

Índice general

Pr	facio	9
Re	umen	11
1.	ntroducción	13
Ι	Diseño estadístico de las encuestas de hogares	19
2.	El paradigma del error total ¿Qué es una encuesta?	23 24 25
3.	Elementos básicos Universo, muestra y unidades I. Periodicidad en el tiempo II. Rotación de paneles V. Parámetros e indicadores de interés	32
4.	Definición del marco muestral El marco de muestreo	47
5.	Metodologías de estratificación Dimensiones estructurales en el marco de muestreo I. Información a nivel de UPM	58 60 63 64
Re	erencias	69

ÍNDICE GENERAL

Índice de cuadros

Esquema de una encuesta transversal	33
Esquema de una encuesta repetida	34
Esquema de una encuesta tipo panel	34
Esquema de una encuesta de panel dividido	35
Esquema de una encuesta de panel rotativo.	35
Rotación de paneles en un diseño 2(2)2	36
Rotación de paneles en un diseño $4(0)1$	37
Composición del mercado de trabajo en dos periodos de tiempo (cifras en miles de personas). Las columnas corresponden al segundo periodo y las filas al primero	41
Efectos de diseño $DEFF_p$ y efecto de diseño generalizado $G(S)$ considerando tres	
(H=3) y cuatro $(H=4)$ estratos para ocho variables	65
Matriz de coincidencias, cuyas entradas están definidas como el porcentaje de UPM	
coincidentes en cada uno de los estratos creados por los métodos estudiados	66
	Esquema de una encuesta tipo panel

Índice de figuras

1.	Licencia de Creative Commons	Ĉ
	El paradignma del error total. Fuente: adaptación de Groves et al. (2009) Los niveles de inferencia en una encuestas. Fuente: adaptación de Groves et al. (2009)	
5.1.	Histograma de la medida de resumen (y) sobre las UPM	61
5.2.	Comportamiento esperado en los estratos de muestreo para algunas variables de interés	67

Prefacio

Figura 1: Licencia de Creative Commons

La versión online de este libro está licenciada bajo una Licencia Internacional de Creative Commons para compartir con atribución no comercial 4.0.

Este libro es el resultado de un compendio de las experiencias internacionales prácticas adquiridas por el autor como Experto Regional en Estadísticas Sociales de la CEPAL.

Resumen

Las encuestas de hogares son un instrumento necesario para realizar seguimiento a un conjunto amplio de indicadores requeridos para el diseño y evaluación de las políticas públicas. Las encuestas de hogares que se implementan en América Latina son de tipo y características diversas. Aunque los conceptos y procesos para su diseño y análisis guardan similitudes, este documento se enfoca principalmente en los procesos referidos a las encuestas de empleo y de propósitos múltiples, con las que los países estiman los principales indicadores relacionados con el mercado laboral, el nivel y distribución de ingresos y la condición de pobreza y las principales características sociodemográficas de la población. Se realiza un recorrido por los diferentes diseños de muestreo, las metodologías más usadas en la selección de las muestras y las estrategias de estimación de los parámetros de interés. También se revisan las técnicas utilizadas para medir el error de muestreo y los métodos disponibles para encarar desafíos como la ausencia de respuesta y la desactualización de los marcos de muestreo.

UNBIS Keywords. Encuestas por muestreo, encuestas de hogares, indicadores socioeconómicos.

Capítulo 1

Introducción

Las encuestas de hogares son un caso particular de investigación social que indaga acerca de características específicas a nivel del individuo, del hogar o de la vivienda, con el fin de obtener inferencias precisas acerca de constructos de interés. Por su naturaleza, estas investigaciones están relacionadas con variables de salud, educación, ingresos, gastos, situación laboral, acceso y uso de servicios, entre muchas otras. En algunas ocasiones, las encuestas de hogares tienen como objetivo la estimación de uno o varios indicadores que resumen un constructo económico o social. Sin embargo, existe una tendencia creciente de extender las encuestas a constructos más diversos. Es así como cada vez tienen más espacio las encuestas de propósitos múltiples como una fuente relevante de información que permite monitorear indicadores sociales.

En este tipo de encuestas, el hogar es la unidad de análisis, la cual ha sido definida por la División de Estadística de la Organización de las Naciones Unidas (ONU, 2011) como:

- a. Un grupo de dos o más personas que se combinan para ocupar la totalidad o parte de una vivienda y para proporcionarse alimentos y posiblemente otros artículos esenciales para la vida. El grupo puede estar compuesto solo de personas relacionadas o de personas no relacionadas o de una combinación de ambos. El grupo también puede compartir sus ingresos.
- b. Una persona que vive sola en una vivienda separada o que ocupa, como huésped, una habitación (o habitaciones) separada de una vivienda pero que no se une a ninguno de los otros ocupantes de la vivienda para formar parte de una hogar de múltiples personas.

Nótese que la anterior definición refleja la dinámica natural del cambio en las poblaciones de hogares, por lo cual se deben tener distintos enfoques para abordar el problema de la medición de indicadores sociales. En América Latina, existen una gran variedad de encuestas que abordan diferentes problemáticas sociales. Todas y cada una de ellas han sido diseñadas cuidadosamente para que respondan a las necesidades de la sociedad. Este documento plantea una recopilación de las técnicas usadas tanto en su diseño, como en su análisis.

No todas las encuestas se diseñan de la misma forma y por ende debe haber una distinción entre ellas. Por ejemplo, Kalton and Citro (1993) afirman que las encuestas de hogares pueden clasificarse en varios tipos:

• Encuestas repetidas, definidas como una serie de encuestas transversales aplicadas en diferentes

- momentos del tiempo con el mismo diseño metodológico, en donde la selección de hogares se hace de forma independiente para cada aplicación.
- Encuestas tipo panel, para las cuales los datos son recolectados en diferentes momentos del tiempo utilizando la misma muestra de hogares en el tiempo.
- Encuestas rotativas, en donde un porcentaje de hogares se mantiene en un periodo de tiempo respondiendo la encuesta y en cada aplicación algunos hogares son reemplazados por nuevos hogares de forma planificada.

El diseño de la encuesta dependerá sistemáticamente del objetivo de la medición. Por ejemplo, Kalton (2009) afirma que es prudente hacer un buena inversión en el desarrollo e implementación de un buen diseño para amortizar los costos de todo el estudio. Por lo tanto, lo que se quiere al diseñar una encuesta de hogares es que sea un instrumento confiable, que brinde estimaciones exactas y precisas, puesto que de lo contrario no se podrían monitorear las políticas públicas y los indicadores de interés de forma consistente. Por ejemplo, uno de los indicadores sociales con mayor impacto es la tasa de desocupación, que mide la razón entre la cantidad de personas que se encuentran desocupados, pero que forman parte del mercado de trabajo. Las encuestas de empleo tienen características particulares, diferentes a las de las encuestas que miden otro tipo de constructos. Duncan and Kalton (1987) mencionan que las encuestas de hogares pueden proveer estimaciones de los parámetros poblacionales en distintos puntos del tiempo, por ejemplo, la estimación de la tasa de desocupación mensual; proveer estimaciones del cambio neto de los parámetros poblacionales entre periodos de tiempo, por ejemplo, el cambio en la tasa de desocupación entre dos periodos consecutivos; o incluso medir varios componentes de cambio individual, por ejemplo cambios brutos en la situación laboral de los jefes de hogar, para lo cual se requiere que la encuesta contemple un diseño de panel o de panel rotativo.

La medición de los indicadores en el mercado de trabajo es sólo un pequeño componente en el basto universo de posibilidades de medición que brindan las encuestas de hogares. Por esta razón, este tipo de levantamientos se ha convertido en una herramienta fundamental para medir indicadores sociales en todo el mundo y que, en particular, permiten que las naciones de América Latina puedan hacer seguimiento a su desarrollo económico y social. A continuación se introducen algunas temáticas de interés para las cuales, su seguimiento depende en gran manera de la realización de encuestas de hogares.

Objetivos de Desarrollo Sostenible

Las encuestas de hogares pueden ser utilizado como herramienta para monitorear el progreso de los países en términos de metas y objetivos comunes. Es así como en 2015, la Asamblea General de la Organización de las Naciones Unidas aprobó una resolución que plantea un plan de acción en favor de las personas, el planeta y la prosperidad (ONU, 2015). Esa resolución propone el seguimiento de 17 Objetivos de Desarrollo Sostenible (ODS) y 169 metas de carácter integrado e indivisible que se conjugan en las dimensiones económica, social y ambiental. Para realizar el seguimiento a los ODS es posible utilizar diferentes fuentes de información, como censos, registros administrativos, registros estadísticos, proyecciones demográficas y también las encuestas de hogares (ONU, 2016). En particular, cada una de las metas de los ODS contiene indicadores, muchos de los cuales no pudieran ser estimados de no ser por la información disponible en las encuestas de hogares.

Por ejemplo, el primer objetivo busca poner fin a la pobreza en todas sus formas en todo el mundo. La primera meta de este objetivo establece la erradicación de la pobreza extrema para todas las personas en el mundo. Asimismo, la segunda meta de este objetivo motiva a los países a reducir al menos a la mitad la proporción de hombres, mujeres y niños y niñas de todas las edades que viven en la pobreza en todas sus dimensiones con arreglo a las definiciones nacionales. Para realizar una medición sistemática de la pobreza monetaria las encuestas de hogares son un insumo fundamental. En una primera instancia se deben definir a nivel nacional los umbrales monetarios (líneas de pobreza) sobre los cuales se clasifican a los hogares como pobres extremos, pobres relativos o no pobres. Estos umbrales vienen supeditados directamente a la realización de las encuestas de ingresos y gastos, las cuales se realizan cada cinco o diez años en los países de la región (CEPAL 2018). De forma sistemática, la medición de la pobreza monetaria se realiza con encuestas continuas que contienen módulos específicos de ingreso, los cuales indagan por todas las fuentes de ingreso, tanto de las personas como del hogar. Con base en las líneas de pobreza definidas anteriormente, se clasifica a las personas en alguna de las categorías de la pobreza.

De la misma manera, el objetivo 8 busca promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos. Claramente de este objetivo se desprenden indicadores que permiten conocer la evolución de los países en la consecución de las metas. Dentro de este objetivo, se encuentra la meta 8.6 que apunta a reducir sustancialmente la proporción de jóvenes sin empleo y sin educación o entrenamiento. Esta meta se mide con el indicador 8.6.1 definido como la proporción de jóvenes (entre 15 y 24 años de edad) sin educación y sin empleo.

Son muchísimos más los ejemplos que se pueden enumerar en los cuales las encuestas de hogares juegan un rol fundamental para la medición de los indicadores y metas de los ODS definidos en la Agenda 2030; en este sentido la División de Estadísticas de las Naciones Unidas ha establecido en un análisis preliminar que un total de 77 de los indicadores de los Objetivos de Desarrollo Sostenible pueden obtenerse a partir de encuestas de hogares, cubriendo 13 de los 17 Objetivos; aunque con mayor concentración en las áreas de salud, educación, igualdad de género, pobreza, hambre, trabajo y justicia.

Mercado de Trabajo

Desde otra perspectiva, en el marco de la Decimotercera Conferencia Internacional de Estadísticos del trabajo en 1982, la Organización Internacional del Trabajo (OIT) adoptó algunas directrices concernientes con la medición y análisis de estadísticas oficiales de la fuerza de trabajo, del empleo y del desempleo con miras a mejorar la comparabilidad de las cifras y mejorar su utilidad en los países (OIT, 1982). En esta resolución se hace un énfasis especial en que las encuestas de hogares constituyen un medio apropiado de recopilación de datos sobre la población económicamente activa y que la planeación de estas investigaciones en los países debería ceñirse a las normas internacionales. Por consiguiente, la resolución afirma que las encuestas de hogares deberían:

- Brindar datos de la población económicamente activa, definida por las personas en edad laboral que se han integrado al mercado de trabajo (trabajadores o personas en búsqueda de empleo).
- 2. Proveer estadísticas básicas de sus actividades durante el año, así como las relaciones entre el empleo, ingreso y otras características económicas y sociales.
- 3. Proveer datos sobre otros temas particulares para responder a las necesidades a largo plazo y de índole permanente.

En el año 2013, la OIT decidió revisar esta resolución y propuso algunos cambios en el marco de la

decimonovena Conferencia Internacional de Estadísticos del Trabajo en donde se acogieron algunas modificaciones en términos de los objetivos de medición y el alcance de los sistemas nacionales de estadísticas del trabajo, el concepto de trabajo en todas sus formas, el empleo, la medición de las personas en situación de subutilización de la fuerza de trabajo, métodos de recopilación de datos, entre otras (OIT, 2013). Las Oficinas Nacionales de Estadística (ONE) de América Latina actualizan los instrumentos de medición de las encuestas de hogares para que puedan responder a los nuevos retos en términos de la estimación de los parámetros de interés del trabajo remunerado o no remunerado para mantener la comparabilidad de las estadísticas laborales entre los países, proporcionando nuevos y mejores indicadores para contribuir al análisis de la dinámica del mercado laboral para poder brindar la información que la sociedad necesita a medida que evoluciona este constructo social.

Ingresos y gastos

Es importante resaltar que los indicadores de bienestar (en términos de ingresos y gastos) también hacen parte del conjunto de parámetros que se pueden estimar desde las encuestas de hogares. Medir el ingreso a partir de las encuestas de hogares se constituye en un reto metodológico para los institutos nacionales de estadística en el mundo, y particularmente en América Latina. Es recomendable seguir las directrices de la Comisión Económica para Europa que revisten una actualización de los estándares internacionales, recomendaciones y buenas prácticas en la medición del ingreso en los hogares. Por ejemplo, el llamado Grupo de Canberra ha revisado exhaustivamente el tópico de la estimación del ingreso estudiando las prácticas de algunos países en términos del aseguramiento de la calidad y la publicación de este tipo de estadísticas oficiales y ha provisto la siguiente definición de ingreso en el hogar (ONU, 2011):

El ingreso del hogar se compone de las entradas monetarias, en especie o en servicios que por lo general son frecuentes y regulares, están destinadas al hogar o a los miembros del hogar por separado y se reciben a intervalos anuales o con mayor frecuencia. Durante el período de referencia en el que se reciben, tales entradas están potencialmente disponibles para el consumo efectivo y, habitualmente, no reducen el patrimonio neto del hogar.

Con base en lo anterior, el uso de las encuestas de hogares para estimar el ingreso reviste retos metodológicos mayores puesto que los entrevistados deben responder con precisión cuando se les indague por este constructo que contiene los ingresos personales de cada individuo en el hogar, como sueldos y salarios, ganancias, ingresos del empleo, pensiones, etc. y también los ingresos del hogar, incluidas las rentas por alquiler y los ingresos generados por el comercio. Por lo tanto, el diseño de la encuesta debe tener en cuenta la definición de un instrumento que sea relevante para el respondiente y le permita identificar y, en algunas ocasiones, recordar la información con un cierto grado de exactitud.

Por ejemplo, si el respondiente es empleado regular, el instrumento de medición debería planearse de tal manera que el entrevistado pueda recordar la información de interés, como los rubros de seguridad social hechos por su empleador. Por otro lado, si se requiere que el respondiente brinde información acerca de un determinado periodo de tiempo, el planteamiento de la pregunta, la forma de indagar y el entrenamiento de los encuestadores pueden sesgar sistemáticamente la respuesta y por consiguiente inducir estimaciones poco confiables. Mucho se ha investigado al respecto de cómo realizar preguntas certeras en este tipo de levantamientos y el lector interesado puede consultar los trabajos de Biemer and Lyberg (2003), Presser et al. (2004), y Groves et al. (2009).

Esquema del documento

Este documento pretende revisar algunas de las metodologías más usadas por las ONE de América Latina en cuanto al diseño y análisis estadístico de las encuestas de hogares y puede servir de guía técnica a los estadísticos de la región que se encuentran involucrados en los procesos técnicos de este tipo de encuestas. De la misma forma, este documento considera conjuntamente los dos principales momentos de las encuestas: el diseño y el análisis. Nótese que estos momentos están escindidos por el levantamiento de la información en campo y parten la realización de la encuesta en dos. Los lectores que están familiarizados con la investigación social a través de las encuestas de hogares encontrarán que estas operaciones estadísticas se planean teniendo en cuenta muchos pormenores que podrían suceder en campo. Es por esto que el trabajo de las encuestas asciende cuando se logra plasmar la información recolectada en una de base de datos. En este segundo momento es cuando se debe asegurar que lo que se planificó efectivamente sea incorporado en el análisis de esta información.

Desde esta perspectiva, este documento se aborda en tres partes sustantivas que definen la planeación y el análisis de la mayoría de las encuestas de hogares en América Latina y el Caribe. La primera parte se refiere a la planeación de una encuesta y a la definición del diseño estadístico, que comprende - entre otras cosas - la generación de una medida de probabilidad discreta que soportará la inferencia basada en el principio de representatividad. En esta parte se aborda con más detalle los elementos básicos que se consideran por lo regular en los diseños de las encuestas de hogares. Un aspecto relevante es que, si bien este documento considera que las encuestas de hogares tienen muchos elementos en común, diferencia de forma cuidadosa las particularidades de cada tipo de encuesta. Por ejemplo, se trata el tema del diseño de las encuestas rotativas y se profundiza en los diferentes parámetros que se pueden considerar en este tipo de operaciones; asimismo, describe las características metodológicas que se deben considerar al momento de diseñar la encuesta y revisa los conceptos esenciales que determinarán el tipo de aplicación que se debe considerar. Asimismo, se describen los principales diseños de muestreo que se utilizan en este tipo de estudios y se expone de forma estándar los conceptos de estratificación y aglomeración de las poblaciones. Estos conceptos se complementan con varias aplicaciones prácticas para determinar el tamaño de muestra adecuado para lograr los objetivos de una investigación planeada con base en las encuestas de hogares. A pesar de que la literatura relacionada con la práctica del muestreo es relativamente abundante, existen pocos ejemplos prácticos que logren representar la problemática del tamaño de muestra y el lector podrá encontrar herramientas ilustrativas basadas en múltiples escenarios de la problemática social.

La segunda parte aborda los principios metodológicos para el correcto procesamiento de las encuestas transversales, analizadas para representar un momento específico en el tiempo. Se revisan con detenimiento los procesos ponderación en la encuesta y generación de los factores de expansión que se aplicarán a la información contenida en la base de datos para que se poder generar exitósamente inferencias a nivel nacional o regional. Si hay algo que distingue el análisis de las encuestas de cualquier otro tipo de estudio estadístico es que las propiedades importantes como insesgamiento, consistencia y eficiencia están basadas en el diseño de muestreo y no en supuestos metodológicos ligados a algún modelo estocástico. Además de analizar las principales metodologías de estimación, se presta especial atención a la estimación del error de muestreo, que no es otra cosa que una función de la varianza de las estimaciones, y se presentan las metodologías más comunes en términos de aproximaciones teóricas y computacionales al error de muestreo. Los procesos de imputación y ausencia de respuesta también son abordados, con el objetivo de recuperar tanta información como

sea posible para que el investigador pueda contar con una base de datos rectangular y completa. En aquellos casos en donde la imputación no resulta ser una técnica adecuada para completar la información faltante, es necesario realizar ajustes sistemáticos en los factores de expansión para que la muestra efectiva siga siendo una muestra representativa de toda la población. El último capítulo de esta parte muestra algunos enfoques útiles en la detección de datos atípicos, y la mitigación del impacto del error no muestral en las respuestas obtenidas.

