Equilibrio químico en fase gas

♦ PROBLEMAS

• Con datos do equilibrio

- 1. Nun matraz de 5 dm³ introdúcense 0,80 moles de N_2 e 0,40 moles de O_2 e quéntase a 2200 K, establecéndose o seguinte equilibrio: $N_2(g) + O_2(g) \rightleftharpoons 2$ NO(g). Tendo en conta que nesas condicións reacciona o 1,1 % do N_2 inicial:
 - a) Calcula o valor da constante K_c .
 - b) Calcula a constante K_p e discute razoadamente que sucederá no equilibrio se se aumenta a presión do sistema.

(A.B.A.U. ord. 24)

Rta.: a) $K_c = 1.0 \cdot 10^{-3}$; b) $K_p = 1.0 \cdot 10^{-3}$. Nada.

Datos Cifras significativas: 3

Gas: volume $V = 5.00 \text{ dm}^3$

temperatura T = 2200 K

Cantidade inicial: nitróxeno $n_0(N_2) = 0,800 \text{ mol}$

osíxeno $n_0(O_2) = 0,400 \text{ mol}$

Porcentaxe de nitróxeno que reacciona % reacciona: 1,10 % N_2

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Constante de equilibrio das concentracións K_c

Constante de equilibrio das presións K_p

Outros símbolos

Concentración dunha especie X [X] Cantidade da substancia X no equilibrio $n_{\rm e}(X)$

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constantes do equilibrio: $a \, \mathbf{A} + b \, \mathbf{B} \rightleftharpoons c \, \mathbf{C} + d \, \mathbf{D}$ $K_c = \frac{\left[\mathbf{C}\right]_{\mathrm{e}}^c \cdot \left[\mathbf{D}\right]_{\mathrm{e}}^d}{\left[\mathbf{A}\right]_{\mathrm{e}}^c \cdot \left[\mathbf{B}\right]_{\mathrm{e}}^b} \quad K_p = \frac{p_{\mathrm{e}}^c(\mathbf{C}) \cdot p_{\mathrm{e}}^d(\mathbf{D})}{p_{\mathrm{e}}^a(\mathbf{A}) \cdot p_{\mathrm{e}}^b(\mathbf{B})}$

Solución:

a) A cantidade de N2 que reacciona é:

 $n = 1,10 / 100 \cdot 0,800 = 0,0088 \text{ mol } N_2$

Faise unha táboa coas cantidades de cada gas e, da estequiometría da reacción, calcúlanse as restantes cantidades no equilibrio.

		N_2	O_2	=	2 NO	
Cantidade inicial	n_0	0,800	0,400		0	mol
Cantidade que reacciona	$n_{\rm r}$	0,0088	0,0088	\rightarrow	0,0176	mol
Cantidade no equilibrio	$n_{\rm e}$	0,800 - 0,0088 = 0,791	0,400 - 0,0088 = 0,391		0,0176	mol

a) A constante de equilibrio en función das concentracións é:

$$K_c = \frac{\left[\text{NO} \right]_e^2}{\left[\text{N}_2 \right]_e \cdot \left[\text{O}_2 \right]_e} = \frac{\left(0.017 \text{ } 65.00 \right)^2}{\left(0.791/5.00 \right) \cdot \left(0.391/5.00 \right)} = 1.00 \cdot 10^{-3} \text{ (concentracións en mol/dm³)}$$

b) A constante de equilibrio en función das presións vale o mesmo:

$$K_{p} = \frac{p_{e}^{2}(NO)}{p_{e}(N_{2}) \cdot p_{e}(O_{2})} = \frac{[NO]_{e}^{2} \cdot (R \cdot T)^{2}}{[N_{2}]_{e} \cdot R \cdot T \cdot [O_{2}]_{e} \cdot R \cdot T} = \frac{[NO]_{e}^{2}}{[N_{2}]_{e}[O_{2}]_{e}} = K_{c}$$

Segundo o principio de Le Chatelier, se un sistema en equilibrio é sometido a un cambio, o sistema tende a axustarase para minimizar o efecto desta perturbación. Se se aumenta a presión, o sistema non varía, posto que a presión é a mesma en calquera fase da reacción. A presión en calquera estado de equilibrio é a mesma que a presión inicial, porque a cantidade total de gas non varía.

- 2. Nun reactor de 5 dm³ introdúcense 15,3 g de CS_2 e 0,82 g de H_2 . Ao elevar a temperatura ata 300 °C alcánzase o seguinte equilibrio: $CS_2(g) + 4 H_2(g) \rightleftharpoons 2 H_2S(g) + CH_4(g)$, onde a concentración de metano no equilibrio é de 0,01 mol/dm³.
 - a) Calcula as concentracións molares das especies CS₂(g), H₂(g) e H₂S(g) no equilibrio.
 - b) Determina o valor de K_c e discute razoadamente que lle sucederá ó sistema en equilibrio se engadimos máis cantidade de $CS_2(g)$ mantendo o volume e a temperatura constantes.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. (A.B.A.U. ord. 23) **Rta.:** a) $[CS_2] = 0.0302$; $[H_2] = 0.0413$; $[H_2S] = 0.0200 \text{ mol/dm}^3$; b) $K_c = 45.3$; Desprázase cara á dereita.

Datos Cifras significativas: 3

Gas: volume $V = 5,00 \text{ dm}^3$

temperatura $T = 300 \text{ }^{\circ}\text{C} = 573 \text{ K}$

Masa inicial: disulfuro de carbono $m_0(CS_2) = 15,3 \text{ g}$

hidróxeno $m_0(\mathrm{H_2}) = 0.820 \mathrm{g}$

Concentración de metano no equilibrio $[CH_4]_e = 0,0100 \text{ mol/dm}^3$

Masa molar: disulfuro de carbono $M(CS_2) = 76,1 \text{ g/mol}$

hidróxeno $M(H_2) = 2,02 \text{ g/mol}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentración molar de cada especie no equilibrio [CS₂]_e, [H₂]_e, [H₂S]_e

Constante de equilibrio das concentracións K_c

Outros símbolos

Concentración dunha especie X [X]

Cantidade da substancia X no equilibrio $n_{\rm e}({\rm X})$

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^a}{\left[A\right]_e^a \cdot \left[B\right]_e^b}$

Solución:

a) As cantidades iniciais de CS₂ e H₂ son:

$$n_0(CS_2) = \frac{15,3 \text{ g}}{76,1 \text{ g/mol}} = 0,201 \text{ mol } CS_2$$

$$n_0(H_2) = \frac{0.820 \text{ g}}{2.02 \text{ g/mol}} = 0.407 \text{ mol } H_2$$

Se no equilibrio hai 0,0100 mol/dm³ de CH4, a cantidade deste que se formou foi:

$$n_{\rm e}({\rm CH_4}) = 0.0100 \; {\rm mol/dm^3 \cdot 5.00 \; dm^3} = 0.0500 \; {\rm mol}$$

Faise unha táboa coas cantidades de cada gas e, da estequiometría da reacción, calcúlanse as restantes cantidades no equilibrio.

		CS ₂	4 H ₂	\rightleftharpoons	2 H ₂ S	CH ₄	
Cantidade inicial	n_0	0,201	0,407		0	0	mol
Cantidade que reacciona	n_{r}	0,0500	0,200	\rightarrow	0,100	0,0500	mol
Cantidade no equilibrio	$n_{\rm e}$	0,201 - 0,0500 = 0,151	0,407 - 0,200 = 0,207		0,100	0,0500	mol

As concentracións no equilibrio serán:

$$[CS_2]_e = 00,151 \text{ mol } CS_2/5,00 \text{ dm}^3 = 0,0302 \text{ mol } / \text{ dm}^3$$

$$[H_2]_e = 0.207 \text{ mol} / 5.00 \text{ dm}^3 = 0.0413 \text{ mol} / \text{dm}^3$$

$$[H_2S]_e = 0.100 \text{ mol} / 5.00 \text{ dm}^3 = 0.0200 \text{ mol} / \text{dm}^3$$

b) A constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{[H_{2}S]_{c}^{2} \cdot [CH_{4}]_{c}}{[CS_{2}]_{c} \cdot [H_{2}]_{c}^{4}} = \frac{(0.020 \)^{2} \cdot 0.010 \ 0}{0.030 \ 2(0.041 \)^{4}} = 45.3 = 0.016 \ 8 \text{ (concentracións en mol/dm}^{3}\text{)}$$

Segundo o principio de Le Chatelier, se engadimos máis CS_2 ao sistema en equilibrio mantendo o volume e a temperatura constantes, o sistema reaxustarase para minimizar o efecto desta perturbación. Neste caso, consumirase máis CS_2 e H_2 para formar máis H_2S e CH_4 ata que se alcance un novo estado de equilibrio. Polo tanto, as concentracións de CS_2 e H_2 diminuirán mentres que as concentracións de H_2S e CH_4 aumentarán.

