

BEST AVAILABLE COPY

Exh C

Proc. Natl. Acad. Sci. USA
Vol. 88, pp. 4143–4147, May 1991
Immunology

Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor

(heterodimeric lymphokine/T-cell growth factor/lymphokine-activated killer cells/coordinate gene regulation/interleukin-12)

UELI GUBLER*†, ANNE O. CHUA*, DAVID S. SCHOENHAUT*, CYNTHIA M. DWYER‡, WARREN MCCOMAS*, RICHARD MOTYKA*, NASRIN NABAVI§, AIMEE G. WOLITZKY§, PHYLLIS M. QUINN§, PHILIP C. FAMILLETTI‡, AND MAURICE K. GATELY§

Departments of *Molecular Genetics, †Bioprocess Development, and §Immunopharmacology, Roche Research Center, Hoffmann-La Roche, Inc., Nutley, NJ 07110

Communicated by John J. Burns, February 4, 1991

ABSTRACT Cytotoxic lymphocyte maturation factor (CLMF) is a disulfide-bonded heterodimeric lymphokine that (i) acts as a growth factor for activated T cells independent of interleukin 2 and (ii) synergizes with suboptimal concentrations of interleukin 2 to induce lymphokine-activated killer cells. We now report the cloning and expression of both human CLMF subunit cDNAs from a lymphoblastoid B-cell line, NC-37. The two subunits represent two distinct and unrelated gene products whose mRNAs are coordinately induced upon activation of NC-37 cells. Coexpression of the two subunit cDNAs in COS cells is necessary for the secretion of biologically active CLMF; COS cells transfected with either subunit cDNA alone do not secrete bioactive CLMF. Recombinant CLMF expressed in mammalian cells displays biologic activities essentially identical to natural CLMF, and its activities can be neutralized by monoclonal antibodies prepared against natural CLMF. Since this heterodimeric protein displays the properties of an interleukin, we propose that CLMF be given the designation interleukin 12.

The molecular cloning and expression of recombinant cytokines has made possible both significant advances in our understanding of the molecular basis of immune responses and the development of new approaches to the treatment of disease states. As an example, recombinant interleukin 2 (recombinant IL-2) has been shown to be capable of causing regression of established tumors in both experimental animals (1) and in man (2); however, its clinical use has been associated with significant toxicity (2). One potential approach to improving the therapeutic utility of recombinant cytokines is to use them in combination (3, 4). With this concept in mind, we initiated a search for novel cytokines that would synergize with suboptimal concentrations of recombinant IL-2 to activate cytotoxic lymphocytes *in vitro* and thus might have synergistic immunoenhancing effects when administered together with recombinant IL-2 *in vivo*. This led to the identification of a factor, designated cytotoxic lymphocyte maturation factor (CLMF), that synergized with recombinant IL-2 to facilitate the generation of both cytolytic T lymphocytes (CTLs) and lymphokine-activated killer (LAK) cells *in vitro* (5, 6). CLMF was subsequently purified to homogeneity from a human lymphoblastoid B-cell line (NC-37) and was shown to be a 75-kDa disulfide-bonded heterodimer composed of two subunits with molecular masses of 40 kDa and 35 kDa (7).¹ We now report the molecular cloning and expression of CLMF.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

MATERIALS AND METHODS

cDNA Cloning. A subline of NC-37 cells selected for its ability to produce high levels of CLMF (7), NC-37.98, was induced with phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187 for 16 hr. Poly(A)⁺ RNA was isolated, and random hexamer-primed cDNA libraries were established in phage λgt10 by standard procedures. Mixed-primer polymerase chain reaction (PCR) using controlled ramp times (8) was performed as follows. PCR primers contained all possible codons and were 14 or 15 nucleotides long (Fig. 1) with a 5' extension of 9 nucleotides containing an EcoRI site for subcloning. Degeneracies varied from 1 in 32 to 1 in 4096; 0.5–4 pmol per permutation of forward and reverse primer was used in a 50- to 100-μl PCR mixture with 40 ng of cDNA made from NC-37.98 cells that had been activated by culture with 10 ng of PMA and 25 ng of calcium ionophore A23187 per ml for 16 hr (40-kDa subunit) or with 3 μg of human genomic DNA (35-kDa subunit). PCR cycling parameters were as follows. Initial denaturation was at 95°C for 7 min. Low-stringency annealing was performed by cooling to 37°C over 2 min, incubating 2 min at 37°C, heating to 72°C over 2.5 min, extending at 72°C for 1.5 min, heating to 95°C over 1 min, and denaturing at 95°C for 1 min. This cycle was repeated once. Thirty standard cycles (40-kDa subunit) or 40 standard cycles (35-kDa subunit) were performed as follows: 95°C for 1 min, 55°C for 2 min, and 72°C for 2 min. Final extension was at 72°C for 10 min. "Amplicons" of the expected size were gel-purified, subcloned, and sequenced. The 40-kDa subunit cDNAs were isolated by hybridizing the 54-mer amplicon in 5× SSC (1× SSC = 0.15 M NaCl/0.015 M sodium citrate, pH 7) containing 20% formamide at 37°C overnight. Filters were washed in 2× SSC at 42°C for 30 min and exposed to x-ray film. The 35-kDa subunit cDNAs were isolated by hybridizing the 51-mer amplicon in 5× SSC/20% formamide at 37°C overnight. The filters were washed in 2× SSC at 40°C for 30 min and exposed to x-ray film. Positive clones were plaque-purified, their inserts were subcloned into the pBluescript plasmid, and their sequences were determined by using Sequenase.

Expression. cDNAs were separately engineered for expression in vectors containing the simian virus 40 early promoter essentially as described (9). COS cells were transfected with both CLMF subunit expression plasmids mixed together or

Abbreviations: CLMF, cytotoxic lymphocyte maturation factor; rCLMF and nCLMF, recombinant and natural CLMFs; CTL, cytolytic T lymphocyte; IL, interleukin; LAK, lymphokine-activated killer; PHA, phytohemagglutinin; PMA, phorbol 12-myristate 13-acetate; n, natural; PCR, polymerase chain reaction.

¹To whom reprint requests should be addressed.
The cDNA sequences reported in this paper have been deposited in the Genbank data base [accession nos. M38443 (35-kDa CLMF subunit) and M38444 (40-kDa CLMF subunit)].

BEST AVAILABLE COPY

1 MCPARSLLL^V ATLVLLDHLS LARNLPVATP DPGMFPC^LH^H SQNLLRAVSN
51 MLQKARQ^TLE FYPCTSEEID HEDITKD^KT^S TVEACLPLEL TKNESCLNSR
101 ETSFITNG^SC LASRKTSFMM ALC^LSSIYED LKMYQVF^EKT MNAKLLMDPK
151 RQIFLDQNML AVIDELMQAL NFNSETVPQK SSLEEPDFYK TKIKLCILLH
201 AFRIRAVTID RVTSYLN^AS

1 MCHQQQLVISW FSLVFLASPL VAIWELKKDV YVVELDWYPD APGEMVVLT^C
51 DTPEEDGITW TLDQSSEVLG SGKTLTIQVK EFGDAGQYTC HKGGEVLSHS
101 LLLLHKKEDG IWSTDILKDQ KEPKNKTFLR CEA^NKNYSGRF TC^WWLTTIST
151 DLTF^SVKSSR GSSDPQGVTC GAATLSAERV RGDNKEYEYS VECQEDSACP
201 AAEE^SLPIEV MVDAVHKLKY ENYTSSFFIR DIIKPDP^PKN LQLKPLKNSR
251 QVEVSWEYPD TWSTPHSYFS LTFCVQVQGK SKREKKDRV^F TDKTSATVIC
301 RKNASISVRA QDRYYSSWS EWASV^PCS

FIG. 1. Amino acid sequences of the 35-kDa (*Upper*) and 40-kDa (*Lower*) CLMF subunits as deduced from the respective cDNAs and shown in single-letter code. Signal peptides are overlined, cysteine residues are marked by a caret, and N-linked glycosylation sites (NXS, NXT, where X is another amino acid) are underlined. The peptide sequences used to generate PCR probes are overlined with arrows indicating the direction of amplification.

with each one separately by the DEAE-dextran method. Twenty-four hours after transfection, the serum-containing medium was replaced with medium containing 1% Nutridoma-SP (Boehringer Mannheim), and supernatant fluids were collected from the cultures after 40 hr. These fluids were stored at 4°C until tested in the bioassays.

General Methods. Standard molecular biological procedures were used as described (10). CLMF bioassays were performed as detailed (7).

Computer Searches. The National Biomedical Research Foundation protein data base (Release 26.0) as well as the Genbank and European Molecular Biology Laboratory databases (Releases 65.0 and 24.0, respectively) were searched for sequences homologous to CLMF cDNAs. The two subunit sequences were compared to each other using the ALIGN program (mutation data matrix, break penalty of 6; see ref. 11).

RESULTS

Partial N-terminal amino acid sequences of the two CLMF subunits (7) were used to generate completely defined 51- to 54-base-pair (bp)-long oligonucleotide probes by means of mixed primer PCR. These probes were used to screen cDNA libraries made from RNA from activated NC-37.98 cells, and cDNAs encoding the two subunits were isolated and characterized. Both cDNAs encode secreted proteins with a classical hydrophobic N-terminal signal peptide immediately followed by the N terminus of the mature protein as determined by protein sequencing (7). Two independent cDNA clones for the 40-kDa subunit were shown to be identical. Both encode the mature 40-kDa subunit that is composed of 306 amino acids (calculated $M_r = 34,699$) and contains 10 cysteine residues and four potential N-linked glycosylation sites (Fig. 1). Two of these sites are within isolated tryptic peptides derived from the purified 40-kDa CLMF subunit protein. Amino acid sequence analysis has shown that Asn-

222 is glycosylated, whereas Asn-125 is not (Fig. 1; F. Podlaski, personal communication). The mature 35-kDa subunit is composed of 197 amino acids (calculated $M_r = 22,513$), with 7 cysteine residues and three potential N-linked glycosylation sites (Fig. 1). When purified CLMF is reduced with 2-mercaptoethanol and analyzed by SDS/PAGE, the 35-kDa subunit appears to be heterogeneous, suggesting that it may be heavily glycosylated (7). Two variants of 35-kDa subunit-encoding cDNAs were isolated. The first type had the sequence shown in Fig. 1. Additional isolates contained what is probably an allelic variation, replacing Thr-213 with a methionine residue.

Computer searches of sequence databases showed that the amino acid sequences of the two subunits are not related to any known protein. The subunit sequences are also not related to each other, since a comparison using the ALIGN program (11) gave a score of 1.27; only scores >3 are considered to indicate significant evolutionary relationship (12). The genes encoding the subunits appear to be unique, since low- and high-stringency hybridizations of genomic blots revealed identical banding patterns (data not shown). RNA blots showed the size of the 40-kDa subunit mRNA to be 2.4 kb, whereas the 35-kDa subunit was encoded by a 1.4-kb transcript (Fig. 2). Expression of the two mRNAs encoding the subunits was coordinately regulated upon induction (Fig. 2). When NC-37.98 cells were activated with PMA and calcium ionophore for 72 hr, mRNA encoding each of the CLMF subunits was minimally detectable at 6 hr after the beginning of induction but was readily detected at 24 hr and continued to accumulate until maximal levels were reached at 72 hr (normalized to GAPDH mRNA levels; see the legend to Fig. 2). In contrast, the mRNA for IL-2 in activated NC-37.98 cells was already at high levels at 6 hr and subsequently decreased, whereas the mRNAs for the low-affinity IL-2 receptor (p55) followed the induction pattern seen for the CLMF subunits. Scanning of RNA blots also revealed that steady-state mRNA levels for the 40-kDa

FIG. 2. RNA blots showing the coordinate induction of the 35-kDa (A) and 40-kDa (B) CLMF subunit mRNAs and IL-2 mRNA (C) and its p55 receptor mRNA (D). Poly(A)⁺ RNA (5 µg) from NC-37.98 cells activated with 10 ng of PMA and 25 ng of calcium ionophore A23187 per ml were loaded in each lane. Lanes from left to right in each panel show RNAs isolated 6, 24, 30, 48, and 72 hr after induction, respectively. (*Upper*) Four-day exposures. (*Lower*) Two-hour exposure of the same blots after stripping and rehybridization with a GAPDH probe. Marker sizes are in kb (BRL RNA ladder).

CLMF subunit were severalfold higher than those for the 35-kDa subunit expressed by the same cells. This finding parallels the observation that activated NC-37 cells secrete excess free 40-kDa subunit protein (7). The 3' untranslated sequences of both CLMF subunit mRNAs contain several copies of the octamer motif TTATTTAT (data not shown). This sequence is present in other transiently expressed mRNAs and is involved in regulating mRNA stability (13).

Coexpression of the 40-kDa and 35-kDa CLMF subunit cDNAs in COS cells was required to generate secreted biologically active CLMF (Table 1 and Fig. 3). COS cells transfected with cDNA encoding either the 40-kDa subunit alone or the 35-kDa subunit alone did not secrete biologically active CLMF (Table 1). Mixing media conditioned by COS

cells that had been separately transfected with one or the other of the two CLMF subunit cDNAs also did not give rise to bioactive CLMF (Table 1).

Two types of assays were used to compare rCLMF and nCLMF. The first assay measures the proliferation of phytohemagglutinin (PHA)-activated human peripheral blood lymphocytes, whereas the second assay evaluates the synergy between CLMF and suboptimal concentrations of IL-2 in the generation of LAK cells in hydrocortisone-containing cultures (7). The data in Fig. 3 show that rCLMF as expressed in COS cells and nCLMF as purified from NC-37 cells are essentially identical. Dose-response curves for rCLMF and nCLMF were superimposable in each of the two assays, and rCLMF was neutralized by a monoclonal antibody raised against nCLMF. Conditioned media from cultures of mock-transfected COS cells displayed no activity in these assays (Table 1 and data not shown).

DISCUSSION

In a previous report (7), we described the purification of a heterodimeric cytokine, CLMF, that synergized with low amounts of IL-2 to cause the generation of LAK cells in the presence of hydrocortisone and stimulated the proliferation of activated T cells independent of IL-2. In the present report, we have used the N-terminal amino acid sequence information previously obtained to clone the two subunit cDNAs of CLMF. Protein purification of NC-37 cell line-derived CLMF had shown that the protein was composed of two disulfide-bonded subunits with different N-terminal amino acid sequences (7). However, it was not clear from our previous results whether the two subunits were processed from one common gene product and whether proteolytic posttranslational processing other than signal peptide cleavage was occurring. The molecular cloning and sequencing of

Table 1. Coexpression of both CLMF subunit cDNAs is required for secretion of biologically active CLMF by COS cells

Addition	Conc., units/ml	Dilution	[³ H]Thymidine incorporated by PHA-activated lymphoblasts, mean cpm ± 1 SEM
Cytokine*			
None	—		11,744 ± 514
nCLMF	200		68,848 ± 878
nCLMP	40		48,827 ± 605
nCLMF	8		26,828 ± 594
nCLMF	1.6		17,941 ± 196
Culture fluid from COS cells transfected with			
A. 35-kDa CLMF subunit cDNA		1:20	11,912 ± 660
		1:100	10,876 ± 232
B. 40-kDa CLMF subunit cDNA		1:20	11,699 ± 931
		1:100	11,666 ± 469
C. 35-kDa + 40-kDa CLMF subunit cDNAs		1:20	58,615 ± 587
		1:100	38,361 ± 828
1:1 mix of culture fluids A and B		1:10†	11,544 ± 483
		1:50	10,503 ± 259
CM from mock-transfected control‡		1:20	11,503 ± 286
		1:100	10,751 ± 303

PHA-activated lymphoblasts were prepared from human peripheral blood mononuclear cells as described (7). Lymphoblast proliferation was measured in a 48-hr assay (7) in which 2×10^4 lymphoblasts were incubated in 100-µl cultures containing the indicated amounts of natural CLMF (nCLMF) or COS cell culture fluids. [³H]Thymidine was added to each culture 18 hr prior to harvest. Conc., concentration.

*nCLMF is purified NC-37-derived CLMF.

†1:10 dilution of the 1:1 mixture of culture fluids A and B was equivalent to a 1:20 final dilution of each of the individual culture fluids.

‡Conditioned medium (CM) from cultures of mock transfected COS cells.

FIG. 3. Comparison of biologic activities of nCLMF (circles) and recombinant CLMF (squares). nCLMF was purified from NC-37 cell-conditioned media; rCLMF was purified from conditioned media from cultures of COS cells transfected with cDNAs encoding the 40-kDa and 35-kDa human CLMF subunits. (Upper) T-cell growth factor assay. The ability of CLMF to stimulate the proliferation of human PHA-activated lymphoblasts in 48-hr cultures was assayed as described (7). CLMF preparations were mixed with neutralizing rat monoclonal anti-human CLMF antibody 4A1 (ref. 7; open symbols) or with normal rat IgG (Sigma; rig, closed symbols) at a final concentration of 20 µg of IgG/ml and were incubated for 30 min at 37°C prior to addition of PHA blasts. All values are means of triplicate determinations. (Lower) LAK cell induction assay. The ability of CLMF, alone or in combination with recombinant IL-2, to induce the generation of LAK cells in 4-day cultures was assessed as described (7). Low-density peripheral blood lymphocytes were incubated in the presence of various amounts of nCLMF or rCLMF with (closed symbols) or without (open symbols) recombinant IL-2 at 7.5 units/ml. Units of CLMF activity were based on previous titrations in the T-cell growth factor assay. Hydrocortisone sodium succinate (Sigma) was included at a concentration of 0.1 mM to minimize triggering of endogenous cytokine cascades. Lysis of ⁵¹Cr-labeled Daudi cells was assessed at an effector/target ratio of 5:1. The data shown represent the means of quadruplicate determinations. The spontaneous ⁵¹Cr release was 20%.

the corresponding cDNAs now has demonstrated that there is no common precursor for the two CLMF subunits; rather, they are encoded by completely different genes. The predicted and actual amino acid composition for the two subunits are strikingly similar; differences in predicted versus actual molecular weights are accounted for by glycosylation (F. Podlaski, personal communication). Thus, the only major posttranslational proteolytic event that appears to take place in the maturation of the CLMF subunits is signal peptide cleavage.

The kinetics of expression of the individual CLMF subunit mRNAs were examined and compared to the expression of mRNAs for IL-2 and the IL-2 receptor p55. Previously it had been observed that NC-37 cells, like certain murine (14) and marmoset (15) B-cell lines, secreted IL-2 when activated (M.K.G., unpublished results). RNA blots demonstrated that upon activation of NC-37 cells, both CLMF subunit mRNAs were coordinately induced with kinetics similar to the IL-2 receptor (p55) mRNAs. On the other hand, IL-2 mRNA levels peaked much earlier. Similar differences in induction kinetics were also seen at the level of IL-2 and CLMF bioactivity secreted from NC-37 cells (M.K.G., unpublished data). These kinetic differences are consistent with our previous observation that in a cytolytic lymphocyte response, IL-2 appears to act earlier than CLMF (5).

Transfection studies with COS cells established that only coexpression of both subunit cDNAs gives rise to secreted bioactive CLMF. Thus, it appears that the two proteins have to interact within the endoplasmic reticulum to assemble properly into bioactive secreted CLMF. By comparing the activity of rCLMF to that of nCLMF in the T-cell growth factor and LAK cell induction assays (Fig. 3) and assuming that the specific activity of rCLMF is similar to that of nCLMF [8×10^7 units/mg (7)], we estimate that the amount of rCLMF heterodimer produced in these experiments was 5–50 ng/ml. The finding that COS cells, which are fibroblast-like cells, are able to assemble correctly the two CLMF subunits to form bioactive CLMF indicates that this secretion and processing pattern is not limited to cells of the lymphoid lineage.

Western blot analysis using an anti-CLMF antibody specific for the 40-kDa subunit has allowed confirmation that (i) COS cells transfected with both CLMF subunit cDNAs secrete CLMF with the expected heterodimeric structure and (ii) COS cells transfected with the 40-kDa subunit cDNA alone secrete that subunit (F. Podlaski, personal communication). Since no bioactivity was detected in media conditioned by COS cells transfected with only the 40-kDa subunit, that subunit by itself appears either to have a much reduced specific activity compared with heterodimeric CLMF or to be completely inactive.

Because of the lack of a high-affinity antibody specific for the 35-kDa subunit, we have not yet been able to determine definitively whether COS cells transfected with only the 35-kDa subunit cDNA secrete that subunit. Since no bioactivity was detected in the media, secretion of a bioactive 35-kDa subunit by itself could be very inefficient; alternatively, similar to the 40-kDa subunit, the protein could be much less active or inactive altogether. Intracellular 35-kDa protein in the absence of the other subunit could be inherently unstable; there is precedence for this phenomenon, since it has been reported that 90% of the β chains of lutropin (LH), when expressed in the absence of α chains, are retained in the endoplasmic reticulum and are slowly degraded (16). Simple mixing of media conditioned by COS cells transfected separately with either one of the two CLMF subunit cDNAs did not yield bioactive CLMF. One possible explanation would be that the cells do not secrete the 35-kDa CLMF subunit by itself. More likely, our experimental conditions did not allow proper heterodimer formation. One would expect that only

BEST AVAILABLE COPY

Immunology: Gubler *et al.*

Proc. Natl. Acad. Sci. USA 88 (1991) 4147

carefully controlled renaturation and oxidation conditions would allow the disulfide bond formation required for generation of bioactive CLMF.

Normal human peripheral blood lymphocytes under the appropriate induction conditions produce both CLMF subunit mRNAs and secrete the active protein (N.N. and M.K.G., unpublished data). There is some evidence suggesting that CLMF is produced predominantly by B cells. In preliminary experiments, B-cell mitogens have appeared to be more effective than T-cell mitogens in eliciting CLMF production from peripheral blood lymphocytes (M.K.G., unpublished results). When screening human cell lines for their ability to produce CLMF activity (7), we observed that four of eight B-cell lines tested produced CLMF after activation with PMA and calcium ionophore, whereas none of five T-cell lines produced CLMF. Nevertheless, three of these T-cell lines secreted large amounts of IL-2 and tumor necrosis factor activity after activation (M.K.G., unpublished results). Likewise, natural killer cell stimulatory factor (NKSF), a heterodimeric cytokine similar or identical to CLMF, was isolated from RPMI 8866 lymphoblastoid B cells (17). A recent report (18) has indicated that B lymphocytes can secrete a cytokine(s) distinct from IL-2 that facilitates virus-specific cytolytic T-lymphocyte responses. It is possible that CLMF may have been the cytokine active in those studies. Thus, although B lymphocytes have not traditionally been viewed as cytokine-producing helper cells, it is conceivable that CLMF production constitutes a novel mechanism whereby B lymphocytes contribute to the amplification of T-lymphocyte responses. In addition to the biologic activities described in this report, CLMF by itself has been shown (*i*) to activate NK cells in an 18–22 hr assay, (*ii*) to facilitate the generation of specific allogeneic CTL responses, and (*iii*) to stimulate the secretion of γ interferon by resting peripheral blood lymphocytes (M.K.G., unpublished results). It can also synergize with low concentrations of recombinant IL-2 in the latter two assays and in causing the proliferation of resting peripheral blood lymphocytes. In view of its production by peripheral blood lymphocytes and its diverse actions on lymphoid cells, it appears that CLMF constitutes a new interleukin. We propose that CLMF be

