Andrej Smrdu RAZLAGA SPREMEMB V IMENOVANJU ANORGANSKIH SPOJIN

Dodatek k II. izdaji učbenika **KEMIJA, SNOV IN SPREMEMBE 2**

ZALOŽNIŠTVO JUTRO

UVOD

Dodatek »Razlaga sprememb v imenovanju anorganskih spojin« je namenjen uporabnikom II. izdaje učbenika »Kemija, Snov in spremembe 2«. Pojasnjuje spremembe pri imenovanju anorganskih spojin (priporočila IUPAC 2005) in s tem omogoča nadaljnjo uporabo prejšnje izdaje učbenika.

V *Dodatku* je vključeno celotno poglavje »Nomenklatura anorganske kemije«, ki je novo v III. izdaji učbenika »Kemija, Snov in spremembe 2«. V tem poglavju je med drugim z mnogimi primeri pojasnjeno imenovanje binarnih spojin, oksokislin in njihovih soli (tudi hidrogensoli), kristalohidratov in ionov. Poleg tega je v *Dodatku* tudi priročna preglednica anorganskih kislin, njihovih kislinskih ostankov ter natrijevih in kalcijevih soli, pa tudi celotna prenovljena in razširjena učna enota »Koordinacijske spojine«.

Pri vključevanju »nove nomenklature anorganske kemije« v srednješolsko poučevanje kemije je potrebno upoštevati, da:

- ▶ gre le za Priporočila IUPAC (2005) in ne stroga navodila;
- ▶ se tudi v tuji literaturi pri imenovanju spojin ni veliko spremenilo;
- ▶ spreminjanje načina poimenovanja zahteva določeno obdobje, v katerem se nekatere spremembe uveljavijo, nekatere pa ne;
- ▶ je imenovanje spojin z oksidacijskim številom (Stockov sistem) močno uveljavljeno v slovenskem kemijskem izrazoslovju;
- ▶ mora biti imenovanje na srednješolskem nivoju prilagojeno dijakom (smiselnost izbora vrste nomenklaturnega sistema);
- ▶ imenovanje spojin ni temeljni cilj poučevanja kemije.

Andrej Smrdu

Elementi

Simboli in imena elementov

Vsak element ima svoje ime in enočrkovni ali dvočrkovni simbol. V dvočrkovnih simbolih je prva črka vedno velika, druga pa majhna (npr. helij He). V kemijskih formulah so simboli pisani pokončno (ne poševno).

Pri nekaterih dlje časa znanih elementih se slovenska imena precej razlikujejo od angleških imen oz. simbola elementa ne moremo preprosto povezati z njegovim slovenskim imenom (npr. baker Cu, zlato Au, srebro Ag). Imena elementov, poimenovanih po zaslužnih znanstvenikih, lahko pišemo etimološko ali fonetično.

Primeri:

Cm: curij ali kirij	Es: einsteinij ali ajnštajnij	Mt: meitnerij ali majtnerij
---------------------	-------------------------------	-----------------------------

Enoatomni in večatomni elementi

Pri imenovanju elementov, ki tvorijo večatomne molekule (npr. H_2 , N_2 , O_2 , F_2 , P_4) uporabljamo množilne predpone (števnike). Predpono »mono« uporabimo v primerih, ko element običajno ni v enoatomskem stanju. V nekaterih primerih uporabljamo tudi običajna (sprejemljiva alternativna) imena. Primeri:

Formula	Sistematsko ime	Pojasnilo
Не	helij	Element je v enoatomskem stanju, zato predpone »mono« ne uporabljamo.
O	monokisik	Element je običajno kot molekula O ₂ , zato v tem primeru uporabimo predpono »mono«.
O_2	dikisik	Uporabljamo lahko tudi običajno ime kisik.
O_3	trikisik	Uporabljamo lahko tudi običajno ime ozon.
P_4	tetrafosfor	Uporabljamo lahko tudi običajno ime beli fosfor.

V obliki dvoatomnih molekul so običajno vodik H_2 , dušik N_2 , kisik O_2 in halogeni (elementi 17. oz. VII. skupine, npr. fluor F_2). Pri teh elementih z običajnimi imeni brez števnikov opredeljujemo dvoatomne molekule (npr. dušik za formulo N_2 , klor za formulo Cl_2).

V srednji šoli običajno tolmačimo »fosfor« kot ime za »P« ali »P₄«, »žveplo« pa kot ime za »S« ali »S₈«.

Pri neznanem ali zelo velikem številu atomov v molekuli elementa (npr. v dolgih verigah) napišemo simbol elementa in poševno (kurzivno) zapisano črko »n« v spodnjem desnem indeksu. Pri imenovanju tovrstne oblike uporabimo predpono »poli«. Primer:

Formula	Sistematsko ime	Pojasnilo
S_n	poližveplo	Uporabljamo lahko tudi običajno ime plastično žveplo.

Oštevilčenje skupin v periodnem sistemu elementov

Skupine elementov so v periodnem sistemu oštevilčene z arabskimi številkami od 1 do 18. V srednji šoli pa zaradi pretežne uporabe zgolj glavnih elementov pri razlagi vezi in formul (zlasti pri konceptu valenčnih elektronov) pogosto uporabljamo označevanje skupin glavnih elementov z rimskimi številkami od I do VIII (1. skupino – vodik in alkalijske kovine – označimo z rimsko številko I; 2. skupino – zemeljskoalkalijske kovine – označimo z rimsko številko II; skupine elementov od 13 do 18 pa označimo z rimskimi številkami od III do VIII).

Binarne spojine

Binarne spojine so spojine dveh elementov, npr. voda H₂O, amonijak NH₃ (*Slovenski pravopis* navaja ime »amonijak«, *Nomenklatura anorganske kemije* uporablja ime »amoniak«).

Zaporedje simbolov elementov v formuli binarne spojine

Zaporedje simbolov elementov temelji na njihovem položaju v periodnem sistemu.

Pri binarnih spojinah z vodikom napišemo vodik na prvo mesto, če je ob elementu 16. ali 17. skupine (VI. oz. VII. skupina po starejšem označevanju); ob elementih ostalih skupin napišemo vodik na drugo mesto. Primeri:

Formula	Pojasnilo	
HF, H ₂ S	Fluor je element 17. oz. VII. skupine, žveplo pa element 16. oz. VI. skupine, zato v navedenih primerih napišemo vodik na prvo mesto.	
NH ₃ , CaH ₂	Dušik je element 15. oz. V. skupine, kalcij pa element druge skupine, zato v navedenih primerih napišemo vodik na drugo mesto.	

Če sta elementa v isti skupini periodnega sistema, napišemo na prvo mesto element, ki je nižje v periodnem sistemu. Primera:

Formula	Pojasnilo
SO ₃	Žveplo (element 3. periode) je v periodnem sistemu nižje kot kisik (element 2. periode), zato napišemo žveplo na prvo mesto.
ICl ₅ Jod (element 5. periode) je v periodnem sistemu nižje kot klor (element 3. periode), zato napišemo jod na prvo mesto.	

