Exercise 5.9. Let $P \in \mathcal{L}(V)$, such that $P^2 = P$. Suppose λ an eigenvalue of P, show that $\lambda = 0$ or $\lambda = 1$.

Proof. Suppose $P(v) = \lambda v$ for some non-zero $v \in V$, then $P(v) = PP(v) = P(\lambda v)$, therefore $P((\lambda - 1)v) = 0$. thus $(\lambda - 1)v \in \text{null } P$. We may suppose $\lambda \neq 1$, then $(\frac{1}{\lambda - 1})(\lambda - 1)v = v \in \text{null } P$, therefore P(v) = 0, thus $\lambda = 0$ cause $v \neq 0$.

Exercise 5.10. Let $T(p) = p' : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$. Find all eigenvalues and eigenvectors of T.

Proof. Suppose $T(p) = p' = \lambda p$, then $\deg p = 0$, otherwise the degree doesn't match. For any $p \in \mathcal{P}(\mathbb{R})$ such that $\deg p = 0$, we have p' = 0 = 0p.

Exercise 5.12. Let $V = U \oplus W$ where U and W are non-zero subspaces. Define P(u + w) = u for all $u \in U$ and $w \in W$. Find all eigenvalue and eigenvector of P.

Proof. We can see $P^2 = P$, since for any $u + w \in V$, we have P(P(u + w)) = P(u) = u = P(u + w), therefore $\lambda = 0$ and $\lambda = 1$ are eigenvalues of P, P(u) = 1u and P(w) = 0w are eigenvectors of P.

Exercise 5.13. Let $T \in \mathcal{L}(V)$ and $S \in \mathcal{L}(V)$, where S is invertible.

- Show that T has the same eigenvalue of $S^{-1}TS$.
- What is the relationship between the eigenvector of T and the eigenvector of $S^{-1}TS$.

Proof.

- For any $T(v) = \lambda v$ where $v \in V$ and $\lambda \in F$, let S(w) = v, then $S^{-1}TS(w) = S^{-1}(T(Sw)) = S^{-1}(\lambda v) = \lambda S^{-1}(v) = \lambda w$, thus λ is an eigenvalue of $S^{-1}TS$.
- S(w) = v where v is an eigenvector of T and w is the corresponding eigenvector of $S^{-1}TS$.

Exercise 5.15. Let V finite, $T \in \mathcal{L}(V)$, $\lambda \in F$. Show that λ is an eigenvalue of $T \iff \lambda$ is an eigenvalue of T'.

Proof.

• (\Rightarrow) Suppose $Tv = \lambda v$, we will show $T' - \lambda I$ is not surjective (Note that $I \in \mathcal{L}(V')$).

For any $\varphi \in V'$, we have:

$$(T' - \lambda I)(\varphi)$$

$$= T'(\varphi) - \lambda \varphi$$

$$= \varphi \circ T - \lambda \varphi$$

then

$$(\varphi \circ T - \lambda \varphi)(v)$$

$$= (\varphi \circ T)(v) - (\lambda \varphi)(v)$$

$$= \varphi(Tv) - \lambda(\varphi(v))$$

$$= \varphi(\lambda v) - \lambda(\varphi(v))$$

$$= 0$$

This means range $T' \neq V'$ cause any $\psi \in V'$ where $\psi(v) \neq 0$ is not in range T'. Therefore λ is an eigenvalue of T'.

Exercise 5.22. Let $T \in \mathcal{L}(V)$ and non-zero $v, w \in V$ such that

$$Tu = 3w$$
 and $Tw = 3u$

Show that 3 or -3 is the eigenvalue of T.

Proof. Since v and w are non-zero, then one of u+w and u-w is non-zero. We have T(u+w)=3w+3u=3(u+w) and T(u-w)=3w-(3u)=(-3)(u-w).

Exercise 5.23. Let V finite, and $S,T \in \mathcal{L}(V)$, show that ST and TS have the same eigenvalues.

Proof. For any $ST(v) = \lambda v$ where $v \neq 0$, we have $TST(v) = T(\lambda v)$ then $TS(Tv) = \lambda(Tv)$.

- If Tv = 0, then $STv = 0 = \lambda v$, thus $\lambda = 0$ since $v \neq 0$. then λ is an eigenvalue of TS since null $TS \neq 0$ (null $T \neq 0$, and S is an operator of V, therefore, S is injective or not doesn't affect our conclusion). If $Tv \neq 0$, then $TS(Tv) = \lambda(Tv)$.
- Ditto.

Exercise 5.26. Let $T \in \mathcal{L}(V)$ and any non-zero $v \in V$ we have Tv = cv for some c. Show that $T = \lambda I$.

Proof. Let non-zero $v, w \in V$, we have Tv = sv and Tw = tw, then $T(v+w) = \lambda(v+w) = \lambda v + \lambda w = sv + tw = T(v) + T(w)$. Then $\lambda v + \lambda w - tw = sv$.

