回答 2.2.6

R の反射的閉包を $R^=$ として, $R^=\subseteq R'$ かつ $R'\subseteq R^=$ を示す. $R'=R\cup\{(s,s)\mid s\in S\}$ を① とおく.

1. $R^{=} \subseteq R'$

① より、すべての $s \in S$ に対して $(s,s) \in R'$ であるから R' は反射的である. また、R' は R を含むため、 $R^= \subseteq R'$ である.

 $2. R' \subseteq R^=$

 $(s,t) \in R'$ とすると、①より、 $(s,t) \in R$ または s=t である.

- $(s,t) \in R$ のとき, $R \subseteq R^{=}$ より, $(s,t) \in R^{=}$ である.
- $s = t \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}, \ (s, t) = (s, s) \in \mathbb{R}^{=} \ \mathcal{E} \ \mathcal{E}.$

したがって, $R' \subseteq R^=$ である.

以上から、 $R' = R^{=}$ である.

Ans 2.2.6

Let $R^{=}$ be the reflexive closure of R. We show that $R^{=} \subseteq R'$ and $R' \subseteq R^{=}$. Let $R' = R \cup \{(s,s) \mid s \in S\}$ be ①.

1. $R^{=} \subseteq R'$

By ①, we have $(s, s) \in R'$ for all $s \in S$, so R' is reflexive. Since R' contains R, we have $R^{=} \subseteq R'$.

 $2. R' \subseteq R^=$

Suppose $(s,t) \in R'$. Then by ①, either $(s,t) \in R$ or s=t.

- If $(s,t) \in R$, then $(s,t) \in R^{=}$ since $R \subseteq R^{=}$.
- If s = t, then $(s, t) = (s, s) \in R^{=}$.

Therefore, $R' \subseteq R^=$.

Hence, $R' = R^{=}$.

回答 2.2.7

 R^T を R の推移的閉包とする. $R^T \subset R^+$ と $R^+ \subset R^T$ を示す.

1. $R^T \subseteq R^+$

 $(s,t),(t,u)\in R^+$ とすると,ある i,j が存在して $(s,t)\in R_i$ かつ $(t,u)\in R_j$ である. R^+ の定義より $(s,u)\in R_{\max(i,j)+1}$ であり,したがって $(s,u)\in R^+$. よって R^+ は推移的である.また R^+ は R を含むので, $R^T\subset R^+$ である.

 $2. R^+ \subseteq R^T$

任意の i について $R_i \subseteq R^T$ を数学的帰納法で示す.

- i=0 のとき, $R_0=R\subseteq R^T$.
- i=n のとき $R_n\subseteq R^T$ と仮定する. i=n+1 のとき, $(s,u)\in R_{n+1}$ とすると, ある $t\in S$ が存在して $(s,t),(t,u)\in R_n$. 帰納法 の仮定より $(s,t),(t,u)\in R^T$ であり, R^T が推移的なので $(s,u)\in R^T$.

よって $R^+ \subseteq R^T$.

以上より $R^+ = R^T$.

Ans 2.2.7

Let R^T be the transitive closure of R. We show that $R^T \subseteq R^+$ and $R^+ \subseteq R^T$.

1. $R^T \subseteq R^+$

Suppose $(s,t), (t,u) \in R^+$. Then there exist some i,j such that $(s,t) \in R_i$ and $(t,u) \in R_j$. By the definition of R^+ , we have $(s,u) \in R_{\max(i,j)+1}$, so $(s,u) \in R^+$. Therefore, R^+ is transitive.

Since R^+ contains R, we have $R^T \subseteq R^+$.

 $2. R^+ \subseteq R^T$

We prove that $R_i \subseteq R^T$ for all i by mathematical induction.

- When i = 0, we have $R_0 = R \subseteq R^T$.
- Assume $R_n \subseteq R^T$ for i = n. When i = n+1, suppose $(s, u) \in R_{n+1}$. Then there exists some $t \in S$ such that $(s, t), (t, u) \in R_n$. By the induction hypothesis, $(s, t), (t, u) \in R^T$, and since R^T is transitive, we have $(s, u) \in R^T$.

Therefore, $R^+ \subseteq R^T$.

Hence, $R^+ = R^T$.