Evaluation, Impact & Speed-Sustainability Compass

Turning technical health data into clear leadership signals.

© Purpose

To transform engineering health data into **actionable insight** — guiding where to invest, what to stabilize, and when to accelerate.

This model defines how Heureka:

- · Collects and automates Tech Health data.
- · Reviews and decides based on clear trade-offs.
- Connects engineering metrics to business planning through 25 % allocation and a Dual Backlog.

* 1. Data Collection & Automation

Start **simple and manual**, evolve toward automation:

Source	Metric	Tool / Integration
Google Sheets / Forms	Self-assessment, Pulse survey	Team input (quarterly)
Git + CI/CD	Deployment Frequency, Lead Time, CFR, MTTR	Haystack
SonarQube	Code quality, coverage, complexity	CI reports
Grafana / Prometheus	MTTR, SLO compliance	Error Budget dashboards
Backstage	ADRs, ownership, documentation	Tech Insights plugin

Example: MTTR measured manually in Q1 via spreadsheet → automated from Grafana logs by Q3.

📊 2. Visualization & Scorecards

Each team maintains a **Tech Health Scorecard**, updated quarterly:

Header:

- Team name
- Current Compass position (Speed–Sustainability)
- Average maturity level (1–4 scale)
- · Trend vs last quarter

Body:

- Radar chart (five Tech Health areas)
- DORA metrics: DF, LTC, CFR, MTTR
- 25 % allocation compliance (planned vs actual)
- Top 3 quick wins + 1 major risk
- Key ADR links

* Example: Team Scorecard – "Search Experience"

Section	Metric / Item	Current (Q2)	Previous (Q1)	Δ Trend	Comment / Next Step
© Compass Position	Speed: 72 / Sustainabil ity: 55	✓ Slightly speed-heavy	68 / 62	↑ +4 Speed, ↓ -7 Sustainabil ity	CI pipeline flaky; prioritize test stability.
Average Maturity (Tech Health)	2.9 / 4	2.7	1 +0.2	Steady improvem ent.	

→ DORA Metrics	DF = 5 deploys/w eek LTC = 1.5 days CFR = 9% MTTR = 55 min	DF ↑, CFR ↓	✓ On track	Focus on lowering MTTR < 45 min.	
Tech Debt	Architectu re: 3.0 Infra: 2.5 Process: 3.0 Knowledg e: 2.0	+0.2 avg	♣ Slight progress	Add refactoring ADR next quarter.	
Testing & Automati on	CI reliability 94% Coverage 75% Flaky < 5%	Stable		Add nightly smoke test for new feed service.	
Observabi lity & Stability	95% alert accuracy MTTR < 1h On-call rotation active	+		On-track, good OpsGenie hygiene.	
☼ 25% Allocation	Planned: 25% Actual: 27%	Within target	Balanced	Slightly above target, justified by CFR trend.	

Mey ADRs (Links)	ADR-012 "CI Self- Healing Pipeline" ADR-017 "Search Refactorin g"	_	_	Approved in Q2	
<u></u> Тор	Risks:	_	_	Follow-up	
Risks /	flaky			at next	
Quick	builds,			Tech	
Wins	unclear			Health	
	data			Review.	
	ownership.				
	Wins: CI				
	fix, SLO <				
	1% error				
	budget.				

Example: Displayed via Confluence table + embedded Grafana panel.

Org-level dashboards aggregate team data:

Metric	Target	Aggregation	Visualization
Deployment Frequency	↑ 20 % QoQ	Median	Bar chart
MTTR	↓ 25 % YoY	Median	Line chart
CFR	< 10 %	Weighted average	Heatmap
Tech Debt	≥ 3.0 avg	Axis average	Radar chart
Pulse Health	≥ 7.0	Mean	Trend line

3. Review & Governance Rhythm

Tech Health Review (Quarterly)

Participants: CTO, CPO, EMs, Staff Engineers.

Agenda:

- Review team trends and outliers.
- Identify 3-5 Tech Goals (e.g. "CI reliability", "Domain refactoring").
- Verify 25 % allocation compliance.
- Record trade-offs as ADRs.

ADR Example:

ADR-001: 25 % Stability Allocation Policy

• Context: SEV-1 incidents rising in Matching Service.

• **Decision:** Reserve 25 % of team capacity in Q2 for platform stabilization.

• Consequence: Slightly slower BR delivery; MTTR reduced to < 1 h.

🗩 4. Dual Backlog Integration

Two visible and equal workstreams:

Attribute	Product Backlog	Engineering Backlog
Ownership	Product Owner	Tech Lead / EM
Governance	СРО	СТО
Focus	Business features	Stability, debt, strategy
Metrics	Business KPIs	Tech Health, DORA
Capacity	~ 75 %	~ 25 %
Changes	Only via ADR	Only via ADR

💡 Dynamic Rule:

If SLO burn > 70 %, stability allocation auto-increases (e.g. 25 % → 40 %).

