# How Companies Like OpenAl Ensure Their LLMs Are of High Quality

Evaluating Robustness, Accuracy, and Safety in Large Language Models



# **Introduction – Marina Wyss**

#### **Applied Scientist at Twitch/Amazon**

- Studied at U.C. Berkeley for undergrad, and did my Master's in social data science in Berlin.
- Started at a statistical consulting firm in Berlin, then worked on ML problems at Coursera and now Twitch.
- Most of my work has been focused on building production ML pipelines, ML Ops, and recently LLMs.
- I also work as a data science mentor and pro-bono consultant. I love teaching and helping people get started in this super fun and interesting field!

Fun fact: I have a three-legged cat from Poland named Arnold





## About You...





# Agenda

- Introduction to LLMs
- Introduction to LLM Performance Evaluation
- Supervised LLM Evaluation
- Interactive Demo: Evaluating an LLM Using Standard Metrics
- Advanced Evaluation Techniques
- Case Study: Real-World Application of Evaluation Techniques at OpenAI
- Future Directions and Challenges
- Q&A



# Context: Significance & Expectations

- LLMs have rapidly become a major part of many user-facing applications.
- Developers need to know how to measure the quality of their models before and after deployment to avoid mistakes that could harm users or the business.
- Today's presentation is an introduction to this complex field. We'll talk about the different approaches at a high level, including a case study and demo.



# Introduction to LLMs



## Overview of LLMs

- LLMs are a type of ML model that is trained on vast amounts of text data to understand and generate human-like text.
- Trained using deep learning.
- LLMs excel at tasks like translation, summarization, question-answering, and even creative writing.



# **Key Players**

- OpenAl
- Google
- Meta Al
- Microsoft
- Anthropic
- And more!





# The LLM Lifecycle

- Data Collection and Preprocessing
- Model Training
- Fine-tuning
- Evaluation <- Our focus today!</li>
- Deployment and Monitoring
- Maintenance and Updates





# **LLM Performance Evaluation**



# Applications of LLM Performance Evaluation

- Model comparison
- **Bias detection** and mitigation
- User satisfaction and trust





# Types of Evaluation for LLMs

#### System Evaluation

- Focus on the components we control, such as prompts and context.
- Metrics like input-output determination efficiency, model perplexity, or retrieval relevance.

#### Model Evaluation

 Focus on the raw capability of the model, e.g. their ability to understand, generate, and manipulate language within the appropriate context.

#### **Tools and Methods**

- Automated Metrics
- Benchmarking
- Human Evaluation
- LLM-as-a-Judge
- Online Engagement Metrics
- Evaluation Platforms



# Many Potential Things to Evaluate!

#### Evaluation criteria should be tailored to the specific application.

There are **many** potential things to consider!

- Task-specific (e.g. summarization, NER, RAG, Q&A)
- Responsible AI
- Fairness
- Robustness
- Factuality
- Speed/Cost
- Quality
- Consistency and generalizability



# Key Characteristics of a Good Evaluation

- Focuses on the most critical outcomes of your LLM application.
- Uses a small number of metrics that are easy to interpret and understand.
- Should be **fast**, **reliable**, **and automatic** to compute.
- Tested on datasets that are diverse and representative of real-world scenarios.
- Metrics should be **highly correlated with human judgment** to ensure they reflect true performance.
- Enables monitoring score changes over time for continuous improvement.



# **Supervised LLM Evaluation**



# Specialized Metrics - Why?

#### Importance of Specialized Metrics:

- Capturing linguistic nuances
- Assessing contextual understanding
- Measuring generative quality

#### • Unique Challenges in LLMs:

- Ambiguity and context sensitivity
- Bias and ethical considerations
- Managing large-scale and complex outputs



### Gold Standard Data Set

- Like with any supervised learning task, we need a labeled dataset.
- Should be diverse and representative.

We can use LLMs to help with this part, too!





## Fundamental Evaluation Metrics

- Classification Metrics (F1, Precision, Recall, etc.)
- Perplexity
- BLEU
- ROUGE





## **Classification Metrics**

For classification tasks (e.g. sentiment analysis), we can use typical classification metrics:

- Precision
- Recall
- o **F1**
- Accuracy





# Perplexity

- Perplexity measures how well a language model predicts a sample of text.
- Lower perplexity indicates better predictive performance.

#### Advantages:

- Simple and widely used metric for language model evaluation.
- Provides a quantitative measure of prediction accuracy.

#### Limitations:

- Does not capture context understanding, coherence, or relevance.
- May not reflect real-world performance or user satisfaction.

Hugging Face is a startup based in New York  $\frac{\text{City}}{\text{p(word|context)}}$  and Paris



# BLEU (Bilingual Evaluation Understudy)

- Measures the quality of generated text by comparing it to one or more reference texts. Focuses on precision.
- It evaluates how many n-grams (contiguous sequences of n items) in the candidate text match the reference text.
  - BLEU calculates precision for n-grams of different lengths.
- Advantages:
  - o Provides a quantitative measure of translation accuracy.
- Limitations:
  - Focuses on exact word matches, often missing context and semantic meaning.
  - Penalizes different word choices that might be correct, reducing the ability to capture paraphrased or rephrased content.
  - May not reflect human judgment of translation quality.



# ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

- Evaluates the quality of summaries by comparing them to reference summaries, focusing on recall.
  - ROUGE-N: Measures n-gram overlap (e.g., ROUGE-1 for unigrams, ROUGE-2 for bigrams).
  - o ROUGE-L: Measures the longest common subsequence (LCS) between the candidate and reference summaries.
  - ROUGE-S: Measures the overlap of skip-bigrams (pairs of words in their sentence order, allowing for gaps).



# ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

#### Advantages

- Focuses on how much of the reference content is captured in the generated text, making it effective for evaluating content preservation.
- Versatile: Can be used across various text generation tasks beyond summarization.

#### Limitations

- Focuses on surface-level similarity, potentially overlooking deeper semantic meaning.
- May penalize creative but valid paraphrasing.
- Reference summaries are required, which may not capture all acceptable summaries for a given text.



# Demo



### Limitations

- Standard metrics are a good starting point, but may miss nuance.
- For example, BLEU might miss tone, style, or intended meaning of the original text.
- So, we also need some more advanced techniques we can use!



# Advanced Evaluation Techniques



# Advanced Techniques

- Benchmarking
- Human-in-the-Loop evaluations
- Automated tools and frameworks
- LLM-as-a-Judge
- Online Evaluation



# Benchmarking

- Benchmarks use known datasets to evaluate LLMs by comparing generated outputs to correct answers.
  - Different benchmarks focus on various features like factual knowledge, math, reasoning, and language understanding.
- Examples include GLUE, SuperGLUE, HellaSwag, TruthfulQA, and MMLU.
- Tools like Big Bench, OpenAI Evals, and others assess general and specific tasks for broader evaluation.



# Human-in-the-Loop

- Qualitative Assessment
- Alignment to the Real World
- Bias Detection

#### **Evaluation Criteria**

- Accuracy of the generated text.
- Relevance
- Fluency
- Transparency
- Safety
- Human Alignment



## **Automated Tools**



- Offer speed and scalability.
- Ensures consistent evaluations.
- For example, Prompt Flow, Vertex Al Studio, Amazon Bedrock



# LLM-as-a-Judge



- One LLM (the evaluator) analyzes and evaluates the output of another LLM.
  - May evaluate linguistic qualities, relevance, and adherence to prompts.
- Useful for preliminary assessments, continuous integration, and large-scale evaluations.
- Limitations:
  - Requires significant computational resources.
  - Sensitive to changes in response tokens, potentially missing subtleties like sarcasm or irony.



## Online Evaluation

- Once we are confident in our LLM's performance offline, we can run A/B
  tests online to gather user data.
- Leverages authentic user data to assess live performance and user satisfaction.
- Measures both direct and indirect user feedback.
- Ideal for continuous performance monitoring.





# Case Study: OpenAl



## **GPT-4: Overview**

- GPT-4 is a large multimodal model
- Accepts image and text inputs, emits text outputs
- Exhibits human-level performance on various benchmarks



## GPT-4: Qualitative Evaluations

- External experts recruited in August 2022
- Stress testing, boundary testing, and red teaming
  - Structured effort to find flaws and vulnerabilities
  - Iterative process: hypothesis, testing, adjusting
- Experts from diverse fields (fairness, cybersecurity, law, etc.)
- Internal testing





# **GPT-4: Quantitative Evaluations**

- Internal evaluations for categories against content policy
  - Measures likelihood of generating harmful content
- Automated evaluations for different model checkpoints





# GPT-4: Benchmarking - Text

#### • Exams:

- Evaluated on professional and academic benchmarks
- Used public exams and practice tests without specific training

#### Traditional ML:

MMLU, HellaSwag, HumanEval, and TruthfulQA

#### Multi-lingual:

Translated MMLU benchmark into 24 languages





# GPT-4: Benchmarking - Vision

- Evaluated on standard academic vision benchmarks
- Benchmarks include VQAv2, TextVQA, ChartQA, AI2 Diagram, DocVQA
- Constantly discovering new tasks the model can tackle!





# GPT-4: OpenAI Evals

- Open-source framework for creating and running benchmarks
- Used for tracking performance and preventing regressions
- Compatible with existing benchmarks





# Future Directions and Challenges



# Challenges

- Ethical and bias concerns.
- **Computational resource** demands.
- Overfitting and data contamination.
- Limited diversity metrics.
- Balancing innovation with regulation.





# Overcoming These Challenges

- Leverage multiple evaluation metrics.
- Enhance **human evaluation**.
- Incorporate diverse reference data.
- Implement real-world evaluation.
- Assess robustness and security.



## **Future Directions**

- Enhanced evaluation metrics.
- Real-time and adaptive evaluation.
- Cross-domain generalization.





# Q&A

