PROJECT - SPORT DATABASE MANAGEMENT SYSTEM

PROJECT OVERVIEW: The objective is to create a database schema for a "English Premier League DB" which will be used to evaluate players' performances. Creation of this database helps in deep-dive analysis on matches played by clubs representing various countries and their team performances. Drawing database schema produces the relationships, breakpoints and anomalies across entities to extract data.

Task	Objective	Action Items
0	To create repository in Oracle Environment.	Determining all the attributes and values for data dictionary and designing it on oracle.
1	To learn in depth about keys for identification.	Understand the tables, attributes and identify primary and foreign keys.
2	O I	Design the EER diagram with correct relationships and cardinalities.
3	To convert, apply and implement the relational schema.	Design the database on oracle based on the schema developed
4	To understand normalization and dependencies for the data and execution of the same.	Ensure normalization is achieved and all the dependencies are addressed
5(Que ries and output)	To execute the queries and make inference.	Creating repository of EPL data through various tables and perform analysis through extraction of data using SQL.
Final review	To check the hierarchy of the process and evaluate the performance of the project.	Perform Quality Check assessments on each tasks and ensure required outcome is achieved.

Task 0: Create your complete repository

Repository – It will have metadata of 7 tables where the column names, data type, length, min and max allowable values, and description will be added. The details for each table are listed below:

players: Includes the bio details of all players and the clubs they belong to.

Name	Type	Length	Min	Max	Description
player_id	NUM	5	1	5	The unique id of the player
age	NUM	2	2	2	Player's age
nationality	VARCHAR	4	3	4	Player's nationality
club	VARCHAR	20	1	20	Name of player's club

team_stats: Includes all the players a club owns and their status (healthy, injured).

Name	Type	Length	Min	Max	Description
player_id	NUM	5	1	5	The unique id of the player
club	VARCHAR	20	1	20	Name of player's club
status	VARCHAR	20	1	20	Health status of the player

player_stats: Includes players attributes like goals, assists etc.

Name	Type	Length	Min	Max	Description
player_id	NUM	5	1	5	The unique id of the player
position	VARCHAR	50	5	50	Position at which player plays
matches_played	NUM	5	0	5	Number of matches played
total_goals	NUM	4	0	4	Number of goals scored
assists	NUM	5	0	5	Number of assists by the player
passes_attempted	NUM	50	1	5	Number of passes by the player
perc_passes_attempte d	NUM	50	1	5	Percentage of passes attempted by the player

matches: Includes the match and the results.

Name	Type	Length	Min	Max	Description
match_id	NUM	10	1	10	The unique id of match
home_team	VARCHAR	30	3	30	Team playing at home ground
away_team	VARCHAR	30	3	30	Team playing not at home ground
home_team_goals	NUM	4	1	4	Goals scored by home team
away_team_goals	NUM	4	1	4	Goals scored by away
					team
winner	VARCHAR	30	3	30	Team which won the match

player_matches: Includes a mapping between the player and the matches the player has played.

Name	Type	Length	Min	Max	Description
match_id	NUM	10	1	10	The unique id of match
player_id	NUM	5	1	5	The unique id of the player

countries: Maintains a mapping between countries and their short codes.

Name	Type	Length	Min	Max	Description
country_code	VARCHAR	3	3	3	3-digit unique code given
					to the country
country_name	VARCHAR	30	1	30	Name of the country

club_countries: This table is used to refer the country a club belongs to.

Name	Type	Length	Min	Max	Description
club	VARCHAR	20	1	20	Name of player's club
country_code	VARCHAR	3	3	3	3-digit unique code given to the country

Business Rules:

- Player's age cannot be less than 15 and more than 40.
- The position must be among the following-
 - Goalkeeper
 - o Right Full-back (or Wingback)
 - Left Full-back (or Wingback)
 - Center-back
 - Center back (or sweeper)
 - o Defensive Midfielder
 - o Right Midfielder (or Winger)
 - Center Midfielder
 - Center Forward (or Striker)
 - Attacking Midfielder (or Center Forward)
 - Left Midfielder (or Winger)
- player_id, match_id, and country_code must have unique values.
- Each *player_id* should be associated with only one *club*.
- Each *player_id* must have one *nationality* and every *nationality* must have one *player_id*.
- Each *match_id* should have at least two *player_id*'s participating in the match.
- The player's *status* should be "Active" by default to play.
- The *player_id* in the *player_matches* table should belong to either the *home team* or the *away team* in the *matches* table for the same *match_id*.

<u>Task 1:</u> Identify best primary keys and foreign keys for all the seven relations. List out primary key, foreign key of every relation.

Table	Primary Key	Foreign Key
players	player_id	club
team_stats	player_id, club (composite)	club, player_id
player_stats	player_id	player_id
matches	match_id	-
player_matches	player_id, match_id (composite)	player_id, match_id
countries	country_code	-
club_countries	club	country_code

Task 2: Express the relationships in each description graphically with an EER diagram.

