准稳态法测不良导体的导热系数和比热 实验报告

姓名: 吴晨聪 学号: 2022010311 实验日期: 2023年12月1日 实验台号: 11

一. 实验目的

- (1) 了解准稳态法测量不良导体的导热系数和比热的原理,并通过快速测量学习掌握该方法;
- (2) 掌握使用热电偶测量温度的方法。

二. 实验仪器

1. 样品台装置

平板型试样4块、薄膜加热器两片、热电偶2只、泡沫绝热体两块。

2. 热电偶测温系统

铜-康铜热电偶、恒温水槽。

3. 加热装置

直流稳压电源。

4. 数字万用表

数字万用表。

5. 秒表

计时仪器采用秒表。

三. 实验原理

1.热传导

Fourier定律:单位时间内通过该层的导热热量Q与该处的温度变化率 $\frac{\mathrm{d}t}{\mathrm{d}x}$ 及平板面积F成正比

$$Q = -\lambda F \frac{\mathrm{d}t}{\mathrm{d}x}$$

其中,比例系数 λ 即为材料的导热系数(热导率),负号表明热流的方向与温度梯度 $\frac{dt}{dx}$ 的方向相反。

定义单位时间内通过单位面积的热流量称为热流密度,记为q,则对图1有

$$q = \frac{Q}{F}$$

于是

$$q = -\lambda \frac{\mathrm{d}t}{\mathrm{d}x}$$

2.一维导热模型

本实验采用较简单的一维无限大平板导热模型进行 λ 的测量。如图2所示,假设有厚度为 2R的无限大平板,原始温度为 t_0 ,从平板的两端面以功率相同、能产生均匀热流的加热器 加热,表面热流密度的大小恒定为 q_c 。依据该模型所限定的初始与边界条件,求出在任何 瞬时沿x方向的温度分布函数 $t(x,\tau)$,其中 τ 为时间变量。

求解可知, 在经过一定时间后, 样品达到准稳态, 近似解为

$$t(x,\tau) - t_0 = \frac{q_c R}{\lambda} \left(\frac{a\tau}{R^2} + \frac{x^2}{2R^2} - \frac{1}{6} \right)$$

其中 $a=\frac{\lambda}{c\rho}$ 称为热扩散率,单位 \mathbf{m}^2/\mathbf{s} ; c为比热,单位 $\mathbf{J}/(\mathbf{kg}\cdot\mathbf{K})$; ρ 为密度,单位 $\mathbf{kg/m}^3$ 。 由此可得

$$\Delta t = t(R, \tau) - t(0, \tau) = \frac{q_c R}{2\lambda}$$

所以

$$\lambda = \frac{q_c R}{2 \Lambda t}$$

由比热的定义,当样品的横向截面积(即热流通过的面积)为F时,则有以下关系式

$$q_c F = c \rho R F \frac{\mathrm{d}t}{\mathrm{d}\tau}$$

由此可得比热为

$$c = \frac{q_c}{\rho R \frac{\mathrm{d}t}{\mathrm{d}\tau}}$$

其中 ρ 为样品密度, $\frac{\mathrm{d}t}{\mathrm{d}\tau}$ 为准稳态下样品的温升速率,可以由中心面 $t(0,\tau)\sim \tau$ 关系曲线求得。

$4.q_c$ 的计算

 q_c 需通过通电加热器的电功率进行计算。因平面薄膜加热器(薄膜加热器由粘附在绝缘材料上的薄膜电阻构成,通电时忽略其电阻变化,其热容也忽略不计)的热量向两个方向传导,为准确计算流向样品中心的热流密度,利用对称性设置样品架,如图3所示,则向样品中心传导的热流密度为加热器电功率的一半,即

$$q_c = \frac{U_{\text{mix}}^2}{2Fr}$$

其中 U_{min} 为加热器所加电压(装置中两个相同的电热薄膜加热器并联接到加热电源),r为单个加热器的电阻。

图 1 四块样品对称放置示意图

四. 实验内容及步骤

1.数字万用表使用练习

阅读实验室内仪器说明书,学习数字万用表的使用,完成以下测量任务及相应的数据处理,如表1所示。

- (1) 交流电压及频率测量;
- (2) 电阻直接测量: 二端法测量电阻R的大小;
- (2) 二极管测量: 测量二极管的正向导通电压;
- (4) 电容测量。

