Vol. 15

specialust meet atile con-

inic elasth of the ration of soft, with h suitably fold. The is where ectrical d by the ier-filler r silicone ounding. ed silicas hydrated igh assay .sed. Pigs for high ilizes the laractereratures neir high re. Some ty of the ver than . sed with powders. minates. d hellow

ture," ie, ons such ber mill ndency, ost comis (353). nize the in bondice. The e silanol sorption th or be g rubber

ir effects

Vol. 15

SILICONES

273

Table 11. Fillers Suitable for Silicone Polymers*

	Particl	e size		nent produced one gums
Filler	Mean diameter, µm	Surface area. m² g	Tensile strength, MPa*	Elongation.
Reinforcing	nforcing lica aerogel 0.03 110-150 4.1-6.9			
silica aerogel	0.03	110-150	41-69	200-350
fumed silica	0.015-0.02	175-200	4.1-12.4	200-600
acetylene black	0.045	7885	4.1-6.2	200-350
Semircinforcing and nonreinforcing			4.1-0.2	200-000
flux-calcined diatomaceous silica	1-5	< 5	2.7-5.5	75-200
calcined diatomaceous silica	1-5	< 5	2.7-5.5	75-200
calcined kaolin	1-5	< 5	2.7-5.5	75-200
precipitated calcium carbonate	0.03-0.05	32	2.7-4.1	100-300
ground silica	5-10		0.7-2.8	200-300
ground silica	1-10		0.7-2.8	200-300
ground silica	5		0.7-2.8	200-300
zinc oxide	0.3	3.0	1.4-3.5	100-300
iron oxide	<1		1.4-3.5	100-300
zirconium silicate			2.8-4.1	100-300
titanium dioxide	0.3		1.4-3.5	300-400

[&]quot; Ref. 352.

compound. In an early method the filler is treated with chlorosilanes or other reactive silanes, and the HCl or other reaction products are removed by purging the filler mass with an inert gas (354). Cyclic siloxane oligomers are now widely used to treat filler for silicone elastomers (350).

The extremely high surface silicas used as fillers present the same storage and handling problems as the fluffy carbon blacks. Typical bulk densities for fumed silicas as collected from the fuming operation are 32–80 kg/m³. They can be increased to 160–240 kg/m³ by mechanical compaction and deaeration, but even this density requires a large storage area for a reasonable working supply. Bulk shipping techniques continue to improve. Filler is frequently transported in bags, from which it may be fed to conveyors or sent to bulk storage. Semifluidized pneumatic transfer to and from specially designed rail cars and storage silos is practical, but requires attention to loss at the point of discharge. Automatic equipment for weighing the proper charge of filler to batch compounding systems can be adapted to handling low density silicas. From a safety standpoint, handling any finely divided filler requires respirators or dust masks. However, the fumed oxides are in the form of spheres of amorphous silica, which, in contrast to crystalline silica dust, are considered incapable of inducing silicosis (355).

Oligomers of polydimethylsiloxane can be polymerized in the presence of fillers. Uncatalyzed base compounds for both RTV and heat-curing elastomers can be made in this way. However, optimal properties still depend on conventional compounding (356).

RTV Rubbers. Room temperature vulcanizing (RTV) silicone elastomers are supplied as uncured rubbers with liquid or pastelike consistencies. They are based on polymers of intermediate molecular weights and viscosities, eg.

To convert MPa to psi, multiply by 145.

274 SILICONES

Vol. 15

100-1.000,000 mm² s at 25°C. Curing is based on chemical reactions that increase molecular weights and provide cross-linking; catalysts ensure cure control. The RTV silicone rubbers are available in two modifications. The cure reactions of one-component products are triggered by exposure to atmospheric moisture. Those of two-component products are triggered by mixing the two components, one of which consists of or contains the catalyst; the two components are supplied separately.

Fluids with silanol end groups are employed for most one-component products (340). The most widely used products are cured by reactions involving acetoxysilanes (357-360).

HO[SivCH₃)₂OI_nH + 2 CH₃SivCH₃CO₂)₃ ----

(CH₃CO₂)₂(CH₃)SiO(Si(CH₃)₂O)_aSi(CH₃)(CH₃CO₂)₂ + 2 CH₃COOH

$$CH_3CO_2Si \left\langle \begin{array}{ccc} + & H_7O \longrightarrow & HOSi \left\langle \begin{array}{ccc} + & CH_3COOH \\ \end{array} \right.$$

$$CH_3CO_2Si \left\langle \begin{array}{ccc} + & HOSi \left\langle \begin{array}{ccc} - & - & - \\ - & - & - \\ \end{array} \right.$$

Cure is accelerated and controlled by catalysts, especially tin soaps (361). In the above sequence methyltriacetoxysilane functions as a vehicle for polymer chain extension and cross-linking. Analogous products based on methyltris(2-ethylhexanoyloxy)silane are also available (362). Cure proceeds by hydrolytic cleavage of the acyloxy group from silicon, followed by condensation of the silanol group formed with another acyloxy silicon, and so on. Evaporation of the acid by-product drives the reaction toward completion. The tin catalyst probably functions by forming an active complex with polymer silanol, which reacts with the cross-linking agent (363,364).

Other cure systems proceed similarly, but employ different silane curing agents. Commercial products based on methoxysilanes and catalyzed by titanium compounds (eg, chelates) sometimes have the advantage of releasing a hydrolysis product that is not acidic (365–368). Other products employ methoxy-functional cures catalyzed by tin compounds; methanol scavengers can be used to protect the polymer from tin-catalyzed alcoholysis. Alkoxysilanes are slower cross-linking agents than acetoxysilanes. Promoters are sometimes employed to get sufficiently fast cures (369–372). Acetone is the by-product from methyltris(isopropenoxy)silane (373,374). Products based on amino-, amido-, and ketoxysilanes are also available (375–377).

The most common cross-linkers are trifunctional silanes. Tetrafunctional silanes provide faster cures; eg, cure times with tetraethoxysilane are shorter than with triethoxysilanes. Small multifunctional siloxane oligomer molecules can also be used, such as $[R_nX_{3-n}Si]_2O$, where n=0-3, R is alkyl, and X is the reactive function (343,363). The fillers and additives used in these products must be compatible with the curing agent; that is, they must be dry.

The one-component RTV rubbers are made by mixing polymers, fillers, additives, curing agents, and catalysts. The mixture is packaged to protect it from moisture, which may trigger cure. The time required for cure depends on the curing system, temperature, humidity, and thickness of the silicone layer. Under

ol. 15

of the one of applied

it proding ace-

H₃COOH

In the r chain 2-ethyleavage i group product ions by cross-

curing tanium rolysis ctional protect s-link-to get methyliketox-

ctional shorter lecules is the s must

ors, adit from on the Under

Vol. 15

SILICONES 275

typical ambient conditions the surface can be tack free in 15-30 min; a 0.3-cm thick layer cures in less than one day. As cure progresses, strength develops slowly for about three weeks (340,378,379).

The original viscosity of these RTV materials depends principally on that of the polymer components and the filler loading. Filler and original polymer properties and cross-link density affect the ultimate strength of the fully cured elastomer; most commercial products are based on polydimethylsiloxanes. Polymers with substituents other than methyl modify and improve certain properties; eg, trifluoropropyl groups improve solvent resistance. Some products are compounded with fillers and additives to be pourable, and others to be thixotropic. Silica-filled polydimethylsiloxane systems, lacking pigments and other additives, cure to form translucent rubbers. Since the specific gravity of silicas (ca 2.2) exceeds that of siloxanes (ca 1.0), the specific gravity of the RTV rubbers depends on the filler loading. Physical properties of similar cured acetoxy RTV formulations are shown in Table 12 (380).

Table 12. Physical Properties of RTV Rubbers*

Specific gravity ⁶	Durometer hardness, Shore A	Tensile strength, MPa ^r	Elongation, %
1.18	45	2.4	180
1.30	50	3.1	140
1.33	50	3.4	200
1.37	55	3.8	120
1.45	60	4.5	110
1.45	60	5.2	160
1.48	65	4.8	110

[°] Ref. 380.

Formulations with different curing systems, polymer molecular weights and structures, cross-link densitites, and other characteristics offer a broad spectrum of product properties. For example, one-component products are available with elongations as high as 1000%. Typical properties of representative cured RTV silicone rubbers are shown in Tables 13 and 14 (378,379,381–387).

Table 13. Cure Properties of Typical RTV Silicone Rubbers*

	One component		Two components	
Property	General purpose	Construction sealant	Adhesive sealant	Molding compound
hardness, Shore A, durometer	30	22	50	60
tensile strength, MPab	2.4	1.0	3.4	5.5
elongation, %	400	850	200	220
tear strength, J/cm2c	0.80	0.35	0.52	1.75

[&]quot; Refs. 378, 379, 381-385.

b With increasing filler loading.

To convert MPa to psi, multiply by 145.

^b To convert MPa to psi, multiply by 145.

^{*} To convert J/cm2 to lbf/in., multiply by 57.1.

Vol. 15

Table 14. Thermal and Electrical Properties of Cured Silicone Elastomers*

Property	Typical range
useful temperature range. C	~ 60 to 204)
with thermal stabilizers	- 110 to 250
thermal conductivity, W#m-K)	1.7-3.4
coefficient of thermal expansion, per 'C	3.5×10^{-5}
dielectric strength, V'µm	20
dielectric constant at 100 Hz	3.5-4.5
dissipation factor at 100 Hz	0.01 - 0.02
volume resistivity, Ω-cm	1014-1015

º Refs. 378, 379, 381-387.

The one-component RTV silicone rubbers are mostly used in adhesive and sealant applications. Other uses include formed-in-place gasketing, protective coatings, and encapsulation; bonding properties are important. Many formulations provide self-bonding to most metals, glass, ceramics, concrete, and plastics. For example, bonds to aluminum with >1.38 MPa (200 psi) shear strength and 0.35 J/cm² (20 lbf/in.) tear strength are reported; good bonds are formed with copper and acrylic resins. Bonding can be improved by applying a primer to the substrate. These primers are solutions of reactive silanes or resins that dry (cure) on the substrate, leaving a modified silicone bondable surface. Bond strength develops as the RTV cure progresses and can require up to 2-3 weeks (362,388-391).

The two-component RTV silicone rubbers are available in a wide range of initial viscosities, from as low as an easily pourable 100-mm²/s material to as high as the stiff pastelike materials of over 1,000,000 mm²/s at 25°C (383). Curing system, polymer molecular weight and structure, cross-link density, filler, and additives can be varied and combined, giving a group of products whose properties cover a wider range than that encompassed by the one-component products. The highest strength RTV rubbers are provided by two-component RTV technology. On the other hand, products that cure to a mere gel are also available (392). Unfilled resin-reinforced compositions can provide optical clarity (393,394). Polymers with phenyl, trifluoropropyl, cyanoethyl, or other substituents can be used with or in place of polydimethylsiloxanes for low temperature-, heat-, radiation-, and solvent-resistant elastomers (67,383,395).

The two-component RTV silicone rubbers do not require atmospheric moisture to trigger cure. Several different curing systems are employed, with different advantages. For example, the silanol-terminated silicone polymer is treated with alkoxy-functional silicon curing agents:

The catalyst is usually a tin salt. The product can be designed in such a way that the polymers and curing agent are in one package and the catalyst alone or the curing agent and the catalyst in the other. Cure is triggered by mixing the contents of the two packages. Fillers and additives are incorporated in the formulations according to the desired product properties (7,396).

In one example the polymers are mixed with filler and ethyl silicate as the curing agent. Dibutyl tin dilaurate catalyst is stirred in, and polymerization

ol. 15

Vol. 15

SILICONES

277

begins immediately with the elimination of ethyl alcohol. The pot life and work life depend on temperature and catalyst type and concentration: pot life is a few hours at room temperature and can be prolonged by cooling. The time required to obtain a firm cure is approximately one day at room temperature and call h at 150°C (383). The cure rate is increased markedly with accelerators, such as 3-aminopropyltriethoxysilane (397).

The reaction of silanol-terminated silicone polymers with hydride-functional siloxanes is another route to RTV two-component products. The hydrogen gas generated as by-product can be used for foaming.

When foaming is not desired, this type of product is usually restricted to thin films of RTV rubber (7).

Despite the commercial importance of products based on these RTV cure systems, little has been published concerning their chemistry. It has been shown that, in the RTV system involving silanols and ethyl silicate, ethanol evolves and siloxanes form; the reaction requires a tin compound initiator, which forms SiOSn compounds with ethyl silicate (398).

Hydrosilation curing gives two-component RTV rubbers without liberating a by-product. This cure system is based on the addition of silicon hydride to olefin. In practice, vinyl-functional silicone polymers are used with hydride-functional siloxanes as curing agent.

The reaction proceeds at room temperature in the presence of a catalyst, eg, chloroplatinic acid or another solubilized platinum compound. The hydrosilation cure of two-component RTV rubbers can be formulated in various ways. Fillers and additives are used according to the desired properties, but their character is restricted because of the sensitivity of platinum catalysts to poisoning. The catalyst is usually included with the vinyl-functional silicone polymers in the first package, and the hydride-functional siloxane curing agent, perhaps with additional vinyl polymers, in the second. The proportions used determine the ratio in which the two packages are mixed to give a cured elastomer with optimal properties. The pot life of these products is a few hours at room temperature (7,383,399).

ve and tective rmulalastics. th and d with to the : (cure) rength --391). inge of il to as Curing er, and perties s. The

c moisfferent d with

nology.

(392).

: Poly-

e used

ation-,

y that or the

as the

he for-

278 SILICONES

Vol. 15

be used to produce foamed rubber. Such materials, formulated for flame retardancy, are employed in wall construction to hinder the spread of fire.

The two-component RTV silicone rubbers are extensively used in encapsulating and molding applications, as well as for bonding, sealing, protective coatings, and electrical insulation. They afford longer work life and faster cures than the one-component products and are used in applications that require cure of thick sections. These cured RTV rubbers often do not adhere to other surfaces and are most suitable for fabricating flexible molds. They can be easily molded into various articles (340,383–385,388). Silicone elastomer emulsions made with hydrosilation-curing systems (latexes) are used for coatings (400).

The two-component RTV rubbers are less prone to self-bonding than the one-component materials; primers are applied where adhesion is needed. Lapshear adhesion strengths exceeding 3.4 MPa (500 psi) have been reported on primed aluminum (389,390).

Batch equipment for RTV compounding includes vertical overlapping blade mixers with interchangeable bodies or cans, which can be lowered for product transfer or cleanout; they are called change-can mixers. Mixing cycles may be longer than in dough-mixer compounding since the lower viscosity polymers employed offer less resistance and delay the high shear necessary for deagglomeration of filler aggregates and good dispersion in the polymer. Compounding recipes differ from those for heat-cured rubber.

In one-component formulations that rely for cure on the reaction between a reactive cross-linking agent and atmospheric moisture, the ingredients must be thoroughly dried, or a drying step must be included in the compounding cycle. As more filler is added during compounding, the resistance to mixing tends to peak until "wetting-in" is reached. The moisture-sensitive cross-linking agent is usually added last; this step can be performed separately. When the uncatalyzed base compound and cross-linking agent are mixed, the effective viscosity sometimes passes through a maximum. As the early chemical interactions are resolved, the typical consistency is obtained. Allowance for elevated effective in-process viscosities must be made when mixing equipment is specified. Silicareinforced uncatalyzed base compounds harden (develop structure) on storage, and the addition of catalyst should not be delayed.

Although formulations vary widely, a simple one-component acetoxysilane curing formulation might have the approximate composition given in Table 15. The silicone polymer may be a silanol-terminated polydimethylsiloxane with a viscosity of ca 10,000 mm²/s (=cSt), fumed silica is the reinforcing filler, and dibutyl tin dilaurate is the catalyst. Lower molecular weight silanol-functional fluids provide process aids. Such fluids have viscosity values of less than 200 mm²/s (=cSt) and may contain some branching; hydroxy group contents are between 0.1 and 8% (359).

For two-component formulations each part may contain varying proportions of filler and polymer. The second part contains the curing catalyst and possibly the cross-linking agent and pigments. By proper design of the compound, the proportions of first and second parts to be used may be adjusted for convenient handling and metering. (From 1 to 20 parts of the first part are typically used per part of the second.) Milling on a three-roll paint mill may be necessary to

15

ve es re es ed

he p-

on

de ict

rs

·mng

en

ist

le.

to is ed

10-

.re ve

·а-:е,

ne

.5.

and al 10 re

as ly

ie nt

:d

279

Table 15. Acetoxysilane Curing Formulation

Component	Parts by weight
base	
silicone polymer	100
reinforcing filler	20
process aids	15
pigment	1
curing agent	
cross-linking methyltriacetoxysilane	5
catalyst	0.1

break down the last filler agglomerates, especially when sintered oxides or other hard fillers are used.

In continuous processing a devolatilizing extruder can be used to prepare RTV materials. The ingredients are incorporated at precise points in the production stream to obtain the desired degree of dispersion and chemical reaction. Base compounding and subsequent addition of catalyst for one-component formulations can be combined in one process. Special advantages are provided by systems that require unusually high shear mixing or that liberate substantial amounts of heat (401).

Continuous processing permits superior process control. A closed-loop process is illustrated in Figure 19. The feed rates of the ingredients can be monitored and adjusted to yield specific properties. The concentration of cross-linking agent, for example, can be continuously and automatically measured (402).

Fig. 19. Continuous one-component RTV processing. Adapted from Ref. 402.

Vol. 15

The one-component RTV products are packaged in pails and drums with linings or seals to bar moisture. Many of these products are also packaged by automatic equipment into tubes and cartridges for dispensing by gun on assembly lines, in construction, or for home use.

Some two-component RTV products are sold as kits, in which the parts are formulated to afford the desired properties when used together. This is unnecessary when the second part contains only catalyst (383,385). Compounds that are packaged in hermetically sealed containers may be continuously deaerated by passing the compound as a thin film through an evacuated chamber. The two-component RTV products are packaged in cans, pails, and drums. Some curing agents are supplied in bottles or squeeze tubes.

New packaging materials and design innovations have made RTV products available in lighter, more economical, convenient containers; One Touch sealants from General Electric are easily dispensed from pressurized containers designed for consumer use, for example.

Heat-cured Rubbers. Many two-component RTV elastomers can be advantageously cured at 50–150°C, depending on the product and intended use, but RTV is characteristic. Hydrosilation-curing RTV compositions can be modified with inhibitors to become heat-curing systems. Some inhibitors are volatile vinyl or acetylenic compounds that are expelled at elevated temperatures, followed by cure. These volatile inhibitors may form vapor pockets that disrupt the integrity of the cured rubber and mar its surface. Examples include olefinic nitriles and acetylenic alcohols, which form complexes with the platinum catalysts that are ruptured by heat (280,403). Inhibitors such as triallyl isocyanurate release the catalyst at elevated temperatures, but are not volatile and are quickly incorporated into the cured elastomer (281). Such inhibited products are used in applications where long pot lives (10–1000 h), are needed after mixing the two packages and where the option of heat curing is available for a cure in less than 1 h, and often in minutes or seconds. Liquid injection molding, electronic potting, and coating operations are such applications.

Unlike RTV compositions, most heat-curing silicone rubbers are based on high molecular weight polymer gums. Gums, fillers, and additives are mixed in dough mixers or Banbury mills. Catalysts are added on water-cooled rubber mills, which can be used for the complete process in small-scale operations (67,404–406).

Silicone rubbers are commercially available as gums, filler-reinforced gums, dispersions, and uncatalyzed and catalyzed compounds; the last are ready for use. Dispersions or pastes are stirred with solvents such as xylene. The following types of gums are commercially available: general purpose (methyl and vinyl), high and low temperature (phenyl, methyl, and vinyl), low compression set (methyl and vinyl), low shrink (devolatilized), and solvent resistant (fluorosilicone); properties are shown in Table 16.

The tensile strength of cured dimethylsilicone rubber gum is only ca 0.34 MPa (50 psi). Finely divided silicas are used for reinforcement. Other common fillers include mined silica, titanium dioxide, calcium carbonate, and iron(III) oxide. Crystallizing segments incorporated into the polymer also serve as reinforcement. For example, block copolymers containing silphenylene segments, $-\{(CH_3)_2SiC_6H_4Si(CH_3)_2O\}_n$, may have cured gum tensile strengths of 6.8–18.6 MPa (1000–2700 psi) (119).

15

th

by Лy

re ?Clat

:ed

woing

'ts

ats

ed

ıd-

,ut

.ed

nyl

by

!ty

nd

re

he

Э0-

·li-

k-

h

ાd

on

in

ls.

3).

ıS.

se.

0.2

٠,),

/]

D-

₹4

n ()

n-

6

281

Table 16. Properties of Silicone Gums

Туре	Density den. g/cm³	<i>T_e</i> , ⁺C	Williams plasticity
·CH _{al-SiO}	0.98	- 123	95-125
CH ₃ (C ₆ H ₅)SiO	0.98	-113	135-180
CH3(CF5CH2CH2/SiO	1.25	- 65	

[°] Refs. 319, 386, 387, and 407.

Consistencies of uncured rubber mixtures range from a tough putty to a hard deformable plastic. Those containing reinforcing fillers tend to stiffen, ie, develop structure, on storage. Additives, such as water, diphenylsilanediol, dimethylpinacoxysilane, or silicone fluids, inhibit stiffening (353,408,409).

The properties of fabricated rubber depend on the gum, filler, catalyst, additives, and solvents and their proportions. A high filler content increases hardness and solvent resistance and reduces elongation. The properties also depend on the thoroughness of mixing and the degree of wetting of the filler by the gum. The properties change as cure progresses and are stabilized by devolatilization. They are affected by the environment and aging.

Before being used, silicone rubber mixtures are freshened. Catalyst is added, and the mixture is freshly milled on rubber mills until the components band into smooth continuous sheets that are easily worked. Specific or custom mixtures are prepared by suppliers for particular product applications; hundreds of formulations have been compounded. A formula is designed to achieve some special operating or processing requirement, and formulations are classified accordingly (Table 17) (352,386-388).

Bouncing putty is a mixture of polydimethylsiloxane polymer gum, boric acid, special additives, fillers, and plasticizers. It flows on slow application of pressure like a highly viscous liquid, but on shock it behaves like an elastic solid and may even shatter (410,411).

Silicone rubbers are cured by several mechanisms. For hydrosilation cure high molecular weight polymers (gums) with vinyl functionality are combined with fluid hydride-functional cross-linking agents. The catalyst, a soluble platinum compound, is added with an inhibitor to prevent cure initiation before heating (176). High strength and solvent-resistant products are based on this technology (412,413).

Silicone rubber is usually cured by heating the reinforced polymer with a free-radical generator, eg, benzoyl peroxide. The predominant mechanism for polydimethylsiloxane elastomers appears to be one in which hydrogen is removed from the methyl groups and the resulting free radicals couple to form Si-CH₂CH₂-Si bridges:

$$\begin{aligned} &(C_6H_5COO)_2 &\longrightarrow 2 \ C_6H_5COO \cdot \\ &C_6H_5COO \cdot + (CH_3)_2SiO &\longrightarrow \cdot CH_2(CH_3)SiO + C_6H_5COOH \\ &2 \cdot CH_2(CH_3)SiO &\longrightarrow O(CH_3)SiCH_2CH_2Si(CH_3)O \end{aligned}$$

When the polymer contains vinyl groups (usually <1%), the peroxide radical

ASTM D926

Lubber Classes	
Silicone	
Properitor of	
ahia 17.	

