Kapitel 4: Netzwerkschicht

- · 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

HOCHSCHULE

Netzwerkschicht

Zusammenspiel von Routing und Forwarding

Kapitel 4: Netzwerkschicht

- · 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Prof. Dr. Parzhub Multicast-Routing

Übersicht: Routerarchitektur

- · Leitungsabschluss: physikalische Schicht, Bits empfangen
- Sicherungsschicht: z.B. Ethernet (s. Kapitel 5)
- Nachschlagen, Weiterleiten, Queuing:
 - Suche nach einem geeigneten Ausgangsport
 - Dezentral, Kopie der Routing-Tabelle (oder Teile davon) notwendig
 - Ziel: Behandlung der Pakete mit "line speed", also mit der Geschwindigkeit der Eingangsleitung des Ports
 - Puffern von Paketen, wenn die Switching Fabric belegt ist

Drei verschiedene Arten von Switchen Fakultät für FeinwerkWissenschaften - Für angewandte Wissenschaften - Für angewandte Wi

Legende:

Routerarchitektur

Crossbar - Switch: klassisch

Wikipedia: Western Electric 100-point six-wire Type B crossbar switch (1960)

Switching über einen Bus

- □Beispiel: 32-Gbps-Bus, Cisco 7600,
- □ausreichend für Zugangsrouter und Router für Firmennetze (nicht geeignet im Backbone)

HEN

30.04.2019 Prof. Dr.

Switching über ein Spezialnetz

- Ports sind über ein Netzwerk miteinander verbunden
 - Beispielsweise alle Eingangsports über einen Crossbar mit allen Ausgangsports
 - Oder Banyan-Netzwerke
 - Technologie ursprünglich für das Verbinden mehrerer Prozessoren in einem Parallelrechner entwickelt
- Weitere Fortschritte: Zerlegen der Pakete in Zellen fester Größe, Zellen können dann schneller durch die Switching Fabric geleitet werden
- Beispiel: Cisco 12000, Switching von 60 Gbps durch das interne Netz

Switching über ein Spezialnetz

Beispiel: Cisco 12000, Switching von 60 Gbps durch das interne Netz

BCM88130

HIGH-PERFORMANCE PACKET SWITCH FABRIC

FEATURES

Scales linearly to over 10 Tbps

everything®

- Non-blocking architecture
- 100 GE ready

Connecting

- 600 Gbps switched bandwidth in single device
- Central bandwidth management in single device
 - Globally managed Quality of Service (QoS)
 - Bandwidth guarantees and low latency/Jitter
 - Hierarchical VOQs with 16 COS
- High-speed 6.5 Gbps SerDes
- High-performance multicast
- Self-routing crossbar
- Reliability and availability features
 - 1+1 and load shared redundancy
 - Hardware based lossless switchover
 - Fault detection and correction
 - Graceful degradation
- Complete end-to-end application solutions

SUMMARY OF BENEFITS

- Proven fabric architecture for a range of modular platforms
- Interoperable with current QE2000 and future Queuing Engines to provide line-card future-proofing
- Central bandwidth management enforces service level agreements (SLAs) and bandwidth guarantees, including low latency and jitter services.
- Very low fabric overhead optimizes the use of backplane bandwidth.
- Line rate operation for all packet sizes with a full mesh of unicast and multicast traffic under stress
- High-performance multicast provides wirespeed nonblocking multicast while maintaining system SLAs. Streaming multicast/broadcast services such as IPTV requires these efficient multicast capabilities.
- Deep buffers provide a single control point for managing and guaranteeing QoS, and absorbing network round trip delays.
- Self-routing crossbar for chip-level autonomous operation allowing for single control point across devices and efficient multicast.

Kapitel 4: Netzwerkschicht

- · 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

Kapitel 4: Netzwerkschicht

- 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

IP-Datagrammformat

32 Bit				
Dienstart		Datagrammlänge (Byte)		
16 Bit-Identifizierung		13 Bit-Fragmentierungs-Offset		
Protokoll der darüberliegenden Schicht		Header-Prüfsumme		
32 Bit-Quell-IP-Adresse				
32 Bit-Ziel-IP-Adresse				
Optionen (falls vorhanden)				
Daten				
(der- ge Dienstart -Identifizierung Protokoll der darüberliegenden Schicht 32 Bit-Que 32 Bit-Zie Optionen (fa	der- ge Dienstart Flags Protokoll der darüberliegenden Schicht 32 Bit-Quell-IP-Adre		

Wie viel Overhead entsteht bei Verwendung von TCP?

