MST (Minimum Spanning Tree)

Introduzione

INPUT

OUTPUT

Qualche Definizione

Teorema dell'arco sicuro

Dimostrazione

Se $(u,v)\in T$

Se (u,v)
otin T

Corollario

Algo Generico

Algoritmo GENERIC-MST

Cosa fa?

Algoritmo di Kruskal

Algoritmo definitivo

Tempo di calcolo

Algoritmo di Prim

Funzionamento di base

Proprietà dell'algoritmo

Elementi utili

Coda Q

Campi dei vertici

Ad ogni passo...

Algoritmo

Tempo di calcolo

Introduzione

INPUT

Grafo connesso non orientato pesato G=(V,E) con $W:E o R^+$ tale che W(u,v) è il peso dell'arco (u,v)

OUTPUT

 $T\subseteq E$ aciclico tale che:

1.
$$\forall v \in V, \ \exists \ (u,v) \in T$$

2.
$$W(T) = \sum_{(u,v) \,\in\, T} W(u,v)$$
 è minimo

$$G_T = (V,T) o$$
 MST

*

In poche parole...

Devo avere ogni nodo collegato almeno da un arco, in modo tale che la somma di tutti questi archi sia la più piccola possibile

Qualche Definizione

- Taglio: Partizione di V in due insiemi V' e V-V'
- Arco attraversa taglio: arco $(u,v) \in E \;\; t.c. \; u \in V' \; \wedge \; v \in V'-V$
- ullet Taglio che rispetta l'insieme: un taglio rispetta un insieme $A\subseteq E$ se nessun arco di A attraversa il taglio
- Arco leggero: arco di peso minimo che attraversa il taglio

Teorema dell'arco sicuro

Dati:

- ullet un grafo connesso non orientato e pesato G=(V,E)
- un sottoinsieme A dell'insieme T di archi di un MST
- ullet un qualsiasi taglio (S,V-S) che rispetti A
- un arco leggero (u,v) del taglio

Allora l'arco leggero (u,v) è sicuro per A, ovvero $A \cup \{(u,v)\} \subseteq T$

NOTA! (u,v) è un arco sicuro per A se quell'arco appartiene al MST

Dimostrazione

IPOTESI: Esiste almeno un MST $T\subseteq E$ $\ t.c$ $A\subseteq T$

TESI: trovare MST $T' \subseteq E$ $\ t.c$ $A \cup \{(u,v)\} \subseteq T$

Visto che (S,V-S) rispetta A e (u,v) attraversa il taglio, allora (u,v)
otin A.

Abbiamo quindi 2 casi:

Se
$$(u,v)\in T$$

Allora $A \cup \{(u,v)\} \subseteq T$ il quale è una MST

Se
$$(u,v)
otin T$$

Dal momento che T è connesso, allora esisterà un cammino p che va da u a v. Visto che (u,v) attraversa il taglio, allora significa che si trovano da due parti opposte rispetto a quest'ultimo. Esiste allora almeno un arco (x,y) di p che attraversa il taglio.

Sia
$$T'=(T\setminus\{(x,y\}\cup\{(u,v)\})$$
:

Sappiamo che $A\subseteq T$ e che (x,y)
otin A visto che attraversa il taglio, allora $A\subseteq T\setminus\{(x,y\}$

A maggior ragione
$$A\subseteq (T\setminus \{(x,y)\})\cup \{(u,v)\}=T'\Rightarrow A\cup \{(u,v)\}\subseteq T'.$$

Verificando il peso di T':

$$w(T') = w(T) - w(x, y) + w(u, v)$$

Dal momento che (u,v) è un arco leggero del taglio attraversato anche da (x,y) allora $w(x,y) \geq w(u,v) \Rightarrow w(T') \leq w(T)$

Essendo T un MST, allora lo è anche T', il quale contiene $A \cup \{(u,v)\}$.

Corollario

$$A\subseteq T$$
 è tale che $G_A=(V,A)$ è una foresta con $|V|-|A|$ alberi. Sia $C=(V_C,A_C)$, con $V_C\subseteq V$ e $A_C\subseteq A$, una componente connessa di G_A . $\Rightarrow (V_C,V-V_C)$ è sicuramente un taglio che rispetta A \Rightarrow un arco leggero di $(V_C,V-V_C)$ è un arco sicuro per A

In poche parole...

Per trovare un nuovo arco sicuro da aggiungere ad A:

- Considero una delle componenti C della foresta
- Trovo arco leggero che collega un vertice in C con uno non in C

Algo Generico

- 1. Inizializza un insieme A vuoto
- 2. Aggiunge ad ogni passo un arco (u,v) tale che $A\cup\{(u,v)\}$ è un sottoinsieme dell'insieme T degli archi di MST
- 3. Algoritmo termina quando A=T, ovvero $G_A=(V,T)\Rightarrow MST$

Algoritmo GENERIC-MST

GENERIC-MST (G,W)

 $A \leftarrow \emptyset$

WHILE
$$|V| - |A| > 1$$

trova arco (u,v) sicuro per A

 $A = A \cup \{(u,v)\}$

RETURN A

Cosa fa?

