Assg1_1

April 28, 2019

```
In [77]: %matplotlib inline
         import matplotlib.pyplot as plt
         import seaborn as sns
         import pandas as pd
         import numpy as np
         from sklearn.model_selection import train_test_split
         from sklearn.model_selection import GridSearchCV
         from sklearn.metrics import accuracy_score
         from sklearn import metrics as m
         from sklearn.model_selection import StratifiedShuffleSplit
         from sklearn.metrics import roc_auc_score
         from sklearn.svm import LinearSVC
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.neural_network import MLPClassifier
         from sklearn.metrics import roc_curve
         from sklearn.metrics import auc
         from sklearn.metrics import classification_report,confusion_matrix
         import tqdm as tqdm
In [78]: import warnings
         warnings.filterwarnings("ignore")
  Helper functions
In [79]: # decode categories from encoded values
         def getCategories(attribute):
             print("{} categories".format(attribute))
             categories = df[attribute].astype('category').cat.categories
             for x, y in zip(categories, [l for l in range( 1, len(categories) + 1)] ):
                 print(y, x)
         def roc(classifiers, X_train, y_train, X_test, y_test):
```

```
for name, classifier in classifiers.items():
        cls = classifier
        cls =cls.fit(X_train,y_train)
        y_pred = cls.predict(X_test)
        y_true=sorted(y_test)
        y_score=sorted(y_pred)
        # Compute fpr, tpr, thresholds and roc auc
        fpr, tpr, thresholds = roc_curve(y_true, y_score)
        roc_auc = auc(fpr, tpr)
        # Plot ROC curve
        plt.plot(fpr, tpr, label='ROC curve (area = %0.3f)' % roc_auc)
        plt.plot([0, 1], [0, 1], 'k--') # random predictions curve
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.0])
       plt.xlabel('False Positive Rate or (1 - Specifity)')
        plt.ylabel('True Positive Rate or (Sensitivity)')
        plt.title('Receiver Operating Characteristic')
        plt.legend(loc="lower right")
def classify_and_compare(classifiers, X_train, y_train, X_test, y_test):
    metric_columns = ["Classifier", "Accuracy", "Precision Score", "Recall Score", "F1-S
    df_metric = pd.DataFrame(columns=metric_columns)
    for name,classifier in classifiers.items():
        cls = classifier
        cls =cls.fit(X_train,y_train)
        y_pred = cls.predict(X_test)
        accuracy = m.accuracy_score(y_test,y_pred)
        precision = m.precision_score(y_test,y_pred,average='macro')
        recall = m.recall_score(y_test,y_pred,average='macro')
        roc_auc = roc_auc_score(y_test, y_pred)
        f1_score = m.f1_score(y_test,y_pred,average='macro')
        metric_entry = pd.DataFrame([[name,accuracy,precision,recall,f1_score,roc_auc
        df_metric = df_metric.append(metric_entry)
        print(name)
        print(classification_report(y_test, y_pred))
    print(df_metric)
    plt.xlabel('Accuracy')
    plt.title('Classifier Accuracy')
```

```
sns.set_color_codes("muted")
             sns.barplot(x='Accuracy', y='Classifier', data=df_metric, color="g")
             plt.show()
         def findBestParamters(clf, parameters, X_train, y_train):
             clf =GridSearchCV(clf, parameters)
             clf.fit(X_train, y_train)
             print("Best parameters are: {}".format(clf.best_params_))
In [80]: df = pd.read_csv('./dataset/[UCI]bank-additional/bank-additional/bank-additional-full
         df_x = df.copy()
         del df_x['y']
         df_y = df[['y']].copy().astype('category')
         # label encode y - yes->1 no->0
         df_y = df_y.apply(lambda x: x.cat.codes)
         df.head()
Out [80]:
                       job marital
                                       education default housing loan
                                                                           contact \
            age
                                                                        telephone
             56 housemaid married
                                        basic.4y
                                                               no
                                                       nο
                                                                     no
         1
                  services married high.school
                                                  unknown
                                                                    no telephone
                                                               no
         2
             37
                  services married high.school
                                                                        telephone
                                                       no
                                                              yes
                                                                    no
         3
             40
                    admin. married
                                        basic.6y
                                                                         telephone
                                                       no
                                                               no
                                                                     no
                  services married high.school
                                                                        telephone
             56
                                                       no
                                                               no
                                                                    yes
                                                  previous
                                                                poutcome emp.var.rate
           month day_of_week ... campaign pdays
         0
                         mon ...
                                              999
                                                          0 nonexistent
                                                                                   1.1
             may
                                              999
         1
                         mon ...
                                         1
                                                          0 nonexistent
                                                                                   1.1
             may
         2
            may
                         mon ...
                                         1
                                              999
                                                          0 nonexistent
                                                                                   1.1
                                                                                   1.1
         3
                         mon ...
                                         1
                                              999
                                                          0 nonexistent
             may
                                              999
                                                             nonexistent
                                                                                   1.1
             may
                         mon ...
            cons.price.idx cons.conf.idx euribor3m nr.employed
         0
                    93.994
                                    -36.4
                                               4.857
                                                            5191.0
                                                                   no
                    93.994
                                    -36.4
                                               4.857
                                                            5191.0 no
         1
                    93.994
         2
                                    -36.4
                                               4.857
                                                           5191.0 no
         3
                    93.994
                                    -36.4
                                               4.857
                                                            5191.0 no
                    93.994
                                    -36.4
                                               4.857
                                                           5191.0 no
         [5 rows x 21 columns]
```

