Chapter 1 & 2

Types of Error Inherent Errors Conversion Errors Rounding Errors $E_a = |X-X'|$ Absolute, Relative & Percentage Errors $E_r = |(X-X')/X|$ $E_p = 100*E_r$

Roots of Non-linear Equations

Stopping Criterion

Based on behavior of the function, we can terminate iteration. Various tests are:

1. Test Absolute Error in x

$$|x_{i+1} - x_i| \le E_a$$

2. Test Relative Error in x

$$\frac{|x_{i+1}-x_i|}{x_{i+1}} \le E_r, x \ne 0$$

3. Test Value of Function at Root

$$|f_{i+1}| \leq E$$

4. Test Difference in Function Value

$$|f_{i+1} - f_i| \le E$$

5. Test Large Function Value

$$|f(x)| \le F_{max}$$

6. Test Large Value of x

$$|x_i| \leq XL$$

7. Limit on Iterations

 $Iterations \leq N$

Bisection Method

1. Find a real root of the following equations by Bisection Method correct to 4-decimal places:

a.
$$x^2 - 4x - 10 = 0$$

b.
$$sin(x) = 1/x$$

$$x^2 - 4x - 10 = 0$$

Let
$$f(x) = x^2 - 4x - 10 = 0$$

Let two initial guesses are $\mathbf{a} = -2$ and $\mathbf{b} = -1$

Since,
$$f(a) = f(-2) = (-2)^2 - 4*(-2) - 10 = 2 i.e. +ve$$

$$f(b) = f(-1) = (-1)^2 - 4*(-1) - 10 = -5 i.e. -ve$$

Therefore a root lies between -2 and -1.

Let Error Tolerance, Et = 0.0001

No. of iterations,
$$n = \frac{\log(b-a) - \log(Et)}{\log 2} = 13.28 \cong 14$$

Therefore, first approximation to the root is

$$x = \frac{a+b}{2} = \frac{-2-1}{2} = -1.5$$

Thus,
$$f(x) = f(-1.5) = (-1.5)^2 - 4*(-1.5) - 10 = -1.75$$
 i.e. -ve

Therefore, the root lies between x and -2.

Likewise, calculating other roots by tabulation method:

Iteration	a	b	f(a)	f(b)	x=(a+b)/2	f(x)	Status
1	-2	-1	2.0000	-5.0000	-1.5000	-1.7500	-ve
2	-2.0000	-1.5000	2.0000	-1.7500	-1.7500	0.0625	+ve
3	-1.7500	-1.5000	0.0625	-1.7500	-1.6250	-0.8594	-ve
4	-1.7500	-1.6250	0.0625	-0.8594	-1.6875	-0.4023	-ve
5	-1.7500	-1.6875	0.0625	-0.4023	-1.7188	-0.1709	-ve
6	-1.7500	-1.7188	0.0625	-0.1709	-1.7344	-0.0544	-ve
7	-1.7500	-1.7344	0.0625	-0.0544	-1.7422	0.0040	+ve
8	-1.7422	-1.7344	0.0040	-0.0544	-1.7383	-0.0253	-ve
9	-1.7422	-1.7383	0.0040	-0.0253	-1.7402	-0.0106	-ve
10	-1.7422	-1.7402	0.0040	-0.0106	-1.7412	-0.0033	-ve
11	-1.7422	-1.7412	0.0040	-0.0033	-1.7417	0.0003	+ve
12	-1.7417	-1.7412	0.0003	-0.0033	-1.7415	-0.0015	-ve
13	-1.7417	-1.7415	0.0003	-0.0015	-1.7416	-0.0006	-ve
14	-1.7417	-1.7416	0.0003	-0.0006	-1.7416	-0.0001	-ve

Here in 13th & 14th Iterations, value up to four decimal place is same. So, we stopped the iteration.

Therefore,
$$root = -1.7416$$

$$sin(x) = 1/x$$

Let
$$f(x) = x sin(x) - 1 = 0$$

Let two initial guesses are a = 1 and b = 1.5

Since,
$$f(a) = f(1) = 1*\sin(x) - 1 = -0.1584$$
 i.e. -ve

$$f(a) = f(1.5) = 1.5*\sin(1.5) - 1 = 0.49625$$
 i.e. +ve

Therefore, a root lies between 1 and 1.5.

First approximation to the root is

$$x = \frac{a+b}{2} = \frac{1+1.5}{2} = 1.25$$

Likewise, calculating other roots by tabulation method:

Iteration	a	b	f(a)	f(b)	x=(a+b)/2	f(x)	Status
1	1	2	-0.1585	0.4962	1.2500	0.1862	+ve
2	1.0000	1.2500	-0.1585	0.1862	1.1250	0.0151	+ve
3	1.0000	1.1250	-0.1585	0.0151	1.0625	-0.0718	-ve
4	1.0625	1.1250	-0.0718	0.0151	1.0938	-0.0284	-ve
5	1.0938	1.1250	-0.0284	0.0151	1.1094	-0.0066	-ve
6	1.1094	1.1250	-0.0066	0.0151	1.1172	0.0042	+ve
7	1.1094	1.1172	-0.0066	0.0042	1.1133	-0.0012	-ve
8	1.1133	1.1172	-0.0012	0.0042	1.1152	0.0015	+ve
9	1.1133	1.1152	-0.0012	0.0015	1.1143	0.0001	+ve
10	1.1133	1.1143	-0.0012	0.0001	1.1138	-0.0005	-ve
11	1.1138	1.1143	-0.0005	0.0001	1.1140	-0.0002	-ve
12	1.1140	1.1143	-0.0002	0.0001	1.1141	0.0000	-ve
13	1.1141	1.1143	0.0000	0.0001	1.1142	0.0001	+ve
14	1.1141	1.1142	0.0000	0.0001	1.1142	0.0000	+ve

Here in 13th & 14th Iterations, value up to four decimal place is same. So, we stopped the iteration.

Therefore, root = 1.1142

False Position Method

(Regula-falsi/Interpolation Method)

1. Using Regula-falsi method, compute the real root of the following equations correct to 3-decimal places:

a.
$$cos(x) = xe^x$$

$$\frac{1}{\text{Let } f(x) = \cos(x) - xe^x = 0}$$

Let two initial guesses are x1 = 0 and x2 = 1

Since,
$$f(x1) = f(0) = cos(0) - 0e^{0} = 1$$
 i.e. +ve

$$f(x2) = f(1) = cos(1) - 1e^{1} = -2.178$$
 i.e. -ve

Therefore, a root lies between 0 and 1.

First approximation to the root is

$$x0 = x1 - \frac{f(x1)(x2 - x1)}{f(x2) - f(x1)} = 0 - \frac{1 * (1 - 0)}{-2.178 - 1} = 0.3147$$

Likewise, calculating other roots by tabulation method:

Iteration	x1	x2	f (x 1)	f (x2)	x0	f (x0)
1	0	1	1.0000	-2.1780	0.3147	0.5199
2	0.3147	1.0000	0.5199	-2.1780	0.4467	0.2035
3	0.4467	1.0000	0.2035	-2.1780	0.4940	0.0708
4	0.4940	1.0000	0.0708	-2.1780	0.5099	0.0236
5	0.5099	1.0000	0.0236	-2.1780	0.5152	0.0078
6	0.5152	1.0000	0.0078	-2.1780	0.5169	0.0025
7	0.5169	1.0000	0.0025	-2.1780	0.5175	0.0008
8	0.5175	1.0000	0.0008	-2.1780	0.5177	0.0003
9	0.5177	1.0000	0.0003	-2.1780	0.5177	0.0001
	_	_	_		_	_

Here in 8th & 9th Iterations, value up to four decimal place is same. So, we stopped the iteration.

Therefore, root = 0.5177

Secant Method

1. Find a root of the following equations correct up to 3 decimal places by the Secant Method:

a.
$$x \log x = 1.9$$

Let
$$f(x) = x log x - 1.9 = 0$$

Let two initial guesses are x1 = 3 and x2 = 4

Since,
$$f(x1) = f(3) = 3 * log(3) - 1.9 = -0.4686 < 0$$

$$f(x2) = f(4) = 4 * log(4) - 1.9 = 0.5082 > 0$$

Therefore, a root lies between 3 and 4.

First approximation to the root is

$$x0 = x2 - \frac{f(x2)(x2 - x1)}{f(x2) - f(x1)} = 4 - \frac{0.5082 * (4 - 3)}{0.5082 - (-0.4686)} = 3.4797$$

Likewise, calculating other roots by tabulation method:

Iteration	x1	x2	f (x 1)	f(x2)	x0	f (x0)
1	3	4	-0.4686	0.5082	3.4797	-0.0156
2	3.47973	4.00000	-0.01557	0.50824	3.49519	0.00046
3	3.49519	4.00000	-0.00046	0.50824	3.49565	0.00001
4	3.49565	4.00000	-0.00001	0.50824	3.49567	0.00000

Here in 3rd & 4th Iterations, value up to four decimal place is same. So, we stopped the iteration.

Therefore, root = 3.49567

Fixed Point Iteration Method

(Iteration/Successive Approximation/Direct Substitution/Fixed Point Method)

1. Use the iteration method to find a root of the following equations to four decimal places:

a.
$$x^2 - 2x - 3 = 0$$

Given:
$$f(x) = x^2 - 2x - 3 = 0 - Eq. I$$

For fixed point iteration method, arranging Eq. I in terms of $g(x) = x^2 - 2x - 3$.

Or,
$$x^2 - 2x - 3 = 0$$

Or,
$$x^2 - 2x = 3$$

Or,
$$x(x-2) = 3$$

Or,
$$x = 3/(x-2)$$

By iteration formula, $x_{n+1} = g(x_n)$

Let x0 = 0 be the initial approximation to the root. Then,

$$x1 = \frac{3}{x0 - 2} = \frac{3}{0 - 2} = -1.5$$

Likewise, calculating other roots by tabulation method:

Iteration	Xn	X(n+1)	Error
1	0.000000	-1.500000	1.000000
2	-1.500000	-0.857143	0.750000
3	-0.857143	-1.050000	0.183673
4	-1.050000	-0.983607	0.067500
5	-0.983607	-1.005495	0.021768
6	-1.005495	-0.998172	0.007336
7	-0.998172	-1.000610	0.002436
8	-1.000610	-0.999797	0.000813
9	-0.999797	-1.000068	0.000271
10	-1.000068	-0.999977	0.000090
11	-0.999977	-1.000008	0.000030
12	-1.000008	-0.999997	0.000010
13	-0.999997	-1.000001	0.000003
14	-1.000001	-1.000000	0.000001
15	-1.000000	-1.000000	0.000000
			END

Since, error is less than 0.000001, so we stopped iteration.

Therefore, root = -1.000000