

Lecture No. 04

By- CHANDAN SIR

TOPICS TO BE COVERED **01** MULTIPLEXER

02 QUESTION PRACTICE

03 DISCUSSION

FULL SUBTRACTOR

Stepa.		A	B	С	Hill	Borro
	0→	0	0	0	0	0
	1→	0	Ó	1	+	Ī
	2→	0	1	0	1	J
	3→	0	1	J	0	7
	47	1	0	0	1	O
	5→	1	0	1	O	Ò
	€→	1	1	0	0	0
	7-2	1	1	1	ŗ	1

Borrow =
$$Zm(1,2,3,7)$$

= $ABC+ABC+ABC+ABC$
= $A(BC+BC)+BC(A+A)$
= $(BBC)A+BC$
= $(BBC)A+BC$

Step4: Minimization.

Borrow =
$$\geq \overline{m}(1,2,3,7)$$

= $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
= $(\overline{ABB}) \cdot C + \overline{AB}$
= $\overline{AB} + \overline{AC} + \overline{BC}$

FA

H.S.

F.S.

$$=(\overline{A}\overline{\oplus}B)C+\overline{A}B$$

MUX

input o/p

2n; 1

AND-OR Logic

Universal Logic

Pw

Q.1

Design a 2 × 1 MUX?

ilp

Step-1. Number of input 2 outputs

Step 2. Truth table.

Step 3. Logical expression $\partial = \overline{S}_{\circ,1} + S_{\circ,1}$

Step 4. Minimization ~

Step 5. Hardware implementation

Design a 4×1 MUX?

Stepa.

Sı	So	ÿ
0	0	lo
0	1	\mathcal{I}_1
1	0	12
1	1	18.

Step4: > Minimization.

à Besign a 8x1 Mux?

a Resign a 16x1 MUX?

EX

TYPE 1. Desgining of Higher Order Mux By Lower Order Mux

Q.3

Design 8×1 MUX using 2×1 MUX.

$$\frac{3}{2} + \frac{4}{2} + \frac{3}{2}$$

$$4 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

$$1 + 3 + 1 = 7$$

Q.5

Design 16×1 using 2×1 MUX.

$$2X1 MUX - \frac{\frac{16}{2} + \frac{8}{2} + \frac{4}{2} + \frac{2}{2}}{8 + 4 + 2 + 1 = (15)} > 16X1 MUX$$

Q.6

Design 64 × 1 MUX using 2 × 1 MUX.

Q.7

Design $2^n \times 1$ MUX using 2×1 MUX.

$$2x_{1}M_{0}x \longrightarrow 2^{n}x_{1}M_{0}x$$

Q.8

Design 16×1 MUX using 4×1 MUX.

$$4\times 1 \text{ Mux} \xrightarrow{\frac{16}{4} + \frac{4}{4}} \rightarrow 16\times 1 \text{ Mux}$$

$$4+1=5$$

$$4$$

Design 8×1 using 4×1 MUX.

$$4x1 \text{ Mnx} \qquad \frac{8}{3} + \frac{3}{4} + \frac{3}{4} \Rightarrow 8xi \text{ Mnx}$$

Select Variable

Select Variable = 1

Design 64×1 MUX using 4×1 MUX.

$$4 \times 1 \text{ MUX} \xrightarrow{\frac{64}{4} + \frac{16}{4} + \frac{4}{4}} \Rightarrow 64 \times 1 \text{ MUX}$$

Design 64×1 MUX using 8×1 MUX.

$$\frac{69}{8} + \frac{8}{8}$$

$$8 \times 1 \text{ Mux} \longrightarrow 64 \times 1 \text{ Mux}.$$

$$8 + 1 = 9$$

Q.12

Design 256 × 1 MUX using 16 × 1 MUX.

$$\frac{256}{16} + \frac{16}{16}$$

$$|6 \times 1 \text{ MUX}| = \frac{256}{16} + \frac{16}{16}$$

$$|6 + 1 = (17)$$

$$|6 \times 1 \text{ MUX}| = \frac{256 \times 1 \text{ MUX}}{16 + 1 = (17)}$$

$$\frac{32}{4} + \frac{8}{4} + \frac{2}{4} \longrightarrow 32 \times 1 \text{ MUX}$$

$$8 + 2 + 1 = 1$$
A

