Matematica Discreta e Algebra Lineare

9 Febbraio 2018

IMPORTANTE: Scrivere il nome su ogni foglio. Mettere TASSATIVAMENTE nei riquadri le risposte, e nel resto del foglio lo svolgimento. Punti 5 ad esercizio. Per alcuni esercizi potrà eventualmente essere attribuito un punto in più per valorizzare la qualità, la chiarezza, la precisione.

Esercizio 1. Si consideri l'applicazione lineare $F_a: \mathbb{R}^3 \to \mathbb{R}^3$ che, rispetto alla base standard, ha matrice:

$$\begin{pmatrix} 4 & 0 & 0 \\ 1 & a & 1 \\ 0 & -1 & 2 \end{pmatrix} = \mathbf{A}$$

- 1) Dire se l'applicazione è diagonalizzabile quando a=3.
- 2) Dire se l'applicazione è diagonalizzabile quando a=4.
- 3) Trovare, nel caso a=2, un autovettore relativo all'autovalore 4.

4)
$$(A - xI) = \begin{bmatrix} 4-x & 0 & 0 \\ 1 & 3-x & 1 \\ 0 & -1 & 2-x \end{bmatrix}$$

4)
$$(A - xI) = \begin{bmatrix} 4-x & 0 & 0 \\ 1 & 3-x & 1 \\ 0 & -1 & 2-x \end{bmatrix}$$
. $P_A(x) = (4-x)[(3-x)(2-x)+1]$
= $(4-x)[x^2-5x+7]$

$$x^{2}-5x+7=0$$
 (=) $x=5\pm\sqrt{25-28}$ non he solvoisni real:=)

non diagonalistebile on
$$\|C\|$$
.

2) plu $a = 4$, $(A - \times I) = \begin{bmatrix} 4 - \times & 0 & 0 \\ 1 & 4 - \times & 1 \\ 0 & -1 & 2 - X \end{bmatrix}$, $P_A(x) = (4 - x) [(4 - x)/(2 - x) + 1]$

$$(4-x)(2-x)+1 = x^2-6x+9 = (x-3)^2$$
.

$$(4-x)(2-x)+1 = x^2-6x+9 = (x-3)^2$$
.
autovalore 4 con moltag. 1, autovalore 3 con maltag. 2.
 $V = Ker(A-3I) \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. non diag.

NO

3)
$$\mu = 2$$
 $A = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$

verifico
$$A\begin{pmatrix} 1\\-2\\1 \end{pmatrix} = \begin{pmatrix} 4\\-8\\4 \end{pmatrix} = 4\begin{pmatrix} 1\\-2\\1 \end{pmatrix}$$
.

3)
$$per a=2$$
 $A = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$ $V_4 = \text{Ker}(A-4I)$ $\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & -1 & -2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Esercizio 2. Risolvere le due congruenze del seguente sistema, e poi risolvere il

$$\begin{cases} x^4 \equiv 1 \pmod{55} \\ 3x^2 + x + 1 \equiv 0 \pmod{5} \end{cases}$$

(eg 2)
$$x^4 = 1$$
 (55) (a) $x^4 - 1 = 0$ (55) (b) $\begin{cases} x^4 - 1 = 0 & 15 \\ x^4 - 1 = 0 & 11 \end{cases}$

(1)
$$x^4 - 1 = 0$$
 (11) (=) $x = \pm 1$ (11)

a)
$$x^4 - 1 = 0$$
 (11) (=) $x = \pm 1$ (11)
b) $x^4 - 1 = 0$ (5) pur ogni $x \neq 0$ (75)

$$(=)$$
 $x = 1$ (55) v $x = 12 (55) v $x = -32 (55) v $x = -21 $(55)$$$$

$$x = 21$$
 (55) $v = 32$ (55) $v = -12$ (55) $v = -1$ (55)

(Sistema)

Soluzioni prima cong.

