AC Cheatsheet

Diego Trapero

Table of contents

1	AC Cheatsheet			2
	1.1	Sinusoidal signal		2
	1.2	Phasors and complex numbers		
		1.2.1	Phasor	2
		1.2.2	Generalized Ohm Law, complex impedance	2
	1.3	AC Po	ower	3
2	2 Three-phase systems			

1 **AC** Cheatsheet

1.1 Sinusoidal signal

A sinusoidal signal in AC takes the form

$$s(t) = \sqrt{2}A \cdot \cos\left(\omega t + \varphi\right)$$

where

- $A \equiv A_{RMS}$ is the RMS value of the signal
- ω is the angular frequency, $\omega = 2\pi f [rad/s]$
- Frecuency, $f = \omega/2\pi$
- Period, T = 1/f
- Amplitude of the signal is $A/\sqrt{2}$

Note: In AC the sinusoidal function amplitude is taken as $A/\sqrt{2}$, so A is the RMS value of the signal. This way, we can directly use the RMS values of the signals to make calculations with power.

Average and RMS values

• Average value: $S_{AVG} = 0$

• RMS value: $S_{RMS} = A$

Phasors and complex numbers 1.2

1.2.1 **Phasor**

$$s(t) = \sqrt{2}A \cdot \cos(\omega t + \varphi) \rightarrow \mathbf{S} = A\angle\varphi$$

In physics and engineering, a phase vector, or phasor, is a representation of a sinusoidal function whose amplitude, frequency, and phase are time-invariant

Euler's formula indicates that sinusoids can be represented mathematically by the sum of two complex-valued functions:

$$A \cdot \cos{(\omega t + \theta)} = A \cdot \frac{e^{i(\omega t + \theta)} + e^{-i(\omega t + \theta)}}{2}$$

or by the real part of one of the functions:

$$A \cdot \cos \left(\omega t + \theta\right) = \operatorname{Re}\left\{A \cdot e^{i(\omega t + \theta)}\right\} \\ = \operatorname{Re}\left\{Ae^{i\theta} \cdot e^{i\omega t}\right\}.$$

The term phasor can refer to either $Ae^{i\theta}e^{i\omega t}$ or just the complex constant, $Ae^{i\theta}$. In the latter case, it is understood to be a shorthand notation, encoding the amplitude and phase of an underlying sinusoid.

An even more compact shorthand is angle notation: $A \angle \theta$.

Generalized Ohm Law, complex impedance

The Generalized Ohm Law:

$$V = ZI$$

2

where \mathbf{Z} is

- $\mathbf{Z} = R$ for resistors
- $\mathbf{Z} = \frac{1}{j\omega C} = \frac{-j}{\omega C}$ for capacitors $\mathbf{Z} = j\omega L$ for inductors

1.3 AC Power

Power in a two-terminal component

• Voltage: $v(t) = \sqrt{2}V \cdot \cos(\omega t)$ ($\varphi = 0$ because it's the reference)

• Current: $i(t) = \sqrt{2}I \cdot \cos(\omega t - \varphi)$

Instantaneous power

1. Instantaneous power definition

$$\begin{aligned} p(t) &= v(t)i(t) \\ &= \sqrt{2}V\cos\left(\omega t\right) \cdot \sqrt{2}I\cos\left(\omega t - \varphi\right) \\ &= 2VI\cos\left(\omega t\right)\cos\left(\omega t + \varphi\right) \end{aligned}$$

2. Transform into sum of cosines using the identity $\cos{(a \cdot b)} = \frac{1}{2}[\cos{(a+b)} + \cos{(a-b)}]$

$$\begin{split} p(t) &= 2VI \cdot \frac{1}{2} [\cos{(\omega t - \omega t + \varphi)} + \cos{(\omega t + \omega t - \varphi)}] \\ &= VI [\cos{(\varphi)} + \cos{(2\omega t - \varphi)}] \\ &= VI \cos{(\varphi)} + VI \cos{(2\omega t - \varphi)} \end{split}$$

The instantaneous power in an AC component is:

$$p(t) = VI\cos(\varphi) + VI\cos(2\omega t - \varphi)$$

We observe

• Power in the component has a constant term $VI\cos(\varphi)$ and a fluctuating term that varies with time $VI\cos(2\omega t - \varphi)$.

Average power

The instantaneous power is $p(t) = VI\cos(\varphi) + VI\cos(2\omega t - \varphi)$, so we can calculate the average power using the definition:

3

$$p(t) = integralVI\cos(\varphi) + VI\cos(2\omega t - \varphi)$$

Active and reactive power

• Active power: $P = VI \cos(\varphi)$

• Reactive power: $Q = VI \sin(\varphi)$

Complex and apparent power

• Complex power is the complex number $\mathbf{S} = \mathbf{V}\mathbf{I}^* = P + Qj$

• Apparent power is the module of the complex power, S=VI

Power factor

$$PF = \frac{P}{S}$$

$$PF = \cos\left(\varphi\right)$$

AC power in a resistor

$$P=VI$$

$$Q = 0$$

Power in a inductor

Power in a capacitor

2 Three-phase systems

Delta-Wye transform

$$Z_{\Delta} = 3Z_{Y}$$