SBML Model Report

Model name: "Fridlyand2003_Calcium_flux"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at June 20th 2006 at 1:12 p.m. and last time modified at May 24th 2014 at 4:27 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	6
events	0	constraints	0
reactions	18	function definitions	0
global parameters	97	unit definitions	17
rules	37	initial assignments	0

Model Notes

The model reproduces block A of Fig 5 and also Fig 3 (without the inclusion of Tg action). The model was successfully tested on MathSBML

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it,

 $^{^{1}} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of 20 unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name Micromole

Definition µmol

2.2 Unit time

Name milliseconds

Definition ms

2.3 Unit millivolt

Name Voltage

 $\textbf{Definition}\ mV$

2.4 Unit femtoamperes

Name Current

Definition fA

2.5 Unit micromole_per_litre

Name Concentration

Definition $\mu mol \cdot l^{-1}$

2.6 Unit picosiemens

Name Conductance

Definition pS

2.7 Unit femtofarads

Name Capacitance

Definition fF

2.8 Unit per_millisecond

Name Time inverse

 $\textbf{Definition}\ ms^{-1}$

2.9 Unit picosiemens_per_millivolt

Name Conductance coefficient

Definition $pS \cdot mV^{-1}$

2.10 Unit micromole_per_millisecond

Name amount per time

Definition $\mu mol \cdot ms^{-1}$

2.11 Unit microM_per_millisecond

Name concentration per time

Definition $\mu mol \cdot ms^{-1} \cdot l^{-1}$

2.12 Unit litres_per_millisecond

Name volume per time

Definition $1 \cdot \text{ms}^{-1}$

2.13 Unit per_microM_per_millisecond

Name per concentration per time

Definition $\mu mol^{-1} \cdot ms^{-1} \cdot l$

2.14 Unit per_microMcube_per_millisecond

Name per concentration cubed per time

Definition $\mu mol^{-3} \cdot ms^{-1} \cdot l^3$

2.15 Unit per_microMsquare_per_millisecond

Name per Concentration square per time

Definition $\mu mol^{-2} \cdot ms^{-1} \cdot l^2$

2.16 Unit per_microM

Name per concentration

Definition $\mu mol^{-1} \cdot 1$

2.17 Unit fA_msec_per_micromole

Name Faraday constant

Definition $fA \cdot ms \cdot \mu mol^{-1}$

2.18 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.19 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.20 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

	1401	0 2. 110	perties or air co	impartiments.			
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
Cytoplasm	cytoplasm		3	$7.64 \cdot 10^{-13}$	1		
ER	endoplasmic reticulum		3	$2.8 \cdot 10^{-13}$	1		${\tt Cytoplasm}$

3.1 Compartment Cytoplasm

This is a three dimensional compartment with a constant size of $7.64 \cdot 10^{-13}$ litre.

Name cytoplasm

3.2 Compartment ER

This is a three dimensional compartment with a constant size of $2.8 \cdot 10^{-13}$ litre, which is surrounded by Cytoplasm (cytoplasm).

Name endoplasmic reticulum

4 Species

This model contains six species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
Ca_cyt	Cytosolic Calcium	Cytoplasm	μ mol·l ⁻¹		
Ca_er	ER Calcium	ER	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$	\Box	\Box
$IP3_cyt$	Cytosolic IP3	Cytoplasm	$\mu mol \cdot l^{-1}$	\Box	
${\tt Na_cyt}$	Cytosolic Sodium	Cytoplasm	$\mu mol \cdot l^{-1}$		\Box
$\mathtt{ATP_cyt}$	Cytosolic ATP	Cytoplasm	$\mu mol \cdot l^{-1}$		\Box
$\mathtt{ADP_cyt}$	Cytosolic ADP	${\tt Cytoplasm}$	μ mol·l ⁻¹		\Box

