

SuPerMVO: SuperPoint-Glued Pose Estimation for Monocular Visual Odometry

Aaron Sequeira, Aryaman Rao, Kunal Siddhawar, and Kush Patel

Motivation

We aim to enhance monocular visual odometry by using transformer-based key-point matching like SuperPoint and SuperGlue, which provide robust descriptors even in low-texture scenes where traditional methods like ORB fail.

SuperPoint

- Detects key-points using a shared encoder and interest point decoder for real-time performance.
- Outputs 2D key-points and 256D descriptors using a fully convolutional self-supervised network.

SuperGlue

- Matches key-points across image pairs using selfand cross-attention in a graph neural network.
- Predicts context-aware correspondences and match confidence scores, enabling more robust pose estimation.

Experimental Analysis

Results

Method (Sequence 10)	APME (↓)	Abs RMSE (↓)	RPME (↓)	$\text{Rel RMSE } (\downarrow)$
SuPerMVO (Ours)	80.529	90.709	0.297	0.397
ORB-3	124.031	139.635	0.303	0.408
SuPerMVO-scaled (Evo)	51.086	58.392	0.260	0.363
ORB-3 scaled (Evo)	51.865	60.004	0.273	0.381

Future Work

- Transformer Loop Closure Robust matching
- Sensor Fusion Scale & drift correction
- SLAM Integration Embed state-of-the-art SLAM

References

- DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection and description." In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 224-236. 2018.
- Sarlin, Paul-Edouard, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. "Superglue: Learning feature matching with graph neural networks." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4938-4947. 2020.
- Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-time loop closure in 2D LIDAR SLAM." In 2016 IEEE international conference on robotics and automation (ICRA), pp. 1271-1278. IEEE, 2016.
- https://www.cvlibs.net/datasets/kitti/eval_odometry.php.
- Campos, Carlos, Richard Elvira, Juan J. Gómez Rodríguez, José MM Montiel, and Juan D. Tardós. "Orb-slam3: An accurate open-source library for visual, visual-inertial, and multimap slam." IEEE transactions on robotics 37, no. 6 (2021): 1874-1890.