« Équations puissances » (Potenzgleichungen)

Table des matières

1	Introduction : rappel sur les équations de la forme $x^2={\cal C}$			
2	Liens entre puissances, racines et valeur absolue	3		
3	Equations de la forme $x^n=C$ ou $\big(f(x)\big)^n=C$	4		
4	Série d'exercices 4.1 Exercices de routine 4.2 Exercices d'approfondissement 4.3 Exercices contextualisés	5 5 6		
Α	Réponses des exercices	7		
Bil	Bibliographie			

Introduction : rappel sur les équations de la forme $x^2 = C$

Exemple 1.1

Résolvons les équations suivantes, de la même manière que nous le faisions en Math BF :

$$x^2 = 9$$

$$x^2 = -9$$

$$x^2 = 2$$

Remarque 1.2

Voici une question que nous avons déjà discutée à maintes reprises :

Finalement, la racine carrée de 9, c'est 3, -3, ou les deux?

Réponse:

Par définition de ce qu'est la racine carrée d'un nombre positif, la racine carrée de 9 vaut 3. Point barre. Donc:

$$\sqrt{9} = 3$$
 •

$$\sqrt{9} = -3$$

$$\sqrt{9} = 3$$
 \checkmark $\sqrt{9} = \pm 3$ \checkmark

Par contre, l'équation $x^2 = 9$ a deux solutions :

$$x^2 = 9 \iff x = \pm 3$$

Ce sont deux choses qui se ressemblent mais qui sont légèrement différentes!

- Dans le premier cas, on effectue une opération (qui ne peut donc admettre qu'une seule réponse, par définition).
- Dans le second cas, on résout une équation (dont le nombre de solutions peut varier comme nous l'avons vu de nombreuses fois).

Liens entre puissances, racines et valeur absolue 2

Exemple 2.1

Effectuons les huit calculs suivants :

$$\sqrt{5^2} = 5 \qquad (\sqrt{25})^2 = 25$$

$$(\sqrt{25})^2 = 25$$

$$\sqrt[3]{5^3} = 5$$

$$(\sqrt[3]{125})^3 =$$
 (25

$$\sqrt[3]{5^3} = 5$$
 $(\sqrt[3]{125})^3 = 125$ $(\sqrt{-5})^2 = 5$ $(\sqrt{-25})^2 = 6$ $(\sqrt[3]{-125})^3 = 6$ $(\sqrt[3]{-125})^3 = 6$

$$(\sqrt{-25})^2 = \emptyset$$

$$\sqrt[3]{(-5)^3} = \qquad \qquad \boxed{} 5$$

$$(\sqrt[3]{-125})^3 =$$
 (2.5

Théorème 2.2

Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Alors on a les égalités suivantes :

	n pair	n impair
x > 0	$ \sqrt[n]{x} = x $ $ \sqrt[n]{x^n} = \lfloor x \rfloor $	~ \(\lambda_n = x \)
x < 0	η√xη = ~x	

Dans ce chapitre, nous utiliserons le tableau de gauche.

Remarque 2.3

Comme d'habitude, il ne sert à rien d'apprendre ces formules par cœur! Mieux vaut comprendre le principe en ayant des exemples (comme en haut de la page) en tête.

Remarque 2.4

Rappel:

$$(-x)^2 = x^2 = |x|^2 = |x^2|$$

Et il en est de même pour tout exposant n pair.

3 Equations de la forme $x^n=C$ ou $\big(f(x)\big)^n=C$

Exemple 3.1

Résolvons les équations ci-dessous de manière rigoureuse :

$$x^2 = -25$$

$$x^3 = -125$$

$$x^2 = 25$$

$$x^3 = 125$$

$$(3x+1)^2 = 9$$

$$8 \cdot (2x - 3)^3 = 1$$

4 Série d'exercices

4.1 Exercices de routine

Exercice 4.1

Les équations ci-après sont de la forme $x^n = C$ (la dernière équation peut y être facilement ramenée). Résolvez-les <u>sans</u> l'aide de la calculatrice.

(a)
$$x^3 = 64$$

(b)
$$x^4 = -81$$

(c)
$$x^2 = \frac{9}{100}$$

(d)
$$x^5 = 10^{-5}$$

(e)
$$x^6 = 10^{-6}$$

(f)
$$x^4 = 3^{16}$$

(g)
$$x^3 = 7$$

(h)
$$x^{12} - 19 = 0$$

(i)
$$x^{-3} = \sqrt[4]{5}$$

Exercice 4.2

Les équations ci-après sont de la forme $\left\lfloor \left(f(x)\right)^n = C\right\rfloor$ (la dernière équation peut y être facilement ramenée). Résolvez-les <u>sans</u> l'aide de la calculatrice.