表1 数字万用表测得的参数数据

交流电压(V)	交流信号频率(kHz)	电阻值(kΩ)	二极管导通电压(V)	电容值(μF)
0.35327	3.699	11.0219	0.5491	0.923

2.仪器组装

按图4装好样品、加热器、热电偶并旋紧螺杆旋钮,使样品、加热器、热电偶之间间隙尽量小。实验室提供的被测样品为有机玻璃($\rho=1.196\times 10^3 {
m kg/m^3}$),一套四块,几何尺寸长与宽为90mm,厚度10mm。

3.预热

打开直流稳压电源、数字万用表电源预热十多分钟,预设加热电压到适当值 (15~20V) ,用万用表直流电压档测出实验前的加热电压 U_s 并记入表2。

4.测量热电偶加热器电阻

用万用表电阻档检查四只热电偶是否完好(热电偶电阻约几欧),检查加热器是否完好(单个加热器电阻约 110Ω ,两者并联后电阻约 55Ω),测量加热器并联电阻 R_0 、中心面热电偶电阻 $R_{\rm p,b}$ 、加热面热电偶电阻 $R_{\rm m,b}$ 、中心面冷端热电偶电阻 $R_{\rm p,b}$ 、加热面冷端热电

表2 实验仪器参数测定

室温	$t_0/^{\circ}\mathrm{C}$	20.3	
	R_0/Ω	55.087	
	$R_{ ext{p.k.}}/\Omega$	3.506	
电阻	$R_{ m max}/\Omega$	3.068	
	$R_{ m p}/\Omega$	3.731	
	$R_{ extit{m}}/\Omega$	3.761	
	U_s/V	17.9841	
直流加热电压	U_f/V	17.9838	
	Ū∕V	17.98395	

5.电路连线

反向串接测温热电偶与冷端热电偶,并按图6所示线路连接换向开关、数字万用表。

6.获取温度测量数据

使用温度计测量初始温度 t_0 并记入表2。同时也需测量加热面与中心面的初始温差 $U_{10}(t_2t_1)$ (如果初始温差不为零,应当做已定系统误差,应修正)以及初始中心面温度 $U_{20}(t_1t_c)$,并将数据记入表3。

接通加热电源与加热器,同时开始计时,每隔1分钟测一次加热面与中心面温差 $U_1(t_2t_1)$ 及中心面与冷端的温差 $U_{20}(t_1t_c)$ 并记入表3,共测25分钟左右。

表3 温差测定数据

时间τ/min	加热面与中心面温差 $U_1(t_2t_1)/{ m mV}$	中心面与冷端的温差 $U_2(t_1t_c)/mV$		
0	0.001	0.002		
1	0.114	0.004		
2	0.154	0.008		
3	0.173	0.021		
4	0.185	0.039		
5	0.192	0.061		
6	0.196	0.084		
7	0.198	0.107		
8	0.199	0.131		
9	0.200	0.154		

10	0.201	0.179
11	0.202	0.203
12	0.202	0.228
13	0.202	0.252
14	0.202	0.278
15	0.203	0.302
16	0.203	0.326
17	0.203	0.351
18	0.203	0.374
19	0.203	0.398
20	0.204	0.421
21	0.204	0.445
22	0.204	0.468
23	0.204	0.492
24	0.204	0.514
25	0.204	0.537

7.测量加热后电压

断开加热电源,拆下数字万用表,按步骤3再次测量实验后的加热电压 U_f ,与实验前的加热电压 U_s 取平均使用。

8.实验注意事项

- (1) 组装仪器时样品初温应保持为室温,不要用手大面积长时间接触试样;
- (2) 需要换样品时应先旋松螺杆旋钮, 待仪器各部分冷至室温后再换装新样品重新做实验, 拆装样品时加热面热电偶严禁从装置上取下,以防损坏。

五. 数据处理

1. 数字万用表的使用练习

不确定度的计算以及完整测量结果如表4所示。

表4数字万用表测量参数的不确定度及完整结果

测量任务	测量值	量程	精度	不确定度	完整结果
交流电压	0.35327V	2V	0.015+0.003	0.35327×0.015%+2×0.003%=0.00011V	(0.35327±0.00011)V

