Density of the solution of the Skorokhod stochastic reflection problem driven by a fractional Brownian motion with Hurst parameter $h > \frac{1}{2}$

HARESS El Mehdi

05/2019

Contents

1	Introduction	3
2	Notations	5
3	Preliminaries	6
	3.1 Malliavin calculus	6
	3.2 The Skorokhod problem	
	3.3 Penalization method	
	3.4 Penalization estimates	
	3.5 Comparison theorem for ODEs	
4	Penalization	8
	4.1 Doss-Sussman representation	8
	4.2 Existence of a global solution	
5	Convergence of the penalized processes	9
	5.1 Growth of the penalized processes	9
	5.2 Boundness of the penalized processes	10
6	Uniform convergence of the penalized processes	12
	6.1 Continuity of Z and Y	12
	6.2 Uniform convergence	14

7	Identification of the limit process	14
	7.1 Convergence of the stochastic integral	14
	7.2 Points of increase of K	14
8	Density of the limit process	15
	8.1 Y_t belongs to $\mathbf{D}^{1,2}$	15
	8.2 Density of Y_t	
9	Uniqueness of the solution	17

1 Introduction

Let X_t be the solution of a stochastic differential equation with diffusion coefficient σ and drift b of the form

$$\forall t \in [0,T], \ X_t = \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds,$$

where B is a fractional Brownian motion with Hurst parameter h, and the integral is in the sense of Stratonovich.

Recall that the Stratonovich integral of a process $\{u_t, t \in [0, T]\}$ is a deterministic integral defined when the quantity

$$(2\epsilon)^{-1} \int_0^T u_s (B_{\min((s+\epsilon),T)} - B_{\max((s-\epsilon),0)}) ds,$$

converges in probability as $\epsilon \to 0$.

These equations can describe many phenomena such as physical systems or thermal fluctuations. Usually when studying a phenomenon, in addition to having the stochastic equation that describes it, we work in a bounded domain and we want our solution not to exceed some boundary $\{L_t, t \in [0, T]\}$. Theoretically, we want to reflect X_t each time each time it touches L_t . Otherwise, we don't want to change X_t . In probability theory and related fields, this problem is known as the Skorokhod problem and has been studied a lot in the past years

- For example, we can prove the existence of a solution when B is a Brownian motion. In fact, in the case of a locally bounded drift b with linear growth and a positive diffusion coefficient $(\sigma(x) > \delta > 0)$, T. Zhang proved the existence and uniqueness of a strong solution to the stochastic differential equations with reflecting boundary [8].
- Furthermore, we can prove some properties of the solution when B is a Brownian motion. In [4], T. Nilssen and T. Zhang consider a one-dimensional stochastic differential equation with reflection. They prove the Malliavin differentiability of the solution considering a bounded and measurable drift b and a diffusion coefficient $\sigma \in C_b^1(\mathbf{R})$ bounded away from 0.

Note: The Malliavin calculus is a set of mathematical techniques that extend the field of calculus of variations from deterministic functions to stochastic processes.

- Moreover, we can still prove the existence of a solution even when the equation is not driven by a Brownian motion and the integral is not in the sense of Stratonovich. In [6], A. Richard, E. Tanré and S. Torres study one dimensional differential equations driven by a rough noise (and thus, a rough integral) with Hölder continuity $\beta \in (\frac{1}{3}, 1)$, which are reflected on some stochastic boundary process $(L_t)_{t \in [0,T]}$. They restrict their study to \mathbf{R} valued processes in order to give a concise and simple proof by penalization. They consider a drift b = 0 and a diffusion coefficient $\sigma \in C_b^4(\mathbf{R}, (\mathbf{R}^d)')$.
- Finally, we can prove even stronger properties of the solution when considering a similar problem. In fact, when studying an elliptic stochastic partial differential equation on some domain D with reflection of the type

$$\forall x \in D, \ -\Delta u(x) + f(u(x)) = \dot{W}(x) + \eta$$

with Dirichlet-type boundary conditions, f a continuous non-decreasing function and $\{\dot{W}(x), x \in D\}$ a white noise on D. S. Tindel proves in [7] the absolute continuity of the law of the solution.

In this paper, we are interested in the Skorokhod problem for one dimensional differential equations (σ and b are real functions) driven by the fractional Brownian motion B with Hurst parameter h, which are reflected on the boundary $L_t = 0 \ \forall t \in [0, T]$.

We will use the Stratonovich integral and consider \mathbf{R} valued processes in order to give a proof via penalization and obtain the density of the solution via Malliavin Calculus.

Finally, we suppose that b=0 and σ is a bounded lipschitz function in $C_b^2(\mathbf{R},\mathbf{R})$. Later, when we want to prove the density, we assume that σ is constant = 1.

The proofs given in this paper will resemble the proofs given in richard2019penalisation and [7] but will become much simpler in our case because of our strong assumptions.

2 Notations

Let $W = \{W(h), h \in H\}$ denote an isonormal Gaussian process associated with the Hilbert space H. We assume that W is defined on a complete probability space (Ω, F, P) . Let S be the set of random variables F, such that F has the form

$$F = f(W(h_1), ..., W(h_n)),$$

where f belongs to the set of infinitely continuously differentiable function from $\mathbf{R}^{\mathbf{n}}$ to \mathbf{R} , such that f and all of its derivatives have polynomial growth. Then we can define the derivative operator,

$$DF = \sum_{1}^{n} \partial_{i} f(W(h_{1}), ..., W(h_{n})) h_{i}.$$

We will also call L^p the set $L^p(\Omega, \mathscr{F}, \mathbf{P})$ and $\mathbf{D^{1,p}}$ the closure of S with respect to the norm

$$||F|| = [E(|F|^p) + E(||DF||_H^p)]^{\frac{1}{p}}.$$

Usually and in this paper, H is a set of functions (recall that in the white noise case, $H = L^2(T, B, \mu)$ where μ is a σ -finite atomless measure on a measurable space (T,B)). Hence, we can use the notations,

$$D_t F = DF(t);$$

$$D^h F = \langle DF, h \rangle_H;$$

$$||DF|| = \langle DF, DF \rangle_H.$$

In this paper, we will note D the derivative operator associated with a fractional Brownian motion B (W = B and $D_r B_t = \mathbf{1}_{[0,t]}(r)$) and D^W to the derivative operator associated with a Brownian motion W.

Let T be a positive real number. Let f be a function of one variable, we define $\partial f_{s,t} = f_t - f_s$. For β in (0,1), $C^{\beta-Hol}$ is the space of Hölder continuous functions on [0,T], with the semi norm defined by

$$||f||_{\beta,[0,T]} = \sup_{0 \le s \le t \le T} \frac{|\partial f_s, t|}{|t-s|^{\beta}}.$$

We also remind the p variation of f

$$||f||_{p-var}^p = \sup_{\pi} \sum_{i=0}^{n-1} |\partial f_{t_i,t_{i+1}}|^p,$$

where the supremum is taken over all finite subdivisions $\pi = t_0 < ... < t_n$ of [0, T].

3 Preliminaries

3.1 Malliavin calculus

We will use the following theorems to prove the existence of the density. For the proof, see [5] and [[7], **Theorem 2.1 and 2.2**].

Theorem 3.1. Let X_t be the solution of

$$\forall t \in [0, T], X_t = x_0 + B_t + \int_0^t b(X_s) ds,$$

where b is supposed to be globally Lipschitz with linear growth. Then X_t belongs to $\mathbf{D}^{1,\infty}$ and the derivative D_rX_t satisfies the following equation

$$\forall t \in [0, T], \ \forall r \in [0, T], \ D_r X_t = \int_0^t b'(X_s) D_r X_s ds + \mathbf{1}_{[0,t]}(r).$$

Theorem 3.2. Let $(F_n, n \in \mathbf{N})$ a family of elements in $\mathbf{D^{1,2}}$ converging to F in L^p for p > 1. Suppose that $(DF_n, n \in \mathbf{N})$ is a bounded family in L^p . Then $F \in \mathbf{D^{1,p}}$, $F_n \in \mathbf{D^{1,p}}$ for every n, and there exists a sub-sequence of $(F_n, n \in \mathbf{N})$ converging to DF in the weak topology of L^p .

Theorem 3.3. Let F be a random variable belonging to the space $\mathbf{D}^{1,2}$. If $||D^W F|| > 0$ on Ω_0 , then the measure $(\mathbf{1}_{\Omega_0} P) \circ F^{-1}$ is absolutely continuous with the respect to the Lebesgue measure.

Remark:
$$(\mathbf{1}_{\Omega_0} P) \circ F^{-1}(a) = \mathbf{P}(\{\omega \in \Omega_0, F(\omega) = a\}).$$

3.2 The Skorokhod problem

We suppose throughout the paper that σ is a lipschitz function in $C_b^2(\mathbf{R}, \mathbf{R})$ (bounded by M and with a lipschitz constant k).

Definition 3.1. We say that (Y,K) is a solution to the Skorokhod problem with diffusion coefficient σ started from $y_0 \ge 0$ and reflected on L = 0 if (i) (Y,K) satisfies the RDE

$$\forall t \in [0, T], Y_t = y_0 + \int_0^t \sigma(Y_s) dB_s + K_t;$$
 (3.1)

- (ii) $\forall t \in [0, T], Y_t \ge 0;$
- (iii) K is non decreasing;
- (iv) $\forall t \in [0,T], \int_0^t (Y_s) dK_s = 0$, or equivalently, $\int_0^t \mathbf{1}_{Y_s \neq L_s} dK_s = 0$.

3.3 Penalization method

We define ψ_n for each n such that

$$\forall y \in \mathbf{R}, \psi_n(y) = \begin{cases} 0 & \text{if } y > 0, \\ \text{smooth convex interpolation} & \text{if } -\frac{1}{n} < y < 0, \\ \frac{-1}{2} - ny & \text{if } y \le -\frac{1}{n}, \end{cases}$$

and $\forall n \in \mathbf{N}, \psi_n \in \mathbf{C}^{\infty}, \psi'_n \in \mathbf{C_b}^{\infty}, \psi_n \leq \psi_{n+1} \text{ and } -\frac{1}{2} - ny \leq \psi_n(y) \leq ny_-.$ We consider the equation

$$\forall t \in [0, T], \ Y_t^n = y_0 + \int_0^t \sigma(Y_s^n) dB_s + \int_0^t \psi_n(Y_s^n) ds.$$
 (3.2)

We'll see that for each n, there exists a unique solution to (3.2) and that the sequence of pairs $(Y_{\cdot}^{n}, \int_{0}^{\cdot} \psi_{n}(Y_{s})ds)_{n \in \mathbb{N}}$ converges uniformly in C[0,T] to a solution of the Skorokhod problem (Y,K).

3.4 Penalization estimates

Theorem 3.4. Let $p \in [1,3)$, and assume that $(g^n)_n \in \mathbb{C}^{p-var}[0,T]$) are continuous functions such that $g_0^n = 0$. Set C > 0 and for each n, let f^n be the solution to:

$$\begin{cases} f_t^n = f_0^n + g_t^n + C \int_0^t \psi_n(f_u^n), & \forall t \in [0, T], \\ f_0^n = f_0. \end{cases}$$

Then, $\forall t \in [0, T], \forall n \in \mathbb{N}, |f_t^n| \leq \sqrt{26} \|g_{\cdot}^n + f_0\|_{\infty, [0, T]}$ Moreover, if there exists a modulus of continuity which is uniform in n for

$$(g_n)_n$$
 then $\sup_{t \in [0,T]} (f_t^n)_- \xrightarrow{n \to \infty} 0$
Now if $(g^n)_n \in \mathbf{C}^{\beta-Hol}[0,T]$ and $f_0 > 0$ then

$$\forall t \in [0, T], \forall n \in \mathbf{N}, \psi_n(f_t^n) \le C_n(C^{-\beta} + C^{1-\beta})n^{1-\beta}$$

where $C_n = A(\|g_{\cdot}^n\|_{\beta - Hol, [0,T]} + \frac{1}{2}CT^{1-\beta})$ and A is a constant.

See [[6], Lemma 3.3] for the proof.

3.5 Comparison theorem for ODEs

Theorem 3.5. Let f and g be real continuous functions such that $\forall x \in [a,b]$, $f'(x) \leq \phi(f(x))$ and $f(a) = \alpha$ where ϕ is a Lipschitz function. Suppose that $\forall x \in [a,b]$, $g'(x) = \phi(f(x))$ and $g(a) \geq \alpha$. Then $\forall x \in [a,b]$, $f(x) \leq g(x)$.

Proof. Denote h = f - g and suppose there exist b > a such that h(b) > 0. Since h is continuous and h(a) < 0, there exists c in [a, b) such that $\forall x \in (c, b], \ h(x) > 0$ and h(c) = 0 $(c = \inf\{d \in [a, b], \ \forall x \in [d, b], \ h(x) > 0\})$. Thus, we get that $\forall x \in [c, b],$

$$0 \le h'(x) = f'(x) - g'(x) \le \phi(g(x)) - \phi(g(x)) \le k |f(x) - g(x)| = kh(x).$$

From this inequality, we have that $\forall x \in [c, b], (h(x) \exp(-Lx))' \leq 0$, hence $h(b) \leq h(c) \exp(L(b-c)) = 0$, which is a contradiction.

4 Penalization

4.1 Doss-Sussman representation

Theorem 4.1. Consider the equation

$$Y_t = y + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds,$$

where $\sigma \in C_b^2(\mathbf{R}, \mathbf{R})$ and $b \in C_b^1(\mathbf{R}, \mathbf{R})$. Then, the unique solution of the equation is given by

$$Y_t = \alpha(B_t, Z_t),$$

where Z_t is the solution of

$$Z_t = y_0 + \int_0^t \left(\frac{\partial \alpha}{\partial y}(B_s, Z_s)\right)^{-1} b(\alpha(B_s, Z_s)) ds, \tag{4.1}$$

and
$$\alpha(x,y)$$
 is the solution of
$$\begin{cases} \frac{\partial \alpha}{\partial x}(x,y) = \sigma(\alpha(x,y)), \\ \alpha(0,y) = y \end{cases}$$
.

For the proof, see [[1], Proposition 6]

In (3.2), σ is in $C_b^2(\mathbf{R}, \mathbf{R})$, but ψ_n is not bounded, therefore we can't exactly apply the theorem above. Nevertheless, throughout the paper, we assume that there exists a Doss-Sussman representation for (3.2) for each n in whichever interval the solution exists. We write $Y_t^n = \alpha(B_t, Z_t^n)$.

4.2 Existence of a global solution

In general, it is a difficult task to obtain a global existence in an RDE when the drift is unbounded. We first derive a local existence [See...] and a Doss-Sussman representation on the small interval where the solution exists. Global existence is then achieved by stability.

In fact, in view of [[3], **Lemma 1.**], we know that either Y^n is a global solution on [0,T], or that there is some time θ such that for any $t \in [0,\theta), (Y^n_s)_{s \in [0,t]}$ is a solution to (3.2) and $\lim_{t\to\theta} |Y^n_t| = \infty$. In the remaining of the article, we will obtain an upper bound on Y^n_t for any t, and since Y^n is continuous, this will be incompatible with a global solution.

That's why, for the rest of the article, we will write T instead of θ or θ_n .

5 Convergence of the penalized processes

Let $\beta = h - \epsilon$ where h is the Hurst parameter of B.

5.1 Growth of the penalized processes

One can notice that

$$\frac{\partial \alpha}{\partial y}(x,y) = \exp(-\int_0^x \sigma'(\alpha(s,y))ds > 0,$$

Since $\forall t \in [0, T], Z_t^n$ satisfies (4.1), Z_t^{n+1} satisfies

$$Z_t^{n+1} = y_0 + \int_0^t \frac{\partial \alpha}{\partial y} (B_s, Z_s^{n+1})^{-1} \psi_{n+1}(\alpha(B_s, Z_s^{n+1}) ds,$$

Hence, since $\psi_n \leq \psi_{n+1}$ and using the comparison theorem for ODEs, we deduce that $\forall t \in [0,T], Z_t^n \leq Z_t^{n+1}$.

Again, since $\frac{\partial \alpha}{\partial y}(x,y) > 0$, we have that $\forall t \in [0,T], \alpha(B_s,Z_s^n) \leq \alpha(B_s,Z_s^{n+1})$, or $\forall t \in [0,T], Y_t^n \leq Y_t^{n+1}$.

5.2 Boundness of the penalized processes

Since σ' is bounded (by M), we have that

$$\forall s, t \in [0, T], \ \int_0^{B_t} \sigma'(\alpha(z, y_0)) dz - \int_0^{B_s} \sigma'(\alpha(z, y_0)) dz = \int_{B_s}^{B_t} \sigma'(\alpha(z, y_0)) dz \le M(B_t - B_s).$$

The fBm B has continuous trajectories, which gives us that both $(t \to \exp(-\int_0^{B_t} \sigma'(\alpha(z,y_0))dz))$ and $(t \to \exp(\int_0^{B_t} \sigma'(\alpha(z,y_0))dz))$ are continuous function on [0,T]. For a fixed ω , denote $t_{1,\omega}$ and $t_{2,\omega}$ the points where they reach their maximum respectively. It means that

$$\max(\left\|\frac{\partial \alpha}{\partial y}(B_{\cdot},y_0)\right\|_{\infty,[0,T]}, \left\|\left(\frac{\partial \alpha}{\partial y}(B_{\cdot},y_0)\right)^{-1}\right\|_{\infty,[0,T]}) = \max(\frac{\partial \alpha}{\partial y}(B_{t_{1,\omega}},y_0), \left(\frac{\partial \alpha}{\partial y}(B_{t_{2,\omega}},y_0)\right)^{-1}).$$

Again, since σ' is bounded, $(y \in \mathbf{R} \to \sigma'(\alpha(s, y)))$ is bounded independently on s, therefore, there exist a random constant C such that,

$$\sup_{y_0 \in \mathbf{R}} \max(\left\| \frac{\partial \alpha}{\partial y}(B_{\cdot}, y_0) \right\|_{\infty, [0, T]}, \left\| \left(\frac{\partial \alpha}{\partial y}(B_{\cdot}, y_0) \right)^{-1} \right\|_{\infty, [0, T]} \right) \le C < \infty.$$

Note that this constant depends on B and α , we will call it C_B^{α} .

Let's first prove that $\forall t \in [0,T]$ $(Z_t^n)_{n \in \mathbb{N}}$ is bounded. Let's define $\tilde{Z_t^n}$ as the solution of the random ODE

$$\tilde{Z}_t^n = y_0 + C_B^\alpha \int_0^t \psi_n(\alpha(B_s, \tilde{Z}_s^n)) ds,$$

such that $\tilde{Z}_t^n \geq Z_t^n$ for all $t \in [0, T]$ (using the comparison theorem (**Theorem 3.5**) and the fact that $C_B^{\alpha} \geq \frac{\partial \alpha}{\partial y}(B_s, Z_s) \ \forall s \in [0, T]$).

Note that

$$\alpha(B_t, Z_t^n) = \alpha(B_t, y_0) + \int_{y_0}^{Z_t^n} \frac{\partial \alpha}{\partial y} (B_t, s) ds \ge \alpha(B_t, y_0) + (C_B^{\alpha})^{-1} (Z_t^n - y_0),$$

And

$$|\alpha(B_t, y_0) - \alpha(B_s, y_0)| \le \left\| \frac{\partial \alpha(., y_0)}{\partial x} \right\|_{\infty, [0, T]} |B_t - B_s| \le C_\beta \left\| \frac{\partial \alpha(., y_0)}{\partial x} \right\|_{\infty, [0, T]} |t - s|^\beta,$$

where C_{β} is a constant that depends on β . Recall that $\frac{\partial \alpha}{\partial x} = \sigma(\alpha)$, and since σ is bounded, there exist a constant $C_{\beta,\sigma}$ such that

$$|\alpha(B_t, y_0) - \alpha(B_s, y_0)| \le C_{\beta, \sigma} |t - s|^{\beta}.$$

Since ψ_n is a decreasing function, we get that

$$\psi_n(\alpha(B_t, Z_t^n)) \le \psi_n(\alpha(B_t, y_0) + (C_B^\alpha)^{-1}(Z_t^n - y_0)) \le \psi_n(\alpha(B_0, y_0) - C_{\beta, B}t^\beta + (C_B^\alpha)^{-1}(Z_t^n - y_0)).$$

Since $\alpha(B_0, y_0) = y_0 \ge 0$, we have

$$\forall t \in [0, T], \tilde{Z}_t^n \le y_0 + C_B^{\alpha} \int_0^t \psi_n(-C_{\beta, B} s^{\beta} + (C_B^{\alpha})^{-1} (\tilde{Z}_s^n - y_0)) ds.$$

Now let's define $\forall t \in [0,T], \overline{\mathbb{Z}_t^n}$ as the solution of the equation

$$\overline{Z_t^n} = -C_{\beta,B}t^{\beta} + \int_0^t \psi_n(\overline{Z_s^n})ds.$$

Notice that

$$X_t^n := -C_{\beta,B} t^{\beta} + (C_B^{\alpha})^{-1} (\tilde{Z}_t^n - y_0) = -C_{\beta,B} t^{\beta} + (C_B^{\alpha})^{-1} C_B^{\alpha} \int_0^t \psi_n(\alpha(B_s, \tilde{Z}_s^n) ds) ds$$

$$\leq -C_{\beta,B}t^{\beta} + \int_0^t \psi_n(-C_{\beta,B}t^{\beta} + (C_B^{\alpha})^{-1}(\tilde{Z}_t^n - y_0)) = -C_{\beta,B}t^{\beta} + \int_0^t \psi_n(X_t^n).$$

Hence, by the comparison theorem for ODEs (**Theorem 3.5**, we have that $\forall t \in [0,T], \ X_t^n \leq \overline{Z_t^n}$, which means that

$$-C_{\beta,B}t^{\beta} + (C_B^{\alpha})^{-1}(\tilde{Z}_t^n - y_0) \le \overline{Z_t^n}.$$

Using the penalization estimates (**Theorem 3.4**), $\overline{Z^n}$ satisfies :

$$|\overline{Z_t^n}| \le \sqrt{26}(C_{\beta,B}t^{\beta}), \tag{5.1}$$

which leads to the following bound, there exists A>0 which depends on σ, β, T, B such that

$$\forall t \in [0, T], Z_t^n \le y_0 + A.$$

This ensures the bound of $(Z^n)_{n\in\mathbb{N}}$ and since α is continuous on y, it also ensures the bound of $(Y^n)_{n\in\mathbb{N}}$.

Therefore, we have proved that the penalized processes converge a.s.

6 Uniform convergence of the penalized processes

6.1 Continuity of Z and Y

Let's fix $s \in [0, T)$ and define $Z_{s,t}^n$ as the solution of

$$\forall t \in [s, T], Z_{s,t}^n = Z_s^n + C_B^\alpha \int_s^t \psi_n(\alpha(B_u, \tilde{Z}_u^n) du.$$

Notice that $\tilde{Z}_t^n - Z_s^n \leq Z_{s,t}^n - Z_s$.

Since

$$\forall t \in [0, T], \ Z_{s,t}^n \le Z_s^n + C_B^\alpha \int_s^t \psi_n (Y_s^n - C_{\beta,B}(u - s)^\beta + (C_B^\alpha)^{-1} (\tilde{Z}_u^n - \tilde{Z}_s^n)) du,$$

we have

$$\tilde{Z}_t^n \le \tilde{Z}_s^n + C_B^\alpha \int_s^t \psi_n(-(Y_s^n)_- - C_{\beta,B}(u-s)^\beta + (C_B^\alpha)^{-1}(\tilde{Z}_u^n - \tilde{Z}_s^n)du.$$

Using the same logic we used to get (5.1), we define as the solution of

$$\dot{Z}_{s,t}^{\dot{n}} = -(Y_s^n)_- - C_{\beta,B}(t-s)^{\beta} + \int_s^t \psi_n(\dot{Z}_{s,u}^{\dot{n}} - (Y_s^n)_-) du.$$

Then, we define $\dot{X}_{s,t}^n = -(Y_s^n)_- - C_{\beta,B}(t-s)^\beta + C_B^\alpha(\tilde{Z}_t - \tilde{Z}_s)$, such that

$$\dot{X}_{s,t}^{n} \leq -(Y_{s}^{n})_{-} - C_{\beta,B}(t-s)^{\beta} + \int_{s}^{t} \psi_{n}(-(Y_{s}^{n})_{-} - C(u-s)^{\beta} + C_{B}^{\alpha}(\tilde{Z}_{u} - \tilde{Z}_{s})du$$

$$= -(Y_{s}^{n})_{-} - C_{\beta,B}(t-s)^{\beta} + \int_{s}^{t} \psi_{n}(\dot{X}_{s,u}^{n})$$

$$\leq -(Y_s^n)_- - C_{\beta,B}(t-s)^{\beta} + \int_s^t \psi_n(X_{s,u}^n - (Y_s^n)_-) du.$$

Therefore, by the comparison theorem, we get that

$$\forall t \in [s, T], -(Y_s^n) - C_{\beta, B}(t - s)^{\beta} + C_B^{\alpha}(\tilde{Z}_t - \tilde{Z}_s) \leq Z_{s, t}^n$$

Using the penalization estimates (**Theorem 3.4**), we get that

$$Z_{s,t}^{n} - (Y_{s}^{n})_{-} \le \sqrt{26}C_{\beta,B}(t-s)^{\beta}.$$

Therefore there exists two constants $K_{\sigma,\beta}$ and $L_{\sigma,\beta}$ depending on σ and β such that

$$\tilde{Z}_t^n - \tilde{Z}_s^n \le K_{\sigma,\beta}(t-s)^\beta + L_{\sigma,\beta}(Y_s^n)_-.$$

Since $Z_t^n - \tilde{Z_s^n} \ge Z_t^n - Z_s^n$, we get that

$$Z_t^n - Z_s^n \le K_{\sigma,\beta} (t - s)^{\beta} + L_{\sigma,\beta} (Y_s^n)_-.$$
 (6.1)

$$|Y_{t}^{n} - Y_{s}^{n}| = |\alpha(B_{t}, Z_{t}^{n}) - \alpha(B_{s}, Z_{s}^{n})|$$

$$= |\alpha(B_{t}, Z_{t}^{n}) - \alpha(B_{s}, Z_{t}^{n}) + \alpha(B_{s}, Z_{t}^{n}) - \alpha(B_{s}, Z_{s}^{n})|$$

$$\leq |\alpha(B_{t}, Z_{t}^{n}) - \alpha(B_{s}, Z_{t}^{n})| + |\alpha(B_{s}, Z_{t}^{n}) - \alpha(B_{s}, Z_{s}^{n})|$$

$$\leq C_{\beta} \left\| \frac{\partial \alpha(., y_0)}{\partial x} \right\|_{\infty, [0, T]} |t - s|^{\beta} + C_B^{\alpha} |Z_t^n - Z_s^n|. \tag{6.2}$$

Proposition 6.1. $\lim_{n\to\infty} \sup_{s\in[0,T]} (Y_s^n)_- = 0$

Proof. The idea is to use the penalization estimates by finding a modulus of continuity which is uniform in n for $\{\int_0^{\cdot} \sigma(Y_u^n) du\}_{n \in \mathbb{N}}$. See [4], Proposition 4.7

Therefore, by taking the limit as $n \to \infty$ in the inequalities (6.1) and (6.2), we get that Z and Y are continuous.

