

Unit III

COMBINATIONAL SYSTEMS

Course Articulation Matrix

40E004001 BIOLEAL

18ECC103J - DIGITAL ELECTRONIC PRINCIPLES				F	⊃ro(grar	n O	utc	ome	es (F	POs)			
				G	rad	uat	e A	ttrib	utes	3				PS	0
Course Learning Outcomes (CLOs)	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3
Simplify Boolean expressions; carry out arithmetic operations with binary numbers; apply parity method for error detection and correction.	Н	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Explain the operational characteristics / properties of digital ICs; implement gates as well as other types of IC devices using two major IC technologies, TTL and CMOS.	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Identify eight basic types of fixed-function combinational logic functions and demonstrate how the devices / circuits can be used in building complete digital systems such as computers.		M	Н	-	Н	-	-	-	-	-	-	-	-	-	-
Analyze and design Mealy and Moore models of sequential circuits using several types of flip-flops.		М	Н	-	Н	-	-	-	-	-	-	-	-	-	-
Implement multiple output combinational logic circuits using PLDs; Explain the operation of a CPLD and FPGA.	-	М	Н	-	L	-	-	-	-	-	-	-	-	-	-
Solve specific design problem, which after completion will be verified using modern engineering tools such as PSPICE / Logisim	-	M	Н	-	Н	-	-	-	Н	-	-	-	M	-	L

Program Outcomes (PO)

PO1- Engineering knowledge

Apply the knowledge of Mathematics, Science, Engineering fundamentals, and an Engineering specialization to the solution of complex Engineering problems.

PO2- Problem analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3- Design/development of solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4-Conduct investigations of complex problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5-Modern tool usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6-The engineer and society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7-Environment and sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8-Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9-Individual and team work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10- Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11-Project management and finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12- Life-long learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Index

Unit-III: Combinational Systems

CLO3:

Identify eight basic types of fixed-function combinational logic functions and demonstrate how the devices / circuits can be used in building complete digital systems such as computers.

Learning Unit/ Module	Unit/ Module Session Description of Topic (Theory)		No. of Conta	ct CO	РО	BL	Reference
				3	3,5	1,2,3	[1] chapter 4
	1.	Binary arithmetic units, Adder	1				
	1.	Design of Half adder, Design of Full adder	1	3	3,5	1,2,3	[1] chapter 4
	1.	Subtractor , Design subtractor using logic gates	1	3	3,5	1,2,3	[1] chapter 4
Unit-III: Combinational Systems	1.	n-bit parallel adder & subtractor, look ahead carry generator	1	3	3,5	1,2,3	[1] chapter 4
	1.	Decoder, Encoder	1	3	3,5	1,2,3	[1] chapter 4
		Multiplexer, Demultiplexer, Code converters, Magnitude comparators	2	3	3,5	1,2,3	[1] chapter 4
	1.	Parity generators (Odd parity), Parity generators (Even parity)	1	3	3,5	1,2,3	[1] chapter 4
	1.	Implementation of combinational logic by standard IC's.	1	3	3,5	1,2,3	[1] chapter 4

Reference: Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, 5th ed., Pearson Education, 2014.

Combinational Logic

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.
- Hence, a combinational circuit can be described by:
- A truth table that lists the output values for each combination of the input variables, or m Boolean functions, one for each output variable.

Combinational vs. Sequential Circuits

- •Combinational circuits are memory-less. Thus, the output value depends ONLY on the current input values.
- •Sequential circuits consist of combinational logic as well as memory elements (used to store certain circuit states). Outputs depend on BOTH current input values and previous input values (kept in the storage elements).

Design Procedure

- ■Given a problem statement:
- ■Determine the number of inputs and outputs
- Derive the truth table
- ■Simplify the Boolean expression for each output
- ■Produce the required circuit

Binary Adders

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit needs two binary inputs and two binary outputs.

Inp	outs	Outputs							
X	Y	С	S						
0	0	0	0						
0	1	0	1						
1	0	0	1						
1	1	1	0						
	Truth table								

The simplified Boolean function from the truth

table:
$$\begin{cases} \mathbf{S} = \overline{\mathbf{X}}\mathbf{Y} + \mathbf{X}\overline{\mathbf{Y}} \\ \mathbf{C} = \mathbf{X}\mathbf{Y} \end{cases}$$
 (Using sum of product form) Where \mathbf{S} is the sum and \mathbf{C} is the carry.

