EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 18: SAR ADC

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics
24-Jan	Course introduction and ADC architectures
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT
5-Feb	ADC & DAC static performance metrics, INL and DNL
7-Feb	OPAMP and bias circuits review
12-Feb	SC circuits review
14-Feb	Sample and Hold Amplifier - Reading materials
19-Feb	Flash ADC and Comparators: Regenerative Latch
21-Feb	Comparators: Latch offset, preamp, auto-zero
26-Feb	Finish Flash ADC
28-Feb	DAC Architectures - Resistor, R-2R
5-Mar	DAC Architectures - Current steering, Segmented
7-Mar	DAC Architectures - Capacitor-based
12-Mar	SAR ADC with bottom plate sampling
14-Mar	SAR ADC with top plate sampling
19-Mar	Midterm Review
21-Mar	Midterm exam
26-Mar	Spring break
28-Mar	Spring break
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain
4-Apr	Pipelined ADC bit sync and alignment using Full adders
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB
16-Apr	Single-slope ADC
18-Apr	Oversampling & Delta-Sigma ADCs
23-Apr	Second- and higher-order Delta-Sigma Modulator.
25-Apr	Hybrid ADC - Pipelined SAR
30-Apr	Hybrid ADC - Time-Interleaving
2-May	ADC testing and FoM
7-May	Project presentation 1
8-May	Project presentation 2
14-May	Final Review
20-May	Project Report Due by 6 PM

SAR ADC

Successive Approximation Register (SAR) ADC

- Binary search algorithm $\rightarrow N^*T_{clk}$ to complete N bits
- Conversion speed is limited by comparator, DAC, and digital logic (successive approximation register or SAR)

Binary Search Algorithm

- DAC output gradually approaches the input voltage
- Comparator differential input gradually approaches zero

Capacitive Divider

When the voltage at node X changes by ΔV , the node at Y will change by $\Delta V \cdot C_1/(C_1+C_2)$

$$\begin{array}{c} \Delta V \\ X \\ C_1 \\ Y \\ C_2 \\ \overline{\underline{ }} \end{array} \qquad \begin{array}{c} C_1 \\ \overline{C_1 + C_2} \end{array} \Delta V$$

If $C_1 >> C_2$, the voltage change at node Y will be approximately ΔV

- 4-bit binary-weighted capacitor array DAC
- Capacitor array samples input during Φ₁

Open \emptyset_1 and Apply $0000 \rightarrow V_x = -V_i$

$$V_{\chi} = -V_i + \frac{8C}{16C}V_R = -V_i + \frac{V_R}{2}$$

Decide MSB bit position

MSB TEST:
$$V_X = \frac{V_R}{2} - V_i$$

- If $V_X < 0$, then $V_i > V_R/2$, and MSB = 1, C_4 (=8C) remains connected to V_R
- If $V_X > 0$, then $V_i < V_R/2$, and MSB = 0, C_4 is switched to ground

$$V_{x} = -V_{i} + \frac{V_{R}}{2} + \frac{4C}{16C}V_{R} = -V_{i} + \frac{3V_{R}}{4}$$

$$\left(MSB-1\right)TEST:\ V_{X}=\frac{3}{4}V_{R}-V_{i}$$

- If $V_X < 0$, then $V_i > 3V_R/4$, and MSB-1 = 1, C_3 remains connected to V_R
- If $V_X > 0$, then $V_i < 3V_R/4$, and MSB-1 = 0, C_3 is switched to ground

Test completes when all four bits are determined w/ four charge redistributions and comparisons

After 4-bit decision

- Usually, half T_{clk} is allocated for charge redistribution and half for comparison + digital logic
- V_X always converges to 0 (V_{os} if comparator has nonzero offset)

Summing Node Parasitic

- If V_{os} = 0, C_P has no effect eventually; otherwise, C_P attenuates V_X
- Auto-zeroing can be applied to the comparator to reduce offset

- Power efficiency
 - Only comparator consumes DC power
- Switching Energy can be significant
 - Reducing switching energy is an active research area
- DAC nonlinearity limits the INL and DNL of the SAR ADC
 - N-bit precision requires N-bit matching from the cap array
 - Calibration can be performed to remove mismatch errors
- Binary search is sensitive to intermediate errors made during the search
 - DAC must settle into ±½ LSB bound within the time allowed
 - Comparator offset must be constant (no hysteresis or time-dependent offset)