

SCALED AND SQUARE-ROOT ELASTIC NET

Elias Raninen and Esa Ollila

Department of Signal Processing and Acoustics, Aalto University, Finland Contact: elias.raninen@aalto.fi and esa.ollila@aalto.fi

INTRODUCTION

Consider a **linear model** $y = X\beta + \varepsilon$, where

- y is n-vector of response variables, i.e., received signal,
- $\mathbf{X} = (\mathbf{x}_1 \cdots \mathbf{x}_p)$ is a fixed $n \times p$ design matrix $(\|\mathbf{x}_j\|_2 = 1)$,
- ullet eta is a p-vector of unknown regression coefficients, and
- ε is an n-vector of i.i.d. random variables with zero mean and $error\ scale\ parameter\ \sigma$.
- The popular lasso [1] estimate is defined as

$$\hat{oldsymbol{eta}} = rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \; rac{\|\mathbf{y} - \mathbf{X}oldsymbol{eta}\|_2^2}{2} + \lambda \, \|oldsymbol{eta}\|_1 \, ,$$

where $\lambda \geq 0$ is a penalty parameter.

- The optimal value for λ depends on the unknown error scale σ .
- This dependency is eliminated in scaled lasso [2], which solves

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p, \sigma > 0}{\text{minimize}} \ \frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{2\sigma} + \frac{n\sigma}{2} + \lambda \|\boldsymbol{\beta}\|_1.$$

- *Note*: Both methods perform poorly in the presence of **high correlations** in the feature space.
- We propose two elastic net [3] (EN) extensions to scaled lasso: the scaled elastic net and the square-root elastic net.
- *Gains:* Lower MSE and better estimate of the scale.

SCALED ELASTIC NET

The scaled EN estimators of regression and scale, $(\hat{\beta}, \hat{\sigma})$, solve

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma > 0}{\text{minimize}} \ \frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{2\sigma} + \frac{n\sigma}{2} + \lambda \left\{ \frac{(1-\alpha)}{2} \|\boldsymbol{\beta}\|_{2}^{2} + \alpha \|\boldsymbol{\beta}\|_{1} \right\}$$

over $(\boldsymbol{\beta}, \sigma) \in \mathbb{R}^p \times (0, \infty)$.

SQUARE-ROOT ELASTIC NET

The square-root EN estimators, $(\hat{\beta}, \hat{\sigma})$, solve

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma > 0}{\text{minimize}} \ \frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{2\sigma} + \frac{n\sigma}{2} + \lambda \left\{ (1 - \alpha) \|\boldsymbol{\beta}\|_{2} + \alpha \|\boldsymbol{\beta}\|_{1} \right\}$$

over $(\boldsymbol{\beta}, \sigma) \in \mathbb{R}^p \times (0, \infty)$.

ALGORITHM

Input : $X, y, \lambda, \alpha, \hat{\beta} \leftarrow 0$

 $\begin{array}{c|c} \textbf{while } \textit{not converged } \textbf{do} \\ & \hat{\sigma} \leftarrow \left\| \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right\|_2 / \sqrt{n}; \\ & \lambda_1 \leftarrow \hat{\sigma} \alpha \lambda, \quad \lambda_2 \leftarrow \hat{\sigma} (1 - \alpha) \lambda; \\ \textbf{for } j = 1 \ \textit{to } p \ \textbf{do} \\ & r \leftarrow \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}; \\ & \textbf{if } \textit{Scaled Elastic Net then} \\ & \hat{\beta}_j \leftarrow \frac{\mathcal{S} \left(\hat{\beta}_j + \mathbf{x}_j^\top \boldsymbol{r} \,, \, \lambda_1 \right)}{1 + \lambda_2} \end{array}$

else if
$$Square$$
-root $Elastic$ Net then
$$\left\| \mathbf{f} \left\| \mathbf{f} \left(\mathbf{X}^{\top} \mathbf{y}, \lambda \alpha \|\mathbf{y}\|_{2} / \sqrt{n} \right) \right\|_{2} \leq \lambda (1 - \alpha) \|\mathbf{y}\|_{2} / \sqrt{n}$$
 then

else
$$\hat{\beta}_{j} \leftarrow \frac{\mathcal{S}(\hat{\beta}_{j} + \mathbf{x}_{j}^{\top} \boldsymbol{r}, \lambda_{1})}{1 + \lambda_{2} / \|\hat{\boldsymbol{\beta}}\|_{2}}$$

Output: $(\hat{\boldsymbol{\beta}}, \hat{\sigma})$

Notation:

 $S(z,\lambda) \triangleq \operatorname{sign}(z)(|z|-\lambda)_+, \text{ for } z \in \mathbb{R}, \text{ and } (z)_+ \triangleq \max(0,z).$

GROUPING OF COLLINEAR VARIABLES

- Two groups of three highly correlated predictor variables.
- The proposed estimators are able to correctly group together the correlated variables, while the scaled lasso is not.

PERFORMANCE VS. SNR

- **Dimensions:** (n, p) = (50, 10)
- Penalty parameter: $\lambda = \sqrt{2 \log(p)}$
- EN parameter: $\alpha = 0.9$
- Correlation: $\Sigma_{ij} = \mathbf{corr}(i,j) = 0.9^{|i-j|}$ for $i,j=1,\ldots,p$
- $MSE(\hat{\beta}) \triangleq Ave \left\{ \frac{1}{n} ||\hat{\beta} \beta||_2^2 \right\}$ (200 Monte Carlo trials)

A HIGH-DIMENSIONAL SETTING

- **Dimensions:** (n, p) = (30, 150)
- Penalty parameter: $\lambda = \sqrt{2 \log(p)}$
- EN parameter: $\alpha = 0.9$
- Correlation: $\Sigma_{ij} = \mathbf{corr}(i,j) = 0.9^{|i-j|}$ for $i,j=1,\ldots,p$
- \bullet SNR = 0 dB
- $\mathbf{MSE}(\hat{\boldsymbol{\beta}}) \triangleq \mathbf{Ave}\{\frac{1}{n}||\hat{\boldsymbol{\beta}} \boldsymbol{\beta}||_2^2\}$ (100 Monte Carlo trials)

	$\mathbf{MSE}(\boldsymbol{\beta})$	$\hat{\sigma}/\sigma$
Scaled lasso	0.21(0.6)	1.23(2.1)
Scaled EN	0.07 (0.1)	1.25(2.0)
Square-root EN	0.14(0.4)	1.11 (1.9)
(std \times 10 is given in the parenthesis.)		

REFERENCES

- [1] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.
- [2] T. Sun and C.-H. Zhang, "Scaled sparse linear regression," *Biometrika*, vol. 99, no. 4, pp. 879–898, 2012.
- [3] H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, vol. 67, no. 2, pp. 301–320, 2005