- 3. O cloro gas pódese obter segundo a reacción: $4 \text{ HCl}(g) + O_2(g) \rightarrow 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$. Introdúcense 0,90 moles de HCl e 1,2 moles de O_2 nun recipiente pechado de 10 dm³ no que previamente se fixo o baleiro. Quéntase a mestura a 390 °C e, cando se alcanza o equilibrio a esta temperatura, obsérvase a formación de 0,40 moles de Cl_2 .
 - a) Calcula o valor da constante K_c .
 - b) Calcula a presión parcial de cada compoñente no equilibrio e a partir delas calcula o valor de K_p . Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 19)

Rta.: a) $K_c = 2.56 \cdot 10^3$; b) p(HCl) = 0.544 atm; $p(O_2) = 5.44$ atm; $p(Cl_2) = p(H_2O) = 2.18$ atm; $K_p = 47.0$.

Datos

Gas: volume

temperatura

Cantidade inicial de HCl

Cantidade inicial de O2

Cantidade no equilibrio de Cl₂

Constante dos gases ideais

Incógnitas

Constante do equilibrio K_c

Presións parciais de cada compoñente

Constante do equilibrio K_p

Cifras significativas: 3

 $V = 10,0 \text{ dm}^3$

 $T = 390 \,{}^{\circ}\text{C} = 663 \,\text{K}$

 $n_0(HCl) = 0,900 \text{ mol HCl}$

 $n_0(O_2) = 1,20 \text{ mol } O_2$

 $n_{\rm e}({\rm Cl}_2) = 0.400 \text{ mol Cl}_2$

 $R = 0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 K_c

p(HCl), $p(O_2)$, $p(Cl_2)$, $p(H_2O)$

 K_p

Ecuacións

Ecuación de estado dos gases ideais

$$p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$$

Concentración da substancia X

$$[X] = n(X) / V$$

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_c = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{d} \cdot \left[\mathbf{B}\right]_{e}^{b}} \quad K_p = \frac{p_e^{c}(\mathbf{C}) \cdot p_e^{d}(\mathbf{D})}{p_e^{d}(\mathbf{A}) \cdot p_e^{b}(\mathbf{B})}$$

Solución:

a) Da estequiometría da reacción:

$$4 \operatorname{HCl}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Cl}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$$

Reaccionaron 0,800 mol de HCl e 0,200 mol de O₂ e formouse a mesma cantidade de H₂O que de Cl₂. Representamos nun cadro as cantidades (moles) de cada gas en cada fase:

		4 HCl	O_2	\rightleftharpoons	2 Cl ₂	2 H ₂ O	
Cantidade inicial	n_0	0,900	1,20		0,0	0,0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	0,800	0,200		0,400	0,400	mol
Cantidade no equilibrio	n_{e}	0,900 - 0,800 = 0,100	1,20 - 0,200 = 1,00		0,400	0,400	mol

No equilibrio haberá:

$$n_e(HCl) = 0.100 \text{ mol}; n_e(O_2) = 1.00 \text{ mol}; n_e(Cl_2) = n_e(H_2O) = 0.400 \text{ mol}$$

As concentracións serán:

$$[HCl] = \frac{n_e(HCl)}{V} = \frac{0,100 \text{ mol HCl}}{10,0 \text{ dm}^3} = 0,010 \text{ 0mol/dm}^3$$

$$[O_2] = \frac{n_e(O_2)}{V} = \frac{1,00 \text{ mol } O_2}{10,0 \text{ dm}^3} = 0,100 \text{ mol/dm}^3$$

$$[Cl_2] = [H_2O] = \frac{n_e(Cl_2)}{V} = \frac{0,400 \text{ mol}}{10.0 \text{ dm}^3} = 0,040 \text{ 0mol/dm}^3$$

A constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{\left[\text{Cl}_{2}\right]_{\text{e}}^{2} \left[\text{H}_{2}\text{O}\right]_{\text{e}}^{2}}{\left[\text{HCl}\right]_{\text{e}}^{4} \left[\text{O}_{2}\right]_{\text{e}}} = \frac{0,040 \ \ \mathring{0} \ 0,040 \ \ \mathring{0}}{0,010 \ \ \mathring{0} \cdot 0,00100} = 2,56 \cdot 10^{3} \ \text{(concentracións en mol/dm³)}$$

b) A presión parcial de cada un dos gases, suposto comportamento ideal, é a que exercería se se atopase só no recipiente.

$$\begin{split} p(\text{HCl}) &= \frac{n(\text{HCl}) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,100 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^3} = 0,544 \text{ atm} \\ p(\text{O}_2) &= \frac{n(\text{O}_2) \cdot R \cdot T}{V_{\text{T}}} = \frac{1,00 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^3} = 5,44 \text{ atm} \\ p(\text{Cl}_2) &= \frac{n(\text{Cl}_2) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,400 \text{ mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 663 \text{ K}}{10,0 \text{ dm}^3} = 2,18 \text{ atm} \\ p(\text{H}_2\text{O}) &= p(\text{Cl}_2) = 2,18 \text{ atm} \\ K_p &= \frac{p_e^2(\text{Cl}_2) \cdot p_e^2(\text{H}_2\text{O})}{p_e^4(\text{HCl}) \cdot p_e(\text{O}_2)} = \frac{2,18^2 \cdot 2,18^2}{0,544^4 \cdot 5,44} = 47,0 \text{ (presións en atm)} \end{split}$$

- 4. Nun recipiente de 2,0 L introdúcense 2,1 moles de CO_2 e 1,6 moles de H_2 e quéntase a 1800 °C. Unha vez alcanzado o seguinte equilibrio: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ analízase a mestura e atópanse 0,90 moles de CO_2 . Calcula:
 - a) A concentración de cada especie no equilibrio.

b) O valor das constantes K_c e K_p a esa temperatura.

(A.B.A.U. ord. 17)

Rta.: a) $[CO_2] = 0.45 \text{ mol/dm}^3$; $[H_2] = 0.20 \text{ mol/dm}^3$; $[CO] = [H_2O] = 0.60 \text{ mol/dm}^3$; b) $K_p = K_c = 4.0$.

Datos Cifras significativas: 3

Gas: volume $V = 2,00 \text{ dm}^3$

temperatura $T = 1800 \text{ }^{\circ}\text{C} = 2073 \text{ K}$

Cantidade inicial de CO_2 $n_0(CO_2) = 2,10 \text{ mol } CO_2$

Cantidade inicial de H_2 $n_0(H_2) = 1,60 \text{ mol } H_2$

Cantidade de CO_2 no equilibrio $n_e(CO_2) = 0,900 \text{ mol } CO_2$

Incógnitas

Cantidade (moles) de cada compoñente no equilibrio $n_e(H_2)$, $n_e(CO)$, $n_e(H_2O)$

Constantes de equilibrio K_c , K_p

Ecuacións

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{a} \cdot \left[B\right]_{e}^{d}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) Se quedan 0,900 mol dos 2,10 mol que había inicialmente, é que reaccionaron:

$$n_r(CO_2) = 2.10 - 0.900 = 1.20 \text{ mol } CO_2 \text{ que reaccionaron}$$

Da estequiometría da reacción:

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$

Reaccionaron 1,20 mol de H₂ e formáronse os mesmos de CO e H₂O.

