



## **Project 2: Common Questions**



- The data have been modified by the data set provider (e.g. to hide some privacy).
  - It is like performing normalisation.
  - We can normalise any attribute to the range of [0,1], where 0 just represents the smallest value of that attribute.
- You can decide how to deal with those "nonsensible" attributes.
  - Remove them, use them as they are, transform them, etc.
- Do I need to discretise the attributes?
  - Better to do that for association rule mining
  - May or may not need discretisation in other tasks.

#### **Lecture Outline**



- Introduction to Clustering
  - Computing Distance: Review of Lecture 7
- Density based Clustering
  - DBScan
- Partition based Clustering
  - K-Means
  - K-Medoids

### What is Cluster Analysis?



#### Cluster:

- instances similar to one another are within the same cluster.
- Instances dissimilar are in different clusters
- Cluster analysis: Finding characteristics for similar instances
- Unsupervised learning: no predefined classes
- Typical applications
  - As a stand-alone tool to get insight into data distribution
  - As a preprocessing step for other algorithm

#### Rich Applications

- Document classification
- Market research
- DNA analysis
- Create thematic maps in GIS

## What is good clustering?



- Good clustering methods produce high quality clusters with
  - high <u>intra-class</u> similarity
  - low <u>inter-class</u> similarity
  - The definitions of similarity, measured as a distance functions may be different for numeric, boolean, and categorical attributes. Often is highly problem dependent.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

# **Major Types of Clustering Algorithms**



- Partition-based Clustering
  - K-Means Algorithm
  - K-Medoids Algorithm
- Density-Based Clustering
  - DBScan







(c) Final clustering



# **Major Clustering Approaches**



- Partitioning approach: k-means, k-medoids, CLARANS
  - Construct k-partitions for the given n-instances ( $k \le n$ ). Each group contains at least one instance. Each instance must belong to exactly one group.
- Hierarchical approach: Diana, Agnes, BIRCH, ROCK, CAMELEON
  - Create a hierarchical decomposition of the set of objects using some criterion (linkage function)
  - Agglomerative Approach: bottom-up merging
  - Divisive Approach: top-down splitting
- Density-based approach: DBSACN, OPTICS, DenClue
  - Based on connectivity and density functions. i.e. for each data point within a given cluster, the radius of a given cluster has to contain at least a minimum number of points.

#### **Lecture Outline**



- Introduction to Clustering
  - Computing Distance: Review of Lecture 7
- Density based Clustering
  - DBScan
- Partition based Clustering
  - K-Means
  - K-Medoids

#### **Distance Measures for Numeric Attributes**



- Distances are normally used to measure the similarity or dissimilarity between two data objects
- Some popular ones include: Minkowski distance:

$$- d(i,j) = \sqrt[q]{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q}$$

- where  $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two p-dimensional instances, and q is a positive integer.
- If q =1, d is Manhattan Distance

• 
$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

- If q=2, d is **Euclidean** Distance

• 
$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2}$$

• Properties:

$$-d(i,j) \ge 0$$
;  $d(i,j) = 0$ ;  $d(i,j) = d(j,i)$  and

$$-d(i,j) \le d(i,k) + d(j,k)$$
; (Triangle inequality)

 Also, one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures

### **Compute Dissimilarity for Binary Attributes**



### A contingency table for binary data

- Symmetric: both matches are equally important.
- Asymmetric: the match of "0" is not important.

