Bài tập Xấp xỉ BPTT bằng các hàm liên tục và trực giao

1. F	ind the linear	least squares	polynomial	approximation to	f(x) on	the indicated
------	----------------	---------------	------------	------------------	---------	---------------

a.
$$f(x) = x^2 + 3x + 2$$
, [0, 1];

b.
$$f(x) = x^3$$
, [0, 2];

c.
$$f(x) = \frac{1}{x}$$
, [1, 3];

d.
$$f(x) = e^x$$
, [0, 2];

e.
$$f(x) = \frac{1}{2}\cos x + \frac{1}{2}\sin 2x$$
, [0, 1];

f.
$$f(x) = x \ln x$$
, [1, 3].

a.
$$f(x) = x^2 - 2x + 3$$

b.
$$f(x) = x^3$$

$$\mathbf{c.} \quad f(x) = \frac{1}{x+2}$$

$$\mathbf{d.} \quad f(x) = e^x$$

e.
$$f(x) = \frac{1}{2}\cos x + \frac{1}{3}\sin 2x$$

$$f(x) = \ln(x+2)$$

- Find the least squares polynomial approximation of degree 2 on the interval [−1, 1] for the fur in Exercise 3.
- Compute the error E for the approximations in Exercise 3.
- 6. Compute the error E for the approximations in Exercise 4.
- 7. Use the Gram-Schmidt process to construct $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, and $\phi_3(x)$ for the following into a. [0,1] b. [0,2] c. [1,3]
- Repeat Exercise 1 using the results of Exercise 7.
- Obtain the least squares approximation polynomial of degree 3 for the functions in Exercise 1 the results of Exercise 7.

- Repeat Exercise 3 using the results of Exercise 7.
- 11. Use the Gram-Schmidt procedure to calculate L₁, L₂, and L₃, where {L₀(x), L₁(x), L₂(x), L₃(x)} is an orthogonal set of polynomials on (0, ∞) with respect to the weight functions w(x) = e^{-x} and L₀(x) ≡ 1. The polynomials obtained from this procedure are called the Laguerre polynomials.
- 12. Use the Laguerre polynomials calculated in Exercise 11 to compute the least squares polynomials of degree one, two, and three on the interval $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$ for the following functions:
 - **a.** $f(x) = x^2$ **b.** $f(x) = e^{-x}$ **c.** $f(x) = x^3$ **d.** $f(x) = e^{-2x}$
- 13. Suppose $\{\phi_0, \phi_1, \dots, \phi_n\}$ is any linearly independent set in \prod_n . Show that for any element $Q \in \prod_n$, there exist unique constants c_0, c_1, \dots, c_n , such that

$$Q(x) = \sum_{k=0}^{n} c_k \phi_k(x).$$

- 14. Show that if {φ₀, φ₁,..., φ_n} is an orthogonal set of functions on [a, b] with respect to the weight function w, then {φ₀, φ₁,..., φ_n} is a linearly independent set.
- 15. Show that the normal equations (8.6) have a unique solution. [Hint: Show that the only solution for the function f(x) ≡ 0 is a_j = 0, j = 0, 1, ..., n. Multiply Eq. (8.6) by a_j, and sum over all j. Interchange the integral sign and the summation sign to obtain ∫_a^b[P(x)]²dx = 0. Thus, P(x) ≡ 0, so a_j = 0, for j = 0, ..., n. Hence, the coefficient matrix is nonsingular, and there is a unique solution to Eq. (8.6).]