Listing 1: Python code and output from Module10_Geidel.ipynb

EDA: Data source

```
[2]: # Load the dataset

from scipy.io.arff import loadarff

arff_name = 'wine.arff'

raw_data = loadarff(
    os.path.join(settings.DATA_PATH, arff_name)
)
data = pd.DataFrame(raw_data[0])

data.head()
```

[2]:	Alcohol	Malic_acid	Ash	Alcali	nity_of_ash	Magnesium	Total_phen	ols.	\
0	14.23	1.71	2.43		15.6	127.0	2	.80	
1	13.20	1.78	2.14		11.2	100.0	2	.65	
2	13.16	2.36	2.67		18.6	101.0	2	.80	
3	14.37	1.95	2.50		16.8	113.0	3	.85	
4	13.24	2.59	2.87		21.0	118.0	2	.80	
	Flavanoi	ds Nonflava	noid_p	henols	Proanthocya	nins Colo	r_intensity	Hue	\
0	3.0	06		0.28		2.29	5.64	1.04	:
1	2.	76		0.26		1.28	4.38	1.05	•
2	3.3	24		0.30		2.81	5.68	1.03	}
3	3.4	49		0.24		2.18	7.80	0.86	;
4	2.0	69		0.39		1.82	4.32	1.04	:

```
OD280/OD315_of_diluted_wines Proline binaryClass
0
                            3.92
                                    1065.0
                                                   b'N'
1
                            3.40
                                    1050.0
                                                   b'N'
                            3.17
2
                                    1185.0
                                                   b'N'
3
                            3.45
                                    1480.0
                                                   b'N'
4
                            2.93
                                     735.0
                                                   b'N'
```

[3]: # Examine the dataset

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Alcohol	178 non-null	float64
1	Malic_acid	178 non-null	float64
2	Ash	178 non-null	float64
3	Alcalinity_of_ash	178 non-null	float64
4	Magnesium	178 non-null	float64
5	Total_phenols	178 non-null	float64
6	Flavanoids	178 non-null	float64
7	Nonflavanoid_phenols	178 non-null	float64
8	Proanthocyanins	178 non-null	float64
9	Color_intensity	178 non-null	float64
10	Hue	178 non-null	float64
11	OD280/OD315_of_diluted_wines	178 non-null	float64
12	Proline	178 non-null	float64
13	binaryClass	178 non-null	object

dtypes: float64(13), object(1)

memory usage: 19.6+ KB

[4]: # The target (binaryClass) happens to be the only caterorical (in this case

→Boolean) variable

but still, we look at each one

data.select_dtypes(include=[object]).value_counts()

[4]: binaryClass

b'N' 107 b'P' 71

Name: count, dtype: int64

```
[5]: # We are going to encode the boolean values later anyways
     # let's address this now so we can use the target in the rest of the EDA
     data['isWine'] = data['binaryClass'].replace({b'N': 0, b'P': 1})
     data.head()
[5]:
       Alcohol Malic_acid
                            Ash Alcalinity_of_ash Magnesium Total_phenols \
         14.23
                      1.71 2.43
                                               15.6
                                                         127.0
                                                                         2.80
         13.20
                      1.78 2.14
                                               11.2
                                                         100.0
                                                                         2.65
     1
         13.16
                      2.36 2.67
                                               18.6
                                                         101.0
                                                                         2.80
         14.37
                      1.95 2.50
                                               16.8
                                                         113.0
                                                                         3.85
     3
         13.24
                      2.59 2.87
                                               21.0
                                                         118.0
                                                                         2.80
       Flavanoids Nonflavanoid_phenols Proanthocyanins Color_intensity
                                                                            Hue
    0
             3.06
                                   0.28
                                                    2.29
                                                                     5.64 1.04
             2.76
                                   0.26
                                                    1.28
                                                                     4.38 1.05
     1
             3.24
                                                                     5.68 1.03
     2
                                   0.30
                                                    2.81
     3
             3.49
                                   0.24
                                                    2.18
                                                                     7.80 0.86
             2.69
                                   0.39
                                                    1.82
                                                                     4.32 1.04
       OD280/OD315_of_diluted_wines Proline binaryClass
    0
                               3.92
                                      1065.0
                                                    b'N'
                                                               0
                                                               0
     1
                               3.40
                                      1050.0
                                                    b'N'
     2
                               3.17
                                      1185.0
                                                    b'N'
                                                               0
     3
                               3.45
                                     1480.0
                                                    b'N'
                                                               0
                               2.93
                                      735.0
                                                    b'N'
                                                               0
```

EDA: Basic data structure

[6]: # Descriptive stats of numerical columns

data.describe()

[6]:		Alcohol	Malic_acid	Ash	Alcalinity_of_ash	${ t Magnesium}$	\
	count	178.000000	178.000000	178.000000	178.000000	178.000000	
	mean	13.000618	2.336348	2.366517	19.494944	99.741573	
	std	0.811827	1.117146	0.274344	3.339564	14.282484	
	min	11.030000	0.740000	1.360000	10.600000	70.000000	
	25%	12.362500	1.602500	2.210000	17.200000	88.000000	
	50%	13.050000	1.865000	2.360000	19.500000	98.000000	
	75%	13.677500	3.082500	2.557500	21.500000	107.000000	
	max	14.830000	5.800000	3.230000	30.000000	162.000000	

	Total_phenols	Flavanoids	${\tt Nonflavanoid_phenols}$	Proanthoc	yanins \setminus	
count	178.000000	178.000000	178.000000	178.0	000000	
mean	2.295112	2.029270	0.361854	1.	590899	
std	0.625851	0.998859	0.124453	0.	572359	
min	0.980000	0.340000	0.130000	0.4	410000	
25%	1.742500	1.205000	0.270000	1.	250000	
50%	2.355000	2.135000	0.340000	1.	555000	
75%	2.800000	2.875000	0.437500	1.9	950000	
max	3.880000	5.080000	0.660000	3.	580000	
	Color_intensity	y Hue	e OD280/OD315_of_dilu	ited_wines	Proline	\
count	178.000000	178.000000) 1	178.000000	178.000000	
mean	5.058090	0.957449)	2.611685	746.893258	
std	2.318286	0.228572	2	0.709990	314.907474	
min	1.280000	0.480000)	1.270000	278.000000	
25%	3.220000	0.782500)	1.937500	500.500000	
50%	4.690000	0.965000)	2.780000	673.500000	
75%	6.200000	1.120000)	3.170000	985.000000	
max	13.000000	1.710000)	4.000000	1680.000000	
	isWine					
count	178.000000					
mean	0.398876					
std	0.491049					
min	0.000000					
25%	0.000000					
50%	0.000000					
75%	1.000000					
max	1.000000					

```
[7]: # Get null counts

pd.DataFrame(
     [(col, data[col].isnull().sum()) for col in data.columns],
     columns = ['Columns Name', 'Null Count']
)
```

```
[7]:
                          Columns Name Null Count
                               Alcohol
                                                  0
     1
                            Malic_acid
     2
                                   Ash
                                                  0
     3
                    Alcalinity_of_ash
                                                  0
     4
                             Magnesium
                                                  0
     5
                         Total_phenols
                                                  0
     6
                            Flavanoids
                                                  0
                 Nonflavanoid_phenols
     7
                                                  0
                       Proanthocyanins
                                                  0
     8
     9
                       Color_intensity
                                                  0
     10
                                   Hue
                                                  0
         OD280/OD315_of_diluted_wines
     11
                                                  0
     12
                               Proline
                                                  0
                           binaryClass
     13
                                                  0
     14
                                isWine
                                                  0
```

EDA: Initial visualizations

```
[8]: # Make historgrams of the numeric variables for initial visualization
import matplotlib.pyplot as plt
data.hist(bins=50, figsize=(12, 8))
utils.save_fig("attribute_histogram_plots")
plt.show()
```


[9]: # Check for linear correlations correlations = data.corr(numeric_only=True) correlations["isWine"].sort_values(ascending=False)

