Solution Manual

Collected Problem Solutions

Author Information

Amir Faridi

 $amir faridi 2002 @\,gmail.com$

Contents

1	Domain Theoretic Foundations of Functional Programming		2
	1	1-Introduction	3
	2	2-PCF and its Operational Semantics	4
	3	3-The Scott Model of PCF	9
	4	4-Computational Adequacy	12
	5	5-Milner's Context Lemma	13
	6	6-The Full Abstraction Problem	14
	7	7-Logical Relations	15
2	Ty]	pe Theory and Formal Proof	16
	8	1-Untyped Lambda Calculus	17

Part 1

Domain Theoretic Foundations of Functional Programming

1-Introduction

2-PCF and its Operational Semantics

Problem 2.1 (page 14)

Show that the σ with $\Gamma \vdash M : \sigma$ is uniquely determined by Γ and M.

Solution

We prove this by induction on the structure.

- if $M \equiv x$ (variable), then it must be by the variable rule: $\Gamma', x : \sigma \Delta' \vdash x : \sigma$; thus σ must be unique by the definition of the context Γ . ($\Gamma \equiv x_1 : \sigma_1, ..., x_n : \sigma_n$, where x_i are pairwise distinct variables).
- if $M \equiv Z$ (zero), then it must be derived by the zero rule: $\Gamma \vdash Z : \mathbb{N}$; thus its type is unique.
- if $M \equiv (\lambda x : \sigma.M)$, then it must be derived by the abstraction rule: $\frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash (\lambda x: \sigma.M): \sigma \to \tau}$. By IH, M and x have unique types τ and σ , respectively. Thus, the type of the abstraction is uniquely determined as $\sigma \to \tau$.
- if $M \equiv (M(N))$, then by the application rule, we would have $\frac{\Gamma \vdash M: \sigma \to \tau}{\Gamma \vdash M(N):\tau}$. By IH, M and N have unique types $\sigma \to \tau$ and σ , respectively. Thus, the type of the application M(N) is uniquely determined as τ .
- Same goes for the other cases (*succ*, *pred*, Y_{σ} , and ifz).

Problem 2.2 (Page 16, Lemma 2.1.)

The evaluation relation \downarrow is deterministic, i.e. whenever $M \downarrow V$ and $M \downarrow W$ then $V \equiv W$

Solution

We prove this by induction on the structure of the derivation.

Base cases.

- By the rules of the BigStep semantics for PCF, the lemma for the following base cases is trivial:
 - $M \equiv x$, then $x \downarrow x$. So V and W can only be x; thus, $V \equiv W \equiv x$.
 - $-M \equiv \lambda x : \sigma.M$, then $\lambda x : \sigma.M \downarrow \lambda x : \sigma.M$.
 - $M \equiv \underline{0}$, then $\underline{0} \downarrow \underline{0}$.

Inductive Steps.

- If $M \equiv succ(M)$, then it must be derived by the rule $\frac{M \Downarrow n}{succ(M) \Downarrow n+1}$. Then we would have $V \equiv \underline{n+1}$ and $W \equiv \underline{m+1}$ since the successor rule is the only way to derive succ(M). By IH, we know that $\underline{n} = \underline{m}$, thus n+1=m+1, and hence V = W.
- If $M \equiv M(N)$. The derivation for M(N) must be of the form $\frac{M \Downarrow \lambda x : \sigma.E \ E[N/x] \Downarrow V}{M(N) \Downarrow V}$. A second derivation for M(N) must use the same rule. i.e., $\frac{M \Downarrow \lambda x : \sigma'.E' \ E'[N/x] \Downarrow W}{M(N) \Downarrow W}$. But then by IH, we would have $\lambda x : \sigma.E \equiv \lambda x : \sigma'.E'$. So $\sigma \equiv \sigma'$ and E = E'. Now, we have $E[N/x] \Downarrow V$ and $E[N/x] \Downarrow W$. By the IH on the sub-derivation for E[N/x], we conclude $V \equiv W$.
- If $M \equiv pred(M)$, then the rules are $\frac{M \Downarrow 0}{pred(M) \Downarrow 0}$ and $\frac{M \Downarrow n+1}{pred(M) \Downarrow n}$. For the derivation $pred(M) \Downarrow V$, we must have a sub-derivation for $M \Downarrow \underline{x}$ for some numeral \underline{x} . Similarly, for $pred(M) \Downarrow W$, we must have a sub-derivation for $M \Downarrow \underline{y}$ for some numeral \underline{y} . By the IH on the sub-derivation for M, we can conclude that $\underline{x} \equiv y \equiv k$.

