Weekly Report 6

Paper: Hard Drive Failure Prediction Using Classification and Regression Trees (DSN)

Supplementary paper: Proactive Drive Failure Prediction for Large Scale Storage Systems

1. dataset overview

- (1) Source: collected from a single running datacenter of Baidu Inc.
- (2) Statistics: 23,395 drives in total, 433 failed drives and 22, 962 good drives
- (3) SMART attribute: 12 attribute values sampled from each working drive <u>at every hour</u>

2. data preprocessing

- (1) For each good drive, training data: randomly choose **3 samples** from the **earlier 70**% of the samples within the week; test data: randomly choose **3 samples** from the **later 30**% as test data within the week
- (2) For each failed drive, divide them randomly into training and test sets in a 7 to 3 ratio, and take out the failed sample within a *time window*, that is, the last *n* hours before the failure actually occurs
- (3) Dataset description:

Training set: 68886 good samples, 3636 failed samples

Testing set: 68886 good samples, 1560 failed samples

3. Feature selection

3 strategies:

1)12 features: 10 normalised values with 2 raw values

ID#	Attribute Name	
1	Raw Read Error Rate	
2	Spin Up Time	
3	Reallocated Sectors Count	
4	Seek Error Rate	

5	Power On Hours
6	Reported Uncorrectable Errors
7	High Fly Writes
8	Temperature Celsius
9	Hardware ECC Recovered
10	Current Pending Sector Count
11	Reallocated Sectors Count (raw value)
12	Current Pending Sector Count (raw value)

2) 19 features (used by the supplementary paper):

Add 7 change rates of 6 hours: #1, #5, #187, #195, #197 and RAW attributes #5 and #197

3) 13 features (used by the target paper):

Exclude the 10th feature "Current Pending Sector Count" and the 12th feature the raw value of "Current Pending Sector Count", add 3 change rates of 6 hours: "Raw Read Error Rate", "Hardware ECC Recovered" and "Reallocated Sectors Count (raw value)".

4. ML classification Result:

Prediction rule: For each drive in the test set, look at all its samples in the test set and predict failure as long as **any of its sample is predicted as failed**

FAR: False alarm rate=false positive/(false positive+true negative)

FDR: Failure detection rate=true positive/(true positive+false negative)

The result in paper:

Model	Dataset	FAR (%)	FDR (%)
	12 features	0.44	89.47
BP ANN	19 features	0.25	90.23
	13 features	0.20	90.98
	12 features	0.57	95.49
СТ	19 features	0.63	94.74
	13 features	0.56	95.49

My result:

Model	Dataset	FAR (%)	FDR (%)
	12 features	1.63	78.46
BP ANN	19 features	2.52	83.72
	13 features	0.25	75.19
	12 features	0.46	91.54
CT	19 features	0.60	93.02
	13 features	0.60	93.02

Comparison:

- 1) The classification tree demonstrates excellent performance which is very close to the result in the paper.
- 2) BP ANN gets a fairly comparable but lower result.
- 3) My observation: BP ANN is not a stable algorithm, its result can differ between different training turns even if all hyper parameter remains true

5. Compare between different time window:

Result in paper:

My result:

Time Window	FAR (%)	FDR (%)
12 hours	0.31	93.98
24 hours	0.33	93.98
48 hours	0.39	95.49
96 hours	0.21	96.24
168 hours	0.09	95.49
240 hours	0.11	93.23

Window Size	FAR (%)	FDR (%)
12 hours	0.35	92.25
24 hours	0.52	95.28
48 hours	0.52	92.86
96 hours	1.66	96.69
168 hours	1.48	94.55
240 hours	1.60	95.88