Generalised Attractors in Five Dimensional Gauged Supergravity

Karthik Inbasekar

Institute of Mathematical Sciences, Chennai

Tata Institute of Fundamental Research, Mumbai

Jan 2013

based on arXiv:1206.3887 with Prasanta K. Tripathy

Attractors in Gauged Sugra

Introduction

Background

Plan of the talk

Motivation

Our work

Gauged Sugra and Generalised Attractors

Gauged Supergravity

Generalised Attractors

Examples

Some Bianchi attractors

Summary

Summary

Comments and Caveats

Ongoing works

Future Outlook

Introduction

Motivation
Our work

Gauged Sugra & Gen. Attractors

examples

Summar

- Attractor mechanism plays a crucial role in understanding the origin of black hole entropy in supergravity theories. [Ferrara-Kallosh-Strominger]
- Moduli fields in black hole background are attracted to specific charge dependent values on the horizon.
- Attractor values are determined by solving sets of algebraic equations.
- Macroscopic entropy is determined in terms of charges independent of asymptotic values of moduli.
- Agrees with microscopic results in string theory.

ntroduction

Background Motivation

Gauged Sugra

kamples

Summar

Introduction:

 Attractor mechanism is a consequence of near horizon geometry rather than supersymmetry.

[Ferrara-Gibbons-Kallosh]

Extends to non-supersymmetric cases.

[Goldstein-lizuka-Jena-Trivedi]

• Recently, Attractor mechanism generalised for $\mathcal{N}=2, d=4$ gauged supergravity.

[Cacciatori-Klemm , Kachru-Kallosh-Shmakova]

 Generalised attractors: solutions to equations of motion that reduce to algebraic equations when all the fields, curvature tensors are constants in tangent space. ntroduction

Motivation
Our work

Gauged Sugra & Gen. Attractors

xamples

Summary

Introduction:

 Lifshitz, Schrödinger geometries are some examples of generalised attractors.

 Such geometries are near horizon geometries of extremal black branes.

[Goldstein-Kachru-Prakash-Trivedi]

• Bianchi attractors: Classification of homogeneous anisotropic extremal black brane horizons in d = 5.

[lizuka-Kachru-Kundu-Narayan-Sircar-Trivedi]

 Lifshitz, Schrödinger geometries belong to Bianchi Type I in the classification. Introduction

Motivation

Gauged Sugra & Gen. Attractors

Summar

- In gauge/gravity correspondence, black branes are holographic duals to field theories at finite temperature.
- Extremal branes exhibit vanishing entropy density at zero temperature and describe ground states of the field theory.
- Bianchi type metrics are homogeneous, and have been studied recently in the context of AdS/CFT.

[Domokos-Harvey, Nakamura-Ooguri-Park, Donos-Hartnoll]

 Embedding these metrics in supergravity will be useful to study their supersymmetry properties and pave way for string embedding. ntroduction
Background
Motivation
Our work

Gauged Sugra & Gen. Attractors

Summan

Motivation: Why gauged sugra?

- Bianchi attractors arise in 5d Einstein-Maxwell systems with massive gauge fields.
- Explicit mass terms break SUSY and are not allowed in Sugra.
- Typical scalar kinetic term of Gauged supergravities,

$$g_{\tilde{x}\tilde{y}}\mathcal{D}_{\mu}\phi^{\tilde{x}}\mathcal{D}^{\mu}\phi^{\tilde{y}}; \quad \mathcal{D}_{\mu}\phi^{\tilde{x}} \equiv \partial_{\mu}\phi^{\tilde{x}} + gA_{\mu}^{I}K_{I}^{\tilde{x}}(\phi).$$

At attractor points scalars are constant, terms like

$$g^2 g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} A_\mu^I A^{J\mu}$$

act as effective mass term for the gauge field.

 Gauged sugras (not all): from string theory via flux compactifications.

Motivation

• We extend the work of [Kachru-Kallosh-Shmakova] to $\mathcal{N}=2, d=5$ gauged supergravity.

- We show that homogeneous anisotropic extremal black brane horizons are generalised attractor solutions of gauged supergravity.
- Examples: Using a simple gauged sugra model we realise Bianchi Type I (z=3 Lifshitz), Bianchi Type II and Bianchi Type VI solutions as generalised attractors.

Introduction
Background
Motivation
Our work

Gauged Sugra & Gen. Attractors

Summary

Gauged Sugra and Generalised Attractors

Attractors in Gauged Sugra

Introduction

Background Motivation

Our work

Gauged Sugra and Generalised Attractors

Gauged Supergravity
Generalised Attractors

Examples

Some Bianchi attractors

Summary

Summary

Comments and Caveats

Ongoing works

Future Outlook

Introduction

Gauged Sugra & Gen. Attractors

Lagrangian
Potential
Generalised Attra

Field equations Attractor Potential

Examples

ummary

Gauged Supergravity

Lagrangian
Potential
Generalised Attractors
Field equations

Examples

Summary

• The most general $\mathcal{N}=2, d=5$ gauged sugra has gravity coupled to vector, tensor and hypermultiplets.

[Ceresole-Dall'Agata]

 The scalars in the theory parametrise a manifold that factorises into a direct product of a very special and quaternionic manifold,

$$\mathcal{M}_{scalar} = \mathcal{S}(n_V + n_T) \otimes \mathcal{Q}(n_H).$$

• The R symmetry group is $SU(2)_R$.

