Smart Environments - AutoMiam Spécifications

Encadrant : Lionel Médini

Étudiants : Titouan Knockaert et Gaspard Goupy

M2 Intelligence artificielle - Université Claude Bernard Lyon 1

Table des matières

Cas d'utilisation	2
Architecture matérielle	3
Architecture logicielle	4
APIs	6

Cas d'utilisation

Les cas d'utilisation du système sont relativement simples et peu nombreux. Ils ne nécessitent pas d'intéractions complexes acteurs - système.

La figure 1. ci-contre présente un cas d'utilisation centré sur le chien.

La figure 2. ci-contre présente un cas d'utilisation centré sur le maître.

Architecture matérielle

Le système nécessite plusieurs composants pour fonctionner :

- Carte Arduino modèle "Uno"
- Des capteurs : caméra et photorésistance
- Un actionneur : servomoteur
- Ordinateur

La figure 3. détaille les relations entre les différents composants.

Figure 3. Architecture matérielle

Le branchement de l'arduino est décrit *figure* 4. À noter que l'on peut ajouter un condensateur pour éviter les chutes de tension, selon le servomoteur utilisé.

Figure 4. Architecture arduino

Architecture logicielle

Le système est divisé en plusieurs modules indépendants :

- **Module Dog Identifier** : serveur python contenant les chiens enregistrés et permettant l'identification d'un chien.
- **Module Pet feeder** : applications Node.js pour exposer l'objet connecté (**App Thing**) et exécuter la logique du système (**App Controller**).
- **Module User Interface** : regroupe les informations sur le système, les chiens enregistrés, l'ajout de chiens dans le système.

La figure 5 illustre les relations entre les différents modules.

Figure 5. Architecture logicielle

Les figure 6 et 7 décrivent (globalement) les intéractions entre les différents modules.

Figure 6. Intéractions entre les modules - orienté chien

Figure 7. Intéractions entre les modules - orienté utilisateur

APIs

Module Dog Identifier

/api/animals/identify Méthode: POST arguments: { img: <base64> } Réponse: 200 /api/animals Méthode: GET

Methode : GET arguments : "" Réponse : 200

/api/animals/<id>

Méthode : GET arguments : "" Réponse : 200

/api/animals/eat/<id>

Méthode : PUT

arguments:{ eaten: <int> }

Réponse: 204, 404

<u>/api/animals/add</u>

Méthode : POST

arguments : { name: <string>, img: <base64>, max_food: <int> }

Réponse: 201, 400

Module Pet Feeder - App "Thing"

L'objet connecté est exposé suivant la spécification WoT du W3C : voir <u>ici</u>. Une requête GET à l'URL source de l'application retourne un objet JSON-LD détaillant toutes les intéractions possibles avec l'objet connecté, notamment :

1. Propriétés

- <u>food_ration</u> retourne la proportion de nourriture par activation
- nb_activation retourne le nombre d'activation à la journée
- <mark>last_activation</mark> retourne la date de la dernière activation

2. Actions:

- activate active le moteur
- picture prend une photo avec la caméra