Problem 7.1:

a) Find the row reduced form of:

$$A = \left[\begin{array}{rrrr} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{array} \right]$$

- b) What is the rank of this matrix?
- c) Find any special solutions to the equation Ax = 0.

			Γ,	5	7	9		٦,	5	7	9		1	0	23/4	4
a)	A	~	0	4	l	7	~	0	4	l	7	~	0	ı	1/4	₹/4
•			0	-12	- 3	-21		Lo	0	0	0		٥	0	δ	0

c)
$$\chi_1 + \frac{23}{4}\chi_3 + \frac{1}{4}\chi_4 = 0$$
 $\chi_1 = -\frac{23}{4}\chi_3 - \frac{1}{4}\chi_4$
 $\chi_2 + \frac{1}{4}\chi_3 + \frac{7}{4}\chi_4 = 0$ $\chi_2 = -\frac{1}{4}\chi_3 - \frac{7}{4}\chi_4$

Set
$$x_3 = -4$$
, $x_4 = -4$. Then $x_1 = 24$, $x_2 = 8$

$$S_1 = \begin{bmatrix} 23 \\ -4 \end{bmatrix}$$
, $S_2 = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$ are 2 special soln's to
$$Ax = 0. \text{ There are many}$$

$$Choices, but N(A) = SPAn\{S_1, S_2\}.$$

Problem 7.2: (3.3 #17.b *Introduction to Linear Algebra*: Strang) Find A_1 and A_2 so that rank $(A_1B) = 1$ and rank $(A_2B) = 0$ for $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Quick choices are $A_1 = I_{2\times 2}$, $A_2 = O_{2\times 2}$ Since B has rank 1 already and then so does $A_1B = B$. Of course if $A_2 = O_{2\times 2}$ then $A_2B = O_{2\times 2}$, which has 0 pivots and this rank 0.