Using OCT Biomarkers to Predict Visual Acuity after One Year of VEGF Therapy

Brian Dang and Ethan Mai

12/6/2021

```
AMD <- as.data.frame(read.csv("~/Downloads/dataframev2.csv", header = TRUE, stringsAsFactors = FALSE))
library(ggplot2)
library(GGally)
library(knitr)
library(car)
library(MASS)
```

Table of Contents:

- 1. Model 1
- 2. Model 2
- 3. Model 3 (Final Model)
- 4. Model Diagnostics on Model 3
- 5. ANOVA
- 6. Variable Selection
- 7. Addressing Heteroscedasticity
- 7.a. Weighted Least Squares
- 7.b. Choosing Weights
- 7.c. Fitting WLS
- 7.d. Sandwich Estimator
- 7.e. Bootstrap
 - 8. Cross-validation

Note that appropriate data transformations were applied after looking at initial model fits (i.e. transformations were applied in the 'Model 2' and 'Model 3' sections).

1. Model 1

```
ggpairs(AMD,columns = c(10,8,13,18,23,28,33,3,5), columnLabels = c("VA5","VA3","IRF 3", "RPE 3","SRF 3"
```


Fig 1. Pairs plot of our untransformed response and predictors

kable(tab_1, caption = "OLS Coefficient Estimates for Model 1, \$adj R^2=0.1149\$", col.names = c("Estimates")

Table 1: OLS Coefficient Estimates for Model 1, $adjR^2 = 0.1149$

	Estimate	Std. Error	t value	P(> t)
(Intercept)	30.0106	5.7460	5.2229	0.0000
vol_irf3	-18.1565	6.1956	-2.9306	0.0035
vol_rpe3	45.6047	6.0287	7.5646	0.0000
vol_srf3	-1.4079	1.7843	-0.7890	0.4303
vol_ped3	-1.2780	0.5620	-2.2739	0.0232
vol_shrm3	-11.0385	2.0284	-5.4420	0.0000
ethnicityasian	-2.2534	3.2704	-0.6890	0.4910
ethnicitycaucasian	-1.4482	2.9783	-0.4863	0.6269
ethnicityOther	-3.9451	3.0666	-1.2865	0.1986
ethnicityunknown	-2.9883	3.2381	-0.9229	0.3563
genderMale	0.4665	0.9505	0.4908	0.6237

2. Model 2

```
AMD$score <- 100-AMD$va5

AMD$base <-100-AMD$va3

AMD <- transform(AMD, lscore = log(score), lbase=log(base), lsrf3=log(vol_srf3), lped3=log(vol_ped3), lscore
```

```
ind <- which(AMD$vol_srf3 < 0.0000001)
AMD.sub <- AMD[-ind,]
ind2<- which(AMD.sub$vol_shrm3 < 0.0000001)
AMD.sub <- AMD.sub[-ind2,]
AMD.sub$irf3 <- factor(ifelse(AMD.sub$vol_irf3 < 0.0000001, "No","Yes"))
model2 <- lm(lscore~ lbase+as.factor(irf3) + vol_rpe3 + lsrf3+ lped3+lshrm3,data = AMD.sub)</pre>
```

ggpairs(AMD.sub,columns = c(44,45,49,18,46,47,48), columnLabels = c("log(Score)","log(Base)","IRF3 Pres

Fig 2. Pairs plot of our transformed response and predictors

tab_2 <- data.frame(round(summary(model2)\$coefficients,4))
kable(tab_2, caption = "OLS Coefficient Estimates for Model 2, \$adj R^2=0.5907\$", col.names = c("Estimates")</pre>

Table 2: OLS Coefficient Estimates for Model 2, $adjR^2 = 0.5907$

	Estimate	Std. Error	t value	P(> t)
(Intercept)	1.0103	0.1660	6.0847	0.0000
lbase	0.7793	0.0271	28.7220	0.0000
as.factor(irf3)Yes	0.0866	0.0289	3.0009	0.0028
vol_rpe3	-0.3861	0.1358	-2.8437	0.0046
lsrf3	-0.0067	0.0038	-1.7364	0.0829
lped3	0.0161	0.0085	1.8918	0.0589
lshrm3	0.0093	0.0041	2.2431	0.0252

