

Skript Topologie I.

Mitschrift der Vorlesung "Topologie I." von Prof. Dr. Arthur Bartels

Jannes Bantje

20. November 2014

Aktuelle Version verfügbar bei:

GitHub (inklusive Sourcecode) https://github.com/JaMeZ-B/latex-wwu♂

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie I., WiSe 2014/2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an □j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_FX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss!

Vorlesungshomepage

https:

//wwwmath.uni-muenster.de/reine/u/topos/lehre/WS2014-2015/Topologie1/Topologie1.html

¹zB. https://try.github.io/levels/1/challenges/1♂, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1	Kate	gorien, Funktoren und natürliche Transformationen	1		
	1.1	Definition: Kategorie	1		
	1.2	Beispiele für Kategorien	1		
	1.3	Bemerkungen zu Kategorien	2		
	1.4	Definition: Funktor	2		
	1.5	Beispiele für Funktoren	2		
	1.6	Definition: Natürliche Transformation	2		
	1.7	Ausblick auf Kategorien und Funktoren in der algebraischer Topologie	3		
2	2 Kombinatorische Beschreibungen topologischer Räume				
	2.1	Beispiel einer kombinatorischen Beschreibung eines Raumes	4		
	2.2	Definition: Simplizialer Komplex	4		
	2.3	Beispiel für simpliziale Komplexe	4		
	2.4	Definition: Unterkomplex	4		
	2.5	Definition: Simpliziale Abbildung	5		
	2.6	Definition: Geometrische Realisierung	5		
	2.7	Beispiel: Rand des n -Simplizes und der Torus	5		
	2.8	Definition: Polyeder	5		
	2.9	Definition: Euler-Charakteristik	5		
	2.10	Satz über die Euler-Charakteristik	6		
3	Simp	oliziale Homologie	7		
	3.1	Definition: Freier R -Modul mit Basis S	7		
	3.2	Lemma: Universale Eigenschaft von freien Moduln	7		
	3.3	Beispiel für freie und nicht-freie Moduln	7		
	3.4	Definition: n -ter Kettenmodul	8		
	3.5	Definition: Orientierung eines $(n-1)$ -Simplizes als Teilmenge eines n -Simplizes	8		
	3.6	Definition: n -te Randabbildung	8		
	3.7	Proposition: $\partial_{n-1} \circ \partial_n = 0$	8		
	3.8	Lemma: Ein $(n-2)$ -Simplex ist Seite von genau zwei $(n-1)$ -Simplizes	9		
	3.9	Notation für das Weglassen eines Knotens	9		
		Definition: n -ter Homologiemodul	9		
		Beispiele für Homologiemoduln	9		
		Definition: R -Kettenkomplex, n -te Homologie	10		
		Bemerkungen zu Kettenkomplexen	10		
	3.14	Definition: Simplizialer Kettenkomplex	10		
4	Eule	r-Charakteristik von Kettenkomplexen	11		
	4.1	Wiederholung: Torsionsgruppe	11		
	4.2	Lemma: Rang einer endlich erzeugten abelschen Gruppe	11		
	4.3	Definition: Kurze exakte Sequenz	11		
	4.4	Beispiele für kurze exakte Folgen	12		
	4.5	Bemerkung: Spaltung einer kurzen exakten Sequenz	12		
	4.6	Bemerkung: Existenz einer Spaltung, wenn M_2 frei ist $\ldots \ldots \ldots \ldots \ldots$	12		
	4.7	Bemerkung: Der Rang ist additiv	12		
	4.8	Proposition: Der Rang ist für kurze exakte Folgen endl. erz., abelscher Gruppen additiv .	12		
	4.9	Definition: Eulercharakteristik von \mathbb{Z} -Kettenkomplexen	13		
		Satz: Eulercharakteristik eines endlich erzeugten \mathbb{Z} -Kettenkomplexes $\dots \dots \dots$	14		
	4.11	Korollar: Die Eulercharakteristik eines simplizialen Komplexes	14		

Inhaltsverzeichnis

5	Sing	uläre Homologie	15
	5.1	Definition: Singuläre Simplizes und n -ter singulärer Kettenmodul	15
	5.2	Definition: Einschränkung eines singulären Simplizes auf eine Seite	15
	5.3	Bemerkung zur Inklusion der j -ten Seite	15
	5.4	Definition: n -te singuläre Randabbildung	15
	5.5	Proposition: Für die Randabbildungen gilt $\partial_{n-1} \circ \partial_n = 0$	15
	5.6	Lemma: Hilfslemma für Proposition 5.5	16
	5.7	Definition: Singuläre Homologie von X	16
	5.8	Definition: <i>n</i> -Ketten, <i>n</i> -Ränder und <i>n</i> -Zykel und Homologieklasse	16
	5.9	Beispiel: Die Homologie des Ein-Punkt-Raumes	16
		Proposition: Eigenschaften von $H_0(X)$ für $X \neq \emptyset$ und X wegzusammenhängend	17
	5.11	Bemerkung	17
6	Funk	torialität	18
	6.1	Definition: R-Kettenabbildung	18
	6.2	Bemerkung: Induzierte Abbildung einer Kettenabbildung	18
	6.3	Bemerkung: Homologie definiert einen Funktor	18
	6.4	Definition	18
	6.5	Proposition: Der singuläre Kettenkomplex bildet einen Funktor	19
	6.6	Korollar	19
	6.7		19
		Bemerkung: Notation und Formel für $H_n(f;R)$	
	6.8	Definition: Summe oder Koprodukt von topologischen Räumen	19
	6.9	Definition: Summe von R -Moduln	20
	6.10	Satz	20
7	Hom	otopieinvarianz	21
	7.1	Bemerkung: Die induzierte Abbildung eines Homöomorphismus ist ein Isomorphismus .	21
	7.2	Definition: Homotopieäquivalenz und Homotopieinverse	21
	7.3	Satz: Homotopieinvarianz der Homologie	21
	7.4	Korollar: Die induzierte Abbildung einer Homotopieäquivalenz ist ein Isomorphismus	21
	7.5	Korollar: Homologie eines kontrahierbaren Raumes	21
	7.6	Definition: Kettenhomotopie	22
	7.7	Proposition: induzierte Abbildungen von kettenhomotopen Kettenabbildungen sind gleich	22
	7.8	Lemma: Reduktion von Satz 7.3 auf Beweis eines Spezialfalles	22
	7.9	Bemerkung zum Vorgehen beim Beweis von [#]	23
		Definition	23
	7.11	Bemerkung	23
		Lemma	23
	7.13	Beweis von [##]	24
	7.14	Bemerkung	25
8	Hom	ologie von Paaren	26
	8.1	Definition: Paar von topologischen Räumen	26
	8.2	Definition: Singulärer Kettenkomplex von Paaren	26
	8.3	Definition: Der singuläre Kettenkomplex von Paaren definiert einen Funktor	26
		· · · · · · · · · · · · · · · · · · ·	
	8.4	Bemerkung: Topologische Räume als Paar auffassen	26
	8.5	Frage	26
	8.6	Beispiel	26
	8.7	Definition: Lange exakte Sequenz	27
	8.8	Satz	27
	8.9	Korollar	27
	8.10	Definition	28

8.14	Bemerkung			0	
Index					
Abbild	ungsverzeichnis		Ī	В	
Todo li	ist		,	R	

Inhaltsverzeichnis III

1 Kategorien, Funktoren und natürliche Transformationen

1.1 Definition

Eine **Kategorie** C besteht aus:

- i) Einer Klasse $\mathrm{Ob}(\mathcal{C})$. Die Elemente von $\mathrm{Ob}(\mathcal{C})$ heißen die **Objekte** von \mathcal{C} .
- ii) Zu je zwei Objekten A,B aus $\mathcal C$ einer Menge $\mathrm{Mor}_{\mathcal C}(A,B)$. Die Elemente von $\mathrm{Mor}_{\mathcal C}(A,B)$ heißen Morphismen von $\mathcal C$.
- iii) Zu je drei Objekten A, B, C aus \mathcal{C} einer Abbildung:

$$\operatorname{Mor}_{\mathcal{C}}(B,C) \times \operatorname{Mor}_{\mathcal{C}}(A,B) \to \operatorname{Mor}_{\mathcal{C}}(A,C) , \quad (f,g) \mapsto f \circ g$$

genannt die Komposition in C.

Dabei müssen folgende Axiome erfüllt sein:

- (i) Die Komposition ist **assoziativ**: Für Objekte A,B,C,D von $\mathcal C$ und $f\in \mathrm{Mor}_{\mathcal C}(C,D), g\in \mathrm{Mor}_{\mathcal C}(B,C), h\in \mathrm{Mor}_{\mathcal C}(A,B)$ gilt immer $f\circ (g\circ h)=(f\circ g)\circ h$
- (ii) Die Komposition ist **unital**: Für jedes Objekt A von $\mathcal C$ gibt es einen Morphismus $\mathrm{id}_A \in \mathrm{Mor}_{\mathcal C}(A,A)$ so, dass

$$\forall f \in \operatorname{Mor}_{\mathcal{C}}(B, A) : \operatorname{id}_{A} \circ f = f$$
 und $\forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B) : f \circ \operatorname{id}_{A} = f$

1.2 Beispiele

- (1) Die Kategorie der Mengen Mengen: Objekte sind Mengen und Morphismen sind Abbildungen.
- (2) Die Kategorie der Gruppen Gruppen: Objekte sind Gruppen und Morphismen sind Gruppenhomomorphismen.
- (3) Die Kategorie der K-Vektorräume K-VR: Objekte sind K-Vektorräume und die Morphismen sind K-lineare Abbildungen.
- (4) Die Kategorie der R-Moduln R-Moduln und Morphismen sind R-lineare Abbildungen.
- (5) Die Kategorie der C^{∞} -Mannigfaltigkeiten C^{∞} -Man: Objekte sind C^{∞} -Mannigfaltigkeiten und Morphismen sind C^{∞} -Abbildungen.
- (6) Die Kategorie der topologischen Räume Top: Objekte sind topologische Räume und Morphismen sind stetige Abbildungen.
- (7) Die Kategorie der punktierten topologischen Räume Top.: Objekte sind punktiert-topologische Räume und Morphismen sind punktiert-stetige Abbildungen.
- (8) Die Kategorie HTop: Objekte sind topologische Räume und Morphismen sind Homotopieklassen von stetigen Abbildungen.
- (9) Die Kategorie HTop.: Objekte sind punktiert-topologische Räume und Morphismen sind Homotopieklassen von punktiert-stetigen Abbildungen.
- (10) Sei G eine Gruppe. Wir erhalten eine Kategorie C_G mit genau einem Objekt * und $\mathrm{Mor}_{C_G}(*,*) = G$. Die Komposition wird durch die Verknüpfung in der Gruppe festgelegt.
- (11) Ist $\mathcal C$ eine Kategorie, so ist $\mathcal C^{\mathrm{op}}$ eine Kategorie, wobei $\mathrm{Ob}(\mathcal C^{\mathrm{op}}) = \mathrm{Ob}(\mathcal C)$ und $\mathrm{Mor}_{\mathcal C^{\mathrm{op}}}(A,B) := \mathrm{Mor}_{\mathcal C}(B,A)$. Die Komposition ist gegeben durch $f \circ^{\mathrm{op}} g := g \circ f$.

1.3 Bemerkung

- (i) Eine Kategorie heißt **klein**, wenn ihre Objekte eine Menge bilden.
- (ii) Statt $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir oft $f : A \to B$ oder $A \xrightarrow{f} B$.

