Assignment 4

Regression problems

Aims:

To develop a system that learns alone nonlinear models by supervising learning.

Task:

Specify, design and deploy an application in python that solve your assigned regression problem with a different method than one used in Assignment 3.

Points:

• 100 points for full implementation or 50 points if a tool is used.

Time:

Deadline is at the end of the sixth laboratory.

Hints:

Available tools that implements learning methods:

- 1. Weka http://www.cs.waikato.ac.nz/ml/weka/
- 2. Matlab http://www.mathworks.com/products/neural-network/
- 3. OpenCV http://docs.opencv.org/modules/ml/doc/neural_networks.html
- 4. Scikit learn http://scikit-learn.org/stable/
- 5. GPLAB http://gplab.sourceforge.net/
- 6. ECJ http://cs.gmu.edu/~eclab/projects/ecj/

Problems:

1. Build a system that approximate the quality of a concrete mixture based on the used ingredients.

The training data will be taken from:

http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.

2. Build a system that approximate the UPDRS index for the Parkinson's disease based on patiences' datas (sex, age, vocal signes)

The training data will be taken from:

http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.

3. Build a system that approximate the relative position on an axis of some patiences' tomographic images (id, structure's bone histogram, regions filled with air histogram).

The training data will be taken from:

http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis.