Montagem de genomas e avaliação de qualidade de montagens

Dra Desirrê Petters-Vandresen

Por que montar um genoma?

 <u>Cenário ideal:</u> sequenciar o genoma inteiro ou o maior tamanho de fragmento possível

 Condições reais: mesmo técnicas mais recentes como PacBio e ONT que sequenciam reads longos não são capazes de sequenciar cromossomos grandes inteiros

 Necessidade de utilizar os fragmentos obtidos para obter o genoma completo

Montagem de genomas

Cópias de DNA do genoma

Reads de sequenciamento

Montagem do genoma

The Call-Chronicle-Examiner

AND EMPLOYING THE SERVEY AREA IN LINE

EARTHQUAKE AND FIRE: SAN FRANCISCO IN RUINS

The contract of the contract o

THE RESIDENCE OF THE PARTY OF T

The second second of the second secon

The state of the control of the cont

The second control con

NO MOPELETT OF BILL SHIPS WHILE CITY CHELLS SHIP MAYOR CONFLEX FOR SAFETY OF BILDING SHIPS IS ARLAZE BRIDES AND CITIZEN

The state of the s

nine bearings

 Como organizar todos os fragmentos obtidos no sequenciamento na ordem biológica correta e formando uma sequência única e coesa?

Referência da Imagem

Montagem de genomas

 Utilização dos reads (fragmentos) e informações sobre regiões de sobreposição para produzir sequências únicas e contínuas (contigs)

 Diferentes algoritmos e estratégias possíveis

Baseado em genoma de referência

 Alinhamento dos reads à um genoma de referência já montado, e partir dos alinhamentos construir os contigs

• Processo mais simples que uma montagem de novo

 Possibilidade de detecção de alguns tipos de variantes, porém pode mascarar grandes rearranjos estruturais

Montagem guiada por genoma de referência

- Alinhamento dos reads à um genoma de referência já montado, e partir dos alinhamentos construir os contigs
- Detecção de variações pontuais, como substituições ou rearranjos mais simples

Montagem de novo guiada por genoma de referência

Montagem inicial dos reads gerando contigs iniciais

KYRIAKIDOU et al. 2018. Frontiers in Plant Science. DOI: 10.3389/fpls.2018.01660

- Alinhamento dos contigs vs. um genoma de referência já montado, e partir dos alinhamentos estender os contigs iniciais em contigs maiores
- Detecção de variações pontuais, como substituições ou rearranjos mais simples

De novo

 Reconstruir a sequência completa "do zero", sem utilizar outro genoma como referência

- Algoritmos
 - Greedy
 - Baseados em grafos

Algoritmo Greedy

 Busca de ótimo local (em detrimento de ótimo global)

Passos gerais

- Cálculo da distância entre reads
- Clusterização dos reads com maior sobreposição
- Montagem de reads com sobreposição em contigs
- Repetição dos passos anteriores até que contigs maiores não possam ser montados

Problemas

- Não indicados para grandes conjuntos de dados (dificuldade de encontrar o ótimo global)
- Dificuldade de montagem de regiões repetitivas

As sete pontes de Königsberg (Kaliningrad, Rússia)

As sete pontes de Königsberg (Kaliningrad, Rússia)

Grafos

 Um grafo G é definido como um conjunto de vértices (V) e um conjunto de arestas (A) que representam pares únicos dos elementos de V

Pensando a montagem de um genoma por meio de grafos

 Cada read é um vértice e cada sobreposição entre reads (aresta) é representada pela seta vermelha

 <u>Caminho Hamiltoniano</u>: passa por cada um dos reads apenas uma vez e termina no read inicial, e inclui todos os reads

Overlap-layout-consensus (OLC)

- Sobreposição entre os reads (similar ao algoritmo greedy)
- Grafo de sobreposições, em que cada read é um vértice conectados pelas sobreposições (arestas)
- Encontrar o caminho passando por todos os vértices para gerar contigs
- O caminho ideal seria um caminho Hamiltoniano: cada vértice seria visitado apenas uma vez

Reads provided to algorithm Overlaps identified Hamiltonian Path identified Reads connected by overlaps Consensus sequence

Adaptado de:

COMMINS et al. 2009. **Biological Procedures Online**. DOI: <u>10.1007/s12575-009-9004-1</u>

Grafos de 'De Bruijn'

- Reads são quebrados em fragmentos de tamanhos específicos (k-mers)
- K-mers 1 utilizados como vértices na montagem do grafo
- Arestas entre os vértices representadas pelos k-mers
- Encontrar o caminho passando **por todas as arestas** para gerar os contigs
- O caminho ideal seria um caminho Euleriano: cada aresta seria visitada apenas uma vez
- Computacionalmente mais fácil, há vários algoritmos eficientes para encontrar caminhos Eulerianos

Comparativo

Etapas da montagem <u>de novo</u>

Obtenção dos contigs

 Contigs (sequências contíguas) são geradas a partir da sobreposição de um conjunto de reads

 A sequência do contig é a sequência consenso dos reads sobrepostos

Seq4 TTC

Seq5

Seq6

Seq7

TTCACACACCCTATACCAATAGTTTTCTGGCTCCTGACCATCAAACTG

 $\tt TTTTCTGGCTCCTGACC\underline{T}TCAAACTGCCTCCATATGACTGTGCTCT$

 $\texttt{TACCAATAGTTT}\underline{\textbf{A}}\texttt{CTGGCTCCTGACC}\underline{\textbf{C}}\texttt{TCAAACTGCCTCC}$

ATAGTTTTCTGGCTCCTGACCGTCAAACTGCCTCCATATGA

Ordenação dos contigs

ACGTAGCTAG TAGTATGATG GATGTTAGT TTAGTTTGCA TACGTTTCCT TTAGTTTGCA GGGGCCTACG **TAGCTAGCTA GCATGATGTT** ACGTTTCCTT **TAGCTATTTT** TTAGTTTGCA **ACGTTTCCTT** CTATTTTCCC ACGTAGCTAGTATGATGTTAGTTTGCATGATGTTAGTTTGCA GGGGCCTACGTTTCCTTAGCTAGCTATTTTCCC Contig 2 Contig 1 ACGTAGCTAGTATGATGTTAGTTTGCATGATGTTAGTTTGCA **GGGGCCTACG**TTTCCTTAGCTAGCTATTTTCCC (B) Contig 1 Contig 2 GAP ACGTAGCTAGTATGATGTTTGCATGATGTTTGCA NNNNN GGGGCCTACGTTTCCTTAGCTAGCTATTTTCCC

Scaffold

Ordenação dos contigs

 O uso de sequências em pares (pair-end ou mate-pair) permite a ordenação dos contigs em scaffolds

Dificuldades: montagem de regiões repetitivas

Dificuldades: montagem de regiões repetitivas

 Regiões repetitivas mais longas que os reads: ausência de informação sobre as regiões adjacentes para posicionamento correto durante a montagem

Montagem híbrida (reads longos e reads curtos)

- Reads longos para organizar o genoma em maior escala
- Reads curtos para corrigir erros pontuais e aumentar a confiabilidade de cada base

Genomas (Formato FASTA)

- Linha 1: identificador da sequência após o sinal de maior (>)
- Linha 2: sequência

Em geral são arquivos longos e pesados, exigindo o uso de softwares para processar o arquivo completo e obter a informação de interesse

- 1 >scaffold 1
- 2 CCATGGCTGTCTTGCGATTGTCCAGGGCAGTCTTGACAGCAGGGGCAAGTTGCGCCGCCGCCGCCCTT
- 3 CTCAGTGTCTTCGAAGTTGAGGGAGACGATGACCCTGGTGTTGATGGGGACTGTTGGTGTTCGCCGTGGAA
- 4 GCTTCGTCCTTCTTGCGCTTGGAGCCGGCCGACGCCGCCTTCTTGCGCTTGGCAATCTCCTCGGGATGCG
- 5 TGAGAATCTCTTCAATTTTTGCCATGAAGGCGTTCTCTTTCTCGATTTACGAGCGAACTTCCTCGTAGAA
- 6 TGCCGTGGCTACGCTTGACTCGGTCTTGAAGATGTTGTGGAGAGCCTTGCGGGTGGTCGTTCACGACGAA
- 7 GATGCAGAGAGGGCGCGGTCGTGGTTCTGCGCGATGGCGTTGCGGGTTGTCTTCGTCTTGTTGAACCAGT
- 8 TGCCGAACTGAATTACGTCGTCTTTCTTTGCCATCTTTTCCTCGGAGCTCATCGCTTCGATGGTGGCGGC
- 9 GTCATCCTTGCGCTTTTCGGCGGTCTCGTTTTTCTTCGTCTGGGTGACTTGCAGAAGTGCCTTTGCCCTC
- 10 AAAGCACTCATTCGGCGACTCTCCTGTTCCGCATCGACGACCTGGCGCCCATTCCTGTGACGCATCGCTCA

Como avaliar uma montagem?

Contiguidade

- N50
- L50
- Quantidade de contigs/scaffolds
- Tamanho do maior contig/scaffold

Análise de bases

- Cobertura
- Conteúdo GC

Análise de conteúdo

- Presença de telômeros
- Presença de genes conservados
- Comparação com genoma de referência
- Detecção de contaminantes pela distribuição do conteúdo GC
- Detecção de contaminantes por similaridade de sequência

Contiguidade – N50

 N50: metade da montagem (50%) é representada por contigs/scaffolds com um comprimento igual ou maior que 60Kb

Contiguidade – N90

• N90: 90% da montagem é representada por contigs/scaffolds com um comprimento igual ou maior que 40Kb

Contiguidade – L50

 L50: metade da montagem está presente em 3 contigs/scaffolds

Análise de bases - cobertura

• A cobertura se refere à quantidade de vezes que o genoma foi sequenciado

 Alta cobertura: maior precisão e redução de erros nas montagens

• $Cobertura = \frac{Tamanho dos reads \times quantidade de reads}{Tamanho total do genoma}$

Cobertura

 Boa cobertura garante a qualidade da montagem final

Análise de bases - cobertura

 Também é possível calcular a cobertura de alinhamento, re-alinhando os reads originais à montagem

Há muitos reads que não foram alinhados?

 Há regiões da montagem com poucos reads alinhados em relação às outras?

Análise de bases - Conteúdo GC

 O conteúdo GC da montagem é similar ao conteúdo GC observado para outras linhagens da mesma espécie ou espécies próximas?

Adaptado de: ŠMARDA et al. 2014. **PNAS**. DOI: <u>10.1073/pnas.1321152111</u>

Análise de conteúdo - Telômeros

- Sequências repetitivas encontradas nas extremidades dos cromossomos eucarióticos
- Função protetiva:
 - Impedem que os cromossomos se fusionem nas extremidades
 - Evitam que as sequências codificantes sejam perdidas a cada rodada de replicação
- Presença de telômeros no início e fim de um contig/scaffold sugere que se trata de um cromossomo completo

Análise de conteúdo - Genes conservados

- Avaliação do conteúdo gênico que seria o mínimo esperado em uma montagem ao considerar as relações evolutivas entre os organismos
- BUSCO (Benchmarking Universal Single-Copy Orthologs), http://busco.ezlab.org/
 - Alta universalidade: Presente em 90% das espécies do grupo analisado
 - Baixa duplicabilidade: presente em cópia única em 90% das espécies do grupo analisado

Análise de conteúdo – Comparação com genoma de referência

 Genes essenciais e conservados presentes na linhagem de referência estão presentes na nova montagem?

 A organização da nova montagem é similar à montagem de referência?

Análise de conteúdo - Contaminantes (Distribuição do conteúdo GC)

- Quantos picos são observados na distribuição de conteúdo GC?
- Mitocôndria, sequências repetitivas ou contaminação?

Análise de conteúdo - Contaminantes

- Há sequências de outros organismos na montagem?
- Uso do BLAST (sequência completa) ou Kraken (k-mers)

- qualidade (Contiguidade)
 - •L50

Avaliação da

- •N50
- •Quantidade e tamanho dos contigs

- •Alinhamento dos reads com a montagem
- •Alinhamento da montagem com genoma de referência

Avaliação da qualidade (análise de bases) Avaliação da qualidade (conteúdo gênico)

- •Presença de telômeros (montagem com reads longos)
 - Genes conservados
 - Contaminantes (GC %)
- •Contaminantes (Similaridade com sequências)

- •Montagem com reads curtos
- Montagem com reads longos

Montagem