Let's examine k. If $k \equiv \underline{0}$, then both derivations must be $\frac{M \Downarrow \underline{0}}{pred(M) \Downarrow \underline{0}}$. Thus, $V \equiv W \equiv \underline{0}$. Same argument is valid for the case $k \equiv n+1$.

• The other cases $(Y_{\sigma}, \text{ and both cases of } ifz)$ can be proved likewise.

Problem 2.3 (Page 16, Theorem 2.2, Subject Reduction)

If $\Gamma \vdash M : \sigma$ and $M \Downarrow V$ then $\Gamma \vdash V : \sigma$.

Solution

We prove this by induction on the structure of the derivation of $M \downarrow V$.

Base cases.

• If $M \equiv x$, then if $\Gamma \vdash x : \sigma$, then the goal is trivial since $x \Downarrow x$. Same goes for the other base cases $(\lambda x : \sigma . M, \underline{0})$.

Inductive Steps.

- If $M \equiv succ(M)$, then the only evaluation rule is $\frac{M \Downarrow \underline{n}}{succ(M) \Downarrow \underline{n+1}}$; so $V \equiv \underline{n+1}$. We are given $\Gamma \vdash succ(M) : \sigma$ and by the typing rule for succ, we have $\Gamma \vdash M : nat$.
 - Now, from $M \Downarrow \underline{n}$ and $\Gamma \vdash M : nat$, by IH, $\Gamma \vdash \underline{n} : nat$; thus, by the typing rule for *succ*, we have $\Gamma \vdash n+1 : nat$.
- If $M \equiv M(N)$, the evaluation rule is $\frac{M \Downarrow \lambda x : \sigma.E \ E[N/x] \Downarrow V}{M(N) \Downarrow V}$. We are given $\Gamma \vdash M(N) : \sigma$ and by the typing rule for application, we have $\Gamma \vdash M : \sigma \to \tau$ and $\Gamma \vdash N : \sigma$. Now, we have $M \Downarrow \lambda x : \sigma.E$ and $\Gamma \vdash M : \sigma \to \tau$ and by IH, we have $\Gamma \vdash \lambda x : \sigma.E : \sigma \to \tau$. The typing rule for abstraction is $\frac{\Gamma, x : \sigma \vdash E : \tau}{\Gamma \vdash \lambda x : \sigma.E : \sigma \to \tau}$, so we have $\Gamma, x : \sigma \vdash E : \tau$. Using the substitution lemma, we can conclude that $\Gamma \vdash E[N/x] : \tau$. Now, from $E[N/x] \Downarrow V$ and $\Gamma \vdash E[N/x] : \tau$, by IH, we have $\Gamma \vdash V : \tau$.
- Same goes for the other cases (both cases of pred, Y_{σ} , and both cases of ifz).

Problem 2.4 (Page 17)

 $M \Downarrow V \text{ iff } M \rhd^* V.$

Solution

In order to prove this, we prove the following two lemmas:

- (a). if $M \downarrow V$ then $M \rhd^* V$
- **(b).** if $M \triangleright N$ then for all values V, if $N \Downarrow V$, then $M \Downarrow V$.

Then, applying **(b)** iteratively, it follows that:

(c). if $M \rhd^* N$ and $N \Downarrow V$, then $M \Downarrow V$. and by (a) and (c), we can conclude that $M \Downarrow V$ iff $M \rhd^* V$.

Proof of (a). We prove this by induction on the structure of the derivation of $M \downarrow V$. Base cases.

• All the base cases $(M \equiv x, M \equiv \lambda x : \sigma.M$, and $M \equiv 0$ are trivial by the reflexivity of \triangleright^* .

Inductive Steps.

- If $M \equiv succ(M)$, then the rule is $\frac{M \Downarrow \underline{n}}{succ(M) \Downarrow \underline{n+1}}$; thus, $V \equiv \underline{n+1}$. By IH on $M \Downarrow \underline{n}$, we have $M \rhd^* n$. Now, there are two cases.
 - If $M \equiv n$, then $succ(M) \equiv succ(n) \equiv n+1$. So $M \triangleright^* V$.
 - If $M \triangleright M_1 \triangleright ... \triangleright \underline{n}$, then by the congruence rule for succ, we would have $succ(M) \triangleright succ(M_1) \triangleright ... \triangleright succ(\underline{n}) \equiv n+1$. So, $succ(M) \triangleright^* n+1 \equiv V$.
- If $M \equiv M(N)$, then the rule is $\frac{M \Downarrow \lambda x : \sigma.E E[N/x] \Downarrow V}{M(N) \Downarrow V}$. Then, by IH on $M \Downarrow \lambda x : \sigma.E$, we have $M \rhd^* \lambda x : \sigma.E$, and on $E[N/x] \Downarrow V$, we have $E[N/x] \rhd^* V$.

If $M \equiv \lambda x : \sigma.E$, then $M(N) \equiv (\lambda x : \sigma.E)(N)$. By small-step rule $(\lambda x : \sigma.E)(N) \triangleright E[N/x]$. Since $E[N'/x] \triangleright^* V$, we have $M(N) \triangleright E[N/x] \triangleright^* V$, so $M(N) \triangleright^* V$.

If $M \triangleright M_1 \triangleright \cdots \triangleright \lambda x : \sigma.E$, then by the congruence rule for application $M(N) \triangleright M_1(N) \triangleright \cdots \triangleright (\lambda x : \sigma.E)(N)$. Then $(\lambda x : \sigma.E)(N) \triangleright E[N/x]$, and $E[N/x] \triangleright^* V$. Then we would have: $M(N) \triangleright^* (\lambda x : \sigma.E)(N) \triangleright E[N/x] \triangleright^* V$. So $M(N) \triangleright^* V$.

• The other cases are fairly similar to these.

Proof of (b). We prove this by induction on the structure of the derivation of $M \triangleright V$. **Base cases.**

- Assume $M \equiv (\lambda x : \sigma.E)(A)$ and $N \equiv E[A/x]$ $(M \rhd N)$. Assume also $N \Downarrow V$, i.e., $E[A/x] \Downarrow V$. We know $\lambda x : \sigma.E \Downarrow \lambda x : \sigma.E$. By the rule: $\frac{\lambda x : \sigma.E \Downarrow \lambda x : \sigma.E}{(\lambda x : \sigma.E)(A) \Downarrow V}$. So $M \Downarrow V$.
- Assume $M \equiv Y_{\sigma}(E)$ and $N \equiv E(Y_{\sigma}(E))$. Assume also $N \Downarrow V$, i.e., $E(Y_{\sigma}(E)) \Downarrow V$. By the fixpoint rule: $\frac{E(Y_{\sigma}(E)) \Downarrow V}{Y_{\sigma}(E) \Downarrow V}$. So $M \Downarrow V$.
- Assume $M \equiv pred(\underline{0})$ and $N \equiv \underline{0}$. Assume also $N \Downarrow V$, i.e., $\underline{0} \Downarrow V$. This means $V \equiv \underline{0}$. We need to show $pred(\underline{0}) \Downarrow \underline{0}$. This holds by the rule $\frac{\underline{0} \Downarrow \underline{0}}{pred(\underline{0}) \Downarrow \underline{0}}$.
- Assume $M \equiv pred(\underline{k+1})$ and $N \equiv \underline{k}$. Assume also $N \downarrow V$, i.e., $\underline{k} \downarrow V$. This means $V \equiv \underline{k}$. We need to show $pred(\underline{k+1}) \downarrow \underline{k}$. This holds by the rule $\frac{\underline{k+1} \downarrow \underline{k+1}}{pred(\underline{k+1}) \downarrow \underline{k}}$.
- Assume $M \equiv if_Z(\underline{0}, E_1, E_2)$ and $N \equiv E_1$. Assume also $N \downarrow V$, i.e., $E_1 \downarrow V$. We need to show $if_Z(\underline{0}, E_1, E_2) \downarrow V$. This holds by the rule $\frac{0 \downarrow 0}{if_Z(0, E_1, E_2) \downarrow V}$.
- Assume $M \equiv ifz(\underline{k+1},E_1,E_2)$ and $N \equiv E_2$. Assume also $N \Downarrow V$, i.e., $E_2 \Downarrow V$. We need to show $ifz(\underline{k+1},E_1,E_2) \Downarrow V$. This holds by the rule $\frac{\underline{k+1} \Downarrow \underline{k+1} \quad E_2 \Downarrow V}{\underline{ifz(k+1},E_1,E_2) \Downarrow V}$.

