Lineare Algebra II (LA) Übungsblatt 1

Erik Achilles, Alexandra Dittmar, Artur Szeczinowski

April 2025

Aufgabe 2

a)

Wir betrachten die Abbildung $\varphi_M: \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto M \cdot x$ für

$$M := \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \\ 2 & 1 & 3 \end{pmatrix} \in \text{Mat}(3, R).$$

Insbesondere haben wir $V=W=\mathbb{R}^3$ und $n:=\dim(V)=3$ Weiter gilt $r:=\dim(\operatorname{im}(\varphi))=\operatorname{rg}(M)=2$ und nach Dimensionsformel $\dim(\ker(\varphi))=4-\operatorname{rg}(M)=2$. Wir konstruieren nun schrittweise die gewünschten Basen:

1. Wähle Basis $B' := (b_1, \ldots, b_r)$ von $\operatorname{im}(\varphi) und a_i \in Vmit \varphi(a_i) = b_i (i = 1, \ldots, r)$ Die ersten beiden Spalten von M sind linear unabhängig und bilden wegen $r = \operatorname{rg}(M) = 2$ eine Basis $B' = (b_1, b_2)$ vom Bild. Wir setzen also

$$b_1 := (-1, 0, 2)tb_2 := (1, -1, 1)ta_1 := e_1a_2 := e_2.$$

2. Wähle Basis $A' := (a_{r+1}, ..., a_n)$ aus n-r Vektoren von $\ker(\varphi)$. Hier gilt n-r=2 und wir wählen die Basis $A' = (a_3, a_4)$ von $\ker(\varphi) = \text{L\"os}(M, 0)$ mit

$$a_3 := (1, 1, -1, 0)^t a_4 := (1, -1, 0, 1)t.$$

- 3. Ergänze B' zu einer Basis $B=(b_1,...,b_r,...,b_m)$ von W Konkret wählen wir $B:=(b_1,b_2,b_3)$ mit $b_3:=(0,1,0)^t$
- 4. Zeige: $A := (a_1, ..., a_r, a_{r+1}, ..., a_n)$ ist linear unabhängig und wegen $n = \dim(V)$ Basis von V Wir könnten direkt prüfen, dass A Basis ist, gehen hier aber anders vor: Gelte $\lambda_1 \cdot a_1 + \lambda_2 \cdot a_2 + \lambda_3 \cdot a_3 + \lambda_4 \cdot a_4 = 0$ Wir multiplizieren mit M und erhalten wegen $a_3, a_4 \in \ker(\varphi_M)$:

$$0 = M \cdot (\lambda_1 \cdot a_1 + \dots + \lambda_4 \cdot a_4) = \lambda_1 \cdot b_1 + \lambda_2 \cdot b_2 + \lambda_3 \cdot_0 + \lambda_4 \cdot_0 = \lambda_1 \cdot b_1 + \lambda_2 \cdot b_2.$$

B'=(b1,b2) ist linear unabhängig, es folgt $\lambda 1=\lambda 2=0$. Da $A'=(a_3,a_4)$ auch linear unabhängig ist, folgt: $\lambda 3=\lambda 4=0$. Also ist A linear unabhängig und damit Basis. 5. Verifiziere, dass $M_B^A(\varphi)$ die gewünschte Form hat Wir wenden direkt Verfahren 16 an:

$$\varphi(a_1) = M \cdot e_1 = b_1 = 1 \cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3$$

$$\varphi(a_2) = M \cdot e_2 = b_2 = 0 \cdot b_1 + 1 \cdot b_2 + 0 \cdot b_3$$

$$\varphi(a_3) = \varphi(a_4) = 0 = 0 \cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3$$

Also erhalten wir eine darstellenden Matrix in der gewünschten Form:

$$M_B^A(arphi_M) = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight)$$