2087.ppt 7/12/00

Joint Propulsion Conference 2000 Huntsville, Alabama **July 2000**

John Plowden

Historical Background of SSME Advance Health Management Effort

- Sensing and control systems have been continuously improved throughout the SSME program
- Essential for safety, reliability and maintenance
- Sample improvements: Block II controller modifications, pressure sensor improvements, thermocouples, accelerometer installation software simplification, improved algorithms, etc.
- Most recent results sensors no longer drive abort probability
- Advanced health management systems under evaluation in mid to
- In-house projects including lab and engine tested technologies
- MSFC tasks
- Industry surveys and study contracts
- Maturity of technologies compared to possible benefits

Sensor and Software Improvements

Early Advanced Health Management Development

- Three technologies chosen best combination of benefits and
- Real Time Vibration Monitoring System (RTVMS)
- Fundamental measure of turbopump health
- Optical Plume Anomaly Detection (OPAD)
- Positive identification of engine wear, erosion, breakage
- Linear Engine Model (LEM)
- Key diagnostic tool for performance anomalies
- All Successfully used in ground test program
- Work initiated on overall software to combine inputs
- Identify problem in real time added confidence in mitigation action
- Hardware architecture studies conducted

Final Health Management Configuration

Modified controller

- Synchronous vibration (rotor unbalance) redline
- Add serial ports for communication with Health Management Computer

Separate Health Management Computer (HMC)

- One HMC per engine
- Mounted in aft compartment
- Includes advanced RTVMS, OPAD, LEM and overall software systems
- Design for expandability

Phased approach for development and production

- Phase I controller modification (development and production)
- Phase IIA develop RTVMS, OPAD, LEM and HMC including flight testing
- Phase IIB production of HMC

SSME Advanced Health Management System

Controller Upgrade **SSME Block II**

- Vibration redline
 - DCU memory
- Communication bus

Phase IIA

Protoflight Health Management Computer

- Design
- **Development**

Reside in Engine Controller

Catastrophic Redlines

- Vehicle integration
- Flight demo/monitor
- RTVMS, OPAD, LEM flight experiments

26% Reduction in Failure Probability

Phase IIB

Production Health

- Expanded vibration monitoring Management Computer
- **Exhaust plume monitoring**
 - **Engine model**
- **Expert systems**
- Vehicle & System integration

Engine Health & Advisories **Recommend Action** Resides on Orbiter

Similar Risk Reductions Calculated for Phase II

System Architecture

2087.ppt 7/12/00

command capability

Health Management Features

- Real-Time Vibration Monitor System. (RTVMS)
- High Pressure Turbopump rotating hardware structural integrity
- Linear Engine Model (LEM)
- Engine performance
- **Optical Plume Anomaly Detection** System (OPAD)
- Engine wear, erosion, breakage

Active Controller Synchronous Vibration Redline Phase I, Task #1

- High Pressure Turbopumps are a significant part of engine reliability
- Consequences of a turbopump failure are severe
- Vibration is a fundamental measure of SSME turbopump health
- Quickest, most sensitive
- Detects critical failure modes (blades, bearings, impellers, etc.)
- Vibration redlines have prevented engine failures

Real Time Synchronous Algorithm

Status of Algorithm Verification Testing

- Real Time Vibration Monitoring System (RTVMS) in operation since Oct 1996 at SSC
- Monitor mode and active redlines
- No anomalies in over 200 tests
- RTVMS experiment flown on STS-96
- Flawless operation (monitor mode)
- Testing algorithm on all tests since return to flight
- Playback of dynamic data

Tee Reliability Improvement I

SSME Failure Probability Reduced 26% Shuttle Failure Probability Reduced 9.8%

HIMC Advanced RTVMS Benefits

Phase IIA, Task #2

- **HMC RTVMS will monitor numerous discrete frequencies**
- Harmonics of synchronous (2N, 3N) for indications of rub
- Blade wake frequencies (4N, 6N, 8N) for indications of impending failure
- Bearing-related frequencies (cage, ball spin, inner race and outer race) to determine bearing health
- Sub-harmonic resonance and sub-synchronous whirl
- Non-linear algorithms are used to distinguish between rotating and non-rotating related phenomena
- Digital data acquired by RTVMS will be stored on the HMC
- **HMC RTVMS supports future upgrades**
- Additional sensor inputs
- Cavitation detection
- Active signature phase correlation

