

Jefe de laboratorio	Ing. Raúl Ortiz Gaona, PhD	
Práctica # 8	Enrutamiento dinámico RIP con redes y subredes	

1. ANTECEDENTES

Como hemos visto en la práctica anterior, una manera de establecer rutas a los diferentes destinos a través de una red de computadoras, es configurando rutas estáticas en los ruteadores. Otra forma es hacerlo en forma automática, utilizando protocolos de enrutamiento; por ejemplo, RIP Routing Information Protocol.

Podemos utilizar RIP en los ruteadores cuando deseamos establecer rutas a diferentes redes con direcciones de red diferentes, o a distintas subredes con máscara de subred de longitud fija. Para establecer rutas hacia subredes con máscaras de longitud variable, utilizamos RIP versión 2. Estas dos situaciones las veremos a continuación en el presente laboratorio.

2. OBJETIVO

El objetivo de la práctica es el siguiente:

1. Configurar RIP en los enrutadores para que exista conectividad en redes y subredes con máscara de longitud fija y máscaras de longitud variable a través de una red de computadoras.

3. EQUIPO Y MTERIALES

2 switches

4 PCs

2 ruteadores

6 cables directos

1 cable de consola

4. DISEÑO DE LA RED CON MÁSCARA DE SUBRED DE LONGITUD FIJA

Datos:

La dirección de la red es 210.10.56.0

Se necesita crear 3 subredes

Máscara de subred: 255.255.255.192

Tabla 1. Diseño de subredes con máscara de longitud fija

Subred	El 4to. byte de cada	Dirección de red	1ra IP	Última IP	Dirección de
	dirección de red				broadcast
1ra.	00000000.	210.10.56.0	210.10.56.1	210.10.56.62	210.10.56.63
2da.	0 1 0 0 0 0 0 0 0 .	210.10.56.64	210.10.56.65	210.10.56.126	210.10.56.127
3ra.	10 000000.	210.10.56.128	210.10.56.129	210.10.56.190	210.10.56.191

4ta. 11000000 210.10.56.192 210.10.56.193 210.10.56.254 210.10.56.255

5. INSTALACIÓN Y CONFIGURACIÓN DE LOS EQUIPOS

- 1. Conectar los equipos como se indica en la Figura 1.
- 2. Configurar las PCs y las interfaces de red de los enrutadores, según el diseño expresado en las Tabla 1.
- 3. Configuración de RIP en el enrutador R1: Router(config)# route rip Router(config-router)# network 210.10.56.0 Router(config-router)# network 192.188.48.0
- 4. Configuración de rutas en el enrutador R2: Router(config-router)# route rip Router(config-router)# network 210.10.56.64 Router(config-router)# network 192.188.48.0
- 5. Probar la conectividad entre las subredes.

6. DISEÑO DE LA RED CON MÁSCARA DE SUBRED DE LONGITUD VARIABLE

Datos:

La dirección de la red es 210.10.56.0

Se necesita crear 3 subredes con las siguientes capacidades:

Subred 1: 120 hosts Subred 2: 60 hosts Subred 3: 30 hosts

Tabla 2. Máscara de cada subred

Subred	# hosts	$2^n - 2 \ge \#hosts$	n	4to. octeto	Máscara de subred
1ra.	120	$2^7 - 2 \ge 120$	7	$1\ 0\ 0\ 0\ 0\ 0\ 0$	255.255.255. <mark>128</mark>
2da.	60	$2^6 - 2 \ge 60$	6	11000000	255.255.255. <mark>192</mark>
3ra.	30	$2^5 - 2 \ge 30$	5	11100000	255.255.255. <mark>224</mark>

Tabla 3. Rango de direcciones IP para cada subred

Subred	Dirección de subred	n	2 ⁿ	Primera IP	Última IP	Broadcast
1ra.	210.10.56.0	7	128	00000001	01111110	$0\;1\;1\;1\;1\;1\;1\;1$
				1	126	127
2da.	210.10.56.128	6	+64	10000001	1011110	1 0 1 1 1 1 1 1
			192	129	190	192
3ra.	210.10.56.192	5	32	11000000	11011110	11011111
				193	222	223

7. INSTALACIÓN Y CONFIGURACIÓN DE LOS EQUIPOS

- 1. Conectar los equipos como se indica en la Figura 2.
- 2. Configurar las PCs y las interfaces de red de los enrutadores, según el diseño expresado en las Tablas 1 y 2.
- 3. Configuración de rutas en el enrutador R1:

Router(config)# route rip

Router(config-router)# version 2

Router(config-router)# network 210.10.56.0

Router(config-router)# network 192.188.48.0

4. Configuración de rutas en el enrutador R2:

Router(config)# route rip

Router(config-router)# version 2

Router(config-router)# network 210.10.56.128

Router(config-router)# network 192.188.48.0

5. Probar la conectividad entre las subredes.

8. RESULTADOS OBTENIDOS

9. CONCLUSIONES

10. RECOMENDACIONES

11. FUENTES DE INFORMACIÓN