POEL C13: Stany nieustalone, metoda operatorowa

1. Wyznaczyć transformaty Laplace'a sygnałów przedstawionych na poniższych rysunkach. Wskazówka: $x(t-t_0) \leftrightarrow X(s)e^{-st_0}, t_0 \ge 0.$

2. Posługując się tablicami transformat Laplace'a wyznaczyć odwrotną transformatę Laplace'a sygnału $\overline{y}(s)$. Następnie naszkicować przebieg wyznaczonego sygnału y(t).

a)
$$\overline{y}(s) = \frac{1}{s+2}$$

d)
$$\bar{y}(s) = \frac{2}{2s^2 + 2s + 1}$$

t

a)
$$\overline{y}(s) = \frac{1}{s+2}$$

b) $\overline{y}(s) = \frac{-5}{s^2+3.5s+1.5}$
c) $\overline{y}(s) = \frac{2(s+\frac{7}{6})}{2s^2+3s+1}$

e)
$$\overline{y}(s) = \frac{-2s}{s^2 + s + 0.5}$$

- 3. Do chwili $t_0=0$ w obwodzie panował stan ustalony. Wyznaczyć oraz naszkicować przebiegi prądu i(t) oraz napięcia u(t) dla $t \in (-\infty, +\infty)$.

4. Do chwili $t_0 = 0$ w obwodzie panował stan ustalony. W chwili t_0 przełączono klucz. Wyznaczyć i naszkicować przebieg prądu i(t) oraz napięcia u(t) dla $t \in (-\infty, +\infty)$.

Dane: E=6 V, C=10 nF, R=2 k Ω (a)

Dane: J=6 mA, L=10 mH, $R=2~\mathrm{k}\Omega$ (b)

5. W obwodzie przedstawionym na rysunku do chwili $t_0 = 0$ panował stan ustalony. W chwili t_0 zwarto klucz. Wyznaczyć i naszkicować przebieg prądu i(t) dla $t \in (-\infty, +\infty)$.

6. W obwodzie przedstawionym na rysunku do chwili $t_0=0$ panował stan ustalony. Wyznaczyć i naszkicować przebieg prądu i(t) dla $t\in(-\infty,+\infty)$.

