Econ 2120 Section 2 - Conditional Expectation

Yibo Sun and Alice Wu

13 September 2021

Outline

Review of Probability

Probability Space Conditional Probability, Bayes Rule Expectation Law of Iterated Expectations

Optimal Prediction

Regression Function (CEF) and its Properties E[Y|X] vs. $E^*[Y|X]$

Outline

Review of Probability

Probability Space Conditional Probability, Bayes Rule Expectation Law of Iterated Expectations

Optimal Prediction

Regression Function (CEF) and its Properties E[Y|X] vs. $E^*[Y|X]$

Probability Space

- ▶ The states of nature $S = \{s_1, ..., s_M\}$ contain points called elementary events.
- ▶ $A \subset S$ is an event, and let \mathcal{B} denote the set of events $\sim 2^S$
- A probability measure $P:\mathcal{B} o [0,1]$ such that $P(s_j)\geq 0$ and $\sum_{j=1}^M P(s_j)=1$, and $P(A)=\sum_{s\in A} P(s)$
- ▶ A probability space consists of the triple (S, \mathcal{B}, P) .

Conditional Probability

Consider an event B with P(B) > 0. $\forall s \in S$:

- $\blacktriangleright \text{ If } s \notin B, \ P(s|B) = 0.$
- ▶ If $s \in B$, $P(s|B) = \frac{P(s)}{P(B)} = \frac{P(s)}{\sum_{s' \in B} P(s')}$

For any event A and B, the probability that both A, B occur is

$$P(A \cap B) = \sum_{s \in A \cap B} P(s)$$

the probability of A conditional on that B occurs is:

$$P(A|B) = \sum_{s \in A} P(s|B) = \sum_{s \in A \cap B} P(s|B)$$
$$= \frac{\sum_{s \in A \cap B} P(s)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

Theorems

Theorem (Law of Total Probability)

If $\{B_j\}$ forms a partition of S ($\cup_j B_j = S$, $B_j \cap B'_j = \emptyset$, $\forall j \neq j'$), then for any event $A \subset S$, we have:

$$P(A) = \sum_{j} P(A \cap B_j) = \sum_{j} P(A|B_j)P(B_j)$$

Theorem (Bayes' Rule)

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_{j} P(A|B_j)P(B_j)}$$

where the second equality follows from the law of total probability.

Prove Bayes' Rule

Use the law of total probability to show

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Prove Bayes' Rule

Use the law of total probability to show

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Pf: Note $S = A \cup A^c$, by the law of total probability,

$$P(A \cap B) = P(A \cap B|A) * P(A) + \underbrace{P(A \cap B|A^c) * P(A^c)}_{=0}$$
$$= P(A \cap B|A) * P(A)$$
$$= P(B|A)P(A)$$

Likewise, can show $P(A \cap B) = P(A|B)P(B)$. Therefore, $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$.

Joint Distribution

For a pair of random variables (X,Y), we have

- ▶ A partition of state space S: all possible values of (x,y) in the Cartesian product $\mathcal{X} \times \mathcal{Y} = \{x \in \{x_1, ..., x_K\}, y \in \{y_1, ..., y_L\}\}$
- ▶ Probability measure: the joint distribution of (X,Y) given by

$$P_{XY}(x, y) = P(X = x, Y = y) = \sum_{s \in S: X(s) = x, Y(s) = y} P(s)$$

for
$$(x,y) \in \mathcal{X} imes \mathcal{Y}$$
 Single Variable

Marginal distribution for X and Y:

$$P(X): \mathcal{X} \to [0,1], P_X(x) = \sum_{y \in \mathcal{Y}} P_{XY}(x,y)$$
$$P(Y): \mathcal{Y} \to [0,1], P_Y(y) = \sum_{y \in \mathcal{Y}} P_{XY}(x,y)$$

Conditional Distribution

Assume $P(X = x) \neq 0$, the distribution of Y conditional on X is:

$$P_{Y|X}(y|x) = P(Y = y|X = x)$$

$$= \frac{P(Y = y, X = x)}{P(X = x)}$$

$$= \frac{P_{YX}(y, x)}{P_{X}(x)}$$

which is equivalent to

$$P_{XY}(x,y) = P_{Y|X}(y|x)P_X(x)$$

Continuous variables

Let X be a continuous variable with p.d.f. f_X s.t. $\int_{-\infty}^{\infty} f_X(x) = 1$ and $Pr(X \in A) = \int_A f_X(x) dx$, for any set A.

