BREVE RIASSUNTO DI TEORIA

 1^a legge di Kirchhoff: $\sum_n I_n = 0$ la somma delle correnti entranti in un nodo è uguale a 0

 2^a legge di Kirchhoff: $\sum_n \Delta V = 0$ la somma delle differenze di potenziale su una maglia chiusa è nulla

Legge di Ohm in forma integrale: $\Delta V = R \cdot i$

Convenzione dell'utilizzatore: tensione $V_A - V_B$, corrente I da A verso B

Convenzione del generatore: tensione $V_A - V_B$, corrente I da B verso A

Un generatore reale di corrente I_0 (con resistenza R in parallelo) è equivalente a un generatore reale di tensione $E_0 = R \cdot I_0$ con R posta in serie.

Resistenze in serie si sommano; per le resistenze in parallelo vale $\frac{1}{R_{TOT}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ oppure passando alle conduttanze $G = \frac{1}{R}$ la conduttanza totale è la somma delle conduttanze poste in parallelo.

Generatori di tensione in serie si sommano, generatori di corrente in parallelo si sommano.

Partitore di tensione: $V_k = V_{AB} \cdot \frac{R_k}{\sum_{l=1}^n R_l}$ (R in serie) Partitore di corrente: $I_k = I \cdot \frac{G_k}{\sum_{l=1}^n G_l}$ (G in parallelo)

Teorema di Millman: $V_{AB} = \frac{\sum_{n} I_{corto\ circuito}}{\sum_{n} conduttanze}$

Trasformazioni Stella-Triangolo

Trasformazione Triangolo-Stella

$$\begin{cases} r_{a} = \frac{R_{A}R_{B} + R_{B}R_{C} + R_{A}R_{C}}{R_{A}} \\ r_{b} = \frac{R_{A}R_{B} + R_{B}R_{C} + R_{A}R_{C}}{R_{B}} \\ r_{c} = \frac{R_{A}R_{B} + R_{B}R_{C} + R_{A}R_{C}}{R_{C}} \end{cases} \begin{cases} R_{A} = \frac{r_{b}r_{c}}{r_{a} + r_{b} + r_{c}} \\ R_{B} = \frac{r_{a}r_{c}}{r_{a} + r_{b} + r_{c}} \\ R_{C} = \frac{r_{a}r_{b}}{r_{a} + r_{b} + r_{c}} \end{cases}$$

Sovrapposizione degli effetti: si calcolano tutti i contributi dei singoli generatori (annullando gli altri) e alla fine si sommano gli effetti; i generatori di tensione annullati vengono sostituiti con un filo, quelli di corrente con morsetti aperti.

Teorema di Thevenin: una rete composta da tanti generatori e resistente è equivalente a un generatore di tensione $(E_{eq} \text{ calcolato con Millman})$ con in serie una resistenza (equivalente).

Teorema di Norton: una rete composta da tanti generatori e resistente è equivalente a un generatore di corrente $(I_{eq} = \frac{E_{eq}}{R_{eq}} = somma\ correnti\ corto\ circuito)$ con in parallelo una resistenza (equivalente).

Metodo di Maxwell alle maglie

- 1) Scelgo due maglie interne (linearmente indipendenti) e chiamo I_A e I_B le correnti di maglia
- 2) Applico la seconda legge di Kirchhoff alle maglie e trovo i valori di IA e IB
- 3) Calcolo le correnti del circuito in funzione di IA e IB

Oppure, metodo più veloce: $\begin{vmatrix} \sum E_A \\ \sum E_B \\ \sum E_C \end{vmatrix} = \begin{vmatrix} \sum R_A & -R_{AB} & -R_{AC} \\ -R_{AB} & \sum R_B & -R_{BC} \\ -R_{AC} & -R_{BC} & \sum R_C \end{vmatrix} \cdot \begin{vmatrix} I_A \\ I_B \end{vmatrix}$, sulla diagonale c'è la somma delle resistenze

di ogni maglia, mentre nelle altre caselle metto la resistenza del ramo di confine cambiata di segno (0 se nessun ramo in comune).

Metodo di Maxwell ai nodi

- 1) Metto a sistema le prime equazioni di Kirchhoff per ogni nodo
- 2) Scrivo le correnti in funzione dei potenziali di nodo (VA, VB, VC)
- 3) Calcolo le correnti del circuito conoscendo i potenziali V_A, V_B, V_C

Condensatore

 $i(t) = \mathcal{C} \cdot \frac{d\mathcal{V}_{\mathcal{C}}(t)}{dt}$; a regime si comporta come un circuito aperto; staccato dal generatore, si comporta come un generatore di tensione fino a scaricarsi; $\tau = R\mathcal{C}$; $\mathcal{V}_{\mathcal{C}}(t) = \left(\mathcal{V}_{\mathcal{C}}(0) - \mathcal{V}_{\mathcal{C}}(+\infty)\right)e^{-\frac{t}{\tau}} + \mathcal{V}_{\mathcal{C}}(+\infty)$

Induttore

 $\mathcal{V}_L(t) = L \cdot \frac{di(t)}{dt}$; a regime si comporta come un corto circuito; staccato dal generatore, si comporta come un generatore di corrente fino a scaricarsi; $\tau = \frac{L}{p}$; $i_L(t) = (i_L(0) - i_L(+\infty))e^{-\frac{t}{\tau}} + i_L(+\infty)$

Trasformata di Steinmetz \rightarrow le resistenze vengono trasformate in impedenze dello stesso valore (reale), i condensatori in impedenze di valore $\frac{1}{j\omega C}$, le induttanze in impedenze di valore $j\omega L$ e i generatori sinusoidali in generatori reali di valore pari al loro valore di picco.

Ripasso numeri complessi $\Rightarrow \overline{z} = a + jb = \alpha e^{j\beta} \ \text{dove} \begin{cases} a = \alpha \cos \beta \\ b = \alpha \sin \beta \end{cases} \ |\overline{z}| = \sqrt{a^2 + b^2} \ < \overline{z} = \arctan \frac{b}{a}$

Potenza istantanea $P(t)=\frac{1}{2}V_MI_M\cos\varphi+\frac{1}{2}V_MI_M\cos(2\omega t-\varphi)$ Valore efficace $\Rightarrow I_{eff}=\frac{I_M}{\sqrt{2}}$ se i(t) sinusoidale Potenza attiva $P=\frac{1}{2}V_MI_M\cos\varphi=V_{eff}I_{eff}\cos\varphi$ [W] Potenza reattiva $Q=\frac{1}{2}V_MI_M\sin\varphi=V_{eff}I_{eff}\sin\varphi$ [VAR]

Potenza complessa $\overline{A}=P+jQ=\overline{V}\cdot\overline{I^*}$ Potenza apparente $A=\left|\overline{A}\right|=\sqrt{P^2+Q^2}=V\cdot I\ [VA]$

COME RISOLVERE GLI ESERCIZI

1° esercizio: analisi di un circuito

- 1. Scegliere il metodo di Maxwell da utilizzare: se il numero dei nodi è inferiore a quello delle maglie, conviene usare il metodo di Maxwell ai nodi
- 2. Compilare la matrice opportuna e ricavare le correnti di maglia o i potenziali di nodo
- 3. Ricavare le incognite dell'esercizio in funzione delle grandezze del punto 2

2° esercizio: analisi dei transitori

1.	Compilare la tabella	
	elementi reattivi	

	$t = 0^{-}$	$t = 0^{+}$	$t \to +\infty$
Incognite			

ricordando il funzionamento degli

- 2. Analizzare il caso t > 0 in cui i componenti reattivi rimangono tali
- 3. Calcolare il valore di au
- 4. Scrivere la funzione cercata (ad es. $\mathcal{V}_{\mathcal{C}}(t)$) utilizzando la formula generale
- 5. Calcolare il valore della funzione nel punto suggerito dall'esercizio

3° esercizio: circuiti in regime sinusoidale

- 1. Ridisegnare il circuito usando la trasformata di Steinmetz
- 2. Calcolare l'impedenza complessa \overline{z} totale trattando le impedenze come fossero resistenze
- 3. Calcolare la corrente complessa $\overline{I}=\frac{\overline{E}}{\overline{z}}$ dove $\overline{E}=Ee^{j\varphi}$ (= E se $\varphi=0$, v alore di picco)
- 4. Calcolare la potenza complessa $\overline{A}=\frac{1}{2}\overline{E}\cdot\overline{I^*}\cdot\cos\varphi=P+jQ$ (si trovano quindi anche P e Q)
- 5. Calcolare la potenza apparente $A=\left|\overline{A}\right|=\sqrt{P^2+Q^2}$
- 6. Calcolare se richiesto la tensione complessa ai capi di un'impedenza z' come $\overline{V}_{z'} = \overline{I} \cdot z'$
- 7. Calcolare modulo e fase della grandezza complessa (tensione o corrente) come
 - a. Modulo $|\overline{X}| = \sqrt{a^2 + b^2}$
 - b. Fase $< \overline{X} = \arctan \frac{b}{a}$
- 8. Scrivere l'andamento della grandezza come $\mathcal{X}(t) = |\overline{X}| \cdot \cos(\omega t + \langle \overline{X}|)$ dove $\cos(\omega t)$ ha lo stesso andamento del generatore (stessa ω e stessa funzione trigonometrica).

Se si utilizzano i valori efficaci:

- 3. Calcolare il valore efficace della corrente $I_{eff}=\frac{E_{eff}}{\bar{z}}$ e convertirlo in valore di picco $\bar{I}=I_{eff}\cdot\sqrt{2}$
- 4. Calcolare la potenza complessa $\overline{A} = \frac{1}{2}\overline{E}\cdot\overline{I^*}\cdot\cos\varphi = E_{eff}\cdot I_{eff}\cdot\cos\varphi$