Some Math Proofs in Portfolio Analysis Models

Jinghan Meng

1 Expectation, Variance and Covariance in Statistics

Definition. The variance of a random variable X with expected value $E(X) \equiv \mu_X$ is defined as $Var(X) \equiv \sigma_X^2 = E((X - \mu_X)^2)$. The **covariance** between random variable Y and Z, with expected values μ_Y and μ_Z , is defined as $Cov(Y, Z) \equiv \sigma_{YZ} = E((Y - \mu_Y)(Z - \mu_Z))$. The **correlation** between Y and Z is defined as

$$Corr(Y, Z) \equiv \rho_{YZ} = \frac{Cov(Y, Z)}{\sqrt{Var(Y)Var(Z)}} = \frac{\sigma_{YZ}}{\sigma_{Y}\sigma_{Z}}.$$

The square root of the variance of a random variable is called its **standard deviation** or **volatility**.

Notice that Var(X) = Cov(X, X).

A few facts about variances and covariances.

- 1. Cov(Y, Z) = E(YZ) E(Y)E(Z). In particular, $Var(X) = E(X^2) (E(X))^2$.
- 2. For constants a, b, c, d, and random variables U, V, Y, Z,

$$E(aU + bV) = aE(U) + bE(V)$$

$$Var(aU) = a^{2}Var(U)$$

$$Var(aU + bV) = a^{2}Var(U) + b^{2}Var(V) + 2abCov(U, V)$$

$$Cov(aU + bV, cY + dZ) = acCov(U, Y) + bcCov(V, Y) + adCov(U, Z) + bdCov(V, Z)$$

2 Portfolio Analysis: Expectation, Variance, Covariance

Suppose that there are n risky assets, each of which has return r_i , weight w_i , expected return $E(r_i)$, variance σ_i^2 . Covariance between asset i and j is σ_{ij} .

In matrix notation, matrix E(r), w, and $\mathbf{1}_{n\times 1}$ are $n\times 1$ column vectors, Σ is $n\times n$ variance-covariance matrix.

$$\boldsymbol{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}, \ E(\boldsymbol{r}) = \begin{pmatrix} E(r_1) \\ \vdots \\ E(r_n) \end{pmatrix}, \ \boldsymbol{1}_{n \times 1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \ \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{pmatrix}$$

Two risky portfolios A, B are constructed using these n assets. Then the expected return of portfolio A is

$$E(r_A) = \sum_{i=1}^n w_i E(r_i) = \boldsymbol{w}^T E(\boldsymbol{r}) = E(\boldsymbol{r})^T \boldsymbol{w}$$
 (1)

Proof. We intensively use the results in section 1.

$$r_{A} = \sum_{i=1}^{n} w_{i} r_{i}$$

$$E(r_{A}) = E\left(\sum_{i=1}^{n} w_{i} r_{i}\right) = \sum_{i=1}^{n} w_{i} E(r_{i})$$

$$\boldsymbol{w}^{T} E(\boldsymbol{r}) = \left(w_{1} \cdots w_{n}\right) \times \begin{pmatrix} E(r_{1}) \\ \vdots \\ E(r_{n}) \end{pmatrix} = \sum_{i=1}^{n} w_{i} E(r_{i}) = E(r_{A})$$

$$E(\boldsymbol{r})^{T} \boldsymbol{w} = \left(E(r_{1}) \cdots E(r_{n})\right) \times \begin{pmatrix} w_{1} \\ \vdots \\ w_{n} \end{pmatrix} = \sum_{i=1}^{n} w_{i} E(r_{i}) = E(r_{A})$$

The variance of return of portfolio A is

$$\sigma_A^2 = \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i=1}^n \sum_{j=i+1}^n w_i w_j \sigma_{ij} = \mathbf{w}_A^T \Sigma \mathbf{w}_A$$
 (2)

Proof. Notice that $Var(r_i) = Cov(r_i, r_i)$. In the following equations, I omit superscript "A" in its weight matrix.

$$\sigma_A^2 = Var\left(\sum_{i=1}^n w_i r_i\right) = \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i=1}^n \sum_{j=i+1}^n w_i w_j \sigma_{ij}$$

$$= \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}$$

$$\boldsymbol{w}_A^T \Sigma \boldsymbol{w}_A = \left(\begin{array}{ccc} w_1 & \cdots & w_n \end{array} \right) \times \left(\begin{array}{ccc} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{array} \right) \times \left(\begin{array}{ccc} w_1 \\ \vdots \\ w_n \end{array} \right)$$

$$= \left(\begin{array}{ccc} \sum_{i=1}^n w_i \sigma_{i1} & \sum_{i=1}^n w_i \sigma_{i2} & \cdots & \sum_{i=1}^n w_i \sigma_{in} \end{array} \right) \times \left(\begin{array}{ccc} w_1 \\ \vdots \\ w_n \end{array} \right)$$

$$= w_1 \sum_{i=1}^n w_i \sigma_{i1} + w_2 \sum_{i=1}^n w_i \sigma_{i2} + \cdots + w_n \sum_{i=1}^n w_i \sigma_{in}$$

$$= \sum_{j=1}^n w_j \sum_{i=1}^n w_i \sigma_{ij}$$

$$= \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}$$

$$= \sigma_A^2$$

The covariance between portfolio A and B returns is

$$\sigma_{AB} = \sum_{i=1}^{n} w_i^A w_j^B \sigma_{i,j} = \boldsymbol{w}_A^T \Sigma \boldsymbol{w}_B$$
(3)

Superscript A and B represent the weights of assets in portfolio *A* and *B*.

Proof. The proof is similar.

$$\begin{split} \sigma_{AB} &= Cov \left(\sum_{i=1}^n w_i^A r_i, \sum_{i=1}^n w_i^B r_i \right) = \sum_{i=1}^n \sum_{j=1}^n w_i^A w_j^B \sigma_{ij} \\ \boldsymbol{w}_A^T \Sigma \boldsymbol{w}_B &= \left(\begin{array}{ccc} w_1^A & \cdots & w_n^A \end{array} \right) \times \left(\begin{array}{ccc} \sigma_1^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma_n^2 \end{array} \right) \times \left(\begin{array}{ccc} w_1^B \\ \vdots \\ w_n^B \end{array} \right) \\ &= \left(\begin{array}{ccc} \sum_{i=1}^n w_i^A \sigma_{i1} & \sum_{i=1}^n w_i^A \sigma_{i2} & \cdots & \sum_{i=1}^n w_i^A \sigma_{in} \end{array} \right) \times \left(\begin{array}{ccc} w_1^B \\ \vdots \\ w_n^B \end{array} \right) \\ &= w_1^B \sum_{i=1}^n w_i^A \sigma_{i1} + w_2^B \sum_{i=1}^n w_i^A \sigma_{i2} + \cdots + w_n^B \sum_{i=1}^n w_i^A \sigma_{in} \\ &= \sum_{i=1}^n \sum_{j=1}^n w_i^A w_j^B \sigma_{ij} \\ &= \sigma_{AB} \end{split}$$

3 Markowitz Model

3.1 Optimal risky portfolio

In the lecture, we state that if two portfolios A and B are constructed by these n assets, and both are on the efficient frontier, then the optimal risky portfolio, denoted by P can be constructed using A and B with weights:

$$w_{P}(A) = \frac{[E(r_{A}) - r_{f}]\sigma_{B}^{2} - [E(r_{B}) - r_{f}]\sigma_{AB}}{[E(r_{B}) - r_{f}]\sigma_{A}^{2} + [E(r_{A}) - r_{f}]\sigma_{B}^{2} - [E(r_{A}) + E(r_{B}) - 2r_{f}]\sigma_{AB}}$$

$$w_{P}(B) = 1 - w_{P}(A)$$
(4)

