Lois de probabilités sur un domaine fini

F. Kany. ISEN-Brest. La Croix-Rouge.

On note [[a, b]] l'intervalle d'entiers : a, a + 1, a + 2, ..., b - 1, b.

Loi uniforme

Écrire une fonction $f_{uniforme(x,a,b)}$ qui renvoie la distribution de probabilité uniforme discrète pour x sur l'intervalle [[a,b]] (avec a < b)

Tracer la loi uniforme f_uniforme(x,2,5) sur l'intervalle [[0,10]]

Tracer la fonction de répartition de la loi uniforme f_uniforme(x,2,5) sur l'intervalle [[0,10]]

Loi triangulaire

Définition (cas discret)

La loi triangulaire discrète de paramètre entier positif a est définie pour tout entier x compris entre -a et a par :

$$P(x) = \frac{a+1-|x|}{(a+1)^2}$$

Écrire une fonction $f_{triangle(x,a)}$ qui renvoie la distribution de probabilité triangulaire discrète pour x sur l'intervalle [[-a,a]]

Tracer la loi triangulaire $f_{triangle}(x,5)$ sur l'intervalle [[-10,10]]

Généralisation (cas continu)

La loi triangulaire **continue** sur le support [a;b] et de mode c est définie par la densité suivante sur [a,b]:

$$f \colon x \mapsto \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{si } a \le x < c \\ \frac{2}{b-a} & \text{si } x = c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{si } c < x \le b \\ 0 & \text{sinon} \end{cases}$$

Écrire une fonction $f_{triangle}(x,a,b,c)$ qui renvoie la distribution de probabilité triangulaire continue de mode c pour x sur l'intervalle [[a,b]] (avec a < b)

Tracer la fonction f_triangle(x,20,70,50) sur l'intervalle [[0,100]]

Lien avec la loi uniforme

Le jet d'un dé (à 6 faces) correspond à une distribution de probabilités uniforme.

Somme de deux dés

Écrire une fonction somme_deux_des(x) donnant la distribution de probabilités pour le jet de deux dés [on effectue la somme des dés] en effectuant une recherche de tous les cas possibles.

Tracer cette fonction sur l'intervalle [[2,12]].

Refaire le même exercice en simulant (avec la fonction random.randint) 10 000 fois le jet de 2 dés.

Trouver les paramètres a,b,c de la distribution triangulaire qui correspond à cette distribution. Tracer la avec la même échelle que le graphe précédent.

Différence de deux dés

Ecrire une fonction difference_deux_des(x) donnant la distribution de probabilités pour le jet de deux dés [on effectue la valeur absolue de la différence des dés] en effectuant une recherche de tous les cas possibles.

Tracer cette function sur l'intervalle [[0, 5]].

Refaire le même exercice en simulant (avec la fonction random.randint) 100 000 fois le jet de 2 dés. Essaver de trouver les paramètres a,b,c de la distribution triangulaire qui approxime cette distribution.

Tracer la avec la même échelle que le graphe précédent.

Commenter

Loi de Bernoulli

La loi de Bernoulli décrit un tirage aléatoire à deux résultats possibles (succès et échec, numérotés 1 et 0), de probabilités respectives p et 1-p.

$$P(X = x) = \begin{cases} p & \text{si } x = 1, \\ 1 - p & \text{si } x = 0, \\ 0 & \text{sinon.} \end{cases}$$

À l'aide de la fonction random.random(), écrire une fonction Bernoulli(p) qui suit la loi indiquée.

Loi de Rademacher

La loi de Rademacher est une Bernoulli équiprobable (p = 1/2) où le succès vaut 1 et l'échec -1. Ecrire une fonction Rademacher().

Loi binomiale

Définition 1

La loi binomiale, de paramètres n et p, est la loi de probabilité d'une variable aléatoire X égale au nombre de succès rencontrés au cours d'une répétition de n épreuves de Bernoulli, p étant la probabilité de succès dans chacune d'entre elles.

On fera des movennes sur 10 000 essais.

Tracer sur le même graphique, pour n=20, les diagrammes pour p=0.1, p=0.5 et p=0.8 sur l'intervalle [[0,20]]

Définition 2

La loi binomiale, de paramètres n et p, est la loi de probabilité discrète d'une variable aléatoire X dont la fonction de masse est donnée par :

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \text{ pour } k = 0, 1 \dots, n.$$

À l'aide de la fonction math.factorial, écrire une fonction Binomiale(x,p,n) qui suit la loi indiquée. Tracer sur le même graphique, pour n=20, les diagrammes pour p=0.1, p=0.5 et p=0.8 sur l'intervalle [[0,20]]

Loi hypergéometrique

La loi hypergéometrique décrit le résultat d'une série de tirages **Bernoulli dépendants**. Le modèle est celui d'une "urne" dont on tire des "boules" successives noires et blanches sans les remettre dans l'urne.

Définition 1

La loi hypergéométrique de paramètres associés n, p et A est décrit par le modèle suivant :

On tire simultanément n boules dans une urne contenant p.A boules gagnantes et q.A boules perdantes (avec q = 1 - p, soit un nombre total de boules valant p.A + q.A = A). On compte alors le nombre de boules gagnantes extraites et on appelle X la variable aléatoire donnant ce nombre.

Écrire une fonction hypergeometrique(x,n,p,A).

On fera des moyennes sur 10 000 essais.

Tracer, sur le même graphique, sur l'intervalle [[0, 20]] :

Définition 2

La loi hypergéométrique, de paramètres n, p et A, est la loi de probabilité discrète d'une variable aléatoire X dont la fonction de masse est donnée par :

$$P(X = k) = \frac{\binom{pA}{k}\binom{qA}{(n-k)}}{\binom{A}{n}} \text{ pour } k = 0, 1 \dots, n.$$

P(X = k) = $\frac{\binom{pA}{k}\binom{qA}{n-k}}{\binom{A}{n}}$ pour $k = 0, 1 \dots, n$. À l'aide de la fonction math.factorial, écrire une fonction hypergeometrique(x,n,p,A) qui suit la loi indiquée.

Tracer, sur le même graphique, sur l'intervalle [[0,20]] :