# Ćwiczenia z algebry Boole'a

Rozwiążemy serię zadań dotyczących dotychczas omówionej problematyki.

#### Ćwiczenie.

Uprościć wyrażenie algebry Boole'a oraz podać jego realizację przy pomocy bramek:

$$\overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, C = (\overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C}) + (\overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C}) + (\overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C}) + (\overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C}) = \overline{B} \, \overline{C} (A + \overline{A}) + \overline{A} \, \overline{C} (\overline{B} + B) + \overline{A} \, \overline{B} (\overline{C} + C) = \overline{B} \, \overline{C} + \overline{A} \, \overline{C} + \overline{A} \, \overline{B}.$$

Realizacja typu And-to-Or:



Realizacja typu Nand-to-Nand:

$$\frac{\overline{B}}{\overline{C}} \longrightarrow \stackrel{B+C}{\longrightarrow} \stackrel{A+C}{\longrightarrow} \longrightarrow \overline{(B+C)} + \overline{(A+C)} + \overline{(A+B)} = \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{A} \cdot \overline{B}$$

$$\frac{\overline{A}}{\overline{B}} \longrightarrow \stackrel{A+B}{\longrightarrow} \stackrel{$$

b)
$$A(A+B+C)(\overline{A}+B+C)(A+\overline{B}+C)(A+B+\overline{C}) = A((A+B+C)(\overline{A}+B+C))((A+B+C)(A+\overline{B}+C))((A+B+C)(A+B+\overline{C})) = A((B+C)+A\overline{A})((A+C)+B\overline{B})((A+B)+C\overline{C}) = A(B+C)(A+C)(A+B) = (B+C)(A(A+C))(A(A+B)) = (B+C)AA = A(B+C) = AB+AC.$$
Realizacja typu Or-to-And:



Realizacja typu And-to-Or:



Realizacja typu Nor-to-Nor:

$$\overline{A} \longrightarrow \overline{B} \cdot \overline{C}$$

$$\overline{A} \longrightarrow \overline{(\overline{B} \cdot \overline{C})(\overline{A})} = (B + C) A$$

Realizacja typu Nand-toNand:



# <u>Ćwiczenie</u>.

Uprościć wyrażenie algebry Boole'a:

a)  

$$AB + A\overline{B} + \overline{A}C + \overline{A}\overline{C} = (AB + A\overline{B}) + (\overline{A}C + \overline{A}\overline{C}) = A(B + \overline{B}) + \overline{A}(C + \overline{C}) = A + \overline{A} = 1.$$
b)  

$$XY(\overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z}) = XY((\overline{X}Y\overline{Z} + \overline{X}\overline{Y}\overline{Z}) + (X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z})) = XY(\overline{X}\overline{Z}(Y + \overline{Y}) + \overline{Y}\overline{Z}(X + \overline{X})) = XY(\overline{X}\overline{Z} + \overline{Y}\overline{Z}) = XY(\overline{X}\overline{Z} + XY\overline{Y}\overline{Z} = 0 + 0 = 0.$$

#### Ćwiczenie.

Przekształcić wyrażenie do najprostszej postaci sumy iloczynów:

a)  

$$(\overline{A} + C)(\overline{A} + \overline{B} + \overline{C})(A + \overline{B}) = ((\overline{A} \overline{A} + \overline{A} \overline{B} + \overline{A} \overline{C} + C \overline{A}) + C \overline{B} + C \overline{C})(A + \overline{B}) =$$

$$(\overline{A}(1 + \overline{B} + \overline{C} + C) + \overline{B}C)(A + \overline{B}) = (\overline{A} + \overline{B}C)(A + \overline{B}) = \overline{A}A + (\overline{A} \overline{B} + \overline{B}CA + \overline{B}C\overline{B}) =$$

$$\overline{B}(\overline{A} + (AC + C)) = \overline{B}(\overline{A} + C(A + 1)) = \overline{B}(\overline{A} + C) = \overline{A}\overline{B} + \overline{B}C.$$

**b)** 
$$(A+B\overline{C})(\overline{A}\overline{B}+\overline{A}B) = (A+B\overline{C})\overline{A}(\overline{B}+B) = (A+B\overline{C})\overline{A} = A\overline{A}+B\overline{C}\overline{A} = \overline{A}B\overline{C}.$$

c)  

$$(\overline{A} + C)(AB + \overline{A}\overline{B} + AC) = \overline{A}AB + \overline{A}\overline{A}\overline{B} + \overline{A}AC + CAB + C\overline{A}\overline{B} + CAC =$$
  
