	T
6.	1, 3, 6, 9, 14
7.	9, 11, 12, 16, 17
8.	7, 9, 10, 11, 17
9.	1, 4, 8, 11, 14
10.	1, 5, 7, 15, 18
11.	5, 9, 11, 12, 17
12.	3, 6, 9, 12, 17
13.	6, 9, 11, 13, 16
14.	2, 8, 10, 15, 18
15.	3, 6, 14, 17, 18
16.	9, 13, 14, 15, 2
17.	8, 10, 12, 14, 18
18.	7, 9, 11, 4, 14
19.	7, 8, 11, 13, 15
20.	5, 7, 9, 12, 16

Лабораторная работа № 3. Циклы и битовые операции

Цель работы: познакомиться с основными управляющими конструкциями и циклами языка программирования Dart.

Требования к формату защиты лабораторной работы:

- **Отчет** (титульный лист, текст задания с кодом по его выполнению);
- **Готовность внести исправления**, в присутствии преподавателя, в код любого из выполненных заданий лабораторной работы и **ответить на вопросы**;
- ЗАПРЕЩЕНО обращаться к свойствам экземпляра класса типа int для проверки на четность;
- Для возведения в степень и т.д. используйте библиотеку dart:math, добавив в начало файла с кодом: «import 'dart:math';»;
- Во всех заданиях необходимо предусмотреть проверку на правильность вводимых данных с клавиатуры.

Выберете вариант, соответствующий вашему порядковому номеру в журнале группы. В том случае, если ваш порядковый номер больше последнего номера варианта, используйте следующую формулу: N = n % f + 1, где n -ваш порядковый номер, f -номер последнего варианта, N -вариант для выполнения.

Часть 1. Задания на циклы

- 1. Пользователь вводит с клавиатуры список вещественных значений. Используя цикл for, for-in и while найдите сумму его элементов и выведите полученный результат в терминал.
- 2. Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for, for-in и while найдите среднеарифметическое значение списка и выведите полученный результат в терминал.
- **3.** Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for, for-in и while найдите произведение его элементов и выведите полученный результат в терминал.
- **4.** Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for и while найдите сумму элементов с нечетным индексом и выведите полученный результат в терминал.
- 5. Пользователь вводит с клавиатуры список вещественных значений. Используя цикл for и while найдите сумму элементов с четным индексом и выведите полученный результат в терминал.
- **6.** Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for, for-in и while найдите произведение элементов с нечетным индексом и выведите полученный результат в терминал.
- 7. Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for, for-in и while посчитайте количество вхождения в него элементов кратных 2 и выведите в терминал полученный результат.
- **8.** Пользователь вводит с клавиатуры список целочисленных значений. Используя цикл for, for-in и while посчитайте количество вхождения в него элементов кратных 5 и выведите в терминал полученный результат.
- **9.** Пользователь вводит с клавиатуры текст. Используя цикл for, for-in и while посчитайте количество вхождений каждого символа в строку и выведите в терминал полученный результат.
- **10.** Используя цикл for, do-while и while посчитайте сумму значений от 10 до 76, которые нацело делятся на 3 и выведите в терминал полученный результат.
- **11.** Используя цикл for, do-while и while посчитайте сумму значений от минус 54 до 15, которые нацело делятся на 4 и выведите в терминал полученный результат.

На вход подается целочисленное значение z. Используя его, получите решение для следующего выражения и выведите полученный результат в терминал:

№ задания	Выражение для решения
12	$\sum_{n=1}^{z} \frac{\sqrt{n + \sqrt{n^n}}}{7}$

13	$\sum_{n=1}^{z} \frac{\sqrt{(n-2.5n)^3}}{4}$
14	$\sum_{n=1}^{z} \frac{n-20}{\sqrt{n^3}}$
15	$\sum_{n=1}^{z} \frac{5n \times \cos n}{\sqrt{n^3}}$
16	$\frac{\sum_{n=1}^{z} (n^2 + 5) \times 16}{\frac{25}{3n}}$
17	$\frac{\sum_{n=1}^{z} (\tan n - 2n)}{\sqrt{10 + 0.6n}}$
18	$\frac{3\sin n - 15}{\sum_{n=1}^{z} \sqrt{n^5}}$
19	$\frac{10 + \sum_{n=1}^{z} 2 \cos n}{5 - \sqrt{n^5}}$
20	$\frac{\sqrt{21 + \sum_{n=1}^{z} \sqrt{3^n}}}{\frac{3}{\sin n}}$
21	$\sum_{n=1}^{z} \frac{2n^2 - 4n + 10}{2n}$
22	$\sum_{n=1}^{z} \frac{\sqrt{n^3 - n}}{n}$

