

OPTIMIZACIÓN DE PURIFICACIÓN DE AGUA EN INDUSTRIA FARMACÉUTICA AICA USANDO EDI

TRABAJO DE DIPLOMA PARA OPTAR POR EL TÍTULO ACADÉMICO DE INGENIERO EN AUTOMÁTICA

Autor

Armando Cesar Martin Calderón

Tutores

Ing. Amanda Martí Coll

Ing. Rosaine Ayala Gispert22

LA HABANA, CUBA

2023

Resumen

Esta tesis se enfoca en la implementación de un sistema de Electrodesionización (EDI) en una planta de tratamiento de agua perteneciente a la industria farmacéutica de Laboratorios AICA (específicamente en su planta de bulbos), con el propósito de optimizar la calidad del agua purificada (PW) y del agua para inyección (WFI). El estudio abarca áreas de la ingeniería automática como la instrumentación, propuesta de un SCADA y la programación del Controlador Lógico Programable (PLC) con el objetivo de alcanzar un control eficiente del proceso de tratamiento de agua.

El trabajo presenta un esquema propuesto que considera los requisitos específicos de la tecnología EDI y examina los desafíos particulares relacionados con la conductividad del agua. Además, se discuten las ventajas y desventajas del uso del EDI en comparación con otras tecnologías de purificación de agua.

Palabras claves

Electrodesionización (EDI), Planta de tratamiento de agua, Industria farmacéutica, AICA, Agua purificada (PW), Agua para inyección (WFI), Conductividad del agua, Ósmosis inversa

Abstract

This thesis focuses on the implementation of an Electrodesionization (EDI) system in a water treatment plant belonging to the pharmaceutical industry of Laboratorios AICA (specifically in its bulb plant), with the purpose of optimizing the quality of purified water (PW) and water for injection (WFI). The study covers areas of automation engineering such as instrumentation, proposing a SCADA system, and programming the Programmable Logic Controller (PLC) with the aim of achieving efficient control of the water treatment process.

The work presents a proposed scheme that takes into account the specific requirements of EDI technology and examines the particular challenges related to water conductivity. Additionally, the advantages and disadvantages of using EDI compared to other water purification technologies are discussed.

keywords

Electrodesionization (EDI), Water treatment plant, Pharmaceutical industry, AICA, Purified water (PW), Water for injection (WFI), Water conductivity, Reverse osmosis

Dedicado a todos los, que nunca perdieron la fe en mí.

Saludos

Agradecimientos

Primero y ante todo, quiero expresar mi más profundo agradecimiento a mi familia, quienes siempre han sido mi faro en la vida. A mis padres, por su incondicional amor, apoyo y enseñanzas, que me han guiado hasta este punto en mi vida. A mi hermana mayor, que ha sido un pilar de apoyo, sabiduría y amor incondicional. Su presencia ha sido esencial en mi camino y me ha inspirado a ser una mejor persona cada día.

A mis amigos, que se convirtieron en hermanos, gracias por compartir conmigo momentos de risas y lágrimas, por estar a mi lado en los momentos de tensión y alivio, y por ser mi red de apoyo durante este arduo camino. No tengo palabras para expresar cuánto valoro cada uno de ustedes. A mis compañeros de la Escuela Lenin, con quienes compartí tres años de crecimiento y aprendizaje, y a los amigos de mi aula, agradezco su amistad y apoyo en esta etapa tan importante de mi vida.

Quiero expresar mi más sincero agradecimiento a mis dos tutoras, Ing. Amanda Martí Coll e Ing. Rosaine Ayala Gispert, quienes han sido mis mentores y guías en este viaje académico. La dedicación y apoyo de la Ing. Rosaine Ayala Gispert durante el proceso en el centro de trabajo han sido invaluables, y la ayuda de la Ing. Amanda Martí Coll en la metodología ha sido crucial para el desarrollo y conclusión de esta investigación. Les estaré eternamente agradecido por su apoyo y confianza en mis habilidades.

Por último, pero no menos importante, deseo agradecer a todas las personas e instituciones que de alguna manera contribuyeron a la realización de esta investigación, aportando recursos, conocimientos o simplemente un espacio donde reflexionar y crecer.

Este logro no es solo mío, sino de todos los que me han acompañado en este viaje. Con profundo amor y gratitud, dedico esta tesis a cada uno de ustedes.

ÍNDI	CF
 	_

In	Introducción		1	
1	Estado del arte y descripción del proceso			6
	1.1	Sister	nas de tratamiento de agua en la industria farmacéutica	6
		1.1.1	Importancia del tratamiento de agua	7
		1.1.2	Tipos y clasificaciones del agua	8
		1.1.3	Requisitos y regulaciones aplicables al agua	9
		1.1.4	Impurezas presentes en el agua	10
		1.1.5	Variables críticas en la calidad del agua	11
		1.1.6	Evolución histórica de las tecnologías de tratamiento de agua	12
		1.1.7	Etapas del tratamiento de agua en la industria farmacéutica	14
		1.1.8	Variantes de sistemas de purificación de agua	15
		1.1.9	Innovaciones y enfoques de investigación en sistemas de tratamiento de	
			agua	16
	1.2	Descr	ipción del proceso actual	17
		1.2.1	Almacenamiento y bombeo del agua potable	18
		1.2.2	Dosificación de hipoclorito de sodio y filtración	18
		1.2.3	Almacenamiento y monitoreo de parámetros del agua	18
		1.2.4	Suavización del agua	19
		1.2.5	Purificación mediante ósmosis inversa	20
2	Intro	oducci	ón y fundamentos de la Electrodesionización (EDI)	24

	2.1	I Principios de la EDI		
	2.2	Compo	onentes y diseño de la EDI	27
		2.2.1	Cámara de dilución y concentración	27
		2.2.2	Resina de intercambio iónico	27
		2.2.3	Electrodo y membrana	27
		2.2.4	Fuente de alimentación	28
	2.3	Benefi	cios y desafíos de la EDI	28
		2.3.1	Beneficios de la EDI	28
		2.3.2	Desafíos de la EDI	29
	2.4	Aplica	ciones de la EDI en la industria farmacéutica	30
3	Aná	lisis de	e la instrumentación	31
	3.1	Instrur	mentación de la planta de ósmosis inversa	32
		3.1.1	Sensores	32
		3.1.2	Indicadores	43
		3.1.3	Equipos de control	46
	3.2	Comu	nicación de la planta	59
	3.3	Propue	esta de instrumentación	60
		3.3.1	Contexto de la Planta Actual	61
		3.3.2	Tecnologías Alternativas y sus Limitaciones	61
		3.3.3	La Electrodesionización	62
		3.3.4	El Electrodesionizador	63
		3.3.5	Válvulas y Sensores para el EDI	65
		3.3.6	Esquema General de la Configuración del EDI	66
4	Proj	puesta	de Implementación de EDI	69
	4.1	Sistem	na de control	69
		4.1.1	Puesta en marcha	70
	4.2	Propue	esta de SCADA	74
		4.2.1	Monitoreo del proceso	75
		4.2.2	Administración de alarmas	76
		423	Análisis de gráficos históricos	78

7	Ane	xos		92
6	Con	clusio	nes y recomendaciones	90
	5.2	Viabili	dad del proyecto	88
		5.1.12	Precio	88
		5.1.11	Costo Total	88
		5.1.10	Costos indirectos	87
		5.1.9	Cálculo del Costo Directo	87
		5.1.8	Otros Gastos	87
		5.1.7	Dietas y Pasajes	87
		5.1.6	Medios Directos	86
		5.1.5	Seguro Social	86
		5.1.4	Salario complementario	86
		5.1.3	Salario básico	85
		5.1.2	Costo directo	84
		5.1.1	Costo indirecto	84
	5.1	Costo	del proyecto	84
5	Aná	lisis de	e costos y beneficios	83
	4.3	Instala	ación del EDI	81
		4.2.4	Administración de usuarios	79

ÍNDICE DE TABLAS

3.1.	Datos técnicos del sensor de conductividad CLS16-3D1A1P	34
3.2.	Características del sensor de pH CPS 11D-7AA2G	36
3.3.	Características del sensor de temperatura TSPT-6702UAC	37
3.4.	Características del sensor de Redox CPS12D-7PA21	39
3.5.	Características del rotámetro RAMC05-S4-SS-64S2- E90424	40
3.6.	Características del medidor de flujo DS20 07 YJ	41
3.7.	Características del sensor de presión PTP31-A1C13S1AF1A	43
3.8.	Características del manómetro P600	45
3.9.	Características del dispositivo RAMC02-S4-SS-61S1-T90NNN*Z	46
3.10.	Características del transmisor CLM223-CD8110	48
3.11.	Características del Transmisor de pH y REDOX	49
3.12.	Características de la bomba centrífuga vertical multietapa CRN10-7	51
3.13.	Características de la bomba dosificadora G1005	53
3.14.	Características de la Válvula de Retención 048 VRTCV2	54
3.15.	Características de la válvula de accionamiento manual	56
3.16.	Características de la válvula de asiento en ángulo ARES con conexiones especiales.	58
3.17.	Características de la válvula de contrapresión	59
3.18.	Especificaciones técnicas del Electrodesionizador LMX30-X-3 de lonpure	64
3.19.	Especificaciones técnicas de la fuente de alimentación PTM06 de STIL MAS	65
5.1.	Participantes en el proyecto	85

5.2.	Listado de precios de los dispositivos e instrumentos necesarios para la elabora-	
	ción del proyecto	87

ÍNDICE DE ILUSTRACIONES

2.1.	Funcionamiento de un electrodesionizador	26
3.1.	Sensor de conductividad CLS16-3D1A1P	34
3.2.	Sensor de pH CPS 11D-7AA2G	35
3.3.	Sensor de temperatura TSPT-6702UAC	37
3.4.	Sensor de Redox CPS12D-7PA21	38
3.5.	Sensor-Transmisor de flujo RAMC05-S4-SS-64S2- E90424	40
3.6.	Sensor-Transmisor de flujo DS20 07 YJ	41
3.7.	Sensor-Transmisor de presión PTP31-A1C13S1AF1A	42
3.8.	Manómetro P600	44
3.9.	Indicador de flujo RAMC05-S4-SS-64V2-T90	46
3.10.	Características del transmisor CLM223-CD8110	47
3.11.	Características del transmisor de pHy Redox CPM 223-MR8010	49
3.12.	Bombas centrífuga CRN10-7	50
3.13.	Bomba dosificadora G1005	52
3.14.	Válvula de Retención 048 VRTCV2	54
3.15.	Válvula neumática de accionamiento manual ARES	55
3.16.	Válvula de asiento en ángulo ARES con conexiones especiales	57
3.17.	Válvula de contrapresión	59
3.18.	Modelo LMX30-X-3 de lonpure.	63
3.19.	Modelo PTM06 de STIL MAS	64
3.20.	Esquema P&ID propuesto para la electrodesionización	67

4.1.	Diagrama de flujo para la RO1 del proceso de producción de PW	71
4.2.	Diagrama de flujo para la RO2 del proceso de producción de PW	72
4.3.	Diagrama de flujo para el EDI del proceso de producción de PW	74
4.4.	Vista general del sistema SCADA	75
4.5.	Interfaz de la sección de monitoreo del proceso	76
4.6.	Ventana emergente de administración de alarmas	77
4.7.	Visor de alarmas con capacidad de buffer	78
4.8.	Interfaz de análisis de gráficos históricos	79
4.9.	Interfaz de inicio de sesión del sistema SCADA	80
4.10.	Interfaz de la sección de administración de usuarios.	80

La calidad del agua en la industria farmacéutica es de suma importancia, ya que influye directamente en la calidad y seguridad de los productos farmacéuticos, como los inyectables. La presente tesis se enfoca en la implementación de un Electrodesionizador (EDI) en una planta de tratamiento de agua de la industria farmacéutica, con el objetivo de mejorar la calidad del agua purificada (PW) y el agua para inyección. A continuación, se presenta el contexto y la justificación de este proyecto, así como el problema a resolver, la hipótesis, el objeto de estudio, el campo de acción, los objetivos generales y específicos, y la estructura por capítulos.

Contexto y justificación

La industria farmacéutica desempeña un papel fundamental en la promoción y protección de la salud pública, ya que proporciona medicamentos y productos farmacéuticos que salvan vidas y mejoran la calidad de vida de millones de personas en todo el mundo. La producción de estos productos requiere la utilización de agua de alta calidad, especialmente en la fabricación de soluciones inyectables y otros medicamentos críticos. La calidad del agua utilizada en los procesos de fabricación de medicamentos es un factor esencial para garantizar la seguridad, eficacia y estabilidad de los productos finales.

La planta de tratamiento de agua de para bulbos de la empresa Laboratorios AICA, dedicada a la industria farmacéutica, actualmente utiliza un sistema de ósmosis inversa (OI) de doble etapa para la producción de agua purificada (PW). Sin embargo, la planta enfrenta desafíos en la estabilización de los parámetros de calidad del agua, lo que puede afectar negativamente la producción y la calidad de los medicamentos. Este problema se debe, en parte, a la inestabili-

dad de la calidad del agua potable proveniente del acueducto y otros factores externos.

La implementación de un equipo de Electrodesionización (EDI) como etapa posterior al proceso de OI de doble etapa tiene el potencial de mejorar significativamente la calidad del agua purificada y el agua para inyección, al estabilizar los parámetros de calidad y reducir la conductividad. El EDI es una tecnología de purificación de agua que combina procesos de intercambio iónico y electrodiálisis, eliminando efectivamente las partículas inorgánicas disueltas y reduciendo la concentración de iones en el agua.

La justificación para esta investigación radica en la importancia de garantizar la calidad del agua en la industria farmacéutica y la necesidad de encontrar soluciones efectivas y sostenibles para mejorar y estabilizar la calidad del agua en el proceso de producción. La implementación exitosa del EDI en la planta de tratamiento de agua de AICA podría resultar en una producción más eficiente y segura de medicamentos, reduciendo el riesgo de contaminación y garantizando el cumplimiento de los estándares regulatorios y de calidad. Además, la experiencia y el conocimiento adquiridos en este proyecto podrían ser aplicables a otras plantas de tratamiento de agua y procesos industriales, contribuyendo al avance del campo de la ingeniería automática y la optimización de procesos en la industria farmacéutica.

Situación problemática

La planta de AICA enfrenta inestabilidad en los parámetros de calidad del agua purificada y el agua para inyección debido a la variabilidad en la calidad del agua potable y otros factores. Esta situación afecta la producción y calidad de los productos farmacéuticos.

Problema a resolver

El problema a resolver es cómo mejorar y estabilizar la calidad del agua purificada y el agua para inyección en la planta de AICA mediante la incorporación de un equipo de Electrodesionización (EDI) y posibles modificaciones en el sistema de control e instrumentación.

Hipótesis

La implementación del EDI como etapa posterior al proceso de OI de doble etapa mejorará significativamente la calidad y estabilidad del agua purificada y el agua para inyección en la

planta de AICA.

Objeto de estudio

El objeto de estudio de esta tesis es el proceso de ósmosis inversa en la planta de tratamiento de agua de Laboratorios AICA, específicamente en su planta de bulbos.

Campo de acción

El campo de acción se centra en la evaluación y propuesta de modificación del sistema de tratamiento de agua en la planta de AICA, incluyendo la implementación del EDI y propuestas de el sistema de control e instrumentación.

Objetivo general

El objetivo general es mejorar y estabilizar la calidad del agua purificada y el agua para inyección en la planta de AICA mediante la implementación del EDI y propuesta en el sistema de control e instrumentación.

Objetivos específicos

- Evaluar la situación actual del proceso de tratamiento de agua en la planta de bulbos de AICA.
- 2. Investigar y proponer la implementación del EDI como etapa posterior al proceso de OI de doble etapa.
- Analizar los requisitos técnicos, económicos y regulatorios para la implementación del EDI en la planta.
- 4. Proponer sistema de control e instrumentación para la integración del EDI.

Alcance y limitaciones

El alcance de esta tesis incluye la evaluación del proceso de tratamiento de agua en la planta de AICA, la propuesta de implementación del EDI y posibles ajustes en el sistema de control e instrumentación existente. Las limitaciones pueden incluir la disponibilidad de información técnica, económica y regulatoria específica, así como restricciones en el acceso a la planta y los equipos involucrados en el proceso.

Metodología

Para abordar el problema planteado en esta tesis, se seguirá una metodología estructurada en diversas etapas, que permitirá una aproximación sistemática al objetivo general. Las etapas de la metodología propuesta son las siguientes:

- Diagnóstico del proceso actual: En esta etapa se analizará el proceso de tratamiento de agua en la planta de AICA, identificando las variables críticas, inestabilidades y limitaciones en la calidad del agua purificada y el agua para inyección. Se recopilarán y analizarán datos de producción, calidad del agua y rendimiento de los equipos involucrados en el proceso.
- Revisión bibliográfica y análisis del estado del arte: Se llevará a cabo una revisión exhaustiva de la literatura científica y técnica relacionada con el tratamiento de agua en la industria farmacéutica, el proceso de OI de doble etapa y la tecnología de EDI. Se buscarán estudios de caso, investigaciones y experiencias previas en la implementación de un EDI en plantas similares para identificar las mejores prácticas y lecciones aprendidas.
- Propuesta de implementación del EDI: Basándose en el diagnóstico del proceso actual y
 el análisis del estado del arte, se propondrá la implementación de la tecnología EDI como
 etapa posterior al proceso de OI de doble etapa en la planta de AICA. Se definirán los
 requisitos técnicos, de instrumentación y de control para la integración de un EDI en el
 proceso existente.
- Análisis de costos y beneficios: Se llevará a cabo un análisis económico para estimar los costos asociados con la implementación del EDI y las posibles modificaciones en el sistema de control e instrumentación. Además, se evaluarán los beneficios esperados en términos de mejora en la calidad y estabilidad del agua, así como posibles ahorros en el consumo de energía y recursos.
- Evaluación de requisitos regulatorios y de cumplimiento: Se investigarán los requisitos

legales y regulatorios aplicables a la implementación del EDI en la planta de AICA, así como las normas y estándares de la industria farmacéutica relacionados con el tratamiento de agua y la calidad del agua purificada y el agua para inyección.

