

LOG3430 - Méthodes de test et de validation du logiciel

TP2 – Fonctions logiques

Groupe 1

Équipe 7

Hugo Lachieze-Rey (1934177) Dimitry Kamga (1898357)

Remis à:

Hanane Ikhelef

Hiver 2022

Table des matières

1	Fo	onctions logiques	3
2	Je	eux de tests	4
	2.1	Tests ACC	4
	22	Tests ICC	,
	۷.۷	10303 100	(
	2.3	Tests DNF	

1 Fonctions logiques

Avant de commencer, il est nécessaire de dresser la table de vérité de l'équation logique utiliser pour classifier les messages :

$$S = P * ((H * U) + (U * \neg G))$$

Ligne	P	Н	U	G	H * U	$\neg G$	U * ¬G	$(H * U) + (U * \neg G)$	S
1	T	T	T	T	T	F	F	T	T
2	T	T	T	F	T	T	T	T	T
3	T	T	F	T	F	F	F	F	F
4	T	T	F	F	F	T	F	F	F
5	T	F	T	T	F	F	F	F	F
6	T	F	T	F	F	T	T	T	T
7	T	F	F	T	F	F	F	F	F
8	T	F	F	F	F	T	F	F	F
9	F	T	T	T	T	F	F	T	F
10	F	T	T	F	T	T	T	T	F
11	F	T	F	T	F	F	F	F	F
12	F	T	F	F	F	T	F	F	F
13	F	F	T	T	F	F	F	F	F
14	F	F	T	F	F	T	T	T	F
15	F	F	F	T	F	F	F	F	F
16	F	F	F	F	F	T	F	F	F

2 Jeux de tests

2.1 Tests ACC

GACC:

P:(1,9),(1,10),(1,14),(2,9),(2,10),(2,14),(6,9),(6,10),(6,14)

H:(1,5)

U: (1,3), (1,4), (1,8), (2,3), (2,4), (2,8), (6,3), (6,4), (6,8)

G:(5,6)

	P	Н	U	G	S
1	T	T	T	T	T
3	T	T	F	T	F
5	T	F	T	T	F
6	T	F	T	F	T
10	F	T	T	F	F

CACC:

P:(1,9),(1,10),(1,14),(2,9),(2,10),(2,14),(6,9),(6,10),(6,14)

H:(1,5)

U: (1,3), (1,4), (1,8), (2,3), (2,4), (2,8), (6,3), (6,4), (6,8)

G:(5,6)

	P	Н	U	G	S
1	T	T	T	T	T
3	T	T	T	F	F
5	T	F	T	T	F
6	T	F	T	F	T
10	F	T	T	F	F

```
C:\Users\USER\Documents\GitHub\L0G3430\TP2\venv\Scripts\python.exe C:/Users/USER/Documents/GitHub/L0G3430/TP2/main.py

GACC test suites

d1 = <[P = 1, H = 0, U = 1, G = 0], S = True>

d2 = <[P = 0, H = 0, U = 1, G = 0], S = False>

d3 = <[P = 1, H = 1, U = 1, G = 1], S = True>

d4 = <[P = 1, H = 0, U = 1, G = 1], S = False>

d5 = <[P = 1, H = 0, U = 0, G = 0], S = False>
```

Tests GACC

RACC:

P: (1,9), (2,10), (6,14)

H:(1,5)

U: (1,3), (2,4), (6,8)

G:(5,6)

	P	H	U	G	S
1	T	T	T	T	T
3	T	T	F	T	F
5	T	F	T	T	F
6	T	F	T	F	T
9	F	T	T	T	F

2.2 Tests ICC

On distingue GICC et RICC:

- GICC : Aucune restriction sur les valeurs des c_i ;
- RICC : Les c_j doivent rester les mêmes quand c_i est évalué àvrai et quand ci est évalué à faux.

GICC:

Nous utilisons la même méthode que vue en classe (chaque clause devient majeure) mais nous la regroupons sous forme de tableau pour une meilleure présentation.

	C_i true / $S = F$	C_i true / $S = T$	C_i false / $S = F$	C_i false / $S = T$
P	7	-	12	-
Н	12	2	7	6
U	5	-	7	-
G	3	1	12	2

Lorsque la clause P est majeure, il n'existe pas de combinaisons de H, U et G permettant à P d'être inactive et à S d'être vraie.

Lorsque la clause U est majeure, il n'existe pas de combinaisons de P, H et G permettant à P d'être inactive et à S d'être vraie.

Nous avons donc les paires :

P: -, (7, 12)

H:(12,7),(2,6)

U: -, (5, 7)

G:(3,12),(1,2)

	P	Н	U	G	S
1	T	T	T	T	T
2	T	T	T	F	T
3	T	T	F	T	F
6	T	F	T	F	T
7	T	F	F	T	F
12	F	T	F	F	F

CICC:

Nous utilisons la même méthode que vue en classe (chaque clause devient majeure) mais nous la regroupons sous forme de tableau pour une meilleure présentation.

	C _i true / S = F	C_i true / $S = T$	C_i false / $S = F$	C_i false / $S = T$
P	4	-	12	-
Н	3	2	7	6
U	5	-	7	-
G	3	1	4	2

Lorsque la clause P est majeure, il n'existe pas de combinaisons de H, U et G permettant à P d'être inactive et à S d'être vraie.

Lorsque la clause U est majeure, il n'existe pas de combinaisons de P, H et G permettant à P d'être inactive et à S d'être vraie.

Nous avons donc les paires :

P: -, (4, 12)

H:(3,7),(2,6)

U: -, (5, 7)

G:(3,4),(1,2)

	P	Н	U	G	S
1	T	T	T	T	T
2	T	T	T	F	T
3	T	T	F	T	F
4	T	T	F	F	F
6	T	F	T	F	T
7	T	F	F	T	F

Nous aurions pu choisir des jeux de tests couvrant à la fois RICC et GICC car par définition, RICC couvre également GICC. Comme nous l'avons mentionné plus haut, la seule différence se fait au niveau des restrictions sur les clauses c_j lorsque c_i varie (vrai ou faux).

```
GICC test suites

d1 = <[P = 1, H = 0, U = 0, G = 0], S = 0>

d2 = <[P = 0, H = 0, U = 0, G = 0], S = False>
d3 = <[P = 0, H = 1, U = 0, G = 0], S = 0>

d4 = <[P = 0, H = 0, U = 0, G = 0], S = 0>

d5 = <[P = 1, H = 1, U = 1, G = 0], S = 1>

d6 = <[P = 1, H = 0, U = 1, G = 0], S = True>
d7 = <[P = 0, H = 0, U = 1, G = 0], S = 0>
d8 = <[P = 0, H = 0, U = 0, G = 1], S = 0>
d9 = <[P = 1, H = 1, U = 1, G = 1], S = 1>
```

2.3 Tests DNF

Voici la forme DNF de notre fonction logique :

$$S = P * H * U + P * U * \neg G$$

Négation de S :

$$\neg S = \neg (P * H * U + P * U * \neg G)$$
$$\neg S = \neg P + \neg H * G + \neg U$$

Nous avons donc 5 impliquants : {" $PHU, PU \neg G, \neg P, \neg HG, \neg U$ }

On peut dresser la table de vérité de la négation de S car elle nous sera utile pour les jeux de tests :

Ligne	P	Н	U	G	¬ P	¬HG	$\neg U$	$\neg S$
1	0	0	0	0	1	0	1	F
2	0	0	0	1	1	1	1	F
3	0	0	1	0	1	0	0	T
4	0	0	1	1	1	1	0	T
5	0	1	0	0	1	0	1	T
6	0	1	0	1	1	0	1	F
7	0	1	1	0	1	0	0	Т
8	0	1	1	1	1	0	0	T
9	1	0	0	0	0	0	1	T
10	1	0	0	1	0	1	1	Т
11	1	0	1	0	0	0	0	Т
12	1	0	1	1	0	1	0	Т
13	1	1	0	0	0	0	1	Т
14	1	1	0	1	0	0	1	T
15	1	1	1	0	0	0	0	Т
16	1	1	1	1	0	0	0	T

Pour le critère PIC, il faut que chaque impliquant soit évalué à vrai pendant que tous les autres sont évalués à faux.

