第五章 集成运放及其应用

集成运算放大器——高增益的直接耦合的集成的多级放大器。

集成电路的工艺特点:

- (1) 元器件具有良好的一致性和同向偏差,因而特别有利于实现需要对称结构的电路。
- (2)集成电路的芯片面积小,集成度高,所以功耗很小,在毫瓦以下。
- (3) 不易制造大电阻。需要大电阻时,往往使用有源负载。
- (4) 只能制作几十pF以下的小电容。因此,集成放大器都采用直接耦合方式。如需大电容,只有外接。不能制造电感,如需电感,也只能外接。
- (5) 电路中二极管作温度补偿和电位移动,一般用三极管发射结构成。

一. 集成运放的总体结构

二. 简单的集成运放

原理框图:

5.1 集成运算放大器的主要参数

1.输入失调电压 V_{io}

输入电压为零时,将输出电压除以电压增益,即为折算到输入端的失调电压。是表征运放内部电路对称性的指标。

2.输入失调电压温漂 dV_{io}/dT

在规定工作温度范围内,输入失调 电压随温度的变化量与温度变化量 之比值。

3.输入偏置电流 I_B :

输入电压为零时,运放两个输入端偏置电流的平均值,用于衡量差分放大对管输入电流的大小。

$$I_{\rm IB} = \frac{1}{2} (I_{\rm B1} + I_{\rm B2})$$

4.输入失调电流 *I*_{io}:

在零输入时,差分输入级的差分对管基极电流之差,用于表征差分级输入电流不对称的程度。

$$I_{\rm IO} = \left| I_{\rm B1} - I_{\rm B2} \right|$$

5.输入失调电流温漂 dI_{io}/dT

在规定工作温度范围内,输入失调电流随温度的变化量与温度变化量之比值。

6.最大差模输入电压 V_{idmax}

运放两输入端能承受的最大差模输入电压,超过此电压时,差分管将出现反向击穿现象。

7.最大共模输入电压 V_{icmax}

在保证运放正常工作条件下,共模输入电压的允许范围。共模电压超过此值时,输入差分对管出现饱和,放大器失去共模抑制能力。

8.开环差模电压放大倍数 A_{od} :

无反馈时的差模电压增益。

一般 A_{od} 在100~120dB左右,高增益运放可达140dB以上。

$$A_{\rm od} = \frac{V_{\rm o}}{V_{\perp} - V_{-}}$$

9.差模输入电阻ria:

双极型管输入级约为10⁵~10⁶欧姆,场效应管输入级可达10⁹欧姆以上。

10.共模抑制比 K_{CMR} :

$$K_{\text{CMR}} = 20 \lg(A_{\nu d} / A_{\nu c})$$
 (dB)

其典型值在80dB以上,性能好的高达180dB。

11.-3dB带宽 f_{H} :

运放的差模电压放大倍数在高频段下降3dB所定义的带宽 f_H 。

12.转换速率 S_R (压摆率):

反映运放对于快速变化的输入信号的响应能力。 转换速率 S_R 的表达式为

$$S_{\rm R} = \left| \frac{\mathrm{d} v_{\rm o}}{\mathrm{d} t} \right|_{\mathrm{max}}$$

5.1.2 特殊集成运算放大器

为满足实际使用中对集成运放性能的特殊要求,除性能指标比较适中的通用型运放外,还有适应不同需要的专用型集成运放。它们在某些技术指标上比较突出。

根据运算放大器的技术指标可以对其进行分类,主要有通用、高速、宽带、高精度、高输入电阻和低功耗等几种。

1. 高速型和宽带型

用于宽频带放大器,高速A/D、D/A,高速数据采集测试系统,这种运放的单位增益带宽和压摆率的指标均较高。用于小信号放大时,可注重 f_H 或 f_c 。用于高速大信号放大时,同时还应注重 S_R 。例如:

