EE150 Signals and Systems

Part 5: Discrete-time Fourier Transform (DTFT)

Continuous-time Fourier Transform

Continuous-time Fourier transform of x(t) can be interpreted as

$$e^{j\omega t} \longrightarrow X(j\omega)e^{j\omega t}$$

LTI system with impulse response x(t)

 $X(j\omega)$: eigenvalue of $e^{j\omega t}$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Discrete-time Fourier Transform

Discrete-time LTI system with impulse response x[n]

$$X(e^{j\omega})e^{j\omega n} = e^{j\omega n} * x[n]$$

$$= \sum_{m=-\infty}^{\infty} x[m]e^{j\omega(n-m)}$$

$$= e^{j\omega n} \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m}$$

Fourier Series to Fourier Transform

As
$$x[n] = \tilde{x}[n]$$
 for $-N_1 \le n \le N_2$, we have

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk(2\pi/N)n}$$

Fourier Series to Fourier Transform cont.

- ① Define $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
- **2** As $a_k = \frac{1}{N}X(e^{jk\omega_0})$, then

$$\tilde{x}[n] = \sum_{k=< N>} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n}$$
$$= \frac{1}{2\pi} \sum_{k=< N>} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0$$

3 As $N \to \infty$, we have $\tilde{x}[n] \to x[n]$.

Forward and inverse transforms

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (DTFT)
 $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$ (Inverse DTFT)

- x[n]: linear combination of complex exponential infinitesimally close in frequency with amplitudes $X(e^{j\omega})(d\omega/2\pi)$
- $X(e^{j\omega})$ is the spectrum of x[n]

- $e^{j\omega n}$ is periodic in terms of ω : $e^{j\omega n} = e^{j(\omega + k2\pi)n}, k \in \mathbb{Z}$
- ② Hence, $X(e^{j\omega})$ is periodic (with period 2π)

Discrete-time Complex Exponential

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

Calculate the DTFT of signal $x[n] = a^n u[n], |a| < 1$

Solution:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} a^n u[n] e^{-j\omega n} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}$$

-tan⁻¹ (|a|√1 - a²)

Calculate the DTFT of signal $x[n] = a^{|n|}, |a| < 1.$

Solution:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} a^{|n|} e^{-j\omega n} = \sum_{n=0}^{\infty} a^n e^{-j\omega n} + \sum_{n=-\infty}^{-1} a^{-n} e^{-j\omega n}$$
$$= \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{j\omega}}{1 - ae^{j\omega}} = \frac{1 - a^2}{1 - 2a\cos\omega + a^2}$$

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases}$$

$$X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = \frac{\sin \omega \left(N_1 + \frac{1}{2}\right)}{\sin(\omega/2)}$$

Convergence Issues of DTFT

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

 \bigcirc OR $\times [n]$ has finite energy

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

Fourier Transform for Periodic Signals

Fourier transform can be applied to periodic signal

Consider x(t) and its FT $X(e^{j\omega})$

Assume
$$X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi I)$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega$$
$$= e^{j(\omega_0 + 2\pi r)n} = e^{j\omega_0 n}$$

Hence.

$$x[n] = \sum_{k = < N >} a_k e^{jk(2\pi/N)n} \longleftrightarrow X(e^{j\omega}) = \sum_{k = -\infty}^{\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$$

Fourier Transform for Periodic Signals cont.

 $2\pi a_{-N-1}$

$$x[n] = a_0 + a_1 e^{j(2\pi/N)n} + a_2 e^{j2(2\pi/N)n} + \dots + a_{N-1} e^{j(N-1)(2\pi/N)n}$$

 $2\pi a_{-1}$

 $2\pi a_{N\,-\,1}$

- Consider the periodic signal $x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}$ with $\omega_0 = \frac{2\pi}{5}$
- ② Hence, $X(e^{j\omega}) = \sum_{I=-\infty}^{\infty} \pi \delta\left(\omega \frac{2\pi}{5} 2\pi I\right) + \sum_{I=-\infty}^{\infty} \pi \delta\left(\omega + \frac{2\pi}{5} 2\pi I\right)$
- $\textbf{ 1t equals } X(\mathrm{e}^{j\omega}) = \pi\delta\left(\omega \frac{2\pi}{5}\right) + \pi\delta\left(\omega + \frac{2\pi}{5}\right), -\pi \leq \omega \leq \pi$

