APPLICAZIONI LINEARI

Ricordiamo che, dati due insiemi C e D, una **funzione** $f: C \to D$ è una legge che associa ad ogni elemento $c \in C$ un ben preciso elemento $d \in D$. Si scrive f(c) = d oppure $c \mapsto d$ e si dice che d è immagine di c.

L'immagine di f è l'insieme $Im f = \{f(c) | c \in C\}$; Im f è contenuta nel codominio D e non coincide necessariamente con D. Dato $d \in D$, l'insieme $\{c \in C | f(c) = d\}$ si dice insieme delle **controimmagini** di d e si denota con $f^{-1}(d)$.

Ricordiamo anche che f si dice **suriettiva** se Im f = D, quindi f è suriettiva se e solo se $f^{-1}(d)$ è non vuoto per ogni $d \in D$. Inoltre f è **iniettiva** se $f(c_1) = f(c_2)$ implica $c_1 = c_2$. Se f è sia iniettiva che suriettiva si dice **biiettiva** e in questo caso esiste la funzione **inversa** $f^{-1}: D \to C$ tale che $f^{-1} \circ f$ e $f \circ f^{-1}$ sono funzioni identità.

Applicazioni lineari $f: \mathbb{R}^n \to \mathbb{R}^m$

Data una matrice $A \in \mathbf{R}^{m,n}$, possiamo definire una funzione $f_A : \mathbf{R}^n \to \mathbf{R}^m$ ponendo

$$f_A(\mathbf{v}) = A\mathbf{v}$$

al variare di \mathbf{v} in \mathbf{R}^n (con \mathbf{v} pensato come vettore colonna di $\mathbf{R}^{n,1}$), dove $A\mathbf{v}$ è l'usuale prodotto tra matrici riga per colonna.

Esempio. Data
$$A = \begin{pmatrix} 2 & -1 & 0 & 4 \\ 1 & 0 & 1 & 2 \\ 1 & -1 & -1 & 2 \end{pmatrix} \in \mathbf{R}^{3,4}$$
, definiamo $f_A : \mathbf{R}^4 \to \mathbf{R}^3$: per ogni $\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4$

$$f_A(\mathbf{v}) = A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbf{R}^3$$

dove
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 + 4x_4 \\ x_1 + x_3 + 2x_4 \\ x_1 - x_2 - x_3 + 2x_4 \end{pmatrix}$$
.

In particolare per esempio $f_A \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$.

Ricordiamo che per il prodotto tra matrici valgono le

Proprietà. Per ogni $A \in \mathbf{R}^{m,n},$ per ogni \mathbf{u},\mathbf{v} \mathbf{R}^n e per ogni $k \in \mathbf{R}$

1)
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$

2)
$$k(A\mathbf{v}) = A(k\mathbf{v})$$

Per le funzioni f_A , assegnate come sopra, si ha quindi:

1)
$$f_A(\mathbf{u} + \mathbf{v}) = f_A(\mathbf{u}) + f_A(\mathbf{v})$$

2)
$$k(f_A(\mathbf{v})) = f_A(k\mathbf{v})$$

Osservazioni.

- 1) Le componenti del vettore $f_A(\mathbf{v})$ sono polinomi omogenei di primo grado nelle componenti del vettore \mathbf{v} .
- 2) In generale, nella matrice $A \in \mathbf{R}^{m,n}$, la j-esima colonna rappresenta l'immagine $f_A(\mathbf{e}_j)$ del j-esimo vettore della base canonica di \mathbf{R}^n (come nel caso particolare dell'esempio).
 - 3) Per ogni $A \in \mathbf{R}^{m,n}$, si ha in particolare $f_A(\mathbf{0}) = \mathbf{0}$.
- 4) Dato $\mathbf{w} \in \mathbf{R}^m$, $\{\mathbf{v} \in \mathbf{R}^n | f_A(\mathbf{v}) = \mathbf{w}\}$ è l'insieme delle controimmagini di \mathbf{w} e si denota con $f_A^{-1}(\mathbf{w})$; si tratta dell'insieme delle soluzioni del sistema lineare avente come matrice dei coefficienti A e come colonna dei termini noti le componenti del vettore \mathbf{w} .

