Exercice1

Soit X une variable aléatoire représentant la durée de vie d'un élément. $R\left(t\right)$ est sa fonction de fiabilité.

1) Montrer que le temps moyen de bon fonctionnement (MTBF), T_0 est égal à:

$$T_0 = \int_{0}^{\infty} R(t) dt$$

2) Montrer que:

$$Var\left(X\right) = 2\int_{0}^{\infty} tR\left(t\right)dt - \left(T_{0}\right)^{2}$$

Exercice 2

La durée de vie d'un homme H est distribuée selon une loi $\exp(\lambda)$; sa fonction de hasard est $h_H(t) = \lambda$. La durée de vie de son épouse F a pour fonction de hasard : $h_F(t) = \frac{2t}{\theta^2}$; $\theta > 0$. Les variables aléatoires H et F sont indépendantes et on pose: $T = \min(H, F)$

- 1. Quelle est la loi suivie par F, il s'agit de trouver sa fonction de fiabilité $S_F(t)$ et sa densité $f_F(t)$.
- 2. Déterminez la fonction de hasard de T, sa densité et sa fonction de survie.

Exercice3

On considère le système suivant, où les variables aléatoires de Bernouli X_1, X_2, X_3 représentent les états de fonctionnement de chacun des composants C_1, C_2, C_3 . C_1, C_2 sont montés en parallèle, puis l'ensemble est monté en série avec C_3 . (faire un schéma)

Les fiabilités des trois composants C_1, C_2, C_3 sont respectivement $r_1 = 0, 66$; $r_2 = 0, 64$; et $r_3 = 0, 96$. Lorsque le composant C_3 fonctionne, le composant C_1 a la probabilité $p_{1/3} = \frac{2}{3}$ de fonctionner, et C_2 une probabilité $p_{2/3} = \frac{3}{4}$ de fonctionner.

Lorsque le composant C_3 ne fonctionne pas, le composant C_1 a la probabilité $p_{1/non3} = \frac{1}{2}$ de fonctionner et C_2 fonctionne avec la probabilité $p_{2/non3} = \frac{1}{2}$.

- 1) Etablir une expression de la fonction de structure $\phi(x_1, x_2, x_3)$ du système.
- 2) Déterminer les nombres suivants $E(X_1X_3)$ et $E(X_2X_3)$.
- 3) On suppose que les variables aléatoires X_1 et X_2 sont indépendantes sous chacune des probabilités conditionnelles $P_{(X_3=0)}$ et $P_{(X_3=1)}$ calculez $E\left(X_1X_2X_3\right)$.
- 4) En déduire que la fiabilité du système est $r_{sys} = 0,88$.

Exercice4

On s'interesse, dans le cadre de la modélisation de la mortalité, au modèle

$$h(x) = \gamma + \frac{\alpha \exp(\beta x)}{1 - \exp(\beta x)}$$

Où h est la fonction de hasard du modèle (utilisé par **Thatcher et Bongaarts**) **Question 1:** Montrer que la fonction de survie est:

$$S(x) = \exp(-\gamma) \left(\frac{1 + \alpha \exp(\beta x)}{1 + \alpha}\right)^{-\frac{1}{\beta}}$$

Question 2: Dans la suite, on pose $\gamma = 0$ et $a = \ln(\alpha)$. On s'intéresse à l'estimation des paramètres du modèle par maximum de vraisemblance à partir d'un n-échantillon $(X_1, X_2, ... X_n)$ de X.

- -Ecrire alors la densité du modèle $f(x, a, \beta)$ en fonction de $h(x, a, \beta)$ et $S(x, a, \beta)$
- -Calculer les expressions suivantes en fonction de h(x) et S(x):

$$\frac{\partial}{\partial a} \ln h(x); \quad \frac{\partial}{\partial \beta} \ln h(x); \quad \frac{\partial}{\partial a} \ln S(x); \quad \frac{\partial}{\partial \beta} \ln S(x)$$

- Donner l'expression de la vraisemblance $L\left(x,a,\beta\right)$ et de la log-vraisemblance en fonction de $h\left(x\right)$ et $S\left(x\right)$.
- -En déduire les équations normales à résoudre pour estimer (a, β) par maximum de vraisemblance.