EUGENE TSAO

eugenejtsao(at)gmail.com www.eugenetsao.com

EDUCATION

Washington University in St. Louis

Graduated May 2017 B.A. in Physics, Minor: German Cum Laude with Thesis, GPA: 3.74

Dean's List: Fall 2013, Fall 2014—Spring 2017

Goethe-Institut

Summer 2014, Göttingen, Germany Göttingen Fellowship for German Language Study

WORK & ACTIVITIES

Uncle Joe's Peer Counseling and Resource Center

Social Chair, 2015—2016 Recruitment, 2014 & 2016

Served as crisis call-line and walk-in counselor 2014–2015; as social chair planned and expanded community building events including 3 day end-of-year retreat serving 40+ counselors.

LAUNCH Pre-Orientation

Group Leader, 2014—2016

Led small (12 person) groups of freshman ("families") in team building and diversity related activities before the beginning of the academic year.

Asian Pacific Islander American Initiative

Member, 2014—2015

Met with administrators and faculty to expand Asian and Pacific Islander American (APIA) related coursework and minority faculty hires.

Silver Leaf Farms

Farmhand, June 2015, Corrales, New Mexico

Worked as a farmhand on a small, organic farm that delivers sustainable, locally grown produce to the Albuquerque area, and sold produce at local farmers markets.

RESEARCH

Henriksen Experimental Physics Lab

Research Assistant Fall 2015—Spring 2017

Delos Fellowship for Research in Physics Summer 2016

Thesis: Classical Magnetic Frustration
Designed, constructed, and analyzed an ensemble
of interacting bar magnets that serves as a classical
analogue to the quantum spin glass state, which is
intimately connected to neural network theory.

- Extensive prototyping and machining in aluminum, brass, and plastic, including the use of SolidWorks CAD and CNC machining
- Fabrication of 156+ air bearing and floating magnet units to form a system of freely interacting, floating magnets capable of a variety of 2-D formations such as square, triangular, and kagome lattices
- Monte Carlo simulation of interacting finite-length dipole arrays and comparison with statics of experimental ensemble in 1-D chain and square lattice using Mathematica

Presented research at 2017 American Physical Society March Meeting.

SKILLS

Computer Simulation

Mathematical modeling in Mathematica and MatLab

Machining & Electronics

Part design and fabrication in metal and plastic with lathe, mill, and CNC mill; as well as analog circuit design and construction

Languages

English—Native Fluency German—Professional Fluency