
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=10; day=22; hr=14; min=51; sec=18; ms=820;

]

Reviewer Comments:

<400> 19

taggctggca	atttaactct	gagacgtctt	tcttgtatag	agaataaaac	atacgcgtgt	60
aaaagaaaac	gcgtgaatcg	aatgatgagt	gttaacgttc	gatcgagatg	ccaccaaatc	120
ttttcattaa	aatgaattgt	ggaggacata	ccacttttaa	cgaggtcatt	tccactgggt	180
gacatgtgga	ctctactttg	ggtggcatgt	tcatatcttt	ccacatcacc	atgtaaacgt	240
gaaaacaccc	accacactca	cttacatctc	aaacacatgt	cttcattatc	gtacgtagct	300
ccaaaaaaaa	aaatgaaaac	taggtttagt	gattctattt	cgcaatgtat	aatatacaac	360
ttgtaaaaat	aaaatatttg	aataagcatt	ataaataaac	ccaaagaggt	gttagattta	420
tatacttaat	tgtagctact	aaatagagaa	tcagagagaa	tagttttata	tcttgcacga	480
aactgcatgc	tttttgagac		c ttc cga ac e Phe Arg Se 5		-	533
_	c ttc tgc ct 1 Phe Cys Le 15	eu Thr Thr E	ett gag gtto Phe Glu 20	cataact ttto	gtcttta	583
cttctccatg	aatcatttgc	ttcgtcttat	ccttaattca	tatgtgtttg	atcaatgata	643

ataattcatc attctcttca g ctt cat gtt cat gct gct gaa gat tca caa

Leu His Val His Ala Ala Glu Asp Ser Gln 25 30

gtc ggt gaa ggc gta gtg	aaa att g gtatgta	aacg ctaacatata	739
Val Gly Glu Gly Val Val	Lys Ile		
35			
tgtaaagtgt tatatctctg tt	tatatatg attttaa	aac ggttaaaaac tagtcatatg	799
tgtataaata tatcatgtga ag	at tgc ggt ggg	aga tgc aaa ggt aga tgc	850
	Asp Cys Gly Gly	Arg Cys Lys Gly Arg Cys	
		45	

Please insert a "40" under "Asp" above. Same type of error in Sequence 25, position 1452.

Validated By CRFValidator v 1.0.3

Application No: 10521518 Version No: 2.0

Input Set:

Output Set:

Started: 2008-09-18 16:07:27.372

Finished: 2008-09-18 16:07:33.394

Elapsed: 0 hr(s) 0 min(s) 6 sec(s) 22 ms

Total Warnings: 0

Total Errors: 10

No. of SeqIDs Defined: 110

Actual SeqID Count: 110

Err	or code	Error Description	
E	320	Wrong Nucleic Acid Designator, aa	in SEQID (5)
E	320	Wrong Nucleic Acid Designator, at	in SEQID (9)
E	320	Wrong Nucleic Acid Designator, aa	in SEQID (11)
E	320	Wrong Nucleic Acid Designator, aa	in SEQID (13)
E	320	Wrong Nucleic Acid Designator, ag	in SEQID (17)
E	323	Invalid/missing amino acid numbering	g SEQID (19) POS (800)
E	320	Wrong Nucleic Acid Designator, at	in SEQID (19)
E	323	Invalid/missing amino acid numbering	g SEQID (25) POS (1452)
E	320	Wrong Nucleic Acid Designator, at	in SEQID (25)
E	320	Wrong Nucleic Acid Designator, ca	in SEQID (27)

SEQUENCE LISTING

<110>	Express	ive R	eseaı	ch E	3.V.									
<120>	Modulating developmental pathways in plants													
<130>	294-208 PCT/US													
<140> <141>	10521518 2006-02-28													
	PCT/NL03/00524 2003-07-17													
	EP 02077908.8 2002-07-17													
<160>	110													
<170>	PatentI	n ver:	sion	3.2										
	1 227 PRT Arabido	psis 1	thali	iana										
<400>	1													
Met Ala	a Ala Gl	u Gln 5	Pro	Leu	Asn	Gly	Ala 10	Phe	Tyr	Gly	Pro	Ser 15	Val	
Pro Pro	o Pro Al 20	a Pro	Lys	Gly	Tyr	Tyr 25	Arg	Arg	Gly	His	Gly 30	Arg	Gly	
Cys Gl	у Сув Су 35	s Leu	Leu	Ser	Leu 40	Phe	Val	Lys	Val	Ile 45	Ile	Ser	Leu	
Ile Vai	l Ile Le	u Gly	Val	Ala 55	Ala	Leu	Ile	Phe	Trp	Leu	Ile	Val	Arg	
Pro Arc	g Ala Il	e Lys	Phe 70	His	Val	Thr	Asp	Ala 75	Ser	Leu	Thr	Arg	Phe 80	
Asp Hi:	s Thr Se	r Pro 85	Asp	Asn	Ile	Leu	Arg 90	Tyr	Asn	Leu	Ala	Leu 95	Thr	
Val Pro	o Val Ar 10	_	Pro	Asn	Lys	Arg 105	Ile	Gly	Leu	Tyr	Tyr 110	Asp	Arg	