Proof. To simplify the notations in the following proof, we denote $\mu_A = E(r_A) - r_f$ and

$$\mu_B = E(r_B) - r_f.$$

Since $Var(r_A - r_f) = Var(r_A) = \sigma_A^2$, $Var(r_B - r_f) = Var(r_B) = \sigma_B^2$, and $Cov(r_A - r_f) = Cov(r_A, r_B) = \sigma_{AB}$, the Sharpe ratio of optimal risky portfolio P can be written as

$$S = \frac{E(r_P) - r_f}{\sigma_P} = \frac{w_A \mu_A + w_B \mu_B}{\sqrt{w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}}}$$

Weight w_A and w_B are the solutions of the following optimization equation:

$$\max_{(w_A,w_B)} S = \frac{E(r_P) - r_f}{\sigma_P}$$
 s.t.
$$w_A + w_B = 1$$

We incorporate the constraint by replacing $w_B = 1 - w_A$ in the objective function. Then w_A is solved by setting the first-order derivative of $S = \frac{E(r_P) - r_f}{\sigma_P}$ equal to 0. That is,

$$\frac{dS}{dw_A} = d\left(\frac{w_A \mu_A + w_B \mu_B}{\sqrt{w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}}}\right) / dw_A = 0$$

To simplify the notations, we denote the numerator and denominator of S function as

$$f(w_A) = E(r_P) - r_f = w_A \mu_A + w_B \mu_B = (\mu_A - \mu_B) w_A + \mu_B$$

$$g(w_A) = \sqrt{w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}} = \sqrt{w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A (1 - w_A) \sigma_{AB}}$$

Then, the first-order derivative of $f(w_A)$ and $g(w_A)$ are

$$f'(w_A) = \mu_A - \mu_B$$

$$g'(w_A) = \frac{w_A \sigma_A^2 - (1 - w_A)\sigma_B^2 + (1 - 2w_A)\sigma_{AB}}{\sqrt{w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A}}$$

Therefore,

$$\frac{dS}{dw_A} = \frac{f'(w_A)g(w_A) - f(w_A)g'(w_A)}{(g(w_A))^2} = 0$$
$$f'(w_A)g(w_A) = f(w_A)g'(w_A)$$

$$(\mu_A - \mu_B)\sqrt{w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A}$$

$$= [(\mu_A - \mu_B)w_A + \mu_B] \left(\frac{w_A \sigma_A^2 - (1 - w_A)\sigma_B^2 + (1 - 2w_A)\sigma_{AB}}{\sqrt{w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A}}\right)$$

Rearrange above equation and we can solve the w_A as

$$w_A = \frac{\mu_A \sigma_B^2 - \mu_B \sigma_A^2}{\mu_A \sigma_B^2 + \mu_B \sigma_A^2 - (\mu_A + \mu_B) \sigma_{AB}}$$

3.2 Global minimum variance portfolio (GMVP)

If two portfolios A and B are constructed by these n assets, and both are on the efficient frontier, then the global minimum variance portfolio, denoted by G can be constructed using A and B with weights:

$$w_G(A) = \frac{\sigma_B^2 - \sigma_{AB}}{\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}}$$

$$w_G(B) = 1 - w_G(A)$$
(5)

Proof. Weights of *A* and *B* in GMVP are the solution of the following optimization equation:

$$\min_{(w_A,w_B)}\sigma_G^2=w_A^2\sigma_A^2+w_B^2\sigma_B^2+2w_Aw_B\sigma_{AB}$$
 s.t.
$$w_A+w_B=1$$

We incorporate the constraint by replacing $w_B = 1 - w_A$ in the objective function. Then w_A is solved by setting the first-order derivative of $\sigma_G^2 = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_{AB}$ equal to 0. That is,

$$0 = \frac{d(w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A (1 - w_A) \sigma_{AB})}{dw_A}$$

$$w_A = \frac{\sigma_B^2 - \sigma_{AB}}{\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}}$$

4 Black's (1972) Zero-Beta CAPM

Black's (1972) Zero-Beta CAPM model provides the analytical solutions to the weights of efficient portfolios.

