ISyE 3103 Supply Chain Modeling: Transportation and Logistics Summer 2011

Winters' Method Forecasting Example

A scatterplot of the following actual demand data suggests the existence of seasonal (quarterly) variation coupled with an overall increasing trend; consequently, this data is a strong candidate for utilizing Winters' Method (aka Triple Exponential Smoothing).

	2008	2009	2010
Quarter 1	146	192	272
Quarter 2	96	127	155
Quarter 3	59	79	98
Quarter 4	133	186	219

In this note we will fit a Winters model to this data set, compute the *a posteriori* forecast errors for 2008-2010, and provide a demand forecast for 2011. The smoothing constants are $\alpha = 0.2$, $\beta = 0.1$, and $\gamma = 0.05$.

Recall that the underlying demand process assumed for the Winters model is

$$D_t = (a+bt) I_t + \epsilon_t$$

In order to initialize the model, we need estimates, \hat{a}_0 , \hat{b}_0 , and \hat{I}_{-3} , \hat{I}_{-2} , \hat{I}_{-1} , \hat{I}_0 . There are various methods to initialize the model. Here we consider one such method.

Now we are ready to initialize the model by computing the initial estimates for \hat{a}_0 and b_0 using the data from 2008 and 2009. The estimate of the slope (\hat{b}_0) is found by taking the difference in the average demand for the two years and dividing by the number of seasonal periods:

$$\hat{b}_0 = \frac{\Delta D}{4} = \frac{\bar{D}_{2009} - \bar{D}_{2008}}{4} = \frac{146 - 108.5}{4} = 9.38.$$

We can solve for the level estimate (\hat{a}_0) using the following equation

$$\bar{D}_{2008} = \hat{a}_0 + \hat{b}_0(2.5),$$

where the trend value equals 2.5 because that was the average period number for the year $2008 \left(\frac{1+2+3+4}{4}\right)$. Solving the equation, we obtain $\hat{a}_0 = 85.05$.

The next step in the initialization process is to compute trend line estimates for the two years of data using the trend function $\hat{D}_t = 85.05 + 9.38t$, t = 1, ..., 8. Some representative calculations are $\hat{D}_1 = 85.05 + 9.38 * 1 = 94.43$ and $\hat{D}_7 = 85.05 + 9.38 * 7 = 150.71$.

	2008	2009
Quarter 1	94.43	131.95
Quarter 2	103.81	141.33
Quarter 3	113.19	150.71
Quarter 4	122.57	160.09

We can use these trend line estimates to develop initial seasonal indices by taking the actual demand for each period and dividing by the trend line estimate for that period. For example, $\frac{146}{94.43} = 1.55$ and $\frac{127}{141.33} = 0.90$. We average the two indices for each quarter to obtain the average index for that quarter, and then we normalize the average indices by dividing each by 4.06 and multiplying by 4.00 to ensure that they all add up to 4.

	2008	2009	Average	Initial	
			Index	Index	
Quarter 1	1.55	1.46	1.51	1.4828	
Quarter 2	0.92	0.90	0.91	0.8965	
Quarter 3	0.52	0.52	0.52	0.5123	
Quarter 4	1.09	1.16	1.12	1.1084	
			$\Sigma = 4.06$	$\Sigma = 4.00$	

The values in the "Initial Index" column above are our initial estimates of the seasonal factors at time t=1 (which denotes the first quarter of 2008). Specifically, we have $\hat{I}_{-3}=1.4828$, $\hat{I}_{-2}=0.8965$, $\hat{I}_{-1}=0.5123$, and $\hat{I}_{0}=1.1084$. We are now in position to make the first forecast, which is for the first quarter of 2008, according to the following formula.

$$f_{1;0} = (\hat{a}_0 + \hat{b}_0(1)) \hat{I}_{-3} = (85.05 + 9.38) \, 1.4828 = 140.0169$$

Since we have a new data realization ($D_1 = 146$), we can incorporate it into the model via the Winters model updating equations to obtain new estimates for the parameters. The general Winters' method updating equations to be used at the end of period t are

$$\hat{a}_{t} = \alpha \frac{D_{t}}{\hat{I}_{t-m}} + (1 - \alpha) \left(\hat{a}_{t-1} + \hat{b}_{t-1} \right)$$

$$\hat{b}_{t} = \beta \left(\hat{a}_{t} - \hat{a}_{t-1} \right) + (1 - \beta) \hat{b}_{t-1}$$

$$\hat{I}_{t} = \gamma \frac{D_{t}}{\hat{a}_{t}} + (1 - \gamma) \hat{I}_{t-m}.$$

Using these equations, we obtain the following updated parameter estimates at the end of time period 1.

$$\hat{a}_{1} = \alpha \frac{D_{1}}{\hat{I}_{-3}} + (1 - \alpha) \left(\hat{a}_{0} + \hat{b}_{0} \right) = .2 \frac{146}{1.4828} + 0.8(85.05 + 9.38) = 95.2370$$

$$\hat{b}_{1} = \beta \left(\hat{a}_{1} - \hat{a}_{0} \right) + (1 - \beta) \hat{b}_{0} = .1(95.2370 - 85.05) + 0.9 * 9.38 = 9.4607$$

$$\hat{I}_{1} = \gamma \frac{D_{1}}{\hat{a}_{1}} + (1 - \gamma) \hat{I}_{-3} = 0.05 \frac{146}{95.2370} + 0.95 * 1.4828 = 1.4853$$

We can also compute the forecast for period 2 according to

$$f_{2;1} = (\hat{a}_1 + \hat{b}_1(1)) \hat{I}_{-2} = (95.2370 + 9.4607)0.8965 = 93.8669.$$

Continuing in this fashion, we obtain the following results for the three years of data.

Year	Quarter	t	D_{t}	$\mathbf{f_{t;t-1}}$	$\mathbf{e_t}$	$ \mathbf{e_t} $	$rac{ \mathbf{e_t} }{\mathbf{D_t}}$
2008	1	1	146	140.0169	5.9831	5.9831	0.0427
	2	2	96	93.8669	2.1331	2.1331	0.0227
	3	3	59	58.7533	0.2467	0.2467	0.0042
	4	4	133	137.7666	-4.7666	4.7666	0.0346
2009	1	5	192	197.3449	-5.3449	5.3449	0.0271
	2	6	127	126.9841	0.0159	0.0159	0.0001
	3	7	79	77.3070	1.6930	1.6930	0.0219
	4	8	186	178.1543	7.8457	7.8457	0.0440
2010	1	9	272	255.1068	16.8932	16.8932	0.0662
	2	10	155	165.1318	-10.1318	10.1318	0.0614
	3	11	98	98.1232	-0.1232	0.1232	0.0013
	4	12	219	222.6918	-3.6918	3.6918	0.0166

The RMSE for this forecasting model is 6.8179, the MAD is 4.9058, and the MAPE is 0.0286. The last measure means that our forecast differs from the actual demand by an average of 2.86%, which represents a very good model specification. The forecasts for 2011 can be found using the following equations and our latest estimates (calculations are not shown) of the model parameters ($\hat{a}_{12}=200.1812,~\hat{b}_{12}=9.4987,~\hat{I}_{9}=1.4875,~\hat{I}_{10}=0.8951,~\hat{I}_{11}=0.5128,$ and $\hat{I}_{12}=1.1080$).

2011Q1.
$$f_{13;12} = (200.1812 + 9.4987(1))1.4875 = 311.9056$$

2011Q2.
$$f_{14;12} = (200.1812 + 9.4987(2))0.8951 = 196.1950$$

2011Q3.
$$f_{15;12} = (200.1812 + 9.4987(3))0.5128 = 117.2708$$

2011Q4.
$$f_{16;12} = (200.1812 + 9.4987(4))1.1080 = 263.9047$$