Cálculo em Várias Variáveis

Multiplicadores de Lagrange.

ICT-Unifesp

2 Exercícios

Mais detalhes na Seção 14.8 do livro do Stewart. Recurso disponível online pela Biblioteca do ICT.

Sejam f(x, y, z) uma função diferenciável no aberto A e

$$B = \{(x, y, z) \in A : g(x, y, z) = 0\},\$$

sendo g uma função de classe C^1 em A e $\nabla g \neq (0,0,0)$, $\forall (x,y,z) \in B$.

Queremos determinar os extremos locais de f restrita ao conjunto B.

Suponha que f tenha um valor extremo no ponto $P_0 = (x_0, y_0, z_0) \in B$.

Suponha que f tenha um valor extremo no ponto $P_0 = (x_0, y_0, z_0) \in B$.

Seja C uma curva $\gamma(t)=(x(t),y(t),z(t))$ contida em B tal que $\gamma(t_0)=P_0$.

Suponha que f tenha um valor extremo no ponto $P_0 = (x_0, y_0, z_0) \in B$.

Seja C uma curva $\gamma(t)=(x(t),y(t),z(t))$ contida em B tal que $\gamma(t_0)=P_0$.

A função composta

$$h(t) = f \circ \gamma(t) = f(x(t), y(t), z(t))$$

fornece os valores de f restrita à curva C.

Como f tem valor extremo em $P_0 = (x_0, y_0, z_0)$, então h tem valor extremo em t_0 , isto é, $h'(t_0) = 0$.

Como f tem valor extremo em $P_0 = (x_0, y_0, z_0)$, então h tem valor extremo em t_0 , isto é, $h'(t_0) = 0$.

Pela Regra da Cadeia,

$$0 = h'(t_0)$$

$$= f_x(x_0, y_0, z_0)x'(t_0) + f_y(x_0, y_0, z_0)y'(t_0)$$

$$+ f_z(x_0, y_0, z_0)z'(t_0)$$

$$= \langle \nabla f(x_0, y_0, z_0), \gamma'(t_0) \rangle$$

Como f tem valor extremo em $P_0 = (x_0, y_0, z_0)$, então h tem valor extremo em t_0 , isto é, $h'(t_0) = 0$.

Pela Regra da Cadeia,

$$0 = h'(t_0)$$

$$= f_x(x_0, y_0, z_0)x'(t_0) + f_y(x_0, y_0, z_0)y'(t_0)$$

$$+ f_z(x_0, y_0, z_0)z'(t_0)$$

$$= \langle \nabla f(x_0, y_0, z_0), \gamma'(t_0) \rangle$$

Logo,

$$\nabla f(x_0, y_0, z_0) \perp \gamma'(t_0).$$

Lembremos que o vetor gradiente $\nabla g(x_0, y_0, z_0)$ também é ortogonal a $\gamma'(t_0)$.

Lembremos que o vetor gradiente $\nabla g(x_0, y_0, z_0)$ também é ortogonal a $\gamma'(t_0)$.

Portanto, existe um número real λ tal que

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0).$$

Lembremos que o vetor gradiente $\nabla g(x_0, y_0, z_0)$ também é ortogonal a $\gamma'(t_0)$.

Portanto, existe um número real λ tal que

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0).$$

Definição

O número λ é chamado de multiplicador de Lagrange.

Temos o seguinte teorema...

Teorema

Sejam f(x, y, z) uma função diferenciável no aberto A e $B = \{(x, y, z) \in A : g(x, y, z) = 0\}$ onde g é de classe C^1 em A e $\nabla g \neq (0, 0, 0)$, $\forall (x, y, z) \in B$. Se (x_0, y_0, z_0) é um extremo local de f restrita a g, então existe $g \in \mathbb{R}$ tal que

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

Método dos multiplicadores de Lagrange: Para determinar os valores máximos e mínimos de f(x, y, z) sujeita à restrição g(x, y, z) = 0, supondo $\nabla g(x, y, z) \neq (0, 0, 0)$ sobre a superfície g(x, y, z) = 0, devemos:

Método dos multiplicadores de Lagrange: Para determinar os valores máximos e mínimos de f(x, y, z) sujeita à restrição g(x, y, z) = 0, supondo $\nabla g(x, y, z) \neq (0, 0, 0)$ sobre a superfície g(x, y, z) = 0, devemos:

1. determinar todos os valores de x, y, z e λ tais que

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) \\ g(x, y, z) = 0 \end{cases}$$

Método dos multiplicadores de Lagrange: Para determinar os valores máximos e mínimos de f(x, y, z) sujeita à restrição g(x, y, z) = 0, supondo $\nabla g(x, y, z) \neq (0, 0, 0)$ sobre a superfície g(x, y, z) = 0, devemos:

1. determinar todos os valores de x, y, z e λ tais que

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) \\ g(x, y, z) = 0 \end{cases}$$

 calcular f em todos os pontos obtidos no item anterior. O maior desses valores é o valor máximo de f e o menor valor é o valor mínimo de f.

Tudo o que vimos até aqui se aplica a funções de duas variáveis também.

Tudo o que vimos até aqui se aplica a funções de duas variáveis também.

Exemplo

Encontre os extremantes de $f(x, y) = x^2 + y^2$ restrita ao conjunto dado por $(x - 1)^2 + (y - 1)^2 = 1$.

$$\left(\frac{2-\sqrt{2}}{2},\frac{2-\sqrt{2}}{2}\right)$$
 é ponto de mínimo de f restrita a B com valor mínimo $3-2\sqrt{2}$.

$$\left(\frac{2+\sqrt{2}}{2},\frac{2+\sqrt{2}}{2}\right)$$
 é ponto de máximo de f restrita a B com valor máximo $3+2\sqrt{2}$.

Podemos ter mais de uma restrição...

Teorema

Sejam f(x, y, z) uma função diferenciável no aberto A e $B = \{(x, y, z) \in A : g(x, y, z) = 0 \ e \ h(x, y, z) = 0\}$, sendo g, h de classe C^1 em A e $\nabla g \times \nabla h \neq (0, 0, 0)$, $\forall (x, y, z) \in B$. Se $(x_0, y_0, z_0) \in B$ é um extremo local de f restrita a B, então existem $\lambda_1, \lambda_2 \in \mathbb{R}$ tais que

$$\nabla f(x_0, y_0, z_0) = \lambda_1 \nabla g(x_0, y_0, z_0) + \lambda_2 \nabla h(x_0, y_0, z_0)$$

Definição

 λ_1, λ_2 são chamados de multiplicadores de Lagrange.

Exemplo

Encontre os pontos pertencentes à intersecção do elipsoide $x^2 + 4y^2 + z^2 = 4$ com o plano x + y + z = 1 que estejam mais afastados e mais próximos da origem.

• Queremos encontrar os extremos da função $f(x, y, z) = ||(x - 0, y - 0, z - 0)||^2 = x^2 + y^2 + z^2$

Exemplo

Encontre os pontos pertencentes à intersecção do elipsoide $x^2 + 4y^2 + z^2 = 4$ com o plano x + y + z = 1 que estejam mais afastados e mais próximos da origem.

• Queremos encontrar os extremos da função $f(x, y, z) = ||(x - 0, y - 0, z - 0)||^2 = x^2 + y^2 + z^2$

As restrições são dadas pelas funções

$$g(x, y, z) = x + y + z - 1$$
 e
 $h(x, y, z) = x^2 + 4y^2 + z^2 - 4$.

Exemplo

Encontre os pontos pertencentes à intersecção do elipsoide $x^2 + 4y^2 + z^2 = 4$ com o plano x + y + z = 1 que estejam mais afastados e mais próximos da origem.

• Queremos encontrar os extremos da função $f(x, y, z) = ||(x - 0, y - 0, z - 0)||^2 = x^2 + y^2 + z^2$

As restrições são dadas pelas funções

$$g(x, y, z) = x + y + z - 1$$
 e
 $h(x, y, z) = x^2 + 4y^2 + z^2 - 4$.

• Temos que

$$\nabla g(x, y, z) = (1, 1, 1) \in \nabla h(x, y, z) = (2x, 8y, 2z).$$

Assim,

$$\nabla g(x, y, z) \times \nabla h(x, y, z) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2x & 8y & 2z \end{vmatrix}$$
$$= (2z - 8y, 2x - 2z, 8y - 2x) = (0, 0, 0)$$
$$\iff x = z = 4y.$$

Mas, $g(4y, y, 4y) = 9y - 1 = 0 \iff y = 1/9 \text{ e}$ $h(4y, y, 4y) = 36y^2 - 4 = 0 \iff y = \pm 1/3$. Portanto, o produto vetorial é não-nulo em todos os pontos do conjunto de restrição.

