

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa magisterska

Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap Web application that determines speed limits on roads based on data from OpenStreetMap

Autor: Piotr Jaromin Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Grzegorz Rogus

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

1.	Wprowadzenie		
	1.1.	Wstęp	7
	1.2.	Cele pracy	9
	1.3.	Wykorzystane technologie	11
	1.4.	Przegląd literatury	11
	1.5.	Układ pracy	14

6 SPIS TREŚCI

1. Wprowadzenie

1.1. Wstęp

Bezpieczeństwo na drodze stanowi jedno z podstawowych celów postawionych zarówno przez budowniczych dróg, producentów samochodów ich użytkowników a także osób znajdujących się pobliżu. Aby zredukować liczbę wypadków, niezbędne jest uwględnienie ogromnej liczby czynników wpływających na bezpieczeństwo na drogach. Należy wziąć pod uwagę warunki atmosferyczne występujące w danej okolicy, ukształtowanie terenu, roślinność która może niekorzystnie wpłynąć na widoczność, drzewa znajdujące się w pobliżu tras oraz samo oznakowanie dróg. Ważne są także pojazdy, jakie biorą udział w ruchu, funkcję jakie spełnia dana droga, liczba pasów ruchu i ich szerokość, liczba zakrętów i ich promień skrętu oraz typ nawierzni, z której skłąda się nawierzchnia. Nie należy także lekceważyć statystyk dotyczących wypadków na danych odcinkach dróg. Na bezpieczeństwo na drogach wpływ mają również producenci pojazdów. Rozwijane przez nich inteligentne czujniki oraz systemy wspomagania jazdy mają kluczowe znaczenie w redukcji ryzyka popełnienia błędu przez człowieka.

W tabeli 1.1. znajduje się zestawienie przedstawiające tolerancje biomechaniczną człowieka dla różnych typów pojazdów.

Tabela 1.1. Biomechaniczna tolerancja na wypadki

Typ wypadku	Prędkość uderzenia	
samochód / pieszy / rowerzysta	20 - 30 km/h	
samochód / motocykl	20 - 30 km/h	
samochód / drzewo lub słup	30 - 40 km/h	
samochód / samochód (zderzenie boczne)	50 km/h	
samochód / samochód (zderzenie czołowe)	70 km/h	

Source: Na podstawie Austroroads 2005

Z tabeli 1.1. odczytać można, że najbardziej podatni na zagrożenia w ruchu drogowym są piesi, rowerzyści oraz motocykliści. Oczywiście są to uśrednione dane. Ryzyko poważnych obrażeń, a nawet śmierci, w niektórych przypadkach może wystąpić przy jeszcze mniejszych prędkościach.

8 1.1. Wstęp

W "Raport o stanie bezpieczeństwa ruchu drogowego dla dróg krajowych w zarządzie GDDKiA" opublikowanym na stronie Generalnej Dyrekcji Dróg Krajowych i Autostrad, znajduje się zestawienie liczby wypadków drogowych i ich skutków, w latach 2007 - 2016.

Rys. 1.1. wypadki drogowe i ich skutki

Wypadki drogowe i ich skutki

Source: Raport o stanie bezpieczeństwa ruchu drogowego dla dróg krajowych w za-

rządzie GDDKiA.

Z Rys. 1.1 odczytać można, że liczba wypadków, z jednym wyjątkiem (z roku 2016) nieustannie maleje. W 2007 roku miało miejsce 10562 wypadków, w których liczba zabitych wyniosła 2028 osób, natomiast rannych było 14975. W porównaniu z 2016 został odnotowany spadek o ok. 40 %. Niewątpliwie jest to ogromny sukces, jednak liczba ta dalej jest zatrważająco wysoka.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.2. Cele pracy

1.2. Cele pracy

Głownym celem niniejszej pracy dyplomowej jest stworzenie inteligentnego systemu, mającego za zadanie predykcję dopuszczalnych prędkości w ruchu drogowym. Ponadto zostaną opracowane modele i narzędzia pozwalające na obliczenie prędkości ma drogach. Rozwiązanie bazować będzie na metodach automatycznego wnioskowania, modelach matematycznych i informacjach geoprzestrzennych. Dzięki temu, możliwe będzie wyznaczenie optymalnego rozwiązania dla złożonego, wielokryterialnego problemu, w którym kluczowe znaczenie będzie miało bezpieczeństwo uczestników ruchu drogowego, przy zachowaniu maksymalnej przepustowości infrastruktury drogowej.

