Applied Statistics for Computer Science BSc, Exam

Probability Theory and Mathematical Statistics for Computer Science Engineering BSc, Term grade

István Fazekas University of Debrecen

2020/21 fall

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Main topics

- 1. Probability theory
- 2 Statistics

Mathematical tools: combinatorics, calculus

Computer tool: Matlab

Book:

Yates, Goodman:

Probability and Stochastic Processes: A Friendly Introduction for

Electrical and Computer Engineers

Lecture 8

The normal distribution

The standard normal distribution

Definition. The standard normal probability density function is

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right). \tag{1}$$

Notation: $X \sim \mathcal{N}(0,1)$.

The standard normal distribution is the most important distribution in statistics.

The standard normal PDF

f is symmetric.

Proposition. The function f in (1) is a PDF.

Proof. f(x) > 0

f is measurable because it is continuous.

$$\int_{-\infty}^{\infty} f(y)dy = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-y^2/2} dy = \sqrt{\frac{2}{\pi}} I.$$
 (2)

The standard normal PDF...

Calculate I^2 . Using double integral

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}/2} dx \int_{0}^{\infty} e^{-y^{2}/2} dx = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})/2} dx dy.$$

Applying substitution $x = r \cos \varphi$, $y = r \sin \varphi$ that is using polar coordinates, we see that the Jacobi determinant of the transformation is r. Then

$$I^{2} = \int_{0}^{\pi/2} \int_{0}^{\infty} re^{-r^{2}/2} dr d\varphi = \frac{\pi}{2} \left[-e^{-r^{2}/2} \right]_{0}^{\infty} = \frac{\pi}{2}.$$

By (2),
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
, so f is a PDF.

The standard normal PDF...

The standard normal PDF is a symmetric bell-shaped curve.

Figure: The PDF of the standard normal distribution

The 0.025 quantile of the standard normal distribution is -a = -1.96 and the 0.975 quantile is a = 1.96. It means that both blue domains below the curve of the standard normal PDF have area 0.025.

The standard normal CDF

The standard normal CDF is a strictly increasing continuous curve.

Figure: The CDF of the standard normal distribution

On the figure we see that the 0.025 quantile of the standard normal distribution is -a=-1.96 and the 0.975 quantile is a=1.96.

The values of the standard normal CDF are contained in tables and they are calculated by statistical programs.

The moments of the standard normal distribution

 $\mathbb{E} X^k=0$, if k is odd, $\mathbb{E} X^k=(k-1)!!$, if k is even. Here $(k-1)!!=(k-1)(k-3)\cdots 1$, that is (k-1) semi-factorial. In particular

$$\mathbb{E}X = 0, \ \mathbb{E}X^2 = 1, \ \mathbb{E}X^3 = 0, \ \mathbb{E}X^4 = 3$$

So

$$Var X = \mathbb{E} X^2 - \mathbb{E}^2 X = 1 - 0 = 1$$

The moments of the standard normal distribution...

Proof.

$$\mathbb{E}X^k = \int_{-\infty}^{\infty} x^k \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

So it is 0 for odd k.

Now for even k, using partial integration,

$$\mathbb{E}X^{k} = \int_{-\infty}^{\infty} x^{k-1} \frac{1}{\sqrt{2\pi}} x \, e^{-x^{2}/2} dx = -\left[x^{k-1} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2}\right]_{-\infty}^{+\infty} + \int_{-\infty}^{\infty} (k-1) x^{k-2} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = (k-1) \mathbb{E}X^{k-2}.$$

As $\mathbb{E}X^0=1$, therefore, by mathematical induction, $\mathbb{E}X^k=(k-1)!!$

The normal distribution

Definition. The distribution of *Y* is called normal distribution if its PDF is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right), \tag{3}$$

where $m \in \mathbb{R}$, $\sigma > 0$. Notation $Y \sim \mathcal{N}(m, \sigma^2)$.

The normal distribution...

Proposition. Let X have standard normal distribution, $\sigma \neq 0$, then $Y = \sigma X + m$ has normal distribution.

Proof. Let $X \sim \mathcal{N}(0,1)$.

Then for $Y = \sigma X + m$ (if $\sigma > 0$)

$$F_Y(x) = P(Y < x) = P(\sigma X + m < x) = P\left(X < \frac{x - m}{\sigma}\right) = F_X\left(\frac{x - m}{\sigma}\right)$$

So the PDF of Y is

$$f_Y(x) = f_X\left(\frac{x-m}{\sigma}\right) \cdot \frac{1}{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-m)^2/2\sigma^2}.$$

The normal distribution...

Exercise. Let $Y \sim \mathcal{N}(m, \sigma^2)$.

Show that $\mathbb{E}Y = m$ and $\operatorname{Var}(Y) = \sigma^2$.

Hint. Let $X \sim \mathcal{N}(0,1)$. Then for $Y = \sigma X + m$ we have $Y \sim \mathcal{N}(m,\sigma^2)$.

Remark. If Y is normally distributed, then aY + b is also normally distributed for any numbers $a \neq 0$ and b.

Remark. If $Y \sim \mathcal{N}(m, \sigma^2)$, then $X = (Y - m)/\sigma$ has standard normal distribution.

Remark. The PDF of $\mathcal{N}(m, \sigma^2)$ is a bell-shaped curve which is symmetric around m.

The normal PDF

Figure: PDF of normal distributions

solid line: PDF of $\mathcal{N}(-2,1)$ dotted line: PDF of $\mathcal{N}(0,1)$ dashed line: PDF of $\mathcal{N}(2,1)$

The normal PDF

Figure: PDF of normal distributions

solid line: PDF of $\mathcal{N}(0, 1.5^2)$ dashed line: PDF of $\mathcal{N}(0, 1^2)$ dotted line: PDF of $\mathcal{N}(0, 0.7^2)$

Normal PDF and histogram

Figure: A histogram and the fitted normal PDF

Approximation of the standard normal CDF

There is no closed formula for the standard normal CDF.

But there are good approximations.

Let Φ be the standard normal CDF. Then

$$\Phi(x) \approx 1 - 0.5(1 + a_1x + a_2x^2 + a_3x^3 + a_4x^4)^{-4},$$

if $x \ge 0$, where $a_1 = 0.196854$, $a_2 = 0.115194$, $a_3 = 0.000344$, $a_4 = 0.019527$.

The error of the approximation is less than 2.5×10^{-4} .

The three-sigma rule

If
$$X \sim \mathcal{N}(m, \sigma^2)$$
, then

$$P(m - 3\sigma < X < m + 3\sigma) \approx 0.9972$$

A normal random variable falls outside the $\pm 3\sigma$ interval around the expectation with negligible (around 0.0028) probability. This 3σ -rule is important in quality control.