DEVOIR EN TEMPS LIBRE: OXYDOREDUCTION

Exercice 1

1°) Polarité de la pile

Compartiment (A)

Demi-réaction : Cu²⁺ +2e⁻ Cu

Potentiel : $E_A = E_1^{\circ} + 0.03 \text{Log}[Cu^{2+}] = 0.345 \text{V}$

Compartiment (B)

Demi-réaction : Fe³⁺ +e⁻ → Fe²⁺

Potentiel : $E_B = E_2^{\circ} + 0.06 Log \frac{[Fe^{3+}]}{[Fe^{2+}]} = 0.788V$

Ainsi le pôle (+) correspond au compartiment (B) le pôle (-) au compartiment (A)

• La fem de la pile $e = E_B - E_A = 0,443V$

2°) Les réactions

• Compartiment (A)

On a une oxydation anodique : Cu ∠ Cu²+ +2e-

• Compartiment (B)

On a une réduction cathodique : Fe³⁺ +e⁻ $\stackrel{\longrightarrow}{\sim}$ Fe²⁺

La réaction globale

$$2\text{Fe}^{3+} + \text{Cu} \xrightarrow{\rightarrow} \text{Cu}^{2+} + 2\text{Fe}^{2+} \quad \text{K} = \frac{[Fe^{2+}]^2[Cu^{2+}]}{[Fe^{2+}]^2}$$

A l'équilibre la pile de débite plus : $E_A = E_B$

$$E^{\circ}_{1} + 0.03 \text{Log}[Cu^{2+}] = E^{\circ}_{2} + 0.06 \text{Log} \frac{[Fe^{3+}]}{[Fe^{2+}]}$$

$$E^{\circ}_{1} + 0.03 \text{Log}[Cu^{2+}] = E^{\circ}_{2} + 0.06 \text{Log}[\frac{[Fe^{3+}]}{[Fe^{2+}]}$$

Soit $LogK = \frac{E_{2}^{0} - E_{1}^{0}}{0.03} = 13.9$ ainsi $K = 10^{13.9}$

3°) Les produits présents

• <u>Fe(OH)_{3(S)}</u>

Réaction : Fe(OH)_{3(S)} $\xrightarrow{\leftarrow}$ Fe³⁺ +3HO $\xrightarrow{}$ K_{S1} = [Fe³⁺][HO⁻]³

Le quotient de la réaction Q = $[Fe^{3+}]_0Ke^3/10^{-3pH}$ = 2 10^{-31} > K_{S1}

II y a donc du Fe(OH)_{3(S)}

• Fe(OH)_{2(S)}

Réaction : Fe(OH)_{2(S)} $\xrightarrow{\leftarrow}$ Fe²⁺ +2HO⁻ K_{S2} = [Fe²⁺][HO⁻]²

<u>Le quotient de la réaction Q = [F</u> e^{2+}]₀Ke²/10^{-2pH} = 1,1 10⁻²⁰ < K_{S2}

II n'y a donc pas de Fe(OH)_{2(S)}

4°) Les potentiels d'électrodes

Compartiment (A)

Pas de modification $E_A = 0.345V$

Compartiment (B)

Demi-réaction : $Fe^{3+} + e^{-} \stackrel{\rightarrow}{\sim} Fe^{2+}$

Potentiel : $E_B = E_2^0 + 0.06 Log \frac{[Fe^{3+}]}{[Fe^{2+}]}$

Or les ions Fe^{3+} sont masqués par le précipité : $[Fe^{3+}] = K_{S1}/[HO^{-}]^3 = K_{S1}10^{-3pH}/Ke^3 = 1,0 \ 10^{-8} mol.L^{-1}$ Ainsi $E_B = 0.350V$

• La fem de la pile

 $e = E_B - E_A = 0.005V$

Exercice 2

1- La réaction

A l'aide des no de chaque élément on a :

$$\text{Cr}_2\text{O}_7^{2-}$$
+ 6Fe²⁺ +14H₃O⁺ $\stackrel{\longrightarrow}{\leftarrow}$ 2Cr³⁺ + 6Fe³⁺ + 21 H₂O

2- La constante d'équilibre

A l'équilibre il y a égalité des potentiels :

$$\begin{split} & \mathsf{E_{1}}^{\circ} + \frac{0.06}{6}\mathsf{Log} \frac{\left[\mathsf{Cr_{2}O_{7}^{2^{-}}}\right]h^{14}}{\left[\mathsf{Cr}^{3^{+}}\right]^{2}} = \mathsf{E_{2}}^{\circ} + 0.06\;\mathsf{log} \frac{\left[\mathsf{Fe}^{3^{+}}\right]}{\left[\mathsf{Fe}^{2^{+}}\right]} \\ & \mathsf{Ainsi} \left[\mathbf{logK} = \mathbf{log} \frac{\left[\mathsf{Cr}^{3^{+}}\right]^{2}}{\left[\mathsf{Cr_{2}O_{7}^{2^{-}}}\right]h^{14}} \frac{\left[\mathsf{Fe}^{3^{+}}\right]^{6}}{\left[\mathsf{Fe}^{2^{+}}\right]^{6}} = \frac{6}{0.06} (\mathsf{E_{1}}^{\circ} - \mathsf{E_{2}}^{\circ}) \right] \\ & \mathsf{D'où} \left[\mathsf{K} = \mathbf{10}^{56} \right] \end{split}$$

Réaction de dosage

La réaction est quasi totale, elle est donc bien adaptée pour un dosage, bien sur à condition qu'elle soit rapide.

Cependant elle ne peut être facilement utilisée pour un dosage colorimétrique, en effet elle présente un mélange de réactifs orange et verts pâles pour aboutir à des produits jaune-orangés et verts. Le changement de couleur à l'équivalence risque d'être peu visible.

3- Vérification que le fer est en excès

On peut supposé que la coloration de la solution est bien verte quand le fer est en excès.

4- Réaction du titrage en retour

$$MnO_4^- + 5 Fe^{2+} + 8H_3O^+ \xrightarrow{\leftarrow} Mn^{2+} + 5 Fe^{3+} + 12H_2O^+$$

5- Concentration en C₁

Lorsque la coloration du permanganate est persistante tous les électrons que peut céder le réducteur qu'est Fe(II) ont été captés.

Or les oxydants sont le permanganate et le dichromate.

On a la relation de l'équivalence du dosage :
$$\underbrace{N_{\text{perm}}V_{\text{E3}} + N_{\text{dich}}V_{1}}_{\text{électrons captés}} = \underbrace{N_{\text{fer}}V_{2}}_{\text{électrons cédés}}$$

On
$$N_{perm} = 5C_3$$
, $N_{dich} = 6C_1$ et $N_{fer} = C_2$
On donc $5C_3V_{E3} + 6C_1V_1 = C_2V_2$

Ainsi
$$C_1 = \frac{C_2V_2-5C_3V_{E3}}{6V_1} = 1,7 \cdot 10^{-2} \text{ mol.L}^{-1}$$

Remarque relation normalité concentration :

$$MnO_4^- + 5e^- + 8 H_3O^+ \xrightarrow{\leftarrow} Mn^{2+} + 12 H_2O$$
 1 mol de MnO_4^- met en jeu 5 mol d'électrons $Cr_2O_7^{2-} + 14H^+ + 6e^- \xrightarrow{\leftarrow} 2Cr^{3+} + 7 H_2O$ 1 mol de $Cr_2O_7^{2-}$ met en jeu 6 mol d'électrons

$$Fe^{3+} + e^{-} \xrightarrow{\frown} Fe^{2+}$$
 1 mol de $Fe^{2^{\circ}}$ met en jeu 1 mol d'électrons