International Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- Dual N-Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

IRF7341PbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	55	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.7	
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.8	Α
I _{DM}	Pulsed Drain Current ①	38	
P _D @T _C = 25°C	Power Dissipation	2.0	W
$P_D @ T_C = 70 ° C$	Power Dissipation	1.3	VV
	Linear Derating Factor	0.016	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
V_{GSM}	Gate-to-Source Voltage Single Pulse tp<10µs	30	V
E _{AS}	Single Pulse Avalanche Energy®	72	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®		62.5	°C/W

IRF7341PbF

Electrical Characteristics @ T_{.I} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.059		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.043	0.050	Ω	V _{GS} = 10V, I _D = 4.7A ⊕	
TOS(on)	Ctatio Brain to Course on recolctance		0.056	0.065	22	V _{GS} = 4.5V, I _D = 3.8A ④	
V _{GS(th)}	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
9fs	Forward Transconductance	7.9			S	V _{DS} = 10V, I _D = 4.5A	
I	Drain-to-Source Leakage Current			2.0		$V_{DS} = 55V$, $V_{GS} = 0V$	
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -20V$	
IGSS	Gate-to-Source Reverse Leakage	_		100	11/	$V_{GS} = 20V$	
Qg	Total Gate Charge		24	36		$I_D = 4.5A$	
Q _{gs}	Gate-to-Source Charge		2.3	3.4	nC	$V_{DS} = 44V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge		7.0	10		V _{GS} = 10V, See Fig. 10 ④	
t _{d(on)}	Turn-On Delay Time		8.3	12		V _{DD} = 28V	
t _r	Rise Time		3.2	4.8	ns	$I_D = 1.0A$	
t _{d(off)}	Turn-Off Delay Time		32	48	115	$R_G = 6.0\Omega$	
t _f	Fall Time		13	20		$R_D = 16\Omega$, \oplus	
C _{iss}	Input Capacitance		740			V _{GS} = 0V	
Coss	Output Capacitance		190		pF	$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance		71			f = 1.0MHz, See Fig. 9	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			2.0		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			38	- A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 2.0$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		60	90	ns	$T_J = 25^{\circ}C, I_F = 2.0A$
Q _{rr}	Reverse RecoveryCharge		120	170	nC	di/dt = -100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 6.5mH R_G = 25 Ω , I_{AS} = 4.7A. (See Figure 8)
- $\label{eq:loss} \begin{array}{l} \text{ (3)} \ \ I_{SD} \leq 4.7A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ \ \ T_{J} \leq 150 ^{\circ}C \end{array}$
- 4 Pulse width \leq 300 μ s; duty cycle \leq 2%.
- ⑤ When mounted on 1 inch square copper board, t<10 sec

International TOR Rectifier

IRF7341PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

0.120 0.120 0.000 0.000 VGS = 4.5V VGS = 10V VGS = 10V ID , Drain Current (A)

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

4

Fig 8. Maximum Avalanche Energy Vs. Drain Current

IRF7341PbF

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/04