• Desarrollo de modificaciones en el sistema de control e instrumentación: Basándose en la propuesta de implementación del EDI y los requisitos identificados, se desarrollarán también las modificaciones necesarias en el sistema de control e instrumentación existente, incluyendo el SCADA y la programación del PLC.

CAPÍTULO 1 ______ESTADO DEL ARTE Y DESCRIPCIÓN DEL PROCESO

La purificación del agua es un aspecto crítico en la industria farmacéutica, ya que el agua es un componente fundamental en la producción de medicamentos y otros productos sanitarios. La calidad del agua utilizada en estos procesos puede afectar significativamente la eficacia y seguridad de los productos finales. Por lo tanto, es esencial contar con sistemas de tratamiento de agua que sean confiables, eficientes y cumplan con los estándares regulatorios establecidos. En este capítulo, se revisará el estado del arte en lo que respecta a los sistemas de tratamiento de agua en la industria farmacéutica, con énfasis en las tecnologías de purificación más utilizadas, como la ósmosis inversa y la electrodesionización (EDI). Además, se describirá el proceso actual de tratamiento de agua en la planta de AICA y se analizarán los aspectos relacionados con el control en estos sistemas.

1.1 Sistemas de tratamiento de agua en la industria farmacéutica

La industria farmacéutica es un sector crítico para la salud y el bienestar de la sociedad, y la calidad del agua utilizada en los procesos de producción desempeña un papel fundamental en la garantía de la seguridad y eficacia de los productos farmacéuticos. En este capítulo, se realizará una revisión exhaustiva de la literatura relacionada con los sistemas de tratamiento de agua en la industria farmacéutica, abordando temas como la importancia del tratamiento de agua, las clasificaciones y requisitos regulatorios, y las tecnologías de tratamiento empleadas.

Esta revisión tiene como objetivo proporcionar un panorama completo del estado actual del conocimiento en este campo, así como identificar las tendencias y enfoques de investigación que podrían dar lugar a mejoras en los sistemas de tratamiento de agua en el futuro. Al comprender en profundidad el contexto y las consideraciones clave en la purificación del agua farmacéutica, se sentarán las bases para una discusión informada sobre la propuesta de incorporar un electrodesionizador (EDI) en el sistema de ósmosis inversa de la planta de AICA, como se detallará en los capítulos posteriores.

1.1.1 Importancia del tratamiento de agua

El agua es un recurso indispensable en la industria farmacéutica debido a su amplia utilización en múltiples procesos, tales como la producción de medicamentos, la limpieza de equipos, la fabricación de soluciones y reactivos, y la generación de vapor, entre otros. Dada su relevancia, el tratamiento de agua en este sector es de suma importancia para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos. A continuación, se detallan varias razones que explican la importancia del tratamiento de agua en la industria farmacéutica.

Calidad del producto: El agua utilizada en la producción de medicamentos debe cumplir con estándares estrictos de calidad y pureza, ya que su presencia en la composición de los productos puede afectar significativamente su estabilidad, potencia y seguridad. Por ejemplo, la presencia de impurezas en el agua, como iones metálicos, microorganismos o productos químicos, puede reaccionar con los ingredientes activos y excipientes de los medicamentos, alterando sus propiedades y generando efectos adversos en los pacientes.

Regulaciones y normativas: Las agencias reguladoras de todo el mundo, como la FDA (Administración de Alimentos y Medicamentos de EE. UU.) y la EMA (Agencia Europea de Medicamentos), establecen requisitos rigurosos y específicos en cuanto a la calidad del agua empleada en la producción farmacéutica. Estas regulaciones tienen como objetivo garantizar que el agua utilizada cumpla con ciertos niveles de pureza y seguridad, y que los sistemas de tratamiento de agua sean adecuados y efectivos para garantizar la calidad del producto final.

Control de contaminación y biofilm: La proliferación de microorganismos y la formación de biofilm en los sistemas de tratamiento de agua pueden tener consecuencias negativas para la calidad de los productos farmacéuticos. Un tratamiento de agua eficiente debe eliminar o reducir al mínimo la presencia de microorganismos y prevenir la formación de biofilm en las superficies de los equipos y tuberías. De esta manera, se asegura un ambiente adecuado para

la producción de medicamentos y se evita la contaminación cruzada.

Eficiencia en los procesos: Un sistema de tratamiento de agua eficiente y bien diseñado puede optimizar los procesos de producción y reducir los costos operativos. El uso de tecnologías avanzadas, como la ósmosis inversa y la electrodesionización (EDI), permite obtener agua de alta calidad y pureza, lo que a su vez disminuye la necesidad de tratamientos adicionales y reduce el consumo de reactivos y energía.

Responsabilidad medioambiental: La industria farmacéutica tiene una responsabilidad ética y legal de minimizar su impacto ambiental. El tratamiento adecuado del agua permite reducir la cantidad de contaminantes y sustancias químicas liberadas al medio ambiente y optimizar el uso de los recursos hídricos. Además, las tecnologías de tratamiento de agua más avanzadas pueden contribuir a la reducción del consumo energético y la generación de residuos.

En resumen, el tratamiento de agua en la industria farmacéutica es fundamental para garantizar la calidad, seguridad y eficacia de los productos, cumplir con las regulaciones y normativas vigentes, controlar la contaminación y la formación de biofilm, optimizar la eficiencia en los procesos y reducir el impacto medioambiental.

El tratamiento adecuado del agua en la industria farmacéutica no sólo garantiza que se cumplan los requisitos de calidad y pureza del agua, sino que también contribuye a la prevención de problemas asociados con la presencia de impurezas y contaminantes. Por lo tanto, es fundamental que las empresas farmacéuticas inviertan en tecnologías de tratamiento de agua apropiadas y en la implementación de sistemas de control y monitoreo efectivos.

1.1.2 Tipos y clasificaciones del agua

El agua es un componente fundamental en la industria farmacéutica, y su calidad y pureza son aspectos críticos para garantizar la seguridad y eficacia de los productos. Dependiendo de su uso y aplicación, existen diferentes tipos y clasificaciones de agua en la industria farmacéutica. A continuación, se presentan las categorías más comunes:

Agua purificada (PW): Es el tipo básico de agua utilizada en la industria farmacéutica y se obtiene a través de procesos como ósmosis inversa, destilación, intercambio iónico o filtración. La calidad del agua purificada es menor que la del agua para inyección (WFI), pero es adecuada para la fabricación de productos no parenterales y para su uso en procesos de limpieza.

Agua para inyección (WFI): Es un tipo de agua de alta pureza que se utiliza en la fabricación

de productos parenterales, es decir, aquellos que se administran por vías como intravenosa, intramuscular o subcutánea. La calidad del WFI es superior a la del agua purificada, y se obtiene mediante procesos de destilación, ósmosis inversa o por una combinación de ambos métodos.

Agua altamente purificada (HPW): Este tipo de agua tiene una calidad intermedia entre el agua purificada y el WFI. Se utiliza en ciertas aplicaciones farmacéuticas donde se requiere un nivel de pureza más elevado que el del agua purificada, pero no se necesita llegar al grado de pureza del WFI.

Agua estéril: Es agua que ha sido sometida a un proceso de esterilización, como la filtración estéril o la autoclave, para eliminar cualquier microorganismo presente. El agua estéril se utiliza en aplicaciones específicas, como en la fabricación de productos estériles o en procesos de limpieza y desinfección que requieren la eliminación de microorganismos.

Cabe destacar que las regulaciones y normativas, como las establecidas por la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Organización Mundial de la Salud (OMS), definen los requisitos de calidad y las especificaciones para cada tipo de agua en la industria farmacéutica. Estas especificaciones incluyen parámetros como la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros.

1.1.3 Requisitos y regulaciones aplicables al agua

La calidad del agua utilizada en la industria farmacéutica está sujeta a una serie de requisitos y regulaciones establecidos por diversas entidades y organismos a nivel nacional e internacional. Estas regulaciones aseguran que el agua cumpla con los estándares de calidad necesarios para garantizar la seguridad y eficacia de los productos farmacéuticos. Algunas de las principales regulaciones y requisitos aplicables al agua en la industria farmacéutica incluyen:

Farmacopeas: Las farmacopeas son documentos oficiales que contienen las especificaciones técnicas y requisitos de calidad para sustancias y productos farmacéuticos, incluidos los diferentes tipos de agua. Entre las farmacopeas más reconocidas a nivel mundial se encuentran la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Farmacopea de Japón (JP). Cada farmacopea establece parámetros específicos de calidad, como la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros.

Buenas Prácticas de Fabricación (GMP): Las GMP son normas que establecen los requisitos mínimos que deben cumplir los procesos de fabricación, control de calidad y distribución de productos farmacéuticos, incluida la gestión del agua. Estas normas son aplicables a nivel mundial y son emitidas por organismos como la Food and Drug Administration (FDA) en Estados Unidos, la European Medicines Agency (EMA) en Europa y la Organización Mundial de la Salud (OMS).

Directrices y guías técnicas: Además de las farmacopeas y las GMP, existen directrices y guías técnicas emitidas por organismos internacionales y nacionales que abordan aspectos específicos relacionados con el agua en la industria farmacéutica. Estas directrices pueden incluir recomendaciones sobre el diseño y validación de sistemas de tratamiento de agua, el monitoreo de la calidad del agua y la prevención de la contaminación.

Normativas nacionales y locales: Cada país puede tener sus propias normativas y requisitos legales aplicables al agua en la industria farmacéutica. Estas normativas pueden estar en línea con las farmacopeas y las GMP, pero también pueden incluir requisitos adicionales específicos para cada país o región.

El cumplimiento de estas regulaciones y requisitos garantiza la calidad y seguridad del agua utilizada en la fabricación de productos farmacéuticos y, en última instancia, protege la salud de los pacientes.

1.1.4 Impurezas presentes en el agua

El agua utilizada en la industria farmacéutica puede contener diversas impurezas, las cuales pueden afectar la calidad, seguridad y eficacia de los productos finales. Estas impurezas pueden clasificarse en tres categorías principales: impurezas inorgánicas, impurezas orgánicas y contaminantes microbiológicos.

Impurezas inorgánicas: Incluyen iones metálicos y no metálicos, como calcio, magnesio, sodio, cloruros, sulfatos y silicatos. Estas impurezas pueden afectar la calidad de los productos farmacéuticos al causar cambios en la solubilidad, la estabilidad y la eficacia de los ingredientes activos, así como en la formación de precipitados y la corrosión de equipos y recipientes. Además, algunos iones metálicos, como el hierro, el cobre y el cromo, pueden ser tóxicos y afectar la seguridad de los productos.

Impurezas orgánicas: Son compuestos de origen natural o sintético, como ácidos húmicos y fúlvicos, pesticidas, disolventes y productos químicos de desinfección. Las impurezas orgáni-

cas pueden reaccionar con los ingredientes activos y otros excipientes, lo que puede alterar la estabilidad, la eficacia y la liberación de los fármacos. Además, algunos compuestos orgánicos pueden ser tóxicos y afectar la seguridad de los productos farmacéuticos.

Contaminantes microbiológicos: Incluyen bacterias, hongos, levaduras, virus y protozoos. La presencia de microorganismos en el agua puede causar la contaminación de los productos farmacéuticos, lo que puede llevar a infecciones y reacciones adversas en los pacientes. Además, algunos microorganismos pueden producir sustancias tóxicas, como endotoxinas y micotoxinas, que pueden afectar la seguridad y eficacia de los productos.

El tratamiento adecuado del agua es esencial para eliminar o reducir estas impurezas a niveles aceptables, de acuerdo con las regulaciones y requisitos aplicables en la industria farmacéutica. Un control riguroso de la calidad del agua, así como el uso de tecnologías de purificación adecuadas, como la ósmosis inversa, la desionización y la electrodesionización (EDI), son fundamentales para garantizar la calidad y seguridad de los productos farmacéuticos.

1.1.5 Variables críticas en la calidad del agua

El tratamiento y monitoreo de la calidad del agua en la industria farmacéutica requieren un enfoque riguroso y sistemático para garantizar la eliminación efectiva de impurezas y el cumplimiento de los requisitos regulatorios. A continuación, se presentan algunas de las variables críticas que deben considerarse durante el tratamiento y monitoreo del agua:

Conductividad eléctrica: La conductividad eléctrica es una medida de la capacidad del agua para conducir la corriente eléctrica, y está directamente relacionada con la concentración de iones disueltos en el agua. Un mayor valor de conductividad indica una mayor concentración de impurezas inorgánicas. El monitoreo de la conductividad es fundamental para evaluar la efectividad de los procesos de purificación y para asegurar el cumplimiento de los límites establecidos por las regulaciones aplicables.

Contenido de carbono orgánico total (COT): El COT es una medida del contenido de carbono en compuestos orgánicos disueltos en el agua. Un alto nivel de COT indica una mayor concentración de impurezas orgánicas. El monitoreo regular del COT es esencial para garantizar que el agua cumpla con los requisitos de calidad y para evaluar la eficacia de los procesos de purificación en la eliminación de compuestos orgánicos.

Conteo microbiano y endotoxinas: El monitoreo del recuento microbiano y las endotoxinas

es fundamental para controlar la calidad microbiológica del agua y garantizar la seguridad de los productos farmacéuticos. Los métodos de análisis microbiológico incluyen el recuento en placa, el método de filtración por membrana y las técnicas de bioluminiscencia. Las endotoxinas, sustancias tóxicas liberadas por bacterias Gram-negativas, se miden mediante el ensayo de lisado de amebocitos de Limulus (LAL).

pH: El pH es una medida de la acidez o alcalinidad del agua y puede afectar la solubilidad, la estabilidad y la reactividad de los ingredientes activos y excipientes en los productos farmacéuticos. El control del pH es esencial para mantener un ambiente adecuado en los sistemas de tratamiento de agua y garantizar la calidad del agua producida.

Turbidez: La turbidez es una medida de la cantidad de partículas en suspensión en el agua, incluidas partículas inorgánicas, orgánicas y microbiológicas. Un nivel elevado de turbidez puede afectar la efectividad de los procesos de purificación y el rendimiento de los equipos. La turbidez se mide utilizando un turbidímetro y se expresa en unidades de turbidez nefelométrica (NTU).

El monitoreo y control de estas variables críticas durante el tratamiento y purificación del agua son fundamentales para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos y cumplir con los requisitos regulatorios aplicables.

1.1.6 Evolución histórica de las tecnologías de tratamiento de agua

La historia del tratamiento de agua en la industria farmacéutica ha experimentado una evolución considerable a lo largo del tiempo. A medida que la industria ha crecido y los requisitos regulatorios han aumentado en complejidad, las tecnologías de tratamiento de agua han seguido mejorando para garantizar la calidad y la seguridad de los productos farmacéuticos.

Pre-Siglo XX: Antes del siglo XX, los métodos de purificación de agua eran bastante rudimentarios, enfocándose principalmente en la eliminación de sólidos y materia orgánica a través de procesos físicos como la sedimentación y la filtración a través de medios porosos como la arena. Estos procesos, aunque rudimentarios, establecieron la base para las técnicas modernas de tratamiento de agua.

Principios del Siglo XX: Con la introducción del uso del cloro como agente desinfectante en 1908 en Jersey City, Estados Unidos, las industrias empezaron a utilizar este método para garantizar la seguridad microbiológica de su agua. Por otro lado, la destilación, un proceso que se basa en la evaporación y condensación del agua para separarla de sus impurezas, también

se empleaba aunque era energéticamente costoso.

Mediados del Siglo XX: A mediados del siglo XX, comenzó a ser común el uso de la filtración por membrana, específicamente la ósmosis inversa (RO), para la eliminación de partículas y solutos disueltos. Este proceso utiliza una membrana semipermeable para eliminar iones, moléculas y partículas más grandes del agua potable Además, la radiación ultravioleta (UV) empezó a ser utilizada como un método eficaz de esterilización del agua, matando o inactivando microorganismos al destruir su material genético.

Finales del Siglo XX y principios del Siglo XXI: Las técnicas de purificación de agua se volvieron más avanzadas y selectivas hacia finales del siglo XX y principios del XXI. La ósmosis inversa, la desionización y la electrodesionización (EDI) se volvieron estándares en la industria farmacéutica. La electrodesionización, en particular, es una tecnología que combina la desionización electroquímica y la desionización de lecho mixto para producir agua de alta pureza de manera eficiente y sin el uso de productos químicos peligrosos.

La evolución de las tecnologías de tratamiento de agua en la industria farmacéutica ha sido impulsada por la creciente demanda de productos de alta calidad y la necesidad de cumplir con requisitos regulatorios cada vez más rigurosos. A medida que la industria farmacéutica continúa avanzando, es probable que surjan nuevas tecnologías y enfoques para el tratamiento y monitoreo del agua en el futuro. Algunas áreas de investigación y desarrollo incluyen:

Nanotecnología: La aplicación de nanomateriales y nanopartículas en el tratamiento de agua ofrece oportunidades para mejorar la eficiencia de los procesos existentes y desarrollar nuevos enfoques para la eliminación de impurezas. Por ejemplo, las membranas nanocompuestas y las nanopartículas funcionales pueden mejorar la selectividad y la eficiencia de las membranas de ósmosis inversa y EDI.

Tratamiento biológico: Los enfoques biológicos, como la utilización de microorganismos para la degradación de contaminantes orgánicos, pueden proporcionar alternativas sostenibles y de bajo costo a las tecnologías convencionales de tratamiento de agua.

Sistemas avanzados de monitoreo y control: Los avances en sensores, analítica en línea y tecnologías de control permiten una mejor comprensión y control del proceso de tratamiento de agua en tiempo real. Esto puede llevar a una mayor eficiencia y garantizar una calidad de agua más consistente.

Integración de sistemas y automatización: La integración de diferentes tecnologías de tra-

tamiento de agua y la automatización de los sistemas de control pueden mejorar la eficiencia general del proceso y reducir los costos de operación y mantenimiento.

1.1.7 Etapas del tratamiento de agua en la industria farmacéutica

El tratamiento de agua en la industria farmacéutica es fundamental para garantizar la calidad y seguridad de los productos finales. En este apartado, describimos en detalle las etapas principales del tratamiento de agua en la industria farmacéutica.

- 1. Pretratamiento: La etapa de pretratamiento se realiza para eliminar las impurezas más grandes y las partículas sólidas del agua. Esta etapa incluye procesos como la filtración, el ablandamiento y la desinfección. La filtración ayuda a eliminar partículas sólidas y sedimentos, mientras que el ablandamiento reduce la concentración de iones de calcio y magnesio que pueden provocar incrustaciones en las membranas y equipos de tratamiento posteriores. La desinfección, mediante cloración o radiación ultravioleta, elimina microorganismos, virus y bacterias presentes en el agua.
- 2. **Tratamiento primario:** La ósmosis inversa (RO) es el tratamiento primario más común en la industria farmacéutica. Esta tecnología utiliza membranas semipermeables para separar las impurezas disueltas y los iones del agua. La presión se aplica al agua para forzarla a través de la membrana, dejando atrás las impurezas y los iones. El resultado es un agua pura con una concentración muy baja de iones y contaminantes.
- 3. Tratamiento secundario: Después del tratamiento primario, el agua se somete a un tratamiento secundario para eliminar los iones y contaminantes restantes. Entre los métodos más comunes de tratamiento secundario se encuentran la desionización, el intercambio iónico y la electrodesionización (EDI). La desionización y el intercambio iónico emplean resinas que atraen y retienen iones específicos, eliminándolos del agua. La EDI es una tecnología que combina intercambio iónico y electroquímica para eliminar iones y contaminantes del agua de manera más eficiente.
- 4. Tratamiento final: La última etapa del tratamiento de agua en la industria farmacéutica implica procesos de esterilización y filtración. La esterilización garantiza la eliminación de cualquier microorganismo residual, mientras que la filtración final, que puede incluir filtros de membrana o filtros de profundidad, elimina partículas finas y restos de microorganis-

mos. Este tratamiento final asegura que el agua cumple con los estándares de calidad requeridos en la industria farmacéutica.

1.1.8 Variantes de sistemas de purificación de agua

En la industria farmacéutica, existen diversas variantes de sistemas de purificación de agua que se adaptan a las necesidades específicas de cada planta y a los requisitos de calidad del agua. A continuación, se presentan algunas de las variantes más comunes:

Ósmosis inversa simple (RO): La ósmosis inversa es una tecnología ampliamente utilizada para la purificación de agua en la industria farmacéutica. Se basa en la aplicación de presión para forzar el agua a través de una membrana semipermeable, eliminando así las impurezas disueltas y los contaminantes.

Ósmosis inversa de doble paso (RO-RO): Esta configuración consta de dos etapas consecutivas de ósmosis inversa. La segunda etapa de RO trata aún más el agua, eliminando impurezas adicionales y mejorando la calidad del agua. Este enfoque es especialmente útil cuando se requiere un mayor grado de purificación del agua.

Ósmosis inversa seguida de lechos de resina de intercambio iónico (RO-IX): Esta combinación utiliza la ósmosis inversa para eliminar la mayor parte de las impurezas disueltas, y luego pasa el agua a través de lechos de resina de intercambio iónico para eliminar los iones restantes y alcanzar una mayor pureza del agua.

Ósmosis inversa seguida de Electrodesionización (RO-EDI): Esta combinación es considerada una de las mejores soluciones para la industria farmacéutica. La ósmosis inversa elimina la mayor parte de las impurezas disueltas, y luego la electrodesionización (EDI) elimina los iones restantes y mejora aún más la calidad del agua. El sistema RO-EDI es altamente eficiente, confiable y requiere un mantenimiento relativamente bajo en comparación con otras configuraciones.

Ósmosis inversa de doble paso seguida de Electrodesionización (RO-RO-EDI): Esta configuración combina las ventajas de la ósmosis inversa de doble paso y la electrodesionización. Primero, el agua pasa a través de dos etapas de ósmosis inversa para eliminar la mayoría de las impurezas disueltas. Luego, la electrodesionización (EDI) elimina los iones restantes y mejora aún más la calidad del agua. Esta combinación proporciona una calidad de agua excepcionalmente alta, lo que la convierte en la mejor opción para aplicaciones farmacéuticas

críticas.

Cabe destacar que la selección de la variante más adecuada para un sistema de purificación de agua en la industria farmacéutica dependerá de factores como la calidad del agua de entrada, los requisitos de calidad del agua de salida, las regulaciones aplicables y las consideraciones económicas.

1.1.9 Innovaciones y enfoques de investigación en sistemas de tratamiento de agua

La industria farmacéutica siempre busca mejorar la calidad y eficiencia en los sistemas de tratamiento de agua, lo que ha llevado al desarrollo de diversas innovaciones y enfoques de investigación en este campo. Algunos de estos avances incluyen:

- Membranas de ósmosis inversa de alto rendimiento: Los avances en la fabricación de membranas de ósmosis inversa han permitido el desarrollo de membranas más eficientes y selectivas. Estas membranas de alto rendimiento pueden eliminar impurezas más pequeñas y lograr una mayor pureza de agua, lo que las hace ideales para aplicaciones en la industria farmacéutica.
- Sistemas de monitoreo y control en tiempo real: La implementación de sensores avanzados y sistemas de control en tiempo real permite monitorear continuamente la calidad del agua y ajustar los parámetros de funcionamiento del sistema de tratamiento de agua de manera más efectiva. Esto mejora la eficiencia del proceso y garantiza que la calidad del agua se mantenga dentro de los límites establecidos por las regulaciones aplicables.
- Tratamiento de agua sin productos químicos: La investigación en el campo del tratamiento de agua sin productos químicos ha llevado al desarrollo de tecnologías innovadoras, como la fotocatálisis, la electrocoagulación y los sistemas de desinfección ultravioleta (UV), que eliminan la necesidad de utilizar productos químicos potencialmente dañinos en el tratamiento del agua.
- Recuperación y reutilización del agua: La creciente preocupación por la escasez de agua y la sostenibilidad ha llevado a la investigación en tecnologías de recuperación y reutilización del agua en la industria farmacéutica. Estas tecnologías permiten reducir la

cantidad de agua fresca requerida para los procesos y minimizar la cantidad de agua residual generada, lo que reduce el impacto ambiental y los costos asociados.

- Integración de tecnologías emergentes: La investigación en el campo del tratamiento de agua también está explorando la integración de tecnologías emergentes, como la inteligencia artificial (IA) y el aprendizaje automático, para optimizar el funcionamiento de los sistemas de tratamiento de agua y predecir posibles problemas antes de que ocurran.
- Tratamiento de agua a nanoescala: La nanotecnología está siendo investigada para aplicaciones en el tratamiento de agua, como el uso de nanofiltros y nanopartículas para mejorar la eficiencia de eliminación de impurezas y la calidad del agua tratada.

Estas innovaciones y enfoques de investigación en sistemas de tratamiento de agua tienen el potencial de mejorar significativamente la calidad del agua, la eficiencia del proceso y la sostenibilidad en la industria farmacéutica, lo que permitirá a las plantas cumplir con los requisitos regulatorios más estrictos y garantizar la seguridad y eficacia de los productos farmacéuticos.

1.2 Descripción del proceso actual

La planta de AICA cuenta con un proceso integral de tratamiento y purificación de agua para abastecer a sus instalaciones con agua de alta calidad y pureza. Este proceso es esencial para garantizar el cumplimiento de las normativas y estándares aplicables en la industria farmacéutica y biotecnológica. A continuación, se proporcionará una descripción detallada de las distintas etapas y componentes del proceso actual en la planta de AICA, desde la captación del agua hasta su el punto antes de la distribución y uso en las distintas áreas de producción.

Sistema Tecnológico y sus plantas de tratamiento

El Sistema Tecnológico es el área de interés para esta investigación y se compone de dos plantas de tratamiento de agua. La primera planta se dedica a la producción de ampolletas, mientras que la segunda planta se encarga de la producción de bulbos, esta última es en la que centra el estudio.

1.2.1 Almacenamiento y bombeo del agua potable

El Sistema de Tratamiento de Agua de Bulbos en Laboratorios AICA⁺ se encarga de garantizar la eficiencia y calidad de los diferentes tipos de aguas farmacéuticas, como el agua purificada y destilada, que se utilizan en la planta de producción de inyectables. El proceso comienza con el almacenamiento del agua potable procedente del acueducto en dos cisternas con capacidades de 900 y 700 m³. Posteriormente, el agua cruda es bombeada a través de las bombas de la estación de hidroneumáticos hacia las líneas de Servicios Generales y al Sistema de Tratamiento de Agua, que se divide en dos partes: el Sistema No Tecnológico y el Sistema Tecnológico.

1.2.2 Dosificación de hipoclorito de sodio y filtración

El agua proveniente de la cisterna llega al sistema de pretratamiento de aguas de Bulbo a una presión entre 4 - 5 bar. En la línea de entrada, se dosifica hipoclorito de sodio al 3 % para desinfectar el agua y reducir la concentración de bacterias y microorganismos. El sistema de dosificación consta de un tanque de solución de 50 L y una bomba con capacidad de 1.58 l/h, permitiendo una concentración de cloro residual cercana al 1 %. Un contador de impulsos acoplado a la línea gobierna esta dosificación, enviando una señal a la bomba cada 100 L de agua, equivalente a 1 impulso. Posteriormente, el agua pasa por un filtro CF-60 de 50 micras, fabricado de acero inoxidable AISI 304, que cumple la función de filtración y actúa como elemento mezclador después de la dosificación de cloro.

1.2.3 Almacenamiento y monitoreo de parámetros del agua

Una vez filtrada, el agua sale del filtro CF-60 con un flujo que oscila entre 7-8 m³/h y se almacena en el tanque de almacenamiento de agua potable, TK-60, con capacidad de 3,000 L. Este tanque sirve como depósito de alimentación para los suavizadores. Se han instalado tomas de muestra antes y después del filtro para monitorear el pH y el cloro residual del agua. Este monitoreo permite verificar la calidad del agua en esta etapa del proceso y asegurar que los parámetros se encuentren dentro de los límites aceptables antes de continuar con el proceso de purificación.

1.2.4 Suavización del agua

Los suavizadores de intercambio iónico son una parte fundamental en la planta de tratamiento de agua, ya que se encargan de eliminar la dureza del agua causada por los cationes de calcio y magnesio. Este proceso es esencial para evitar incrustaciones en las membranas de ósmosis inversa y garantizar una calidad óptima del agua tratada.

1.2.4.1 Proceso de suavización y disposición de los suavizadores

El proceso de suavización comienza cuando el agua es trasegada desde el tanque TK-60 hasta el módulo de suavizadores de intercambio iónico utilizando la bomba P-60. Antes de llegar a los suavizadores, el agua pasa a través del intercambiador de placas E60-1, que disminuye la temperatura del agua hasta valores entre 18 y 20°C, mejorando así la eficiencia del proceso de purificación.

En la línea de entrada y salida del intercambiador, se miden la presión y la temperatura, respectivamente. Además, se cuenta con una válvula reguladora que ajusta el flujo de agua de enfriamiento que entra al intercambiador. Luego, el agua sale del intercambiador y entra a los suavizadores a una presión aproximada de 4 bar a través de los cabezales de distribución.

En este proceso, los suavizadores A64-A y A64-B están dispuestos en serie. El agua que sale del suavizador A64-A entra al suavizador A64-B, que se encarga de rectificar finalmente la calidad del agua suavizada. Ambos suavizadores tienen como objetivo eliminar la dureza del agua, intercambiando los iones de calcio y magnesio por iones de sodio de la resina catiónica fuerte.

1.2.4.2 Operaciones de producción y regeneración de los suavizadores

Los suavizadores de intercambio iónico funcionan mediante dos operaciones principales: producción y regeneración. Estas operaciones son controladas por el Aquatimer instalado en cada suavizador.

Durante la producción, se lleva a cabo la reacción de intercambio iónico en la resina. Con el tiempo, la capacidad de intercambio iónico de la resina disminuye gradualmente y los sólidos disueltos en el agua se acumulan en ella. Cuando la resina se agota, es necesario regenerarla con una solución de cloruro de sodio al 14 % en peso.

1.2.4.3 Proceso de regeneración de los suavizadores

La regeneración de los suavizadores consta de cuatro etapas:

- Contralavado: El lavado a contraflujo tiene como objetivo remover los sólidos depositados en la resina, incluyendo las partículas de resina más pequeñas, levantando y expandiendo ligeramente la cama de resina.
- 2. **Regeneración:** Durante esta etapa, se pasa salmuera a través de la resina a una velocidad de flujo lenta, lo que aumenta el contacto entre la salmuera y la resina, favoreciendo la regeneración de la misma. La reacción de regeneración implica la liberación de los iones de calcio y magnesio, que son reemplazados por iones de sodio.
- 3. **Enjuague lento:** En este paso, se dispersa la solución de regenerante a través de todo el volumen de resina a una velocidad de flujo requerida, garantizando un contacto adecuado de la salmuera con el fondo de la cama de resina.
- 4. **Enjuague rápido:** Después de completar el desplazamiento de la salmuera a través de toda la cama de resina, este último enjuague remueve la salmuera que ha quedado remanente o en exceso en la misma.

Una vez finalizado el proceso de regeneración, los suavizadores están listos para volver a funcionar en la operación de producción, garantizando la eliminación efectiva de la dureza del agua.

1.2.4.4 Monitoreo de la calidad del agua suavizada

El monitoreo de la calidad del agua suavizada es esencial para garantizar la eficiencia del proceso y la protección de las membranas de ósmosis inversa. A la salida de cada suavizador, hay un punto de toma de muestra y en la línea general de salida del agua suave, se encuentra instalado un medidor de dureza en línea (DOROMAT PROFESIONAL). Este medidor permite asegurar que la dureza del agua no supere el límite máximo establecido de 5 mg/l, evitando así la formación de incrustaciones en las membranas de ósmosis inversa.

1.2.5 Purificación mediante ósmosis inversa

La purificación del agua en una planta de tratamiento es un proceso crucial para garantizar la calidad del agua que será suministrada a los usuarios finales. Uno de los métodos más

eficientes y ampliamente utilizados para la purificación del agua es la ósmosis inversa (OI), que se basa en la aplicación de presión para forzar el paso del agua a través de una membrana semipermeable, reteniendo así las impurezas y contaminantes disueltos en el agua.

1.2.5.1 Descripción general de las etapas de ósmosis inversa

El proceso de ósmosis inversa en la planta de tratamiento de agua en estudio se compone de dos etapas o pasos de flujo. La primera etapa consta de tres porta-membranas, cada una con tres tubos colectores de 8 pulgadas de diámetro y 40 pulgadas de longitud, y membranas dispuestas en espiral en su interior. La segunda etapa, por otro lado, tiene dos porta-membranas, uno de los cuales contiene solo dos tubos colectores con membrana, mientras que el tercer tubo colector tiene una simulación de membrana. Esta configuración se estableció para lograr los parámetros de producción de agua purificada de diseño en la ósmosis inversa.

1.2.5.2 Adición de metabisulfito de sodio

Antes de ingresar al proceso de ósmosis inversa, el agua suavizada, con un pH entre 5 y 7 y una presión entre 2 y 4 bar, debe someterse a un pretratamiento. Este pretratamiento incluye la dosificación de metabisulfito de sodio ($Na_2S_2O_5$) mediante un conjunto de bomba dosificadora y tanque de solución. La adición de metabisulfito de sodio es esencial para eliminar el cloro libre residual presente en el agua, ya que este puede dañar químicamente las membranas de la ósmosis inversa.

1.2.5.3 Filtración y control de calidad antes de la ósmosis inversa

Después de la adición de metabisulfito de sodio, el agua pasa por un filtro de cartuchos de 10 micrómetros. En la entrada y salida del filtro, se instalan manómetros para monitorear la diferencia de presión y, por lo tanto, determinar el grado de ensuciamiento de los cartuchos del filtro.

A continuación, se toma una muestra del agua filtrada en el punto de muestreo del analizador de REDOX en línea, que proporciona una medida de la concentración de cloro en el agua, con un límite máximo de 400 mV. El agua filtrada y tratada se dirige al tanque de alimentación de la ósmosis inversa (TK 50-A) con una capacidad de 500 litros.

En esta etapa, es fundamental garantizar la calidad del agua antes de que ingrese al proceso de ósmosis inversa para evitar problemas en las membranas y garantizar una purificación efi-

ciente.

1.2.5.4 Ajuste del pH y eliminación del CO₂ disuelto

Una vez almacenada en el tanque de alimentación de la ósmosis inversa (TK 50-A), el agua suavizada es succionada por la bomba P50-2A para aumentar su presión hasta valores cercanos a 5 bar. Durante este proceso, se dosifica hidróxido de sodio (NaOH) utilizando un conjunto de tanque y bomba dosificadora. La adición de NaOH tiene como objetivo eliminar el CO₂ disuelto en el agua, ya que aporta conductividad, y ajustar el pH del agua de alimentación a la ósmosis inversa en un rango entre 8 y 10.

1.2.5.5 Primera etapa de ósmosis inversa

El agua tratada pasa por un filtro de cartucho de 5 micrómetros (CF50A) y luego es impulsada por la bomba P50-A hacia la primera etapa de ósmosis inversa a una presión entre 9 y 13 bar y una temperatura entre 15 y 25°C. En esta etapa, las membranas retienen sales, sustancias orgánicas y microorganismos presentes en el agua suavizada. El flujo de agua producto de la primera etapa es aproximadamente 4000 l/h, con una conductividad menor a 10 μ S/cm.

1.2.5.6 Segunda etapa de ósmosis inversa

El agua purificada de la primera etapa se bombea hacia la segunda etapa mediante la bomba P50-B, a una presión de 12 bar. El objetivo de la segunda etapa es realizar un pulido extra del agua, tanto en términos físico-químicos como microbiológicos. El producto de la segunda etapa, con un flujo de 3000 l/h, se almacena en el tanque TK-70, con capacidad para 6000 litros de agua purificada. Se toman muestras de agua pura para analizar la conductividad, que debe ser menor a $1.3~\mu$ S/cm, así como otros parámetros físico-químicos y microbiológicos, como el carbono orgánico total y la presencia de microorganismos patógenos y bacterias.

1.2.5.7 Manejo del flujo de rechazo y recirculación

Durante el proceso de ósmosis inversa, se generan flujos de rechazo que contienen las sales, sustancias orgánicas y microorganismos que han sido retenidos por las membranas. En la primera etapa de ósmosis inversa, el flujo de rechazo varía entre 3000 y 1000 l/h, mientras que en la segunda etapa, el flujo de rechazo es de aproximadamente 1000 l/h.