Hardness, durometer 40-80 50-80 25-80 40-80 50-80 ardant 40-50	Tensile Compression temperature						æn S	- Inja	
Hardness, strength, Elongation, set at 120°C Minimum Maximum Maximum	Hardness, dirength, durometer Elongation, aut at 130°C All minum Maximum 40-80 4.8-7.0 100-400 15-50 -60 260 50-80 4.8-7.0 100-400 16-15 -60 260 ture 25-80 5.6-10.3 150-600 20-50 -100 260 sture 40-80 4.8-7.6 100-500 20-50 -100 260 sture 50-80 4.1-10.3 100-500 20-50 -100 260 etardant 40-50 9.6-11.0 500-700 20-30 -68 2312			Tensile		Compression	tempe	rature	Trar
ture 25-80 4.8-7.0 100-400 15-50 -60 260 so-80 4.8-7.0 80-400 10-15 -60 260 sture 25-80 5.5-10.3 150-600 20-50 -100 260 ature 40-80 4.8-7.6 200-500 10-40 -60 315 50-80 4.1-10.3 100-500 20-50 -100 260 stardard 40-50 36-11.0 500-700 -68 2:12	ture 40–80 4.8–7.0 100–400 15–50 -60 260 50–80 4.8–7.0 80–400 10–15 -60 260 sture 25–80 5.6–10.3 150–600 20–50 -100 260 sture 40–80 4.8–7.6 200–50 10–40 -60 315 sture 50–80 4.1–10.3 1100–500 20–50 -100 260 sture 50–60 5.8–7.0 170–225 20–30 -68 2712 sture 40–50 9.6–11.0 500–700 20–30 -68 2712	Class	Hardness, durometer	strength, MPa ⁵	Elongation, %	set at 150°C for 22 h, %	Minimum	Maximum	Jemen.
ture 25–80 4.8–7.0 80–400 10–15 –60 260 260 250 10–10.3 150–600 20–50 –100 260 260 260 260 25–80 4.8–7.6 200–500 10–40 –60 315 ature 40–80 4.1–10.3 100–500 20–50 –100 260 260 260 260 260 260 260 260 260 2	ture 25-80 4.8-7.0 80-400 10-15 -60 260 ature 25-80 5.6-10.3 150-600 20-50 -100 260 ature 40-80 4.8-7.6 200-500 10-40 -60 315 50-80 4.1-10.3 100-500 20-50 -100 260 50-60 5.8-7.0 170-225 20-30 -68 272 etardant 40-50 9.6-11.0 500-700 20-70 -68 2712	1	40_80	4.8-7.0	100-400	15-50	- 60	260	6.9
ture 25-80 5.5-10.3 150-600 20-50 -100 240 240 315 ature 40-80 4.8-7.6 200-500 10-40 -60 315 ature 50-80 4.1-10.3 100-500 20-50 -100 260 260 50-60 5.8-7.0 170-225 20-30 -68 272 ature 40-50 9.6-11.0 500-700	ture 25–80 5.5–10.3 150–600 20–50 –100 260 2610 ature 40–80 4.8–7.6 200–500 10–40 –60 315 50–80 4.1–10.3 100–500 20–50 –100 260 50–60 5.8–7.0 170–225 20–30 –68 2:12 etardant 40–50 9.6–11.0 500–700	general purpose	08 05	4870	80-400	10-15	09-	097	6.0
Appendix 200.00 10-40 -60 315 and 200.500 10-40 -60 315 and 200.500 10-40 -60 315 and 200.500 20-50 -100 260 260 and 200.500 20-50 -100 260 260 and 200.500 20-30 -68 2.12 and 200.500 and 200.500 200.30 -68 2.12	mperature 40–80 4.8–7.6 200–500 10–40 –60 315 mperature 50–80 4.1–10.3 100–500 20–50 –100 260 t 50–60 5.8–7.0 170–225 20–30 –68 232 ame retardant 40–50 9.6–11.0 500–700	low compression sec	08.26	5.6-10.3	150-600	2050	- 100	260	
mperature 50–80 4.1–10.3 100–500 20–50 - 100 260 260 t	mperature 50–80 4.1–10.3 100–500 20–50 - 100 260 21.2 t = 50–60 5.8–7.0 170–225 20–30 - 68 2.12 ame retardant 40–50 9.6–11.0 500–700	extreme tow temperature	08-07	4876	200-500	10 70	- 60	315	
t 50-00 5.8-7.0 170-225 20-30 -68 2:12 one retardant 40-50 96-11.0 500-700	t 50–60 5.8–7.0 170–225 20–30 –68 2:12 ame retardant 40–50 9.6–11.0 500–700	extreme nign comperature	00 US	4 1-103	100-200	2050	201 -	760	
ardant 40-50 96-11.0 500-700	ardant 40-50 9.6-11.0 500-700	Wire and caple	09-05	5.8-7.0	170-225	20-30	- 68	27.2	***
		solvent resistant	40-50	9.6-11.0	500-700				2.81.8

Case 1:06-cv-00091-SLR Document 226-4 Filed 08/14/07 Page 11 of 80 PageID #

Vol. 15

SILICONES 283

fragment adds to the double bond to give a radical that leads to cure:

The vinyl-based cure does not usually generate a benzoic acid by-product, which catalyzes decomposition or rearrangement of the siloxane polymer; it functions with less peroxide and works with peroxides that do not abstract hydrogen from methyl groups, eg, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane (67,339).

Benzoyl peroxide is most widely used for these cures. About 1.5-2 wt % is used for gums free of vinyl groups and ca 1 wt % for vinyl gums, based on the weight of gum; the curing temperature is ca 120°C. Bis(2,4-dichlorobenzoyl) peroxide, t-butyl peroxybenzoate, and dicumyl peroxide are used to obtain special effects. For example, bis(2,4-dichlorobenzoyl) peroxide permits rapid cure in air at 315°C without the development of porosity, which would be caused by the volatilization of lower boiling catalysts (342). Chlorobenzoyl peroxides give chlorobiphenyl by-products (275).

Cure is also effected by gamma or high energy electron radiation, which causes scission of all types of bonds, including Si—O; the important cure reactions are those involving Si—C and C—H. Hydrogen, methane, and ethane evolve, and bridges between chains are formed by recombination of the radicals generated. These bridges include Si—CH₂—Si, Si—Si, and perhaps Si—CH₂CH₂—Si (414). An absorbed dose of 770–1300 C/kg (3 \times 10⁶ to 5 \times 10⁶ roentgen) is required for effective cure; no acidic fragments remain in the polymer. Radiation cure can be used for thick sections, but high energy electrons penetrate to a depth of only a few millimeters (352).

Freshly mixed silicone rubber compounds are usually molded at $100-180^{\circ}\mathrm{C}$ and 5.5-10.3 MPa (800-1500 psi). Under these conditions thermal cure can be completed in minutes. The molds are usually lubricated with a 1-2 wt % aqueous solution of a household detergent. In the manufacture of insulated wire, rods, channels, tubing, and similar products, the compounds are extruded in standard rubber-extrusion equipment. The extruded rubber is heated briefly to set its properties; hot-air vulcanization at $300-450^{\circ}\mathrm{C}$ or steam at 0.28-0.70 MPa (40-100 psi) for several minutes is sufficient. Final properties can be developed by oven curing or by continuous steam vulcanization.

For coating silicone rubber on a fabric, eg, glass cloth, a dispersion in a solvent is employed. The cloth may be dip-coated and dried and cured in heated towers. It may also be calendered with high penetration, soft silicone stocks on standard three- and four-roll calenders. Ducts and hoses can be built up from dip-coated or calendered cloth, and complex structures can be formed on mandrels, followed by extrusion or by wrapping and curing to produce large ducts. Silicone rubber sponges are made with the help of nitrogen blowing agents, which produce a closed-cell structure; densities of foam or sponge are between 0.4 and 1.0 g/cm³.

For bonding silicone rubber to other materials, eg, metals, ceramics, or plastics, primers are used, including silicate esters, silicone pastes, silicone resins,

MOLD CONSTRUCTION TECHNIQUES

As previously mentioned, final part geometry generally influences the mold-construction technique. This section discusses several of the most-common construction methods.

Milled Block

In this construction technique, the mold cavity is machined directly into a metal block. Although it may be more costly, a milled-block mold gives the most accurate representation of the part, does not show

lines where the mold parts meet, and incorporates cooling lines easily; however, they are more difficult to modify.

Structural Components

Milled metal plates are joined with screws or pins, or welded in this construction technique. Joined plate and bar is the method of choice for large, flat parts. Cast

Widely used in mold making, cast molds are relatively inexpensive. They make excellent molds and are used particularly for curved parts. Steel molds are not normally cast. Surface porosity, often just under the skin, can cause difficulties when polishing cast aluminum molds. To make a mold casting, a positive pattern with a predetermined parting line is made. This pattern is then cast. Afterwards, the surface is conditioned to remove bubbles and imperfections. Cooling lines can be cast into the mold.

Extruded Aluminum Profiles

Used for both solid and foamed systems, extruded profiles find special application in building inexpensive molds for profile geometries such as window frames or door sashings.

Nickel Plating

Nickel plating can be formed either electrolytically or by electroless deposition. In this latter technique, a 0.04- to 0.08-inch layer of nickel is deposited on a positive pattern, with a 3/8- to 1/2-inch copper backup layer electrolytically deposited onto the nickel. Cooling lines can also be plated onto this backup layer.

SURFACE TREATMENTS FOR MOLDS

Because RIM polyurethane systems reproduce fine surface details, the type of finish on a mold surface is critical.

Consider using plastic-industry standards such as the SPI-SPE Mold Finish

Comparison Kit, available from the

Society of Plastics Industry, as a guideline.

Chrome and nickel plating, excellent surface treatments for molds, improve the mold's scratch resistance and reduce necessary demolding forces. Chrome plating gives better results. Before plating any mold surface, closely examine it to ensure that it is smooth and nonporous.

Other treatments such as Teflon coating or a nickel-polymer coating are used to improve mold release properties.

Surface hardening methods — such as nitride — can minimize minor damage and the effects of abuse during production operations.

Depending upon your part's surface specifications, consider using the following finishes:

- · No. 2 Grit (#15 micron range)
- · No. 3 320 Emery Cloth
- No. 4 280 Stone

For cosmetic surfaces, consider using a finish between No. 2 and 3; for noncosmetic surfaces, a finish between 3 and 4 should suffice.

TEXTURES AND FINISHES

Lettering, textures, and graphics can be molded into a part. Typically these visual elements are milled into the mold resulting in a raised appearance on the finished part. For large areas of fine text, consider using decals.

Textures enlarge the effective surface area, requiring increased demolding forces. Surfaces parallel to the direction of draw have lower limits on texture depth.

Nickel shells offer high surface hardness and good release characteristics for high-quality surface reproductions of textures, such as leather or wood grain.

Photo-etching and mechanical texturing offer a wide variety of finishes. In photo-etching, chemicals etch mold surfaces in a given pattern. Some mold makers have examples with different textures to help you select one. In mechanical texturing, small metal balls are placed in the mold, which is then shaken, to achieve a pebble finish.

Before applying any texture to a mold surface, ensure that the mold is to final dimensions, because these dimensions cannot be changed after texturizing. Textures in molds must be very accurate, as the parts cannot be retouched after molding. These molds are very sensitive to nicks and scratches, requiring special care during demolding.

Chapter 13
TECHNICAL SUPPORT

HEALTH AND SAFETY INFORMATION

Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling Bayer thermosetting resins mentioned in this publication. Before working with any of these products, you must read and become familiar with the available information on their hazards, proper use, and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets and product labels. Consult your local Bayer representative or contact the Product Safety Manager for Polymers Division products in Pittsburgh, PA.

DESIGN AND ENGINEERING EXPERTISE

To get material selection and/or design assistance, just write or call your Bayer representative in the regional offices listed on the back cover of this brochure. To best help you, we will need to know the following information:

- Physical description of your part(s) and engineering drawings, if possible
- · Current material being used
- Service requirements, such as
 mechanical stress and/or strain, peak
 and continual service temperature,
 types and concentrations of chemicals
 to which the part(s) may be exposed,
 stiffness required to support the part
 itself or another item, impact resistance, and assembly techniques
- Applicable government or regulatory agency test standards
- Tolerances that must be held in the functioning environment of the part(s)
- Any other restrictive factors or pertinent information of which we should be aware

Upon request, Bayer will furnish such technical advice or assistance it deems to be appropriate in reference to your use of our products. It is expressly understood and agreed that because all such technical advice or assistance is rendered without compensation and is based upon information believed to be reliable, the customer assumes and hereby releases Bayer from all liability and obligation for any advice or assistance given or results obtained. Moreover, it is your responsibility to conduct end-use testing and to otherwise determine to your own satisfaction whether Bayer's products and information are suitable for your intended uses and applications.

TECHNICAL SUPPORT

We provide our customers with design and engineering information in several ways: Applications and processing advice, available by phone, at 412 777-2000; processing assistance, through a nationwide network or regional field technical service representative (see list on back cover); technical product literature; and periodic presentations and seminars. The types of expertise you can obtain from Bayer include those listed in this section.

Design Review Assistance

- · Concept development
- · Product/part review
- · Mold design review
- · Part failure analysis
- · Finite element stress analysis
- Mold filling analysis
- · Experimental stress analysis
- · Shrinkage and warpage analysis

Application Development Assistance

- · Product development
- · Part cost estimates
- · Color matching
- Prototyping
- · Material selection
- Molding trials
- · Physical testing
- · Secondary operation advice

Product Support Assistance

- On-site processing audits
- · Start-up assistance
- On-time material delivery
- Troubleshooting
- · Processing/SPC Seminars
- · Productivity audits

REGULATORY COMPLIANCE

Some of the end uses of the products described in this publication must comply with applicable regulations, such as the FDA, USDA, NSF, and CPSC. If you have any questions on the regulatory status of these products, contact your local Bayer representative or the Regulatory Affairs Manager in Pittsburgh, PA.

Chapter 13
TECHNICAL SUPPORT continued

RIM PLASTICS RECYCLING

Polyurethanes are now being recycled. Recycled polyurethanes have practical uses, like housings for electronic equipment and exterior body parts for transportation vehicles.

- Regrinding—This technology allows for a "second life" for many types of polyurethane parts such as business machines and bumpers, which are then ground into a granulate or powder for use as a filler.
- Adhesive Pressing—Polyurethane granulate is surface treated with a binder, then cured under heat and pressure. The resulting materials can be reinforced and molded.

- Compression Molding—This technique allows for 100% reuse of RIM polyurethane elastomers in which no virgin material needs to be added. Can retain up to 50% of tensile properties.
- Energy Recovery—Technology exists to pyrolyze polyurethane polymers cleanly, and the combustion products can meet EPA standards.
 One pound of RIM polyurethane contains between 12,000 and 15,000 BTUs, about the same energy potential as oil or coal.
- Injection Molding—This process is suitable for composite components, such as instrument panels that contain a thermoplastic support, foam, and decorative skin. The entire module can be ground and injection molded.

Glycolysis—This is a chemical recycling process in which the polymer is broken down into a mixture of liquid polyols. Many different kinds of polyurethane parts can be used.

Polyurethanes. They do a world of good when you use them. And when you reuse them.

FOR MORE INFORMATION

The data presented in this brochure are for general information only. They are approximate values and do not necessarily represent the performance of any of our materials in your specific application. For more detailed information, contact Polymer Marketing Communications at 412 777-2000, or your nearest district office.

The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis at least must include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by Bayer Corporation. All information is given without warranty or guarantee. It is expressly understood and agreed that customer assumes and hereby expressly releases Bayer Corporation from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not bind Bayer Corporation. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

Appendix LIST OF FIGURES AND TABLES

ก	ţ	odi	ection
n	٨	DT	DESIGN

ng santiferation		
Figure P-1	RIM process	4
Figure P-2	Polyurethane systems classified by flexural modulus	6
Figure P-3	Types of polyurethane materials	7

Chapter 1 MATERIAL SELECTION CRITERIA

	Political and a second	
Figure 1-1	Simple/complex part design for undercuts	1

Chapter 2 GENERAL PART DESIGN

Figure 2-1	Three-point loading test	13
Figure 2-2	Part-stiffening techniques	14
Figure 2-3	Cored part	15
Figure 2-4	Racetracking	15
Figure 2.5	Thick versus thin ribs	16
Figure 2-6	Notched rib	16
Figure 2-7	Sinks caused by thick ribs	16
Figure 2-8	Offset rib	17
Figure 2-9	Rib configuration	17
Figure 2-10	Notched rib with bridge	17
Figure 2-11	Different types of ribbing	18
Figure 2-12	Recommended draft	18
Figure 2-13	Bosses and venting	19
Figure 2-14		19
Figure 2-15	Corner bosses	20
Figure 2-16	Hollow bosses	20
Figure 2-17	AMERICA PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS O	20
Figure 2-18		21
Figure 2-19		21
Figure 2-20		21
Figure 2.21		22

Chapter 2 GENERAL PART DESIGN continued

Figure 2-22	Basic dimensions for slots	22
Figure 2-23	Slot, groove, and hole locations for foamed materials	22
Figure 2-24	Minimum wall thickness for using insens	23
Figure 2-25	Balancing the cross-sectional centers of gravity	24
Figure 2-26	Typical threaded insen	24
Figure 2-27	Mold configurations showing undercuts	25
Figure 2-28	Snap-fit hook molded through hole to form undercut	25
Figure 2-29	Wire guides	25
Figure 2-30	Living hinge	26
Figure 2-31	Partial hinges	26
Figure 2-32	Modulus retention for Baydur structural foam	28
Figure 2-33	Waterski	. 28
Table 2-1	Coefficients of linear thermal expansion	27
Chapter 3 SOLID MA		29
Figure 3-1	Rib/wall ratio for solids	30
Figure 3-2	Correct radii/fillets for solids	30
Figure 3-3	Boss dimensions for solid materials	•
Chapter 4	MATERIALS	
Figure 4-1	Rib/wall ratio for foamed systems	32
Figure 4-2		32
Figure 4	Boss versus flow direction	33
Figure 4		3.
Figure 4-	5 Cored versus drilled bosses	3
Chapter COMPO	SITE MATERIALS	
Figure 5	.1 Flexural properties versus percent/type	3
	of glass for Baydur STR	
Figure 5	-2 Corrugations and box beams	
Figure 5	-3 Continuous integral beam assembly	

Figure 5-1	Flexural properties versus percent/type of glass for Baydur STR	35
Figure 5-2	Corrugations and box beams	36
Figure 5-3	Continuous integral beam assembly	37
Figure 5-4	Radii/fillet configuration	37
Figure 5-5	Hollow bosses and pads for mounting	31

Chapter 6 POSTMOLDING OPERATIONS

-		
Figure 6-1	Screw pullout strength versus foam density	

MOLD DESIGN Figure M-1 Typical RIM mold 46 GENERAL MOLD DESIGN CONSIDERATIONS Table 7-1 Typical molding pressures Table 7-2 Relative mold-cost comparison 48 Chapter 8 GATE DESIGN Figure 8-1 Mixing heads: diameter versus output 51 Figure 8-2 Cylindrical mix-head snout, flush with mold 52 52 Figure 8-3 Types of aftermixers 53 Figure 8-4 Typical dam gating 53 Figure 8-5 Runner transition 55 Figure 8-6 Dam gate 56 Dam gate dimensions Figure 8-7 Figure 8-8 Quadratic and triangular fan gates 57 Figure 8-9 Fan gate dimensions 58 Figure 8-10 Ball check 59 59 Figure 8-11 Direct fill into center of mold Figure 8-12 Gate marks caused by poor gate dimensioning 60 Ratio of wall thickness to mixing-head diameter Figure 8-13 for direct fill 60 Figure 8-14 Typical circular aftermixer 60 Table 8-1 Sample dam gate length calculations for solid and foamed systems 57 Table 8-2 Calculation of typical fan gate dimensions

Introduction

Chapter 9 PARTING-LINE CONSIDERATIONS

Figure 9-1	Mold in tiltable press	61
Figure 9-2	Gate low, vent high	61
Figure 9-3	Secondary parting line via drag plate	62
Figure 9-4	Mold sealing — land area	62
Figure 9-5	Mold dump well	63
Figure 9-6	Typical mold venting	63
Figure 9-7	Vent solutions for field problems via tapered hole or knockout pin	64
Table 9-1	Approximate sealing-edge widths .	62
Chapter 10- OTHER MO	LD DESIGN CONSIDERATIONS	
Figure 10-1	Mold cooling channels	65
Figure 10-2	Typical cooling channel placement	66
Figure 10-3	Effect of temperature control on skin formation	66
Figure 10-4	Typical mold arrangement	67
Figure 10-5	Air-assist demolders	68
Figure 10-6	Slides	68
Figure 10-7	Undercut molded with a removable insert	68
Figure 10-8	Recommended orientation for slots	69
Figure 10-9	Mold for louvers without side pulls	69
Figure 10-10	Mold shear edge	70
Chapter 11 SPECIAL M	OLDS	
Vienes 11 4	T-split and Y-split	72
Figure 11-1	1.2hit and 1.2hit	14

INDEX

solid systems, 53, 54 coating, in-mold, 3, 9, 38, 40 elastomeric materials, 6, 7, 10, 18, 22, 25, 26, 40. coefficients of linear thermal expansion, 23, 26-28 "A side" components, 5, 65 41, 43, 57 composite materials, 7, 10, 17-19, 35-38, 48, 53, adhesion promoters, 23 58, 59, 69, 74 adhesive bonding, 41, 42, 48 description of, 7 aesthetic considerations, 9, 39 family molds, 71 finishes, 38 aftermixers, 5, 45, 47, 51-53, 60 fan gates, 54-57 glass mat, 7, 35-37, 69 circular, 60 gate length, 56 ribs, 17, 18, 36 harp, 53 quadratic gate, 56 cooling channels, 5, 65, 74, 75 peanut, 52, 60 straight-sided gate, 56 cooling lines, manifold-type, 65 agitators, 5 fatigue considerations, 27, 28 core side, 18, 21, 67 air assists, 66, 67 fatigue test, 28 cores, 36, 64, 65, 67-69 air entrapments, 15, 17, 18, 21, 22, 30, 32, 33, 52, fiber orientation, 26, 27 movable, 68 53, 61 fiberglass, 7, 26, 35-38, 53, 58, 69, 74 preformed, 36 application development assistance, 78 content, 35, 36 corrugations, 11, 36 assembly operations, 41 flakes, 26, 37 creep considerations, 27 location, 35, 36 creep, measuring, 27 mat fiber direction, 35 cross sections, 14, 15, 23, 32 "B side" components, 5, 65 mat fibers, short glass, 26, 64 cycle times, 10, 11 back molding, 27, 28 fillers, 5, 7, 26, 27, 43, 73, 74 back pressure, 35, 53, 59 mineral, 7, 26 ball check, 58 fillets, 30, 33 dam gates, 54-56 blowing agents, 5-7, 31 finishes, 39 day tanks, 5 boss coring, 19, 20, 30, 33, 41 finishing, part, 3, 9, 10, 17, 38, 39, 41 decals, 41, 76 boss venting, 18, 19, 63, 64 flash, 62, 68, 69 degree of rigidity, 6 bosses, 19, 20, 30, 33, 63, 66 flexible foam systems, 6 demolding methods, 65-68, 76 blind, 19 flexural creep test, 27 design and engineering expenise, 77 flexural modulus, 13, 34, 35 elongated, 20 design for disassembly (DFD), 43 hollow, 20, 36 flexural test, 13 design review assistance, 78 flow lengths, 54, 59 isolated, 19 dimensional tolerances, 49 foam, 6, 16, 20, 22, 24, 31-34, 41- 43, 54, 55 open, 19, 21 draft, 18, 21, 30 radii suggestions, 19, 20, 30, 33 breakout, 42 draft, wood-grain textures, 18 box beams, 36 flow, 22, 31, 32 drag plate, 61, 62 rise, 22, 31, 32 drilling, 20, 43, 48 foamed materials, 6, 7, 18, 20, 22, 23, 27, 31-34, dump wells, 62, 63 cavity, cavity side, 18, 21, 53, 59, 60, 62, 64, 74 36, 40-43, 53-55, 64, 71 center-gated direct fill, 53, 54, 58-60 advantages, 31 CFCs, HCFCs, 31 applications, 6, 31 economic considerations, 10, 11 description, 6, 31 chalking, 9 edge gating, 53, 54, 60, 71 chemical exposure, 10 finite-element analysis, 34, 78 entrance speeds, 53, 54 clamping pressure, 47, 48, 62 foam rise and flow, 22, 31, 32 gate dimensions, 53, 54 "class A" finish, 9, 38 gating, 54 runner diameters, 53 clear coating, 10

rib design and configuration, 16, 32, 33 hole diameter, 24 cooling, 65 foamed polyurethane systems, description, 6, 7 hollow, 23 copper alloy, 73 for more information, 79 costs, 11, 17, 47, 48 metal stiffening, 23, 27, 28 functional considerations, 10 design, 3. 45, 51, 52, 65, 68, 69, 78 molded-in, 24 press-fit, 19, 24 for slots, 69 introduction to, 45 reinforcing, 23 gate blocks, 53, 54 removable, 68 dimensional tolerances, 47-49, 76 heating channels for, 53 screw size, 24 epoxy, 73, 74 gates, 3, 36, 45, 47, 51-60, 64 extruded aluminum profiles, 75 space-filling, 36 design, 3, 45, 51-60 stripping torque, 24 fabrication techniques, 48, 73 position, 45, 51, 52, 54, 61, 64 threaded, 24, 42 filling, 15, 17, 19, 35, 36, 40, 51, 61, 64, 67, 71, 78 gelling, 54, 58, 64 wood stiffening, 24 finishing, 17, 39, 73, 76 general mold design considerations, 45, 47-49 isocyanate, 5, 51, 74 milled block, 75 general part design considerations, 13-30 multiple-cavity, 58, 71, 73 glass mat, see fiberglass nickel plating, 75, 76 nickel shells, 40, 73, 74, 76 glycolysis, 43 Kirksite, see molds, zinc alloy knitlines, 21, 32, 54, 64 pressures, 48, 49, 62, 73 graphics, 40, 41, 76 green strength, 66 knockout marks, 66 sealing, 52, 62 shrinkage considerations, 49 grooves, 13, 21, 22 knockout mechanisms, 62, 63, 66, 67, 73 draft, 21 spray-metal, 73, 74 steel, 69, 74, 75 radius, 21 lance, 5 surface treatments, 48, 73, 76 lettering, 40, 41, 76 temperature control, 53, 65, 74 handguns, 58 textures and finishes, 76 liquid level, 22, 31, 32 health and safety information, 77 liquid tight, 62, 67 tilting, 61 heat exchangers, 5 venting, 61, 63 zinc alloys (Kirksite), 73, 74 hinge pins, 26 material density, 13, 31, 49, 62 movable cores and inserts, 65, 68 hinges, 25, 26 multiple-cavity molds, 71, 73 material selection criteria, 3, 9-11, 49, 78 living, 26 metal, 26 mechanical etching, 76 microcellular, 7, 47 partial, 26 snap-in, 26 mixing heads, 5, 45, 47, 48, 51-53, 58-60 nailing, 41, 43 holes, 21, 22, 26, 30, 41, 63, 68 flow capacities, 51 hydraulic slides, 48 impinging pressure, 51 mounting, 52 pads, 36 hydroxyl content, 5 paint, textures, 9, 40, 41 molding times, 32 painting, 9, 39, 40, 48 molds aluminum, 73-75 parting line, 45, 53, 61, 62, 69 injection rates, 54 inserts, 10, 11, 13, 19, 20, 23, 24, 27, 28, 32, 33, cast, 75 considerations, 61 secondary, 61 36, 42, 65, 68 cavity obstructions, 64 design of, 23, 24 construction materials, 48, 73, 74, 77, 78 stepped, 69 encapsulated, 13, 23 construction techniques, 75 parts