#### Distance Measure for

Symmetric binary attributes:

• 
$$d(i,j) = \frac{b+c}{a+b+c+d} = \frac{b+c}{p}$$

Asymmetric binary attributes:

• 
$$d(i,j) = \frac{b+c}{a+b+c}$$

|          |       | Instance j |     |       |  |  |  |  |
|----------|-------|------------|-----|-------|--|--|--|--|
|          |       | 1          | 0   | total |  |  |  |  |
| Instance | 1     | а          | b   | a+b   |  |  |  |  |
|          | 0     | С          | d   | c+d   |  |  |  |  |
|          | total | a + c      | b+d | p     |  |  |  |  |

Jaccard Coefficient (similarity measure for asymmetric binary attributes):

$$- sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$$

Convert binary attribute into numerical attribute

# **Dissimilarity between Asymmetric Binary Attributes**



### Given the following example

| Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4 |
|------|--------|-------|-------|--------|--------|--------|--------|
| Jack | M      | Y     | N     | P      | N      | N      | N      |
| Mary | F      | Y     | N     | P      | N      | P      | N      |
| Jim  | M      | Y     | P     | N      | N      | N      | N      |

|     |              |   | N | Лагу |                |
|-----|--------------|---|---|------|----------------|
|     |              | 1 |   | 0    | $\Sigma_{row}$ |
| ack | 1            | 2 |   | 0    | 2              |
| ICK | 0            | 1 |   | 3    | 4              |
|     | $\sum_{col}$ | 3 |   | 3    | 6              |

Jim

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values of Y and P to be 1, and value N to be 0

#### We have

| _ | d(jack, mary) | $=\frac{0+1}{2+0+1}=$ | 0.33 |
|---|---------------|-----------------------|------|
|   |               | 4 I U T 1             |      |

$$- d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$- d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

$$-d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

| Je U. | 1            | 1 | 1 | 2 |
|-------|--------------|---|---|---|
| Jack  | 0            | 1 | 3 | 4 |
|       | $\sum_{col}$ | 2 | 4 | 6 |

|     |              | M | ary | Σc           |
|-----|--------------|---|-----|--------------|
|     |              | 1 | 0   | $\sum_{row}$ |
|     | 1            | 1 | 1   | 2            |
| Jim | 0            | 2 | 2   | 4            |
|     | $\sum_{col}$ | 3 | 3   | 6            |

# **Nominal/Categorical Attributes**



- A generalisation of the binary variable in that it can take more than 2 states, e.g. red, yellow, blue, green
- Method 1: Simple matching
  - m: # of matches, p: total # of attributes

• 
$$d(i,j) = \frac{p-m}{p}$$

- Method 2: convert to a number of binary attributes
  - creating a new binary attribute for each of the M possible states

#### **Ordinal Attributes**



- An ordinal attribute is often discrete.
- Order is important, e.g. rank (e.g. freshman, sophomore)
- Can be treated as numeric attributes
  - replace  $x_{if}$  by their rank  $r_{if} \in \{1, ..., Mf\}$
  - map the range of each attribute onto [0, 1] by replacing i-th object in the f-th attribute by
    - $z_{if} = (r_{if} 1)/(M_{if} 1)$
  - example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
    - distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
  - compute the dissimilarity using methods for numeric attributes

# **Attributes of Mixed Types**



- A database may contain different types of attributes
  - symmetric binary, asymmetric binary, nominal, ordinal, and numeric attributes
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{f} d_{ij}^{f}}{\sum_{f=1}^{p} \delta_{ij}^{f}}$$

- f is binary or nominal:

$$d_{ij}^{f} = 0$$
, if  $x_{if} = x_{jf}$  or  $d_{ij}^{f} = 1$ , otherwise

- f is numeric: use Euclidean distance
- f is ordinal
  - compute ranks  $z_{if}$  where  $z_{if} = (r_{if} 1)/(M_{if} 1)$
  - and treat  $z_{if}$  as numeric attribute

### **Similarity of Two Vectors**



 Vector objects: keywords in documents, gene features in micro-arravs. etc.

| Document  | team | coach | hockey | baseball | soccer | penalty | score | win | loss | season |
|-----------|------|-------|--------|----------|--------|---------|-------|-----|------|--------|
| Document1 | 5    | 0     | 3      | 0        | 2      | 0       | 0     | 2   | 0    | 0      |
| Document2 | 3    | 0     | 2      | 0        | 1      | 1       | 0     | 1   | 0    | 1      |
| Document3 | 0    | 7     | 0      | 2        | 1      | 0       | 0     | 3   | 0    | 0      |
| Document4 | 0    | 1     | 0      | 0        | 1      | 2       | 2     | 0   | 3    | 0      |

