

Scanned by CamScanner

Scanned by CamScanner

The airwest in a contain descrit is measured by an ammeter is a continuous fondown variable X with pdf b(x) = 1/ 0.075 x + 0.2 , 35255 (0.045x+0.2) dx = 0.5. (0.075x+0.2)dx = 0.2781

Scanned by CamScanner

Scanned by CamScanner

NON-STANDARD Notemal Distribution 6 mean y and standard demation of then Z= X-11 has a show named distribution, and the Probability to P(asx5b) = (a-4 5 x-4 6 2 = p (a-4 < 7 < b-4) - p (b-4) - p The bucak down voltage of a reaudouly work diode of a particular type is known to be normally distributed i what is the Brobability that a diode's kneckdown voltage is within I S. D of its mean value. XXX 8 (4-16 X < 4+0). = P (4-0-4 < X-4 < 4+0-4 - 0.8413 - 0.1584.

Scanned by CamScanner

Ž.	
(3	The area conversed by 4-5 and 41-
	O. 6826 (68. 26%) of o the total area.
4	The area covered blue the lights
	4-0 and 4+0 15 0.9544 (95.447) &
15	the total area.
12/9/	Joy Percentile of Standard Nammel distourbation
12/9/1 Thomas	Jag Janes
30	How one b blow o to 1: one
	alkityihution table can be used to cotten
	(100b) the percentile of the standard normal
	distantion.
	For g: D The 99th peneentile of the
	CIA day district australia
4 10 0	the hoter outal axis que that
4444	
	lyt of the value is 0.99.
	P(Z < *) = 0.99
	El 20.09
BORRELL	2.33 -> 0.9501
	P(z < 2.33) = 0.99
Dear I	P(Z (2.33) = 0.33

Scanned by CamScanner

13/9/19 D. The A, B, C Company uses a machine to

Foundatt fill boxes. with soap powder. Assume that

the net weight of the boxes of soap is

normally defaibiled with mean is and standard

denistion 0.8. what proportion of boxes will have not weight of more than 14 pound, 4 = 15 , 0 = 0.8., Xeely X=14 = 1900 = -10 5 = -5 -84 4 = P(Z>-1.25) = exort. = 1-0.1056 = 0.8944. = 89% .46% Hance 82441. of the boxes will have there not weight unger then 14 tound,

classmate It X denote the no. of success in a test

If X 15 normally distributed with 4 100

and \(\tau \) 15 then find Pub. that X docsuot exceed 130 ? X = 130, 4 = 100, 5 = 15 = 2. Assume that the mean higgest of a soldien to be 68.22 indres. with a. Soldieus in a signment of 1000 would you expect to be over 6 feet tall. J= 10.8 o = 110.8 0 = 3-21 · 4 = .68.22 . 3.78 = 1.198 X = 72 -68.22 = 3.29 P(z>1.148) = 1 - p(z < 1.148) =1-0.8449 = 0-1251 = 12.517.

Scanned by CamScanner

what is the Revolo. that a standard. between 1.25 and 2.751. P(#1.25 < Z < 2.75) = p (2.75) - p (1.25) Suppose that blood Chloride our normal distribut with 4 = 104. and a = 5 . what is Brob. Heat. 1) distorte conce 1s less than los. Atmost 105. (ii) relowde cour differs from the. (IV) Does the Ruots depends on the value. of y and s. M= loy, 0=5. (1) X = 105. Z= 105-104 = 1 8(Z(0.2) = p(0.2) = 0.5195. (i) P(Z) = y - q(0.2) = q.4207.

Scanned by CamScanner

GAMMA DISTRIBUTION [(m) = | e-x x n-1 dx. $\int (n+1) = \int_{-\infty}^{\infty} e^{-x} \chi^n dx$ f(x) = e-x x x-1; x 30. Is f(x). a Pdf? (x, 00 x) dx = 1 fe-x x x-1 dz A gamma funct is defined by

(x) = fe-xxx-1 dx, x>0 Properties:-(3/2) = (1/2+1) = 1/2 (1/2) = 1/7. ((1/2) = 3/2 × 1 × 1/x

