

# Distributed tasking problem for track and search

Siarhei Dymkou

**Temasek Laboratories** 

National University of Singapore

T-Lab Building 5A, Engineering Drive 1,05-02 Singapore 117411

#### Introduction



- Recognition;
- Announcement;
- Bidding;
- Awarding;
- Expediting.



- Recognition;
- Announcement;
- Bidding;
- Awarding;
- Expediting.



In this stage, an agent recognises it has a problem it wants help with.

Agent has a goal, and either

- realises it cannot achieve the goal in isolation does not have capability;
- realises it would prefer not to achieve the goal in isolation (typically because of solution quality, deadline, etc)

As a result, it needs to involve other agents.



In this stage, the agent with the task sends out an announcement of the task which includes a specification of the task to be achieved.

Specification must encode:

- description of task itself (maybe executable);
- any constraints (e.g., deadlines, quality constraints).
- meta-task information (e.g.,bids must be submitted by...)

The announcement is then broadcast.



In this stage, the agent with the task sends out an announcement of the task which includes a specification of the task to be achieved.

Specification must encode:

- description of task itself (maybe executable);
- any constraints (e.g., deadlines, quality constraints).
- meta-task information (e.g.,bids must be submitted by...)

The announcement is then broadcast.



UAVs that receive the announcement decide for themselves whether they wish to bid for the task.

#### Factors:

- agent must decide whether it is capable of expediting task;
- agent must determine quality constraints and price information (if relevant).

If they do choose to bid, then they submit a tender.



UAVs that receive the announcement decide for themselves whether they wish to bid for the task.

#### Factors:

- agent must decide whether it is capable of expediting task;
- agent must determine quality constraints and price information (if relevant).

If they do choose to bid, then they submit a tender.



Agent that sent task announcement must choose between bids and decide who to "award the contract" to.

The result of this process is communicated to agents that submitted a bid.



Agent that sent task announcement must choose between bids and decide who to "award the contract" to.

The result of this process is communicated to agents that submitted a bid.

The successful contractor then expedites the task.

May involve generating further manager-contractor relationships: sub-contracting.

May involve another contract net.

| Manager<br>UAV | Contractor<br>1 | Contractor<br>2 | Contractor <i>n</i> |
|----------------|-----------------|-----------------|---------------------|
|                |                 |                 |                     |
|                |                 |                 | 1                   |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |
|                |                 |                 |                     |









#### **Issues for Implementing Contract Net**

#### How to. . .

- ... specify tasks?
- ... specify quality of service?
- ... decide how to bid?
- ... select between competing offers?
- ... differentiate between offers based on multiple criteria?



- A bundle of targets,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1},..., au_{i| au_i|}\}$

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values |
|--------|------------|------------|------------|----------------|--------|
| Bandle |            |            |            |                |        |
| Path   |            |            |            |                |        |
| Time   |            |            |            |                |        |



- A bundle of targets,  $\mathbf{b}_i \doteq \{b_{i1}, ..., b_{i|\mathbf{b}_i|}\}$
- A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1},..., au_{i| au_i|}\}$

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



Recognition phase
Type of target (static or moving);

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



|        |            |            | $\smile$   |                |                  |
|--------|------------|------------|------------|----------------|------------------|
| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



|        |            |            | <u> </u>   |                |                          |
|--------|------------|------------|------------|----------------|--------------------------|
| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                   |
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}, b_{i2}]$ |
| Path   | $p_{i1}$   |            |            |                | $p_i = [p_{i1}]$         |
| Time   |            |            |            |                |                          |



| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                 |
|--------|------------|------------|------------|----------------|------------------------|
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$       |
| Path   | $p_{i1}$   |            |            |                | $p_i = [p_{i1}]$       |
| Time   | $	au_{i1}$ |            |            |                | $\tau_i = [\tau_{i1}]$ |



| i             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|------------|------------|------------|----------------|------------------|
| Winning Agent | i          |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$   |            |            |                | $y_i = [y_{i1}]$ |



| i             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|--------------|------------|------------|----------------|------------------|
| Bandle        | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$ |
| Winning Agent | i            |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$     |            |            |                | $y_i = [y_{i1}]$ |



Recognition phase

Type of target (static or moving); Do the same until number of static target  $nst \leq 2$ 