[9]:	isWine	1.000000
	Hue	0.353213
	OD280/OD315_of_diluted_wines	0.199813
	Alcalinity_of_ash	0.181764
	Proanthocyanins	0.056208
	Flavanoids	0.042179
	Nonflavanoid_phenols	0.011868
	Total_phenols	-0.047301
	Malic_acid	-0.295175
	Magnesium	-0.296972
	Ash	-0.362457
	Proline	-0.589850
	Color_intensity	-0.694679
	Alcohol	-0.726383
	Name: isWine, dtype: float64	

```
[10]: # plot scatter plots for interesting columns with promising coefficients

from pandas.plotting import scatter_matrix

scatter_plot_cols = [
    'isWine', 'Hue', 'OD280/OD315_of_diluted_wines', 'Alcalinity_of_ash',
    'Alcohol', 'Color_intensity', 'Nonflavanoid_phenols', 'Flavanoids'
]

scatter_matrix(data[scatter_plot_cols], figsize=(12, 8))
utils.save_fig("scatter_matrix_plot")
plt.show()
```



```
[12]: # The scatter plots over the dependent variable were odd (it is a binary target)
      # Lets use box plots to prob those relationships instead
      fig, ax1 = plt.subplots(figsize=(10, 6))
      bp = ax1.boxplot(
          data.Hue[data["isWine"] == True],
              data.Hue[data["isWine"] == False],
              data.Flavanoids[data["isWine"] == True],
              data.Flavanoids[data["isWine"]==False],
              data.Alcohol[data["isWine"] == True],
              data.Alcohol[data["isWine"] == False],
          ],
          notch=False, vert=True, whis=1.5
      ax1\_conf = ax1.set(
          axisbelow=True,
          title='Distribution of several variables by target label',
          xlabel='Attribute/Label',
          ylabel='Value (unscaled)',
          xticklabels=[
              'Hue/True',
              'Hue/False',
              'Flavanoids/True',
              'Flavanoids/False',
              'Alcohol/True',
              'Alcohol/False',
          ]
      utils.save_fig('box_plots')
```


EDA: Engineering features

```
[13]: # The scatter plot for Color_intensity over Flavanoids seemed to have two trends_
       \rightarrowpresent.
      # I wonder what the distributions over their ratio looks like for each
      # value of the target (isWine)
      data['color_per_flavanoid'] = data['Color_intensity'] / data['Flavanoids']
      # Checking out the original histograms diplayed above we can see the
       \rightarrow distributions
      # of Flavanoids have the same range for isWine == True and isWine == False
      # but the variablity is quite differenent. Let's see if log(Flavanoid) gives
      # us anything interesting.
      data['log_flavanoid'] = np.log(data['Flavanoids'])
      fig, ax1 = plt.subplots(figsize=(10, 6))
      bp = ax1.boxplot(
          data.color_per_flavanoid[data["isWine"] == True],
              data.color_per_flavanoid[data["isWine"] == False],
              data.log_flavanoid[data["isWine"] == True],
              data.log_flavanoid[data["isWine"] == False],
          ],
          notch=False, vert=True, whis=1.5
      ax1\_conf = ax1.set(
          axisbelow=True,
          title='Distribution of several variables by target label',
          xlabel='Attribute/Label',
          ylabel='Value (unscaled)',
          xticklabels=[
              'color_per_flavanoid/True',
              'color_per_flavanoid/False',
              'log_flavanoid/True',
              'log_flavanoid/False',
          ]
      utils.save_fig('box_plots_new_features')
      plt.show()
      print(
          data[['color_per_flavanoid', 'log_flavanoid', 'isWine']].corr()['isWine'].
       →sort_values(ascending=False)
      )
```


isWine 1.000000 log_flavanoid 0.172148 color_per_flavanoid -0.467811 Name: isWine, dtype: float64

ML Pipeline: Data preparation

```
[14]: # Create a Test Set
      from sklearn.model_selection import train_test_split
                                # Let's set aside 15% of the records for testing
      test_ratio = 0.15
      random_seed = 1
                               # To prevent data leakage I will set a seed while_
       \rightarrow developing
                                # so random_seed = 1 will give me the same train/test_{\bot}
       \rightarrowsplit over and over
      # random_seed = None
                                # but use a fresh seed (seed=None) when its time to_{\sqcup}
       \rightarrow submit
      # Set some test_data aside (and not look at it until very end!)
      training_data, test_data = train_test_split(data, test_size=test_ratio,_
       →random_state=random_seed)
      # Take labels off training_data
      x_training = training_data.drop(['isWine', 'binaryClass'], axis=1)
      training_labels = training_data['isWine'].copy()
      x_training
```

[14]:		Alcohol	Malic_acid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	\
	29	14.02	1.68	2.21	16.0	96.0	2.65	
	16	14.30	1.92	2.72	20.0	120.0	2.80	
	147	12.87	4.61	2.48	21.5	86.0	1.70	
	97	12.29	1.41	1.98	16.0	85.0	2.55	
	159	13.48	1.67	2.64	22.5	89.0	2.60	
	133	12.70	3.55	2.36	21.5	106.0	1.70	
	137	12.53	5.51	2.64	25.0	96.0	1.79	
	72	13.49	1.66	2.24	24.0	87.0	1.88	
	140	12.93	2.81	2.70	21.0	96.0	1.54	
	37	13.05	1.65	2.55	18.0	98.0	2.45	

Hue

```
29
                 2.33
                                        0.26
                                                          1.98
                                                                            4.70 1.04
                 3.14
                                        0.33
                                                          1.97
                                                                            6.20 1.07
      16
                 0.65
      147
                                        0.47
                                                          0.86
                                                                            7.65 0.54
      97
                 2.50
                                        0.29
                                                          1.77
                                                                            2.90 1.23
      159
                 1.10
                                        0.52
                                                          2.29
                                                                           11.75 0.57
      . .
                  . . .
                                          . . .
                                                           . . .
                                                                             . . .
                                                                                   . . .
                                                                            5.00 0.78
      133
                 1.20
                                        0.17
                                                          0.84
      137
                 0.60
                                        0.63
                                                          1.10
                                                                            5.00 0.82
      72
                 1.84
                                        0.27
                                                          1.03
                                                                            3.74 0.98
      140
                 0.50
                                        0.53
                                                          0.75
                                                                            4.60 0.77
      37
                 2.43
                                        0.29
                                                                            4.25 1.12
                                                          1.44
           OD280/OD315_of_diluted_wines Proline color_per_flavanoid log_flavanoid
      29
                                    3.59
                                            1035.0
                                                                2.017167
                                                                               0.845868
      16
                                    2.65
                                            1280.0
                                                                1.974522
                                                                               1.144223
      147
                                    1.86
                                            625.0
                                                               11.769231
                                                                              -0.430783
      97
                                    2.74
                                             428.0
                                                                1.160000
                                                                               0.916291
      159
                                    1.78
                                             620.0
                                                               10.681818
                                                                               0.095310
      . .
                                     . . .
                                              . . .
                                    1.29
      133
                                             600.0
                                                                4.166667
                                                                               0.182322
      137
                                    1.69
                                            515.0
                                                               8.333333
                                                                              -0.510826
      72
                                    2.78
                                             472.0
                                                                2.032609
                                                                               0.609766
                                            600.0
      140
                                    2.31
                                                               9.200000
                                                                              -0.693147
      37
                                    2.51
                                            1105.0
                                                                1.748971
                                                                               0.887891
      [151 rows x 15 columns]
[15]: # Cleaning begins with null/missing values
      null_rows_idx = x_training.isnull().any(axis=1)
      # We confirm what we discovered above, no missing values in this dataset
      # (For when we move to abstraction later, I will still include an imputer)
      print(
          null_rows_idx[null_rows_idx==True].shape
```

Flavanoids Nonflavanoid_phenols Proanthocyanins Color_intensity

(0,)

```
[16]: # lets build the preprocessing pipeline for numerical features
      from sklearn.pipeline import Pipeline, make_pipeline
      from sklearn.preprocessing import StandardScaler
      from sklearn.impute import SimpleImputer
      numeric_pipeline = Pipeline([
          ("impute", SimpleImputer(strategy="median")),
          ("standardize", StandardScaler()),
      ])
[17]: # this example use case is not using caterorical features
      # but this is how we could construct the pipline for those:
      from sklearn.impute import SimpleImputer
      from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
      categoric_pipeline = Pipeline([
          ("ordinal_encoder", OrdinalEncoder()),
          ("impute", SimpleImputer(strategy="most_frequent")),
          ("encode", OneHotEncoder(handle_unknown="ignore")),
      ])
[18]: # A ColumnTransformer can make a single pipeline
      from sklearn.compose import make_column_selector, make_column_transformer
      preprocessing = make_column_transformer(
          (numeric_pipeline, make_column_selector(dtype_include=np.number)),
          (categoric_pipeline, make_column_selector(dtype_include=object)),
      )
      preprocessing
```

```
[18]: ColumnTransformer(transformers=[('pipeline-1',
                                        Pipeline(steps=[('impute',
      SimpleImputer(strategy='median')),
                                                        ('standardize',
                                                         StandardScaler())]),
      <sklearn.compose._column_transformer.make_column_selector object at</pre>
      0x7f47ba6daf10>),
                                       ('pipeline-2',
                                        Pipeline(steps=[('ordinal_encoder',
                                                         OrdinalEncoder()),
                                                        ('impute',
      SimpleImputer(strategy='most_frequent')),
                                                        ('encode',
      OneHotEncoder(handle_unknown='ignore'))]),
      <sklearn.compose._column_transformer.make_column_selector object at</pre>
      0x7f47b89370d0>)])
[19]: # We can test our preprocessing pipeline on our training data.
      training_data_cleaned = preprocessing.fit_transform(x_training)
      training_data_cleaned_df = pd.DataFrame(
          training_data_cleaned,
          columns=preprocessing.get_feature_names_out(),
          index=training_data.index
      )
      training_data_cleaned_df.head()
[19]:
           pipeline-1__Alcohol pipeline-1__Malic_acid pipeline-1__Ash \
      29
                      1.259587
                                              -0.619230
                                                               -0.535083
      16
                      1.603015
                                              -0.410962
                                                                1.316905
                     -0.150920
      147
                                              1.923377
                                                                0.445381
                                                               -1.370293
      97
                     -0.862306
                                              -0.853531
      159
                      0.597262
                                              -0.627908
                                                                1.026397
           pipeline-1__Alcalinity_of_ash pipeline-1__Magnesium \
      29
                               -1.063608
                                                       -0.207330
      16
                                0.151484
                                                        1.535977
      147
                                0.607144
                                                       -0.933709
      97
                                -1.063608
                                                       -1.006346
      159
                                0.910916
                                                       -0.715795
```

```
pipeline-1__Total_phenols pipeline-1__Flavanoids \
29
                       0.589146
                                                0.337732
16
                       0.827519
                                                 1.147851
147
                      -0.920554
                                               -1.342516
97
                       0.430230
                                                0.507757
159
                       0.509688
                                                -0.892449
     pipeline-1__Nonflavanoid_phenols pipeline-1__Proanthocyanins \
29
                             -0.874546
                                                             0.710735
                             -0.286882
                                                             0.693358
16
147
                              0.888445
                                                            -1.235501
97
                              -0.622690
                                                             0.345816
159
                              1.308205
                                                             1.249426
     pipeline-1__Color_intensity pipeline-1__Hue
29
                        -0.165290
                                           0.365559
16
                         0.455370
                                           0.494389
147
                         1.055342
                                          -1.781607
97
                        -0.910082
                                           1.181482
159
                         2.751813
                                          -1.652777
     pipeline-1\_OD280/OD315\_of\_diluted\_wines \quad pipeline-1\_Proline \quad \setminus
29
                                       1.405185
                                                             0.963100
16
                                       0.085971
                                                             1.769644
147
                                      -1.022730
                                                            -0.386627
97
                                       0.212279
                                                            -1.035154
159
                                      -1.135004
                                                            -0.403087
     pipeline-1__color_per_flavanoid pipeline-1__log_flavanoid
29
                            -0.498390
                                                          0.515697
16
                            -0.508292
                                                          0.992637
147
                             1.766075
                                                         -1.525116
97
                            -0.697428
                                                          0.628272
159
                             1.513574
                                                         -0.684120
```

Deployment: Model selection & evaluation

```
[20]: # Model number 1 is an SGDClassifier
      from sklearn.linear_model import SGDClassifier
      sgd_clf = SGDClassifier(random_state=422)
      sgd_clf.fit(training_data_cleaned_df, training_labels)
[20]: SGDClassifier(random_state=422)
[21]: # Model number 2 will be a RandomForestClassifier
      from sklearn.ensemble import RandomForestClassifier
      forest_clf = RandomForestClassifier(random_state=422)
      forest_clf.fit(training_data_cleaned_df, training_labels)
[21]: RandomForestClassifier(random_state=422)
[22]: # Model number 3 will be a SVM
      from sklearn.svm import SVC
      svm_clf = SVC(random_state=422)
      svm_clf.fit(training_data_cleaned_df, training_labels)
[22]: SVC(random_state=422)
[23]: # Model number 4 will be a K-Neighbors Classifier
      from sklearn.neighbors import KNeighborsClassifier
      knn_clf = KNeighborsClassifier(n_neighbors=5)
      knn_clf.fit(training_data_cleaned_df, training_labels)
```

[23]: KNeighborsClassifier()

```
[24]: # Let's evaluate our four models on the test data.
      test_y = test_data['isWine']
      test_x = preprocessing.fit_transform(test_data.drop(['isWine', 'binaryClass'],__
      →axis=1))
      test_x = pd.DataFrame(
          test_x,
          columns=preprocessing.get_feature_names_out(),
          index=test_data.index
      )
      test_x.head()
[24]:
           pipeline-1__Alcohol pipeline-1__Malic_acid pipeline-1__Ash \
      161
                      0.834735
                                               1.561867
                                                                 0.475048
      117
                     -0.803677
                                              -0.510235
                                                                -0.885316
      19
                      0.770231
                                               1.360936
                                                                 0.552783
      69
                     -1.074596
                                              -1.037679
                                                                -2.595489
      53
                      0.937942
                                              -0.146047
                                                                 1.019194
           pipeline-1__Alcalinity_of_ash pipeline-1__Magnesium \
                                 0.152916
                                                        0.145732
      161
      117
                                 0.859892
                                                        0.209196
      19
                                -1.204477
                                                        0.716907
      69
                                -0.752013
                                                        2.938144
      53
                                -0.667176
                                                        0.653443
           pipeline-1__Total_phenols pipeline-1__Flavanoids
      161
                            -0.944096
                                                    -1.767256
      117
                           -0.654237
                                                    -0.153878
      19
                            0.539303
                                                     0.837347
      69
                            -0.909995
                                                    -1.008019
      53
                             1.050820
                                                     0.584268
           pipeline-1__Nonflavanoid_phenols pipeline-1__Proanthocyanins
                                    1.019077
      161
                                                                 -1.702355
      117
                                   -0.059946
                                                                 -0.174009
      19
                                   -1.206407
                                                                 -0.079667
      69
                                   -1.408724
                                                                  1.505284
      53
                                    0.277249
                                                                 -0.041930
           pipeline-1__Color_intensity pipeline-1__Hue \
      161
                               0.665657
                                               -0.060025
      117
                              -1.748403
                                                0.446439
      19
                               0.172734
                                               -0.060025
      69
                              -1.249160
                                                1.560660
      53
                               0.931077
                                                0.800964
```

```
pipeline-1__OD280/OD315_of_diluted_wines pipeline-1__Proline \
                                          -1.378083
      161
                                                                -0.251360
      117
                                           0.329542
                                                               -1.168856
      19
                                           0.928708
                                                                 0.200541
      69
                                           0.494313
                                                               -0.147286
      53
                                                                1.652101
                                           0.284604
           pipeline-1__color_per_flavanoid pipeline-1__log_flavanoid
      161
                                  2.436004
                                                             -2.187141
      117
                                 -0.708457
                                                             0.111771
      19
                                 -0.477928
                                                             0.760081
      69
                                                             -0.744099
                                 -0.298338
      53
                                 -0.287927
                                                             0.616033
[25]: from sklearn.model_selection import cross_val_score
      from sklearn.metrics import precision_score, recall_score, f1_score
      # Evaluate model #1...
      sgd_preds = sgd_clf.predict(test_x)
      sgd_metrics = dict(
          model = 'Stochastic Gradient Descent',
          accuracy = round(np.mean(cross_val_score(
              sgd_clf, test_x, test_y,
              cv=3, scoring='accuracy'
          precision = precision_score(test_y, sgd_preds),
          recall = recall_score(test_y, sgd_preds),
          f1 = f1_score(test_y, sgd_preds),
      )
      sgd_metrics
[25]: {'model': 'Stochastic Gradient Descent',
       'accuracy': 0.89,
       'precision': 0.9,
       'recall': 0.9,
```