La tercera parte del documento avanza hacia los principios básicos de procesamiento en un sistema integrado de encuestas de hogares que permite la agregación y/o combinación de diferentes oleadas de las encuestas, y así permitir la inferencia en un lapso más amplio. De esta forma, se presentan detalladamente los procesos que se surten cuando se agregan encuestas a lo largo del tiempo. Para aquellas encuestas que se definen a partir de estructuras rotativas, se presenta un enfoque metodológico que permite crear bases de datos longitudinales (tipo panel) para la estimación de flujos brutos, entre otros. Acudiendo a la perspectiva de CEPAL, también se presentan los criterios de calidad que se deberían tener en cuenta para decidir si una cifra, resultante de un proceso de estimación estadística basada en encuestas de hogares, debería ser o no publicada a la sociedad.

Por último, en los apéndices del documento se presenta una discusión acerca del uso presente de las encuestas de hogares y los retos que depara el futuro en materia de la medición de indicadores sociales a través de las encuestas de hogares. Asimismo, se contempla una revisión del software que se utiliza actualmente en los ONE para llevar a cabo esta ardua tarea de diseñar y analizar las encuestas de hogares, una revisión rápida de algunas de las encuestas de la región, así como algunas directrices que se deberían considerar al momento de documentar los procesos asociados a las encuestas de hogares.

Santiago de Chile.

Diciembre de 2021.

Andrés Gutiérrez, Ph.D.

Parte I

Diseño estadístico de las encuestas de hogares

Capítulo 2

El paradigma del error total

Todos los procesos en la encuesta deben estar planificados y probados de antemano, antes de la recolección de los datos. Por ejemplo, el cuestionario debe estar muy bien diseñado para que las respuestas de las personas describan acertadamente las características de los entrevistados. De la misma forma, el subconjunto de personas que participan en la encuesta debe ser expandido con precisión y confiabilidad a la población de interés.

En una encuesta, el interés no se centra en las características particulares de un individuo sino en las características de la población a la cual ese individuo pertenece. De esta forma, la inferencia siempre se realiza teniendo en mente agregados (indicadores) poblacionales. Las siguientes son las dos fuentes principales de error cuando se realiza una encuesta:

- 1. Error de muestreo: ocurre porque no se incluyeron a todas las personas de la población y se seleccionó una muestra.
- 2. Error no muestral: se refiere a las posibles desviaciones de las respuestas provistas por un entrevistado con respecto al verdadero atributo que se desea medir.

Por ejemplo, en una encuesta de fuerza laboral mensual, puede haber confusión en el respondiente si no se hace hincapíe en el periodo de referencia; no es lo mismo indagar por la semana pasada, que por el mes pasado y el respondiente debe ser guiado para evitar equivocaciones. Además pueden existir no respondientes en algún subgrupo de interés, o incluso el marco puede estar desactualizado. Uno de los objetivos de la planeación concienzuda de la encuesta es minimizar los errores no muestrales. Es necesario minimizar las discrepancias encontradas entre la respuesta verdadera a una pregunta y la respuesta final.

Groves et al. (2009) plantea que durante todo el siglo pasado, ha surgido una serie de teorías y principios que ofrecen un marco de referencia unificado en el diseño, implementación y evaluación de encuestas. Este marco de referencia se conoce comúnmente como el paradigma del error total de muestreo y ha encaminado la investigación moderna hacia una mejor calidad de las encuestas.

I. ¿Qué es una encuesta?

Groves et al. (2009) afirma que una encuesta es un método sistemático para obtener información de (una muestra de) entes, con el fin de construir descriptores cuantitativos de los atributos de una población más grande, de la cual los entes son miembros. Por otro lado, Wikipedia afirma

Figura 2.1: El paradignma del error total. Fuente: adaptación de Groves et al. (2009)

que una encuesta es un estudio observacional en el cual el investigador busca recaudar datos por medio de un cuestionario pre-diseñado, y no modificar el entorno ni controlar el proceso que está en observación (como sí lo hace en un experimento).

Además, los datos se obtienen a partir de realizar un conjunto de preguntas normalizadas dirigidas a una muestra representativa o al conjunto total de la población estadística en estudio, formada a menudo por personas, empresas o entes institucionales, con el fin de conocer estados de opinión, características o hechos específicos. Hay una diferencia sustancial entre los sondeos y las encuestas; de esta forma,

- Sondeo: es la traducción de *poll*, que a su vez viene del antiguo alemán referente a cabeza y se utilizaba para contar: "contar cabezas".
- Encuesta: es la traducción de *survey*, que a su vez viene del latín *super* (sobre) y *videre* (observar).

En general, la primera expresión aparece muchas más veces en el sector privado, en estudios de opinión y de consumo. Un sondeo no será jamás utilizado para obtener estadísticas oficiales en estudios gubernamentales o en dominios científicos. Sin embargo, los sondeos muchas veces opacan la perspectiva científica de las cifras y pueden llevar a conclusiones inexactas acerca de la realidad de una problemática. No todos los procesos de recolección de información se pueden llamar encuestas; para efectos de este documento seguiremos la definición de Groves et al. (2009), quienes afirman que una tendrá las siguientes características:

- 1. Los datos son recopilados mediante preguntas a personas.
- 2. Las respuestas son compiladas cuando: a) un encuestador pregunta y graba las respuestas del entrevistado o b) el encuestado lee y graba sus propias respuestas.
- 3. Los datos son recolectados de un subgrupo de personas pertenecientes a la población de

interés

II. Sesgos generados en las encuestas

Gutiérrez (2016) plantea que existen diferentes fuentes de sesgo en las encuestas y resume de la siguiente forma las dos fuentes de sesgo más importantes:

Sesgo de selección

Este tipo de sesgo ocurre cuando parte de la población objetivo no está en el marco de muestreo, o cuando el marco está incompleto y presenta deficiencias. Una muestra a conveniencia es sesgada pues las unidades más fáciles de elegir o las que más probablemente respondan a la encuesta no son representativas de las unidades más difíciles de elegir. Lohr (2000) afirma que se presenta este tipo de sesgo si:

- La selección de la muestra depende de cierta característica asociada a las propiedades de interés. Por ejemplo: si la encuesta se realiza ingresando a un portal web, y precisamente las personas que no tienen cobertura de internet difieren significativamente de quienes sí tienen acceso.
- La muestra se realiza mediante elección deliberada o mediante un juicio subjetivo. Por ejemplo, si el parámetro de interés es la cantidad promedio de gastos en compras en un centro comercial y el encuestador elige a las personas que salen con muchos paquetes, entonces la información estaría sesgada puesto que no está reflejando el comportamiento promedio de las compras.
- Existen errores en la especificación de la población objetivo. Por ejemplo, en encuestas electorales, cuando la población objetivo contiene a personas que no están registradas como votantes ante la organización electoral de su país.
- Existe sustitución deliberada de unidades no disponibles en la muestra. Si, por alguna razón, no fue posible obtener la medición y consecuente observación de la característica de interés para algún individuo en la población, la sustitución de este elemento debe hacerse bajo estrictos procedimientos estadísticos y no debe ser subjetiva en ningún modo.
- Existe ausencia de respuesta. Este fenómeno puede causar distorsión de los resultados cuando los que no responden a la encuesta difieren críticamente de los que si respondieron.
- La muestra está compuesta por respondientes voluntarios. Los foros radiales, las encuestas de televisión y los estudios de portales de internet no proporcionan información confiable.

Sesgo de medición

Este tipo de sesgo ocurre cuando el instrumento con el que se realiza la medición tiene una tendencia a diferir del valor verdadero que se desea averiguar. Este sesgo debe ser considerado y minimizado en la etapa de diseño de la encuesta. Nótese que ningún análisis estadístico puede revelar que una pesa añadió a cada persona 2Kg de más en un estudio de salud. Lohr (2000) cita algunas situaciones en donde se presenta este sesgo de medición:

¹A pesar de que las muestras por conveniencia o por juicio no pueden ser utilizadas para estimar parámetros de la población, éstas sí pueden proporcionar información valiosa en las primeras etapas de una investigación o cuando no es necesario generalizar los resultados a la población.

- Cuando el respondiente miente. Esta situación se presenta a menudo en encuestas que preguntan acerca del ingreso salarial, alcoholismo y drogadicción, nivel socioeconómico e incluso edad.
- Difícil comprensión de las preguntas. Por ejemplo: ¿No cree que este no es un buen momento para invertir? La doble negación en la pregunta es muy confusa para el respondiente.
- Las personas tienden a olvidar. Es bien sabido que las malas experiencias suelen ser olvidadas; esta situación debe acotarse si se está trabajando en una encuesta de criminalidad.
- Distintas respuestas a distintos entrevistadores. En algunas regiones es muy probable que la raza, edad o género del encuestador afecte directamente la respuesta del entrevistado.
- Leer mal las preguntas o polemizar con el respondiente. El encuestador puede influir notablemente en las respuestas. Por lo anterior, es muy importante que el proceso de entrenamiento del entrevistador sea riguroso y completo.
- La muestra está compuesta por respondientes voluntarios. Los foros radiales, las encuestas de televisión y los estudios de portales de internet no proporcionan, en general, información confiable. En este caso también se presenta sesgo de selección.

III. Evolución de las encuestas estandarizadas

Cuando el mundo occidental superó los grandes traumatismos del siglo XX (dos guerras mundiales y una recesión a larga escala), la investigación social tuvo un auge sobresaliente a través de las encuestas por correo postal. Desde entonces, existen tres preguntas, en continua dinámica, que se deben responder para planificar, ejecutar y analizar una encuesta: ¿cómo se diseñarán las preguntas? ¿cómo se seleccionará la muestra? y ¿cómo se recolectarán las respuestas?

Inicio de los cuestionarios estandarizados

La práctica de realizar las mismas preguntas en forma de cuestionario es reciente. En el principio cada encuestador preguntaba lo mismo, pero con diferentes palabras. Difícilmente, dos personas distintas eran entrevistadas con las mismas preguntas. Se encontró que la forma en cómo se preguntaba y cómo se recopilaba la información afectaba dramáticamente los resultados de las encuestas. Fue así como se decidió que los encuestadores deberías ser entrenados (pre-operativo) formalmente.

Desde la psicometría se implementó el formalismo del cuestionario. Intentando medir estados psicológicos, afectivos e intelectuales, se desarrollaron técnicas primitivas para hacer comparables las respuestas. Likert (1932) demostró que era posible realizar este tipo de comparaciones, evadiendo los largos instrumentos de medición, al formular una sola pregunta - a todos los encuestados - con una serie de respuestas en forma de escala.

Inicio de los métodos de muestreo

En un principio, los investigadores trataban de recolectar datos sobre todos los elementos de la población de interés. Esta práctica resultaba logísticamente inadecuada cuando se trataba de poblaciones con un gran tamaño. Los cálculos de los indicadores sobre toda una población resultaban muy demandantes. Groves et al. (2009) afirman que, aunque la teoría de la probabilidad tuvo sus orígenes en el siglo XVIII, no fue hasta la segunda década del siglo XX que se utilizó para realizar encuestas. La primera aplicación fue la selección sistemática de un elemento en una población

enlistada. Para realizar esta selección, los registros censales se dividían en secciones y se procedía a seleccionar un elemento de la sección.

Más adelante, cuando la estadística permeó la agricultura, se definieron otros tipos de muestreo (menos demandantes) y se dio origen al muestreo de áreas. Es así como hoy en día es posible seleccionar muestras de bloques, zonas amanzanadas, secciones y sectores cartográficos, o áreas de empadronamiento censal. Se descubrió que era posible generalizar el muestreo de áreas y se creó el muestreo multietápico que permitió la selección de grandes bloques dentro de una ciudad, y áreas dentro de los bloques y el submuestreo sucesivo de unidades dentro hasta llegar a la unidad de interés. Todos estos submuestreos se realizan de forma probabilística.

La segunda guerra mundial y la gran depresión en EE.UU. fueron catalizadores de las encuestas a gran escala. En ese entonces, al igual que hoy, la tasa de desempleo era una cifra importante. Las políticas públicas empezaron a decidirse de acuerdo con las estadísticas oficiales, puesto que las grandes encuestas se realizaron mensualmente. Hoy en día existen cientos de encuestas mensuales que dan cuenta de la realidad de las sociedades en la región.

Inicio de la recolección de datos

Debido a que en un principio no existía un cuestionario estandarizado, entonces las respuestas abiertas eran la única opción de recopilar información. Esta práctica demandaba un gran esfuerzo en términos de resumir y sintetizar todo el corpus de palabras que los entrevistados usaban para responder.

En la mitad de la década del sesenta del siglo pasado, empezó una proliferación masiva de las entrevistas por correo en EE. UU. Los países con registros administrativos actualizados pueden contemplar este escenario puesto que induce altas tasas de cobertura a precios más económicos (pues se prescinde del encuestador). Las bajas tasas de respuestas (pues el encuestado debe llenar un formulario con sus respuestas y devolverlo a la oficina postal) hicieron que paulatinamente esta forma de recolección no fuese tan apetecida (Groves et al., 2009).

Un camino intermedio entre las entrevistas cara a cara y las formularios auto-administrados por correo postal son las entrevistas telefónicas. Hoy en día, la mayoría de encuestas en investigación de medios y de mercado se realiza por teléfono.

IV. El ciclo de vida de una encuesta

Atendiendo al modelo de Groves et al. (2009), se puede afirmar que en todas la encuestas se tienen dos niveles de inferencia: el individual y el grupa. El proceso de inferencia individual trata con los mismos respondientes que proveen la información primaria en el estudio; mientras que el el proceso de inferencia grupal, basado en una aproximación inductiva, va desde lo particular (la muestra) a lo general (la población).

A. Inferencia individual

Constructo

Gutiérrez (2016) menciona que los constructos son las ideas abstractas (ambiguas) sobre las cuales el investigador desea inferir y que, a su vez, dan origen a la investigación al ser la simiente de la

Figura 2.2: Los niveles de inferencia en una encuestas. Fuente: adaptación de Groves et al. (2009)

encuesta. Las palabras con que se describen los constructos son siempre simples, pero la redacción elaborada de los constructos no siempre es precisa. Por ejemplo:

- En una encuesta de victimización que mida la cantidad de incidentes relacionados con crímenes en un año determinado, es necesario definir muy apropiadamante qué se entiende por crimen, o cómo se define a una víctima, entre otros muchos aspectos.
- En una encuesta de goce efectivo de derechos ciuidadanos sobre menores de edad se puede medir la efectividad del estado al garantizar los derechos básicos a la primera infancia. Sin emabargo, es necesario definir qué es un derecho, o cómo se define primera infancia.

Mientras que algunos constructos son más abstractos que otros (optimismo en la economía, confianza inversionista, percepción del Plan Nacional de Desarrollo), algunos otros son observables más fácilmente (consumo de alcohol y otras drogas, nutrición en la primera infancia, productividad de una intervención en el sector agrícola, factores de riesgo asociados a una enfermedad).

Mediciones

La medición es una caracterización mucho más concreta que el constructo, puesto que representa una forma de obtener información de los constructos de interés. La cuestión clave para realizar una buena medición es realizar preguntas que induzcan respuestas que reflejen claramente los constructos que se desean medir. Groves et al. (2009) indican indican que estas preguntas pueden ser comunicadas en forma oral (encuestas cara a cara o telefónicas), o comunicadas en forma visual (atributos de un producto - marketing). Así mismo, también pueden existir observaciones directas del encuestador (condiciones de la vivienda), u observaciones proveninetes de dispositivos electrónicos o físicos (precios de productos en supermercados, muestra de agua, muestra de sangre,

etc.).

Respuesta y edición

El resultado de la medición es la respuesta y la naturaleza de las respuesta está determinada por la naturaleza de las preguntas. Después de que los entrevistados han respondido, los datos deben pasar por un proceso de edición y validación de inconsistencias.

En este proceso de edición se debe examinar la distribución completa de las respuestas y buscar datos atípicos para que sean revisados con detenimiento. Los datos editados constituyen el insumo para realizar todo el proceso de inferencia estadística pertinente para que las cifras resultantes sean confiables y precisas.

B. Inferencia grupal

La población objetivo

De las definiciones concernientes a agregados, esta es la más abstracta. En general, la población objetivo representa el conjunto de unidades que serán estudiadas. Por ejemplo, en una encuesta es posible definir la población objetivo como los adultos nacionales. Sin embargo, esta definición de población no contempla el periodo de referencia de la medición, tampoco aclara si se incluyen los adultos residentes en el exterior y, no precisa cómo se verificará la nacionalidad de un entrevistado.

Por ende, la definición de la población objetiva tiene que ser lo más precisa posible. Por ejemplo, la Gran Encuesta Integrada de Hogareas de Colombia define a su población objetivo como la Población civil no institucionalizada (PCNI), la cual contiene a todas las personas que no hacen parte de la fuerza pública y no pertenecen a instituciones de aislamiento como prisiones, hospitales, sanatorios, ancianatos, etc. La PCNI contiene a la población en edad de trabajar (PET) y a los no pertenecientes a la fuerza laboral. La edad para empezar a trabajar en el área rural es 10 años, y en la ciudad es 12 años. A su vez, la PET contiene a Inactivos y Ocupados. La clasificación de ocupado es una variable derivada que está inducida por muchos filtros.

La población enmarcada

No es posible realizar una encuesta probabilística sin un marco de muestreo, definido como un dispositivo que permite ubicar e identificar (ambas acciones al mismo tiempo) las unidades pertenecientes a la población de interés. Es necesario darse cuenta de que todos los marcos de muestreo presentan algún nivel de desactualización con respecto a la población de interés. Por ejemplo, un marco de muestreo de líneas telefónicas puede no contener a todos lo residentes de una ciudad.

De la misma forma, un marco de muestreo de áreas, basado en la cartografía del último ejercicio censal, puede estar desactualizado. Nótese que con un marco de áreas es posible entrevistar a la misma persona en varias ocasiones (múltiples residencias), o incluso nunca realizar la entrevista a una persona que no tienen un lugar fijo de residencia.

La población enmarcada está definida por el conjunto de miembros de la población objetivo que efectivamente tienen una probabilidad no nula de ser seleccionados en una muestra probabilística. En general para definir quién pertenece a un hogar del marco existen dos alternativas:

1. Regla de iure: quien habitualmente reside en el hogar es miembro de ese hogar.

- Una situación de iure es aquella que está reconocida por la legalidad vigente o por la autoridad competente en virtud de algún acuerdo o acto formal.
- Evita la subcobertura de individuos que no residen usualmente en su hogar, considerándolo suyo.
- 2. Regla de facto: quien pasó la noche anterior en una residencia de un hogar es miembro de ese hogar.
 - Una situación de facto es aquella que, existiendo en la realidad, no ha sido reconocida formalmente.
 - Evita la sobrecobertura de individuos que tienen más de una residencia.

La muestra

El tamaño de muestra define directamente la precisión y confiabilidad de las estimaciones. Este debería incrementarse a medida que lo hagan los niveles de desagregación (grupos etarios, regiones geográficas, niveles de escolaridad, etc.). Sin embargo, dependiendo de la caracterización de la estrategia de muestreo, pueden existir escenarios en donde una encuesta con un tamaño de muestra menor induzca menores errores de muestreo que una encuesta con un mayor tamaño de muestra.

No obstante, en algunas ocasiones los esfuerzos realizados para que los individuos seleccionados en la muestra respondan no son fructíferos. De esta manera, los individuos que son efectivamente entrevistados se denominan respondientes efectivos; mientras que al complemento de este conjunto se les denomina no respondientes.