Representamos nun cadro as cantidades (moles) de cada gas en cada fase:

		CO ₂	H ₂	\rightleftharpoons	H ₂ O	СО	
Cantidade inicial	n_0	2,10	1,60		0,0	0,0	mol
Cantidade que reacciona ou se forma	n_{r}	1,20	1,20		1,20	1,20	mol
Cantidade no equilibrio	n_{e}	0,90	0,40		1,20	1,20	mol

No equilibrio haberá:

$$n_e(CO_2) = 0.90 \text{ mol}; n_e(H_2) = 0.40 \text{ mol}; n_e(CO) = n_e(H_2O) = 1.20 \text{ mol}$$

As concentracións serán:

$$[CO_2] = \frac{n_e(CO_2)}{V} = \frac{0.90 \text{ mol } CO_2}{2.00 \text{ dm}^3} = 0.45 \text{ mol/dm}^3$$

$$[H_2] = \frac{n_e(H_2)}{V} = \frac{0.40 \text{ mol } H_2}{2.00 \text{ dm}^3} = 0.20 \text{ mol/dm}^3$$

[CO]=[H₂O]=
$$\frac{n_e(H_2O)}{V}$$
= $\frac{1,20 \text{ mol}}{2.00 \text{ dm}^3}$ =0,60 mol/dm³

b) A expresión da constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{[\text{H}_{2}\text{O}]_{e} \cdot [\text{CO}]_{e}}{[\text{H}_{2}]_{e} \cdot [\text{CO}_{2}]_{e}} = \frac{\frac{1,20 \text{ mol H}_{2}\text{O}}{2,00 \text{ dm}^{3}} \frac{1,20 \text{ mol CO}}{2,00 \text{ dm}^{3}}}{\frac{0,90 \text{ mol CO}_{2}}{2,00 \text{ dm}^{3}} \frac{0,40 \text{ mol CO}_{2}}{2,00 \text{ dm}^{3}}} = 4,0$$

A relación entre K_p e K_c para esta reacción é

$$K_{p} = \frac{p_{e}(H_{2}O) \cdot p_{e}(CO)}{p_{e}(H_{2}) \cdot p_{e}(CO_{2})} = \frac{\frac{n_{e}(H_{2}O) \cdot R \cdot T}{V} \cdot \frac{n_{e}(CO) \cdot R \cdot T}{V}}{\frac{n_{e}(CO_{2}) \cdot R \cdot T}{V} \cdot \frac{n_{e}(CO_{2}) \cdot R \cdot T}{V}} = \frac{[H_{2}O]_{e} \cdot [CO]_{e}}{[H_{2}]_{e} \cdot [CO_{2}]_{e}} = K_{c}$$

Polo que

$$K_p = K_c = 4.0$$

- 5. Considera o seguinte equilibrio: $CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$. Introdúcense 4,4 g de CO_2 nun recipiente de 2 dm³ a 337 °C e unha cantidade suficiente de H_2S para que, unha vez alcanzado o equilibrio, a presión total sexa de 10 atm. Se na mestura en equilibrio hai 0,01 moles de auga, calcula:
 - a) As concentracións de cada unha das especies no equilibrio.
 - b) Os valores de K_c e K_p á devandita temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm= 101,3 kPa.

(A.B.A.U. extr. 22)

Rta.: a) $[CO_2] = 0.045$: $[H_2S] = 0.145$; $[COS] = [H_2O] = 0.00500 \text{ mol/dm}^3$; b) $K_c = K_p = 0.0038$.

Datos Cifras significativas: 3

Masa inicial de CO₂

Gas: volume $V = 2,00 \text{ dm}^3 = 2,00 \cdot 10^{-3} \text{ m}^3$

temperatura T = 337 °C = 610 K presión $p_{to} = 10.0$ atm = 1,013·10⁶ Pa

Cantidade de auga no equilibrio $n_{\rm e}({\rm H_2O}) = 0.0100~{\rm mol~H_2O}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $m_0(CO_2) = 4.40 \text{ g}$

Masa molar do dióxido de carbono $M(CO_2) = 44,0 \text{ g/mol}$

Incógnitas

Concentracións de cada unha das especies no equilibrio $[CO_2]_e$, $[H_2S]_e$, $[COS]_e$, $[H_2O]_e$

Constantes de equilibrio K_c, K_p

Ecuacións

Cantidade (número de moles) n = m / M

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T \implies p = \frac{n \cdot R \cdot T}{V}$

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]^a \cdot \left[R\right]^b} \quad K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^a(A) \cdot p_e^b(R)}$

Solución:

a) A cantidade inicial de CO₂ é:

$$n_0(\text{CO}_2) = 4,40 \text{ g CO}_2 \cdot \frac{1 \text{ mol CO}_2}{44,0 \text{ g CO}_2} = 0,100 \text{ mol CO}_2$$

Unha vez alcanzado o equilibrio, a cantidade total de gas (suposto comportamento ideal) é:

$$n_{\text{et}} = \frac{p \cdot V}{R \cdot T} = \frac{1,013 \cdot 10^6 \text{ Pa} \cdot 2,00 \cdot 10^{-3} \text{ m}^3}{8,31 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \cdot 610 \text{ K}} = 0,399 \text{ mol total}$$

Da ecuación química dedúcese que a cantidade total de gas non varía co progreso da reacción.

$$CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$$

Unha forma de comprobalo é supoñer que inicialmente hai n_1 moles de $CO_2(g)$ e n_2 moles de $H_2S(g)$. Chamando x á cantidade de $CO_2(g)$ que reacciona ata que se alcanza o equilibrio, calcúlase a cantidade final de gas:

		CO ₂	H ₂ S	=	COS	H ₂ O	
Cantidade inicial	n_0	n_1	n_2		0,00	0,00	mol
Cantidade que reacciona ou se forma	n_{r}	х	х	\rightarrow	х	х	mol
Cantidade no equilibrio	n_{e}	$n_1 - x$	$n_2 - x$		х	х	mol

$$n_{\text{te}} = (n_1 - x) + (n_2 - x) + x + x = n_1 + n_2$$

Vese que é igual que a que había inicialmente.

Por tanto a cantidade de H₂S(g) que había inicialmente era:

$$n_0(H_2S) = 0.399 \text{ [mol total]} - 0.100 \text{ [mol CO}_2\text{]} = 0.299 \text{ mol } H_2S$$

Escríbese nun cadro as cantidades (moles) de cada gas en cada fase:

		CO ₂	H ₂ S	=	COS	H ₂ O	
Cantidade inicial	n_0	0,100	0,299		0,00	0,00	mol
Cantidade que reacciona ou se forma	n_{r}	х	х	\rightarrow	х	х	mol
Cantidade no equilibrio	$n_{\rm e}$					0,0100	mol

Vese que se formaron 0,0100 mol de H₂O(g)

$$x = 0.0100 \text{ mol}$$

As cantidades de todos os gases no equilibrio son:

$$n_{\rm e}({\rm CO_2}) = 0.100~{\rm [mol~iniciais]} - 0.0100~{\rm [mol~que~reaccionan]} = 0.090~{\rm mol~CO_2}$$
 no equilibrio
 $n_{\rm e}({\rm H_2S}) = 0.299~{\rm [mol~iniciais]} - 0.0100~{\rm [mol~que~reaccionan]} = 0.289~{\rm mol~H_2S}$ no equilibrio
 $n_{\rm e}({\rm COS}) = 0.0100~{\rm [mol~formados]} = 0.0100~{\rm mol~COS}$ no equilibrio

Dividindo cada unha delas polo volume (2 dm³) do recipiente, obtense a concentración de cada especie no equilibrio.

$$[CO_{2}]_{e} = \frac{0,090 \text{ mol } CO_{2}}{2,00 \text{ dm}^{3}} = 0,045 \text{ mol/dm}^{3}$$

$$[H_{2}S]_{e} = \frac{0,289 \text{ mol } H_{2}S}{2,00 \text{ dm}^{3}} = 0,145 \text{ mol/dm}^{3}$$

$$[COS]_{e} = [H_{2}O]_{e} = \frac{0,010 \text{ 0mol}}{2.00 \text{ dm}^{3}} = 0,00500 \text{ mol/dm}^{3}$$

b) A expresión da constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{[\text{H}_{2}\text{O}]_{e} \cdot [\text{COS}]_{e}}{[\text{H}_{2}\text{S}]_{e} \cdot [\text{CO}_{2}]_{e}} = \frac{0,00500 \text{ mol H}_{2}\text{O/dm}^{3} 0,00500 \text{ mol COS/dm}^{3}}{0,145 \text{ mol H}_{2}\text{S/dm}^{3} 0,045 \text{ mol CO}_{2}/\text{dm}^{3}} = 3,8 \cdot 10^{-3}$$

Como un dos factores (0,090 mol CO₂) ten só dúas cifras significativas, a constante só pode ter dúas cifras significativas.

A relación entre K_p e K_c para esta reacción é

$$K_{p} = \frac{p_{e}(H_{2}O) \cdot p_{e}(COS)}{p_{e}(H_{2}S) \cdot p_{e}(CO_{2})} = \frac{\frac{n_{e}(H_{2}O) \cdot R \cdot T}{V} \cdot \frac{n_{e}(COS) \cdot R \cdot T}{V}}{\frac{n_{e}(CO_{2}) \cdot R \cdot T}{V} \cdot \frac{n_{e}(CO_{2}) \cdot R \cdot T}{V}} = \frac{[H_{2}O]_{e} \cdot [COS]_{e}}{[H_{2}S]_{e} \cdot [CO_{2}]_{e}} = K_{c}$$

Polo que

$$K_p = K_c = 3.8 \cdot 10^{-3}$$

- 6. Introdúcense 0,2 moles de Br₂ nun recipiente de 0,5 L de capacidade a 600 °C. Unha vez establecido o equilibrio Br₂(g) \rightleftharpoons 2 Br(g) nestas condicións, o grao de disociación é 0,8.
 - a) Calcula K_c e K_p .
 - b) Determina as presións parciais exercidas por cada compoñente da mestura no equilibrio.

