Jingmin Huang, Wei Zhao and Renjie Zhong*

Renmin University of China

2024 CCER Summer Institute June 30, 2024

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- 5 Main Result of Binary Situation
- 6 General Case

data is trained to make predictions to improve the quality of decision making under uncertainty

- data is trained to make predictions to improve the quality of decision making under uncertainty
- data buyer, endowed with private dataset, seeks to augment the private data and refine the initial prediction by purchasing more data

- data is trained to make predictions to improve the quality of decision making under uncertainty
- data buyer, endowed with private dataset, seeks to augment the private data and refine the initial prediction by purchasing more data
- data seller versions the training data and designs the associated tariff to screen buyers with different private training data

- data is trained to make predictions to improve the quality of decision making under uncertainty
- data buyer, endowed with private dataset, seeks to augment the private data and refine the initial prediction by purchasing more data
- data seller versions the training data and designs the associated tariff to screen buyers with different private training data
- our question: what is the optimal data selling mechanism?

- data is trained to make predictions to improve the quality of decision making under uncertainty
- data buyer, endowed with private dataset, seeks to augment the private data and refine the initial prediction by purchasing more data
- data seller versions the training data and designs the associated tariff to screen buyers with different private training data
- our question: what is the optimal data selling mechanism?
- two screening toolkits: prediction accuracy of data and price

• two states : ω_1 (null hypothesis), ω_2 (alternative hypothesis), prior: $\mu_0 = (\frac{1}{2}, \frac{1}{2})$

- two states : ω_1 (null hypothesis), ω_2 (alternative hypothesis), prior: $\mu_0 = (\frac{1}{2}, \frac{1}{2})$
- the predictions s'_1, s'_2 of private data, with data structure $\Pr(s'_i|\omega_i) = \pi'_i$, split the prior into two "interim" beliefs

$$(\frac{1}{2},\frac{1}{2}) = \Pr(\mu_1)(\mu_1,1-\mu_1) + \Pr(\mu_2)(1-\mu_2,\mu_2), \ \mu_1, \ \mu_2 \ge \frac{1}{2}$$

 $(\mu_1,1-\mu_1)$ identifies true state as ω_1 , $(1-\mu_2,\mu_2)$ identifies true state as ω_2

Private Data $(1 \ge \pi'_1, \pi'_2 \ge 0.5)$

- two states : ω_1 (null hypothesis), ω_2 (alternative hypothesis), prior: $\mu_0 = (\frac{1}{2}, \frac{1}{2})$
- the predictions s_1', s_2' of private data, with data structure $\Pr(s_j'|\omega_i) = \pi_{ij}'$, split the prior to two posteriors

$$(\frac{1}{2},\frac{1}{2}) = \Pr(\mu_1)(\mu_1,1-\mu_1) + \Pr(\mu_2)(1-\mu_2,\mu_2), \ \mu_1,\ \mu_2 \geq \frac{1}{2}$$

$$(1-\mu_2,\mu_2) \text{ identifies true state as } \omega_2 \Rightarrow \text{Type I error } \alpha = \Pr(\mu_2)(1-\mu_2)$$

$$(\mu_1,1-\mu_1) \text{ identifies true state as } \omega_1 \Rightarrow \text{Type II error } \beta = \Pr(\mu_1)(1-\mu_1)$$

• data = (α, β) = a bundle of statistical error

purchased data refines the initial predictions (s'_1, s'_2) , if combined with the private data

purchased data refines the initial predictions (s'_1, s'_2) , if combined with the private data

- the predictions is in the form of (s_i, s_j) ,
 - s_i is the refinement of prediction s'_1 , s_j is the refinement of prediction s'_2
- a specific data structure (π_1, π_2) : reduces Type i error by π_i ratio

 π_i : probability inducing **Type i** error from identifying ω_{-i} in ω_i

finement inal Predic			<i>s</i> ₂ ′							
E	(s_1, s_1)	(s_1, s_2)	(s_2, s_1)	(s_2, s_2)	Ε	(s_1,s_1)	(s_1,s_2)	(s_2, s_1)	(s_2,s_2)	
ω_1	π_{11}	π_{12}	π_{13}	π_{14}	ω_1	$1-\pi_1$	π_1	0	0	
ω_2	π_{21}	π_{22}	π_{23}	π_{24}	ω_2	0	π_2	0	$1-\pi_2$	

Supplement Training Data

A Subclass of Supplement Data

■ purchased data + private data = ?