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | √          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



| i             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|--------------|------------|------------|----------------|------------------|
| Bandle        | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$ |
| Winning Agent | i            |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$     |            |            |                | $y_i = [y_{i1}]$ |



For example two static targets a found then each UAVs have the following information

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                   |
|---------------|------------|------------|------------|----------------|--------------------------|
| Bandle        | ✓          | ✓          |            |                | $b_k = [b_{k1}, b_{k2}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$ |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$ |



Recognition phase
Type of target (static or moving);

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                           |
|---------------|------------|------------|------------|----------------|----------------------------------|
| Bandle        | ✓          | ✓          | *          |                | $b_k = [b_{k1}, b_{k2}, b_{kk}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$         |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$         |



Recognition phase
Type of target (static or moving);
Check of existence of another new static target, if exist more then 1, select a manager UAV.

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                               |
|---------------|------------|------------|------------|----------------|--------------------------------------|
| Bandle        | ✓          | ✓          | *          | *              | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$             |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$             |



Recognition phase

Then do "Separation procedure": where input are: locations of static targets and

Number of subgroups =Total static target - number of new static targets)

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                               |
|---------------|------------|------------|------------|----------------|--------------------------------------|
| Bandle        | ✓          | ✓          | ¥          | *              | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$             |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$             |



Recognition phase

Then do "Separation procedure": where input are: locations of static targets and

Number of subgroups = current length of bundle |b| - number of new static targets)

|               |           | <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                      |
|---------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|
| k             | $Task_1$  | $Task_2$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Values                               |
| Bandle        |           |           | The state of the s | * | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | $z_k = [z_{kt1}, z_{kt2}]$           |
| WinningBids   | $y_{kt1}$ | $y_{kt2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | $y_k = [y_{kt1}, y_{kt2}]$           |



| k             | $Task_1$  | $Task_2$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Values                               |
|---------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Bandle        |           |           | The state of the s | The state of the s | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $z_k = [z_{kt1}, z_{kt2}]$           |
| WinningBids   | $y_{kt1}$ | $y_{kt2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $y_k = [y_{kt1}, y_{kt2}]$           |

#### **Definition of UAVs and targets**

#### Possible target (task) fields:

- id task id;
- type -task type;
- value -task reward;
- start-task start time (sec);
- end task expiry time (sec);
- duration -task default duration (sec);
- x- task position (meters);
- y-task position (meters);
- z-task position (meters).

#### Possible UAVs fields:

- id- agent id;
- type- agent type;
- avail- agent availability (expected time in sec);
- x- agent position (meters);
- y- agent position (meters);
- z- agent position (meters);
- velocity agent cruise velocity (m/s));
- fuel-(agent fuel per meter)).

#### Manager statecharts



#### Manager UAV (Case 1)

| Manager $UAV_i$ |  |  | Values       |
|-----------------|--|--|--------------|
| Bundle          |  |  | $b_i = []$   |
| Path            |  |  | $p_i = []$   |
| Time            |  |  | $	au_i = []$ |

#### $Performing\ Search$

| Manager $UAV_i$  |  |  | Values     |
|------------------|--|--|------------|
| $Winning\ Agent$ |  |  | $z_i = []$ |
| WinningBids      |  |  | $y_i = []$ |

#### Manager UAV (Case 1)

| Manager $UAV_i$ | $Target_1$ |  | Values       |
|-----------------|------------|--|--------------|
| Bundle          | ¥          |  | $b_i = []$   |
| Path            |            |  | $p_i = []$   |
| Time            |            |  | $	au_i = []$ |

#### $Found\ target$

| Manager $UAV_i$ |  |  | Values     |
|-----------------|--|--|------------|
| Winning Agent   |  |  | $z_i = []$ |
| WinningBids     |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |     |     | Values       |
|-----------------|------------|-----|-----|--------------|
| Bundle          | *          |     |     | $b_i = []$   |
| Path            |            |     |     | $p_i = []$   |
| Time            |            |     |     | $	au_i = []$ |
|                 |            | mov | ing |              |

| Manager $UAV_i$       |  |  | Values     |
|-----------------------|--|--|------------|
| $oxed{Winning Agent}$ |  |  | $z_i = []$ |
| WinningBids           |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values       |
|-----------------|------------|--|--------------|
| Bundle          | <b>√</b>   |  | $b_i = []$   |
| Path            |            |  | $p_i = []$   |
| Time            |            |  | $	au_i = []$ |



