

Ayudantía 10 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

11 de noviembre de 2022

Recuerdo 1 (Propiedad universal del cociente). Sean X, Y espacios vectoriales normados y $T \in \mathcal{L}(X, Y)$ operador lineal continuo. Entonces para $M \subseteq \ker(T)$ subespacio vectorial existe un operador lineal continuo inducido T: $X/M \to Y$ de tal modo que

i.e., $T = \widetilde{T} \circ \pi$ donde $\pi : X \to X/M$ es la proyección al cociente, que también es un operador lineal continuo y de norma $\|\pi\|_{\mathcal{L}(X,X/M)} = 1$. En particular, si $M = \ker(T)$ entonces \widetilde{T} es inyectiva, $\operatorname{ran}(T) = \operatorname{ran}(\widetilde{T})$ y $\|T\|_{\mathcal{L}(X,Y)} = 1$ $||T||_{\mathcal{L}(X/\ker(T),Y)}$.

Recuerdo 2 (base ortonormal e Identidad de Parseval). Sea $(H;\langle\cdot,\cdot\rangle_H)$ espacio de Hilbert. Decimos que una sucesión $\{e_k\}_{k\in\mathbb{N}}\subseteq X$ es ortonormal si

$$\langle e_k, e_{k'} \rangle = \begin{cases} 1 & \text{si} \quad k = k' \\ 0 & \text{si} \quad k \neq k' \end{cases}$$

Decimos además que $\{e_k\}_{k\in\mathbb{N}}$ es una base ortonormal si

$$\langle e_k, x \rangle_H = 0 \quad \forall k \in \mathbb{N} \Rightarrow \quad x = 0$$

Si $\{e_k\}_{k\in\mathbb{N}}$ es base ortonormal de H, entonces para todo $x\in X$

$$x = \lim_{n \to \infty} \sum_{k=0}^{n} \langle e_k, x \rangle_H e_k$$
 $y \quad ||x||^2 = \sum_{k \in \mathbb{N}} |\langle e_k, x \rangle_H|^2$

Problema 1. Sean X,Y espacios de Banach y $T:X\to Y$ lineal acotado. Demuestre que ran(T) es cerrado si y solo si existe K > 0 tal que $d(x, \ker(T)) \leq K \|T(x)\|_Y$ para todo $x \in X$.

 $Demostración. \ (\Rightarrow)$ Sea $\widetilde{T}: \ker(T) \to Y$ el mapeo inducido en el cociente mediante $T = \widetilde{T} \circ \pi$. Claramente $\operatorname{ran}(T) = \operatorname{ran}(\widetilde{T})$ es cerrado (y por lo tanto Banach) y como \widetilde{T} es continuo, por teorema de la aplicación abierta \widetilde{T} es un isomorfismo sobre su imagen. La continuidad de la inversa entonces da la existencia de K>0 tal que

$$\|\widetilde{T}^{-1}(y)\|_{X/\ker(T)} \le K\|y\|_Y \qquad \forall y \in \operatorname{ran}(\widetilde{T})$$

Por lo tanto $||[x]||_{X/\ker(T)} \leq K||\widetilde{T}([x])||_Y$ para todo $x \in X$ y como $\widetilde{T}([x]) = T(x)$ por construcción, entonces se obtiene que

$$d(x, \ker(T)) = \|[x]\|_{X/\ker(T)} \le K\|T(x)\|_Y \qquad \forall x \in X$$

 (\Leftarrow) Sea $(y_n) \subseteq \operatorname{ran}(T)$ tal que $y_n \to y$ en Y y $(x_n) \subseteq X$ tal que $T(x_n) = y_n$ para todo $n \in \mathbb{N}$. Por hipótesis

$$||[x_n] - [x_m]||_{X/\ker(T)} = ||[x_n - x_m]||_{X/\ker(T)} = d(x_n - x_m, \ker(T)) \le K||T(x_n - x_m)||_Y = K||y_n - y_m||_Y \qquad \forall n, m \in \mathbb{N}$$

y como (y_n) es Cauchy deducimos que $([x_n])$ es Cauchy en $X/\ker(T)$, así que $[x_n] \to [x]$ para cierto $x \in X$. Ahora, por definición de la distancia como ínfimo podemos tomar $(z_n) \subseteq \ker(T)$ de tal forma que

$$||x_n - x - z_n||_X \le 2||[x_n] - [x]||_{X/\ker(T)} \quad \forall n \in \mathbb{N}$$

Así $x_n - z_n \to x$ en X y por continuidad de T, $T(x_n) = T(x_n - z_n) \to T(x)$, y por unicidad del límite y = T(x), de donde se obtiene que $y \in ran(T)$ y así el rango es cerrado.

