Correction

1. On peut déjà remarquer que $\mathcal{D}_f =]-1,2[$ donc si f est développable en série entière le rayon de convergence R de son développement en série entière vérifiera $R \leq 1$ (en effet f coïncidera avec son développement en série entière sur]-R,R[qui doit être inclus dans \mathcal{D}_f .

Soit $x \in]-1, 2[$, $f(x) = \ln(1+x) - \ln(2-x) = \ln(1+x) - \ln 2 - \ln(1-\frac{x}{2})$.

- ▶ $x \mapsto \ln(1+x)$ est développable en série entière sur] -1,1[et $\forall x \in]-1,1[$, $\ln(1+x)=\sum\limits_{n=1}^{+\infty}\frac{(-1)^{n+1}x^n}{n}.$ ▶ $x \mapsto \ln\left(1-\frac{x}{2}\right)$ est développable en série entière sur] -2,2[(on
- doit avoir $\frac{x}{2} \in]-1,1[)$ et $\forall x \in]-2,2[\ln(1-\frac{x}{2})=-\sum_{n=1}^{+\infty}\frac{x^n}{n2^n}.$

Donc, par addition de fonctions développables en séries entières, f est développable en série entière sur]-1,1[(le plus petit des deux domaines de convergences des développements en série entière) et :

$$\forall x \in]-1,1[, f(x) = -\ln(2) + \sum_{n=1}^{+\infty} \left((-1)^{n+1} + \frac{1}{2^n} \right) \frac{x^n}{n}$$

Au passage le rayon de convergence du développement en série entière de fest $R = \min(1,2) = 1$ car $1 \neq 2$ (propriété du rayon de convergence de la somme de deux séries entières).

2. Puisque $x \mapsto \cos(x)$ est développable en série entière sur \mathbb{R} , $x \mapsto \cos^4(x)$ l'est également sur \mathbb{R} par produit.

Soit
$$x \in \mathbb{R}$$
, $\cos^4(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^4 = \frac{1}{2^4} \left(e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}\right) = \frac{1}{8} \cos(4x) + \frac{1}{2} \cos(2x) + \frac{3}{8}.$ En utilisant le développement en série entière de cos on obtient :

$$\forall x \in \mathbb{R}, \cos^{4}(x) = \frac{1}{8} \sum_{n=0}^{+\infty} (-1)^{n} \frac{(4x)^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{(2x)^{2n}}{(2n)!} + \frac{3}{8}$$
$$= \left[1 + \sum_{n=1}^{+\infty} (-1)^{n} \frac{4^{2n} + 2^{2n+2}}{8(2n)!} x^{2n} \right]$$