5 Parameters

This model contains 97 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
n			0.001		
V			-60.900	mV	
Vca			0.000	mV	
TV			26.730	mV	
Ca_ec			2600.000	μ mol·l ⁻¹	$ \overline{\mathbf{A}} $
Vk			0.000	mV	
$K_{-}ec$			8000.000	μ mol·l ⁻¹	
${\tt K_cyt}$			132400.000	μ mol·l ⁻¹	
Vna			0.000	mV	
Na_ec			140000.000	μ mol·l ⁻¹	\square
Vnaca			0.000	mV	
pvca			0.000		
Vcah			-19.000	mV	
Kcah			9.500	mV	$\overline{\checkmark}$
$\mathtt{f_CRAN}$			0.000		
$\mathtt{gm_CRAN}$			0.700	$pS \cdot mV^{-1}$	
Kcar			200.000	μ mol·l ⁻¹	<u></u>
p_CRAN			0.000	mV	
$V_{\rm CRAN}$			0.000	mV	
pna			0.000	dimensionless	
f_5			0.000		
f5_ast			0.002	$\mu \text{mol}^{-1} \cdot \text{ms}^{-1} \cdot 1$	
b_5			0.000		
b5_ast			0.030	ms^{-1}	
F1			0.000		
$f_{-}1$			$2.5 \cdot 10^{-10}$	$\mu \text{mol}^{-3} \cdot \text{ms}^{-1} \cdot \text{l}^3$	
F4			0.000		
f_4			$1.5 \cdot 10^{-8}$	$\mu mol^{-2} \cdot ms^{-1} \cdot l^2$	
F5			0.000		\Box
B2			0.000		
b_2			10^{-4}	$\mu \text{mol}^{-1} \cdot \text{ms}^{-1} \cdot 1$	
В3			0.000		
b_3			$1.72 \cdot 10^{-17}$	$\mu \text{mol}^{-3} \cdot \text{ms}^{-1} \cdot \text{l}^3$	
B4			0.000		
b_4			$2 \cdot 10^{-4}$	$\mu mol^{-1} \cdot ms^{-1} \cdot l$	
P			4950.000	$\mu mol \cdot l^{-1}$	$\overline{\mathbf{Z}}$

		~~~	***	** *	
Id	Name	SBO	Value	Unit	Constant
В6			0.000		
b_6			$6 \cdot 10^{-7}$	$\mu mol^{-1} \cdot ms^{-1} \cdot l$	$\square$
Ksup			150400.000	$\mu$ mol·l ⁻¹	
D			0.000		
$f_2$			10.000	$\mathrm{m}\mathrm{s}^{-1}$	$\square$
$f_{-}3$			0.172	$\mathrm{ms}^{-1}$	$\square$
f6			11.500	$\mathrm{ms}^{-1}$	$\square$
$b_{-}1$			100.000	$\mathrm{ms}^{-1}$	
f_Ca			0.000	dimensionless	
Kkca			0.100	$\mu$ mol·l ⁻¹	
Okatp			0.000	dimensionless	
Kdd			17.000	$\mu$ mol·l ⁻¹	$\square$
Ktd			26.000	$\mu$ mol·l ⁻¹	$\square$
Ktt			1.000	$\mu$ mol·l ⁻¹	$\square$
$\mathtt{n}_\mathtt{infinity}$			0.000	dimensionless	
Vn			-14.000	mV	$\square$
Sn			7.000	mV	
tau_n			0.000	ms	
С			20.000	ms	$\square$
Vtau			-75.000	mV	
a			65.000	mV	
b			20.000	mV	
$I_{-}Vca$			0.000	fA	<b>☑</b> ⊟ <b>☑</b> ⊟
gmvca			770.000	pS	$\square$
$I_{-}CaPump$			0.000	fA	
Pmcap			2000.000	fA	$\square$
Kcap			0.100	$\mu$ mol·l ⁻¹	$\square$
I_NaCa			0.000	fA	$ \mathbf{Z} $
gnaca			271.000	pS	
Knaca			0.750	$\mu$ mol·l ⁻¹	$\square$
$I_{CRAN}$			0.000	fA	
${ t I}_{ t N}{ t a}$			0.000	fA	
gmna			1200.000	pS	
$I_NaK$			0.000	fA	
Pnak			600.000	fA	
$I_{KDr}$			0.000	fA	
gmKDr			3000.000	pS	$\square$
I_KCa			0.000	fA	
gmkca			130.000	pS	
$I_{-}KATP$			0.000	fA	
${\tt gmkatp}$			24000.000	pS	
Jerp			0.000	$\mu mol \cdot ms^{-1} \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Pcaer			0.105	$\mu \text{mol} \cdot \text{ms}^{-1} \cdot l^{-1}$	
Kcarp			0.500	$\mu$ mol·l ⁻¹	
$\mathtt{O}_{-}\mathtt{infinity}$			0.000	dimensionless	
Krca			0.077	$\mu$ mol·l ⁻¹	
Kip3			3.200	$\mu$ mol·l ⁻¹	
Jout			0.000	$\mu \text{mol} \cdot \text{ms}^{-1}$	
Pleak			$10^{-16}$	$1 \cdot \text{ms}^{-1}$	
Pip3			$1.2 \cdot 10^{-15}$	$1 \cdot \text{ms}^{-1}$	
Cm			6158.000	fF	
fi			0.010	dimensionless	
F	Faraday's constant		$9.6485 \cdot 10^{16}$	•	
ksg			$10^{-4}$	$\mathrm{ms}^{-1}$	