Switch to track

| Manager $UAV_i$ | $Target_1$ |      |     | Values       |
|-----------------|------------|------|-----|--------------|
| Bundle          | *          |      |     | $b_i = []$   |
| Path            |            |      |     | $p_i = []$   |
| Time            |            |      |     | $	au_i = []$ |
|                 |            | stat | tic |              |

 Manager  $UAV_i$  Values 

  $Winning\ Agent$   $z_i = []$  

 WinningBids  $y_i = []$ 

| Manager $UAV_i$ | $Target_1$ |  | Values                 |
|-----------------|------------|--|------------------------|
| Bundle          | ¥          |  | $b_i = [b_{i1}]$       |
| Path            | $p_{i1}$   |  | $p_i = [p_{i1}]$       |
| Time            | $	au_{i1}$ |  | $\tau_i = [\tau_{i1}]$ |

Calculate arrival time  $\tau_{i1}(p)$  and corresponding bid  $y_{i1}$ 

| Manager $UAV_i$ |  |  | Values     |
|-----------------|--|--|------------|
| Winning Agent   |  |  | $z_i = []$ |
| WinningBids     |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values               |
|-----------------|------------|--|----------------------|
| Bundle          | *          |  | $b_i = [b_{i1}]$     |
| Path            | $p_{i1}$   |  | $p_i = [p_{i1}]$     |
| Time            | $	au_{i1}$ |  | $	au_i = [	au_{i1}]$ |

Calculate arrival time  $\tau_{i1}(p)$  and corresponding bid  $y_{i1}$ 

| Manager $UAV_i$ | $Target_1$ |  | Values           |
|-----------------|------------|--|------------------|
| Winning Agent   | i          |  | $z_i = [z_{i1}]$ |
| WinningBids     | $y_{i1}$   |  | $y_i = [y_{i1}]$ |

#### Potential contractors statecharts



| Potential Contractor $UAV_j$ |  |  | Values       |
|------------------------------|--|--|--------------|
| Bundle                       |  |  | $b_j = []$   |
| Path                         |  |  | $p_j = []$   |
| Time                         |  |  | $	au_j = []$ |

Performing Search

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values       |
|------------------------------|------------|--|--------------|
| Bundle                       | ¥          |  | $b_i = []$   |
| Path                         |            |  | $p_i = []$   |
| Time                         |            |  | $	au_i = []$ |

 $Recieve\ message$ 

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values                 |
|------------------------------|------------|--|------------------------|
| Bundle                       | ¥          |  | $b_j = [b_{j1}]$       |
| Path                         | $p_{j1}$   |  | $p_j = [p_{j1}]$       |
| Time                         | $	au_{j1}$ |  | $\tau_j = [\tau_{j1}]$ |

Calculate arrival time  $\tau_{j1}(p)$  and corresponding bid  $y_{j1}$ 

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values           |
|------------------------------|------------|--|------------------|
| $Winning\ Agent$             | j          |  | $z_j = [z_{j1}]$ |
| WinningBids                  | $y_{j1}$   |  | $y_j = [y_{j1}]$ |

| $UAV_k$ | $Target_2$   | $Target_k$ | Values                         |
|---------|--------------|------------|--------------------------------|
| Bundle  | $\checkmark$ | <b>√</b>   | $b_k = [b_{k2}, b_{kk}]$       |
| Path    | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$       |
| Time    | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$ |

Performing Tracking

| $UAV_k$ | $Target_1$ | $Target_2$   | $Target_k$ | Values                         |
|---------|------------|--------------|------------|--------------------------------|
| Bundle  | ¥          | $\checkmark$ | ✓          | $b_k = [b_{k2}, b_{kk}]$       |
| Path    |            | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$       |
| Time    |            | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$ |

 $Recieve\ message$ 

| $UAV_k$ | $Target_1$ | $Target_2$   | $Target_k$ | Values                                                  |
|---------|------------|--------------|------------|---------------------------------------------------------|
| Bundle  | <b>√</b>   | $\checkmark$ | ✓          | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} 1)$ |
| Path    |            | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$                                |
| Time    |            | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$                          |