Aglorytm predykcji dopuszczalnych prędkości w ruchu drogowym będzie wykorzystywał następujące informacje

- pojedyńcze poziome zakręty zostaną podzielone na trzy grupy, według długości promienia skrętu:
 - mały promień skrętu o maksymalnej długości promienia 300m
 - średni promień skrętu o długości promienia powyżej 300m i poniżej 600m
 - duży promień skrętu o długości promienia powyżej 600m
- połączone poziome zakręty będące połączone prostą o długości nie przekraczają 200m. Zostaną podzielone na dwie grupy, według długości promienia skrętu:
 - najpierw zakręt o większym promieniu, następnie o mniejszym
 - najpierw zakręt o miejszym promieniu, następnie o większym
- pobliże szkół i miejsc zabaw w takich przypadkach prędkość musi zostać dobrana, aby kierowca
 bez przeszkód mógł zatrzymać się, nie powodując zagrożenia dla zdrowia i życia osób niepełnoletnich. Należy mieć na uwadze fakt, że zachowanie małoletnich osób często jest nieobliczalne.
 Nigdy nie wiadomo kiedy mogą pojawić się na drodze
- pobliże sklepów i miejsc kultów religijnych dostosowanie prędkości do większego niż zwykle ruchu pieszych jak i pojazdów mechanicznych.
- pobliże przystanków autobusowych i tramwajowych zdażają się szczególne sytuacje, gdy pasażerowie komunikacji zbiorowej, bez uprzedniego upewnienia się, biegną do już odjeżdzającej autobusu czy tramwaju. W takim przypadku szczególnie ważne jest dostosowanie prędkości, żeby kierowca mógł bez przeszkód, odpowiednio wcześniej, zareagować na taką ewentualność

10 1.2. Cele pracy

– przejścia dla pieszych - w sytuacjach jak powyżej, z tą różnicą, że zamiast na autobus, przebiegają na "późnym zielonym" lub czasem już czerwonym. Do takich sytuacji najczęściej dochodzi w miastach, gdzie tempo życia jest bardzo duże. Należy pamiętać, że ok. 25% wypadków na przejściach z sygnalizacją spowodowane jest wtargnięciem pieszego na czerwonym świetle

- tunele i mosty szczególne typy dróg, gdzie w tunelach są inne warunki oświetleniowe, oraz stan nawierzchni w większości przypadków nie jest zależny od warunków atomosferycznych. Mosty zazwyczaj nie są tak szerokie jak ulice do nich prowadzące, dlatego trzeba być przygowanym na np. zwężenia drogi.
- ilość pasów ruchu prędkość będzie większa na kilkupasmowej drodze, w porównaniu z jednopasmową
- typ nawierzchni jest to bardzo ważny czynnik, ponieważ pojazdy mechaniczne, poruszając się z nieodpowiednią prędkością po nieprzystowowanej do tego nawierzchni, np. żwirowej, bardzo szybko ulegają kosztownym uszkodzeniom
- **typ drogi** w skład których wchodzą autostrady, drogi osiedlowe, eksresowe, główne itp.
- zmiana prędkości między poszczególnymi strefami ograniczeń predkości płynna jazda jest znacznie mniej ryzykowna niż nagła zmiana prędkości pojazdu. Dlatego w sytuacjach, gdy na drodzę znajdue np. przejście dla pieszych, należy stopiowo ustawiać coraz to niższe wartości znaków sygnalizującuch ograniczenie prędkości
- przejazdy kolejowe są zarówno strzeżone jak i nie strzeżóne. W obu przypadkach należy zachować szczególną ostrożność, dlatego też prędkość musi być odpowiednio niższa. Trzeba mieć na uwadze, że przez dużą masę pojazdów szynowych, wypadki kolejowe należą do jednych z najbardziej śmiercionośnych.
- historia wypadkow również jest dość istotny czynnikiem, który aglorytm powinien uwględniać

Oprócz danych pobranych z OpenStreetMap, apliacja musi posiadać możliwość manualnego, przez zwykłego użytkownika, definiowania obiektów i przeszkód na drodze. Jest to szczególnie istotne, gdyż nie wszystkie dane umieszczone są OSM.