MAT227 UTFSM

Problema 2. Sean X, Y espacios vectoriales normados, $T: X \to Y$ operador lineal acotado y $T': Y' \to X'$ su operador adjunto. Demuestre que T' es sobreyectivo si y solo si T es inyectivo y $T^{-1}: \operatorname{ran}(T) \to X$ es acotado.

Demostración. (\Rightarrow) Sabemos que $\ker(T) = \bot^{\ell} \operatorname{ran}(T') = \{0\}$ así que es directo que T es inyectivo. Como T' es sobreyectivo por el teorema de la aplicación abierta existe r > 0 tal que $B_{X'}(0,r) \subseteq T'(B_{Y'}(0,1))$ y multiplicando $B_{X'}(0,2) \subseteq T'(B_{Y'}(0,2/r))$. Así, si $||f||_{X'} < 2$ entonces existe $\ell \in Y'$ de norma $||\ell||_{Y'} < 2/r$ y $f = T'(\ell)$. Consideremos $x \in X \setminus \{0\}$. Por corolario de Hahn-Banach existe $f \in X'$ de norma 1 y verificando $f(x) = ||x||_X$, así que existe $\ell \in Y'$ tal que $f = T'(\ell)$ y $||\ell||_{Y'} < 2/r$. Luego

$$||x||_X = f(x) = T'(\ell)(x) = \ell(T(x)) \le ||\ell||_{Y'} ||T(x)||_Y \le \frac{2}{r} ||T(x)||_Y$$

y entonces

$$||T^{-1}(y)||_X \le \frac{2}{r}||y||_Y \qquad \forall y \in ran(T)$$

y así \widetilde{T}^{-1} es continua.

(\Leftarrow) Suponer ahora que T es inyectivo y T^{-1} continuo. Dado $L \in X'$ por hipótesis la composición $L \circ T^{-1}$ es acotada en ran(T) y por el teorema de extensión de Hahn-Banach existe $\ell \in Y'$ tal que $\ell(y) = L \circ T^{-1}(y)$ para todo $y \in \text{ran}(T)$. Si $x \in X$, por definición $T(x) \in \text{ran}(T)$ y entonces

$$T'(\ell)(x) = \ell(T(x)) = L(T^{-1}(T(x))) = L(x)$$

y vemos así que T' es sobreyectivo.

Problema 3. Sean X, Y espacios de Banach y $T: X \to Y$ un operador lineal acotado con rango cerrado. Demuestre que $\ker(T') \cong (Y/\operatorname{ran}(T))'$.

Demostración. Recordando que $\ker(T') = \operatorname{ran}(T)^{\perp}$ podemos definir

$$\varphi : \ker(T') \to (Y/\operatorname{ran}(T))', \qquad \ell \mapsto (\lambda : [y] \mapsto \ell(y))$$

puesto que

$$\ell(x + T(y)) = \ell(x) + \ell(T(y)) = \ell(x)$$

es decir, φ está bien definida pues el valor de ℓ no varía módulo elementos en ran(T). Más aún,

$$|\lambda[y]| = |\ell(y)| \le ||\ell||_{Y'} ||y + Tz||_Y \quad \forall y, z \in Y$$

Tomando ínfimo en $\operatorname{ran}(T)$ se obtiene que $|\lambda[y]| \leq \|\ell\|_{Y'}\|[y]\|_{Y/\operatorname{ran}(T)}$, y por lo tanto $\lambda \in (Y/\operatorname{ran}(T))'$. Además vemos que φ es continua pues

$$|\varphi(\ell)[y]| = |\lambda[y]| = |\ell(y)| \le \sup_{\|y\|_Y \le 1} |\ell(y)| = \|\ell\|_{Y'} \qquad \forall y \in \overline{B_Y(0,1)}$$

y recordando que $||[y]||_{Y/\operatorname{ran}(T)} \leq ||y||_Y$ entonces

$$\|\lambda\|_{(Y/\operatorname{ran}(T))'} = \sup_{\|[y]\|_{Y/\operatorname{ran}(T)} \le 1} |\lambda[y]| \le \|\ell\|_{Y'}$$

y así φ es continua.

