A Book of Abstract Algebra | (2nd Edition)

Chapter 30, Problem 2ED	Bookmark	Show all steps: ON
Pı	roblem	
A polygon is called <i>constructible</i> iff its vertices The regular hexagon is constructible.	are constructible points	. Prove the following:
Step-by-	step solution	
Step	1 of 4	
Here, objective is to prove that the regular hex	agon is constructible.	
Comment		
Step	2 of 4	
Regular <i>n</i> -gon has <i>n</i> equal length of sides and	d all angles are equal.	
Regular <i>n-</i> gon is constructible if and only if the	e angle $\frac{2\pi}{n}$ is constructil	ole
An angle $\frac{2\pi}{N}$ is constructible if and only if N is	s either a power of two c	or power of two and a set of

Comment	
	Step 3 of 4
Consider re	egular Hexagon.
Regular He	exagon is a six-sided Polygon or $6-gon$
Number of	sides $n = 6$
Comment	
	Step 4 of 4
To verify $\frac{2}{x}$	$\frac{\pi}{}$ is constructible or not:
2	
$\frac{2\pi}{n} = \frac{2\pi}{6}$	
$6 = 2 \times 3$	
6 is a prod	luct of power of two and 3 is a Fermat prime.
Therefore,	$\frac{2\pi}{6}$ is constructible angle, which Implies Regular $6 - \text{gon}$ is constructible.
Hence,	
Regular he	xagon is constructible.

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks
Chegg Coupon
Chegg Play
Chegg Study Help
College Textbooks
eTextbooks
Flashcards
Learn
Chegg Math Solver

Mobile Apps Sell Textbooks Solutions Manual Study 101

Textbook Rental Used Textbooks Digital Access Codes Chegg Money

CHEGG NETWORK

EasyBib Customer Service
Internships.com Give Us Feedback
Thinkful Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books

CUSTOMER SERVICE

Textbook Return Policy