Advanced RTVMS in the HMC provides much greater insight into turbopump health

Optical Plume Anomaly Detection (OPAD)

Phase IIA, Tasks #3

- Monitor of engine wear, erosion, breakage
- Proven in ground test program
- Early warning compared to conventional measurements
- Key to eliminating inspections in the future
- Phase II, Task #3 Experimental flight (HDT) prior to HMC flight

development engines 0523 and 0525 OPAD system tested on

OPAD Benefits Phase IIA, Task #3

- Used in support of engine tests at SSC since 1989
- Demonstrated capability to detect the following constituents which are indicative of failure events and maintenance actions
- Palladium Turbopump honeycomb seal erosion
- Aluminum Turbopump impeller rubbing pump housing
- Copper Main combustion chamber erosion, baffle erosion
- Silver Turbopump seal wear
- Iron, Chromium Bearing wear (440C)
- Iron, Nickel, Cobalt, Chromium, Manganese Structural failure
 - Calcium RKDN HPFTP bearing cage wear
- Titanium Impeller rub
- Blade material identified indicating blade fracture
- Data has been invaluable during failure investigations (Blade failure, impeller rub)
- System operates in Real-Time (200hz sample rate)

OPAD is an extremely sensitive, non-intrusive technique for assessing engine health

SSME Advance Health Management SSME Linear Engine Model

- LEM is a system and major component level diagnostic tool
- Originally developed as a post test/flight anomaly diagnostic tool in mid 80's
- Based on partial derivatives of influence coefficients from **SSME Power Balance Model**
- Compares observed slice of data with pre-determined baseline slice
- Potential anomalies matched for direction and magnitude to minimize difference between baseline and observed data
- Quality of match rated from 0 to 100%
- Modified to run in real time

Linear Engine Model (LEM) Benefits

Phase IIA, Tasks #4

53-ANOMALY-							X C
SSME Status Report	E2019 / STS 093		Eng	Engine / Vehicle Status Information	lus Informati	u	
Time from engine start	16.0	6.02	Fuel Flow Measurement Error	rementError			1
Fid Information	1 002001	9.02	Main Chamber Pl	Main Chamber Pressure (MCC Pc) Level (104)) Level (104)		
Engine Status Word	Normal Control P: 4 M: 1		Fid Count: 1 Fid Code: 002001 Normal Control	Code: 002001			_
Engine Health Assessment	Nozzie Leak	10.01	Pc Measurement Error	Error			
Event Detection (Res/Sig)	Moderately > Exper 4.70	- C	Nozzle Leak				11
Anomaly Identification (% match)	Possible 59			Delta/Sig Ot	Observed	Delt BL/08	Anomaly
Anomaly Severity (Delta/Sig)	Significant 8.7	HPFP Inlet PR	Æ.				
Overall Engine Health	Possible Significant Perf Anomaly	HPFP IN Tmp Avg	mp Avg	-		-	
Recommended Action	Continue to Run, Monitor	HPFT DS Tmp Avg	Tmp Avg	1.0	1760	3.7	84.7
Performance Parameters	; ;	HPOT DS Tmp Avg	Tmp Avg	12.3	1549	208.9	175.6
	Deffa Adj lag√	FPOV Act Pos	Pos	5.3	78.5	-2.3	-0.7
Lower Level		OPOV Act Pos	Pos	0.5	69.2	-0.2	1.9
Vacuum Thrust	4	HPFP DS P	G.	2.8	5871	44.8	-76.7
Fuel Flow		HPOP DS Pr	d.	8.3	4110	35.8	52.1
LOXFIDM		FPB Pc		1.3	5108	-11.3	-26.2
Vacuum Specific Impulse (ISP)		PBP DS P		11.1	7355	148.8	119.6
Mixture Retio	0.17 6.23	PBP DS Tmp	d d	1.3	203.5	1.2	9'0
Transport (New London) Additional Management		HPOP Inlet Pr	гъ Тъ	4.	368.8	-3.2	-7.2
Anomaly Montonna	Yella Brit.	HXDSP		THE REST OF THE PARTY OF THE PA			
Nozzie Leak (Lbm/Sec)	59 8.73 8.7	dial Direction	, di	3.5	3350	-9.7	-D.7
Pc Measurement crui	20 99'0 67	MCC CINEDS Trup	JS Tmp	2.6	428.2	C C	16.1
Fuel Flow Measurement Error	46 2.95 3.0	UPFTP Speed	pee	0.7	15519	-88.9	-221.7
HPOT Efficiency Multiplier	0 -0.73 0.8	LPOTP Speed	pee	18.7	5156	133.8	43.6
HPFT Efficiency Multiplier	23 6.36 6.3	HPFTP Speed	peed	1.2	34602	-64.6	-132.4
HPFT Flow Multiplier	-3.71	MCC Oxid Inj Temp	Inj Temp	3.9	191.5	3.4	0.4
Three dead coeff Muliplier	0 -0.22 0.2						
S	Setup	Run		Cancel			
	P. C.				1		

