An External Memory Relational Product

Steffan Christ Sølvsten, Jaco van de Pol

April 13, 2022

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

$$RelProd(S, T) \equiv (\exists \vec{x}. \ S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

If π is monotonic

- Apply π in $O(L_N)$ extra time during final $\Omega(N \log N)$ bottom-up Reduce sweep.
- Apply π in O(N) time when reading it later.

That is, π can (essentially) be applied in O(1) time, space, and I/Os.

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

If π is monotonic

- Apply π in $O(L_N)$ extra time during final $\Omega(N \log N)$ bottom-up Reduce sweep.
- Apply π in O(N) time when reading it later.

That is, π can (essentially) be applied in O(1) time, space, and I/Os.

If π is not monotonic

to be continued...