Subgrupos

José Antônio O. Freitas

MAT-UnB

24 de outubro de 2020

Seja (G,*) um grupo.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos,

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G|

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito,

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

Exemplos

1) $(\mathbb{Z}_m,+)$ é um grupo finito para todo m>1

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

Exemplos

1) $(\mathbb{Z}_m, +)$ é um grupo finito para todo m > 1 e |G| = m.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

- 1) $(\mathbb{Z}_m,+)$ é um grupo finito para todo m>1 e |G|=m.
- 2) (S_n, \circ) é um grupo finito

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

- 1) $(\mathbb{Z}_m, +)$ é um grupo finito para todo m > 1 e |G| = m.
- 2) (S_n, \circ) é um grupo finito e |G| = n! elementos.

Seja (G,*) um grupo. Se G é um conjunto com uma quantidade finita de elementos, dizemos que G é um **grupo finito**. Denotamos por |G| o número de elementos de G e que será chamado de **ordem** de G ou **cardinalidade** de G. Quando o conjunto G não é finito, dizemos que G é um **grupo infinito**.

- 1) $(\mathbb{Z}_m, +)$ é um grupo finito para todo m > 1 e |G| = m.
- 2) (S_n, \circ) é um grupo finito e |G| = n! elementos.
- 3) $(\mathbb{Z},+)$ é um grupo infinito.

Seja (G,*) um grupo.

Seja (G,*) um grupo. Um subconjunto não vazio

Seja (G,*) um grupo. Um subconjunto não vazio $H\subseteq G$

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*)

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo.

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G se, e somente se

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G se, e somente se

i)
$$x^{-1} \in H$$
,

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G se, e somente se

- i) $x^{-1} \in H$, para todo $x \in H$;
- ii) $x * y \in H$,

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G se, e somente se

- i) $x^{-1} \in H$, para todo $x \in H$;
- ii) $x * y \in H$, para todos x, $y \in H$.

Seja (G,*) um grupo. Um subconjunto não vazio $H \subseteq G$ é chamado de **subgrupo** de G se, e somente se, (H,*) é um grupo.

Proposição

Seja G um grupo. Um subconjunto não vazio $H\subseteq G$ é um subgrupo de G se, e somente se

- i) $x^{-1} \in H$, para todo $x \in H$;
- ii) $x * y \in H$, para todos x, $y \in H$.

Prova:

1) *Dado* (*G*,*) *grupo*,

1) Dado(G,*) grupo, $H = \{e\}$

1) Dado (G,*) grupo, $H = \{e\}$ e H = G

1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G,

1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo.

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z}, +)$ um grupo. Tomando $H = m\mathbb{Z}$,

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}.$

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Então (G, \odot) é um grupo

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Então (G, \odot) é um grupo com |G| = 4.

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Então (G, \odot) é um grupo com |G| = 4. Além disso,

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Então (G, \odot) é um grupo com |G| = 4. Além disso,

$$H_1 = \{\overline{1}, \overline{3}\}$$

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G = U(\mathbb{Z}_8) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$. Então (G, \odot) é um grupo com |G| = 4. Além disso,

$$H_1 = \{\overline{1}, \overline{3}\}\$$

 $H_2 = \{\overline{1}, \overline{5}\}\$

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G=U(\mathbb{Z}_8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$. Então (G,\odot) é um grupo com |G|=4. Além disso,

$$H_1 = \{\overline{1}, \overline{3}\}$$

 $H_2 = \{\overline{1}, \overline{5}\}$
 $H_3 = \{\overline{1}, \overline{7}\}$

- 1) Dado (G,*) grupo, $H = \{e\}$ e H = G são subgrupos de G, chamados de **subgrupos triviais**.
- 2) Seja $(\mathbb{Z},+)$ um grupo. Tomando $H=m\mathbb{Z}$, onde m>1, então H é subgrupo de \mathbb{Z} .
- 3) $G=U(\mathbb{Z}_8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$. Então (G,\odot) é um grupo com |G|=4. Além disso,

$$H_1 = \{\overline{1}, \overline{3}\}$$

 $H_2 = \{\overline{1}, \overline{5}\}$
 $H_3 = \{\overline{1}, \overline{7}\}$

São subgrupos de G.