Candidate's Name:						
	Rai	ndom	No.	Per	sonal	No.
•••••						
Signature:						

(Do not write your School/Centre Name or Number anywhere on this booklet)

P525/1 CHEMISTRY Paper 1 2 3/4 hours

Uganda Advanced Certificate of Education CHEMISTRY Paper 1 2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer **all** questions in section **A** and **six** questions in section **B** All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables $(3 - figure\ tables)$ are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = $101325 N m^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Turn Over

SECTION A (46 MARKS)

1.	a)	Meth _i	ylamine is a weak base What is weak base ?	(1 mark
		,		,
		ii)	Write the equation for the ionization of methylamine.	(1 mark)
		iii)	Write the expression for the ionization constant of met	thylamine.
	b)	i)	Calculate the hydrogen ion concentration in a 0.02M s methylamine. ($K_b = 4.4 \times 10^{-4}$; $K_w = 1 \times 10^{-14}$ at 25°C	olution of
			Calculate the pH of the solution.	(1 mark)

Name the reagent that you would use to distinguish between the following particle of compounds. In each case state what you would observe when the reagent treated with each member of the pair.								
a) (CH ₃ CH ₂) ₂ NH and CH ₃ CH ₂ NH ₂ <i>Reagent:</i>	(2 marks)							
Observations:								
b) CH ₃ CH ₂ OH and CH ₃ OH <i>Reagent:</i>	(2 marks)							
Observations:								
c) HCOOH and CH ₃ COOH <i>Reagent:</i>	(2 marks)							
Observations:								

3.	Write (a)	the ionic equati Silicon(IV) oxi	odium hydroxide and (1 ½ marks)	
•••••	(b)	Aluminium		(1 ½ marks)
•••••	(c)	Zinc oxide		(1 ½ marks)
4.		i) Define a		(2 marks
			why transition metals form co	
•••••	(b)	Complete the fo	ollowing table about complex	tes of chromium and cobalt. (2 marks)
	Comp	lex	Oxidation state of metal ion	Co-ordination number
	[Cr(NI	$[H_3)_6]^{3+}$		
	[CO(N	H ₃) ₄ (H ₂ O) ₂]Cl ₂		

5.		e what you would observe and write an ionic equateen aqueous copper(II) sulphate solution and:	ation for the reaction
Obse	(a) ervatio		(2 ½ marks)
Equ	ation		
Obse		Aqueous potassium iodide solution.	(2 ½ marks)
Equ	ation		
6.		ess magnesium was added to 100 cm ³ of 0.2 M co	opper (II) sulphate
	a)	tion. The temperature rose by 16.9 °C. Write an equation for the reaction.	(1½ marks)
	(b)	Calculate the enthalpy of the reaction. (Densit 1.0 g/cm ³ . Specific heat capacity of the solution	•
•••••	•••••		
•••••	•••••		
•••••			

7.	a)	Define:			
	,		nd energy.		(1 mark)
		•••••			•••••
		ii) He	at of formation.		(1 mark)
•••••	(b)	Given the	following bond ene	eroies	
	(0)	Given the	Bond	Bond energy (kJ/mole)	1
			C – C	337	_
			C – H	414	-
			$C-\Pi$	360	-
			O – H	123	_
•••••		Calculate ethanol.	the heat of conversi	ion of gaseous methoxymeth	ane to gaseous (2 marks)
•••••					
8.	a)	•	e X has molecular formulae of all pos	ormula C ₄ H ₆ . Write the namesible isomers of X.	es and (2 marks)
•••••	••••••	•••••	•••••	••••••	••••••

	(b)	X re i)	acts with an ammoniacal solution of silv State what is observed.	er nitrate. (½ mark)
		ii)	Write the equation for the reaction tha	t takes place. (1 mark
•••	c)		e equations to show how ${f X}$ can be synth	(4 marks)
•••				
•••			olecular structures of the following spec	
a)	SO ₃	pecies	Sha	pe
1)	303			
)	$\mathbf{C}l_2$			
<u>c)</u>	H ₂ S			
<u>d)</u>	SO ₄ ²⁻			

SECTION B: (54 MARKS)

Answer **six** questions from this section. Additional questions answered will **not** be marked.

10.	Write equations to show how the following compounds can be syn Indicate the reagents and conditions.						
	a) $(CH_3)_2C = NOH \text{ from propane} - 2 - ol.$	(2 marks)					
•••••							
•••••							
	NH·CH ₂ CH ₃						
	b) from benzene						
		(3 marks)					
•••••							
•••••							
•••••							
•••••	c) $CH_3CH_2C \equiv CCH_2CH_2CH_3$ from But-1-ene.	(2 marks)					
	c) CH3CH2C = CCH2CH2CH3 Holli But-1-chc.	(2 marks)					
•••••							
•••••							
	d) Benzoic acid from chlorobenzene.	(2 marks)					

11.	(a)	Write the formula and name of one ore of aluminium.	(1 mark)
	(b)	In the extraction of aluminium, the ore is first digested with hydroxide solution. Describe what happens and write equat reactions that take place.	
	•••••••		
	(c)	Name the steps that are carried out after digesting the ore was hydroxide.	ith sodium (3 marks)
•••••	••••••		••••••
•••••	••••••		
	(c)	Describe how pure aluminium is obtained from the purified Write the equation for the reaction.	ore. (2 marks)
•••••			

