MOM projekt 1

Jakub Ostrzołek

Zadanie 1

Model sieci przepływowej

Zadanie można przedstawić w postaci problemu wyznaczenia najtańszego przepływu o przepływie zadanym równym sumie zapotrzebowań klientów.

$$F_{zad} = Z_F + Z_G + Z_H = 35$$

Struktura sieci dla tego problemu wygląda następująco.

Oznaczenia na łukach: [przepustowość] koszt_jednostkowy.

Rozwiązanie

Oznaczenia na łukach: [przepływ/przepustowość] koszt_jednostkowy.

A zatem plan wygląda następująco (planowany transport od wiersza do kolumny w tyś. ton):

	D	E	F	G	Н
A		10			
В		5		5	
\mathbf{C}	15				
D			10	3	2
\mathbf{E}			5	5	5

Co odpowiada łącznemu kosztowi:

$$10 \cdot 2 + 5 \cdot 3 + 5 \cdot 8 + 15 \cdot 2 + 10 \cdot 3 + 3 \cdot 7 + 2 \cdot 2 + 5 \cdot 7 + 5 \cdot 6 + 5 \cdot 3 = 240$$

Zadanie programowania liniowego

Parametry

- $V_{kop} = \{A, B, C\}$ kopalnie
- $V_{ele} = \{F, G, H\}$ elektrownie
- $V_{po\acute{s}} = \{D, E\}$ stacje pośrednie
- $V_{wew} = V_{kop} \cup V_{ele} \cup V_{po\acute{ ext{s}}}$ węzły wewnętrzne sieci (bez startu i końca)
- $E_{wew} = \{(A, E), (B, E), ..., (E, G), (E, H)\}$ wewnętrzne krawędzie sieci
- $E = E_{wew} \cup \{ \forall i \in V_{kop} : (s,i) \} \cup \{ \forall i \in V_{ele} : (i,t) \}$ wszystkie krawędzie sieci
- t_{ij}^{wew} dla $(i,j) \in E_{wew}$ przepustowość połączenia między węzłem i a j [tys. ton]

- c_{ij}^{wew} dla $(i,j) \in E_{wew}$ jednostkowy koszt przesłania towaru między węzłem i a j [jednostka nieznana]
- W_i dla $i \in V_{kop}$ zdolności wydobywcze kopalni i [tys. ton]
- Z_i dla $i \in V_{ele}$ średnie dobowe zużycie węgla elektrowni i [tys. ton]

Zmienne decyzyjne

• f_{ij} – przepływ między węzłem i a j [tys. ton]

Zmienne pomocnicze

- t_{ij} dla $(i,j) \in E$ przepustowość połączenia między węzłem i a j [tys.
- c_{ij} dla $(i,j) \in E$ jednostkowy koszt przesłania towaru między węzłem ia j [jednostka nieznana]

Funkcja celu

• $min \sum_{(i,j) \in E} f_{ij} \cdot c_{ij}$ – minimalizacja całkowitego kosztu

Ograniczenia

- $\forall (i,j) \in E: 0 \leq f_{ij} \leq t_{ij}$ ograniczenie przepustowości na węzłach $\forall j \in V_{wew}: \sum_{(i,j) \in E} = \sum_{(j,k) \in E}$ cały towar wchodzący do węzła wewnętrznego musi z niego wyjść
- $\forall i \in V_{ele} : f_{it} = Z_i$ trzeba spełnić zapotrzebowanie kopalń

Ograniczenia zmiennych pomocniczych:

- $\forall (i,j) \in E_{wew} : t_{ij} = t_{ij}^{wew}$
- $\forall i \in V_{kop} : t_{si} = W_i$
- $\forall i \in V_{ele} : t_{it} = Z_i$
- $\begin{array}{l} \bullet \ \ \, \forall (i,j) \in E_{wew} : c_{ij} = c^{wew}_{ij} \\ \bullet \ \ \, \forall i \in V_{kop} : c_{si} = 0 \end{array}$
- $\forall i \in V_{ele} : c_{it} = 0$

Waskie gardło

Problem można sprowadzić do zadania wyznaczenia największego przepływu w sieci. Rozwiązanie podzieli wezły na dwa rozłączne zbiory S i T, między którymi nie bedzie już możliwości transportu dodatkowych towarów. Zbiór krawędzi łączących te 2 zbiory będzie przekrojem o minimalnej przepustowości.

Należy wprowadzić kilka modyfikacji do wcześniejszego grafu:

- usuniecie kosztów (niepotrzebne do tego zadania),
- zmiana Z_i dla każdej z elektrowni na liczbę N, większą od przepustowości każdego przekroju (dzięki temu zapotrzebowanie elektrowni nie będzie ograniczać rozwiązania)
- zmiana W_i dla każdej z kopalń na liczbę N, większą od przepustowości każdego przekroju (dzięki temu produkcja kopalń nie będzie ograniczać rozwiązania)

Poniżej omawiana sieć dla N=100 wraz z wyznaczonymi przepływami.

A zatem $S = \{s, A, B, C, D, E\}$, $T = \{F, G, H\}$, czyli poszukiwany przekrój to $\{(D, F), (D, G), (D, H), (B, G), (E, F), (E, G), (E, H)\}$ o przepustowości równej $10 + 3 + 2 + 9 + 5 \cdot 3 = 39$. Wartość ta jest jednocześnie równa maksymalnemu przepływowi w sieci (nieograniczonemu zapotrzebowaniem ani produkcją towaru).

Maksymalny przepływ F < N. Gdyby było inaczej, oznaczałoby to, że wybrane N jest zbyt małe i trzeba powtórzyć obliczenia z większym N.

Zadanie 2.1