Uniform convergence 6.2

Dini's theorem states that if $\{f_n\}$ is an increasing sequence of continuous real-valued functions on a compact space, which converges point-wise to a continuous function f, then the convergence is uniform. Therefore, we are now able to conclude that the convergences are uniform (by taking $f_n = Y_n$ in Dini's theorem).

Identification of the limit process 7

Convergence of the stochastic integral

Proposition 7.1. The following convergence holds a.s. uniformly in [0,T],

$$\int_0^t \sigma(Y_s^n) dB_s \to \int_0^t \sigma(Y_s) dB_s, \text{ as } n \to \infty.$$

Proof. See [[6], Proposition 4.9].

7.2Points of increase of K

Let's define $K^n_t = \int_0^t \psi_n(Y^n_s) ds, t \in [0,T].$ $\forall t \in [0,T], K^n_t = Y^n_t - y_0 - \int_0^t \sigma(Y^n_s) dB_s$, therefore K^n also converges uniformly to some process K.

For each n, K_n is non decreasing and so is K, it follows that dK^n weakly

converges towards dK and since Y^n also converges uniformly to Y,

$$0 \ge \int_0^t (Y_s^n) \psi_n(Y_s^n) ds = \int_0^t (Y_s^n) dK_s^n \to \int_0^t (Y_s) dK_s.$$

Since $Y_s \ge 0$ and K is non decreasing, it follows that $\forall t \in [0, T], \int_0^t Y_s dK_s = 0$.

Notice that since $\lim_n \sup_{t \in [0,T]} (Y_t^n)_- = 0$, we have that $Y \geq 0$. Therefore, we can affirm that (Y,K) is a solution to the Skorokhod problem.

8 Density of the limit process

In this section, we assume that $\sigma = 1$.

8.1 Y_t belongs to $\mathbf{D}^{1,2}$

Lemma 8.1. For every $t \in [0, T]$, $Y_t \in \mathbf{D}^{1,2}$, and there exist a sub-sequence of $(DY_t^n, n \in \mathbf{N})$ converging to DY in L^2 .

Proof. In order to apply **Theorem 3.2**, we have to verify that $Y_t^n \in \mathbf{D}^{1,\mathbf{p}}$ and $(DY_t^n, n \in \mathbf{N})$ is bounded in L^p for some p (In this proof, p is going to be equal to ∞).

Recall that by (Theorem 3.1.) $Y_t^n \in \mathbf{D}^{1,2}$ and

$$D_r Y_t^n = \int_0^t \psi_n'(Y_s^n) D_r Y_s^n ds + \mathbf{1}_{[0,t]}(r).$$

Let's first show that $D_r Y_t^n \ge 0$.

We have for s < r

$$\begin{cases} \frac{dD_r Y_s^n}{ds} = \psi_n'(Y_s^n) D_r Y_s^n \\ D_r Y_0^n = 0. \end{cases}$$

Which gives us: $D_r Y_s^n = 0$ for s < r.

For $t \geq r$, we have

$$\begin{cases} \frac{dD_rY_t^n}{dt} = \psi_n'(Y_t^n)D_rY_t^n \\ D_rY_r^n = \int_0^r \psi_n'(Y_s^n)D_rY_s^n ds + 1 = 1. \end{cases}$$

Hence,

$$D_r Y_t^n = \begin{cases} \exp\left(\int_r^t \psi_n'(Y_s^n) ds\right) & \text{if } r \le t \\ 0 & \text{else.} \end{cases}$$

Therefore, $D_rY_t^n \geq 0$. Now let's show that $D_rY_t^n \leq 1$. Since $\psi_n' \leq 0$, we have that $\exp\left(\int_0^t \psi_n'(Y_s^n)ds\right) \leq 1$ and therefore $D_rY_t^n \leq 1$. Hence, DY_t^n belongs to L^{∞} , which proves that $Y_t \in \mathbf{D}^{1,\infty}$.

8.2 Density of Y_t

Theorem 8.2. The law of Y_t on \mathbf{R}_+^* is absolutely continuous with respect to the Lebesgue measure.