Če sta elementa v različnih skupinah periodnega sistema, zapisujemo elemente v naslednjem zaporedju (skupine periodnega sistema): 18-1-2-3- ... -15-16-17. Primera:

Formula	Pojasnilo	
XeF ₂	Ksenon je element 18. skupine, fluor pa element 17. skupine, zato v skladu z navedenim zaporedjem napišemo ksenon na prvo mesto.	
OCl_2	Kisik je element 16. skupine, klor pa element 17. skupine, zato v skladu z navedenim zaporedjem napišemo kisik na prvo mesto.	

Binarne spojine kisika in halogenov smo do zdaj zapisovali v zaporedju halogen-kisik (razen spojine OF_2). Tak zapis je močno uveljavljen in se ohranja tudi v mnogih sodobnih tujih virih, zato ga je smiselno dovoljevati na nivoju srednje šole.

Imenovanje binarnih spojin s števniki (množilnimi predponami)

Slovenskemu imenu prvega elementa v formuli dodamo pripono –ov oz. –ev, pri drugem elementu v formuli pa uporabimo modificirano latinsko ime elementa s končnico –id. Neposredno pred vsak del imena (brez presledka) dodamo ustrezen števnik (množilno predpono), med obema deloma imena pa je presledek.

Števniki (množilne predpone): 1-mono; 2-di; 3-tri; 4-tetra; 5-penta;

6-heksa; 7-hepta; 8-okta; 9-nona; 10-deka.

Modificirana latinska imena: O-oksid; S-sulfid; H-hidrid; F-fluorid; C-karbid; N-nitrid; P-fosfid.

Primera:

Formula	Ime	Pojasnilo
P_4O_{10}	tetrafosforjev dekaoksid	V molekuli so štirje atomi fosforja in deset atomov kisika.
O ₂ Cl	dikisikov klorid	V molekuli sta dva atoma kisika in en atom klora.

DODATNO POGLAVJE V III. IZDAJI UČBENIKA **KEMIJA, SNOV IN SPREMEMBE 2**Nomenklatura anorganske kemije

Predpona »mono« se uporablja le za poudarjanje števila atomov (en atom). V splošnem se končni samoglasnik v števnikih (množilnih predponah) ne izpušča. Zaradi uveljavljene rabe je to dovoljeno le pri imenu »monoksid«. Primera:

Formula	Ime
СО	ogljikov oksid <i>ali</i> ogljikov monooksid <i>ali</i> ogljikov monoksid
NO	dušikov oksid <i>ali</i> dušikov monooksid <i>ali</i> dušikov monoksid

Števnike (množilne predpone) lahko izpustimo, če je iz položaja elementov v periodnem sistemu formula binarne spojine nedvoumno določljiva (npr. pri preprostih binarnih ionskih spojinah). Primera:

Formula	Ime	Pojasnilo
CaCl ₂	kalcijev klorid	Kalcij je element druge skupine (tvori ione z nabojem 2+), klor pa element 17. oz. VII. skupine periodnega sistema (tvori ione z nabojem 1–). Iz velikosti nabojev obeh ionov sklepamo, da je v spojini množinsko razmerje med njima 1:2.
Li ₂ O	litijev oksid	Litij je element prve skupine (tvori ione z nabojem 1+), kisik pa element 16. oz. VI. skupine periodnega sistema (tvori ione z nabojem 2–). Iz velikosti nabojev obeh ionov sklepamo, da je v spojini množinsko razmerje med njima 2:1.

Podobno imenujemo tudi amonijeve soli, čeprav formalno to niso binarne spojine. Primer:

Formula	Ime	Pojasnilo
NH ₄ Cl	amonijev klorid	Amonijev ion ima naboj 1+ (NH ₄ ⁺). Klor je element 17. oz. VII. skupine periodnega sistema (tvori ione z nabojem 1–). Iz velikosti nabojev obeh ionov sklepamo, da je v spojini množinsko razmerje med njima 1:1.

Imenovanje binarnih spojin z oksidacijskim številom (Stockov sistem)

V imenih spojin navedemo oksidacijsko število elementa z rimsko številko znotraj okroglega oklepaja neposredno (brez presledka) za imenom elementa, na katerega se nanaša. Pri preprostih binarnih spojinah navedemo le pozitivno oksidacijsko število, torej oksidacijsko število prvega elementa v formuli.

Isti element ima v različnih spojinah lahko različna oksidacijska števila. Pri preprostih binarnih spojinah lahko izračunamo oksidacijsko število določenega elementa z uporabo naslednjih pravil (zaradi lažjega razumevanja so vrednosti oksidacijskih števil v navedenih pravilih izražena z arabskimi številkami):

- vsota oksidacijskih števil vseh elementov v spojini je 0;
- kovine prve skupine periodnega sistema imajo oksidacijsko število +1, kovine druge skupine +2, kovine 13. oz. III. skupine pa običajno +3;
- kot negativni deli spojin (zapisani desno) imajo elementi 17. oz. VII. skupine periodnega sistema oksidacijsko število −1, elementi 16. oz. VI. skupine −2, elementi 15. oz. V. skupine pa −3.

Pripone oz. končnice se pri imenovanju z oksidacijskim številom uporabljajo enako kot pri imenovanju s števniki (množilnimi predponami). Primera:

Formula	Ime	Pojasnilo
MnO_2	manganov(IV) oksid	Z imenom opredelimo oksidacijsko število mangana +4. Oksidacijsko število kisika je −2, a ga ne navedemo.
NiF ₂	nikljev(II) fluorid	Z imenom opredelimo oksidacijsko število niklja +2. Oksidacijsko število fluora je −1, a ga ne navedemo.

5

Imenovanje binarnih spojin z nabojnim številom (Ewens-Bassettov sistem)

V imenih spojin navedemo nabojno število iona z arabsko številko in dodamo predznak naboja + oz. – znotraj okroglega oklepaja neposredno (brez presledka) za imenom iona, na katerega se nanaša. Pri preprostih binarnih spojinah navedemo le pozitivno nabojno število, torej naboj prvega iona v formuli.

Pripone oz. končnice se pri imenovanju z nabojnim številom uporabljajo enako kot pri imenovanju s števniki (množilnimi predponami). Primera:

Formula	Ime	Pojasnilo
V_2O_3	vanadijev(3+) oksid	Z imenom opredelimo kation V ³⁺ . Iz imena »oksid« lahko sklepamo na ion O ²⁻ .
$CoCl_2$	kobaltov(2+) klorid	Z imenom opredelimo kation Co²+. Iz imena »klorid« lahko sklepamo na ion Cl⁻.