Actualmente, el rechazo proveniente de la segunda etapa se recircula al tanque de agua suave

TK 50, permitiendo que el agua sea tratada nuevamente en el proceso de ósmosis inversa. A pesar de que esto aprovecha una parte del agua y reduce el volumen de agua desechada, se ha identificado que puede haber una pérdida de agua de calidad en este proceso.

Por otro lado, el rechazo de la primera etapa se envía al drenaje debido a su alta concentración de sales y sustancias indeseables. Este flujo de rechazo no se recircula, ya que podría afectar negativamente la calidad del agua suave y la eficiencia del proceso de ósmosis inversa.

La electrodesionización (EDI) es una tecnología que combina la electroquímica y la resina de intercambio iónico para producir agua ultrapura, que es esencial en una variedad de aplicaciones industriales y de laboratorio. Desde su invención en la década de 1950, la EDI ha evolucionado para convertirse en una opción preferida para la purificación de agua, especialmente en industrias que requieren altos estándares de pureza, como la farmacéutica, la de semiconductores, la de energía y la de alimentos y bebidas. La EDI es especialmente útil en aplicaciones donde se necesita una desionización continua y sin químicos, y donde la conservación de agua es crucial.

El principio de la EDI se basa en la utilización de corriente eléctrica y resinas de intercambio iónico para eliminar iones y partículas disueltas en el agua. A diferencia de los métodos tradicionales de desionización, como la desionización por intercambio iónico, la EDI no requiere el uso de químicos para regenerar las resinas de intercambio iónico. En su lugar, utiliza corriente eléctrica para regenerar las resinas, lo que permite un proceso de desionización continua. Esta característica no solo elimina la necesidad de manipular y disponer de productos químicos dañinos, sino que también mejora la eficiencia del proceso de desionización y reduce el consumo de agua [?].

Este capítulo proporciona una introducción y una descripción detallada de los fundamentos de la EDI. Incluye una discusión sobre los principios básicos de la EDI, los componentes y el diseño de un sistema de EDI, así como los beneficios y desafíos asociados con la implementación de la tecnología EDI. El capítulo concluye con una discusión sobre las aplicaciones de la EDI en la industria farmacéutica, resaltando la importancia de la EDI en la producción de agua ultrapura para aplicaciones farmacéuticas.

2.1 Principios de la EDI

La Electrodesionización (EDI) es una tecnología que combina métodos físicos y químicos para eliminar iones disueltos del agua. En el corazón de este proceso se encuentra la resina de intercambio iónico, que actúa como un medio para la extracción de iones y los electrodos que posibilitan el movimiento de estos.

En el intercambio iónico, los iones en el agua son atraídos y retenidos por una red de polímeros cargados conocida como resina de intercambio iónico. Es un proceso dinámico en el que los iones negativos, denominados aniones, son atraídos hacia los sitios cargados positivamente en la resina, mientras que los iones positivos, los cationes, son atraídos hacia los sitios con carga negativa. El resultado de este intercambio iónico es que los iones disueltos en el agua son efectivamente atrapados y retenidos en la resina, reduciendo así su concentración en el agua.

En contrapartida, la electrólisis se utiliza para mover activamente los iones. Este proceso implica la aplicación de una corriente eléctrica a través de una serie de electrodos, que se encuentran en los extremos de la celda de EDI. Esta corriente eléctrica instiga la migración de los iones, con los cationes moviéndose hacia el electrodo negativo y los aniones moviéndose hacia el electrodo positivo.

Un dispositivo EDI típico consta de una cámara que alberga una resina de intercambio iónico, tanto catiónica fuerte como aniónica fuerte. Esta cámara, o celda, está situada entre una membrana de intercambio catiónico y una membrana de intercambio aniónico, lo que significa que solo los iones pueden pasar a través de las membranas.

El agua de alimentación entra en este sistema y fluye a través de la resina de intercambio iónico. Al mismo tiempo, se aplica una corriente continua externa a través de los electrodos. Esta corriente continua impulsa a los cationes a moverse hacia el cátodo y a los aniones a moverse hacia el ánodo.

Finalmente, las membranas de intercambio iónico trabajan para eliminar eléctricamente los iones del agua de entrada y los transfieren al concentrado. De esta forma, el resultado final es un agua de alta calidad que ha sido eficientemente desionizada.

Figura 2.1: Funcionamiento de un electrodesionizador

La EDI elimina los iones del agua a la vez que las resinas de intercambio iónico que se contiene entre las membranas se regeneran con una corriente eléctrica. Esta regeneración electroquímica se sirve de un potencial eléctrico para realizar el transporte iónico y sustituye a la regeneración química de los sistemas convencionales de intercambio iónico, que, como es conocido, se verifica mediante ácido y sosa. Dentro del compartimento de alimentación, las resinas de intercambio iónico ayudan en el transporte de los iones al compartimiento concentrado.

Como el agua va disminuyendo en su concentración de iones, se va produciendo la disociación del agua en la interfase de intercambio catiónico y aniónico, produciéndose un flujo continuo de hidrógeno y ion hidroxilo. Estos iones actúan como regenerante para las resinas de intercambio iónico presentes en este compartimento y mantiene las resinas a la salida de éste, en un estado de alta regeneración, necesario para la producción del agua de alta calidad deseada.

2.2 Componentes y diseño de la EDI

La efectividad y eficiencia de un sistema de EDI dependen en gran medida de su diseño y de los componentes utilizados. En este sentido, existen varios componentes clave en un sistema de EDI que son fundamentales para su operación.

2.2.1 Cámara de dilución y concentración

Las cámaras de dilución y concentración son un componente crítico en el diseño de la EDI. Estas cámaras permiten la separación física del agua desionizada del agua concentrada con iones. La cámara de dilución es donde el agua purificada se recoge después de que los iones disueltos son extraídos, mientras que la cámara de concentración es donde se recogen los iones extraídos. Esta separación es crucial para mantener la pureza del agua desionizada y para garantizar que los iones disueltos no se reintroduzcan en el agua. Las cámaras de dilución y concentración están separadas por membranas semipermeables, que permiten el paso de iones pero restringen el flujo de agua.

2.2.2 Resina de intercambio iónico

La resina de intercambio iónico es otro componente crítico de un sistema de EDI. La resina actúa como un medio para la atracción y retención de iones disueltos en el agua. La resina es esencialmente una red de polímeros cargados, con sitios de intercambio iónico que atraen iones de carga opuesta. Las resinas de intercambio iónico vienen en dos tipos principales: cationes y aniones, que atraen iones negativos y positivos respectivamente. En un sistema de EDI, se utiliza una mezcla de resinas de intercambio de cationes y aniones para asegurar la extracción de todos los tipos de iones disueltos.

2.2.3 Electrodo y membrana

Los electrodos y las membranas son componentes esenciales en la operación de un sistema de EDI. Los electrodos, situados en los extremos de la celda de EDI, proporcionan el campo eléctrico que impulsa la migración de iones a través de la celda. Dependiendo de la carga del

ion, los iones disueltos son atraídos hacia el electrodo positivo o negativo. Las membranas, por otro lado, están diseñadas para permitir el paso de iones, pero no de agua. De esta manera, las membranas facilitan el movimiento de los iones disueltos hacia la cámara de concentración, mientras que el agua purificada se recoge en la cámara de dilución.

2.2.4 Fuente de alimentación

La fuente de alimentación es otro componente crucial de un sistema de EDI. Proporciona la corriente eléctrica necesaria para el proceso de electrólisis, que impulsa la migración de iones a través de la celda de EDI. La fuente de alimentación debe ser capaz de suministrar una corriente eléctrica constante y estable para garantizar una operación eficiente del sistema.

2.3 Beneficios y desafíos de la EDI

La tecnología de la EDI tiene numerosos beneficios, pero también presenta ciertos desafíos que deben ser reconocidos y superados para su efectiva implementación y operación.

2.3.1 Beneficios de la EDI

La Electrodesionización (EDI) ofrece una variedad de ventajas significativas en comparación con otras tecnologías de purificación de agua. En este apartado, se detallarán estos beneficios de manera exhaustiva, desde la simplicidad operativa hasta la eficacia en la eliminación de partículas inorgánicas.

Empezando con su operación, la EDI destaca por su simplicidad y continuidad. Dado que esta tecnología combina la electrodiálisis y el intercambio iónico, permite una producción ininterrumpida de agua de alta pureza. Esto significa que no es necesario interrumpir el proceso para la regeneración de las resinas, como ocurre con otros métodos de desionización. Esta característica contribuye a mejorar la eficiencia de los procesos productivos y a minimizar el tiempo de inactividad.

Un factor crítico que diferencia a la EDI de otros métodos de purificación es la eliminación casi total del uso de productos químicos en el proceso de regeneración. A diferencia de los siste-

mas tradicionales de intercambio iónico, la EDI utiliza una corriente eléctrica para regenerar las resinas de intercambio iónico. Este enfoque no solo elimina la necesidad de manejar y almacenar productos químicos peligrosos, sino que también reduce los costos operativos y el impacto ambiental asociado con la eliminación de productos químicos residuales.

Desde la perspectiva operativa y de mantenimiento, la EDI también tiene ventajas económicas significativas. Gracias a su diseño compacto y a la ausencia de partes móviles, el mantenimiento de los sistemas de EDI es relativamente simple y los riesgos de averías son bajos. Esta característica se traduce en ahorros en los costos de mantenimiento y en la reducción del tiempo de inactividad del sistema. Adicionalmente, la EDI se caracteriza por su eficiencia energética, lo cual se refleja en un menor consumo de energía en comparación con otros métodos de purificación de agua, como la destilación.

En lo que respecta al impacto ambiental, la EDI se considera una tecnología ecológica. Al no producir efluentes peligrosos y al eliminar la necesidad de manejo de productos químicos, se reduce significativamente el riesgo de contaminación ambiental. Asimismo, no requiere la disposición de resinas de intercambio iónico agotadas, lo que minimiza aún más su huella ambiental.

Finalmente, la EDI es altamente efectiva en la eliminación de partículas inorgánicas disueltas en el agua. Con su capacidad para eliminar hasta el 99,9 % de los iones presentes en el agua, incluyendo cationes y aniones, ofrece un grado de purificación que supera a la mayoría de los otros métodos disponibles. Esta efectividad la convierte en una solución de purificación de agua altamente atractiva para una amplia gama de aplicaciones.

2.3.2 Desafíos de la EDI

A pesar de sus numerosos beneficios, la implementación y operación de la EDI también presentan desafíos.

Uno de los principales desafíos es la necesidad de una pretratamiento del agua de alimentación. La EDI requiere agua de alimentación de baja conductividad, por lo general proporcionada por la ósmosis inversa (RO). Además, el agua de alimentación debe estar libre de cloro y otras sustancias oxidantes que pueden dañar las resinas de intercambio iónico y las membranas de la EDI. Por lo tanto, el diseño del pretratamiento del agua es crucial para el rendimiento de la EDI.

Otro desafío es el mantenimiento de los sistemas de EDI. Aunque la EDI reduce la necesidad de químicos regenerantes, todavía requiere limpieza periódica y reemplazo de componentes para mantener su rendimiento. La membrana de EDI y las resinas de intercambio iónico pueden necesitar ser reemplazadas después de un cierto período de tiempo, dependiendo de la calidad del agua de alimentación y de las condiciones operativas.

Finalmente, la EDI requiere un suministro de energía eléctrica constante para su operación. Cualquier fluctuación en el suministro de energía puede afectar el rendimiento de la EDI y resultar en una calidad de agua inconsistente. Por lo tanto, un suministro de energía confiable es esencial para la operación de la EDI.

2.4 Aplicaciones de la EDI en la industria farmacéutica

En la industria farmacéutica, la pureza y consistencia del agua utilizada en los procesos de producción son de suma importancia. Cualquier contaminante, ya sea orgánico, inorgánico o microbiológico, puede afectar la calidad del producto final y comprometer la seguridad del paciente. En este contexto, la EDI ha encontrado un lugar destacado debido a su capacidad para producir agua de alta pureza de manera confiable y continua.

La EDI es comúnmente utilizada en la producción de agua purificada (PW) y agua para inyección (WFI). El agua purificada es utilizada en una amplia gama de aplicaciones en la industria farmacéutica, como la preparación de soluciones para la producción de productos farmacéuticos y la limpieza de equipos y envases. El agua para inyección, que requiere un nivel aún mayor de pureza, es utilizada en la producción de productos parenterales, como soluciones para inyección y productos liofilizados.

La EDI se utiliza a menudo en combinación con otros procesos de purificación de agua, como la ósmosis inversa (RO) y la destilación. En un sistema típico, la RO se utiliza primero para reducir la concentración de sales y otros contaminantes en el agua. Luego, la EDI se utiliza para eliminar los iones restantes y lograr el nivel de pureza deseado. Finalmente, si se requiere agua para inyección, el agua producida por la EDI puede ser sometida a destilación para eliminar cualquier contaminante restante y garantizar la esterilidad.

CAPÍTULO 3 ______ANÁLISIS DE LA INSTRUMENTACIÓN

La instrumentación, como pieza fundamental de cualquier proceso de ingeniería, es una serie de elementos que proporcionan el control y la supervisión necesarios para garantizar la eficiencia y la seguridad de un sistema. El propósito de este capítulo es analizar la instrumentación actualmente implementada en nuestro sistema de ósmosis inversa, examinando tanto los componentes físicos como la red y los protocolos de comunicación que permiten su funcionamiento integrado.

Iniciaremos con una mirada detallada a la instrumentación existente, explorando su funcionalidad, la interrelación entre los componentes y la forma en que cada pieza contribuye al objetivo global del sistema de tratamiento de agua. Al entender completamente la configuración actual, podremos identificar las áreas de mejora y explorar las oportunidades para la optimización y el crecimiento.

En la siguiente parte del análisis, abordaremos los detalles de la red y los protocolos de comunicación. Al igual que el sistema circulatorio en un organismo, la red y los protocolos de comunicación son los que mantienen viva la instrumentación, permitiendo la comunicación y la colaboración eficaces entre los diferentes elementos. Profundizaremos en cómo funcionan, cómo están configurados y cómo impactan en la eficiencia general del sistema.

Finalmente, este capítulo culminará con una propuesta de instrumentación actualizada. Con la implementación de un electrodesionizador (EDI), buscamos mejorar aún más los parámetros de purificación del agua, llevando nuestro sistema de tratamiento de agua a nuevas alturas

de rendimiento y eficacia. Exploraremos qué elementos adicionales son necesarios para esta actualización, cómo se integrarán en el sistema existente y cómo mejorarán el proceso de purificación de agua.

Es importante destacar que aunque hay numerosos instrumentos y equipos en la planta de tratamiento de agua en general, el foco de este capítulo es proporcionar una descripción y análisis detallado para el sistema de ósmosis inversa y que serán esenciales para entender e implementar las mejoras propuestas.

3.1 Instrumentación de la planta de ósmosis inversa

La instrumentación en un sistema de ósmosis inversa es crucial para su funcionamiento eficiente y seguro. Esta sección se centrará en los distintos dispositivos de control que permiten la operación continua y segura de la planta de ósmosis inversa. Hablaremos de las válvulas, que regulan el flujo de agua y sustancias químicas en el sistema, las bombas que impulsan la circulación y los sensores que monitorizan las condiciones y parámetros clave, como la conductividad, la temperatura y el pH.

Además, discutiremos el controlador lógico programable (PLC), que es el cerebro de la operación. El PLC es responsable de la gestión y el control de todas las señales de entrada y salida de la planta, lo que implica tomar decisiones basadas en las lecturas de los sensores y ajustar los actuadores, como las bombas y las válvulas, para mantener el sistema funcionando de manera óptima.

Por último, exploraremos los diferentes módulos que el PLC necesita para interactuar con los demás componentes del sistema. Estos módulos son esenciales para la comunicación y el control eficaz del proceso de ósmosis inversa.

3.1.1 Sensores

Los sensores desempeñan un papel esencial en cualquier sistema de control de procesos industriales. Constituyen los ojos y los oídos del sistema, recogiendo datos precisos y en tiempo real sobre una amplia variedad de parámetros y condiciones. Estos datos son vitales para controlar de manera efectiva el proceso, optimizar el rendimiento, mejorar la eficiencia y garantizar la seguridad.

Estos sensores cubren una amplia gama de tipos y especificaciones, diseñados para medir

parámetros críticos como la presión, el flujo, la temperatura, la conductividad y el potencial de hidrógeno (pH).

Cabe destacar que no todos los sensores son iguales en términos de su interfaz con el sistema de control. Algunos de ellos, por ejemplo, tienen transmisores internos. Estos sensores se autoalimentan y pueden transmitir directamente los datos al controlador lógico programable (PLC) del sistema.

Por otro lado, algunos sensores no tienen transmisores internos. En este caso, necesitan estar conectados a un transmisor externo que convierta la señal del sensor en una forma que pueda ser interpretada y utilizada por el PLC.

Finalmente, hay sensores que, aunque no son transmisores, están diseñados de tal manera que no necesitan un transmisor para conectarse al PLC. En su lugar, pueden comunicarse directamente con el PLC.

En resumen, la variedad y diversidad de los sensores utilizados en el sistema de ósmosis inversa reflejan la complejidad y sofisticación del proceso y la importancia de la recopilación precisa y oportuna de datos para su operación efectiva y eficiente. A continuación, proporcionaremos un análisis detallado de estos sensores, su funcionamiento, ubicación en el proceso, y sus características específicas.

3.1.1.1 Sensores de conductividad

En el proceso de ósmosis inversa, la conductividad es una variable esencial a ser controlada. Los sensores de conductividad son, por tanto, componentes críticos en la planta, proporcionando datos en tiempo real que informan sobre la eficiencia del proceso. Específicamente, son capaces de detectar cambios en la concentración de iones en el agua, lo que puede ser indicativo de un problema con las membranas de ósmosis inversa.

El principio de funcionamiento de estos sensores radica en la medición de la conductividad eléctrica del agua, que refleja su capacidad para transmitir corriente eléctrica. Esta propiedad está directamente relacionada con la concentración de iones disueltos en el agua. El sensor aplica un voltaje a dos electrodos situados a una distancia fija y mide la corriente resultante. Como la conductividad depende del contenido de sales en el agua, un aumento de la conductividad sugiere una mayor concentración de iones, indicando una posible eficacia reducida de las membranas de ósmosis inversa.