Proposition 1. Let c be a constant. We use the notation E(r)-c to denote the following column vector:

$$E(r) - c = \begin{pmatrix} E(r_1) - c \\ E(r_2) - c \\ \vdots \\ E(r_n) - c \end{pmatrix}$$

Let the vector z solve the system of simultaneous linear equations $E(r) - c = \Sigma z$. Then this solution produces a portfolio x on the envelope of the feasible set in the following manner:

$$z = \Sigma^{-1}[E(r) - c]$$

$$x = (x_1, \dots, x_n)^T$$

$$where$$

$$x_i = \frac{z_i}{\sum_{j=1}^n z_j}$$

Furthermore, all envelope portfolios are of this form.

Proof. A portfolio x is on the envelope of the feasible set of portfolios if and only if it lies on the tangency of a line connecting some point c on the y-axis to the feasible set. Such a portfolio must either maximize or minimize the ratio $\frac{x^T[E(r)-c]}{\sigma_x}$, where $x^T[E(r)-c]$ is the vector product which gives the portfolio's expected excess return over c, and $\sigma_x = \sqrt{x^T \Sigma x}$ is the portfolio's standard deviation. Take first-order derivative of

this ratio with respect to x. This gives:

$$d\left[\frac{x^T(E(r)-c)}{\sqrt{x^T\Sigma x}}\right]/dx = \frac{(E(r)-c)\sqrt{x^T\Sigma x} - x^T(E(r)-c)\frac{\Sigma x}{\sqrt{x^T\Sigma x}}}{x^T\Sigma x} = \begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}_{n\times 1}$$

$$E(r)-c = \frac{x^T(E(r)-c)}{x^T\Sigma x}\Sigma x$$

Notice that $\frac{x^T(E(r)-c)}{x^T\Sigma x}$ is a number. We denote it by λ . Then writing $z=\lambda x$, we see that a portfolio is efficient if and only if it solves the system $E(r)-c=\Sigma z$. Normalizing z so that its coordinates add to 1 gives the desired result.

By a theorem first proved by Black (1972), any two envelope portfolios are enough to establish the whole envelope.

Proposition 2. The convex combination of any two envelope portfolios is on the envelope of the feasible set.

Proof. Let x and y be portfolios on the envelope. Then, they are feasible portfolios of risky assets. A portfolio x is feasible if and only if the weights of the portfolio add up to 1; i.e., $\sum_{i=1}^{n} x_i = 1$, where n is the number of risky assets. Suppose that λ is some number. Then it is clear that $z = \lambda x + (1 - \lambda)y$ also satisfies that $\sum_{i=1}^{n} z_i = 1$. That is, z, the convex combination of feasible portfolio x and y, is feasible.

By Proposition 1, x and y are envelope portfolios. It follows that there exist two vectors, z_x and z_y , and two constants c_x and c_y , such that:

- x is the normalized-to-unity vector of z_x ; i.e., $x_i = \frac{z_{xi}}{\sum_{i=1}^n z_{xj}}$
- y is the normalized-to-unity vector of z_y ; i.e., $y_i = \frac{z_{yi}}{\sum_{j=1}^n z_{yj}}$
- $E(r) c_x = \Sigma z_x$ and $E(r) c_y = \Sigma z_y$.

Furthermore, since z maximizes the ratio $\frac{z^T(E(r)-c)}{\sigma_z}$, it follows that any normalization of z also maximizes this ratio. With no loss in generality, therefore, we assume that z

sums to 1.

It follows that for any real number a, the portfolio $az_x+(1-a)z_y$ solves the system $E(r)-[ac_x+(1-a)c_y]=\Sigma\left[az_x+(1-a)z_y\right]$. This proves our claim. \square