

高等数学(上)

数学与统计学院 公共数学教学部

➡ 高等数学教学团队

第三节 函数的极限

- 函数极限的定义
- 2 函数极限的性质
- 3 内容小结与思考题

理解:函数极限的精确定义

掌握:函数极限的性质

知识目标•

重点: 函数极限的定义与性质

难点: 函数极限定义的理解

一、函数极限的定义

数列极限: 自变量 n 的变化过程只有 $n \rightarrow \infty$ 一种,

函数极限: 自变量 x 的变化过程主要有以下两种情形:

- (1) x趋于有限值 x_0 时,记作" $x \to x_0$ ".
- (2) |x| 趋于无穷大 ∞ 时,记作 " $x \to \infty$ ".

函数极限考察: 在自变量的某一变化过程中,

所对应的函数值f(x)的变化趋势.

1、自变量趋于有限值时函数的极限

当 $x \to x_0$ 时函数 f(x) 的极限就是描述当 x 无限接近于 x_0 时,函数 $f(x) \to a$ 的变化趋势.

例1 当 $x \rightarrow 2$ 时, 观察下列函数的变化趋势

(1)
$$f(x) = 2x + 1$$
, (2) $g(x) = \frac{(2x+1)(x-2)}{x-2}$, (3) $h(x) = \begin{cases} 2x+1, & x \neq 2, \\ 1, & x = 2. \end{cases}$

•

解

由上图可知, $x \to x_0$ 时f(x)的极限,与f(x)在 x_0 处是否有定义无关,只需考察x无限接近于 x_0 ,即 $x \in \overset{\circ}{U}(x_0)$ 时函数f(x)的变化趋势.

 $g(x) \rightarrow 5$

 $h(x) \rightarrow 5$

自然定义1': 如果当x 无限接近于 x_0 ,函数f(x) 的值无限接近于常数 A,则称当 x趋于 x_0 时, f(x) 以 A 为极限,记作 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A(x \to x_0)$.

问题 数学上如何描述: "当x无限接近于 x_0 , 函数 f(x)无限接近于常数A"呢?

用 $0<|x-x_0|<\varepsilon$ 来描述"x无限接近于 x_0 ", 用 $|f(x)-A|<\varepsilon$ 来描述"f(x) 无限接近于A"($\forall \varepsilon > 0$).

精确定义1 设函数 f(x)在 $U(x_0)$ 内有定义, 如果存在常数 A, $\forall \varepsilon > 0$

(不论 ε 多小),总 $\exists \delta > 0$,使得当 $0 < |x - x_0| < \delta$,恒有 $|f(x) - A| < \varepsilon$ 成立,那么常数A 就叫做函数 f(x) 当 $x \to x_0$ 时的极限,记作

$$\lim_{x \to x_0} f(x) = A \left(\overrightarrow{\mathfrak{p}} f(x) \to A \left(x \to x_0 \right) \right).$$

 $\lim_{x \to x_0} f(x) = A \Leftrightarrow$

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$.

$$\lim_{x \to x_0} f(x) = A$$
 的几何意义为:

当x在点 x_0 的去心 δ 邻域时,

函数 y = f(x)的图形完全落在

以直线 y = A 为中心线, 宽为 2ε

的带形区域内.

- 注意: (1) ε 是任意给定的小正数, 它表示 f(x)与 A的无限接近;
 - (2) δ 是用来刻画 x 与 x_0 接近程度的, 是保证 f(x) -A $< \varepsilon$ 成立的充分条件, δ 只与 ε 有关;
 - (3) δ 不唯一, 若当 $0<|x-x_0|<\delta_1$ 时,有 $|f(x)-A|<\varepsilon$ 成立,则凡比 δ_1 小的正数均可选作 δ ;
 - (4) $0 < |x x_0|$ 表示 $x \neq x_0$ (无限接近不要求零距离), 故函数极限与 f(x) 在点 x_0 处是否有定义无关.

例2 证明 $\lim_{x\to 1}(2x-1)=1$.

证明 $\forall \varepsilon > 0$,取 $\delta = \frac{\varepsilon}{2}$,当 $0 < |x-1| < \delta$ 时,恒有

$$|f(x)-A| = |(2x-1)-1| = 2|x-1| < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$$

成立, 由定义1可知, $\lim_{x\to 1}(2x-1)=1$.

例3 证明: 当 $x_0 > 0$ 时, $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

证明 $\forall \varepsilon > 0$,取 $\delta = \min\{x_0, \sqrt{x_0}\varepsilon\}$,当 $0 < |x-x_0| < \delta$ 时, 恒有

$$\left| f(x) - A \right| = \left| \sqrt{x} - \sqrt{x_0} \right| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| \le \frac{1}{\sqrt{x_0}} \left| x - x_0 \right| < \frac{1}{\sqrt{x_0}} \cdot \sqrt{x_0} \varepsilon = \varepsilon$$

成立,由定义1可知, $\lim \sqrt{x} = \sqrt{x_0}$.

例4 证明 $\lim_{x\to x_0} \sin x = \sin x_0$.

证: $\forall \varepsilon > 0$, 下面仅在 $|x - x_0| < \pi$ 内讨论,由

$$\begin{aligned}
|f(x) - A| &= \left| \sin x - \sin x_0 \right| = \left| 2 \cos \frac{x + x_0}{2} \sin \frac{x - x_0}{2} \right| \le \left| 2 \sin \frac{x - x_0}{2} \right| \\
&\le \left| 2 \frac{x - x_0}{2} \right| = \left| x - x_0 \right| < \varepsilon, \quad \text{ $\not = $} \text{,}
\end{aligned}$$

只要取 $\delta = \min\{\pi, \varepsilon\}$, 当 $0 < |x - x_0| < \delta$ 时, 恒有 $|f(x) - a| < \varepsilon$.

故有 $\lim_{x \to x_0} \sin x = \sin x_0$. 同理可证: $\left[\lim_{x \to x_0} \cos x = \cos x_0\right]$.

2、自变量趋于无穷大时函数的极限

观察: 数列 $x_n = \frac{1}{n}$ 与函数 $y = \frac{1}{x}$ 的图形

可以看出:
$$\lim_{n\to\infty}\frac{1}{n}=0$$
, $\lim_{x\to\infty}\frac{1}{x}=0$.

$y = \frac{1}{x}$ $x_n = \frac{1}{n}$ $1 \quad 2 \quad 3 \cdots n \cdots x$

回顾 数列极限的定义:

 $\forall \varepsilon > 0$, $\exists N > 0$, 使得当n > N 时, 有 $|x_n - a| < \varepsilon$, 则 $\lim_{n \to \infty} x_n = a$.

类比:将项数n替换为连续变量x,用x表示很大的正数,

|x| > X 表示与原点距离比X 还远的所有点x ,即 $x \to \infty$

□ _ 函数

类推: 把 $\lim_{n\to\infty} x_n = a$ 与 $\lim_{x\to\infty} f(x) = A$ 类比,将 x_n 替换为 f(x), n 替换为 x, N 替换为 x (大正数), n > N 替换为 |x| > X, 即将变化过程 $n \to \infty$ 替换为 $x \to \infty$.

当 $x \to \infty$ 时函数 f(x) 的极限

定义2 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当|x| > X时, 有 $|f(x) - A| < \varepsilon$ 成立,

则称函数f(x) 当 $x \to \infty$ 时以 A 为极限, 记作 $\lim_{x \to +\infty} f(x) = A$ 或 $f(x) \to A(x \to \infty)$.

思考 从几何的角度来表示该定义的意义?

由于
$$|f(x)-A| < \varepsilon \iff A-\varepsilon < f(x) < A+\varepsilon$$
,则 $\lim_{x\to\infty} f(x) = A$ 的

几何意义为: $\forall \varepsilon > 0$, $\exists X > 0$,

使得当|x| > X时,曲线y = f(x)上对应的点必落在两条水平行直线之间.

注:该图并不限于偶函数,例如: $\lim_{x\to\infty}\frac{1}{x}$

例5 证明
$$\lim_{x\to\infty}\frac{\sin x}{x}=0$$
.

证明
$$\forall \varepsilon > 0$$
 , 取 $X = \frac{1}{\varepsilon}$, 当 $|x| > X$ 时,有
$$\left| \frac{\sin x}{x} - 0 \right| = \left| \frac{\sin x}{x} \right| < \frac{1}{|x|} < \frac{1}{X} = \varepsilon$$

成立, 由定义2可知, $\lim_{x\to\infty} \frac{\sin x}{x} = 0$.

₹.

例6 证明
$$\lim_{x\to\infty}\frac{x}{x+2}=1$$
.

证明: $\forall \varepsilon > 0$,不妨设 |x| > 4,由

$$\left|\frac{x}{x+2}-1\right| = \frac{2}{|x+2|} < \frac{4}{|x|} < \mathcal{E}, \quad \text{All } : |x| > \frac{4}{\varepsilon}$$

取
$$X = Max \left\{ \frac{4}{\varepsilon}, 4 \right\}$$
, 当 $|x| > X$ 时,有 $\left| \frac{x}{x+2} - 1 \right| < \varepsilon$

成立, 由定义2可知, $\lim_{x\to\infty}\frac{x}{x+2}=1$.

₹.

3、 极限不存在的两种常见情形 (用x→□ 表示x→ x_0 或x→∞)

(1) 当 $x \to \square$ 时,函数的绝对值无限增大.

当 | f(x) | 随着 x 的变化而无限增大时,则f(x) 的值不向某一定值

无限接近,因此函数极限 $\lim_{x\to 0} f(x)$ 不存在.

但 f(x) 有一定的变化趋势:对应函数f(x)的绝对值无限增大,

这时称函数 f(x) 为 $x \to \square$ 时的无穷大,记作 $\lim_{x \to \square} f(x) = \infty$

例如: $\lim_{x\to 0} \frac{1}{x} = \infty$

(2) 当 x →□ 时,函数没有确定的变化趋势.

例如 $f(x) = \sin x$,当 $x \to \infty$ 时,f(x) 的值在 -1 与1之间不断地来回振荡,

无确定的趋向. 当取 $x = k\pi(k \in \mathbb{Z}) \to \infty$ $(k \to \infty)$, $\sin x = \sin k\pi = 0$;

即x→∞时sinx的值在-1与1之间变化、振荡,因此

lim sin x 不存在. 类似下列极限也同样是不存在:

$$\lim_{x\to\infty}\cos x, \quad \lim_{x\to 0}\cos\frac{1}{x} \quad \lim_{x\to 0}\sin\frac{1}{x},$$

4、子极限

定义3 在自变量的某变化过程的基础上,增加了附加条件的变化过程称为原变化过程的**子过程**. 子过程对应的极限称为原极限的**子极限**.

- (1) 常见的 $x \to x_0$ 的子过程有:

如极限

$$\lim_{x \to x_0^-} \sqrt{x_0 - x} = 0$$

$$\lim_{x \to x_0^+} \sqrt{x} = 0$$

(2) 常见的 $x \to \infty$ 的子过程有:

- $1 \quad "x \to \infty" \quad \exists \quad x > 0 \iff "x \to +\infty"$

如极限:

$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$

$$\lim_{x \to -\infty} \frac{1}{2} = 0$$

上述几个子过程的极限也常称为单侧极限.

(3) 函数的单侧极限的精确定义:

₹.

① 当 $x \to \infty$ 时函数 f(x) 的单侧极限定义:

定义4 $\forall \varepsilon > 0$, $\exists X > 0$,使得当x > X 时,有 $|f(x) - A| < \varepsilon$ 成立,则称函数f(x) 当 $x \to +\infty$ 时以 A 为极限,记作 $\lim_{x \to +\infty} f(x) = A$ 或 $f(x) \to A(x \to +\infty)$.

定义5 $\forall \varepsilon > 0$, $\exists X > 0$,使得当 x < -X 时,有 $|f(x) - A| < \varepsilon$ 成立,则称函数 f(x) 当 $x \to -\infty$ 时以 A 为极限,记作 $\lim_{x \to -\infty} f(x) = A$ 或 $f(x) \to A(x \to -\infty)$.

 $\lim_{x\to +\infty} f(x) = A$ 的几何意义为: 当 x > X 时,函数 y = f(x)的图形 夹在两条平行线 $y = A - \varepsilon$ 与 $y = A + \varepsilon$ 之间,如右下图.

 $\lim_{x \to \infty} f(x) = A$ 的有类似的几何意义, 如左下图.

₹.

② 当 $x \to x_0$ 时函数 f(x) 的单侧极限定义:

定义6 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $0 < x - x_0 < \delta$ 时,有 $|f(x) - A| < \varepsilon$ 成立,则称函数f(x) 当 $x \to x_0^+$ 时以 A 为极限,记作 $\lim_{x \to x_0^+} f(x) = A$ 或 $f(x) \to A(x \to x_0^+)$.

定义7 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $0 < x_0 - x < \delta$ 时,有 $|f(x) - A| < \varepsilon$ 成立,则称函数f(x) 当 $x \to x_0^-$ 时以 A 为极限,记作 $\lim_{x \to x_0^-} f(x) = A$ 或 $f(x) \to A(x \to x_0^-)$.

 $\lim_{x \to x_0^+} f(x) = A$ 的几何意义: 当 $x_0 < x < x_0 + \delta$ 时,函数 y = f(x)的图形 夹在两条平行线 $y = A - \varepsilon$ 与 $y = A + \varepsilon$ 之间,如右下图.

 $\lim_{x \to x_0^-} f(x) = A$ 的有类似的几何意义,如左下图.

容易证得以下的充要条件:

定理1(1)
$$\lim_{x \to x_0} f(x) = a \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = a$$

(2)
$$\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = a$$

证明:略.(利用单侧极限的定义与极限定义即可证得)

•••

例7 验证 $\lim_{x\to 0} \frac{|x|}{x}$ 不存在.

证明 由于
$$\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = \lim_{x\to 0^+} 1 = 1$$
,

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

由定理1知, $\lim_{x \to 0} f(x)$ 不存在.

例9 验证 $\lim_{x\to 0} e^{x}$ 不存在.

