PCA EXAMPLE

1. Given the following data, use PCA to reduce the dimensions from 2 to 1

Feature	Example 1	Example 2	Example 3	Example 4
X	4	8	13	7
Y	11	4	5	14

Solution:

Step 1: Data set

No. of features n=2

No. Of samples N=4

Step 2: computation of mean of variables

$$\bar{x} = \frac{4+8+13+7}{4} = 8$$

$$\bar{y} = \frac{11+4+5+14}{4} = 8.5$$

Step 3: Computation of covariance matrix ordered pairs are

$$\begin{bmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{bmatrix}$$

If there are n variables, then n² Ordered pairs

Cov (x, y) =
$$\frac{1}{N-1} \sum (x - \bar{x})(y - \bar{y})$$

$$Cov(x,x) = \frac{1}{4-1} \left[(4-8)^2 + (8-8)^2 + (13-8)^2 + (7-8)^2 \right] = 14$$

$$Cov\left(x,y\right) = \frac{1}{4-1}\left[(4-8)(11-8.5) + (8-8)(4-8.5) + (13-8)(5-8.5) + (7-8)(14-8.5)\right] = -11$$

$$Cov(y,x) = -11$$

Cov (y, y) =
$$\frac{1}{N-1} \sum (y - \overline{y})^2$$

$$= \frac{1}{4-1}[(11-8.5)^2 + (4-8.5)^2 + (5-8.5)^2 + (14-8.5)^2] = 23$$

Cov matrix
$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

Step 4: Eigen values and eigen vectors & Normalised Eigen vectors

A be square matrix of order n . Suppose there exist a non zero column matrix X and a scalar λ such that $Ax = \lambda x$. Then λ is called the Eigen value of A and X is called the Eigen vector of A corresponding to the eigen value λ .

Now $Ax = \lambda X$

 $(A-\lambda I)X = 0$. The solution of the characteristic equation $|A-\lambda I| = 0$ is known as Eigen value of the matrix A. For each eigen value, solving the equations $(A-\lambda I)X = 0$ we get eigen vectors.

Characteristic eqn | S- λI |=0

$$|S-\lambda I| = \lambda^2 - 37\lambda + 201 = 0$$

 λ = 30.3849 & 6.6151

Here, U be the eigen vector corresponding to the eigen value λ .

We know that (S- λI)U=0

Let
$$\lambda_1 = 30 - .3849$$

$$(S-\lambda I)U_I=0$$

$$\begin{bmatrix} \begin{pmatrix} 14 & -11 \\ -11 & 23 \end{pmatrix} - \begin{pmatrix} 30.3849 & 0 \\ 0 & 30.3849 \end{pmatrix} \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$

$$U_1 = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} 11 \\ -16.3849 \end{bmatrix}$$

$$\label{eq:Normalised Eigen vector of U1 = U1^N = 0} \begin{bmatrix} \frac{11}{\sqrt{11^2 + (-16.3849)^2}} \\ \frac{-16.3849}{\sqrt{11^2 + (-16.3849)^2}} \end{bmatrix}$$

$$e_1 = \begin{pmatrix} 0.5774 \\ -0.8303 \end{pmatrix}$$

Let $\lambda_2 = 6.6151$

$$(S-\lambda_2)U_2=0$$

$$\left(\begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix} - \begin{bmatrix} 6.6151 & 0 \\ 0 & 6.6151 \end{bmatrix}\right) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$

$$\mathbf{U}_2 = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} 16.3849 \\ 11 \end{bmatrix}$$

Normalised Eigen vector of
$$U_2 = U_2^N = \begin{bmatrix} \frac{16.3849}{\sqrt{11^2 + (16.3849)^2}} \\ \frac{11}{\sqrt{11^2 + (16.3849)^2}} \end{bmatrix}$$

$$e_2 = \begin{pmatrix} 0.8303 \\ 0.5774 \end{pmatrix}$$

Step 5 : Derive new data set $(\lambda \ 1 > \lambda 2 \ ; \ 30.849 > 6.6151)$

First Principal	Ex.1	Ex.2	Ex.3	Ex.4
Component	p ₁₁	p_{12}	p ₁₃	p ₁₄

$$p_{11} = e_1^T \begin{bmatrix} 4-8 \\ 11-8.5 \end{bmatrix} = \begin{bmatrix} 0.5574 & -0.8303 \end{bmatrix} \begin{bmatrix} -4 \\ 2.5 \end{bmatrix} = -4.0352$$

$$p_{12} = e_1^T \begin{bmatrix} 8-8 \\ 4-8.5 \end{bmatrix} = \begin{bmatrix} 0.5574 & -0.8303 \end{bmatrix} \begin{bmatrix} 0 \\ -4.5 \end{bmatrix} = -3.7361$$

