Introduction to Real Analysis

Tianyu Du

Tuesday 17th September, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Contents

1	\mathbf{The}	Axiom of Completeness	2
	1.1	Preliminaries	2
	1.2	Density of Rational Numbers	4
2	Seq	uences	4

1 The Axiom of Completeness

1.1 Preliminaries

Definition 1.1. A set $A \subset \mathbb{R}$ is bounded above if

$$\exists u \in \mathbb{R} \ s.t. \ \forall a \in A, \ u \ge a \tag{1.1}$$

It is said to be **bounded below** if

$$\exists l \in \mathbb{R} \ s.t. \ \forall a \in A, \ l \le a \tag{1.2}$$

Example 1.1. The set of integers, \mathbb{Z} , is neither bounded from above nor below. Sets $\{1, 2, 3\}$ and $\{\frac{1}{n} : n \in \mathbb{N}\}$ are bounded from both above and below.

Notation 1.1. Let $A \subset \mathbb{R}$, we use A^{\uparrow} and A^{\downarrow} to denote collections of upper bounds of A and lower bounds of A. Note that A^{\uparrow} and A^{\downarrow} are potentially empty.

Definition 1.2. A real number $s \in \mathbb{R}$ is the **least upper bound(supremum)** for a set $A \subset \mathbb{R}$ if $s \in A^{\uparrow}$ and $\forall u \in A^{\uparrow}$, $s \leq u$. Such s is denoted as $s := \sup A$.

Definition 1.3. A real number $f \in \mathbb{R}$ is the **greatest lower bound (infimum)** for A if $f \in A^{\downarrow}$ and $\forall l \in A^{\downarrow}$, $l \leq f$. Such f is often written as $f := \inf A$.

Axiom 1.1 (The Axiom of Completeness/Least Upper Bounded Property). $\forall \emptyset \neq A \subset \mathbb{R}$ such that $A^{\uparrow} \neq \emptyset$, $\exists \sup A$.

Definition 1.4. Let $\emptyset \neq A \subset \mathbb{R}$, $a_0 \in A$ is the **maximum** of A if $\forall a \in A, a_0 \geq a$; $a_1 \in A$ is the **minimum** of A if $\forall a \in A, a_1 \leq a$.

Example 1.2. $\mathbb{Q} \subset \mathbb{R}$ does not satisfy the axiom of completeness.

Proposition 1.1. Let $\emptyset \neq A \subset \mathbb{R}$ bounded above, and $c \in \mathbb{R}$. Define $c + A := \{a + c : a \in A\}$. Then

$$\sup(c+A) = c + \sup A \tag{1.3}$$

Proof. Step 1: Show $c + \sup A \in (c + A)^{\uparrow}$:

Let $x \in c+A$, $\exists a \in A \text{ s.t. } x = c+a$. Then, $x = c+a \leq c+\sup A$. Therefore, $x \leq c+\sup A \ \forall x \in A$, which implies what desired.

Step 2: Show $\forall u \in (c+A)^{\uparrow}$, $c + \sup A \leq u$:

Let $u \in (c+A)^{\uparrow}$, then $u \ge c+a \ \forall a \in A \implies u-c \ge a \ \forall a \in A \implies u-c \in A \uparrow \implies u-c \ge \sup A \implies u \ge c+\sup A$.

Hence,
$$\sup(c+A) = c + \sup A$$
.

Lemma 1.1 (Alternative Definition of Supremum). Let $s \in A^{\uparrow}$ for some nonempty $A \subset \mathbb{R}$. The following statements are equivalent:

- (i) $s = \sup A$;
- (ii) $\forall \varepsilon, \exists a \in A, s.t. \ a > s \varepsilon \text{ (i.e. } s \varepsilon \notin A^{\uparrow}).$

Proof. Immediately.

Theorem 1.1 (Nested Interval Property). Let $(I_n)_n$ be a sequence of closed intervals $I_n := [a_n, b_n]$ such that these intervals are *nested* in a sense that

$$I_{n+1} \subset I_n \ \forall n \in \mathbb{N} \tag{1.4}$$

Then,

$$\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset \tag{1.5}$$

Proof. Note that the sequence $(a_n)_{n\in\mathbb{N}}$ is bounded above by any b_k , by the completeness axiom, there exists $a^* := \sup_{n\in\mathbb{N}} a_n$. Since $a^* \in (a_n)^{\uparrow}$, $a^* \geq a_n \ \forall n \in \mathbb{N}$. Further, because a^* is the least upper bound, then for every upper bound b_n , it must be $a^* \leq b_n \ \forall n \in \mathbb{N}$. Therefore, $x^* \in [a_n, b_n] \ \forall n \in \mathbb{N}$. That is, $x^* \in \bigcap_{n \in \mathbb{N}} I_n$.

Note that NIP requires all intervals to be closed. One instance when this fails to hold: $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right) = \emptyset$.