special molds, 71 physical properties, 6, 7, 10, 39 finishing, 39-41 sprues, 60 RIM process, 5 patching, 40 RIM system, 5, 6, 9, 15, 23, 28, 36, 40, 42, 48, 59. stapling, 43 repeatability, 47 structural composite polyurethane systems 63, 65, 73, 76 size, 47, 48 (SRIM), 7, 10, 36-38, 69 stiffness, 13-15, 17, 18, 23, 26, 27, 31, 35, 36 RIMgate®, S1 structural foam, 6, 14, 23, 31, 34, 41, 55, 59 weight limitations, 47, 48 routing, 43 wall thickness, 14 runners, 3, 51-55, 57, 62, 71 photoetching, 76 surface blemishes, 32, 33, 40, 60 pigments, 5, 39, 39, 40 pins, small diameter, 66 sanding, 40, 43, 48 planing, 43 technical support, 78 sawing, 43 polyol, 5, 39, 51 textures, 18, 39-41, 73, 74, 76 screws, 19, 20, 24, 33, 41, 42 postfabrication, 43 leather grain, 40, 74, 76 pilot hole for, 41, 42 postmold painting, 40 pebble, 40, 41, 76 pullout strength, 20, 24, 41 postmolding operations, 3, 20, 39, 48 wood grain, 40, 41, 74, 76 self-tapping, 33, 41, 42 preforms, 37 thermal elongation, 23 stripping torque, 24 press capacity, 48 thermal expansion, 23 thread-cutting, 20, 42 Product Information Bulletins (PIBs), 3, 49 thermoset, 5, 37, 77 thread-forming, 42 product support assistance, 78 thick sections, coring, 11, 15 self-contained molds, 72 prototype testing, 3, 34, 73, 74, 78 self-skinning foam systems, 10 shear edges, 69 undercuts, 25, 26, 31, 48, 68 shrinkage, 16, 23, 28, 29, 47, 49, 78 racetracking, 15, 32 UV stability, 9, 10, 39, 40 shrinkage behavior, 28, 49 recirculation pumps, 5 side pulls, 11 recycling polyurethanes, 43, 79 sidewalls, 14, 17, 18, 21 regulatory compliance, 78 vacuum cups, 66, 68 silk screening, 41 release agents, 5 veil, 38 sink marks, 16, 19, 29, 32 resin-rich areas, 17, 36 vent pins, 19, 63 sliding cores, 17, 21, 25, 31, 68 ribbing, 11, 13, 17, 18, 29, 32 vents, 13, 19, 32, 61, 63 slots, 13, 21, 22, 25 bidirectional, 17 snap fits, 25, 68 diagonal cross, 18 solid elastomeric systems, 7 direction, 13, 17, 29, 32 wall thickness, 11, 13-16, 19-23, 25, 29-33, 36, solid materials, 7, 16, 18, 23, 29, 30, 33, 53, 55, parallel, 17 42, 60 57.64 ribs, 11, 13, 15-18, 29, 30, 32, 63 varying, 13, 15 advantages, 7, 29 and flow direction, 17 warpage in part design, 27 description of, 7, 29 notched, 15-17 warping, 13, 23, 27, 28, 78 inserts, 23 thick, 15, 16 weld lines, 21, 32, 54, 64 rigid materials, 6, 7, 10, 25, 33, 40, 54, 66 radii, 30 wetting out, 36 rib design, 16, 29 RIM material descriptions, 6, 7 wire guides, 25 RIM material selection criteria, 9-11 sink marks, 16 RIM polyurethane materials, 3, 23, 27, 41, 43, 47, wall thickness, 14, 16, 23, 29, 30

solid polyurethane systems, 7

solid, rigid systems, 7, 10

51, 53, 62, 73

inherent advantages, 3

Quick Design Reference Guide for RIM Materials

Pol	vure	tha	nes

	Elastomers	lastomers Rigid RIM		Composites		
Parameters	Solid Bayflex System (Unfilled)	Foamed Baydur System	Solid Baydur GS System	Solid PRISM System (Thin-Walled)	Foamed Baydur STR/F System	Solid Baydur STR/C System
Dank Dankar						
Part Design () Wall Incloses (in	n karbani a			ALCH VICE OF COMM	A TO STATE OF	A STROPEN FO
Rib Thickness . at Root ^a	0.751	1	ţ	0.75t	Use box beam or corrugation	Use box beam or corrugation
mit (degree) e Nis e fairclión of Sal Draw of Leptin					10 760	L) Trini
Nolded Holes/Slots	Yes	Yes	Yes	Yes	No	No
nap Fits	Possible	sremovable insert s	removable insert	Possible	No	No.
Dets (mer Radus) (100 100 100 100 100 100 100 100 100 100		3,800 A/C 85 A		
Finishing						•
	ē±š,K	-54	3//			
Screw Assembly	Use bolt & nutb	Thread cuts skin	Thread cutting	Thread cutting	Thread cutting	Thread cutting
Mold Design an	d Processing i	Parameters	·			
distriction of the second				Margaliisi (est office) (est total)		304
Preferred Gating	Fan	Dam	Dam	Dam	Center/Direct	Center/Direct
Soil this like los				100 ±00 ±00 ±00 ±00 ±00 ±00 ±00 ±00 ±00	200	200
dold Pressure (psl) loch (epipermure)	100 2) 1-0 2)	100	100	100 to 22	200 210 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
Physical Prope	rties					
dentité d'apprés		50000 920000	120000 (20000	2/00002=110000	150(000 VE0000	(jobajo))
Part Density (ib/in³) Jeograf Spensity (p	60 - 65	15 – 55	63 - 68	61 – 67	20 – 40	90 – 110
		\$1000 a 2000)	#15,000 F ATTO	egytore opera	3500-17000	The state of the s
Tensile Strength (ps crission at Ereck)		1,000 - 4,800	3,600 - 5,300	5,500 - 6,600	2,500 - 9,000	26,000
DTUL at 66 psi (°F)	N/A	160-212	140 – 215	190 – 205	205	400
(Teresies, Today	10000		200.6		246.000	
% Reinforcement	0-25	N/A	N/A	N/A	20 (mat)	55 (mat)

^aRoot includes both radii. ^bCan also screw through to metal substrate.

^cLonger shot times are possible with a Bayflex XGT system, which has an extended gel time.

Bayer Corporation - 100 Bayer Road - Pittsburgh, PA 15205-9741 - 1-800-622-6004

Sales Offices:

California:

9 Corporate Park Drive, Suite 240, Irvine, CA 92714-5113

714 833-2351 • Fax: 714 752-1306

Michigan:

1150 Stephenson Highway, Troy, MI 48083-1187

810 583-9700 · Fax: 810 583-9701

New Jersey:

Raritan Plaza III, Edison, NJ 08837-3605

908 225-1030 · Fax: 908 225-2571

Illinois:

9801 W. Higgins Road, Suite 560, Rosemont, IL 60018-4704

708 692-5560 · Fax: 708 692-7408

Georgia:

380 Interstate N. Parkway, Suite 200, Atlanta, GA 30339-2267

(Polyurethanes)

404 955-4326 · Fax: 404 956-7484

Canadian Affillate:

Ontario:

Bayer Inc.

77 Bellield Road, Etobicoke, Ontario M9W 1G6

416 248-0771 • Fax: 416 248-4496

Quebec:

Bayer Inc.

7600 Trans Canada Highway, Pointe Claire, Quebec H9R 1C8

514 697-5550 · Fax: 514 697-5334

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
O OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Engineering Polymers

Properties Guide

THERMOPLASTICS AND POLYURETHANES BEST AVAILABLE COPY

Thermoplastics from Bayer

The Polymers Division of Bayer Corporation supplies engineering thermoplastics and polyurethanes, technology, and equipment for a wide range of applications and industries.

Thermoplastics

The Plastics Department offers an extensive range of engineering thermoplastic resins and specialty plastics. In addition to the products listed in this brochure, polycarbonate films and thermoplastic urethane films are also available.

For information, please call 1-800-622-6004.

Products MAKROLON® Polycarbonale	Features Glass-like transparency Outstanding impact strength Good thermal resistance Excellent dimensional stability Good electrical properties
Pages 8-11	
APEC® High-Heat Polycarbonate	Glass-like transparency High deflection temperature under load High impact strength Excellent dimensional stability
Page 11	1
BAYBLEND® and TRIAX® Polycarbonate/ABS Blend	Good impact resistance even at low temperatures Rigidity and dimensional stability Easy processing Good color stability to indoor lighting Good thermal stability
Pages 12-13	
MAKROBLEND® Polycarbonate Blend	Good chemical resistance Excellent impact resistance even at low temperatures Good abrasion resistance Good processibility and thermal stability
Pages 14-15	Rigidity and dimensional stability
TRIAX® Polyamide/ABS Blend	High impact strength Excellent abrasion characteristics Good chemical resistance and fatigue performance State-of-the-art blending technology
Page 15	Excellent processing characteristics
LUSTRAN® ABS	Toughness, strength, and rigidity Heat and chemical resistance Dimensional stability and creep resistance Good surface appearance Good processibility
Page 15.17	,p', ·

Thermoplastics from Bayer

Grades	Markets and Applications ^a
General-Purpose	Automotive and Transportation: forward and rear lighting components, instrument panels,
High-Productivity	aircraft canopies
Impact-Modified	Building and Construction: extrusion resin for monolayer and structured sheet, profiles
Glass-Reinforced	Business Machines: computer and printer housings, sight windows
Flame-Retardant	Consumer: power tool housings, food storage containers, appliances, sporting goods
Structural Foam	Electrical/Electronic: electric meter covers, telephone components, lighting diffusers and lenses
Extrusion	Medical: diagnostic, cardiovascular and intravenous devices; drug delivery systems; packaging
Medical	Optical: lenses for prescription eyewear, sunwear, industrial safety glasses and specialty eye protection
Optical	Optical Memory: audio and video compact discs, data storage discs
Lighting .	Packaging: bottles, film
Automotive Lens	
General-Purpose	Automotive and Transportation: reflectors, lenses, and light pipes for interior and exterior lighting
Flame-Retardant	Consumer: steam iron water tanks, hair dryer components, microwave oven doors, gas range controls
Medical	and ignition switches
MEGICA	Electrical/Electronic: fuses, switch housings; lighting reflectors, diffusers and lenses
	Industrial/Mechanical: emergency equipment, face shields, indicator lenses
	bMedical: packaging, surgical lighting, autoclavable devices
Canada Duranga	Automotive: interior and exterior parts, wheel covers, instrument panels
General-Purpose	Business Machines: computer, monitor and printer housings; general office equipment
High-Productivity	Consumer: household appliances, smoke detectors, lawn and garden equipment
Glass-Reinforced	Electrical/Electronic: modular plugs, wiring devices
Flame-Retardant Structural Foam	Liberi ibung Liberi vinde. Moodel proget
Extrusion and Blow Molding	
Plating	Automotive: body panels, bumpers, interior switches, exterior mirror housings
Impact-Modified	Consumer: appliances, food trays, household cleaning equipment, lawn and garden equipment,
Glass-Reinforced Flame-Retardant	sporting goods, telecommunications equipment
	Electrical/Electronic: connectors, electrical housings, interrupters, switch housings
FDA-Compliant	Industrial/Mechanical: meter housings, pump housings, agricultural equipment
Transparent	Automotive: interior functional components, fasteners, housings and shrouds
General-Purpose Glass-Reinforced	Consumer: appliances, lawn and garden equipment, power tools, sporting goods
Extrusion .	
EXPUSION .	
Molding	Automotive: interior and exterior trim, pillar posts, consoles, scutt plates, map pockets
High-Gloss	Business Machines: keyboard keys, computer housings and bezels
Low-Gloss	Consumer: housewares, small appliance housings, floor care components, lawn and garden appliances,
High-Impact	power tool housings, toys, telecommunications equipment, consumer electronics
High-Heat	Industrial/Mechanical: drain, waste and vent pipe and fittings
Extrusion	Medical: drug delivery systems, diagnostic equipment and instruments, test kits
Medical	Packaging: cosmetic containers
Clear	Sheet and Profile: custom extruded products
	this contraction of the second determine cuitability

As with any product, use of a particular resin in a given application must be tested (including field testing, etc.) in advance by the user to determine suitability.
 Please refer to Bayer Corporation guidelines for medical application of Bayer products on pages 4-5.
 Makroblend DP4-1370 resin (natural color) can be used for food-contact applications except for those in which the temperature exceeds 250°F and the food contains more than 50% alcohol.
 Since color possibilities for food-contact applications are limited, please contact your Bayer representative for information on available colors and their limitations.

Thermoplastics

The Plastics Department offers an extensive range of engineering thermoplastic resins and specialty plastics. In addition to the products listed in this brochure, polycarbonate films and thermoplastic urethane films are also available.

For information, please call 1-800-622-6004.

Thermoplastics from Bayer

(continued)

Products	Features
LUSTRAN® SAN	Glass-like clasity Strength and rigidity
Page 18	Excellent chemical resistance Heat and abrasion resistance Easy processing
CADON® SMA	High heat resistance Impact strength Rigidity
Pages 18-19 CENTREX® ASA, AES and ASA/AES Weatherable Polymers Page 19	Good chemical resistance Toughness and durability Resistance to fading and cracking from sunlight and temperature extremes Resistance to road chemicals Light weight High strength, rigidity and hardness
Polyamide 6	Excellent toughness and impact resistance High dynamic fatigue resistance Excellent abrasion and chemical resistance High heat resistance in reinforced grades Good electrical insulating properties
Pages 20-23 TEXIN® and DESMOPAN® Thermoplastic Polyurethane	Excellent abrasion resistance Excellent resistance to fuels and oils High tensile and tear strength High elasticity and resilience Good vibration dampening
Pages 24-25	Shore hardness range from 85A to 75D

3 As with any product, use of a particular resin in a given application must be tested (including field testing, etc.) in advance to the user to determine suitability.

by the user to determine suitability.

Please refer to Bayer Corporation guidelines listed below for medical application of Bayer products.

Bayer Corporation Guidelines for Medical Application of Bayer Products

- 1. All Bayer resins, films, etc. [hereinafter "Product(s)"] designated as "medical-grade" have met the requirements of the FDA-Modified ISO 10993, Part "Biological Evaluation of Medical Devices" tests with human tissue contact time of 30 days or less. ONLY THESE PRODUCTS MAY BE CONSIDERED CANDIDATES FOR APPLICATIONS REQUIRING BIOCOMPATIBILITY. No "medical-grade" Product will be available for sale until successful completion of testing.
- 2. Regrind resins must not be used in medical applications requiring biocompatibility.
- 3. It is the responsibility of the medical device, biological product or pharmaceutical manufacturer ("Manufacturer") to determine the suitability of all component parts and raw materials, including any Bayer Product, used in its final product in order to ensure safety and compliance with FDA requirements. This determination must include, as applicable, testing for suitability as an implant device and suitability as to contact with and/or storage of human tissue and liquids including, without limitation, medication, blood or other bodily fluids.
- 4. Under no circumstances may any Bayer Product be used in any cosmetic, reconstructive or reproductive implant applications. No: may any Bayer Product be used in any other bodily implant applications, or any applications involving contact with or storage of human tissue, blood or other bodily fluids, for greater than 30 days, based on the FDA-Mod.fied ISO 10993 tests. Furthermore, for aromatic grades of Texin resins, such longer-term uses are not permissible also because possible hydrolysis of solid polyurethane may produce aromatic amines, such as methylene dianiline (MDA).

Thermoplastics from Bayer

(continued

Grades General-Purpose High-Clarity High-Performance High-Heat Glass-Reinforced Extrusion	Consumer: food and beverage containers, dinnerware, housewares, appliances, interior refrigerator components, toys Industrial/Mechanical: fan blades, filter housings Medical: fubing connectors and valves, labware, urine bottles Packaging: cosmetic containers and displays Automotive: interior and exterior trim, instrument panels Consumer: appliances, power tools Industrial/Mechanical: machinery parts
General-Purpose Gloss-Retention Extrusion Unreinforced Impact-Modified Glass-Reinforced Mineral-Reinforced Mineral/Glass-Reinforced Reduced-Moisture and Impact-Modified versions of Glass-Reinforced and Mineral- Reinforced grades are available.	Automotive: interior trim, exterior and aftermarket parts Consumer: lawn and garden tractor components; boat and marine accessory parts; spa shells; swimming pool/steps, covers and filter housings; golf accessories Miscellaneous: outdoor signs Specialty Transportation: recreational vehicle exterior parts Automotive: interior and exterior parts, door handles, mirrors, wheel covers Consumer: furniture, lawn and garden equipment, power tool housings, sporting goods Electrical/Electronic: wiring devices, switch housings, fuse holders Industriat/Mechanical: pumps, fans, pneumatic tools, housings Packaging: film for packaging of food, chemicals, medical and industrial goods
Film grades available (not listed in table). Polyester Polyether Polyurethane/Polycarbonate Blends Medical Extrusion	Automotive: cams, gears, mechanical parts, exterior applications, side body molding Building and Construction: extrusion resins for film and sheet Consumer: golf balls, ski goggle frames, shoe components, ski boots Industrial/Mechanical: mine screens, animal identification tags, hydraulic seals, hoses, caster wheels, grain buckets Medical: diagnostic devices, tubing and catheters, connectors

- 5. The suitability of a Bayer Product in a given end-use environment is dependent upon various conditions including, without limitation, chemical compatibility, temperature, part design, sterilization method, residual stresses or external loads. It is the responsibility of the Manufacturer to evaluate its final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof.
- 6. Single-use medical devices made from a Bayer Product are not suitable for multiple uses. If the medical device is designed for multiple uses, it is the responsibility of the Manufacturer to determine the appropriate number of permissible uses by evaluating the device under actual sterilization and end-use conditions and to adequately advise and warn purchasers and users thereof.
- 7. The sterilization method and the number of sterilization cycles a medical device made from a Bayer Product can withstand will vary depending upon type/grade of Product, part design, processing parameters, sterilization temperature and chemical environment. Therefore, the Manufacturer must evaluate each device to determine the Sterilization method and the number of permissible sterilization cycles appropriate for actual end-use requirements and must adequately advise and warn purchasers and users thereof.
- 8. Parts molded or extruded from Texin resins are sterilizable using ethylene oxide, radiation or dry heat. Steam autoclaving and boiling water techniques are possible only with select aliphatic grades of Texin resin. These sterilization methods must not be used with aromatic grades of Texin resin because possible hydrolysis may produce aromatic arrines, such as methylene dianiline (MDA).

Polyurethanes from Bayer

Polyurethanes

The Polymers Division produces polyurethane raw materials and systems for the automotive, appliance, construction and furniture industries, as well as many other markets, such as consumer, industrial/mechanical, medical, and specialty transportation. In addition to the specialty systems listed in this brochure, the Polyurethanes Department offers integral skin foams; elastomeric, microcellular soling systems for the production of shoe soles; and semirigid, high-resilience and energy-absorbing foams. Moreover, a full range of raw materials and additives include diphenylmethylene diisocyanate (MDI), toluene diisocyanate (TDI), and polyols. A complete line of equipment for polyurethane processing is produced by the division's Hennecke Machinery Group.

For information, please call 1-800-622-6004.

Products BAYDUR® Structural Foam	Features Two-component, MDI-based liquid systems Large-part moldability	
Polyurethane RIM Systems	Stiffness High-gloss finish and excellent surface quality In-mold coating Used for thick- and thin-wall parts	
Pages 26-27 BAYDUR® SFR Composite Polyurethane RRIM Systems Page 27	Two-component, MDI-based liquid systems Light weight High strength-to-weight ratio Excellent adhesion to fabric and vinyl	
BAYDUR® STR Composite Polyurethane SRIM Systems Page 27	Two-component, MDI-based liquid systems Exceptional impact strength and stiffness Used for large structural parts	•
BAYDUR® GS Solid Polyurethane RIM Systems Page 27	Two-component, MDI-based liquid systems Excellent chemical resistance Stiffness Large-part moldability	
PRISM® Solid Polyurethane RIM Systems Page 27	Two-component, MDI-based liquid systems Stiffness and high strength-to-weight ratio Good heat deflection temperature Excellent surface quality Two-component, MDI-based liquid systems	
BAYFLEX® Elastomeric Polyurethane RIM Systems Pages 28-29	Large-part moldability Wide range of flexural moduli Superior impact strength Excellent surface quality and in-mold coating	*
BAYTEC® SPR Elastomeric and Structural Polyurethane Spray Systems	Two-component, MDI-based liquid spray systems Low-viscosity, solvent-free liquids (negligible VOCs) Used for structural parts or elastic membranes Good adhesion to substrates	_
Page 30 BAYTEC® RTM Polyurethane Systems for Resin Transfer Molding	Fast cure times for ease in building laminates Two-component, MDI-based liquid systems Low-viscosity, solvent-free liquids (negligible VOCs) Outstanding impact resistance at high and low temperatures, with and without glass Fast reaction times and high flexural modulus	
Page 30 BAYTEC® Polyurethane Prepolymers for Cast Elastomers Page 31	MDI-based prepolymers Dynamic load-bearing ability Outstanding resilience and tear resistance Corrosion and abrasion resistance Flexible over a wide temperature range	- 0
- 4		

Polyurethanes from Bayer

	Markets and Applications ^a
Grades	Agricultural/Construction Equipment: tractor cab roots and consoles
eneral-Purpose	Automotive: attermarket spoilers
ame-Retardant	Construction: window and door trames
	Construction: white want door manus Consumer: speaker housings, snow and water skis
	Electrical/Electronic: instrumentation and equipment housings, Nema 1 and 12 enclosures,
	Electrical/rections, and uncontain and equipment
	telecommunications equipment
	Medical: analytical and diagnostic equipment housings
	Specialty Transportation: interior components for heavy trucks (Class 8)
ow-Density	Automotive: interior door panels, interior trim, sunshades
	included the controlled read package trays.
Low-Density	Automotive: bumper beams, inner door panels, interior trim, instrument panels, rear package trays,
High-Density	seat backs, seat pans
mgn outerly	
	Industrial/Mechanical: pump housings, underground applications (concrete and cast iron replacement)
General-Purpose	Industrial/Mechanical: pump nousings, underground approcadors (converse
	Telecommunications: utility boxes
_	increase instrumentation and enginment housings
General-Purpose	Electrical/Electronic: telecommunications equipment, instrumentation and equipment housings
Flame-Retardant	Medical: analytical and diagnostic equipment housings, laboratory instrumentation
	Agricultural/Construction Equipment: hay conditioning rollers, tractor body panels and door frames
Unfilled	Automotive: fascias, body panels, window encapsulation, aftermarket restyling packages
Glass-Filled	Specialty Transportation: heavy-duty truck bumpers, snowmobile hoods, work vehicles
Mineral/Microsphere-Filled	Specially transportation, heavy duty floor compact,
	Automotive; aftermarket restyling packages
Elastomeric	new and dark marine accessories spas and bathtubs
Structural	Industrial/Mechanical: industrial liners, dump truck liners, containers, agricultural parts
	Miscellaneous: protection for wood, metal, and concrete
General-Purpose	Automotive: aftermarket restyling packages
acualar, alhase	Consumer: marine accessories, radar dishes
	the state of the s
	Specialty Transportation: components for heavy trucks, recreational vehicles, tractors, and
	h
Online	the state of the s
Polyester Poly(tetramethylene ether) glycol	industrial/mechanical: lifes and wheels, rolls, injury better streens, conveyor better streens,
PAINTETTAMETAVIETIE ETHET) GIYCUI	scrapers, shock absorbers

^{*} As with any product, use of a particular polyurethane system in a given application must be tested (including field testing, etc.) in advance by the user to determine suitability.

Bayflex®

Polyurethane Elestomeric RIM

⊅ DLYURETHANES			MP- 5000	MP- 10000	i10 RIM-Lite	110-25 IMR		110-50		
Typical Physical Properties*	astm Test Method (Other)	U.S. Conventional Units	Unfille I	Unfilled .	13% Mineral	Unfilled	Unfilled	15% Mineral?	15% Blass³	
GENERAL Specific Gravity Density Thickness Shore Hardness Mold Shrinkage Water Immersion, Length Increase Water Absorption: 24 Hours 240 Hours	D 792 D 1622 D 2240 (Bayer) (Bayer) (Bayer)	BAR in A or D % in/in %	1.1 68.7 0.118 82.A 1.25 0.015	1.1 68.7 0.118 90.A 1.42 0.014 3.3 5.0	0.95 59.3 0.150	0.98 61.2 0.125 50 D 1.3 0.608	1.04 64.9 0.125 58 D 1.3 0.006	1.15 71.8 0.125 60 D 0.6	1.14° 71.2 0.125 60 D 0.7 0.002	
MECHANICAL Tensile Strength, Ultimate Elongation at Break Flexural Modulus: 149°F 73°F -22°F Tear Strength, Die C Impact Strength: Notched tzod	D 638/D 412 D 638/D 412 D 790 D 624 D 256	lb/in²% % lb/in² lb/in² lb/in² lb/in	1,900 360 4,000 5,000 14,500 230	2,200 300 7,900 10,000 23,600 240	2,360 90 71,000 400	3,000 260 25,000 350 8	3,500 250 38,000 52,000 115,000 450	3,300 140 111,000 125,000 250,000 640	2,800 200 60,000 100,000 150,000 620	
THERMAL Heat Sag: G-in Overhang, 1 hr at 250°F 4-in Overhang, 1 hr at 250°F Coefficient of Linear Thermal Expansion	D 3769 D 696	in in in/in/°F	53 E-06	53 E-06	0.43	0.51	0.60 0.36 61 E-06	0.16 27 E-06	0.28 0.27 44 E-06	

Note 1
 All directional properties are listed parallel to flow.

Note 2
IMR: Internal Mold Release.
RIM: Reaction Injection Molding.
XGT: Extended Gel Time.

fish Rimball Myd 97 These items are provided as general information only. They are approximate values and are not part of the product specifications. 10% calcium silicate and 3% glass microspheres.

RRIMGLOS 10013 (RRIMGLOS is a trademark of NYCO Minerals, Inc.).

Milled glass fiber, OCF 737, 1/16 inch.

Catcium silicate.

