

Description

The VSM3N10 uses advanced trench technology to provide excellent R_{DS(ON)} and low gate charge. This device is suitable for use in inverter and other applications.

Genera Features

N-channel

P-channel

- $V_{DS} = 100V, I_{D} = 3A$
- $V_{DS} = -100V, I_{D} = -3A$

 $R_{DS(ON)}$ <130m Ω @ V_{GS} =10V $R_{DS(ON)}\,{<}140m\Omega\;\textcircled{@}\;V_{GS}{=}4.5V\quad R_{DS(ON)}\,{<}230m\Omega\;\textcircled{@}\;V_{GS}{=}{-}4.5V$

 $R_{DS(ON)}$ <200m Ω @ V_{GS} =-10V

- High Power and current handing capability
- Lead free product is acquired

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM3N10-S8	VSM3N10	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter		Symbol	N-channel	P-channel	Unit
Drain-Source Voltage		V_{DS}	100	-100	V
Gate-Source Voltage		V _{GS}	±20	±20	V
Drain Current-Continuous (Note 2)	T _A =25°C		3	-3	Α
	T _A =70°C	I _D	2.45	-2.45	^
Drain Current -Pulsed (Note 1)		I _{DM}	12	-12	А
Power Dissipation	T _A =25°C	P _D	2	2	W
Operating Junction and Storage Temperature Range		T_J, T_{STG}	-55 To 150	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Parameter	Symbol	Тур	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 2) (N-channel)	$R_{\theta JA}$	-	62.5	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2) (P-channel)	$R_{\theta JA}$	-	62.5	°C/W

N-channel Electrical Characteristics (T_C=25 ^oC unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA		
Gate-Body Leakage Current	re-Body Leakage Current I _{GSS}		-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.5	2.0	V		
Drain-Source On-State Resistance	Б	V _{GS} =10V, I _D =3A	-	95	130	mO		
	R _{DS(ON)}	V _{GS} =4.5V, I _D =3A		100	140	mΩ		
Forward Transconductance	G FS	V _{DS} =5V,I _D =3A	3.5	-	-	S		
Dynamic Characteristics (Note4)			•					
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	730	-	PF		
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	37	-	PF		
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	27	-	PF		
Switching Characteristics (Note 4)	•		•	•		•		
Turn-on Delay Time	t _{d(on)}		-	11	-	nS		
Turn-on Rise Time	t _r	V_{DD} =50V, R_L =15 Ω	-	7.4	-	nS		
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =2.5 Ω	-	35	-	nS		
Turn-Off Fall Time	t _f		-	9.1	-	nS		
Total Gate Charge	Qg	V 50VI 0A	-	21.5		nC		
Gate-Source Charge	Q _{gs}	V _{DS} =50V,I _D =3A,	-	3.2	-	nC		
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	6	-	nC		
Drain-Source Diode Characteristics	•		•	•		•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3A	-	-	1.2	V		
Diode Forward Current (Note 2)	Is		-	-	3	Α		
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =3A	-	26		nS		
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	27		nC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)						

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of R $_{\text{BJA}}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{\text{A}}$ =25°C. The value in any given application depends on the user's specific board design. Surface Mounted on FR4 Board, t ≤ 10 sec. The current rating is based on the t ≤ 10s thermal resistance rating.
- 3. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production .

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

N-channelTypical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

ID- Drain Current (A) 2 1 0 0 25 50 T_J-Junction Temperature(°ℂ)

5

4

3

Figure 8 Safe Operation Area

Figure 10 Current De-rating

100

125

150

175

200

75

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

P-channel Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics	·							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μΑ		
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±10	μA		
On Characteristics (Note 3)								
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.9	-3	V		
D : 0	В	V _{GS} =-10V, I _D =-3A	-	170	200	mΩ		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-2A		200	230	11177		
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-3A	2	-	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}	\\ - 05\\\\ -0\\	-	760	-	PF		
Output Capacitance	Coss	V_{DS} =-25V, V_{GS} =0V, F=1.0MHz	-	260	-	PF		
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ	-	170	-	PF		
Switching Characteristics (Note 4)	·							
Turn-on Delay Time	t _{d(on)}		-	14	-	nS		
Turn-on Rise Time	t _r	V_{DD} =-50 V , I_{D} =-3 A	-	18	-	nS		
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-10V, R_{GEN} =9 Ω	-	50	-	nS		
Turn-Off Fall Time	t _f		-	18	-	nS		
Total Gate Charge	Qg	\/ F0\/ 0 A	-	25	-	nC		
Gate-Source Charge	Q _{gs}	V_{DS} =-50V, I_{D} =-3A, V_{GS} =-10V	-	5	-	nC		
Gate-Drain Charge	Q _{gd}	V _{GS} 10V	-	7	-	nC		
Drain-Source Diode Characteristics	•		•					
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =-3A	-	-	-1.2	V		
Diode Forward Current (Note 2)	Is	-	-	-	-3	Α		
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =-3A	-	35	-	nS		
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	46	-	nC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)						

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-50V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

4.0 (V) tuend 2.0 1.0 0.0 0 25 50 75 100 125 150 T_C Case Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance