Lab 3

Ve406

Due: 18 November 2018, 11:40am

Instructions

- Please report your findings in this **R Markdown** file by removing any text that you do not need. Include all your **R**-code in chunks and your comments and findings as texts.
- Recall **R**-chunks that are not necessary to report (like the package loading and the working directory path) can be exempt from printing by using the option echo=FALSE in the setting up of the chunk.
- This lab is about unususal points, heteroskedasticity and correlated errors.

Task 1 (8 points)

The data chem_pro is the dataset about a particular chemical process we considered in class.

(a) (1 point)

Succesfully render this file.

(b) (1 point)

Clean chem_pro.df according to what we have discussed in class.

```
chem_pro.df = read.table(file = chem_pro.csv, sep = ",", header = TRUE)
```

(c) (1 point)

Produce the pairs plot of all the variables in chem_pro.df like the one I showed in class.

(d) (1 point)

 $Construct\ the\ following\ model,\ then\ produce\ all\ the\ usual\ regression\ diagnostic\ plots\ for\ {\tt chem_pro.LM}.$

```
chem_pro.LM = lm(yield~conversion+flow+ratio, data = chem_pro.df)
```

- Standardised residual Vs fitted value
- Standardised residual Vs conversion
- Standardised residual Vs flow

- Standardised residual Vs ratio
- Residual Vs Previous Residual
- Residual Autcorrelation (ACF)
- Q-Q Normal

(e) (1 point)

Compute VIF for chem_pro.LM according to the definition, then compare it with the values found in class.

(f) (1 point)

Produce a boxplot of Leverage Scores for chem_pro.LM like the one I showed in class.

(g) (1 point)

Produce the plot of standardised residual Vs leverage score for chem_pro.LM like the one I showed in class.

(h) (1 point)

Produce a table of influence measures for chem_pro.LM like the one I showed in class.

Task 2 (6 points)

The data USA_real_estate is about the median price of houses sold in different areas of USA in 2006.

Variable	Description
mppsf	Median Price Per Square Foot
ns	Number Homes from which the Median Price is computed
pnh	Percentage of Homes sold that are build in 2005 or 2006
pms	Percentage of Mortgage Foreclosure Sales

Each data point is for one such area of USA in 2006.

(a) (1 point)

Check for the presence of heteroskedasticity in the model usare.LM.

```
usare.df = read.table(file = USA_real_estate.txt, sep = "", header = TRUE)
usare.LM = lm(mppsf~pnh+pms, data = usare.df)
```

(b) (1 point)

Estiamte the weights for using weighted least squares for the following linear model

$$mppsf_i = \beta_0 + \beta_1 pnh_i + \beta_2 pms_i + \sigma_i \varepsilon$$

(c) (1 point)

Construct the linear model using weighted least squares with your estimated weights, name it usare.WLS.

$$mppsf_i = \beta_0 + \beta_1 pnh_i + \beta_2 pms_i + \sigma_i \varepsilon$$

(d) (1 point)

Explain why ns might also be an appropriate estimate for the weights.

(e) (1 point)

Construct the linear model using weighted least squares with the weights based on ns, name it usare.ns.WLS.

$$mppsf_i = \beta_0 + \beta_1 pnh_i + \beta_2 pms_i + \sigma_i \varepsilon$$

(f) (1 point)

Compare usare.WLS with usare.ns.WLS. Which of the two models do you prefer? Explain your answer.

Task 3 (5 points)

The data grossboxoffice is about yearly gross box office receipts from moives screened in Australia.

(a) (1 point)

Load the data file grossboxoffice.txt into R, and construct the following model, name it as gbo.LM.

$$GrossBoxOffice_i = \beta_0 + \beta_1 year_i + \varepsilon$$

Comment on the validity of gbo.LM.

(b) (1 point)

Explore the possibility of using AR(1), AR(2), and AR(3).

(c) (1 point)

Obtain a final model for predicting GrossBoxOffice for year=1975, name it as gbo.final.M.

(d) (1 point)

Produce diagnostic plots to justify your choice of model.

(e) (1 point)

Describe any weakness in your gbo.final.M.

(f) (1 point)

Use your model gbo.final.M to identify any outliers.