【粉丝福利】今日头条上面近3K评论+10万阅读量的一份Java超级核心笔记!

JVM

1	绀槑

- 2. JVM内存区域
- 3. JVM运行时内存
- 4. 垃圾回收与算法
- 5. JAVA 四中引用类型
- 6. GC分代收集算法 VS 分区收集算法
- 7. GC垃圾收集器
- 8. JAVA IO/NIO
- 9. JVM 类加载机制

1. 目录	1
2. JVM	19
2.1. 线程	
2.2. JVM 内存区域	
2.2.1. 程序计数器(线程私有)	
2.2.2. 虚拟机栈(线程私有)	
2.2.3. 本地方法区(线程私有)	23
2.2.4. 堆 (Heap-线程共享) -运行时数据区	
2.2.5. 方法区/永久代(线程共享)	23
2.3. JVM 运行时内存	24
2.3.1. 新生代	24
2.3.1.1. Eden 🗵	
2.3.1.2. ServivorFrom	
2.3.1.3. ServivorTo	24
2.3.1.4. MinorGC 的过程 (复制->清空->互换)	
1: eden、servicorFrom 复制到 ServicorTo, 年龄+1	25
2: 清空 eden、servicorFrom	25
3: ServicorTo 和 ServicorFrom 互换	
2.3.2. 老年代	
2.3.3. 永久代	25
2.3.3.1. JAVA8 与元数据	25
2.4. 垃圾回收与算法	
2.4.1. 如何确定垃圾	
2.4.1.1. 引用计数法	
2.4.1.2. 可达性分析	26
2.4.2 标识谢险管注(Mark-Sween)	27

JAVA集合

	口继承关系和实	ŦΠ
--	---------	----

- 2. List
- 3. ArrayList (数组)
- 4. Vector (数组实现、线程同步)
- 5. LinkList (链表)
- 6. Set
- 7. HashSet (Hash表)
- 8. TreeSet (二叉树)

3. JAVA 集合	45
3.1. 接口继承关系和实现	45
3.2. LIST	47
3.2.1. ArrayList (数组)	47
3.2.2. Vector (数组实现、线程同步)	47
3.2.3. LinkList (链表)	47
3.3. SET	48
3.3.1.1. HashSet (Hash 表)	
3.3.1.2. TreeSet (二叉树)	
3.3.1.3. LinkHashSet (HashSet+LinkedHashMap)	49
3.4. MAP	50
3.4.1. HashMap (数组+链表+红黑树)	50
3.4.1.1. JAVA7 实现	50
3.4.1.2. JAVA8 实现	51
3.4.2. ConcurrentHashMap	
3.4.2.1. Segment 段	51
3.4.2.2. 线程安全(Segment 继承 ReentrantLock 加镇)	51
3.4.2.3. 并行度(默认 16)	
3.4.2.4. Java8 实现 (引入了红黑树)	

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

JAVA多线程并发

- 1. JAVA并发知识库
- 2. JAVA线程实现/创建方式
- 3. 4种线程池
- 4. 线程生命周期(状态)
- 5. 终止线程4种方式
- 6. sleep与wait 区别
- 7. start与run区别
- 8. JAVA后台线程
- 9. JAVA锁
- 10. 线程基本方法4.1.11. 线程上下文切换
- 11. 同步锁与死锁
- 12. 线程池原理

- 13. JAVA阻塞队列原理
- 14. CyclicBarrier、CountDownLatch、Semaphore的用法
- 15. volatile关键字的作用(变量可见性、禁止重排序)
- 16. 如何在两个线程之间共享数据