Datos: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. extr. 17)

Rta.: a) $K_c = 5.12$; $K_p = 367$; b) $p(Br_2) = 5.7$ atm; p(Br) = 45.9 atm.

Datos Cifras significativas: 3

Gas: volume $V = 0.500 \text{ dm}^3$

temperatura $T = 600 \text{ }^{\circ}\text{C} = 873 \text{ K}$

Cantidade inicial de Br_2 $n_0(Br_2) = 0,200 \text{ mol } Br_2$

Grao de disociación $\alpha = 0.800$

Constante dos gases ideais $R = 0.0820 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Constantes do equilibrio K_c e K_p K_c , K_p

Presións parciais exercida por cada compoñente $p(Br_2)$, p(Br)

Outros símbolos

Cantidade de Br_2 que se ha disociado $n_d(Br_2)$

Ecuacións

Concentración da substancia X [X] = n(X) / V

Grao de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{a} \cdot [B]_{b}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$

Solución:

A ecuación de disociación química do bromo é:

$$Br_2(g) \rightleftharpoons 2 Br(g)$$

Disociáronse:

$$n_{\rm d}({\rm Br_2}) = \alpha \cdot n_0({\rm Br_2}) = 0.800 \cdot 0.200 \, [\rm mol \, Br_2] = 0.160 \, mol \, Br_2 \, disociados$$

Pola estequiometría da reacción, as cantidades de bromo atómico formado e en equilibrio son:

		Br_2	\rightleftharpoons	2 Br	
Cantidade inicial	n_0	0,200		0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	0,160	\rightarrow	0,320	mol
Cantidade no equilibrio	n_{e}	0,200 - 0,160 = 0,040		0,320	mol
Concentración no equilibrio	[X] _e	0,040 / 0,500 = 0,080		0,640	mol/dm³

A expresión da constante de equilibrio en función das concentracións é:

$$K_c = \frac{[\text{Br}]_e^2}{[\text{Br}_c]_e} = \frac{(0.640)^2}{0.080} = 5.12$$
 (concentracións en mol/dm³)

Se consideramos comportamento ideal para os gases, podemos escribir:

$$K_{p} = \frac{p_{e}^{2}(Br)}{p_{e}(Br_{2})} = \frac{([Br]_{e} \cdot R \cdot T)^{2}}{[Br_{2}]_{e} \cdot R \cdot T} = \frac{[Br]_{e}^{2}}{[Br_{2}]_{e}} = K_{c} = \cdot R \cdot T = 5,12 \cdot 0,082 \quad 0.873 = 367 \quad \text{(presións en atm)}$$

b) A presión parcial de cada un dos gases, suposto comportamento ideal, é a que exercería se se atopase só no recipiente.

$$p(\text{Br}) = \frac{n(\text{Br}) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,640 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 873 \text{ K}}{0,500 \cdot 10^{-3} \text{ m}^3} = 4,65 \cdot 10^6 \text{ Pa} = 4650 \text{ kPa} \cdot \frac{1 \text{ atm}}{101,3 \text{ kPa}} = 45,9 \text{ atm}$$

$$p(\text{Br}_2) = \frac{n(\text{Br}_2) \cdot R \cdot T}{V_{\text{T}}} = \frac{0,080 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 873 \text{ K}}{0,500 \cdot 10^{-3} \text{ m}^3} = 5,8 \cdot 10^5 \text{ Pa} = 580 \text{ kPa} \cdot \frac{1 \text{ atm}}{101,3 \text{ kPa}} = 5,7 \text{ atm}$$

7. b) Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35 °C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$ e cando se alcanza o equilibrio a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 19)

Rta.: b) $\alpha = 69 \%$.

b)

Datos Cifras significativas: 3

Volume $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

Temperatura $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$

Cantidade inicial de tetraóxido de dinitróxeno $n_0(N_2O_4) = 0,0800 \text{ mol}$

Presión no equilibrio $p = 2,27 \text{ atm} \cdot 1,013 \cdot 10^5 \text{ Pa/atm} = 2,30 \cdot 10^5 \text{ Pa}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Porcentaxe de N₂O₄ disociado α

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n \cdot R \cdot T}{V}$

Constante do equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]^a \cdot \left[B\right]^b}$

Solución:

b) A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Chamando x á cantidade de N_2O_4 que se disocia ata chegar ao equilibrio, pódese escribir:

		N ₂ O ₄	\rightleftharpoons	2 NO ₂	
Cantidade inicial	n_0	0,0800		0	mol
Cantidade que reacciona ou se forma	n_{r}	х	\rightarrow	2 x	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

A cantidade total de gas no equilibrio será

$$n_{\rm t} = 0.0800 - x + 2 \ x = 0.0800 + x$$

Por outra banda, pódese calcular a cantidade de gas a partir da presión total

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Despexando

$$x = 0.135 - 0.080 = 0.055$$
 mol de N_2O_4 que se disocian

A porcentaxe de N₂O₄ disociado é:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

- 8. Nun reactor de 10 L introdúcense 2,5 moles de PCl₅ e quéntase ata 270 °C, producíndose a reacción: PCl₅ (g) ⇒ PCl₃ (g) + Cl₂ (g). Unha vez alcanzado o equilibrio compróbase que a presión no reactor é de 15,7 atm. Calcula:
 - a) O número de moles de todas as especies presentes no equilibrio.
 - b) O valor das constantes K_c e K_p a devandita temperatura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 18) **Rta.**: a) $n(\text{PCl}_5) = 1,48 \text{ mol PCl}_5$; $n(\text{PCl}_3) = n(\text{Cl}_2) = 1,02 \text{ mol}$; b) $K_c = 0,0708$; $K_p = 3,15$.

Cifras significativas: 3

Cantidade inicial de PCl_5 $n_0(PCl_5) = 2,50 \text{ mol}$

Gas: volume $V = 10.0 \text{ dm}^3$

temperatura $t = 270 \text{ }^{\circ}\text{C} = 543 \text{ K}$

Presión total no equilibrio p = 15,7 atm

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentracións de cada especie no equilibrio [PCl₅], [PCl₃], [Cl₂]

Constantes de equilibrio K_c, K_p

Outros símbolos

Cantidade da substancia X no equilibrio $n_{\rm e}({\rm X})$

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{c} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) Supoñendo comportamento ideal para os gases:

$$n_{\rm et} = \frac{p \cdot V}{R \cdot T} = \frac{15.7 \text{ atm} \cdot 10.0 \text{ L}}{0.082 \text{ 0atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 543 \text{ K}} = 3,52 \text{ mol de gases no equilibrio}$$

A ecuación de disociación é:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Chámase x á cantidade de PCl₅ disociada. Pola estequiometría da reacción,

		PCl ₅	\rightleftharpoons	PCl ₃	Cl ₂	
Cantidade inicial	n_0	n_0		0	0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	х	\rightarrow	х	x	mol
Cantidade no equilibrio	$n_{\rm e}$	$n_0 - x$		х	x	mol

A cantidade de gas que hai no equilibrio é: $n_{\text{et}} = n_0 - x + x + x = n_0 + x$ Comparando co resultado anterior,

$$3,52 = 2,50 + x$$

$$x = 3.52 - 2.50 = 1.02$$
 mol disociados

As cantidades no equilibrio serán:

$$n_{\rm e}({\rm PCl_5}) = n_0 - x = 2,50 - 1,02 = 1,48 \; {\rm mol} \; {\rm PCl_5} \; {\rm no} \; {\rm equilibrio}$$

$$n_{\rm e}({\rm Cl_2}) = n_{\rm e}({\rm PCl_3}) = x = 1,02 \; {\rm mol}$$

E as concentracións serán:

$$[PCl_5]_e = 1,48 \text{ mol } PCl_5 / 10,0 \text{ dm}^3 = 0,148 \text{ mol/dm}^3$$

 $[Cl_2]_e = [PCl_3]_e = 1,02 \text{ mol/10},0 \text{ dm}^3 = 0,102 \text{ mol/dm}^3$

b) A constante de equilibrio en función das concentracións é

$$K_c = \frac{[PCl_3]_e \cdot [Cl_2]_e}{[PCl_5]_e} = \frac{0,102 \cdot 0,102}{0,148} = 0,070 \quad \text{(concentracións en mol/dm³)}$$

A constante de equilibrio en función das presións é

$$K_{p} = \frac{p_{e}(PCl_{3}) \cdot p_{e}(Cl_{2})}{p_{e}(PCl_{5})} = \frac{[PCl_{3}]_{e} \cdot R \cdot T [Cl_{2}]_{e} \cdot R \cdot T}{[PCl_{5}]_{e} \cdot R \cdot T} = \frac{[PCl_{3}]_{e} \cdot [Cl_{2}]_{e}}{[PCl_{5}]_{e}} \cdot R \cdot T = K_{c} \cdot R \cdot T$$

$$K_{p} = K_{c} \cdot R \cdot T = 0,0708 \cdot 0,082 \cdot 543 = 3,15 \text{ (presións en atm)}$$

- Nun recipiente pechado de 5 dm³, no que previamente se fixo o baleiro, introdúcense 0,4 moles de SO_2CI_2 e quéntase a 400 °C, descompoñéndose segundo a reacción: $SO_2CI_2(g) \rightleftharpoons SO_2(g) + CI_2(g)$. Cando se alcanza o equilibrio, obsérvase que se descompuxo o 36,5 % do SO₂Cl₂ inicial. Calcula:
 - a) As presións parciais de cada compoñente da mestura no equilibrio.
 - b) O valor de K_c e K_p á devandita temperatura.

Rta.: a) a) $p(SO_2Cl_2) = 2,81$ atm; $p(SO_2) = p(Cl_2) = 1,61$ atm; b) $K_c = 0,0168$; $K_p = 0,927$.

Datos Cifras significativas: 3 $V = 5.00 \text{ dm}^3$ Gas: volume $T = 400 \,^{\circ}\text{C} = 673 \,^{\circ}\text{K}$ temperatura Cantidade inicial de SO₂Cl₂ $n_0 = 0.400 \text{ mol}$ Grao de disociación α = 36,5 % = 0,365

 $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante dos gases ideais

Incógnitas

 $p(SO_2Cl_2), p(SO_2), p(Cl_2)$ Presións parciais de cada especie no equilibrio

Constantes de equilibrio K_c, K_p

Outros símbolos

Concentración dunha especie X [X]Cantidade da substancia X no equilibrio $n_{\rm e}({\rm X})$

Ecuacións

Lei de Dalton das presións parciais

Concentración da substancia X

Ecuación de estado dos gases ideais

Grao de disociación

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$p_{t} = \sum p_{i}$$

[X] = n(X) / V

 $p \cdot V = n \cdot R \cdot T$

 $\alpha = \frac{n_{\rm d}}{n_0}$

 $K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{d} \cdot \left[\mathbf{B}\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{B})}$

Solución:

a) A ecuación de disociación é:

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

Como o grao de disociación é:

$$\alpha = \frac{n_{\rm d}}{n_{\rm 0}}$$

A cantidade de SO₂Cl₂ disociada será:

$$n_{\rm d} = \alpha \cdot n_0 = 0.365 \cdot 0.400 = 0.146 \text{ mol SO}_2\text{Cl}_2 \text{ disociados.}$$

Coa estequiometría da reacción, calcúlanse as cantidades de cada gas no equilibrio.

		SO ₂ Cl ₂	\rightleftharpoons	SO_2	Cl ₂	
Cantidade inicial	n_0	0,400		0	0	mol
Cantidade que reacciona ou se forma	n_{r}	0,146	\rightarrow	0,146	0,146	mol
Cantidade no equilibrio	$n_{\rm e}$	0,400 - 0,146 = 0,254		0,146	0,146	mol

As concentracións serán:

$$[SO_{2}Cl_{2}]_{e} = 0.254 \ mol \ SO_{2}Cl_{2}/\ 5.00 \ dm^{3} = 0.0508 \ mol \ / \ dm^{3}$$

$$[Cl_2]_e = [SO_2]_e = 0.146 \text{ mol} / 5.00 \text{ dm}^3 = 0.0292 \text{ mol} / \text{dm}^3$$

Supoñendo comportamento ideal para os gases, as presións parciais valerán:

$$p(SO_2Cl_2) = \frac{n(SO_2Cl_2) \cdot R \cdot T}{V} = [SO_2Cl_2] \cdot R \cdot T = 0,050 \text{ &mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 673 \text{ K} = 2,81 \text{ atm}$$

$$p(\text{Cl}_2) = p(\text{SO}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = [\text{Cl}_2] \cdot R \cdot T = 0,029 \text{ 2mol} \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 673 \text{ K} = 1,61 \text{ atm}$$

a) A constante de equilibrio en función das concentracións é:

$$K_c = \frac{[SO_2]_e \cdot [Cl_2]_e}{[SO_2Cl_2]_e} = \frac{0,029 + 20,029 + 2}{0,058 + 0} = 0,016 + (concentracións en mol/dm³)$$

A constante de equilibrio en función das presións é

$$K_{p} = \frac{p_{e}(SO_{2}) \cdot p_{e}(Cl_{2})}{p_{e}(SO_{2}Cl_{2})} = \frac{[SO_{2}]_{e} \cdot R \cdot T [Cl_{2}]_{e} \cdot R \cdot T}{[SO_{2}Cl_{2}]_{e} \cdot R \cdot T} = \frac{[SO_{2}]_{e} \cdot [Cl_{2}]_{e}}{[SO_{2}Cl_{2}]_{e}} \cdot R \cdot T = K_{c} \cdot R \cdot T$$

$$K_{p} = K_{c} \cdot R \cdot T = 0,0168 \cdot 0,082 \cdot 673 = 0,927 \text{ (presions en atm)}$$

- 10. Nun recipiente pechado introdúcense 2,0 moles de CH_4 e 1,0 mol de H_2S á temperatura de 727 °C, establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o equilibrio, a presión parcial do H_2 é 0,20 atm e a presión total é de 0,85 atm. Calcule:
 - a) Os moles de cada substancia no equilibrio e o volume do recipiente.

b) O valor de K_c e K_p .

Dato: $R = 0.082 \text{ atm} \cdot dm^3 \cdot K^{-1} \cdot mol^{-1} = 8.31 \text{ J} \cdot K^{-1} \cdot mol^{-1}$.

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$.

Datos Cifras significativas: 3

Temperatura $T = 727 \,^{\circ}\text{C} = 1000 \,\text{K}$

Cantidade inicial de metano $n_0(CH_4) = 2,00 \text{ mol } CH_4$

Cantidade inicial de sulfuro de hidróxeno $n_0(H_2S) = 1,00 \text{ mol } H_2S$

Presión parcial do hidróxeno no equilibrio $p_e(H_2) = 0,200$ atm

Presión total no equilibrio $p_e = 0.850$ atm

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Cantidade no equilibrio de cada substancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volume do recipiente V

Constante do equilibrio K_c K_c

Constante do equilibrio K_p K_p

Ecuacións

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n \cdot R \cdot T}{V}$

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{d} \cdot [B]_{e}^{d}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{d}(B)}$

Solución:

a) A ecuación química é:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

Chamando x á cantidade de metano que reaccionou ata acadar o equilibrio podemos escribir

		CH ₄	$2 H_2S$	\rightleftharpoons	CS ₂	4 H ₂	
Cantidade inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	x	2 x		х	4 x	mol
Cantidade no equilibrio	$n_{\rm e}$	2,00 - x	1,00 - 2 <i>x</i>		x	4 x	mol

No equilibrio haberá en total:

$$n_e = (2.00 - x) + (1.00 - 2 x) + x + 4 x = 3.00 + 2 x$$

Da presión parcial do hidróxeno podemos deducir:

$$p \cdot V = n \cdot R \cdot T \Rightarrow n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 \times = 0,0244 \cdot V$$

Da presión total podemos deducir:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.010 \text{ 4V mol}$$
$$3.00 + 2 x = 0.104 \cdot V$$

Do sistema de dúas ecuacións con dúas incógnitas,

$$4x = 0.00244 \cdot V$$

 $3.00 + 2x = 0.010 \ 4V$

deducimos o volume V do recipiente e a cantidade x de metano que reaccionou ata acadar o equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,010 \text{ } 4V}{0,00244 \cdot V} = 4,25$$
$$3,00+2 \text{ } x = 17,0 \text{ } x$$
$$x = 0,200 \text{ mol}$$
$$V = 328 \text{ dm}^3$$

As cantidades das substancias no equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$

 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

A constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{\left[\text{CS}_{2} \right]_{e} \cdot \left[\text{H}_{2} \right]_{e}^{4}}{\left[\text{CH}_{4} \right]_{e} \cdot \left[\text{H}_{2} \text{S} \right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2})}{V} \right)^{4}}{\frac{n_{e}(\text{CH}_{4})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2} \text{S})}{V} \right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2} \text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentracións en mol/dm³)

Se consideramos comportamento ideal para os gases, podemos escribir:

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

$$K_{p} = 1,2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^{2} = 0,007 \text{ (presións en atm)}$$

- 11. Ao quentar HgO(s) nun recipiente pechado no que se fixo o baleiro, disóciase segundo a reacción: $2 \text{ HgO(s)} \rightleftharpoons 2 \text{ Hg(g)} + O_2(g)$. Cando se alcanza o equilibrio a 380 °C, a presión total no recipiente é de 0,185 atm. Calcula:
 - a) As presións parciais das especies presentes no equilibrio.
 - b) O valor das constantes K_c e K_p da reacción.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 18) **Rta.**: a) p(Hg) = 0.123 atm; $p(O_2) = 0.0617$ atm; b) $K_c = 6.1 \cdot 10^{-9}$; $K_p = 9.4 \cdot 10^{-4}$.

