Astr 511: Galaxies as galaxies

University of Washington Mario Jurić & Željko Ivezić

Lecture 5:

Luminosity and mass functions of galaxies: II

Outline

- Luminosity function: basic concepts
- Stellar mass function in the Milky Way
- Methods for estimating LF from data

- Toy example: the x-y "measurements" are truncated (similar to a flux-limited sample in astronomy).
- Histograms of measured quantities are biased for a truncated sample.
- ullet Unbiased distributions can be obtained using various methods (V/V_{max} method, C^- method, maximum likelihood method)

The C⁻ method for estimating LF

- Lynden-Bell (1971, MNRAS 155, 95); a non-parametric method that works for separable LFs, $\Psi(L,z) = \Phi(L)n(z)$
- \bullet practically all non-parametric methods can be reduced to the C^- method (Petrosian 1992)
- parametric methods are usually based on maximizing likelihood (e.g. Marshall 1985)
- the simplest and most famous method, the V_{max} method (Schmidt 1968), requires binning in two axes simultaneously, while with the C^- method data is binned only one axis at a time (e.g. Fan et al. 2001)
- How do we know that separable LF is a good guess for our data?

• Given a set of measured pairs (x_i, y_i) , with i = 1...N, and known relation $y_{max}(x)$, estimate the two-dimensional distribution, n(x,y), from which the sample was drawn. Assume that measurement errors for both x and y are negligible compared to their observed ranges, that x is measured within a range defined by x_{min} and x_{max} , and that the selection function is 1 for $0 \le y \le y_{max}(x)$ and $x_{min} \le x \le x_{max}$, and 0 otherwise.

• C^- method is applicable when the distributions along the two coordinates x and y are uncorrelated, that is, when we can assume that the bivariate distribution n(x,y) is separable

$$n(x,y) = \Psi(x) \rho(y). \tag{1}$$

Therefore, before using the C^- method we need to demonstrate that this assumption is valid.

- Define a *comparable* or *associated* set for each object i such that $J_i = \{j : x_j < x_i, y_j < y_{max}(x_i)\}$; this is the largest x-limited and y-limited data subset for object i, with N_i elements (see the left panel).
- Sort the set J_i by y_j ; this gives us the rank R_j for each object (ranging from 1 to N_i)

- Define a *comparable* or *associated* set for each object i such that $J_i = \{j : x_j < x_i, y_j < y_{max}(x_i)\}$; this is the largest x-limited and y-limited data subset for object i, with N_i elements.
- Sort the set J_i by y_j ; this gives us the rank R_j for each object (ranging from 1 to N_i)
- Define the rank R_i for object i in its associated set: this is essentially the number of objects with $y < y_i$ in set J_i .
- If x and y are truly independent, R_i must be distributed *uni-formly* between 0 and N_i .

- If x and y are truly independent, R_i must be distributed uniformly between 0 and N_i .
- In this case, it is trivial to determine the expectation value and variance for R_i : $E(R_i) = E_i = N_i/2$ and $V(R_i) = V_i = N_i^2/12$. We can define the statistic

$$\tau = \frac{\sum_{i} (R_i - E_i)}{\sqrt{\sum_{i} V_i}} \tag{2}$$

If $\tau < 1$, then x and y are uncorrelated at $\sim 1\sigma$ level.

• A quiz question for in-class discussion: how would the above expression for τ look like if the uniform distribution were replaced by a Gaussian (normal) distribution?

Assuming that $\tau < 1$, it is straightforward to show using relatively simple probability integral analysis (e.g., see Appendix in Fan et al. 2001), as well as the original Lynden-Bell's paper, how to determine cumulative distribution functions. The cumulative distributions are defined as

$$\Phi(x) = \int_{-\infty}^{x} \Psi(x')dx',$$
 (3)

and

$$\Sigma(y) = \int_{-\infty}^{y} \rho(y')dy'. \tag{4}$$

Then,

$$\Phi(x_i) = \Phi(x_1) \prod_{k=2}^{i} (1 + 1/N_k)$$
 (5)

where it is assumed that x_i are sorted $(x_1 \le x_k \le x_N)$.

