1. (a)

The code to compute the log of the prior is

$\log \text{ prior}(z) = \text{factorized gaussian } \log \text{ density}(0,0,z)$

1. (b)

The code to produce a 784-dimensional mean vector of a product of Bernoulli distributions is

1. (c)

The code to compute the log-likelihood log p(x|z) is

```
function log_likelihood(x,z)
  logitmean = decoder(z)
  return sum(bernoulli_log_density(logitmean,x), dims = 1)
end
```

1. (d)

The code to compute the joint log density log p(z, x) is

```
joint log density(x,z) = log prior(z) .+ log likelihood(x,z)
```

2. (a)

The code to output the mean and log-standard deviation of a factorized Gaussian is

```
encoder = Chain(Dense(Ddata,Dh,tanh),Dense(Dh,2*Dz),unpack gaussian params)
```

2. (b)

The code to evaluate the likelihood of z under the variational distribution is

```
\log q(q \mu, q \log \sigma, z) = \text{factorized gaussian log density}(q \mu, q \log \sigma, z)
```

2. (c)

The code to compute an unbiased estimate of the mean variational evidence lower bound on a batch of images is

```
function elbo(x)
    q \mu = encoder(x)[1]
    q \log \sigma = \operatorname{encoder}(x)[2]
    z = \exp(q \log \sigma).* randn(size(q_\mu)).+ q_\mu
    joint ll = joint log density(x,z)
     \log q z = \log q (q \mu, q \log \sigma, z)
    elbo estimate = sum(joint ll.-log q z) / size(q \mu)[2]
     return elbo estimate
   end
   2. (d)
    The code to compute the negative elbo estimate over a batch of data is
   function loss(x)
    return -elbo(x)
   end
   2. (e)
   The code to initialize and optimize the encoder and decoder parameters jointy on the training
set is
   function train model params! (loss, encoder, decoder, train x, test x; nepochs=10)
     ps = Flux.params(encoder,decoder)
    opt = ADAM()
     for i in 1:nepochs
      for d in batch x(train x)
       gs = Flux.gradient(ps) do
        batch loss = loss(d)
        return batch loss
       end
       Flux.Optimise.update!(opt,ps,gs)
      end
      if i\%1 == 0 \# change 1 to higher number to compute and print less frequently
       @info "Test loss at epoch $i: $(loss(batch x(test x)[1]))"
      end
     @info "Parameters of encoder and decoder trained!"
   end
   ## Train the model
   train model params!(loss,encoder,decoder,train x,test x, nepochs=100)
```

We train the data for 100 epochs and find the final ELBO on the test set is 150.64.

3. (a)

The following code generates the 2x10 plots. The first row plots are the Bernoulli means of p(x|z) and the second row plots are the binary images, sampled from the distribution above it.

```
\begin{split} z &= randn(2,10) \\ logitp &= decoder(z) \\ p &= (1 .+ exp.(-logitp)) .^{\wedge} (-1) \\ x &= sample\_bernoulli(p) \\ plot\_list\_mean &= [] \\ for i in 1:10 \\ push!(plot\_list\_mean,plot(mnist\_img(\theta[:,i]))) \\ end \\ plot\_list\_images &= [] \\ for j in 1:10 \\ push!(plot\_list\_images, plot(mnist\_img(x[:,j]))) \\ end \\ plot\_list &= [plot\_list\_mean; plot\_list\_images] \\ display(plot(plot\_list..., layout &= grid(2,10), size &= (10000,6000))) \\ \end{split}
```


Generative Sample Plots (1st Row: mean, 2nd Row: binarized)

 $\begin{array}{l} q_{\mu},\,q_{l}\log\sigma=encoder(train_{x})[1],\,encoder(train_{x})[2]\\ scatter(q_{\mu}[1,:],\,q_{\mu}[2,:],\,group=train_{l}abel) \end{array}$