Таблица 2.15

Варианты работ

№ варианта	Номера заданий к варианту
1	1, 2, 12, 18, 21
2	1, 2, 16, 18, 22
3	1, 3, 9, 10, 20
4	1, 4, 6, 8, 17
5	1, 4, 9, 13, 15
6	1, 5, 7, 8, 16
7	3, 4, 11, 13, 19
8	3, 5, 8, 20, 22
9	3, 5, 10, 13, 15

10	3, 6, 7, 11, 14
11	3, 9, 13, 17, 21
12	3, 11, 15, 17, 19
13	3, 13, 17, 19, 22
14	4, 5, 19, 20, 21
15	4, 6, 12, 14, 20
16	4, 6, 13, 16, 22
17	5, 6, 12, 17, 19
18	5, 7, 10, 11, 16
19	5, 9, 11, 17, 20
20	8, 14, 16, 18, 21

Часть 2. Задания на побитовые операции

Примечание: для представления десятичного числа в двоичном формате используйте метод .toRadixString(2) у переменной типа int. Обратите внимание на то, что отрицательные значения хранятся в доп. коде. В случае, если для вас тема битовых операций в новинку, можно посмотреть мое видео на ютубе с примерами на Python и применить полученные знания для решения задач на Dart (https://youtu.be/HUTJvGyZask).

- 1. Пользователь вводит с клавиатуры положительное число. Определите, установлен ли у него третий бит справа в 1. Если нет, то установите и выведите полученный результат в двоичном формате в терминал.
- 2. Пользователь вводит с клавиатуры положительное число. Используйте маску и операцию побитового исключающего ИЛИ для того, чтобы инвертировать значения битов и выведите полученный результат в двоичном формате в терминал.
- **3.** Пользователь вводит с клавиатуры число. Используя побитовую операцию умножьте значение на 16 и выведите полученный результат в двоичном формате в терминал.
- **4.** Пользователь вводит с клавиатуры положительное число. Проверьте установлен ли ее 4-й бит справа в единицу или нет и выведите полученный результат в терминал.
- **5.** Пользователь вводит с клавиатуры положительное число. Проверьте установлен ли ее правый бит в единицу или нет. Если нет, то установите и выведите полученный результат в двоичном формате в терминал.
- **6.** Пользователь вводит с клавиатуры число. Проверьте установлен ли ее левый бит в единицу или нет и выведите в терминал полученный результат и введенное число в двоичной системе счисления.

- 7. Пользователь вводит с клавиатуры нечетное число. Установите его правый бит в ноль и выведите полученный результат в двоичном и десятичном формате в терминал.
- **8.** Пользователь вводит с клавиатуры большое число. Посредством цикла и битовых операций посчитайте количество бит, установленных в единицу и выведите полученный результат в терминал.
- **9.** Пользователь вводит с клавиатуры большое число. Посредством цикла и битовых операций посчитайте количество нулевых бит и выведите полученный результат в терминал.
- **10.** Пользователь вводит с клавиатуры большое число. Используя побитовую операцию, разделите его на 4 и выведите полученный результат в двоичном и десятичном формате в терминал.
- **11.** Пользователь вводит с клавиатуры положительное число. Инвертируйте значения бит и выведите полученный результат в терминал.
- **12.** Пользователь вводит с клавиатуры два значения. Используя побитовые операции и не прибегая к буферной переменной, поменяйте значение этих переменных местами и выведите полученный результат в терминал.
- **13.** Пользователь вводит с клавиатуры число z. Используя побитовые операции проверьте является ли оно четным и выведите полученный результат в терминал.
- **14.** Пользователь вводит с клавиатуры положительное число. Используя операции сдвига установить 4 правых бита в ноль и выведите полученный результат в терминал.
- **15.** Пользователь вводит с клавиатуры положительное число. Посчитайте количество занимаемых ей бит и выведите полученный результат в терминал.

Варианты работ

Таблица 2.16

№ варианта	Номера заданий к варианту
1	1, 2, 12, 14
2	1, 6, 11, 13
3	3, 5, 8, 10
4	6, 12, 13, 14
5	2, 6, 8, 12
6	5, 6, 9, 15
7	6, 7, 11, 15
8	2, 4, 10, 14
9	3, 7, 10, 15
10	3, 6, 7, 15
11	6, 11, 13, 15

12	2, 6, 7, 9
13	1, 3, 12, 13
14	1, 9, 10, 14
15	2, 4, 9, 12
16	4, 6, 7, 11
17	4, 10, 11, 14
18	5, 7, 9, 12
19	7, 9, 10, 14
20	8, 9, 11, 13