

Modelowanie. Podstawy notacji UML

Aleksander Lamża ZKSB · Instytut Informatyki Uniwersytet Śląski w Katowicach

aleksander.lamza@us.edu.pl

Zawartość

- Czym jest UML?
- Wybrane diagramy
- Jak przedstawić budowę systemu, zależności i działanie?

Zastanówmy się jak, na podstawie zebranych wymagań, utworzyć **model** tworzonego systemu (aplikacji).

Na tym etapie może pomóc **UML**.

UML – *Unified Modeling Language*, czyli zunifikowany język modelowania.

Język ten powstał w latach 90. XX wieku. Celem jego opracowania było ujednolicenie metod modelowania obiektowego.

Jest to graficzny język modelowania, na który składa się kilkanaście typów **diagramów**.

Diagram nie jest projektem.

Diagram to **reprezentacja modelu projektu** (lub części projektu), która przedstawia wybrany aspekt tego projektu.

Diagramy dynamiczne (behawioralne)

- przypadków użycia
- aktywności (czynności)
- maszyny stanów
- sekwencji
- ...

Diagramy statyczne (struktur)

- klas
- obiektów
- komponentów
- wdrożenia, pakietów, struktur...

Diagram przypadków użycia

Przedstawia związki łączące **przypadki użycia** (scenariusze działania) z **aktorami** (np. użytkownikami odgrywającymi daną rolę).

Diagram przypadków użycia cd.

Zawieranie innych przypadków użycia (**«include»**):

Diagram przypadków użycia cd.

Warianty przypadków użycia (**«extend»**):

Diagram przypadków użycia cd.

Generalizacja przypadków użycia i aktorów:

Diagram aktywności (czynności)

Służy do zobrazowania ciągu czynności wykonywanych w ramach systemu lub jego części.

Diagram stanów (maszyny stanów)

Przedstawia następstwo stanów, które może przyjąć "obiekt" oraz czynniki wpływające na zmianę stanu.

Diagram sekwencji

Służy do zobrazowania interakcji między obiektami oraz związane z nimi zależności czasowe.

Diagram klas

Przedstawia strukturę systemu na poziomie klas i powiązań między nimi.

Budowa pojedynczego bloku diagramu klas

Diagram obiektów

Może być uzupełniemiem diagramu klas. Przedstawia obiekty w danym kontekście (czasowym).

Diagram komponentów

Przedstawia budowę systemu w szerszej perspektywie. Pozwala na modelowanie architektury logicznej.

Diagram wdrożenia

Przedstawia fizyczną realizację architektury.

Przykładowy projekt

Trafił nam się fajny projekt:

Przykładowy projekt

Diagram przypadków użycia

W omawianym przypadku podstawowym aktorem jest gracz.

Diagram przypadków użycia

Oczywiście można pójść dalej i przedstawić na diagramie szczegóły, np.:

Wszystkie trzy przypadki użycia związane z kupowaniem muszą się wiązać ze sprawdzeniem stanu konta.

Ogólna budowa

Ogólna budowa

Ogólna budowa

Diagram klas – przykład

Jak będzie wyglądał diagram klas związanych z planszą?

Czy jedna klasa wystarczy?

Diagram klas – przykład

Interakcje

Diagram klas jest **statyczny**.

Przedstawia **budowę** aplikacji i **zależności** między jej elementami (klasami).

A jak przedstawić **interakcje** zachodzące w aplikacji?

Jak przedstawić interakcje?

Przykładem diagramu przedstawiającego interakcje jest **diagram sekwencji**.

Rzut kośćmi – diagram sekwencji

Diagram sekwencji – notacje

Diagram aktywności

Sprawy związane z przebiegiem gry najlepiej byłoby przedstawić na diagramie aktywności. Oto przykład:

Diagram stanów

Z kolei diagram stanów doskonale się sprawdzi do opisu stanu, w jakim znajduje się gracz:

Podsumowanie

Diagramy UML przydają się do obrazowego przedstawienia budowy i działania systemu.

Zwykle wykorzystuje się tylko kilka typów diagramów. Najczęściej są to:

- diagram przypadków użycia,
- diagram klas,
- diagram sekwencji,
- diagram aktywności lub stanów.

Diagramy stają się częścią dokumentacji.

Należy przedstawiać na nich najważniejsze aspekty budowy i działania systemu.