given the provisional designation IL-12. The availability of recombinant CLMF will now make possible a broader and more detailed characterization of its biology.

1. Rosenberg, S. A., Mule, J. J., Speiss, P. J., Reichert, C. M. & Schwartz, S. L. (1985) *J. Exp. Med.* **161**, 1169–1188.
2. Rosenberg, S. A., Lotze, M. T., Muul, L. M., Leitman, S., Chang, A. E., Ettinghausen, S. E., Matory, Y. L., Skibber, J. M., Shiloni, E., Vetto, J. T., Seipp, C. A., Simpson, C. & Reichert, C. M. (1985) *N. Engl. J. Med.* **313**, 1485–1492.
3. Iigo, M., Sakurai, S., Tamura, T., Sajio, N. & Hoshi, A. (1988) *Cancer Res.* **48**, 260–264.
4. Winkleback, J. L., Stampfli, S. & Zimmerman, R. J. (1987) *Cancer Res.* **47**, 3948–3953.
5. Gately, M. K., Wilson, D. E. & Wong, H. L. (1986) *J. Immunol.* **136**, 1274–1282.
6. Wong, H. L., Wilson, D. E., Jenson, J. C., Familietti, P. C., Stremlo, D. L. & Gately, M. K. (1988) *Cell Immunol.* **111**, 39–54.
7. Stern, A. S., Podlaski, F. J., Holmes, J. D., Pan, Y.-C. E., Quinn, P. M., Wolitzky, A. G., Familietti, P. C., Stremlo, D. L., Truitt, T., Chizzonite, R. & Gately, M. K. (1990) *Proc. Natl. Acad. Sci. USA* **87**, 6808–6812.
8. Compton, T. (1990) in *PCR Protocols*, eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Academic, New York), pp. 39–45.
9. Cullen, B. (1987) *Methods Enzymol.* **152**, 684–703.
10. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
11. Dayhoff, M. O., Barker, W. C. & Hunt, L. T. (1983) *Methods Enzymol.* **91**, 524–545.
12. Williams, A. F. (1987) *Immunol. Today* **8**, 298–303.
13. Shaw, G. & Kamen, R. (1986) *Cell* **46**, 659–667.
14. Taira, S., Matsui, M., Hayakawa, K., Yokoyama, T. & Naruchi, H. (1987) *J. Immunol.* **139**, 2957–2964.
15. Brent, L. H., Miyawaki, T., Everson, M. P. & Butler, J. L. (1990) *Eur. J. Immunol.* **20**, 1125–1129.
16. Corless, C. L., Matzuk, M. M., Ramabhadran, T. P., Krichevsky, A. & Boime, I. (1987) *J. Cell Biol.* **104**, 1173–1181.
17. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B. & Trinchieri, G. (1989) *J. Exp. Med.* **170**, 827–845.
18. Liu, Y. & Mullbacher, A. (1989) *Proc. Natl. Acad. Sci. USA* **86**, 4629–4633.