STS-93 Engine 3 **LEM** screen

development LEM leak detected with STS-93 Nozzle

Health Management Computer(HMC)

Phase IIA, Task #2

HMC - MSFC in-house effort

- System controller and mass memory
- Advanced real-time vibration monitoring system (RTVMS)
- Optical plume anomaly detection (OPAD)
- Linear engine model (LEM)
- Spare capacity for upgrades

Key Design Assumptions

- "Do no harm" fail safe design
- RTVMS, OPAD and LEM are single string, post test diagnostic tools
- Maximize use of off-the-shelf hardware while maintaining reliability

SSME Advanced Health Management

Integrated Health Management Computer Benefits

- Increase detection likelihood
- Increase confidence in results
- Requirements definition in Phase IIA
- Finalized expert system in Phase IIB

ntegrated Health Management Computer Benefits Test 901-853 Blade Failure

Integrated Health Management Computer Benefits Reliability Assessment Overall Plan

- Joint MSFC / Rocketdyne team formed composed of SSME Systems experts
- Team utilized broad database for evaluation of potential failures
- FMEA
- Hazards
- Past hot-fire testing failures
- Potential failures assessed for ability to be detected and mitigated
- Systems experts evaluation combined with QRAS analysis to quantify overall failure probability reduction

Quantified Reliability Assessment Health Management (ntegrated

SSME Component Failure Probability

SSME Advanced Health Management Summary

- Phase I synchronous vibration redline reduces SSME failure probability by 26% using demonstrated reliability and QRAS approach
- MSFC and Rocketdyne systems and component experts performed estimate of reliability gain of Phase II AHMS with HMC
- Approach utilized assessment of potential to mitigate FMEA failure modes combined with QRAS reliability
- Overall SSME failure probability reduction potential of 40% for combined Phase I (26%) and Phase II AHMS (18%)
- Assessment is conservative
- Any potential vibration related Phase II to Phase I overlap offset by QRAS ignoring 100+ failure modes which can be mitigated

SSME Advanced Health Managemen Reliability Improvement

Back up

Space Shuffle

BOEING

SSME Is the First Reusable Large Liquid Rocket Engine

SSME Propellant Flow Schematic Block IIIA

104.5% of RPL

2087.ppt 7/12/00 27

Rocket Propulsion Systems Place Greater Demands on the Hardware

stringent requirements Leads to more

8

Weight 7,400 lb SSME Weight 7,300 lb (2) **Turbojet Engine** (2 ea on F-15)

