OBLICZENIA NAUKOWE – SPRAWOZDANIE 3

autor: Jan Sieradzki nr indeksu: 236441

I. Krótki opis problemu:

Napisać funkcję rozwiązującą równanie f(x) = 0 metodą bisekcji.

II. Rozwiązanie:

Metoda bisekcji polega na iteracyjnym połowieniu przedziału argumentów, w celu oszacowaniu miejsca zerowego funkcji. Początkowa para argumentów tworząca przedział, musi mieć różne znaki. Jest tak ponieważ korzystamy tutaj z własności Darboux dla funkcji ciągłej, która mówi, że jeśli funkcja f jest ciągła na danym przedziale [a,b] i f(a)*f(b)< 0, to posiada ona miejsce zerowe w (a,b).

W metodzie bisekcji dla przedziału początkowego [a,b] liczymy $c=a+\frac{(b-a)}{2}$, co jest

równoważne ze środkiem owego przedziału (unikamy bezpośredniego wyliczenia c= $\frac{(a+b)}{2}$ w

celu uniknięcia dotkliwych błędów obliczeń w skrajnych przypadkach). Następnie powtarzamy procedurę dla przedziału [c,b] lub [a,c], - w zależności, który przedział spełnia warunek f(a)f(b)< 0. Działamy tak, dopóki nie otrzymamy pożądanego przybliżenia dokładniejszego niż epsilon, lub do momentu kiedy (b-a) będzie mniejsze od delty.

Jeżeli algorytm się powiedzie, zwróci przybliżenie pierwiastka równania, ilość iteracji algorytmu oraz sygnalizacje błędu.

III. Wyniki oraz ich interpretacja:

```
Dane:
```

```
    f – funkcja f(x) zadana jako anonimowa funkcja (ang. anonymous function),
    a,b – końce przedziału początkowego,
    delta,epsilon – dokładności obliczeń,
```

Wyniki:

```
(r,v,it,err) – czwórka, gdzie
r – przybliżenie pierwiastka równania f(x) = 0,
v – wartość f(r),
it – liczba wykonanych iteracji,
err – sygnalizacja błędu
0 - brak błędu
1 - funkcja nie zmienia znaku w przedziale [a,b]
```

IV. Wnioski:

Metoda bisekcji jest skuteczną metodą szacowania miejsc zerowych, o zbieżności liniowej i globalnej, (tzn., algorytm zawsze zwróci oczekiwany wynik dla każdej pary argumentów a,b należącej do dziedziny funkcji i takiej, że f(a)*f(b) < 0. Warto stosować hybrydowo z innymi metodami, aby wykorzystać globalną zbieżność i zarazem przyśpieszyć algorytm.

I. Krótki opis problemu:

Napisać funkcję rozwiązującą równanie f(x) = 0 metodą Newtona.

II. Rozwiązanie:

Metoda Newtona (stycznych) polega na linearyzacji funkcji (zastąpieniu funkcji f funkcją liniową). Owa funkcja liniowa jest sumą dwóch początkowych składników we wzorze Taylora.

Algorytm rekurencyjnie wylicza kolejne przybliżenia zera funkcji za pomocą wzoru:

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$$
, do momentu kiedy zero mieści się w pożądanej dokładności, lub odległość

kolejnych przybliżeń jest mniejsza od delta. Algorytm kończy się niepowodzeniem kiedy pochodna jest blisko zeru, lub zostanie przekroczony limit maxit iteracji.

III. Wyniki oraz ich interpretacja:

```
Dane:
```

```
f, pf – funkcją f(x) oraz pochodną f 0 (x) zadane jako anonimowe funkcje, x0 – przybliżenie początkowe, delta,epsilon – dokładności obliczeń, maxit – maksymalna dopuszczalna liczba iteracji,
```

Wyniki:

(r,v,it,err) – czwórka, gdzie

r - przybliżenie pierwiastka równania <math>f(x) = 0,

v – wartość f(r),

it – liczba wykonanych iteracji,

err – sygnalizacja błędu

0 - metoda zbieżna

1 - nie osiągnięto wymaganej dokładności w maxit iteracji,

2 - pochodna bliska zeru

IV. Wnioski:

Metoda Newtona jest skuteczną metodą szacowania miejsc zerowych, o zbieżności kwadratowej i lokalnej, (tzn., algorytm może nie zadziałać dla wszystkich podanych przybliżeń początkowych, a wynik zwróci po ilości iteracji wynoszącej pierwiastek wymaganych iteracji w metodzie bisekcji). Minusem metody jest konieczność liczenia pochodnej funkcji, co przekłada się na złożoność.

I. Krótki opis problemu:

Napisać funkcję rozwiązującą równanie f(x) = 0 metodą siecznych.

II. Rozwiązanie:

Metoda siecznych jest mocno powiązana z metodą Newtona. Różnicą jest brak wyliczania pochodnej funkcji, w alternatywie zastępujemy pochodną ilorazem : $f'(x) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$

(szacowanie z definicji pochodnej). W ten sposób, po wprowadzeniu dwóch przybliżeń początkowych, rekurencyjnie wyliczamy kolejne przybliżenia za pomocą wzoru :

$$x_{n+1} := x_n - f(x_n) * \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$
, do momentu kiedy zero mieści się w pożądanej dokładności,

lub odległość kolejnych przybliżeń jest mniejsza od delta. Algorytm kończy się niepowodzeniem kiedy pochodna jest blisko zeru, lub zostanie przekroczony limit maxit iteracji. W każdej rekurencji musi być spełnione $|f(x_n)| \ge |f(x_{n+1})|$, więc w razie konieczności owe wartości są zamieniane ze sobą.

III. Wyniki oraz ich interpretacja:

Dane:

f – funkcja f(x) zadana jako anonimowa funkcja,
 x0,x1 – przybliżenie początkowe,
 delta,epsilon – dokładności obliczeń,
 maxit – maksymalna dopuszczalna liczba iteracji,
 Wyniki:

, IIII.

(r,v,it,err) – czwórka, gdzie r – przybliżenie pierwiastka równania f(x) = 0, v – wartość f(r), it – liczba wykonanych iteracji, err – sygnalizacja błędu

0 - metoda zbieżna

1 - nie osiągnieto wymaganej dokładności w maxit iteracji.

IV. Wnioski:

Metoda siecznych jest skuteczną metodą szacowania miejsc zerowych, o zbieżności lokalnej i rzędu ~1,618, (tzn , algorytm może nie zadziałać dla wszystkich podanych przybliżeń początkowych, a wynik zwróci po mniejszej ilości iteracji niż w bisekcji, ale większej niż w metodzie Newtona). Nie trzeba liczyć pochodnej funkcji jak w metodzie Newtona, co pozytywnie przekłada się na złożoność.

I. Krótki opis problemu:

W celu wyznaczenia pierwiastka równania $\sin x - \left(\frac{1}{2}x\right)^2 = 0$ za pomocą metod:

- 1. bisekcji z przedziałem początkowym [1.5, 2]
- 2. Newtona z przybliżeniem początkowym $x_0 = 1.5$
- 3. siecznych z przybliżeniami początkowym $x_0 = 1$, $x_1 = 2$

dla
$$\delta = \frac{1}{2} * 10^{-5}$$
, $\epsilon = \frac{1}{2} * 10^{-5}$.

II. Rozwiązanie:

Wyliczyłem pochodną funkcji $f(x) = \sin x - (\frac{1}{2}x)^2$ równą $f'(x) = \cos x - \frac{1}{2}x$, ustawiłem maksymalną liczbę iteracji na 50 i posiadając wszystkie potrzebne dane użyłem kolejno funkcji z zadań 1-3.

III. Wyniki oraz ich interpretacja:

Metoda	Znaleziony pierwiastek	Wartość miejsca zerowego	Ilość iteracji
Bisekcja	1.9337539672851562	-2.7027680138402843e-7	16
Newton	1.933753779789742	-2.2423316314856834e-8	4
Sieczna	1.9337539405015145	-2.3487103129049558e-7	5

IV. Wnioski:

W kwestii dokładności najlepsza okazała się metoda Newtona, potem siecznej i jako ostatnia bisekcji, chociaż wszystkie zadziałały pozytywnie osiągając żądaną dokładność miejsca zerowego.

Interesująca jest ilość iteracji, która potwierdza, że metoda Newtona ma zbieżność kwadratową w stosunku do bisekcji, która jest liniowa, a metoda siecznej jest niewiele gorsza (~1,62) od Newtona i potrzebuje jednej iteracji więcej.

I. Krótki opis problemu:

Metodą bisekcji znaleźć wartości zmiennej x, dla której przecinają się wykresy funkcji $y = 3*x i y = e^x$. Wymagana dokładności obliczeń: $\epsilon = 10^{-4}$ $\delta = 10^{-4}$

II. Rozwiązanie:

Aby znaleźć miejsce przecięcia tych dwóch funkcji wystarczy je przyrównać do siebie, wtedy otrzymamy równanie 0=e^x-3*x które rozwiązujemy metodą bisekcji. Dzięki wykresom poniżej, wygenerowanymi przez stronę desmos.com, widzę, że równanie to ma dwa rozwiązania i należy szukać w przedziałach [0,1] i [1,2] (na tych przedziałach funkcja zmienia znak, czyli jest $\delta = 10^{-4}$ prawidłowo). Policzone dla dokładności : $\epsilon = 10^{-4}$

III. Wyniki oraz ich interpretacja:

Otrzymane wyniki dla funkcji $f(x)=e^x-3*x$, znalezione pierwiastki są rozwiązaniami zadania.

Przedział	Znaleziony pierwiastek	Wartość miejsca zerowego	Ilość iteracji
[0.0, 1.0]	0.619140625	9.066320343276146e-5	9
[1.0, 2.0]	1.5120849609375	7.618578602741621e-5	13

IV. Wnioski:

Metody znajdywania miejsc zerowych funkcji można z powodzeniem używać do przybliżania miejsc przecięć funkcji, o ile jesteśmy w stanie (np. dzięki wykresom) ustalić odpowiednie przedziały

Zadanie 6

I. Krótki opis problemu:

Znaleźć miejsce zerowe funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=x*e^{-x}$ za pomocą metod bisekcji, Newtona i siecznych. Wymagane dokładności obliczeń: $\delta=10^{-5}$, $\varepsilon=10^{-5}$. Dobrać odpowiednio przedział i przybliżenia początkowe.

Sprawdzić co stanie, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1, \infty]$ a dla f_2 wybierzemy $x_0 > 1$, czy mogę wybrać $x_0 = 1$ dla f_2 ?

II. Rozwiązanie:

Policzyłem pochodne obu funkcji: $f'_1(x) = -e^{(1-x)}$ i $f'_2(x) = e^{-x}$ i korzystając z wykresów ustaliłem dane wejściowe (zbiory, przybliżenia początkowe) dla funkcji z zadań 1-3.

Wykresy wygenerowane na desmos.com.

Przyjmuję następjące parametry:

Dla $f_1(x)$:

bisekcja \rightarrow [0,2]

bisekcja \rightarrow [0.5,2]

Newton $\rightarrow x_0 = 0$

Newton $\rightarrow x_0 = 2$

Newton $\rightarrow x_0 = 10$

sieczna $\rightarrow x_0 = 0$, $x_1 = 2$

Dla $f_2(x)$:

bisekcja \rightarrow [-0,1]

bisekcja \rightarrow [-0.5,1]

Newton $\rightarrow x_0 = -1$

Newton $\rightarrow x_0 = 2$

Newton \rightarrow $x_0 = 10$

Newton $\rightarrow x_0 = 1$

sieczna $\rightarrow x_0 = -1$, $x_1 = 1$

III. Wyniki oraz ich interpretacja:

dla funkcji $f_1(x) = e^{1-x} - 1$:

Przedział/Metoda	Znaleziony pierwiastek	Wartość miejsca zerowego	Ilość iteracji	Sygnalizacja błędu
Bisekcja				
0.0 i 2.0	1.0	0.0	1	0
0.5 i 2.0	0.9999923706054688	7.629423635080457e-6	16	0
Newton				
0.0	0.9999984358892101	1.5641120130194253e-6	4	0
2.0	0.9999999810061002	1.8993900008368314e-8	5	0
7.0	0.9999999484165362	5.15834650549607e-8	401	0
Sieczna				
0.0 i 2.0	0.9999996117036168	3.882964585422144e-7	6	0

dla funkcji $f_2(x) = x * e^{-x}$:

Przedział/Metoda	Znaleziony pierwiastek	Wartość miejsca zerowego	Ilość iteracji	Sygnalizacja błędu
Bisekcja				
-1.0 i 1.0	0.0	0.0	1	0
-0.5 i 1.0	-7.62939453125e-6	-7.629452739132958e-6	16	0
Newton				
-1.0	-3.0642493416461764e-7	-3.0642502806087233e-7	5	0
2.0	14.398662765680003	8.036415344217211e-6	10	0
10.0	14.380524159896261	8.173205649825554e-6	4	0
1.0	ERR	ERR	ERR	2
Sieczna				
-1.0 i 1.0	2.9415790318691894e-8	2.9415789453403187e-8	11	0

IV. Wnioski:

W zależności od wybranego przedziału i metody zachodziły intereujące zjawiska:

- 1) W bisekcji w obu funkcjach można było się "wstrzelić" od razu (1 iteracja) w dokładny wynik.
- 2) W pierwszej funkcji dla metody Newtona dla parametrów > 2, funkcja, co prawda, zwracała prawidłowe wyniki, ale liczba iteracji bardzo szybko rośnie, co spowodowało, że dla 7.0 potrzebne było 401 iteracji, a dla większych parametrów funkcja zwracała błędy nawet dla bardzo dużych parametrów maxint.
- 3) W drugiej funkcji dla metody Newtona otrzymywaliśmy nieprawidłowy wynik dla parametrów większych niż 1, co jest związane z tym, iż funkcja zbiega do 0,a dla argumentu = 1 pochodna jest równa 0. Komputer z powodu niedokładności obliczeniowych przyjmuje argumenty większe od ~14,38 za miejsca zerowe.
- 4) Metoda Newtona w drugiej funkcji dla parametru 1.0 zwraca błąd o pochodnej bliskiej zeru i się nie wykonuje. (W tym miejscu pochodna jest rzeczywiście równa 0, co uniemożliwia działanie tej metodzie)
- 5) Problemem w tych funkcjach jest, że od pewnego momentu są niemal stałe, co powoduje pochodną bliską zeru, co jest niedopuszczalne dla metody Newtona
- 6) Wszystkie metody działały prawidłowo dla odpowiednich parametrów.