4.	JAVA 多线程并发	54
	4.1.1. JAVA 并发知识库	54
	4.1.2. JAVA 线程实现/创建方式	54
	4.1.2.1. 维承 Thread 类	
	4.1.2.2. 实现 Runnable 接口。	54
	4.1.2.3. ExecutorService、Callable <class>、Future 有返回值线程</class>	55
	4.1.2.4. 基于线程池的方式	56
	4.1.3. 4 种线程池	56
	4.1.3.1. newCachedThreadPool	57
	4.1.3.2. newFixedThreadPool	
	4.1.3.3. newScheduledThreadPool	58
	4.1.3.4. newSingleThreadExecutor	58
	4.1.4. 线程生命周期(状态)	58
	4.1.4.1. 新建状态 (NEW)	58
	4.1.4.2. 就绪状态 (RUNNABLE):	59
	4.1.4.3. 运行状态 (RUNNING):	
	4.1.4.4. 阻塞状态 (BLOCKED):	
	等待阻塞 (o.wait->等待对列):	
	同步阻塞(lock->锁池)	
	其他阻塞(sleep/join)	
	4.1.4.5. 线程死亡 (DEAD)	
	正常结束	
	异常结束	
	调用 stop	59
	4.1.5. 终止线程 4 种方式	
	4.1.5.1. 正常运行结束	
	4.1.5.2. 使用退出标志退出线程	60

JAVA基础

- 1. JAVA异常分类及处理
- 2. JAVA反射
- 3. JAVA注解
- 4. JAVA内部类
- 5. JAVA泛型
- 6. JAVA序列化(创建可复用的Java对象)
- 7. JAVA复制

5.	JAVA 基础		101
	5.1.1. JA	AVA 异常分类及处理	101
	5.1.1.1.	概念	101
	5.1.1.2.	异常分类	101
	Error		101
	Excepti	ion (RuntimeException、CheckedException)	101
	5.1.1.3.	异常的处理方式	102
	遇到问题	题不进行具体处理,而是继续抛给调用者 (throw,throws)	102
	try catc	h 捕获异常针对性处理方式	102
	5.1.1.4.	Throw 和 throws 的区别:	102

Spring 原理

- 1. Spring 特点
- 2. Spring 核心组件
- 3. Spring 常用模块
- 4. Spring 主要包
- 5. Spring 常用注解
- 6. Spring第三方结合
- 7. Spring IOC原理
- 8. Spring APO原理
- 9. Spring MVC原理
- 10. Spring Boot原理
- 11. JPA原理
- 12. Mybatis缓存
- 13. Tomcat架构

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

由于篇幅限制小编,细节内容实在太多啦,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!有需要的程序猿(媛)可以帮忙点赞+关注拿到

微服务

- 1. 服务注册发现
- 2. API 网关
- 3. 配置中心
- 4. 事件调度 (kafka)
- 5. 服务跟踪(starter-sleuth)
- 6. 服务熔断 (Hystrix)
- 7. Hystrix断路器机制
- 8. API管理

	140
7.1.1.1. 客户端注册(zookeeper)	
7.1.1.2. 第三方注册(独立的服务 Registrar)	140
7.1.1.3. 客户端发现	141
7.1.1.4. 服务端发现	142
7.1.1.5. Consul	142
7.1.1.6. Eureka	
7.1.1.7. SmartStack	
7.1.1.8. Etcd	
7.1.2. API 阿关	
7.1.2.1. 请求转发	
7.1.2.2. 响应合并	
7.1.2.3. 协议转换	
7.1.2.4. 数据转换	
7.1.2.5. 安全认证	
7.1.3. 配置中心	
7.1.3.1. zookeeper 配置中心	
7.1.3.2. 配置中心数据分类	
7.1.4. 事件调度(kafka)	144
7.1.5. 服务跟踪(starter-sleuth)	144
7.1.6. 服务熔断 (Hystrix)	145
1.1.0. /IR 分子AE的 (「TYSUIX /	
7.1.6.1. Hystrix 斯路器机制	146
7.1.6.1. Hystrix 斯路器机制	140
7.1.6.1 Hystrix 斯路器机制	146
7.1.6.1 Hystrix 斯路器机制	146
7.1.6.1 Hystrix 斯路器机制	146
7.1.6.1. Hystrix 斯路器机制	146
7.1.6.1. Hystrix 斯路器机制	146
7.1.6.1. Hystrix 斯路器机制	
7.1.6.1. Hystrix 斯路器机制	146

