F Swap 解説

原案:btk

解法:T.M

解説:btk

サンプルが弱く...

問題概要

- 直線に並んだNマスが与えられる
- 各マスは空かボールが入ってる

問題概要

- 次の操作を任意回行うことができる
 - 区間[l,r]を選び、両端のボールを外へ押し出す

• Sに何度か操作を行うことで、Tにできるか

問題概要

- 次の操作を任意回行うことができる
 - 区間[l,r]を選び、両端のボールを外へ押し出す

• Sに何度か操作を行うことで、Tにできるか

考察

- 「空マスと空マスとの間に何個ボールが 入っているか」という列に変換してみる
 - 以後この塊をブロックと呼ぶ

• 操作が簡潔に記述できる

考察

- さっきの列を $c_1, c_2, ..., c_m$ とする
- SからTに変換するために,各ブロックで何回操作を行うかは一意に定まる $2c_i-c_{i-1}-c_{i+1}=t_i-s_i$ また, $c_1=0$
- これはDPで簡単に求められるO(N)

考察

- c_i を求めると,この時点でいくつかの "No"が判定できる
 - (負の数)回押し出すのは不可能なので, $c_i < 0$ ならば"No"が確定
 - 先頭と末尾は押し出す操作ができないので, c_m が0以外なら"No"が確定

- じゃあそれ以外は"Yes"か?
 - そんなことはない

確定できないケース

$$c = \{0,1,2,1,0\}$$

判定方法

- 各ブロックの c_i が分かっているので シミュレートが可能
 - c_i が2以上のところから貪欲に適当にやる

- が、実はこれはTLE
 - ちゃんと解析すると、押し出す回数の総和は $O(N^3)$
 - もともとの想定解法

O(N)での判定方法

- *T*にありえない部分列が存在していないか どうかの判定だけをすればよい
 - 区間[l,r]について、
 - 任意の $i \in [l,r]$ について, $c_i \ge 1$
 - 該当部分の文字列が "..(o.)*."

となるようなl,rが存在した場合"No"

操作後にこのような形になることはありえない

 $oldsymbol{c}_i$ が適切で、Tにこれらの部分列が存在しなければ必ずSからTに遷移可能であるということが証明できます

統計