

PAJ 1994 to today

Your search statement: Words anywhere: "@PN='09043590" Record 1 of 1

(19)

JAPANESE PATENT OFFICE

(11) Publication Number: JP 09043590 A

(51) int. CI: G02F001-1335 🔟 🖾

(ICS) G02F001-1343

(71) Applicant: HITACHI LTD (43) Date of publication: 19970214

(72) Inventor:

ASUMA HIROAKI MATSUYAMA SHIGERU

(21) Application Information: 19950727 JP 07-192004

LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To make it possible to eliminate the disturbance in electric field patterns and to make display with high image quality free from unequal colors.

SOLUTION: This liquid crystal display device includes *>=* 2 kinds of color filter formed on one of substrates 1, 1', a black mask interposed between the respective color filters, electrode groups 2, 11 formed on the other substrate, orientation control films 20, 20' for orienting the molecular arrangement of the liquid crystal molecules 21 held between the substrates to prescribed directions, polarizing means 13, 13' laminated on the substrates and driving means for impressing driving voltage on these electrode groups. The liquid crystal display device has the electrode arrangement structure for forming electric fields mainly parallel to the boundary of the orientation control films and the liquid crystal layer and cobalt oxide particles are incorporated into the black mask.

CD-Volume: MIJP9702PAJ JP 09043590 A 001

Copyright: JPO 19970214

PAJ Result

End Session

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-43590

(43)公開日 平成9年(1997)2月14日

(51) Int.Cl. 6		識別記号	庁内整理番号	FΙ			技術表示箇所
G02F	1/1335 1/1343	500		G 0 2 F	1/1335 1/1343	500	

		客查請求	未請求 請求項の数5 OL (全 9 頁)		
(21)出願番号	特願平7-192004	(71)出顧人	000005108 株式会社日立製作所		
(22)出顧日	平成7年(1995)7月27日	東京都千代田区神田駿河台四丁目 6番地			
		(72)発明者	阿須間 宏明		
			千葉県茂原市早野3300番地 株式会社日立		
			製作所電子デパイス事業部内		
		(72)発明者	松山 茂		
			千葉県茂原市早野3300番地 株式会社日立		
			製作所電子デバイス事業部内		
		(74)代理人	弁理士 武 顕次郎		
		1			

(54) 【発明の名称】 液晶表示装置

(57) 【要約】

【目的】電界パターンの乱れを解消し、色むらのない高 画質の表示を行う。

【構成】基板1,1'の一方に形成された2種以上のカラーフィルタと各カラーフィルタ間に介在させたブラックマスクと、他方の基板上に形成された電極群2,11と、基板間に挟持された液晶分子21の分子配列を所定の方向に配向させるための配向制御膜20,20'と、基板に積層された偏光手段13,13'、および電極群に駆動電圧を印加するための駆動手段とを具備し、配向制御膜と液晶層の界面に対して、主として平行な電界を形成する電極配列構造を有し、前記ブラックマスクに酸化コバルト粒子を含ませた。

【特許請求の範囲】

【請求項1】少なくとも一方が透明な一対の基板、前記一対の基板の一方に形成されたカラー表示のための色の異なる少なくとも2種以上のカラーフィルタと各カラーフィルタ間に介在させたブラックマスクと、前記一対の基板のうち他方の基板上に形成された電極群と、前記一対の基板間に挟持された誘電異方性を有する液晶組成物質からなる液晶層および前記液晶組成物質の分子配列を所定の方向に配向させるための配向制御膜と、前記一対の基板の少なくとも一方に積層された偏光手段、および前記電極群に駆動電圧を印加するための駆動手段とを具備するカラー液晶表示装置において、

前記電極群が前記配向制御膜と前記液晶層の界面に対して、主として平行な電界を形成するごとく配置された電 極配列構造を有し、

前記ブラックマスクが酸化コパルト粒子を含むことを特 徴とするカラー液晶表示装置。

【請求項2】請求項1において、前記ブラックマスクが 前記酸化コバルトの他に有機顔料あるいは黒鉛粉末の何 れか一方または両方を含むことを特徴とするカラー液晶 表示装置。