Cifras significativas: 3 Datos $t = 380 \,^{\circ}\text{C} = 653 \,^{\circ}\text{K}$ **Temperatura** Presión total no equilibrio p = 0.185 atm $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante dos gases ideais Incógnitas

Presións parciais das especies no equilibrio $p(HgO), p(Hg), p(O_2)$ Constantes de equilibrio K_c, K_p

Outros símbolos

Cantidade da substancia X no equilibrio $n_{\rm e}({\rm X})$

Ecuacións

Concentración da substancia X

Ecuación dos gases ideais

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$[X] = n(X) / V$$

$$p \cdot V = n \cdot R \cdot T \Longrightarrow p_i = [i] \cdot R \cdot T$$

$$K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{d} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$$

Solución:

a) A ecuación de disociación é:

$$HgO(s) \rightleftharpoons 2 Hg(g) + O_2(g)$$

		HgO	\rightleftharpoons	Hg	O ₂	
Cantidade inicial	n_0	n_0		0	0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	х	\rightarrow	2 x	х	mol
Cantidade no equilibrio	$n_{\rm e}$	$n_0 - x$		2 x	х	mol

No equilibrio a presión total é a suma das presións parciais dos gases Hg e O₂. A presión do Hg é o dobre que a presión de O₂. Chamando *y* á presión do osíxeno, queda:

$$p = p(Hg) + p(O_2)$$

 $0.185 = 2 \cdot y + y = 3 y$
 $y = 0.0617 atm$

E as presións serán:

$$p(O_2) = 0.0617$$
 atm

$$p(Hg) = 0.123 \text{ atm}$$

A presión do HgO é nula, pois non é un gas.

b) A constante de equilibrio en función das presións é

$$K_p = p_e^2(\text{Hg}) \cdot p_e(\text{O}_2) = 0.123^2 \cdot 0.061 \neq 9.38 \cdot 10^{-4} \text{ (presións en atm)}$$

A constante de equilibrio en función das concentracións é

$$K_{c} = [Hg]_{e}^{2} \cdot [O_{2}]_{e} = \left(\frac{p_{e}(Hg)}{R \cdot T}\right)^{2} \cdot \frac{p_{e}(O_{2})}{R \cdot T} = \frac{K_{c}}{(R \cdot T)^{3}} = \frac{9,38 \cdot 10^{-4}}{(0,082 \cdot 653)^{3}} = 6,1 \cdot 10^{-9} \text{ (concentracións en mol/dm³)}$$

Coa constante como dato

- 1. Para a reacción $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2g)$, o valor de $K_c = 5$ a 530 °C. Se reaccionan 2,0 moles de CO(g) con 2,0 moles de $H_2O(g)$ nun reactor de 2 L:
 - a) Calcula a concentración molar de cada especie no equilibrio á devandita temperatura.
 - b) Determina o valor de K_p e razoa como se verá afectado o equilibrio se introducimos no reactor máis cantidade de CO(g) sen variar a temperatura nin o volume.

(A.B.A.U. extr. 23)

Rta.: a) [CO] = 0,309; [H₂O] = 0,309; [CO₂] = 0,691; [H₂] = 0,691 mol/dm³; b)
$$K_p = 5,00$$
.

Datos Cifras significativas: 2

Constante de equilibrio $K_c = 5.0$

Temperatura $T = 530 \text{ }^{\circ}\text{C} = 803 \text{ }^{\circ}\text{K}$

Cantidade inicial de CO $n_0(CO) = 2.0 \text{ mol CO}$

Datos Cifras significativas: 2

Concentración inicial de H_2O $n_0(H_2O) = 2,0 \text{ mol } H_2O$

Volume $V = 2.0 \text{ dm}^3$

Incógnitas

Concentracións no equilibrio [H₂]_e, [CO₂]_e, [H₂O]_e, [CO]_e

Constante de equilibrio en función das presións K_p

Ecuacións

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^c \cdot \left[B\right]_e^b} \quad K_p = \frac{p_e^c(C) \cdot p_e^d(D)}{p_e^d(A) \cdot p_e^b(B)}$

Solución:

a) As concentracións iniciais son:

$$[H_2O]_0 = [CO]_0 = 2.0 \text{ mol} / 2 \text{ dm}^3 = 1 \text{ mol/dm}^3$$

Chamando x ás concentracións en mol/dm³ de CO que reaccionan pódese escribir:

		СО	H ₂ O	=	CO ₂	H ₂	
Concentración inicial	[X] ₀	1,0	1,0		0	0	mol/dm³
Concentración que reacciona ou se forma	[X] _r	x	х	\rightarrow	х	x	mol/dm³
Concentración no equilibrio	[X] _{eb}	1,0-x	1,0 - x		х	x	mol/dm³

A expresión da constante de equilibrio en función das concentracións é:

$$K_c = \frac{[\text{CO}_2]_e \cdot [\text{H}_2]_e}{[\text{H}_2\text{O}]_e \cdot [\text{CO}]_e} = \frac{x \cdot x}{(1,0-x) \cdot (1,0-x)} = 5,0$$

Resolvendo a ecuación de segundo grao dá dúas solucións.

$$\frac{x}{(1,0-x)} = \pm \sqrt{5,0} = \pm 2,2$$

$$x = \pm 2,2 \ (1,0-x)$$

$$x + 2,2 \ x = 2,2 \implies x = 2,2 \ / \ 3,2 = 0,69$$

$$x - 2,2 \ x = 2,2 \implies x = -2,2 \ / \ 1,2 = -1,8$$

Unha delas (-1,8) non é válida, xa que supoñería a existencia de concentracións negativas no equilibrio. A outra solución é $x = 0,69 \text{ mol/dm}^3$.

As concentracións no equilibrio son:

$$[CO_2]_e = [H_2]_e = 0,69 \text{ mol/dm}^3$$

 $[CO]_e = [H_2O]_e = 1,0 - 0,69 = 0,3 \text{ mol/dm}^3$

b) A constante de equilibrio en función das presións será:

$$K_{p} = \frac{p_{e}(\text{CO}_{2}) \cdot p_{e}(\text{H}_{2})}{p_{e}(\text{H}_{2}O) \cdot p_{e}(\text{CO})} = \frac{\left(\frac{n_{e}(\text{CO}_{2}) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\text{H}_{2}) \cdot R \cdot T}{V}\right)}{\left(\frac{n_{e}(\text{H}_{2}O) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\text{CO}) \cdot R \cdot T}{V}\right)} = \frac{\left[\text{CO}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}}{\left[\text{H}_{2}O\right]_{e} \cdot \left[\text{CO}\right]_{e}} \cdot \frac{R \cdot T \cdot R \cdot T}{R \cdot T} = K_{c} = 5,0$$

A constante de equilibrio só depende da temperatura. Non varía aínda que cambien as cantidades de reactivos ou produtos, ou diminúa o volume.

Se se aumenta a cantidade de monóxido de carbono, para que K_c permaneza constante, ou ben deberá aumentar o numerador $n_e(CO_2)$ e $n_e(H_2)$, ou diminuír a cantidade de auga no denominador $n_e(H_2O)$. O equili-

brio desprazarase (cara á dereita) ata alcanzar un novo estado de equilibrio no que haberá máis CO_2 e H_2 e menos H_2O .

- 2. Nun recipiente de 10 litros introdúcense 2 moles de N_2O_4 gasoso a 50 °C producíndose o seguinte equilibrio de disociación: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Se a constante K_p a devandita temperatura é de 1,06; calcula:
 - a) As concentracións dos dous gases tras alcanzar o equilibrio e a porcentaxe de disociación do N₂O₄.

b) As presións parciais de cada gas e a presión total no equilibrio.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 21)

Rta.: a) $[N_2O_4] = 0.160 \text{ mol/dm}^3$; $[NO_2] = 0.0800 \text{ mol/dm}^3$; $\alpha = 20.0 \%$;

b) $p(N_2O_4) = 4,24$ atm = 430 kP; $p(N_2O_4) = 2,12$ atm = 215 kPa; p = 6,36 atm = 645 kPa.

DatosCifras significativas: 3Gas: volume $V = 10.0 \text{ dm}^3$

temperatura T = 50 °C = 323 K

Cantidade inicial de tetraóxido de dinitróxeno $n_0(N_2O_4) = 2,00 \text{ mol } N_2O_4$

Constante de equilibrio (en función das presións en atm) $K_c = 1,06$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentracións dos dous gases no equilibrio [N₂O₄]_e, [NO₂]_e

Presión parcial de cada gas e presión total no equilibrio $p_e(N_2O_4)$, $p_e(NO_2)$, p_t e

Ecuacións

Lei de Dalton das presións parciais $p_t = \sum p_i$

Concentración da substancia X [X] = n(X) / V

Grao de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm e}}$

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: a + b = c + d = c +

Solución:

b) A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

A ecuación da constante de equilibrio en función das presións (en atm) é:

$$K_p = \frac{p_e^2(NO_2)}{p_e(N_2O_4)}$$

Supoñendo comportamento ideal para os gases, a presión vén dada por:

$$p = \frac{n \cdot R \cdot T}{V}$$

A presión inicial do tetraóxido de dinitróxeno é:

$$p(N_2O_4) = \frac{2,00 \text{ mol } N_2O_4 \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}}{10.0 \text{ dm}^3} = 5,30 \text{ atm}$$

Chámase *x* á presión de tetraóxido de dinitróxeno que se transforma en dióxido de nitróxeno. Pola estequiometría da reacción,

		N_2O_4	=	2 NO ₂	
Presión inicial	p_0	5,30		0	atm
Presión que reacciona ou se forma	$p_{ m r}$	x		2 x	atm
Presión no equilibrio	p_{e}	5,30 - x		2 x	atm

Substituíndo na ecuación da constante obtemos:

$$1,06 = \frac{(2x)^2}{5,30 - x}$$
$$5,62 - 1,06 \ x = 4 \ x^2$$
$$x = 1,06 \ \text{atm}$$

As presións parciais serían:

$$p_{\rm e}({\rm NO_2}) = 2~x = 2{,}12~{\rm atm}$$

 $p_{\rm e}({\rm N_2O_4}) = 5{,}30 - x = 5{,}30 - 1{,}06 = 4{,}24~{\rm atm}$

E a presión total obtense pola lei de Dalton:

$$p_{t e} = p(NO_2) + p(N_2O_4) = 2.12 + 4.24 = 6.36$$
 atm

a) A concentración obtense da ecuación dos gases ideais:

$$p = \frac{n \cdot R \cdot T}{V} \implies \frac{n}{V} = \frac{p}{R \cdot T}$$

$$[NO_2]_e = \frac{2,12 \text{ atm}}{0,082 \cdot \text{atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,080 \text{ 0mol/dm}^3$$

$$[N_2O_4]_e = \frac{4,24 \text{ atm}}{0,082 \cdot \text{atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,160 \text{ mol/dm}^3$$

O grao de disociación é:

$$\alpha = \frac{n_{\rm d}}{n_0} = \frac{p_{\rm d}}{p_0} = \frac{1,06}{5,30} = 0,200 = 20 \%$$

- Considera o seguinte equilibrio que ten lugar a 150 °C: $I_2(g) + Br_2(g) \rightleftharpoons 2 IBr(g)$ cunha $K_c = 120$. Nun recipiente de 5,0 dm³ de capacidade introdúcense 0,0015 moles de iodo e 0,0015 moles de bromo. Calcula:
 - a) A concentración de cada especie cando se alcanza o equilibrio.
 - b) As presións parciais e a constante K_p .

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. ord. 21) **Rta.**: a) $[I_2] = [Br_2] = 4,63 \cdot 10^{-5} \text{ mol/dm}^3$; $[IBr] = 5,07 \cdot 10^{-4} \text{ mol/dm}^3$;

b) $p(I_2) = p(Br_2) = 163 \text{ Pa} = 0.00161 \text{ atm}; p(IBr) = 1.79 \cdot 10^3 \text{ Pa} = 0.0176 \text{ atm}; K_p = 120.$

Cifras significativas: 3 Datos

 $V = 5.00 \text{ dm}^3$ Gas: volume

> $T = 150 \,^{\circ}\text{C} = 423 \,^{\circ}\text{K}$ temperatura

Cantidade inicial de iodo $n_0(I_2) = 0.00150 \text{ mol } I_2$

Cantidade inicial de bromo $n_0(Br_2) = 0.00150 \text{ mol } Br_2$

Constante de equilibrio (en función das concentracións) $K_c = 120$

 $R = 0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Constante dos gases ideais

Incógnitas

Concentración de cada especie no equilibrio $[I_2]_e$, $[Br_2]_e$, $[IBr]_e$

Presión parcial de cada gas no equilibrio $p(I_2)$, $p(Br_2)$, $p(Br_3)$, $p(Br_4)$

Constante de equilibrio en función das presións K_p

Ecuacións

Lei de Dalton das presións parciais $p_{\rm t}$ = $\sum p_i$

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{d} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) A ecuación química é:

$$I_2(g) + Br_2(g) \rightleftharpoons 2 \ IBr(g)$$

Chámase x á cantidade de iodo que se transforma en bromuro de iodo. Pola estequiometría da reacción,

		I_2	Br_{2}	\Rightarrow	2 IBr	
Cantidade inicial	n_0	0,00150	0,00150		0	mol
Cantidade que reacciona ou se forma	n_{r}	х	х		2 x	mol
Cantidade no equilibrio	$n_{\rm e}$	0,00150 - x	0,00150 - x		2 x	mol

A ecuación da constante de equilibrio é:

$$K_{c} = \frac{\left[\operatorname{IBr} \right]_{e}^{2}}{\left[\operatorname{I}_{2} \right]_{e} \cdot \left[\operatorname{Br}_{2} \right]_{e}}$$

A concentración en mol·dm⁻³ obtense dividindo a cantidade entre o volume (en dm³):

$$K_{c}=120 = \frac{\left(\frac{n_{e}(\text{IBr})}{V}\right)^{2}}{\left(\frac{n_{e}(\text{I}_{2})}{V}\right) \cdot \left(\frac{n_{e}(\text{Br}_{2})}{V}\right)} = \frac{\left(\frac{2x}{5,00}\right)^{2}}{\left(\frac{0,00150 - x}{5,00}\right) \left(\frac{0,00150 - x}{5,00}\right)} = \frac{(2x)^{2}}{(0,00150 - x)^{2}}$$

$$\pm \sqrt{120} = \frac{2x}{0,00150 - x} = \pm 11,0$$

$$x = 0,00127 \text{ mol}$$

As cantidades no equilibrio serán:

$$n_e(IBr) = 2 x = 0.00254 \text{ mol IBr}$$

$$n_{\rm e}({\rm Br_2}) = n_{\rm e}({\rm I_2}) = 0.00150 - x = 2.3 \cdot 10^{-4} \; {\rm mol}$$

As concentracións serían:

$$[IBr]_e = \frac{0.00254 \text{ mol } IBr}{5.00 \text{ dm}^3} = 5.07 \cdot 10^{-4} \text{ mol/dm}^3$$

$$[Br_2]_e = [I_2]_e = \frac{2.3 \cdot 10^{-4} \text{ mol}}{5.00 \text{ dm}^3} = 4.6 \cdot 10^{-4} \text{ mol/dm}^3$$

b) Supoñendo comportamento ideal para os gases, a presión parcial de cada un deles vén dada por:

$$p_{i} = \frac{n_{i} \cdot R \cdot T}{V}$$

$$p(\text{IBr}) = \frac{0,00254 \text{ mol HI} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 423 \text{ K}}{5,00 \cdot 10^{-3} \text{ m}^{3}} = 1,79 \cdot 10^{3} \text{ Pa}$$

$$p(\text{IBr}) = 1,79 \cdot 10^{3} \text{ Pa} = 1,79 \text{ kPa} \cdot \frac{1 \text{ atm}}{101,3 \text{ kPa}} = 0,017 \text{ 6atm}$$

$$p(\text{Br}_{2}) = p(\text{I}_{2}) = \frac{2,3 \cdot 10^{-4} \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 423 \text{ K}}{5,00 \cdot 10^{-3} \text{ m}^{3}} = 160 \text{ Pa}$$

$$p(\text{Br}_{2}) = p(\text{I}_{2}) = 160 \text{ Pa} = 0,160 \text{ kPa} \cdot \frac{1 \text{ atm}}{101,3 \text{ kPa}} = 0,001 \text{ 6atm}$$

