Alumno:

Duración: dos horas. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. Probar por inducción que para cualquier real positivo x y cualquier número natural n vale la siguiente desigualdad:

$$\sum_{k=0}^{n} x^{n-2k} \ge n+1$$

- 2. Escribir la matriz de adyacencia $M_{\mathcal{R}}$ de la relación \mathcal{R} en $A^2, A = \{0, 1, 2\}$ dada por $(x_1, x_2) \mathcal{R}(y_1, y_2)$ sii $(x_1 \le y_1, x_2 \ge y_2)$ y analizar si es una relación de orden. En caso afirmativo, dibujar su diagrama de Hasse y determinar, siempre que existan, los elementos maximales, minimales, máximo y mínimo del conjunto $B = \{(x, y) \in A^2 : x \le y\}$.
- 3. En un álgebra de Boole $(B,+,\cdot\,,{}',\mathbf{0_B},\mathbf{1_B})$ ordenada con $x\leq y$ sii xy=x, analizar el valor de verdad de las proposiciones $p\stackrel{\mathrm{def}}{=} \forall (x,y)\in B^2: xy'+x'y=\mathbf{0_B}, q\stackrel{\mathrm{def}}{=} \forall (x,y)\in B^2: \sup(x,y)=x+y, r\stackrel{\mathrm{def}}{=} \forall (x,y)\in B^2: x+x'y=x+y.$ ¿Qué valor de verdad tiene la proposición compuesta f(p,q,r) cuyo conjunto de veracidad se indica sombreado en la figura?

4. Escibir los axiomas que definen a $(L, +, \cdot)$ como un retículo y probar únicamente con esos axiomas que todos sus elementos son idempotentes, y que si es finito y está ordenado con $x \le y$ sii xy = x, entonces L tiene un máximo y un mínimo. Dar, siempre que exista, un retículo con un elemento que tenga más de un complemento.