마스크 착용 여부 분류를 위한 ResNet-18 모델 구축

2024.04.05

빅데이터 6기 이신영

목차

01 서론

1.1 연구 배경 및 목적

03 모델 설계

- 3.1모델 선정 과정
- 3.2 ResNet-18 모델 소개 및 구현
- 3.3 ResNet-18 모델 성능 평가 및 하이퍼파라미터 튜닝

부록 및 참고문헌

02 데이터셋

2.1 데이터셋 소개2.2 데이터 전처리

04 결론

4.1 결과 요약 4.2 느낀 점 및 향후 방향

OpenCV

- 오픈 소스 컴퓨터 비전 라이브러리
- 컴퓨터가 사람의 시각처럼 이미지나 비디오를 이해할 수 있도록 도와주는 프로그래밍 함수의 집합

PyTorch

- 인공지능 연구 및 개발을 위한 오픈소스 머신러닝 프레임워크
- 이해와 디버깅이 쉬운 직관적이고 간결한 코드로 구성되어 있음
- 파이토치 허브를 사용하여 사전 학습된 모델을 사용할 수 있음

- OpenCV를 활용한 이미지 전처리
- CNN 모델

- 이미지 분류
- 하이퍼파라미터 튜닝을 통한 모델 성능 최적화

다양한 실험 시도와 최적의 결과 도출

Face Mask Detection ~12K Images Dataset

- 약 328.92MB
- 데이터 구조

전체 데이터 (11,792개)	Train 데이터 (10,000개)	WithMask(5,000개)
		WithoutMask(5,000개)
	Validation 데이터 (800개)	WithMask(400개)
		WithoutMask(400개)
	Test 데이터 (992개)	WithMask(483개)
		WithoutMask(509개)

Distribution of WithMask and WithoutMask in Train Dataset

Distribution of WithMask and WithoutMask in Test Dataset

Distribution of WithMask and WithoutMask in Validation Dataset

• 데이터 예시

2.2 데이터 전처리

Resize

- CNN 모델은 특징 추출을 위해 Input data 형태에 맞추어 설계됨
- 모델마다 그 모델에 적합한 Input size로 전체 이미지 사이즈를 resize 진행

ToTensor

- Numpy 형태의 이미지를 torch의 (C, H, W) tensor 형태로 바꿔줌
- 픽셀 range 0~1 값으로 스케일링

Normalize

- 쉽게 최적값에 도달하고 빠르게 훈련할 수 있도록 정규화 진행
- Resize한 이미지를 학습할 것이기 때문에 resize한 데이터의 평균과 표준편차를 이용

ResNet-18 Architecture

Figure 2. Residual learning: a building block.

- ResNet 시리즈 중 18개의 레이어로 구성되어 있는 모델
- Skip Connection 도입

네트워크에서 발생하는 기울기 소실 문제를 완화하고, 더 깊은 네트워크를 효과적으로 학습할 수 있도록 함

데이터 전처리

- 224X224로 resize
- Numpy 형태의 이미지를 tensor 형태로 변환
- Resize한 데이터의 평균과 표준편차를 구하여 정규화

DataLoad

- 데이터셋의 배치 크기를 32로 설정하여 load
- 'shuffle'

 train_loader의 데이터를 무작위로 섞어

 학습 과정에서 다양한 데이터에 모델이 노출되도록 함

Train_loader shape 확인

• 배치 크기, 채널 수-RGB, 이미지 크기)

```
class myResNet(nn.Module):
    def __init__(self):
        super(myResNet, self).__init__()
        self.resnet = models.resnet18(weights=None)
        num_ftrs = self.resnet.fc.in_features
        self.resnet.fc = nn.Linear(num_ftrs, 2)
    def forward(self, x):
        return self.resnet(x)
model = myResNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
```

myResNet 클래스 정의

- nn.Module 상속
- 클래스의 초기화 메서드 정의
- 상위 클래스(nn.Module)의 초기화 메서드를 호출

ResNet-18 모델 load

- 'weights=None': 모델이 미리 학습된 가중치를 사용하지 않음을 의미
- Fully Connected 레이어를 새로운 레이어로 대체
- ResNet-18 모델의 Fully Connected 레이어의 입력 특성의 수를 load
- 출력 노드 수를 2로 설정하여 모델이 이진 분류 작업에 사용될 수 있도록 함

순전파 메서드 정의

• 입력 데이터 'x'를 ResNet-18 모델에 전달하여 출력을 반환

모델, 손실 함수, 최적화 알고리즘 설정

- 손실 함수 : 이진 분류에 일반적으로 사용되는 크로스 엔트로피 손실 함수를 사용
- 최적화 알고리즘 : 일반적으로 성능이 좋다고 알려진 Adam 사용

optimizer = Adam

optimizer = optim.Adam(model.parameters(), Ir=0.01)