3. Model 3 (Final Model):

```
AMD$irf_change <- round(AMD$vol_irf5-AMD$vol_irf3,4)</pre>
AMD$rpe_change <- round(AMD$vol_rpe5-AMD$vol_rpe3,4)</pre>
AMD$srf_change <- round(AMD$vol_srf5-AMD$vol_srf3,4)</pre>
AMD$ped_change <- round(AMD$vol_ped5-AMD$vol_ped3,4)</pre>
AMD$shrm_change <- round(AMD$vol_shrm5-AMD$vol_shrm3,4)</pre>
AMD$irfcat <-cut(AMD$irf_change, breaks = c(-Inf,-.005,.005,Inf), labels = c("decrease", "zero", "increas
AMD$rpecat <-cut(AMD$rpe_change, breaks = c(-Inf,-.01,.01,Inf), labels = c("decrease", "zero", "increase"
AMD$srfcat <-cut(AMD$srf_change, breaks = c(-Inf,-.01,.01,Inf), labels = c("decrease", "zero", "increase"
AMD$pedcat <-cut(AMD$ped_change, breaks = c(-Inf,-.05,.05,Inf), labels = c("decrease", "zero", "increase"
AMD$shrmcat <-cut(AMD$shrm_change, breaks = c(-Inf,-.005,.005,Inf), labels = c("decrease", "zero", "incre
AMD$irfcat<- relevel(AMD$irfcat,"zero")</pre>
AMD$rpecat<- relevel(AMD$rpecat,"zero")</pre>
AMD$srfcat<- relevel(AMD$srfcat,"zero")</pre>
AMD$pedcat<- relevel(AMD$pedcat,"zero")</pre>
AMD$shrmcat<- relevel(AMD$shrmcat,"zero")</pre>
ggpairs(AMD, columns = c(44,45,54,55,56,57,58), columnLabels = c("log(Score)", "log(Base)", "IRF change",
```

Fig 3 Pairs plot of our response and predictos after factorizing the OCT biomage


```
model3 <- lm(lscore~lbase+irfcat+rpecat+srfcat+pedcat+shrmcat,data = AMD)
tab_3 <- data.frame(round(summary(model3)$coefficients,4))
kable(tab_3, caption = "OLS Coefficient Estimates for Model 3, $adj R^2=0.6076$", col.names = c("Estimates")</pre>
```

Table 3: OLS Coefficient Estimates for Model 3, $adjR^2 = 0.6076$

	Estimate	Std. Error	t value	P(> t)
(Intercept)	0.5404	0.0879	6.1495	0.0000
lbase	0.8107	0.0245	33.1292	0.0000
irfcatdecrease	0.0673	0.0350	1.9219	0.0549
irfcatincrease	0.1096	0.0253	4.3259	0.0000
rpecatdecrease	0.0621	0.0261	2.3794	0.0175
rpecatincrease	0.0048	0.0266	0.1809	0.8565
srfcatdecrease	-0.0654	0.0261	-2.5118	0.0122
srfcatincrease	-0.0094	0.0239	-0.3932	0.6942
pedcatdecrease	0.0463	0.0244	1.8943	0.0585
pedcatincrease	0.0339	0.0236	1.4348	0.1517
${\it shrmcatdecrease}$	0.0166	0.0252	0.6605	0.5091
shrmcatincrease	0.1126	0.0244	4.6225	0.0000

4. Model Diagnostics on Model 3

residualPlots(model3,main="Fig 4. Residuals plot of Model 3")


```
## shrmcat
## Tukey test 1.4106 0.1584
qqPlot(model3,main = "QQ Plot for for")
```

QQ Plot for for


```
## [1] 32 138
ncvTest(model3)
```

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 9.647212, Df = 1, p = 0.0018964

5. ANOVA

```
model31 <- lm(lscore~lbase,data = AMD)
anova(model31,model3)

## Analysis of Variance Table
##
## Model 1: lscore ~ lbase
## Model 2: lscore ~ lbase + irfcat + rpecat + srfcat + pedcat + shrmcat
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 924 76.920
## 2 914 70.645 10 6.2748 8.1183 1.174e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(model3)
```

Anova Table (Type II tests)

```
##
## Response: lscore
            Sum Sq Df
                         F value
            84.832
                    1 1097.5448 < 2.2e-16 ***
## lbase
## irfcat
             1.577
                         10.2009 4.155e-05 ***
             0.746
                          4.8277
                                   0.00821 **
## rpecat
## srfcat
             0.488
                          3.1595
                                   0.04291 *
                          2.1066
                                   0.12224
## pedcat
             0.326
                     2
## shrmcat
             1.824
                     2
                       11.7965 8.747e-06 ***
## Residuals 70.645 914
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

6. Variable Selection

