

Wireless Channel and Multi-Carrier Modulation

CentraleSupélec - Campus de Rennes

Haïfa Farès

IETR/CentraleSupélec
Signal Communications & Embedded Systems

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Radio Waves

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Propagation by the ground wave

- The wave follows the curvature of the earth. Its range depends on the nature of the ground, the frequency and the transmit power.
- Part of the energy of the surface wave is absorbed by the ground and causes induced currents there; energy absorption is much greater in horizontal polarization.

- Suitable for long distance transmissions
- Frequencies > 2 MHz
- Example: AM radio

Atmospheric propagation

- The more you use a high frequency (so a short wave), the more you increase the range.
- But beyond the critical frequency of 30 MHz, the waves are no longer reflected.

Attenuation – At the transmistter

- Assume an isotropic radiation. Radiates power equally in all directions.
- Does not exist in reality. A mathematical construct to compare other antennas to.
- Assume all of the transmitter power goes into space.

Attenuation – Between transmitter and receiver

- Signal expands in all directions.
- At some distance, *d*, signal covers a sphere with surface area:

$$S = 4\pi d^2$$

• Power density, P_S : $P_S = \frac{P_t}{S} = \frac{P_t}{4\pi d^2}$

Attenuation – At the receiver

- Aperture: How much of the signal sphere is "captured" by the receiver antenna.
- For isotropic antenna, aperture is expressed as an area: $A = \frac{\lambda^2}{4\pi}$

Attenuation – Free space loss (1)

- Signal power at the receiver: $P_r = AP_S = \frac{P_t \lambda^2}{(4\pi d)^2}$
- → Basic link equation for isotropic antennas
- Antenna Gain
 - Antenna is a passive device cannot add power and may have losses.
 - Gain is power increased in one direction at the expense of it in another.
 - Same power over smaller area

Attenuation – Free space loss (2)

Link equation with antenna gains:

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$$

- Tradeoffs:
 - Higher frequency = lower receive power
 - But easier to build high gain antennas at higher frequency
 - Also lower noise at higher frequency

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Noise Sources

Classification

- Terrestrial, mostly lightning (HF)
- Extra-terrestrial, mostly the sun (VHF through microwaves)
- Man-made (possible at all frequencies, but usually low frequency)
- Thermal (all frequencies)
- Quantizing (only in digital signal processing)
- Circuit

Noise Sources

Thermal or Johnson noise

- Dependent on:
 - Absolute Temperature, T (Kelvin)
 - Bandwidth, B (Hz)
 - Boltzmann constant (k)

$$P_n = 4kTB$$
, with $k = 1{,}38.10^{-23}$ joules/°K

Noise Sources

Circuit noise

- From active devices
- Can be slightly above thermal noise power to many times thermal noise power.
- Careful design can minimize circuit noise.

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources

Example: designing a system

- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Designing a System - Example

Situation

- F = 400 mHz.
- $P_e <= 10^{-6}$
- Range = 5 km max.
- Using PSK, data rate = 50 Kbaud.
- Required transmitter power = ?

Designing a System - Example

Noise at the receiver

- Bandwidth = 100 kHz
- Temperature = 300 K
- Antenna gains of 1
- Assume average receiver with circuit noise = 2x thermal noise.

$$P_n = 8kTB = 3,3.10^{-15}$$

Designing a System - Example

Solution

- Required SNR $10^{-6} = \frac{1}{2} \operatorname{erfc} \left(\frac{\sqrt{SNR}}{2\sqrt{2}} \right)$ $SNR = 90,4 \ (19,6 \ dB)$
- Required receiver power

$$P_r = 90.4 \times 3.3 \times 10^{-15} = 3.0.10^{-13} W$$

• And finally back to link equation, the required transmitter power is given by:

$$3.0. \, 10^{-13} = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$$

$$P_t = 209 mW$$

... not a whole lot, but more than the USRP can deliver.

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

AWGN Channel

Wireless Communication Channel

Multi-path channel

nth path attenuation $r(t) = \sum_{n=0}^{N-1} f_n s(t-\tau_n) + v(t)$ nth path delay

No line of sight

Rayleigh distribution

line of sight

Rice distribution

Fading distribution

- In a classical environment (theoretical perfect model), noise is generally considered to be AWGN (Additive White Gaussian Noise), modeled by the normal distribution.
- In the case of a fading channel, the probability density of the attenuations will follow a law of the form:

$$f_h(h) = \frac{h}{\sigma^2} e^{-\left(\frac{h^2 + A^2}{2\sigma^2}\right)} I_0\left(\frac{hA}{\sigma^2}\right)$$
 Rice distribution

- If A=0, we come to the Rayleigh distribution
- Rayleigh distribution is the preferred fading model because it models the most severe conditions with the simplest expression.

Rice vs. Rayleigh

- The Rayleigh model is used more than Rice model for the following reasons:
 - The Rayleigh model corresponds to a propagation without line of sight, and therefore more constraining. This allows to rely on the worst case
 - The Rayleigh model corresponds to many practical cases of propagation, in an urban environment or in indoor propagation (indoor)
 - The mathematical expression of a Rayleigh distribution is simpler than that of a Rice one

Channel coherence band and frequency selectivity

- The coherence band B_c gives an approximation of the band on which the channel behaves as a constant gain.
- The coherence band B_c makes it possible to characterize the time spread of the signal received in the frequency domain.
- Principle: Compare B_c to W, the band occupied by the transmitted signal.

	Frequency selectivity	
$B_c < W$	Frequency-selective channel	
$B_c > W$	Non frequency-selective channel (flat fading)	

Frequency-selective channels (B_c < W)

- Interpretation: there are parts of W filtered differently and the channel introduces different gains depending on the frequency
- →Inter Symbol Interference (ISI) due to the channel

$$r(t) = h_n s_n + \sum_{n \neq k} h_n s_{n-k} + v_n$$

Multi-path spreading

- The multi-path spreading T_m gives an approximation of the time during which all the energy used to transmitted a symbol will be received.
- The multi-path spreading T_m allows to characterize the time spread of the signal received in the time domain.
- Principle: compare T_m to T, symbol period.

	Frequency selectivity	
$T_m > T$	Frequency-selective channel	
$T_m < T$	Non frequency-selective channel (flat fading)	

$$B_c \approx \frac{1}{T_m}$$

Frequency selectivity in time domain

- Frequency-selective channel $(T_m > T)$:
 - The energy transmitted during a duration T is recovered over a duration greater than T
 - Dispersion of transmitted energy for a symbol beyond the duration of a symbol
 - Consequence : ISI (Inter Symbol Interference)
- Non frequency-selective channel—flat fading $(T_m < T)$:
 - The energy transmitted during a duration T is recovered over a duration less than T
 - No ISI but a risk of destructive combination of paths (phase opposition)
 - Consequence : Possible decrease of SNR

Time variation of the channel – Coherence Time

- The coherence time T_c gives an approximation of the time during which the behavior of the channel is relatively constant
- The coherence time T_c allows to characterize the time variation of the channel in the time domain
- Principle: compare T_c to T, symbol period.

	Fading variation	
$T_c > T$	Slow Fading	
$T_c < T$	Fast Fading	

Slow fading vs fast fading

- Slow fading :
 - The channel changes but slowly
 - Channel coefficients remain constant all the time of a frame transmission

$$r(t) = \sum_{n=0}^{N-1} h_n s(t - \tau_n) + v(t)$$

- Fast fading :
 - The channel changes very quickly
 - It is impossible to consider the gains of the paths as constant on an observation window

$$r(t) = \sum_{n=0}^{N-1} h_n(t) s(t - \tau_n(t)) + v(t)$$

Doppler spreading

- Doppler spreading f_d gives an approximation of the band on which the channel spreads the spectral components
- Doppler spreading f_d characterizes the time variation of the channel in the frequency domain
- Principle : compare f_d to W, the band occupied by the transmitted signal.

	Fading variation	
$f_d < W$	Slow Fading	
$f_d > W$	Fast Fading	

$$T_c \approx \frac{1}{f_d}$$

Summary (1)

Time spreading of the signal	Time variation of the channel
Frequency-selective (ISI) $T_m > T$	Fast fading (PLL failure, high Doppler) : $f_d > W$
(Non selective) Flat fading (decrease of SNR) $T_m < T$	Slow fading (decrease of SNR) $f_d < W$
Frequency-selective (ISI) $B_c < W$	Fast fading (PLL failure, high Doppler) : $T_c > T$
(Non selective) Flat fading (decrease of SNR) $B_c > W$	Slow fading (decrease of SNR) $T_c < T$

Summary (2)

Doppler spreading

Frequency-selctive and fast fading

$$r(t) = \sum_{n=0}^{N-1} h_n(t) s(t - \tau_n(t)) + v(t)$$

Non frequency-selective and fast fading

$$r(t) = h(t)s(t) + v(t)$$

W

Frequency-selctive and slow fading

$$r(t) = \sum_{n=0}^{N-1} h_n s(t - \tau_n) + v(t)$$

Non frequency-selective and slow fading

$$r(t) = hs(t) + v(t)$$

İETR

Equalization

- Compensation for transmission channel impairments
- The channel acts as a linear filter $x(t) = \sum_{k} m(k)h(t-k)$
- Consists of finding, from the received signal, the characteristics of the inverse filter and applying it to the signal

Outline CentraleSupélec

- 1. Radio waves
- 2. Propagation
- 3. Noise sources
- 4. Wireless channel vs. AWGN channel
- 5. Multi-carrier modulation
- 6. Applications

Principle (1)

Principle (2) Wide-band channel

Multiple narrow-band channels

- Multiple sub-channels (sub-carriers) carry samples sent at a lower rate
 - Almost same bandwidth with wide-band channel
 - Only some of the sub-channels are affected by interferers or multi-path effect

Orthogonality

Traditionnal approach

OFDM Concept

Orthogonal Frequency
Division Multiplex

Sub-carrier placed at multiples of 1/T

Difference between FDM and OFDM

General OFDM expression

Transmitted signal

Sub-carrier symbols

Notations

 T_s : symbol period

N: number of sub-carriers

T=NTs: OFDM symbol period

 $\sum_{k=0}^{N-1} S_k^{(n)} e^{2i\pi f_n t} : \text{OFDM symbol}$

Orthogonality of any two bins

$$\sum_{t=0}^{N-1} e^{-j \, 2\pi kt/N} e^{-j \, 2\pi pt/N} = 0, \forall p \neq k$$

OFDM Transmission – Example (1)

 Say we use BPSK and 4 sub-carriers to transmit a stream of samples

Serial to parallel conversion of samples

Frequency-domain signal

Time-domain signal

	c1	c2	c3	c4	IFFT				
symbol1					\longrightarrow	0	2 - 2i	0	2 + 2i
symbol2	1	1	1	-1		2	0 - 2i	2	0 + 2i
symbol3	1	-1	-1	-1		-2	2	2	2
symbol4	-1	1	-1	-1		-2	0 - 2i	-2	0 + 2i
symbol5	-1	1	1	-1		0	-2 - 2i	0	-2 + 2i
symbol6	-1	-1	1	1		0	-2 + 2i	0	-2 - 2i

 Parallel to serial conversion, and transmit timedomain samples

OFDM Transmission – Example (2)

t1 t2 t3 t4 t5 t6

symbol1 1 1 -1 -1 symbol2 1 1 1 -1 -1 symbol3 1 -1 -1 -1 symbol4 -1 1 -1 -1 symbol5 -1 1 1 -1 symbol6 -1 -1 1 1

OFDM Transmitter:

IFFT frequency-domain samples → time-domain samples

- Simple FFT algorithm: easy to implement (DSP, FPGA, ASIC...)
- One DAC is enough

OFDM Receiver

FFT time-domain samples → frequency-domain samples

Very simple receiver: dual transmitter

OFDM frames are delayed because of the channel and overlap in

→ Cyclic prefix $x_k = \{x_k^{(0)}, x_k^{(1)}, ..., x_k^{(L-1)}, x_k^{(0)}, x_k^{(1)}, ..., x_k^{(N-1)}\}$

Cyclic prefix Δ of length L

Output of the FFT inverse

OFDM diagram

Thank you!

CentraleSupélec - Campus de Rennes

Haïfa Farès

IETR/CentraleSupélec
Signal Communications & Embedded Systems

