

$$[s^{2}X(s) - (sx_{0} - \dot{x_{0}}) + 2\zeta\omega_{n}[sX(s) - x_{0}] + \omega_{n}^{2}X(s) = U(s)$$

$$s^{2}X + 2\zeta\omega_{n}sX + \omega_{n}^{2}X - (sx_{0} + \dot{x_{0}} + 2\zeta\omega_{n}x_{0}) = U$$

$$sx_{0} + \dot{x_{0}} + 2\zeta\omega_{n}x_{0} \qquad U(s)$$

$$X(s) = \frac{sx_0 + \dot{x_0} + 2\zeta\omega_n x_0}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{U(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
$$X(s) = \frac{(s + 2\zeta\omega_n)x_0 + \dot{x_0}}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{U(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Inverse Laplace Transform

$$x(t) = L^{-1} \left\{ \frac{(s + 2\zeta\omega_n)x_0 + \dot{x_0}}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right\} + L^{-1} \left\{ \frac{U(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right\}$$

Scale & Phase
$$|(M_1e^{j\phi_1})(M_2e^{j\phi_2})| = M_1 \cdot M_2$$
, $\angle[(M_1e^{j\phi_1})(M_2e^{j\phi_2})] = \emptyset_1 + \emptyset_2$

Magnitude Nyquier plot

Phase.

small w -> \$=0. large w -> \$=70° break-pt > \$=25+1). (w=1).

For a stable real zero, the phase "steps up by 90° " as we go past the break-point.

Magnitude plot:

For a stable real zero, the magnitude slope "steps up by 1" at the break-point.

(jwi+1)" (stable poles)

Ex.

Bode Plot (Magnitude)

Bode Plot (Phase)

Cartesian Form:
$$\left(\frac{j\omega}{\omega_n}\right) + 2\xi \frac{j\omega}{\omega_n} + 1 = \left[1 - \left(\frac{i\omega}{\omega_n}\right)^2\right] + 2\xi \frac{i\omega}{\omega_n}$$

And here is the Nyquist plot, for $0 < \omega < \infty$:

$$W \Rightarrow W_n: M = \left(\frac{W}{W_n}\right)^2$$

magnetade slope stops up by 2

Some obvious points:
$$\omega = 0$$
 $\rightarrow 1 + 0j$
 $\omega = \omega_n$ $\rightarrow 0 + 2\zeta j$

$$\bigcirc$$
 poles $\left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1\right]^{-1}$

Magnitude = -
$$|vg| = - M_{zew}$$

phase = - $|L| = - |L| = -$

Phase for Type 3.

Magnitude for Type 3

 $\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]$ Stable real zero

For a stable real zero, the magnitude slope "steps up by 2" at

Stable real pole $\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{-1}$

For a stable real pole, the magnitude slope "steps down by 2" at the break-point.

(stable complex zero — phase steps up by 180°) -100 -125 -150

(stable complex pole — phase steps down by 180°)

the break-point.

$$KG(s) = \frac{0.01\left(s^2 + 0.01s + 1\right)}{s^2\left(\frac{s^2}{4} + 0.02\frac{s}{2} + 1\right)} \qquad -\text{already in Bode form}$$

What can we tell about magnitude?

- ▶ low-frequency term $\frac{0.01}{(j\omega)^2}$ with $K_0 = 0.01$, n = -2asymptote has slope = -2, passes through $(\omega = 1, M = 0.01)$
- \blacktriangleright complex zero with break-point at $\omega_n=1$ and $\zeta=0.005$ slope up by 2; large resonant dip
- complex pole with break-point at $\omega_n = 2$ and $\zeta = 0.01$ slope down by 2; large resonant peak

$$KG(s) = \frac{0.01\left(s^2+0.01s+1\right)}{s^2\left(\frac{s^2}{4}+0.02\frac{s}{2}+1\right)} \qquad -\text{ already in Bode form}$$

What can we tell about phase?

- low-frequency term $\frac{0.01}{(j\omega)^2}$ with $K_0 = 0.01, n = -2$ — phase starts at $n \times 90^\circ = -180^\circ$
- ${\color{red} \blacktriangleright}$ complex zero with break-point at $\omega_n=1$ phase up by 180°
- ${\color{blue} \blacktriangleright}$ complex pole with break-point at $\omega_n=2$ phase down by 180°
- very sharp

 Shurpness depending on 5.

