Mendelian Genetics I

Dr. Heng Chooi

Suggested Reading:
Pierce Genetics: A Conceptual Approach (4th edition 2012; 5th edition 2014)
Chapters 1 (background reading), 3

Slides adapted from Assoc. Prof Martha Ludwig's lecture

Learning Outcomes

Following this lecture you should:

- know the major factors responsible for phenotypic variation within a population of organisms.
- understand the significance of Mendel using pure lines in his experiments.
- know the relationship between the P, F₁ and F₂ generations.
- know how the 3:1 phenotypic and 1:2:1 genotypic ratios observed from a monohybrid cross are related.
- be able to describe a testcross and why it is used.
- know and understand Mendel's First Law.
- be able to define genetic dissection, homozygote, heterozygote, recessive, dominant.

- Genetics the discipline of biology that studies heredity and variation
 - practiced long before there was any knowledge of chromosomes or genes
 - domestication of plants and animals \geq 10,000 years ago, e.g. wheat
 - sophisticated breeding techniques ~4000 years ago, e.g. dates

modern wheat

- result of inbreeding at least three different wild species
 - seeds larger and do not scattered before harvest

date palms

- Assyrians and Babylonians developed several hundred varieties using artificial pollination
 - differed in fruit size, colour, taste, time of harvest

Human heredity

- -pangenesis
 - •520 B.C. until late 1800s
 - specific particles (gemmules)
 - •carried information from various parts of the body to the reproductive organs
 - information then passed into the embryo
 - •inheritance of acquired characteristics, e.g. musical ability

Human heredity

- -preformationism
 - •17th and 18th centuries
 - •homunculus: tiny miniature adult inside the sperm (spermists) or egg (ovists), enlarges during development
 - •inheritance from only one parent

Inheritance in eukaryotes

- hereditary material (genes encoded by DNA) is passed to progeny via gametes or sexual spores, which result from meiosis in specific parental cells

Determining which genes are responsible for a biological process or trait is called genetic dissection

However, genes are not the only factor determining the characteristics of an organism....

An organism's environment also influences its characteristics

G X E (genes by environment)

phenotype - an organism's morphology, physiology, behaviour, ecology; changes throughout lifetime of an organism

genotype - an organism's complete set of genes; essentially fixed throughout lifetime of an organism

NB we also use pheno- and genotype when we talk about a subset of characteristics or genes, respectively

An example of G x E: Drosophila eye size

The number of facets (light receptors making up the compound eye) is influenced by genotype and temperature

wild type - the normal form of any characteristic of an organism (found in nature or a lab stock)

mutant - an altered form of a wild type

characteristic

(Huge) Advances in genetics in less than a century

- •identification of DNA as the hereditary material Avery, MacLeod & McCarty, 1944
- •structure of DNA determined Watson & Crick (& Franklin!), 1953
- •cloning of a DNA fragment Cohen & Boyer, 1972
- •genetic engineering from 1970s
 - pharmaceuticals and non-medical products
 - insect- and herbicide-resistant crops
- whole genome sequences, including that of humans, facilitating:
 - •"designer" disease treatment
 - directed animal and plant breeding
 - comparative genomics
 - conservation biology
 - botany
 - zoology
 - agricultural science breeding, veterinary sciences
 - medical sciences

Single-Gene Inheritance

- first analysed by Gregor Mendel
 - Augustinian monk
 - garden peas
 - interested in inheritance of traits (properties, characteristics), not the properties of the peas
 - 10 years of crosses (controlled matings), counting the resulting progeny, and testing hypotheses in subsequent experiments
 - results published in 1866, but were not known or ignored until 1900
 - concluded: traits controlled by discrete units of inheritance (still knew nothing about genes or even chromosomes at that time!)
 - units existed in pairs, with the two members separating when gametes formed

8th March is International Mendel Day!

Single-Gene Inheritance

The thinking at the time of Mendel's experiments...