- □ 20 Byte für den TCP-Header, 20 Byte für den IP-Header
- = 40 Byte + Overhead auf der Anwendungsschicht

IP-Fragmentierung

 Links haben eine Maximalgröße für Rahmen

 Diese nennt man Maximum Transmission Unit (MTU)

 Verschiedene Links haben unterschiedliche MTUs

 IP-Datagramme müssen unter Umständen aufgeteilt werden

> Aufteilung (Fragmentierung) erfolgt in den Routern

- Zusammensetzen (Reassembly) erfolgt beim Empfänger
- IP-Header enthält die notwendigen Informationen hierzu

IP-Fragmentierung

Beispiel: IP-Datagramm mit 4000 Byte (inklusive 20 Byte IP-Header), MTU des nächsten Links = 1500 Byte

Fragment	Bytes	ID	Offset	Flag
1. Fragment	1.480 Byte im Daten- feld des IP-Datagramms	Identifizierung = 777	Offset = 0 (d.h., die Daten sollten beginnend bei Byte 0 eingefügt werden)	Flag = 1 (d.h., da kommt noch mehr)
2. Fragment	1.480 Datenbytes	Identifizierung = 777	Offset = 185 (d.h., die Daten sollten bei Byte 1.480 beginnend eingefügt werden; beachten Sie, dass $185 \cdot 8 = 1.480$)	Flag = 1 (d.h., da kommt noch mehr)
3. Fragment	1.020 Datenbytes (= 3.980 – 1.480 – 1.480)	Identifizierung = 777	Offset = 370 (d.h., die Daten sollten beginnend bei Byte 2.960 eingefügt werden; beachten Sie, dass $370 \cdot 8 = 2.960$)	Flag = 0 (d.h., es ist das letzte Fragment)

IP-Fragmentierung

Beispiel: ping -1 1600 www.web.de

```
351 100.354998000
                        192, 168, 2, 118
                                          212.227.222.8
                                                          IPV4
                                                                    1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=77d3) [Reassembled in #352]
                        192.168.2.118
                                          212.227.222.8
                                                                     162 Echo (ping) request id=0x0001, seq=479/57089, ttl=128
   352 100.355008000
                                                          ICMP
                        212.227.222.8
                                          192.168.2.118
                                                                    1506 Fragmented IP protocol (proto=ICMP 1, off=0, ID=b7ef) [Reassembled in #355]
   353 100.402886000
                                                          IPv4
                        212.227.222.8
                                          192.168.2.118
                                                                     162 Fragmented IP protocol (proto=ICMP 1, off=1480, ID=b7ef) [Reassembled in #355]
   354 100.403052000
                                                          IPv4
                                          192.168.2.118
                                                                      42 Echo (ping) reply
                                                                                             id=0x0001, seq=479/57089, ttl=58
   355 100.403333000
                        212.227.222.8
                                                          ICMP
   356 101.356895000
                        192.168.2.118
                                          212.227.222.8
                                                          IPv4
                                                                    1514 Fragmented IP protocol (proto=ICMP 1, off=0, ID=77d4) [Reassembled in #357]
                                                                     162 Echo (ping) request id=0x0001, seq=480/57345, ttl=128
   357 101.356907000
                        192.168.2.118
                                          212.227.222.8
                                                          ICMP
⊞ Frame 352: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface 0
Ethernet II, Src: IntelCor_a3:85:1c (58:94:6b:a3:85:1c), Dst: Avm_e2:5b:8b (00:04:0e:e2:5b:8b)
□ Internet Protocol Version 4, Src: 192.168.2.118 (192.168.2.118), Dst: 212.227.222.8 (212.227.222.8)
   Version: 4
   Header length: 20 bytes

⊞ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))

   Total Length: 148
   Identification: 0x77d3 (30675)
 Fragment offset: 1480
   Time to live: 128
   Protocol: ICMP (1)
 Source: 192.168.2.118 (192.168.2.118)
   Destination: 212.227.222.8 (212.227.222.8)
   [Source GeoIP: Unknown]
   [Destination GeoIP: Unknown]
 Internet Control Message Protocol
```

Kapitel 4: Netzwerkschicht

- · 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

IP-Adressierung -Grundlagen

- IP-Adresse: 32-Bit-Kennung für das Interface (Schnittstelle) eines Endsystems oder eines Routers
- Interface: Verbindung zwischen dem System und dem Link
 - Wird normalerweise durch eine Netzwerkkarte bereitgestellt
 - Router haben typischerweise mehrere Interfaces
 - Endsysteme können ebenfalls mehrere Interfaces haben
 - Jedes Interface besitzt eine IP-Adresse

Wie viele Subnetzwerke sehen Sie?