CF2520/2525 $S_{\rm R} = 120 \, \text{V/} \mu \, \text{s}$ $BWG = 20 \, \text{MHz}$ AD9620 $S_{\rm R} = 2200 \, \text{V/} \mu \, \text{s}$ $f_{\rm H} = 600 \, \text{MHz}$ AD9618 $S_{\rm R} = 1800 \, \text{V/} \mu \, \text{s}$ $BWG = 8000 \, \text{MHz}$ OP37 $S_{\rm R} = 17 \, \text{V/} \mu \, \text{s}$ $BWG = 63 \, \text{MHz}$ CF357 $S_{\rm R} = 50 \, \text{V/} \mu \, \text{s}$ $BWG = 20 \, \text{MHz}$

2. 高精度(低漂移型)

用于精密仪表放大器,精密测试系统,精密 传感器信号变送等,主要看失调电压、电流和温 漂指标。例如:

OP177

$$V_{\text{IO}} = 4 \mu \text{ V}$$
 $I_{\text{IO}} = 0.3 \text{ nA}$
$$\frac{\text{d}V_{\text{IO}}}{\text{d}T} = 0.03 \mu \text{ V/}^{\circ}\text{C} \quad \frac{\text{d}I_{\text{IO}}}{\text{d}T} = 1.5 \text{ pA/}^{\circ}\text{C}$$

CF714

$$V_{IO} = 30 \sim 60 \, \mu \, \text{V}$$
 $I_{IO} = 0.4 \sim 0.8 \, \text{nA}$ $\frac{\text{d}V_{IO}}{\text{d}T} = 0.3 \sim 0.5 \, \mu \, \text{V/}^{\circ}\text{C}$ $\frac{\text{d}I_{IO}}{\text{d}T} = 8 \sim 12 \, \text{pA/}^{\circ}\text{C}$

3. 高输入阻抗型

用于测量设备及采样保持电路中,主要看偏置电流和输入电阻。例如:

AD549

$$I_{\rm IB} < 0.040 \, \rm pA$$

$$R_{\rm id} > 10^{13} \Omega$$

CF155/255/355

$$I_{\rm IB} = 30 \,\mathrm{pA}$$

$$R_{\rm id} > 10^{12} \Omega$$

4. 低功耗型

用于空间技术和生物科学研究中,工作于较低 电压下,工作电流微弱。例如:

OP22 正常工作静态功耗可低至36μW。 OP290 在±0.8 V电压下工作,功耗为24μW。 CF7612 在±5 V电压下工作,功耗为50μW。

5.2 集成运放电路分析方法

运算放大器的两个工作区域(状态)

1. 运放的电压传输特性:

设: 电源电压 $\pm V_{CC} = \pm 10V$ 。

运放的A_{VO}=10⁴

 $|U_i| \leq 1 \text{mV时,运放处于线性区。}$

 A_{VO} 越大,线性区越小, 当 A_{VO} $\rightarrow \infty$ 时,线性区 $\rightarrow 0$

2.理想运算放大器: 开环电压放大倍数 $A_{vo}=\infty$ 差模输入电阻 $R_{id}=\infty$ 输出电阻 $R_{o}=0$

3. 线性区

为了扩大运放的线性区,给运放电路引入负反馈:

理想运放工作在线性区的条件:

电路中有负反馈!

运放工作在线性区的分析方法:

虚短 (V₊=V₋)

虚断(i_{i+}=i_{i-}=0)

4. 非线性区(正、负饱和输出状态)

运放工作在非线性区的条件:

电路中开环工作或引入正反馈!

运放工作在非线性区的分析方法在下一章讨论

5.3 基本运输道路

5.3.1 比例运算电路

一. 反相比例运算

反馈方式:

电压并联负反馈

因为有负反馈, 利用虚短和虚断

$$\frac{\mathbf{u_i}}{\mathbf{R_1}} = -\frac{\mathbf{u_0}}{\mathbf{R_f}}$$

电压放大倍数:

$$\mathbf{A}_{\mathbf{u}} = \frac{\mathbf{u}_{\mathbf{0}}}{\mathbf{u}_{\mathbf{i}}} = -\frac{\mathbf{R}_{\mathbf{f}}}{\mathbf{R}_{\mathbf{1}}}$$

例题1. R_1 =10k Ω , R_F =20k Ω , u_i =-1V。求: u_o 、 R_i , R_p 应为多大?

$$A_v = -(R_f/R_1) = -20/10 = -2$$

$$v_0 = A_v u_i = (-2)(-1) = 2V$$
, $R_i = R_1$

$$R_P = R_1 / / R_f = 10 / / 20 = 6.7 \text{ k}\Omega$$

二. 同相比例运算放大器

$$R_P = R_f / / R_F$$

$$A_{v}=1+\frac{R_{f}}{R_{1}}$$

反馈方式:

电压串联负反馈

因为有负反馈, 利用虚短和虚断

$$\mathbf{v}_{-} = \mathbf{v}_{+} = \mathbf{v}_{i}$$
 $\mathbf{i}_{1} = \mathbf{i}_{F}$ (虚断)

$$\frac{\mathbf{u}_{o} - \mathbf{u}_{i}}{\mathbf{R}_{f}} = \frac{\mathbf{u}_{i}}{\mathbf{R}_{1}}$$

$$\mathbf{u}_0 = (1 + \frac{\mathbf{R}_{\mathbf{f}}}{\mathbf{R}_{\mathbf{1}}})\mathbf{u}_i$$

例题2. R_1 =10k Ω , R_f =20k Ω , v_i =-1V。求: u_o , R_P 应为多大?

特点:

输入电阻(高)

$$A_v = 1 + \frac{R_f}{R_1} = 1 + 20/10 = 3$$

$$v_0 = A_v v_i = (3)(-1) = -3V$$

$$R_P = R_f / / R_1 = 10 / / 20 = 6.7 \text{ k}\Omega$$

三.电压跟随器

$$A_{v}=1+\frac{R_{F}}{R_{f}}$$

当R_F=0时,

$$A_v=1$$

 $v_o = v_i$

5.3.2 基本运算电路

- 一. 加法运算电路
- 1. 反相求和运算:

$$v_{+} = v_{-} = 0$$
 $i_{1} + i_{2} = i_{F}$
 $v_{i1} + \frac{v_{i2}}{R_{1}} = \frac{-v_{o}}{R_{f}}$

$$v_{o} = -\left(\frac{R_{f}}{R_{1}} v_{i1} + \frac{R_{f}}{R_{2}} v_{i2}\right)$$
 若 $R_{1} = R_{2} = R$, $v_{o} = -\frac{R_{f}}{R} (v_{i1} + v_{i2})$

取 $\mathbf{R}_{\mathbf{P}} = \mathbf{R}_{1} / / \mathbf{R}_{2} / / \mathbf{R}_{\mathbf{f}}$

2. 同相求和运算:

$$A_{v} = 1 + \frac{R_{f}}{R_{1}} = \frac{\mathbf{u}_{\circ}}{\mathbf{u}_{+}}$$

$$\mathbf{v}_{0} = \mathbf{A}_{v} \ \mathbf{v}_{+} = (1 + \frac{\mathbf{R}_{f}}{\mathbf{R}_{1}}) \left(\frac{\mathbf{R}_{3}}{\mathbf{R}_{2} + \mathbf{R}_{3}} \mathbf{v}_{i1} + \frac{\mathbf{R}_{2}}{\mathbf{R}_{2} + \mathbf{R}_{3}} \mathbf{v}_{i2} \right)$$

当
$$\mathbf{R}_2 = \mathbf{R}_3$$
 时, $\mathbf{v}_0 = \frac{1}{2} \left(1 + \frac{\mathbf{R}_f}{\mathbf{R}_1}\right) (\mathbf{v}_{i1} + \mathbf{v}_{i2})$

