Raport laboratorium

Wyżarzanie symulowane

Ernest Przybył

Sposób wyboru sąsiada:

Zaimplementowano dwa modele wyboru sąsiada:

- Inverse
- Swap

Działanie opisane w wcześniejszych raportach

Modele schładzania:

Zaimplementowano dwa modele schładzania:

- Wykładniczy (mnożenie przez stałą wartość co generację)
- Liniowy (odejmowanie stałej wartości co generację)

Wybór plecaka

Taki sam jak w poprzednich raportach (greedy)

Wybór drogi

Algorytm SA.

Badania

Badanie wpływu temperatury początkowej na otrzymywane wyniki

Stałe:

Zestaw: "medium_4.ttp"

• Max. Pokoleń: 5_000

• Min. Temp: 10

• **Chłodzenie**: ExponentialCooling(0.0015)

• Wybór następnika: Swap(1)

Zmienne:

• Temperatura: [100, 1000, 3000 1000]

Wykr. 1

Wykr. 2

Wykr. 3

Wykr. 4

Wnioski.:

Na wykresie nr 1 widzimy efekty zastosowania zbyt małej temperatury początkowej. Rozwiązanie wbiega szybko na najbliższe optimum i w nim zostaje. Mimo to uzyskaliśmy wyniki podobne do pozostałych wartości początkowej temperatury. Może to być spowodowane ty, że w problemie występuje jedna duża "górka" optimum na którą wchodzą wszystkie rozwiązania.

Rozwiązanie ze zbyt niską temperaturą powinno działać znacznie gorzej w przypadku gdy problem będzie większy lub gdy przestrzeń rozwiązań będzie bardziej poszarpana.

Na wykresach 2,3,4 możemy już zaobserwować aktywną eksplorację rozwiązań. Obecne rozwiązanie nie pędzi na najbliższe napotkane optimum, ale przeskakuje na po bliższe górki. Co obserwujemy w postaci "zębów" na wykresie current.

Badanie wpływu szybkości chłodzenia na wyniki

Stałe:

Zestaw: "medium_4.ttp"Max. Pokoleń: 5_000

Min. Temp: 10Temperatura: 5000

• Wybór następnika: Swap(1)

Zmienne:

• **Chłodzenie**: [ExponentialCooling(0.0005)], ExponentialCooling(0.0015), ExponentialCooling(0.005), ExponentialCooling(0.02)]]

Wykr. 5

Wykr. 6

Wykr. 7

Wykr. 8

Wykr. 9

Wnioski:

Na wykresie nr 5 obserwujemy efekt zbyt powolnego chłodzenia. Powolne chłodzenie powoduje, że ciągle krążymy po stokach lokalnych optimów nie ograniczając spektrum poszukiwań optimum. W efekcie przeszukiwanie rozwleka się na większą ilość generacji. I nie możemy znaleźć lepszych wyników w tym samym czasie dla wyższych chłodzeni.

Na wykresie nr 9 obserwujemy efekt zbyt szybkiego chłodzenia. Gwałtowne chłodzenie sprawia, że momencie najszybszego spadku możemy zostać uwięzieni w lokalnym optimum. Obserwujemy to w wynikach które nie przekraczają bariery 230_000 gdzie na wykresach 8, 7 i 6 algorytm potrafił znaleźć wyniki lepsze od tej wartości.

Sposób inicjalizacji

Stałe:

Zestaw: "hard_4.ttp"Max. Pokoleń: 5_000

• Min. Temp: 10

• Temperatura: 20_000

Wybór następnika: Swap(1)

Chłodzenie: ExponentialCooling(0.001),

Zmienne:

• Inicjializacja: ["losowa", "greedy"]

Wykr. 10

Wykr. 11

Wnioski:

Porównując wykresy 10 i 11 dochodzimy do wniosku, że nie uzyskujemy, żadnego zysku starując z punktu wybranego przez greedy dla SA. Zaczynając za pomocą greedy algorytm SA ląduje w jakimś lokalnym optimum z którego musi się najpierw wydostać, aby przebadać inne możliwości (co obserwujemy w postaci dołka current wykres 11). Po wydostaniu się z lokalnego optimum temperatura może być już zbyt niska, aby dokonywać dalszej eksploracji. Obserwujemy to w wynikach, gdzie metoda losowa pozawalała zwykle na uzyskanie nieco lepszych wyników, choć różnice nie są kolosalne.