【請求項3】請求項1または2において、前記酸化コバルト粒子が主として四酸化三コバルトであることを特徴とするカラー液晶表示装置。

【請求項4】請求項1、2または3において、前記酸化コバルトの他に酸化クロム、酸化マンガン、酸化ニッケルの何れかを含むことを特徴とするカラー液晶表示装置。

【請求項5】請求項1において、前記ブラックマスクの 比抵抗値が10 6 Ω ・cm以上であることを特徴とする カラー液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、表示むらのない画素構造を備えた高画質のアクティブマトリクス型液晶表示装置に関する。

[0002]

【従来の技術】パソコンやワープロ、その他の情報機器のための表示デバイスとして、近年、液晶表示装置を用いた薄型、軽量かつ低消費電力の表示装置が多用されるようになった。

【0003】液晶表示装置は、基本的には水平と垂直に配列された多数の電極で形成されるマトリクスと上記水平と垂直の電極の間に液晶層を有し、2つの電極の交差部分で画素を構成して2次元画像を表示するものである。

【0004】この種の液晶表示装置には、水平と垂直の 電極に印加するパルスのタイミングで所定の画素を選択 する所謂単純マトリクス方式と、各画像にトランジスタ 等の非線型素子を配置して所定の非線型素子を選択する 所謂アクティブ・マトリクス方式とがある。

【0005】アクティブ・マトリクス方式の液晶表示装置は、マトリクス状に配列された複数の画素電極のそれぞれに対応して非線形素子(スイッチング素子)を設けたものである。各画素における液晶は理論的には常時駆動(デューティ比 1. 0)されているので、時分割駆動方式を採用している、いわゆる単純マトリクス方式と比べてアクティブ方式はコントラストが良く、特にカラー液晶表示装置では欠かせない技術となりつつある。スイッチング素子として代表的なものとしては薄膜トランジスタ(TFT)がある。

【0006】従来の薄膜トランジスタ型液晶表示装置では、液晶層を駆動する電極として2枚の基板の界面上に相対向させて形成した透明電極を用いている。

【0007】このような電極構造とすることで、液晶に 印加する電界の方向は基板の界面にほぼ垂直な方向とな る所謂ツイステッドネマチック表示方式に代表される表 示方式を採用している。

【0008】一方、液晶に印加する電界の方向を基板の 界面にほぼ平行な方向とする表示方式として、液晶層を 駆動する電極を基板面と平行な櫛歯電極対を用いる方式 (所謂、横電界方式)が、例えば特公昭63-2190 7号公報、特開平7-36058号公報により提案され ている。なお、櫛歯電極の設定方法および製造方法につ いては、本出願人により出願済みである(特願平7-1 05862号)。

【0009】図9は横電界方式の液晶表示装置を構成する1画素の構成と点灯動作を説明する模式断面図であって、1はTFT基板、1'はカラーフィルタ基板、2は共通電極、6は絶縁膜、11は画素電極、12は保護膜、17はブラックマスク、18はカラーフィルタである。

【0010】同図において、TFT基板1とカラーフィルタ基板1'の間には液晶層が挟持されており、さらに保護膜12およびカラーフィルタ18の上面には液晶層を構成する液晶分子の配向方向を規定するための配向膜、TFT基板1とカラーフィルタ基板1'の外面側には偏光板が設置されるが図示を省略してある。

【0011】このような構成の横電界方式液晶表示装置では、画素電極2と共通電極11は共に一方の基板(TFT基板1)に形成されており、他方の基板(カラーフィルタ基板1')にはブラックマスク17で区画された1画素の色を構成するカラーフィルタ18が形成されている。

【0012】カラーフィルタを区画するブラックマスク17は外光の反射防止と、隣接画素からの光を吸収してコントラストを上げる機能を有し、その材料としては顔料に黒鉛(以下、カーボンとも言う)等の吸光粒子を分散したスラリ(レジスト)を用いて形成するのが一般的である。

[0013]

【発明が解決しようとする課題】カラーフィルタ基板側に共通電極を形成した従来の縦電界方式の液晶表示装置では、カラーフィルタ基板を構成するブラックマスクに要求される性能は高い光吸収性、と低い光反射性であり、その抵抗値については何ら考慮されていなかった。上記した材料を用いたブラックマスクでは、特に光吸収性を向上させようとすると黒鉛の添加量を多くすることが行われていた。したがって、その抵抗値は黒鉛の添加量の増大に応じて低下する。

