

INDEX

- 1. 배경
- 2. GAN이란?
- 3. Adversarial Nets
- 4. Theoretical Results
- 5. Experiments
- 6. Advantages and disadvantages
- 7. Conclusions and future work

1. 배경

기존의 생성모델

Markov chain or unrolled approximate inference network

별도의 테크닉 필요

기존의 생성모델 한계

- 확률론적인 모델들을 근사하는데 어려움
- ReLU와 같은 함수의 장점을 제대로 살리기 어려움

How do we get over it?

2. GAN이란?

GAN

생성자(Generator)와 판별자(Discriminator)의 MinMax 게임

오직 Neural Network만 사용

VS

위조지폐 위조범

Generator

위조지폐 판별 감별사

Discriminator

목적함수

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

G = Generator, D = Descriminator

V Maximize 조건

$$D(x) = 1$$

Fake=0, Real = 1

목적함수

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))].$$

G = Generator, D = Descriminator

V Minimize 조건

$$D(G(z))=1$$

목적함수

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

G = Generator, D = Descriminator

GAN 수렴 과정

Generator Distribution

———, Real image Distribution

Discriminator Distribution

Global Optimality

$$p_g = p_{data}$$

Proposition 1

$$D_G^*(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_q(oldsymbol{x})}$$
 G fixed

$$V(G, D) = E_{x \sim p_{data}(x)}[log D(x)] + E_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

$$= \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(z) \log(1 - D(g(z))) dz$$

$$= \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

$$= \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

function
$$y = a \log(y) + b \log(1 - y)$$
 $maximum = \frac{a}{a + b}$ in [0,1]

Theorem 1

$$p_g = p_{data}$$

$$p_g = p_{data}$$
 $\left(\text{KLD} : KL(p_{data} || p_g) = \int_{-\infty}^{\infty} p_{data}(x) \log \left(\frac{p_{data}(x)}{p_g(x)} \right) dx \right)$

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))] \qquad D_{G}^{*}(\boldsymbol{x}) = \frac{p_{\text{data}}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})}$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log D_{G}^{*}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right]$$

$$= E_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \left[\log \frac{2 * p_{\text{data}}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + E_{\boldsymbol{x} \sim p_{g}(\boldsymbol{x})} \left[\log \frac{2 * p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] - \log(4)$$

$$= KL(p_{\text{data}}||\frac{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})}{2}) + KL(p_{g}||\frac{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})}{2}) - \log(4)$$

$$= 2 * JSD(p_{\text{data}}||p_{g}) - \log(4) \qquad \longleftrightarrow JSD(p||q) = \frac{1}{2}KL(p||\frac{p+q}{2}) + \frac{1}{2}KL(q||\frac{p+q}{2})$$

if
$$p_g = p_{data}$$

$$E_{x \sim p_{data}(x)} \left[log \frac{2 * p_{data}(x)}{p_{data}(x) + p_{g}(x)} \right] + E_{x \sim p_{g}(x)} \left[log \frac{2 * p_{g}(x)}{p_{data}(x) + p_{g}(x)} \right] - log(4)$$

$$0$$

$$= 2 * ISD(p_{data}||p_g) - \log(4) \qquad - \log(4)$$

Global Mimize point : $p_g = p_{data}$ Value : $-\log(4)$

Proposition 2

If G and D have enough capacity, and at each step of Algorithm 1, the D is allowed to reach its optimum given G, and p_q is updated so as to improve the criterion then p_a converges to p_{data}

$$V(G, D) = E_{x \sim p_{data}(x)}[log D(x)] + E_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

$$= \int_{x} p_{data}(x) \log(D(x)) dx + \int_{z} p_{z}(z) \log(1 - D(g(z))) dz$$

$$= \int_{x} p_{data}(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$$

V(G,D) is convex in p_a

5. Experiments

- 데이터 셋: MINIST, Toronto Face Database, CIFAR-10
- Generator nets: rectifier linear activation + sigmoid activation
- Discriminator net: maxout activation
- Dropout: Discriminator net에 적용하여 훈련

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [6]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

5. Experiments

6. Advantages and Disadvantages

단점

- $P_g(x)$ 의 명시적인 표현이 없음
- D가 훈련 중 G와 동기화가 잘 되어야 함

장점

- Markov chain이 필요 없음
- Gradients를 얻기 위해서 back-propagation만 사용
- 학습 중에 추론이 필요 없음
- 다양한 기능을 모델에 통합 가능

7. Conclusions and future work

- 1. Conditional generative model P(x|c)는 c를 G와 D에 모두 입력함으로써 얻어질 수 있다.
- 2. 학습된 근사 추론은 x가 주어진 z를 예측하도록 보조 네트워크를 학습하여 수행할 수 있다.
- 3. 모든 조건부 $P(x_s|x_g)$ 를 근사 모델링 할 수 있다.
- 4. 반-감독 학습
- 5. 효율성 향상

감사합니다 ^^