

NO.1281D

LB1268

3-Channel, High-Current, Low-Saturation Driver Array

Features and Functions

- · 3-channel magnet driver
- · High current (2.0A max.) and low saturation voltage (1.5V)
- Parallel operation capability (channel 1+2)
- · On-chip spark killer diodes

Absolute Maximum Ratings at Ta = 25°C				
V_{CC} m	ax	8.0	V	
v_{out}		10.0	V	
v_{in}		12.0	V	
I_{OUT1}	ton \leq 50ms, duty = 20%, solenoid drive stage (ch1,2)	1.0	Α	
I_{OUT2}	$ton \leq 50 ms, duty = 5\%$	2.5	Α	
I_{FSM1}	$t \le 5 \text{ms,duty} = 5\%$,	1.0	Α	
I_{FSM2}	$t \le 5 \text{ms,duty} = 5\%$,	2.5	Α	
I_{CCP}	$t \le 5 \text{ms,duty} = 5\%$,	3.0	Α	
I_{GND}	$t \le 5 \text{ms,duty} = 20\%$,	3.0	Α	
	x	785	mW	
Topr		-20 to +75	$^{\circ}\mathrm{C}$	
Tstg		-40 to +125	°C	
Allowable Operating Range at Ta = 25°C				
V_{CC}		3.0 to 7.0	V	
		3.0 to 11.0	V	
V_{IL}	I _{OUT} ≦100μA	-0.3 to +0.7	V	
	V_{CC} m V_{OUT} V_{IN} I_{OUT1} I_{OUT2} I_{FSM1} I_{FSM2} I_{CCP} I_{GND} Pd ma $Topr$ $Tstg$ $Ca = 25^{\circ}C$ V_{CC} V_{IH}	$V_{CC} \max \\ V_{OUT} \\ V_{IN} \\ I_{OUT1} ton \leq 50 \text{ms,duty} = 20\%, \\ \text{solenoid drive stage (ch1,2)} \\ I_{OUT2} ton \leq 50 \text{ms,duty} = 5\%, \\ \text{motor drive stage (ch3)} \\ I_{FSM1} t \leq 5 \text{ms,duty} = 5\%, \\ \text{solenoid drive stage (ch1,2)} \\ I_{FSM2} t \leq 5 \text{ms,duty} = 5\%, \\ \text{motor drive stage (ch3)} \\ I_{CCP} t \leq 5 \text{ms,duty} = 5\%, \\ \\ I_{GND} t \leq 5 \text{ms,duty} = 5\%, \\ \\ I_{GND} t \leq 5 \text{ms,duty} = 20\%, \\ Pd \max Topr Tstg$ $Ta = 25^{\circ}C$ V_{CC} $V_{IH} I_{OUT} = 300 \text{mA}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Package Dimensions 3001B-D8IC (unit: mm)

•						
Electrical Characteristics at Ta = 25°C			min	typ	max	unit
Output Voltage V _{OI}		$V_{IN} = 4.5 V, V_{CC} = 5.0 V,$			0.65	V
		$I_{OUT} = 500 \text{mA} \text{ (ch1,2)}$				
	V_{OH2}	$V_{IN} = 6.0V$, $V_{CC} = 7.0V$,			1.4	\mathbf{V}
		$I_{OUT} = 1000 \text{mA} \text{ (ch1,2)}$				
	V_{OH3}	$V_{IN} = 6.0 V, V_{CC} = 7.0 V,$			1.4	V
		I _{OUT} =1600mA (ch1,2 parallel)				
	V_{OH4}	$V_{IN} = 3.0 V, V_{CC} = 3.0 V,$			0.25	V
		$I_{OUT} = 300 \text{mA} \text{ (ch3)}$				•
	V_{OH5}	$V_{IN} = 4.5V, V_{CC} = 5.0V,$		0.5	0.7	V
		$I_{OUT} = 1000 \text{mA} \text{ (ch3)}$				
	V_{OH6}	$V_{IN} = 6.0 V, V_{CC} = 7.0 V,$		1.0	1.5	V
		$I_{OUT} = 2000 \text{mA} \text{ (ch3)}$				
Input Current	I_{IN1}	$V_{IN} = 6.0V \text{ (ch1,2)}$			1.0	mA
	I_{IN2}	$V_{IN} = 6.0V \text{ (ch3)}$			2.0	mA
Power Source + Output	I_{OFF}	$V_{IN} = 0.5 V, V_{OUT} = V_{CC} = 6.0 V$			30	μA
Leakage Current						
Spark Killer Diode	V_{F1}	$I_F = 1000 \text{mA} \text{ (ch1,2)}$			3.0	V
Forward Voltage	V_{F2}	$I_F = 2000 \text{mA (ch3)}$			3.0	V
Output Sustain Voltage	$V_{O(sus)}$	$I_{OUT} = 400 \text{mA}$	10			V

Equivalent Circuit

Unit (resistance: Ω)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss,
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.