Übung 6: Rauchen und Schwangerschaft

Wir interessieren uns für den Einfluss des Rauchens während der Schwangerschaft, quantifiziert durch die Zahl der pro Tag von der Mutter gerauchten Zigaretten, auf die Gesundheit von Neugeborenen, gemessen durch deren Geburtsgewicht. Da aber auch viele andere Faktoren existieren, die einerseits vermutlich das Geburtsgewicht beeinflussen und andererseits mit dem Rauchverhalten korrelieren, sollten wir weitere erklärende Variablen berücksichtigen. Da Sie die Daten aus einer amerikanischen Studie erhalten haben, ist die Messeinheit für das Geburtsgewicht in Unzen gegeben.

cig: pro Tag Konsum von Zigaretten

bwgth (baby weight): Geburtsgewicht des Neugeborenen in Unzen.

faminc (family income): Familieneinkommen in Tausend USD

male: Dummy Variable = 1 wenn Neugeborenes männlich ist

white: Dummy Variable = 1 wenn Neugeborenes weiss ist.

Verwenden Sie für diese Aufgabe die Datei Rauchen und Schwangerschaft.gdt auf Moodle.

- 1. Analyse der Daten.
 - i. Wie viele Frauen sind in der Stichprobe enthalten? gretl Hauptfenster: Stichprobe/Zeige Status

ii. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag? Ist dieser Durchschnittswert repräsentativ für die typische Frau aus der Stichprobe?

gretl: Ansicht/Grundlegende Statistiken →Auswahl: faminc, motheduc und cigs

	arith. Mittel	Median	Minimum	Maximum
faminc	29,027	27,500	0,50000	65,000
motheduc	12,936	12,000	2,0000	18,000
cigs	2,0872	0,00000	0,00000	50,000
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
faminc	18,739	0,64559	0,61762	-0,52660
motheduc	2,3767	0,18373	-0,032120	0,64824
cigs	5,9727	2,8616	3,5604	14,934

iii. Wie viele Frauen Rauchen während der Schwangerschaft? Was ist der Anteil von Raucherinnen in der Stichprobe?

gretl Hauptfenster: Stichprobe/Restringiere durch Bedingung/ Boolsche Bedingung: cigs $> 0 \rightarrow$ Dadurch werden die Nichtraucherinnen entfernt!

iv. Wie hoch ist der durchschnittliche Zigarettenkonsum pro Tag unter den Raucherinnen?

	arith. Mittel	Median	Minimum	Maximum
faminc	20,917	18,500	0,50000	65,000
motheduc	11,637	12,000	6,0000	18,000
cigs	13,665	10,000	1,0000	50,000
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
faminc	15,142	0,72392	1,0458	0,95217
motheduc	1,7753	0,15256	0,15604	1,6180
cigs	8,6909	0,63599	1,3020	2,5502

Hinweis: Die Stichprobe ist wieder auf den Gesamtbereich wiederherzustellen!

gretl Hauptfenster: Stichprobe/Gesamtbereich wiederherstellen

- v. Wie hoch ist der durchschnittliche Familieneinkommen? Vergleichen Sie zwischen der Stichprobe und Teilmenge der Raucherinnen.
- vi. Wie viele Neugeborene sind in der Stichprobe weiss?

h

Stichprobe/Restringiere durch Bedingung/ Benutze Dummy Variable/white

- → Dadurch werden die nichtweisse Neugeborenen entfernt!
- 2. Welchen Einfluss erwarten Sie für die Variablen *cigs* und *faminc* (Familieneinkommen) auf das Geburtsgewicht des Neugeborenen (Vorzeichen für β_2 und β_3)? Begründen Sie Ihre Antwort.
- 3. Schätzen Sie das Modell 1: $bwght = \beta_1 + \beta_2 cigs + u$

	Koeffizient	Stdfehler	t-Quotient	p-Wert	
const cigs	119,772 -0,513772	0,572341 0,0904909	209,3 -5,678	0,0000 1,66e-08	***
Mittel d. a Summe d. q R-Quadrat	uad. Res.	561551,3 Std	abw. d. abh. Va fehler d. Regra rigiertes R-Qua	ess. 20,	35396 12858 22024