Pri imenovanju binarnih spojin z nabojnim številom je v določenih primerih potrebno navesti tudi števnik. V določenih primerih pa v imenu navedemo negativno nabojno število. Primeri:

Formula	Ime	Pojasnilo
Hg ₂ Cl ₂	diživosrebrov(2+) klorid	Z imenom opredelimo diatomni kation Hg_2^{2+} (dva atoma živega srebra, celotni naboj kationa je 2+).
Na ₂ S ₃	natrijev trisulfid(2-)	Z imenom opredelimo triatomni anion S_3^{2-} (trije atomi žvepla, celotni naboj aniona je 2–).
K_2O_2	kalijev dioksid(2-)	Z imenom opredelimo diatomni anion O_2^{2-} (dva atoma kisika, celotni naboj aniona je 2–).
KO ₂	kalijev dioksid(1–)	Z imenom opredelimo diatomni anion O_2^- (dva atoma kisika, celotni naboj aniona je 1–).
KO ₃	kalijev trioksid(1-)	Z imenom opredelimo triatomni anion O ₃ (trije atomi kisika, celotni naboj aniona je 1–).

V navedenih spojinah lahko na naboj večatomnih ionov sklepamo iz običajnih nabojev ionov ostalih elementov; klor tvori ion Cl⁻, natrij in kalij pa iona Na⁺ oz. K⁺. Spojine lahko preprosteje imenujemo s števniki (npr. diživosrebrov diklorid).

Imenovanje binarnih spojin z nabojnim številom se redko uporablja.

Anorganske oksokisline

V formulah anorganskih oksokislin tradicionalno zapisujemo simbole elementov v naslednjem vrstnem redu: vodik–značilna (centralna) nekovina–kisik, npr. H_2SO_4 . Nova nomenklatura anorganske kemije uvaja zapis formul oksokislin kot koordinacijskih spojin (t. i. koordinacijska formula), npr. $[SO_2(OH)_2]$ za spojino H_2SO_4 .

Anorganske oksokisline v slovenski kemijski literaturi pretežno imenujemo z navedbo oksidacijskega števila centralne nekovine (Stockov sistem). Po tem sistemu imenovanja navedemo centralno nekovino in njeno oksidacijsko število v okroglem oklepaju brez presledka ter dodamo besedo »kislina«. Vodikovih in kisikovih atomov ne navajamo. V formulah preprostih anorganskih oksokislin izračunamo oksidacijsko število centralne nekovine z upoštevanjem običajnih oksidacijskih števil vodika (+1) in kisika (-2). Vsota vseh oksidacijskih števil v spojini je nič. Primeri:

Formula	Ime z oksidacijskim številom	Pojasnilo
H ₂ SO ₄	žveplova(VI) kislina	Žveplo ima oksidacijsko število +6. Izračun: vodik-žveplo-kisik = $2 \cdot (+1) + 1 \cdot (+6) + 4 \cdot (-2) = 0$
HNO ₂	dušikova(III) kislina	Dušik ima oksidacijsko število +3. Izračun: vodik-dušik-kisik = $1 \cdot (+1) + 1 \cdot (+3) + 2 \cdot (-2) = 0$
H ₃ PO ₄	fosforjeva(V) kislina	Fosfor ima oksidacijsko število +5. Izračun: vodik-fosfor-kisik = $3 \cdot (+1) + 1 \cdot (+5) + 4 \cdot (-2) = 0$

DODATNO POGLAVJE V III. IZDAJI UČBENIKA **KEMIJA, SNOV IN SPREMEMBE 2**Nomenklatura anorganske kemije

Za vse anorganske oksokisline, ki jih obravnavamo v srednji šoli, navaja nova *Nomenklatura anorganske kemije* tudi t.i. sprejemljiva običajna imena. Primeri:

Formula	Ime z oksidacijskim številom	Sprejemljivo običajno ime
H_2SO_4	žveplova(VI) kislina	žveplova kislina
H_2SO_3	žveplova(IV) kislina	žveplasta kislina
H_3PO_4	fosforjeva(V) kislina	fosforjeva kislina
H ₂ CO ₃	ogljikova(IV) kislina	ogljikova kislina
HNO ₃	dušikova(V) kislina	dušikova kislina
HNO ₂	dušikova(III) kislina	dušikasta kislina
HClO ₄	klorova(VII) kislina	perklorova kislina
HClO ₃	klorova(V) kislina	klorova kislina
HClO ₂	klorova(III) kislina	klorasta kislina
HClO	klorova(I) kislina	hipoklorasta kislina

Nova nomenklatura sistematsko imenuje anorganske oksokisline s t. i. aditivnimi imeni. Ta sistem imenovanja izhaja iz imenovanja koordinacijskih spojin. Za razumevanje tovrstnih imen je smiselno napisati formulo kisline kot koordinacijsko spojino (z oglatimi oklepaji). Značilno nekovino navedemo kot centralni atom, na katerega so vezani ligandi (v obravnavanih primerih O²- in OH⁻). Formulo kisline napišemo v oglatem oklepaju; najprej značilno nekovino in nato ligande (najprej O ter nato OH v okroglem oklepaju). Sistematsko aditivno ime tvorimo tako, da brez presledka in z navajanjem ustreznih števnikov (množilnih predpon) navedemo najprej vse ligande (zaradi abecednega vrstnega reda najprej hidroksido za OH, nato oksido za O), nato pa še slovensko ime značilne (centralne) nekovine. Primeri:

Formula (obe obliki)	Sprejemljivo običajno ime	Sistematsko aditivno ime
$H_2SO_4 = [SO_2(OH)_2]$	žveplova kislina	dihidroksidodioksidožveplo
$H_2CO_3 = [CO(OH)_2]$	ogljikova kislina	dihidroksidooksidoogljik
$H_3PO_4 = [PO(OH)_3]$	fosforjeva kislina	trihidroksidooksidofosfor
$HNO_3 = [NO_2(OH)]$	dušikova kislina	hidroksidodioksidodušik
$HClO_3 = [ClO_2(OH)]$	klorova kislina	hidroksidodioksidoklor

Imenovanje preprostih anorganskih oksokislin s sistematskimi aditivnimi imeni se zaenkrat ni uveljavilo.

Soli anorganskih oksokislin

V formulah soli anorganskih oksokislin pišemo kovino (oz. NH₄ v amonijevih soleh) na prvo mesto, torej v zaporedju kovina-značilna (centralna) nekovina-kisik, npr. Na₂SO₄.

