Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Segundo Semestre 2012

Curso : Probabilidad y Estadística

Sigla : EYP1113

Profesor : Ricardo Aravena (Sec. 1, 3 y 4) y Ana María Araneda (Sec. 2)

Ayudantes : Carlos Cayuman Cofre, Felipe Ossa Monge, Claudia Reyes Vizcarra y Juan Pablo Vigneaux Ariztía.

Examen

- Se permite el uso de calculadora científica básica.
- No se permite usar apuntes, correctores y cualquier aparato de transmisión electrónica (por ejemplo celulares y aparatos con bluetooth y wifi).
- Alumnos que escriban sus soluciones con lápiz mina renuncian a su derecho a re-corrección.
- El alumno que sea sorprendido copiando o en otras actividades reñidas con las normas de comportamiento académico, será calificado con nota 1.0 (uno.cero) en la interrogación y su caso será informado a la Dirección de Docencia de la Escuela de Ingeniería.
- En su lugar de trabajo Ud. debe tener solo lápices y sus cuadernillos.
- Recuerde poner su N° de lista en ambos cuadernillos.

Problema 1

Suponga que en un viaje a Las Vegas usted decide visitar un casino. Al llegar, conoce un visitante que asegura que los dos tipos de tragamonedas que existen en el casino, rojos y azules, se diferencian en la proporción de veces que pagan al jugador. El visitante le explica que él ha podido determinar que un tipo de tragamonedas paga el 10 % de las veces, mientras el otro paga el 30 % de las veces. Sin embargo, el visitante ha tomado bastantes copas y no recuerda qué color corresponde a qué proporción. Lamentablemente el visitante deja Las Vegas a la mañana siguiente y a usted le es imposible preguntarle nuevamente, cuando el está sobrio.

Usted encuentra una máquina roja y una azul, una al lado de la otra, y decide lanzar una moneda para decidir qué máquina utilizará primero. Basado en esto, usted pone su moneda en la máquina roja.

- (a) [3.0 Ptos.] ¿Cuál es la probabilidad de que usted se encuentre jugando en la máquina que paga más, dado que al jugar la moneda no obtuvo pago?
- (b) [3.0 Ptos.] Dado que la máquina roja no dio buen resultado, usted decide cambiarse a la máquina azul, e intentar con otra moneda. Si esta vez tampoco obtuvo pago, ¿cuál es ahora la probabilidad de que la máquina roja sea la máquina que paga más?

Solución:

(a) La representación gráfica del problema es la que sigue:

Se nos pregunta la probabilidad de estar en la rama (2), dado que se sabe que estamos en la rama (1) o en la (2).

$$\frac{P((2))}{P((1)) + P(2)} = \frac{0.7 \times 0.5}{0.9 \times 0.5 + 0.7 \times 0.5}$$
$$= \frac{0.35}{0.8} = 0.4375,$$

[1.5pt] por numerador [1.5pt] por denominador

(b) La representación gráfica del problema es la que sigue:

Se nos pregunta la probabilidad de estar en la rama (4), dado que se sabe que estamos en la rama (3) o en la (4).

$$\frac{P((4))}{P((3)) + P(4)} = \frac{0.9 \times 0.7 \times 0.5}{0.7 \times 0.9 \times 0.5 + 0.9 \times 0.7 \times 0.5}$$
$$= \frac{0.315}{0.63} = 0.5.$$

[1.5pt] por numerador [1.5pt] por denominador

[1.0pt] punto base

Problema 2

Suponga que los tiempos de ingreso y egreso del recinto de un espectáculo pueden ser modelado por dos variables aleatorias, X e Y, ambas con la misma distribución pero diferentes parámetros, de modo que E(X) = 10, E(Y) = 15, Var(X) = 16, Var(Y) = 25, Cov(X, Y) = 8 y $Cov(\ln X, \ln Y) = 0.3$.

Interesa determinar la probabilidad de que el tiempo en ingresar al recinto sea mayor que el tiempo en salir del recinto:

- (a) [2.0 Ptos.] Si las distribuciones son Normales.
- (b) [4.0 Ptos.] Si las distribuciones son Log-Normal.

Solución:

(a) Sea la variable aleatoria Z = X - Y. Dado que tanto X como Y son Normales, Z también lo es.

$$\begin{array}{lll} {\rm E}(Z) & = & {\rm E}(X) - {\rm E}(Y) = 10 - 15 = -5 & [\textbf{0.5pt}] \\ {\rm Var}(Z) & = & {\rm Var}(X) + {\rm Var}(Y) - 2 \ {\rm Cov}(X,Y) \\ & = & 16 + 25 - 2 \times 8 = 25. & [\textbf{1.0pt}] \end{array}$$

Luego $Z \sim Normal(-5, 5)$. Se pide:

$$P(X > Y) = P(X - Y > 0) = P(Z > 0)$$

$$= 1 - \Phi\left(\frac{0 - (-5)}{5}\right) = 1 - \Phi(1)$$

$$= 1 - 0.841 = 0.159. \quad [\mathbf{0.5pt}]$$

(b) Tenemos que para una variable aleatoria $Lognormal(\lambda, \mathcal{C})$,

$$\lambda = \log(\mu) - \frac{1}{2}C^{2}$$

$$C = \sqrt{\log(\sigma^{2}/\mu^{2} + 1)}.$$

De aquí obtenemos que

$$\lambda_x = 2.229,$$
 $C_x = 0.385$ [1.0pt]
 $\lambda_y = 2.656,$ $C_x = 0.325$ [1.0pt]

Con esto $\log X \sim Normal(2.229, 0.385)$ y $\log Y \sim Normal(2.656, 0.325)$. Sea a variable $W = \log X - \log Y$. Entonces, W es normal, con media y varianzas dadas por:

$$\begin{array}{lll} \mathrm{E}(W) & = & \mathrm{E}(\log X) - \mathrm{E}(\log Y) = 2.229 - 2.656 = -0.427 & [\mathbf{1.0pt}] \\ \mathrm{Var}(W) & = & \mathrm{Var}(\log X) + \mathrm{Var}(\log Y) - 2 \, \mathrm{Cov}(\log X, \log Y) \\ & = & 0.385^2 + 0.325^2 - 2 \times 0.03 = 0.19155. & [\mathbf{1.0pt}] \end{array}$$

Luego, la desviación estándar de W es $\sqrt(0.19155) = 0.4377$. Luego, $W \sim Normal(-0.393, 0.4377)$. Se pide

$$P(X > Y) = P(\log X - \log Y > 0) = P(W > 0)$$

$$= 1 - \Phi\left(\frac{0 - (-0.393)}{0.4377}\right) = 1 - \Phi(0.90)$$

$$= 1 - 0.8159 = 0.1841.$$

[1.0pt] base

Problema 3

Sea T el tiempo invertido por cada alumno en almorzar en el Food Garden. Esta variable puede ser modelada de acuerdo a una distribución Gamma de parámetros k=2 y $\nu=1$. A su vez, el tiempo de permanencia en la fila y búsqueda de asiento para almorzar, digamos U, depende de T dado que T>U. En particular se plantea que, dado que el tiempo total utilizado en almorzar es T=t, la variable U distribuye Uniforme(0, t).

- (a) [3.0 Ptos.] Determine la distribución no condicional, o marginal, del tiempo de permanencia en la fila y búsqueda de asiento. ¿A qué distribución corresponde?
- (b) [3.0 Ptos.] Muestre, a través de este ejemplo, la propiedad $E(U) = E[E(U \mid T)]$.

Solución:

(a) Se necesita

$$f_U(u) = \int f_{U,T}(u,t) dt.$$

Por otra parte

$$f_{U,T}(u,t) = f_T(t) f_{U|T}(u|t)$$

$$= \frac{1^2}{\Gamma(2)} t^{2-1} e^{-t} \times \frac{1}{t}$$

$$= e^{-t} t > 0, 0 < u < t.$$

[0.5] por la forma de $f_{U,T}$

[0.5] por los valores posibles de U y T Luego,

$$f_U(u) = \int_u^\infty e^{-t} dt$$

= $-e^{-t}|_u^\infty = e^{-u}, \quad u > 0.$

[1.0] por la forma de f_U

[0.5] por los valores posibles de U Luego, $U \sim \text{Exponencial}(1)$. [0.5pt]

(b) La esperanza de la distribución Exponencial(λ) corresponde a $1/\lambda$. Luego, la esperanza marginal o no condicional de U corresponde a:

$$E(U) = 1.$$
 [1.0pt]

La esperanza de la distribución Uniforme(a,b) es (a+b)/2. La esperanza de la distribución Gama (k, ν) es k/ν . Luego,

$$\begin{split} \mathrm{E}(\mathrm{E}(U|T)) &=& \mathrm{E}\left(\frac{T}{2}\right) & [\mathbf{1.0pt}] \\ &=& \frac{1}{2} \times \frac{2}{1} = 1, \qquad [\mathbf{1.0pt}] \end{split}$$

lo que verifica la igualdad pedida.