Le jeu de tests suivant satisfait le critère PIC :

- $d1 = \langle P=true, H=true, U=true, G=true \rangle$, $\{true\} >$
 - o PHU=true, PU $\neg G$ = false, $\neg P$ =false, $\neg HG$ = false, $\neg U$ = false
- $d2 = \langle P = true, H = false, U = true, G = false \rangle, \{true\} \rangle$
 - o PHU=false, PU $\neg G$ = true, $\neg P$ =false, $\neg HG$ = false, $\neg U$ = false
- $d3 = \langle P = false, H = false, U = true, G = false \rangle$, $\{false\} >$
 - o PHU=false, PU $\neg G$ = false, $\neg P$ =true, $\neg HG$ = false, $\neg U$ = false
- $d4 = \langle P = true, H = false, U = true, G = true \rangle, \{false \} >$
 - o PHU=false, PU $\neg G$ = false, $\neg P$ =false, $\neg HG$ = true, $\neg U$ = false
- $d5 = \langle P = true, H = true, U = false, G = true \rangle, \{true\} \rangle$
 - o PHU=false, PU $\neg G$ = false, $\neg P$ =false, $\neg HG$ = false, $\neg U$ = true

Pour la stratégie de négation de variables (VNS), il est nécessaire de trouver les points uniques vrais (PUV) et les points presque faux (PPF) de la fonction logique S :

$$S = P * H * U + P * U * \neg G$$

Ligne	P	Н	U	G	P * H * U	$P * U * \neg G$	S
1	T	T	T	T	T	F	T
2	T	T	T	F	F	T	T
3	T	T	F	T	F	F	F
4	T	T	F	F	F	T	F
5	T	F	T	T	F	F	F
6	T	F	T	F	F	T	T
7	T	F	F	T	F	F	F
8	T	F	F	F	F	F	F
9	F	T	T	T	F	F	F
10	F	T	T	F	F	F	F
11	F	T	F	T	F	F	F
12	F	T	F	F	F	F	F
13	F	F	T	T	F	F	F
14	F	F	T	F	F	F	F
15	F	F	F	T	F	F	F
16	F	F	F	F	F	F	F

Pour l'impliquant PHU:

- Le cas 1 est un PUV;
- Les cas 10 et 11 sont des PPF pour la clause P;
- Les cas 9 et 10 sont des PPF pour la close H;
- Les cas 3 et 4 sont des PPF pour la clause U.

Pour l'impliquant PU¬G:

- Le cas 6 est un PUV;
- Les cas 10 et 14 sont des PPF pour la clause P;
- Les cas 4 et 8 sont des PPF pour la close U;
- Le cas 5 est un PPF pour la clause G.

On peut dresser la table des impliquants :

Ligno	P * H * U	$\mathbf{P} * \mathbf{U} * \neg \mathbf{G}$	P	* H *	U	P	* U * ·	¬ <i>G</i>	Cas de
Ligne	PUV	PUV		PPF			PPF		tests
			P	Н	U	P	U	G	retenu
1	X								X
2									
3					X				
4					X		X		X
5								X	X
6		X							X
7									
8							X		
9				X					
10			X	X		X			X
11			X						
12									
13									
14						X			
15									
16									

Notre jeu de test qui satisfait le critère VNS est donc :

- $d1 = \langle P=true, H=true, U=true, G=true \rangle$, $\{true\} >$
- $d2 = \langle P = true, H = true, U = false, G = false \rangle$, $\{false\} > true, U = false, G = false \rangle$
- $d3 = \langle P = true, H = false, U = true, G = true \rangle$, {false}>
- $d4 = \langle P=true, H=false, U=true, G=false \rangle, \{true \} \rangle$
- $d5 = \langle \{P = false, H = true, U = true, G = false\}, \{true\} \rangle$