(9) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₍₁₎ DE 33 22 574 A 1

C 07 D 453/02 C 07 D 451/02

PATENTAMT

(21) Aktenzeichen: P 33 22 574.5 (22) Anmeldetag: 23. 6.83 Offenlegungstag: 29. 12. 83

③ Unionspriorität: ②

29.06.82 CH 3979-82

30.11.82 CH 6950-82

22.12.82 CH 7494-82

09.03.83 CH 1256-83

13.07.82 CH 4267-82 30.11.82 CH 6951-82 22.12.82 CH 7495-82

(7) Anmelder:

Sandoz-Patent-GmbH, 7850 Lörrach, DE

(72) Erfinder:

Donatsch, Peter, Dr., 4123 Allschweil, CH; Engel, Günter, Dr., 7858 Weil, DE; Hügi, Bruno, Dr., 4148 Pfeffingen, CH; Richardson, Brian Peter, Dr., 4312 Magden, CH; Stadler, Paul, Dr., 4105 Biel-Benken,

Benzoesäurepiperidylester-Derivate bzw. Verfahren zu deren Herstellung und deren Verwendung

Di-carbocyclische oder heterocyclische Carbonsäureester eines eine Alkylenbrücke enthaltenden Piperidonols oder entsprechende Amide oder Ester oder Amide von substituierten Benzoesäuren und eines eine Alkylenbrücke enthaltenden Piperidinols oder Piperidylamins besitzen Serotonin-Mantagonistische Wirkung und können als Analgetika, insbesondere Antimigränemittel sowie als Antiarrhytmika verwen-(3322574)det werden.

SANDOZ-Patent-GmbH Lörrach 'Case 100-5819

Benzoesäurepiperidylester-Derivate bzw. Verfahren zu deren Herstellung und deren Verwendung

Patentansprüche

- 1) Di-carbocyclische oder heterocyclische Carbonsäureester eines eine Alkylenbrücke enthaltenden Piperidinols oder entsprechende Amide oder Ester oder Amide einer substituierten Benzoesäure und eines eine Alkylenbrücke enthaltenden Piperidinols oderPiperidylamins mit der Massgabe, dass
- a) jeder Benzoesäureester, der eine Alkylenbrücke zwischen zwei
 10 Kohlenstoffatomen des Piperidyl-Ringes besitzt, im Phenylring zumindest in einer der ortho- oder meta-Stellungen
 substituiert ist
- b) in jedem Benzoesäureester, der in den beiden ortho-Stellungen des Phenylringes unsubstituiert ist, oder zumindest in einer der ortho-Stellungen durch Halogen oder Alkyl substituiert ist und in den meta- und para-Stellungen jeweils nur Wasserstoff oder Halogen besitzt und die Alkylenbrücke zwischen zwei Ringkohlenstoffatomen des Piperidyl-Ringes besitzt, die Alkylenbrücke zwischen zwei Kohlenstoffatomen des Piperidyl-Ringes mindestens 3 Kohlenstoffatome besitzt.

- c) in jedem eine Oxy-Gruppe enthaltenden Benzoesäureester, der eine Alkylenbrücke zwischen dem Stickstoffatom des Piperidyl-Ringes und einem Ring-Kohlenstoffatom besitzt, sich zumindest noch ein anderer Substituent als ein Oxy-Substituent befindet oder nur 2 Oxy-Substituenten im Benzoesäurekern anwesend sind.
- d) in jedem monocyclischen, heterocyclischen Carbonsäureamid oder -ester, worin der Heterocyclus ein 6 gliedriger Ring ist, der ein Ring-Stickstoffatom enthält, oder in jedem cyclischen heterocyclischen Carbonsäureamid, dessen Heterocyclus zwei Sauerstoffatome enthält, im Piperidyl-Ring eine Alkylenbrücke zwischen dem Piperidyl-Stickstoffatom und einem Piperidyl-Kohlenstoffatom besteht
- e) in jedem Benzoesäureamid die 'Alkylenbrücke des Piperidyl-Ringes an ein Ring-Kohlenstoffatom und an das Stickstoffatom gebunden ist, und
 - f) in keinem Benzoesäureamid sich in einer der ortho-Stellungen ein Alkyl-, Hydroxy- oder Halogen-Rest befindet.
- g) Thienoyl- und Naphthoyl-8-aza-bicyclo[3,2,1]oct-3-ylester
 20 ausgeschlossen sind.

und deren Salze, beispielsweise Säureadditionssalze und quaternäre Ammoniumsalze, beispielsweise des Stickstoffatoms des Piperidyl-Ringes.

5

10

100-5819

2) Verbindungen der Formel I,

A-CO-B-D

I

worin A eine Gruppe der Formel II,

bedeutet, worin die freie Bindung sich an jedem der miteinander verbundenen Ringe befinden kann,

$$X \text{ für -CH}_2$$
-, -NR₃-, -0-, -S-,

 R_1 und R_2 unabhängig voneinander für Wasserstoff, Halogen, (C_{1-4}) Alkoxy, Hydroxy, Amino, (C_{1-4}) Alkylamino, di (C_{1-4}) Alkylamino, Mercapto oder (C_{1-4}) Alkylthio, und

 R_3 für Wasserstoff, $(C_{1-4})Alkyl$, $(C_{3-5})Alkenyl$, Aryl oder Aralkyl stehen, oder

eine Gruppe der Formel III,

10

bedeutet, worin

- R_4 bis R_7 unabhängig voneinander für Wasserstoff, Amino, Nitro, (C_{1-4}) Alkylamino, di (C_{1-4}) Alkylamino, Halogen, (C_{1-4}) Alkoxy, (C_{1-4}) Alkyl, (C_{1-4}) Alkanoyl-amino oder Pyrrolyl stehen mit der Massgabe, dass zumindest eines von R_4 oder R_5 eine andere Bedeutung als Wasserstoff besitzt,
- B ist -O- oder -NH-,
- D eine Gruppe der Formel IV,

10 bedeutet, worin

n für 2, 3 oder 4 und

 R_8 für Wasserstoff, $(C_{1-7})Alkyl$, $(C_{3-5})Alkenyl$ oder Aralkyl

stehen, oder

15 eine Gruppe der Formel V,

bedeutet mit der weiteren Massgabe, dass

 i) falls A für eine Gruppe der Formel III und B für -NH- stehen, dann D eine Gruppe der Formel V bedeutet,

- ii) falls A für eine Gruppe der Formel III steht, worin entweder R₄ Wasserstoff oder R₄ Halogen oder Alkyl und R₅ bis R₇ jeweils Halogen oder Wasserstoff bedeuten, B für -O- und D für eine Gruppe der Formel IV stehen, n 3 oder 4 bedeutet,
- iii) falls A für eine Gruppe der Formel III steht und eines von R_4 bis R_7 Alkoxy bedeutet und D für eine Gruppe der Formel V steht, dann ist entweder eines der anderen von R_4 bis R_7 anders als Wasserstoff und Alkoxy oder nur zwei von R_4 bis R_7 sind Alkoxy,
- iv) falls A für eine Gruppe der Formel III steht,
 worin R₄ Alkyl oder Halogen bedeutet, dann steht
 B für -0-
- 15 sowie deren Säureadditionssalze und quaternären Ammoniumsalze.
 - 3) Verbindungen der Formel I gemäss Anspruch 2 der Formel Ipa,

5

worin

5

10

 R_{4} pa für Halogen, (C_{1-4}) Alkylamino oder (C_{1-4}) Alkoxy,

 R_{ς} pa für Wasserstoff ,

 R_6 pa für Amino, (C_{1-4}) Alkylamino, Di (C_{1-4}) alkylamino, R_7 pa für Wasserstoff oder Flour, Chlor oder Brom, und R_8 pa für Wasserstoff, (C_{1-4}) Alkyl oder Aralkyl stehen,

als auch deren Säureadditionssalze oder quaternären Ammoniumsalze.

4) Verbindungen der Formel I gemäss Anspruch 2 der Formel Ipb,

worin

 ${
m R_4pa}$, ${
m R_5pa}$, ${
m R_6pa}$ und ${
m R_8pa}$ obige Bedeutung besitzen und ${
m R_7pb}$ für Wasserstoff oder Halogen steht

als auch deren Säureadditionssalze oder quaternären Ammonium-15 salze.

100-5819

5) Verbindungen der Formel I gemäss Anspruch 2 der Formel Iqa,

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

n' für 2 oder 3 steht, und

 $\rm R_1,\ R_2,\ R_3$ und $\rm R_8$ obige Bedeutung besitzen,

als auch deren Säureadditionssalze oder quaternären Ammoniumsalze.

6) Verbindungen der Formel I gemäss Anspruch 2 der Formel Iqb.

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

 R_1 qb und R_2 qb unabhängig voneinander für Wasserstoff, Halogen oder (C_{1-4})Alkyl stehen,

10

 R_3 qb Wasserstoff oder (C_{1-4})Alkyl bedeutet,

 R_8 qb für Wasserstoff oder (C_{1-7})Alkyl oder Aralkyl steht, und

n' obige Bedeutung besitzt,

- als auch deren Säureadditionssalze oder quaternären Ammoniumsalze.
 - 7) Verbindungen der Formel I gemäss Anspruch 2 der Formel Iqc,

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

R2qc die obige Bedeutung von R2 besitzt, jedoch nicht für (C_{1-4}) Alkoxy oder Hydroxy steht, und n', R1, R3 und R8 obige Bedeutung besitzen,

als auch deren Säureadditionssalze oder quaternären Ammoniumsalze.

BNSDOCID: <DE___3322574A1_I_>

Verbindungen der Formel I gemäss Anspruch 2 der Formel Isa, 8)

worin R_4 pa bis R_6 pa und R_7 pb obige Bedeutung besitzen, sowie deren Säureadditionssalze oder quaternären Ammoniumsalze.

Verbindungen der Formel I gemäss Anspruch 2 der Formel Isb, 9)

$$R_{7pb}$$
 R_{4pa}
 R_{4pa}
 R_{5pa}
 R_{4pa}

- worin R_4 pa bis R_6 pa und R_7 pb obige Bedeutung besitzen, sowie deren Säureadditionssalze oder quaternären Ammoniumsalze.
- Verfahren zur Herstellung der Verbindungen gemäss Anspruch 1 10) gekennzeichnet durch die Kondensation von entsprechenden dicarbocyclischen oder heterocyclischen Carbonsäuren oder Benzoe-10 säuren oder deren reaktionsfähigen Säurederivaten oder von

. 5

Vorläufern der Säuren oder deren Derivaten mit einem geeigneten, eine Alkylenbrücke enthaltenden Piperidylamin oder Piperidinol oder einem Vorläufer hiervon und, falls notwendig, die Ueberführung der erhaltenen Piperidylester oder -amide oder deren Säureadditionssalze oder quaternären Ammoniumsalze in andere Piperidylester oder -amide oder deren Säureadditionssalze oder quaternären Ammoniumsalze und Gewinnung der erhaltenen Piperidylester oder -amide als solche oder als Säureadditionssalze oder als quaternäre Ammoniumsalze.

- 11) Verfahren zur Herstellung von Verbindungen der Formel I gemäss den Ansprüchen 2 bis 9 als auch deren Säureadditionssalze oder quaternären Ammoniumsalze gekennzeichnet durch
 - a) Umsetzung einer entsprechenden Verbindung der Formel VI,

A-CO-OH VI

worin A obige Bedeutung besitzt, oder eines reaktiven Derivates hiervon, oder eines Vorläufers der Säure oder des Derivates mit einer geeigneten Verbindung der Formel VII,

HB-D VII

worin B und D obige Bedeutung besitzen, oder eines Vorläufers 20 der Verbindung, oder

b) Alkylierung einer Verbindung der Formel I, die eine sekundäre Aminogruppe besitzt, wobei Verbindungen der Formel I erhalten werden, die eine tertiäre Aminogruppe besitzen,

- c) Abspaltung von Schutzgruppen einer geschützten Form von Verbindungen der Formel I, wobei nicht geschützte Verbindungen der Formel I erhalten werden,
- d) Halogenierung einer Verbindung der Formel I, worin A für eine Gruppe der Formel II steht und R₂ Wasserstoff bedeutet, wobei entsprechende Verbindungen erhalten werden, worin R₂ für Halogen steht, oder
- e) Alkoxylierung von Verbindungen der Formel I, worin A eine Gruppe der Formel II bedeutet und R₂ Halogen ist, wobei entsprechende Verbindungen der Formel I erhalten werden, worin R₂ für Alkoxy steht, und

Gewinnung der erhaltenen Verbindungen der Formel I als Basen oder in Form von deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

- 15 12) Verwendung von Verbindungen gemäss den Ansprüchen 1 bis 9 als Analgetika, insbesondere zur Behandlung der Migräne, und als Antiarrhythmika.
 - 13) Verbindungen der Formel VII

HB-D

worin B NH bedeutet und D für eine Gruppe der Formel IV

steht, worin n 4 bedeutet und R_8 die im Anspruch 2 angegebene Bedeutung besitzen.

- 14) Verfahren zur Herstellung von Verbindungen der Formel VII gemäss Anspruch 13 dadurch gekennzeichnet, dass man entsprechende Oxime reduziert.
- 15) Verfahren gemäss Anspruch 14 dadurch gekennzeichnet, dass man das erhaltene Gemisch von endo- und exo-Isomeren mit Hilfe der Chromatographie auftrennt.

Die Erfindung bezieht sich auf Benzoesäurepiperidylester-Derivate und umfasst Analoga der Benzoesäure, beispielsweise polycarbocyclische und heterocyclische Carbonsäuren.

- Die vorliegende Erfindung betrifft insbesondere einen di-carbocyclischen oder heterocyclischen Carbonsäureester eines eine
 Alkylenbrücke enthaltenden Piperidinols oder ein entsprechendes
 Amid oder einen Ester oder ein Amid einer substituierten Benzoesäure und eines eine Alkylenbrücke enthaltenden Piperidinols
 oder Piperidylamins mit der Massgabe, dass
 - a) jeder Benzoesäureester, der eine Alkylenbrücke zwischen zwei Kohlenstoffatomen des Piperidyl-Ringes besitzt, im Phenylring zumindest in einer der ortho- oder meta-Stellungen substituiert ist
- b) in jedem Benzoesäureester, der in den beiden ortho-Stellungen des Phenylringes unsubstituiert ist, oder zumindest in einer der ortho-Stellungen durch Halogen oder Alkyl substituiert ist und in den meta- und para-Stellungen jeweils nur Wasserstoff oder Halogen besitzt und die Alkylenbrücke zwischen zwei Ringkohlenstoffatomen des Piperidyl-Ringes besitzt, die Alkylenbrücke zwischen zwei Kohlenstoffatomen des Piperidyl-Ringes mindestens 3 Kohlenstoffatome besitzt.

- c) in jedem eine Oxy-Gruppe enthaltenden Benzoesäureester, der eine Alkylenbrücke zwischen dem Stickstoffatom des Piperidyl-Ringes und einem Ring-Kohlenstoffatom besitzt, sich zumindest noch ein anderer Substituent als ein Oxy-Substituent befindet oder nur 2 Oxy-Substituenten im Benzoesäurekern anwesend sind.
- d) in jedem monocyclischen, heterocyclischen Carbonsäureamid oder -ester, worin der Heterocyclus ein 6 gliedriger Ring ist, der ein Ring-Stickstoffatom enthält, oder in jedem cyclischen hetereocyclischen Carbonsäureamid, dessen Heterocyclus zwei Sauerstoffatome enthält, im Piperidyl-Ring eine Alkylenbrücke zwischen dem Piperidyl-Stickstoffatom und einem Piperidyl-Kohlenstoffatom besteht
- e) in jedem Benzoesäureamid die Alkylenbrücke des Piperidyl-Ringes an ein Ring-Kohlenstoffatom und an das Stickstoffatom gebunden ist, und
 - f) in keinem Benzoesäureamid sich in einer der ortho-Stellungen ein Alkyl-, Hydroxy- oder Halogen-Rest befindet.
- g) Thienoyl- und Naphthoyl-8-aza-bicyclo[3,2,1]oct-3-ylesterausgeschlossen sind.

und dessen Salze, beispielsweise Säureadditionssalze und quaternäre Ammoniumsalze, beispielsweise des Stickstoffatoms des Piperidyl-Ringes. Alle diese Verbindungen und Salze werden nachfolgend als Verbindungen der Erfindung bzw. Verbindungen gemäss der Erfindung bezeichnet.

25

5

Die Verbindungen können wo erwünscht substituiert sein. Die Substituenten der Benzoesäureester und -amide bilden keinen Ring. In einer Gruppe von Verbindungen ist die Ringstruktur des Säureteiles di-carbocyclisch. In einer anderen Gruppe von Verbindungen ist die Ringstruktur des Säureteiles heterocyclisch, vorzugsweise bicyclisch und enthält zweckmässigerweise ein Ring-Heteroatom. Zweckmässigerweise besitzt die Alkylenbrücke zumindest 3 Kohlenstoffatome. Andererseits kann die Alkylenbrücke an das Piperidyl-Stickstoffatom gebunden sein.

10 Im besonderen betrifft die vorliegende Erfindung Verbindungen der Formel I,

I

worin A eine Gruppe der Formel II,

bedeutet, worin die freie Bindung sich an jedem der miteinander verbundenen Ringe befinden kann,

$$X \text{ für -CH}_2-, -NR_3-, -0-, -S-,$$

 R_1 und R_2 unabhängig voneinander für Wasserstoff, Halogen, (C_{1-4}) Alkoxy, Hydroxy, Amino, (C_{1-4}) Alkylamino, di (C_{1-4}) Alkylamino, Mercapto oder (C_{1-4}) Alkylthio, und

 R_3 für Wasserstoff, $(C_{1-4})Alkyl$, $(C_{3-5})Alkenyl$, Aryl oder Aralkyl stehen, oder

20

15

eine Gruppe der Formel III,

$$R_7$$
 R_6
 R_5
 R_4

bedeutet, worin

 R_4 bis R_7 unabhängig voneinander für Wasserstoff, Amino, Nitro, (C_{1-4}) Alkylamino, di (C_{1-4}) Alkylamino, Halogen, (C_{1-4}) Alkoxy, (C_{1-4}) Alkyl, (C_{1-4}) Alkanoyl-amino oder Pyrrolyl stehen mit der Massgabe, dass zumindest eines von R_4 oder R_5 eine andere Bedeutung als Wasserstoff besitzt,

B ist -O- oder -NH-,

D eine Gruppe der Formel IV,

bedeutet, worin

n für 2, 3 oder 4 und

 R_8 für Wasserstoff, $(C_{1-7})Alkyl$, $(C_{3-5})Alkenyl$ oder Aralkyl

15 stehen, oder

BNSDOCID: <DE___3322574A1_I_>

5

eine Gruppe der Formel V,

٧

bedeutet mit der weiteren Massgabe, dass

- i) falls A für eine Gruppe der Formel III und B für -NH- stehen, dann D eine Gruppe der Formel V bedeutet,
- ii) falls A für eine Gruppe der Formel III steht, worin entweder R₄ Wasserstoff oder R₄ Halogen oder Alkyl und R₅ bis R₇ jeweils Halogen oder Wasserstoff bedeuten, B für -O- und D für eine Gruppe der Formel IV stehen, n 3 oder 4 bedeutet,
- iii) falls A für eine Gruppe der Formel III steht und eines von R_4 bis R_7 Alkoxy bedeutet und D für eine Gruppe der Formel V steht, dann ist entweder eines der anderen von R_4 bis R_7 anders als Wasserstoff und Alkoxy oder nur zwei von R_4 bis R_7 sind Alkoxy,
 - iv) falls A für eine Gruppe der Formel III steht,
 worin R₄ Alkyl oder Halogen bedeutet, dann steht
 B für -0-
- sowie deren Säureadditionssalze und quaternären Ammoniumsalze.

Jede Alkylgruppe steht vorzugsweise für Methyl, Aethyl oder Propyl. Alkoxy bedeutet vorzugsweise Methoxy oder Aethoxy. Aralkyl steht zwackmässigerweise für Aryl(C₁₋₄)alkyl. Alkenyl bedeutet vorzugsweise Allyl oder Methallyl.

5

10

15

Aryl steht vorzugsweise für unsubstituiertes Phenyl oder ein Phenyl, das mono- oder poly-substituiert ist durch (C_{1-4}) Alkyl, beispielsweise Methyl, Halogen, beispielsweise Fluor, Hydroxy oder (C_{1-4}) Alkoxy, beispielsweise Methoxy. Vorzugsweise ist jede substituierte Arylgruppe mono-substituiert. Aralkyl steht vorzugsweise für Benzyl. Halogen steht für Fluor, Chlor, Brom oder Jod.

A steht zweckmässigerweise für eine Verbindung der Formel II. In der Gruppe der Formel II kann die Carbonylseitenkette an die Ringkohlenstossatome in den Stellungen 2, 3, 4, 5, 6 oder 7 gebunden sein, bevorzugt steht sie jedoch in den Stellungen 4 oder 5, insbesondere ist die Carbonylgruppe an den Ring, der x enthält, in Stellung 3 gebunden. A steht bevorzugt für Indol.

R₁ ist an die Ringkohlenstoffatome in den Stellungen 4, 5, 6 oder 7 gebunden, vorzugsweise jedoch in Stellung 5, und R₂ ist an das Ringkohlenstoffatom in den Stellungen 2 oder 3 gebunden. Tautomere werden ebenfalls durch die Formel I umfasst, beispielsweise worin R₂ für Hydroxy oder Mercapto in Stellung 2 stehen. R₃ ist zweckmässigerweise Wasserstoff oder Alkyl, n ist zweckmässigerweise 3 oder 4, insbesondere 3.

In einer Gruppe der Formel III stehen zweckmässigerweise

 R_4 für Halogen, $(C_{1-4})Alkylamino oder <math>(C_{1-4})Alkoxy$,

R₅ für Wasserstoff oder Halogen,

 R_6 für Wasserstoff, Amino, Nitro, $(C_{1-4})Alkyl-$ amino, Di $(C_{1-4})alkylamino$, Halogen oder 1-Pyrrolyl,

R₇ für Wasserstoff oder Halogen,

wobei $R_{\overline{6}}$ zweckmässigerweise eine andere Bedeutung als Wasserstoff, Halogen oder Pyrrolyl besitzt.

25

5

10

15

In der Gruppe der Formel III steht R_7 vorzugsweise für Halogen und ist vorzugsweise Chlor oder Jod, insbesondere Chlor.

Andere Beispiele der Gruppe der Formel III sind 3,5-Dimethoxyphenyl, 3,5-Dimethylphenyl und insbesondere 3,5-Dichlorphenyl. Andererseits kann die Gruppe der Formel III ein 3-Chlor-, 3-Methyloder 3,4,5-Trimethoxyphenyl sein.

Die Gruppe der Formel IV kann in verschiedenen Konfigurationen auftreten. Beispielsweise kann der Piperidyl-Ring, an den der Substituent B gebunden ist, in Sessel- oder Wannenform oder einer dazwischen liegenden Form auftreten.

Der Substituent B kann in zwei verschiedenen Konfigurationen auftreten. Dieses kann mittels einer Equatorialebene veranschaulicht werden, die durch die Kohlenstoffatome des Piperidyl-Ringes gelegt wird, wobei sich das Stickstoffatom oberhalb und die Alkylenbrücke unterhalb der Ebene befinden. Der Substituent B besitzt die α-Konfiguration, falls er sich unter der Ebene auf der gleichen Seite wie die Alkylenbrücke befindet. Dies entspricht der endo-Konfiguration und der Konfiguration des Tropins usw. Der Substituent B besitzt die β-Konfiguration, falls er sich oberhalb der Ebene auf der gleichen Seite wie das Stickstoffatom befindet. Dieses entspricht der exo-Konfiguration und auch der Konfiguration des Pseudotropins usw. Diese endo/exo-Nomenklatur wird nachfolgend benützt. Die endo-Isomeren werden erfindungsgemäss bevorzugt.

In der Gruppe der Formel IV ist R₈ vorzugsweise Alkyl, insbesondere Methyl.

5

10

15

Die Gruppe der Formel V ist ebenfalls als Quinuclidinylgruppe bekannt. Ueblicherweise handelt es sich hierbei um ein 3- oder 4-Quinuclidinyl und insbesondere um ein 3-Quinuclidinyl.

Eine Gruppe von Verbindungen der Formel I besteht aus Verbindungen der Formel Ipa,

worin

 R_{4} pa für Halogen, $(C_{1-4})Alkylamino oder <math>(C_{1-4})Alkoxy$,

R₅pa für Wasserstoff ,

 R_6 pa für Amino, (C_{1-4}) Alkylamino, Di (C_{1-4}) alkylamino, R_7 pa für Wasserstoff oder Flour, Chlor oder Brom, und R_8 pa für Wasserstoff, (C_{1-4}) Alkyl oder Aralkyl stehen,

als auch deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

10

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Benzoesäureisopelletierin (Homatropan) Estern, insbesondere Verbindungen der Formel Ipb,

worin

5

 $\rm R_4pa$, $\rm R_5pa$, $\rm R_6pa$ und $\rm R_8pa$ obige Bedeutung besitzen und $\rm R_7pb$ für Wasserstoff oder Halogen steht

als auch deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Verbindungen der Formel Iqa,

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

n' für 2 oder 3 steht, und

 $\rm R_{1},\ R_{2},\ R_{3}$ und $\rm R_{8}$ obige Bedeutung besitzen,

als auch deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Indolcarbonsäuretropin und Isopelletierin(homatropan)estern, insbesondere der Formel Iqb,

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

 R_1 qb und R_2 qb unabhängig voneinander für Wasserstoff, Halogen oder (C_{1-4})Alkyl stehen,

 R_3 qb Wasserstoff oder (C_{1-4})Alkyl bedeutet,

 R_8 qb für Wasserstoff oder (C_{1-7})Alkyl oder Aralkyl steht, und

n' obige Bedeutung besitzt,

als auch deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

10

15

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Indolcarbonsäuretropin- und isopelletierin(homatropan)amiden, insbesondere der Formel Iqc,

CO.NH
$$(CH_2)_n$$
, N-R₈

$$R_1 - \frac{1}{R_3}$$

$$R_{2qc}$$

$$R_3$$

worin die Carbonylgruppe an jeden der anelierten Ringe gebunden sein kann und

 R_2 oc die obige Bedeutung von R_2 besitzt, jedoch nicht für (C_{1-4}) Alkoxy oder Hydroxy steht, und n', R_1 , R_3 und R_8 obige Bedeutung besitzen,

als auch deren Säureadditionssalzen oder quaternären Ammonium-10 salzen.

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Benzoesäurequinuclidinylestern, insbesondere Verbindungen der Formel Isa,

worin R_4 pa bis R_6 pa und R_7 pb obige Bedeutung besitzen,

sowie deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

Eine weitere Gruppe von Verbindungen der Formel I besteht aus Benzoesäurequinuclidinylamiden, insbesondere der Formel Isb,

worin R_4 pa bis R_6 pa und R_7 pb obige Bedeutung besitzen,

sowie deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung der Verbindungen gemäss der Erfindung und ist gekennzeichnet durch die Kondensation von entsprechenden di-carbocyclischen oder heterocyclischen Carbonsäuren oder Benzoesäuren oder deren reaktionsfähigen Säurederivate oder von Vorläufern der Säuren oder deren Derivaten mit einem geeigneten, eine Alkylenbrücke enthaltenden Piperidylamin oder Piperidinol oder einem Vorläufer hiervon und, falls notwendig, die Ueberführung der erhaltenen Piperidylester oder -amide oder deren Säureadditionssalze oder quaternären Ammoniumsalze in andere Piperidylester oder -amide oder deren Säureadditionssalze oder quaternären Ammoniumsalze und Gewinnung der erhaltenen Piperidylester oder -amide als solche oder als Säureadditionssalze oder als quaternäre Ammoniumsalze.

5

10

15

100-5819

Im besonderen betrifft die Erfindung ein Verfahren zur Herstellung von Verbindungen der Formel I als auch deren Säureadditionssalzen oder quaternären Ammoniumsalzen gemäss den folgenden Stufen:

a) Umsetzung einer entsprechenden Verbindung der Formel VI,

A-CO-OH

۷I

worin A obige Bedeutung besitzt, oder eines reaktiven Derivates hiervon, oder eines Vorläufers der Säure oder des Derivates mit einer geeigneten Verbindung der Formel VII,

10 HB-D

5

15

VII

worin B und D obige Bedeutung besitzen, oder eines Vorläufers der Verbindung, oder

- b) Alkylierung einer Verbindung der Formel I, die eine sekundäre Aminogruppe besitzt, wobei Verbindungen der Formel I erhalten werden, die eine tertiäre Aminogruppe besitzen,
- c) Abspaltung von Schutzgruppen einer geschützten Form von Verbindungen der Formel I, wobei nicht geschützte Verbindungen der Formel I erhalten werden,
- d) Halogenierung einer Verbindung der Formel I, worin A für Eine 20 Gruppe der Formel II steht und R₂ Wasserstoff bedeutet, wobei entsprechende Verbindungen erhalten werden, worin R₂ für Halogeh steht, oder

e) Alkoxylierung von Verbindungen der Formel I, worin A eine Gruppe der Formel II bedeutet und R_2 Halogen ist, wobei entsprechende Verbindungen der Formel I erhalten werden, worin R_2 für Alkoxy steht, und

Gewinnung der erhaltenen Verbindungen der Formel I als Basen oder in Form von deren Säureadditionssalzen oder quaternären Ammoniumsalzen.

Die erfindungsgemässe Umsetzung zur Herstellung von Amiden und Estern kann auf eine Weise geschehen, die für die Herstellung derartiger Verbindungen üblich ist.

Beispielsweise kann die Carboxylgruppe durch Ueberführung in ein reaktives Säurederivat, insbesondere für die Herstellung von Amiden, aktiviert werden. Geeignete reaktive Säurederivate wie die Carbonsäureimidazolide oder N-Hydroxy-succinimide können durch Umsetzung mit N,N'-Carbonyl-diimidazol oder N-Hydroxy-succinimid erhalten werden. Ferner können ebenfalls Säurechloride verwendet werden, die man beispielsweise durch Umsetzung mit Oxalylchlorid erhält.

Zur Herstellung von Estern kann der Alkohol in Form von Alkalimetallsalzen, vorzugsweise von Lithiumsalzen, verwendet werden.
Solche Salze können auf an sich bekannte Weise hergestellt
werden, beispielsweise durch Umsetzung von n-Butyllithium mit
Alkohol in Tetrahydrofuran. Falls erwünscht, kann eine heterocyclische Base oder ein tert. Amin wie beispielsweise Pyridin
oder Triäthylamin, insbesondere bei der Herstellung von Amiden
anwesend sein.

10

15

20

Geeignete Reaktionstemperaturen betragen von ungefähr -10° bis ungefähr +10° C. Im Falle von Verbindungen, worin B für NH. und D für eine Gruppe der Formel V stehen, kann die Reaktionstemperatur bis zu 100° betragen und die Reaktion in siedendem Methanol oder Aethanol erfolgen.

Andere geeignete inerte organische Lösungsmittel sind beispielsweise Tetrahydrofuran oder Dimethoxyethan.

Es ist anzunehmen, dass bei diesen Umsetzungen die endo- oder exo-Konfiguration des Substituenten B erhalten bleibt. Die Verbindung der Formel VII kann, falls erwünscht, als Gemisch der endo- und exo-Isomere verwendet werden und die reinen endo- und exo-isomeren Reaktionsprodukte können auf an sich bekannte Weise mit Hilfe der Chromatographie oder durch Kristallisation isoliert werden.

Die Verbindungen gemäss der Erfindung können in andere Verbindungen gemäss der Erfindung, beispielsweise auf an sich bekannte Weise umgewandelt werden. Einige Umwandlungen werden in den Verfahren b), c), d) und e) beschrieben.

Die Alkylierungsreaktion des Verfahrens b) kann auf an sich bekannte Weise durchgeführt werden. Jede freie Aminogruppe kann alkyliert werden, insbesondere Verbindungen der Formel II, worin X für NH steht. Geeignete Alkylierungsbedingungen umfassen eine Reaktion mit einem Alkylhalogenid in Gegenwart von Natriumalkoholat. Geeignete Reaktionstemperaturen betragen von -50° bis ungefähr -30° C.

5

Durch Abspaltung der Schutzgruppe gemäss Verfahren c) kann man zu Verbindungen der Formel I mit sekundären Aminogruppen, beispielsweise worin R_8 = H in der Gruppe der Formel IV, oder mit primären Aminogruppen, beispielsweise worin R_6 = NH_2 , gelangen.

Beispielsweise können Verbindungen der Formel I in geschützter Form hergestellt werden, wobei beispielsweise R₈ ersetzt wird durch eine Schutzgruppe einer sekundären Aminogruppe, beispielsweise Benzyl.

Die Benzylgruppe kann auf an sich bekannte Weise, beispielsweise durch Hydrierung, abgespalten werden, wobei die entsprechende Verbindung der Formel I erhalten wird, worin R₈ für Wasserstoff steht.

Zweckmässigerweise wird die Hydrierung in Anwesenheit eines Palladium-Aktivkohlekatalysators bei Raumtemperatur oder leicht erhöhter Temperatur durchgeführt. Geeignete Lösungsmittel sind Essigsäure, Aethylacetat oder Aethanol.

