

COPY OF PAPERS
ORIGINALLY FILED.

SEQUENCE LISTING

<110> Allen, Keith D.

<120> TRANSGENIC MICE CONTAINING THYROID
STIMULATING HORMONE RECEPTOR (TSH-R) GENE DISRUPTIONS

<130> R-666

<150> US 60/243,895

<151> 2000-10-26

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2512

<212> DNA

<213> Mus musculus

<400> 1

cgcgttttggat cggaggccac tgagaatgtcg cgacagcgcg caacgatgaa gtagcccaga 60
gggttccttg gaaaatgaggc ccggggcccc tgcgtgtctg tggctctgtc ctcggccctgt 120
ccaggaggtt gggggggcaaa gagtgtgcgt ctccaccctg tgagtgtcac caggaggacg 180
acttcagagt cacatgaaag gagctccacc gaatccccag cctgccgccc agcaccaggaa 240
ctgtgaagct catcgagact catctgaaga ccatacccg tcttgcattt tcgagtctgc 300
ccaaacatttc caggatctat ttatctatag atgcaactct gcagcggctg gaaccacatt 360
ctttctacaa ttttagtaaa atgactcaca tagaaaatccg gaacaccaga agcttaacct 420
atatagaccc tggatgcctt acagagctcc ctttgctcaa gtttcttggc attttcaata 480
ctggacttag aatattccct gacttgacca aaatttattt cacggacata ttctttatac 540
ttgaaatcac agacaaccct tacatgactt cggccctga aaacgcattc cagggcctat 600
gcaatgaaac cttgaccctg aaactgtaca acaatggatt tacttcagtc caaggacatg 660
ctttcaatgg aacaaagctg gatgctgtt acctaaacaa gaataaatac ctgacagcta 720
tagacaacga tggcccttggaa ggagtataca gtggaccaac ttgtcttagat gtgtcttcca 780
ccagcgtcac tggcccttcct tccaaaggcc tggagcacct caaagaactg atcgc当地 840
acacctggac tctcaaaaaag ctcccgtgt ctttgagtt cttccaccc actcgggctg 900
acctcttta cccgagccac tgctgcgtt ttaagaacca gaagaaaatc agggaaatcc 960
tggagtcattt gatgtgtaat gagagcagta tccggacact tcgtcaaaagg aaatcagtga 1020
acatcttgcg gggtcccatc taccaggaat atgaaagaaga tccgggtgac aacagtgtt 1080
ggtacaaaaca aaactccaag ttccaggaga gccaagcaa ctctcaactat tacgtcttct 1140
ttgaagaaca agaggatgag tgcgttggg tcgcccaaga gctaaaaat cctcaggaag 1200
agactctcca agccttcgag agccactatg actacacggt gtgtgggac aacgaggaca 1260
tgggtgtac ccccaagtgc gacgagttt acccctgtga agatatcatg ggctacaggt 1320
tcctgagaat cgtgggtgtgg tttgtcagtc tgctggctct cctggcaat atcttcgtcc 1380
tgctcatttc gctaaccagc cactacaaat tgaccgtgcc gcggttccct atgtcaact 1440
tggccttgc agatttctgc atgggggtat acctgcttct cattgcctct gttagacctgt 1500
acacacactc tgtagtactac aaccacgcca tcgactggca gacggccct ggggtcaaca 1560
cggtggctt cttcactgtt ttcggcagtg agttatcagt gtacacactg acggcatca 1620
ccctggagcg atggtagcgc atcaccttcg ccatgcgcct ggataggaag atccgcctca 1680
ggcacggcgtc caccatcatg gctggggctt ggggttccct cttccttctc gcccgtctcc 1740
cgatggggg aatcagcagc tatgccaagg tcagcatctg cctgccaatg gacaccgaca 1800
ccctcttgc actcgcatac attgtcctcg ttctgctgt caatgttggt gccttgg 1860
tgcgtctgtc ctgttatgtg aagatctaca tcacggtccg aaatccccag tacaaccctc 1920
gagataaaga caccaagagg gccaagagga tggctgtgtt gatcttcaact gacttcatgt 1980
gcatggcgcc catctccttc tatgcgtgtt cggcactttaa gacaaggct ctaatcaactg 2040
ttactaactc caaaatcttg ttggttctct tctacccttcaactcctgt gccaatccgt 2100
ttctctatgc tattttcacc aaggccttcc agagggacgt gttcatcctg ctcagcaagt 2160
ttggcatctg caaacgcccag gcccaggcct atcagggtca gagagtctgt cccaaacaata 2220

gcactggtat tcagatccaa aagattcccc aggacacgag gcagagtctc cccaacatgc 2280
aagataccta tgaactgctt ggaaaactccc agctagctcc aaaactgcag ggacaaaatct 2340
cagaagagta taagcaaaca gccttgtaaa ggaaaaggcta cgctagtac agtgagactt 2400
acaaaaggct ggtttcttga acatgcgttc cagtcccgtg acatgtgaac acataggttc 2460
atgcagggtga tgattcatag ggtcagagtt catctctaga aagtattgcc tc 2512

