Introduzione al Machine Learning: Regressione logistica

Vincenzo Bonifaci

Regressione logistica

La *regressione logistica* è un metodo (di tipo ERM) per la stima di probabilità

Dato input x, cerca di stimare la probabilità condizionata che l'etichetta y abbia un certo valore piuttosto che un altro (Pr(y|x))

La regressione logistica può essere usata anche per la classificazione: dato x, restituisce il valore di y più probabile

Stima di probabilità per etichette binarie

Stima della probabilità condizionata (etichette binarie)

Dato: un insieme di esempi (x, y) con $x \in \mathbb{R}^{d+1}$ e $y \in \{0, 1\}$ **Trova**: una funzione $h : \mathcal{X} \to [0, 1]$ con $h(x) \approx \Pr(y = 1|x)$

Un modello lineare per la stima di probabilità?

Dato x, vogliamo stimare Pr(y=1|x) attraverso una funzione lineare

$$w_0x_0 + w_1x_1 + w_2x_2 + \ldots + w_dx_d = w^{\top}x$$

Vorremmo che Pr(y = 1|x):

- aumenti quando la funzione lineare aumenta
- sia 50% quando la funzione lineare vale zero

Come convertire $w^{\top}x$ in una probabilità?

La funzione sigmoide (sigmoide logistica)

$$\sigma(z) = \frac{1}{1 + e^{-z}} \qquad \in [0, 1]$$

Vincenzo Bonifaci

Intro ML: Regressione logistica

La classe di ipotesi della regressione logistica binaria

Nella *regressione logistica*, l'insieme delle ipotesi è l'insieme \mathcal{H}_{sig} delle funzioni ottenute componendo la sigmoide con una funzione lineare da $\mathcal{X} \subseteq \mathbb{R}^{d+1}$ a \mathbb{R} :

$$h \in \mathcal{H}_{sig} \quad \Leftrightarrow \quad h(x) = \sigma(w^{\top}x) \text{ per qualche } w \in \mathbb{R}^{d+1}$$

Funzione costo nella regressione logistica (etichette 0/1)

La regressione logistica si basa sulla seguente funzione costo:

Funzione costo cross-entropia (etichette 0/1)

$$\ell(h,(x,y)) = \begin{cases} -\log h(x) & \text{se } y = 1\\ -\log(1 - h(x)) & \text{se } y = 0 \end{cases}$$

È una funzione convessa nel vettore w dei parametri

Possiamo minimizzare il rischio empirico con i metodi gradiente

Rischio empirico nella regressione logistica (etichette 0/1)

ERM nella regressione logistica (etichette 0/1)

Dato il dataset S, trova $w \in \mathbb{R}^{d+1}$ che minimizza

$$\sum_{i=1}^{m} \left[-y^{(i)} \log \hat{y}^{(i)} - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

dove
$$\hat{y}^{(i)} = h(x^{(i)}) = \sigma(w^{\top}x^{(i)})$$

Il problema di ottimizzazione corrispondente è convesso

 \Rightarrow Possiamo trovare w attraverso metodi del gradiente

Si possono usare anche metodi del secondo ordine (la funzione è sia convessa che ovunque differenziabile)

Funzione costo nella regressione logistica (etichette ± 1)

Con etichette ± 1 , la funzione di costo è la seguente:

Funzione costo log-loss o softmax (etichette ± 1)

$$\ell(h,(x,y)) = \log(1 + \exp(-y \cdot w^{\top}x))$$

Rischio empirico nella regressione logistica (etichette ± 1)

ERM nella regressione logistica (etichette ± 1)

Dato il dataset S, trova $w \in \mathbb{R}^{d+1}$ che minimizza

$$\sum_{i=1}^{m} \log(1 + \exp(-y^{(i)} \cdot w^{\top} x^{(i)}))$$

Classificazione binaria e separabilità lineare

Separabilità lineare

Un insieme di esempi (x, y) con etichette di due tipi (+ e -) è *linearmente separabile* se esiste $w \in \mathbb{R}^{d+1}$ tale che:

- $w^{\top}x > 0$ ogniqualvolta x è un esempio di tipo +
- $w^{\top}x < 0$ ogniqualvolta x è un esempio di tipo –

Valori $y \cdot w^{\top} x$ e separabilità lineare

Supponiamo che il vettore w separi perfettamente gli esempi positivi e negativi:

Questo significa che per ogni (x, y),

- y = +1 e $w^{\top}x > 0$, oppure
- $y = -1 e w^{T} x < 0$

In altre parole, $-y \cdot w^{\top}x$ è sempre < 0

Costo softmax e separabilità lineare

Se w separa perfettamente gli esempi positivi e negativi:

$$-y \cdot w^{\top} x < 0$$
 per ogni (x, y)

allora qualunque sia il costo softmax

$$\log\left[1+\exp(-y\cdot w^{\top}x)\right]>0$$

possiamo diminuirlo semplicemente usando 2w invece di w:

$$\log\left[1+\exp(-y\cdot 2w^{\top}x)\right]<\log\left[1+\exp(-y\cdot w^{\top}x)\right]$$

Questo significa che il minimo della funzione si ha prendendo $\|w\| \to \infty!$

