Geography versus Income: The Heterogeneous Effects of Carbon Taxation

Charles Labrousse (Insee/PSE) & Yann Perdereau (ENS/PSE)

April 25, 2024

What we do

- We build a model to deal with fiscal policies related to energy
- Allows to assess both aggregate and distributive effects
- In this paper, we focus on carbon taxation

Motivation: social acceptability

Motivation: social acceptability

Literature Review

	Our contribution
 i. Distributive effects of carbon taxes: Static microsimulations Cronin et al. (2019), Douenne (2020) CGE-micro models Rausch et al. (2011), Mathur and Morris (2014), Goulder et al. (2019), Ravigné et al. (2022) 	 We build on Aiyagari (1994) Dynamic general equilibrium model Endogenous income distribution
ii. HANK and energy/climate:Fried (2018), Fried et al. (2018), Auclert et al. (forth.),Benmir and Roman (2022), Langot et al. (2023),	 Non-homothetic preferences and geographical energy needs Permanent tax on hhs vs. firms
iii. GE effects of carbon taxes: Metcalf (2019), Barrage (2020), Känzig (2023)	Imperfect capital marketsTargeted transfers

Energy share in total consumption — III —

τ_h versus τ_f – Effective carbon tax rates

Our results

 Taxing households' direct emissions is regressive while taxing firms' direct emissions is progressive

Our results

- Taxing households' direct emissions is regressive while taxing firms' direct emissions is progressive
- Geography is more important than income (or wealth)

Our results

- Taxing households' direct emissions is regressive while taxing firms' direct emissions is progressive
- @ Geography is more important than income (or wealth)
- Targeting both poor and rural households mitigate welfare losses

A Heterogeneous Agents model (HA)

Our small open economy HA model with energy -

Calibration: taking the model to the data

Energy share in total consumption – Insee BdF 2017

Inequalities in disposable income and consumption — •

Macroeconomic targets - Other parameters

Table: Empirical targets vs Model results

	Model	Target	Parameter	Value	Sources & notes	
a/GDP	260%	250%	β	0.92	Piketty and Zucman (2014)	
I_N/I	2%	2.3%	η	0.11	Insee 2023 - EAE	
wl/GDP	63.1%	65%	α	0.28	Cette et al. (2019)	
E_y/E	60.6%	60%	ω_{y}	0.43	PLF 2023 appendix	
F_y/F	58.5%	59%	$\gamma_{\scriptscriptstyle \mathcal{Y}}$	0.33	PLF 2023 appendix	
p^FF/GDP	3.6%	2%	p^F	0.1	PLF 2023 appendix	
I/GDP	13%	10%	δ	5.1%	Insee 2022 – NA	
SB/GDP	41%	45%	λ	0.75	Ferriere et al. (2023)	
G/GDP	29.3%	29%	$ar{\mathcal{T}}$	0.3	Auray et al. (2022)	
R^c/SB	6.7%	7%	$ au^{\it f}$	0.012	PLF 2023	
Elasticity of substitution c-e _h		σ	0.2	Estimation of σ		
Elasticity of substitution KL - e_y		σ_y	0.2	Authors' choice		
Elasticity of substitution <i>N-F</i>			ϵ_h,ϵ_y	0.2	Authors' choice	

Quantitative results

Experiment: permanent increase in carbon taxes

τ_h is regressive, τ_f is progressive

Overall, geography is more important than income — CE formula

Overall, geography is more important than income — CE formula

We compute the R^2 of $CE_i = \alpha + \beta X_i + u_i$ for $X_i \in \{\bar{e}_i, \text{inc}_i, \text{wealth}_i\}$:

- geographical location explains 77% of CE lossses variability
- while income only explains 12% and wealth 16%

What if we redistribute?

A political trade-off between rural and largest cities

Benchmark scenario: -5.7% CE and 100% losers.

