质点运动学与动力学练习题

班级:	姓名:	学号:	-
-----	-----	-----	---

一. 从 $\vec{r}(t)$ 到 $\vec{v}(t)$ 到 $\vec{a}(t)$ 逐次求导
1)质点的运动学方程为 $\vec{r}(t)=3t\vec{i}+(4t-4.9t^2)\vec{j}$, t 表示时间,那么该质点的初速
度的为 . 加速度为 。
2) 质点 P 在一条直线上运动, 坐标 r 与时间 t 的关系为 $x = -A\sin \omega t(SI)$, 其中,
A 和 $ω$ 为常数,则在任意时刻 t ,质点的速度为,加速度
为。
3)如右图, A 、 B 两物体由长为 L 的刚性细杆相连, A 、 B 两物体可在光滑轨道
上 滑行, 如物体 A 以恒定的速率 v 向左滑行,
当α=30°时,物体 B 的速度为。
α

- 二. 从 $\bar{a}(t)$ 到 $\bar{v}(t)$ 到 $\bar{r}(t)$ 逐次积分,注意分离变量,以及变量的变换
- 1. a = f(t)
- 一质点由静止开始沿直线运动,初始时刻的加速度为 a_0 ,以后加速度均匀增加,每经过 τ 秒增加 a_0 ,求任意时刻该质点的速度和运动的路程。

2. a = f(v)

一石子从空中由静止下落,由于空气阻力,石子并非做自由落体运动,现测得其加速度 a = A - Bv,式中 A、B 为正恒量,试求石子下落时的速率和路程与时间的函数关系。

 $3. \ a = f(x)$

一质点初始时从原点以速度 v_0 沿x轴正向运动,设运动过程中质点受到的加速度 $a=-kx^2/2(k$ 为常量),试求质点运动的最大距离。

三. 牛顿第二定律

1) 一质量为 1kg 的质点的运动学方程为 $\vec{r}=2t\vec{i}+(t^2-2)\vec{j}$,式中各量均用国际单位制单位。则质点在坐标为(4, 2)的位置时所受的力为_____。
2) 轻型飞机连同驾驶员总质量为 1.0×10^3 kg。飞机以 55.0m/s 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数 $\alpha=5.0\times10^2$ N/s,空气对飞机的升力不计,求: (1) 10s 后飞机的速率; (2) 飞机着陆后 10s 内滑行的距离。

3) 一质量为 m 的小球竖直落入水中,刚接触水面时其速率为 v_0 。设此球在水中 所受到的浮力与重力相等,水的阻力为 $F_r = -kv$,k为一常量。求:(1) 此球体的下沉速度与时间的函数关系;(2) 阻力对球体作的功与时间的函数关系。

4) 设有一质量为 m 的物体,	自地面以初速 v。 竖直向上发射,	物体受到的空气阻				
力为 $f = -kv$, k 为常数, v	为物体的速率。求物体在上升过程	中任意时刻的速率				
和物体达到最大高度所需时间。						

5)	物体从高空下落时空气阻力大小与速率成正比,	比例系数为 k.若物体质量为
m,	则该物体下落的最大速率为,任意时	刻的速率为
路	程为。(重力加速度为 g)	,

6) 一个物体自地球表面以速率 v_0 竖直上抛,假定空气对物体的阻力 $F_r = kmv^2$,其中k 为常量,m 为物体的质量。求该物体上升的高度。

一、填空题

1. 半 径 为 R 的球面均匀带电,所带总电量为 q,则<u>球内</u>距球心距离为 r(r<R)处的电势

为_____,电场强度大小为_____

2、对图中所示的积分环路,用真空磁场安培环路定理

可表示为: $\oint_L \vec{B} \cdot d\vec{l} =$

3、一长通电导线如图所示,其中半圆形部分 的半径为r,导线中电流均为I,则圆心o点的 磁感强度大小为_____,方向是____。

4 如图所示,两根无限长载流直导线相互平行,通过的电流

分别为 I_1 和 I_2 。则 $\oint_{L_1} \vec{B} \cdot d\vec{l} =$

$$\oint_{L_2} \vec{B} \cdot d\vec{l} =$$

5、边长为 α 正方体中心放置一个点电荷Q,则通过任一个正方体侧面的电通量为_

6、两无限大平行平面板带同种电荷,面密度分别为 σ_1 和 σ_2 ,则两带电平面之间的电场强度 E 的大小为_____

二 计算题

I.有两个半径分别为 R_1 、 R_2 的同心球壳,带电分别为 Q_1 、 Q_2 ,试求 空间电场分布。

自测一计算题 2 答案

2.一个半径为R的带电球体,电荷分布均匀,体密度为 ρ 、试求此带电球体内、外的场强分布。

3.有一同轴电缆,其尺寸如图所示。两导体中的电流均为 I,但电流的流向相反,导体的磁性可以不考虑。试计算以下各区域的磁感应强度,(1) $r < R_1$,(2) $R_1 < r < R_2$,(3) $R_2 < r < R_3$,(4) $r > R_3$ 。

自测一计算题 4 图

4.一载流无限长直圆柱,半径为R,传导电流为I,电流沿轴线方向流动并均匀地分布在管的横截面上。试求空间磁感应强度分布。

5.两个带有等量异号电荷的无限长同轴圆柱面,内外半径分别为 R_1 和 R_2 ,单位长度上的电荷分 $\pm\lambda$,求距离轴线为r处的电场强度,其中: (1) r < R_1 (2) R_1 < r < R_2 (3) r > R_2 。

6.如下图所示,一个长为 a,宽为 b 的矩形线圈放在磁场 B 中,磁场变化规律为 $B = B_0 \sin \omega t$,线圈平面与磁场垂直,则线圈内感应电动势的大小为_____。

