Лекция 18: Ортонормированный базис

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Ортогональные и ортонормированные наборы векторов

Из определения угла между векторами вытекает, в частности, что $(\widehat{\mathbf{x}},\widehat{\mathbf{y}})=\frac{\pi}{2}$ тогда и только тогда, когда $\mathbf{x}\mathbf{y}=0$ (точный аналог критерия ортогональности векторов в обычном пространстве, о котором говорилось в курсе аналитической геометрии). Это делает естественным следующее

Определение

Векторы ${\bf x}$ и ${\bf y}$ называются *ортогональными*, если ${\bf xy}=0$. Набор векторов называется *ортогональным*, если любые два различных вектора из этого набора ортогональны. Ортогональный набор векторов называется *ортонормированным*, если длины всех векторов из этого набора равны 1.

Отметим, что, в силу равенства (1) из лекции 17, справедливо следующее

Замечание 1

Нулевой вектор ортогонален любому вектору.

Ортогональность и линейная независимость

Укажем одно важное свойство ортогональных наборов векторов.

Теорема 1

Любой ортогональный набор ненулевых векторов линейно независим.

Доказательство. Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — ортогональный набор ненулевых векторов. Рассмотрим линейную комбинацию этих векторов, равную нулевому вектору:

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k=\mathbf{0}. \tag{1}$$

Умножая скалярно обе части этого равенства на ${f a}_i$ (где $1\leqslant i\leqslant k$) и используя тот факт, что ${f 0}\cdot{f a}_i=0$ в силу замечания 1, мы получим, что

$$t_1(\mathbf{a}_1\mathbf{a}_i)+t_2(\mathbf{a}_2\mathbf{a}_i)+\cdots+t_i(\mathbf{a}_i\mathbf{a}_i)+\cdots+t_k(\mathbf{a}_k\mathbf{a}_i)=0.$$

В левой части последнего равенства все скалярные произведения, кроме $\mathbf{a}_i\mathbf{a}_i$, равны нулю. Следовательно, $t_i(\mathbf{a}_i\mathbf{a}_i)=0$. Поскольку $\mathbf{a}_i\neq\mathbf{0}$, по аксиоме 4) евклидова пространства (см. лекцию 17) имеем $\mathbf{a}_i\mathbf{a}_i\neq\mathbf{0}$. Следовательно, $t_i=0$. Итак, все коэффициенты в левой части равенства (1) равны 0. Следовательно, набор векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ линейно независим.

Вычисление скалярного произведения в ортонормированном базисе (1)

Определение

Ортогональный (ортонормированный) набор векторов, который является базисом, называется *ортогональным* (соответственно *ортонормированным*) *базисом*.

Примером ортонормированного базиса является стандартный базис пространства \mathbb{R}_n (если скалярное произведение в \mathbb{R}_n определить как сумму произведений одноименных компонент).

Теорема 2

Пусть $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}$ — ортонормированный базис евклидова пространства V, а векторы \mathbf{x} и \mathbf{y} имеют в этом базисе координаты (x_1, x_2, \dots, x_n) и (y_1, y_2, \dots, y_n) соответственно. Тогда

$$xy = x_1y_1 + x_2y_2 + \cdots + x_ny_n.$$
 (2)

Доказательство теоремы 2 см. на следующем слайде.

Доказательство. Из условия теоремы следует, что

$$\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_n \mathbf{b}_n$$
 if $\mathbf{y} = y_1 \mathbf{b}_1 + y_2 \mathbf{b}_2 + \dots + y_n \mathbf{b}_n$.

Следовательно,

Поскольку

$$\mathbf{b}_i \mathbf{b}_j = egin{cases} 0 & ext{при } i
eq j, \ 1 & ext{при } i = j. \end{cases}$$

для всех i, j = 1, 2, ..., n, получаем равенство (2).

Таким образом,

 скалярное произведение векторов равно сумме произведений их одноименных координат в ортонормированном базисе. Из теоремы 2 и определений длины вектора, угла между векторами и расстояния между векторами немедленно вытекает, что если векторы ${\bf x}$ и ${\bf y}$ из евклидова пространства V имеют в некотором ортонормированном базисе этого пространства координаты (x_1,x_2,\ldots,x_n) и (y_1,y_2,\ldots,y_n) соответственно, то

$$|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2};$$

$$\cos(\widehat{\mathbf{x}, \mathbf{y}}) = \frac{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}{\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}};$$

$$\rho(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

Отметим, что и формула (2) и три только что приведенных формулы являются точными аналогами известных из аналитической геометрии формул для вычисления соответствующих величин в обычном пространстве с обычным скалярным произведением (в случае ортонормированного базиса). В частности, ортонормированный базис удобен тем, что в нем просто вычисляется скалярное произведение любых векторов.