Kluczową kwestią działanie algorytmu są również miejsca, w których powinień umieszczać znaki ograniczenia prędkości. Kierowca odpowiednio wcześniej musi zostać poinformowany o przeszkodzie na drodze, żeby mieć wystarczającą ilość czasu na reakcję. Dla przykładu, niedopuszczalna jest sytuacja, podczas której kierowca podróżując z szybkością 90 km/h, natrafia na znak informujący o znajdującym się za nim przejściu dla pieszych. Prawidłowo działający algorytm, powinień informować o potrzebie stopniowej redukcji prędkości, poprzez umieszczanie znaków ograniczeń prędkości o coraz to mniejszych wartościach. Dzięki temu możliwe będzie zapewnienie płynność jazdy, przy zachowaniu odpowiedniego bezpieczeństwa.

1.3. Wykorzystane technologie

Cała aplikacja bazować będzię na dynamicznej stronie internetowej. W tym celu zostanie wykorzystany stos technologiczny, bazujacy na javascripcie, jakim jest MEAN stack. Miałem kilka powodów, dla którym wybrałem te konkretne technologie. Pierwszym jest rosnąca popularność tego stosu. Coraz więcej firm przekonuje sie do tej technologii, więc popyt na programistów z tego zakresu rośnie z roku na rok. Drugim powodem jest fakt, że można go uruchomić na prawie każdym urządzeniu czy platformie, dzięki czemu jest zapewniona duża przenośność kodu. Dodatkowo MEAN stack idealnie nadaje sie do prostych, skalowalnych aplikacji webowych, w których nacisk kładziony jest na intesywną wymianę danych w czasie rzeczywistym na wielu urządzeniach.

Schemat działania apliacji będzie wyglądał następująco. Dane zostaną pobrane z oficjalnej strony OpenStreetMap, 'www.openstreetmap.org'. Są one zapisane w formacie xml. W celu łatwiejszego ich przetwarzania, zostaną przekonwertowane do formatu GeoJson. Jest to rozszerzenia formatu Json o dane niezbędne do operowaniu na geograficznym typie danych. Przetworzone dane, będą przechowywane w mLab. Jest to w pełni zarządzana usługa bazy danych w chmurze, która hostuje bazy danych MongoDB.

Back-end aplikacji zostanie napisany w Node.js. Jego głównym zadaniem będzię łączenie się z mLabem w celu pobrania, zapisu, edycji i usuwania danych. Ponadto będzie komunikował się również z frontendem, po to, aby przekazywać pobrane dane. Dodatkowo, w celu zmiejszenia objętości kodu i tym samym zwiekszenia jego czytelności, zostanie użyty framework Express.js.

Za zarządzanie front-endem odpowiedzialny będzie angular w wersji 5. Na nim zostanie uruchomiona biblioteka Leaflet. Umożliwia wyświetlenie interaktywnej mapy, którą zasilić będzie można różnymi typami danych, np. w formacie GeoJson. Dzięki niej, użytkownik zyska możliwość wprowadzania swoich danych, przegladania już istniejących czy dowiedzieć sie, jakie prędkości są dozwolone na danych odcinkach dróg. Kolejną, dość istotną funkcjonalnością biblioteki Leaflet jest możliwość zarządzania wyświetlanymi obiektami. W prosty sposób będzie można ukryć wszystkie dane, wyświetlać tylko drogi, tylko ograniczenia prędkości lub różne kombinację danych, które nas interesują.

1.4. Przegląd literatury

Han(2009) podaje przykład, jak zmiana prędkości wpływa na bezpieczeństwo i płynność jazdy. Jeśli kierowca napotka zbyt wiele stref prędkości z obrębie krótkiego odcinka drogi lub zbyt wiele zmian ograniczeń prędkości w sąsiedztwie danej strefy, to wtedy może poczuć dezorientację. Zwraca uwagę, jak ważne jest rozmieszczenie odpowiednich znaków, dla zredukowania poziomu stresu kierowcy.

