Método OLS da Biblioteca statsmodels

Para termos acesso ao método OLS(Ordinary Last Squares), que é o Método dos Mínimos Quadrados, importaremos usando a seguinte linha de código.

```
import statsmodels.api as sm
```

Abaixo aplicaremos o método apenas para um dos produtos do nosso dataset, apenas para demonstrar o uso da biblioteca e interpretar os resultados da regressão linear.

Como chegar nos valores de x_values_laptop e y_values_laptop já foi discutido nas aulas anteriores, aqui filtramos para pegar esses valores apenas para o produto '12 MacBook (Mid 2017, Gold)' e renomeamos essa filtragem para xv_laptop e yv_laptop, usamos a função sm.add_constante(xv_laptop) para criarmos uma coluna de 1 que multiplicará com o resultado do coeficiente linear determinado pela regressão, precisa ser de 1 para não alterar o resultado. Esse método poderia ter sido adicionado de forma automática na função, mas a própria documentação indica usar esse método, portanto precisamos adicionar de forma manual.

```
xv_laptop = x_values_laptop['12 MacBook (Mid 2017, Gold)']
yv_laptop = y_values_laptop['12 MacBook (Mid 2017, Gold)']
X_laptop = sm.add_constant(xv_laptop)
model = sm.OLS(yv_laptop, X_laptop)
result = model.fit()
print(result.summary())
```

Finalmente definimos o modelo e usando o método fit() treinamos o método dos mínimos quadrados, esse método realiza os processos matemáticos discutidos na última aula determinando os coeficientes da equação que define a reta da equação linear. O método result.summary() nos apresenta os resultados obtidos para a regressão linear e vamos aprender a interpretá-los a seguir.

Interpretando .summary()

No início do sumário temos qual é a nossa **dependente variável** que é '12 MacBook (Mid 2017, Gold)' em seguida temos o **modelo** e **método** utilizado e ambos remetem ao método dos mínimos quadrados, após é apresentado a **data** e **horário** que foi criado o modelo. A seguir é apresentado o **número de observações** no dataset, **DF Residuals** é os graus de liberdade do nosso teste, determinado como o (número de observações – número de variáveis preditas – 1), **Df Model** é o número de variáveis preditas, **tipo de covariância** é a medida de como duas variáveis estão relacionadas, podendo ser positiva ou negativa, pode minimizar ou eliminar variáveis. **R²** é o quanto a nossa variável independente é explicada pela nossa

variável dependente, expressa percentualmente, no nosso caso é 0,081, ou seja, 8,1% e o valor **ajustado de R²** é o R² penalizado pelo número de variáveis. **F-statistic** é o resultado de um teste F de Fisher-Snedeco, para interpretar esse valor é necessário determinar um valor de alpha e usar uma tabela F, esse teste determina a significância estatística do nosso teste, **Prob(F-Statistic)** define a acurácia da hipótese nula. **Log-Likelihood** compara os valores dos coeficientes de cada variável na criação do modelo. **AIC** e **BIC** são usados para selecionar as características das variáveis.

Dep. Variable: 12 MacBo	ok (Mid 2017	, Gold)	R-squared:		0.08	31
Model:		OLS	Adj. R-squared		0.04	12
Method:	Least	Squares	F-statistic:		2.108	
Date:	Fri, 31 M	lar 2023	Prob (F-statistic):		0.159	
Γime:	10:41:06		Log-Likelihood:		-50.564	
No. Observations:	26		AIC:		105.1	
Of Residuals:	24		BIC:		107.6	
Of Model:		1				
Covariance Type:	no	nrobust				
	coef	std e	r t	P> t	[0.025	0.975]
const	3 1.20 66	20.8	35 1.4 98	0.147	-11 . 795	74.208
12 MacBook (Mid 2017, Gold)	-0.0195	0.0	13 -1.452	0.159	-0.047	0.008
 Omnibus:	======== 39 . 538	 Durbin-Watson:		 1.513		
Prob(Omnibus):	0.000	.000 Jarque-Bera (JB):		129.539		
Skew:	2.893	Prob(JB):		7.4	3e-29	
Kurtosis:	12.279	Cond. No.		9.33e+04		

Vamos discutir a parte inferior do sumário, **const** é o coeficiente linear, como discutido anteriormente a equação que rege a reta é dada por y = a + bx onde a é o coeficiente linear, pode ser interpretado como o valor onde começa a nossa reta, ou ainda, onde o eixo vertical (y) é cortado, e então tem a nossa variável '12 MacBook (Mid 2017, Gold)' fechando os índices apresentados no nosso sumário vamos analisar as colunas a seguir. Coef para o nosso coeficiente linear é o valor dele, para a variável é a medida de como ela afeta o comportamento da reta, ou seja, é o nosso coeficiente angular o b da equação da reta. std err é desvio padrão, t é relacionado com quão preciso o coeficiente é medido. P>|t| é uma media importante que gera o pvalor, que mede a eficácia do modelo em medir a variável. 0,025 e 0,975 estabelecem as medidas de 95% dentro dos nosso dados, seguem a mesma definição clássica para outliers, que define outlier como dados fora de dois desvios padrões.

Omnibus é uma medida de normalidade que usa assimetria(skewness) e curtose, sendo 0 uma curva perfeitamente normal. **Prob(Omnibus)** é um teste estatístico que mede a normalidade da distribuição, o valor sendo 1 indica uma distribuição perfeitamente normal. **Skew** mede a assimetria da curva, com 0 zero temos um curva

perfeitamente simétrica. **Kurtosis** mede o quão agudo é o pico da nossa curva, altos valores indicam menos outliers. **Durbin-Watson** define a homocedaticidade ou uma distribuição uniforme dos erros de nossos dados, o ideal é ter valores entre 1 e 2. **Jarque-Bera(JB)** e **Prob(JB)** são métodos alternativos para medir os mesmos valores de Omnibus e Prob(Omnibus). E por fim **Cond. No.** Mede a sensibilidade do nosso modelo comparado com as mudanças nos nossos dados.