Feuille de TD n°8 de Programmation 2

(Algorithmique élémentaire des matrices de flottants)

Dans cette feuille, on manipule des matrices de flottants en utilisant la structure présentée en cours le 2 mai.

```
struct mat_float {
  int lig; /* nombre de lignes de la matrice */
  int col; /* nombre de lignes de la matrice */
  double ** tab_coeff; /* tableau dynamique bidimensionnel des coefficients */
};

  Dans la suite, « matrice » abrégera « structure mat_float ». On été vues en cours les fonctions suivantes.

/** Alloue sur le tas l'espace pour une matrice nulle à l lignes et c colonnes, */
struct mat_float *creer_initialiser_matrice (int l, int c);

/** Supprime la ligne d'indice l et la colonne d'indice c de la matrice *m */
void reduire_matrice (struct mat_float *m, int l, int c);
```

Exercice 1. Addition et multiplication de matrices

- a) Écrivez la définition d'une fonction additionner_matrice qui reçoit en entrées les adresses de deux matrices m1 et m2, et renvoie l'adresse d'une nouvelle matrice égale à la somme m1 + m2 quand la somme est possible. Évaluez en fonction des dimensions de m1 et m2 le nombre d'opérations scalaires requises par son exécution.
- b) Écrivez la définition d'une fonction $multiplier_matrice$ qui reçoit en entrées les adresses de deux matrices m1 et m2, et renvoie l'adresse d'une nouvelle matrice égale au produit $m1 \times m2$ quand le produit est possible. Évaluez en fonction des dimensions de m1 et m2 le nombre d'opérations scalaires requises par son exécution.

Exercice 2. Calcul du déterminant par la formule de Laplace

Soit $M=(m_{i,j})_{0\leq i,j\leq n-1}$ une matrice carrée de dimension n et soit j un indice de colonne. Le déterminant de M peut être calculé par la formule de Laplace :

$$\det M = \sum_{i=0}^{n-1} (-1)^{i+j} m_{i,j} \det M_{i,j},$$

 $M_{i,j}$ désignant la matrice obtenue en supprimant la ligne d'indice i et la colonne d'indice j de M. Les $\det M_{i,j}$ sont des *mineurs* de M.

- a) Écrivez la définition d'une fonction récursive determinant_matrice qui reçoit en entrée l'adresses d'une matrice m et renvoie la valeur de son déterminant si la matrice est carrée. Des appels à reduire_matrice faciliteront le calcul des mineurs de M. Éstimez en fonction de la dimension de M le nombre d'opérations scalaires requises requises par l'exécution de cette fonction.
- b) Montrez qu'on peut se passer des appels à reduire_matrice dans la fonction de la question précédente et ainsi « atténuer » son inefficacité en supprimant presque tous les appels aux fonctions d'allocation de mémoire sur le tas.