Наивный байесовский классификатор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте наивный байесовский классификатор.

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Для оценки вероятности встречи слов в каждом классе используется модель Бернулли с аддитивным сглаживанием (сглаживание Лапласа) $p(x) = \frac{count(x) + \alpha}{\sum_{y \in Q} count(y) + \alpha \cdot |Q|}$, где x — рассматриваемое событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Формат входных данных

В первой строке содержится целое положительное число K $(1\leqslant K\leqslant 10)$ — число классов.

Во второй строке содержится K целых положительных чисел λ_C $(1 \leqslant \lambda_C \leqslant 10)$ — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α (1 $\leqslant \alpha \leqslant$ 10) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N $(1 \leqslant N \leqslant 200)$ — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщении. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщение. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M ($1 \le M \le 200$) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \leqslant L_j \leqslant 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L_j слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборках меньше чем $2\cdot 10^6$.

Формат выходных данных

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки.

Каждый j-й результат мягкой классификации должен содержать K чисел p_C — вероятности того, что j-е сообщение относится к классу C.

Пример

стандартный ввод	стандартный вывод
3	0.4869739479 0.1710086840 0.3420173681
1 1 1	0.1741935484 0.7340501792 0.0917562724
1	0.4869739479 0.1710086840 0.3420173681
4	0.4869739479 0.1710086840 0.3420173681
1 2 ant emu	0.4869739479 0.3420173681 0.1710086840
2 3 dog fish dog	
3 3 bird emu ant	
1 3 ant dog bird	
5	
2 emu emu	
5 emu dog fish dog fish	
5 fish emu ant cat cat	
2 emu cat	
1 cat	

Замечание

В примере условные вероятности выглядят следующим образом:

Слово сат не рассматривается, так как оно ни разу не встретилось в обучающей выборке. Для первого запроса $p(c_1|M)\cdot p(M)=\frac{2}{4}\cdot \left(1-\frac{3}{4}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{4}\right)$ и $p(c_1|M)=\frac{3/256}{3/256+1/243+2/243}$