- Gauging: Suitable subgroup K of the isometry group G of the full scalar manifold \mathcal{M}_{scalar} , and the $SU(2)_R$ symmetry group.
- Ordinary derivatives on scalar and fermions are replaced with K-covariant derivatives.

$$\begin{split} \partial_{\mu}\phi^{\tilde{x}} &\to \mathcal{D}_{\mu}\phi^{\tilde{x}} \equiv \partial_{\mu}\phi^{\tilde{x}} + gA_{\mu}^{I}K_{I}^{\tilde{x}}(\phi) \\ \partial_{\mu}q^{X} &\to \mathcal{D}_{\mu}q^{X} \equiv \partial_{\mu}q^{X} + gA_{\mu}^{I}K_{I}^{X}(q) \\ \nabla_{\mu}B_{\nu\rho}^{M} &\to \mathcal{D}_{\mu}B_{\nu\rho}^{M} \equiv \nabla_{\mu}B_{\nu\rho}^{M} + gA_{\mu}^{I}\Lambda_{IN}^{M}B_{\nu\rho}^{N}, \end{split}$$

• Gauging the $SU(2)_R$ Symmetry:

$$abla_{\mu}\psi_{
u i}
ightarrow
abla_{\mu}\psi_{
u i} + g_{R}A_{\mu}^{I}P_{Ii}^{j}(q)\psi_{
u j}.$$

Introduction

Gen. Attractors
Gauged Supergravity

Gauging

Potential
Generalised Attractor
Field equations

.

Summary

Gauged Sugra: Lagrangian

The bosonic part of the five dimensional $\mathcal{N}=2$ gauged supergravity:

$$\begin{split} \hat{\mathbf{e}}^{-1}\mathcal{L}_{\textit{Bosonic}}^{\mathcal{N}=2} &= -\frac{1}{2}\mathbf{R} - \frac{1}{4}\mathbf{a}_{\tilde{I}\tilde{J}}\mathcal{H}_{\mu\nu}^{\tilde{I}}\mathcal{H}^{\tilde{J}\mu\nu} - \frac{1}{2}\mathbf{g}_{XY}\mathcal{D}_{\mu}q^{X}\mathcal{D}^{\mu}q^{Y} \\ &- \frac{1}{2}\mathbf{g}_{\tilde{x}\tilde{y}}\mathcal{D}_{\mu}\phi^{\tilde{x}}\mathcal{D}^{\mu}\phi^{\tilde{y}} + \frac{\hat{\mathbf{e}}^{-1}}{6\sqrt{6}}C_{IJK}\epsilon^{\mu\nu\rho\sigma\tau}F_{\mu\nu}^{I}F_{\rho\sigma}^{J}A_{\tau}^{K} \\ &+ \frac{\hat{\mathbf{e}}^{-1}}{4\mathbf{g}}\epsilon^{\mu\nu\rho\sigma\tau}\Omega_{MN}B_{\mu\nu}^{M}\mathcal{D}_{\rho}B_{\sigma\tau}^{N} - \mathcal{V}(\phi,q). \end{split}$$

$$\mathcal{H}_{\mu\nu}^{\tilde{I}} = (F_{\mu\nu}^{I}, B_{\mu\nu}^{M}), \qquad \mu = 0, \dots, 4$$
 $M = 1, \dots, n_{T}, \qquad I = 0, 1, \dots, n_{V}$
 $\tilde{x} = 0, 1, \dots, n_{V} + n_{T}, \qquad X = 1, 2, \dots, 4n_{H}.$

$$\mathcal{V}(\phi,q) = 2g^2 W^{\tilde{a}} W^{\tilde{a}} - g_R^2 [2P_{ij}P^{ij} - P_{ij}^{\tilde{a}}P^{\tilde{a}ij}] + 2g^2 \mathcal{N}_{iA} \mathcal{N}^{iA}$$

$$P_{ij} \equiv h^{I} P_{lij}, \qquad P_{ij}^{\tilde{a}} \equiv h^{\tilde{a}I} P_{lij}$$

$$W^{\tilde{a}} \equiv \frac{\sqrt{6}}{4} h^{I} K_{I}^{\tilde{x}} f_{\tilde{x}}^{\tilde{a}}, \qquad \mathcal{N}^{iA} \equiv \frac{\sqrt{6}}{4} h^{I} K_{I}^{X} f_{X}^{Ai}.$$

Bosonic part of supersymmetry transformations:

$$\begin{split} &\delta_{\epsilon}\psi_{\mu i}=\sqrt{6}\nabla_{\mu}\epsilon_{i}+\frac{i}{4}h_{\tilde{l}}(\gamma_{\mu\nu\rho}\epsilon_{i}-4g_{\mu\nu}\gamma_{\rho}\epsilon_{i})\mathcal{H}^{\nu\rho\tilde{l}}+ig_{R}P_{ij}\gamma_{\mu}\epsilon^{j}\\ &\delta_{\epsilon}\lambda_{i}^{\tilde{a}}=-\frac{i}{2}f_{X}^{\tilde{a}}\gamma^{\mu}\epsilon_{i}\mathcal{D}_{\mu}\phi^{\tilde{x}}+\frac{1}{4}h_{\tilde{l}}^{\tilde{a}}\gamma^{\mu\nu}\epsilon_{i}\mathcal{H}_{\mu\nu}^{\tilde{l}}+g_{R}P_{ij}^{\tilde{a}}\epsilon^{j}+gW^{\tilde{a}}\epsilon_{i}\\ &\delta_{\epsilon}\zeta^{A}=-\frac{i}{2}f_{X}^{A}\gamma^{\mu}\epsilon^{i}\mathcal{D}_{\mu}q^{X}+g\mathcal{N}_{i}^{A}\epsilon^{i}. \end{split}$$

The potential can be written as squares of fermionic shifts.

