1 Progress on the question

1.1 Statistics on positive folds

We now restrict to looking at Weyl chamber orientations over affine Coxeter complexes. This means that we have a complex Σ , with a boundary $\partial \Sigma$, and that our orientations are induced by a boundary chamber orientation. Here, we can get a partial answer to our main question of calculating the shadow of a given gallery. To do this, we define a ϕ -valuation map on our set of alcoves. We can then prove a recursive algorithm for calculating the shadow of a gallery.

First, given a gallery, we want to calculate the number of positive folds of this gallery that we can make. A proof of this proposition can be found in [2].

Proposition 1.1. Consider the largest element w_0 in W_0 . Given an $x \in W$, and a ϕ -postive (multi)folding γ of γ_x , we have

$$l_R(xy^{-1}) \le |F(\gamma)| \le l(w_0),$$

where $y := \tau(\operatorname{ft}(\gamma))$.

Definition 1.1. Let $\mathcal{H}(\Sigma)$ be the set of all hyperplanes contained in our Coxeter complex. For an alcove c of Σ , let $\mathcal{H}(c)$ be the subset of $\mathcal{H}(\Sigma)$ which separates c and the fixed identity alcove 1. Now $\mathcal{H}(c) = \mathcal{H}_{\phi}^+(c) \sqcup \mathcal{H}_{\phi}^-(c)$.

Definition 1.2. Let $Ch(\Sigma)$ denote the set of all alcoves in Σ . The ϕ -valuation map is the map $v_{\phi}: Ch(\Sigma) \longrightarrow \mathbb{Z}$, with

$$c \mapsto \mathbf{v}_{\phi}(c) := |\mathcal{H}_{\phi}^{+}(c)| - |\mathcal{H}_{\phi}^{-}(c)|.$$

Definition 1.3. Let $p_{\phi}: \operatorname{Ch}(\Sigma) \times \mathcal{H} \longrightarrow \{0,1\}$ be the function

$$p_{\phi}(c, H) := \begin{cases} 1 & \text{if } c \text{ is on a } \phi\text{-positive side of } H, \\ 0 & \text{otherwise.} \end{cases}$$

We now want to relate this function to our ϕ -valuation map.

Lemma 1.1.

$$\mathbf{v}_{\phi}(c) = \sum_{H \in \mathcal{H}(\Sigma)} (p_{\phi}(c, H) - p_{\phi}(1, H)).$$

Proof. We are assuming that our oritentation ϕ is a chamber orientation. So, in particular, this orientation is locally non-trivial. Therefore, every hyperplane H has a positive and negative side. First consider when 1 and c lie on the same side of H. Then H is not an element of $\mathcal{H}(c)$. But in this case, $p_{\phi}(1,H) = p_{\phi}(c,H)$ and so this hyperplane does not contribute to the above sum. Now consider when 1 and c lie on opposite sides of H. In this case, $H \in \mathcal{H}(c)$. If c lies on the positive side of H, then $H \in \mathcal{H}^+_{\phi}(c)$ and $p_{\phi}(c,H) = 1$ and

 $p_{\phi}(1, H) = 0$, and so H contributes +1 to the sum above. Similarly, if c lies on the negative side of H, then $H \in \mathcal{H}_{\phi}^{-}(c)$ and $p_{\phi}(c, H) = 0$ and $p_{\phi}(1, H) = 1$, and so H contributes -1 to the sum above. Therefore, we are just counting the size of $\mathcal{H}_{\phi}^{+}(c)$ minus the size of $\mathcal{H}_{\phi}^{-}(c)$, which is exactly $v_{\phi}(c)$.

The next lemma comes from the trivial observation that

$$|\mathcal{H}_{\phi}^{+}(c)| + |\mathcal{H}_{\phi}^{+}(c)| \ge |\mathcal{H}_{\phi}^{+}(c)| - |\mathcal{H}_{\phi}^{+}(c)|.$$

Lemma 1.2.

$$l(x) \ge v_{\phi}(c_x).$$

Definition 1.4. We call an alcove c dominant with respect to ϕ if $v_{\phi}(c) = l(c)$.

Lemma 1.3.

$$l(x) = \max_{a \in W_0} \mathbf{v}_{\tilde{\phi}_a}(c_x).$$

Proof.

Lemma 1.4. Let $\phi \in \text{Dir}(W)$, $r \in W$ be a reflection across the hyperplane H_r and $x \in W$. Then $v_{\phi}(x) > v_{\phi}(rx)$ if and only if x lies in the ϕ -positive side of H_r .

Proof.
$$\Box$$

1.2 Computation of regular shadows

We now want to see how we can use this new valuation map to define a recursive definition of a shadow. To do this, we need the next important theorem. A proof of this theorem can be found in [1, pp.142-143].

Let Dir(W) represent the set of chambers in the boundary complex $\partial \Sigma$. We call elements of Dir(W) directions in W.

Theorem 1.1. Let $\phi \in Dir(W)$, $x \in W$ and $s \in S$. Then

(i) If s is in the right descent set $D_R(x)$ of x, then we have

$$Sh_{\phi}(x) = Sh_{\phi}(xs) \cdot s \cup \{z \in Sh_{\phi}(xs) : v_{\phi}(zs) < v_{\phi}(z)\}.$$

(ii) If s is in the left descent set $D_R(x)$ of x, then we have

$$\operatorname{Sh}_{\phi}(x) = \begin{cases} s \cdot \operatorname{Sh}_{\phi}(sx) \cup \operatorname{Sh}_{\phi}(sx) & if \ v_{\phi}(s) < 0, \\ s \cdot \operatorname{Sh}_{\phi}(sx) & if \ v_{\phi}(s) > 0. \end{cases}$$

Now we can use this theorem to show that the next two lemmas both give us recursive defintions for the shadow of a gallery.

Lemma 1.5. (Algorithm L) Let $\phi \in \text{Dir}(W)$ and $x \in W$. Let $w = (s_1, ..., s_n)$ be a reduced word for x. Let $A_0 = \{1\}$ and let

$$A_i := A_{i-1} \cdot s_i \cup \{ z \in A_{i-1} | v_{\phi}(zs) < v_{\phi}(z) \}.$$

Then $A_n = \operatorname{Sh}_{\phi}(x)$.

Proof. Using the theorem above, we can show by induction that $A_i = \operatorname{Sh}_{\phi}(s_1...s_i)$ for i = 0, ..., n. Firstly, for i = 0 it is trivial, as $\operatorname{Sh}(1) = \{1\}$. Then assume that $A_i = \operatorname{Sh}_{\phi}(s_1...s_i)$ for i < j. By part (i) of the theorem,

$$Sh(s_1...s_j) = Sh(s_1...s_js_j) \cdot s_j \cup \{z \in Sh(s_1...s_js_j) : v_{\phi}(zs) < v_{\phi}(z)\}$$

$$= Sh(s_1...s_{j-1}) \cdot s_j \cup \{z \in Sh(s_1...s_{j-1}) : v_{\phi}(zs) < v_{\phi}(z)\}$$

$$= A_{j-1} \cdot s_j \cup \{z \in A_{j-1} : v_{\phi}(zs) < v_{\phi}(z)\}$$

$$= A_j.$$

Lemma 1.6. (Algorithm R) Let $\phi \in \text{Dir}(W)$ and $x \in W$, with $(s_n, ..., s_1)$ a reduced expression for x. Let $B_0^{\phi} := \{1\}$ and define

$$B_i^{\phi} = \begin{cases} s_i B_{i-1}^{s_i \phi} \cup B_{i-1}^{\phi} & \text{if } v_{\phi}(s_i) < 0, \\ s_i B_{i-1}^{s_i \phi} & \text{if } v_{\phi}(s_i) > 0. \end{cases}$$

Then $B_n^{\phi} = \operatorname{Sh}_{\phi}(x)$ for all $\phi \in \operatorname{Dir}(W)$.

Proof. Again, we can use the theorem above to prove by induction that $B_i^{\phi} = \operatorname{Sh}_{\phi}(s_i...s_1)$ for all i = 0, ..., n. For i = 0 it is trivial as $\operatorname{Sh}_{\phi}(1) = \{1\}$. Now assume that $B_i^{\phi} = \operatorname{Sh}_{\phi}(s_i...s_1)$ for all i < j. By part (ii) of the theorem, if $v(s_j) < 0$, then

$$Sh_{\phi}(s_{j}...s_{1}) = s_{j} \cdot Sh_{s_{j}\phi}(s_{j}s_{j}...s_{1}) \cup Sh_{\phi}(s_{j}s_{j}...s_{1})$$

$$= s_{j} \cdot Sh_{s_{j}\phi}(s_{j-1}...s_{1}) \cup Sh_{\phi}(s_{j-1}...s_{1})$$

$$= s_{j} \cdot B_{j-1}^{s_{j}\phi} \cup B_{j-1}^{\phi}$$

$$= B_{j}^{\phi}.$$

Similarly, if $v(s_i) < 0$, then

$$Sh_{\phi}(s_{j}...s_{1}) = s_{j} \cdot Sh_{s_{j}\phi}(s_{j}s_{j}...s_{1})$$

$$= s_{j} \cdot Sh_{s_{j}\phi}(s_{j-1}...s_{1})$$

$$= s_{j} \cdot B_{j-1}^{s_{j}\phi}$$

$$= B_{j}^{s_{j}\phi}.$$

References

- [1] Marius Graeber and Petra Schwer. Shadows in coxeter groups. Annals of Combinatorics, $24(1):119-147,\ 2020.$
- [2] Elizabeth Milićević, Petra Schwer, and Anne Thomas. Dimensions of affine deligne-lusztig varieties: a new approach via labeled folded alcove walks and root operators. 2015.