Full Adder

	Inpu	ts	Outputs					
X	Y	C_{in}	S	Cout				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				
Tr	uth t	able fo	r the full	adder				

$$\begin{cases} S = \overline{X} \, \overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \, \overline{C_{in}} + X Y C_{in} \\ \\ C_{out} = X Y + X C_{in} + Y C_{in} \end{cases}$$

FA= using basic gates

FA using two HA and OR gate

$$\begin{cases} S = C_{in} \oplus (X \oplus Y) \\ C_{out} = C_{in} \cdot (X \oplus Y) + XY \end{cases}$$

Proof:

The sum:

$$S = \overline{X} \, \overline{Y} C_{in} + \overline{X} Y \overline{C_{in}} + X \overline{Y} \, \overline{C_{in}} + X Y C_{in}$$

$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} \, \overline{Y} + X Y)$$

$$= \overline{C_{in}} (\overline{X} Y + X \overline{Y}) + C_{in} (\overline{X} \overline{Y} + X \overline{Y})$$

$$S = C_{in} \oplus (X \oplus Y)$$

The carry output:

$$C_{out} = \overline{X}YC_{in} + X\overline{Y}C_{in} + XYC_{in} + XY\overline{C_{in}}$$

$$= C_{in}(\overline{X}Y + X\overline{Y}) + XY(C_{in} + \overline{C_{in}})$$

$$C_{out} = C_{in} \cdot (X \oplus Y) + XY$$

4-bit Full adder

Example:

$$A + B$$

(A = 1011) and (B = 0011)

Subscript i	3	2	1	0		
Input Carry	0	I	1	0	C_{I}	
<i>A</i>	1	0	1	1	A_i	$C_0 = 0$
\boldsymbol{B}	0	0	1	1	$\boldsymbol{B_i}$	
Sum	1	1	I	0	S_i	
Output Carry	0	0	1	I	C_{i+1}	

Carry Propagation

- The addition of A + B binary numbers in *parallel* implies that all the bits of A and B are available for computation at the same time.
- As in any combinational circuit, the signal must **propagate** through the gates before the correct output sum is available.
- ➤ The output will not be correct unless the signals are given enough time to propagate through the gates connected form the input to the output.
- ➤ The longest **propagation delay time** in an adder is the time it takes the carry to propagate through the full adders.

- \triangleright The signal form the carry input C_i to the output carry C_{i+1} propagates through an **AND** gate and an **OR** gate, which equals **2** gate levels.
 - o If there are 4 full adders in the binary adder, the output carry C_4 would have $2\times 4=8$ gate levels, form C_0 to C_4

- The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added.
- To reduce the carry propagation delay time:
 - 1) Employ faster gates with reduced delays.
 - Employ the principle of Carry Lookahead Logic.

Proof: (using carry lookahead logic)

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

The output sum and carry are:

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

- \checkmark G_i -called a **carry generate**, and it produces a carry of I when both A_i and B_i are I.
- \checkmark P_i -called a *carry propagate*, it determines whether a carry into stage i will propagate into stage i + 1.
- ✓ The *Boolean function* for the carry outputs of each stage and substitute the value of each C_i form the previous equations:

$$\begin{cases} C_0 = input \ carry \\ C_1 = G_0 + P_0 C_0 \\ C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) \\ = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 C_0) \\ = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \end{cases}$$

 \succ The three Boolean functions C_1 , C_2 and C_3 are implemented in the *carry lookahead generator*.

The two level-circuit for the output carry C_4 is not shown, it can be easily derived by the equation.

 \succ C_3 does not have to wait for C_2 and C_1 to propagate, in fact C_3 is propagated at the same time as C_1 and C_2 .

four-bit adder with a carry lookahead scheme

Subtractor is an electronic logic circuit for calculating the difference between two binary numbers which provides the difference and borrow as output.

Half Subtractor is used for subtracting one single bit binary number from another single bit binary number.

It has two inputs; Minuend (A) and Subtrahend (B) and two outputs; Difference (D) and Borrow (B_{out}).

Inp	ut	Output				
А	В	Difference (D)	Borrow (B _{ot})			
0	0	0	0			
0	1	1	1			
1	0	1	0			
1	1	0	0			

Borrow = Ā.B Difference = A ⊕ B

Full subtractor

A logic Circuit Which is used for subtracting three single bit binary numbers is known as Full Subtractor.

- It has three inputs;
- Minuend (A),
- Subtrahend(B)
- Subtrahend(C)

- two outputs;
- 1.Difference (D)
- 2.Borrow (B_{out}).

	Input	Ou	tput	
А	В	С	D	B _(out)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\mathsf{D} = \mathsf{A} \bigoplus \mathsf{B} \bigoplus \mathsf{B}_\mathsf{in}$$

$$B_{out} = \overline{A} B + (\overline{A} + B) B_{in}$$

From the Truth Table The Difference and Borrow will written as,

Difference=A'B'C+A'BC'+AB'C'+ABC **Difference=A ⊕B⊕C**

Borrow=A'B'C+A'BC'+A'BC+ABC =A'B'C+A'BC'+A'BC+A'BC+A'BC+ABC =A'C(B'+B)+A'B(C'+C)+BC(A'+A) Borrow=A'C+A'B+BC $B(out) = BC + (B \oplus C) A$

4-bit Full subtractor

Binary Adder-Subtractor

The addition and subtraction operations can be combined into one circuit with one common binary adder by including an *exclusive-OR* gate with each full-adder.

The mode input M controls the operation as the following:

- $(M = 0 \rightarrow adder.$
- o $M = 1 \rightarrow subtractor.$
- \triangleright Each **XOR** gate receives **M** signal and **B**
 - When M = 0 then $B \oplus 0 = B$ and the carry = 0, then the circuit performs the operation A + B.
 - When M = 1 then $B \oplus 1 = \overline{B}$ and the carry = 1, then the circuit performs the operation A B.
- \triangleright The *exclusive-OR* with output V is for detecting an overflow.

Decoder & Encoder

DECODER

- A decoder is a combinational circuit.
- A decoder accepts a set of inputs that represents a binary number and activates only that output corresponding to the input number. All other outputs remain inactive.
- Fig. 1 shows the block diagram of decoder with 'N' inputs and 'M' outputs.
- There are 2^N possible input combinations, for each of these input combination only one output will be HIGH (active) all other outputs are LOW
- Some decoder have one or more ENABLE (E) inputs that are used to control the operation of decoder.

2 to 4 Line Decoder:

- ➤ Block diagram of 2 to 4 decoder is shown in fig. 2
- A and B are the inputs. (No. of inputs =2)
- ➤ No. of possible input combinations: 2²=4
- \triangleright No. of Outputs: $2^2=4$, they are indicated by D_0 , D_1 , D_2 and D_3
- From the Truth Table it is clear that each output is "1" for only specific combination of inputs.

TRUTH TABLE

INP	UTS		OUTPUTS					
A	В	D_0	D_1	D ₂	D_3			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

BOOLEAN EXPRESSION:

From Truth Table

$$\mathbf{D}_0 = \overline{\mathbf{A}} \, \overline{\mathbf{B}} \qquad \qquad \mathbf{D}_1 = \overline{\mathbf{A}} \, \mathbf{B}$$

$$D_2 = A \overline{B}$$
 $D_3 = AB$

LOGIC DIAGRAM:

3 to 8 Line Decoder:

- ➤ Block diagram of 3 to 8 decoder is shown in fig. 4
- A, B and C are the inputs. (No. of inputs =3)
- ➤ No. of possible input combinations: $2^3=8$
- No. of Outputs: $2^3=8$, they are indicated by D_0 to D_7
- ➤ From the Truth Table it is clear that each output is "1" for only specific combination of inputs.

TRUTH TABLE FOR 3 X 8 DECODER:

]	NPU	TS					OUTP	UTS			
A	В	C	D0	DI	D2	D3	D4	D5	D6	D7	
0	0	0	1	0	0	0	0	0	0	0	$D_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	1	0	0	0	0	0	0	$D_1 = \overline{A} \overline{B} C$
0	1	0	0	0	1	0	0	0	0	0	$D_2 = \overline{A} B \overline{C}$
0	1	1	0	0	0	1	0	0	0	0	$D_3 = \overline{A} B C$
1	0	0	0	0	0	0	1	0	0	0	$D_4 = A \overline{B} \overline{C}$
1	0	1	0	0	0	0	0	1	0	0	$D_5 = A \overline{B} C$
1	1	0	0	0	0	0	0	0	1	0	$D_6 = A B \overline{C}$
1	1	1	0	0	0	0	0	0	0	1	$D_7 = A B C$

LOGIC DIAGRAM OF 3 X 8 DECODER:

3 x 8 Decoder From 2 x 4 Decoder:

4 to 16 decoder using 3 to 8 Decoder

Fig. 4-20 4 × 16 Decoder Constructed with Two 3 × 8 Decoders

Dia 0

EXAMPLE: Implement the following Boolean function using suitable Decoder.

$$f_1(x,y,z) = \sum m(1,5,7)$$

$$f_2(x,y,z) = \sum m(0,3)$$

Example: Implement the following multiple output function using a suitable Decoder.

$$f_1(A, B, C) = \sum m(0,4,7) + d(2,3)$$

$$f_2(A, B, C) = \sum m(1,5,6)$$

$$f_3(A, B, C) = \sum m(0,2,4,6)$$

Solution: f1 consists of don't care conditions. So we consider them to be logic 1.

ENCODER

- An Encoder is a combinational logic circuit.
- It performs the inverse operation of Decoder.
- The opposite process of decoding is known as Encoding.
- An Encoder converts an active input signal into a coded output signal.
- Block diagram of Encoder is shown in Fig. 10. It has 'M' inputs and 'N' outputs.
- An Encoder has 'M' input lines, only one of which is activated at a given time, and produces an N-bit output code, depending on which input is activated.

- Encoders are used to translate the rotary or linear motion into a digital signal.
- The difference between Decoder and Encoder is that Decoder has Binary Code as an input while Encoder has Binary Code as an output.
- Encoder is an Electronics device that converts the analog signal to digital signal such as BCD Code.
- Types of Encoders
- Priority Encoder
- ii. Decimal to BCD Encoder
- iii. Octal to Binary Encoder
- iv. Hexadecimal to Binary Encoder

PRIORITY ENCODER:

- As the name indicates, the priority is given to inputs line.
- If two or more input lines are high at the same time i.e 1 at the same time, then the input line with high priority shall be considered.
- Block diagram and Truth table of Priority Encoder are shown in fig.15

Encoder

of Priority Fig.15

TRUTH TABLE:

	INP	UTS		OUT	PUTS	V	
D_3	D_2	D_1	D_0	Y_1	Yo		
0	0	0	0	х	x	0	
0	0	0	1	0	0	1	
0	0	1	х	0	1	1	
0	1	х	х	1	0	1	
1	х	х	х	1	1	1	

- There are four inputs D₀, D₁,D₂, D₃ and two outputs Y₁ and Y₂.
- D₃ has highest priority and D₀ is at lowest priority.
- If D₃=1 irrespective of other inputs then output Y₁Y₀=11.
- D₃ is at highest priority so other inputs are considered as don't care.

LOGIC DIAGRAM OF PRIORITY ENCODER:

$$Y_1 = D_2 + D_3$$

 $Y_0 = D_3 + \overline{D_2} D_1$

DECIMAL TO BCD ENCODER:

- It has ten inputs corresponding to ten decimal digits (from 0 to 9) and four outputs (A,B,C,D) representing the BCD.
- · The block diagram is shown in fig. 18 and Truth table in fig. 19

Fig. 18

Truth table:

	INPUTS							BC	D O	UTPU	JTS		
0	1	2	3	4	5	6	7	8	9	A	В	С	D
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

 From Truth Table it is clear that the output A is HIGH when input is 8 OR 9 is HIGH

Therefore A=8+9

- The output B is HIGH when 4 OR 5 OR 6 OR 7 is HIGH Therefore B=4+5+6+7
- The output C is HIGH when 2 OR 3 OR 6 OR 7 is HIGH Therefore C=2+3+6+7
- Similarly D=1+3+5+7+9
 Logic Diagram is shown in fig.20

