

KALKULUS

Bagian 4. Turunan dan Integral

Sesi Online 10

PROGRAM STUDI INFORMATIKA
UNIVERSITAS SIBER ASIA

Oleh:

Ambros Magnus Rudolf Mekeng, S.T, M.T

Notasi Turunan

Turunan y = f(x) terhadap x dinotasikan dengan y' atau f'(x). Notasi lain yang digunakan untuk menyatakan turunan y = f(x) terhadap x di antaranya dalah:

$$\frac{dy}{dx}, \frac{d}{dx}f(x), D_x y, D_x f(x)$$
.

Notasi $\frac{dy}{dx}$ dikenal sebagai *notasi Leibniz*.

Rumus Dasar Turunan

Turunan Fungsi Konstan

Misalkan f(x) = k, dimana k adalah sembarang konsatanta Riil maka f(x) = 0

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k - k}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0$$

Contoh

Tentukan turunan pertama dari fungsi berikut:

a.
$$f(x) = 2$$

b.
$$f(x) = 15$$

C.
$$f(x) = 22$$

Jawab

a.
$$f(x) = 2 \Rightarrow f'(x) = 0$$

b.
$$f(x) = 15 \Rightarrow f(x) = 0$$

$$c. \quad f(x) = 22 \Rightarrow f'(x) = 0$$

Rumus Dasar Turunan

Turunan Fungsi Pangkat Bilangan Riil

Misalkan $f(x) = kx^n$ dimana $k, n \in \text{maka } f'(x) = (nk)x^{n-1}$ Contoh

Tentukan turunan dari fungsi berikut:

a.
$$f(x) = 2x^3$$

b.
$$f(x) = 15x^{-3}$$

c.
$$f(x) = 5x^{1/4}$$

Jawab

a.
$$f(x) = 2x^3 \Rightarrow f'(x) = (3)(2)x^{3-1} = 6x^2$$

b.
$$f(x) = 15x^{-3} \Rightarrow f'(x) = (-3)(15)x^{-3-1} = -45x^{-4}$$

c.
$$f(x) = 5x^{\frac{1}{4}} \Rightarrow f'(x) = \left(\frac{1}{4}\right)(5)x^{\frac{1}{4}-1} = \frac{5}{4}x^{-\frac{3}{4}}$$

Rumus Dasar Turunan

Turunan Kelipatan Fungsi

Misalkan $f(x) = k[u(x)]^n$ dimana u(x) merupakan

fungsi dari x maka $f'(x) = (n)(k)[u(x)]^{n-1}u'(x)$

Contoh

Tentukan turunan pertama dari fungsi berikut:

a.
$$f(x) = 2(3x-4)^3$$

b.
$$f(x) = 15(4x+1)^{-3}$$

Solusi

a.
$$f(x) = 2(3x-4)^3$$

 $f'(x) = (3)(2)(3x-4)^{3-1}(3x-4)'$
 $= 6(3x-4)^2(3)$
 $= 18(3x-4)^2$
b. $f(x) = 15(4x+1)^{-3}$
 $f'(x) = (-3)(15)(4x+1)^{-3-1}(4x+1)'$
 $= (-45)(4x+1)^{-4}(4)$
 $= -180(4x+1)^{-4}$

Turunan Fungsi Trigonometri

Turunan fungsi trogonometri didefinisikan sebagai berikut:

(i)
$$f(x) = \sin x \Rightarrow f'(x) = \cos x$$

(ii)
$$f(x) = \sin(u(x)) \Rightarrow f'(x) = \cos x \cdot u'(x)$$

(iii)
$$f(x) = \cos x \Rightarrow f'(x) = -\sin x$$

(iv)
$$f(x) = \cos(u(x)) \Rightarrow f'(x) = -\sin x \cdot u'(x)$$

(v)
$$f(x) = \tan x \Rightarrow f'(x) = \sec^2 x$$

(vi)
$$f(x) = \tan(u(x)) \Rightarrow f'(x) = \sec^2(u(x)) \cdot u'(x)$$

Contoh

Tentukan rumus fungsi berikut:

