MA2101S - Linear Algebra II (S) Suggested Solutions

(Semester 1, AY2022/2023)

Written by: Sarji Elijah Bona Audited by: Ariana Goh Zhi Hui

Question 1

Given a linear operator β on a vector space U, define $T_{\beta}(U)$ as follows:

$$T_{\beta}(U) := \{ u \in U \mid \dim(\langle u \rangle_{\beta}) < \infty \}.$$

You may assume without proof that $\dim(\langle u \rangle_{\beta}) < \infty$ if and only if $f(\beta)(u) = 0_U$ for some nonzero $f(x) \in F[x]$.

Let α be a linear operator on a vector space V.

- (a) Show that $T_{\alpha}(V)$ is a vector subspace of V.
- (b) Show that $T_{\alpha}(V)$ is α -invariant.
- (c) Let $\widetilde{V} = V/T_{\alpha}(V)$, and let $\widetilde{\alpha}$ be the linear operator on \widetilde{V} defined by

$$\widetilde{\alpha}(v + T_{\alpha}(V)) = \alpha(v) + T_{\alpha}(V)$$
 for all $v \in V$.

Prove that

$$T_{\widetilde{\alpha}}(\widetilde{V}) = \{0_{\widetilde{V}}\}.$$

Solution:

- (a) Note that $\dim(\langle 0_V \rangle_{\alpha}) = \dim(\{0_V\}) = 0 < \infty$, so $0_V \in T_{\alpha}(V)$, so $T_{\alpha}(V)$ is non-empty. Let $v_1, v_2 \in T_{\alpha}(V)$, then there exist $f(x), g(x) \in F[x]$ such that $f(\alpha)(v_1) = 0_V$ and $g(\alpha)(v_2) = 0_V$. Then $(fg)(\alpha)(v_1 + v_2) = f(\alpha)(g(\alpha)(v_1 + v_2)) = f(\alpha)(g(\alpha)(v_1)) = g(\alpha)(f(\alpha)(v_1)) = g(\alpha)(0_V) = 0_V$, implying $v_1 + v_2 \in T_{\alpha}(U)$.
 - Now, let $\lambda \in F$ and $v \in T_{\alpha}(V)$, if $\lambda \neq 0$, then $\langle \lambda v \rangle_{\alpha} = \langle v \rangle_{\alpha}$, so $\lambda v \in T_{\alpha}(V)$. If $\lambda = 0$, $\lambda v = 0_V \in T_{\alpha}(V)$. Therefore, $T_{\alpha}(V)$ is a vector subspace of V.
- (b) Let $v \in T_{\alpha}(V)$. Then there exists $f(x) \in F[x]$ such that $f(\alpha)(v) = 0_V$. So $f(\alpha)(\alpha(v)) = (\alpha \circ f(\alpha))(v) = \alpha(0_V) = 0_V$. Hence, $\dim(\langle \alpha(v) \rangle_{\alpha}) < \infty$ and $\alpha(v) \in T_{\alpha}(V)$.
- (c) Obviously, $0_{\widetilde{V}} \in T_{\widetilde{\alpha}}(\widetilde{V})$. Assume for some $v \in V$ that $v + T_{\alpha}(V) \in T_{\widetilde{\alpha}}(\widetilde{V})$. So there exists $f(x) \in F[x]$ such that $f(\widetilde{\alpha})(v + T_{\alpha}(V)) = 0_{\widetilde{V}} = T_{\alpha}(V)$. Note that $f(\widetilde{\alpha})(v + T_{\alpha}(V)) = f(\alpha)(v) + T_{\alpha}(V)$, so this implies $f(\alpha)(v) \in T_{\alpha}(v)$. There exists $g(x) \in F[x]$ such that $g(\alpha)(f(\alpha)(v)) = (g \circ f)(\alpha)(v) = 0$. Thus, $v \in T_{\alpha}(V)$, implying $T_{\widetilde{\alpha}}(\widetilde{V}) \subseteq \{T_{\alpha}(V)\} = \{0_{\widetilde{V}}\}$. Therefore, $T_{\widetilde{\alpha}}(\widetilde{V}) = \{0_{\widetilde{V}}\}$.

Question 2

Let α be a linear operator on a vector space V, and let U be an α -invariant vector subspace of V. Let $\widetilde{\alpha}$ be the linear operator on V/U defined by $\widetilde{\alpha}(v+U)=\alpha(v)+U$ for all $v\in V$. Suppose that

$$V/U = \bigoplus_{i \in I} \langle v_i + U \rangle_{\widetilde{\alpha}},$$

where for each $i \in I$, $\langle v_i + U \rangle_{\tilde{\alpha}}$ is infinite-dimensional. (Note: I may be an infinite set.)