- Broad applications: information retrieval, natural language understanding, etc.
- Cosine measure

$$- s(x,y) = \frac{d_1^T \cdot d_2}{\|d_1\| \cdot \|d_2\|}$$

A variant: Tanimoto coefficient-used in information retrieval

$$- s(x,y) = \frac{d_1^T \cdot d_2}{d_1^T \cdot d_1 + d_2^T \cdot d_2 - d_1^T \cdot d_2}$$

#### **Lecture Outline**



- Introduction to Clustering
  - Computing Distance: Review of Lecture 7
- Density based Clustering
  - DBScan
- Partition based Clustering
  - K-Means
  - K-Medoids

### **Density-based Clustering Algorithms**



 Clustering based on density (local cluster criterion), such as density-connected points

#### Major features:

- Discover clusters of arbitrary shape
- Handle noise
- One scan
- Need density parameters as termination condition

#### Several interesting studies:

- DBSCAN: Ester, et al. (KDD'96)
- OPTICS: Ankerst, et al (SIGMOD'99).
- DENCLUE: Hinneburg & D. Keim (KDD'98)
- CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

### **Density-based Clustering: Basic Concepts**



- Two parameters:
  - Eps: Maximum radius of the neighbourhood
  - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- $N_{Eps}(p): \{q \in D \mid dist(p,q) \leq Eps\}$
- Directly density-reachable: A point p is directly densityreachable from a point q w.r.t. Eps, MinPts if
  - p belongs to  $N_{Eps}(q) \& q$  is a core.
  - Core point condition:
    - $|N_{Eps}(q)| \ge MinPts$



MinPts = 5

Eps = 1 cm

#### **Density-Reachable and Density-Connected**



#### Density-reachable:

- A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points  $p_1, \ldots, p_n, p_1 = q, p_n = p$  such that  $p_{i+1}$  is directly density-reachable from  $p_i$ 

#### Density-connected

 A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts







# **DBSCAN: Density Based Spatial Clustering of Applications with Noise**



- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise



### **DBSCAN: The Algorithm**



- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts.
- If *p* is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

#### **DBSCAN: Sensitive to Parameters**



Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.



Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.



(a)



(b)



#### **Lecture Outline**



- Introduction to Clustering
  - Computing Distance: Review of Lecture 7
- Density based Clustering
  - DBScan
- Partition based Clustering
  - K-Means
  - K-Medoids

### **Partitioning Algorithms: Basic Concept**



• Partitioning method: Construct a partition of a database *D* of *n* instances into a set of *k* clusters, s.t., minimise the sum of squared distance (within cluster variance)

$$- E = \sum_{i=1}^k \sum_{p \in C_i} (p - m_i)^2$$

- Given an integer k, find a partition of k clusters that optimises the chosen partitioning criterion
  - Global optimal: exhaustively enumerate all partitions
  - Heuristic methods: k-means and k-medoids algorithms
  - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
  - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the instances in the cluster

# *k-Means:* A centroid-based partitioning algorithm



### Given k, the k-means algorithm is implemented in four steps:

- 1. Partition instances into *k* nonempty subsets
- 2. Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e. *mean point*, of the cluster)
- 3. Assign each object to the cluster with the nearest seed point
- 4. Go back to Step 2, stop when no more new assignment