Definizione. Una funzione $f: \mathbf{R}^n \to \mathbf{R}^m$ si dice **applicazione lineare** quando gode delle seguenti proprietà, per ogni $\mathbf{u}, \mathbf{v}, \mathbf{R}^n$ e per ogni $k \in \mathbf{R}$:

1)
$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

2)
$$k(f(\mathbf{v})) = f(k\mathbf{v})$$

Quando m = n, f si dice **endomorfismo**. Se f è una biiezione, si dice che f è un **isomorfismo**.

Proposizione. Fissate una base di \mathbb{R}^n e una base di \mathbb{R}^m , sia data una applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$; allora esiste un'unica matrice $M \in \mathbb{R}^{m,n}$ tale che $f = f_M$.

Dimostrazione. Siano $\mathcal{B}_{\mathbf{R}^n} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ e $\mathcal{B}_{\mathbf{R}^m} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ le basi fissate. L'applicazione f è data, quindi si sa come opera su un qualsiasi vettore di \mathbf{R}^n , in particolare si sa come opera sui vettori della base $\mathcal{B}_{\mathbf{R}^n}$; si avrà perciò:

$$f(\mathbf{u}_1) = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + \dots + a_{m1}\mathbf{v}_m$$

$$f(\mathbf{u}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + \dots + a_{m2}\mathbf{v}_m$$

...

$$f(\mathbf{u}_n) = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{mn}\mathbf{v}_m$$

Sia ora $\mathbf{v} = b_1 \mathbf{u}_1 + \ldots + b_n \mathbf{u}_n$ un qualsiasi vettore di \mathbf{R}^n ; per la linearità di f si ha: $f(\mathbf{v}) = b_1 f(\mathbf{u}_1) + \ldots + b_n f(\mathbf{u}_n)$ e quindi, tenendo conto dei dati precedenti, si ottiene

$$f(\mathbf{v}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

ossia
$$f$$
 è associata alla matrice $M = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$

Nucleo e immagine di una applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$

Definizione. Data la matrice $A \in \mathbf{R}^{m,n}$, si dice **nucleo** di A (o di f_A) l'insieme:

$$ker(A) = {\mathbf{v} \in \mathbf{R}^n | A\mathbf{v} = \mathbf{0}}$$

Proposizione. Data la matrice $A \in \mathbf{R}^{m,n}$

- (a) ker(A) è un sottospazio vettoriale di \mathbb{R}^n ;
- (b) ker(A) ha dimensione n rg(A).

Dimostrazione. (a) Basta osservare che ker(A) è per definizione l'insieme delle soluzioni del sistema lineare omogeneo avente A come matrice dei coefficienti e perciò è sottospazio di \mathbb{R}^n .

(b) Il sistema omogeneo ha n - rg(A) incognite libere e, per costruzione, una base delle soluzioni è costituita da n - rg(A) vettori.

Definizione. $Im(A) = \{ \mathbf{w} \in \mathbf{R}^m | esiste \mathbf{v} \in \mathbf{R}^n \text{ tale che } A\mathbf{v} = \mathbf{w} \}.$

Proposizione. Per ogni matrice $A \in \mathbf{R}^{m,n}$,

- (a) Im(A) è il sottospazio di \mathbb{R}^m generato dalle colonne di A;
- (b) dim(Im(A)) = rg(A).

Dimostrazione. (a) Per ogni vettore $\mathbf{v} \in \mathbf{R}^n$, si può scrivere $\mathbf{v} = a_1\mathbf{e_1} + a_2\mathbf{e_2} + \cdots + a_n\mathbf{e_n}$, dove $(\mathbf{e_1}, \cdots, \mathbf{e_n})$ è la base canonica di \mathbf{R}^n . Poichè f_A è lineare, si ha $f_A(\mathbf{v}) = a_1f_A(\mathbf{e_1}) + a_2f_A(\mathbf{e_2}) + \cdots + a_nf_A(\mathbf{e_n})$, ossia $f_A(\mathbf{v})$ è combinazione lineare delle colonne di A.

(b) dim(Im(A)) = rg(A), perchè lo spazio delle colonne di A ha dimensione rg(A).