Darwin's On the Origin of Species had been published in 1859

Blending of inheritance - progeny have traits midway between those of mother and father

Mendel showed - traits were inherited randomly and independently as discrete units (no blending)

Mendel examined - 7 traits of peas

- contrasting phenotypes (easy to count and categorise)

Mendel did - cross pollination crosses - self crosses

pollen - contains male gamete

Ovary

Ovule

- made in the anthers (male part of a flower)

stigma - receptive surface for pollen grain on female part of a flower

Mendel used - pure lines for particular traits (all progeny resulting from crosses within a line are identical for a particular trait, e.g. purple flowers)
- parental (P) generation

Progeny resulting from crosses of P generation are called first filial (F₁) generation

In an early experiment:

pollinated purple-flowered plant with pollen from white-flowered plant

Did the reciprocal cross (pollen from purpleflowered plant used to pollinate white-flowered plant):

For both crosses - saw no blending of inheritance

Hypothesis that "discrete units of inheritance existed" was supported

Experiments with the F₁ generation:

Grew F₁ yellow seeds (resulting from a cross between a yellow-seeded plant and a green-seeded plant) into plants and self crossed (monohybrid cross)

Resulting progeny represent the second filial (F₂) generation

Found 3/4 of the F_2 generation seed were yellow, 1/4 were green \rightarrow 3:1 phenotypic ratio

Table 2-1 Results of All Mendel's Crosses in Which Parents Differed in One Character

Parental phenotype	F ₁	F ₂	F ₂ ratio
1. round \times wrinkled seeds	All round	5474 round; 1850 wrinkled	2.96:1
2. yellow $ imes$ green seeds	All yellow	6022 yellow; 2001 green	3.01:1
3. purple $ imes$ white petals	All purple	705 purple; 224 white	3.15:1
4. inflated $ imes$ pinched pods	All inflated	882 inflated; 299 pinched	2.95:1
5. green $ imes$ yellow pods	All green	428 green; 152 yellow	2.82:1
6. axial $ imes$ terminal flowers	All axial	651 axial; 207 terminal	3.14:1
7. long $ imes$ short stems	All long	787 long; 277 short	2.84:1

3:1 phenotypic ratio held in the F₂ generation for each trait Mendel studied

For each cross

- -one parental trait disappeared in the F_1 generation, but reappeared in the F_2 generation
 - •unit of inheritance present in F₁ but not expressed
 - •recessive allele (form) of the gene responsible for the trait (recessive phenotype)
- parental trait expressed in the F₁ represents the dominate phenotype (dominate allele of the gene)

Mendel's Experiments - The Explanation

At meiosis, the two alleles of a gene separate (segregate) equally into the male and female gametes.

At fertilisation, the gametes combine at random.

Phenotypic ratio of 3:1 (3 yellow: 1 green)

Genotypic ratio of 1:2:1 (1Y/Y:2Y/y:1y/y)

Mendel's Experiments - The Explanation

- 1. Discrete units of inheritance (genes), no blending
- 2. Each plant has two units (alleles)
- 3. Each gamete carries only one allele
- 4. Each unit segregates equally and randomly into the gametes
- 5. Gametes combine randomly to form a zygote

A/A and a/a - homozygotes (pure lines) A/a - heterozygotes (also called hybrids)

Mendel's Experiments - The Test

Crossed F₁ yellow-seeded plant with a pure line green-seeded plant

- homozygous recessive
- also called a tester

 F_2 generation were 1/2 yellow seed, 1/2 green seed \rightarrow 1:1 ratio

Found same ratio with the reciprocal cross

TESTCROSS

Mendel's Experiments - The Test

Mendel's First Law - The Law of Equal Segregation

"The two members of a gene pair segregate from each other into the gametes; so half the gametes carry one member of the gene pair and the other half of the gametes carry the other member of the gene pair."

The Augustinian Monastery at Brno 2008

The Augustinian Monastery at Brno 2008

Trivial quiz:

What human phenotype/traits (easily observable) follow Mendelian inheritance?