Giriş Doç. Dr. İlhan AYDIN

- Olasılığa Dayalı Sınıflandırma
 - Sadece sınıfı tahmin etmek yerine, örneğin o sınıf olma olasılığını verin
 - Örneğin, p(y | x)
 - Algılayıcı ile karşılaştırma
 - Algılayıcı bir olasılık tahmini üretmiyor
 - Algılayıcı (ve diğer ayrımcı sınıflandırıcılar)
 yalnızca ayrımcı bir model üretmekle ilgilenirler.
 - Hatırlatma:

$$0 \le p(\text{event}) \le 1$$

 $p(\text{event}) + p(\neg \text{event}) = 1$

- Ayırt edici işlevleri öğrenmek için olasılıksal bir yaklaşım benimser (yani, bir sınıflandırıcı)
- $h_0(x)$ $p(y = 1 | x; \theta)$ 'yi vermeli
- $0 \le h_0(x) \le 1$ (Sadece bir eşik ile doğrusal regresyon kullanamazsınız)
- Lojistik regresyon modeli:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\intercal} \boldsymbol{x})$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

- Hipotez Çıktısının Yorumlanması
 - $h_0(x)$ tahmini $p(y = 1 \mid x; \theta)$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

- Not: $p(y = 0 \mid x; \theta) + p(y = 1 \mid x; \theta) = 1$
- Öyleyse, $p(y = 0 \mid x; \theta) = 1 p(y = 1 \mid x; \theta)$

- Başka Bir Yorum
 - Eşdeğer olarak, lojistik regresyon şunu varsayar:

$$\log \underbrace{\frac{p(y=1\mid \boldsymbol{x};\boldsymbol{\theta})}{p(y=0\mid \boldsymbol{x};\boldsymbol{\theta})}}_{\text{odds of }y=1} = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d$$

- Not: Bir olayın lehine olan oran, p / (1 p)
 miktarıdır, burada p, olayın olasılığıdır
- Diğer bir deyişle, lojistik regresyon, log oranlarının x'in doğrusal bir fonksiyonu olduğunu varsayar.

$$h_{m{ heta}}(m{x}) = g(m{ heta}^{\intercal}m{x})$$
 $g(z)$ $g(z)$ $g(z)$

- $\theta^T x$, negatif örnekler için büyük negatif değerler olmalıdır.
- $\theta^T x$, pozitif örnekler için büyük pozitif değerler olmalıdır.
- Bir eşik varsayalım ve..
 - $h_0(x) > = 0.5$ ise y=1 tahmin et
 - $h_0(x) < 0.5$ ise y=0 tahmin et

Doğrusal Olmayan Karar Sınırı

 Lineer regresyonda olduğu gibi, temel fonksiyon genişletmesini özelliklere uygulayabilir

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1x_2 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1^2x_2 \\ x_1x_2^2 \\ \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1x_2^2 \\ \vdots \end{bmatrix}$$

- $\{(x^1, y^1), (x^2, y^2), ... (x^n, y^n)\}$ verildiğinde $x^i \in \mathbb{R}, y^i \in \{0, 1\}$
- Model:

- Lojistik Regresyon Amaç Fonksiyonu
 - Doğrusal regresyonda olduğu gibi sadece kare kaybı kullanamazsınız:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Lojistik regresyon modelini kullanma

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

 Dışbükey olmayan bir optimizasyonla sonuçlanır

- Maksimum Olabilirlik Tahmini ile Maliyet Fonksiyonunun Türetilmesi • Veri olasılığı şu şekilde verilir: $l(\boldsymbol{\theta}) = \prod_{i=1}^n p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$

$$d(\boldsymbol{\theta}) = \prod_{i=1}^{n} p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

 Bu nedenle, olasılığı en üst düzeye çıkaran θ 'yi arayın.

$$m{ heta}_{ ext{MLE}} = rg \max_{m{ heta}} l(m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(y^{(i)} \mid m{x}^{(i)}; m{ heta})$$

