সমীকরণ

অনুশীলনী - ৫.১

সমীকরণ: কোনো অজ্ঞাত রাশি বা রাশিমালা যখন কোনো নির্দিষ্ট সংখ্যার বা মানের সমান লিখা হয় তখন তাকে সমীকরণ বলে। যেমন: $2x^2 + 9x + 9 = 0$, $(x-2)^2 = 0$ ইত্যাদি।

সমীকরণের মূল: চলকের যে মান বা মানগুলোর জন্য সমীকরণের উভয় পক্ষ সমান হয় অর্থাৎ সমীকরণটি সিদ্ধ হয়, ঐ মান বা মানগুলোকে সমীকরণটির বীজ বা মূল (Root) বলে।

যেমন: $x^2 - 5x + 6 = 0$ একটি সমীকরণ।

 $x=3,\,2$ এর জন্য সমীকরণটির উভয়পক্ষ সমান হয়।

সুতরাং x=3 এবং x=2 হলো সমীকরণটির মূল।

📣 বি.দ্র: সমীকরণের মূল বা বীজ হচ্ছে সমীকরণের সমাধান।

দ্বিঘাত সমীকরণের আদর্শরূপ: এক চলকবিশিষ্ট দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$ । এখানে a,b,c বাস্তব সংখ্যা এবং $a \neq 0$ ।

দ্বিঘাত সমীকরণের সমাধানঃ

 $ax^2 + bx + c = 0$ এর সমাধান: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ [সমাধান মুখস্থ রাখতে হবে এবং প্রয়োজনে সরাসরি ব্যবহার করা যাবে]

অতএব, সমাধান হিসেবে x এর দুইটি মান পাওয়া গেল এবং মান দুইটি হচ্ছে,

$$\frac{-b+\sqrt{b^2-4ac}}{2a} \text{ এবং } \frac{-b-\sqrt{b^2-4ac}}{2a}$$

উপরের সমীকরণে b^2-4ac কে দ্বিঘাত সমীকরণটির **নিশ্চায়ক** বলে কারণ ইহা সমীকরণটির মূলদ্বয়ের ধরন ও প্রকৃতির নির্ণয় করে।

◄ वि.मु: উপরোক্ত দ্বিঘাত সমীকরণের সর্বপ্রথম সমাধান নির্ণয় করেন ভারতীয় গণিতবিদ শ্রী-ধর আচার্য্য। এজন্য এ পদ্ধতি শ্রী-ধর আচার্য্যের পদ্ধতি নামে পরিচিত।

নিশ্চায়কের অবস্থাভেদে দ্বিঘাত সমীকরণের $(ax^2+bx+c=0)$ মূলদ্বয়ের ধরন ও প্রকৃতি:

- $i. \quad b^2-4ac>0 \text{ এবং পূর্ণবর্গ । যেমন: } \\ b^2-4ac=9=3^2>0 \text{ হলে, } \\ x_1=\frac{-b+\sqrt{3^2}}{2a} \text{ এবং } \\ x_2=\frac{-b-\sqrt{3^2}}{2a}$
 - $\therefore x_1 = \frac{-b+3}{2a}$ এবং $x_2 = \frac{-b-3}{2a}$; এখানে প্রাপ্ত মূলদ্বয়ের মান বাস্তব তথা মূলদ সংখ্যা কিন্তু অসমান।

সিদ্ধান্ত: $b^2 - 4ac > 0$ এবং পূর্ণবর্গ হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও মূলদ।

ii. $b^2-4ac>0$ কিন্তু পূৰ্ণবৰ্গ নয়। যেমন: $b^2-4ac=5>0$ হলে, $x_1=\frac{-b+\sqrt{5}}{2a}$ এবং $x_2=\frac{-b-\sqrt{5}}{2a}$ এখানে $\sqrt{5}$ অমূলদ সংখ্যা।

সিদ্ধান্ত: $b^2-4ac>0$ এবং পূর্ণবর্গ না হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও অমূলদ।

iii. $b^2-4ac=0$ হলে, $x_1=\frac{-b+0}{2a}$ এবং $x_2=\frac{-b-0}{2a}$ বা, $x_1=\frac{-b}{2a}$ এবং $x_2=\frac{-b}{2a}$; এখানে মূলদ্বয় পরস্পর সমান $(x_1=x_2)$

