### Lecture 3: Shrinkage Methods



James D. Wilson MATH 373

### Plan for this Lecture



- Model Selection
- Regularization in Linear Regression
- Algorithms:
  - Ridge Regression (Tikhanov Regularization)
  - The Lasso
  - Elastic Net

## Back to Linear Regression



#### Model:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

#### Estimate:

$$\hat{\beta}_{OLS} = \operatorname{argmin}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right)$$

#### Questions:

- What if we are primarily concerned with variable selection?
- What if p > n? (high dimensional regression)

### Recall: Best Subset Selection



### Algorithm

**Given**: k predictors  $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ 

**Loop**: for (*k* in 1 to p)

- Fit all  $\binom{p}{k}$  models that contain k predictors
- 2 Pick  $M_k$  = the "best" among these models

**Return**:  $M^* \in \{M_0, \dots, M_p\}$ :  $M^* = \operatorname{argmin}_j(S(M_j))$ 

-  $S(M_j)$  = prediction criterion (Mallow's  $C_p$ , AIC, BIC, MSPE)

### Recall: Best Subset Selection



#### **Important Considerations:**

- Computational Complexity: must fit 2<sup>p</sup> models
- Algorithm is exhaustive: we will find the "best" model
- Often replaced with approximate and less intensive algorithms:
  - Forward stepwise selection
  - Backward stepwise selection
  - Forward-backward stepwise selection

## A Nice Alternative: Shrinkage Methods



- Fits all p predictors using a technique that constrains or regularizes the coefficient estimates by optimizing a slightly different objective function
- Equivalently, the techniques shrink coefficient estimates to zero
- Variance of coefficient estimates are reduced as well! Particularly in high dimensional settings!

## Ridge Regression



#### Model:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

#### Estimate:

$$\hat{\beta}_{Ridge} = \operatorname{argmin}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right)$$

 $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$  acts as a shrinkage penalty to standard least squares regression since this value is small when  $\beta_{j}^{2}$  is small.

Note: Also known as Tikhonov regularization



## Ridge Regression: regularization perspective



**Problem**: The variance of  $\hat{f}$  for OLS is often high  $\Leftrightarrow$  predictions significantly change with small changes in X.

**Reason**:  $X^TX$  is ill-conditioned  $\Leftrightarrow$  either  $p \approx n$  or variables suffer from multicollinearity:

$$\hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$$

**Solution**: Ridge regression regularizes  $(X^TX)$ :

$$\hat{\beta}_{Ridge} = (X^T X + \lambda I)^{-1} X^T y$$

### Ridge Regression



$$\hat{\beta}_{Ridge} = \operatorname{argmin}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right)$$

 $\lambda$ : tuning parameter that adjusts the effect of the penalty

• 
$$\lambda = 0$$
  $\Rightarrow$   $\hat{\beta}_{OLS} = \hat{\beta}_{Ridge}$ 

$$\bullet \ \lambda \to \infty \qquad \Rightarrow \qquad \hat{\beta}_{Ridge} \to 0$$

ullet  $\lambda$  chosen using cross validation: amazingly can computationally be determined for all possible values simultaneously!

# Example: Comparison of $\hat{\beta}_{OLS}$ and $\hat{\beta}_{Ridge}$







## When does Ridge Regression outperform OLS?



- **Omputationally**: Ridge estimates for all values of  $\lambda$  can be determined simultaneously with one fit. Significant advantage over best subset selection that requires  $2^p$  least squares fits.
- **Model Accuracy**: OLS estimates often have high variance but low bias. Increases in  $\lambda$  lead to shrinkage, which subsequently leads to a major decrease in variance and only a slight increase in bias.
- **3** Key is to look across a grid of  $\lambda$  for best MSPE.

## When does Ridge Regression outperform OLS?





Figure: Squared bias (black), variance (green), and MSPE (purple) for  $\hat{\beta}_{Ridge}$  on a simulated data set.

## Weaknesses of Ridge Regression



- Requires a user specified tuning parameter  $\lambda$
- Interpretability of  $\hat{\beta}_{Ridge}$
- Subtle but important point: The penalty  $\lambda \sum_{j=1}^{p} \beta_j^2$  shrinks  $\beta$  towards 0 but does not set any values exactly to 0.
  - **Exception**:  $\lambda = \infty$  here all  $\beta_j$  are exactly 0
  - Consequence: The saturated model is *always* chosen!

Question: Can we shrink some coefficients exactly to zero?

### The Lasso



#### Least absolute shrinkage and selection operator

Model:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

Estimate:

$$\hat{\beta}_{Lasso} = \operatorname{argmin}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right)$$

 $\lambda \sum_{j=1}^{p} |\beta_j|$  acts as a shrinkage penalty to standard least squares regression since this value is small when  $|\beta_i|$  is small.

#### Historical Note on the Lasso



- From the paper "Regression shrinkage via the lasso" (1996) in Journal of the Royal Statistical Society. Series B by Robert Tibshirani (one of the authors of ISL and ESL)
- Considered by many to be the most influential modern statistical method
- Paper currently has 14243 citations! (as of October 27, 2015)
- Website:

http://statweb.stanford.edu/ tibs/lasso.html

### Variable Selection Property of Lasso





**Note**: Changing  $\lambda$  sets various subsets of  $\beta$  to 0! Why?



### Re-formulations of Ridge and the Lasso



Both methods can be viewed as optimization problems.

#### • Ridge Regression:

$$\operatorname{minimize}_{\beta}\left(\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p}\beta_{j}x_{ij}\right)^{2}\right) \qquad \text{subject to} \qquad \sum_{j=1}^{p}\beta_{j}^{2} \leq s$$

#### Lasso:

$$\text{minimize}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right) \qquad \text{subject to} \qquad \sum_{j=1}^{p} |\beta_j| \le s$$

Uh, ok so what? Explains the variable selection property of the Lasso!

## Comparison of Lasso and Ridge





Often, the Lasso shrinks coefficients exactly to zero!



### Comparison of Lasso and Ridge





Figure: Squared bias (black), variance (green), and MSPE (purple). Dashed = Ridge, solid = Lasso

**Note**: Simulated data here included 45 / 45 non-zero coefficients. So, *no* variable selection is needed.

## Comparison of Lasso and Ridge





Figure: Squared bias (black), variance (green), and MSPE (purple). Dashed = Ridge, solid = Lasso

**Note**: Simulated data here included 2 / 45 non-zero coefficients. So, variable selection *is* needed.

### A Bayesian Perspective of Ridge and Lasso



Let  $\beta = (\beta_0, \beta_1, \dots, \beta_p)$  be the parameters in a linear regression.

**Bayesian Framework**: Assume that  $\beta$  is a *random vector* with distribution  $p(\beta)$ . Here,

- $f(y|X,\beta)$  = likelihood of the data (Gaussian if  $\epsilon$  is Gaussian)
- $p(\beta)$  = prior distribution of  $\beta$
- $p(\beta|X,y)$  =posterior distrubtion of  $\beta$  given (X,y)

Bayes' Theorem gives us:

$$p(\beta|X,y) \propto f(y|X,\beta)p(\beta)$$

### A Bayesian Perspective of Ridge and Lasso



**Assumption 1**:  $p(\beta) = \prod_{i=1}^{p} g(\beta_i)$  (i.e.  $\beta_i$ 's are iid).

Under Assumption 1, the regression model becomes:

$$y = \beta_0 + X_1 \beta_1 + \ldots + X_p \beta_p + \epsilon$$
  
$$\beta_i \stackrel{iid}{\sim} g(x)$$

### A Bayesian Perspective



#### **Properties**

• If g(x) is a Gaussian distribution with  $\mu = 0$ , and  $\sigma^2 = h(\lambda)$  then

$$\hat{\beta}_{Ridge} = \mathsf{Mode}(p(\beta|X,y))$$

② If g(x) is a Double Exponential distribution with  $\mu = 0$ , and  $\sigma^2 = h(\lambda)$  then

$$\hat{\beta}_{Lasso} = \mathsf{Mode}(p(\beta|X,y))$$

That is, by assuming a certain form of g(x), we find that the Ridge and Lasso estimates are the maximum a posteriori (MAP) estimators for  $\beta$ .

### A Bayesian Perspective





Another way of understanding the likelihood of shrinkage!



### **Elastic Net**



In general, the Lasso is best for variable selection / sparse relationships; Ridge for ill-conditioned problems.

Elastic Net: Combines Lasso and Ridge

Model:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i$$

Estimate:

$$\hat{\beta}_{EN} = \operatorname{argmin}_{\beta} \left( \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \alpha \lambda \sum_{j=1}^{p} |\beta_j| + \frac{1 - \alpha}{2} \lambda \sum_{j=1}^{p} \beta_j^2 \right)$$

Best of both worlds? – well, this is more difficult to interpret!

### **Elastic Net Properties**



- **1**  $\alpha$  = 0: reduces to Ridge Regression
- $\alpha$  = 1: reduces to Lasso
- Has both properties of Ridge and Lasso:
  - Reduces variance
  - Variable selection
- Recently proven that Elastic Net is equivalent to linear support vector machines.

### Selecting $\lambda$



#### General Method: Grid search and cross-validation

- Fix a value of  $\lambda$
- Estimate model and calculate average MSPE from k-fold cross-validation
- **3** Repeat the above procedure across a grid of  $\lambda$
- **1** Choose  $\lambda$  that leads to smallest MSPE

**Important**: The above procedure can be done in parallel, easing computation.

### Selecting $\lambda$



#### **Subtle yet Important Point:**

- Contrary to the fitting of a model in standard linear regression which relies upon minimizing MSE in training data only, we choose λ using cross-validation, which relies upon minimizing the MSPE of (cross-validation) test sets. Because of this, we typically hold out a test set initially and then run cross-validation on the training data.
- ② Once  $\lambda$  is chosen, we then evaluate the MSPE on the original held-out test data.

### Selection $\lambda$





1) First choose a  $\lambda$  from **Validation set**: red (test) + white (training). Here, we will get 4 of them  $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ 

### Selection $\lambda$





2) Then choose the best  $\lambda_i$  by i) training on **Validation set** and ii) testing on **Held out set**.

### Selection $\lambda$





3) Fit final model using entire data set (**Validation** + **Held out**) with best  $\lambda_i$ 

## Selecting $\lambda$ : Example with Ridge







## Selecting $\lambda$ : Example with Lasso







## Implementing Shrinkage Methods with R



Next we will review how to implement the Lasso, Ridge Regression and Elastic Net in R.