Example:

CFR > 20 % or MTTR > 2 h \rightarrow Stability = 40 %.

CFR < 5 %, DF \uparrow \rightarrow Shift 10 % back to BRs.

∅ 5. Speed–Sustainability Compass

A visual leadership tool showing whether the organization leans toward **speed** or **sustainability** — and by how much.

Axis	Meaning	Metrics	Key Question
→ Speed	Ability to deliver value quickly.	DF, LTC	"How fast can we safely deliver?"
Sustainability	Ability to recover, stay reliable, and invest in long- term health.	CFR, MTTR, SLOs, Tech Debt trend, % Engineering allocation	"How predictable and resilient are we?"

Interpretation Guide:

Position	Meaning	Action
→ Right (Speed-heavy)	Fast but fragile (rising CFR / MTTR).	Increase stability allocation to 40 %; focus on alerting & CI reliability.
Left (Sustainability-heavy)	Over-invested in maintenance; innovation slowdown.	Shift 10 % capacity back to BRs.
© Centered	Balanced execution & resilience.	Maintain; share practices across org.

Google SRE principle:

"When reliability exceeds objectives, increase innovation.

When it falls short, reinvest in stability."

☐ Compass Trend Over Time

Quarter	Speed	Sustainabilit y	Interpretati on	Action
Q1	68	62	Balanced	Maintain 25% allocation
Q2	72	55	Speed-heavy	Reinforce stability focus
Q3 (target)	70	65	Optimal zone	Achieve steady delivery rhythm

✓ 6. ROI & Business Impact

Every stability initiative should demonstrate business outcomes:

Technical Metric	Target	Business Effect
10011110ai Woti10	rangot	Bacilloco Elloco

CFR ↓ to < 10 %	Fewer failed releases	Saved developer time, higher trust
MTTR ↓ 25 %	Faster recovery	Lower downtime cost
DF ↑ 20 %	Faster releases	Shorter time-to-market
Architecture Debt ↓ 1	Clearer ownership	Fewer cross-team blockers
Pulse Survey ↑ 1 pt	Higher satisfaction	Improved retention & morale

Service Criticality — Context Behind the Numbers

Not every red metric means danger. What matters is **how critical the service is** to customers and revenue.

▲ Tier	Meaning	Focus	Example
Tier 1 - Critical	Directly affects users or revenue.	Highest stability & fastest recovery (SLO 99.9 %).	Checkout, Search, Matching API
Tier 2 – Important	Impacts UX but not core flow.	Balance between delivery speed and reliability (SLO 99.5 %).	Recommendatio ns, Notifications
Tier 3 – Supporting	Internal or non- critical tools.	Flexibility, innovation speed (SLO 99 %).	Admin tools, Reporting, Sandbox envs

♀ Interpretation Tip — Understand System Criticality

When reviewing Tech Health or Compass results, **not all red numbers mean the same thing**. The key is to weigh metrics by how critical each service is to the ecosystem.

Ask:

- * "If this service fails for 10 minutes who feels it?"
- 🗱 "If it degrades for hours what other services or teams slow down?"

Why it matters:

Some issues are loud but isolated — others silently amplify across the platform.

Stability work should focus not just on uptime, but **on preventing systemic ripple effects**.

Principle — Proportional Reliability

Aim for reliability in proportion to business and technical criticality.

Stabilize what drives revenue and platform integrity.

Experiment where failure is recoverable and low-cost.

Example Matrix (for context):

Criticality	Typical Example	Impact Type	Reliability Target
Tier 1 – Business Critical	Checkout, Search, Price Feed	Customer-facing, cascading	SLO ≥ 99.9 %, MTTR < 1h
Tier 2 - Platform Core	Identity, API Gateway	Affects multiple domains	SLO ≥ 99.5 %, MTTR < 2h
Tier 3 – Internal or Supportive	Back-office tools, reporting	Limited scope	SLO ≥ 99 %, MTTR < 6h
Tier 4 – Experimental / Low Impact	Sandboxes, POCs	Safe to fail	No strict SLOs, MTTR best effort

Evaluation Note:

When interpreting Compass or DORA results, adjust expectations by criticality —

a Tier-1 service with MTTR 2h is an emergency, while a Tier-4 service with MTTR 2h is acceptable learning cost.

A lightweight, data-driven operating model that makes **technical health visible**, **quantifiable**, **and actionable** — aligning engineering and business around facts, not opinions.