Inductive Steps.

- $\frac{M_1 \triangleright M_2}{succ(M_1) \triangleright succ(M_2)}$: $M = succ(M_1), N = succ(M_2)$, where $M_1 \triangleright M_2$. Assume $N \Downarrow V$, i.e., $succ(M_2) \Downarrow V$. This implies $V \equiv \underline{k+1}$ and $M_2 \Downarrow \underline{k}$ for some k. By IH on the subderivation $M_1 \triangleright M_2$: since $M_2 \Downarrow \underline{k}$, it follows that $M_1 \Downarrow \underline{k}$. Then, by the rule $\frac{M_1 \Downarrow \underline{k}}{succ(M_1) \Downarrow \underline{k+1}}$. So $M \equiv succ(M_1) \Downarrow k+1$. Since $V \equiv k+1$, we have $M \Downarrow V$.
- $\frac{M_1 \triangleright M_2}{M_1(A) \triangleright M_2(A)}$: $M = M_1(A)$, $N = M_2(A)$. Assume $M_2(A) \Downarrow V$. This means $M_2 \Downarrow \lambda x.E$ and $E[A/x] \Downarrow V$. By IH on $M_1 \triangleright M_2$, since $M_2 \Downarrow \lambda x.E$, then $M_1 \Downarrow \lambda x.E$. Thus, by the rule, $M_1(A) \Downarrow V$.
- $\frac{M_1 \triangleright M_2}{pred(M_1) \triangleright pred(M_2)}$: $M = pred(M_1)$, $N = pred(M_2)$. Assume $pred(M_2) \Downarrow V$. This means $M_2 \Downarrow \underline{k}$ and V is $\underline{0}$ (if k = 0) or $\underline{k-1}$ (if k > 0). By IH on $M_1 \triangleright M_2$, since $M_2 \Downarrow \underline{k}$, then $M_1 \Downarrow \underline{k}$. Thus, by the rule for pred, $pred(M_1) \Downarrow V$.
- $\frac{M_1 \triangleright M_2}{ifz(M_1,N_1,N_2) \triangleright ifz(M_2,N_1,N_2)}$: $M = ifz(M_1,N_1,N_2)$, $N = ifz(M_2,N_1,N_2)$. Assume $ifz(M_2,N_1,N_2) \Downarrow V$. This means $M_2 \Downarrow \underline{k}$ and either $N_1 \Downarrow V$ (if k=0) or $N_2 \Downarrow V$ (if k>0). By IH on $M_1 \triangleright M_2$, since $M_2 \Downarrow \underline{k}$, then $M_1 \Downarrow \underline{k}$. Thus, by the rule for ifz, $ifz(M_1,N_1,N_2) \Downarrow V$.

Problem 2.5 (Page 19)

Show that the applicative relation \subset_{σ} is a preorder on Prg_{σ} , i.e. that \subset_{σ} is reflexive and transitive.

Solution

-Relfexivity. We need to show that for any closed PCF term M of type σ , $M \sqsubseteq_{\sigma} M$.

Base Case. For $M \in Prg_{nat}, M \sqsubseteq_{nat} M$ means that $\forall n \in \mathbb{N}, M \Downarrow \underline{n} \Rightarrow M \Downarrow \underline{n}$. This is trivially true

Inductive Case. For $M \in Prg_{\sigma \to \tau}, M \sqsubseteq_{\sigma \to \tau} M$ means that $\forall P \in Prg_{\sigma}, M(P) \sqsubseteq_{\tau} M(P)$, which holds by IH.

-Transitivity. We need to show that for any closed PCF terms M, N, K of type σ , if $M \sqsubseteq_{\sigma} N$ and $N \sqsubseteq_{\sigma} K$, then $M \sqsubseteq_{\sigma} K$.