Table: Share of losers (%)

Uniform	Poor	Poor x rural
0	0	0
0	0	1
0	0	15
8	19	47
39	81	91
27	31	12
13	24	20
4	16	27
1	14	39
2	14	58
10	20	31
2.9	4.8	5.4
	0 0 0 8 39 27 13 4 1 2	0 0 0 0 0 0 8 19 39 81 27 31 13 24 4 16 1 14 2 14

Conclusion

- **1** τ_h is progressive when τ_f is regressive
- @ Geography is more important than income
- Targeting both poor and rural households mitigate welfare losses, but there is a political choice to be made between rural and largest cities

Thank you!

References I

- Aiyagari, S. Rao (1994). "Uninsured Idiosyncratic Risk and Aggregate Saving". In: *Quarterly Journal of Economics* 109.3, pp. 659–684 (cit. on pp. 5, 35–38, 44).
- Alder, Simon, Boppart, Timo, and Müller, Andreas (2022). "A Theory of Structural Change That Can Fit the Data". In: *American Economic Journal: Macroeconomics* 14.2, pp. 160–206 (cit. on p. 44).
- Auclert, Adrien et al. (forth.). "Managing an Energy Shock: Fiscal and Monetary Policy". In: *Proceedings of the XXV Annual Conference of the Central Bank of Chile* (cit. on p. 5).
- Auray, Stéphane et al. (2022). "Markups, Taxes, and Rising Inequality". In: CREST Working Paper (cit. on pp. 16, 53).
- Barrage, Lint (2020). "Optimal dynamic carbon taxes in a climate–economy model with distortionary fiscal policy". In: *Review of Economic Studies* 87.1, pp. 1–39 (cit. on p. 5).

References II

- Benmir, Ghassane and Roman, Josselin (2022). "The Distributional Costs of Net-Zero: A Heterogeneous Agent Perspective". In: Working Paper (cit. on p. 5).
- Casey, Gregory (2024). "Energy efficiency and directed technical change: implications for climate change mitigation". In: *Review of Economic Studies* 91.1, pp. 192–228 (cit. on pp. 39, 40, 53).
- Cette, Gilbert, Koehl, Lorraine, and Philippon, Thomas (2019). "Labor Shares in Some Advanced Economies". In: Working Paper # 727, Banque de France (cit. on pp. 16, 53).
- Comin, Diego, Lashkari, Danial, and Mestieri, Martí (2021). "Structural Change With Long-Run Income and Price Effects". In: *Econometrica* 89.1, pp. 311–374 (cit. on pp. 35–38, 44, 51, 52).
- Cronin, Julie Anne, Fullerton, Don, and Sexton, Steven (2019). "Vertical and Horizontal Redistributions from a Carbon Tax and Rebate". In: Journal of the Association of Environmental and Resource Economists 6 (S1) (cit. on p. 5).

References III

- Douenne, Thomas (2020). "The Vertical and Horizontal Distributive Effects of Energy Taxes: a Case Study of a French Policy". In: *Energy Journal* 43.3, pp. 231–254 (cit. on pp. 5, 52).
- Ferriere, Axelle et al. (2023). "On the Optimal Design of Transfers and Income Tax Progressivity". In: *Journal of Political Economy Macroeconomics* 1, pp. 276–333 (cit. on pp. 16, 52, 53).
- Fried, Stephie (2018). "Seawalls and Stilts: A Quantitative Macro Study of Climate Adaptation". In: *Review of Economic Studies* 89.6, pp. 3303–3344 (cit. on p. 5).
- Fried, Stephie, Novan, Kevin, and Peterman, William B. (2018). "The Distributional Effects of Adopting a Carbon Tax on Current and Future Generations". In: *Review of Economic Dynamics* 30, pp. 30–46 (cit. on p. 5).
- Goulder, Lawrence H. et al. (2019). "Impacts of a carbon tax across US household income groups: What are the equity-efficiency trade-offs?" In: Journal of Public Economics 175, pp. 44–64 (cit. on p. 5).

References IV

- Hassler, John, Krusell, Per, and Olovsson, Conny (2021). "Directed technical change as a response to natural-resource scarcity". In: *Journal of Political Economy* 129, pp. 3039–3066 (cit. on pp. 39, 40, 53).
- Heathcote, Jonathan, Storesletten, Kjetil, and Violante, Giovanni L. (2017). "Optimal Tax Progressivity: An Analytical Framework". In: Quaterly Journal of Economics 132.4, pp. 1693–1754 (cit. on p. 43).
- Känzig, Diego R. (2023). "The unequal economic consequences of carbon pricing". In: Working Paper (cit. on p. 5).
- Kaplan, Greg, Moll, Benjamin, and Violante, Giovanni (2018). "Monetary Policy According to HANK". In: *American Economic Review* 108 (3), pp. 697–743 (cit. on p. 52).
- Lafrogne Joussier, Raphaël, Martin, Julien, and Méjean, Isabelle (2023). "Energy Cost Pass-Through and the Rise of Inflation: Evidence from French Manufacturing Firms". In: CEPR Working Paper (cit. on pp. 39, 40).

References V

- Langot, François et al. (2023). "The Macroeconomic and Redistributive Effects of Shielding Consumers from Rising Energy Prices: the French Experiment". In: Working Paper, CEPREMAP (cit. on p. 5).
- Mathur, Aparna and Morris, Adele C. (2014). "Distributional effects of a carbon tax in broader U.S. fiscal reform". In: *Energy Policy* 66, pp. 326–334 (cit. on p. 5).
- Metcalf, Gilbert E. (2019). "The distributional impacts of U.S. energy policy". In: *Energy Policy* 129, pp. 926–929 (cit. on p. 5).
 - Papageorgiou, Chris, Saam, Marianne, and Schulte, Patrick (2017). "Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective". In: *Review of Economics and Statistics* 99.2, pp. 281–290 (cit. on pp. 39, 40, 53).
- Piketty, Thomas and Zucman, Gabriel (2014). "Capital is Back: Wealth-Income Ratios in Rich Countries 1700–2010". In: *Quarterly Journal of Economics* 129.3, pp. 1255–1310 (cit. on pp. 16, 52).

References VI

- Rausch, Sebastian, Metcalf, Gilbert E., and Reilly, John M. (2011). "Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households". In: *Energy Economics* 33 (Supp 1), S20–S33 (cit. on p. 5).
- Ravigné, Emilien, Ghersi, Frédéric, and Nadaud, Franck (2022). "Is a fair energy transition possible? Evidence from the French Low-Carbon Strategy". In: *Ecological Economics* 196 (cit. on p. 5).

Energy share in total consumption — Return

Income tails live in big cities — Return

Our small open economy HA model with energy — Return

Households - Aiyagari (1994) set-up - Return - +

 ${\bf 0}$ imperfect substitution between consumption and energy: σ

Households - Aiyagari (1994) set-up - Return - +

- lacktriangledown imperfect substitution between consumption and energy: σ
- $oldsymbol{0}$ imperfect substitution between electricity and fossil fuel: ϵ_h

Households – Aiyagari (1994) set-up – Return – 🕩

- lacktriangle imperfect substitution between consumption and energy: σ
- 2 imperfect substitution between electricity and fossil fuel: ϵ_h
- 3 non-homothetic energy demand: Comin et al. (2021)
- **9** geographical heterogeneity of energy needs: $\bar{e}(k)$

Households – Aiyagari (1994) set-up – Return – 🕩

- lacktriangle imperfect substitution between consumption and energy: σ
- $oldsymbol{0}$ imperfect substitution between electricity and fossil fuel: ϵ_h
- 3 non-homothetic energy demand: Comin et al. (2021)
- geographical heterogeneity of energy needs: $\bar{e}(k)$
- **5** geographical heterogeneity of income processes: $z_i(k)$

Firms – Goods & Services sectors – Return

• Final good y (numeraire): produced using capital, labor and energy

$$\begin{split} \max_{\{y,k^y,l^y,F^y,N^y\}} \Pi^y &= y - (r+\delta)k^y - wl^y - (p^F + \tau^f)F^y - p^N N^y \\ \text{such that } y &= \left[(1-\omega_y)^{\frac{1}{\sigma_y}} \left((k^y)^\alpha (l^y)^{1-\alpha} \right)^{\frac{\sigma_y-1}{\sigma_y}} + \omega_y^{\frac{1}{\sigma_y}} (e^y)^{\frac{\sigma_y-1}{\sigma_y}} \right]^{\frac{\sigma_y}{\sigma_y-1}} \\ \text{and } e^y &= \left[(1-\gamma_y)^{\frac{1}{\epsilon_y}} (N^y)^{\frac{\epsilon_y-1}{\epsilon_y}} + \gamma_y^{\frac{1}{\epsilon_y}} (F^y)^{\frac{\epsilon_y-1}{\epsilon_y}} \right]^{\frac{\epsilon_y}{\epsilon_y-1}} \end{split}$$

Casey (2024): Cobb-Douglas overestimates emissions adjustments

Firms – Goods & Services sectors – Return

• Final good y (numeraire): produced using capital, labor and energy

$$\max_{\{y,k^y,l^y,F^y,N^y\}} \Pi^y = y - (r+\delta)k^y - wl^y - (p^F + \tau^f)F^y - p^N N^y$$
such that
$$y = \left[(1 - \omega_y)^{\frac{1}{\sigma_y}} \left((k^y)^\alpha (l^y)^{1-\alpha} \right)^{\frac{\sigma_y - 1}{\sigma_y}} + \omega_y^{\frac{1}{\sigma_y}} (e^y)^{\frac{\sigma_y - 1}{\sigma_y}} \right]^{\frac{\sigma_y}{\sigma_y - 1}}$$
and
$$e^y = \left[(1 - \gamma_y)^{\frac{1}{\epsilon_y}} (N^y)^{\frac{\epsilon_y - 1}{\epsilon_y}} + \gamma_y^{\frac{1}{\epsilon_y}} (F^y)^{\frac{\epsilon_y - 1}{\epsilon_y}} \right]^{\frac{\epsilon_y}{\epsilon_y - 1}}$$

- Casey (2024): Cobb-Douglas overestimates emissions adjustments
- Hassler et al. (2021): σ_v should be close to 0 in short-run
- Papageorgiou et al. (2017): ϵ_y close to 2 in long-run
- Lafrogne Joussier et al. (2023): 100% passthrough of positive energy-driven cost shocks

Firms - Energy sectors - Return

ullet Electricity sector N: produced using capital, labor and fossil fuel

$$\max_{\{N,k^N,I^N,F^N\}} \Pi^N = p^N N - (r+\delta)k^N - wI^N - (p^F + \tau^f)F^N$$
 such that $N = (I^N)^{\eta} (k^N)^{\zeta} (F^N)^{1-\eta-\zeta}$

Firms - Energy sectors - Return

Electricity sector N: produced using capital, labor and fossil fuel

$$\max_{\{N,k^N,I^N,F^N\}} \Pi^N = p^N N - (r+\delta)k^N - wI^N - (p^F + \tau^f)F^N$$
 such that $N = (I^N)^{\eta} (k^N)^{\zeta} (F^N)^{1-\eta-\zeta}$

- Fossil fuel sector F
 - imported from the rest of the world at a fixed price p^F .
 - the rest of the world uses the fossil fuel revenue $p^F(F^Y + F^N + F^h)$ to import goods and services X from the domestic economic:

$$X = p^F(F^Y + F^N + F^h)$$

Government - Return

$$\begin{split} T_t^{\text{targeted}} + G_t + r_t \bar{d} &= \int_0^1 \left(z_{i,t} w_t I_{i,t} - \Gamma \left(z_{i,t} w_t I_{i,t} \right) \right) di \\ &+ \tau^{\text{VAT}} \int_0^1 \left(c_{i,t} + \rho_t^N N_{i,t}^h + \rho_t^F F_{i,t}^h \right) di \\ &+ \tau^k r_t \int_0^1 a_{i,t} di \\ &+ \tau^h (1 + \tau^{\text{VAT}}) \int_0^1 F_{i,t}^h di + \tau^f \left(F_t^y + F_t^N \right) \end{split}$$