Bayflex®

Polyurethane Elastomeric RIM (continued)

•										
110	80	1	0	XGT-16	XGT-50	XGT	-80	XGT	100	XGT-14D
- Untilled	15% Glass*	15% Mineral	20% Mineral	Unfilled	Untilled	Unfilled	15% Glass¹	Unfilled	15% Glass '	Unfilled
1.04 64.9 0.125	1.14 71.2 0.125 0.7	1.18 73.7 0.150	1.23 76.8 0.150 0.55-0.65	1,04 64.9 0.125 45.D 0.85	1.04 64.9 0.125 55 D 0.85	1.04 64.9 0.125 65 D 0.85	1,15 71.8 0.125 70 D	1.04 64.9 0.125 69 D 0.85	1.15 71.8 0.125 73 D	1.04 64.9 0.125 71 D 0.85
	·		* *****	عب يايان	" V:	ta tysti			i jan	
3,500 135	3,200 75	4,100 150	3,900 130	2,400 250	3,500 200	3,700 150	3,800° 75	4,000 140	4,100 50	4,200 80
51,000 80,000 200,000 470	100,000 150,000 275,000 600	, 183,000 580	195,000** 630	16,000 450	18,000 50,000 105,000 530	33,000 83,000 180,000 630	78,000 170,000 280,000 650	45,000 100,000 220,000 670	95,000 210,000 400,000 680	50,000 140,000 260,000 700
5	3	2.8	3.2	-(1,58 7) ***	12.5	12	5":	7:	5 , "4-70	7. 7 4.5
0.31 61 E-06	0.16 28 E-06	0.20	0.05	78 E-06	0.67 61 E-06	0.59 61 E-06	0.39 31 E-05	0.59 61 E-06	0.43 28 E-06	0.59 61 E-06

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Engineering Polymers

Properties Guide

BEST AVAILABLE COPY

Thermoplastics and Thermosets

ENGINEERING THERMOPLASTICS BY MILES

The Polymers Division of Miles* supplies thermoplastic and thermoset polymers, technology, and equipment for a wide range of applications and industries.

Thermoplastics

The Plastics Department offers an extensive range of engineering thermoplastic resins and specialty plastics. In addition to the products listed in this brochure, polycarbonate films and thermoplastic urethane films are also available.

For information, please call 1-800-622-6004.

Products MAKROLON Polycarbonate	Glass-like transparency Outstanding impact strength Good thermal resistance Excellent dimensional stability Good electrical properties
Pages 6-9 APEC High-Heat Polycarbonate	Glass-like transparency High deflection temperature under load High impact strength Excellent dimensional stability
Page 9 BAYBLEND Polycarbonate/ABS Blend	Good impact resistance even at low temperatures Rigidity and dimensional stability Easy processing Good color stability to indoor lighting Good thermal stability
Pages 10-11 MAKROBLEND Polycarbonate Blend	Good chemical resistance Excellent impact resistance even at low temperatures Good abrasion resistance Good processibility and thermal stability Rigidity and dimensional stability
Pages 12-13 DURETHAN** Polyamide 6 (formerly Nydur Polyamide 6)	High strength, rigidity and hardness Excellent toughness and impact resistance High dynamic fatigue resistance Excellent abrasion and chemical resistance High heat resistance in reinforced grades Good electrical insulating properties
Pages 14-17 TEXIN and DESMOPAN	Excellent abrasion resistance Excellent resistance to fuels and oils High tensile and tear strength
Thermoplastic Polyurethane Pages 18-19	High elasticity and resilience Good vibration dampening Shore hardness range from 85A to 75D

On January 1, 1992, all Mobay businesses began operating under the corporate name Miles Inc.
Durethan polyamide was previously supplied by the corporate predecessor of Miles Inc. under the trademark Nydur.
Makroblend DP4-1370 resin (natural color) can be used for food-contact applications except for those in which the temperature exceeds 250°F and the food contains more than 50% alcohol. Since color possibilities for food-contact applications are limited, please contact your Miles representative for information on available colors and their timitations.

ENGINEERING THERMOPLASTICS BY MILES

3 6	
	Maters and Applications
the chaues	Automotive and Transportation: forward and rear lighting components, instrument panels,
General-Purpose	
High-Productivity	aircraft canopies Building and Construction: extrusion resin for monolayer and structured sheet, profiles
Impact-Modified	Building and Construction, extrusion tests for inchronage, and should be sho
Glass-Reinforced	Business Machines: computer and printer housings, sight windows
Flame-Retardant	Consumer: power tool housings, food storage containers, appliances, sporting goods
Structural Foam	Electrical/Electronic: electric meler covers, telephone components, lighting diffusers and lenses
Extrusion	b Medical: diagnostic, cardiovascular and intravenous devices; drug delivery systems; packaging
Medical	Optical: ophthalmic (prescription), safety and specialized lenses for the military, industrial and
Optical "	sports markets
Lighting	Optical Memory: audio compact discs, data storage discs
Automotive Lens	Packaging: bottles, film
General-Purpose	Automotive and Transportation: reflectors, tenses, and light pipes for interior and exterior lighting
Flame-Retardant	Consumer: steam iron water tanks, hair dryer components, microwave oven doors, gas range controls
Medical	and ignition switches
,	Electrical/Electronic: fuses, switch housings; lighting reflectors, diffusers and lenses
	Industrial/Mechanical: emergency equipment, tace shields, indicator tenses
,	^b Medical: packaging, surgical lighting, autoclavable devices
General-Purpose	Automotive: interior and exterior parts, wheel covers, instrument panels
High-Productivity	Business Machines: computer, monitor and printer housings; general office equipment
Glass-Reinforced	Consumer: household appliances, food service trays, smoke detectors, lawn and garden equipment
Hame-Retardant	Electrical/Electronic: modular plugs, wiring devices
Flame-Retardant, Antimony/Bromine-Free	
Structural Foam	
Impact-Modified .	Automotive: body panels, bumpers, interior switches
Glass-Reinforced	Consumer: appliances, tawn and garden equipment, sporting goods, telecommunications equipment
Flame-Retardant	Electrical/Electronic: connectors, electrical housings, interrupters, switch housings
^a FDA-Compliant	Industrial/Mechanical: meter housings, pump housings, agricultural equipment
	des boodles mirrors whost cropps
Unreinforced	Automotive: interior and exterior parts, door handles, mirrors, wheel covers
Impact-Modified	Consumer: furniture, lawn and garden equipment, power tool housings, sporting goods
Glass-Reinforced	Electrical/Electronic: wiring devices, switch housings, fuse holders
Mineral-Reinforced	Industrial/Mechanical: pumps, fans, pneumatic tools, housings
Mineral/Glass-Reinforced	Packaging: film for packaging of food, chemicals, medical and industrial goods
Reduced-Moisture and Impact-Modified	
versions of Glass-Reinforced and Mineral-	
Reinforced grades are available.	
Film grades available (not listed in table).	Leads exterior applications side horty molding
Polyester	Automotive: carns, gears, mechanical parts, exterior applications, side body molding
Polyether	Building and Construction: extrusion resins for film and sheet
Polyurethane/Polycarbonate Blends	Consumer: golf balls, ski goggle frames, shoe components, ski boots
Medical	Industrial/Mechanical: mine screens, animal identification tags, hydraulic seals, hoses,
Extrusion	caster wheels, grain buckets
	⁶ Medical: diagnostic devices, tubing and catheters, connectors

bit is the responsibility of the medical device manufacturer to determine the suitability of all component parts and raw materiats, including Apec, Makroton, and Texin resins, used in its final product in order to ensure safety and compliance with FDA requirements. This determination must include, as applicable, testing for suitability as an implant device and suitability as to contact with FDA requirements. This determination must include, as applicable, testing for suitability as an implant device and suitability as to contact with another to ensure safety and compliance with FDA requirements. This determination must include, as applicable, testing to suitability as an implant device and suitability as an implant device and suitability as an implant device and solid polyurethane may produce bedily implant applications for greater than 29 days. For aromatic grades of Texin resins, tonger-term uses are not permissible because possible hydrohysis of solid polyurethane may produce about a permissible because possible hydrohysis of sterilization regions are not permissible to the permissible because possible hydrohysis or sterilization of the sterilization method and the number of sterilization cycles appropriate for design, and processing parameters. Therefore, the manufacturer must evaluate each application to determine the sterilization method and the number of sterilization cycles appropriate for design, and processing parameters. Therefore, the manufacturer must evaluate each application to determine the sterilization method and the number of sterilization cycles appropriate for design, and processing parameters. Therefore, the manufacturer must evaluate each application to determine the sterilization method and the number of sterilization cycles appropriate for design, and processing parameters. Therefore, the manufacturer must evaluate each application to determine the sterilization method and the number of sterilization cycles appropriate for design, and processing parameters. Therefore, the manufacturer m

ENGINEERING THERMOSETS BY MILES

Thermosets

The Polymers Division produces polyurethane raw materials and systems for the automotive, appliance, construction and furniture industries, as well as many other markets, such as consumer, industrial/mechanical, medical, and specialty transportation. In addition to the specialty systems listed in this brochure, the Polyurethanes Department offers integral skin foams; elastomeric, microcellular soling systems for the production of shoe soles; semirigid foams, and high-resilience foams. Moreover, a full range of raw materials and additives includes diphenylmethylene diisocyanate (MDI), toluene diisocyanate (TDI), and polyols. A complete line of equipment for polyurethane processing is produced by the division's Hennecke Machinery Group.

For information, please call 1-800-622-6004.

and the	Features
	Two-component, MDI-based liquid systems
BAYFLEX	Large-part moldability
Elastomeric	Wide range of flexural moduli
Polyurethane RIM Systems	Superior impact strength
	Light weight
	Excellent surface quality
Page 20	in-mold coating
BAYDUR STR	Two-component, MDI-based liquid systems
Composite	Exceptional impact strength and stiffness
Polyurethane RIM Systems	Used for large structural parts
Page 21	Two-component, MDI-based liquid systems
BAYDUR	Large-part moldability
Structural Foam	Stiffness
Polyurethane RIM Systems	High-gloss finish and excellent surface quality
	In-mold coating
	Used for thick and thin wall thicknesses
Page 21	
PRISM	Two-component, MDI-based liquid systems
Solid	Stiffness
Polyurethane RIM Systems	High strength-to-weight ratio
·	Good chemical resistance
	Good heat deflection temperature Excellent surface qualify
Page 21	Excellent surface draint
BAYTEC RE	
Elastomeric and Structural	
Polyurethane Spray Systems	A the Constitution of the
·	A recimanteur hes nossetable in the
Page 22	Bridge 18
BAYTEC RTM	Two-component, MDI-based liquid systems
Polyurethane Systems for	Low-viscosity, solvent-free liquids (negligible VOCs)
Resin Transfer Molding	High flexural modulus without postcure
nesiii (talisisi wolumy	Outstanding impact resistance at high and low
	temperatures, with and without glass
Page 22	Fast reaction times and early, high green strength MDI-based prepplymers
BAYTEC	Dynamic load-bearing ability
Polyurethane Prepolymers	Outstanding resilience
for Cast Elastomers	Superior lear resistance:
	Corrosion and abrasion resistance
	Recible over a wide temperature ranger: 2858
Page 23	***************************************

ENGINEERING THERMOSETS BY MILES

11	
THE RESIDENCE OF THE PARTY OF T	
Grades	Markets and Applications
	Agricultural/Construction Equipment: Hay conditioning rollers, tractor body panels and door frames
Unfilled	Automotive: Fascias, body panels, aftermarket restyling packages
Glass-Filled	Specialty Transportation: Heavy-duty truck bumpers; snowmobile hoods, work vehicles
	openant transportation most
	Automotive: Bumper beams, inner door panels, interior trim
General-Purpose, Foarned	Construction: Home entry door skins
General-Purpose, Solid	
	Consumer: Water sports equipment
	,
	Agricultural/Construction Equipment: Tractor cab roofs and consoles
General-Purpose	
Flame Retaidant	Automotive: Aftermarket spollers
	Construction: Window and door trames
Berger and Section 1997	Consumer: Speaker housings, snow and water skis
	Eléctrical/Electronic: Instrumentation and equipment housings, Nema 1 and 12 enclosures
	telecommunications equipment
	Medical: Analytical and diagnostic equipment housings Electrical/Electronic: Telecommunications equipment, instrumentation and equipment housings
General-Purpose	Electrical/Electronic: lelecommunications equipment, institute and equipment to a superior leberatory institute and a superior leberatory in the superior le
Flame-Retardant	Medical: Analytical and diagnostic equipment housings, laboratory instrumentation
•	
•	
	Automotive (Aremparce) resyding packates Consumer (On acck mainly accessories, sees and balliques)
(Estimator)	The Automotive Principal Control of the Control of
	Consumer Incorpt manne are
	Consumer On derk mainte accessorées sees and patripuos. se industrial/Mechanicals nous mai lines / Almos Grack College debitalnées a procultirat et s o Miscellaneous. Projectopo of wood en Hall grude professor.
	The Misrollaneous application and the state of the state
General-Purpose	Automotive: Aftermarket restyling packages
	Consumer: Marine accessories, radar dishes
	Industrial/Mechanical: Pump housings, valve bodies, fan blades Specially Transportation: Components for heavy trucks, recreational vehicles, tractors, and
	Specially Transportation: Components to heavy troops, reconstructions,
	construction vehicles
	Industrial/Mechanical: Tires and wheels, rolls, hydrocyclones, pipeline pigs, seals and gaskets, gears and
Polyester	Industrial/Mechanical: Tires and wheels, rolls, invalous court, proceeding the strategies, shock sprockets, die-cut pads and chopper cots, belts, liners, classifier screens, conveyor belt scrapers, shock
Poly(tetramethylene ether) glycol	·西蒙古人 "我们就是我们的,我们就没有一个人的,我们就没有一个人的,我们就没有一个人的,我们就会没有一个人的。""我们就是一个人的事情况,我们就是不是一个人的
Poly(propylene ether) glycol	absorbers

MAKROLON POLYCARBONATE

Makrolon Polycarbonate

•			Maktolom	rorycarbonate		*	
) (S)			General-P	urpose		Extrusion
THERMOPLASTICS			·		High-Produ	ctivity	
			3200 3100	2800 2600	FCR-2405 FCR-2407 FCR-2458	2205	HMS-3118
ENERAL Specific Gravity	D 792		1.20	1.20	1.20	1.20	1.20
Density	D 792	lb/in²	0.043	0.043	0.043	0.043	0.043
Specific Volume Mold Shrinkage	0 792 0 955	ib/in in/lb in/in	23.1 0.006-0.008	23.1 0.006-0.008	23.1 0.005-0.007	23.1 0.005-0.007	23.1 0.006-0.008
Water Absorption (Immersion at 73°F): 24 Hours Equilibrium Melt How Rate** at 300°C/1.2-kg Load	D 570 D 1238	% 9/10 min g/10 min	0.15 0.35 4.5 (3200) 6.5 (3100)	0.15 0.35 10 (2800) 12 (2600)	0.15 0.35 20.5	0.15 0.35 33	0.15 0.35 <3
PTICAL Transmittance at 0.125-in Thickness Haze at 0.125-in Thickness Retractive Index	D 1003 D 1003 D 542	% %	88 1.0 1.586	88 1.0 1.586	88 1.0` 1.584	88 1.0 1.584	87 1.0 1.586
MECHANICAL Tensile Stress at Yield Tensile Stress at Break Tensile Etongation at Yield Tensile Etongation at Break Tensile Modulus Flexural Stress at 5% Strain	D 638 D 638 D 638 D 638 D 638 D 638 D 790	Ibin' Ibin' % % Ibin'x10' Ibin'x10'	9,100 10,500 6 125 350 12,500 330	9,100 10,500 6 120 350 12,500 330	9,100 10,000 6 120 350 12,000 330	9,100 8,700 6 110 330 12,000	9,100 10,000 6 110 350 12,400 340
Flexural Modulus Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.250-in Thickness, 73°F Rockwell Hardness	D 256 D 256 D 785	fi-lb/in fi-lb/in M Scale R Scale	18 2.4 75 118	17 22 75 118	14 2 75 118	12 75 118	17 2.2 124
Falling Dart Impact (10-lb Wt., 1-in Dia. Dart)	(Miles)	ft#b					-
THERMAL Deflection Temperature, Unannealed: 264-psi Load 66-psi Load Coefficient of Linear Thermal Expansion Thermal Conductivity Specific Heat	D 648 D 696 C 177 D 2766	°F °F in/in/TF Bhu/in/(hf1%°F) Bhu/(lb°F)	270 288 3.9 E-05 1.39 0.28	268 280 3.9 E-05 1.39 0.28	259 273 3.9 E-05 1.39 0.28	252 273 3.9 E-05 1.39 0.28	266 280 3.9 E-05 1.39 0.28
Relative Temperature Indexc ^a Electrical Mechanical with Impact Mechanical without Impact Vicat Softening Temperature: Rate A	(UL7468) D 1525		125 115 125 315	125 115 125 315	125 115 125 304	289	75 75 75 75 307
FLAMMABILITY†	D 2863	%	26	26	26	26	-26
Oxygen Index UL94 Hame Class: 0.062-in (1.57-mm) Thickness 0.125-in (3.18-mm) Thickness	(UL94)	Rating Rating Rating	H8 H8	V-2	V-2 V-2		нв⊳
. 0.144-in (3.66-mm) Thickness 0.175-in (4.45-mm) Thickness 0.250-in (6.35-mm) Thickness		Rating Rating	V-2	V-0	V-2		
ELECTRICAL Volume Resistivity (Tinfoil Electrodes) Surface Resistivity	D 257 D 257	ohmem ohm	1.0 E + 16 1.0 E + 15	1.0 E + 16 1.0 E + 15	1.0E+16 1.0E+15	1.0E+16 1.0E+15	
Dielectric Strength (Short Time under Oil at 73°F, 0.062-in Thickness) Dielectric Constant (Tinfoil Electrodes): 60 Hz	D 149 D 150	V/mil	760 3.0	760 3.0	760 3.0	760 3.0 2.9	750 3.0 2.9
1 MHI Dissipation Factor (Tinfoil Electrodes): 60 Hz	D 150		2.9 0.0009 0.01	2.9 0.0009 0.01	2.9 0.0008 0.01	0.0008 0.01	0.0009 0.01
1 MH Art Resistance: Stainless Steel Electrodes Tungsten Electrodes	D 495	s s	11 120	11 120	11 120		11 120

These items are provided as general information only. They are approximate values and are not part of the product specification.
 For information on using melt flow as a quality control procedure, see Miles processing literature.
 Hammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.

MAKROLON POLYCARBONATE

Makrolon Polycarbonate (continued)

F	ame-Retardant		Impact-N	lodified	Glass-Rei		Structural Foam			
High- Productivity			Impact-Modified		Flame- Retardant		(Properties at indicated foam density)			
FCR-6255	6355 6455	6485	Y-7435	T-7855	8325 20% Glass	9415 10% Glass	SF-600 0.250 in	SF-800 0.250 to	SF-810 0.250 in	
1.20	1.20	1.20	1.20	1,19	1.35	1.27	(Solid) 1.23 (Foam) 0.90	(Solid) 1.23 (Foam) 0.90	(Solid) 1.27 (Foam) 0.95	
0.043	0.043	0.043	0.043	0.043	0.049	0.046	(Solid) 0.044 (Foam) 0.033	(Solid) 0.044 (Foam) 0.033	(Solid) 0.046 (Foam) 0.034	
23.1 0.005-0.007	23.1 0.006-0.908	23.1 0,006-0,008	23.1 0.005-0.007	23.3 0.056-0.008	20,4 0.003-0.004	21.8 0.003-0.005	0.005-0.007	0.005-0.007	0,004-0.006	
0.15 0.35 20.5	0.15 0.35 16 (6355) 12 (6455)	0.15 0.35 12	0.15 0.35 17.5	0.15 0.35 12	0.12 0.29 5	0.13 0.32 7	0.15 0.30 7	0.15 0.30 5.5	0.15 0.30 6.5	
Opaque Only	87 (6455) 1.2 (6455) 1.586	Opaque Only	Opaque Only	Opaque Only	Opaque Only	Opaque Only	Opaque Only	Opaque Gnly	Opaque Only	
9,100 10,000	9,100 10,000	9,100 10,500	7,900 8,100	9,100 9,000	15,000	11,600 10,000	5,600	6,100	6,300	
6 110	6 110	6 110	6 110	6 110	5	5 10 580	5 300	5 300	4 310	
350 12,100 330	350 13,200 330	350 13,200 330	300 12,000 305	340 12,500 320	19,500 800	15,000 500	10,800 330	11,000 340	12,000 405	
13 2 . 75	16 2 70	12 ⁰ 2 70	13.9 10 53	15 12	3 2.4 81	2 75				
118			122		5.0		30	35	22	
259 273 3.9 E-85 1.39 0.28	264 277 3.9 E-05 1.39 0.28	262 277 3.9 E-05 1.39 0.28	250 1266 3.7 E-05	259 273 3.9 E-05	290 293 1.7 E-05 1.53 0.27	284 295 2.1 E-05 1.46 9.27	261 280 2.8 E-05 1.05 0.28	261 280 2.8 E-05 1.05 0.28	273 292 1.9 E-05 9.92 0.29	
125 115 125 304	125 115 125 315	125 110 125 125 315	293	290	75 75 75	125 115 125	75 7 5 75	75 75 75	75 75 75	
35	35	35		26	32	35				
V-2 ⁻ V-0	V-2 V-0	V-0 V-0/5VA			V-0¢	V-0/5VA¢			V-0	
V-0	V-0	V-0			,	V-0/5VA	V-0/5VA	V-0/5VA	V-0/5V V-0/5V	
1.0 E + 16 1.0 E + 15	1.0 E + 16 1.0 E + 15	1.0E+18 1.0E+15			1.0 E + 16 1.0 E + 14	1.0 E+ 16 1.0 E+ 14	1.0 E + 16 1.0 E + 15	1.0 E+ 16 1.0 E+ 15	1.0 E + 1.0 E +	
760 3.0 2.9 0.0009 0.01	760 3.0 2.9 0.0009 0.01	758 3.6 3.0 0.0509 0.01		>400 3.0 3.1 0.0018 0.611	760 3.2 3.2 0.0009 0.01	760 3.2 3.0 0.0908 0.008	>209 2.6 2.6 0.6031 0.0022	>400 3.0 2.9 0.0031 0.0022	>400 3.1 3.0 0.003 0.003	
115	115	:15		100	30-80	115				

The thickness at which relative temp rature index values are reported in this section corresponds to the thinnest specimen thickness for which a UL94 flame class rating appears in the flammability section.
Above the class rating appears in the flammability section.

Natural color.
 Natural and black colors.
 Value depends on pigment packago.

MAKROLON POLYCARBONATE

Makrolon Polycarbonate (continued)

•			Marioloi	Polycologi	inic (serior	7	
STIERVORUSIUS)			Light	ing	Specialty	Optical	
Typical Physical Properties' for National Bessus	GESTA Territorio Sannes)	ALS STATES	LTG-2623	LTG-3123	LD-2847 1006 Tint	LQ-3147 1005 Fint	LQ-3187
GENERAL Specific Gravity Density Specific Volume Mold Shrinkage Water Absorption (Immersion at 73°F): 24 Hours Equilibrium Mell Flow Rate: ** 360°C/1.2-kg Load 320°C/1.2-kg Load	D 792 D 792 D 792 D 955 D 570	ib/in² in/ib in/in % % g/10 min g/10 min	1.20 0.043 23.1 0.005-0.007 0.15 0.35	1.20 0.043 23.1 0.006-0.008 0.15 0.35 6.5	1.20 0.043 23.1 0.006-0.008 0.15 0.35 12	1.20 0.043 23.1 0.005-0.008 0.15 0.35 6.5	1.20 0.043 23.1 0.006-0.008 0.15 0.35 6.5
OPTICAL Transmittance at 0.125-in Thickness Haze at 0.125-in Thickness Retractive Index UV Cut-Off Wavelength at 0.125-in Thickness	D 1003 D 1003 D 542+ (Miles)	% % nm	87° 1.0° 1.586°	87° 1.0° 1.586°	89 1.0 1.586 380	89 1.0 1.586 380	87 1.0 400
MECHANICAL Tensile Stress at Yield Tensile Stress at Break Tensile Etongation at Yield Tensile Etongation at Break Tensile Modulus Flexural Modulus Impact Stress at 5% Strain Flexural Modulus Impact Strength:	D 638 D 638 D 638 D 638 D 638 D 790 D 790	ib/in' b/in' % b/m'x10' b/in'	9,100 10,500 6 120 350 12,500 330	9,100 10,500 6 125 350 12,500 330	9,100 10,500 6 120 350 12,500 330	9,100 10,500 6 125 350 12,500 330	9,100 10,590 6 125 350 12,500 330
Mybat Streight. Notched Izod, 0.125-in Thickness, 73°F Notched Izod, 0.250-in Thickness, 73°F Unnotched, 0.125-in Thickness, 73°F Unnotched, 0.125-in Thickness, -40°F Rockwell Hardness Instrumented Impact, Total Energy: 0.125-in Thickness, 15 mph, 3-in Clamp	D 256 D 256 D 4812 D 4812 D 785 D 3763	thib/in thib/in thib/in thib/in M. Scale R. Scale	16 2.2 118	18 2.4 118	16 2.2 120	16 2.2 120	120
73°F -20°F THERMAL Deflection Temperature, Unannealed: 264-psi Load 66-psi Load Coefficient of Linear Thermal Expansion Thermal Conductivity Specific Heat Relative Temperature Index at 0.062-in Thickness Electrical Mechanical with Impact Mechanical without Impact Vicat Softening Temperature: Rate A Rate B	D 648 D 696 C 177 D 2766 (UL7468) D 1525	"F" "F" ivin"F Btu-it/(hft"F) "C" "C" "F	266 275 3.9 E-05 1.39 0.28 125 115 125 315	270 287 3.9 E-05 1.39 0.28 125 115 125 315	264 277 3.9E-05 1.39 0.28 125 115 125 315	266 284 3.9 E-05 1.39 9.28 125 115 125 315	266 284 3.9 E-05 1.39 0.28
FLAMMABILITY† Oxygen Index UL94 Fame Class: 0.062-in (1.57-mm) Thickness 0.125-in (3.18-mm) Thickness 0.250-in (6.35-mm) Thickness	D 2863 (UL94)	% Rating Rating Rating	26 V-2 V-2 V-0	26 HB HB V-2	26 V-2 V-2 V-0	HB HB V-2	25
ELECTRICAL Volume Resistivity (Tinfoil Electrodes) Surface Resistivity Dielectric Strength (Short Time under Oil, 73°F Dielectric Constant (Tinfoil Electrodes): 60 Hz 1 MH Dissipation Factor (Tinfoil Electrodes): 61 Hz 4 MH	D 150		1.0 E + 1 1.0 E + 1 >400 3.0 2.9 0.0009 0.01	5 1.0 E+1 >400 3.0 2.9	1.0 E+ 1 >400 3.0 2.9 0.0009 0.01 11	5 1.0E+15 >400 3.0 2.9 0.0009 0.01 11	1.0 E + 15 >400 3.0 2.9 0.0009 0.01
Arc Resistance: Stainless Steel Electrodes Tungsten Electrodes	D 495	\$ \$			30-90	30-90	30-90

These items are provided as general information only. They are approximate values and are not part of the product specification.
 For information on using melt flow as a quality control procedure, see Miles processing literature.
 Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.

