COM S 311

Homework 2

Recitation 5, 1-2pm, Marios Tsekitsidis

Christian Shinkle

February 4, 2018

- 1. (a) For the worst-case run time, $\mathbf{r} = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=1}^{j-i} c$ $= \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i)c$ $= \sum_{i=1}^{n} c \sum_{j=i}^{n} (j-i)$ by property of summations $= \sum_{i=1}^{n} c (\sum_{j=i}^{n} j \sum_{j=i}^{n} i)$ by property of summations $= \sum_{i=1}^{n} c (\frac{(n+i)(n-i+1)}{2} (i(n-i)+1))$ $= c \sum_{i=1}^{n} \frac{n^2+n-i^2+i}{2} (in-i^2+1)$ $= c \sum_{i=1}^{n} \frac{n^2+n-i^2+i}{2} in+i^2-1$ $= c \sum_{i=1}^{n} \frac{n^2+n-i^2+i-2in+2i^2-2}{2}$ $= c/2 \sum_{i=1}^{n} n^2+n+i^2+i-2in-2$ $= c/2 (\sum_{i=1}^{n} n^2+\sum_{i=1}^{n} n^2+\sum_{i=1}^{n} i^2+\sum_{i=1}^{n} i-\sum_{i=1}^{n} 2in-\sum_{i=1}^{n} 2)$ $= c/2(n^3+n^2+(2n^3+3n^2+n)/6+(n^2+n)/2-n^3-n^2-2n)$ $= c/2(\frac{1}{3}n^3+n^2-\frac{4}{3}n)$ Therefore, $c/2(\frac{1}{3}n^3+n^2-\frac{4}{3}n)$ Therefore, $c/2(\frac{1}{3}n^3+n^2-\frac{4}{3}n)$ $\in O(n^3)$.
 - (b) For the worst-case run time, inner loop = $\sum_{i=1}^{i} c = i * c$

For the outer loop, note after k iterations, (((i/2)/2)/2.../2) = 1. So, $i/2^k = 1$ which implies $k = \log_2 i$. So, the outer loop $= \log(ic) \in O(\log i)$.

Because i = n at the start of the outer loop, the worst-case run time is $O(\log n)$.

2. (a) For the worst-case run time, it is $\sum_{i=1}^{n-1} \sum_{j=1}^{i} c$ because the for-loop will always run n-1 times and the while-loop will have to run from j=i until j=1 because the maximum number of times it will run is if the array is reversed and when the array is reversed, a[j-1] will always be greater than a[j] so the while-loop will only terminate when j=0. Also, note that swap and decrementing j both run in constant time.

Therefore,
$$\sum_{i=1}^{n-1} \sum_{j=1}^{i} c = c \sum_{i=1}^{n-1} (i+1)$$

 $\approx c \sum_{i=1}^{n-1} i$
 $= c((n-1)n)$
 $= c(n^2 - n) \in O(n^2)$

For best-case run time, it is $\sum_{i=1}^{n-1} c$ because the for-loop will always run n-1 times and the while-loop will never run because a[j-1] will ways be less than a[j] so the algorithm will never enter it. Note, this means j=1 and checking a[j-1]>a[j] will run in constant time. Therefore, $\sum_{i=1}^{n-1} c = c(n-1) \in O(n)$

(b) The run times of the algorithms are as follows:

	3000	30000	300000
Selection	6	84	8069
Bubble	0	0	2
Insertion	0	1	2

Reverse Sorted Arrays

	3000	30000	300000
Selection	12	1098	108541
Bubble	14	432	455
Insertion	10	455	44862

Randomized Arrays

	3000	30000	300000
Selection	11	1115	109894
Bubble	8	1167	119419
Insertion	2	231	23291