Nama(2016) przedstawia jak kierowcy dostosowują prędkość w sytuacji gdy znajdują się na górzystej, nieregularnej drodze. Średnia wariancja prędkości w takim terenie wynosi ok. 55%. Spowodowane jest to połączeniem cech geometrycznych zarówno poziomych jak i pionowych. Kierowcy na potrzeby bezpieczeństwa, w przypadków poziomych zakrętów, zmiejszają prędkość. Dodaktowym czynnikiem

1.4. Przegląd literatury

jest także ciągłe, zmieniające się nachylenie terenu. Uwzględnić należy również fakt, że zakręty znajdujace się na szczycie, wyglądają na znacznie bardziej niebezpieczne niż są w rzeczywistości. Wszystkie te czynniki w niekorzystny sposób wpływają na utrzymywanie stałej prędkości. Tabela 1.2. przedstawia średnią prędkość pojazdów w zależności od promienia krzywizny zakrętu, jego długości oraz nachylenia.

Tabela 1.2. Średnie prędkości pojazdów w zależności od promienia krzywizny, długości oraz nachylenia

promień krzywizny (m)	nachylenie (%)	długość zakrętu (%)	średnia prędkość (km/h)
50	4	74	48.9
100	2	139	47.8
100	-6	33	56.2
100	6	33	49.9
150	-6	31	49.8
150	-4	64	54.3
150	2	32	54.7
150	4	43	52.1
200	-4	56	54.2
200	-2	27	59.6
200	2	205	45.8
200	4	10	60.9
200	6	102	50.1
300	-6	73	58.2
300	2	74	52.6

Source: Na podstawie Expanded Operating Speed Model

W tabeli 1.2 znalazły się dane z obserwacji na drodze, na której ograniczenie prędkości wynosiło 50 km/h. Zauważyć można, że w 45% prędkość była wyższa niż dopuszczalna.

Forbes(2012) wspomina o relacji pomiędzy prędkością, a ryzykiem wypadku dla prędkość pomiędzy 25 km/h a 120 km/h. Gdy średnia prędkość ruchu jest zmiejszona, liczba wypadków i poziom niebezpieczeństwa spowodowania urazów prawie zawsze maleje. Gdy średnia prędkość ruchu wzrasta, liczba wypadków i poziom niebezpieczeństwa spowodowania urazów przeważnie rośnie. Relacja między srednią prędkością a ryzykiem wypadków może być adekwatnie opisana według poniższego modelu:

$$CMF = (V_a/V_b)^X (1.1)$$

gdzie

CMF – Współczynnik modyfikacji wypadku

 V_a – średnia prędkość przed warunkiem

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.4. Przegląd literatury

- V_b średnia prędkość po warunkiem
 - X 3.6 dla częstotliwości wypadków, w których pojawiły się ofiary śmiertelne
 - 2.0 dla częstotliwości wypadków, w których nie było ofiar śmiertelnych
 - 1.0 dla częstotliwości gdzie uszkodzeniu uległy tylko pojazdy
 - 4.5 dla ofiar śmiertelnych
 - 2.7 dla których poszkodowani ponieśli tylko obrażenia ciała

Porównuje także ograniczenia prędkości dla poszczególnych obszarów znajdujących sie w USA. Ich wynik znajduje sie w tabeli 1.3.

Tabela 1.3. Ograniczenia prędkości w różnych stanach

Stan	Prędkość	Obszar	
	40 km/h	dowolna dzielnica biznesowa	
	40 km/h	dowolna dzielnica mieszkalna	
Delaware	30 km/h	wszystkie strefach szkolnych	
	80 km/h	dwupasmowa jezdnia	
	90 km/h	czteropasmowa jezdnia	
	15 km/h	alejki	
	50 km/h	ulice dzielnic miejskich	
Minneasota	110 km/h	wiejskie autostrady międzystanowe	
Minneasota	105 km/h	miejskie autostrady międzystanowe	
	105 km/h	drogi ekspresowe	
	90 km/h	pozostałe drogi	
	25 km/h	alejki, wąskie uliczki mieszkalne	
	30 km/h	dzielnice biznesowe, strefy szkolne	
Oregon	40 km/h	dzielnice mieszkalne, parki publiczne, brzegi oceanu	
	90 km/h	wiejskie autostrady, ciężarówki na międzystanowych autostradach	
	105 km/h	pojazdy pasażerskie, lekkie cięzarówki na miedzystanowych autostradach	

