Intro to Al Platform Lab4: Jetson

Hyungmin Kim, Sihwa Lee

(kong4274@hanyang.ac.kr, macto94@hanyang.ac.kr)

Hanyang University 2022 Spring

Basic Settings on Jetson Nano

• install python3-pip

```
$sudo apt install python3-pip
```

- Memory Swap
 - : Since Memory(4GB) on the Jetson Nano is rather limited, create and mount a swap file on the System.

```
$sudo fallocate -1 8G /mnt
$sudo mkswap /mnt/8GB.swap
$sudo swapon /mnt/8GB.swap
```

• add following line into '/etc/fstab/ and reboot the system. It Make sure the swap space gets mounted automatically after reboot

```
/mnt/8GB.swap none swap sw 0 0
```

Install PyTorch on Jetson Nano

1. Install PyTorch 1.9.0

```
-rw-rw-r-- 1 aiha aiha 686 4월 15 14:09 install_torch_1.9.0.sh
aiha@aiha-desktop:~/workspace/lab4$ sh install_torch_1.9.0.sh
$sh install_torch_1.9.0.sh
```

: execute distributed shell script file on your device.

```
sudo apt-get install python3-pip libjpeg-dev libopenblas-dev libopenmpi-dev libo
mp-dev
sudo -H pip3 install future
sudo pip3 install -U --user wheel mock pillow
sudo -H pip3 install testresources
# above 58.3.0 you get version issues
sudo -H pip3 install setuptools==58.3.0
sudo -H pip3 install Cython
# install gdown to download from Google drive
sudo -H pip3 install gdown
# download the wheel
qdown https://drive.google.com/uc?<mark>id</mark>=1wzIDZEJ9oo62 H2oL7fYTp5 -NffCXzt
# install PyTorch 1.9.0
sudo -H pip3 install torch-1.9.0a0+qitd69c22d-cp36-cp36m-linux aarch64.whl
# clean up
  torch-1.9.0a0+gitd69c22d-cp36-cp36m-linux aarch64.whl
```

2. Install torchvision 0.10.0 (compatible with PyTorch 0.10.0)

```
$sh install_torchvision_0.10.0.sh
```

NVIDIA Jetson Nano

: a series of embedded computing boards from Nvidia

: a low-power system and is designed for "accelerating" deep learning applications

: is used for hands-on AI learning and making projects

VIEW TECHNICAL SPECIFICATIONS >		
GPU	128-core NVIDIA Maxwell™	
CPU	Quad-core ARM [®] A57 @ 1.43 GHz	
Memory	2 GB 64-bit LPDDR4 25.6 GB/s	
Storage	microSD (Card not included)	
Video Encode	4Kp30 4x 1080p30 9x 720p30 [H.264/H.265]	
Video Decode	4Kp60 2x 4Kp30 8x 1080p30 18x 720p30 (H.264/H.265)	
Connectivity	Gigabit Ethernet, 802.11ac wireless [†]	
Camera	1x MIPI CSI-2 connector	
Display	HDMI	
USB	1x USB 3.0 Type A,2x USB 2.0 Type A, USB 2.0 Micro-B	
Others	40-pin header (GPIO, I2C, I2S, SPI, UART) 12-pin header (Power and related signals, UART) 4-pin Fan header [†]	
Mechanical	100 mm x 80 mm x 29 mm	

	Jetson Nano Dev Board	Raspberry Pi 3A+
AI Performance	472 GFLOPS	21.5 GFLOPs (est*)
СРИ	1.4 GHz 64-bit Quad- Core ARM Cortex-A57 MPCore	1.4 GHz 64-bit Quad- core ARM Cortex-A53
GPU	128-Core Nvidia Maxwell	Broadcom VideoCore IV
RAM	4GB LPDDR4	512MB LPDDR2 SDRAM

Jetson Nano – Jetpack 4.6

Jetpack: the solution for building AI applications. it includes:

- OS image : a reference file system derived from Ubuntu
- Libraries: TensorRT, cuDNN, CUDA, Multimedia API, OpenCV etc.

These libraries are already installed, so you don't need to install basic libraries.

TensorRT: SDK(Software Development Kit) for deep learning inference

cuDNN: GPU-accelerated library for DNN

OpenCV: Open source library for computer vision, image processing

Jetpack 4.6 – TensorRT

TensorRT

: C++, Python library that facilitates high-performance on NVIDIA's GPUs

: complementary with frameworks TensorFlow, Pytorch, Caffe, etc.

