< DLTHON_NLP >

DKTC 다중분류 프로젝트: 한국어 위협 대화 데이터셋 활용

2024.01.11

팀 이름: 바른말 고운말

목차

DKTC 다중 분류 프로젝트

- 프로젝트 소개
- Data

진행 과정

- Exploratory Data Analysis
- Data Preprocessing
- Model Training
 - Machine Learning
 - Deep Learning
 - Transformer
- Model Evaluation

결론

- Conclusion
- References

DKTC 다중분류 프로젝트(DKTC Multi-Classification Project)

진행 일시

- 2024/01/10 ~ 2024/01/12

목적

- DKTC (Dataset of Korean Threatening Conversations)를 활용하여 한국어 위협 대화에 대한 효과적인 다중 분류 모델을 구축하여 다양한 위협적인 대화에 대한 대응할 수 있는 솔루션을 구축 제공하고자 함

바른말 고운말 팀 전략

- 머신러닝과 딥러닝 기술을 적용하여 다중 분류 모델을 구축

Data

- TUNiB에서 제공된 DKTC (Dataset of Korean Threatening Conversations)
- 멀티턴 대화 형식으로 구성되어 있으며, 3가지 파일(train, test, submission)로 이루어져 있음
- 총 4가지 클래스로 세분화되어 있음

				conversation	class
# Test	# Training	Class No.	클래스	지금 너 스스로를 죽여달라고 애원하는 것인가?\n 아닙니다. 죄송합니다.\n 죽을	협박 대화
100	896	00	 협박	길동경찰서입니다.\n9시 40분 마트에 폭발물을 설치할거다.\n네?\n똑바로 들어	협박 대화
100	981	01	갈취	너 되게 귀여운거 알지? 나보다 작은 남자는 첨봤어.\n그만해. 니들 놀리는거 재미	기타 괴롭힘 대화
100	979	02	직장 내 괴롭힘	어이 거기\n예??\n너 말이야 너. 이리 오라고\n무슨 일.\n너 옷 좋아보인다?	갈취 대화
100	1,094	03	기타 괴롭힘	저기요 혹시 날이 너무 뜨겁잖아요? 저희 회사에서 이 선크림 파는데 한 번 손등에	갈취 대화
.50	.,554	33	11780	나 이틀뒤에 가나다 음식점 예약좀 해줘. 저녁7시로.\n가나다 음식점이요.?\n응	직장 내 괴롭힘 대화

Exploratory Data Analysis

- 협박 대화 : 22.7 %, 기타 괴롭힘 대화 : 27.7%, 갈취 대화 : 24.8%, 직장 내 괴롭힘 대화 : 24.8%
- 클래스 간의 약간의 차이가 있기는 하나,
 큰 차이를 보이지 않음
- 데이터불균형에 대해 크게 고려하지 않기로 함

Exploratory Data Analysis

- 클래스 별로 문장 길이 분포를 확인한 결과, 크게 차이가 나지 않는 걸로 보임
- 문장 최단 길이 : 41, 문장 최장 길이: 874, 문장 평균 길이: 226

Data Preprocessing

- 문장 내 구두점 앞 뒤로 공백을 추가
- 연속된 여러 개의 공백을 하나의 공백으로 축소
- 한글, 영문자와 구두점(.?!,) 이외의 모든 문자를 공백으로 대체
 - 0 지금 너 스스로를 죽여달라고 애원하는 것인가?₩n 아닙니다. 죄송합니다.₩n 죽을 ...
 - 1 길동경찰서입니다.₩n9시 40분 마트에 폭발물을 설치할거다.₩n네?₩n똑바로 들어 ...
 - 2 너 되게 귀여운거 알지? 나보다 작은 남자는 첨봤어.₩n그만해. 나들 놀리는거 재미...
 - 3 어이 거기\mmq??\mmh 말이야 너. 이리 오라고\mm무슨 일.\mmh 옷 좋아보인다?...
 - 4 저기요 혹시 날이 너무 뜨겁잖아요? 저희 회사에서 이 선크림 파는데 한 번 손등에 ...

