Verteidigung der Bachelorarbeit

Merkmalserkennung von Gebäuden und Grundstücken in Satellitenbildern mittels Deeplearning

Sebastian Mischke

Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences

Gliederung

- Einleitung
- Verwandte Arbeiten
- System
 - Satellitenbilder
 - Merkmale
 - Neuronales Netz
 - Visualisierung
- Probe
- Fazit
- Ausblick

Einleitung

- Motivation
 - Ansteigende Rechenleistung f\u00f6rdert Deeplearning Ergebnisse
 - Wachsende Menge und Qualität an frei verfügbaren Satellitenaufnahmen
 - Analyse:
 - Marketing
 - Stadtplanung

Einleitung

- Ziele und Anforderungen
 - Datenakquisition
 - Ergebnisse visualisieren
 - Mit geringem Aufwand anpassbar

Verwandte Arbeiten

SuperVision [KSH12]

- ILSVRC 2012
- Convolutional Neural Network

VGG [SZ14]

- ILSVRC 2014
- Deep Convolutional Neural Network

PlaNet [WKP16]

- Rasterbildung auf Weltkarte
- Ortserkennung anhand Fotos

System

- Implementiert in Python
- Deeplearning-Framework "Keras"
- Modularer Aufbau

System

Satellitenbilder

- Lokale vorhandene Datenmenge
- Adressliste
 - Adresse oder geographische Koordinaten
 - Google Static Maps API
 - Lokale Speicherung zur späteren Verwendung

Merkmale

- Lokale vorhandene Datenmenge
 - Zugehörig zu Bild bzw. Adresse
- Inverse Datenakquirierung
 - Adressliste aus gewünschtem Merkmal (z.B. Schulen)
- Interface f
 ür menschliche Entscheidung
 - Speicherung in SQL-Datenbank

Merkmale

- Bild verändern
 - Spiegeln, Drehen, Verschieben, Strecken oder Vergrößern
 - Hinzufügen von Rauschen
- Bildmittelpunkt verschieben
 - Vorteil:
 - Training mit Originaldaten
 - Erkennung von nicht-zentralen Häusern
 - Nachteil:
 - Mehr Speicherplatz

Neuronales Netz

- Standardnetz angelehnt an VGG [SZ14]
- Automatische Anpassung an Trainingsdaten
 - Eingabeschicht an Satellitenbilder
 - Ausgabeschicht an Trainingsvorgabe
- Anpassung interner Struktur möglich
- Speichern und Laden von Netzarchitektur möglich

Visualisierungen

- Ausgabe als Tabelle
- Vorbereitete Ergebnisvisualisierungen
 - Trainingsverlauf
 - Box-Whisker-Plot
 - Farbcodierte 2D-Karte
 - Positionscodierte 2D-Karte

Probe

- Postleitzahl
 - 64390 Häuser in Dresden

Trainingsvorgabe

Netzprädiktion

Probe

- Geographische Koordinaten
 - Datenbank "Geografische Längen- und Breitengrade deutscher Städte und Gemeinden"

Fazit

- Ergebnisse
 - Umfassendes System
 - Anpassbare und austauschbare Module
 - Datenakquisition
 - Satellitenbilder durch Adressliste
 - Merkmale durch Benutzeroberfläche
 - Visualisierungsvorlagen

Ausblick

- Weiterführende Entwicklung
 - Einsatz in Praxis
 - Anwendung zur Nutzung trainierter Netze
 - Weitere vorgefertigte Ergebnisvisualisierungen
 - Flugzeugaufnahmen

Literaturverzeichnis

- [KSH12] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E, "ImageNet Classification with Deep Convolutional Neural Networks", in F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger, Hg., Advances in Neural Information Processing Systems 25 (Curran Associates, Inc., 2012), S. 1097--1105
- [SZ14] Simonyan, Karen and Zisserman, Andrew, "Very deep convolutional networks for large-scale image recognition", αrXiv preprint αrXiv:1409.1556 (2014)
- [WKP16] Weyand, Tobias and Kostrikov, Ilya and Philbin, James, "Planet-photo geolocation with convolutional neural networks", in European Conference on Computer Vision (2016), S. 37--55

Vielen Dank!