APEC HIGH-HEAT POLYCARBONATE

Makrolon Polycarbonate (continued)

Apec High-Heat Polycarbonate

	l Polycarbon Speci		Medical	General-Purpose					Flame-Retardant		
AL-2247 1058 Tint	AL-2447 1058 Tint	AL-2547 1058 Tint	Rx-2530 1118 Vint	HT DP9-9331	NT DP9-9340 ^b NT DP9-9341	KT DP9-9350 ^b HT DP9-9351	HT DP9-9361	HT 0P9-9371	HT DP9-9354T	HT DP9-9354	
1,20 9,043 23,1 0,005-0,007	1.20 0.043 23.1 0.005-0.007	1.20 0.043 23.1 0.006-0.008	1.20 0.043 23.1 0.005-0.008	1,18 0,043 23.5 0,007-0.008	1,17 0,042 23.6 0,007-0,008	1.15 0.042 24.1 0.008-0.009	1.15 0.042 24.1 0.008-0.009	1.14 0.041 24.3 0.008-0.009	1.15 0.042 24.1 0.008-0.009	1.15 0.042 24.1 0.008-0.009	
0.15 0.35 33	0.15 0.35 19	0.15 0.35 12	0.15 6.30 15	0.2 7-10	0.2 5-8	0.2 2-5	0.2	0.2 0.5-2	0.2 2-5	0.2 2-5	
87 1.0 1.582	87 1.0 1.584	87 1.0 1.586	78 1.2 1.586	88 1.0 1.581	88 1.0 1.578	88 1.0 1.572	88 1.0 1.570	88 1.0 1.565	87 1.2	Opaque Only	
8,000 8,700 100 330	9,100 10,000 6 120 350 12,000	9,100 10,500 6 120 350 12,500	9,100 10,500 6 120 350 12,500	9,300 9,500 6 90 325 12,500 330	9,600 9,300 6 80 325 12,500 330	9,600 9,000 6 80 325 12,500 330	9,800 8,600 6 70 325 12,500 330	10,000 8,300 6 70 325 12,500 330	9,600 9,000 6 50 325 12,500 330	9,600 9,000 6 30 325 12,500 330	
12,000 330 10 No Break No Break	330 14 2 75 118	330 15 2 75 118	330 15.6 1.4 87	12 No Break No Break 75 125	6 No Break No Break 83 127	2 No Break No Break 84 127	1.8 No Break No Break 89 127	1.5 No Break No Break 91 127	1.8 No Break No Break	1.8 No Break No Break	
				50 48		49 47		46 39	43 34	43 34	
254 270	259 273 3.9 £-05 1.39 0.28	264 275 3.9 E-05 1.39	259 273 3.9 E-05	284 306 4.2 E-05	302 324 4.2 E-05	324 345 4.2 E-05 1.44	336 365 4.2 E-05	354 383 4.2 E-0	324 345 5 4.2 E-05 1.44	324 345 4.2 E-05 1.44	
	0.28 125 115 125 304	0.28 125 115 125 315		140 130 140	75 75 75	150 130 150	75 75 75	75 75 75 401	75 75 75 75	75 75 75 365	
291	304	313		320	341	365	383	_	35	35	
	26 V-2 V-2	25 V-2 V-2 V-0		24 HB HB	24 HB HB	24 HB HB	24 HB HB	24 HB HB	V-2	V-0	
······································	V-2 1.0 E+ 760 3.0 2.9 0.003 0.01 11 30-9	15 1.0 E + 1 10 E + 1 760 3.0 2.9 9.0005 0.01	1.0E+15 >400 3.0 3.0	>1.0 E + >40	16 >1.0E4 0 >400 2.9 1 0.00	16 >1.0 E >40 2.9 2.0 1 0.00	+ 16 >1.0 E 0 >40 1 2.9 1 0.00	+ 16 >1.0 E 0 >40 3 2. 3 2. 51 0.0 11 0.0	.+ 16 1.0 E + 1.0 E	1.0 E + 14 0	

Dielectric strength properties are reported at 0.062-inch thickness for grades of Makrolon polycarbonate and at 0.125-inch thickness for grades of Apec high-heat polycarbonate.
 HT DP9-9340 and HT DP9-9350 are medical grades of Apec resin.
 This value does not apply to color 3331 white.

BAYBLEND POLYCARBONATE/ABS BLEND

22 marsha	innd	PC/ABS	broats
Bavu	le i i u	PUMDO	Dieilo

			Baybienu	CIADS DIETIC	,		
THERMOPLASTICS					al-Purpose		
IRCHIDIDA		in Silver				High-Produc	ctivity
		entr	T 45 MH	T 65 MR	6 85 MH	T 44	164
GENERAL Specific Gravity	D 792	-	1.10	1,13	1.15	1.10	1.13
Density	0 792	(p/in)	0.040	0.041	0.041	0.040	0.041
Specific Volume	D 792 D 955	in/ib in/ib in/ib	25.2 0.005-0.007	24.1 0.005-0.007	24.3 0.005-0.007	25.2 0.005-0.007	24.1 0.005-0.007
Water Absorption (Immersion at 73°F): 24 Hours Equilibrium	D 1238	% % o/10 min	0.2 0.7 5-11	0.2 0.6 5-11	0.2 0.6 5-11	0.2 0.7 10-16	0.2 0.6 10-16
Meti Flow Rate** at 250°C/5-kg Load Spiral Flow Length at 0.100-in Thickness: 490°F Meti Temperature 525°F Meti Temperature	(Miles)	in in	22.5 26.0	19.0 23.0	16.5 20.5	23.5 27.0	22.3 26.0
MECHANICAL Tensile Stress at Yield Tensile Stress at Break Tensile Elongation at Yield	D 638 D 638 D 638	lb/in² lb/in² %	6,500 5,800 4 70	7,200 6,500 4 80	8,000 7,200 5 85	6,500 5,800 3 50	7,200 6,500 4 70
Tensile Elongation at Break Tensile Modulus Rexural Stress at 5% Strain	D 638 D 638 D 790 D 790 D 256	% Id/in*x10° Id/in* Id/in*x10°	10,100 290	10,900 305	11,600 320	8,700 290	9,400 305
Flexural Modulus Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.125-in Thickness, ~40°F		tt-lb/in tt-lb/in R Scale	9.0 5.0 114	10.0 6.0 118	11.0 7.0 119	8.0 4.5 95	9.0 5.0 118
Rockwell Hardness Instrumented Impact, Total Energy: 0.125-in Thickness, 15 mph, 3-in Clamp 73°F -22°F 0.180-in Thickness, 25 mph, 3-in Clamp, 73°F 0.250-in Thickness, 25 mph, 3-in Clamp, 73°F	D 3763	#4b #4b #4b #4b	30 28	33 30	33 33		33 29
THERMAL Deflection Temperature, Unannealed: 264-psi Load 66-psi Load	D 648	°F IN/N/°F	210 220 4.6 E-05	220 255 4.3 E-05	230 265 4.0 E-05	210 220 4.6 E-05	210 248 4.3 E-05
Coefficient of Linear Thermal Expansion Relative Temperature Index at 0.062-in Thickness: Electrical Mechanical with Impact Associated without Impact	D 696 (UL746B)	# %% %#	60 60 60 230	60 60 60 250	60 60 60 270	60 60 60 230	60 60 60 250
Vical Softening Temperature: Rate B/120 FLAMMABILITY†	D 2863	%	21	23	24	21	23
Oxygen Index UL94 Rame Class: 0.062-in (1.57-mm) Thickness 0.089-in (2.29-mm) Thickness 0.100-in (2.54-mm) Thickness 0.125-in (3.18-mm) Thickness	(UL94)	Rating Pating Rating Rating	HB HB HB HB	HB HB HB	HB HB HB HB	HB HB HB HB	HB HB HB HB
ELECTRICAL Volume Resistivity (Tintoil Electrodes)	0 257 0 257	ehmem	>1.0E+1 >1.0E+1				>1.0E+14
Surface Resistivity Dielectric Strength (Short Time under Oil at 73' 0,062-in Thickness) Dielectric Constant (Tinfoil Electrodes): 60 Hz	F. D 149	V/mii	600	600	600	600	600
Dielectric Constant (funto) Electrodes): 60 Hz Dissipation Factor (Tinfo)l Electrodes): 60 Hz 1 MH	Z D 150		0.004 0.007	0.004 0.007	0.008	0.004 0.007	0.004 0.007
4 1414					rodust coecificatio	en.	

These items are provided as general information only. They are approximate values and are not part of the product specification.
 For information on using melt flow as a quality control procedure, see Miles processing literature.
 Flammability results are based on small-scale taboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual line conditions.

BAYBLEND POLYCARBONATE/ABS BLEND

Bayblend PC/ABS Blend (continued)

Ceneral-Purpose High-Productivity T 84 FR 14	1.17	Flar	ne-Retardant	Antimony/Bro	mirro Franc	Glass Reinfort		Structural Foam (Properties at Indicated	Blow Molding/ Extrusion
1.15 1.1 0.041 0.0 24.3 0.005-0.007 0.0043 0.2 0.6 10-16 2 19.0 2.2 8.000 7. 6.500 5. 4 75	1.17	FR 1440	FR 1441	Antimony/Bros	mino Fran			indicated	
1.15 1.1 0.041 0.0 24.3 0.005-0.007 0.0043- 0.2 0.6 10-16 2 19.0 2. 22.8 3 8,000 7. 6,500 4 75 10,200 12	1.17	FR 1440	FR 1441		Biller Res			foam density)	
1.15 1.1 0.041 0.0 24.3 23 0.005-0.007 0.0043- 0.2 0.6 10-16 2 19.0 2.28 3 8,000 7, 6,500 4 75 10,200 12	1.17			FR 90	FR 110	T 88-2N 10% Glass	T 88-4N 20% Glass	SF 1443 0.250 in	DP2-1500
0.041 0.0 24.3 23 0.005-0.007 0.0043- 0.2 0.6 10-16 2 19.0 2: 22.8 3 8,000 7, 6,500 4 75 10,200 12	1.042								4.04
24.3 0.005-0.007 0.0043- 0.2 0.6 10-16 2 19.0 2.2 22.8 3 8,000 7, 6,500 5, 4 75		1.18	1.18	1.17	1.19	1.20	1.25	(Solid) 1.18 (Foam) 0.90	1.21 0.043
0.005-0.007 0.0043- 0.2 0.6 10-16 2 19.0 2: 22.8 3 8,000 7, 6,500 5, 4 75	!	0.043	0.043	0.042	0.043	0.043	0.045	(Solid) 0.043 (Foarm) 0.033	0.043
0.6 10-16 2 19.0 2: 22.8 3 8,000 7, 6,500 5, 4 75	23.7 3-0.0055 0.0	23.5).0045-0.0056	23.5 0.0048-0.0058	24.8 0.003-0.005	23.2 0.004-0.006	23.1 0.003-0.004	22.2 0.002-0.003	0.005-0.007 0.2	
10-16 2 19.0 2.7 22.8 3 8,000 7,6,500 5,4 75 10,200 12	0.15	0.15	0.15	0.15		0.2 0.5	0.2 0.6	0.6	3-10
22.8 3 8,000 7, 6,500 5, 4 75 10,200 12	24	19	16	35	35			,	10
6,500 5, 4 75 10,200 12	27.0 32 ²	22.5 27.0	18.0 22.0	28.0 32 ⁸	22.5				
10,200	7,700 5,800 3.5	8,000 6,500 4	-8,700 7,300 4	8,700 6,500 4 70	8,700 , 8,100 4 90	9,400 8,700 3 5	10,900 10,900 2 2 2	6,100 3,4	7,700 ° 7,600 7,600 3.8 90
10,200 12	50 380 12,600	60 390	60 390	400 14,500	380 13,800	16,000	18,900	11,600	12,600 329
320	12,600 360	13,000 380	13,900 380	400	390	580	870	380	13
	6.0	7.5	9.5	5.5	14	1.5	1.4		, "
6.0 119	115	119	121	121	122		-		
33 33	34	35	36	42	38			15 22	38 33
226 262	180 195	195 210	218 230	185 3.9 E-05	203 212	240 257 2.3 E-05	240 256 1.8 E-05	171 201	221
4.0 E-05 3	3.9 E-05	3.9 E-05	3.9 E-05	85	95	60	60	63¢ 60₫	60 60
60 60 60	90 70 90	95 80 95	95 85 95 230	75 80 200	95 85 85 226	60 60 270	60 60 275	60¢	60 264
270	195	210		30	30	24	24		
24	28	30	30	V-0	V-0	НВ	₩В		V-0
HB \	V-0 V-0/5VB ^b V-0/5VB ^c V-0/5VB	V-0 V-0/5VB° V-0/5VB° V-0/5VB	V-0 V-0/5VB V-0/5VB V-0/5VB	V-0/5VB V-0/5VB V-0/5VB	V-0/5VB V-0/5VB V-0/5VA	НВ НВ НВ	HB- HB HB	V-0	V-0/5VB ^b
>1 0F+16 >	>1.0 E + 16	>1.0 E + 16 >1.0 E + 14		>1.0 E + 16 >1.0 E + 14		>1.0E+16 >1.0E+14		6 >1.0E+1 4 >1.0E+1	
600 0.004	>1.0E + 14	1	31.06714	"""	1	- }	1	~ <u>`</u>	

Equipment capability exceeded.
 Red, black, white and yellow colors.
 Natural color.
 Thickness of relative temperature index is reported at 0.118 inch.

MAKROBLEND POLYCARBONATE BLEND

Makrobiend PC Blend

,						
THERMOPLASTICS		350		fmpact-N	lodified	
Intermedia in the second					Class-Rel	nforce d
	A Company		UT 1018	UT 400 UT 403	UT 620 G 10% Glass	UT 640 G 20% Glass
GENERAL Specific Gravity Density Specific Volume Mold Shrinkage Water Absorption (Immersion at 73°F): 24 Hours Equilibrium Helt How Rate** at 265°C/5-kg Load Spiral How Length at 0.100-in Thickness: 525°F Melt Temperature	D 792 D 792 D 792 D 955 D 570 D 1238 (Miles)	Ib/in' in'/ib in/in % % g/10 min in	1.22 0.044 22.7 0.005-0.009 0.16 0.30 8-12	1.22 0.044 22.7 0.006-0.008 9.11 0.25 26-34	1.31 0.047 21.1 0.001-0.006 0.10 0.24	1.37 9.050 20.2 0.001-0.006 0.88 9.23
MECHANICAL Tensile Stress at Yield Tensile Stress at Break Tensile Elongation at Yield Tensile Elongation at Break Flexural Stress at 5% Strain Flexural Modulus Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.125-in Thickness, -20°F 0.125-in Thickness, -40°F 0.250-in Thickness, 73°F Rockwell Hardness Instrumented Impact, Total Energy: 0.125-in Thickness, 15 mph, 3-in Clamp 73°F -20°F -20°F -40°F	0 638 0 638 • 0 638 0 638 0 790 0 790 0 256	ib/in² 'b/in² '% '% 'b/in² ib/in²x10° filb/in	7,000 7,600 5 165 10,700 300 18 13 8 15 114	7,900 8,000 5 151 12,400 338 15 3 2 4 121	11,000 9,000 5 5 19,000 560 2.6 2 2 113	13,000 12,000 5 5 23,600 850 2.4 2 2 2
THERMAL Deflection Temperature, Unannealed: 254-psi Load 66-psi Load Coefficient of Linear Thermal Expansion Relative Temperature Index at 0.062-in Thickness: Electrical Mechanical with Impact Mechanical without Impact Vicat Softening Temperature: Rate B	D 648 D 696 (UL746B) D 1525	°F °F in/m/°F °C °C °C °C	190 239 4.0 E-05 75 75 75	248 273 3.7 E-05 75 75 75	237 293 2.6 E-05 75 75 75	252 354 2.2 E-05 75 75 75
FLAMMABILITY† UI.94 Flame Class: 0.062-in (1.57-mm) Thickness 0.125-in (3.18-mm) Thickness 0.250-in (6.35-mm) Thickness	(UL94)	Rating Rating Rating	HB HB	НВ НВ	∺Bs	. HB₃
ELECTRICAL Volume Resistivity (Tinfoil Electrodes) Dielectric Strength (Short Time under Oil at 73°F, 0.052-lin Thickness) Dielectric Constant (Tinfoil Electrodes): 1 MHz Dissipation Factor (Tinfoil Electrodes): 1 MHz	D 257 D 149 D 150 D 150	ohmem V/mil	>2.6 E + 15 713 3.06 0.014	>7.4 E+ 15 704 3.1 0.009	>1.6 E + 15 >700 3.2 0.0008	>1.4 E + 15 >700 3.3 0.0009

These items are provided as general information only. They are approximate values and are not part of the product specification.
 For information on using melt flow as a quality control procedure, see Miles processing literature.
 Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.
 Black color.

MAKROBLEND POLYCARBONATE BLEND

Makroblend PC Blend (continued)

	· o pieno febitin	
	impact-Modified	
Flame-Re	tardant	FDA-Compliant
DP4-1368	DP4-1377	DP4-137D
1.30 0.047 21.3 0.005-0.007	1.28 0.046 22 0.005-0.008	1.22 0.044 22.7 0.005-0.007
0.07 0.22 16-22	0.09 0.28 10-20	0.17 14-20
24	19	20
8,900 7,400 5 130 13,800 380	8,100 7,500 5 120 12,000 318	8,200 7,900 5 115 13,000 340
13 3	15 5 4	15
12 122	10 120	2 117
39 40 39	40 37 35	36 40 37
212 239 3.2 E-05	222 255 3.7 E-05	240 271 3.5 E-05
95 75 95	75 75 75	315
V-0 V-0/5VA V-0	V-0 V-0/5VA	
5.9 E + 15 740		
3.02 0.0007		

Durethan Polyamide 6

				Unreinf	orced			· In	ipact-M	odified		
THERMOPLASTICS			. B 30	s X	B 40	SX	603	o į	8C 4	0	BC 30	3 ·
			Ony as Molded	Condi- tioned	Ory as Moldes	Condi- tioned		Cendi- tioned		Condi- Lipned		Condi- tioned
GENERAL Specific Gravity Density Specific Volume	D 792 D 792 D 792 (Miles)	lb/in² in²/lb	1.1 0.04 24.	li	1.1 0.04 24.	41	1.10 0.04 25.	0	1.1 0.04 25.	0	1.07 0,03 25.8	9
Mold Shrinkage: How Direction Cross-flow Direction Water Absorption (0.125-in Thickness):	(twites)	in/in in/in	0.0 0.0		0,0° 0.0°		. 0.01 0.01		0.0° 0.0°	9	0.01 0.01	6
24-Hour Immersion Equilibrium (73°F): In Air (50% RH)	D 570 (DIN 53495)	%	1.J 3.j	0	1.l 3.l	0	1.5	,	1.5 2.7 9.1	7	1.6 1.9 7.0	
In Water		%	10	.0	10	.0	9:0	,	9.		7.0	
MECHANICAL Tensile Stress at Break Tensile Elongation at Break Tensile Modulus Flexural Stress at 5% Strain Flexural Strength Flexural Modulus	D 638 D 638 D 638 D 790 D 790 D 790	lb/in¹ % lb/in²x10³ lb/in² lb/in²x10³	7,250 35 464 16,700 392	8,700 >200 159 5,080	8,000 70 450 16,700 392	8,000 >200 145 5,080	10,200 50 406 13,000	8,000 >200 174 4,400	10,200 75 406 13,800	5,800 >200 174 4,400	6,500 >200 254 8,700	6,500 >200 109 2,900
Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.125-in Thickness, -40°F	0 256	ft4b/in ft4b/in	1.1	14.0	1.3	18.7	1.7 1,5	17.8 1.5	3.0 2.1	2.1	17.8 2.8	18.7 3.7
THERMAL Deflection Temperature, Unannealed: 264-psi Load 66-psi Load	D 648	۰۴ ۴		40 55		40 56	14 33	19 29	1!	58 55	14 32	
FLAMMABILITY† UL94 Flame Class: 0.016-in (0.40-mm) Thickness 0.032-in (0.81-mm) Thickness 0.062-in (1.57-mm) Thickness	(UL94)	Rating Raling Rating		-23 -2	1	нв	н	Ba		1B 1B	н	В
ELECTRICAL Volume Resistivity (Timfoil Electrodes) Surface Resistivity	D 257 D 257	ohm-cm ohm	1.0E+15 1.0E+13	1.0 E + 17 1.0 E + 17	1.0E+15 1.0E+13	1.0E+12 1.0E+12	1.0E+14 1.0E+12	1.0E+1 1.0E+1	1.0 E+14 1.0 E+12	1.0E+12 1.0E+10	1.0E+15 1.0E+15	1.0 E+ 12 1.0 E+ 14
Dielectric Strength: 0.118-in Thickness Dielectric Constant (Tinfoil Electrodes):	(DIN 53481) D 150	V/mil	762	889	762	889	889	762	889	762 14	813	813 10.0
50 Hz 1 MHz Dissipation Factor (Tinfoil Electrodes): 50 Hz	D 150		3.8 3.4 0.05	20.0 4.6 2.30	3.8 3.4 0.05	16 4.7 2.80	3.7 3.3 0.04	5.8 2.45	3.7 3.3 0.04	5.8 2.45	3.1 0.04	4.5 1.50
1 MHz Arc Resistance (Tungsten Electrodes) Comparative Tracking Index	D 495 D 3638	s V	0.07	0.40 600	0.06	0.40 600	0.06	1.30 600	0.06	600	0.05	600

Note 1

Dry as Molded: refers to a moisture content less than 0.2% by weight.
Conditioned: refers to an equilibrium moisture content in a standard laboratory atmosphere of 73°F and 50% relative humidity.

Note 2

Glass-Reinforced: refers to reinforcement with glass fibers except in the case of BG 30 X, which is reinforced with glass fibers and glass beads.

These items are provided as general information only. They are approximate values and are not part of the product specification.
 Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.
 Miles value pending UL recognition.
 Natural color.

Durethan Polyamide 6 (continued)

		01,011/10	e o (co		.,	alipa welli			 11		.,	ine mistra					
Impa Modif				Gl	iss-Rei	nforced					Glas	s-Reinf	erced, l	mpact-l	Aodilie	d	
EC 4	. #	15%E	5 H 2	EKV 3		BKV 4	HC 228	BRV 5	0 H 853	EXV 1		EXV 1		BKV 1		BKV 35	
	Condi- ligned		Condi- tioned	Un as Model	Condi- tioned	Enjas Molded	andi toret	En is Noted	Condi- tioned	Ony as Molded	Condi- tioned		Condi- tioned	Dry as Molded	Condi- Lipazd		Condi- tioned -
1.0 6.03 25.	39	1,23 0.04 22,5	4	1.3 0.04 20.	9	1.46 0.05 19.6	3	1.5 0.05 17.	7	1.2 0.04 22.	14	1.3 0.64 20.	9	1.48 0.05 19.0	3	1.41 0.05 19.6	1
0.01 0.01		0.00		0.00 0.00		0.00 0.00		0.00 90.0		0.00 0.00		0.00 0.00		0.00 00.0		0.00 00.0	
1.3	7	1.3	3	1.0)	0.8	5]	0.8	0	1.3	0	1,0	0	0.8	5	0.9	0
2.I 8.I		2.5 8.5	5	2.7.1 7.1		1.8 6.0		1.5 5.0		2. 8.		1,1 7,1		1.6 6.0		1.9 6.5	
6,500 >200 319 11,600	6,500 >200 131 3,600	18,900 3 899	10,200 5.5 450	26,100 3 1,334 40,600	14,500 6 812 24,700	29,000 3 1,711 47,900	17,400 4 1,073 29,000	30,500 2 2,176 50,800	21,800 3.5 1,378 31,900	18,900 7 827 27,500	9,400 9 421 14,500	23,200 1,305 37,700	14,500 7 725 21,800	26,100 3.5 1,595 43,500	17,400 6.5 1,015 27,600	26,800 2.5 1,450 43,500	16,700 5 1,015 26,100
290	109	29,000 783	17,400 420	1,204	725	1,566	986	1,958	1,116	710	362 5.6	1,160 3.4	682 4.1	1,479 4.1	914 4.9	1,378	812 3.6
16.7 2.4	2.4	1.2 1.0	4.7 1.0	2,2 1.9	2.8 1.9	3.0 2.5	3.6 2.5	2.5	2.5	1.2	1.2	2.2	2.2	2.5	2.6	2.2	2.2
	40 20		92 19		92 19	39 41			92 19		92 19		92 19	39 41)2 9	35 41	92 19
	18 18		1B 1B		18 18	1	8#		iB	H	lB #	1	⟨B	н	B <i>I</i>	Н	B#
1.0E+15 1.0E+15	1.0E+13	1.0 E + 15 1.0 E + 13	1.0E+12 1.0E+12	1.0E+15 1.0E+14	1.0 E + 12 1.0 E + 12	1.0E+15 1.0E+14	1.0 E+ 12 1.0 E+ 12	1,0E+15 1,0E+14	1.0E+12 1.0E+12	1.0E+15	1.0E+12 1.0E+12	1,0 E+ 15 1,0 E+ 14	1.0E+12 1.0E+12	1.0E+15 1.0E+14	1,0E+11 1,0E+10	1.0 E+ 15 1.0 E+ 14	1.0 E+12 1.0 E+12
813	889	889	762	1,016	889	1,016	889	1,016	889	1,016	889	1,016	889	1,016	889	1,016	889
3.6 3.2	12.0 5.5	4.0 4.0	15 5.0	4.0 4.0	15 5.0	4.0 4.0	15. 5.0	4.0 4.0	5.0			4.0 4.0	10 5.0	4.0 4.0	10 5.0	4.0 4.0	10 5.0
0.04 0.06	2.00 1.20	0.005 0.015	0.50 0.16	0.005 0.015	0.50 0.16 76	0.01 0.015	0.15	0.01 0.015	0.14			0.005 0.015	0.20 0.12 87	0.005 0.015	0.20 0.12 91	0.005 0.015	0.20 0.12
·	600		425		400	<u> </u>	375	<u> </u>	375	<u> </u>	600	<u></u>	600	<u> </u>	575		<u> </u>

Film grades of Durethan polyamide 6 and copolyamide are available. For information, call 1-800-622-6004.