['지금 너 스스로를 죽여달라고 애원하는 것인가 ? 아닙니다 . 죄송합니다 . 죽을 거면 혼자 죽지 우리까지 사건에 휘말리게 해 ? 진짜 죽여버리고 싶게 . 정말 잘못했습니다 . 너가 선택해 . 너가 죽을래 네 가족을 죽여줄까 . 죄송합니다 . 정말 잘못했습니다 . 너에게는 선택권이 없어 . 선택 못한다면 너와 네 가족까지 모조리 죽여버릴거야 . 선택 못하겠습니다 . 한번만 도와주세요 . 그냥 다 죽여버려야겠군 . 이의 없지 ? 제발 도와주세요 .',

Tokenization

- OKT, Twitter, SPM(SentencePiece)을 사용하여 비교해 본 결과, SPM이 가장 우수한 성능을 보여, SPM을 사용하여 토큰화를 진행함

- SGDClassifier 기준 결과 비교

OKT	Twitter	SPM
0.285	0.285	0.3075

Data Augmentation

- <u>노이즈를 통한 일반화</u>를 augmentation 사용하여 overfitting 방지
- 사용한 augmentation 방법
 - RS(Random swap): Randomly swap two words in the sentence n times
 - RD(Random deletion): Randomly delete words from the sentence with probability p
 - `num_aug = 5` 로 설정, 3846 ->
 18958 (중복값 제거)로 데이터 수를 늘림

원본 희정씨 네 ? 주말에 시간이 넘쳐나나봐 갑자기 빤짝빤짝 네일했니 ? 네 여름 파스텔톤으로만 칠한건데 . 희정씨가 윗사람이야 ? ? 얼른 지우고와 . 네

aug

시간이 넘쳐나나봐 갑자기 왜그러세요 ? 손이 빤짝빤짝 네일했니 ? 네 기분전형 으로만 칠한건데 . 희정씨가 얼른 가서 지우고와 . 네

희정씨 네 ? 주말에 시간이 넘쳐나나봐 갑자기 왜그러세요 ? 손이 빤짝빤짝 너 윗분들 눈 받으러 아프시겠다 파스텔톤으로만 칠한건데 . 희정씨가 윗사람이야

왜그러세요 ? 손이 시간이 넘쳐나나봐 갑자기 윗사람이야 ? ? 빤짝빤짝 네일혔 프시겠다 정신사나워 그냥 파스텔톤으로만 칠한건데 . 희정씨가 희정씨 네 ? 3

희정씨 네 ? 주말에 시간이 넘쳐나나봐 갑자기 빤짝빤짝 네일했니 ? 네 여름이 파스텔톤으로만 칠한건데 . 희정씨가 윗사람이야 ? ? 얼른 지우고와 . 네

[출처 : KorEDA/README.md at master]

Model: Machine Learning

- 사용된 머신러닝 모델은 다음과 같음
 - SGDClassifier
 - LinearSVC
 - VotingClassifier(Ensemble)
 - MultinomialNB
 - LogisticRegression
 - ComplementNB
 - DecisionTreeClassifier
 - RandomForestClassifier
 - GradientBoostingClassifier
 - LGBMClassifier
 - XGBClassifier
 - + augmentation 적용

	SGD Classifier	LinearSVC	Ensemble
Validation _acc	0.858	0.858	0.862
Submissi on_acc	0.815	0.81	0.81
Aug적용 Submissi on_acc	0.82	0.815	0.81

^{*} Ensemble: VotingClassifier(

estimators=[('CNB', ComplementNB()), ('SGD', SGDClassifier(random_state=42)), ('SVC', LinearSVC(random_state=42))])

Model: Deep Learning

사용한 딥러닝 모델은 다음과 같음

- SimpleRNN
- LSTM
- Bi-directional LSTM
- GRU
- + Augmentation

	validation_acc	submission_acc
Simple RNN	0.2790	0.3
LSTM	0.5373	0.54
bi-directional LSTM	0.5838	0.5675
GRU	0.5557	0.56

