Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_tehnologic*

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n = \frac{\sqrt{3} + 1}{2} - \frac{\sqrt{3} - 1}{2} =$	3p
	$=\frac{2}{2}=1\in\mathbb{N}$	2p
2.	$f(1) = 2 \Leftrightarrow -1 + 3m = 2$	3p
	m=1	2p
3.	$\log_2 x + \frac{1}{\log_2 x} = 2 \Rightarrow \left(\log_2 x - 1\right)^2 = 0$	3p
	$\log_2 x = 1 \Rightarrow x = 2$, care verifică ecuația	2 p
4.	Mulțimea M are 4 elemente, deci sunt 4 cazuri posibile	1p
	În mulțimea M sunt 3 numere care verifică inegalitatea dată, deci sunt 3 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri favorabile}} = \frac{3}{1}$	2n
	nr. cazuri posibile 4	2p
5.	Mijlocul segmentului AB este punctul $C(2,5)$, deci $\frac{1+b}{2} = 2$ și $\frac{a+7}{2} = 5$	3p
	a=3 și $b=3$	2 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow AC = \frac{6 \cdot \frac{\sqrt{2}}{2}}{\frac{1}{2}} =$ $= 6\sqrt{2}$	3p
	$=6\sqrt{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$D(-2) = \begin{vmatrix} -2 & -2 & -2 \\ 3 & -1 & -2 \\ 2 & -2 & -1 \end{vmatrix} =$	2p
	=-2+12+8-4+8-6=16	3 p
b)	$D(x) = \begin{vmatrix} x & x & x \\ 3 & -1 & x \\ 2 & x & -1 \end{vmatrix} = x + 3x^2 + 2x^2 + 2x - x^3 + 3x = -x^3 + 5x^2 + 6x =$	3p
	$= x(-x^2 + 5x + 6) = x(x+1)(6-x), \text{ pentru orice număr real } x$	2p
c)	\ \(\lambda \ \tau \ \tau \) \(\tau \ \tau \)	2p
	a=0 sau $a=36$	3 p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Simulare pentru clasa a XI-a

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

2.a)	$M(1) + M(3) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}1&0\\0&1\end{pmatrix}=2M(2)$	2p
b)	$M(m) \cdot M(n) = \begin{pmatrix} 1 & 2-m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2-n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2-n+2-m \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 2 - (m+n-2) \\ 0 & 1 \end{pmatrix} = M(m+n-2), \text{ pentru orice numere reale } m \text{ §i } n$	2p
c)	$M(2x-2) = M(x^2-1)$	3 p
	$2x-2=x^2-1$, de unde obținem $x=1$	2p

SUBIECTUL al III-lea

(30 de puncte)

	-	
1.a)	$\lim_{x \to 3} \frac{f(x)}{x - 3} = \lim_{x \to 3} \frac{x^2 - 4x + 3}{(x - 2)(x - 3)} = \lim_{x \to 3} \frac{(x - 3)(x - 1)}{(x - 2)(x - 3)} =$	3p
	$= \lim_{x \to 3} \frac{x - 1}{x - 2} = 2$	2p
b)	$\lim_{x \to +\infty} \frac{f(2x)}{f(x)} = \lim_{x \to +\infty} \left(\frac{4x^2 - 8x + 3}{2x - 2} \cdot \frac{x - 2}{x^2 - 4x + 3} \right) = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right) \left(1 - \frac{2}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right) \left(1 - \frac{4}{x} + \frac{3}{x^2} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x^2} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x} \right)}{x^3 \left(2 - \frac{2}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x} + \frac{3}{x} \right)}{x^3 \left(4 - \frac{8}{x} + \frac{3}{x} \right)} = \lim_{x \to +\infty} \frac{x^3 \left(4 - \frac{8}{x$	3р
	$=\frac{4}{2}=2$	2p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 4x + 3}{x(x - 2)} = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{-2x + 3}{x - 2} = -2, \text{ deci dreapta de ecuație } y = x - 2 \text{ este asimptotă}$ oblică spre $+\infty$ la graficul funcției f	3р
2.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (2x^2 - 3x + 4) = 3, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} (3x) = 3$	2p
	Cum $f(1) = 3$, obținem $\lim_{x \to 1} f(x) = f(1)$, deci funcția f este continuă în punctul $x = 1$	3 p
b)	$\lim_{x \to 3} \frac{\sqrt{f(x)} - 3}{x - 3} = \lim_{x \to 3} \frac{\sqrt{3x} - 3}{x - 3} = \lim_{x \to 3} \frac{3x - 9}{(x - 3)(\sqrt{3x} + 3)} =$	3p
	$= \lim_{x \to 3} \frac{3}{\sqrt{3x} + 3} = \frac{1}{2}$	2p
c)	$f + g : \mathbb{R} \to \mathbb{R}$, $(f + g)(x) = \begin{cases} -x^4 + x^3 + 2x^2 - 3x + 5, & x \in (-\infty, 1) \\ -x^4 + x^3 + 3x + 1, & x \in [1, +\infty) \end{cases}$ este funcție continuă	2p
	(f+g)(0)=5>0 și $(f+g)(2)=-1<0$, deci ecuația $(f+g)(x)=0$ are cel puțin o soluție în intervalul $(0,2)$	3 p