Introduction

Jauged Sugra & Jen. Attractors
Gauged Supergravity
Gauging
Lagrangian
Potential
Generalised Attractors
Field equations

Examples

ummary

Ansatz:

• In tangent space, all the bosonic fields in the theory take constant values at the attractor points.

$$\phi^{\tilde{z}} = \text{const}$$
; $q^Z = \text{const}$; $A_a^I = \text{const}$;
$$B_{ab}^M = \text{const}$$
; $c_{bc}^{\ \ a} = \text{const}$.

 The attractor geometries are characterised by constant anholonomy coefficients.

$$[e_a, e_b] = c_{ab}^{\ c} e_c ; \quad e_a \equiv e_a^{\mu} \partial_{\mu}$$
$$c_{ab}^{\ c} = e_a^{\mu} e_b^{\nu} (\partial_{\mu} e_{\nu}^{c} - \partial_{\nu} e_{\mu}^{c})$$

Introduction

Gen. Attractors
Gauged Supergravity
Gauging

Generalised Attractors

Field equations Attractor Potential

.

Summary

Generalised Attractors

• Gauge field, Tensor field and Einstein equations reduce to algebraic equations at the attractor point.

- Scalar field equations reduce to a minimisation condition on an attractor potential.
- The attractor potential is also independently constructed from squares of fermionic shifts.
- Constant anholonomy ⇒ regular geometries.

Gauge field equation

• Since $c_{ab}^{\ \ c} = const$,

$$F_{ab} = e_a^{\mu} e_b^{\nu} (\partial_{\mu} e_{\nu}^{c} - \partial_{\nu} e_{\mu}^{c}) A_c = c_{ab}^{\ c} A_c$$

• The Gauge field equation of motion,

$$\begin{split} \partial_{\mu}(\hat{\mathbf{e}} \mathbf{a}_{I\tilde{J}} \mathcal{H}^{\tilde{J}\mu\nu}) &= -\frac{1}{2\sqrt{6}} C_{I\tilde{J}\tilde{K}} \epsilon^{\nu\mu\rho\sigma\tau} \mathcal{H}^{\tilde{J}}_{\mu\rho} \mathcal{H}^{\tilde{K}}_{\sigma\tau} \\ &+ g \hat{\mathbf{e}} \big[g_{XY} K_{I}^{X} \mathcal{D}^{\nu} q^{Y} + g_{\tilde{x}\tilde{y}} K_{I}^{\tilde{x}} \mathcal{D}^{\nu} \phi^{\tilde{y}} \big] \end{split}$$

in tangent space, is an algebraic equation at the attractor points

$$\begin{split} \hat{\mathbf{e}} \ a_{I\tilde{J}}[\boldsymbol{\omega}_{\mathsf{a},\ c}^{\ a}\boldsymbol{\mathcal{H}}^{cb\tilde{J}} + \boldsymbol{\omega}_{\mathsf{a},\ c}^{\ b}\boldsymbol{\mathcal{H}}^{ac\tilde{J}}] = & -\frac{1}{2\sqrt{6}}C_{I\tilde{J}\tilde{K}}\epsilon^{bacde}\boldsymbol{\mathcal{H}}_{ac}^{\tilde{J}}\boldsymbol{\mathcal{H}}_{de}^{\tilde{K}} \\ & + g^2\hat{\mathbf{e}}\big[g_{XY}K_I^XK_J^Y \\ & + g_{\tilde{x}\tilde{y}}K_I^{\tilde{x}}K_J^{\tilde{y}}\big]A^{Jb}. \end{split}$$

Tensor field equation

• The tensor field equation is,

$$\frac{1}{g}\epsilon^{\mu\nu\rho\sigma\tau}\Omega_{MP}\mathcal{D}_{\rho}B_{\mu\nu}^{M}+\hat{e}a_{\tilde{I}P}\mathcal{H}^{\tilde{I}\sigma\tau}=0.$$

In tangent space,

$$\frac{1}{g} \epsilon^{abcde} \left[c_{ac}^{f} B_{fb}^{M} + g A_c^{l} \Lambda_{IN}^{M} B_{ab}^{N} \right] \Omega_{MP} + \hat{e} a_{\tilde{l}P} \mathcal{H}^{\tilde{l}de} = 0.$$

is an algebraic equation at the attractor points,

Einstein equation

• The Einstein equation at the attractor point:

$$R_{ab} - \frac{1}{2}R\eta_{ab} = T_{ab}^{attr}$$

• In the absence of torsion, The left handside is algebraic:

$$R_{abc}^{d} = \partial_{a}\omega_{bc}^{d} - \partial_{b}\omega_{ac}^{d} - \omega_{ac}^{e}\omega_{be}^{d} + \omega_{bc}^{e}\omega_{ae}^{d} - c_{ab}^{e}\omega_{ec}^{d}$$
$$\omega_{a,bc} = \frac{1}{2}[c_{ab,c} - c_{ac,b} - c_{bc,a}]$$

• The stress energy tensor at the attractor point:

$$\begin{split} T_{ab}^{attr} &= \mathcal{V}_{attr}(\phi, q) \eta_{ab} - \left[a_{\tilde{I}\tilde{J}} \mathcal{H}_{b}^{\tilde{I}} \mathcal{H}_{b}^{c\tilde{J}} + g^{2} [g_{XY} K_{I}^{X} K_{J}^{Y} \right. \\ &+ g_{\tilde{x}\tilde{y}} K_{I}^{\tilde{x}} K_{J}^{\tilde{y}}] A_{a}^{I} A_{b}^{J} \right]. \end{split}$$

