1. Fortgeschrittene Programmierkonzepte Teil 1

1.1. Variable Anzahl an Parametern (*args und *kwargs)

- Funktionsdefinition für das Aufsummieren von zwei Zahlen:
 - o Anzahl der Parameter muss bei der Definition und dem Aufruf übereinstimmen

```
def teilen(a, b):
    q = a / b
    return q

z1 = 5
z2 = 3
s = teilen(z1, z2)
print(f"Die Quotient der Zahlen {z1} und {z2} ist {s}")
```

- o benannte Parameter
 - Reihenfolge der Parameter muss beim Aufruf nicht eingehalten werden

```
def volumen(breite, laenge, tiefe):
    vol = breite * laenge * tiefe
    return vol

v = volumen(tiefe=6,laenge=2,breite=4)
print(v)
```

- o optionale Parameter
 - diese Parameter müssen einen Vorgabewert besitzen und am Ende der Parameterliste stehen

```
def volumen(breite, laenge, tiefe=2):
    vol = breite * laenge * tiefe
    return vol

v = volumen(laenge=2,breite=4)
print(v)
```

- Variable Anzahl von Parametern
 - diese Parameter werden mit einem Stern markiert und stehen am Ende der Parameterliste
 - dieser Parameter enthält ein Tupel
 - dieses Tupel kann mit einer Schleife abgearbeitet werden

```
def mittelwert(parm1, *parms):
    mw = parm1
    for p in parms:
        mw += p
    return mw / (1.0 + len(parms))

z1 = 5
z2 = 3
m = mittelwert(z1, z2, 6)
print(f"Der Mittelwert ist {m}")
```

- o Dictionary zur Parameterübergabe
 - diese Parameter werden mit einem Doppelstern markiert und stehen am Ende der Parameterliste
 - dieser Parameter enthält ein Assoziatives Array (Dictionary)
 - dieses Dictionary kann mit einer Schleife abgearbeitet werden

1.2. Anonyme Funktionen mit dem lambda-Operator

- Anonyme Funktionen sind Funktionen ohne Namen
- wie Funktionen mit Namen führen anonyme Funktionen Berechnungen oder Ähnliches durchzuführen
- Lambda-Funktionen werden verwendet, wenn für kurze Zeit eine namenlose Funktion benötigt wird
- normale Funktionen (mit Namen) werden mit dem Schlüsselwort def definiert, anonyme Funktionen werden mit dem Schlüsselwort lambda definiert
- der Lambda-Ausdruck berechnet über die Parameter ein Resultat
- Aufbau eines Lambda-Ausdrucks:
 - o **lambda** parameter : ausdruck
- Definition einer Lambda-Funktion mit einem Parameter, z.B. Verdopplung eines Wertes
 - o die Berechnung erfolgt unmittelbar an der Stelle
 - o im print-Befehl ist der Lambda-Ausdruck in Klammer zu schreiben die Parameterübergabe folgt unmittelbar dahinter, ebenfalls in Klammern

```
print( (lambda x: x * 2) (5) )
```

- Definition einer Lambda-Funktion mit einem Parameter, z.B. Verdopplung eines Wertes, jedoch mit Funktionsobjekt
 - o dem Lambda-Ausdruck wird ein Name gegeben
 - o im print-Befehl ist der Name des Lambda-Ausdrucks anzugeben, in Klammern folgt der Parameter

```
f = lambda x: x * 2
print(f(3))
```

- Definition einer Lambda-Funktion mit mehreren Parametern, z.B. Berechnung der Fläche eines Rechtecks mit 2 Parametern
 - o dem Lambda-Ausdruck wird ein Name gegeben
 - o im print-Befehl ist der Name des Lambda-Ausdruck anzugeben, in Klammer folgen die Parameter

```
f = lambda g, h: g * h
print(f(2,3))
```

Aufgaben

1. Literzahl umwandeln

Es soll ein Programm implementiert werden, dass für beliebige Volumenangaben als Gleitpunktzahl in Liter den entsprechenden Wert im ml, cl oder l ausgibt:

Eingabe	Ausgabe	
1.0 und größer	I	
0.1 und größer	cl	
0.001 und größer	ml	
kleiner als 0.001	Wert zu klein	

Beispiel

Eingabe	Ausgabe:
1.0	1.0
0.42	42.0 cl
0.023	23.0 ml
0.0001	Wert zu klein

2. LKW-Maut

Ein Programm soll für erfasste LKW die entsprechende LKW-Mautgebühr nach der folgenden Tabelle berechnen.:

Schadstoffklasse	A [ct/km]	B [ct/km]	C [ct/km]	D [ct/km]	E [ct/km]	F [ct/km]
Bis 3 Achsen	12,50	14,60	15,70	18,80	19,80	20,80
Ab 4 Achsen	13,10	15,20	16,30	19,40	20,40	21,40

Beispiel

1. Schadstoffklasse A, 2 Achsen, 13 km	162,5 Eurocent
2. Schadstoffklasse D, 5 Achsen, 13 km	252,2 Eurocent

3. Quadrieren

Mit einer Lambda-Funktion ist ein Wert zu quadrieren und auf der Konsole auszugeben

4. Verketten

Eine Lambda-Funktion hat die Parameter Vorname und Nachname und soll beide verkettet auf der Konsole ausgeben; wobei vorher und nachher jeweils Sterne in der Länge der Verkettung aufzubereiten sind

***** HansMaier *****