Nuclear Engineering 150 – Discussion Section Extra problems to save for review/backup

7		-	1	
M	ore	re	levant	Ī

< None at the moment >

Less relevant

Problem

Recall from mechanics that centripetal force is $F_{\rm cent}=-\frac{mv^2}{r}$ and recall from E&M that the Coulombic force is $F_{\rm coul}=-\frac{Ze^2}{r^2}$. Solve for the Bohr radius of the orbit of an electron on hydrogen, assuming the angular momentum L=mvr is quantized multiples of \hbar (1 \hbar , 2 \hbar , 3 \hbar , etc). Compare this to the measured value of 5.2917721067(12) \times 10¹¹Å, the most probable distance between an electron in the ground state and the nucleus of a hydrogen atom.