 $(\overline{A}\overline{B} + \overline{A}\overline{B}C) + (ABC + AC) = \overline{A}\overline{B}(1+C) + AC(B+1) = \overline{A}\overline{B} + AC.$ 

# <u>Ćwiczenie</u>.

Zaprojektować możliwie najprostsze wyrażenie logiczne w postaci kanonicznej sumy iloczynów, przedstawić jego możliwe realizacje przy pomocy bramek:

|   | Input |   |   |  |  |
|---|-------|---|---|--|--|
| X | Y     | Z | A |  |  |
| 0 | 0     | 0 | 0 |  |  |
| 0 | 0     | 1 | 1 |  |  |
| 0 | 1     | 0 | 0 |  |  |
| 0 | 1     | 1 | 0 |  |  |
| 1 | 0     | 0 | 0 |  |  |
| 1 | 0     | 1 | 0 |  |  |
| 1 | 1     | 0 | 1 |  |  |
| 1 | 1     | 1 | 0 |  |  |

Dodajemy do tabeli definicyjnej dodatkową kolumnę iloczynów:

| Input |   |   | Output | Постин                      |
|-------|---|---|--------|-----------------------------|
| X     | Y | Z | Ā      | Iloczyny                    |
| 0     | 0 | 0 | 0      |                             |
| 0     | 0 | 1 | 1      | $\overline{X}\overline{Y}Z$ |
| 0     | 1 | 0 | 0      |                             |
| 0     | 1 | 1 | 0      |                             |
| 1     | 0 | 0 | 0      |                             |
| 1     | 0 | 1 | 0      |                             |
| 1     | 1 | 0 | 1      | $XY\overline{Z}$            |
| 1     | 1 | 1 | 0      |                             |

Stąd szukane wyrażenie ma postać|:

$$A = \overline{X} \overline{Y} Z + X Y \overline{Z}$$
.

Może być ono zrealizowane przy pomocy układu bramek typu *And-to-Or* lub *Nand-to-Nand*:

$$\overline{Y}$$
 $\overline{X}$ 
 $\overline{Z}$ 
 $\overline{X}$ 
 $\overline{Y}$ 
 $\overline{Z}$ 
 $\overline{X}$ 
 $\overline{Y}$ 
 $\overline{Z}$ 
 $\overline{X}$ 
 $\overline{Y}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 
 $\overline{Z}$ 

$$\overline{Y} = \overline{X} = X + Y + \overline{Z}$$

$$Y = \overline{X} = \overline{$$

# Ćwiczenie.

Zaprojektować możliwie najprostsze wyrażenie logiczne w postaci kanonicznej iloczynu sum, przedstawić jego możliwe realizacje przy pomocy bramek:

|   | Output |   |   |
|---|--------|---|---|
| A | B      | C | Z |
| 0 | 0      | 0 | 0 |
| 0 | 0      | 1 | 1 |
| 0 | 1      | 0 | 1 |
| 0 | 1      | 1 | 0 |
| 1 | 0      | 0 | 1 |
| 1 | 0      | 1 | 1 |
| 1 | 1      | 0 | 0 |
| 1 | 1      | 1 | 0 |

Dodajemy do tabeli definicyjnej dodatkową kolumnę sum:

|   | Input |   |   | Carrons                                      |
|---|-------|---|---|----------------------------------------------|
| A | В     | C | Z | Sumy                                         |
| 0 | 0     | 0 | 0 | A+B+C                                        |
| 0 | 0     | 1 | 1 |                                              |
| 0 | 1     | 0 | 1 |                                              |
| 0 | 1     | 1 | 0 | $A + \overline{B} + \overline{C}$            |
| 1 | 0     | 0 | 1 |                                              |
| 1 | 0     | 1 | 1 |                                              |
| 1 | 1     | 0 | 0 | $\overline{A} + \overline{B} + C$            |
| 1 | 1     | 1 | 0 | $\overline{A} + \overline{B} + \overline{C}$ |

Stąd szukane wyrażenie ma postać|:

$$A = (A + B + C) \left( (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) \right) \left( (\overline{A} + \overline{B} + C) (\overline{A} + \overline{B} + \overline{C}) \right) = (A + B + C) \left( (\overline{B} + \overline{C}) + A \overline{A} \right) \left( (\overline{A} + \overline{B}) + C \overline{C} \right) = (\overline{B} + \overline{C}) (\overline{A} + \overline{B}) (A + B + C).$$