fer			0.030	dimensionless	
kip	IP3 production rate constant		$3 \cdot 10^{-4}$	$\mu$ mol·ms ⁻¹ ·l ⁻¹	
Kipca	half activation cy- tosolic Ca		0.400	$\mu mol \cdot l^{-1}$	$\square$
kdip	IP3 degradation rate constant		$4\cdot 10^{-5}$	$\mathrm{m}\mathrm{s}^{-1}$	$\square$
kadp	ATP production rate constant		$3.7\cdot10^{-4}$	$\mathrm{ms}^{-1}$	$\square$
katpca	Ca dependent ATP consumption		$5\cdot 10^{-5}$	$\mu mol^{-1} \cdot ms^{-1} \cdot 1$	$\square$
katp	Rate constant of ATP consumption		$5\cdot 10^{-5}$	$\mathrm{ms}^{-1}$	$\square$

### 6 Rules

This is an overview of 37 rules.

# **6.1 Rule ADP_cyt**

Rule ADP_cyt is an assignment rule for species ADP_cyt:

$$ADP_cyt = 4000 - [ATP_cyt]$$
 (1)

### 6.2 Rule Vca

Rule Vca is an assignment rule for parameter Vca:

$$Vca = \frac{TV}{2} \cdot \left(\frac{Ca_ec}{[Ca_cyt]}\right) \tag{2}$$

### 6.3 Rule Vk

Rule Vk is an assignment rule for parameter Vk:

$$Vk = TV \cdot \left(\frac{K_{\text{ec}}}{K_{\text{cyt}}}\right) \tag{3}$$

#### Derived unit mV

#### 6.4 Rule Vna

Rule Vna is an assignment rule for parameter Vna:

$$Vna = TV \cdot \left(\frac{Na_ec}{[Na_cyt]}\right) \tag{4}$$

#### Derived unit mV

#### 6.5 Rule Vnaca

Rule Vnaca is an assignment rule for parameter Vnaca:

$$Vnaca = TV \cdot \left(3 \cdot \left(\frac{Na_ec}{[Na_cyt]}\right) - \left(\frac{Ca_ec}{[Ca_cyt]}\right)\right)$$
 (5)

### 6.6 Rule pvca

Rule pvca is an assignment rule for parameter pvca:

$$pvca = \frac{1}{1 + \exp\left(\frac{Vcah - V}{Kcah}\right)}$$
 (6)

#### 6.7 Rule f_CRAN

Rule f_CRAN is an assignment rule for parameter f_CRAN:

$$f_{\text{-}CRAN} = \frac{gm_{\text{-}CRAN}}{1 + exp\left(\frac{[Ca_er] - Kcar}{3}\right)}$$
(7)

### 6.8 Rule p_CRAN

Rule p_CRAN is an assignment rule for parameter p_CRAN:

$$p_CRAN = V - V_CRAN \tag{8}$$

#### Derived unit mV

### 6.9 Rule pna

Rule pna is an assignment rule for parameter pna:

$$pna = \frac{1}{1 + \exp\left(\frac{104 + V}{8}\right)} \tag{9}$$

### **6.10 Rule** f_5

Rule f_5 is an assignment rule for parameter f_5:

$$f_{-}5 = f_{-}ast \cdot exp\left(\frac{V}{2 \cdot TV}\right) \tag{10}$$

Derived unit  $\mu mol^{-1} \cdot ms^{-1} \cdot l$ 

### **6.11 Rule** b_5

Rule b_5 is an assignment rule for parameter b_5:

$$b_{-5} = b_{-3}ast \cdot exp\left(\frac{V}{2 \cdot TV}\right)$$
 (11)

Derived unit ms⁻¹

#### **6.12 Rule F1**

Rule F1 is an assignment rule for parameter F1:

$$F1 = f_{-}1 \cdot [Na_cyt]^3$$
 (12)

Derived unit  $ms^{-1}$ 

#### **6.13 Rule F4**

Rule F4 is an assignment rule for parameter F4:

$$F4 = f_{-}4 \cdot K_{-}ec^{2} \tag{13}$$

Derived unit  $\,\mathrm{ms}^{-1}$ 

#### **6.14 Rule F5**

Rule F5 is an assignment rule for parameter F5:

$$F5 = f_{-}5 \cdot [ATP_{-}cyt] \tag{14}$$

### **6.15 Rule B2**

Rule B2 is an assignment rule for parameter B2:

$$B2 = b_2 \cdot [ADP_cyt] \tag{15}$$

Derived unit ms⁻¹

#### **6.16 Rule B3**

Rule B3 is an assignment rule for parameter B3:

$$B3 = b_{-}3 \cdot Na_{-}ec^{3} \tag{16}$$

Derived unit ms⁻¹

#### **6.17 Rule B4**

Rule B4 is an assignment rule for parameter B4:

$$B4 = b_{-}4 \cdot P \tag{17}$$

Derived unit ms⁻¹