Eine primäre Aminogruppe von R₆ kann beispielsweise durch eine N-Benzyloxycarbonylgruppe geschützt werden. Diese Gruppe kann durch Hydrierung analog dem oben beschriebenen Verfahren abgespalten werden. In Gegenwart einer Benzylgruppe wird die N-Benzoyloxycarbonylgruppe im allgemeinen zuerst abgespalten, so dass diese Abspaltung selektiv erfolgen kann.

10

15

Insofern die Herstellung der Ausgangsverbindungen nicht spezifisch beschrieben ist, sind diese bekannt oder können analog bekannten Verbindungen hergestellt werden, beispielsweise analog den Beispielen oder unter Verwendung bekannter Verfahren zur Herstellung analoger Verbindungen.

Verbindungen der Formel VII, worin B für -NH- steht und D eine Gruppe der Formel IV bedeutet, worin n für 4 steht, sind neu und bilden einen Teil der vorliegenden Erfindung. Diese Verbindungen wurden bisher nicht spezifisch nahegelegt, obzwar sie von verschiedenen allgemeinen Offenbarungen umfasst werden.

Die Verbindungen sind wertvolle Zwischenverbindungen beispielsweise für die Herstellung der hier beschriebenen Amide, die über ein interessantes pharmakologisches Profil verfügen und die beispielsweise bisher niemals als Serotonin-M-Antagonisten offenbart wurden und die auch andere Wirkungen besitzen wie nachfolgend beschrieben.

Die Verbindungen der Formel VII können beispielsweise hergestellt werden durch Reduktion der entsprechenden Oxime, wie die anderen Verbindungen der Formel VII, worin B für -NH- steht. Verbindungen der Formel VII, worin B für -O- steht, können auf an sich bekannte Weise durch Reduktion der entsprechenden Ketone hergestellt werden.

Alle oben erwähnten Reduktionen können beispielsweise mittels katalytischer Hydrierung, beispielsweise in Gegenwart von Platin (wobei angenommen wird, dass hierbei insbesondere endo-Isomere erhalten werden), mittels der Bouveault-Blanc-Reaktion, d.i. in Gegenwart von Natrium/Amylalkohol oder Butanol (wobei angenommen wird, dass hierbei insbesondere exo-Isomere erhalten werden) oder mittels Behandlung mit Aluminiumhydrid bzw. Natriumlenderbydrid (wobei angenommen wird, dass ein Gemisch von endo- und exo-Formen entsteht) durchgeführt werden.

30

5

10

15

20

Die Aminogruppe kann sich in Form einer Nitrogruppe befinden, die dann selektiv in an sich bekannter Weise, beispielsweise mittels Eisen und Chlorwasserstoffsäure reduziert wird.

Die Halogenierung gemäss Verfahren d) kann auf an sich bekannte Weise durchgeführt werden. Beispielsweise verwendet man als Chlorierungsmittel N-Chlorosuccinimid. Diese Reaktion kann in einer Chloroformsuspension erfolgen. Bei Verwendung von N-Jodosuccinimid gelangt man zu den entsprechenden Jodderivaten.

Der Ersatz von reaktiven Halogengruppen gemäss Verfahren e) kann auf an sich bekannte Weise erfolgen, beispielsweise durch Umsetzung mit einem geeigneten Alkohol bei beispielsweise Raumtemperatur während mindestens 10 bis 20 Stunden.

Ein Vorläufer der Ausgangsverbindung kann, falls erwünscht, ebenfalls verwendet werden. Solcher Vorläufer muss geeignet sein, auf an sich bekannte Weise in das Ausgangsmaterial umgewandelt zu werden. Die Umsetzung kann ebenfalls unter Verwendung der Vorläufer und anderer Ausgangsverbindungen oder deren Vorläufern erfolgen. Die dabei erhaltenen Verbindungen werden in die Verbindungen der Erfindung auf an sich bekannte Weise umgewandelt, beispielsweise unter Verwendung derselben Reaktionsbedingungen, unter denen die Vorläufer in die Ausgangsverbindungen umgewandelt serden können. Typische Vorläufer sind geschützte Formen von Ausgangsverbindungen, beispielsweise worin die Aminogruppe zeitweilig geschützt ist.

Die Verbindungen gemäss der Erfindung können auf an sich bekannte Weise isoliert und gereinigt werden.

5

10

15

Die erhaltenen Gemische von exo- und endo-Formen können mit Hilfe der Chromatographie aufgetrennt werden.

Die freien Basen der Verbindungen der Erfindung können in ihre Salze übergeführt werden. Beispielsweise können Säureadditionssalze auf an sich bekannte Weise hergestellt werden durch Umsetzung mit einer geeigneten Säure und umgekehrt. Für die Salzbildung geeignete Säuren sind die Chlorwasserstoffsäure, Malonsäure, Bromwasserstoffsäure, Maleinsäure, Apfelsäure, Fumarsäure, Methansulfonsäure, Oxalsäure und Weinsäure. Quaternäre Ammoniumsalze der Verbindungen gemäss der Erfindung können auf an sich bekannte Weise hergestellt werden, beispielsweise durch Umsetzung mit Methyljodid.

In den nachfolgenden Beispielen sind alle Temperaturen in Grad Celsius angegeben und sind unkorrigiert. Alle N.M.R-Spektra sind in ppm angegeben (Tetramethylsilan = Oppm).

Nomenklatur

5

10

15

Endo-8-methyl-8-aza-bicyclo[3,2,1]oct-3-yl = Tropyl oder α -Tropyl

Exo-8-methyl-8-aza-bicyclo[3,2,1]oct-3-yl = Pseudo oder β -Tropyl

Endo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl = Isopelletierinyl oder α -Homo-tropanyl

Exo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl = β -Isopelletierinyl oder β -Homo-tropanyl oder Pseudopelletierinyl

1-Aza-bicyclo[2,2,2]octyl

= Quinuclidinyl

Die Konfigurationen der Titelverbindungen der Beispiele A-2, A-3 und B-6 wurden durch Röntgenanalyse bestätigt. Es wird angenommen, dass die Konfiguration der übrigen Verbindungen derjenigen der Ausgangsverbindungen der Formel VII entspricht, die in reinem Zustand verwendet werden, sofern nichts anderes angegeben ist.

In den Tabellen geben die Kolonnen, die mit Konfiguration bezeichnet werden, die Konfiguration der Gruppe B-D, das ist endo oder exo an. Die Kolonne, die mit Herstellung bezeichnet ist, gibt die Nos der Beispiele in der A Serie an, die das Herstellungsverfahren beschreiben.

Verwendete Abkürzungen:

5

```
= 5-Chloro-2-methoxy-4-methylaminophenyl
      III-I
               = 2-Methoxy-4-dimethylaminophenyl
      III-II
      III-III = 4-Amino-5-chloro-2-methoxyphenyl
15
               = 4-Amino-2-methoxyphenyl
      III-IV
               = 3-Iodo-2-methoxy-4-methylaminophenyl
      III-V
               = 5-Chloro-2-methoxy-4-dimethylaminophenyl
      III-VI
      III-VII = 2-Chloro-4-aminophenyl
      III-VIII = 3-Iodo-4-amino-2-methoxyphenyl
20
      III-IX = 2-Methoxy-4-methylamino-phenyl
               = 2-Chloro-4-nitrophenyl
      III-X
```

III-XI = 4-Brom-2-methoxyphenyl

III-XII = 3,5-Dichlorphenyl

III-XIII = 5-Chlor-2-methoxy-4-(1-pyrrolyl)phenyl

III-XIV = 2-Methoxy-4-(1-pyrroly1)phenyl

- Nachfolgend sind die Bedeutungen der in den Tabellen enthaltenen Indices aufgeführt.
 - Index 1) Hydrogenmaleat
 - Index 2) Hydrogenmalonat
 - Index 3) Zersetzung
- - Index 5) Erhalten durch Reduktion der entsprechenden 4-Nitro-Verbindung
 - Index 6) Hydrobromid
 - Index 7) Via Imidazolyl Zwischenverbindung
- Index 8) Exo-Form besitzt C-3 H breites Multiplet bei 5,15 ppm in H¹N.M.R

 Endo-Form besitzt ein C-3 H doppeltes Triplett bei 5,1 ppm. Exo-Alkohol wird vor dem Endo-Isomer auf Silicagel eluiert Eluierungsmittel CH₂Cl₂/5%

 CH₃OH/5% NH₄OH

Index 9) Hydrogenoxalat

Index 10) In Gegenwart von Triäthylamin anstelle von Pyridin

Beispiel A-l:

N-(Endo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl)-indol-3-yl carbonsäureamid ebenfalls genannt N-(3α -Homatropanyl)-indol-3-yl-carbonsäureamid (Verfahren a)

(Verbindung der Formel I, worin A = II in 3-Stellung; $R_1 = R_2 = H$; X = NH; B = NH; $D = IV-\alpha$ Konfiguration; n = 3; $R_8 = CH_3$)

a) Indol-3-yl-carbonsaurechlorid

32,2 g (0,2 M) trockener Indol-3-yl-carbonsäure werden in 150 ml absolutem Methylenchlorid suspendiert. Danach werden 26 ml (0,3 M) Oxalylchlorid dem gerührten Gemisch bei 20° C während 30 Minuten zugefügt. Hierbei entsteht Gasentwicklung. Das Gemisch wird noch während 3 1/2 Stunden bei 20° gerührt, danach mit 150 ml Hexan versetzt und das Gemisch noch während 20 Minuten weiter gerührt. Die hierbei gebildete Titelverbindung wird abfiltriert, mit Methylenchlorid/Hexan 1:1 gewaschen, bei 20° im Vakuum getrocknet, wobei beige Kristalle vom Schmelzpunkt 135-136° (Zersetzung) erhalten werden. Die Verbindung wird ohne weitere Reinigung zur nächsten Umsetzung verwendet.

b) 9-Methyi-9-aza-bicyclo[3,3,1]nonan-3-on-oxim (ebenfalls genannt 3-Homotropanonoxim)

176 g (2,15 M) Natriumacetat und 150 g (2,15 M) Hydroxylamin-hydrochlorid werden in einem Mörser zu einer dünnen Paste vermahlen, diese nachher mit 1 Liter Methanol extahiert, das gebildete Salz abfiltriert und das Filtrat mit 99,5 g (0,65 M) Endo-9-methyl-9-aza-bicyclo[3,3,1]nonan-3-on (3-Homatropan)

10

15

20

versetzt. Das Oxim beginnt nach 10 Minuten auszukristallisieren und das Gemisch wird noch während 4 Stunden bei 20° gerührt. Zur Aufarbeitung wird das Gemisch im Vakuum eingedampft, der Rückstand mit einer wässrigen Kaliumbicarbonatlösung behandelt und mit Chloroform, das etwas Isopropanol enthält, extrahiert. Die vereinigten organischen Phasen werden mit wenig Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft, wobei die Titelverbindung vom Schmelzpunkt 126-127° (nach Umkristallisation aus Toluol/Hexan) erhalten wird.