- 4. Welche Korrelation erwarten Sie zwischen den Variablen *cigs* (Zig-Konsum) und *faminc* (Familieneinkommen)? Erklären Sie, warum die Korrelation positiv oder negativ sein könnte.
- Analysieren Sie die Korrelationsstruktur zwischen den Variablen bwght, cigs und faminc

gretl Hauptfenster: Ansicht/Korrelationsmatrix \rightarrow Variablen bwght, cigs und faminc auswählen

bwght	faminc	cigs	
1,0000	0,1089	-0,1508	bwght
	1,0000	-0,1730	faminc
		1,0000	cigs

6. Ermitteln Sie die Korrelation zwischen *cigs* und *faminc* mittels Regression. Einmal für die gesamte Stichprobe, einmal für die Gruppe der Raucherinnen. Wie ändert sich diese Korrelation für diese Teilmenge aus der Stichprobe?

Regression für die gesamte Stichprobe:

```
Abhängige Variable: faminc

Koeffizient Std.-fehler t-Quotient p-Wert

const 30,1598 0,524988 57,45 0,0000 ***
cigs -0,542928 0,0830042 -6,541 8,58e-011 ***

Mittel d. abh. Var. 29,02666 Stdabw. d. abh. Var. 18,73928
Summe d. quad. Res. 472475,2 Stdfehler d. Regress. 18,46324
R-Quadrat 0,029945 Korrigiertes R-Quadrat 0,029245
```

Regression für die Gruppe der Raucherinnen gretl: Stichprobe/Restringiere durch Bedingung/cigs > 0

Hinweis: Die Stichprobe ist wieder auf den Gesamtbereich wiederherzustellen!

 Welchen Effekt hat vermutlich die Hinzunahme von faminc (Familieneinkommen) auf den geschätzten Regressionskoeffizienten b_{cigs}?

Hinweis: Benutzen Sie Ihr Ergebnis aus Frage 6

8. Schätzen Sie das Modell 2: $bwght = \beta_1 + \beta_2 cigs + \beta_3 faminc + u$

Es soll nun die Dummy-Variable *male* als zusätzlicher Regressor hinzugefügt werden (Wert 1, wenn das Neugeborene männlich ist, 0 für weiblich).

- 9. Vermuten Sie, dass die Berücksichtigung dieser Dummy-Variable einen deutlichen Effekt auf b_{cigs} und b_{faminc} oder deren Standardfehler hat? Warum bzw. warum nicht? Überprüfen Sie Ihre Vermutung anschliessend.
- 10. Schätzen Sie das Modell 3: bwght = $\beta_1 + \beta_2$ cigs + β_3 faminc + β_4 male + u

	Koeffizie	nt Stdf	ehler	t-Quotient	p-We	ert	
const	115,228	1,207	88	95,40	0,000	00	***
cigs	-0,46104	6 0,091	3378	-5,048	5,07	e-07	***
faminc	0,09687	98 0,029	1453	3,324	0,000	09	***
male	3,11397	1,076	40	2,893	0,000	39	***
Mittel d. a	bh. Var.	118,6996	Stdab	w. d. abh.	Var.	20,3	539
Summe d. qu	ad. Res.	554134,6	Stdfe	hler d. Reg	ress.	20,0	096
R-Quadrat		0,035636	Korri	giertes R-Q	uadrat	0,03	354
F(3, 1384)		17,04780	P-Wer	t(F)		7,10	e-1:
Log-Likelih	lood	-6126,230	Akaik	e-Kriterium	l	1226	0,4
Schwarz-Kri	terium	12281,40	Hanna	n-Quinn-Kri	terium	1226	8.2

11. Interpretieren Sie b_{faminc} im Modell 3.

Hinweis: Das Geburtsgewicht bwght ist hier in Unzen angegeben (1 Unze = 28.35 Gramm), das Familieneinkommen faminc ist in \$1000 -Einheiten angegeben.

12. Schätzen Sie das Modell 4 mit dem Geburtsgewicht des Neugeborenen in Gramm ausgedrückt.

Modell 4:
$$bwghtgr = \beta_1^* + \beta_2^* cigs + \beta_3^* fa \min c + \beta_4^* male + u$$

Hinweis: 1 Unze = 28.35 Gramm

gretl Hauptfenster: Hinzufügen/ Definiere neue Variable/

 $bwghtgr = bwght \times 28.35$

Abhängige V	ariable: bwgh	tgr					
	Koeffizient	Stdfe	hler	t-Quotient	p-We	ert	
const	3266,71	34,243	4	95,40	0,000	00	***
cigs	-13,0706	2,589	43	-5,048	5,076	e-07	***
faminc	2,74654	0,826	268	3,324	0,000	09	***
male	88,2810	30,515	8	2,893	0,003	39	***
Mittel d. a	bh. Var.	3365,133	Stdal	ow. d. abh. V	ar.	577,	,0349
Summe d. qu	ad. Res.	4,45e+08	Stdfe	ehler d. Regr	ess.	567,	,2737
R-Quadrat		0,035636	Korr	igiertes R-Qu	adrat	0,03	33546
F(3, 1384)		17,04780	P-Wei	rt(F)		7,10	0e-11

- 13. Wie ist die Beziehung zwischen den Koeffizienten aus Modell 3 und 4.
- 14. Interpretieren Sie den Koeffizienten b_{faminc}
- 15. Folgende Modelle wurden geschätzt. Interpretieren Sie jeweils den Koeffizienten b₃.
 - i. $bwght = 112.138 0.465 cigs + 1.927 \ln(faminc) + 3.096 male$
- ii. ln(bwght = 4.703 0.00406cigs + 0.0169 ln(faminc) + 0.0258 male

- iii. ln(bwght) = 4.729 0.0401 cigs + 0.000878 faminc + 0.0259 male
- 16. Erstellen Sie ein Histogramm von In(bwght) und bwght. Welcher Unterschied ist zu vermerken?

17. Der Regressor *faminc* wurde durch *fatheduc* (Ausbildungsdauer des Vaters gemessen in Jahren) ersetzt. Interpretieren Sie jeweils den Koeffizienten b₃ für folgende Regressionsschätzungen:

i.	bwght = 113.260 - 0.571cigs + 0.411 fatheduc + 3.568 male	lin-lin
ii.	bwght = 106.528 - 0.574cigs + 4.772 ln(fatheduc) + 3.524 male	lin-log
iii.	ln(bwght) = 4.664 - 0.005cigs + 0.0372 ln(fatheduc) + 0.0313 male	log-log
iv.	ln(bwght) = 4.716 -0.0049 cigs + 0.0033 fatheduc + 0.0317 male	log-lin

18. Schätzen Sie das Modell 5:

bwght =
$$\beta_1$$
 + β_2 cigs + β_3 parity + β_4 faminc + β_5 motheduc + β_6 fatheduc + u

Die Variable parity stellt die Reihenfolge des Neugeborenen unter den Familienkindern.

- i. Interpretieren Sie den Wert *parity* = 3.
- ii. Warum reduziert gretl hier jeweils die Zahl der einbezogenen Familien bei diesen Schätzungen (Frage 13)? Könnte das Konsequenzen bzgl. der Repräsentativität der "selektierten" Familien haben?
- i. Spielt die Reihenfolge des Neugeborenen eine Rolle für das Geburtsgewicht? Interpretieren Sie den Koeffizienten b₃.
- ii. Sind alle Steigungskoeffizienten gemeinsam signifikant (Modell 5)? Wie lautet die Nullhypothese?
- 19. Testen Sie die Nullhypothese im Modell 5, dass die Elternausbildung keinen Effekt auf das Gewicht des Neugeborenen hat.
 - i. Mittels gretl Test

gretl: Tests /Variable weglassen →Schätze reduziertes Modell → interpretieren Sie den p-Wert.

```
Nullhypothese: Die Regressionskoeffizienten sind Null für die Variablen motheduc, fatheduc
Teststatistik: F(2, 1185) = 1,43727, p-Wert 0,23799
```

- ii. Bestimmen Sie den kritischen Wert F_c mittels gretl. Was ist Ihre Schlussfolgerung? gretl Hauptfenster: Werkzeuge / Statistische Tabellen / F / rechtsseitige Wahrscheinlichkeit = 0.05
- iii. Berechnen Sie den F-Wert mittels Bestimmtheitsmass R² durch eigene Schätzung des restringierten Modells.

Da die Ausbildungsangaben für die Mütter immer vorhanden sind, selektieren Sie im Hauptfenster die Variable *fatheduc* und dann das Menü auswählen: *Stichprobe / Entferne Beobachtungen mit Fehlwerten* (nicht dauerhaft).

20. Schätzen Sie das Modell 6:

 $ln(bwght) = \beta_1 + \beta_2 cigs + \beta_3 ln(faminc) + \beta_4 parity + \beta_5 male + \beta_6 white + u$

```
Modell 14: KQ, benutze die Beobachtungen 1-1388
Abhängige Variable: 1_bwght
            Koeffizient Std.-fehler t-Quotient p-Wert
            const
  cigs
  1 faminc
 parity
             0,0265458 0,0100295 2,647 0,0082 ***
0,0547875 0,0130518 4,198 2,87e-05 ***
 male
  white
Mittel d. abh. Var. 4,760031 Stdabw. d. abh. Var. 0,190662 Summe d. quad. Res. 48,04116 Stdfehler d. Regress. 0,186446 R-Quadrat 0,043740 Korrigiertes R-Quadrat 0,043740
                                               4,58e-13
F(5, 1382)
                        13,68835
                                   P-Wert(F)
                        364,8246 Akaike-Kriterium
Log-Likelihood
                                                            -717,6492
Schwarz-Kriterium -686,2355 Hannan-Quinn-Kriterium -705,9010
```

- i. Was ist der Effekt auf das Geburtsgewicht, wenn die Mutter 10 Zigaretten pro Tag mehr raucht?
- ii. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber einem Weiblichen auf, ceteris paribus? Ist der Koeffizient β₅ signifikant auf 5%-Niveau?
- iii. Wie viel mehr Geburtsgewicht weist ein weisses Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient β₆ signifikant auf 5%-Niveau?

21. Schätzen Sie das Modell 7:

In(bwght) = β_1 + β_2 cigs+ β_3 In(faminc)+ β_4 parity + β_5 male+ β_6 white+ β_7 motheduc + β_8 fatheduc +

i. Was ist die Auswirkung eines zusätzlichen Ausbildungsjahres der Mutter auf das Geburtsgewicht?

```
Modell 13: KQ, benutze die Beobachtungen 1-1388 (n = 1191)
Fehlende oder unvollständige Beobachtungen entfernt: 197
Abhängige Variable: 1 bwght
               Koeffizient Std.-fehler t-Quotient
                                                               p-Wert
                                                  --, 9 0,0000
-5,079 4.42-
               4,65267
                              0,0381545 121,9
  const
               -0,00521438 0,00102675
                                                               4,42e-07 ***
  cigs
  1,292
2,804
                                                               0,1967
  parity 0,0172014 0,00010001
male 0,0341430 0,0107022
0,0453991 0,0150870
                                                                0,0051
                                                                0,0015 ***
                                                   3,190
                                                    3,009
                                                                0,0027
  -1,001
                                                               0,3170
                                                    1,256
                                                                0,2093
Mittel d. abh. Var. 4,767536 Stdabw. d. abh. Var. 0,188013
Summe d. quad. Res. 39,99114 Stdfehler d. Regress. 0,183861
R-Quadrat 0,049303 Korrigiertes R-Quadrat 0,043678
F(7, 1183) 8,764331 P-Wert(F) 1,55e-10
Log-Likelihood
                          8,764331 P-Wert(F) 1,55e-10
331,1061 Akaike-Kriterium -646,2122
-605,5518 Hannan-Quinn-Kriterium -630,8901
Schwarz-Kriterium
```

22. Schätzen Sie das Modell 8:

bwght = β_1 + β_2 cigs + β_3 ln(faminc) + β_4 parity + β_5 male + β_6 white + β_7 motheduc + β_8 fatheduc +

i. Wie viel mehr Geburtsgewicht weist ein männliches Neugeborenes gegenüber der Referenzgruppe auf, ceteris paribus? Ist der Koeffizient b₅ signifikant auf dem 5%-Signifikanzniveau?

