My notes

Group Theory

Groups Lagrange's Theorem Cyclic Groups Generators Groups Up To Order Eight The Product Theorem **Permutations** Geometry and Groups Normal Subgroups **Quotient Groups** The Isomorphism Theorems Jordan-Holder Decomposition Sylow Groups Abelian Groups Finitely Generated Abelian Groups Generators and Relations

Groups Up To Order Eight

We classify all groups with at most eight elements. Recall groups of prime order are cyclic, so we need only focus on the cases |G|=4,6,8. We make use of the following:

Lemma: If each element $1 \neq g \in G$ is of order 2, then G is abelian and isomorphic to $\mathbb{Z}_2 \times \ldots \times \mathbb{Z}_2$ and |G| is a power of 2.

Proof: Clearly true for |G|=2. Otherwise, let $1\neq a\neq b\in G$. We have $a^2=b^2=1$, that is $a=a^{-1},b=b^{-1}$. Then $ab\neq 1$ (otherwise $a=b^{-1}=b$) and $1=(ab)^2=a(ba)b$ which implies $ba=a^{-1}b^{-1}=ab$. Thus G is abelian.

Since G is finite, it has a finite set of independent generators $a_1,\dots,a_n.$ As G abelian, we may write an element $g\in G$ in the form

$$g=a_1^{e_1}\!\dots a_n^{e_n}$$

where each $e_i\in\{0,1\}.$ Then $G=\langle a_1
angle imes... imes\langle a_n
angle$ and $|G|=2 imes... imes2=2^n$

Now we can classify the groups up to order eight:

- must have order 2 or 4. If $a \in G$ has order 4 it generates G and we have $G = \mathbb{Z}_4$. Otherwise every element has order 2 and by the lemma we have $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ (the four-group or quadratic group, sometimes denoted by V after F. Klein's "Vierergruppe").
- |G|=6: If $a\in G$ has order 6 we have $G=\mathbb{Z}_6$. Otherwise all elements (besides the identity) have order 2 or 3. By the lemma, not all elements can have order 2 because 6 is not a power of 2. So let a be an element of order 3, that is $1,a,a^2$ are distinct. Let b be some other element in G. It can be verified that $1,a,a^2,b,ab,a^2b$ must be distinct. In order to satisfy closure, b^2 must be one of these elements. The only possibilities are $b^2=1,a$ or a^2 .

If $b^2=a,a^2$ we find that b cannot have order 2, so it has order 3. Then 1=ab or $1=a^2b$, both of which are contradictions. Hence $b^2=1$. Next we determine which element is equal to ba. The only possible choices are ab or a^2b . If ba=ab, then G is abelian, but then $(ab)^2=a^2$ and $(ab)^3=b$ implying that ab has order 6, a contradiction. Thus $ba=a^2b$, implying $(ab)^2=1$. We have defining relations $a^3=b^2=(ab)^2=1$. We shall see later

that this is indeed a group (associativity turns out to hold) because it is the <u>symmetric group</u> of degree 3 (which is isomorphic to the <u>dihedral group</u> of order 6).

• |G|=8: It turns out there are 3 abelian groups and 2 nonabelian groups. The three abelian groups are easy to classify: $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

The other groups must have the maximum order of any element greater than 2 but less than 8. Hence there exists an element of order 4, which we denote by a. All the others (besides the identity) have order 2 or 4. Let b be an element not generated by a. Then we have the distinct elements $1, a, a^2, a^3, b, ab, a^2b, a^3b$. Now b^2 can only be one of the first four. But $b^2 = a, a^3$ imply b is not of order 2 or 4, so we must have $b^2 = 1$ or $b^2 = a^2$.

Suppose $b^2=1$. Now ba must be equal to one of the last three elements. If ba = ab then the group is abelian and we end up with the aforementioned $\mathbb{Z}_4 imes\mathbb{Z}_2.$ If $ba=a^2b$, then we have $b^{-1}a^2b=a.$ Upon squaring, we derive the contradictory $a^2 = 1$. So we must have $ba=a^3b$, that is, $(ab)^2=1$. The defining relations are $a^4 = b^2 = (ab)^2 = 1$, and this turns out to be the dihedral group of order 8, also known as the octic group. The other possibility is $b^2=a^2$. In this case, b also has order 4. If ba = ab then the group is abelian and again we wind up with the group $\mathbb{Z}_4 imes \mathbb{Z}_2.$ If $ba=a^2b$ we have $ba=b^3$, which is a contradiction because it implies $a=b^2=a^2.$ Thus we must have $ba = a^3b$. Then we get a group with the defining relations $a^4=1, a^2=b^2, ba=a^3b$, which is known as the quaternion group. To verify associativity, one can show it is isomorphic to the group generated by the matrices

$$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

or

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

The quaternion group is a special case of a dicyclic group, groups of order 4m given by $a^{2m}=1, a^m=(ab)^2=b^2$, and whose elements can be written $1,a,\ldots,a^{2m-1},b,ab,\ldots,a^{2m-1}b$. The square of elements not generated by a is b^2 .

[My Homepage] Email: blynn pleasedontspamme at cs dot stanford dot edu