Çözümü değiştirmeden kayıtları alabilir:

$$egin{aligned} oldsymbol{ heta}_{ ext{MLE}} &= rg \max_{oldsymbol{ heta}} \log \prod_{i=1}^n p(y^{(i)} \mid oldsymbol{x}^{(i)}; oldsymbol{ heta}) \ &= rg \max_{oldsymbol{ heta}} \sum_{i=1}^n \log p(y^{(i)} \mid oldsymbol{x}^{(i)}; oldsymbol{ heta}) \end{aligned}$$

- Maksimum Olabilirlik Tahmini ile Maliyet Fonksiyonunun Türetilmesi
 - Aşağıdaki gibi genişletin

$$\begin{aligned} \boldsymbol{\theta}_{\text{MLE}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left[y^{(i)} \log p(y^{(i)} = 1 \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) + \left(1 - y^{(i)}\right) \log \left(1 - p(y^{(i)} = 1 \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right) \right] \end{aligned}$$

Modelde değiştirin ve verim için negatif alın

Logistic regression objective:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Tek bir örneğin maliyeti

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

 Amaç fonksiyonunu şu şekilde yeniden yazabilir:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$$

Doğrusal regresyonla karşılaştırın:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

- Eğer y=1 ise,
- Eğer tahmin doğruysa cost = 0
- $h_0(x) \rightarrow 0$, cost $\rightarrow \infty$ olarak
- Daha büyük hataların daha büyük cezalar alması gerektiğine dair sezgiyi yakalar
- Örneğin $h_0(x) = 0$ olarak tahmin edin ama y=1

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

- Eğer y=1 ise,
- Eğer tahmin doğruysa cost = 0
- $h_0(x) \rightarrow 0$, cost $\rightarrow \infty$ olarak
- Daha büyük hataların daha büyük cezalar alması gerektiğine dair sezgiyi yakalar
- Örneğin $h_0(x) = 0$ olarak tahmin edin ama y=1

Düzenli Lojistik Regresyon

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

 Lojistik regresyonu tam olarak daha önce olduğu gibi düzenleyebiliriz:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

 Lojistik Regresyon için Gradyan İniş (Gradient Descent)

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

- $\min_{\theta} J(\theta)$ iste
- θ'yı başlat
- Yakınsama kadar tekrarlayın

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

j=0..d için eşzamanlı güncelleme

• $h_0(x)$ 'deki exp() ile iptal etmek için (In = \log_e) doğal logaritmasını kullanın

 Lojistik Regresyon için Gradyan İniş (Gradient Descent)

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

- $\min_{\theta} J(\theta)$ iste
- θ'yı başlat
- Yakınsama kadar tekrarlayın

j=0..d için eşzamanlı güncelleme

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

- Lojistik Regresyon için Gradyan İniş (Gradient Descent)
 - θ'yı başlat
 - Yakınsama kadar tekrarlayın

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right)$$
$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

j=0..d için eşzamanlı güncelleme

- Bu, doğrusal regresyonla AYNI görünüyor !!!
- 1/n sabitini yok say
- Ancak, modelin formu çok farklıdır:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Çok Sınıflı Sınıflandırmaİkili Çoklu

- Hastalık teşhisi: sağlıklı / soğuk algınlığı / grip / pnömoni
- Nesne sınıflandırması: masa / sandalye / monitör / kitaplık

- Çok Sınıflı Sınıflandırma
 - 2 sınıf için:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 1}$$

• {1, ..., C} C sınıfları için:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Softmax denir

- Çok Sınıflı Sınıflandırma
 - Bire karşı diğerlerini bölün

 y = i olasılığını tahmin etmek için her i sınıfı için bir lojistik regresyon sınıflandırıcı eğitin.

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

- Çok Sınıflı Lojistik Regresyon Uygulaması
 - c sınıfı için model olarak:

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$
 kullanın.

- Gradyan iniş, tüm modeller için tüm parametreleri aynı anda günceller.
 - Öncekiyle aynı türev, sadece yukarıdaki $h_c(x)$ ile.
- Sınıf etiketini en olası etiket olarak tahmin edin.

$$\max_{c} h_c(\boldsymbol{x})$$