Może być ono zrealizowane przy pomocy układu bramek typu *Or-to-And* lub *Nor-to-Nor*:

$$\frac{\overline{B}}{\overline{C}} \longrightarrow \overline{B} + \overline{C}$$

$$\frac{\overline{A}}{\overline{B}} \longrightarrow \overline{A} + \overline{B} \longrightarrow \overline{C}$$

$$\frac{\overline{B}}{\overline{C}} \longrightarrow \overline{A} + \overline{B} + C$$

$$\frac{\overline{B}}{\overline{C}} \longrightarrow \overline{A} + \overline{B} + C$$

$$\frac{\overline{B}}{\overline{C}} \longrightarrow \overline{A} + \overline{B} \longrightarrow \overline{C}$$

$$\frac{\overline{A}}{\overline{B}} \longrightarrow \overline{A} \longrightarrow \overline{A} \longrightarrow \overline{B} \longrightarrow \overline{C}$$

$$\overline{A} \longrightarrow \overline{A} \longrightarrow \overline{A} \longrightarrow \overline{A} \longrightarrow \overline{B} \longrightarrow \overline{C}$$

$$\overline{A} \longrightarrow \overline{A} \longrightarrow \overline{A} \longrightarrow \overline{B} \longrightarrow \overline{C}$$

$$\overline{A} \longrightarrow \overline{A} \longrightarrow \overline{B} \longrightarrow \overline{C}$$

#### Ćwiczenie.

Przekształcić wyrażenie do najprostszej postaci kanonicznej iloczynu sum, w przypadku *b)* podać jego realizacje przy pomocy bramek:

a)  

$$W = A\overline{B}(A+B)(\overline{B}+\overline{C}) = ((A+0)(A+B))((\overline{B}+0)(\overline{B}+\overline{C})) = (A+0\cdot B)(\overline{B}+0\cdot \overline{C}) = A\overline{B}.$$
b)  

$$W = (A+\overline{B}+C)(AB+\overline{A}C).$$

Wyjściowa postać wyrażenia W nie jest w żadnej postaci kanonicznej i dlatego przekształcimy najpierw wyrażenie  $\overline{W}$  do najprostszej postaci sumy iloczynów:

$$\overline{W} = \overline{A} B \overline{C} + (\overline{A} + \overline{B})(A + \overline{C}) = \overline{A} B \overline{C} + \overline{A} A + \overline{A} \overline{C} + \overline{B} A + \overline{B} \overline{C} = (\overline{A} B \overline{C} + \overline{A} \overline{C}) + \overline{B} A + \overline{B} \overline{C} = \overline{A} \overline{C} (B + 1) + A \overline{B} + \overline{B} \overline{C} = \overline{A} \overline{C} + A \overline{B} + \overline{B} \overline{C} (A + \overline{A}) = (\overline{A} \overline{C} + \overline{B} \overline{C} \overline{A}) + (A \overline{B} + \overline{B} \overline{C} A) = \overline{A} \overline{C} (1 + \overline{B}) + A \overline{B} (1 + \overline{C}) = \overline{A} \overline{C} + A \overline{B}.$$

A stąd stosując prawa de'Morgana otrzymujemy szukane rozwiązanie:

$$W = \overline{(\overline{W})} = (A + C)(\overline{A} + B).$$

Może być ono zrealizowane przy pomocy układu bramek typu *Or-to-And* lub *Nor-to-Nor*:



c)  

$$W = AB + \overline{A}(B + \overline{C})(\overline{B} + D).$$

Postępujemy w analogiczny sposób jak w poprzednim rozwiązaniu:

$$\overline{W} = (\overline{A} + \overline{B})(A + \overline{B}C + B\overline{D}) = \overline{A}A + \overline{A}\overline{B}C + \overline{A}B\overline{D} + \overline{B}A + \overline{B}\overline{B}C + \overline{B}B\overline{D} = (\overline{A}\overline{B}C + \overline{B}C) + \overline{A}B\overline{D} + \overline{B}A = \overline{B}C(\overline{A} + 1) + \overline{A}B\overline{D} + A\overline{B} = \overline{A}B\overline{D} + \overline{B}C + A\overline{B},$$
 0skąd

$$W = (A + \overline{B} + D)(B + \overline{C})(\overline{A} + B).$$

# Mapy Karnaugh

Omówimy pewną metodę definiowania i upraszczania wyrażeń algebry Boole'a, która wykorzystuje tzw. *mapy Karnaugh*. Opiszemy ja przy pomocy przykładów.

