AMENDMENT TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

1. (Currently amended) In an An ultra-low dielectric film for a copper interconnect prepared using an organic or inorganic matrix and a cyclodextrin-based template for pore formation, the improvement comprises: wherein said ultra-low dielectric film is prepared by coating with an organic-inorganic mixed solution containing in an organic solvent 40-70 vol% of a copolymer of methyltrimethoxysilane and α , ω -bistrimethoxysilylethane a polyalkyl silsesquioxane precursor or its copolymer as the matrix and 30-60 vol% of acetylcyclodextrin nanoparticles as the template.

2-3. (Cancelled)

4. (Currently amended) The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said acetylcyclodextrin is represented by the following formula 3:

$$\bigcap_{R_2 \circ O} \bigcap_{R_3 \circ R_3} \bigcap_{n \circ R_3} \bigcap_$$

(20)

wherein n is an integer of 6-8; R1, R2 and R3 are independently a hydrogen atom or an acetyl group; and at least one of R1, R2 and R3 is an acetyl group.

5. (Original) The ultra-low dielectric film for a copper interconnect according to claim 4, wherein said acetylcyclodextrin is selected from the group consisting of triacetyl-α-cyclodextrin, triacetyl-β-cyclodextrin, triacetyl-γ-cyclodextrin, diacetyl-α-cyclodextrin, diacetyl-β-

-4- 00645320

cyclodextrin, diacetyl- γ -cyclodextrin, monoacetyl- α -cyclodextrin, monoacetyl- β -cyclodextrin and monoacetyl- γ -cyclodextrin.

- 6. (Original) The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said organic solvent is selected from the group consisting of dimethylformamide (DMF), dimethylacrylamide (DMA) and dimethylsulfoxide (DMSO).
- 7. (Previously Presented) The ultra-low dielectric film for a copper interconnect according to claim 1, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5.
- 8. (Currently amended) The ultra-low dielectric film for a copper interconnect according to claim 2, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5. The ultra-low dielectric film for a copper interconnect according to claim 4, wherein said organic solvent is selected from the group consisting of dimethylformamide (DMF), dimethylacrylamide (DMA) and dimethylsulfoxide (DMSO).
- 9. (Currently amended) The ultra-low dielectric film for a copper interconnect according to elaim 3, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5. The ultra-low dielectric film for a copper interconnect according to claim 5, wherein said organic solvent is selected from the group consisting of dimethylformamide (DMF), dimethylacrylamide (DMA) and dimethylsulfoxide (DMSO).
- 10. (Previously Presented) The ultra-low dielectric film for a copper interconnect according to claim 4, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5.
- 11. (Previously Presented) The ultra-low dielectric film for a copper interconnect according to claim 5, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5.

-5- 00645320

- 12. (Previously Presented) The ultra-low dielectric film for a copper interconnect according to claim 6, wherein said ultra-low dielectric film has a maximum porosity of 60% and a minimum dielectric constant of 1.5.
- 13. (New) The ultra-low dielectric film for a copper interconnect according to claim 11, wherein said organic solvent is selected from the group consisting of dimethylformamide (DMF), dimethylacrylamide (DMA) and dimethylsulfoxide (DMSO).

-6- 00645320