Pelo método do multiplicadores de Lagrange, devemos resolver o sistema

$$\begin{cases} \nabla f(x,y,z) = \lambda_1 \nabla g(x,y,z) + \lambda_2 \nabla h(x,y,z) \\ g(x,y,z) = 0 \\ h(x,y,z) = 0 \end{cases}$$

$$\iff \begin{cases} (2x, 2y, 2z) = \lambda_1(1, 1, 1) + \lambda_2(2x, 8y, 2z) \\ x + y + z - 1 = 0 \\ x^2 + 4y^2 + z^2 - 4 = 0 \end{cases} \iff$$

$$\iff \begin{cases} 2x = \lambda_1 + 2\lambda_2 x \\ 2y = \lambda_1 + 8\lambda_2 y \\ 2z = \lambda_1 + 2\lambda_2 z \\ x + y + z = 1 \\ x^2 + 4y^2 + z^2 = 4 \end{cases} \iff \begin{cases} \lambda_1 = 2(1 - \lambda_2)x \\ \lambda_1 = 2(1 - 4\lambda_2)y \\ \lambda_1 = 2(1 - \lambda_2)z \\ x + y + z = 1 \\ x^2 + 4y^2 + z^2 = 4 \end{cases}$$

Se
$$\lambda_2 = 1 \Longrightarrow \lambda_1 = 0 \Longrightarrow y = 0$$

$$\Longrightarrow \begin{cases} x + z = 1 \Longrightarrow x = 1 - z \\ x^2 + z^2 = 4 \end{cases}$$

Logo,

Logo,
$$(1-z)^2+z^2=4\Longrightarrow 2z^2-2z-3=0\Longrightarrow z=\frac{1-\sqrt{7}}{2}$$
 ou $z=\frac{1+\sqrt{7}}{2}$. Portanto, temos os pontos

$$\left(\frac{1+\sqrt{7}}{2},0,\frac{1-\sqrt{7}}{2}\right) \qquad \left(\frac{1-\sqrt{7}}{2},0,\frac{1+\sqrt{7}}{2}\right),$$

com

$$f\left(\frac{1+\sqrt{7}}{2},0,\frac{1-\sqrt{7}}{2}\right) = \frac{8+2\sqrt{7}}{4} + \frac{8-2\sqrt{7}}{4} = 4$$

$$f\left(\frac{1-\sqrt{7}}{2},0,\frac{1+\sqrt{7}}{2}\right)=4.$$

Se
$$\lambda_2 \neq 1 \Longrightarrow x = z \Longrightarrow$$

$$\Longrightarrow \begin{cases} 2x + y = 1 \Longrightarrow y = 1 - 2x \\ 2x^2 + 4y^2 = 4 \Longrightarrow x^2 + 2y^2 = 2 \end{cases}$$

Logo, $x^2 + 2(1 - 2x)^2 = 2 \Longrightarrow 9x^2 - 8x = 0 \Longrightarrow x = 0$ ou $x = \frac{8}{9}$. Portanto, temos os pontos

$$(0,1,0)$$
 $\left(\frac{8}{9},-\frac{7}{9},\frac{8}{9}\right)$

com

$$f(0,1,0) = 1$$
 e $f\left(\frac{8}{9}, -\frac{7}{9}, \frac{8}{9}\right) = \frac{177}{81} \approx 2.185$

Como o conjunto de restrição é compacto, existem mínimo e máximo:

- mínimo em (0,1,0) com valor 1, que é o ponto mais próximo da origem.
- máximo em $\left(\frac{1+\sqrt{7}}{2},0,\frac{1-\sqrt{7}}{2}\right)$ e $\left(\frac{1-\sqrt{7}}{2},0,\frac{1+\sqrt{7}}{2}\right)$ com valor 4, sendo que estes são os pontos mais distantes da origem.

Exercícios

Seção 14.8 do Stewart: 1, 3–16, 23, 25, 27–33, 37, 39, 55, 57.