证明 由于,
$$\lim_{x\to 0^+} e^{\frac{1}{x}} = +\infty$$

$$\lim_{x\to 0^{-}} e^{\frac{1}{x}} = 0 = \lim_{x\to 0^{-}} (-1) = -1 ,$$

由定理1知, $\lim_{x\to 0} e^{\frac{1}{x}}$ 不存在.

同理可知:

 $\lim_{x\to\infty} \arctan x$ 不存在.

 $\lim_{r\to\infty} \operatorname{arccot} x$ 不存在.

三、函数极限的性质

下列性质仅以 $x \rightarrow x_0$ 的变化过程为例,其它变化过程类似.

定理 2(唯一性) 若极限 $\lim_{x\to x_0} f(x)$ 存在,则该极限必唯一.

证明: 略.(类似数列极限的唯一性证明)

定理 3(局部有界性) 若 $\lim_{x\to x_0} f(x) = A$, 则存在常数 M > 0 和 $\delta > 0$,

使得当 $0 < |x - x_0| < \delta$ 时, 有|f(x)| < M.

证明:
$$\lim_{x\to x_0} f(x) = A \Rightarrow 取 \varepsilon = 1$$
,则 $\exists \delta > 0$, $\mathring{=} 0 < |x-x_0| < \delta$ 时,有

$$|f(x)-A| < ε = 1$$
, $∃$ $∃$ $|f(x)| = |f(x)-A+A| ≤ |f(x)-A| + |A| < 1+|A|$

因此在 x_0 的某去心邻域 $\{x|0<|x-x_0|<\delta\}$ 内,f(x)有界.

定理 4(局部保号性) 若 $\lim_{x \to x_0} f(x) = A$, 且 A > 0 (或 A < 0), 则存在常数 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时,有 f(x) > 0(或 f(x) < 0).

证明: 仅就A>0的情形证明,

$$|f(x) - A| < \varepsilon = \frac{A}{2} \Longrightarrow A - \frac{A}{2} < f(x) \Longrightarrow f(x) > \frac{A}{2} > 0$$
.

说明:在自变量的某一局部变化范围内,函数值 f(x) 与极限 值 A 保持相同的符号.

•

由定理4, 易得以下推论:

推论(局部保号性逆否定理) 若在 x_0 的某去心领域内 $f(x) \ge 0$

(或 $f(x) \le 0$), 且 $\lim_{x \to x_0} f(x) = A$, 则 $A \ge 0$ (或 $A \le 0$).

证明: (反证法) 仅证 $f(x) \ge 0$ 的情形. 假设 $A \ge 0$ 不成立, 即设

A < 0,那么由定理5知,存在 x_0 的某一去心邻域,在该领

域内 f(x) < 0, 这与 $f(x) \ge 0$ 矛盾, 所以 $A \ge 0$.

结论(函数极限与数列极限的关系) 若极限 $\lim_{x\to x_0} f(x)$ 存在, $\{x_n\}$

为函数f(x)的定义域内任一收敛于 x_0 的数列,且满足:

 $x_n \neq x_0 (n \in N^+)$, 那么相应的函数值数列 $\{f(x_n)\}$ 必收敛, 且

$$\lim_{n\to\infty} f(x_n) = \lim_{x\to x_0} f(x).$$

四、内容小结

> 定义(极限的统一定义)

$$\lim_{n \to \infty} f(n) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A;$$

$$\lim_{x \to \infty} f(x) = A; \quad \lim_{x \to +\infty} f(x) = A; \quad \lim_{x \to -\infty} f(x) = A.$$

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow$$

 $\forall \varepsilon > 0$, 3某时刻, 当x超过此时刻后, 恒有 $|f(x) - A| < \varepsilon$.

> 充要条件:

(1)
$$\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = A \coprod \lim_{x \to -\infty} f(x) = A$$
.

(2)
$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = A \coprod \lim_{x \to x_0^+} f(x) = A$$
.

▶ 性质: 唯一性、局部有界性、局部保号性、

子列收敛性.

思考题:

- 1、定理4的推论中,条件" $f(x) \ge 0$ (或 $f(x) \le 0$)"改为"f(x) > 0 (或f(x) < 0)",结论是否发生变化? 【答:结论不变】
- 2、证明:若 $\lim_{x \to x_0} f(x) = A(A \neq 0)$,则存在 x_0 的某一去心邻域

$$\overset{\circ}{U}(x_0)$$
, 当 $x \in \overset{\circ}{U}(x_0)$ 时, 有 $|f(x)| > \frac{|A|}{2}$.

【证明:略】

给我最大快乐的, 不是已懂得知识, 而是不断的学习, 不是已有的东西, 而是不断的获取, 不是已达到的高度, 而是继续不断的攀登。

惠斯

