ASSIGNMENT / TASK 7

Prediction using Supervised Machine Learning using Simple Linear Regression

In this task we have to find the students scores based on their study hours. This is a simple Regression problem type because it has only two variables.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv("/content/StudentHoursScores (1).csv")
print(df)
```

	Hours	Scores
0	7.7	79
1	5.9	60
2	4.5	45
3	3.3	33
4	1.1	12
5	8.9	87
6	2.5	21
7	1.9	19
8	2.7	29
9	8.3	81
10	5.5	58
11	9.2	88
12	1.5	14
13	3.5	34
14	8.5	85
1 5	3.2	32
16	6.5	66
17	2.5	21
18	9.6	96
19	4.3	42
20	4.1	40
21	3.0	30
22	2.6	25
22	2.6	25

df.head()

	Hours	Scores
count	23.000000	23.000000
mean	4.817391	47.695652
std	2.709688	27.103228
min	1.100000	12.000000
25%	2.650000	27.000000
50%	4.100000	40.000000
75%	7.100000	72.500000
max	9.600000	96.000000

```
import sklearn
from sklearn.model_selection import train_test_split
x=df.iloc[:,:-1].values
y=df.iloc[:,1].values
xtrain,xtest,ytrain,ytest=train_test_split(x,y, test_size=1/3, random_state=1)
from sklearn.linear model import LinearRegression
model=LinearRegression()
mymodel=model.fit(xtrain,ytrain)
y pred=mymodel.predict(xtest)
print("predicted value\n",y_pred)
print("Value of b\n", mymodel.intercept_)
print("Value of a\n", mymodel.coef_)
plt.scatter(xtrain,ytrain,color='red')
plt.plot(xtrain,mymodel.predict(xtrain), label="line of regression")#mymodel.predict(xtrain):
plt.legend()
plt.xlabel("HOURS")
plt.ylabel("SCORES")
plt.show()
```

```
predicted value
  [40.50038393 24.63061172 32.56549782 34.54921935 42.48410545 64.30504223 54.3864346 10.74456104]

Value of b
  -0.16590734578961275

Value of a
  [9.91860763]

100

80

model.predict([[5]])

array([49.42713079])
```

✓ 0s completed at 11:41

×