- purchased data + private data = ?
- the data buyer chooses to minimize the overall error by
 - 1 either combining the two datasets \Rightarrow error $= \alpha \pi_1 + \beta \pi_2$ (Typewise Reduction)
 - 2 or only using the purchased one \Rightarrow error $=\frac{1}{2}\pi_1$ or $\frac{1}{2}\pi_2$

	(a_{1}, a_{1})	(a_1, a_2)	(a_2, a_2)	E_{θ}	(a_1, a_1)	(a_2, a_2)	E_{θ}	(a_1, a_1)	(a_2, a_2)
ω_1						0		$1-\pi_1$	π_1
ω_2	0	π_2	$1-\pi_2$	ω_2	π_2	$1-\pi_2$	ω_2	0	1

combine E with E'

only use E

- purchased data + private data = ?
- the data buyer chooses to minimize the overall error by
 - 1 either combining the two datasets \Rightarrow error $= \alpha \pi_1 + \beta \pi_2$ (Typewise Reduction)
 - 2 or only using the purchased one \Rightarrow error $=\frac{1}{2}\pi_1$ or $\frac{1}{2}\pi_2$

 \blacksquare combine data $\iff \alpha\pi_1 + \beta\pi_2 \leq \min\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$

combination is type-dependent

key observations: not combine low quality data + combination incongruence

■ data = a **bundle of predictions** about different states

- data = a **bundle of predictions** about different states
 - \Rightarrow private data = a bundle of multiple Types of statistical error

- data = a **bundle of predictions** about different states
 - ⇒ private data = a bundle of multiple Types of statistical error
 - \Rightarrow private data generates **multi-dimensional preference** to reduce multiple Types of statistical error

- data = a **bundle of predictions** about different states
 - ⇒ private data = a bundle of multiple Types of statistical error
 - ⇒ private data generates **multi-dimensional preference** to reduce multiple Types of statistical error
- supplement data = refinement of original predictions
 - ⇒ purchased data = **constrained re-allocation** of statistical error (damage goods)
- combination of datasets = re-minimization of statistical error
 - ⇒ correlations in predictions determines the sub-additive or super-additive valuations for combined data

Data, Mechanism Design and Information Design

- to summarize, three attributes of data shapes the design of data selling
 - **1** data as goods is inherently **multi-dimensional** ⇒ design multi-dimensional screening
 - 2 production of data is inherently **constrained** ⇒ production possibility set of datasets
 - 3 the value data is intrinsically **combinatorial** ⇒ design persuasion scheme in screening
- basic trade-off: information rent extraction versus efficient value extraction
- toolkits for designer:

different vectors of statistical error induce:

- horizontal differences in preferences ⇒ products differentiation
- 2 horizontal correlations in allocations ⇒ avoid data distortion and destruction

Main Result

we extend the traditional revelation principle in information design (Kamenica and Gentzkow,2011; Bergemann and Morris,2016; Taneva,2019)

we derive some structural properties of the optimal data sale menu

- we characterize of the implementable set of predictions
- 2 we show that the distortion of purchased data is constrained ("non-dispersed")
- \exists ,in binary state, we can restrict attention to purchased data with the specific form $\mathsf{data} = (\pi_1, \pi_2) \text{ reducing original error } (\alpha, \beta) \text{ Typewise}$

New Statistical Error = $\pi_1 \alpha + \pi_2 \beta$

we explicitly construct the four selling scheme in binary type

- \overline{E} : eliminating all statistical error
- ϕ : no reduction
- 3 E^* : only reduce some Type error by a constant ratio
- 4 $E_{(\alpha,\beta)}$: reduce both Types by **type-contingent** ratio

Zone	Data Menu	Selling Policy	Related Literature
1	$(\overline{E},\overline{E})$	Full Disclosure	Riley & Zeckhauser(1983)
П	(\overline{E},ϕ)	Exclusive	Riley & Zeckhauser(1983)
Ш	(\overline{E}, E^*)	Partial Discrimination	NEW!
IV	$(\overline{E}, E_{(\alpha,\beta)})$	Full Discrimination	Bergemann et al.(2018)

• we then generalize the model to an economic significant situation

Type II error $\beta = constant$, Type I error/significance level $\alpha \sim F_{\alpha}$ with p.d.f f_{α}

• we then generalize the model to an economic significant situation

Type II error $\beta = constant$, Type I error/significance level $\alpha \sim F_{\alpha}$ with p.d.f f_{α}

- optimal mechanism: two-tiered pricing
 - 1 in the first tier, a partially informative data, only reducing Type II error β by a fixed ratio
 - 2 in the second tier, data eliminating all statistical error
 - 3 the threshold is determined similar to the monopolist pricing
- similar to our new prediction in binary situation (zone III)

Figure: Two-tierd Pricing Mechanism

Literature Review

- 1 the design and price of information: Admati and Pfleiderer (1986); Admati and Pfleiderer (1990); Babaioff et al. (2012); Bergemann and Bonatti (2015); Bergemann et al. (2018), Li (2022)
- multi-dimensional screening: Adams and Yellen (1976); McAfee et al. (1989); Armstrong and Rochet (1999); Carroll (2017); Haghpanah and Hartline (2021); Yang (2021); Yang (2022)
- applications of the infinite-dimensional extension of Carathéodory's theorem in economic design: Fuchs and Skrzypacz (2015); Bergemann et al. (2018); Kang (2023); Loertscher and Muir (2023); Dworczak and Muir (2024); Le Treust and Tomala (2019); Doval and Skreta (2024)

- "The Design and Price of Information" (Bergemann et al.,18AER) v.s. Ours
 - 1 applications and interpretations: input data (cookie/history) v.s. training data

- "The Design and Price of Information" (Bergemann et al.,18AER) v.s. Ours
 - 1 applications and interpretations: input data (cookie/history) v.s. training data
 Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery

- "The Design and Price of Information" (Bergemann et al.,18AER) v.s. Ours
 - applications and interpretations: input data (cookie/history) v.s. training data Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy

- applications and interpretations: input data (cookie/history) v.s. training data Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy
- 2 private type: one interim belief v.s. a distribution of "interim" belief

- "The Design and Price of Information" (Bergemann et al.,18AER) v.s. Ours
 - applications and interpretations: input data (cookie/history) v.s. training data

 Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery

 ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy
 - 2 private type: one interim belief v.s. a distribution of "interim" belief ⇒ only one Type of error exists v.s. both Types exist

- "The Design and Price of Information" (Bergemann et al.,18AER) v.s. Ours
 - applications and interpretations: input data (cookie/history) v.s. training data Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy
 - 2 private type: **one** interim belief v.s. a **distribution** of "interim" belief
 - ⇒ only one Type of error exists v.s. both Types exist
 - ⇒ one-preference + multi-allocation v.s. multi-preference + multi-allocation

- applications and interpretations: input data (cookie/history) v.s. training data Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy
- 2 private type: one interim belief v.s. a distribution of "interim" belief
 ⇒ only one Type of error exists v.s. both Types exist
 ⇒ one-preference + multi-allocation v.s. multi-preference + multi-allocation
- 3 economic insights: preference incongruence v.s. preference & combination incongruence Type incongruence = preference incongruence + combination incongruence preference incongruence: horizontal differentiation in information goods combination incongruence: horizontal correlations in data goods allocations

- applications and interpretations: input data (cookie/history) v.s. training data Bergemann et al.(2018): health care providers with access to a patient's family make predictions to enhances health care delivery ours: the purchased medical data is used for training supervised learning models to predict disease diagnosis or drug efficacy
- 2 private type: one interim belief v.s. a distribution of "interim" belief
 ⇒ only one Type of error exists v.s. both Types exist
 ⇒ one-preference + multi-allocation v.s. multi-preference + multi-allocation
- economic insights: preference incongruence v.s. preference & combination incongruence
 Type incongruence = preference incongruence + combination incongruence
 preference incongruence: horizontal differentiation in information goods
 combination incongruence: horizontal correlations in data goods allocations
- 4 predictions: menu of at most two informative input data v.s. two-tiered menu

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- 5 Main Result of Binary Situation
- 6 General Case

Timeline

- 1 the seller posts a mechanism $\mathcal{M} = \{\mathcal{E}, t\}$
 - $oldsymbol{1}$ a collection of experiments ${\mathcal E}$
 - 2 associated tariff $t: \mathcal{E} \to \mathbb{R}_+$
- 2 the buyer (with private experiment) chooses an experiment $E \in \mathcal{E}$ and pays price t(E)
- \blacksquare the true state ω is realized
- 4 the buyer receive two signal realizations to update his belief, one from her private experiment, another from the experiment E he purchased, and she chooses an action a to maximize her expected utility
- 5 payoffs are realized

Individual Decision Problem

- finite states $\Omega = \{\omega_1, ..., \omega_I\}$ and common prior $\mu \in \Delta(\Omega)$, $\mu_i \equiv \mu(\omega_i)$
- the buyer chooses an action to maximize his expected payoff based on his information, from the finite action set $A = \{a_1, ..., a_J\}$
- utility function $u : A \times \Omega \to \mathbb{R}$, $u_{ij} \equiv u(a_j, \omega_i)$

$$\begin{array}{c|cccc} u & a_1 & \cdots & a_J \\ \hline \omega_1 & u_{11} & \cdots & u_{1J} \\ \vdots & \vdots & & \vdots \\ \omega_I & u_{I1} & \cdots & u_{IJ} \\ \end{array}$$

■ hereafter we assume matching utility if $u(a_j, \omega_i) = 1_{i=j}$ and I = J to simplify harmful algebra

Buyer's Private Data

- type θ buyer, with private data E'_{θ} , decides to purchase data E_{θ}
- $E'_{\theta} = \{S, \pi'_{\theta}\}$ consists of signals $S' = \{s'_1, ..., s'_{K}\}$, with $\pi : \omega \to \Delta S$, $\pi'_{\theta i k} \equiv Pr[s'_{k} | \omega_i]$

$$\begin{array}{c|ccccc} E'_{\theta} & s'_1 & \cdots & s'_K \\ \hline \omega_1 & \pi'_{\theta 1 1} & \cdots & \pi'_{\theta 1 K} \\ \vdots & \vdots & & \vdots \\ \omega_I & \pi'_{\theta I 1} & \cdots & \pi'_{\theta I K} \\ \end{array}$$

■ each signal induces a posterior \Rightarrow the agent's type is the **distribution of posteriors**, i.e. $\{\mu_{\theta 1},...,\mu_{\theta K}\}$ with $\Pr(\mu_{\theta k}) = \sum_{i=1}^{I} \mu_i \pi'_{\theta i k}$ for all $k \in 1,...,K$, where $\mu_{\theta k} \in \Delta(\Omega)$

Outside Option without Purchasing Data

- without seller's data, conditioning on the prediction (signal) from the private data he accepted, the buyer chooses an optimal action
- the payoff is his expected value (in signals), constituting the outside option in this mechanism
- lacktriangle optimal action and payoff conditional on accepting s_k' for agent θ :

$$a(s_k' \mid E_\theta) \in \underset{a_j \in A}{\operatorname{arg\,max}} \{\sum_{i=1}^I \mu_{\theta k i} u_{ij}\} \text{ and } u(s_k' \mid E_\theta) \triangleq \underset{j}{\operatorname{max}} \{\sum_{i=1}^I \mu_{\theta k i} u_{ij}\}$$

expected payoff for type θ :

$$u_{\theta} \triangleq \sum_{k=1}^{K} \Pr(\mu_{\theta k}) u(s'_k \mid E_n) = \sum_{k=1}^{K} \max_{j} \left\{ \sum_{i=1}^{I} \mu_i \pi'_{\theta i k} u_{ij} \right\}$$

Value of Data in Individual Decision Problem

- suppose that the buyer combine the prediction from the purchased data with the one from his private data w.l.o.g (order invariance of Bayesian Updating)
- the optimal action and payoff conditional on accepting s_r and s'_k for agent n:

$$a(s_r \mid s_k') \in \underset{a_j \in A}{\operatorname{arg max}} \left\{ \sum_{i=1}^{I} \left(\frac{\mu_{\theta k i} \pi_{ir}}{\sum_{i'=1}^{I} \mu_{\theta k i'} \pi_{i'r}} \right) u_{ij} \right\}$$

$$u(s_r \mid s_k') \triangleq \max_{i} \left\{ \sum_{i=1}^{I} \left(\frac{\mu_{\theta k i} \pi_{ir}}{\sum_{i'=1}^{I} \mu_{\theta k i'} \pi_{i'r}} \right) u_{ij} \right\}$$

lacktriangle expected payoff for type θ :

$$u(\mathsf{E},\theta) \triangleq \sum_{r=1}^{R} \sum_{k=1}^{K} \max_{j} \left\{ \sum_{i=1}^{I} \mu_{i} \pi'_{nik} \pi'_{ir} u_{ij} \right\}$$

■ the value of data: $V(E, \theta) \triangleq u(E, \theta) - u_{\theta}$

Designer's Problem

- lacktriangle the seller posts a menu $\mathcal{M} = \{\mathcal{E}, t\}$ to maximize his profits
- we can restrict to the direct menu $\mathcal{M} = \{E_{\theta}, t_{\theta}\}_{\theta \in \Theta}$ by the revelation principle

Designer's Problem

$$egin{aligned} \max_{\mathcal{M}} \int_{\Theta} t_{ heta} dF(heta) \ V(E_{ heta}, heta) - t_{ heta} &\geq 0, \ orall heta \in \Theta \ V(E_{ heta'}, heta) - t_{ heta'}, \ orall heta, heta' \in \Theta \end{aligned}$$
 (IR)

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- 5 Main Result of Binary Situation
- 6 General Case

Motivation

we need some structural properties of the experiments in the optimal menu to

- drop the maximizer operator ⇒ "revelation principle" (recommendation)
- 2 reduce the dimensions of screening ⇒ structural properties
- 3 tackle the interactions between obedience in information design and mutual IC analysis

"revelation principle" in data selling

- **1** signal set $S \Rightarrow$ action profile $\times_{k=1}^K A$ for all possible posteriors
- 2 signal realization $s \Rightarrow$ recommendation profile $a^r = (a_{r1}, ..., a_{rK})$ for all possible posteriors

Figure: Direct Recommendation Mechanism

binary state $\{\omega_1, \omega_2\}$, binary action $\{a_1, a_2\}$

binary signal induces binary posterior $\{\mu_{\theta 1}, \mu_{\theta 2}\}$, $\frac{\mu_{\theta 1}(\omega_1)}{\mu_{\theta 1}(\omega_2)} > 1 > \frac{\mu_{\theta 2}(\omega_1)}{\mu_{\theta 2}(\omega_2)}$

initial prediction: ω_1 for $\mu_{\theta 1}$, ω_2 for $\mu_{\theta 2}$

only need to design recommendation schemes with a^1 , a^2 , a^4 as below:

reversing the initial prediction $\times \Rightarrow a^3 = (a_2, a_1)$ cannot be implementabled totally wrong predictions, (a_1, a_1) in ω_2 , (a_2, a_2) in ω_1 , are always undesirable π_i : probability inducing (dis-utility from) Type i error from choosing a_{-i} in ω_i

 π_i : probability inducing (dis-utility from) **Type i** error from choosing a_{-i} in ω_i $a^1=(a_1,a_1),\ a^4=(a_2,a_2)$ are always obeyed for any θ' obedience of $a^2=(a_1,a_2)$ for θ : whether to combine the private dataset with binary type, $a^2=(a_1,a_2)$ should be obeyed for any θ' in the optimal menu

	(a_1, a_1)	(a_1, a_2)	(a_2, a_2)	E_{θ}	(a_1,a_1)	(a_2, a_2)	E_{θ}	(a_1,a_1)	(a_2, a_2)
ω_1	$1-\pi_1$	π_1	0	ω_1	1	0	ω_1	$1-\pi_1$	π_1
ω_2	0	π_2	$1-\pi_2$	ω_2	π_2	$1-\pi_2$	ω_2	0	1
Line Forth Fl									

combine E with E'

only use E

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- 5 Main Result of Binary Situation
- 6 General Case

Binary Situation

- binary state $\{\omega_1, \omega_2\}$, action $\{a_1, a_2\}$, type $\{\theta, \theta'\}$, and posterior
- common prior $\mu=(\frac{1}{2},\frac{1}{2})$, uniform type distribution $\Pr(\text{type }\theta)=\frac{1}{2}$
- to simplify the notation, denote the two type as:

$$\mu = \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$= \frac{\mu_2 - \frac{1}{2}}{\mu_1 + \mu_2 - 1} (\mu_1, 1 - \mu_1) + \frac{\mu_1 - \frac{1}{2}}{\mu_1 + \mu_2 - 1} (1 - \mu_2, \mu_2)$$

$$= \frac{\mu'_2 - \frac{1}{2}}{\mu'_1 + \mu'_2 - 1} (\mu'_1, 1 - \mu'_1) + \frac{\mu'_1 - \frac{1}{2}}{\mu'_1 + \mu'_2 - 1} (1 - \mu'_2, \mu'_2)$$

■ suppose $\mu_1, \mu'_1, \mu_2, \mu'_2 > \frac{1}{2}$ and $V(\bar{E}, \theta) \geqslant V(\bar{E}, \theta')$ w.l.o.g

 \bar{E} : fully informative experiment with $\pi(s_i|\omega_i)=1$ for i=1,2

Economic Interretation for (α, β)

lacksquare now the private type $\theta=(\alpha,\beta)$ and $\theta'=(\alpha',\beta')$

$$\alpha = \underbrace{\frac{\left(\mu_{1} - \frac{1}{2}\right)}{\mu_{1} + \mu_{2} - 1}}_{\text{market share}} \underbrace{\frac{\left(1 - \mu_{2}\right)}{V(\bar{E}, (\mu_{2}, 1 - \mu_{2}))}}_{V(\bar{E}, (\mu_{2}, 1 - \mu_{2}))} \beta = \underbrace{\frac{\mu_{2} - \frac{1}{2}}{\mu_{1} + \mu_{2} - 1}}_{\text{market share}} \underbrace{\frac{\left(1 - \mu_{1}\right)}{V(\bar{E}, (\mu_{1}, 1 - \mu_{1}))}}_{V(\bar{E}, (\mu_{1}, 1 - \mu_{1}))}$$

- lacktriangleq lpha and eta represent the (dis-utility) from Type I error and Type II error respectively, reflecting the **prediction accuracy** of private data
- the higher Type *i* error, the stronger **preference** for reducing that Type
- **vertical preference**: overall statistical error $\alpha + \beta$
- lacktriangle horizontal preference: different Types of statistical error lpha and eta

Designer's Problem

by the shared responsiveness, the obedience constraint is:

$$\underbrace{\max\left\{\alpha\pi_{1}+\beta\pi_{2},\alpha'\pi_{1}+\beta'\pi_{2}\right\}}_{\text{error when obeying }(a_{1},a_{2})}\leqslant \underbrace{\min\left\{\frac{1}{2}\pi_{1},\frac{1}{2}\pi_{2}\right\}}_{\text{error when choosing }(a_{1},a_{1})\text{ or }(a_{2},a_{2})}$$

$$k_1 \equiv \max\left\{\frac{\beta}{\frac{1}{2}-\alpha}\frac{\beta'}{\frac{1}{2}-\alpha'}\right\} \leqslant \frac{\pi_1}{\pi_2} \leqslant \min\left\{\frac{\frac{1}{2}-\beta}{\alpha}, \frac{\frac{1}{2}-\beta'}{\alpha'}\right\} \equiv k_2$$

valuation for this experiment

$$V(E,\theta) = \alpha + \beta - \alpha \pi_1 - \beta \pi_2$$
 $V(E,\theta') = \alpha' + \beta' - \alpha' \pi_1 - \beta' \pi_2$

Existence of Fully Informative Experiment

Lemma (No Distortion)

The fully informative experiment \overline{E} always lies in the optimal menu

- if not, replace the experiment selling to the one charging the highest fee as and charge her a higher fee
- by the existence of the fully informative experiment, the designer only designs the one for another type (two parameters)

lacksquare suppose allocate the fully informative one $ar{E}$ to the high value type w.l.o.g

Designer's Problem

$$\max_{{\mathsf E},t_{ heta},t_{ heta'}} rac{1}{2} \left(t_{ heta} + t_{ heta'}
ight)$$

s.t.

$$\begin{array}{l} V(\overline{E},\theta)-t_{\theta}\geqslant 0 & (\mathsf{IR-}\theta) \\ V(E,\theta')-t_{\theta'}\geqslant 0 & (\mathsf{IR-}\theta') \\ V(\overline{E},\theta)-t_{\theta}\geqslant V(E,\theta)-t_{\theta'} & (\mathsf{IC-}\theta) \\ V(E,\theta')-t_{\theta'}\geqslant V(\overline{E},\theta')-t_{\theta} & (\mathsf{IC-}\theta') \\ k_1\leqslant \frac{\pi_1}{\pi_2}\leqslant k_2 & (\mathsf{Responsiveness}) \end{array}$$

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- 5 Main Result of Binary Situation
- 6 General Case

Four Selling Schemes

the high type always gets \bar{E} the designer implements four selling schemes to low type

zone I: no discrimination

zone II: exclusive policy

3 zone III: partial discrimination

4 zone IV: perfect discrimination

Figure: Optimal Selling Schemes

Zone I and II: No-haggling

both Types of error are much smaller or not much smaller

⇒ approximately **one-dimensional** preference

Riley and Zeckhauser (1983)'s classic no-haggling result applies

Zone IV: Type Incongruence

Type incongruence: some Type error of low type > the one of high type (e.g. $\beta' > \beta$)

⇒ extract all the information rent v.s. huge loss in the extraction of low type valuation horizontal differences in information products (Bergemann et al.,2018)

zone IV: perfect discrimination selling \bar{E} to type-H, and E to type-L, E smoothly changes in this zone (IR-L),(IC-H),(IR-H),(Responsiveness) is binding

- zone IV (perfect discrimination)
- allocate (π_1^*, π_2^*) such that

no information rent:
$$\alpha(1-\pi_1^*)+\beta(1-\pi_2^*)=\alpha'(1-\pi_1^*)+\beta'(1-\pi_2^*)$$
 exploitation of data structure: $\pi_1^*\alpha+\pi_2^*\beta=\frac{1}{2}\pi_i^*$

- new statistical error = $\pi_1^*(\alpha', \beta') \cdot \alpha' + \pi_1^*(\alpha', \beta') \cdot \beta'$
- both Types of error of type-L is reduced by some type-contingent ratio

Zone III

when one much smaller while another not much smaller, trade-off emerges

The Low-type Buyer (α', β') located inside $\alpha' + \beta' \le \alpha + \beta$

zone III: partial discrimination selling \bar{E} to type-H, and E^* to type-L E^* is the same in this zone (IR-L),(IC-H),(Responsiveness) is binding

■ zone III (partial discrimination): $(\alpha, \beta) > (\alpha', \beta')$

$$\Rightarrow \pi_1 \alpha + \pi_2 \beta > \pi_1 \alpha' + \pi_2 \beta'$$
, given (π_1, π_2)

- \Rightarrow information rent > 0 & higher tendency to not combine with private data
- \blacksquare design when $\frac{\beta}{2} < \beta' < \beta$ and $\alpha' < \frac{\alpha}{2}$

- lacksquare new statistical error $=1\cdot lpha'+\pi_2^*\cdot eta'$
- Type II error is reduced by a **fixed** ratio while Type I error remains **unchanged**
- the determination of π_2^* : making the high type indifferent from combining or not

$$\alpha + \pi_2^* \beta = \frac{1}{2} \pi_2^*$$

■ pecking order: Type II error → Type I error

Takeaway

- \overline{E} : eliminating all statistical error
- 3 E^* : only reduce some Type error by a constant ratio
- $E_{(\alpha,\beta)}$: reduce both Types by **type-contingent** ratio

Zone	Data Menu
1	$(\overline{E},\overline{E})$
П	(\overline{E},ϕ)
Ш	(\overline{E}, E^*)
IV	$(\overline{E}, E_{(\alpha,\beta)})$

Selling Policy
Full Disclosure
Exclusive
Partial Discrimination
Full Discrimination

Related Literature
Riley & Zeckhauser(1983)
Riley & Zeckhauser(1983)
NEW!
Bergemann et al.(2018)

This slide deck:

- 1 Introduction
- 2 Model Overview
- 3 Structural Property
- 4 Binary Situation
- Main Result of Binary Situation
- 6 General Case

Main Result

a generalized economic significant situation:

$$\beta$$
=constant, $\alpha \sim F(\alpha)$ with p.d.f f , Supp $(F) = [\underline{\alpha}, \overline{\alpha}] = [0, \frac{1}{2} - \beta]$

Theorem (The Optimality of the Cutoff Mechanism)

The optimal selling mechanism is

- **1** $(E_{\alpha}, t_{\alpha}) = (\bar{E}, \bar{t})$ for all for $\alpha \in [\alpha^*, \bar{\alpha}]$
- 2 $(E_{\alpha}, t_{\alpha}) = (E^*, t^*)$ for $\alpha \in [\underline{\alpha}, \alpha^*)$, where $\pi_1 = \frac{\alpha^*}{\overline{\alpha}}$, $\pi_2 = 1$

- the optimal mechanism takes a simple and economically interpretable structure
 - 1 the types are partitioned into two tiers according to their predictive power
 - 2 the first tier: E^* , only reducing Type II error β by a constant ratio
 - 3 the second tier: \overline{E} eliminating all error
 - 4 the threshold is determined similar to the monopolist pricing (prior-dependent)
- the threshold type α^* is indifferent between (i) the two menus (\bar{E}, \bar{t}) and (E^*, t^*) (ii) merging his private data or not when purchasing E^*