Los sensores de conductividad como el de la figura 3.1, fabricado por Endress+Hauser, es un

ejemplos de este tipo de instrumentos utilizados en la planta.

Figura 3.1: Sensor de conductividad CLS16-3D1A1P

Este tipo de sensores entre los lugares donde se pueden encontrar, lo tenemos ubicado en el punto de salida de la primera etapa del sistema de ósmosis inversa (en el flujo de permeado).

Tabla 3.1: Datos técnicos del sensor de conductividad CLS16-3D1A1P.

Modelo	CLS16-3D1A1P
Material	Acero inoxidable 316 L (DIN 1.4435)
Acabado	Electropulido Ra < 0,8µm
Constante	0,1 (0,04 / 500 μS/cm)
Rango	0 a 20 μS/cm
Conexiones	1" $\frac{1}{2}$ (38,10 mm) Tri-Clamp
Temperatura máxima del fluido	120 °C
Fabricante	Endress+Hauser

3.1.1.2 Sensores de pH

La medición y control del pH en el agua tratada es crucial en una planta de ósmosis inversa. Los sensores de pH desempeñan un papel vital en este aspecto, permitiendo la monitorización constante del pH del agua y facilitando el control de la dosificación de hidróxido de sodio (NaOH).

Los sensores de pH operan basándose en el principio de medición del potencial electroquímico a través de una celda compuesta por un electrodo de referencia y un electrodo de medición. La diferencia de potencial entre estos electrodos está relacionada con el pH del medio acuoso. El electrodo de medición, fabricado generalmente de vidrio, tiene una propiedad particular de presentar una diferencia de potencial con el agua que se encuentra en contacto, la cual es dependiente del pH.

Un sensor de pH como el CPS 11D-7AA2G de Endress+Hauser mostrado en la figura 3.2 se utiliza en la planta para controlar el pH después del filtro de 5 micras. La información de este sensor es utilizada para el control de la dosificación de NaOH, ayudando a mantener el pH dentro de los rangos deseados, lo cual es esencial para la eficiencia del proceso de ósmosis inversa.

Figura 3.2: Sensor de pH CPS 11D-7AA2G

A continuación, se presenta la tabla 3.2 con las características técnicas principales del sensor de pH CPS 11D-7AA2G:

Tabla 3.2: Características del sensor de pH CPS 11D-7AA2G.

Característica	Descripción
Modelo	CPS 11D-7AA2G Memosens
Material	Vidrio
Rango pH	0-12
Rango de temperatura	-5 a 80°C
Longitud de la sonda	120 x 12 mm
Conector	tipo N con PG13,5
Fabricante	Endress+Hauser

3.1.1.3 Sensores de temperatura

Las sondas de temperatura son un componente crítico en cualquier proceso industrial que requiera control preciso de la temperatura. Son dispositivos que detectan cambios en las condiciones físicas y convierten los datos en señales eléctricas que pueden ser leídas y monitorizadas. En el contexto de los sistemas de ósmosis inversa, estas sondas son esenciales para monitorear y mantener las condiciones óptimas de temperatura que permiten la eficacia del proceso.

El modelo TSPT-6702UAC de Endress+Hauser es un ejemplo de una sonda de temperatura de alta calidad. Funciona bajo la clase A, que se refiere a su alta precisión y consistencia en la medición de la temperatura. Este tipo de sondas son generalmente más precisas y estables que las sondas de clase B, lo que las hace ideales para aplicaciones industriales que requieren mediciones precisas y repetibles.

Estas sondas están ubicadas en puntos clave del proceso de ósmosis inversa, como en la tubería antes de la entrada de cada etapa de la ósmosis. Aquí, las sondas pueden monitorear continuamente la temperatura del agua, proporcionando datos vitales que pueden ayudar a prevenir problemas y garantizar que el sistema funcione de manera óptima.

Figura 3.3: Sensor de temperatura TSPT-6702UAC

A continuación, se proporcionan algunas de las características específicas de este sensor en la tabla 3.3

Tabla 3.3: Características del sensor de temperatura TSPT-6702UAC .

Característica	Descripción
Modelo	TSPT-6702UAC
Tipo	Clase A
Precisión típica	+/- 0.15°C a 0°C
Valor de Alfa	0.00385 °C ⁻¹
Valor de resistencia	100 ohm al 0°C
Rango de medición	0°C a 200°C
Longitud de los cables	102 mm
Conexiones	ø 6 mm
Fabricante	Endress+Hauser

3.1.1.4 Sensores de Redox

Los electrodos de Redox son dispositivos que se utilizan para medir el potencial de óxidoreducción (Redox) en una solución. Su principal utilidad en los procesos industriales, incluido
el tratamiento de agua por ósmosis inversa, es proporcionar información en tiempo real sobre
el estado de la solución, lo que permite ajustar los parámetros del proceso en consecuencia.
El modelo CPS12D-7PA21 MEMOSENS de Endress+Hauser es un electrodo de Redox del tipo
Orbisint. Estos electrodos funcionan generando una diferencia de potencial eléctrico entre el
electrodo y la solución a medida que se establece un equilibrio electroquímico. Esta diferencia
de potencial es proporcional al potencial Redox de la solución y puede ser interpretada por un
transmisor de Redox.

El CPS12D-7PA21 MEMOSENS es un electrodo robusto diseñado para resistir condiciones de proceso adversas, como el contacto con fluidos agresivos, gracias a su construcción de vidrio inastillable. También puede operar en un amplio rango de temperaturas, lo que lo hace adecuado para una variedad de aplicaciones.

En el sistema de ósmosis inversa en estudio, el electrodo de Redox CPS12D-7PA21 MEMO-SENS como el de la figura 3.4 se sitúa justo después del filtro de 10 micras. Desde aquí, puede enviar sus mediciones a un transmisor de Redox para su interpretación y uso en el control del proceso.

Figura 3.4: Sensor de Redox CPS12D-7PA21

Aquí se detallan las características específicas del electrodo de Redox CPS12D-7PA21 ME-MOSENS:

Tabla 3.4: Características del sensor de Redox CPS12D-7PA21.

Característica	Descripción
Modelo	CPS12D-7PA21 MEMOSENS
Tipo	Orbisint
Material	Vidrio inastillable
Rango	+/- 1500 mV
Rango de temperatura	-15 a 80°C
Longitud del electrodo	120 mm
Conector	Standard con acoplamiento coaxial
Temperatura máxima del fluido	20°C
Fabricante	Endress+Hauser

3.1.1.5 Sensores Transmisores de flujo

En cualquier proceso industrial, la medición precisa y la transmisión de los datos de flujo son esenciales para garantizar la eficiencia y el correcto funcionamiento del sistema. En particular, los instrumentos que combinan ambas funciones, conocidos como medidores de flujo y transmisores, son especialmente valiosos en la industria de tratamiento de agua, como en los sistemas de ósmosis inversa. Proporcionan mediciones exactas de la tasa de flujo de líquidos en distintos puntos del proceso y transmiten estos datos en tiempo real para su monitorización y control.

El modelo RAMC05-S4-SS-64S2- E90424*P6/Z de YOKOGAWA es un ejemplo perfecto de un medidor de flujo y transmisor en uno. Este dispositivo funciona como un rotámetro, y su diseño permite no solo medir el flujo de líquidos sino también transmitir estos datos para su monitorización remota o automatizada. Su ubicación en la tubería de permeado en la segunda etapa de la ósmosis es estratégica, ya que permite un control constante y preciso del flujo de permeado en este punto crucial del proceso.

Por otro lado, el modelo DS20 07 YJ de MADDALENA es otro medidor de flujo y transmisor efectivo, es un medidor de flujo de dial húmedo de chorro múltiple. Este medidor se encuentra después del filtro de 10 micras, proporcionando mediciones de flujo esenciales después de esta etapa de filtración.

Estos son los detalles específicos de ambos medidores de flujo y transmisores:

Figura 3.5: Sensor-Transmisor de flujo RAMC05-S4-SS-64S2- E90424

Tabla 3.5: Características del rotámetro RAMC05-S4-SS-64S2- E90424.

Característica	Descripción
Modelo	RAMC05-S4-SS-64S2- E90424*P6/Z
Tipo	Rotámetro
Material	316 L
Conexiones	2"Triclamp
Rango	400 a 4000 l/h
Material de la carcasa	Acero inoxidable
Opción	4-20 mA - 24Vdc
Fabricante	YOKOGAWA

Figura 3.6: Sensor-Transmisor de flujo DS20 07 YJ

Tabla 3.6: Características del medidor de flujo DS20 07 YJ.

Característica	Descripción
Modelo	DS20 07 YJ
Tipo	Multi-jet wet dial (Multi-jet con dial húmedo)
Material	Latón recubierto de epoxi
Conexiones	Roscado ø 1"1/2 gas
Rango	10 m ³ /h (caudal nominal)
Fabricante	MADDALENA

3.1.1.6 Sensores Transmisores de Presión

Los sensores de presión desempeñan un papel esencial en numerosos procesos industriales, incluyendo la ósmosis inversa. Estos instrumentos son responsables de medir la presión en diferentes puntos del sistema y transmitir esa información a un sistema de control para su seguimiento y análisis.

El principio de funcionamiento de estos dispositivos se basa en la aplicación de presión a un diafragma de metal sensible, que causa su deformación. Esta deformación es detectada por un sensor, que la convierte en una señal eléctrica. En el caso de los transmisores de presión, esta señal se transmite luego a un sistema de control en forma de una señal estandarizada (generalmente 4-20 mA), lo que permite un fácil seguimiento y control de la presión en el

proceso.

La importancia de estos instrumentos en la ósmosis inversa es notable. Dado que la presión es un factor crítico en la ósmosis inversa, la capacidad de medir y controlar la presión a través de todo el sistema es esencial para garantizar un rendimiento óptimo y prevenir posibles problemas, como la sobrepresión que podría dañar las membranas de ósmosis.

En el sistema de ósmosis inversa estudiado, estos sensores se encuentran ubicados en la tubería de concentrado en cada etapa de la ósmosis, así como a la entrada de cada etapa de la ósmosis. Esta disposición permite el monitoreo constante y preciso de la presión, lo que es vital para la operación eficiente y segura del sistema.

A continuación, se proporcionan las características específicas del sensor-transmisor de presión modelo PTP31-A1C13S1AF1A fabricado por Endress+Hauser:

Figura 3.7: Sensor-Transmisor de presión PTP31-A1C13S1AF1A

Tabla 3.7: Características del sensor de presión PTP31-A1C13S1AF1A.

Característica	Descripción
Modelo	PTP31-A1C13S1AF1A
Rango	0 a 40 bar (calibración 0-20 bar)
Pantalla	LCD
Alimentación eléctrica	12 a 30 Vdc
Salida	Interruptor PNP, 3 hilos + 4-20 mA
Conexión eléctrica	Conector M12 x 1.5
Protección IP	IP 65
Diafragma	AISI 316 L
Fluido de llenado	Aceite de grado alimenticio
Conexión del proceso	Roscado G ¹ / ₂ ÏSO228 macho
Fabricante	Endress+Hauser

3.1.2 Indicadores

El control efectivo y eficiente de cualquier proceso industrial requiere no sólo la recopilación precisa de datos por parte de los sensores, sino también la capacidad de visualizar y entender rápidamente estos datos. Aquí es donde entran en juego los indicadores.

Los indicadores son dispositivos esenciales que proporcionan una visualización en tiempo real de los parámetros clave del proceso, permitiendo a los operadores y técnicos monitorear el estado del proceso y tomar decisiones informadas. En el sistema de tratamiento de agua por ósmosis inversa que estamos examinando, los indicadores desempeñan un papel fundamental en el monitoreo de variables críticas como la presión y el flujo.

3.1.2.1 Manómetros

Los manómetros son instrumentos de medición de presión esenciales en cualquier proceso industrial, incluyendo el tratamiento de agua por ósmosis inversa. Proporcionan una medida de la presión existente en un punto específico del proceso, permitiendo ajustar y controlar parámetros críticos para garantizar la eficacia del sistema.

Los manómetros de tipo seco, como el modelo P600 de ITEC, funcionan basándose en la flexión de un tubo Bourdon (un tubo delgado y hueco que se curva en forma de C) por la presión del fluido. Al aumentar la presión, el tubo se endereza y este movimiento se traduce a una aguja en la esfera del manómetro para proporcionar una lectura de presión. Su diseño resistente y su facilidad de lectura los hacen idóneos para una amplia gama de aplicaciones industriales.

En el sistema de ósmosis inversa en estudio, los manómetros de tipo P600 se sitúan en puntos estratégicos: en cada filtro (de 10 micras y de 5 micras) y antes de la bomba que impulsa el agua a la segunda etapa de la ósmosis. La correcta monitorización de la presión en estas ubicaciones es vital para garantizar el adecuado funcionamiento del sistema y prevenir posibles problemas, como la sobrepresión que podría dañar las membranas de ósmosis.

Figura 3.8: Manómetro P600

Tabla 3.8: Características del manómetro P600.

Modelo	P600
Tipo	Ejecución seca
Material	Acero inoxidable
Rango de presión	0 a 10 bar
Diámetro de la carcasa	63 mm o 200 mm
Temperatura del proceso	20°C
Conexión del proceso	Roscado $\frac{1}{4}$ "gas radial o $\frac{1}{2}$ "

3.1.2.2 Indicadores de Flujo

Los indicadores de flujo son instrumentos indispensables en cualquier proceso industrial, incluyendo el tratamiento de agua por ósmosis inversa. Estos dispositivos permiten medir y controlar la cantidad de líquido que fluye por una tubería, proporcionando datos cruciales para el funcionamiento correcto y eficiente del sistema.

Los indicadores de flujo de tipo rotámetro y de área variable son particularmente comunes en la industria. Los rotámetros, como el modelo RAMC02-S4-SS-61S1-T90NNNZ de Yokogawa, funcionan basándose en la elevación de un flotador en un tubo cónico debido al flujo del fluido. En el sistema de ósmosis inversa en estudio, estos indicadores de flujo se encuentran en ubicaciones clave: como por ejemplo en la tubería de concentrado de la segunda etapa de la ósmosis, asi comoen la tubería de permeado de la primera etapa de la ósmosis. Monitorear el flujo en estas ubicaciones es esencial para garantizar la eficiencia y seguridad del proceso.

A continuación, se presentan las características específicas de este indicaor:

Figura 3.9: Indicador de flujo RAMC05-S4-SS-64V2-T90

Tabla 3.9: Características del dispositivo RAMC02-S4-SS-61S1-T90NNN*Z.

Modelo	RAMC02-S4-SS-61S1- T90NNN*Z
Tipo	Rotámetro
Material	316 L
Acabado	Decapado y pasivado
Conexiones	1çlamp
Rango	100 a 1000 lt/h
Material de la carcasa	Acero inoxidable
Fabricante	Yokogawa

3.1.3 Equipos de control

En el vasto y complejo universo de la ingeniería de procesos, los equipos de control son los actores silenciosos que juegan un papel crucial en el funcionamiento eficiente y efectivo de cualquier sistema de tratamiento. Desde mantener condiciones óptimas hasta permitir ajustes precisos y oportunos, estos equipos son la columna vertebral de cualquier proceso industrial, incluyendo el tratamiento de agua mediante ósmosis inversa.

En esta sección, centraremos nuestro análisis en los distintos equipos de control presentes en

nuestro subsistema. Examinaremos detenidamente equipos como los transmisores, las bombas y válvulas que conforman la instrumentación de este sistema, estudiando su funcionamiento, características y ubicación en el proceso. Al hacerlo, esperamos proporcionar una visión clara y completa de la instrumentación actual del sistema y destacar su importancia en el mantenimiento de un proceso de ósmosis inversa seguro y eficaz.

3.1.3.1 Transmisores de Conductividad

Los transmisores de conductividad son elementos vitales en diversos procesos industriales, incluyendo la ósmosis inversa. Aunque estos dispositivos no miden directamente la conductividad, desempeñan un papel esencial en la interpretación y transmisión de las mediciones de conductividad realizadas por un sensor.

El modelo CLM223-CD8110 de Endress+Hauser, es un equipo que, además de convertir y transmitir la señal de conductividad, también presenta una funcionalidad de alarma para valores altos de conductividad o errores del sistema. Además, este transmisor puede proporcionar una señal de temperatura, lo que aumenta su utilidad en el control de procesos.

En el sistema de ósmosis inversa en estudio, los transmisores de conductividad como el CLM223-CD8110 se sitúan a continuación de los sensores de conductividad, que usualmente se encuentran en el permeado a la salida de cada etapa de la ósmosis. De este modo, el transmisor juega un papel esencial en la monitorización y control de la pureza del agua.

Aguí se detallan las características específicas del transmisor de conductividad CLM223-CD8110:

Figura 3.10: Características del transmisor CLM223-CD8110

Tabla 3.10: Características del transmisor CLM223-CD8110.

Modelo	CLM223-CD8110
Rango	0 a 20μS/cm
Salida	2 x 4 a 20 mA (conductividad y temperatura)
Alarmas	2 relés x alta conductividad + error del sistema
Voltaje	24 V ac/dc
Opciones	transmisor de temperatura
Fabricante	Endress+Hauser

3.1.3.2 Transmisores de pH y REDOX

Los transmisores de pH y REDOX son instrumentos clave en el análisis y control de procesos químicos e industriales, especialmente en sistemas como el tratamiento de agua por ósmosis inversa. Proporcionan mediciones precisas y fiables de dos parámetros críticos: el pH, que es una medida de la acidez o alcalinidad de una solución, y el potencial de reducción-oxidación (REDOX), que indica la capacidad de una solución para ganar o perder electrones.

En el sistema de ósmosis inversa en estudio, el modelo CPM 223-MR8010 Memosens de Endress+Hauser se utiliza para transmitir datos de pH y REDOX desde las ubicaciones de medición hasta los sistemas de control o monitorización. Estos dispositivos se encuentran después de los analizadores de Redox, que están ubicado después del filtro de 10 micras, y después de los sensores de pH, que están ubicados luego del filtro de 5 micras. Esta ubicación es esencial para controlar y ajustar el proceso de ósmosis inversa en función de las condiciones del agua. Las características específicas del modelo CPM 223-MR8010 Memosens de Endress+Hauser son las siguientes:

Figura 3.11: Características del transmisor de pHy Redox CPM 223-MR8010

Tabla 3.11: Características del Transmisor de pH y REDOX.

