ZUKER et al.

Application No.: 09/492,029

Page 3

Status of the claims

New claims 21-29 have been added, which are directed to preferred aspects of the invention. All of these specific features find support in the specification, particularly Example II.

CONCLUSION

In view of the foregoing, Applicants believe all claims now pending in this Application are in condition for allowance and an action to that end is urged. If the Examiner believes a telephone conference would aid in the prosecution of this case in any way, please call the undersigned at 415-576-0200.

Respectfully submitted

Annette S. Parent Reg. No. 42,058

TOWNSEND and TOWNSEND and CREW LLP

Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834

Tel: (415) 576-0200 Fax: (415) 576-0300

Page 4

APPENDIX A PENDING CLAIMS

- 1. (previously once amended) A method for identifying a compound that modulates taste signaling in taste cells, the method comprising the steps of:
- (i) contacting the compound with a taste cell specific G-protein beta polypeptide, the polypeptide comprising greater than 70% amino acid sequence identity to an amino acid sequence of SEQ ID NO:3 or SEQ ID NO:5; and
- (ii) determining the functional effect of the compound upon the polypeptide.
- 2. (as filed) The method of claim 1, wherein the polypeptide specifically binds to polyclonal antibodies generated against SEQ ID NO:3 or SEQ ID NO:5.
- 3. (as filed) The method of claim 1, wherein the functional effect is a chemical effect.
- 4. (as filed) The method of claim 1, wherein the functional effect is a physical effect.
- 5. (as filed) The method of claim 1, wherein the functional effect is determined by measuring changes in intracellular cAMP, cGMP, IP3, DAG, or Ca2+.
- 6. (as filed) The method of claim 5, wherein the changes in intracellular cAMP or cGMP are measured using immunoassays.
- 7. (as filed) The method of claim 1, wherein the functional effect is determined by measuring binding of radiolabeled GTP to a G protein comprising the polypeptide, or to the polypeptide.

ZUKER et al. Application No.: 09/492,029

Page 5

- 8. (as filed) The method of claim 1, wherein the functional effect is determined by measuring changes in intracellular Ca2+.
- 9. (as filed) The method of claim 1, wherein the polypeptide is expressed in a cell or cell membrane.
- 10. (as filed) The method of claim 9, wherein the functional effect is determined by measuring changes in the electrical activity of the cell or the cell membrane expressing the polypeptides.
- 11. (as filed) The method of claim 10, wherein the changes in the electrical activity are measured by an assay selected from the group consisting of a voltage clamp assay, a patch clamp assay, a radiolabeled ion flux assay, and a fluorescence assay using voltage sensitive dyes.
 - 12. (as filed) The method of claim 9, wherein the cell is a eukaryotic cell.
- 13. (as filed) The method of claim 1, wherein functional effect is determined by measuring changes in the level of phosphorylation of taste cell specific proteins.
- 14. (as filed) The method of claim 1, wherein the functional effect is determined by measuring changes in transcription levels of taste cell specific genes.
- 15. (as filed) The method of claim 1, wherein the polypeptide is linked to a solid phase.
- 16. (as filed) The method of claim 15, wherein the polypeptide is covalently linked to a solid phase.

Application No.: 09/492,029

Page 6

- 17. (as filed) The method of claim 1, wherein the polypeptide is recombinant.
- 18. (as filed) The method of claim 1, wherein the polypeptide is from a human, a mouse or a rat.
- 19. (as filed) The method of claim 1, wherein the polypeptide has an amino acid sequence of SEQ ID NO:3 or SEQ ID NO:5.
- 20. (previously once amended) A method for identifying a compound that modulates taste signaling in taste cells, the method comprising the steps of:
- (i) expressing a taste cell specific G-protein beta polypeptide in a host cell, wherein the G-protein beta polypeptide has greater than 70% amino acid sequence identity to a polypeptide having a sequence of SEQ ID NO:3 or SEQ ID NO:5;
- (ii) expressing a promiscuous G-protein alpha polypeptide and a taste cell specific G-protein coupled receptor in the host cell,
- (iii) contacting the host cell with the compound that modulates taste signaling in taste; and
- (iv) determining changes in intracellular calcium levels in the host cell, thereby identifying the compound that modulates taste signaling in taste cells.
- 21. (new) The method of claim 20 wherein the G-protein polypeptide has greater than 70% amino acid sequence identity to a polypeptide having the sequence contained in SEQ ID NO:3.
- 22. (new) The method of claim 20 wherein the G-protein beta polypeptide has greater than 70% amino acid sequence identity to a polypeptide having the sequence contained in SEQ ID NO:5.

ZUKER et al.

Application No.: 09/492,029

Page 7

- 23. (new) The method of claim 20 wherein the promiscuous G-protein alpha polypeptide is $G\alpha 15$.
- 24. (new) The method of claim 20 wherein the promiscuous g-protein alpha polypeptide is $G\alpha 14$.
- 25. (new) The method of claim 20 wherein the taste cell specific G-protein coupled receptor is GPCR-B3.
- 26. (new) The method of claim 20 wherein the taste cell specific G-protein coupled receptor is GPCR-B4.
 - 27. (new) The method of claim 20 wherein the host cell is HEK-93.
- 28. (new) The method of claim 20 wherein the G-protein beta polypeptide has an amino acid sequence identical to SEQ ID NO:3.
- 29. (new) The method of claim 20 wherein the G protein beta polypeptide has an amino acid sequence identical to SEQ ID NO:5.--

SF 1332484 v1