Roll. No. A016	Name: Varun Khadayate
Class B.Tech CsBs	Batch: 1
Date of Experiment: 17-09-2022	Subject: Cryptology

Aim

To implement ElGamel Algorithm.

Theory

In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms, closely related to the Diffie-Hellman technique [ELGA84, ELGA85]. The Elgamal² cryptosystem is used in some form in a number of standards including the digital signature standard (DSS), which is covered in Chapter 13, and the S/MIME e-mail standard (Chapter 19).

As with Diffie-Hellman, the global elements of Elgamal are a prime number q and , which is a primitive root of q. User A generates a private/public key pair as follows:

- 1. Generate a random integer X_A , such that 1 6 X_A 6 q-1.
- 2. Compute $Y^A = a^{X_A} \mod q$.
- 3. A's private key is X_A and A's public key is $\{q, a, Y_A\}$.

Any user B that has access to A's public key can encrypt a message as follows:

- 1. Represent the message as an integer M in the range $0 \dots M \dots q 1$. Longer messages are sent as a sequence of blocks, with each block being an integer less than q.
- 2. Choose a random integer k such that $1 \dots k \dots q 1$.
- 3. Compute a one-time key $K = (Y_A)^k \mod q$.
- 4. Encrypt M as the pair of integers (C_1, C_2) where

$$C_1 = a^k \mod q$$
; $C_2 = KM \mod q$

User A recovers the plaintext as follows:

- 1. Recover the key by computing $K = (C_1)^{X_A} \mod q$.
- 2. Compute $M = (C_2K^{-1}) \mod q$.

These steps are summarized in Figure 10.3. It corresponds to Figure 9.1a: Alice generates a public/private key pair; Bob encrypts using Alice's public key; and Alice decrypts using her private key.

Let us demonstrate why the Elgamal scheme works. First, we show how K is recovered by the decryption process:

 $K = (Y_A)^k \mod q$ K is defined during the encryption process $K = (a^{X_A} \mod q)^k \mod q$ substitute using $Y_A = a^{X_A} \mod q$ by the rules of modular arithmetic $K = (C_1)^{X_A} \mod q$ substitute using $C_1 = a^k \mod q$

Next, using K, we recover the plaintext as

$$C_2 = KM \mod q$$

$$(C_2K^{-1}) \mod q = KMK^{-1} \mod q = M \mod q = M$$

Global Public Elements

q prime number

a 6 q and a a primitive root of q

Key Generation by Alice

Select private X_A X_A 6 q – 1

Calculate $Y_A = a^{X_A} \mod q$

Public key $\{q, a, Y_A\}X_A$

Private key

Encryption by Bob with Alice's Public Key

Plaintext: M 6 q

Select random integer k k 6 q

Calculate $K = (Y_A)^k \mod q$

Calculate $C_1 = a^k \mod q$

Calculate C_2 $C_2 = KM \mod q$

Ciphertext: (C_1, C_2)

Decryption by Alice with Alice's Private Key

Ciphertext: (C_1, C_2)

Calculate $K = (C_1)^{X_A} \mod q$

Plaintext: $M = (C_2K^{-1}) \mod q$

- 1. Bob generates a random integer *k*.
- 2. Bob generates a one-time key K using Alice's public-key components Y_A , q, and k.
- 3. Bob encrypts k using the public-key component a, yielding C_1 . C_1 provides sufficient information for Alice to recover K.
- 4. Bob encrypts the plaintext message M using K.
- 5. Alice recovers K from C_1 using her private key.
- 6. Alice uses K^{-1} to recover the plaintext message from C_2 .

Thus, K functions as a one-time key, used to encrypt and decrypt the

message.

For example, let us start with the prime field GF(19); that is, q=19. It has primitive roots $\{2, 3, 10, 13, 14, 15\}$, as shown in Table 8.3. We choose a=10.

Alice generates a key pair as follows:

- 1. Alice chooses $X_A = 5$.
- 2. Then $Y_A = a^{X_A} \mod q$ $a^5 \mod 19$ 3 (see Table 8.3).
- 3. Alice's private key is 5 and Alice's public key is $\{q, a, Y_A\} = \{19, 10, 3\}$.

Suppose Bob wants to send the message with the value M = 17. Then:

- 1. Bob chooses k = 6.
- 2. Then $K = (Y_A)^k \mod q = 3^6 \mod 19$ 729 mod 19 7.
- 3. So

$$C_1 = a^k \mod q = a^6 \mod 19 = 11$$

 $C_2 = \text{KM mod } q = 7 * 17 \mod 19 = 119 \mod 19 = 5$

4. Bob sends the ciphertext (11, 5).

For decryption:

- 1. Alice calculates $K = (C_1)^{X_A} \mod q = 11^5 \mod 19 = 161051 \mod 19 = 7$.
- 2. Then K^{-1} in GF(19) is 7^{-1} mod 19 = 11.
- 3. Finally, $M = (C_2K^{-1}) \mod q = 5 * 11 \mod 19 = 55 \mod 19 = 17$.

If a message must be broken up into blocks and sent as a sequence of encrypted blocks, a unique value of k should be used for each block. If k is used for more than one block, knowledge of one block M_1 of the message enables the user to compute other blocks as follows. Let

$$C_{1,1} = a^k \mod q$$
; $C_{2,1} = KM_1 \mod q$
 $C_{1,2} = a^k \mod q$; $C_{2,2} = KM_2 \mod q$

Then,

$$\frac{C_{2,1}}{C_{2,2}} = \frac{KM_1 \mod q}{KM_2 \mod q} = \frac{M_1 \mod q}{M_2 \mod q}$$

If M_1 is known, then M_2 is easily computed as

$$M_2 = (C_{2,1})^{-1} C_{2,2} M_1 \mod q$$

The security of Elgamal is based on the difficulty of computing discrete logarithms. To recover A's private key, an adversary would have to compute $X_A = \operatorname{dlog}_{a,q}(Y_A)$. Alternatively, to recover the one-time key K, an adversary would have to determine the random number k, and this would require computing the discrete logarithm $k = \operatorname{dlog}_{a,q}(C_1)$. [STIN06] points out that these calculations

are regarded as infeasible if p is at least 300 decimal digits and q-1 has at least one "large" prime factor.

Code

```
print("Key Generation Process")
p = int(input("Enter a prime number : "))
d = int(input("Enter a decryption key : "))
e1 = int(input("Enter the 2nd part of Encryption Key : "))
e2 = pow(e1,d) \% p
print("The 3rd Part of Encryption Key is : ",e2)
print("The Public Key is : ",[e1,e2,p])
print("\n-----
print("\nEncrption Process")
r = int(input("Enter a random integer : "))
c1 = pow(e1,r)%p
print("Computer Cipher text 1 is : ",c1)
pt = int(input("Enter the lenght of Plain Text : "))
c2 = pt * pow(e2,r)%p
print("Computer Cipher text 2 is : ",c2)
print("The Cipher Text is : ",[c1,c2])
print("\n-----
print("\nDecryption Process")
x = pow(c1,d)
i = 1
while True:
    if(i*x \% p == 1):
       D = i
       break
    i += 1
PT = (c2*D)%p
print("The Plain Text Length is : ",PT)
```

Output

```
PS E:\College-Codes\Fourth Year\SEM VII> & C:\Users\varun\AppData\Local\Programs\Python\Python310\python.exe "e:\College-Cod es\Fourth Year\SEM VII\CT\elagamel_Practical_7.py"

Key Generation Process
Enter a prime number : 11
Enter a decryption key : 3
Enter the 2nd part of Encryption Key : 2

The 3rd Part of Encryption Key is : 8

The Public Key is : [2, 8, 11]

Computer Cipher text 1 is : 5
Enter the lenght of Plain Text : 7

Computer Cipher Text 2 is : 6

The Cipher Text is : [5, 6]
 Decryption Process
The Plain Text Length is : 7
```

Conclusion

Hence, we were able to perform ElGamel Algorithm.