Computer Organization and Architecture CEC 470

Module 02:
Arithmetic and Logic Part 1
(Ch 10, Ch 11, Ch 12)

Last Module Key Ideas:

- Stored program computer/Von neumann architecture
- 5 components of computer
- ISA
- Computer architecture
- Moore's law
- Performance equations
- Amdahl's law

This Module:

- Number system (decimal, binary, hexadecimal)
- Signed and unsigned integer representation
- Two's complement
- Half adder
- Full adder
- Carry look ahead adder

Review...

Data & Program **Information** Numeric & Non-numeric (names, address, etc.) **Integers & Floating point**

Signed integers & unsigned integers

Review: bits, bytes and nibbles...

Bits: (8-bit binary) 1 0 0 1 0 1 1 0 | most | least | significant | bit (MSB) | bit (LSB)

Bytes & Nibbles: (8-bit binary) byte (8 bits)
1 0 0 1 0 1 1 0

nibble
(4 bits)

Bytes: (32-bit hex)

Review: powers of 2...

$$2^0 = 1$$
 $2^9 = 512$

$$2^{1}=2$$
 $2^{10}=1024$

$$2^2 = 4$$
 $2^{11} = 2048$

$$2^3 = 8 \qquad 2^{12} = 4096$$

$$2^4 = 16$$
 $2^{13} = 8192$

$$2^5 = 32$$
 $2^{14} = 16384$

$$2^6 = 64$$
 $2^{15} = 32768$

$$2^7 = 128 \quad 2^{16} = 65536$$

•
$$2^8 = 256$$
 • handy to *memorize up to 2^{10}*

Review question?

- a) If we have 2 bits word, how many possible values we have? Write all them
- b) If we have 3 bits word, how many possible values we have? Write all values
- c) If we have 4 bits word, how many possible values we have? Write all values

Number system

Decimal (base₁₀)

$$A = \sum_{i=0}^{n-1} a_i. \, 10^i$$

$$= (1x100)+(5x10)+(7x1)$$

Binary (base,)

$$A = \sum_{i=0}^{n-1} a_i \cdot 2^i$$

=
$$(1x100)+(5x10)+(7x1)$$
 = $128+0+0+16+8+4+0+1=157_{10}$

Decimal to binary

Decimal number: 17

Binary number: 10001

Binary to decimal

Example 1: convert binary to decimal

Convert the following binary sequence to decimal:

- a) 10101011
- b) 10000101

Range of binary numbers

- N-digit decimal number
 - –How many values?
 - -Range?
 - -Example: 3-digit decimal number:
- N-bit binary number
 - -How many values?
 - -Range:
 - -Example: 3-bit binary number:

Hexadecimal numbers

- For humans, its clumsy to always work in binary
 - Just too many bits!
- Divide a binary number into 4-bit groupings and represent each 4-bits by a single hexadecimal (base₁₆) digit/symbol.

Binary:	0010	1001	0101	0111
Hex:	2	9	5	7

- But, in hexadecimal, each digit can have a value of $0-15_{10}$!!
- We need new symbols to represent the values 10_{10} – 15_{10}
- Use symbols A, B, C, D, E and F

Hexadecimal numbers

- It is more compact than binary notation
- In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a single hexadecimal digit
- It is extremely easy to convert between binary and hexadecimal notation

Example 2: convert binary string to hexadecimal

Convert the following binary sequence to hexadecimal notation:

- a) 11111111111
- b) 100111001000
- c) 001011001011

Unsigned integer

- Positive or nonnegative numbers
- If we have a <u>3 bit word</u>, 2³= 8 values
- Range is 0-7

Binary	Decimal	
000	0	
001	1	
010	2	
011	3	
100	4	
101	5	
110	6	
111	7	

Unsigned integer wheel

Discontinuity at limits of numerical representation (0 and 15)

Question?

What would be the range of unsigned integer for 8 bit word?

Signed integer representation

Three common approaches to deal with <u>negative numbers</u>:

- 1. Signed magnitude number
- 2. One's compliment
- 3. Two's compliment

1. Sign-magnitude representation

- One sign bit plus n-1 magnitude bits
- MSBit is the sign bit:
 - MSB=0 means positive number
 - MSB=1 means negative number

$$A = (-1)^{a_{n-1}} \times \sum_{i=0}^{n-2} a_i \cdot 2^i$$

• for example, for n=8:

$$0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1$$

$$= +1 \times (0 + 0 + 16 + 0 + 4 + 2 + 1) = 23$$

n-bit sign-magnitude number can take on values
 -(2ⁿ) to (2ⁿ⁻¹-1)

Problems with sign-magnitude

- 1. Addition doesn't work
 - for example, 4-bit addition of (-5) and (+2)

2. Two representations of zero (± 0) :

Sign-magnitude number wheel

Two discontinuities: at transitions around zero

2. One's complement representation

Complement (invert) all the bits!

One's _____ 1 1 1 0 1 0 0 0 Complement

CEC 470@Fall 2022 22

Problems with one's complement

☐ Two representations of zero (+/- 0)

23

3. Two's complement representation

• MSBit has value (-2^{n-1}) :

$$A = -(a_{n-1}.2^{n-1}) + \sum_{i=0}^{n-2} a_i.2^i$$

for example, n=8:

$$= 0 + 0 + 0 + 16 + 0 + 4 + 2 + 1 = 23$$

$$= -128 + 64 + 32 + 0 + 8 + 0 + 0 + 1 = -23$$

n-bit two's complement number can take on values
 (-2ⁿ⁻¹) to (2ⁿ⁻¹-1)
 (EC 470@Fall 2022)

24

Two's complement representation

- To form two's complement (i.e. flip the sign) of number A, either
- Working from LSB to MSB, complement (invert) all bits after (to the left of) first '1':

```
- e.g. A = 0101 (= 5)
complementing all bits to left of first '1' (occurs at bit 0):
- A = 1011 (= -5)
```

Invert all bits in A and add 1:

$$-A = \overline{A} + 1 = 1010 + 1 = 1011 (= -5)$$

Convenience of two's complement

- 1. MSB still indicates sign
- 2. Addition does work

3. Only one representation of zero: 0 0 0 0

Two's complement number wheel

Discontinuity at limits of numerical representation (-8 and +7)

Signed number representation

Three common approaches to deal with negative numbers:

3-bit number = 2^3 =	- 8
values	

Value (decimal)	Sign Magnitude	1's Compliment	2's Compliment
3	0 1 1	0 1 1	0 1 1
2	0 1 0	0 1 0	0 1 0
1	0 0 1	0 0 1	0 0 1
0	000	000	0000
		CEC 470@Eall 2022	

Question? signed numbers range

3-bit word

4-bit word

8-bit word

16-bit word

Example 3

Represent the following numbers in 2s compliment

(use 8 bits).

- 1)-5
- 2)-7
- 3) -26
- 4) -67
- 5) 85
- 6) -85

Positive and negative hexadecimal numbers

- If A is a 4-digit unsigned hexadecimal number
 - What is the smallest value (in hex) that A can be and what is its decimal equivalent?
 - What is the largest value (in hex) that A can be and what is its decimal equivalent?

- If B is a 4-digit signed hexadecimal number
 - What is the smallest value (in hex) that B can be and what is its decimal equivalent?
 - What is the largest value (in hex) that B can be and what is its decimal equivalent?

Try these...

- 1. What is 27_{10} in 8-bit binary?
- 2. What is -27_{10} in 8-bit binary?
- 3. What is 10011010 (unsigned) in decimal?
- 4. What is 10011010 (signed) in decimal?
- 5. What is 299₁₀ in 16-bit hex?
- 6. What is 1A3F in decimal?

Addition

• Decimal:

• Binary:

• Hex:

Overflow

 Note that if we add two n-bit numbers, we will (in general) get an (n+1) bit result:

One-bit adder circuit

$$C_{out} = A \cdot B$$

1. Half adder:

One-bit adder circuit

$$C_{out} = A . B+ A. cin+ B. cin$$

2. Full adder:

Multiple-bit adder circuit

Inputs: A0 A1 A2 A3 B0 B1 B2 B3 Cin Output:

S0 S1 S2 S3 Cout

- Slow adder/Serial adder/Ripple carry adder
- 4 clock cycles required to add two 4-bit numbers
- 8 clock cycles to add two 8-bit numbers
- 64 clock cycles to add two 64-bit numbers

Carry look ahead adder

$$C_0 = A_0 \cdot B_0 + A_0 \cdot cin + B_0 \cdot cin$$

$$C_0 = A_0 \cdot B_0 + cin(A_0 + B_0)$$

 $C_0 = \frac{G_0}{C_0} + cin \frac{P_0}{C_0}$

$$C_1 = A_1 \cdot B_1 + A_1 \cdot C_0 + B_1 \cdot C_0$$

$$C_1 = A_1 \cdot B_1 + c_0(A_1 + B_1)$$

$$C_1 = G_1 + c_0 P_1$$

$$C_1 = G_1 + (G_0 + cinP_0) P_1$$

$$C_1 = G_1 + P_1G_0 + cin P_0 P_1$$

$$C_2 = A_2 . B_2 + A_2 . c_1 + B_2 . c_1$$

$$C_2 = A_2 \cdot B_2 + c_1(A_2 + B_2)$$

$$C_2 = G_2 + C_1 P_2$$

$$C_2 = G_2 + P_2G_1 + P_2P_1G_0 + cinP_0 P_1P_2$$

Similarly,

$$C_{out} = ?$$

Carry look ahead adder

- 1. In 1 clock cycle: generate all Ps and Gs
- 2. In 2nd clock cycle: generate carries
- 3. In 3rd clock cycle: add the input bits along with the carries simultaneously

Adding two 4 bit numbers \approx 3 clock cycles Adding two 8 bit numbers \approx 3 clock cycles Adding two 64 bit numbers \approx 3 clock cycles Adding two 128 bit numbers \approx 3 clock cycles

Subtraction

$$A = -5$$

A-B, Subtract -5 and 2 ==> -5 - 2

$$==> -5 + (-2)$$
 (A + Two's Complement of B)

$$-5 = 1011$$

$$+2 = 0010$$

$$-2 = 1110$$

Subtraction

Key Ideas

- MSB
- LSB
- Bit
- Byte
- Word
- Nibble
- Decimal, binary, hexadecimal number system
- Unsigned and signed integers
- Signed magnitude
- Ones complement
- Twos complement
- One-bit half adder
- Full adder
- Carry look ahead adder
- Subtraction circuit