```
In [2]: import numpy as np
         import pandas as pd
         from collections import Counter
         import warnings
         warnings.filterwarnings('ignore')
         import seaborn as sns
         import matplotlib.pyplot as plt
In [3]: | df=pd.read_csv("diabetes.csv")
In [4]: df
Out[4]:
               Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction
            0
                        6
                               148
                                              72
                                                            35
                                                                    0 33.6
                                                                                              0.627
            1
                        1
                                85
                                              66
                                                            29
                                                                    0 26.6
                                                                                              0.351
            2
                        8
                                              64
                               183
                                                             0
                                                                    0 23.3
                                                                                              0.672
            3
                                89
                                              66
                                                            23
                                                                   94
                                                                      28.1
                                                                                              0.167
            4
                        0
                               137
                                              40
                                                            35
                                                                  168 43.1
                                                                                              2.288
                                                                   ...
          763
                       10
                               101
                                              76
                                                            48
                                                                  180 32.9
                                                                                              0.171
                        2
                               122
                                              70
                                                                    0 36.8
          764
                                                            27
                                                                                              0.340
          765
                        5
                               121
                                              72
                                                            23
                                                                  112 26.2
                                                                                              0.245
          766
                        1
                                                                    0 30.1
                                                                                              0.349
                               126
                                              60
                                                             0
          767
                                93
                                                                    0 30.4
                                                                                              0.315
                        1
                                              70
                                                            31
         768 rows × 9 columns
In [5]: df.isnull().sum()
Out[5]: Pregnancies
                                        0
                                        0
         Glucose
                                        0
         BloodPressure
         SkinThickness
                                        0
         Insulin
                                        0
         BMI
                                        0
         DiabetesPedigreeFunction
                                        0
                                        0
         Age
         Outcome
                                        0
         dtype: int64
In [6]: df.columns
Out[6]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                dtype='object')
```

Out[7]:	Pregnancies		Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	
	0	6	148	72	35	0	33.6	0.627	
	1	1	85	66	29	0	26.6	0.351	
	2	8	183	64	0	0	23.3	0.672	
	3	1	89	66	23	94	28.1	0.167	
	4	0	137	40	35	168	43.1	2.288	
	5	5	116	74	0	0	25.6	0.201	

88 31.0

0 35.3

0.0

543 30.5

0.248

0.134

0.158

0.232

Data Visualization

In [7]: df.head(10)

In [8]: sns.pairplot(df,hue="Outcome")

Out[8]: <seaborn.axisgrid.PairGrid at 0x1b29630f4f0>

In [9]:	<pre>df.describe().T</pre>
---------	----------------------------

71		+	()	
.,	u		7	

	count	mean	std	min	25%	50%	75%	
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	1
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	19
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	12
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	ξ
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	84
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	6
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	8
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	

In [10]: df.describe()

Out[10]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

In [11]: df.corr()

Δu	+1	Г1	1	т.
υu	L		т.	J.

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВІ
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.01768
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.22107
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.28180
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.39257
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.1978
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.00000
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.14064
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.03624
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.29269

In [12]: sns.heatmap(df.corr())

Out[12]: <AxesSubplot:>

In [13]: sns.scatterplot(y='Age',x='SkinThickness',data=df)
plt.show()

In [14]: sns.boxplot(x='Age',data=df)

Out[14]: <AxesSubplot:xlabel='Age'>


```
In [15]: sns.scatterplot(x='BMI',y='Age',data=df)
plt.show()
```


In [16]: sns.distplot(df['Pregnancies'])

Out[16]: <AxesSubplot:xlabel='Pregnancies', ylabel='Density'>


```
In [17]: sns.boxplot(x='Glucose',data=df)
```

Out[17]: <AxesSubplot:xlabel='Glucose'>


```
In [18]: sns.jointplot(x='BMI',y='Pregnancies',data=df)
```

