<u>Réductions algébriques – Démonstrations</u>

Théorème: 🕏

Soit $u \in \mathcal{L}(E)$. Les valeurs propres de u figurent parmi les racines (dans \mathbb{K}) de tout polynôme annulateur de u, c'est-à-dire :

Si
$$P \in \mathbb{K}[X]$$
 est annulateur de u , $Sp(u) \subset \{\lambda \in \mathbb{K} \mid P(\lambda) = 0\}$

Démonstration:

Soit $P \in \mathbb{K}[X]$ un polynôme annulateur de u (ie $P(u) = 0_{\mathcal{L}(E)}$)

Soit $\lambda \in Sp(u)$, alors $\lambda \in \mathbb{K}$ et $\exists x \in E, x \neq 0_E$, tel que $u(x) = \lambda x$.

On montre par récurrence que $\forall k \in \mathbb{N}, u^k(x) = \lambda^k x$:

Initialisation : k = 0

On a $u^0(x) = Id_{\mathcal{L}(E)} = \lambda^0 x$.

Hérédité : Soit $k \in \mathbb{N}$, tel que $u^k(x) = \lambda^k x$.

Alors
$$u^{k+1}(x) = u\left(u^k(x)\right) = u\left(\lambda^k(x)\right) = \lambda^k u(x) = \lambda^k \lambda x = \lambda^{k+1} x$$
.

Notons $P = \sum_{k=0}^{d} a_k X^k (a_0, ..., a_d \in \mathbb{K})$

Alors
$$P(u)(x) = 0_{L(E)}(x) = 0$$

Et
$$P(u)(x) = \left(\sum_{k=0}^{d} a_k u^k\right)(x)$$

$$= \sum_{k=0}^{d} a_k u^k(x)$$

$$= \left(\sum_{k=0}^{d} a_k \lambda^k\right) x$$

$$= P(\lambda) x$$

Ainsi
$$P(\lambda)x = 0$$
 et $x \neq 0_E$

Donc
$$P(\lambda) = 0$$

Propriété : 🖈

Soient $A,B\in M_n(\mathbb{K})$. Si A et B sont semblables, elles ont les mêmes polynômes annulateurs.

<u>Démonstration</u>:

Supposons que A et B sont semblables, alors $\exists Q \in GL_n(\mathbb{K}), B = Q^{-1}AQ$.

Soit
$$P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$$

On montre par récurrence que $\forall k \in \mathbb{N}, B^k = Q^{-1}A^kQ$:

Initialisation : k = 0

$$B^0 = I_n = O^{-1}O = O^{-1}A^0C$$

$$B^0 = I_n = Q^{-1}Q = Q^{-1}A^0Q$$
 Hérédité : Soit $k \in \mathbb{N}$, $B^k = Q^{-1}A^kQ$ Alors $B^{k+1} = B \times B^k = (Q^{-1}AQ)\big(Q^{-1}A^kQ\big) = Q^{-1}AA^kQ = Q^{-1}A^{k+1}Q$

Donc
$$P(B) = \sum_{k=0}^{d} a_k Q^{-1} A^k Q$$

$$= Q^{-1} \left(\sum_{k=0}^{d} a_k A^k \right) Q$$

$$= Q^{-1} P(A) Q$$

$$\operatorname{Donc} P(B) = 0_{M_n(\mathbb{K})} \Longleftrightarrow P(A) = 0_{M_n(\mathbb{K})}$$