Mean Vectors in 2D Latent Space

```
3. (c)
In the figure below, each row represents the plots of the corresponding pairs.
function interpolation(za,zb,α)
 return α * za .+ (1-α) * zb
end
# Manually pick the data with different classes and check by train label
train label[21:30] # 4, 0, 9, 1, 1, 2, 4, 3
x1 = train \ x[:,21] # Number 4
x2 = train x[:,22] # Number 0
x3 = train x[:,23] # Number 9
x4 = train x[:,24] # Number 1
x5 = train \ x[:,26] \# Number 2
x6 = train x[:,30] # Number 3
logitmean1 = encoder(x1)[1]
logitmean2 = encoder(x2)[1]
logitmean3 = encoder(x3)[1]
logitmean4 = encoder(x4)[1]
logitmean5 = encoder(x5)[1]
logitmean6 = encoder(x6)[1]
bernmean1 = []
for i in 0:10
 logitmeans = decoder(interpolation(logitmean1, logitmean2, i/10))
 means = \exp.(logitmeans)./ (1.+ \exp.(logitmeans))
 push!(bernmean1, plot(mnist img(means[:,1])))
end
bernmean2 = []
for i in 0:10
 logitmeans = decoder(interpolation(logitmean3, logitmean4, i/10))
 means = \exp.(logitmeans) . / (1 . + \exp.(logitmeans))
 push!(bernmean2, plot(mnist img(means[:,1])))
end
bernmean3 = []
for i in 0:10
 logitmeans = decoder(interpolation(logitmean5, logitmean6, i / 10))
 means = exp.(logitmeans) ./ (1 .+ exp.(logitmeans))
 push!(bernmean3, plot(mnist img(means[:,1])))
end
```

display(plot(bernmean..., layout=grid(3,11), size =(10000, 2000), axis=nothing))

bernmean = []

bernmean = [bernmean1; bernmean2; bernmean3]

Bernoulli Means from the Latent Space Interpolation

```
4. (a) (a)
function top image(x)
   " return only the top half of a 28*28 array"
 end
4. (a) (b)
function log likelihood top(x,z)
 logitmean = decoder(z)
 logitmean top # gives the logit mean of the top half images
 sum(bernoulli log density(logitmean top, x), dims=1)
end
4. (a) (c)
\log joint top(x,z) = \log prior(z) + \log likelihood top(x,z)
4. (b)
encoder 2 = Chain(Dense(392,Dh, tanh), Dense(Dh,4), unpack gaussian params())
function elbo 2(x)
 q \mu = encoder 2(x)[1]
 q \log \sigma = \text{encoder}_2(x)[2]
 z = \exp(q \log \sigma).* randn(size(q_\mu)).+ q_\mu
 joint ll = log joint top(x,z)
 \log q z = \text{factorized gaussian log density}(q \mu, q \log \sigma, z)
 elbo estimate 2 = \text{sum}(\text{joint ll.-log } q z) / \text{size}(q \mu)[2]
 return elbo estimate 2
end
```

```
function loss 2(x)
 return -elbo_2(x)
end
function train model params 2!(loss, encoder, decoder, train x, test x; nepochs=10)
 ps = Flux.params(encoder,decoder)
 opt = ADAM()
 for i in 1:nepochs
  for d in batch x(train x)
   gs = Flux.gradient(ps) do
    batch loss = loss(d)
    return batch loss
   end
   Flux.Optimise.update!(opt,ps,gs)
  if i%1 == 0 # change 1 to higher number to compute and print less frequently
   @info "Test loss at epoch $i: $(loss(batch x(test x)[1]))"
  end
 end
 @info "Parameters of encoder and decoder trained!"
@info "Parameters of encoder and decoder trained!"
   end
train model params 2!(loss 2,encoder 2,decoder,train x, test x, nepochs
=100)
4. (c)
(a) True
(b) False
(c) False
(d) False
(e) True
```