HW3

author: 111062272 蕭登鴻

1

Ainvert	Bnegate	Operation	Function
0	1	01	AND
0	1	10	OR
0	1	00	add
0	0	00	sub
1	0	01	NOR
0	1	11	add-ext
0	0	11	sub-ext

In the 1-bit ALU, I use C_i to propagate the sign bit when sign extension is needed (when op = 11 and gt31 = 1); with signal gt31 indicates that whether the ALU sequence number is greater than 31.

For the 64-bit ALU, the dotted line indicates that each R_i is connected to the multi-OR gate for the ZERO output; and op is used to determine which version (32 or 64) of overflow is outputted as the Overflow output.

1-bit ALU:

64-bit ALU:

2

a

multiplier	mul.cand	prod.
1001	0000 1110	0000 0000
0100	0001 1100	0000 1110
0010	0011 1000	
0001	0111 0000	
0000	1110 0000	0111 1110

b

mul.cand	<u>prod,</u> multiplier
1110	<u>0000</u> 1001
	<u>1110</u> 1001
1110	<u>0111 0</u> 100
1110	<u>0011 10</u> 10
1110	<u>0001 110</u> 1
	<u>1111 110</u> 1
1110	<u>0111 1110</u>

3

a

quotient	divisor	remainder
0000	0101 0000	0000 0111
		1011 0111
0000	0010 1000	0000 0111
		1001 1111
0000	0001 0100	0000 0111
		1111 0011
0000	0000 1010	0000 0111
		1111 1101
0000	0000 0101	0000 0111
		0000 0010
0001	0000 0101	0000 0010

b

<u>remainder, quo</u>	divisor	test pass
0000 0111	0101	
<u>0000 111</u> 0		

<u>remainder, quo</u>	divisor	test pass
1011 1110		F
<u>0001 11</u> 0 <u>0</u>		
1100 1100		F
<u>0011 1</u> 0 <u>00</u>		
1110 1000		F
<u>0111</u> 0 <u>000</u>		
0010 0000		Т
0100 0001		
0010 0001		

4

a

 $0x05948DEC = 1011001010010001101111101100_2$

signed:
$$2^{26} + 2^{24} + 2^{23} + 2^{20} + 2^{18} + 2^{15} + 2^{11} + 2^{10} + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 + 2^2$$

un-signed: same as signed

hex	un-signed	signed
05948DEC	93,621,740 ₁₀	93,621,740 ₁₀

Since left-most bit = 0 (5 = 0101), they're the same.

b

 $\begin{tabular}{ll} NOT(0xFA6B7214) + 1 &= NOT(1111101001101101111001000010100_2) + 1 &= \\ 000001011001001000110111101100_2 \\ \end{tabular}$

signed:
$$-(2^{26}+2^{24}+2^{23}+2^{20}+2^{18}+2^{15}+2^{11}+2^{10}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}+2^{2})$$

un-signed:
$$2^{31} + 2^{30} + 2^{29} + 2^{28} + 2^{27} + 2^{25} + 2^{22} + 2^{21} + 2^{19} + 2^{17} + 2^{16} + 2^{14} + 2^{13} + 2^{12} + 2^9 + 2^4 + 2^2$$

hex un-signed signed

hex un-signed s	signed
-----------------	--------

FA6B7214 4,201,345,556₁₀ -93,621,740₁₀

Since left-most bit = 1 (F = 1111), they're not the same.

C

 $\begin{array}{l} 0 x 0 5 9 4 8 DEC = 0,\,0000\,\,1011,\,0010\,\,1001\,\,0001\,\,1011\,\,1101\,\,100_2 = \\ + 1.00101001000110111101100 \cdot 2^{11-127} = 1.3969987 \cdot 10^{-35} \end{array}$

 $\begin{array}{l} \texttt{0xFA6B7214} = \texttt{1, 1111 0100, 1101 0110 1110 0100 0010 100}_2 = \\ -1.11010110111001000010100 \cdot 2^{244-127} = -3.0562589 \cdot 10^{35} \end{array}$

hex IEEE 754 floating point (decimal)

05948DEC	1.3969987E-35	
FA6B7214	-3.0562589E35	

5

bias = 127

a

88.4375

$$88.4375_{10} = 1011000.0111_2 = 1.0110000111 \cdot 2^6 \text{; } 6 + 127 = 10000101_2$$

-7.3125

$$-7.3125_{10} = -111.0101_2 = -1.110101 \cdot 2^2$$
; 2+127 = 10000001₂

b

Step1: multiply significand

 $1.0110000111*1.110101 = 10.1000 0110 1011 0011 \stackrel{\text{normalize}}{=} 1.01000011010110011000 \cdot 2^1$

Step2: calc exp: $127 + (6 + 2) + 1 = 10001000_2$

Step3: calc sign: 1 * -1 = -1

6

a

ans: 0, 0 0000 0001, 0000 00 = $1.0 \cdot 2^{-254} = a_0$

b

1st biggest: 0, 0 0000 0000, 1111 11 = $0.1111111 \cdot 2^{-254} = a_1$

2nd biggest: 0, 0 0000 0000, 1111 10 = $0.1111110 \cdot 2^{-254} = a_2$

C

$$|a_0-a_1|=0.000001\cdot 2^{-254}$$

$$|a_1 - a_2| = 0.000001 \cdot 2^{-254}$$

d

e

$$1.31_{10} = 1.0100111101011100011 \cdots_{2}$$

=>
$$0,0111111111,010100=1.010100\cdot 2^{255-255}=\underline{1.010100_2}_U=1.3125_{10}$$

7

$$(X + a) \gg 2 \equiv \left\lfloor \frac{X+a}{4} \right\rfloor$$

a

$$(X + 3) >> 2$$

testing X = 2:

$$\Rightarrow \lfloor rac{2+3}{4}
floor = 1
eq 0 = (2/4) \Rightarrow \mathsf{false}$$

Ans: not equivalent

b

$$((X \ge 0) ? X >> 2 : (X + 3) >> 2)$$

Obviously true for $X\geq 0,$

for
$$X < 0, \; f(X) = \left\lfloor rac{X+3}{4}
ight
floor$$

testing a full period $(-1 \sim -5)$:

$$f(-1)=0, f(-2)=0, f(-3)=0, f(-4)=-1, f(-5)=-1, \ldots$$
 => true

Ans: equivalent

C

Obviously true for $X \geq 0$,

for
$$X<0,\;f(X)=\left\lfloor \frac{X}{4}\right\rfloor$$

testing X = -1:

$$f(-1)=-1
eq 0$$
 => false

Ans: not equivalent

d

 $\text{ if }X\geq 0, \\$

$$(X >> 31) & 3 = (0..0) & (10) = 0$$

if X < 0,

$$(X >> 31) & 3 = (1..1) & (10) = 3$$

by conclusion from (a), (b), (c),

if
$$X \geq 0$$
: X >> 2 => true

if
$$X < 0$$
: (X + 3) >> 2 => true

Ans: equivalent