1 Analysis

```
In [81]: # shape of the feature dataframe
         print(df_x.shape)
(41188, 20)
In [82]: # features
        print(list(df_x.columns))
['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_
In [83]: print(df_x.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 20 columns):
                  41188 non-null int64
age
                  41188 non-null object
job
                  41188 non-null object
marital
                  41188 non-null object
education
default
                  41188 non-null object
                  41188 non-null object
housing
                  41188 non-null object
loan
                 41188 non-null object
contact
                  41188 non-null object
month
day_of_week
                  41188 non-null object
                  41188 non-null int64
duration
                 41188 non-null int64
campaign
pdays
                 41188 non-null int64
previous
                 41188 non-null int64
                 41188 non-null object
poutcome
emp.var.rate
                 41188 non-null float64
cons.price.idx
                 41188 non-null float64
cons.conf.idx
                 41188 non-null float64
                  41188 non-null float64
euribor3m
nr.employed
                 41188 non-null float64
dtypes: float64(5), int64(5), object(10)
memory usage: 6.3+ MB
None
```

- All the features are having 41188 non-null entries and hence there are no null values
- There are 10 continuos and 10 categorical attributes

Make the categorical variables of dtype 'category' and label encode

```
In [84]: for col in df_x.select_dtypes(include=['object']):
             # Changing the dtype of categorical columns to 'category' reduces memory usage
             df_x[col] = df_x[col].astype('category')
         categorical_attrs = list(df_x.select_dtypes(include=['category']).copy().columns)
         df_x[categorical_attrs] = df_x[categorical_attrs].apply(lambda x: x.cat.codes)
         print(getCategories('education'))
         df_x.head(2)
education categories
1 basic.4y
2 basic.6y
3 basic.9y
4 high.school
5 illiterate
6 professional.course
7 university.degree
8 unknown
None
Out[84]:
                               education default housing loan
                 job
                      marital
                                                                   contact
                                                                            month \
            age
         0
             56
                   3
                            1
                                        0
                                                 0
                                                          0
                                                                0
                                                                          1
                                                                                 6
                                        3
                   7
                            1
                                                 1
                                                          0
                                                                0
                                                                         1
                                                                                 6
         1
             57
            day_of_week
                        duration campaign pdays previous
                                                              poutcome
                                                                         emp.var.rate \
         0
                              261
                                                999
                      1
                                           1
                                                            0
                                                                       1
                                                                                   1.1
                      1
                              149
                                           1
                                                999
                                                            0
                                                                                   1.1
         1
                                                                       1
            cons.price.idx cons.conf.idx euribor3m nr.employed
                    93.994
                                     -36.4
                                                4.857
                                                            5191.0
         0
                    93.994
                                     -36.4
                                                4.857
         1
                                                            5191.0
In [85]: print(df_x.info(verbose=False))
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Columns: 20 entries, age to nr.employed
dtypes: float64(5), int64(5), int8(10)
memory usage: 3.5 MB
None
```

