

FCC Measurement/Technical Report on

GEN3 HIGH A1

Automotive Infotainment Unit w/ Bluetooth & WLAN

FCC ID: 2AHPN-BE2826

IC: 6434C-BE2826

Test Report Reference: MDE_HARMAN_1723_FCCb

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

8 M	easurement Uncertainties	50
7 S	etup Drawings	49
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	48
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	47
	Antenna R&S HF907 (1 GHz – 18 GHz)	46
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	45
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	44
6 .1	ntenna Factors, Cable Loss and Sample Calculations LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	43
	est Equipment	41
4.8	Power Density	38
4.7	Band Edge Compliance Radiated	35
4.5	Transmitter Spurious Radiated Emissions Band Edge Compliance Conducted	26 32
4.4 4.5	Spurious RF Conducted Emissions Transmitter Spurious Padiated Emissions	23
4.3	Peak Power Output	20
4.2	Occupied Bandwidth (99%)	17
4.1	Occupied Bandwidth (6 dB)	14
	est Results	14
3.7	Product labelling	13
3.6	Operating Modes	13
3.5	EUT Setups	13
3.4	Auxiliary Equipment	12
3.3	Ancillary Equipment	12
3.2	EUT Main components	11
3.1	General EUT Description	11
3 T	est object Data	11
2.4	Manufacturer Data	10
2.3	Applicant Data	10
2.2	Project Data	10
2.1	Testing Laboratory	10
2 A	dministrative Data	10
1.3	Measurement Summary / Signatures	5
1.2	FCC-IC Correlation Table	5
1.1	Applied Standards	4
1 A	pplied Standards and Test Summary	4

9 Photo Report 50

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (DTS Equipment)

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r05, 2016-04-08". ANSI C63.10-2013 is applied.

Note 2: (FHSS Equipment)

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied.

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb Page 4 of 50

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (2) §15.247

	g15.247				
•	Occupied Bandwidth (6 dB)				
	The measurement was performed according to ANSI	C63.10	Final Re	sult	
	OP-Mode	Setup	FCC	IC	
	Radio Technology, Operating Frequency				
	WLAN b, mid	Setup_AB01_HIGH	Passed	Passed	
	WLAN g, low	Setup_AB01_HIGH	Passed	Passed	
	WLAN n 20 MHz, high	Setup_AB01_HIGH	Passed	Passed	
	WLAN n 20 MHz, mid	Setup_AB01_HIGH	Passed	Passed	
	WLAN g, high	Setup_AB01_HIGH	Passed	Passed	
	WLAN n 20 MHz, low	Setup_AB01_HIGH	Passed	Passed	
	WLAN b, low	Setup_AB01_HIGH	Passed	Passed	
	WLAN g, mid	Setup_AB01_HIGH	Passed	Passed	
	WLAN b, high	Setup_AB01_HIGH	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Occupied Bandwidth (99%)				
The measurement was performed according to ANSI C63.10		Final Re	Final Result	
OP-Mode	Setup	FCC	IC	
Radio Technology, Operating Frequency				
WLAN n 20 MHz, mid	Setup_AB01_HIGH	N/A	Passed	
WLAN b, high	Setup_AB01_HIGH	N/A	Passed	
WLAN g, mid	Setup_AB01_HIGH	N/A	Passed	
WLAN n 20 MHz, low	Setup_AB01_HIGH	N/A	Passed	
WLAN b, low	Setup_AB01_HIGH	N/A	Passed	
WLAN n 20 MHz, high	Setup_AB01_HIGH	N/A	Passed	
WLAN g, high	Setup_AB01_HIGH	N/A	Passed	
WLAN b, mid	Setup_AB01_HIGH	N/A	Passed	
WLAN g, low	Setup_AB01_HIGH	N/A	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (3) §15.247

Peak Power Output The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	FCC	IC
WLAN n 20 MHz, high, conducted	Setup_AB01_HIGH	Passed	Passed
WLAN b, low, conducted	Setup_AB01_HIGH	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (b) (3) §15.247

32012 17				
Peak Power Output				
The measurement was performed according to ANSI C63.10		Final Result		
OP-Mode	Setup	FCC	IC	
Radio Technology, Operating Frequency, Measurement method				
WLAN n 20 MHz, low, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN g, low, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN n 20 MHz, mid, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN g, mid, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN g, high, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN b, mid, conducted	Setup_AB01_HIGH	Passed	Passed	
WLAN b, high, conducted	Setup_AB01_HIGH	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Spurious RF Conducted Emissions
The measurement was performed according to ANSI C63.10
Final Result

OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
WLAN g, mid	Setup_AB01_HIGH	Passed	Passed
WLAN b, low	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, low	Setup_AB01_HIGH	Passed	Passed
WLAN g, low	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, high	Setup_AB01_HIGH	Passed	Passed
WLAN b, mid	Setup_AB01_HIGH	Passed	Passed
WLAN b, high	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, mid	Setup_AB01_HIGH	Passed	Passed
WLAN g, high	Setup_AB01_HIGH	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247

Transmitter Spurious Radiated Emissions **Final Result** The measurement was performed according to ANSI C63.10 **OP-Mode FCC** IC Setup Radio Technology, Operating Frequency, Measurement WLAN n 20 MHz, low, 1 GHz - 8 GHz Setup_AA01_HIGH Passed Passed WLAN g, high, 1 GHz - 26 GHz Setup_AA01_HIGH Passed Passed WLAN g, high, 30 MHz - 1 GHz Setup_AA01_HIGH Passed Passed WLAN n 20 MHz, high, 1 GHz - 8 GHz Setup_AA01_HIGH Passed Passed WLAN n 20 MHz, mid, 1 GHz - 8 GHz Setup_AA01_HIGH Passed Passed Setup_AA01_HIGH WLAN g, mid, 1 GHz - 26 GHz Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Γransmitter Spurious Radiated Emissions Γhe measurement was performed according to ANS	I C63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement range			
WLAN g, mid, 30 MHz - 1 GHz	Setup_AA01_HIGH	Passed	Passec
WLAN g, mid, 9 kHz - 30 MHz	Setup_AA01_HIGH	Passed	Passec
WLAN g, low, 1 GHz - 26 GHz	Setup_AA01_HIGH	Passed	Passed
WLAN g, low, 30 MHz - 1 GHz	Setup_AA01_HIGH	Passed	Passec
47 CFR CHAPTER I FCC PART 15 Subpart C	§ 15.247 (d)		
§15.247 Band Edge Compliance Conducted			
The measurement was performed according to ANS	I C63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge	•		
WLAN g, high, high	Setup_AB01_HIGH	Passed	Passed
WLAN b, low, low	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, high, high	Setup_AB01_HIGH	Passed	Passed
WLAN g, low, low	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, low, low	Setup_AB01_HIGH	Passed	Passec
WLAN b, high, high	Setup_AB01_HIGH	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Band Edge Compliance Radiated			
The measurement was performed according to ANS	I C63.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge			
WLAN g, high, high	Setup_AA01_HIGH	Passed	Passed
WLAN b, high, high	Setup_AA01_HIGH	Passed	Passed
WLAN n 20 MHz, high, high	Setup_AA01_HIGH	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C	§ 15.247 (e)		
§15.247			
Power Density The measurement was performed according to ANS	I C63.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb

WLAN n 20 MHz, mid

Passed

Setup_AB01_HIGH

Passed

47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (e) §15.247

Power Den	sitv
-----------	------

The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode Radio Technology, Operating Frequency	Setup	FCC	IC
WLAN b, high	Setup_AB01_HIGH	Passed	Passed
WLAN b, low	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, high	Setup_AB01_HIGH	Passed	Passed
WLAN g, mid	Setup_AB01_HIGH	Passed	Passed
WLAN n 20 MHz, low	Setup_AB01_HIGH	Passed	Passed
WLAN g, high	Setup_AB01_HIGH	Passed	Passed
WLAN g, low	Setup_AB01_HIGH	Passed	Passed
WLAN b, mid	Setup_AB01_HIGH	Passed	Passed

N/A: Not applicable N/P: Not performed

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
B.Sc. Jens Dörwald

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:	/layers GmbH
Address:	Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2017-04-11

2.2 PROJECT DATA

Responsible for testing and report: B.Sc. Jens Dörwald

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2017-06-09

Testing Period: 2017-04-20 to 2017-06-06

2.3 APPLICANT DATA

Company Name: Harman International Industries, Inc.

Address: 30001 Cabot Drive

Novi, MI 48377

USA

Contact Person:

2.4 MANUFACTURER DATA

Company Name:

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Automotive Infotainment Unit with Bluetooth & WLAN
Product name	GEN3 HIGH A1
Туре	HIGH
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	13.2 V
Tested Modulation Type	DBPSK; OFDM:BPSK; OFDM:64-QAM
General product description	The EUT is a car radio infotainment system.
Specific product description for the EUT	The EUT is a car radio infotainment system, it is using Bluetooth and WLAN radio technology in the 2.4 GHz ISM band and WLAN radio technology in the 5 GHz ISM band.
The EUT provides the following ports:	DC USB CAN AM/FM GPS Rear View Camera Rear Seat Entertainment
Tested datarates	WLAN b-Mode; 20 MHz; 1 Mbit/s WLAN g-Mode; 20 MHz; 6 Mbit/s WLAN n-Mode; 20 MHz; 72.2 Mbit/s

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1009022	DE1009022ab01	conducted setup
Sample Parameter		Value
Integral Antenna	deactivated	
Serial No.	SN054	
HW Version	1.6.8	
SW Version	Rel2.16.52.00	
Comment		

Sample Name	Sample Code	Description	
DE1009022	aa01	radiated	
Sample Parameter		Value	
Integral Antenna	-9.1 dBi		
Serial No.	SN053		
HW Version	1.6.8		
SW Version	Rel2.16.52.00		
Comment			

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	_	-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_AA01_HIGH	DE1009022aa01	radiated setup
Setup AB01 HIGH	DE1009022ab01	conducted setup

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

WLAN 20 MHz Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz				
low mid high				
1	6	11		
2412	2437	2462		

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 100 kHz

Video Bandwidth (VBW): 300 kHz

• Span: 30 / 50 MHz (for 20 / 40 MHz nominal bandwidth)

Trace: MaxholdSweeps: 2000Sweeptime: 7.5 msDetector: Peak

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 31 \ \% \end{array}$

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	8.1	0.5	7.6
	6	2437	8.1	0.5	7.6
	11	2462	8.1	0.5	7.6

WLAN g-Mode; 20 MHz; 6

Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	16.4	0.5	15.9
	6	2437	16.4	0.5	15.9
	11	2462	16.4	0.5	15.9

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17.9	0.5	17.4
	6	2437	17.9	0.5	17.4
	11	2462	17.8	0.5	17.3

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

WLAN b-Mode; 20 MHz; 1 Mbit/s, CH 6

Marker 2 [T1] RBW 100 kHz RF Att 20 dB

Ref Lvl -9.44 dBm VBW 300 kHz

3 MHz/

Center 2.437 GHz
Title: 6dB Bandwidth

Comment A: CH M: 2437 MHz; 6dB bandwidth (kHz):8124

Date: 10.MAY.2017 09:27:51

4.1.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

Span 30 MHz

4.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Resolution Bandwidth (RBW): 500 kHzVideo Bandwidth (VBW): 2000 kHz

Span: 50 MHz
Trace: Maxhold
Sweeps: 2000
Sweeptime: 5 ms
Detector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

4.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb Page 17 of 50

4.2.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 31 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	11.3
	6	2437	11.3
	11	2462	11.2

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	17.9
	6	2437	17.8
	11	2462	17.8

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	18.4
	6	2437	18.4
	11	2462	18.3

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

4.2.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

• Resolution Bandwidth (RBW): 1 MHz

• Video Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

4.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb Page 20 of 50

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

4.3.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 31 \ \mbox{\%} \end{array}$

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	9.1	30.0	20.9
	6	2437	9.5	30.0	20.5
	11	2462	9.9	30.0	20.1

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	13.7	30.0	16.3
	6	2437	14.1	30.0	15.9
	11	2462	14.4	30.0	15.6

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	15.2	30.0	14.8
	6	2437	15.5	30.0	14.5
	11	2462	15.9	30.0	14.1

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

4.3.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

Sweep Time: 330 sDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 31 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	-2.9	-22.9	
6	2437			PEAK	100	-2.3	-22.3	
11	2462			PEAK	100	-1.8	-21.8	

WLAN g-Mode; 20 MHz; 6 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	-6.1	-26.1	
6	2437			PEAK	100	-6.0	-26.0	
11	2462			PEAK	100	-5.5	-25.5	

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	-5.6	-25.6	
6	2437			PEAK	100	-5.2	-25.2	
11	2462			PEAK	100	-4.5	-24.5	

Remark: Please see next sub-clause for the measurement plot.

4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

	Marker	LAN b-M	ouc, 20 i	RBW	100 k	Hz	RF Att	20 d
Ref Lvl		-2.	.34 dBm	VBW	300 k	Hz		
5 dBm		2.431923	885 GHz	SWT	330	s	Unit	d
3.3 dB Offs	et				▼1	[T1]		-2.34 d
#							2.431	92385 G
					∇ 2	[T1]	_	-56.83 d
							6.785	41082 G
					⊽з	[T1]	-	-58.50 d
								.36273 M
_D1 -21.002 (dBm				∇4	[77]		-58 50 d
							880.681	.36273 M
1MAX								
3	2 V							
	- A-A				th to a		Name of the Control	
muchal burne	يما لم	The second	ماند ماز باز بدار	المستهومة والمهدد	ALCONOMIC PORTING	وديالاوموس	There are	سيدريد
Free								
4					I	I		

2.497 GHz/

Title: spurious emissions
Comment A: CH M: 2437 MHz
Date: 10.MAY.2017 09:25:11

4.4.5 TEST EQUIPMENT USED

Start 30 MHz

- Regulatory WLAN RF Test Solution

Stop 25 GHz

4.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- · Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

Detector: Peak, AverageIF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

4.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.5.3 TEST PROTOCOL

WLAN g-Mode; 20 MHz; 6 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	-	=		-	-	-	-
6	2437	=	-		-	=	-	-
11	2462	-	-		-	-	-	-

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	-	=		-	-	-	-
6	2437	-	-		-	-	-	-
11	2462	-	-		-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") WLAN g-Mode; 20 MHz; 6 Mbit/s, CH 6, 9 kHz - 30 MHz

WLAN g-Mode; 20 MHz; 6 Mbit/s, CH 6, 30 MHz - 1000 MHz

WLAN g-Mode; 20 MHz; 6 Mbit/s, CH 6, 1 GHz - 26 G Hz

4.5.5 TEST EQUIPMENT USED

- Radiated Emissions

4.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Frequency Range 2392 MHz – 2485 MHz

Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

Sweeptime: 7 msSweeps: 2Trace: Maxhold

4.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb Page 32 of 50

4.6.3 TEST PROTOCOL

WLAN b-Mode; 20 MHz; 1 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-56.7	PEAK	100	-2.7	-22.7	34.0
11	2462	2483.5	-61.2	PEAK	100	-1.7	-21.7	39.6

WLAN g-Mode; 20 MHz; 6 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-50.0	PEAK	100	-6.1	-26.1	23.8
11	2462	2483.5	-58.3	PEAK	100	-5.4	-25.4	32.9

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-49.1	PEAK	100	-5.6	-25.6	23.5
11	2462	2483.5	-57.7	PEAK	100	-4.7	-24.7	33.1

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

WLAN n-Mode; 20 MHz; 72.2 Mbit/s, CH 1

Title: Band Edge Compliance

Comment A: CH B: 2412 MHz

Date: 10.MAY.2017 11:31:12

4.6.5 TEST EQUIPMENT USED

- Regulatory WLAN RF Test Solution

4.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb Page 35 of 50

4.7.3 TEST PROTOCOL

WLAN b-Mode; 20 MHz; 1 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	49.4	PEAK	1000	74.0	24.6	BE
11	2462	2483.5	36.6	AV	1000	54.0	17.4	BE

WLAN g-Mode; 20 MHz; 6 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	49.5	PEAK	1000	74.0	24.5	BE
11	2462	2483.5	36.7	AV	1000	54.0	17.3	BE

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	50.1	PEAK	1000	74.0	23.9	BE
11	2462	2483.5	36.7	AV	1000	54.0	17.3	BE

Remark: Please see next sub-clause for the measurement plot.