a.
$$f(x) = \sin(5x)$$

$$b. \quad f(x) = \sin(x^2 + 2x)$$

c.
$$f(x) = \cos(\frac{1}{5}x)$$

d.
$$f(x) = \cos(2x^3 - x^2 + 4x)$$

e.
$$f(x) = \tan(2x)$$

f.
$$f(x) = \tan(x^3 - 3x^2)$$

Solusi

a.
$$f(x) = \sin(5x)$$

 $f'(x) = \cos(5x) \cdot (5x)' = \cos 5x \cdot 5 = 5\cos(5x)$
b. $f(x) = \sin(x^2 + 2x)$
 $f'(x) = \cos(x^2 + 2x) \cdot (x^2 + 2x)'$
 $= \cos(x^2 + 2x) \cdot (2x + 2)$
 $= (2x + 2)\cos(x^2 + 2x)$
c. $f(x) = \cos(\frac{1}{5}x)$
 $f'(x) = -\sin(\frac{1}{5}x) \cdot (\frac{1}{5}x)' = -\sin(\frac{1}{5}x) \cdot (\frac{1}{5}x) = -\frac{1}{5}\sin(\frac{1}{5}x)$

Solusi

d.
$$f(x) = \cos(2x^3 - x^2 + 4x)$$

 $f'(x) = -\sin(2x^3 - x^2 + 4x) \cdot (2x^3 - x^2 + 4x)'$
 $= -\sin(2x^3 - x^2 + 4x) \cdot (6x^2 - 2x + 4)$
 $= -(6x^2 - 2x + 4)\sin(2x^3 - x^2 + 4x)$
e. $f(x) = \tan(2x)$
 $f'(x) = \sec^2(2x) \cdot (2x)'$
 $= \sec^2(2x) \cdot 2$
 $= 2\sec^2(2x)$
f. $f(x) = \tan(x^3 - 3x^2)$
 $f'(x) = \sec^2(x^3 - 3x^2) \cdot (x^3 - 3x^2)'$
 $= \sec^2(x^3 - 3x^2) \cdot (3x^2 - 6x)$
 $= (3x^2 - 6x)\sec^2(x^3 - 3x^2)$

Turunan Jumlah, Selisih, Hasil Kali, dan Hasil Bagi Dua Fungsi

Misalkan fungsi f dan g terdifersensialkan pada selang I maka fungsi $f+g,f-g,fg,f/g(g(x)\neq 0)$ terdiferensialkan pada selang I dengan aturan sebagai berikut:

a.
$$(f + g)'(x) = f'(x) + g'(x)$$

a.
$$(u+v)' = u'+v$$

b.
$$(f-g)'(x) = f'(x) - g'(x)$$

a.
$$(f+g)'(x) = f'(x) + g'(x)$$

b. $(f-g)'(x) = f'(x) - g'(x)$
c. $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$
a. $(u+v)' = u'+v'$
b. $(u-v)' = u'-v'$
c. $(uv)' = u'v+uv'$

c.
$$(uv)' = u'v + uv$$

d.
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$
 d. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

d.
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv}{v^2}$$

Contoh

Tentukan turunan dari fungsi berikut ini!

a.
$$f(x) = 2x^3(x+5)^5$$

b.
$$f(x) = \frac{5x^4}{(2x-1)^3}$$

Jawab

a.
$$f(x) = 2x^3 (x+5)^5$$

Misalkan $u = 2x^3$ dan $v = (x+5)^5$
 $u' = 6x^2$ dan $v' = 5(x+5)^4$
 $(uv)' = u'v + uv'$
 $= (6x^2)(x+5)^5 + (2x^3)(5(x+5)^4)$
 $= 6x^2 (x+5)^5 + 10x^3 (x+5)^4$
 $f'(x) = 6x^2 (x+5)^5 + 10x^3 (x+5)^4$

CONTOH

b.
$$f(x) = \frac{5x^4}{(2x-1)^3}$$
Misalkan $u = 5x^4$ dan $v = (2x-1)^3$

$$u' = 20x^3 \text{ dan } v' = 6(2x-1)^2$$

$$\left(\frac{u}{v}\right)' = \frac{u' \ v - uv'}{v^2}$$

$$= \frac{(20x^3)(2x-1)^3 - 5x^4(6(2x-1)^2)}{((2x-1)^3)^2}$$

$$= \frac{20x^3(2x-1)^3 - 30x^4(2x-1)^2}{(2x-1)^6}$$

$$f'(x) = \frac{20x^3(2x-1)^3 - 30x^4(2x-1)^2}{(2x-1)^6}$$

Latihan Soal di buku

Dale Varberg, Edwin Purcell and Steve Rigdon, Calculus, Prentice Hall, 2007, 9th ed

Problem Set 2.1-2.14