Theorem 1.2 (Archimedean Property).

- (i) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ s.t. \ n > x;$
- (ii) $\forall y \in \mathbb{R}_{++}, \exists n \in \mathbb{N} \ s.t. \frac{1}{n} < y.$

Archimedean property of natural numbers can be interpreted as there is no real number that bounds \mathbb{N} . This interpretation can be seen by considering the negations of above statements:

- (i) $\exists x \in \mathbb{R} \ s.t. \ \forall n \in \mathbb{N}, \ n \leq x;$
- (ii) $\exists y \in \mathbb{R}_{++} \ s.t. \ \forall n \in \mathbb{N}, \ y \leq \frac{1}{n}$.

Proof of (i) by Contradiction. Suppose the negated statement (i) is true, \mathbb{N} is bounded above. By the completeness axiom, there exists $a^* := \sup \mathbb{N}$. $\exists n \in \mathbb{N} \text{ s.t. } a^* - 1 < n$. In this case, $a^* < n + 1 \in \mathbb{N}$, which means $a^* \notin \mathbb{N}^{\uparrow}$ and leads to a contradiction.

Proof of (ii). Let $y^* \in \mathbb{R}_{++}$, take $x = \frac{1}{y}$. By statement (i), there exists $n^* \in \mathbb{N}$ such that $n > \frac{1}{y}$. Because y > 0, $\frac{1}{n} < y$.

1.2 Density of Rational Numbers

Theorem 1.3. For every $a, b \in \mathbb{R}$ such that a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

The above theorem says \mathbb{Q} is in fact **dense** in \mathbb{R} . More generally, one says a set $A \subset X$ is dense whenever the closure of A, $\overline{A} = X$.

Proof. Step 1: Since b-a>0, by the first Archimedean property, there exists $n\in\mathbb{N}$ such that $n>\frac{1}{b-a}$. Such natural number satisfies $\frac{1}{n}< b-a$.

Step 2: Let m be smallest integer such that m > an. That is, $m-1 \le an < m$. Obviously, $a < \frac{m}{n}$ since n > 0. Further, since $m \le an+1$, with results from step (i), m < bn-1+1 = bn, and $\frac{m}{n} < b$. Therefore $\frac{m}{n} \in (a,b)$.

Theorem 1.4. $\exists \alpha \in \mathbb{R} \ s.t. \ \alpha^2 = 2$.

Proof. Let $\Omega := \{t \in \mathbb{R} : t^2 < 2\}$, which is obviously a set in \mathbb{R} bounded from above. By the completeness axiom, Ω possesses a supremum, and we claim $\alpha := \sup \Omega$ satisfies $\alpha^2 = 2$. Suppose $\alpha^2 > 2$, then there exists $\varepsilon > 0$ such that $\alpha^2 - 2\alpha\varepsilon + \varepsilon^2 > 2$. Therefore, $\alpha > \alpha - \varepsilon \in \Omega^{\uparrow}$, which contradicts the fact that α is the least upper bound. Suppose $\alpha^2 < 2$, then there exists some $\varepsilon > 0$ such that $\alpha + \varepsilon \in \Omega$, which contradicts the assumption that α is an upper bound. Hence, it must be the case that $\alpha^2 = 2$.

2 Sequences

Theorem 2.1 (Triangle Inequality). Let $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Corollary 2.1. Let $a, b \in \mathbb{R}$, then

$$||a| - |b|| \le |a - b| \tag{2.1}$$

Proof. Note that $|a| = |a-b+b| \le |a-b| + |b|$, which implies $|a| - |b| \le |a-b|$. And $|b| = |b-a+a| \le |b-a| + |a| = |a-b| + |a|$, which implies $|b| - |a| \le |a-b|$. Therefore, by taking the absolute value, $||a| - |b|| \le |a-b|$.

Definition 2.1. A sequence $(a_n) \subset \mathbb{R}$ converges to $a \in \mathbb{R}$ if

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ n \ge N \implies |a_n - a| < \varepsilon$$
 (2.2)

Let $a \in \mathbb{R}$ and $\varepsilon > 0$, the open ball centred at a with radius ε is denoted as

$$V_{\varepsilon}(a) := \{ x \in \mathbb{R} : |x - a| < \varepsilon \} \tag{2.3}$$

Theorem 2.2. The limit of any convergent sequence is unique.