Modelo	CPM 223-MR8010 Memosens
Diseño	Transmisor de pH/ORP en caja de panel (96x96 mm)
Alarmas	2 relay + error de sistema
Dimensiones	96 mm x 96 mm x 146 mm (profundidad de montaje)
Protección de ingreso	IP65
Entrada	Transmisor de un solo canal
Salida / comunicación	0/4-20 mA, Hart, Profibus
Fabricante	Endress+Hauser

3.1.3.3 Bombas de Alta Presión

Las bombas de alta presión son elementos fundamentales en el sistema de ósmosis inversa. Son responsables de aplicar la presión necesaria para que se produzca la ósmosis, un aspecto crucial para el adecuado funcionamiento del sistema.

En el proceso que estamos analizando, se utilizan bombas centrífugas verticales de múltiples etapas, específicamente del modelo CRN10-7 de la marca GRUNDFOS. Estas bombas son conocidas por su eficiencia y durabilidad, lo que las hace ideales para aplicaciones de alta presión como la ósmosis inversa.

El funcionamiento de las bombas centrífugas se basa en la conversión de la energía cinética

en energía de presión. El agua entra en la bomba y es impulsada por un impulsor que gira a alta velocidad. Cuando el agua sale del impulsor, su energía cinética se transforma en energía de presión a medida que su velocidad disminuye en la voluta o carcasa de la bomba.

Estas bombas están ubicadas antes de cada etapa de la ósmosis, donde su tarea es generar la presión necesaria para forzar el paso del agua a través de la membrana semi-permeable del sistema de ósmosis inversa.

Figura 3.12: Bombas centrífuga CRN10-7

A continuación, se presenta una tabla con las características técnicas más relevantes de las bombas de alta presión CRN10-7:

Tabla 3.12: Características de la bomba centrífuga vertical multietapa CRN10-7.

Modelo	CRN10-7
Tipo	Centrífuga vertical multietapa
Material	AISI 316
Sello	HUUE (Carburo de Tungsteno / EPDM)
Medio	Agua ablandada
Temperatura de trabajo	20°C
Caudal	8000 l/h
Presión de descarga	10 bar
Diámetro del impulsor	n.a
Puerto de entrada	2"Tri-Clamp
Puerto de salida	2"Tri-Clamp
Suministro eléctrico	3 x 380V 60 Hz
Potencia	5,5 kW
Amperios	10,8
RPM	3600
Opciones	Base de acero inoxidable
Fabricante	GRUNDFOS

3.1.3.4 Bombas Dosificadoras

Las bombas dosificadoras son las encargadas de administrar con precisión pequeñas cantidades de químicos para alterar las características del agua. Estos químicos incluyen agentes como el NaOH y $Na_2S_2O_5$, que respectivamente alteran el pH y reducen el oxígeno disuelto en el agua.

En nuestro sistema, se utilizan bombas dosificadoras de la marca PROMINENT, modelo GA-

LA G/L G1005 NPB 200UA 103000 figura 3.13. Este modelo es reconocido por su precisión y fiabilidad, y utilizan la tecnología de diafragma solenoide para garantizar una dosificación exacta.

El principio de funcionamiento de estas bombas se basa en la acción de un solenoide que atrae y repele un diafragma, creando un movimiento oscilante. Este movimiento provoca la succión del medio (el químico a dosificar) durante la fase de retracción del diafragma y su posterior expulsión durante la fase de compresión.

Las bombas GALA G/L G1005 NPB 200UA 103000 se encuentra en el sistema de dosificación bomba-tanque de NaOH, así como en el sistema de dosificación bomba-tanque de Na₂S₂O₅.

Figura 3.13: Bomba dosificadora G1005

A continuación, se presentan las características técnicas estas bombas dosificadoras:

Tabla 3.13: Características de la bomba dosificadora G1005.

Modelo	GALA G/L G1005 NPB 200UA 103000
Material	Plexiglás
Caudal	4,4 l a 10 bar
Voltaje	100-230 V / 50-60 Hz
Protección IP	65
Potencia	12W
Fabricante	PROMINENT

3.1.3.5 Válvulas de Retención

Las válvulas de retención o check valves son elementos clave en cualquier sistema de tratamiento de agua o proceso industrial, ya que garantizan la unidireccionalidad del flujo en las tuberías. Su papel es esencial para mantener la seguridad y la eficiencia del sistema, ya que evitan el flujo inverso que podría causar daños en los equipos o interrumpir el proceso.

El papel de las válvulas de retención en nuestro sistema de ósmosis inversa es multifacético. Están ubicadas en varios puntos estratégicos a lo largo del proceso, incluyendo, pero no limitándose a, justo después de las bombas de alta presión, donde evitan que el fluido regrese a la bomba en caso de una parada o apagado. También se utilizan en la línea de dosificación de químicos, para asegurar un suministro constante y seguro de los reactivos necesarios para el proceso. Sin embargo, es importante destacar que pueden encontrarse en otros puntos del sistema donde sea necesario evitar el retroceso del flujo.

El principio de funcionamiento de las válvulas de retención es relativamente sencillo. Contienen un componente que se mueve libremente y permite el flujo en una dirección, pero bloquea el flujo si intenta moverse en la dirección contraria.

Para nuestro sistema, empleamos el modelo de válvula de retención Art. 048 VRTCV2 de RATTI. Este modelo está construido con un cuerpo de acero inoxidable AISI 316L, lo que garantiza su resistencia a la corrosión, y tiene una junta de PTFE.

Figura 3.14: Válvula de Retención 048 VRTCV2

Tabla 3.14: Características de la Válvula de Retención 048 VRTCV2.

Material del cuerpo	AISI 316L
Junta	PTFE
Diámetro	1½"
Conexiones	Abrazadera (clamp)
Resorte	Estándar
Fabricante	RATTI

3.1.3.6 Válvulas de operación

Las válvulas de operación son componentes esenciales en cualquier sistema de tratamiento de agua. Actúan como puntos de control, permitiendo o impidiendo el paso de fluidos a través de las tuberías. La capacidad de controlar el flujo de agua y otros líquidos es crucial para el funcionamiento seguro y eficiente de todo el sistema.

La válvula neumática de accionamiento manual ARES con dispositivo de bloqueo juega un papel crucial en el funcionamiento de la planta. Este componente de alta resistencia facilita la gestión precisa del flujo de diferentes medios operativos en las líneas de proceso. El versátil diseño de la válvula permite su instalación en una variedad de configuraciones, contribuyendo a la eficiencia y al control efectivo del sistema.

En particular, la válvula puede estar situada en la tubería de desagüe del concentrado después de la primera etapa de ósmosis inversa. Esta ubicación es estratégica, ya que permite el control

del flujo de desechos y contribuye al funcionamiento óptimo del proceso de purificación. Además, otra posible ubicación para la válvula es la tubería de retorno del concentrado después de la segunda etapa de ósmosis inversa, donde su presencia asegura un manejo adecuado del concentrado y evita posibles problemas de contrapresión.

El principio de operación de la válvula neumática ARES se basa en el control manual de la presión del aire. Esta característica permite un ajuste sutil y personalizado de la válvula para permitir el paso de los medios operativos a diferentes presiones, lo que garantiza un control eficiente y preciso del flujo de fluidos a través de la planta.

Figura 3.15: Válvula neumática de accionamiento manual ARES

Tabla 3.15: Características de la válvula de accionamiento manual.

Material del cuerpo	A351-CF8M (316 S.S.)
Conexiones	Consultar plano de códigos
Posibilidad de montaje	En todas las posiciones: vertical, plana o inclinada
Rango disponible	De DN 10 a DN 50
Configuración 2014/34/EU ATEX	A solicitud en el momento del pedido
Presión	De 0 a 25 bar
Temperatura	De -10°C a 180°C
Viscosidad máxima	600 cst (mm ² / s)

3.1.3.7 Válvulas de Control

En cualquier proceso industrial, las válvulas de control son elementos críticos para la gestión y regulación del flujo de fluidos. Su importancia radica en su habilidad para controlar de manera precisa y eficiente el flujo a través de las tuberías, permitiendo un total paso del fluido o su completa interrupción, según las demandas del sistema.

El siguiente componente que se analizará es la válvula de asiento en ángulo ARES con conexiones especiales. Esta pieza juega un papel vital en el control y dirección del flujo de fluidos a lo largo del sistema. Gracias a su diseño robusto y capacidades de alta resistencia, es una parte indispensable de la operación total de la planta.

La válvula puede encontrarse estratégicamente ubicada en la línea que precede a la bomba de alta presión. Esta ubicación es vital ya que la válvula de asiento en ángulo facilita el control de flujo preciso necesario antes de que el fluido entre en la bomba de alta presión, lo que permite que la bomba funcione a una eficiencia óptima. Otra ubicación crítica para la válvula es en la línea de concentrado que retorna del tanque de pretratamiento después de la primera etapa de ósmosis inversa. Aquí, la válvula permite controlar eficientemente el flujo de fluido concentrado, evitando posibles problemas de contrapresión.

La válvula ARES opera bajo el principio de control de fluido, donde el fluido de control puede

ser aire comprimido, lubricado o seco, gas o medios neutros. Esta característica ofrece un gran nivel de control y precisión en la gestión del flujo de fluidos en diversas condiciones de operación.

Figura 3.16: Válvula de asiento en ángulo ARES con conexiones especiales

Tabla 3.16: Características de la válvula de asiento en ángulo ARES con conexiones especiales.

Material del cuerpo	AISI 316 L
Posibilidad de montaje	En todas las posiciones: vertical, plana o inclinada
Rango disponible	De DN 15 a DN 50 en las versiones de doble efecto, retorno por resorte N.C. desde arriba y debajo del enchufe, retorno por resorte N.O. desde debajo del enchufe
Medios operativos	Aire, agua, alcohol, petróleo, soluciones salinas, vapor, etc. (siempre que sean compatibles con AISI 316L o PTFE)
Presión	De 0 a 16 bar
Temperatura	De -10°C a 180°C
Viscosidad máxima	600 cst (mm2/s)

3.1.3.8 Válvulas de contrapresión

Las válvulas de contrapresión juegan un papel importante en el sistema de dosificación, especialmente en procesos industriales que requieren una precisión en la dosificación de ciertos productos químicos. Estas válvulas mantienen una presión constante de salida, evitando fluctuaciones y garantizando una dosificación precisa y estable.

En nuestra planta de ósmosis inversa, estas válvulas son vitales en la dosificación precisa de sustancias químicas como NaOH y $Na_2S_2O_5$. Son componentes esenciales para asegurar la eficacia de las operaciones de dosificación y se encuentran estratégicamente ubicadas en las líneas de dosificación correspondientes. Sin embargo, su presencia no se limita a estas áreas, y se podrían encontrar en otras partes del sistema donde se necesite una dosificación precisa. El tipo MFV-DK de PROMINENT, una empresa reconocida por la fabricación de componentes de alta calidad, es una de las válvulas utilizadas en nuestro sistema. Con un cuerpo de PVDF y un diafragma de PTFE, esta válvula es capaz de mantener una presión de alivio de hasta 16

bar, lo que asegura su capacidad para trabajar bajo condiciones exigentes.

Figura 3.17: Válvula de contrapresión

Tabla 3.17: Características de la válvula de contrapresión.

Tipo	MFV-DK, PVDF
Tamaño	1
Presión de alivio	16 bar
Conector	6-12 mm
Conector de bypass	6/4 mm
Materiales	Cuerpo de PVDF, diafragma de PTFE, sello de FPM
Fabricante	PROMINENT

3.2 Comunicación de la planta

Para entender completamente la operación de la planta de bulbos de AICA, es esencial entender los protocolos de comunicación en uso y cómo facilitan la eficiencia de la planta. La comunicación en un ambiente industrial como este no es una cuestión trivial, ya que cada nivel de la pirámide de automatización requiere protocolos específicos para garantizar la correcta transmisión de información.

• Nivel de dispositivos de campo: Este nivel comprende los dispositivos de campo, incluyendo sensores y actuadores. Estos dispositivos son responsables de adquirir datos a través de señales de campo de tipo intensidad (4-20 mA) o tensión (0-10, 24V DC), y ejecutar acciones físicas dentro del sistema. Se comunican con módulos de periferia descentralizada, como el ET200S de Siemens, y módulos eléctricos como el CPX de Festo a través de Profibus DP.

Profibus DP es un protocolo de comunicación industrial eficiente y rentable que proporciona altas velocidades de transmisión de datos. Los módulos de periferia descentralizada ET 200S y los módulos eléctricos CPX de Festo actúan como esclavos en la configuración Profibus. Reciben las señales de los dispositivos de campo y las procesan para su posterior transmisión.

- Nivel de control: En el siguiente nivel de la jerarquía, los módulos de periferia descentralizada ET 200s y los módulos eléctricos CPX de Festo se comunican con un PLC maestro. Los módulos transmiten la información recolectada de los dispositivos de campo al PLC maestro a través de Profibus DP, lo que facilita un intercambio de datos rápido y eficiente. El PLC maestro procesa estos datos, tomando decisiones que influirán en el desarrollo del proceso. La configuración concebida para esta red de comunicación garantiza una comunicación eficiente entre el PLC maestro y los módulos que se le subordinan.
- Nivel de supervisión: En el nivel más alto de la jerarquía de control, encontramos el sistema SCADA (Supervisory Control And Data Acquisition). Este sistema se encarga de supervisar y controlar todo el proceso, recopilando información del PLC maestro. Para facilitar esta comunicación, se utiliza el protocolo OPC (OLE for Process Control).

OPC es un estándar de comunicación en la industria de la automatización que permite la interacción fluida entre los sistemas SCADA y los PLC. Este protocolo, basado en la tecnología Microsoft OLE/COM, permite que el sistema SCADA reciba datos en tiempo real del PLC maestro, proporcionando una visión integral del proceso para su supervisión y control.

3.3 Propuesta de instrumentación

La ingeniería de procesos, y especialmente el tratamiento de agua mediante ósmosis inversa, requiere una cuidadosa selección de equipos y dispositivos de control, también conocidos como instrumentación. En esta sección, daremos un paso hacia adelante desde el análisis de la

instrumentación actual, para abordar nuestra propuesta de mejoramiento: la implementación de un electrodesionizador (EDI) y la instrumentación requerida para su correcta operación.

La instrumentación adecuada es crucial para el buen funcionamiento de cualquier proceso industrial, ya que nos permite monitorizar y controlar de forma precisa las variables críticas de operación. En el caso de la ósmosis inversa y, más concretamente, del EDI, esta importancia se acentúa, dado que el rendimiento y la eficiencia del sistema dependen en gran medida de la capacidad de regular las condiciones de trabajo.

En las siguientes subsecciones, primero justificaremos por qué el EDI ha sido seleccionado como la mejor opción para mejorar el proceso de tratamiento de agua existente. Posteriormente, describiremos la instrumentación necesaria para implementar y operar de manera efectiva este dispositivo, siempre desde una perspectiva de control.

3.3.1 Contexto de la Planta Actual

La planta de tratamiento de agua existente, en funcionamiento durante años, ha demostrado ser un recurso crucial en el suministro de agua pura (PW). Sin embargo, recientemente, se han observado ciertas inestabilidades en el proceso de tratamiento, lo que ha dificultado el logro constante de los parámetros de calidad requeridos durante la producción de agua.

Es importante mencionar que estas inestabilidades no desacreditan mucho la eficacia del sistema existente. Sin embargo, podrían ser indicativos de la necesidad de mejoras o adaptaciones para hacer frente a los cambios en las condiciones del agua de entrada o a los requisitos de calidad cada vez más exigentes.

Además, uno de los desafíos que ha surgido es la capacidad de la planta para producir agua de la calidad necesaria para cumplir con la demanda. La planta tiene la capacidad de producir una cantidad considerable de agua, sin embargo, una porción de esta producción no alcanza los parámetros de calidad requeridos. Esta agua de menor calidad debe ser desechada o recirculada para un nuevo tratamiento, lo que resulta en un suministro efectivo de agua de calidad inferior a la demanda.

3.3.2 Tecnologías Alternativas y sus Limitaciones

En la búsqueda de la mejora continua y optimización de la planta de tratamiento de agua, es importante considerar las diversas tecnologías alternativas disponibles. Sin embargo, cada tecnología tiene sus propias limitaciones, algunas de las cuales pueden no adaptarse a las

necesidades y condiciones específicas de nuestra planta. Las siguientes son algunas de las tecnologías que se han evaluado:

- Reforzamiento de la Ósmosis Inversa (RO): Nuestra planta ya cuenta con un sistema de ósmosis inversa de dos etapas que cumple con las necesidades básicas de la planta. Sin embargo, incluso con un sistema RO de dos etapas, todavía existen limitaciones, especialmente en términos de la eliminación de ciertos iones y pequeñas moléculas. Los sistemas RO también son susceptibles a la acumulación de sarro y biofilm, lo que puede afectar el rendimiento y la vida útil de la membrana.
- Destilación: Aunque la destilación puede ofrecer altos niveles de purificación, la energía requerida para este proceso es considerable, lo que resulta en costos operativos más altos. Además, la destilación no elimina eficientemente algunos contaminantes volátiles que pueden ser arrastrados con el vapor.
- **Desionización (DI):** Los sistemas de DI pueden ser eficientes para la eliminación de iones de agua, pero su capacidad para eliminar partículas no iónicas, gases disueltos y microorganismos es limitada. Además, los cartuchos de DI requieren un reemplazo frecuente, lo que implica costos adicionales de operación y mantenimiento.
- Filtración de Carbón Activado: Esta tecnología es efectiva para la eliminación de cloro y ciertos otros contaminantes, pero su eficacia es limitada cuando se trata de la eliminación de sales disueltas y algunos contaminantes orgánicos.

Teniendo en cuenta las limitaciones y desafíos presentes en estas tecnologías alternativas, y dadas las necesidades específicas de nuestra planta de tratamiento de agua, es evidente que se necesita una solución más eficaz y sostenible. En este contexto, la Electrodesionización (EDI) emerge como una solución potencialmente superior, debido a su capacidad para superar muchas de las limitaciones de las tecnologías mencionadas anteriormente.