12.	a)	Defii i)	ne Conductivity.	(1 mark)
		ii)	Molar conductivity	(1 mark)
	(b)	1.96 3.52	electrolytic conductivity of a 0.1 M ethanoic acid at 2 x 10 ⁻² Sm ⁻¹ . Its molar conductivity at infinite dilution x 10 ⁻² S m ² mol ⁻¹ . ulate: The molar conductivity of ethanoic acid at 20°C.	n is (2 marks)
		ii)	The degree of ionization of the acid at 20°C.	(1 mark)
		iii)	The pH of the acid	(2 marks)
	(c)	State the a	two other factors other than concentration that can a cid.	affect the pH of (2 marks)
•••••	•••••	•••••		

13.	a)	State	three properties exhibited by chromium as a transit	tion metal. (3 marks)
	(b)	An ac	queous solution of iron (II) salt was added to an acid nium in the oxidation state of +6. State what was observed.	
		ii)	Write half equations and the overall equation for t took place	he reaction that (3 ½ marks)
		•••••		
	(c)	i)	State one application of chromium in the oxidation organic synthesis.	(½ mark)
		ii)	Write the equation to illustrate your answer.	(1 mark)
14.	Hydı	ogen i	odide decomposes according to the equation.	
		2HI($(g) \to H_2(g) + I_2(g) \Delta H = {}^{+}11.3 \text{ kJ/mol}.$	
	a)	Write	e an expression for the equilibrium constant (K_c) of	the reaction. (½ mark)
•••••	• • • • • • • • • • • • • • • • • • • •			

 (b)	equil unde	g of hydrogen iodide was heated in a 600 cm ³ bulb at 500 ibrium the bulb was rapidly cooled to room temperature or potassium iodide solution. The iodine liberated require 2 M sodium thiosulphate for complete reaction. Calculat The number of moles of hydrogen iodide that were heat	and broken d 33.5 cm ³ e ted. (1 mark)
	ii)	The number of moles of iodine that were formed from the decomposition.	the 1½ marks)
 	iii)	The value of K _c for the reaction at 500 °C.	(3½ marks)
 (c)	i)	State what would happen to the value of K_c if the temper changed from 500 °C to 200 °C	erature ½ mark)

		ii)	Explain your answer.	(1 mark)
15.	a)	Wha	t is meant by " hydrolysis of a salt "?	(1 mark)
	(b)		lution was made by dissolving 2.675 g of ammon r to make 1 litre of solution.	
		(i)	Write the equation for the hydrolysis of ammor	(1½ marks)
		(ii)	Calculate the hydrogen ion concentration and h solution in (b) above	ence the pH of the (5 marks)
•••••		ii)	The degree of hydrolysis. $(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}, K_h = 1.75 \times 10^{-5})$	(1½ marks)

16.	a)	Define partition coefficient.	(1 mark)		
	•••••				
	(b)	50 cm ³ of 1.5 M ammonia solution was shaken with 50 cm trichloromethane. At equilibrium 20 cm ³ of the trichloromethate 23 cm ³ of 0.05 M hydrochloric acid. Find the parameter of ammonia between water and trichloromethate	nethane layer artition ane. (3 marks)		
	•••••		••••••		
•••••	•••••				
	(c)	25 cm ³ of ammonia (excess) was added to 25 cm ³ of 0.11 copper(II) sulphate solution. 50 cm ³ of trichloromethane The mixture was shaken and allowed to stand. 20 cm ³ of trichloromethane layer required 10.2 cm ³ of 0.05 M hydrofor complete reaction. 10 cm ³ of the aqueous layer required 0.5 M hydrochloric acid. i) Find the concentration of ammonia in the trichloromethane	M was added. the ochloric acid red 16.5 cm ³ of		
	•••••		•••••		
	•••••				
	•••••				
			• • • • • • • • • • • • • • • • • • • •		

		Find the concentration of free ammonia in	(1 mark)
	iii)	Find the concentration of ammonia in the c	omplex. (1½ marks)
		Determine the formula of the complex.	(1 mark)
17.	product is	al lime is manufactured by heating limestone sallowed to cool and a calculated amount of water the equations for the reactions that take place.	ater in added.
	b) Giv	e one use of lime in agriculture.	(1 mark)

	c)	Explain the trend in the thermal stability of carbonates of g metals.	group (II) (2½ marks)		
•••••	•••••				
•••••	•••••				
•••••	•••••		•••••		
••••••	•••••		••••••		
	d)	The mineral "Dolomite" has formula CaMg (CO ₃) ₂ . 2.5 g of was reacted with excess hydrochloric acid. 230 cm ³ of car was evolved at room temperature. i) Write the equation for the reaction.			
	•••••	ii) Calculate the percentage of 'Dolomite' in the sample	e. P½ marks)		
	•••••				
	•••••				

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H	4.0 Ho 2
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F	20.2 No 10
	24.3 Mg 12							. 10 77				27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 CI 17	1
39.1 K 19	40.1 Ca 20	The state of the state of		50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28		65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34	1	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42		101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	6	2-		1 17		9 -52	1.1			2 igo					94
4		18	139 La 57		141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63			162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		7 8	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95			251 Cf 98	Es		Md	No	260 Lw 103

END