Properties of DTFT

$$x[n] \stackrel{FT}{\longleftarrow} X(e^{j\omega})$$

- **1** Periodicity: DTFT is always periodic in ω with period 2π , i.e., $X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$.
- 2 Linearity: $ax_1[n] + bx_2[n] \longleftrightarrow FT \to aX_1(e^{j\omega}) + bX_2(e^{j\omega})$
- 3 Time shifting: $x[n-n_0] \leftarrow FT \rightarrow e^{-j\omega n_0} X(e^{j\omega})$
- **⑤** Frequency shifting: $e^{j\omega_0 n} x[n] \leftarrow \stackrel{FT}{\longleftrightarrow} X(e^{j(\omega-\omega_0)})$ CT也有但是没写
- Onjugation and conjugate symmetry:

$$x^*[n] \xleftarrow{FT} X^*(e^{-j\omega})$$

If $x[n]$ is real valued, then its transform $X(e^{j\omega})$ is conjugate symmetric, i.e., $X(e^{j\omega}) = X^*(e^{-j\omega})$

Properties of DTFT cont.

O Differencing

$$x[n] - x[n-1] \xleftarrow{FT} (1 - e^{-j\omega}) X(e^{j\omega})$$

Proof.

$$x[n] - x[n-1] = x[n] * [\delta[n] - \delta[n-1]]$$
$$\delta[n-k] \xleftarrow{FT} e^{-j\omega k}$$

• Accumulation: $y[n] = \sum_{m=-\infty}^{n} x[m]$

$$\sum_{m=-\infty}^{n} x[m] \stackrel{FT}{\longleftrightarrow} \frac{1}{1 - e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

Derive the Fourier transform of unit step x[n] = u[n]

Solution: $g[n] = \delta[n] \xleftarrow{FT} G(e^{j\omega}) = 1$

Unit step function is the running sum of the unit impulse

$$x[n] = \sum_{m=-\infty}^{n} g[m]$$

Taking the Fourier transform of both sides and using accumulation yield

$$X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} G(e^{j\omega}) + \pi G(e^{j0}) \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$$
$$= \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$$

Properties of DTFT cont.

- Time reversal: $x[-n] \xleftarrow{FI} X(e^{-j\omega})$
- Differentiation in frequency: $nx[n] \leftarrow FT \rightarrow j\frac{dX(e^{j\omega})}{dx}$
- Parseval's Relation: $\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$
- Time expansion: $x_{(k)}[n] \leftarrow \stackrel{FT}{\longleftrightarrow} X(e^{jk\omega})$

$$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k \\ 0, & \text{if } n \text{ is not a multiple of } k \end{cases}$$

$$X_{(k)}(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x_{(k)}[n]e^{-j\omega n} = \sum_{r=-\infty}^{+\infty} x_{(k)}[rk]e^{-j\omega rk}$$

since
$$x_{(k)}[rk] = x[r]$$

since
$$x_{(k)}[rk] = x[r]$$

$$X_{(k)}(e^{j\omega}) = \sum_{r=-\infty}^{+\infty} x[r]e^{-j(k\omega)r} = X(e^{jk\omega})$$

Time Expansion

Convolution Property

•
$$y[n] = h[n] * x[n]$$

$$Y(j\omega) = \sum_{n} y[n]e^{-j\omega n}$$

$$= \sum_{n} \sum_{m} x[m]h[n-m]e^{-j\omega n}$$

$$= \sum_{m} \left(\sum_{n} h[n-m]e^{-j\omega(n-m)}\right) x[m]e^{-j\omega m}$$

$$= \sum_{m} H(j\omega)x[m]e^{-j\omega m}$$

$$= H(j\omega)X(j\omega)$$

• Frequency response $H(e^{j\omega})$ captures the change in complex amplitude of the Fourier Transform of the input at each frequency ω