Процесс ортогонализации Грама-Шмидта (1)

Естественно поставить вопрос о том, в любом ли евклидовом пространстве существует ортонормированный базис. Ответ на него содержится в следующем утверждении. В доказательстве этого утверждения указан способ нахождения ортонормированного базиса, который называется процессом ортогонализации Грама-Шмидта.

Теорема 3

Любое ненулевое подпространство S евклидова пространства V имеет ортонормированный базис.

Доказательство. Обозначим размерность подпространства S через k. Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — базис этого подпространства. Построим ортогональный базис $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ подпространства S. Векторы $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ будем находить последовательно — сначала \mathbf{b}_1 , затем \mathbf{b}_2 и т. д.

Положим $\mathbf{b}_1=\mathbf{a}_1$. Пусть $2\leqslant i\leqslant k$. Предположим, что мы уже построили ортогональный набор ненулевых векторов $\mathbf{b}_1,\,\mathbf{b}_2,\,\ldots,\,\mathbf{b}_{i-1}$, каждый из которых является линейной комбинацией векторов $\mathbf{a}_1,\,\mathbf{a}_2,\,\ldots,\,\mathbf{a}_{i-1}$ (и, в частности, принадлежит S). Положим

$$b_{i} = -\frac{b_{1}a_{i}}{b_{1}b_{1}} \cdot b_{1} - \frac{b_{2}a_{i}}{b_{2}b_{2}} \cdot b_{2} - \dots - \frac{b_{i-1}a_{i}}{b_{i-1}b_{i-1}} \cdot b_{i-1} + a_{i}.$$
(3)

Процесс ортогонализации Грама-Шмидта (2)

Умножая скалярно обе части равенства (3) на $\mathbf{b_1}$ слева и учитывая, что вектор $\mathbf{b_1}$ ортогонален к векторам $\mathbf{b_2}, \dots, \mathbf{b_{i-1}}$, получаем, что

$$\mathbf{b}_1 \mathbf{b}_i = -\frac{\mathbf{b}_1 \mathbf{a}_i}{\mathbf{b}_1 \mathbf{b}_1} \cdot \mathbf{b}_1 \mathbf{b}_1 + \mathbf{b}_1 \mathbf{a}_i = -\mathbf{b}_1 \mathbf{a}_i + \mathbf{b}_1 \mathbf{a}_i = 0.$$

Аналогично проверяется, что $\mathbf{b}_2 \mathbf{b}_i = \cdots = \mathbf{b}_{i-1} \mathbf{b}_i = 0$. Следовательно, набор векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_i$ ортогонален. Напомним, что каждый из векторов $b_1, b_2, \ldots, b_{i-1}$ является линейной комбинацией векторов a_1, a_2, \ldots ..., a_{i-1} . Отсюда и из равенства (3) непосредственно вытекает, что вектор \mathbf{b}_i является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_i$ (и, в частности, принадлежит S). Далее, из указанного свойства векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_{i-1}$ вытекает, что правую часть равенства (3) можно записать в виде $t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_{i-1} \mathbf{a}_{i-1} + \mathbf{a}_i$, где t_1, t_2, \dots, t_{i-1} — некоторые числа. Иными словами, вектор \mathbf{b}_i равен некоторой нетривиальной линейной комбинации векторов a_1, a_2, \ldots, a_i . Поскольку эти векторы входят в базис подпространства S, они линейно независимы. Следовательно, $\mathbf{b}_i \neq \mathbf{0}$. Итак, мы получили ортогональный набор ненулевых векторов $\mathbf{b}_1, \mathbf{b}_2, \ldots$ \mathbf{b}_i , каждый из которых является линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., a_i (и, в частности, принадлежит S).

Процесс ортогонализации Грама-Шмидта (3)

Повторив указанные выше построения нужное число раз, мы в конце концов получим ортогональный набор ненулевых векторов $\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_k$, принадлежащих S. По теореме 1 этот набор векторов линейно независим. Поскольку число векторов в нем совпадает с размерностью S, он является базисом этого подпространства (см. замечание 8 в лекции 8). В силу замечания 1 из лекции 17 для того, чтобы получить ортонормированный базис подпространства S, достаточно разделить каждый из векторов \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_k на его длину.

Процесс ортогонализации Грама-Шмидта: пример (1)

Проиллюстрируем сказанное выше на следующем примере.

Задача. Найти ортонормированный базис подпространства M, порожденного векторами $\mathbf{a_1}=(1,1,0,0)$, $\mathbf{a_2}=(1,0,1,0)$, $\mathbf{a_3}=(1,0,0,1)$ и $\mathbf{a_4}=(3,1,1,1)$.