- If $w \in \text{span}(v)$, then w = cv, therefore Tw = T(cv) = tcv = cTv = csv, thus t = s.
- If $w \notin \text{span}(v)$, then $\lambda = t$ (otherwise $\lambda v + (\lambda t)w = sv$), therefore $\lambda v = sv$ and $\lambda = s$, thus s = t.

Exercise 5.27. Let V finite and $1 \le k \le \dim V - 1$. Let $T \in \mathcal{L}(V)$ such that any subspace of V with k dimension is invariant under T. Show that $T = \lambda I$ for some λ .

Proof. For any $v \in V$, we have Tv = w where $w \in \text{span}(v)$.

- If w = 0, then Tv = 0v.
- If $w \neq 0$, then $w = \lambda v$ since $w \in \text{span}(v)$, then $Tv = \lambda v$.

Thus $T = \lambda I$ by the previous exercise.

Exercise 5.30. Let $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I) = 0. Show that 2 or 3 or 4 is the eigenvalue of T.

Proof. Suppose 2 is not an eigenvalue of T, then (T-2I) is injective, thus (T-3T)(T-4I) must map all $v \in V$ to 0. Similarly, we can show that (T-4I) = 0 if 3 is not an eigenvalue of T.

Exercise 5.31. Find $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

Proof. We may treat -I as rotating the vector 180 degrees, then T rotates a vector 45 degrees, which matrix is:

$$\mathcal{M}(T) = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix}$$

Exercise 5.32. Let $T \in \mathcal{L}(V)$ with no eigenvalue and $T^4 = I$. Show that $T^2 = -I$.

Proof. We will show that $T^2(v) = -v$ for any $v \in V$. Consider $T^2(T^2(v)+v) = v+T^2(v)$, we will show that $T^2(v)+v=0$. Suppose $w \in V$ and $T^2(w)=w$, we may let T(w)=u, then $T^2(w)=Tu=w$. Consider T(w+u)=T(w)+T(u)=u+w, then w+u=0 since T has no eigenvalue, therefore u=-w and T(w)=-w. Again w=0 since T has no eigenvalue. Therefore $T^2(w)=w$ implies w=0, thus $T^2(v)+v=0$ and $T^2(v)=-v$ for any $v \in V$.

Exercise 5.33. Let $T \in \mathcal{L}(V)$ and $m \in \mathbb{N}^+$.

- 1. Show that T is injective \iff T^m is injective
- 2. Show that T is surjective \iff T^m is surjective.

Proof. Recall that $T^0 = I$.

- (\Rightarrow) For any $T^m(v) = T^m(w)$ we have $T^{m-1}(v) = T^{m-1}(w)$ and so on, we will get v = w.
 - (\Leftarrow) For any T(v) = T(w), we have $T^{m-1}(T(v)) = T^{m-1}(T(w))$, then $T^m(v) = T^m(w)$ and v = w.
- (\Rightarrow) For any $w \in V$, we have T(v) = w, then we have T(u) = v and now T(T(u)) = w, continue this progress until we get $T^m(r) = w$.
 - (\Leftarrow) For any $w \in V$, we have $T^m(v) = w$, therefore $T(T^{m-1}(v)) = w$.

Exercise 5.34. Let V finite and $v_0, \dots, v_{m-1} \in V$. Show that v_0, \dots, v_{m-1} is linear independent \iff there is $T \in \mathcal{L}(V)$ such that v_0, \dots, v_{m-1} are eigenvectors of distinct eigenvalues of T.

Proof.

- (\Rightarrow) Consider v_0, \dots, v_{k-1} a basis of V, then $T(\lambda_0 v_0 + \dots + \lambda_{k-1} v_{k-1}) = 1\lambda_0 v_0 + 2\lambda_1 v_1 + \dots + m\lambda_{m-1} v_{m-1}$ where $T(v_i) = (i+1)v_i$.
- (⇐) Trivial, since eigenvectors of distinct eigenvalues are linear independent.

Exercise 5.37. Let V finite and $T \in \mathcal{L}(V)$. Define $\mathcal{A}(S) = TS : \mathcal{L}(V) \to \mathcal{L}(V)$. Show that T has the same eigenvalues as \mathcal{A} .

Proof.

- (\subseteq) For any eigenvalue λ of T, we can find $S \in \mathcal{L}(V)$ such that range $S = \{ v \in V \mid Tv = \lambda v \}$ (it is easy to show that such set is a subspace). Then for any $v \in V$, $(TS)v = T(Sv) = \lambda(Sv) = (\lambda S)v$ thus $\mathcal{A}(S) = TS = \lambda S$.
- (\supseteq) For any eigenvalue λ of \mathcal{A} , then we have $\mathcal{A}(S) = \lambda S$ for some non-zero $S \in \mathcal{L}(V)$. Then there is $v \in V$ such that $Sv \neq 0$, and $T(Sv) = (TS)v = (\lambda S)(v) = \lambda(Sv)$, thus λ is an eigenvalue of T.

