

AMENDMENT**In the Claims:****A. Kindly amend Claims 1 and 11 as follows.**

1. (currently amended) A method of fabricating a semiconductor device, having a reduced-oxygen copper-zinc (Cu-Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed by electroplating the Cu surface in a chemical solution, comprising the steps of:
 - 5 providing a semiconductor substrate having a Cu surface formed in a via;
 - providing a chemical solution;
 - electroplating the Cu surface in the chemical solution thereby forming said a Cu-Zn alloy fill in the via and on the Cu surface,
 - wherein said electroplating comprises using an electroplating apparatus,
 - 10 wherein said electroplating apparatus comprises:
 - (a) a cathode-wafer;
 - (b) an anode;
 - (c) electroplating vessel; and
 - (d) a voltage source, and
 - 15 wherein the cathode-wafer comprises the Cu surface,
 - rinsing the Cu-Zn alloy fill in a solvent;
 - drying the Cu-Zn alloy fill under a gaseous flow;
 - annealing the Cu-Zn alloy fill formed in the via and directly deposited on the Cu surface,
 - thereby forming a reduced-oxygen Cu-Zn alloy fill having an alloy surface and
20 an alloy thickness and having a uniform zinc distribution across said alloy surface
and said alloy thickness;
 - planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect structure; and
 - completing formation of the semiconductor device.

2. (original) A method, as recited in Claim 1,
wherein the chemical solution is nontoxic and aqueous, and
wherein the chemical solution comprises:
 - 5 at least one zinc (Zn) ion source for providing a plurality of Zn ions;
 - at least one copper (Cu) ion source for providing a plurality of Cu ions;
 - at least one complexing agent for complexing the plurality of Cu ions;
 - at least one pH adjuster;
 - at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.
3. (original) A method, as recited in Claim 2,
wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂),
5 zinc citrate ((O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate ((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.
4. (original) A method, as recited in Claim 2,
wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.
5
5. (previously canceled)

6. (previously amended) A method, as recited in Claim 1,
wherein the anode comprises at least one material selected from a group consisting
essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti),
platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy
5 (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc
(Pt/Cu-Zn, i.e., platinized brass).

7. (original) A method, as recited in Claim 1,
wherein said semiconductor substrate further comprises a barrier layer formed in the via
under said Cu surface, and
wherein the barrier layer comprises at least one material selected from a group consisting
5 essentially of titanium silicon nitride ($Ti_xSi_yN_z$), tantalum nitride (TaN), and
tungsten nitride (W_xN_y).

8. (original) A method, as recited in Claim 7,
wherein said semiconductor substrate further comprises an underlayer formed on the
barrier layer,
wherein said underlayer comprises at least one material selected from a group consisting
5 essentially of tin (Sn) and palladium (Pd), and
wherein said Cu surface is formed over said barrier layer and on said underlayer.

9. (original) A method, as recited in Claim 8,
wherein said underlayer comprises a thickness range of approximately 15 Å to
approximately 50 Å,
wherein said barrier layer comprises a thickness range of approximately 30 Å to
5 approximately 50 Å,
wherein said Cu surface comprises a thickness range of approximately 50 Å to
approximately 70 Å, and
wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to
approximately 700 Å.

10. (original) A method, as recited in Claim 1,
wherein the annealing steps are performed in a temperature range of approximately
150°C to approximately 450°C, and
wherein the annealing steps are performed for a duration range of approximately 0.5
5 minutes to approximately 60 minutes.

11. (currently amended) A semiconductor device, having a reduced-oxygen copper-zinc (Cu-Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed by electroplating the Cu surface in a chemical solution, fabricated by a method comprising the steps of:
5 providing a semiconductor substrate having a Cu surface formed in a via;
providing a chemical solution;
electroplating the Cu surface in the chemical solution, thereby forming a Cu-Zn alloy fill in the via and on the Cu surface;
wherein said electroplating comprises using an electroplating apparatus,
10 wherein said electroplating apparatus comprises:
(a) a cathode-wafer;
(b) an anode;
(c) electroplating vessel; and
(d) a voltage source, and
15 wherein said cathode-wafer comprises the Cu surface,
rinsing the Cu-Zn alloy fill in a solvent;
drying the Cu-Zn alloy fill under a gaseous flow;
annealing the Cu-Zn alloy fill formed in the via and directly deposited on the Cu surface,
20 thereby forming a reduced-oxygen Cu-Zn alloy fill having an alloy surface and
an alloy thickness and having a uniform zinc distribution across said alloy surface
and said alloy thickness;
planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing
formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect
structure; and
25 completing formation of the semiconductor device.

12. (original) A device, as recited in Claim 11,
wherein the chemical solution is nontoxic and aqueous, and
wherein the chemical solution comprises:
at least one zinc (Zn) ion source for providing a plurality of Zn ions;
5 at least one copper (Cu) ion source for providing a plurality of Cu ions;
at least one complexing agent for complexing the plurality of Cu ions;
at least one pH adjuster;
at least one wetting agent for stabilizing the chemical solution, all being dissolved
in a volume of deionized (DI) water.

13. (original) A device, as recited in Claim 12,
wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected
from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide
(ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂),
5 zinc citrate (O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate
((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate
((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite
(ZnSO₃), and their hydrates.

14. (original) A device, as recited in Claim 12,
wherein the at least one copper (Cu) ion source comprises at least one copper salt
selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu),
copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide
5 (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate
(Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate hydrate ((CuNO₃)₂),
copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS),
copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.

15. (previously canceled)

16. (previously amended) A device, as recited in Claim 11,
wherein the anode comprises at least one material selected from a group consisting
essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti),
platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy
5 (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc
(Pt/Cu-Zn, i.e., platinized brass).

17. (original) A device, as recited in Claim 11,
wherein said semiconductor substrate further comprises a barrier layer formed in the via
under said Cu surface, and
wherein the barrier layer comprises at least one material selected from a group consisting
5 essentially of titanium silicon nitride ($Ti_xSi_yN_z$), tantalum nitride (TaN), and
tungsten nitride (W_xN_y).

18. (original) A device, as recited in Claim 17,
wherein said semiconductor substrate further comprises an underlayer formed on the
barrier layer,
wherein said underlayer comprises at least one material selected from a group consisting
5 essentially of tin (Sn) and palladium (Pd), and
wherein said Cu surface is formed over said barrier layer and on said underlayer.

19. (original) A device, as recited in Claim 18,
wherein said underlayer comprises a thickness range of approximately 15 Å to
approximately 50 Å,
wherein said barrier layer comprises a thickness range of approximately 30 Å to
5 approximately 50 Å,
wherein said Cu surface comprises a thickness range of approximately 50 Å to
approximately 70 Å, and
wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to
approximately 700 Å.

20. (original) A semiconductor device, having a first interim reduced-oxygen copper-zinc (Cu-Zn) alloy fill formed on a copper (Cu) surface and a second interim reduced-oxygen Cu-Zn alloy fill formed on a Cu-fill, both films being formed by electroplating the Cu surface and the Cu-fill, respectively, in a chemical solution, comprising:

5 a semiconductor substrate having a via; and

an encapsulated dual-inlaid interconnect structure formed and disposed in said via, said interconnect structure comprising:

at least one Cu surface formed in said via;

10 a first interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the at least one Cu surface;

a Cu-fill formed and disposed on said interim reduced-oxygen Cu-Zn alloy fill;

 and

 a second interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the Cu-fill.