Állóhullámok kötélen

Mérést végezte: Somogyfoki Réka

Mérőpár: Proics Zsófia

Mérés időpontja: 2016.10.28. Jegyzőkönyv leadásának időpontja:

Mérés célja

Állandó feszítő súly mellett a frekvencia változtatásával a kialakult állóhullámokhoz tartozó diszkrét frekvencia-értékek megtalálása, valamint a

$$v = \lambda \cdot f$$

összefüggés alapján a terjedési sebesség (v) meghatározása. (λ a hullámhossz, f a mért frekvencia)

A mérés második része a kötél anyagi minőségétől való függés vizsgálata. A fonál egységnyi hosszának tömegét meghatározhatjuk a következő képlet segítségével:

$$v = \sqrt{F/\mu}$$

(F a fonalat feszítő erő, µ pedig a fonál lineáris sűrűsége)

Mérőeszközök

- Csiga
- o Rögzített vibrátor, hozzá kapcsolódó szinuszhullám-generátorral
- o Rugalmas fonalak
- Húzósúlyok súlytartóval

Mérés rövid leírása

A vastagabbik fonalat rögzítettük a mechanikus vibrátorhoz, majd különböző frekvenciákon vizsgáltuk a megjelenő állóhullámokat, adott, 90 g feszítő súly esetén. Megkerestük n=1-től n=6-ig a módusokhoz tartozó diszkrét frekvencia értékeket a szinuszhullám-generátoron lévő finomállító gombok segítségével.

A mérés második részéhez a vékonyabb fonalat használtuk, és különböző feszítő súlyok esetén vizsgáltuk az n=3 módushoz tartozó frekvencia értékeket. 3 párhuzamos mérést végeztünk.

Mért adatok

1. rész: terjedési sebesség meghatározása

n	f [Hz]	Δf [Hz]
2	12,8	0,2
3	18,9	0,3
4	25,0	0,3
5	31,5	0,5
6	38,0	0,5

L [cm]	
153,6	

Ahol n a módusok száma, f a frekvencia, L pedig kifeszített fonál hossza a vibrátor és csiga közt.

2. rész: a terjedési sebesség anyagi minőségtől való függése

m	f [Hz]		
[g]	1.	2.	3.
50	74,8	75,0	74,9
70	90,8	88,7	89,4
90	100,1	100,3	100,2
110	111,1	110,8	111,5
130	121,2	120,4	121,1
150	130,2	130,5	130,3
170	138,3	138,0	138,6

Ahol m a húzósúlyok tömege, f pedig a mért frekvenciák értéke.

Hibaforrások

- o rosszul megfigyelt amplitúdó-maximum
- o a generátor vagy a vibrátor szisztematikus hibája
- o húzósúlyok kilengése
- o nem megfelelően kifeszített fonál
- o fonál hosszának hibás mérése

Kiértékelés

Az egyes frekvenciák arányának várt és mért értékei az első mérés esetén:

n	várt (n+1/n)	mért (f _{n+1} /f _n)
2	1,50	1,48
3	1,33	1,32
4	1,25	1,26
5	1,20	1,21

A terjedési sebesség értéke az egyes esetekben:

n	λ [m]	f [1/s]	v [m/s]
2	1,536	12,8	19,66
3	1,024	18,9	19,35
4	0,768	25,0	19,20
5	0,614	31,5	19,35
6	0,512	38,0	19,46

A méréseinkkel jól láthatóan bebizonyítottuk tehát, hogy a hullámok terjedési sebessége közel azonos az egyes eltérő frekvencia és hullámhossz értékektől függetlenül.

A második mérés eredményeiből számított értékek:

m _{húzósúly} [kg]	f _{átl} [1/s]	$f_{\text{átl}}^2 [1/s^2]$
0,05	74,90	5610.01
0,07	89,63	8034.13
0,09	100,20	10040.04
0,11	111,13	12350.62
0,13	120,90	14616.81
0,15	130,33	16986.78
0,17	138,30	19126.89

Az illesztett egyenes meredekségét (a = 112558 1/kgs²) a következő képletbe helyettesítve:

$$\mu = \frac{n^2 \cdot g}{4 \cdot L^2 \cdot a}$$

$$\mu_{\text{mért}} = 8.31 \cdot 10^{-5} \text{ kg/m}$$

(Ahol g nehézségi gyorsulás értéke 9,81 m/s 2 , n =3 a módusok száma, L = 1,536 m pedig a kifeszített fonal hossza a vibrátortól a csigáig.)

A referencia kötél adataival (L = 4,163 m; m = 0,00035 kg) számolt érték:

$$\mu_{szám}$$
 = 8,41·10⁻⁵ kg/m

Tehát 1 m fonál tömege a mérésünk alapján 0,083 g, míg a referencia szerint 0,084 g. Az eltérés valószínűleg a mérésünk pontatlanságából adódik, de a két érték közel azonos.

Diszkusszió

A mérésünk sikeres volt, hiszen mind a várt és mért frekvencia-értékek, mind a terjedési sebességek értékei az egyes esetekben közel azonosak. A fonalak mért és számolt lineáris sűrűségeire is hibán belül azonos értékeket kaptunk.