Durethan Polyamide 6 (continued)

			~ \(\tau_1 \cdot \tau_1 \)			(
THERMOPLASTICS!			Glass Reinfor Low Warpa BG 30 30% Dissifi	ced, age	Mir SH 23		en 24	O H	Miner Reinfor Impa Modif	ced, ct- ied
			toy as Motesi	Condi- tioned	Ery es Moded			Condi- tioned	Dry as Molded	Cordi- tioned
GENERAL Specific Gravity Density Specific Volume Motd Shrinkage: Flow Direction Cross-Flow Direction	D 792 D 792 D 792 O 792 (Miles)	lb/in² · in'/lb in/in in/in	1.35 0.04 20.5 0.00 0.00	9 5 97	1,3 0,64 20. 0,01 0,01	9 4	1.41 0.05 19.1 0.01 0.01	3	1.3 0.04 20. 0.01 0.01	9 1 2
Water Absorption (0.125-in Thickness): 24-Hour Immersion Equilibrium (73°F): In Air (50% RH) In Water	D 570 (DIN 53495).	% % %	1.0 2.1 7.0		0.8 2.0 6.0	,	0.7 1.8 5.0	3	· · · · · · · · · · · · · · · · · · ·	
MECHANICAL Tensile Stress at Break Tensile Elongation at Break Tensile Modulus Flexural Strength Flexural Modulus Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.125-in Thickness, 40°F	D 638 D 638 D 638 D 790 D 790 D 256	ib/m² % ib/m²x10° ib/m²x10° ib/m²x10° filb/m filb/m	18,100 4 899 28,300 798 1.1 0.9	9,400 9 507 16,000 406 2.6 0.9	11,600 10 725 20,300 667 1.3 0.7	7,300 45 232 8,700 261 1.7 0.7	12,300 9 870 22,500 783 1.2 0.7	7,300 35 290 9,400 261 1.5 0.7	10,200 18 638 18,900 609 2.1	8,000 56 232 7,300 203 4.3 0.8
- THERMAL Deflection Temperature, Linannealed: 264-psi Load 66-psi Load	D 648	of of	35	56 02	19 31		27 31	?1 92	15 3	
FLAMMABILITY† UL94 Flame Class: 0.032-in (0.81-mm) Thickness 0.052-in (1.57-mm) Thickness	(VL94)	Rating Rating	Н	lB		Ba Ba		B2 Ba	H	Ba
ELECTRICAL Volume Resistivity (Tinfoll Electrodes) Surface Resistivity Dietectric Strength: 0.118-in Thickness Dielectric Constant (Tinfoil Electrodes): 50 Hz	D 257 D 257 (DIN 534B1) D 150	ohmem ohm V/mil	1.0 E + 15 1.0 E + 16 889 4.5 4.0	1.0 E + 12 1.0 E + 13 889 10 5.0	1.0 E + 15 1.0 E + 14 889 5.0 4.0	1.0 E + 11 1.0 E + 12 889 15 4.0	1.0 E + 15 1.0 E + 14 889 5.0 4.0	1.0 E + 11 1.0 E + 12 889 15 4.0	1.0 E + 14 1.0 E + 14 889 5.0 4.0	1.0E+12 1.0E+14 889 15 4.5
MHz Dissipation Factor (Finfoil Electrodes): 50 Hz MHz Arc Resistance (Tungsten Electrodes) Comparative Tracking Index	0 150 0 495 0 3638	s V	0.015 0.02	0.20 0.06 110 450	0.015	0.07	0.015	0.07 575	0.025	0.075 .

Dry as Molded: refers to a moisture content less than 0.2% by weight.
Conditioned: refers to an equilibrium moisture content in a standard laboratory atmosphere of 73°F and 50% relative humidity.

Glass-Reinforced: refers to reinforcement with glass fibers except in the case of BG 30 X, which is reinforced with glass fibers and glass beads.

These items are provided as general information only. They are approximate values and are not part of the product specification.
 Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.
 Milles value pending UL recognition.

a Natural color.

Durethan Polyamide 6 (continued)

		التنايف					(er (1) p e		1				100		100
	Mineral/	ilass-		, .				Re	duced-f	Voisture					
	Reinfo	rced	15		$A_{ij}^{\alpha \beta i}$										
														ari	
	¥ . £. ,			Glass Rein	for ces :		7 8	. Gass Ri	inforced,	impact-Hot	(e :.)		15	Mineral Rel	* - * * * *
814 3 30% 61ass		EM 4		9M KU2-2 30% G		EM KU2-2		RM (UZ-2		30% E		RM (U2-2 35% E		FIM XII2-25	
	Condi	Ony as	Carefi-		Cond	On as	Condi	14.52	Zandi-	7.4	Condi	Envises	Condi	fay as	Condi-
On as : Marked	tioned	Model Model	timed	tiny as Molded	i maran	Holded	Umra .	Est as Matter	Eggid A	Modes	dianed	ET ES Mandand	floord :	Molded	t pried
1.3		1.4		1,3	.	1.2	a	1.3	2	1.36	,	1.4	1	1.36	
0.0 20	50	0.05	3	0.04 20.	9	0.0 21	46	0.0- 21.	18	0.04 20.4		0.05 19.		0.04 20.4	
	-		· 1	0.00	- 1	0.0		0.0		0.00	1	0.0	12	0.01	2
0.0 0.0		0,0 0.0		0.00		0.0		0.0		0.00		0.0		0.01	2
				0.7	0	0.8	35	0.7	5	0.6	5	0.6	0	0.6	0
2.		1.		1. 5.		1. 5.		1. 5.		1.3 4.9		1. 4.		1.4	
0.	.0	6.	U	3.	U	3		J.	•				-		
17,400	9,400	18,990 3	13,100 7	25,400 3	16,000 4	20,300	11,600 8	21,800 4	16,000 5	23,900 3.5	16,700 5	26,100 3.5	18,900 7	12,300 5	7,980 30
3.5 972	13 493	1,160 29,000	798 17,400	1,450 42,100	812 26,100	1,090 31,900	725 19,600	1,232 34,800	798 21,000	1,378 37,700	870 22,500	1,595 42,100	957 24,600	798 22,590	435 10,900
27,600 899	14,500 406	942	493	1,300	783	942	522	1,058	580	1,276	725	1,450	870	725	362
1.2 0.7	1.9 0.7	1.1 0.7	1.9 0.7	2.1 1.9	2.6 1.9	2.4 1.5	3.2 1.5	2.8 1.8	3.6 1.8	3.2 2.1	3.9 2.1	3.6 2.2	3.9 2.2		
	<u> </u>	V.1	L						<u> </u>		····				
3		3	92	3	. 83	3	74		74	37			74	17	
	28	4	28	4	10	4	01	4	01	40)1	4	01	35	6
											_				
	HB HB		1B 1B		(8 [.] (8	Н	B#	Н	8#		18 18		18 18	H	3#
				 	Ţ					1					1.0E+13
	4 1.0 E + 13 4 1.0 E + 13				1.0 E+12 1.0 E+12					1.0 E + 15 1.0 E + 14				1.0 E+16	1.0E+15
1,016	1,016			1,016	889	1,016	1,016	1,016	1,016	1,016	889	1,016	1,016	762	762
5.0	15	5.0	15	4	10					4	1D			4	8 4
4.0	4.5			4	4					"	"			1	1
0.907	0.02			0.004 0.005	0.029						0.032 108			1	
	600		500		115 600		600		500	<u> </u>	600	<u> </u>			<u> </u>

Film grades of Durethan polyamide 6 and copolyamide are available. For information, call 1-800-622-6004.

TEXIN AND DESMOPAN THERMOPLASTIC POLYURETHANE

Texin Thermoplastic Polyurethane

THERMOPLASTICS						Polyt	ster			
appeal need projette			480-A	688-A	591-A	345-D	445 - D	355-D	455-D	45B-D
GENERAL Specific Gravity Shore Hardness	D 792 D 2240 D 3489	A or D	1.20 87 A	1.26 88 A	1.22 88 A	1.22 45 D	1.22 45 D	1.22 52 0	1.21 55 D	1.22 60 D
Taber Abrasion: H-18 Wheel, 1000-g Load, 1000 Cycles Bayshore Resilience	D 2632	mg Loss %	15 45	50 35	40 35	45 40	70 45	50 40	50 40	45 45
Mold Shrinkage at 100-mit Thickness: Flow Direction Cross-Flow Direction	D 955	in/in in/in	800.0 800.0	0.008 0.008	0,008 0.008	800.0 800.0	0.008 0.008	0.008 0.008	800.0 800.0	850.0 800.0
Processing Methods: • Injection Molding • Extrusion-Hose, Tubing, Profiles —Wire & Cable —Film & Sheet		manufacture of the control of the co	•	٠	•	•	•	•		•
Blow Molding Paintable Formulations Available •	<u> </u>		<u></u>		<u> </u>		•	<u> </u>	•	<u> </u>
MECHANICAL Tensite Strength Tensite Stress at 50% Elongation Tensite Stress at 100% Elongation Tensite Stress at 300% Elongation Ultimate Elongation Plexural Modulus Compression Set: As Molded (Postcured)** 22 Hours at 73°F 22 Hours at 158°F	D 412 D 412 D 412 D 412 D 412 D 412 D 790 D 395-8	ibin' thin' ibin' ithin' % thin' %	6,000 720 750 1,700 500 4,000 16 (12) 65 (35)	4,500 960 1,600 2,090 660 5,000 21 (19) 65 (40)	6,000 1,150 1,200 2,800 540 5,500 16 (12) 65 (35)	4,500 1,250 1,400 2,500 500 8,400 16 (12) 65 (30)	5,000 1,100 1,300 2,600 550 10,000 18 (18) 43 (35)	5,000 1,800 2,000 3,100 500 15,000 17 (15) 62 (35)	6,000 1,800 2,000 4,000 500 20,000 20,000 20 (15) 65 (35) 5,585	6,000 2,460 3,000 4,760 450 37,000 40 (33) 64 (40)
Shear Strength Tear Strength, Die C Impact Strength, Notched Izod: 0.125-in Thickness, 73°F 0.125-in Thickness, -22°F Instrumented Impact, Total Energy: 100-mil Thickness, 5 mph, 3-in Clamp 73°F -22°F	D 624 D 256 D 3763	ibt/in ft-lb/in ft-lb/in ft-lb ft-lb	500	650	750	700	700 No Break 3.3	900	900 42.6 36.9	1,000
THERMAL Deflection Temperature Under Load: 264 psi 66 psi Coefficient of Linear Thermal Expansion Low-Temperature Brittle Point Glass Transition Temperature (†g) Vicat Softening Temperature: Rate A	D 648 D 696 D 746 (DMA)# D 1525	°F °F in/in/°F °F °F	<-90 -44 196	<-40 -22 190	8.3 E-05 <-90 -33 246	<-90 -40 248	<-90 -51 316	<-90 -29 293	139 7.3 E-05 <-90 -15 349	131 c-90 3 295
FLAMMABILITY† UL94 Rame Class: 0.062-in (1.57-mm) Thickness	(UL94)	Rating	HB*						HBp	

These items are provided as general information only. They are approximate values and are not part of the product specification.

Postcured 16 hrs. at 230°F (110°C).

DMA: Dynamic Mechanical Analysis.

Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.

Natural color.

Natural and black colors.

TEXIN AND DESMOPAN THERMOPLASTIC POLYURETHANE

Texin Thermoplastic Polyurethane (continued)

Polye	ster		Polyether			Polyureth	ane/Polyc	arbonate	Blends			Medi	cal	
360-D	470-D	985-A	990-A	970-D	3203	4203	4206	4210	4215	3215	5286	5187	5265	5370
1.23 60 D	1.24 70 D	1.12 . 86 A	1.13 90 A	1.18 70 D	1.22 60 0	1,21 60 D	1.21 65 D	1.21 70 D	1.21 75 D	1.21 75 D	1.12 86 A	1.20 87 A	1.17 65 D	1.21 70 D
55 42	90 55	30 45	25 40	75 50	90 40	70 42	80 46	65 45	85 52	80 55	30 45	15 45	75 50	65 45
0.008	0.008 0.008	800.0 800.0	0.008 0.008	0.008 0.008	800.0 800.0	800.0 800.0	0.008 0.00B	800.0 800.0	0.008 0.008	0.006 0.006	0.008 860.0	800.0 800.0	0.008 0.008	0.008 0.008
•			:		•	•	•	•	٠	•	•	:	•	:
!				۰	•	•		•	٠		•	•	•	•
5,000 2,400 2,700 3,400 500 30,700	6,000 4,100 4,300 5,200 350 105,000	6,000 650 700 1,100 550 3,900	5,000 950 1,000 1,750 550 6,000	6,000 2,500 3,000 5,200 375 55,000	4,500 2,700 3,300 300 31,000	5,000 2,500 2,700 325 30,000	5,000 3,700 4,000 200 60,000	6,000 4,100 4,500 180 100,000	6,000 4,600 5,300 150 150,000	6,600 4,800 5,200 175 150,000	6,000 650 700 1,100 550 3,900	5,000 720 750 1,700 500 4,000	5,000 2,900 3,300 4,450 460 55,000	6,000 4,100 4,500 180 100,00
20 (15) 40 (25) 1,000	50 (30) 85 (45) 1,300	19 (16) 80 (40) 500	20 (13) 75 (35) 550	40 (25) 75 (45) 1,100	750	3,920 850	5,300 800	6,200 900	7,300 950	1,000	19 (16) 80 (40) 500	16 (12) 65 (35) 500	28 (20) 88 (35) 1,200	900
					13	13 1	13 1	16 1	18 1.5	15				
					42.0 41.0	44.1 40.9	33.1 39.6	35.8 40.5	39.1 42.9	36.0 44.0				
133 7.2 E-05 <-90 -20 315	115 5.5 E-05 <-90 32 316	<-90 -51 176	<-90 -47 223	113 155 6.4 E-05 <-94 32 306	114 144 <-90 -11 302	99 131 · 7.0 E-05 <-90 -27 295	109 150 5.8 E-05 <-70 -27 286	139 208 5.7 E-05 <-90 -31 282	166 227 5.0 E-05 <-90 -31 - 284	183 231 8.9 E-05 <-90 0 295	<-90 -51 175	<-90 -44 197	<-90 14	139 208 5.7 E- <-90 -31 282

BAYFLEX ELASTOMERIC POLYURETHANE RIM

Bayflex Elastomeric RIM

THEMOSETS			MP- 5000	MP- 10000	110-25 LWR	110	-50	XGY-	100
Typical Prosecti Programs			Untilled	Unfilled	Untilled	Untilled	15% Glass*	Untilled	15% Glass¹
GENERAL Specific Gravity Density Thickness Shore Hardness Mold Shrinkage Water Immersion, Length Increase Water Absorption: 24 Hours	D 792 D 1622 D 2240 (Miles) (Miles) (Miles)	in A or D % - in/in %	1.0 62.4 0.118 30 D 1.25 0.015	1.0 62.4 0.118 40.0 1.4 0.014	0.98 61.2 0.125 50 D 1.4 0.008	1.04 63 0.125 58 D 1.4 0.006	1.15 71.2 0.125 60 0 0.5-0.6 0.002	657 0.125 69 0 0.75-0.85	1.15 72 0.125 70 0 0.55-0.75
24 Hours MECHANICAL		%	5.0	5.0	2.8	<u> </u>		4,600	4,100
Tensile Strength, Ultimate Elongation at Break	D 638/D 412 D 638/D 412 D 790	lb/in² %	1,900 360	2,200 300	3,000 260	3,200	2,900 s 93	1300	1 Sept. 1
Flexural Modulus: 149°F 73°F -22°F		lb/in² lb/in² lb/in²	4,000 5,600 14,500	7,900 10,000 23,600	25,000	38,000 51,000 115,000	60,000 100,000 160,000	43,000 100,000 200,000	94,000 210,000 403,000
Flexural Strength Tear Strength, Die C Compressive Strength	0 790 D 624 D 395	ib/in² lb/in lb/in²	, 230	240	350	440	570	670	700
Impact Strength: Charpy Impact Notched Izod Umotished	D 256 D 256	ft4b/in² ft4b/in ft4b/in			8	11	8	9	4.3
THERMAL Deflection Temperature Under Load: 264 psi	D 648	ot ot							
. 66 psi Heat Sag: 6-in Overhang, 1 hr at 250°F 4-in Overhang, 1 hr at 250°F Coefficient of Linear Thermal Expansion	D 3769	· in in in/in/°F			0.51	∴ 0.60 ∴ 0.36 × 78 E-06	028 3 027 9 44 (-06	\$ 2057 58 1-06	28 E-06
FLAMMABILITY† UL94 Flame Class: 0.125-in Thickness 0.250-in Thickness	(UL94)	Rating Rating	:						183

These items are provided as general information only. They are approximate values and are not part of the product specifications.
 † Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.
 † Milled glass fiber, OCF 737, 1/16 inch.
 2 Directed chopped fiber preform.
 3 Continuous strand mat

Continuous strand mat.

Note 1

All directional properties are listed parallel to flow.

Note 2
IBS: Interactive Blowing System.
IMR: Internal Mold Release.
RIM: Reaction Injection Molding.
XGT: Extended Gel Time.

Case 1:06-cv-00091-SLR Document 226-4 Filed 08/14/07 Page 55 of 80 PageID #: 4906
BAYDUR STR COMPOSITE POLYURETHANE RIM
BAYDUR STRUCTURAL FOAM POLYURETHANE RIM
PRISM SOLID POLYURETHANE RIM

Baydur S Composite F	STR	Baydur Structural F	oam RIM						PRISM Solid RIM	
STR/C- 400 BB	STR/F- 350 IMR	D-15	6601	BS	730 1	BS	726 1	BS	CM-2	00
60% Glass*	17% Glass ¹	Density 20 pcf	Density 25 pcl	Density 35 pcf	Density 35 pcf	Gensity 41 pcf	Density 40 pci	Density 55 pcl	Density 61 pcf	Density 67 pcf
1.71 107 0.160 0.05	0.50 32 0.125 0.10	0.32 20 0.500 40 D	0.40 25 0.500 57 0	0.56 35 0.500 70 D	0.56 35 0.250 65 D 0.7-0.9	0.66 41 0.250 70 D 0.7-0.9	0.66 40 0.250 66 D 0.7-0.9	0.80 55 0.250 81 0 0.7-0.9	0.98 61 0.125 73 D 0.7-0.9	1.07 67 0.125 75 D 0.7-0.9
0.36 0.98	•			, , ,				-		
32,100 1.8	2,900	1,000 6	1,300	2,800 7	2,000 - 10	2,700 10	3,100 8	4,800 8	5,500 11	6,600 12
2,120,000 62,600	220,000 6,700	53,000	76,000 } 3,000	113,000 5,000	125,000 4,000	170,000 5,500	160,000 5,600	240,000 9,000	267,000 9,300	309,000 10,300
20.7	6.5	900 2.2	1,200 4.8	2,600 6.3	B.2	11	8	15		
30.7	0.0	UNA REAL	美工業	1865 A		3.4	1 1000	288	5	7
416	209	149	199	219	158	176	181	212	192	205
7,8 E- 06	0.04 7.8 E-06								0.29	0.26
							V-0/5VA	V-0/5VA	V-0/5VA	V-0/5VA

BAYTEC RE POLYURETHANE SPRAY SYSTEMS BAYTEC RTM POLYURETHANE SYSTEMS FOR RESIN TRANSFER MOLDING

Baytec	RE
Spray Syst	ems

Baytec Molding St	RTM
Molding St	emetev

THERMOSETS 2			RE !	i26	RE 832	RE	527		RTM 532	
n al na la company		and the second	Unfilled	30% Mineral ¹	Untilled	Untilled	Glass :	Untilled	20% Class ³	Glass ³
IENERAL Specific Gravity, 77°F Density, 77°F Shore Hardness Taber Abrasion:	D 792 D 792 D 2240 D 4060	ID/II' A or D	1.05 66 86 A/38 D	1,11 69 65 D	. 0.96 - 68 - 66 A	1.16 72- 75 0	1.2 75 80 D	1,18 74 81 D	1.28 80 82 D	1.44 90 84 D
H-18 Wheel, 1000-g Load, 1000 Cycles Bayshore Resilience Mold Shrinkage Processing Methods:	D 2632 (Miles)	mg Lass % %	217	908	350	1.1	0.4	2	0.12	0
Casting Spray Resin Transfer Molding Paintable			•	: %		•		•	•	
MECHANICAL Tensile Strength Tensile Stress at 100% Elongation Tensile Stress at 200% Elongation	D 412 D 412 D 412	ipvin; ipvin;	750	1.070	460	7,000		7,200*	14,500*	25,000*
Tensile Stress at 300% Etongation Ultimate Etongation Flexural Strength: 77°F 150°F	D 412 D 412 D 790	10/in² % 10/in² 10/in²	65 , 73	50° %	600 490	10,200	4 12,400 403,000	8/ 11,300 3,700 300,000	22,000 12,900 650,000	44 35,000 20,500 1,000,000
Flexural Modulus: 77°F 150°F Shear Strength, Compressive Lap: Polyurethane - Acrylic	D 790 D 3846	lb/in²	, 1, 2-	7,100		287,000 >2,000 >4,000	>2,000 >4,000	105,000	400,000	740,000
Polyurethane - ABS Compression Set: 22 Hours at 158°F Compression Deflection: 5%	D 395-B D 575	IP/III,	- 50	含物	50 90	5 3.7 × 3.7 ×				
10% 25% Tear Strength: Die C Tear Split Tear Impact Strength, Notched Izod:	D 624 D 1938 D 256	Ib/in' Ib/in Ib/in	120 50		210 180 90			86	6	10
0.125-in Thickness, 77°F Instrumented Impact, Total Energy: 0.100-in Thickness, 77°F	D 3763	ft-lb/in ft-lb		19		0.31	35	0.6	6	10
THERMAL Deflection Temperature Under Load: 264 psi 66 psi	D 648	°F *F in/in/°F				122 41 E-06	138	130 160 43 E-06	260 420 9 E-06	390 >425 7 E-06
Coefficient of Linear Thermal Expansion, 122°1 FLAMMABILITY† UL94 Rame Class at 0.125-in Thickness ANSI Z-124.1, 5.6 (1987) ANSI C37.20.2, 5.2.7	(UL94) (ANSI) (ANSI)	Rating Rating Rating		Pass Pass	Pass		Pass .			
ELECTRICAL Dielectric Strength Arc Resistance	D 419 D 495	V/mil S	322 121	122	123		enerifications.	·		

Note 1
All cast elastomer properties refer to uncatalyzed and postcured materials (postcured for 16 hours at 230°F/110°C).

PTMG: Poly(tetramethylene ether) glycol PG: Poly(propylene ether) glycol

These items are provided as general information only. They are approximate values and are not part of the product specifications.
 Flammability results are based on small-scale laboratory tests for comparison purposes only and do not necessarily represent the hazard presented by this or any other material under actual fire conditions.
 Tested in accordance with ASTM D 638.

Calcium carbonate.
 0.250-inch chopped liberglass roving.
 Continuous strand mat.

BAYTEC POLYURETHANE PREPOLYMERS FOR CAST ELASTOMERS

Baytec Prepolymers (Cured with 1,4-Butanediol)

repolyme	-		3utanedio				on the second		B. Lucator	·		2
	PT	AG .		i i	î.		T .		Polyester			· · ·
ME-040	ME-050	ME-080	ME-090	MP-090	MP-100	WIS-041	MS-051	MS-051	MS-081	MS-09D	MS-092	MS-242
<u> </u>												
79 A	85 A	93 A	95 A	85 A	90 A	72 A	A 08	87 A	90 A	93 A/47 D	93 A/43 D	85 A
12 65	15 63	20 60	25 60	90 20	84 20	10 52	16 52	24 44	26 44	38 26	30 43	30 32
•	. `	•	•	•	•	•	•	•	٠		•	0
4,200 600 940 1,200 480	4,500 840 1,150 1,670 480	5,100 1,150 1,500 1,900 490	5,400 1,560 2,000 2,600 500	5,000 990 1,580 2,750 410	4,800 1,640 2,750 4,290 315	5,100 460 620 820 560	5,360 640 870 1,180 525	6,500 900 1,250 1,730 525	6,600 1,110 1,500 2,350 500	7,500 1,500 2,590 3,800 480	6,870 1,480 1,960 2,600 510	7,150 830 1,215 1,750 575
17 140 180 520 340 80	16 180 370 885 415 90	18 250 490 1,090 555 100	17 320 575 1,180 610 140	45 130 275 750 360 90	35 165 360 1,080 380 90	20 70 145 410 325 100	24 105 220 570 380 105	18 160 280 680 550 175	20 220 425 930 575 200	· 35 310 600 1,350 705 400	22 275 530 1,200 675 275	24 170 300 740 525 300
. *								• • ;				
-												/ ¹
				_			_		_			
						}	·					

DEVELOPMENTAL PRODUCT INFORMATION

Any product in this publication with a grade designation containing the letters DP, KU, or KL is classified as a developmental product and is not considered part of the Miles Inc. line of standard commercial products. Complete commercialization and continued supply are not assured. The purchaser/user agrees that Miles Inc. reserves the right to discontinue supply at any time.