1.4 Definition

Seien $\mathcal C$ und $\mathcal D$ Kategorien: Ein **Funktor** $F:\mathcal C\to\mathcal D$ ordnet jedem Objekt C von $\mathcal C$ ein Objekt F(C) von $\mathcal D$ und ordnet jedem Morphismus $f:C\to C'$ in $\mathcal C$ einen Morphismus $F(f):F(C)\to F(C')$ in $\mathcal D$ zu. Dabei muss gelten:

$$F(f \circ g) = F(f) \circ F(g)$$
 und $F(\mathrm{id}_C) = \mathrm{id}_{F(C)}$

1.5 Beispiele

(1) Es gibt offensichtliche "Vergiss"-Funktoren:

$$K ext{-VR} \longrightarrow \text{Mengen}$$
 $R ext{-Mod} \longrightarrow \text{Mengen}$
 $\text{Top} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Top}$

(2) Sei $\mathcal C$ eine Kategorie und C ein Objekt von $\mathcal C$. Der durch C dargestellte Funktor $F_C:\mathcal C\to M$ ENGEN ist definiert durch

$$\begin{array}{ll} F_C(A) = \operatorname{Mor}_{\mathcal{C}}(C,A) & \text{für } A \in \operatorname{Ob}(\mathcal{C}) \\ F_C(f) : \operatorname{Mor}_{\mathcal{C}}(C,A) \to \operatorname{Mor}_{\mathcal{C}}(C,A'), g \mapsto f \circ g & \text{für } f : A \to A' \text{ in } \mathcal{C} \end{array}$$

(3) Die Fundamentalgruppe definiert einen Funktor

$$\pi_1: \mathsf{HTop}_{ullet} \longrightarrow \mathsf{Gruppen}$$

Bemerkung

- Ist $F: \mathcal{C} \to \mathcal{D}$ ein Funktor so schreiben wir oft kürzer und ungenauer $f_* \coloneqq F(f)$.
- Kleine Kategorien und Funktoren bilden die Kategorie KAT.

1.6 Definition

Seien $F,G:\mathcal{C}\to\mathcal{D}$ zwei Funktoren. Eine **natürliche Transformation** $\tau:F\to G$ ordnet jedem $C\in \mathrm{Ob}(\mathcal{C})$ einen Morphismus $\tau_C:F(C)\to G(C)$ in \mathcal{D} zu, sodass für jedes $f:C\to C'$ in \mathcal{C}

$$\begin{array}{ccc} F(C) & \xrightarrow{F(f)} & F(C') \\ & \downarrow^{\tau_C} & & \downarrow^{\tau_{C'}} \\ G(C) & \xrightarrow{G(f)} & G(C') \end{array}$$

kommutiert.

Bemerkung

Natürliche Transformationen lassen sich komponieren. Für $\tau:F\to G$, $\eta:G\to H$ ist $\eta\circ\tau:F\to H$ gegeben durch

 $F, G, H: \mathcal{C} \to \mathcal{D}$

$$(\eta \circ \tau)_C := \eta_C \circ \tau_C : F(C) \to H(C)$$

Genauer: Für eine feste kleine Kategorie $\mathcal C$ und $\mathcal D$ bilden die Funktoren $\mathcal C \to \mathcal D$ mit den natürlichen Transformationen eine Kategorie $\mathrm{Fun}(\mathcal C,\mathcal D)$.

1.7 Ausblick

In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel, wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Eine Möglichkeit für eine solche Übersetzung sind Funktoren von einer Kategorie von topologischen Räumen, z.B. Top, Top, HTop, in eine algebraisch Kategorie, z.B. Gruppen, K-VR, Abel.Gruppen, R-Mod. Ein Beispiel für einen solchen Funktor ist die Fundamentalgruppe π_1 . Ein Nachteil der Fundamentalgruppe ist, dass diese oft schwierig zu berechnen ist. Wir werden in dieser Vorlesung weitere Funktoren und Methoden für ihr Berechnung kennenlernen.

2 Kombinatorische Beschreibungen topologischer Räume

2.1 Beispiel

Graphen sind einerseits topologische Räume und andererseits kombinatorische Objekte:

2.2 Definition

Ein **simplizialer Komplex** $K=(V,\Sigma)$ besteht aus einer Menge V und einer Menge Σ von nichtleeren, endlichen Teilmengen von V, sodass gilt

(i)
$$\{v\} \in \Sigma$$
 für alle $v \in V$

(ii)
$$\sigma \in \Sigma$$
, $\emptyset \neq \tau \subseteq \sigma \Longrightarrow \tau \in \Sigma$.

(Abgeschlossen bzgl. Teilmengenbildung)

Die Elemente von V heißen die **Ecken** oder **Vertices** von K. Die Elemente von Σ heißen die **Simplizes** von K. Enthält $\sigma \in \Sigma$ genau n+1 Elemente, so heißt σ ein \mathbf{n} -**Simplex**. Ist $\tau \subseteq \sigma$ mit σ ein n-Simplex und τ ein n-1-Simplex, so heißt τ eine **Seite** von σ .

Ist V geordnet, so heißt K geordnet. Ist V endlich, so heißt K endlich.

2.3 Beispiel

$$0 \longrightarrow 3 \qquad V = \{0, 1, 2, 3\} \\ E = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}\} \}$$

Ist σ eine endliche Menge, so heißt $\Delta^{\sigma} := (\sigma, \mathcal{P}(\sigma) \setminus \{\emptyset\})$ der σ -Simplex. Für $\sigma = \{0, \dots, n\}$ schreiben wir $\Delta^n := \Delta^{\{0, \dots, n\}}$. Es ist

$$\Delta^0 = \bullet, \qquad \Delta^1 = \red, \qquad \Delta^2 = \red, \qquad \Delta^3 = \red$$

2.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Ein **Unterkomplex** von K ist ein simplizialer Komplex $K_0=(V_0,\Sigma_0)$ mit $V_0\subseteq V$ und $\Sigma_0\subseteq \Sigma$.

Beispiel

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Dann ist K ein Unterkomplex von Δ^V .

2.5 Definition

Eine **simpliziale Abbildung** $f: K_1 = (V_1, \Sigma_1) \to K_2(V_2, \Sigma_2)$ zwischen simplizialen Komplexen ist eine Abbildung $f: V_1 \to V_2$, sodass $f(\sigma_1) \in \Sigma_2$ für alle $\sigma_1 \in \Sigma_1$.

2.6 Definition

Sei σ eine endliche Menge. Sei $\mathbb{R}^\sigma=\prod_{v\in\sigma}\mathbb{R}$ mit der Produkttopologie. Sei nun

$$|\Delta^{\sigma}| := \left\{ x = (x_v)_{v \in \sigma} \in \mathbb{R}^{\sigma} \left| \sum_{v \in \sigma} x_v = 1, x_v \in [0, 1] \ \forall v \in \sigma \right. \right\}$$

Ist $\tau\subseteq\sigma$, so erhalten wir eine Abbildung $\iota_{\tau}^{\sigma}:|\Delta^{\tau}|\to |\Delta^{\sigma}|$ indem wir $(x_{v})_{v\in\tau}\in |\Delta^{\tau}|$ durch $x_{v}=0$ für $v\in\sigma\setminus\tau$ zu $(x_{v})_{v\in\sigma}$ auffüllen. Ist $\eta\subseteq\tau\subseteq\sigma$ so gilt $\iota_{\eta}^{\sigma}=\iota_{\tau}^{\sigma}\circ\iota_{\eta}^{\tau}$. Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Die **geometrische Realisierung** |K| von K ist definiert als

$$|K| := \coprod_{\sigma \in \Sigma} \{\sigma\} \times |\Delta^{\sigma}| \Big/ \sim$$

wobei \sim die durch $(\tau,x)\sim \left(\sigma,\iota_{\tau}^{\sigma}(x)\right)$ für $\tau\subseteq\sigma$ erzeugte Äquivalenzrelation ist. Versehen mit der Quotiententopologie ist |K| ein topologischer Raum.

2.7 Beispiel

• Sei $\partial \Delta^n := (\{0,\ldots,n\}, \mathcal{P}(\{0,\ldots,n\}) \setminus \{\emptyset,\{0,\ldots,n\}\}) = \text{,}\Delta^n \setminus \{0,\ldots,n\}\text{". }\partial \Delta^n \text{ heißt der Rand des }n\text{-Simplizes.}$ Es gilt

$$\begin{aligned} \left| \partial \Delta^1 \right| &= \bullet \bullet &\cong S^0 \\ \left| \partial \Delta^2 \right| &= \bigwedge \cong S^1 \\ \left| \partial \Delta^3 \right| &= \bigwedge \cong S^2 \end{aligned}$$

Allgemein gilt $|\partial \Delta^n| \cong S^{n-1}$.

2.8 Definition

Ein topologischer Raum X heißt ein **Polyeder**, falls er homöomorph zur Realisierung eines simplizialen Komplexes ist.

2.9 Definition

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Sei $a_n:=\#\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex von }K\}.$ Dann heißt $\chi(K):=\sum_{n\in\mathbb{N}}(-1)^na_n$ die **Euler-Charakteristik** von K.

Beispiel

$$\chi\Bigl(\bigwedge\Bigr) = 3 - 3 = 0$$

$$\chi\Bigl(\boxed{ }\Bigr) = 4 - 4 = 0$$

$$\chi\bigl([n\text{-Eck}] \bigr) = n - n = 0$$

$$\chi\left(\partial\Delta^{3} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 4 - 6 + 4 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 8 - 12 + 6 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 6 - 12 + 8 = 2$$

2.10 Satz

Seinen K und K' endliche simpliziale Komplexe. Gilt $|K|\cong |K'|$, so gilt

$$\chi(K) = \chi(K').$$

Bemerkung

Die Euler-Charakteristik ist also eine topologische Invariante von simplizialen Komplexen. Sie hängt nur von der topologischen Struktur von |K| und nicht von der kombinatorischen Struktur von K ab.

3 Simpliziale Homologie

3.1 Definition

Sei S eine Menge.Sei R ein Ring. Der **freie** R-Modul mit Basis S, R[S], besteht aus allen endlichen formalen R-Linearkombinationen

$$\sum_{s \in S} r_s \cdot s \quad , r_s \in R, r_s \neq 0 \text{ für endliche viele } s \in S$$

Die R-Modulstruktur auf R[S] ist definiert durch:

$$r \cdot \left(\sum_{s \in S} r_s \cdot s\right) := \sum_{s \in S} (r \cdot r_s) \cdot s \qquad \left(\sum_{s \in S} r_s \cdot s\right) + \left(\sum_{s \in S} r_s' s\right) := \sum_{s \in S} (r_s + r_s') \cdot s$$

Bemerkung

Mittels $s = \sum_{s' \in S} \delta_{s,s'} \cdot s'$ fassen wir S als Teilmenge von R[S] auf.

3.2 Lemma

Sei S eine Menge, R ein Ring. Es gilt

1) Ist M ein R-Modul und $i:S\to M$ eine Abbildung, so gibt es genau eine R-lineare Abbildung $\varphi:R[S]\to M$, die i fortsetzt.

 $R[S] \xrightarrow{\hat{f}} M$

2) Sei $f:R[S] \to M$ R-linear und $p:N \twoheadrightarrow M$ R-linear und surjektiv. Dann gibt es $\hat{f}: R[S] \to N$ mit $p \circ \hat{f} = f$.

1) Eine solche Abbildung ist gegeben durch $\varphi(\sum_{s \in S} r_s \cdot s) = \sum_{s \in S} r_s \cdot i(s)$. Ist φ' eine zweite, so

$$\hat{\varphi}\left(\sum_{s\in S} r_s \cdot s\right) = \sum_{s\in S} r_s \cdot \hat{\varphi}(s) = \sum_{s\in S} r_s \cdot i(s)$$

2) Wähle für jedes $s \in S$ ein Urbild $j(s) \in N$ für $f(s) \in M$ unter $p: N \twoheadrightarrow M$. Nun wende 1) auf $j:S \to N$ an, um $\hat{f}:R[S] \to N$ mit $\hat{f}(s)=j(s)$ zu erhalten. Nun ist $p \circ \hat{f}(s)=f(s)$ für alle $s \in S$. Mit der Eindeutigkeit aus 1) folgt $p \circ \hat{f} = f$.