• Direct Proof: For $48n^4 - 46n^2 + 25n + 31 \in O(n^4)$,

 $\exists c \text{ s.t. } \forall n, 48n^4 - 46n^2 + 25n + 31 \le cn^4.$

Note,
$$48n^4 - 46n^2 + 25n + 31$$

$$\leq 48n^4 + 46n^4 + 25n^4 + 31n^4$$

 $=150n^4$

Therefore,
$$48n^4 - 46n^2 + 25n + 31 \le cn^4$$
 for $c = 150$, so $48n^4 - 46n^2 + 25n + 31 \in O(n^4)$

• Direct Proof: For $n^{\log n} \in O(2^{\sqrt{n}})$, $\exists c \text{ s.t. } \forall n, n^{\log n} \leq c 2^{\sqrt{n}}$. Using the fact, $\forall k, a > 0, \log^k n \in O(n^a)$, this shows $\log^2 n \in O(\sqrt{n})$ which means $\exists c_1 \text{ s.t. } \log^2 n \leq c_1 \sqrt{n}$. Then, $\log^2 n \leq c_1 \sqrt{n}$ $= 2^{\log^2 n} \leq 2^{c_1 \sqrt{n}}$

Then
$$\log^2 n < c_1 \sqrt{n}$$

$$-2\log^2 n < 2c_1\sqrt{n}$$

$$= n^{\log n} < 2^{c_1\sqrt{n}}$$

Therefore, let $c = 2^{c_1}$. This shows $\exists c \text{ s.t. } \forall n, n^{\log n} \leq c 2^{\sqrt{n}}$. Therefore, $n^{\log n} \in O(2^{\sqrt{n}})$.

• Proof by Contradiction: Assume $2^{2^{n+1}} \in O(2^{2^n})$.

Then,
$$2^{2^{n+1}} \le c2^{2^n}$$
. Then,

$$=2^{2(2^n)}$$

$$=2^{n}$$

 $=2^{2^{n}+2^{n}}$

$$= Z$$

$$= 2^{2^n} * 2^{2^n}$$

So, $2^{2^n} * 2^{2^n} \le c2^{2^n}$

$$2^{2^{n}} < c$$

This is a contradiction because c cannot outgrow a function of n. Therefore, $2^{2^{n+1}} \notin O(2^{2^n})$.

• Proof by Contradiction: Assume $n^3(5+\sqrt{n}) \in O(n^3)$. Then,

$$n^3(5+\sqrt{n}) \le cn^3$$

 $5+\sqrt{n} \le c$. This is a contradiction because c cannot outgrow a function of n. Therefore, $n^3(5+\sqrt{n}) \notin$ $O(n^3)$.

4. (a) The algorithm for calculating change from base k to 10 is the following:

n = number of digits in base-k number

$$result = 0$$

for i in the range [0, n-1]

$$result = result + pow(k, i) * digits[n - i - 1]$$

return result

```
The algorithm for calculating pow is the following:
Give a, i,
x = a \ m = i \ y = 1
while m > 1
       if (m \text{ is odd})
             y = x * y
             m = (m-1)/2
       else if m is even
             m = m/2
      x = x * x
return (x * y)
For the run time analysis, we start with run time for pow:
Let k be the number of iterations through the while-loop.
Then, 4k + 3 is the number of operation. Note k = \log i.
Therefore, pow runs in O(\log i) where i is the exponent of the power.
Using this information, the run time of the full algorithm is:
\sum_{i=0}^{n-1} *O(\log i)
= n * \log i \in O(n \log n)
```

(b) The algorithm of calculating base k number from decimal number m:

Inputes: k, m where k is the base of the number being calculated and m is the decimal number being converted from.

Let j = number of digits of the output number and let *output* be an array who's indices represent the digits of the number returned by the algorithm from the most significant bit to the least significant bit.

```
for i in range [0, j-1] output[j-i-1] = m \mod k m = m/k return output Note j = 1 + \log m. This means the run time of this algorithm is: \sum_{i=0}^{\log m} c = \log(m)c \in O(\log m)
```