	And the state of t
IECR 4009	
Due date: 19. NOV, 2019	No. / Date. / /
	Zim
1. [laser-correcting	agrirum
* 4	und handle edge-weight that are very
* 0	ussume no megarive-welger directed uple
1. Initializat	tion. di=0, du=+00, predu undefined
	dy: * if dw > du + cluivs, then we recet dw=du+
Muk o	well + else, wousistent
CVVX()RC	T are wastreat
	$\sim \frac{1}{2}$
10	11 \ ,
3	3 1 -4
7 30	$\stackrel{s}{\mathcal{M}} \stackrel{g}{\longrightarrow} \mathfrak{G}$
* fixed an	ve wder: (5, V2) (5, V1) (V1, V2) (V2, V1) (V1, t) (V2, T) (V2, U3)
* fixed av	1. S V1 V2 V3 + S V1 V2 V3 +
	V _j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* Iterution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* iterution	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* Theretion (SiV1): $V_2 = \infty > S + c(S_1 \vee L_1)$ Let $V_2 = 1$, prediction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* (S,V2): $V_2 = \infty > S + c(S,V_2)$ Let $V_2 = 2$, pred() * (S,V1)= $V_1 = 0 > S + c(S,V_1)$ =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* (5.V2): $V_2 = \infty > S + c(S, V_2)$ Let $V_2 = 2$, prediction (5,V1)= $V_1 = 0 > S + c(S, V_1)$ = Set $V_2 = 4$, prediction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
* [S,V2]: $V_2 = 00 > S + c(S,V_2)$ Let $V_2 = 2$, prediction (S,V1)= $V_1 = 00 > S + c(S,V_1)$ = Set $V_2 = 4$, prediction (V1,V2)= $V_2 = 2 < V_1 + c(V_1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* [S,V2]: $V_2 = \infty \times S + c(S,V_2)$ Let $V_2 = 2$, prediction of $V_3 = V_4 = 4$, prediction of $V_4 = V_4 = 4$, prediction of $V_4 = V_4 = 4$.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* Theretion * Theretion * (S,V1): $V_3 = \infty > S + c(S,V_2)$ Let $V_2 = 1$, predict * $(S,V_1) = V_1 = 0 > S + c(S,V_1) = 0$ Set $V_1 = 4$, predict * $(V_1,V_2) = V_2 = 0 < V_1 + c(V_1)$, consistent $\Rightarrow v_1$ * $(V_2,V_3): V_1 = 4 > V_2 + c(V_1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* (S,V2): $V_2 = \infty > S + c(S,V_2)$ Let $V_2 = 2$, prediction (S,V1)= $V_1 = \infty > S + c(S,V_1)$ = Set $V_2 = 4$, prediction (V1,V2)= $V_2 = 2 < V_1 + c(V_1)$. Consistent $\Rightarrow w$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* iteration 1

(5.V2): V22] = (5+C(1.V2)=2

(N,t): t=0 < U,+((U,+)=0+2

Consistent - munanged

(15, t) t=0 < V2+(10)+1= 2+1

(S.V.): V=0 < S+ CLS.VI) =4 (V2, V3): V3= 4 = V2+ (UV2, V3)= 2+2

(V3, t): V2=d < V1+c(W1)=0+3=3 (V3, t)= t=0 = V3+cW3, t)=4-4=0

0

0

(V2.1/1): V1=0 = V2+CW2.V1)=2-1

Thus, all aver are consistent in the Ind iteration shurtest parts: 5- Uz-Vz-t with weight =0

final table V. t Vi prediti) Vz 5 Vs

> shortest path from v. to vs: unknown from the final table. shortest parts from is to t: 12-V3-t