Ile Glu Ala His Ala Tyr Tyr Glu Gly Lys Arg Phe Ser Thr Ile Thr 115 120 125

Leu Thr Pro Phe Tyr Gln Gly His Lys Asn Thr Thr Val Leu Thr Pro 130 135 140

Thr Leu Asn Ala Glu Arg Ile Ser Gly Val Tyr Asn Ile Glu Ile Lys 165 170 175

Phe Arg Leu Arg Val Arg Phe Lys Leu Gly Asp Leu Lys Phe Arg Arg 180 185 190

Ile Lys Pro Lys Val Asp Cys Asp Asp Leu Arg Leu Pro Leu Ser Thr 195 200 205

Ser Asn Gly Thr Thr Thr Ser Thr Val Phe Pro Ile Lys Cys Asp 210 215 220

Phe Asp Phe

225

<210> 2

<211> 416

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Val Arg Ser Asn Asp Val Lys Phe Gln Val Tyr Asp Ala Glu Leu 1 5 10 15

Thr His Phe Asp Leu Glu Ser Asn Asn Leu Gln Tyr Ser Leu Ser 20 25 30

Leu Asn Leu Ser Ile Arg Asn Ser Lys Ser Ser Ile Gly Ile His Tyr $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asp Arg Phe Glu Ala Thr Val Tyr Tyr Met Asn Gln Arg Leu Gly Ala 50 55 60

Val Pro Met Pro Leu Phe Tyr Leu Gly Ser Lys Asn Thr Met Leu Leu 65 70 75 80

Arg	Ala	Leu	Phe	Glu 85	Gly	Gln	Thr	Leu	Val 90	Leu	Leu	Lys	Gly	Asn 95	Glu	
Arg	Lys	Lys	Phe 100	Glu	Asp	Asp	Gln	Lys 105	Thr	Gly	Val	Tyr	Arg 110	Ile	Asp	
Val	Lys	Leu 115	Ser	Ile	Asn	Phe	Arg 120	Val	Met	Val	Leu	His 125	Leu	Val	Thr	
Trp	Pro 130	Met	ГÀЗ	Pro	Val	Val 135	Arg	Суз	His	Leu	Lys 140	Ile	Pro	Leu	Ala	
Leu 145	Gly	Ser	Ser	Asn	Ser 150	Thr	Gly	Gly	His	Lys 155	Lys	Met	Leu	Leu	Ile 160	
Gly	Gln	Leu	Val	Lys 165	Asp	Thr	Ser	Ala	Asn 170	Leu	Arg	Glu	Ala	Ser 175	Glu	
Thr	Asp	His	Arg 180	Arg	Asp	Val	Ala	Gln 185	Ser	Lys	Lys	Ile	Ala 190	Asp	Ala	
Lys	Leu	Ala 195	Lys	Asp	Phe	Glu	Ala 200	Ala	Leu	Lys	Glu	Phe 205	Gln	Lys	Ala	
Gln	His 210	Ile	Thr	Val	Glu	Arg 215	Glu	Thr	Ser	Tyr	Ile 220	Pro	Phe	Asp	Pro	
Lys 225	Gly	Ser	Phe	Ser	Ser 230	Ser	Glu	Val	Asp	Ile 235	Gly	Tyr	Asp	Arg	Ser 240	
Gln	Glu	Gln	Arg	Val 245	Leu	Met	Glu	Ser	Arg 250	Arg	Gln	Glu	Ile	Val 255	Leu	
Leu	Asp	Asn	Glu 260	Ile	Ser	Leu	Asn	Glu 265	Ala	Arg	Ile	Glu	Ala 270	Arg	Glu	
Gln	Gly	Ile 275	Gln	Glu	Val	Lys	His 280	Gln	Ile	Ser	Glu	Val 285	Met	Glu	Met	
Phe	Lys	Asp	Leu	Ala	Val	Met	Val	Asp	His	Gln	Gly	Thr	Ile	Asp	Asp	

290 295 300

```
Ile Asp Glu Lys Ile Asp Asn Leu Arg Ser Ala Ala Ala Gln Gly Lys
305
                   310
Ser His Leu Val Lys Ala Ser Asn Thr Gln Gly Ser Asn Ser Ser Leu
               325
                                  330
                                                      335
Leu Phe Ser Cys Ser Leu Leu Phe Phe Phe Leu Ser Gly Asp Leu
           340
                              345
                                                  350
Cys Arg Cys Val Cys Val Gly Ser Glu Asn Pro Arg Leu Asn Pro Thr
      355
                          360
                                               365
Arg Arg Lys Ala Trp Cys Glu Glu Glu Asp Glu Glu Gln Arg Lys Lys
                      375
                                          380
Gln Gln Lys Lys Thr Met Ser Glu Lys Arg Arg Glu Glu Lys
385
                   390
                                      395
                                                          400
Lys Val Asn Lys Pro Asn Gly Phe Val Phe Cys Val Leu Gly His Lys
               405
                                                      415
                                   410
<210> 3
<211> 1634
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (501)..(563)
<223> signal sequence (exon 1)
<220>
<221> CDS
<222> (655)..(708)
<223> propeptide (exon 2)
<220>
<221> CDS
<222> (797)..(856)
<223> propeptide (exon 3)
<220>
<221> CDS
<222> (955)..(1131)
<223> conserved cysteine motif (exon 4)
<400> 3
```

ctatctctct cagtgtcaca atgtctgaac taagagacag ctgtaaacta tcattaagac	120
ataaactacc aaagtatcaa gctaatgtaa aaattactct catttccacg taacaaattg	180
agttagetta agatattagt gaaactaggt ttgaatttte ttettettet tecatgeate	240
ctccgaaaaa agggaaccaa tcaaaactgt ttgcatatca aactccaaca ctttacagca	300
aatgcaatct ataatctgtg atttatccaa taaaaacctg tgatttatgt ttggctccag	360
cgatgaaagt ctatgcatgt gatctctatc caacatgagt aattgttcag aaaataaaaa	420
gtagctgaaa tgtatctata taaagaatca tccacaagta ctattttcac acactacttc	480
aaaatcacta ctcaagaaat atg aag aag atg aat gtg gtg gct ttt gtt acg Met Lys Lys Met Asn Val Val Ala Phe Val Thr 1 5 10	533
ctg atc atc tct ttt ctt ctg ctt tct cag gtaaactgtt aaaaccattt Leu Ile Ile Ser Phe Leu Leu Ser Gln 15 20	583
tcaagactac cttttctcta tttcagacaa accaaagtaa aacaatgaaa aatctctctg	643
gtctttcata g gta ctt gca gag ttg tca tca tcc agc aac aat gaa act Val Leu Ala Glu Leu Ser Ser Ser Ser Asn Asn Glu Thr 25 30	693
tcc tct gtt tct cag gtaagagtga tacaaaaaca tactaaacaa actttcaaga Ser Ser Val Ser Gln 35	748
Ser Ser Val Ser Gln	748 805
Ser Ser Val Ser Gln 35 gagtaatata taaggaaatg ttggcttctt ttttttgttg ctaatcag acg aat gac Thr Asn Asp	
Ser Ser Val Ser Gln 35 gagtaatata taaggaaatg ttggcttctt ttttttgttg ctaatcag acg aat gac Thr Asn Asp 40 gag aac caa act gcg gcg ttt aag aga aca tac cac cat cgt cca aga Glu Asn Gln Thr Ala Ala Phe Lys Arg Thr Tyr His His Arg Pro Arg	805
Ser Ser Val Ser Gln 35 gagtaatata taaggaaatg ttggcttctt ttttttgttg ctaatcag acg aat gac Thr Asn Asp 40 gag aac caa act gcg gcg ttt aag aga aca tac cac cat cgt cca aga Glu Asn Gln Thr Ala Ala Phe Lys Arg Thr Tyr His His Arg Pro Arg 45 50 55 atc agttagtcta ctctttcaac actctaattc ctttgttcta agtattttt	805 853
Ser Ser Val Ser Gln 35 gagtaatata taaggaaatg ttggcttctt ttttttgttg ctaatcag acg aat gac Thr Asn Asp 40 gag aac caa act gcg gcg ttt aag aga aca tac cac cat cgt cca aga Glu Asn Gln Thr Ala Ala Phe Lys Arg Thr Tyr His His Arg Pro Arg 45 50 55 atc agttagtcta ctctttcaac actctaattc ctttgttcta agtattttt Ile ttgccccca caacctttt tttattaaat gagccaattt ttatagat tgt ggg cat Cys Gly His	805 853 906