Los respondientes

Pueden existir casos de no respondientes parciales (no respondientes de ítems), para los cuales debe existir un proceso de *decisión* en términos de su reemplazo. Asimismo, no todas las ausencias parciales son reemplazadas. Groves et al. (2009) afirman que algunos de los factores que inciden en el aumento de la ausencia de respuesta pueden ser causados por:

- Contenido: por preguntas sensibles (encuestas relacionadas con el uso de drogas, finanzas, victimización). En este caso, se puede acotar la tasa de respuesta si se ordenan las preguntas de manera adecuada.
- *Encuestadores*: aplicar métodos estándar de mejoramiento de la calidad para aumentar la precisión y tasa de respuesta de los entrevistadores involucrados en el estudio.
- *Método de recolección*: las encuestas telefónicas y por correo tienen una tasa de respuesta menor que las entrevistas personales.
- Diseño de cuestionario: mala planificación en el pase de las preguntas que conforman el instrumento.
- *Tiempo de la encuesta y agobio*: algunas temporadas arrojan tasas de no respuestas más altas que otras. De la misma forma, algunos cuestionarios largos son propensos a inducir una mayor ausencia de respuesta parcial por el agotamiento del respondiente. En general, las encuestas demasiado largas pueden indisponer al respondiente.

Los ajustes post-encuesta

Toda encuesta cuenta con personas que no quisieron responder y/o con un marco de muestreo que no cubre a toda la población. Por ende, es necesario reajustar los factores de expansión para evitar, sobretodo, la sub-estimación de los parámetros de interés, o implementar métodos de imputación

para suplir la información faltante. De esta forma se puede utilizar una reponderación diferencial cuando es evidente que hay un patrón de ausencia de respuesta en algunos subgrupos de la población; por ejemplo: si los desempleados no responden sistemáticamente, o si las tasas de respuestas a nivel urbano son menores que las tasas de respuesta a nivel rural.

También es posible imputar (cuya raíz inglesa es *input*, traducido como introducir valores) los valores perdidos en un subconjunto de observaciones de la muestra seleccionada. En este caso es factible utilizar metodologías estocásticas complejas para imputar valores, o técnicas simples sistemáticas. Sin embargo, en cualquier caso, siempre es preferible obtener la respuesta directa del entrevistado.

V. El proceso de respuesta

No todas las encuestas se planean de tal forma que exista una interacción directa entre respondiente y entrevistador en todo tiempo. Por ejemplo:

- 1. La comprensión, en donde el respondiente interpreta la pregunta. Groves et al. (2009) afirman que en este momento se involucran todos aquellos procesos de atención a la pregunta y entendimiento de las instrucciones. La primera tarea del respondiente es interpretar la pregunta y, al hacerlo surgen procesos de análisis y asignación de un significado a los elementos sustantivos de la pregunta. Además el respondiente debe hacer una inferencia sobre el propósito de la pregunta, determinar los límites de la respuesta, así como acotar los posibles traslapes sobre las respuestas permitidas.
- 2. El recaudo, en donde el respondiente recolecta la información necesaria para brindar una respuesta. En algunas ocasiones se accede a la memoria de largo plazo que almacena todo el contenido autobiográfico y el conocimiento general. Nótese que muchas cosas pueden afectar el desempeño de la memoria de largo plazo (cuando los eventos en cuestión no se distinguen con facilidad o cuando los eventos no tienen un gran impacto personal). Aunque la memoria de largo plazo no provea la información exacta, sí provee la información relevante para que el entrevistado proporcione una respuesta adecuada. Este ciclo de recaudo de información continúa hasta que el entrevistado dé una respuesta acertada o simplemente no quiera recordar más (algunas situaciones son más difíciles de recordar) (Groves et al., 2009). Para ayudar a la memoria de largo plazo se pueden diseñar señales o pistas auto-contenidas en la pregunta. Las mejores señales son las que ofrecen un nivel de detalle más profundo.
- 3. El juicio, momento en donde se combina, se pondera y se resume la información recolectada. En esta etapa se surten procesos que complementan los recaudos que el entrevistado ha contemplado anteriormente. El juicio puede llenar los vacíos de la memoria, combinar los recaudos o ajustarlos por omisión. Por ejemplo, en una encuesta de ingresos y gastos, las personas, por lo general, no llevan la cuenta del número de veces que compraron cierto artículo o no tienen una respuesta predefinida al número de veces que han salido de compras. Por ende, el respondiente tratará de contar el número de veces que experimentó una situación, y si ese número es muy grande, seguramente se acercará a la respuesta mediante una estimación. La estrategia de estimación del respondiente (llevar la cuenta, construir una escala mediante la recordación de eventos, realizar una estimación gruesa o adivinar al azar) depende del número de sucesos, su duración, la regularidad de los mismos y el periodo de referencia de la encuesta (Groves et al., 2009).
- 4. El reporte, que es el momento en donde el respondiente formula su respuesta y la estandariza

en el formato inducido por el cuestionario. Este es el proceso de selección y comunicación de una respuesta, que incluye el encuadre de la respuesta dentro de las opciones que provee la pregunta (también implica alterar la respuesta para que se ajuste a las opciones aceptables). La forma en que se reporta la respuesta final dependerá del ajuste que se realice en los procesos de recaudo y estimación y las restricciones que la pregunta impone. En este sentido, si para una pregunta de percepción la mayoría de opciones de respuesta son negativas, la respuesta estará sesgada en esa dirección. Asimismo, los respondientes pueden dar mayor importancia a ciertas opciones de respuesta (Groves et al., 2009).

El investigador debe saber que el solo hecho de haber experimentado una situación, no implica que el respondiente haya compilado la suficiente información para reportarla como respuesta. Groves et al. (2009) afirman que se ha visto que los testigos presenciales de una situación omiten detalles importantes acerca de la situación de la cual son testigos. Además, las personas no pueden proveer la información que no tienen. Si la gente no compila la información necesaria, ninguna pregunta ni formulación logrará obtener la respuesta real. Por lo que se recomienda llevar a cabo un pre-test para validar el cuestionario. Por otro lado, aunque el respondiente conozca con exactitud la respuesta a una pregunta, no será capaz de reportarla correctamente si no hay una buena interpretación de la misma.

- *Tiempo de ocurrencia*: los eventos que sucedieron hace mucho tiempo son más difíciles de recordar.
- Límites temporales e impacto emocional: los eventos cercanos a límites temporales que generan impacto emocional son más fáciles de recordar. Por ejemplo, eventos catastróficos, atentados terroristas o desastres naturales.
- Señales en las preguntas: la asignación de múltiples señales en la redacción de la pregunta ayuda a activar el proceso de recordación.

Las preguntas cerradas con escala ordenada tienden a producir un sesgo de respuesta positivo, pues los respondientes tienden a evadir las opciones negativas de la escala (encuestas de satisfacción). Schwarz et al. (1991) demostró que las etiquetas numéricas afectan el proceso de respuesta, por lo cual recomendó que el encuestador no lea los números en las opciones de respuesta, así como acotar el número de opciones en preguntas de opinión (no muy pocas, no tantas).

Nótese que la generación de pocas opciones hace que se pierda el poder de discriminación en la respuesta, mientras que utilizar muchas opciones puede hacer que los encuestados no distingan fácilmente entre las categorías adyacentes. Además, es posible que el respondiente no quiera esperar a que el entrevistador lea exhaustivamente todas las opciones de respuesta. En este caso se presentan dos fenómeno que es necesario evadir. En primer lugar el efecto de primacía, el cual incrementa el riesgo de que el respondiente escoja una de las primeras opciones; y el efectos de recencia, en donde el respondiente siempre escogerá una de las últimas opciones.

Algunos respondientes podrán desviarse del modelo de respuesta mediante la escogencia de rutas alternas de evasión (el encuestado hará el mínimo esfuerzo para satisfacer las demandas del entrevistador). Es así como podríamos encontrar respondientes que seleccionan sistemáticamente las opciones *No sabe* o *No responde*, o que escogen siempre la misma opción para cada pregunta. Inclusive, dependiendo de la apariencia del entrevistador, el respondiente puede estar sesgado a siempre estar de acuerdo (aquiescencia). De la misma manera, es posible que el respondiente quiera presentarse a sí mismo de manera favorable, omitiendo sus atributos no deseables (Groves et al., 2009).

Capítulo 3

Elementos básicos

El fortalecimiento continuo de las investigaciones sociales es un objetivo que los institutos nacionales de estadística procuran cumplir de forma sistemática. En el caso de aquellas operaciones que conllevan la recolección de información primaria y que involucran la selección y medición de hogares y sus miembros, mantener una documentación adecuada que describa las razones por las cuales se ha optado por cierta metodología de recolección en particular es un requisito fundamental para cumplir este cometido. En este apartado se exploran diferentes métodos de recolección de la información y se discuten las diferentes particularidades en la planeación de una encuesta de hogares.

I. Universo, muestra y unidades

El término encuesta se encuentra directamente relacionado con una población finita compuesta de individuos a los cuales es necesario observar y medir. Este proceso muchas veces es realizado por medio de una entrevista. El conjunto de unidades de interés recibe el nombre de población objetivo o universo y sobre ellas se obtiene la información de interés para el estudio. Por ejemplo, la Encuesta Nacional de Empleo y Desempleo de Ecuador define su población objetivo como todas las personas mayores de 10 años residentes en viviendas particulares en Ecuador (INEC, 2018).

Las unidades de análisis corresponden a los diferentes niveles de desagregación establecidos para consolidar el diseño de la encuesta y sobre los que se presentan los resultados de interés. En México, la Encuesta Nacional de Ingresos y Gastos de los Hogares define como unidades de análisis el ámbito al que pertenece la vivienda: urbano alto, complemento urbano y rural. Por otro lado, la Gran Encuesta Integrada de Hogares de Colombia tiene cobertura nacional y sus unidades de análisis están definidas por trece grandes ciudades junto con sus áreas metropolitanas (DANE, 2017).

Como se explicará más adelante, es muy difícil contar con una lista actualizada de todos los hogares del país; por lo tanto, para recolectar la información de la población objetivo, el diseño de una encuesta de hogares en América Latina plantea la necesidad de seleccionar en varias etapas ciertas unidades de muestreo que sirven como medio para seleccionar finalmente a los hogares y personas que participarán de la muestra. Cuando se requiere seleccionar personas, se hace necesario seleccionar un subconjunto de zonas geográficas; para cada zona seleccionada, se procede a seleccionar a su vez un subconjunto de secciones cartográficas, que antecede a la selección de hogares. Finalmente, el cuestionario es administrado en cada hogar a un respondiente idóneo, que proporciona la información de todos los integrantes del hogar. Dependiendo de la encuesta, en

algunos casos se seleccionan aleatoriamente respondientes individuales dentro del hogar; siendo estas las unidades de observación. Por ejemplo, se puede citar la experiencia de Brasil con la *Pesquisa Nacional por Amostra de Domicilios* que se realiza por medio de una muestra de viviendas en tres etapas: las unidades primarias de muestreo (UPM) son los municipios, mientras que las unidades secundarias de muestreo (USM) son los sectores censales, que conforman una malla territorial definida en el último Censo Demográfico. Por último, las unidades finales en ser seleccionadas son las viviendas (IBGE-BR, 2014).

Duncan and Kalton (1987, pág. 105) afirman que la composición de la población de interés en las encuestas de hogares cambia durante el tiempo, puesto que lo individuos nacen, mueren, migran, e incluso pasan a ser parte de organizaciones que hacen que pierdan su estatus de elegibilidad como unidades de observación en una encuesta. Nótese que la población objetivo de la mayoría de encuestas de hogares en América Latina se refiere a la población civil excluyendo a los miembros de organizaciones militares, personas recluidas en cárceles, personas que se encuentran en hospitales, etc. De igual forma, se debe tener en cuenta que los hogares pueden crearse o desintegrarse rápidamente. Por ende, los equipos técnicos de las ONE que están a cargo del diseño de las encuestas de hogares, que miden de forma transversal a la población de interés, deben tener en cuenta que, aunque los objetivos de la encuesta no cambian en el tiempo, sí lo hace la población objetivo y se deben plantear esquemas de seguimiento y actualización que den cuenta de esta realidad.

II. Periodicidad en el tiempo

Las Oficinas Nacionales de Estadística - que son los entes encargados de administrar, diseñar, analizar y difundir los resultados de las encuestas - no realizan este tipo de levantamientos de manera aislada; de hecho una característica fundamental de estas operaciones estadísticas es que se han convertido en un insumo fundamental para realizar un seguimiento periódico de muchos indicadores de interés. Por lo tanto, muchas encuestas de hogares se realizan de forma sistemática en el tiempo, aunque algunas otras no tienen una periodicidad predefinida. Es por esto que la planeación de la encuesta debe contemplar este tipo de esquemas continuos para que el levantamiento de la información primaria en campo se haga de manera más eficiente y, de la misma forma, que la estimación de los indicadores de interés se pueda realizar ajustándose a los recursos de la operación. Como se mencionó anteriormente, dado que la población es dinámica en el tiempo, la planeación y análisis de este tipo de encuestas es desafiante, puesto que si la composición de la población y las características de los elementos se considerara fija, una encuesta transversal (realizada una sola vez en un periodo de tiempo largo) sería suficiente para realizar estimaciones precisas que resuelvan los objetivos del estudio.

En algunas ocasiones, basta con realizar un medición simple en un punto específico del tiempo para completar los objetivos de la investigación. Este es el caso de las encuestas de ingresos y gastos cuya periodicidad es, en general, no menor a cinco años y las cuales son utilizadas para, entre muchos otros propósitos, actualizar la canasta básica familiar, de la cual se derivan los insumos básicos para la medición de la pobreza (CEPAL, 2018). Para otro tipo de problemáticas, como por ejemplo el seguimiento a las estadísticas derivadas del mercado de trabajo, es necesario recurrir a la medición periódica a través de encuestas de hogares, en donde los cambios naturales en las características de la población hacen que realizar una medición simple en un punto del tiempo sea insuficiente a la luz del seguimiento y monitoreo de los indicadores de interés.

Por consiguiente, al momento de realizar la planeación de una encuesta continua o periódica se debe

tener en cuenta que, a pesar de que crezca la dificultad en el diseño, es posible obtener información más oportuna para la toma de decisiones y la formulación de políticas públicas. De esta manera, y teniendo en cuenta que el tiempo hace que la estructura de las poblaciones cambie, sin importar si la constituyen individuos, hogares, familias, negocios, etc., las unidades de observación deben ser consideradas como parte de la población de interés cuando nacen, inmigran o alcanzan un umbral predefinido de edad. Asimismo, las unidades ya no harán parte de la población de interés cuando mueran, emigren, o se involucren en instituciones (como el servicio militar). Por ejemplo, si las unidades de interés son los hogares, es evidente que la población no es la misma en diferentes puntos del tiempo (por ejemplo, en dos años distintos) puesto que se crean nuevas unidades cuando los jóvenes dejan a sus padres y forman nuevos hogares independientes, o cuando ocurre una separación o un divorcio; en donde un hogar se divide en dos. Además, los hogares en donde todos sus miembros han fallecido dejan de ser parte de la población objetivo. De la misma forma, dos hogares dejan de ser parte de la población objetivo cuando se unen a través de un matrimonio o algún otro tipo de unión civil. Teniendo en cuenta el papel dinámico de las poblaciones y los objetivos de investigación es posible plantear diferentes tipos de levantamientos; a continuación enumeramos algunas categorías de encuestas que las ONE realizan en la región.

Encuestas transversales

Este tipo de encuestas son diseñadas para recolectar información únicamente en un punto específico del tiempo, o sobre un periodo de referencia, y proveen toda la información pertinente acerca de la población particular restringida a un tiempo y periodo de recolección específico. Puesto que el propósito fundamental de este tipo de encuestas no se centra en las comparaciones intertemporales, no es posible estimar cambios de ningún tipo, a no ser que se realicen indagaciones retrospectivas. La siguiente tabla muestra un esquema de este tipo de operaciones estadísticas en donde se observa una muestra de una población específica en un periodo de tiempo específico (Tiempo 2). Dado que es una muestra transversal, no hay un patrón de repetición en los restantes periodos.

Hogar	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4	 Tiempo T
1		x			
2		\mathbf{x}			
3		\mathbf{x}			
4		\mathbf{x}			
		\mathbf{x}			
$\underline{}$		X			

Cuadro 3.1: Esquema de una encuesta transversal.

Encuestas repetidas

Cuando existe interés en realizar un seguimiento del fenómeno en observación durante el tiempo, se utilizan encuestas repetidas que recolectan información de manera periódica. Este tipo de encuestas proveen información acerca de la dinámica de la composición de la población en el tiempo. De esta forma, en cada levantamiento se observa una muestra de la población en un tiempo determinado. Por ejemplo, la siguiente tabla muestra un acercamiento gráfico a este tipo de encuestas en donde se evidencia el carácter sistemático de estas operaciones estadísticas; además de mostrar que no es

posible medir cambios individuales porque las muestras son independientes en el tiempo.

Hogar	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4		Tiempo T
1	X					
2		\mathbf{x}				
3			\mathbf{x}			
4				\mathbf{x}		
					\mathbf{X}	
n						X

Cuadro 3.2: Esquema de una encuesta repetida.

Encuestas panel

Las encuestas en panel están diseñadas para recolectar información periódica sobre la misma muestra en diferentes puntos del tiempo. Por definición, las unidades de muestreo son las mismas en los diferentes periodos de tiempo y, de manera general, se miden las mismas variables en cada levantamiento. Por la caracterización propia de este tipo de encuestas, sí es posible estimar los cambios individuales, así como los cambios netos sobre la población. Sin embargo, como la muestra no cambia en ningún momento del tiempo, las inferencias que se realicen estarán supeditadas a la población de la cual se seleccionó la muestra en un principio (Tiempo 1). Si la población cambia su estructura, no será posible captar este cambio puesto que las inferencias resultantes de este tipo de encuestas no son representativas de la población actual. La siguiente tabla muestra un esquema propio de las encuestas de panel en donde los individuos que fueron seleccionados la primera vez son observados a lo largo del tiempo.

Tiempo THogar Tiempo 1 Tiempo 2 Tiempo 3 Tiempo 4 1 \mathbf{X} \mathbf{X} \mathbf{x} \mathbf{X} \mathbf{X} \mathbf{X} 2 \mathbf{X} \mathbf{X} \mathbf{x} \mathbf{X} \mathbf{X} \mathbf{X} 3 \mathbf{X} \mathbf{X} \mathbf{x} \mathbf{X} \mathbf{X} \mathbf{X} 4 n

Cuadro 3.3: Esquema de una encuesta tipo panel.

Encuestas de panel dividido

Para hacerle frente a las dificultades propias de las encuestas de panel y poder observar tanto los cambios individuales, como los cambios en la estructura de la población, se definen las encuestas de panel dividido. Estas operaciones estadísticas son una combinación del diseño de panel puro y del diseño repetido y su objetivo es realizar inferencias precisas acerca de los cambios de una cohorte a través del tiempo y, al mismo tiempo, del cambio en estructura de la población actual. De esta forma, se realiza el seguimiento continuo, periódico y sistemático de una muestra a través del tiempo, pero en cada levantamiento se incluyen nuevos elementos seleccionados de la población

actual. Como se señalará más adelante, este tipo de encuestas cubre con eficiencia la mayoría de indicadores de interés en un estudio de investigación social. La siguiente tabla muestra una caracterización de estos levantamientos que fijan una muestra de panel a lo largo del tiempo, y a la vez que se añaden nuevas observaciones.

Hogar	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4		Tiempo T
1	x	x	x	x	x	x
2	\mathbf{x}					
3		\mathbf{x}				
4			\mathbf{x}			
5				\mathbf{x}		
					\mathbf{x}	
n						\mathbf{x}

Cuadro 3.4: Esquema de una encuesta de panel dividido.

