*	King Saud University					College of Computer and Information Sciences			
	King Saud University					Department of Computer Science			
	Theory	of comput	tation C	SC 339)	MT2 Exam - Spring 2018			
	Date: 5/04/2018					Duration: 1.5 hours			
Guideli	ines								
•No ele	ectronic d	levices are	allowed	in this	exam.				
•Use a	pencil in	choice que	estions.						
Studen	t ID:					Name:			
Section	1:					Instruc	tor:		
		1	2	3	4	5	Total		
Questio	on 1: (Tr	rue/False)						24 points	
For each	stateme	nt, choose v	whether	it is Tr	ue or Fa	lse.			
(a) $L1$	$= \{0^p 1^q p$	$p, q \in N$ ca	annot be	e recogn	ized by	a push-do	own automata.		
A	True	B False							
(b) Let	$\Sigma = \{a, a\}$	$b\}, L = \{xy\}$	$y x,y\in \Sigma$	Σ^* and	x = y	$\}$ and $R =$	= ((a+b).(a+b)))*. The language $L = L(R)$.	
A	True	B False							
(c) Let	$\Sigma = \{a, a\}$	b } and $L =$	$\{a^nwa^n$	$n n \ge 1$	and $w \in$	Σ^* }. L i	s not a context-fre	ee language.	
\bigcirc A	True	B False							
(d) Son	ne regula	r expression	ns canno	ot be co	nverted	to push-d	own automata.		
\bigcirc A	True	B False							
(e) The	e pumpin	g lemma ca	nnot be	used to	o prove t	that a lan	guage is regular.		
A	True	(B) False							
(f) Some context-free languages are regular languages.									
A	A True B False								
(g) Am	(g) Ambiguous grammar is a grammar that produces just one parse tree for every string in the language.								
A True B False									
(h) Some context-free languages cannot be recognized by Turing machines.									
\bigcirc A	True	B False							

(i) If L is a language recognized by a non-deterministic Turing machine, L cannot be recognized by a

(j) A Turing machine with multiple track tapes has multiple heads.

A True B False

A True

deterministic turing machine.

B False

CSC 339	Page 2 of 6
---------	-------------

(k) Multidimensional Turing machine can be replaced by a deterministic Turing machine. (A) True (B) False (1) In Turing machines, the accept state is always different from the reject state. (A) True (a) Which string is generated by the following grammar: $S \rightarrow xSy \mid SS \mid \epsilon$ (A) xxyxxy (B) xyxxyxyy (C) Both (A) and (B) (D) None (b) The context-free grammar that accepts $L = \{w | w \in \Sigma^+ \text{ and } w \text{ starts and ends with the same symbol}\}$ and $\Sigma = \{a, b\}$ is: $\widehat{\text{(A)}} S \rightarrow aSa \mid bSb \mid a \mid b$ $(\widehat{\mathbf{B}}) \ S \rightarrow aAa \mid bAb$ $m{A}
ightarrow m{a} m{A} \hspace{0.2cm} \mid m{b} m{A} \hspace{0.2cm} \mid \hspace{0.2cm} \epsilon$ $(\widehat{\mathbf{C}})$ $S \rightarrow aSa \mid A \mid a \mid b$ $A \rightarrow bAb \mid a \mid b \mid \epsilon$ (D) None (c) Let L be a context-free language. Any production rule of the grammar describing L has the following form: $A \rightarrow BC$ $A \rightarrow a$ where A, B, and C are non-terminal symbols (B and C cannot be the start symbol) and a is a terminal symbol. The language $L^R = \{w^R | w \in L\}$ is: (A) not a regular language and not a context-free language (B) a context-free language (C) a context-free language for some languages L (D) None

Consider the following formal definition of a push-down automata (PDA): $P = (Q, \Sigma, \Gamma, \delta, q_0, \$, F)$, where $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, \Gamma = \{A\}, F = \{q_2\}$ and δ is given as follows.

$$\delta(q_0, a, \lambda) = (q_0, A)$$

$$\delta(q_0, \lambda, \lambda) = (q_1, \lambda)$$

$$\delta(q_1, b, A) = (q_1, \lambda)$$

$$\delta(q_1, \lambda, A) = (q_2, A)$$

 $\delta(q, x, y) = \phi$ in all other cases $(x \in \Sigma \text{ and } y \in \Gamma)$.

(a)	Draw the corresponding push-down automata (assume the stack contains already \$).							

- (b) Is the string aabb accepted by P:

 - (A) Yes (B) No
- (c) The language recognized by this PDA is:

$$\widehat{\mathbf{A}} \ L = \{a^n b^n | n \ge 0\}$$

$$(C) L = \{a^m b^n | n \ge m > 0\}$$

(D) None

Given the following context-free grammar G, where $\Sigma = \{a, b, c\}$:

$$S \rightarrow AX \mid YC$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

$$C \rightarrow cC \mid \epsilon$$

$$X \rightarrow bXc \mid bB \mid cC$$

$$Y \rightarrow aYb \mid aA \mid bB$$

- (a) The grammar G can derive:
 - (A) aaba

- (B) aabbcc
 - (C) aaAbXc
 - (D) None
- (b) The language described by the grammar is:
 - $\widehat{\mathbf{A}} \ L = \{a^n b^n c^n | n \ge 1\}$

 - $\widehat{\text{(C)}} \ L = \{a^i b^j c^k | i < j \text{ or } j < k\}$
 - (D) None
- (c) Show the derivations for the string aaabbc using parse trees:

- (d) The grammar is:
 - (A) ambiguous because S has two possible derivations
 - (B) ambiguous because two parse trees can be obtained
 - \bigcirc not ambiguous because we can always transform an ambiguous grammar to a non-ambiguous grammar
 - (D) None

Consider the following formal definition of a Turing machine: $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where $Q = \{q_0, q_1, q_2, q_{acc}, q_{rej}\}$, $\Sigma = \{0, 1\}$, $\Gamma = \{0, 1, \bot\}$, and δ is given as follows.

$$\delta(q_0,0) = (q_1,1,R)$$

$$\delta(q_1, 1) = (q_2, 0, L)$$

$$\delta(q_1, \sqcup) = (q_{acc}, \sqcup, R)$$

$$\delta(q_2, 1) = (q_0, 0, R)$$

((a)	Draw	the	corresponding	Turing	machine.
١	ω_{j}	Dian	UIIC	corresponding	1 411115	macmin.

- (b) Is the string 0111 accepted by M:
 - (A) Yes (B) No
- (c) Is the string 0110 accepted by M:
 - (A) Yes (B) No
- (d) The language accepted by M:
 - (A) cannot be described by a regular expression.
 - (B) can be described by the regular expression 01*.
 - \bigcirc can be described by the regular expression $(0110)^+$.
 - (D) None

CSC 339 Page 6 of 6

Use this page as a draft