Sisteme și algoritmi distribuiți Curs 3

Cuprins

- Ceasuri
- Algoritmi sincroni
- Alegere lider pe inel (sincron)
- Alegere lider pe topologii generale (sincron)

Timp

- Ceasurile fizice în computere sunt realizate prin contorizare
 - Ceasuri atomice: drift 1s/150 milioane de ani
 - Ceasuri de sistem
 - Ceasuri de timp real: alimentate prin baterie (funcționează chiar dacă sistemul este oprit)
- h(t) rata (viteza) ceasului hardware
- $H(t) = \int_0^t h(\tau)\tau$ valoarea ceasului hardware
- Ceas logic (registru): $C(t) = \alpha H(t) + \beta$
- C(t) este un scalar crescător și se actualizează prin citiri ale lui H(t)

Timp

- In SD, ceasurile locale sunt decalate și întârziate
- **Decalaj** între nodurile (i, j) la momentul $t: |C_i(t) C_j(t)|$
- Întârziere între nodurile (i,j) la momentul $t: |\frac{d}{dt}C_i(t) \frac{d}{dt}C_j(t)|$

Problema sincronizării

Folosind referințe externe sau interne, problema sincronizării ceasurilor se reduce la asigurarea relației (de precizie): $|C_i(t) - C_j(t)| \le \rho \quad \forall t \ge t_0$

$$\left| C_i(t) - C_j(t) \right| \le \rho \quad \forall t \ge t_0$$

Problema sincronizării

- Sincronizare externă: referința este un ceas absolut extern e.g. Coordinate Universal Time (UTC), GPS etc.
- Sincronizare internă: referința este o valoare stabilită în rețea
 - Algoritmul lui Cristian
 - Algoritmul de Medie (Berkeley Algorithm)

UTC

UTC este standardul primar de timp în lume, transmis prin: radio, linii telefonice line, satelit (GPS) etc.

Protocoalele populare de sincronizare folosesc referința UTC și urmăresc să asigure relația (acuratețe):

$$|S(t) - C_i(t)| < \rho \quad \forall i, \forall t$$

Dacă asigurăm acuratețe ρ atunci ce precizie garantăm?

Algoritmul lui Cristian

- Ipoteza 1: Întârzieri pe comunicație simetrice și mărginite (rețele LAN)
- Ipoteza 2: Există un nod de referință (pasiv) R cu unicul rol de a furniza referința
- Nodurile care nu sunt referința se vor sincroniza cu ceasul referinței

Algoritmul lui Cristian

Procedura AC: Nodul P cere periodic valoarea timpului de la R:

- T_1 : send request; T_4 : primește reply
- P primește val. T_2 și T_3 de la R, ajustează $C(t) = T_3 + T_{res}$ (T_{res} timp livrare mesaj)
- Folosește estimarea $T_{res} \approx \frac{T_{req} + T_{res}}{2}$

$$T_{res} = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$$

Network Time Protocol (NTP)

- Implementare standard în rețele a alg. lui Cristian
- Peste multiple măsurători, calculăm T_{res} minim
- Ierarhie a serverelor de timp:
 - un TS de nivel k se sincronizează după unul de nivel $\leq k-1$
 - Nivelul 0 este referința UTC

https://en.wikipedia.org/wiki/Network_Time_Protocol

Exemplu

La 5: 08: 15.100, P trimite mesaj de request către R. La 5: 08: 15.900, P primește răspuns de la B cu valoarea 5: 09: 25.300 ($T_2 = T_3$)

• Care este valoarea ajustată a ceasului local $T_4 = C_P(t)$ după sincronizare?

$$T_{res} = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$$

Exemplu

La 5: 08: 15.100, P trimite mesaj de request către R. La 5: 08: 15.900, P primește răspuns de la B cu valoarea 5: 09: 25.300 ($T_2 = T_3$)

- Send req la $T_1 = 5:08:15.100$
- Primește răsp. la $T_4 = 5:08:15.900$
- Mesajul este $T_3 = T_2 = C_R(t) = 5:09:25.300$
- Durata totală $T_4 T_1 = 800 ms$
- Estimare: mesaj generat în urmă cu 400 ms
- Set $C_P(t) = T_{serv} + 400 = 5:09.25.700$

$$T_{res} = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$$

Sincronizare internă

Sincronizarea internă a ceasurilor locale în DS presupune (precizie) $|C_j(t) - C_i(t)| < \rho \quad \forall i, j, t$

- Necesită algoritmi complet distribuiți
- Problema este una de consens distribuit
- Vom reveni la ea în cursurile următoare

Algoritmul de medie (Berkeley Algorithm)

- Referința este unul din nodurile rețelei, ales eventual prin proceduri de leader-election
- Restul nodurilor urmăresc alinierea ceasurilor cu referința (consens)

Algoritmul de medie (Berkeley Algorithm)

- Referința este unul din nodurile rețelei, ales eventual prin proceduri de leader-election
- Restul nodurilor urmăresc alinierea ceasurilor cu referința (consens)
- Pe scurt: la iterația t
 - R difuzează valoarea $C_R(t)$
 - P_i calculează întârzierea locală $\delta_i = |C_R(t) C_i(t)|$ și răspunde lui R
 - R distribuie ajustările pentru $C_i(t)$

Alternative

1. If two machines don't interact, there is no need to synchronize them (Leslie Lamport)

- 2. Dinamica întârzierii per link $\frac{T_{req}+T_{res}}{2}$ depinde de mai mulți factori
- 3. Adesea, contează ca procesele să convină asupra **ordinii** evenimentelor, și nu asupra **timpului** la care au avut loc (vezi Ceasuri Logice).

Cuprins

- Ceasuri
- Algoritmi sincroni
- Alegere lider pe inel (sincron)
- Alegere lider pe topologii generale (sincron)

Algoritmi sincroni în SD

Un algoritm distribuit sincron reprezintă un set de operații de calcul/comunicație *executat în iterații/runde* (contorizate de t) pe nodurile sistemului, cu scopul rezolvării unei sarcini concrete.

- Denumim starea locală a nodului i la momentul t cu $x_i(t)$. Scopul algoritmului este conducerea lui $x_i(t)$ către starea optimă $x_i(\infty)$
- La următorul moment de timp starea x_i suferă o transformare bazată pe pașii algoritmului și informația provenită de la vecini. Pe scurt,

$$x_i(t+1) \coloneqq f_i(x(t))$$

unde $f_i(\cdot)$ reprezintă funcția de transformare asociată nodului i. Funcția $f_i(\cdot)$ definește însuși algoritmul SPMD.

Algoritmi sincroni în SD

La următorul moment de timp starea x_i suferă o transformare bazată pe pașii algoritmului și informația provenită de la vecini. Pe scurt,

$$x_i(t+1) \coloneqq f_i(x(t))$$

unde $f_i(\cdot)$ reprezintă funcția de transformare asociată nodului i.

Funcția $f_i(\cdot)$ este definită în format SPMD și este compusă din una sau mai multe operații (e.g. aritmetice, numerice) asupra variabilelor locale din memoria nodului i.

Problemă [Distributed averaging]: Vectorul x(0) este distribuit peste n noduri, astfel încât $x_i(0)$ se află în memoria locală a nodului i. Calculează distribuit media aritmetică $m = \sum_i x_i(0)/n$ a vectorului x(0), încât la final $x_i(\infty) = m$.

Problemă [Distributed averaging]: Vectorul x(0) este distribuit peste n noduri, astfel încât $x_i(0)$ se află în memoria locală a nodului i. Calculează distribuit media aritmetică $m = \sum_i x_i(0)/n$ a vectorului x(0), încât la final $x_i(\infty) = m$.

Algoritm: Alege
$$j \in N_i$$
 și actualizează $x_i(t+1) = f_i(x(t)) = \frac{x_i(t) + x_j(t)}{2}$

 p_1

Algoritmi Sincroni în SD

La finalul iterației t fiecare nod finalizează calculul local, și comunicația cu vecinii, specifice iterației t

$$x(t+1) \coloneqq \begin{bmatrix} x_1(t+1) \\ \dots \\ x_n(t+1) \end{bmatrix} = \begin{bmatrix} f_1(x(t)) \\ \dots \\ f_n(x(t)) \end{bmatrix} = F(x(t))$$

- Există o margine superioară pe timpul de comunicație între oricare două noduri.
- Adesea implementarea unui criteriu de oprire este o operație dificilă!

Alegere Lider (Leader Election)

În multe aplicații este necesară alegerea unui nod pentru operații particulare (e.g. difuzare, distribuție, master-slave).

Fiecare nod are un ID unic, ales dintr-un spațiu total ordonat.

Convenție: Lider = **nodul cu ID-ul maxim**.

Algoritmii de LE realizează de facto calculul distribuit al funcției $\max\{id_1,id_2,\dots,id_n\}$

Alegere Lider (Leader Election)

Starea locală a nodului i specifică calitatea de lider/non-lider: $x_i(t) \in \{lider, non - lider\}$

Funcția de transformare asociată nodului i:

$$f_i\big(\{x_j(t)|j\in N_i\}\big)$$

decide dacă la iterația curentă nodul i devine sau nu lider.

Funcția f_i se reduce la una sau mai multe operații asupra memoriei locale M_i a nodului P_i .

Alegere Lider (Leader Election)

Starea locală a nodului i specifică calitatea de lider/non-lider: $x_i(t) \in \{lider, non - lider\}$

Funcția de transformare asociată nodului i:

$$f_i\big(\{x_j(t)|j\in N_i\}\big)$$

decide dacă la iterația curentă nodul i devine sau nu lider.

Asimptotic, soluția problemei este aducerea sistemului în starea:

$$x_i^* = \begin{cases} lider, & i = argmax_j id_j \\ non - lider, & altfel \end{cases}$$

Alegere Lider (AL)_{p1}

Alegere Lider (AL)

Ipoteze vedere locală:

- 1. Topologie inel unidirecțional (P_i cunoaște poziția relativă în inel)
- 2. Nodul P_i se identifică cu id_i
- 3. Nodul P_i cunoaște nr. de noduri n

Problema se reduce la: specifică un program $SPMD(f_i)$ astfel încât, într-un număr minim de iterații să asigurăm convergența stării globale la starea optimă, i.e. $x_i(T) = x_i^*$.

Algoritm **AlegeLiderInel_cg**():

 M_i : - int n (număr noduri)

- int i (index propriu)
- int id (id propriu)
- int id_max (id propriu)

% Faza I: max ID

- Calculează $\max\{id_1, id_2, ..., id_n\}$
- Rezultatul va fi stocat într-un nod particular
- % Faza II: Difuzare Max ID (Broadcast)
- Rezultatul este difuzat peste tot inelul
- Stările x_i sunt ajustate conform rezultatului

 M_i : - int n (număr noduri)

- int i (index propriu)
- int id (id propriu)
- int id_max (id propriu)

% Faza max ID

Functie transformare nod i f_i ():

- 1. If (i == 1):
 - 1. send(id, 2);
 - 2. $id_aux = recv(n)$;
- **2.** else:
 - 1. $id_aux = recv(index 1 mod n)$;
 - 2. send(idmax, index + 1 mod n);
- $3. idmax = max(id, id_aux);$


```
Memorie locală nod i:
- int n (număr noduri)
- int i (index propriu)
```

- int id (id propriu)
- int id_max (id propriu)

% Faza I: Max ID

. . .

% Faza II: Difuzare Max ID (Broadcast)

Functie transformare nod i f_i ():

- 1. If (i == 1):
 - 1. send({idmax, imax}, 2);

Else If (i == n-1):

1. $\{idmax, imax\} = recv(index - 1 mod n);$

Else

- 1. $\{idmax, imax\} = recv(index 1 mod n);$
- 2. $send(\{idmax, imax\}, index + 1 mod n);$

Alegere Lider (AL)

Ipoteze vedere locală:

- 1. Topologie inel unidirecțional (P_t cunoaște poziția relativă în inel)
- 2. Nodul P_i se identifică cu id_i
- 3. Nodul P_t cunoaște nr. de noduri n
- Ipoteze mai realiste (rețele peer-to-peer)
- Topologia și numărul de noduri sunt statice
- Problema se reduce la: specifică un program SPMD (f_i) astfel încât, într-un număr minim de iterații să asigurăm convergența stării globale la starea optimă, i.e. $x_i(T) = x_i^*$.

Algoritm **Flooding**():

 M_i : - int id (id propriu)

- int send_id (var auxiliară), inițial id
- status ∈ {lider, non-lider}, inițial non-lider

Funcție transformare nod i ():

- 1. $send(send_id, index + 1 mod n);$
- 2. $recv_id = recv(index 1 mod n);$
- **3. If** (recv_id > id):
 - 1. send_id := recv_id;
- **4. ElseIf** (recv_id == id): status = leader;

Algoritmul Flooding (LCR) send = 33

- In varianta curenta nu avem criteriu de oprire (nodurile ruleaza la infinit)
- **Solutie**: Pentru oprire liderul poate difuza un mesaj de raport, prin care semnalează incheierea competiției

Algoritm **Flooding**():

 M_i : - int id (id propriu)

- int send_id (var auxiliară), inițial id
- status ∈ {lider, non-lider}, inițial non-lider

Funcție transformare nod i ():

- 1. $send(send_id, index + 1 mod n);$
- 2. recv_id = recv(index 1 mod n);
- **3. If** (recv_id > id):
 - 1. send_id := recv_id;
- **4.** ElseIf (recv id == id): status = leader;

Teorema [Lynch]. Algoritmul LCR rezolvă problema alegerii liderului.

Complexitate. Complexitatea timp este n iterații până la anunțarea unui lider, iar complexitatea mesaj este $O(n^2)$.

Algoritmul Flooding (topologie generală)

- Reconsiderăm problema AL, de data aceasta într-o topologie generală reprezentată printr-un graf directat **tare conectat.**
- Fiecare nod are un ID unic, ales dintr-un spațiu total ordonat.
- Un singur nod poate fi ales LIDER în rețea.
- Ideea unui algoritm simplu (extensie LCR):
 - Fiecare proces înregistrează ID-ul maxim cunoscut până în prezent
 - La fiecare iterație, nodurile propagă acest maxim pe toate muchiile de ieșire
 - După *diam* iterații, dacă ID-ul maxim coincide cu ID-ul propriu, nodul se va declara LIDER, altfel NON-LIDER.

Algoritmul Flooding (graf tare conectat)

Algoritm **Flooding_Gen**(max()):

 M_i : - int id (id propriu)

- int *max_id* (var auxiliară), inițial id
- *status* ∈ {lider, non-lider}, inițial non-lider
- int *rounds*, integer, inițial 0
- int diam (diametru graf)

Funcție transformare nod i ():

- 1. t := t+1
- 2. Fie U mulțimea ID-urilor primite de la vecinii de intrare
- 3. $\max_{id}:=\max(\{\max_{id}\} \cup U)$
- **4. If** (rounds == diam):
 - **1. If** (max_id == id): status = leader;
 - **2. Else**: status = non-leader;
- **5.** Else: send(max_id, vecini ieșire)

Teorema [Lynch]. În algoritmul Flooding, nodul cu indicele i_{max} este lider, restul nodurilor non-lider, după *diam* iterații.

Complexitate. Complexitatea timp este *diam* iterații până la anunțarea unui lider, iar complexitatea mesaj este $diam \cdot |E|$. Prin |E| înțelegem numărul de muchii directate din graf.

Remarci.

- 1. Flooding reprezintă o generalizare a LCR;
- 2. LCR nu necesită informație globală;
- 3. Dacă graful = inel unidirecțional, atunci $diam \cdot |E| = (n-1) \cdot n \approx n^2$;
- 4. Algoritmul funcționează cu o aproximare a constantei diam;

Algoritmul Flooding (alte aplicații)

- Difuzare în rețea (Broadcast)
- Arbori Breadth-First Search
- Consens (sincronizat)
- Estimari globale:
 - Diametru
 - Număr de noduri
 - Calcul distribuit