Супервторичная структура белков

Васильков Ярослав. Общая биология. 2018

Супервторичная структура - специфичная компактная комбинация нескольких близлежащих элементов вторичной структуры, имеющая особенную топологию и организованную в характерную компактную трехмерную структуру.

- Наличие определенного мотива вторичной структуры в белке во многих случаях (но не всегда) связано с определенными функциями
- Не все регулярные вторичные структуры формируют супервторичные структуры
- Эволюционно консервативные структуры
- Супервторичные структуры часто выступают в роли нуклеации при фолдинге белков

Примеры:

- β-бочонок
- α-спираль-поворот-α-спираль
- цинковые пальцы
- лейциновая застежка

β-бочонок

Каждая β-структура (обозначена на рисунке стрелкой) расположена внутри и связана αспиральным участком полипептидной цепи. Присутствует в некоторых трансмембранных белках (порин).

А – триозофосфатизомераза; Б – домен пируваткиназы.

α-спираль-поворот-α-спираль

В этих белках ДНК-узнающий участок включает две α-спирали, соединенные петлей. Из них одна более длинная спираль располагается в большой бороздке ДНК и взаимодействует с определенной последовательностью нуклеотидов в молекуле ДНК; более короткая располагается поперек малой бороздки ДНК. В белках имеются две субъединицы, одновременно связывающиеся с ДНК в палиндромных участках. Как правило это белки-репрессоры, распространенные у прокариот.

а - α-спираль белка, содержащая 3 домена; b - домены связываются с большими бороздками спирали ДНК

Цинковые пальцы

Белки этого семейства имеют пальцеобразные петли участка цепи полипептида, содержащие около 20 аминокислотных остатков, в которых атом цинка имеет четыре связи с остатками цистеина и гистидина пептидной цепи. На внешней поверхности пальца находится α-спираль, специфически узнающая определенную последовательность нуклеотидов ДНК. Присутствует во многих белках, связывающих ДНК (транскрипционные факторы, рецепторы стероидных гормонов)

Лейциновая застежка

Характерна для белков, состоящих из нескольких полипептидов, обогащенных остатками лейцина. На поверхности взаимодействующих полипептидных цепей имеется α-спиральный участок, содержащий не менее 4 остатков лейцина, которые расположены через каждые 6 аминокислот один от другого. Лейциновые остатки одной цепи взаимодействуют с лейциновыми остатками другой цепи с помощью гидрофобных взаимо- действий. С помощью них гистоны соединяются нуклеосомы (спирализация молекулы ДНК), состоящие из 8 полипептидных цепей.

Диаграмма двух параллельных белковых альфа-спиралей лейциновой застёжки (вид с торца). Лейцин показан как d.

Комплекс лейциновой застёжки (показана синим цветом) с ДНК. Остатки лейцина, обеспечивающие закрепление белковых спиралей обозначены красным цветом.

Вопросы?

Спасибо за внимание!