Mathématiques – L2 – MPCI

DS: ESPACES PRÉHILBETIENS ET EUCLIDIENS

Exercice 1 1. Les matrices suivantes sont-elles des matrices associées à un produit scalaire euclidien?

$$A_1 = \begin{bmatrix} 2 & -1 & -2 \\ -1 & 1 & 1 \\ -2 & 1 & 4 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 1 & 2 & 7 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 4 & 2 \\ 7 & 1 & 2 & 1 \end{bmatrix}.$$

2. On se place dans \mathbb{R}^2 et on considère la matrice

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}.$$

(a) Montrer que l'application ϕ de $\mathbb{R}^2 \times \mathbb{R}^2$ dans \mathbb{R} définie par

$$\phi(X,Y) = {}^t XAY,$$

est un produit scalaire.

(b) Pour $a \in \mathbb{R}$, calculer l'adjoint de l'application $u_a : (x,y) \mapsto (2x+ay,0)$ pour le produit scalaire ϕ . Pour quelle(s) valeur(s) de a u_a est-elle symétrique?

Exercice 2 On munit $M_n(\mathbb{R})$ de son produit scalaire canonique $\langle A, B \rangle = tr({}^tAB)$. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques et $A_n(\mathbb{R})$ l'ensemble des matrices anti-symétriques.

- 1. Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires et orthogonaux (Indication : on pourra utiliser le fait que tr(AB) = tr(BA) pour $A, B \in M_n(\mathbb{R})$).
- 2. Soit p la projection orthogonale sur $S_n(\mathbb{R})$. Montrer que $p(M) = \frac{1}{2}(M + t^t M)$.
- 3. Calculer la distance de

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

 $\hat{a} S_3(\mathbb{R}).$

Exercice 3 Soit \mathbb{R}^4 muni du produit scalaire canonique. On considère le sous-espace vectoriel F d'équations

$$\begin{cases} x+y-2z-t &= 0\\ x+y+t+z &= 0 \end{cases}$$

- 1. Déterminer une base orthonormée de F.
- 2. Déterminer la matrice dans la base canonique de la projection orthogonale sur F.
- 3. Calculer la distance de (1,0,0,0) à F.

Exercice 4 Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$, et soit

$$\phi: E \longrightarrow E$$

$$f \mapsto f - f(0).$$

Le but de l'exercice est de montrer que ϕ ne possède pas d'adjoint.

- 1. Soit $H = \{ f \in E \mid f(0) = 0 \}$. Montrer que $H^{\perp} = \{ 0 \}$. (Indication : pour $f \in E$, on pourra considérer la fonction $t \mapsto t f(t)$).
- 2. Supposons par l'absurde que ϕ possède un adjoint ϕ^* .
 - (a) Vérifier que $\phi(h) = h$ pour $h \in H$. Montrer que ϕ^* est l'identité de E.
 - (b) Conclure (on pourra considérer la fonction $t \mapsto t+1$).

Exercice 5 Soit $f \in C([a,b], \mathbb{R})$. Montrer que :

$$\left(\int_{a}^{b} f(t)dt\right)^{2} \le (b-a)\int_{a}^{b} f(t)^{2}dt.$$

Dans quel cas a-t-on égalité?

On justifiera soigneusement toute les étapes du raisonnement.