

ETC3550/ETC5550 Applied forecasting

Week 7: Seasonal exponential smoothing

General notation ETS: ExponenTial Smoothing

∠ ↑ ←

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

General notation ETS: ExponenTial Smoothing

→ ↑

Error Trend Season

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), or damped ("Ad").

2

```
General notation ETS: ExponenTial Smoothing

→ ↑ 

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), or damped ("Ad").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

2

ETS(A,N,A): No trend, additive seasonal model

State equations
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + s_{t+h-m(k+1)}$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

ETS(A,A,A): Holt-Winters additive method

State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$
 Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$
 Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

ETS(M,A,M): Holt-Winters multiplicative method

State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$

$$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$$
 Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$$
 Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- \blacksquare *k* is integer part of (h-1)/m.

All ETS models

Additive Error		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	A,N,M
Α	(Additive)	A,A,N	A,A,A	A,A,M
A_d	(Additive damped)	A,A _d ,N	A,A _d ,A	A,A _d ,M

All ETS models

Additive Error		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	A,N,M
Α	(Additive)	A,A,N	A,A,A	A,A,M
A_d	(Additive damped)	A,A_d,N	A,A _d ,A	A,A _d ,M

Multiplicative Error		Seasonal Component				
Trend		N	Α	M		
	Component	(None)	(Additive)	(Multiplicative)		
N	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_{d}	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A_d,M		

Additive error models

Trend	Seasonal				
	N	Α	M		
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$		
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$		
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$		
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$		
A	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$		
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$		
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$		
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$		
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$		
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$		
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$		

Multiplicative error models

Trend	nd Seasonal				
	N	Α	M		
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$		
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$		
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$		
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$		
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$		
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$		
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$		
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$		
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$		
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$		
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$		

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, **not** equivalent to minimising SSE.

Innovations state space models

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$
$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Additive errors

$$k(\mathbf{x}_{t-1}) = 1.$$
 $y_t = \mu_t + \varepsilon_t.$

Multiplicative errors

$$k(\mathbf{x}_{t-1}) = \mu_t$$
. $y_t = \mu_t(1 + \varepsilon_t)$. $\varepsilon_t = (\mathbf{y}_t - \mu_t)/\mu_t$ is relative error.

Innovations state space models

Estimation

$$L^*(\boldsymbol{\theta}, \mathbf{x}_0) = T \log \left(\sum_{t=1}^{T} \varepsilon_t^2 \right) + 2 \sum_{t=1}^{T} \log |k(\mathbf{x}_{t-1})|$$

= -2 log(Likelihood) + constant

Estimate parameters $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$ by minimizing L^* .

Parameter restrictions

Traditional region

- $\mathbf{0} < \alpha < \mathbf{1}$
- $\mathbf{0} < \beta < \alpha$
- $\mathbf{0} < \gamma < \mathbf{1} \alpha$
- $0.8 < \phi < 0.98$ to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts
- Usually (but not always) less restrictive than traditional region
- e.g., ETS(A,N,N): traditional $0 < \alpha < 1$ admissible $0 < \alpha < 2$

Parameter restrictions

fable default: intersection of both regions

Traditional region

- $0 < \alpha < 1$
- $\mathbf{0} < \beta < \alpha$
- $0 < \gamma < 1 \alpha$
- $0.8 < \phi < 0.98$ to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts
- Usually (but not always) less restrictive than traditional region
- e.g., ETS(A,N,N): traditional 0 $< \alpha <$ 1 admissible 0 $< \alpha <$ 2

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters & initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters & initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2k(k+1)}{T - k - 1}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters & initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2k(k+1)}{T - k - 1}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k[\log(T) - 2].$$

AIC and cross-validation

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(A,N,M), ETS(A,A,M), $ETS(A,A_d,M)$.

Additive Error		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	Λ , M
Α	(Additive)	A,A,N	A,A,A	Λ , Λ , Λ
A_d	(Additive damped)	A,A_d,N	A,A_d,A	^ <u>^</u> ,^_

Multiplicative Error		Seasonal Component				
Trend		N	Α	М		
	Component	(None)	(Additive)	(Multiplicative)		
N	(None)	M,N,N	M,N,A	M,N,M		
Α	(Additive)	M,A,N	M,A,A	M,A,M		
A_{d}	(Additive damped)	M,A _d ,N	M,A _d ,A	M,A _d ,M		

Residuals

Response residuals

$$\hat{\boldsymbol{e}}_t$$
 = $y_t - \hat{y}_{t|t-1}$

Innovation residuals

Additive error model:

$$\hat{\varepsilon}_t = y_t - \hat{y}_{t|t-1}$$

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$