

An Unsupervised Feature Selection algorithm based on Ant Colony Optimization

Aaron Estrada Poggio

Article information

Tabakhi, S., Moradi, P., & Akhlaghian, F. (2014). An unsupervised feature selection algorithm based on ant colony optimization. *Engineering Applications of Artificial Intelligence*, *32*, 112-123.

https://www.researchgate.net/publication/261371258 An unsupervised feature sele ction_algorithm_based_on_ant_colony_optimization

If you torture the **data** long enough, it will confess.

Ronald Coase

Data Mining

The computational process to find knowledge from datasets, which is expressed using a comprehensible structure.

Data Mining – some tasks and applications

Class labels associated

Unsupervised learning

Applications

- Text categorization
- Face recognition
- Cancer classification
- Finance

No labels associated

Data Mining – Curse of Dimensionality (1)

Number of features larger than number of patterns

- Performance reduced
- Computational complexity increased

Data Mining – Curse of Dimensionality (2)

Feature Selection

Remove irrelevant and redundant features.

1.000 features

21.000

different feature subsets!

Find a near-optimal feature subset in a reasonable time.

Feature Selection

Remove irrelevant and redundant features.

1. Filter approach

- Feature relevance relies on statistic data
- Independent from learning algorithms

Univariate

Feature dependency ignored

- Information gain
- Gain ratio
- Fisher score

Multivariate

Feature dependency considered

- Mutual correlation
- Minimal-redundancy-maximalrelevance (MRMR)
- Random subspace methods (RSM)

2. Wrapper approach

Uses a learning algorithm to select features

Sequential search

Add or remove features sequentially. Tendency to become trapped into a local optimum.

- Sequential backward selection
- Sequential forward selection
- Floating search method

Random search

Embed randomness to escape local optimum solutions

- Random mutation hill-climbing
- Genetic algorithms
- Ant Colony Optimization (ACO)

3. Embedded approach

Search of good subset of features performed by learning algorithm

Decision Trees

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

Naïve Bayes

4. Hybrid approach

- ACO + mutual information
- ACO + chi-square with SVM
- Mutual information + genetic algorithms
- Mutual information + Swarm optimization with SVM

Feature Selection – Approaches

How to deal with the trade-off?

Unsupervised Feature Selection algorithm based on Ant Colony Optimization (UFSACO)

Does not need class labels

3. Based on ACO

High quality approximation of the solution and efficient for high-dimensional datasets

2. "Filter approach"

Acceptable computational time and no learning algorithm needed

4. Minimize redundancy

Reached through feature similarity heuristics.

Ant Colony Optimization (ACO)

- Based on the social behavior of ants while seeking food
- Cooperative work of ants to solve hard combinational optimization problems

3. Ant chooses shortest path

Ant Colony Optimization (ACO) - Strengths

Multi-agent system

Ants cooperate by sharing knowledge through pheromone trail to solve the problem efficiently

Distributed long-term memory

Memory used to store knowledge obtained from ants in previous searches

Parallel implementation

Distribution allows a decrease in computational time

Global and local search capabilities

- Exploitation strong local search ability
- Exploration avoid being trapped in local minimum

UFSACO - Components

- Graph representation for searching
- Heuristic desirability
- Working cycle
- Pheromone update
- Feature selection

UFSACO - Graph representation for searching

Searching space as undirected graph

UFSACO - Graph representation for searching

Cosine similarity between features

$$sim(F_a, F_b) = sim(F_b, F_a) = \frac{\sum_{i=1}^{p} (a_i * b_i)}{\sqrt{\sum_{i=1}^{p} a_i^2} * \sqrt{\sum_{i=1}^{p} b_i^2}}$$

F_a, F_b Feature a/b
 p Total of patterns in dataset
 a_i, b_i Value of feature a/b for pattern_i

UFSACO - Components

- Graph representation for searching
- Heuristic desirability
- Working cycle
- Pheromone update
- Feature selection

UFSACO - Heuristic desirability

1. Heuristic information

$$\eta(F_a, F_b) = \eta(F_b, F_a) = \begin{cases} \frac{1}{sim(F_a, F_b)}, & sim(F_a, F_b) > 0\\ 0, & otherwise \end{cases}$$

