Analyse du jeu de données FoodFacts

Melanie Cosmides - Remy Zirnheld - Yohan Pipereau - Stevan Coroller

Le jeu de données Food Facts

Le jeu de données et l'objectif métier

Jeu de donnée: FoodFacts (https://world.openfoodfacts.org/data)

Ce que l'on recherche:

Si quelqu'un cherche un aliment avec des caractéristiques (composition nutritionnelle) particulière, peut-on toujours satisfaire sa demande ?

=> si c'est le cas, peut-on survivre uniquement en mangeant certains aliments ?

Peut-on créer des groupes d'aliments de composition proches, afin de construire des repas équilibrés ?

Organisation des données

On voit:

- des données diverses (ingrédients, creator, last_modified…)
- des données numériques (quantité de protéines pour 100g…)

Potentiel d'utilisation :

- Déterminer si on peut faire des classifications des aliments
- Prédire une caractéristique pour un aliment ? (pour compléter des données lacunaires par exemple)

Organisation des données

ode url	creator	created_t created_datetime	last_modified_t last_modified_dateti	me product_name
000000000017 http://world-en.openfoodfacts.org/product/00000000017/vitoria-crackers	kiliweb	1529059080 2018-06-15T10:38:00Z	1529059204 2018-06-15T10:40:04Z	Vitória crackers
000000000031 http://world-en.openfoodfacts.org/product/00000000031/cacao	isagoofy	1539464774 2018-10-13T21:06:14Z	1539464817 2018-10-13T21:06:572	Cacao
000000000123 http://world-en.openfoodfacts.org/product/00000000123/sauce-sweety-chili-0	kiliweb	1535737982 2018-08-31T17:53:02Z	1535737986 2018-08-31T17:53:062	Sauce Sweety chil
000000000178 http://world-en.openfoodfacts.org/product/000000000178/mini-coco	kiliweb	1542456332 2018-11-17T12:05:32Z	1542456333 2018-11-17T12:05:332	Mini coco
000000000208 http://world-en.openfoodfacts.org/product/000000000208/pistou-d-ail-des-ours	kiliweb	1544207680 2018-12-07T18:34:40Z	1544207683 2018-12-07T18:34:432	Pistou d'ail des
000000000284 http://world-en.openfoodfacts.org/product/000000000284/pain-mais	kiliweb	1547120245 2019-01-10T11:37:25Z	1547120246 2019-01-10T11:37:262	Pain maïs
000000000291 http://world-en.openfoodfacts.org/product/000000000291/mendiants	kiliweb	1534239669 2018-08-14T09:41:09Z	1534239732 2018-08-14T09:42:122	Mendiants
000000000949 http://world-en.openfoodfacts.org/product/000000000949/salade-de-carottes-rapees	kiliweb	1523440813 2018-04-11T10:00:13Z	1546194697 2018-12-30T18:31:37Z	Salade de carotte
000000000970 http://world-en.openfoodfacts.org/product/000000000970/fromage-blanc-aux-myrtilles	kiliweb	1520506368 2018-03-08T10:52:48Z	1520506371 2018-03-08T10:52:512	Fromage blanc aux
000000001001 http://world-en.openfoodfacts.org/product/000000001001	openfoodfacts-contributors	1537766416 2018-09-24T05:20:16Z	1537766416 2018-09-24T05:20:162	
000000001007 http://world-en.openfoodfacts.org/product/000000001007/vainilla	kiliweb	1538127563 2018-09-28T09:39:23Z	1538127565 2018-09-28T09:39:25Z	Vainilla
000000001137 http://world-en.openfoodfacts.org/product/000000001137/baguette-parisien	kiliweb	1539781575 2018-10-17T13:06:15Z	1539781578 2018-10-17T13:06:182	Baguette parisier

	70.1	15					copper_100g				7.8	
-	70.1	10									7.0	
_	4.8	0.4									0.2	
	10	3				_					2	
	10	3									-	
_												
_										-		
-							5.3	3.9				
	16.3	16.3									4.4	
		100000								1		
	38.4	1.8									11.7	
			41	2								12.5
										27.3	21.9	
	24	23									0	
	39	20									7.8	
	7.6	7.5									4.6	
					0	0						
	9.2	0.9									8.3	
	5.2	1.2									7	
	3.9	1									1.9	
	20.7	3.8									9.1	

Data cleaning

Le fichier CSV n'utilise pas un séparateur uniforme (whitespace, tabspace, double tabspace).

Les 66 première colonnes sont de type string.

Les temps de chargement de tout le fichier avec python prenne une vingtaine de secondes !

Construire le jeu de données à traiter

On remarque que:

- on n'a pas le même nombre de colonnes pour chaque produit
- on a beaucoup de cellules non remplies

On décide:

- de lire uniquement les colonnes qui nous intéressent
- de faire une analyse afin de déterminer sur quelles caractéristiques des produits on peut travailler (ACP)

Rappels sur l'ACP

Rappels sur l'ACP

Soit un jeu de données à 3 colonnes (C1, C2, C3). Représentation triviale en
 2D par nuages de point colorés

 Soit n colonnes (C1, ..., Cn), comment représenter le jeu de données afin d' évaluer au mieux la présence d'informations importantes ?

Résultat de l'ACP

- L'ACP permet de réaliser une réduction du problème d'un espace de dimension n en un espace de dimension 2 avec deux axes:
 - F1: axe principale
 - F2: axe secondaire

- On visualise les données sous la forme de 2 graphes
 - Le cercle des corrélations
 - Le graphe des observations

Résultats de l'ACP - Cercle des corrélations

- Contribution des colonnes Ci aux axes F1 et F2 générés
- Détermine si deux colonnes Ci et Cj:
 - corrélés positivement
 - corrélés négativement
 - indépendantes

Résultats de l'ACP - Graphique des observations

 Interprétation des données types sur l'axe (F1,F2) d'après le cercle des corrélations

Résultats ACP sur Food Facts

ACP sur energy - fat - saturated fat

```
pca = PCA(n_components=2)
principal_components = pca.fit_transform(cleared_dataset)
principal_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2'])
```


Pourcentage de contribution de chaque axe : 99.97%, 0.02%

ACP

Pourcentage de contribution de chaque axe : 99.5%, 0.45% ['serving_quantity', 'energy_100g', 'fat_100g', 'saturated-fat_100g']

ACP

Pourcentage de contribution de chaque axe : 99.5%, 0.45%, 0.02% ['serving_quantity', 'energy_100g', 'fat_100g', 'saturated-fat_100g']

Rappels Kmeans

Rappels sur le KMeans

- on a des données représentées par x caractéristiques
- on initialise les centroïdes (centres des groupes qu'on souhaite trouver)
- par itérations successives on cherche à déterminer des groupes de données

Résultats Kmeans sur Food Facts

KMeans

kmeans = KMeans(n_clusters=nb_clusters, random_state=0).fit(cleared_dataset)
pred = kmeans.predict(data)

KMeans

Conclusions et Améliorations possibles

- Un ensemble de données très lacunaire, ce qui limite les analyses possibles
- On peut faire des classes d'aliments avec KMeans
- Les ACP sur les valeurs nutritionnelles nous montrent des données non fortement corrélées donc on a de la variété dans les aliments
- Vérification de la qualité du jeu de données
- Le pays de vente peut influer sur la composition des produits vendus
- Les analyses sont souvent longs sur une machine : utilisation d'un MapReduce pour paralléliser les opérations

Annexes: Quelques graphes

Figure 1

Figure 1

Figure 1

