MA3220 Ordinary Differential Equations

AY2022/23 Semester 1 · Midterm Examination Cheatsheet · Prepared by Tian Xiao @snoidetx

Differential Equations

Solving a separable ODE

$$y'(t) = P(t)Q(y)$$
$$\int \frac{1}{Q(y)} dy = \int P(t) dt + C$$

Existence & uniqueness of solutions

- 1st order linear ODE: If the functions p and g are continuous on an open interval $I: \alpha < t < \beta$ containing the point $t = t_0$, then for any $y_0 \in \mathbb{R}$, there exists a unique solution to the differential equation y' + p(t)y = g(t) for each t in I, with initial condition $y(t_0) = y_0$.
- 1st order non-linear ODE: Consider the equation y' = f(t,y) with initial condition $y(t_0) = y_0$. If f and $\frac{\partial f}{\partial y}$ are both continuous in some rectangle $R = (\alpha, \beta) \times (\gamma, \delta)$ containing the point (t_0, y_0) , then in some interval $t_0 h < t < t_0 + h$ contained in $\alpha < t < \beta$, there exists a unique solution to the IVP.
- 2nd order linear ODE: If the functions p, q, g are continuous on an open interval $I: \alpha < t < \beta$ containing the point $t = t_0$, then there exists a unique solution to the differential equation y'' + p(t)y' + q(t)y = g(t) for each t in I, with initial condition $y(t_0) = y_0$ and $y'(t_0) = y'_0$.

1st Order ODEs

Terminologies

- Linearity: An ODE is *linear* if it can be written in the form $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1y = P(x)$.
- Homogeneity: P(x) = 0.
- Convexity: If y''(x) > 0, then y(x) is concave; otherwise, it is convex.
- Equilibrium solution: y'(x) = 0.
- Exact equation: An ODE M(x,y)+N(x,y)y'=0 is called an exact ODE if there exists a function $\psi(x,y)$ such that $\frac{\partial \psi}{\partial x}(x,y)=M(x,y)$ and $\frac{\partial \psi}{\partial y}(x,y)=N(x,y)$.
 - If an ODE is exact, $M_y = N_x$.

- If M, N, M_y, N_X are continuous in a simply connected region $D \subset \mathbb{R}^2$, then the equation M(x,y) + N(x,y)y' = 0 is an exact equation if and only if $M_y = N_x$.

Solving a 1st order linear ODE

$$y' + P(x)y = Q(x)$$
Let $\mu(x) = e^{\int P(x)dx}$,
$$\mu'(x) = \mu(x)P(x);$$

$$\mu(x)y' + \mu'(x)y = \mu(x)Q(x)$$

$$\mu(x)y = \int \mu(x)Q(x) dx$$

$$y = \frac{\int \mu(x)Q(x) dx}{\mu(x)y} + C$$

Euler's method

- 1. Partition the interval $[x_0, X]$ into a finite number of mesh points $x_0 < x_1 < \cdots < x_n = X$. If they are uniformly distributed, then the step size $h = \frac{X x_0}{n}$.
- 2. For each $i=1,2,\cdots,n$, obtain the approximate solution y_i by $y_i=y_{i-1}+y'(i-1)h$.

2nd Order ODEs

Superposition principle

For a linear homogenous equation L(y) = 0, if y_1 and y_2 are solutions, then for any constant c_1 and c_2 , the linear combination $c_1y_1 + c_2y_2$ is also a solution

Wronskian and general solution

Let y_1 and y_2 be two solutions of a 2nd order linear homogenous ODE, their Wronskian is defined as

$$W[y_1, y_2](t) := \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$$

Let y_1 and y_2 be two solutions of y'' + p(t)y' + q(t) = 0 in an interval I, with p, q continuous in I. Then $y(t) = c_1y_1 + c_2y_2$ is the general solution in I if and only if $W[y_1, y_2](t_0) \neq 0$ for some $t_0 \in I$.

Abel's theorem

Let y_1 and y_2 be two solutions of y'' + p(t)y' + q(t) = 0 in an interval I, with p, q continuous in I. Then their Wronskian satisfies

$$W[y_1, y_2](t) = ce^{-\int p(t) dt}$$

for some constant c. As a result, W is either always 0 or never 0.

Solving a 2nd order linear homogenous ODE

$$ay'' + by' + c = 0$$

Case I: $\Delta > 0$, $x = \lambda_1$ or λ_2 .

$$y = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

Case II: $\Delta < 0$, $x = \alpha \pm \beta i$.

$$y = e^{\alpha t} (c_1 \cos \beta t + \sin \beta t)$$

Case III: $\Delta = 0$, $x = \lambda$.

$$y = (c_1 + c_2 t)e^{\lambda t}$$

Finding another solution

- Abel's theorem: Plug in the value of $y_1(t)$, $y'_1(t)$ and $ce^{-\int p(t) dt}$ and solve for y_2 . Set c=1 for convenience.
- Reduction of order: Let $y_2(t) = v(t)y_1(t)$ and plug in to the ODE.

• Making the right guess:

g(t)	guess
Ce^{kt}	Ae^{kt}
$C\sin kt; C\cos kt$	$A\sin kt + B\cos kt$
degree- n polynomial	degree- n polynomial
sum of different types of terms	sum of their respective guesses
product of different types of terms	product of their respective guesses

- We handle exceptions by multiplying t to our guess.
- Variation of parameters: For the equation y'' + p(t)y + q(t)y = g(t), let the general solution be $Y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$, where y_1 and y_2 are the solutions to the corresponding homogenous equation. Set $u'_1y_1+u'_2y_2=0$, so that $Y'=u_1y'_1+u_2y'_2$ and $Y''=u'_1y'_1+u_1y''_1+u'_2y'_2+u_2y''_2$. Plug this into the ODE and we get:

$$\begin{cases} u_1'y_1 + u_2'y_2 = 0 \\ u_1'y_1' + u_2'y_2' = g(t) \end{cases}$$

Solve this simultaneous equation and we get:

$$\begin{cases} u_1(t) = -\int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} dt + c_1 \\ u_2(t) = -\int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} dt + c_2 \end{cases}$$

- Using power series: A power series centered at x_0 is an infinite series of the form $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$. Guess y = f(x) and plug into the ODE. Use shift of summation index to get a recurrence relation.
 - Taylor series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

- Convergence radius: Every power series has a convergence radius ρ (can be 0, positive or infinity), such that when $|x-x_0|>\rho$, the series diverges and when $|x-x_0|>\rho$, the series converges absolutely. If f(x) is a polynomial, the power series of the function $\frac{1}{f(x)}$ centered at x_0 has its convergence radius equal to the distance between x_0 and the nearest complex roots of f(x).
- Ratio test for convergence: Consider the expression

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0|$$

If the value < 1, the series converges absolutely at x; if the value = 1, the test is inconclusive; if the value > 1, the series diverges.

$$- f^{(n)}(x_0) = n!a_n.$$

- A point t_0 is called an ordinary point if both p(t) and q(t) are analytical at t_0 ; otherwise it is called a singular point. If t_0 is an ordinary point, then the ODE has a series solution centered at t_0 :

$$y(t) = \sum_{n=0}^{\infty} a_n (t - t_0)^n = a_0 y_1(t) + a_1 y_2(t)$$

Here y_1 and y_2 form a fundamental set of solutions, and their convergence radius is at least the minimum of the convergence radius of p and q.

Appendix: Integrations

Basic

 $-\int k \, dx = kx + C$ $-\int x^n \, dx = \frac{1}{n+1}x^{n+1} + C$ $-\int \frac{1}{x} \, dx = \ln|x| + C$ $-\int e^x \, dx = e^x + C$

Fractional

$$-\int \frac{1}{ax+b} = \frac{1}{a} \ln|ax+b| + C$$

$$-\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$$

$$-\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}(\frac{x}{a}) + C$$

$$-\int \frac{1}{\sqrt{a^2+x^2}} dx = \sinh^{-1}(\frac{x}{a}) + C$$

$$-\int \frac{1}{\sqrt{x^2-a^2}} dx = \cosh^{-1}(\frac{x}{a}) + C$$

$$-\int \frac{1}{a^2-x^2} dx = \frac{1}{a} \tanh^{-1}(\frac{x}{a}) + C$$

$$-\int \frac{1}{a\sqrt{1-x^2}} dx = -^{-1}x + C$$

$$-\int \frac{1}{|x|\sqrt{1+x^2}} dx = -^{-1}x + C$$

Logarithmic

 $-\int \ln x \, dx = x \ln x - x + C$

Trigonometric

$$-\int \cos x \, dx = \sin x + C$$
$$-\int \sin x \, dx = -\cos x + C$$
$$-\int \tan x \, dx = \ln|\sec x| + C$$

$$-\int \sec x \, dx = \ln|\sec u + \tan u| + C$$

$$-\int \sec^2 x \, dx = \tan x + C$$

$$-\int \sec x \tan x \, dx = \sec x + C$$

$$-\int \csc x \cot x \, dx = -\csc x + C$$

$$-\int \csc^2 x \, dx = -\cot x + C$$

$$-\int \sinh x \, dx = \cosh x + C$$

$$-\int \cosh x \, dx = \sinh x + C$$

$$-\int^2 x \, dx = \tanh x + C$$

$$-\int^2 x \, dx = -\coth x + C$$

$$-\int x \tanh x \, dx = -x + C$$

$$-\int x \coth x \, dx = -x + C$$

Appendix: DE

1.
$$M(x) - N(y)y' = 0$$

(Separable) Separate the variables x and y and rewrite the equation as $\int M(x) dx = \int N(y) dy$.

2.
$$y' + P(x)y = Q(x)$$

Multiply both sides by an **integrating** factor $\mu(x) = e^{\int P(x) dx}$:

$$\mu(x)y' + \mu(x)P(x)y = \mu(x)Q(x)$$
$$\mu(x)y = \int \mu(x)Q(x) dx$$

3.
$$y' + P(x)y = Q(x)y^n$$

(Bernoulli) Let $z = y^{1-n}$, then $z' = (1-n)y^{-n}y'$. Hence we have:

$$y^{-n}y' + P(x)y^{1-n} = Q(x)$$

$$\frac{z'}{1-n} + P(x)z = Q(x)$$

and use integrating factor.

4.
$$ay'' + by' + cy = 0$$

Consider the **characteristic equation** $ax^2 + bx + c = 0$ with roots λ_1 and λ_2 :

- If
$$\lambda_1 \neq \lambda_2 \in \mathbb{R}$$
, then $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.

- If
$$\lambda_1 = \lambda_2 \in \mathbb{R}$$
, then $y = (c_1 + c_2 x)e^{\lambda x}$.

- If
$$\lambda_1 \neq \lambda_2 = \alpha \pm \beta i \in \mathbb{C}$$
, then $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$.

5.
$$ay'' + by' + cy = r(x), r(x) \neq 0$$

The goal is to find the **particular** solution y_p :

- If r(x) is in the form of $g(x)e^{kx}$, let $y_p(x) = u(x)e^{kx}$.
- If r(x) is in the form of $g(x) \cos kx$ or $u(x) \sin kx$, let $z(x) = u(x)e^{ikx}$ and take Re(z) or Im(z).