MATH 210B. QUADRATIC INTEGER RINGS

1. Computing the integral closure of ${f Z}$

Let $d \in \mathbf{Z} - \{0, 1\}$ be squarefree, and $K = \mathbf{Q}(\sqrt{d})$. In this handout, we aim to compute the integral closure \mathcal{O}_K of \mathbf{Z} in K (called the ring of integers of K). Clearly $\sqrt{d} \in \mathcal{O}_K$ (it is a root of $X^2 - d$), so $\mathbf{Z}[\sqrt{d}] \subset \mathcal{O}_K$. We'll see that in many cases this inclusion is an equality, and that otherwise it is an index-2 inclusion.

The key to controlling the possibilities for $\alpha \in \mathcal{O}_K$ is to use the fact that (writing $z \mapsto \overline{z}$ to denote the non-trivial automorphism of the Galois extension K/\mathbb{Q}) both rational numbers

$$\operatorname{Tr}_{K/\mathbf{Q}}(\alpha) = \alpha + \overline{\alpha}, \ \operatorname{N}_{K/\mathbf{Q}}(\alpha) = \alpha \overline{\alpha}$$

are algebraic integers and thus belong to \mathbf{Z} (as we know that any UFD, such as \mathbf{Z} , is integrally closed in its own fraction field, and so the only algebraic integers in \mathbf{Q} are the elements of \mathbf{Z}). Writing $\alpha = a + b\sqrt{d}$ for unique $a, b \in \mathbf{Q}$, we have $\overline{\alpha} = a - b\sqrt{d}$, so $\mathrm{Tr}_{K/\mathbf{Q}}(\alpha) = 2a$ and $\mathrm{N}_{K/\mathbf{Q}}(\alpha) = a^2 - db^2$. Thus, we arrive at the necessary conditions $2a, a^2 - db^2 \in \mathbf{Z}$. This already imposes a severe constraint on the denominator of a when written as a reduced-form fraction: it is either 1 or 2.

Theorem 1.1. If $d \equiv 2, 3 \mod 4$ then $\mathscr{O}_K = \mathbf{Z}[\sqrt{d}]$, and if $d \equiv 1 \mod 4$ then $\mathscr{O}_K = \mathbf{Z}[(1+\sqrt{d})/2]$.

Note that the case $d \equiv 0 \mod 4$ cannot occur since d is square-free. Although $K = \mathbf{Q}(\sqrt{d})$ is not affected if we replace d with n^2d for $n \in \mathbf{Z}^+$ (since $n \in \mathbf{Q}^\times$), the rings $\mathbf{Z}[\sqrt{d}]$ and $\mathbf{Z}[\sqrt{n^2d}] = \mathbf{Z}[n\sqrt{d}]$ are very different. Thus, the square-free hypothesis on d that is not so essential for describing K is absolutely critical for the correctness of the description of \mathscr{O}_K in terms of d in the Theorem.

As illustrations, for $K = \mathbf{Q}(i), \mathbf{Q}(\sqrt{\pm 2}), \mathbf{Q}(\sqrt{3}), \mathbf{Q}(\sqrt{-5})$ we have $\mathscr{O}_K = \mathbf{Z}[i], \mathbf{Z}[\sqrt{\pm 2}], \mathbf{Z}[\sqrt{3}], \mathbf{Z}[\sqrt{-5}]$ respectively and for $K = \mathbf{Q}(\sqrt{-3}), \mathbf{Q}(\sqrt{5})$ we have $\mathscr{O}_K = \mathbf{Z}[\omega], \mathbf{Z}[(1+\sqrt{5})/2]$ (where $\omega = (-1+\sqrt{-3})/2$ is a nontrivial cube root of 1, which is to say a root of $(X^3-1)/(X-1) = X^2+X+1$).

Proof. We have already noted that if $a \notin \mathbf{Z}$ then as a reduced-form fraction the denominator of a has no other option than to be 2; i.e., in the latter case a = n/2 for an odd integer n.

Let's see how the two possibilities $(a \in \mathbf{Z}, \text{ or } a = n/2 \text{ for odd } n \in \mathbf{Z})$ arising from the necessity of integrality of the trace interact with the necessity of integrality of the norm. Since $a^2 - db^2 \in \mathbf{Z}$, in case $a \in \mathbf{Z}$ we see that $db^2 \in \mathbf{Z}$. But d is square-free, so integrality of db^2 rules out the possibility of any prime p occurring in the denominator of b as a reduced-form fraction (since d cannot fully cancel the denominator factor p^2 for b^2). Thus, when $a \in \mathbf{Z}$ we conclude that necessarily $b \in \mathbf{Z}$, so $\alpha = a + b\sqrt{d} \in \mathbf{Z}[\sqrt{d}]$. Hence, the only way it could happen that \mathscr{O}_K is larger than $\mathbf{Z}[\sqrt{d}]$ is from cases with $a \notin \mathbf{Z}$ (if these can somehow manage to occur for some $\alpha \in \mathscr{O}_K$). So suppose a = n/2 with odd $n \in \mathbf{Z}$. Thus, $a^2 - db^2 = n^2/4 - db^2$ is an integer. This forces db^2

So suppose a = n/2 with odd $n \in \mathbb{Z}$. Thus, $a^2 - db^2 = n^2/4 - db^2$ is an integer. This forces db^2 to have a denominator of 4 when written in reduced form, so necessarily b = m/2 for some odd integer m and also d is odd (since if d is even then $db^2 = dm^2/4$ would have denominator at worst 2). This already settles the case of even d, which is to say $d \equiv 2 \mod 4$. We can write

$$\alpha = a + b\sqrt{d} = \frac{1 + \sqrt{d}}{2} + \left(\frac{n-1}{2} + \frac{m-1}{2} \cdot \sqrt{d}\right)$$

with $(n-1)/2, (m-1)/2 \in \mathbf{Z}$. Hence, integrality of α is equivalent to that of $(1+\sqrt{d})/2!$

The trace and norm of $(1 + \sqrt{d})/2$ down to \mathbf{Q} are 1 and (1 - d)/4 respectively, so a necessary condition for $(1 + \sqrt{d})/2$ to be integral over \mathbf{Z} is that $d \equiv 1 \mod 4$. This is also sufficient, since its minimal polynomial over \mathbf{Q} is $X^2 - X + (1 - d)/4$. Thus, if $d \equiv 3 \mod 4$ then $\mathcal{O}_K = \mathbf{Z}[\sqrt{d}]$ whereas

if $d \equiv 1 \mod 4$ then \mathscr{O}_K is generated over $\mathbf{Z}[\sqrt{d}]$ by $\rho := (1 + \sqrt{d})/2$. But in such cases we have $2\rho - 1 = \sqrt{d}$ and so $\mathbf{Z}[\sqrt{d}] \subset \mathbf{Z}[\rho]$. Thus, $\mathscr{O}_K = \mathbf{Z}[\rho]$ if $d \equiv 1 \mod 4$.

Remark 1.2. In case $d \equiv 1 \mod 4$, elements of $\mathbf{Z}[(1+\sqrt{d})/2]$ have the form

$$n + m(1 + \sqrt{d})/2 = ((m + 2n) + m\sqrt{d})/2$$

for $n, m \in \mathbf{Z}$. This is $(a_0 + a_1 \sqrt{d})/2$ for $a_0, a_1 \in \mathbf{Z}$ having the same parity: either elements of $\mathbf{Z}[\sqrt{d}]$ (for a_0, a_1 even) or $q_0 + q_1 \sqrt{2}$ where each q_j is half an odd integer (for a_0, a_1 odd).

2. Subtleties of integral closure

Already with quadratic integer rings one can begin to see some ring-theoretic subtleties emerge. As a basic example, one might wonder: for a finite extension K of \mathbf{Q} , is \mathcal{O}_K a PID (as \mathbf{Z} is)? No! Already in the quadratic case this breaks down, as the following examples show.

Example 2.1. Let $K = \mathbf{Q}(\sqrt{-5})$, so $\mathscr{O}_K = \mathbf{Z}[\sqrt{-5}]$. We claim that \mathscr{O}_K is not a PID; we will show it is not even a UFD (so it cannot be a PID). First, we need to get a handle on the possible units in \mathscr{O}_K (since the UFD condition involves unique factorization into irreducible elements up to unit-scaling).

We saw in class that if A is an integrally closed domain with fraction field F and F'/F is a finite separable extension in which the integral closure of A is denoted A' then $\mathrm{Tr}_{F'/F}$ carries A' into A. The exact same argument applies to norm in place of trace, so we have the norm map $\mathrm{N}_{F'/F}: A' \to A$ that is multiplicative and carries 1 to 1, so it carries A'^{\times} into A^{\times} (i.e., if $u', v' \in A'$ satisfy u'v' = 1 then $\mathrm{N}_{F'/F}(u'), \mathrm{N}_{F'/F}(v') \in A$ have product equal to $\mathrm{N}_{F'/F}(u'v') = \mathrm{N}_{F'/F}(1) = 1$, so $\mathrm{N}_{F'/F}(u') \in A^{\times}$). We conclude that for any quadratic extension $L/\mathbf{Q}, \mathrm{N}_{L/\mathbf{Q}}(\mathscr{O}_L^{\times}) \subset \mathbf{Z}^{\times} = \{\pm 1\}$. Conversely, if $\alpha \in \mathscr{O}_L$ satisfies $\mathrm{N}_{L/\mathbf{Q}}(\alpha) = \pm 1$ then α is a unit: if $z \mapsto \overline{z}$ denotes the nontrivial automorphism of L then $\mathrm{N}_{L/\mathbf{Q}}(\alpha) = \alpha \overline{\alpha}$, so if $\mathrm{N}_{L/\mathbf{Q}}(\alpha) = \pm 1$ then $1/\alpha = \pm \overline{\alpha} \in \mathscr{O}_L$, so $\alpha \in \mathscr{O}_L^{\times}$.

Coming back to $K = \mathbf{Q}(\sqrt{-5})$, an element of \mathcal{O}_K has the form $\alpha = a + b\sqrt{-5}$ for $a, b \in \mathbf{Z}$, so its norm is $a^2 + 5b^2$. The only solutions to $a^2 + 5b^2 = \pm 1$ in \mathbf{Z} are $(a, b) = (\pm 1, 0)$, so $\alpha = \pm 1$. Thus, $\mathcal{O}_K^{\times} = \{\pm 1\}$. (The situation is very different for "real quadratic fields"; e.g., $1 + \sqrt{2} \in \mathbf{Z}[\sqrt{2}]^{\times}$, with reciprocal $-1 + \sqrt{2}$; the general structure of unit groups of rings of integers of number fields is a key part of classical algebraic number theory, beyond the scope of this course.) Now consider the factorization

$$2 \cdot 3 = 6 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

These two factorizations of 6 are genuinely different in the sense that they are not obtained from each other through unit-scaling (as $\mathscr{O}_K^{\times} = \{\pm 1\}$).

To show that this contradicts the UFD property, we first claim that $2, 3 \in \mathcal{O}_K$ are *irreducible*. Suppose 2 = xy with non-units $x, y \in \mathcal{O}_K$. Taking norm of both sides gives 4 = N(x)N(y) with N(x), N(y) > 1 (as x, y are non-units), so the only possibility is N(x) = 2. But $a^2 + 5b^2 = 2$ has no solutions in \mathbb{Z} , so this is impossible and hence 2 is irreducible; the same argument works for 3. Since $1 \pm \sqrt{-5}$ are non-units in \mathcal{O}_K (each has norm 6), and $\mathcal{O}_K^{\times} = \{\pm 1\}$, the two factorizations of 6 given above really are not related through unit scaling and so contradict the UFD property. Hence, \mathcal{O}_K is not a UFD (and so is not a PID).

Example 2.2. A variant of the preceding calculations shows that the integral closure $\mathbf{Z}[\sqrt{-6}]$ of \mathbf{Z} in $K = \mathbf{Q}(\sqrt{-6})$ is not a PID (nor even a UFD) due to the factorizations

$$2 \cdot 5 = 10 = (2 + \sqrt{-6})(2 - \sqrt{-6})$$

of 10.

Later we will understand both of the preceding examples as instances of a common phenomenon related to non-principal prime ideals in Dedekind domains: the ideals $(2, 1 + \sqrt{-5}) \subset \mathbf{Z}[\sqrt{-5}]$ and $(2, \sqrt{-6}) \subset \mathbf{Z}[\sqrt{-6}]$ are each non-principal prime ideals (but the non-principality of each is not obvious at this stage). We'll come back to these examples later, to understand the sense in which each expresses a relation among non-principal ideals analogous to elementary factorization identities such as (ab)(cd) = (ac)(bd) in commutative rings.

