teleport2 • EN

Secret Meeting (teleport2)

Everyone knows that in Bugland rooms are an infinite plane surface in which each point is described by two coordinates (x, y): in particular, two bugs A and B are now waiting at coordinates (X_a, Y_a) and (X_b, Y_b) . It is well known that in Bugland beds are perfect circles, described by the coordinates of their center and their radius: in particular, in the mentioned room there is a single bed with center $C = (X_c, Y_c)$ and radius R.

A and B want to have a secret meeting to plan the invasion of the room: thus, they need to move as silent as possible, according to any trajectory, and gather this way to a common meeting point (X_m, Y_m) (not necessarily of integer coordinates). Walking on the floor one unit makes 1 NU (Noise Unit): for example, walking from (1,1) to (3,1) makes 2 NU, and walking from (1,1) to (3,2) makes $\sqrt{5}$ NU. On the other hand, walking on the bed is completely silent. Help the two bugs A and B meet, using a path allowing the sum of their NUs to be minimal.

Among the attachments of this task you may find a template file teleport2.* with a sample incomplete implementation.

Warning: as this task deals with floating point numbers, it is highly recommended to use the attached templates for a correct I/O.

Input

The first line contains one integer T, the number of scenarios that you have to solve. Each of the following T lines describe a scenario and contain seven integers: X_a , Y_a , X_b , Y_b , X_c , Y_c and R.

Output

You need to write T lines, one for each scenario, each with a single floating point: the minimal NU made by the two bugs. The printed numbers must have **exactly** 6 decimals, rounded down.

teleport2 Page 1 of 2

Constraints

- $1 \le T \le 10000$.
- $-100\,000 \le X_a, Y_a, X_b, Y_b, X_c, Y_c \le 100\,000.$
- $0 \le R \le 100000$.
- There are no constraints on the meeting point and trajectories of the bugs!

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples. *8888* - **Subtask 2** (10 points) R=0.*8888* - **Subtask 3** (10 points) $X_a = X_b = X_c$. *8*|8|8|8| - Subtask 4 (20 points) A, B and C are collinear.- Subtask 5 (25 points) The answer for every scenario is guaranteed to be an integer. - Subtask 6 (35 points) No additional limitations. **8**|**8**|**8**|**8**|**8**|

Examples

input	output
1 -1 0 1 0 0 3 1	2.000000

Explanation

In the **first sample case**, the first bug is in (-1,0), the second bug in (1,0) and the bed has radius 1 and center in (0,3). One of the possible solution is that the two bugs meet at (0,0).

teleport2 Page 2 of 2