我承诺诚实作业,没有抄袭他人!

1. 对于上图中的带权有向图:

1) 写出其相邻矩阵

从图中可知,共有 9 个顶点,从而建立 9×9 的矩阵,得到如下相邻矩阵:(由于 0 比较多,我将非 0 的部分全部以**深红加粗**醒目表示)

$$\begin{bmatrix} 0 & \mathbf{6} & \infty & \mathbf{5} & \infty & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \mathbf{1} & \infty & \infty & \infty & \infty \\ \mathbf{4} & \infty & 0 & \infty & \mathbf{1} & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & \mathbf{2} & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \mathbf{8} & \infty & \mathbf{9} & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \mathbf{2} \\ \infty & 0 \end{bmatrix}$$

2) 画出其邻接表表示

这里以出度表示。

3) 计算每个顶点的入度和出度

出度和入度表如下:

顶点	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
出度	2	1	2	1	2	0	2	1	0
入度	1	1	0	1	2	2	1	1	2

4)如果每个指针需要 4 个字节,每个顶点的标号需要 2 个字节,每条边的权需要 2 个字节,则此图采用哪种表示法需要的空间较少?

计算邻接矩阵的空间:由于邻接矩阵只记录权值,从而所占据空间为 9*9*2=162 字节;

计算出度邻接表空间: 顶点表中每个顶点占据 2+4=6 字节,从而 9 个顶点共 9*6=54 字节;边表中每个边结点占据 2+2+4=8 字节,从而 11 个边结点占据 11*8=88 字节,则邻接表所占总空间为 88+54=142 字节。

很显然,邻接表占据空间较少。

2. 对于下面的有向图,从顶点v1出发,分别画出其深度优先搜索和广度优先搜索生成的森林。

深度优先遍历生成的森林 (其中一种)

广度优先遍历生成的森林 (唯一一种)

3. 求下面的有向图中从顶点v4到其他顶点的全部最短路径及长度

1) 声明:

- a)设置长度为 6 的 path[]用于记录每个顶点最短路径中的前一个顶点的下标。
- b) 设置长度为 6 的 disc[]数组记录每个顶点最短路径的长度。
- c) 设置长度为 6 的 visit[]数组标记每个顶点是否被访问过。
- d)设置顶点集合 vertexes[],用于记录被加入最短路径区的顶点,主要是用于表示。
- e) 以邻接矩阵表示该有向图,记邻接矩阵为 weight[][], weight[i][j]表示顶点 i 到顶点 j 的路径的权

值,为∞表示不可达。

- f) 规则*:每次处理中,对于新加入的顶点,应当根据其所连接的顶点刷新数组中每个可达顶点的最短路径。即假设中间顶点为 k,则对于如果 k 对 i 顶点可达,且 disc[i] > disc[k]+weight[k][i],则应当更新 disc[i] = disc[k]+weight[k][i]。
- g) 规则**: 对 path[]的处理规则为,经过选取权值最小的步骤后得到的新顶点 k,添加入 vertexes[]后,根据规则*应当对所有由顶点 k 可达的顶点的 disc[]进行更新,此时如若某个顶点 i 的 disc[]被更新,那么 path[i]=k。
- 2) 初始状态:设置各数组的初值。

visit[]: 令 visit[4]=1, 其余全部为 0, 代表初始状态下首顶点已被访问;

disc[]: 搜索顶点 v_4 可达顶点的权值, 令 disc[1]=4, 其他全部为 ∞ ;

path[]: 全部为-1。

|--|

path[]	-1	-1	-1	-1	-1	-1
disc[]	∞	4	∞	∞	∞	∞
visit[]	0	0	0	0	1	0
vertexes[]			{v	v ₄ }		

3) 第一次搜索: 从 disc[]中且没被访问的顶点中选出最小的权值为 4, 对应顶点为 v_1 。更新:

更新 visit[]: visit[1] = 1;

更新 disc[]: 由顶点 v_1 可达的顶点有 v_0 、 v_3 、 v_5 ,根据规则*更新 disc[0] = 14,disc[3] = 6,disc[5] = 34。

更新 path[]: 根据规则**修改 path[]数组,得到 path[1] = 4, path[0] = 1, path[3] = 1, path[5] = 1;

下标	0	1	2	3	4	5
path[]	1	4	-1	1	-1	1

disc[]	14	4	∞	6	∞	34
visit[]	0	1	0	0	1	0
vertexes[]			$\{v_4,$	<i>v</i> ₁ }		

4) 第二次搜索: 从 disc[]中且没被访问的顶点中选出最小的权值为 6, 对应顶点为 v_3 。更新:

更新 visit[]: visit[3] = 1;

更新 disc[]: 由顶点 v_3 可达的顶点有 v_1 、 v_4 ,根据规则*,发现 disc[1] < disc[3] + weight[3][1],又顶 点 v_4 是出发顶点,从而不用更新;

更新 path[]: 根据规则**, 更新 path[3] = 1。

下标	0	1	2	3	4	5
path[]	1	4	-1	1	-1	1
disc[]	14	4	∞	6	∞	34
visit[]	0	1	0	1	1	0

vertexes[] $\{v_4, v_1, v_3\}$	
--------------------------------	--

5) 第三次搜索: 从 disc[]中且没被访问的顶点中选出最小的权值为 14,对应顶点为 v_0 。更新:

更新 visit[]: visit[0] = 1;

更新 disc[]:由顶点 v_0 可达的顶点只有 v_2 ,根据规则*,更新 disc[2] = 29。

更新 path[]:根据规则**,更新 path[2] = 0;

下标	0	1	2	3	4	5
path[]	1	4	0	1	-1	1
disc[]	14	4	29	6	∞	34
visit[]	1	1	0	1	1	0
vertexes[]			$\{v_4, v_1, v_1, v_2, v_3, v_4, v_1, v_2, v_3, v_4, v_4, v_1, v_2, v_3, v_4, v_4, v_5, v_5, v_6, v_6, v_6, v_6, v_6, v_6, v_6, v_6$	v_3, v_0 }		

6) **第四次搜索**: 从 disc[]中且没被访问的顶点中选出最小的权值为 29,对应顶点为 v_2 。更新:

更新 visit[]: visit[2] = 1;

更新 disc[]: 由于 v_2 出度为 0, 从而 disc[]不用更新;

更新 path[]:由于 disc[]没有更新,从而 path[]不用更新。

下标	0	1	2	3	4	5
path[]	1	4	0	1	-1	1
disc[]	14	4	29	6	∞	34
visit[]	1	1	1	1	1	0
vertexes[]		1	$\{v_4, v_1, v_1, v_2\}$	v_3, v_0, v_2	}	

7) **第五次搜索**:从 disc[]中且没被访问的顶点中选出最小的权值为 34,对应顶点为 v_5 。更新:

更新 visit[]: visit[5] = 1;

更新 disc[]: 由于从顶点 v_5 可达的顶点 v_0 、 v_2 、 v_4 ,根据规则**,发现 disc[0] < disc[5]+weight[5][0],

disc[2] < disc[5] + weight[5][2],又顶点 v_4 是源顶点,从而 disc[]不用更新。

更新 path[]:由于 disc[]没有更新,从而不需要更新。

下标	0	0 1 2 3 4							
path[]	1	4	0	1	-1	1			
disc[]	14	4	29	6	∞	∞ 34			
visit[]	1	1	1	1	1	1			
vertexes[]		$\{v_4, v_1, v_3, v_0, v_2, v_5\}$							

经过上述查找过程,由顶点 v_4 到达其他顶点的最短路径以及长度如下表所示:

到达顶点	最短路径	长度
v_1	$v_4 \rightarrow v_1$	4
v_3	$v_4 \rightarrow v_1 \rightarrow v_3$	6
v_0	$v_4 \rightarrow v_1 \rightarrow v_0$	14
v_2	$v_4 \rightarrow v_1 \rightarrow v_0 \rightarrow v_2$	29
v_5	$v_4 \rightarrow v_1 \rightarrow v_5$	34

4. 拓扑排序的结果不是唯一的,对于下面有向图中的顶点进行拓扑排序,能够得到多少个不同的拓扑序列。

拓扑排序不唯一的说明:设置一个队列,每次从顶点中找到一个入度为 0 的顶点,添加入队列,并删除该顶点所有出边,循环前述操作直至队列中已经存满所有顶点,得到的序列就是拓扑序列。**拓扑序列的不唯一就来源于 当存在多个入度为 0 的顶点时,选取顺序不一样,排序结果就不唯一。**

下表中的"列"表示每个顶点在拓扑排序中的序列位置,一一讨论所有的情况。

0	1	2	3	4	5	6	7	8	序号
					v_6	v_7	v_5	v_4	1
			v_2	v_8	v_7	v_6	v_5	v_4	2
					v_6	v_7	v_5	v_4	3
				v_2	v_7	v_6	v_5	v_4	4
v_0					v_2	v_7	v_5	v_4	5
		v_3		v_6	v_7	v_2	v_5		6
			v_8		v_7	v_5	v_2	v_4	7
					v_2	v_6	v_5	v_4	8
				v_7	v_6	v_2	v_5	v_4	9
					v_6	v_5	v_2	v_4	10

					22	11	11	11	11	
	v_1			v_2	v_6	v_7	v_5	v_4		
					v_7	v_6	v_5	v_4	12	
				v_6	v_2	v_7	v_5	v_4	13	
v_0					v_7	v_2	v_5	v_4	14	
				v_3		v_7	v_5	v_2	v_4	15
		v_8		v_7	v_2	v_6	v_5	v_4	16	
					v_6	v_5	v_2	v_4	17	
					v_6	v_2	v_5	v_4	18	
			v_7	v_3	v_2	v_6	v_5	v_4	19	
					v_6	v_2	v_5	v_4	20	
						v_5	v_2	v_4	21	
			v_3	v_2	v_6	v_7	v_5	v_4	22	

					v_7	v_6	v_5	v_4	23
				v_6	v_2	v_7	v_5	v_4	24
					v_7	v_2	v_5	v_4	25
		v_1			v_7	v_5	v_2	v_4	26
v_0					v_2	v_6	v_5	v_4	27
	v_8				v_6	v_5	v_2	v_4	28
					v_6	v_2	v_5	v_4	29
			v_7	v_3	v_6	v_2	v_5	v_4	30
						v_5	v_2	v_4	31
					v_2	v_6	v_5	v_4	32
			v_1	v_3		v_2	v_5	v_4	33
		v_7			v_6	v_5	v_2	v_4	34

					v_2	v_6	v_5	v_4	35
	v_0	v_1	v_3	v_2	v_6	v_7	v_5	v_4	36
					v_7	v_6	v_5	v_4	37
v_8				v_6	v_2	v_7	v_5	v_4	38
					v_7	v_2	v_5	v_4	39
						v_5	v_2	v_4	40
					v_2	v_6	v_5	v_4	41
					v_6	v_2	v_5	v_4	42
						v_5	v_2	v_4	43
					v_2	v_6	v_5	v_4	44
			v_7	v_3		v_2	v_5	v_4	45
					v_6	v_5	v_2	v_4	46

		v_7	v_1	v_3	v_2	v_6	v_5	v_4	47
					v_6	v_2	v_5	v_4	48
v_8						v_5	v_2	v_4	49
	v_7	v_0	v_1	v_3	v_2	v_6	v_5	v_4	50
					v_6	v_2	v_5	v_4	51
						v_5	v_2	v_4	52

非合并表格请查看一并提交的 EXCEL 表格,所有情况都在其中。总共 52 种。

- 5. 第 9 题请看 DEV C++项目
- 6. 第 14 题:证明:对于一个无向图 G = <V, E>, 若 G 中各顶点的度均大于等于 2,则 G 中必有回路。

证明:利用数学归纳法进行证明,顶点数 n≥2:

1) 当 n=2 时,易得唯一的两个顶点 v_0 和 v_1 度均为 2,即 v_0 和 v_1 的入度和出度均为 1,即 $v_0 \to v_1$ 且 $v_1 \to v_0$ 均可达,因此从 v_0 出发可以回到 v_1 ,存在回路;

- 2) 假设当 n=k 时,存在以下回路 $v_i \rightarrow v_i \rightarrow v_k \rightarrow ... \rightarrow v_i$,假设路径中的不重复顶点数目为 m,则 $m \leq k$;
- 3) n=k+1 时,新加入一个顶点 v_x ,则该顶点至少与图中 2 个顶点相连。对 v_x 与其他顶点的相连情况分为以下几中情况讨论:
 - a) 顶点 v_x 与回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 中任一顶点都不相连,那么此时图中仍存在回路,即 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$;
 - b) 顶点 v_x 的<u>出</u>边中有一部分或者全部与回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 中的顶点相连,此时回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 依旧存在,且由于顶点 v_x 只有出边与该回路中顶点相连,因此不会构成包含 v_x 的新回路,但依旧存在回路。
 - c) 顶点 v_x 的入边中有一部分或者全部与回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 中的顶点相连,此时回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 依旧存在,且由于顶点 v_x 只有入边与该回路中顶点相连,因此不会构成包含 v_x 新回路,但依旧存在回路。
 - d) 顶点 v_x 有一条出边和一条入边与回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 中的任一顶点 v_y 相连,那么显然 v_x 可以代替 v_y 构成新回路 $v_i \rightarrow v_i \rightarrow v_k \rightarrow ... v_x \rightarrow ... \rightarrow v_i$,并且不会破坏原回路,即依旧存在回路。
 - e) 顶点 v_x 有一条出边与回路 $v_i o v_j o v_k o ... o v_i$ 中的任一顶点 v_y 相连,有一条入边与与回路 $v_i o v_j o v_k o ... o v_i$ 中的任一顶点 v_z 相连,那么可以构成新回路 $v_i o v_j o v_k o ... o v_y o v_x o v_z o ... o v_i$,且原回路依然存在,

即依然存在回路。

- f) 顶点 v_x 有多个出边和多个入边与回路 $v_i \rightarrow v_j \rightarrow v_k \rightarrow ... \rightarrow v_i$ 中的多个顶点任意互连,由d)和e)可知,可以构成至少一个包含顶点 v_x 新回路,且原回路依旧存在,即依然存在回路。 综上,当 G 中各顶点的度均大于等于 2,则 G 中必有回路。
- 7. **第 19 题**: 对于一个具有 n 个顶点和 e 条边的有向图 G = <V, E>,证明: 求其强连通分量的算法所需的时间复 杂度是 O(n + e)。

证明:

- 1) 首先证明确定一个顶点数为 n'和边数为 e'的图 G'=(V',E')是强连通分量的算法的时间复杂度为 O(n' + e')。
 - a) 设顶点集合 set(n)为由互相可达的顶点所组成,即对 $\forall v_i, v_i \in set(n), v_i$ 到 v_i 有路径且 v_i 到 v_i 有路径。
 - b) 初始状态下加入顶点 v_1 进 set(n),并记录顶点 v_1 已被访问。对 v_1 可达的任意顶点 v_x ,判断 v_x 是否可达 v_1 , 如若可达且 v_x 不在集合 set(n)中,则加入集合 set(n)。可以看到加入集合 set(n)的顶点以及他们的出 边都会被访问,而且没有加入集合 set(n)即 v_1 可达 v_x 但 v_x 不可达 v_1 的情况, v_1 到 v_x 的边也会被访问,这

就使得即使两个顶点不是直接可达,那么他们之间的边也会被访问到。

- c) 再对新加入集合 set(n)的顶点做同样的操作,循环往复,直至最后一个顶点加入集合 set(n);
- d)由上述过程可以确定,求解过程中每个顶点、它们的所有出边以及出边所连顶点,都会被至少访问一次, 易得求解算法的复杂度为 O(n'+e')。
- 2) 假设有向图 G 中存在 m 个强连通分量也是 m 个子图,分别为 $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ … $G_m = (V_m, E_m)$,记它们的顶点数分别为 $n_1, n_2 \dots n_m$,记它们的和为 $n_{sum} \le n$;记它们的边数分别为 $e_1, e_2 \dots e_m$,记它们的和为 $e_{sum} \le e$;则求解每个强连通分量所用时间复杂度为 $O(n_1 + e_1)$, $O(n_2 + e_2)$ … $O(n_m + e_m)$,那么总时间复杂度为

$$\sum_{i=1}^{m} O(n_i + e_i) = O\left(\sum_{i=1}^{m} (n_i + e_i)\right) = O\left(\sum_{i=1}^{m} (n_i) + \sum_{i=1}^{m} (e_i)\right) = O(n_{sum} + e_{sum})$$

3) 再记剩余的顶点和边构成子图 $G_r = (V_r, E_r)$,其顶点数为 n_r ,其边数为 e_r ,易得 $n_r + \sum_{i=1}^m n_i = n$, $e_r + \sum_{i=1}^m e_i = e$ 。由于求解算法并不能也没必要区分一个顶点是属于强连通分量集合 $(G_1 ... G_m)$ 的某一个,还是属于 G_r ,因此求解算法对于子图 G_r 的求解策略同求解强连通分量,从而子图 G_r 中的所有顶点以及每个顶点的所

有出边都会被至少访问一次,从而对于子图 G_r 上算法所花费的时间复杂度为 $O(n_r + e_r)$ 。

4) 综上,求解强连通分量的算法所花费的时间复杂度为 $O(n_{sum}+e_{sum})+O(n_r+e_r)=O(n+e)$ 。命题得证。