1		9.0	10	0 <i>h</i>	20	9.0	11	0.1	10	90	4.4	0 f	40	9 0	1 f	0 h	21	9;	1 0	0 i	20	012	16	01	1 i	Q _m	4 6	9 m	112	90	41	0 _m
	<u>a</u>	$\frac{8a}{1}$	$\frac{4a}{1}$	$\frac{8b}{1}$	$\frac{2a}{1}$	8c	$\frac{4b}{1}$	8 <i>d</i>	$\frac{4c}{1}$	8e	$\frac{4d}{1}$	8 <i>f</i>	$\frac{4e}{1}$	8 <i>g</i>	$\frac{4f}{1}$	$\frac{8h}{1}$	$\frac{2b}{1}$	8i	$\frac{4g}{1}$	$\frac{8j}{1}$	$\frac{2c}{1}$	$\frac{8k}{1}$	$\frac{4h}{1}$	81	$\frac{4i}{1}$	8 <i>m</i>	$\frac{4j}{1}$	$\frac{8n}{1}$	$\frac{4k}{1}$	80	$\frac{4l}{1}$	8p
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	-1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1	-1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	1	1	1	1	1	1	_1 _1	_1	_1 _1	-1	_1 _1	_1	_1 _1	_1 _1	1	1	1	1	1	1	1	1	_1 _1	_1	_1 _1	-1	_1 _1	-1	_1 _1	-1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	_1 _1	1	_1 _1	1	_1 _1	1	-1	_1	1	_1	1	_1 _1	1	_1 _1	1	1	_1 _1	1	_1 _1	1	_1	1	_1 _1	_1 _1	1	_1 _1	1	_1 _1	1	_1 _1	1
$\begin{pmatrix} \chi_4 \\ \chi_5 \end{pmatrix}$	1	E(4)	_1 _1	-E(4)	1	E(4)	_1 _1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	_1 _1	-E(4)	1	E(4)	_1 _1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
$\begin{pmatrix} \chi_5 \\ \chi_6 \end{pmatrix}$		-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
$\left \begin{array}{c} \chi_0 \\ \chi_7 \end{array}\right $		E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)
$\left \begin{array}{c} \chi_1 \\ \chi_8 \end{array}\right $		-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)
$\left \begin{array}{c} \chi_{9} \\ \chi_{9} \end{array}\right $	1	1	1	1	1	1	1	1	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)	-1	-1	-1	-1	-1	$-\dot{1}$	-1	-1	-E(4)	$-\dot{E(4)}$	-E(4)	-E(4)	-E(4)	$-\stackrel{\circ}{E}\stackrel{\circ}{(4)}$	-E(4)	-E(4)
χ_{10}	1	-1	1	-1	1	-1	1	-1	E(4)	-E(4)	E(4)	$-\dot{E(4)}$	E(4)	$-\dot{E(4)}$	E(4)	$-\dot{E(4)}$	-1	1	-1	1	-1	1	-1	1	-E(4)	E(4)	-E(4)	E(4)	-E(4)	E(4)	-E(4)	E(4)
χ_{11}	1	1	1	1	1	1	1	1	$-\dot{E(4)}$	-E(4)	$-\dot{E(4)}$	-E(4)	$-\dot{E(4)}$	-E(4)	$-\dot{E(4)}$	-E(4)	-1	-1	-1	-1	-1	-1	-1	-1	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)	E(4)
χ_{12}	1	-1	1	-1	1	-1	1	-1	-E(4)	E(4)	-E(4)	E(4)	-E(4)	E(4)	-E(4)	E(4)	-1	1	-1	1	-1	1	-1	1	E(4)	-E(4)	E(4)	-E(4)	E(4)	-E(4)	E(4)	-E(4)
χ_{13}	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1
χ_{14}	1 -	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1
χ_{15}		E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1
X16		-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1
χ_{17}		E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$
X18		-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^{3}$	-1		-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$
χ19		E(8)	E(4)	$E(8)^3$	-1	-E(8)	-E(4)	$-E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^3$	1	E(8)	E(4)	$E(8)^3$	-1	-E(8)	-E(4)	$-E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^3$
χ_{20}		-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^{3}$
χ_{21}		\ /	-E(4)	E(8)		$-E(8)^3$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_{22}		\ /	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-l	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-l	$E(8)^3$	E(4)	$\frac{E(8)}{E(8)}$
χ_{23}		` /	-E(4)	E(8)		$-E(8)^{3}$	E(4)	-E(8)	-l 1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	1	$E(8)^3$	-E(4)	E(8)	-l	$-E(8)^{3}$	E(4)	-E(8)	-l 1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)
χ_{24}		$E(8)^3$ $E(8)$	-E(4) $E(4)$	-E(8) $E(8)^3$	$-1 \\ -1$	$E(8)^3 - E(8)$	E(4) - E(4)	$E(8) - E(8)^3$	-1 $E(4)$	$E(8)^3$	E(4) -1	$E(8) \\ -E(8)$	-E(4)	$-E(8)^3$ $-E(8)^3$	-E(4)	-E(8)	1 1	$-E(8)^3$ - $E(8)$	-E(4) - E(4)	$-E(8) - E(8)^3$	-l	$E(8)^3$	E(4) $E(4)$	$E(8) E(8)^3$	$-1 \\ -E(4)$	$E(8)^3 - E(8)^3$	E(4)	E(8) E(8)	E(4)	$-E(8)^3$ $E(8)^3$	$-E(4) \\ -1$	$ \begin{array}{c c} -E(8) \\ -E(8) \end{array} $
χ_{25}		-E(8)	E(4) $E(4)$	$-E(8)^3$	-1	E(8)	-E(4) - E(4)	$E(8)^3$	E(4) $E(4)$	$E(8)^3 - E(8)^3$	-1 -1	E(8)	-E(4) - E(4)	$E(8)^3$	1	E(8) - E(8)	-1 -1	E(8)	-E(4) - E(4)	$E(8)^3$	1	E(8) - E(8)	E(4) $E(4)$	$-E(8)^3$	-E(4) - E(4)	$E(8)^3$	1	-E(8)	E(4) $E(4)$	$-E(8)^3$	-1 -1	E(8)
χ_{26}		E(8)	E(4) $E(4)$	$E(8)^3$	-1	-E(8)	-E(4) - E(4)	$-E(8)^3$	-E(4)	$-E(8)^3$	-1 1	E(8)	E(4)	$E(8)^3$	-1	-E(8) -E(8)	_1 _1	-E(8)	-E(4) - E(4)	$-E(8)^3$	1	E(8)	E(4) $E(4)$	$E(8)^3$	E(4)	$E(8)^3$	-1	-E(8) - E(8)	-E(4)	$-E(8)^3$	- ₁	E(8)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-E(8)	E(4)	$-E(8)^3$	-1	E(8)	-E(4)	$E(8)^3$	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^3$	-1	E(8)	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)	E(4)	$-E(8)^3$	E(4)	$-E(8)^3$	-1	E(8)	-E(4)	$E(8)^3$	1	-E(8)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		` _′	-E(4)	E(8)		$-E(8)^3$	E(4)	-E(8)	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^3$	_	$-E(8)^3$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-E(4)	E(8)	-1	$-E(8)^3$	E(4)	-E(8)	1	$E(8)^3$
$\begin{vmatrix} \chi_{29} \\ \chi_{30} \end{vmatrix}$		` ′ ^	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^3$	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$
$\begin{vmatrix} \chi_{30} \\ \chi_{31} \end{vmatrix}$. ` . 6	-E(4)	E(8)	-1	$-E(8)^3$	E(4)	-E(8)	-E(4)	E(8)	-1	$-E(8)^3$	E(4)	-E(8)	1	$E(8)^3$		$-E(8)^3$	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	E(4)	-E(8)	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$
$\begin{vmatrix} \chi_{31} \\ \chi_{32} \end{vmatrix}$			-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^3$

Trivial source character table of $G \cong C8 \times C4$ at p=2:

Trivial source character table of $G \cong C8 \times C4$ at $p=2$:													
Normalisers N_i	$N_1 \mid N_2$	$_{2}\mid N_{3}\mid N$	$I_4 \mid N_5 \mid \Lambda$	$V_6 \mid N_7 \mid$	$N_8 \mid N_9 \mid$	$N_{10} \mid N$	$V_{11} N_{12} $	N_{13} N_1	$_{14} N_{15} $	$N_{16} \mid N_{1'}$	$_{17} \mid N_{18} \mid I$	$N_{19} \mid N_{20} \mid$	$N_{21} \mid N_{22}$
p-subgroups of G up to conjugacy in G	$P_1 \mid P_2$	P_3 P_3	$P_4 \mid P_5 \mid P_5$	P_6 P_7	P_8 P_9	P_{10} P	$P_{11} P_{12} $	P_{13} P_1	$A_4 P_{15}$	$\overline{P_{16}}$ P_{1}	P_{18} P_{18}	$\overline{P_{19}}$ $\overline{P_{20}}$	$P_{21} \mid P_{22}$
Representatives $n_j \in N_i$	$1a \mid 1a$	$a \mid 1a \mid 1$	$a \mid 1a \mid 1$	$a \mid 1a \mid$	$1a \mid 1a \mid$	$1a \mid 1$	a $1a$	1a $1a$	a = 1a	1a $1a$	$a \mid 1a \mid 1$	1a $1a$	1a $1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 1 \cdot $	32 0	0	0 (0 0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	16 16	6 0	0 (0 0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{19} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	16 0	16	0 (0 0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{11} + 0 \cdot $	16 0	0 1	6 0 (0 0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	8 8	8	8 8 (0 0		0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	8 8	0	0 0	8 0	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $		0		0 8	0 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 1 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$	8 0	8	0 (0 0	8 0	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 1 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$	8 0	8	0 (0 0	0 8	0 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot $	8 0	0	8 0 (0 0	0 0	8 (0 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{31} +$	8 0	0	8 0 (0 0	0 0	0	8 0	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 1 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$	4 4	4	4 4	4 4	0 0	0 (0 4	0 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$	4 4	0	0 4	4 0	0 0	0 (0 0	4 0	0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$		0	0 0	4 0	0 0	0 (0 0	0 4	. 0	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 1 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$		4	1 4 (0 0	4 4	0 (0 0	0 0	4	0 0	0	0 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$		4	1 4 (0 0	0 0	4	4 0	0 0	, 0	4 0	0	0 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$		0	0 (0 4	0 0	0 (0 0	0 0	, 0	0 4	. 0	0 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} +$		0	0 (0 4	0 0	0 (0 0	0 0	, 0	0 0	4	0 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32}$		2	2 2 2	2 2	0 0	0 (0 2	2 2	0	0 0	0	2 0	0 0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} +$		2	2 2 2	2 2	2 2	2 5	2 2	0 0	, 2	2 0	0	0 2	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{34} + 0 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{34} +$		2	2 2 2	2 2	0 0	0 (0 2	0 0	, 0	0 2	. 2	0 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32}$		1	1 1 1	1 1	1 1	1 :	1 1	1 1	. 1	1 1	1	1 1	1 1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(5,9)(6,10)(7,11)(8,12)]) \cong C2$

 $P_3 = Group([(1,3)(2,4)]) \cong C2$

 $P_4 = Group([(1,3)(2,4)(5,9)(6,10)(7,11)(8,12)]) \cong C2$ $P_5 = Group([(5,9)(6,10)(7,11)(8,12),(1,3)(2,4)]) \cong C2 \times C2$

 $P_6 = Group([(5,9)(6,10)(7,11)(8,12),(5,7,9,11)(6,8,10,12)]) \cong C4$ $P_7 = Group([(5,9)(6,10)(7,11)(8,12),(1,3)(2,4)(5,7,9,11)(6,8,10,12)]) \cong C4$

 $P_8 = Group([(1, 2, 3, 4), (1, 3)(2, 4)]) \cong C4$

 $P_9 = Group([(1,2,3,4)(5,9)(6,10)(7,11)(8,12),(1,3)(2,4)]) \cong C4$

 $P_{10} = Group([(1, 2, 3, 4)(5, 7, 9, 11)(6, 8, 10, 12), (1, 3)(2, 4)(5, 9)(6, 10)(7, 11)(8, 12)]) \cong C4$ $P_{11} = Group([(1,2,3,4)(5,11,9,7)(6,12,10,8),(1,3)(2,4)(5,9)(6,10)(7,11)(8,12)]) \cong C4$

 $P_{12} = Group([(5,9)(6,10)(7,11)(8,12),(5,7,9,11)(6,8,10,12),(1,3)(2,4)]) \cong C4 \times C2$

 $P_{13} = Group([(5,9)(6,10)(7,11)(8,12), (5,6,7,8,9,10,11,12), (5,7,9,11)(6,8,10,12)]) \cong C8$

 $P_{14} = Group([(5,9)(6,10)(7,11)(8,12),(1,3)(2,4)(5,6,7,8,9,10,11,12),(5,7,9,11)(6,8,10,12)]) \cong \mathbb{C}8$

 $P_{15} = Group([(5,9)(6,10)(7,11)(8,12),(1,2,3,4),(1,3)(2,4)]) \cong C4 \times C2$

 $P_{16} = Group([(5,9)(6,10)(7,11)(8,12),(1,2,3,4)(5,7,9,11)(6,8,10,12),(1,3)(2,4)]) \cong C4 \times C2$

 $P_{17} = Group([(5,9)(6,10)(7,11)(8,12),(1,2,3,4)(5,6,7,8,9,10,11,12),(1,3)(2,4)(5,7,9,11)(6,8,10,12)]) \cong \mathbb{C}8$

 $P_{18} = Group([(5,9)(6,10)(7,11)(8,12),(1,4,3,2)(5,6,7,8,9,10,11,12),(1,3)(2,4)(5,7,9,11)(6,8,10,12)]) \cong C8$ $P_{19} = Group([(5,9)(6,10)(7,11)(8,12), (5,7,9,11)(6,8,10,12), (1,3)(2,4), (5,6,7,8,9,10,11,12)]) \cong C8 \times C2$

 $P_{20} = Group([(5,9)(6,10)(7,11)(8,12), (5,7,9,11)(6,8,10,12), (1,3)(2,4), (1,2,3,4)]) \cong C4 \times C4$

 $P_{21} = Group([(5,9)(6,10)(7,11)(8,12),(5,7,9,11)(6,8,10,12),(1,3)(2,4),(1,2,3,4)(5,6,7,8,9,10,11,12)]) \cong C8 \times C2$

 $P_{22} = Group([(5,9)(6,10)(7,11)(8,12),(5,7,9,11)(6,8,10,12),(1,3)(2,4),(5,6,7,8,9,10,11,12),(1,2,3,4)]) \cong C8 \times C4$

 $N_1 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_2 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_3 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_4 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_5 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_6 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_7 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_8 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_9 = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{10} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{11} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{12} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_{13} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{14} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_{15} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{16} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{17} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{18} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{19} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_{20} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$

 $N_{21} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$ $N_{22} = Group([(1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)]) \cong C8 \times C4$