Base Case. For $M, N, K \in Prg_{nat}$, assume $M \sqsubseteq_{nat} N$ and $N \sqsubseteq_{nat} K$. Then, by definition, we have the followings:

- $\forall n \in \mathbb{N}, M \Downarrow \underline{n} \Rightarrow N \Downarrow \underline{n}$
- $\forall n \in \mathbb{N}, N \Downarrow n \Rightarrow K \Downarrow n$

Thus, if $M \Downarrow \underline{n}$ then $K \Downarrow \underline{n}$, which means $M \sqsubseteq_{nat} K$.

Inductive Case. For $M, N, K \in Prg_{\sigma \to \tau}$, assume $M \sqsubseteq_{\sigma \to \tau} N$ and $N \sqsubseteq_{\sigma \to \tau} K$. Then, by definition, we have the followings:

- $\forall P \in Prg_{\sigma}, M(P) \sqsubseteq_{\tau} N(P)$
- $\forall P \in Prg_{\sigma}, N(P) \sqsubseteq_{\tau} K(P)$

Thus, we would have $\forall P \in Prg_{\sigma}, M(P) \sqsubseteq K(P)$.

3-The Scott Model of PCF

Problem 3.1 (Page 26)

Show that (Scott) continuous functions between predomains are always monotonic.

Solution

Let $f:(A, \sqsubseteq_A) \to (B, \sqsubseteq_B)$ be a Scott continuous function between predomains. For any $x,y \in A$ with $x \leq y$, we have that $X = \{x,y\}$ is a directed subset of A. The supremum of the set X is obviously y. Thus $\bigsqcup X = y$, and since f is continuous, $f(\bigsqcup X) = f(y) = \bigsqcup f(\{x,y\})$. Hence, $f(x) \leq f(y)$.

Problem 3.2 (Page 26, Theorem 3.3)

Let $(A_i|i \in I)$ be a family of predomains. Then their product $\prod_{i \in I} A_i$ is a predomain under the componentwise ordering, and the prodjections $\pi_i : \prod_{i \in I} A_i \to A_i$ are Scott continuous. If, moreover, all A_i are domains then so is their product $\prod_{i \in I} A_i$.

Solution

Let $D = \prod_{i \in I} A_i = \{f : I \to \bigcup_{i \in I} A_i | \forall i \in I, f(i) \in A_i\}$. We need to show that (D, \sqsubseteq_D) is a poset, and every directed subset of D has a least upper bound. Note that the order \sqsubseteq_D is defined as follows:

$$(d_i)_{i\in I} \sqsubseteq_D (d_i')_{i\in I} \quad iff \quad \forall i\in I, d(i) \sqsubseteq_{A_i} d'(i)$$

We now show that (D, \sqsubseteq_D) forms a poset.

- **Reflexivity:** For any $(d_i)_{i \in I} \in D$, $d_i \sqsubseteq_{A_i} d_i$, $\forall i \in I$ since each A_i is a poset. Thus $(d_i)_{i \in I} \sqsubseteq_D (d_i)_{i \in I}$
- Transitivity: Assume $(d_i)_{i \in I} \sqsubseteq_D (d_i')_{i \in I}$ and $(d_i')_{i \in I} \sqsubseteq_D (d_i'')_{i \in I}$. And by each A_i being

transitive, it follows immediately that $d_i \sqsubseteq_{A_i} d_i''$ for all $i \in I$. Therefore, $(d_i)_{i \in I} \sqsubseteq_D (d_i'')_{i \in I}$.

• Antisymmetry: Similar to the previous case, it follows immediately from the fact that each A_i is antisymmetric.

Now, suppose that $X \subseteq D = \prod_{i \in I} A_i$ is a directed subset. define $X_i = \{\pi_i(x) | x \in X\}$, that is, the projection of X to A_i . X_i is directed since X is directed. Moreover, X_i has a least upper bound $\bigsqcup X_i \in A_i$. Define $z \in D$ with $z_i = \bigsqcup X_i$ for each $i \in I$. By construction, it is obvious that z is the least upper bound of X in D. Thus, D is a predomain.