3.3 Beispiel

- (i) Sei K ein Körper und V, M, N seien K-Vektorräume, $f: V \to M, p: N \to M$ seien K-linear, psurjektiv. Dann gibt es $\hat{f}:V \to N$ mit $p \circ \hat{f}=f$. Wir können Lemma 3.2 benutzen, da V eine Basis B hat, also $V \cong K[B]$.
- (ii) Sei $R=\mathbb{Z}$, sei $V=\mathbb{Z}/2\mathbb{Z}$ und $M=\mathbb{Z}/2\mathbb{Z}$, sowie $f=\mathrm{id}:V\to M$, $N=\mathbb{Z}$ und $p:\mathbb{Z}n\to\mathbb{Z}/2\mathbb{Z}$ die Projektion mit $p(n) = n + 2\mathbb{Z}$. Dann gibt es keine \mathbb{Z} -lineare Abbildung $\hat{f} : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ mit $p \circ \hat{f} = f$. Ist $\hat{f}(1+2\mathbb{Z})=n\in\mathbb{Z}$, so folgt

$$2n = 2 \cdot \hat{f}(1 + 2\mathbb{Z}) = \hat{f}(2 \cdot (1 + 2\mathbb{Z})) = \hat{f}(0 + 2\mathbb{Z}) = 0$$

also n=0.

7 3 Simpliziale Homologie

3.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Sei $\Sigma_n:=\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex}\}.$ Sei R ein Ring. Der \mathbf{n} -te Kettenmodul von K über R ist definiert als

$$C_n(K;R) := R[\Sigma_n]$$

Ist $R = \mathbb{Z}$, so schreiben wir auch kurz $C_n(K) := C_n(K; \mathbb{Z})$.

3.5 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_0,\ldots,v_n\}$ ein n-Simplex von K. Bezüglich der Ordnung von K sei dabei $v_0< v_1<\ldots< v_n$. Sei τ ein (n-1)-Simplex von K. Definiere

$$\varepsilon_\sigma^\tau \coloneqq \begin{cases} (-1)^i, & \text{ falls } \tau = \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \\ 0, & \text{ sonst} \end{cases}$$

Bemerkung

 $\varepsilon_{\sigma}^{\tau} \neq 0 \iff \tau \text{ ist eine Seite von } \sigma.$

Beispiel

Für den folgenden geordneten simplizialen Komplex gilt

3.6 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Die \mathbf{n} -te Randabbildung

$$\partial_n: C_n(K;R) \longrightarrow C_{n-1}(K;R)$$

$$= R[\Sigma_n] = R[\Sigma_{n-1}]$$

ist definiert durch

3.7 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Damit folgt $\operatorname{Im} \partial_n \subseteq \ker \partial_{n-1}$.

Beweis (mit Lemma 3.8)

Sei σ ein n-Simplex von K. Dann gilt

$$\begin{split} \partial_{n-1} \big(\partial_n (\sigma) \big) &= \partial_{n-1} \left(\sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \tau \right) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \partial_{n-1} (\tau) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \left(\sum_{\eta \in \Sigma_{n-2}} \varepsilon_\tau^\eta \cdot \eta \right) \\ &= \sum_{\eta \in \Sigma_{n-2}} \left(\sum_{\tau \in \Sigma_{n-1}, \eta \subseteq \tau \subseteq \sigma} \varepsilon_\tau^\eta \cdot \varepsilon_\sigma^\tau \right) \eta \end{split}$$
 Lemma 3.8

8

3.8 Lemma

Sei σ ein n-Simplex. Sei $\eta \subseteq \sigma$ ein (n-2)-Simplex. Dann gibt es genau zwei (n-1)-Simplizes τ, τ' von K, die eine Seite von σ sind und η als Seite enthalten. Es gilt

$$\varepsilon_{\tau}^{\eta} \cdot \varepsilon_{\sigma}^{\tau} = -\varepsilon_{\tau'}^{\eta} \cdot \varepsilon_{\sigma}^{\tau'}$$

Beweis

Sei $\sigma = \{v_0,\ldots,v_n\}$ mit $v_0 < v_1 < \ldots < v_n$. Dann ist $\eta = \{v_0,\ldots,v_n\} \setminus \{v_i,v_j\}$ mit i < j. Dann sind $\tau = \{v_0,\ldots,v_{i-1},v_{i+1},\ldots,v_n\}$ und $\tau' = \{v_0,\ldots,v_{j-1},v_{j+1},\ldots,v_n\}$ die gesuchten (n-1)-Simplizes und es gilt

$$\varepsilon_{\sigma}^{\tau} = (-1)^{i} , \ \varepsilon_{\sigma}^{\tau'} = (-1)^{j} , \ \varepsilon_{\tau}^{\eta} = (-1)^{j-1} , \ \varepsilon_{\tau'}^{\eta} = (-1)^{i}$$

3.9 Notation

Für $\sigma \in \Sigma_n$, $\sigma = \{v_0, \dots, v_n\}$ mit $v_0 < \dots < v_n$ schreiben wir

$$\delta^{j}\sigma := \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \in \Sigma_{n-1}$$

Dann ist $\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta^j \sigma$.

3.10 Definition

Sei K ein geordneter simplizialer Komplex. Der ${f n}$ -te Homologiemodul von K über R ist definiert als

$$H_n(K;R) := \frac{\ker \partial_n : C_n(K;R) \to C_{n-1}(K;R)}{\operatorname{Im} \partial_{n+1} : C_{n+1}(K;R) \to C_n(K;R)}$$

Für n=0 interpretieren wir ∂_0 als die Nullabbildung. Daher gilt

$$H_0(K;R) = \frac{C_0(K;R)}{\text{Im } \partial_1 : C_1(K;R) \to C_0(K;R)}$$

3.11 Beispiele

- (1) Sei $K=\bullet$. Dann ist $C_0(K;R)\cong R$ und $C_i(K;R)=0$ für i>0. Weiter ist $H_0(K;R)=C_0(K;R)\cong R$ und $H_i(K;R)=0$ für i>0.
- (2) Sein nun $K=K_n$ das $n ext{-Eck}$, wobei $n\geq 3$. Also

$$\Sigma_0 = \left\{ \tau_1 = \{1\}, \tau_2 = \{2\}, \dots, \tau_n = \{n\} \right\}$$

$$\Sigma_1 = \left\{ \sigma_1 = \{1, 2\}, \dots, \sigma_{n-1} = \{n_1, n\}, \sigma_n = \{n, 1\} \right\}$$

Dann gilt

$$\begin{split} C_0(K;R)&=R[\Sigma_0]\cong R^n\\ C_1(K;R)&=R[\Sigma_1]\cong R^n\\ C_i(K;R)&=0 \text{ für } i>1\text{, insbesondere } H_i(K;R)=0 \text{ für } i>1 \end{split}$$

Es ist dann $\partial_2 = \partial_3 = \ldots = 0$. Interessant ist $\partial_1 : C_1(K;R) \to C_0(K;R)$, denn es gilt

$$\partial_1(\sigma_i) = egin{cases} au_{i+1} - au_i, & \text{falls } i = 1, \dots, n-1 \\ au_n - au_1, & \text{falls } i = n \end{cases}$$

3 Simpliziale Homologie $oldsymbol{9}$

Mit
$$\sigma_1' := \sigma_1, \sigma_2' = \sigma_2, \dots, \sigma_{n-1}' := \sigma_{n-1}, \sigma_n' := -\sigma_n$$
 gilt dann

$$\partial_1(\sigma_i') = \tau_{i+1} - \tau_i$$

mit der Konvention $au_{n+1} = au_1$. Also gilt

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n r_i (\tau_{i+1} - \tau_i) = \sum_{i=1}^n (r_{i-1} - r_i) \tau_i$$

RevChap3 Es folgt

$$\ker \partial_1 = \left\{ \sum_{i=1}^n r_i \sigma_i' \middle| r_1 = r_2 = \dots = r_n \right\} \subseteq C_1(K; R)$$
$$\operatorname{Im} \partial_1 = \left\{ \sum_{i=1}^n s_i \tau_i \middle| \sum_{i=1}^n s_i = 0 \right\} \subseteq C_0(K; R)$$

Ist $\sum_{i=1}^n s_i = 0$, so folgt für $r_n = 0, r_1 = -s_1, r_2 = -s_1 - s_2, \dots, r_{n-1} = -s_1 - s_2 - \dots - s_{n-1}$

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n s_i \tau_i$$

Es folgt $[K] \in H_1(K;R) = \ker \partial_1 / \operatorname{Im} \partial_2 = \ker \partial_1 \cong R \ni 1$ und

$$[\tau_i] = [p] \in H_0(K; R) = \ker \partial_0 / \operatorname{Im} \partial_1 = R[\Sigma_0] / \{\sum_{i=1}^n s_i \tau_i \mid \sum_{i=1}^n s_i = 0\} \cong R \ni 1$$

(via
$$\sum_{i=1}^n s_i \tau_i \longmapsto \sum_{i=1}^n s_i$$
)

3.12 Definition

Sei R ein Ring. Ein $\mathbf R$ -Kettenkomplex (C_*,d_*) ist eine Folge von R-Moduln $(C_n)_{n\in\mathbb N}$ zusammen mit R-linearen Abbildungen $(d_n:C_n\to C_{n-1})_{n\ge 1}$, so dass $d_n\circ d_{n+1}=0$. Die d_n heißen die Randabbildungen von (C_*,d_*) , die C_n die Kettenmoduln. Die $\mathbf n$ -te Homologie eines Kettenkomplexes (C_*,d_*) ist definiert als

$$H_n(C_*, d_*) := \frac{\ker d_n : C_n \to C_{n-1}}{\operatorname{Im} d_{n+1} : C_{n+1} \to C_n}$$

3.13 Bemerkung

- (i) Oft werden auch Kettenkomplexe betrachtet, die $\mathbb Z$ statt $\mathbb N$ verwenden.
- (ii) Ein Kettenkomplex (C_*, d_*) heißt endlich erzeugt, wenn alle C_n endlich erzeugte R-Moduln sind und $C_n \neq 0$ nur für endlich viele n ist.

3.14 Definition

Zu einem geordneten simplizialen Komplex K heißt $(C_*(K;R), \partial_*)$ der **simpliziale Kettenkomplex** von K über R.

Bemerkung

Ist K endlich, so ist $(C_*(K;R),\partial_*)$ endlich erzeugt.

10

4 Euler-Charakteristik von Kettenkomplexen

4.1 Wiederholung

Sei A eine abelsche Gruppe. Dann ist

$$TA := \left\{ a \in A \middle| \exists n \ge 1 : n \cdot a = \underbrace{a + \ldots + a}_{n \text{-mal}} = 0 \right\}$$

die **Torsionsgruppe** von A. Ist A endlich erzeugt, so ist auch TA endlich erzeugt und es gibt Primzahlpotenzen $p_1^{n_1}, \ldots, p_k^{n_k}$ mit

abelsche Gruppen sind **Z**-Moduln

$$TA \cong \mathbb{Z}/(p_1^{n_1}) \oplus \ldots \oplus \mathbb{Z}/(p_k^{n_k})$$

Weiter gibt es dann n mit $A \cong \mathbb{Z}^n \oplus TA$. $\operatorname{Rg} A := n$ ist der Rang von A.

Rev Chap 4

4.2 Lemma

Sei A eine endlich erzeugte abelsche Gruppe. Dann gilt $\operatorname{Rg} A = \max\{m \mid \exists C \leq A, C \cong \mathbb{Z}^m\}$.