Source: Na podstawie Methods and Practices for Setting Speed Limits: An Informational Report

Han(2009) zwraca uwagę, jak pora dnia wpływa na ruch na drodzę. W godzinach porannych, gdy osoby pracujące jadą do pracy, osoby nieletnie do szkół oraz w godzinach popołudniowych, gdy wracają do domów. Obserwowany jest wzmożony ruch na drogach. Więcej pojazdów na drodze, oznacza większe korki, a co za tym idzie, zmiejszenie rzeczywistej prędkści. Natomiast w pozostałych porach dnia, gdy ruch jest mniejszy, możliwe jest szybsze poruszanie się po drodze. C. Han opisuje także jak prawidłowo ustawiać znaki drogowe. Oznakowanie powinno być umieszczone w każdym odpiewiednim punkcie wdłuż drogi, np. wokół potencjalnych punktów konfliktowych, zwęrzedniach i rozwidleniach

1.4. Przegląd literatury

dróg, zmianie ich nawierzchni itp. Powtórzenia znaków, najlepiej żeby były w odległości 1000m na autostradach. W obszarach miejskich, rekomendowana odległość to 400-500 m.

Jurewicz(2014) wskazuje bezpośrednią relację pomiędzy prędkością a ryzykiem wypadku. W sytuacji gdy prędkość jest zmiejszana, liczba wypadków i rannych spada w 85 procentach przypadków. Gdy prędkość jest zwiększana, liczba wypadków i rannych wzrasta w 71 procentach przypadków. Największym dowodem na to są tak zwane badania 'przed i po'. W latach 1980 ograniczenie prędkości dla wiejskich i zewnętrznych autostrad w metropolii zostało zwiększone ze 100 km/h do 110 km/h, ale zostało spowrotem zredukowane do 100 km/h z powodu obaw o bezpieczeństwo. Badanie 'przed, w trakcie i po' zostało prowadzone na przestrzeni 2,5 roku. W sytuacji, gdy ograniczenie prędkości zostało zwiększone do 110 km/h, wskaźnik ofiar wypadków wzrósł o prawie 25%. Gdy prędkość ponownie została zmiejszona do 100 km/h wskaźnik zmalał o prawie 20%.

Vadeby i Frosman (2018) przeprowadzili badania na temat, jak nowe ograniczenia prędkości wpłynęły na bezpieczeństwo. Dla przykładu, gdy na wiejskich drogach została zmiejszona wartość dozwolonej prędkości z 90 km/h do 80 km/h, zauważono spadek liczby wypadków śmiertelnych o 14 w skali roku. Nie zauważono natomiast żadnych znaczących zmian dla liczby poważnych obrażeń ciała. Na autostradzie, po zwiększeniu dozwolonej prędkości do 120 km/h, zanotowano wzrost wypadków, w których doszło do poważnych obrażen. Nie odnotowano natomiast znaczącej zmiany względem ofiar śmiertelnych. Wzrost liczby poważnych obrażeń ciała wystąpił na wszystkich rodzajach autostrad, jednak największy wzrost został zauważony na wąskich autstradach o szerokości 21.5 m. Dla dwupasmowych jezdni, po zmiejszeniu prędkości ze 110 do 100 km/h, doszło do zmiejszenia liczby wypadków z poważnymi obrażeniami ciała o 16 w skali roku. Vadeby i Frosman (2018) wskazują także na fakt, iż wzrost dozwolonej prędkości o 10 km/h spowodował średni wzrost prędkości pojazdów mechanicznych o ok. 2-3 km/h, a zmiejszenie dozwolonej prędkości o 10 km/h, spowodoał zmiejszenie średniej prędkości pojazdów o 3 km/h.

Soriguera i inni (2017) przeprowadzili badanie, które wykazało, jak mała wartość ograniczenia prędkości wpływa na ruch uliczny. Jako rezultat, uzyskali następujące wyniki.