Encuestas de panel rotativo

Mantener una muestra de panel es un proceso costoso desde una perspectiva económica y logística, pero también se debe tener en cuenta el desgaste de la fuente, que tenderá a brindar menos información a medida que avanza el estudio. Además, es evidente que a medida que el tiempo transcurra la propensión a responder será más baja, puesto que el entrevistado se sentirá agotado al ser visitado una y otra vez. Por lo tanto, se definen las encuestas de panel rotativo para poder realizar inferencias parciales - restringidas a periodos de tiempo específicos - del cambio individual y a la vez captar el cambio estructural de la población. Estas encuestas incorporan nuevos elementos de la población y a la vez mantienen elementos comunes con mediciones anteriores. Obviando las dificultades que acarrea la ausencia de respuesta, las encuestas panel definen un traslape completo entre las muestras de dos puntos cualesquiera en el tiempo; sin embargo, en las encuestas rotativas existe un traslape parcial, por lo que se reduce el efecto del desgaste del panel (sobre la población inicial) y el efecto de la pérdida de muestra. Además, la inclusión de nuevos elementos en la muestra provee información pertinente del cambio en la composición estructural de la población. La siguiente tabla ejemplifica el diseño de las encuestas rotativas.

Hogar	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4	Tiempo 5	Tiempo 6
1	X					
2	\mathbf{x}	\mathbf{x}				
3	\mathbf{x}	\mathbf{x}	\mathbf{x}			
4		\mathbf{x}	\mathbf{x}	\mathbf{x}		
5			\mathbf{x}	\mathbf{x}	\mathbf{x}	
6				\mathbf{x}	\mathbf{x}	\mathbf{x}
					\mathbf{x}	\mathbf{x}
n						\mathbf{X}

Cuadro 3.5: Esquema de una encuesta de panel rotativo.

III. Rotación de paneles

Tal como se describió anteriormente, algunas encuestas de hogares en América Latina permiten que un hogar sea visitado en más de una ocasión con el fin de tener estimaciones precisas acerca de los cambios de estado que el hogar o las personas que lo habitan puedan sufrir. Por ejemplo, un hogar que en un periodo estuvo en condición de pobreza extrema, puede estar en otro periodo en condición de pobreza relativa o inclusive puede pasar a estar fuera de la pobreza; en las encuestas de fuerza laboral, una persona puede pasar de estar empleada en un periodo a desempleada en otro periodo. Estos cambios y la dinámica propia que conllevan son de interés para los investigadores y deben ser contemplados desde una perspectiva más amplia en cuanto a su diseño. Nótese que este tipo de variaciones sobre los individuos necesariamente tiene que ser captada a través de un componente de panel, por lo que las encuestas transversales o repetidas no serían viables para realizar estas estimaciones.

En América Latina hay una gran variedad de encuestas de hogares que utilizan diseños rotativos (ver apéndice). Por ejemplo, la *Encuesta Permanente de Hogares* en Argentina renueva periódicamente el conjunto de hogares que serán entrevistados mediante un esquema¹ de rotación 2(2)2 que selecciona a las viviendas para ser entrevistadas en dos periodos consecutivos; luego los siguientes dos periodos esas viviendas salen de la selección, para finalmente volver a ser encuestadas en los siguiente dos periodos (INDEC, 2018). De esta forma, dado que la rotación es trimestral, un hogar es seguido a lo largo de 18 meses y esto permite cumplir con los objetivos de la encuesta. Este esquema induce algunas propiedades interesantes, que pueden ser ejemplificadas usando la siguiente tabla definido para los cuatro trimestres de los años 2016, 2017, 2018 en cuatro grupos de muestra: A, B, C y D.

- Entre el primer y el segundo periodo de medición hay un traslape del 50 % de hogares. En particular, nótese que entre 2016-T1 y 2016-T2, la muestra se conserva en un 50 %, puesto que a1 y d1 se repiten. Esto mismo sucede en cada trimestre del esquema rotacional.
- En el tercer periodo no habrá traslape con el primer periodo. Nótese que entre 2016-T1 y 2016-T3 no existe ningún elemento en común. De la misma manera, entre 2016-T2 y 2016-T4, no existe ningún elemento en común. Este mismo patrón se encuentra a lo largo del esquema rotacional.
- En el cuarto periodo se tendrá un 25 % de traslape con el primer periodo. Nótese, por ejemplo, que entre 2017-T1 y 2017-T4, c3 se repite; de la misma manera, entre 2017-T4 y 2018-T3, d4 se repite.
- Finalmente en el quinto periodo se volverá a tener un 50 % de traslape con respecto al primer periodo. Por ejemplo, 2016-T1 y 2017-T1 comparten el 50 % de la muestra a1 y b1; asimismo, 2017-T1 y 2018-T1 comparten el 50 % de la muestra c3 y b3.

Cuadro 3.6: Rotación de paneles en un diseño 2(2)2.

Año	Año Trimestre		В	С	D
2016	T1	a1	<i>b1</i>	c1	$\overline{d1}$
	T2	a1	b2	c2	d1
	T3	a2	b2	c2	d2
	T4	a2	b1	c3	d2

¹Un esquema de rotación x(y)z, se define como aquel en donde la vivienda entra al panel por x periodos, se excluye por los siguientes y periodos y este patrón se repite z veces en el tiempo. Nçotese que los periodos pueden ser definidos como meses, o trimestres; además un hogar es visitado un total de $x \times z$ veces.

Año	Trimestre	A	В	С	D
2017	T1	a1	<i>b1</i>	c3	d3
	T2	a1	b2	c4	$d\beta$
	Т3	a2	b2	c4	d4
	T4	a2	$b\beta$	c3	d4
2018	T1	a3	$b\beta$	c3	d3
	T2	a3	b4	c4	$d\beta$
	T3	a4	<i>b4</i>	c4	d4
	T4	a4	$b\beta$	c5	d4

Otro ejemplo de una encuesta que utiliza rotación de paneles es la *Encuesta Continua de Empleo* de Bolivia que, aplicada por el Instituto Nacional de Estadística, hace uso de una metodología mixta que permite el seguimiento continuo y transversal a la tasa de desempleo y a la tasa de subocupación, así como el seguimiento a los cambios que se presentan entre los periodos de interés (trimestres y semestres), a través del análisis longitudinal de los datos en el sector urbano (pues el diseño no es rotativo en el sector rural, debido a la baja incidencia de desempleo en esta zona). En este esquema rotacional 4(0)1 una vivienda es entrevistada durante cuatro trimestres consecutivos, y luego sale del panel definitivamente. Un ejemplo de este tipo de esquemas se presenta en la siguiente tabla.

- Nótese que entre el primer y el segundo periodo de medición hay un traslape del 75 % de hogares. En particular, entre 2016-T1 y 2016-T2, la muestra se conserva en tres cuartas partes puesto que a1, c1 y d1 se repiten. Esto mismo sucede en cada trimestre del esquema rotacional.
- Por otro lado, entre el primer y el tercer periodo habrá un traslape del 50 %. Nótese que entre 2016-T1 y 2016-T3, la mitad de la muestra se conserva puesto que a1 y d1 se repiten. Este mismo patrón se encuentra a lo largo del esquema rotacional.
- Entre el primer y el cuarto periodo se tendrá un 25 % de traslape. Nótese, por ejemplo, que entre 2017-T1 y 2017-T4, a2 se repite; de la misma manera, entre 2017-T4 y 2018-T3, d3 se repite.
- Finalmente entre el primer y quinto periodo no se tiene ningún tipo de traslape.

Cuadro 3.7: Rotación de paneles en un diseño 4(0)1.

Año	Trimestre	A	В	С	D
2016	T1	a1	<i>b1</i>	c1	d1
	T2	a1	b2	c1	d1
	Т3	a1	b2	c2	d1
	T4	a1	b2	c2	d2
2017	T1	a2	b2	c2	d2
	T2	a2	$b\beta$	c2	d2
	T3	a2	$b\beta$	c3	d2
	T4	a2	$b\beta$	c3	$d\beta$
2018	T1	$a\beta$	$b\beta$	c3	$d\beta$
	T2	$a\beta$	b4	c3	d3
	Т3	$a\beta$	b4	c4	d3

Año	Trimestre	A	В	С	D
	T4	$a\beta$	<i>b4</i>	c4	d4

Los diseños de las encuestas de hogares deben tener en cuenta la rotación de los paneles y el número de veces que es visitado un hogar. Esta caracterización depende directamente de los indicadores a los cuales la encuesta debe responder. Por ejemplo, el diseño de rotación debe ser diferente si el interés se centra en indicadores de cambio trimestral, a si se requieren indicadores de cambio anual. Por ejemplo, el diseño 4(0)1 es conveniente si el objetivo está en comparar las estimaciones de la tasa de desocupación el mismo mes entre diferentes años, pero no lo será si se quiere conocer el cambio de estado en la situación del trabajo para las mismas personas en dos meses iguales de diferentes años. Nótese que un aspecto importante en la definición de los esquemas longitudinales radica en el tiempo en el que un hogar pertenecerá al panel. Por supuesto, hay que tener en cuenta que la tasa de ausencia de respuesta y pérdida de muestra por desgaste del respondiente crecerá en la medida en que se le pida a un hogar una participación más duradera en el tiempo.

La definición de los indicadores de interés debe primar sobre el diseño de las encuestas de hogares. Por ejemplo, si el objetivo de la encuesta se centra en la estimación del cambio del indicador en dos periodos de tiempo, entonces el cálculo de la precisión de las estimaciones debe tener en cuenta que las muestras no son independientes y por lo tanto se debe calcular la varianza de la primera ronda, la varianza de la segunda ronda y la correlación entre las dos rondas de interés. Estos tres componentes deben intervenir en el cálculo de los coeficientes de variación, así como en la determinación del tamaño de muestra en cada ronda. En efecto, como lo afirma McLaren and Steel (2001, pág. 236), para la estimación de tendencias, definidas a partir de series de tiempo macroeconómicas de los parámetros de interés en los estudios de fuerza laboral, el mejor patrón encontrado es el 1(2)m, en donde la vivienda entra en un primer mes en el panel, se excluye por los siguientes dos meses y este patrón se repite m veces consecutivas. A partir de allí, la vivienda ya no vuelve a ser incluida en el estudio. En resumen, por la naturaleza de las encuestas de hogares en la región, al momento de pensar en incluir o cambiar la estructura rotacional en el sistema de encuestas de hogares, se debería considerar en primer lugar el esquema de repartición mensual de paneles. Una mirada más profunda de este tipo de análisis longitudinales se encuentra presente en los capítulos posteriores a lo largo de este documento.

IV. Parámetros e indicadores de interés

Las encuestas son usadas para producir estimaciones de parámetros que describen la situación de una población, respondiendo a los objetivos de la investigación. En general, es posible clasificar en dos grandes grupos los indicadores o parámetros de interés en una encuesta:

- 1. Indicadores descriptivos, incluyendo:
 - Medias: promedio de años en educación.
 - Proporciones: porcentaje de personas que votarán por un candidato.
 - Totales: Total de personas víctimas del desplazamiento forzado.
- 2. Indicadores analíticos, incluyendo:
 - Correlación: relación entre la cantidad de libros leídos y los años de escolaridad.
 - Regresión: razón de incremento entre ingreso y años de experiencia

Por lo general, el conocimiento de la población a cualquier nivel está reflejado en forma de totales, o de funciones de totales. Es por esta razón que este documento se enfoca y profundiza en las características inferenciales de los totales, puesto que la generalización a otros parámetros es inmediata. De esta manera, un **total poblacional** se define como la suma de las observaciones de una variable de interés, notada como y, en la población y se calcula mediante la siguiente ecuación:

$$t_y = \sum_{k \in U} y_k$$

En donde U hace referencia al universo de estudio, mientras que y_k hace referencia a la variable de interés en el k-ésimo individuo. Por ejemplo, en una investigación social se puede realizar una encuesta para estimar el total de gasto de los hogares de un país en productos específicos de comida y bebidas no alcohólicas. En este ejemplo, la población U corresponde a los hogares, mientras que la variable y corresponde al gasto en comida y bebidas no alcohólicas, que es observada en el k-ésimo hogar, y notada como y_k .

Un caso particular de este parámetro es el **tamaño poblacional** que mide la cantidad de unidades que conforman una población y se denota como N. Por lo general, este parámetro es regularmente conocido, o al menos se tiene una aproximación de esta cantidad. En una encuesta de hogares, este parámetro podría denotar el número de hogares en el país (el cual no es conocido literalmente, aunque sí se conocen aproximaciones (o proyecciones) a esta cantidad con base en los resultados de los censos de población y vivienda) o el número de habitantes del país (el cual tampoco es conocido exactamente, aunque sí se cuente con proyecciones poblacionales). Este parámetro también toma la forma de un total poblacional:

$$N = \sum_{k \in U} 1$$

Tal vez el parámetro más relevante en la investigación social lo constituye el **promedio poblacional** que describe la cantidad que debería ser asignada a cada individuo de la población si hubiese una asignación equitativa de la variable de interés. De esta forma, el promedio se define como la suma de las observaciones de la variable en la población dividida por el tamaño poblacional N y se calcula mediante la siguiente expresión:

$$\bar{y}_U = \frac{t_y}{N}$$

Por ejemplo, en una encuesta de hogares es posible estimar el ingreso medio por hogar de la población, definido como el total de los ingresos de todos los hogares del país dividido entre el número de hogares del país. En este caso la variable de interés y es el ingreso del hogar. De la misma forma, también se podría estimar el gasto promedio de los hogares en educación; en donde la variable de interés y es el gasto de todos lo miembros del hogar en este concepto (sin importar la edad ni el nivel propedéutico) y N sería el número de hogares del país.

Un parámetro que es de particular interés es el **tamaño absoluto de un dominio poblacional** que mide la cantidad de unidades que conforman una subpoblación de interés U_d y que se denota como N_d . Por ejemplo, en las encuestas de fuerza laboral, es muy importante estimar con una alta precisión el número de personas que están desocupadas en un periodo de tiempo, y comparar su

evolución a través del tiempo. En este caso, la subpoblación de interés, o dominio poblacional, estará definida por los desocupados. Nótese que este parámetro está definido como un total sobre una variable dicotómica z_{d_k} que toma el valor de 1, si el k-ésimo individuo tiene el atributo de interés y de 0, en otro caso. Este parámetro se calcula de la siguiente manera:

$$N_d = \sum_{k \in U} z_{d_k} = \sum_{k \in U_d} 1$$

De la misma forma, la incidencia relativa de los fenómenos sociales sobre los hogares o personas puede ser medida a través de la **proporción de un dominio poblacional**. Por ejemplo, la proporción de personas en condición de pobreza o de pobreza extrema son proporciones sobre toda la población, en donde la variable de interés z_{d_k} indica si el ingreso per cápita de un individuo es menor que la línea de pobreza; CEPAL (2018) presenta los pormenores metodológicos del cálculo de la pobreza en los países de América Latina y el Caribe. Este parámetro se calcula mediante la siguiente ecuación:

$$P_d = \frac{N_d}{N}$$

En algunos casos es de interés conocer el total de una variable en una subpoblación. Por ejemplo, el total del ingreso en las mujeres, o el total de gasto en el área rural. En estas situaciones el parametro se conoce como **total del dominio** y se puede calcular mediante la siguiente expresión:

$$t_{y_d} = \sum_{k \in U} y_k \ z_{d_k} = \sum_{k \in U_d} y_k$$

Así mismo, puede ser de interés calcular medidas relativas en el dominio, como por ejemplo la **media del dominio**. De esta forma, es posible calcular la media de los ingresos entre hombres y mujeres, o calcular la media de los ingresos en los ocupados, o la media del gasto en comida para la población indígena. Este parámetro puede ser calculado con la siguiente expresión:

$$\bar{y}_{U_d} = \frac{t_{y_d}}{N_d}$$

Finalmente, la **razón poblacional** se calcula como el cociente entre dos totales, el primer total t_y asociado a una variable de interés y, el segundo total t_x asociado a una variable de interés x. Por ejemplo, en la medición del mercado de trabajo, la tasa de desocupación es una razón entre el total de personas desocupadas y el total de personas activas. Nótese que para clasificar a una persona como desocupada, ocupada, activa o inactiva, es necesario realizar una indagación en la encuesta a cada uno de los miembros del hogar; por lo tanto ambas cantidades, numerador y denominador, corresponden a cantidades desconocidas de antemano. Es más, la condición de ocupación de las personas puede variar entre los periodos de observación. Este parámetro se calcula mediante la siguiente expresión:

$$R_U = \frac{t_y}{t_x}$$

En efecto, los indicadores de pobreza pueden expresarse como razones poblacionales; es el caso de la brecha de pobreza y de la incidencia de la pobreza expresada en términos de un umbral de poder adquisitivo (Foster et al., 1984). Este tipo de indicadores complejos se pueden expresar mediante la siguiente relación

$$F_{\alpha} = \frac{1}{N} \sum_{II} \left(\frac{u - y_k}{u} \right)^{\alpha} I_{(y_k < u)}$$

En donde y_k determina el ingreso del individuo k, u se refiere al umbral que establece la línea de pobreza y $\alpha \geq 0$. Por ejemplo, en el caso en el que $\alpha = 0$, este indicador calcula la tasa de pobreza, que es la incidencia de este fenómeno en la población; si $\alpha = 1$, este indicador calcula la brecha de la pobreza, que es la cantidad de dinero relativa que se necesitaría en promedio para que un país no tuviera personas en situación de pobreza. Por último si $\alpha = 2$, este indicador medirá la severidad de la pobreza, como una combinación entre la incidencia de la pobreza de los hogares, la brecha absoluta de ingreso de los hogares en situación de pobreza y la desigualdad de ingresos entre los hogares en situación de pobreza.

En este punto vale la pena resaltar que, en la definición de los parámetros básicos que se quieren estimar en una encuesta, el papel de los totales poblacionales es absolutamente relevante. De igual manera, existen otros parámetros que pueden ser considerados complejos - no por su forma funcional, sino por los procesos complejos que hay detrás del levantamiento de la información primaria - pero que al igual que los mencionados anteriormente resultan ser también una función de totales poblacionales. Por ejemplo, considere el **cambio neto** de los totales de la variable de interés y en dos periodos de tiempo $(t_1 \ y \ t_2)$ dado por la siguiente expresión:

$$\Delta_y = t_y^2 - t_y^1$$

En donde t_y^2 es el total de interes en el tiempo t=2, y t_y^1 lo es en el tiempo t=1. Este tipo de parámetros son muy comunes en las encuestas que se realizan para conocer la estructura y los cambios del mercado de trabajo. Por ejemplo, la siguiente tabla muestra la composición del mercado de trabajo en una población observada en dos periodos de interés. De esta forma, los totales marginales de la tabla corresponden a los **cambios netos** que permiten una comparación simple con el periodo anterior. Específicamente, es posible observar que hay 313 mil empleados menos, 80 mil desempleados menos y 393 mil inactivos más en el segundo periodo, en comparación al primero.

Cuadro 3.8: Composición del mercado de trabajo en dos periodos de tiempo (cifras en miles de personas). Las columnas corresponden al segundo periodo y las filas al primero.

Condición	Ocupado	Desocupado	Inactivo	Total
Ocupado	9222	128	662	10012
Desocupado	221	$\frac{120}{322}$	151	694
Inactivo	256	164	5941	6361
Total	9699	614	6754	17067

Una comparación más profunda está dada en términos de los **cambios brutos**, que corresponden a las entradas de la tabla cruzada. De esta manera, los cambios en la fuerza de trabajo de un periodo a otro, se explican porque el $92.1\% = (9222/10012) \times 100\%$ de los empleados conservó su empleo; el $31.8\% = (221/694) \times 100\%$ de los desempleados y el $4.0\% = (256/6361) \times 100\%$ de los inactivos consiguió un nuevo empleo; el $6.6\% = (662/10012) \times 100\%$ de los empleados es ahora inactivo en la fuerza laboral y el $1.3\% = (128/10012) \times 100\%$ de los empleados perdió su empleo. Así mismo, el $46.4\% = (322/694) \times 100\%$ de los desempleados conservó su clasificación; el $2.6\% = (256/6361) \times 100\%$ de los inactivos entró a la fuerza laboral como desempleado y el $21.8\% = (151/694) \times 100\%$ de los desempleados es ahora inactivo.

