TLA+的类型系统定义

$$t := Cons \mid Bool \mid Int \mid t \rightarrow t \mid Set(t) \mid t * \cdots * t \mid [nm:t,\cdots,nm_k:t]$$

简单类型定义

- 对TLA+规约中变量的类型进行限制,足够描述一些简单的规约。
 - o 通过PaxosEPR-tla+的变量类型总结

$$egin{aligned} tb := Cons \mid Bool \mid Int \ tset := Set(tb) \ ttup := tb * \cdots * tb \ tt := tb \mid tset \mid ttup \ tfunc := tb
ightarrow tt \mid tb
ightarrow tfunc \ tsimp := tt \mid tfunc \end{aligned}$$

简单类型与Ivy Relation之间转换

- $\exists v. type \in tb$, $\exists v. typ$
- $\exists v. type \in tset$, $\exists x \in V \leftrightarrow R_v(x)$
- 若 $v.type \in ttup$,设v为k元组,定义k元关系 $R_v(_,\cdots,_): v = \langle x_1,\cdots,x_k \rangle \leftrightarrow R_v(x_1,\cdots,x_k)$
- 若 $v.type \in tfunc$
 - 。 若 $v.type=tb o_1\cdots o_ktb$,定义(k+1)元关系 $R_v(_,\cdots,_):v(x_1,\cdots,x_k)=x_{k+1}\leftrightarrow R_v(x_1,\cdots,x_{k+1})$
 - \circ 若 $v.type = tb \rightarrow_1 \cdots \rightarrow_k tset$,定义(k+1)元关系 $R_v(_, \cdots, _): x_{k+1} \in v(x_1, \cdots, x_k) \leftrightarrow R_v(x_1, \cdots, x_{k+1})$
 - 。 若 $v.type = tb \rightarrow_1 \cdots \rightarrow_k (t_1 * \cdots * t_m)$,定义(k+m)元关系 $R_v(_, \cdots, _) : v(x_1, \cdots, x_k) = \langle y_1, \cdots, y_k \rangle \leftrightarrow R_v(x_1, \cdots, x_k, y_1, \cdots, y_m)$