交流信号频率	3.699Hz	20kHz	0.01+0.003	3.699×0.01%+20k×0.003%=0.00096Hz	(3.699±0.00096)Hz
电阻值	11.0219kΩ	20kΩ	0.020+0.004	11.0219×0.020%+20×0.004%=0.0030kΩ	(11.0219±0.0030)kΩ
电容值	0.923μF	2μF	1+0.5	0.923×1%+2×0.5%=0.0192μF	(0.923±0.0192)μF
二极管导通电压	0.5491V				

2. 准稳态法测不良导体的导热系数和比热的数据处理

(1) 加热面与中心面温差、中心面与冷端的温差的图像

根据表3中的实验数据,利用Excel绘制出加热面与中心面温差、中心面与冷端的温差的图像分别如图7、图8所示。

图 7 加热面与中心面温差 U1(t2t1)图像

图 8 中心面与冷端的温差 U2(t1tc)图像

(2) 准稳态的判断和进入准稳态后的 $U_2(t_1t_c)$ 图像

由图7可判断,达到准稳态的时间大致在10min之后,由于 $U_2(t_1t_c)$ 稳定在0.203mV的时间 最长,可以判断温差约为

$$\Delta t = \frac{\Delta U_1(t_2 t_1)}{k_1} = \frac{0.203 \times 10^{-3}}{40 \times 10^{-6}} = 5.075 \text{K}$$

图 9 进入准稳态后 U2(t1tc)图像

(3) 导热系数和比热的计算

由图9可知,进入准稳态后温升曲线的斜率 $k_0 = 0.024 \text{mV/min}$,由此可得对应的温升速

率为

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{k_0}{k_1} = \frac{0.024 \times 10^{-3}}{40 \times 10^{-6}} = 0.60 \, ^{\circ}\text{C/min}$$

由加热电压、面积和加热电阻阻值得到热流密度

$$q_c = \frac{\overline{U}^2}{2Fr} = \frac{17.98395^2}{2 \times 0.09^2 \times 55.087 \times 2} = 181.207 \text{ W/m}^2$$

从而由温差、热流密度和导体尺寸可求得导热系数

$$\lambda = \frac{q_c R}{2\Delta t} = \frac{181.207 \times 0.01}{2 \times 5.075} = 0.178 \text{ W/(m \cdot K)}$$

进而可求得导体的比热

$$c = \frac{q_c}{\rho R \frac{dt}{d\tau}} = \frac{181.207}{1.196 \times 10^3 \times 0.01 \times 0.60 \times \frac{1}{60}} = 1.515 \times 10^3 \text{ J/(kg · K)}$$

若热流密度按电功率的85%来修正,则热流密度

$$q_c = \frac{85\%\overline{U}^2}{2Fr} = \frac{85\% \times 17.98395^2}{2 \times 0.09^2 \times 55.087 \times 2} = 154.026 \text{ W/m}^2$$

导体的导热系数

$$\lambda = \frac{q_c R}{2\Delta t} = \frac{181.207 \times 0.01}{2 \times 5.075} = 0.178 \text{W/(m \cdot \text{K})}$$

导体的比热

$$c = \frac{85\%q_c}{\rho R \frac{dt}{d\tau}} = \frac{85\% \times 181.207}{1.196 \times 10^3 \times 0.01 \times 0.60 \times \frac{1}{60}} = 1.2877 \times 10^3 \text{ J/(kg · K)}$$

六. 实验总结

本实验采用准稳态法测量不良导体的导热系数和比热。

- (1) 实验过程中用热电偶产生电压差的方式测量了温度差,这种方式测量温度能获得更多的有效数字。
- (2) 本次实验测量加热面与中心面温差 $U_1(t_2t_1)$ 时,初始温差不为 0,而是 0.002V。分析原因可能是在开启加热装置一段时间后才开始测量初始温差,导致加热与中心面初始温差不再是 0。
- (3) 实验测得的导热系数偏低,比热偏高,分析原因可能是实验过程中隔热层与加热器和

样品并没有压紧,导致传热损失。(相当于混入了空气)

(4) 本次实验中,10min 后准稳态的稳定性不是特别好,温度波动在0.01℃左右。表明准稳态存在的时间并不长,若实验时间更长,准静态的状态会消失。并且准静态不稳定,也会对实验结果造成影响。

七. 问题探讨

1. 本实验中准稳态会无限保持下去吗?

不会。当样品温度很高时,会导致其与环境的温差很大,使得其传递到环境中的热量很高,在热流密度不变的情况下,会使得温升速率下降,进而破坏准稳态。

2. 热电偶冷端温度对实验的影响是怎样的?

实验中为了获得中心面温度的变化,必须要求热电偶冷端温度恒定。如果热电偶冷端温度会发生变化,则无法由热电偶的电压得到精确的中心面温度,会导致实验的精度下降。

3. 对准稳态曲线走势进行分析

在进入准稳态之后,由于样品内各点的温升速率相同并保持不变,样品内两点间温差恒定,因而中心面与加热面之间的温差对应的电压差基本保持不变;而对于中心面与冷端的温差,由于进入准稳态之后样品内各点的温升速率相同并保持不变,在图像上呈现出直线的性质,如图9所示。

八. 原始数据记录

友儿,

准稳态法测量不良导体的导热系数和比热

班级 电25 姓名 美原心 学号 2022010311 组号 伊五印见了 座位号 11

测量任务	测量值	万用表量程	不确定度计算公式及计算结果	完整测量结果
电阻 R	11.0219kg	20 ks	0.02 X10-2 X 11.0219 +0.004 X10-2 X 20	(11.021910.0030)k2
电容C	0.923MF	2 MF	0.01x0.923+0.5x0.01 x Z	(0.923± 0.0192) UF
交流电压U	0.35321	2٧	0.2 x0.01 x 0.35327 +0.05 x0.01 x2	(0.35327±0,0091)V
大xxx 户口 c		20KHZ	U. 01 XO. 01 X 3694 + 0. 01 X 4200 3 x20	(3699 ± 0.0096)kH
交流信号 f 3699kH2		频率测量时量	1 2679 1 0.00 10 /2/19	
二极管导 通电压	0.5491	V	(不需要估计不确定度)	

二、热导实验准备、器件检查:

- 1、接线前检测热电偶是否完好:
 - 中心面热电偶阻值= 3.5% Ω (应小于 10 欧)
 - 加热面热电偶阻值= 3.068 n (应小于 10 欧)
 - 中心面冷端热电偶阻值= 313 15(应小于10欧)
 - · 加热面冷端热电偶阻值= 3.760 (应小于 10 欧)
- 2、两个相同电加热薄膜并联后的阻值= 55.087 八
- 3、冷端水温 (近似以室温替代) tc=20.5℃
- 4、直流电源设定加热电压(15~20V),并测量(加热前后各测一次): $U\,(\,\hat{n}\,)=\underbrace{1\,1\,9\,8\,3\,8}_{}\,V\,$

5、其他已知条件:有机玻璃样品密度= 1196 kg/m³, 几何尺寸= 8 1000 mm³ 热电偶(铜-康铜)温度系数= 40 uV/℃

三、实验接线,通电前记录 r=0 时的数据(U1 应小于 10 微伏),通电加热起开始计时、按时记录数据:

τ(分钟) 0.002 2004 0.008 0.061 0.084 0.107 0.131 0.021 0.039 $U_2(t_1,t_c)$ 0.196 0.198 0.199 0.114 0.154 0.173 0.185 0.192 $U_1(t_2,t_1)$ 0.001 17 15 13 11 10 τ(分钟) 0.179 0.203 0.228 0.252 0.278 0.302 0.326 0.351 0.154 $U_2(t_1,t_c)$ 0.202 0.202 0.203 0.203 0.203 0,201 0,202 0.202 $U_1(t_2,t_1)$ 0.200 24 25 22 23 21 18 τ(分钟) 0.398 0.421 0.445 0.468 0.492 0.514 0.531 0.374 $U_2(t_1,t_c)$ 6.203 0.204 0.204 0.204 0.204 0.204 0.204 6.20} $U_1(t_2,t_1)$