Soli anorganskih oksokislin v slovenski kemijski literaturi (po starejši nomenklaturi) pretežno imenujemo z navedbo oksidacijskega števila centralne nekovine (Stockov sistem). Slovenskemu imenu kovine dodamo pripono –ov oz. –ev. Ločeno navedemo modificirano latinsko ime centralne nekovine, ki dobi končnico –at, nakar brez presledka v okroglem oklepaju dopišemo še njeno oksidacijsko število. Primeri:

Formula kisline	Ime kisline z oksidacijskim številom	Anion	Formula soli	Ime soli z oksidacijskim številom
H ₂ SO ₄	žveplova(VI) kislina	SO ₄ ²⁻	Na ₂ SO ₄	natrijev sulfat(VI)
HNO ₃	dušikova(V) kislina	NO_3^-	Ca(NO ₃) ₂	kalcijev nitrat(V)
H_3PO_4	fosforjeva(V) kislina	PO ₄ ³⁻	(NH ₄) ₃ PO ₄	amonijev fosfat(V)
HClO ₄	klorova(VII) kislina	ClO ₄	Fe(ClO ₄) ₃	železov(III) klorat(VII)

Prehodni elementi običajno tvorijo spojine z različnimi oksidacijskimi števili. Zaradi te raznovrstnosti navajamo v imenih tovrstnih spojin tudi oksidacijsko število prehodnega elementa.

Za soli vseh anorganskih oksokislin, ki jih obravnavamo v srednji šoli, navaja nova *Nomenklatura anorganske kemije* tudi t.i. sprejemljiva običajna imena. Primeri:

Formula kisline	Sprejemljivo običajno ime kisline	Anion	Formula soli	Sprejemljivo običajno ime soli
H ₂ SO ₄	žveplova kislina	SO ₄ ²⁻	$Al_2(SO_4)_3$	aluminijev sulfat
H ₂ SO ₃	žveplasta kislina	SO ₃ ²⁻	Cu ₂ SO ₃	bakrov(I) sulfit
H ₃ PO ₄	fosforjeva kislina	PO ₄ ³⁻	Ca ₃ (PO ₄) ₂	kalcijev fosfat
H ₂ CO ₃	ogljikova kislina	CO ₃ ²⁻	Na ₂ CO ₃	natrijev karbonat
HNO ₃	dušikova kislina	NO ₃	Hg(NO ₃) ₂	živosrebrov(II) nitrat
HNO ₂	dušikasta kislina	NO ₂	KNO ₂	kalijev nitrit
HClO ₄	perklorova kislina	ClO ₄	Cu(ClO ₄) ₂	bakrov(II) perklorat
HClO ₃	klorova kislina	ClO ₃	NH ₄ ClO ₃	amonijev klorat
HClO ₂	klorasta kislina	ClO ₂	Ba(ClO ₂) ₂	barijev klorit
HClO	hipoklorasta kislina	ClO-	NaClO	natrijev hipoklorit*

^{*}Pravilen zapis natrijevega hipoklorita oz. pripadajočega aniona je NaOCl oz. OCl⁻, a se pogosto uporablja tudi zapis NaClO oz. ClO⁻ (podobnost s formulami klorovih oksokislin oz. s formulami njihovih soli).

V tovrstnih imenih soli lahko prehodni element opredelimo z navedbo njegovega oksidacijskega števila (rimska številka; Stockov sistem) ali nabojnega števila (arabska številka in znak +; Ewens-Bassettov sistem). Primer:

Formula soli	Sprejemljivo običajno ime soli (dve možnosti)	
$Fe_2(SO_4)_3$	železov(III) sulfat ali	železov(3+) sulfat

Preproste hidrogensoli, ki jih obravnavamo v srednji šoli, lahko imenujemo s sprejemljivi običajnimi imeni. Pred drugo besedo v imenu spojine dodamo brez presledka besedo »hidrogen«. Primeri:

Formula hidrogensoli	Anion	Sprejemljivo običajno ime hidrogensoli
Ca(HCO ₃) ₂	HCO ₃	kalcijev hidrogenkarbonat
NaHSO ₄	HSO ₄	natrijev hidrogensulfat
NH ₄ HSO ₃	HSO ₃	amonijev hidrogensulfit
K ₂ HPO ₄	HPO ₄ ²⁻	kalijev hidrogenfosfat
$Mg(H_2PO_4)_2$	$H_2PO_4^-$	magnezijev dihidrogenfosfat

Na enak način uporabljamo besedo »hidrogen« tudi pri imenovanju hidrogensoli po Stockovem sistemu, npr. NaHSO₃ – natrijev hidrogensulfat(IV).

Nova nomenklatura sistematsko imenuje soli in hidrogensoli anorganskih oksokislin s t.i. aditivnimi imeni. Za razumevanje tovrstnih imen je smiselno napisati formulo spojine kot koordinacijsko spojino (z oglatimi oklepaji). Imenovanje soli in hidrogensoli je podobno imenovanju oksokislin, le da namesto slovenskega imena centralne nekovine uporabimo njeno modificirano latinsko ime s končnico –at, nakar brez presledka v okroglem oklepaju dopišemo še nabojno število aniona. Primeri:

Formula spojine (obe obliki)	Anion	Sistematsko aditivno ime spojine
$Na_3PO_4 = Na_3[PO_4]$	$[PO_4]^{3-}$	natrijev tetraoksidofosfat(3-)
$Na_2HPO_4 = Na_2[PO_3(OH)]$	[PO ₃ (OH)] ²⁻	natrijev hidroksidotrioksidofosfat(2-)
$NaH_2PO_4 = Na[PO_2(OH)_2]$	[PO ₂ (OH) ₂] ⁻	natrijev dihidroksidodioksidofosfat(1-)

Imenovanje soli in hidrogensoli preprostih anorganskih oksokislin s sistematskimi aditivnimi imeni se zaenkrat ni uveljavilo.

Kristalohidrati in druge formalno adicijske spojine

V formulah preprostih kristalohidratov napišemo poldvignjeno piko brez presledka med formulo ene komponente in formulo vode. Množinsko razmerje med obema komponentama kristalohidrata opredelimo z arabsko številko, ki jo napišemo neposredno pred formulo posamezne komponente (številke 1 ne pišemo), npr. BF₃·2H₂O. Enako velja tudi za adicijske spojine, v katerih je namesto vode drugačna komponenta, npr. CaCl₂·8NH₃.

Preproste kristalohidrate tradicionalno imenujemo tako, da imenu prve komponente za presledkom dodamo števnik (množilno predpono), ki označuje število molekul vode, in besedo »hidrat«. Primera:

Formula	Ime
FeCl ₂ ·4H ₂ O	železov(II) klorid tetrahidrat
$Na_2CO_3 \cdot 10H_2O$	natrijev karbonat dekahidrat

Po novi nomenklaturi z dolgim pomišljajem stično povežemo imeni dveh (ali več) komponent spojine, sledi presledek in nato v okroglem oklepaju z arabskimi številkami, ločenimi z desno poševnico, navedemo množinsko razmerje med sestavinami spojine (t. i. stehiometrijski deskriptorji). Primeri:

Formula	Ime
CaCl ₂ ·2H ₂ O	kalcijev klorid—voda (1/2)
$8H_2S \cdot 46H_2O$	vodikov sulfid—voda (8/46)
$2Na_2CO_3 \cdot 3H_2O_2$	natrijev karbonat—vodikov peroksid (2/3)

Ioni

Naboj iona navedemo v desnem nadpisu z arabsko številko, ki ji sledi znak + oz. -. Številke 1 ne pišemo. Kationi imajo pozitiven naboj, anioni imajo negativen naboj.

Imenovanje kationov

Enoatomni kation imenujemo s slovenskim imenom elementa, ki mu v pridevniški obliki dodamo končnico –ov oz. –ev ter besedo »ion« ali »kation«. Za enoatomne katione prehodnih in drugih elementov, pri katerih so možni ioni z različnimi naboji, je po starejši nomenklaturi uveljavljen zapis oksidacijskega števila z rimsko številko v okroglem oklepaju (Stockov sistem). Primeri:

Formula kationa	Ime kationa
Na ⁺	natrijev ion
Ca ²⁺	kalcijev ion
Al^{3+}	aluminijev ion

Formula kationa	Ime kationa
Cu ²⁺	bakrov(II) ion
Cu ⁺	bakrov(I) ion
I ⁺	jodov(I) ion

Po novi nomenklaturi imenujemo enoatomni kation s slovenskim imenom elementa, za katerim brez presledka dodamo okrogli oklepaj z nabojnim številom (Ewens-Bassettov sistem). Nabojno število kationa pišemo z arabsko številko in znakom +. V pridevniški obliki dobi ime končnico –ov oz. –ev ter besedo »ion« ali »kation«. Zapis nabojnega števila lahko izpustimo, če je ime iona nedvoumno. Primeri:

Formula kationa	Ime kationa				
Na ⁺	natrij(1+)	ali	natrijev(1+) ion	ali	natrijev ion
Ca ²⁺	kalcij(2+)	ali	kalcijev(2+) ion	ali	kalcijev ion
Al ³⁺	aluminij(3+)	ali	aluminijev(3+) ion	ali	aluminijev ion
Cu ²⁺	baker(2+)	ali	bakrov(2+) ion		
I ⁺	jod(1+)	ali	jodov(1+) ion		-

9

Vodik tvori tri izotope, ki imajo alternativna imena: protij (¹H), devterij (²H), tritij (³H). Za devterij se lahko uporablja simbol D, za tritij pa simbol T. Iz alternativnih imen izotopov izhajajo imena za njihove ione.

Formula kationa	Ime kationa		
$^{1}\text{H}^{+}$	protij(1+)	ali	proton
$^{2}\mathrm{H}^{^{+}}$	devterij(1+)	ali	devteron
³ H ⁺	tritij(1+)	ali	triton

Ime »proton« pogosto uporabljamo za vodikov ion z nedoločenim masnim številom H^+ (nedefinirana izotopska zmes). Po novi nomenklaturi se za tak delec priporočata imeni vodik(1+) ali hidron.

V srednji šoli obravnavamo tudi kationa H_3O^+ in NH_4^+ . Za ion H_3O^+ je uveljavljeno ime oksonijev ion, za ion NH_4^+ pa ime amonijev ion. Nova nomenklatura vpeljuje naslednja imena:

Formula kationa	Ime kationa (v pridevniški obli	ki s ko	nčnico –ev ter besedo »ion« ali »kation«)
H_3O^+	oksidanijev ion (sistematsko)	ali	oksonijev ion (sprejemljivo nesistematsko)
NH_4^+	azanijev ion (sistematsko)	ali	amonijev ion (sprejemljivo nesistematsko)

Imenovanje anionov

Enoatomni anion imenujemo z uporabo modificiranega latinskega imena elementa s končnico –id, za katerim brez presledka dodamo okrogli oklepaj z nabojnim številom (Ewens-Bassettov sistem). Nabojno število aniona pišemo z arabsko številko in znakom –. V pridevniški obliki imena dodamo še končnico –ni ter besedo »ion« ali »anion«. Zapis nabojnega števila lahko izpustimo, če je ime iona nedvoumno. Primeri:

Formula aniona	Ime aniona						
Cl ⁻	klorid(1-)	ali	klorid	ali	kloridni(1-) ion	ali	kloridni ion
O ²⁻	oksid(2-)	ali	oksid	ali	oksidni(2-) ion	ali	oksidni ion
S ²⁻	sulfid(2-)	ali	sulfid	ali	sulfidni(2-) ion	ali	sulfidni ion
N^{3-}	nitrid(3-)	ali	nitrid	ali	nitridni(3-) ion	ali	nitridni ion

Pri imenovanju anionov, ki formalno izhajajo iz oksokislin, uporabljamo enaka pravila kot pri imenovanju soli in hidrogensoli oksokislin. Zaenkrat je v slovenski kemijski literaturi prevladujoče imenovanje (po stari nomenklaturi) z navedbo oksidacijskega števila značilne nekovine (Stockov sistem). Za nivo srednje šole je primerna tudi uporaba sprejemljivih običajnih imen. Zaradi večje zahtevnosti pa je manj primerna uporaba imenovanja s sistematskimi aditivnimi imeni. Tudi v teh primerih dodamo v pridevniški obliki imena še končnico –ni ter besedo »ion« ali »anion«. Primeri:

Formula	Ime aniona (v pridevniški obliki s končnico –ni in besedo »ion«)			
aniona	Stockov sistem	Sprejemljivo običajno	Sistematsko aditivno	
SO_4^{2-}	sulfatni(VI) ion	sulfatni ion	tetraoksidosulfatni(2-) ion	
SO ₃ ²⁻	sulfatni(IV) ion	sulfitni ion	trioksidosulfatni(2-) ion	
NO_3^-	nitratni(V) ion	nitratni ion	trioksidonitratni(1–) ion	
NO_2^-	nitratni(III) ion	nitritni ion	dioksidonitratni(1-) ion	
PO_4^{3-}	fosfatni(V) ion	fosfatni ion	tetraoksidofosfatni(3-) ion	
ClO ₄	kloratni(VII) ion	perkloratni ion	tetraoksidokloratni(1-) ion	
ClO ₃	kloratni(V) ion	kloratni ion	trioksidokloratni(1-) ion	
HPO ₄ ²⁻	hidrogenfosfatni(V) ion	hidrogenfosfatni ion	hidroksidotrioksidofosfatni(2-) ion	
$H_2PO_4^-$	dihidrogenfosfatni(V) ion	dihidrogenfosfatni ion	dihidroksidodioksidofosfatni(1-) ion	

4.1 Imenovanje kislin, baz in soli

Preglednica imenovanja pogostih kislin, njihovih kislinskih ostankov (anionov) ter natrijevih in kalcijevih soli