 The Einstein equations are algebraic at the attractor points. • The scalar $\phi^{\tilde{x}}$ field equations,

$$\begin{split} \hat{\mathbf{e}}^{-1}\partial_{\mu} \left[\hat{\mathbf{e}} \ g_{\tilde{\mathbf{z}}\tilde{\mathbf{y}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} \right] &- \frac{1}{2} \frac{\partial g_{\tilde{\mathbf{x}}\tilde{\mathbf{y}}}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{D}_{\mu} \phi^{\tilde{\mathbf{x}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} \\ &- g A^{I}_{\mu} g_{\tilde{\mathbf{x}}\tilde{\mathbf{y}}} \frac{\partial K^{\tilde{\mathbf{x}}}_{I}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{D}^{\mu} \phi^{\tilde{\mathbf{y}}} - \frac{1}{4} \frac{\partial a_{\tilde{\mathbf{i}}\tilde{\mathbf{y}}}}{\partial \phi^{\tilde{\mathbf{z}}}} \mathcal{H}^{\tilde{\mathbf{j}}}_{\mu\nu} \mathcal{H}^{\tilde{\mathbf{j}}\mu\nu} - \frac{\partial \mathcal{V}(\phi, q)}{\partial \phi^{\tilde{\mathbf{z}}}} = 0. \end{split}$$

• For the quaternion q^Z , the equation of motion is

$$\begin{split} \hat{\mathbf{e}}^{-1}\partial_{\mu} \big[\hat{\mathbf{e}} \ g_{ZY} \mathcal{D}^{\mu} q^{Y} \big] - \frac{1}{2} \frac{\partial g_{XY}}{\partial q^{Z}} \mathcal{D}_{\mu} q^{X} \mathcal{D}^{\mu} q^{Y} \\ - g A^{I}_{\mu} g_{XY} \frac{\partial K^{X}_{I}}{\partial q^{Z}} \mathcal{D}^{\mu} q^{Y} - \frac{\partial \mathcal{V}(\phi, q)}{\partial q^{Z}} = 0. \end{split}$$

Introduction

Gen. Attractors
Gauged Supergravity
Gauging
Lagrangian

Generalised Attractor

Examples

Summary

Attractor Potential

Cumman

bummary

Using attractor ansatz,

• Equation of motion for $\phi^{\tilde{x}}$ reduces to,

$$\frac{\partial}{\partial \phi^{\tilde{z}}} \bigg[\mathcal{V}(\phi,q) + \frac{1}{2} g^2 \, g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} A^{Ia} A_a^J + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \bigg] = 0.$$

• Equation of motion for q^Z reduces to,

$$\frac{\partial}{\partial q^{Z}} \left[\mathcal{V}(\phi, q) + \frac{1}{2} g^{2} g_{XY} K_{I}^{X} K_{J}^{Y} A^{aI} A_{a}^{J} \right] = 0.$$

Attractor Potential

 Scalar field equations reduce to an extremisation condition on an attractor potential.

$$\begin{split} \mathcal{V}_{attr}(\phi,q) = & \left[\mathcal{V}(\phi,q) + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \right. \\ & \left. + \frac{1}{2} g^2 \left[g_{\tilde{X}\tilde{J}} K_I^{\tilde{X}} K_J^{\tilde{Y}} + g_{XY} K_I^X K_J^Y \right] A^{Ia} A_a^J \right] \end{split}$$

• The attractor potential gives rise to the attractor values of the scalars upon extremisation.

Susy transformations at attractor points:

$$\begin{split} \delta\psi_{ai} &= \sqrt{6}D_{a}\epsilon_{i} + (\Sigma_{i|j})^{bc}(\gamma_{abc} - 4\eta_{ab}\gamma_{c})\epsilon^{j} + \gamma_{a}S_{ij}\epsilon^{j} \\ \delta\lambda_{i}^{\tilde{a}} &= \Sigma_{i|j}^{\tilde{a}}\epsilon^{j} + (\Sigma_{i|j}^{\tilde{a}})^{a}\gamma_{a}\epsilon^{j} + (\Sigma_{i|j}^{\tilde{a}})^{ab}\gamma_{ab}\epsilon^{j} \\ \delta\zeta^{A} &= (\Sigma_{|j}^{A})\epsilon^{j} + (\Sigma_{|j}^{A})^{a}\gamma_{a}\epsilon^{j} \end{split}$$

Generalised Fermion shifts:

$$\begin{split} \Sigma^{\tilde{a}}_{i|j} &= g_R P^{\tilde{a}}_{ij} - g W^{\tilde{a}} \epsilon_{ij} \quad ; \quad (\Sigma^A_{\ |j}) = g \mathcal{N}_j^A \\ (\Sigma^{\tilde{a}}_{\ i|j})^a &= \frac{i}{2} g f_{\tilde{x}}^{\tilde{a}} K_l^{\tilde{x}} A^{la} \epsilon_{ij} \quad ; \quad (\Sigma^A_{\ |j})^a = -\frac{i}{2} g f_{jX}^A K_l^X A^{al} \\ (\Sigma^{\tilde{a}}_{\ i|j})^{ab} &= -\frac{1}{4} h_{\tilde{l}}^{\tilde{a}} \mathcal{H}^{\tilde{l}ab} \epsilon_{ij} \quad ; \quad (\Sigma_{i|j})^{bc} = -\frac{i}{4} h_{\tilde{l}} \mathcal{H}^{bc\tilde{l}} \epsilon_{ij} \\ S_{ij} &= i g_R P_{ij} \end{split}$$