<u>Task 3:</u> Convert it to a relational schema. Explain briefly about 1) Unary 2) Binary and 3) Ternary relationships. List all the Binary relationships that exists in the above schema. Identify any constraints that may be applicable in EPL Database problem and implement them using database constraints.

- Unary relationship: A relationship between instances of a single entity type. In the given dataset, there is no entity that is related to itself.
- Ternary relationship: A simultaneous relationship among the instances of three entity types.
- Binary relationship: A relationship between the instances of two entity types.

Based on the above definitions, we see that our database contains 6 binary relationships.

Binary relationships	Cardinality Constraint
players - player_stats	Mandatory One to Mandatory One
team_stats - player	Mandatory One to Optional Many
players - player_matches	Mandatory One to Optional Many
matches - player_matches	Optional One to Mandatory Many
club countries -team_stats	Mandatory One to Mandatory Many
countries - club countries	Mandatory One to Optional Many

Domain Constraints: NOT NULL, CHECK

Key Constraints: PRIMARY KEY, FOREIGN KEY DEFAULT, UNIQUE, INDEX Constraints can also be used

Entity Integrity Constraints - No primary key attribute may be null. All primary key fields must contain data values. Below are the primary keys in the EPL database that should not be null.

Table	Primary Key
players	player_id
team_stats	player_id, club (composite)
player_stats	player_id
matches	match_id
player_matches	player_id, match_id (composite)
countries	country_code
club_countries	club

Referential Integrity Constraint: According to the Referential Integrity rule, any foreign key value must match a primary key value in the relation of the one side.

Restrict - prevent deletion of "parent" side if related rows are present in "dependent" side.

Cascade - automatically remove "dependent" side rows that correspond with the "parent" side row to be deleted.

Set-to-Null - set the foreign key in the dependent side to null if deletion from the parent side.

<u>Task 4:</u> Provide a list of dependencies for each relation. Explain Normalization? Prove that the above schema is in 1NF, 2NF and 3NF?

Normalization is the process to eliminate data redundancy and enhance data integrity in the tables. Normalization organizes the columns and tables of a database to ensure that database integrity constraints properly execute their dependencies.

Player_id->age, nationality, club

A player's age, nationality and club are functionally dependent on that person's player_id. Or there can be only one age, one nationality and one club for a particular player_id.

player_matches

Match_id->player_id

A player's id is functionally dependent on the match id to know about the player's matches.

player_stats

Full dependency

A player's position, matches_played, total_goals, assists, passes_attempted, perc_passes_completed are functionally dependent on the player_id.

In this relational schema, we can see a partial dependency between player_id and position columns. Hence, we normalized the data by creating a different table for the position details.

A new table called "player_position" has been created with the details of player_id and the positions.

All other tables are fully functionally dependent.

Rules for 1NF:

- ✓ It doesn't have 2 columns with same name.
- ✓ Order of rows is not important.
- ✓ It cannot have a multivalued attribute.
- ✓ Data stored in each column should be of same datatype.

Rules for 2NF:

- ✓ It should satisfy 1NF
- ✓ It should not have partial dependencies

Rule for 3NF:

- ✓ It should satisfy 1 NF and 2NF
- ✓ It should not have transitive dependencies

Finally, all the tables after normalization are found to be in 1NF, 2NF and 3NF forms.

Task 5: Queries and Output

1. SQL 'CREATE' Query for building every relation with Entity Integrity.

Query

```
--DROP TABLE PLAYERS;
CREATE TABLE PLAYERS
(
PLAYER_ID INT,
AGE INT,
NATIONALITY VARCHAR2(100),
CLUB VARCHAR2(100),
PRIMARY KEY (PLAYER_ID),
FOREIGN KEY (CLUB) REFERENCES CLUB_COUNTRIES (CLUB)
);
```

Output:

Results	Explain	Describe	Saved SQL	History
Table cre	eated.			
0.02 secor	nds			

Copyright © 1999, 2019, Oracle. All rights reserved.

Application Express 19.1.0.00.15

Query

--DROP TABLE TEAM_STATS;

```
CREATE TABLE TEAM_STATS
(

PLAYER_ID INT,

CLUB VARCHAR2(100),

STATUS VARCHAR2(100),

PRIMARY KEY (PLAYER_ID),

FOREIGN KEY (CLUB) REFERENCES CLUB_COUNTRIES (CLUB),

FOREIGN KEY (PLAYER_ID) REFERENCES PLAYERS (PLAYER_ID)
);
```

Output

Results	Explain	Describe	Saved SQL	History	
Table cre	eated.				
0.02 secor	nds				
Q us_b876 us_b876_sc			Copyright (© 1999, 2019, Oracle. All rights reserved.	Application Express 19.1.0.00.15

Query

```
--DROP TABLE PLAYER_STATS;

CREATE TABLE PLAYER_STATS
(

PLAYER_ID INT,

POSITION VARCHAR2(100),

MATCHES_PLAYED INT,

TEAM_GOALS INT,

ASSISTS INT,

PASSES_ATTEMPTED INT,

PERC_PASSES_COMPLETED INT,

PRIMARY KEY (PLAYER_ID),

FOREIGN KEY (PLAYER_ID) REFERENCES PLAYERS (PLAYER_ID)
);
```

Output

Results Explain Describe Saved SQL History

Table created.