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") WLAN n-Mode; 20 MHz; 72.2 Mbit/s, CH 11

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)
2485.150000		36.67	54.00	17.33	1000.0	1000.000	150.0	V	147.0	-15.1
2485.150000	50.14		74.00	23.86	1000.0	1000.000	150.0	Н	-109.0	80.1

4.7.5 TEST EQUIPMENT USED

- Radiated Emissions

4.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 10 kHz

Trace: MaxholdSweeps: 2000Sweeptime: 8.4 sDetector: Peak

4.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb

4.8.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 31 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-16.2	8.0	24.2
	6	2437	-14.8	8.0	22.8
	11	2462	-15.0	8.0	23.0

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-20.0	8.0	28.0
	6	2437	-19.3	8.0	27.3
	11	2462	-19.6	8.0	27.6

WLAN n-Mode; 20 MHz; 72.2 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-19.9	8.0	27.9
	6	2437	-19.1	8.0	27.1
	11	2462	-18.6	8.0	26.6

Remark: Please see next sub-clause for the measurement plot.

4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

3 MHz/

Title: Power Density
Comment A: CH M: 2437 MHz;
Date: 10.MAY.2017 09:32:40

4.8.5 TEST EQUIPMENT USED

Center 2.437 GHz

- Regulatory WLAN RF Test Solution

Span 30 MHz

5 TEST EQUIPMENT

1 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2016-05	2017-05
1.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
1.3	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936		
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none		
1.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.6	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
1.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.8	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB		
1.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
1.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.16		Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.19	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.20	5HC3500/18000 -1.2-KK		Trilithic	200035008		
1.21	HFH2-Z2		Rohde & Schwarz	829324/006	2014-11	2017-11

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.22	Opus10 THI		Lufft Mess- und	12482	2017-03	2019-03
	(8152.00)	Datalogger 12 (Environ)	Regeltechnik GmbH			
1.23	ESR 7	EMI Receiver /	Rohde & Schwarz	101424	2016-11	2018-11
		Spectrum Analyzer				
1.24	JS4-00101800-	Broadband	Miteq	896037		
	35-5P	Amplifier 30				
		MHz - 18 GHz				
1.25	AS 620 P	Antenna mast	HD GmbH	620/37		
1.26	Tilt device	Antrieb TD1.5-	Maturo GmbH	TD1.5-		
	Maturo	10kg		10kg/024/37907		
	(Rohacell)			09		
1.27	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.28	PAS 2.5 - 10 kg		Maturo GmbH	-		
1.29	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

2 Regulatory WLAN RF Test Solution Regulatory WLAN RF Tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
2.1	MFS	Rubidium	Datum GmbH	002	2016-09	2017-09
		Frequency				
		Normal MFS				
2.2	TGA12101	Arbitrary	Aim and Thurlby	284482		
		Waveform	Thandar			
		Generator	Instruments			
2.3	EX520	Digital	Extech Instruments	05157876	2016-02	2018-02
		Multimeter 12	Corp			
		(Multimeter)				
2.4	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2016-09	2017-09
2.5	Opus10 THI	T/H Logger 15	Lufft Mess- und	13985	2017-04	2019-04
	(8152.00)		Regeltechnik GmbH			
2.6	TOCT Switching		7layers, Inc.	040107		
	Unit					
2.7	KWP 120/70	Temperature	Weiss	59226012190010	2016-03	2018-03
		Chamber				
		Weiss 01				
2.8	NRVD	Powermeter	Rohde & Schwarz	832025/059	2016-08	2017-08
2.9	FSU3	Spectrum	Rohde & Schwarz	200046	2016-06	2017-06
		Analyser	GmbH & Co. KG			
2.10	FSIQ26	Signal	Rohde & Schwarz	832695/007	2016-09	2018-09
		Analyser				
2.11	FSU26	Spectrum	Rohde & Schwarz	100136	2017-01	2018-01
		Analyser	GmbH & Co. KG			
2.12	SMIQ03B	Signal	Rohde & Schwarz	832870/017	2016-06	2019-06
		Generator				
2.13	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2015-06	2017-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

TEST REPORT REFERENCE: MDE_HARMAN_1723_FCCb

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	` dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	٨Ε	
Eroguenav	AF	Conn
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

(3 11112	30 11112	<u>'</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

			1			
cable	cable	cable	cable	distance	d_{Limit}	$d_{\sf used}$
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 \text{ m})$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Eroguanav	AF R&S HF907	Corr.
Frequency MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	13.217
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

ι		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4				-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.