```
stepAIC(model3, direction = "backward")
## Start: AIC=-2358.79
## lscore ~ lbase + irfcat + rpecat + srfcat + pedcat + shrmcat
##
##
             Df Sum of Sq
                              RSS
                                      AIC
## <none>
                           70.645 -2358.8
## - pedcat
                    0.326 70.971 -2358.5
## - srfcat
                    0.488
                           71.134 -2356.4
## - rpecat
              2
                    0.746 71.391 -2353.1
## - irfcat
                   1.577 72.222 -2342.3
## - shrmcat 2
                    1.824 72.469 -2339.2
## - lbase
                   84.832 155.477 -1630.3
##
## Call:
## lm(formula = lscore ~ lbase + irfcat + rpecat + srfcat + pedcat +
##
       shrmcat, data = AMD)
##
## Coefficients:
##
       (Intercept)
                              lbase
                                      irfcatdecrease
                                                       irfcatincrease
##
          0.540425
                           0.810726
                                            0.067257
                                                             0.109575
   rpecatdecrease
                    rpecatincrease
                                      srfcatdecrease
                                                       srfcatincrease
##
          0.062142
                           0.004817
                                           -0.065444
                                                            -0.009389
   pedcatdecrease
                     pedcatincrease
                                     shrmcatdecrease shrmcatincrease
          0.046310
                           0.033859
                                            0.016629
                                                             0.112622
```

7. Addressing Heteroscedasticity

- 7.a. Weighted Least Squares
- 7.b. Choosing Weights

```
emodel<- lm(abs(model3$residuals)~model3$fitted.values)
plot(abs(model3$residuals) ~ model3$fitted.values)
abline(emodel)</pre>
```


7.c. Fitting WLS

```
wt <- 1/emodel$fitted.values^2
wmodel3 <- lm(log(score)~log(base)+irfcat+rpecat+srfcat+pedcat+shrmcat,data = AMD,weights = wt)
tab_3w <- data.frame(round(summary(wmodel3)$coefficients,4))
kable(tab_3w, caption = "Weighted Least Squares Estimates for Model 3", col.names = c("Estimate","Std.</pre>
```

Table 4: Weighted Least Squares Estimates for Model 3

	Estimate	Std. Error	t value	P(> t)
(Intercept)	0.5222	0.0892	5.8546	0.0000
log(base)	0.8146	0.0246	33.1785	0.0000
irfcatdecrease	0.0699	0.0336	2.0820	0.0376
irfcatincrease	0.1060	0.0244	4.3534	0.0000
rpecatdecrease	0.0703	0.0259	2.7167	0.0067
rpecatincrease	0.0083	0.0266	0.3101	0.7565
srfcatdecrease	-0.0643	0.0253	-2.5375	0.0113
srfcatincrease	-0.0129	0.0238	-0.5430	0.5873
pedcatdecrease	0.0488	0.0239	2.0431	0.0413
pedcatincrease	0.0330	0.0234	1.4096	0.1590
shrmcatdecrease	0.0148	0.0249	0.5947	0.5522
${\it shrmcatincrease}$	0.1143	0.0241	4.7460	0.0000

ncvTest(wmodel3)

- ## Non-constant Variance Score Test
- ## Variance formula: ~ fitted.values
- ## Chisquare = 0.01799714, Df = 1, p = 0.89328

7.d. Sandwich Estimator

