Arrange Networks and Trees

Cmpt 767 - Visualization

Steven Bergner

sbergner@sfu.ca

[incl. sides from Moeller/Munzner/Eades/Sedlmair]

Networks & Graphs

etc.

Overview

Connection and Containment Channels

Arrange Networks and Trees

Readings

- Munzner, "Visualization Analysis and Design":
 - Chapter 9 (Arrange Networks and Trees)
- Heer 2018, CSE512 Data Visualization

Applications

- Tournaments
- Organization
- Charts
- Genealogy
- Diagramming (e.g., Visio)
- Biological Interactions (Genes, Proteins)
- Computer Networks
- Social Networks
- Simulation and Modeling
- Integrated Circuit Design

Goal of Spatial Layout

Place nodes and edges to optimize

- Connectivity
- Path-following
- Topological distance
- Clustering/grouping
- Ordering (i.e. hierarchy level)

Connection vs. Containment

- relevant for drawing graphs + trees
- containment -- essentially treemaps
- connection -- traditional view of graphs
- Different information equal vs hierarchical

Tree-map

Connection vs. Containment

Eight visual encodings of the same tree dataset

Tree layouts

• Indentation: File directory style

Folder
Subfolder
File1
File2

- Single focus: accordion style
 - Separate breadth and depth along 2D and focus on a single path at a time
 - Example:Mac File Explorer

Enclosure Diagrams

Set theory style

- Pros
 - Provides single view of an entire tree
 - Easier to spot large/small nodes
- Cons
 - Difficult to accurately read structure/depth
- Examples
 - Circle Packing Layout
 - Tree Maps

Node-Link Diagrams

Traditional data structure style

- Naive Recursive Layout Algorithm
- Reingold and Tilford's "Tidy" Layout Algorithm (linear time algo)
- Cluster Dendograms
- Radial Tree Layout
- Hyperbolic Layout
- Sugiyama-Style Layout
- Force-Directed Layout: Uses Barnes-Hut algorithm
- Degree-of-Interest Trees (expansion-by-interest)

Treemaps

- Squarified Treemaps
 - Greedy optimization for objective of square rectangles
- Cushion Treemaps
 - Shading to emphasize hierarchical structure
- Cascaded Treemaps
- Voronoi Treemaps
 - Iterative, weighted Voronoi tessellations to achieve cells with value-proportional areas

More Tree Vis Methods

- Layering
 - Sunburst Trees: Use polar partition
- Matrix Diagrams
- Use Attributes to drive layouts
- Pivot Graph
 - Roll-Up and Selection Operators
- Hive Plots

Graph Drawing

 The classical graph drawing problem is to develop algorithms to draw graphs nicely.

X	Adjacent to X
Mary	Peter, Albert, DavidF, Peter
Judy	Bob, Alan
Peter	Mary, DavidF, Jon
DavidF	Albert, Joseph, Peter, Mary
Jon	Peter, Joseph, DavidE
DavidE	Jon, Joseph, Albert
Joseph	DavidE, Jon, DavidF
Bob	Judy, Alan
Alan	Bob, Mary, Judy
Albert	DavidF, Mary, DavidE

 Terrorist network DavidE Joseph Jon Albert DavidF Peter **Eliminate** Judy Bob

 Mobile phone network:

– nodes: people

- edges: phone calls

Good deal \$\$\$\$

- Transport network:
 - nodes: places
 - edges: train lines

- Transport network:
 - nodes: places
 - edges: train lines

Shortest path?

What algorithm gives good drawings of graphs?

Bad

Good

Quality measures for networks

- Classical quality measures
 - minimize edge crossings
 - minimize bends
 - ...
- Human subject experiments found crossings & bends to be most important wrt readability
 - Purchase et al.,1997
 - Ware et al 2002
 - Huang et al 2004

Different kinds of layouts

grid-based

orthogonal

straight-line

Force-directed layouts

https://bl.ocks.org/mbostock/4062045

Human-centered layout

- User study
- Develop algorithm
- Evaluate algo-created layouts against human-created layouts

Kiefer et al. (InfoVis 2015).

HOLA: Human-like Orthogonal Network Layout

Scalability

Too many nodes and/or edges

More Nodes, More Problems

- Tree breadth often grows exponentially
 - Quickly runs out of space, even with tidy layout
- Possible solutions
 - Filtering
 - Focus + Context
 - Scrolling/Panning
 - Zooming
 - Aggregation

Showing all the data?

Measures: <u>Faithfulness</u> VS. Readability

Faithfulness measures how well the diagram represents the data.

(a mathematical concept)

Readability measures how well the human understands the diagram.

(a psychological concept)

Quan Nguyen et al. (Pacific Vis 2013). On the faithfulness of graph visualizations

In small graphs: faithfulness usually given

—> optimize readability

In large graphs: faithfulness usually not given

—> tradeoff between faithfulness & readability

Edge bundling

Sacrifice faithfulness, gain readability

Holten (InfoVis 2006).
Hierarchical Edge Bundles:

Visualization of Adjacency Relations in Hierarchical Data

Edge bundling

What about edge crossing?

 Some quality measures that work well for small graphs (such as edge crossing) seem to loose their importance the larger a graph gets

How many edge crossing do you see?

Instead: "Show me the structure"

"Diagram A is better than diagram B because diagram A shows the structure of the graph, and diagram B does not show the structure."

Shape

For a good quality drawing: the shape of the drawing should be faithful to the input graph.

Peter Eades et al. (Graph Drawing 2015). Shape-Based Quality Metrics for Large Graph Visualization.

Alternative representations

Adjacency Matrix

https://bost.ocks.org/mike/miserables/

Michael Behrisch, et al. (EuroVis STARs 2016). Matrix Reordering Methods for Table and Network Visualization.

Adjacency Matrix (physical)

Jacques Bertin, 1968

http://www.aviz.fr/wiki/uploads/Bertifier/bertifier-authorversion.pdf

Matrix or Node-link?

- Study
 - 36 users
 - 9 networks
 - 7 tasks —> measure time & errors
- Results
 - Node-link only for:
 - small graphs (~20 nodes)
 - path finding tasks
 - Else Matrix
- Limitations

Ghoniem et al. (InfoVis 2004).

A Comparison of the Readability of
Graphs Using Node-Link and
Matrix-Based Representations.

Patterns in different views

- Node-link views and Matrix views
- Both can show cliques and clusters

Additional encodings

Color and width

Additional encodings

- Nodes, e.g. through color
- Edges, e.g. strokewidth

Size

http://mbostock.github.io/d3/talk/20111116/force-collapsible.html

More complex data

Stef van den Elzen and Jarke J. van Wijk (InfoVis 2014)

Multivariate Network Exploration and Presentation:
From Detail to Overview via Selections and Aggregations

Combined methods

- Overcome limitations of individual method
- Example: Baobab disk space analyzer

Indented tree view

Sunburst view

Misc concerns

- static radial layouts: known algorithm
- dynamic: little previous work
 - DynaDAG [North, Graph Drawing 95]
 - DA-TU [Huang, Graph Drawing 98]
- minimize visual changes
- stay true to current dataset structure
- video

polar interpolation

Figure 3. Interpolation in rectangular coordinates (left) can yield a confusing animation. Interpolation in polar coordinates (right) works better for radial layouts.

Yee et al. Animated Exploration of Graphs with Radial Layout

maintain neighbor order

Yee et al. Animated Exploration of Graphs with Radial Layout

maintain neighbor order

Yee et al. Animated Exploration of Graphs with Radial Layout

Small-World Networks

- high clustering, small path length
 - vs. random uniform distribution
- examples
 - social networks
 - movie actors
 - Web
 - software reverse engineering
- multiscale small-world networks
 - exploit these proper ties for better layout

On-line graph drawing

- required by 'streaming data'
 - e.g. update graph with new/disappearing nodes and edges
- graph layout without knowing the final graph
- updates should be
 - visually easy to follow (minimal)
 - in real-time

Overview

- Spatial channel
 - Spatial attributes / keys
 - quantitative vs. categorical attributes
 - Keys: the importance of ordering
 - list (1D) vs. matrix (2D) vs. partition / subdivide (multiple D)
 - Spatial layout
 - rectilinear
 - parallel
 - radial
 - Spacefilling
 - Dense
- Linemarks
 - Connection
 - Containment
- Using color