Bivariate Linear Regression Exercises

service with the company. These data are recorded as follows.

Q1
A company report contains the average number of sick days per year (including time spent away from work on medical and dental appointments) for their employees with 1 to 20 years

Number of Years of	Average Number of	Number of Years of	Average Number of
Service (X)	Sick Days (Y)	Service (X)	Sick Days (Y)
1	1.4	11	3.2
2	1.7	12	3.8
3	1.1	13	4.0
4	1.5	14	5.5
5	2.3	15	6.0
6	1.4	16	6.5
7	1.8	17	8.0
8	2.1	18	10.7
9	3.0	19	13.0
10	2.8	20	12.2

- Plot these data in a scatterplot.
- Find the least squares regression line and add it to the scatterplot.
- Use the least squares regression equation found to predict the average number of sick days for employees with 16.5 years of service.
- Convert the regression data to ranks and make a scatterplot of these ranks. How does the rank scatterplot compare with the raw data scatterplot.
- Find the rank regression equation.
- Use the rank regression equation found to predict the average number of sick days for employees with 16.5 years of service.

Q2 A psychology professor at Givens College is interested in the relation between hours spent studying and total points earned in the course. Data collected on 10 students who took the course last quarter are given below:

Hours	Total	
Spent Studying	Points Earned	
45	40	
30	35	
90	75	
60	65	
105	90	
65	50	
90	90	
80	80	
55	45	
75	65	

- 1. Compute the sample correlation coefficient for these data
- 2. Develop an estimated regression equation relating total points earned to hours spent studying
- 3. Test the significance of the model at the $\alpha = 0.05$ level
- 4. Predict the total points earned by Mark Sweeney. He spent 95 hours studying