Scanned by CamScanner

1	Dote Page
J	
AMA	The Parameters & and & by gamma. distribution are known as: Shape Parameter and Scale barrameter nespectively
2697	MEAN AND VARIANCE The mean and variance of a narrow
	Voulable X Maring Januar detribun
N.A.	$M \neq E(x) = x \beta$
	$\sigma^2 = \varepsilon \left(x^2 \right) - \left(\varepsilon (x) \right)^2$
	= X p2 Hanna
MK C	ulion X 15 a standard a grandom variable.
3)	the C.d. F. 15 given by
	$F(x, x) = \int_{-\infty}^{\infty} y^{x-1} e^{-y} dy = 0$ $F(x, x) = \int_{-\infty}^{\infty} y^{x-1} e^{-y} dy = 0$
	(9" 3) is called Incomplete gamma
	Let X' have a gamma distribution with.
	Parameters & and B. Then For any & 2 >0 the C.d.f is given by.
	$P(X \times x) = F(x, x, \beta) = F(x, x)$
	Enlique F (· , x) is incomplete gamma function.

(i) 4 = A + (B - A) X ×+ B (ii) $\sigma^2 = (1-0)^2 10$ 49 * 8 = to 5 49 X84 = 5 = 0.02

Scanned by CamScanner

	CHAPTER -5 (cifto 5.2) age from another to
	JOINT DISTRIBUTION.
	Let X and X be two discrete sandon Variables defined on the sample space. S of an experiment. The foint probably mass function. p(x, y) is defined to each pale of manbers (x, y) by
	Such that $-(i) P(x,y) \ge 0$ (ii) $\underbrace{\sum_{x,y} p(x,y)}_{x,y} = 1$
	MARGINAL PROBABILITY MASS FUNCTION This of X is denoted by Px(2) and is defined by
	$P_{X}(x) = \sum_{y} p(x,y) \text{ for each}.$
39	possible value of x. p(x,y) >0
n's	Similaries the Marginal perolocability mass function of y is denoted by
	Py(y) and is defined by $P_{\gamma}(y) = \sum_{x} p(x, y) \text{ for each}$
	possible value of y + (x, y)>0

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	Con I
0.	The two ormensional standon vourable X, Y have Joret P.M.F
FLER	
1	f(x,y) = x+2y, $x=0,1,2$
Starit	27 9 =0, 1,2
	Colo 1/2 M of W I
	Find the conditional distension of \$ for
	X = X ·
	R(x\m\/-yz)
	P(Y=y; X=xi) = P(x=xi, Y=y;) $P(x=xi)$
14 -0	P(x=xi)
(XII)	
4000	f(x=0, Y=0) = 0.
	P(x=0)
, 1	
14 0	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2}$ $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2}$
2 0	2/1x 4/1x (P(X=0) 24
1//22	1/2 15/17
	12 3/27 P(X=0, Y=2) = 4
12/27	4/27 2/3. P(X=Q) 27
22.2	
	$p \cdot (x=1, y=0) = 1$
	P(x=1) 24
	D/V 1
	P(X=1, Y=1) = .3 $P(X=1) = .3$
	r(x=1) 27
	Plusing
	P(x=1, Y=2) = 5 $P(x=1) = 24$
	P(X=1) 2+

Scanned by CamScanner

Scanned by CamScanner

clarence
23/10/19 P. 23/10/19
23 tedues of
driver a short and
O. An Distouction has given a short quix consisting of two parts, those a mandowly
colleged student a let & denotes the voltes
converd betwee Frust part & devotes no of
polots owned in and part.
suppose that the solut PMF of X and y is given as bollows.
b (x,y) y.
x 5 0.04 0.15 0.20 0.16
10 0.01 0.15 0.14, 0.01
Find (1) Expected no of parets scared is
Find (1) expected no of points sound in
in 2nd part 8.
The pud part
look in the gover recorded in great
poor is the total no. of bod to enough
on the two pants what is the expense
wood store.
Maha Mora (i) E(x) = 5xfx (x) = 5xfx (x) = 5.55
= 0 x fx (0) + 5xfx (0) + 1 x 1 (1)
10 Column = 5 FG
Maha admir (ii) E(Y) = Ey Py (y) = 000 0 x 0 x 0 x 0 x 0 +
5x0.36 + 10 x 0.36 + 15 vo.21
= 8.55 - 8.55

= 100 x 0.5 + 250 x 0.5 = 175 E(Y) = 0x 0.25 + 100 x 0.25 + 200 x 0.5 = 125 E (X+Y) = 175+125 CO Varion Ce no. They Have strongly related. The covariance between two evandous V is debiced by Variables X and Mx= 175 , My= 125. (100-145) (0-125) x 0.2 \$+(100-175 (250-175) × 0.05 + (250-175) (100-125) × 0.15 +