- **①** Consider an LTI system with impulse response $h[n] = \delta[n n_0]$
- Frequency response is

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n - n_0] e^{-j\omega n} = e^{-j\omega n_0}$$

- § For any input x[n] with Fourier transform $X(e^{j\omega})$, the Fourier transform of the output is $Y(e^{j\omega}) = e^{-j\omega n_0}X(e^{j\omega})$
- Frequency response $H(e^{j\omega})=e^{-j\omega n_0}$ has unity magnitude at all frequencies and a phase characteristic $-\omega n_0$ that is linear with frequency

- **①** Consider the discrete-time ideal lowpass filter $H(e^{j\omega})$
- ② Impulse response and frequency response of an LTI system are a Fourier transform pair

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} e^{j\omega n} d\omega = \frac{\sin \omega_0 n}{\pi n}$$

Consider an LTI system with impulse response $h[n] = \alpha^n u[n]$ with $|\alpha| < 1$, and suppose that the input to this system is $x[n] = \beta^n u[n]$ with $|\beta| < 1$. Evaluate the output y[n].

- **1** Time-domain convolution: y[n] = x[n] * h[n]
- 2 Convolution property:

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}$$

Multiplication Property

• y[n] = x[n]h[n]

$$y[n] = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \int_{-\pi}^{\pi} H(e^{j\rho}) e^{j\rho n} d\rho$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) H(e^{j(\nu-\omega)}) d\omega \right) e^{j\nu n} d\nu$$

So

$$Y(e^{j\nu}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) H(e^{j(\nu-\omega)}) d\omega$$

(periodic convolution)

Calculate the Fourier transform $X(e^{j\omega})$ of signal $x[n]=x_1[n]x_2[n]$, where $x_1[n]=\frac{\sin(3\pi n/4)}{\pi n}$ and $x_2[n]=\frac{\sin(\pi n/2)}{\pi n}$

Solution: $X(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$ Define $\hat{X}_1(e^{j\omega})$ equals $X_1(e^{j\omega})$ for $-\pi < \omega \le \pi$, and equals 0 otherwise. Hence,

$$X(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$

Properties of DTFT

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
		ν[n]	$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n - n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	x*[n]	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j\omega}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\} \\ \Re\{X(e^{j\omega})\} = -\Re\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \Re(e^{j\omega}) = -\Re(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	X(e ^{/ω}) purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_{\epsilon}[n] = \delta v\{x[n]\}$ [x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_n[n] = Od\{x[n]\}$ [x[n] real]	$i \mathcal{G} m \{ X(e^{j\omega}) \}$
5.3.9	Parseval's Re	elation for Aperiodic Signals	y
	$\sum_{n=-\infty}^{+\infty} x[n] $	$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

Basic DTFT Pairs

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)	
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k	
e jwo ⁿ	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_L = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic	
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic	
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N_1}$, $k = r, r \pm N, r \pm 2N,$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \\ -\frac{1}{2j}, & k = -r, r \pm N, r + 2N, \end{cases}$ (b) $\frac{m_k}{2\pi}$ irrational \Rightarrow The signal is aperiodic	
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$	
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$	
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k	

Basic DTFT Pairs cont.

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

Duality in Discrete Time Fourier Series

• f[k] is the Fourier series coefficient of signal g[n]

$$g[n] \xleftarrow{FS} f[k], \quad f[k] = \frac{1}{N} \sum_{n = < N >} g[n] e^{-jk(2\pi/N)n}$$

$$f[n] = \sum_{k=< N>} \frac{1}{N} g[-k] e^{jk(2\pi/N)n}$$

4 Hence,

$$f[n] \stackrel{FS}{\longleftrightarrow} \frac{1}{N}g[-k]$$

Consider the following periodic signal with a period of N = 9

$$x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi n/9)}{\sin(\pi n/9)}, & n \neq \text{multiple of } 9\\ \frac{5}{9}, & n = \text{multiple of } 9 \end{cases}$$