UFSACO – Heuristic desirability

2. Desirability of movement

An ant seeks to select features based on:

- Highest pheromone values
- Lowest similarities to previous selected features (heuristic information)
- Pseudo-random-proportional rule: transition rule based on random value q

UFSACO – Heuristic desirability Pseudo-random-proportional rule

Exploitation – Greedy transition rule

$$j = \underset{u \in J_i^k}{\text{arg max}} \{ [\tau_u] [\eta(F_i, F_u)^{\beta}] \}, \quad if \ q \le q_0$$

J_i^k	unvisited feature set when ant k is in
-	feature F _i
$ au_u$	Pheromone value of feature u
$\eta(F_i, F_u)$	Heuristic information between
	features F _i and F _u
β	Importance of pheromone versus
	heuristic information
q	Random number
	q ∈ [0,1]
q_0	Exploitation-exploration coefficient
	$q_0 \in [0,1]$

UFSACO – Heuristic desirability Pseudo-random-proportional rule

Exploration – Probabilistic transition rule

$$P_k(i,j) = \begin{cases} \frac{[\tau_j][\eta(F_i,F_j)^{\beta}]}{\sum_{u \in J_i^k} [\tau_u][\eta(F_i,F_u)^{\beta}]}, & if \ j \in J_i^k \\ 0, & otherwise \end{cases}, if \ q > q_0$$

J_i^k	unvisited feature set when ant k is in
	feature F _i
$ au_u$	Pheromone value of feature u
$\eta(F_i, F_j), \eta(F_i, F_u)$	Heuristic information between
	features F _i and F _i / F _i and F _u
β	Importance of pheromone versus
	heuristic information
q	Random number
	q ∈ [0,1]
q_0	Exploitation-exploration coefficient
	q ₀ ∈ [0,1]

UFSACO - Components

- Graph representation for searching
- Heuristic desirability
- Working cycle
- Pheromone update
- Feature selection

UFSACO – Working cycle

Feature Counter (FC)		
Feature	Visits	
F_1	0	
F_2	0	
F_3	0	
F_4	0	
F_5	0	
F_6	0	

Feature Counter (FC)		
Feature	Visits	
F_1	0	
F_2	1	
F_3	0	
F_4	0	
F_5	0	
F_6	0	

Ant 1 visiting N_{ant}=3 features

Feature Counter (FC)		
Feature	Visits	
F_1	0	
F_2	1	
F_3	1	
F_4	0	
F_5	0	
F_6	0	

Ant 1 visiting N_{ant}=3 features

Ant 2 visiting N_{ant}=3 features

Ant 2 visiting N_{ant}=3 features

Feature Counter (FC)		
Feature	Visits	
F_1	0	
F_2	2	
F_3	1	
F_4	1	
F_5	0	
F_{6}	0	

Ant 2 visiting N_{ant}=3 features

Ant 2 visiting N_{ant}=3 features

UFSACO - Components

- Graph representation for searching
- Heuristic desirability
- Working cycle
- Pheromone update
- Feature selection

UFSACO - Pheromone update

Initial pheromone value

All features start with same pheromone value

$$\tau_i(t=0)=c$$

 $au_i(t)$ Pheromone value of feature F_i in time t c Pheromone initial value parameter

UFSACO - Pheromone update

Global updating rule

Applied to all nodes after each ants' working cycle.

$$\tau_i(t+1) = (1-\rho) * \tau_i(t) + \frac{FC[i]}{\sum_{j=1}^n FC[j]}$$

 $\begin{array}{ll} \tau_{i}(t) & \text{Pheromone value of feature } F_{i} \text{ in time t} \\ \tau_{i}(t+1) & \text{Pheromone value of feature } F_{i} \text{ in time t+1} \\ \rho & \text{Pheromone evaporation parameter} \\ \text{FC[i]} & \text{Feature counter value for feature } F_{i} \end{array}$

UFSACO – Pheromone update Example

Initialize pheromone values (c=1)

UFSACO – Pheromone update Example

Update pheromone values after working cycle (ρ = 0.2)

UFSACO - Components

- Graph representation for searching
- Heuristic desirability
- Working cycle
- Pheromone update
- Feature selection

UFSACO – Feature selection

Step 1: sort features by pheromone value (decreasing order)

UFSACO – Feature selection

Step 2: select top *m* features to use for reduce original data

UFSACO – Algorithm (1)

Algorithm 1. Unsupervised Feature Selection based on Ant Colony Optimization (UFSACO)

Input: X: $p \times n$ matrix, n dimensional training set with p patterns.