Porównanie metod wyboru sąsiada

Stałe:

Zestaw: "medium_4.ttp"

Max. Pokoleń: 5_000Min. Temp: 10Temperatura: 5000

• Chłodzenie: ExponentialCooling(0.0015),

Zmienne:

• Wybór następnika: [Swap(1), Inverse]

Winooski:

W przeszukiwaniu inverse wykres jest nieco bardziej poszarpany. Inverse zapewnia nieco większe zróżnicowanie osobników.

Ustawienia dla easy i med.:

• Max. Pokoleń: 5_000

Min. Temp: 10Temperatura: 5000

• Chłodzenie: ExponentialCooling(0.0015),

• Wybór następnika: [Swap(1)]

Ustawienia dla hard.:

• Max. Pokoleń: 10_000

• Min. Temp: 10

• Temperatura: 30_000

• **Chłodzenie**: ExponentialCooling(0.001),

• Wybór następnika: [Swap(1)]

Instancj	Opt.	Alg. Losowy[10k]				Alg. Zachłanny[N]			Alg. SA [10x]				
a	wynik												
		best	worst	avg	std	best	worst	avg	std	best	worst	avg	std
Easy_3		-26266	-85347	-45105	8449	-36928	-51398	-43653	3510	-21863	-23297	-22668	445
Easy_4		-23945	-74980	-39634	7123	-32480	-47833	-39137	4446	-19270	-21063	-20068	572
Mediu		173703	117485	155768	7599	158848	144252	151007	4457				
m_3		1/3/03	11/485	155/08	7599	150040	144252	151807	4457	181644	180373	181057	372
Mediu		225746	172527	210169	6252	211545	196919	204054	4100				
m_4		225746	172537	210168	6352	211545	196919	204954	4189	232403	231148	231767	364
Hard_0		-502271	-1447402	-905929	143616	-193917	-2309747	-875340	718810	-185049	-215883	-199574	9175
Hard 1		-386036	-1097802	-685597	96394	-135734	-1666911	-486691	475441	-87563	-101217	-91170	3943

Alg. Tabu Search [10x]							
best	worst	avg	std				
-20568	-21916	-21255	399				
-18842	-19795	-19241	303				
179916	179072	179565	261				
230552	229583	230181	308				
- 195264	-254958	-220117	1804 5				
-91351	-106741	-100272	5468				

^{*}Fragment tabeli z raportu TS

Alg. Ewolucyjny[10x]						
best	worst	avg	std			
14447	14447	14447	0			
17602	17602	17602	0			
214970	209481	212539	1727			
268914	266543	268178	693			
-56729	-96416	-80911	12193			
99147	38699	63486	18368			

• Fragment tabeli z raportu AG

Wnioski:

Ani metoda losowa ani algorytm zachłanny nie dorównują jakością otrzymywanych wyników do SA. W każdym wypadku otrzymujemy średnio lepsze wyniki które charakteryzują się dużo mniejszym odchyleniem standardowym tym samym dając większą gwarancję na otrzymanie lepszego wyniku. Obserwujemy też, że algorytm SA wyprzedza zachłanny i losowy dużo bardziej, gdy problem jest większy.

SA we wszystkich przypadkach poza easy wyprzedza TS, ale są to stosunkowo niewielkie wartości które mogą zależeć od poprawnego strojenia. Dodatkowo SA może pochwalić się niższymi odchyleniami standardowymi.

Podobnie jak w przypadku TS, SA ma dużą przewagę nad czasem pozyskiwania wyników. Gdzie AG potrzebował wartości rzędu kilku minut na otrzymanie wyniku z kolei SA potrzebuje czasu rzędu kilku sekund.

Ciągle AG otrzymywał lepsze wyniki dla każdej wielkości zestawu danych. Szczególnie można to było obserwować dal przypadków hard 1, gdzie byliśmy w stanie uzyskać średnie wartości przekraczające 0, gdzie dla porównania SA ma średnią \sim -100 tys.

Mimo to AG jest obarczony ryzykiem otrzymania słabego wyniku (ale ciągle na tyle dobrego, żeby dorównać SA) mimo poświęcanego czasu na obliczenia. Obserwujemy to w stosukowo dużym odchyleniu standardowym dla GA.