Beweis

Da $A\cong\mathbb{Z}^n\oplus TA$ genügt zu zeigen: Ist $\varphi:\mathbb{Z}^m\to\mathbb{Z}^n\oplus TA$ ein injektiver Gruppenhomomorphismus, so ist $m\le n$. Schreibe $\varphi=\varphi_0\oplus\varphi_1$, also $\varphi(a)=\varphi_0(a)+\varphi_1(a)$ mit $\varphi_0:\mathbb{Z}^m\to\mathbb{Z}^n$, $\varphi_1:\mathbb{Z}^m\to TA$.

Behauptung: φ_0 ist injektiv. Zu $v\in\mathbb{Z}^m$ wähle $k\geq 1$ mit $k\cdot \varphi_1(v)=0\in TA$. Dann ist $\varphi_1(kv)=k\varphi_1(v)=0$. Ist $v\neq 0$, so ist $k\cdot v\neq 0\in\mathbb{Z}^m$, also ist $\varphi(kv)\neq 0$ und damit $\varphi_0(kv)\neq 0$. Es folgt $\varphi_0(v)\neq 0$, da sonst $\varphi_0(k\cdot v)=k\cdot \varphi_0(v)=0$. Damit ist die Behauptung gezeigt.

Gruppenhomomorphismen $\varphi_0:\mathbb{Z}^m\to\mathbb{Z}^n$ werden durch $n\times m$ -Matrizen beschrieben: Es gibt $A=(a_{ij})\in\mathbb{Z}^{n\times m}$ mit

$$\varphi_0 \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} z_j \\ \vdots \\ \sum_{j=1}^m a_{nj} z_j \end{pmatrix}$$

Ist m>n, so hat A, aufgefasst als Matrix über $\mathbb Q$, einen Kern. Es gibt also einen Vektor $w=\begin{pmatrix}a_1/b_1\\\vdots\\a_m/b_m\end{pmatrix}$ mit Aw=0, $w\neq 0$. Dann ist $(b_1,\ldots,b_m)\cdot w\in \mathbb Z^m$ und

$$\varphi_0((b_1,\ldots,b_m)\cdot w) = A\cdot ((b_1,\ldots,b_m)\cdot w) = (b_1,\ldots,b_m)\cdot A\cdot w = 0$$

Also gilt $m \leq n$.

4.3 Definition

Seien M_0, M_1, M_2 R-Moduln und $f_0: M_0 \to M_1$, $f_1: M_1 \to M_2$ R-lineare Abbildungen. Dann heißt

$$M_0 \stackrel{f_0}{\longleftrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2$$
 (\star)

eine kurze exakte Sequenz, wenn gilt:

(i) f_0 ist injektiv,

(ii) Im $f_0 = \ker f_1$,

(iii) f_1 ist surjektiv.

Bemerkung

Oft sagt man $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist exakt in M_1 , wenn ${\rm Im}\, f_0 = \ker f_1$ ist. Dann ist (\star) eine kurze exakte Folge, wenn

$$0 \longrightarrow M_0 \stackrel{f_0}{\longrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2 \longrightarrow 0$$

exakt in M_0, M_1 und M_2 ist.

4.4 Beispiele

1)

$$M_0 \stackrel{i}{\longleftarrow} M_0 \oplus M_1 \stackrel{p}{\longrightarrow} M_1$$

 $v_0 \stackrel{i}{\longmapsto} (v_0, 0) \ (v_0, v_1) \stackrel{p}{\longmapsto} v_1$

ist eine kurze exakte Folge.

2) $\mathbb{Z} \stackrel{n}{\hookrightarrow} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ ist eine kurze exakte Folge.

4.5 Bemerkung

Eine **Spaltung** für eine kurze exakte Folge $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist eine R-lineare Abbildung $s: M_2 \to M_1$ mit $f_1 \circ s = \mathrm{id}_{M_2}$. In diesem Fall erhalten wir einen Isomorphismus $M_0 \oplus M_2 \to M_1$, $(v_0, v_2) \mapsto f_0(v_0) + s(v_2)$.

Injektivität: Sei $(v_0, v_2) \in M_0 \oplus M_2$ mit $f_0(v_0) + s(v_2) = 0$. Dann gilt

$$0 = f_1(f_0(v_0) + s(v_2)) = v_2 \implies f_0(v_0) = 0 \implies v_0 = 0$$

Surjektivität: Sei $v_1 \in M_1$. Betrachte $v_2 := f_1(v_1)$. Dann ist $v_1 - s(v_2) \in \ker f_1 = \operatorname{Im} f_0$, also gibt es v_0 in M_0 mit $f_0(v_0) = v_1 - s(v_1)$. Damit ist $v_1 = f_0(v_0) + s(v_1)$.

4.6 Bemerkung

- 1) $\mathbb{Z} \stackrel{n}{\longleftrightarrow} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ spaltet nicht.
- 2) Ist (\star) $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ eine kurze exakte Folge mit M_2 frei, also $M_2 \cong R[S]$, so spaltet (\star) . Siehe Lemma 3.2. Insbesondere ist $M_1 \cong M_0 \oplus M_2$.

4.7 Bemerkung

Der Rang für alle endlich erzeugten abelschen Gruppen ist additiv:

$$\operatorname{Rg}(A \oplus B) = \operatorname{Rg} A + \operatorname{Rg} B$$
,

da $A\cong \mathbb{Z}^{\operatorname{Rg} A}\oplus TA$, $B\cong \mathbb{Z}^{\operatorname{Rg} B}\oplus TB$, also

$$A \oplus B \cong \mathbb{Z}^{\operatorname{Rg} A + \operatorname{Rg} B} \oplus \underbrace{TA \oplus TB}_{=T(A \oplus B)}$$

4.8 Proposition

Der Rang von endlich erzeugten abelschen Gruppen ist additiv für kurze exakte Folgen: Ist (\star) $A \stackrel{i}{\to} B \stackrel{p}{\to} C$ eine kurze exakte Folge von endlich erzeugten abelschen Gruppen, so gilt $\operatorname{Rg} B = \operatorname{Rg} A + \operatorname{Rg} C$.

Beispiel

 $\mathsf{mit}\ \mathbb{Z}$

Beweis

Spaltet (\star) , so ist $B \cong A \oplus C$ und die Behauptung folgt aus der Bemerkung 4.7.

Wir können annehmen: $C = \mathbb{Z}^n \oplus TC$. Wir erhalten:

$$A \stackrel{i}{\longleftarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$$

$$\parallel \qquad \qquad \downarrow_{i''} \qquad \qquad \downarrow_{i'}$$

$$A \stackrel{i}{\longrightarrow} B \stackrel{p}{\longrightarrow} C$$

$$\downarrow^{p''} \qquad \qquad \downarrow^{p'}$$

$$B/p^{-1}(\mathbb{Z}^n) \stackrel{p' \circ p}{\longrightarrow} TC$$

$$(\star)$$

Ist $p' \circ p(b) = 0$, so gibt es $v \in \mathbb{Z}^n$ mit i'(v) = p(b). Nun gibt es $v' \in p^{-1}(\mathbb{Z}^n)$ mit p(v') = v. Es folgt

$$p(i''(v')) = p(b)$$

also $i''(v') - b \in \ker p = i(A)$. Da $i(A) \subseteq i'' (p^{-1}(\mathbb{Z}^n))$ folgt $b \in i'' (p^{-1}(\mathbb{Z}^n))$. In (\star) sind die Spalten und Zeilen exakt. Da \mathbb{Z}^n frei ist, spaltet $A \to p^{-1}(\mathbb{Z}^n) \to \mathbb{Z}^n$ und es gilt

$$\operatorname{Rg} A + \operatorname{Rg} C = \operatorname{Rg} A + n = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$$

Es bleibt zu zeigen: $\operatorname{Rg} B = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$.

Nebenbei: Ist $A' \subseteq B'$, so gilt $\operatorname{Rg} A' \leq \operatorname{Rg} B'$, denn

$$\operatorname{Rg} A' = \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leq A' \right\} \leq \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leq B' \right\} = \operatorname{Rg} B'.$$

Betrachte die kurze exakte Folge $p^{-1}(\mathbb{Z}^n) \to B \to B/p^{-1}(\mathbb{Z}^n)$. Wegen $B/p^{-1}(\mathbb{Z}^n) \cong TC$ gibt es ein k mit $k\big(b+p^{-1}(\mathbb{Z}^n)\big)=0$ für alle $b\in B$. Also $kb\in p^{-1}(\mathbb{Z}^n)$. Es folgt $kB\le p^{-1}(\mathbb{Z}^n)\le B$. Ist $B\cong \mathbb{Z}^{\operatorname{Rg} B}+TB$, so ist $kB\cong (k\mathbb{Z})^{\operatorname{Rg} B}+T(kB)$ und $\operatorname{Rg} kB=n=\operatorname{Rg} B$. Mit der Nebenbemerkung folgt $\operatorname{Rg} p^{-1}(\mathbb{Z}^n)=\operatorname{Rg} B$.

Beweis mit Tensorprodukten (Skizze)

- $\mathbb{Q} \otimes_{\mathbb{Z}} : \mathbb{Z}\text{-Mod} \to \mathbb{Q}\text{-VR}$ ist ein Funktor.
- $\operatorname{Rg} A = \dim_{\mathbb{Q}} \mathbb{Q} \otimes_{\mathbb{Z}} A$
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} (X \oplus Y) = \mathbb{Q} \otimes_{\mathbb{Z}} X \oplus \mathbb{Q} \otimes_{\mathbb{Z}} Y$
 - (b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$
 - (c) $\mathbb{Q} \otimes_{\mathbb{Z}} T \cong 0$ für T ein Torsionsmodul.
- Ist $A \to B \to C$ eine kurze exakte Folge, so ist auch $\mathbb{Q} \otimes_{\mathbb{Z}} A \to \mathbb{Q} \otimes_{\mathbb{Z}} B \to \mathbb{Q} \otimes_{\mathbb{Z}} C$ eine kurze exakte Folge.
- Jede kurze exakte Folge von \mathbb{Q} -Vektorräumen spaltet und es gilt $\dim_{\mathbb{Q}}(V \oplus W) = \dim_{\mathbb{Q}}(V) + \dim_{\mathbb{Q}}(W)$.

4.9 Definition

Sei (C_*,d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex.

$$\chi(C_*, d_*) := \sum_{i=0}^{\infty} \operatorname{Rg}(C_i) = \sum_{i=0}^{n_0} \operatorname{Rg}(C_i)$$

heißt die **Eulercharakteristik** von (C_*, d_*) . Dabei ist n_0 so gewählt, dass $C_n = 0$ für alle $n > n_0$.