(a)
$$(x+1)^3 = 64$$

(b)
$$(x-2)^4 = -81$$

(c)
$$(x+3)^2 = 81$$

(d)
$$(x^2 + 12x + 13)^5 = 32$$

(e)
$$(x^2 + 3x - 8)^2 = 100$$

(f)
$$|x^2 + 3x - 8|^2 = 100$$

(g)
$$(x^2 - 3x - 2)^3 = 8$$

(h)
$$|x^2 - 3x - 2|^3 = 8$$

4.2 Exercices d'approfondissement

Exercice 4.3

Résolvez les équations ci-dessous à l'aide d'un changement de variable adéquat :

(a)
$$x^4 - 2x^2 + 1 = 0$$

(b)
$$x^4 - 13x^2 + 36 = 0$$

(c)
$$9x^4 + 50x^2 - 24 = 0$$

(d)
$$x^4 - 18x^2 + 25 = 0$$

(e)
$$2(3x+1)^2 - 32(3x+1) + 126 = 0$$

(f)
$$(x^2 - 12)^2 - (x^2 - 12) - 12 = 0$$

(g)
$$(x^2+5x-2)^2+4(x^2+5x-2)-32=0$$

(h)
$$\left(2x + \frac{4}{x}\right)^2 - \left(2x + \frac{4}{x}\right) - 72 = 0$$

(i)
$$x^2 + 3x - \frac{20}{x^2 + 3x} = 8$$

Exercice 4.4

Résolvez les équations ci-dessous à l'aide d'un changement de variable adéquat :

(a)
$$x^8 - 626x^4 + 625 = 0$$

(d)
$$x^6 - 42 = x^3$$

(b)
$$x^{10} + 31x^5 - 32 = 0$$

(e)
$$8x^6 - 63x^3 - 8 = 0$$

(c)
$$x^{16} = 9 + 8x^8$$

(f)
$$8x^6 + 65x^3 + 8 = 0$$

Exercice 4.5

Résolvez l'équations suivante sans l'aide de la calculatrice.

$$(x^4 - 7)^{-5} = 32$$

4.3 Exercices contextualisés

Les exercices listés ci-dessous sont à résoudre à la main, en utilisant la calculatrice uniquement pour faire des opérations impossibles à faire sinon.

Exercice 4.6

Résolvez l'exercice 21, p. 92 du Livre [1].

Exercice 4.7

Résolvez l'exercice 22, p. 92 du Livre [1].

A Réponses des exercices

4.1

(a)
$$S_x = \{4\}$$

(b)
$$S_x = \varnothing$$

(c)
$$S_x = \{\pm \frac{3}{10}\}$$

(d)
$$S_x = \{10^{-1}\}$$

(e) $S_x = \{\pm 10^{-1}\}$

(f) $S_x = \{\pm 81\}$

(g) $S_x = \{\sqrt[3]{7}\}$

(h) $S_x = \{\pm \sqrt[12]{19}\}$

(i)
$$S_x = \{\frac{1}{12/5}\} = \{\frac{12\sqrt{5}11}{5}\}$$

4.2

(a)
$$S_x = \{3\}$$

(b)
$$S_x = \varnothing$$

(c)
$$S_x = \{-12; 6\}$$

(d)
$$S_x = \{-11; -1\}$$

(e) $S_x = \{-6; -2; -1; 3\}$

(f)
$$S_x = \{-6; -2; -1; 3\}$$

(g)
$$S_x = \{-1, 4\}$$

(h)
$$S_x = \{-1; 0; 3; 4\}$$

4.3

(a)
$$S_x = \{\pm 1\}$$

(b)
$$S_x = \{\pm 2; \pm 3\}$$

(c)
$$S_x = \{\pm \frac{2}{3}\}$$

(d)
$$S_x = \left\{\pm\sqrt{9\pm2\sqrt{14}}\right\}$$
.

Il v a donc 4 solutions

Remarque : la réponse peut également s'écrire : $S_x = \{\pm (\sqrt{7} \pm \sqrt{2})\}.$

Exercice facultatif : montrez par calculs que ces deux réponses sont bien identiques!

(e)
$$S_x = \{2; \frac{8}{3}\}$$

(f)
$$S_x = \{\pm 3, \pm 4\}$$

(g)
$$S_x = \{-6; -3; -2; 1\}$$

(h)
$$S_x = \{-2 - \sqrt{2}; -2 + \sqrt{2}; \frac{1}{2}; 4\}$$

(i)
$$S_x = \{-5; -2; -1; 2\}$$

4.4

(a)
$$S_x = \{\pm 1; \pm 5\}$$

(b)
$$S_x = \{-2; 1\}$$

(c)
$$S_x = \{\pm \sqrt[4]{3}\}$$

(d)
$$S_x = \{-\sqrt[3]{6}, \sqrt[3]{7}\}$$

(e)
$$S_x = \{-\frac{1}{2}; 2\}$$

(f)
$$S_x = \{-2; -\frac{1}{2}\}$$

4.5
$$S_x = \{\pm \sqrt[4]{\frac{15}{2}}\}$$

Références

[1] FAVRE, Jean-Pierre: Maths pour la matu pro. 6e édition. Promath, 2023