- Dla ograniczenia prędkości do 80 km/h, maksymalna przepustowość może wynieść 1972 samochodów na godzine na jednym pasie ruchu, dla szerokiego zakresu zajętości jezdni (17.6 25.8%) i średniej prędkości wachającej się między 51 a 73 km/h
- Dla ograniczenia predkości do 60 km/h, maksymalna przepustowość nie uległa dużej zmianie, wyniosła 1956 pojazdów na godzine na jednym pasie ruchu. Zajętość jezdni utrzymywała się na wysokim poziome 24.4 - 25.8%.
- Dla ograniczenia prędkości do 40 km/h, maksymalna przepustowość nieznacznie zmalała, do poziomu 1942 samochodów na godzine na jednym pasie ruchu. Natomiast znacznie wzrosła zajętość jedni, wynosiła 32.0 - 34.7

Z powyższych wyników, można dojść do dwóch wniosków. Pierszy jest taki, że zmiejszenie prędkości skutkuje znacznym zwiększeniem poziomu zajętości jezdni w warunkach swobodnego przepływu.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.5. Układ pracy

W skrócie, zmiejszenie prędkości pozwala osiągnąć stabilny, wysoki poziom zajętości jezdni, zapobiegając tym samym różnym wypadkom i utrzymywaniem dużej akumulacji pojazdów na drodze. Drugim wniosek jest taki, że dla małej prędkości, jaką jest 40 km/h, średnia prędkość przepływu pojazdów, wynosząca 1942 pojazdów/h/pas, może zostać podtrzymana przez dłuższy okres. W praktyce oznacza to znaczne zmiejenie prawdopodobieństwa wystąpienia korku na drodze.

1.5. Układ pracy

Praca składa się z N rozdziałów.

- Pierwszy znich zawiera wstęp, cele pracy, wykorzystane technologie oraz przegląd literatury.
- Drugi skłąda się z ...,
- W trzecim zawarto informacje na temat...
- Czwarty...

1.5. Układ pracy

Bibliografia

- [1] M. Levasseur i B. Mitchell. *Expanded Operating Speed Model*. Spraw. tech. AP-T229-13. Austroads Ltd, 2013.
- [2] C. Han i in. *Best Practice for Variable Speed Limits: Literature Review*. Spraw. tech. AP–R342/09. Austroads Incorporated, 2009.
- [3] C. Han, V. Pyta i J. Luk. *Best Practice for Variable Speed Limits: Best Practice Recommendations*. Spraw. tech. AP–R344/09. Austroads Incorporated, 2009.
- [4] C. Jurewicz i in. *Model National Guidelines for Setting Speed Limits at High-risk Locations*. Spraw. tech. AP-R455-14. Austroads Ltd, 2014.
- [5] G. Forbes i in. *Methods and Practices for Setting Speed Limits: An Informational Report*. Spraw. tech. FHWA-SA-12-004. Institute of Transportation Engineers, 2012.
- [6] Annika K. Jägerbrand i Jonas Sjöbergh. "Effects of weather conditions, light conditions, and road lighting on vehicle speed". W: *SpringerPlus* 5.1 (kw. 2016), s. 505. ISSN: 2193-1801. DOI: *10*. *1186/s40064-016-2124-6*.
- [7] Suresh Nama i in. "Vehicle Speed Characteristics and Alignment Design Consistency for Mountainous Roads". W: *Transportation in Developing Economies* 2.2 (wrz. 2016), s. 23. ISSN: 2199-9295. DOI: 10.1007/s40890-016-0028-3.
- [8] Rachid Marzoug i in. "Car Accidents at the Intersection with Speed Limit Zone and Open Boundary Conditions". W: *Cellular Automata*. Wyed. Samira El Yacoubi, Jaroslaw Wąs i Stefania Bandini. Cham: Springer International Publishing, 2016, s. 303–311. ISBN: 978-3-319-44365-2.
- [9] Harri Peltola i Juha Luoma. "Comparison of road safety in Finland and Sweden". W: *European Transport Research Review* 9.1 (grud. 2016), s. 3. ISSN: 1866-8887. DOI: 10.1007/s12544-016-0220-x.
- [10] Gundolf Jakob. "Impact of Different Lengths of Urban Road Segments on Speed-Volume Relationship". W: Contemporary Challenges of Transport Systems and Traffic Engineering. Wyed. Elżbieta Macioszek i Grzegorz Sierpiński. Cham: Springer International Publishing, 2017, s. 169–180. ISBN: 978-3-319-43985-3.

