Math 240B: Real Analysis, Winter 2020

Homework Assignment 6

Due Wednesday, February 26, 2020

- 1. Let A and B be two subsets of a topological space X. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 2. Let X be a topological space, U an open subset of X, and A a dense subset of X. Prove that $\overline{U} = \overline{U \cap A}$.
- 3. Prove that every separable metric space is second countable.
- 4. Prove that any metric space (X, ρ) is normal, i.e., for any disjoint closed sets A and B of X, there are disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- 5. Let X and Y be two topological spaces. Let $f: X \to Y$ be given. Prove that the following are equivalent:
 - (1) $f: X \to Y$ is continuous;

 - (2) $\underline{f(\overline{A})} \subseteq \overline{f(A)}$ for all $A \subseteq X$; (3) $\underline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for all $B \subseteq Y$.
- 6. Let X be a topological space and $A \subseteq X$ a closed subset. Assume that $g \in C(A)$ satisfies g=0 on ∂A . Prove that the extension of g to X defined by g(x)=0 for $x \in A^c$ is continuous.
- 7. Let X be a topological space and Y a Hausdorff space. Let f and g be continuous maps from X to Y. Prove the following:
 - (1) The set $\{x \in X : f(x) = g(x)\}\$ is closed subset of X;
 - (2) If f = g on a dense subset of X, then f = g on all of X.
- 8. Prove the following:
 - (1) If X_n (n=1,2,...) are first countable topological spaces, then the product space $\prod_{n=1}^{\infty} X_n$ is also first countable;
 - (2) If X_n (n = 1, 2, ...) are second countable topological spaces, then the product space $\prod_{n=1}^{\infty} X_n$ is also second countable.
- 9. Let X be a topological space, (Y, ρ) a complete metric space, and $\{f_n\}_{n=1}^{\infty}$ a sequence of maps from X to Y. Assume that $\sup_{x\in X} \rho(f_n(x), f_m(x)) \to 0$ as $m, n \to \infty$. Prove that there is a unique map $f: X \to Y$ such that $\sup_{x \in X} \rho(f_n(x), f(x)) \to 0$ as $n \to \infty$. Moreover, if each f_n is continuous, so is f.