Memory usage decreased from 6.3+MB to 3.5MB by making the categorical attributes datatype as **category**

There are more records with the output of not opening a term subscription

In [87]: print(df_x.describe())

	age	job	marital	education	default \	`
count	41188.00000	41188.00000	41188.000000	41188.000000	41188.000000	
mean	40.02406	3.72458	1.172769	3.747184	0.208872	
std	10.42125	3.59456	0.608902	2.136482	0.406686	
min	17.00000	0.00000	0.000000	0.000000	0.000000	
25%	32.00000	0.00000	1.000000	2.000000	0.000000	
50%	38.00000	2.00000	1.000000	3.000000	0.000000	
75%	47.00000	7.00000	2.000000	6.000000	0.000000	
max	98.00000	11.00000	3.000000	7.000000	2.000000	
	housing	loan	contact	month	n day_of_week	\
count	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	
mean	1.071720	0.327425	0.365252	4.230868	2.004613	
std	0.985314	0.723616	0.481507	2.320025	1.397575	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	3.000000	1.000000	
50%	2.000000	0.000000	0.000000	4.00000	2.000000	
75%	2.000000	0.000000	1.000000	6.00000	3.000000	
max	2.000000	2.000000	1.000000	9.000000	4.000000	
	duration	campaign	pdays	previous	s poutcome	\
count	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	
mean	258.285010	2.567593	962.475454	0.172963	0.930101	
std	259.279249	2.770014	186.910907	0.494901	0.362886	
min	0.000000	1.000000	0.000000	0.000000	0.000000	
25%	102.000000	1.000000	999.000000	0.000000	1.000000	

50%	180.000000	2.000000	999.000000	0.000000	1.000000
75%	319.000000	3.000000	999.000000	0.000000	1.000000
max	4918.000000	56.000000	999.000000	7.000000	2.000000
	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
count	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000
mean	0.081886	93.575664	-40.502600	3.621291	5167.035911
std	1.570960	0.578840	4.628198	1.734447	72.251528
min	-3.400000	92.201000	-50.800000	0.634000	4963.600000
25%	-1.800000	93.075000	-42.700000	1.344000	5099.100000
50%	1.100000	93.749000	-41.800000	4.857000	5191.000000
75%	1.400000	93.994000	-36.400000	4.961000	5228.100000
max	1.400000	94.767000	-26.900000	5.045000	5228.100000

- Average age of the people in the dataset is 40 with std of 10.42
- Min. age is 17
- Max. age is 98
- 75% of the people have are aged below 47
- 47 * 1.5 = 70 => ages above 70 are outliers
- Average duration of the people speaking in the dataset is 258s with std of 259s
- Min. duration is 0s
- Max. duration is 4918s
- 75% of the people spoke for less than 319s
- 319 * 1.5 = 478.5 => above 478.5s are outliers

Numerical columns except **age** and **day** are positively skewed

duration is dropped as it is highly corerlated to the outcome as suggested in the dataset description.

