Solution Section 1.2 – Propositional Equivalences

Exercise

Use the truth table to verify these equivalences

a)
$$p \wedge T \equiv p$$

b)
$$p \vee \mathbf{F} \equiv p$$

c)
$$p \wedge \mathbf{F} \equiv \mathbf{F}$$

d)
$$p \vee T \equiv T$$

$$e) \quad p \lor p \equiv p$$

$$f$$
) $p \wedge p \equiv p$

Solution

Exercise

Show that $\neg(\neg p)$ and p are logically equivalent

Solution

$$\begin{array}{c|c|c}
p & \neg p & \neg (\neg p) \\
\hline
T & F & T \\
F & T & F
\end{array}$$

Therefore, $\neg(\neg p)$ and p are logically equivalent

Exercise

Use the truth table to verify the commutative laws

a)
$$p \lor q \equiv q \lor p$$

$$b) \quad p \wedge q \equiv q \wedge p$$

Solution

p	q	$p \lor q$	$q \lor p$
T	Т	T	T
T	F	T	T
F	T	T	T
F	F	F	F

Identical

p	q	$p \wedge q$	$q \wedge p$
Т	Т	T	T
T	F	$\boldsymbol{\mathit{F}}$	F
F	Т	F	F
F	F	F	F

Identical

Use the truth table to verify the associative laws

a)
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

b)
$$(p \land q) \land r \equiv p \land (q \land r)$$

Solution

a)

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \vee r$	$p \vee (q \vee r)$
T	Т	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	T	T	F	T
F	Т	T	T	T	T	T
F	Т	F	T	T	T	T
F	F	T	F	<i>T</i>	T	T
F	F	F	F	F	F	$oldsymbol{F}$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
 is true

b)

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
T	Т	Т	T	T	T	T
T	T	F	T	F	F	F
T	F	Т	F	$\boldsymbol{\mathit{F}}$	F	F
T	F	F	F	$oldsymbol{F}$	F	$oldsymbol{F}$
F	Т	T	F	$oldsymbol{F}$	T	$oldsymbol{F}$
F	T	F	F	$oldsymbol{F}$	F	$oldsymbol{F}$
F	F	T	F	$oldsymbol{F}$	F	$oldsymbol{F}$
F	F	F	F	F	F	F

$$(p \land q) \land r \equiv p \land (q \land r)$$
 is true

Exercise

Show that each of these conditional statements is a tautology by using truth result tables.

a)
$$(p \land q) \rightarrow p$$

b)
$$p \rightarrow (p \lor q)$$

$$c) \neg p \to (p \to q)$$

$$d$$
) $(p \land q) \rightarrow (p \rightarrow q)$

$$e) \neg (p \rightarrow q) \rightarrow p$$

$$f) \quad \left[\neg p \land (p \lor q) \right] \rightarrow q$$

$$g) \quad \left[(p \to q) \land (q \to r) \right] \to (p \to r)$$

$$h) \quad [p \land (p \rightarrow q)] \rightarrow q$$

Solution

a)

p	q	$p \vee q$	$p \rightarrow (p \lor q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

b)

p	q	$p \wedge q$	$(p \land q) \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

c)

٠.					
	p	q	$\neg p$	$p \rightarrow q$	$\neg p \rightarrow (p \rightarrow q)$
	T	T	F	T	T
	T	F	F	F	T
Ī	F	T	T	T	T
ĺ	F	F	T	T	T

d)

p	q	$p \wedge q$	$p \rightarrow q$	$(p \land q) \rightarrow (p \rightarrow q)$
T	T	T	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	T

e)

p	q	$p \rightarrow q$	$\neg(p \rightarrow q)$	$\neg (p \rightarrow q) \rightarrow p$
T	Т	T	F	T
T	F	F	T	T
F	Т	T	$\boldsymbol{\mathit{F}}$	T
F	F	T	$oldsymbol{F}$	T

f)

p	q	$p \rightarrow q$	$\neg(p \rightarrow q)$	$\left[\neg p \land (p \lor q)\right] \rightarrow q$
T	T	T	$\boldsymbol{\mathit{F}}$	T
Т	F	$\boldsymbol{\mathit{F}}$	T	T
F	T	T	$\boldsymbol{\mathit{F}}$	T
F	F	T	F	T

g)

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$
Т	Т	T	T	T	T	T	T
T	Т	F	T	\mathbf{F}	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	Т	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	$m{T}$
F	F	F	T	T	T	T	T

h)

p	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$\left[p \land (p \rightarrow q)\right] \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Exercise

Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent

Solution

The proposition $p \leftrightarrow q$ is true when p and q have the same true or false value. Since p and q are truth, then $p \wedge q$ only true. When p and q are false, then the negation $\neg p$ and $\neg q$ are true, then $\neg p \wedge \neg q$ is true. Therefore $(p \wedge q) \vee (\neg p \wedge \neg q)$ is true only when both are true. Therefore these two expressions are logically equivalent.

p	q	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$(p \land q) \lor (\neg p \land \neg q)$	$p \leftrightarrow q$
T	T	T	F	F	F	T	T
T	F	F	F	T	F	F	F
F	T	F	T	F	F	\boldsymbol{F}	F
F	F	F	T	T	T	T	T

Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent

Solution

The proposition $\neg(p \leftrightarrow q)$ is true when $p \leftrightarrow q$ is false. Since $p \leftrightarrow q$ is true when p and q have the same truth value, it is false when p and q have different truth values (either p is true and q is false, or vice versa). These are precisely the cases in which $p \leftrightarrow \neg q$ is true. Therefore these two expressions are logically equivalent.

p	q	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$	$\neg q$	$p \leftrightarrow \neg q$
T	T	T	F	F	F
T	F	$\boldsymbol{\mathit{F}}$	T	T	T
F	T	F	T	F	T
F	F	T	F	T	F

Exercise

Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent

Solution

It is easy to see from the definitions of conditional statement and negation of these propositions is false in the case which p is true and q is false the proposition is false, and true in the other three cases. Therefore these two expressions are logically equivalent.

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$
T	T	T	F	F	T
T	F	F	T	F	$oldsymbol{F}$
F	T	T	F	T	T
F	F	T	T	T	T

Exercise

Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent

Solution

The proposition $\neg p \leftrightarrow q$ is true when $\neg p$ and q have the same truth values, which means that p and q have different truth values (either p is true and q is false, or vice versa). By the same reasoning, these are exactly the cases in which $p \leftrightarrow \neg q$ is true. Therefore these two expressions are logically equivalent.

Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent

Solution

 $(p \to q) \lor (p \to r)$ will be true when either of the conditional statements is true. The conditional statement will be true if p is false, or if q in one case or r in the other case is true, when $q \lor r$ is true, which is precisely $p \to (q \lor r)$ is true. Since the two propositions are true in exactly the same situation, they are logically equivalent.

Exercise

Show that $(p \rightarrow r) \lor (q \rightarrow r)$ and $(p \land q) \rightarrow r$ are logically equivalent

Solution

In order for $(p \to r) \lor (q \to r)$ to be false, we must have both of the two implications false, which happens exactly when r is false and both p and q are true. But this precisely the case in which $p \land q$ is true and r is false, which is $(p \land q) \to r$ is false. Therefore these two expressions are logically equivalent.

Exercise

Show that $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is a tautology

Solution

Given that p and $p \rightarrow q$ are both true, we conclude that q is true; from that and $q \rightarrow r$ we conclude that r is true.

Exercise

Show that $(p \lor q) \lor (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology

Solution

The conclusion $q \lor r$ will be true in every case except when q and r are both false. But if q and r are both false, then one of $p \lor q$ or $\neg p \lor r$ is false, because one of p or $\neg p$ is false. Thus in this case $(p \lor q) \land (\neg p \lor r)$ is false. An conditional statement in which the conclusion is true or the hypothesis is false.

Show that | (NAND) is functionally complete

Solution

Equivalence of NOT:

$$p \mid p \equiv \neg p$$

 $\neg (p \land p) \equiv \neg p$ Equivalence of NAND
 $\neg (p) \equiv \neg p$ Idempotent law

Equivalence of AND:

$$p \wedge q \equiv \neg (p|q)$$
 Definition of NAND
 $p|p$
 $(p|q)|(p|p)q$ Negation of $(p|q)$

Equivalence of OR:

$$p \lor q \equiv \neg(\neg p \land \neg q)$$
 DeMorgan's equivalence of OR

We can do AND and OR with NANDs, also do ORs with NANDs

Thus, NAND is functionally complete.