THEORY AND MODEL ASSESSMENT THROUGH SIMULATION

Dr. Aric LaBarr
Institute for Advanced Analytics

THEORY ASSESSMENT

Closed Form Solutions?

- In mathematics and statistics, there are popular theories involving distributions of known values.
- The Central Limit Theorem is a classic example.
- Don't need complicated mathematics for us to approximate distributional assumptions when we use simulations.

Closed Form Solutions?

- This is especially helpful when finding a closed form solution is very difficult if not impossible.
- A closed form solution to a mathematical/statistical distribution problem means that you can mathematically calculate the distribution.
- Real world data can be very complicated and changing based on many different inputs which each have their own distribution.
- Simulation can reveal an approximation of these output distributions.

Example – Central Limit Theorem

- Assume you do not know the Central Limit Theorem, but you want to understand the sampling distribution of sample means.
- You take samples of size 10, 50, and 100 from the following three population distributions and calculate the sample means:
 - 1. Normal Distribution
 - 2. Uniform Distribution
 - 3. Exponential Distribution
- What is the sampling distribution of sample means from each of these distributions and sample sizes?

Theory Assessment for CLT – SAS

```
data CLT;
    do sim = 1 to &Simulation Size;
         do obs = 1 to &Sample Size;
             call streaminit (12345);
             X1 = RAND('Normal', 2, 5);
             X2 = 5 + 100*RAND('Uniform');
             X3 = 3 + RAND('Exponential');
             output;
         end:
    end;
run;
proc means data=CLT noprint mean;
    var X1 X2 X3;
    by sim;
    output out=Means mean(X1 X2 X3) =
                      Mean X1 Mean X2 Mean X3;
run;
```

Theory Assessment for CLT – SAS

```
data CLT;
    do sim = 1 to &Simulation Size;
         do obs = 1 to &Sample Size;
             call streaminit (12345);
             X1 = RAND('Normal', 2, 5);
             X2 = 5 + 100*RAND('Uniform');
             X3 = 3 + RAND('Exponential');
             output;
         end:
    end;
run;
                    noprint mean;
proc means data=CLT
    var X1 X2 X3;
    by sim;
    output out=Means mean(X1 X2 X3) =
                      Mean X1 Mean X2 Mean X3;
run;
```

Theory Assessment for CLT – R

```
X1 <-
matrix(data=rnorm(n=(sample.size*simulation.size),
mean=2, sd=5), nrow=simulation.size,
ncol=sample.size, byrow=TRUE)
X2 <-
matrix(data=runif(n=(sample.size*simulation.size),
min=5, max=105), nrow=simulation.size,
ncol=sample.size, byrow=TRUE)
X3 <-
matrix(data=(rexp(n=(sample.size*simulation.size)) +
3), nrow=simulation.size, ncol=sample.size,
byrow=TRUE)
Mean.X1 \leftarrow apply (X1, 1, mean)
Mean.X2 \leftarrow apply(X2, 1, mean)
Mean.X3 \leftarrow apply (X3,1,mean)
```


TARGET SHUFFLING

- Target shuffling has been around for a long time, but has recently been brought back into popularity by John Elder.
- Target shuffling is when you randomly reorder the target variable values among the sample, while keeping the predictor variable values fixed.

Age	Gender	Buy Product?		
25	M	1		
31	F	0		
28	F	1		
42	M	0		
39	M	1		
34	F	0		

Age	Gender	Buy Product?	Y ₁	
25	M	1	0	
31	F	0	1	
28	F	1	1	
42	M	0	0	
39	M	1	0	
34	F	0	1	

Age	Gender	Buy Product?	Y_1	<i>Y</i> ₂	
25	M	1	0	1	
31	F	0	1	1	
28	F	1	1	1	
42	M	0	0	0	
39	M	1	0	0	
34	F	0	1	0	

Age	Gender	Buy Product?	<i>Y</i> ₁	Y_2	
25	M	1	0	1	
31	F	0	1	1	
28	F	1	1	1	
42	M	0	0	0	
39	M	1	0	0	
34	F	0	1	0	•••

- Target shuffling has been around for a long time, but has recently been brought back into popularity by John Elder.
- Target shuffling is when you randomly reorder the target variable values among the sample, while keeping the predictor variable values fixed.
- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , c, MAPE, etc.)

Misclassification Rate from each model!

Age	Gender	Buy Product?	Y_1	Y_2	
25	M	1	0	1	
31	F	0	1	1	
28	F	1	1	1	•••
42	M	0	0	0	•••
39	M	1	0	0	•••
34	F	0	1	0	•••

Placebo Effect

- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , c, MAPE, etc.)
- This should remove the pattern from the data, but some pattern may exist due to randomness.
- Look at distribution of all measurements of model success and find your value from the true model!

Placebo Effect

- Build model from each of these reshuffled targets and record some measurement of model success (R_A^2 , c, MAPE, etc.)
- This should remove the pattern from the data, but some pattern may exist due to randomness.
- Look at distribution of all measurements of model success and find your value from the true model!
- What is probability your model would have occurred due to randomness?

Fake Data Example

- Randomly generated 8 variables that follow a Normal distribution with mean of 0 and standard deviation of 8.
- Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Fake Data Example

Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Performed target shuffle on the model.

Target Shuffle with 1000 Simulations

Variable	Times Appeared Significant (p < 0.05) in a Model
X1	55
X2	62
X3	47
X4	56
X5	50
X6	57
X7	58
X8	40

Target Shuffle with 1000 Simulations

Count of Significant Variables Per Model

Fake Data Example

- Randomly generated 8 variables that follow a Normal distribution with mean of 0 and standard deviation of 8.
- Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

Adjusted R² from this model: 0.204

Target Shuffle with 1000 Simulations

Distribution of Adjusted R-Squared Values

Hours vs. Grades - Actual

Hours vs. Grades - Actual

Permutations?

- How many different ways can four students get the grades
 75, 85, 87, and 95?
- 24 possible ways this happens!

Permutations?

- How many different ways can four students get the grades
 75, 85, 87, and 95?
- 24 possible ways this happens!
- There are 3 possible combinations that produce a regression with an R² that is greater than or equal to our actual data.

Hours vs. Grades - Actual

Hours vs. Grades - Shuffle 1

Hours vs. Grades - Shuffle 2

Permutations?

- How many different ways can four students get the grades
 75, 85, 87, and 95?
- 24 possible ways this happens!
- There are 3 possible combinations that produce a regression with an R² that is greater than or equal to our actual data.

$$\frac{4}{24} = \frac{1}{6} = 16.67\%$$

Permutations vs. Target Shuffling

4 possible test grades:

$$4! = 24$$

40 possible test grades:

$$40! = 8.16 \times 10^{47}$$

Permutations vs. Target Shuffling

4 possible test grades:

$$4! = 24$$

40 possible test grades:

$$40! = 8.16 \times 10^{47}$$

NEED TO SAMPLE!!!

