

MONASH **INFORMATION TECHNOLOGY**

Week 1 - Introduction

Semester 1 2022

Pre-Forum Slides

Malaysia Campus

An overview of **D**ata**B**ase **M**anagement **S**ystems (DBMS)

The challenge

- Let's create a system to record information on Monash students
 - student, unit and enrolment details
 - What kind of approaches do we have?
 - What kinds of problems are involved?

Pre-Database Systems

- Manual System
 - recording data on paper/cards stored (filed) in folders/cabinets
 - management (insert/update and delete of data) and reporting are slow and cumbersome
- File Processing Systems
 - recording of data in computer based files

Problems with file processing systems

- Data duplication
- Program and data dependence
- Lack of security and limited data sharing (islands of information)
- Lengthy development times, difficulty of getting quick answers
 - Extensive programming needed

What is a database?

a structured set of data held in a computer, especially one that is accessible in various ways. "a database covering nine million workers"

A database

- Logically related data stored in a single logical data repository (the Database)
 - the repository may be stored on one local computer, distributed or in the cloud
 - stores data structures, relationships between structures, and access paths
 - defines, stores, and manages all access paths and components

Types of database

- TABLE 2.1
- **EVOLUTION OF MAJOR DATA MODELS**

GENERATION	TIME	DATA MODEL	EXAMPLES	COMMENTS
First	1960s-1970s	File system	VMS/VSAM	Used mainly on IBM mainframe systems Managed records, not relationships
Second	1970s	Hierarchical and network	IMS, ADABAS, IDS-II	Early database systems Navigational access
Third	Mid-1970s	Relational	DB2 Oracle MS SQL Server MySQL	Conceptual simplicity Entity relationship (ER) modeling and support for relational data modeling
Fourth	Mid-1980s	Object-oriented Object/relational (O/R)	Versant Objectivity/DB DB2 UDB Oracle 12c	Object/relational supports object data types Star Schema support for data warehousing Web databases become common
Fifth	Mid-1990s	XML Hybrid DBMS	dbXML Tamino DB2 UDB Oracle 12c MS SQL Server	Unstructured data support O/R model supports XML documents Hybrid DBMS adds object front end to relational databases Support large databases (terabyte size)
Emerging Models: NoSQL	Early 2000s to present	Key-value store Column store	SimpleDB (Amazon) BigTable (Google) Cassandra (Apache) MongoDB Riak	Distributed, highly scalable High performance, fault tolerant Very large storage (petabytes) Suited for sparse data Proprietary application programming

interface (API)

- Hierarchical
- Network
- Relational *
- Object Oriented/
 Object Relational
- XML/Hybrid
- No SQL
- * Unit focus

Who's Who (the founders) in the Relational Database World

1970: Relational model

- An IBM scientist
- Proposed and developed the relational model
- Also proposed normalisation forms
- Resistance from IBM to implement his model
- Turing award (1981)
- Relational model in week 3
- Normalisation in week 4
- E. F. Codd, "A Relational Model of Data for Large Shared Data Banks", Comm. Of ACM, 1970

E.F Codd (1923-2003)

1974: SQL

- Developed at IBM
- Initially called SEQUEL (Structured English QUEry Language)
- Doesn't strictly follow Codd's theory
- Oracle: the first commercially available implementation of SQL in 1979
- SQL in weeks 7, 8, 9 & 10
- D Chamberlin, R Boyce, "SEQUEL: A structured English query language", ACM SIGFIDET, 1974

Donald Chamberlin (1944-)

Raymond Boyce (unknown - 1974)

1976: Conceptual model

- Proposed Entity-Relationship Model (ER diagram)
- A systematic process to design a relational database
- Database design process in week 2 & 5
- Peter Chen, "The entity-relationship model—toward a unified view of data", ACM TODS, 1976

Peter Chen (1947 -)

1979: Oracle

- Inspired by Codd's ideas
- First commercial release in 1979
- Most popular RDBMS
- Introduced PL/SQL in 1988 (Procedural Language/SQL)

Larry Ellison (1944 -)

Oracle SQL in week 7, 8, 9 & 10

1981: Transactions management

- Introduced transaction management
- Turing award (1998)
- Presumed lost at sea in 2007

Transaction management in week 8

Jim Gray (1944 -)

 Jim Gray, "The Transaction Concept: Virtues and Limitations", VLDB, 1981

Data Management Today

- Relational databases are still very popular. But ...
 - –Social Networks (Facebook, Twitter, Foursquare etc.)
 - –Multimedia data (YouTube, Pinterest, Facebook etc.)
 - –Data streams (Twitter, computer networks)
 - –Spatial data (Road networks, Google Earth, Space etc.)
 - -Web data
 - -Big Data

https://www.domo.com/learn/infographic/data-never-sleeps-8#/

Our Database Environment

Relational database systems in action: End-users' view

Front end application (client)

Student Database is implemented in an Oracle DBMS (server)

Database Systems in Action Developers' View

Development environment (client, eg SQL Developer, Integrated Development Environment for web scripting)

Student Database (server)

Developing Application with Database

Database structure

SQL queries

Database integrity

In this unit, we will concentrate on building the back end.

Our Database Systems Environment

Local install of SQL Developer and Monash Virtual Private **Network (VPN)** ora-fit.ocio.monash.edu Monash network **Oracle DBMS** OR Monash MoVE SQL Developer FIT9132 **FITUGDB FITXXXX** OBM

