Statistical Model Checking for SystemC Models

Van Chan Ngo Axel Legay Jean Quilbeuf

Inria Rennes, France

HASE 2016, San Francisco, USA

Executive summary

- PMC: state space exploration is infeasible for large systems
 - Partial Order Reduction
 - Symbolic Model Checking
 - SAT-based Bounded Model Checking
 - Predicate Abstraction
 - Counterexample Guided Abstraction Refinement
- SMC: often easier to simulate a system
- Our goal: provide probabilistic guarantees of correctness of stochastic SystemC models using a number of simulations
 - How to define an execution trace?
 - How to generate each execution trace?
 - How many simulation runs to make?

An example

- \circ Message's length and FIFO's buffer are fixed (i.e. of 10)
- Producer writes 1 character to the FIFO with probability p_1 every 1 time unit
- \circ Consumer reads 1 character from the FIFO with probability p_2 every 1 time unit
- Quantitative analysis: What is the probability that messages are transferred completely within 15 time units during 10000 time units of operation?
- Qualitative analysis: Is this probability at least 0.6?

A solution - PMC

- \circ Given a stochastic model ${\mathcal M}$ such as a Markov chain
- \circ A property φ expressed in Bounded Linear Temporal Logic (BLTL) and a probability threshold $\theta \in (0,1)$
- \circ Does $\mathcal M$ satisfy φ with probability at least θ ?

$$\mathcal{M} \models \mathsf{Pr}_{\geq \theta}(\varphi)$$

Example: messages are transferred completely within T_1 time units during T time units of operation

$$\mathsf{G}_{\leq \mathsf{T}}((\mathsf{c_read} = \ '\&') \to \mathsf{F}_{\leq \mathsf{T}_1}(\mathsf{c_read} = \ '@'))$$

PMC - Scalability

- PMC is infeasible for large systems due to the state space exploration
 - PMC employs symbolic model checking which can scale to $\sim 10^{100}$ states
 - Scalability depends on the structure of the system
- PMC does not work directly with SystemC models
 Formal model is sometime much over-approximated. It cannot capture the concrete implementation of the system
- Example: PRISM checker created at Oxford and Birmingham

Another solution - SMC

• Associate the i^{th} execution trace with a random variable B_i having a Bernoulli distribution,

$$Pr[B_i = 1] = p, Pr[B_i = 0] = 1 - p$$

- o An observation $b_i = 1$ if the trace satisfies the property, $b_i = 0$, otherwise
- Decide between two hypotheses:

Null hypothesis: $H : p \ge \theta$ Alternate hypothesis: $K : p < \theta$

 \circ Or estimate the probability p instead of hypothesis testing Simulation is feasible for many more systems Easier to parallelize Answers may be wrong. But error probability can be bounded (i.e. at most $\alpha \sim 0$) Simulation is incomplete

SMC - Existing work

- [Younes et al. 06, CMU] use Wald's Sequential Probability Ratio Test
- ∘ The simple null hypothesis H_0 : $p \ge p_0 = \theta + \delta$
- \circ The simple alternate hypothesis $H_1: p < p_1 = \theta \delta$

 [Plasma Lab, Inria] checker uses MonteCarlo method, Chernoff and Hoeffding bounds, etc. to estimate the probability

$$\tilde{p} = \frac{1}{n} \sum_{i=1}^{n} b_i$$
 st $\Pr[|\tilde{p} - p| < \delta] \ge 1 - \alpha$

BLTL

- An extension of LTL with time bounds on temporal operations (i.e. $\varphi_1 U_{\leq T} \varphi_2$)
- The semantics of BLTL for a trace suffix $\omega^k = (s_k, t_k), (s_{k+1}, t_{k+1}), \dots$ is defined as follows $\omega^k \models true \text{ and } \omega^k \not\models false$ $\omega^k \models p. p \in AP \text{ iff } p \in L(s_k)$ $\omega^k \models \varphi_1 \wedge \varphi_2$ iff $\omega^k \models \varphi_1$ and $\omega^k \models \varphi_2$ $\omega^k \models \neg \varphi \text{ iff } \omega^k \not\models \varphi$ $\omega^k \models \varphi_1 \cup_{\leq T} \varphi_2$ iff there exists an integer i such that $\omega^{k+i} \models \varphi_2$ $\sum_{0 < i < i} (t_{k+i} - t_{k+i-1}) \le \mathsf{T}$ for each $0 < j < i, \omega^{k+j} \models \varphi_1$

SystemC model state

A state is an evaluation of variables which represent

- Simulation kernel state
 - Current phase of the simulation scheduler (i.e. delta-cycle notification, simulation-cycle notification)
 - Events notified during the execution of the model
- SystemC model state: full state of the C++ code
 - All module's attributes,
 - Location of the program counter (i.e. executed statement, function call)
 - Call stack (i.e. function parameters and return values)
 - Status of module processes

Note: external libraries are considered as block boxes

Temporal resolution

- Is a set of Boolean expressions, called temporal events, defined over the simulation kernel states, location of the program counter, and processes' status
- Whenever a temporal event is true, a new state is sampled
- A time unit is duration between two event occurrences.
- States are snapshots of system at event occurrences

SMC for **SystemC** models

- MAG: automatically instruments SystemC model with the help of AspectC++ in order to generate the traces and communicate with the checker
- SystemC plugin: communicates with the instrumented model and applies appropriate statistical algorithms provided by Plasma Lab

Case study - Dependability analysis

- 50 groups of 3 sensors, 30 groups of 2 actuators
- Main, input and output processors communicate via a reliable bus

Component	Mean time
Sensor	1 month
Actuator	2 months
Transient Fault	1 day
Processor	1 year
Reboot to Repair	30 seconds

Dependability analysis

- Time to failure of sensors, actuators and processors and time to repair of I/O processors can be modeled by exponential distributions
- The reliability is modelled as a Continuous Time Markov Chain (CTMC)

Sensor group: 4 states

Actuator group: 3 states

Main processor: 2 states

I/O processors: 3 states (including 1 state of transient

failure)

The model has $4^{50} \times 3^{30} \times 2 \times 3^2 \sim 2^{150}$ states

Results

The probability that each of the 4 failure types is the cause of system shutdown in the first T time of operation

shutdown = $\bigvee_{i=1}^{4}$ failure_i ¬shutdownU_{<T}failure_i

Results

- The expected amount of time spent in each of the states: "up", "danger" and "shutdown"
- \circ $X_{\leq T}$ reward_c returns the mean of reward_c after T time of execution

Tool in action

https://project.inria.fr/pscv/

Conclusion

- An introduction about Statistical Model Checking
- Some evidences that SMC scales to large systems
 - SystemC models
 Simulink models [Clarke et al. 09, CMU]
- Initial experiments on SystemC for dependability analysis are carried out

Future work

- More SystemC examples
- Parallel implementation of the statistical analyzer
- Consider the implementation of a random scheduler for SystemC kernel