Example 2.3. Consider a finite extension L/\mathbf{Q} that is a compositum of two subfields $K, K' \subset L$ over \mathbf{Q} with the property that the natural map $K \otimes_{\mathbf{Q}} K' \to L$ is an isomorphism (equivalently $[K:\mathbf{Q}][K':\mathbf{Q}] = [L:\mathbf{Q}]$ by Exercise 4 on HW2; such K and K' are called *linearly disjoint* over \mathbf{Q} inside L). One may wonder if the natural map

$$m: \mathscr{O}_K \otimes_{\mathbf{Z}} \mathscr{O}_{K'} \to \mathscr{O}_L$$

is an isomorphism. Let's first express this in more concrete terms, and then bring up a counterexample. We know that \mathscr{O}_K is a free **Z**-module of finite rank inside K, and $\mathbf{Q} \otimes_{\mathbf{Z}} \mathscr{O}_K = K$ (by denominator-chasing: any $x \in K$ is the root of a monic over \mathbf{Q} , so Nx is the root of a monic over \mathbf{Z} for sufficiently divisible non-zero $N \in \mathbf{Z}$, so x = (Nx)/N comes from $(1/N) \otimes (Nx)$); we have likewise for K' in place of K. Since \mathscr{O}_K is \mathbf{Z} -free and $\mathscr{O}_{K'}$ is \mathbf{Z} -free, their tensor product over \mathbf{Z} is also \mathbf{Z} -free and hence the natural map

$$\mathscr{O}_K \otimes_{\mathbf{Z}} \mathscr{O}_{K'} \to \mathbf{Q} \otimes_{\mathbf{Z}} (\mathscr{O}_K \otimes_{\mathbf{Z}} \mathscr{O}_{K'}) = (\mathbf{Q} \otimes_{\mathbf{Z}} \mathscr{O}_K) \otimes_{\mathbf{Q}} (\mathbf{Q} \otimes_{\mathbf{Z}} \mathscr{O}_{K'}) = K \otimes_{\mathbf{Q}} K' = L$$

is injective. The image of this lands inside \mathscr{O}_L , so the question of whether or not m is an isomorphism is exactly the same as asking if \mathscr{O}_L coincides with the **Z**-subalgebra $\mathscr{O}_K\mathscr{O}_{K'}$ of L consisting of finite sums $\sum_i x_i x_i'$ for $x_i \in \mathscr{O}_K$ and $x_i' \in \mathscr{O}_{K'}$.

It may be tempting to think that such equality somehow follows from the given equality KK' = L, but it generally fails! Here is a possible obstruction: since $\mathcal{O}_{K'}$ is a free **Z**-module of finite rank, likewise $\mathcal{O}_K \otimes_{\mathbf{Z}} \mathcal{O}_{K'}$ is a free \mathcal{O}_K -module of finite rank. Thus, if \mathcal{O}_L is not free as an \mathcal{O}_K -module then we have an obstruction to m being an isomorphism. Since \mathcal{O}_L is certainly a finitely generated torsion-free \mathcal{O}_K -module (it is a domain containing \mathcal{O}_K as a subring, and is even finitely generated as a **Z**-module), the only way it could possibly happen that it is not \mathcal{O}_K -free is if \mathcal{O}_K is not a PID. Hence, to realize this obstruction we need to at least use some K for which \mathcal{O}_K is not a PID.

Consider $L = \mathbf{Q}(\sqrt{-6}, \sqrt{-3})$ with $K = \mathbf{Q}(\sqrt{-6})$, $K' = \mathbf{Q}(\sqrt{-3})$. In this case $\mathcal{O}_{K'} = \mathbf{Z}[\omega]$ turns out to be a PID (it is even Euclidean), but we saw above that $\mathcal{O}_K = \mathbf{Z}[\sqrt{-6}]$ is not a PID. Using techniques from algebraic number theory it can be shown that \mathcal{O}_L is not a free module over $\mathcal{O}_K = \mathbf{Z}[\sqrt{-6}]$, so in this case $\mathcal{O}_K \otimes_{\mathbf{Z}} \mathcal{O}_{K'} \subsetneq \mathcal{O}_L$. A deeper understanding of this failure of equality at the level of integral closures requires more concepts from commutative algebra that we will see later in the course.