From previous example, we know that

$$g[n] = \begin{cases} 1, & |n| \le 2 \\ 0, & 2 < |n| \le 4 \end{cases} \xrightarrow{FS} b_k = \begin{cases} \frac{1}{9} \frac{\sin(5\pi k/9)}{\sin(\pi k/9)}, & k \ne \text{multiple of 9} \\ \frac{5}{9}, & k = \text{multiple of 9} \end{cases}$$

Discrete-time FT and FS

- Let x(t) be periodic with period 2π ($\omega_0 = 1$)
- FS and DTFT

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jkt} \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) e^{-jkt} dt \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

• Really one and the same (time-frequency exchange)

- ① Determine the Fourier transform of sequence $x[n] = \frac{\sin(\pi n/2)}{\pi n}$
- ② From Example 3.5, we know that g(t) = 1, if $|t| \le T_1$, and g(t) = 0, if $T_1 \le |t| \le \pi$. And g(t) is a periodic square with period 2π . Its Fourier coefficients are $a_k = \frac{\sin(kT_1)}{k\pi}$

$$\frac{\sin(\pi k/2)}{\pi k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) e^{-jkt} dt = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-jkt} dt$$

4

$$\frac{\sin(\pi n/2)}{\pi n} = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{jn\omega} d\omega$$

$$\frac{\sin(\pi n/2)}{\pi n} = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{jn\omega} d\omega \to X(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < |\omega| \le \pi \end{cases}$$

Discrete-time FT and FS

$$\begin{aligned} x[n] &= a^{|n|}, \quad 0 < a < 1 \\ X(j\omega) &= \sum_{n} a^{|n|} e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} a^n e^{-j\omega n} + \sum_{n=1}^{\infty} a^n e^{j\omega n} \\ &= \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{j\omega}}{1 - ae^{j\omega}} \\ &= \frac{1 - a^2}{1 - a \cdot 2\cos\omega + a^2} \end{aligned}$$

Discrete-time FT and FS

Example (2). (Periodic)

$$x[n] = \cos(\omega_0 n) = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n}$$
 with $\omega_0 = \frac{2\pi}{3}$

From table: $e^{j\omega_0 n} \longleftrightarrow \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi k)$

$$X(j\omega) = \sum_{k} \pi \delta(\omega - \frac{2}{3}\pi - 2\pi k) + \sum_{k} \pi \delta(\omega + \frac{2}{3}\pi - 2\pi k)$$

$$X(j\omega)$$

$$-\omega_{0}$$

$$\omega_{0} 2\pi - \omega_{0}$$

$$2\pi + \omega_{0}$$

Summaries of Fourier Series and Fourier Transform

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time duality	discrete frequency periodic in frequency
Fourier	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

Discrete Fourier Transform (DFT)

Let x[n] be a finite-length sequence of length N. Suppose x[n] = 0 for $n \notin [0 : N - 1]$.

The DFT of x[n], denoted as X[k], is defined as

$$X[k]=\sum_{n=0}^{N-1}x[n]W_N^{kn}$$
 $k=0,1,\ldots,N-1$ where $W_N=e^{-j(2\pi/N)}$

The inverse DFT (IDFT) of X[k] is given by

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] W_N^{-kn}$$
 $n = 0, 1, ..., N-1$

Discrete Fourier Transform (DFT)

$$\begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix} = \begin{bmatrix} W_N^{0\cdot 1} & W_N^{0\cdot 2} & \cdots & W_N^{0\cdot N} \\ W_N^{1\cdot 1} & W_N^{1\cdot 2} & \cdots & W_N^{1\cdot N} \\ \vdots & \vdots & \ddots & \vdots \\ W_N^{(N-1)\cdot 1} & W_N^{(N-1)\cdot 2} & \cdots & W_N^{(N-1)\cdot N} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}$$

Important Features of DFT

- one-to-one correspondence between x[n] and X[k].
- an extreme fast algorithm for its calculation, called Fast Fourier Transform (FFT)
- DFT is closely related to discrete Fourier series and Fourier Transform.
- DFT is an appropriate representation for digital computer realization as it is discrete and of finite length in both time and frequency domain.