# S.L.C.I.: analyse harmonique

# Table des matières

| Introduction                                              | 3  |
|-----------------------------------------------------------|----|
| I - Principe de l'analyse harmonique (ou fréquentielle)   |    |
| II - Représentation graphique de la fonction de transfert | 6  |
| 1. Principe du diagramme de Bode                          | 6  |
| 2. Echelle logarithmique                                  | 6  |
| 3. Particularités                                         | 7  |
| 4. Technique générale de tracé                            | 8  |
| III - Complément : Black et Nyquist                       | 10 |
| 1. Diagramme de Black (Black - Nichols)                   | 10 |
| 2. Diagramme de Nyquist                                   | 10 |
| IV - Complément sur la réponse harmonique d'un système    | 12 |
| 1. Etude                                                  |    |
| 2. Décomposition en éléments simples                      | 12 |
| 3. Restriction au régime permanent                        | 12 |
| 4. Obtention du complexe A et de son conjugué             | 12 |
| 5. Ecriture complexe de la fonction de transfert          | 13 |
| V - Diagrammes des systèmes fondamentaux                  | 14 |
| 1. Système à action proportionnelle                       | 14 |
| 2. Réponse harmonique de l'intégrateur                    | 14 |
| 3. Système dérivateur pur                                 |    |
| 3.1. Analyse temporelle                                   |    |
| 4. Retard                                                 |    |
| 4.1. Réponse temporelle                                   |    |
| 5. Réponse harmonique d'un système du premier ordre       |    |
| 5.1. Diagramme de Bode                                    |    |
| 5.2. Diagramme de Black                                   |    |
| 6. Réponse harmonique d'un système de second ordre        |    |
| 6.1. Particularités                                       |    |
| 6.2. Diagramme de Bode                                    |    |
| 6.4. Diagramme de Nyquist                                 |    |
| 7. Remarques générales                                    | 21 |

# Introduction

L'étude fréquentielle est essentielle en électronique car elle permet de définir la bande passante, la fréquence de coupure, etc.

Les systèmes que nous étudions sont constitués de processus mécaniques dont les fréquences de coupure sont faibles (ce qui limite l'intérêt de l'analyse fréquentielle détaillée). Mais l'analyse fréquentielle est très intéressante pour l'étude du problème de la **stabilité** des systèmes asservis et pour l'**identification fréquentielle** des systèmes.

# Principe de l'analyse harmonique (ou fréquentielle)

### **Définitions**

Un système soumis à une entrée sinusoïdale va fournir une sortie elle-même sinusoïdale (après disparition du régime transitoire).



Position angulaire du volant à retour de force

## Réponse harmonique (ou fréquentielle)

Définition

La **réponse harmonique** (ou fréquentielle) d'un système est sa réponse **en régime permanent**, lorsqu'il est soumis à une entrée sinusoïdale dont on fait varier la pulsation.

Le signal d'entrée s'écrit  $e(t)=e_0\sin(\omega t)$  et celui de la sortie  $s(t)=s_0\sin(\omega t+\varphi)$ , avec :

- $e_0$  et  $s_0$ : amplitudes respectives de l'entrée et de la sortie.
- $\omega$ : pulsation (commune à l'entrée et à la sortie) en rad/s.
- φ: déphasage (de la sortie par rapport à l'entrée), en rad.

### Gain et phase Remarque

Pour connaître précisément la réponse relative à l'entrée (elle-même connue), il suffit d'avoir :

- le rapport des amplitudes  $\frac{s_0}{e_0}$ , ou **gain** du système
- le déphasage  $oldsymbol{arphi}$ , ou **phase**

### Fréquence et période

Remarque

Que ce soit pour l'entrée ou la sortie :

- la fréquence sera égale à f , telle que  $\omega=2~\pi~f$
- la période sera égale à T, telle que  $T=\frac{2\pi}{\omega}$

### Utilisation de la fonction de transfert du système

**Fondamental** 

L'équation différentielle décrivant le système n'est pas facile à utiliser ; on se sert à nouveau en SII de la fonction de transfert H(p). On remplace la variable symbolique p par  $j\omega$  dans l'expression de la fonction de transfert.

On peut établir alors un lien entre le gain ou la phase, et le nombre complexe qu'est devenue  $H(j\omega)$ .

