Table 2-60 Chemical Reactions and Heats of Combustion Involved in the Incomplete Combustion of Pure Combustible Materials

th uo	qı	alom-dl		
gross	gross	gross	Resction	Combustible material
‡	‡	‡	$C + r^{1/3} O^3 = CO$	Sarbon to carbon monoxide
0.169	36,245	560,580	$CH^* + 2/^3 O^3 = CO + 5 H^3 O$	Methane to CO and water
0°T7	968	14,380	$CH^4 + \frac{1}{2}\sqrt{3} O^3 = CO + 5 H^3$	Methane to CO and H ₂
8.698	10,812	173,440	$CH^{t} + O^{s} = HCHO + H^{s}O$	Methane to formaldehyde
8.117	6t8,8 <u>1</u>	270,280	$CH' + \sqrt{3} O^{3} = HCOOH + H^{3}O$	Methane to formic acid
8.44 <u>.</u> 8	3,385	94,300	$CH_2^4 + \sqrt{3} O^3 = CH^3OH$	Nethane to methyl alcohol
t 84II	14,181	456,390	$C^{5}H^{6} + e^{1/5}O^{5} = 5CO + 3H^{5}O$	
432.0	<u>9</u> 99'9			Ethane to CO
		170,030	$C^{5}H^{8} + O^{5} = CH^{3}CHO + H^{5}O$	Efpane to acetaldehyde
192.0	5,159	006 179	$C^{3}H^{4} + \sqrt{3} O^{3} = C^{3}H^{2}OH$	Ethane to ethyl alcohol

^{*} Calculated by subtracting the heat of combustion of the unburned product of reaction from the heat of reaction to complete impuration.

† All volumes corrected to 60 F, 30-in. Hg dry. ‡ See Table 2-59.

nuclear reactions.

chain carriers, of which the hydroxyl radical OH is very prominent. How the first OH radical is formed is not known; probably hydrogen peroxide forms on the walls of the containing vessel and then decomposes with subsequent containing vessel and then decomposes with subsequent

$$M + HO 2 \leftarrow M + {}_{s}O_{s}H$$

:ewollot as totaw of negothyd to noister

where $M=\operatorname{any}$ third body, such as a wall or a gas molecule

$$H + O_2H \leftarrow _2H + HO$$
 $O + HO \leftarrow _2O + H$

 $H + H0 \leftarrow {}_{2}H + 0$

Table 2-61 Products of Incomplete Combustions of Three Gases With Limited Air Supply, Self-Supporting Flame, and No External Heat

(at one atmosphere pressure)

99611:0	66400.0	0.01816	letoT
90100'0	94000.0	90100.0	negortin benidmoO
900 >	92000, >	₽ 000. >	Methyl alcohol
8200.	Z6000°	Z8Z00,	Formic acid
.0023	60000	9000	Clyoxal
2000.	Z000,	80000.	Acetaldehyde
0.0842	0,00302	0.0133	Formaldehyde
			sisylsans leamical:
0.001	0.001	100.0	IstoT
1.78	6.79	7.97	зроле)
L 23	0 23		Nitrogen (100 minus sum of
3.5	4.0	5.0	Methane
9.6	p.SI	6.6	Hydrogen
3.51	4.11	9.6	Carbon monoxide
2.0	8.0	1.0	Unsaturated hydrocarbons
4 3	9.p	3 4	Carbon dioxide
			esat analysis:
			air-free basis, per cent
			roducts of combustion on dry,
%0.6p	%S'6t	%g [.] L9	for complete combustion)
			leration (100 per cent required
0.2	404.0	59.0	specific gravity of gas
3207	729	1108	
			Heating value of gas, Btu per
Butane	Coke	Natural	

the temperature and pressure of the gas, composition of the gas, and amount of heat lost thru the compressor walls.