18 BIBLIOGRAFIA

[11] Constantin Alexandru Bratu i Dinu Covaciu. "Study on the Influence of Intersections with Forest Roads upon the Traffic Flows on Highways". W: *CONAT 2016 International Congress of Automotive and Transport Engineering*. Wyed. Anghel Chiru i Nicolae Ispas. Cham: Springer International Publishing, 2017, s. 710–720. ISBN: 978-3-319-45447-4.

- [12] Xiaohua Zhao i in. "Evaluation of the effects of school zone signs and markings on speed reduction: a driving simulator study". W: *SpringerPlus* 5.1 (czer. 2016), s. 789. DOI: 10.1186/s40064-016-2396-x.
- [13] Pritam Saha i in. "Speed Distribution on Two-Lane Rural Highways with Mixed Traffic: A Case Study in North East India". W: *Journal of The Institution of Engineers (India): Series A* 98.1 (czer. 2017), s. 107–113. ISSN: 2250-2157. DOI: 10.1007/s40030-017-0208-0.
- [14] Mansour Hadji Hosseinlou, Salman Aghidi Kheyrabadi i Abbas Zolfaghari. "Determining optimal speed limits in traffic networks". W: *IATSS Research* 39.1 (2015), s. 36 –41. ISSN: 0386-1112. DOI: https://doi.org/10.1016/j.iatssr.2014.08.003.
- [15] Rune Elvik. "Speed Limits, Enforcement, and Health Consequences". W: *Annual Review of Public Health* 33.1 (2012), s. 225–238. DOI: 10.1146/annurev-publhealth-031811-124634.
- [16] Akhilesh Kumar Maurya i in. "Study on Speed and Time-headway Distributions on Two-lane Bidirectional Road in Heterogeneous Traffic Condition". W: *Transportation Research Procedia* 17 (2016). International Conference on Transportation Planning and Implementation Methodologies for Developing Countries (12th TPMDC) Selected Proceedings, IIT Bombay, Mumbai, India, 10-12 December 2014, s. 428 –437. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2016.11. 084.
- [17] Ashish Dhamaniya i Satish Chandra. "Speed Prediction Models for Urban Arterials Under Mixed Traffic Conditions". W: *Procedia Social and Behavioral Sciences* 104 (2013). 2nd Conference of Transportation Research Group of India (2nd CTRG), s. 342 –351. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2013.11.127.
- [18] Anna Vadeby i Åsa Forsman. "Traffic safety effects of new speed limits in Sweden". W: *Accident Analysis and Prevention* 114 (2018). Road Safety on Five Continents 2016 Conference in Rio de Janeiro, Brazil., s. 34 –39. ISSN: 0001-4575. DOI: *https://doi.org/10.1016/j.aap.2017.02.003*.
- [19] Stanislaw Gaca i Mariusz Kiec. "Speed Management for Local and Regional Rural Roads". W: *Transportation Research Procedia* 14 (2016). Transport Research Arena TRA2016, s. 4170–4179. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2016.05.388.
- [20] Oscar Oviedo-Trespalacios i in. "Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers". W: *Accident Analysis and Prevention* 101 (2017), s. 67 –77. ISSN: 0001-4575. DOI: https://doi.org/10.1016/j.aap.2017.01.018.

BIBLIOGRAFIA 19

[21] Anne Goralzik i Mark Vollrath. "The effects of road, driver, and passenger presence on drivers' choice of speed: a driving simulator study". W: *Transportation Research Procedia* 25 (2017). World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016, s. 2061 – 2075. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2017.05.400.

- [22] Francesc Soriguera i in. "Effects of low speed limits on freeway traffic flow". W: *Transportation Research Part C: Emerging Technologies* 77 (2017), s. 257 –274. ISSN: 0968-090X. DOI: https://doi.org/10.1016/j.trc.2017.01.024.
- [23] Arthur van Benthem. "What is the optimal speed limit on freeways?" W: *Journal of Public Economics* 124 (2015), s. 44 –62. ISSN: 0047-2727. DOI: https://doi.org/10.1016/j.jpubeco.2015.02. 001.