BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 August 2002 (29.08.2002)

PCT

(10) International Publication Number WO 02/066711 A1

(51) International Patent Classification7: C22B 9/14, 34/12

C25C 5/00,

(21) International Application Number: PCT/AU02/00168

(22) International Filing Date: 18 February 2002 (18.02.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PR 3172

16 February 2001 (16.02.2001) AU

(71) Applicant (for all designated States except US): BHP BIL-LITON INNOVATION PTY LTD [AU/AU]; 600 Bourke Street, MELBOURNE, Victoria 3000 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): STREZOV, Les [AU/AU]; 7 Marin Street, Adamstown, New South Wales 2289 (AU). RATCHEV, Ivan [AU/AU]; 2 Young Street, Georgetown, New South Wales 2298 (AU). OSBORN, Steve [AU/AU]; 15 Robertson Road, Valentine, New South Wales 2280 (AU). MUKUNTHAN, Kannappar [AU/AU]; 32 Kingsway Avenue, Rankin Park, New South Wales 2287 (AU).

- (74) Agent: GRIFFITH HACK; Level 3, 509 St Kilda Road, Melbourne, Victoria 3004 (AU).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: EXTRACTION OF METALS

Schematic of the experimental set up

(57) Abstract: A method of producing a metal or an alloy from metalliferous material by removing O, S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell is disclosed. The cell includes a molten halide salt or mixture of halide salts as an electrolyte. The cation of the salt is selected from the group that includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y. In one aspect of the invention the method includes conducting the electrolysis under conditions wherein the solid body of metalliferous material is made part of a cathode of the electrolytic cell, the cathode includes a conductor for electrically connecting the cathode with an electrical potential, the conductor has high resistance to chemical attack by the electrolyte at high temperatures, and the conductor is at least partly immersed in the electrolyte. In another aspect of the invention the method includes conducting the electrolysis under conditions wherein the potential applied between an anode and the cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is avoided and anode material transport towards and into the cathode is substantially prevented. A cathode for use in the method is also disclosed. The cathode includes a body of metalliferous material distributed around one or more electrical conductors that are substantially inert in the electrolyte

at high temperatures and which provide a plurality of reduction zones at the cathode.

WO 02/066711 A1

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- 1 -

Extraction of Metals

Field of Invention

5 The present invention relates to methods of producing metals from metalliferous materials such as metal oxides.

Background of the Invention

10

15

It is well known to produce metals from metalliferous ores by a methods that include the steps of:

1) concentrating an ore; 2) reducing the ore concentrate under high temperature conditions in the presence of a suitable reductant and producing a crude metal; and 3) refining the crude metal.

The present invention is concerned with alternative methods of producing metals from metalliferous materials that are based on the use of electrochemical cells.

Prior Art

- A. A paper entitled "Electrochemical deoxidation of titanium" published in Metallurgical Transactions B, Volume 24B, June 1993, pages 449-445 (Authors: TH Okabe, M Nakamura, T Oishi and K Ono).
- The Okabe et al paper discloses an electrochemical method of removing oxygen dissolved in titanium.
- The paper reports experimental work on an

 35 electrolytic cell that included a cathode of titanium having up to 1400ppm dissolved oxygen and an anode of graphite. The cathode and the anode were immersed in a

- 2 -

molten CaCl₂ electrolyte bath. Electrical potentials between 0 and 6V were applied between the anode and the cathode. CaCl₂ was employed to produce calcium and to facilitate the calcium reaction by decreasing the activity of the electrolytic by-product CaO. The calcium potential in CaCl₂ was increased at the titanium cathode surface as a result of the application of the electrical potential across the anode and the cathode. This resulted in deoxidisation of the cathode by the electrolytically produced calcium or by calcium of high activity in the CaCl₂. The resulting oxygen ions, which were mainly present in the deoxidisation product in the electrolyte, reacted at the graphite anode to form CO or CO₂ gas that was removed from the system.

15

20

10

B. A paper entitled "Electrochemical deoxidation of yttrium-oxygen solid solutions" published in Journal of Alloys and Compounds, Volume 237, 15 April 1996, pages 150-154 (Authors: T H Okabe, T N Deura, T Oishi, K Ono and D R Sadoway).

The Okabe et al paper discloses an electrochemical method of removing oxygen dissolved in yttrium.

25

The paper describes experimental work on solid yttrium containing dissolved oxygen. The yttrium was placed in a titanium basket cathode and thereafter immersed in a bath of molten CaCl₂ electrolyte. The CaCl₂ electrolyte bath was contained in a titanium crucible and a constant voltage of between 3.2 to 3.8V was applied between the cathode and a graphite anode submerged in the electrolyte. Electrolysis was carried out at 1223K (950°C) for a specified time.

35

C. International application PCT/GB99/01781 (patent publication WO99/64638) (Fray et al).

- 3 -

The Fray et al International application discloses two potential applications of a "discovery" in the field of metallurgical electrochemistry.

5

One application is the direct production of metal from a metal oxide.

The other application is the removal of impurities that are "dissolved" in a solid metal. The same basic process is said to be applicable to both applications.

The "discovery" is the realisation that an

electrochemical method can be used to ionise oxygen

contained in a solid metal so that the oxygen dissolves in

an electrolyte", compare page 5, lines 14-16. The

International application discloses that when a suitably

negative potential is applied in an electrochemical cell

with an oxygen-containing metal as a cathode, a reaction

occurs whereby oxygen is ionised and is subsequently able

to dissolve in the electrolyte of the cell.

The International application discloses an 25 electrolytic cell that includes a body of a metalliferous material (such as a metal oxide in which impurities are dissolved) as a cathode of the cell. The cathode is immersed in a molten bath of a suitable electrolyte. A predetermined electrical potential that is lower than the decomposition potential of the electrolyte is applied 30 between the cathode and a suitable anode (either a separate graphite anode or the electrolyte crucible). potential is chosen such that it has a value that allows a selected impurity (i.e. O, S, C or N) to be ionised and thus diffuse through the body of metalliferous material 35 into the electrolyte where it dissolves.

- 4 -

The International application lists a substantial number of metals that are said to be susceptible for use in the above-described method. These metals are titanium (Ti), silicon (Si), germanium (Ge), zirconium (Zr),

hafnium (Hf), samarium (Sm), uranium (U), aluminium (Al), magnesium (Mg), neodymium (Nd), molybdenum (Mo), chromium (Cr), niobium (Nb) or any alloys thereof.

All of the examples in the International 10 application relate to the "purification" and/or reduction of titanium, titania, and specific titanium/aluminium alloys, namely Ti6Al4V, compare pages 9-14 of the International application. Example 12 relates to the creation of a Ti-Al alloy starting from a mixture of TiO2 15 and Al₂O₃. The ranges of applied voltage in the different examples varied from as low as 1.75V (see example 2) to 3.3V (compare example 3). Most experiments were conducted at a controlled voltage of 3.0V. Process times varied. Crucibles used were made from alumina, graphite, or 20 titanium whereby the anode was either the crucible or a separate graphite rod. The only electrolyte used in all of the examples was CaCl2.

Summary of Invention

25

Experimental work was carried out at the Minerals Technology Centre, Newcastle Laboratories, of the applicant to reproduce the experiments carried out the above-referenced prior art documents.

30

The experimental work resulted in the following findings and inventions.

1. Titanium of very low oxygen concentration could 35 be produced directly from titania by electrolysis in molten CaCl₂.

- 5 -

However, cell modification was required to reduce titania in an electrolytic cell, as the Fray et al International application in particular is silent on how to set up an electrolytic cell in order to achieve reduction of a good electrical insulator such as titania. Reduction of titania could not be achieved within required parameters by following the experimental set-up disclosed in the Fray et al International application.

10 Accordingly, a first aspect of the invention is based on the realisation that the type of cathode leads in electrical contact with TiO₂ and CaCl₂ electrolyte severely influence the titania reduction process. While there is only a preliminary understanding of the mechanism, it is likely that proper selection of the material and the type of electrical contact will be an important part of the electrolytic cell design specific to metal oxide to be reduced and the electrolyte employed therefor.

Accordingly, the first aspect of the invention is a method of producing a metal or an alloy from metalliferous material by removing an impurity (I) selected from the group including O, S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell that includes molten halide salt or mixture of halide salts as an electrolyte, wherein the cation of said salt is selected from the group that includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y, which method includes conducting the electrolysis under conditions wherein:

35

(a) the potential applied between an anode and a cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is

- 6 -

avoided; and

5

10

15

30

(b) the body is made part of the cathode of the electrolytic cell, the cathode includes a conductor for electrically connecting the cathode with an electrical potential, the conductor has high resistance to chemical attack by the electrolyte at high temperatures, and the conductor is at least partly immersed in the electrolyte; and

(c) O, S, or N is removed from the cathode and passes into solution and/or chemically reacts with the electrolyte cation.

The metalliferous material may contain an oxide, sulfide, carbide or nitride of said metal.

Preferably the metalliferous material is a 20 titanium-containing material.

Preferably the impurity is oxygen.

Preferably the titanium-containing material is titania.

Preferably the anode is formed from graphite.

Preferably the electrolyte is CaCl₂.

2. Carbon was detected in reduced metal pellets produced in the experiments.

While the source of the carbon was the carbon anode employed in the experiments, the mechanism by which carbon found its way into the reduced metal is not fully understood. The absolute levels of carbon in some spots

- 7 -

of the metal pellet were too high to ignore.

15

20

25

30

Accordingly, in a second aspect of the invention there is provided a method of producing a metal or an alloy from metalliferous material by removing an impurity (I) selected from the group including O, S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell that includes molten halide salt or mixture of halide salts as an electrolyte, wherein the cation of said salt is selected from the group that includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y, which method includes conducting the electrolysis under conditions wherein:

- (a) the potential applied between an anode and a cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is avoided and anode material transport towards and into the cathode is substantially prevented;
- (b) the body is made part of the cathode of the electrolytic cell; and
- (c) O, S, or N is removed from the cathode and passes into solution and/or chemically reacts with the electrolyte cation.

Preferably the cathode includes a conductor having high resistance to chemical attack by the electrolyte at high temperatures for connecting the cathode with an electrical potential and the conductor is at least partly immersed in the electrolyte.

- 8 -

The metalliferous material may contain an oxide, sulfide, carbide or nitride of said metal.

Preferably the metalliferous material is a titanium-containing material.

Preferably the impurity is oxygen.

Preferably the titanium-containing material is 10 titania.

Preferably the anode is formed from graphite.

Preferably the electrolyte is CaCl2.

15

3. In using the above-described inventive methods, it was confirmed that Al_2O_3 in contact with a TiO_2 pellet body can be reduced and forms alloys with the reduced titanium.

20

25

- 4. It was found that silicon could be reduced from SiO₂ by electrolysis in molten CaCl₂ when employing the above-described methods. However, chlorine evolution in the case of SiO₂ reduction was observed to a higher degree compared to TiO₂ reduction.
- 5. Reduction of Al from Al_2O_3 pellets by the above-described method was also attempted.
- It was observed that reduction to Al took place only around the site of contact between the pellet and the electric leads connecting the cathode to the potential source. The portion of the pellet away from the cathode leads was not reduced at all.

35

This observation again suggests that the electrical conductivity of the cathode was a factor that

- 9 -

affected the reduction process.

Accordingly, in another aspect of the invention, there is provided a cathode for use in the above described methods, wherein the cathode includes the body of metalliferous material distributed around one or more electrical conductors that are substantially inert in the electrolyte at high temperatures and which provide a plurality of reduction zones at the cathode.

10

15

20

6. The mechanisms of removal of oxygen from titanium, titania, yttrium and aluminium-titanium alloys suggested by the Fray et al International application and the Okabe et al papers using the electrolytic methods described are far from clear at present. The Fray et al International application suggests that the mechanism disclosed in the Okabe papers is incorrect. It is believed that both mechanisms are speculative insofar as other metals and oxides are concerned. Also, while there is evidence that the type of electrolyte influences the process parameters, its properties and role in the presented mechanisms is vague and only qualitative.

Experimental Data for the Inventions

. 25

- A. Reduction of Titania
- I. First Experiment
- The purpose of the first experiment was to confirm (or otherwise) the feasibility of producing metallic titanium from titania by direct electrochemical reduction in molten CaCl₂.
- Specifically, the purpose of the first experiment was to confirm (or otherwise) the set-up described in the Fray et al International application.

- 10 -

Accordingly, the conditions of the experiment were kept as close as possible to the conditions in the examples of the International application.

The underlying principle of the process, according to the Fray et al International application, is based on ionisation of oxygen in an oxide as a result of applying suitable negative potential to it in electrochemical cell and subsequent dissolution in the electrolyte.

II. Experimental Method and Equipment

The experimental set-up is shown in Figure 1.

15

20

With reference to Figure 1, the electrochemical cell included a graphite crucible equipped with a graphite lid. The crucible was used as the cell anode. A stainless steel rod was used to secure electrical contact between a d/c power supply and the crucible. The cell cathode consisted of Kanthal or platinum wire connected at one end to the power supply and TiO₂ pellets suspended from the other end of the wire. An alumina tube was used as an insulator around the cathode.

25

A type B thermocouple, contained in an alumina sheath, was immersed in the electrolyte in close proximity to the pellets.

30 Two types of pellets were used. One type was slip-cast and the other type was pressed. Both types of pellets were made from analytical grade TiO₂ powder. Both types of pellets were sintered in air at 850°C. One pressed and one slip-cast pellet were used in the experiment.

The experiment was conducted at 950°C. Voltages

- 11 -

up to 3V were applied between the crucible wall and the Kanthal or platinum wire.

The power-supply maintained a constant voltage throughout the experiment. The voltage and resulting cell current were logged using LabVIEW (TM) data acquisition software.

III. Experimental Results

10

15

20

With reference to Figures 2 and 3, the constant voltage (3V) used in the experiment produced an initial current of approximately 1.2A. A continuous drop in the current was observed during the initial 2 hours. After that a gradual increase in the current up to 1A was observed.

At the end of the experiment the cell was removed from the furnace and quenched in water. The solid CaCl₂ was dissolved by water and the two pellets were recovered.

SEM images of the cross-sections of the two pellets are shown in Figures 4 and 5.

25

The presence of virtually pure metallic titanium in both pellets was confirmed by EPMA analysis. The analysis also showed areas of partially reduced titania. The EPMA results are shown in Figures 6 and 7.

30

Carbon was detected at various locations within the pellets and its content varied up to 18wt%.

B. Reduction of Silicon

35

I. Experimental Method and Equipment

- 12 -

The experimental set-up was essentially the same as in the case of titanium. The cathode consisted of platinum-rhodium wire and SiO₂ pellets suspended from the end of the wire.

5

The experiment was conducted at 950°C.

II. Experimental Results

The voltage used in the experiment was 3V, which produced initial current of approximately 1.5A as shown in Figure 8. After that a gradual decrease in the current to 0.65A was observed.

The working potential was selected as 3V in order to overcome resistance and overvoltage. However, chlorine liberation was observed at 3V although it is below the theoretical decomposition potential of CaCl₂, which is 3.25V at 950°C.

20

The experiment was terminated after 4 hours. The partially reduced pellets were isolated by dissolution of the CaCl₂ in water. The surface and interior of the samples were analysed by SEM.

25

Analysis of the surface of the pellets showed the presence of some oxygen, indicating that there was partial reduction only in these regions.

However, the oxygen concentration in these regions was much lower than the oxygen concentration in SiO₂ - as is shown in Figure 9.

The structure of the partially reduced regions

of the pellets is shown in Figure 10. Regions of
different phases, such as SiO₂ and 2CaO.SiO₂, were detected
- see Figures 11 to 13.

- 13 -

Pure unreduced SiO_2 was present in the centre of the pellets.

5 Pure Si was identified in the proximity of the platinum leads - as shown in Figures 14 to 17.

Many modifications may be made to the inventions as described above without departing from the spirit and scope of the inventions.

- 14 -

CLAIMS:

15

20

25

30

A method of producing a metal or an alloy from metalliferous material by removing an impurity (I)
 selected from the group including O, S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell that includes molten halide salt or mixture of halide salts as an electrolyte, wherein the cation of said salt is selected from the group that
 includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y, which method includes conducting the electrolysis under conditions wherein:

- (a) the potential applied between an anode and a cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is avoided; and
- (b) the body is made part of the cathode of the electrolytic cell, the cathode includes a conductor for electrically connecting the cathode with an electrical potential, the conductor has high resistance to chemical attack by the electrolyte at high temperatures, and the conductor is at least partly immersed in the electrolyte; and
- (c) O, S, or N is removed from the cathode and
 passes into solution and/or chemically
 reacts with the electrolyte cation.
- 35 2. The method defined in claim 1 wherein the metalliferous material contains an oxide, sulfide, carbide or nitride of said metal.

- 15 -

3. The method defined in claim 1 or claim 2 wherein the metalliferous material is a titanium-containing material.

5

- 4. The method defined in claim 3 wherein the titanium-containing material is titania.
- 5. The method defined in any one of the preceding 10 claims wherein the impurity is oxygen.
 - 6. The method defined in any one of the preceding claims wherein the anode is formed from graphite.
- 7. A method of producing a metal or an alloy from metalliferous material by removing an impurity (I) selected from the group including O, S, or N from a solid body of metalliferous material by electrolysis in an electrolytic cell that includes molten halide salt or mixture of halide salts as an electrolyte, wherein the cation of said salt is selected from the group that includes Ca, Ba, Li, Na, K, Mg, Sr, Cs and Y, which method includes conducting the electrolysis under conditions

25

wherein:

(a) the potential applied between an anode and a cathode of the electrolytic cell is chosen such that permanent decomposition of the electrolyte is avoided to an extent that substantial deposition of the electrolyte cation at the cathode is avoided and anode material transport towards and into the cathode is substantially prevented;

35

30

(b) the body is made part of the cathode of the electrolytic cell; and

- 16 -

(c) O, S, C or N is removed from the cathode and passes into solution and/or chemically reacts with the electrolyte cation.

5

10

- 8. The method defined in claim 7 wherein the cathode includes a conductor having high resistance to chemical attack by the electrolyte at high temperatures for connecting the cathode with an electrical potential and the conductor is at least partly immersed in the electrolyte.
- 9. The method defined in claim 7 or claim 8 wherein the metalliferous material contains an oxide, sulfide,
 15 carbide or nitride of said metal.
 - 10. The method defined in any one of claims 8 to 9 wherein the metalliferous material is a titanium-containing material.

20

- 11. The method defined in claim 10 wherein the titanium-containing material is titania.
- 12. The method defined in any one of claims 7 to 11 wherein the impurity is oxygen.
 - 13. The method defined in any one of claims 7 to 12 wherein the anode is formed from graphite.
- 30 14. A cathode for use in the method defined in any one of the preceding claims includes the body of metalliferous material distributed around one or more electrical conductors that are substantially inert in the electrolyte at high temperatures and which provide a
- 35 plurality of reduction zones at the cathode.

Fig. 1 Schematic of the experimental set up

Fig 2. Variation of the applied potential and current during the run

Fig 3. Variation of the applied potential and current in the initial stage of the run

Fig 4. SEM image of the horizontal cross-section of Pellet 1 after the run

Fig. 5. SEM image of a horizontal cross-section of Pellet 2 after the run

Fig. 6. EPMA analysis of Pellet 1 (Pressed)

Point 1

Point 2

Fig. 7. EPMA analysis of Pellet 2 (Slip-cast) – Part 1

Point 3

Point 14

Fig. 7. EPMA analysis of Pellet 2 (Slip-cast) - Part 2

Fig. 8. Variation of the applied potential and current in the initial stage of the run

Fig. 9. Comparison of the spectrum of pure SiO₂ with the one of the surface of the sample after reduction

Fig. 10. Appearance of the structure of the SiO₂ pellet after reduction

Fig. 11. Spectrum at point 8 in Figure 10.

Fig. 12. Spectrum at point 10 in Figure 10.

Fig. 13. Spectrum at point 10 in Figure 10.

Fig. 14. Silicon crystal found in the pellet after reduction

Fig. 15. Spectrum of the crystal in Figure 14.

Fig. 16. Silicon crystal found in the pellet after reduction

Fig. 17. Spectrum at point A in Figure 16.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/00168

Int. Cl. ⁷ : C25C 5/00, C22B9/14, 34/12		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC ⁷ AS ABOVE		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Derwent WPAT: IPC ⁷ as above and electrol+		
Relevant to claim No.		
1 to 14		
Further documents are listed in the continuation of Box C X See patent family annex		
international filing date ith the application but theory underlying the ne claimed invention not be considered to document is taken ne claimed invention inventive step when the more other such g obvious to a person ent family		
Date of mailing of the international search report 2 1 MAR 7002		
2 / 1 711 / 1002		
DAVID K. BELL Telephone No : (02) 6283 2309		
y Intith the model of the interest of the inte		

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/AU02/00168

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

WO 9964638 AU 42770/99 BF EP 1088113 HL	R 9910939 CZ 20004476
FP 1088113 HI	
2. 1000110	U 200102934 NO 20006154
PL 344678	
GB 2359564 AU 200133871 AU	U 200133876 AU 200133890
WO 200162994 WC	O 200162995 WO 200162996
GB 2362164	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
UNES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.