## **Example: the k-Means Clustering Method**





# K-means clustering algorithm



- Input: K, a set of points  $x_1, x_2, ..., x_n$  where  $x_i \in \mathbb{R}^d$
- Initialise K centroids c<sub>1</sub>, c<sub>2</sub>, ..., c<sub>K</sub> at random locations
- Repeat until convergence
  - → for each point x<sub>i</sub>: Assignment step
    - \* find the nearest centroid ci
    - \* assign x<sub>i</sub> to cluster j

$$oldsymbol{c}_{j,a} = rac{1}{n_j} \sum_{oldsymbol{x}_i 
ightarrow oldsymbol{c}_j} oldsymbol{x}_{i,a} \;\; ext{for} \;\; a \in \{1,2,...,d\}$$

- → for each centroid c<sub>j</sub>: Update step
  - \* update c<sub>j</sub> to the mean of all the points assigned to cluster j
- "Convergence" means none of the points changes its cluster.





































## K-means clustering example





#### Comments on the k-Means Method



- Strength: Relatively efficient: O(tkn), where n is # instances, k is # clusters, and t is # iterations.
  - Normally,  $k, t \ll n$ .
- Often terminates at a local optimum. The global optimum may be found using techniques such as:
  - deterministic annealing and genetic algorithms

#### Weakness

- Applicable only when mean is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes





#### Variations of k-means



- A few variants of the k-means which differ in
  - Choosing better initial centroids
    - k-means++, Intelligent k-means, Genetic k-means
  - Dissimilarity calculations
  - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98, aside)
  - Using new dissimilarity measures to deal with categorical attributes
  - A mixture of categorical and numerical data: k-prototype method
  - Replacing means of clusters with modes
  - Using a frequency-based method to update modes of clusters

# Centroid, Radius and Diameter of a Cluster (for numerical data sets)



Centroid: the "middle" of a cluster

$$- C_m = \frac{\sum_{i=1}^{N} t_{ip}}{N}$$

 Radius: square root of average distance from any point of the cluster to its centroid

$$- R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - C_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$- D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^2}{N(N-1)}}$$

#### Calculate the distance between Clusters



#### Single link

- smallest distance between an element in one cluster and an element in the other, i.e.  $dis(K_i, K_i) = \min(t_{ip}, t_{jp})$ 

#### Complete link

- largest distance between an element in one cluster and an element in the other, i.e.  $dis(K_i, K_i) = \max(t_{ip}, t_{ip})$ 

#### Average

- average distance between an element in one cluster and an element in the other, i.e.  $dis(K_i, K_j) = avg(t_{ip}, t_{jp})$ 

#### Centroid

- distance between the centroids of two clusters, i.e.  $dis(K_i, K_j) = dis(C_i, C_j)$ 

#### Medoid:

- medoid is the most centrally located object in a cluster
- distance between the medoids of two clusters, i.e.  $dis(K_i, K_j) = dis(M_i, M_j)$

#### **Lecture Outline**



- Introduction to Clustering
  - Computing Distance: Review of Lecture 7
- Density based Clustering
  - DBScan
- Partition based Clustering
  - K-Means
  - K-Medoids

## The problem of k-means method



#### The k-means algorithm is sensitive to outliers!

 Since an instance with an extremely large value may substantially distort the distribution of the data.

#### K-Medoids:

 Instead of taking the mean value of the instance in a cluster as a reference point, medoids can be used, which is the most centrally located instance in a cluster.



## The K-Medoids Clustering Method



- Find *representative* instances, called <u>medoids</u>, in clusters
- PAM (Partitioning Around Medoids, 1987)
  - starts from an initial set of medoids and iteratively replaces one
    of the medoids by one of the non-medoids if it improves the total
    distance of the resulting clustering
  - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomised sampling
- Focusing + spatial data structure (Ester et al., 1995)

## A Typical K-Medoids Algorithm (PAM)





Arbitrary choose k object as initial medoids



Assign each remainin g object to nearest medoids



Randomly select a

K=2

Do loop Until no change

Swapping O and O<sub>ramdom</sub>

If quality is improved.