0.02 seconds

Q us_b876_sql_s16 Copyright © 1999, 2019, Oracle. All rights Application Express 19.1.0.00.15 reserved.

Query

```
--DROP TABLE MATCHES;
CREATE TABLE MATCHES
(
MATCH_ID INT,
HOME_TEAM VARCHAR2(100),
AWAY_TEAM VARCHAR2(100),
HOME_TEAM_GOALS INT,
AWAY_TEAM_GOALS INT,
WINNER VARCHAR2(100),
PRIMARY KEY (MATCH_ID)
);
```

Output

Results	Explain	Describe	Saved SQL	History
Table created.				
0.02 secor	nds			

 \mathcal{Q} us_b876_sql_s16 \bigcirc us_b876_sql_s16 \bigcirc en

Copyright © 1999, 2019, Oracle. All rights reserved.

Application Express 19.1.0.00.15

Query

```
--DROP TABLE PLAYER_MATCHES;
CREATE TABLE PLAYER_MATCHES
(
MATCH_ID INT NOT NULL,
PLAYER_ID INT NOT NULL,
PRIMARY KEY (MATCH_ID,PLAYER_ID),
FOREIGN KEY (PLAYER_ID) REFERENCES PLAYERS1 (PLAYER_ID), FOREIGN
KEY (MATCH_ID) REFERENCES MATCHES1 (MATCH_ID)
);
```

Output

Results	Explain	Describe	Saved SQL	History	
Table crea	ited.				
0.02 second	ds				
Q us_b876_s	sql_s16 {	3	Copyright (© 1999, 2019, Oracle. All rights	Application Express 19.1.0.00.15

Query

```
--DROP TABLE COUNTRIES;
CREATE TABLE COUNTRIES
(
COUNTRY_CODE VARCHAR2(100),
COUNTRY_NAME VARCHAR2(100),
PRIMARY KEY (COUNTRY_CODE)
);
```

Output

Output

Results	Explain	Describe	Saved SQL	History	
Table cre	eated.				
0.02 secon	nds				
Q us_b876 us_b876_sc			Copyright (© 1999, 2019, Oracle. All rights reserved.	Application Express 19.1.0.00.15

2. SQL 'UPDATE' QUERY

We found that in Countries for the country "Cotedlovire" was represented in lower case while other countries were presented in upper case. To update the country "Cotedlovire" to upper case we have used the below query.

Data example before update query

COUNTRY_CODE	COUNTRY_NAME
ENG	ENGLAND
CIV	CotedIvoire

2 rows returned in 0.00 seconds Download

Query

```
UPDATE COUNTRIES

SET COUNTRY_NAME = UPPER(COUNTRY_NAME)

WHERE COUNTRY_CODE = 'CIV';
```

Output after updation

COUNTRY_CODE	COUNTRY_NAME
CIV	COTEDIVOIRE

1 rows returned in 0.00 seconds

Download

3. Find the age of the oldest player whose total_goals > 50.

Query

```
SELECT MAX(AGE)
FROM
(

SELECT A.PLAYER_ID,A.AGE,SUM(B.TOTAL_GOALS)
FROM PLAYERS A

LEFT JOIN PLAYER_STATS B
ON A.PLAYER_ID = B.PLAYER_ID
GROUP BY A.PLAYER_ID, A.AGE
HAVING SUM(B.TOTAL_GOALS) > 50
ORDER BY A.PLAYER_ID, A.AGE DESC
);
```

<u>Output</u>

MAX(AGE)

1 rows returned in 0.00 seconds

Download

4. Select the club that has made more goals.

Query

```
SELECT A.CLUB, SUM(B.TOTAL_GOALS) AS CLUB_GOALS
FROM TEAM_STATS A
LEFT JOIN PLAYER_STATS B
ON A.PLAYER_ID = B.PLAYER_ID
GROUP BY A.CLUB
ORDER BY CLUB_GOALS DESC;
```

Output

CLUB	CLUB_GOALS
Manchester City	104
Leicester City	86
West Ham United	85

5. Write a Query Using SUB-QUERY.

We have sub-query to fetch player information such as Age and Matches played with respect to each player id under 'Liverpool FC' club.

Query

```
SELECT PLAYER_ID, AGE, MATCHES_PLAYED FROM (
SELECT B.*, A.AGE, A.NATIONALITY, A.CLUB FROM PLAYERS A
LEFT JOIN PLAYER_STATS B
ON A.PLAYER_ID = B.PLAYER_ID
)
```

WHERE CLUB = 'Liverpool FC';

<u>Output</u>

PLAYER_ID	AGE	MATCHES_PLAYED
264	20	9
265	28	10
266	19	9
267	25	10
268	23	7
269	28	14
269	28	14
270	29	24