- le gain  $\frac{s_0}{e_0}=|H(j\omega)|$ , c'est-à-dire le **module** de la fonction de transfert
- la phase  $\varphi = \arg(H(j\omega))$ , c'est-à-dire l'**argument** de la fonction de transfert

Si 
$$H(j\omega) = A + j B$$
, alors :

$$1.|H(j\omega)| = \sqrt{A^2 + B^2}$$

2. 
$$\arg(H(j\omega) = \arctan\left(\frac{B}{A}\right) \operatorname{si} A > 0$$

2. 
$$\arg(H(j\omega) = \arctan\left(\frac{B}{A}\right) \sin A > 0$$
  
3.  $\arg(H(j\omega) = \left(\arctan\left(\frac{B}{A}\right) + \pi\right) \sin A < 0$ 

# Représentation graphique de la fonction de transfert

П

Pour un système soumis à une entrée sinusoïdale, on peut tracer la représentation graphique de sa fonction de transfert H(p) pour  $p=j\omega$ , c'est-à-dire :  $H(j\omega)$ . Cela permet :

- de déduire les propriétés et les performances du système étudié,
- dans certains cas, "d'identifier" le système, c'est-à-dire évaluer la forme et les paramètres de sa fonction de transfert.

# 1. Principe du diagramme de Bode

La fonction de transfert  $H(j\omega)$  est représentée en **deux courbes**, alignées en fonction de la pulsation  $\omega$ .

### Courbe de gain

- pulsation : axe des abscisses gradué en  $\log \omega$
- gain G : axe des ordonnées gradué en décibels :  $G = 20 \log |H(j\omega)|$



Courbe de gain du volant à retour de force

## Courbe de phase

**pulsation** : axe des abscisses gradué en  $\log \omega$ 

phase : axe des ordonnées gradué en degrés ou en radians



Courbe de phase du volant à retour de force

# 2. Echelle logarithmique

Attention

Le diagramme de Bode utilise **en abscisse une échelle logarithmique** pour les pulsations. Ceci permet de faire apparaître un comportement du système pour des plages de pulsations (ou fréquences) distinctes : de 1 à 10 rad/s, puis de 10 à 100 rad/s, puis de 100 à 1000 rad/s, etc..



Comparaison entre échelle linéaire et échelle logarithmique

Il n'y a pas d'origine des abscisses sur cette échelle logarithmique : le diagramme de Bode sera tracé sur une bande de pulsation qu'il faudra choisir judicieusement.

Décade et octave Définition

- Une **décade** correspond à la **multiplication** (ou division) par **10** de la pulsation  $\omega$ , soit une addition (ou une soustraction) de 1 pour  $\log \omega$ .
- Une **octave** correspond à la **multiplication** (ou division) par **2** (comme en musique !) de la pulsation  $\omega$ , soit une addition (ou une soustraction) de  $\log 2 \simeq 0.3$  pour  $\log \omega$ .

# 3. Particularités

Remarque

Sur la plupart des mécanismes :

- la réponse est en retard par rapport à l'entrée, donc la phase est négative :  $(\varphi < 0)$
- l'amplitude de sortie tend vers 0 aux hautes fréquences ( $\lim_{\omega \to \infty} G = 0$ ), donc le gain en débibels tend vers  $-\infty$ .

### Modification du gain statique de la fonction de transfert

Attention

La modification du gain statique K de la fonction de transfert provoque une translation verticale de la courbe de gain, et n'a aucune influence sur la courbe de phase.

Bande passante Définition

La **bande passante** d'un système peut se définir comme sa faculté à transmettre **sans atténuation notable** les signaux sinusoïdaux qui le traversent.

La **bande passante à -3 dB** est définie comme la plage de pulsations allant de 0 rad/s, à celle où le gain perd 3 dB par rapport à sa valeur initiale.

(cela correspond à une atténuation de la sortie de 30% environ :  $10\frac{-3}{20}=0.708$ ).

Hendrik Wade Bode Complément



Bode (1905 -1982)

Ingénieur, chercheur et inventeur américain d'origine néerlandaise.