### **6.18 Rule B6**

Rule B6 is an assignment rule for parameter B6:

$$B6 = b_{-}6 \cdot Ksup^2 \tag{18}$$

**Derived unit**  $10^{-6} \text{ mol} \cdot \text{ms}^{-1} \cdot 1^{-1}$ 

### **6.19 Rule** D

Rule D is an assignment rule for parameter D:

$$D = f_{-2} \cdot f_{-3} \cdot F4 \cdot F5 \cdot f_{-6} + b_{-1} \cdot f_{-3} \cdot F4 \cdot F5 \cdot f_{-6} + b_{-1} \cdot B2 \cdot F4 \cdot F5 \cdot f_{-6} + b_{-1} \cdot B2 \cdot B3 \cdot F5 \cdot f_{-6} + b_{-1} \cdot B2 \cdot B3 \cdot B4 \cdot f_{-6} + b_{-1} \cdot B2 \cdot B3 \cdot B4 \cdot b_{-5}$$
(19)

### 6.20 Rule f_Ca

Rule f_Ca is an assignment rule for parameter f_Ca:

$$f_{-}Ca = \frac{[Ca_{-}cyt]^4}{[Ca_{-}cyt]^4 + Kkca^4}$$
 (20)

**Derived unit** dimensionless

### 6.21 Rule Okatp

Rule Okatp is an assignment rule for parameter Okatp:

$$Okatp = \frac{0.08 \cdot \left(1 + 0.33 \cdot \frac{[ADP_cyt]}{Kdd}\right) + 0.89 \cdot \left(0.165 \cdot \frac{[ADP_cyt]}{Kdd}\right)^{2}}{\left(1 + 0.165 \cdot \frac{[ADP_cyt]}{Kdd}\right)^{2} \cdot \left(1 + 0.135 \cdot \frac{[ADP_cyt]}{Ktd} + 0.05 \cdot \frac{[ATP_cyt]}{Ktt}\right)}$$
(21)

#### **6.22** Rule n_infinity

Rule n_infinity is an assignment rule for parameter n_infinity:

$$n_infinity = \frac{1}{1 + \exp\left(\frac{Vn - V}{Sn}\right)}$$
 (22)

#### 6.23 Rule tau_n

Rule tau_n is an assignment rule for parameter tau_n:

$$tau_{-}n = \frac{c}{exp\left(\frac{V - Vtau}{a}\right) + exp\left(\frac{Vtau - V}{b}\right)}$$
(23)

#### Derived unit ms

#### 6.24 Rule I_Vca

Rule I_Vca is an assignment rule for parameter I_Vca:

$$I_{-}Vca = gmvca \cdot pvca \cdot (V - Vca)$$
 (24)

### 6.25 Rule I_CaPump

Rule I_CaPump is an assignment rule for parameter I_CaPump:

$$I_{-}CaPump = \frac{Pmcap \cdot [Ca_cyt]^2}{Kcap^2 + [Ca_cyt]^2}$$
(25)

#### Derived unit fA

#### 6.26 Rule I_NaCa

Rule I_NaCa is an assignment rule for parameter I_NaCa:

$$I_NaCa = \frac{gnaca \cdot [Ca_cyt]^5 \cdot (V - Vnaca)}{[Ca_cyt]^5 + Knaca^5}$$
(26)

Derived unit  $pS \cdot mV$ 

#### 6.27 Rule I_CRAN

Rule I_CRAN is an assignment rule for parameter I_CRAN:

$$I_{CRAN} = f_{CRAN} \cdot p_{CRAN} \cdot (V - Vna)$$
(27)

### 6.28 Rule I_Na

Rule I_Na is an assignment rule for parameter I_Na:

$$I_N a = gmna \cdot pna \cdot (V - Vna)$$
 (28)

Derived unit  $pS \cdot mV$ 

#### 6.29 Rule I_NaK

Rule I_NaK is an assignment rule for parameter I_NaK:

$$I_NaK = \frac{Pnak \cdot (F1 \cdot f_2 \cdot f_3 \cdot F4 \cdot F5 \cdot f_6 - b_1 \cdot B2 \cdot B3 \cdot B4 \cdot b_5 \cdot B6)}{D} \tag{29}$$

#### 6.30 Rule I_KDr

Rule I_KDr is an assignment rule for parameter I_KDr:

$$I_{-}KDr = gmKDr \cdot n \cdot (V - Vk)$$
(30)

#### 6.31 Rule I_KCa

Rule I_KCa is an assignment rule for parameter I_KCa:

$$I_{-}KCa = gmkca \cdot f_{-}Ca \cdot (V - Vk)$$
(31)

Derived unit  $pS \cdot mV$ 

### 6.32 Rule I_KATP

Rule I_KATP is an assignment rule for parameter I_KATP:

$$I_{-}KATP = gmkatp \cdot Okatp \cdot (V - Vk)$$
(32)

Derived unit  $pS \cdot mV$ 

### 6.33 Rule Jerp

Rule Jerp is an assignment rule for parameter Jerp:

$$Jerp = \frac{Pcaer \cdot [Ca_cyt]^2}{[Ca_cyt]^2 + Kcarp^2}$$
(33)

**Derived unit**  $1.0000000000000024 \cdot 10^{-6} \text{ mol} \cdot \text{ms}^{-1} \cdot l^{-1}$ 

### 6.34 Rule O_infinity

Rule O_infinity is an assignment rule for parameter O_infinity:

$$O_infinity = \frac{[Ca_cyt] \cdot [IP3_cyt]^3}{([Ca_cyt] + Krca) \cdot \left( [IP3_cyt]^3 + Kip3^3 \right)}$$
(34)

**Derived unit** dimensionless

#### 6.35 Rule Jout

Rule Jout is an assignment rule for parameter Jout:

$$Jout = (Pleak + Pip3 \cdot O_infinity) \cdot ([Ca_er] - [Ca_cyt])$$
(35)

**Derived unit**  $ms^{-1} \cdot \mu mol$ 

### **6.36** Rule n

Rule n is a rate rule for parameter n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n} = \frac{\mathbf{n}_\mathrm{infinity} - \mathbf{n}}{\mathrm{tau}_\mathbf{n}} \tag{36}$$

### 6.37 Rule V

Rule V is a rate rule for parameter V:

$$\frac{d}{dt}V = \frac{0 - (I_{Vca} + I_{Ca}Pump + I_{Na}Ca + I_{CR}AN + I_{Na}K + I_{KDr} + I_{KCa} + I_{KA}TP)}{Cm}$$

# 7 Reactions

This model contains 18 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

	Reaction Equation	SBO
Calcium_cyt-	∅ Ca_cyt	
_Ivca		
Calcium_cyt-	$\emptyset \longrightarrow Ca_cyt$	
_Inaca		
Calcium_cyt-	$Ca_cyt \longrightarrow \emptyset$	
$_{ m L}$ Icapump		
Calcium_cyt-	$0.01  \text{Ca_cyt} \longrightarrow 0.03  \text{Ca_er}$	
_Jerp		
•	$0.03  \text{Ca_er} \longrightarrow 0.01  \text{Ca_cyt}$	
_Jout		
•	$Ca_cyt \longrightarrow \emptyset$	
sequestration	Count	
$ ext{IP3_synthesis}$	$\emptyset \xrightarrow{\text{Ca_cyt}} \text{IP3_cyt}$	
IP3_degradation	$IP3_cyt \longrightarrow \emptyset$	
Na_Inaca	$Na_cyt \longrightarrow \emptyset$	
Na_Inak	•	
Na_Ina	•	
Na_Icran		
ATP_production	$\emptyset \xrightarrow{ADP_cyt} ATP_cyt$	
ATP_NaKATPase		
ATP_Capump	$ATP_cyt \longrightarrow \emptyset$	
ATP_Jerp	$ATP_cyt \longrightarrow \emptyset$	
	Ivca Calcium_cyt- Inaca Calcium_cyt- Icapump Calcium_cyt- Jerp Calcium_cyt- Jout Calcium_cyt- sequestration IP3_synthesis IP3_degradation Va_Inaca Va_Inaca Va_Inaca Va_Ina Va_Inaca Va	Ivca       O → Ca_cyt         Calcium_cyt-       Ca_cyt → Ø         Icapump       O · 01 Ca_cyt → 0 · 03 Ca_er         Jerp       O · 03 Ca_er → 0 · 01 Ca_cyt         Calcium_cyt-       O · 03 Ca_er → 0 · 01 Ca_cyt         Jout       Ca_cyt → Ø         Calcium_cyt-       Ca_cyt → Ø         sequestration       IP3_cyt         CP3_synthesis       Ø Ca_cyt → Ø         IP3_degradation       IP3_cyt → Ø         Ia_Inaca       Na_cyt → Ø         Ia_Inak       Na_cyt → Ø         Ia_Ina       Ø → Na_cyt         IA_Inacyt       Ø → Na_cyt         IA_P_cyt       Ø ADP_cyt         IATP_production       Ø ADP_cyt         IATP_cyt       Ø         IATP_cyt       Ø         IATP_cyt       Ø         IATP_cyt       Ø         IATP_cyt       Ø         IATP_cyt       Ø

No	Id	Name	Reaction Equation	SBO
17	ATP_Ca-		$ATP_cyt \xrightarrow{Ca_cyt} \emptyset$	
	_dependent- _consumption			
18	ATP_consumption		$ATP_cyt \longrightarrow \emptyset$	

### 7.1 Reaction Calcium_cyt_Ivca

This is an irreversible reaction of no reactant forming one product.

### **Reaction equation**

$$\emptyset \longrightarrow Ca_cyt$$
 (38)

### **Product**

Table 6: Properties of each product.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_1 = \frac{\text{fi} \cdot (\text{I}_\text{Vca})}{2 \cdot \text{F}} \tag{39}$$

### 7.2 Reaction Calcium_cyt_Inaca

This is an irreversible reaction of no reactant forming one product.

### **Reaction equation**

$$\emptyset \longrightarrow Ca_cyt$$
 (40)

#### **Product**

Table 7: Properties of each product.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_2 = \frac{\text{fi} \cdot 2 \cdot \text{I_NaCa}}{2 \cdot \text{F}} \tag{41}$$

### 7.3 Reaction Calcium_cyt_Icapump

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$Ca_cyt \longrightarrow \emptyset \tag{42}$$

#### Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_3 = \frac{\text{fi} \cdot 2 \cdot \text{I_CaPump}}{2 \cdot \text{F}} \tag{43}$$

### 7.4 Reaction Calcium_cyt_Jerp

This is an irreversible reaction of one reactant forming one product.

### **Reaction equation**

$$0.01 \text{ Ca_cyt} \longrightarrow 0.03 \text{ Ca_er}$$
 (44)

#### Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Product**

Table 10: Properties of each product.

Id	Name	SBO
	ER Calcium	

Id	Name	SBO

### **Kinetic Law**

Derived unit  $\mu mol \cdot ms^{-1}$ 

$$v_4 = \text{vol}(\text{Cytoplasm}) \cdot \text{Jerp}$$
 (45)

### 7.5 Reaction Calcium_cyt_Jout

This is an irreversible reaction of one reactant forming one product.

### **Reaction equation**

$$0.03 \, \text{Ca_er} \longrightarrow 0.01 \, \text{Ca_cyt}$$
 (46)

#### Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
Ca_er	ER Calcium	

#### **Product**

Table 12: Properties of each product.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Kinetic Law**

Derived unit  $\mu mol \cdot ms^{-1}$ 

$$v_5 = \text{Jout}$$
 (47)

### 7.6 Reaction Calcium_cyt_sequestration

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$Ca_cyt \longrightarrow \emptyset$$
 (48)

#### Reactant

Table 13: Properties of each reactant.

Table 13.	Troperties of each re	actant.
Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_6 = \text{vol}(\text{Cytoplasm}) \cdot \text{ksg} \cdot [\text{Ca_cyt}]$$
 (49)

### 7.7 Reaction IP3_synthesis

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

### **Reaction equation**

$$\emptyset \xrightarrow{\text{Ca_cyt}} \text{IP3_cyt}$$
 (50)

#### **Modifier**

Table 14: Properties of each modifier.

There I iv I repetition of their incomment			
Id	Name	SBO	
${\tt Ca_cyt}$	Cytosolic Calcium		

#### **Product**

Table 15: Properties of each product.

Id	Name	SBO
IP3_cyt	Cytosolic IP3	

#### **Kinetic Law**

 $\textbf{Derived unit} \ \ 1.0000000000000024 \cdot 10^{-6} \ mol \cdot ms^{-1}$ 

$$v_7 = \frac{\text{vol}(\text{Cytoplasm}) \cdot \text{kip} \cdot [\text{Ca_cyt}]^2}{[\text{Ca_cyt}]^2 + \text{Kipca}^2}$$
 (51)

# **7.8 Reaction** IP3_degradation

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$IP3_cyt \longrightarrow \emptyset \tag{52}$$

#### Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
IP3_cyt	Cytosolic IP3	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_8 = \text{vol} \left( \text{Cytoplasm} \right) \cdot \text{kdip} \cdot \left[ \text{IP3_cyt} \right]$$
 (53)

### 7.9 Reaction Na_Inaca

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$Na_cyt \longrightarrow \emptyset$$
 (54)

### Reactant

Table 17: Properties of each reactant.

Tueste 17: 11 operities et euch reuetunt.			
Id	Name	SBO	
Na_cyt	Cytosolic Sodium		

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = \frac{3 \cdot I_NaCa}{F} \tag{55}$$

### 7.10 Reaction Na_Inak

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$Na_cyt \longrightarrow \emptyset$$
 (56)

#### Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Na_cyt	Cytosolic Sodium	

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{10} = \frac{3 \cdot \text{I.NaK}}{F} \tag{57}$$

### 7.11 Reaction Na_Ina

This is an irreversible reaction of no reactant forming one product.

### **Reaction equation**

$$\emptyset \longrightarrow Na_cyt$$
 (58)

#### **Product**

Table 19: Properties of each product.

Id	Name	SBO
Na_cyt	Cytosolic Sodium	

### **Kinetic Law**

 $\textbf{Derived unit} \ ms^{-1} \cdot \mu mol$ 

$$v_{11} = \frac{I_Na}{F} \tag{59}$$

### 7.12 Reaction Na_Icran

This is an irreversible reaction of no reactant forming one product.

### **Reaction equation**

$$\emptyset \longrightarrow \text{Na_cyt}$$
 (60)

### **Product**

Table 20: Properties of each product.

Id	Name	SBO
Na_cyt	Cytosolic Sodium	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{12} = \frac{I - CRAN}{F} \tag{61}$$

### 7.13 Reaction ATP_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

### **Reaction equation**

$$\emptyset \xrightarrow{ADP_cyt} ATP_cyt$$
 (62)

#### **Modifier**

Table 21: Properties of each modifier.

Id	Name	SBO
ADP_cyt	Cytosolic ADP	

### **Product**

Table 22: Properties of each product	Table 22:	<b>Properties</b>	of each	product
--------------------------------------	-----------	-------------------	---------	---------

Table 22: P	roperties of each	product.
Id	Name	SBO
ATP_cyt	Cytosolic ATP	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{13} = \text{vol}(\text{Cytoplasm}) \cdot \text{kadp} \cdot [\text{ADP_cyt}]$$
 (63)

### 7.14 Reaction ATP_NaKATPase

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$ATP_cyt \longrightarrow \emptyset \tag{64}$$

#### Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
ATP_cyt	Cytosolic ATP	

#### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{14} = \frac{\text{I_NaK}}{\text{F}} \tag{65}$$

### 7.15 Reaction ATP_Capump

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$ATP_cyt \longrightarrow \emptyset \tag{66}$$

### Reactant

Table 24: Properties of each reactant
---------------------------------------

Id	Name	SBO
	Cytosolic ATP	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{15} = \frac{\text{L-CaPump}}{\text{F}} \tag{67}$$

### 7.16 Reaction ATP_Jerp

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$ATP_cyt \longrightarrow \emptyset \tag{68}$$

#### Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
ATP_cyt	Cytosolic ATP	

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{16} = \frac{\text{vol}\left(\text{Cytoplasm}\right) \cdot \text{Jerp}}{2} \tag{69}$$