Introduction

Gen. Attractors
Gauged Supergravity
Gauging

Generalised Attractor

Attractor Potential

Lxampi

Summary

Attractor Potential from fermion shifts

 The attractor potential can be constructed independently from squares of fermionic shifts

$$\begin{split} -\mathcal{V}_{attr} \frac{\epsilon^{l}_{\ k}}{4} &= \bar{S}^{i}_{\ k} S_{i}^{\ l} - \epsilon^{lj} \bigg\{ \big[(\overline{\Sigma^{A}_{\ |k}}) (\Sigma_{A|j}) + \frac{1}{2} (\overline{\Sigma^{\tilde{a}i}_{\ |k}}) (\Sigma^{\tilde{a}}_{\ i|j}) \big] \\ &+ \big[(\overline{\Sigma^{A}_{\ |k}})_{a} (\Sigma_{A|j})^{a} + \frac{1}{2} (\overline{\Sigma^{\tilde{a}i}_{\ |k}})_{a} (\Sigma^{\tilde{a}}_{\ i|j})^{a} \big] \\ &+ \big[(\overline{\Sigma^{i}_{\ |k}})_{ab} (\Sigma_{i|j})^{ab} + (\overline{\Sigma^{\tilde{a}i}_{\ |k}})_{ab} (\Sigma^{\tilde{a}}_{\ i|j})^{ab} \big] \bigg\}, \end{split}$$

which can be shown to reproduce,

$$\begin{aligned} \mathcal{V}_{attr}(\phi, q) &= \left[\mathcal{V}(\phi, q) + \frac{1}{4} a_{\tilde{I}\tilde{J}} \mathcal{H}_{ab}^{\tilde{I}} \mathcal{H}^{\tilde{J}ab} \right. \\ &+ \left. \frac{1}{2} g^2 \left[g_{\tilde{x}\tilde{y}} K_I^{\tilde{x}} K_J^{\tilde{y}} + g_{XY} K_I^X K_J^Y \right] A^{Ia} A_a^J \right] \end{aligned}$$

Attractors in Gauged Sugra

Examples

Background

Motivation

Our work

Gauged Sugra and Generalised Attractor

Gauged Supergravity

Generalised Attractor

Examples

Some Bianchi attractors

Summary

Summary

Comments and Caveats

Ongoing works

Future Outlook

Introduction

Jauged Sugra & Gen. Attractors

Examples

ome Bianchi ttractors

Summary

Bianchi Attractors in a simple gauged sugra model

• For illustration, take a gauged supergravity model with one vector and two tensor multiplets.

[Gunaydin-Zagermann]

- Within this model, we realise a z = 3 Lifshitz solution. a Bianchi Type II and a Bianchi Type VI solution as attractors.
- The other Bianchi type metrics can be realised as attractor solutions of more generic gauged supergravity models.

Moduli space

$$\mathcal{M}_{scalar} = SO(1,1) imes rac{SO(2,1)}{SO(2)}.$$

- Metric on moduli space $g_{\tilde{x}\tilde{y}}$, $a_{\tilde{l}\tilde{J}}$.
- Gauging: SO(2) subgroup of G using a single vector A^0 (graviphoton).
- R-Symmetry: $A_{\mu}[U(1)_R] = A_{\mu}^0 V_0 + A_{\mu}^1 V_1$

Introduction

Gen. Attractors

examples

Some Bianchi attractors

ummary

Model dependent data

Potential:

$$\mathcal{V}(\phi) = \frac{g^2}{8} \left[\frac{[(\phi^2)^2 + (\phi^3)^2]}{||\phi||^6} \right] - 2g_R^2 \left[2\sqrt{2} \frac{\phi^1}{||\phi||^2} V_0 V_1 + ||\phi||^2 V_1^2 \right].$$

• Conditions for $\mathcal{N}=2$ supersymmetry and AdS vaccum:

$$\phi^2 = 0, \quad \phi^3 = 0, \quad \phi_c^1 = \left(\sqrt{2}\frac{V_0}{V_1}\right)^{\frac{1}{3}}, \quad V_0 V_1 > 0, \quad 32\frac{g_R^2}{g^2}V_0^2 \le 1.$$

- potential evaluated at these values gives the AdS cosmological constant $V_{AdS} = -6g_R^2(\phi_c^1)^2V_1^2$.
- Bianchi attractors exist for values of scalars for which the theory would also have an *AdS* Vacuum.

- Take metric ansatz: Bianchi types,
- gauge field ansatz: time like gauge field

$$A^t = e_a^t A^a = \frac{1}{Lr^u} A^0$$

- Set all tensor fields $B_{\mu\nu}^{M}$ to zero!
- Use the generalised attractor procedure and solve the algebraic field equations!

