Devoir surveillé n°5: corrigé

Problème 1 – Développement limité d'une solution d'une équation différentielle

Partie I – Un développement limité de F

1. Il est clair que

$$e^{t^2} = 1 + t^2 + \frac{t^4}{2} + o(t^4)$$

2. On remarque que $x\mapsto \int_0^x e^{t^2}\,dt$ est l'unique primitive de $t\mapsto e^{t^2}\,$ s'annulant en 0 donc

$$\int_{0}^{x} e^{t^{2}} dt = x + \frac{x^{3}}{3} + \frac{x^{5}}{10} + o(x^{5})$$

d'après le théorème de primitivation des développements limités.

3. On met le développement limité précédent sous forme normalisée

$$\int_{0}^{x} e^{t^{2}} dt = x \left(1 + \frac{x^{2}}{3} + \frac{x^{4}}{10} + o(x^{4}) \right)$$

Pour obtenir le développement limité demandé, il suffit de développer $x \mapsto e^{-x^2}$ au voisinage de 0 à l'ordre 4 :

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2} + o(x^4)$$

Ainsi

$$F(x) \underset{x \to 0}{=} x \left(1 + \frac{x^2}{3} + \frac{x^4}{10} + o(x^4) \right) \left(1 - x^2 + \frac{x^4}{2} + o(x^4) \right)$$

$$\underset{x \to 0}{=} x \left(1 - \frac{2}{3}x^2 + \frac{4}{15}x^4 + o(x^4) \right)$$

$$\underset{x \to 0}{=} x - \frac{2}{3}x^3 + \frac{4}{15}x^5 + o(x^5)$$

4. Puisque F(x) = x + o(x), la tangente à la courbe représentative de F au point d'abscisse 0 est la droite d'équation y = x. Par ailleurs, $F(x) - x \sim -\frac{2}{3}x^3$ donc la courbe de F est située au-dessus de sa tangente au voisinage de 0^- et au-dessous au voisinage de 0^+ .

Partie II - Une équation différentielle

- **5.** Puisque f est solution différentielle de (E) sur \mathbb{R} , pour tout $x \in \mathbb{R}$, f'(x) + 2xf(x) = 1. En évaluant l'identité précédente en 0, on obtient f'(0) = 1.
- **6.** On formule la proposition suivante

HR(n): f est n fois dérivable.

Initialisation HR(1) est vraie puisque f est solution d'une équation différentielle d'ordre 1.

Hérédité Supposons HR(n) vraie pour un certain $n \in \mathbb{N}^*$. Alors pour tout $x \in \mathbb{R}$, f'(x) = 1 - 2xf(x). Puisque $f, x \mapsto x$ et $x \mapsto 1$ sont n fois dérivables, f' l'est également. Ainsi f est n + 1 fois dérivable et HR(n + 1) est vraie.

Conclusion Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}^*$ i.e. f est de classe C^{∞} .

7. On peut appliquer la formule de Leibniz de dérivation d'un produit. En dérivant n+1 fois la relation f'(x)+2xf(x)=1 valable pour tout $x\in\mathbb{R}$, on obtient

$$\forall x \in \mathbb{R}, \ f^{(n+2)}(x) + 2\left(\binom{n+1}{0}xf^{(n+1)}(x) + \binom{n+1}{1}f^{(n)}(x)\right) = 0$$

puisque les dérivées d'ordres supérieurs ou égaux à 2 de $x \mapsto x$ sont nulles. On obtient alors la relation demandée. Si on n'a pas encore vu la formule de Leibniz, on procède par récurrence en formulant la proposition suivante

$$HR(n): \ \forall x \in \mathbb{R}, \ f^{n+2}(x) + 2xf^{(n+1)}(x) + 2(n+1)f^{(n)}(x) = 0$$

Initialisation Puisque f est solution de (E), f'(x) + 2xf(x) = 1 pour tout $x \in \mathbb{R}$. Puisque f est de classe \mathcal{C}^{∞} , il est légitime de dériver la relation précédente pour trouver f''(x) + 2xf'(x) + 2f(x) = 0 pour tout $x \in \mathbb{R}$. Autrement dit, HR(0) est vraie.

Hérédité Supposons HR(n) vraie pour un certain $n \in \mathbb{N}$. En dérivant la relation $f^{n+2}(x) + 2xf^{(n+1)}(x) + 2(n+1)f^{(n)}(x) = 0$ valable pour tout $x \in \mathbb{R}$, on obtient

$$\forall x \in \mathbb{R}, \ f^{n+3}(x) + 2xf^{(n+2)}(x) + 2f^{(n+1)}(x) + 2(n+1)f^{(n+1)}(x) = 0$$

ou encore

$$\forall x \in \mathbb{R}, \ f^{n+3}(x) + 2xf^{(n+2)}(x) + 2(n+2)f^{(n+1)}(x) = 0$$

Autrement dit, HR(n + 1) est vraie.