- emp.var.rate, euribor3m and nr.employed columns are highly correlated
- pdays and previous columns are negatively correlated

Visualising the distribution of the categorical attributes


```
In [91]: df_x.drop(['duration'], axis=1);
```


The day_of_week attributes are equally distributed and hence won't aid in classification

```
In [93]: df_x.drop(['day_of_week'], axis=1);
```

Age

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x1b4d844fa20>

Retired people are having higher median age **Job**

In [95]: df_x['job'].value_counts().plot.pie(autopct='%d\%', figsize=(10,5));

Blue collar and management jobs are the occupations that are majority

Preprocessing

```
In [96]: from sklearn.preprocessing import StandardScaler

    X = df_x.values
    y = df_y.values

    scaler = StandardScaler()
    stdScaledX = scaler.fit_transform(X)

# summarize transformed data
    np.set_printoptions(precision=3)
    print(stdScaledX[0:2,:])

[[ 1.533 -0.202 -0.284 -1.754 -0.514 -1.088 -0.452    1.318    0.763 -0.719
    0.01 -0.566    0.195 -0.349    0.193    0.648    0.723    0.886    0.712    0.332]
[ 1.629    0.911 -0.284 -0.35    1.945 -1.088 -0.452    1.318    0.763 -0.719
    -0.422 -0.566    0.195 -0.349    0.193    0.648    0.723    0.886    0.712    0.332]]
```

Checking class imbalance

```
In [97]: # number of samples who took term subscription
    num_yes = len(df_y[df_y['y']==1])

# indices of samples that didnt take term subscription
    no_indices = df_y[df_y['y'] == 0].index

# Random sample non term subscription
    random_indices = np.random.choice(no_indices,num_yes, replace=False)

# Find the indices of term subscription
    yes_indices = df_y[df_y['y']==1].index

# Concat yes indices with sample non ones
    under_sample_indices = np.concatenate([yes_indices,random_indices]))

# Get Balance Dataframe
    under_sample = df.loc[under_sample_indices]

under_sample['y'].value_counts().plot.pie()

Out[97]: <matplotlib.axes._subplots.AxesSubplot at Ox1b4d64fab38>
```


In [98]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state

1.0.1 Find optimal parameters for the classifiers

1. Logistic Regression

```
In [99]: parameters = {'class_weight':['balanced', None]}
         clf =GridSearchCV(LogisticRegression(random_state=42), parameters)
         clf.fit(X_train, y_train)
         print("Best parameters are: {}".format(clf.best_params_))
         print(clf.cv_results_['mean_fit_time'])
         print(clf.cv_results_['mean_test_score'])
Best parameters are: {'class_weight': None}
[1.005 0.382]
[0.854 0.908]
  2. SVM
In [100]: parameters = {'C':[1, 5, 10], 'class_weight':['balanced', None]}
          clf =GridSearchCV(LinearSVC(random_state=42), parameters)
          clf.fit(X_train, y_train)
          print("Best parameters are: {}".format(clf.best_params_))
Best parameters are: {'C': 1, 'class_weight': 'balanced'}
  Multi Layer Perceptron
In [101]: parameters = {'activation':['tanh', 'relu'], 'hidden_layer_sizes':[(100,) , (100, 100)]
          clf =GridSearchCV(MLPClassifier(random_state=42), parameters)
          clf.fit(X_train, y_train)
          print("Best parameters are: {}".format(clf.best_params_))
Best parameters are: {'activation': 'tanh', 'hidden_layer_sizes': (100, 100)}
```

