Foundations of Reinforcement Learning Assignment 1

Issue date: October 11, 2021 Due date: October 29, 2021

Coverage: Basics of MDP, Bellman equation, value iteration, policy iteration

Instructions

- Where to submit: Please submit your solution as a PDF on Moodle. File name should follow the format Assignment1-Lastname-Firstname.pdf.
- <u>How to write solutions</u>: You should type your solution using LaTeX and following the template. Handwritten solutions will not be graded. Keep in mind the following premise:
 - When writing in English, write short, simple sentences.
 - When writing a proof, write clear, precise statements.

You can use previous points of the same problem without proving them. You can use results from the lectures if you reference them properly.

- <u>Discussion</u>: You may discuss only at a high level with classmates. You should not dig around for homework solutions; if you do rely upon external resources, cite them, and write solutions in your own words. We ask you to please follow the ETH Disciplinary Code.
- Grading: Grading will be based on the completeness and correctness of your solution according to points assigned for each exercise. Final grade = min(regular points + bonus points, 100).

 We reserve the right to deduct points on sloppy LATEX, minor errors in calculations, and unclear writing in general.
- Re-grading: You may request for regrading within one week after the grade is released, with a written justification of why your solution deserves more points.
- Encountering problems?
 - If you think some exercise is unclear or wrong use the Forum *Assignments* in Moodle or reach out to the TA in charge of the exercise.
 - If you have trouble submitting your solution to Moodle within six hours before the deadline due to technical problems, you can send your PDF solution to our head TA.

1 Basic Concepts (30 points)

Consider a Markov decision process with deterministic dynamics on two states A and B. In both states, there are two actions: stay or switch. The reward for entering A is 1, and the reward for entering B is 0.

In other words, we have $S = \{A, B\}, A = \{\text{switch}, \text{stay}\},\$

$$r(A, \text{switch}) = 0, r(A, \text{stay}) = 1, r(B, \text{switch}) = 1, r(B, \text{stay}) = 0,$$

$$P(A|A, \text{switch}) = 0, P(A|A, \text{stay}) = 1, P(B|B, \text{switch}) = 0, P(B|B, \text{stay}) = 1.$$

Let $\gamma \in (0,1)$ be the discount factor. Let π_0 be the policy which always switches states.

- a) [5 points] Compute the value function V^{π_0} of π_0 .
- b) [5 points] Compute the optimal value function V^* and optimal policy π^* .
- c) [5 points] Compute $\mathcal{T}\mathbf{V}^{\pi_0}$ where \mathcal{T} is the Bellman optimality operator.
- d) [5 points] Compute the greedy policy based on V^{π_0} .
- e) [5 points] Compute the first 5 updates of Value Iteration algorithm initialized with V^{π_0} .
- f) [5 points] Compute the first 5 updates of Policy Iteration algorithm initialized with π_0 .

Remark 1 What happens if we evaluate the first 10, 20, 30... steps of Value Iteration? This example also implies that iterating n times the Bellman optimality operator is not guaranteed to lead exactly to \mathbf{V}^* for any finite $n \in \mathbb{N}$.

Contact: nuria.armengolurpi@inf.ethz.ch

2 Convergence of Policy Iteration (15 points)

Consider the policy iteration algorithm for infinite horizon MDPs with a discount factor $\gamma < 1$. Let π_t and π_{t+1} be the respective policies at time steps t and t+1, where π_{t+1} is the greedy policy based on the value function \mathbf{V}^{π_t} . From the above example (see Exercise 1), one can observe that the Bellman optimality operator applied to V^{π_t} does not in general yield $\mathbf{V}^{\pi_{t+1}}$, i.e., $\mathcal{T}\mathbf{V}^{\pi_t} \neq \mathbf{V}^{\pi_{t+1}}$.

In slide 39/53 of Lecture 2, there is a typo:

$$\|\mathbf{V}^{\pi_{t+1}} - \mathbf{V}^*\|_{\infty} = \|\mathcal{T}\mathbf{V}^{\pi_t} - \mathcal{T}\mathbf{V}^*\|_{\infty}$$
(2.1)

This should instead be

$$\|\mathbf{V}^{\pi_{t+1}} - \mathbf{V}^*\|_{\infty} \leq \|\mathcal{T}\mathbf{V}^{\pi_t} - \mathcal{T}\mathbf{V}^*\|_{\infty} \tag{2.2}$$

Here we aim to prove the linear convergence of policy iteration in a precise manner.

a) [5 points] Prove

$$T\mathbf{V}^{\pi_t}(s) \ge \mathbf{V}^{\pi_t}(s) \qquad \forall s \in \mathcal{S}.$$

b) [5 points] Prove

$$\mathbf{V}^{\pi_{t+1}}(s) \ge \mathcal{T}\mathbf{V}^{\pi_t}(s) \qquad \forall s \in \mathcal{S}.$$

c) [5 points] Using the above, prove the linear convergence of the policy iteration algorithm.

Contact: daniel.paleka@math.ethz.ch

3 Bounding Suboptimality via Bellman Error (35 points)

Consider a tabular MDP with finite state space S and action space A.

- a) [10 points] Recall the Bellman optimality operator \mathcal{T} and the Bellman expectation operator \mathcal{T}^{π} from the lecture, defined on the space of value functions. Formally define analogous operators \mathcal{T}_Q and \mathcal{T}_Q^{π} on the space of state-action value Q-functions.
- b) [10 points] For any state-action value functions \mathbf{Q}, \mathbf{Q}' , prove:

$$\left| \max_{a \in \mathcal{A}} \mathbf{Q}(s, a) - \max_{a \in \mathcal{A}} \mathbf{Q}'(s, a) \right| \le \|\mathbf{Q} - \mathbf{Q}'\|_{\infty} \forall s \in \mathcal{S}.$$

Show both defined operators are γ -contractions under the ℓ_{∞} -norm.

c) [5 points] For any state-action value function Q, prove:

$$\|\mathbf{Q} - \mathbf{Q}^*\|_{\infty} \le \frac{\|\mathbf{Q} - \mathcal{T}_Q \mathbf{Q}\|_{\infty}}{1 - \gamma}.$$

d) [10 points] Now we are ready for the main point. Let Q be a state-action value function, and let π be the greedy policy with respect to Q, that is, $\pi = \arg\max_a Q(\cdot, a)$. Show that the value function V^{π} for this policy satisfies

$$\|\mathbf{V}^{\pi} - \mathbf{V}^*\|_{\infty} \le \frac{2\|\mathbf{Q} - \mathcal{T}_Q \mathbf{Q}\|_{\infty}}{1 - \gamma}.$$

where \mathcal{T}_Q is the Bellman optimality operator on the space of state-action value Q-functions.

Contact: nuria.armengolurpi@inf.ethz.ch

4 Reading: The Value Function Polytope (20 points)

In the reading exercise, you are expected to read some material and write a paragraph for each question. The questions may not be well-posed, and are intended to encourage reading and thinking; the grading here will be more lenient than in the previous problems.

In [?] the authors characterize the geometry of the space of all possible value functions given a Markov Decision Process. Then, they illustrate the dynamics of RL algorithms in the value function space, including value iteration, policy iteration, policy gradient methods, etc. Read the paper [?] and think about the following questions. ¹

- a) [5 points] On the first page, Figure 1 shows a convex space of policies mapped into a non-convex space of value functions. Why does this happen, philosophically? (You can think of your explanation, as we do not have one single correct answer.)
- b) [5 points] In Theorem 1, the authors consider the set of policies that differ only in one state s. Why is it necessary that policies differ only in a single state? What happens if we interpolate between two policies that differ in more states instead of only in a single one? (Answer in simple heuristic terms, no proofs needed.)

Hint: look at Lemma 3.

c) [10 points] What is your take-away from this paper? What is the main limitation of the paper?

Contact: daniel.paleka@math.ethz.ch

¹Extending [?] by investigating the interplay between non-convexity and dynamics may be a nice idea for the course project.

5 Bonus: Convergence of Inexact Policy Iteration (10 points)

Consider a tabular MDP with finite state space S and action space A and discount factor γ . In Exercise 2, we proved the linear convergence of the policy iteration algorithm.

Now consider the "inexact" version of the policy iteration algorithm, i.e., in each step we compute a function \mathbf{V}_t such that

$$\max_{s \in \mathcal{S}} |\mathbf{V}_t(s) - \mathbf{V}^{\pi_t}(s)| \le \varepsilon$$

for all steps $t \geq 0$ and some $\varepsilon > 0$. Then the algorithm sets π_{t+1} to the greedy policy with respect to \mathbf{V}_t . We can interpret ε as an error incurred during the policy evaluation step, as for example errors due to simulation.

Show that the sequence of policies π_t generated by this algorithm satisfies:

$$\limsup_{t \to \infty} \max_{s \in \mathcal{S}} |\mathbf{V}^{\pi_t}(s) - \mathbf{V}^*(s)| \le \frac{2\gamma \varepsilon}{(1 - \gamma)^2}.$$

Contact: daniel.paleka@math.ethz.ch

References

[1] Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, and Marc G Bellemare. The value function polytope in reinforcement learning. In <u>International Conference on Machine Learning</u>, pages 1486–1495. PMLR, 2019.