Problem 3.3 (Page 27)

Prove that the evaluation map $ev: [A_1 \to A_2] \times A_1 \to A_2$ with ev(f,a) = f(a) is continuous in each argument.

Solution

For the first argument, fix $a \in A_1$ and let $F \subseteq [A_1 \to A_2]$ be a directed set of continuous functions. By Theorem 3.5, we have $\bigsqcup F(a) = g(a) = \bigsqcup_{f \in F} f(a)$. Thus, $ev(\bigsqcup F, a) = g(a) = \bigsqcup_{f \in F} f(a) = \bigsqcup \{ev(f, a) | f \in F\}$.

Now, for the second argument, fix $f \in [A_1 \to A_2]$ and let $X \subseteq A_1$ be a directed set. Because f is continuous, we have $f(\bigcup X) = \bigcup \{f(x) | x \in X\}$. Thus,

$$ev(f, \bigsqcup X) = f(\bigsqcup X) = \bigsqcup \{f(x) | x \in X\} = \bigsqcup \{ev(f, x) | x \in X\}.$$

Hence, ev is continuous in both arguments and by Lemma 3.4, it is jointly continuous.

Problem 3.4 (Page 30)

Prove that $\Psi: [[D \to D] \to D] \times [D \to D] \to D: (F, f) \mapsto f(F(f))$ is continuous in each argument.

Solution

For the first argument, fix $f \in [D \to D]$ and let $\mathscr{F} \subseteq [[D \to D] \to D]$ be a directed set. We know that $(\sqcup \mathscr{F})(f) = \sqcup \{F(f)|F \in \mathscr{F}\}$. Thus,

$$\underbrace{f((\bigsqcup \mathscr{F})(f))}_{\Psi(\sqcup \mathscr{F},f)} = f(\bigsqcup \{F(f)|F \in \mathscr{F}\}) = \bigsqcup \{f(F(f))|F \in \mathscr{F}\}$$

For the second argument, fix $F \in [[D \to D] \to D]$ and let $X \subseteq [D \to D]$ be a directed set. We

know that $F(\bigsqcup X) = \bigsqcup \{F(f) | f \in X\}$. Thus,

$$f(F(\bigsqcup X)) = f(\bigsqcup \{F(f)|f \in X\}) = \bigsqcup \{f(F(f))|f \in X\}$$

Hence, Ψ is continuous in both arguments and by Lemma 3.4, it is jointly continuous.

Problem 3.5 (Page 33)

(β -equality). If, Γ,x : $\sigma \vdash M$: τ and Γ \vdash N : σ then

$$\llbracket \Gamma \vdash (\lambda x : \sigma.M)(N) \rrbracket = \llbracket \Gamma \vdash M[N/x] \rrbracket$$

Solution

 $\llbracket \Gamma \vdash M[N/x] \rrbracket (\vec{d}) = \llbracket \Gamma, x : \sigma \vdash M \rrbracket (\vec{d}, \llbracket \Gamma \vdash N \rrbracket (\vec{d}))$ by Lemma 3.15. Now, for the other side,

$$\begin{split} & \llbracket \Gamma \vdash (\lambda x : \sigma.M)(N) \rrbracket(\vec{d}) = ev(\llbracket \Gamma \vdash \lambda x : \sigma.M \rrbracket(\vec{d}), \llbracket \Gamma \vdash N \rrbracket(\vec{d})) \\ &= \llbracket \Gamma \vdash \lambda x : \sigma.M \rrbracket(\vec{d})(\llbracket \Gamma \vdash N \rrbracket(\vec{d})) = \llbracket \Gamma, x : \sigma \vdash M \rrbracket(\vec{d}, \llbracket \Gamma \vdash N \rrbracket(\vec{d})) \end{split}$$

Problem 3.6 (Page 34)

(η -equality). If, $\Gamma \vdash M : \sigma \to \tau$ then

$$\llbracket \Gamma \vdash \lambda x : \sigma . M(x) \rrbracket = \llbracket \Gamma \vdash M \rrbracket$$

for $x \notin Var(\Gamma)$.