#### <u>Przykłady</u>

a) Przykładem mapy Karnaugh dla dwóch zmiennych wejściowych X, Y i zmiennej wyjściowej A jest tabliczka

$$\begin{array}{c|cc} & \overline{X} & X \\ \overline{Y} & 0 & 1 \\ Y & 0 & 1 \end{array}$$

przedstawiana alternatywnie w postaci

$$\begin{array}{c|cccc} & & X & & & \\ & 0 & 1 & & \\ Y & 0 & 0 & 1 & \\ \hline & 0 & 1 & & \\ \end{array}$$

Definiuje ona wyrażenie  $A = X \overline{Y} + X Y$ .

**b)** Przykładem mapy Karnaugh dla trzech zmiennych wejściowych X, Y, Z i zmiennej wyjściowej A jest tabliczka

przedstawiana alternatywnie w postaci

|                |    | XY |    |    |  |  |
|----------------|----|----|----|----|--|--|
|                | 00 | 01 | 11 | 10 |  |  |
| $Z_{1}^{0}$    | 1  | 0  | 0  | 1  |  |  |
| <sup>2</sup> 1 | 0  | 1  | 1  | 0  |  |  |

Definiuje ona wyrażenie  $A = \overline{X} \overline{Y} \overline{Z} + X \overline{Y} \overline{Z} + \overline{X} Y Z + X Y Z$ .

c) Przykładem mapy Karnaugh dla czterech zmiennych wejściowych W, X, Y, Z i zmiennej wyjściowej A jest tabliczka

| $\overline{W}  \overline{X}  \overline{W}  X  W  X  W  \overline{X}$ |   |   |   |   |  |  |
|----------------------------------------------------------------------|---|---|---|---|--|--|
| $\overline{Y}\overline{Z}$                                           | 1 | 0 | 0 | 1 |  |  |
| $\overline{Y}Z$                                                      | 0 | 1 | 1 | 0 |  |  |
| YZ                                                                   | 1 | 1 | 0 | 0 |  |  |
| $Y\overline{Z}$                                                      | 1 | 1 | 0 | 1 |  |  |

przedstawiana alternatywnie w postaci

Definiuje ona wyrażenie

$$A = \overline{W} \overline{X} \overline{Y} \overline{Z} + W \overline{X} \overline{Y} \overline{Z} + \overline{W} X \overline{Y} Z + W X \overline{Y} Z + W X \overline{Y} Z + \overline{W} \overline{X} Y Z + \overline{W} X Y Z + \overline{W} \overline{X} Y \overline{Z} + \overline{W} X Y \overline{Z} + W \overline{X} Y \overline{Z}.$$

Na potrzebę upraszczania wyrażeń algebry Boole'a wyróżnia się grupy komórek tworzące tzw. <u>subcubes</u> (z języka angielskiego). Ilość takich komórek musi się wyrażać liczbą naturalną będącą potęgą całkowitą liczby 2 i muszą one tworzyć figurę w kształcie prostokąta z uwzględnieniem efektu *zawijania mapy*.

18

# <u>Przykłady</u>

Zademonstrujemy zdefiniowane wyżej pojęcie *subcube* upraszczając wyrażenia z poprzedniego przykładu.

a)

 $\begin{array}{c|cccc}
 & X & & & & \\
 & 0 & 1 & & & \\
 & 1 & 0 & 1 & & \\
\end{array}$ 

Stad

 $A = X \overline{Y} + X Y = X$ .

*b)* 

|   |   | XY |    |    |    |  |
|---|---|----|----|----|----|--|
|   |   | 00 | 01 | 11 | 10 |  |
| Z | 0 | 1  | 0  | 0  | 1  |  |
| L | 1 | 0  | [1 | 1  | 0  |  |

Stąd

$$A = \overline{X} \overline{Y} \overline{Z} + X \overline{Y} \overline{Z} + \overline{X} Y Z + X Y Z = \overline{Y} \overline{Z} + Y Z.$$

c)

|     |          | WX |    |    |    |
|-----|----------|----|----|----|----|
|     |          | 00 | 01 | 11 | 10 |
|     | 00       | 1  | 0  | 0  | 1  |
| YZ  | 00<br>01 | 0  | 1  | 1  | 0  |
| 1 2 | 11       | 1  | 1  | 0  | 0  |
|     | 10       | 1  | 1  | 0  | 1  |

Stąd

$$A = \overline{W} Y + \overline{X} \overline{Z} + X \overline{Y} Z$$
.

Prześledzimy serię przykładów ilustrujących proces redukcji wyrażeń algebry Boole'a przy pomocy map Karnaugh. Na razie ograniczymy się do przypadku wyrażeń w postaci kanonicznej sumy iloczynów.

