

Today's lecture

1 Introduction

a)
$$D_{KL}(p||q) := \int_{X} p(x) \log \frac{p(x)}{q(x)} dx$$

b) Monte-Carlo Approximation
$$\mathbb{E}_{x\sim p(i)} \left[f(X) \right] \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \quad x^{(i)} \sim p(i \cdot i \cdot d)$$

c) ELBO (Decomposition)

log Po(x) =
$$\mathbb{E}_{z \sim g(\cdot)} \left[\log \left(\frac{P_o(x, z)}{g(z)} \right) \right]$$

1 Optinize in ELBO

max ELBO:=
$$L(\hat{D}; 0, 9)$$

 $0, 9$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{z \sim \beta(i \mid x^{(i)})} \left[p_{0} \left(\frac{p_{0}(x^{(i)}, 2)}{q_{0}(z \mid x^{(i)})} \right) \right]$$

For simplicity, we conside 1-sample
$$L = \mathbb{E}_{z \sim q_{\varphi}(\cdot|x)} \left[l_{\varphi}\left(\frac{p_{\varphi}(x,z)}{q_{\varphi}(z|x)}\right) \right]$$

(4) Reparameterization Trick

Setting

$$M, 6^2 = \phi(x)$$
 $\overline{Z}[x \sim N(M, 6^2]) \iff \overline{Z}[x = \mu(x) + 6^2(x) u]$
 $= g_{\phi}(\cdot | x)$ where $u \sim N(0.1)$

Ideal
$$\Rightarrow$$
 use Gaussian with trainable mean & variance to approximate posterior $p_0(2|x)$

$$q_0(.1x) = \mathcal{N}(\mu(x), 6^2(x)1) \approx p_0(2|x)$$

Via Monte-Carlo Approximation

$$\frac{\log P_{\theta}(z)}{\int 2^{-2} \log (2\pi) - \frac{1}{2} Z_{j}^{2}} = \frac{\chi \log S_{\theta} + (1-\chi) \log (1-S_{\theta})}{2}$$

b)
$$p_{\theta}(z) \longrightarrow \mathcal{N}(0, L)$$

b)
$$p_{\theta}(z) \rightarrow N(0, I)$$
 $p_{\theta}(z) \rightarrow N(0, I)$
 $p_{\theta}(z) \rightarrow N(0, I$

$$\Rightarrow \log \operatorname{fog}(2|x) = \sum_{j} -\frac{1}{2} \log (2\pi 6j^{2}) - \frac{1}{2} \left(\frac{2j-\mu_{j}}{6j}\right)^{2}$$

$$= \sum_{j} -\frac{1}{2} \log (2\pi 6j^{2}) - \frac{1}{2} uj^{2}$$

(a)
$$\log P_{\theta}(x|2) = \sum_{j} x_{i} \log S_{\theta,j} + (1-x_{i}) \log (1-S_{\theta,j})$$

b) $\log P_{\theta}(z) = \sum_{j} -\frac{1}{2} \log 2\pi - \frac{1}{2} 2j^{2}$

$$= \sum_{j} -\frac{1}{2} \log 2\pi - \frac{1}{2} (6j u_{j} + \mu_{j})^{2}$$
(c) $\log q_{\theta}(z|z) = \sum_{j} -\frac{1}{2} \log (2\pi 6j^{2}) - \frac{1}{2} u_{j}^{2}$

$$\Rightarrow \begin{cases} a) \quad \mathbb{E}_{z \sim q_{\alpha}(\cdot \mid x)} \left[\log P_{\alpha}(x \mid z) \right] \\ b) \quad \mathbb{E}_{z \sim q_{\alpha}(\cdot \mid x)} \left[\log P_{\alpha}(z) \right] = \mathbb{E}_{u} \left[\sum_{j} (\omega_{j} \cdot \omega_{j} \cdot \omega_{j})^{2} \right] \\ = -\frac{1}{2} \sum_{j} (\omega_{j} \cdot \omega_{j} \cdot \omega_{j})^{2} \\ c) \quad \mathbb{E}_{z \sim q_{\alpha}(\cdot \mid x)} \left[\log Q_{\alpha}(z \mid x) \right] \\ = \mathbb{E}_{u} \left[\sum_{j} -\frac{1}{2} \log G_{j}^{2} - \frac{1}{2} \log G_{j}^{2} \right]$$

$$= \sum_{j} -\frac{1}{2} \log 6j^{2} = -\sum_{j} \log 6j$$

$$\hat{O}, \hat{g} = \arg \max_{j} ELBD$$

Recap:
$$\underline{FLBO} = \underbrace{\mathbb{E}_{z \sim q_{\varphi}(\cdot|x)} \left[\log \left(\frac{P_{\varphi}(x,z)}{q_{\varphi}(z|x)} \right) \right]}_{L=-ELBO} = -\underbrace{\mathbb{E}_{z \sim q_{\varphi}(\cdot|x)} \left[\log \left(\frac{P_{\varphi}(x,z)}{q_{\varphi}(z|x)} \right) \right]}_{z \sim q_{\varphi}(\cdot|x)}$$