 8.1.2.2.
 零拷贝(DIRECT BUFFERS 使用堆外直接内存)
 149

 8.1.2.3.
 内存池(基于内存池的缓冲区重用机制)
 149

 8.1.2.4.
 高效的 Reactor 线程模型
 149

 Reactor 单线程模型
 149

 Reactor 多线程模型
 150

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

分布式缓存

2. 缓存穿透	
3. 缓存预热	
4. 缓存更新	
5. 缓存降级	
分布式缓存	257
24.1.1. 缓存雪崩	257
24.1.2. 缓存穿透	
24.1.3. 缓存预热	257
24.1.4. 缓存更新	
24.1.5. 缓存降级	257
我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer	
网络	
1. 网络7层架构	
2. TCP/IP原理	
3. TCP三次握手/四次挥手	
4. HTTP原理	
5. CDN 原理	
6. 分发服务系统	
7. 负载均衡系统	
8. 管理系统	
9. 网络	159
9.1.1. 网络7层架构	
9.1.2.1 PS 原理	
9.1.2.2. 网络层(Internet Layer)	
9.1.2.3. 传输层(Tramsport Layer-TCP/UDP)	160
9.1.2.4. 应用层(Application Layer)	
9.1.3. TCP 三次握手/四次挥手	
9.1.3.1. 数据包说明 9.1.3.2. 三次握手	
9.1.3.3. 四次挥手	
9.1.4. HTTP 原理	11.53
9.1.4.1. 传输流程	
1: 地址解析	
2: 封装 HTTP 请求数据包	165
3: 封裝成 TCP 包并建立连接 4: 客户机发送请求命	
5: 服务器响应	
6: 服务器关闭 TCP 连接	
9.1.4.2. HTTP 状态	
O.A.A.O. LITTIDO	165
9.1.4.3. HTTPS	
建立连接获取证书	

日志

- 2. Log4j
- 3. LogBack
- 4. Logback优点
- 5. ELK

10.	日志.		169
	10.1.1.	Slf4j	169
	10.1.2.	Log4j	169
	10.1.3.	LogBack	169
	10.1.3	3.1. Logback 优点	169
		ELK	

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Zookeeper

- 1. Zookeeper概念
- 2. Zookeeper角色
- 3. Zookeeper工作原理(原子广播)
- 4. Znode有四种形式的目录节点

11.	ZOOKE	EPER	171
	11.1.1. Z	ookeeper 概念	171
	11.1.1. Z	ookeeper	171
	11.1.1.1.	Leader	171
	11.1.1.2.	Follower	171
	11.1.1.3.	Observer	171
	11.1.1.1.	ZAB 协议	172
	事务编	号 Zxid(事务请求计数器+ epoch)	172
	epoch.		172
	Zab 协	议有两种模式-恢复模式(选主)、广播模式(同步)	172
	ZAB 协	议 4 阶段	172
	Leader	election(选举阶段-选出准 Leader)	172
Discovery (发现阶段-接受提议、生成 epoch、接受 epoch)		173	
	Broado	ast (广播阶段-leader 消息广播)	173
	ZAB 协	议 JAVA 实现(FLE-发现阶段和同步合并为 Recovery Phase(恢复阶段))	173
	11.1.1.2.	投票机制	173
	11.1.2. Z	ookeeper 工作原理(原子广播)	174
		node 有四种形式的目录节点	

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Kafka

 Kafka概念 Kafka数据存储设计 partition的数据文件 (offset, MessageSize, data) 数据文件分段segment (顺序读写、分段命令、二分查找) 数据文件索引 (分段索引、稀疏存储) 生产者设计 负载均衡 (partition会均衡分布到不同broker上) 批量发送 	
9. 压缩(GZIP或Snappy)	
10. 消费者设计 12. KAFKA	175
12.1.1. Kafka 概念	
12.1.2. Kafka 数据存储设计	
12.1.2.1. partition 的数据文件 (offset, MessageSize, data)	175
12.1.2.2. 数据文件分段 segment(顺序读写、分段命令、二分配	重找)176
12.1.2.3. 数据文件索引 (分段索引、稀疏存储)	
12.1.3. 生产者设计	176
12.1.3.1. 负载均衡 (partition 会均衡分布到不同 broker 上)	176
12.1.3.2. 批量发送	177
12.1.3.3. 压缩 (GZIP或 Snappy)	177
12.1.1. 消费者设计	
12.1.1.1. Consumer Group	178
我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer RabbitMQ	
1. RabbitMQ概念	
2. RabbitMQ架构	
3. Exchange 类型	
13. RABBITMQ	179
13.1.1. 概念	
13.1.2. RabbitMQ 架构	
13.1.2.1. Message	
13.1.2.2. Publisher	180
13 1 3 3	400