Il débute sa carrière chez les laboratoires Bell, et travaille sur les réseaux de télécommunications. A la fin des années 1930, il développe les diagrammes portant son nom afin de faciliter l'étude de la stabilité des systèmes à rétroaction. Pendant et après la seconde guerre mondiale, Bode oriente ses recherches dans le domaine militaire, notamment sur le suivi de cible aérienne à l'aide d'un radar.

# 4. Technique générale de tracé

Addition des gains et des phases

Soit  $H = H_1 \cdot H_2$  (fonctions de transfert en série):

- $G = G_1 + G_2$ , car  $20 \log |H| = 20 \log |H_1| + 20 \log |H_2|$
- $\varphi = \varphi_1 + \varphi_2$ , car  $\operatorname{arg} H = \operatorname{arg} H_1 + \operatorname{arg} H_2$

**Fondamental** 

Ainsi, lorsque des fonctions de transfert sont en série (donc multipliées les unes avec les autres) :

- le gain total est égal à la somme de chaque gain (grâce aux propriétés du décibel)
- la phase totale est égale à la somme de chaque phase (grâce aux propriétés de l'argument d'un complexe)

Conseil

On peut donc tracer le diagramme de Bode de n'importe quel système, en connaissant celui de toutes les fonctions de transfert élémentaires suivantes :

- le gain purK
- l'intégrateur  $\frac{K}{p}$  (et parfois son inverse, le dérivateur Kp)
- le premier ordre  $\frac{1}{1+\tau p}$  et son inverse
- le second ordre  $\cfrac{1}{1+\cfrac{2m}{\omega_0}p+\cfrac{1}{\omega_0^2}p^2}$  et son inverse

### Construction d'un diagramme de Bode pour les systèmes d'ordre quelconque

Méthode

Première étape : écrire la fonction de transfert globale comme le produit de fonctions fondamentales.

$$H(j\omega) = \frac{K}{(j\omega)^{\alpha}} \cdot \frac{\prod_{m} (1 + \tau_{m}.j\omega)}{\prod_{n} (1 + \tau_{n}.j\omega)} \cdot \frac{\prod_{k} \left(1 + \frac{2m_{k}}{\omega_{0k}}j\omega + \frac{1}{\omega_{0k}^{2}}(j\omega)^{2}\right)}{\prod_{r} \left(1 + \frac{2m_{r}}{\omega_{0r}}j\omega + \frac{1}{\omega_{0r}^{2}}(j\omega)^{2}\right)}$$

avec les:

- lpha intégrateurs
- *m* inverses de premier ordre
- *n* premier ordres
- ullet inverses de second ordre
- r second ordres

**Deuxième étape :** classer les pulsations de cassures ( $\frac{1}{\tau}$  pour un premier ordre,  $\omega_0$  pour un second ordre) dans un ordre croissant. Les "cassures" du tracé asymptotique correspondront à ces pulsations.

### Troisième étape :

- 1. tracer le diagramme de  $\dfrac{K}{(j\omega)^{lpha}}$
- 2. en avançant vers les pulsations croissantes, faire intervenir les autres systèmes fondamentaux selon l'ordre précédent.

Quatrième étape éventuelle : affiner le tracé asymptotique en combinant les courbes réelles.

# Complément: Black et Nyquist



# 1. Diagramme de Black (Black - Nichols)

Le diagramme de Black est en pratique l' "assemblage" des deux courbes du diagramme de Bode en une seule :

- le **gain** (en décibels) est représenté sur l'axe des ordonnées,
- la **phase** (en degrés) est représenté sur l'axe des abscisses.

La courbe est alors paramétrée, graduée suivant la pulsation  $\omega$ . On indique généralement le sens des pulsations croissantes par une flèche.



Diagramme de Black

Harold Stephen Black (1898 -1983) et Nathaniel B. Nichols (1914-1997)

Complément



Ingénieurs américains ayant fortement contribué au domaine du contrôle des systèmes (Black a inventé l'amplificateur à contre-réaction en 1927)

Black en 1977

# 2. Diagramme de Nyquist

La partie réelle (axe des abscisses) et la partie imaginaire (axe des ordonnées) de la fonction de transfert ont une certaine valeur pour une pulsation donnée  $\omega$ .

L'évolution de ces deux coordonnées suivant la pulsation donne la courbe du diagramme de Nyquist.



Diagramme de Nyquist

La courbe est ici aussi paramétrée, graduée suivant la pulsation  $\omega$ . On indique généralement le sens des pulsations croissantes par une flèche.

Le gain (pas en décibels mais directement  $|H(j\omega)|$ !, soit la distance OA sur la courbe ) ainsi que la phase  $\varphi$  peuvent être lus directement sur le diagramme, pour chaque valeur de  $\omega$ .

# Complément



Harry Nyquist (1889 - 1976)

Ingénieur américain d'origine suédoise ; il travailla au sein des laboratoires Bell notamment sur le bruit thermique et la stabilité des amplificateurs bouclés. Son nom apparaît également dans la théorie de l'information et le théorème de Nyquist - Shannon portant sur l'échantillonnage numérique d'un signal analogique.

# Complément sur la réponse harmonique d'un système

IV

L'objectif est de prouver que :

- la réponse (en régime permanent) d'un système soumis à une entrée sinusoïdale est elle-même une sortie sinusoïdale
- la fonction de transfert peut être utilisée en remplaçant la variable symbolique p par  $j\omega$ .

# 1. Etude

Soit un système modélisé par sa fonction de transfert H(p), avec E(p) et S(p) respectivement les transformées de Laplace de l'entrée e(t) et de la sortie s(t).

En mettant en évidence les pôles de la fonction de transfert pour une décomposition en éléments simples, on peut

écrire 
$$H(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{(p-p_1)(p-p_2)\dots(p-p_n)}$$

Attention

On considère dans cette démonstration que tous ces pôles sont réels (et négatifs).

L'entrée étant sinusoïdale,  $e(t)=e_0\sin\omega t$ , on a  $E(p)=e_0\frac{\omega}{p^2+\omega^2}$ 

Ainsi 
$$S(p) = H(p).E(p) = H(p).e_0 \frac{\omega}{p^2 + \omega^2}$$

# 2. Décomposition en éléments simples

Comme tous les pôles de la fonction de transfert sont considérés réels, l'expression de S(p) a pour racines :

- des réels (négatifs)  $p_1, p_2, ..., p_n$
- un complexe  $i\omega$  et son conjugué  $-i\omega$

On peut alors écrire 
$$S(p)=\frac{A}{p-j\omega}+\frac{\bar{A}}{p+j\omega}+\frac{B_1}{p-p_1}+\frac{B_2}{p-p_2}+\ldots+\frac{B_n}{p-p_n}$$
 où :

- ullet A et un complexe et  $ar{A}$  son conjugué
- ullet les  $B_i$  sont des constantes réelles

### Transformée de Laplace inverse

Dans le domaine temporel, cela donne  $s(t)=Ae^{j\omega t}+\bar{A}e^{-j\omega t}+B_1e^{p_1t}+B_2e^{p_2t}+...+B_ne^{p_nt}$ 

# 3. Restriction au régime permanent

Puisque l'on veut observer le régime permanent uniquement de la réponse, on suppose que le régime transitoire disparaît. Cela correspond à la disparition des termes  $B_1e^{p_1t}+B_2e^{p_2t}+...+B_ne^{p_nt}$ , qui tendent vers 0 lorsque t tend vers  $\infty$  (les pôles  $p_i$  sont négatifs).

En régime permanent la réponse peut donc s'écrire  $s(t)=Ae^{j\omega t}+ar{A}e^{-j\omega t}$ 

# 4. Obtention du complexe A et de son conjugué

$$\begin{split} &\lim_{p\to j\omega}(p-j\omega)\,S(p) = \lim_{p\to j\omega}(p-j\omega)H(p)\,e_0\frac{\omega}{p^2+\omega^2} = \lim_{p\to j\omega}\frac{e_0\,H(p)\,\omega}{p+j\omega} = \frac{e_0\,H(j\omega)}{2j} = A\\ &\lim_{p\to -j\omega}(p+j\omega)\,S(p) = \lim_{p\to -j\omega}(p+j\omega)H(p)\,e_0\frac{\omega}{p^2+\omega^2} = \lim_{p\to -j\omega}\frac{e_0\,H(p)\,\omega}{p-j\omega} = \frac{e_0\,H(-j\omega)}{-2j} = \bar{A} \end{split}$$

