MOSFET – Power, Single, N-Channel 40 V, 2.4 m Ω , 136 A

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	Э		V_{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	136	Α
Current R _{0JC} (Notes 1, 2, 3, 4)	Steady State	T _C = 100°C		77	
Power Dissipation		T _C = 25°C	P_{D}	85	W
R _{θJC} (Notes 1, 2, 3)		T _C = 100°C		27	
Continuous Drain		T _A = 25°C	I _D	27	Α
Current R _{0JA} (Notes 1, 3, 4)	Steady State	T _A = 100°C		19	
Power Dissipation		T _A = 25°C	P_{D}	3.2	W
R _{θJA} (Notes 1, 3)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \mu s$		I _{DM}	676	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			IS	70.4	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 10.2 A)			E _{AS}	268	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	$R_{\theta JC}$	1.8	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	46.5	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
40 V	2.4 m Ω @ 10 V	136 A

N-Channel

WDFN8 (μ8FL) CASE 511DY

MARKING DIAGRAM

XXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	= 250 μA	40			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			10	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 125°C			250	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{G}$	S = 20 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 90 μΑ	2.5		3.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _E	₀ = 50 A		2.0	2.4	mΩ
Forward Transconductance	9FS	V _{DS} = 15 V, I _E	₀ = 50 A		92		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				2250		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = V _{DS} = 25	1.0 MHz, 5 V		1230		1
Reverse Transfer Capacitance	C _{rss}	108 =			41		1
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 20 V, I _D = 50 A			6.7		nC
Gate-to-Source Charge	Q_{GS}				11.4		1
Gate-to-Drain Charge	Q_{GD}				5.7		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V}, I_D = 50 \text{ A}$			34		nC
SWITCHING CHARACTERISTICS (No	te 6)						
Turn-On Delay Time	t _{d(on)}				11		ns
Rise Time	t _r	V _{GS} = 10 V, V _D	s = 20 V,		77		
Turn-Off Delay Time	t _{d(off)}	I _D = 50	Ă		23		1
Fall Time	t _f				7		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS						_
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.84	1.2	V
		I _S = 50 A	T _J = 125°C		0.72		
Reverse Recovery Time	t _{RR}		•		50		ns
Charge Time	t _a	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 50 A			25		
Discharge Time	t _b				25		
Reverse Recovery Charge	Q _{RR}				50		nC

^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFS002N04CTAG	02NC	WDFN8 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WDFN8 3.3x3.3, 0.65P CASE 511DY ISSUE A

DATE 21 AUG 2018

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. DIMENSIONS D1 & E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS.

	3.46
<u> </u>	2.38
0.78 (4X)	
0.75	2.51
0.57	4.10
0.60 (3)	1.00 1.00
_	DMMENDED LAND PATTERN

GENERIC MARKING DIAGRAM*

O XXXX AYWW

 $\begin{array}{ll} \text{XXXX} = \text{Specific Device Code} \\ \text{A} &= \text{Assembly Location} \\ \text{Y} &= \text{Year Code} \end{array}$

WW = Work Week Code

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	-	0.05		
b	0.23	0.33	0.43		
С	0.15	0.20	0.25		
D	3.20	3.30	3.40		
D1	2.95	3.13	3.30		
D2	1.98	2.20	2.40		
Е	3.20	3.30	3.40		
E1	2.80	3.00	3.15		
E2	1.40	1.60	1.80		
E3	0.15	0.25	0.40		
е	0.65 BSC				
G	0.30	0.43	0.55		
G1	0.25	0.35	0.45		
K	0.55	0.75	0.95		
L	0.35	0.52	0.65		
L1	0.06	0.15	0.30		
М	1.35	1.50	1.60		
Φ	0	-	12		

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " ■",
may or may not be present. Some products
may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON90827G	Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3x3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales