Ι-

I.A -

Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{1}{n^{\alpha}} z^n$. Pour $z \neq 0$, $u_n(z) \neq 0$, donc

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{\frac{1}{(n+1)^{\alpha}} z^{n+1}}{\frac{1}{(n)^{\alpha}} z^n} \right| = \left| \left(\frac{n}{n+1} \right)^{\alpha} z \right| \xrightarrow[n \to +\infty]{} |z|$$

Par le critère de d'Alembert

 $\sum u_n(z)$ est absolument convergente lorsque |z|<1 $\sum u_n(z)$ est grossièrement divergente lorsque |z|>1

On a donc $R(\sum \frac{1}{n^{\alpha}}z^n)=1$

I.B -

Pour tout $n \in \mathbb{N}$, on pose $u_n = n! \times z^{n^2}$. Pour $z \neq 0$, $u_n(z) \neq 0$, donc

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| (n+1) \times z^{2n+1} \right|$$

Par le critère de d'Alembert

lorsque |z| < 1, $|(n+1) \times z^{2n+1}| \xrightarrow[n \to +\infty]{} 0$, $\sum u_n(z)$ est absolument convergente lorsque $|z| \ge 1$, $|(n+1) \times z^{2n+1}| \xrightarrow[n \to +\infty]{} +\infty$, $\sum u_n(z)$ est grossièrement divergente On a donc $R(\sum n! \times z^{n^2}) = 1$

I.C -

Pour tout $n \in \mathbb{N}$, on pose $u_n = n! \times z^{n!}$. Pour $z \neq 0$, $u_n(z) \neq 0$, donc

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| (n+1) \times z^{n \times n!} \right|$$

Par le critère de d'Alembert

lorsque |z| < 1, $|(n+1) \times z^{n \times n!}| \xrightarrow[n \to +\infty]{} 0$, $\sum u_n(z)$ est absolument convergente lorsque $|z| \ge 1$, $|(n+1) \times z^{n \times n!}| \xrightarrow[n \to +\infty]{} +\infty$, $\sum u_n(z)$ est grossièrement divergente On a donc $R(\sum n! \times z^{n!}) = 1$

II -

II.A -

Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{z^{n+1}}{n+1}$. Pour $z \neq 0$, $u_n(z) \neq 0$, donc

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \left(\frac{n+1}{n+2} \right) \times z \right| \xrightarrow[n \to +\infty]{} |z|$$

Par le critère de d'Alembert

 $\sum u_n(z)$ est absolument convergente lorsque |z| < 1

 $\sum u_n(z)$ est grossièrement divergente lorsque |z|>1

On a donc
$$R(\sum \frac{z^{n+1}}{n+1}) = 1$$

II.B -

On a $x = |z| \in \mathbb{R}_+$, donc

- \blacktriangleright lorsque x > 1, $\sum u_n(z)$ est grossièrement divergente
- ▶ lorsque x < 1, on note

$$S(x) = \sum_{n>0} \frac{z^{n+1}}{n+1} = \sum_{n>0} \frac{e^{(n+1)i\theta}}{n+1} x^{n+1}$$

la série dérivée est donc $\sum_{n\geq 0} e^{(n+1)i\theta} x^n$, de même rayon de convergence R=1. Pour tout $x\in [0,1[$, on a donc

$$S'(x) = \sum_{n=0}^{+\infty} e^{(n+1)i\theta} x^n = e^{i\theta} \sum_{n=0}^{+\infty} (e^{i\theta} x)^n = \frac{e^{i\theta}}{1 - xe^{i\theta}}$$

 $\operatorname{car} |e^{i\theta}x| = |e^{i\theta}||x| < 1 \operatorname{Donc}$

$$S(x) = -\ln(1 - e^{i\theta}x) + C$$

Comme S(0) = 0, on a C = 0, donc $S(x) = -\ln(1 - e^{i\theta}x)$

lorsque $x=1, S(x)=\sum_{n\geq 0}\frac{e^{(n+1)i\theta}}{n+1}$. On sait que cette série converge sauf en z=1 d'après le cours.

II.C -

Soient $\theta \in]0, 2\pi[$, on a x = |z| = 1. Par les résultats précédents, on a $\sum_{n=0}^{+\infty} \frac{e^{(n+1)i\theta}}{n+1}$ converge, et par continuité radicale, on a

$$\sum_{n=0}^{+\infty} \frac{e^{(n+1)i\theta}}{n+1} = \lim_{x \to 1^{-}} S(x) = -(1 - e^{i\theta})$$