Epoch 1, Training loss: 0.2917 val loss: 0.1073, Accuracy: 97.00% Epoch 2, Training loss: 0.1398 val loss: 0.0731, Accuracy: 98.25% Epoch 3, Training loss: 0.0960 val loss: 0.0747, Accuracy: 98.00% Epoch 4, Training loss: 0.0732 val loss: 0.0868, Accuracy: 97.62% Epoch 5, Training loss: 0.0677 val loss: 0.0577, Accuracy: 98.00% Epoch 6, Training loss: 0.0589 val loss: 0.0847, Accuracy: 97.00% Epoch 7, Training loss: 0.0545 val loss: 0.0382, Accuracy: 98.62% Epoch 8, Training loss: 0.0476 val loss: 0.0489, Accuracy: 98.12% Epoch 9, Training loss: 0.0395 val loss: 0.0935, Accuracy: 96.50% Epoch 10, Training loss: 0.0422 val loss: 0.0394, Accuracy: 98.62%

Test Loss: 0.050935367470130236 Test Accuracy: 0.9828629032258065

최종 모델 선정!

3.3 ResNet-18 모델 성능 평가 및 하이퍼파라미터 튜닝

optimizer = Adam

Test Loss: 0.050935367470130236 Test Accuracy: 0.9828629032258065

Test Loss: 0.008722839585032253 Test Accuracy: 0.9969758064516129

머신러닝은 경험이다!

SGD가 Adam보다 낮은 성능을 보인다는 실험 내용이 많았지만, 실제로 본 연구 결과에서는 SGD가 Adam보다 더 우수한 성능을 보였다. 이를 통해 하이퍼파라미터 튜닝에 정답은 없음을 경험하였고 실제 문제에 적합한 CNN 모델을 만들기 위해서는 많은 실험과 경험이 필요함을 알 수 있었다.

실험 환경의 아쉬움

연구 과정에서는 실험 환경으로 인해 더 많은 실험을 해보지 못한 아쉬움이 있었다. 모델의 구조를 단순화하거나 CPU 대신 GPU를 사용하는 등의 방법을 활용하였음에도 모델 학습 시간이 많이 소요되어 다양한 CNN 모델이나 하이퍼파라미터 조정을 더 시도하지 못한 것이 본 연구의 제약이 되었다. 따라서 향후 머신러닝을 진행한다면 실험 환경을 고려하여 모델의 구조에 변화를 주는 데에도 신경을 써야겠다고 생각했다.

- 많은 실험을 통해 모델의 성능을 개선하고, 다양한 하이퍼파라미터를 조정하여 최적의 설정을 찾는 것이 중요함을 알 수 있었다.
- 실험 과정에서 발생하는 다양한 문제들을 해결하며 모델 개발에 대한 실무적인 경험을 쌓을 수 있었다.
- 앞으로는 실험을 더욱 철저히 계획하고 진행하여 모델의 성능을 높이고 실제 문제에 대한 효과적인 해결책을 찾아 나가고자 한다.

VGG-16

Epoch 1, Training loss: 871142677.6560
val loss: 0.6933, Accuracy: 50.00%
Epoch 2, Training loss: 0.6998
val loss: 0.6936, Accuracy: 50.00%
Epoch 3, Training loss: 0.6969
val loss: 0.6933, Accuracy: 50.00%
Epoch 4, Training loss: 0.6954
val loss: 0.6932, Accuracy: 50.00%
Epoch 5, Training loss: 0.6942
val loss: 0.6933, Accuracy: 50.00%

직접 구성한 CNN

```
class MyCNN(nn.Module):
   def __init__(self):
       super(MyCNN, self).__init__()
      self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
      self.conv2 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1)
      self.conv3 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1)
      # Max pooling layers
      self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
      self.dropout = nn.Dropout(0.5)
      self.fc = nn.Linear(32 * 4 * 4, 2)
   def forward(self, x):
      x = F.relu(self.conv1(x))
      x = self.pool(x)
      x = F.relu(self.conv2(x))
      x = self.pool(x)
      x = F.relu(self.conv3(x))
      x = self.pool(x)
      x = x.view(-1, 32 * 4 * 4)
      x = self.dropout(x)
       x = self.fc(x)
       return x
```


Epoch 1, Training loss: 0.2665 val loss: 0.2006, Accuracy: 93.38% Epoch 2, Training loss: 0.2072 val loss: 0.1017, Accuracy: 96.75% Epoch 3, Training loss: 0.1881 val loss: 0.1543, Accuracy: 93.50% Epoch 4, Training loss: 0.1706 val loss: 0.1449, Accuracy: 93.00% Epoch 5, Training loss: 0.1741 val loss: 0.1584, Accuracy: 94.62% Epoch 6, Training loss: 0.2099 val loss: 0.1593, Accuracy: 93.75% Epoch 7, Training loss: 0.1817 val loss: 0.1125, Accuracy: 96.00% Epoch 8, Training loss: 0.1790 val loss: 0.1265, Accuracy: 94.12% Epoch 9, Training loss: 0.1827 val loss: 0.1081, Accuracy: 95.12% Epoch 10, Training loss: 0.2176 val loss: 0.1406, Accuracy: 94.62%

참고문헌

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations (ICLR).