Il divergere di w può causare instabilità numerica negli algoritmi

Regressione logistica regolarizzata

Per evitare il divergere di w, si può considerare il problema di ottimizzazione vincolata

che (per qualche $\lambda > 0$) equivale alla seguente formulazione

Regressione logistica con regolarizzazione ℓ_2

$$\underset{w \in \mathbb{R}^{d+1}}{\mathsf{minimize}} \sum_{i=1}^{m} \log \left[1 + \exp(-y^{(i)} \cdot w^{\top} x^{(i)}) \right] + \lambda \left\| \omega \right\|_{2}^{2}$$

NB. Qui $\omega = (w_1, w_2, \dots, w_d)$ è il vettore w senza la componente w_0

Regressione logistica in scikit-learn

Possibilità 1: usare la classe LogisticRegression

Regressione logistica	lperparametri	Interfaccia scikit-learn
Non regolarizzata Regolarizzata	nessuno $C (= \frac{1}{2\lambda})$	LogisticRegression(penalty='none') LogisticRegression(penalty='12', C)

Possibilità 2: invocare Stochastic Gradient Descent con funzione costo *log*:

Regressione		Interfaccia
logistica (± 1)	Iperparametri	scikit-learn
Regolarizzata	$\alpha (= \lambda), \eta, T$ SGDClassifier(loss='log', alpha,	
		<pre>penalty='12', max_iter)</pre>

Classificazione binaria: metriche di qualità

Doppio ruolo delle funzioni di costo

La funzione di costo per misurare la qualità delle predizioni nei problemi di classificazione è in genere la funzione costo 0-1:

$$\ell(h,(x,y)) = \begin{cases} 0 & \text{se } h(x) = y \\ 1 & \text{se } h(x) \neq y \end{cases}$$

⇒ Accuratezza: frazione di nuovi esempi correttamente classificati

La funzione di costo per apprendere il modello è un suo *surrogato*, tipicamente convesso, per motivi computazionali:

- Log-loss / softmax (regressione logistica)
- Hinge loss (percettrone)...

Il modello va validato sulla funzione originale, non sul surrogato ⇒ utilizziamo l'(in)accuratezza come metrica durante validazione e test

Costi surrogati vs. costo 0-1

Esempio

Inconvenienti dell'accuratezza come metrica

L'accuratezza a volte può presentare inconvenienti

- se diversi tipi di misclassificazione hanno costo molto diverso
- se c'è uno sbilanciamento tra le classi, in cui i casi positivi (o quelli negativi) sono estremamente rari

Esempio: diagnosi di una malattia rara (<1 per mille della popolazione)

Un classificatore che restituisce sempre NO ha accuratezza 99.9%, ma in effetti è del tutto inutile

Matrice di confusione

Per problemi con forte sbilanciamento, è utile separare i tipi di errore attraverso una *matrice di confusione*

	y=1	y=0
	Veri Positivi	Falsi Positivi
$\hat{y}=1$	Abbiamo urlato al lupo!	Errore: il lupo non c'era.
	Abbiamo salvato il villaggio.	Abbiamo innervosito tutti.
	Falsi Negativi	Veri Negativi
$\hat{y} = 0$	C'era un lupo, ma non lo abbiamo	Nessun lupo, nessun allarme.
	stanato. Ha mangiato tutto	Tutto tranquillo.
	il pollame.	

Accuratezza e matrice di confusione

Accuratezza [accuracy]

$$\mathcal{A} = \frac{\mathit{VP} + \mathit{VN}}{\mathit{VP} + \mathit{VN} + \mathit{FP} + \mathit{FN}}$$

Sensibilità, specificità e precisione

Sensibilità [sensitivity, recall]

sensibilità
$$\stackrel{\mathrm{def}}{=} \frac{\mathit{VP}}{\mathit{VP} + \mathit{FN}} = \mathcal{A}_{\mathit{y}=1}$$

Specificità [specificity]

specificità
$$\stackrel{\text{def}}{=} \frac{VN}{VN + FP} = A_{y=0}$$

Precisione [precision]

precisione
$$\stackrel{\text{def}}{=} \frac{VP}{VP + FP} = \mathcal{A}_{\hat{y}=1}$$

Accuratezza bilanciata

Accuratezza bilanciata

$$\begin{split} \mathcal{A}_{\text{balanced}} &\stackrel{\text{def}}{=} \frac{\mathcal{A}_{y=1} + \mathcal{A}_{y=0}}{2} \\ &= \frac{1}{2} \, \text{sensibilità} + \frac{1}{2} \, \text{specificità} \\ &= \frac{1}{2} \frac{VP}{VP + FN} + \frac{1}{2} \frac{VN}{VN + FP} \end{split}$$

Attenzione. La formula nel libro di testo (Watt et al.) non è corretta (confonde la sensibilità con la precisione)

Pesatura degli esempi

Per regolare l'influenza degli esempi di una classe sbilanciata, possiamo assegnare ad ogni esempio un peso β_i , come visto per la regressione

Per esempio, nella regressione logistica possiamo minimizzare

$$\sum_{i=1}^{m} \beta_i \log(1 + \exp(-y^{(i)} \cdot w^{\top} x^{(i)}))$$

Ad esempio, si può prendere β_i inversamente proporzionale alla taglia della classe $y^{(i)}$