表1 問の表

$\begin{bmatrix} b \\ a \end{bmatrix}$	1	2	3	4	5	6
1	1+1	1+2	1+3	1+4	1+5	1+6
2	2+1	2+2	2+3	2+4	2+5	2+6
3	3+1	3+2	3+3	3+4	3+5	3+6
4	4+1	4+2	4+3	4+4	4+5	4+6
5	5+1	5+2	5+3	5+4	5+5	5+6
6	6+1	6+2	6+3	6+4	6+5	6+6

表 2 間の表の一部

$\begin{bmatrix} b \\ a \end{bmatrix}$	1	2	3	4	5	6
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6

上記の表1の中にある加法の左側だけを抜き出すと表2になる。

この表 2 には縦に 1 から 6 が並んでいるので、表の中の数の和は $(1+2+3+4+5+6) \times 6$ である。

同様に加法の右側だけを足し合わせると $(1+2+3+4+5+6) \times 6$ である。 よって、表 1 の総和は

 $(1+2+3+4+5+6) \times 6 + (1+2+3+4+5+6) \times 6 = (1+2+3+4+5+6) \times 6 \times 2$ である。