Q: The state equation of a second order system is

x(0) is the initial condition. $\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t),$

Suppose λ_1 and λ_2 are two distinct eigenvalues of A, and ν_1 and ν_2 are the corresponding eigenvectors. For constants α_1 and α_2 , the solution, x(t), of the state equation is

- (A) $\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i}t} v_{\mathbf{i}}$ (B) $\sum_{i=1}^{2} \alpha_{i} e^{2\lambda_{i}t} v_{\mathbf{i}}$ (C) $\sum_{i=1}^{2} \alpha_{i} e^{3\lambda_{i}t} v_{\mathbf{i}}$ (D) $\sum_{i=1}^{2} \alpha_{i} e^{4\lambda_{i}t} v_{\mathbf{i}}$

Solution: $\dot{x}(t) = Ax(t)$

If λ is the eigen value of matrix A then $\dot{x}(t) = \lambda x(t)$

As there are 2 eigen values λ_1 and λ_2 of matrix A, the solution of state equation will be,

$$x(t) = \sum_{i=1}^{2} \alpha_i e^{\lambda_i t} v_i$$

 $x(t) = \sum_{i=1}^{2} \alpha_i e^{\lambda_i t} v_i$ Hence, the correct option is (A).