Eine Lösung von 50,5 ml (0,95 M) konzentrierter Schwefelsäure in 200 ml absolutem Tetrahydrofuran wird zu einem gekühlten und gerührten Gemisch von73 g (1,9 M) Lithiumaluminiumhydrid in 15 900 ml absolutem Tetrahydrofuran bei -10° C während 2 Stunden zugesetzt. Das Gemisch wird danach über Nacht stehen gelassen. Anschliessend wird eine Lösung von 80 g (0,475 M) Endo-9-methyl-9-aza-bicyclo[3,3,1]nonan-3-on-oxim in 1,4 Liter absolutem Tetrahydrofuran tropfenweise während 30 Minuten zu dem gerührten Gemisch bei 30°C zugefügt und danach noch während 3 Std. bei 40° 20 reagieren gelassen. Zur Aufarbeitung des Reaktionsgemisches wird dieses auf 10° C abgekühlt und ein Gemisch von 150 ml Wasser und 150 ml Tetrahydrofuran wird sorgfältig zugefügt. Das erhaltene Gemisch wird während 1 Stunde bei 30°C gerührt. Der gebildete Niederschlag wird abfiltriert, der Filterrückstand mit 25 Methylenchlorid und Aether gewaschen, die organischen Phasen werden anschliessend vereinigt und destilliert, wobei die Titelverbindung vom Siedepunkt 115-119° C (17-18 Torr) - n_D^{20} = 1.5066 erhalten wird.

(Es wird darauf hingewiesen, dass bei der Reduktion hauptsächlich die endo-Verbindung erhalten wird. Eine analoge Reduktion von 8-Methyl-8-aza-bicyclo[3,2,1]octan-3-on-oxim ergibt die exo-Verbindung.)

d) N-(Endo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl)-indol-3-yl-carbonsäureamid

Eine Lösung von 15,4 g (0,1 M) Endo-9-methyl-9-aza-bicyclo-[3,3,1]non-3-yl-amin in 50 ml absolutem Pyridin wird tropfen-weise zu einer gerührten Suspension von 14,5 g (0,08 M) Indol-3-yl-carbonsäurechlorid (hergestellt in der Verfahrensstufe a) in 50 ml absolutem Methylenchlorid bei -10° C bis 0° C zugefügt.

Die dabei erhaltene gelbe Suspension wird auf 20° erwärmt und über Nacht gerührt. Zur Aufarbeitung wird 2N wässrige Natriumcarbonat-Lösung zugefügt. Das gebildete Gemisch wird mehrere Male mit Methylenchlorid extrahiert und auf an sich bekannte Weise aufgearbeitet. Die im Titel genannte Verbindung wird nach 3-maliger Umkristallisation mit dem Schmelzpunkt 247-249° (Zersetzung) erhalten.

Beispiel A-2:

5

10

15

20

Indol-3-yl-carbonsaure-endo-8-methyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester (Verfahren a)

(Verbindung der Formel I, worin A = II in 3-Stellung; $R_1 = R_2 = H$; X = NH; B = 0; D = IV in α -Konfiguration; n = 2; $R_8 = CH_3$)

6,35 g (45 mM) Endo-8-methyl-8-aza-bicyclo[3,2,1]octan-3-ol (Tropin) in 20 ml absolutem Tetrahydrofuran werden bei 0° bis 10° C mit 17 ml einer 2 molaren Lösung von Butyllithium in Hexan behandelt. Das Gemisch wird während 30 Minuten gerührt, danach das Hexan im Vakuum entfernt und durch die entsprechende Menge von Tetrahydrofuran ersetzt, wobei das Lithiumsalz gebildet wird.

4,8 g (27 mM) Indol-3-yl-carbonsäurechlorid in 20 ml Tetra-hydrofuran werden zu dem obigen Gemisch zugefügt und die erhaltene beige Suspension über Nacht bei 20°C gerührt. Das Gemisch wird danach in üblicher Weise durch Verteilung zwischen Methylen-chlorid und einer wässrigen Natriumcarbonatlösung aufgearbeitet, wobei die im Titel genannte Verbindung als Rohprodukt erhalten wird. Diese wird an Silicagel (250 g) chromatographiert, wobei als Eluierungsmittel Methylenchlorid enthaltend 10% Methanol und 0,5% Ammoniak verwendet wird. Der Schmelzpunkt der so erhaltenen Verbindung ist 201-202° (Methylenchlorid/Aethylacetat). Das Hydrochlorid schmilzt bei 283-285° (unter Zersetzung), das Methojodid bei 285-287° (unter Zersetzung).

In einer anderen Ausführungsform kann das Indol-3-yl-carbonsäurechlorid mit N,N'-Carbonyl-diimidazol umgesetzt werden, wobei das Imidazolid erhalten wird. Dieses wird mit dem obigen Lithiumsalz bei 10-15° in Tetrahydrofuran zur Reaktion gebracht.

Beispiel A-3:

1-Methyl-N-(endo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl)indol-3-yl-carbonsäureamid ebenfalls genannt l-Methyl-N-(3α -homotropanyl)-indol-3-yl-carbonsäureamid

(Verfahren b) (Verbindung der Formel I, worin A = II in 3-Stellung; $R_1 = R_2 = H$; $X = NCH_3$; B = NH; D = IV in α Konfiguration; n = 3; $R_8 = CH_3$).

0,46 g (20 mM) Natrium werden in 170 ml trockenem, flüssigem Ammoniak bei -50° gelöst und danach tropfenweise mit 1,3 ml (22,5 mM) absolutem Aethanol, der mit etwas absolutem Aether verdünnt wurde, versetzt. Die erhaltene farblose Suspension von Natriumethanolat wird während 15 Minuten bei -50° gerührt. Anschliessend werden 4,46 g (15 mM) N-(Endo-9-methyl-9-aza-bicyclo [3,3,1] non-3-yl)-indol-3-yl-carbonsäureamid zugesetzt, wobei eine klare Lösung erhalten wird. Danach wird das Gemisch während 10 Minuten bei -50° gerührt und mit 1,25 ml (20 mM) Methyliodid in 4 ml absolutem Aether versetzt.

Das Gemisch wird bei -50° während weiterer 4 1/2 Stunden gerührt. Zur Aufarbeitung wird der Ammoniak im Vakuum entfernt und der Rückstand zwischen Methylenchlorid und Wasser verteilt. Nach Aufarbeitung in üblicher Weise erhält man einen farblosen Schaum, der am 120 g Silicagel unter Verwendung von Methylenchlorid enthaltend 5% Methanol und 3% Ammoniak chromatographiert wird, wobei die im Titel erwähnte Verbindung vom Schmelzpunkt 210-212° (nach Umkristallisation aus Aethylacetat/Methanol), Schmelzpunkt des Hydrochlorids 295-297° (unter Zersetzung) erhalten wird.

Die Verbindung kann ebenfalls analog dem Verfahren des Beispiels 1 hergestellt werden, unter Verwendung von 1-Methylindol-3-yl-carbonsäure als Ausgangsverbindung.

10

15

20

Beispiel A-4:

 $\frac{5-\text{Fluor-l-methyl-indol-3-yl-carbons\"{a}ure-endo-9-aza-bicyclo}}{[3,3,1]\text{non-3-yl-ester ebenfalls genannt (N-Desmethyl-3α-homotropanyl)-5-fluor-l-methyl-indol-3-yl-carbons\"{a}ureester}$

(Verfahren c) (Verbindung der Formel I; A = II in 3-Stellung; $R_1 = 5-F$; $R_2 = H$; $X = NCH_3$; B = -0-; D = IV in α Konfiguration; n = 3; $R_8 = H$)

4,9 g 5-Fluor-l-methyl-indol-3-yl-carbonsäure—endo-9-benzyl9-aza-bicyclo[3,3,1]non-3-yl-ester in 200 ml Aethanol werden bei
Raumtemperatur und einem Wasserstoffdruck von 1 atm in Gegenwart von 1,5 g (10%) Palladium auf Aktivkohle hydriert. Nach
45 Minuten und einer Aufnahme von 230 ml Wasserstoff ist die
Hydrierung beendet und der Katalysator wird abfiltriert. Das
Filtrat wird im Vakuum eingedampft, wobei als kristalliner
Rückstand die Titelverbindung vom Schmelzpunkt 130-131° (nach
Umkristallisation aus Aethanol/wenig Hexan) ernalten wird.

Beispiel A-5:

2-Methoxy-indol-3-yl-carbonsäure—endo-8-methyl-8-aza-bicyclo
[3,2,1]oct-3-yl—ester ebenfalls genannt 2-Methoxy-indol-3-ylcarbonsäuretropylester (Verfahren d und e)

(Verbindung der Formel I; A = II in 3-Stellung; R_1 = H; R_2 = 2-OCH₃; X = NH; B = O; D = IV in α -Konfiguration; n = 2; R_8 = CH₃)

5,68 g (20 mM) Indol-3-carbonsäure-endo-8-methyl-8-aza-bicyclo [3,2,1]oct-3-yl-ester werden zu einer gerührten Suspension von 4 g (30 mM) N-Chlor-succinimid in 80 ml absolutem Chloroform bei 20° zugesetzt. Das Gemisch wird während 3 Stunden bei 20° gerührt, wobei der 2-Chlor-indol-3-yl-carbonsäure-(endo-8-methyl-8-aza-bicyclo[3,2,1]-oct-3-yl)ester als klare gelbe Lösung erhalten wird.

Die klare gelbe Lösung wird mit 10 ml absolutem Methanol versetzt und über Nacht stehengelassen. Nach üblicher Aufarbeitung durch Verteilung des Gemisches zwischen einer 1N wässrigen Natriumcarbonatlösung und Methylenchlorid wird ein Rohprodukt erhalten, das an Silicagel (30-fache Menge) unter Verwendung von Methylenchlorid enthaltend 10% Methanol und 0,5% Ammoniak chromatographiert wird. Die so erhaltene Titelverbindung besitzt einen Schmelzpunkt von 204-206° (aus Aethanol).

5

10

100-5819

Beispiel A-6:

3-Jod-indol-4-yl-carbonsäure-endo-8-methyl-8-aza-bicyclo-[3,2,1]oct-3-yl-ester (Verfahren d)

(Verbindung der Formel I, worin A = II in 4-Stellung; R_1 = H; R_2 = 3-I; X = NH; B = -0-; D = IV in α -Konfiguration; n = 2; R_8 = CH₃)

Eine Lösung von 2,84 g (10 mM) Indol-4-yl-carbonsäure-endo-8methyl-8-aza-bicyclo[3,2,l]oct-3-yl-ester wird tropfenweise bei
15° zu einer gerührten Suspension von 2,48 g (11 mM) N-Jodsuccinimid in 200 ml absolutem Chloroform zugefügt. Das Gemisch
wird während 30 Minuten bei 20° gerührt. Danach wird zwischen
lN wässriger Natriumcarbonatlösung und Methylenchlorid verteilt
und auf an sich bekannte Weise aufgearbeitet. Die hierbei erhaltene im Titel genannte Verbindung schmilzt bei 163-165°
(Zersetzung) nach Umkristallisation aus Aethanol. Die Verbindung kann ebenfalls ausgehend von 3-Jod-indol-4-yl-carbonsäure
analog Beispiel 2 hergestellt werden.

