Exercise 1. Consider the quadratic polynomial x^2-4x+8 . Convert it to <u>vertex form</u>. That is, convert it to the form $(x-h)^2+k$, where (h,k) is the vertex of this quadratic curve.

$$x^{2}-4x+8=x^{2}-4x+4+4=(x-2)^{2}+4$$

Exercise 2. Match the following radicals of polynomials with their result after doing the correct trigonometric substitution.

1. $\sqrt{4-x^2}$, $x = 2\cos(\theta)$

(2) $tan(\theta)$

Name: Solutions

2. $\sqrt{9x^2-1}$, $x = \frac{1}{3}\sec(\theta)$

(3) $2\sec(\theta)$

3. $\sqrt{4+25x^2}$, $x = \frac{2}{5}\tan(\theta)$

(1) $2\sin(\theta)$

Exercise 3. Evaluate the integral $\int \frac{\sqrt{1-x^2}}{x} dx$ using the correct trigonometric substitution. Your answer must be a function depending on x.

Take $x = \sin(\theta)$, then $dx = \cos(\theta)d\theta$. The integrand becomes

$$\frac{\sqrt{1-x^2}}{x}dx = \frac{\sqrt{1-\sin^2(\theta)}}{\sin(\theta)}(\cos(\theta)d\theta).$$

Then

$$\int\!\frac{\cos^2(\theta)}{\sin(\theta)}\mathrm{d}\theta = \int\!\frac{1-\sin^2(\theta)}{\sin(\theta)}\mathrm{d}\theta = \int\!\left(\csc(\theta)-\sin(\theta)\right)\mathrm{d}\theta = -\log(\csc(\theta)+\cot(\theta)) + \cos(\theta).$$

Since $\sin(\theta) = O/H$, then $A = \sqrt{1-x^2}$, and thus

$$I = -\log\left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{x}\right) + \sqrt{1-x^2}.$$

Exercise 4. Evaluate the integral $\int \frac{dx}{\sqrt{4x^2-4x+5}}$. Your answer must be a function depending on x.

We first convert the polynomial to vertex form $4x^2-4x+5=4x^2-4x+1+4=(2x-1)^2+4$. The first substitution to take $u=2x-1\Rightarrow \mathrm{d} u=2\mathrm{d} x\Rightarrow \mathrm{d} x=\frac{\mathrm{d} u}{2}$. The integral is now

$$\int \frac{1}{\sqrt{u^2 + 4}} \left(\frac{\mathrm{d}u}{2}\right) \xrightarrow{u = 2\tan(\theta)} \frac{1}{2} \int \frac{(2\sec^2(\theta)d\theta)}{\sqrt{(2\tan(\theta))^2 + 4}}$$

$$= \int \frac{\sec^2(\theta)}{2\sec(\theta)}d\theta$$

$$= \frac{1}{2} \int \sec(\theta)d\theta.$$

The integral of $\sec(\theta)$ is $\log(\sec(\theta) + \tan(\theta))$ and now we use the fact that $\tan(\theta) = O/A$, whence we obtain O = u and A = 2. Thus $H = \sqrt{u^2 + 4}$ and thus

$$I = \log\left(\frac{\sqrt{u^2 + 4}}{2} + \frac{u}{2}\right) = \log\left(\frac{\sqrt{(2x - 1)^2 + 4}}{2} + \frac{2x - 1}{2}\right).$$