 $Update\ current\ bundle\ of\ targets$ 

| $UAV_k$ | $Target_1$   | $Target_2$   | $Target_k$ | Values                                                  |
|---------|--------------|--------------|------------|---------------------------------------------------------|
| Bundle  | $\checkmark$ | $\checkmark$ | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$ |
| Path    | $p_{k1}$     | $p_{k2}$     | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1} 1)$ |
| Time    |              | $	au_{k2}$   | $	au_{kk}$ | $\tau_k = [\tau_{kk}, \tau_{k2}]$                       |

Update current pass

| $UAV_k$ | $Target_1$   | $Target_2$ | $Target_k$ | Values                                                    |
|---------|--------------|------------|------------|-----------------------------------------------------------|
| Bundle  | $\checkmark$ | ✓          | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$   |
| Path    | $p_{k1}$     | $p_{k2}$   | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$ |
| Time    |              | $	au_{k2}$ | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$                            |

Update current pass

 $\Rightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$ 

| $UAV_k$ | $Target_1$ | $Target_2$ | $Target_k$   | Values                                                                         |
|---------|------------|------------|--------------|--------------------------------------------------------------------------------|
| Bundle  | <b>√</b>   | <b>√</b>   | $\checkmark$ | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$                        |
| Path    | $p_{k1}$   | $p_{k2}$   | $p_{kk}$     | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$                      |
| Time    | $	au_{k1}$ | $	au_{k2}$ | $	au_{kk}$   | $\tau_k \leftarrow (\tau_k \oplus_{n_1*} \tau_{k1}(\mathbf{p}_k \oplus_{n_1*}$ |

 $Update\; current\; pass$ 

 $\Longrightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$ 

| $UAV_k$ | $Target_1$ | $Target_2$ | $Target_k$ | Values                                                                           |
|---------|------------|------------|------------|----------------------------------------------------------------------------------|
| Bundle  | <b>√</b>   | ✓          | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$                          |
| Path    | $p_{k1}$   | $p_{k2}$   | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$                        |
| Time    | $	au_{k1}$ | $	au_{k2}$ | $	au_{kk}$ | $\tau_k \leftarrow (\tau_k \oplus_{n_1 *} \tau_{k1}(\mathbf{p}_k \oplus_{n_1 *}$ |

#### $Update\ current\ pass$

- $\Longrightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$
- $\Longrightarrow$  Then the final score for new task j (which is include  $|b_k|$  targets) is

$$c_{kj}(\mathbf{p}_i) = c_j(\tau_{kj}^*(\mathbf{p}_k \oplus_{n_j^*} j))$$

# Compare bids

For case, when bundle of manager UAV3 was not empty  $|b_3| \neq \emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         | -         |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | -         | -         | $c_{33}$  |

### Compare bids

For case, when bundle of manager UAV3 was not empty  $|b_3| \neq \emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         |           |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | -         | -         | $c_{33}$  |

For case, when bundle of manager UAV3 was empty  $|b_3|=\emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         | -         |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | $c_{31}$  | $c_{32}$  | $c_{33}$  |

### Potential contractors and Manager



#### **Problem statement**

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned}$$

$$\text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\}$$

$$\text{is a vector of assignments for agent}$$

$$subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}.$$

$$\begin{array}{ll} \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned} \\ \text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1},...,x_{iN_t}\} \\ \text{is a vector of assignments for agent} \\ subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}. \end{array}$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$\sum_{i=1}^{N_a} x_{ij} \leq 1, \ \, \forall j \in \mathcal{J} \qquad \text{in the objective function represents} \\ \text{the local reward for agent } i.$$

 $x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$ 

 $N_a$  Number of agents

 $N_t$ - Number of tasks

 $L_t$ - Maximum length of the bundle, i.e. each agent can be assigned a maximum  $L_t$  tasks

 $\mathcal{I}$ - Index set of agents where  $\mathcal{I} \doteq \{1,...,N_a\}$ 

 $\mathcal{J}$ - Index set of tasks where  $\mathcal{J} \doteq \{1,...,N_t\}$ 



#### Problem statement

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned}$$

$$\text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\}$$
is a vector of assignments for agent 
$$subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}.$$

where  $x_{ij} = 1$  if agent i is assigned  $subject \ to: i$ , whose j-th element is  $x_{ij}$ .

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

The summation term in brackets  $\sum_{i=1}^{N_a} x_{ij} \leq 1, \ \, \forall j \in \mathcal{J} \qquad \text{in the objective function represents}$ the local reward for agent i.

 $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$  - The variable length vector represent the path for agent i,an ordered sequence of tasks where the elements are the task indices,  $p_{in} \in \mathcal{J}$  for  $n = 1, ..., |\mathbf{p}_i|$ , i.e. its n-th element is  $j \in \mathcal{J}$ if agent i conducts task j at the n-th point along the path. The current length of the path is denoted by  $|\mathbf{p}_i| \leq L_t$ .

#### Problem statement

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned} \\ \text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\} \\ \text{is a vector of assignments for agent} \\ subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}.$$

$$\begin{array}{ll} \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned} \\ \text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1},...,x_{iN_t}\} \\ \text{is a vector of assignments for agent} \\ subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}. \end{array}$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$\sum_{i=1}^{N_a} x_{ij} \leq 1, \ \, \forall j \in \mathcal{J} \qquad \text{in the objective function represents} \\ \text{the local reward for agent } i.$$

 $x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$ 

An assignment is said to be free of conflicts if each task is assigned to no more than one agent.

### Key assumptions

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$subject \ to:$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

- The score  $c_{ij}$  that agent i obtains by performing task j is defined as a function of the arrival time  $\tau_{ij}$  at which the agent executes the task (or possibly the expected arrival time in a probabilistic setting).
- The arrival time  $\tau_{ij}$  is uniquely defined as a function of the path  $\mathbf{p}_i$  that agent i takes.
- The path  $\mathbf{p}_i$  is uniquely defined by the assignment vector of agent  $i, \mathbf{x}_i$ .

# **Key assumptions**

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$subject \ to:$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

- Probabilistic setting).

  The score  $c_{ij}$  that agent i obtains by performing task j is defined as a function of the arrival time  $\tau_{ij}$  at which the agent executes the task (or possibly the expected arrival time in a probabilistic setting).
- The arrival time  $\tau_{ij}$  is uniquely defined as a function of the path  $\mathbf{p}_i$  that agent i takes.
- The path  $p_i$  is uniquely defined by the assignment vector of agent  $i, x_i$ .

An example is the problem involving time-discounted values of targets, in which the sooner an agent arrives at the target, the higher the reward it obtains. Or for scenario involves re-visit tasks, where previously observed targets must be revisited at some scheduled time. In this case the score function would have its maximum at the desired re-visiting time and lower values at other re-visit times.

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$ 
  - of variable length whose elements are defined by  $b_{in} \in \mathcal{J}$  for  $n=1,...,|\mathbf{b}_i|$ . The current length of the bundle is denoted by  $b_i$ , which cannot exceed the maximum length  $L_t$ , and an empty bundle is represented by  $b_i = \emptyset$  and  $|\mathbf{b}_i| = 0$ . The bundle represents the tasks that agent i has selected to do, and is ordered chronologically with respect to when the tasks were added (i.e. task  $b_{in}$  was added before task  $b_{i(n+1)}$ ).
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_i|}\}$
- lacksquare A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$

whose elements are defined by  $p_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$  for  $n=1,...,|\mathbf{b}_i|$ . The path contains the same tasks as the bundle, and is used to represent the order in which agent i will execute the tasks in its bundle. The path is therefore the same length as the bundle, and is not permitted to be longer than  $L_t$ ;  $|\mathbf{p}_i| = |\mathbf{b}_i| \leq L_t$ .

- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- lacksquare Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- A vector of times  $\tau_i \doteq \{\tau_{i1},...,\tau_{i|\tau_i|}\}$  whose elements are defined by  $\tau_{in}$  for  $n=1,...,|\tau_i|$ . The times vector represents the corresponding times at which agent i will execute the tasks in its path, and is necessarily the same length as the path.
- lacksquare A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- lacksquare Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_{i}|}\}$
- A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$  where each element  $z_{ij} \in \{\mathcal{I} \cup \emptyset\}$  for  $j=1,...,N_t$  indicates who agent i believes is the current winner for task j. Specifically, the value in element  $z_{ij}$  is the index of the agent who is currently winning task j according to agent i, and is  $z_{ij} = \emptyset$ ; if agent i believes that there is no current winner.
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$  where the elements  $y_{ij} \in [0,\infty)$  represent the corresponding winners bids and take the value of 0 if there is no winner for the task.
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_{i}|}\}$

through a neighboring agent.

- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$  where each element  $s_{ik} \in [0,\infty)$  for  $k=1,...,N_a$  represents the timestamp of the last information update agent i received about agent k, either directly or

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$



Each agent must carry these vectors of information in order to be able to perform decentralized algorithm which consists of iterations between two phases:

a bundle building phase where each vehicle greedily generates an ordered bundle of tasks, and a

consensus phase where conflicting assignments are identified and resolved through local communication between neighboring agents

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$



Algorithm will iterates between these two phases until no changes to the information vectors occur anymore.



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values |
|--------|----------|----------|----------|--------------|--------|
| Bandle | ✓        |          | ✓        |              |        |
| Path   |          |          |          |              |        |
| Time   |          |          |          |              |        |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                   |
|--------|----------|----------|----------|--------------|--------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$ |
| Path   |          |          |          |              |                          |
| Time   |          |          |          |              |                          |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                   |  |  |
|--------|----------|----------|----------|--------------|--------------------------|--|--|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$ |  |  |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$ |  |  |
| Time   |          |          |          |              |                          |  |  |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

|        | $v_{J} = ( \ ) \ ) \ ( \ ) \ v_{J} $ |          |          |              |                                   |  |  |
|--------|--------------------------------------|----------|----------|--------------|-----------------------------------|--|--|
| i      | $Task_1$                             | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |  |  |
| Bandle | 1                                    |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |  |  |
| Path   | 2                                    |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |  |  |
| Time   | 20                                   |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |  |  |

# **Agent Information**



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

# **Agent Information**



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

i  $Task_1$   $Task_2$   $Task_k$   $Task_{N_t}$  Values  $Winning\ Agent$  2 4 i k  $z_i = [z_{21}, z_{42}, z_{ik}, z_{kN_t}]$   $Winning\ Bids$ 

# **Agent Information**



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

Calculate a score  $c_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                         |
|--------|----------|----------|----------|--------------|--------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$       |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$       |
| Time   | 20       |          | 10       |              | $	au_i = [	au_{i1}, 	au_{i2}]$ |

Calculate a score  $c'_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

Calculate a score  $c_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we "insert" the task in some location  $n_j$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we first "insert" the task in some location  $n_j$ 

And new path becomes  $(\mathbf{p}_i \oplus_{n_j} j)$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        | 2            |                                   |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we first "insert" the task in some location  $n_j$ 

And new path becomes  $(\mathbf{p}_i \oplus_{n_j} j)$  and second calculate the optimal execution time for this new path:

$$\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j) = \max_{\tau_{ij} \in [0,\infty)} c_j(\tau_{ij})$$

$$subject \ to:$$

$$\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j) = \tau_{ik}^*, \forall k \in \mathbf{p}_i$$



| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

 $\Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .

$$\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j) = \max_{\tau_{ij} \in [0,\infty)} c_j(\tau_{ij})$$

$$subject \ to:$$

$$\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j) = \tau_{ik}^*, \forall k \in \mathbf{p}_i$$

| _ |        |          |          |          |              |                                   |
|---|--------|----------|----------|----------|--------------|-----------------------------------|
|   | i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|   | Bandle | 1        | *        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
|   | Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
|   | Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

 $<sup>\</sup>Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .

 $<sup>\</sup>Longrightarrow$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j (\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

- $\implies$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .  $\implies$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j(\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$   $\implies$  Final score for task j is  $c_{ij}(\mathbf{p}_i) = c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j^*} j))$

| i      | $Task_1$ | $Task_2$   | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|------------|----------|--------------|-----------------------------------|
| Bandle | 1        | <b>→</b> ⅓ | 2        | ¥.           | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |            | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |            | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

- $\Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .
- $\Longrightarrow$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j (\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$
- $\Longrightarrow$  Final score for task j is  $c_{ij}(\mathbf{p}_i) = c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j^*} j))$
- Final step is to select the highest scoring task to add to the bundle
- $j^* = \max_{j \notin \mathbf{p}_i} c_{ij}(\mathbf{p}_i) h_{ij}$ , where  $h_{ij} = \mathbf{I}(c_{ij}(\mathbf{p}_i) > y_{ij})$  the indicator function

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                    |
|--------|----------|----------|----------|--------------|-----------------------------------------------------------|
| Bandle | 1        | <b>√</b> | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$ |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$                                  |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$                         |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                        |
|--------|----------|----------|----------|--------------|---------------------------------------------------------------|
| Bandle | 1        | <b>√</b> | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$     |
| Path   | 2        |          | 1        |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$                             |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i                                   | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                          |
|-------------------------------------|----------|----------|----------|--------------|-------------------------------------------------------------------------------------------------|
| Bandle                              | 1        |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                       |
|                                     | ✓        | <b>√</b> | ✓        |              |                                                                                                 |
| Path                                |          |          |          |              | $\mathbf{p} \cdot \leftarrow (\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}^*)$ |
|                                     | 2        |          | 1        |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                   |
| Time                                |          |          |          |              | - / (- · · · · · · · · · · · · · · · · · ·                                                      |
| $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ | 20       |          | 10       |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$  |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                         |
|--------|----------|----------|----------|--------------|------------------------------------------------------------------------------------------------|
| Bandle | 1        |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                      |
|        | <b>√</b> | <b>√</b> | <b>√</b> |              |                                                                                                |
| Path   |          |          |          |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                  |
|        | 2        |          | 1        |              | J T                                                                                            |
| Time   |          |          |          |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |
|        | 20       |          | 10       |              |                                                                                                |

| i             | $Task_1$ | $Task_2$                | $Task_k$ | $Task_{N_t}$ | Values                            |
|---------------|----------|-------------------------|----------|--------------|-----------------------------------|
| Winning Agent | i        | i                       | i        | k            | $z_i = [z_{i1}, z_{i2}, \ldots]$  |
| WinningBids   | 9        | $c_{ij*}(\mathbf{p}_i)$ | 8        | 7            | $y_i = [y_{i1}, 	extbf{y_{i2}},]$ |

| i       | $Task_1$     | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                         |
|---------|--------------|----------|----------|--------------|------------------------------------------------------------------------------------------------|
| Bandle  | 1            |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                      |
| Danac   | $\checkmark$ | <b>√</b> | <b>√</b> |              | $\mathbf{D}_{i} \leftarrow (\mathbf{D}_{i} \cup end \mathbf{J}^{-})$                           |
| Path    |              |          |          |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                  |
| 1 acre  | 2            |          | 1        |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \cup n_{j^*} J)$                                        |
| Time    |              |          |          |              | $\tau \leftarrow (\tau \cdot \Phi - \tau^*) (\mathbf{p} \cdot \Phi - i^*)$                     |
| 1 11116 | 20           |          | 10       |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |

Bundle recursion continues until  $|\mathbf{b}_i| = L_t$  or  $h_{ij} = 0$  for all  $j \notin \mathbf{p}_i$ 

| i             | $Task_1$ | $Task_2$                | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|-------------------------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | i                       | i        | k            | $z_i = [z_{i1}, 	extbf{z_{i2}},]$          |
| WinningBids   | 9        | $c_{ij*}(\mathbf{p}_i)$ | 8        | 7            | $y_i = [y_{i1}, \textcolor{red}{y_{i2}},]$ |

#### Consensus

| i, (receiver) | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                          |
|---------------|----------|----------|----------|--------------|---------------------------------|
| Winning Agent |          |          |          |              | $z_i = [z_{i1}, z_{i2},]$       |
| WinningBids   |          |          |          |              | $y_i = [y_{i1}, y_{i2}, \dots]$ |

 $Update: z_{ij} = z_{kj}, \quad y_{ij} = y_{kj}$ 

Reset:  $z_{ij} = \emptyset$ ,  $y_{ij} = 0$ 

Leave:  $z_{ij} = z_{ij}, \quad y_{ij} = y_{ij}$ 

| k, (sender)   | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|---------------|----------|----------|----------|--------------|----------------------------------|
| Winning Agent |          |          |          |              | $z_k = [z_{k1}, z_{k2}, \ldots]$ |
| WinningBids   |          |          |          |              | $y_k = [y_{k1}, y_{k2}, \dots]$  |