Proof. Let's fix t>0 and let a>0, $k\geq 1$ and $j\geq 1$. We define $\Omega_a=\{\omega,Y_t(w)\geq a\},\ \Omega_{a,k}=\{\omega\in\Omega_a,Y_t^n(\omega)\geq 2a\ n\geq k\}$ and $\Omega_{a,k,j}=\{\omega\in\Omega_{a,k},Y_s(\omega)\geq a\ \text{and}\ Y_s^k(\omega)\geq a\ \text{for every}\ s\in B_j\}$ where $B_j=\{s,|\ s-t|\leq \frac{1}{j}\}$. One can see that $\Omega=\cup_{a\geq 0}\Omega_a=\cup_{k\geq 1}\Omega_{a,k}=\cup_{k\geq 1}\cup_{j\geq 1}\Omega_{a,k,j}$. Hence, it is sufficient to show that $\|DY_t\|>0$ on $\Omega_{a,k,j}$ for a fixed a,k and j. On $\Omega_{a,k,j}$, we have that $Y_s^n\geq a$ for every $k\geq n$ and hence $\psi_n'(Y_s^n)=0$ for every $s\in B_j$. Therefore for every $s\in B_j$,

$$\forall r \in [0, T], \frac{dD_r Y_s^n}{ds} = 0,$$

(both when $r \leq s$ and r > s).

And so on $\Omega_{a,k,j}$, for every $r \in B_j$ and for every $s \in B_j$

$$D_r Y_s^n = 1 \text{ (since } D_r Y_r^n = 1).$$

Thus, when n goes to ∞ , we have on $\Omega_{a,k,j}$,

$$\forall r \in B_i, \ D_r Y_t = 1 \text{ (because } t \in B_i\text{)}.$$

Since $D_r Y_t \ge 0$ (see Lemma 8.1.), we have finally proven that $||DY_t|| > 0$ on $\Omega_{a,k,j}$.

Now, if B has a Hurst parameter $h > \frac{1}{2}$, we know that

$$D_r^W F = K_h^*(D_.F)(r),$$

where $K_h^*(\phi)(s) = (h - \frac{1}{2})c_h \int_s^T (\frac{\theta}{s})^{h - \frac{1}{2}} (\theta - s)^{h - \frac{3}{2}} \phi(\theta) d\theta$ where $c_h = (\frac{2h\Gamma(\frac{3}{2} - h)}{\Gamma(h + \frac{1}{2})\Gamma(2 - 2h)})^{\frac{1}{2}}$. Therefore $D_r^W Y_t = (h - \frac{1}{2})c_h \int_r^T (\frac{\theta}{r})^{h - \frac{1}{2}} (\theta - r)^{h - \frac{3}{2}} D_\theta Y_t d\theta$.

Now, on $\Omega_{a,k,j}$ and for r < t, we have that

$$D_r^W Y_t = (h - \frac{1}{2})c_h \int_r^t (\frac{\theta}{r})^{h - \frac{1}{2}} (\theta - r)^{h - \frac{3}{2}} d\theta > 0.$$

This proves that $||D^W Y_t|| > 0$. Using **Theorem 3.3**, we conclude that $\forall t \in [0, T]$, the law of Y_t on \mathbf{R}_+^* is absolutely continuous with respect to the Lebesgue measure.

9 Uniqueness of the solution

It seems we can't prove the uniqueness of the solution (Y, K) directly via penalization. However in the case of $H > \frac{1}{2}$ (which we will consider later), the uniqueness comes from [2].

References

- [1] E. Alos, J. A. León, D. Nualart, et al. Stochastic stratonovich calculus fbm for fractional brownian motion with hurst parameter less than 1/2. *Taiwanese Journal of Mathematics*, 5(3):609–632, 2001.
- [2] A. Falkowski and L. Slominski. Stochastic differential equations with constraints driven by processes with bounded p-variation. *Probab. Math. Statist*, 35:343–365, 2015.
- [3] A. Lejay et al. On rough differential equations. *Electronic Journal of Probability*, 14:341–364, 2009.
- [4] T. Nilssen and T. Zhang. A note on the malliavin differentiability of onedimensional reflected stochastic differential equations with discontinuous drift. arXiv preprint arXiv:1410.0520, 2014.
- [5] D. Nualart. The Malliavin calculus and related topics, volume 1995. Springer, 2006.
- [6] A. Richard, E. Tanré, and S. Torres. Penalisation techniques for onedimensional reflected rough differential equations. 2019.
- [7] S. Tindel et al. Quasilinear stochastic elliptic equations with reflection: the existence of a density. *Bernoulli*, 4(4):445–459, 1998.

[8] T.-S. Zhang. On the strong solutions of one-dimensional stochastic differential equations with reflecting boundary. *Stochastic processes and their applications*, 50(1):135–147, 1994.