Planche d'oral de Physique de l'ENSEA

MPI Session 2025

Question de cours

« Interféromètre de Michelson réglé en coin d'air, franges d'égale épaisseur. »

Difficile de comprendre ce qui est exactement attendu. En fournissant le calcul de la différence de marche $\delta = 2\alpha x$. En y ajoutant l'expression de l'éclairement résultant, et de la condition d'interférence constructive, le correcteur semble satisfait, même si la condition que je trouve est fausse à un facteur près.

Énoncé de l'exercice

On considère un cylindre d'axe (Oz), de hauteur H et de rayon $R \ll H$, chargé uniformément d'une densité surfacique de charge σ_0 . On donne les équations de Maxwell dans le cas général.

- 1. Qu'advient-il des équations de Maxwell en électrostatique?
- 2. Calculer le champ électrostatique $\vec{E}(M)$ de deux manières différentes en tout point M de l'espace.
- 3. En déduire le potentiel électrostatique V(M) en tout point de l'espace.

Remarques personnelles

Examinateur sur son portable, semblant inintéressé et acquiesce systématiquement sans rien ajouter ni rectifier. Me laisse patauger sur les conditions limites du potentiel...