Denotamos por $\pi: Y \to Y/\operatorname{ran}(T)$ la proyección al cociente y definimos la inversa de φ como

$$\psi: (Y/\operatorname{ran}(T))' \to \ker(T'), \qquad \lambda \mapsto \ell := \lambda \circ \pi$$

MAT227 UTFSM

continua pues π es continua y además

$$T'(\ell)(x) = \ell(T(x)) = \lambda \circ \pi(T(x)) = \lambda [Tx] = 0$$

gracias a que $\lambda \in (Y/\operatorname{ran}(T))'$ y entonces ψ está bien definida pues $\ell \in \ker(T')$. Note que

$$|\ell(y)| = |\lambda \circ \pi(y)| \leq \|\lambda\|_{(Y/\operatorname{ran}(T))'} \|\pi(y)\|_{Y/\operatorname{ran}(T)} \leq |\lambda\|_{(Y/\operatorname{ran}(T))'} \underbrace{\|\pi\|}_{=1} \|y\|_{Y}$$

así que ψ es continua pues $\|\ell\|_{Y'} \le |\lambda\|_{(Y/\operatorname{ran}(T))'}$ Por construcción se tiene que ψ es inversa de φ , y dado que probamos que $\|\lambda\|_{(Y/\operatorname{ran}(T))'} \le \|\ell\|_{Y'}$ y acabamos de probar la desigualdad contraria, tenemos que el isomorfismo es isométrico.

Problema 4. Sea H espacio de Hilbert real y $T \in \mathcal{L}(H)$. Muestre que el operador adjunto $T': H' \to H'$ se puede identificar con un operador $\widetilde{T}: H \to H$ verificando la siguiente identidad

$$\langle Tx, y \rangle_H = \langle x, \widetilde{T}y \rangle_H \qquad \forall x, y \in H$$

Demostración. Sea $T':H'\to H'$ el operador adjunto usual, es decir,

$$\langle \ell, Tx \rangle_{H',H} = \langle T'(\ell), x \rangle_{H',H} \quad \forall x, y \in H$$

Por el teorema de representación de Riesz existen $y, \overline{y} \in H$ tales que

$$\langle y, Tx \rangle_H = \langle \ell, Tx \rangle_{H', H} = \langle T'(\ell), x \rangle_{H', H} = \langle \overline{y}, x \rangle_H \qquad \forall x, y \in X$$

es decir, y, \overline{y} representan a $\ell, T'(\ell)$ respectivamente. Definimos $\widetilde{T}: H \to H$ como $\widetilde{T}(y) = \overline{y}$, el cual por construcción verifica la identidad deseada. Es directo verificar que \widetilde{T} es lineal, así que resta entonces probar que \widetilde{T} es continuo, y para ello empleamos la desigualdad de Cauchy-Schwarz como sigue:

$$\|\widetilde{T}(y)\|^2 = \langle \widetilde{T}(y), \widetilde{T}(y) \rangle_H = \langle y, T\widetilde{T}(y) \rangle \leq \|T\widetilde{T}(y)\|_H \|y\|_H \leq \|T\|_{\mathcal{L}(H)} \|\widetilde{T}\|_{\mathcal{L}(H)} \|y\|_H^2$$

y así \widetilde{T} es continuo.

Problema 5. Sea H espacio de Hilbert separable de dimensión infinita. Demuestre que H es isométricamente isomorfo a $H \times H$ con la norma $\|(x,y)\|_{H \times H} = (\|x\|_H^2 + \|y\|_H^2)^{1/2}$.