<u>Joint</u>: given continuous random variables X, Y, the joint p.d.f. f(x, y) satisifies

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

$$Pr(X \in A, Y \in B) = \int_{A} \int_{B} f(x, y) dx dy$$

Marginal:

$$\overline{f_X(x)} = \int_Y f(x,y) dy$$
 and $f_Y(y) = \int_X f(x,y) dx$

Conditional:

$$\frac{f_{Y|X}(y|x)}{f_{X|X}(y|x)} = \frac{f(x,y)}{f_{X}(x)}$$

Bayes' Rule:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_{Y}(y)}{f_{X}(x)}$$

Expectation

A scalar random variable Y is a mapping from S to a real number in \mathbb{R} :

$$Y:S\to\mathbb{R}$$

There are two equivalent ways to calculate the expected value of Y.

1. Sum *Y*'s value at each state and weight by the probability of each state:

$$\mathbb{E}[Y] = \sum_{i=1}^{M} Y(s_i) P(s_i)$$

2. Sum distinct values that *Y* can take, weighted by the probability of each value :

$$\mathbb{E}[Y] = \sum_{l=1}^{L} y_l P(Y = y_l)$$

where
$$P(Y = y_l) = \sum_{i:Y(s_i)=y_l} P(s_i)$$

Conditional Expectation

The expectation of Y conditional on event B happening is:

$$\mathbb{E}[Y|B] = \sum_{i} Y(s_{i})P(s_{i}|B)$$

Let X be another random variable: $X:S\to\mathbb{R}$ taking values from $\{x_1,...,x_K\}$.

Define event $B = \{s : X(s) = x_k\}$. Then

$$\mathbb{E}[Y|B] = \sum_{j} Y(s_{j})P(s_{j}|B)$$

$$= \sum_{j} Y(s_{j})P(s_{j}|X = x_{k})$$

$$= \mathbb{E}[Y|X = x_{k}]$$

Note:
$$P(s_j|X = x_k) = \frac{P(s_j)}{P(X = x_k)}$$
 if $X(s_j) = x_k$. Otherwise, it's zero.

Law of Iterated Expectations (LIE)

Theorem (Law of Total / Iterated Expectations)

If Y is a random variable, for any random variable X on the same probability space,

$$E[Y] = E[E[Y|X]]$$

where the outer expectation is over X, and the inner is over Y|X

Law of Iterated Expectations (LIE)

Theorem (Law of Total / Iterated Expectations)

If Y is a random variable, for any random variable X on the same probability space,

$$E[Y] = E[E[Y|X]]$$

where the outer expectation is over X, and the inner is over Y|X Pf 1 (Discrete):

$$E[Y] = \sum_{y} y * Pr(Y = y)$$

$$= \sum_{y} y * (\sum_{x} Pr(Y = y | X = x)) Pr(X = x))$$

$$= \sum_{x} (\underbrace{\sum_{y} y * Pr(Y = y | X = x)}_{E[Y | X = x)}) Pr(X = x)$$

$$= E_{X}[E[Y | X]]$$

Law of Iterated Expectations (LIE)

Pf 2 (Continuous):

$$E[Y] = \int_{y} y * f(y)dy$$

$$= \int_{y} y * (\int_{x} f(y|x)f(x)dx)dy$$

$$= \int_{x} (\int_{y} y * f(y|x)dy)f(x)dx$$

$$= E_{x}[E[Y|X]]$$

Outline

Review of Probability

Probability Space Conditional Probability, Bayes Rule Expectation Law of Iterated Expectations

Optimal Prediction

Regression Function (CEF) and its Properties E[Y|X] vs. $E^*[Y|X]$

Regression Function (CEF)

Definition

A (mean) regression function $r: X \to \mathbb{R}$ estimates the conditional expectation of the dependent variable given the independent variable:

$$r(x) = \mathbb{E}[Y|X=x]$$

Prove:

$$\mathbb{E}[Y|X] = \operatorname{argmin}_{g} \mathbb{E}[(Y - g(X))^{2}]$$

i.e. the CEF is the best predictor under the mean squared loss function.

