

FIG. 1

FIG. 2a

FIG. 2c

FIG. 2b

FIG.2d

FIG. 3a

FIG. 3b

FIG. 3c

FIG. 4

FIG. 5a

FIG. 5b

FIG. 6

FIG. 7

FIG. 8a

FIG. 8b

FIG. 8c

FIG. 8d

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 2

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG.31

FIG.32

FIG. 33

FIG.34

FIG.35

FIG.37

FIG. 36A

FIG. 36B

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG.41A

FIG.41B

FIG. 42
(PRIOR ART)

FIG. 43
(PRIOR ART)

Mean Cell Sweep Time, FSU @ 20 KM

FIG. 4.4

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG.52

FIG.53

FIG. 54
PRIOR ART

FIG. 55

PRIOR ART

	RAW bandwidth (Mbyte/s)	Data width	Address width	Drivers	Connector ^b	Comments
STD bus	8	16	—	S	TTL	CE controller-type applications
PC/XT	1.2	8	20	—	5E	CE original IBM PC & compatibles
PC/AT	5.3	8,16	20,24	—	10E	CE accepts PC/XT cards
EISA	33	8,16,32	20,24,32	•	11P	CE enhanced PC/AT; auto-configure
MicroChannel	20	8,16,(32)	24,(32)	•	11	CE IBM PS/2; auto-configure
Q - bus	2	16	22	•	(d)	CE LSI-11, μ -VAX-II; daisy-chained IACK
Multibus I	10	8,16	20,24	—	TTL	CE Intel; SUN-I and others
CAMAC	3	24	9	—	TTL/OC	CE data acquisition & control bus
VAX BI	13.3	8,16,24,32	32	•	4	ZIF VAX 780, 8600 series; parity
Multibus II	40	8,16,24,32	16,32	•	TTL	DIN parity; 40MB/s for blk xfer, 20M otherwise
NuBus	40	32	32	•	M	DIN Macintosh II adds 1 dedicated INT per slot; ""
VME	40	8,16,32	16,24,32	—	7	DIN daisy-chained IACK; SUN-3
Futurebus	120	32	32	•	(d)	H communication across many crates
Fastbus	160	32	32	•	ECL	

(a) E-edge-sensitive; L-LAM ("look at me"); M-"int" via bus mastership;
P-programmable edge-or level-sensitive interrupts.

(b) CE-card-edge; DIN-2-part "Eurocard" 96-pin connector;
H-high density 2-part conn. (c) almost. (d) National Semi special.

FIG. 56

FIG. 57A

FIG. 57B

FIG. 57C

FIG. 57D

FIG. 57E

FIG.58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64

FIG. 65

FIG.66

FIG. 67

FIG. 68

FIG. 69
PRIOR ART

FIG. 70

COMMUNICATION SYSTEM

6200

ORIGINATING NODE

Periodically Transmit
Calling Tone

6204
TERMINATING NODE

1) Receive Calling Tone At 32kb/s
ADPCM
2) Detect Calling Tone
3) Initiate Switch To 64kb/s PCM
4) Transmit Calling Tone at 32kb/s
ADPCM

6206
Receive Calling
Tone

6207
Prepare To Send
Data
Communication

6210
1) Block Answering Tone
2) Complete Switch TO 64kb/s
PCM
3) Transmit Answering Tone

6212
Receive Answering
Tone

6208
Transmit
Answering
Tone

6214
Transmit And Receive

6216
Receive And Transmit Data at
New Data Rate (64kb/s PCM)

6218
Transmit And
Receive Data

FIG. 71

7020

$$y_m = \sum_{i=0}^{k-1} c_i x_{n-i}$$

FIGURE 72

PAGE ART

FIGURE 73

P202 AET

FIGURE 74
P202R ART

7040~

FIGURE 75A

7040 ~

FIGURE 73B 7027 J

FIG. 76

FIG. 77

FIGURE 78

Digitized by srujan ka

FIGURE 794

FIGURE 79B

độ dồn T = $\frac{1}{\sum_{i=1}^n \frac{1}{x_i}}$

70A0

FIGURE 80