Exercise 5.38. Let V finite and $T \in \mathcal{L}(V)$ and $U \subseteq V$ is invariant under T. A quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by:

$$(T/U)(v+U) = Tv + U$$

for any $v \in V$.

- 1. Show that T/U is well-defined and T/U is an operator over V/U.
- 2. Show that each eigenvalue of T/U is also an eigenvalue of T.

Proof.

• Suppose v+U=w+U, then (T/U)(v+U)=Tv+U and (T/U)(w+U)=Tw+U, we will show that $Tv-Tw\in U$. Note that v+U=w+U implies $v-w\in U$, then $T(v-w)\in U$ since U is invariant under T, that is, for any $u\in U$, $Tu\in U$. Thus Tv+U=Tw+U.

Now we will show that T/U is a linear map, we can see:

$$(T/U)(v + U) + (T/U)(w + U)$$

$$= (Tv + U) + (Tw + U)$$

$$= (Tv + Tw) + U$$

$$= T(v + w) + U$$

$$= (T/U)((v + w) + U)$$

and

$$\lambda(T/U)(v+U)$$

$$=\lambda(Tv+U)$$

$$=(\lambda(Tv))+U$$

$$=T(\lambda v)+U$$

$$=(T/U)((\lambda v)+U)$$

$$=(T/U)(\lambda(v+U))$$

• Suppose $(T/U)(v+U) = Tv + U = \lambda v + U$ where $v \notin U$, consider $T - \lambda I$, we will show that $T - \lambda I$ is not injective. We can see U is invariant under $T - \lambda I$, $Tu - \lambda u \in U$ cause U is invariant under T. We may suppose T is injective (thus surjective and invertible) on U (in other words, T(U) = U), otherwise the proof is complete. Then consider $(T - \lambda I)(v) = Tv - \lambda v \in U$ where $v \notin U$, thus $T - \lambda I$ is not injective.

Exercise 5.39. Let V finite and $T \in \mathcal{L}(V)$. Show that T has an eigenvalue \iff there is a subspace of V with dimension $\dim V - 1$ which is invariant under T.

Proof.

• This part is hinted by AI. Suppose $Tv = \lambda v$, then consider $T - \lambda I$, we know range $(T - \lambda I)$ is invariant under T, since for any $Tw - \lambda w$, we have $T(Tw - \lambda w) = T(Tw) - T(\lambda w) = T(Tw) - \lambda(Tw)$. Then $\dim \operatorname{range}(T - \lambda I) \leq \dim V - 1$ since $w \in \operatorname{null} T - \lambda I$. Then consider $\operatorname{null}(T - \lambda I) = \operatorname{span}(v) \oplus W$, we have $\operatorname{range}(T - \lambda I) \oplus W$ a subspace which is invariant under T.

The key is finding a smaller invariant subspace and expand it with null space, as any vector in null space always maps to 0, thus preserve the property of invariant.

- Suppose U is a subspace of V of dimension $\dim V 1$ such that U is invariant under T, then $V = U \oplus \operatorname{span}(v)$ for some $v \notin U$. We may suppose T is injective on U, otherwise the proof is complete (null $T \neq 0$). Consider T(v), there are three cases:
 - $-T(v) = \lambda v + 0u$, then the proof is complete.
 - -T(v) = 0v + u, then T is not injective since there is Tw = u where $w \in U$.
 - $T(v) = \lambda v + u$, then consider $T \lambda I$. We have U is invariant under $T \lambda I$ cause $Tu \lambda u \in U$ by $Tu \in U$. Again, if $T \lambda I$ is not injective on U, the proof is complete. Then $(T \lambda I)v = Tv \lambda v \in U = \lambda v + u \lambda v = u \in U$, thus $T \lambda I$ is not injective and λ is an eigenvalue of T.

Exercise 5.42. Let $T \in \mathcal{L}(F^n)$ defined by $T(x_1, x_2, \dots, x_n) = (x_1, 2x_2, \dots, nx_n)$.

- 1. Find all eigenvalues and eigenvectors of T.
- 2. Find all subspace of F^n which is invariant under T.

Proof.

- $1, 2, \dots, n$ and $(x_1, 0, \dots), (0, x_2, 0, \dots), \dots$
- We claim any subspace that is invariant under T is a direct sum of some spaces that spans by the standard basis, say $\operatorname{span}(x_0) \oplus \cdots \oplus \operatorname{span}(x_k)$. Let U a subspace that is invariant under T and $u \in U$, we have $T(u) = T(\lambda_1 x_1, \dots, \lambda_n x_n) = (\lambda_1 x_1, \dots, n\lambda_n x_n)$, then $T(u) - iu = ((1-i)(\lambda_1 x_1), (2-i)(\lambda_2 x_2), \dots, (n-1)(\lambda_i x_i)) \in U$ is a vector that is a linear combination of standard basis except x_i . Repeat this progress by apply T - jI to (T - iI)(u) with a different j, we can finally get a vector that is a scalar multiple of x_k . Thus $x_i \in U$ as long as there is $u \in U$ that the ith scalar of the linear combination of standard basis is not zero.