# 5. Ecriture complexe de la fonction de transfert

Puisque  $H(j\omega)$  est un nombre complexe, on peut écrire  $H(j\omega) = |H(j\omega)| \ e^{j\varphi}$  et  $H(-j\omega) = |H(j\omega)| \ e^{-j\varphi}$  La sortie du système peut donc être écrite de la manière suivante :

$$s(t) = \frac{e_0 |H(j\omega)| e^{j\varphi}}{2j} e^{j\omega t} - \frac{e_0 |H(j\omega)| e^{-j\varphi}}{2j} e^{-j\omega t}$$

$$s(t) = e_0 |H(j\omega)| \left(\frac{e^{j(\omega_t + \varphi)} - e^{-j(\omega t + \varphi)}}{2j}\right)$$

Formules d'Euler Rappel

$$\cos x = \frac{e^{jx} + e^{-jx}}{2} e^{-jx} = \frac{e^{jx} - e^{-jx}}{2j}$$

**Fondamental** 

$$s(t) = e_0 |H(j\omega)| \sin(\omega t + \varphi)$$

La sortie est donc bien une sinusoïde:

- de pulsation  $\omega$  égale à celle de l'entrée
- d'amplitude  $s_0=e_0$  .  $|H(j\omega)|$
- déphasée de arphi, argument de  $H(j\omega)$

# Diagrammes des systèmes fondamentaux



# 1. Système à action proportionnelle



Diagrammes pour un système à action proportionnelle

# 2. Réponse harmonique de l'intégrateur

$$H(j\omega)=rac{K}{j\omega}=-jrac{K}{\omega}$$
 (donc imaginaire négatif)

 $Gain: G = 20 \log K - 20 \log \omega$ 

Phase: $\varphi = -90$ 



Diagrammes d'un système intégrateur pur

Pente du gain Remarque

La pente de la courbe de gain est ici de -20 dB par décade, dite "pente -1".

Équivalences des pentes du gain

| dB par<br>décade | dB par<br>octave | Nom<br>usuel |
|------------------|------------------|--------------|
| -20              | -6               | "-1"         |
| -40              | -12              | "-2"         |
| -60              | -18              | "-3"         |

# 3. Système dérivateur pur

Définition

$$H(p) = K p$$

# 3.1. Analyse temporelle

Attention

Dans un système réel, l'ordre de dérivation de la sortie est **nécessairement** supérieur ou égal à celui de l'entrée.

Par conséquent, le degré du polynôme au dénominateur d'une fonction de transfert modélisant un système réel est forcément supérieur ou égal à celui du numérateur.

Un système dérivateur pur ne peut donc pas représenter un système réel.

Il n'y a donc pas lieu ici d'étudier les allures des réponses temporelles d'un système dérivateur pur.

# 3.2. Analyse harmonique

Remarque

Même si aucun système réel ne peut être modélisé par un dérivateur pur, il est nécessaire de connaître la réponse harmonique théorique d'un tel système.

En effet, en le superposant avec d'autres systèmes fondamentaux (par exemple Proportionnel et Intégrateur), on pourra représenter facilement la réponse harmonique d'un composant ou d'un correcteur.

 $H(j\omega) = j K \omega$  (imaginaire positif), donc  $G = 20 \log K + 20 \log \omega$  et  $\varphi = 90$ 



Diagrammes d'un dérivateur pur

# 4. Retard

Définition

$$H(p) = e^{-\tau p}$$

### 4.1. Réponse temporelle

 $S(p) = e^{-\tau p} E(p)$  donc  $s(t) = e(t - \tau)$ : la sortie est identique à l'entrée mais en retard d'une durée  $\tau$ .

# 4.2. Réponse harmonique

$$H(j\omega)=e^{-j\; au\;\omega}$$
 donc  $G=20\log 1=0$  et  $arphi=-\omega\; au$ 



Diagrammes d'un retard pur

# 5. Réponse harmonique d'un système du premier ordre

$$H(j\omega) = \frac{K}{1 + j \omega \tau}$$

$$G = 20 \log \frac{K}{\sqrt{1 + \omega^2 \tau^2}} = 20 \log K - 10 \log(1 + \omega^2 \tau^2)$$

$$\varphi = \arg(K) - \arg(1 + j\omega \tau) = -\arctan \omega \tau$$

# 5.1. Diagramme de Bode



Bode: premier ordre (asymptotique et réel)

