

Regularization for Deep Learning

ADVANCED ARTIFICIAL INTELLIGENCE
JUCHEOL MOON

1

Regularization

- •Regularization is any modification we make to a learning algorithm that is intended to reduce
 - •its generalization (test) error
 - •but not its <u>training</u> error
- Regularization strategies
 - •put extra constraints on a machine learning model
 - •add extra terms in the objective function

Parameter Norm Penalties

- •Limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function *J*.
 - $-\widetilde{J}(\vec{\theta}; \vec{X}, \vec{y}) = \widetilde{J}(\vec{\theta}; \vec{X}, \vec{y}) + \alpha \Omega(\vec{\theta})$
 - •where $\alpha \in [0, \infty)$ is a <u>hyperparameter</u>. • $\alpha = 0$ results in no regularization,

 - •Large α correspond to more regularization.
 - •It is sometimes desirable to use a separate penalty with a different α coefficient for each layer of the network.

3

L² Parameter Regularization

- •Also known as weight decay and ridge regularization
- $-\tilde{J}(\vec{w}; \vec{X}, \vec{y}) = J(\vec{w}; \vec{\chi}, \vec{y}) + \frac{\vec{v}}{2} \vec{w} \vec{v}$
- $\bullet \nabla_{\overrightarrow{w}} \widetilde{J}(\overrightarrow{w}; \overrightarrow{X}, \overrightarrow{y}) = \nabla_{\overrightarrow{v}} J(\overrightarrow{\omega}; \overrightarrow{X}, \overrightarrow{y}) + \nabla_{\overrightarrow{w}} J(\overrightarrow{w}; \overrightarrow{x}, \overrightarrow$
- $\mathbf{w} \leftarrow \mathbf{v} \mathbf{z} \times \mathbf{v} \mathbf{z} \nabla \mathbf{v} \mathbf{z} \nabla \mathbf{v} + \mathbf{v} \mathbf{z} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \nabla \mathbf{v} \mathbf{v} \nabla \mathbf{v} \nabla$
- shrink the weight vector by a constant factor on each step

3

Weight Decay as Constrained Optimization

5

L¹ Parameter Regularization

- •Also known as LASSO regularization
- $-\widetilde{J}(\overrightarrow{w}; \overrightarrow{X}, \overrightarrow{y}) = J(\overrightarrow{w}; \overrightarrow{X}, \overrightarrow{y}) + \alpha \|\overrightarrow{w}\|,$
- $\bullet \vec{w} \leftarrow \vec{w} \epsilon \alpha sign(\vec{w}) \left[-\epsilon \nabla_{\vec{w}} J(w; \vec{X}, \vec{y}) \right]$

6

L² Regularization in Neural Network

$$\widetilde{J}(\overrightarrow{W}, \overrightarrow{b}) = \frac{1}{m} \sum_{i=1}^{m} L(\widehat{y}^{(i)}, y^{(i)}) + \frac{\alpha}{2} \sum_{l=1}^{L} \|\overrightarrow{W}^{(l)}\|_{F}^{2}$$

7

L² Regularization in Neural Network

•In deep neural network

 $\bullet \alpha$ 1. underfitting, $\alpha \downarrow$: overfitting

(1-<u>50</u>) R

L² Regularization in Neural Network

- •In deep neural network
 - • α 1: underfitting, $\alpha \downarrow$: overfitting

9

Dataset Augmentation

•The best way to make a machine learning model generalize better is to train it on more data.

Dataset Augmentation

•One must be careful not to apply transformations that would change the correct class.

11

Semi-Supervised Learning

•Semi-supervised learning usually refers to learning a representation h = f(x)

Examples from the same class have similar representations

Multi-Task Learning

- •The model can generally be divided into two kinds of parts and associated parameters:
 - ■Task-specific parameters (which only benefit from the examples of their task to achieve good generalization)
 - •Generic parameters, shared across all the tasks (which benefit from the pooled data of all the tasks).

13

Early Stopping

•We often observe that training error decreases steadily over time, but validation set error begins to rise again.

Early Stopping version 1

- •Every time the error on the validation set improves, we store a copy of the model parameters.
- •When the training algorithm terminates, we return these parameters, rather than the latest parameters.
- •An additional cost to early stopping is the need to maintain a copy of the best parameters.
 - •This cost is generally negligible.
- •Early stopping requires a validation set, which means some training data is not fed to the model.

15

15

Early Stopping version 2

- •Perform extra training after the initial training with early stopping has completed.
- •In this second training pass, we train for the same number of steps as the early stopping procedure determined was optimal in the first pass.
- •On the second round of training, each pass through the dataset will require more parameter updates because the training set is bigger.

training Valid test

Early Stopping version 2

Algorithm 7.2 A meta-algorithm for using early stopping to determine how long to train, then retraining on all the data.

Let $\boldsymbol{X}^{\text{(train)}}$ and $\boldsymbol{y}^{\text{(train)}}$ be the training set. Split $\boldsymbol{X}^{\text{(train)}}$ and $\boldsymbol{y}^{\text{(train)}}$ into $(\boldsymbol{X}^{\text{(subtrain)}}, \, \boldsymbol{X}^{\text{(valid)}})$ and $(\boldsymbol{y}^{\text{(subtrain)}}, \, \boldsymbol{y}^{\text{(valid)}})$ respectively.

Run early stopping (algorithm 7.1) starting from random $\boldsymbol{\theta}$ using $\boldsymbol{X}^{(\text{subtrain})}$ and $\boldsymbol{y}^{(\text{subtrain})}$ for training data and $\boldsymbol{X}^{(\text{valid})}$ and $\boldsymbol{y}^{(\text{valid})}$ for validation data. This return \boldsymbol{i}^* the optimal number of steps.

Set θ to random values again.

Train on $X^{\text{(train)}}$ and $y^{\text{(train)}}$ for i^* steps.

17

17

Early Stopping

•What is the actual mechanism by which early stopping regularizes the model?

Sparse Representations

- •Meaning of L^1 (or L^2) regularization?
 - •Many of the parameters become zero (or close to zero)
- $\hat{A} = f(h) = f(f(x))$
- Representational sparsity describes a representation where many of the elements of the representation are zero (or close to zero)
- $\bullet \tilde{J}(\theta; X, y) = \mathcal{J} + (\alpha \mathcal{L}(h))^{7}$
 - •For example, $\mathfrak{S}(h) = \|h\|_{L^{\infty}}$

19

19

Ensemble Methods

- •Consider for example a set of k regression models.
 - •Suppose that each model makes an error ϵ_i on each example
 - •with variances $\mathbb{E}[\epsilon_i^2] = \underline{v}$, covariances $\mathbb{E}[\epsilon_i \epsilon_i] = c$
 - •The error made by the average prediction: $\frac{1}{k}\sum_{i} \epsilon_{i}$

•The expected squared error

The expected squared error
$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k}\mathbb{E}\left[\left(\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac$$

Ensemble Methods

The expected squared error

$$-\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k}v + \frac{k-1}{k}c$$

•When the errors are perfectly correlated: c = v

$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k}\left(\mathcal{F}\left(k+1\right)v\right) = \underbrace{v}$$

•When the errors are perfectly uncorrelated: c = 0

$$-\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{\sqrt{k}}{k}$$
 error

The expected squared error of the ensemble decreases linearly with the ensemble size.

21

Bagging

- \blacksquare Bagging involves constructing k different datasets.
 - Each dataset has the same number of examples as the original dataset
 - •but each dataset is constructed by sampling with replacement from the original dataset

Bagging

How bagging works

23

Ensemble in Neural networks

- •Neural networks reach a wide enough variety of solution points that they can often benefit from model averaging even if all of the models are trained on the **same dataset**.
 - differences in random initialization.
 - •random selection of minibatches,
 - differences in hyperparameters

Dropout

- Bagging involves training multiple models, and evaluating multiple models on each test example.
 - •impractical when each model is a large neural network, since training and evaluating such networks is costly in terms of runtime and memory
- •Dropout provides an inexpensive approximation to training and evaluating a bagged ensemble of exponentially many neural networks

25

25

Dropout

- •Dropout trains the ensemble consisting of all sub-networks that can be formed by removing non-output units from an underlying base network.
- •In most modern neural networks, we can effectively remove a unit from a network by multiplying its output value by zero

26

Dropout

- Learn with bagging
 - •we define k different models
 - •construct *k* different datasets by sampling from the training set with replacement
 - •then train model *i* on dataset *i*.
- Dropout aims to approximate this process
 - Each time we load an example into a minibatch,
 - •we randomly sample a different binary mask to apply to all of the input and hidden units in the network.
 - •The mask for each unit is sampled independently.
 - The probability of sampling a mask value of one is a hyperparameter fixed before training begins

27

27

Dropout

- •The models share parameters, with each model inheriting a different subset of parameters from the parent neural network.
- •The models can have different dropout probabilities for the layers.
- Predictions at test phase,
 - •No dropout! (base network)
- •Significant advantage of dropout is that it does not significantly limit the type of model or training procedure that can be used.