	r unvollständ riable: bwght	-	chtung	gen entfernt:	197		
	Koeffizient	Stdfe	hler	t-Quotient	p-We	rt	
const	106,538	4,0763	 0	26,14	3,14e	-119 ·	***
cigs	-0,597376	0,1096	95	-5,446	6,27e	-08	***
1 faminc	1,22061	0,9124	34	1,338	0,181	2	
parity	1,91752	0,6552	84	2,926	0,003	5	***
male	3,82465	1,1433	9	3,345	0,000	8 '	***
white	4,63746	1,6118	5	2,877	0,004	1	***
motheduc	-0,336755	0,3176	34	-1,060	0,289	3	
fatheduc	0,415149	0,2786	76	1,490	0,136	6	
Mittel d. ab	h. Var. 1	19,5298	Stdab	ow. d. abh. V	ar.	20,14	124
Summe d. qua	d. Res. 4	56463,7	Stdfe	hler d. Regr	ess.	19,64	313
R-Quadrat	0	,054445	Korri	giertes R-Qu	adrat	0,048	850
F(7, 1183)	9	,730940	P-Wer	t(F)		7,99e	-12
Log-Likeliho	od -5	232,416	Akaik	e-Kriterium		10480	, 83
Schwarz-Krit	erium 1	0521,49	Hanna	n-Quinn-Krit	erium	10496	, 15

- 23. Antworten Sie auf diese Fragen mittels einer Regression.
 - i. Wie viel wiegt ein weibliches Neugeborenes im Durchschnitt in Kg?

Abhängige Variable: b	wght				
Koeffizi	ent Stdfe	hler	t-Quotient	p-Wert	
const 117,167	0,7875	14	148,8	0,0000	***
male 2,942	35 1,0911	.5	2,697	0,0071	***
Mittel d. abh. Var.	118,6996	Stdabw	. d. abh. V	7ar. 2	0,35396
Summe d. quad. Res.	571612,8	Stdfeh	ler d. Regr	ess. 2	0,30810
R-Quadrat	0,005219	Korrig	iertes R-Qu	adrat 0	,004501
F(1, 1386)	7,271438	P-Wert	(F)	0	,007091
Log-Likelihood	-6147,782	Akaike	-Kriterium	1	2299,56
Schwarz-Kriterium	12310,03	Hannan	-Quinn-Krit	erium 1	2303,48

- ii. Wie viel mehr Geburtsgewicht in Gramm weist ein männliches Neugeborenes gegenüber einem Weiblichen auf?
- iii. Warum ist der Steigungskoeffizient kleiner als β_{male} im Modell 8
- 24. Welches Modell würden Sie vorziehen? Begründen Sie Ihre Antwort.

Zusammenstellung der zu vergleichenden Modelle mit den entsprechenden Kriterien.

Modell 3:
$$\hat{b}wght = 115.228 - 0.461cigs + 0.09687 faminc + 3.114 male$$

Modell 5: bwght = 114.524 -0.596cigs + 1.787parity + 0.0560faminc - 0.37motheduc + 0.472fatheduc

Modell 6: lnbwght = 4.657 -0.00435 cigs + 0.00927 lnfaminc + 0.0159 parity + 0.0265 male + 0.0547 white

 $Modell\ 7:\ Inbwght = 4.657\ -0.00521 cigs + 0.0172 parity + 0.0117 Infaminc + 0.0341 male + 0.045 white - 0.0029 motheduc + 0.00327 fatheduc$

Modell 8: bwght = 106.53 -0.5973cigs + 1.917parity + 1.22Infaminc + 3.82male + 4.63white - 0.336motheduc + 0.415fatheduc

Modell	2	3	5	6	7	8
Abh. Variable	bwght	bwght	bwght	Inbwght	Inbwght	bwght
#Regressoren	3	4	6	6	8	8
\overline{R}^2	0.028	0.0327	0.0346	0.0437	0.0436	0.0488
Akaike	12266	12261.6	10496	-717.64	-646.21	10480
SIC	12282		10526	-686.2	-605.5	10521