KISLINA	KISLINSKI OSTANEK	NATRIJEVA	KALCIJEVA
	(ANION)	SOL	SOL
HCl	Cl ⁻	NaCl	CaCl₂
klorovodikova kislina	kloridni ion	natrijev klorid	kalcijev klorid
HBr	Br ⁻	NaBr	CaBr₂
bromovodikova kislina	bromidni ion	natrijev bromid	kalcijev bromid
HI	Г	NaI	CaI₂
jodovodikova kislina	jodidni ion	natrijev jodid	kalcijev jodid
H₂S	S²-	Na₂S	CaS
žveplovodikova kislina	sulfidni ion	natrijev sulfid	kalcijev sulfid
HCN	CN⁻	NaCN	Ca(CN)₂
cianovodikova kislina	cianidni ion	natrijev cianid	kalcijev cianid
HNO ₃	NO₃	$NaNO_3$ natrijev nitrat(V) natrijev nitrat	Ca(NO ₃) ₂
dušikova(V) kislina	nitratni(V) ion		kalcijev nitrat(V)
dušikova kislina	nitratni ion		kalcijev nitrat
HNO₂	NO₂	NaNO ₂	Ca(NO₂)₂
dušikova(III) kislina	nitratni(III) ion	natrijev nitrat(V)	kalcijev nitrat(III)
dušikasta kislina	nitritni ion	natrijev nitrit	kalcijev nitrit
H₂SO₄	$SO_4^{2^-}$ sulfatni(VI) ion sulfatni ion	Na₂SO₄	CaSO ₄
žveplova(VI) kislina		natrijev sulfat(VI)	kalcijev sulfat(VI)
žveplova kislina		natrijev sulfat	kalcijev sulfat
H₂SO₃	SO3 ²⁻	Na₂SO₃	CaSO ₃
žveplova(IV) kislina	sulfatni(IV) ion	natrijev sulfat(IV)	kalcijev sulfat(IV)
žveplasta kislina	sulfitni ion	natrijev sulfit	kalcijev sulfit
H ₃ PO ₄	PO ₄ ³⁻	Na₃PO₄	Ca ₃ (PO ₄) ₂
fosforjeva(V) kislina	fosfatni(V) ion	natrijev fosfat(V)	kalcijev fosfat(V)
fosforjeva kislina	fosfatni ion	natrijev fosfat	kalcijev fosfat
H₂CO₃	CO3 ²⁻	Na ₂ CO ₃	CaCO ₃
ogljikova kislina	karbonatni ion	natrijev karbonat	kalcijev karbonat
HClO ₄	ClO₄	NaClO ₄	Ca(ClO₄) ₂
klorova(VII) kislina	kloratni(VII) ion	natrijev klorat(VII)	kalcijev klorat(VII)
perklorova kislina	perkloratni ion	natrijev perklorat	kalcijev perklorat
HClO₃	ClO ₃ kloratni(V) ion kloratni ion	NaClO ₃	Ca(ClO ₃) ₂
klorova(V) kislina		natrijev klorat(V)	kalcijev klorat(V)
klorova kislina		natrijev klorat	kalcijev klorat
HClO ₂	ClO₂ kloratni(III) ion kloritni ion	NaClO ₂	Ca(ClO₂)₂
klorova(III) kislina		natrijev klorat(III)	kalcijev klorat(III)
klorasta kislina		natrijev klorit	kalcijev klorit
HClO	ClO⁻	NaClO	Ca(ClO) ₂
klorova(I) kislina	kloratni(I) ion	natrijev klorat(I)	kalcijev klorat(I)
hipoklorasta kislina	hipokloritni ion	natrijev hipoklorit	kalcijev hipoklorit
HCOOH	HCOO⁻	HCOONa	(HCOO)₂Ca
metanojska kislina	metanoatni ion	natrijev metanoat	kalcijev metanoat
mravljinčna kislina	formatni ion	natrijev format	kalcijev format
CH₃COOH	CH₃COO⁻	CH ₃ COONa	(CH ₃ COO) ₂ Ca
etanojska kislina	etanoatni ion	natrijev etanoat	kalcijev etanoat
ocetna kislina	acetatni ion	natrijev acetat	kalcijev acetat

Koordinacijske spojine

Koordinacijske ali kompleksne spojine so spojine, v katerih so na centralni kovinski ion (ali atom) vezani ligandi. Pogosto uporabljamo splošen izraz »centralni atom«, s katerim ne opredelimo značaja delca (običajno kovinski ion), na katerega so vezani ligandi. Koordinacijske spojine z nekovinskim ali s polkovinskim centralnim atomom so manj pogoste in jih ne bomo obravnavali.

Ligandi so lahko različne anorganske ali organske molekule (npr. voda H_2O , amonijak NH_3) ali anioni (npr. kloridni ion Cl^- , hidroksidni ion OH^- , cianidni ion CN^-). V stranskem stolpcu so navedene formule in imena nekaterih pogostejših ligandov. Iz preglednice je razvidno, da imajo ligandi z negativnim nabojem (anioni) končnico »–ido«.

Pri zapisovanju formul koordinacijskih spojin uporabljamo **oglate oklepaje**, znotraj katerih najprej napišemo simbol centralnega atoma, ob njem pa formule in število ligandov. Če so ligandi različni, jih napišemo po abecednem vrstnem redu simbolov v njihovih formulah (npr. najprej ligand Cl⁻, nato ligand NH₃). Ligand CO pišemo pred ligandom Cl⁻, ker ima enočrkovni simbol (ogljik C) prednost pred dvočrkovnim simbolom (klor Cl). Vodo kot ligand napišemo s formulo OH₂. Na ta način poudarimo, da je voda povezana na centralni atom preko kisika in ne preko vodika.

Centralni ion (ali atom) in ligandi lahko tvorijo **koordinacijsko zvrst brez naboja, koordinacijski kation** ali **koordinacijski anion**. Splošne formule so:

 $[\mathbf{ML_x}]^{\mathbf{n}+}$ splošna formula koordinacijske zvrsti brez naboja $[\mathbf{ML_x}]^{\mathbf{n}+}$ splošna formula koordinacijskega kationa $[\mathbf{ML_x}]^{\mathbf{n}-}$ splošna formula koordinacijskega aniona $\mathbf{M} \dots \dots$ centralni ion (ali atom) $\mathbf{L} \dots \dots$ ligand $\mathbf{x} \dots \dots$ število vezanih ligandov $\mathbf{n}+$ oz. $\mathbf{n}-$ \dots naboj iona

Koordinacijsko število centralnega kovinskega atoma v koordinacijski spojini je število vseh vezi, s katerimi se ligandi vežejo na centralni kovinski ion (ali atom). Obravnavali bomo le spojine, v katerih so ligandi vezani na centralni ion (ali atom) z enojnimi vezmi (enovezni ligandi), zato bo koordinacijsko število enako številu vezanih ligandov.

Koordinacijske spojine so zelo številne. Tvorijo jih mnogi prehodni (pa tudi drugi) elementi. Oglejmo si primere.

centralni ligandi in ion število ligandov

[PtCl₂(NH₃)₂] Centralni ion: Pt²⁺
Ligandi: Cl⁻, NH₃

V spojini [PtCl₂(NH₃)₂] sta na platinov(II) ion Pt²+ vezana dva kloridna iona Cl⁻ in dve molekuli amonijaka NH₃. Koordinacijsko število je 4. Vsota nabojev centralnega platinovega(II) iona in vseh ligandov je nič.

Ligandi v koordinacijskih spojinah:

Formula liganda	Ime liganda
F	fluorido
Cl⁻	klorido
Br^{-}	bromido
I-	jodido
OH ⁻	hidroksido
CN ⁻	cianido
H_2O	akva
NH_3	amin
C_6H_6	benzen
NO	nitrozil
CO	karbonil

V koordinacijskih spojinah so ligandi običajno vezani na kovinske ione. Poznamo pa tudi spojine, v katerih so ligandi vezani na kovinske atome. Takšna spojina je pentakarbonilželezo [Fe(CO)₅].

Primeri koordinacijskih ionov z različnimi koordinacijskimi števili:

Formula iona	Koordinacijsko število
$[Ag(NH_3)_2]^+$	2
$[HgI_3]^-$	3
[Cu(OH2)4]2+	4
$[Co(CN)_5]^{3-}$	5
$[Ni(NH_3)_6]^{2+}$	6
$[Mo(CN)_7]^{3-}$	7
$[W(CN)_8]^{4-}$	8

Vsota nabojev centralnega iona in ligandov v spojini [PtCl₂(NH₃)₂] je nič:

Pt ²⁺	2+
2 · Cl ⁻	2-
$2 \cdot NH_3$	0
	0

Vsota nabojev centralnega iona in ligandov v ionu [Fe(OH₂)₆]³⁺ je 3+:

Fe ³⁺	3+
$6 \cdot H_2O$	0
	3+

Vsota nabojev centralnega iona in ligandov v ionu [Fe(CN)₆]⁴⁻ je 4-:

Fe ²⁺	2+
6 · CN⁻	6-
	4-

$$CH=CH_2$$
 CH_3
 H_3C
 N
 N
 CH_2
 CH_2

Struktura spojine hem. Koordinacijske spojine najdemo tudi v živih bitjih. Molekula hemoglobina vsebuje štiri enote hema in beljakovino globin. V koordinacijski spojini hem je železo preko dušikovih atomov koordinirano z organskim delom spojine. Kisik O₂ se v pljučih veže na železo v molekuli hema in se na ta način prenaša po organizmu. Močneje kot kisik O₂ se na hemoglobin veže strupen ogljikov oksid CO.

Po novi nomenklaturi imenujemo anionske ligande tako, da imenu aniona dodamo končnico -o (npr. klorid + -o = klorido). Po starejši nomenklaturi so se uporabljala skrajšana imena (npr. kloro).

centralni ligandi in ion število ligandov

[Fe(OH₂)₆]³⁺ Centralni ion: Fe³⁺ Ligandi: H₂O

V koordinacijskem kationu $[Fe(OH_2)_6]^{3+}$ je na železov(III) ion Fe^{3+} vezanih šest molekul vode H_2O . Koordinacijsko število je 6. Vsota nabojev centralnega železovega(III) iona in ligandov je 3+.

centralni ligandi in ion število ligandov

[Fe(CN)₆]⁴⁻ Centralni ion: Fe²⁺ Ligandi: CN

V koordinacijskem anionu $[Fe(CN)_6]^{4-}$ je na železov(II) ion Fe^{2+} vezanih šest cianidnih ionov CN^- . Koordinacijsko število je 6. Vsota nabojev centralnega železovega(II) iona in ligandov je 4–.

Imenovanje koordinacijskih spojin

Spoznali bomo dva načina imenovanja koordinacijskih spojin; najprej z uporabo oksidacijskega števila (Stockov sistem), nato pa še z uporabo nabojnega števila (Ewens-Bassettov sistem).

Imenovanje z uporabo oksidacijskega števila

Z oksidacijskim številom (Stockov sistem) smo v prvem letniku imenovali binarne spojine, v drugem letniku pa oksokisline in njihove soli ter anione. Pri imenovanju koordinacijskih spojin navedemo oksidacijsko število centralnega atoma z rimsko številko v okroglem oklepaju.

Način imenovanja je odvisen od koordinacijske zvrsti (koordinacijska zvrst brez naboja, koordinacijski kation ali koordinacijski anion). Pri imenovanju vseh koordinacijskih zvrsti pa velja, da najprej z grškim števnikom (množilno predpono) navedemo število ligandov, nato ime liganda in nato še ime centralnega iona (ali atoma) z oksidacijskim številom (rimska številka v okroglem oklepaju).

Če so ligandi različni, jih navajamo po abecednem vrstnem redu njihovih imen (npr. »akva« pred »amin«), ime morebitnega števnika (množilne predpone) pa ne vpliva na vrstni red navajanja ligandov (npr. »tetraakva« je pred »diamin«). Med posameznimi deli imena (števniki, imena ligandov, ime centralnega atoma, oksidacijsko število) ni presledkov.

Razlika v imenovanju se pojavi le v imenu centralnega iona (ali atoma). Če je koordinacijska zvrst brez naboja, uporabimo slovensko ime centralnega iona (ali atoma) brez končnice. V primeru koordinacijskega kationa ima centralni ion slovensko ime in končnico »–ov ion« oz. »–ev ion«, v primeru koordinacijskega aniona pa modificirano latinsko ime s končnico »–atni ion«. Oglejmo si primere.

Zaporedje imenovanja v koordinacijski zvrsti brez naboja:

število in ime liganda – slovensko ime centralnega kovinskega iona brez končnice in oksidacijsko število kovine

[PtCl₂(NH₃)₂] diamindikloridoplatina(II)

število in centralni kovinski ion z ime liganda oksidacijskim številom kovine

6.2 Prehodni elementi

Zaporedje imenovanja v koordinacijskem kationu:

število in ime liganda - slovensko ime centralnega kovinskega iona s končnico »-ov ion« oz. »-ev ion« in oksidacijsko število kovine

[Fe(OH₂)₆]³⁺ heksaakvaželezov(III) ion

število in centralni kovinski ion z ime liganda oksidacijskim številom kovine

Spojina je vedno električno nevtralna, zato v trdnem agregatnem stanju koordinacijski kation ne more obstajati samostojno brez sosednjega aniona. Navedeni koordinacijski kation je lahko povezan s kloridnimi ioni v spojino:

[Fe(OH₂)₆]Cl₃ – heksaakvaželezov(III) klorid

Zaporedje imenovanja v koordinacijskem anionu:

število in ime liganda - modificirano latinsko ime centralnega kovinskega iona s končnico »-atni ion« in oksidacijsko število kovine

[Fe(CN)₆]⁴⁻ heksacianidoferatni(II) ion

število in centralni kovinski ion z ime liganda oksidacijskim številom kovine

Spojina je vedno električno nevtralna, zato v trdnem agregatnem stanju koordinacijski anion ne more obstajati samostojno brez sosednjega kationa. Navedeni koordinacijski anion je lahko povezan s kalijevimi ioni v spojino:

 $K_4[Fe(CN)_6]$ – kalijev heksacianidoferat(II)

Imenovanje z uporabo nabojnega števila

Pri imenovanju koordinacijskih spojin z uporabo nabojnega števila (Ewens-Bassettov sistem) upoštevamo enaka pravila, le da namesto oksidacijskega števila centralnega iona (oz. atoma) navedemo naboj celotnega koordinacijskega iona z arabsko številko in znakom + ali v okroglem oklepaju.

Oglejmo si imenovanje različnih koordinacijskih zvrsti po obeh načinih. Najprej je napisano ime z uporabo oksidacijskega števila centralnega iona (oz. atoma), nato pa še ime z uporabo nabojnega števila.

[CrCl ₃ (OH ₂) ₃]	triakvatrikloridokrom(III) triakvatrikloridokrom
$\left[\text{CrCl}_2(\text{OH}_2)_4\right]^+$	tetraakvadikloridokromov(III) ion tetraakvadikloridokromov(1+) ion
$[UF_8]^{2-}$	oktafluoridouranatni(VI) ion oktafluoridouranatni(2-) ion
[CoCl(NH ₃) ₅]Cl	pentaaminkloridokobaltov(II) klorid pentaaminkloridokobaltov(1+) klorid
$K_3[Cu(CN)_4]$	kalijev tetracianidokuprat(I) kalijev tetracianidokuprat(3–)

Primeri imenovanja centralnih kovinskih ionov v spojinah s koordinacijskimi anioni (latinska osnova s končnico -at):

Simbol kovine	Ime v spojini
Fe	ferat
Sn	stanat
Ag	argentat
Au	avrat
Hg	merkurat
Cu	kuprat
Pb	plumbat
Pd	paladat
Pt	platinat
Os	osmat
Co	kobaltat

Model koordinacijske spojine pentakarbonilželezo [Fe(CO)₅]. Spojina ima koordinacijsko število 5 in trikotno bipiramidalno (uporabljamo tudi izraz trigonalno bipiramidalna) razporeditev ligandov (molekul ogljikovega oksida CO) okoli cen-

tralnega železovega atoma.

Po Stockovem sistemu navajamo oksidacijsko število centralnega atoma, po Ewens-Bassettovem sistemu pa naboj koordinacijskega

Stockov sistem uporablja rimske številke, Ewens-Bassettov sistem pa arabske številke in znak + ali -.

Model oktaedrične razporeditve molekul vode (ligandov) okoli centralnega kovinskega iona.

Zanimivo posebnost opazimo pri spojini diamindikloridoplatina(II), ki ima kvadratno planarno razporeditev ligandov. Poznamo dve različni spojini s formulo [PtCl₂(NH₃)₂]. V prvi spojini (zgornji model) sta enaka liganda vezana diagonalno nasproti. V drugi spojini (spodnji model) pa sta enaka liganda vezana drug ob drugem. Spojini se razlikujeta tudi v lastnostih. Zgornja spojina je bledo rumena. Spodnja spojina je oranžno rumena, uporablja pa se tudi kot zdravilo proti raku.

Prostorska razporeditev ligandov

V koordinacijskih spojinah in ionih so ligandi lahko različno razporejeni okoli centralnega iona, npr. linearno, trikotno, tetraedrično, kvadratno planarno, trikotno bipiramidalno, oktaedrično.

Na prostorsko razporeditev ligandov (uporabljamo tudi izraz »koordinacijski polieder«) lahko pri preprostih koordinacijskih spojinah sklepamo že iz števila ligandov. Dva liganda omogočata linearno razporeditev, štirje ligandi omogočajo tetraedrično ali kvadratno planarno razporeditev, šest ligandov pa oktaedrično razporeditev.

Linearno razporeditev ima npr. diaminsrebrov(I) ion $[Ag(NH_3)_2]^+$, kvadratno planarno razporeditev ima npr. diamindikloridoplatina(II) $[PtCl_2(NH_3)_2]$, tetraedrično razporeditev ima npr. tetrahidroksido-aluminatni(III) ion $[Al(OH)_4]^-$, oktaedrično razporeditev ima npr. heksacianidoferatni(II) ion $[Fe(CN)_6]^{4-}$.

Rešimo nalogo, v kateri bomo uporabili pridobljeno znanje.

Naloga: Za koordinacijsko spojino s formulo [PtCl(NH₃)₅]Cl₃ ugotovite koordinacijsko zvrst, centralni atom, ligande, koordinacijsko število in verjetno prostorsko razporeditev ligandov. Spojino tudi imenujte.

Odgovor: Za lažje razumevanje si napišimo oksidacijska števila. Amonijak je nevtralna molekula, zato nad formulo NH₃ poenostavljeno napišemo ničlo. Klor ima oksidacijsko število –1, torej ima platina oksidacijsko število +4.

Koordinacijska zvrst: koordinacijski kation [PtCl(NH₃)₅]³⁺.

Centralni atom: platina

Ligandi: molekule amonijaka NH₃ in kloridni ion Cl⁻.

Koordinacijsko število: 6

Verjetna prostorska razporeditev ligandov: oktaedrična Ime spojine: pentaaminkloridoplatinov(IV) klorid ali

pentaaminkloridoplatinov(3+) klorid

Koordinacijske ali kompleksne spojine so spojine, v katerih so na centralni kovinski ion (ali atom) vezani ligandi. Ligandi so lahko različne anorganske ali organske molekule ali anioni. Formule koordinacijskih spojin zapisujemo z oglatimi oklepaji, znotraj katerih najprej napišemo simbol centralnega iona (ali atoma), ob njem pa formule in število ligandov. Koordinacijsko število je število vseh vezi, s katerimi se ligandi vežejo na centralni kovinski ion ali atom.

Razporeditev ligandov (L) okoli centralnega kovinskega iona oz. atoma (M)

SVET KEMIJE

Andrej Smrdu

RAZLAGA SPREMEMB V IMENOVANJU ANORGANSKIH SPOJIN

Dodatek k II. izdaji učbenika Kemija, Snov in spremembe 2

Strokovni pregled: prof. dr. Alojz Demšar

Likovno-tehnična urednica: Karmen S. Žnidaršič

Stavek in oprema: ONZ Jutro

Izdalo in založilo: Založništvo Jutro, © Jutro d.o.o., Ljubljana

Natisnjeno v Sloveniji v nakladi 5.000 izvodov

© Vse pravice pridržane.

Dodatek je dostopen brezplačno na spletni strani www.jutro.si

Učbeniški skladi in drugi uporabniki 2. izdaje učbenika KEMIJA, SNOV IN SPREMEMBE 2 lahko dodatek (do izčrpanja natisnjene zaloge) brezplačno naročijo na naslovu:

JUTRO d.o.o., Črnuška c. 3, p.p. 4986, 1001 Ljubljana Tel. (01) 561-72-30, 031 521-195, 041 698-788 Faks (01) 561-72-35

E-pošta: Jutro@siol.net • www.jutro.si