Stat 102

Introduction to Business Statistics

Richard P. Waterman

Wharton

Table of contents I

- Today's module
- Course overview
 - A quick look at the syllabus
 - The main skill: regression analysis
- Concepts from Stat 101
 - Key ideas
 - M&Ms and variability
- 4 Summary
- Mext time

Today's module

Topics to be covered in this module:

- A quick look at the syllabus
- The key skill from the course: regression analysis
- Review concepts from Stat 101
- Getting a feel for variability with M&Ms
- Summary
- Next time

Syllabus review

The syllabus is on Canvas. Main points:

- People
- Resources
- Deliverables
- Final grade
- Collaboration

What you will be able to do by the end of the semester

Multiple regression

Logistic regression

An example of multiple regression

The PRiSM data set:

- Outcome variable: Loan performance (PRiSM)
- 30-40 predictor variables
- Model loan performance as a function of these variables
 - 1 Which variables to include (inference)?
 - 2 How much weight should they get (estimation)?
 - Solution | Forecast loan performance and provide forecast intervals (prediction)
 - Understand what's going on and critique the work of others

The data

Figure 1: PRiSM data set

Example predictive model

Figure 2: PRiSM data set

Prediction Expression 0.26228151510662 + -0.0000007665499 * Commission Upfront + 0.00117891812411 * FICO "O" ⇒ -0.0676969162723 + Match Loan Type "R" ⇒ 0.06769691627228 else ⇒. ⇒ 0.14463520535247 ⇒ -0.0666076273058 ⇒ 0.0778453122079 ⇒ -0.0263422369985 + Match [ISO Name] ⇒ 0.04482038500937 ⇒ 0.05172774201135 ⇒ -0.2034911415412 "OTHER" ⇒ -0.0225876387356 else

Forecasts and observed values

Figure 3: PRiSM data set

Ideas you should alreday be familiar with

- Summaries of categorical data
- Summaries of numerical data
- Association between categorical variables
- Association between quantitative variables (correlation)
- Probability models for counts: Bernoulli and Binomial
- The Normal probability model

What's the deal with M&M colors?

Figure 4: M&M packet

There is a historical claim that M&Ms occur in color proportions: Brown: 13% Red: 13% Yellow: 14% Green: 16% Orange: 20% Blue: 24%

Stated distribution

Figure 5: M&M theoretical color percentages

My observed distribution

Figure 6: M&M observed color frequency

Collect your data

Team	memb	ers:	

Table 1: M&M data collection

	Brown	Red	Yellow	Green	Orange	Blue	Total
Count							
Proportion							1.000

Collect your data

Team members: Richard Waterman

Table 2: M&M data collection

	Brown	Red	Yellow	Green	Orange	Blue	Total
Count	10	8	9	11	9	3	50
Proportion	0.200	0.160	0.180	0.220	0.180	0.060	1.000

Module summary

Topics covered today include:

- Reviewed the syllabus
- Sample to sample variation
- Previewed JMP

Next time

- Standard error
- Central limit theorem