Esempio. L'applicazione lineare $f_A: \mathbf{R}^4 \to \mathbf{R}^3$ associata alla matrice

$$A = \begin{pmatrix} 2 & -1 & 0 & 4 \\ 1 & 0 & 1 & 2 \\ 1 & -1 & -1 & 2 \end{pmatrix}$$

ha nucleo $\ker f_A = \{(-z-2t, -2z, z, t)\}$, al variare di $z, t \in \mathbf{R}$; per trovare una base del nucleo basta porre per esempio z = 1, t = 0 e poi z = 0, t = 1: si ottiene allora ((-1, -2, 1, 0), (-2, 0, 0, 1)). L'immagine per definizione è $\operatorname{Im} f_A = \mathcal{L}((2, 1, 1), (-1, 0, -1), (0, 1, -1), (4, 2, 2))$, una base dell'immagine è per esempio ((2, 1, 1), (-1, 0, -1)).

Dalle due precedenti proposizioni segue il fondamentale

Corollario. Per ogni matrice $A \in \mathbf{R}^{m,n}$, dim(Im(A)) + dim(ker(A)) = n.

Proposizione. Data la matrice $A \in \mathbf{R}^{m,n}$, $ker(A) = \{\mathbf{0}\}$ se e solo se f_A è iniettiva.

Dimostrazione. Nel'ipotesi che $ker(A) = \{\mathbf{0}\}$, supponiamo per assurdo che esistano due vettori $\mathbf{v}_1 \neq \mathbf{v}_2 \in \mathbf{R}^n$ tali che $f_A(\mathbf{v}_1) = f_A(\mathbf{v}_2)$; si ha allora, per la linearità di f_A , $f_A(\mathbf{v}_1 - \mathbf{v}_2) = \mathbf{0}$, cioè, per definizione di $Ker(f_A)$, $\mathbf{v}_1 - \mathbf{v}_2 \in Ker(f_A)$ e quindi dall'ipotesi segue che $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$, ossia $\mathbf{v}_1 = \mathbf{v}_2$.

Nel'ipotesi che f_A sia iniettiva, sia $\mathbf{v} \in Ker(f_A)$; allora per definizione $f_A(\mathbf{v}) = \mathbf{0}$; sappiamo però che anche $f(\mathbf{0}) = \mathbf{0}$. Poichè f_A è iniettiva, deve essere $\mathbf{v} = \mathbf{0}$.

Composizione e prodotto di matrici

Consideriamo le matrici $B \in \mathbf{R}^{m,n}$ e $A \in \mathbf{R}^{n,p}$ e le applicazioni lineari ad esse associate $f_B : \mathbf{R}^n \to \mathbf{R}^m$ e $f_A : \mathbf{R}^p \to \mathbf{R}^n$ definite rispettivamente da $f_B(\mathbf{u}) = B\mathbf{u}$ e $f_A(\mathbf{v}) = A\mathbf{v}$. La composizione $f_B \circ f_A$ è data da

$$\mathbf{v} \mapsto A\mathbf{v} \mapsto BA\mathbf{v}$$

ed è perciò associata alla matrice prodotto BA.

Un caso particolare è quello delle applicazioni lineari invertibili. Ricordiamo che se una funzione $f: C \to D$ è invertibile, la funzione $f^{-1}: D \to C$ definita da $f^{-1}(y) = x$ è detta inversa di f e si ha $f^{-1} \circ f = Id_C$ e $f \circ f^{-1} = Id_D$.

Proposizione.

- (a) Se $A \in \mathbb{R}^{n,n}$ è invertibile, la matrice associata all'applicazione inversa f_A^{-1} è la matrice A^{-1} .
- (b) L'applicazione lineare associata a una matrice $A \in \mathbf{R}^{n,n}$ è invertibile se e solo se rg(A) = n.

Dimostrazione. (a) Segue dalla definizione di composizione di applicazioni.

(b) Nell'ipotesi n = m, f_A è invertibile se e solo se, per ogni vettore $\mathbf{b} \in \mathbf{R}^n$, l'equazione vettoriale $f_A(\mathbf{v}) = \mathbf{b}$ ha una sola soluzione, inoltre l'equazione $f_A(\mathbf{v}) = \mathbf{b}$ corrisponde a un sistema lineare di n equazioni in n incognite di matrice $(A|\mathbf{b})$. Per il Teorema di Rouchè-Capelli, un sistema del tipo $(A|\mathbf{b})$ ha un'unica soluzione qualunque sia il vettore $\mathbf{b} \in \mathbf{R}^n$ se e solo se rg(A) = n.

Applicazioni lineari

Siano V, W due spazi vettoriali sullo stesso campo \mathbf{K}

Definizione. Una applicazione $f: V \to W$ si dice **lineare** se:

1 -
$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$
 per ogni $\mathbf{u}, \mathbf{v} \in V$

2 -
$$f(k\mathbf{u}) = kf(\mathbf{u})$$
 per ogni $k \in \mathbf{K}, \mathbf{u} \in V$.

Osservazione. Una conseguenza della definizione è che $f(\mathbf{0}) = \mathbf{0}$, cioè f manda il vettore nullo di V nel vettore nullo di W.

Siano V, W due spazi vettoriali sul campo \mathbf{K} e $f: V \to W$ una applicazione lineare; come nel caso delle applicazioni lineari $f: \mathbf{R}^n \to \mathbf{R}^m$, valgono in particolare le

Definizioni.

- (a) $Ker f = \{ \mathbf{v} \in V | f(\mathbf{v}) = \mathbf{0} \}$ si dice **nucleo** di f;
- (b) $Im f = \{f(\mathbf{v}) | \mathbf{v} \in V\}$ si dice **immagine** di f;
- (c) $f^{-1}(\mathbf{w}) = {\mathbf{v} \in V | f(\mathbf{v}) = \mathbf{w}}$ si dice insieme delle controimmagini del vettore $\mathbf{w} \in W$;

Con la stessa dimostrazione vista per le applicazioni lineari $f: \mathbf{R}^n \to \mathbf{R}^m$, vale la seguente:

Proposizione. Sia $f: V \to W$ una applicazione lineare; f è iniettiva se e solo se $Ker f = \mathbf{0}$.

Basi e applicazioni lineari

Sia W un sottospazio dello spazio vettoriale V sul campo K. Ricordiamo che un insieme ordinato di vettori $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in W$ si dice una base di W se:

1 - $\mathbf{v}_1, \dots, \mathbf{v}_k$ sono linearmente indipendenti;

2 -
$$W = \mathcal{L}(\mathbf{v}_1, \cdots \mathbf{v}_k)$$
, cioè i vettori $\mathbf{v}_1, \cdots, \mathbf{v}_k$ sono generatori di V .

Teorema. Dato il **K**- spazio vettoriale V, se esiste una base $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ di V, l'applicazione $f : \mathbf{K}^n \to V$ definita da:

$$(a_1, \cdots, a_n) \mapsto a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$$

è un isomorfismo.

Dimostrazione. È facile verificare che f è lineare; inoltre dalla definizione di base segue che f è anche iniettiva e suriettiva, cioè è un isomorfismo.

Osservazione. In particolare l'isomorfismo f manda ogni elemento della base canonica di \mathbf{K}^n in un elemento della base data di V. Dunque possiamo usare f per identificare \mathbf{K}^n con V.

Utilizzando tale identificazione, otteniamo risultati analoghi a quelli visti nel caso dello spazio vettoriale \mathbb{R}^n , abbiamo in particolare la seguente:

Proposizione. Sia V uno spazio vettoriale su **K** con una base $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$, allora :

- (a) ogni base di V ha n elementi e quindi si può dire che V ha **dimensione** n.
- (b) Se m vettori $\mathbf{v}_1, \dots \mathbf{v}_m$ di V sono linearmente indipendenti, si ha $m \leq n$.
- (c) Se $V = \mathcal{L}(\mathbf{v}_1, \cdots \mathbf{v}_p)$, si ha $n \leq p$.

Proposizione. Dati due **K**-spazi vettoriali V e W, se $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base di V, per assegnare una applicazione lineare $f: V \to W$ basta assegnare i vettori $f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)$.

Dimostrazione. Poichè \mathcal{B} è base, ogni vettore di V si scrive in modo unico come $\mathbf{v} = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$, quindi $f(\mathbf{v}) = f(a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n) = (\text{per la linearità di } f) = a_1f(\mathbf{v}_1) + \cdots + a_nf(\mathbf{v}_n)$.

Questi risultati ci permettono di procedere come per gli spazi \mathbb{R}^n , ossia dati due \mathbb{K} -spazi vettoriali V e W di dimensione rispettivamente n ed m, possiamo associare una matrice a qualsiasi applicazione lineare $f: V \to W$: basta infatti fissare una base \mathcal{B}_V e una base \mathcal{B}_W .