【0014】しかし、横電界方式の液晶表示装置において、そのブラックマスクの抵抗値が低いと、図9に示したように、画素を点灯するために画素電極2と共通電極11との間に電圧を印加すると、画素電極2からの電気力線は図示したように抵抗値の低いブラックマスク17に引き寄せられて基板界面に対して傾斜した乱れた電界パターンになり、画素電極2と共通電極12の位置に所謂ドメインが発生して光の透過率が著しく低下する。そのため、コントラストが低下してしまい、色むらが発生して良好な画質表示を得ることができない。

【0015】ブラックマスクを構成する材料として、光吸収性の観点から現在では黒鉛を用いるのが最も望ましいが、その混合量を増加すると電気的抵抗値が低下し、上記したような問題が発生するため、その混合比率の選定は極めて困難である。

【0016】図10は1画素に2本の櫛形の共通電極を配置した横電界方式の液晶表示装置の1画素分の模式図であって、(a)は平面図、(b)は(a)のA-A線で切断した断面図である。なお、ブラックマスク17で囲まれた部分にはカラーフィルタが、また、その上層、および共通電極2と画素電極11の上層にも各種の成膜がなされるが、ここでは省略してある。

【0017】同図においては、ブラックマスクで囲まれた開口領域で1画素が形成され、当該領域に2本の櫛形の共通電極2が配置されて、TFT基板1とカラーフィルタ基板の間に液晶層が挟持されている。

【0018】点灯時に印加される信号電圧により、共通電極2から、それぞれの隣接する画素電極11との間に電界が形成される。この電界は、印加される信号電圧の大きさに応じて液晶分子に強く作用し、その分子配向方向が回転してTFT基板1からカラーフィルタ基板1、に通過する光の透過率が大きくなる。

【0019】図11は図10に示した2本の櫛形の共通電極の間の透過率と各櫛形の共通電極と隣接する画素電極との間の透過率の違いの説明図であって、スポットaは2本の櫛形の共通電極の間の透過率を、スポットらは各櫛形の共通電極と隣接する画素電極との間の透過率の変化を示す。

【0020】同図に示されたように、画素電極11に印加される信号電圧(V)が増加するに従い透過率が大き

くなって行くが、前記図10に示したように、スポット bはブラックマスク17に近い位置にあるために、電界 のパターンが基板の平面に対して大きな角度で形成され るために、電圧の増加に対する透過率の変化はスポット aに比較して立ち上がりが遅くなる。なお、図11では 同一の透過率を得るためにはスポットもではスポットa に対して約1Vの電圧増加が必要となる。

【0021】そのため、同一の印加電圧では1画素内での中央部分と周辺部分とで透過率が異なって色むらが発生する。

【0022】本発明の目的は、所謂横電界方式の液晶表示装置における上記した電界パターンの乱れを解消し、色むらのない高画質の表示を可能としたカラー液晶表示装置を提供することにある。

[0023]

【課題を解決するための手段】上記目的を達成するため に、請求項1に記載の第1の発明は、少なくとも一方が 透明な一対の基板、前記一対の基板の一方に形成された カラー表示のための色の異なる少なくとも2種以上のカ ラーフィルタと各カラーフィルタ間に介在させたブラッ クマスクと、前記一対の基板のうち他方の基板上に形成 された電極群と、前記一対の基板間に挟持された誘電異 方性を有する液晶組成物質からなる液晶層および前記液 晶組成物質の分子配列を所定の方向に配向させるための 配向制御膜と、前記一対の基板の少なくとも一方に積層 された偏光手段、および前記電極群に駆動電圧を印加す るための駆動手段とを具備するカラー液晶表示装置の前 記電極群が前記配向制御膜と前記液晶層の界面に対し て、主として平行な電界を形成するごとく配置された電 極配列構造を有し、前記ブラックマスクに酸化コバルト 粒子を含ませたことを特徴とする。

【0024】また、請求項2に記載の第2の発明は、第 1の発明における前記ブラックマスクに前記酸化コバルトの他に有機顔料あるいは黒鉛粉末の何れか一方または 両方を含ませたことを特徴とする。

【0025】さらに、請求項3に記載の第3の発明は、 第1または第2の発明における前記酸化コバルト粒子 を、主として四酸化三コバルトとしたことを特徴とす る。

【0026】さらにまた、請求項4に記載の第4の発明は、第1、第2または第3の発明における前記酸化コバルトの他に酸化クロム、酸化マンガン、酸化ニッケルの何れかを含むことを特徴とする。