Proof. Let (a_n) be a convergent sequence, assume, for contradiction, that $(a_n) \to L_1$ and $(a_n) \to L_2$ such that $L_1 \neq L_2$. Let $\varepsilon = \frac{|L_1 - L_2|}{3}$, because $(a_n) \to L_1$, there exists $N \in \mathbb{N}$ such that $n \geq N \Longrightarrow |a_n - L_1| < \frac{|L_1 - L_2|}{3}$. Therefore, for every $n \geq N$,

$$|a_n - L_2| = |a_n - L_1 - (L_2 - L_1)| (2.4)$$

$$\geq ||a_n - L_1| - |L_2 - L_1|| \tag{2.5}$$

$$= ||L_1 - L_2| - |a_n - L_1|| \tag{2.6}$$

$$=3\varepsilon - |a_n - L_1| \tag{2.7}$$

$$> 2\varepsilon$$
 (2.8)

Therefore, there does not exist any $N' \in \mathbb{N}$ such that $|a_n - L_2| < \varepsilon$ for every $n \ge \mathbb{N}$.

Definition 2.2. A sequence (a_n) is **divergent** if it does not converge.

Example 2.1. The sequence $(a_n) := (1, -1/2, 1/3, 1/4, -1/5, 1/5, -1/5, 1/5, \cdots)$ is divergent.

Proof. Let $\varepsilon := \frac{2}{5\times 3}$, assume, for contradiction, that $(a_n) \to L$ for some $L \in \mathbb{R}$. Then there exists $N \in \mathbb{N}$ such that for every $n \ge N$, $|a_n - L| < \frac{2}{15}$. Since the sequence is alternating, it must be the case that $|L - \frac{1}{5}| < \frac{2}{15}$. Similarly,

$$\left| -\frac{1}{5} - L \right| = \left| \frac{1}{5} + L \right| \tag{2.9}$$

$$= \left| \frac{1}{5} + L - \frac{1}{5} + \frac{1}{5} \right| \tag{2.10}$$

$$= \left| (L - \frac{1}{5}) - (-\frac{2}{5}) \right| \tag{2.11}$$

$$\geq \left| \left| L - \frac{1}{5} \right| - \frac{6}{15} \right| \tag{2.12}$$

$$= \frac{6}{15} - \left| L - \frac{1}{5} \right| \tag{2.13}$$

$$> \frac{4}{15} \tag{2.14}$$

$$> \varepsilon$$
 (2.15)

the strict inequality suggests there cannot be a $M \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ for every $n \ge M$.

Alternative Proof. If (a_n) is convergent, then all of its subsequences must converge to the same limit. Obviously, there are subsequences of (a_n) converging to $\frac{1}{5}$ and $-\frac{1}{5}$ respectively, this leads to a contradiction.

Definition 2.3. A sequence is **bounded** if $\exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, |a_n| < M$.

Theorem 2.3. Every convergent sequence is bounded.

Proof. Let $(a_n) \to L$, take $\varepsilon = 1$, then there exists $N \in \mathbb{N}$ such that $|a_n - L| < 1$ for every n > N. Note that $|a_n| - |L| \le ||a_n| - |L|| \le |a_n - L| < \varepsilon$, which implies $|a_n| < |L| + 1$. Let $Q := \max_{n < N} a_n$, take $M := \max\{Q, |L| + 1\}$, then M bounds (a_n) .

Theorem 2.4 (Algebraic Limit Theorem). Let $(a_n) \to a, (b_n) \to b$ be convergent sequences, and $c \in \mathbb{R}$, then

- (i) $(ca_n) \rightarrow ca$;
- (ii) $(a_n + b_n) \rightarrow a + b$;
- (iii) $(a_nb_n) \to ab$;
- (iv) $\left(\frac{a_n}{b_n}\right) \to \frac{a}{b}$, provided $b_n, b \neq 0$.

Proof (i). Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$, $|a_n - a| < \frac{\varepsilon}{|c|}$. Then, for every $n \geq N$, $|ca_n - ca| = |c||a_n - a| < \varepsilon$.

Proof (ii). Let $\varepsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that $|a_n - a| < \frac{\varepsilon}{3} \ \forall n \ge N_1$ and $|b_n - b| < \frac{\varepsilon}{3} \ \forall n \ge N_2$. Take $N := \max\{N_1, N_2\}$, let $n \ge N$,

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b| < \frac{2\varepsilon}{3} < \varepsilon \tag{2.16}$$

Proof (iii). Note that

$$|a_n b_n - ab| = |a_n b_n + a_n b - a_n b - ab| \tag{2.17}$$

$$\leq |a_n b_n - a_n b| + |a_n b - ab|$$
 (2.18)

$$\leq |a_n||b_n - b| + |b||a_n - a| \tag{2.19}$$

Let $N_1 \in \mathbb{N}$ such that $|a_n - a| < \frac{\varepsilon}{2|b|}$ for every $n \geq N_1$. Because (a_n) is convergent, let M denote its bound such that $|a_n| < M \ \forall n \in \mathbb{N}$. Let $N_2 \in \mathbb{N}$ such that $|b_n - b| < \frac{\varepsilon}{2M}$. Then for every $n \geq N_3 := \max\{N_1, N_2\}, \ |a_n b_n - ab| < \varepsilon$.