- (a) Prove that for each $i \in I$, $\langle v_i \rangle_{\alpha}$ is infinite-dimensional.
- (b) Show further that

$$V = U \oplus \bigoplus_{i \in I} \langle v_i \rangle_{\alpha}.$$

(You may assume without proof that $\langle v \rangle_{\alpha}$ is infinite-dimensional if and only if $f(\alpha)(v) \neq 0_V$ for all nonzero $f(x) \in F[x]$.)

Solution:

- (a) Assume for some $i \in I$, $\langle v_i \rangle_{\alpha}$ is finite-dimensional, i.e., there exists $f(x) \in F[x]$ such that $f(\alpha)(v_i) = 0_V$. Then $f(\widetilde{\alpha})(v_i + U) = f(\alpha)(v_i) + U = 0_V + U = U = 0_{V/U}$, which contradicts $\langle v_i + U \rangle_{\widetilde{\alpha}}$ being infinite-dimensional. Thus, for each $i \in I$, $\langle v_i \rangle_{\alpha}$ is infinite-dimensional.
- (b) Let $q: V \to V/U$ such that q(v) = v + U for all $v \in V$. Then $q(f(\alpha)(v)) = f(\alpha)(v) + U = f(\widetilde{\alpha})(v + U)$ for any $f(x) \in F[x], v \in V$. We see for any $v \in V, v + U = \sum_{i \in I} f_i(\widetilde{\alpha})(v_i + U) = \sum_{i \in I} q(f_i(\alpha)(v_i)) = \sum_{i \in I} f_i(\alpha)(v_i) + U$, so $v \sum_{i \in I} f_i(\alpha)(v_i) = u \in U$, implying $v = u + \sum_{i \in I} f_i(\alpha)(v_i) \in U + \sum_{i \in I} \langle v_i \rangle_{\alpha}$. Hence, $V = U + \sum_{i \in I} \langle v_i \rangle_{\alpha}$. To show the sum is direct, we show $U \cap \sum_{i \in I} \langle v_i \rangle_{\alpha} = \{0_V\}$. Suppose $u \in U \cap \sum_{i \in I} \langle v_i \rangle_{\alpha}$. Then $u = \sum_{j \in J} f_j(\alpha)(v_j)$ for some finite $J \subseteq I$. So $q(u) = q(\sum_{j \in J} f_j(\alpha)(v_j)) = \sum_{j \in J} q(f_j(\alpha)(v_j)) \Rightarrow 0_{V/U} = \sum_{j \in J} f_j(\widetilde{\alpha})(v_j + U)$. Since $f_j(\widetilde{\alpha})(v_j + U) \in \langle v_j + U \rangle_{\widetilde{\alpha}}$ for some $j \in I$, we have $f_j(\widetilde{\alpha})(v_j + U) = 0_{V/U}$ for all $j \in J$ by the directness of $V/U = \bigoplus_{i \in I} \langle v_i + U \rangle_{\widetilde{\alpha}}$. But for each $i \in I$, since $\langle v_i + U \rangle_{\widetilde{\alpha}}$ is infinite-dimensional, f_j must be 0 for all $j \in J$. Hence, $u = \sum_{j \in J} f_j(\alpha)(v_j) = 0_V$ and $U \cap \sum_{i \in I} \langle v_i \rangle_{\alpha} = \{0_V\}$. Therefore, $V = U \oplus \bigoplus_{i \in I} \langle v_i \rangle_{\alpha}$.

Question 3

Let α be a linear operator on a vector space V, and suppose that $V = \bigoplus_{j=1}^{n} \langle v_j \rangle_{\alpha}$ for some $v_1, \ldots, v_n \in V$ with $\dim(\langle v_j \rangle_{\alpha}) = \infty$ for all j.

(a) Prove that $\langle v \rangle_{\alpha}$ is infinite-dimensional for all $v \in V \setminus \{0_V\}$.

Let W be an α -invariant vector subspace of V, and let

$$V' = \bigoplus_{i=2}^{n} \langle v_i \rangle_{\alpha}.$$

(b) By considering the set $\Sigma := \{ f(x) \in F[x] \mid f(\alpha)(v_1) \in W + V' \}$, or otherwise, show that there exists $f(x) \in F[x]$ such that

$$\{w + V' \mid w \in W\} = \langle f(\alpha)(v_1) + V' \rangle_{\widetilde{\alpha}_{V'}}.$$

Here, $\widetilde{\alpha}_{V'}: V/V' \to V/V'$ is defined by $\widetilde{\alpha}_{V'}(v+V') = \alpha(v) + V'$ for all $v \in V$.