DECIMAL TO BCD ENCODER

OCTAL TO BINARY ENCODER:

- Block Diagram of Octal to Binary Encoder is shown in Fig. 21
- · It has eight inputs and three outputs.
- · Only one input has one value at any given time.
- Each input corresponds to each octal digit and output generates corresponding Binary Code.

ir e	INPUT							C	UTPU	Т
D_0	D ₁	D ₂	D_3	D ₄	D ₅	D_6	D ₇	X	Y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

From Truth table:

$$X = D_4 + D_5 + D_6 + D_7$$

$$Y = D_2 + D_3 + D_6 + D_7$$

$$Z = D_1 + D_3 + D_5 + D_7$$

- It is assume that only one input is HIGH at any given time. If two outputs are HIGH then undefined output will produced. For example D₃ and D₆ are HIGH, then output of Encoder will be 111. This output neither equivalent code corresponding to D₃ nor to D₆.
- To overcome this problem, priorities should be assigned to each input.
- Form the truth table it is clear that the output X becomes 1 if any of the digit D₄ or D₅ or D₆ or D₇ is 1.
- D₀ is considered as don't care because it is not shown in expression.
- If inputs are zero then output will be zero. Similarly if D₀ is one, the output will be zero.

$$X = D_4 + D_5 + D_6 + D_7$$

$$Y = D_2 + D_3 + D_6 + D_7$$

$$Z = D_1 + D_3 + D_5 + D_7$$

LOGIC DIAGRAM:

Multiplexer (data Selectors)

 Definition: A multiplexers (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.

Functional Diagram Of a Multiplexer

- Several data input lines
- Some select line (less than the no. of input lines)
- Single output line
- If there are n data input lines and m select lines, then
 2ⁿ = n

2:1 Multiplexer

4:1 Multiplexer

16:1 Mux using 4:1 Mux

- The Multiplexers with more number of inputs can be obtained by cascading two or more multiplexers with less number of inputs.
- Below is a design of 16:1 MUX using 4 4:1 MUXs :-

Demultiplexer (Data Distributor)

 Definition: A DEMULTIPLEXER (DEMUX) basically reverses the multiplexing function. It takes data from one line and distributes them to a given number of output lines. For this reason, the demultiplexers is also known as a data distributor.

- Single data input lines
- Some select line (less than the no. of output lines)
- · Several output line
- If there are n data output lines and m select lines, then

$$2^{n} = n$$

Functional Diagram Of a Demultiplexed

1:2 Demultiplexer

1

0

D

1:4 Demultiplexer

So	S_1	D_0	D_1	D_2	D_3
0	0	D	0	0	0
0	1	0			0
1	0	0	0	D	0
1	1	0	0	0	D

Boolean function implementation using Mux

 A more efficient method for implementing a Boolean function of n variables with a multiplexer.

$$F(x, y, z) = \Sigma(1,2,6,7)$$

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

f(a, b, c) = F=A'B'C'D + A'B'CD + A'BC'D' + AB'CD + ABC'D' + ABC'D + ABCD' +

A	В	c	D	0	F	
0	0	0	0	0	D	***
0	0	0	1	1	U	D
0	0	1	0	0	D	
0	0	1	1	1	U	1
0	1	0	0	1	-	D'2
0	1	0	1	0	D,	
0	1	1	0	0		0 3 8:1 MUX F
0	1	1	1	0	0	4
1	0	0	0	0		5
1	0	0	1	0	0	15 V
1	0	0	0	0	D'	1 6
1	0	1	1	1	U	<u></u> 7
1	1	0	0	1	20	
1	1	0	1	1	1	
1	1	1	0	1		
1	1	1	1	1	1	A B C

Magnitude comparator

- It is a combinational logic circuit.
- Digital Comparator is used to compare the value of two binary digits.
- There are two types of digital comparator (i) Identity Comparator (ii) Magnitude Comparator.
- IDENTITY COMPARATOR: This comparator has only one output terminal for when A=B, either A=B=1 (High) or A=B=0 (Low)
- MAGNITUDE COMPARATOR: This Comparator has three output terminals namely A>B, A=B, A<B. Depending on the result of comparison, one of these output will be high (1)
- Block Diagram of Magnitude Comparator is shown in Fig. 1