4.10 Satz

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex. Dann gilt

$$\chi(C_*) = \sum_{i=1}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*).$$

Beweis

Sei $B_{n+1}:=\operatorname{Im}\partial_{n+1}:C_{n+1}\to C_n$ und $Z_n:=\ker\partial_n:C_n\to C_{n-1}.$ Also $H_n(C_*,d_*)=Z_n/B_{n+1}.$ Als Untermoduln von C_n sind Z_n und B_n endlich erzeugt (LA2). Insbesondere ist auch $H_n(C_*,d_*)$ endlich erzeugt und der Rang somit definiert. Auch B_{n+1} ist Untermodul des endlich erzeugten \mathbb{Z} -Moduls C_n und somit endlich erzeugt. Wir erhalten kurze exakte Folgen:

$$B_{n+1} \longrightarrow Z_n \longrightarrow H_n(C_*, d_*)$$

$$Z_n \hookrightarrow C_n \longrightarrow B_n$$

Folglich gilt $\operatorname{Rg} Z_n = \operatorname{Rg} B_{n+1} + \operatorname{Rg} H_n(C_*, d_*)$ und $\operatorname{Rg} C_n = \operatorname{Rg} Z_n + \operatorname{Rg} B_n$. Also gilt

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i = \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} Z_i + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} H_i(C_*, d_*) + \operatorname{Rg} B_{i+1} + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*) + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_{i+1} + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_i$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*)$$

4.11 Korollar

Sei K ein endlicher, geordneter simplizialer Kettenkomplex. Dann gilt

$$\chi(K) = \sum_{i=1}^{\dim K} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

Beweis

Wende den Satz 4.10 auf den simplizialen Kettenkomplex von K an. Da

$$\operatorname{Rg} C_n(K; \mathbb{Z}) = \operatorname{Rg} \mathbb{Z}[\Sigma_n] = \# n\text{-Simplizes in } K$$

ist

$$\chi(K) = \chi(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z}) \qquad \Box$$

5 Singuläre Homologie

5.1 Definition

Sei X ein topologischer Raum. Sei $S_n(X)$ die Menge aller stetigen Abbildungen $\sigma: |\Delta^n| \to X$. Elemente von $S_n(X)$ heißen **singuläre Simplizes** in X. Sei R ein Ring. Der \mathbf{n} -te (singuläre) Kettenmodul von X über R ist

Rev Chap 5

$$C_n(X;R) := R[S_n(X)]$$

5.2 Definition

Für $\sigma \in S_n(X)$ und $j \in \{0,\dots,n\}$ sei $\delta_j \sigma \in S_{n-1}(X)$ die Einschränkung von σ auf die j-te Seite von $|\Delta^n|$, also $\delta_j(\sigma) = \sigma \circ \iota_{n,j}$, wobei $\iota_{n,j} : |\Delta^{n-1}| \to |\Delta^n|$ die Inklusion der j-ten Seite ist:

$$\iota_{n,j}(x_0,\ldots,x_{n-1}) = (x_0,\ldots,x_{j-1},0,x_j,\ldots,x_{n-1})$$

5.3 Bemerkung

Es gilt $\iota_{n,j}=|i_{n,j}|$ wobei $i_{n,j}:\Delta^{n-1}\to\Delta^n$ gegeben ist durch

vergleiche Blatt 2, Aufgabe 2

$$i_{n,j}(k) = \begin{cases} k, & \text{falls } k < j \\ k+1, & \text{falls } k \ge j \end{cases}$$

5.4 Definition

Die n-te singuläre Randabbildung $\partial_n: C_n(X;R) \to C_{n-1}(X;R)$ ist definiert durch

$$\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta_j(\sigma).$$

5.5 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Beweis (mit Lemma 5.6)

$$\begin{split} \partial_{n-1}\partial_n(\sigma) &= \partial_{n-1}\left(\sum_{j=0}^n (-1)^j \delta_j(\sigma)\right) = \sum_{k=0}^{n-1} \sum_{j=0}^n (-1)^{j+k} \delta_k \delta_j(\sigma) \\ &= \sum_{0 \leq k < j \leq n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leq j \leq k \leq n-1} (-1)^{k+j} \delta_k \delta_j(\sigma) \\ &\stackrel{\text{Lemma 5.6}}{=} \sum_{0 \leq k < j \leq n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leq j \leq k \leq n-1} (-1)^{k+j} \delta_j \delta_{k+1}(\sigma) \\ &= \sum_{0 \leq k < j \leq n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0 \leq j < k \leq n} (-1)^{k-1+j} \delta_j \delta_k(\sigma) \\ &= 0 \end{split}$$

5 Singuläre Homologie 15

5.6 Lemma

Für $0 \le j \le k \le n-1$ und $\sigma \in S_n(X)$ ist $\delta_k \delta_j(\sigma) = \delta_j \delta_{k+1}(\sigma)$.

Beweis

Es ist

$$\delta_k(\delta_j(\sigma))(x_0, \dots, x_{n-2}) = \delta_j(\sigma)(x_0, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$$

= $(x_0, \dots, x_{j-1}, 0, x_j, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$

und

$$\delta_{j}\delta_{k+1}(\sigma)(x_{0},\ldots,x_{n-2}) = \delta_{k+1}(\sigma)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2})$$

$$= (x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{k-1},0,x_{k},\ldots,x_{n-2})$$

5.7 Definition

Sei X ein topologischer Raum. Die Homologie des **singulären Kettenkomplex** über R, $(C_*(X;R), \partial_*)$, heißt die **singuläre Homologie von** X mit Koeffizienten in R:

$$H_n(X;R) := H_n(C_*(X;R), \partial_*)$$

Für $R = \mathbb{Z}$ schreiben wir kürzer $C_*(X) := C_*(X; \mathbb{Z})$ und $H_n(X) := H_n(X; \mathbb{Z})$.

5.8 Definition

- Die Elemente von $C_n(X;R)$ heißen **n-Ketten**.
- Die Elemente von $\operatorname{Im} \partial_{n+1} \subseteq C_n(X;R)$ heißen **n-Ränder**.
- Die Elemente von $\ker \partial_n \subseteq C_n(X;R)$ heißen **n-Zykel**.

Jeder n-Zykel $\sigma \in C_n(X;R)$ bestimmt eine **Homologieklasse** $[\sigma] := \sigma + \operatorname{Im} \partial_{n+1} \in H_n(X;R)$.

5.9 Beispiel

Ist $X = \{x_0\}$ der Ein-Punkt-Raum, so ist

$$H_* \big(\{x_0\}; R \big) \cong \begin{cases} R, & \text{falls } * = 0 \\ 0, & \text{sonst} \end{cases}$$

Beweis

Es gibt für jedes n genau eine Abbildung, nämlich die konstante, $\sigma_n: |\Delta^n| \to \{x_0\}$ und diese ist stetig. Also $C_n(\{x_0\}; R) = R[\sigma_n]$. Für alle j ist $\delta_j \sigma_n = \sigma_{n-1}$. Daher ist

$$\partial_n(\sigma_n) = egin{cases} 0, & \text{falls } n \text{ ungerade} \\ \sigma_{n-1}, & \text{falls } n \text{ gerade} \end{cases}$$

Der singuläre Kettenkomplex von $\{x_0\}$ hat also folgende Gestalt:

$$C_0(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_1(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} C_2(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_3(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} \cdots$$

$$R \xleftarrow{0} R \xleftarrow{\text{id}} R \xleftarrow{0} R$$

Es folgt

$$H_n(\lbrace x_0 \rbrace; R) \cong \begin{cases} R, & \text{falls } n = 0 \\ 0, & \text{sonst} \end{cases}$$

5.10 Proposition

- 1) Ist $X \neq \emptyset$, so ist $H_0(X) \neq 0$.
- 2) Ist X wegzusammenhängend, so gilt $H_0(X) \cong \mathbb{Z}$

Beweis

- 1) Sei $\varepsilon:C_0(X)\to\mathbb{Z}$ definiert durch $\varepsilon\Bigl(\sum_{\sigma\in S_0(X)}r_\sigma\cdot\sigma\Bigr):=\sum_\sigma r_\sigma.$ Dann ist $\varepsilon\circ\partial_1:C_1(X)\to\mathbb{Z}$ trivial, denn für $\sigma\in S_1(X)$ ist $\varepsilon\circ\partial_1(\sigma)=\varepsilon(\delta_0\sigma-\delta_1\sigma)=0.$ Daher induziert ε eine Abbildung $\overline{\varepsilon}:H_0(X)\to\mathbb{Z}.$ Da $X\neq\emptyset$ ist, gibt es einen singulären 0-Simplex $\sigma:\left|\Delta^0\right|\to X.$ Für σ gilt $\overline{\varepsilon}([\sigma])=1$ und daher ist $\overline{\varepsilon}$ surjektiv und $H_0(X)\neq0.$
- 2) Wir zeigen: $\overline{\varepsilon}: H_0(X) \to \mathbb{Z}$ ist ein Isomorphismus, falls X wegzusammenhängend ist. Dazu zeigen wir $\ker \varepsilon = \operatorname{Im} \partial_1$. Dazu definieren wir $s: C_0(X) \to C_1(X)$ wie folgt: Sei σ_0 ein fest gewählter singulärer 0-Simplex. Zu $\sigma \in S_0(X)$ gibt es, da X wegzusammenhängend ist, $s(\sigma) \in S_1(X)$ mit $\delta_0 s(\sigma) = \sigma$, $\delta_1 s(\sigma) = \sigma_0$. Es gilt nun

$$\partial_1 \circ s(\sigma) = \sigma - \sigma_0 = \mathrm{id}_{C_0(X)} - i \circ \varepsilon$$

wobei $i: \mathbb{Z} \to C_0(X)$, $n \mapsto n \cdot \sigma_0$. Ist nun $v \in \ker \varepsilon$, so folgt

$$\partial_1 \circ s(v) = v - i \circ \underbrace{\varepsilon(v)}_{=0} = v$$

also $v \in \operatorname{Im} \partial_1$.

5.11 Bemerkung

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_o,\ldots,v_n\}\in\Sigma_n$ ein n-Simplex von K mit $v_0< v_1<\ldots< v_n$. Wir ordnen σ den singulären n-Simplex $f_\sigma:|\Delta^n|\to |\Delta^\sigma|\subseteq |K|$ zu, wobei

$$f_{\sigma}\left(\sum_{i=0}^{n} t_{i} e_{i}\right) = \sum_{i=0}^{n} t_{i} v_{i}.$$

Nun erhalten wir eine Abbildung

$$C_*(K;R) \to C_*(|K|,R)$$
 ,
$$\sum_{\sigma \in \Sigma_n} r_\sigma \cdot \sigma \longmapsto \sum_{\sigma \in \Sigma_n} r_\sigma \cdot f_\sigma.$$

Diese Abbildung induziert(!) eine weitere Abbildung $H_*(K;R) \xrightarrow{\cong} H_*(|K|;R)$ von der wir später zeigen werden, dass sie ein Isomorphismus ist.

5 Singuläre Homologie 17

6 Funktorialität

6.1 Definition

Seien (C_*,d_*) und (C'_*,d'_*) zwei R-Kettenkomplexe. Eine \mathbf{R} -Kettenabbildung $f_*:(C_*,d_*)\to (C'_*,d'_*)$ ist eine Folge von R-linearen Abbildungen $f_n:C_n\to C'_n$, sodass

$$d_n' \circ f_n = f_{n-1} \circ d_n$$

Rev Chap 6

für alle $n \ge 1$ ist.

$$C_0 \leftarrow_{d_1} C_1 \leftarrow_{d_2} C_2 \leftarrow_{d_3} C_3 \leftarrow \dots$$

$$\downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$C'_0 \leftarrow_{d'_1} C'_1 \leftarrow_{d'_2} C'_2 \leftarrow_{d'_3} C'_3 \leftarrow \dots$$

6.2 Bemerkung

Ist $f_*:(C_*,d_*)\to (C'_*.d'_*)$ eine Kettenabbildung, so erhalten wir eine induzierte Abbildung $H_n(f_*):H_n(C_*,d_*)\to H_n(C'_*,d'_*)$ durch

$$H_n(f_*)([v]) := [f_n(v)]$$

für $v \in \ker d_n$, denn:

- $d'_n(f_n(v)) = f_{n-1}(d_n(v)) = 0$, also $f_n(v) \in \ker d'_n$ für $v \in \ker d_n$.
- Ist [v] = [w], mit $v, w \in \ker d_n$, so gibt es $x \in C_{n+1}$ mit $d_{n+1}(x) = v w$. Dann ist

$$d'_{n+1}(f_{n+1}(x)) = f_n(d_{n+1}(x)) = f_n(v) - f_n(w)$$

also
$$[f_n(v)] = [f_n(w)] \in H_n(C'_*, d'_*).$$

6.3 Bemerkung

- a) R-Kettenkomplexe mit Kettenabbildungen bilden die Kategorie R-Ketten.
- b) Homologie definiert nun einen Funktor: $H_n: R ext{-Ketten} o R ext{-Mod}.$

Es gilt
$$H_n(\mathrm{id}_{(C_*,d_*)})=\mathrm{id}_{H_n(C_*,d_*)}$$
 und $H_n(f\circ g)=H_n(f)\circ H_n(g)$, da

$$H_n(f \circ g)([v]) = [f_n \circ g_n(v)] = [f_n(g_n(v))] = H_n(f)[g_n(v)] = H_n(f)(H_n(g)(v))$$

c) Definiert man die Kategorie der **graduierten** R-Moduln als die Kategorie deren Objekte Folgen $(V_n)_n$ von \mathbb{R} -Moduln sind und deren Morphismen Folgen von R-linearen Abbildungen $(f_n)_n$ sind, so kann man die H_n , $n \in \mathbb{N}$ zu einem Funktor

$$H_*: R\text{-Ketten} \longrightarrow \text{Gr-}R\text{-Mod}$$
 , $(C_*, d_*) \longmapsto (H_n(C_*, d_*))_n$

zusammensetzen.