+Augmentation	validation_acc	submission_acc
aug + Simple RNN	0.4083	0.345
aug + LSTM	0.8294	0.7325
aug + bi-directional LSTM	0.8313	0.755
aug + GRU	0.7547	0.6275

Model: Transformer

- 사전 훈련된 언어 모델을 사용함
 - 한국어 Bert 계열 (accuracy 기준)
 - klue/bert-base : 90%
 - kykim/bert-kor-base :92.25%
 - monologg/kobigbird-bert-b ase:91.5%
 - Bert 계열의 경우 토큰화로
 BertTokenizerFast를 사용함

- Bert 앙상블
 - 앙상블은 각 모델의softmax결과를 평균
- GPT 계열
 - GPT-3.5 fine-tuning : 86.5%
 - GPT의 경우 우수한 성능을 믿고 추가적인 전처리를 하지 않음
 - 비용과 시간의 문제로 400개의 문장만 넣음

Model: Transformer

- kykim/bert-kor-base : 92.25% 의 loss , accuracy 그래프 -> 과적합 의심

Model Evaluation

- 머신러닝 모델 중에서는 aug + SGD Classifier(82%)로 가장 높은 성능을 보임
- 딥러닝 모델 중에서는
 aug+bi_LSTM(75.5%)로 가장
 높은 성능을 보임
- Transformer 모델 중에서는 kykim/bert-kor-base(92.25%)로 가장 높은 성능을 보이며, 실험 모델 중에서 최고 성능을 보임

Team Name	Accuracy Score
바른말 고운말 simpleRNN	0.3
바른말 고운말 aug_simpleRNN	0.345
바른말 고운말 LSTM	0.54
바른말 고운말 GRU	0.56
바른말 고운말 bi_LSTM	0.5675
바른말 고운말 aug_GRU	0.6275
바른말 고운말 aug+LSTM	0.6825
바른말 고운말 aug_LSTM	0.7325
바른말 고운말 aug_bi_LSTM	0.755
바른말 고운말_ML2	0.81
바른말 고운말_MLensemble	0.81
바른말 고운말 ML	0.815
바른말 고운말 aug_ML2	0.815
바른말 고운말 aug_ensemble	0.8175
바른말 고운말 aug_ML	0.82
바른말 고운말 gpt3.5-ft	0.865

바른말 고운말 gpt3.5-ft	0.865
바른말 고운말 klue/bert-base	0.9
바른말 고운말 bert augment	0.9125
바른말 고운말	0.915
바른말 고운말 kobigbird	0.915
바른말 고운말 bert ensemble	0.92
바른말 고운말 kykim/bert-kor-base	0.9225

Conclusion

- 한국어 위협 대화에 대한 효과적인 다중 분류 모델을 구축하고자 다양한 모델을 통해 실험한 결과, kykim/bert-kor-base(92.25%) 모델이 가장 높은 성능을 보였음
- 이는 다양한 위협적인 대화에 대한 대응할 수 있는 솔루션으로 채택 될 수 있음
- Augmentation Data를 활용한 경우, 모델에 따라 성능 향상을 확인 할 수 있어 데이터 확보의 중요성을 강조 할 수 있음
- 본 프로젝트는 Evaluation metrics 선정에 있어 accuracy만 확인한 아쉬운 점이 있음
- 향후에는 다양한 평가 지표를 활용하여 모델의 성능을 보다 정확하게 평가하고,
 데이터 확보와 모델 튜닝을 통해 다양한 상황에서 적용 가능하며 강건한 모델을
 개발하는 것을 기대해 볼 수 있음

Reference

- https://github.com/catSirup/KorEDA/blob/master
- https://velog.io/@jaehyeong/Fine-tuning-Bert-using-Transformers-and-T ensorFlow
- https://huggingface.co/models?pipeline_tag=fill-mask&language=ko&so
 rt=likes&search=bert

들어주셔서 감사합니다!