d. project network

through eyeraning. there are two conticul pates

* S-A-B-C-G-t

* S-A-B-E-F-t-t with meight ab

I. If we don't need to invense by an integer can time, they the muster of iteration is infinite. For example, we inviecue the flow of residual network * mording by awasing s-Vi... Vj-t path with capacity E. Then, by algorithm, we only surrecce the flow by & instead of &) the s-vi-vj-t path Still has capacity &. I we immense from if the part by & I for each iteration to, ne may Still Therease the flux by JAH in 6-1) t the next nound t5 1 t3: 5' - V.2 - t3: maximum from wer time. 15 9 ts: 53- Vit -ts 1 6 units of forms are traversing

transaction fee = 0.00371000 = 3\$

Code

November 24, 2019

```
[1]: from gurobipy import *
    # create a model
    m = Model()
    # create variables
    ab = m.addVar(vtype=GRB.INTEGER, name="ab", 1b=0)
    ac = m.addVar(vtype=GRB.INTEGER, name="ac", 1b=0)
    da = m.addVar(vtype=GRB.INTEGER, name="da", 1b=0)
    ae = m.addVar(vtype=GRB.INTEGER, name="ae", 1b=0)
    af = m.addVar(vtype=GRB.INTEGER, name="af", 1b=0)
    ag = m.addVar(vtype=GRB.INTEGER, name="ag", 1b=0)
    bc = m.addVar(vtype=GRB.INTEGER, name="bc", 1b=0)
    db = m.addVar(vtype=GRB.INTEGER, name="db", lb=0)
    be = m.addVar(vtype=GRB.INTEGER, name="be", 1b=0)
    fb = m.addVar(vtype=GRB.INTEGER, name="fb", lb=0)
    gb = m.addVar(vtype=GRB.INTEGER, name="gb", 1b=0)
    cd = m.addVar(vtype=GRB.INTEGER, name="cd", 1b=0)
    ce = m.addVar(vtype=GRB.INTEGER, name="ce", 1b=0)
    fc = m.addVar(vtype=GRB.INTEGER, name="fc", 1b=0)
    cg = m.addVar(vtype=GRB.INTEGER, name="cg", lb=0)
    de = m.addVar(vtype=GRB.INTEGER, name="de", 1b=0)
    fd = m.addVar(vtype=GRB.INTEGER, name="fd", 1b=0)
    dg = m.addVar(vtype=GRB.INTEGER, name="dg", 1b=0)
    fe = m.addVar(vtype=GRB.INTEGER, name="fe", 1b=0)
    ge = m.addVar(vtype=GRB.INTEGER, name="ge", 1b=0)
    fg = m.addVar(vtype=GRB.INTEGER, name="fg", 1b=0)
    ba = m.addVar(vtype=GRB.INTEGER, name="ba", 1b=0)
    ca = m.addVar(vtype=GRB.INTEGER, name="ca", 1b=0)
    ad = m.addVar(vtype=GRB.INTEGER, name="ad", 1b=0)
    ea = m.addVar(vtype=GRB.INTEGER, name="ea", 1b=0)
    fa = m.addVar(vtype=GRB.INTEGER, name="fa", 1b=0)
    ga = m.addVar(vtype=GRB.INTEGER, name="ga", 1b=0)
    cb = m.addVar(vtype=GRB.INTEGER, name="cb", 1b=0)
    bd = m.addVar(vtype=GRB.INTEGER, name="bd", lb=0)
```

```
eb = m.addVar(vtype=GRB.INTEGER, name="eb", 1b=0)
bf = m.addVar(vtype=GRB.INTEGER, name="bf", 1b=0)
bg = m.addVar(vtype=GRB.INTEGER, name="bg", 1b=0)
dc = m.addVar(vtype=GRB.INTEGER, name="dc", lb=0)
ec = m.addVar(vtype=GRB.INTEGER, name="ec", 1b=0)
cf = m.addVar(vtype=GRB.INTEGER, name="cf", 1b=0)
gc = m.addVar(vtype=GRB.INTEGER, name="gc", 1b=0)
ed = m.addVar(vtype=GRB.INTEGER, name="ed", 1b=0)
df = m.addVar(vtype=GRB.INTEGER, name="df", lb=0)
gd = m.addVar(vtype=GRB.INTEGER, name="gd", 1b=0)
ef = m.addVar(vtype=GRB.INTEGER, name="ef", lb=0)
