$$\frac{E \times .1}{}$$
: a) P max = 3 MW

b)
$$P = \frac{101^2}{R}$$

c)
$$\frac{2}{2}$$
 eq = $\frac{j \times c}{R + j \times c}$

$$d) U = U_0 \frac{\cancel{\pm} eq}{j \times (+ \cancel{\mp} eq)} = U_0 \frac{R \cdot X_c}{R(X_c + X_L) + j \times c \times L}$$

e)
$$P$$
 et $|Y|$ donné => $R = \frac{|Y|^2}{P}$

$$|U| = |U_0| =$$
 $R \times c = \sqrt{R^2(X_C + X_L)^2 + (X_C \times c)^2}$

=)
$$X_c^2 + 20 X_c + 100 = 0$$
 d'où $X_c = -1052$

f) diagnamme de Fresnel: $I_1 = \frac{1}{R}$. U en phase $I_2 = -\frac{1}{R}$. U en avance (XcCo)

Courants $I_3 = \frac{1}{R}$. U en avance (XcCo)

|I] |= 1000 A |I] |= 1000 A

1U1 = 10000V 1U1 = 14140 V = 1U1=jx1. I 1U01 = 10000 V

Ex.2: a)
$$V_{PV} = 40 \text{ V}$$
 } => le conventisseur dont éléver la tousion, le faut un conventisseur 600st

$$\frac{\Delta m [0, 4][: -Vk_{1} = 0]}{-V_{L} = V_{PV} = 40V}$$

$$-V_{K_{2}} = -V_{Ba}H = -100V$$

Sum [
$$\sqrt{T}$$
, T]: $\sqrt{K_2} = 0$
 $\sqrt{K_A} = \sqrt{Bat} = 100V$
 $-\sqrt{L} = \sqrt{V_{PV} - \sqrt{Bat}} = -60V$

d)
$$\langle V_L \rangle = V_{PV} \cdot d. + (V_{PV} - V_{BaH})(1-d)$$

= $V_{PV} + V_{Bat}(d-1)$

En réjime permanent $\langle V_L \rangle = 0$, donc $V_{PV} + V_{Bat}(d-1) = 0$ $= \frac{V_{Bat}}{V_{PV}} = \frac{1}{1-d}$ a.u.:

$$a.u: 1-d = \frac{VPV}{Vbat} = \frac{40}{100} = 0,4 = 0,6$$

e) Sun [0,27[:
$$V_L = L \frac{dipv}{dt} = V_{PV} \Rightarrow) i_{PV}(t) = i_0 + \frac{V_{PV}}{L} t$$

Sun [ΔT , T [: $V_L = L \frac{dipv}{dr} = V_{PV} - V_{Bat} \Rightarrow) i_{PV}(t) = i_0 + \frac{V_{PV} - V_{Bat}}{L} (t - T)$
 $\bar{a} t = \Delta T$: $i_{PV}(\Delta T) = i_0 + \frac{V_{PV}}{L} \Delta T = i_\Delta$

1

$$f)$$
 $\Delta i = i - i = \frac{V_{PV}}{L} aT = \frac{V_{PV} \cdot d}{Lf}$

1 on veut:
$$\Delta i = L = \frac{\nabla PV \cdot d}{f \cdot Di} = \frac{40 \times 0.6}{10^4 \times 1} = 2,4 \cdot 10^{-3} \text{ H}$$

g)
$$\langle is \rangle = (1-a).\langle ipv \rangle = 0.4 \times 10 = 4A$$

 $Ps = V_{Bat}.\langle is \rangle = 100 \times 4 = 400 \times 10$
 $P_{e} = V_{Pv}.\langle i_{L} \rangle = 40 \times 10 = 400 \times 10$

conservation de la puissance, con convertissem sans pertos

4)

i) conduction continue si io > 0, avec io = Lipr> - Di/2 = Lipr> -0,5 => il faut Lipr> > 0,5 A, Vénifié entre 86 h et 18h 0,5 donc oui, l'hypothèse est justifiée