# Przykłady.

a)

|    |          | WX |    |                |    |  |
|----|----------|----|----|----------------|----|--|
|    |          | 00 | 01 | 11             | 10 |  |
|    | 00       | 1  |    |                |    |  |
| YZ | 00<br>01 | 1  |    | $\overline{1}$ |    |  |
|    | 11       | 1  |    | 1              |    |  |
|    | 10       | 1  |    |                |    |  |

Stąd

$$A = \overline{W} \overline{X} \overline{Y} \overline{Z} + \overline{W} \overline{X} \overline{Y} Z + \overline{W} \overline{X} Y Z + \overline{W} \overline{X} Y Z + \overline{W} \overline{X} Y \overline{Z} + W X \overline{Y} Z + W X Y Z = \overline{W} \overline{X} + W X Z.$$

b)

|     |          | WX |    |    |    |
|-----|----------|----|----|----|----|
|     |          | 00 | 01 | 11 | 10 |
|     | 00       | 1  |    |    | [1 |
| YZ  | 00<br>01 |    | 1  | 1  |    |
| 1 2 | 11       |    | 1_ | _1 |    |
|     | 10       |    |    |    |    |

Stąd

 $A = \overline{W} \ \overline{X} \ \overline{Y} \ \overline{Z} + W \ \overline{X} \ \overline{Y} \ \overline{Z} + \overline{W} \ X \ \overline{Y} \ Z + W \ X \ \overline{Y} \ Z + W \ X \ \overline{Y} \ Z + W \ X \ Y \ Z + W \ X \ Y \ Z + W \ X \ Y \ Z = X \ Z + \overline{X} \ \overline{Y} \ \overline{Z} \ .$ 

c)

|     |          | WX |    |    |    |
|-----|----------|----|----|----|----|
|     |          | 00 | 01 | 11 | 10 |
|     | 00       |    | 1_ | 1  |    |
| YZ  | 00<br>01 | 1  |    |    | 1  |
| 1 2 | 11       | 1  |    |    | 1_ |
|     | 10       |    | 1  | 1  |    |

Stąd

$$A = X \overline{Z} + \overline{X} Z.$$

<u>Przykłady</u>.

a)

|     |    | WX |    |    |    |
|-----|----|----|----|----|----|
|     |    | 00 | 01 | 11 | 10 |
|     | 00 |    |    |    |    |
| YZ  | 01 |    | 1  |    |    |
| 1 2 | 11 |    | 1  | 1  |    |
|     | 10 | 1  |    |    | [1 |

Stąd

$$A = \overline{W} X Z + X Y Z + \overline{X} Y \overline{Z}.$$

*b)* 

|     |    | WX |    |    |     |
|-----|----|----|----|----|-----|
|     |    | 00 | 01 | 11 | 10  |
|     | 00 |    | 1  |    |     |
| YZ  | 01 | 1  |    | 1  | (1) |
| 1 2 | 11 |    |    | 1_ | _1  |
|     | 10 |    |    |    |     |

Stąd

$$A = W Z + \overline{X} \overline{Y} Z + \overline{W} X \overline{Y} \overline{Z}.$$

c)

|     |          | WX |    |    |    |
|-----|----------|----|----|----|----|
|     |          | 00 | 01 | 11 | 10 |
|     | 00       |    |    | 1  |    |
| YZ  | 00<br>01 | 1  |    | 1  |    |
| 1 2 | 11       |    |    |    | 1  |
|     | 10       |    | 1  |    |    |

Stąd

$$A = XZ + WX\overline{Y} + \overline{W}XY + \overline{W}\overline{Y}Z + WYZ.$$

Inne rozwiązanie:

|    |          | WX |    |    |    |
|----|----------|----|----|----|----|
|    |          | 00 | 01 | 11 | 10 |
|    | 00       |    |    | 1  |    |
| YZ | 00<br>01 | 1  | 1) | 1  |    |
|    | 11       |    | 1  | 1  | 1  |
|    | 10       |    | 1  |    |    |

Stąd

 $A = W X \overline{Y} + \overline{W} X Y + \overline{W} \overline{Y} Z + W Y Z$ .

d)

|    |       | WX |           |    |    |
|----|-------|----|-----------|----|----|
|    |       | 00 | 01        | 11 | 10 |
|    | 00    | 1  | $\bigcap$ |    |    |
| YZ | 00 01 |    |           | 1  |    |
|    | 11    |    | 1_        | 1  |    |
|    | 10    |    |           |    |    |

Stad

$$A = XZ + \overline{X}\overline{Y}\overline{Z} + W\overline{X}\overline{Y} + \overline{W}X\overline{Y}.$$

