Série 4

1. Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$x-3 > \sqrt{x^2 + 3x}$$
, b) $\sqrt{\frac{x^2 (2x-5)}{2(x+1)}} \ge 2-x$.

2. On considère l'équation suivante :

$$\sqrt{\sqrt{x^2 - 5x + 4} + 5x - 2} = 5.$$

- a) Déterminer le domaine de définition de cette équation.
- b) Résoudre cette équation sur son domaine de définition.
- 3. Résoudre dans \mathbb{R} les deux inéquations suivantes :

a)
$$|3x-5-\sqrt{-x^2+x+42}| \ge -x+11-\sqrt{-x^2+x+42}$$
,

b)
$$\sqrt{x^2 - |3x + 4|} \le x - 2$$
.

4. Résoudre dans \mathbb{R} l'équation suivante par rapport à la variable x en fonction du paramètre m:

$$\sqrt{2(x^2+1)} = x - m, \qquad m \in \mathbb{R}.$$

Expliciter l'ensemble solution pour chaque valeur du paramètre $m \in \mathbb{R}$.

- **5.** Calculer le terme en x^{18} du développement de $\left(x^2 + \frac{3a}{x}\right)^{15}$.
- **6.** Calculer le terme en x^{26} dans le développement de $(x^{1/2}+x)^3 (1-x^{3/2})^{18}$.
- 7. A l'aide du développement de $(1+x)^5$, évaluer $(1,04)^5$ à quatre décimales près.

8. Exercice facultatif

Résoudre dans $\mathbb R$ l'inéquation suivante par rapport à la variable x en fonction du paramètre m:

$$\sqrt{|x^2 - 5m^2|} \le x - m, \qquad m \in \mathbb{R}.$$

Expliciter l'ensemble solution pour chaque valeur du paramètre $m \in \mathbb{R}$.

Réponses de la série 4

1. a)
$$S = \emptyset$$
.

b)
$$S = [-2\sqrt{2}; -1[\cup [\frac{5}{2}; +\infty[$$
.

2. a)
$$D_{\text{def}} = [0, 1] \cup [4, +\infty[$$
.

b)
$$S = \{5\}.$$

3. a)
$$S = [-6, 3] \cup [4, 7]$$
.

b)
$$S = [4, 8]$$
.

4. • si
$$m \in]-\infty, -1],$$
 alors $S = \{-m - \sqrt{2(m^2 - 1)}, -m + \sqrt{2(m^2 - 1)}\},$

• si
$$m \in]-1, +\infty[$$
, alors $S = \emptyset$.

5. Le terme en
$$x^{18}$$
 est : $3^4 a^4 C_{15}^4 x^{18}$.

6. Le terme en
$$x^{26}$$
 est : $C_3^1 C_{18}^{16} x^{26}$.

- Si m < 0 alors $S = [-m, \infty[$.
 - Si m = 0 alors $S = \mathbb{R}_+$.
 - Si m > 0 alors S = [2m, 3m].