【0027】そして、請求項5に記載の第5の発明は、第1の発明における前記ブラックマスクの比抵抗値を106 Ω ・c m以上としたことを特徴とする。

【0028】なお、上記したブラックマスクはTFT型に限るものではなく、他のアクティブ・マトリクス型、あるいは所謂単純マトリクス型を含めた他の形式の液晶表示装置にも適用可能である。

[0029]

【作用】上記第1の発明の構成において、少なくとも一方が透明な一対の基板の一方に形成されたカラー表示のための色の異なる少なくとも2種以上のカラーフィルタ間に介在させたブラックマスクは、隣接する画素の点灯光の侵入を遮断して表示光のコントラストを向上させる。

【0030】前記一対の基板のうち他方の基板上に形成された電極群は少なくとも共通電極と画素電極から構成され、点灯時には両電極間に電界パターンを形成して液晶層を構成する液晶組成物質の分子配列方向を回転させて光の透過率を変化させる。配向制御膜は、電界の印加がないときの前記液晶組成物質の分子配列を所定の方向に配向させる作用を有する。また、偏光手段は前記一対の基板の少なくとも一方に積層されて液晶層を通過した特定の方向に偏光された光を通過させる。

【 O O 3 1 】駆動手段は前記電極群に駆動電圧を印加して所定の画素を点灯し、カラー表示を行わせる。

【0032】前記電極群の電極構造は、前記配向制御膜と前記液晶層の界面に対して、主として平行な電界を形成するごとく配置され、前記電極群を構成する共通電極と画素電極との間に上記電界が形成されたとき、前記液晶分子を前記界面に平行な面内で回転させる。

【0033】そして、前記ブラックマスクに酸化コバルト粒子を含ませたことにより、ブラックマスクの比抵抗値は大きくなり、前記電極群の間に形成される電界が前記界面に平行な面内に形成される。

【 O O 3 4 】これにより、液晶分子は前記界面に平行な面内で回転し、所謂ドメインの発生が抑制されて光透過率が向上する。

【0035】また、上記第2の発明の構成において、ブラックマスクに前記酸化コパルト粒子に加えて、有機顔料あるいは黒鉛粉末の一方または両方を含ませることでブラックマスクの比抵抗値を大きくしつつ、吸光性をさらに向上することができる。これにより、液晶分子は前記界面に平行な面内で回転し、所謂ドメインの発生が抑制されて光透過率が向上する。

【0036】さらに、上記第3の発明の構成において、前記酸化コバルト粒子として主として四酸化三コバルトを用いることでブラックマスクの比抵抗値と吸光性を確保することができ、同様に液晶分子は前記界面に平行な面内で回転し、所謂ドメインの発生が抑制されて光透過率が向上する。

【0037】さらにまた、上記第4の発明の構成において、前記酸化コバルトの他に酸化クロム、酸化マンガン、酸化ニッケルの何れかを含むことで、ブラックマスクの比抵抗値と吸光性を確保することができ、同様に液晶分子は前記界面に平行な面内で回転し、所謂ドメインの発生が抑制されて光透過率が向上する。

【0038】そして、上記第5の発明の構成において、

前記ブラックマスクの比抵抗値を106 Ω・cm以上としたことで、ブラックマスクへの電界の侵入が防止され、前記界面に平行な電界パターンが形成されると共に、BMの遮光性(吸光性)が向上し、高い光学濃度が得られる。

[0039]

【実施例】以下、本発明の実施例につき、図面を参照し て詳細に説明する。

【 O O 4 O 】図 1 は本発明を適用する液晶表示装置の動作を説明する 1 画素分の模式図であって、同図 (a) は電圧無印加時の断面図、同図 (b) は電圧印加時の断面図、同図 (c) は電圧無印加時の平面図、同図 (d) は電圧印加時の平面図である。ここで言う電圧とは共通電極と画素電極との間に印加される選択電圧である。

【0041】同図において、1,1'は透明ガラス基板(以下、単に基板とも言う)、2は共通電極、6は絶縁膜、10は信号配線、11は画素電極、12は保護膜、13,13'は偏光板、14,14'は偏光板の偏光軸、15は液晶分子の配向方向、16は電界方向、17はブラックマスク(BM)、18はカラーフィルタ、19は保護膜(平坦化膜)、20,20'は配向制御膜(配向膜)、21は液晶(棒状液晶分子)である。

