Лабораторная работа № 3.5.1 "Изучение плазмы газового разряда в неоне"

Кирилл Шевцов Б03-402 16.09.2025

Цель работы

Изучить вольт-амперную характеристику тлеющего разряда, изучить свойства плазмы методом зондовых характеристик.

Оборудование

Стеклянная газоразрядная трубка, наполненная неоном, источник напряжения, делитель напряжения, потенциометр, амперметры, амперметры, переключатели.

Лабораторная установка

Стеклянная газоразрядная трубка имеет ненагреваемый полый катод, три анода и геттерный узелстеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона при давлении 2 мм. рт. столба. Катод и один из анодов с помощью переключателя P_1 подключаются через балластный резистор R_b к регулируемому ВИП. При подключении первого анода к ВИП, между ним и катодом возникает газовый разряд. Ток раз-

Рис. 1: установка для исследования газового разряда

ряда измеряется амперметром A_1 , падение напряжения - на вольтметре V_1 , подключенным к трубке через делитель напряжения с коэффициентом, равным $\alpha = R_1 + R_2/R_2 = 10$. При подключении к ВИП второго анода, возникает газовый разряд между катодами и вторым анодом, где находится двойной зонд, необходимый для диагностики плазмы. Третий анод в работе не используется.

Необходимые формулы

Частота коллективных колебаний электронов (или плазменная частота) относительно квазинейтрального состояния (то есть такого состояния, при котором равна нулю средняя плотность заряда):

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{1}$$

колебания, описываемые плазменной частотой, называют ленгмюровскими.

Важнейшний плазменный параметр, задающий характерный пространственный масштаб многих плазменных явления - дебаевский радиус:

$$r_D = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}} \tag{2}$$

Эти два параметра представляют собой две важные характеристики плазмы, определяющие временной и пространственный масштабы коллективного движения электронов относительно ионов. **Замечание:** если плазма неравновесная, различают два типа дебаевской длины: электронную (3a) и ионную (3b), в понимании, что их температуры различны $T_e \neq T_i$:

$$r_{De} = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}} \tag{3a}$$

$$r_{Di} = \sqrt{\frac{k_B T_i}{4\pi n_i e^2}} \tag{3b}$$

Поэтому иногда дебаевский радиус называют поляризационной длиной.

Выражение, определяющее энергию кулоновского взаимодействия частиц в плазме:

$$\varphi = -\frac{q}{\tilde{r}} \exp\left(-\frac{r}{r_D}\right) \tag{4}$$

где $arphi_0=q/ ilde{r}$ - потенциал одного иона.

Плотность энергии кулоновского взаимодействия зарядов в плазме:

$$\omega = -\frac{1}{2}n_i \frac{q^2}{r_D} \tag{5}$$

В сравнении полученной кулоновской энергии с тепловой $l \sim n_i k T$:

$$\frac{l}{\omega} \sim \frac{kTr_D}{g^2} = 4\pi n_i r_D^3 \tag{6}$$

Отсюда выражение для числа заряженных частиц в сфере дебаевского радиуса (дебаевской сфере):

$$N_D = \frac{4}{3}\pi n_i r_D^3 \tag{7}$$

Оценка тока насыщения для ионов, согласно полуэмпирическому соотношению Д. Бомома:

$$I_{in} \sim 0.4 n_i e S \sqrt{\frac{2kT_e}{m_i}} \tag{8}$$

Зависимость тока от напряжения для ВАХ газового разряда:

$$I = I_0 \operatorname{th} \frac{eU}{2k_B T_c} \tag{9}$$

Эту формулу можно использовать для определения температуры электронов по вольт-амперной характеристике двойного зонда. По пересечению асимптот с вертикальной осью можно определить ток насыщения I_{in} , а затем и концентрацию заряженных частиц в плазме.

Выполнение работы

- 1. Настроим установку для ВАХ газового разряда согласно инструкции, плавно увеличивая показания ВИП, запишем напряжение зажигания, показание вольтметра V_1 :
- 2. С помощью вольтметра V_1 и амперметра A_1 измерим BAX газового разряда $I_p(U_p)$. Ток изменяется в диапазоне 0.5-5.0 мА. Построим BAX разряда, определим дифференциальное сопротивление.
- 3. По каждой зондовой характеристике определим ионный ток насыщения, наклон характеристики dI/dU в начале координат.
- 4. По результатам предыдущего пункта рассчитаем температуру электронов T_e , концентрацию электронов и ионов в плазме. Считам площадь поверхности зонда равной $S \approx \pi dl$, необходимые параметры указаны на установке.
- 5. Рассчитаем плазменную частоту колебаний ω_p , электронную поляризационную длину r_{D_e} и дебаевский радиус экранирования r_D .
- 6. Оценим степень ионизации плазмы, считая давление в трубке $P \approx 2$ торр.
- 7. Построим графики зависимости $T_e(I_p)$, $n_e(I_p)$.