Theory of Answer Set Programming Negation as Failure: Theory

Objectives

Objective

Compute stable models of programs with negation by hand

Critical Part

A critical part of a propositional rule is a subformula of its head or body that begins with negation but is not part of another subformula that begins with negation.

Example: Find the critical parts of the propositional rule

$$- r \leftarrow p \land \underline{\neg s}$$

$$\neg p \leftarrow \neg (q \land \neg r)$$

$$-p \leftarrow \neg \neg p$$

$$-p \lor \neg p$$

Stable Models of Programs with Negation

The reduct Π^X of Π relative to an interpretation X is the positive propositional program obtained from Π by replacing each critical part $\neg H$ of each of its rules

- by \top if X satisfies $\neg H$;
- by ⊥ otherwise

Example:

$$\Gamma$$
 p , q , $r \leftarrow p \land \neg s$, $s \leftarrow q$.

$$\Gamma^{\{p,q,s\}}$$
 P
 $S \leftarrow P \land \bot$
 $S \leftarrow P \land P, P, S \Rightarrow$

$$\Gamma^{\{p,q\}}$$
 P $\Gamma^{\{p,q,r\}}$ P
Not SM & Not SM & $r \leftarrow p \land T$
 $s \leftarrow p \land T$ $s \leftarrow q$
 $s \leftarrow q$

X is a stable model of Π If X is a minimal model of the reduct Π^X

Steps to Find Stable Models (Succinct)

Given a propositional program II

- 1. Guess an interpretation X
- **2.** Find the reduct of Π relative to X (i.e., Π^X)
- 3. Check if X is a minimal model of Π^X (note that Π^X is a positive program; has no negation)
 - a. If yes, conclude X is a stable model of Π
 - b. If no, conclude X is **not** a stable model of Π

Steps to Find Stable Models (Verbose)

Given a propositional program Π

- 1. Guess an interpretation X
- **2.** Find the reduct of Π relative to X (i.e., Π^X)
- 3. Check if X satisfies Π^X (Alternatively, check if X satisfies Π)
 - a. If yes, continue
 - b. If no, conclude X is **not** a stable model of Π
- 4. Check if no other interpretation that is smaller than X satisfies Π^{X} . I.e., for each interpretation Y that is smaller than X,
 - a. If Y satisfies Π^X , conclude X is **not** a stable model of Π
 - b. Else continue
- 5. Conclude X is a stable model of Π

NOTES:

- Every stable model is a model.
- The red part can't be replaced with Π .

Example (a)

Find all stable models of

$$p \leftarrow \neg q$$

Inter(X) reduct
$$TT^{X}$$
 SM
 $\not D$ $TT^{\emptyset} = P \leftarrow T$ T
 $\vec P$ $\vec T$ $\vec P$ $\vec T$ $\vec D$ \vec

$$32t \qquad 17385 = P \leftarrow \bot \qquad \times$$

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{2} \frac{1}{3} \frac{1}{3} = \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{2} \frac{1}{3} \frac{1}{3$$

Example (b)

Find all stable models of

$$p \lor q,$$
 $r \leftarrow \neg p.$

Example (c)

Find all stable models of each of the following one-rule

programs: X

$$-p \leftarrow \underline{\neg p} \qquad \frac{\not p \qquad \qquad p \leftarrow T \qquad \times}{\neg p \qquad \qquad p \leftarrow \bot \qquad \times}$$

$$-p \leftarrow \neg \neg p \qquad \not p \qquad p \leftarrow \bot \equiv \Gamma \qquad \bigcirc$$

$$3p5 \qquad p \leftarrow T \equiv \rho \qquad \bigcirc$$

Inclusive vs. Exclusive Or

a) Find the stable models of

$$p \lor q$$

b) Find the stable models of

$$p \lor q$$
$$p \leftarrow q$$

c) Find the stable models of

$$p \lor q$$
$$p \leftarrow q$$
$$q \leftarrow p$$

Models vs. Stable Models

Equivalent propositional programs (i.e., having same models) may have different stable models.

Example:

$$p \leftarrow \neg q$$
, $q \leftarrow \neg p$, p , V , q
 $modd>$ $3p5$, 385 , $3p,87$
 $5.M$ $3p5$ 385 $3p5$ $3p5$

Minimal Models vs. Stable Models

Are stable models the same as minimal models?

Recall the definition:

X is a stable model of Π if X is a minimal model of Π^X

Claim: For any program Π ,

X is a stable model of Π if X is a minimal model of Π

True or false?

Recall: Steps to Find Stable Models (Verbose)

Given a propositional program Π

- 1. Guess an interpretation X
- **2.** Find the reduct of Π relative to X (i.e., Π^X)
- 3. Check if X satisfies Π^X (Alternatively, check if X satisfies Π)
 - a. If yes, continue
 - b. If no, conclude X is **not** a stable model of Π
- 4. Check if no other interpretation that is smaller than X satisfies Π^{X} . I.e., for each interpretation Y that is smaller than X,
 - a. If Y satisfies Π^X , conclude X is **not** a stable model of Π
 - b. Else continue
- 5. Conclude X is a stable model of Π

NOTES:

- Every stable model is a model.
- The red part can't be replaced with Π .