Conclusion HR(n) est vraie pour tout $n \in \mathbb{N}$.

8. a. En évaluant l'identité de la question précédente en 0, on trouve

$$\forall n \in \mathbb{N}, f^{(n+2)}(0) = -2(n+1)f^{(n)}(0)$$

Il s'ensuit notamment que

$$\forall n \in \mathbb{N}^*, f^{(2n+1)}(0) = -4nf^{(2n-1)}(0)$$

Par une récurrence évidente, on peut montrer que $f^{(2n+1)}(0) = (-4)^n n!$ pour tout $n \in \mathbb{N}$.

b. De la même manière

$$\forall n \in \mathbb{N}^*, f^{(2n)}(0) = -2(2n-1)f^{(2n-2)}(0)$$

Ainsi pour tout $n \in \mathbb{N}$

$$f^{(2n)}(0) = (-2)^n \left(\prod_{k=1}^n (2k-1) \right) f(0) = \frac{(-2)^n (2n)!}{2^n n!} f(0) = (-1)^n \frac{(2n)!}{n!} f(0)$$

9. a. Tout d'abord, $x \mapsto e^{-x^2}$ est dérivable sur $\mathbb R$ puisque $x \mapsto -x^2$ est dérivable sur $\mathbb R$ à valeurs dans $\mathbb R$ et que $x \mapsto e^x$ est dérivable sur $\mathbb R$. De plus, $x \mapsto \int_0^x e^{t^2}$ dt est dérivable sur $\mathbb R$ en tant que primitive de la fonction $t \mapsto e^{t^2}$ continue sur $\mathbb R$. Ceci justifie la dérivabilité de $\mathbb F$ sur $\mathbb R$.

Par ailleurs, puisque $x \mapsto e^{x^2}$ est la dérivée de $x \mapsto \int_0^x e^{t^2} dt$, pour tout $x \in \mathbb{R}$

$$F'(x) = -2xe^{-x^2} \int_0^x e^{t^2} dt + e^{-x^2} e^{x^2} = 1 - 2xF(x)$$

F est donc bien solution de (E).

b. D'après la formule de Taylor-Young,

$$F(x) = \sum_{k=0}^{5} \frac{F^{(k)}(0)}{k!} x^{k} + o(x^{5})$$

Mais d'après la question précédente, $F^{(k)}(0) = 0$ pour tout entier naturel k pair puisque F(0) = 0. La question précédente permet aussi de calculer

$$\frac{F'(0)}{1!} = 1 \qquad \qquad \frac{F^{(3)}(0)}{3!} = \frac{(-4)1!}{3!} = -\frac{2}{3} \qquad \qquad \frac{F^{(5)}(0)}{5!} = \frac{(-4)^2 2!}{5!} = \frac{4}{15}$$

On retrouve alors bien le développement limité déterminé à la question I.3.

- 10. (E) est une équation différentielle linéaire et son équation homogène associée est y' + 2xy = 0 dont les solutions sont les fonctions $x \mapsto \lambda e^{-x^2}$, λ décrivant \mathbb{R} . Puisque F est une solution particulière de (E), les solutions de (E) sont les fonctions $x \mapsto F(x) + \lambda e^{-x^2}$, λ décrivant \mathbb{R} .
- **11.** Soit f une éventuelle solution impaire de (E) sur \mathbb{R} . D'après la question précédente, il existe $\lambda \in \mathbb{R}$ telle que $f(x) = F(x) + \lambda e^{-x^2}$ pour tout $x \in \mathbb{R}$. Puisque f est impaire, f(0) = 0 et donc $\lambda = 0$ puis f = F. Réciproquement, montrons que F est impaire. Soit $x \in \mathbb{R}$. Alors en effectuant le changement de variable u = -t,

$$F(x) = e^{-x^2} \int_0^x e^{-t^2} dt = -e^{-x^2} \int_0^{-x} e^{-u^2} du = -F(-x)$$

Ainsi F est bien impaire.

Par conséquent, F est l'unique solution impaire de (E).

Remarque. On prouvait procéder différemment sans résoudre (E).

Existence On sait que (E) admet des solutions sur \mathbb{R} . On s'en donne une quelconque que l'on note f. On vérifie alors que $x \mapsto \frac{f(x) - f(-x)}{2}$ est une solution impaire de (E).

Unicité Donnons-nous deux solutions impaires f et g de (E). On a notamment f(0) = g(0) = 0. f et g sont donc solutions du même problème de Cauchy $\begin{cases} y' + 2xy = 1 \\ y(0) = 0 \end{cases}$. Par unicité de la solution de ce problème, f = g ce qui prouve l'unicité de la solution impaire de (E).