Inne rozwiązanie:

|    |    | WX |    |    |    |
|----|----|----|----|----|----|
|    |    | 00 | 01 | 11 | 10 |
|    | 00 | 1  | 1  |    |    |
| YZ | 01 |    |    | 1  | 1  |
|    | 11 |    | 1_ | _1 |    |
|    | 10 |    |    |    |    |

Stad

$$A = XZ + \overline{X}\overline{Y}\overline{Z} + \overline{W}X\overline{Y} + W\overline{Y}Z.$$

Najprostsze rozwiązanie:

|     |    | WX |    |    |           |
|-----|----|----|----|----|-----------|
|     |    | 00 | 01 | 11 | 10        |
|     | 00 | 1  | 1  |    | $\bigcap$ |
| YZ  | 01 |    | 1  | 1) | 1         |
| 1 2 | 11 |    | 1_ | 1  |           |
|     | 10 |    |    |    |           |

Stad

$$A = XZ + \overline{W} \overline{Y} \overline{Z} + W \overline{X} \overline{Y}.$$

Mapy Karnaugh mogą być zastosowane również do projektowania i upraszczania wyrażeń w postaci kanonicznej iloczynu sum. Wykorzystuje się tu fakt, że dopełnienie wyrażenia każdej z postaci kanonicznych jest wyrażeniem drugiej z tych postaci. Dlatego w omawianym przypadku stosuje się następujące postępowanie:

- 1º Tworzy się mapę wpisując we właściwych komórkach zera.
- 2º Upraszcza się wyróżnione w ten sposób komórki tak, jak się to robiło dla "jedynek".
- 3<sup>0</sup> Otrzymane w ten sposób wyrażenie jest dopełnieniem wyrażenia szukanego i dlatego wystarczy na koniec zastosować prawa de'Morgana.

Zilustrujmy zapowiedzianą metodę.

<u>Przykład</u> Zaprojektujemy najprostsze wyrażenie w postaci iloczynu sum spełniające założenia:

|   | Input |   |   |   |  |
|---|-------|---|---|---|--|
| W | X     | Y | Z | A |  |
| 0 | 0     | 0 | 0 | 1 |  |
| 0 | 0     | 0 | 1 | 1 |  |
| 0 | 0     | 1 | 0 | 0 |  |
| 0 | 0     | 1 | 1 | 1 |  |
| 0 | 1     | 0 | 0 | 0 |  |
| 0 | 1     | 0 | 1 | 0 |  |
| 0 | 1     | 1 | 0 | 0 |  |
| 0 | 1     | 1 | 1 | 1 |  |
| 1 | 0     | 0 | 0 | 1 |  |
| 1 | 0     | 0 | 1 | 1 |  |
| 1 | 0     | 1 | 0 | 1 |  |
| 1 | 0     | 1 | 1 | 1 |  |
| 1 | 1     | 0 | 0 | 0 |  |
| 1 | 1     | 0 | 1 | 0 |  |
| 1 | 1     | 1 | 0 | 1 |  |
| 1 | 1     | 1 | 1 | 1 |  |

Tworzymy mapę Karnaugh szukanego wyrażenia uwidoczniając położenie zer i ją upraszczamy:

|     |    | WX |    |    |    |  |
|-----|----|----|----|----|----|--|
|     |    | 00 | 01 | 11 | 10 |  |
|     | 00 |    | 0  | 0  |    |  |
| YZ  | 01 |    | 0  | 0  |    |  |
| 1 2 | 11 |    |    |    |    |  |
|     | 10 | 0  | 0  |    |    |  |

Stad

$$\overline{A} = X \overline{Y} + \overline{W} Y \overline{Z}$$

i dlatego

$$A = (\overline{X} + Y)(W + \overline{Y} + Z).$$

Często spotykaną sytuacją jest przypadek projektów, kiedy wartość wyjściowa dla niektórych danych wejściowych jest nieistotna, np. wtedy, gdy wartości takie nigdy nie wystąpią. W takich przypadkach mamy swobodę wyboru wartości wyjściowych, co można wykorzystać w celu uzyskania możliwie najprostszego rozwiązania.

