

INTERNSHIP TASK

BY: KARTHIKEYAN R

This project aims to analyze a dataset containing restaurant information. The analysis focuses on various aspects, such as the distribution of ratings, the relationship between votes and ratings, the availability of online delivery and table booking across different price ranges and identifying common positive and negative keywords in text reviews.

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv("Dataset .csv")
 df.head(2)

Out[2]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 Currency	Has Table booking	Has Online delivery	d€
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	 Botswana Pula(P)	Yes	No	
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	 Botswana Pula(P)	Yes	No	

2 rows × 21 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9551 entries, 0 to 9550 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	Restaurant ID	9551 non-null	 int64				
1	Restaurant Name	9551 non-null	object				
2	Country Code	9551 non-null	int64				
3	City	9551 non-null	object				
4	Address	9551 non-null	object				
5	Locality	9551 non-null	object				
6	Locality Verbose	9551 non-null	object				
7	Longitude	9551 non-null	float64				
8	Latitude	9551 non-null	float64				
9	Cuisines	9542 non-null	object				
10	Average Cost for two	9551 non-null	int64				
11	Currency	9551 non-null	object				
12	Has Table booking	9551 non-null	object				
13	Has Online delivery	9551 non-null	object				
14	Is delivering now	9551 non-null	object				
15	Switch to order menu	9551 non-null	object				
16	Price range	9551 non-null	int64				
17	Aggregate rating	9551 non-null	float64				
18	Rating color	9551 non-null	object				
19	Rating text	9551 non-null	object				
20	Votes	9551 non-null	int64				
dtyp	dtypes: float64(3), int64(5), object(13)						

dtypes: float64(3), in memory usage: 1.5+ MB

```
In [4]: # checking for missing values
        df.isnull().sum()
Out[4]: Restaurant ID
                                0
        Restaurant Name
                                0
        Country Code
        City
                                0
        Address
        Locality
        Locality Verbose
        Longitude
        Latitude
                                0
        Cuisines
        Average Cost for two
                                0
        Currency
                                0
        Has Table booking
                                0
        Has Online delivery
                                0
        Is delivering now
        Switch to order menu
        Price range
                                0
        Aggregate rating
        Rating color
                                0
        Rating text
        Votes
        dtype: int64
In [5]: # Filling the null values with unknown
        df['Cuisines'].fillna('unknown', inplace = True)
In [6]: df.shape
```

Out[6]: (9551, 21)

```
In [7]: #Statistics summary
df.describe()
```

7		+	17	' 1	•
v	u	u	ı /	- 1	

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	Votes
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666370	156.909748
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516378	430.169145
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000000	0.000000
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500000	5.000000
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200000	31.000000
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700000	131.000000
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900000	10934.000000

LEVEL 1 - Task 1 : Top Cuisines

Determine the top three most common cuisines in the dataset. Calculate the percentage of restaurants that serve each of the top cuisines

```
In [8]: cuisines_counts = df['Cuisines'].str.split(', ').explode().value_counts()
    Top_3_Cuisines = cuisines_counts.head(3)
    Top_3_Cuisines
```

Out[8]: Cuisines

North Indian 3960 Chinese 2735 Fast Food 1986 Name: count, dtype: int64

```
In [9]: plt.figure(figsize = (4,3))
    sns.barplot(x = Top_3_Cuisines.index , y = Top_3_Cuisines.values)
    plt.title('Top 3 Most Common Cuisines')
    plt.show()
```


Calculate the percentage of restaurants that serve each of the top cuisines

Cuisines

```
In [10]: total_restaurants = len(df)
total_restaurants
```

Out[10]: 9551

```
In [11]: percentage = (cuisines_counts/total_restaurants) * 100
percentage.head(5)

Out[11]: Cuisines
    North Indian     41.461627
    Chinese     28.635745
    Fast Food     20.793634
```

LEVEL 1 - Task 2 : City Analysis

10.417757

7.999162

Name: count, dtype: float64

Identify the city with the highest number of restaurants in the dataset

```
In [12]: city = df.groupby('City')['Restaurant ID'].count().sort_values(ascending = False)
    city.head(1)
```

Out[12]: City

New Delhi 5473

Mughlai

Italian

Name: Restaurant ID, dtype: int64

Calculate the average rating for restaurants in each city

```
In [13]: avg ratings = df.groupby('City')['Aggregate rating'].mean()
         avg ratings
Out[13]: City
         Abu Dhabi
                            4.300000
         Agra
                            3.965000
         Ahmedabad
                            4.161905
         Albany
                            3.555000
         Allahabad
                            3.395000
         Weirton
                            3.900000
         Wellington City
                            4.250000
         Winchester Bay
                            3.200000
         Yorkton
                            3.300000
         ��stanbul
                              4.292857
         Name: Aggregate rating, Length: 141, dtype: float64
         Determmine the city with the highest average rating
In [14]: city highest avg rating = avg ratings.sort values(ascending=False)
         city highest avg rating.index[0]
         # or
         #city highest avg rating = avg ratings.idxmax()
         #city highest avg rating
```

LEVEL 1 - Task 3 : Price Range Prediction

Out[14]: 'Inner City'

Create a histogram or bar chat to visualize the distribution of price ranges among the restaurants

```
In [15]: price_range_counts = df['Price range'].value_counts()
price_range_counts

Out[15]: Price range
1 4444
```

2 3113

3 1408

4 586

Name: count, dtype: int64

```
In [16]: plt.figure.figsize = (5, 3)
    colors = ['#0072BD','#D95319','#7E2F8E','#A2142F']
    plt.bar(price_range_counts.index, price_range_counts.values, color = colors)
    plt.xlabel('Price')
    plt.ylabel('No. of Restaurants')
    plt.title('Distribution of Price Ranges Among Restaurants')
    plt.show()
```


Calculate the percentage of restaurants in each price range category

6.135483

Name: count, dtype: float64

```
In [19]: plt.figure.figsize = (5, 3)
    plt.pie(pct_price_range, labels=pct_price_range.index, autopct='%1.1f%%', colors=colors)
    plt.title('Percentage of Restaurants in Each Price Range Category')
    plt.show()
```

Percentage of Restaurants in Each Price Range Category

LEVEL 1 - Task 4 : Online Delivery

Determine the percentage of restaurants that offer online delivery

```
In [20]: online_delivery_percentage = (df['Has Online delivery'].map({'Yes': True, 'No': False}).astype(int).sum() / len(df)) *
online_delivery_percentage
```

Out[20]: 25.662234321013504

Compare the average ratings of restaurants with and without online delivery

```
In [21]: avg_rating_with_delivery = df[df['Has Online delivery'] == 'Yes']['Aggregate rating'].mean()
avg_rating_without_delivery = df[df['Has Online delivery'] == 'No']['Aggregate rating'].mean()

print("Average rating with delivery:", avg_rating_with_delivery)
print("Average rating without delivery:", avg_rating_without_delivery)
```

Average rating with delivery: 3.2488372093023257
Average rating without delivery: 2.465295774647887

Level 1 - Conclusion

Task-1:

- 1. North Indian, Chinese and Fast Food are the Top Three Cuisines
- 2. The Percentage of Top Cuisines serve by the Restaurants are North Indian 41.461627, Chinese 28.635745, Fast Food 20.793634, Mughlai 10.417757 and Italian 7.999162

Task - 2:

- 1. The City of New Delhi has the highest number of Restaurants
- 2. Compare to all the cities of restaurant the Inner City has the highest average rating

Task - 3:

- 1. The majority of restaurants fall in the lowest price range (1) with 4,444 establishments, while the number decreases significantly as the price range increases, with only 586 in the highest range (4). This trend highlights a strong preference for affordable dining options.
- 2. Nearly half of the restaurants fall into the lowest price range (1) with 46.53%, while only 6.14% occupy the highest range (4), indicating a strong market preference for more affordable dining options.

