二维 Poisson 方程的九点差分格式

作业:

$$\begin{cases} -(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) = (\pi^2 - 1)e^x sin(\pi y) &, 0 \le x \le 2, 0 \le y \le 1 \\ u(0, y) = sin(\pi y), u(2, y) = e^2 sin(\pi y) &, 0 \le y \le 1 \\ u(x, 0) = 0, u(x, 1) = 0, &, 0 \le x \le 2 \end{cases}$$

该问题的精确解为 $u(x,y) = e^x sin(\pi y)$.

定义误差为

$$E(h_1, h_2) = \max_{\substack{1 \le i \le M-1 \\ 1 \le i \le N-1}} |u(x_i, y_j) - u_{ij})|$$

请分析误差在不同步长下的变化情况、验证误差阶,并画出误差图。

解:将 xM 等分,将 yN 等分。

九点差分格式为

$$-k_1u_{i-1,j-1} + (2k_1 - k_2)u_{i-1,j} - k_1u_{i-1,j+1} + (2k_1 - k_3)u_{i,j-1} + (2k_2 + 2k_3 - 4k_1)u_{i,j} + (2k_1 - k_3)u_{i,j+1} - k_1u_{i+1,j-1} + (2k_1 - k_2)u_{i+1,j} - k_1u_{i+1,j+1}$$

$$= f_{i,j} + \frac{1}{12} [h_1^2 \frac{\partial^2 f}{\partial x^2}(x_i, y_j) + h_2^2 \frac{\partial^2 f}{\partial y^2}(x_i, y_j)]$$

$$\sharp + , \quad 1 \le i \le N - 1, 1 \le j \le N - 1. \quad f = (\pi^2 - 1)e^x \sin(\pi y).$$

$$k_1 = \frac{h_1^2 + h_2^2}{12h_1^2 h_2^2}, k_2 = \frac{1}{h_1^2}, k_3 = \frac{1}{h_2^2}$$

可用高斯-塞德尔迭代解方程组, 迭代式写为

$$\begin{split} u_{i,j}^{k+1} &= \{f_{i,j} + \frac{1}{12}[h_1^2 \frac{\partial^2 f}{\partial x^2}(x_i, y_j) + h_2^2 \frac{\partial^2 f}{\partial y^2}(x_i, y_j)] + \\ k_1 u_{i-1,j-1}^{k+1} &- (2k_1 - k_2) u_{i-1,j}^{k+1} + k_1 u_{i-1,j+1}^{k+1} - (2k_1 - k_3) u_{i,j-1}^{k+1} - \\ (2k_1 - k_3) u_{i,j+1}^k + k_1 u_{i+1,j-1}^k - (2k_1 - k_2) u_{i+1,j}^k + k_1 u_{i+1,j+1}^k \} / (2k_2 + 2k_3 - 4k_1) \\ k 表示第 k 次迭代 \end{split}$$

解题程序运行于 Matlab 2018a.

当 $h_1 = \frac{1}{20}, h_2 = \frac{1}{20}$ 时的数值解和精确解对比见图1, 从图像上看很接近。

图 **1** $h_1 = \frac{1}{20}$, $h_2 = \frac{1}{20}$ 时的数值解和精确解

当取不同的 h_1 和 h_2 时,数值解在一些点上的取值和精确解见表1,可知,步长越小,数值解越逼近于精确解。

表 1 不同步长下的数值解和精确解

h_1, h_2	x(y=0.5 时)			
	0.4	0.8	1.2	1.6
1/10,1/10	1.4918055414	2.2255083825	3.3200724539	4.9529855650
1/20,1/20	1.4918235062	2.2255389042	3.3201141569	4.9530295099
1/40,1/40	1.4918246233	2.2255408021	3.3201167501	4.9530322425
1/80,1/80	1.4918246930	2.2255409206	3.3201169119	4.9530324130
精确解	1.4918246976	2.2255409285	3.3201169227	4.9530324244

取不同 h_1 和 h_2 时,误差见图2, h_1 和 h_2 越小,误差越小。 定义误差阶为

$$rate = log_2(E(2h_1, 2h_2)/E(h_1, h_2))$$

 $h_1 = h_2$ 时的误差阶见表2, $h_1 < h_2$ 时的误差阶见表3, $h_1 > h_2$ 时的误差阶见表4,误差均达到了4阶,而五点差分格式的精度只有2阶,因此,九点差分的精度高于五点差分格式。

(a) $h_1 = 1/10$, $h_2 = 1/10$ 时的误差

(b) $h_1 = 1/20$, $h_2 = 1/20$ 时的误差

(c) $h_1 = 1/40$, $h_2 = 1/40$ 时的误差

(d) $h_1 = 1/80$, $h_2 = 1/80$ 时的误差

图 2 取不同 h_1 , h_2 时的误差

表 2 $h_1 = h_2$ 时最大误差和误差阶

h_1, h_2	$E(h_1, h_2)$	rate
$\frac{1}{10}, \frac{1}{10}$	4.84E-05	*
$\frac{1}{20}, \frac{1}{20}$	3.01E-06	4.005469
$\frac{1}{40}, \frac{1}{40}$	1.88E-07	4.000988
$\frac{1}{80}, \frac{1}{80}$	1.18E-08	3.999005

表 3 $h_1 < h_2$ 时最大误差和误差阶

h_1, h_2	$E(h_1, h_2)$	rate
$\frac{1}{20}, \frac{1}{5}$	1.01E-03	*
$\frac{1}{40}, \frac{1}{10}$	6.53E-05	3.956884
$\frac{1}{80}, \frac{1}{20}$	4.06E-06	4.007516
$\frac{1}{160}, \frac{1}{40}$	2.54E-07	4.001663

表 4 $h_1 > h_2$ 时最大误差和误差阶

h_1, h_2	$E(h_1,h_2)$	rate
$\frac{1}{5}, \frac{1}{20}$	1.87E-05	*
$\frac{1}{10}, \frac{1}{40}$	1.18E-06	3.990484
$\frac{1}{20}, \frac{1}{80}$	7.37E-08	3.997730
$\frac{1}{40}, \frac{1}{160}$	4.63E-09	3.991979