Estimating individual contributions to team success in women's college volleyball

Scott Powers, Luke Stancil and Naomi Consiglio

NESSIS 2023

Outline

Act 1: Estimating Point Win Probability
Technique: Markov Chain Model

Act 2: Evaluating Individual Contributions
Technique: Domain Knowledge

Act 3: Adjusting for Strength of Schedule Technique: Linear Mixed-Effect Models

(Act 0: Introduction to Volleyball)

Introduction to Volleyball

Introduction to Volleyball

Existing metrics

- Standard metrics
 - Serving: Ace%, Error%
 - Receiving: Error%, Passer Rating
 - Digging: Digs / Set, Digs / Opportunity
 - Setting: Assists / Set
 - Attacking: Hitting Efficiency = (Kills Errors) / Attempts
 - Blocking: Blocks / Set
- State of the art
 - Fellingham (JQAS 2022): PAAPS
 - Similar to regularized adjusted plus-minus in basketball
 - Gordon (volleydork.com): Value Added above Expectation
 - Very similar to the present work

Act 1: Estimating Point Win Probability

Technique: Markov Chain Model

Example: First Point of 2022 National Championship Texas Louisville

Player	Skill	Eval	(X, Y)	Attack Code
Anna Deeber	Serve	_	(2.99, -0.13)	
Emma Halter	Reception	#	(0.93, 5.80)	
Saige KTorres	Set	#	(2.13, 3.13)	
Molly Phillips	Attack	_	(3.33, 3.20)	X6
Raquel Lazaro	Dig	+	(0.86, 4.98)	
Elena Scott	Set	#	(2.99, 1.65)	
Claire Chaussee	Attack	_	(0.63, 2.83)	V5
Kayla Caffey	Block	+	(3.26, 3.43)	
Phekran Kong	Dig	!	(0.89, 3.13)	
Raquel Lazaro	Set	#	(0.97, 2.61)	
Claire Chaussee	Attack	#	(0.67, 2.91)	X5

Evaluation Codes: # > + > ! > - > / > =

Dataset: 4,147 matches, 600K+ points, 5M+ contacts, $\sim 6,000$ players

Markov Chain Model: Game State

Definition: A **volley** is a sequence of consecutive contacts by the same team

The game state on each contact is given by:

- Whether the team started the point by serving or receiving
- The sequence of contacts made during the current volley (including evaluation code except for contacts ending a volley)

Terminal states: (S, P) and (R, P)

Example: (S, D#) \rightarrow (S, D#S#) \rightarrow (S, D#S#A) \rightarrow (R, P)

Example: First Point of 2022 National Championship

Player	Skill	Eval	State	P(Sideout)
Anna Deeber	Serve		(S, SV)	57%
Emma Halter	Reception	#	(R, R#)	63%
Saige KTorres	Set	#	(R, R#S#)	64%
Molly Phillips	Attack		(R, R#S#A)	64%
Raquel Lazaro	Dig	+	(S, D+)	49%
Elena Scott	Set	#	(S, D+S#)	47%
Claire Chaussee	Attack		(S, D+S#A)	47%
Kayla Caffey	Block	+	(R, B+)	56%
Phekran Kong	Dig	!	(S, D!)	51%
Raquel Lazaro	Set	#	(S, D!S#)	51%
Claire Chaussee	Attack		(S, D!S#A)	51%
Point Louisville				0%

Act 2: Evaluating Individual Contributions

Technique: Domain Knowledge

How a Point Progresses

Volley 1	Volley 2	Volley 3	Volley 4	Volley 5
Team A	Team B	Team A	Team B	Team A
Serve	Reception Set Attack	Dig Set Attack	Dig Set Attack	Dig

How a Point Progresses

Volley 1 Team A	Volley 2 Team B	_	Volley 4 Team B	_
Serve	Reception			
	Set			
	Attack	Dig		
		Set	,	
		Attack	Dig	
			Set	
			Attack	Dig

••

Attack Outcome Tree

Example: First Attack of 2022 National Championship

	TOT	+6%	+8%	-29%	-15%	Standard Stats
_	ATT	+5%	+6%	-20%	-9%	1 attempt, 0 kills, 0 errors
	SET	+1%	+2%	-9%	-6%	0 assists
_	BLK		-8%	+15%	1 7 7 7	_
	DIG	_		+14%	+14%	1 opportunity, 1 dig

Caution: Blocker/digger assignment is a work in progress

Distribution of Points Gained per Opportunity

Standard vs. Advanced Metrics: Back Row Defense

Player A:

72% digs per opportunity +3.6% PG per opportunity No block touch: 85% Perfect dig rate: 48%

Player B:

72% digs per opportunity +1.2% PG per opportunity No block touch: 66%

Perfect dig rate: 36%

Caution: Dig evaluation codes are biased against setters by design

Act 3: Adjusting for Strength of Schedule

Technique: Linear Mixed-Effect Models

Server vs. Receiver

Exp. Points Gained
$$= \beta_{Server} + \delta_{Receiver}$$
 (good)

Exp. Points Gained =
$$(\beta_{\mathsf{Team}} + \beta_{\mathsf{Server}}) + (better)$$

 $(\delta_{\mathsf{Team}} + \delta_{\mathsf{Receiver}})$

Exp. Points Gained =
$$(\beta_{\mathsf{Conf}} + \beta_{\mathsf{Team}} + \beta_{\mathsf{Server}}) + (\delta_{\mathsf{Conf}} + \delta_{\mathsf{Team}} + \delta_{\mathsf{Receiver}})$$
 (best)

Fit random-effects model using Ime4 package in R

Server:

Adj. Points Gained \approx Points Gained $-(\hat{\delta}_{\mathsf{Conf}}+\hat{\delta}_{\mathsf{Team}}+\hat{\delta}_{\mathsf{Receiver}})$

- Requires a de-biasing step
- Some generalization required for extension to other skills

Results: Top 10 Conferences (all skills)

Conference	Avg SoS
Big Ten	+0.23
Pac-12	+0.23
SEC	+0.21
Big 12	+0.20
ACC	+0.15
West Coast	+0.09
American	+0.04
Big West	+0.04
Mountain West	+0.02
Mid-American	+0.01

SoS units: points gained per set

Example: Conference Comparison (all skills)

- Separation between conferences is evident
- One elite player from the Summit League still stands out

Caution: Additive assumption is not literally true in real life

Example: Teammate Comparison (outside hitters)

- Player A average SOS: +1.4% (PG per attack)
- Player B average SOS:
 -0.1% (PG per attack)

Toughest SoS: Player A vs. Nebraska, +13.0% Kaitlyn Hord blocking, Lexi Rodriguez digging

Caution: SoS depends on which zone the attacker hits

(Act 4: Discussion)

Question: Where does Logan Eggleston rank?

				SETS	POINTS GAINED	SERVE	PASS	SET	ATTACK	BLOCK
PLAYER	TEAM	CONF	POS	PLAYED	PER SET (ADJ)	PG*/S	PG*/S	PG*/S	PG*/S	PG*/S
Brooke Nuneviller	Oregon	Pac-12	ОН	122	+1.09	+0.07	+0.41	+0.00	+0.56	+0.04
Mckenna Melville	Central Florida	AAC	ОН	104	+1.09	-0.14	+0.23	-0.00	+0.79	+0.22
Claire Hoffman	Washington	Pac-12	ОН	112	+1.04	+0.13	+0.23	-0.00	+0.65	+0.02
Julia Bergmann	Georgia Tech	ACC	ОН	86	+1.03	+0.09	+0.25	-0.01	+0.64	+0.06
Kendall Kipp	Stanford	Pac-12	OPP	117	+1.02	+0.03	-0.02	-0.00	+0.72	+0.29
Amber Igiede	Hawaii	Big West	MB	102	+0.98	+0.07	+0.04	+0.01	+0.47	+0.38
Elizabeth Juhnke	South Dakota	Summit	ОН	113	+0.96	+0.01	-0.01	-0.00	+0.69	+0.26
Madi Kubik	Nebraska	Big Ten	ОН	109	+0.94	+0.05	+0.42	-0.01	+0.44	+0.05
Asjia Oneal	Texas	Big 12	MB	87	+0.93	+0.05	+0.04	+0.00	+0.35	+0.50
Logan Eggleston	Texas	Big 12	ОН	91	+0.89	+0.09	+0.05	+0.01	+0.70	+0.05

Application: Defensive Specialist Strategy

63% of teams replace at least one OH with a DS in back row

Reception PG per opportunity

All-Around OH: +1.1%

Front-Only OH: -1.4%

Defensive Specialist: +0.9%

Substitutable Opportunities: 0.1 opportunities per point

- Example: Point win probability $50\% \rightarrow 50.2\%$
 - Match win probability $50\% \rightarrow 52\%$

Pythagorean formula for volleyball: $p^{10}/(p^{10}+(1-p)^{10})$

Limitations and Next Steps

- Improve blocker and digger assignments
- Correct bias for digs made by setter
- Reward good decision-making in strength of schedule
- Account for whether setter is back row or front row
- Leverage (X, Y) coordinate information

Thank You!