Bianchi Type I - Lifshitz

Bianchi Type I specified by gauging parameters g, V_0, V_1 .

$$ds^{2} = L^{2} \left[-r^{2u}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{2}(dx^{2} + dy^{2} + dz^{2}) \right]$$

$$e_{2} = \partial_{x} \qquad e_{3} = \partial_{y} \qquad e_{4} = \partial_{z}$$

$$[e_{2}, e_{3}] = 0 \qquad [e_{2}, e_{4}] = 0 \qquad [e_{3}, e_{4}] = 0$$

$$u = 3; \quad A^{t} = \frac{1}{Lr^{u}} \sqrt{\frac{2}{3}} \frac{1}{(\phi_{c}^{1})^{2}}; \quad L = \sqrt{3} \frac{(\phi_{c}^{1})^{4}}{g};$$
$$\phi_{c}^{1} = \left(\sqrt{2} \frac{V_{0}}{V_{1}}\right)^{\frac{1}{3}}; \quad V_{0} V_{1} > 0; \qquad \frac{32}{3(\phi_{c}^{1})^{4}} \leq 1.$$

Bianchi Type II

Bianchi Type II specified by gauging parameters
$$g$$
, V_0 , V_1 .
$$ds^2 = L^2 \left[-r^{2u} dt^2 + \frac{dr^2}{r^2} + r^{2w} dx^2 + r^{2(v+w)} dy^2 - 2xr^{2(v+w)} dy dx + \left[r^{2(v+w)} x^2 + r^{2v} \right] dz^2 \right]$$

$$e_2 = \partial_x \qquad e_3 = \partial_y \qquad e_4 = x \partial_y + \partial_z$$

$$[e_2, e_4] = e_3 \qquad [e_2, e_3] = 0 \qquad [e_3, e_4] = 0$$

$$u = \sqrt{2}; \qquad v = w = \frac{1}{2\sqrt{2}};$$

$$L = \sqrt{\frac{2}{3}} \frac{(\phi_c^1)^4}{g}; \qquad A^t = \frac{1}{Lr^u} \sqrt{\frac{5}{8}} \frac{1}{(\phi_c^1)^2};$$

$$\phi_c^1 = \left(\sqrt{2} \frac{V_0}{V_1}\right)^{\frac{1}{3}}; \qquad V_0 V_1 > 0; \qquad \frac{23}{2(\phi^1)^4} \le 1.$$

$$[e_2, e_4] = e_3$$
 $[e_2, e_3] = 0$ $[e_3, e_4] = 0$ $u = \sqrt{2};$ $v = w = \frac{1}{2\sqrt{2}};$ $L = \sqrt{\frac{2}{5}} \frac{(\phi_c^1)^4}{(d^2)^5};$ $A^t = \frac{1}{2\sqrt{5}} \sqrt{\frac{5}{5}} \frac{1}{(d^2)^5};$

Bianchi_Type VI Bianchi Type VI specified by gauging parameters g, V_0, V_1

Bianchi Type VI specified by gauging parameters
$$g$$
, V_0 , V_1 and h
$$ds^2 = L^2 \left[-r^{2u}dt^2 + \frac{dr^2}{r^2} + dx^2 + e^{-2x}r^{2v}dy^2 + e^{-2hx}r^{2w}dz^2 \right]$$

$$e_2 = \partial_x \qquad e_3 = e^x \partial_y \qquad e_4 = e^{hx}\partial_z$$

$$[e_2, e_3] = e_3 \qquad [e_2, e_4] = he_4 \qquad [e_3, e_4] = 0$$

$$u = \frac{1}{\sqrt{2}}(1-h); \quad v = -\frac{1}{\sqrt{2}}h; \quad w = \frac{1}{\sqrt{2}}; \quad L = \frac{(\phi_c^1)^4}{\sqrt{6}g}(1-h);$$

$$A^{t} = \frac{1}{Lr^{u}} \sqrt{\frac{-2h}{(-1+h)^{2}}} \frac{1}{(\phi_{c}^{1})^{2}}; \quad h < 0; \quad h \neq 0, 1;$$

$$\phi_{c}^{1} = \left(\sqrt{2} \frac{V_{0}}{V_{1}}\right)^{\frac{1}{3}}; \quad V_{0}V_{1} > 0; \quad \frac{8(3-h+3h^{2})}{(\phi_{c}^{1})^{4}(-1+h)^{2}} \leq 1$$

$AdS_2 imes \mathbb{R}^3$ from $U(1)_R$ gauged supergravity

$$ds^{2} = L^{2} \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + dx^{2} + dy^{2} + dz^{2} \right]$$

$$e_{2} = \partial_{x} \qquad e_{3} = \partial_{y} \qquad e_{4} = \partial_{z}$$

$$[e_{2}, e_{3}] = 0 \qquad [e_{2}, e_{4}] = 0 \qquad [e_{3}, e_{4}] = 0$$

$$A_0^t = \frac{1}{Lr} Q_0; \quad A_1^t = \frac{1}{Lr} Q_1; \quad \frac{Q_0}{Q_1} = \frac{1}{\sqrt{2} (\phi_c^1)^3} = \frac{1}{2} \frac{V_1}{V_0};$$

$$L^2 = -\frac{1}{2\Lambda}; \quad \Lambda = -6g_R^2 V_1^2 (\phi_c^1)^2; \quad \phi_c^1 = \left(\sqrt{2} \frac{V_0}{V_1}\right)^{\frac{1}{3}};$$

$$V_0 V_1 > 0$$

Attractors in Gauged Sugra

Introduction

Background Motivation

Our work

Gauged Sugra and Generalised Attractors

Gauged Supergravity

delleralised Attractors

Examples

Some Bianchi attractors

Summary

Summary

Comments and Caveats

Ongoing works

Future Outlook

Introduction

auged Sugra & en. Attractors

Examples

Summary

Comments and Caveats

Future Outlook

- We studied the generalised attractors in $\mathcal{N}=2, d=5$ gauged supergravity.
- Generalised attractors are defined by constant anholonomy, constant gauge fields, constant tensor fields and constant scalars at the attractor points.
- Gauge field, Tensor field and Einstein equations reduce to algebraic equations at the attractor point.
- Scalar field equations reduce to a minimisation condition on an attractor potential.
- The attractor potential is also independently constructed from squares of fermionic shifts.