Task - 4:

- 1. Only 25.66% of restaurants offer online delivery, suggesting that while the option is available, the majority of establishments still rely on traditional dining or takeaway services.
- 2. Restaurants offering online delivery have a higher average rating of 3.25 compared to 2.47 for those without, indicating that online delivery may be associated with better customer satisfaction.

LEVEL 2 - Task 1 : Restaurant Ratings

Analyze the distribution of aggregate ratings and determine the most common rating range

```
In [22]: Avg_rating_common_range = df['Aggregate rating'].value_counts()
         print(Avg_rating_common_range)
         Aggregate rating
         0.0
                2148
         3.2
                522
         3.1
                 519
                 498
         3.4
         3.3
                 483
         3.5
                 480
         3.0
                 468
         3.6
                 458
         3.7
                 427
         3.8
                 400
                 381
         2.9
         3.9
                 335
         2.8
                 315
         4.1
                 274
         4.0
                 266
         2.7
                 250
         4.2
                 221
         2.6
                 191
         4.3
                 174
         4.4
                 144
         2.5
                 110
         4.5
                 95
         2.4
                  87
                  78
         4.6
         4.9
                  61
         2.3
                  47
         4.7
                  42
         2.2
                  27
         4.8
                  25
                  15
         2.1
         2.0
                  7
         1.9
                   2
         1.8
         Name: count, dtype: int64
```

```
In [23]: average_votes = df['Votes'].mean()
print("Average number of votes:", average_votes)
```

Average number of votes: 156.909747670401

LEVEL 2 - Task 2 : Cuisine Combination

Identify the most common combinations of cuisines in the dataset

Determine if certain cuisine combinations tend to have higher ratings

North Indian, Chinese 511
Fast Food 354
Chinese 354
North Indian, Mughlai 334
Name: Aggregate rating, dtype: int64

LEVEL 2 - Task 3 : Geographic Analysis

Here there is need of map visualisation. so we cant analyse the question related to this task in python

LEVEL 2 - Task 4 : Restaurant Chains

Identify if there are any restaurant chains present in the dataset

```
In [26]: restaurant = df['Restaurant Name'].value counts()
         restaurant chains = restaurant[restaurant > 1]
         restaurant chains
Out[26]: Restaurant Name
         Cafe Coffee Day
                               83
         Domino's Pizza
                               79
         Subway
                               63
         Green Chick Chop
                               51
         McDonald's
                               48
         Town Hall
                                2
         Halki Aanch
         Snack Junction
         Delhi Biryani Hut
                                2
         Beliram Degchiwala
         Name: count, Length: 734, dtype: int64
```

Analyze the ratings and popularity of different restaurant chains

	Restaurant Name	Aggregate rating	g Votes
629	Talaga Sampireun	4.900	5514
8	AB's Absolute Barbecues	4.850	3151
589	Silantro Fil-Mex	4.850	3 1364
7	AB's - Absolute Barbecues	4.82	5 13400
449	Naturals Ice Cream	4.800	3094
293	Gymkhana	4.70	328
653	The Cheesecake Factory	4.650	3010
218	Dishoom	4.600	1269
267	Garota de Ipanema	4.600	3 59
163	Chili's	4.580	8156

Level 2 - Conclusion

Task - 1:

- 1. The most common rating is 0.0, likely indicating unrated restaurants, followed by a concentration in the 3.0 to 3.9 range, suggesting moderate customer satisfaction. Higher ratings above 4.0 are less frequent, indicating fewer standout establishments.
- 2. On average, restaurants receive approximately 157 votes.

Task-2:

- 1. The most common cuisines are North Indian, followed by North Indian and Chinese. Fast Food and Chinese cuisines are also popular, each with a significant number of listings.
- 2. North Indian cuisine and its combinations tend to have higher ratings, with North Indian alone leading, followed by North Indian and Chinese.

Task - 4:

- 1. the dataset includes several restaurant chains, with Cafe Coffee Day, Domino's Pizza, Subway, and McDonald's among the most frequently listed.
- 2. Restaurant chains like AB's Absolute Barbecues and Talaga Sampireun have high ratings and significant popularity, with AB's leading in votes and ratings.

LEVEL 3 - Task 1 : Restaurant Reviews

Analyze the text reviews to identify the most common positive and negative keywords

```
In [29]: from collections import Counter
         import re
         #Extract and clean the 'Rating text' column
         reviews = df['Rating text'].dropna().tolist()
         #Define a function to tokenize and clean text
         def tokenize(text):
             text = text.lower() # Convert to Lowercase
             text = re.sub(r'[^a-z\s]', '', text) # Remove non-alphabetic characters
             tokens = text.split() # Split into words
             return tokens
         # Tokenize all reviews
         all tokens = []
         for review in reviews:
             all tokens.extend(tokenize(review))
         # Step 4: Count the frequency of each token
         token counts = Counter(all tokens)
         # Display the most common tokens
         print("Most common tokens:", token counts.most common(20))
         # Step 5: Define a list of words to ignore
         ignore words = {'rated', 'very'}
         # Filter out ignored words
         filtered counts = {word: count for word, count in token counts.items() if word not in ignore words}
         # Step 6: Separate positive and negative keywords
         positive keywords = {'good', 'excellent'}
         negative keywords = {'poor', 'not'}
         # Get the frequency of positive and negative keywords
         positive counts = {word: filtered counts[word] for word in positive keywords if word in filtered counts}
         negative counts = {word: filtered counts[word] for word in negative keywords if word in filtered counts}
         # Display the counts of positive and negative keywords
         print("Positive Keywords:", positive counts)
         print("Negative Keywords:", negative counts)
```

```
Most common tokens: [('average', 3737), ('good', 3179), ('not', 2148), ('rated', 2148), ('very', 1079), ('excellen t', 301), ('poor', 186)]

Positive Keywords: {'good': 3179, 'excellent': 301}

Negative Keywords: {'poor': 186, 'not': 2148}
```

Calculate the average length of reviews and explore if there is a relationship between review length and rating

```
In [30]: df['review_length'] = df['Rating text'].dropna().str.len() # Add a column for review length
    avg_len_review = df['review_length'].mean()
    print(f"Average length of reviews: {avg_len_review:.2f} characters")
```

Average length of reviews: 7.02 characters

In [31]: rating_length_mean = df.groupby('Rating text')['review_length'].mean().sort_values(ascending = False).reset_index()
rating_length_mean

Out[31]: Ra

	Rating text	review_length
0	Excellent	9.0
1	Not rated	9.0
2	Very Good	9.0
3	Average	7.0
4	Good	4.0
5	Poor	4.0

LEVEL 3 - Task 2 : Vote Analysis

Identify the restaurants with the highest and lowest number of votes

Analyze if there is a correlation between the number of votes and the rating of a restaurant

```
In [34]: correlation = df['Votes'].corr(df['Aggregate rating'])
print("Correlation between votes and rating:", correlation)
```

Correlation between votes and rating: 0.31369058419541035

```
In [35]: plt.scatter(df['Votes'], df['Aggregate rating'])
    plt.xlabel('Number of Votes')
    plt.ylabel('Aggregate Rating')
    plt.title('Correlation between Votes and Rating')
    plt.show()
```


LEVEL 3 - Task 3 : Price Range vs Online Delivery & Table Booking

Analyze if there is a relationship between the price range and the availability of online delivery and table booking

```
In [36]: # checking the unique values in these columns
         print(df['Price range'].unique())
         print(df['Has Online delivery'].unique())
         print(df['Has Table booking'].unique())
         [3 4 2 1]
         ['No' 'Yes']
         ['Yes' 'No']
In [37]: # replacing string into number because we can't group a string
         df['Has Online delivery'] = df['Has Online delivery'].map({'Yes': 1, 'No': 0})
         df['Has Table booking'] = df['Has Table booking'].map({'Yes': 1, 'No': 0})
In [38]: print(df['Price range'].unique())
         print(df['Has Online delivery'].unique())
         print(df['Has Table booking'].unique())
         [3 4 2 1]
          [0 1]
         [1 0]
In [39]: relationship = df.groupby('Price range')[['Has Online delivery', 'Has Table booking']].mean()
         relationship
Out[39]:
                     Has Online delivery Has Table booking
          Price range
                  1
                             0.157741
                                             0.000225
                  2
                             0.413106
                                             0.076775
```

3

0.291903

0.090444

0.457386

0.467577

```
In [40]: plt.figure(figsize=(5, 3))
    plt.bar(relationship.index, relationship['Has Online delivery'], color='skyblue')
    plt.xlabel('Price Range')
    plt.ylabel('Online Delivery Availability')
    plt.title('Online Delivery Availability by Price Range')
    plt.show()
```



```
In [41]: plt.figure(figsize=(5, 3))
    plt.bar(relationship.index, relationship['Has Table booking'], color='violet')
    plt.xlabel('Price Range')
    plt.ylabel('Table Booking Availability')
    plt.title('Table Booking Availability by Price Range')
    plt.show()
```

Table Booking Availability by Price Range

Determine if higher-priced restaurants are more likely to offer these services

```
In [42]: high_oda = df[df['Price range'] == 4 ]
    offer_delivery = high_oda.groupby('Has Online delivery')['Price range'].count()
    offer_delivery

Out[42]: Has Online delivery
    0    533
    1    53
    Name: Price range, dtype: int64
```

```
In [43]: high_tba = df[df['Price range'] == 4 ]
  offer_booking= high_tba.groupby('Has Table booking')['Price range'].count()
  offer_booking
```

Out[43]: Has Table booking 0 312

1 274

Name: Price range, dtype: int64

By the Conclusion we know the High Priced Restaurants are mostly offering the Table Bookiing services rather than Online Delivery

Level 3 - Conclusion

Task-1:

- 1. Common positive keywords in reviews are 'good' and 'excellent,' while 'not' and 'poor' are the most frequent negative keywords.
- 2. Review length varies by rating, with 'Excellent' and 'Very Good' reviews typically being longer, while 'Good' and 'Poor' reviews tend to be shorter

Task - 2:

- 1. Toit has the highest number of votes with 10,934, while Laxmi Food Corner has the lowest with zero votes.
- 2. There is a moderate positive correlation of 0.31 between the number of votes and restaurant ratings, suggesting that higher-rated restaurants tend to receive more votes.

Task - 3:

- 1. Price range 2 shows a strong correlation with online delivery (0.41) and a moderate correlation with table booking (0.08), while higher price ranges (3 and 4) are more strongly associated with table booking (0.46) rather than online delivery.
- 2. The High Priced Restaurants are mostly offering the Table Bookiing services rather than Online Delivery

Final Conclusion

- 1. City: New Delhi has the highest number of restaurants, with a total of 5,473, followed by Gurgaon with 1118 restaurants. The Ojo Caliente city has the lowest, with just 1 restaurant."
- 2. Restaurant: To leads with the highest number of votes, accumulating a votes, followed by AB's Absolute Barbecues 16551 votes, followed by Talaga Sampireun 5514 votes. The resturants with the lowest number of votes a Talaga Sampireun with 5514 votes.
- 3. Cuisines: North Indian cuisine and its combinations tend to have higher ratings, with North Indian alone leading, followed by North Indian and Chinese. The Least common cuisine combinations, such as French and Japanese or Ice Cream and North Indian, tend to have lower ratings.

In []:	
---------	--