Soluzioni seconda cong.

$$\pm 1, \pm 12$$
 (55)
 $\pm 32, \pm 21$

Soluzioni sistema

Esercizio 3. Trovare per quali valori di k si ha che

$$w = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \in Span \left(\begin{pmatrix} 3 \\ k \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix} \right)$$

So luxone:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} \in \operatorname{span} \begin{pmatrix} 3 \\ \kappa \end{pmatrix} \begin{pmatrix} 2 \\ -4 \end{pmatrix} \iff \exists xy \quad \begin{pmatrix} 4 \\ 5 \end{pmatrix} = x \begin{pmatrix} 3 \\ \kappa \end{pmatrix} + 7 \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ \kappa & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

(=) (x) è robusione del sistema con matrice (3 2 | 4) 5)

Per Gauss,
$$\begin{pmatrix} 3 & 2 & | & 4 \\ K & -4 & | & 5 \end{pmatrix} \xrightarrow{R_2 - \frac{K}{3}R_1} \begin{bmatrix} 3 & 2 \\ 0 & -4 - \frac{K}{3}2 \end{bmatrix} \xrightarrow{4} \begin{bmatrix} 5 - \frac{K}{3}4 \end{bmatrix}$$

dero verificare re $-4 - \frac{\kappa}{3}2$ è un pirot. $-4 - \frac{\kappa}{3}2 = 0 \leftrightarrow \kappa = -6$

amidi se K#-6 ho solnt ore [x] e [4] é vello gran (e vir questo coso lo span é tutto IR²).

Se ninece K=6 il sistema dinente $\begin{bmatrix} 3 & 2 & | & 4 \\ 0 & 0 & | & 5-\frac{6}{3}4 \end{bmatrix}$ che mon he ralui me e $(\frac{9}{5})$ non è relle span.

Valori di k

K = -6

Esercizio 4. SIa $X = \{1, 2, ..., 100\}.$

- (1) Determinare il numero dei sottoinsiemi di due elementi $\{x,y\}$ di X in cui almeno uno fra x e y è pari.
- (2) Determinare il numero dei sottoinsiemi di due elementi $\{x,y\}$ di X tali che x+y è divisibile per 3.

(1) 74H; - Eutrambi dispani (100) - (50)

(2) [Entranlei = 0(3)] U [vmo = 1 e^{1} altro = 2] $(\frac{33}{2}) + 33.32$

Risposta 1

$$\binom{100}{2} - \binom{50}{2}$$

Risposta 2

$$\binom{33}{2}$$
 + 33.32

Esercizio 5. Si consideri un'applicazione lineare $L: \mathbb{R}^2 \to \mathbb{R}^2$ tale che

$$L\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}\quad \text{e}\quad L\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}3\\4\end{bmatrix}$$

- (1) Si scriva la matrice di L rispetto alla base standard di \mathbb{R}^2 (stessa base in partenza e in arrivo).
- partenza e in arrivo).

 (2) Si scriva la matrice di L rispetto alla base $\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}$ (stessa base in partenza e in arrivo).
- (3) Si scriva la matrice di L rispetto alla base $\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\2\end{bmatrix}\right)$ in partenza e alla

Se A,B,(some matrice)

$$\begin{pmatrix} 13 \\ 14 \end{pmatrix} \begin{pmatrix} 12 \\ 14 \end{pmatrix}$$
con BA = (scrive)

A B C

$$\begin{pmatrix} 12 \\ 12 \end{pmatrix}$$

$$\begin{pmatrix} 13 \\ 14 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 &$$

$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}$$

Risposta 1 Risposta 2 $\begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

Risposta 3

Esercizio 6. Sia a un numero intero e sia

$$f(x) = x^3 + (a+2)x^2 - ax - 3.$$

- (1) Determinare le radici razionali di f(x) nel caso a = 1.
- (2) Determinare tutti i valori di a per cui f(x) ha almeno una radice razionale.
- (3) Determinare tutti i valori di a per cui f(x) ha tre radici razionali.

 $f(x) = x^3 + (a+2)x^2 - ax - 3$. Sie $\frac{m}{m} \in \mathbb{Q}$ midoto ai minimi termini $f(\frac{m}{m}) = 0 \Rightarrow m \mid 3 \land m \mid 1 \Rightarrow \frac{m}{m} = \pm 3$.

Le radici radionali possono solo estre +3 e-3.

- (1) per a=1 ho rolo la radice -3.
- (2) Per anne radici ravionali f13)=0 v f(-3)=0

$$f(3) = 27 + (a+2)9 - a 3 - 3 = 0$$

(a)
$$a(3-1)+(9+2-1)=0$$

f(-3) = -27 + (9+2)9 - a(-3) - 3 = 0

$$(=) a[8+3] - 27+(8-) = 0$$

(a)
$$a[3+1] - 9+6-1 = 0$$

$$4a - 4 = 0$$
 (=) $a = 1$.

(3) nessumo.

Risposta 1

Risposta 2

Risposta 3

nessumo