Examenul național de bacalaureat 2025

Proba E. c) Matematică *M mate-info*

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 3(4-5i)+5i(3+2i)=2, unde $i^2=-1$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 4 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2x + a, unde a este număr real. Determinați numărul real a pentru care $(g \circ f)(1) = 1$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(6x x^2) = \log_2(4 + x)$.
- **5p 4.** Se consideră mulțimea $A = \{3,4,5,7,9\}$. Determinați câte numere naturale impare, de două cifre distincte, se pot forma cu cifre din mulțimea A.
- 5p | 5. În reperul cartezian xOy se consideră punctele A(0,2) și B(6,4). Determinați coordonatele punctului C pentru care $2\overrightarrow{AC} = \overrightarrow{OB}$.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu AB = 4 și raza cercului circumscris egală cu 4. Arătați că aria triunghiului ABC este egală cu $8\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & 2a \\ a & 1 & 0 \\ 1 & 1 & -a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax + y + 2az = a + 1 \\ ax + y = 0 \\ x + y - az = -1 \end{cases}$, unde a

este număr real.

- **5p** a) Arătați că $\det(A(2)) = 4$.
- **5p b**) Pentru a = 1, arătați că sistemul de ecuații are o infinitate de soluții.
- **5p c**) Determinați numărul real a pentru care sistemul de ecuații are soluția unică (x_0, y_0, z_0) și $x_0 = a$.
 - **2.** Se consideră polinomul $f = X^4 3X^3 + X^2 2X + m$, unde m este număr real.
- **5p** a) Pentru m=3, arătați că f(1)=0.
- **5p b)** Determinați numerele reale m pentru care $(x_1x_2x_3x_4)^2 x_1 x_2 x_3 x_4 = 1$, unde x_1 , x_2 , x_3 și x_4 sunt rădăcinile polinomului f.
- **5p** c) Pentru m = 0, determinați numerele reale a pentru care restul împărțirii polinomului f la polinomul X a este egal cu a.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + 6}{\sqrt{x^2 + 1}}$.
- **5p** a) Arătați că $f'(x) = \frac{x(x^2 4)}{(x^2 + 1)\sqrt{x^2 + 1}}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Arătați că $f(7x) f(x) \le 2\sqrt{2}$, pentru orice $x \in [0,1]$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 1 + e^{2x}$.
- **5**p
- **a)** Arătați că $\int_{0}^{3} (f(x) e^{2x}) dx = 24$. **b)** Arătați că $\int_{0}^{1} 4x (f(x) 3x^2 + 1) dx = e^2 + 1$. 5p
- c) Demonstrați că $\lim_{x\to 0} \frac{1}{x^2} \int_0^x \frac{f(t)}{t+1} dt = 1$.