【0042】この液晶表示装置は、2枚の透明ガラス基板1,1'の一方の基板(カラーフィルタ基板)1'に偏光板13'、遮光用のBM17、カラーフィルタ18、保護膜19、および配向膜20'を形成してなる。また、液晶21を介した他方の基板(TFT基板)1には偏光板13、配向膜20、信号電極10、画素電極11、共通電極2、各配線および薄膜トランジスタ(TFT)を形成してなる。なお、同図には各配線および薄膜トランジスタは図示を省略した。

【0043】同図(a)(c)に示したように、液晶21は配向膜20,20'により予め電界方向16(同図(b)(d)参照)と基板1,1'の界面とほぼ平行な配向方向15に配向されており、この状態では液晶21の分子配向方向は偏光板13の偏光軸14とほぼ一致した関係であり、上側の偏光板13'の偏光軸14'が直交しており、画素は非表示(非点灯)の状態にある。

【0044】次に、同図(b)(d)に示したように、基板1に形成した共通電極2と画素電極11間に電圧を印加することで基板1,1'の界面とほぼ平行方向に電界(電界方向16)を形成すると、液晶21の分子は基板1,1'の界面と平行な面内で偏向されて回転する。これにより、画素は表示(点灯)の状態になる。この画素を多数配列して表示装置が構成される。

【0045】図2は本発明による液晶表示装置の1実施 例を構成するTFT基板の構造例の説明図であって、

(a) は平面図を、(b) は (a) のA-A' 線に沿った断面図を、(c) は (a) のB-B' 線に沿った断面図を示す。

【0046】同図において、前記図1と同一符号は同一部分に対応し、3は共通配線、4は走査電極、5は走査配線、6は絶縁膜、7は半導体層、8は薄膜トランジスタ部(TFT部)、10は信号配線、11は画素電極、12は保護膜である。

【0047】走査電極4、走査配線5、共通電極2および共通配線3は同層かつ同材料で形成されている。これらの各層と絶縁膜6を介して半導体層7を、また上記各電極と配線と同層かつ同材料で信号配線10および画素電極11を形成している。

【0048】また、画素電極11の一部が共通配線3と基板面に垂直な方向で絶縁膜6を介してオーバーラップさせて配置し、電気的容量を持たせて画素電極11と共通電極2の間に与えられた信号電圧を保持する信号保持能力を向上させている。

【0049】図3は本発明による液晶表示装置の1実施 例を構成するカラーフィルタ基板の構造例の説明図であって、図1と同一符号は同一部分に対応する。

【0050】同図に示したように、このカラーフィルタ基板は透明基板1'の一面側にブラックマスク(BM)17で区画した複数のカラーフィルタ(R, G, B)が形成され、その上に保護膜(平滑層)19と配向膜20'とが形成されている。また、透明基板1'の他面側には偏光板13'が積層されている。

【0051】複数のカラーフィルタR, G, Bを区画するBM17は酸化コバルトの粒子として四酸化三コバルト(CO_3O_4)の粒子を含んだレジストを用いて既知のフォトリソグラフィー法で形成してある。

【0052】なお、四酸化三コバルトにさらに有機顔料かカーボン(黒鉛)の一方または両方を含んだレジストを用いることもできる。

【0053】さらに、酸化クロム、酸化マンガン、酸化ニッケルの何れか含んだレジストを用いることもできる。

【0054】このブラックマスク17の比抵抗値は106 Ω · c m以上と成るように前記レジストの成分の混合比率を調整する。

【0055】ブラックマスクの成分とその比抵抗値を上記のように選定したことで、共通電極と画素電極との間に印加される選択電圧によって形成される電界パターンは液晶層と配向膜との界面に略々平行となり、ドメインの発生が著しく低減され、高コントラストの表示が得られる。

【0056】すなわち、図4は本発明による液晶表示装置の1実施例を構成する1画素分の断面における電界パターンの模式図であって、共通電極2と画素電極11との間に形成される電気力線はBM17に影響されることがなく、その電界パターンは液晶層と配向膜との界面に略々平行となり、画素電極11の位置および共通電極2の位置での各ドメインの発生が著しく低減され、1画素

