Bài 2. Biểu thức tọa độ của các phép toán vectơ

A. Lý thuyết

I. Biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ

Nếu $\vec{u} = (x_1; y_1) \text{ và } \vec{v} = (x_2; y_2) \text{ thì }$

$$\vec{u} + \vec{v} = (x_1 + x_2; y_1 + y_2);$$

$$\vec{u} - \vec{v} = (x_1 - x_2; y_1 - y_2);$$

 $\vec{ku} = (kx_1; ky_1) \text{ v\'oi } k \in \mathbb{R}.$

Ví dụ: Cho hai vecto $\vec{u} = (-5; 1)$ và $\vec{v} = (2; -3)$. Tìm tọa độ của mỗi vecto sau:

- a) $\vec{u} + \vec{v}$;
- b) $\vec{u} \vec{v}$;
- c) $-2\vec{v}$.

Hướng dẫn giải

a) Ta có: $\vec{u} + \vec{v} = (-5 + 2 : 1 + (-3)) = (-3 : -2)$.

Vậy
$$\vec{u} + \vec{v} = (-3; -2)$$
.

b) Ta có $\vec{u} - \vec{v} = (-5 - 2; 1 - (-3)) = (-7; 4)$.

Vậy
$$\vec{u} - \vec{v} = (-7; 4)$$
.

c) Ta $\vec{co} - 2\vec{v} = (-2.2; -2.(-3)) = (-4; 6).$

$$\vec{\text{Vay}} - 2\vec{\text{v}} = (-4; 6).$$

Nhận xét: Hai vecto $\vec{u} = (x_1; y_1)$, $\vec{v} = (x_2; y_2)$ ($\vec{v} \neq \vec{0}$) cùng phương khi và chỉ khi có một số thực k sao cho $x_1 = kx_2$ và $y_1 = ky_2$.

Ví dụ: Hai vecto $\vec{u} = (-1; 2)$ và $\vec{v} = (4; -8)$ có cùng phương hay không?

Hướng dẫn giải

Ta thấy 4 = -4.(-1) và -8 = -4.2

Do đó hai vecto $\vec{u} = (-1; 2)$ và $\vec{v} = (4; -8)$ cùng phương với nhau.

Vậy hai vecto $\vec{u} = (-1; 2)$ và $\vec{v} = (4; -8)$ cùng phương.

II. Tọa độ trung điểm đoạn thẳng và tọa độ trọng tâm tam giác

– Cho hai điểm $A(x_A; y_A)$ và $B(x_B; y_B)$. Nếu $M(x_M; y_M)$ là trung điểm của đoạn thẳng AB thì

$$x_{M} = \frac{x_{A} + x_{B}}{2}$$
; $y_{M} = \frac{y_{A} + y_{B}}{2}$.

– Cho tam giác ABC có $A(x_A\;;\;y_A),\;B(x_B\;;\;y_B),\;C(x_C\;;\;y_C).$ Nếu $G(x_G\;;\;y_G)$ là trọng tâm của tam giác ABC thì

$$x_G = \frac{x_A + x_B + x_C}{3}$$
; $y_G = \frac{y_A + y_B + y_C}{3}$.

Ví dụ: Cho tam giác ABC có A(0; 3), B(-1; -4), C(4; -2). Hãy tìm tọa độ trung điểm I của cạnh BC và trọng tâm G của tam giác ABC.

Hướng dẫn giải

Gọi tọa độ trung điểm I của cạnh BC và trọng tâm G của tam giác ABC lần lượt là $(x_I\,;\,y_I)$ và $(x_G\,;\,y_G)$.

Khi đó, vì I là trung điểm của BC nên ta có:

$$x_{I} = \frac{x_{B} + x_{C}}{2} = \frac{-1 + 4}{2} = \frac{3}{2}; \ y_{I} = \frac{y_{B} + y_{C}}{2} = \frac{(-4) + (-2)}{2} = -3.$$

Suy ra
$$I\left(\frac{3}{2};-3\right)$$
.

Vì G là trọng tâm của tam giác ABC nên ta có:

$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{0 + (-1) + 4}{3} = 1; \ y_G = \frac{y_A + y_B + y_C}{3} = \frac{3 + (-4) + (-2)}{3} = -1.$$

Suy ra G(1; -1).

Vậy
$$I\left(\frac{3}{2};-3\right)$$
 và $G(1;-1)$.

III. Biểu thức tọa độ của tích vô hướng

Nếu $\vec{u} = (x_1; y_1) \text{ và } \vec{v} = (x_2; y_2) \text{ thì } \vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2.$

Nhận xét:

a) Nếu
$$\vec{a} = (x; y)$$
 thì $|\vec{a}| = \sqrt{\vec{a}.\vec{a}} = \sqrt{x^2 + y^2}$.

b) Nếu A(x1; y1) và B(x2; y2) thì AB =
$$\left| \overrightarrow{AB} \right| = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$
.

- c) Với hai vector $\vec{u} = (x_1; y_1)$ và $\vec{v} = (x_2; y_2)$ đều khác $\vec{0}$, ta có:
- + \vec{u} và \vec{v} vuông góc với nhau khi và chỉ khi $x_1x_2 + y_1y_2 = 0$.

+
$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u}.\vec{v}}{|\vec{u}|.|\vec{v}|} = \frac{x_1.x_2 + y_1y_2}{\sqrt{x_1^2 + y_1^2}.\sqrt{x_2^2 + y_2^2}}.$$

Ví dụ: Cho hai vecto $\vec{u} = (3; -5) \ va \ \vec{v} = (5; 3)$.

- a) Tính $|\vec{u}|$;
- b) Tính $\vec{u} \cdot \vec{v}$;
- c) Tính góc giữa hai vecto \vec{u} và \vec{v}

Hướng dẫn giải

a) Ta có
$$|\vec{u}| = \sqrt{3^2 + (-5)^2} = \sqrt{34}$$
.

$$V\hat{a}y \left| \vec{u} \right| = \sqrt{34} .$$

b) Ta có
$$\vec{u} \cdot \vec{v} = 3.5 + (-5).3 = 0$$
.

Vậy
$$\vec{u} \cdot \vec{v} = 0$$
.

c) Ta có
$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{3.5 + (-5).3}{\sqrt{3^2 + (-5)^2} \cdot \sqrt{5^2 + 3^2}} = \frac{0}{34} = 0.$$

Suy ra
$$(\vec{u}, \vec{v}) = 90^{\circ}$$
.

Vây u và v vuông góc với nhau.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1.
$$\vec{u} = (2; -2) \text{ và } \vec{v} = (3; 5)$$

- a) Tìm tọa độ của vector $\vec{m} = \vec{u} + \vec{v}$.
- b) Tîm tọa độ của vecto $\vec{n} = -3\vec{u} \vec{v}$.

Hướng dẫn giải

a) Ta có
$$\vec{m} = \vec{u} + \vec{v} = (2+3; -2+5) = (5; 3)$$
.

Vậy
$$\vec{m} = \vec{u} + \vec{v} = (5; 3)$$
.

b) Ta có
$$\vec{n} = -3\vec{u} - \vec{v} = (-3.2 - 3; -3.(-2) - 5) = (-9; 1).$$

Vậy
$$\vec{n} = -3\vec{u} - \vec{v} = (-9; 1)$$
.

Bài 2. Trong mặt phẳng tọa độ Oxy cho ba điểm A(0; 4), B(-1; 3), C(-5; 2).

- a) Tìm tọa độ trung điểm I của đọan thẳng AB.
- b) Chứng minh ba điểm A, B, C không thẳng hàng.
- c) Tìm tọa độ trọng tâm G của tam giác ABC.

Hướng dẫn giải

a) Gọi tọa độ trung điểm I của đoạn thẳng AB là $(x_I; y_I)$.

Khi đó, vì I là trung điểm của AB nên ta có:

$$x_{I} = \frac{x_{A} + x_{B}}{2} = \frac{0 + (-1)}{2} = \frac{-1}{2}; \ y_{I} = \frac{y_{A} + y_{B}}{2} = \frac{4 + 3}{2} = \frac{7}{2}.$$

Suy ra
$$I\left(\frac{-1}{2}; \frac{7}{2}\right)$$
.

Vậy
$$I\left(\frac{-1}{2};\frac{7}{2}\right)$$
.

b) Để chứng minh ba điểm A, B, C không thẳng hàng ta chứng minh \overrightarrow{AB} và \overrightarrow{AC} không cùng phương.

Ta có
$$\overrightarrow{AB} = (-1 - 0; 3 - 4) = (-1; -1)$$

$$\overrightarrow{AC} = (-5 - 0; 2 - 4) = (-5; -2)$$

Ta thấy $\frac{-1}{-5} \neq \frac{-1}{-2}$ nên \overrightarrow{AB} và \overrightarrow{AC} không cùng phương

Suy ra ba điểm A, B, C không thẳng hàng.

Vậy ba điểm A, B, C không thẳng hàng.

c) Gọi tọa độ trọng tâm G của tam giác ABC lần lượt là (x_G; y_G).

Vì G là trọng tâm của tam giác ABC nên ta có:

$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{0 + (-1) + (-5)}{3} = -2; \ y_G = \frac{y_A + y_B + y_C}{3} = \frac{4 + 3 + 2}{3} = 3.$$

Suy ra G(-2; 3).

Vậy G(-2; 3).