Properties

Let $\epsilon = Y - \mathbb{E}[Y|X]$ Prove the following:

- 1. $\mathbb{E}[\epsilon] = 0$
- 2. $\mathbb{E}[\epsilon|X] = 0$
- 3. given any function h of X, $\mathbb{E}[\epsilon h(X)] = 0$

Note 3) is equivalent to say E[Y|X] is the orthogonal projection of Y onto the space of functions of X (not just linear functions)

Properties

Pf: (1)

$$E[\epsilon] = E[(E[Y|X] - Y)]$$

= $E_X[E[Y|X]] - E[Y]$
= $E[Y] - E[Y] = 0$

(2)

$$E[\epsilon|X] = E[(E[Y|X] - Y)|X]$$

= $E[Y|X] - E[Y|X] = 0$

(3)

$$E[\epsilon h(X)] = E_X[E[\epsilon h(X)|X]]$$
 by L.I.E.
= $E_X[h(X)\underbrace{E[\epsilon|X]}_{=0}] = 0$

Proof for Regression Function (CEF)

Prove: $\mathbb{E}[Y|X] = argmin_g \mathbb{E}[Y - g(X)]^2$, i.e. the CEF is the best predictor under the squared loss function.

Pf:

For any function $g: X \to \mathbb{R}$,

$$E[(Y - g(X))^{2}] = E[(Y - E[Y|X] + E[Y|X] - g(X))^{2}]$$

$$= E[(Y - E[Y|X])^{2}] + E[(Y|X] - g(X))^{2}]$$

$$+ 2\underbrace{E[(Y - E[Y|X])(E[(Y|X] - g(X))]}_{E[\epsilon h(X)] = 0}$$

$$= E[\epsilon^{2}] + \underbrace{E[(Y|X] - g(X))^{2}]}_{>0}$$

That is, we have shown $E[(Y - E[Y|X])^2] \le E[(Y - g(X))^2]$ for any function g.

E[Y|X] vs. $E^*[Y|X]$

Recall $E^*[Y|X] = X\beta$ where $\beta = argmin_b E[(Y - Xb)^2]$ is the best *linear* predictor for Y.

We have $E[Y|X] = E^*[Y|X]$ iff Y is linear in X, which would be the case if

- X is discrete: define $\delta_x = 1[X = x]$
- ► (Y, X) are jointly normal (uncorrelated ~ independent; we will discuss this in normal linear model)

Polynomial Approximation

Theorem (Stone-Weierstrass Theorem)

If f is a continuous complex function in [a, b], there exists a sequence of polynomials P_n such that

$$lim_{n\to\infty}P_n(x)=f(x)$$

uniformly on [a,b].

$$(\forall \epsilon > 0 \,\exists N \, \text{ s.t. } n > N \rightarrow \forall x \, |P_n(x) - f(x)| < \epsilon,$$

This implies we can use a linear function of $\{1,X,X^2,X^3,...\}$ to approximate the regression function

$$E[Y|X] = \lim_{n \to \infty} E^*[Y|1, X, X^2, X^3, ...X^n]$$

Summary

Regression function is the orthogonal projection onto all functions of X:

$$E[(Y - r(X))g(X)] = 0 \text{ for all } g$$

▶ Linear predictor is the orthogonal projection onto span(X) ~ linear functions of X:

$$E[(Y - E^*(Y \mid 1, X))(\beta_0 + \beta_1 X)] = 0 \text{ for all } \beta_0, \beta_1$$

► Show $E^*(Y|1,X) = E^*(r(X)|1,X)$

Summary

Recap:

$$\begin{split} r(X) &= E[Y|X] = \arg\min_{f(X)} ||Y - f(X)||^2 \\ &= \lim_{M \to \infty} E^* \left(Y \mid 1, X, X^2, \dots, X^M \right) \\ E^*[Y|X] &= X\beta \\ \text{where } \beta = \arg\min_{\beta} ||Y - \beta'X||^2 \\ &= \arg\min_{\beta} ||r(X) - \beta'X||^2 \end{split}$$