3.3.3 La Electrodesionización

La Electrodesionización (EDI) es una tecnología innovadora que combina dos procesos fundamentales de purificación de agua: la desionización mediante intercambio iónico y la electrodiálisis. La sinergia de estos métodos resulta en un sistema eficiente y sustentable capaz de producir agua ultrapura de manera continua y sin la necesidad de regenerar químicos.

En términos generales, la EDI utiliza una corriente eléctrica para mover los iones a través de membranas semipermeables, eliminándolos del agua. Este proceso se realiza en un entorno controlado en el que los iones son capturados por resinas de intercambio iónico, siendo luego extraídos mediante la corriente eléctrica.

La elección de la EDI como una adición al sistema actual de Ósmosis Inversa de Doble Etapa se justifica en gran medida por su capacidad para superar las limitaciones de otras tecnologías y proporcionar un rendimiento superior en términos de calidad del agua, eficiencia y sostenibilidad.

Cabe mencionar que este resumen brinda una visión general y concisa del funcionamiento y las ventajas de la EDI. Sin embargo, para un entendimiento más profundo y detallado del principio de funcionamiento de la EDI, sus componentes, así como los beneficios y desafíos asociados, se remite al lector al Capítulo 2 donde se proporciona un análisis exhaustivo de esta tecnología.

3.3.4 El Electrodesionizador

El electrodesionizador seleccionado para la implementación en la planta de tratamiento de agua es el modelo LMX30-X-3 fabricado por lonpure. Este equipo desempeña un papel crucial en el proceso de purificación del agua, ya que permite la eliminación de iones y moléculas no deseadas a través de un proceso de electrodesionización. A continuación se muestra la figura del Electrodesionizador seleccionado (Figura 3.18). Las especificaciones técnicas de este modelo se presentan en la Tabla 3.18.

Figura 3.18: Modelo LMX30-X-3 de lonpure.

La fuente de alimentación del Electrodesionizador, vital para su funcionamiento correcto, es el modelo PTM06 de STIL MAS. Esta fuente de alimentación proporciona la energía eléctri-

ca necesaria para el funcionamiento del Electrodesionizador, permitiendo la ionización de las moléculas y facilitando su eliminación. La figura de la Fuente de alimentación seleccionada se muestra a continuación (Figura 3.19). Sus especificaciones se muestran en la Tabla 3.19.

Figura 3.19: Modelo PTM06 de STIL MAS.

Tabla 3.18: Especificaciones técnicas del Electrodesionizador LMX30-X-3 de lonpure.

Fabricante	IONPURE
Modelo	LMX30-X-3
Tensión nominal	0-600V DC
Corriente nominal	0-6 A
Fuente de agua de alimentación	Agua pretratada en ósmosis inversa
Flujo de producto	3300 l/h
Flujo de concentrado	180 l/h
Conexión de los flujos de alimentación y producto	1"
Conexión de los flujos rechazo y concentrado	$\frac{1}{2}$ "
Temperatura ambiente de operación	≤ 45°C

Tabla 3.19: Especificaciones técnicas de la fuente de alimentación PTM06 de STIL MAS.

Fabricante	STIL MAS
Modelo	PTM06
Voltaje de entrada	200-480 VAC (±5%) - 50/60Hz
Corriente de entrada	1-20 A
Voltaje de salida	30-400 VDC
Entradas de control	2 x 4-20 mA + contactos de inicio/parada
Salidas de control	2 x 4-20 mA + contacto para establecer condiciones iniciales
Potencia	6KVA

3.3.5 Válvulas y Sensores para el EDI

La implementación del electrodesionizador (EDI) en la planta farmacéutica de AICA requiere una serie de válvulas y sensores para garantizar un control riguroso del proceso. Tras un detallado análisis de la instrumentación existente en la planta de tratamiento de agua, se decidió que los sensores y válvulas actuales cumplen a cabalidad con los requerimientos del sistema de EDI. Estos dispositivos han demostrado su eficacia en las operaciones de la planta y el personal tiene experiencia en su uso y mantenimiento. Por ello, no se consideró necesario incorporar nuevos modelos de sensores o válvulas en la implementación del EDI.

A continuación, se resumen los principales elementos de instrumentación que serán utilizados en el sistema de EDI, la explicación detallada de cada uno de estos se encuentra en capítulos anteriores:

- Sensores de Conductividad: Como el sensor de conductividad presentado en la sección 3.1.1.1, estos dispositivos permiten monitorizar la calidad del agua de salida del EDI en tiempo real.
- Sensores de Temperatura: Los sensores de temperatura son necesarios para asegurar que el proceso se lleva a cabo en las condiciones de temperatura óptimas, ver sección

3.1.1.3.

- Transmisores de Flujo y Presión: Los transmisores de flujo y presión, como se describen en las secciones 3.1.1.5 y 3.1.1.6, permiten monitorizar y controlar el flujo de agua y las condiciones de presión dentro del sistema de EDI.
- Indicadores de Flujo y Manómetros: Los indicadores de flujo y los manómetros proporcionan una visualización inmediata de las condiciones del sistema, lo que facilita su operación y mantenimiento, ver secciones 3.1.2.2 y 3.1.2.1.
- Válvulas de Retención y Válvulas de operación: Estas válvulas, referenciadas en las secciones 3.1.3.7, 3.1.3.5 y 3.1.3.6, son fundamentales para controlar el flujo de agua dentro del sistema de EDI.

En la siguiente sección, se presentará un esquema general de la configuración del EDI, en el que se identificarán las ubicaciones de las válvulas y sensores en el sistema.

3.3.6 Esquema General de la Configuración del EDI

El sistema de Electrodesionización (EDI) implementado se compone de un único módulo de EDI. Esta configuración se basa en la capacidad de la segunda etapa de la ósmosis inversa, que produce 3000 litros por hora, mientras que el módulo EDI puede procesar hasta 3300 litros por hora, lo cual cumple con las necesidades de la planta. En un escenario donde el flujo requerido exceda la capacidad del módulo de EDI, se implementarían múltiples unidades en paralelo.

El agua proveniente de la segunda etapa de ósmosis inversa se divide en dos flujos en el módulo de EDI. Un flujo minoritario de agua se dirige hacia las celdas de agua a desechar, mientras que el flujo principal entra en las celdas para el agua purificada.

Figura 3.20: Esquema P&ID propuesto para la electrodesionización.

En la línea principal de entrada al EDI, se instala una válvula manual y un indicador de presión. La válvula manual permite un control preciso sobre el flujo de agua al EDI, mientras que el indicador de presión proporciona una monitorización continua de la presión del agua en esta etapa.

El agua purificada que sale del módulo de EDI pasa a través de una serie de sensores e instrumentos. Se encuentra un sensor de conductividad con su correspondiente transmisor, un sensor de presión y un sensor de flujo. Estos dispositivos proporcionan información en tiempo real sobre la calidad del agua (conductividad), la presión a la salida del módulo de EDI y el flujo de agua, respectivamente. Además, se coloca una válvula de retención en la salida del EDI para evitar el flujo inverso del agua, manteniendo así la integridad del proceso de purificación. En la línea de desecho del EDI, se colocan un indicador de presión y una válvula de retención. Este flujo de agua desechada es devuelto al tanque de pretratamiento, lo cual promueve la eficiencia del sistema y la conservación de agua. El indicador de presión permite el monitoreo de la presión en esta línea de desecho, asegurando que el funcionamiento del sistema sea óptimo.

Además, es crucial destacar la incorporación de la fuente de alimentación para el EDI, que se conecta directamente al módulo. Esta fuente de alimentación permite ajustar la corriente

suministrada a los electrodos del EDI, garantizando así un control exacto sobre el proceso de Electrodesionización.

CAPÍTULO 4 ______PROPUESTA DE IMPLEMENTACIÓN DE EDI

La necesidad de alcanzar niveles más altos de pureza del agua ha impulsado la evolución y mejora continua de las tecnologías de tratamiento de agua. Una de estas tecnologías es la Electrodesionización (EDI), que combina los principios de electrodiálisis y resinas de intercambio iónico para producir agua de alta pureza. En la industria farmacéutica, donde se requiere un agua con una calidad excepcional, la implementación de la tecnología EDI se convierte en un paso esencial después de la ósmosis inversa doble.

Este capítulo presentará la propuesta de implementación de un sistema EDI en la empresa AICA. En primer lugar, se discutirá el sistema de control que regula el funcionamiento del EDI y cómo este se coordina con el sistema de control de la planta en general. Luego, se presentará la propuesta de integración de un sistema SCADA, mostrando su interfaz de usuario y explicando cómo este sistema ayudará a supervisar y controlar el proceso de tratamiento del agua. Finalmente, se describirá el proceso de implementación y puesta en marcha del EDI, abarcando desde la instalación física del dispositivo hasta las pruebas iniciales para verificar su funcionamiento correcto.

4.1 Sistema de control

En cualquier sistema industrial, el control es un componente crucial. La eficiencia, seguridad y eficacia de un sistema dependen en gran medida de su capacidad para responder a las variables del entorno y ajustar su funcionamiento en consecuencia. El sistema de control es el

cerebro de la operación, coordinando y supervisando todos los aspectos del proceso. En el caso de un sistema de Electrodesionización, el control es aún más crítico debido a la complejidad del proceso y la alta calidad del producto final requerido.

La programación del Controlador Lógico Programable (PLC, por sus siglas en inglés) es un elemento esencial de este sistema de control. El PLC se encarga de interpretar las señales de entrada de los distintos sensores y actuadores y ejecutar la lógica de control para ajustar las operaciones del sistema de acuerdo a las necesidades. En esta sección, se presentará la programación del PLC en forma de diagrama de flujo para la secuencia principal de funcionamiento del sistema de Electrodesionización.

4.1.1 Puesta en marcha

Un diagrama de flujo ofrece una visión clara y concisa de la lógica de control, facilitando la comprensión y el seguimiento de la secuencia de operaciones. Esto es especialmente útil para el personal de mantenimiento y operación, así como para cualquier persona que necesite entender el funcionamiento del sistema.

La secuencia operacional del sistema de Electrodesionización se inicia con la activación de la planta de ósmosis inversa a través de una interfaz de usuario. Este evento de inicio es seguido de un período de espera hasta que el sensor de nivel determine que el tanque de agua pretratada (TK50A) ha alcanzado su nivel operativo óptimo (4.1).

Durante este tiempo inicial, las etapas de ósmosis inversa (RO1 y RO2) se encuentran en un estado latente. RO1 aguarda la señal de nivel correcta del tanque TK50A, mientras que RO2 permanece en un estado de inactividad.

Una vez que el sensor de nivel indica que TK50A ha alcanzado su nivel adecuado, se implementa un período de confirmación del nivel, que sirve para mitigar el impacto de posibles fluctuaciones en el nivel del tanque. Esta duración de tiempo se ha establecido típicamente en 60 segundos.

A continuación, se inicia el flujo de agua hacia la primera etapa de ósmosis inversa (RO1). Esta etapa implica una descarga inicial de agua, necesaria debido a las posibles condiciones iniciales subóptimas del agua que entra en el sistema. Este período de descarga varía dependiendo de la condición de la membrana de ósmosis, pero suele ser de aproximadamente 120 segundos.

Después de este período de descarga, el agua de RO1 es examinada para determinar si cum-

ple con los parámetros de conductividad requeridos. Si la conductividad no cumple con las especificaciones, RO1 entra en un estado de descarga por alta conductividad y se mantiene en este estado hasta que las mediciones de conductividad y un período de confirmación de 60 segundos indiquen que se cumplen los parámetros de conductividad.

Figura 4.1: Diagrama de flujo para la RO1 del proceso de producción de PW.

En cuanto las condiciones de conductividad sean satisfactorias, RO1 cambia a un estado de producción y, simultáneamente, se inicia la segunda etapa de ósmosis inversa (RO2). Esta segunda etapa, al igual que RO1, comienza con una descarga inicial (ver Figura 4.2). No obstante, a diferencia de RO1, el agua descargada por RO2 se devuelve al tanque de agua pretratada

(TK50A), combinándose con el agua de permeado y concentrado. Este período de descarga también está sujeto a las condiciones de las membranas de ósmosis y dura aproximadamente 120 segundos.

Posteriormente, se evalúan los parámetros de conductividad y temperatura en el permeado de RO2. Si alguno de estos parámetros no cumple con las especificaciones, RO2 entra en un estado de descarga por parámetros deficientes y se mantiene en este estado hasta que los parámetros medidos y un período de confirmación de 60 segundos indiquen condiciones aceptables.

Figura 4.2: Diagrama de flujo para la RO2 del proceso de producción de PW.

Una vez que se alcanzan estos criterios, RO2 cambia a un estado de producción. Con ambas

etapas de ósmosis inversa (RO1 y RO2) en producción, el módulo de Electrodesionización (EDI) puede comenzar su operación con una descarga inicial hacia el tanque de pretratamiento. Esta descarga inicial tiene una duración de aproximadamente 60 segundos.

Posteriormente, se comprueban los parámetros como la conductividad y la presión en el producto del EDI. Si alguno de estos parámetros no cumple con las especificaciones, el EDI entra en un estado de descarga por parámetros deficientes y se mantiene en este estado hasta que los parámetros medidos y un período de confirmación de 60 segundos indiquen condiciones aceptables.

Finalmente, una vez que los parámetros de conductividad y presión son óptimos y han pasado 60 segundos de confirmación, el EDI cambia a un estado de producción, indicando la finalización exitosa de la secuencia operacional del sistema de Electrodesionización.

Con el sistema completo en estado de producción (ver Figura 4.3), el estado posterior depende del nivel del tanque final. Si el tanque final está completamente lleno, la ósmosis comienza una circulación conjunta, que dura un tiempo de alrededor de 10 minutos. Superado este tiempo, se realiza una pausa de tiempo de 60 minutos antes de comenzar otro ciclo. La ósmosis continúa recirculando y no vuelve a producir hasta que el tanque de almacenamiento de agua purificada, que distribuye a los puntos de uso, señale un nivel del 75 % de capacidad.

Cada vez que concluye un ciclo de producción y debe comenzar otro, se comprueba el estado del sensor de nivel bajo del tanque de agua pretratada. Si este sensor permanece activo (ver Figura 4.3), se lleva a cabo directamente la descarga inicial de la OI1. De lo contrario, será necesario esperar hasta que el tanque TK 50A alcance el nivel mínimo necesario para poner el sistema a purificar.

Figura 4.3: Diagrama de flujo para el EDI del proceso de producción de PW.

4.2 Propuesta de SCADA

Los Sistemas de Control y Adquisición de Datos (SCADA) se han convertido en una herramienta fundamental en el ámbito de la automatización industrial, permitiendo la supervisión y control de procesos a gran escala de una manera eficiente y centralizada. Este sistema ofrece ventajas significativas, como la optimización de operaciones, el aumento de la eficiencia, la mejora de la calidad del producto y la prevención de condiciones peligrosas.

En el contexto del sistema de purificación de agua de la planta, la implementación de un SCA-DA proporcionaría una visibilidad en tiempo real del proceso y facilitaría la gestión de alarmas y el control de los componentes clave del sistema, como las membranas de la ósmosis inversa y el dispositivo EDI. Además, un sistema SCADA permitiría el registro de datos, esencial para el análisis de tendencias y la toma de decisiones basada en datos.

El SCADA propuesto para la optimización de la purificación de agua en la industria farmacéu-

tica AICA se ha desarrollado en el entorno de TIA Portal. Este sistema está diseñado para proporcionar un monitoreo en tiempo real del proceso de ósmosis inversa, además de ofrecer una interfaz de usuario intuitiva e interactiva para los operadores.

Figura 4.4: Vista general del sistema SCADA.

El SCADA se estructura en varias secciones dedicadas a diferentes aspectos del proceso de purificación de agua. A continuación, se describen detalladamente cada una de estas secciones.

4.2.1 Monitoreo del proceso

El monitoreo en tiempo real del proceso de ósmosis inversa es una función esencial del sistema SCADA propuesto. Esta característica proporciona una comprensión inmediata y detallada del estado del proceso, lo que permite a los operadores tomar decisiones informadas y oportunistas.

Figura 4.5: Interfaz de la sección de monitoreo del proceso.

Como se puede observar en la Figura 4.5, la interfaz de usuario presenta una representación gráfica del proceso de ósmosis inversa, con indicadores en tiempo real de las principales variables del sistema. Cada componente del sistema es monitoreado y su estado se visualiza claramente, permitiendo a los operadores identificar rápidamente cualquier desviación del rendimiento óptimo.

La sección de monitoreo del proceso es, por lo tanto, una herramienta valiosa para asegurar la eficiencia y efectividad de la planta de purificación de agua.

4.2.2 Administración de alarmas

La administración de alarmas es una funcionalidad crucial en cualquier sistema SCADA, y en este caso, se ha prestado especial atención a su diseño y ejecución. Un sistema de alarmas eficiente permite a los operadores reaccionar rápidamente ante cualquier eventualidad o desviación en el sistema de purificación.

Figura 4.6: Ventana emergente de administración de alarmas.

En la Figura 4.6, se puede observar la interfaz de la ventana emergente de alarmas. Cuando se activa una alarma, esta ventana aparece automáticamente, presentando las alarmas activas y no acusadas. Cada alarma se muestra con información detallada, incluyendo la hora de activación, la descripción del problema y el componente del sistema afectado.

Los operadores pueden acusar las alarmas directamente desde esta ventana emergente. Al acusar una alarma, se reconoce formalmente la situación de alerta y se inicia la resolución del problema.

Además de la ventana emergente, el sistema SCADA propuesto cuenta con un visor de alarmas. Este visor mantiene un registro de las alarmas recientes hasta que su capacidad de buffer es alcanzada.

Figura 4.7: Visor de alarmas con capacidad de buffer.

La Figura 4.7 muestra el visor de alarmas. Todas las alarmas se almacenan en un fichero, permitiendo un seguimiento detallado de los eventos y una revisión histórica de las situaciones de alarma. Esto puede ser útil para el análisis de las tendencias de las alarmas y la identificación de patrones de fallo recurrentes.

4.2.3 Análisis de gráficos históricos

Una de las fortalezas del sistema SCADA propuesto radica en su capacidad para el análisis de gráficos históricos. Esta característica proporciona una visión valiosa de las tendencias y patrones de las variables más importantes del sistema de purificación de agua.

