and thus

$$v_j^* = \sum_{i=1}^n b_{j\,i} u_i^*.$$

Similar calculations show that

$$u_i^* = \sum_{j=1}^n a_{ij} v_j^*.$$

This means that the change of basis from the dual basis (u_1^*, \ldots, u_n^*) to the dual basis (v_1^*, \ldots, v_n^*) is $(P^{-1})^{\top}$. Since

$$\varphi^* = \sum_{i=1}^n \varphi_i u_i^* = \sum_{i=1}^n \varphi_i \sum_{j=1}^n a_{ij} v_j^* = \sum_{i=1}^n \left(\sum_{i=1}^n a_{ij} \varphi_i \right) v_j = \sum_{i=1}^n \varphi_i' v_i^*,$$

we get

$$\varphi_j' = \sum_{i=1}^n a_{ij} \varphi_i,$$

so the new coordinates φ'_j are expressed in terms of the old coordinates φ_i using the matrix P^{\top} . If we use the row vectors $(\varphi_1, \dots, \varphi_n)$ and $(\varphi'_1, \dots, \varphi'_n)$, we have

$$(\varphi_1',\ldots,\varphi_n')=(\varphi_1,\ldots,\varphi_n)P.$$

These facts are summarized in the following proposition.

Proposition 11.1. Let (u_1, \ldots, u_n) and (v_1, \ldots, v_n) be two bases of E, and let $P = (a_{ij})$ be the change of basis matrix from (u_1, \ldots, u_n) to (v_1, \ldots, v_n) , so that

$$v_j = \sum_{i=1}^n a_{ij} u_i.$$

Then the change of basis from the dual basis (u_1^*, \ldots, u_n^*) to the dual basis (v_1^*, \ldots, v_n^*) is $(P^{-1})^{\top}$, and for any linear form φ , the new coordinates φ'_j of φ are expressed in terms of the old coordinates φ_i of φ using the matrix P^{\top} ; that is,

$$(\varphi_1',\ldots,\varphi_n')=(\varphi_1,\ldots,\varphi_n)P.$$

To best understand the preceding paragraph, recall Example 3.1, in which $E = \mathbb{R}^2$, $u_1 = (1,0)$, $u_2 = (0,1)$, and $v_1 = (1,1)$, $v_2 = (-1,1)$. Then P, the change of basis matrix from (u_1, u_2) to (v_1, v_2) , is given by

$$P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$

with $(v_1, v_2) = (u_1, u_2)P$, and $(u_1, u_2) = (v_1, v_2)P^{-1}$, where

$$P^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$