```
model3.sandwich = coeftest(model3, vcov. = hccm(model3, type="hc3"))
sandwich.se = round(sqrt(diag(hccm(model3, type="hc3"))), 4)
coef_est = data.frame(round(cbind(coef(model3),coef(wmodel3),model3.sandwich[,1]),4))
se_est = data.frame(round(cbind(sqrt(diag(vcov(model3))),sqrt(diag(vcov(wmodel3))),sandwich.se),4))
colnames(coef_est) = colnames(se_est) = c("OLS","WLS","Sandwich")
se_est2 = data.frame(round(cbind(sqrt(diag(vcov(model3))),sqrt(diag(vcov(wmodel3)))),4))
kable(se_est2, caption = "Comparison of SE for OLS and WLS estimation for Model 3", col.names = c("OLS")
```

Table 5: Comparison of SE for OLS and WLS estimation for Model 3

	OLS	WLS
(Intercept)	0.0879	0.0892
lbase	0.0245	0.0246
irfcatdecrease	0.0350	0.0336
irfcatincrease	0.0253	0.0244
rpecatdecrease	0.0261	0.0259
rpecatincrease	0.0266	0.0266
srfcatdecrease	0.0261	0.0253
srfcatincrease	0.0239	0.0238
pedcatdecrease	0.0244	0.0239
pedcatincrease	0.0236	0.0234
shrmcatdecrease	0.0252	0.0249
${\it shrmcatincrease}$	0.0244	0.0241

7.e. Bootstrap

```
set.seed(123)
nboot = 1000
n=nrow(AMD)
dat.boot <- matrix(0,nboot,12)</pre>
for (i in 1:nboot){
  indices <- sample(seq(1,n), replace=T)</pre>
 m.boot <- lm(log(score)~log(base)+irfcat+rpecat+srfcat+pedcat+shrmcat,data = AMD[indices,])</pre>
  dat.boot[i,] <- m.boot$coefficients</pre>
}
mean.boot <- round(apply(dat.boot, 2, mean),4)</pre>
se.boot<-round(apply(dat.boot, 2, sd),4)</pre>
coef_est$Bootstrap = mean.boot
se_est$Bootstrap = se.boot
print(se_est)
                              WLS Sandwich Bootstrap
##
                       OLS
## (Intercept)
                   0.0879 0.0892 0.0927
                                               0.0922
                                               0.0258
## lbase
                   0.0245 0.0246
                                  0.0257
## irfcatdecrease 0.0350 0.0336 0.0344
                                               0.0331
## irfcatincrease 0.0253 0.0244 0.0260
                                               0.0261
## rpecatdecrease 0.0261 0.0259 0.0271
                                               0.0264
## rpecatincrease 0.0266 0.0266 0.0277
                                               0.0271
```

```
## srfcatdecrease 0.0261 0.0253 0.0263 0.0265
## srfcatincrease 0.0239 0.0238 0.0244 0.0248
## pedcatdecrease 0.0244 0.0239 0.0249 0.0246
## pedcatincrease 0.0236 0.0234 0.0234 0.0228
## shrmcatdecrease 0.0252 0.0249 0.0244 0.0238
## shrmcatincrease 0.0244 0.0241 0.0256 0.0264
```

8. Cross Validation

```
k < -10
n.obs <- nrow(AMD)</pre>
random.order <- sample(seq(1,n.obs),n.obs, replace=F)</pre>
cv.size <- rep(floor(n.obs/k),k)</pre>
cum.size <- c(0, cumsum(cv.size[-length(cv.size)]))</pre>
error.reduced <- rep(0,k)
error.full <- rep(0,k)
for (i in 1:k) {
  inds <- (cum.size[i]+1):(cum.size[i]+cv.size[i])</pre>
  AMD.subset <- AMD[-random.order[inds],]</pre>
  lm.reduced <- lm(lscore ~ log(base), data=AMD.subset)</pre>
  lm.full <- lm(lscore~lbase+irfcat+rpecat+srfcat+pedcat+shrmcat,data = AMD.subset)</pre>
  test.data <- AMD[random.order[inds],]</pre>
  predict.full <- predict.lm(lm.full,test.data)</pre>
  error.full[i] <- sqrt(mean((test.data$lscore - predict.full)^2))</pre>
  predict.reduced <- predict.lm(lm.reduced,test.data)</pre>
  error.reduced[i] <- sqrt(mean((test.data$lscore - predict.reduced)^2))</pre>
}
RMSPE.full = mean(error.full)
RMSPE.reduced = mean(error.reduced)
RMSPE.full
## [1] 0.279869
RMSPE.reduced
## [1] 0.2886124
plot(error.full, ylim=c(0,0.4), pch=16,ylab="Prediction Error")
points(error.reduced, col='blue', pch=4) #generally black points are below blue points
abline(h=mean(error.full), lty=2, col='black')
abline(h=mean(error.reduced), lty=3, col='blue')
legend('topright', legend=c('full','reduced'), pch=c(16,4), col=c('black','blue'))
```