Analogously, if M_k is the number of objects in a set defined by $J_k = \{j : y_j < y_k, y_{max}(x_j) > y_k\}$ (see the right panel of figure below), then

$$\Sigma(y_j) = \Sigma(y_1) \, \Pi_{k=2}^j (1 + 1/M_k). \tag{6}$$

astroML implementation of the C⁻ method

- Note that both $\Phi(x_j)$ and $\Sigma(y_j)$ are defined on non-uniform grids with N values, corresponding to the N measured values.
- Essentially, the C^- method assumes a piece-wise constant model for $\Phi(x)$ and $\Sigma(y)$ between data points (equivalently, differential distributions are modeled as Dirac's δ functions at the position of each data point).
- As shown by Petrosian (1992), $\Phi(x)$ and $\Sigma(y)$ represent an optimal data summary.
- The differential distributions $\Psi(x)$ and $\rho(y)$ can be obtained by differentiating cumulative distributions in the relevant axis; an approximate normalization can be obtained by requiring that the total predicted number of objects is equal to their observed number.

• astroML Book Figure 4.9: The right panel shows a realization of truncated separable two-dimensional Gaussian distribution (with the truncation given by the solid line). The lines in the left panel show the true one-dimensional distributions of x and y, and the points are computed from the truncated data set using the C^- method (with error bars from 20 bootstrap resamples).

https://www.astroml.org/book_figures/chapter4/fig_lyndenbell_toy.html

- astroML Book Figure 4.10:
 - The luminosity function for two u-r color-selected subsamples of SDSS galaxies from the spectroscopic sample, with redshift in the range 0.08 < z < 0.12 and flux limited to r < 17.7.
- The left panels show the distribution of sources as a function of redshift and absolute magnitude. The distribution $p(z,M) = \rho(z)\Phi(m)$ is obtained using Lynden-Bell's method, with errors determined by 20 bootstrap resamples, and shown in the right panels.

https://www.astroml.org/book_figures/chapter4/fig_lyndenbell_gals.html

Test of L-z Correlation. II

- In reality, the selection function is typically complex: s(L,z|SED,...) (no sharp faint limit!)
- First define a generalized comparable set (Fan et al. 2001; AJ 121, 54) $J_i=\{j:L_j>L_i\}$; this is a luminosity limited data subset for object i
- \bullet Then generalize N_i to

$$T_{i} = \sum_{j=1}^{N_{i}} \frac{s(L_{i}, z_{j} | SED_{j})}{s(L_{j}, z_{j} | SED_{j})},$$
(7)

and redefine the rank accordingly

$$R_{i} = \sum_{j=1}^{N_{i}} \frac{s(L_{i}, z_{j} | SED_{j})}{s(L_{j}, z_{j} | SED_{j})},$$
(8)

for $z_j < z_i$. It follows that $E(R_i) = T_i/2$ and $V(R_i) = T_i^2/12$.

Evolving Luminosity Function

- The C⁻ method is simple and optimal, but it is valid only for uncorrelated variables (separable luminosity function). What do we do when the τ test suggests correlated variables?
- Kelly, Fan and Vestergaard (2008, ApJ 682, 874) described a powerful and completely general Bayesian approach (see their Appendix A for a nice introduction to Bayesian methodology). While too complex for homework, this is a fantastic method if you ever come again across the problem of estimating a general multi-dimensional distribution that is sampled with non-negligible and possibly complex selection function, remember that paper!
- ...and let's now say a few words to help you with HW # 2

LF normalization

- The C⁻ method does not know (or need) details about our sample; in particular, it cannot give us the overall LF normalization!
- We will use HW#2 problem to discuss normalization in more detail; we can talk about three levels of normalization in this case:
 - 1. The sample normalization: if we didn't have the selection effects, how many objects would our sample contain?
 - 2. Normalization to the full sky: we need to know the sky coverage for our sample (and have arguments why we can extrapolate to the whole sky).
 - 3. Extrapolation from the volume probed by the sample to some other position; here, we want to know LF at z=0.

LF normalization: the sample normalization

If we didn't have the selection effects, how many objects would our sample contain?