সিদ্ধান্ত: $b^2-4ac=0$ হলে সমীকরণের মূলদ্বয় বাস্তব ও পরস্পর সমান হবে। এক্ষেত্রে $x=\frac{-b}{2a},\frac{-b}{2a}$

 $iv. \quad b^2-4ac < 0$ যেমৰ: $b^2-4ac = -2 < 0$ হলে, $x_1 = \frac{-b+\sqrt{-2}}{2a}$, $x_2 = \frac{-b-\sqrt{-2}}{2a}$

সি**দ্ধান্ত:** যেহেতু $\sqrt{-2}$ এর মান কোনো বাস্তব সংখ্যা নয় তাই মূলদ্বয় জটিল সংখ্যা। সুতরাং $b^2 - 4ac < 0$ অর্থাৎ ঋণাত্মক হলে মূলদ্বয় জটিল সংখ্যা হয়।

 $oxed{\boxtimes}$ **জেনে রাখা ভালো**: জটিল সংখ্যা অথবা রাশির একটি অংশ বাস্তব এবং একটি অংশ কাল্পনিক থাকে। যেমন: $2\pm\sqrt{-5}$ সংখ্যাটিতে 2 বাস্তব অংশ এবং $\sqrt{-5}$ কাল্পনিক অংশ।

দ্বিঘাত সমীকরণ $(ax^2 + bx + c = 0)$ এর প্রয়োজনীয় অনুসিদ্ধান্ত:

শূৰ্ত	$ax^2 + bx + c = 0$ এর ফলাফল
a = 0	দ্বিঘাত সমীকরণটি একঘাত বিশিষ্ট সমীকরণে পরিণত হয়।
c = 0	সমীকরণের একটি মূল অবশ্যই শূন্য হবে
b = 0	 (i) মূলদ্বয় বাস্তব হবে যখন a ও c পরস্পর বিপরীত চিহ্ন যুক্ত হয় (ii) কাল্পনিক বা জটিল হবে যখন a ও c পরস্পর একই চিহ্ন যুক্ত হয়
b = c = 0	সমীকরণের মূলদ্বয় অবশ্যই শূন্য হবে
দ্বিঘাত সমীকরণে সর্বদাই $a eq 0$ শর্ত প্রযোজ্য	

ছিঘাত সমীকরণ গঠন: দ্ব্যাত সমীকরণের মূল দুইটি জানা থাকলে সমীকরণটি হবে

 $x^2 - x$ (মূলদয়ের যোগফল) + মূলদয়ের গুণফল = 0।

যেমন: মূলদ্বয় α ও β হলে সমীকরণটি হবে $x^2-x(\alpha+\beta)+\alpha\beta=0$ এ হিসেবে 2 ও 3 মূলবিশিষ্ট সমীকরণটি হবে, $x^2-x(2+3)+2\times 3=0$ বা, $x^2-5x+6=0$

সূত্রের সাহায্যে নিচের সমীকরণগুলোর সমাধান করঃ

$2x^2 + 9x + 9 = 0$

সমাধান: প্রদত্ত সমীকরণ: $2x^2 + 9x + 9 = 0$ দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$ এর সাথে তুলনা করে পাই, a=2,b=9 এবং c=9

আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\therefore x = \frac{-9 \pm \sqrt{9^2 - 4.2.9}}{2.2}$$

$$= \frac{-9 \pm \sqrt{81 - 72}}{4}$$

$$= \frac{-9 \pm \sqrt{9}}{4}$$

$$= \frac{-9 \pm \sqrt{9}}{4}$$

$$= \frac{-9 + 3}{4}, \frac{-9 - 3}{4}$$

 $\therefore x_1 = -\frac{3}{2} \qquad \qquad \text{এবং } x_2 = -3$

∴ নির্ণেয় সমাধান: $-\frac{3}{2}$, -3

$3 - 4x - 2x^2 = 0$

সমাধান:
$$3 - 4x - 2x^2 = 0$$

বা, $-2x^2 - 4x + 3 = 0 \dots \dots (i)$

দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2+bx+c=0$ এর সাথে (i) নং এর তুলনা করে পাই, a=-2 ; b=-4 ; c=3

আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ অতএব সমীকরণটির সমাধান

অতএব সমীকরণটির সমাধান
$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot (-2) \cdot 3}}{2(-2)}$$

$$= \frac{4 \pm \sqrt{16 + 24}}{-4}$$

$$= \frac{4 \pm \sqrt{40}}{-4}$$

$$= \frac{4 \pm 2\sqrt{10}}{-4}$$

$$= \frac{4 \pm 2\sqrt{10}}{-4}$$

$$= \frac{2(2 \pm \sqrt{10})}{-4}$$

$$= \frac{2 \pm \sqrt{10}}{-2} = \frac{2 + \sqrt{10}}{-2}, \frac{2 - \sqrt{10}}{-2}$$
অতএব, $x_1 = -1 - \frac{\sqrt{10}}{2}$ এবং $x_2 = -1 + \frac{\sqrt{10}}{2}$

 \therefore নির্ণেয় সমাধান: $-1-\frac{\sqrt{10}}{2}$, $-1+\frac{\sqrt{10}}{2}$

$9 4x - 1 - x^2 = 0$

বা, $-x^2 + 4x - 1 = 0$,...... (i) দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$ এর সাথে (i) নং এর তুলনা করে পাই, a = -1 ; b = 4 ; c = -1

আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ অতএব সমীকরণটির সমাধান

অতএব সমীকরণটির সমাধান
$$x = \frac{-4 \pm \sqrt{4^2 - 4.(-1).(-1)}}{2(-1)}$$

$$= \frac{-4 \pm \sqrt{16 - 4}}{-2}$$

$$= \frac{-4 \pm \sqrt{12}}{-2}$$

$$= \frac{-4 \pm \sqrt{4 \times 3}}{-2}$$

$$= \frac{-4 \pm 2\sqrt{3}}{-2}$$

$$= \frac{2(-2 \pm \sqrt{3})}{-2} = -(-2 \pm \sqrt{3})$$
অর্থাৎ $x_1 = 2 - \sqrt{3}$ এবং $x_2 = 2 + \sqrt{3}$

$$\therefore$$
 নির্ণেয় সমাধান: $2 - \sqrt{3}$, $2 + \sqrt{3}$

$8 2x^2 - 5x - 1 = 0$

<u>সমাধান: $2x^2-5x-1=0$ কে দ্বিঘাত সমীকরণের আদর্শরপ $ax^2+bx+c=0$ এর সাথে তুলনা করে পাই, a=2 ; b=-5 ; c=-1</u> আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ অতএব সমীকরণটির মূলদ্বয়

ম =
$$\frac{-(-5) \pm \sqrt{(-5)^2 - 4.2(-1)}}{2.2}$$

= $\frac{5 \pm \sqrt{25 + 8}}{4}$

= $\frac{5 \pm \sqrt{33}}{4}$

অর্থাৎ $x_1 = \frac{1}{4}(5 + \sqrt{33})$ এবং $x_2 = \frac{1}{4}(5 - \sqrt{33})$

∴ নির্দেয় সমাধান: $\frac{1}{4}(5 + \sqrt{33})$, $\frac{1}{4}(5 - \sqrt{33})$

$3x^2 + 7x + 1 = 0$

সমাধান: $3x^2 + 7x + 1 = 0$ কে দ্বিঘাত সমীকরণের আদর্শরূপ $\overline{ax^2+bx+c}=0$ এর সাথে তুলনা করে পাই, a=3 ; b=7 ; c=1আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ অতএব সমীকরণটির মূলদ্বয়

অতএব সমীকরণটির মূলদ্বয়
$$x = \frac{-7 \pm \sqrt{7^2 - 4.3.1}}{2.3}$$

$$= \frac{-7 \pm \sqrt{37}}{6}$$

$$\therefore x_1 = \frac{1}{6}(-7 + \sqrt{37})$$

$$\therefore 6 - 7 + \sqrt{37}$$

$$\frac{1}{6}(-7 + \sqrt{37})$$

$$\frac{1}{6}(-7 - \sqrt{37})$$

বা $-3x^2 + 9x + 2 = 0 \dots$ (i) দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$ এর সাথে (i) নং এর তুলনা করে পাই, a = -3 ; b = 9 ; c = 2

আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ অতএব সমীকরণটির সমাধান

$$x = \frac{-9 \pm \sqrt{(9)^2 - 4.(-3).2}}{2.(-3)}$$

$$= \frac{-9 \pm \sqrt{81 + 24}}{-6}$$

$$= \frac{-9 \pm \sqrt{105}}{-6} = \frac{-9 + \sqrt{105}}{-6}, \frac{-9 - \sqrt{105}}{-6}$$
অধাৎ, $x_1 = \frac{9 - \sqrt{105}}{6}$ এবং $x_2 = \frac{9 + \sqrt{105}}{6}$

 \therefore নির্ণেয় সমাধান: $\frac{1}{6}(9-\sqrt{105})$, $\frac{1}{6}(9+\sqrt{105})$

$\frac{9}{x^2 - 8x + 16} = 0$

<u>সমাধান: $x^2-8x+16=0$ কে দ্বিঘাত সমীকরণের আদর্শরূপ</u> $\overline{ax^2 + bx + c} = 0$ এর সাথে তুলনা করে পাই, a = 1; b = -8; c = 16আমরা জানি, $ax^{2} + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ অতএব সমীকরণটির মূলদ্বয়

$$\therefore x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4.1.16}}{2.1}$$

$$= \frac{8 \pm \sqrt{64 - 64}}{2}$$

$$= \frac{8 \pm 0}{2} = \frac{8 + 0}{2}, \frac{8 - 0}{2}$$
with, $x_1 = 4$ and $x_2 = 4$

∴ নির্ণেয় সমাধান: 4.4

oxdot জেনে রাখা ভালো: $x^2-8x+16$ সমীকরণটি একটি দ্বিঘাত সমীকরণ যার নিশ্চয়ক $b^2 - 4ac = (-8)^2 - 4.1.16 = 64 - 64 = 0$.. সমীকরণটির দুইটি মূল হবে এবং মূলদ্বয় সমান।

$\boxed{b} \ 2x^2 + 7x - 1 = 0$

সমাধান: $2x^2 + 7x - 1 = 0$ কে দ্বিঘাত সমীকরণের আদর্শরূপ $\overline{ax^2 + bx + c} = 0$ এর সাথে তুলনা করে পাই, a = 2 ; b = 7 ; c = -1আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$ অতএব সমীকরণটির সমাধান

$$\therefore x = \frac{-7 \pm \sqrt{7^2 - 4.2.(-1)}}{2.2}$$

$$= \frac{-7 \pm \sqrt{49 + 8}}{4}$$

$$= \frac{-7 \pm \sqrt{57}}{4}$$
অর্থাৎ $x_1 = \frac{-7 + \sqrt{57}}{4}$ এবং $x_2 = \frac{-7 - \sqrt{57}}{4}$

$$\therefore$$
 নির্ণেয় সমাধান: $\frac{1}{4}(-7 + \sqrt{57})$, $\frac{1}{4}(-7 - \sqrt{57})$

$5 7x - 2 - 3x^2 = 0$

সমাধান: $7x-2-3x^2=0$ বা $-3x^2+7x-2=0$ (i) দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$ এর সাথে (i) নং তুলনা করে পাই, a = -3; b = 7; c = -2

আমরা জানি, $ax^2 + bx + c = 0$ এর সমাধান, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ আর্থাৎ $x_1 = \frac{1}{3}$

অতএব সমীকরণটির সমাধান

$$\therefore x = \frac{-7 \pm \sqrt{7^2 - 4 \cdot (-3) \cdot (-2)}}{2 \cdot (-3)}$$

$$= \frac{-7 \pm \sqrt{49 - 24}}{-6}$$

$$= \frac{-7 \pm \sqrt{25}}{-6} = \frac{-7 + 5}{-6}, \frac{-7 - 5}{-6}$$
অর্থাৎ $x_1 = \frac{1}{3}$ এবং $x_2 = 2$

$$\therefore$$
 নির্দেষ্য সমাধান: $\frac{1}{3}$, 2

👫 পাঠ্যবইয়ের কাজের সমাধান

> পাঠ্যবই পৃষ্ঠা-৯৯

কাজ

উপরের (2) ও (3) নং সূত্রের সাহায্যে $ax^2+bx+c=0$ সমীকরণ হতে মূল x_1 এবং x_2 এর মান নির্ণয় কর যখন (a) b = 0 (b) c = 0 (c) b = c = 0 (d) a = 1 (e) a = 1, b = c = 2p

