Statistical Inference Course Project 1

Introduction

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

```
library(ggplot2)

p <- rexp(40, 0.2)

g = ggplot(data.frame(p = p), aes(x = p))

g = g + geom_histogram(color = "gray", fill = "blue") + labs(title = "Distribution of rexp(40, 0.2)")

print(g);
```


From the above graph, we can see that the distribution is similar to an exponential function. Next graph is the distribution of 1000 averages of 40 random rexp(40, 0.2).

Distribution of 1000 averages of 40 random rexp(40, 0.2)

In the above plot the red line shows the theoretical center of the distribution which is 5 (1 / 0.2). The blue line shows the center of the distribution. It is evident that both are very close. The actual mean of the distribution is shown below

print(mean(mns));

##5.026728

➤ The variance of the 1000 averages of 40 random rexp(40, 0.2) is shownd as below.

print(var(mns))

##0.5072297

> The theoretical variance of the distribution should be (1/lambda)^2/n which shownd as below

(1/0.2)^2/40

##0.625

The mean and variance of the 1000 averages of 40 random rexp(40, 0,2), and the plot, confirm this distribution is approximately normal.