Chapitre 3 : Compléments sur la dérivation et convéxité

George Alexandru Uzunov

Table des matières

1	Con	Complément sur la dérivation					
	1.1	Etudier la dérivabilité en un point					
	1.2	Dérivée d'une fonction composée					
	1.3	Dérivées usuelles de fonctions composées					
	1.4	Rappel de l'application de la dérivation					
		Dérivée seconde					
2		nvéxité					
		Lecture Graphique					
	2.2	Convéxité et sens de variation de f'					
	2.3	Convéxité et signe de f''					
	2.4	Point d'inflexion et dérivée seconde					
		Synthèse					

1 Complément sur la dérivation

1.1 Etudier la dérivabilité en un point

Exemple Soit une fonction f telle que $f(x) = \begin{cases} x^2 - 2x - 2 & \text{si } x \leq 1 \\ \frac{x-4}{x} & \text{si } x > 1 \end{cases}$

- Etude de la continuité en 1 : $\lim_{x\to 1^-} (x^2-2x-2) = -3$ et $\lim_{x\to 1^+} \frac{x-4}{x} = -3$ Les limites sont égales, il y a continuité.
- Pour $x \le 1$, $f'(1^-) = \lim_{h \to 0} \frac{f(1+h) f(1)}{h} = \lim_{h \to 0} \frac{h^2}{h} = 0$
- Pour x > 1, $f(1^+) = \lim_{h \to 0} \frac{f(1+h) f(1)}{h} = \lim_{h \to 0} \frac{4}{1+h} = 4$

Les limites sont différentes. Donc f n'est pas dérivable en 1.

Pour 1⁻, la tangente horizontale est y = -3.

Pour 1⁺, la tangente horizontale est y = 4x + 7.

1.2 Dérivée d'une fonction composée

Propriété Soit une fonction f telle que $x \mapsto u(x) \mapsto v[u(x)]$. Soit une fonction u définie et dérivable en I, avec ses valeurs en J. Soit une fonction v définie et dérivable en en K tel que $J \subset K$, avec ses valeurs en \mathbb{R} . $f(x) = v \circ u(x)$ dérivable sur I. Sa dérivée est $f'(x) = v' \circ u \times u'$.

1.3 Dérivées usuelles de fonctions composées

• Soit u une fonction dérivable et strictement positive, avec $D_f \neq D_{f'}$:

$$f(x) = \sqrt{u(x)}$$
 et $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$

- Soit u une fonction dérivable sur I, alors la fonction $f(x) = (u(x))^n$
 - 1. est dérivable sur $I \ \forall n \in \mathbb{N}^*$
 - 2. est dérivable sur I si $u(x) \neq 0$ lorsque $n \in \mathbb{Z}^*$

La dérivée de f est alors $f'(x) = n \times u'(x) \times [u(x)]^{n-1}$

• Soit u dérivable sur I, alors la fonction f(x) = exp(u(x)), sa dérivée est $f'(x) = u'(x) \times exp(u(x))$.

1.4 Rappel de l'application de la dérivation

La dérivée f' sert à :

- Étudier la variation de la fonction f
- Étudier des extrema
 - Lorsque f'(x) est nulle
 - Lorsqu'il y a changement de signe de la dérivée

1.5 Dérivée seconde

<u>Définition</u> Soit f une fonction dérivable sur I telle que sa dérivée f' soit aussi dérivable sur I. On apelle dérivée seconde la fonction f''(x) = (f'(x))'.

2 Convéxité

2.1 Lecture Graphique

<u>Définition</u> f est convexe sur I si et seulement si pour tout points a et b distincts de C_f , la corde [AB] est au dessus de C_f . Elle est concave si et seulement si la corde [AB] est en dessous de C_f .

<u>Définition Point d'inflexion</u> Le point A de coordonées (a; f(a)) est un point d'inflexion de C_f si et seulement si la tangente traverse la courbe au point A.

2

2.2 Convéxité et sens de variation de f'

Propriété

- f est convexe sur I si et seulement si f' est croissante sur I.
- f est concave sur I si et seulement si f' est décroissante sur I.

2.3 Convéxité et signe de f''

Propriété 1

- f est convexe sur I si et seulement si f'' est positive sur I.
- f est concave sur I si et seulement si f'' est négative sur I.

Propriété 2 Soit f une fonction deux fois dérivable sur $I, \forall x \in I$ on a :

- si $f''(x) \ge 0$, alors C_f est au dessus de ses tangentes.
- si $f''(x) \leq 0$, alors C_f est en dessous de ses tangentes.

Démonstration On cherche à prouver que si f'' > 0 alors C_f est au dessus de ses tangentes. (Méthode de la différence)

$$d(x) = f(x) - f'(a)(x - a) - f(a)$$
$$d'(x) = f'(x) - f'(a)$$
$$d''(x) = f''(x)$$

Or par hypothèse $f''(x) \ge 0$.

FIGURE 1 – Tableau de signes de d''(x) et tableau de variations de d'.

D'après ce tableau de signes on a :

- $\forall x \in]-\infty; a[, d'(x) < 0.$
- $\forall x \in [a; +\infty[, d'(x) \ge 0.$

On a donc:

x	$-\infty$		a		$+\infty$
Signe de $d'(x)$		_	0	+	
Variation de d			→ 0 <i>—</i>		

FIGURE 2 – Tableau de signes de d'(x) et tableau de variations de d.

L'extremum est 0 pour d. Donc $d(x) \ge 0$. C_f est donc toujours au dessus de ses tangentes.

2.4 Point d'inflexion et dérivée seconde

Propriété Soit f une fonction deux fois dérivable sur I. Le point A(a; f(a)) est un point d'inflexion si et seulement si f'' s'annule en a tout en changeant de signe.

2.5 Synthèse

- 1. Les trois propositions suivantes sont équivalentes. f est convexe sur $I \iff f'$ est croissante sur $I \iff f'' \geq 0$.
- 2. Les trois propositions suivantes sont équivalentes. f est concave sur $I \iff f'$ est décroissante sur $I \iff f'' \le 0$.