[1.0pt] base

Problema 4

(a) [3.0 Ptos.] Aunque es usual modelar tiempos de espera a través de distribuciones Exponenciales, algunos test de hipótesis para estos tiempos se basan en Normalidad. Usted debe analizar los tiempos de espera del sistema Transantiago y debe recomendar cuál de estas dos distribuciones se ajusta mejor a los datos de tiempos de espera de 66 usuarios, que se muestran en la tabla a continuación:

Tiempo (min)	Número de casos
Menos de 7	11
Entre $7 \text{ y } 15$	16
Entre $15 y 25$	18
Más de 25	21
Total	66

Un análisis previo de datos entregó (en minutos) que $\overline{x} = 20$ y s = 10.

Ayuda: Base su decisión en los valores-p.

(b) [3.0 Ptos.] El artículo "Chronological trend in blood lead levels" (N.Engl.J.Med., 1983: 1373-77) entrega los siguientes datos sobre las variables Y: promedio del nivel de plomo en la sangre de niños entre 6 meses y cinco años, y X: cantidad de plomo utilizado en la producción de gasolina (en 1000 toneladas), durante 10 periodos:

$$n = 10;$$
 $\sum_{i=1}^{n} x_i = 864;$ $\sum_{i=1}^{n} x_i^2 = 78142;$ $\sum_{i=1}^{n} y_i = 138;$ $\sum_{i=1}^{n} y_i^2 = 1959.1;$ $\sum_{i=1}^{n} x_i \cdot y_i = 12322.4$

Estime la recta de regresión, calcule obtenga el estadístico r^2 e interpretelo.

Solución:

(a) Para la distribución (Exponencial) estimamos λ por $1/\bar{x} = 1/20 = 0.05$ [0.1pt]. Las probabilidades de los intervalos están dadas por

$$\begin{array}{rcl} p_1 & = & 1 - e^{-0.05} = 0.295 \\ p_2 & = & e^{-0.05 \times 7} - e^{-0.05 \times 15} = 0.232 \\ p_3 & = & e^{-0.05 \times 15} - e^{-0.05 \times 25} = 0.186 \\ p_4 & = & e^{-0.05 \times 25} = 0.287. \end{array}$$

[0.1pt] por cada probabilidad.

Haciendo $e_i = 66 \times p_i$ se tiene la siguiente tabla:

Tiempo (min)	n_i	e_i	$(n_i - e_i)^2/e_i$
Menos de 7	11	19.49	3.699
Entre 7 y 15	16	15.33	0.029
Entre $15 y 25$	18	12.27	2.679
Mas de 25	21	18.91	0.231
			6.64

[0.1pt] por cada valor esperado.

[0.1pt] por el X^2 .

Luego $X^2 = 6.64$. Los grados de libertad son (4-1)-1=2 [0.1pt]. De la tabla \mathcal{X}^2 obtenemos $\mathcal{X}^2_{2.0.975} = 7.38$ y $\mathcal{X}^2_{2.0.95} = 5.99$. Luego

$$0.025 < valor - p < 0.05.$$
 [0.2pt]

Para la distribución (Normal) estimamos μ por $\bar{x} = 20$ [0.1pt] y σ por S = 10 [0.1pt]. Las probabilidades de los intervalos están dadas por

$$p_1 = \Phi\left(\frac{7-20}{10}\right) = \Phi(-1.3) = 1 - \Phi(1.3) = 1 - 0.903 = 0.097.$$

$$p_2 = \Phi\left(\frac{15-20}{10}\right) - 0.097 = \Phi(-0.5) - 0.097 = 1 - 0.691 - 0.097 = 0.212$$

$$p_3 = \Phi\left(\frac{25-20}{10}\right) - 0.212 - 0.097 = \Phi(0.5) - 0.212 - 0.097 = 0.382$$

$$p_4 = 1 - \Phi\left(\frac{25-20}{10}\right) = 1 - \Phi(0.5) = 1 - 0.691 = 0.309.$$

[0.1pt] por cada probabilidad.

Haciendo $e_i = 66 \times p_i$ se tiene la siguiente tabla:

Tiempo (min)	n_i	e_i	$(n_i - e_i)^2 / e_i$
Menos de 7	11	6.39	3.328
Entre 7 y 15	16	13.97	0.293
Entre $15 y 25$	18	25.27	2.093
Mas de 25	21	20.36	0.020
			5.73

[0.1pt] por cada valor esperado

$[\mathbf{0.1pt}]$ por el X^2

Luego $X^2 = 5.73$. Los grados de libertad son (4-1)-2=1 [0.1pt]. De la tabla \mathcal{X}^2 obtenemos $\mathcal{X}^2_{1.0.975} = 5.02$ y $\mathcal{X}^2_{1.0.99} = 6.63$. Luego

$$0.01 < valor - p < 0.025.$$

Eligiendo el modelo de mayor valor-p, preferimos el modelo Exponencial. [0.3pt]

(b) Tenemos

$$\bar{x} = 86.4$$

$$\bar{y} = 13.8$$

$$\sum_{i} (x_i - \bar{x})^2 = \sum_{i} x_i^2 - n \, \bar{x}^2 = 3492.4$$

$$\sum_{i} (y_i - \bar{y})^2 = \sum_{i} y_i^2 - n \, \bar{y}^2 = 54.7$$

$$\sum_{i} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i} x_i \, y_i - n \, \bar{x} \, \bar{y} = 399.2.$$

Con esto,

$$\hat{\beta} = \frac{399.2}{3492.4} = 0.114$$
 [1.3pt]
 $\hat{\alpha} = 13.8 - 0.114 \times 86.4 = 3.9504.$ [0.7pt]

Por otra parte

$$SCT = \sum_{i} (y_i - \bar{y})^2 = 54.7$$
 [0.3pt]
 $SCE = 54.7 - 0.114^2 \times 3492.4 = 9.31,$ [0.3pt]

luego,

$$r^2 = 1 - \frac{9.31}{54.7} = 0.83.$$
 [0.3pt]

Un 83 % de la variabilidad de la variable respuesta es explicada por el predictor. [0.1pt]

[1.0pt] base

Formulario

Para un modelo de regresión simple $\mathrm{E}(Y|X=x)=\alpha+\beta\cdot x, \mathrm{Var}(Y|X=x)=\sigma^2$ se tiene que

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \quad \hat{\alpha} = \overline{y} - \hat{\beta} \cdot \overline{x}, \quad r^2 = 1 - \frac{SCE}{SCT}$$

$$SCE = \left(\sum_{i=1}^{n} (y_i - \bar{y})^2 - \hat{\beta}^2 \sum_{i=1}^{n} (x_i - \bar{x})^2\right), \quad SCT = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2, \quad s_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \ldots, n$	$n,\ p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$ $M(t) = [p e^t + (1 - p)]^n, t \in \mathbb{R}$
Geométrica	$p(1-p)^{x-1}$	$x=1,2,\ldots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$ $M(t) = p e^t / [1 - (1-p) e^t], t < -\ln(1-p)$
Binomial-Negativa	$ \binom{x-1}{r-1} p^r (1-p)^{x-r} $	$x=r,r+1,\ldots$	$r,\ p$	$\begin{split} \mu_X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M(t) &= \left\{ p e^t / [1-(1-p) e^t] \right\}^r, t < -\ln(1-p) \end{split}$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	ν	$\begin{split} \mu_X &= \nu t \\ \sigma_X^2 &= \nu t \\ M(t) &= \exp\left[\lambda \left(e^t - 1\right)\right], t \in \mathbb{R} \end{split}$
Exponencial	$\nu e^{-\nu x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	k,~ u	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k , t < \nu$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ, σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zetax\right)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ, ζ	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2\left(e^{\zeta^2} - 1\right) \\ E(X^T) &= e^{T\lambda}M_Z(r\zeta),\text{con }Z\sim \text{Normal}(0,1) \end{split}$
Uniforme	$\frac{1}{(b-a)}$	$a \leq x \leq b$	a, b	$\begin{split} \mu_X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^{tb} - e^{ta}]/[t(b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \le x \le b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b - a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Tablas de Percentiles p

Distribución Normal Estándar k_p							Distribu	ıción t-st	t_{i}	$_{p}(u)$					
$\frac{k_p}{0.0}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	$\frac{\nu}{1}$	$t_{0.90}$ 3.078	$t_{0.95}$ 6.314	$t_{0.975}$ 12.706	$\frac{t_{0.99}}{31.821}$
0.0	0.5398	0.5040 0.5438	0.5080 0.5478	0.5120 0.5517	0.5160 0.5557	0.5199 0.5596	0.5239 0.5636	0.5279 0.5675	0.5319 0.5714	0.5359 0.5753	2	1.886	$\frac{0.314}{2.920}$	4.303	6.965
0.1	0.5793	0.5438 0.5832	0.5478 0.5871	0.5917 0.5910	0.5948	0.5390 0.5987	0.6026	0.6064	0.6103	0.6141	3	1.638	2.353	$\frac{4.303}{3.182}$	4.541
0.2	0.5793	0.3832 0.6217	0.5871 0.6255	0.5910 0.6293	0.5948 0.6331	0.5987 0.6368	0.6406	0.6064 0.6443	0.6103 0.6480	0.6141 0.6517	3 4	1.533	$\frac{2.333}{2.132}$	$\frac{3.182}{2.776}$	$\frac{4.541}{3.747}$
$0.3 \\ 0.4$	0.6554	0.6591	0.6233 0.6628	0.6293 0.6664	0.6700	0.6736	0.6400 0.6772	0.6808	0.6844	0.6879	5	1.476	$\frac{2.132}{2.015}$	$\frac{2.776}{2.571}$	3.365
0.4	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.0772 0.7123	0.0808 0.7157	0.0844 0.7190	0.0879 0.7224	6	1.440	1.943	$\frac{2.371}{2.447}$	3.143
0.6	0.0313	0.7291	0.0303 0.7324	0.7357	0.7034 0.7389	0.7422	0.7123 0.7454	0.7486	0.7130 0.7517	0.7224 0.7549	7	1.415	1.895	2.365	2.998
0.0	0.7580	0.7291 0.7611	0.7524 0.7642	0.7673	0.7704	0.7422 0.7734	0.7454 0.7764	0.7480	0.7823	0.7349 0.7852	8	1.397	1.860	2.306	2.896
0.8	0.7881	0.7910	0.7939	0.7967	0.77995	0.8023	0.8051	0.8078	0.7323	0.7332	9	1.383	1.833	2.262	2.821
0.9	0.7331	0.7310	0.7333	0.7307	0.7333	0.8289	0.8315	0.8340	0.8365	0.8389	10	1.372	1.812	2.228	2.764
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	11	1.363	1.796	2.201	2.718
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	12	1.356	1.782	2.179	2.681
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	13	1.350	1.771	2.160	2.650
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	14	1.345	1.761	2.145	2.624
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	15	1.341	1.753	2.131	2.602
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	16	1.337	1.746	2.120	2.583
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	17	1.333	1.740	2.110	2.567
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	18	1.330	1.734	2.101	2.552
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	19	1.328	1.729	2.093	2.539
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	20	1.325	1.725	2.086	2.528
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	21	1.323	1.721	2.080	2.518
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	22	1.321	1.717	2.074	2.508
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	23	1.319	1.714	2.069	2.500
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	24	1.318	1.711	2.064	2.492
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	25	1.316	1.708	2.060	2.485
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	26	1.315	1.706	2.056	2.479
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	27	1.314	1.703	2.052	2.473
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	28	1.313	1.701	2.048	2.467
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	29	1.311	1.699	2.045	2.462
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	30	1.310	1.697	2.042	2.457
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	∞	1.282	1.645	1.960	2.326

	Distribución Chi-Cuadrado					$c_p(\nu)$		
ν	c _{0.025}	$c_{0.05}$	$c_{0.10}$	$c_{0.90}$	$c_{0.95}$	$c_{0.975}$	$c_{0.99}$	c _{0.995}
1	0.00	0.00	0.02	2.71	3.84	5.02	6.63	7.88
2	0.05	0.10	0.21	4.61	5.99	7.38	9.21	10.60
3	0.22	0.35	0.58	6.25	7.81	9.35	11.34	12.84
4	0.48	0.71	1.06	7.78	9.49	11.14	13.28	14.86
5	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.95
9	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	3.82	4.57	5.58	17.28	19.68	21.92	24.72	26.76
12	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93