SketchZoo: Animal Image Retrieval with Siamese Neural Networks

Davide Brescia

MINI-DATASET DISTRIBUTION

To ensure the initial functionality of the system, I opted to work with a small subset of the complete dataset. The subset consists of **5 Classes** (bear, crocodilian, jellyfish, parrot, spider) and comprises a total of **500 Images** and **3076 Sketches**.

Images Distributions

Images vs Sketches

Sketches Distribution

MINI-DATASET EXPLORATION

Some Sketches -

PROBLEM APPROACH

To address this issue, the **Siamese Neural Network** was employed, which involves the use of **two** (in the case of contrastive loss) **or three** (in the case of triplet loss) **neural networks** with shared weights.

The embeddings are then computed and compared to obtain the loss.

EXPERIMENT I - DETAILS

Name: Experiment 1

Backbone: ResNet18

Loss: Constrastive Loss

Embedding Size: 2

EXPERIMENT I - RESULTS

As we can see the model works and has some ... interesting results!

EXPERIMENT 2 - DETAILS

Name: Experiment 2

Backbone: ResNet18

Loss: Triplet Loss

Embedding Size: 2

TRIPLET LOSS VS CONTRASTIVE LOSS

To conduct the evaluation, the **K-Precision** or **P@K** metric was employed, which quantifies the number of accurately identified classes among a set of K images (typically K=12) when applied to unseen images and sketches.

FULL-DATASET - DETAILS

It is now time to utilize a **larger subset**. Specifically, **55 classes** belonging to the animal kingdom domain have been selected, with **each class associated with 100 images** and a variable number of sketches, totaling **34,366 sketches**.

Sketches Distribution -

FULL-DATASET - RESULTS COMPARISON

I conducted additional experiments by using more **complex models** and **increasing the embedding size**. As we can see from the significant increase in the lower graphs, transitioning from **ResNet18 to ResNet34 yields noticeable improvements**.

- K@12 Triplet Loss -

FULL-DATASET - MODEL IMPROVEMENT

Since the **Contrastive Loss** was leading to better results, I decided to focus solely on that and train **ResNet50** and **Resnet101** as well to see if the achieved results continued to improve. **Not surprisingly, the results are better**.

Models Comparison in Contrastive Loss

In the end, I chose to implement this model, which, despite having a lower K@12, has a significantly shorter inference time.

LIVE DEMO

THANKS FOR YOUR ATTENTION

Davide Brescia