- following Heathcote et al. (2017), we assume: $\Gamma(x) = \lambda x^{1-\tau}$
- Benchmark scenario: carbon tax revenue used in G
- We then allow for targeted transfers

Households: utility function à la Comin et al. (2021)

Aiyagari (1994) with 5 living areas

• Each household i of type k solves the following problem:

$$\max_{\{e_{i,t}^h, c_{i,t}, a_{i,t}, l_{i,t}\}_{t=0}^{+\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{u_{i,t}^{1-\theta} - 1}{1-\theta} - \phi \frac{l_{i,t}^{1+\nu}}{1+\nu} \right\}$$

such that

$$\Lambda_{c}^{\frac{1}{\sigma}} \left(\frac{c_{i,t}}{u_{i,t}^{\epsilon_{c}}} \right)^{\frac{\sigma-1}{\sigma}} + \Lambda_{e}^{\frac{1}{\sigma}} \left(\frac{e_{i,t}^{h} - \bar{e}(k)}{u_{i,t}^{\epsilon_{e}}} \right)^{\frac{\sigma-1}{\sigma}} = 1$$

$$e_{i,t}^{h} = \left[(1 - \gamma_{h}(k))^{\frac{1}{\epsilon_{h}}} (N_{i,t}^{h})^{\frac{\epsilon_{h}-1}{\epsilon_{h}}} + \gamma_{h}(k)^{\frac{1}{\epsilon_{h}}} (F_{i,t}^{h})^{\frac{\epsilon_{h}-1}{\epsilon_{h}}} \right]^{\frac{\epsilon_{h}}{\epsilon_{h}-1}}$$

- c and e^h are imperfect substitutes: σ
- $\bar{e}(k) > 0$ exacerbates the non-homotheticity
- Robustness with CES and Alder et al. (2022)

Households: budget constraint and earning processes

Budget constraint:

$$\underbrace{(1+\tau^{\text{VAT}})\left[c_{i,t}+p_{t}^{N}N_{i,t}^{h}+(p_{t}^{F}+\tau_{t}^{h})F_{i,t}^{h}\right]}_{\text{Total consumption expenditures}} + \underbrace{a_{i,t+1}-a_{i,t}}_{\text{Savings}}$$

$$=\underbrace{\Gamma(z_{i,t}(k)w_{t}l_{i,t})}_{\text{Net labor income}} + \underbrace{(1-\tau^{k})r_{t}a_{i,t}}_{\text{Net capital income}} + \underbrace{T_{i,t}(k)}_{\text{Transfers}}$$

Households: budget constraint and earning processes

Budget constraint:

$$\underbrace{(1+\tau^{\mathsf{VAT}})\left[c_{i,t}+p_t^NN_{i,t}^h+(p_t^F+\tau_t^h)F_{i,t}^h\right]}_{\mathsf{Total\ consumption\ expenditures}} + \underbrace{a_{i,t+1}-a_{i,t}}_{\mathsf{Savings}}$$

$$= \underbrace{\Gamma(z_{i,t}(k)w_tI_{i,t})}_{\mathsf{Net\ labor\ income}} + \underbrace{(1-\tau^k)r_ta_{i,t}}_{\mathsf{Net\ capital\ income}} + \underbrace{T_{i,t}(k)}_{\mathsf{Transfers}}$$

Earning process for type k:

$$z_{i,t}(k) = e^{x_{i,t}(k)}, \ x_{i,t}(k) = (1 - \rho_z)\mu_z(k) + \rho_z x_{i,t-1}(k) + \epsilon_{i,t}$$
$$\epsilon_{i,t} \sim \mathcal{N}(0, \sigma_z(k))$$

