تكليف سوم

بخش اول

تمرین ۴ بخش ۸.۱

a) clauses are $a \cdot b$ and $c \cdot$

b)

•
$$P_a = ((True \lor b) \iff c) \oplus ((False \lor b) \iff c)$$

 $= (True \iff c) \oplus (b \iff c)$
 $= c \oplus (b \iff c)$
 $= (c \land \neg (b \iff c)) \lor (\neg c \land (b \iff c))$
 $= (c \land \neg b \land c) \lor (c \land b \land \neg c) \lor (\neg c \land b \land c) \lor (\neg c \land \neg b \land \neg c)$
 $= (c \land \neg b) \lor (\neg c \land \neg b)$
 $= \neg b \land (c \lor \neg c)$
 $= \neg b \land True$
 $= \neg b$

- $P_b = \neg a$ (similar to P_a)
- $P_c = ((a \lor b) \iff True) \oplus ((a \lor b) \iff False)$ = $(a \lor b) \oplus \neg (a \lor b)$ = True

c)

	a	b			P_a	P_b	P_c
١	Т	Т	Т	Т	F	F	T
۲	Т	Т	F	F	F	F	T
٣	Т	F	$\mid T \mid$	T	T	F	T
۴	Т	F	F	F	T	F	T
۵	F	Т	$\mid T \mid$	T	F	Т	T
۶	F	Т	F	F	F	T	T
٧	F	F	$\mid T \mid$	F	Т	T	T
٨	F	F	F	T	$\mid T \mid$	T	$\mid T \mid$

d)

- GACC pairs for a: (3,7), (3,8), (4,7), (4,8)
- GACC pairs for b: (5,7), (5,8), (6,7), (6,8)
- GACC pairs for c: (1,2), (1,4), (1,6), (1,8), (3,2), (3,4), (3,6), (3,8),

$$(5,2), (5,4), (5,6), (5,8), (8,2), (7,4), (7,6), (7,8)\\$$

e)

- CACC pairs for a: (3,7), (4,8)
- CACC pairs for b: (5,7), (6,8)
- CACC pairs for c: (1,2), (1,4), (1,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6), (7,8)

f)

- RACC pairs for a: (3,7), (4,8)
- RACC pairs for b: (5,7), (6,8)
- RACC pairs for c: (1,2), (3,4), (5,6), (7,8)

بخش دوم

a=i< size

b = j < i

c = intervals[i].begin < intervals[j].end

d = intervals[i].end > intervals[j].begin

e = rows[j] >= rows[i]

 $P = a \wedge b \wedge c \wedge d \wedge e$

پرسش اول

طبق جدول زير براي CACC pair ها داريم:

a = (1, 17), b = (1, 9), c = (1, 5), d = (1, 3), e = (1, 2)

 $intervals = \{\{6,7\},\{10,12\},\{7,9\},\{6,12\}\}, size = 4$ همه ی سطر های 9 و infeasible استند و بنابراین تست 4 میدهد.

	l	l	l	l		I . I	I		[l	
	a	b	c	d	e	$(a \wedge b \wedge c \wedge d \wedge e)$	1	P_b	P_c	P_d	P_e
١	T	Т	T	T	T	T	T	Т	Т	T	Т
۲	T	Т	T	T	F						Т
٣	$\mid T \mid$	Т	T	F	T					T	
۴	T	Т	T	F	F						
۵	T	Т	F	T	T				Т		
۶	T	T	F	T	F						
٧	T	Т	F	F	T						
٨	T	Т	F	F	F						
٩	T	F	T	T	T			T			
١ ۰	Т	F	Т	T	F						
11	Т	F	Т	F	Т						
١٢	$\mid T \mid$	F	Т	F	F						
١٣	$\mid T \mid$	F	F	$\mid T \mid$	T						
14	$\mid T \mid$	F	F	$\mid T \mid$	F						
۱۵	Т	F	F	F	Т						
18	$\mid T \mid$	F	F	F	F						
17	F	Т	Т	$\mid T \mid$	Т		T				
١٨	F	Т	Т	$\mid T \mid$	F						
19	F	Т	Т	F	Т						
۲.	F	Т	Т	F	F						
۲۱	F	Т	F	$\mid T \mid$	T						
77	F	Т	F	$\mid T \mid$	F						
74	F	Т	F	F	T						
74	F	Т	F	F	F						
40	F	F	Т	$\mid T \mid$	T						
48	F	F	Т	T	F						
**	F	F	Т	F	T						
44	F	F	Т	F	F						
79	F	F	F	$\mid T \mid$	Т						
٣.	F	F	F	T	F						
٣١	F	F	F	F	Т						
٣٢	F	F	F	F	F						

پرسش دوم

با توجه به گراف زیر، مسیر طی شده به این صورت است:

[1, 2, 3, 4, 5, 10, 3, 4, 5, 6, 7, 9, 5, 10, 3, 4, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 3, 4, 5, 6, 7, 8, 9, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 3, 11]

پرسش سوم

مسیرهایی که قرمز شده اند infeasible هستند. مسیرهای سبزرنگ پوشش داده میشوند و سایر مسیرها پوشش داده نمشه ند.

[1, 2, 3, 4, 5, 10, 3, 4, 5, 6, 7, 9, 5, 10, 3, 4, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 3, 4, 5, 6, 7, 8, 9, 5, 6, 7, 9, 5, 6, 7, 9, 5, 10, 3, 11]

Variable	DU-pair	DU-path
intervals	(1,6)	[1, 2, 3, 4, 5, 6]
	(1,2)	[1,2]
size	(1,(3,11))	[1, 2, 3, 11]
	(1,(3,4))	[1, 2, 3, 4]
	(2,6)	no def-clear path
	(2,8)	no def-clear path
	(2,11)	[2, 3, 11]
	(4,6)	[4, 5, 6]
rows	(4,8)	[4, 5, 6, 7, 8]
	(4,11)	[4, 5, 10, 3, 11]
	(8,6)	[8, 9, 5, 6]
	(8,8)	[8, 9, 5, 6, 7, 8]
	(8, 11)	[8, 9, 5, 10, 3, 11]
	(2,4)	[2, 3, 4]
	(2,6)	[2, 3, 4, 5, 6]
	(2,8)	[2, 3, 4, 5, 6, 7, 8]
	(2,10)	[2, 3, 4, 5, 10]
	(2,(3,11))	[2, 3, 11]
	(2,(3,4))	[2, 3, 4]
	(2, (5, 10))	[2, 3, 4, 5, 10]
i	(2, (5, 6))	[2, 3, 4, 5, 6]
1	(10,4)	[10, 3, 4]
	(10,6)	[10, 3, 4, 5, 6]
	(10, 8)	[10, 3, 4, 5, 6, 7, 8]
	(10, 10)	[10, 3, 4, 5, 10]
	(10, (3, 11))	[10, 3, 11]
	(10, (3, 4))	[10, 3, 4]
	(10, (5, 10))	[10, 3, 4, 5, 10]
	(10, (5, 6))	[10, 3, 4, 5, 6]

Variable	DU-pair	DU-path
	(4,6)	[4, 5, 6]
	(4,8)	[4, 5, 6, 7, 8]
	(4,9)	[4, 5, 6, 7, 8, 9]
	(4, (5, 10))	[4, 5, 10]
;	(4, (5, 6))	[4, 5, 6]
j	(9,6)	[9, 5, 6]
	(9,8)	[9, 5, 6, 7, 8]
	(9,9)	[9, 5, 6, 7, 8, 9]
	(9, (5, 10))	[9, 5, 10]
	(9, (5, 6))	[9, 5, 6]
a	(6, (7, 9))	[6, 7, 9]
a	(6, (7, 8))	[6, 7, 8]
b	(6, (7,9))	[6, 7, 9]
U	(6, (7, 8))	[6, 7, 8]

(1

(٢

(٣

(4

```
struct interval {
    int begin;
    int end;
};

vector<int> layout(vector<intervals, int size) {
    vector<int> rows(size);
    for (int i = 0; i < size; i++) {
        // rows[i] = 0;
        rows[i] = rows[i-1];
        for (int j = 0; j < i; j++) {
            if ((intervals[i].begin < intervals[j].end) && (intervals[i].end > intervals[j].begin) && rows[j] >= rows[i]) {
            rows[i] = rows[j] + 1;
            }
        }
}
```

(9

(1

(۸

(10

```
struct interval {
    int begin;
    int end;
};

vector<int> layout(vector<intervals, int size) {

vector<int> rows(size);
for (int i = 0; i < size; i++) {
    rows[i] = 0;
    for (int j = 0; j < i; j++) {
        if ((intervals[i].begin < intervals[j].end) && (intervals[i].end > intervals[j].begin) && rows[j] >= rows[i]) {
        // rows[i] = rows[j] + 1;
        rows[i] = rows[j] - 1;
    }
}
}
}
}
```

(11

(17

```
struct interval {
    int begin;
    int end;
};

vector<int> layout(vector<interval>, int size) {
    vector<int> rows(size);
    for (int i = 0; i < size; i++) {
        rows[i] = 0;
        for (int j = 0; j < i; j++) {
            if ((intervals[i].begin < intervals[j].end) && (intervals[i].end > intervals[j].begin) && rows[j] >= rows[i]) {
            rows[i] = rows[j] + 1;
            // immediate runtime failure if reached.
            bomb();
        }
}
}
```

پرسش پنجم

بله mutant شمارهی پنج redundant است.

يرسش ششم

- $intervals = \{\}, size = 0 \rightarrow 2,$
- $\bullet \ intervals = \{\{8,9\}\}, size = 1 \ \rightarrow 1, 4$
- $intervals = \{\{8,9\}, \{10,11\}\}, size = 2 \rightarrow 3,7,$
- $\bullet \ intervals = \{ \{ 8, 10 \}, \{ 9, 11 \}, \{ 8, 11 \} \}, size = 3 \ \rightarrow 8, 9, 10, 11, 12$

بله هر چه تعداد mutant هایی که زنده میمانند بیشتر باشند، نشان دهنده ی ضعف بیشتر مجموعه تست کیس ها میباشد. همانطور که میدانیم mutant شماره پنج redundant است و mutant شماره شش توسط هیچ یک از تست های بالا کشته نمیشود. و تست زیر آن را میکشد:

 $intervals = \{\{8,9\}, \{9,10\}\}, size = 2$