- (c) Let $U = W \cap V'$. Show that the following statements are equivalent:
 - (i) $f(x) = 0_{F[x]}$;
 - (ii) $W \subseteq V'$;
 - (iii) U = W.
- (d) Assume first that $W \nsubseteq V'$. Let $w_1 \in W$ such that $f(\alpha)(v_1) + V' = w_1 + V'$. Show that:
 - (i) $w_1 \neq 0_V$;
 - (ii) $W/U = \langle w_1 + U \rangle_{\widetilde{\alpha}_U}$ (here $\widetilde{\alpha}_U : V/U \to V/U$ is defined by $\widetilde{\alpha}_U(v+U) = \alpha(v) + U$ for all $v \in V$);
 - (iii) $W = U \oplus \langle w_1 \rangle_{\alpha}$. (Hint: Use Question 2.)
- (e) Now, disregard the assumption in (d) (so W may or may not be a subset of V'). Prove by induction on n, or otherwise, that

$$W = \bigoplus_{j=1}^{m} \langle w_j \rangle_{\alpha}$$

for some nonzero $w_1, \ldots, w_m \in W$ with $m \leq n$.

Solution:

(a) Assume there exists nonzero $v \in V$ such that $\langle v \rangle_{\alpha}$ is finite-dimensional. So there exists nonzero $f(x) \in F[x]$ satisfying $f(\alpha)(v) = 0_V$. Note that $v = \sum_{j=1}^n w_j$ where $w_j \in \langle v_j \rangle_{\alpha}$ for each $j \in \{1, 2, ..., n\}$. So $0_V = f(\alpha)(v) = f(\alpha)\left(\sum_{j=1}^n w_j\right) = \sum_{j=1}^n f(\alpha)(w_j)$. Since

 $\bigoplus_{j=1}^{n} \langle v_j \rangle_{\alpha} \text{ is direct, } f(\alpha)(w_j) = 0_V \text{ for all } j \in \{1, 2, \dots, n\}. \text{ Also } v \neq 0_V, \text{ so there must } \text{ exist } k \in \{1, 2, \dots, n\} \text{ such that } w_k \neq 0_V. \text{ Then there exists } p(x) \in F[x] \text{ such that } p(\alpha)(v_k) = w_k \neq 0_V, \text{ which implies } p(x) \neq 0. \text{ Hence, } (f \circ p)(\alpha)(v_k) = f(\alpha)(w_k) = 0_V. \text{ Since } (f \circ p)(x) \neq 0, \text{ this contradicts } \langle v_k \rangle_{\alpha} \text{ being infinite-dimensional. Therefore, } \langle v \rangle_{\alpha} \text{ is infinite-dimensional for all } V \setminus \{0_V\}.$

(b) Consider the set $\Sigma := \{ f(x) \in F[x] \mid f(\alpha)(v_1) \in W + V' \}$. Note that $0_{F[x]} \in \Sigma$ because $0_V \in W + V'$, so Σ is non-empty.

Now let $f(x) \in \Sigma$ with the least degree. Then $f(\alpha)(v_1) \in W + V'$ and since W + V' is α -invariant, we have $h(\alpha)(f(\alpha)(v_1)) \in W + V'$ for all $h(x) \in F[x]$. Hence,

$$\langle f(\alpha)(v_1) + V' \rangle_{\widetilde{\alpha}_{V'}} = \{ h(\widetilde{\alpha}_{V'})(f(\alpha)(v_1) + V') \mid h(x) \in F[x] \}$$

= $\{ h(\alpha)(f(\alpha)(v_1)) + V' \mid h(x) \in F[x] \} \subseteq \{ w + V' \mid w \in W \}.$

On the other hand, if $w \in W$, then $w = \sum_{i=1}^{n} g_i(\alpha)(v_1)$ where $g_1(\alpha)(v_1) \in W + V'$, so $g_1(x) \in \Sigma$. Then $g_1(x) = q(x)f(x) + r(x)$ where $\deg r < \deg f$ or r(x) = 0. So $r(\alpha)(v_1) = (g_1(\alpha) - q(\alpha)f(\alpha))(v_1) \in W + V'$ since $g_1(x), f(x) \in \Sigma$ and W + V' is α -invariant. Hence, $r(x) \in \Sigma$, and by the minimality of f(x), we must have r(x) = 0. Thus, $g_1(x) = q(x)f(x)$, and therefore,

$$w + V' = g_1(\alpha)(v_1) + V' = q(\alpha)(f(\alpha)(v_1)) + V'$$

= $q(\widetilde{\alpha}_{V'})(f(\alpha)(v_1) + V') \in \langle f(\alpha)(v_1) + V' \rangle_{\widetilde{\alpha}_{V'}}.$

Thus, $\{w + V' \mid w \in W\} = \langle f(\alpha)(v_1) + V' \rangle_{\widetilde{\alpha}_{V'}}.$

- (c) If (i) is true, $\{w+V'\mid w\in W\}=\langle 0_{V/V'}\rangle_{\widetilde{\alpha}_{V'}}=\{0_{V/V'}\}$. For all $w\in W, w\in V'$, hence, $W\subseteq V'$ and (ii) is true. If (ii) is true, then if $f(x)\neq 0_{F[x]}$, then $\langle w_1+V'\rangle_{\widetilde{\alpha}_{V'}}=\{0_{V/V'}\}$ for some non-zero $w_1\in \langle v_1\rangle_{\alpha}$. Since $V=\langle v_1\rangle_{\alpha}\oplus V'$, we have $w_1\notin V'$, hence, $w_1+V'\neq 0_{V/V'}$, contradiction. Thus, $f(x)=0_{F[x]}$, and (i) is true. Hence, (i) \Leftrightarrow (ii). Obviously, $W\subseteq V'\Leftrightarrow W\cap V'=W$, so (ii) \Leftrightarrow (iii). Therefore, (i) \Leftrightarrow (ii) \Leftrightarrow (iii).
- (d) (i) If $w_1 = 0_V$, then $f(\alpha)(v_1) \in V'$. Since $f(\alpha)(v_1) \in \langle v_1 \rangle_{\alpha}$ and $V = \langle v_1 \rangle_{\alpha} \oplus V'$, we have $f(\alpha)(v_1) = 0$. Since $\langle v_1 \rangle_{\alpha}$ is infinite-dimensional, we must have f(x) = 0. But part (c) showed this implies $W \subseteq V'$, contradiction. Thus, $w_1 \neq 0_V$.
 - (ii) Note that for all $g(x) \in F[x]$, $g(\widetilde{\alpha}_U)(w_1 + U) = g(\alpha)(w_1) + U \in W/U$ since $w_1 \in W$ and W is α -invariant, so $\langle w_1 + U \rangle_{\widetilde{\alpha}_U} \subseteq W/U$. Now, for any $w \in W$, from part (b), there exists $h(x) \in F[x]$ such that $w + V' = h(\widetilde{\alpha}_{V'})(f(\alpha)(v_1) + V') = h(\widetilde{\alpha}_{V'})(w_1 + V') = h(\alpha)(w_1) + V'$. Then $h(\alpha)(w_1) w \in V'$ and $h(\alpha)(w_1) w \in W$, hence, $h(\alpha)(w_1) w \in U$. Thus, $w + U = h(\alpha)(w_1) + U$, implying $W/U \subseteq \langle w_1 + U \rangle_{\widetilde{\alpha}_U}$ and $W/U = \langle w_1 + U \rangle_{\widetilde{\alpha}_U}$.
 - (iii) If there exists $g(x) \in F[x]$ such that $g(\widetilde{\alpha}_U)(w_1 + U) = 0_{V/U}$, then $g(\alpha)(w_1) \in U \subseteq V'$. So $g(\alpha)(f(\alpha)(v_1)) + V' = g(\widetilde{\alpha}_{V'})(f(\alpha)(v_1) + V') = g(\widetilde{\alpha}_{V'})(w_1 + V') = g(\alpha)(w_1) + V' = 0_{V/U}$, implying g(x)f(x) = 0. Since $f(x) \neq 0_{F[x]}$ from $W \nsubseteq V'$ and part (c), we have $g(x) = 0_{F[x]}$. Therefore, $\langle w_1 + U \rangle_{\widetilde{\alpha}_{V'}}$ is infinite-dimensional, and by Question 2, we have $W = U \oplus \langle w_1 \rangle_{\alpha}$.

(e) We induct on n.

Base case: n = 1.

We have $V = \langle v_1 \rangle_{\alpha}$ for non-zero v_1 . Let $W \subseteq V$ be α -invariant. If $W = \{0_V\}$, then it is a direct sum of 0 α -cyclic subspaces.

If $W \neq \{0_V\}$, then $V' = \{0_V\}$ and by part (b), there exists $f(x) \in F[x]$ such that $\langle f(\alpha)(v_1) + V' \rangle_{\widetilde{\alpha}_{V'}} = \{w + V' \mid w \in W\}$. If we let $w_1 = f(\alpha)(v_1)$, then there exists $w \in W$ such that $w_1 + V' = w + V' \Leftrightarrow w_1 = w$, so $w_1 \in W$ and $\langle w_1 \rangle_{\alpha} \subseteq W$.

For any $w \in W$, there exists $g(x) \in F[x]$ such that $w + V' = g(\alpha)(w_1) + V' \Leftrightarrow w = g(\alpha)(w_1) \in \langle w_1 \rangle_{\alpha}$. Therefore, $W = \langle w_1 \rangle_{\alpha}$ for non-zero w_1 . We can express W as a direct sum of $m \leq n$ α -cyclic subspaces.

Induction step: Assume it is true for n = k.

Let $V = \bigoplus_{j=1}^{k+1} \langle v_j \rangle_{\alpha}$ and $V' = \bigoplus_{j=2}^{k+1} \langle v_j \rangle_{\alpha}$. If $W \subseteq V'$, then by the induction hypothesis, we can express W as the direct sum of at most k α -cyclic subspaces.

If $W \nsubseteq V'$, then by part (d), there exists non-zero $w_1 \in W$ such that $W = \langle w_1 \rangle_{\alpha} \oplus U$ where $U = W \cap V'$. Since U is an α -invariant vector subspace of V', by the induction hypothesis, we can express U as the direct sum of at most k α -cyclic subspaces.

Thus, W can be expressed as the direct sum of at most k+1 α -cyclic subspaces.

Therefore by induction, for all n, W can be expressed as the direct sum of at most n α -cyclic subspaces.

Question 4

Let V be a vector space, and denote the vector space of linear operators on V by L(V, V). Let \mathcal{A} be a vector subspace of L(V, V), and let $f : \mathcal{A} \to F$ be a function. Suppose that

$$U := \{ v \in V \mid \alpha(v) = f(\alpha)v \ \forall \alpha \in \mathcal{A} \} \neq \{0_V\}.$$

- (a) Prove that:
 - (i) U is a vector subspace of V, and is α -invariant for all $\alpha \in \mathcal{A}$;
 - (ii) f is linear.

Let β be a linear operator on V, and assume that $\alpha \circ \beta - \beta \circ \alpha \in \mathcal{A}$ (but possibly $\alpha \circ \beta$, $\beta \circ \alpha \notin \mathcal{A}$) for all $\alpha \in \mathcal{A}$.

- (b) Let $w \in U$ and assume that $\dim(\langle w \rangle_{\beta}) = k \in \mathbb{Z}^+$. Let $\mathcal{B}_0 = \emptyset$, and for each $1 \leq i \leq k$, let $\mathcal{B}_i = \{w, \beta(w), \dots, \beta^{i-1}(w)\}$. You may assume without proof that \mathcal{B}_k is a basis for $\langle w \rangle_{\beta}$.
 - (i) Show, by induction on i or otherwise, that

$$\alpha(\beta^{i}(w)) - f(\alpha)\beta^{i}(w) \in \operatorname{span}(\mathcal{B}_{i})$$

for all $\alpha \in \mathcal{A}$ and $i \in \{0, 1, \dots, k-1\}$.

- (ii) Deduce that, for each $\alpha \in \mathcal{A}$, $\langle w \rangle_{\beta}$ is α -invariant, and write down all the information you can infer from (i) about the matrix representing the restricted linear operator $\alpha|_{\langle w \rangle_{\beta}}$ with respect to \mathcal{B}_k .
- (iii) Hence, or otherwise, show that $f(\alpha \circ \beta \beta \circ \alpha) = 0_F$ for all $\alpha \in \mathcal{A}$ when the characteristic of F does not divide k.

 (Hint: $\alpha \circ \beta \beta \circ \alpha \in \mathcal{A}$, and $\gamma \circ \delta \delta \circ \gamma$ has zero trace whenever γ and δ are linear operators acting on the same finite-dimensional space.)
- (c) Using (b)(iii), or otherwise, show that U is β -invariant when V is finite-dimensional and F has characteristic zero.

