## Problem Set 3 - ECON 880

Spring 2022 - University of Kansas

Gunawan, Minh Cao

February 17, 2022

# Problem 1

In this exercise, we are interested in solving Ax = b, where

$$A = \begin{pmatrix} 54 & 14 & -11 & 2 \\ 14 & 50 & -4 & 29 \\ -11 & -4 & 55 & 22 \\ 2 & 29 & 22 & 95 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

using Gauss-Jacobi and Gauss-Seidel method. Both methods yield the same result

$$x = \begin{pmatrix} 0.0189 \\ 0.0168 \\ 0.0234 \\ -0.0004 \end{pmatrix}.$$

Gauss-Jacobi method required 0.0207 seconds with 45 iterations until convergence. The residual is given by

$$10^{-11} \times \begin{pmatrix} 0.0361 \\ -0.1211 \\ -0.0922 \\ 0.2351 \end{pmatrix}$$

Gauss-Seidel method required 0.0193 seconds with 23 iterations until convergence. The residual is given by

$$10^{-12} \times \begin{pmatrix} 0.1013 \\ -0.1849 \\ -0.1201 \\ -0.0002 \end{pmatrix}$$

#### Problem 2

In this exercise, we are interested in solving Bq = r using extrapolation, where

$$B = \begin{pmatrix} 1 & 0.5 & 0.3 \\ 0.6 & 1 & 0.1 \\ 0.2 & 0.4 & 1 \end{pmatrix}, \quad r = \begin{pmatrix} 5 \\ 7 \\ 4 \end{pmatrix}.$$

Following Ken Judd's definition<sup>†</sup>, we first define G = I - B, and run the following iteration

$$q^{k+1} = \omega G q^k + \omega r + (1 - \omega) q^k,$$

where we pick  $\omega = 1.05$ , tolerance level  $10^{-13}$ , and initial value  $q_0 = (0,0,0)'$ . The extrapolation converged after k = 97 iterations, with the residual

$$Bq - r = 10^{-12} \times \begin{pmatrix} 0.1670 \\ -0.2371 \\ 0.1279 \end{pmatrix}.$$

The solution to the linear equation system is

$$q = \begin{pmatrix} 1.6716 \\ 5.8651 \\ 1.3196 \end{pmatrix}$$

### Problem 3

We want to solve the following functions

- 1.  $\sin(2\pi x) 2x = 0$
- 2.  $\sin(2\pi x) x = 0$
- 3.  $\sin(2\pi x) 0.5x = 0$

using 1) Bisection, 2) Newton method, 3) Secant method, and 4) fixed-point iteration. We want to evaluate for what value of initial guess  $x_0 \in [-2, 2]$  these methods converge. We proceed by first plotting all the three functions on Figure 1. From these graphs, we see that within the interval [-2, 2], function 1 and 2 have both two roots, while function 3 has seven roots.

#### 3(a) Bisection

In order for Bisection to work, we need to pick two values  $x_{low}$  and  $x_{high}$  so that  $f(x_{low}) \cdot f(x_{high}) < 0$ . The range of admissible values for x for the three functions above is summarized in Table 1

#### 3(b) Newton Method

<sup>&</sup>lt;sup>†</sup>Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, p.78-79



Figure 1: Function plots for Problem 3

| Function                  | Root           | Admissible Range |                  |
|---------------------------|----------------|------------------|------------------|
|                           |                | $x_{low}$        | $x_{high}$       |
| $\sin(2\pi x) - 2x = 0$   | $x_1 = -0.368$ | [-2, -0.368)     | (-0.368, 0)      |
|                           | $x_2 = 0$      | (-0.368,0)       | (0, 0.368)       |
|                           | $x_3 = 0.368$  | (0, 0.368)       | (0.368, 2]       |
| $\sin(2\pi x) - x = 0$    | $x_1 = -0.429$ | [-2, -0.429)     | (-0.429,0)       |
|                           | $x_2 = 0$      | (-0.429,0)       | (0, 0.429)       |
|                           | $x_3 = 0.429$  | (0, 0.429)       | (0.429, 2]       |
| $\sin(2\pi x) - 0.5x = 0$ | $x_1 = -1.379$ | [-2, -1.379)     | (-1.379, -1.092) |
|                           | $x_2 = -1.092$ | (-1.379, -1.092) | (-1.092, -0.463) |
|                           | $x_3 = -0.463$ | (-1.092, -0.463) | (-0.463,0)       |
|                           | $x_4 = 0$      | (-0.463,0)       | (0, 0.463)       |
|                           | $x_5 = 0.463$  | (0, 0.463)       | (0.463, 1.092)   |
|                           | $x_6 = 1.092$  | (0.463, 1.092)   | (1.092, 1.379)   |
|                           | $x_7 = 1.379$  | (1.092, 1.379)   | (1.379, 2]       |

Table 1: Polynomial evaluation costs