Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 4. Basic Message Coding

Lecturer: Jin HUANG

2015

4.1 Mapping Messages into Message Vectors

Overview

One bit only to more complicated message.

- Source coding: maps messages into sequences of symbols.
 - Direct message coding
 - Code separation
- Modulation: maps sequences of symbols into physical signals.
 - Time-division multiplexing
 - Space-division multiplexing
 - Frequency-division multiplexing
 - Code-division multiplexing

Direct Message Coding

A unique, predefined message mark $w \in \mathcal{W}$ to represent each message $m \in \mathcal{M}$.

• One-one mapping: $|\mathcal{W}| = |\mathcal{M}|$.

Detector: maximum likelihood detection

ullet w(m) with the highest detection value.

Design of \mathcal{W}

- False positive rate
- Fidelity
- Robustness
- ...

Code separation: far away from each other.

To avoid confusion

Correlation in ${\cal W}$

- Low correlations with one another: good.
- Negative correlation with one another: better.
 - Embedding one decreases the other.
 - $\bullet \ \, \mathsf{E.g.} \,\, m = \{0,1\} \Rightarrow (2m-1) = \{1,-1\}.$

More Messages

Placing $|\mathcal{M}|$ points on the surface of an N-dimensional sphere.

Three message mark vectors in a two-dimensional plane of marking space.

Low Dimension

 $N \leq |\mathcal{M}|$: randomly generated codes are good.

Three-message vectors in three-dimensional space.

High Dimension

 $N \gg |\mathcal{M}|$: close to be orthogonal.

Three-message vectors in 256-dimensional space.

The Use of "Orthogonal"

Multiple messages in a work for

Linear correlation.

Multisymbol Message Coding

Direct message coding is not efficient

- Detect for all marks.
- For a 16 bit information: 65536.
- Detector: compare with 65536 marks.

Multisymbol Message Coding!

Sequence of Symbols

Giving an alphabet A, a length L sequence:

- $|A|^L$ different messages.
- Sequence: the order is important!
- ullet Direct message coding: L=1.

16 bit information

- $|\mathcal{A}|^1 = 65536$ for direct message coding.
- $|\mathcal{A}|^8 = 65536$ for 4-symbol 8-length coding.
 - For each index/order: compare with 4 marks.

The Index/Order

- Time-division multiplexing
- Space-division multiplexing
- Frequency-division multiplexing
- Code-division multiplexing

Time- and Space-Division Multiplexing

Divide the work into disjoint regions

- In space or time
- One symbol in each part.

Samples: A length 4 sequence.

- Audio: 4 clips in 1/4 length.
- Image: 4 blocks in 2×2 layout.

Frequency-Division Multiplexing

Disjoint bands in the frequency domain

- One symbol in each band.
- Frequency domain
 - Basis $\Phi[i]$: $\mathbf{f} = \sum_i \mathbf{x}[i]\Phi[i] = \Phi \mathbf{x}$.
 - Decomposition: $\mathbf{x} = \Phi^{-1}\mathbf{f}$.
 - Marking space
 - $\, \bullet \,$ via a linear transformation ${\cal T}$ from media space.

Samples:

- Audio: Fourier Transform
- Image: Discrete Cosine Transform

Code-Division Multiplexing

A table $\mathcal{W}_{\mathcal{AL}}$ in index and alphabet.

ullet $L imes |\mathcal{A}|$ reference marks.

Requirements on $\mathcal{W}_{\mathcal{AL}}$

Marks in \mathbf{w}_m :

- ullet m[i] and m[j] have little correlation.
 - Close to orthogonal: concurrent presence.

$$\mathcal{W}_{\mathcal{AL}}[i,a]\cdot\mathcal{W}_{\mathcal{AL}}[j,b]\to 0, \text{if } i\neq j.$$

- Only one symbol in a index.
 - Negative correlation: distinguishable.

$$\mathcal{W}_{\mathcal{AL}}[i,a]\cdot\mathcal{W}_{\mathcal{AL}}[i,b]\to -1, \text{if } a\neq b.$$
 (1)

Distortion via shifting $\boldsymbol{\Delta}$

Low cross-correlations

$$\mathcal{W}_{\mathcal{AL}}[i,a] \cdot \mathcal{W}_{\mathcal{AL}}[j+\Delta,b] \to 0, \text{if } i \neq j.$$

Equivalence to Time-Division

Pad the marks with zeros

Equivalence to Space-Division

Pad the marks with zeros

Equivalence to Frequency-Division

Convert symbols in each band back to the temporal or spatial domains.

If the transform is linear:

- Overlap in time or space.
- But zero correlation.

E_SIMPLE_8/D_SIMPLE_8 1

8-bit integer: length 8 binary string,

$$L = 8, |A| = 2.$$

- At each position
 - Distinguishable: negative correlation.

•
$$W_{AL}[i, 1] = \mathbf{w}_{ri} = -W_{AL}[i, 0].$$

- Among positions
 - Gaussian distributions with zero mean.
- Normalize \mathbf{w}_m to unit length.

E_SIMPLE_8/D_SIMPLE_8 2

Embedder

 $\mathbf{c}_w = \mathbf{c}_o + \alpha \mathbf{w}_m$

Detector

- For each i: check \mathbf{w}_{ri} .
- If is not watermarked
 - The output message is random. read 4.3

Performance

- 6 8-bit integers in each of 2000 images.
 - Larger embedding strength $\alpha = 2$.
 - The message pattern is scaled to have unit standard deviation, thus $\alpha/\sqrt{8}$.
 - 26 out of 12000 are wrong: confused by $m_a, m_b, a \neq b$.
 - Reason:
 - Maximum correlation between two different message vectors is high.

Presentation: Hamming

- Hamming distance.
- Hamming code.
- Strategy of using Hamming code in watermark