1 Blatt 06

1.1 Aufgabe 1

1.2 Aufgabe 2

$$a_n = \frac{2n+1}{n+2}, \quad b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} \qquad \forall n \in \mathbb{N}$$
 (1.2.1)

a)

$$a_1 = 1$$
, $a_2 = \frac{5}{4}$, $a_3 = \frac{7}{5}$, $a_4 = \frac{9}{6}$, $a_5 = \frac{11}{7}$
 $b_1 = 1$, $b_2 = \frac{7}{4}$, $b_3 = \frac{7}{9}$, $b_4 = \frac{21}{16}$, $b_5 = \frac{21}{25}$

b) Da $b_1 < b_2$ aber $b_2 > b_3$ kann b_n nicht monoton sein. a_n monoton steigend?

$$a_n < a_{n+1} \qquad \forall n \tag{1.2.2}$$

Es gilt:

$$a_n = \frac{2n+1}{n+2} = \frac{2(n+1)-3}{n+2} = 2 - \frac{3}{n+2} \Longrightarrow a_{n+1} = 2 - \frac{3}{n+3}$$
 (1.2.3)

$$n+2 < n+3 \Longrightarrow \frac{1}{n+2} > \frac{1}{n+3} \Longrightarrow -\frac{1}{n+2} < -\frac{1}{n+3} \Longrightarrow 2 - \frac{3}{n+2} < 2 - \frac{3}{n+3}$$
 $\forall n$ (1.2.4)

c) Gibt es $c_a, C_a, c_b, C_b \in \mathbb{R}$: $c_a \le a_n \le C_a$

 $a_n \ge 0 \quad \forall n \in \mathbb{N}$, also $c_a = 0$.

Außerdem $a_n = 2 - \frac{3}{n+2}$ auch $a_n \le 2 \quad \forall n$

$$\Longrightarrow C_a = 2$$

Es gilt:

$$b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} = \frac{n^2 + (-1)^n \cdot n + 1}{n^2}$$

$$\geq \frac{n^2 - n + 1}{n^2} \geq \frac{n^2 - 2n + 1}{n^2} = \frac{(n - 1)^2}{n^2} \geq 0 \qquad \forall n \in \mathbb{N}$$
(1.2.5)

$$\Longrightarrow c_b = 0$$

Außerdem $\frac{1}{n} \le 1$, $\frac{1}{n^2} \le 1$.

Also

$$b_n = 1 + \frac{(-1)^n}{n} + \frac{1}{n^2} \le 1 + \frac{1}{n} + \frac{1}{n^2} \le 3$$

$$\Longrightarrow C_b = 3$$

d) Konvergenz?

 a_n : monotone Folgen und beschränkt $\stackrel{VL}{\Longrightarrow}$ konvergent. b_n : $\frac{1}{n}$, $\frac{1}{n^2}$ sind Nullfolgen und wegen ...

1.3 Aufgabe 3

1.4 Aufgabe 4