Esempio. Sia $V=W=\mathbf{R}_2[X]$. Sia D l'applicazione lineare definita dalla derivazione rispetto a X: D(p(X))=p'(X). Se scegliamo la base $(1,X+1,(X+1)^2)$ per V e la base $(1,X,X^2)$ per W, la matrice di D rispetto a queste basi è:

$$\begin{pmatrix}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

mentre se scegliamo la base $(1, X, X^2)$ sia in V che in W, la matrice di D è:

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

•

Cambiamenti di base

Sia V un **K**-spazio vettoriale di dimensione finita n e siano $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ e $\mathcal{B}' = (\mathbf{e}'_1, \dots, \mathbf{e}'_n)$ due sue basi, con \mathcal{B}' assegnata nel modo seguente:

$$\mathbf{e}_1' = a_{11}\mathbf{e}_1 + \cdots + a_{n1}\mathbf{e}_n$$

$$\mathbf{e}_2' = a_{12}\mathbf{e}_1 + \cdots + a_{n2}\mathbf{e}_n$$

$$\cdots$$

$$\mathbf{e}_n' = a_{1n}\mathbf{e}_1 + \cdots + a_{nn}\mathbf{e}_n$$

 $Definizione. \ \, \text{La matrice } P = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \, \text{si dice matrice di passaggio o di cambio di base}$ da \mathcal{B} a \mathcal{B}' .

Osservazione. P è invertibile, infatti le sue colonne sono i vettori della base \mathcal{B}' . La matrice inversa P^{-1} è la matrice di passaggio da \mathcal{B}' a \mathcal{B} .

Dato un qualsiasi vettore $\mathbf{v} \in V$, si avrà $\mathbf{v} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n = x_1' \mathbf{e}_1' + \cdots + x_n' \mathbf{e}_n'$; le relazioni tra le componenti di \mathbf{v} rispetto a \mathcal{B} e le componenti di \mathbf{v} rispetto a \mathcal{B}' si ottengono come segue:

$$\mathbf{v} = x_1' \mathbf{e}_1' + \cdots + x_n' \mathbf{e}_n' = x_1' (a_{11} \mathbf{e}_1 + \cdots + a_{n1} \mathbf{e}_n) + \cdots + x_n' (a_{1n} \mathbf{e}_1 + \cdots + a_{nn} \mathbf{e}_n) = \cdots = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$$

da cui

$$x_1 = a_{11}x'_1 + \cdots + a_{1n}x'_n$$

 $x_2 = a_{21}x'_1 + \cdots + a_{2n}x'_n$

$$x_n = a_{n1}x_1' + \cdots + a_{nn}x_n'$$

ossia
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}$$
 oppure $\begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

Cambiamenti di base e applicazioni lineari

Sia data un'applicazione lineare $f: V \to W$, con V, W spazi vettoriali di dimensione finita sul campo numerico K. Fissiamo una base \mathcal{B}_V per lo spazio V e una base \mathcal{B}_W per lo spazio W, allora risulta univocamente determinata una matrice M associata ad f rispetto a \mathcal{B}_V e a \mathcal{B}_W , si può quindi scrivere MX = Y, dove X è il vettore colonna delle coordinate di un qualunque $\mathbf{v} \in V$ rispetto a \mathcal{B}_V , mentre Y è il vettore colonna delle coordinate di $f(\mathbf{v})$ rispetto a \mathcal{B}_W . Se si cambia base in V, passando alla base \mathcal{B}_V' e si cambia base in W, passando alla base \mathcal{B}_W' , i due cambiamenti di base saranno descritti dalle rispettive matrici di passaggio P e Q, cioè X = PX' e Y = QY'. Segue che:

$$M(PX') = QY'$$

da cui $Q^{-1}MPX' = Y'$; come è noto, dopo aver fissato una base in V e una in W, la matrice associata ad f è univocamente determinata, di conseguenza $Q^{-1}MP$ è la matrice di f rispetto a \mathcal{B}'_V e \mathcal{B}'_W .

Nel caso particolare in cui lo spazio di partenza coincida con lo spazio di arrivo, cioè V=W, si può fissare la stessa base \mathcal{B} in entrambi gli spazi. Se si cambia base, passando alla base \mathcal{B}' con matrice di passaggio P, il legame tra la matrice di f rispetto a \mathcal{B} e la matrice di f rispetto a \mathcal{B}' è dato da

$$M' = P^{-1}MP$$

Definizione. Due matrici quadrate M ed M' si dicono **simili** se esiste una matrice invertibile P tale che $M' = P^{-1}MP$.