সমাধান: আমরা জানি, $ax^2 + bx + c = 0$ সমীকরণের মূলদ্বয়,

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 এবং $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

 $\Phi h = 0$ হলে

$$x_1 = \frac{-0 + \sqrt{0^2 - 4ac}}{2a}$$
 এবং $x_2 = \frac{-0 - \sqrt{0^2 - 4ac}}{2a}$

$$= \frac{\sqrt{-4ac}}{2a}$$

$$= \frac{-\sqrt{-4ac}}{2a}$$

্রা মন্তব্য: $ax^2 + bx + c = 0$ দ্বিঘাত সমীকরণে b = 0 হলে সমীকরণের মূলদ্বয় কাল্পনিক সংখ্যা হবে যখন a ও c উভয়ই একই চিহ্ন বিশিষ্ট এবং বাস্তব হবে যদি a ও c বিপরীত চিহ্ন বিশিষ্ট হয়।

c=0 হলে.

$$x_1 = \frac{-b + \sqrt{b^2 - 4a.0}}{2a}$$
 এবং $x_2 = \frac{-b - \sqrt{b^2 - 4a.0}}{2a}$

$$= \frac{-b + \sqrt{b^2}}{2a} = \frac{-b - \sqrt{b^2}}{2a}$$

$$= \frac{-b + b}{2a} = \frac{-b - b}{2a}$$

$$= \frac{0}{2a} = \frac{-2b}{2a}$$

$$= 0 = -\frac{b}{a}$$

অর্থাৎ c=0 হলে $x_1=0$ এবং $x_2=-\frac{b}{c}$

্রা মন্তব্য: $ax^2 + bx + c = 0$ সমীকরণে c = 0 হলে একটি মূল অবশ্যই শূন্য (0) হবে।

b=c=0 হলে

$$b = c = 0$$
 হলে, $x_1 = \frac{-0 + \sqrt{0^2 - 4.a.0}}{2a}$ এবং $x_2 = \frac{-0 - \sqrt{0^2 - 4.a.0}}{2a}$

$$= \frac{0}{2a} \qquad \qquad = \frac{0}{2a}$$

$$= 0 \qquad \qquad = 0$$

$$\therefore b = c = 0$$
 হলে $x_1 = 0$ এবং $x_2 = 0$

্রাজ্য মন্তব্য: $ax^2 + bx + c = 0$ সমীকরণে b = c = 0 হলে উভয়

য a=1 হলে.

$$x_1 = \frac{-b + \sqrt{b^2 - 4.1.c}}{2.1}$$
 এবং $x_2 = \frac{-b - \sqrt{b^2 - 4.1.c}}{2.1}$

$$= \frac{-b + \sqrt{b^2 - 4c}}{2}$$

$$= \frac{-b - \sqrt{b^2 - 4c}}{2}$$

a = 1, b = c = 2p (a), $x_1 = \frac{-2p + \sqrt{(2p)^2 - 4.1.2p}}{2.1}$ $= \frac{-2p + \sqrt{4p^2 - 8p}}{2}$ $= \frac{-2p + \sqrt{4(p^2 - 2p)}}{2}$ $= \frac{-2p + 2\sqrt{p^2 - 2p}}{2}$ $= \frac{2(-p + \sqrt{p^2 - 2p})}{2}$ $= \frac{-2p - \sqrt{4(p^2 - 2p)}}{2}$ $= \frac{-2p - 2\sqrt{p^2 - 2p}}{2}$ $= \frac{2(-p - \sqrt{p^2 - 2p})}{2}$

অর্থাৎ,
$$a=1$$
 , $b=c=2p$ হলে, $x_1=-p+\sqrt{p^2-2p}$ এবং $x_2=-p-\sqrt{p^2-2p}$