Apellidos, Nombre:

Grupo:

PROBLEMA 2

Los depósitos A y B de grandes dimensiones están conectadas por dos tuberías 1 y 2 en paralelo. A la entrada de las tuberías hay dispuesta una bomba que trabaja con una altura efectiva h_b =15 m. Despreciar la pérdida de carga del tramo de tubería donde está instalada la bomba así como todas las pérdidas de carga secundarias.

Tuberías: $L_1=100$ m, $D_1=40$ mm, $E_1=0.04$ mm, $L_2=175$ m, $D_2=70$ mm, $E_2=0.04$ mm.

Agua: ρ =1000 kg/m³; μ =10⁻³ kg/m·s

- a) (7 puntos) Calcular la diferencia de cotas entre las superficies libres de ambos depósitos si el caudal de agua que se trasvasa de A a B es de 21 l/s. B puede quedar por debajo o por encima de A.
- b) (3 puntos) La bomba se sustituye por otras dos, de la mitad del tamaño que la original, pero de forma que entre ambas aportan el mismo caudal que originalmente (21 l/s). Suponiendo que el caudal depende del Reynolds y de la velocidad de rotación, que se mantiene la semejanza de Reynolds entre la bomba original y las que sustituyen, calcular la relación de velocidad de rotación entre la bomba original (ω_1) y aquellas (ω_2).

Resolución

a) Se aplica Bernoulli desde la superficie libre del depósito A al B, a través de la tubería 1 y también a través de la tubería 2.

$$\frac{p_{A}}{\sqrt{g}} + \frac{v_{A}^{2}}{\sqrt{2g}} + z_{A} = \frac{p_{B}}{\sqrt{g}} + \frac{v_{B}^{2}}{\sqrt{2g}} + z_{B} - h_{B} + h_{f_{1}}$$

$$\frac{p_A}{\sqrt{g}g} + \frac{v_A^{2}}{\sqrt{g}g} + z_A = \frac{p_B}{\sqrt{g}g} + \frac{v_B^{2}}{\sqrt{g}g} + z_B - h_B + h_{f_2}$$

Restando ambas ecuaciones, queda la ecuación del paralelo: $h_{f_1} = h_{f_2}$

Así:

$$f_1 \frac{L_1}{D_1} \frac{v_1^2}{2g} = f_2 \frac{L_2}{D_2} \frac{v_2^2}{2g}$$
 (1)

Por otro lado, teniendo en cuenta la ley de la conservación de la masa:

$$Q = Q_1 + Q_2 = v_1 \frac{\pi D_1^2}{4} + v_2 \frac{\pi D_2^2}{4}$$
 (2)

Apellidos, Nombre:

Grupo:

Para resolver el sistema completo, es necesario hacer la suposición de régimen turbulento, y por tanto añadir dos ecuaciones más:

$$\frac{1}{\sqrt{f_1}} = -2log\left(\frac{\varepsilon_1/D_1}{3.7} + \frac{2.51}{Re_{D_1}\sqrt{f_1}}\right) (3)$$

$$\frac{1}{\sqrt{f_2}} = -2\log\left(\frac{\varepsilon_2/D_2}{3.7} + \frac{2.51}{Re_{D_2}\sqrt{f_2}}\right) (4)$$

Será entonces necesario reescribir la ecuación (1) como función de una única velocidad:

$$f_1 \frac{L_1}{D_1} \frac{v_1^2}{2g} = f_2 \frac{L_2}{D_2} \frac{\left[\left(Q - v_1 \frac{\pi D_1^2}{4} \right) / \frac{\pi D_2^2}{4} \right]^2}{2g} \tag{1}$$

Este sistema se puede resolver iterando según el siguiente esquema, es decir, partiendo de dos valores iniciales para f_1 y f_2 .

Se puede comenzar a iterar con los valores de flujo dominado por la rugosidad:

$$\frac{1}{\sqrt{f_1}} = -2\log\left(\frac{\varepsilon_1/D_1}{3.7}\right) = 0.01964$$

$$\frac{1}{\sqrt{f_2}} = -2\log\left(\frac{\varepsilon_2/D_2}{3.7}\right) = 0.02137$$

O también con $f_1 = f_2 = 0.02$

f ₁ =	0.02137452		f ₂ =	0.01863219	
v ₁ =	3.9	m/s	v ₂ =	4.18	m/s
Q ₁ =	0.0049	m³/s	Q ₂ =	0.016	m³/s
hf ₁ =	41.52	m	hf ₂ =	41.52	m
Re ₁ =	156186.26		Re ₂ =	292722.572	
z _a -z _b =	26.52	m			

Apellidos, Nombre:

Grupo:

b) La semejanza de Reynolds, para el mismo fluido implica:

$$\left(\frac{\rho vL}{\mu}\right)_1 = \left(\frac{\rho vL}{\mu}\right)_2$$

Por tanto:

$$(vL)_1 = (vL)_2$$

Teniendo en cuenta que $v = \omega L$, se tiene:

$$(\omega L^2)_1 = (\omega L^2)_2$$

Entonces:

$$\frac{\omega_1}{\omega_2} = \frac{L_2^2}{L_1^2} = \frac{L_1^2}{4L_1^2} = 1/4$$

Se podría realizar también la relación adimensional entre el caudal y los demás parámetros, obteniéndose:

$$\frac{Q}{vL^2} = f\left(\frac{\rho vL}{\mu}, \frac{\omega L}{v}\right)$$

Despejando la relación de velocidades en el Reynolds, se sustituye en el cualquiera de los otros dos números adimensionales y se obtiene el mismo resultado.