: quick and efficient for the purpose of generating result such as scoring, detecting, regression, or inference

Jetpack 4.6 – CUDA, cuDNN

CUDA

: NVIDIA GPUs' API

: for GPU accelerated applications across multiple domains

: includes a compiler(nvcc) for NVIDIA GPUs, math libraries, and tools for optimizing

cuDNN (NVIDIA CUDA Deep Neural Network library)

: GPU-accelerated library

: enables us to focus on training NN and developing software applications rather than spending time on low-level GPU performance tuning

Jetpack 4.6 – OpenCV

OpenCV (Open source Computer Vision library)

: open source library for computer vision, image processing (e.g., camera control) etc.

- : Functionality
- Image/video I/o, processing, display
- Object/feature detection
- etc

: easy to use, lots of examples are on the web

OpenCV's Official Documentation (https://docs.opencv.org/4.x/)

OpenCV (Open Source Computer Vision Library) is an open-source library that includes several hundreds of computer vision algorithms.

In the Lab4 folder, you can test the CV algorithms

python3 thresholding.py

python3 canny_edge_detection.py

python3 background_sub.py

1. Image Thresholding

cv2.threshold(image, threshold_value, max_value, flag)

: If pixel value is smaller than the threshold, it is set to 0, otherwise it is set to a maximum value.

flag:

cv2.THRESH_BINARY:
$$dst(x,y) = \begin{cases} \max \text{Value} & \text{if } src(x,y) > T(x,y) \\ 0 & \text{otherwise} \end{cases}$$
 cv2.THRESH_BINARY_INV:
$$dst(x,y) = \begin{cases} 0 & \text{if } src(x,y) > T(x,y) \\ \max \text{Value} & \text{otherwise} \end{cases}$$
 cv2.THRESH_TRUNC:
$$dst(x,y) = \begin{cases} threshold & \text{if } src(x,y) > thresh \\ src(x,y) & \text{otherwise} \end{cases}$$

•••

2. Canny Edge Detection

- 1.Apply Gaussian filter to smooth the image in order to remove the noise
- 2. Find the intensity gradients of the image
- 3.Apply gradient magnitude thresholding or lower bound cut-off suppression to get rid of spurious response to edge detection
- 4. Apply double threshold to determine potential edges
- 5.Track edge by hysteresis: Finalize the detection of edges by suppressing all the other edges that are weak and not connected to strong edges.

You can implement complicated algorithm in a single instruction!

edges = cv2.Canny(img,100,200)

3. Background Subtraction

- Background Subtraction(BS) is a common and widely used technique for generating a foreground mask (namely, a binary image containing the pixels belonging to moving objects in the scene) by using static cameras
- In this example, We use the cv2. BackgroundSubtractorMOG2

BackgroundSubtractorMOG2 – It is also a Gaussian Mixture-based Background/Foreground Segmentation Algorithm. It provides better adaptability to varying scenes due illumination changes etc.

Hello Al World- jetson-inference

- Codebase that contains a lot of Al Tasks (https://github.com/dusty-nv/jetson-inference)
 - Image Classification
 - Object Detection
 - Semantic Segmentation
 - Pose Estimation
 - Mono Depth
- For your final Project, this codebase will be very helpful for you project

Hello Al World- Getting Started

1. With your Jetson nano,

```
$sudo apt-get update
$sudo apt-get install git cmake libpython3-dev python3-numpy
$git clone --recursive https://github.com/dusty-nv/jetson-inference
$cd jetson-inference
$mkdir build
$cd build
$sudo cmake ..
$sudo make -j4 (4 is optimal)
$sudo make install
$sudo ldconfig
```

2. Using the ImageNet Program on Jetson

```
#python
$./imagenet.py (input_video_path) (output_video_path)
$./imagenet.py images/fruit_0.jpg images/test/output_0.jpg
```

Hello AI World- Classification

Pre-Trained Model: GoogleNet

- The First time you run each model, It will take a few minutes to build the network
- You can classify images or video whatever you want

```
#Video Processing
ex)
$wget https://nvidia.box.com/shared/static/tlswont1jnyu3ix2tbf7utaekpzcx4rc.mkv%20-0%20jellyfish.mkv
#ResNet-18 based Image Classification
$./imagenet.py -network=resnet-18 jellyfish.mkv images/test/jellyfish_resnet18.mkv
```


Lab 4 Assignment

- Try two more OpenCV tutorial (include Thresholding, edge detection, background subtraction) (reference: https://docs.opencv.org/3.4/d9/df8/tutorial_root.html)
- So, you should have to submit the Report about 5 tutorials
- If you have any difficult to understand codes we handled in Lab class, please include it in report
 - Submit a report by Apr. 25th (via LMS)
 - Less than 3 pages, free format