6.4 Definition

Sei $f: X \to Y$ stetig. Wir definieren $C_n(f;R): C_n(X;R) \to C_n(Y;R)$ durch

$$C_n(f;R)\left(\sum_{\sigma\in S_n(X)} r_{\sigma}\cdot\sigma\right) := \sum_{\sigma\in S_n(X)} r_{\sigma}\cdot(f\circ\sigma)$$

(Für $\sigma \in S_n(X)$ ist $f \circ \sigma \in S_n(Y)$.)

6.5 Proposition

Mit dieser Definition von $C_*(f;R)$ wird der singuläre Kettenkomplex über R zu einem Funktor

$$C_*(-;R): \operatorname{Top} \to R$$
-Ketten

Beweis

(i) $C_*(f;R)$ ist eine R-Kettenabbildung:

$$C_{n-1}(F;R) \circ \partial_n(\sigma) = C_{n-1}(f;R) \left(\sum_{l=0}^n (-1)^l \sigma \circ \iota_{n,l} \right) = \sum_{l=0}^n (-1)^l (f \circ \sigma) \circ \iota_{n,l}$$
$$= \partial_n(f \circ \sigma) = \partial(C_n(f;R)(\sigma))$$

(ii) Zu zeigen: $C_*(f \circ q; R) = C_*(f; R) \circ C_*(q; R)$:

$$C_n(f \circ g; R)(\sigma) = f \circ (g \circ \sigma) = C_n(f; R)(g \circ \sigma) = C_n(f; R)(C_n(g; R)(\sigma))$$

(iii) Zu zeigen: $C_*(\mathrm{id}_X; R) = \mathrm{id}_{C_*(X;R)}$:

$$C_n(\mathrm{id}_X; R)(\sigma) = \mathrm{id}_X \circ \sigma = \sigma$$

6.6 Korollar

Mit $H_n(f;R):=H_n(C_*(f;R))$ wird $H_n(-;R)$ zu einem Funktor: $H_n(-;R): \text{Top} \to R\text{-Mod}$.

Beweis

 $H_n(-;R)$ ist die Komposition der Funktoren $C_*(-;R): \mathrm{Top} \to R$ -Ketten und $H_*: R$ -Ketten $\to R$ -Mod. \Box

6.7 Bemerkung

- Oft schreiben wir $f_* = H_n(f; R)$.
- Es gilt für $\left[\sum_{\sigma \in S_n(X)} r_\sigma \cdot \sigma\right] \in H_n(X;R)$

$$f_*\left(\left[\sum_{\sigma\in S_n(X)} r_\sigma\cdot\sigma\right]\right) = \left[\sum_{\sigma\in S_n(X)} r_\sigma\cdot f\circ\sigma\right]\in H_n(Y;R)$$

6.8 Definition

Seien X_i , $i \in I$ topologische Räume. Mit

$$X := \coprod_{i \in I} X_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der X_i . Als Menge ist X die disjunkte Vereinigung der X_i . $U \subseteq X$ ist offen genau dann, wenn $X_i \cap U \subseteq X_i$ offen ist für jedes $i \in I$. Für jedes i_o erhalten wir eine stetige Inklusion $j_{i_0}: X_{i_0} \to \coprod_i X_i$.

Bemerkung

Für jedes i_o mit $X_{i_0} \subseteq \coprod_i X_i$ offen und abgeschlossen.

6 Funktorialität

6.9 Definition

Seien V_i , $i \in I$ R-Moduln. Mit

$$V := \bigoplus_{i \in I} V_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der V_i . Elemente von V sind I-Folgen $(v_i)_{i \in I}$ mit $v_i \in V_i$ und $v_i = 0$ für alle bis auf endlich viele i. Die R-Modulstruktur ist erklärt durch:

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I}$$
, $r \cdot (v_i)_{i \in I} := (r \cdot v_i)_{i \in I}$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $j_{i_0}: V_{i_0} \to V$ mit

$$(j_{i_0}(v))_i = \begin{cases} v, & \text{falls } i = i_0 \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

Seien $V_i, i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $f_i: V_i \to W$ von R-linearen Abbildungen eine R-lineare Abbildung $\bigoplus_{i \in I} f_i: \bigoplus_{i \in I} V_i \to W$ mit

$$(\bigoplus_{i\in I} f_i)((v_i)_{i\in I}) = \sum_{i\in I} f_i(v_i)$$

Ist umgekehrt $f:\bigoplus_{i\in I}V_i\to W$ eine R-lineare Abbildung, so ist $f_i:=f\circ j_i$ eine Folge von R-linearen Abbildungen mit $f=\bigoplus_{i\in I}f_i$

6.10 Satz

Sei $X = \coprod_{i \in I} X_i$. Dann induzieren die $j_i : X_i \to X$ einen Isomorphismus

$$\bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\bigoplus_{i \in I} (j_i)_*} H_n(X; R)$$

Beweis

Da die $X_i\subseteq X$ offen und abgeschlossen sind und $|\Delta^n|$ zusammenhängend ist (sogar wegzusammenhängend), gibt es für jedes $\sigma:|\Delta^n|\to X$ ein eindeutiges i mit ${\rm Im}\,\sigma\subseteq X_i$. Es gilt also $S_n(X)=\bigcup S_n(X_i)$. Daher induzieren die j_i einen Isomorphismus

$$\bigoplus_{i \in I} C_n(j_i; R) : \bigoplus_{i \in I} C_n(X_i; R) \xrightarrow{\cong} C_n(X; R)$$

Da diese Isomorphismen mit den Randabbildungen vertauschen, erhalten wir einen Isomorphismus von R-Kettenkomplexen

$$\varphi := \bigoplus_{i \in I} C_*(j_i; R) : \bigoplus C_*(X_i; R) \to C_*(X; R)$$

Da $\bigoplus H_n(C_*(X_i;R),\partial_*)\cong H_n(\bigoplus_i C_*(X_i;R),\partial_*)$ induzieren dann auch die $(j_i)_*$ einen Isomorphismus

$$\bigoplus (j_i)_* : \bigoplus_{i \in I} H_n(X_i; R) \longrightarrow H_n(X; R)$$

20 6 Funktorialität

7 Homotopieinvarianz

7.1 Bemerkung

Sei $f:X \to Y$ eine Homöomorphismus. Dann ist

$$f_*: H_n(X; R) \longrightarrow H_n(Y; R)$$

ein Isomorphismus.

Beweis

Da Homologie ein Funktor ist, gilt

$$f_* \circ (f^{-1})_* = (f \circ f^{-1})_* = (\mathrm{id}_Y)_* = \mathrm{id}_{H_n(Y;R)} \qquad \text{und}$$
$$(f^{-1})_* \circ f_* = (f^{-1} \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X;R)}$$

Also ist $(f_*)^{-1} = (f^{-1})_*$. Insbesondere ist f_* ein Isomorphismus.

7.2 Definition

Eine stetige Abbildung $f:X\to Y$ heißt eine **Homotopieäquivalenz**, falls es eine stetige Abbildung $g:Y\to X$ gibt, so dass $g\circ f$ homotop zu id_X ist und $f\circ g$ homotop zu id_Y ist. g heißt dann eine **Homotopieinverse** zu f.

Bemerkung

- (i) f ist genau dann eine Homotopieäquivalenz, wenn [f] in HTop invertierbar ist. In HTop ist dann $[f]^{-1} = [g]$.
- (ii) Die Homotopieinverse ist eindeutig bis auf Homotopie.

7.3 Satz

Seien $f,g:X\to Y$ stetige Abbildungen. Sind f und g homotop, so gilt $H_n(f;R)=H_n(g;R)$ für alle $n\in\mathbb{N}$.

Beweis

Siehe 7.8, sowie 7.13 □

7.4 Korollar

Ist $f:X\to Y$ eine Homotopieäquivalenz, so ist $f_*:H_n(X;R)\to H_n(Y;R)$ ein Isomorphismus.

Beweis

Sei $g: Y \to X$ ein Homotopieinverses zu f. Es folgt

7.5 Korollar

Ist X kontrahierbar, d.h. es gibt eine Homotopie $H: X \times [0,1] \to X$ mit $H_0 = \mathrm{id}_X$ und H_1 konstant, so gilt

$$H_n(X;R)\cong egin{cases} R, & \text{falls } n=0 \\ 0, & \text{sonst} \end{cases}$$

7 Homotopieinvarianz 21

Beweis

Sei $\{x_0\} = \operatorname{Im} H_1$. Dann ist die Inklusion $\{x_0\} \to X$ eine Homotopieäquivalenz. Also gilt nach 7.4

$$H_n(X;R) \cong H_n(\lbrace x_0 \rbrace;R) \stackrel{\text{5.9}}{=} \begin{cases} R, & \text{falls } n=0 \\ 0, & \text{sonst} \end{cases}$$

Beispiel

$$H_n(\mathbb{R}^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases} \qquad \text{und} \qquad H_n(D^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

7.6 Definition

Seien (C_*, d_*) und (C'_*, d'_*) R-Kettenkomplexe. Seien $f_*, g_* : (C_*, d_*) \to (C'_*, d'_*)$ R-Kettenabbildungen. Eine **Kettenhomotopie** von f_* nach g_* ist eine Folge von R-linearen Abbildungen $h_n : C_n \to C'_{n+1}$, $n \in \mathbb{N}$, sodass für alle n gilt:

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n$$

In diesem fall heißen f_* und g_* kettenhomotop.

