CMO 1: Preliminaries

Eklavya Sharma

Contents

1	Central problem and algorithm template	1
2	Metric space	1
3	Neighborhood function and Open sets	2
4	Limit and Bounds	2
5	Continuity	3
6	Asymptotics	3

1 Central problem and algorithm template

Central Problem of the course 'Computational Methods of Optimization': Given an objective function $f: \mathbb{R}^d \to \mathbb{R}$ and a constraint set $S \subseteq \mathbb{R}^d$, find $x^* = \operatorname{argmin}_{x \in S} f(x)$ and $f^* = f(x^*)$.

Example: for $\min_{x \in \mathbb{R}} (x - t)^2$, $x^* = t$ and $f^* = 0$.

All algorithms we develop to find x^* will follow this template:

```
Pick x \in S.

while x is not optimal do

Pick another x \in S such that f(x) decreases.

end while

return x
```

2 Metric space

For any set S (we'll usually consider $S = \mathbb{R}^d$), $D: S \times S \mapsto \mathbb{R}$ is a distance function iff all of the following are true:

- $D(x,y) = 0 \iff x = y$.
- $D(x,y) \ge 0$.
- Symmetry: D(x,y) = D(y,x).
- Triangle inequality: $D(x,y) + D(y,z) \ge D(x,z)$.

Theorem 1. D(x,y) = ||x-y|| is a distance function. Here

$$||x|| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^d x_i^2}$$

Theorem 2. $D(x,y) = \sum_{i=1}^{d} |x_i - y_i|$ is a distance function.

3 Neighborhood function and Open sets

Definition 1. For r > 0 and $x \in \mathbb{R}^d$, $N_r(x) = \{z : D(x, z) < r\}$ is called a neighborhood of x of radius r.

Definition 2. $x \in \mathbb{R}^d$ is an interior point of S iff $\exists r > 0, N_r(x) \subseteq S$.

Definition 3. Let $x, y \in \mathbb{R}$.

- $(x, y) = \{z : x < z < y\}.$
- $(x,y] = \{z : x < z \le y\}.$
- $[x,y) = \{z : x \le z < y\}.$
- $[x,y] = \{z : x \le z \le y\}.$

Definition 4. S is an open set iff $\forall x \in S$, x is an interior point of S.

Example 1. (0,1) is an open set but [0,1) is not.

Definition 5. $x \in \mathbb{R}^d$ is a limit point of S iff $N_r(x) \cap S \neq \phi$.

Example 2. $0, \frac{1}{2}, 1$ are 3 of the limit points of (0, 1].

Definition 6. Closure of a set S is the set of all limit points of S.

Definition 7. A set S is closed iff all limit points of S lie in S.

Example 3. [0,1] is a closed set.

4 Limit and Bounds

Definition 8. Let $[x_i]_{i\in\mathbb{N}}$ be an infinite sequence where $x\in\mathbb{R}^d$. Then

$$\lim_{i \to \infty} x_i = x \iff \forall \epsilon > 0, \exists n, \forall i \ge n, ||x - x_i|| < \epsilon$$

Definition 9. $S \subseteq \mathbb{R}^d$ is a bounded set iff $\exists M, \forall x \in S, ||x|| \leq M$.

Definition 10. For $x_i \in \mathbb{R}$, M is an upper bound of $[x_i]_{i \in \mathbb{N}}$ iff $\forall i, x_i \leq M$. A sequence with an upper bound is called an upper-bounded sequence.

Definition 11. g is a least upper bound (LUB) (of $[x_i]_{i \in \mathbb{N}}$) iff g is an upper bound and for every upper bound h, $g \leq h$.

Example 4. For $x_i = 1 - \frac{1}{i}$, LUB is 1.

Theorem 3. A monotonic bounded sequence has a limit.

5 Continuity

Definition 12.

$$\lim_{x \to p} f(x) = q \iff \forall \epsilon > 0, \exists \delta > 0, \forall x \in N_{\delta}(p), f(x) \in N_{\epsilon}(q)$$

Definition 13. f is continuous at $x \iff \lim_{x\to p} f(x) = f(p)$. f is continuous over $S \iff f$ is continuous at all points $x \in S$.

Theorem 4. Let $S \subseteq \mathbb{R}^d$ be closed and bounded. Let $f(S) = \{f(x) : x \in S\}$. Let f be continuous over S. Then f(S) is closed and bounded.

For optimization problems, x^* is guaranteed to exist iff f is continuous and S is closed and bounded. Henceforth, we will assume S to be closed and bounded and assume functions to be continuous.

6 Asymptotics

$$a(x) \in o(b(x)) \iff \lim_{x \to x_0} \left| \frac{a(x)}{b(x)} \right| = 0$$

For example, at x = 0, $x^3 \in o(x^2)$.

If f is continuous at x = p, f(x) = f(p) + o(1).