

Introduction to Cloud Architecture

Module 1 - Cloud basics Google Cloud Computing Foundations

Objectives

- Explore cloud computing.
- Compare and contrast physical, virtual, and cloud architectures.
- Differentiate laaS, PaaS, and SaaS.
- Be introduced to Google Cloud compute, storage, big data, and ML services.
- Examine the Google network and how it powers cloud computing.

Agenda

01	Cloud computing
02	Cloud vs. traditional architecture
03	IaaS, PaaS, and SaaS
04	Google Cloud architecture
05	Quiz
96	Summary

Agenda

Cloud computing
Cloud vs. traditional architecture
laaS, PaaS, and SaaS
Google Cloud Architecture
Quiz
Summary

What is cloud computing?

US National Institute of Standards and Technology

Cloud computing

- 21 Customers get computing resources that are on-demand and self-service
- Over the internet, from anywhere
- The provider of those resources allocates them to users out of that pool
- The resources are elastic–which means they can increase or decrease as needed
- OS Customers pay only for what they use, or reserve as they go

On-demand self-service

Customers get computing resources that are on-demand and self-service

Cloud computing is a way of using information technology that has these five equally important traits.

- Oustomers get access to those resources over the internet, from anywhere
- The provider of those resources allocates them to users out of that pool
- The resources are elastic–which means they can increase or decrease as needed
- O5 Customers pay only for what they use, or reserve as they go

O1 Customers get computing resources that are on-demand and self-service

Cloud computing is a way of using information technology that has these five equally important traits.

Broad network access

Customers get access to those resources over the internet, from anywhere

The provider of those resources allocates them to users out of that pool

The resources are elastic—which means they can increase or decrease as needed

OS Customers pay only for what they use, or reserve as they go

Oustomers get computing resources that are on-demand and self-service

Oustomers get access to those resources over the internet, from anywhere

Resource pooling

The provider of those resources allocates them to users out of that pool

The resources are elastic–which means they can increase or decrease as needed

OS Customers pay only for what they use, or reserve as they go

Oustomers get computing resources that are on-demand and self-service

Customers get access to those resources over the internet, from anywhere

The provider of those resources allocates them to users out of that pool

Rapid elasticity

The resources are elastic-which means they can increase or decrease as needed

Ostomers pay only for what they use, or reserve as they go

- Oustomers get computing resources that are on-demand and self-service
- Ozer the internet, from anywhere
- The provider of those resources allocates them to users out of that pool
- The resources are elastic—which means they can increase or decrease as needed

Measured service

Customers pay only for what they use, or reserve as they go

IT infrastructure is like city infrastructure

Agenda

Cloud computing
Cloud vs. traditional architecture
laaS, PaaS, and SaaS
Google Cloud Architecture
Quiz
Summary

The history of cloud computing

First wave

Colocation

Server on-premises

You own everything. **It's yours to manage.**

Data Centers

You pay for the hardware but rent the space. Still yours to manage.

The history of cloud computing

First wave

Colocation

Second wave

Virtualized data center

You rent hardware and space, but still control and configure virtual machines. Pay for what you provision.

Enterprises still maintain the infrastructure

- User-controlled environment
- User-configured environment

The history of cloud computing

First wave

Colocation

Second wave

Virtualized data center

Managed service

Completely elastic storage, processing, and machine learning so that you can invest your energy in great apps. Pay for what you use.

Third wave

Container-based architecture

Third-wave cloud is available to Google customers

Data center energy consumption

2%

of the world's electricity

Google aims to improve efficiency and reduce waste

Google's data centers were the first to achieve ISO 14001 certification

The data center cooling system in Finland is the first of its kind anywhere in the world.

Google's data center, Hamina, Finland

Google's commitment to sustainability

Founding decade

Carbon neutral

Second decade Renewable energy 2030 Carbon free

Agenda

Cloud computing
Cloud vs. traditional architecture
IaaS, PaaS, and SaaS
Google Cloud Architecture
Quiz
Summary

Cloud service offerings

- laaS Infrastructure as a service
- PaaS Platform as a service

Infrastructure as a Service (laaS)

Platform as a Service (PaaS)

Payment models

laaS

Pay for what they allocate

PaaS

Pay for what they use

The evolution of cloud computing

Managed resources

Managed services

Deliver products/services

Serverless

- Allows developers to concentrate on code
- No infrastructure management needed

What about SaaS?

- The platform and software is provided as a service to the user.
- The user supplies the data.
- Example: Google Workspace (Gmail, Drive, Documents)

Agenda

Clo	ud computing
Clo	ud vs. traditional architecture
laas	S, PaaS, and SaaS
Goo	ogle Cloud architecture
Qui	Z

The Google Cloud infrastructure

Big Data and ML Products

Compute

Storage

Networking and Security

Google Cloud computing services

Google Cloud storage services

A robust big data and ML product line

The Google Cloud infrastructure

Big Data and ML Products

Compute

Storage

Networking and Security

Largest network of its kind

40%

of the world's internet traffic every day

Designed for high throughput

- Highest possible throughput
- Lowest possible latencies
- 100+ content caching nodes worldwide
- High demand content is cached for quicker access

Infrastructure locations

Geographic locations contain regions and zones

Regions contain multiple zones

Zones are where Cloud resources are deployed

Resources can run in different regions

Regions

Application

Some services can run in multiple geographic locations

cloud.google.com/about/locations

Resources are organized both physically and logically

Physical organization

Resources are organized both physically and logically

Global Resources

Regional resources

Zonal resources

Physical organization

Logical organization

A **project** is the baselevel organizing entity for creating and using resources and services and managing billing, APIs, and permissions.

Resources have hierarchy

An organization is the **root node** of a Google Cloud resource hierarchy

Folders to reflect the hierarchy of your enterprise and apply policies at the right levels in the enterprise

A **project** is the base-level organizing entity for creating and using resources and services and managing billing, APIs, and permissions.

Cloud Identity and Access Management (Cloud IAM) creates trust boundaries and resource isolation

Agenda

Cloud computing
Cloud vs. traditional architecture
laaS, PaaS, and SaaS
Google Cloud architecture
Quiz
Summary

Agenda

Sum	nmary
Quiz	Z
Goo	ogle Cloud architecture
laaS	S, PaaS, and SaaS
Clou	ud vs. traditional architecture
Clou	ud computing

Summary

Were introduced to Google Cloud compute, storage, big data, and ML services.

Examined the Google network and how it powers cloud computing.