IP-Adressierung -Adressklassen

- Früher wurden IP-Adressen in Adressklassen aufgeteilt
- Die Klasse bestimmte das Verhältnis der Längen netid/hostid
- Dies nennt man "classfull" addressing oder auch klassenbasierte Adressierung

Klasse

Adressierung von Subnetzen I

- Klasse-A- und -B-Adressen haben Platz für mehr Endsysteme, als man in einem Netzwerk sinnvoll unterbringen kann
- Daher teilt man die hostid weiter auf, z.B. so:

Klasse B:	lasse B: 1 0		netid	subnetid	hostid
			14 Bit	8 Bit	8 Bit

 Die Unterteilung (subnetid, hostid) ist eine lokale Entscheidung und wird von der Organisation vorgenommen, der die netid zugeordnet wurde

Adressierung von Subnetzen II

Die subnetid ist außerhalb des Netzwerkes, für das sie verwendet wird, nicht sichtbar:

31

Adressierung von Subnetzen III

- Subnetzmaske (subnet mask)
 - Wird für jede IP-Adresse eines Systems im System gespeichert
 - Sie identifiziert, welcher Teil der Adresse zur subnetid und welcher zur hostid gehört

	16 Bit	8 Bit	8 Bit
Beispiel (Class B)	111111111111111	11111111	00000000

subnet mask: 0xffffff00=255.255.255.0 oder auch /24

- Die eigene IP-Adresse in Verbindung mit der Subnetzmaske erlaubt Rückschlüsse darüber, wo sich eine andere IP-Adresse befindet:
 - im selben Subnetz (also direkt erreichbar)
 - im selben Netzwerk, aber in einem anderen Subnetz
 - in einem anderen Netzwerk

Beispiel für die Verwendung von Subnetzmasken

- Gegeben:
 - Eigene IP-Adresse: 134.155.48.10
 - Subnetzmaske: 255.255.255.0
 - Adresse A: 134.155.48.96, Adresse B: 134.155.55.96
- · Überprüfen der beiden Adressen:
 - 134.155.48.10 & 255.255.255.0 = 134.155.48.0
 - 134.155.48.96 & 255.255.255.0 = 134.155.48.0 identisch, gleiches Subnetz
 - 134.155.55.96 & 255.255.255.0 = 134.155.55.0 verschieden, anderes Subnetz

Subnetzmasken variabler Länge

- Problem: Gegeben sei ein Klasse-C-Netzwerk, welches in zwei Subnetze mit 50 Endsystemen und ein Subnetz mit 100 Endsystemen unterteilt werden soll.
- Das funktioniert nicht mit einer einzelnen Subnetzmaske!
 - 255.255.255.128: zwei Netze mit je 128 hostids
 - 255.255.255.192: vier Netze mit je 64 hostids
- Lösung: Subnetzmasken variabler Länge
 - Unterteile den Adressraum zunächst mit der kürzeren Subnetzmaske (1 Bit im Beispiel)
 - Unterteile eine Hälfte davon weiter mit der längeren Subnetzmaske (2 Bit im Beispiel)
 - Resultat: Subnetze verschiedener Größe

Adressvergabe - Hosts

<u>Frage:</u> Wie bekommt ein Host seine IP-Adresse?

- Durch manuelle Konfiguration:
 - IP-Adresse
 - Subnetzmaske
 - Weitere Parameter
- DHCP: Dynamic Host Configuration Protocol: dynamisches Beziehen der Adresse von einem Server
 - "Plug-and-Play"

DHCP-Szenario

DHCP-Szenario

Fakultät für Feinwerk
HOCHSCHULI
FÜR ANGEWANDTE
.....^SENSCHAFTEN-FH

Ankommender ÜNCHEN
Client

DHCP verwendet UDP.

DHCP-Nachrichten werden an die MAC-Broadcast-Adresse geschickt.