Beispiel A-7:

5-Chlor-4-methylamino-2-methoxy-benzoesäure-l-aza-bicyclo

[2,2,2]oct-3-yl-ester ebenfalls genannt 5-Chlor-4-methylamino2-methoxy-benzoesäure-quinuclidin-3-yl-ester (Verfahren a)

(Verbindung der Formel I, worin A = III; $R_4 = OCH_3$; $R_5 = H$; $R_6 = NHCH_3$; $R_7 = C1$; B = -0-; D = V in 3-Stellung)

a) 5-Chlor-4-methylamino-2-methoxy-benzoesäure-imidazolid

12 g N,N'-Carbonyldiimidazol werden einer gerührten Lösung von 8 g 5-Chlor-4-methylamino-2-methoxy-benzoesäure in 300 ml trockenem Tetrahydrofuran bei 20-25° zugesetzt. Das Gemisch wird unter wasserfreien Bedingungen während 1 Stunde gerührt, danach das Lösungsmittel bei 35-40° entfernt und der Rückstand in Methylenchlorid gelöst.

Das Gemisch wird 2-3 mal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Hierbei kristallisiert die im Titel genannte Verbindung aus, die noch aus Methylenchlorid/Hexan umkristallisiert wird. Der Schmelzpunkt der Verbindung beträgt 152-154°.

b) 5-Chlor-4-methylamino-2-methoxy-benzoesaure-1-aza-bicyclo-[2,2,2]oct-3-yl-ester

15 27 ml n-Butyllithium (1,6 Molar) in Hexan werden tropfenweise zu einer gerührten Lösung von 5,56 g l-Aza-bicyclo[2,2,2]octan-3-ol (Quinuclidin-3-ol) in 100 ml absolutem Tetrahydrofuran bei 0 bis 5° unter trockenem Stickstoff zugesetzt. Das Gemisch wird während weiterer 10 bis 15 Minuten bei 0-5° gerührt und danach eine Lö-20 sung des oben erhaltenen 5-Chlor-4-methylenamino-2-methoxy-benzoesäure-imidazolid in 100 ml absolutem Tetrahydrofuran zugesetzt. Nach einstündigem Rühren werden 5 ml einer wässrigen gesättigten Kaliumbicarbonatlösung zugesetzt und die Lösung abdecantiert. Der Rückstand wird 2 mal mit Tetrahydrofuran gewaschen. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrock-25 net, abfiltriert und eingedampft. Das Rohprodukt wird mit einer äquivalenten Menge Malonsäure behandelt, wobei die im Titel genannte Verbindung als Hydrogenmalonat vom Schmelzpunkt 170-172° (aus Aceton) erhalten wird.

5 .

Beispiel A-8:

4-Amino-5-chlor-2-methoxy-benzosäure-exo-8-benzyl-8-aza-bicyclo
[3,2,1]oct-3-yl-ester ebenfalls genannt 4-Amino-5-chlor-2-methoxy-benzoesäure-8-benzyl-pseudo-nor-tropyl-ester (Verfahren c)

Verbindung der Formel I, worin A = III; $R_4 = OCH_3$; $R_5 = H$; $R_6 = NH_2$; $R_7 = C1$; B = 0; D = IV in β Konfiguration; n = 2; $R_8 = Benzyl$)

a) 4-(N-Benzyloxycarbonyl)amino-2-methoxy-benzoesäuremethylester

Eine Lösung von 42,1 g 4-Amino-2-methoxy-benzoesäuremethylester in 600 ml Toluol wird am Rückflusskühler während 2 1/2 Stunden zusammen mit 60 ml Chloroformylphenylester zum Sieden erhitzt. Die Lösung wird danach abgekühlt und die gebildeten Kristalle der im Titel genannten Verbindung abfiltriert. Schmelzpunkt 137-138°.

b) 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäuremethylester

18 g Chlorgas (getrocknet über Schwefelsäure) wird durch eine gerührte Lösung von 61,4 g4-(N-Benzyloxycarbonyl)amino-2-methoxybenzoesäuremethylester in 1 Liter Chloroform bei 20° während 20 bis 25 Minuten geleitet. Das Reaktionsgemisch wird nachher im Vakuum eingedampft, wobei Kristalle der im Titel genannten Verbindungen erhalten werden, die anschliessend zur weiteren Umsetzung verwendet werden.

c) 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäure

200 ml einer 2N wässrigen Natriumhydroxydlösung werden tropfenweise einer gerührten Lösung von 72,1 g des gemäss Verfahrensstufe b erhaltenen Benzoesäuremethylesters in 800 ml Dioxan zugesetzt. Das Gemisch wird während 20 Stunden gerührt und das organische Lösungsmittel im Vakuum entfernt. Der Rückstand wird in Wasser gelöst und mit Hilfe einer 3N Chlorwasserstoffsäure auf einen pH-Wert von 5-6 eingestellt. Die dabei ausgefallene im Titel genannte Verbindung wird abfiltriert und mit Wasser gewaschen. Nach Umkristallisation aus Methanol schmilzt die Verbindung bei 182-183°.

d) 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäureimidazolid

Die Verbindung wird analog dem Verfahren des Beispiels A-7a hergestellt.

e) 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäureexo-8-benzyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester

Die Verbindung wird analog dem Beispiel A-7b hergestellt.

5

10

100-5819

f) 4-Amino-5-chlor-2-methoxy-benzoesäure-exo-8-benzyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester

5,4 g 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäure-exo-8-benzyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester in 100 ml Aethanol werden in Gegenwart von 0,7 g Palladium (10%) auf Aktivkohle während 50 Minuten bei einem Wasserstoffdruck von 1 atm solange hydriert, bis ein Aequivalent Wasserstoff aufgenommen wurde. Danach wird das Gemisch durch ein Filterhilfsmittel (Hyflo Supercell) filtriert und das Filtrat eingedampft. Der erhaltene Rückstand wird an Silicagel unter Verwendung von Methylenchlorid, das 5% Methanol enthält, chromatographiert und die im Titel genannte Verbindung wird hierbei in Form der freien Base erhalten. Das Hydrobromid wird durch Umsetzung mit Bromwasserstoffsäure in Aethanol hergestellt und schmilzt bei 241-242°.

15 <u>Beispiel A-9</u>:

5

10

4-Amino-5-chlor-2-methoxy-benzoesäure-exo-8-aza-bicyclo[3,2,1]
oct-3-yl-ester ebenfalls genannt 4-Amino-5-chlor-2-methoxybenzoesäure-pseudo-nor-tropylester (Verfahren c)

(Verbindung der Formel I, worin A = III; $R_4 = OCH_3$; $R_5 = H$; $R_6 = NH_2$; $R_7 = C1$; $R_8 = 0$; $R_8 = H$)

8,4 g 4-(N-Benzyloxycarbonylamino)-5-chlor-2-methoxy-benzoesäure-exo-8-benzyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester werden in 250 ml Aethylacetat oder Eisessig unter Zugabe von 1,2 g Palladiumkohle 10% während 2 Stunden bei einem Wasserstoffdruck von 1 atm bei 20-25° C hydriert. Das Gemisch wird anschliessend über Hyflo abfiltriert, das Filtrat eingedampft und der Rückstand in Methylenchlorid gelöst. Die organische Phase wird einmal mit 1N wässriger Natriumhydroxydlösung und einmal mit Wasser gewaschen,

über Magnesiumsulfat getrocknet, filtriert und eingedampft. Das Produkt wird durch Chromatographie über Kieselgel mit Hilfe von Methylenchlorid plus 5% Methanol und Methylenchlorid plus 20% Methanol chromatographiert und aus Aethanol als Hydrochlorid kristallisiert. Das Hydrochlorid der Titelverbindung weist einen Schmelzpunkt von 258-259° auf.

Beispiel A-10:

5

15

20

25

Indol-4-yl-carbonsaure-endo-8-methyl-8-aza-bicyclo[3,2,1]oct-3-yl-ester ebenfalls genannt Indol-4-yl-carbonsauretropylester

(Verbindung der Formel I, worin A = II in 4-Stellung; $R_1 = R_2 = H$; X = NH; B = 0; D = IV in α -Konfiguration; n = 2; $R_8 = CH_3$)

7 g (50 mM) Endo-8-methyl-8-aza-bicyclo[3,2,1]octan-3-ol (Tropin) werden in 15 ml absolutem Tetrahydrofuran gelöst und die Lösung bei 10 bis 15° tropfenweise mit 20 ml (40 mM) einer 2 molaren Lösung von Butyllithium in Hexan versetzt. Das erhaltene Gemisch wird noch während 30 Minuten bei 20° C weitergerührt. Danach wird im Vakuum, um das Hexan zu entfernen, auf ein Volumen von ca. 10 ml eingeengt. Die entstandene Lösung des Lithiumenolats wird mit 10 ml absolutem Tetrahydrofuran verdünnt und als solche direkt weiter verwendet.

4,8 g (30 mM) trockene Indol-4-yl-carbonsäure werden in 15 ml absolutem Tetrahydrofuran vorgelegt und bei Raumtemperatur portionenweise mit 5,85 g (36 mM) N,N'-Carbonyl-diimidazol versetzt. Das Gemisch wird während 90 Minuten bei 20° C stehengelassen und anschliessend tropfenweise der obigen Lösung des Lithiumenolats zugesetzt. Hierbei entsteht eine gelbe Suspension, die bei 20° C während 15 Stunden gerührt wird. Nach dem üblichen Aufarbeiten zwischen Methylenchlorid/wenig Isopropanol und einer 1N wässrigen

Natriumcarbonatlösung wird mit Wasser nachgewaschen, über Natriumsulfat getrocknet, das Lösungsmittel im Vakuum abdestilliert und der anfallende Rückstand aus Aethanol umkristallisiert. Die soerhaltene Titelverbindung schmilzt bei 220-222°C (unter Zersetzung).

Beispiel A-ll:

5

15

20

25

30

Indol-4-yl-carbonsäure-endo-9-methyl-9-aza-bicyclo[3,3,1]non-3-yl-ester ebenfalls genannt 3α -Homotropanyl-indol-4-yl-carbonsäureester

- (Verbindung der Formel I, worin A = II in 4-Stellung; X = NH; R_1 = H; R_2 = H; B = 0; D = IV in α Konfiguration; n = 3; R_8 = CH₃) (Verfahren a)
 - a) 7,65 g (50 mM) Endo-9-methyl-9-aza-bicyclo[3,3,1]nonan-3-ol werden in 15 ml absolutem Tetrahydrofuran gelöst und die Lösung bei 10-15° tropfenweise mit 20 ml (40 mM) einer 2 molaren Lösung von Butyllithium in Hexan versetzt. Das erhaltene Gemisch wird noch während 30 Minuten bei 20° weiter gerührt. Danach wird im Vakuum, um das Hexan zu entfernen, auf ein Volumen von 10 ml eingeengt. Die entstandene Lösung des Lithiumsalzes wird mit 10 ml absolutem Tetrahydrofuran verdünnt und als solche direkt weiter verwendet.
 - b) 4,8 g (30 mM) trockene Indol-4-carbonsäure werden in 15 ml absolutem Tetrahydrofuran vorgelegt und bei Raumtemperatur portionenweise mit 5,85 g (36 mM) N,N'-Carbonyldiimidazol versetzt, wobei starke Kohlendioxydentwicklung einsetzt. Die klare beige Lösung lässt man nach Beendigung der Gasentwicklung 9C Minuten bei 20° C stehen und fügt sie anschliessend tropfenweise bei 10-15° der obigen Lösung des Lithiumsalzes zu. Hierbei entsteht eine gelbe Suspension, die bei 20° C während 15 Stunden gerührt wird. Nach dem üblichen Aufarbeiten zwischen Methylenchlorid/

wenig Isopropanol und einer 1N wässrigen Natriumcarbonatlösung wird die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft, wobei die im Titel genannte Verbindung erhalten wird. Nach Umkristallisation aus Aethanol schmilzt die Verbindung bei 189-190°.

