Marketing Campaign Prediction

Reddy Charan Pulivendula Pandya Harsh Maheshkumar Sheta Rushank Ghanshyam

- On average a company spends 4% to 25% of their net revenue into Marketing campaigns and Advertisements
- While some companies like Salesforce and Tableau spent around 50% of their revenue in marketing campaigns
- Targeted marketing is used to get good returns from this investment which aims at identifying groups of customers which are highly likely to become future customers
- Customer segmentation allows us to group customers based on demographics, geography, interests, user activity, etc.

- Marketing campaign analysis allows companies to find customers which are highly likely to become future customer
- Using historical data from previous marketing campaigns to predict the response of a new customer applying predictive modeling
- Use customer demographics like age, income, marital status, etc. to classify if a new customer will respond positively or negatively to the campaigns

Related Work

Performed steps like:

- EDA on Data Set
- Correlation Analysis
- Handling Missing Data
- Feature Engineering
- Binary Classification

Data

	target	month	duration	age	gender	job	maritalStatus	education	creditFailure
0	0	may	166	30	female	worker	married	highSchool	no
1	0	oct	183	42	female	manager	married	uniGraduated	no
2	0	jun	227	26	female	services	single	highSchool	no
3	0	jun	31	34	male	unemployed	divorced	uniGraduated	yes
4	0	may	1231	48	male	worker	married	secondarySchool	no

accountBalance	house	credit	contactType	numberOfContacts	daySinceLastCampaign	number Of Contacts Last Campaign	lastCampaignResult
-202	no	no	unknown	2	NaN	0	unknown
2463	no	no	cellPhone	2	NaN	0	unknown
2158	yes	yes	landline	1	NaN	0	unknown
75	yes	no	unknown	3	NaN	0	unknown
559	yes	no	unknown	2	NaN	0	unknown

Univariate Analysis


```
[14]: data.isnull().sum()
[14]: id
      target
      day
      month
      duration
      contactId
      age
      gender
      iob
      maritalStatus
      education
      creditFailure
      accountBalance
      house
      credit
      contactType
     numberOfContacts
                                      25742
      daySinceLastCampaign
     numberOfContactsLastCampaign
     lastCampaignResult
      dtype: int64
     data['daySinceLastCampaign'].fillna(-1, inplace=True)
```

Replacing null values with -1, which implies that the customer did not respond positively in previous campaign

Data pre-processing

```
[ ]: # Encoding categorical attributes
      df = pd.get_dummies(final_data, columns = categorical_cols[1:])
     categorical_cols[1:]
[75]: ['month',
       'gender',
       'job',
       'maritalStatus',
       'education',
       'creditFailure',
       'house',
       'credit',
       'contactType',
       'lastCampaignResult']
```



```
[99]: from sklearn.linear_model import LogisticRegression
      clf = LogisticRegression(random_state=0).fit(X_train, y_train)
      from sklearn import metrics
      pred = clf.predict(X_test)
      print()
      print("Test Accuracy:", metrics.accuracy_score(y_test, pred))
      print()
      y_train_pred = clf.predict(X_train)
      train_acc = metrics.accuracy_score(y_train, y_train_pred)
      print("Train Accuracy:", train_acc)
      plot_confusion_matrix(clf, X_test, y_test)
      Test Accuracy: 0.9037484116899619
```

8000 7000 8155 208 6000 - 5000 Frue label 4000 - 3000 380 2000 1000 Predicted label

Train Accuracy: 0.9005264113269196


```
[102]: from sklearn.tree import DecisionTreeClassifier
       from sklearn.metrics import plot_confusion_matrix
       clf = DecisionTreeClassifier(random_state=0)
       clf.fit(X_train,y_train)
       predictions = clf.predict(X_test)
       from sklearn import metrics
       print()
       # using metrics module for accuracy calculation
       print("Test Accuracy: ", metrics.accuracy_score(y_test, predictions))
       y_train_pred = clf.predict(X_train)
       train_acc = metrics.accuracy_score(y_train, y_train_pred)
       print("Train Accuracy:", train_acc)
       plot_confusion_matrix(clf, X_test, y_test)
```


Test Accuracy: 0.8698644642100805

Train Accuracy: 1.0

Random Forest

```
[100]: from sklearn.ensemble import RandomForestClassifier
       clf = RandomForestClassifier(n estimators = 200, bootstrap= True)
       # Training the model on the training dataset
       # fit function is used to train the model using the training sets as parameters
       clf.fit(X_train, y_train)
       # performing predictions on the test dataset
       y pred = clf.predict(X test)
       # metrics are used to find accuracy or error
       from sklearn import metrics
       print()
       # using metrics module for accuracy calculation
       print("Accuracy with 200 estimators : ", metrics.accuracy score(y test, y pred))
       y train pred = clf.predict(X train)
       train_acc = metrics.accuracy_score(y_train, y_train_pred)
       print("Train Accuracy:", train acc)
       plot confusion matrix(clf, X test, y test)
       Accuracy with 200 estimators: 0.9073485811096993
       Train Accuracy: 1.0
```



```
[101]: from sklearn.ensemble import AdaBoostClassifier
       from sklearn.tree import DecisionTreeClassifier
       from sklearn.metrics import confusion_matrix
       classifier = AdaBoostClassifier(
           DecisionTreeClassifier(max_depth = 1),
           n = 200
       classifier.fit(X_train, y_train)
       predictions = classifier.predict(X_test)
       from sklearn import metrics
       print()
       # using metrics module for accuracy calculation
       print("Accuracy: ", metrics.accuracy_score(y_test, predictions))
       print()
       y train pred = classifier.predict(X train)
       train acc = metrics.accuracy score(y train, y train pred)
       print("Train Accuracy:", train acc)
       plot confusion matrix(clf, X test, y test)
```

Accuracy: 0.904595510376959

Train Accuracy: 0.9019332002178254

- Random Forest classifier results in best test accuracy
- Models are highly training data specific
- Data authenticity and Quality issues
- Many irrelevant features
 - Limited availability of open source data
- Class Imbalance

Future Scope

- Apply methods to reduce impact of class imbalance on the classifier
- Experiment with different combination of features
- Optimize current models
- Utilize more classification metrics to assess model's performance

- https://www.kaggle.com/code/khanimar/bi-marketing-campaign-eda-analysis-prediction/data
- https://towardsdatascience.com/how-to-predict-the-success-of-your-marketing-campaign-579fbb153a97
- https://www.kaggle.com/code/seananguyen/marketing-campaign-analysis-python#3.-Data-Visualizations
- $\frac{\text{https://waypointmc.com/blog/analyzing-marketing-results\#:} \sim :\text{text=What}\%20 \text{is}\%20 \text{Marketing}\%20 \text{Analysis}\%3}{F, improve\%20 \text{future}\%20 \text{conversions}\%20 \text{or}\%20 \text{sales}}.$