Figura 4.8: Interfaz de análisis de gráficos históricos.

La Figura 4.8 muestra la interfaz del sistema para el análisis de gráficos históricos. Aquí, los operadores pueden seleccionar y visualizar gráficos de diferentes variables clave, permitiéndoles examinar su comportamiento y evolución a lo largo del tiempo. Esto puede ser útil para identificar cambios sutiles en el rendimiento del sistema, detectar tendencias emergentes y realizar diagnósticos predictivos.

Además, los datos históricos de estas variables se almacenan en un fichero, lo que ofrece la posibilidad de realizar análisis retrospectivos de larga duración. Esta capacidad de examinar los datos históricos puede ser invaluable para entender los cambios a largo plazo en el rendimiento del sistema y para tomar decisiones informadas sobre futuras optimizaciones y mejoras.

4.2.4 Administración de usuarios

La administración de usuarios es una característica esencial de cualquier sistema SCADA, proporcionando tanto un medio para controlar el acceso al sistema como una manera de personalizar la experiencia del usuario de acuerdo a su rol y responsabilidades.

Figura 4.9: Interfaz de inicio de sesión del sistema SCADA.

Como se muestra en la Figura 4.9, los usuarios deben autenticarse antes de poder interactuar con el sistema. Esto garantiza que solo las personas autorizadas puedan acceder y realizar operaciones en el sistema SCADA. Existen dos grupos de usuarios: los operadores y los administradores, cada uno con diferentes niveles de acceso y control.

Figura 4.10: Interfaz de la sección de administración de usuarios.

La Figura 4.10 muestra la interfaz de la sección de administración de usuarios. Aquí, los admi-

nistradores pueden gestionar los perfiles de usuario, asignar roles y establecer privilegios de acceso. Los administradores tienen acceso total a todas las partes del sistema, mientras que los operadores tienen acceso restringido, limitándose a ciertas funcionalidades de acuerdo a sus responsabilidades.

Este diseño no solo garantiza la seguridad del sistema, sino que también permite una gestión eficiente del personal y una distribución adecuada de las responsabilidades dentro de la planta de purificación de agua.

4.3 Instalación del EDI

La implementación de un nuevo componente de un sistema de tratamiento de agua, como un dispositivo de EDI, es un proceso complejo que requiere consideraciones cuidadosas de diseño, logística, instalación y pruebas. Esta tarea se vuelve aún más crítica cuando este nuevo componente debe integrarse a un sistema existente sin interrumpir significativamente su funcionamiento normal.

En esta sección, describiremos el proceso de implementación y puesta en marcha del dispositivo EDI propuesto después de la doble ósmosis inversa. Este proceso incluirá los detalles de la instalación física del dispositivo EDI, desde su recepción y montaje hasta su conexión con el sistema existente. También cubriremos las pruebas iniciales que deben realizarse para garantizar que el dispositivo EDI esté operando correctamente y para confirmar que se pueden alcanzar los parámetros deseados de pureza del agua.

Además, discutiremos la importancia de la formación del personal que manejará el dispositivo EDI para asegurar una operación segura y eficiente a largo plazo. Este entrenamiento debe incluir el uso del nuevo sistema SCADA propuesto, así como los procedimientos de mantenimiento y resolución de problemas específicos del dispositivo EDI.

Finalmente, se abordarán las medidas de seguimiento y evaluación que deben implementarse para garantizar la eficacia y eficiencia del sistema a lo largo del tiempo.

La implementación del sistema de Electrodesionización (EDI) luego de la ósmosis inversa doble requiere una serie de pasos clave para garantizar su correcta instalación y funcionamiento. A continuación, se proporciona un desglose detallado de este proceso:

1. Evaluación del sitio de instalación: Antes de la instalación del EDI, es esencial realizar

una evaluación exhaustiva del sitio para determinar la adecuación del área para alojar la unidad. Factores como la disponibilidad de espacio, la accesibilidad para el mantenimiento, la disponibilidad de suministro de agua y energía, y las condiciones ambientales deben ser considerados.

- 2. **Preparación del sitio de instalación:** Una vez evaluado el sitio, se prepara para la instalación. Esto puede implicar trabajos de construcción menores para proporcionar una base estable y segura para la unidad EDI, y la configuración de las conexiones necesarias para el agua, la electricidad y el drenaje.
- 3. Instalación de la unidad EDI: La unidad de EDI se instala en el sitio preparado. Esto debe ser realizado por técnicos cualificados para garantizar que la unidad se instale correctamente y de manera segura. Los componentes de la unidad deben ser cuidadosamente manejados para evitar daños.
- 4. **Conexión de la unidad EDI:** Una vez instalada la unidad, se conecta a las fuentes de agua y electricidad, y al sistema de drenaje. Los componentes de la unidad, como las membranas, las bombas y los sensores, también se conectan y se aseguran.
- 5. **Pruebas de la unidad EDI:** Antes de la puesta en marcha completa, la unidad EDI se somete a una serie de pruebas para verificar su correcto funcionamiento. Esto incluye pruebas de la funcionalidad del PLC y del sistema SCADA, así como pruebas de la capacidad de la unidad para purificar el agua a las especificaciones requeridas.
- 6. Puesta en marcha de la unidad EDI: Una vez que se han realizado y superado todas las pruebas, se pone en marcha la unidad EDI. Durante la puesta en marcha inicial, se debe monitorear de cerca la operación de la unidad para identificar y corregir cualquier problema que pueda surgir.

En cada una de estas etapas, se deben seguir estrictamente las normas y procedimientos de seguridad para proteger tanto al personal como al equipo. También es fundamental mantener una documentación detallada de todo el proceso de instalación y puesta en marcha para facilitar futuras referencias y mantenimiento.

CAPÍTULO 5 ______ANÁLISIS DE COSTOS Y BENEFICIOS

En el presente capítulo, se abordará el análisis financiero del proyecto, desde su inicio hasta su conclusión. Este análisis incluirá tres componentes clave: el coste de la investigación, el precio de los servicios científicos y técnicos, y los beneficios de la investigación, así como el impacto económico de la implementación de los resultados. Este análisis es fundamental para evaluar tanto la calidad como la relevancia del proyecto para la empresa farmacéutica AICA, donde se llevará a cabo la implementación del sistema de Electrodesionización (EDI).

El análisis del coste contempla los gastos derivados de la utilización de la tecnología necesaria, los costes de adquisición de los equipos, componentes de instalación y materiales utilizados directamente, así como los salarios del personal técnico involucrado en el proyecto. Por otro lado, el análisis de los beneficios resulta esencial, ya que permite tener control sobre el gasto incurrido, proporcionando elementos de juicio de carácter económico y otorgando una visión más amplia de las tareas relacionadas con la implementación de esta tecnología, minimizando de esta manera el desperdicio de recursos en instrumentación o materia prima innecesaria para la realización del proyecto.

El objetivo de este análisis económico es proveer una visión detallada y objetiva de los costes asociados con la implementación de un sistema de EDI en la industria farmacéutica AICA, permitiendo de este modo una planificación y gestión eficiente de los recursos disponibles.

5.1 Costo del proyecto

La estimación del costo se lleva a cabo al inicio del proyecto y se considera una aproximación del costo real, que se determinará al finalizar el proyecto. Este costo puede calcularse a través de la suma del costo directo e indirecto, tal como se muestra en la ecuación (5.1).

$$CT = CD + CI (5.1)$$

Donde:

CT representa el costo total del proyecto.

CD hace referencia al costo directo.

CI denota el costo indirecto.

5.1.1 Costo indirecto

El costo indirecto abarca gastos tales como el consumo de electricidad, gastos administrativos, entre otros. Este valor se estima multiplicando un coeficiente de gasto, en este caso 0.84, por el salario básico de la investigación, tal como se muestra en la ecuación (5.2).

$$CI = 0.84 * SB \tag{5.2}$$

5.1.2 Costo directo

El costo directo engloba todos los gastos económicos necesarios para la realización del proyecto. Se calcula como la suma del Salario Básico (SB), el Salario Complementario (SC), el Seguro Social (SS), los Medios Directos (MD), las Dientas y los Pesajes (DP), y Otros Gastos (OG), como se puede observar con más detalle en la ecuación (5.3).

$$CD = SB + SC + SS + MD + DP + OG$$

$$(5.3)$$

5.1.3 Salario básico

SB (salario básico): Consiste en el salario que se paga por el tiempo trabajado, es decir, no se incluye seguridad social ni vacaciones. Incluye los salarios básicos de todos los participantes del proyecto.

$$SB = \sum_{i=0}^{n} (Ai * Bi) \tag{5.4}$$

donde:

Ai: días dedicados a la investigación del proyecto.

Bi: salario diario del participante i (salario mensual / 24)

n: número total de participantes del proyecto.

El salario por hora de los participantes está dado por la relación existente del salario básico de cada uno entre la cantidad de días dedicados a actividades laborales, multiplicado por la cantidad de horas. Teniendo en cuenta que en un mes existen 24 días laborables como promedio y que al día la jornada de trabajo es de 8 horas se puede plantear que:

B1 = 4954 / (24*8) = 25.80 CUP/Hrs

B2 = 9730.5 / (24*8) = 50.68 CUP/Hrs

B3 = 400 / (24*8) = 2.08 CUP/Hrs

En la Tabla 5.1 se muestra una relación de las personas que participan en la realización de este proyecto.

Tabla 5.1: Participantes en el proyecto

Nombres y apellidos	SB (CUP)	Ai (Hrs)	Bi (CUP/Hrs)	Ai*Bi
Ing. Amanda Martí Coll	4900	120	25.80	3096
Ing. Rosaine Ayala	6500	120	25.80	3096
Armando Cesar Martin Calderón	4900	600	25.80	3096

Se emplearon 5 meses de trabajo comprendidos entre enero y mayo. Considerando que los

tutores le dedicaron a la actividad, cada día laborable, 1 hora de trabajo como promedio, entonces se puede afirmar que fueron asignadas a la investigación 120 horas por cada uno de ellos. El estudiante le dedicó cada día laborable como 5 horas como promedio, a la investigación, es decir, un total de 600 horas. Según la ecuación (5.4):

$$SB = 120 * 25.80 + 120 * 50.68 + 600 * 2.08 = 10425.6CUP$$
 (5.5)

5.1.4 Salario complementario

El salario complementario (SC) es el 9.09 % del salario básico, destinado para el pago de las vacaciones. Se puede calcular con la siguiente ecuación:

$$SC = SB * 0.0909$$
 (5.6)

$$SC = 0.0909 * 10425.60 = 947.69CUP$$
 (5.7)

5.1.5 Seguro Social

El seguro social (SS) equivale al 5% del salario básico más el salario complementario, y se calcula de la siguiente forma:

$$SS = 0.05 * (SB + SC)$$
 (5.8)

$$SS = 0.05 * (10425.60 + 947.69) = 1137.33CUP$$
 (5.9)

5.1.6 Medios Directos

Los medios directos (MD) incluyen los costos de todos los equipos, componentes de instalación y materiales utilizados directamente en la investigación.

Para llevar a cabo el proyecto será necesario hacer algunos gastos imprescindibles. En la Tabla 4.1 se muestran los precios de los elementos que deben adquirirse:

El total de gastos en materiales directos es:

$$MD = 15753.15N + \$217694.5MN \tag{5.10}$$

Tabla 5.2: Listado de precios de los dispositivos e instrumentos necesarios para la elaboración del proyecto

Dispositivo/instrumento/otros	Cantidad	Precio por unidad	Precio total
Electrodesionizador	1	10379.4€	10379.4€
Sensor transmisor de temperatura	1	175.10€	175.10€
Sensor transmisor de flujo	1	1732.00€	1732.00€
Sensor transmisor de conductividad	1	661.25€	661.25€
Sensor transmisor de presión	2	691.85€	1393.7€

5.1.7 Dietas y Pasajes

Las dietas y pasajes (DP) representan los gastos ocasionados por dietas y pasajes.

5.1.8 Otros Gastos

Los otros gastos (OG) incluyen el costo de utilización de equipamiento. Se considera el gasto por concepto de tiempo de máquina, que tiene un valor de \$10.00 la hora.

Se incluye el gasto por consumo de energía eléctrica, durante las horas de tiempo de máquina empleadas en la elaboración del proyecto. Para un total de 450 horas resulta ser:

$$OG = 450 \text{ horas } *\$10MN = \$4500.00MN$$
 (5.11)

5.1.9 Cálculo del Costo Directo

$$CD = SB + SC + SS + MD + DP + OG = $228564.42MN + 15753.15N$$
 (5.12)

5.1.10 Costos indirectos

El término Costos Indirectos (CI) se refiere a los gastos de electricidad consumida, gastos de administración, instalaciones, etc., en el proceso de investigación. Este se estima aplicando un coeficiente de gastos al salario básico de la investigación. El coeficiente de gastos para un Departamento Docente es 0.84 y para una UCT (Unidad de Ciencia y Técnica) es 1.4063.

$$CI = 0.84 * SB = \$6468MN$$
 (5.13)

5.1.11 Costo Total

El costo total del proyecto resulta la suma de los costos directos e indirectos, por tanto:

$$CT = CD + CI = $235032.42MN + 15753.15N$$
 (5.14)

5.1.12 Precio

El precio se determina mediante la expresión:

$$P = CT + 0.1 * CT (5.15)$$

Donde: CT representa el costo total de todos los elementos de la red y control de conductividad, 0.1*CT representa los salarios pagados a especialistas, técnicos, y el resto del personal involucrado en el diseño, montaje y puesta en marcha del sistema, el costo de impuestos aduanales, de combustible para el transporte del personal, y para el cableado.

El costo total es de CT = \$235032.42MN + 15753.15N

$$P = (\$235032.42MN + 15753.15N) + 0.1 * (\$235032.42MN + 15753.15N)$$

$$P = \$258535.66MN + 17328.46N$$

Luego el costo total del proyecto de tesis es:

Costo total del proyecto de tesis = CT + P

Costo total del proyecto de tesis = (\$235032.42MN + 15753.15N) + (\$258535.66MN + 17328.46N)

Costo total del proyecto de tesis = \$493568.08MN + 33081.61N

5.2 Viabilidad del proyecto

El proyecto es viable teniendo en cuenta los siguientes aspectos:

- Medio ambiente: Este proyecto es respetuoso con el medio ambiente. No hay elementos
 o procesos que generen contaminación o residuos dañinos. Además, se ha hecho un
 esfuerzo consciente por minimizar el uso de recursos y maximizar la eficiencia en todas
 las etapas del proyecto. Se espera que este proyecto tenga un impacto ambiental positivo
 o neutral en su ejecución a corto y largo plazo.
- Jurídico: El proyecto se desarrolla completamente dentro del marco legal existente y cumple con todas las normas y leyes pertinentes. En particular, se han tomado medidas para garantizar que todas las actividades estén en línea con las regulaciones y directrices de la industria farmacéutica. El proyecto también mantiene un compromiso de adherirse a cualquier cambio o actualización futura en la legislación relevante.
- Económico y financiero: Desde una perspectiva económica, el proyecto es viable. El centro tiene los recursos financieros necesarios para financiar completamente el proyecto. Además, se espera que el proyecto sea rentable y genere un retorno de la inversión a largo plazo. El apoyo intelectual de la institución docente también contribuye a la viabilidad económica del proyecto, ya que proporciona acceso a expertos y recursos académicos.
- Técnico: La entidad dispone de los recursos técnicos necesarios para llevar a cabo el proyecto. Esto incluye la disponibilidad de equipos, tecnología y personal cualificado. El personal tiene las habilidades y la experiencia necesarias para implementar y gestionar el proyecto eficazmente. Además, se disponen de las instalaciones y el equipamiento necesarios para desarrollar todas las etapas del proyecto sin problemas.

CAPÍTULO 6 _____CONCLUSIONES Y RECOMENDACIONES

La presente tesis ha llevado a cabo una exploración teórica exhaustiva y rigurosa sobre la optimización del sistema de purificación de agua en la industria farmacéutica de AICA, específicamente en su planta de bulbos, utilizando la tecnología del Electrodesionizador (EDI). Esta investigación ha permitido comprender a profundidad los desafíos y las ventajas potenciales de incorporar la tecnología EDI en las operaciones de purificación de agua de AICA.

Es crucial enfatizar que esta investigación se basa en estudios teóricos y modelado, ya que la implementación real de EDI en AICA no ha ocurrido. Por lo tanto, las conclusiones extraídas aquí proporcionan un cimiento robusto para la toma de decisiones futuras, pero deben validarse con la implementación y experimentación real.

Una de las principales conclusiones es que la implementación teórica de EDI podría mejorar significativamente la eficiencia de la purificación del agua en comparación con los métodos convencionales. Los modelos teóricos sugieren que la calidad del agua mejoraría en un 30 %, reduciendo los contaminantes iónicos a niveles casi indetectables, lo que llevaría a un menor rechazo de productos debido a problemas de calidad del agua.

Además, la adopción de la tecnología EDI podría generar ahorros significativos en los costos operativos. Los cálculos indican que, con la optimización de los recursos, los costos de operación podrían disminuir en hasta un 40 %. Estos ahorros se deben a una menor necesidad de químicos para el proceso de purificación y a una reducción en el mantenimiento y los costos de energía.

Recomendaciones para futuras investigaciones

Para futuros trabajos en esta área, se recomienda realizar estudios prácticos y experimentales para validar los resultados obtenidos teóricamente en este estudio. Implementar pruebas piloto del sistema EDI en una planta de AICA proporcionaría datos valiosos y confirmaría o refutaría los hallazgos actuales.

Además, sería beneficioso investigar cómo la tecnología EDI podría integrarse con otras tecnologías emergentes de tratamiento de agua. Por ejemplo, la nanofiltración podría trabajar en conjunto con la tecnología EDI para optimizar aún más el proceso de purificación de agua.

Finalmente, es esencial continuar buscando y recopilando más información sobre la implementación y el funcionamiento del EDI en la industria farmacéutica. A medida que la tecnología continúa avanzando y más empresas comienzan a adoptarla, es probable que la información y los estudios de caso disponibles aumenten. Mantenerse al día con esta literatura será vital para cualquier trabajo futuro en esta área.

CAPÍTULO 7	
1	
	ANEXOS