Solution

$$\forall \vec{d} \in \llbracket \Gamma \rrbracket, d' \in D_{\sigma}, \llbracket \Gamma \vdash \lambda x : \sigma.M(x) \rrbracket (\vec{d})(d') = \llbracket \Gamma, x : \sigma \vdash M(x) \rrbracket (\vec{d}, d')$$
$$= ev(\llbracket \Gamma, x : \sigma \vdash M \rrbracket (\vec{d}, d'), \underbrace{\llbracket \Gamma, x : \sigma \vdash x \rrbracket (\vec{d}, d')}_{\pi_{x}(\vec{d}, d') = d'}) =^{\star} \llbracket \Gamma \vdash M \rrbracket (\vec{d})(d')$$

For the last equation (\star) , because $x \notin Var(\Gamma)$ and $\Gamma \vdash M$, we have

$$\llbracket \Gamma, x : \sigma \vdash M \rrbracket (\vec{d}, d') = \llbracket \Gamma \vdash M \rrbracket (\vec{d})$$

•

4-Computational Adequacy

5-Milner's Context Lemma

Problem 5.1 (Page 44)

Prove that \leq_{σ} is closed under suprema of directed sets. That is, if $X \subseteq D_{\sigma} \times D_{\sigma}$ is directed and $X \subseteq \leq_{\sigma}$, meaning that for every $(x,y) \in X, x \leq_{\sigma} y$, then $\bigcup X \in \leq_{\sigma}$.

Solution

Let $X = \{(x_k, y_k) | k \in K\}$ be a directed subset of $D_{\sigma} \times D_{\sigma}$ such that for all $k \in K$, $(x_k, y_k) \in \leq_{\sigma}$. This means for each $k \in K$, we have $\forall P \in Prg_{\sigma}, y_kR_{\sigma}P \implies x_kR_{\sigma}P(\star)$.

Let $x = \bigsqcup_{k \in K} x_k$ and $y = \bigsqcup_{k \in K} y_k$ (Note that $\bigsqcup X = (x, y)$). We need to show $x \le_{\sigma} y$. That is, $\forall P \in Prg_{\sigma}yR_{\sigma}P \implies xR_{\sigma}P$.

Let $P \in Prg_{\sigma}$ be an arbitrary closed PCF term and that $yR_{\sigma}P$. Now, for each $k \in K$, we have $y_k \sqsubseteq y$ and by Lemma 4.2(1), we get $y_kR_{\sigma}P$ for all $k \in K$. Using (\star) , we have $x_kR_{\sigma}P$ for each $k \in K$.

By Lemma 4.2(2), $R_{\sigma}P$ is closed under directed suprema and $\{x_k|k \in K\}$ is a directed subset of D_{σ} whose elements are all in $R_{\sigma}P$. So, their suprema x must also be in $R_{\sigma}P$, meaning that $xR_{\sigma}P$.

6-The Full Abstraction Problem

7-Logical Relations

Problem 7.1 (Page 52)

(Theorem 7.2 When M is Variable) Let R be a logical relation of arity W on the Scott model of PCF. Then for λ -terms $x_1: \sigma_1,...,x_n: \sigma_n \vdash x_k: \sigma_k$ for some k and $d_j \in R_{\sigma_j}$ for j=1,...,n it holds that

$$\underline{\lambda}i \in W.[x_1:\sigma_1,...,x_n:\sigma_n \vdash x_k](\vec{d}(i)) \in R_{\sigma_k}$$

Solution

By premise, $d_k \in R_{\sigma_k}$. By definition, the goal reduces to $d_k \in R_{\sigma_k}$!

Part 2 Type Theory and Formal Proof

1-Untyped Lambda Calculus

Problem 8.1 (1.1)

Apply Notation 1.3.10 on the following λ -terms. SO, remove parentheses and combine *lambda*-abstractions:

- 1. $(\lambda x.(((xz)y)(xx)))$
- 2. $((\lambda x.(\lambda y.(\lambda z.(z((xy)z)))))(\lambda u.u))$

Solution

- 1. $(\lambda x.(((xz)y)(xx))) = \lambda x.((xz)y)(xx) = \lambda x.(xz)y(xx) = \lambda x.(xz)y(xx) = \lambda x.xzy(xx)$
- 2. Final answer: $\lambda xyz.z((xy)z)(\lambda u.u)$

Problem 8.2 (1.2)