Compute total cost of swapping



## **PAM Algorithm**



## Use a real instance/object to represent the cluster

- 1. Select *k* representative instances arbitrarily
- For each pair of non-selected instance h and selected instance i, calculate the total swapping cost TC<sub>ih</sub>
- 3. For each pair of i and h,
  - If  $TC_{ih} < 0$ , i is replaced by h
  - Then assign each non-selected instance to the most similar representative instance
- 4. repeat steps 2-3 until there is no change

## Determining $O_{random}$ a good replacement of $O_j$



- We calculate the distance from every object p to the closest object in the set  $\{o_1, \dots, o_{j-1}, o_{random}, o_{j+1}, \dots, o_k\}$ ,
- Then use the distance to update the cost function.
  - Suppose object p is currently assigned to a cluster represented by medoid  $o_j$  (Figure a or b). Do we need to reassign p to a different cluster (represented by medoid  $o_i$ ) if  $o_j$  is being replaced by  $o_{random}$ ?
  - What if object p is currently assigned to a different cluster represented by medoid  $o_i$ ? (Figure c or d)



(a) Reassigned to  $o_i$ 



(**b**) Reassigned to  $o_{random}$ 



(c) No change



(d) Reassigned to  $o_{random}$ 

- Data object+ Cluster center
- Before swapping
- --- After swapping

## PAM Clustering: Total Swapping Cost: $TC_{ih} = \sum_{j} C_{jih}$



#### Replace i by h, the following scenarios are the distance change on j to its nearest medoid



 $C_{jih} = d(j, h) - d(j, i)$ 



$$C_{jih} = d(j, t) - d(j, i)$$



$$C_{jih} = 0$$



$$C_{jih} = d(j, h) - d(j, t)$$

## What is the problem with PAM



- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.
  - $O(k(n-k)^2)$  for each iteration

where *n* is # of instances, *k* is # of clusters

→ Sampling based method,

CLARA (Clustering LARge Applications)

## **CLARA** (Clustering Large Applications) (1990)



- CLARA (Kaufmann and Rousseeuw in 1990)
  - Built in statistical analysis packages, such as S+
- It draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
  - Efficiency depends on the sample size
  - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

## **Overview of Clustering Methods**



|                                 | General Characteristics                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partitioning methods            | <ul> <li>Find mutually exclusive clusters of spherical shape</li> <li>Distance-based</li> <li>May use mean or medoid to represent cluster center</li> <li>Effective for small- to medium-size data sets</li> </ul>                                                                               |
| Hierarchical<br>Methods (aside) | <ul> <li>Clustering is a hierarchical decomposition (i.e., multiple levels)</li> <li>Cannot correct erroneous merges or splits</li> <li>May incorporate other techniques like microclustering or consider object "linkages"</li> </ul>                                                           |
| Density-based methods           | <ul> <li>Can find arbitrarily shaped clusters</li> <li>Clusters are dense regions of objects in space that are separated by low-density regions</li> <li>Cluster density: Each point must have a minimum number of points within its "neighbourhood"</li> <li>May filter out outliers</li> </ul> |
| Grid-based<br>Methods (aside)   | <ul> <li>Use a multiresolution grid data structure</li> <li>Fast processing time (typically independent of the number of data objects, yet dependent on grid size)</li> </ul>                                                                                                                    |

## Summary



### In clustering, data are

- similar to one another within the same cluster, and
- dissimilar to the data in other clusters.

## Cluster analysis can be used as

- a stand-alone tool to gain insight into the data distribution or
- can serve as a pre-processing step for other data mining tasks.

### Partitioning method:

- iterative relocation technique: k-means and k-medoids.
- K-medoid is efficient in presence of noise and outliers.

## Desnsity based method

- Discover clusters of arbitrary shape,
- good at handling noise,
- requires only one scan
- sensitive to density parameters (needed to be set manually)

#### Reference



- Han et al.'s book
  - Chapter 2.1, 2.4 and 10
- Readings
  - An Introduction to k-means
  - K-means++