14 代

500,000 lb

Thrust

Full After Burner

Advanced Health Management Tasks

Task #1: Modify SSME Controller

- Reliable real-time turbopump synchronous vibration redline capability
- New standard high speed serial interface for external communication
- Deliverables 20 flight SSME controllers (deliveries through 2008)

Task #2: Develop and Fly Protoflight Health Management Computer

- Optical Plume Anomaly Detection (OPAD), Linear Engine Model (LEM) Includes advanced Real Time Vibration Monitoring System (RTVMS),
- Deliverables 2 "protoflight" units, 1 brassboard
- Fly a single HMC monitoring a single SSME
- Task #3: OPAD Flight Experiment
- Single OPAD box monitoring a single SSME
- Task #4: LEM as MOD Tool
- Task #5: Phase IIB Requirements Definition

Vibration Redline Benefit Assessment

Based on Hot-fire Experience

- Total hot-fire vibration cut-off database evaluated
- Database reduced to 34 applicable vibration related premature
- 21 catastrophic failures
- 13 preventable by vibration redline
- Calculation of vibration redline effect
- Reduce high pressure pump catastrophic failure probability by approximately half
- (13 preventable/21 catastrophic) vibration related failures
- Remaining failures in total historical database not vibration related

Risks in Activating Redlines

Accelerometer signal integrity / interpretation of signal

- Primary reason for not previously activating vibration redline
- Initial efforts focused on accelerometer and cable improvements
- Hardware reliability still unacceptable (STS-32)
- RTVMS solves signal integrity problem
- Algorithm identifies erroneous signal
- Controller and algorithm reliability confirmed with test data

Redline limit amplitude

Determine proper redline based on hot-fire experience

STS-32R Noisy Signal Problem

Historical Real Time Redline Could Not Distinguish Noisy Signal

RTVMS Identifies Signal Integr

Real Time Signal to Noise Comparison

HIMC RTVMS Benefits

HPFTP/AT Blade Problem Indicated by RTVMS - Test 901-853

Sample OPAD Data Charl Blade Failure Test 901-853

Blade material indications correlate with vibration data

2087.ppt 7/12/00 35

Integrated Health Management Computer Benefits Phase IIA, Task #5

- System Identifies Impending Failures and Significant Performance Cases
- Example: 901-853 HPFTP/AT Turbine Blade Failure
- Initial Failure Event Detected at 130 seconds (109%RPL)
- Well Below Standard Redline Criteria
- Easily Detected by OPADS, RTVMS, LEM
- Multiple subsequent events also detected
- Standard Redlines never exceeded
- Observer initiated Shutdown
- **Turbine Hardware Severely Damaged**
- HMC Algorithm will detect gross anomalies and recommend Reduced Throttle Level (<100%)
- Probability of Catastrophic Failure reduced for Damaged Engine

Integration of HMC results will improve Situational Awareness and provide Failure Mitigation Options

Integrated Health Management Computer Benefits Initial Reliability Assessment - Conclusions

Majority of mainstage FMEA failure modes detectable by Phase II AHMS

Greater than 150 failure modes had a score of 3 or higher

Significant rating for one system, minor rating for all three systems, etc.

Dozens of failure modes had a score of 6 or higher

Significant rating for two systems, moderate rating for three, etc.

Integrated Health Management Computer Benefits Additional Benefits Yet to be Quantified

- mainstage FMEAs to cause off-nominal performance (e.g. mixture ratio) MSFC/Rocketdyne systems experts team also reviewed potential for all
- Team assessed ability of Phase II AHMS to mitigate off-nominal performance
- 85 failure modes identified as having mitigation potential with regard to offmixture operation - detailed evaluation in work
- Need to coordinate efforts to quantify benefits with MOD
- post-flight maintenance decisions and potential inspection reduction efforts OPAD provides additional data to assess engine health for real-time safety,
- Benefits of Phase II AHMS with regard to operability not yet assessed in detail by MSFC / Rocketdyne operability improvement team

2000

2087 ppt 7/12/00