Производящие функции в комбинаторике

Сборник задач.

1 Разбиения

1. Для данного числа n пусть A — число способов, которыми n можно представить в виде суммы нечётных натуральных чисел, B — число способов, которыми можно представить n в виде суммы различных натуральных чисел. (Суммы неупорядоченная, то есть 1+3 и 3+1 — это одно и то же представление)

Докажите, что A = B.

2. Пусть $n \in \mathbb{N}$ — некоторое натуральное число. Предположим, что

$$x+2y=n$$
 имеет R_1 решений в \mathbb{N}_0^2 имеет R_2 решений в \mathbb{N}_0^2 ...

nx+(n+1)y=1 имеет R_n решений в \mathbb{N}_0^2 (n+1)x+(n+2)y=0 имеет R_{n+1} решений в \mathbb{N}_0^2

Докажите, что $\sum_k R_k = n + 1$.

3. Пусть для некоторого $n \in \mathbb{N}$ нашлись такие различные по составу последовательности целых неотрицательных чисел a_1, a_2, \ldots, a_n и b_1, b_2, \ldots, b_n , что множества попарных сумм совпадают, то есть совпадают множества

$$a_1 + a_2, a_1 + a_3, \dots, a_{n-1} + a_n$$

И

$$b_1 + b_2, b_1 + b_3, \dots, b_{n-1} + b_n.$$

Докажите, что n является степенью двойки.

Подсказка. Если для некоторых многочленов F(x), G(x) известно, что F(1) = G(1), то можно положить $F(x) - G(x) = (x-1)^k H(x)$, где $H(1) \neq 0$.

4. Пусть дано конечное число арифметических прогрессий, и каждое натуральное число принадлежит ровно одной из них.

Пусть b_1, b_2, \ldots, b_k — их разности. Докажите, что

$$\frac{1}{b_1} + \frac{1}{b_2} + \ldots + \frac{1}{b_k} = 1$$

5. Пусть a_0, a_1, a_2, \ldots — возрастающая последовательность неотрицательных целых чисел, такая, что любое целое неотрицательное число может быть единственным образом представлено в виде $a_i+2a_j+4a_k$, где i, j, k не обязательно различны. Найдите a_{2013}

Подсказка. Покажите, что представление чисел a_k в 8-ичной системе счисления содержит только 0, 1.

- 6. Докажите, что существует единственный способ разбить \mathbb{N}_0 на два непересекающихся множества A, B так, что для любого $n \in \mathbb{N}_0$ количество способов представить n в виде суммы $n = a_1 + a_2$ ($a_1, a_2 \in A$, $a_1 \neq a_2$) равно количеству способов представить его в виде $n = b_1 + b_2$, ($b_1, b_2 \in B, b_1 \neq b_2$)
- 7. Пусть для некоторого n элементы множества $S = \{1, 2, \dots, n\}$ могут быть раскрашены в красный и синий таким образом, что множество троек $S \times S \times S$ содержит ровно 2007 упорядоченных троек (x, y, z), что
 - (i) x, y, z одного цвета,
 - (ii) x + y + z : n.

Докажите, что если r,b — соответственно количество элементов красного и синего цвета, то

$$r^2 + rb + b^2 = 2007$$

Подсказка. Рассмотрите ряд $\sum_{b \in B} x^b$, где B — множество чисел, покрашенных в синий цвет. Кроме него, рассмотрите аналогичный ряд для чисел, покрашенных в красный цвет.

2 Многочлены

- 1. Пусть n натуральное число. Найдите количество таких многочленов P(x), у которых коэффициенты это числа из множества $\{0,1,2,3\}$, и P(2)=n.
- 2. Пусть Q множество многочленов с коэффициентами из множества \mathbb{Z}_p (поле остатков по простому модулю p), таких, что выполнены условия
 - Коэффициент при старшем члене равен 1
 - ullet Многочлены из Q не делятся на квадрат никакого многочлена.