#### **Decision Rules**

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                                                         |
|------------------------------|------------------------------|-------------------------------------------------------------------------|
| k                            | i                            | if $y_{kj} > y_{ij} \rightarrow update$                                 |
| k                            | k                            | update                                                                  |
| k                            | $m \not \in \{i,k\}$         | $if \ s_{km} > s_{im} \ \text{or} \ y_{kj} > y_{ij} \rightarrow update$ |
| k                            | none                         | update                                                                  |

$$s_{ik} = \begin{cases} \tau_r(i.e. \ message \ reception \ time), & if \ g_{ik} = 1; \\ \max\{s_{mk} | m \in \mathcal{I}, g_{im} = 1\}, & otherwise \end{cases}$$

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                  |
|------------------------------|------------------------------|----------------------------------|
| i                            | i                            | leave                            |
| i                            | k                            | reset                            |
| i                            | $m \not \in \{i,k\}$         | $if \ s_{km} > s_{im} \to reset$ |
| i                            | none                         | leave                            |

# **Decision Rules**

| $m \not \in \{i,k\}$ | i                      | if $s_{km} > s_{im}$ and $y_{kj} > y_{ij} \rightarrow update$                                                                                                                                        |
|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $m \not \in \{i,k\}$ | k                      | $if \ s_{km} > s_{im} \rightarrow update$ $else \rightarrow reset$                                                                                                                                   |
| $m \not \in \{i,k\}$ | m                      | $s_{km} > s_{im} \rightarrow update$                                                                                                                                                                 |
| $m  ot\in \{i,k\}$   | $n \not \in \{i,k,m\}$ | $if \ s_{km} > s_{im} \ and \ s_{kn} > s_{in} \rightarrow update$ $if \ s_{km} > s_{im} \ and \ y_{kj} > y_{ij} \rightarrow update$ $if \ s_{kn} > s_{in} \ and \ s_{im} > s_{km} \rightarrow reset$ |
| $m \not \in \{i,k\}$ | none                   | $if \ s_{km} > s_{im} \rightarrow update$                                                                                                                                                            |

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                         |  |
|------------------------------|------------------------------|-----------------------------------------|--|
| none                         | i                            | leave                                   |  |
| none                         | k                            | update                                  |  |
| none                         | $m \not \in \{i,k\}$         | $if s_{km} > s_{im} \rightarrow update$ |  |
| none                         | none                         | leave                                   |  |

#### **Decision Rules**

| i, (receiver) | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|---------------|----------|----------|----------|--------------|----------------------------------|
| Winning Agent |          |          |          |              | $z_i = [z_{i1}, z_{i2}, \ldots]$ |
| WinningBids   |          |          |          |              | $y_i = [y_{i1}, y_{i2}, \dots]$  |

 $Update: z_{ij} = z_{kj}, \quad y_{ij} = y_{kj}$ 

 $Reset: z_{ij} = \emptyset, \quad y_{ij} = 0$ 

 $\underline{Leave}: \ z_{ij} = z_{ij}, \ y_{ij} = y_{ij}$ 

| k, (sender)      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|------------------|----------|----------|----------|--------------|----------------------------------|
| $Winning\ Agent$ |          |          |          |              | $z_k = [z_{k1}, z_{k2}, \ldots]$ |
| WinningBids      |          |          |          |              | $y_k = [y_{k1}, y_{k2},]$        |

Calculate marginal score for all tasks

$$c_{ij}(\mathbf{p}_i) = \begin{cases} 0, & if \ j \in \mathbf{p}_i; \\ \max_{n \le l_b} S_{path}(\mathbf{p}_i \oplus_n j) - S_{path}(\mathbf{p}_i), & otherwise \end{cases}$$

- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable

$$h_{ij} = \mathbf{I}(c_{ij}(\mathbf{p}_i) > y_{ij}), \forall j \in \mathcal{J}$$

- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$

$$j^* = \max_{j \in \mathcal{J}} c_{ij} h_{ij}$$
$$n_j^* = \max_{n \in \{0, \dots, l_b\}} S_{path}(\mathbf{p}_i \oplus_n j^*)$$

- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information

$$\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{l_b} j^*)$$

$$\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_j^*} j^*)$$

- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors

$$y_{i(j^*)} = c_{i(j^*)}$$

$$z_{i(j^*)} = i$$

• if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- $\blacksquare$  if  $l_b = L_t$ , then return, otherwise, go to 1.

#### Simulation



#### The end

#### Thank you!