Bài 3. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(-2; -3), C(0; 4).

- a) Tính \overrightarrow{AB} . \overrightarrow{AC}
- b) Giải tam giác ABC.

Hướng dẫn giải

a) Ta có
$$\overrightarrow{AB} = (-2 - 1; -3 - 2) = (-3; -5)$$

$$\overrightarrow{AC} = (0-1; 4-2) = (-1; 2)$$

Khi đó
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -3.(-1) + (-5). 2 = -7.$$

Vậy
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -7$$
.

b) Ta có
$$\overrightarrow{AB} = (-3; -5) \Rightarrow AB = |\overrightarrow{AB}| = \sqrt{(-3)^2 + (-5)^2} = \sqrt{34}$$
.

$$\overrightarrow{AC} = (-1; 2) \Rightarrow AC = \left| \overrightarrow{AC} \right| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}$$
.

$$\overrightarrow{BC} = (0 - (-2); 4 - (-3)) = (2; 7) \Rightarrow BC = |\overrightarrow{BC}| = \sqrt{2^2 + 7^2} = \sqrt{53}.$$

$$\cos(\overrightarrow{AB}.\overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|} = \frac{-3.(-1) + (-5).2}{\sqrt{34}.\sqrt{5}} = \frac{-7}{\sqrt{170}}$$

Suy ra $(\overrightarrow{AB}.\overrightarrow{AC}) \approx 122^{\circ}28'$

 \Rightarrow BAC $\approx 122^{\circ}28$ '.

Ta có $\overrightarrow{BA} = (1 - (-2); 2 - (-3)) = (3; 5).$

$$\cos(\overrightarrow{BA}, \overrightarrow{BC}) = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left|\overrightarrow{BA}\right|.\left|\overrightarrow{BC}\right|} = \frac{3.2 + 5.7}{\sqrt{34}.\sqrt{53}} = \frac{41}{\sqrt{1802}}$$

Suy ra $(\overrightarrow{BA}, \overrightarrow{BC}) \approx 15^{\circ}1'$

 \Rightarrow ABC $\approx 15^{\circ}1$ '.

Mặt khác ACB = $180^{\circ} - (BAC + ABC) = 42^{\circ}31'$.

Vậy tam giác ABC có AB = $\sqrt{34}$; AC = $\sqrt{5}$; BC = $\sqrt{53}$; BAC $\approx 122^{\circ}28$ '; ABC $\approx 15^{\circ}1$ '; ACB = $42^{\circ}31$ '.

B.2 Bài tập trắc nghiệm

Câu 1. Cho $\vec{m} = (-1; 2)$, $\vec{n} = (5; -7)$. Tìm tọa độ của vecto $2\vec{m} + \vec{n}$.

A. (4; -5);

B. (3; -3);

C. (6; 9);

D. (-5; -14).

Hướng dẫn giải

Đáp án đúng là: B

Ta có:
$$2 \overrightarrow{m} = 2(-1; 2) = (-2; 4)$$

$$2\vec{m} + \vec{n} = (-2 + 5); 4 - 7) = (3; -3).$$

Câu 2. Trong hệ tọa độ Oxy cho hai điểm A (2; -3), I(4; 7). Biết I là trung điểm của đoạn thẳng AB. Tìm tọa độ điểm B.

- A. I (6; 4);
- B. I (2; 10);
- C. I (6; 17);
- D. I (8; -21).

Hướng dẫn giải

Đáp án đúng là: C

Gọi điểm B có tọa độ (x_B; y_B)

Vì I là trung điểm của AB nên ta có:

$$\begin{cases} x_{I} = \frac{2 + x_{B}}{2} = 4 \\ y_{I} = \frac{-3 + y_{B}}{2} = 7 \end{cases} \Leftrightarrow \begin{cases} x_{B} = 2.4 - 2 = 6 \\ y_{B} = 2.7 - (-3) = 17 \end{cases} \Rightarrow B(6; 17).$$

Câu 3. Trong hệ tọa độ Oxy cho tam giác ABC có A (-2 + x ; 2), B (3; 5 + 2y), C(x; 3 – y). Tìm tổng 2x + y với x, y để O(0; 0) là trọng tâm tam giác ABC?

- A. 7;
- B. 2;
- C. 11;
- D. $-\frac{21}{10}$.

Hướng dẫn giải

Đáp án đúng là: C

Vì O là trọng tâm tam giác ABC nên, ta có:

$$\begin{cases} x_0 = \frac{-2+x+3+x}{3} = 0\\ y_0 = \frac{2+5+2y+3-y}{3} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x = -\frac{1}{2} \Rightarrow 2.x + y = 2.\left(-\frac{1}{2}\right) + \left(-10\right) = -11. \\ y = -10 \end{cases}$$