Beispiele der B Serie:

5

Es werden folgende Verbindungen der Formel I, worin D eine Verbindung der Formel IV ist, hergestellt.

	Beisp.	Α	В	r	R ₈	KONF.	Smp.	Herst.
10	B-1	5-Chlor- indol-3-yl	0	2	CH ₃	endo	235-237°3)	2
	B-2	4-Methoxy- indol-3-yl		2	CH3	endo	193-194°	2
15	B-3	5-Methoxy- indol-3-yl	0	2	СНЗ	endo	214-216°	2
	B-4	l-Methyl- indol-3-yl	0	2	CH3	endo	143-144°	3
	B-5	Indol-3-yl	0	2	CH ₃	exo	239-240°3)	2
	B-6	Indol-3-yl	0	3	CH3	endo	208-209° ³)	2
20	B-7	Indol-3-yl	0	2	n-C ₃ H ₇	endo.	158-159°	2
	B-8	Indol-3-yl	0	2	benzyl	exo	164-165° ⁸)	2
	B-9	Indol-3-yl	0	2	benzyl	endo	162-163° ⁸)	2
	B-10	Indol-3-yl	0	2	н	endo	261-263° ³)	8f
25	B-11	5-Fluor- indol-3-yl	0	3	Н	endo	247-248° ³)	4
	B-12	l-Methyl- indol-3-yl	0	3	н	endo	147-148°	4
	B-13	Indol-3-yl	0	3	Н	endo	234-235°3)	4

- 49 -

100-5819

	Beisp.	Α	В	n	. R 8	Konf.	Smp.	Herst,
	B-14	5-Methyl- indol-3-yl	0	3	CH3	endo	228-230°	2
.5	B-15	2-Methyl- indol-3-yl	0	3	CH ₃	endo	204-205°	/2
	B-16	5-Fluor-l- methylindol 3-yl	0	3	CH3	endo	107-108°	3 oder 2
10	B-17	5-Fluor- indol-3-yl	0	3	сн3	endo	244-245° ³)	2
	B-18	5-Fluor-l- methylindol 3-yl	0	3	benzyl	endo	127-128°	3
15	B-19	l-Methyl- indol-3-yl	0	3	CH3	endo	103-104°	3

Beisp	o. A	В	n	R ₈	Konf.	Smp.	Herst.
B-20	5-Methyl- indol-3-yl	ИН	3	CH ₃	endo	265-267° ³)	1
B-21	5-Fluor- indol-3-yl	NH	2	CH ₃	endo	220-222°	. 1
B-22	l-Methyl- indol-3-yl	ИН	2	CH ₃	endo	169-170°	3 oder 1
B-23	2-Methyl- indol-3-yl	NH	2	CH ₃	endo	196-197° ³)	1
B-24	Indol-3-yl	ИН	2	CH3	exo	261-262° ³)	1
B-25	Indol-3-yl	NH	2	CH ₃	endo	205-206°	1.
B26	5-Chlor- indol-3-yl	NH	2	CH ₃	endo	210-212°	1
B-27	Indol-3-yl	0	3	Benzyl	endo	234-235°	1
B-28	l-Methyl- indol-3-yl	0	3	Benzyl	endo	147-148°	2
B-29	5-Fluor- indoī-3-yl	0	3	Benzyl	endo	193-194°	2
B-30	Benzo- thien-3-yl	0	3	CH ₃	endo	129-130°	2
B-31	Benzo- thien-3-yl	NH	3	CH3	endo	225-226°	17)
B-32	Benzo- furan-3-yl	NH	3	CH3	endo	199-201°	1
B-33	Benzo- furan-3-yl	0	3	CH3	endo	77-78°	2
B-34	l(H)Inden- 3-yl	ИН	3	CH3	endo	181-183°	1
B-35	1ndol-3-yl	NH	4	CH ₃	exo	264-266° ³)	10)
B-36	Indol-3-yl	0	4	CH ₃	exo	264-267° ³)	2

100-5819

Beispiele der C Serie:

Es werden die nachfolgenden Verbindungen der Formel I, worin D eine Gruppe der Formel IV ist, hergestellt:

	Beisp.	A	В	n	R ₇	Konf.	Smp.	Herst.
5	C-1	Indol-5-yl	0	2	CH3	endo	191-193°	2
	c-2	Indol-5-yl	0	3	CH ³	endo	148-149°	10
·	C-3	3-Jod- indol-5-yl	0	3	CH3	endo	172-174°	6
	C-4	Indol-4-yl	ΝН	2	CH ₃	exo	267-269° ³)	1
70	C-5	Indol-4-yl	ИН	2	CH3	endo	221-223° ³)	1
	C-6	Indol-5-yl	ИН	2	CH ₃	endo	220-221°	1

Beispiele der D Serie:

Unter Verwendung der oben beschriebenen Verfahren werden die Verbindungen der Formel I hergestellt, worin A eine Gruppe der Formel III ist und D eine Gruppe der Formel IV sind:

5	Beisp.	, <u>A</u>	В	n	R ₇	KONF.	Smp.	Herst.
	D-1	111-1	0	2	CH ₃	endo	193-195° ¹)	.7
	D-2	III-II	C	2	Benzyl	exo	112-114° ²)	7
	D-3	111-111	0	2	CH ₃	endo	148-151° ²)	7
-	D-4	III-III	0	2	Н	endo	168-169° ²)	9
10	D-5	III-IV	0	2	Н	endo	184-185° ¹)	9
	D-6	III-IV	. 0	2	Н	exo	166-167° ²)	9
	D-7	III-IV	0	2	CH ₃	endo	245-246° ⁴)	7
	D-8	III-VI	0	2	сн ₃	endo	146-147° ²)	7
	D-9	III-AII	0	2	сн ₃	endo	210-211°5)	7
15	D-10	III-ALII	0	2	CH ³	endo	216° ⁶)	7
	D-11	III-V	0	3	CH ₃	endo	164-166°	7
	D-12	111-1X	0	3	CH ₃	endo	163-164°	7
	D-13	III-X	0	2	CH ₃	endo	132-133	7
	D-14	III-XI	0	2	CH ₃	endo	91- 92°	7
20	D-15	III-XII	0	3	CH3	endo	170-171	7
	D-16	III-XIII	0	2	CH ₃	endo	158-159° ²)	7
	D-17	III-XIV	0	2	CH ₃	endo	159-160° ²)	7

100-5819

Beispiele der E Serie:

Es werden folgende Verbindungen der Formel I, worin A eine Gruppe der Formel II oder III ist und D eine Gruppe der Formel V, hergestellt:

5	Beisp.	Α	В	D Substitution	Smp	Herst.
	E-1	Indol-3-yl	0	3	219-221° ⁴) ³)	7
	E-2	111-1	NH	3	145-147° 154-156° ²)	7*
	E-3	III-XII	0	3	159-160	7

* falls erwinscht in siedendem Aethanol

Repräsentative Ausgangsverbindungen der Formel VII

	Beisp.	n	R ₈ .	Konf.	В	Charakt.	Trivialbez.
	a)	2	CH3	endo	0	Smp. 59-61°	Tropin
	b)	2	CH ₃	exo	0	Smp. 105-107°	Pseudotropin
. 5	c)	2	CH ₃	endo	NH	Sdpkt. 82/12 mm	Tropinamin
•	d)	2	CH3	exo	ни	Sdpkt. 75/0,05 mm	Pseudotropin- amin
	e)	3	сн3	endo	ΝН	Sdpkt. 115/17 mm	
	f)	3	CH ₃	endo	ОН	amorph +	
10	g)	3	Benzyl	endo	ОН	Smp. 69-70° +	
	h)	2	n-C ₃ H ₇	endo	ОН	0e1 ++	

- + Hergestellt durch Reduktion des Ketons mittels ${\tt NaBH_4}$ mit Isomerentrennung
- ++ Hergestellt durch Reduktion des Ketons mittels NaBH₄.

 15 Hauptprodukt

i) N-Methyl-10-aza-bicyclo[4,3,1]dec-8-yl-amin (für Beispiel B-35)

15 g Natrium (in Form von kleinen Stücken) werden mit 9,69 g 10-Methyl-10-aza-bicyclo[4,3,1]decan-8-on-oxim-acetat [Smp. 253-253,5°, hergestellt analog Beispiel A-lb] unter Verwendung des im nachfolgenden Beispiel j) beschriebenen Verfahrens umgesetzt, wobei nach üblicher Aufarbeitung ein Oel mit einem Siedepunkt von 105°/0,9 mm erhalten wird.

H.N.M.R (200 MHz) 3,27-3,04 (Multiplett, 2H, HC-(1) und H-C(6);
2,59 (Singlett, 3H, H-C(11); 2,01-1,49 (Multiplett, 13H 6 x 2H-C und H-C(8); 1,24 (Singlett, 2H, 2.H-N austauschbar mit D₂0);
13 C.N.M.R. (25,2 MHz) 56,41 (d) (Doublett), 42,85 (Quartett C-11), 41,44 (Doublett), 37,13 (Triplett, C-7 und C-9), 32,54 (Triplett, C-2 und C-5) und 24,88 (Triplett, C-3 und C-4). Es wird angenommen, dass die Verbindung eine exo-Konfiguration besitzt.

j) N-Methyl-10-azabicyclo[4,3,1]decan-8-ol (für Beispiel B-36)

5 g Natrium (in Form von kleinen Stücken) werden zu einer heissen Lösung von 3,5 g 8-Methyl-10-azabicyclo[4,3,1]decan-8-on in 100 ml trockenem n-Butanol zugesetzt. Das Gemisch wird während 1 Stunde am Rückfluss zum Sieden erhitzt, abgekühlt und durch Zugabe von konz. Chlorwasserstoffsäure auf einen pH-Wert von 2 eingestellt. Das Gemisch wird danach zur Trockne eingedampft und der Rückstand in wässriger Natriumhydroxid-Lösung aufgenommen. Das Gemisch wird danach mit Chloroform extrahiert, die Chloroformlösung getrocknet und destilliert. Die Titelverbindung siedet dabei bei 90-95°/0,025 mm.

5

20

H.N.M.R (200 MHz) 4,07-4,23 (Multiplett, H-C-(8) halbe Breite ca. 20 Hz); 3,63-3,69 (Triplett, 0,33 H, j = 7Hz HO-C-(8) ein Isomer austauschbar mit D_2O); 2,13-1,38 (Multiplett, 12H, 6 x CH₂); 13 C.N.M.R (25,2 MHz) 63,10 (Doublett, C-8); 56,8 (Doublett, C-1 und C-6); 43,13 (Quartett, NCH₃), 36,30 (Triplett, C-2 und C-9), 34,80 (Triplett, C-2 und C-5), 25,04 (Triplett, C-3 und C-4). Es wird angenommen, dass die Verbindung eine exo-Konfiguration besitzt.