$$p_{13} = e_1^T \begin{bmatrix} 13 - 8 \\ 5 - 8.5 \end{bmatrix} = 5.6928$$

$$p_{14} = e_1^T \begin{bmatrix} 7 - 8 \\ 14 - 8.5 \end{bmatrix} = -5.1238$$

PC1 -4.3032 3.7301 3.0928 -3.1238

Example 2

In the following table, there are 4 features and a total of 5 training samples

f_1	f_2	f ₃	f ₄
1	2	3	4
5	5	6	7
1	4	2	3
5	3	2	1
8	1	2	2

$$\sigma^2 = [(1-4)^2 + (5-4)^2 + (1-4)^2 + (5-4)^2 + (8-4)^2]/4$$

$$=(9+1+9+1+16)/4$$

$$= 36/4 = 9$$

Number of features = N=4

Number of Samples = n = 5

mean and Standard deviation for each feature

$$x_{new} = (x-\mu)/\sigma$$

$$\sigma^2 = \sum \frac{(x - \overline{x})^2}{n - 1}$$

	f_1	f_2	f_3	f_4
μ	4	3	3	3.4
σ	3	1.58114	1.73205	2.30217

f_1	f_2	f ₃	f_4
-1	-0.6325	0	0.26062
0.3333	1.2649	1.7321	1.56374
-1	0.6325	-0.5774	-0.1738
0.3333	0	-0.5774	-1.0425
1.3333	-1.2649	-0.5774	-0.6081

Covariance matrix

$$f1 f2 f3 f4$$

$$f1 Var(f_1) Co \text{var}(f_1, f_2) Co \text{var}(f_1, f_3) Co \text{var}(f_1, f_4)$$

$$f2 Co \text{var}(f_2, f_1) Var(f_2) Co \text{var}(f_2, f_3) Co \text{var}(f_2, f_4)$$

$$f3 Co \text{var}(f_3, f_1) Co \text{var}(f_3, f_2) Var(f_3) Co \text{var}(f_3, f_4)$$

$$f4 Co \text{var}(f_4, f_1) Co \text{var}(f_4, f_2) Co \text{var}(f_4, f_3) Var(f_4)$$

$$\mu=0$$

$$\sigma=0$$

$$covar(x,y) = \frac{1}{N-1} \sum (x - \overline{x})(y - \overline{y})$$

$$var f_1 = (-1.00)^2 + (0.33)^2 + (-1.00)^2 + (0.33)^2 + (1.33-0)^2/5$$

$$=0.8$$

Now to find the Eigen values & Eigeen vectors of the above matrix

Consider (S- λI)v=0. The characteristic equation is $|S-\lambda I|=0$

Solving this equation, we get the eigen values are 2.51579, 1.06529, 0.39389 & 0.02503

For each eigen value, there is an eigen vector. (S- λI)v=0

Solving the simultaneous equations, either using Cramer's rule or any other method

When $\lambda_1 = 2.51579$

$$e_1 = \begin{bmatrix} 0.16196 \\ -0.52405 \\ -0.58590 \\ -0.59655 \end{bmatrix}$$

When $\lambda_2 = 1.06529$

$$\mathbf{e}_2 = \begin{bmatrix} -0.91701 \\ -0.20692 \\ -0.32054 \\ -0.11594 \end{bmatrix}$$

Similarly, $\lambda_3 = 0.39389$

$$e_3 = \begin{bmatrix} 0.30707 \\ -0.81732 \\ 0.18825 \\ 0.44973 \end{bmatrix} \text{ and }$$

$$\lambda_4 = 0.02503$$

$$e_4 = \begin{bmatrix} 0.19616 \\ 0.120615 \\ -0.72009 \\ 0.65455 \end{bmatrix}$$

sort
$$\lambda 1 > \lambda 2 > \lambda 3 > \lambda 4$$

Now pick K eigen values. Here k = 2

2 top eigen values are λ_1 and λ_2 and the corresponding eigen vectors are

$$\begin{array}{cccc} e_1 & e_2 \\ 0.16196 & -0.91706 \\ -0.52405 & 0.20692 \\ -0.58589 & -0.32054 \\ -0.59655 & -0.11594 \end{array}$$

Transform the original matrix in to

(Feature matrix) x (top k eigen vectors) = transformed data

$$\begin{bmatrix} -1 & -0.63246 & 0 & 0.26062 \\ 0.3333 & 1.2649 & 1.7321 & 1.5637 \\ -1 & 0.6325 & -0.5774 & -0.1738 \\ 0.3333 & 0 & -0.5774 & -1.0425 \\ 1.3333 & -1.2649 & -0.5774 & -0.6081 \end{bmatrix} \begin{bmatrix} 0.16196 & -0.91706 \\ -0.52405 & 0.20692 \\ -0.58589 & -0.32054 \\ -0.59655 & -0.11594 \end{bmatrix}$$

$$= \begin{bmatrix} 0.014003 & 0.755575 \\ -2.55653 & -0.78043 \\ -0.05148 & 1.253135 \\ 1.014150 & 0.000239 \\ 1.57986 & -1.228917 \end{bmatrix}$$