eg = m.addVar(vtype=GRB.INTEGER, name="eg", 1b=0)
gf = m.addVar(vtype=GRB.INTEGER, name="gf", lb=0)
# integrate new variables
m.update()
# set objective
m.setObjective(
    3*(ab + ac + da + ae + af + ag + bc + db + be + fb + gb + cd + ce + fc + cg_{\sqcup}
\rightarrow+ de + fd + dg + fe + ge +
       fg + ba + ca + ad + ea + fa + ga + cb + bd + eb + bf + bg + dc + ec + cf_{\cup}
 \rightarrow+ gc + ed + df + gd + ef + eg + gf),
    GRB.MINIMIZE
# add constraints
m.addConstr(ab + ac + ad + ae + af + ag - (ba + ca + da + ea + fa + ga) == 62)
m.addConstr(ba + bc + bd + be + bf + bg - (ab + cb + db + eb + fb + gb) == -117)
m.addConstr(ca + cb + cd + ce + cf + cg - (ac + bc + dc + ec + fc + gc) == 81)
m.addConstr(da + db + dc + de + df + dg - (ad + bd + cd + ed + fd + gd) == 145)
m.addConstr(ea + eb + ec + ed + ef + eg - (ae + be + ce + de + fe + ge) == -128)
m.addConstr(fa + fb + fc + fd + fe + fg - (af + bf + cf + df + ef + gf) == 105)
m.addConstr(ga + gb + gc + gd + ge + gf - (ag + bg + cg + dg + eg + fg) == -148)
# optimize
m.optimize()
print("Model status: ", m.status)
# print out decision variables
for v in m.getVars():
    print(v.varName, v.x, "\n")
print("-"*15)
print("Obj Value: ", m.objVal)
```

```
Academic license - for non-commercial use only
Optimize a model with 7 rows, 42 columns and 84 nonzeros
Variable types: 0 continuous, 42 integer (0 binary)
Coefficient statistics:
                   [1e+00, 1e+00]
 Matrix range
                   [3e+00, 3e+00]
 Objective range
 Bounds range
                   [0e+00, 0e+00]
                   [6e+01, 1e+02]
 RHS range
Found heuristic solution: objective 2370.0000000
Presolve time: 0.02s
Presolved: 7 rows, 42 columns, 84 nonzeros
Variable types: 0 continuous, 42 integer (0 binary)
Root relaxation: objective 1.179000e+03, 6 iterations, 0.01 seconds
    Nodes
                  Current Node
                                  Objective Bounds
                                                                    Work
Expl Unexpl | Obj Depth IntInf | Incumbent
                                                 BestBd
                                                          Gap | It/Node Time
    0
           0
                                1179.0000000 1179.00000 0.00%
                                                                         0s
Explored O nodes (6 simplex iterations) in 0.13 seconds
Thread count was 4 (of 4 available processors)
Solution count 2: 1179 2370
Optimal solution found (tolerance 1.00e-04)
Best objective 1.179000000000e+03, best bound 1.17900000000e+03, gap 0.0000%
Model status: 2
ab 12.0
ac - 0.0
da -0.0
ae 47.0
af -0.0
ag 3.0
bc -0.0
db -0.0
be -0.0
fb 105.0
```

- gb -0.0
- cd -0.0
- ce 81.0
- fc -0.0
- cg -0.0
- de -0.0
- fd -0.0
- dg 145.0
- fe -0.0
- ge -0.0
- fg -0.0
- ba -0.0
- ca -0.0
- ad -0.0
- ea -0.0
- fa -0.0
- ga -0.0
- cb -0.0
- bd -0.0
- eb -0.0
- bf -0.0
- bg -0.0
- dc -0.0
- ec -0.0

```
cf -0.0
```

Obj Value: 1179.0

[]: