

Semester: August 2022 - December 2022 Maximum Marks: 100 **Examination: ESE Examination** Duration: 3hours Programme code: 01 Semester: Programme: B Tech Computer Engineering Class: FY/SY/TY/LY 1/11/11/1V/V/VI/VII/VIII (SVU 2020) Name of the Constituent College: Name of the department: K. J. Somaiya College of Engineering COMP/ETRX/EXTC/IT/MECH Course Code: 116U01C503 Name of the Course: Operating System Instructions: 1) Draw neat diagrams 2)Assume suitable data if necessary

on No.				TATE OF		Max. Marks		
Q1 (a)	1) IFF UTP NOW ATA							
Q1 (b)	Define the term Critical section and Race condition.							
Q1 (c)	What is Pro	cess Control Block	(PCB)?			05		
Q1 (d)	Explain the effect of page size on the performance of a process.							
Q2 (a)	Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?							
Q2 (b)	What are System calls? List and explain file-handling system calls. OR Explain Process control fork(), exec(), and wait() System calls.							
0011	Explain the following in brief:(anyone) 1. Semaphores 2. Scheduling in Linux system							
Q3 (a)	1. Semapho	res				10		
	Semapho Schedulin Assume the	res og in Linux system		cution at the	indicated time and the	10		
	Semapho Schedulin Assume the	res og in Linux system following processo		Priority	Indicated time and the			
	2. Schedulin Assume the CPU burst tir	res ig in Linux system following processo ne is given in ms.	es arrive for exec		indicated time and the			
	Assume the CPU burst tir	following processine is given in ms. Burst Time	Arrival Time	Priority	indicated time and the			
	Assume the CPU burst tin	following processine is given in ms. Burst Time	Arrival Time	Priority 5	indicated time and the			
Q3 (a)	Assume the CPU burst tin Process P1 P2	following processome is given in ms. Burst Time 10 6	Arrival Time	Priority 5	indicated time and the			

Q4 (a)	Explain the difference between Paging and Segmentation.													10	
	Explain the hardware support for Paging.														
Q4 (b)	On a disk with 1000 cylinders, numbers 0-999, compute the number of tracks the disk arm must move to satisfy all requests in the disk queue. Assume the last request received was at track 345 and the head is moving towal track 0. The queue in the FIFO order contains requests for the following tracks 12 874, 692, 475, 105, 376. Perform the computation for the following scheduling algorithms: i. FIFO ii. SSTF iii. SCAN														
	Consider the given snap of the System													10	
		Allocation					Max			Available					
		A	В	C	D	A	В	С	D	A	В	С	D		
	P0	0	2	ī	2	0	3	2	2.	2	5	3	2		
	PI	1	I	0	2	2	7	5	2						
	P2	2	2	5	4	2	3	7	6						
	Р3	0	3	1	2	1	6	4	2						
	P4	2	4	1	4	3	6	5	8						
	Answer the following questions using Bankers algorithm. 1) What is the content of Matrix need? 2) Is the system in a safe state? 3) If a request from process P1 arrives for (1,3,2,1) can the request be granted immediately?														
	Explain the conditions for deadlock. Suggest techniques to avoid deadlock. OR Explain an algorithm for the producer-consumer problem.							10							