Classify with un-normalised features

```
In [102]: classifiers = {'Logistic Regression':LogisticRegression(random_state=42),
                         'Multilayer Perceptron': MLPClassifier(activation='tanh', hidden_layer
                         'Support Vector Classifier': LinearSVC(random_state=42)
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_star
          classify_and_compare(classifiers, X_train, y_train, X_test, y_test)
Logistic Regression
             precision
                          recall f1-score
                                              support
                  0.93
                            0.98
                                      0.95
                                                 9144
          1
                  0.68
                            0.42
                                      0.52
                                                 1153
avg / total
                  0.90
                            0.91
                                      0.90
                                                10297
Multilayer Perceptron
             precision
                          recall f1-score
                                             support
          0
                  0.93
                            0.97
                                      0.95
                                                 9144
          1
                  0.62
                            0.43
                                      0.51
                                                 1153
avg / total
                  0.90
                            0.91
                                      0.90
                                                10297
Support Vector Classifier
             precision
                          recall f1-score
                                              support
          0
                  0.93
                            0.97
                                      0.95
                                                 9144
          1
                  0.64
                            0.47
                                      0.54
                                                 1153
avg / total
                  0.90
                            0.91
                                      0.90
                                                10297
                              Accuracy Precision Score Recall Score \
                  Classifier
0
         Logistic Regression
                              0.912402
                                               0.803615
                                                              0.695252
0
       Multilayer Perceptron
                              0.907255
                                               0.777226
                                                              0.700691
O Support Vector Classifier 0.910654
                                               0.786573
                                                              0.716627
  F1-Score roc-auc_Score
0 0.733453
                  0.695252
0 0.730383
                  0.700691
0 0.744805
                  0.716627
```


Using standard scaled and undersampled dataset from now on

0.85

recall f1-score

Classification with normalised features

0.85

precision

avg / total

Multilayer Perceptron

```
In [104]: classifiers = {'Logistic Regression':LogisticRegression(random_state=42),
                         'Multilayer Perceptron': MLPClassifier(activation='tanh', hidden_layer
                         'Support Vector Classifier': LinearSVC(random_state=42)
          X_train, X_test, y_train, y_test = train_test_split(normX,normy, test_size=0.25, rand)
          classify_and_compare(classifiers, X_train, y_train, X_test, y_test)
Logistic Regression
             precision
                          recall f1-score
                                              support
          0
                  0.87
                            0.84
                                       0.85
                                                 1161
                  0.84
          1
                            0.87
                                       0.86
                                                 1159
```

2320

support

0.85

0				0.86	1161					
1	0.	85 0.	.88	0.86	1159					
avg / total	0.	86 0.	86	0.86	2320					
Support Vector Classifier										
	precisi	on reca	all f1-s	core su	pport					
0	0.	86 0.	84	0.85	1161					
1	0.	84 0.	86	0.85	1159					
avg / total	0.	85 0.	85	0.85	2320					
	C1	assifier	Accuracy	Precisio	on Score	Recall Score	\			
0 Log	gistic Re	gression	0.853879	(0.854234	0.853893				
0 Mult:	ilayer Pe	erceptron	0.861638	(0.861962	0.861651				
0 Support V	ector Cl	assifier	0.850862	(0.851124	0.850874				
F1-Score roc-auc_Score										
0 0.853846		- 853893								
0 0.861610	0.	861651								
0 0.850837	0.	850874								

Classification with polynomial features

```
In [105]: from sklearn.preprocessing import PolynomialFeatures
          poly = PolynomialFeatures()
          X_train, X_test, y_train, y_test = train_test_split(normX, normy, test_size=0.25, range)
          X_train = poly.fit_transform(X_train)
          #print(len(poly.get_feature_names()))
          #print(poly.get_params())
          X_test = poly.transform(X_test)
          classifiers = {'Logistic Regression':LogisticRegression(random_state=42),
          classify_and_compare(classifiers, X_train, y_train, X_test, y_test)
Logistic Regression
             precision
                          recall f1-score
                                             support
                  0.89
                            0.84
                                      0.86
                                                1161
                  0.85
                            0.89
                                      0.87
                                                1159
avg / total
                  0.87
                            0.87
                                      0.87
                                                2320
            Classifier Accuracy Precision Score Recall Score F1-Score \
                         0.86681
                                         0.867627
                                                        0.866831 0.866741
O Logistic Regression
  roc-auc_Score
0
        0.866831
```


1.0.2 PCA

In [106]: from sklearn.decomposition import PCA

```
X_train, X_test, y_train, y_test = train_test_split(normX, normy, test_size=0.25, range)
          # Make an instance of the Model
          # 80% varience is retained
          pca = PCA(.80)
          pca.fit(X_train)
          X_train = pca.transform(X_train)
          X_test = pca.transform(X_test)
          print(X_train.shape)
(6960, 10)
   Classification after dimensionality reduction using PCA
In [107]: classifiers = {'Logistic Regression':LogisticRegression(random_state=42),
                          'Multilayer Perceptron': MLPClassifier(activation='tanh', hidden_layer
                          'Support Vector Classifier': LinearSVC(random_state=42)
          classify_and_compare(classifiers, X_train, y_train, X_test, y_test)
Logistic Regression
             precision
                          recall f1-score
                                              support
          0
                  0.84
                             0.84
                                       0.84
                                                  1161
          1
                  0.84
                             0.84
                                       0.84
                                                  1159
avg / total
                  0.84
                             0.84
                                       0.84
                                                  2320
Multilayer Perceptron
             precision
                           recall f1-score
                                               support
          0
                             0.83
                                       0.86
                  0.88
                                                  1161
          1
                  0.84
                             0.89
                                       0.87
                                                  1159
avg / total
                  0.86
                             0.86
                                       0.86
                                                  2320
Support Vector Classifier
             precision
                          recall f1-score
                                              support
```

	0	0.83	0.	. 84	0	.84	1161		
	1	0.84	0.	.83	0	.83	1159		
ave	g / total	0.84	0.	.84	0	.84	2320		
		Classifier	2	Accuracy	7	Precisi	on Score	Recall Score	\
0	Logistic	Regression	1	0.840948	3	(0.840955	0.840946	
0	Multilayer	Perceptron	1	0.862069)	(0.863164	0.862093	
0	Support Vector	Classifier	2	0.835345	5	(0.835382	0.835340	
	E4 0								

F1-Score roc-auc_Score
0 0.840947 0.840946
0 0.861970 0.862093
0 0.835339 0.835340

PCA with polynomial features

print(len(poly.get_feature_names()))

```
pca = PCA(.80)
          pca.fit(X_train)
          X_train = pca.transform(X_train)
          X_test = pca.transform(X_test)
          print(X_train.shape)
          classifiers = {'Logistic Regression':LogisticRegression(random_state=42),
                          'Multilayer Perceptron': MLPClassifier(activation='tanh', hidden_layer
                          'Support Vector Classifier': LinearSVC(random_state=42)
                        }
          classify_and_compare(classifiers, X_train, y_train, X_test, y_test)
231
(6960, 33)
Logistic Regression
             precision
                          recall f1-score
                                              support
          0
                  0.80
                            0.83
                                       0.81
                                                 1161
                  0.82
          1
                             0.79
                                       0.80
                                                 1159
avg / total
                  0.81
                            0.81
                                       0.81
                                                 2320
Multilayer Perceptron
             precision
                          recall f1-score
                                              support
          0
                  0.84
                            0.84
                                       0.84
                                                 1161
          1
                  0.84
                             0.84
                                       0.84
                                                 1159
avg / total
                  0.84
                            0.84
                                       0.84
                                                 2320
Support Vector Classifier
             precision
                          recall f1-score
                                              support
          0
                  0.79
                             0.84
                                       0.81
                                                 1161
          1
                  0.83
                             0.77
                                       0.80
                                                 1159
avg / total
                                       0.81
                                                 2320
                  0.81
                             0.81
                  Classifier
                              Accuracy Precision Score Recall Score
                               0.809052
0
         Logistic Regression
                                                0.809753
                                                               0.809031
       Multilayer Perceptron
0
                               0.837931
                                                0.837931
                                                               0.837931
O Support Vector Classifier
                               0.805603
                                                0.806758
                                                               0.805577
  F1-Score roc-auc_Score
```

0 0.808936

0.809031

0 0.837931 0.837931 0 0.805411 0.805577