Решение. Формулы, указанные в доказательстве теоремы 3, применяются к базису пространства M. Поэтому прежде всего найдем этот базис:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & -2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Итак, в качестве базиса M можно взять векторы \mathbf{a}_1 , $\mathbf{a}_2'=(0,-1,1,0)$ и $\mathbf{a}_3=(0,0,-1,1)$. Применяя формулы (3), находим ортогональный базис пространства M:

$$\begin{split} & \textbf{b}_1 = \textbf{a}_1 = (1,1,0,0), \\ & \textbf{b}_2 = -\frac{\textbf{b}_1 \textbf{a}_2'}{\textbf{b}_1 \textbf{b}_1} \textbf{b}_1 + \textbf{a}_2' = \frac{1}{2} \textbf{b}_1 + \textbf{a}_2' = \left(\frac{1}{2}, -\frac{1}{2}, 1, 0\right), \\ & \textbf{b}_3 = -\frac{\textbf{b}_1 \textbf{a}_3'}{\textbf{b}_1 \textbf{b}_1} \textbf{b}_1 - \frac{\textbf{b}_2 \textbf{a}_3'}{\textbf{b}_2 \textbf{b}_2} \textbf{b}_2 + \textbf{a}_3' = 0 + \frac{2}{3} \textbf{b}_2 + \textbf{a}_3' = \left(\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 0\right). \end{split}$$

Процесс ортогонализации Грама-Шмидта: пример (2)

Разделив каждый из векторов \mathbf{b}_1 , \mathbf{b}_2 и \mathbf{b}_3 на его длину, найдем ортонормированный базис пространства M:

$$\begin{split} c_1 &= \frac{b_1}{|b_1|} = \frac{1}{\sqrt{2}} b_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right), \\ c_2 &= \frac{b_2}{|b_2|} = \frac{1}{\sqrt{6}} b_2 = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right), \\ c_3 &= \frac{b_3}{|b_3|} = \frac{2}{\sqrt{3}} b_2 = \left(\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, \frac{\sqrt{3}}{2}\right). \end{split}$$

Otbet:
$$\mathbf{c}_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right), \ \mathbf{c}_2 = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right), \ \mathbf{c}_3 = \left(\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, \frac{\sqrt{3}}{2}\right).$$

Дополнение до ортогонального базиса (1)

Теорема 4

Любую ортогональную систему ненулевых векторов евклидова пространства V можно дополнить до ортогонального базиса этого пространства.

Доказательство. Пусть $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — ортогональный набор ненулевых векторов пространства V. Обозначим размерность пространства V через n. Нам достаточно найти ортогональный набор из n ненулевых векторов пространства V, содержащий векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. В самом деле, в силу теоремы 1 такой набор векторов будет линейно независимым, и потому, в силу замечания 8 из лекции 8, он будет базисом пространства V. Если k=n, то, в силу сказанного выше, уже сам набор векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ является ортогональным базисом пространства V. Поэтому далее можно считать, что k < n. Пусть $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ — ортонормированный базис пространства V, существующий в силу теоремы 3. Пусть вектор \mathbf{a}_i имеет в этом базисе координаты $(a_{i1}, a_{i2}, \dots, a_{in})$ (для всякого $i=1,2,\dots,k$).

Дополнение до ортогонального базиса (2)

Рассмотрим следующую однородную систему линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0. \end{cases}$$

В силу замечания 3 из лекции 4 эта система имеет по крайней мере одно ненулевое решение. Обозначим его через (c_1,c_2,\ldots,c_n) и положим $\mathbf{a}_{k+1}=c_1\mathbf{b}_1+c_2\mathbf{b}_2+\cdots+c_n\mathbf{b}_n$. В силу теоремы 2

$$\mathbf{a}_1\mathbf{a}_{k+1} = c_1a_{11} + c_2a_{12} + \cdots + c_na_{1n} = 0$$

и аналогично $\mathbf{a}_2\mathbf{a}_{k+1}=\cdots=\mathbf{a}_k\mathbf{a}_{k+1}=0$. Следовательно, $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k,\mathbf{a}_{k+1}$ — ортогональный набор ненулевых векторов. Если k+1=n, то он является ортогональным базисом пространства V. В противном случае, рассуждая так же, как выше, при построении вектора \mathbf{a}_{k+1} , мы дополним набор $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{k+1}$ еще одним вектором \mathbf{a}_{k+2} так, что набор $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{k+2}$ будет ортогональным набором ненулевых векторов. Продолжая этот процесс, мы через конечное число шагов построим ортогональный базис $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k,\mathbf{a}_{k+1},\ldots,\mathbf{a}_n$ пространства V, являющийся расширением исходного набора векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$.

Дополнение до ортогонального базиса (3)

Из теоремы 4 вытекает

Следствие 1

Любую ортонормированную систему векторов евклидова пространства можно дополнить до ортонормированного базиса этого пространства.

Доказательство. Все векторы ортонормированной системы — ненулевые (поскольку их длины равны 1). В силу теоремы 4 нашу ортонормированную систему можно дополнить до ортогонального базиса. Разделим каждый из найденных при этом новых векторов на его длину. В силу замечания 1 из лекции 17 мы получим ортонормированный базис