Ex.3: a) 3 cellules de commutation 0,5

- b) D_1 est passante & $V_1(\theta) > V_2(\theta)$ et $V_1(\theta) > V_3(\theta)$ D_2 " $V_2(\theta) > V_1(\theta)$ " $V_2(\theta) > V_2(\theta)$ D_3 " $V_3(\theta) > V_1(\theta)$ " $V_3(\theta) > V_2(\theta)$
- e) Dy st passante si $v_1(\theta) \perp v_2(\theta)$ et $v_1(\theta) \perp v_3(\theta)$ Ds " $v_2(\theta) \perp v_1(\theta)$ " $v_2(\theta) \perp v_3(\theta)$ 1

 D6 " $v_3(\theta) \perp v_1(\theta)$ " $v_3(\theta) \perp v_2(\theta)$

d) $V_{A}(0) = \max \left[V_{A}(0), V_{Z}(0), V_{3}(0) \right] + 0$ $V_{B}(0) = \min \left[V_{A}(0), V_{Z}(0), V_{3}(0) \right] + 0$ 1 f. auuexe

e) pour $0 \in [-30^{\circ}, +30^{\circ}]$: $V_{A}(\theta) = V_{3}(\theta) = V_{max} \cdot \sin(\theta + 2\pi/3)$ $V_{B}(\theta) = V_{2}(\theta) = V_{max} \cdot \sin(\theta - 2\pi/3)$

 $\sqrt{s}(\theta) = V_{\theta}(\theta) - V_{\theta}(\theta) = V_{\text{max}} \cdot \left[\sin \left(\frac{\partial t}{3} \right) - \sin \left(\theta - \frac{2\pi}{3} \right) \right] \\
 = 2V_{\text{max}} \cdot \cos \theta \cdot \sin \frac{2\pi}{3} \cdot = \sqrt{3} \cdot V_{\text{max}} \cdot \cos \theta$

 $f) \ V_{S}(\theta) = V_{A}(\theta) - V_{B}(\theta) = V_{Max} \cdot \left[\sin \theta - \sin \left(\theta - \frac{2\pi}{3} \right) \right]$ $= 2V_{Max} \cdot \cos \left(\theta - \frac{\pi}{3} \right) \cdot \sin \frac{\pi}{3} = \sqrt{3} \ V_{Max} \cdot \cos \left(\theta - \frac{\pi}{3} \right)$ $O_{A}(\pi) = 60^{\circ} =) V_{S} \ \sin \left[30,90 \right] \ \text{at identified a } V_{S} \ \sin \left[-30,30 \right] ,$ $\text{Lecale do } 60^{\circ} \cdot .$

g) pour complèter Vs(0), on remarque que vs est périodique (T=60°)

of annexe pour les intervalles de conduction des différents disde

h) période: 60° $\langle V_5 \rangle = \frac{3}{44} \int_{-30^{\circ}}^{30^{\circ}} \cos \theta \, d\theta \cdot \sqrt{3} \, V_{\text{wax}} \times \frac{1}{\pi 7/3}$ $= \rangle \langle V_5 \rangle = \frac{3}{\pi} \left[+ \delta n \theta \right]_{-\pi/6}^{\pi/6} = \frac{30}{\pi} \times 2 \delta n \frac{\pi}{6} = \frac{36}{\pi} \, V_{\text{wax}}$ $V_5 \, \omega_{\text{max}} = \sqrt{3} \cdot \sqrt{\omega_{\text{max}}} \right] = \sum_{T_5} V_5 = \frac{\sqrt{3} - \frac{3}{2}}{3\sqrt{3}} \times \pi = 0,14$ $V_5 \, \omega_{\text{min}} = \frac{3}{2} \, V_{\text{wax}}$

i) of annexe.

Annexe 1, à rendre