# <u>Ćwiczenie</u>

Zaprojektujemy najprostsze wyrażenia w postaci sumy iloczynów i iloczynu sum spełniające założenia:

|   | Input |   |   |          |  |
|---|-------|---|---|----------|--|
| W | X     | Y | Z | Output A |  |
| 0 | 0     | 0 | 0 | 1        |  |
| 0 | 0     | 0 | 1 | 0        |  |
| 0 | 0     | 1 | 0 | 0        |  |
| 0 | 0     | 1 | 1 | 1        |  |
| 0 | 1     | 0 | 0 | 1        |  |
| 0 | 1     | 0 | 1 | 0        |  |
| 0 | 1     | 1 | 0 | 0        |  |
| 0 | 1     | 1 | 1 | 1        |  |
| 1 | 0     | 0 | 0 | 1        |  |
| 1 | 0     | 0 | 1 | 0        |  |
| 1 | 0     | 1 | 0 | d        |  |
| 1 | 0     | 1 | 1 | d        |  |
| 1 | 1     | 0 | 0 | d        |  |
| 1 | 1     | 0 | 1 | d        |  |
| 1 | 1     | 1 | 0 | d        |  |
| 1 | 1     | 1 | 1 | d        |  |

gdzie d oznacza wartość dowolną, tj. 0 lub 1. Rozwiązanie w postaci sumy iloczynów:

|    |          | WX |             |   |   |  |  |  |
|----|----------|----|-------------|---|---|--|--|--|
|    |          | 00 | 00 01 11 10 |   |   |  |  |  |
|    | 00       | 1  | 1           | d | 1 |  |  |  |
| YZ | 00<br>01 |    |             | d |   |  |  |  |
|    | 11       | 1_ | 1           | d | d |  |  |  |
|    | 10       |    |             | d | d |  |  |  |

Stąd

$$A = \overline{Y} \, \overline{Z} + Y Z.$$

Rozwiązanie w postaci iloczynu sum:

|    |          | WX |             |   |   |  |  |  |
|----|----------|----|-------------|---|---|--|--|--|
|    |          | 00 | 00 01 11 10 |   |   |  |  |  |
|    | 00       |    |             | d |   |  |  |  |
| YZ | 00<br>01 | 0  | 0           | d | 0 |  |  |  |
|    | 11       |    |             | d | d |  |  |  |
|    | 10       | 0  | 0           | d | d |  |  |  |

Stąd

$$\overline{A} = \overline{Y}Z + Y\overline{Z} \implies A = (Y + \overline{Z})(\overline{Y} + Z).$$

# Ćwiczenia podsumowujące

Rozwiążemy serię zadań utrwalających i uzupełniających omówioną tematykę.

# Ćwiczenie.

Zaznacz grupy komórek tworzących *subcube* dla danego wyrażenia zależnego od zmiennych *W*, *X*, *Y*, *Z* wyznaczające po redukcji wskazaną wartość:

a)  $\overline{X}$ .

|    |    | WX |    |    |            |
|----|----|----|----|----|------------|
|    |    | 00 | 01 | 11 | 10         |
|    | 00 | 1  |    |    | $\sqrt{1}$ |
| YZ | 01 | 1  |    |    | 1          |
|    | 11 | 1  |    |    | 1          |
|    | 10 | 1  | ·  |    | 1_         |

b)  $XY\overline{Z}$ .

|    |    | WX |     |    |    |
|----|----|----|-----|----|----|
|    |    | 00 | 01  | 11 | 10 |
| YZ | 00 |    |     |    |    |
|    | 01 |    |     |    |    |
|    | 11 |    |     |    |    |
|    | 10 |    | [1_ | 1  |    |

c)  $\overline{W}Z$ .

|    |          | WX |    |    |    |
|----|----------|----|----|----|----|
|    |          | 00 | 01 | 11 | 10 |
| YZ | 00       |    |    |    |    |
|    | 00<br>01 | 1  | 1  |    |    |
|    | 11       | 1  | _1 |    |    |
|    | 10       |    |    |    |    |

d)  $W \overline{X} \overline{Y} Z$ .

|    |          | WX |    |    |    |
|----|----------|----|----|----|----|
|    |          | 00 | 01 | 11 | 10 |
| YZ | 00       |    |    |    |    |
|    | 00<br>01 |    |    |    |    |
|    | 11       |    |    |    |    |
|    | 10       |    |    |    |    |

#### Ćwiczenie

Narysować mapę Karnaugh wyrażenia zależnego od zmiennych X, Y, Z i, jeżeli trzeba, uprościć je:

a) 
$$A = \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} Z + X \overline{Y} Z + X Y Z$$
.

