Computability (29/11/2021)

Riceis Gheorem

every program property which comcums the behaviour (I/O) of programs is mot decidable

"P is stopping on every imput"

" program P om imput 1 provides 2 as output"
" program P computes the function f"

umdecolable

" the length of P is < 10"

deadoble

What is a behavioural property of a program ??

A & IN

C set of programs

 $A_1 = dm + lm always stops }$ $A_2 = dm + lm function computed by lm is 1 }$

A \leq IN (program property) is behavioured property if for every program $m \in IN$ the fact that $m \in A$ or mot any depends on q_m

Def (saturated/extensional set):
$$A \in \mathbb{N}$$
 is soturated (extensional) if $\forall m, m \in \mathbb{N}$ if $m \in A$ and $q_m = q_m$ then $m \in A$.

A soturated if $A = \{m \mid q_m \text{ satisfies.....}\}$

1 A softwated if
$$A = d m \mid \varphi_m \in A$$

where $A \leq C$

Examples:

*
$$T = \{m \mid Pm \text{ always teximimate (on every imput)}\}$$
 SATURATED

= $\{m \mid Pm \text{ is total}\}$

= $\{m \mid Pm \in Z\}$ where $Z = \{f \mid f \text{ is total}\}$

* ONE =
$$\{m \mid Pm \text{ computes } I\}$$

= $\{m \mid P_m = I\}$

= $\{m \mid P_m \in \{I\}\}$ SATURATED

* LEN10 =
$$dm$$
 | Pm Cempth of $Pm \le 10$) NOT SATURATED $m \in LEN10$ ord $Pm = Pm$ $m \notin LEN 10$

$$m = \chi \left(\frac{Z(1)}{Z(1)} \right)$$
 $m = \chi \left(\frac{Z(1)}{Z(1)} \right)$
 $m = \chi \left(\frac{Z(1)}{Z(1)} \right)$

$$K = \{x \mid \varphi_{x}(x) \downarrow \}$$

$$= \{x \mid \varphi_{x} \in \mathcal{X} \}$$

$$\mathcal{R} = df \mid f(?) \downarrow$$

apposembly K is not solurated

formally I should find m, on EN

$$m \in K$$
 $q_m(m) \downarrow$

and Pm = Pm

$$m \notin K \quad q_m(m) \uparrow$$

if we could find a paguam me such that

$$\varphi_{\underline{m}}(x) = \begin{cases} 1 & x = m \\ \uparrow & \text{otherwise} \end{cases}$$

al an conclude

①
$$[m \in K]$$
 $[q_m(m) = 1 \downarrow]$

there on infinitely many programs computing Pm 2

=
$$\Rightarrow$$
 $\exists m \neq m$ s.t. $\varphi_m = \varphi_m$

$$\varphi_m = \varphi_m$$

$$m \notin K$$
 $\varphi_m(m) = \varphi_m(m) \uparrow$

if x = P then out 0 I if $x \neq P$ then 1

Rice's theorem

Let
$$A \subseteq IN$$
 if A is solvented $A \neq \emptyset$, $A \neq IN$

them A mot recursive

proof

we show that $K \leq_m A$ (hence, since K is not recursive we diduce A mot recursive

Let $e_0 \in \mathbb{N}$ be an index for the function always undefined $e_0 \in \mathbb{N}$ $e_0 \in \mathbb{N}$

define
$$g(x,y) = \{\varphi_{e_1}(y) \mid \text{if } x \in K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } x \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } x \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \} \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y) \mid \text{if } \chi \notin K \}$$

$$= \{\varphi_{e_1}(y$$

By smm theorem there is
$$S: |N \rightarrow N|$$
 total computable such that $\varphi_{S(z)}(y) = g(z,y) = \int \varphi_{S(z)}(y) \quad \text{if } x \in K$ $\downarrow \varphi_{B}(y) \quad \text{if } x \notin K$

Hema KSmA, K mot recursive, thus A mot recursive

*
$$B_m = \{ x \in IN \mid m \in E_x \}$$
 is mot recursive we showed that $K \leq_m B_m$ We can conclude the same by observing

1) Bm is softwarted
$$B_{m} = \{x \mid Px \in B_{m}\} \quad B_{m} \in C$$

$$B_{m} = \{f \mid m \in ad(f)\}$$

B_m
$$\neq$$
 |N
e.g. if e₂ such that $\varphi_{e_2} = \chi_{\infty}$, m $m \neq m$ then $e_2 \in B_m$
simple $m \notin E_{e_2} = \sqrt{m}$

- By Rice's theorem Bon is not recursive.

Example

$$I = d m \in |N| \mid E_m \mid s \mid mfimite \}$$

$$saturated ? yes$$

$$= d m \in |N| \mid P_m \in \mathcal{Y} \}$$

$$y = df \mid cod(f) \mid s \mid imfimite)$$

Hemae I is not recursive (by Rice's thusram)

* saturated? pubobly met

$$A = \{ x \mid \varphi_x \in A \}$$

$$A = d f$$
 ? $\in dom(f) \cap cod(f)$

* we show K <m A

reduction function $S: IN \rightarrow IN$ to tal compotable such that $x \in K$ iff $S(x) \in A$

$$g(x,y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{if } x \notin K \end{cases}$$

$$= y \cdot \underline{1}(\varphi_{x}(x)) = y \cdot \underline{1}(\psi_{y}(x,x))$$

$$\uparrow & \text{if } x \notin K \\ 1 & \text{if } x \in K \end{cases}$$

2 detugma

By smm thusem $\exists s: N \rightarrow N$ total computable nuch that $g(x_1y) = g_{s(x)}(y)$

S is the reduction function for KSm A (No A mot recursive)

$$*$$
 $x \in K$ \Rightarrow $q_{S(x)}(y) = g(x,y) = g \forall y \Rightarrow W_{S(x)} = IN$

$$E_{S(x)} = IN$$

$$\Rightarrow$$
 $S(x) \in W_{S(x)} \cap E_{S(x)} = \mathbb{N} \Rightarrow S(x) \in A$

*
$$x \notin K$$
 $\Rightarrow \varphi_{S(x)}(y) = g(x_{i}y) \land \forall y \Rightarrow W_{S(x)} = E_{S(x)} = \emptyset$
 $\Rightarrow S(x) \notin W_{S(x)} \cap E_{S(x)} = \emptyset \Rightarrow S(x) \notin A$