REGULATORY COMPLIANCE INFORMATION

Some of the end uses of the products described in this bulletin must comply with applicable regulations, such as the FDA, NSF, USDA and CPSC. If you have any questions on the regulatory status of these products, contact your local Miles representative or the Miles Regulatory Affairs Manager in Pittsburgh, Pennsylvania.

HEALTH AND SAFETY INFORMATION

Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling Miles products mentioned in this publication. Before working with any of these products, you must read and become familiar with the available information on their hazards, proper use and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets and product labels. Consult your local Miles representative or contact the Product Safety and Regulatory Affairs Department in Pittsburgh, Pennsylvania.

MILES 🔼

Miles Inc. • Mobay Road • Pittsburgh, PA 15205-9741 • 1-800-622-6004

Polymers Division

Sales Offices:

California:

2010 Main Street, Suite 1000, Irvine, CA 92714-7206

714 833-2351 · Fax: 714 752-1306

Georgia:

380 Interstate N. Parkway, Suite 200, Atlanta, GA 30339-2267

404 955-4326 • Fax: 404 956-7484

Illinois:

9801 W. Higgins Road, Suite 560, Rosemont, IL 60018-4704

708 692-5560 • Fax: 708 692-7408

Michigan:

1150 Stephenson Highway, Troy, MI 48083-1187

810 583-9700 · Fax: 810 583-9701

New Jersey:

Raritan Plaza III, Edison, NJ 08837-3605

908 225-1030 · Fax: 908 225-2571

Tennessee:

2505 Hillsboro Road, Suite 203, Nashville, TN 37212-5317

615 298-3566 • Fax: 615 298-2641

The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis at least must include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by Miles. All information is given without warranty or guarantee, it is expressly understood and agreed that customer assumes and hereby expressly released es Miles from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not blind Miles. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

520(30M)5/94 Copyright © 1987, 1994, Miles Inc. Printed in U.S.A. KU-F-4022(152) E

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Polyurethane Handbook

Chemistry – Raw Materials – Processing Application – Properties

Edited by Günter Oertel

2nd Edition

With contributions from

L. Abele, Dr. G. Avar, Dr. A. Awater, Dr. G. Baatz, R. Bock, H. Boden, Dr. M. Dahm, Prof. Dr. D. Dieterich, Prof. Dr. W. Diller, Dr. M. Dollhausen, H.-A. Ehlert, Dr. J. Franke, Dr. A. Freitag, Dr. H. Gall, Z. Galler, H. Grammes, Prof. Dr. E. Grigat, Dr. P. Gupta, Dr. P. Haas, Dr. W. Hahn, Dr. K.-H. Hentschel, Dr. H. Hespe, J. Hoffmann, H.-G. Hoppe, Prof. Dr. R. Hoscheid, Dr. H. W. Illger, M. Jokel, Dr. M. Kapps, Dr. M. Kausch, Dr. H. Kleimann, Dr. U. Knipp, D. Krettek, N. Künstler, Dr. H. Lüdke, Dr. U. Maier, Dr. M. Mann, Dr. H.J. Meiners, Dr. F. Müller, Dr. H. Müller, Dr. G. Oertel, D. Pelzner, Dr. F.H. Prager, Dr. E.Ch. Prolingheuer, Dr. H. Rabe, Dr. K. Recker, Dr. W. Reichmann, Dr. H. Reiff, Dr. H. Rothermel, Dr. H. D. Ruprecht, H. I. Sachs, Dr. K. Schauerte, Dr. H. G. Schmelzer, Dr. H. G. Schneider, K. Schulte, Dr. P. Seifert, B. Stelte, R. Stoer, Dr. R. Sundermann, Dr. H. Thomas, Dr. H. Toepsch, Prof. Dr. H. Träubel, Dr. K. Uhlig, Dr. J. Vogel, U. Walber, Dr. R. Walter, Dr. Ch. Weber, Dr. E. Weigand, W. Wieczorrek, Dr. R. Wiedermann, Dr. K.-D. Wolf, Dr. H.-G. Wussow, Dr. R. Zöllner

Hanser Publishers, Munich Vienna New York

Hanser/Gardner Publications, Inc., Cincinnati

BEST AVAILABLE COPY

The Editor: ...

Dr. Günter Oertel, Applications Research, Polyurethanes Division, BAYER AG Germany, 51368 Leverkusen

Distributed in the USA and in Canada by Hanser/Gardner Publications, Inc. 6600 Clough Pike, Cincinnati, Ohio 45244-4090, USA Fax: +1 (513) 527-89 50

Distributed in all other countries by Carl Hanser Vérlag Postfach 86 04 20, D-81631 München, Germany Fax: +49 (89) 984809

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data

Polyurethane. English.

Polyurethane handbook/edited by Günter Oertel, with contributions from L. Abele ... [et al.]. - 2nd ed.

p. cm. Includes bibliographical references and index. ISBN 1-56990-157-0

1. Polyurethanes – Handbooks, manuals, etc. l. Oertel, Günter. ll. Abele, L. (Lothar) III. Title.

TP1180.P8P5713 1993 668.4'239-dc20

93-33469

Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Polyurethane handbook / ed. by Günter Oertel. With
contributions from L. Abele ... - 2. ed. - Munich; Vienna;
New York: Hanser; Cincinnati: Hanser/Gardner
Publ. 1993
Einheitssacht.: Polyurethane <engl.>

ISBN 3-446-17198-3 NE: Oertel, Günter [Hrsg.]; Abele, Lothar [Mitverf.]; EST

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission from the publisher.

© Carl Hanser Verlag, Munich Vienna New York, 1994 Printed and bound in Germany by Passavia Druckerei GmbH Passau

Preface

Since its publi throughout the all areas of pc technology. Vir. 1990s, we wer completely nev During the "fir primarily conce ing the first co generation" of diisocyanate) b eration" dates markets far be-The rapid grov maintained in t and developing light of this rat mental concerr volume, while years, is still-le Over the years, ated some unfo use of polyuret logical and ecc The polyuretha key environme management, a The success of achieve the balomy and the er I would like to represent the c Ms. Kindermar. the editorial tea their invaluable Like its predecstoff-Handbuck 1993. At this p term "polyuretl only correct for ized, is neverth we have decide This volume wa ogy at Miles Inc team for their ef the technical qu February 1993

Contents

Polyurethanes: Harmony between Technology, Economy and Ecology Dr. G. Oeriel, D. Pelzner, Dr. W. Reichmann, Dr. K. Uhlig	1
1.1 The Development of Polyurethanes	1
1.2 The Market for Polyurethanes: Capacities - Consumption - Forecasts	3
1.3 Ecological Aspects of Polyurethanes	8
Reference List for Chapter 1	9
Principles of Polyurethane Chemistry and Special Applications	11
Prof. Dr. D. Dieterich, Prof. Dr. E. Grigat, Dr. W. Hahn, Dr. H. Hespe, Dr. H. G. Schmeizer	
2.1 Chemical Principles 2.1.1 The Term "Polyurethanes" 2.1.2 Basic Reactions of the Isocyanate Groups 2.1.2.1 Addition of Nucleophilic Reactants 2.1.2.2 Reactions of Isocyanates with Themselves 2.1.3 Formation of Polyurethanes	11 11 12 12 14 15
2.2 Important Building Blocks for Polyurethanes 2.2.1 Isocyanates 2.2.2 Polyols 2.2.3 Diamines and Polyamines 2.2.4 Additives	17 17 21 23 25
2.3 Preparation Methods for Polyurethanes 2.3.1 Solvent-Free Reactions 2.3.1.1 One-Shot Process 2.3.1.2 Prepolymer Process 2.3.2 Reactions in Solution 2.3.2.1 Completely Reacted One-Component Systems 2.3.2.2 Reactive One-Component Systems 2.3.2.3 Two-Component Systems 2.3.3 Aqueous Two-Phase Systems 2.3.3.1 Aqueous Dispersion 2.3.3.2 Properties of Aqueous Dispersions	25 25 25 26 27 28 28 29 29 29 31 32
2.4 Special Areas 2.4.1 Special Polymers 2.4.1.1 Ionomers 2.4.1.2 Polyisocyanurates 2.4.1.3 Polyoxazolidinone-Polyisocyanurates 2.4.1.4 LC Polyurethanes 2.4.1.5 Combinations with Other Polymers (Alloys, Blends) 2.4.1.6 Organo-Mineral Products 2.4.2 Special Product States 2.4.2.1 Aqueous Solutions 2.4.2.2 Hydrogels	32 32 32 32 33 33 33 34 34

		A sec	
VIII Contents 2.4.2.3 Powders 2.4.2.4 Microcapsules 2.4.2.5 Poromerics 2.4.3 Special Applications 2.4.3.1 Medical Applications 2.4.3.2 Biotechnology 2.4.3.3 Optical Lenses 2.4.3.4 Ultrathin Layers 2.4.4 Special Processing: Thermal Compression Molding	34 35 35 35 35 36 37 37		3.2.4 Ch: 3.2.5 Tra 3.2.6 Qu: Reference Lis 3.3 Conversic 3.3.1 Coi 3.3 3.3 3.3
2.5 Structure - Property - Relationship in Polyurethanes 2.5.1 Two-Component Polyurethanes Without Segmented Structure 2.5.2 Segmented Polyurethanes 2.5.2.1 Hard and Soft Segments 2.5.2.2 Segregation and Domain Morphology 2.5.2.3 Morphology Within the Hard Segment Domains 2.5.2.4 Effects of Hard Segment Domains on Mechanical and Thermal Properties 2.5.2.5 The Effect of the Soft Segment Matrix on Thermal and Mechanical Properties 2.5.2.6 Crosslinked Polyurethanes 2.5.3 Ionomers Reference List for Chapter 2	37 37 38 38 39 41 42 44 45 46 48		3.3.2 Cos 3.3 3.3 3.3 3.3. 3.3. 3.3. 3.3. 3.3.
3 Raw Materials Prof. Dr. W. Diller, Dr. P. Gupta, Dr. P. Haas, Dr. K. Schauerte, Dr. R. Sundermann, Dr. K. Uhlig	55 .	E-land services of the service	3.4 Additives 3.4.1 Cat
3.1.1 Polyethers 3.1.1.1 Chemical Structure 3.1.1.2 Raw Materials for Polyethers 3.1.1.3 Commercial Production 3.1.1.4 Typical Properties 3.1.1.5 Transport, Storage 3.1.1.6 Quality and Analysis 3.1.2 Polyesters 3.1.2.1 Chemical Structure 3.1.2.2 Raw Materials for Polyesters 3.1.2.3 Commercial Production 3.1.2.4 Properties 3.1.2.5 Transportation, Storage, Handling 3.1.2.6 Quality and Analysis Reference List for Chapter 3.1 3.2 Isocyanates 3.2.1 Reaction Characteristics 3.2.2 Starting Materials for Isocyanates 3.2.3 Commercial Production 3.2.3.1 Phosgenation 3.2.3.2 Phosgenation Process 3.2.3.3 Product Processing 3.2.3.4 Other Manufacturing Processes	71 73 73 74 75 76 77 78	The state of the s	3.4. 3.4. 3.4. 3.4. 3.4. 3.4. 3.4. 3.4.
		•	

	•	
• .*		
•	Contents	iX
	3.2.4 Characteristics	79
34	3.2.5 Transportation, Storage	81
35	3.2.6 Quality and Analysis	82
	Reference List for Chapter 3.2	83
, , , , , , , 35	Reference List for Chapter 3.2	
35	3.3 Conversion Products of Raw Materials	84 .
36	3.3.1 Conversion Products of Polyols	85
37	3.3.1.1 Filled Polyols	85
	3.3.1.2 Polyol Prepolymers	86
37	3.3.1.3 Storage and Transport	86
37	3.3.2 Conversion Products of Polyisocyanates	86
***	3.3.2.1 Low Molecular Weight Urethane Polyisocyanates	87
	3.3.2.2 Polyisocyanates with Uretdione, Isocyanurate,	
20	and Carbodiimide Groups	87
20	3.3.2.3 Polyisocyanates with Allophanate, Urea, and Biuret Groups	90
* * * * * * * * * * * * * * * * * * * *		92
41	3.3.2.4 Polyisocyanate Prepolymers	93
- 42	3.3.2.5 Blocked Polyisocyanates	94
42	3.3.2.6 Transport, Storage	94
id 44	3.3.3 High Molecular Weight Polyurethane-Polyols	
44	3.3.3.1 Solid Materials	94
45	3.3.3.2 Solutions of Solid Materials	96
3	3.3.3.3 Polyurethane Polyols Produced in Solution	96
§ 48	3.3.3.4 Solid Materials from Solutions	96
	3.3.3.5 Transport, Storage	97
200	Reference List for Chapter 3.3	97
MET 55	Si a a thirte and American Metamoto	98
	3.4 Additives and Auxiliary Materials	98
Dang.	3.4.1 Catalysis	99
55	3.4.1.1 Terms of Reaction Kinetics and Catalysis	
. 56	3.4.1.2 Catalysis for NCO/NCO Reactions	102
57	3.4.1.3 Catalysis for the NCO/OH Reaction	103
59	The state of the s	104
61	3.4.3 Crosslinkers/Chain Extenders	105
62		105
63	Action amount of the second of	105
63	3.4.3.3 Special Crosslinking Principles	106
65	3.4.4 Surfactants	106
66	3.4.4.1 Emulsifiers	106
67	Mark the transfer of the trans	107
67	3.4.4.3 Cell Regulators	108
68	3.4.5 Blowing Agents	109
69	3.4.6 Additives for Flame Retardance	
71	3.4.7 Fillers	112
71	3.4.8 Antiaging Agents	113
73	3.4.9 Mold Release Agents	
73	3.4.10 Coloring Agents and Coloring	115
73	3.4.11 Special Additives	115
74	3.4.12 Handling, Storage, Transport	116
75	Reference List for Chapter 3.4	117
76		100
77	3.5 Industrial Hygiene of PU Raw Materials	120
78	3.5.1 Polyols and Polyol Formulations	120
79	3.5.2 Isocyanates	120
建	•	
		·
		#
		i i
		£ .
		# [[
		<i>*</i>
		**
		(E
		15

					6.1
					1
			178	-	
 •				ı	
		·			
		•		l .	
X Contents					
	- Tiffe and a filtra community		121	1:	5.2 Carpet
3,5.2.1 Acut	e Effects of Isocyanates	Isocyanates	121	1	5.2.1 P
3 5 3 Additives			123	着 砂	5.2.2 P 5
` 3531 Catal	lvsts		123		5
3.5.3.2 Cros	slinkers		124	1	5.2.3 P
3.5.3.3 Blow	ing Agents and Solvents .		124	I	5.3 Flexible
3.5.3.4 Othe	f Additives		125	2	5.3.1 P
Reference List for Cha	nter 3.5		127		. 5
ACTOROLOG ESS. 101 Dise	,				5
4 Delementhana Draggesi	ing.		. 129	1	5.3.2 P
	ing			.	5.3.3 A
H. Boden, K. Schulte	•		120	ا ا	5.4 Semi-R
				1.	5.4.1 P
4.2 Design Principles	for Polyurethane Processing	Equipment	. 132	1	5
4.2.1 Comparison	of the Metering and Mixing	Machine Systems	. 132 . 135	·	5.4.2 P
-					5
4.3 Steps of Polyureth	ane Processing		. 140	Kery -	5
4.3.1 Delivery and	Storage of the Raw Materi	als	142		5,4.3 A
4.3.2 Preparation	or Components		. 149		5 5
434 Mixing			. 158	ŧ	-
4.3.5 Pouring			. 166		Reference L
4.4 Process Automatic	on		. 171	:	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	6 Dalmanthar
n. C Market Charles			175	Îi	6 Polyurethan
Reference List for Cha	ipter 4			Į.	R. Bock, Dr. M. Dr. R. Zöliner
			122		Dr. R. Lonner
			. 177		Introduction
Dr. G. Baatz, Dr. A. Freita	g, H. Grammes, Dr. H. W. Illger, I	Or, H. Kleimann, Dr. H. Rabe,		(6.1 Chemist
	chneider, R. Stoer, Dr. Ch. Weber,			*	6.1.1 Pc
Introduction			. 177	-	6.1.2 Pc
5.1 Slabstock Foams	COLL Towns		. 170 178		6.1.3 B
5.1.1 Production	of Stabstock roams	· · · · · · · · · · · · · · · · · · ·	. 179		6.2 Manufac
5.1.1.2 Pro	cess Description		. 181	3	6.2.1 M
5.1.1.3 Cur	ing and Storing of Slabstocl	c Foams	186		6.2.2 C ₁ 6,
5.1.1.4 Fab	rication of Slabstock Foams		188	•	6.
5.1.1.5 Util	lization of Cutting Scrap		. 193 ·. 104		6.
5.1.1.6 State	b Foam Types and Their Ma	nufacturing Formulations	. 202	₹	6.2.3 D
5.1.3 Application	for Slabstock Foams		210		6. 6
5.1.3.1 Upl	holstery		210		6. 6.2.4 Fo
5.1.3.2 Ma	ttresses		211		6.
5.3.3.3 Tra	nsportation		212 . 212		•
5.1.3.4 Tex	tute Foams		213	•	
2.1.3.2 Pac 517.4 Pac	skaging		214		6.
5.1.3.7 Mis	scellaneous Application		214		6.
5.7.5.	· · · · · · · · · · · · · · · · · · ·				

The second second	•	•	
1	-		~1.0
1 1	5.2 Carpet Backing		215
			215
1	A B B B		216
3	E 3 3 1 Douggeon (Agitable	, , , , , , , , , , , , , , , , , , , ,	
3	EAAA Diment Continu		
4 :	5.2.3 Properties		217
4 .	The State of Molded Form		218
5			
5 i	5.3.1.1 Raw Materials		218
7	5.3.1.2 Process Technology		223
a a	can promotion of Molded Forms		
9 🖠	5.3.3 Application of Molded Flexible Foam		231
	3.3.3 Application of intology		234
(5.4 Semi-Rigid Polyurethane Molded Foams		234
9 ;			
	5.4.1.1 Raw Materials and Production Methods		236
2 2	5.4.1.2 Processing Technology		240
5 ,	5.4.2 Properties		
_ !	5.4.2.1 Mechanical Properties	******	241
0	5.4.2.2 Damping Properties	****	241
0 1	6 A 2 1 Departive Paddings		
2	5.4.3.1 Protective Paddings 5.4.3.2 Energy Absorbing Foams		242
9	2.4.5.7 Energy Mosoronic Louis		244
58 56	Reference List for Chapter 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**-1-1
ju E		•	
71	6 Polyurethane Rigid Foam		
9	R. Bock, Dr. M. Kapps, D. Krenek, Dr. H. Thomas, Dr. R. Walter, Dr. Dr. R. Zöllner Introduction	•	. 247
ž.,	introduction	•	. 248
	6.1 Chemistry and Raw Materials		248
	6.1.1 Polyols		. 248
	6.1.2 Polyisocyanates		249
	6.1.3 Blowing Agents and Other Additives		201
	6.2 Manufacturing of Rigid Polyurethane Foams		. 251
	C T I Manustachuman at Milite		
	4.3.2 Continuous Production of Panels		. 200
	6.2.2.1 Insulation Slabs		253
101 %	6.2.2.2 Laminated Panels with Metal Surfaces	• • • • • • • • • • • • • • • • • • •	253
A11 (\$1)	6.2.2.3 Composite Panels		. 253
77	6.2.3 Discontinuous Production of Panels		. 253
	6.2.3.1 Shell Method		. 254
	C2 & Comming of Appliances		23!
	COAL Definement (Greater Cabinets		201
	62 A 1 1 Accombly Lines with Moval	ole rixtures	230
	6 2 4 1 2 Installations with Stationary	Fixtures	200
	6.2.4.2 Refrigerator and Freezer Doors	, , , , , , ,	239
	6.2.4.3 Water Heaters		260
	Vibition Triallys Admirate		
	•		
	•		
75 W			

•	ī	The system are unasted as the state of the s					· .		
		-	•				ei e		
	XII	Contents							
				•		261	Į		6
	,	6.2.5 Processing of r	re-Insulated Pipes			262	Į.	·	6.5.3 T
		6.2.7 PU in situ Foar	n			262	Į.		6
		6.2.7.1 Two-Co	omponent in situ Foam ized Container and Cartr	idae System		262	Î		
	67		id Foam			265	l l		6
	0.3	6.3.1 General				265			ð
		6.3.1.1 Isotrop	v – Anisotropy			265			
		6.3.1.2 Test Sa	mples for Property Deter	mination		266 266			6.5.4 A
		6.3.1.4 Open (Cells - Closed Cells			266	1		6 6
		6.3.2 Mechanical Pro	operties			266	į		6.5.5 T
		6.3.2.1 Compr	essive Strength Strength			267 268	Ŷ.		6
		6.3.2.2 Tensile	g and Shear Strength, M	oduli			1		6
		6.3.2.4 Effect	of Heat and Time on Pro	perties		269	. [6.5.6 S
		6.3.3 Dimensional S	tability at Low and High uctivity	Temperature		270	•		6 -
		6.3.4.1 Effect	of the Cell Gas			271	ğ.		6.5.7 P
		6.3.4.2 Effect	of Density			273			6
		6.3.4.3 Effect	of Temperature of Moisture			273	1	•	6.5.8 C
		6.3.5 Water Absorpt	ion			274	3		6.3.8 C
		6.3.6 Thermal Coeff	icient of Expansion			275	ì		6
		6.3.7 Chemical Resi	stance			275 276			6
			n Production Methods ar				;		6
	0.4	6.4.1 Slabstock Foar	n	<i></i>		277	1		6.6 Consoli
	,	6.4.2 Continuously l	Produced Laminated Eler	nents with Facers		278	\$		6.6.1 C
		6.4.2.1 Flexib	le Facers			279 279			6
	-	6.4.2.3 Rigid	Facers on Both Sides			280	•		6
		6.4.3 Discontinuous	ly Produced PU Sandwic	h Elements and			•		Reference L
		Molded Parts	rich Elements and Molde	d Parte with Face		281 281			
		6.4.3.1 Sanuw	inces			283		<u>.</u>	
		6.4.3.3 Preins	ulated Pipes			284		7	Integral Sk
			Rigid Urethane Foam				4		Dr. G. Avar. H Dr. HJ. Mein
	6.:	Application of Rigid	PU Foams			-286 -287 '	,		
		6.5.1.1 Refrig	erators and Freezers			287	;		7.1 Introdu
		6.5.1.2 Comm	nercial Display Cases		* * * * * * * * * * * * *	288			7.2 Manufa
		6.5.1.3 Refrig	erated Trucks and Conta erated Warehouses and \	mers		∡88 289			7.2.1 N 7.2.2 N
		6.5.1.5 Water	Heaters			290			7.2.3 T
		6.5.2 Construction	ndustry			290			7.2.4 C
		6.5.2.1 Insula	tion Boards			. 291 . 300			7.3 Flexible
	•	6.5.2.3 Snecis	al Elements			305			7.3.1 C
		6.5.2.4 Build	ing Blocks with Integrate	d Insulation		. 306			7.3.2 F 7.3.3 P
		6.5.2.5 Spray	Foam	• • • • • • • • • • • • • • • • • • • •		. 308			ended F

•		
-	t T	
	Contents	: XIII
	6.5.2.6 Bonding Foam	310
261	6.5.3 Technical Insulation	311
262	6531 Pine Insulation	311
262	6.5.3.1.1 Half-Shells and Moldings	511
262	6 5 3 1.2 Preinsulated Pipes	311
263	6 5.3.1.3 Pour-in-Place Foam	313
265	6.5.3.2 Insulation of Tanks	313
265	6.5.3.2.1 Normal Temperature Range	314
265	6.5.3.2.2 Low Temperature Range	313
266	6.5.4 Automotive Industry	, 310
266	65.4.1 Interior Liners	310
266	6.5.4.2 Cavity Foaming	318
266	6.5.5 Transportation	318
267	6551 Refrigerated Vehicles	319
268	6.5.5.2 Insulation for Transportation or Special Products	320
268	6553 Trailer and Mobile Homes	320
269	6.5.6 Shipbuilding	321
270	6.5.6.1 Insulation of Cold Storage Holds in Fishing Boats	321
271	6.5.6.2 Boat Building	321
271	6.5.7 Packaging	321
273	6.5.7.1 Direct Encapsulation	321
273	6.5.7.2 Transportation Protection in Vehicles	323
273	6.5.8 Other Fields of Application	323
274	6.5.8.1 Rigid Polyurethane Foams for Horticulture	324
275	6.5.8.2 Sporting Goods	324
275	6.5.8.3 Furniture	324
276	6.5.8.4 Solar Technology	325
277	6.5.8.5 "Radomes"	325
277	1 6.6 Consolidation of Coal and Surrounding Strata	326
278	6.6.1 Consolidation	326
279	6.6.1.1 The Cartridge Process	327
279	6.6.1.2 Injection Process	327
280		
	Reference List for Chapter 6	320
281		
281		
283	7 Integral Skin Foams and RIM Materials	329
284		
285	Dr. G. Avar, H. Boden, Dr. A. Freitag, Dr. U. Knipp, Dr. H. Lüdke, Dr. U. Maier,	r
286	Dr. HJ. Meiners, Dr. H. Müller, Dr. H. M. Rothermel, K. Schulte, Dr. P. Seifert, Dr. Ch. Weber	,
287	7.1 Introduction	329
287	B.	
288	7.2 Manufacturing Technology	330
288	7.2.1 Metering and Mixing Technology	330
289	7.2.2 Mold Design	330
290	7.2.3 Tool Design	333
290	7.2.4 Clamping Units	336
291	7.3 Flexible Integral Skin and RIM Materials	342
300	7.3.1 Chemistry and Raw Materials	342
305	7.3.2 Fillers and Reinforcements	344
306	7.3.3 Properties	348
308	. I superior	
,		

8.2.2 P
8.4 Applicat 8.4.1 A; 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.

•	
	Contents XV
•	422
240	8.2.2 Processing
348	A A A A Description of the Pelific
357	
357	8.2.2.2 Post-Treatment of the Finished False 423 8.2.2.3 Use of Scrap and Regrind 423 8.2.2.4 Addition of Colorants 424
, 362	and the least on Malding
367	A A A C 17
368	O O O O Calandorino
368	
369	8.2.2.8 Bonding/ Welding 428 8.2.3 Properties 428 8.2.3.1 Heat Resistance 430
372	a a a a b Townsarchite Renavior
	A A A A Th
376	o o o d C. a Domesonisti
378	8.2.3.5 Chemical Resistance
. 270	8.3 Special Elastomers 433
378 378	8.3 Special Elastomers
378	
380	8.3.1.1 Production 434 8.3.1.2 Vulcanization Systems 436 8.3.1.3 Processing Methods 436
382	on the December of the Vilicanizate
383	and the state of the control of the state of
385	on a Charles Deinforced Solid Polyurchanes
i	
	8.3.2.1 Materials
387	8.3.2.4 Applications
	8.3.2.4 Approximations
	8.4 Applications for Solid Polyurethane Elastomers
	0 4 1 1 Whoole and Roll Covers
387	g 4 1 2 Ball Covers
388	a 4 12 Demains and Spring Elements
388	8.4.1.5 Damping and oping 25 445 8.4.1.4 Drive Components 446 8.4.1.5 Wear Resistant Elements 448
390 . 392	0 4 1 6 Contate and Schieppees
393	O. 4.1 T. D. I. Cont. Turne
397	Q 4 1 Q Amplications in the Construction incustry
399	O 4 1 9 1 Shorts and Track SHITIBUS
400	8.4.1.8.2 Terra Cotta Pipe Seals
405 405	o A S & A Amplications for PII Joint Sealants
407	o a v o s. Some Protective Lavers
408	L 0.4.2 Auntionions of PI Casting Resins
411	CAAL Calin Engancisionic
415 418	8.4.2.2 Transformers for Medium and right voltage voltage 460
	1 A 2 & Low Voltage and Electronic Applications
421	t a second translators for Outdoor Applications
422	1 and Authoritan for Thermoniastic Polymethanes (170)
422	8.4.3.1 Applications in the Automobile Sector
422	8.4.3.1.1 Bearings and Grease Dools
	· ·
	11 .
•	

6			
		IS S	
	agrangement of the control of the co		
	•	:	
	XVI Contents		9.2.
	8.4.3.1.2 Membranes		9.2.
	n and a Property Car Dody Parts		9.2.8 Det
	8.4.3.1.3 Exterior Car Body Facts	•	Exr. 9.2.
			9.2
			9.2.9 Det
	8.4.3.6 Hoses		Per: 9.2
		:	9.2
	n 42 A Citi Chandles Hockey Stocks		9.2
,	A 4 10 C Chas Salet/Shae HPCIS		9.2.10 D€
	8.4.3.10 Sport Stoce Solesomers 474 8.4.4 Applications of Special Elastomers 474 8.4.4.1 Applications for PU Rubber 475	1	9.2 9.2
	The Water I Packling Plan Water I Packling Pull Civilian Control of the Control o		7.2
	8 4 4 3 Applications for One-Component Po Elastonicis		9.2
	Reference List for Chapter 8		9.2
	Manage Assessment 1		9.2 • 9.2
	479	·	9.2.11 In
	9 Determination of the Composition and Properties of Polyurethanes 479	÷	9.2
	J. Hoffmann, Dr. U. Maier, Dr. F.H. Prager, Dr. J. Vogel		9.2
•	9.1 Determination of the Chemical Composition	:	9.2.12 D
	The second of the second secon		9.2.13 D
	0.1.2.1 Identification of Polytreinanes		9,2,14 D
		•	9.2.15 D 9.2.16 D
	9.1.2.3 Residual NCO Groups	•	9.2.17 D
	n a n f Duliantenn		9.3 Suitabili
			9.3.1 Si
			9.3.2 M
	9.1.2.7 Chain Extenders, Abantaries, and 7483 9.1.3 Trace Analysis	;	9.
			9
	9.1.3.3 Chlorofluorocarbons (CFC)		9.3.3 E
	6 Lancial Department 485		9
			9
	9.2.1 Standardized lest Methods 490 9.2.2 Test Specimen Preparation 491 9.2.3 Determination of Linear Dimensions 492		Ś
	n n a va		9
		·.	g
1	0.2.6 Determination of the Fraction of Open and Closed Cens in Found	;	9.4 Compu
1	9.2.7 Determination of the Mechanical Properties in Short Term Experiments		9.4.1 h
1			9,4.2
	A 2 7 2 Town Eumpriments		9.4.3
1	A 7 7 7 Campananian Lyneminenis		9.4.4
1	9.2.7.4 Indentation Tests/Hardness Determination 499	•	9.5 Reacti
	0 0 0 0 0 1 Trade	•	9.5.1 9.5.2
	9.2.7.6 Shear lests		7.3.2

	. Contents XVII
	9.2.7.8 Short Duration Experiments on Core Compounds
466	9.2.7.8 Short Duration Experiments on Core Compounds 9.2.7.9 Impact Experiments
467	9.2.7.9 Impact Experiments 9.2.8 Determination of the Mechanical Properties in Long-Term
468	9.2.8 Determination of the Mechanical Properties in Long Term. Experiments under Static Load or Constant Deformation
469	9.2.8.1 Creep Experiments
470	9.2.8.1 Creep Experiments
. 471	9.2.8.2 Compression Set Tensite Set 9.2.9 Determination of the Mechanical Properties under
471	9.2.9 Determination of the Mechanical Properties and Society Periodically Varying Load or Deformation
472	9.2.9.1 Dynamic Fatigue Experiments on Rigid Integral Skin Foams 505
473	9.2.9.1 Dynamic Fatigue Experiment on Flexible Foams
473	9.2.9.3 Continuous Bending Experiments
474	9.2.10 Determination of the Temperature Dependence of Properties 506
474	9.2.10 Determination of the Temperature Department of Temperature 506
474	9.2.10.1 Determination of the Temperature Dependence of the
475	Elastic Modulus and Mechanical Damping
476	9.2.10.3 Short Duration Experiments at Various Temperatures 508
476	9.2.10.3 Short Duration Experiments at various Temperature 509 9.2.10.4 Determination of the Softening Temperature 509
7710	9.2.10.4 Determination of the Softening temperature 9.2.10.5 Dimensional Stability in Heat and Cold
	9.2.10.5 Dimensional Stability in read and Cold 9.2.10.6 Long-Term Tests as a Function of Temperature
470	9.2.11 Investigation of Aging Performance
479	9.2.11 Investigation of Aging Performance
	9.2.11.1 Light and Weather Exposure
479	9.2.11.2 Determination of the Stability against Gases, Liquids, and Solids
	and Solids
	() [] [] [] [] [] [] [] [] [] [
480	U / 14 1 priermitamini di die 1 delidia Conssessio,
480	
481	
482	4) ID 1 Jely Hilliam Di MC Proportion : robotato
482	9,2.17 Determination of Electrical and Distortion Corporate
482	9.3 Suitability Determination through End-Product Testing
483	9.3.1. Simulation of Day-to-Day Use
483 483	9.3.2 Measurement Methods for End-Product Testing
	9.3.2.1 Dimensional Stability, Determination of Part Weights
	and Dimensions
484 484	9.3.2.2 Mechanical Requirements
404	0.2.3 Examples for End-Product Testing
485	9 3 3 1 Testing of PU Shoe Soles
485	9.3.3.2 Testing of Automobile Seats
490	9 3 3 3 Experiments on Bumper Systems of Automobiles 523
491	9 3 3 4 Automobile Headliners
492	9 3 3 5 District Heating Systems
493	9.3.3.6 Roll and Caster Testing
. 494	526
495	9.4.1 Mold Filling Calculations on Thin-Walled Parts from Solid Polyurethanes
495	9.4.2 Thermal Calculations for the Processing of Solid PU-Systems 529
496	9.4.2 Thermal Calculations for the Processing of Solid 10-Systems
497	9.4.4 Strinkage and Warpage Estimations
498	9.4.4 Shrinkage and Warpage Estimations
499	4 A SENETHHI III LIIC m LIIC I IOCCHION 1000HE min management
500	9.5.1 Fire Hazard in Production and Storage
500	9.5.2 Fire Risks in End Use Applications
	7
	;
	*

	<u> </u>	₹-
<u>, </u>		
		. 1
	XVIII Contents .	•
	9.5.2.1 Generally Used Laboratory Test Procedures	
	9 5 2 2 Mining Applications	•
	9 5 2 3 Electrical Applications	•
	9.5.2.4 Transportation Applications	10.0.2
	9 5 2 6 Construction Applications	10.2.3
	0.5.3 Fire Related Side Effects	•
	9.5.3.1 Dripping	10.2.4
	9.5.3.2 Smoke Density	:
	Reference List for Chapter 9	:
	Reference List for Chapter 7	
	10 PU Paints and Coatings 555	:
	Dr. M. Dahm, H. Ehlert, Dr. F. Müller, Dr. H. Toepsch, Prof. Dr. H. Träubel, W. Wieczorrek	Reference Li.
1	10.1 Paints and Coatings	Reference Ci.
l	10.1.1 Solvent-Containing, Ambient-Cure Reactive Coatings	•
	10.1.1.1 Two-Component PU Coatings	11 Polyurethan
	10.1.1.3 Manufacturing	Dr. M. Dollhau.
1	10.1.1.4 Processing	11.1 Introduc
į	10.1.1.5 Properties of the Coating	11.2 Polyisor
1	10.1.2 Solvent-Borne, Non-Reactive Polyurethanes	11.3 Two-Co
	10 1 3 Solvent-Borne, Air-Dry Coatings	11.3.1
	10.1.4 Solvent-Borne, One-Component Stoving Lacquers	11.3.2 1
]	10.1.5.1 Two-Component Coatings	11.3.4
	10.1.5.2 One-Component Coatings, Moisture Curing	11.3.5 .
	10.1.5.3 PU-Modified Epoxy Systems	11.4 One-Co
-	10.1.5.4 Oven-Dried, Solvent-Free Coatings	11.4.1 1
	10 1 7 Waterborne Polyurethane Coatings	11.5 Solvent
	10.1.8 Industrial Hygiene Precautions for the Use of PU Coatings 574	11.5 Solvent
	10.2 Polyurethanes for Textile, Paper and Leather	11.5.2
	10.2.1 Textile Application	11.5.3 1
	10.2.1.2 Textile Coating	11.5.4
H	10.2.1.2.1 Selection of the Textile Substrate 576	11.6 Dispers: 11.6.1 1
	10.2.1.2.2 The Polymer Structure of the PU Products 577 10.2.1.2.3 Coating Processes	11.6.2
H	10.2.1.2.4 Finishing of PU Coatings 579	11.6.3 1
	10.2.1.3 Nonwoven Bonding	11.6.4 ,
	10.2.1.4 Poromeric Imitation Leather	11.7 Hot Me
	10.2.1.4.2 Polyaddition in Solution	11.7.1 J 11.7.2 J
	10.2.1.4.3 The Use for Poromeric Imitation Leather 583	11.7.3
	10.2.2 Paper	11.8 Applica
	10.2.2.1.1 Properties of Polyurethane Films 584	11.8.1 1

*	:			
			T	
• • •	1	Contents	(L)	
	•	Content	·	
	-		584	
		III / / I.V. WOLKING WINI LOLONGING STOPPER		
535		10.2.2.1.3 Application for Food Packaging Paper	284	
536		10.2.2.1.4 Other Applications of Polyurethane		
536		Dispersions for Paper Coating	585	7
537		10.2.2.2 Polyurethane Dispersions and Solutions for Paper Sizing	586	
538		10.2.3 Carbonless Copy Paper	586	
539		10.2.3.1 Microcapsules	587	
544		10.2.3.1 Microcapsules	587	. \
544		10.2.3.2 The Production of Carbonless Copy Paper	588	\
545		10.2.4 Leather	588	
		10.2.4.1 Application in Tanning, Retanning, Coloring		. 74
		10.2.4.2 Finishing	589	
549	•	10.2.4.2.1 Impregnation and Base Coating of Leather	589	
		10.2.4.2.2 Top Finish	5 9 0	
`		10.2.4.2.3 Patent Leather	590	
		10.2:4,2.4 Foil Finishing	591	•
555		10.2.4.3 Special Processes	591	
ek .		10.2.4.5 Special Processes	***	i i
		Reference List for Chapter 10	593	1
, 555				
555	•			
555		11 Polyurethane Adhesives	595	
559				
560		Dr. M. Dollhausen		
560		11.1 Introduction	. 595	
562		11.1 introduction	E06	
	•	11.2 Polyisocyanates	, 290	
564		11.3 Two-Component Reaction Adhesives	. 597	1
565		11.3 Two-Component Reaction Adnesives	597	
565		11.3.1 Polyisocyanates	508	
566	•	11.3.2 Polyols	. 570 500	
569		11.3.3 Additives	. 399	
569		11.3.4 Production and Processing	. 600	
571		11.3.5 Adhesive Bonds	. 601	
571				
572		11.4 One-Component Reaction Adhesives	. 602	
572		11.4.1 Isocyanate Terminated Polyurethanes		
574	•	11.4.2 Multiphase Systems with Encapsulated Isocyanates	. 002	
	1	11.5 Solvent Adhesives	. 604	
574	Į	11.5.1 Hydroxyl Polyurethanes	. 604	
575	•	11.5.2 Additives	. 604	
575	;	11.5.3 Production and Processing	. 605	
575	.;	11.5.3 Production and Processing	605	
576	4	11.5.4 Adhesive Bonds		
	4	11.6 Dispersion Adhesives	607	
	- 3	11.6.1 Manufacturing	607	
xs 577	.1	11.6.2 Additives	607	
578		11.6.3 Processing	607	,
579	į	11.6.4 Adhesive Bonds	608	
579	i			
579	1	11.7 Hot Melt Adhesives	608	
582		11.7.1 Manufacture	608	
582	j	11.7.2 Processing	608	
r 583	.7	11.7.3 Adhesive Bonds	609	
583	ì	Estra stateday north	600	
583	4	11.8 Application Fields	609	
584	4	11.8.1 Footwear Industry	609	
304	1			
•	1	•		
•	í	· · · · · ·		
	1	•		
	1	•		
	1	. **		
	1		•	
	.; "			
-				

	.3		
XX Contents		į.	-
11.8.2 Plastics Industry 6 11.8.3 Packaging Applications 6 11.8.4 Clothing Industry 6 11.8.5 Automotive Industry 6 11.8.6 Building and Construction Industry 6 11.9 Product Safety 6	511 511 512 512		13.1.1 · 13.1.2 · 13.1.3 · 13.1.4 · 13.1.5
Reference List for Chapter 11 6	513	•	13.2 Spinnin
12 Polyurethane (PUR) Systems and Polyisocyanates as Starting Materials for Binders	615	· · · · · · · · · · · · · · · · · · ·	13.2.1 ; 13.2.2 ` 13.2.3 ; 13.2.4 ; 13.2.5 ;
introduction	615 616		13.3 Physica
12.1.1 Manufacture	616 616 . 617 620	: : :	13.3.1 \ 13.3.2 \] 13.4 Properti 13.4.1 \] 13.4.2 \\ 13.4.3 \(\) 13.5 Manufa 13.5.1
12.2 Bonding of Other Products 12.2.1 Rubber 12.2.1.1 Manufacture 12.2.1.2 Properties 12.2.1.3 Applications 12.2.2 Rigid Polyurethane Foam Scrap 12.2.2.1 Manufacture	622 623 623 623		13.5.2 . Reference Lie
12.2.2.2 Properties	624 624 624	٠	14 Polyurethan
12.2.3.3 Applications	624		14.1 Require 14.2 Industri
12.3 Bonding of Foundry Sand	625		14.2.1 14.2.2
12.4.1 Manufacture 12.4.2 Properties 12.4.2.1 Processing Properties 12.4.2.2 Properties of the Glass Fibers 12.4.2.3 Properties of the Reinforced Plastic	626 626 	,	
Reference List for Chapter 12			
13 Polyurethane Elastomeric Fibers	629		14.3 Transpc 14.3.1 14.3.2 14.3.3
13.1 Synthesis of Segmented Polyurethanes	629		14.4 The Ec-

13.1.1 Reactants
13.1.1 Reactants 630 13.1.2 Reactions 630 13.1.2.1 Preparation of NCO Prepolymers 630 13.1.2.2 Chain Extension 631 13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 631 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.1 Reactants 630 13.1.2 Reactions 630 13.1.2.1 Preparation of NCO Prepolymers 630 13.1.2.2 Chain Extension 631 13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.2 Reactions 630 13.1.2.1 Preparation of NCO Prepolymers 630 13.1.2.2 Chain Extension 631 13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.2.1 Preparation of NCO Prepolymers 630 13.1.2.2 Chain Extension 631 13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.2.2 Chain Extension 631 13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.3 Crosslinked Elastanes 631 13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 632 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.4 Thermoplastic Elastanes 631 13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 633 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.1.5 Additives 632 13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 633 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.2 Spinning Processes 632 13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 633 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.2.1 Dry Spinning Processes 632 13.2.2 Wet Spinning Processes 633 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.2.2 Wet Spinning Processes 633 13.2.3 Reaction Spinning Methods 633 13.2.4 Meltspin Processes 633 13.2.5 Post Treatments 633
13.2.3 Reaction Spinning Methods
13.2.4 Meltspin Processes
13.2.5 Post Treatments
19.4.3 Tust frommones
67.8
13.3 Physical Crosslinking of Segmented Polyurea/Urethane Elastomers
12.2.1 Imfluence of Hard Segments
13.3.2 Influence of the Soft Segments
Toring of Flortage Filament Yarns
12.4.3 Thomas Debautor
13.4.2 Thermal Behavior
13.4.3 Chemical Characteristics
12 C 2 A miliontiano of migelia Piliano
12 5 2 1 Knit Fahrics
19 6 9 9 William Ephrice
12 6 2. Thusing and Finishing of Flastane-Containing Patrics
13.5.2.4 Characteristics of Elastane-Containing Paortes
Reference List for Chapter 13
actorono not for ompor to
14 Polyurethanes and the Environment
14 Polyuretasnes and the Environment
L. Abele, M. Jokel, Dr. M. Mann, U. Walber, Dr. E. Weigand
14.1 Requirements for the industrial rioduction of rolly about the
14.2 1- Averical Harrisons in Manufacturing and Processing
1421 Demissions and Guidelines
14 2.2 Protective Measures at the Workplace
14.2.2 Protective Measures at the Workplace
Stationary Processing
Stationary Processing
Non-Stationary Processing
14.2.2.3 Processing Solvent-Containing Systems
14.2.2.3 Processing Solvent-Containing Systems
14.2.2.4 Processing Polymentaines
14.3 Transportation, Unloading and Storage
1471 Temperatorian
1439 Ilmhording
14.3.2 Unloading
LEE
14.4 The Ecology of Polyurethanes
·
)

PolyEco

1.1 The

"High quality f porous, lightwei and in shipbuile wheels orthopedic cast: These are quota the inventors banalyses of app Hoppe and E. 1 in Leverkusen) polyisocyanate thanes, as comp of olefines or b However, the n of the Second It was not unticommercially a ogy for the con-Germany, from take place in th Initially, all co polyester polyo technical, as we role in polyure: polyois was a + of polyurethan flexible polyure The availability tive prices, and of PUR rigid 1 foam in the fur During the six' cessing techno market areas. E rigid foams we in automobiles technologies, c tion molding a modern RIM quality produc positioned then [Refs. p. 117]

rs, in certain

eterocyclic compound

gen (seldom) , ester (mercaptides, = 0) and tetravalent

n rate constants for the uremultaneously catalyzed by cylamine and diethyltintole ratio), example of syn-

. cat (meas.), b = amine + = tin cat., d = amine cat.

PUR catalysts:

manufacture of flexible roperties which facilitate erest are delayed action red point in time - for ixture on a flat surface mixture. Therefore, the idines are an example of 3.4 Additives and Auxiliary Materials

Table 3.9. Relative Activity as a Function of Concentration and Synergism of Typical Commercially Used Catalysts [2]

Catalyst	Concentration %	Relative reactivity	
uncatalyzed TMBDA DABCO TMBDA DBTL DABCO SnOct DBTL DBTL + TMBDA SnOct + TMBDA DBTL + DABCO SnOct + DABCO SnOct + DABCO SnOct + TMBDA DBTL + DABCO SnOct + DABCO SnOct + DABCO	0.1 0.1 0.5 0.3 0.1 0.5 0.1 + 0.2 0.1 + 0.2 0.1 + 0.2 0.1 + 0.5 0.1 + 0.5 0.1 + 0.5 0.3 + 0.3	1 56 130 160 210 260 330 540 670 700 1000 1000 1410 1510 3500 4250	

TMBDA = Tetramethylbutanediamine DABCO = 1,4-Diaza(2,2,2)bicyclooctane DBTL = Dibutyltindilaurate

SnOct = Tinoctoate

Further, polyamines partially neutralized with formic acid [10] have attained significance as delayed action catalysts for semirigid and flexible molded foams. In recent years, a new latent catalyst was described that is noncorrosive and nonvolatile (no smell). The basis is the chemically blocking of the active amine by a component whose structure was not disclosed [11]. The product is used for flexible and semirigid foam. Because of industrial hygiene concerns, the N-acylated amines [12] as low odor catalysts are of interest for foam manufacture:

$$\underset{R}{\overset{R}{\searrow}} N - [CH_2]_n - N \overset{R}{\underset{C}{\swarrow}} O$$

All terms and measuring procedures for the simple description of the kinetics of the polyurethane reaction are derived from industrial practice and observations of macroscopic phenomena. They are based on the following steps as a function of time:

- Mixing time (stirring time) is the duration of the time of mixing the components.

- The cream time (gel time, start time) is the time lapse from the beginning of the mixing process until a visual change or a distinct rise in the viscosity and the volume of the reaction mixture occurs.

The rise time (only for foams) is the time span from the beginning of mixing to the end

of the rise of the foam.

The setting time (curing time) is the time span from the beginning of mixing until a point is reached where the polyaddition product no longer flows. According to the working procedure and the product, the determination of the setting time follows different criteria. Figure 3.4 shows that the reaction is not at all finished within the set time. Only a fraction of the total reaction rate is described by the described times. The complexity of the course of reaction is best described by the variety of terms used in practice, i.e., "post-pressure time", "tack free time", "string time", "pluck time".

[Refs. p. 117]

· 102 3 Raw Materials

140 °C 100 80 60 20 60 10 20 30 40 50 60 70 80 min 100

Fig. 3.4. Accessible measurable range of a specific application of a PU reaction (example: 275 g preparation of PU rigid foam, apparent density 22 kg/m^3) a = area between stirring dand tack-free time

- The mold release time is the time span from the mixing of the components until the earliest possible removal of the finished part ("green strength"). Cycle time is greater than the molding process time and includes mold preparation and post treatment (cleaning, mold release agents and taking out parts).
- Final curing time is the time span until the final curing of the finished part. This will be widely different based on the product and process (hours, days weeks) as well as temperature and humidity effects (compare section 5).

3.4.1.2 Catalysis for NCO/NCO Reactions

The catalysis for dimerization to uretdiones, the carbodilimide formation, and the currently less important linear polymerization of isocyanates to polyamide-1 has already been described in subsection 2.1.2.2 and 3.3.2.2. The trimerization reaction for the manufacture of solid and cellular polyurethanes has far greater significance.

Isocyanurate structures give polyurethanes a higher heat resistance and improve intrinsic fire retardance. Since pure polyisocyanurates lead to very brittle products, in practice PIR/PUR combinations are used exclusively [13]. As a result, two reactions running concurrently must be catalytically controlled: the NCO/OH and the trimerization reaction. In this regard, the catalysts for the isocyanurate formation have been thoroughly investigated [13 to 16]. In Table 3.10 the trimerization catalysts are collected according to structural types.

Table 3.10. Typical Structures of Trimerization Catalysts

R¹R²R³N R₃P R-OMe (Me = z. B. Alkali) Me, O_y RCOOMe Me = K, Na, Ca, Fe, Mg, Hg, Ni, Pb, Co, Zn, Cr, Al, Sn, V, Ti R-Me- Me = Zn, Si, Sn, Pb, Sb R₂Me R₃Me

org., inorg., Lewis-acids Amine-epoxides Amine-alkylenecarbonates Amine-imides Amines Phosphines Alcoholates Metal oxides Carboxylates

Organo metal compounds

Metal-Chelates
Hydrides
Acids
Combined catalysts

From this schemat

H₃C_N

alkali salts of low catalyst combinatithere are known as ternary ammonium

and special aminin

3.4.1.3 Catalysi

The commercially cohols (see subsect distribution of the different reactivity basic isocyanates, tion 3.3.2) of differ PUR applications (lamines, peralkylar laurate, N-alkyl money polyurethane foams (RIM techn special demands of thanes, especially toombinations.

In flexible foams. amine/tin catalysts

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

fects in the images include but are not limited to the items checked	İ:
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
O OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.