Demostración. Sea (e_n) base ortonormal de H^1 y definimos

$$T: H \to H \times H, \quad x \mapsto \left(\sum_{n \in \mathbb{N}} \langle x, e_{2n-1} \rangle e_n, \sum_{n \in \mathbb{N}} \langle x, e_{2n} \rangle e_n \right)$$

La aplicación anterior está bien definida por ortonormalidad (las series convergen) y es directo probar que es lineal por bilinealidad del producto interno. Construimos directaente la inversa de T como sigue:

$$S: H \times H \to H, \quad S(x_1, x_2) = \sum_{n \in \mathbb{N}} \langle x_1, e_n \rangle_H e_{2n-1} + \langle x_2, e_n \rangle_H e_{2n}$$

 $^{^1\}mathrm{Se}$ puede demostrar sin mucha dificultad que todo Hilbert separable posee una base ortonormal

MAT227 UTFSM

Verificamos que $T \circ S = \mathrm{id}_{H \times H}$. Para ello notamos que las relaciones de ortonormalidad dan:

$$(T \circ S)(x_1, x_2) = T \left(\sum_{n \in \mathbb{N}} \langle x_1, e_n \rangle_H e_{2n-1} + \langle x_2, e_n \rangle_H e_{2n} \right)$$

$$= \left(\sum_{n \in \mathbb{N}} \left\langle \left(\sum_{m \in \mathbb{N}} \langle x_1, e_m \rangle_H e_{2m-1} + \langle x_2, e_m \rangle_H e_{2m} \right), e_{2n-1} \right\rangle e_n,$$

$$\sum_{n \in \mathbb{N}} \left\langle \left(\sum_{m \in \mathbb{N}} \langle x_1, e_m \rangle_H e_{2m-1} + \langle x_2, e_m \rangle_H e_{2m} \right), e_{2n} \right\rangle e_n \right)$$

$$= \left(\sum_{n \in \mathbb{N}} \langle x_1, e_n \rangle_H e_n, \sum_{n \in \mathbb{N}} \langle x_2, e_n \rangle_H e_n \right)$$

$$= (x_1, x_2)$$

Con cálculos similares se prueba que $S \circ T = \mathrm{id}_H$. Verificamos entonces que es una isometría. En primer lugar usando la ortonormalidad vemos que

$$||T(x)||_{H\times H}^2 = \left\| \sum_{n\in\mathbb{N}} \langle x, e_{2n-1} \rangle e_n \right\|_H^2 + \left\| \sum_{n\in\mathbb{N}} \langle x, e_{2n} \rangle e_n \right\|_H^2$$
$$= \sum_{n\in\mathbb{N}} \langle x, e_{2n-1} \rangle^2 + \sum_{n\in\mathbb{N}} \langle x, e_{2n} \rangle^2$$
$$= ||x||_H^2$$

De forma similar

$$||S(x_{1}, x_{2})||_{H}^{2} = \left\| \sum_{n \in \mathbb{N}} \langle x_{1}, e_{n} \rangle_{H} e_{2n-1} + \langle x_{2}, e_{n} \rangle_{H} e_{2n} \right\|_{H}^{2}$$

$$= \left\| \sum_{n \in \mathbb{N}} \langle x_{1}, e_{n} \rangle_{H} e_{2n-1} \right\|_{H}^{2} + \left\| \sum_{n \in \mathbb{N}} \langle x_{2}, e_{n} \rangle_{H} e_{2n} \right\|_{H}^{2}$$

$$= \sum_{n \in \mathbb{N}} \langle x_{1}, e_{n} \rangle_{H}^{2} \langle e_{2n-1}, e_{2n-1} \rangle_{H}^{2} + \sum_{n \in \mathbb{N}} \langle x_{2}, e_{n} \rangle_{H}^{2} \langle e_{2n}, e_{2n} \rangle_{H}^{2}$$

$$= \sum_{n \in \mathbb{N}} \langle x_{1}, e_{n} \rangle_{H}^{2} + \sum_{n \in \mathbb{N}} \langle x_{2}, e_{n} \rangle_{H}^{2}$$

$$= \|x_{1}\|_{H}^{2} + \|x_{2}\|_{H}^{2}$$