- To recap, the cumulative luminosity (absolute magnitude) function is $\Phi_c(M_j)$ and the cumulative distance distribution is $n_c(D_j)$ where j=1...N.
- Both $\Phi_c(M_j)$ and $n_c(D_j)$ are direct outputs from the C⁻ method; let us renormalize them as $\Phi_c(M_N) = 1$ and $n_c(D_N) = 1$, where it is assumed that M_j and D_j arrays are sorted so that M_N and D_N are their maxima (btw, C⁻ would return $\Phi_c(M_N) = N$ and $n_c(D_N) = N$).
- The number of points, n, brighter than some arbitrary M^* and closer than some arbitrary D^* is then

$$n(M < M^* \text{ and } D < D^*) = C \Phi_c(M^*) n_c(D^*).$$
 (9)

where we (still) don't know C (n.b. C is dimensionless).

LF normalization: the sample normalization

• Now, if make sure that M^* and D^* are within our selection volume (the implied apparent mag must be above our cutoff) and thus unaffected by selection effects, then we get C from

$$N^{o}(M < M^{o} \text{ and } D < D^{o}) = C \Phi_{c}(M^{o}) n_{c}(D^{o}),$$
 (10)

which is almost the same expression as on the previous page, except that here $n(M < M^*)$ and $D < D^*)$ is replaced by $N^o(M < M^o)$ and $D < D^o)$: the actual number of objects in our sample that satisfy this condition.

- This is not mathematically optimal solution for C because N^o is a random variable, but with modern large samples this is nit-picking; the optimal procedure would integrate over the full sample, but nevertheless would still need to adopt an interpolation procedure for $\Phi_c(M)$ and $n_c(D)$...
- ullet Given the real sample size, N, that is affected by selection effects, the "corrected" sample size is C!

LF normalization: the sample normalization

• The number of points per unit two-dimensional area, $dA = dM \, dD$, is then

$$\frac{d^2N}{dMdD} = C\left(\frac{d\Phi_c(M)}{dM}\right)\left(\frac{dn_c(D)}{dD}\right),\tag{11}$$

where we now know C and can easily take (numerical) derivatives $d\Phi_c(M)/dM$ and $dn_c(D)/dD$ (where $\Phi_c(M)$ and $n_c(D)$ came from C^- and are normalized to 1).

- The quantities in parenthesis are differential distribution functions.
- When normalizing to the full sky (step #2), we need to know the fraction of sky, f_{sky} , covered by our sample; if justified, we need to multiply C by $1/f_{sky}$: $C_{sky} = C/f_{sky}$.

LF normalization: extrapolation

How do we go from $d^2N/(dMdD)$ to volume density?

$$\Phi(M,D) \equiv \frac{d^2N}{dMdV} = \frac{d^2N}{dMdD} \frac{dD}{dV},$$
(12)

where $dV = 4\pi D^2 dD$. We have two cases of interest:

• Case 1: We seek the volume density vs. D, $\rho(D)$, and we don't care about M distribution:

$$\rho(D) = \int \Phi(M, D) dM = \frac{C_{sky}}{4\pi D^2} \left(\frac{dn_c(D)}{dD} \right), \quad (13)$$

where we used the fact that $\int_{-\infty}^{\infty} \left(\frac{d\Phi_c(M)}{dM}\right) dM = \Phi_c(M_N) = 1$.

• Unit for $\rho(D)$ is the number of objects per (distance unit)³ (remember that $n_c(D)$ was dimensionless and normalized to unity at $D=D_N$; the unit comes from taking derivative with respect to D, $dn_c(D)/dD$, and from the $1/D^2$ term).

LF normalization: extrapolation

- Given $\rho(D)$, we can fit some function to it and **extrapolate** to get $\rho(D=D_0)$ (and thus the ratio $\rho(D)/\rho(D=D_0)$ for any D_0 , including $\rho(D_0)/\rho(D_N)$).
- Case 2: We want to know the M distribution at some $D=D_0$, call it $\psi(M|D=D_0)$ (e.g. $D_0=0$ corresponding to solar neighborhood, as discussed in this HW). First, at $D=D_N$ (recall $n_c(D_N)=1$)

$$\psi(M|D=D_N) = \int \Phi(M,D)dD = C_{sky} \left(\frac{d\Phi_c(M)}{dM}\right). \quad (14)$$

• Then, extrapolating to D_0 (unit for ψ is the number of objects per mag; this is what we compare to the "true" LF)

$$\psi(M|D = D_0) = \psi(M|D = D_N) \frac{\rho(D_0)}{\rho(D_N)}.$$
 (15)