Solution:

- (a) (i) Note that for any $\alpha \in \mathcal{A}$, we have $\alpha(0_V) = 0_V = f(\alpha) \cdot 0_V$, so $0_V \in U$ and U is non-empty. For any $v_1, v_2 \in U$, we have $\alpha(v_1) = f(\alpha)v_1$ and $\alpha(v_2) = f(\alpha)v_2$ for all $\alpha \in \mathcal{A}$, which implies $\alpha(v_1 + v_2) = \alpha(v_1) + \alpha(v_2) = f(\alpha)v_1 + f(\alpha)v_2 = f(\alpha)(v_1 + v_2)$ for all $\alpha \in \mathcal{A}$, hence, $v_1 + v_2 \in U$. For any $v \in U$ and $\lambda \in F$, we have $\alpha(\lambda v) = \lambda \alpha(v) = \lambda f(\alpha)v = f(\alpha) \cdot (\lambda v)$ for all $\alpha \in \mathcal{A}$, hence, $\lambda v \in U$. Thus, U is a vector subspace of V. For any $\alpha \in \mathcal{A}$ and $v \in U$, we have $\beta(\alpha(v)) = \beta(f(\alpha)v) = f(\alpha)\beta(v) = f(\alpha)f(\beta)v = f(\beta)\alpha(v)$ for all $\beta \in \mathcal{A}$, implying $\alpha(v) \in U$. Therefore, U is an α -invariant vector subspace of V for all $\alpha \in \mathcal{A}$.
 - (ii) For any $\alpha, \beta \in \mathcal{A}$, $\lambda \in F$, and $v \in U \setminus \{0_V\}$, we have $f(\alpha + \beta)v = (\alpha + \beta)(v) = \alpha(v) + \beta(v) = f(\alpha)v + f(\beta)v \Rightarrow f(\alpha + \beta) = f(\alpha) + f(\beta)$, and $f(\lambda \alpha)v = (\lambda \alpha)(v) = \lambda \alpha(v) = \lambda f(\alpha)v \Rightarrow f(\lambda \alpha) = \lambda f(\alpha)$. Thus, f is linear.
- (b) (i) **Base case:** i = 0.

For all $\alpha \in \mathcal{A}$, $\alpha(\beta^0(w)) - f(\alpha)\beta^0(w) = \alpha(w) - f(\alpha)w = 0_V \in \text{span}(\mathcal{B}_0)$ since $w \in U$.

Induction step: Assume for all $\alpha \in \mathcal{A}$, $\alpha(\beta^i(w)) - f(\alpha)\beta^i(w) \in \text{span}(\mathcal{B}_i)$ for some $i \in \{0, 1, ..., k-2\}$.

Then

$$\alpha(\beta^{i+1}(w)) = (\alpha \circ \beta)(\beta^{i}(w)) = (\beta \circ \alpha)(\beta^{i}(w)) + (\alpha \circ \beta - \beta \circ \alpha)(\beta^{i}(w))$$
$$= \beta(\alpha(\beta^{i}(w))) + f(\alpha \circ \beta - \beta \circ \alpha)\beta^{i}(w)$$

and

$$\alpha(\beta^{i+1}(w)) - f(\alpha)\beta^{i+1}(w) = \beta(\alpha(\beta^{i}(w)) - f(\alpha)\beta^{i}(w)) + f(\alpha \circ \beta - \beta \circ \alpha)\beta^{i}(w).$$

Since $\alpha(\beta^{i}(w)) - f(\alpha)\beta^{i}(w) \in \text{span}(\mathcal{B}_{i})$, we have $\beta(\alpha(\beta^{i}(w)) - f(\alpha)\beta^{i}(w)) \in \text{span}(\mathcal{B}_{i+1})$; also, $\beta^{i}(w) \in \mathcal{B}_{i+1}$, thus, $\alpha(\beta^{i+1}(w)) - f(\alpha)\beta^{i+1}(w) \in \text{span}(\mathcal{B}_{i+1})$.
Therefore by induction on i , we have $\alpha(\beta^{i}(w)) - f(\alpha)\beta^{i}(w) \in \text{span}(\mathcal{B}_{i})$ for all $\alpha \in \mathcal{A}$ and $i \in \{0, 1, ..., k-1\}$.

(ii) From part (i), for all $\alpha \in \mathcal{A}$ and $i \in \{0, 1, ..., k-1\}$, we have $\alpha(\beta^i(w)) \in \langle w \rangle_{\beta}$ since $f(\alpha)\beta^i(w) \in \langle w \rangle_{\beta}$ and $\operatorname{span}(\mathcal{B}_i) \subseteq \langle w \rangle_{\beta}$. Since $\langle w \rangle_{\beta} = \operatorname{span}(\mathcal{B}_k)$, it is α -invariant.

The matrix $[\alpha|_{\langle w\rangle_{\beta}}]_{\mathcal{B}_k}$ is an upper-triangular $k \times k$ matrix with all diagonal entries being $f(\alpha)$.