Die Verbindungen der Erfindung zeigen pharmakologische Wirkung und sind deshalb als Pharmazeutika beispielsweise für die Therapie verwendbar.

Insbesondere zeigen die Verbindungen der Erfindung eine antagonistische Wirkung am Serotonin M Receptor, die mit Hilfe von Standardtests festgestellt werden kann. Beispielsweise wird in einem Test, der von Riccioppo Neto im European Journal of Pharmacology (1978) 49, 351-356, beschrieben wurde, beobachtet, dass die Verbindungen der Erfindung den Einfluss von Serotonin auf die Höhe des Aktionspotentials von C-Fasern am isolierten Vagusnerv des Kaninchens hemmen und zwar unter Bedingungen, die es gestatten, zwischen den Aktionspotentialen, die in den myelinhaltigen Nervenfasern (A-Fasern) und in den kleinen nichtmyelinhaltigen Fasern (C-Fasern) entstehen, wie von B. Oakley und R. Schater in Experimental Neurobiology, A Laboratory Manual, University of Michigan Press, 1978, Seite 85 bis 96, beschrieben wird, zu unterscheiden. Serotonin selber wirkt selektiv auf die C-Fasern und reduziert die Amplitude des Aktionspotentials in diesen Fasern dosisabhängig. Die Wirkung von Serotonin wird durch bekannte Serotonin-Antagonisten, wie Metitepin, Methysergid, BOL-148, usw., von denen angenommen wird, dass sie D-Receptoren für Serotonin, jedoch nicht M-Receptoren, blockieren, nicht gehemmt (siehe Gaddam und Picarelli,

5

10

15

20

25

Brit. J. Pharmacol. (1957), 12, 323-328). Es erscheint daher, dass Serotonin die Höhe des Aktionspotentials von C-Fasern unter dem Einfluss von M-Receptoren - die auf diesen Fasern anwesend sind - reduziert.

Diese Wirkung kann durch Erstellen einer Dosis/Wirkungskurve 5 für Serotonin $(10^{-7} - 5 \times 10^{-6} \text{ M})$ festgestellt werden. Nachdem sich das Aktionspotential des Nervs stabilisiert hat, wird das Serotonin ausgewaschen und sobald das C-Faser Aktionspotential die ursprüngliche Amplitude erreicht hat, wird die zu untersuchende Verbindung in einer Konzentration von ca. $10^{-16}\,\mathrm{M}$ bis 10 ca. 10^{-6} M mit dem Nerv während 30-60 Minuten inkubiert. Verschiedene Konzentrationen von Serotonin (üblicherweise 10⁻⁷ Mol bis ungefähr 10⁻⁴ Mol) werden danach zusammen mit der zu untersuchenden Verbindung gemäss der Erfindung, die sich in Konzentrationen befindet, die während der Präinkubationsperiode an-15 wesend waren, angewendet.

Die M-Receptor Antagonisten gemäss der Erfindung blockieren entweder vollständig die Wirkung von Serotonin (nicht kompetitiver Antagonist) oder sie verursachen eine Parallelverschiebung der Serotonin-Wirkungskurve nach rechts (d.h. es werden höhere Konzentrationen von Serotonin benötigt) (kompetitiver Antagonist). Der pD'2- oder pA2-Wert kann auf an sich bekannte Weise erhalten werden.

Eine weitere Möglichkeit zur Feststellung des Serotonin-M-Receptor Antagonismus ist ein Test, worin die Hemmung der Wirkung von Serotonin auf das isolierte Kaninchenherz gemäss der Methode von J.R. Fozard und A.T. Moborak Ali, European Journal of Pharmacology (1978), 49, 109-112, in Konzentrationen von 10^{-11} bis 10^{-5} M gemessen wird. Die pD'₂- und pA₂-Werte können daraus auf an sich bekannte Weise berechnet werden. 30

20

Die Wirkung der Verbindungen gemäss der Erfindung als Serotonin M Receptor-Antagonisten bei der Behandlung des Schmerzes wird bestätigt im sog. "hot plate test" in Dosen von 0,1 bis 100 mg/kg s.c. oder p.o.

5 Eine weitere Untersuchung zur Feststellung des Serotonin M Receptor Antagonismus der Verbindungen ist beim Menschen in Konzentrationen von 10^{-8} M durchführbar. Hierbei wird am Unterarm von Versuchspersonen durch Auftragen von Cantharidin eine Blase erzeugt. Schald Serotonin mit der Unterhaut der Blase in Be-10 rührung kommt, wird ein Schmerz erzeugt, der abgeschätzt werden kann. Die Intensität des Schmerzes ist proportional zur verabreichten Serotoninmenge. Diese Methode wird in allen Einzelheiten von C.A. Keele und D. Armstrong in "Substances producing Pain and Itch", Edward Arnold, London, 1964, Seiten 30-57 be-15 schrieben. Diese schmerzerzeugende Wirkung von Serotonin kann durch Serotonin D-Receptor Antagonisten wie Lysergsäurediaethylamid oder dessen Bromderivate nicht gehemmt werden und es wird deshalb angenommen, dass diese durch M-Receptoren ausgelöst wird.

Gemäss dem beschriebenen Test wird hierbei die Fläche unter der Kurve und nicht die Peakamplitude der Wirkungen gemessen. Die Fläche unter der Kurve wird mittels eines linearen Integrators aufgezeichnet, der mit einem Schmerzindikator gekoppelt ist und von der Versuchsperson bestätigt wird. Mit zunehmender Konzentration von Serotonin erhält man eine kumulative Dosis/Wirkungskurve für Serotonin. Sohald nach weiterer Zuführung von Serotonin keine Wirkung mehr auftritt, wird das Serotonin ausgewaschen und die Blase mit physiologischer Pufferlösung während mindestens 40 Minuten vor Verabreichung der Verbindunge gemäss der Erfindung, beispielsweise der bevorzugten Verbindungen der Beispiele A-2 oder A-3 inkubiert. Die Testverbindung wird mit

der Blasenunterhaut während 30 Minuten bei Konzentrationen von 10^{-8} M vorinkubiert, bevor unterschiedliche Konzentrationen von Serotonin verabreicht werden. Die pHA₂-Werte können daraus auf an sich bekannte Weise erhalten werden.

Die Verbindungen gemäss der Erfindung können zur Verwendung als Serotonin-Receptor-Antagonisten, insbesondere bei der Behandlung von Schmerz, insbesondere Migräne, Cluster headache, einer trigeminalen Neuralgie sowie bei der Behandlung von Herz-Kreislauf-Störungen, beispielsweise zur Vorbeugung eines plötzlichen Todes sowie als Antipsychotika verwendet werden.

Zur Erzielung der therapeutischen Wirkung sind tägliche Dosen von 0,5 bis 500 mg der Verbindungen der Erfindung angezeigt, die zweckmässigerweise 2 bis 4 mal täglich in Dosen von 0,2 bis 250 mg oder in Retardform verabreicht werden.

Die Verbindungen gemäss der Erfindung zeigen überdies eine 15 anti-arrhythmische Wirkung, wie dies ihrer Serotonin-M-Receptorantagonistischen Wirkung in Standardtests entnommen werden kann. Beispielsweise hemmen die Verbindungen eine Arrhythmie, die mit Hilfe von Norepinephrin bei anästhesierten Ratten hervorgerufen 20 wird. In diesem Test werden Norepinephrininfusionen von 3 bis 10 Mikrogramm/Kilo Tierkörpergewicht gegeben, bis eine arrhythmische Phase mit Hilfe von EKG-Messungen festgestellt wird, die länger als 10 sec. dauert. Nach der Kontrolle von 3 aufeinanderfolgenden Verabreichungen von Norepinephrin wird die Verbindung gemäss der Erfindung verabreicht in Dosen von 10 bis ca. 500 25 Mikrogramm/Kilo Tierkörpergewicht gefolgt von weiterer Norepinephrinverabreichung. Hierbei zeigt es sich, dass die arrhythmische Phase abhängig von der Versuchsverbindung reduziert oder unterdrückt wird.

Die Verbindungen der Erfindung sind deshalb angezeigt für die Verwendung als Antiarrhythmika. Die täglich zu verabreichende Dosis soll von ungefähr 0,5 bis ca. 500 mg betragen, die zweckmässigerweise unterteilt 2 bis 4 mal täglich oder in Einheitsdosen, enthaltend von 0,2 bis ca. 250 mg oder in Retardform verabreicht werden.

Gemäss der vorliegenden Erfindung werden Verbindungen hergestellt, die in pharmazeutisch annehmbarer Form, beispielsweise in der Form der freien Basen oder in Form von pharmazeutisch annehmbaren Säureadditionssalzen oder quaternären Ammoniumverbindungen zur Verwendung als Pharmazeutika, insbesondere aufgrund ihrer Verwendung als Serotonin M Antagonisten zur Behandlung solcher Krankheiten eingesetzt werden können, wo die Blockierung von Serotonin-M-Receptoren eine günstige Wirkung erwarten lässt, beispielsweise Analgetika, insbesondere Antimigränemittel oder Antiarrhythmika.

Die bevorzugte Verwendung liegt auf dem Gebiet der Analgetika. Die bevorzugten Verbindungen sind die im Titel der Beispiele A-2 und A-3 genannten Verbindungen.

Die Verbindungen gemäss der Erfindung können in Form der freien Basen oder in Form von pharmazeutisch annehmbaren Salzen, beispielsweise geeigneten Säureadditionssalzen und quaternären Ammoniumverbindungen verabreicht werden. Solche Salze besitzen grössenordnungsmässig die gleiche Wirkung wie die freien Basen.

Die vorliegende Erfindung betrifft dementsprechend auch eine pharmazeutische Zusammensetzung, die eine Verbindung gemäss der Erfindung, insbesondere eine Verbindung der Formel I, ein Säureadditionssalz hiervon oder ein quaternäres Ammoniumsalz davon, zusammen mit einem pharmazeutischen Träger oder

5

10

Verdünnungsmittel enthält. Solche Zusammensetzungen können auf an sich bekannte Weise hergestellt werden und können beispielsweise in Form von Lösungen oder Tabletten verabreicht werden.

Eine Gruppe von Verbindungen umfasst Verbindungen der Formel I, worin A eine Gruppe der Formel II ist, worin R_1 und R_2 unabhängig voneinander Wasserstoff, Halogen, (C_{1-4}) Alkyl, (C_{1-4}) Alkoxy stehen, wobei sich R_2 in den Stellungen 4 oder 5 befindet, R_3 Wasserstoff oder (C_{1-4}) Alkyl bedeuten und die freie Bindung sich in den Stellungen 3, 4 oder 5 befindet, oder eine Gruppe der Formel III, worin R_4 Wasserstoff, Halogen oder (C_{1-4}) Alkoxy, R_5 Wasserstoff oder Halogen, R_6 Amino, Nitro, (C_{1-4}) Alkylamino, Di (C_{1-4}) alkylamino, Halogen oder 1-Pyrrolyl und R_7 Wasserstoff oder Halogen bedeuten und D eine Gruppe der Formel IV ist, worin R_8 für Wasserstoff, $(C_{1-4}$ Alkyl oder Benzyl oder eine Gruppe der Formel V steht, deren freie Bindung sich in 3-Stellung befindet und von der Massgabe in den Bedeutungen der Substituenten der Verbindungen der Formel I abhängt.