BLOCK DIAGRAM OF MAGNITUDE COMPARATOR

1- Bit Magnitude Comparator:

- This magnitude comparator has two inputs A and B and three outputs A<B, A=B and A>B.
- This magnitude comparator compares the two numbers of single bits.
- · Truth Table of 1-Bit Comparator

INP	UTS	OUTPUTS				
A	В	Y ₁ (A <b)< th=""><th>Y₂ (A=B)</th><th>Y₃ (A>B)</th></b)<>	Y ₂ (A=B)	Y ₃ (A>B)		
0	0	0	1	0		
0	1	1	0	0		
1	0	0	0	1		
1	1	0	1	0		

K-Maps For All Three Outputs:

 $K-Map for Y_1 : A < B$ $Y_1 = \overline{AB}$

A	\overline{B}_0	<i>B</i>
\bar{A} 0	1	0
A 1	0	1

K-Map for $Y_2 : A=B$ $Y_2 = \overline{AB} + AB$

$$\begin{array}{c|cccc}
 & B & \overline{B} & B \\
 & A & 0 & 1 \\
\hline
A & 0 & 0 & 0 \\
 & A & 1 & 1 & 0 \\
\hline
 & Y_3 = A\overline{B}
\end{array}$$

K-Map for $Y_2: A>B$

Realization of One Bit Comparator

$$Y_1 = \overline{AB}$$

$$Y_2 = \overline{AB} + AB$$

$$Y_3 = A\overline{B}$$

Realization of by Using AND, EX-NOR gates

2-bit magnitude comparator

- A comparator which is used to compare two binary numbers each of two bits is called a 2-bit magnitude comparator.
- · Fig. 2 shows the block diagram of 2-Bit magnitude comparator.
- · It has four inputs and three outputs.
- Inputs are A₀, A₁, B₀ and B₁ and Outputs are Y₁, Y₂ and Y₃

TIMM-EAN-END

GREATER THAN (A>B)

A_1	A_0	\mathbf{B}_{1}	\mathbf{B}_0
1	0	0	1
1	1	1	0
0	1	0	0

- 1. If $A_1 = 1$ and $B_1 = 0$ then A > B
- 2. If A_1 and B_1 are same, i.e $A_1=B_1=1$ or $A_1=B_1=0$ and $A_0=1$, $B_0=0$ then A>B

LESS THAN (A<B)

Similarly,

1. If
$$A_1 = B_1 = 1$$
 and $A_0 = 0$, $B_0 = 1$, then $A < B$

2. If
$$A_1 = B_1 = 0$$
 and $A_0 = 0$, $B_0 = 1$ then A

TRUTH TABLE

	INF	UT			OUTPUT	
A_1	A_0	B ₁	B_0	Y ₁ =A <b< th=""><th>Y₂=(A=B)</th><th>$Y_3=A>B$</th></b<>	Y ₂ =(A=B)	$Y_3=A>B$
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

K-Map for A<B:

For A<B

$$\mathbf{Y}_{1} = \overline{\mathbf{A}_{1}} \ \overline{\mathbf{A}_{0}} \ \mathbf{B}_{0} + \overline{\mathbf{A}_{1}} \ \mathbf{B}_{1} + \overline{\mathbf{A}_{0}} \ \mathbf{B}_{1} \ \mathbf{B}_{0}$$

K-Map For A>B

$$Y_3 = A_0 \overline{B_1} \overline{B_0} + A_1 \overline{B_1} + A_1 A_0 \overline{B_0}$$

TEAN-EAD-EAD

K-Map for A=B:

$A_1 A_0^{\mathbf{B}_1 \mathbf{I}}$	3_{0}			
$\Lambda_1 \Lambda_0$	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

For A=B

$$Y_{2} = \overline{A_{1}} \; \overline{A_{0}} \; \overline{B_{1}} \; \overline{B_{0}} + \overline{A_{1}} \; A_{0} \; \overline{B_{1}} \; B_{0} + A_{1} A_{0} B_{1} B_{0} + A_{1} \; \overline{A_{0}} \; B_{1} \; \overline{B_{0}}$$