Introduction

Gauged Sugra & Gen. Attractors

xamples

Summary

Summary Comments and

Caveats
Ongoing works

Summary

- The attractor geometries are characterised by constant anholonomy coefficients.
- We showed that near horizon geometries of homogeneous extremal black branes are generalised attractor solutions of gauged supergravity.
- Examples: Using a simple gauged sugra model, we realise a z=3 Lifshitz solution, a Bianchi Type II and a Bianchi Type VI solution as attractors.
- Other Bianchi type metrics can be realised as attractor solutions of more generic gauged supergravity models.

Introduction

Gen. Attractors

xamples

Summary

Summary Comments and Caveats

Future Outlook

- Toplogical terms: Chern-Simons, Tensor fields do not contribute.
- Bianchi type V and type III metrics which are limiting cases of type VI do not seem to be valid attractors of the gauged supergravity model considered here.
- Caution: Attractor equations, attractor geometries in black hole case exist at local minima of potential. Here they exist at critical points.
- So far, we have considered only abelian gauging, Non abelian gauging will impose further restrictions on the parameters V_I .

Introduction

Gauged Sugra & Gen. Attractors

xamples

Summary Summary Comments and Caveats Ongoing works -with Prasanta Tripathy and Sandip Trivedi.

- Checking the supersymmetry of Bianchi attractors is a natural next step after embedding in supergravity.
- The spinors in five dimensions satisfy a symplectic majorana condition:

$$\epsilon^{ij}\bar{\epsilon}_j = (\epsilon^i)^t C$$

ullet In two component spinor λ notation

$$\epsilon_i = \left(\begin{array}{c} i\epsilon_{ij}\lambda_j \\ \lambda_i^* \end{array}\right)$$

SM spinors have manifest $SU(2)_R$ invariance.

- First one has to check the Killing spinor integrability equation for necessary conditions for supersymmetry.
- Then one has to solve the Killing spinor equations.

Introduction

en. Attractors

kamples

Summary
Summary
Comments and
Caveats
Ongoing works

SUSY: Killing spinor integrability conditions

• KSI expressible in terms of fermionic shifts. Defining $M_{abc} = \gamma_{abc} - 4\eta_{ab}\gamma_c$,

$$\begin{split} -\frac{1}{4}R_{ae}^{cd}\gamma_{cd}\epsilon_{i} &= -\frac{1}{\sqrt{6}}(\Sigma_{i|j})^{fc}[\omega_{a,}^{b}M_{e[bc]} - \omega_{e,}^{b}M_{a[bc]}]\epsilon^{j} \\ &\quad -\frac{1}{6}\bigg\{[(\Sigma_{i|j})^{bc}M_{abc} + \gamma_{a}S_{ij}][(\Sigma_{k|I})^{gh}M_{egh} + \gamma_{e}S_{kI}] \\ &\quad -[(\Sigma_{i|j})^{bc}M_{ebc} + \gamma_{e}S_{ij}][(\Sigma_{k|I})^{gh}M_{agh} + \gamma_{a}S_{kI}]\bigg\}\epsilon^{jk}\epsilon^{I} \end{split}$$

• All shifts vanish \Rightarrow Maximal supersymmetry (AdS_5 vacuum, unique).

$$\frac{1}{4}R_{ae}^{cd}\gamma_{cd}\epsilon_{i} = \frac{1}{6}S_{ij}S_{kl}\gamma_{ae}\epsilon^{jk}\epsilon^{l}$$

- Some shifts vanish ⇒ partially broken supersymmetry (Lifshitz, Bianchi types)
- cases with only vector multiplets in minimal gauged supergravity: Either 1/2 BPS or 1/4 BPS solutions.
 [Gauntlett-Gutowski]
- Lifshitz solutions: known to be 1/4 BPS [Cassani-Faedo].
- We expect Bianchi attractors to be 1/4 BPS. (in progress)

-with Prasanta Tripathy

- Stability: Several Bianchi attractors exist for same range of parameters even in the gauged supergravity embedding. Is there a stability criteria?
- Fluctuation analysis: radial scalar field perturbation about critical value.

$$\phi_c^{\tilde{z}} + \epsilon \, \delta \phi^{\tilde{z}}(r)$$

- Assume that the gauge fields have components only along time t or only along spatial (x, y, z) directions.
- Set all tensor fields to zero.

Introduction

Gauged Sugra & Gen. Attractors

kamples

Summary
Comments and
Caveats
Ongoing works

uture Outlook

• Scalar field equation upto $O(\epsilon)$:

$$\nabla_{\mu}\nabla^{\mu}\delta\phi^{\tilde{x}}-M_{\tilde{y}}^{\tilde{x}}\delta\phi^{\tilde{y}}=0$$

$$M_{\tilde{y}}^{\tilde{x}} \equiv g^{\tilde{z}\tilde{x}} \frac{\partial^2 \mathcal{V}_{att}}{\partial \phi^{\tilde{z}} \partial \phi^{\tilde{y}}} \bigg|_{\phi^{\tilde{y}} = \phi^{\tilde{y}}_{c}}$$

 ∇_{μ} is with respect to the full extremal black brane metric $g_{\mu\nu}$.