の開口領域での透過率が向上し、高コントラストの表示 が得られる。

【 O O 5 7 】なお、ブラックマスクにカーボンを含有させる場合には、含有するカーボンの量が多いと比抵抗値が低下し、また少ければ比抵抗値は大きくなる。カーボンの含有量を多くすれば光学濃度(O D 値)が大となる。しかし、カーボンは導電性であるために比抵抗値が低下する。

【0058】すなわち、カーボンの混合量は、上記した相反する要求を満たす値を設定する必要がある。

【0059】図5はブラックマスクのカーボン含有量に対する比抵抗値の変化と光学濃度(OD値)の変化の説明図であって、(a)はBMの比抵抗値、(b)は光学濃度を示す。

【0060】同図では、横軸にブラックマスクのカーボン含有量(相対値)を、また左側縦軸にブラックマスクの比抵抗値(Ω ・c m)を、右側縦軸にOD値(1 / μ m)を取って示す。

【0061】同図に示したカーボン含有量に対する比抵抗値と光学濃度(OD値)との関係から、カーボン含有量を50前後においてブラックマスクの比抵抗値は10 6 Ω ・cm以上となり、OD値も実用上満足できる値に設定できることが分かる。

【0062】次に、本発明のより具体的な構成例について説明する。

【0063】図6は本発明による液晶表示装置の表示マトリクス部の等価回路とその周辺回路の結線図である。

【0064】同図において、ARは複数の画素を2次元的に配列したマトリクスアレイ、Xは映像信号線DLを示し、添字G,B,Rはそれぞれ緑、青、赤の各画素に対応する。

【0065】また、DTMはドレイン端子、GTMはゲート端子、Yは走査信号線GLを意味し、添字1, 2, 3,・・・, endは走査タイミングの順に従う。なお、この走査信号線Y(添字省略)は垂直走査回路Vに接続されている。

【0066】映像信号線 X (添字省略) は表示パネルの 長辺の一方に配置される映像信号駆動回路 H e に接続され、走査信号線 Y と同様に液晶表示パネルの片側のみに 端子が引き出されている。

【0067】SUPは1つの電圧源から分圧した安定化された電圧源を得るための電源回路やホスト(上位演算処理装置)からのCRT(陰極線管)用の情報をTFT液晶表示装置用の情報に変換する回路も含む。

【0068】図7は本発明による液晶表示装置の1構成例を説明する分解斜視図であって、液晶表示装置(以下、液晶表示パネル、回路基板、バックライト、その他の構成部材を一体化したモジュール:MDLと称する)の具体的構造を説明するものである。

【0069】同図において、SHDは金属板からなるシ

ールドケース(メタルフレームとも言う)、WDは表示 窓、INS1~3は絶縁シート、PCB1~3は回路基 板(PCB1はドレイン側回路基板:映像信号線駆動用 回路基板、PCB2はゲート側回路基板、PCB3はイ ンターフェース回路基板)、JN1~3は回路基板PC B1~3同士を電気的に接続するジョイナ、TCP1, TCP2はテープキャリアパッケージ、PNLは液晶表 示パネル、GCはゴムクッション、ILSは遮光スペー サ、PRSはプリズムシート、SPSは拡散シート、G LBは導光板、RFSは反射シート、MCAは一体化成 形により形成された下側ケース(モールドフレーム)、 MOはMCAの開口、LPは蛍光管、LPCはランプケ ーブル、GBは蛍光管LPを支持するゴムブッシュ、B ATは両面粘着テープ、BLは蛍光管や導光板等からな るバックライトを示し、図示の配置関係で拡散板部材を 積み重ねて液晶表示モジュールMDLが組立てられる。

【0070】液晶表示モジュールMDLは、下側ケース MCAとシールドケースSHDの2種の収納・保持部材を有し、絶縁シートINS1~3、回路基板PCB1~3、液晶表示パネルPNLを収納固定した金属製のシールドケースSHDと、蛍光管LP、導光板GLB、プリズムシートPRS等からなるバックライトBLを収納した下側ケースMCAとを合体させてなる。