Out[18]: <seaborn.axisgrid.JointGrid at 0x1b299bf68b0>

In [19]: sns.boxplot(x='Insulin',data=df)

Out[19]: <AxesSubplot:xlabel='Insulin'>


```
In [20]: sns.kdeplot(x='Age',data=df)
```

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [21]: sns.kdeplot(x='Glucose',data=df)

Out[21]: <AxesSubplot:xlabel='Glucose', ylabel='Density'>

In [22]: sns.scatterplot(y='SkinThickness',x='Age',data=df)
plt.show()

Data Cleaning

In [23]: df.describe()

Out[23]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							>

In the above table there is 0 value in the specific columns that does't make any sens so have to replace all the zeroes to an nan value for esay readig and understanding and we can replace this Nan value into the some value for better data processing.

There is 0 value in the dataset in columns 1)Glucose 2)BloodPressure 3)SkinThickness 4)Insulin

dtype: int64

In [24]: df_copy=df.copy(deep=True) In [25]: df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']]=df_copy[['Glucose','BloodPressure', In [26]: df copy Out[26]: **Pregnancies** Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction 0 6 148.0 72.0 35.0 NaN 33.6 0.627 1 1 85.0 29.0 NaN 26.6 66.0 0.351 2 8 183.0 64.0 NaN NaN 23.3 0.672 3 1 89.0 66.0 23.0 94.0 28.1 0.167 4 0 137.0 40.0 35.0 168.0 43.1 2.288 763 10 101.0 76.0 48.0 180.0 32.9 0.171 764 2 122.0 70.0 27.0 0.340 NaN 36.8 765 5 121.0 72.0 23.0 112.0 26.2 0.245 766 1 126.0 60.0 NaN NaN 30.1 0.349 767 1 93.0 70.0 31.0 NaN 30.4 0.315 768 rows × 9 columns In [27]: df_copy.isnull().sum() Out[27]: Pregnancies 0 5 Glucose 35 BloodPressure 227 SkinThickness 374 Insulin BMI 11 DiabetesPedigreeFunction 0 0 Age Outcome 0

```
3.845052
                              121.686763
                                              72.405184
                                                            29.153420
                                                                      155.548223
                                                                                  32.457464
           mean
                     3.369578
                               30.535641
                                              12.382158
                                                            10.476982
                                                                      118.775855
                                                                                   6.924988
             std
                     0.000000
                               44.000000
                                              24.000000
                                                             7.000000
                                                                       14.000000
                                                                                   18.200000
             min
             25%
                     1.000000
                               99.000000
                                              64.000000
                                                            22.000000
                                                                       76.250000
                                                                                  27.500000
             50%
                     3.000000
                              117.000000
                                              72.000000
                                                            29.000000
                                                                      125.000000
                                                                                   32.300000
            75%
                     6.000000
                              141.000000
                                              80.000000
                                                            36.000000
                                                                      190.000000
                                                                                  36.600000
                    17.000000 199.000000
                                             122.000000
                                                            99.000000 846.000000
                                                                                  67.100000
             max
In [29]: |df_copy.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 768 entries, 0 to 767
          Data columns (total 9 columns):
           #
                Column
                                             Non-Null Count Dtype
                                              . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
           0
                Pregnancies
                                              768 non-null
                                                                int64
                Glucose
                                              763 non-null
                                                                float64
           1
           2
                BloodPressure
                                              733 non-null
                                                                float64
           3
                SkinThickness
                                              541 non-null
                                                                float64
           4
                Insulin
                                              394 non-null
                                                                float64
           5
                                              757 non-null
                                                                float64
           6
                DiabetesPedigreeFunction
                                             768 non-null
                                                                float64
           7
                Age
                                              768 non-null
                                                                int64
           8
                                              768 non-null
                Outcome
                                                                int64
          dtypes: float64(6), int64(3)
          memory usage: 54.1 KB
In [32]: |df_copy['Glucose'].fillna(df_copy['Glucose'].mean(),inplace=True)
In [33]: |df_copy.isnull().sum()
Out[33]: Pregnancies
                                            0
                                            0
          Glucose
          BloodPressure
                                           35
          SkinThickness
                                          227
          Insulin
                                          374
          BMI
                                           11
          DiabetesPedigreeFunction
                                            0
          Age
                                            0
          Outcome
                                            0
          dtype: int64
```

BloodPressure SkinThickness

541.000000

733.000000

Insulin

394.000000 757.000000

BMI DiabetesPe

In [28]: df copy.describe()

count

Pregnancies

768.000000 763.000000

Glucose

Out[28]:

```
In [34]: df_copy['Pregnancies'].fillna(df_copy['Pregnancies'].mean(),inplace=True)
In [42]: df_copy.isnull().sum()
Out[42]: Pregnancies
                                      0
         Glucose
                                      0
                                      0
         BloodPressure
         SkinThickness
                                      0
         Insulin
                                      0
         BMI
                                      0
         DiabetesPedigreeFunction
                                      0
                                      0
         Age
                                      0
         Outcome
         dtype: int64
In [43]: df_copy['BloodPressure'].fillna(df_copy['BloodPressure'].mean(),inplace=True)
In [44]: df_copy['SkinThickness'].fillna(df_copy['SkinThickness'].median(),inplace=True)
In [45]: | df_copy['Insulin'].fillna(df_copy['Insulin'].median(),inplace=True)
In [48]: df_copy['BMI'].fillna(df_copy['BMI'].median(),inplace=True)
In [49]: |df_copy.isnull().sum()
Out[49]: Pregnancies
                                      0
         Glucose
                                      0
         BloodPressure
                                      0
         SkinThickness
                                      0
                                      0
         Insulin
         BMI
                                      0
                                      0
         DiabetesPedigreeFunction
         Age
                                      0
         Outcome
                                      0
```

dtype: int64

```
In [51]: sns.boxplot(x='BMI',data=df)
```

Out[51]: <AxesSubplot:xlabel='BMI'>

In [53]: df_copy.describe()

$\overline{}$			_	-	
ľΝ	115	- 1			
\mathbf{v}	u	u	ע ו	_	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesP€
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	121.686763	72.405184	29.153420	140.671875	32.457464	
std	3.369578	30.435949	12.096346	8.790942	86.383060	6.875151	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
25%	1.000000	99.750000	64.000000	25.000000	121.500000	27.500000	
50%	3.000000	117.000000	72.202592	29.153420	125.000000	32.400000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							>

Scalling The Data

#WE use the Scalling for dealing with the outlier outlier basically those data which present in outdside the graph the outlier will be affected to the our data so that we want standrazise our data

```
In [57]: sns.boxplot(x='Outcome',y='BMI',data=df)
```