acc tcc ggc aac aca gca tca tgt cct tgc tac gcc agt atc cgt aca Thr Ser Gly Asn Thr Ala Ser Cys Pro Cys Tyr Ala Ser Ile Arg Thr 95 100 105 110	1107											
cat ggc aat aaa ctc aaa tgt cct taaaagactt ctcatttctc aactatagtc His Gly Asn Lys Leu Lys Cys Pro 115	1161											
tcatcttctg attatgtttc ttcttttgtt atgttgcatg tgtgatgtgt gagcttatta	1221											
ttatgttgat tgttgacata attcaactat ataatttgta tcgattccga ataataagat	1281											
gagtgatttt attggctatt aagtttttt ttttttttt tgggcacaat ggctattaag	1341											
ttttaaacat ctgattttat tggttacaaa aaacaacaaa gtttcatttt catattaaca	1401											
caaaatctcc atacatatta ccaaaccaaa aaaatacaca agggggagag agaccaacgg	1461											
ttcttggttc agagtttgca tcttgtttga gccgtcaccg tttcttagac ttaacagcca	1521											
caacacettt ataaagette acgegateet teaacgeate tegeegagge egagecaeet	1581											
tattgtttgg atcaaacaac aaaacttctt caaacgcatt caatgccaaa ggc	1634											
<210> 4 <211> 118 <212> PRT <213> Arabidopsis thaliana <400> 4												
Met Lys Lys Met Asn Val Val Ala Phe Val Thr Leu Ile Ile Ser Phe 1 5 10 15												
1 5 10 15 Leu Leu Leu Ser Gln Val Leu Ala Glu Leu Ser Ser Ser Ser Asn Asn												

Ala Arg Arg Cys Ser Lys Thr Ser Arg Lys Lys Val Cys His Arg Ala

Cys Gly Ser Cys Cys Ala Lys Cys Gln Cys Val Pro Pro Gly Thr Ser

100 105 110

Asn Lys Leu Lys Cys Pro

```
115
<210> 5
<211> 1453
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (501)..(533)
<223> signal peptide (exon 1)
<220>
<221> CDS
<222> (664)..(691)
<223> propeptide (exon 2)
<220>
<221> CDS
<222> (772)..(950)
<223> conserved cysteine motif (exon 3)
<400> 5
gaaaaaaaga agaaaagata atggtccgta ttaatatagt tgaaaacttg aaactacttt
                                                                      60
ttagtttgta tataatacag tagactaggg atccagttga gtttctttct ttattttgag
                                                                     120
tttgtgttta tgtttgattt tacgttttta tatgtaaata agatatttta cgaattatgg
                                                                     1.80
ttttatttgg gtagaagttg tagaatgact taaacaatca agtggcagaa tgagatatat
                                                                     300
aaagtaatat aatatatgta ccgttattaa cttattgtac atgtgaatga ggaagcttac
acacacac cttctataaa tagctgacaa aactggttgt tacacacaac acattcataa
                                                                     360
atctctcaaa gtaagaacta agagctttac tacagtccta ctctctacac atcttctctc
                                                                     420
                                                                     480
tctctcaaga gctagtcatg gccaaactca taacttcttt tctcttactc acaattttat
tcactttcgt ttgtctcact atg tca aaa gaa gct gag tac cat cca gaa agt
                                                                     533
                     Met Ser Lys Glu Ala Glu Tyr His Pro Glu Ser
                                                                     593
gtaagttttt attttttggt aaaatagaaa gtgtaagttt tataattcat tcaattgttt
ttgcctttcc ctttctattt attgctataa atctaatacc cgcgttaaaa tttgttttga
                                                                     653
                                                                     701
aattaaacag tat gga cca gga agt ctg aaa tca tac c gtaagtaaaa
          Tyr Gly Pro Gly Ser Leu Lys Ser Tyr
```