Покажите, что количество таких многочленов степени n равно $Q_n = p^n - p^{n-1}$

3 Деревья

- 1. Сакура это бинарное дерево со следующими свойствами.
 - Листовая вершина может быть белой (

)
 - Братишки белых вершин обязаны быть чёрными (•, ■)

Найдите количество сакур с n чёрными вершинами.

2. Найдите количество деревьев с n вершинами, таких, что у каждой вершины либо 0, либо 2 потомка.

3. У каждой нелистовой вершины хотя бы два ребёнка. Найдите количество таких деревьев с заданным количеством листев n.

Теорема. (Формула инверсии Лагранжа).

Если производящая функция $g(z) = \sum_{n\geqslant 1} g_n z^n$ удовлетворяет уравнению

$$z = f(g(z)),$$

причём $f_0 = 0, f_1 \neq 0$, то

$$g_n = \frac{1}{n} [u^{n-1}] \left(\frac{u}{f(u)} \right)^n$$

4. Пользуясь теоремой Лагранжа, найдите количество 0-3 деревьев (у любой вершины 0 или 3 детей) с n листовыми вершинами.

4 Строки

1. Бесконечная строка из нулей и единиц генерируется случайным образом, то есть очередной ноль или единица появляется с вероятностью $\frac{1}{2}$. Генерация останавливается, когда встреится строка из p единиц.

Покажите, что матожидание длины этой случайной строки равно $F_p(\frac{1}{2})$, где F(x) — производящая функция для количества таких строк

$$F_p(x) = \frac{1 - z^p}{1 - 2z + z^{p+1}}$$

2. Рассмотрим алфавит из m символов, из которого составляются всевозможные слова длины n. Пусть имеется некоторая подстрока $p_1p_2\dots p_k$ длины k. Покажите, что среднее число вхождений этой строки в случайный текст длины n (как подстроки) составляет

$$m^{-k}(n-k+1)$$

Пример вхождения в качестве подстроки: слово "тор"входит в слово "комбинаторика"в качестве подстроки.

3. Рассмотрим алфавит из m символов, из которого составляются всевозможные слова длины n. Пусть имеется некоторая подстрока $p_1p_2\dots p_k$ длины k. Покажите, что среднее число вхождений этой строки в случайный текст длины n (как подпоследовательности) составляет

$$m^{-k}C_n^k$$

Пример вхождения в качестве подпоследовательности: слово "минор"входит в слово "комбинаторика"в качестве подстроки.

5 Отображения

1. Отображение (функция) из множества $\{1,\ldots,n\}$ в множество $\{1,\ldots,r\}$ называется r-сюр $\overline{\imath}$ екцие $\overline{\imath}$, если каждое значение функции принимается хотя бы один раз.

Покажите, что количество сюръекций равно

$$\sum_{j=0}^{r} C_r^j (-1)^j (r-j)^n$$

Для этого покажите, что EGF таких отображений равняется $(e^z-1)^r$. Что можно сказать про EGF для отображений, которые каждое своё значение принимают хотя бы два раза?

2. Отображение называется udemnomentmum, если для него выполнено f(x) = f(f(x)).

Покажите, что количество идемпотентных отображений на $\{1,2,\ldots,n\}$ можно найти по формуле

$$I_n = \sum_{k=0}^n C_n^k k^{n-k}$$

3. Частичное отображение — это отображение, которое не определено в некоторых точках, и принимает специальное значение \bot . Инъекцией называется отображение, которое в разных точках принимает разные значения.

Покажите, что класс инъективных частичных отображений может быть представлен как множество цепочек (циклических или последовательных), и покажите, что размер такого класса отображений на множестве $\{1,2,\ldots,n\}$ равен

$$P_n = \sum_{k=0}^n \sum_{n=0}^n k! \left(C_n^k\right)^2$$

Использованная литература

- 1. Mathematical Excalibur, Volume 18 Number 5
- 2. Milan Novakovic Generating Functions
- 3. Albert R.Meyer, MIT $\,-$ Generating Functions
- 4. IMO Shortlist 2007
- 5. R.Sedgewick, P.Flajolet Analytic Combinatorics