- (iii) Since $\alpha \circ \beta \beta \circ \alpha \in \mathcal{A}$, the matrix $[\alpha \circ \beta \beta \circ \alpha|_{\langle w \rangle_{\beta}}]_{\mathcal{B}_k}$ is an upper-triangular $k \times k$ matrix with all diagonal entries being $f(\alpha \circ \beta \beta \circ \alpha)$, therefore, the trace of $\alpha \circ \beta \beta \circ \alpha$ restricted to $\langle w \rangle_{\beta}$ is equal to $k \cdot f(\alpha \circ \beta \beta \circ \alpha)$. This must equal 0_F , so we have $f(\alpha \circ \beta \beta \circ \alpha) = 0_F$ since char F does not divide k.
- (c) If V is finite-dimensional and F has characteristic zero, then for all $v \in U$ and $\alpha \in \mathcal{A}$, $(\alpha \circ \beta \beta \circ \alpha)(v) = f(\alpha \circ \beta \beta \circ \alpha)v = 0_V$, hence, $(\alpha \circ \beta)(v) = (\beta \circ \alpha)(v)$. Then $\alpha(\beta(v)) = \beta(\alpha(v)) = \beta(f(\alpha)v) = f(\alpha)\beta(v)$. Thus, $\beta(v) \in U$, implying that U is β -invariant.

Question 5

Let V be a vector space equipped with a nondegenerate symmetric bilinear form ϕ .

(a) Let $v \in V \setminus \{0_V\}$. Show that there exists a vector subspace W of V with $\dim(W) \leq 2$ such that $v \in W$ and $\phi|_{W \times W}$ is nondegenerate.

Now suppose that V is **infinite**-dimensional, and let U be a **finite**-dimensional vector subspace of V.

For any $X \subseteq V$, define $X^{\perp} := \{v \in V \mid \phi(v, x) = 0_F \ \forall x \in X\}.$

- (b) Show by induction on $\dim(U)$, or otherwise, that there is a finite-dimensional vector subspace W of V with $U \subseteq W$ such that $\phi|_{W \times W}$ is nondegenerate.
 - (You may assume without proof that if X is a finite-dimensional vector subspace of V such that $\phi|_{X\times X}$ is nondegenerate, then $\phi|_{X^{\perp}\times X^{\perp}}$ is also nondegenerate.)
- (c) Show further that $U^{\perp} = (U^{\perp} \cap W) \oplus W^{\perp}$.
- (d) Hence, or otherwise, show that $(U^{\perp})^{\perp} = (U^{\perp} \cap W)^{\perp} \cap W$.
- (e) Deduce that $(U^{\perp})^{\perp} = U$.

Solution:

- (a) If $\phi(v,v) \neq 0_F$, then let $W = \text{span}(\{v\})$, which has dimension 1. If $\phi(v,v) = 0_F$, since ϕ is nondegenerate, there exists $u \in V \setminus \{0_V\}$ such that $\phi(u,v) \neq 0_F$. So we let $W = \text{span}(\{v,u\})$, which has dimension at most 2, and that $\phi|_{W\times W}$ is nondegenerate.
- (b) We induct on $\dim(U)$.

Base case: $\dim(U) = 0$.

Then $U = \{0_V\}$. We can let W = U and $\phi|_{W \times W}$ is trivially nondegenerate.

Inductive step: Assume the statement holds for $\dim(U) \leq n$ where $n \in \mathbb{N}$. Let $U \subseteq V$ have dimension n+1. Let U' be an n-dimensional subspace of U. By the induction hypothesis, there exists a finite-dimensional subspace $W' \supseteq U$ such that $\phi|_{W'\times W'}$ is nondegenerate. If $U\subseteq W'$, then we can let W=W'. Otherwise, there exists $u\in U\setminus W'$. Since $V=W'\oplus W'^{\perp}$, $u=w_0+w_1$ for some unique $w_0\in W'$ and $w_1 \in W'^{\perp}$. Since $\phi|_{W' \times W'}$ is nondegenerate, $\phi|_{W'^{\perp} \times W'^{\perp}}$ must be nondegenerate. So by part (a), there must exist finite-dimensional X such that $w_1 \in X \subseteq W'^{\perp}$ and $\phi|_{X \times X}$ is nondegenerate. Now, let W = W' + X. Since $W' \cap W'^{\perp} = \{0_V\}$ and $X \subseteq W'^{\perp}$, we have $W = W' \oplus X$. So $u = w_0 + w_1 \in W' + X = W$ and $U = U' + \operatorname{span}(\{u\}) \subseteq W' + X = W$. Also, if there exists w = w' + x such that $\phi(w,v) = 0_F$ for all $v \in W$, then $\phi(w' + x,w'_1 + x_1) = 0_F$ for all $w'_1 \in W'$, $x_1 \in X$, implying $\phi(w',w'_1) + \phi(w',x_1) + \phi(x,w'_1) + \phi(x,x_1) = \phi(w',w'_1) + \phi(x,x_1) = 0_F$ for all $w'_1 \in W'$, $x_1 \in X$. Hence, $\phi(w',w'_1) = 0_F$ and $\phi(x,x_1) = 0_F$ for all $w'_1 \in W'$, $x_1 \in X$. But since $\phi|_{W' \times W'}$ and $\phi|_{X \times X}$ are both nondegenerate, this forces $w' = 0_V$, $x = 0_V$, and $w = 0_V$. Thus, $\phi|_{W \times W}$ is nondegenerate and W satisfies the conditions.

By induction, we are done. \Box

- (c) If $v \in W^{\perp}$, then $\phi(v, w) = 0$ for all $w \in W$. But $U \subseteq W$, so $\phi(v, u) = 0$ for all $u \in U$. Hence, $v \in U^{\perp}$, implying $W^{\perp} \subseteq U^{\perp}$. Thus, $U^{\perp} = V \cap U^{\perp} = (W^{\perp} \oplus W) \cap U^{\perp} = (W^{\perp} \cap U^{\perp}) \oplus (W \cap U^{\perp}) = W^{\perp} \oplus (W \cap U^{\perp})$.
- (d) We prove the following claims:

Claim 1: For any subspaces A, B of V, $(A+B)^{\perp} = A^{\perp} \cap B^{\perp}$.

Proof: Let $v \in (A+B)^{\perp}$. Then for all $a \in A, b \in B$, we have $\phi(v, a+b) = 0_F$. But we can just set $a = 0_V$ or $b = 0_V$, giving us $\phi(v, a) = 0_F$ for all $a \in A$ and $\phi(v, b) = 0_F$ for all $b \in B$, implying $v \in A^{\perp} \cap B^{\perp}$ and $(A+B)^{\perp} \subseteq A^{\perp} \cap B^{\perp}$.

Now let $w \in A^{\perp} \cap B^{\perp}$. Each element c of A+B can be expressed as c=a+b for some $a \in A, b \in B$. But $\phi(w,a) = \phi(w,b) = 0_F$, so $\phi(w,c) = \phi(w,a) + \phi(w,b) = 0_F$. Hence, $w \in (A+B)^{\perp}$ and $A^{\perp} \cap B^{\perp} \subseteq (A+B)^{\perp}$. Therefore, $(A+B)^{\perp} = A^{\perp} \cap B^{\perp}$ and the claim is proven.

Claim 2: $(W^{\perp})^{\perp} = W$.

Proof: Note $\phi|_{W^{\perp}\times W^{\perp}}$ is nondegenerate and $V=W\oplus W^{\perp}$.

If $w \in W$, then for all $u \in W^{\perp}$, we must have $\phi(w, u) = 0_F$. Hence, $w \in (W^{\perp})^{\perp}$.

If $w \in (W^{\perp})^{\perp}$, then w = w' + u for some $w' \in W$ and $u \in W^{\perp}$. It follows that $\phi(w, u') = 0_F$ for all $u' \in W^{\perp}$, so $\phi(w', u') + \phi(u, u') = 0_F$ for all $u' \in W^{\perp}$. But $\phi(w', u') = 0_F$, so $\phi(u, u') = 0_F$ for all $u' \in W^{\perp}$. This forces $u = 0_V$, so $w \in W$ and $(W^{\perp})^{\perp} \subseteq W$. Therefore, $(W^{\perp})^{\perp} = W$ and the claim is proven.

Since $U^{\perp} = (U^{\perp} \cap W) + W^{\perp}$ from part (c), by Claims 1 and 2, we have $(U^{\perp})^{\perp} = (U^{\perp} \cap W)^{\perp} \cap (W^{\perp})^{\perp} = (U^{\perp} \cap W)^{\perp} \cap W$.

(e) Note that W is a finite-dimensional vector space equipped with a nondegenerate symmetric bilinear form $\psi = \phi|_{W \times W}$. For any $X \subseteq W$, we have $X^{\perp_{\psi}} = \{w \in W \mid \psi(w, x) = 0_F \, \forall x \in X\} = X^{\perp} \cap W$. Then $(U^{\perp_{\psi}})^{\perp_{\psi}} = (U^{\perp_{\psi}})^{\perp} \cap W = (U^{\perp} \cap W)^{\perp} \cap W = (U^{\perp})^{\perp}$. Since $(U^{\perp_{\psi}})^{\perp_{\psi}} = U$ from W being finite-dimensional, we have $(U^{\perp})^{\perp} = U$.