Borrowing constraint:

$$a_{i,t} \geq \underline{a}$$

All markets clear - Return

$$\begin{cases} \int_{0}^{1} a_{i,t} di = k_{e,t} + k_{y,t} + \bar{d} & \text{(Savings)} \\ \\ \int_{i} z_{i,t} I_{i,t} di = I_{y} + I_{N} & \text{(Labor)} \\ \\ y_{t} = \int_{0}^{1} c_{i,t} di + I_{e,t} + I_{y,t} + G_{t} + X_{t} & \text{(G\&S)} \\ \\ N_{t} = N_{t}^{y} + \int_{0}^{1} N_{i,t}^{h} di & \text{(Electricity)} \\ \\ F_{t} = F_{t}^{y} + F_{t}^{N} + \int_{0}^{1} F_{i,t}^{h} di & \text{(Fossil)} \end{cases}$$

Bellman equation — Return

The Bellman equation of the problem is defined as:

$$V(a, z, k) = \max_{\{c, e^h, a', l\}} \left\{ \frac{\left[u(c, e^h)\right]^{1-\theta} - 1}{1-\theta} - \phi \frac{l^{1+\psi}}{1+\psi} + \beta \mathbb{E}_{z'} \left[V(a', z', k)|z\right] \right\}$$

Each household *i* of type *k* solves the following problem:

$$\max_{\{e_{i,t}^h, c_{i,t}, a_{i,t}, l_{i,t}, N_{i,t}, F_{i,t}\}_{t=0}^{+\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{u_{i,t}^{1-\theta} - 1}{1-\theta} - \phi \frac{l_{i,t}^{1+\nu}}{1+\nu} \right\}$$

such that

$$u_{i,t} = \left[(1 - \omega)^{\frac{1}{\sigma}} (c_{i,t})^{\frac{\sigma - 1}{\sigma}} + \omega^{\frac{1}{\sigma}} (e_{i,t}^{h} - \bar{e})^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

$$e_{i,t}^{h} = \left[(1 - \gamma_{h}(k))^{\frac{1}{\epsilon_{h}}} (N_{i,t}^{h})^{\frac{\epsilon_{h} - 1}{\epsilon_{h}}} + \gamma_{h}(k)^{\frac{1}{\epsilon_{h}}} (F_{i,t}^{h})^{\frac{\epsilon_{h} - 1}{\epsilon_{h}}} \right]^{\frac{\epsilon_{h}}{\epsilon_{h} - 1}}$$

• $\bar{e}(k) > 0$ implies non-homothetic preferences

Income composition and taxes- Return

 e^h and c are imperfect substitutes: $\hat{\sigma} = 0.2 \ (**) - Return$

Comin et al. (2021)
$$\implies \frac{\partial \ln(c/(e^h - \bar{e}))}{\partial \ln(p^e + \tau^h)} = \sigma$$

Rk: 1960-1990 period: $\hat{\sigma} = 0.28$ (**), 1990-2021 period: $\hat{\sigma} = 0.08$

Calibration – Parameters – Return

Table: Households

Paramètres	Valeur	Note
β	0.92	$\frac{a}{\text{GDP}}$ de Piketty and Zucman (2014)
heta	1	IES = 1 like in Kaplan et al. (2018)
ϕ	1	Labor disutility normalization
1/ u	3	Ferriere et al. (2023)
σ	0.26	Estimation of σ , NA 2022
Λ_e	0.155	Mean energy share, BdF 2017
ϵ_{e}	0.8	Comin et al. (2021) non-homotheticity
ϵ_h	0.2	Authors' choice
$\Gamma_h(k)$	[0.17, 0.25, 0.19, 0.17, 0.22]	Population in each type, Douenne (2020)
$\gamma_h(k)$	[0.60, 0.67, 0.69, 0.70, 0.73]	Mean fossil fuel consumption, BdF 2017
$\bar{e}(k)$	[0.0, 0.11, 0.22, 0.29, 0.39]	Energy share across types, BdF 2017
$ ho_z$	0.9725	Income inequality, RPM 2018
$\mu_z(k)$	[0, -0.09, -0.11, -0.08, -0.08]	Average consumption, BdF 2017
$\sigma_z(k)$	[0.34, 0.31, 0.3, 0.3, 0.305]	Douenne (2020)
<u>a</u>	0	Authors' choice

