Travelling Salesman

Boute Force approach:

Dynamic

programming

>uf subproblem

exist multiple

times

Cost-adjacency matrix:

Cost=35

O(NI) -> worst 30

Dymamic programing approach

Steption: Find minimum cost adjacency matrix for each node step#102: Draw State based tree 4 pick -the node having minimum cost from its corresponding

madrix

step #03: Continue until reach leaf node

miningum

1
$$\begin{pmatrix} 2 & 3 & 4 & 5 \\ 80 & 20 & 30 & 10 & 11 \\ 2 & 15 & 80 & 16 & 4 & 2 \\ 3 & 5 & 80 & 2 & 4 & 2 \\ 4 & 19 & 6 & 18 & 80 & 3 \\ 5 & 16 & 4 & 7 & 16 & 80 & 4 \end{pmatrix}$$

miningum

10

2 15 80 10 11

2 10

3 5 80 2 4 2

4 19 6 18 80 3

5 16 4 7 16 80 4

1) Subtract each minimum cost from minimum of its row

Minimum 1 0 3 0

2) Subtract each column cost from Pts minimum

NI
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 10 & 17 & 0 & 1 \\ 12 & 20 & 11 & 2 & 0 & 2 \\ 0 & 3 & 20 & 0 & 2 & 2 \\ 15 & 3 & 12 & 20 & 0 & 3 \\ 11 & 0 & 0 & 12 & 20 & 4 \\ 1 & 0 & 3 & 0 & 0 & 21 + 4 = 25 \end{bmatrix}$$
Node 1 ...

Nodel minimum Lost = 25

Finding N3 0 0 0 0 Cost = 11 Min col V Reduced matrix = c(1,3)+ x+x = 17 + 25 + 11 = 53Finding N4 $60 \times 60 \times 60 \times 60$ $12 \times 60 \times 11 \times 60 \times 60$ $12 \times 60 \times 60 \times 60$ $11 \times 60 \times 60 \times 60$ C= 25

$$N_{5} = \begin{cases} b & b & b & b & b \\ b & b & d & b \\ 0 & 3 & b & 0 & b \\ 12 & 0 & 0 & 12 & b \\ 12 & 0 & 0 & 12 & b \\ 12 & 0 & 0 & 0 & 2 \\ 13 & 0 & 0 & 0 & 0 \\ 14 & 0 & 0 & 0 & 0 \\ 15 & 0 & 0 & 0 & 0 \\ 11 & 0 & 0 & 0 & 0 \\ 12 & 0 & 0 & 0 & 0 \\ 13 & 0 & 0 & 0 & 0 \\ 14 & 0 & 0 & 0 & 0 \\ 15 & 0 & 0 & 0 & 0 \\ 16 & 0 & 0 & 0 & 0 \\ 17 & 0 & 0 & 0 & 0 \\ 18 & 0 & 0 & 0 & 0 \\ 19 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 \\ 11 & 0 & 0 & 0 & 0 \\ 12 & 0 & 0 & 0 & 0 \\ 13 & 0 & 0 & 0 & 0 \\ 14 & 0 & 0 & 0 & 0 \\ 15$$