Es gibt ein Feld, in dem eine eindeutige Kennung des Clients verpackt ist. Dies ist meist die MAC-Adresse

Besondere Adressen (RF und Mikrotecnik, pholikalisce it in a 330 München wissenschaften of München with München wissenschaften of München wissenschaften of München with Münch

Address Block	Present Use	Reference	
0.0.0.0/8	"This" Network		[RFC1700, page 4]
10.0.0.0/8	Private-Use Networks		[RFC1918]
14.0.0.0/8	Public-Data Networks		[RFC1700, page 181]
24.0.0.0/8	Cable Television Networks	3	
39.0.0.0/8	Reserved but subject to	allocation	[RF <i>C</i> 1797]
127.0.0.0/8	Loopback		[RFC1700, page 5]
128.0.0.0/16	Reserved but subject to	allocation	
169.254.0.0/16	Link Local		
172.16.0.0/12	Private-Use Networks		[RFC1918]
191.255.0.0/16	Reserved but subject to	o allocation	
192.0.0.0/24	Reserved but subject to		
192.0.2.0/24	Test-Net		
192.88.99.0/24	6to4 Relay Anycast		[RFC3068]
192.168.0.0/16	Private-Use Networks		[RFC1918]
198.18.0.0/15	Network Interconnect D	evice Benchmark Testing	[RFC2544]
223.255.255.0/2	24 Reserved but subject	to allocation	
224.0.0.0/4	Multicast		[RFC3171]
240.0.0.0/4	Reserved for Future Use		[RFC1700, page 4]

30.04.2019 Prof. Dr. Parzhuber 44

NAT: Network Address Translation

NAT: Network Address Translation

- 16-Bit-Port Number-Feld:
 - Mehr als 60.000 gleichzeitige Verbindungen mit einer IP-Adresse
- NAT ist nicht unumstritten:
 - Router sollten nur Informationen der Schicht 3 verwenden
 - Verletzung des sogenannten Ende-zu-Ende-Prinzips (end-to-end principle):
 - Transparente Kommunikation von Endsystem zu Endsystem, im Inneren des Netzes wird nicht an den Daten "herumgepfuscht"
 - Bei NAT: Der Anwendungsentwickler muss die Präsenz von NAT-Routern berücksichtigen. Beispiele:
 - Verwenden der IP-Adresse als weltweit eindeutige Nummer
 - Verwenden von UDP
 - NAT dient hauptsächlich der Bekämpfung der Adressknappheit im Internet. Dies sollte besser über IPv6 (s. später) erfolgen

30.04.2019 Prof. Dr. Parzhuber 49

Durchqueren von NAT

- Engl. NAT traversal
- Der Client möchte den Server mit der Adresse 10.0.0.1 kontaktieren
 - Die Adresse 10.0.0.1 ist eine lokale Adresse und kann nicht als Adresse im globalen Internet verwendet werden
 - Die einzige nach außen sichtbare Adresse ist: 138.76.29.7
- Lösung 1: Statische Konfiguration von NAT, so dass eingehende Anfragen geeignet weitergeleitet werden
 - Beispiel: (123.76.29.7, Port 2500) wird immer an 10.0.0.1, Port 25000 weitergeleitet

Durchqueren von NAT

- Lösung 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Dies ermöglicht dem Host hinter dem NAT Folgendes:
 - v Herausfinden der öffentlichen IP-Adresse des NAT-Routers (138.76.29.7)
 - v Kennenlernen existierender Abbildungen in der NAT-Tabelle
 - v Einträge in die NAT-Tabelle einfügen oder aus ihr löschen

Das heißt automatische Konfiguration von statischen NAT-Einträgen

Durchqueren von NAT

- Lösung 3: Relaying (von Skype verwendet)
 - Server hinter einem NAT-Router baut eine Verbindung zu einem Relay auf (welches nicht hinter einem NAT-Router liegt)
 - Client baut eine Verbindung zum Relay auf

- Relay leitet die Pakete vom Client zum Server und umgekehrt

weiter

2. Verbinden mit dem Relay

1. Verbinden mit dem Relay

3. Weiterleiten der Daten

138.76.29.7 NAT-Router

Kapitel 4: Netzwerkschicht

- 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

ICMP: Internet Control Message Protocol Missenschaften Franchick Und Mikrotechnik, Physikalische Protocol Missenschaften Franchick Und Mikrotechnik, Physikalische Protocol Message Protocol Message Protocol Missenschaften Franchick Und Mikrotechnik, Physikalische Protocol Message Protocol Messag

