Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

P. M. Saz Parkinson for the Milagro Collaboration¹

Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064

Abstract. Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90%) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

Keywords: gamma-ray sources; gamma-ray bursts; astronomical observations: gamma-ray

PACS: 98.70.Rz,95.85.Pw

Some of the most important contributions to understanding gamma-ray bursts (GRBs) have come from observations of afterglows over a wide spectral range [1]. Many GRB models predict very high energy (VHE, > 100 GeV) emission from GRBs at a level comparable to that at MeV energies (e.g. [2, 3]). EGRET detected several GRBs at energies above 100 MeV, indicating that the spectrum of GRBs extends at least out to 1 GeV, with no evidence for a spectral cut-off [4]. A second component was also found in one burst which extended up to at least 200 MeV and had a much slower temporal decay than the main burst [5]. At very high energies, there has been no conclusive emission detected for any single GRB, though a search for counterparts to 54 BATSE bursts with Milagrito, a prototype of Milagro, found evidence for emission from one burst, with an after trials significance slightly greater than 3σ [6]. At these high energies, gamma rays are attenuated by the redshift-dependent extra-galactic background light (EBL) [7], making the detection of VHE emission from GRBs very challenging.

A search for an excess of events above those due to the background was carried out for each of the 106 satellite-detected GRBs in our sample (see Table 1). These represent all the GRBs known to have occurred within the field of view of Milagro during its first seven years of operations (2000-2006)². Milagro detected no significant emission from any of these bursts, and fluence upper limits are given in Table 1.

We acknowledge Scott Delay and Michael Schneider for their dedicated efforts in the construction and maintenance of the Milagro experiment. This work has been supported by the National Science Foundation (under grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and ATM-0002744) the US Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics), Los Alamos National Laboratory, the University of California, and the Institute of Geophysics and Planetary Physics.

REFERENCES

- 1. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. 2000, Annual Review of Astronomy and Astrophysics 38, 379
- 2. Dermer, C. D., Chiang, J., & Mitman, K. E. 2000, ApJ 537, 785
- 3. Zhang, B. & Mészáros, P. 2001, *ApJ* 559, 110
- 4. Dingus, B. L. 2001, in Aharonian, F. A. and Volk, H. J. (eds), High Energy Gamma Ray Astronomy, AIP Conf. Proc., 558, 383
- 5. Gonzalez, M. M. et al. 2003, Nature 424, 749
- 6. Atkins, R. et al. 2000, ApJL 533, L119
- 7. Primack, J. R. et al. 2005, in Aharonian, F., Volk, H., and Horns, D. (eds) Gamma 2004 Heidelberg, AIP Conf. Proc., 745, 23-33

¹ A. Abdo, B. T. Allen, D. Berley, E. Blaufuss, S. Casanova, B. L. Dingus, R. W. Ellsworth, M. M. Gonzalez, J. A. Goodman, E. Hays, C. M. Hoffman, B. E. Kolterman, C. P. Lansdell, J. T. Linnemann, J. E. McEnery, A. I. Mincer, P. Nemethy, D. Noyes, J. M. Ryan, F. W. Samuelson, P. M. Saz Parkinson, A. Shoup, G. Sinnis, A. J. Smith, G. W. Sullivan, V. Vasileiou, G. P. Walker, D. A. Williams, X. W. Xu and G. B. Yodh

² GRB 060218, due to its long duration of more than 2000 s moved out of Milagro's field of view after the start of the burst. The limit presented here is for the initial 10 s hard spike reported by the instrument team.

TABLE 1. GRBs in the Milagro field of view (2000-2006). Column 1 is the GRB name. A superscript refers to the number of IPN error regions in the Milagro field of view. A superscript of one implies only one of two error regions fell in the Milagro field of view, while a two implies that both did, and they are listed one after the other. Column 2 gives the duration of the burst (in seconds), column 3 the zenith angle (in degrees), column 4 the measured redshift, column 5 the satellite(s) detecting the GRB, and column 6 gives the Milagro 99% confidence upper limit on the 0.2–20 TeV fluence in erg cm⁻². Numbers in bold (also labelled with a [#]) take into account absorption by the EBL (using the Primack 05 model) for a redshift given in column 4. Those with three dots imply the redshifts are so high that all the emission is expected to be absorbed.

GRB	Dur.	θ	Z	Inst.	99% UL	GRB	Dur.	θ	Z	Inst.	99% UI
000113	370	21		BATSE	5.5e-6	031026	0.24	45		IPN	1.1e-6
000131^{1}	12	41		IPN	6.5e-7	031220	23.7	43		HETE	4.0e-6
000205	23	25		BSAX	6.9e-7	040506	175	49		IPN	6.0e-6
000206	10	39		BSAX	9.3e-7	040924	0.6	43	0.859	HETE	1.4e-3#
000212	8	2.2	•••	BATSE	1.1e-6	041211	30.2	43		HETE	4.8e-6
000220	2.4	49		BATSE	1.1e-5	041219a	520	27		INTGR.	5.8e-6
000226	10	32		BATSE	3.4e-6	050124	4	23		Swift	3.0e-7
$000226b^{1}$	94.5	32		IPN	7.8e-7	050213	17	23		IPN	1.3e-6
000301C	14	38	2.03	BATSE	•••	050319	15	45	3.24	Swift	
000302	120	32		BATSE	6.8e-6	050402	8	40		Swift	2.1e-6
000314	12.8	45		BSAX	3.6e-5	050412	26	37		Swift	1.7e-6
000317	550	6.4		BATSE	7.9e-6	050502	20	43	3.793	INTGR.	
000330	0.2^{*}	30		BATSE	1.0e-6	050504	80	28		INTGR.	1.3e-6
000331	55	38		BATSE	1.2e-5	050505	60	29	4.3	Swift	
000402	120	48	•••	BSAX	4.5e-5	050509b	0.128	10	0.226?	Swift	1.1e-6#
000408	2.5	31		BATSE	1.0e-6	050522	15	23		INTGR.	5.1e-7
000424	5	36		BATSE	7.6e-7	050607	26.5	29		Swift	8.9e-7
000508	30	34		BATSE	3.7e-6	050703	26	26		IPN	1.2e-6
000607^{1}	0.12	42		IPN	4.6e-7	050712	35	39		Swift	2.5e-6
000615	10	39	•••	BSAX	1.6e-6	050713b	30	44	•••	Swift	4.0e-6
000630	20	32	•••	IPN	2.2e-6	050715	52	37	•••	Swift	1.7e-6
000707^2	18	43		IPN	1.9e-6	050716	69	30	•••	Swift	1.6e-6
000707^2	18	41		IPN	1.0e-6	050820	20	22	2.612	Swift	
000727	10	41		IPN	2.6e-6	051103	0.17	50	0.001?	IPN	4.2e-6#
000730	7	19		IPN	4.2e-7	051109	36	9.7	2.346	Swift	
000821^{1}	8	27		IPN	6.9e-7	051111	20	44	1.55	Swift	
000830^{1}	8	35		IPN	9.1e-7	051211b	80	33	•••	INTGR.	2.6e-6
000926	25	16	2.04	IPN	•••	051221	1.4	42	0.55	Swift	9.8e-4#
001017	10	42		IPN	2.2e-6	051221b	61	26		Swift	1.8e-6
001018	31	32		IPN	2.1e-6	060102	20	40	•••	Swift	2.0e-6
001019	10	20		IPN	1.1e-6	060109	10	22	•••	Swift	4.1e-7
001105	30	8.5		IPN	1.4e-6	060110	15	43	•••	Swift	3.0e-6
001204	0.44	48		BSAX	1.2e-5	060111b	59	37		Swift	2.3e-6
010104	2	20		IPN	4.0e-7	060114	100	41		INTGR.	5.1e-6
010220	150	27		BSAX	2.1e-6	060204b	134	31		Swift	2.7e-6
010613	152	25		IPN	2.9e-6	060210	5	43	3.91	Swift	
010706	48	37		IPN	2.6e-6	060218	10	44.6	0.03	Swift	3.8e-5#
010903	41	49		IPN	2.9e-5	060306	30	46	•••	Swift	7.2e-6
010921	24.6	10	0.45	HETE	2.9e-5#	060312	30	44		Swift	3.3e-6
011130	83.2	34		HETE	3.4e-6	060313	0.7	47		Swift	2.7e-6
011212	84.4	33		HETE	6.7e-6	060403	25	28		Swift	1.0e-6
020311	11.5	27		IPN	1.7e-7	060427b	0.22	16		IPN	2.1e-7
020429^2	16	39		IPN	4.6e-7	060428b	58	27	•••	Swift	1.1e-6
020429^2	16	30		IPN	3.0e-7	060507	185	47		Swift	1.8e-5
020625b	125	38		HETE	5.7e-6	060510b	330	43	4.9	Swift	
020702	26	34	•••	IPN	1.4e-6	060515	52	42	•••	Swift	9.6e-6
020908^{1}	17	19		IPN	7.3e-7	060712	26	35	•••	Swift	3.8e-6
020914	9	5.7		IPN	4.2e-7	060814	146	23	•••	Swift	2.5e-6
021104	19.7	13		HETE	7.5e-7	060904A	80	14	•••	Swift	2.4e-6
021112	7.1	34		HETE	9.4e-7	060906	43.6	29	3.685	Swift	•••
021112	20	18		HETE	6.4e-7	061002	20	45	•••	Swift	4.0e-6
021211	6	35	1.01	HETE		061126	191	28	•••	Swift	4.3e-6
030413	15	27		IPN	 1.0e-6	061210	0.8	23	0.41?	Swift	6.1e-6 [#]
030823	56	33		HETE	2.8e-6	061222a	115	30		Swift	5.6e-6