Notes on Machine Learning Approach to Modeling Human Editing Process of IRS Tax Returns

Richard W. Evans and Daniel Silva-Inclan

September 17, 2018

1 Regression Model

When U.S. households file their taxes every year, they submit data to the IRS. I think we can divide these data fields for each household i into the subset of fields that ever get edited \mathbf{z}_i and the rest of the fields that never get edited \mathbf{z}_i . This will reduce the dimensionality of the prediction problem. Define each element of the vectors \mathbf{z}_i and \mathbf{z}_i as a variable. Our goal is to accurately predict the change in \mathbf{z}_i vector of variables as a function of \mathbf{z}_i and \mathbf{z}_i . Equation (1) is a representation of the true data generating process that we are trying to estimate.

$$\boldsymbol{y}_i \equiv \Delta \boldsymbol{x}_i = f\left(\boldsymbol{x}_i, \boldsymbol{z}_i\right) \tag{1}$$

We can then define the edited data as $\tilde{\boldsymbol{x}}_i$,

$$\tilde{\boldsymbol{x}}_{i} \equiv \boldsymbol{x}_{i} + \hat{f}(\boldsymbol{x}_{i}, \boldsymbol{z}_{i}) + \boldsymbol{\varepsilon}_{i}
\tilde{\boldsymbol{x}}_{i} - \boldsymbol{x}_{i} = \widehat{\Delta \boldsymbol{x}}_{i} + \boldsymbol{\varepsilon}_{i}
\Delta \boldsymbol{x}_{i} = \hat{\boldsymbol{y}}_{i} + \boldsymbol{\varepsilon}_{i}
\tilde{\boldsymbol{x}}_{i} \equiv \hat{\tilde{\boldsymbol{x}}}_{i} + \boldsymbol{\varepsilon}_{i}$$
(2)

The vector with the hat " \hat{x} " symbol is the estimated model of the predicted change in \mathbf{x}_i from Equation (1), and $\hat{\mathbf{x}}_i \equiv \mathbf{x}_i + \widehat{\Delta \mathbf{x}}_i$ is the predicted edited version of the variables (the original values plus the predicted change in those values).

The model in Equation (1) is necessarily a regression model and not a classifier because the elements in Δx_i can each take on a continuum of values. We will estimate a machine learning model $\hat{f}(x_i, z_i)$ using a series of training sets that minimizes some criterion on the errors ε_i in a series of test sets.

2 Data

We have data on the original data $(\boldsymbol{x}_i, \boldsymbol{z}_i)$ and human-edited data $\tilde{\boldsymbol{x}}_i$ for some household tax returns i. We can calculate the variable of interest, the change in the editable variables $\boldsymbol{y}_i \equiv \Delta \boldsymbol{x}_i$ as the following.

$$\boldsymbol{y}_i \equiv \Delta \boldsymbol{x}_i \equiv \tilde{\boldsymbol{x}}_i - \boldsymbol{x}_i \tag{3}$$

- The data in y_i should have a lot of zeros in it.
- The variables in the vector \mathbf{y}_i will likely have drastically different scale. Therefore, we will need to make some normalization of \mathbf{z}_i and \mathbf{z}_i , the inputs to the model $f(\cdot, \cdot)$.

3 Model Estimation

We can test a number of tuned statistical learning models (e.g., multi-layer perceptron, SVM, random forest) to see which ones most accurately predict the vector of changes \hat{y}_i in a series of test sets. Géron (2017) is a great book for training statistical learning models using Python's Scikit-Learn machine learning library and training those models using the TensorFlow interface.

References

Géron, Aurélien, Hands-On Machine Learning with Scikit-Learn & TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, Inc., 2017.