Algunos ejemplos de indicadores de interés y su relación con los tipos de encuestas

En esta sección se relacionan algunos de los parámetros anteriormente mencionados con los tipos más comunes de encuestas. Estos ejemplos nos presentan algunas indicaciones del tipo de encuestas que se encuentran en América Latina y examinan el raciocinio detrás de estos levantamientos. Tomando en consideración las características generales de las encuesta de hogares, Duncan and Kalton (1987) mencionan las siguientes situaciones, ejemplificadas a continuación.

- Estimación de parámetros poblacionales en un punto del tiempo. Por ejemplo, suponga que se quiere estimar el ingreso per cápita promedio por área (rural urbano) en las regiones de un país. En este tipo de estudios, las encuestas aptas serían las transversales, las repetidas, las de panel rotativo y las de panel dividido. Nótese que las encuestas de panel puro no son aptas para estimar este parámetro puesto que la muestra no es representativa de la población en el momento actual, sino que, por el contrario, es representativa de la población en el momento en la cual se extrajo la muestra.
- Estimación de cambios netos. Si se quisiera estimar la diferencia en el número de ocupados de la fuerza de trabajo entre el segundo trimestre de 2021 y el primer trimestre de 2021 en un país, entonces las encuestas aptas serían las repetidas, las de panel rotativo y las de panel dividido. Una encuesta transversal no sería apta para lograr esta estimación, puesto que su frecuencia de realización no es trimestral. De la misma forma que en el parámetro anterior, las encuestas de panel puro no son aptas para captar este parámetro puesto que la muestra no es representativa de la población en el momento actual.
- Estimación de cambios brutos y componentes individuales. Para estimar el porcentaje de personas ocupadas en el segundo trimestre de 2021 que estuvieron desocupadas en el primer trimestre de 2021 en un país es necesario que la encuesta tenga algún patrón de selección de los mismos individuos en los dos periodos. De esta forma, las únicas encuestas aptas para estimar este tipo de cambios brutos son las de panel, panel rotativo y panel dividido. Las encuestas transversales o repetidas no podrían arrojar este tipo de estimativas puesto que su diseño no considera a los mismos individuos en la muestra en dos periodos de tiempo.
- Estimación de la incidencia de eventos en un periodo de tiempo. Suponga que se quiere estimar la proporción de mujeres que fueron víctimas de un evento de violencia en los últimos seis meses en un país. En este caso todas las encuestas resultarían aptas mediante ligeras modificaciones en el diseño. Por ejemplo, la encuesta transversal debería preguntar de forma retrospectiva; las encuestas repetidas podrían ser agregadas en los últimos seis meses,

las encuestas de tipo panel rotativo y divididas deberían preguntar en cada medición de los últimos seis meses por este evento.

■ Estimación de la incidencia de eventos raros en el tiempo. Por ejemplo, si se quisiera estimar la proporción de personas con una enfermedad rara, es posible que las encuestas transversales y de tipo panel no sean las más apropiadas En el primer caso, dado que el evento es raro por definición, los requerimientos de tamaño de muestra en una encuesta transversal sobrepasarían el presupuesto y los costos de una encuesta regular; en el segundo caso, además de las consideraciones anteriormente planteadas del tamaño de muestra, por la misma definición de evento raro, tampoco sería plausible que en el panel se presentaran estos eventos en los individuos a través del tiempo. Por otro lado, al agregar las encuestas repetidas, las de panel rotativas y la parte nueva del panel dividido, podría ser posible llegar al tamaño de muestra adecuado para poder captar esta incidencia de forma precisa y eficiente.

Estos últimos ejemplos muestran la importancia de contar con procedimientos adecuados de acumulación de datos y encuestas a lo largo de un periodo de interés, por ejemplo de forma anual o semestral. La acumulación de datos genera una buena base inferencial para poder estimar todo tipo de parámetros en una ventana más amplia del tiempo. Es posible acumular datos eficientemente por medio de la agregación de encuestas repetidas. De esta forma se definiría una agregación de datos vertical que añade filas, puesto que en cada levantamiento aparecen nuevos individuos, dado que el diseño de las encuestas repetidas selecciona diferentes individuos en cada punto del tiempo. Este es el caso de la *Gran Encuesta Integrada de Hogares de Colombia* que está diseñada para tener representatividad a niveles de desagregación mayores, juntando los individuos observados en los doce levantamientos continuos en un año.

Por otro lado, las encuestas de panel permiten un tipo diferente de agregación, no basado en individuos, sino en variables en el tiempo. A diferencia de las encuestas repetidas, las encuestas de panel, panel rotativo o panel dividido permiten observar a los individuos en diferentes periodos de tiempo y la agregación puede hacerse de forma horizontal, manteniendo a los individuos en las filas y añadiendo columnas cada vez que se observe una nueva medición en un periodo de tiempo diferente.

Capítulo 4

Definición del marco muestral

Todo procedimiento de muestreo probabilístico requiere de un dispositivo que permita identificar y ubicar a todos y cada uno de las unidades pertenecientes a la población objetivo, las cuales posteriormente participarán en el proceso de selección aleatoria que definirá la muestra. Este dispositivo se conoce con el nombre de **marco de muestreo**.

La mayoría de encuestas de hogares que son probabilísticas se caracterizan por usar marcos de muestreo de áreas (agregados cartográficos en todas sus formas). Aunque también es posible construir marcos de líneas telefónicas fijas y móviles. En general, sin esta herramienta no es posible realizar ningún procedimiento de muestreo probabilístico, y es por esto que la etapa de definir y alistar un buen marco de muestreo es tomada con bastante rigurosidad en las ONE.

I. El marco de muestreo

Como se verá en los capítulos posteriores, dependiendo de la naturaleza del marco de muestreo se pueden proponer diferentes tipos de diseños muestrales. Por ejemplo, cuando se dispone de un marco de elementos, se puede aplicar un diseño de muestreo de elementos; aunque, en algunas ocasiones se utilizan diseños de muestreo de conglomerados aunque se disponga de un marco de elementos. Si no se dispone de un marco de elementos (o es muy costoso construirlo) se debe recurrir a diseños de muestreo en conglomerados; es decir, que se utilizan marcos de conglomerados. Por ejemplo, al realizar una encuesta cuya unidad de observación sean las personas que viven en una ciudad, es muy difícil poder acceder a un marco de muestreo de las personas. Sin embargo, en una primera instancia, se puede tener acceso a la división cartográfica de la ciudad y así seleccionar algunas comunas, localidades, o barrios de la ciudad, para luego seleccionar a las personas en una segunda o tercera instancia. En el ejemplo anterior, las comunas, localidades, o barrios son un ejemplo claro de los conglomerados, que son agrupaciones de elementos que tienen la característica de aparecer naturalmente.

Cuando se dispone de listados de unidades, por ejemplo, el listado de empleados de una entidad, es posible aplicar un diseño de muestreo de elementos, realizar la correspondiente selección aleatoria y de acuerdo a ese mismo diseño realizar las estimaciones necesarias. Sin embargo, al realizar la planeación de una encuesta de hogares, es muy poco probable que se utilicen marcos de elementos, a no ser que el muestreo definido sea en dos fases: con una primera fase de selección de hogares y enlistamiento de personas o unidades, y una segunda fase de selección de personas o unidades. Por

ejemplo, el Instituto Nacional de Estadística y Censos (INEC) de Costa Rica realiza la Encuesta Nacional de Microempresas de los Hogares con base en la muestra de la Encuesta Nacional de Hogares (primera fase), en donde se identifican las actividades económicas de los respondientes y se enlistan los trabajadores autónomos. En una segunda fase se selecciona una submuestra con base en este marco de elementos. En general, se pueden listar dos tipos de marcos de muestreo; a saber:

- 1. **De Lista**: listados físicos o magnéticos, ficheros o archivos de expedientes que permiten identificar y ubicar a los objetos que participarán en el sorteo aleatorio.
- 2. De Área: mapas de ciudades y regiones en formato físico o magnético, fotografías aéreas, imágenes de satélite o similares que permiten delimitar regiones o unidades geográficas en forma tal que su identificación y su ubicación sobre el terreno sea posible.

Es una virtud del marco si contiene información auxiliar que permita aplicar diseños muestrales y/o estimadores que conduzcan a estrategias de muestreo más eficientes con respecto a la precisión de los resultados. O también si la información auxiliar¹ está clasificada de forma sistemática y conveniente. La información auxiliar discreta en el marco de muestreo permite la desagregación de la población objetivo en categorías o grupos poblacionales más pequeños. Por ejemplo, nivel socioeconómico, región, departamento, etc. Por otro lado, la información auxiliar continua, en forma de una o varias características de interés de tipo continuo y positivas, que esté altamente relacionada con la característica de interés permitirá mejorar la eficiencia de la estrategia de muestreo. Por otra parte, un marco de muestreo es defectuoso si presenta alguno o varios de los siguientes casos:

- 1. **Sobre-cobertura**: se presenta si en el dispositivo aparecen objetos que no pertenecen a la población objetivo. *No son todos los que están.*
- 2. **Sub-cobertura**: se da cuando algunos elementos de la población objetivo no aparecen en el marco de muestreo o cuando no se ha actualizado la entrada de nuevos integrantes. *No están todos los que son*.
- 3. **Duplicación**: se presenta si en el dispositivo aparecen varios registros para un mismo objeto. La razón más frecuente para la presencia de este defecto es la construcción no cuidadosa del marco a partir de la unión de registros administrativos de dos o más fuentes de información.

Estos defectos ocasionan errores en el cálculo de las expresiones que se utilizarán para generar las correspondientes estimaciones, generando sesgo, pérdida de precisión y, en algunos casos, que los resultados del estudio se pongan en entredicho. No obstante, una vez que se ha definido el marco de muestreo, este empieza un periodo de decaimiento de su calidad y envejecimiento, conllevando dificultades en la realización de las encuestas de hogares que lo utilizan. Es por esta razón que, a partir de la realización de los censos de población y vivienda, las ONE actualizarán sus marcos de muestreo.

En resumen, el marco de muestreo es cualquier dispositivo o mecanismo usado para obtener acceso observacional a la población de interés, para identificar y seleccionar una muestra, de manera que respete el esquema de muestreo probabilístico y para establecer contacto con los elementos seleccionados, de manera presencial, por correo postal, por correo electrónico, o mediante procedimientos automatizados como los sistemas de captura CAPI (Computer Assisted Personal Interviewing) o CATI (Computer Assisted Telephone Interviewing).

¹Toda información disponible a nivel poblacional o para todos y cada uno de los elementos del universo afecta directamente la estrategia empleada para obtener los objetivos de la investigación. Con respecto a la información auxiliar que pueda existir para cada elemento de la población es deseable que esté bien correlacionada con la variable de interés.

Por otro lado, recordando que la población objetivo constituye el conjunto de elementos sobre la cual se desea información y se requieren estimaciones exactas y precisas acerca de sus parámetros, entonces la población del marco es el conjunto de todos los elementos que son enlistados directamente como unidades en el marco o identificados mediante un marco más complejo, tal como un marco para selección en varias etapas. Además, los elementos son las entidades que componen la población y las unidades de muestreo son las entidades del marco muestral. Cuando no hay uno disponible, es posible construirlo. Luego, las siguientes características son deseables para un marco de muestreo:

- Que las unidades en el marco son identificados con un serial.
- Que cualquier unidad puede ser ubicada (dirección, teléfono).
- Que se pueda ordenar sistemáticamente (geografía, tamaño).
- Que contenga información adicional para cada unidad.
- Que especifique el dominio geográfico o socioeconómico al cual pertenece cada unidad.
- Que cada elemento de la población está presente sólo una vez.
- Que no contenga elementos que no estén en la población.
- Que todos los elementos de la población de interés estén en el marco muestral.

La calidad del marco puede ser medida mediante la relación que existe entre la población objetivo y la población del marco. Esto quiere decir que la población enmarcada y la población de interés no siempre van a coincidir plenamente.

En las encuestas de hogares que precisan de un marco de áreas para su realización, el proceso de selección sistemática de los hogares necesita contar con un marco de muestreo que sirva de vínculo entre los hogares y las unidades de muestreo de las primeras etapas y que permita tener acceso a la población de interés. Como lo afirma Gutiérrez (2016), el marco de muestreo más utilizado en este tipo de encuestas es de áreas geográficas que vinculan directamente a los hogares o personas con un listado de divisiones cartográficas completamente exhaustivas. Por esta razón, los diseños de muestreo de estas encuestas se apoyan en la aglomeración natural de los hogares en segmentos cartográficos, que a su vez están contenidos en agrupaciones mayores. ¿Cómo se aglomeran las personas y cómo podemos realizar un diseño de muestreo con base en esta forma de aglomeración? Pues bien, las personas se aglomeran en hogares, los cuales a su vez se aglomeran en comunidades más grandes: barrios, comunas, segmentos. Estas comunidades forman ciudades, veredas, centro poblados, etc. y la reunión de estas divisiones da como resultado el conjunto completo de unidades de interés en el país.

Por lo tanto, a pesar de que ningún país tiene a disposición una lista actualizada de todos los hogares junto con su ubicación e identificación, sí existe en todos los países listas de los segmentos cartográficos presentes en las zonas urbanas y rurales, que son actualizadas en cada censo. De esta forma, si se selecciona de forma probabilística una muestra de sectores y dentro de cada sector se selecciona de forma probabilística una muestra de hogares, entonces de forma indirecta estaremos seleccionando una muestra de hogares que puede representar la realidad de todo un país.

II. Los censos y su incidencia en los marcos de muestreo

Como se mencionó anteriormente, una característica esencial de los diseños de las encuestas de hogares es que la selección de las unidades finales de muestreo debe surtir varias etapas, de acuerdo a las agrupaciones definidas en los marcos de muestreo, que usualmente son marcos de área obtenidos de la división geográfica del país, región o municipio en áreas menores mutuamente excluyentes. Los

institutos de estadística en América Latina hacen grandes esfuerzos para mantener actualizados sus marcos de muestreo. Por ejemplo, la Encuesta Nacional de Hogares de Costa Rica utiliza un marco muestral construido a partir de los censos nacionales de población y vivienda de 2011 y corresponde a un marco de áreas en donde sus unidades son superficies geográficas asociadas con las viviendas. Este marco en particular permite la definición de UPM con 150 viviendas en las zonas urbanas y 100 viviendas en las zonas rurales. En general, el marco está conformado por 10461 UPM (64.5 % urbanas y 35.5 % rurales).

Gambino and Silva (2009) mencionan que, en la práctica, la consecución de los marcos de lista de lo hogares en la última etapa del muestreo puede tornarse difícil puesto que dentro del conglomerado no es obvio observar de manera exhaustiva los hogares, especialmente cuando la frontera del conglomerado es una línea imaginaria. Por ejemplo, en la mayoría de casos, en el sector urbano, la distinción entre dos conglomerados está demarcada claramente por las calles que conforman la ciudad o el centro poblado; sin embargo, en la ruralidad, no solamente los caminos existentes sirven para delimitar los conglomerados, sino que también los accidentes topográficos y las señales naturales se utilizan para este fin. De la misma manera, esta delimitación se torna compleja cuando han ocurrido cambios en la infraestructura del área y aparecen nuevas construcciones.

Observe que, en general, ante el estudio de un fenómeno social, las desagregaciones geográficas más amplias constituyen un interés natural para los usuarios de las encuestas; es así como los investigadores que planean las encuestas quisieran poder desagregar la información por las regiones geográficas más grandes, que a su vez tienen cierta independencia política y administrativa. Las estadísticas nacionales que se publican a partir de las encuestas de hogares cobran mayor relevancia a nivel de regiones, estados o departamentos. Este tipo de desagregaciones se conocen con el nombre de dominios de representación, que a su vez son agregaciones de los estratos de muestreo. Los diseños de las encuestas de hogares han ido evolucionando para permitir que este tipo de subpoblaciones tenga representatividad en la encuesta. Aunado a lo anterior, si la característica de interés con la cual se planea la encuesta hace que la distribución de la población sea altamente sesgada, como en el caso de los ingresos o gastos, es recomendable crear estratos de inclusión forzosa con las unidades más importantes en la población. Esta práctica asegura que el error de muestreo sea más bajo.

En promedio, los países de la región realizan los censos cada diez años, aunque en algunos casos este periodo se extiende de forma desafortunada. En este levantamiento masivo de información se enlistan todos los hogares del país, se enumeran todos los habitantes del país y se observan algunas variables de interés que servirán a su vez para asentar las bases de comparación de las cifras en los siguientes diez años. El periodo que existe entre la realización de dos censos se denomina periodo intercensal y en este se realizan encuestas de hogares de diferentes constructos económicos y sociales. Los Institutos Nacionales de Estadística (INE) utilizan las particiones geográficas y cartográficas generadas en el levantamiento del censo con el fin de seleccionar, mediante diseños en varias etapas, muestras de hogares. Comúnmente, estas particiones reciben el nombre de secciones cartográficas y están formadas por un número determinado de hogares contiguos. En adelante nos referiremos a estas particiones como unidades primarias de muestreo (UPM), la cuales en el área urbana, pueden ser manzanas o agregaciones de manzanas, y en área rural pueden ser veredas o sectores censales definidos de antemano.

Algunos países hacen uso de la información censal para definir una estratificación socio económica sobre los segmentos cartográficos del marco de muestreo utilizando para tal fin la información recolectada en el censo de población más reciente. Esta práctica representa una ventaja metodológica porque, en la mayoría de encuestas, los parámetros de interés tienen un comportamiento estructural

diferente en cada uno de los subgrupos poblacionales creados, tendiendo a tener una mayor precisión en la estimación de los parámetros de interés. Por ejemplo, a partir del censo, es posible crear un índice de condiciones de vivienda y/o bienestar (teniendo en cuenta las definiciones de las necesidades básicas insatisfechas o la pobreza multidimensional) para definir grupos de viviendas mutuamente excluyentes, que contengan viviendas parecidas dentro de ellos, pero que entre ellos sean muy disimiles. De esta forma, es posible estratificar los sectores cartográficos de todo un país y generar estimaciones más precisas de los indicadores sociales (como desocupacioón, pobreza, ingreso medio, etc.).

Para el caso de la *Gran Encuesta Integrada de Hogares* en Colombia, los criterios de estratificación forman dos grupos: el primero correspondiente a las 24 capitales junto con sus áreas metropolitanas y el segundo correspondiente al resto de cabeceras municipales, centros poblados y la ruralidad dispersa. Además, la encuesta también contempla criterios de estratificacion económica a nivel municipal como nivel de urbanización y estructura de la población, basada en la proporción de habitantes con necesidades básicas insatisfechas. De la misma manera, el diseño de la muestra maestra del Instituto Nacional de Estadística y Geografía de México contempla este tipo de estratificación basada en los indicadores generados con la información del Censo de Población y Vivienda 2010. Previo al proceso de estratificación sociodemográfica, fue necesario construir y seleccionar una serie de variables que lograran, en conjunto, separar el universo de UPM en agrupaciones que mejoraran las principales estimaciones de las diferentes encuestas usuarias del marco de muestreo (INEGI, 2012).

Ante la ausencia de un marco de muestreo de hogares y personas en los países de la región, el diseño de las encuestas de hogares se dice complejo puesto que involucra varias etapas de selección y estratificación. Por ende, los marcos de muestreo están conformados por unidades primarias de muestreo (UPM) que se definen como segmentos cartográficos individuales, como una agrupación de segmentos o incluso como una división de segmentos masivos. Por ejemplo, tomando en consideración el estrato urbano, en donde las UPM corresponden a manzanas (o agregaciones o particiones de manzanas), mientras que en el caso rural, las UPM corresponden a comunidades (o agregaciones o particiones de comunidades). En cualquier caso, la unidad de observación está constituida por las viviendas ocupadas particulares donde residen personas. En general, salvo en algunos países, las UPM no tienen el mismo tamaño dentro de los estratos; es decir no están constituidas por un número igual de viviendas. El caso es más evidente es la ruralidad, en donde podría ocurrir que una única UPM agrupe un conjunto de viviendas con demasiada heterogeneidad y una alta dispersión geográfica. Es así como es posible encontrar UPM con pocas viviendas o UPM con demasiadas viviendas. Esto constituye una desventaja técnica a la hora de establecer metodologías apropiadas para la recolección de la información primaria y además para la estimación de los errores de muestreo que se derivan de la encuestas de hogares y por esto algunos países están considerando la re-definición de las UPM como unidades con un número uniforme de viviendas.

Como se indicó anteriormente, es usual que tras el levantamiento de un nuevo censo se actualice el marco de muestreo con el que se seleccionarán las viviendas y hogares para todas las encuestas subsiguientes. Por la naturaleza de los censos, los INE deben recorrer la geografía de los países produciendo una nueva cartografía que derivará en la actualización de los marcos de muestreo. Por ejemplo, considere un país que cuente con un marco de muestreo que consta de diez mil UPM y, cada una de estas deberá ser clasificada por medio de una estratificación socioeconómica que estará basada en la información recolectada en el último censo de población y vivienda. Kish (1965, pág. 183) afirma que la selección de UPM con tamaño desigual acarrea algunos problemas

técnicos como que el tamaño de muestra final se convierte en una variable aleatoria, que depende de la probabilidad de selección de las UPM más grandes o más pequeñas. Lo anterior aumenta la incertidumbre en el costo final del operativo, pues si en una primera instancia se seleccionan UPM con pocas viviendas, será necesario volver a realizar un proceso adicional de selección de nuevas UPM para cumplir con la cuota de viviendas.

Con base en lo anterior, se esperaría que la actualización de la cartografía y de los marcos de muestreo se realizara mínimo cada diez años. Es importante que estas actualizaciones conlleven a una definición de los marcos de muestreo que permitan tener mayor fluidez en los procesos logísticos de selección de hogares y que induzcan una mejora en la precisión de las estimaciones de los parámetros de interés. Por ejemplo, una forma muy conveniente de abordar este desafío es creando UPM que contengan, en la medida de lo posible, un mismo número de viviendas y, de esta manera, mantener una distribución uniforme en cada estrato. Siguiendo el consejo de Valliant et al. (2013, pág. 212), si el equipo de planeación de la encuesta tiene la flexibilidad de definir las UPM, como usualmente es el caso en las encuestas de hogares, entonces las UPM definitivamente deberían estar conformadas por una cantidad igual de viviendas.

III. Construcción de las UPM

La definición del marco de muestreo para las encuestas de hogares responde básicamente a un objetivo: la definición de las unidades primarias de muestreo. En la búsqueda de la optimización de esta solución, es necesario responder una pregunta fundamental: ¿cuál debe ser el tamaño apropiado para las UPM? No es lo mismo definir las UPM como agregaciones de 20 hogares, que de 1000 hogares. Esta pregunta debe ser abordada, en principio, desde una perspectiva técnica, en donde confluyan diferentes perspectivas (de muestreo, logísticas, presupuestales, cartográficas). Por ejemplo, Valliant et al. (2013, Tabla 9.1) mencionan el caso en el que, para diferentes definiciones del tamaño de las UPM, se evidencian pérdidas o ganancias significativas de eficiencia en los estimadores de las encuestas de hogares.

De esta manera, un primer acercamiento a la definición de las UPM es establecer la unión o colapso de los mismos lugares poblados, sectores o secciones cartográficas, o áreas de empadronamiento vinculados a los censos de población y vivienda, como insumo para la creación de las unidades primarias de muestreo. Como se discutió anteriormente, el objetivo del marco es tratar de proveer la mejor información de en la selección de las unidades, reduciendo la variabilidad de la estrategia de muestreo. Por lo tanto, después de revisar minuciosamente los conjuntos de datos censales y la información cartográfica del censo en los niveles básicos (en adelante, y sin pérdida de generalidad, lo llamaremos secciones censales) es necesario construir un algoritmo que permitía crear UPM desde la cartografía, basado en uniones contiguas de secciones censales, que respeten los siguientes principios:

- La conformación de las Unidades Primarias de Muestreo (UPM) excluye todas las estructuras que no contienen hogares particulares ocupados.
- Las nuevas UPM inducidas por la unión de sectores censales deben estar contenidas de manera en un sólo municipio del país; es decir no podrán definirse UPM que pertenezcan a dos o más municipios.
- De la misma forma, debe haber una diferenciación estricta en las áreas urbanas y rurales.
 Ninguna UPM podrá estar definida en ambas áreas.

Nótese que siempre será necesario realizar una actualización de las viviendas con hogares particulares ocupados en las UPM seleccionadas en la primera etapa de muestreo. Esta actualización dará lugar al cálculo de las probabilidades de inclusión de segunda etapa, sin la cual no se podrían calcular factores de expansión que induzcan el insesgamiento de los estimadores utilizados en las encuestas de hogares. Dado que este proceso es sistemático y debe ser realizado a lo largo del periodo intercensal, contar con UPM demasiado grandes (como lo pueden llegar a ser los sectores o segmentos censales, las áreas de empadronamiento o los lugares poblados) no es una alternativa viable presupuestariamente puesto que se incrementarían los costes asociados a la actualización y no habría uniformidad en los procesos de muestreo.

Usualmente el tamaño de las UPM en América Latina ronda el rango de 75 a 225 viviendas. Para que exista una mayor eficiencia (logística y estadística) a la hora de realizar un muestreo en dos etapas, se recomienda que las UPM conformadas tengan algún grado de explicación con respecto a las características de interés que se quieren medir en la población. Por consiguiente, es necesario revisar los tamaños de estas agregaciones y su comportamiento en términos del coeficiente de correlación intraclase (ICC). Como se puede notar en Cochran (1977) y Gutiérrez (2016), en la construcción de las UPM, el parámetro predominante que se debe considerar es ICC, que para la realización de encuestas con selección en múltiples etapas puede ser aproximado mediante la siguiente expresión (Valliant et al., 2013)

$$ICC = \frac{B^2}{B^2 + W^2}$$

En donde B^2 es la varianza relativa de los totales de la característica de interés entre las UPM y W^2 es la varianza relativa de los totales de la característica de interés dentro las UPM. El ICC es una medida de homogeneidad entre las variables que se desean medir y la conformación de las UPM. Además de afectar la variabilidad del estimador en muestreos multietápicos, esta medida determina el tamaño de muestra necesario para satisfacer los requerimientos de precisión en una encuesta de hogares. En algunos textos clásicos de muestreo, el ICC también es denotado como ρ .

La magnitud del ICC está directamente ligada al tamaño de las UPM. Por ende, en la conformación del marco de muestreo, es necesario ejecutar un algoritmo de control de tamaño de las UPM de tal forma que el ICC sea satisfactorio y coherente en los indicadores censales disponibles, como por ejemplo las dimensiones del índice de necesidades básicas insatisfechas (NBI), los indicadores del mercado de trabajo, los indicadores demográficos, entre otros.

En general, cuando el tamaño de las UPM es muy pequeño, las características de los elementos dentro de las UPM serán muy similares (sobre todo para indicadores socioeconómicos); por otro lado, si el tamaño de las UPM es demasiado grande, las características de los elementos serán más heterogéneas. Nótese que la disparidad en los tamaños de las UPM redunda en que los totales de las características de interés serán muy disimiles entre las UPM, y teniendo en cuenta la forma funcional de la varianza del estimador clásico, se generará más varianza en el componente B^2 , por ende el ICC será más grande y se perderá precisión en el muestreo multietápico.

Valliant et al. (2013) afirman que la práctica estándar es combinar las secciones pequeñas o grupos de bloques cercanos geográficamente para que todas las UPM tengan al menos un número mínimo de personas. Dado que la variación en los tamaños de las UPM tiene un efecto marcado en el ICC (medida necesaria para diseñar una muestra), y que en el caso de las encuestas de hogares se puede tener una cierta flexibilidad en la formación de estos grupos, entonces las UPM deberían

conformarse con un número casi igual de viviendas. En general el proceso de construcción de las UPM debería tener en cuenta las siguientes características:

- 1. *Límites y contenencia*, pues las UPM deben estar contenidas dentro de límites departamentales, municipales, y estar diferenciadas por su naturaleza urbana o rural.
- 2. Tamaño y extensión, pues se debe procurar que las UPM estén dentro de rangos predefinidos en términos del número de viviendas y personas, respetando los límites geográficos, y que su extensión en kilómetros cuadrados no sea superior a un umbral predefinido para el operativo de campo.

De esta forma las cargas de trabajo (en los procesos de actualización, supervisión y levantamiento de la información primaria) serán uniformes. Además las estimaciones resultantes serán óptimas en términos de eficiencia y precisión estadística, puesto que inducirán pesos de muestreo uniformes que minimizarán la varianza de las estimaciones directas. A partir de la información contenida en los censos de población y vivienda, diferentes variables se podrían utilizar para evaluar la idoneidad de las UPM con el coeficiente de correlación intraclase y el efecto diseño DEFF. Por ejemplo, para evaluar la idoneidad de las UPM es posible analizar las siguientes variables agrupadas en los siguientes constructos:

- 1. Variables demográficas: grupos quinquenales de edad, sexo.
- 2. Necesidades básicas insatisfechas y sus dimensiones (acceso a la vivienda, acceso a servicios sanitarios, acceso a educación, situación en la ocupación y capacidad económica).
- 3. Variables de fuerza laboral: población en edad de trabajar, población económicamente activa, desocupados y ocupados.

En general, las medidas de correlación intraclase deben ser coherentes con las experiencias locales anteriores o con experiencias regionales que demuestren que el algoritmo de colapso y/o escisión de los sectores censales sí proporcione como resultado nuevas UPM que conserven las propiedades explicativas de los grupos desde el censo, con la ventaja de controlar su tamaño en viviendas.

Hansen et al. (1953) encontraron un efecto marcado en el tamaño de las UPM y la magnitud del ICC. Entre más pequeñas sean los conglomerados mayor será el ICC, entre más grandes sean los conglomerados menor será el ICC. Esta relación tiene una repercusión directa en la forma en que se llevarán a cabo las encuestas en el periodo intercensal. Si se crean UPM demasiado pequeñas, se precisará de un tamaño de muestra de UPM mucho mayor, y por ende un mayor coste logístico y económico. Si se crean UPM demasiado grandes, se precisará de un menor tamaño de muestra, pero con UPM inmanejables en su dimensión, que acarrearán operativos de actualización, supervisión y levantamiento demasiado costosos, junto con una pérdida grande de precisión estadística.

Para ejemplificar la relación entre el ICC y el tamaño de muestra, considere los siguientes escenarios:

- 1. Si el ICC es cercano a cero, las UPM serán demasiado heterogéneas por dentro y muy homogéneas entre, por tanto se necesitará de muy pocas UPM para tener una inferencia precisa. Esto quiere decir que hay mucha dispersión dentro de las UPM, pero a la vez hay muy poca variación entre ellas. En el caso que el ICC sea idéntico a cero, sólo se necesitaría de una UPM en la muestra para tener una estimación precisa, con un submuestreo exhaustivo de todas las unidades dentro de la UPM (puesto que todas las unidades dentro de la UPM serán diferentes).
- 2. Si el ICC es cercano a uno, las UPM serán demasiado homogéneas por dentro y muy heterogéneas entre, por tanto se necesitará de una muestra grande de UPM para tener una

inferencia precisa. Esto quiere decir que hay poca dispersión dentro de las UPM, pero a la vez hay mucha variación entre ellas. En el caso que el ICC sea idéntico a uno, para obtener una estimación precisa, se necesitaría de una muestra censal de UPM, en donde el submuestreo sea de una sola unidad (puesto que todas las unidades dentro de la UPM serán idénticas).

En resumen, la construcción de las UPM es un proceso que requiere de la más alta disposición de capacidades para que todas las operaciones estadísticas del periodo intercensal sean balanceadas en presupuesto y esfuerzo logístico. La función objetivo de este proceso es el ICC que, como se verá en los capítulos posteriores, determina el tamaño de muestra y la precisión de la inferencia.

Actualización continua del marco de muestreo

Duncan and Kalton (1987, pág. 105) afirman que la composición de la población de interés cambia durante el tiempo, puesto que lo individuos nacen, mueren, migran, e incluso pasan a ser parte de organizaciones que hacen que pierdan su estatus² de la unidad de observación. De igual forma, se debe tener en cuenta los nuevos hogares que pueden crearse o desintegrarse.

La realidad de los países latinoamericanos muestra una migración importante desde las áreas rurales hacia las áreas urbanas y esto repercute en una desactualización constante del marco de muestreo que fue construido varios años atrás. Este problema de actualización del marco lo enfrentan todos los países de la región y puede ser abordado a partir del ajuste constante a los pesos de muestreo de las UPM cada vez que se realiza un operativo de campo en donde haya evidencia de un cambio en el número de hogares para las UPM seleccionadas en la muestra de la primera etapa.

Como las UPM se seleccionan con un muestreo proporcional al tamaño de la UPM y las viviendas se seleccionan en campo mediante un muestreo simple (aleatorio simple o sistemático), previa actualización del empadronamiento y conteo de viviendas; entonces esta actualización podría usarse para reajustar los pesos de las UPM en los nuevos levantamientos. De esta forma se reflejaría el cambio que tiene la población (dinámica, por definición) de interés. Sin embargo, se recomienda no modificar las probabilidades de selección de las UPM para garantizar el insesgamiento de los estimadores de muestreo.

Por ejemplo, si en un país se define un esquema de muestreo que selecciona 12 viviendas dentro de cada una de las UPM seleccionadas en la primera etapa, entonces la probabilidad de selección de la i-ésima UPM U_i estaría dada por

$$\pi_{Ii} = Pr(U_i \in s_I) = n_I \frac{n_i}{N_i} = n_I \frac{12}{N_i}$$

En donde n_I hace referencia al número de UPM que se seleccionarán en la primera etapa, N_i representa el número de viviendas en la UPM y $n_i = 12$ es el número de viviendas seleccionadas dentro de la UPM. Ahora, si el número de viviendas se actualizara en la UPM, la probabilidad de inclusión cambiaría, lo cual generaría sesgo en la estimación. Por ende, las probabilidades de inclusión de las UPM deberían seguir estables entre los ciclos censales. El problema de subcobertura puede abordarse con el post-ajuste de los factores de expansión en la etapa de estimación.

²Nótese que la población objetivo de la mayoría de encuestas de hogares en la región se refiere a la población civil no institucionalizada, que excluye miembros de organizaciones militares, personas en cárceles, hospitales, etc.

Capítulo 5

Metodologías de estratificación

Para aumentar la eficiencia de la inferencia en las encuestas de hogares, es de particular interés que el marco de muestreo permita clasificar a las UPM de acuerdo con su nivel socio-económico con el fin de poder realizar selecciones independientes en cada categoría de la clasificación. De esta forma se garantiza la homogeneidad dentro de los grupos y se disminuye la incertidumbre de la estimación. Este proceso se conoce con el nombre de estratificación.

En la literatura especializada, es posible encontrar varias metodologías que clasifican a cada una de las UPM del marco y a la vez disminuyen la varianza de los estimadores de muestreo. Este capítulo realiza un resumen no exhaustivo de las principales técnicas utilizadas por los INE de la región, se proponen algoritmos para encontrar la mejor estratificación basada en los datos de los censos y se ilustran los procedimientos computacionales necesarios para implementar esta metodología. Si los estratos están conformados por unidades homogéneas que, a su vez, crean categorías heterogéneas entre sí, entonces se dice que el proceso de estratificación es eficiente y el error de muestreo se verá reducido significativamente.

Luego de definir las UPM en el marco de muestreo es necesario realizar una agrupación de éstas de acuerdo con sus características sociodemográficas agregadas con el fin de obtener una partición que conforme grupos homogéneos y que induzcan una mayor precisión en la ejecución de las estrategias de muestreo que se propongan dentro de la planificación de las encuestas de hogares que realizan los INE. Es importante señalar que se debe estudiar una multitud de escenarios de estratificación y para encontrar una óptima clasificación de las unidades primarias de muestreo, puesto que esta partición será utilizada en todas las encuestas de hogares que utilicen este marco de muestreo en el periodo intercensal.

En síntesis, los procesos que intervienen en la estratificación del marco de muestreo son los siguientes:

- 1. Ejecución de múltiples escenarios de estratificación de las UPM utilizando información agregada del censo¹.
- 2. Para cada método señalado anteriormente realizar particiones de 3, 4, o 5 grupos a nivel nacional y evaluar la pertinencia de realizarlo en las áreas rural y urbana de forma independiente.

¹Aunque también es posible añadir información geoespacial, catastral o de cualquier índole si se tiene una cobertura completa a nivel de las UPM.

3. A raíz de las pruebas y los escenarios estudiados, evaluar su efectividad mediante una única medida de calidad, definida como el DEFF generalizado y escoger el mejor escenario en términos de esta medida en conjunción con la viabilidad logística con respecto al número de particiones.

Este capítulo presenta los diferentes procesos utilizados en el proceso de estratificación; establece la forma de agregación de las variables a nivel de las UPM para mantener una estructura uniforme que permita sacar un mejor provecho a la discriminación entre sus estructuras y, por ende, una mejor clasificación en los estratos; resume de forma no exhaustiva algunas de las metodologías usadas para la estratificación de marcos de muestreo (teniendo en consideración dos enfoques: univariados sobre medidas de resumen, y multivariados sobre toda la matriz de estratificación); presenta los criterios de evaluación de los métodos de estratificación; e ilustra los resultados finales de la estratificación de un marco de muestreo exponiendo las consideraciones más importantes.

I. Dimensiones estructurales en el marco de muestreo

El proceso de definición de un diseño de muestreo para las encuestas nacionales que necesita un país para responder a sus necesidades de información con miras en la elaboración de sus políticas públicas involucra varios procesos que hacen uso de los censos nacionales de población y el uso de una cartografía detallada del territorio nacional.

Como se indicó en el capítulo anterior, un aspecto fundamental para el diseño y desarrollo de encuestas de hogares involucra la definición de las UPM, definidas como unidades cartográficas que dividen el territorio nacional y permiten llevar a cabo los procesos de levantamiento de información y de trabajo de campo de la manera más idónea posible, y que además se construyen con el fin de facilitar la obtención de estimaciones precisas y confiables de los indicadores y parámetros de interés que requieren los tomadores de decisiones y expertos en políticas públicas.

Dependiendo de la planificación de las diferentes encuestas, las UPM pueden dar lugar a unidades secundarias de muestreo o permitir la selección directa de las unidades de análisis como las viviendas, los hogares y/o las personas. Independientemente de las unidades de muestreo y las jerarquías que se definan para llevar a cabo la implementación del diseño de muestreo para las encuestas, es fundamental llevar a cabo un proceso de estratificación de las UPM en grupos que sean en lo posible lo más homogéneos en cuanto a sus características socioeconómicas y de bienestar y que definan una partición del territorio nacional (Gutiérrez, 2016).

Estos grupos se denominan en la literatura estadística como estratos y su unión debe cubrir todo el territorio nacional. Como estos grupos determinan una partición, dos estratos cualesquiera deben ser mutuamente excluyentes. Los INE utilizan las particiones geográficas y cartográficas generadas en el levantamiento del censo con el fin de seleccionar muestras de hogares, mediante la ejecución de diseños de muestreo probabilísticos, estratificados y en varias etapas. En particular, para aumentar la eficiencia de la inferencia en las encuestas de hogares, es de particular interés que el marco de muestreo permita clasificar a las UPM de acuerdo con su estructura socioeconómica, con el fin de poder realizar selecciones independientes en cada categoría de la clasificación.

