

数学(下)

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 极限和连续

- 1 数列的极限
- 2 函数的极限
- 3 极限的性质
- 4 无穷小和无穷大
- 5 极限的存在准则
- 6 函数的连续性

第一节 数列的极限

- 极限的引入
- ■极限的朴素定义
- 数列极限的定义
- 收敛数列的性质

在数学中, 很多时候我们需要描述一个无限过程的变化行为.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy=1 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy=1 的图像的渐近线是 x=0,y=0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy=1 的图像的渐近线是 x=0,y=0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy=1 的图像的渐近线是 x=0,y=0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy=1 的图像的渐近线是 x=0,y=0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题, 我们需要明确"渐近线"的含义.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题, 我们需要明确"渐近线"的含义. 朴素地讲, 渐近线是指: 若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时, 它到一条直线 l 的距离无限接近零, 则称直线 l 为曲线 C 的渐近线.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题, 我们需要明确"渐近线"的含义. 朴素地讲, 渐近线是指: 若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时, 它到一条直线 l 的距离无限接近零, 则称直线 l 为曲线 C 的渐近线. 而想要严格地描述"越来越无限接近"的含义, 就需要引入极限的概念.

例

一个物体在空间中移动, 它的位置坐标是 $s = (s_1, s_2, s_3)$, 其中 s_1, s_2, s_3 都是时间 t 的函数.

例

一个物体在空间中移动, 它的位置坐标是 $s = (s_1, s_2, s_3)$, 其中 s_1, s_2, s_3 都是时间 t 的函数. 它在时间段 [t, t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

例

一个物体在空间中移动, 它的位置坐标是 $s = (s_1, s_2, s_3)$, 其中 s_1, s_2, s_3 都是时间 t 的函数. 它在时间段 [t, t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' 越来越无限接近 t 时, 平均速度会无限接近它在时刻 t 的瞬时速度.

例

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s} = (s_1, s_2, s_3)$, 其中 s_1, s_2, s_3 都是时间 t 的函数. 它在时间段 [t, t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' 越来越无限接近 t 时, 平均速度会无限接近它在时刻 t 的瞬时速度. 同样, 我们需要利用极限来准确地描述它.

我<mark>國占</mark>代数学家刘徽为了计算圆周率 π, 采用无限逼近的思想建立了割圆法.

我 國 大 代 数 学 家 刘 徽 为 了 计 算 圆 周 率 π , 采 用 无 限 逼 近 的 思 想 建 立 了 割 圆 法 . 依 次 计 算 单 位 圆 的 内 接 和 外 切 正 $n = 6, 12, 24, 48, \ldots$ 边 形 的 面 积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

我 國 大 代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位 圆的内接和外切正 $n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

那么必定有 $A_n < \pi < B_n$.

我 國 大 代 数 学 家 刘 徽 为 了 计 算 圆 周 率 π , 采 用 无 限 逼 近 的 思 想 建 立 了 割 圆 法 . 依 次 计 算 单 位 圆 的 内 接 和 外 切 正 $n = 6, 12, 24, 48, \ldots$ 边 形 的 面 积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

我 國 大 代 数 学 家 刘 徽 为 了 计 算 圆 周 率 π , 采 用 无 限 逼 近 的 思 想 建 立 了 割 圆 法 . 依 次 计 算 单 位 圆 的 内 接 和 外 切 正 $n = 6, 12, 24, 48, \ldots$ 边 形 的 面 积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

n	A_n	B_n

我 國 大 代 数 学 家 刘 徽 为 了 计 算 圆 周 率 π , 采 用 无 限 逼 近 的 思 想 建 立 了 割 圆 法 . 依 次 计 算 单 位 圆 的 内 接 和 外 切 正 $n = 6, 12, 24, 48, \ldots$ 边 形 的 面 积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3 .00000000	3 .21539031

我<mark>國告</mark>代数学家刘徽为了计算圆周率 π, 采用<mark>无限逼近</mark>的思想建立了割圆法. 依次计算单位 圆的内接和外切正 n = 6, 12, 24, 48, ... 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

n	A_n	B_n
12	3 .00000000	3 .21539031
24	3.1 0582854	3.1 5965994

我<mark>國告</mark>代数学家刘徽为了计算圆周率 π, 采用<mark>无限逼近</mark>的思想建立了割圆法. 依次计算单位 圆的内接和外切正 n = 6, 12, 24, 48, ... 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3 .00000000	3 .21539031
24	3.1 0582854	3.1 5965994
48	3.1 3262861	3.14 608622

我<mark>國告</mark>代数学家刘徽为了计算圆周率 π, 采用<mark>无限逼近</mark>的思想建立了割圆法. 依次计算单位 圆的内接和外切正 n = 6, 12, 24, 48, ... 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3 .00000000	3 .21539031
24	3.1 0582854	3.1 5965994
48	3.1 3262861	3.14 608622
12288	3.141592 51	3.141592 72

我<mark>國告</mark>代数学家刘徽为了计算圆周率 π, 采用<mark>无限逼近</mark>的思想建立了割圆法. 依次计算单位 圆的内接和外切正 n = 6, 12, 24, 48, ... 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

\overline{n}	A_n	B_n
12	3 .00000000	3 .21539031
24	3.1 0582854	3.1 5965994
48	3.1 3262861	3.14 608622
12288	3.141592 51	3.141592 72
24576	3.14159262	3.14159267

我 國 $\frac{1}{2}$ 代数学家刘徽为了计算圆周率 π ,采用<mark>无限逼近</mark>的思想建立了割圆法. 依次计算单位 圆的内接和外切正 $n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = \frac{1}{2}n\sin 2\theta, \qquad B_n = n\tan \theta, \qquad \theta = \frac{\pi}{n},$$

那么必定有 $A_n < \pi < B_n$. 这个数列的递推关系可以由半角公式推得:

\overline{n}	A_n	B_n
12	3 .00000000	3 .21539031
24	3.1 0582854	3.1 5965994
48	3.1 3262861	3.14 608622
12288	3.141592 51	3.141592 72
24576	3.1415926 2	3.14159267

π.

由于 $A_n/B_n = \cos^2\theta$ 越来越趋近于 1, 所以 A_n, B_n 的"极限"就是 π .

极限可以按如下方式理解:

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to {\mathbb R}^{+} {\rm thr} \infty} f(x) = A$ 或 $y\to A(x\to {\mathbb R}^{+} {\rm thr} \infty)$.

极限的朴素定义

给定一个函数 y = f(x).

<u>当 x 越来越无限接近于某个</u>状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \frac{1}{2} \uparrow \downarrow \downarrow \Diamond} f(x) = A$ 或 $y\to A(x\to \frac{1}{2} \uparrow \downarrow)$.

极限可以按如下方式理解 $_{\mathbb{R}}$ 过程: $x \to \mathbb{R}$ 某个状态

记为 $y \to A$

极限的朴素定义

给定一个函数 y = f(x)

当 x 越来越无限接近于某个\\\\chi\cot\, y 无限接近某个值 A, 则 A 就是 y = f(x) 关于 $\lim_{x \to \mbox{\rlap{\rlap/$k}} \wedge \mbox{\rlap/$k}} \wedge \mbox{\rlap{\rlap/$k}} \wedge \mbox{\rlap{\rlap/$k}}$ 这个极限过程的极限, 记为

极限可以按如下方式理解 $_{\mathbb{R}}$ 以过程: $x \to$ 某个状态

记为 $y \rightarrow A$

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个 状态时, y 无限接近某个 值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$}} f(x)=A$ 或 $y\to A(x\to \hbox{$\mathbb{Z}$} \cap \hbox$

我们来将该表述严格化.

极限可以按如下方式理解 $_{\mathbb{R}}$ 以过程: $x \to$ 某个状态

记为 $y \rightarrow A$

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$}} f(x)=A$ 或 $y\to A(x\to \hbox{$\mathbb{Z}$} \cap \hbox{$$

我们来将该表述严格化. 先考虑数列的情形.

极限可以按如下方式理解 $_{\mathbb{R}}$ 以过程: $x \to$ 某个状态

记为 $y \rightarrow A$

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$}} f(x)=A$ 或 $y\to A(x\to \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$})$.

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的 无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

极限可以按如下方式理解 $_{\mathbb{R}}$ 权过程: $x \to$ 某个状态

记为 $y \rightarrow A$

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$} \cap \hbox{$\mathbb{Z}$}} f(x)=A$ 或 $y\to A(x\to \hbox{$\mathbb{Z}$} \cap \hbox{$$

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的 无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

其中 a_n 被称为它的第 n 项, 用于描述所有项的式子 $a_n = f(n)$ 被称为它的通项.

数列极限的定义

极限可以按如下方式理解 $_{\mathbb{R}}$ 权过程: $x \to$ 某个状态

记为 $y \rightarrow A$

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限, 记为 $\lim_{x\to \mbox{$\downarrow$} \mbox{$\uparrow$} \mbox{$\downarrow$} \mbox{$$

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的 无穷多个数

$$\{a_n\}_{n\geqslant 1}:a_1,a_2,\ldots,a_n,\ldots,$$

其中 a_n 被称为它的第 n 项, 用于描述所有项的式子 $a_n = f(n)$ 被称为它的通项. 不难看出, 一个数列和一个定义域是全体正整数的函数

$$f: \mathbb{N}_+ = \{1, 2, 3, \dots\} \to \mathbb{R}$$

是一回事.

所谓"越来越无限接近",是指"比任何正实数"都要接近.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon>0,\ |a_n-a|$ 最终是要小于 ε 的.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon>0$, $|a_n-a|$ 最终是要小于 ε 的. 即存在 $N=N_\varepsilon$ 使得当 n>N 时, $|a_n-a|<\varepsilon$.

数列极限的定义

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时,有 $|a_n - a| < \varepsilon$,

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \ \vec{\mathbf{x}} \ a_n\to a(n\to\infty).$$

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时,有 $|a_n - a| < \varepsilon$,

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \not a a_n\to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

数列极限的定义

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<arepsilon$ 。 $arepsilon^{arepsilon-N}$ 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \ \ \mathbf{\vec{g}} \ \ a_n\to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

数列极限的定义

定义

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < arepsilon ^{arepsilon - N}$ 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \ \ \mathbf{\vec{g}} \ \ a_n\to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<arepsilon$ 。 $arepsilon^{arepsilon-N}$ 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \not a a_n\to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$.

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon>0, \exists N$ 使得当 n>N 时,有 $|a_n-a|<arepsilon$ 。 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty}a_n=a \ \vec{\mathbf{x}} \ a_n\to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形.

设有数列 $\{a_n\}$. 如果存在常数 a 满足:

 $orall arepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < arepsilon$ 语言

则称该数列收敛, a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a_n \to a(n\to\infty).$$

如果不存在这样的常数 a,则称该数列发散(没有极限,不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \ge 100$ 的情形.

例

- "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,()"
 - (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
 - (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
 - (C) 只有有限项 a_n 满足 $|a_n a| \ge \varepsilon$
 - (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

例

- "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,(\subset)".
 - (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
 - (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
 - (C) 只有有限项 a_n 满足 $|a_n a| \ge \varepsilon$
 - (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

例

"极限 $\lim_{n\to\infty} a_n = a$ 存在"的充要条件是" $\forall \varepsilon > 0$,(C)".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \ge \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \overline{\varepsilon > 0}$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

例

- "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,(C)".
 - (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
 - (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
 - (C) 只有有限项 a_n 满足 $|a_n a| \ge \varepsilon$
 - (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 这等价于至多只有有限项 a_1, \ldots, a_N 满足 $|a_n - a| \geqslant \varepsilon$. 故选 C, 而 BD 均不正确.

例

- "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,(\bigcirc)".
 - (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
 - (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
 - (C) 只有有限项 a_n 满足 $|a_n a| \ge \varepsilon$
 - (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 这等价于至多只有有限项 a_1, \ldots, a_N 满足 $|a_n - a| \ge \varepsilon$. 故选 C, 而 BD 均不正确. 对于 A ,反例 $a_n = (-1)^n, a = 1$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

• 估计 $|a_n - a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_\varepsilon$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n-0|=|q|^n<\varepsilon$ 解得 $n>\log_{|q|}\varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n-0|=|q|^n<\varepsilon$ 解得 $n>\log_{|q|}\varepsilon$.

$$\forall \varepsilon > 0, \ \diamondsuit \ N = \log_{|q|} \varepsilon.$$

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_\varepsilon$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n-0|=|q|^n<\varepsilon$ 解得 $n>\log_{|q|}\varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n-0|=|q|^n<\varepsilon$ 解得 $n>\log_{|q|}\varepsilon$.

$$\forall \varepsilon > 0$$
, 令 $N = \log_{|q|} \varepsilon$. 当 $n > N$ 时,有 $|q^n - 0| = |q|^n < \varepsilon$. 所以 $\lim_{n \to \infty} q^n = 0$.

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
.

例

证明 $\lim_{n \to \infty} \frac{\sin n}{n} = 0.$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}. \ \forall \varepsilon > 0, \ \diamondsuit \ N = \frac{1}{\varepsilon}.$$

例

证明 $\lim_{n \to \infty} \frac{\sin n}{n} = 0.$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \le \frac{1}{n}$$
. $\forall \varepsilon > 0$, $\diamondsuit N = \frac{1}{\varepsilon}$. 当 $n > N$ 时, 有 $\left| \frac{\sin n}{n} - 0 \right| \le \frac{1}{n} < \varepsilon$.

例

证明 $\lim_{n \to \infty} \frac{\sin n}{n} = 0.$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
. $\forall \varepsilon > 0$, $\Leftrightarrow N = \frac{1}{\varepsilon}$. 当 $n > N$ 时, 有

$$\left|\frac{\sin n}{n} - 0\right| \leqslant \frac{1}{n} < \varepsilon.$$

所以
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

例

证明 $\lim_{n\to\infty}\frac{2n^2+2n-4}{n^2-8}=2.$

或们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \left| \frac{2n + 12}{n^2 - 8} \right|.$$

例

证明 $\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$

或何有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \left| \frac{2n + 12}{n^2 - 8} \right|$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$.

例

证明 $\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \left| \frac{2n + 12}{n^2 - 8} \right|$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, $\diamondsuit N = \max \left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$.

例

证明 $\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \left| \frac{2n + 12}{n^2 - 8} \right|$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max\left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$. 当 $n > N$ 时,有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| \le \frac{3}{n - 1} < \varepsilon.$$

例

证明 $\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \left| \frac{2n + 12}{n^2 - 8} \right|$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max \left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$. 当 $n > N$ 时,有

$$\left|\frac{2n^2 + 2n - 4}{n^2 - 8} - 2\right| \leqslant \frac{3}{n - 1} < \varepsilon.$$

所以
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 0.$$

定理 (唯一性)

收敛数列的极限是唯一的.

定理 (唯一性)

收敛数列的极限是唯一的.

证明

设a和b都是 $\{a_n\}$ 的极限.

定理 (唯一性)

收敛数列的极限是唯一的.

证明

设 \overline{a} 和 \overline{b} 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

定理 (唯一性)

收敛数列的极限是唯一的.

证明

设 \overline{a} 和 \overline{b} 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \le |a-a_n| + |a_n-b| < 2\varepsilon.$$

定理 (唯一性)

收敛数列的极限是唯一的.

证明

设 \overline{a} 和 \overline{b} 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \leqslant |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾!

定理 (唯一性)

收敛数列的极限是唯一的.

证明

设 \overline{a} 和 \overline{b} 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \leqslant |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾! 因此 $a = b$.

定理 (有界性)

收敛数列是有界数列.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \ldots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \ldots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \ldots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数 列.

收敛数列一定有界, 但反之未必.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于 $M = \max\{|a_1|, \ldots, |a_N|, |a|+1\}$, 有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列一定有界, 但反之未必.

例

对于数列 $\{a_n\} = (-1)^n$, 该数列是有界的但是不收敛.

定理 (保号性)

定理 (保号性)

(1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a$ <0, 则 $\exists N$ 使得当 n > N 时, 有 a_n <0.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty}a_n=a$ <0,则 $\exists N$ 使得当 n>N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty}a_n=a$ <0,则 $\exists N$ 使得当 n>N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2},$$

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty}a_n=a$ <0,则 $\exists N$ 使得当 n>N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty}a_n=a$ <0,则 $\exists N$ 使得当 n>N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a$ <0,则 $\exists N$ 使得当 n > N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里 > 0 不能换成 ≥ 0 , < 0 也不能换成 ≤ 0 .

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty}a_n=a$ <0,则 $\exists N$ 使得当 n>N 时,有 a_n <0.

证明

(1) $\forall \varepsilon > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 取 $\varepsilon = \frac{a}{2}$, 则

$$|a_n - a| < \frac{a}{2}, \qquad a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里
$$> 0$$
 不能换成 $\geqslant 0$, < 0 也不能换成 $\leqslant 0$. 例如 $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.

推论 (逆否命题)

推论 (逆否命题)

(1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geqslant 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geqslant 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论

如果收敛数列 $\{a_n\},\{b_n\}$ 满足从某项起 $a_n\geqslant b_n$,则 $\lim_{n o\infty}a_n\geqslant \lim_{n o\infty}b_n$.

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

对于正整数集的一个无限子集合 $S\subseteq\mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \dots, a_{k_n}, \dots$$

对于正整数集的一个无限子集合 $S\subseteq\mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \dots, a_{k_n}, \dots$$

特别地, 当 S 为全体正奇数时, 称 $\{a_{2n-1}\}_{n\geqslant 1}$ 为奇子数列; 当 S 为全体正偶数时, 称 $\{a_{2n}\}_{n\geqslant 1}$ 为偶子数列.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

数列与子数列的极限关系

定理

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$.

定理

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0, \exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

定理

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (
$$\Leftarrow$$
): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

定理

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0, \exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (\Leftarrow): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

所以当 $n > \max\{2N-1, 2M\}$ 时,有 $|a_n-a| < \varepsilon$. 故数列 $\{a_n\}$ 收敛到 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

这是因为 $\forall \varepsilon > 0, \exists N_i$ 使得 S_i 中至多有 N_i 个元素 n 不满足 $|a_n - a| < \varepsilon$,

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

这是因为 $\forall \varepsilon>0, \exists N_i$ 使得 S_i 中至多有 N_i 个元素 n 不满足 $|a_n-a|<\varepsilon$, 从而当

$$n > N_1 + N_2 + \dots + N_m$$

时, $|a_n - a| < \varepsilon$.

然而对于无穷多个 S_i , 这是不对的.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$,

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0,

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

在数学中, 常常有这种在有限情形成立, 无限情形不成立的结论. 因此遇到涉及无物情形要小心。

第二节 函数的极限

- 函数极限的定义
- ■函数极限的证明

我们仿造数列的极限来定义 $x \to +\infty$ 时 f(x) 的极限.

我们仿造数列的极限来定义 $x\to +\infty$ 时 f(x) 的极限. 回忆数列的 $\varepsilon\text{-}N$ 语言:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

我们仿造数列的极限来定义 $x\to +\infty$ 时 f(x) 的极限. 回忆数列的 ε -N 语言:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设 x > M 时函数 f(x) 有定义.

我们仿造数列的极限来定义 $x \to +\infty$ 时 f(x) 的极限. 回忆数列的 ε -N 语言:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x > X 时,有 $|f(x) - A| < \varepsilon$,

我们仿造数列的极限来定义 $x \to +\infty$ 时 f(x) 的极限. 回忆数列的 ε -N 语言:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x > X 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to +\infty$ 时的极限, 记为 $\lim_{x \to +\infty} f(x) = A$ 或 $f(x) \to A(x \to +\infty)$.

我们仿造数列的极限来定义 $x \to +\infty$ 时 f(x) 的极限. 回忆数列的 ε -N 语言:

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

定义

设 x > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $orall arepsilon > 0, \exists X$ 使得当 x > X 时, 有 $|f(x) - A| < \stackrel{\varepsilon}{\varepsilon}$, 语言

则称 A 为 f(x) 当 $x \to +\infty$ 时的极限, 记为 $\lim_{x \to +\infty} f(x) = A$ 或 $f(x) \to A(x \to +\infty)$.

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

仿造上述定义, 我们有:

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

仿造上述定义, 我们有:

定义

设x < -M 时函数 f(x) 有定义.

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

仿造上述定义, 我们有:

定义

设x < -M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 x < -X 时,有 $|f(x) - A| < \varepsilon$,

从图像上看, 就是函数在 $(X, +\infty)$ 上的图像被夹在直线 $y = A \pm \varepsilon$ 之间.

仿造上述定义, 我们有:

定义

设 x < -M 时函数 f(x) 有定义. 如果存在常数 A 满足:

$$\forall \varepsilon > 0, \exists X$$
 使得当 $x < -X$ 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to -\infty$ 时的极限, 记为 $\lim_{x \to -\infty} f(x) = A$.

定义

设 |x| > M 时函数 f(x) 有定义.

定义

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

定义

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

定义

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x\to\infty, x\to+\infty, x\to-\infty$, 而数列情形只有 $n\to\infty$, 因为 n 是正整数.

定义

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

 $\forall \varepsilon > 0, \exists X$ 使得当 |x| > X 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x\to\infty, x\to+\infty, x\to-\infty$, 而数列情形只有 $n\to\infty$, 因为 n 是正整数.

类似于数列极限与子数列极限的关系, 我们有

定义

设 |x| > M 时函数 f(x) 有定义. 如果存在常数 A 满足:

$$\forall \varepsilon > 0, \exists X$$
 使得当 $|x| > X$ 时,有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为 $\lim_{x \to \infty} f(x) = A$.

注意, 函数极限中需要分清 $x\to\infty, x\to+\infty, x\to-\infty$, 而数列情形只有 $n\to\infty$, 因为 n 是正整数.

类似于数列极限与子数列极限的关系, 我们有

定理

$$\lim_{x \to \infty} \overline{f(x)} = A \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A.$$

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时,

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

函数在一点的极限

类似地, 当 x 越来越接近 x_0 时, 如果函数值 f(x) 越来越接近常数 A, 则 A 就是 $x \to x_0$ 时的极限.

函数在一点的极限

为了陈述方便, 我们引入去心邻域的概念.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\mathring{U}(x_0, \delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 f(x) 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$orall arepsilon > 0, \exists \delta > 0$$
 使得当 $x \in \overset{\circ}{U}(x_0, \delta)$ 时,有 $|f(x) - A| < \varepsilon$,

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 $\overline{f}(x)$ 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$orall arepsilon>0, \exists \delta>0$$
 使得当 $x\in \overset{\circ}{U}(x_0,\delta)$ 时,有 $|f(x)-A|,$

则称 A 为 f(x) 当 $x \to x_0$ 时的极限, 记为 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A(x \to x_0)$.

定义

设 $\delta > 0$. x_0 的去心 δ 邻域是指

$$\overset{\circ}{U}(x_0,\delta) = \{x : 0 < |x - x_0| < \delta\} = (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

定义

设函数 $\overline{f}(x)$ 在 x_0 的某个去心邻域内有定义. 如果存在常数 A 满足

$$orall arepsilon>0, \exists \delta>0$$
 使得当 $x\in \overset{\circ}{U}(x_0,\delta)$ 时,有 $|f(x)-A|,$

则称 A 为 f(x) 当 $x \to x_0$ 时的极限, 记为 $\lim_{x \to x_0} f(x) = A$ 或 $f(x) \to A(x \to x_0)$.

类似地可以定义单侧极限:

类似地可以定义单侧极限:

$$\lim_{x\to x_0^+} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0}, \mathbf{x_0} + \delta) \ \text{时, } \mathbf{6} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

$$\lim_{x\to x_0^-} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0} - \delta, \mathbf{x_0}) \ \text{时, } \mathbf{6} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

类似地可以定义单侧极限:

$$\lim_{x\to x_0^+} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0}, \mathbf{x_0} + \delta) \ \text{时,} \ \mathbf{6} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

$$\lim_{x\to x_0^-} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0} - \delta, \mathbf{x_0}) \ \text{时,} \ \mathbf{6} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

同样地, 我们有:

定理

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

类似地可以定义单侧极限:

$$\lim_{x\to x_0^+} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0}, \mathbf{x_0} + \delta) \ \text{时,} \ \mathbf{f} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

$$\lim_{x\to x_0^-} f(x) = A \iff \forall \varepsilon > \mathbf{0}, \exists \delta > \mathbf{0} \ \text{使得当} \ \mathbf{x} \in (\mathbf{x_0} - \delta, \mathbf{x_0}) \ \text{时,} \ \mathbf{f} \ |\mathbf{f}(\mathbf{x}) - \mathbf{A}| < \varepsilon.$$

同样地, 我们有:

定理

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

为了简便,我们记
$$f(x_0^+) = \lim_{x \to x_0^+} f(x)$$
, $f(x_0^-) = \lim_{x \to x_0^-} f(x)$.

类似地可以定义单侧极限:

$$\lim_{x\to x_0^+}f(x)=A\iff \forall \varepsilon>\mathbf{0}, \exists \delta>\mathbf{0} \ \text{使得当}\ \mathbf{x}\in (\mathbf{x_0},\mathbf{x_0}+\delta)\ \text{时,}\ \mathbf{f}\ |\mathbf{f}(\mathbf{x})-\mathbf{A}|<\varepsilon.$$

$$\lim_{x\to x_0^-}f(x)=A\iff \forall \varepsilon>\mathbf{0}, \exists \delta>\mathbf{0} \ \text{使得当}\ \mathbf{x}\in (\mathbf{x_0}-\delta,\mathbf{x_0})\ \text{时,}\ \mathbf{f}\ |\mathbf{f}(\mathbf{x})-\mathbf{A}|<\varepsilon.$$

同样地, 我们有:

定理

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A.$$

为了简便,我们记 $f(x_0^+) = \lim_{\substack{x \to x_0^+ \\ x \to x_0^-}} f(x)$, $f(x_0^-) = \lim_{\substack{x \to x_0^- \\ x \to x_0^-}} f(x)$. 注意它们和 $f(x_0)$ 并

无关系, f 甚至可以在 x_0 处无定义.

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

• 估计 |f(x) - A|, 得到它和 $|x - x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- $\beta \delta X$ 代入极限的定义中.

对于本题, 从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似,这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.
- 将 δ 或X代入极限的定义中.

对于本题,从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon}.$$

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似, 这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.

对于本题, 从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon}. \ \ \exists \ |x| > X \ \ \mathrm{th}, \ \ fa \ \left|\frac{1}{x} - 0\right| = \frac{1}{|x|} < \varepsilon.$$

例

证明
$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

分析

和数列极限类似, 这种问题的证明通常也分为两步:

- 估计 |f(x) A|, 得到它和 $|x x_0| < \delta$ 或 |x| > X 的不等式关系. 从而求得 δ 或 X. 这个过程中可以进行适当的放缩.

对于本题, 从 $\left|\frac{1}{x}-0\right|<\varepsilon$ 解得 $|x|>\frac{1}{\varepsilon}$.

$$\forall \varepsilon > 0$$
, 令 $X = \frac{1}{\varepsilon}$. 当 $|x| > X$ 时, 有 $\left| \frac{1}{x} - 0 \right| = \frac{1}{|x|} < \varepsilon$. 所以 $\lim_{x \to \infty} \frac{1}{x} = 0$.

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于a > 1 时, $\log_a x$ 是单调递增的.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

证明

 $\forall \varepsilon > 0, \ \diamondsuit \ X = -\log_a \varepsilon.$

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

$$\forall \overline{\varepsilon} > 0$$
, $\diamondsuit X = -\log_a \varepsilon$. $\exists x < -X \text{ th, } f(a^x - 0) = a^x < \varepsilon$.

例

证明 a > 1 时, $\lim_{x \to -\infty} a^x = 0$.

分析

由于 a>1 时, $\log_a x$ 是单调递增的. 因此 $|a^x-0|=a^x<\varepsilon\iff x<\log_a\varepsilon$.

$$orall arepsilon > 0$$
,令 $X = -\log_a \varepsilon$. 当 $x < -X$ 时,有 $|a^x - 0| = a^x < \varepsilon$. 所以 $\lim_{x \to -\infty} a^x = 0$.

证明
$$\lim_{x \to x_0} (ax + b) = ax_0 + b.$$

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

 $|(\overline{ax+b}) - (ax_0+b)| = a \cdot |x-x_0| < \varepsilon$, 因此我们可以取 $\delta = \varepsilon/a$.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(\overline{ax+b})-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 a=0 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)| = a \cdot |x-x_0|$.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(\overline{ax+b}) - (ax_0+b)| = a \cdot |x-x_0| < \varepsilon$$
, 因此我们可以取 $\delta = \varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$. 如果 $a=0, \forall \varepsilon>0$, 令 $\delta=1$.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$. 如果 a=0, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$.

数学(下) ▶ 第二章 极限和连续 ▶2 函数的极限 ▶B 函数极限的证明

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$. 如果 $a=0,\,\forall \varepsilon>0,\,\diamondsuit \delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$.

如果 $a \neq 0$, $\forall \varepsilon > 0$, 令 $\delta = \frac{\varepsilon}{a}$.

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(\overline{ax+b})-(ax_0+b)|=a\cdot|x-x_0|<\varepsilon$$
, 因此我们可以取 $\delta=\varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

证明

我们有
$$|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$$
. 如果 $a=0$, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$. 如果 $a\neq 0$, $\forall \varepsilon>0$, 令 $\delta=\frac{\varepsilon}{a}$. 当 $0<|x-x_0|<\delta$ 时,有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|<\delta$ 已,有

文学(下) ▶ 第二章 极限和连续 ▶2 函数的极限 ▶ B 函数极限的证明

例

证明 $\lim_{x \to x_0} (ax + b) = ax_0 + b.$

分析

$$|(\overline{ax+b}) - (ax_0+b)| = a \cdot |x-x_0| < \varepsilon$$
, 因此我们可以取 $\delta = \varepsilon/a$. 注意我们需要单独考虑 $a=0$ 的情形.

 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|< a\delta=\varepsilon.$

证明

我们有 $|(ax+b)-(ax_0+b)|=a\cdot|x-x_0|$. 如果 a=0, $\forall \varepsilon>0$, 令 $\delta=1$. 当 $0<|x-x_0|<\delta$ 时, 有 $|(ax+b)-(ax_0+b)|=0<\varepsilon$. 如果 $a\neq 0$, $\forall \varepsilon>0$, 令 $\delta=\frac{\varepsilon}{a}$. 当 $0<|x-x_0|<\delta$ 时, 有

所以
$$\lim (ax+b) = ax_0 + b$$
.

例:线性函数在一点的极限

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

例: 线性函数在一点的极限

例

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

与三角函数有关的放缩往往要用到和差化积公式

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}$$
, $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$,

然后将不含 $x-x_0$ 的项放缩到 1;

例:线性函数在一点的极限

例

证明 $\lim_{x \to x_0} \sin x = \sin x_0$.

与三角函数有关的放缩往往要用到和差化积公式

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}$$
, $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$,

然后将不含 $x-x_0$ 的项放缩到 1; 以及三角函数基本不等式

$$|\sin x| \le |x|, \forall x;$$
 $|x| \le |\tan x|, \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

证明

我们有

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0, \ \diamondsuit \ \delta = \varepsilon.$$

证明

我们有

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0$$
, 令 $\delta = \varepsilon$. 当 $0 < |x - x_0| < \delta$ 时, 有

$$|\sin x - \sin x_0| \leqslant |x - x_0| < \delta = \varepsilon.$$

证明

我们有

$$|\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \leqslant 2 \left| \sin \frac{x - x_0}{2} \right| \leqslant 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|.$$

$$\forall \varepsilon > 0$$
, 令 $\delta = \varepsilon$. 当 $0 < |x - x_0| < \delta$ 时, 有

$$|\sin x - \sin x_0| \le |x - x_0| < \delta = \varepsilon.$$

所以
$$\lim_{x \to x_0} \sin x = \sin x_0$$
.

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x \to \pm \infty} \arctan x = \pm \frac{\pi}{2}$.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令 $t = \frac{\pi}{2}$

 $\arctan x$, 则问题变成了 $|x| = \left| \tan \left(\frac{\pi}{2} - t \right) \right| = \frac{1}{|\tan t|}$ 和 |t| 的关系.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令 $t = \frac{\pi}{2}$

 $\arctan x$, 则问题变成了 $|x| = \left|\tan\left(\frac{\pi}{2} - t\right)\right| = \frac{1}{|\tan t|}$ 和 |t| 的关系. 而我们有 $|t| \leqslant 1$

 $|\tan t|$.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to\pm\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令 $t = \frac{\pi}{2}$

 $\arctan x$, 则问题变成了 $|x| = \left|\tan\left(\frac{\pi}{2} - t\right)\right| = \frac{1}{|\tan t|}$ 和 |t| 的关系. 而我们有 $|t| \leqslant 1$

 $|\tan t|$.

我们还需要估计t的范围.

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to +\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令 $t = \frac{\pi}{2}$

 $\arctan x$, 则问题变成了 $|x| = \left|\tan\left(\frac{\pi}{2} - t\right)\right| = \frac{1}{|\tan t|}$ 和 |t| 的关系. 而我们有 $|t| \leqslant$

 $|\tan t|$.

我们还需要估计 t 的范围. 由于我们考虑的是 $x \to +\infty$, 不妨设 x > 0,

例

证明 $\lim_{x\to\infty} \arctan x$ 不存在.

分析

从图像上可以看出 $\lim_{x\to +\infty} \arctan x = \pm \frac{\pi}{2}$.

我们想要使用 |x| 来控制 $\left|\arctan x - \frac{\pi}{2}\right|$, 不过这个形式不容易估计. 令 $t = \frac{\pi}{2}$

 $\arctan x$, 则问题变成了 $|x| = \left|\tan\left(\frac{\pi}{2} - t\right)\right| = \frac{1}{|\tan t|}$ 和 |t| 的关系. 而我们有 $|t| \leqslant$

 $|\tan t|$.

我们还需要估计 t 的范围. 由于我们考虑的是 $x \to +\infty$, 不妨设 x > 0, 那么

 $\arctan x \in \left(0, \frac{\pi}{2}\right), \qquad t = \frac{\pi}{2} - \arctan x \in \left(0, \frac{\pi}{2}\right).$

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$.

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{\left|x\right|}.$$

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{|x|}.$$

$$\forall \varepsilon > 0, \ \diamondsuit \ X = \frac{1}{\varepsilon} > 0.$$

我们来证明
$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

我们来证明
$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{\left|x\right|}.$$

$$\forall \varepsilon > 0$$
, $\diamondsuit X = \frac{1}{\varepsilon} > 0$. $\exists x > X \text{ th, } f$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

类似可证,
$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$$
.

我们来证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
. 当 $x>0$ 时, $0<\frac{\pi}{2}-\arctan x<\frac{\pi}{2}$. 因此

$$\left|\frac{\pi}{2} - \arctan x\right| \le \left|\tan\left(\frac{\pi}{2} - \arctan x\right)\right| = \frac{1}{\left|\tan\left(\arctan x\right)\right|} = \frac{1}{|x|}.$$

$$\left| \frac{\pi}{2} - \arctan x \right| \leqslant \frac{1}{|x|} < \frac{1}{X} = \varepsilon.$$

所以
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
.

类似可证,
$$\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$$
. 因此 $\lim_{x\to \infty} \arctan x$ 不存在.

证明
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

证明 $\lim_{x \to 2} \frac{x - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f \rightarrow 0, g \rightarrow 0$.

证明 $\lim_{x \to 2} \frac{x - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f \rightarrow 0, g \rightarrow 0$. 我们称之为 $\frac{0}{0}$ 型不定式.

例

证明 $\lim_{x \to 2} \frac{x - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在.

例

证明 $\lim_{x \to 2} \frac{x - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

例

证明 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| = |x + 2 - 4| = |x - 2|.$$

例

证明 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

$$\left|\frac{x^2-4}{x-2}-4\right|=|x+2-4|=|x-2|.\ \forall \varepsilon>0,\ \diamondsuit\ \delta=\varepsilon.$$

例

证明 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

例

证明 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$

分析

这种极限是 $\frac{f}{g}$ 型, 其中 $f\to 0, g\to 0$. 我们称之为 $\frac{0}{0}$ 型不定式. 它的极限可能存在, 可能不存在. 这种一般要去掉公因式, 将其变为定式.

证明

学(下) ▶ 第二章 极限和连续 ▶2 函数的极限 ▶B 函数极限的证明

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

例

如果函数 $f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$ 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b.

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到.

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

例

如果函数 $f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$ 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b.

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

解

由于
$$f\left[\left(\frac{\pi}{2}\right)^{+}\right] = \frac{\pi}{2} + b, \ f\left[\left(\frac{\pi}{2}\right)^{-}\right] = a\sin\frac{\pi}{2} = a,$$

例

如果函数
$$f(x) = \begin{cases} a \sin x, & x < \pi/2; \\ x + b, & x > \pi/2 \end{cases}$$
 满足 $\lim_{x \to \pi/2} f(x) = 1$, 求 a, b .

分析

本题是典型的由分段函数性质求待定参数的问题, 我们后续会经常遇到. 由于一点处极限等价于两侧极限都存在且为 1, 因此我们会得到两个等式, 从而可以解出两个未知参数.

由于 f(x) 的两个分段都是我们已经求过极限的函数, 因此我们可以直接用前面已经证明的结论.

解

由于
$$f\left[\left(\frac{\pi}{2}\right)^+\right] = \frac{\pi}{2} + b$$
, $f\left[\left(\frac{\pi}{2}\right)^-\right] = a\sin\frac{\pi}{2} = a$, 因此 $a = 1, b = 1 - \frac{\pi}{2}$.

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

例

对于哪些 x_0 , $\lim_{x\to x_0} [x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \ \ \ \ \ x - 1 < [x] \leqslant x.$$

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \ \ \ \ x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \ \ \ \ x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

例

对于哪些 x_0 , $\lim_{x\to x_0} [x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \ \ \ \ x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 x_0 ∉ \mathbb{Z} 时, 我们同样希望取一个小邻域使得 [x] 是常值函数.

例

对于哪些 x_0 , $\lim_{x\to x_0} [x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \not \propto \, x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 $x_0 \notin \mathbb{Z}$ 时, 我们同样希望取一个小邻域使得 [x] 是常值函数. 这需要 δ 不超过 x_0 和两边的最近的整数的距离.

例

对于哪些 x_0 , $\lim_{x\to x_0}[x]$ 存在.

分析

与 [x] 有关的问题往往需要用到两个不等式

$$[x] \leqslant x < x + 1 \, \not \propto \, x - 1 < [x] \leqslant x.$$

从 [x] 的图像上可以看出 $x_0 \in \mathbb{Z}$ 时左右极限不相等, 从而极限不存在. 解答时, 我们取 x_0 的 $\delta=1/2$ 邻域, 则在这个邻域的左右各自半边内, [x] 是常值函数, 从而得到单侧极限.

当 $x_0 \notin \mathbb{Z}$ 时, 我们同样希望取一个小邻域使得 [x] 是常值函数. 这需要 δ 不超过 x_0 和两边的最近的整数的距离. 所以

$$\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\}.$$

解

如果 $x_0 \in \mathbb{Z}$, 则

• 当 $x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x^-} [x] = x_0 1$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x\to x_0}[x]$ 不存在.

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2) \text{ bt, } [x] = x_0, \text{ ft } \lim_{x \to x_0^+} [x] = x_0;$
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to x_0} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to \infty} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x \to \infty} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$.

因此 $\lim_{x \to x_0} [x] = x_0$.

解

如果 $x_0 \in \mathbb{Z}$, 则

- $\exists x \in (x_0, x_0 + 1/2)$ 时, $[x] = x_0$, 所以 $\lim_{x \to x_0^+} [x] = x_0$;
- $\exists x \in (x_0 1/2, x_0)$ 时, $[x] = x_0 1$, 所以 $\lim_{x \to x_0^-} [x] = x_0 1$.

因此 $\lim_{x\to\infty} [x]$ 不存在.

如果 $x_0 \notin \mathbb{Z}$, 令 $\delta = \min \{x_0 - [x_0], [x_0] + 1 - x_0\} > 0$. name

$$[x_0] \leqslant x_0 - \delta < x_0 + \delta \leqslant [x_0] + 1.$$

当 $0 < |x - x_0| < \delta$ 时,有 $x_0 - \delta < x < x_0 + \delta$,从而 $[x_0] < x < [x_0] + 1$, $[x] = x_0$.

因此 $\lim_{x \to x_0} [x] = x_0$.

故当且仅当 $x_0 \notin \mathbb{Z}$ 时, $\lim_{x \to x_0} [x]$ 存在.

第三节 极限的性质

第四节 无穷小和无穷大

第五节 极限的存在准则

第六节 函数的连续性