Claims

[c1]	1.A barrier coating material, comprising:
	(a)about 15 atom % to about 95 atom % chromium; and
	(b)about 5 atom % to about 60 atom % of at least one element selected from
	the group consisting of rhenium, tungsten, ruthenium, and combinations
	thereof.
[c2]	2.The barrier coating material of claim 1, further comprising about 1 atom %
	to about 35 atom % of at least one element selected from the group
	consisting of nickel, cobalt, iron, and combinations thereof.
[c3]	3. The barrier coating material of claim 1, further comprising about 1 atom %
	to about 35 atom % aluminum.
[c4]	4. The barrier coating material of claim 1, wherein the level of chromium is in
	the range of about 25 atom % to about 60 atom %.
[c5]	5. The barrier coating material of claim 1, wherein the level of tungsten is in
	the range of about 5 atom % to about 20 atom %.
[c6]	6.The barrier coating material of claim 5, wherein the level of tungsten is in
	the range of about 10 atom % to about 15 atom %.
[c7]	7. The barrier coating of claim 5, further comprising about 1 atom % to about
	35 atom $\%$ of at least one element selected from the group consisting of
•	nickel, cobalt, iron, and combinations thereof.
[c8]	8. The barrier coating material of claim 5, further comprising about 5 atom $\%$
	to about 30 atom % of nickel.
[c9]	9.The barrier coating material of claim 5, further comprising about 1 atom $\%$
	to about 35 atom % aluminum.
[c10]	10. The barrier coating material of claim 1, wherein the level of rhenium is in
	the range of about 15 atom % to about 35 atom %.
[c11]	11.The barrier coating of claim 10, further comprising about 1 atom % to

	of nickel, cobalt, iron, and combinations thereof.
[c12]	12. The barrier coating material of claim 10, further comprising about 1 atom % to about 35 atom % aluminum.
[c13]	13. The barrier coating material of claim 1, wherein the level of ruthenium is in the range of about 10 atom % to about 60 atom %.
[c14]	14. The barrier coating material of claim 13, wherein the level of ruthenium is in the range of about 20 atom % to about 40 atom %.
[c15]	15. The barrier coating material of claim 13, further comprising about 1 atom % to about 35 atom % of at least one element selected from the group consisting of nickel, cobalt, iron, and combinations thereof.
[c16]	16The barrier coating material of claim 14, further comprising about 1 atom % to about 35 atom % aluminum.
[c17]	17. The barrier coating material of claim 16, wherein the level of aluminum is in the range of about 1 atom % to about 15 atom %.
[c18]	18. The barrier coating material of claim 1, wherein the level of rhenium is in the range of about 40 atom % to about 60 atom %.
[c19]	19The barrier coating material of claim 18, further comprising about 1 atom % to about 35 atom % of at least one element selected from the group consisting of nickel, cobalt, iron, and combinations thereof.
[c20]	20. The barrier coating material of claim 18, further comprising about 1 atom % to about 35 atom % aluminum.
[c21]	21.An article for use in a high-temperature, oxidative environment, comprising: (i)a metal-based substrate, comprising aluminum and other alloy elements; (ii)a diffusion barrier layer overlying the substrate, said layer comprising (A)about 15 atom % to about 95 atom % chromium; and

about 35 atom % of at least one element selected from the group consisting

[c22]

[c23]

(B)about 5 atom % to about 60 atom % of at least one element selected from
the group consisting of rhenium, tungsten, ruthenium, and combinations
thereof; and
(iii)an oxidation-resistant coating over the diffusion barrier layer.
22. The article of claim 21, wherein the level of chromium in the diffusion barrier layer is in the range of about 50 atom % to about 95 atom %.
23. The article of claim 21, wherein the level of chromium is in the range of
about 25 atom % to about 60 atom %.
24. The article of claim 21, wherein the diffusion barrier layer further