Atomic or Nuclear Energy.⁷ The energy released in a nuclear pile appears as the kinetic energy of the fragments of the fasion of uranium and thorium atoms. The fragments are charged electrically and give off a portion of their energy to the negative particles of each of the atoms thru which they travel. Their kinetic energy is dissipated in speeding up the atoms aurrounding them and is converted to heat. It is this heat which is utilized in generating power from

Combustion Reactions

the venting system might fail to function properly. subject to similar CO limits because of the possibility that might be harmful to the occupants. Vented appliances are of unvented gas appliances will be far below levels which amounts of CO which may develop in room air from the use limits for flue gas composition ensure that the maximum mittent operation, and general operating conditions. These above or below this figure because of low input rates, inter-Some types of appliances have limits which vary slightly present in the dry, air-free flue products is 0.04 per cent. appliances, the limit of carbon monoxide which may be stated departures from "complete combustion." For most proval Requirements, ASA Committee Z21, permit slight but formance standards as established in American Standard Apcombustion is the more appropriate term. Gas appliance pertions, excess air is usually present, and therefore complete 2-89 are based on perfect combustion. In practical applica-Combustion data presented in Tables 2-59, 2-63, and

Incomplete or Partial Combustion. In certain industrial operations incomplete or partial combustion of the gas fuel is required; the resultant products of combustion are

primarily carbon monoxide and hydrogen.

Table 2-60 presents representative chemical reactions of carbon, methane, and ethane when they are burned incompletely, as well as their respective calculated heats of partial combustion. Other hydrocarbons would react in the partial combustion process in a manner similar to methane and ethane. Products of incomplete combustion of carbon monchina. Other hydrogen are not found by ordinary methods of oxide or hydrogen are not found by ordinary methods of analysis. Reactions in the combustion of hydrogen. It involves

Table 2-59 Chemical Reactions and Heats of Combustion of Pure Combustible Materials [Perfect combustion (except No. 1)]

		tu per	B º,noifeu	от сотр	JeəH				
seg ff uO leg req Pbiupil	lag biupil	-m	CU	vapor C&S)	(exceb	alom-dl	;;;	Combustible	
ninhii	gross	u}əu	gross	net ^b	gross	gross	Reaction Reaction	lainetem	.0
			•••	74°200 3°320	7,500 1,500	000't/T 09b'/t	$c + o^2 = co^2$ c + 0.00 = co	Carbon (graphite) Carbon (coke)	Z
		,		£60,4I	14, 093	098'691	$c + o^{3} = co^{3}$	Graphite	3
		321,37d	321,374	ZÞE 'Þ	4, 347	152,400	$co + \tilde{o}.5 o_2 = co_2$	Carbon monoxide	ħ
		P86,47S	325,02d	61,623	960'19	153,100	$O_x H = {}_x O \delta O + {}_x H$	Hydrogen	9
							-	ffin hydrocarbons	
0.65	997,68	P\$11.454	1012.32d	21,495	23,875	382,980	$CH^{4} + 5 O^{3} = CO^{3} + 5 H^{3}O$	Methane	9
£.14	74,010		1773.424	20,418	22,323	06T TZ9	$C^3H^6 + 3.5 O_3 = 2 CO_3 + 3 H^2O_3$	Ethane	4
16'98	077,140	2322.01 ^d	2523,824	ZE6'6I	51,669	027,430	$C^3H^8 + 2O^5 = 3CO^5 + 4H^5O$	Propane	í
77.08	103,787	3018.48d	3270,694	849'6I	125,15	1,239,130	$C^{\dagger}H^{10} + 0.5 O_{2} = 4 CO_{2} + 5 H_{2}O$	u-Butane	(
77.62	9/I '00I	₽961800E	3261,174	8Z9'6I	172,12	1,236,230	$C^{\dagger}H^{50} + 0.5 O_{2} = 4 CO_{3} + 5 H_{2}O_{3}$	sug-Butane	(
26,35	ZZ8'SOT	3717.15d	PS9'6T0b	Z09'6I	960'IZ	1,521,880	$C^{2}H^{15} + 8 O^{3} = 2 CO^{3} + 9 H^{5}O$	a-Pentane	1
71,92	104,863		4010.714	697'6I	71,047	014,812,1	$C^2H^{17} + 8 O^7 = 2 CO^3 + 9 H^5O$	iso-Pentane	ā
55 SS	104,603	369S	3694	19,390	8/6'07	1,513,440	$C^2H^{13} + 8 O^3 = 2 CO^3 + 2 H^3O$	Neopentane	
28.52	908'80I	4415.23a	մ ∆68․2Դս	915,61	996'07	029,808,1	$C^{*}H'' + 3 \cdot 2 \cdot 0^{3} = 2 \cdot C0^{3} + 1 \cdot H^{3}O$	ensxeH-n	1
96.9I	706,801	9909	6979	16'3S6	798 °02	7'803'200 1'803'200	$C^{0}H^{13} + 3.5 O_{2} = 6 CO_{2} + 7 H_{2}O_{3}$	Neohexane	9
00107	rac (oc*	2042	9779	19,299	20,824	2,086,520	$C_1H_16 + 11 O_2 = 7 CO_3 + 8 H_2O$	n-Heptane	9
77,71	111,240	9089	9750	162'61	962,02	2,375,400	$C^{8}H^{18} + 15^{\circ}2 O^{3} = 8 CO^{3} + 6 H^{3}O$ $C^{4}H^{18} + 11 O^{5} = 3 CO^{3} + 8 H^{3}O$	Triptane 7-0-tane	Z
		9649	6779	19,265	20,770	5,372,430	$C^{8}H^{18} + 15.2 O^{3} = 8 CO^{3} + 9 H^{3}O$	n-Octane iso-Octane	8
						4		*	
44.33	11,504	1502.87d	1603.75 ^a	310 UC	359 16	010 303	0 H 2 1 00 2 - 0 2 1 H 0	n series	
37.41	068,78		2339,704	789'6T 50'522	SI'048	016'909	$C^3H^6 + 4^{\circ}2 O^5 = 3 CO^5 + 3 H^5O$ $C^3H^3 + 3 O^3 = 5 CO^3 + 5 H^3O$	Ethylene	(
T 1 1 4 5	000610	5882	3084	19,493	50,854	1,169,950	$C^{\dagger}H^{3} + 0 O^{3} = 0 CO^{3} + 0 H_{2}^{3}O$	Propylene (n-Butene)	7
33,27	102,106	2868	6908	9/8,61	20,737	1,163,390	$C^{\dagger}H^{8} + QO^{2} = dCO^{3} + dH^{3}O$	iso-Butene	1
		3282	3837	69E'6I	20,720	1,453,050	$C^{2}H^{3} + 1.5 O_{2} = 5 CO_{2} + 5 H_{3}O_{3}$	anatna9-n	1
								series	
59.45	129,724	3600,52d	1,89,127£	17,451	181.81	1,420,300	$C^{9}H^{8} + 1.5 O^{2} = 6 CO^{3} + 3 H^{3}O$	_	
89.82	129,003			279,71		1,704,530	$C^{1}H^{2} + 0.0^{\circ} = 1.00^{\circ} + 0.0^{\circ}$	Benzene Toluene	2
24.50	127,988	T/67	2553	17,734		1,978,040	$C^8H^{14} + I0.20^{\circ} = 8 CO^{\circ} + 2 H^{\circ}O$	ənəlyX-q	Z
		PZ1 9271	1476.55 ⁴	697,02	205 12	929,830	0.H ± .02.5 = .03.5 ± .H.2	ellaneous gases	-
		2654€	2824¢	-80∠'9T	17,303	2,217,590	$C^{10}H^{9} + 15 O^{7} = 10 CO^{7} + 4 H^{5}O$ $C^{7}H^{7} + 5 \cdot 2 O^{7} = 5 CO^{7} + H^{5}O$	Acetylene Naphthalene	8
£6.97	977,88	L9L	898	990'6		358,680	$CH^{3}OH + I \cdot 2 O^{2} = CO + 5 H^{2}O$	Methyl alcohol	(
65.55	92,360	6441	009T	∠16'II		062,000	$C^3H^9OH + 3 O^7 = 5 CO^7 + 3 H^3O$	Ethyl alcohol]
		364	TÞÞ	986 'L	Z99'6	079,49I	$O_2H \ d.1 + {}_2Nd \ 0 = {}_2O \ d.0 + {}_2HN$	¹sinommA	Č
		• • • •	•••	3,980	3,980	127,800	°0\$ = °0 + \$	Sulfur	8
72.48	76,822	969	979	LEG'9	Z60'Z	S41,840	$O_2H + {}_2OS = {}_2O \cdot 3.1 + {}_2SH$	Hydrogen sulfide	t
		269	279	448,8	086'9	0 1 9'60Z	$HCHO + O^3 = CO^3 + H^3O$	Formaldehyder	9
		SPJ	301	5,035	2,450	112,700	$HCOOH + 0.5 O_2 = CO_2 + H_2O$	Formic acids	ç
		69ZT	1300	10,523	068'TT	091'109	$CH^{3}CHO + 5.5 O_{2} = 2 CO_{2} + 2 H_{2}O_{2}$	Acetaldehyde⊮	Z
		336 336	339i	1,175 072,4	71,15 072,4	128,800	$^{5}ON = ^{5}O \cdot 9 \cdot 0 + ON$	Mitric oxide ^b	8

All values corrected to 60 F, 30 in. Hg dry. For gases saturated with water vapor at 60 F, deduct 1.74 per cent of the btu value. Rossini, F. D., and others. Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. (Res. Proj. 44) Pittsburgh, Pa., Am. Petrol. Inst., 1953. Estimated uncertainty of values varies from <0.01 to 0.1 per cent [Rossini, F. D., and others. Tables of Selected Velues of Properties of Hydrocarbons. (HS Mat Bur Sid CA61) 1947].

Tables of Selected Values of Properties of Hydrocarbons. (U.S. Nat.Bur. Std. C461), 1947].

b. Addition from net to gross heating value determined by adding 19,095 Btu per lb-mole of water in the products of combustion. Keenan,

J. H., and Keyes, F. G. Thermodynamic Properties of Steam. New York, Wiley, 1936.

. "Actual" volume of gas at 60 F and 760 mm formed upon vaporization; considered deviation from perfect gas laws. Matteson, R., and

Hanna, U. S. "Physical Constants of Low Boiling-Point Hydrocarbons." On & Gas J. 41: 33-7, 1942.

d. Mason, D. McA., and Eakin, E. E. "Proposed Standard Method for Calculating Heating Value and Specific Gravity from Gas Com-

position." A.G.A. Proc. 1961: ChP-61-11.

A.G.A. Combustion, 3rd ed., rev. New York, A.G.A., 1938.

¹ Does not readily react in air; reaction takes place in pure oxygen. In presence of platinum catalyst: $4 \text{ MH}_3 + 5 \Omega_2 = 4 \text{ MO} + 6 \text{ H}_2\text{O}$.

⁸ Calculated from Handbook of Chemistry and Physics, 28th ed., p. 1436–44. Cleveland, Ohio, Chemical Rubber Co., 1945.

h Shnidman, L., ed. Gascous Fuels, 2nd ed., p. 273. New York, A.C.A., 1954.

1 Bfu per lb-mole divided by 380.

Gas Engineers Handbook

FIRST EDITION

FUEL GAS ENGINEERING PRACTICES

INDUSTRIAL PRESS INC.

200 Madison Avenue, New York, N. Y. 10016

American Gas Association Gas Engineers Handbook Advisory Committee

		£ ma iona
American Gas Association New York, New York	Secretary, Operating Section	J. Stanford Setchell (1952–1965) Secretary
Honolulu, Bas Go. Honolulu, Hawaii	tnebiser9 (beriter)	J. C. Stopford (1957-1963)
Southern California Gas Co. Los Angeles, California	Executive Vice President (retired)	Harry L. Masser (1952-1965)
Providence Gas Co. Providence, Rhode Island	Executive Vice President (retired)	L. E. Knowlton (1951–1958)
A. G. A. Laboratories Cleveland, Ohio	Pirector Director (beniter)	Kenneth R. Knapp (1955-1965)
Pacific Coast Gas Association San Francisco, California	Managing Director (deceased)	(3391-1361) enotendol brottil)
Brooklyn, Union Gas Co. Brooklyn, New York	Engineer of Distribution (retired)	C. S. Goldsmith (1951–1952)
Michigan Consolidated Gas Co. Detroit, Michigan	Assistant to Manager of Operations (deceased)	W. R. Fraser (1951–1958)
Minneapolis Gas Co. Minneapolis, Minnesota	Vice President (retired)	Lester J. Eck (1951–1965)
Michigan Consolidated Gas Co. Detroit, Michigan	Executive Assistant	Anthony H. Cramer (1959–1965)
Southern California Gas Co. Los Angeles, California	Utilization Engineer	Guy Corfield (1963–1965)
The Peoples Gas Light & Coke Co. Chicago, Illinois	fine President	E. F. Schuldt (1952–1965) Vice Chairman
Con-Gas Service Corp. Cleveland, Ohio	Vice President Research (retired)	F. E. Vandaveer (1951–1965)* Chairman
COMPANY	TITLE	BMAN

^{*} Years in parentheses indicate term of service on Committee.