 $m \le n$: the number of features to keep for final reduced feature set.

 NC_{max} : the maximum number of cycles that algorithm repeated.

NAnt: define the number of agents (number of ants).

NF: the number of features selected by each agent in each cycle.

 ρ : define the decay rate of the pheromone on each feature.

@sim: function that computes the similarity between features.

Output: \widetilde{X} : $p \times m$ matrix, reduced dimensional training set.

UFSACO – Algorithm (2)

Algorithm 1. Unsupervised Feature Selection based on Ant Colony Optimization (UFSACO)

17: Build \tilde{X} from X by keeping the top m features with highest pheromone.

18: end algorithm

```
begin algorithm
     Apply @sim to compute the similarity S_{i,j} between features, \forall i, j=1...n.
     \tau_i(1) = c, \forall i = 1...n. /* initial pheromone – c is a constant parameter*/
3:
     for t = 1 to NC_{max} do
4:
         FC[i] = 0, \forall i = 1...n. /* set the initial features counter to zero */
5:
6:
         Place the agents randomly on the graph nodes.
7:
         for i = 1 to NF do
8:
             for k = 1 to NAnt do
9:
                 Choose the next unvisited feature f according to (9) and (10). /* pseudo-random-proportional rule */
10:
                 Move the k-th agent to the new selected feature f.
                 FC[f] = FC[f] + 1; /* update feature counter associated with feature f^*/
11:
12:
             end for
13:
         end for
         \tau_i(t+1) = (1-\rho)\,\tau_i(t) + \frac{FC[i]}{\sum_{i=1}^n FC[i]}; \forall i=1...n. /* global updating rule */
14:
15: end for
16: Sort the features by decreasing order of their pheromones (\tau_i).
```


UFSACO – Demo project

https://gitlab.inf.unibz.it/aaronestrada/IntAgACOfeature https://github.com/aaronestrada/IntAgACOfeature

UFSACO – Demo project Dataset

Reuters-21578 test collection for text categorization

	Training	Test
Documents	6489	2545
Features	24087	15249

Class labels and number of documents in training and test datasets

			61		
Class	Training	Test	Class	Training	Test
earn	2848	1083	acq	1636	712
wheat	208	71	grain	83	38
money-fx	369	130	interest	342	131
corn	122	34	crude	389	189
trade	350	108	ship	142	49

UFSACO – Demo project **UFSACO UFSACO** Reuters-21578 training **?** python™ dataset **Decision Trees** Performance using subsets Information gain $P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$ Naïve Bayes Gain ratio Reuters-21578 Reduced training dataset test dataset after Feature Selection

UFSACO – Demo project Evaluation - settings

$$N_{ants}=100$$
 (Number of ants)
 $NC=50$ (Number of cycles)
 $\rho=0.2$ (Decay rate)
 $\beta=1$
 $\tau_i(t=0)=0.2$ (Initial pheromone)
 $q_0=0.7$ (Exploration-exploitation coefficient)

UFSACO – Demo project Evaluation – results

Classification results - % correct classification

Selected features	Classifier	UFSACO	Information gain	Gain ratio
5	DT	64,99	65,93	48,37
	NB	64,83	64,17	48,37
10	DT	69,93	69,12	72,38
	NB	69,43	66,64	72,77
20	DT	76,76	81,22	78,74
	NB	76,52	77,29	77,37
50	DT	84,85	85,74	79,41
	NB	85,35	82,71	77,33
75	DT	85,68	85,03	80,00
	NB	83,77	81,89	78,98

UFSACO – Demo project Evaluation – results

UFSACO – Demo project Evaluation – results

Thanks!

Any questions?

<u>ruben.estrada@stud-inf.unibz.it</u> <u>aaron.estrada.poggio@gmail.com</u>

