

Propriétés mécaniques des matériaux

Dr. Sandrine MORIN

Laboratoire PBS - BioMMAT

Université de Rouen (IUT d'Evreux)

Département Mesures Physiques & Packaging

Figure 1 & 2: Essai de traction

Figure 3: Principe de l'essai de flexion 2 points

Figure 4: Principe des essais de dureté

Essai Brinell : $HB = 0.102 \frac{2F}{\pi D (D - \sqrt{D^2 - d^2})}$

Essai Vickers : $HV = 0.189 \frac{F}{d^2}$

Figure 5: Principe de l'essai de choc Charpy

Principe de l'essai de résilience : Mouton de Charpy

Énergie potentielle du pendule l'éprouvette

Énergie absorbée par

Au départ:Wo =P.H

W=P(H-h)

Al 'arrivée:W1=P.h

=Wo-W1

Matériau	E (GPa)	Re (MPa)	Rm (MPa)	A%	Kc (MPa/m²)
		Matériaux i	nétalliques		
Al et alliages	70-80	40-620	200-700	5-50	25-350
Aciers non traités	200	220	400	15-30	150
Aciers trempés/revenus	200	250-1300	500-1800	20-30	50-150
Aciers inox.	190-200	170-1600	460-1700	10-50	50-170
Cu et alliages	120-150	60-900	250-1000	1-55	10-100
Ti et alliages	80-130	200-1300	300-1400	6-30	50-140
		Céram	Iques		
Alumine	390	5000	5000	0	3,5
Diamant	1050	5000	5000	0	3-4
SiC	410-450	2000-10000	2000-10000	0	3
Silice	95	7200	7200	0	1
Zircone	145-200	2000-4000	2000-4000	0	4-12
Verre ordinaire	65-75	1000-3600	1000-3600	0	0.7-0.8