Performance Report

Grupo E7-07

Repositorio:

https://github.com/adrleogom/Acme-Toolkits

Miembros:

Abraham Cobelo Galindo; email: abrcobgal@alum.us.es
Álvaro Escalante Castro; email: alvesccas@alum.us.es
Paula Ferreira Jiménez; email: pauferjim@alum.us.es
Carmen Galván López; email: cargallop2@alum.us.es
Adriana León Gómez; email: adrleogom@alum.us.es
Beatriz Llamas Sainz-Pardo; email: beallasai@alum.us.es

Tabla de Contenidos

Resumen Ejecutivo	3
Control de Versiones	3
Introducción	4
Performance Testing	4
Performance testing Adriana León Gómez	4
Performance testing Paula Ferreira Jiménez	5
Conclusiones	7
Bibliografía	7

Resumen Ejecutivo

Este informe recoge la información obtenida al realizar un análisis del rendimiento de los tests siguiendo la guía del "Performance Testing".

Para ello, habrá dos apartados:

- El primero contendrá una descripción detallada del análisis realizado sobre el equipo de Adriana León Gómez.
- El segundo contendrá una descripción detallada del análisis realizado sobre el equipo de Paula Ferreira Jiménez

Al final del documento encontraremos un apartado donde podremos ver las conclusiones obtenidas y otro donde se ve reflejada la bibliografía consultada para la realización del mismo.

Control de Versiones

Versión	Fecha	Descripción
1.0	30-04-22	Creación del documento
1.2	22-05-22	Añadidos datos del análisis de rendimiento Añadidos análisis hipotéticos Añadido apartado Resumen Ejecutivo Añadido apartado Introducción Añadido apartado Conclusiones

Introducción

En este reporte se documentará toda la información recogida al realizar el análisis de rendimiento de los tests.

Se mostrarán los resultados obtenidos de los test ejecutados en los equipos de nuestras miembros de equipo, Adriana León Gómez y Paula Ferreira Jiménez.

La finalidad del documento consiste en tener el registro de los datos de forma que puedan intentar mejorarse refactorizando los tests en caso necesario, aunque ello conlleve un aumento de la eficiencia y la velocidad del código.

Performance Testing

Performance testing Adriana León Gómez

Este performance testing ha sido realizado en un portátil MSI de 2018 con un procesador Intel(R) Core(™) i7-7700 HQ de 2.80 GHz, una tarjeta RAM de 16 GB y un disco SSD de almacenamiento de 1 TB con uns sistema operativo Windows 10 Home

Before		After	
Media	695,6014109	Media	459,7768959
Error típico	9,595646932	Error típico	7,108659455
Mediana	571,5	Mediana	519
Moda	576	Moda	520
Desviación estándar	323,132609	Desviación estándar	239,3835134
Varianza de la muestra	104414,683	Varianza de la muestra	57304,46651
Curtosis	121,0767015	Curtosis	380,718733
Coeficiente de asimetría	7,410155843	Coeficiente de asimetría	15,5512262
Rango	6425	Rango	6352
Mínimo	436	Mínimo	219
Máximo	6861	Máximo	6571
Suma	788812	Suma	521387
Cuenta	1134	Cuenta	1134
Nivel de confianza (95,0%)	18,82723484	Nivel de confianza (95,0%)	13,94761624

Intervalo de confianza	676,7741761	714,428646	Before
Intervalo de confianza	445,8292797	473,724512	After

Prueba z para medias de dos muestras		
	Before	After
Media	695,6014109	459,7768959
Varianza (conocida)	104414683	5730446651
Observaciones	1134	1134
Diferencia hipotética de l	0	
z	0,103963336	
P(Z<=z) una cola	0,458599222	
Valor crítico de z (una cola	1,644853627	
Valor crítico de z (dos cola	0,917198444	
Valor crítico de z (dos cola	1,959963985	

Como se puede observar la media del request time antes de refactorizar se encontraba en un intervalo de 0,67-0,71 segundos, tras la refactorización el intervalo fue de 0,44-0,47 segundos. El análisis estadístico muestra que dicha refactorización muestra un p-value ($P(z \le z)$) igual 0,45. Como el p-value es mayor que alpha (0,05) podemos concluir que la refactorización en este ordenador no ha tenido un gran impacto en el rendimiento.

Este análisis ha sido realizado con un nivel de confianza de 95%

Performance testing Paula Ferreira Jiménez

Este performance testing ha sido realizado en un portátil HP de 2018 con un procesador AMD Ryzen 3 2200U with Radeon Vega Mobile Gfx de 2.50 GHz, una tarjeta RAM de 8 GB y un disco SSD de almacenamiento de 256 GB con uns sistema operativo Windows 10 Home

before		after		
Media	950,813051	Media	695,601411	
Error típico	19,7216944	Error típico	9,59564693	
Mediana	954	Mediana	571,5	
Moda	1105	Moda	576	
Desviación estándar	664,126413	Desviación estándar	323,132609	
Varianza de la muestra	441063,893	Varianza de la muestra	104414,683	
Curtosis	575,700959	Curtosis	121,076702	
Coeficiente de asimetría	20,8692472	Coeficiente de asimetría	7,41015584	
Rango	19285	Rango	6425	
Mínimo	502	Mínimo	436	
Máximo	19787	Máximo	6861	
Suma	1078222	Suma	788812	
Cuenta	1134	Cuenta	1134	
Nivel de confianza (95,0%	38,6951474	Nivel de confianza (95,0%	18,8272348	
Intervalo de confianza		Intervalo de confianza		
912,1179037	989,508199	676,7741761	714,428646	

Prueba z para medias de dos mue		
	before	after
Media	950,813051	695,601411
Varianza (conocida)	441063,893	104414,683
Observaciones	1134	1134
Diferencia hipotética de las medi	0	
Z	11,636387	
P(Z<=z) una cola	0	
Valor crítico de z (una cola)	1,64485363	
Valor crítico de z (dos colas)	0	
Valor crítico de z (dos colas)	1,95996398	
Conclusión		
Como es menor que alpha 0,05		
podemos concluir que la	I	
refactorización ha mejorado		
el rendimiento		

Como se puede observar la media del request time antes de refactorizar se encontraba en un intervalo de 0.91-0.99 segundos, tras la refactorización el intervalo fue de 0.67-0.71 segundos. El análisis estadístico muestra p-value ($P(z \le z)$) igual a 0. Con este valor de p-value podemos afirmar que la refactorización en este ordenador ha tenido un gran impacto mejorando el rendimiento.

Este análisis ha sido realizado con un nivel de confianza de 95%

Conclusiones

Gracias a la realización de este documento, podemos ver en qué ordenador se tarda más tiempo en ejecutar los tests y cómo mejoran dichos tiempos tras la refactorización.

Para empezar, vemos que en líneas generales y con un nivel de confianza del 95%, el ordenador de Adriana obtiene mejores tiempos que el de Paula tanto antes como después de refactorizar, ya que en ambos casos vemos que los intervalos de confianza son menores.

Por otro lado, podemos observar que al refactorizar y fijándonos en los valores obtenidos para alpha y p-value, el ordenador de Paula obtiene una mejora temporal bastante notable. Sin embargo, con el ordenador de Adriana, la refactorización no es tan importante, factor que puede deberse a que ya se partía de un intervalo de confianza muy bueno.

Bibliografía

https://ev.us.es/webapps/blackboard/execute/content/file?cmd=view&content_id=_29 25318 1&course id= 52178 1&framesetWrapped=true