Hbase

- 1. Hbase概念
- 2. 列式存储
- 3. Hbase核心概念
- 4. Hbase核心架构
- 5. Hbase的写逻辑
- 6. HBase vs Cassandra
- 7. MongoDB
- 8. MongoDB概念
- 9. MongoDB特点

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Cassandra

- 1. Cassandra概念
- 2. 数据模型
- 3. Cassandra一致Hash和虚拟节点
- 4. Gossip协议
- 5. 数据复制
- 6. 数据写请求和协调者
- 7. 数据读请求和后台修复
- 8. 数据存储 (CommitLog、MemTable、SSTable)
- 9. 二级索引(对要索引的value摘要,生成RowKey)
- 10. 数据读写

16.	CASSANDRA	192
	16.1.1. 概念	192
	16.1.2. 数据模型	192
	Key Space (对应 SQL 数据库中的 database)	192
	Key (对应 SQL 数据库中的主键)	192
	column (对应 SQL 数据库中的列)	192
	super column (SQL 数据库不支持)	
	Standard Column Family (相对应 SQL 数据库中的 table)	
	Super Column Family (SQL 数据库不支持)	
	16.1.3. Cassandra 一致 Hash 和虚拟节点	192
	一致性 Hash(多米诺 down 机)	
	虚拟节点(down 机多节点托管)	193
	16.1.4. Gossip 协议	193
	Gossip 节点的通信方式及收敛性	194
	Gossip 两个节点(A、B)之间存在三种通信方式(push、pull、push&pull)	194
	gossip 的协议和 seed list (防止集群分列)	
	16.1.5. 数据复制	
	Partitioners (计算 primary key token 的 hash 函数)	194
	两种可用的复制策略:	
	SimpleStrategy: 仅用于单数据中心,	194
	将第一个 replica 放在由 partitioner 确定的节点中,其余的 replicas 放在上述节点顺时针	
	点中。	194

设计模式

- 1. 设计原则
- 2. 工厂方法模式
- 3. 抽象工厂模式
- 4. 单例模式
- 5. 建造者模式
- 6. 原型模式
- 7. 适配器模式
- 8. 装饰器模式
- 9. 代理模式
- 10. 外观模式
- 11. 桥接模式
- 12. 组合模式
- 13. 享元模式
- 14. 策略模式
- 15. 模板方法模式
- 16. 观察者模式
- 17. 迭代子模式
- 18. 责任链模式
- 19. 命令模式
- 20. 备忘录模式

17.	设计模式		201
	17.1.1.	设计原则	201
	17.1.2.	工厂方法模式	201
	17.1.3.	抽象工厂模式	201
	17.1.4.	单例模式	201
	17.1.5.	建造者模式	201
	17.1.6.	原型模式	201
	17.1.7.	适配器模式	201
	17.1.8.	装饰器模式	201
	17.1.9.	代理模式	
	17.1.10.	外观模式	
	17.1.11.		
	17.1.12.	组合模式	201
	17.1.13.	享元模式	201
	17.1.14.	策略模式	201
	17.1.15.	模板方法模式	201
	17.1.16.	观察者模式	
	17.1.17.	迭代子模式	201
	17.1.18.	责任链模式	201
	17.1.19.	命令模式	201
	17.1.20.	备忘录模式	201
	17.1.21.	状态模式	202
	17.1.22.	访问者模式	202
	17.1.23.	中介者模式	202

负载均衡

- 1. 四层负载均衡 vs 七层负载均衡
- 2. 负载均衡算法/策略
- 3. LVS
- 4. Keepalive
- 5. Nginx反向代理负载均衡
- 6. HAProxy

负载均衡	203
18.1.1. 四层负载均衡 vs 七层负载均衡	203
18.1.1.1. 四层负载均衡 (目标地址和端口交换)	203
F5: 硬件负载均衡器,功能很好,但是成本很高。	

数据库

- 1. 存储引擎
- 2. 索引
- 3. 数据库三范式
- 4. 数据库是事务
- 5. 存储过程(特定功能的SQL 语句集)
- 6. 触发器(一段能自动执行的程序)
- 7. 数据库并发策略
- 8. 数据库锁
- 9. 基于Redis分布式锁
- 10. 分区分表
- 11. 两阶段提交协议
- 12. 三阶段提交协议
- 13. 柔性事务
- 14. CAP

19.	数据库		214
	19.1.1. 存	储引擎	214
	19.1.1.1.	概念	214
	19.1.1.2.	InnoDB (B+树)	214
	19.1.1.3.	TokuDB(Fractal Tree-节点带数据)	215
	10 1 1 4	MylASM	215

一致性算法

- 1. Paxos
- 2. Zab
- 3. Raft
- 4. NWR
- 5. Gossip
- 6. 一致性Hash
- 7. 一致性Hash特性
- 8. 一致性Hash原理

20.	一致性算法	225
	20.1.1. Paxos	
	Paxos 三种角色: Proposer, Acceptor, Learners	225
	Proposer:	225
	Accentor.	225

JAVA算法

- 1. 二分查找
- 2. 冒泡排序算法
- 3. 插入排序算法
- 4. 快速排序算法
- 5. 希尔排序算法
- 6. 归并排序算法
- 7. 桶排序算法
- 8. 基数排序算法
- 9. 剪枝算法
- 10. 回溯算法
- 11. 最短路径算法
- 12. 最大子数组算法
- 13. 最长公共子序算法
- 14. 最小生成树算法

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

数据结构

- 1. 栈 (stack)
- 2. 队列 (queue)
- 3. 链表 (Link)
- 4. 散列表(Hash Table)
- 5. 排序二叉树
- 6. 红黑树
- 7. B-TREE
- 8. 位图

加密算法

- 1. AES
- 2. RSA
- 3. CRC
- 4. MD5

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Hadoop

- 1. Hadoop概念
- 2. HDFS
- 3. Client
- 4. NameNode
- 5. Secondary NameNode
- 6. DataNode
- 7. MapReduce
- 8. JobTracker
- 9. TaskTracker
- 10. Task
- 11. Reduce Task 执行过程
- 12. Hadoop MapReduce 作业的生命周期
- 13. 作业提交与初始化
- 14. 任务调度与监控。
- 15. 任务运行环境准备
- 16. 任务执行
- 17. 作业完成

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Spark

- 1. Spark概念
- 2. 核心架构
- 3. 核心组件
- 4. SPARK编程模型
- 5. SPARK计算模型
- 6. SPARK运行流程
- 7. SPARK RDD流程
- 8. SPARK RDD

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

Storm

- 1. Storm概念
- 2. 集群架构
- 3. Nimbus (master-代码分发给Supervisor)
- 4. Supervisor(slave-管理Worker进程的启动和终止)
- 5. Worker (具体处理组件逻辑的进程)
- 6. Task
- 7. ZooKeeper
- 8. 编程模型 (spout->tuple->bolt)
- 9. opology运行
- 10. Storm Streaming Grouping
- 11. ResourceManager
- 12. NodeManager
- 13. ApplicationMaster
- 14. YARN运行流程

我凭借这份pdf拿下了蚂蚁金服、字节跳动、小米等大厂的offer

云计算

- 1. SaaS
- 2. PaaS
- 3. laaS
- 4. Docker
- 5. Openstack
- 6. Namespaces
- 7. 进程(CLONE_NEWPID 实现的进程隔离)
- 8. Libnetwork与网络隔离
- 9. 资源隔离与CGroups
- 10. 镜像与UnionFS
- 11. 存储驱动