7.7 Proposition

Seien $f_*, g_* : (C_*, d_*) \to (C'_*, d'_*)$ Kettenabbildungen. Sind f_* und g_* kettenhomotop, so gilt für alle n

$$H_n(f_*) = H_n(g_*)$$

Beweis

Sei $x\in H_n(C_*.d_*)$. Also x=[v] mit $v\in\ker d_n:C_n\to C_{n-1}$. Dann gilt, da $v\in\ker d_n$

$$H_n(f_*)(x) = H_n(f_*)([v]) = [f_n(v)] = \left[g_n(v) + \underbrace{d'_{n+1} \circ h_n(v)}_{\in \operatorname{Im} d'_{n+1}} + \underbrace{h_{n-1} \circ d_n(v)}_{=0}\right]$$
$$= [g_n(v)] = H_n(g_*)([v]) = H_n(g_*)(x) \qquad \Box$$

7.8 Lemma

Die Homotopieinvarianz von $H_n(-;R)$ folgt aus folgenden Spezialfall:

Seien
$$i_0, i_1: X \hookrightarrow X \times [0,1]$$
 Inklusionen mit $i_0(x) = (x,0), i_1(x) = (x,1). \Longrightarrow (i_0)_* = (i_1)_*$ [#]

Beweis

Sei $H: X \times [0,1] \to Y$ eine Homotopie zwischen $f,g: X \to Y$, also $f = H \circ i_0$ und $g = H \circ i_1$. Dann folgt

$$f_* = (H \circ i_0)_* = H_* \circ (i_0)_* = H_* \circ (i_1)_* = (H \circ i_1)_* = g_*$$

Rev Chap 7

7.9 Bemerkung

Zum Beweis von [#] werden wir eine explizite Kettenhomotopie h_* zwischen $C_*(i_0;R)$ und $C_*(i_1;R)$ konstruieren. Wir brauchen also $h_n:C_n(X;R)\to C_{n+1}(X\times[0,1];R)$ für alle $n\in\mathbb{N}$ mit

$$\partial_{n+1} \circ h_n + h_{n-1} \circ \partial_n = C_n(i_0; R) - C_n(i_1; R).$$
 [##]

"Ansatz"

Für $\sigma: |\Delta^n| \to X$ setze $h_n(\sigma) = \sigma \times \mathrm{id}_{[0,1]}: |\Delta^n| \times [0,1] \to X \times [0,1]$. Dann ist " $h_{n-1}(\partial_n \sigma) = \partial_n \sigma \times \mathrm{id}_{(0,1]}$ " und

$$\partial_{n+1}(h_n\sigma) = \partial_{n+1}(\sigma \times \mathrm{id}_{[0,1]}) = (\sigma \times \mathrm{id})\Big|_{\partial(|\Delta^n| \times [0,1])} = \partial_n\sigma \times \mathrm{id}_{[0,1]} + i_0\sigma + i_1\sigma$$

$$\partial(|\Delta^n|\times[0,1])=\partial|\Delta^n|\times[0,1]\dot{\cup}|\Delta^n|\times\{0,1\}$$

Um daraus Sinn zu machen, zerlegen wir $|\Delta^n| \times [0,1]$ in eine Vereinigung von (n+1)-Simplizes:

Hier kommen noch ein paar Simplizes hin mit Zerlegung und so

7.10 Definition

Für $j=0,\ldots,n$ sie $k_{n,j}:|\Delta^{n+1}|\to |\Delta^n|\times [0,1]$ die eindeutige lineare Abbildung für die $k_{n,j}(e_0)=(e_0,0), k_{n,j}(e_1)=(e_1,0),\ldots,k_{n,j}(e_j)=(e_j,0), k_{n,j}(e_{j+1})=(e_j,1),\ldots,k_{n,j}(e_{n+1})=(e_n,1).$

schöner machen

7.11 Bemerkung

Für $j=0,\ldots,n$ ist $\iota_{n,j}:\left|\Delta^{n-1}\right| \to |\Delta^n|$ die eindeutige affin lineare Abbildung für die

$$\iota_{n,j}(e_0) = e_0, \dots, \iota_{n,j}(e_{j-1}) = e_{j-1}, \iota_{n,j}(e_j) = e_{j+1}, \dots, \iota_{n,j}(e_{n-1}) = e_n$$

7.12 Lemma

(i) Für
$$0 \le l < j \le n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j-1}$

(ii) Für
$$1 \le j+1 < l \le n+1$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l-1} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j}$

(iii) Für
$$1 \leq j+1 = l \leq n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = k_{n,j+1} \circ \iota_{n+1,l}$

(iv) Für
$$i=0, j=0$$
 ist $k_{n,j} \circ \iota_{n+1,l}=i_1:\Delta^n \to \Delta^n \times [0,1]$

(v) Für
$$l=n, j=n+1$$
 ist $k_{n,j} \circ \iota_{n+1,l}=i_0:\Delta^n \to \Delta^n \times [0,1]$

Beweis

(i) per Zeichnung

7 Homotopieinvarianz 23

7.13 Beweis von [##]

Sei $h_n:C_n(C;R)\to C_{n+1}(X\times [0,1];R)$ definiert durch

$$h_n(\sigma) := \sum_{j=0}^n (-1)^j (\sigma \times \mathrm{id}) \circ k_{n,j}$$

24 7 Homotopieinvarianz

$$\begin{split} \partial_{n+1}(h_n(\sigma)) &= \partial_{n+1} \left(\sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j} \right) \\ &= \sum_{l=0}^{n+1} \sum_{j=0}^n (-1)^{j+l} (\sigma \times \mathrm{id} \circ k_{n,j} \circ \iota_{n+1,l}) \\ &= \sum_{0 \le l < j \le n} (-1)^{j+l} (\sigma \circ \iota_{n,l}) \times \mathrm{id} \circ k_{n-1,j-1} + \sum_{1 \le j+1 < l < n+1} (-1)^{j+l} (\sigma \circ \iota_{n,l-1} \times \mathrm{id}) \circ k_{n-1,j} \\ &+ \sum_{1 \le j+1 = l \le n} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ k_{n,j+1} \circ \iota_{n+1,l} + \sum_{1 \le j=l \le n} (-1)^{j+l} \sigma \times \mathrm{id} \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} \sigma \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} \sigma \circ i_0 \\ &= \sum_{0 \le l \le j \le n-1} (-1)^{j+l+1} (\sigma \circ \iota_{n,l}) \times \mathrm{id} \circ k_{n-1,j} + \sum_{1 \le j+1 \le l \le n+1} (-1)^{j+l+1} (\sigma \circ \iota_{n,l} \times \mathrm{id}) \circ k_{n-1,j} \\ &+ \sum_{1 \le j+1 = l \le n} (-1)^{j+l-1} (\sigma \times \mathrm{id}) \circ k_{n,j} \circ \iota_{n+1,l} + \sum_{1 \le j=l \le n} (-1)^{j+l} \sigma \times \mathrm{id} \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} \sigma \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} \sigma \circ i_0 \\ &= -\sum_{0 \le l \le n-1} (-1)^{j+l} ((\sigma \circ \iota_{n,l}) \times \mathrm{id}) \circ k_{n-1,j} + \sigma \circ i_1 - \sigma \circ i_0 \\ &= -\sum_{j=0} \sum_{l=0}^{n-1} (-1)^{j+l} ((\sigma \circ \iota_{n,l}) \times \mathrm{id}) \circ k_{n-1,j} + \sigma \circ i_1 - \sigma \circ i_0 \\ &= -k_{n-1} (\partial_n \sigma) + C_n(i_1; R) (\sigma) - C_n(i_0; R) (\sigma) \end{split}$$

Das ist höchstwahrscheinlich noch nicht ganz richtig ...

7.14 Bemerkung

Ist $H: X \times [0,1] \to Y$ eine Homotopie zwischen f und g, so erhalten wir eine Kettenhomotopie k zwischen $C_*(f;R)$ und $C_*(g;R)$ durch

$$k_n(\sigma) := C_{n+1}(H; R) \circ h_n = \sum_{j=0}^n (-1)^j H \circ (\sigma \times \mathrm{id}) \circ k_{n,j}$$

7 Homotopieinvarianz 25

8 Homologie von Paaren

8.1 Definition

Sei A ein Teilraum von X, dann heißt (X,A) ein **Paar von topologischen Räumen**. Eine Abbildung von Paaren $f:(X,A)\to (Y,B)$ ist eine stetige Abbildung $f:X\to Y$ mit $f(A)\subseteq B$. Manchmal schreiben wir $(f,f|_A):(X,A)\to (Y,B)$.

Die Kategorie von Paaren von topologischen Räumen bezeichnen wir mit Top².

8.2 Definition

Sei (X,A) ein Paar. Dann definieren wir den singulären Kettenkomplex von (X,A) über R durch

$$C_n(X, A; R) := \frac{C_n(X; R)}{C_n(A; R)}$$
$$\partial_n(\sigma + C_n(A; R)) := \partial_n \sigma + C_{n-1}(A; R)$$

Dies ist wohldefiniert, da $\partial_n(C_n(A;R)) \subseteq C_{n-1}(A;R)$. Weiter heißt

$$H_n(X, A; R) := H_n(C_*(X, A; R), \partial_*)$$

der n-te singuläre Homologiemodul von (X,A) mit Koeffizienten in R.

8.3 Bemerkung

Der singuläre Kettenkomplex von Paaren definiert einen Funktor: $Top^2 \to R$ -Ketten. Durch Komposition mit Homologie (als Funktor R-Ketten $\to R$ -Mod) erhalten wir einen Funktor

$$H_n(-,-;R): \operatorname{Top}^2 \to R\operatorname{-Mod}$$

8.4 Bemerkung

Via $X \mapsto (X, \emptyset)$ können wir jeden Raum auch als Paar auffassen. Es gilt $H_n(X, \emptyset; R) = H_n(X; R)$.

8.5 Frage

Können wir $H_n(X, A; R)$ durch $H_n(X; R)$ und $H_n(A; R)$ ausdrücken?

Ansatz 1:

$$H_n(X, A; R) \cong H_n(X; R)/H_n(A; R)$$

\triangleProblem: $H_n(A;R)$ ist kein Untermodul von $H_n(X;R)$

Ansatz 2: Ist $H_n(X;R) \to H_n(X,A;R)$ surjektiv?

Sei
$$x \in H_n(X,A;R)$$
. Dann gibt es $\sigma + C_n(A;R) \in C_n(X,A;R)$ mit $\partial_n \left(\sigma + C_n(A;R)\right) = 0$ und $x = [\sigma]$. Es ist $\sigma \in C_1(X;R)$, aber wir wissen nur $\partial_n \sigma \in C_{n-1}(A;R)$, nicht $\partial_n (\sigma) = 0$

8.6 Beispiel

In $C_n(|\Delta^n|, |\partial\Delta^n|; R)$ gilt für $\sigma := \mathrm{id}: |\Delta^n| \to |\Delta^n|$, dass $\partial_n(\sigma) = 0$ ist, da in $C_n(|\Delta^n|;)$ $\partial_n\sigma \in C_{n-1}(|\partial\Delta^n|; R)$. Wir werden später sehen, dass $[\sigma]$ den Homologiemodul

$$H_n(|\Delta^n|, |\partial \Delta^n|; R) \cong R$$

erzeugt.

8.7 Definition

Eine Folge von R-linearen Abbildungen

$$\longrightarrow M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0$$

heißt lange exakte Folge, wenn sie exakt an jeder Stelle M_i ist, d.h. für alle i gilt ${\rm Im}\ f_i=\ker f_{i-1}$

8.8 Satz

Es gibt eine natürliche Transformation ∂_n von $(X,A)\mapsto H_n(X,A;R)$ nach $(X,A)\mapsto H_{n-1}(A;R)$, sodass für jedes Paar (X,A) gilt _____

schöner machen

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \longrightarrow \cdots$$

$$[*]$$

$$\cdots \xrightarrow{\partial_1} H_0(A;R) \longrightarrow H_0(X;R) \longrightarrow H_0(X,A) \longrightarrow 0$$

eine lange exakte Folge ist. Dabei sind $i:A\to X$ und $j:(X,\emptyset)\to (X,A)$ die Inklusionen. Das bedeutet:

Für jedes Paar (X,A) haben wir eine R-lineare Abbildung $\partial_n: H_n(X,A;R) \to H_{n-1}(A;R)$, sodass für jede Abbildung $(f,f|_A): (X,A) \to (Y,B)$ von Paaren das Diagramm

$$H_{n(X,A;R)} \xrightarrow{\partial_n} H_{n-1}(A;R)$$

$$\downarrow^{(f,f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y,B;R) \xrightarrow{\partial_n} H_{n-1}(B;R)$$

kommutiert.

Beweis

siehe 8.13.

