Question 1

1.1) This is a plot of the eigenvalues from the matrix plotted in a decreasing order. As shown in the graph, the variance between the variables decreases after around the 70th component and hence, the eigenvalues converge after around 70 component values. Hence, I think I would chose around the first 70 components

Figure 1: the 400 eigenvalues

1.2) Analyzing all the eigenvalues, it can be seen that the most amount of variance arises on the rounder shapes in the provided data matrix. So using this inference, we can classify the digits among types of circular and sharp-edged. For instance, values that solely comprise of circular shapes are 6, 8, 9 and shapes that have sharp edges are 1, 2, 3, 4, 5, 7 and so, a classification can be created here using the amount of variance of circular and non-circular shapes. As shown in the 70 eigenvalue and mean picture, the highest variance is achieved by circular shaped digits.

Figure 2: Dataset's mean

Figure 3: 70 eigenvectors from the dataset

SUBSPACE DIMENSION	PROJECTION OUTPUT
10	0.80952381
20	0.83073229
30	0.82633053
40	0.81832733
50	0.80552221
60	0.79551821
70	0.77991196
80	0.767507
90	0.75630252
100	0.74469788
110	0.72589036
120	0.71068427
130	0.71228491
140	0.69427771
150	0.68467387
160	0.66426571
170	0.62785114
180	0.58903561
190	0.54221689
200	0.49859944

Table 1: Test data Gaussian Prediction Accuracies

SUBSPACE DIMENSION	PROJECTION OUTPUT
10	0.83126749
20	0.85645742
30	0.86645342
40	0.86285486
50	0.86005598
60	0.85645742
70	0.8472611
80	0.84086365
90	0.83086765
100	0.82606957
110	0.82247101
120	0.81407437
130	0.80327869
140	0.79808077
150	0.78528589
160	0.77608956
170	0.74730108
180	0.70571771
190	0.64134346
200	0.57337065

Table 2: Training data Gaussian Prediction Accuracies

Figure 4: PCA output (component at x-axis/ classification accuracy at y)

Figure 5: PCA Output (component at x-axis/ classification error at y)

Since the blue line is always higher than the orange one, the accuracies of the train data are consistently higher than the test data's accuracies. As far as the prediction of the optimum number of components goes, the highest accuracy is achieved near a value of 40, so the initial prediction (in part 1) might be slightly wrong.

Analyzing the second graph, it is evident that the error probability increases as the number of components increase. This agrees with the PCA theory as more components cause additional weightage given to less necessary features in the dataset. So a higher chance of errors.

Question 2

2.1) Plotting the bases of LDA

Figure 6: 10 bases obtained using LDA

This similarity in some bases and high difference in the others is expected according to the theory of LDA method. The similarity in some and the distinction in others represents specific features of the bases and helps in differentiating between the different digits. This happens because LDA gives more weight to classes as compared to other methods like PCA.

2.2)

=-=,	
Subspsace dimension	Accuracies
1	0.36814726
2	0.58863545
3	0.70828331
4	0.71588635
5	0.77430972
6	0.81712685
7	0.82793117
8	0.82873149
9	0.81592637

Table 3: Accuracies against subspace dimensions on test data

Subspsace dimension	Accuracies
1	0.39984006
2	0.67413035
3	0.80047981
4	0.81767293
5	0.8672531
6	0.91523391
7	0.92962815
8	0.93682527
9	0.93882447

Table 4: Accuracies against subspace dimensions on train data

Figure 7: LDA ouput (subspace dimensino on x-axis/ class .error on y)

Referring to the graph plotted, the classification error decreases using the LDA approach as compared to the PCA approach. Since LDA clutters features together, in a higher number of dimentions, the clusters predict the accuracy better with higher data points hence reducing the error percentage.

REFERENCES:

- Loading mat files: https://towardsdatascience.com/how-to-load-matlab-mat-files-in-python-1f200e1287b5
- Scipy.io
- Numpy
- sklearn