- [c24] 24.The article of claim 21, wherein the diffusion barrier layer further comprises about 1 atom % to about 35 atom % of at least one element selected from the group consisting of nickel, cobalt, iron, and combinations thereof.
- [c25] 25. The article of claim 21, wherein the diffusion barrier layer further comprises about 1 atom % to about 35 atom % aluminum.
- [c26] 26.The article of claim 21, wherein the metal-based substrate is a superalloy, and comprises at least one base metal selected from the group consisting of nickel, cobalt, and iron.
- [c27] 27.The article of claim 26, wherein the substrate further comprises at least one alloy element selected from the group consisting of cobalt, molybdenum, titanium, tantalum, carbon, and boron.
- [c28] 28.The article of claim 21, wherein the oxidation-resistant coating of component (iii) is an aluminum-rich coating, and the diffusion barrier layer of component (ii) prevents the substantial migration of aluminum from the aluminum-rich coating to the substrate, while also preventing the substantial migration of alloy elements of the substrate into the aluminum-rich coating.
- [c29] 29.The article of claim 28, wherein the aluminum-rich coating over the diffusion-barrier layer is an aluminide coating or an overlay coating.

(I) a superalloy substrate, comprising a nickel or nickel-cobalt alloy;

(II)a diffusion barrier layer overlying the substrate, said layer comprising

(a) about 15 atom % to about 95 atom % chromium;

(b)about 5 atom % to about 60 atom % of at least one element selected from the group consisting of rhenium, tungsten, ruthenium, and combinations thereof:

(c)about 1 atom % to about 35 atom % of at least one element selected from at least one element selected from the group consisting of nickel, cobalt, iron, and combinations thereof; and

(d)about 1 atom % to about 35 atom % aluminum;

(III)an oxidation-resistant coating over the diffusion barrier layer, comprising a material selected from the group consisting of aluminide materials, MCrAl (X) materials, and nickel-chrome materials,

where M is an element selected from the group consisting of Ni, Co, Fe, and combinations thereof; and X is an element selected from the group consisting of Y, Ta, Si, Hf, Ti, Zr, B, C, and combinations thereof; and (IV)a zirconia-based thermal barrier coating over the oxidation-resistant coating.

[c41]

41.A method for preventing the substantial migration of aluminum from an aluminum-rich, oxidation-resistant coating into an underlying metal-based substrate in a high-temperature, oxidative environment, comprising the step of disposing a diffusion barrier layer between the substrate and the coating, wherein the diffusion barrier layer comprises:

(a) about 15 atom % to about 95 atom % chromium; and

(b)about 5 atom % to about 60 atom % of at least one element selected from the group consisting of rhenium, tungsten, ruthenium, and combinations thereof.

[c42]

42. The method of claim 41, wherein the diffusion barrier layer is applied over the substrate by a technique selected from the group consisting of electron beam physical vapor deposition (EB-PVD); electroplating, ion plasma deposition (IPD); low pressure plasma spray (LPPS); chemical vapor

deposition (CVD), plasma spray, high velocity oxy-fuel (HVOF), and sputtering.

- [c43] 43. The method of claim 41, wherein the metal based substrate comprises a superalloy.
- [c44] 44.The method of claim 41, wherein the oxidation-resistant coating is selected from the group consisting of aluminide materials, MCrAl(X) materials, and nickel-chrome materials, where M is an element selected from the group consisting of Ni, Co, Fe, and combinations thereof; and X is an element selected from the group consisting of Y, Ta, Si, Hf, Ti, Zr, B, C, and combinations thereof.
- [c45] 45.A method for providing a protective coating system over the surface of a superalloy substrate, comprising the following steps:(i)applying a diffusion barrier layer overlying the substrate, said layer

(A)about 15 atom % to about 95 atom % chromium; and

comprising

- (B)about 5 atom % to about 60 atom % of at least one element selected from the group consisting of rhenium, tungsten, ruthenium, and combinations thereof;
- (ii)applying an oxidation-resistant coating over the diffusion barrier layer; and then
- (iii)applying a zirconia-based thermal barrier coating over the oxidation-resistant coating.
- [c46] 46.The method of claim 45, wherein the diffusion barrier layer further comprises:
 - (C)about 1 atom % to about 35 atom % of at least one element selected from at least one element selected from the group consisting of nickel, cobalt, iron, and combinations thereof; and
 - (D)about 1 atom % to about 35 atom % aluminum.
- [c47]
 47.The method of claim 45, wherein the superalloy substrate is an airfoil of a

gas turbine engine.