A constante de equilibrio en función das presións será:

$$K_{p} = \frac{p_{e}^{2}(\operatorname{IBr})}{p_{e}(\operatorname{Br}_{2}) \cdot p_{e}(\operatorname{I}_{2})} = \frac{\left(\frac{n_{e}(\operatorname{IBr}) \cdot R \cdot T}{V}\right)^{2}}{\left(\frac{n_{e}(\operatorname{Br}_{2}) \cdot R \cdot T}{V}\right) \cdot \left(\frac{n_{e}(\operatorname{I}_{2}) \cdot R \cdot T}{V}\right)} = \frac{[\operatorname{IBr}]_{e}^{2}}{[\operatorname{Br}_{2}]_{e} \cdot [\operatorname{I}_{2}]_{e}} \cdot \frac{(R \cdot T)^{2}}{R \cdot T \cdot R \cdot T} = K_{c} = 120$$

- 4. Introdúcese fósxeno (COCl₂) nun recipiente baleiro de 2 dm³ de volume a unha presión de 0,82 atm e unha temperatura de 227 °C, producíndose a súa descomposición segundo o equilibrio: $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$. Sabendo que nestas condicións o valor de K_p é 0,189; calcula:
 - a) A concentración de todas as especies presentes no equilibrio.
 - b) A presión parcial de cada unha das especies presentes no equilibrio.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 20)

Rta.: a) $[COCl_2]_e = 0.0124 \text{ mol/dm}^3$; $[CO]_e = [Cl_2]_e = 0.00756 \text{ mol/dm}^3$; b) $p_e(COCl_2) = 0.510 \text{ atm}$; $p_e(CO) = p_e(Cl_2) = 0.310 \text{ atm}$.

Datos

Gas: volume

temperatura

Presión inicial de fósxeno

Constante de equilibrio (en función das presións en atm)

Constante dos gases ideais

Incógnitas

Concentración de cada unha das especies no equilibrio

Presión parcial de cada unha das especies no equilibrio

Ecuacións

Lei de Dalton das presións parciais

Concentración da substancia X

Ecuación de estado dos gases ideais

Constante de presións do equilibrio: $a A + b B \rightleftharpoons c C + d D$

Cifras significativas: 3

 $V = 2.00 \text{ dm}^3$

 $T = 227 \, ^{\circ}\text{C} = 500 \, \text{K}$

 $p_0(COCl_2) = 0.820 \text{ atm } COCl_2$

 $K_p = 0.189$

 $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

[COCl₂]_e, [CO]_e, [Cl₂]_e

 $p_e(COCl_2), p_e(CO), p_e(Cl_2)$

 $p_{\rm t} = \sum p_i$

[X] = n(X) / V

 $p \cdot V = n \cdot R \cdot T$

 $K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{a}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) A ecuación química é:

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

Chámase x á presión parcial do fósxeno que se disocia

		$COCl_2$	\rightleftharpoons	СО	Cl ₂	
Presión inicial	p_0	0,820		0	0	atm
Presión que reacciona ou se forma	p_{r}	х	\rightarrow	х	x	atm
Presión no equilibrio	p_{e}	0,820 - x		х	x	atm

A ecuación da constante de equilibrio en función das presións é:

$$K_{p} = \frac{p_{e}(CO) \cdot p_{e}(Cl_{2})}{p_{e}(COCl_{2})}$$

$$0.189 = \frac{x \cdot x}{0.820 - x}$$

$$x^{2} + 0.189 \ x - 0.155 = 0$$

$$x = 0.310 \ \text{atm}$$

Calcúlanse primeiro as presións parciais no equilibrio:

$$p_{\rm e}({\rm CO}) = p_{\rm e}({\rm Cl_2}) = x = 0.310 \text{ atm}$$

 $p_{\rm e}({\rm COCl_2}) = 0.820 - x = 0.510 \text{ atm}$

b) Supoñendo comportamento ideal para os gases, a presión parcial de cada un deles vén dada por:

$$p_i = \frac{n_i \cdot R \cdot T}{V}$$

As concentracións serán:

$$[CO]_{e} = [Cl_{2}]_{e} = \frac{p(Cl_{2})}{R \cdot T} = \frac{0.310 \text{ atm}}{0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 500 \text{ K}} = 0.00756 \text{ mol/dm}^{3}$$
$$[COCl_{2}]_{e} = \frac{p(COCl_{2})}{R \cdot T} = \frac{0.510 \text{ atm}}{0.082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 500 \text{ K}} = 0.012 \text{ 4nol/dm}^{3}$$

CUESTIÓNS

1. Para a reacción en equilibrio: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \Delta H^0 < 0$; explica razoadamente como se desprazará o equilibrio se se engade $H_2(g)$.

(A.B.A.U. ord. 20)

Solución:

A constante de equilibrio en función das concentracións pode escribirse así:

$$K_{c} = \frac{[\mathrm{NH_{3}}]_{\mathrm{e}}^{2}}{[\mathrm{N_{2}}]_{\mathrm{e}} \cdot [\mathrm{H_{2}}]_{\mathrm{e}}^{3}} = \frac{\frac{n_{\mathrm{e}}^{2}(\mathrm{NH_{3}})}{V^{2}}}{\frac{n_{\mathrm{e}}(\mathrm{N_{2}})}{V} \cdot \frac{n_{\mathrm{e}}^{3}(\mathrm{H_{2}})}{V^{3}}} = \frac{n_{\mathrm{e}}^{2}(\mathrm{NH_{3}})}{n_{\mathrm{e}}(\mathrm{N_{2}}) \cdot n_{\mathrm{e}}^{3}(\mathrm{H_{2}})} V^{2}$$

A constante de equilibrio só depende da temperatura. Non varía aínda que cambien as cantidades de reactivos ou produtos, ou diminúa o volume.

Se se engade hidróxeno, para que K_c permaneza constante, ou ben deberá aumentar o numerador $n_e(\mathrm{NH_3})$, ou diminuír a cantidade de nitróxeno no denominador $n_e(\mathrm{N_2})$. O equilibrio desprazarase (cara á dereita) ata alcanzar un novo estado de equilibrio no que haberá máis $\mathrm{NH_3}$ e menos $\mathrm{N_2}$.

2. a) Dada a reacción: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$, $\Delta H^o < 0$, razoa como inflúe sobre o equilibrio un aumento da temperatura.

(A.B.A.U. extr. 19)

Solución:

a) A constante de equilibrio varía coa temperatura segundo a ecuación de Van't Hoff:

$$\ln \frac{K_2}{K_1} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Para unha reacción exotérmica (ΔH° < 0), se $T_2 > T_1$:

$$\frac{1}{T_{2}} < \frac{1}{T_{1}} \implies \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) < 0$$

$$\ln \frac{K_{2}}{K_{1}} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) = \frac{-\cdot (-)}{+} \cdot (-) < 0$$

$$K_{2} < K_{1}$$

A constante diminúe ao aumentar a temperatura.

ACLARACIÓNS

Os datos dos enunciados dos problemas non adoitan ter un número adecuado de cifras significativas. Por iso supuxen que os datos teñen un número de cifras significativas razoables, case sempre tres cifras significativas. Menos cifras darían resultados, en certos casos, con ampla marxe de incerteza. Así que cando tomo un dato como $V=1~{\rm dm^3}$ e reescríboo como:

Cifras significativas: 3

 $V = 1,00 \text{ dm}^3$

o que quero indicar é que supoño que o dato orixinal ten tres cifras significativas (non que as teña en realidade) para poder realizar os cálculos cunha marxe de incerteza máis pequena que a que tería se o tomase tal como o dan. (1 dm³ ten unha soa cifra significativa, e unha incerteza relativa do ¡100 %! Como as incertezas acumúlanse ao longo do cálculo, a incerteza final sería inadmisible. Entón, para que realizar os cálculos? Abondaría cunha estimación).

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de tradución de, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Sumario

EQUILIBRIO QUÍMICO EN FASE GAS	
PROBLEMAS	1
Con datos do equilibrio	
Coa constante como dato	
<u>CUESTIÓNS</u>	
Índice de probas A.B.A.U.	
2017	
1. (ord.)	5
2. (extr.)	8
2018	
1. (ord.)	10
2. (extr.)	14
2019	
1. (ord.)	3
2. (extr.)	9, 22
2020	
1. (ord.)	13, 21
2. (extr.)	
2021	
1. (ord.)	
2. (extr.)	
2022	
1. (ord.)	
2. (extr.)	
2023	
1. (ord.)	
2. (extr.)	
2024	