acttettett ettttatgaa tettgtttet tattatatat caaataaaaa etegattate	761
atgattgcag aa tgt gga gga caa tgc aca agg aga tgt agc aac aca Gln Cys Gly Gly Gln Cys Thr Arg Arg Cys Ser Asn Thr 25 30	809
aag tat cat aag cca tgc atg ttc ttc tgc caa aag tgt tgt gct aaa Lys Tyr His Lys Pro Cys Met Phe Phe Cys Gln Lys Cys Cys Ala Lys 35 40 45	857
tgc ctt tgt gtc cct cca ggc acg tac ggc aac aaa caa gtg tgt cct Cys Leu Cys Val Pro Pro Gly Thr Tyr Gly Asn Lys Gln Val Cys Pro 50 55 60 65	905
tgt tac aac aac tgg aag act caa caa ggt gga cca aaa tgt cca Cys Tyr Asn Asn Trp Lys Thr Gln Gln Gly Gly Pro Lys Cys Pro 70 75 80	950
taaacaaaaa cattgagaga gaaaccccaa tctgtttcct attttattta attatttcca	1010
gtatgctttt gttgtcgtga tggttaaatt atagtgtttt tgcaggtatc atttatcatc	1070
gataaacaat atcatataaa atcttctatg tttctttcac gttttgtttc ttttgttgta	1130
gtcaatacac gaaatgtgta tggaccttct aattaggaat atataaaatt ttatttatta	1190
attagataat ctttcgtata gttaaaattc caaggattac ttttgattcg tttgggacaa	1250
tctattttat attttacttt ctaagtttgt ataactatat cttaaaagtg ttagacagag	1310
tcctaatgat tttagtataa ttgttactat ttagttacgc ttcgaaaatt tggaactttt	1370
ccaaagtggt ctatatcaat ttgattcact aatctgcgct tccttctagt tttttacaat	1430
tatggagatt tttcgacgat gat	1453
<210> 6	

<211> 80

<212> PRT

<213> Arabidopsis thaliana

<400> 6

Met Ser Lys Glu Ala Glu Tyr His Pro Glu Ser Tyr Gly Pro Gly Ser 1 5 10 15

Leu Lys Ser Tyr Gln Cys Gly Gly Gln Cys Thr Arg Arg Cys Ser Asn 20 25 30

Thr Lys Tyr His Lys Pro Cys Met Phe Phe Cys Gln Lys Cys Cys Ala 35 40 45

Lys Cys Leu Cys Val Pro Pro Gly Thr Tyr Gly Asn Lys Gln Val Cys

50 55 60

70

Pro Cys Tyr Asn Asn Trp Lys Thr Gln Gln Gly Gly Pro Lys Cys Pro

75

<210> 7 <211> 1472 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (501)..(566) <223> signal sequence (exon 1) <220> <221> CDS <222> (669)..(708) <223> propeptide (exon 2) <220> <221> CDS <222> (791)..(969) <223> conserved cysteine motif (exon 3) <400> 7 cacaactttt atacgcacca ccaaccgacc cattttgaaa aagagaaaat aaaccacaaa 60 aacacacata aataatatgc tgataacaat gtcttaaaaa tctatttacc atttctagta 120 atcaatatct attgcaaaaa atatttataa gaatacaaat gaaaaatgat aaaatacaaa 180 tgatttctca attacctaaa aaatataaaa atgtcttact ttattttcag ccactgttgg 240 300 aaagtacttg caatcatatc gtattttgaa ttataaaact cagaaacaat tattttccct 360 tggggtcggt tgtccatcca aaggagtgct ataaatagaa ccctccaagt tctcattagg 420 acacaacaac taaaaccaca tttatcatta cagtctgatt tgagctaagt tctctcatca 480 taaactctcc ttggagaatc atg gct att tca aaa gct ctt atc gct tct ctt 533 Met Ala Ile Ser Lys Ala Leu Ile Ala Ser Leu 5 10 586 ctc ata tct ctt gtt ctc caa ctc gtc cag gctgatgtcg tacgtctttt Leu Ile Ser Leu Leu Val Leu Gln Leu Val Gln 15 20 tcatcacaaa ctaattatac tcaatataat acttatgttt tcaaaaaacat atttctcaca 646 698 tgttacaaca atattettge ag gaa aac tea cag aag aaa aat ggt tae gea

Glu Asn Ser Gln Lys Lys Asn Gly Tyr Ala

aag	aag	atc	g gt	aatt	atat	gat	tttt	att	aaa	cctaa	acg	ttaaa	attta	ag		7	48
Lys	Lys	Ile															
		35															
agto	gagat	ta a	ataat	ctgt	g tt	ttt	cttt	c tto	gtata	atat	ag (at t	gt q	ggg a	agt	8	01
											1	Asp (Cys (Gly S	Ser		
gcg	tgt	gta	gca	cgg	tgc	agg	ctt	tcg	agg	agg	ccg	agg	ctg	tgt	cac	8	49
Ala	Суѕ	Val	Ala	Arg	Cys	Arg	Leu	Ser	Arg	Arg	Pro	Arg	Leu	Cys	His		
40					45					50					55		
aga	gcg	tgc	ggg	act	tgc	tgc	tac	agg	tgc	aac	tgt	gtg	cct	ccg	ggt	8	97