Física Quântica I / Mecânica Quântica

Descrição dos sistemas físicos em mecânica quântica

Vítor M. Pereira

Departamento de Física | Universidade do Minho

2021/22 — 2º Sem

Lição 7

Postulados da mecânica quântica (cont.)

Aspetos genéricos decorrentes dos postulados

Observáveis compatíveis e incompatíveis

Evolução no tempo de valores esperados (teorema de Ehrenfest)

Quantidades conservadas

Alguns aspetos genéricos decorrentes dos postulados

- O ato de medir uma propriedade física corresponde, em termos da descrição no espaço de estados, a um processo de "filtragem" do vetor de estado. (P6)
- ullet O que significa dizer que "um sistema foi preparado no estado $|\psi\rangle$ "?
- Como se demonstra/verifica experimentalmente a formulação probabilística? (P4)

$$\mathcal{P}(a_n) = |\langle u_n | \psi \rangle|^2$$
 ou $\mathcal{P}(a_n) = \langle \psi | \hat{P}_n | \psi \rangle$

- A mecânica quântica é determinística?
- O que acontece à normalização do vetor de estado com o tempo? É preservada?

$$\frac{d}{dt} \left[\langle \psi(t) | \psi(t) \rangle \right] \stackrel{?}{=} 0$$

- Medição de observáveis distintas uma diferença importante:
 - B é medida imediatamente após A? (sem evolução temporal entre as duas medidas):

$$|\psi(t_0^-)\rangle \xrightarrow[t=t_0]{\mathcal{A} \to a_n} |\psi(t_0^+)\rangle = |a_n\rangle \xrightarrow[t=t_0^+]{\mathcal{B} \to b_n} |\psi(t_0^{++})\rangle = |b_n\rangle$$

• \mathcal{B} é medida após um intervalo finito T da \mathcal{A} ? (ψ evolui no intervalo T segundo a eq. Schrödinger):

$$|\psi(t_0^-)\rangle \xrightarrow[t=t_0]{\mathcal{A} \to a_n} |a_n\rangle = |\psi(t_0^+)\rangle \rightsquigarrow \overset{\text{Eq. Schr.}}{\cdots \cdots \cdots} |\psi(t_0+T^-)\rangle \xrightarrow[t=t_0+T]{\mathcal{B} \to b_n} |b_n\rangle$$

Observáveis compatíveis e incompatíveis

Da medição de qualquer observável resultam duas coisas (P2, P3, P6):

- um valor bem definido a_n , que é um de entre os seus valores próprios $\{a_1, a_2, \dots\}$ (P3);
- a projeção/redução de $|\psi\rangle$ ao subespaço de vetores próprios associados ao resultado a_n (P6):

$$|\psi\rangle \xrightarrow{\mathcal{A}\to a_n} |\psi'\rangle = |a_n\rangle.$$

Como a medida em simultâneo de outra observável $\hat{\mathbf{B}}$ terá um resultado (b_k) que apenas se pode quantificar em termos probabilísticos,

$$\mathcal{P}(\mathcal{B} \to b_k) = |\langle b_k | \psi' \rangle|^2 = |\langle b_k | a_n \rangle|^2 \neq 1,$$

é então incontornável o seguinte facto:

Incerteza na determinação simultânea de diferentes grandezas físicas

Regra geral, não é possível determinar o valor de 2 (ou mais) grandezas físicas \mathcal{A} e \mathcal{B} simulaneamente com total precisão; ou seja com probabilidade conjunta $\mathcal{P}(\mathcal{A} \to a_n, \mathcal{B} \to b_k) = 1$. A medição de uma indefine a outra.

Mas há uma exceção muito importante: se $|a_n\rangle$ for também um autoestado de \hat{B} com autovalor b_k ,

$$\hat{\mathrm{B}}\,|a_n\rangle=b_k\,|a_n\rangle,\quad \text{logo}\quad |a_n\rangle=|b_k\rangle,\quad \text{e assim}\quad \mathcal{P}(\mathcal{B}\to b_k)=|\langle b_k|a_n\rangle|^2=|\langle a_n|a_n\rangle|^2=1$$

Observáveis compatíveis

A condição necessária e suficiente é que $[\hat{A},\hat{B}]=0$. Nesse caso, as duas observáveis dizem-se compatíveis: podem ser medidas simultâneamente com precisão absoluta.

Evolução temporal dos valores esperados

Uma vez que o vetor de estado $|\psi(t)\rangle$ varia no tempo de acordo com a eq. Schrödinger (ES):

$$\langle \hat{\mathbf{A}} \rangle_{\!\psi} \stackrel{\mathsf{def}}{=} \langle \psi(t) | \, \hat{\mathbf{A}}(t) \, | \psi(t) \rangle$$
 (é uma quantidade que varia no tempo, em geral)

Fazendo a derivada temporal e usando a ES obtemos:

$$\begin{split} \frac{d}{dt}\langle\hat{\mathbf{A}}\rangle_{\psi} &= \frac{d}{dt}\left[\langle\psi(t)|\hat{\mathbf{A}}(t)|\psi(t)\rangle\right] \\ &= \left[\frac{d}{dt}\langle\psi(t)|\right]\hat{\mathbf{A}}(t)|\psi(t)\rangle + \langle\psi(t)|\left[\frac{\partial}{\partial t}\hat{\mathbf{A}}(t)\right]|\psi(t)\rangle + \langle\psi(t)|\hat{\mathbf{A}}(t)\left[\frac{d}{dt}|\psi(t)\rangle\right] \\ &= \left[\frac{i}{\hbar}\langle\psi(t)|\hat{\mathbf{H}}(t)\right]\hat{\mathbf{A}}(t)|\psi(t)\rangle + \langle\psi(t)|\left[\frac{\partial}{\partial t}\hat{\mathbf{A}}(t)\right]|\psi(t)\rangle + \langle\psi(t)|\hat{\mathbf{A}}(t)\left[-\frac{i}{\hbar}\hat{\mathbf{H}}(t)|\psi(t)\rangle\right] \\ &= \frac{i}{\hbar}\langle\psi(t)|\hat{\mathbf{H}}(t)\hat{\mathbf{A}}(t)|\psi(t)\rangle - \frac{i}{\hbar}\langle\psi(t)|\hat{\mathbf{A}}(t)\hat{\mathbf{H}}(t)|\psi(t)\rangle + \langle\psi(t)|\left[\frac{\partial}{\partial t}\hat{\mathbf{A}}(t)\right]|\psi(t)\rangle \\ &= \frac{i}{\hbar}\langle\psi(t)|\left[\hat{\mathbf{H}}(t),\hat{\mathbf{A}}(t)\right]|\psi(t)\rangle + \langle\psi(t)|\left[\frac{\partial}{\partial t}\hat{\mathbf{A}}(t)\right]|\psi(t)\rangle \\ &= \frac{1}{i\hbar}\langle\left[\hat{\mathbf{A}}(t),\hat{\mathbf{H}}(t)\right]\rangle_{\psi} + \left\langle\frac{\partial}{\partial t}\hat{\mathbf{A}}(t)\right\rangle_{\psi} \end{split}$$

Teorema de Ehrenfest (dependência temporal dos valores esperados)

$$\frac{d}{dt}\langle \hat{\mathbf{A}} \rangle_{\psi} = \frac{1}{i\hbar} \left\langle \left[\hat{\mathbf{A}}(t), \hat{\mathbf{H}}(t) \right] \right\rangle_{\psi} + \left\langle \frac{\partial}{\partial t} \hat{\mathbf{A}}(t) \right\rangle_{\psi}$$

Quantidades conservadas

Determinadas observáveis são especiais:

- Se \hat{A} não varia *explicitamente* com o tempo, ou seja $\frac{\partial \hat{A}}{\partial t} = 0$,
- e se \hat{A} comuta com o Hamiltoniano, $[\hat{A},\hat{H}]=0$,

então a formulação geral do teorema de Ehrenfest reduz-se a

$$\frac{d}{dt}\langle \hat{\mathbf{A}} \rangle_{\!\psi} = \frac{1}{i\hbar} \Big\langle \big[\hat{\mathbf{A}}(t), \hat{\mathbf{H}}(t) \big] \Big\rangle_{\!\psi} + \Big\langle \frac{\partial}{\partial t} \hat{\mathbf{A}}(t) \Big\rangle_{\!\psi} \qquad \longrightarrow \qquad \frac{d}{dt} \langle \hat{\mathbf{A}} \rangle_{\!\psi} = 0, \quad \forall \, |\psi\rangle$$

Quantidades conservadas

Sempre que uma grandeza física for descrita por uma observável constante no tempo e que comuta com Ĥ, ela é designada por constante de movimento e é uma quantidade conservada.

Um caso particular (e importante) é o do próprio Hamiltoniano do sistema:

Em qualquer sistema cujo Hamiltoniano \hat{H} não tem dependência explícita no tempo, temos

$$rac{d}{dt}\langle\hat{\mathbf{H}}
angle_{\psi}=0,\quad ext{qualquer que seja o estado }|\psi(t)
angle.$$

Consequentemente, o valor esperado da energia desse sistema é constante no tempo.

(tal como em física clássica, tais sistemas designam-se conservativos)

Resumo – Os postulados da mecânica quântica

O vetor de estado Todo o sistema físico é caraterizado por um vetor de estado ou por uma função de onda:

$$|\psi(t)\rangle$$
 ou $\psi(x,t)$.

Observáveis Todas as quantidades físicas ${\cal A}$ são descritas por um operador Hermítico \hat{A} que atua no espaço de estados do sistema em questão.

Evolução de $|\psi(t)\rangle$ Governada pela equação de Schrödinger, cuja forma geral e independente de qualquer base é

$$i\hbarrac{d}{dt}|\psi(t)
angle=\hat{
m H}(t)\,|\psi(t)
angle.$$
 (A é o Hamiltoniano, operador para a energia total)

Medições Uma medida de $\mathcal A$ pode apenas devolver um dos autovalores $\{a_1,\,a_2,\,\dots\}$ da observável $\hat{\mathbf A}$ correspondente.

Probabilidades Na medição de A, a probabilidade de registar um dos possíveis autovalores a_n é

$$\mathcal{P}(a_n) = \sum_{\alpha=1}^{g_n} \left| \langle a_n^{(\alpha)} | \psi \rangle \right|^2 = \langle \psi | \hat{\mathbf{P}}_{\{a_n\}} | \psi \rangle, \qquad \text{onde} \qquad \hat{\mathbf{P}}_{\{a_n\}} \equiv \sum_{\alpha=1}^{g_n} |a_n^{(\alpha)} \rangle \langle a_n^{(\alpha)} |,$$

 g_n é a degenerescência de a_n , e $\{|u_n^{\alpha}\rangle\}$ são os g_n autovetores do operador \hat{A} associados ao autovalor a_n . Se a_n for não-degenerado, então $g_n=1$ (e desaparecem os índices α).

Redução do estado No ato de medirmos $\mathcal A$ no instante $t=t_0$ num sistema no estado $|\psi(t_0^-)\rangle$ e de obtermos o valor a_n , o vetor de estado é imediatamente a reduzido para

$$|\psi(t_0^-)\rangle \xrightarrow[t=t_0]{\mathcal{A}\to a_n} |\psi(t_0^+)\rangle = \frac{1}{\sqrt{\langle\psi|\hat{\mathbf{P}}_{\{a_n\}}|\psi\rangle}}\hat{\mathbf{P}}_{\{a_n\}}|\psi\rangle.$$