Expanding the metric about the horizon

$$g_{\mu
u} \sim g^0_{\mu
u}(r-r_h) + \epsilon \ g^1_{\mu
u}(r-r_h) + O(\epsilon^2) + \dots$$

 $g_{\mu\nu}^0$ is the near horizon metric.

 In scalar equation, one can ignore the higher order terms in the metric fluctuation as long as there is no backreaction at $O(\epsilon)$.

Ongoing works

• The trace of the stress energy tensor at $O(\epsilon)$ after using attractor equations,

$$T_{\mu}{}^{\mu}(\phi_{c}+\delta\phi) = T(\phi_{c})_{att} + g^{2}A_{\mu}^{I}A^{J\mu}\frac{\partial K_{IJ}}{\partial\phi^{\tilde{z}}}\bigg|_{\phi=\phi_{c}}\epsilon\,\delta\phi^{\tilde{z}} + O(\epsilon^{2})$$

$$K_{IJ}(\phi) = g_{\tilde{x}\tilde{y}}K_I^{\tilde{x}}K_J^{\tilde{y}}$$

suggests that in general there will be finite backreaction even at first order from the "effective mass term" for the gauge fields.

- For starters, let us assume that the highlighted term is very small compared to the cosmological constant and analyse the behavior of $\delta \phi$ in scalar equation.
- Note that for pure $U(1)_R$ gauged sugra there is no backreaction at $O(\epsilon)$.

Ongoing works

Stability analysis: Preliminary results

• For Bianchi type metrics, the scalar equation will take the general form

$$r^{2}\partial_{r}^{2}(\delta\phi^{\tilde{x}}) + m r\partial_{r}(\delta\phi^{\tilde{x}}) - \lambda_{\tilde{x}}\delta\phi^{\tilde{x}} = 0 \quad ; m > 0$$
$$M_{\tilde{y}}^{\tilde{x}}\delta\phi^{\tilde{y}} = \lambda_{\tilde{x}}\delta\phi^{\tilde{x}}$$

The general solution is,

$$\delta\phi(r) = \frac{1}{r^{\frac{m-1}{2}}} \left[C_1 r^{\frac{\sqrt{(m-1)^2+4\lambda}}{2}} + \frac{C_2}{r^{\frac{\sqrt{(m-1)^2+4\lambda}}{2}}} \right]$$

- There exists a converging solution for $\delta\phi$ as one approaches the horizon $(r \to 0)$, if $\lambda_{\tilde{x}} > 0$.
- This is same as the condition

$$\frac{\partial^2 \mathcal{V}_{att}}{\partial \phi^{\tilde{z}} \partial \phi^{\tilde{y}}} > 0$$

which was obtained in [Goldstein-lizuka-Jena-Trivedi] in the context of non-supersymmetric attractors.

• eg for z = 3 Lifshitz solution

$$r^2 \partial_r^2 (\delta \phi^{\tilde{x}}) + 7 r \partial_r (\delta \phi^{\tilde{x}}) - \lambda_{\tilde{x}} \delta \phi^{\tilde{x}} = 0$$

$$\lambda_1 = -34, \quad \lambda_2 = \lambda_3 = 8\alpha - 38, \quad \alpha = \left[-1 + \frac{1}{32 \frac{g_R^2}{g^2} V_0^2} \right]$$

• There is a singular solution as $r \to 0$ for the scalar in the vector multiplet.

$$\delta\phi^1 = \frac{1}{r^3} \left[C_1 \cos(5\log r) + C_2 \sin(5\log r) \right]$$

• For the scalars in the tensor multiplet there are regular solutions when $\alpha>\frac{19}{4}$

$$\delta \phi^2 = \delta \phi^3 = \frac{1}{r^3} \left[C_1 r^{\sqrt{-29+8\alpha}} + \frac{C_2}{r^{\sqrt{-29+8\alpha}}} \right]$$

Introduction

Gauged Sugra & Gen. Attractors

xamples

Summary
Summary
Comments and
Caveats
Ongoing works

Future Outlook

 Similar calculations can be done for the Bianchi type II and type VI solutions.

- In each case, the perturbations of the scalar in the vector multiplet tend to blow up near the horizon.
- The perturbations of the scalars in the tensor multiplet are well behaved.
- Further calculations need to be done (include metric perturbations, time dependency etc)
- We are also exploring a possible generalisation of BF bound for Bianchi type metrics [1212.1728].

Introduction

Gauged Sugra & Gen. Attractors

kamples

Summary
Summary
Comments and
Caveats
Ongoing works

uture Outlook

- Completion: Find suitable models to embed rest of the Bianchi metrics.
- String embedding: String theory/M-theory compactification to obtain a suitable gauged supergravity.
- Applications: Field theory duals of Bianchi attractors.
- Entropy function: Can generalised attractors be understood from entropy function?

Introduction

Gauged Sugra & Gen. Attractors

xamples

Summary
Summary
Comments and
Caveats
Ongoing works
Future Outlook

Attractors in Gauged Sugra

Useful References:

Gauged sugra reviews: hep-th/9605032, hep-th/0102114

• 5d gauged sugra models: hep-th/9912027, hep-th/0002228

• Generalised attractors: 1104.2884, 1206.3887.

 Bianchi metrics: Homogeneous Relativistic Cosmologies -Shepley, 1201.4861.

Thank You!

Introduction

Gauged Sugra & Gen. Attractors

amples

Summary
Summary
Comments and
Caveats
Ongoing works
Future Outlook