Ist das wirklich schlimm?

Gesucht ist nicht der "wahre", objektive Nutzen eines Zustands, sondern die optimale *Policy*!

Die optimale *Policy* ergibt sich zumeist schon bei recht grob approximierten Utilities!

→ Policy Iteration

Optimale *Policies* ohne präzise *Utilities*

Grundidee der *Policy Iteration*: Starte mit beliebiger (zufällig gewählter) *Policy*, iteriere die folgenden beiden Schritte:

- Bewertung: Berechne den Nutzen U_i jedes Zustands unter der aktuellen $Policy \pi_i$
- Verbesserung: Berechne, wenn möglich, basierend auf den aktuellen Nutzen-Werten eine bessere $Policy \pi_{i+1}$

Effizienter als *Value Iteration*, weil für Bewertung aktueller Nutzen der Zustände nicht über *alle* möglichen Aktionen maximiert werden muss! Vereinfachung der Bellmann-Gleichung (n lineare Gleich. mit n Unbekannten $U_i(s)$ bei n Zuständen, lösbar in $O(n^3)$):

$$U_i(s) = R(s) + \gamma \sum_{s'} T(s, \pi_i(s), s') U_i(s')$$

Policy Iteration

```
function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, transition model T
local variables: U, U', vectors of utilities for states in S, initially zero
                   \pi, a policy vector indexed by state, initially random
repeat
     U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)
     unchanged? \leftarrow true
     for each state s in S do
         if \max_a \sum_{s'} T(s, a, s') U[s'] > \sum_{s'} T(s, \pi[s], s') U[s'] then
             \pi[s] \leftarrow \operatorname{argmax}_a \sum_{s'} T(s, a, s') \ U[s']
             unchanged? \leftarrow false
until unchanged?
return π
```

POLICY-EVALUATION ist die Bewertung auf der vorigen Folie

Und was macht man, wenn das MDP nicht bekannt ist?

Dafür gibts Reinforcement-Lernen!

Russell/Norvig Kap. 21 Ertel Kap. 10

Erster Schritt: Passives RL

- Gegeben: Beobachtetes Verhalten (unbekanntes MDP mit unbekannter *Policy* $\pi(s)$)
- Finde/lerne: Nutzenfunktion $U^{\pi}(s)$ (verbesserte, präzisere, aktuellere Version)
- "Passiv", weil Aktionen aus unbekanntem $\pi(s)$ nur beobachtet werden

Was wir haben:

unter *Policy* π

Die Def. der Nutzenfunktion
$$U^{\pi}(s) \coloneqq EU \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \middle| \pi, s_0 = s \right]$$
 unter *Policy* π

- Beobachtete Aktions/Zustands/Reward-Sequenzen, z.B.
 - $(1,1)_{-04} \rightarrow (1,2)_{-04} \rightarrow (1,3)_{-04} \rightarrow (1,2)_{-04} \rightarrow (1,3)_{-04} \rightarrow (2,3)_{-04} \rightarrow (3,3)_{-04} \rightarrow (4,3)_{+1}$
 - $(1,1)_{-04} \rightarrow (1,2)_{-04} \rightarrow (1,3)_{-04} \rightarrow (2,3)_{-04} \rightarrow (3,3)_{-04} \rightarrow (3,2)_{-04} \rightarrow (3,3)_{-04} \rightarrow (4,3)_{+1}$
 - $(1,1)_{-04} \rightarrow (1,2)_{-04} \rightarrow (1,3)_{-04} \rightarrow (2,3)_{-04} \rightarrow (3,3)_{-04} \rightarrow (3,2)_{-04} \rightarrow (4,2)_{-1}$

Update-Regel für die Nutzenfunktion

- Die einzig vorhandene Information kommt aus der Beobachtung von Aktionssequenzen und Rewards
- Gegeben hinreichend viele Aktionssequenzen, ergibt sich der Nutzen eines Zustands aus dessen Reward und anteilig den Nutzen der Nachfolgezustände

Die *Temporal Difference* (TD) Update-Regel im akt. Zust. s':

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$
 (s ist d. Vorgänger v. s')

- γ Abschlags-Faktor (s.o.)
- α Lernrate: Wie unmittelbar soll e. in Aktionssequenz festgestellte Nutzendifferenz im Update berücksichtigt werden? (α kann von Zahl der Zustandsbesuche abhängen)

TD braucht kein explizites Modell der Umgebung (T,R)!

TD-Lernen

```
function PASSIVE-TD-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s' and reward signal r'
static: \pi, a fixed policy
        U, a table of utilities, initially empty
        N_s, a table of frequencies for states, initially zero
        s, a, r, the previous state, action, and reward, initially null
if s' is new then U[s'] \leftarrow r'
                                                 Lernrate hängt hier ab von
if s is not null then do
                                                 Zahl der Zustandsbesuche
    increment N_s[s]
    U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])
                                                                        TD-Regel
if TERMINAL?[s'] then s, a, r \leftarrow \text{null else } s, a, r \leftarrow s', \pi[s'], r'
return a
```

Struktur dieses Algorithmus (nur 1 Lernschritt) und Ausgabe (Aktion) seltsam formuliert für passives TD-Lernen!

Ergebnisse

Satz: Gemittelt über Aktionssequenzen konvergiert $U^{\pi}(s)$ gegen den korrekten Wert (s. Folie 324)

Zweiter Schritt: Aktives RL

- Gegeben: ein "unbekanntes" MDP (ohne bekannte Policy)
- Finde/lerne: für jeden Zustand s die optimale Aktion a (nicht unbedingt den präzisen Nutzenwert U(s))
- "Aktiv", weil MDP-Plan nicht vorgegeben ist, sondern gefunden werden muss
- Entspricht Planen ohne Domänenmodell!

Was wir haben:

- Bellmann-Gleichungen $U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s,a,s') U(s')$ (Folie 326) als Beschreibung eines "Fixpunkts" von U,R,T
- ... wobei wir weder U noch R noch T kennen!
- Beobachtete Aktions/Zustands/Reward-Sequenzen, wie eben

Die Q-Funktion

- Ziel ist, modellfrei optimale Aktionen für Zustände zu lernen (nicht mehr eine Nutzenfunktion für gegebenes π)
- Ersetze Nutzen eines Zustands U(s) durch Nutzen einer Aktion im Zustand: Q(a,s), wobei $U(s) = \max_{s} Q(a,s)$
- entsprechend Bellmann-Gleichung in *Q* (formuliert nach wie vor Fixpunkt der Funktionswerte):

$$Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') \max_b Q(b,s')$$

TD-Update-Regel in Q-Version

(vgl.:
$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

$$Q(a,s) \leftarrow Q(a,s) + \alpha \left(R(s) + \gamma \max_{b} Q(b,s') - Q(a,s) \right)$$

(α kann von der Frequenz der Zustandsbesuche abhängen)

Wissen ausbauen oder ausbeuten?

... Ertel: Erkunden oder verwerten? ... Englisch: exploration vs. exploitation

- "Mittendrin" im Lernen haben wir approximative Nutzenwerte, Aktionsmodelle
- Sollen wir dann schon "gut" handeln, müssten wir <u>immer</u> die <u>dann</u> optimale Aktion wählen – gemäß dem, was wir dann wissen ("Ausbeuten" des aktuell Gelernten)
- Gäbe es eine bessere Aktion, fänden wir sie nie
- → Um das zu tun, müssen wir "manchmal" gegen das aktuell bekannte Optimum agieren, um möglicherweise Besseres zu finden ("Ausbauen" des aktuell Gelernten)

Explorations funktion

$$f(u,n) = \begin{cases} R^+ \text{ falls } n < N \\ u \text{ sonst} \end{cases}$$

- u Nutzen- bzw. q-Wert
- n Häufigkeit, wie oft Zustand besucht
- N feste Schranke
- R⁺ feste Schätzung eines max. Rewards

Q-Lernen

```
function Q-LEARNING-AGENT(percept) returns an action inputs: percept, a percept indicating the current state s' and reward signal r' static: Q, a table of action values index by state and action N_{sa}, a table of frequencies for state-action pairs s, a, r, the previous state, action, and reward, initially null if s is not null then do increment N_{sa}[s,a] Q[a,s] \leftarrow Q[a,s] + \alpha(N_{sa}[s,a])(r + \gamma \max_{a'} Q[a',s'] - Q[a,s]) if TERMINAL?[s'] then s, a, r \leftarrow null else s, a, r \leftarrow s', argmax_{a'} f(Q[a',s'], N_{sa}[a',s']), <math>r' return a
```

Geeignete Parameter der *f*-Fkt. vorausgesetzt, konvergiert die Funktion in eine optimale *Policy*

Q-Lernen in der Robotik

Weiterführendes zum RL

- Will man modellfrei sein, oder will man eigentlich (auch) das Umgebungsmodell haben?
- Wie integriere Vorwissen über optimales/gutes Handeln?
- Wie kommt man zurecht mit Veränderung in der Umgebung?
 Muss man
 - erst alles Gelernte "abtrainieren" und dann das Neue lernen
 - oder kann man Teile des früher Gelernten übernehmen?

Fazit Lernen

Erinnerung Folie 227

Definition 8.2 Ein Agent heißt lernfähig, wenn sich seine Leistungsfähigkeit auf neuen, unbekannten Daten, im Laufe der Zeit (nachdem er viele Trainingsbeispiele gesehen hat) verbessert (gemessen auf einem geeigneten Maßstab).

- Hübsche Definition, charakterisiert aber nicht gut die Basis-Lernverfahren, die wir hier hatten
- Der "Maßstab" ist praktisch immer Reproduktion der Trainingsmenge (überwachte Verfahren, ILP) bzw. "kleinster Abstand zu Zielfunktion" (unüberwacht, Reinforcement) – bei Agenten ohne eigenen Zweck geht das nicht anders
- Overfitting ist dann ein Riesenproblem
- Lernen wird heftig eingesetzt in Data Mining und Robotik
- KI-Systeme ohne Lernen sind starr;
 Lernverfahren ohne Systemkontext ("Zweck") sind witzlos

