ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 15

WANG YUNLEI

Remark. In (2) of theorem 4we can drop the assumption that F on X is irreducible.

Corollary 1. Every affine variety is finite dimensional.

Proposition 1. Let $X \subset \mathbb{A}^N$ be an affine variety of dimension n and $F \in k[x_1, \ldots, x_N] \setminus I(X)$. If $Z(F) \cap X \neq \emptyset$, then $dim(Z(F) \cap X) = n - 1.(Z(F) \cap X)$ may not be irreducible).

Proof. We need to show for all irreducible components Y_i of $Z(F) \cap X$, $\dim Y_i \leq n-1$ and there exists a component Y_j with $\dim Y_j = n-1$ (later we will show that all irreducible components have dimension n-1). By Noether normalization theorem, there is a finite surjective morphism $\Pi: X \to \mathbb{A}^n$. Identify $k[x_1, \ldots, x_n]$ with $\Pi^*(k[x_1, \ldots, x_n]) \subset A(X)$. Let \bar{F} be the class of F in A(X), there exists a nonzero polynomial

$$H = x_{n+1}^d + \sum_{i=0}^{d-1} a_i x_{n+1}^i$$

with $a_i \in k[x_1, \ldots, x_n]$ such that $H(x_1, \ldots, x_n, \bar{F}) = 0$. Replacing H by an irreducible factor if necessary, we can assume H is irreducible. Let $\varphi = (\Pi, F) : X \to \mathbb{A}^{n+1}$, $\Pi = (x_1, \ldots, x_n) \circ \varphi$ is finite, thus φ is finite. By definition $\varphi(X) \subset Z(H)$, then $\varphi(X)$ is a closed subvariety of dimension n in Z(H). Thus $\varphi(X) = Z(H)$, $\varphi : X \to Z(H)$ is a finite surjective morphism. By definition, $Z(F) \cap X = \varphi^{-1}(Z(H, x_{n+1})) = \varphi^{-1}(Z(a_0) \times \{0\})$, thus $\dim(Z(F) \cap X) = \dim Z(a_0)$ where $a_0 \in k[x_1, \ldots, x_n]$. If a_0 is constant, then $Z(F) \cap X = \emptyset$, contradict with the condition, so drop it. Now we know a_0 is nonconstant polynomial, hence $\dim Z(a_0) = n-1$.

Theorem 1. Let X be a variety, $\emptyset \neq U \subset X$, U is an open subset of X. Then dimU = dimX.

Proof. Let $U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_n = U$ be a chain in U, let $X_i = \bar{U}$ the closure of U_i in X. By definition $U_i = U \cap X_i$, thus

$$X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n = X$$

is a chain in X, thus $\dim U \leq \dim X$.

Let $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n = X$ be a chain of largest length in X and $X_0 = \{x_0\}$ be a point, let $W \subset X$ be an open subset with $x_0 \in W$. Then we set $W_i = X_i \cap W$ for all i. Since W_{i+1} is dense in X_{i+1} , we have $W_{i+1} \supsetneq W_i$ for all i. Thus $W_0 = \{x_0\} \subsetneq W_1 \subsetneq \cdots \subsetneq W_n$ is a chain in W, we get $\dim X = \dim W$. Thus we can replace X by W and U by $W \cap U$. Now we reduce to the case X is affine.

Date: June 19, 2017.

- (1) If $X = \mathbb{A}^n$, let x_0 be a point in U, X_i be affine linear subspaces containing X_{i-1} for all i. Put $U_i = X_i \cap U, U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_n$ is a chain in U, then $\dim U = n = \dim X$.
- (2) If X is affine, there exists a finite surjective morphism $\varphi: X \to \mathbb{A}^n$. $\varphi(X \setminus U) \subsetneq \mathbb{A}^n$ is closed, let $f \in I(\varphi(X \setminus U))$ and $V = \mathbb{A}^n \setminus Z(f)$, V is open and dense in \mathbb{A}^n , $\dim V = n$. Let $W = \varphi^{-1}(V) \subset X$, then $\varphi|_W: W \to V$ is surjective and closed, thus $\dim W \geq \dim V = n$, but $U \supset W$, hence $\dim U \geq \dim W \geq n$.

Corollary 2. All varieties are finite dimensional.

Corollary 3. If X and Y are birational, then dim = dim Y.

Corollary 4. (1) $dim\mathbb{P}^n = n$.

- (2) If $F \in k[x_0, ..., x_n]$ is a homogeneous polynomial of positive degree, then dim Z(F) = n 1.
- (3) If $X \subset \mathbb{P}^n$ is a closed subvariety of dimension n-1, then X = Z(F) for some homogeneous polynomial $F \in k[x_0, \ldots, x_n]$.

Proof. (1) It is obvious since $U_i \simeq \mathbb{A}^n$ is open dense in \mathbb{P}^n .

- (2) By projective transformation we can set $Z(F) \not\subset H_{\infty}$, then $Z(F) \cap \mathbb{A}^n = Z(F(1, x_1, \dots, x_n))$. It has dimension n-1 and is open in Z(F), so $\dim Z(F) = n-1$.
- (3) Same as the affine condition in theorem 4.

Theorem 2. Let $X \subset \mathbb{A}^n$ be an affine variety, $F \in k[x_1, \ldots, x_n] \setminus I(X)$, then every irreducible component (if there is any) of $Z(F) \cap X$ has dimension $\dim X - 1$.

Proof. Let Z be a irreducible component of $Z(F) \cap X$. Take W be the union of all the other irreducible components of $Z(F) \cap X$. Take $g \in I(W) \setminus I(Z)$ and $U := X \setminus Z(g)$, then U can be viewed as an affine variety in \mathbb{A}^{n+1} . Since $Z(g) \supset W$, we get $U \subset Z$. Hence $U \cap Z(F) = U \cap Z$. Viewing F as a polynomial function on $U(\text{since } U = X \setminus Z(g) \text{ is open and dense in } X$, F is not zero in U, otherwise it is zero in the whole set X, contradicts with $F \notin I(X)$, then we get $\dim Z = \dim(Z \cap U) = \dim U - 1 = \dim X - 1$. The second equality $\dim(Z \cap U) = \dim U - 1$ is from proposition 1 by viewing it in \mathbb{A}^{n+1}

Proposition 2. Let $\varphi: X \to Y$ be a morphism of varietise. Assume there exists a nonempty open subset $U \subset Y$ such that for all $p \in U$, $\dim(\varphi^{-1}(p)) = n$, then we have

$$dim X = dim Y + n.$$

Theorem 3. Let $\varphi: X \to Y$ be a surjective morphism, assume $\dim X = \dim Y + n$, then

- (1) for all points $p \in X$, $dim(\varphi^{-1}(p)) \geq n$;
- (2) there is a nonempty open subset $U \subset Y$ such that for all $p \in U$, $\dim \varphi^{-1}(p) = U$.

1. CONCLUSIONS WE NEED FROM PREVIOUS LECTURES

In lecture 14:

Theorem 4. (1) $dim \mathbb{A}^n = n$.

- (2) Let F ∈ k[x₁,...,x_n]\k be a irreducible polynomial, then dimZ(F) = n-1.
 (3) Conversely any subvariety X ⊂ Aⁿ of dimension n − 1 is a hypersurface, i.e. X = Z(F) with F irreducible.

 $E\text{-}mail\ address{:}\ \texttt{wcghdpwyl@126.com}$