- 1. A rimane aciclico durante le iterazioni
- 2. $G_A=(V,A)$ ad ogni iterazione è una foresta di |V|-|A| alberi

- 3. All'inizio, G_A contiene |V| alberi (singoli vertici)
- 4. Ogni iterazione riduce di 1 il numero di alberi e l'arco sicuro collega sempre componenti distinte di G_A
- 5. Quando arriva ad un solo albero l'algoritmo termina (ovvero tutti i vertici sono collegati)
- 6. Il numero di iterazioni è parti a ert V ert 1

Algoritmo di Kruskal

Algoritmo per trovare MST, tramite l'ordinamento degli archi in ordine crescente di costo e successivamente analizzandoli singolarmente, inserendo l'arco nella soluzione se non forma cicli con gli archi precedentemente selezionati (ovvero connette due componenti diverse di G_A .

Algoritmo definitivo

```
KRUSKAL-MST (G=(V,E), W) A \leftarrow \emptyset E \leftarrow \langle e_1,...,e_n \rangle ordinati per peso non decrescente FOREACH v \in V MAKE_SET (v) FOR i from 1 to n (u,v) \leftarrow e_i IF FIND_SET (u) \neq FIND_SET(v) A = \{(u,v)\} \cup A UNION (u,v) RETURN A
```

Tempo di calcolo

Sapendo che:

- |E| > |V| 1
- $\alpha < log|V| \rightarrow \alpha < log|E|$

L'ordinamento ha tempo O(|E|log|E|), FOREACH invece O(|V|) e infine il FOR complessivamente è $O(|E|\alpha)$. Sommando troviamo:

$$O(|E|log|E| + (|V| + |E|)\alpha)
ightarrow O(|E|log|E|)$$

Algoritmo di Prim

Funzionamento di base

1. Sceglie vertice arbitrario r (componente C all'inizio composta quindi solo da vertice r)

- 2. Trova l'arco di peso minimo che connette r ad un altro vertice v (entra così anche v in C)
- 3. Trovo arco di peso minimo che connette un vertice in C ad un vertice v non in C (anche questo entra in C)
- 4. Ripeto il passo 3
- 5. Termina quando C comprende tutti i vertici del grafo e quindi coincide con il MST

Proprietà dell'algoritmo

Ad ogni passo:

- 1. Il sottoinsieme A degli archi di MST aggiunti fanno parte della componente C. La foresta è composta quindi da:
 - $C = (V_C, A)$
 - $|V-V_C|$ componenti di vertici singoli (non ancora inseriti)
- 2. Il taglio $(V_C, V V_C)$ rispetta l'insieme A
- 3. L'arco sicuro è l'arco leggero (di peso minimo) che connette un vertice in C con uno non in C.

Elementi utili

Coda Q

Coda di min-priority che contiene tutti i vertici che non appartengono a C (quindi all'inizio tutti), permettendo di estrarre un vertice v tale che (u,v) è l'arco leggero (peso minimo) che collega un vertice $u \in C$ con un vertice $v \notin C$.

Campi dei vertici

Ad ogni vertice v sono associati due campi:

- **v.key** \rightarrow minimo valore del peso degli archi (u,v) incidenti in v tale che $u \in C$.
- $v.\pi \rightarrow \text{indica un vertice } u$ tale che (u,v) è l'arco di peso minimo di v.key

All'inizio $v.key = \infty$ e $v.\pi = NIL$ per tutti i vertici tranne per il primo, il quale scelto in modo arbitrario e ha r.key = 0.

Ad ogni passo...

- 1. Viene estratto da Q il vertice u con il minor valore del campo key:
 - l'arco $(u.\pi,u)$ è un nuovo arco di MST
 - u è un vertice che si aggiunge alla componente C
- 2. Per ogni vertice v adiacente a u, se v è in Q e v.key > W(u,v), vengono aggiornati:
 - v.key al valore W(u,v)
 - $v.\pi$ al valore u

3. Algo termina quando Q vuota

Algoritmo

```
\begin{array}{l} \textbf{PRIM-MST} \ (\textbf{G}, \textbf{W}, \textbf{r}) \\ \textbf{FOREACH} \ v \in V \\ v.key \leftarrow \infty \\ v.\pi \leftarrow NIL \\ r.key \leftarrow 0 \\ Aggiungi \ tutti \ i \ vertici \ di \ V \ alla \ coda \ Q \\ \textbf{WHILE} \ Q \neq \emptyset \\ u \leftarrow \textit{estrai vertice da} \ Q \\ \textbf{FOREACH} \ v \in \textit{adj}(u) \\ \textbf{IF} \ v \in Q \ \textbf{AND} \ W(u,v) < v.key \\ v.key \leftarrow W(u,v) \\ v.\pi \leftarrow u \end{array}
```

Tempo di calcolo

L'inizializzazione dei valori e l'aggiunta dei vertici a Q hanno tempo lineare O(|V|), anche WHILE O(|V|), l'estrazione del vertice da Q O(log|V|), l'ultimo FOREACH invece O(|E|) e infine l'assegnazione del valore da W(u,v) O(log|V|). Possiamo quindi calcolare il tempo totale:

$$O(|V|) + O(|V|log|V|) + O(|E|log|V|) o O(|E|log|E|)$$