•	Wird von Hosts und Routern	<u>Type</u>	<u>Code</u>	Beschreibung
	verwendet, um Informationen	0	0	echo reply (ping)
	über das Netzwerk selbst zu	3	0	dest. network unreachable
	verbreiten	3	1	dest host unreachable
	- Fehlermeldungen: Host,	3	2	dest protocol unreachable
	Netzwerk, Port, Protokoll	3	3	dest port unreachable
	nicht erreichbar	3	6	dest network unknown
	 Echo-Anforderung und 	3	7	dest host unknown
	Antwort (von ping genutzt)	4	0	source quench (congestion
•	Gehört zur Netzwerkschicht,			control - not used)
	wird aber in IP-Datagrammen	8	0	echo request (ping)
	transportiert	9	0	route advertisement
	•	10	0	router discovery
•	ICMP-Nachricht: Type, Code	11	0	TTL expired
	und die ersten 8 Byte des IP- Datagramms, welches die	12	0	bad IP header
	Nachricht ausgelöst hat			

04.2019 Prof. Dr. Parzhuber

Traceroute und ICMP

Aufgabe:

- Traceroute bestimmt Informationen über alle Router, die auf dem Weg zu einer IP-Adresse liegen
- Dabei wird auch die Round-Trip-Zeit zu jedem Router bestimmt

Funktionsweise:

- Traceroute schickt ein UDP-Paket an die Adresse, für die der Weg untersucht werden soll; TTL im IP-Header wird auf 1 gesetzt
- Der erste Router verwirft das IP-Paket (TTL = 1!) und schickt eine ICMP-Time-Exceeded-Fehlermeldung an den Absender
- Traceroute wiederholt dies mit TTL = 2 etc.

ICMP-Time-Exceeded-Nachricht

0 7 15 31

IP-Header (20 bytes)				
Type (11)	Type (11) Code (0) Checksumme			
Frei (0)				

IP-Header (inkl. Optionen) + die ersten 8 Byte der Daten des verworfenen IP-Paketes

Kapitel 4: Netzwerkschicht

- · 4.1 Einleitung
- 4.2 Aufbau eines Routers
- 4.3 IP: Internet Protocol
 - Datagrammformat
 - IPv4-Adressierung
 - ICMP
 - IPv6

- 4.4 statisches Routen
- 4.5 Routing-Algorithmen
 - Link State
 - Distance Vector
 - Hierarchisches Routing
- 4.6 Routing im Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast- und Multicast-Routing

IPv6

- Ursprüngliche Motivation: 32-Bit-Adressen werden in naher Zukunft komplett zugeteilt sein
 - NAT hat dies ein wenig verzögert, aber das grundlegende Problem nicht gelöst
 - Beispiel: Was passiert, wenn jedes Handy eine feste IP-Adresse bekommen soll?
- Weitere Motivation:
 - Vereinfachtes Header-Format für eine schnellere Verarbeitung in den Routern
 - Header soll Dienstgütemechanismen (Quality of Service, QoS) unterstützen
- IPv6-Datagrammformat:
 - Header fester Länge (40 Byte)
 - keine Fragmentierung in den Routern

IPv6-Header

Verkehrsklasse: Priorisierung von Datagrammen Flow Label: Identifikation von zusammengehörigen Flüssen von Datagrammen (z.B. ein Voice-over-IP-Telefonat)
Nächster Header: An welches Protokoll sollen die Daten im Datenteil

übergeben werden? Beispiel: TCP!

32 Bit					
Version	Verkehrsklasse	Flow-Label			
Nutzdatenlänge Nächster Header Hop-Limit					
Quelladresse (128 Bit)					
Zieladresse (128 Bit)					
Daten					

22 0:4

30.04.2019 FIG. Dr. Parzinuper 60

- Checksumme: entfernt, um die Verarbeitung in den Routern zu erleichtern
- Optionen: als separate Header, die auf den IP-Header folgen
 - Werden durch das "Nächster Header"-Feld angezeigt
 - Einfachere Behandlung in Hosts und Routern
- ICMPv6: neue Version von ICMP
 - Zusätzliche Pakettypen, z.B. "Packet Too Big"
 - Funktionen zur Verwaltung von Multicast-Gruppen (später mehr)

Übergang von IPv4 zu IPv6

- Es können nicht alle Router gleichzeitig umgestellt werden
 - Wie kann ein Netzwerk funktionieren, in dem sowohl IPv4- als auch IPv6-Router vorhanden sind?
- Tunneling: IPv6 wird im Datenteil von IPv4-Datagrammen durch das klassische IPv4-Netzwerk transportiert

Tunneling

Logische Sicht

Reale Situation

