Writing with NAO

Adrien Bardes, Marius Dufraisse, Pierre Guetschel, Mengda Li January 21, 2019

Goal of our project

• We want to make our robot NAO write!

-]

Methodology

Analysis of handwriting and

extraction of trajectory function

trajectory function

We formalize what we want to write by a trajectory function.

Л

Inverse kinematics

approching the goal trajectory

We approach this goal trajectory by solving a sequence of optimization problem: minimizing the errors betwenn the goal trajectory and the real trajectory.

[2]

modeling the coordinate system i

The robot is a n-joint system. We find the position of end-effector (the pen) by composing a sequence of *change of coordinates* matrix.

modeling the coordinate system ii

[4]

finding the next "angles step" by computing jacobien i

Inverse Kinematics - Jacobian

The *Jacobian* is the matrix relating the two: describing how each coordinate changes with respect to each joint angle in our system

finding the next "angles step" by computing jacobien ii

Inverse Kinematics - Jacobian

finding the next "angles step" by computing jacobien iii

finding the next "angles step" by computing jacobien iv

Algorithm 1 Numerical Inverse Kinematics

1: $\mathbf{q} \leftarrow \mathbf{q}^0$	> Start configuration
2: while $\ \boldsymbol{\chi}_{e}^{*}-\boldsymbol{\chi}_{e}\left(\mathbf{q}\right)\ >tol$ do	b While the solution is not reached
3: $\mathbf{J}_{eA} \leftarrow \mathbf{J}_{eA} \left(\mathbf{q} \right) = \frac{\partial \boldsymbol{\chi}_{e}}{\partial \mathbf{q}} \left(\mathbf{q} \right)$	
4: $\mathbf{J}_{eA}^+ \leftarrow (\mathbf{J}_{eA})^+$	
5: $\Delta \chi_e \leftarrow \chi_e^* - \chi_e \left(\mathbf{q} \right)$	▶ Find the end-effector configuration error vector
6: $\mathbf{q} \leftarrow \mathbf{q} + \mathbf{J}_{eA}^{+} \Delta \pmb{\chi}_{e}$	Update the generalized coordinates
7: end while	[6]

Bibliography i

- NAO robot illustrating a TechCrunch article.
 - https://www.robotlab.com/blog/ nao-robot-illustrating-a-techcrunch-article
- Planification et suivi de trajectoires.

 http://cas.ensmp.fr/~petit/smai/
- Interfacing of Kinect Motion Sensor and NAO Humanoid
 Robot for Imitation Learning.
 https://www.youngscientistjournal.org/article/
 interfacing-of-kinect-motion-sensor-and-nao-humanoid-ro
- Formal Kinematic Analysis of a General 6R Manipulator Using the Screw Theory

Bibliography ii

- Matt Boggus. Character Animation Forward and Inverse
 Kinematics. https://slideplayer.com/slide/12902351/
- Marco Hutter, Roland Siegwart, and Thomas Stastny. Lecture «Robot Dynamics»: Summary. https:

```
//www.ethz.ch/content/dam/ethz/special-interest/
mavt/robotics-n-intelligent-systems/rsl-dam/
documents/RobotDynamics2017/14-summary.pdf
```