

BAYES CLASSIFIERS AND BOOSTING

Machine Learning - Lab 3

NAÏVE BAYES CLASSIFIER (I)

- Naïve assumption
 - Features conditionally independent given the class
 - $Pr(x|y) = \prod_{i=1}^{D} Pr(xi|y)$ (D = dimensionality)
- Advantages
 - Learn D one-dimensional distributions instead of one D-dimensional distribution
 - Simplify calculations (e.g. inverse matrix for multivariate Gaussian distributions)
- Disadvantages
 - Assumption usually not true → can cause high bias

NAÏVE BAYES CLASSIFIER (II)

- Iris dataset
 - 2 correlated features
 - 3 classes
- Accuracy: $\mu = 89$, $\sigma = 4.16$
 - Only 2 features and relatively **simple** decision boundary, but...
- **Not good** decision boundary between class 1 and class 2

NAÏVE BAYES CLASSIFIER (III)

- Vowel dataset
 - 10 correlated features
 - 11 classes
- Accuracy: $\mu = 64.7$, $\sigma = 4.03$
 - Much worse, more difficult

HOW TO IMPROVE

- Change classifier
 - **SVM** (extended for more than 2 classes, oneversus-one or one-versus-all)

Boosting

BOOSTING (I)

- Combine weak classifiers (high bias) in one strong classifier (low bias)
- Naïve Bayes classifiers weak due to the unrealistic assumption
- Our boosted Naïve Bayes classifier
 - Adaboost algorithm
 - 10 Naïve Bayes classifiers (T=10)

BOOSTING (II)

- Iris dataset
 - 2 correlated features
 - 3 classes
- Accuracy: $\mu = 94.7$, $\sigma = 2.91$
 - Without boosting: $\mu = 89$, $\sigma = 4.16$
- Improved

- Vowel dataset
 - 10 correlated features
 - 11 classes
- Accuracy: $\mu = 92.4$, $\sigma = 3.71$
 - Without boosting: $\mu = 64.7$, $\sigma = 4.03$
- Improved dramatically

BOOSTING (III)

- Iris dataset
 - 2 correlated features
 - 3 classes
- Accuracy: $\mu = 92.4$, $\sigma = 3.71$
 - Without boosting: $\mu = 64.7$, $\sigma = 4.03$
- More complex decision boundary, fits data better

DECISION TREES (I)

- Iris dataset
 - 2 correlated features
 - 3 classes
- Accuracy
 - Without boosting: $\mu = 92.4$, $\sigma = 3.71$
 - With boosting: $\mu = 94.6$, $\sigma = 3.65$

DECISION TREES (II)

- Vowel dataset
 - 10 correlated features
 - 11 classes
- Accuracy
 - Without boosting: $\mu = 64.1$, $\sigma = 4$
 - With boosting: $\mu = 86.9$, $\sigma = 3.07$

The plots are 2D but actually the dataset has 10 features, so decision boundaries are not visualized well.

NAÏVE BAYES VS DECISION TREE

- Outliers
 - Naïve Bayes is robust (based on probabilities)
 - DT is robust (nodes are determined based on purity indexes of partitions, not single points)
 - NO boosting (weights corresponding to outliers increase and outliers become more important)
- Irrelevant features
 - Naïve Bayes does not ignore them (probabilities of all features are always computed)
 - DT can ignore them when pruning (no node uses them)
- Predictive power
 - Naïve Bayes has more expressiveness than DT (DT has decision boundaries parallel to axes)
 - Boosting increases expressiveness
- Mixed types of data
 - Naïve Bayes is more expressive for continuous attributes than DT
 - Boosting increases accuracy
- Scalability
 - DT is much faster than Naïve Bayes (Naïve Bayes has to compute probabilities)
 - Boosting can be time consuming depending on T