Short HW 8: Higher order interactions

Course: Physics 165, Introduction to Particle Physics (2018)

INSTRUCTOR: Prof. Flip Tanedo (flip.tanedo@ucr.edu)

Due by: Thursday, February 22

Note that this short assignment is due in class on Thursday.

1 Higher order interactions

Here's a summary of the fields in the Standard Model. (One generation of particles.)

	SPIN	50(3) color	MEAK SU(S)	U(1) HYPER
Q	Qʻ	ଭ୍ [™]	$\mathcal{O}_{d} = \begin{pmatrix} 9^{r} \\ \alpha^{r} \end{pmatrix}$	YQ = 16
$ar{\mathtt{U}}$	$ar{\mathcal{U}}^{\star}$	$\overline{\mathfrak{v}}_{ullet}$	(none) V=ut	Y = -43
$ar{\mathcal{D}}$	$\bar{\mathcal{D}}^{ $	\bar{D}_{Ω}	(none) D=dt	حة 1/3
L	L	(none)	$\Gamma_{a} = \left(\frac{6}{3} \right)$	YL = - 1/2
Ē	Ēď	(none)	(none) E:et	YE = 1
Н	H	(none)	$H_{\alpha} = \begin{pmatrix} H_{5} \\ H_{1} \end{pmatrix}$	YH= 1/2
 G	- Gr	$G^{M}(T^{M})^{m}$	(none)	(none)
W	Wr	(none)	Mr(Tr)26	(none)
B	Br	(none)	(none)	(none)

Write down three interactions that are gauge invariant (indices all contracted, net hypercharge zero) that we have *not* written in class. The net dimension of the fields should be greater than 4. For example, $|L^a\varepsilon_{ab}H^b|^2$ is a term with mass dimension 5.

Extra credit: once you get the hang of this, it's easy to make up arbitrarily crazy ones. Write down five more.

2 Reading

Read Prof. John Baez's article on **renormalizability**¹. Explain why the higher order interactions in problem 1 are only 'effective' interactions and not fundamental.

¹http://math.ucr.edu/home/baez/renormalizability.html