Practice Exam Questions Week 7, Linear Algebra

1. Let $V=\begin{bmatrix} 2 & -4 & 1 \\ -3 & -1 & 1 \\ 1 & 5 & 1 \end{bmatrix}$. Show that the columns of V are orthogonal to each other.

$$\begin{bmatrix} 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} -4 \\ -1 \\ 5 \end{bmatrix} = -\vartheta + 3 + 5 = 0.$$

$$\begin{bmatrix} 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2 - 3 + 1 = 0$$

$$\begin{bmatrix} -4 & -1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = -4 - 1 + 5 = 0$$

Hence, the columns of V are orthogonal to each other.

2. Consider the following matrix A and vectors \mathbf{v}_1 and \mathbf{v}_2 :

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$A\underline{V}_{1} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = 1 \cdot \underline{V}_{1}$$

So, \underline{V}_{1} is an eigenvector of A with associated eigenvalue $\lambda_{1}=1$.

$$A \underline{\vee}_2 = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix} = 4 \cdot \underline{\vee}_2$$

So, $\underline{\vee}_2$ is an eigenvector of A with associated eigenvalue $\lambda_2 = 4$.

b. Orthogonally diagonalize the matrix A.

Hence, a basis for the eigenspace is
$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$
 or $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ The projection of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ onto $\begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$.

The projection of
$$\begin{bmatrix} 1 \end{bmatrix}$$
 onto $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ is $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

and the component of [1] orthogonal to [-1] is $\begin{bmatrix} 17 - \frac{1}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$. Hence, $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ is an orthogonal set in the eigenspace for $\lambda = 1$. Since the eigenspace is two-dimensional, the orthogonal set $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an orthogonal basis for the eigenspace. Likewise, $A - \lambda_2 I = \begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -x_3 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Hence, a basis for the eigenspace is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The vectors V_1, V_2 and V_3 may be normalized to get the vectors

Then, Parthogonally diagonalities A, and A=PDP-1.

True. U and V are orthogonal matrices, so $U^TU = I$ and $V^TV = I$ So, $W^TW = (UV)^T(UV) = (V^TU^T)(UV) = V^TU^TUV = V^TV = I$. So, W is also an orthogonal matrix.

b. If the columns of a 3×3 matrix Q are orthogonal to each other, then $Q^TQ=I$.

False. Consider for example $Q=\begin{bmatrix}1&0&0\\0&2&0\\0&0&1\end{bmatrix}$. The columns of Q are orthogonal to each other, but $Q^TQ=\begin{bmatrix}1&0&0\\0&0&1\end{bmatrix}$

True or false? If the given statement is true, give a brief explanation. If it is false, give a counterexample.

a. If U and V are 3×3 orthogonal matrices, then their product W=UV is also a 3×3 orthogonal matrix.

c. Every linearly independent set in \mathbb{R}^n is an orthogonal set. False. Consider for example $x = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $y = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. \underline{x} and y are linearly independent, but $\underline{x} \cdot \underline{y} = 2d-12 = 16 \neq 0$, so $\{\underline{x}, \underline{y}\}$ is not an orthogonal set.

d. If $A^T=A$ and if vectors \mathbf{u} and \mathbf{v} satisfy $A\mathbf{u}=3\mathbf{u}$ and $A\mathbf{v}=4\mathbf{v}$, then $\mathbf{u}\cdot\mathbf{v}=0$.

True. If y and y are both ronzero vectors, then y and y are two elgenvectors from different evgenspaces. Moreover, since A is symmetric, it follows that y and y are orthogonal (Theorem; in Section 7.1). If one of the vectors (or both) is the zero vector, then automatically y = 0.

e. There are symmetric matrices that are not orthogonally diagonalizable.

False, because an non matrix is orthogonally diagonalizable if and only of Alssymmetric.