'f1': 0.9}

```
[26]: # Evaluate model #2...
      forest_preds = forest_clf.predict(test_x)
      forest_metrics = dict(
          model = 'Random Forest Classifier',
          accuracy = round(np.mean(cross_val_score(
              forest_clf, test_x, test_y,
              cv=3, scoring='accuracy'
          precision = precision_score(test_y, forest_preds),
          recall = recall_score(test_y, forest_preds),
          f1 = f1_score(test_y, forest_preds),
      forest_metrics
[26]: {'model': 'Random Forest Classifier',
       'accuracy': 0.96,
       'precision': 0.98,
       'recall': 0.96,
       'f1': 0.94}
[27]: # Evaluate model #3...
      svm_preds = svm_clf.predict(test_x)
      svm_metrics = dict(
          model = 'Support Vector Machine',
          accuracy = round(np.mean(cross_val_score(
              svm_clf, test_x, test_y,
              cv=3, scoring='accuracy'
          )), 2),
          precision = precision_score(test_y, svm_preds),
          recall = recall_score(test_y, svm_preds),
          f1 = f1_score(test_y, svm_preds),
      )
      svm_metrics
[27]: {'model': 'Support Vector Machine',
       'accuracy': 0.89,
       'precision': 0.9,
       'recall': 0.88,
       'f1': 0.86}
```

```
[28]:  # Evaluate model #4...
      knn_preds = knn_clf.predict(test_x)
      knn_metrics = dict(
          model = 'K-Neighbors Classifier',
          accuracy = round(np.mean(cross_val_score(
              knn_clf, test_x, test_y,
              cv=3, scoring='accuracy'
          precision = precision_score(test_y, knn_preds),
          recall = recall_score(test_y, knn_preds),
          f1 = round(f1_score(test_y, knn_preds), 2),
      )
      knn_metrics
[28]: {'model': 'K-Neighbors Classifier',
       'accuracy': 0.93,
       'precision': 0.9,
       'recall': 0.9,
       'f1': 0.85}
[29]: metrics_df = pd.DataFrame(
          [sgd_metrics, forest_metrics, svm_metrics, knn_metrics]
      )
      metrics_df
[29]:
                               model accuracy precision recall
                                                                      f1
      O Stochastic Gradient Descent
                                          0.89
                                                      0.90
                                                               0.90 0.90
            Random Forest Classifier
                                          0.96
                                                      0.98
      1
                                                               0.96 0.94
              Support Vector Machine
      2
                                          0.89
                                                      0.90
                                                               0.88 0.86
              K-Neighbors Classifier
                                          0.93
                                                      0.90
                                                               0.90 0.85
```