HOSTEL PRICE PREDICTION USING MACHINE LEARNING ALGORITHMS

Table of Contents

Introduction	1
Importing Data	2
Data Exploration	2
Geographical location of hostels	2
The target variable	3
Correlation Matrix	3
Analysis of variance (ANOVA)	3
Data Preparation	
Feature Interpolation	3
Missing data	4
Outliers	4
Feature selection	4
Feature Engineering	4
Categorical features	4
Splitting dataset	4
Predictive Modelling	5
Machine Learning Algorithms	5
Multiple Linear Regression	5
Implementation	5
Model Evaluation	5
Test data	5
Train data	5
Analysis of residuals	5
Feature Importance	6
Ridge Regression	6
Implementation	6
Model Evaluation	6
Test data	6
Train data	6
Feature Importance	7
Neural Network	7
Implementation	7
Model Evaluation	7
Test data	7
Train data	7

Introduction

The data for these hostels was obtained through personal interractions (interviews) with student residents. The dataset contains 151 rows, each reprent a room (i.e number of beds in the room) and 16 hostel features and hostel names. Below is a short description of features:

hostel - name of hostel

location - general location of hostel

grade - average value of how students evaluate their hostel

rank - overrall quality of the hostel

beds - number of beds in a particular room

study_room - a binary variable for wheather the hostel has a study room or not

tv_room - a binary variable for wheather the hostel has a tv room or not

security - a binary variable for wheather the hostel has a security post or not

food_joint - a binary variable for wheather the hostel has a food joint \leq 5min walk from hostel

ext_power - a binary variable for wheather the hostel has either a plant, generator, solar or not

ac - a binary variable for wheather the room has ac installed

proximity - distance from hostel to Aboagye Menyeh Complex, College of Science (KNUST) measured in meters

post_code - post code of area hostel is located

latitude - north-south position of the hostel on Earth's surface

longitude - east-west postion of the hostel on Earth's surface

price2018 - price in Ghana cedis of room for 2018/19 academic year

price2019 - price in Ghana cedis of room for 2019/20 academic year

```
clear, clc
```

Importing Data

```
% generated function to open a partially cleaned data
dataset = importKHorig('knust_orig.csv');
hostels = importKH('knust_hostels.csv');
head(hostels)
```

Data Exploration

Geographical location of hostels

The target variable

```
% distribution of target variable
histogram(hostels.price2020)
title('Distribution of target feature')
xlabel("Price2020 (in cedis)")
txt = {'Skewness:', skewness(hostels.price2020)};
text(9000,72,txt,'HorizontalAlignment','right')
```

Correlation Matrix

```
corrplot(num_data, ...
    "varNames",{'grade','beds','prox','lat','long','p18','p19','p20'})
% most correlating numerical feature
boxplot(num_data.price2020,num_data.beds)
title('box plot of beds againts target feature')
xlabel("Number of Beds")
ylabel("price2020 (in cedis)")
```

Analysis of variance (ANOVA)

```
rank = cat_data.rank; study = cat_data.study_room;
tv = cat_data.tv_room; security = cat_data.security;
fj = cat_data.food_joint; power = cat_data.ext_power;
ac = cat_data.ac; pc = cat_data.post_code;
loc = cat_data.location;
anovan(hostels.price2020,{loc rank study tv security fj power ac pc}, ...
    'varnames',["location","rank","study_room","tv_room","security", ...
    "food_joint","ext_power","ac","post_code"],'model',"linear");
```

Data Preparation

Feature Interpolation

```
% reducing skewness in response feature
hostels.price2020 = log(hostels.price2020);
% distribution of response feature
histogram(hostels.price2020)
title('natural log distribution of target feature')
xlabel("ln(price2020)")
txt = {'Skewness:', skewness(hostels.price2020)};
text(9,37,txt,'HorizontalAlignment','right')
```

Missing data

```
% checking number of missing data
numMissing = nnz(ismissing(hostels));
% summary statistics of features
summary(hostels(:,2:end));
% removing columns with more than 30 missing entries
hostels = rmmissing(hostels, 2, "MinNumMissing", 30);
% filling missing data
hostels.grade = fillmissing(hostels.grade, "constant", ...
    mean(hostels.grade, 'omitnan'));
hostels.rank = fillmissing(hostels.rank, "nearest");
```

Outliers

```
boxplot(hostels.price2020, "Orientation", "horizontal")
title('Boxplot of price2020')
ylabel("ln(Price2020)")
% we'll use 99% of the dataset to reduce the
% effect of huge values behaving like outliers
hostels = rmoutliers(hostels, "percentiles", [0,99], ...
    "DataVariables", "price2020");
histogram(hostels.price2020)
title('Distribution of 99% of target feature')
xlabel("ln(Price2020)")
txt = {'Skewness:', skewness(hostels.price2020)};
text(8.8,37,txt,'HorizontalAlignment','right')
```

Feature selection

Feature Engineering

Categorical features

```
% ordinal categorical data
hostels.rank = reordercats(hostels.rank, {'fair', 'average', 'good'});
hostels.rank = double(hostels.rank) + 1;
% norminal categorical data
hostels = enCode(hostels);
% post_code and beds features
hostels = toDummy(hostels);
```

Splitting dataset

```
% partition dataset into test and train sets
rng(1) % for reproducibility
cv = cvpartition(size(hostels,1), 'HoldOut', 0.35);
idx = cv.test;
dataTrain = hostels(~idx,:);
dataTest = hostels(idx,:);
% further splitting of train sets and test sets
X_train = dataTrain(:,1:end-1); y_train = dataTrain(:,end);
X_test = dataTest(:,1:end-1); y_test = dataTest(:,end);
```

Predictive Modelling

Machine Learning Algorithms

- 1. Multiple Linear Regression
- 2. Ridge Regression
- 3. Neural Network

Multiple Linear Regression

```
load lrBEST.mat; % loads saved mlr model
% linMdl = fitlm(dataTrain, "linear", "ResponseVar", "price2020");
beta = linMdl.Coefficients.Estimate;
```

Implementation

```
ypredLM = predict(linMdl,X_test);
plot(table2array(y_test),ypredLM,'o', ...
    ypredLM,ypredLM,'-',"LineWidth",2)
title('Prediction: Multiple Linear Regression Model')
xlabel('True Response')
ylabel('Predicted Response')
legend('Observations','Prediction','Location','northwest')
```

Model Evaluation

Test data

```
fprintf('Evaluation of test data')
[T_lm, resLM] = Metrics(table2array(y_test),ypredLM);
T_lm
```

Train data

```
fprintf('Evaluation of train data')
[T_lm2, ~] = Metrics(table2array(y_train),predict(linMdl,X_train));
T_lm2
```

Analysis of residuals

```
% (1) equal error variance
```

```
sz = 50;
scatter(table2array(y_test),resLM,sz,"filled","red")
xlabel('actual values (price2020)')
ylabel('MLR residuals')
title('Residual plot')
grid on
line([7 9],[0 0],"Color","black","LineWidth",2.5)
% (2) normality of error
[H, p] = ttest(resLM);
normplot(resLM)
grid off;
txt = {'pValue:',p};
text(-0.2,0.97,txt,'HorizontalAlignment','left')
```

Feature Importance

```
x = linMdl.CoefficientNames; x = categorical(x(1,2:end));
y = linMdl.Coefficients.Estimate; y = y(2:end,1);
bar(x,y)
title('MLR model feature importance')
ylabel("Coefficinets, \beta_i")
```

Ridge Regression

```
load regBEST.mat; % loads saved ridge model
% [rMdl, FitInfo] = fitrlinear(table2array(X_train),table2array(y_train), ...
% "Learner","leastsquares","Regularization",'ridge');
lambda = rMdl.Lambda;
Beta = [rMdl.Bias;rMdl.Beta];
```

Implementation

```
ypredR = predict(rMdl,table2array(X_test));
plot(table2array(y_test),ypredR,'o', ...
    ypredR,ypredR,'-',"LineWidth",2)
title('Prediction: Regularized (Ridge) Regression Model')
xlabel('True Response')
ylabel('Predicted Response')
legend('Observations','Prediction','Location','northwest')
```

Model Evaluation

Test data

```
fprintf('Evaluation of test data')
[T_r, resR] = Metrics(table2array(y_test),ypredR);
T_r
```

Train data

```
fprintf('Evaluation of train data')
[T_r2, ~] = Metrics(table2array(y_train),predict(rMdl,table2array(X_train)));
T_r2
```

Feature Importance

```
y = rMdl.Beta;
bar(x,y)
ylim([-0.4 0.8])
title('RR model feature importance')
ylabel("Coefficinets, \beta_i")
```

Neural Network

```
load nnBEST.mat; % loads saved neural net model
% nnMdl = fitrnet(dataTrain, "price2020", "Activations", "relu");
weights1 = nnMdl.LayerWeights{1};
weights2 = nnMdl.LayerWeights{2};
biases1 = nnMdl.LayerBiases{1};
biases2 = nnMdl.LayerBiases{2};
```

Implementation

```
ypredNN = predict(nnMdl,X_test);
plot(table2array(y_test),ypredNN,'o', ...
    ypredNN,ypredNN,'-',"LineWidth",2)
title('Prediction: Neural Network Model')
xlabel('True Response')
ylabel('Predicted Response')
legend('Observations','Prediction','Location','northwest')
```

Model Evaluation

Test data

```
fprintf('Evaluation of test data')
[T_nn, resNN] = Metrics(table2array(y_test),ypredNN);
T_nn
```

Train data

```
fprintf('Evaluation of train data')
[T_nn2, ~] = Metrics(table2array(y_train),predict(nnMdl,X_train));
T_nn2
```