二. 减法运算电路

1、利用加法器

$$v_{i2}-v_{i1} = v_{i2}+(-v_{i1})$$

反相器(-1)

$$\mathbf{v}_{o} = -\left(\frac{R_{f}}{R_{1}}\mathbf{v}_{i1} + \frac{R_{f}}{R_{2}}\mathbf{v}_{i2}\right)$$

$$\mathbf{v}_{o} = -\left(\frac{R_{f}}{R_{1}}\mathbf{v}_{i1} + \frac{R_{f}}{R_{2}}(-\mathbf{v}_{i2})\right) = \frac{R_{f}}{R_{2}}\mathbf{v}_{i2} - \frac{R_{f}}{R_{1}}\mathbf{v}_{i1}$$

(二) 减法器

2、差动减法器

叠加定理

$$\mathbf{v}_{\mathrm{o}}' = -\frac{\mathbf{R}_{\mathrm{f}}}{\mathbf{R}_{\mathrm{1}}} \mathbf{v}_{\mathrm{i}1}$$

$$v''_o = (1 + \frac{R_f}{R_1}) \frac{R'}{R' + R2} v_{i2}$$

综合:

$$v_o = -\frac{R_f}{R_1}v_{i1} + (1 + \frac{R_f}{R_1})\frac{R'}{R' + R2}v_{i2}$$

$$v_{o} = -\frac{R_{f}}{R_{1}}(v_{i1} - v_{i2})$$

$$= \frac{R_{f}}{R_{1}}(v_{i2} - v_{i1})$$

$$= \frac{R_{f}}{R_{1}}(v_{i2} - v_{i1})$$

(三)加减运算

当满足条件: RN=RP

 $R_N=R_1 //R_2 //R_f$

RP=R3 //R4 //R5时

采用叠加原理

$$v_o' = -(\frac{R_f}{R_1}v_{i1} + \frac{R_f}{R_2}v_{i2})$$

$$v_o'' = (\frac{R_f}{R_3} v_{i3} + \frac{R_f}{R_4} v_{i4})$$
 (简化后)

$$v_o = \left(\frac{R_f}{R_3}v_{i3} + \frac{R_f}{R_4}v_{i4}\right) - \left(\frac{R_f}{R_1}v_{i1} + \frac{R_f}{R_2}v_{i2}\right)$$

三. 积分和微分电路

1. 积分电路

ic=c*duc/dt

$$v_{\rm O} = -v_{\rm C} = -\frac{1}{C} \int i_{\rm C} \mathrm{d}t$$

$$= -\frac{1}{RC} \int v_{i} dt$$

反相积分器:如果u;=直流电压U,输出将反相积分,

经过一定的时间后输出饱和。

$$v_o = -\frac{1}{RC} \int v_i dt$$

$$v_o = -\frac{1}{RC} \int_0^t V dt$$
$$= -\frac{\mathbf{V}}{\mathbf{RC}} \mathbf{t}$$

$$-V_{om} = -\frac{1}{RC}VT_{M}$$

$$T_M = \frac{RCV_{om}}{V} = 50$$
mS进入饱和

设:
$$V_{om}$$
=15 V , V =+3 V , R =10 $k\Omega$, C =1 μ F, τ =10 m S

练习: 画出在 给定输入波形 作用下积分器 的输出波形。

 $R=10k\Omega$, C=100nF, $\tau=1mS$, $V_{om}=15V$

积分器的输入和输出波形图

应用举例:输入方波,输出是三角波。

2. 微分电路:

$$\mathbf{v}_{-} = \mathbf{v}_{+} = \mathbf{0}$$

$$i_{1} = C \frac{dv_{i}}{dt}$$

$$i_{1} = i_{F}$$

$$V_{O} = -i_{F}R = -i_{I}R$$

$$v_o = -RC \frac{dv_i}{dt}$$

例: $\mathbf{u}_{i} = \sin \omega t$, $\omega = 1$, $\mathbf{x} \mathbf{u}_{o}$.

$$u_o = -RC \frac{dv_i}{dt}$$

$$v_o = -RC \cos \omega t$$

$$= RC \sin(\omega t - 90^\circ)$$

