240/0245

STRUCTURAL ANALYSIS OF THE LAMARS ASSEMBLY

NOVEMBER 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

19990518 021

AEROSPACE STRUCTURES INFORMATION AND ANALYSIS CENTER

OPERATED FOR THE AIRFORCE FLIGHT DYNAMICS LABORATORY BY ANAMET LABORATORIES, INC.

STRUCTURAL ANALYSIS OF THE LAMARS ASSEMBLY

November 1981

Approved for public release; distribution unlimited

Aerospace Structures
Information and Analysis Center

PLEASE REPLY TO
ASIAC
AFWAL/FIBR
WRIGHT-PATTERSON AFB
OHIO 45433
TEL. (513) 252-1630
AUTOVON 785-6688

ASIAC
ANAMET LABORATORIES, INC.
100 INDUSTRIAL WAY
SAN CARLOS, CALIFORNIA 94070
TEL. (415) 593-2125

This report describes the transient response analysis of the primary structure of the Large Amplitude Multimode Aerospace Research Simulator (LAMARS). Critical parts of the structure were identified and examined under combinations of applied loads. Transient loads consisted of the accelerations created by the actuator in simulating roll, pitch and yaw, in addition to lateral and vertical motions of the cockpit simulator. These transient loads were superimposed on the static 1-g load on the structure to obtain the total stresses in the structure. Safety factors were established for all suspected critical structural locations.

This work was performed by the Aerospace Structures Information and Analysis Center, which is operated for the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, by Anamet Laboratories, Inc. under Contract No. F33615-81-C-3201. The work was performed in support of the Control Synthesis Branch, Flight Control Division (FIGD) under ASIAC Problem No. 422.

Michael R. James

Michael R. James Engineer

Gordon R. Negdard, P.E. Principal Investigator

Approved by:

Conor D. Johnson, Ph.D.

Program Manager

TABLE OF CONTENTS

	Page	No.
I.	INTRODUCTION	1
II.	ANALYSIS	
	2.1 Structural Modeling	4
	2.2 Transient Analysis	11
III.	RESULTS	32
	REFERENCES	37
	APPENDIX A - NORTHROP MEMORANDUM - Loads and Stresses on Critical LAMARS Structures	A-1
	APPENDIX B - STRESSES IN COCKPIT SUPPORT BOLTS	B-1
	APPENDIX C - STRESSES IN BEAM CUT-OUT	C-1
	APPENDIX D - STRESSES IN YAW AND PITCH GIMBALS	D-1
	APPENDIX E - STRESSES IN BEAM END	E-1

LIST OF ILLUSTRATIONS

Figure	No.						Page
1		View of the LAM	ARS Install	lation	•		2
2	1	Finite Element LAMARS Assembly			. •, •	•	5
3	÷	Finite Element and Main Gimbal					6
4		Finite Element with Yaw and Pi					7
5		Finite Element Rand Support Str	uctures Ind	cluding Ro	11		8
6		Acceleration at Beam Vertical .					12
7		Velocity at the Vertical					13
8		Displacement at Beam Vertical .				•	14
. 9		Acceleration at Beam Horizontal				•	15
10		Velocity at the Horizontal		tion for B		•	16
11		Displacement at Beam Horizontal	the Pilot	Station f	or • •	•	17
12		Acceleration at Spherical Pitch				•	18
13		Velocity at the Spherical Pitch		tion for	• •	•	19
14		Displacement at Spherical Pitch	the Pilot	Station f	or •••	.•	20
15		Acceleration at Spherical Yaw .		Station f	or •••	•	21

LIST OF ILLUSTRATIONS (Continued)

	HIDI OI IHHOOTIMITOND (CONCERNACE)
Figure No.	Page
16	Velocity at the Pilot Station for Spherical Yaw
17	Displacement at the Pilot Station for Spherical Yaw
18	Acceleration at the Pilot Station for Spherical Roll 24
19	Velocity at the Pilot Station for Spherical Roll
20	Displacement at the Pilot Station for Spherical Roll
21	Forcing Functions Used as Actuator Loads
22	Combination of Actuator Loads Used in Load Case 1
:	LIST OF TABLES
Table No.	Page
1	LAMARS Component Weights 10

Analysis Load Cases . .

Stresses in Beam Due to 1-g Static Load

35

I. INTRODUCTION

This report presents the results of a transient response analysis of the LAMARS primary structure using NASTRAN, level 17.0 (rigid format 9). LAMARS (Large Amplitude Multimode Aerospace Research Simulator) is a five degree-of-freedom motion system composed of a single-place aircraft type cockpit and a display screen at the end of a 30 foot beam. The simulator is used for engineering simulation in order to evaluate flying qualities, flight control system designs and vehicle performance. Figure 1 illustrates the size and configuration of the LAMARS system.

The LAMARS structures can be divided into three major sub-The base (or pedestal) is essentially an A-frame structure made up of massive I-beams and channels. The beam is a tapered cylindrical shell. The cockpit assembly contains a standard aircraft type cockpit and seat, along with supporting structure for a spherical screen and various projectors and power Three gimbals and a roll ring connect these three main supplies. subassemblies to each other. Five degrees-of-freedom are obtained by this structural design. These include roll, pitch and yaw of the cockpit about the beam end and two degrees-of-freedom referred to as beam vertical and beam lateral. These last two are obtained as the beam end moves vertically or laterally due to corresponding pivoting motions at the beam-pedestal gimbal connection. sets of actuators driven by a computerized control system produce precise phase and amplitude motion at the pilot's station to simulate aircraft ride. The control specifications cite maximum driving frequencies of 1.4 Hz for pitch, 1.8 Hz for roll, 2.9 Hz for yaw and 1.8 Hz for beam vertical and lateral. Initial estimates and a simplified analysis of the LAMARS systems indicated that the lowest natural frequency of the system would be near 4.0 Hz. Based on this judgment, it appeared to be necessary to perform a transient response analysis since the dynamic response of the system could

Figure 1 View of the LAMARS Installation

Aerospace Structures
Information and Analysis Center

affect the maximum stresses in critical areas. During the actual analysis, the lowest natural frequency was found to be approximately 2.6 Hz, which is in the range of the actual driving frequencies. The transient response capability of NASTRAN was chosen because it provides a direct simulation of the dynamic structural response of the system due to initial conditions and time-varying loads.