Calibration – Parameters – Return

Table: Firms and State

Parameters	Value	Note
p ^F	0.1	$\frac{p^F F}{GDP} = 2\%$
ω_y	0.43	$\frac{gDP}{p^{h}E_{h}+p^{y}E^{y}+p^{F}FN} = 60\%$
σ_y	0.2	Authors' choice, Hassler et al. (2021), Casey (2024)
α	0.28	$\frac{wl}{GDP}$ from Cette et al. (2019) $\frac{F_y}{F} = 59\%$
γ_y	0.33	$\frac{F_y}{F} = 59\%$
ϵ_y	0.2	Authors' choice, Papageorgiou et al. (2017)
η	0.11	$\frac{I_N}{I} = 2\%$
ζ	0.886	$\frac{\dot{F}_N}{F} = 1\%$
$rac{\delta}{T}$	5.1%	$\frac{I}{\text{GDP}} = 10\%$
$ar{\mathcal{T}}$	0.3	$\frac{\overline{G}}{V} = 29\%$
\bar{d}	0	Authors' choice, realistic MPCs
au	0.08	From Ferriere et al. (2023)
λ	0.75	From Ferriere et al. (2023)
$ au^k$	9.02%	Effective rate from Auray et al. (2022)
$ au^{VAT}$	22%	Effective VAT rate from Auray et al. (2022)

Welfare formula - Return

"Consumption equivalent" (CE) terms: permanent change in steady-state consumption that would make the household indifferent between the steady-state statu-quo forever and the carbon tax increase path.

Formally, we compute for each initial wealth a_0 and productivity z_0 :

$$\begin{split} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \frac{u_{i,t}(c^{\text{SS}}(1+\text{CE}), e_{h}^{\text{SS}})^{1-\theta} - 1}{1-\theta} - \phi \frac{(I_{i,t}^{\text{SS}})^{1+\nu}}{1+\nu} | a_{0}, z_{0} \right\} \\ = \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \frac{u_{i,t}(c^{\text{carbon}}, e_{h}^{\text{carbon}})^{1-\theta} - 1}{1-\theta} - \phi \frac{(I_{i,t}^{\text{carbon}})^{1+\nu}}{1+\nu} | a_{0}, z_{0} \right\} \end{split}$$

with $x^{\rm SS}$ the path of the variable x without carbon tax increase, and $x^{\rm carbon}$ the path with the carbon tax increase and the new steady state.

τ_h versus τ_f – Return

au_h versus au_f with a 10% emissions reduction target –

au_h versus au_f with homothetic preferences – Return

"use-side" vs. "source-side" decomposition — Return

- We use households' budget constraint to decompose between
 - "use-side" effects
 - "source-side" effects
- We get:

$$\underbrace{\frac{\partial c_i}{\partial \tau} + \frac{\partial p_i^h e_i^h}{\partial \tau} + \frac{\partial (a_i' - a_i)}{\partial \tau}}_{\text{Use-side effects}} = \underbrace{\frac{\partial \Gamma(z_i w l_i)}{\partial \tau} + \frac{\partial r^n a_i}{\partial \tau} + \frac{\partial T}{\partial \tau} - \frac{\partial f_i(\tau^h, \tau^{\text{VAT}})}{\partial \tau}}_{\text{Source-side effects}}$$

τ_h versus τ_f by productivity types – formula – Return

Recycling with a 17.5% reduction emissions target – Return

Transitional dynamics – Return

What if we redistribute the carbon tax revenue? — Return