Al garantizar la homogeneidad dentro de los estratos se disminuye la incertidumbre de la estimación y se minimizan los errores de muestreo que se obtienen al realizar encuestas con procedeimientos de muestreo probabilístico. En el caso particular de los países latinoamericanos, este proceso se lleva a cabo haciendo uso de la información censal a nivel de personas, hogares y viviendas, en diferentes

constructos o dimensiones asociadas a la calidad de vida y bienestar (demografía, características de la vivienda, tenencia de enseres y servicios públicos entre otros). Las variables que se definan sobre estos constructos son agregadas partiendo de variables binarias que toman el valor de uno, si el fenómeno en cuestión está asociado de forma positiva a mejores condiciones socioeconómicas, y cero, en cualquier otro caso. Por ejemplo:

- El acceso del hogar a una conexión de internet puede ser una variable de interés en la estratificación puesto que discrimina entre los hogares con mejores condiciones de bienestar. En este caso, la variable se define como uno (1) si el hogar dispone del servicio de internet y cero (0) si el hogar no dispone de dicho servicio.
- La materialidad de los pisos, paredes y techos también pueden ser variables importantes en la estratificación de las UPM. Mejores materiales se asocian a una mayor capacidad económica y mejores condiciones habitacionales. Estas variables se definirán como uno (1) si la vivienda no tiene materiales precarios y cero (0) en otro caso.

El proceso anterior se realiza basado en referentes internacionales de calidad de vida y en un análisis exploratorio de datos de las diferentes variables candidatas a participar en el proceso de estratificación. En primer lugar, es necesario tomar en consideración que la estratificación que se pretende realizar debe ser llevada a nivel de las UPM. Esto implica que una vez que las UPM estén categorizadas en algún estrato, todos sus componentes también estarán clasificados en la misma categoría; por consiguiente, las personas, los hogares y las viviendas de la UPM pertenecerán al estrato en el cual la UPM fue clasificada.

Con la información del censo se deben seleccionar y definir las variables que estén relacionadas directamente con los fenómenos que se estudiarán en las diferentes encuestas de hogares a lo largo del periodo intercensal. Una vez construidas las UPM, se calculan los agregados de las variables seleccionadas en las dimensiones observadas desde los censos, que por lo general son las siguientes:

- Demografía y estructura de la población: sexo, edad, parentesco, origen extranjero, pertenencia a grupos indígenas, número de hijos, número de dependientes, etc.
- Educación: analfabetismo, asistencia escolar, años de estudios, grado de escolaridad, etc.
- *Mercado de trabajo*: población en edad de trabajar, pertenencia a la fuerza de trabajo por sexo, condición de ocupación por sexo, rama de actividad, etc.
- Características de la vivienda: tipo de vivienda, materiales de construcción, hacinamiento, equipamiento, etc.
- Acceso a servicios básicos: fuente de agua, alcantarillado, acceso a salud, acceso a seguridad social, etc.
- Necesidades básicas insatisfechas (NBI) o pobreza multidimensional: viviendas con hacinamiento crítico, servicios inadecuados, alta dependencia económica, niños en edad escolar que no asisten a la escuela, precariedad en el aseguramiento en salud, entre otras.

La caracterización de estas dimensiones lleva a clasificar a las UPM en el marco. Por ejemplo, en la dimensión demográfica, es común que las UPM con mayor número de personas que se identifican como indígenas o pertenecientes a alguna etnia se relacionen con menores niveles de calidad de vida. De la misma manera, con los recientes fenómenos migratorios en la región, hay evidencia empírica de que las UPM que agrupan a extranjeros venidos de otros países latinoamericanos están relacionadas con menores condiciones de bienestar. Asimismo, las UPM con un mayor porcentaje de niños en la primera infancia y con madres cabeza de familia generalmente se asocian con dificultades en su calidad de vida.

De la misma manera a nivel de educación, las UPM con mayores tasas de analfabetismo (que por lo general están en las áreas rurales), y con niños que no asisten a la escuela se asocian a menores condiciones de bienestar; mientras que las UPM que tienen un mayor porcentaje de población con estudios de educación superior (que por lo general se encuentran en las áreas urbanas de las ciudades grandes) se asocian con mejores condiciones de bienestar.

En la dimensión ocupacional, las UPM rurales concentran una alta proporción de población ocupada que no necesariamente muestra mejores condiciones de vida. Por otra parte, las UPM que tienen una mayor incidencia de población desocupada y/o mayor proporción de personas dependientes (personas de 0 a 15 años o mayores de 65 años) pueden relacionarse con peores condiciones de vida.

Con respecto a las características de la vivienda, está bien documentado que las UPM con alto porcentaje de viviendas cuyos materiales de construcción de paredes, techos y pisos es precario se asocian con menores condiciones de bienestar y por lo general se presentan con mayor incidencia en las áreas rurales y en las áreas marginales de las zonas urbanas. De la misma manera las UPM que concentran viviendas con hacinamiento (por ejemplo, si el número de personas del hogar sobre el número de cuartos es mayor a tres) o con acceso inadecuado a las fuentes de agua potable, o con servicios sanitarios y de eliminación de aguas grises deficientes están asociadas a un menor bienestar socioeconómico.

II. Información a nivel de UPM

Cabe resaltar que, tomando en cuenta la información recolectada en el censo, es posible también clasificar a las personas o a los hogares en una primera instancia para después agregarlos hasta llegar a una clasificación única de la UPM; sin embargo, en la práctica este proceso puede resultar un poco más complejo y no son claras sus ventajas. Por lo anteriormente mencionado, este capítulo estará enfocado en la clasificación de las UPM a partir de una matriz de información a nivel de esta misma agregación.

Debido a que las UPM tienen, en estricto rigor, tamaños diferentes, la escala y el nivel en el que se midan los indicadores puede afectar los procesos de clasificación. Luego, si la matriz de información con la cual se realiza la estratificación se construye con base en el número de personas (con determinadas características) dentro de la UPM, al no tener en cuenta el tamaño de ésta, es muy probable que las metodologías de estratificación no logren agrupar de forma homogénea a las UPM. Por ejemplo, asuma que hay dos UPM con tamaño 100 y 300 hogares, que agrupan a 200 y 400 personas en la fuerza de trabajo, y además suponga que una de las variables de la matriz de información se define como el número de personas ocupadas. A su vez, asuma que la primera UPM pertenece a un sector acaudalado y la segunda UPM pertenece a un sector marginal. Es posible que el número de personas ocupadas en ambas UPM sea de 150 y que por esta razón queden erróneamente clasificadas en el mismo grupo. Por ende, definir la matriz de información en términos relativos (porcentaje de ocurrencia de cada variable) es una mejor alternativa para que el agrupamiento esté controlado por el tamaño de la UPM y supeditado únicamente a cambios estructurales en los constructos de medición del censo.

Por último, una vez que se ha definido el conjunto de variables que entrarán en la matriz de información, es necesario verificar que todos los indicadores de esta matriz apunten hacia el mismo horizonte del constructo censal. Es decir, que **todos** los indicadores estén expresados en términos de acceso al bienestar de cada uno de los constructos. Además, es necesario realizar un proceso

de refinamiento sobre esta matriz para eliminar aquellas variables que puedan estar altamente correlacionadas con el resto de las variables o que puedan expresarse como combinación lineal de otras variables. De esta manera, se evitan los problemas de multicolinealidad y se asegura una estratificación parsimoniosa. Al final se debe contar con una matriz de información \mathbf{X} compuesta por P columnas (variables de estratificación), y N_I filas (número de UPM en el marco de muestreo); en donde cada fila de la matriz de información representará la i-ésima observación de las UPM a nivel censal para cada una de las P variables.

La teoría estadística ha definido que la mejor estratificación es aquella que minimice los errores de muestreo de los estimadores, expresados en forma de varianzas o errores estándar. Además, una particularidad de los procesos de estratificación es que las varianzas de estos estimadores dependen a su vez de la variación de los microdatos observada en el censo. Sin embargo, lo que podría resultar ser una estratificación óptima para un indicador tal vez sea, al mismo tiempo, una estratificación ineficiente para otras indicadores Más aun, sabiendo que no todas las variables de interés que se observarán en las encuestas durante el periodo intercensal han sido medidas y observadas en el censo, se debe estudiar muy bien, por medio del estudio de numerosos escenarios, qué estratificación utilizar.

Hay un entendimiento tácito en todos los países de la región, repaldado en mayor o menor grado por evidencia empírica, de que la mayoría de los fenómenos sociales que se observan en las encuestas de hogares están supeditados a la distribución de la población en las UPM. Por ejemplo, si lo que se quiere medir es la informalidad en el mercado de trabajo, seguramente nos encontraremos con que este fenómeno está mucho más presente en aquellas UPM marginales, en donde también estarán presenten otros fenómenos como menos años de educación, menores tasas de acceso a la salud, menores ingresos y gastos, mayores tasas de embarazo adolescente, entre otros. De esta forma es necesario analizar las relaciones e incidencias de cada variable incluida. Por ejemplo:

- Analizar si la proporción de techos y paredes adecuadas se encuentra altamente correlacionada con la proporción de pisos adecuados.
- Tener en cuenta si la proporción de extranjeros es muy poco frecuente y sólo aparecen en algunas UPM muy específicas; en ese caso se recomendaría excluir esta variable dada su falta de discriminación.
- Analizar si la proporción de hogares con computadora y lavadora se correlacionan muy bien con la tenencia de internet y refrigerador, por lo cual estas variables no se considerarían en la matriz de estratificación.
- Evaluar si la tenencia de estufa y radio presentan indicadores muy altos a lo largo de las UPM y no incorporan capacidad de discriminación en el proceso de estratificación.

Este análisis exhausitvo de las características poblacionales indica que existe una alta correlación entre la UPM que se habita y la incidencia de fenómenos sociales y económicos. Por lo tanto, los ejercicios de estratificación que se deben estudiar tendrán una alta consistencia interna, de tal manera que al escoger la mejor estratificación se garantiza que los INE dispondrán de una clasificación óptima en el periodo intercensal para todas las encuestas de hogares que se ejecuten.

En general, hay dos grandes escenarios que deben ser revisados al momento de proponer una estratificación: univariados (sobre una medida de resumen de la matriz de información) y multivariados (sobre todas las variables de la matriz de información). Para cualquiera de estas, se recalca que el objetivo es encontrar la mejor partición que asegure que la varianza de los estimadores de muestreo sea mínima. A continuación, se presentan algunas técnicas que se pueden considerar y que además están disponibles en el software estadístico R mediante las librerías stratification (Baillargeon and Rivest, 2011) y SamplingStrata (Barcaroli, 2014). En ambos casos existe documentación disponible acerca de cómo utilizar las funciones de estratificación.

III. Metodologías univariadas sobre medidas de resumen

Es bien sabido que la mejor estratificación para una variable de interés es aquella que nace de su propia variación. Durante muchos años, se desarrollaron técnicas de estratificación sobre una sola variable de interés que dejaban de lado el carácter multipropósito de cualquier encuesta de hogares. Por esta razón, se sugiere partir de la matriz de información y resumir la variación y las correlaciones entre variables mediante alguna técnica multivariada de reducción de datos, como componentes principales, análisis factorial, o modelos no lineales. Como la matriz de información está en escala de porcentajes, es posible que la variabilidad recogida por la medida de resumen sea alta.

Por ejemplo, si se utiliza la técnica de componentes principales, entonces se tomaría como medida de resumen el primer componente, que resulta ser función del vector propio asociado al mayor valor propio de la matriz de covarianzas asociada a la matriz de información. Por otro lado, si se utilizara un análisis factorial confirmatorio, la medida de resumen podría ser el eje principal con la carga factorial más alta. La interpretación de estas medidas de resumen es una parte importante en la aplicación de las técnicas de estratificación. Nótese que la matriz de información está construida por cinco constructos censales (demografía y estructura de la población, educación, mercado de trabajo, características de la vivienda y acceso a servicios básicos) que deberían ser resumidos en una medida de bienestar de la UPM, que a su vez debe tener sentido en cuanto a la relación (o contribución) de las variables al componente o factor. En adelante, se utilizará la siguiente notación para referirse a la medida de resumen como función de todas las variables incorporadas en la matriz de información:

$$y = f(x_1, \dots, x_P)$$

Nótese que se esperaría que esta variable de resumen, al estar definida como una medida de bienestar sobre las UPM, tuviera un comportamiento sesgado, tal como se puede observar en la figura 5.1. Por ende, si esta característica es altamente sesgada, puede ser recomendable crear un estrato de inclusión forzosa con estas unidades. Esta práctica asegura que el error de muestreo para este estrato sea nulo. A continuación se enumeran algunas técnicas de estratificación comúnmente utilizadas en la práctica estadística.

Partición en cuantiles (Q)

Este método divide la población de UPM en grupos creados a partir de la división en intervalos regulares de la distribución de la medida de resumen. Los cuantiles más usados son los cuartiles (que dividen la población en cuatro grupos), los quintiles (que dividen la población en cinco grupos) y los deciles (que dividen la población en 10 grupos); sin embargo, con los propósitos de estratificación, también es útil considerar la partición en terciles (que dividen la población en tres grupos).

Figura 5.1: Histograma de la medida de resumen (y) sobre las UPM

Método de raíz de frecuencia acumulada (DH)

Dalenius and Hodges (1959) propusieron esta técnica de estratificación basada en la raíz cuadrada de las frecuencias acumuladas de la medida de resumen sobre las UPM. Esta técnica es exacta y no requiere de algún procedimiento iterativo. La idea principal de esta técnica es encontrar grupos que minimicen la siguiente función:

$$D = \sum_{h=1}^{H} W_h \sqrt{S_{y_h}^2}$$

En donde $W_h = N_h/N$ (h = 1, ..., H) es el tamaño relativo del estrato h y $S_{y_h}^2$ es la varianza de la medida de resumen en el estrato h.

Estratificación óptima (LH)

Lavallée and Hidiroglou (1988) propusieron por primera vez la construcción de una estratificación óptima para poblaciones de encuestas reales, basada en la minimización de la siguiente expresión ligada a la varianza de una estrategia de muestreo estratificada.

$$\sum_{h=1}^{H-1} \left(\frac{N_h}{N}\right)^2 \left(\frac{1}{(n-N_H)a_h} - \frac{1}{N_h}\right) S_{x_h}^2$$

En donde N_h es el número de UPM en el estrato h, n es el tamaño de muestra de las UPM, N es el número de UPM en el marco de muestreo, $S_{x_h}^2$ es la varianza de la medida de resumen en el estrato h. Finalmente a_h es la regla de asignación para el tamaño de muestra, dada por la siguiente relación:

$$a_h = \frac{\gamma_h}{\sum_h \gamma_h}$$

En donde, tomando en cuenta que \bar{X}_h es la media de la medida de resumen en el estrato h, entonces, según (Baillargeon and Rivest, 2011), γ_h es proporcional al tamaño de muestra n y está definida por:

$$\gamma_h = N_h^{2q_1} \times \bar{X}_h^{2q_2} \times S_{x_h}^{2q_3}$$

Por tanto, dado que $n_h = n \times \gamma_h$, si se quisiera una estrategia de muestreo que asigne el tamaño de muestra de manera proporcional a cada uno de los estratos, entonces la regla de asignación debería estar determinada por

$$\mathbf{q} = (q_1, q_2, q_3)' = (0.5, 0, 0)'$$

La asignación de Neyman corresponderá con $\mathbf{q}=(0.5,0,0.5)'$; mientras que la asignación de potencia con exponente 0.7 estará dada por $\mathbf{q}=(0.35,0.35,0)'$. Los detalles técnicos de estos tipos de asignación pueden ser encontrados en Gutiérrez (2016).

La optimización de la función objetivo puede ser llevada a cabo de diferentes formas. En efecto, Lavallée and Hidiroglou (1988) utilizaron un algoritmo de optimización (Sethi) para encontrar los valores óptimos. Baillargeon et al. (2007) definen los pasos necesarios para implementar el procedimiento basado en el algoritmo de Sethi. Asimismo, Kozak (2004) definió un algoritmo iterativo mediante arranques aleatorios para optimizar el proceso de minimización de esta técnica de estratificación.

Estratificación geométrica (GH)

Utilizando las técnicas de estratificación mencionadas anteriormente, algunos autores se percataron de que, para poblaciones de UPM con medidas de resumen sesgadas, las varianzas relativas (coeficientes de variación) de la medida de resumen en cada estrato eran similares; es decir:

$$\frac{S_{x_1}}{\bar{X}_1} \cong \frac{S_{x_2}}{\bar{X}_2} \cong \cdots \cong \frac{S_{x_H}}{\bar{X}_H}$$

Gunning and Horgan (2004) tomaron esta evidencia en consideración y desarrollaron este método con el objetivo de que los coeficientes de variación de la medida de resumen tiendan a ser iguales dentro de los estratos y, de esta forma, encontraron que los límites que definían estos grupos estaban conformados en progresión geométrica. Siendo X la variable que contiene la información de la medida de resumen para todas la UPM del marco de muestreo, entonces los límites de los estratos estarán dados por la siguiente expresión:

$$b_h = \min(X) \left(\frac{\max X}{\min X}\right)^{h/L}; \qquad h = 1, 2, \dots, H - 1.$$

Es posible encontrar que los coeficientes de variación de los estratos conformados por estos límites son equivalentes y por ende, este método es óptimo para encontrar mejores formas de estratificar teniendo en cuenta como función objetivo la variación relativa dentro los estratos.

IV. Metodologías multivariadas sobre la matriz de información

Partiendo de la matriz de información \mathbf{X} a nivel de las UPM, la cual contiene N_I filas y P columnas, es posible considerar algunos procedimientos que no necesitan de la reducción a una sola dimensión, sino que admiten tantas dimensiones como indicadores definidos en las columnas de \mathbf{X} . Teniendo en cuenta que en el periodo intercensal se realizarán encuestas que miden variables que están fuertemente ligadas a las observadas en el censo, entonces encontrar una estratificación que sea óptima para todo el conjunto de variables de la matriz de información asegurará una partición óptima para todas las encuestas realizadas en el periodo intercensal. Las siguientes metodologías permiten optimizar conjuntamente la eficiencia de la estratificación.

K-medias de Jarque (KmJ)

Jarque (1981) propuso utilizar una versión modificada del algoritmo de K-medias (Macqueen, 1967), cuyo objetivo es la minimización de la siguiente función de distancia:

$$\sum_{h=1}^{H} \sum_{k \in U_h} (\mathbf{x}_k - \bar{\mathbf{x}}_h)' \mathbf{\Lambda}^{-1} (\mathbf{x}_k - \bar{\mathbf{x}}_h)$$

En donde \mathbf{x}_k corresponde a la medición de las P variables de la matriz de información en la k-ésima UPM, $\bar{\mathbf{x}}_h$ es el vector de medias de la matriz de información en el estrato h y Λ es una matriz diagonal de tamaño $P \times P$ cuyas entradas se definen como la varianza de las P variables de la matriz \mathbf{X} , es decir $\Lambda[p,p] = S_{x_p}^2$, con p = 1, 2, ..., P. Esta modificación tiene como objetivo minimizar la relación entre la varianza de un estimador de muestreo estratificado con asignación proporcional y la de un muestreo aleatorio simple. Cuando $\Lambda = \mathbf{I}$, el algoritmo resultante es idéntico al algoritmo clásico de K-medias, propuesto por Macqueen (1967).

