Vorlesungsbeispiel (Hauptachsentransformation)

a)
$$Q(x,y) = 13x^2 - 32xy + 37y^2 = \underline{x}^T \underline{S} \underline{x} \text{ mit } \underline{x} = \begin{pmatrix} x \\ y \end{pmatrix},$$

$$\underline{S} = \begin{pmatrix} 13 & -16 \\ -16 & 37 \end{pmatrix}$$

b) Charakteristische Gleichung:

$$\det(\underline{S} - \lambda \underline{E}) = \begin{vmatrix} 13 - \lambda & -16 \\ -16 & 37 - \lambda \end{vmatrix} = \lambda^2 - 50\lambda + 225 = 0 \Rightarrow$$

Eigenwerte von S: $\lambda_1 = 5$, $\lambda_2 = 45$,

Eigenvektoren (z.B.):
$$\underline{\mathbf{v}}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\underline{\mathbf{v}}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Mit den Koordinaten x^* und y^* bezüglich der orthonormierten Basis \underline{v}_1 , \underline{v}_2 ergibt sich schließlich

$$Q(x, y) = \lambda_1 x^{*2} + \lambda_2 y^{*2}$$

$$= 5x^{*2} + 45y^{*2} = 45$$
und damit $\frac{x^{*2}}{3^2} + \frac{y^{*2}}{1^2} = 1$

(Ellipse mit den Halbachsen 3 bzw. 1 in x*- bzw. y*- Richtung)