1 Result of the lab

My result of binary calssification of Gaussian densities with distinct means $\begin{bmatrix} 0 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

Figure 1: Result of the first mean

2 Difference between m1 and m2

For Gaussian densities with distinct means $\begin{bmatrix} 2.5 \\ 2.5 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix}$ the previous perceptron can't work. And I solve this problem by adding bias and running more iterration. Followings are my result.

```
if y_train[r] * ((np.dot(w, np.transpose(x))) + bias) < 0:
w += alpha * y_train[r] * x
bias += alpha * y_train[r]</pre>
```


Figure 2: Result of the second mean

3 Deploy on the Iris Dataset

Four Attributes: sepal length in cm, sepal width in cm, petal length in cm and petal width in cm. Three Classes:Iris Setosa, Iris Versicolour and Iris Virginica.

Figure 4: Perceptron Result

Perceptron is not that good on classification of Iris Versicolour and Iris Virginica.

To optimize, I apply pca to the data set which converts four features into two features and compare my results to sklearn results.

	Setosa/Versicolour	Setosa/Virginica	Versicolour/Virginica
accuracy on training set(%)	100.00	100.00	95.00
accuracy on test set(%)	100.00	100.00	95.00

Table 1: result of my perceptron

	Setosa/Versicolour	Setosa/Virginica	Versicolour/Virginica
accuracy on training $set(\%)$	100.00	100.00	94.00
accuracy on test set(%)	100.00	100.00	95.00

Table 2: result of my sklearn

Figure 5: result of iris after PCA optimization