### 1. Diagramme asymptotique:

- $\lim_{\omega \to 0} H(j\omega) = K$ , donc G tend vers  $20 \log K$  et  $\varphi$  tend vers 0 (cf. système à action proportionnelle)
- $\circ \lim_{\omega o \infty} H(j\omega) = rac{K}{j\omega au}$ , donc G est de pente "-1" , et arphi tend vers -90 (cf. intégrateur pur)
- $\circ \ \ \text{la pulsation de cassure} \ \text{en A est} \ \omega = \frac{1}{\tau} : 20 \log K = 20 \log K 20 \log \omega \tau \Rightarrow \omega \tau = 1$

### 2. Diagramme réel :

$$\circ \ G_{(1/\tau)} = 20 \log K - 10 \log 2 = 20 \log K - 3dB$$

$$\circ G_{(1/2\tau)} = 20 \log K - 10 \log 1.25 = 20 \log K - 1 dB$$

o de même, pour  $\omega=2/ au$ , l'écart entre le gain asymptotique et le gain réel est de -1dB.

$$\circ \varphi_{1/\tau} = -\arctan 1 = -45$$

### "Inverse" d'un premier ordre

Remarque

La fonction de transfert d'un tel système est du type  $1 + \tau . p$ .

$$H(j\omega) = 1 + j \omega \tau$$

$$G = 20 \log \sqrt{1 + \omega^2 \tau^2} = 10 \log(1 + \omega^2 \tau^2)$$

### $\varphi = \arctan \omega \tau$

Ainsi, la pulsation de cassure reste égale à l'inverse de la constante de temps, mais :

- la pente de l'asymptote est de +20dB/décade au lieu de -20 dB/décade
- la phase asymptotique est de +90° au lieu de -90°

## 5.2. Diagramme de Black



Black: premier ordre

# 5.3. Diagramme de Nyquist

$$H(j\omega) = \frac{K(1 - j\omega\tau)}{1 + \omega^2\tau^2} = \frac{K}{1 + \omega^2\tau^2} - j\frac{K\tau\omega}{1 + \omega^2\tau^2} = a + jb$$
or:  $a^2 + b^2 = K$   $a \Rightarrow (a - K/2)^2 + b^2 = (K/2)^2$ .



Le lieu de Nyquist est un demi-cercle ( $-90 \le \varphi \le 0$ ) de rayon K/2 centré en (K/2, 0).

Nyquist: premier ordre

# 6. Réponse harmonique d'un système de second ordre

$$H(j\omega) = \frac{K}{1 + j\frac{2\ m\ \omega}{\omega_0} - \frac{\omega^2}{\omega_0^2}} = \frac{K}{\left(1 - \frac{\omega^2}{\omega_0^2}\right) + j\frac{2\ m\ \omega}{\omega_0}}; \text{ on définit } u = \frac{\omega}{\omega_0} \text{ appelée pulsation réduite}.$$

## 6.1. Particularités

Module

$$|H(ju)| = \frac{K}{\sqrt{(1-u^2)^2 + 4m^2u^2}}$$

Gain en dB

$$G_{dB} = 20 \log K - 10 \log \left[ \left( 1 - u^2 \right)^2 + 4m^2 u^2 \right]$$

Résonance du gain

La dérivée du module vaut : 
$$\frac{d|H(ju)|}{du} = \frac{-K\left[-4u(1-u^2) + 8m^2u\right]}{2\left[(1-u^2)^2 + 4m^2u^2\right]^{3/2}}.$$

Elle s'annule si $-4u(1-u^2)+8m^2u=0$ , c'est-à-dire si :

• 
$$u=0$$
, donc  $\omega=0$  (absurde)

• 
$$u=\sqrt{1-2m^2}$$
, à condition que  $1-2m^2>0$ , c'est-à-dire si  $m<\frac{\sqrt{2}}{2}$ .

