1. (1 point) Solve the following system of equations.

$$\begin{array}{rcl}
 x + 3y & = 17 \\
 5x & = 25
 \end{array}$$

Write your answer in point notation: e.g., for x = 4, y = -3 write (4, -3).

Answer: _____

2. (1 point) Solve the following system of equations. Your answer must be a point. If there is no solution, type *None* and if there are infinitely many solutions, type x for x, and an expression in terms of x for the y-coordinate.

$$4x + 3y = -2$$
$$-2x - y = -2$$

Answer: _____

3. (1 point)

Solve the system of equations by graphing. Choose the graph that represents the two given line equations, and then enter the solution.

$$\begin{cases} y = -\frac{9}{5}x + 8\\ 9x + 5y = -45 \end{cases}$$

The correct graph is graph

- A
- B
- C
- D

The solution of this system, written as an ordered pair, is

(If these two lines don't intersect, type **no solution**. If these two lines overlap each other, type **infinitely many solutions**.)

4. (1 point) For each system, determine whether it has a unique solution (in this case, find the solution), infinitely many solutions, or no solutions.

$$(1) \begin{cases} -7x - 4y = 0 \\ 8x - 9y = 0 \end{cases}$$

- A. Unique solution: x = 9, y = -7
- B. Infinitely many solutions
- C. No solutions
- D. Unique solution: x = -11, y = -1
- E. Unique solution: x = 0, y = 0
- F. None of the above

$$(2) \begin{cases} 3x+4y=-2\\ -5x+9y=-28 \end{cases}$$

- A. Unique solution: x = 0, y = 0
- B. No solutions
- C. Infinitely many solutions
- D. Unique solution: x = -2, y = 2
- E. Unique solution: x = 2, y = -2
- F. None of the above

(3)
$$\begin{cases} 4x + 6y = 38 \\ -12x - 18y = -113 \end{cases}$$

- A. No solutions
 - B. Unique solution: x = 0, y = 0
 - C. Infinitely many solutions
- D. Unique solution: x = 38, y = -113
- E. Unique solution: x = -113, y = 38

• F. None of the above

(4)
$$\begin{cases} -2x + 5y = 14 \\ 6x - 15y = -42 \end{cases}$$

- A. Unique solution: x = 0, y = 0
- B. Infinitely many solutions
- C. Unique solution: x = -7, y = 0
- D. Unique solution: x = 14, y = -42
- E. No solutions
- F. None of the above

5. (1 point) Solve the system using row operations (or elementary matrices).

$$\begin{cases}
-6x+5y+5z=-8 \\
-3x-4y+6z=2 \\
-5x-5y+6z=8
\end{cases}$$

x = _____ *y* = _____

z =

6. (1 point) Determine all values of h and k for which the system

$$\begin{cases} 9x - 9y = h \\ 6x + ky = -10 \end{cases}$$

has no solution.

 $k = \underline{\hspace{1cm}}$

 $h \neq \underline{\hspace{1cm}}$

7. (1 point) Determine if the following statement is true or false:

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

If the answer is true, then type **true**. If the answer is false, type **false**.

Answer: ___

8. (1 point) Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 0 & -3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Is the matrix in echelon form? (input Yes or No)

Is the matrix in reduced echelon form? (input Yes or No)

If this matrix were the augmented matrix for a system of linear equations, would the system be consistent or inconsistent?

9. (1 point) Determine whether the following matrices are in echelon form, reduced echelon form or not in echelon form.

- Choose
- Echelon Form
- Reduced Echelon Form
- Not in Echelon Form

$$(1) \left[\begin{array}{cccc} 1 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -8 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

- Choose
- Echelon Form
- Reduced Echelon Form
- Not in Echelon Form

$$(2) \left[\begin{array}{cccc} 0 & 1 & 0 & 9 \\ 0 & 0 & 1 & -10 \end{array} \right]$$

- Choose
- Echelon Form
- Reduced Echelon Form
- Not in Echelon Form

$$\begin{bmatrix}
1 & 0 & 0 & -7 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & -2
\end{bmatrix}$$

- Choose
- Echelon Form
- Reduced Echelon Form
- Not in Echelon Form

$$(4) \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -8 \end{array} \right]$$

10. (1 point) Reduce the matrix

$$A = \left[\begin{array}{rrrr} 3 & -1 & 4 & -4 \\ 3 & 0 & -3 & -21 \\ -2 & 3 & -2 & 14 \end{array} \right]$$

to reduced row-echelon form.

Solve the system

$$\begin{cases} x_1 + 4x_3 + 4x_4 = -20 \\ x_2 - 3x_3 - 2x_4 = 7 \\ 3x_1 - 3x_2 + 23x_3 + 18x_4 = -85 \\ -x_2 + 3x_3 + 6x_4 = -15 \end{cases}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

$$x_3 = \underline{\hspace{1cm}}$$
 $x_4 = \underline{\hspace{1cm}}$

12. (1 point) If the linear system
$$\begin{array}{rcl}
-4x & -6y & +7z & = 3 \\
-6x & -3y & +3z & = -2 \\
24x & +24y & +hz & = k
\end{array}$$

has infinitely many solutions, then k = and h =....