

Perceptron

Professor Ciniro Nametala
Bacharelado em Engenharia de Computação
Instituto Federal de Minas Gerais – Campus Bambuí

Código da disciplina: BiSuCOM.553

Oferta: 2-2025

https://tinyurl.com/aula3rnaciniro

Agenda

- 1. Implementação em hardware
- 2. Perceptron
 - 1. Análise matemática
 - 2. Regra de Hebb
- 3. Projeto

Introdução

A **Perceptron** foi idealizada por Rosenblatt em 1958. Seu algoritmo de treinamento foi elaborado por Hebb em 1959.

É a configuração mais simples possível de uma RNA.

Seu objetivo inicial era simular uma retina humana identificando padrões geométricos.

Função de ativação

Na Perceptron clássica a função de ativação será sempre uma degrau ou degrau bipolar, logo é possível realizar a classificação de apenas dois padrões:

Degrau: 0 ou 1

Degrau bipolar: -1 ou 1

Separabilidade de amostras

Sistema de separabilidade

$$y = \begin{cases} 1, & \sum w_j . x_i - \theta \ge 0 \\ -1, & \sum w_j . x_i - \theta < 0 \end{cases}$$

Equação da reta de separabilidade

$$w_1.x_1 + w_2.x_2 - \theta = 0$$

Separação linear e não linear

Problema com classificação possível de ser realizado com uma Perceptron: Linear

Problema com classificação impossível de ser realizado com uma Perceptron: Exige uma função não linear

A Regra de Hebb é baseada em duas premissas:

- 1. Ajuste excitatório: Se a saída produzida pela rede está coincidente com a saída esperada, os pesos sinápticos serão então incrementados proporcionalmente aos valores dos sinais de entrada.
- 2. Ajuste inibitório: Se a saída produzida pela rede é diferente da saída esperada, os pesos sinápticos serão então decrementados proporcionalmente aos valores dos sinais de entrada.

$$\overline{\overline{\omega}_i} = \overline{\omega}_{i-1} + \eta \cdot (y - \hat{y}) \cdot \overline{x}_i$$

O vetor de pesos da época atual (indicada por i) que serão atualizados

A Regra de Hebb é baseada em duas premissas:

- 1. Ajuste excitatório: Se a saída produzida pela rede está coincidente com a saída esperada, os pesos sinápticos serão então incrementados proporcionalmente aos valores dos sinais de entrada.
- 2. Ajuste inibitório: Se a saída produzida pela rede é diferente da saída esperada, os pesos sinápticos serão então decrementados proporcionalmente aos valores dos sinais de entrada.

$$\overline{\omega}_i = \overline{\omega}_{i-1} + \eta \cdot (y - \hat{y}) \cdot \overline{x}_i$$

O vetor de pesos da época anterior (indicada por i-1)

A Regra de Hebb é baseada em duas premissas:

- 1. Ajuste excitatório: Se a saída produzida pela rede está coincidente com a saída esperada, os pesos sinápticos serão então incrementados proporcionalmente aos valores dos sinais de entrada.
- 2. Ajuste inibitório: Se a saída produzida pela rede é diferente da saída esperada, os pesos sinápticos serão então decrementados proporcionalmente aos valores dos sinais de entrada.

$$\overline{\omega}_i = \overline{\omega}_{i-1} + \overline{\eta} \cdot (y - \hat{y}) \cdot \overline{x}_i$$

A taxa de aprendizagem que determina a velocidade e qualidade da convergência do erro

A Regra de Hebb é baseada em duas premissas:

- 1. Ajuste excitatório: Se a saída produzida pela rede está coincidente com a saída esperada, os pesos sinápticos serão então incrementados proporcionalmente aos valores dos sinais de entrada.
- 2. Ajuste inibitório: Se a saída produzida pela rede é diferente da saída esperada, os pesos sinápticos serão então decrementados proporcionalmente aos valores dos sinais de entrada.

$$\overline{\omega}_i = \overline{\omega}_{i-1} + \eta \cdot (y - \hat{y}) \cdot \overline{x}_i$$

 Δ , erro, tolerância: a diferença entre o valor esperado y e o valor previsto \hat{y}

A Regra de Hebb é baseada em duas premissas:

- 1. Ajuste excitatório: Se a saída produzida pela rede está coincidente com a saída esperada, os pesos sinápticos serão então incrementados proporcionalmente aos valores dos sinais de entrada.
- 2. Ajuste inibitório: Se a saída produzida pela rede é diferente da saída esperada, os pesos sinápticos serão então decrementados proporcionalmente aos valores dos sinais de entrada.

$$\overline{\omega}_i = \overline{\omega}_{i-1} + \eta \cdot (y - \hat{y}) \cdot \overline{x_i}$$

O vetor com os valores de entrada na época atual i

Perceptron de camada simples Fases de treinamento

Fase forward:

$$u = \sum_{i=1}^{n} w_i \cdot x_i - \theta$$

$$y = g(u)$$

Fase backward:

$$\overline{\omega}_i = \overline{\omega}_{i-1} + \eta \cdot (y - \hat{y}) \cdot \overline{x}_i$$