Dans ces conditions, on dit qu'il y a **résonance** pour la pulsation de résonance  $\omega_R=\omega_0 \ \sqrt{1-2m^2}$ 

On obtient 
$$|H(j\omega_R)|=rac{K}{2m\,\sqrt{1-m^2}}$$

Plus m est faible, plus la résonance est importante : on définit pour caractériser ce phénomène le **facteur de surtension** Q qui correspond au rapport du gain à la résonance sur le gain statique:

$$Q = \frac{1}{2m\sqrt{1 - m^2}}$$

Phase

$$\varphi = \arg\left(\frac{K}{(1 - u^2) + j \ 2mu}\right)$$
  
Si  $K > 0$ :  $\varphi = -\arg\left(\left(1 - u^2\right) + j \ 2mu\right)$ 

Trois cas sont possibles:

• 
$$u < 1 \operatorname{donc} \omega < \omega_0$$
:  $\varphi = -\arctan \frac{2mu}{1 - u^2}$ 

• 
$$u=1$$
 donc  $\omega=\omega_0$ :  $\varphi=-90$ 

• 
$$u > 1 \operatorname{donc} \omega > \omega_0$$
:  $\varphi = -\left(\arctan \frac{2mu}{1 - u^2} + \pi\right)$ 

# 6.2. Diagramme de Bode



Bode : second ordre (asymptotique, résonant et non-résonant)

Lorsque $\omega$  tend vers 0 :

$$G \to 20 \log K \operatorname{et} \varphi \to 0$$

Lorsque $\omega$ tend vers $\infty$ :

$$\left(1-u^2\right)^2+4m^2u^2 o u^4$$
, donc  $G_{dB} o 20\log K-40\log u$  et  $arphi o -180$ 

La pulsation de cassure correspond à  $\omega_0$  :  $20\log K = 20\log K - 40\log u \Rightarrow u = 1$ 

Lorsque  $\omega = \omega_0$ :

$$G_{dB} = 20\log\frac{K}{2m} \operatorname{et} \varphi = -90$$

Remarque

La pulsation de résonance  $\omega_R$  est forcément inférieure à la pulsation propre  $\omega_0$ : le pic de résonance, s'il existe, se situe donc **à gauche** de la cassure des asymptotes du gain.

### Cas où m > 1

Dans le cas où m>1, la fonction de transfert comporte deux pôles réels.

Elle peut donc être écrite de la façon suivante :  $H(p) = \frac{K}{1 + \tau_1 p} \cdot \frac{1}{1 + \tau_2 p}$ , c'est-à-dire comme le produit de deux fonctions de transfert de premier ordre.

Le diagramme asymptotique peut alors être tracé plus précisément, comme la superposition de deux diagrammes de premier ordre.



Bode: second ordre asymptotique lorsque m > 1

Par identification : 
$$\tau_1 \cdot \tau_2 = \frac{1}{\omega_0^2}$$
, donc  $\log 1/\tau_1 + \log 1/\tau_2 = 2\log \omega_0$ .

 $\log \omega_0$  est donc "au milieu entre"  $\log rac{1}{ au_1}$  et  $\log rac{1}{ au_2}$ 

# 6.3. Diagramme de Black



Black: second ordre

# 6.4. Diagramme de Nyquist

$$H(j\omega) = \frac{K(1-u^2)}{(1-u^2)^2 + 4m^2u^2} - j\frac{2Kmu}{(1-u^2)^2 + 4m^2u^2}$$



 $\omega \to 0: H(j\omega) \to K$   $\omega = \omega_0: H(j\omega) = -j\frac{K}{2m} \operatorname{et} \varphi = -90$ 

 $\omega = \omega_R$  (si m < 0.7) : module maxi

 $\omega \to \infty$ :  $H(j\omega) \to 0$  et  $\varphi \to -180$ 

Nyquist: second ordre

# 7. Remarques générales

### Premier ordre

Pour un premier ordre, la pulsation où le gain a diminué de 3 dB correspond à la pulsation de cassure  $\omega=rac{1}{ au}$ 

Or, le temps de réponse à 5%, caractérisant la performance de rapidité d'un système, est égal à  $3\tau$  pour un premier ordre.

### Second ordre

Pour un second ordre de coefficient d'amortissement m donné, la bande passante est liée à sa pulsation propre  $\omega_0$ . En revanche, son temps de réponse est inversement proportionnel à sa pulsation propre (cf. temps de réponse réduit  $t_{r5\%}\omega_0$ ).

### Lien entre bande passante et rapidité

**Fondamental** 

De façon générale, plus la bande passante d'un système est étendue, plus il est rapide.