Assignment No. 2

Total Marks. 20

Instructions for Submission:

- 1. Implement all the activities using MATLAB or Python.
- 2. Submit a printed (hard copy) report that includes the code, output images, and a brief analysis.
- 3. Show the code and the output results for each activity (original image + filtered/enhanced image).

Spatial Domain Processing

1. Contrast Stretching

Contrast stretching improves the visibility of features in low-contrast images by expanding their gray-level range.

Activity 1:

Write a MATLAB/Python script to perform piecewise linear contrast stretching.

2. Gray Level Slicing

Gray level slicing highlights specific ranges of intensities in an image, enhancing features of interest such as tissues or structures.

Activity 2:

Take an input image and implement gray-level slicing in MATLAB/Python.

3. Bit-Plane Slicing

Bit-plane slicing decomposes an image into its individual binary bit planes to study the contribution of each bit to image quality.

Activity 3:

Implement bit-plane slicing in MATLAB and extract all 8 bit planes. Show the code and the output result (original image and bit planes from MSB to LSB).

4. Smoothing/ Sharpening Filters

Enhance and analyze hidden or less-visible objects/features in an image by applying both smoothing and sharpening spatial filtering techniques.

Activity 4.

Part A – Smoothing Filters (Noise Reduction & Background Enhancement)

Select an image of your choice and investigate hidden or obscured objects in the background using the following smoothing techniques:

- **Smoothing Spatial Filtering** (e.g., 3×3 Moving Average Filter)
- Order-Statistic Nonlinear Filters
 - Median Filter
 - Min Filter
 - o Max Filter

Part B – Sharpening Filter (Detail Enhancement & Edge Detection)

Use the same image to enhance important visual features (e.g., edges, textures, fine details) using the following sharpening technique:

Laplacian Filter