fvIO I2C 汎用プラグイン 機能仕様書

Rev1.00 2019 年 01 月 23 日 シマフジ電機(株)

変 更 履 歴 表

版	変 更 内 容	変更日付
1.00	初版	2019/01/23

目次

1.		はじ	めに	4
			環境	
			シーケンス一覧	
			シーケンスの入出力フォーマット	
	4.1	l	データの汎用リード 1 シーケンス(CMD=0x00)	5
	4.2	2	データの汎用 R/W2 シーケンス(CMD=0x01)	6
	4.3	3	データの汎用リード 3 シーケンス(CMD=0x02)	7
	4.4	1	データの汎用ライト 1 シーケンス(CMD=0x03)	8
	4.5	5	データの汎用ライト 2 シーケンス(CMD=0x04)	8
5.		制限	l事項	9

1. はじめに

本書は RZ/T1 IoT-Engine で各種デバイスを制御するための fvIO I2C 汎用プラグインの機能仕様書である。

2. 動作環境

本プラグインが動作する環境は以下の通り。

項目	種類	品名等	備考
CPU	ルネサス製マイコン RZ/T1	R7S910048	

3. fvIO シーケンス一覧

実行可能な fvIO シーケンスは以下の通り。

大门 引 能 /		
SADR	fvIO シーケンス	シーケンス内容
0x00 データの汎用リード 1		以下の手順でデータのランダムリードを実行する。 1.スタートコンディションを発行する。 2.IREGO~7 レジスタに入力したデータを SLEN レジスタで指定した数を送信する。 3.リピートコンディションを発行。 4.IREGO~7 レジスタから 1byte 送信する。 5.受信データを OREGn に出力する。受信数は RLEN レジスタで設定する。 6.ストップコンディションを発行する。
		以下の手順でデータのランダムリードを実行する。
0x01	データの汎用リード 2	1.スタートコンディションを発行する。 2.IREGO~7 レジスタに入力したデータを SLEN レジスタで指定した数を送信する。 3.リピートコンディションを発行。 4.IREGO~7 レジスタから 1byte 送信する。 5.受信データを FIFOO に出力する。受信数は RLEN レジスタで設定する。 6.ストップコンディションを発行する。
0x02	データの汎用リード 3	以下の手順でデータのランダムリードを実行する。 1.スタートコンディションを発行する。 2.FIFO0 レジスタに入力したデータを SLEN レジスタで指定した数を 送信する。 3.リピートコンディションを発行。 4.FIFO0 レジスタから 1byte 送信する。 5.受信データを FIFO0 に出力する。受信数は RLEN レジスタで設 定する。 6.ストップコンディションを発行する。
0x03	データの汎用ライト 1	以下の手順でデータのライトを実行する。 1.スタートコンディションを発行する。 2.IREGO~7 レジスタに入力したデータを SLEN レジスタで指定した数送信する。

		3.ストップコンディションを発行する。
		以下の手順でデータのライトを実行する。
0x04	データの汎用ライト 2	1.スタートコンディションを発行する。 2.FIFO0 レジスタに入力したデータを SLEN レジスタで指定した数 送信する。 3.ストップコンディションを発行する。

4. fvIO シーケンスの入出力フォーマット

4.1 データの汎用リード 1 シーケンス(CMD=0x00)

(1)入力フォーマット

レジスタシンボル	7bit アドレス入力※1	10bit アドレス入力※1
SLEN	データ送信数−2	
RLEN	データ受信数−1	
IREG0	スレーブアドレス(W)	
IREG1	データ(1byte 目)	スレーブアドレス 2nd
IREG2	•••	データ(1byte 目)
	•••	•••
IREG(n-1) ※2	データ(最終 byte)	データ(最終 byte)
IREGn ※2	スレーブアドレス(R)	スレーブアドレス(R)

^{※1} データ部はデバイスによっては省略可

※2 n の値が 7 を超えないようにフォーマット(データの数)を調整する。

(2)出力フォーマット

レジスタシンボル	出力※1
OREG0	データ(n byte 目)
OREG1	データ((n-1)byte 目)
OREG2	データ((n-2)byte 目)
OREG3	データ((n-3)byte 目)
OREG4	データ((n-4)byte 目)
OREG5	データ((n-5)byte 目)
OREG6	データ((n-6)byte 目)
OREG7	データ((n-7)byte 目)

※1 n = 入力フォーマットのデータ受信数。

入力フォーマットのデータ受信数を超えた数は出力されない。

4.2 データの汎用 R/W2 シーケンス(CMD=0x01)

(1)入力フォーマット

レジスタシンボル	7bit アドレス入力※1	10bit アドレス入力※1
SLEN	データ送信数−2	
RLEN データ受信数-1		を信数-1
IREG0	スレーブアドレス(W)	
IREG1	データ(1byte 目)	スレーブアドレス 2nd
IREG2	•••	データ(1byte 目)
	•••	
IREG(n-1) ※2	データ(最終 byte)	データ(最終 byte)
IREGn ※2	スレーブアドレス(R)	スレーブアドレス(R)

- ※1 データ部はデバイスによっては省略可
- ※2 n の値が 7 を超えないようにフォーマット(データの数)を調整する。

(2)出力フォーマット

レジスタシンボル	出力※1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 入力フォーマットのデータ受信数を超えた数は出力されない。

4.3 データの汎用リード 3 シーケンス(CMD=0x02)

(1)入力フォーマット

レジスタシンボル	7bit アドレス入力※1	10bit アドレス入力※1
SLEN	データ送信数−2	
RLEN	データ受信数−1	
FIFO0 (1 ワード目)	スレーブフ	アドレス(W)
FIFO0 (2 ワード目)	データ(1byte 目)	スレーブアドレス 2nd
FIFO0 (3 ワード目)	•••	データ(1byte 目)
• • •	•••	•••
FIFO0 (n-1 ワード)※2	データ(最終 byte)	データ(最終 byte)
FIFO0 (n ワード目)※2	スレーブアドレス(R)	スレーブアドレス(R)

- ※1 データ部はデバイスによっては省略可
- ※2 n の値が 7 を超えないようにフォーマット(データの数)を調整する。

(2)出力フォーマット

レジスタシンボル	出力※1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 入力フォーマットのデータ受信数を超えた数は出力されない。

4.4 データの汎用ライト 1 シーケンス(CMD=0x03)

(1)入力フォーマット

レジスタシンボル	7bit アドレス入力※1	10bit アドレス入力※1
SLEN	データ送信数−1	
RLEN	0	
IREG0	スレーブアドレス(W)	
IREG1	データ(1byte 目)※1	スレーブアドレス 2nd
IREG2	•••	データ(1byte 目)
	•••	•••
IREGn ※2	データ(最終 byte) ※1	データ(最終 byte)

- ※1 データ部はデバイスによっては省略可
- ※2 n の値が 7 を超えないようにフォーマット(データの数)を調整する。
- (2)出力フォーマット 出力データなし

4.5 データの汎用ライト 2 シーケンス(CMD=0x04)

(1)入力フォーマット

レジスタシンボル	7bit アドレス入力※1	10bit アドレス入力※1
SLEN	データ送信数−1	
RLEN	0	
FIFO0 (1 ワード目)	スレーブアドレス(W)	
FIFO0 (2 ワード目)	データ(1byte 目)	スレーブアドレス 2nd
FIFO0 (3 ワード目)	•••	データ(1byte 目)
	•••	•••
FIFO0 (n ワード目)※2	データ(最終 byte)	データ(最終 byte)

- ※1 データ部はデバイスによっては省略可
- ※2 n の値が 7 を超えないようにフォーマット(データの数)を調整する。
- (2)出力フォーマット 出力データなし

- 5. 制限事項 制限事項は以下の通り。
- ·通信速度の範囲は、0.0195[Mbps]~5[Mbps]。
- ・送信数、受信数の最大値は 8byte。