ADVANCED STATISTICS

EXAM (LENGTH 2H)

Notes and duplicated copy are allowed, computers and tablets are prohibited.

Throughout the exam subject, by $\mathbb{I}\{\mathcal{E}\}$ is meant the indicator function of any event \mathcal{E} , by |z| the modulus of any complex number z.

Ex. 1 - Nonparametric estimation of a characteristic function

The goal is to estimate the characteristic function $t \in \mathbb{R} \mapsto \Phi_X(t) = \mathbb{E}[e^{itX}]$ of a real valued r.v. X based on the observation of $n \geq 1$ i.i.d. copies of $X : X_1, \ldots, X_n$.

1. Explain the statistical method leading to consider

$$\widehat{\Phi}_n(t) = \frac{1}{n} \sum_{k=1}^n \exp\left(itX_k\right)$$

as (nonparametric) estimator of $\Phi_X(t)$.

2. Fix $t \in \mathbb{R}$. Show that $\widehat{\Phi}_n(t)$ is an unbiased estimator of $\Phi_X(t)$ and compute its variance

$$var(\widehat{\Phi}_n(t)) = \mathbb{E}\left[\left|\widehat{\Phi}_n(t) - \mathbb{E}[\widehat{\Phi}_n(t)]\right|^2\right].$$

3. Deduce the order of magnitude of the pointwise quadratic risk of the estimator $\widehat{\Phi}_n(t)$, namely

$$\mathbb{E}\left[\left|\widehat{\Phi}_n(t) - \Phi_X(t)\right|^2\right].$$

Ex. 2 - Cross-validation for the histogram

Consider an i.i.d. sample X_1, \ldots, X_n with support included in [0,1] and density $f \in L_2([0,1])$ (i.e. such that $||f||_2^2 = \int_0^1 f^2(x) dx < +\infty$) w.r.t. Lebesgue measure on [0,1]. Let h > 0 and consider the histogram estimator of the density f with bin width h = 1/m, where $m \ge 1$:

$$\widehat{f}_{h,n}(x) = \frac{1}{h} \sum_{k=1}^{m} \widehat{p}_k \mathbb{I} \left\{ x \in [(k-1)/m, \ k/m[\right\}, \right.$$

where, for $1 \le k \le m$, we set :

$$\widehat{p}_k = \frac{1}{n} \sum_{i=1}^n \mathbb{I} \{ X_i \in [(k-1)/m, \ k/m[] \}.$$

Denote by R(h) the integrated quadratic risk (on [0,1]) of the estimator $\widehat{f}_{h,n}$ and set

$$J(h) = R(h) - ||f||_2^2.$$

- 1. Calculate the bias and the variance of $\widehat{f}_{h,n}$. Calculate next J(h).
- 2. Show that

$$\widehat{J}(h) = \frac{2}{(n-1)h} - \frac{n+1}{(n-1)h} \sum_{k=1}^{m} \widehat{p}_k^2$$

is an unbiased estimator of J(h).

EX 3. - RATE FOR THE RISK OF THE HISTOGRAM

We place ourselves in the same setting as in the exercise above and re-use its notations. We assume in addition that the density f satisfies the Hölder property: there exists a constant C > 0 s.t.

$$\forall (x, x') \in [0, 1]^2, |f(x) - f(x')| \le C|x - x'|^{\alpha}$$

- 1. Compute the orthogonal projection f_h of f onto the subspace of the Hilbert space $L_2([0,1])$ composed of functions that are constant almost-everywhere on each interval [(k-1)/m, k/m] for all $k \in \{1, \ldots, m\}$.
- 2. Prove that

$$||f - f_h||_2 \le C^2 m^{-2\alpha}$$
.

3. Deduce from the bound above an upper bound for the integrated quadratic risk of the estimator $\hat{f}_{h,n}$ and propose a value for the parameter m so as to minimize the upper bound.

Ex. 4 - Multiplicative regression model

Suppose we observe $(Y_1, X_1), \ldots, (Y_n, X_n)$ such that :

$$Y_i = \sigma(X_i)\varepsilon_i, \qquad i = 1, \ldots, n,$$

where the (X_i, ε_i) 's are independent and identically distributed random pairs, valued in $[0,1] \times \mathbb{R}$ and $\sigma : [0,1] \to \mathbb{R}_+$ is a bounded function : there exists $C < +\infty$ s.t. $\sup_{x \in [0,1]} \sigma^2(x) \leq C$. We suppose that (X_1, \ldots, X_n) is independent from $(\varepsilon_1, \ldots, \varepsilon_n)$, as well as $\mathbb{E}[\varepsilon_1] = m < +\infty$ and $\mathbb{E}[\varepsilon_1^2] = 1$. Let $F : [0,1] \to [0,1]$ be the cumulative distribution function of X_1 (i.e. $F(x) = \mathbb{P}\{X_1 \leq x\}$) and assume it is bijective. The goal pursued here is to estimate $\ell = \sigma^2 \circ F^{-1}$ using a kernel smoothing method, when F is known. Let $K : \mathbb{R} \to \mathbb{R}$ be a Parzen-Rosenblatt kernel function, h > 0 a bandwidth and define

$$\widehat{\ell}_h(x) = \frac{1}{nh} \sum_{i=1}^n Y_i^2 K\left(\frac{F(X_i) - x}{h}\right),$$

for any $x \in [0, 1]$.

1. Show that the variance of the statistic defined above is bounded as follows

$$var\left(\widehat{\ell}_h(x)\right) \le \frac{C^2 \int K^2(t)dtm}{nh}.$$

2. Express $\mathbb{E}[\hat{\ell}_h(x)]$ depending on K, h, ℓ and x only.

3. Suppose now in addition that ℓ is of class \mathcal{C}^3 and that there exists $M<+\infty$ s.t. $|\ell'''(x)|\leq M$ for all x in [0,1]. Assume also that the kernel K is supported on [-1,+1] and is of order 2 and set $C_K=\int |t|^3|K(t)|dt<+\infty$. Find constants $\kappa>0$ and $\beta>0$ such that : $\forall h\in]0,\ 1/2[,\ \forall x\in [h,\ 1-h],$

$$\Big|\mathbb{E}[\widehat{\ell}_h(x)] - \ell(x)\Big| \leq \kappa h^{\beta}.$$

- 4. Deduce an upper bound for the pointwise quadratic risk of the estimator $\widehat{\ell}_h(x)$ of $\ell(x)$ and find the bandwidth h^* that minimizes this upper bound.
- 5. Deduce an estimator of σ^2 when F is known.
- 6. Propose an estimator of σ^2 when F is unknown.