the original image and eliminates noise as much as possible
- Reconstruction from the array
 - Another application of the line equation. This time the opposite direction.
 - $xsin(\theta)$ - $ycos(\theta)$ + $\rho = 0, \theta \in [0, \pi], \rho \in \mathbb{R}$
 - Given (θ, ρ) , find out all the (x,y) that satisfy the equation and assign them value 255.

Submission Guideline

- Demonstrate your program by 3 pm, Feb 17.
- -show your binary image, local maxima and reconstructed image
- -we will see your code this time and ask you to explain random part of the code
- Submit your program and report (including the two images and comments) to EEE by Feb 17 midnight
- -After submission, please double check to make sure that you have submitted your homework successfully

Grading Criteria

▶ Total 100 points

- 5 points for submitting a program
- 10 points for demonstrating your program
- 85 points for generating the two images and describing your approach
 - 15 points for the binary SGM image
 - 10 points for describing how you find out (θ, ρ)
 - 10 points for describing how you implement the voting array, i.e., what data structure you use, how large it is and why you make these decisions
 - 5 points for reporting the threshold used in thresholding the voting array
 - 15 points for reporting (θ, ρ) and corresponding votes selected by the threshold
 - 10 points for describing how you use the voting array to reconstruct the image
 - 20 points for the reconstructed image