Out[57]: <AxesSubplot:xlabel='Outcome', ylabel='BMI'>

Out[58]: <AxesSubplot:xlabel='Outcome', ylabel='Insulin'>

In [62]: from sklearn.preprocessing import StandardScaler
 scaler=StandardScaler()

```
In [63]: | scaler.fit(df copy.drop('Outcome',axis=1))
Out[63]: StandardScaler()
In [69]: scaled features=scaler.transform(df.drop('Outcome',axis=1))
In [70]: | scaled_features
Out[70]: array([[ 0.63994726, 0.86510807, -0.03351824, ..., 0.16629174,
                    0.46849198, 1.4259954 ],
                  [-0.84488505, -1.20616153, -0.52985903, ..., -0.85253118,
                   -0.36506078, -0.19067191],
                  [1.23388019, 2.0158134, -0.69530596, ..., -1.33283341,
                    0.60439732, -0.10558415],
                  [0.3429808, -0.0225789, -0.03351824, ..., -0.91074963,
                   -0.68519336, -0.27575966],
                  [-0.84488505, 0.14180757, -1.02619983, ..., -0.34311972,
                   -0.37110101, 1.17073215],
                  [-0.84488505, -0.94314317, -0.19896517, ..., -0.29945588,
                   -0.47378505, -0.87137393]])
In [73]: df stand=pd.DataFrame(scaled features,columns=df.columns[:-1])
          df stand.head(10)
Out[73]:
              Pregnancies
                           Glucose BloodPressure SkinThickness
                                                                  Insulin
                                                                              BMI DiabetesPedigreeFu
           0
                 0.639947
                          0.865108
                                        -0.033518
                                                      0.665502 -1.629527
                                                                          0.166292
                                                                                                  0.4
           1
                -0.844885 -1.206162
                                                                                                 -0.3
                                        -0.529859
                                                      -0.017463 -1.629527 -0.852531
           2
                 1.233880
                          2.015813
                                        -0.695306
                                                      -3.318463 -1.629527 -1.332833
                                                                                                  9.0
           3
                -0.844885 -1.074652
                                        -0.529859
                                                      -0.700429 -0.540642 -0.634212
                                                                                                 9.0-
           4
                -1.141852
                         0.503458
                                        -2.680669
                                                      0.665502
                                                               0.316566
                                                                         1.548980
                                                                                                  5.4
                 0.342981
                         -0.186965
                                        0.131929
                                                      -3.318463 -1.629527 -0.998077
                                                                                                 3.0-
           5
           6
                -0.250952 -1.436303
                                        -1.853434
                                                      0.324019 -0.610145 -0.212128
                                                                                                 -0.€
           7
                 1.827813 -0.219843
                                        -5.989608
                                                      -3.318463 -1.629527
                                                                          0.413720
                                                                                                 -1.(
           8
                -0.547919
                         2.476096
                                        -0.198965
                                                       1.803778
                                                               4.660524 -0.284901
                                                                                                 9.0-
                 1.233880 0.108930
           9
                                         1.951845
                                                      -3.318463 -1.629527 -4.724058
                                                                                                 -0.7
```

In [74]: df stand['Outcome']=df['Outcome']

In [75]: df_stand.head(10)

Out[75]:	Pregnancies		Pregnancies Glucose BloodPressure		SkinThickness Insulin		ВМІ	DiabetesPedigreeFu
	0	0.639947	0.865108	-0.033518	0.665502	-1.629527	0.166292	0.4
	1	-0.844885	-1.206162	-0.529859	-0.017463	-1.629527	-0.852531	-0.3
	2	1.233880	2.015813	-0.695306	-3.318463	-1.629527	-1.332833	0.6
	3	-0.844885	-1.074652	-0.529859	-0.700429	-0.540642	-0.634212	2.0-
	4	-1.141852	0.503458	-2.680669	0.665502	0.316566	1.548980	5.4
	5	0.342981	-0.186965	0.131929	-3.318463	-1.629527	-0.998077	-0.8
	6	-0.250952	-1.436303	-1.853434	0.324019	-0.610145	-0.212128	-0.(
	7	1.827813	-0.219843	-5.989608	-3.318463	-1.629527	0.413720	-1.(
	8	-0.547919	2.476096	-0.198965	1.803778	4.660524	-0.284901	-0.9
	9	1.233880	0.108930	1.951845	-3.318463	-1.629527	-4.724058	-0.7

Out[76]: <AxesSubplot:xlabel='Outcome', ylabel='BMI'>

Dependent And Independent Set

Outcome

```
In [81]: x=df_stand.drop('Outcome',axis=1)
```

```
In [82]: x
Out[82]:
                 Pregnancies
                               Glucose
                                        BloodPressure SkinThickness
                                                                         Insulin
                                                                                      BMI
                                                                                           DiabetesPedigree
              0
                    0.639947
                              0.865108
                                             -0.033518
                                                            0.665502 -1.629527
                                                                                 0.166292
              1
                    -0.844885 -1.206162
                                             -0.529859
                                                            -0.017463 -1.629527 -0.852531
              2
                    1.233880
                              2.015813
                                             -0.695306
                                                            -3.318463 -1.629527 -1.332833
              3
                    -0.844885 -1.074652
                                             -0.529859
                                                            -0.700429 -0.540642 -0.634212
              4
                    -1.141852
                                             -2.680669
                                                            0.665502
                                                                       0.316566
                              0.503458
                                                                                 1.548980
            763
                    1.827813 -0.680125
                                             0.297376
                                                            2.145261
                                                                       0.455573
                                                                                 0.064409
            764
                    -0.547919
                              0.010298
                                             -0.198965
                                                            -0.245119 -1.629527
                                                                                 0.632039
            765
                    0.342981 -0.022579
                                             -0.033518
                                                            -0.700429 -0.332132
                                                                                -0.910750
            766
                    -0.844885
                             0.141808
                                             -1.026200
                                                            -3.318463 -1.629527
                                                                                -0.343120
            767
                    -0.844885 -0.943143
                                             -0.198965
                                                            0.210192 -1.629527 -0.299456
           768 rows × 8 columns
In [83]: y=df_stand['Outcome']
In [84]: y
Out[84]: 0
                   1
                   0
           1
           2
                   1
           3
                   0
                   1
           763
           764
                   0
           765
                   0
           766
                   1
           767
           Name: Outcome, Length: 768, dtype: int64
           Train Test Split
```

```
In [86]: from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [87]: X_train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 537 entries, 537 to 648
         Data columns (total 8 columns):
              Column
                                        Non-Null Count Dtype
                                                        ----
          0
              Pregnancies
                                         537 non-null
                                                         float64
                                                         float64
          1
              Glucose
                                        537 non-null
              BloodPressure
          2
                                        537 non-null
                                                        float64
          3
              SkinThickness
                                        537 non-null
                                                        float64
                                        537 non-null
          4
              Insulin
                                                        float64
          5
              BMI
                                        537 non-null
                                                        float64
          6
              DiabetesPedigreeFunction 537 non-null
                                                         float64
          7
                                        537 non-null
                                                         float64
         dtypes: float64(8)
         memory usage: 37.8 KB
In [90]: X_test.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 231 entries, 152 to 349
         Data columns (total 8 columns):
              Column
                                        Non-Null Count Dtype
                                                        ----
          0
              Pregnancies
                                        231 non-null
                                                         float64
              Glucose
                                        231 non-null
                                                        float64
          1
          2
              BloodPressure
                                        231 non-null
                                                        float64
                                        231 non-null
          3
              SkinThickness
                                                        float64
          4
              Insulin
                                        231 non-null
                                                        float64
          5
              BMI
                                        231 non-null
                                                         float64
          6
              DiabetesPedigreeFunction 231 non-null
                                                         float64
          7
                                        231 non-null
                                                        float64
              Age
         dtypes: float64(8)
         memory usage: 16.2 KB
```

Logistic Regression Algorithms

```
In [92]: from sklearn.linear_model import LogisticRegression
In [93]: logmodel=LogisticRegression()
In [95]: logmodel.fit(X_train,y_train)
Out[95]: LogisticRegression()
In [96]: predictions=logmodel.predict(X_test)
In [97]: from sklearn.metrics import classification_report
```

```
In [99]: print(classification_report(y_test,predictions))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.79
                                       0.91
                                                 0.85
                                                             152
                     1
                             0.75
                                       0.54
                                                 0.63
                                                             79
              accuracy
                                                 0.78
                                                             231
                             0.77
                                                             231
                                       0.73
                                                 0.74
             macro avg
          weighted avg
                             0.78
                                       0.78
                                                 0.77
                                                             231
In [100]: from sklearn.metrics import confusion_matrix
In [101]: print(confusion_matrix(y_test,predictions))
          [[138 14]
           [ 36 43]]
 In [ ]:
```