### COMPASS

# Cardinal Orientation Manipulation and Pattern-Aware Spatial Search

#### ACM SIGSPATIAL GEOSEARCH WORKSHOP

Kent O'Sullivan | Nicole Schneider | Hanan Samet



#### Presentation Scope

- 1. Overview.
- 2. Background and current limitations.
- 3. Location-centric spatial pattern matching.
- 4. Object-centric spatial pattern matching.
- 5. Demo of COMPASS algorithms and data structures.
- 6. Conclusion and future directions.



#### **GESTALT** Architecture

Data Structures & Search





#### COMPASS provides scalable Spatial Pattern Matching (SPM)

Enables spatial search over objects and locations

- Data structure: Matrix-based encoding of relative object positions
- Search: Recursively prunes the matrix until a match is identified



Collect.

Encode.

Search.

4



#### Most approaches to SPM are at least cubic in complexity

### Keyword, metric, and topological constraints:

- Ignore critical spatial information

#### **Directional** constraints:

- Encode spatial patterns as *pairwise* constraints

| Algorithm                         | Implementation |           |         | Relationship Constraints |        |             |             | Search Features |          |            | Complexity            |
|-----------------------------------|----------------|-----------|---------|--------------------------|--------|-------------|-------------|-----------------|----------|------------|-----------------------|
|                                   | Encoding       | Search    | Objects | Keyword                  | Metric | Topological | Directional | FUZZY           | Negation | Card. Inv. |                       |
| SKECa+ [13]                       | N/A            | SKQ       | P       | X                        | X      |             |             |                 | X        | N/A        | $O(rn^Q)$             |
| PQL [8]                           | Set            | SI        | P,L,R   | X                        | X      | X           | X           | X               | X        |            | Unclear               |
| McheckSsl [21, 22, 24]            | Set            | SI        | P       | X                        | X      |             |             |                 | X        |            | $O(n'^2 + 2^{n'})$    |
| GESTALT <sub>SI-Basic</sub> [18]  | Set            | SI        | P       | X                        |        |             |             |                 |          | N/A        | O(Gn)                 |
| GESTALT <sub>SI-Ranked</sub> [18] | Set            | SI        | P       | X                        |        |             |             |                 |          | N/A        | O(G(n+n'Q))           |
| GESTALT <sub>SI-Fuzzy</sub> [18]  | Set            | SI        | P       | X                        |        |             |             | X               |          | N/A        | O(QGn)                |
| PQIS [12]                         | Link           | SGM       | P       | X                        | X      |             | X           |                 | X        |            | $O(m^m)$              |
| Spacekey <sub>MPJ</sub> [10, 11]  | Link           | SKQ & SGM | P       | X                        | X      |             |             | X               | X        |            | $O(m\zeta^2 + \xi)$   |
| Spacekey <sub>SPJ</sub> [10, 11]  | Link           | SKQ & SGM | P       | X                        | X      |             |             | X               | X        |            | $O(n^4 + mn^2 + \xi)$ |
| ESPM [5]                          | Link           | SKQ & SGM | P       | X                        | X      |             |             | X               | X        |            | $O(n^{\prime n})$     |
| MSJ <sub>MSJ</sub> [19]           | Link           | CSP       | P,L,R   |                          | X      | X           | X           | X               |          |            | $O(n^Q)^*$            |
| MSJWR [19]                        | Link           | CSP       | P,L,R   |                          | X      | X           | X           | X               |          |            | $O(n^m)^*$            |
| MSJ <sub>IWR</sub> [19]           | Link           | CSP       | P,L,R   |                          | X      | X           | X           | X               |          |            | $O(n^m)^*$            |
| STARVARS [16]                     | Segment        | CSP       | P       |                          |        |             | X           |                 |          | X          | $O(m^n)$              |
| SketchMapia [15, 20]              | Link           | SGM       | P,L,R   | X                        |        | X           | X           | X               |          | X          | Unclear               |
| OSS [17]                          | Segment        | Other     | P,R     | 10000                    | X      | X           | X           |                 |          | X          | $O(n)^*$              |
| SRQL [6, 7]                       | Segment        | Other     | R       | X                        |        | X           | X           |                 | X        |            | Unclear               |
| COMPASS <sub>LO</sub> [ours]      | Set            | SI        | P       | X                        |        |             | X           |                 | X        |            | O(G(Q+n))             |
| COMPASS <sub>OO</sub> [ours]      | CM             | RGS       | P       | X                        |        |             | X           |                 |          |            | $O(G(Q+n^2))$         |
| COMPASS <sub>CI</sub> [ours]      | CM             | RGS       | P       | X                        |        |             | X           |                 |          | X          | $O(G(Q^2 + Qn^2))$    |

Table 2: Summary of related work.

Where the authors do not provide worst-case complexity, we estimate (denoted with  $\star$ ). n is the number of spatial objects in the database, m is the number of relations, G is the number of object collections (locations) to search over, Q is the number of query objects, n' is the subset of objects matching a keyword query,  $\zeta$  is a sampling threshold in [0,1] and  $\xi$  is the maximal number of partial matches to a query  $\xi$ 



#### Location-Centric Spatial Pattern Matching

Given a known set of objects and how they each relate to a central location...





#### Location-Centric Spatial Pattern Matching

Given a known set of objects and how they each relate to a central location...



Query



#### Location-Centric Spatial Pattern Matching

Given a known set of objects and how they each relate to a central location...



... determine which known locations are a match for the query.



# COMPASS: Cardinal Orientation Manipulation and Pattern-Aware Spatial Search

Searching for **objects** by their directional relations to their associated **location** 





#### Object-Centric Spatial Pattern Matching

Given a known set of objects arranged in a spatial pattern...





#### Object-Centric Spatial Pattern Matching

Given a known set of objects arranged in a spatial pattern...





#### Object-Centric Spatial Pattern Matching

Given a known set of objects arranged in a spatial pattern...



... determine if the query matches at least one set of known objects.



# COMPASS: Cardinal Orientation Manipulation and Pattern-Aware Spatial Search

Searching for **objects**recursively by their directional relations to other **objects** 





#### Cardinality-Invariant Object-Centric Spatial Pattern Matching

Given a known set of objects arranged in a spatial pattern...



... determine if any orientation of the query matches at least one set of known objects...



# COMPASS: Cardinal Orientation Manipulation and Pattern-Aware Spatial Search

Searching for **objects** by their directional relations to other **objects**, regardless of cardinal orientation of the query



#### Summary

- We present COMPASS, a suite of data structures and scalable search algorithms that enable spatial pattern matching over sets of objects associated with a location

#### Future directions

- Extend COMPASS to find *all* instead of *any* match to the query pattern.
- Extend our theoretical analysis of COMPASS with an empirical comparison against related works.
- Investigate if the COMPASS matrix-based embedding can be extended to support line and region data.



#### Questions

Kent O'Sullivan osullik@umd.edu

Nicole R Schneider nsch@umd.edu

Hanan Samet his@cs.umd.edu