E^*	(a_1,a_1)	(a_1,a_2)	(a_2, a_2)	Ē	(a_1,a_1)	(a_1,a_2)	(a_2, a_2)
ω_1	0	1	0	ω_1	1	0	0
ω_2	0	$\frac{\alpha^*}{\overline{\alpha}}$	$1 - rac{lpha^*}{\overline{lpha}}$	ω_2	0	0	1

 \blacksquare $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α

- $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α
- lacksquare eta is fixed \Rightarrow eliminating all Type II error π_2 for valuation extraction is desirable

- \blacksquare $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α
- lacksquare eta is fixed \Rightarrow eliminating all Type II error π_2 for valuation extraction is desirable
- (Lemma) statistical error induced by the combination of purchased data (π_1, π_2) with private data (α, β) in the optimal menu:

$$\min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_1, \frac{1}{2}\pi_2\} = \min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_2\}$$

- \blacksquare $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α
- lacksquare eta is fixed \Rightarrow eliminating all Type II error π_2 for valuation extraction is desirable
- (Lemma) statistical error induced by the combination of purchased data (π_1, π_2) with private data (α, β) in the optimal menu:

$$\min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_1, \frac{1}{2}\pi_2\} = \min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_2\}$$

• $(\alpha', \beta') \ge (\alpha, \beta) \iff \alpha' \ge \alpha$: monotone data quality

- \blacksquare $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α
- lacksquare eta is fixed \Rightarrow eliminating all Type II error π_2 for valuation extraction is desirable
- (Lemma) statistical error induced by the combination of purchased data (π_1, π_2) with private data (α, β) in the optimal menu:

$$\min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_1, \frac{1}{2}\pi_2\} = \min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_2\}$$

- $(\alpha', \beta') \ge (\alpha, \beta) \iff \alpha' \ge \alpha$: monotone data quality
 - $\Rightarrow \exists \lambda : \mathsf{Supp}(F) \to \mathsf{Supp}(F), \ \pi_1(\alpha)\lambda(\alpha) + \pi_2(\alpha)\beta = \frac{1}{2}\pi_2(\alpha)$
 - $\Rightarrow [\lambda(\alpha), \overline{\alpha}]$ always do not combine their private dataset when purchasing E_{α} , while $[\underline{\alpha}, \lambda(\alpha)]$ combine

- \blacksquare $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha)$: menu for type α
- lacksquare eta is fixed \Rightarrow eliminating all Type II error π_2 for valuation extraction is desirable
- (Lemma) statistical error induced by the combination of purchased data (π_1, π_2) with private data (α, β) in the optimal menu:

$$\min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_1, \frac{1}{2}\pi_2\} = \min\{\pi_1\alpha + \pi_2\beta, \frac{1}{2}\pi_2\}$$

- $(\alpha', \beta') \ge (\alpha, \beta) \iff \alpha' \ge \alpha$: monotone data quality
 - $\Rightarrow \exists \lambda : \mathsf{Supp}(F) \to \mathsf{Supp}(F), \ \pi_1(\alpha)\lambda(\alpha) + \pi_2(\alpha)\beta = \frac{1}{2}\pi_2(\alpha)$
 - $\Rightarrow [\lambda(\alpha), \overline{\alpha}]$ always do not combine their private dataset when purchasing E_{α} , while $[\underline{\alpha}, \lambda(\alpha)]$ combine
 - $\Rightarrow [\lambda(\alpha), \overline{\alpha}]$ makes **type-independent** error, thus sharing **the same incentives**

Basic Structure of Constraints

Basic Structure of Constraints

In the optimal mechanism, there always exists $\alpha^* \in \alpha$,

- **1** $E_{\alpha} = \overline{E}$ if and only if $\alpha \geq \alpha^*$
- 2 for all $\alpha < \alpha^*$,
 - **1** the responsiveness of α is not binding $(\lambda(\alpha) > \alpha)$
 - 2 there exists α' , E_{α} is non-responsive for α' , and $IC[\alpha' \to \alpha]$ is binding

Figure: Constraint Structure

Basic Structure of Constraints

In the optimal mechanism, there always exists $\alpha^* \in \alpha$,

- **1** $E_{\alpha} = \overline{E}$ if and only if $\alpha \geq \alpha^*$
- 2 for all $\alpha < \alpha^*$,
 - 1 the responsiveness of α is not binding $(\lambda(\alpha) > \alpha)$
 - 2 there exists α' , E_{α} is non-responsive for α' , and $IC[\alpha' \to \alpha]$ is binding
- optimality $\Rightarrow \exists \gamma : \mathsf{Supp}(F) \to \mathsf{Supp}(F), \ \gamma \geq \lambda, \ \mathsf{IC}[\gamma(\alpha) \to \alpha]$ is binding define the single-valued correspondence $\gamma(\alpha)$ as below:

 - $2 \gamma(\alpha) \in {\alpha' \mid IC[\alpha' \to \alpha]}$ is binding} if $\alpha < \lambda(\alpha)$
- monotone data quality + endogenous minimization of error

$$\Rightarrow \lambda(\alpha) = \alpha \iff E_{\alpha} = \bar{E}$$

Structure of Constraints

 \blacksquare structure of constraints \Longleftrightarrow properties of $\lambda\left(\alpha\right)$ and $\gamma\left(\alpha\right)$

Structure of Constraints

■ structure of constraints \iff properties of $\lambda(\alpha)$ and $\gamma(\alpha)$

Properties of $\lambda(\alpha)$ and $\gamma(\alpha)$

In the optimal menu,

- 1 $\lambda(\alpha) \leq \lambda(\hat{\alpha}) \leq \gamma(\alpha)$ for $\hat{\alpha} \in [\alpha, \lambda(\alpha)]$
- 2 $\lambda(\alpha)$: Supp(F) $\to \alpha$ is non-decreasing and characterizes the selling tiers, i.e. $(\pi_1(\alpha), \pi_2(\alpha), t_\alpha) = (\pi_1(\hat{\alpha}), \pi_2(\hat{\alpha}), t_{\hat{\alpha}})$ iff $\lambda(\alpha) = \lambda(\hat{\alpha})$
- 3 $\pi_1(\alpha)$: Supp $(F) \rightarrow [0,1]$ is non-increasing

Price of Data in Screening Mechanism

Price of Data in Screening Mechanism

- price of data for some type = min statistical error + monetary transfer
- lacktriangledown price of data in screening menu = $\max \min$ statistical error + monetary transfer

Price of Data in Screening Mechanism

- price of data for some type = min statistical error + monetary transfer
- lacktriangledown price of data in screening menu = $\max \min$ statistical error + monetary transfer
- responsiveness ⇔ price of data in screening menu = constant

i.e.
$$\frac{1}{2}\pi_2(\alpha) + t_{\alpha} = C$$

Denote $V(\alpha) = V(E_{\alpha}, \alpha) - t_{\alpha}$ as the net value of type α .

Equivalent Conditions of Constraints

In the optimal mechanism, IC,IR and Responsiveness conditions are equivalent to

- 1 $\frac{1}{2}\pi_2(\alpha) + t_\alpha = \overline{t}$ for all $\alpha \in \alpha$, \overline{t} is the associated tariff for all $\alpha \in [\alpha^*, \overline{\alpha}]$
- $V(\alpha) = \int_0^{\alpha} (1 \pi_1(t)) dt + V(\underline{\alpha})$
- $3 \text{ IR}[\underline{\alpha}] \text{ holds}$
- $4 \pi_1(\alpha) : \mathsf{Supp}(F) \to [0,1] \text{ is non-increasing}$

Designers' Problem of Choosing Optimal π_1

$$\max_{\pi_1(\alpha)} \int_{\underline{\alpha}}^{\overline{\alpha}} \Phi(\alpha) d\pi_1(\alpha)$$
 s.t. $\pi_1(\alpha) : \operatorname{Supp}(F) \to [0,1]$ is non-increasing where $\Phi(\alpha) : \alpha \to \mathbb{R}$.

designer's problem: maximizing a linear functional subject to monotonicity

Theorem (An Infinite-dimensional Extension of Carathéodory Theorem)

Let K be a convex, compact set in a locally convex Hausdorff space, and let $I:K\to\mathcal{R}^m$ be a continuous affine function such that $\Sigma\subseteq\operatorname{im} I$ is a closed and convex set. Suppose that $I^{-1}(\Sigma)$ is nonempty and and that $\Omega:K\to\mathcal{R}$ is a continuous convex function. Then there exists $z^*\in I^{-1}(\Sigma)$ such that $\Omega(z^*)=\max_{z\in I^{-1}(\Sigma)}\Omega(z)$ and

$$z^* = \sum_{i=1}^{m+1} \alpha_i z_i$$
, where $\sum_{i=1}^{m+1} \alpha_i = 1$, and for all i , $\alpha_i \ge 0$, $z_i \in \text{ex} K$

■ Convexity, compact in the L_1 topology, and the existence of the optimalize, are satisfied in a mechanism design with transferable utility setting (Kang,2023)

Extreme Points of Monotone Allocation Functional Space

$$ex\Pi = \{\pi | \pi : \Theta \to [0,1], \ \pi \text{ is non-increasing}\} = \{\pi | \ \pi \in \Pi \text{ and } \operatorname{im} \pi \subseteq \{0,1\}\}$$

- with the form of π_1 and the tiered-pricing structure, we can further deduce the optimality of two-tiered pricing of tiers
- we can transform the designer's problem as the choice of the optimal threshold α^* .

Optimal Threshold

 $\alpha^* \in \arg \max_{\alpha} \alpha \left(\overline{\alpha} - \frac{1}{2} F(\alpha) \right)$ is the optimal threshold of the tiers.

Conclusion

- we propose a new framework to analyze selling training data
- we extend the traditional revelation principle and derive the specification of information structure in screening
- new prediction beyond conventional wisdom: the designer utilizes the combination incongruence to screen agents
- novel approach: we use functions to characterize the tightness and structure of constraints
- tight prediction in data selling mechanism: two-tiered pricing mechanism