【OO71】映像信号線駆動用回路基板PCB1には液晶表示パネルPNLの各画素を駆動するための集積回路チップが搭載され、またインターフェース回路基板PCB3には外部ホストからの映像信号の受入れ、タイミング信号等の制御信号を受け入れる集積回路チップ、およびタイミングを加工してクロック信号を生成するタイミングコンパータTCON等が搭載される。

【OO72】上記タイミングコンバータで生成されたクロック信号はインターフェース回路基板PCB3および映像信号線駆動用回路基板PCB1に敷設されたクロック信号ラインCLLを介して映像信号線駆動用回路基板PCB1に搭載された集積回路チップに供給される。

【0073】インターフェース回路基板PCB3および映像信号線駆動用回路基板PCB1は多層配線基板であり、上記クロック信号ラインCLLはインターフェース回路基板PCB3および映像信号線駆動用回路基板PCB1の内層配線として形成される。

【〇〇74】なお、液晶表示パネルPNLにはTFTを駆動するためのドレイン側回路基板PCB1、ゲート側回路基板PCB2およびインターフェース回路基板PCB3がテープキャリアパッケージTCP1, TCP2はで接続され、各回路基板間はジョイナJN1, 2, 3で接続されている。

【0075】液晶表示パネルPNLは前記した本発明に よる横電界方式の液晶表示装置であり、そのカラーフィ ルタ基板に形成したBMの比抵抗を高くして画素電極と 共通電極の間に形成される電界パターンが液晶層の界面 に略々平行に形成される。

【0076】図8は本発明による液晶表示装置を実装した情報処理装置の一例を説明するパソコンの外観図であって、前記各図と同一符号は同一部分に対応し、IVは 蛍光管駆動用のインパータ電源、CPUはホスト側中央 演算装置である。

【0077】同図に示されたように、本発明による液晶表示装置を実装したパソコンは、映像信号線駆動用回路基板(水平駆動用回路基板:ドレイン側回路基板)PCB1を画面の上部にのみ配置したことで、当該表示部の下側(キーボード側)のスペースに余裕ができ、キーボード部と表示部を結合するヒンジの設置スペース(ヒンジスペース)が少なくて済む。したがって、表示部の外形サイズを低減でき、パソコン全体のサイズを小さくすることが可能となる。

[0078]

【発明の効果】以上説明したように、本発明によれば、 所謂横電界方式の液晶表示装置における選択電圧で生じ る電界がブラックマスクに侵入しないため、上記した電 界パターンの乱れによるドメインの発生を解消し、色む らのない高画質のカラー液晶表示装置を提供することが できる。

【図面の簡単な説明】

【図1】本発明を適用する液晶表示装置の動作を説明する1画素分の模式図である。

【図2】本発明による液晶表示装置の1実施例を構成するTFT基板の構造例の説明図である。

【図3】本発明による液晶表示装置の1実施例を構成するカラーフィルタ基板の構造例の説明図である。

【図4】本発明による液晶表示装置の1実施例を構成する1画素分の断面における電界パターンの模式図である。

【図5】ブラックマスクのカーボン含有量に対する比抵抗値の変化と光学濃度(OD値)の変化の説明図である。

【図6】本発明による液晶表示装置の表示マトリクス部の等価回路とその周辺回路の結線図である。

【図7】本発明による液晶表示装置の1構成例を説明する分解斜視図である。

【図8】本発明による液晶表示装置を実装した情報処理 装置の一例を説明するパソコンの外観図である。

【図9】横電界方式の液晶表示装置を構成する1 画素の 構成と点灯動作を説明する模式断面図である。

【図10】1画素に2本の櫛形の共通電極を配置した横電界方式の液晶表示装置の1画素分の模式図である。

【図11】図10に示した2本の櫛形の共通電極の間の 透過率と各櫛形の共通電極と隣接する画素電極との間の 透過率の違いの説明図である。

【符号の説明】

1, 1 透明ガラス基板(基板)

- 2 共通電極
- 6 絶縁膜
- 10 信号配線
- 11 画素電極
- 12 保護膜
- 13,13 偏光板
- 14,14 偏光板の偏光軸

【図1】

[図3]

[図9]

図 9

15 液晶分子の配向方向

16 電界方向

17 ブラックマスク (BM)

18 カラーフィルタ

19 保護膜(平坦化膜)

20, 20' 配向制御膜(配向膜)

21 液晶(棒状液晶分子)。

【図2】

[図4]

図4

【図6】

【図8】

【図11】

