Notes of Probability Theory

董海辰 518030910417 with help from 毛昕渝

March 12, 2020

☐1: Definitions

- From digits(tree paths) to intervals.
- normal numbers
- A subset A of \mathbb{R} is *negligible* if $\forall \varepsilon > 0$, there exists a finite or countable collection I_1, I_2, \cdots of (possibly overlapping) intervals satisfying: $A \subset \bigcup_k I_k$ and $\sum_k |I_k| < \varepsilon$.

Every path of the binary tree is a real number in binary form.

Two numbers are equal if there are no paths between: e.g. $0.010000 \cdots$ and $0.0011111 \cdots$.

 $P(\omega:d(i,\omega)=u_i,i=1,2,\cdots,n)=2^{-n}.$

Figure 1: digits to intervals

2: Weak Law of Large Numbers

$$\forall \varepsilon > 0, \lim_{n \to \infty} P(\omega \in \Omega : |\frac{\sum_{i=1}^{n} d_i(\omega)}{n} - \frac{1}{2}| \ge \varepsilon) = 0.$$

For each n, the P can be calculated by summing up the lengths of every interval that meet the condition.

Let
$$r_i(\omega) = 2d_i(\omega) - 1$$
.

 $r_i(\omega)$ are Orthonomal basis, i.e.

$$\int_{\Omega} r_i(\omega) r_j(\omega) dw = \delta_{i,j}.$$

 $\int_{\Omega} r_i(\omega) r_j(\omega) \mathrm{d}w = \delta_{i,j}.$ If $i \neq j$, say i < j, there are equal number if intervals that $r_j(\omega) = 1$ and $r_j(\omega) = -1$,

Let $S_n(\omega) = \sum_{i=1}^n r_i(\omega)$,

$$P[\omega:|S_n(\omega)| \ge 2n\varepsilon] \le \frac{1}{4n^2\varepsilon^2} \int_0^1 S_n^2(\omega) d\omega$$
$$= \frac{1}{4n^2\varepsilon^2} n = \frac{1}{4n\varepsilon^2} \to 0.$$

Here applied the Chebyshev's Inequality:

$$P[|X - E(X)| \ge b] \le \frac{Var(X)}{b^2}.$$

And note that $r_i(\omega)$ are orthogonal,

$$Var(S_n(\omega)) = \int_{\Omega} S_n^2(\omega) d\omega = \int_{\Omega} (\sum r_i(\omega))^2 d\omega = \int_{\Omega} r_i^2(\omega) d\omega = n.$$

3: Strong Law of Large Numbers

Borel's Normal Number Theorem

The complement of the set of normal numbers to base 2 is uncountable but negligible.

$$\mathcal{N} = \{\omega : \lim_{n \to \infty} \frac{S_n(\omega)}{n} = 0\}.$$

 $\Omega \backslash \mathcal{N}$ is uncountable, but

$$\forall \varepsilon > 0, \exists I_1, I_2, \cdots I_n \cdots, \Omega \backslash \mathcal{N} \subseteq \bigcup_i I_i, \sum_i |I_i| < \varepsilon.$$

Let $A_n = [\omega : |\frac{S_n(\omega)}{n} \ge \varepsilon_n]$ where $e_n \to 0$. Thus

$$\Omega \backslash \mathcal{N} = \lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n.$$

We have
$$\omega \in \mathcal{N} \iff \forall \varepsilon > 0, \exists m > 0, \forall n > m, |\frac{S_n}{n}| < \varepsilon \iff \omega \notin \bigcup_{n=m}^{\infty} A_n.$$
 And show $|\Omega \backslash \mathcal{N}| < \sum_{n=m}^{\infty} |A_n| < \varepsilon_n$

$$P[\omega : |\frac{S_n(\omega)}{n}| \ge \varepsilon_n] \le \frac{1}{n^4 \varepsilon_n^4} \int_0^1 S_n^4(\omega) d\omega$$
$$= \frac{n + 3n(n-1)}{n^4 \varepsilon_n^4} \le \frac{3}{n^2 \varepsilon_n^4}.$$

Let $1_{A_n}(\omega) = 1$ for all $\omega \in A_n$ and be 0 otherwise. Then $\forall \omega \in \Omega, 1_{A_n}(\omega) \leq \frac{S_n^4(\omega)}{n^4 \varepsilon_n^4}$. We can get

$$P[\omega : \omega \in A_n] = \int_{\Omega} 1_{A_n}(\omega) d\omega \le \int_{\Omega} \frac{S_n^4(\omega)}{n^4 \varepsilon_n^4} d\omega.$$

Similarly, $S_n^4(\omega)=(\sum_{i=1}^n r_i(\omega))^4$. Terms with non-zero values are: $\quad \bullet \quad r_i^4(\omega)=1 \\ \quad \bullet \quad r_i^2(\omega)r_j^2(\omega)=1$

With sum $\binom{n}{1} + \binom{n}{2} \cdot \binom{4}{2} = n + 3n(n-1)$.

 $\{e_n\}$ is a sequence with $\lim_{n\to\infty}e_n=0$, we can let $e_n=n^{-\frac{1}{8}}$, and

$$\sum_{n=1}^{\infty} |A_n| \le \sum_{n=1}^{\infty} \frac{3}{n^{\frac{3}{2}}}$$

, which is convergent. And intervals of $\bigcup_{n=m}^{\infty} A_n$ is countable. Thus

$$\forall \varepsilon > 0, \exists m > 0, \Omega \backslash \mathcal{N} \subseteq \bigcup_{n=m}^{\infty} A_n, \sum_{n=m}^{\infty} |A_n| < \varepsilon.$$

If we use the inequality in proof of WLLN: $P[\omega : \omega \in A_n] \leq \frac{1}{n\epsilon_n^2}$. In this case, whatever $\{e_n\}$ we choose, the sum will never be convergent.