<210> 2
<211> 764
<212> PRT
<213> Mus musculus

<400> 2
Met Arg Pro Gly Ser Leu Leu Leu Leu Val Leu Leu Ala Leu Ser 15
1 5 10 15
Arg Ser Leu Arg Gly Lys Glu Cys Ala Ser Pro Pro Cys Glu Cys His 30
20 25 30
Gln Glu Asp Asp Phe Arg Val Thr Cys Lys Glu Leu His Arg Ile Pro 45
35 40 45
Ser Leu Pro Pro Ser Thr Gln Thr Leu Lys Leu Ile Glu Thr His Leu 60
50 55 60
Lys Thr Ile Pro Ser Leu Ala Phe Ser Ser Leu Pro Asn Ile Ser Arg 80
65 70 75 80
Ile Tyr Leu Ser Ile Asp Ala Thr Leu Gln Arg Leu Glu Pro His Ser 95
85 90 95
Phe Tyr Asn Leu Ser Lys Met Thr His Ile Glu Ile Arg Asn Thr Arg 110
100 105 110
Ser Leu Thr Tyr Ile Asp Pro Asp Ala Leu Thr Glu Leu Pro Leu Leu 125
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Arg Ile Phe Pro Asp Leu 140
130 135 140
Thr Lys Ile Tyr Ser Thr Asp Ile Phe Phe Ile Leu Glu Ile Thr Asp 160
145 150 155 160
Asn Pro Tyr Met Thr Ser Val Pro Glu Asn Ala Phe Gln Gly Leu Cys 175
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Val 190
180 185 190
Gln Gly His Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn 205
195 200 205
Lys Asn Lys Tyr Leu Thr Ala Ile Asp Asn Asp Ala Phe Gly Gly Val 220
210 215 220
Tyr Ser Gly Pro Thr Leu Leu Asp Val Ser Ser Thr Ser Val Thr Ala 240
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Lys Asp 255
245 250 255
Thr Trp Thr Leu Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu 270
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn 285
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser 300
290 295 300
Ser Ile Arg Asn Leu Arg Gln Arg Lys Ser Val Asn Ile Leu Arg Gly 320
305 310 315 320
Pro Ile Tyr Gln Glu Tyr Glu Glu Asp Pro Gly Asp Asn Ser Val Gly 335
325 330 335
Tyr Lys Gln Asn Ser Lys Phe Gln Glu Ser Pro Ser Asn Ser His Tyr 350
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Val Val Gly Phe Gly Gln 365
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Glu Ser His 380
370 375 380
Tyr Asp Tyr Thr Val Cys Gly Asp Asn Glu Asp Met Val Cys Thr Pro

385	390	395	400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Arg Phe			
405		410	415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn			
420	425	430	
Ile Phe Val Leu Leu Ile Leu Leu Thr Ser His Tyr Lys Leu Thr Val			
435	440	445	
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Met Gly			
450	455	460	
Val Tyr Leu Leu Leu Ile Ala Ser Val Asp Leu Tyr Thr His Ser Glu			
465	470	475	480
Tyr Tyr Asn His Ala Ile Asp Trp Gln Thr Gly Pro Gly Cys Asn Thr			
485	490	495	
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu			
500	505	510	
Thr Val Ile Thr Leu Glu Arg Trp Tyr Ala Ile Thr Phe Ala Met Arg			
515	520	525	
Leu Asp Arg Lys Ile Arg Leu Arg His Ala Tyr Thr Ile Met Ala Gly			
530	535	540	
Gly Trp Val Ser Cys Phe Leu Leu Ala Leu Leu Pro Met Val Gly Ile			
545	550	555	560
Ser Ser Tyr Ala Lys Val Ser Ile Cys Leu Pro Met Asp Thr Asp Thr			
565	570	575	
Pro Leu Ala Leu Ala Tyr Ile Val Leu Val Leu Leu Asn Val Val			
580	585	590	
Ala Phe Val Val Val Cys Ser Cys Tyr Val Lys Ile Tyr Ile Thr Val			
595	600	605	
Arg Asn Pro Gln Tyr Asn Pro Arg Asp Lys Asp Thr Lys Ile Ala Lys			
610	615	620	
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Met Cys Met Ala Pro Ile			
625	630	635	640
Ser Phe Tyr Ala Leu Ser Ala Leu Met Asn Lys Pro Leu Ile Thr Val			
645	650	655	
Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys			
660	665	670	
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp			
675	680	685	
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln			
690	695	700	
Ala Tyr Gln Gly Gln Arg Val Cys Pro Asn Asn Ser Thr Gly Ile Gln			
705	710	715	720
Ile Gln Lys Ile Pro Gln Asp Thr Arg Gln Ser Leu Pro Asn Met Gln			
725	730	735	
Asp Thr Tyr Glu Leu Leu Gly Asn Ser Gln Leu Ala Pro Lys Leu Gln			
740	745	750	
Gly Gln Ile Ser Glu Glu Tyr Lys Gln Thr Ala Leu			
755	760		

<210> 3
<211> 200
<212> DNA
<213> Artificial Sequence

<220>
<223> Targeting vector

<400> 3
acttgagagc ctctccttcc ccctctccag cgtgctctcc agcgatgagg tcacagcccc 60
tcggagccct cctcctccct cccttcccct cctgcacccg ggtctctcc agcgatcagac 120
gcagggcaact gagaatgtgg cgacagcgca caacgatgaa gtagcccaaga gggtcccttg 180

gaaaatgagg ccagggtccc 200

<210> 4
<211> 200
<212> DNA
<213> Artificial Sequence

<220>
<223> Targeting vector

<400> 4
gtgtcaccag gaggacgact tcagagtac ctgcaaggag ctccaccgaa tccccagcct 60
gcccggcagc acccagactc tgtgagtagc caaggccaag acCCCCCCC cccgagaaat 120
tcgtggtgtg tgTTgggttg tgcgcgata tctggtcagt ccctgtacaa attcaatccc 180
ccatgctcgg gaaggtcagc 200