For A=B From K-Map

$$\begin{split} Y_2 &= \overline{A_1} \, \overline{A_0} \, \overline{B_1} \, \overline{B_0} + \overline{A_1} \, A_0 \, \overline{B_1} \, B_0 + \underline{A_1} \underline{A_0} B_1 B_0 + A_1 \, \overline{A_0} \, B_1 \, \overline{B_0} \\ Y_2 &= \overline{A_0} \, \overline{B_0} (\overline{A_1} \, \overline{B_1} + A_1 B_1) + A_0 B_0 (\overline{A_1} \, \overline{B_1} + A_1 B_1) \\ Y_2 &= (\overline{A_1} \, \overline{B_1} + A_1 B_1) \, (\overline{A_0} \, \overline{B_0} + A_0 B_0) \\ Y_2 &= (A_1 \odot B_1) \, (A_0 \odot B_0) \end{split}$$

LOGIC DIAGRAM OF 2-BIT COMPARATOR:

Parity Generator

What is Parity Generator?

- A <u>Parity Generator</u> is a Combinational Logic Circuit that Generates the Parity bit in the Transmitter.
- A Parity bit is used for the Purpose of Detecting Errors during Transmissions of binary Information.
- It is an Extra bit Included with a binary Message to Make the Number of 1's either Odd or Even.

Two Types of Parity

- In <u>Even</u> Parity, the added Parity bit will Make the Total Number of 1's an Even Amount.
- In <u>Odd</u> Parity, the added Parity bit will Make the Total Number of 1's an Odd Amount.

Parity generator truth table and logic diagram

3-	bit Messa	ge	Odd	Even
х	Y	z	Parity Bit	Parity Bit
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

Boolean Expression

Even Pair $P = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ$ $= \overline{X}(\overline{Y}Z + Y\overline{Z}) + X(\overline{Y}\overline{Z} + YZ)$ $= \overline{X}(Y \oplus Z) + X(\overline{Y} \oplus \overline{Z})$ $= X \oplus (Y \oplus Z)$

Odd Pair
$$P = \overline{X}\overline{Y}\overline{Z} + \overline{X}YZ + X\overline{Y}Z + XY\overline{Z}$$

$$= \overline{X}(\overline{Y}\overline{Z} + YZ) + X(\overline{Y}Z + Y\overline{Z})$$

$$= \overline{X}(\overline{Y} \oplus \overline{Z}) + X(Y \oplus Z)$$

$$= \overline{X} \oplus (Y \oplus Z)$$

K-Map Simplification

XYZ	00	01	11	10
	0	1	0	1
	1	0	1	0

YZ	00	01	11	10
0	1	0	1	0
1	0	1	0	1

Code converter

1.Design of 4-bit binary to gray code converter

	4-BIT	BINARY		4-BIT GRAY					
B4	В3	B2	B1	G4	G3	G2	G1		
0	0	0	0	0	0	0	(
0	0	0	1	0	0	0	1		
0	0	1	0	0	0	1	1		
0	0	1	1	0	0	1	(
0	1	0	0	0	1	1	(
0	1	0	1	0	1	1			
0	1	1	0	0	1	0			
0	1	1	1	0	1	0	(
1	0	0	0	1	1	0	(
1	0	0	1	1	1	0			
1	0	1	0	1	1	1			
1	0	1	1	1	1	1	(
1	1	0	0	1	0	1	(
1	1	0	1	1	0	1			
1	1	1	0	1	0	0			
1	1	1	1	1	0	0	(

K-I	M/	ĄΡ			FOR G3 (G3=					
FOR	G4	(G4=	=B4)		B4⊕B3					
							,	,		
B2B1 B4B3	00	01	11	10	B2B1 B4B3	00	01	11	10	
00	0	0	0	0	00	0	0	0	0	
01	0	0	0	0	01	1	1	1	1	
11	1	1	1	1	11	0	0	0	0	
10	1	1	1	1	10	1	1	1	1	

Circuit diagram

BCD to Excess=3 code converter

	4-BI	T BCD		4-BIT EXCESS-3				
B4	В3	B2	B1	Y4	Y3	Y2	Y1	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Circuit Diagram