Partición genética (BB)

Ballin and Barcaroli (2013) argumentan que la mejor estratificación es aquella partición del marco de muestreo que asegura el mínimo costo muestral que satisfaga algunas restricciones de precisión; o, que maximice la precisión de los indicadores de interés bajo las restricciones. De esta forma, el algoritmo busca minimizar la siguiente función de costos

$$c_0 + \sum_{h=1}^{H} c_h n_h$$

En donde c_0 define un costo fijo y c_h es el costo promedio de observar un hogar en el estrato h. En principio, es posible definir $c_0 = 0$ y $c_1 = c_2 = \cdots = c_H = 1$, lo cual da como resultado que el costo es el número de encuestas que deben realizarse en cada estrato. Este problema de optimización se complementa manteniendo las siguientes restricciones:

$$\sum_{h=1}^{H} \left(\frac{N_h^2}{n_h} \right) \left(1 - \frac{n_h}{N_h} \right) S_{x_h, p}^2 \le V_{0p} \qquad p = 1, 2, \dots, P.$$

En donde V_{0p} es un umbral predefinido por el usuario, que indica que la varianza de la estrategia estratificada está acotada; además, $S_{x_h,p}^2$ es la varianza poblacional de p-ésima variable de la matriz de información en el estrato h. Haciendo uso de algoritmos genéticos evolutivos, esta estratificación multivariada del marco de muestreo parte de la consideración de estratificaciones univariadas independientes (una para cada variable de la matriz de información) y de la definición del producto cartesiano resultante de todas estas particiones (estratos atómicos). Este universo de posibles estratificaciones evoluciona, uniendo grupos de forma jerárquica, sujeto a las restricciones de precisión sobre cada variable de la matriz de información, hasta converger en el número de estratos definidos de antemano H.

V. Evaluación y escogencia de la mejor estratificación

En la evaluación de los escenarios de estratificación entran las técnicas univariadas y multivariadas. Al final, el resultado de aplicar una u otra técnica es simplemente una clasificación de las UPM. Por lo tanto, cada una de las posibles estratificaciones debe ser evaluada con base en la reducción de la varianza para todos los indicadores considerados en la matriz de clasificación. La medida clásica con la que se juzgan las bondades de una estrategia de muestreo es el efecto de diseño (DEFF). Por lo tanto, la evaluación de la estratificación debe estar supeditada también a esta medida, que para la variable $p=1,\ldots,P$, está dada por:

$$DEFF_p = \frac{Var_{ST}(\bar{x}_p)}{Var_{SI}(\bar{x}_p)}$$
 $p = 1, \dots, P.$

En donde, $Var_{ST}(\bar{x}_p)$ y $Var_{SI}(\bar{x}_p)$ denotan la varianza del diseño estratificado y la varianza de un muestreo aleatorio simple para la media poblacional (porcentaje) de la p-ésima variable de la matriz de información. Por otro lado, Gutiérrez (2016, página 184) demuestra que, cuando la asignación es proporcional, esta relación se puede escribir de la siguiente manera:

$$DEFF_p = \frac{\sum_{h=1}^{H} W_h S_{x_{hp}}^2}{S_{x_p}^2} \cong 1 - R_p^2 \qquad p = 1, \dots, P.$$

En donde, para cada estrato $h=1,\ldots,H$, se tiene que $S^2_{x_p}$ es la varianza de la variable x_p en la población y $S^2_{x_{hp}}$ es la varianza de la variable x_p supeditada al estrato h. Nótese que este efecto de diseño es función del coeficiente de determinación R^2_p en un modelo lineal con intercepto que relaciona la p-ésima variable de evaluación (respuesta) con los estratos (factores). Una ventaja de expresar el efecto de diseño como en la ecuación anterior es que no dependerá del tamaño de muestra. Una vez definido el criterio de evaluación de la estratificación sobre una variable x_p , es necesario definir un criterio de estratificación multivariante que contemple cada una de las P variables. Siguiendo las ideas de Jarque (1981), se propone la siguiente medida de calidad, definida como el efecto de diseño generalizado (G(S)) sobre todas las variables de la matriz de información:

$$G(S) = \sum_{p=1}^{P} DEFF_p = \sum_{p=1}^{P} \frac{1}{S_{x_p}^2} \sum_{h=1}^{H} W_h S_{x_{hp}}^2$$

Ante una estratificación pertinente, se esperaría que $Var_{ST}(\bar{x}_p) < Var_{SI}(\bar{x}_p)$, por lo tanto $0 < DEFF_p < 1$, lo que conlleva a que 0 < G(S) < P. Luego, se debería escoger el escenario para el cual G(S) fuera mínimo. Nótese que, para cada uno de los escenarios en estudio, es necesario fijar el número de estratos; en general se propende a que el número de estratos esté entre tres y cinco. Esta escogencia del número de grupos debe ser discutida al interior del INE con los equipos que determinan la rotación de las UPM en cada periodo de levantamiento de las encuestas de hogares. Escoger un número alto de estratos reducirá la varianza, pero a su vez puede tener repercusiones negativas en la logística de rotación del diseño de muestreo de las encuestas, haciendo que se agoten rápidamente las UPM dentro de los estratos geográficos y socioeconómicos. Por lo anterior, se recomienda restringir los escenarios de evaluación a la consideración de H = 3 y H = 4 estratos.

El siguiente cuadro ejemplifica la evaluación de estas técnicas para dos escenarios de estratificación (tres y cuatro estratos) en una matriz de información que contiene 8 variables. De la tabla se puede deducir varias conclusiones interesantes. Por ejemplo, para el primer indicador, la mejor estratificación es la dada por el método de raíz de frecuencia acumulada (DH) con cuatro estratos; para el segundo indicador, la mejor estratificación es la partición genética (BB) con cuatro estratos; mientras que para el último indicador, la mejor estratificación es la estratificación óptima con el algoritmo de Sethi (LH) con cuatro estratos. Como se puede notar, para cada indicador existirá un método que induzca una mayor eficiencia que para otros indicadores. Esto claramente muestra que la estratificación con respecto a un solo indicador puede ser un procedimiento inadecuado. Por lo tanto, basados en este ejemplo, el mejor método sería el de Dalenious-Hidiroglou (DH) con cuatro estratos, puesto que induce una mayor eficiencia conjunta al reducir el efecto de diseño generalizado.

Cuadro 5.1: Efectos de diseño $DEFF_p$ y efecto de diseño generalizado G(S) considerando tres (H=3) y cuatro (H=4) estratos para ocho variables.

DEFF	Q (H=3)	DH (H=3)	LH (H=3)	GH (H=3)	KmJ (H=3)	BB (H=3)	Q (H=4)	DH (H=4)	LH (H=4)	GH (H=4)	KmJ (H=4)	BB (H=4)
\bar{x}_1	0.87	0.85	0.81	0.82	1	0.88	0.8	0.70	0.76	0.72	0.71	0.77
\bar{x}_2	0.89	0.82	0.95	0.97	0.94	0.88	0.79	0.74	0.75	0.77	0.75	0.71
\bar{x}_3	0.87	0.97	0.83	0.96	0.89	0.95	0.74	0.75	0.79	0.7	0.79	0.71
\bar{x}_4	0.92	0.89	0.81	0.94	0.96	1	0.77	0.73	0.73	0.7	0.71	0.74
\bar{x}_5	0.85	0.83	0.96	0.96	0.83	0.81	0.8	0.73	0.8	0.78	0.8	0.79
\bar{x}_6	0.87	0.88	0.9	0.88	0.86	0.81	0.8	0.72	0.76	0.7	0.74	0.73
\bar{x}_7	0.87	0.95	0.99	0.83	0.86	0.84	0.75	0.7	0.77	0.72	0.77	0.77
\bar{x}_8	0.93	0.82	0.91	0.99	0.93	0.88	0.77	0.74	0.72	0.78	0.76	0.75
G(S)	7.07	7.01	7.16	7.35	7.27	7.05	6.22	5.81	6.08	5.87	6.03	5.97

Para estudiar la comparabilidad y consistencia del proceso de estratificación, los algoritmos de evaluación se deberían aplicar sobre cada una de las UPM en las áreas urbanas, pero independientemente de las UPM rurales. Si la ganancia en eficiencia es mayor en este escenario, se pueden definir los estratos de forma independiente. Si, por el contrario, la comparabilidad entre estratos es imperante en el proceso de estratificación, se puede considerar únicamente el escenario conjunto en donde las UPM de la zona urbana y rural están presentes conjuntamente. En este último caso, la clasificación de las UPM de la zona urbana se regirá por las mimas condiciones que sus contrapartes urbanas.

Al margen de la técnica utilizada para encontrar la mejor clasificación de las UPM, se recalca que

la viabilidad sobre el número de estratos sea discutida de forma exhaustiva por todas las áreas involucradas al interior de los INE. En forma general, es recomendable restringir los escenarios de evaluación a la consideración de H=3 o H=4 estratos. Este último componente es importante puesto que los diseños de muestreo deberían considerar un tamaño de muestra mínimo de dos UPM por estrato para poder estimar la varianza del estimador (Gutiérrez, 2016).

El efecto diseño no es el único aspecto por evaluar para la elección del procedimiento de estratificación. Es necesario verificar la estabilidad del método con respecto a los otros procedimientos de estratificación. Por ejemplo, la siguiente tabla muestra la matriz de coincidencias entre las diferentes clasificaciones de los estratos.

Cuadro 5.2: Matriz de coincidencias, cuyas entradas están definidas como el porcentaje de UPM coincidentes en cada uno de los estratos creados por los métodos estudiados.

Técnica	Jarque	K-means	DAL	GEO	LH-S	LH-K	Percentil
$\overline{\mathbf{Q}}$	1	0,64	0,92	0,84	0,89	0,89	0,82
DH	0,64	1	0,68	0,62	0,71	0,71	0,74
$\mathbf{L}\mathbf{H}$	0,92	0,68	1	0,82	0,96	0,96	0,90
$\mathbf{G}\mathbf{H}$	0,84	0,62	0,82	1	0,78	0,78	0,73
KmJ	0,89	0,71	0,96	0,78	1	1,00	0,93
BB	0,89	0,71	0,96	0,78	1,00	1	0,93

Por último, también se debe evaluar la coherencia de la distribución de las diferentes variables agregadas a nivel de UPM en los estratos. Por ejemplo, la proporción de personas mayores de 15 años alfabetizadas debería tener mayor incidencia en los estratos más altos, y este patrón también se debería observar para diferentes indicadores como la proporción de hogares con internet, la proporción de tenencia de refrigerador, la proporción de tenencia de televisión por cable, la proporción de hogares con pisos adecuados, la proporción de hogares con educación superior, entre otras. La figura 5.2 muestra el comportamiento esperado en los estratos de muestreo para algunas variables de interés. De esta forma, el estrato uno debería presentar condiciones económicas más adversas, el estrato dos debería tener mejores condiciones, siendo el tercer estrato el que agrupa a las UPM con menores dificultades socioeconómicas. En el área rural debiesen aparecer una menor proporción de UPM en el estrato 3, dadas las condiciones menos favorables.

Si la contribución de algunas unidades al total poblacional es no significativa, y además esas unidades son de difícil acceso, es común que en algunos países de la región se opte por redefinir el universo y crear un estrato de exclusión forzosa. En este estrato no se realiza ninguna encuesta y las respectivas estimaciones no tendrán en cuenta a esta población excluida. Por último, como algunos procedimientos de clasificación se basan en la generación de números aleatorios, se recomienda documentar los códigos computacionales que se utilizaron para que los resultados puedan ser replicados, por lo que debe fijar una semilla aleatoria al comienzo del código computacional.

Figura 5.2: Comportamiento esperado en los estratos de muestreo para algunas variables de interés.

VI. Estratificación implícita

Los estratos explícitos definidos en la sección anterior son útiles para reducir la varianza de muestreo y asegurar la representatividad de la muestra en cada uno de los subgrupos que comparten las mismas características socioeconómicas, dentro de los mismos municipios. Además de los estratos socioeconómicos, algunas variables que se consideran en el proceso de estratificación explícita son:

- Estados o regiones de un país.
- Zona en la que está ubicado el hogar: urbana o rural. Nótese que cada país brinda su definición de ruralidad, de acuerdo con sus propias definiciones nacionales.

También es posible realizar una selección ordenada que induce una estratificación implícita, sin que necesariamente se tenga control sobre el tamaño de muestra final, y sin asumir independencia en la selección. Este tipo de estratificación es una forma de garantizar una asignación estrictamente proporcional de los hogares en todos los estratos implícitos. También puede conducir a una mayor confiabilidad de las estimaciones de la encuesta, siempre que las variables de estratificación implícita que se consideren estén correlacionadas con los indicadores de interés (por ejemplo, la tasa de desocupación, subocpupación o informalidad).

La estratificación implícita es altamente recomendada cuando la encuesta está enfocada en un tema particular (como por ejemplo el mercado de trabajo) y requiere el uso del muestreo sistemático (con probabilidades simples o desiguales) en la selección de las UPM. Según UN (2008, pág. 46), en la mayoría de países la secuencia podría empezar con el área urbana, desagregada por departamento, a su vez desagregada por municipio; seguida del área rural, desagregada por departamento, a su vez desagregada por comuna o vereda. La selección sistemática de UPM deberá estar supeditada al ordenamiento de las UPM por el número de viviendas.

Nótese que la estratificación implícita puede constituir un método objetivo de selección de reemplazos de las UPM a las cuales no se pudo acceder en el operativo de campo; de esta forma, si una UPM fue seleccionada originalmente, pero por alguna razón operativa no puede ser empadronada, su reemplazo será la inmediatamente anterior (o posterior) en la lista estratificada implícitamente. Nótese que este procedimiento ubicará el reemplazo como la UPM ubicada en el mismo municipio, dentro del mismo departamento, en la misma zona y con un número similar de viviendas.

Aunque la estratificación implícita permite acotar el sesgo generado por la ausencia de respuesta de las UPM, Vehovar (1999, págs. 348 - 349) advierte que se debe tener precaución en cuanto a los usos de esta práctica puesto que puede conllevar sesgos importantes en las estimaciones de interés. Lo anterior se desprende del hecho de que los individuos ubicados en zonas donde sí es posible acceder puedan diferir significativamente de aquellos ubicados en las zonas de difícil acceso, las cuales difícilmente serán seleccionadas por los algoritmos de muestreo que hacen uso de la estratificación implícita.

Por esta razón es útil que, después de haber valorado los posibles sesgos, si se ha tomado la determinación de realizar las sustituciones sobre las UPM de difícil acceso, se realice un seguimiento exhaustivo en cada levantamiento que permita clasificar el esquema de recolección de información primaria y se valore su impacto en la precisión de los estimadores resultantes.

Referencias

Bibliografía

- Baillargeon, S. and Rivest, L.-P. (2011). The construction of stratified designs in r with the package stratification. Survey Methodology, 37(1):53–65.
- Baillargeon, S., Rivest, L.-P., and Ferland, M. (2007). Stratification en enquêtes entreprises: Une revue et quelques avancées. Assemblée annuelle de la SSC, page 8.
- Ballin, M. and Barcaroli, G. (2013). Joint determination of optimal stratification and sample allocation using genetic algorithm. *Survey Methodology*, 39(2):369–393.
- Barcaroli, G. (2014). Samplingstrata: An r package for the optimization of stratified sampling. Journal of Statistical Software, 61(1):1–24.
- Biemer, P. P. and Lyberg, L. E. (2003). *Introduction to survey quality*. Wiley series in survey methodology. Wiley-Interscience.
- CEPAL (2018). Medición de la pobreza por ingresos Actualización metodológica y resultados. Metodologías de la CEPAL.
- Cochran, W. G. (1977). Sampling Techniques. Wiley, third edition edition.
- Dalenius, T. and Hodges, J. L. (1959). Minimum variance stratification. *Journal of the American Statistical Association*, 54(285):15.
- DANE (2017). Gran encuesta integrada de hogares - departamento administrativo nacional de estadística.
- Duncan, G. J. and Kalton, G. (1987). Issues of design and analysis of surveys across time. *International Statistical Review / Revue Internationale de Statistique*, 55(1):97.
- Foster, J., Greer, J., and Thorbecke, E. (1984). A class of decomposable poverty measures. *Econometrica*, 52(3):761–766.
- Gambino, J. G. and Silva, P. d. N. (2009). Chapter 16 Sampling and Estimation in Household Surveys, volume 29 of Handbook of Statistics, page 407–439. Elsevier.
- Groves, R., Fowler, F., Couper, M., Lepkowski, J., Singer, E., and Tourangeau, R. (2009). *Survey Methodology*. John Wiley and Sons.
- Gunning, P. and Horgan, J. M. (2004). A new algorithm for the construction of stratum boundaries in skewed populations. *Survey Methodology*, 30(2):159–166.
- Gutiérrez, H. A. (2016). Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U, segunda edición edition. Google-Books-ID: UlVmE5pkRwIC.

72 BIBLIOGRAFÍA

Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953). Sample survey methods and theory, volume 1. Wiley New York.

- IBGE-BR (2014). Pesquisa nacional por amostra de domicilios continua notas metodológicas.
- INDEC (2018). Encuesta permanente de hogares instituto nacional de estadística y censos.
- INEC (2018). Instituto nacional de estadística y censos.
- INEGI (2012). Metodología de la construcción del marco maestro de muestreo 2012 y del diseño de la muestra maestra 2012.
- Jarque, C. M. (1981). A solution to the problem of optimum stratification in multivariate sampling. Journal of the Royal Statistical Society. Series C (Applied Statistics), 30(2):163–169.
- Kalton, G. (2009). Some issues in the design and analysis of longitudinal surveys.
- Kalton, G. and Citro, C. F. (1993). Panel surveys: adding the fourth dimension. *Survey Methodology*, 19(2):205–215.
- Kish, L. (1965). Survey Sampling. John Wiley and Sons.
- Kozak, M. (2004). Optimal stratification using random search method in agricultural surveys. *Statistic in Transition*, 6(5):797–806.
- Lavallée, P. and Hidiroglou, M. A. (1988). On the stratification of skewed populations. *Survey Methodology*, 14(1):33–43.
- Likert, R. (1932). A technique for the measurement of attitudes. *Archives of Psychology*, 22 140:55–55.
- Lohr, S. (2000). Sampling: Design and Analysis. Thompson.
- Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, page 281–297. University of California Press.
- McLaren, C. and Steel, D. G. (2001). Rotation patterns and trend estimation for repeated surveys using rotation group estimates. *Statistica Neerlandica*, 55(2):221–238.
- OIT (1982). Resolución sobre estadísticas de la población económicamente activa, del empleo, del desempleo y del subempleo.
- OIT (2013). Estadísticas del trabajo, el empleo y la subutilización de la fuerza de trabajo.
- ONU (2011). Canberra Group Handbook on Household Income Statistics. United Nations Economic Comission for Europe, second edition edition.
- ONU (2015). Transformar nuestro mundo: la agenda 2030 para el desarrollo sostenible.
- ONU (2016). Global sustainable development report 2016.
- Presser, S., Rothgeb, J., Couper, M., Lessler, J., Martin, E., Martin, J., and Singer, E. (2004). *Methods for Testing and Evaluating Survey Questionnaires*. John Wiley and Sons.

BIBLIOGRAFÍA 73

Schwarz, N., Knäuper, B., Hippler, H.-J., Noelle-Neumann, E., and Clark, L. (1991). Rating scales: Numeric values may change the meaning of scale labels. *The Public Opinion Quarterly*, 55(4):570–582.

- UN (2008). Designing household survey samples: practical guidelines. Studies in methods / United Nations, Department of Economic and Social Affairs, Statistics Division Series F. United Nations.
- Valliant, R., Dever, J. A., and Kreuter, F. (2013). Practical Tools for Designing and Weighting Survey Samples. Springer New York.
- Vehovar, V. (1999). Field substitution and unit nonresponse. *Journal of Official Statistics*, 15(2):335–350.