Orientação a Objetos com Python

Entendendo o contexto de Orientação a Objetos

Modelagem de um sistema orientado a objetos

Modelagem de um sistema orientado a objetos

- A programação orientada a objetos cria modelos do mundo em que os dados são operados.
- Os modelos possuem classes que representam atores do mundo real, e como eles interagem entre si.
- Durante a fase de modelagem, você examina uma descrição de um domínio e tenta analisar os atores e as regras de negócio.
- Atores atuam no domínio e executam uma ação. Por exemplo, um carro (ator) acelera (ação).
- Atores costumam atuar sobre de dados, que são a entrada necessária para executar uma ação.
- O que os atores fazem para executar essa ação é o comportamento.
- Atores podem interagir uns com os outros para chegar a um resultado tangível.
- O resultado da atuação e interação entre os atores sobre os dados gera uma saída para o nosso programa.

Modelagem é o processo de identificar os **atores**, os **dados** necessários e o tipo de **interação** que está ocorrendo. Para modelar um sistema, é necessário conhecer suas **regras de negócio**.

Exemplo Estacionamento: Requisitos

- O estacionamento é um pátio de apenas um andar. Ele possui 10 vagas.
- Há 5 vagas para carros e 5 vagas para motos. Vagas para carro são maiores do que as vagas para motos.
- Carros e motos são identificados por suas placas.
- Vagas são identificadas por um número. Cada vaga tem um número identificador único.
- Carros só podem ser estacionado em vagas específicas para carros.
- Motos preferencialmente são estacionadas em vagas de motos, mas se não houver mais vagas exclusivas de motos disponíveis, motos podem ser estacionadas em vagas de carros.
- É preciso ter controle sobre qual carro está em qual vaga para agilizar a saída quando o dono vem buscar.
- É preciso saber o número de vagas livres de carro e de moto para que o estacionamento saiba se pode novos carros e motos.

Λ	11	31	2	C
				-3

Estacionamento

Vaga

Carro

Moto

Exemplo Estacionamento: Requisitos

- O estacionamento é um pátio de apenas um andar. Ele possui 10 vagas.
- Há 5 vagas para carros e 5 vagas para motos. Vagas para carro são maiores do que as vagas para motos.
- Carros e motos são identificados por suas placas.
- Vagas são identificadas por um número. Cada vaga tem um número identificador único.
- Carros só podem ser estacionado em vagas específicas para carros.
- Motos preferencialmente são estacionadas em vagas de motos, mas se não houver mais vagas exclusivas de motos disponíveis, motos podem ser estacionadas em vagas de carros.
- É preciso ter controle sobre qual carro está em qual vaga para agilizar a saída quando o dono vem buscar.
- É preciso saber o número de vagas livres de carro e de moto para que o estacionamento saiba se pode novos carros e motos.

Estacionamento

vagas_de_carro
vagas_de_moto
carro_para_vaga
moto_para_vaga
total_vagas_livres_carro
total_vagas_livres_moto

Vaga

id tipo Carro

placa

Moto

placa

Exemplo Estacionamento: Requisitos

- O estacionamento é um pátio de apenas um andar. Ele possui 10 vagas.
- Há 5 vagas para carros e 5 vagas para motos. Vagas para carro são maiores do que as vagas para motos.
- Carros e motos são identificados por suas placas.
- Vagas são identificadas por um número. Cada vaga tem um número identificador único.
- Carros só podem ser estacionados em vagas específicas para carros.
- Motos preferencialmente são estacionadas em vagas de motos, mas se não houver mais vagas exclusivas de motos disponíveis, motos podem ser estacionadas em vagas de carros.
- É preciso ter controle sobre qual carro está em qual vaga para agilizar a saída quando o dono vem buscar.
- É preciso saber o número de vagas livres de carro e de moto para que o estacionamento saiba se pode novos carros e motos.

Estacionamento

vagas_de_carro
vagas_de_moto
carro_para_vaga
moto_para_vaga
total_vagas_livres_carro
total_vagas_livres_moto

Vaga

id tipo livre

Carro

placa

Moto

placa

Modelagem de um sistema orientado a objetos

Estacionamento

```
vagas_de_carro
vagas_de_moto
carro_para_vaga
moto_para_vaga
total_vagas_livres_carro
total_vagas_livres_moto
estacionar_carro(carro)
```

estacionar_moto(moto)
remover carro(carro)

estado_do_estacionamento()

remover_moto(moto)

Vaga

```
id
tipo
livre
placa

ocupar()
desocupar()
```

Carro

```
placa
estacionado

estacionar()
sair_da_vaga()
```

Moto

```
placa
estacionado

estacionar()
sair_da_vaga()
```