Stad

$$A = \overline{X}\,\overline{Y} + X\,Z\,.$$

**b)** 
$$A = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + \overline{X} Y Z + X Y Z$$
.

Stad

$$A = \overline{X}Y + \overline{X}Z + YZ$$
.

c) 
$$A = (X + \overline{Y} + Z)(\overline{X} + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)(Y + \overline{Z}).$$

Mamy

$$\overline{A} = \overline{X} Y \overline{Z} + X Y Z + X Y \overline{Z} + \overline{Y} Z$$

skąd mapa ma postać:

Jednym z możliwych uproszczeń jest

i wtedy

$$\overline{A} = XY + Y\overline{Z} + \overline{Y}Z \implies A = (\overline{X} + \overline{Y})(\overline{Y} + Z)(Y + \overline{Z}).$$

Innym uproszczeniem jest

i wtedy

$$\overline{A} = Y \overline{Z} + \overline{Y} Z + X Z \Rightarrow A = (\overline{Y} + Z)(Y + \overline{Z})(\overline{X} + \overline{Z}).$$

#### Ćwiczenie.

Narysować mapy Karnaugh wyrażenia A zależnego od zmiennych X, Y, Z i przy ich pomocy znaleźć jego najprostsze postacie sumy iloczynów i iloczynu sum:

$$A = \overline{X}\,\overline{Y}\,\overline{Z} + \overline{X}\,\overline{Y}\,Z + \overline{X}\,Y\,Z + X\,\overline{Y}\,Z.$$

Mapa i uproszczenie dla sumy iloczynów:

Stąd

$$A = \overline{X}\,\overline{Y} + \overline{X}\,Z + \overline{Y}\,Z.$$

Mapa i uproszczenie dla iloczynu sum:

Stąd

$$\overline{A} = XY + Y\overline{Z} + X\overline{Z} \implies A = (\overline{X} + \overline{Y})(\overline{Y} + Z)(\overline{X} + Z).$$

# <u>Ćwiczen</u>ie.

Narysować mapy Karnaugh wyrażenia A zależnego od zmiennych W, X, Y, Z i przy ich pomocy znaleźć jego najprostsze postacie sumy iloczynów i iloczynu sum:

$$A = \overline{W} \overline{X} \overline{Y} \overline{Z} + \overline{W} \overline{X} \overline{Y} Z + W \overline{X}$$

Mapa i uproszczenie dla sumy iloczynów:



Stad

$$A = \overline{W} Y + X \overline{Y} Z + W \overline{X} Z.$$

Mapa i uproszczenie dla iloczynu sum:

|    |          | WX |    |    |    |
|----|----------|----|----|----|----|
|    |          | 00 | 01 | 11 | 10 |
| YZ | 00       | 0  | 0  | 0  | 0  |
|    | 00<br>01 | 0  |    |    |    |
|    | 11       |    |    | 0  |    |
|    | 10       |    |    | 0  | 0  |

Stad

$$\overline{A} = \overline{Y} \, \overline{Z} + W \, \overline{Z} + \overline{W} \, \overline{X} \, \overline{Y} + W \, X \, Y \implies (Y + Z)(\overline{W} + Z)(W + X + Y)(\overline{W} + \overline{X} + \overline{Y}).$$

#### Ćwiczenie

Uprościć wyrażenie zakładając, że każdy składnik części podkreślonej może, ale nie musi wystąpić:

$$W = \overline{A} \, \overline{B} \, \overline{C} + AB \, \overline{C} + AB \, C + \overline{A} \, B \, \overline{C} + \overline{A} \, \overline{B} \, C.$$

Mapa Karnaugh wyrażenia ma postać:

Stad

$$W = \overline{A} \, \overline{C} + AB$$

Inna wersja rozwiązania (nie jedyna):

Stad

$$W = \overline{A} \overline{B} + AB$$
.

# Ćwiczenie

Uprościć wyrażenie zakładając, że każdy czynnik części podkreślonej może, ale nie musi wystąpić:

$$W = (\overline{A} + B + \overline{C} + D)(\overline{A} + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(\overline{A} + B + C + D)(A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D}).$$

Mapa Karnaugh wyrażenia ma postać:

Stad

$$\overline{W} = A \overline{B} \implies W = \overline{A} + B.$$

Powyższe rozwiązanie otrzymuje się, jeżeli uwzględnia się dwa pierwsze czynniki części podkreślonej:

$$W = (\overline{A} + B + \overline{C} + D)(\overline{A} + B + \overline{C} + \overline{D})(\overline{A} + B + C + \overline{D})(\overline{A} + B + C + D) = (\overline{A} + B + \overline{C}) + D\overline{D}((\overline{A} + B + C) + \overline{D}D) = (\overline{A} + B + \overline{C})(\overline{A} + B + C) = (\overline{A} + B) + \overline{C}C = \overline{A} + B.$$