Ayudantía 1+2 Computación Científica II

Profesor: Ariel Sanhueza Ayudante: Javier Levio Silva

24 de septiembre de 2018

- 1. Sea $A \in \mathbb{R}^{n \times n}$ una matriz no singular. Demuestre que A^T también es no singular.
- 2. Sean A y $B \in \mathbb{R}^{n \times n}$ matrices no singulares. Demuestre que el producto AB también es no singular.
- 3. Considere

$$B = I + A + A^2 + A^3 + \dots = \sum_{k=0}^{\infty} A^k$$

Si A es definida positiva, λ es el valor propio dominante de A, \vec{v} es el vector propio asociado a λ y $|\lambda| < 1$. Demuestre que $\mu = \frac{1}{1-\lambda}$ es un valor propio de B y determine el vector propio de B asociado a μ .

- 4. Muestre que el cálculo final de $\operatorname{diag}(R'_nQ_n)$ en el algoritmo *Unshifted QR* para obtener los valores propios, es equivalente al cálculo final de $\operatorname{diag}(\overline{Q}_n^T A \overline{Q}_n)$ en el algoritmo de *Normalized Simultaneous Iteration*.
- 5. ¹ Un grafo se define como la tupla G = (V, E), donde V es el conjunto de vértices $\{v_1, v_2, ..., v_n\}$ y E es el conjunto de arcos $\{(v_1, v_2), ...\}$. La matriz de Adyacencia del grafo G, llamada A_G , es una matriz de $n \times n$ con coeficientes a_{ij} que se definen como:

$$a_{ij} = \begin{cases} 1 & \text{si } (v_i, v_j) \in E \\ 0 & \text{en otro caso} \end{cases}$$

Considere el grado de un vértice v_i como $\delta_i = \sum_{j=1}^n a_{ij}$. La matriz Laplaciana del grafo G, denominada L_G , es una matriz de $n \times n$ cuyos coeficientes l_{ij} se definen como:

$$l_{ij} = \begin{cases} \delta_i & \text{si } i = j \\ -a_{ij} & \text{si } i \neq j \end{cases}$$

Ahora considere que el grafo es simple, por lo que $(v_i, v_i) \notin E$ para todo i. Además, el grafo es no dirigido, por lo que si $(v_i, v_j) \in E$, entonces $(v_j, v_i) \in E$ para todo $i \neq j$. Desde el punto de vista de la matriz de adyacencia, se cumple que $a_{ii} = 0$ y $a_{ij} = a_{ji}$.

- (a) Si $\delta_i = \alpha$, para todo $i \in \{1, 2, ..., n\}$ con $\alpha \in \mathbb{N}$, y además se sabe que la matriz A_G tiene valores propios $\lambda_1, \lambda_2, ..., \lambda_n$. ¿Cuáles son los valores propios de la matriz Laplaciana L_G en función de los valores propios de A_G ?
 - Hint: think about the relation between A_G and L_G .
- (b) El teorema del círculo de Gerschgorin se puede utilizar para encontrar una cota para los valores propios de una matriz $A \in \mathbb{C}^{n \times n}$ con coeficientes a_{ij} . Se definen discos $d_1, d_2, ..., d_n$ con centro a_{ii} y radio $r_i = \sum_{j=1, j \neq i}^n |a_{ij}|$. Entonces los valores propios se encuentran en la unión de los n discos y se satisface la desigualdad $|a_{ii} \lambda_i| \leq r_i$. Utilice este teorema para mostrar que todos los valores propios de la matriz A_G se encuentran acotados superiormente por $\delta_{\text{máx}} = \max_i \delta_i$, es decir, $\lambda_i \leq \delta_{\text{máx}}$ para todo $i \in \{1, 2, ..., n\}$.

¹Pregunta 1/Certamen 1/2016-2.

(c) El mayor valor propio de A_G , denotado por λ_1 , puede ser encontrado mediante la expresión:

$$\lambda_1 = \max_{x \in \mathbb{R}^n} \frac{oldsymbol{x}^T A_G oldsymbol{x}}{oldsymbol{x}^T oldsymbol{x}}$$

Utilizando $\boldsymbol{x} = \boldsymbol{1}$, con $\boldsymbol{1} = \langle 1, 1, ..., 1 \rangle^T$ un vector de dimensión n, determine una cota inferior para el valor propio λ_1 .

- (d) Una matriz A simétrica es semidefinida positiva si $x^T A x \ge 0$, para todo $x \in \mathbb{R}^n$. Demuestre que L_G es semidefinida positiva si y solo si $\mu_i \ge 0$ para todo $i \in \{1, 2, ..., n\}$, donde μ_i son los valores propios de L_G .
- 6. ² Considere A una matriz de $n \times n$, con entradas reales, simétrica y con ceros en la diagonal principal. Los valores propios de esta matriz no se repiten y satisfacen $\lambda_1 > \lambda_2 > \ldots > \lambda_n$.

Obtener numéricamente el valor propio λ_1 de A con Power Iteration no es factible, debido a que este valor no es necesariamente el valor propio dominante. Tal vez, si se usa Power Iteration sobre la matriz A desplazada en un shift conventiente sea más efectivo, ya que los valores propios quedarán ordenados por magnitud al ser todos positivos o todos negativos, pero el valor propio dominante de esta nueva matriz no será exactamente el valor propio λ_1 que se requiere determinar.

Construya un algoritmo que haga uso del Teorema del Círculo de Gerschgorin para encontrar un shift conveniente sobre la matriz A y que obtenga numéricamente el valor propio λ_1 .

Hint: **Teorema:** Sea A una matriz de $n \times n$ con entradas a_{ij} , $1 \le i \le n$, $1 \le j \le n$. Cada valor propio λ de A pertenece por lo menos a uno de los discos $|\lambda - a_{ii}| \le \sum_{i \ne i} |a_{ij}|$.

 $^{^2}$ Quiz 1, 2017-2