/TRP1«/ca 1/CA 1»

Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа 4.2.3

Интерферометр Релея

Студент: Преподаватель: Илья Зыков Вячеслав Петрович Кириллов

Цель работы:

Ознакомление с интерференцией на двух щелях, устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

В работе используются:

- технический интерферометр ИТР-1;
- светофильтр;
- баллон с углекислым газом;
- сильфон;
- манометр;
- краны.

1 Рабочие формулы

Число полос m между центрами системи полос:

$$\delta n = \frac{\Delta}{l} = m\frac{\lambda}{l} \tag{1}$$

Показатель преломления п исследуемого газа определяется путём сравнения с воздухом при атмосферном давлении:

$$n = n_{\text{возд}} + \delta n \tag{2}$$

Разности показателей преломления газа от разности давлений газа:

$$\delta n = \frac{\alpha}{2k_B T} \delta P \tag{3}$$

2 Оптическая схема

Рис. 1: Устройство интерферометра Релея: а) вид сверху; б) вид сбоку

$$T = 25.01^{\circ}C$$

$$P = 752.56 \ mmHg$$

$$\lambda = 670 \pm 50 \ nm$$

$$l = 10 \ cm$$

3 Ход работы

- 1. Прокалибруйте компенсатор в единицах λ , выделив узкий интервал длин волн с помощью светофильтра
- 2. Изменяя давление с помощью сильфона и совмещая нулевые полосы, снимите зависимость показаний компенсатора z от перепада давлений δP
- 3. Заполните углекислым газом камеру с открытым концом. Снимите зависимость равновесного положения компенсатора от времени, раз в минуту совмещая нулевые полосы, и оцените время установления равновесия.

4 Измерения

Калибровка

m	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
z^{calib} , mm	0.15	0.51	0.87	1.20	1.47	1.80	2.07	2.40	2.75	3.05	3.40	3.63	4.03
m	4	5	6	7	8	9	10	11	12	13	14	15	16
z^{calib} , mm	4.34	4.65	4.96	5.33	5.63	5.96	6.21	6.64	6.95	7.29	7.60	7.96	8.14

Таблица 1: Полученные значения: калибровка

Рис. 2: Калибровочный график

$$m = (0.032 \pm 0.001) mm^{-1} \cdot z + (3.07 \pm 0.07)$$

Зависимости показателя преломления от разности давлений

z^{press} , mm	3	3.25	3.33	3.47	3.61	3.75	3.85	4.03	4.14	4.24
$\delta n, 10^{-6}$	0.000	0.538	0.710	1.011	1.312	1.613	1.828	2.215	2.452	2.667
ΔP , мм вод ст	0	-100	-200	-300	-400	-500	-600	-700	-800	-900
z^{press} , mm	2.99	2.87	2.71	2.63	2.44	2.32	2.17	2.03	1.81	1.72
$\delta n, 10^{-6}$	-0.022	-0.280	-0.624	-0.796	-1.204	-1.462	-1.785	-2.086	-2.559	-2.753
ΔP , мм вод ст	0	100	200	300	400	500	600	700	800	900

Таблица 2: Полученные значения: зависимости показателя преломления от разности давлений

Рис. 3: График зависимости показателя преломления от разности давлений

Коэфициент угловогог наклона:

$$\kappa = \frac{\delta n}{\delta P} = \frac{\alpha}{2k_B T}$$
$$\kappa = (3.1 \pm 0.1) \cdot 10^{-9} \Pi a^{-1}$$

Поляризуемость молекул воздуха:

$$\alpha = 2k_B T \cdot \kappa$$

$$\alpha = (2.55) \cdot 10^{-29} m^3$$

$$n = 1 + \frac{\alpha}{2k_B T} P = 1.00031$$

Теоретическое значение:

$$n^{theor} = 1.00027$$

Зависимости показателя CO_2 от времени

t, min	0	1	2	3	4	5	6	7	8
z^{time} , mm	10.04	9.27	7.60	6.71	6.38	6.07	5.78	5.62	5.38
$n(CO_2)$	1.00063	1.00060	1.00055	1.00052	1.00051	1.00050	1.00049	1.00049	1.00048
t, min	10	11	12	13	14	15	16	17	18
z^{time} , mm	5.17	5.07	4.98	4.95	4.87	4.82	4.81	4.74	4.72
$n(CO_2)$	1.00047	1.00047	1.00047	1.00047	1.00046	1.00046	1.00046	1.00046	1.00046

Таблица 3: Полученные значения: показатель преломления смеси CO2 с воздухом от времени

Рис. 4: График зависимости показателя преломления от времени

$$n(CO_2) = 1.00065 \pm 0.00005$$

 $n^{\text{H.y.}}(CO_2) = 1.00058 \pm 0.00005$
 $n^{\text{theor}}(CO_2) = 1.00045$

Интервал δn , возможных для измерения с помощью интерферометра:

$$\delta n = [0.2 \cdot 10^{-6} - 16 \cdot 10^{-6}]$$

Вывод

В данной работе мы исследовали изменение показателя преломления воздуха при изменении давления и определили разность показателей преломления воздуха и углекислоты при атмосферном давлении. По результатам измерений рассчитывали показатели преломления воздуха и углекислого газа при нормальных условиях, а также диапозон применимости интерферометра.