The Naive Bayes Algorithm: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved © 2020

Concepts

• When a new message " w_1 , w_2 , ..., w_n " comes in, the Naive Bayes algorithm classifies it as spam or non–spam based on the results of these two equations:

$$egin{aligned} P(Spam|w_1,w_2,\ldots,w_n) &\propto P(Spam) \cdot \prod_{i=1}^n P(w_i|Spam) \ \\ P(Spam^C|w_1,w_2,\ldots,w_n) &\propto P(Spam^C) \cdot \prod_{i=1}^n P(w_i|Spam^C) \end{aligned}$$

• To calculate $P(w_i|Spam)$ and $P(w_i|Spam^C)$, we need to use the additive smoothing technique:

$$egin{split} P(w_i|Spam) &= rac{N_{w_i|Spam} + lpha}{N_{Spam} + lpha \cdot N_{Vocabulary}} \ P(w_i|Spam^C) &= rac{N_{w_i|Spam^C} + lpha}{N_{Spam^C} + lpha \cdot N_{Vocabulary}} \end{split}$$

• Below, we see what some of the terms in equations above mean:

 $N_{w_i|Spam}$ = the number of times the word w_i occurs in spam 1 $N_{w_i|Spam^C}$ = the number of times the word w_i occurs in non-s

 $N_{Spam} = ext{total number of words in spam messages} \ N_{Spam^C} = ext{total number of words in non-spam messages}$

 $N_{Vocabulary} = \text{total number of words in the vocabulary}$ $\alpha = 1 \quad (\alpha \text{ is a smoothing parameter})$

Resources

• A technical intro to a few version of the Naive Bayes algorithm

• An intro to conditional independence

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2020