8.9 Korollar

- (1) Ist die Inklusion $i: A \to X$ eine Homotopieäquivalenz, so ist $H_n(X,A;R) = 0$ für alle n.
- (2) Sei A kontraktibel. Dann gilt für alle $n \geq 1$. $H_n(X; R) \cong H_n(X, A; R)$

Beweis

(1) Betrachte den folgenden Ausschnitt aus der langen exakten Folge:

$$H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{i_*} H_n(X;R)$$

$$\ker j_* = \operatorname{Im} i_* = H_n(X;R), \text{ also folgt } j_* = 0. \text{ Da } \operatorname{Im} \partial_n = \ker i_* = 0, \text{ folgt } \partial_n = 0. \text{ Nun ist}$$

$$H_n(X,A;R) = \ker \partial_n = \operatorname{Im} j_* = 0$$

8 Homologie von Paaren 27

8.10 Definition

Seien

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

$$[#]$$

R-Kettenabbildungen. Ist für jedes n

$$C_n \xrightarrow{i_n} C'_n \xrightarrow{p_n} C''_n$$

kurz exakt, so heißt [#] eine kurze exakte Folge von Kettenkomplexen.

8.11 Beispiel

Für jedes Paar (X, A) ist

$$(C_*(A;R),\partial_n) \longrightarrow (C_*(X;R),\partial_*) \longrightarrow (C_*(X,A;R),\partial_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

8.12 Schlangenlemma

Sei

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

a) Für jedes n gibt es eine eindeutige wohldefinierte R-lineare Abbildung $\partial_n: H_n(C_*'',d_*'') \to H_{n-1}(C_*,d_*)$ mit:

Für
$$v' \in C_n'$$
 mit $d_n'' p_n(v') = 0$ ist

$$\partial_n \left(\underbrace{[p_n(v')]}_{\in H_n(C_*'', d_*'')} \right) = [v] \in H_{n-1}(C_*, d_*)$$

wobei $v \in C_{n-1}$ bestimmt ist durch $i_{n-1}(v) = d_n'(v')$

28

Beweis

$$C_{n+1} \xrightarrow{i_{n+1}} C'_{n+1} \xrightarrow{p_{n+1}} C''_{n+1}$$

$$\downarrow^{d_{n+1}} \qquad \downarrow^{d'_{n+1}} \qquad \downarrow^{d''_{n+1}}$$

$$C_{n} \xrightarrow{i_{n}} C'_{n} \xrightarrow{p_{n}} C''_{n}$$

$$\downarrow^{d_{n}} \qquad \downarrow^{d'_{n}} \qquad \downarrow^{d''_{n}}$$

$$C_{n-1} \xrightarrow{i_{n-1}} C'_{n-1} \xrightarrow{p_{n-1}} C''_{n-1}$$

$$\downarrow^{d_{n-1}} \qquad \downarrow^{d'_{n-1}} \qquad \downarrow^{d''_{n-1}}$$

$$C_{n-2} \xrightarrow{i_{n-2}} C'_{n-2} \xrightarrow{p_{n-2}} C''_{n-2}$$

Sei $x'' \in H_n(C_*'', d_*'')$, also x'' = [v''] mit $v'' \in \ker d_n''$. Da p_n surjektiv ist, existiert $v' \in C_n'$ mit $p_n(v') = v''$. Es gilt

$$p_{n-1}d'_n(v') = d''_n p_n(v') = d''_n(v'') = 0$$

 $\Rightarrow v' \in \ker p_{n-1}$. Weiter gilt $\ker p_{n-1} = \operatorname{Im} i_{n-1}$, also $\exists v \in C_{n-1} : i_{n-1}(v) = d'_n(v')$. Dann gilt

$$i_{n-2}(d_{n-1}(v)) = d'_{n-1}(i_{n-1}(v)) = d'_{n-1}(d'_n(v')) = 0$$

Da i_{n-2} injektiv ist, folgt somit $d_{n-1}(v)=0$. Setze $\partial_n(x''):=[v]$. Zu zeigen: $[v]\in H_{n-1}(C_*,d_*)$ ist unabhängig von der Wahl von v'' und v'. Seien $w''\in\ker d_n'',\ w'\in C_n',\ w\in C_{n-1}$ mit x''=[w''], $p_n(w')=w''$ und $i_{n-1}(w)=d_n'(w')$.

[v'']=[w''], also folgt $\exists a''\in C''_{n+1}: d''_{n+1}(a'')=v''-w''$. p_{n+1} ist surjektiv, also existiert $a'\in C'_{n+1}$ mit $p_{n+1}(a')=a''$. Es gilt

$$p_n(v' - w' - d'_{n+1}(a')) = v'' - w'' - \underbrace{d_{n+1}(p_{n+1}(a'))}_{v'' - w''} = 0$$

Mit $\ker p_n = \operatorname{Im} i_n$ folgt: $\exists a \in C_n$ mit $i_n(a) = v' - w' - d_{n+1}(a')$. Es bleibt zu zeigen: $d_n(-a) = v - w$.

$$\begin{split} i_{n-1}(-d_n(a)-(v-w)) &= -i_{n-1}(d_n(a)) - i_{n-1}(v-w) \\ &= -d'_n(i_n(a)) - (d'_n(v') - d'_n(w')) \\ &= -d'_n \big(d'_{n+1}(a') - (v'-w')\big) - (d'_n(v') - d'_n(w')) \\ &= -d'_n d'_{n+1}(a') + d'_n(v'-w') - (d'_n(v'-w')) = 0 \end{split}$$

da i_{n-1} injektiv ist, folgt $-d_n(a) - (v - w) = 0$, also $d_n(-a) = (v - w)$.

$$\underline{\operatorname{Im}(i_n)_* = \ker(p_n)_*}$$
: " \subseteq ": $(p_n)_* \circ (i_n)_* = (p_n - i_n)_* = (0)_* = 0$

" \supseteq ": Sei $x' \in \ker(p_n)_*$. Sei x' = [v'] mit $v' \in C_n'$, $d_n'(v') = 0$. Da $[p_n(v')] = (p_n)_*[x'] = 0$ gibt es $a'' \in C_n''$ mit $d_{n+1}''(a'') = p_n(v')$. Da p_{n+2} surjektiv ist, existiert $a' \in C_{n+1}'$ mit $p_{n+1}(a') = a''$. Dann gilt

$$p_n(v' - d'_{n+1}(a')) = p_n(v') - p_n d'_{n+1}(a') = p_n(v') - \underbrace{d''_{n+1}(\underbrace{p_{n+1}(a')}_{a''})}_{p_n(v')} = 0$$

Da $\ker p_n = \operatorname{Im} i_n$ gibt es $a \in C_n$ mit $i_n(a) = v' - d'_{n+1}(a')$. Nun ist

$$i_{n-1}(d_n(a)) = d'_n(i_n(a)) = d'_n(v' - d_{n+1}(a')) = d'_n(v') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a)=0$. Insbesondere $[a]\in H_n((C_*,d_*))$. Nun ist

$$(i_n)_*[a] = [i_n(a)] = [v' - d'_{n+1}(a')] = [v'] = x'$$

Also $x' \in \operatorname{Im}(i_n)_*$.

$$\underline{\operatorname{Im}} \, \partial_{n+1} = \ker(i_n)_* \text{: } "\subseteq" \text{: } i_n(d_{n+1}(x'')) = 0 \quad \checkmark$$

$$"\supseteq" \text{: Sei } x \in \ker(i_n)_* \text{. Sei } v \in C_n, d_n(v) = 0, [v] = x. \rightsquigarrow x = d_n[v''].$$

8.13 Beweis von Satz 8.8

Für jedes Paar (X,A) ist die Folge der singulären Kettenkomplexe

$$\left(C_*(A;R),\partial_*^A\right) \overset{C_*(i;R)}{\longrightarrow} \left(C_*(X;R),\partial_*^X\right) \overset{C_*(j;R)}{\longrightarrow} \left(C_*(X,A;R),\partial_*^{(X,A)}\right)$$

kurz exakt. Das Schlangenlemma 8.12 produziert $\partial_n: H_n(X,A;R) \to H_{n-1}(A;R)$ und die lange exakte Sequenz [*]. Es bleibt zu zeigen, dass die Randabbildungen aus dem Schlangenlemma wie behauptet eine natürliche Transformation definieren: Sei $(f,F|_A):(X,A)\to (Y,B)$ eine Abbildung von Paaren. Zu zeigen ist, dass

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f, f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

kommutiert. Sei $x'' \in H_n(X,A;R)$. Sei $v' \in C_n(X;R)$ mit $\partial_n^X(v') \in C_n(A;R)$ und $[v' + C_n(A;R)] = x''$. Dann ist $\partial_n(x'') = [\partial_n^X(v')] \in H_n(A;R)$. Dann ist

$$(f, f|_A)_*(x'') = (f, f|_A)_*[v' + C_n(A; R)] = [f(v') + C_n(B; R)] \in H_n(Y, B; R)$$

Es ist
$$\partial_n^Y(f_*(v')) = (f|_A)_* \left(\underbrace{\partial_n^X(v')}_{\in C_n(A:R)}\right) \in C_n(B;R)$$
. Also

$$\partial_n((f, f|_A)_*(x'')) = \left[\partial_n^Y(f_*(v'))\right] = \left[f_* \circ \partial_n^X(v')\right] = f_*\partial_n(X'')$$

8.14 Bemerkung

Für eine Abbildung $(f, f|_A): (X, A) \to (Y, B)$ erhalten wir ein kommutierendes Diagramm:

30 8 Homologie von Paaren

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

assoziativ, 1

Ecken, 4
Euler-Charakteristik, 5
von Z-Kettenkomplexen, 13

freier Modul, 7 Funktor, 2 dargestellter, 2

geometrische Realisierung, 5 graduierten, 18 Graphen, 4

Homologieklasse, 16 Homotopieinverse, 21 Homotopieäquivalenz, 21

Kategorie, 1 klein, 2 kettenhomotop, 22 Kettenhomotopie, 22 Kettenmoduln, 10 Komposition, 1 kontrahierbar, 21 Koprodukt, 19, 20 kurze exakte Sequenz, 11

lange exakte Folge, 27

Morphismen, 1

n-Ketten, 16
n-Ränder, 16
n-Simplex, 4
n-te Homologie, 10
n-te Randabbildung simplizial, 8 singulär, 15
n-ter Homologiemodul simplizial, 9
n-ter Kettenmodul simplizial, 8 singulär, 15

n-Zykel, 16 natürliche Transformation, 2

Objekte, 1

Paar von topologischen Räumen, 26 Polyeder, 5

R-Kettenabbildung, 18 R-Kettenkomplex, 10 Rand des n-Simplizes, 5 Randabbildungen, 10 Rang einer abelschen Gruppe, 11

Seite, 4 Simplizes, 4 simpliziale Abbildung, 5 simplizialer Kettenkomplex, 10 simplizialer Komplex, 4 singuläre Homologie von X, 16 singuläre Simplizes, 15 singulären Kettenkomplex, 16 Spaltung, 12 Summe, 19, 20

Torsionsgruppe, 11

unital, 1 Unterkomplex, 4

Vertices, 4

Index A

Abbildungsverzeichnis

Todo's und andere Baustellen

RevChap3	10
Rev Chap 4	11
Rev Chap 5	15
Rev Chap 6	18
Rev Chap 7	22
Figure: Hier kommen noch ein paar Simplizes hin mit Zerlegung und so	23
schöner machen	23
Figure: linke Seite	23
Figure: rechte Seite	24
Das ist höchstwahrscheinlich noch nicht ganz richtig	25
schöner machen	27
Figure: Diagramm, das den Namen begründet	28
Figure: langes Diagramm	30

B Abbildungsverzeichnis