Perceptron de camada simples Pseudocódigo do treinamento

```
1 Obter o conjunto de amostras de treinamento x;
 2 Do vetor de saídas y, associar a saída esperada y_i para cada x_i;
 3 Inicializar o vetor de pesos w com valores aleatórios entre -1 e 1;
 4 Definir a taxa de aprendizagem \eta com valor entre 0 e 1;
 \mathbf{5} \ n \leftarrow \text{número de amostras em } \mathbf{x};
 6 tolerancia \leftarrow 0.01;
 7 erro medio \leftarrow 1;
 8 erros epocas \leftarrow [];
 9 epoca \leftarrow 0;
10 maxepocas \leftarrow 100;
11 criterioerro \leftarrow Verdadeiro;
12 criterioepocas \leftarrow Verdadeiro;
13 enquanto (criterioerro e criterioepocas) faça
        erro \leftarrow 0;
14
        epoca \leftarrow epoca + 1;
15
        Embaralha as amostras do conjunto de treinamento \mathbf{x};
16
        para i \leftarrow 1 até n faça
17
             Calcular potencial: u \leftarrow \mathbf{w}^{\top} x_i;
18
             Calcular saída: \hat{y} \leftarrow degrau(u);
19
             Calcular erro da amostra: e \leftarrow y_i - \hat{y};
20
             Aplica a regra de Hebb: \mathbf{w} \leftarrow \mathbf{w} + \eta e x_i;
21
            erro \leftarrow erro + |e|;
22
        fim
\mathbf{23}
        Calcular erro médio: erro\_medio \leftarrow \frac{erro}{n};
24
        Armazenar o erro médio da época:
25
         erros epocas[epoca] \leftarrow erro medio;
        Atualizar o critério de erro:
26
         criterioerro \leftarrow erro \quad medio >= tolerancia;
        Atualizar o critério de épocas:
         criterioepocas \leftarrow epoca \le maxepocas;
```


28 fim

Perceptron de camada simples Pseudocódigo da operação

- 1 Obter o vetor de pesos treinados w;
 2 Obter o conjunto de amostras para previsão x;
- $\mathbf{3} \ n \leftarrow \text{número de amostras em } \mathbf{x};$
- 4 Inicializar vetor de previsões $\hat{\mathbf{y}}$ com tamanho n;
- 5 para $i \leftarrow 1$ até n faça
- 6 | Calcular potencial: $u \leftarrow \mathbf{w}^{\top} x_i$;
- 7 | Calcular previsão: $\hat{y}_i \leftarrow degrau(u)$;
- 8 | Armazenar \hat{y}_i no vetor de previsões $\hat{\mathbf{y}}$;
- 9 fim
- o Retornar vetor $\hat{\mathbf{y}}$ com as previsões;

Classificação de flores Dataset IRIS

Pela análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza (P1 ou P2) a partir da medição de três grandezas (x1, x2 e x3), que representam algumas das suas propriedades físico-químicas. A equipe de engenheiros e cientistas pretende usar uma rede Perceptron para executar a classificação automática dos óleos.

Assim, baseado nas informações coletadas do processo, formou-se o conjunto de treinamento apresentado na tabela do slide a seguir, tomando-se por convenção o valor -1 para óleo pertencente a classe P1 e o valor 1 para óleo da classe P2.

Para tanto, o neurônio Perceptron a ser usado terá três entradas e uma saída conforme ilustrado a seguir:

Utilizando o algoritmo de aprendizado de Hebb, e assumindo-se a taxa de aprendizagem como 0.01, faça as seguintes atividades:

- 1) Treine a rede Perceptron cinco vezes, sempre iniciando o vetor de pesos **w** com valores aleatórios entre 0 e 1. Garanta que em cada uma das cinco tentativas de treinamento os pesos iniciais do vetor **w** sejam diferentes. Garanta que o erro seja baixo testando diferentes números de épocas.
- 2) Registre os resultados dos pesos antes e depois dos treinos, em cada um dos cinco treinos conforme a tabela a seguir:

TREINO	Vetor de pesos iniciais				Vetor de pesos após o treinamento				TOTAL
	wo	W1	W2	W3	W0	W1	W2	W3	DE ÉPOCAS
1									
2									
3									
4									
5									

3) Após o treinamento dos modelos de Perceptrons, aplique-os separadamente na classificação das amostras de óleo da tabela abaixo. Anote na tabela os resultados das saídas (classes) para cada amostra e para cada modelo.

AMOSTRA	X1	Х2	ХЗ	Y (T1)	Y (T2)	Y (T3)	Y (T4)	Y (T5)
1	-0,3665	0,0620	5,9891					
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548					

- 4) Qual sua taxa de acerto para cada modelo?
- 5) Qual o efeito do número de épocas na qualidade dos resultados?
- 6) Qual o efeito da taxa de aprendizagem na qualidade dos resultados?
- 7) Discorra se é possível afirmar se as suas classes, neste problema, são linearmente separáveis.

Gere um relatório contendo os seus resultados e respostas para cada uma das perguntas. Depois envie no AVA até a data limite.