Esperienza n 1: LENTI

NOZIONI TEORICHE DI BASE:

- Approssimazione di Gauss
- Diottro sferico
- Lenti sottili
- Sistema di lenti
- Distribuzione gaussiana
- Propagazione degli errori
- Test di compatibilità

Lente sottile convergente biconvessa

Nella lente sottile i piani principali coincidono; essendo l'oggetto e l'immagine nello stesso mezzo (uguale indice di rifrazione), i due fuochi hanno la stessa distanza dalla lente.

Vale la seguente relazione: (f = distanza focale):

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$
 dove p è la distanza lente – oggetto

q è la distanza lente – immagine

La costruzione geometrica è presentata in fig.1

Fig.1 Costruzione geometrica dell'immagine di lente convergente

a) Misura della distanza focale di una lente convergente

Si ha a disposizione un banco ottico su cui possono scorrere i sostegni della lente e schermo come presentato in fig.2.

Fig. 2 Apparato per la misura del fuoco di una lente convergente

Il proiettore ha lo scopo di convogliare un grande flusso luminoso verso l'oggetto in esame ed è composto da una lampada alogena, un riflettore ed un condensatore ottico. Il condensatore ottico è composto da un sistema di 2 lenti piano convesse posto fra la lampadina e l'oggetto. Il riflettore aumenta il flusso luminoso convogliato nel condensatore.

Il proiettore illumina un oggetto e l'immagine è formata sullo schermo.

- Scegliere l'oggetto tra le diapositive a disposizione. Si ricorda che oggetti troppo estesi
 possono rendere + difficile la precisa determinazione della posizione dell'immagine
 (vedi lezione "Aberrazioni").
- Misurare la distanza lente-oggetto e valutarne l'errore. Qual e' la sorgente di errore piu' importante?
- Eseguire diverse misure della distanza lente immagine riposizionando ogni volta lo schermo. Si suggerisce ad esempio di allontanare lo schermo verso l'estremita' del banco ottico e riavvicinarlo successivamente alla lente fermandosi nel punto dove l'immagine risulta nitida. Alternativamente avvicinare lo schermo alla lente sfocando l'immagine e riallontanarlo verso l'estremita' del banco ottico. La procedura deve essere ripetuta un numero di volte sufficiente a costruire un istogramma delle frequenze comparabile con una distribuzione gaussiana (minimo 60 misure). Calcolare la distanza lente immagine come il valor medio della suddetta distribuzione e valutare l'errore.

- Ricavare la distanza focale della lente con il relativo errore.
- Ruotare la lente di 180°, ripetere le misure (ancora 60) e ricavare nuovamente la distanza focale della lente.
- verificare che i risultati delle due misure siano in accordo all'interno degli errori statistici.
- Misurare l'ingrandimento della lente per una certa distanza e verificare che vale: $G = \frac{q}{p}$

b) Misura del fuoco di una lente divergente

- Costruire un sistema ottico formato dalla lente positiva precedentemente usata e da una lente negativa, biconcava (lente divergente di cui si vuole conoscere il fuoco) montando le lenti sullo stesso supporto in modo che siano più vicine possibile fra loro. Il sistema così formato deve essere convergente. Assicurarsi che la lente divergente lo sia veramente (focale del sistema deve essere maggiore della focale della lente convergente misurata al punto a)
- Misurare p e q come fatto in precedenza, e ricavare il fuoco del sistema. Non è necessario verificare che i 2 fuochi del sistema coincidono e quindi non è necessario ruotare il sistema di lenti di 180°.
- Ricavare la distanza focale della lente divergente usando la relazione

$$\frac{1}{f} = \frac{1}{f_C} + \frac{1}{f_D}$$

dove f e' la distanza focale del sistema composto dalle due lenti, f_C e f_D sono rispettivamente le distanze focali della lente convergente e divergente. Valutare l'errore su f_D propagando gli errori sulle singole misure.

• Se c'e' tempo: Ripetere la misura scegliendo un valore diverso per p e commentare le differenze sulle distribuzioni di valori ottenute

c) sistema di lenti non a contatto (se rimane tempo)

• Scegliere una coppia di lenti convergenti, questa volta non a contatto tra di loro. Verificare che, noti i fuochi delle lenti (misurati in precedenza), l'immagine e' a fuoco se lo schermo viene posizionato a una distanza q₂ dalla seconda lente, essendo q₂ il punto immagine del sistema di lenti non a contatto, ricavato imponendo che l'immagine (q₁) della prima lente diventi oggetto (p₂) per la seconda lente. Discutere la compatibilita' tra valore atteso e misurato per q₂ tenendo conto delle diverse sorgenti di errore.

APPENDICE: LENTI CONVERGENTI E DIVERGENTI

Ogni banco ottico ha a disposizione una serie di lenti di forma diversa, convergenti e divergenti.

LENTI CONVERGENTI:

A) Lente BICONVESSA

B) Lente PIANOCONVESSA

LENTI DIVERGENTI:

A) Lente BICONCAVA

B) Lente PIANOCONCAVA in doppino acromatico

