MATH 417 - Introduction to Abstract Algebra Spring 2022

Homework 5 Due Friday February 18

- 1. Fraleigh Section 5 Problem 39: Answer the ten True or False questions.
- 2. Determine all elements $a \in \mathbb{Z}_{24}$ such that $\langle a \rangle \leq \mathbb{Z}_{24}$ is a subgroup of order 8.
- 3. The regular 9-gon with vertices 1 to 9 has 18 symmetries that include $\rho = (123456789)$ and $\sigma = (12)(39)(48)(57)$. Give the disjoint cycle form for the permutations $\sigma \rho$, $\sigma \rho^2$ and $\rho \sigma$, $\rho^2 \sigma$.
- 4. Recall that an isomorphism $\phi: G \to G'$ between groups G and G' is a bijection such that $\phi(xy) = \phi(x)\phi(y)$. Let G be a group and, for $g \in G$, let $\phi_g: G \to G$ be the map $\phi_g(x) = gxg^{-1}$.
 - a) Show that ϕ_g is a bijection, for all $g \in G$.
 - b) Show that ϕ_g is an isomorphism, for all $g \in G$.
- 5. Let S_6 be the group of permutations of $\{1, 2, 3, 4, 5, 6\}$.
 - a) Show that there are as many permutations in S_6 with cycle structure (12) as there are permutations with cycle structure (12)(34)(56).
 - b) Show that there are as many permutations in S_6 with cycle structure $(1\,2\,3\,4\,5\,6)$ as there are permutations with cycle structure $(1\,2\,3)(4\,5)$.
- 6. Find the maximal possible order for an element in S_9 .

¹In general, an isomorphism $\phi: S_n \to S_n$ is of the form ϕ_g as defined in the previous problem. The group S_6 is an exception. The map that sends $(1\,2) \mapsto (1\,2)(3\,4)(5\,6)$ and $(1\,2\,3\,4\,5\,6) \mapsto (1\,2\,3)(4\,5)$ gives an isomorphism that does not preserve the cycle structure.