### 7.17 Reaction ATP_Ca_dependent_consumption

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

### **Reaction equation**

$$ATP_cyt \xrightarrow{Ca_cyt} \emptyset$$
 (70)

#### Reactant

Table 26: Properties of each reactant	Table 26:	<b>Properties</b>	of each	reactant.
---------------------------------------	-----------	-------------------	---------	-----------

Id	Name	SBO
ATP_cyt	Cytosolic ATP	

### Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
Ca_cyt	Cytosolic Calcium	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{17} = \text{vol}(\text{Cytoplasm}) \cdot \text{katpca} \cdot [\text{Ca_cyt}] \cdot [\text{ATP_cyt}]$$
 (71)

### **7.18 Reaction** ATP_consumption

This is an irreversible reaction of one reactant forming no product.

### **Reaction equation**

$$ATP_cyt \longrightarrow \emptyset \tag{72}$$

### Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
ATP_cyt	Cytosolic ATP	

### **Kinetic Law**

Derived unit  $ms^{-1} \cdot \mu mol$ 

$$v_{18} = \text{vol}\left(\text{Cytoplasm}\right) \cdot \text{katp} \cdot \left[\text{ATP_cyt}\right]$$
 (73)

## 8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

### 8.1 Species Ca_cyt

Name Cytosolic Calcium

Initial concentration  $0.085 \ \mu mol \cdot l^{-1}$ 

This species takes part in eight reactions (as a reactant in Calcium_cyt_Icapump, Calcium_cyt_Jerp, Calcium_cyt_sequestration and as a product in Calcium_cyt_Ivca, Calcium_cyt_Inaca, Calcium_cyt_Jout and as a modifier in IP3_synthesis, ATP_Ca_dependent_consumption).

$$\frac{d}{dt}Ca_{-}cyt = v_1 + v_2 + 0.01v_5 - v_3 - 0.01v_4 - v_6$$
(74)

### 8.2 Species Ca_er

Name ER Calcium

Initial concentration  $22.8 \mu mol \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in Calcium_cyt_Jout and as a product in Calcium_cyt_Jerp).

$$\frac{d}{dt}Ca_{-}er = 0.03v_4 - 0.03v_5 \tag{75}$$

#### 8.3 Species IP3_cyt

Name Cytosolic IP3

Initial concentration  $0.33 \, \mu \text{mol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in IP3_degradation and as a product in IP3_synthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3_cyt} = v_7 - v_8 \tag{76}$$

### 8.4 Species Na_cyt

Name Cytosolic Sodium

Initial concentration  $9858 \ \mu mol \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in Na_Inaca, Na_Inak and as a product in Na_Ina, Na_Icran).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Na_cyt} = v_{11} + v_{12} - v_9 - v_{10} \tag{77}$$

### 8.5 Species ATP_cyt

Name Cytosolic ATP

Initial concentration 932.1  $\mu$ mol·1⁻¹

This species takes part in six reactions (as a reactant in ATP_NaKATPase, ATP_Capump, ATP_Jerp, ATP_Ca_dependent_consumption, ATP_consumption and as a product in ATP_production).

$$\frac{d}{dt}ATP_ccyt = v_{13} - v_{14} - v_{15} - v_{16} - v_{17} - v_{18}$$
(78)

### 8.6 Species ADP_cyt

Name Cytosolic ADP

Initial concentration  $3067.9 \ \mu mol \cdot l^{-1}$ 

Involved in rule ADP_cyt

This species takes part in one reaction (as a modifier in ATP_production) and is also involved in one rule which determines this species' quantity.

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany