

Ingeniería de Sistemas

INGENIERIA DE SOFTWARE II UNIDAD No. 2

Métricas de procesos y de proyectos de software

Métricas del Software

ALCANCE DE LAS METRICAS

Métricas para entender, controlar y mejorar

- □ Proceso: Cualquier actividad relacionada con la producción de software, todas las actividades del ciclo de vida del software
 - Requisitos, diseño, codificación, pruebas, mantenimiento, administración de configuraciones
- □ Producto: Cualquier artefacto, entregable o documentos que resultan de cualquiera de las actividades del proceso de software
 - Especificaciones de requisitos, plan, código, caso de prueba
- ☐ Recurso/ proyecto: Cualquier elemento que es necesario para realizar el proceso
 - •Gente, tiempo, hardware, software, método

Para un Producto, Proceso o Recurso se tiene:

Atributos externos

- Pueden ser medidos únicamente con respecto a su interacción con el ambiente
- Por ejemplo: Confiabilidad

Atributos Internos

- Pueden ser medidos en términos puramente de las entidades en si mismas.
- Por ejemplo, líneas de código

Métricas de Procesos

Los aspectos relacionados con el proceso de desarrollo de software que pueden medirse son:

Atributos internos:

- Duración de un proceso o de una de sus actividades
- Esfuerzo asociado con el proceso o con una de sus actividades
- Número de incidentes de un tipo determinado que ocurren durante el proceso o una de sus actividades

Atributos externos:

- Calidad
- Estabilidad

Entidad	Interno	Externo
Especificar	cambios en los	calidad, costo, estabilidad efectividad
Pruebas	tiempo, esfuerzo, número de defectos encontrados	costo, costo-efectividad
Planeación	tiempo, esfuerzo, error de estimación	precisión, costo

CATEGORÍAS

- Aunque se ha propuesto una gran variedad de taxonomías métricas, las siguientes atienden las áreas más importantes de las métricas.
 - Métricas para el modelo de análisis
 - Métricas para el modelo de diseño
 - Métricas para el código fuente
 - Métricas para pruebas

- En esta fase se obtendrán los requisitos y se establece el fundamento para el diseño.
- En esta fase las métricas proporcionan una visión interna a la calidad del modelo de análisis.
- Estas métricas examinan el modelo de análisis con la intención de predecir el tamaño del sistema resultante.

- Métricas basadas en la función: Utilizada para medir el tamaño del sistema a construir.
 - Son medidas indirectas del software y del proceso.
 - Se centran en la funcionalidad o utilidad del programa.
 - Emplean como un valor de normalización una medida de la funcionalidad que entrega la aplicación.
 - La métrica orientada a la función utilizada con mayor amplitud es el punto de función (PF), se miden en función de:
 - Número de entradas de usuario.
 - Número de salidas de usuario.
 - Número de peticiones de usuario.
 - Número de archivos.
 - Número de interfaces externas.

- Métrica Bang: Utilizada para medir el tamaño del sistema a construir. Métrica que permite estimar el tamaño del producto de software desde el punto de vista del usuario e independientemente de su implementación
- Se calcula:
 - El numero de primitivas funcionales,
 - Elemento de datos ED,
 - Objetos de datos O,
 - Relaciones,
 - Estados,
 - Transiciones,
 - Primitivas modificadas (funciones externas adaptadas),
 - ED de entrada,
 - ED de salida,
 - ED grabados.

- Métrica de la calidad de la Especificación
 - Valoración del modelo con la especificación de requisitos (completitud, consistencia, ambigüedad, comprensión, etc.).
 - Se plantea una fórmula para cada uno de los atributos de la especificación, incluyendo requisitos Funcionales y no funcionales, interpretación, etc.).

Métricas de requisitos

- Las medidas de requisitos son únicas porque permiten caracterizar el espacio del problema.
- Se encuentran disponibles en etapas tempranas del desarrollo.
- Son útiles en la realización de proyectos, en la predicción de alternativas, riesgos y resultados a obtener.

Medidas del proceso de requisitos

Numero de requisitos nuevos o modificados por mes

Cambios en los requisitos

Porcentaje de requisitos = -----
Requisitos totales

Compleción de los requisitos

Requisitos no definidos

Tasa de requisitos incompletos = ------

Requisitos totales

Requisitos probados

Requisitos probados

Tasa de requisitos probados = ------

Requisitos totales

- Proporcionan al diseñador una mejor visión interna.
- Ayudan a que el diseño evolucione a un nivel superior de calidad.
- Éstas se concentran en las características de la estructura del programa dándole énfasis a la estructura arquitectónica y en la eficiencia de los módulos.

- Métricas del Diseño Arquitectónico: se centran en la arquitectura del programa y la eficiencia de los módulos. Son de caja negra.
 - Medidas de la Complejidad Estructural, de Datos, del Sistema.
- Métricas a nivel de Componentes: se centran en las características internas del módulo. Son de caja blanca. Necesitan el diseño procedimental.
 - Métricas de Cohesión
 - Métricas de Acoplamiento
 - Métricas de complejidad del flujo de control del programa
- Métricas del Diseño de Interfaz.

Métricas del Diseño Arquitectónico:

- Relacionadas con el control intramodular:
 - *Tamaño*: medida del número de nodos, número de arcos o combinación de ambos.
 - Profundidad: medida del número de niveles del camino más largo entre el nodo raíz y un nodo hoja.
 - Anchura: Medida del número máximo de nodos de un nivel.
 - Relación entre nodos y arcos: medida de la densidad de conectividad.

Métricas del Diseño Arquitectónico:

- Métricas basadas en la estructura de herencia del código:
 - Profundidad media de la jerarquía de herencia
 - Cantidad promedio de subtipos
 - Profundidad del árbol de herencia (DIT)
 - Número de Hijos (NOC)

Métricas basadas en estructura de diseño:

Métricas a nivel de Componentes:

Acoplamiento: *Grado de interdependencia entre módulos*

Tipos de acoplamiento entre módulos

- R0: relación sin acoplamiento
- R1: relación de acoplamiento de datos
- R2: relación de acoplamiento por estampado
- R3: relación de acoplamiento de control
- R4: relación de acoplamiento común
- R5: relación de acoplamiento por contenido

Métricas basadas en estructura de diseño

Métricas a nivel de Componentes:

Cohesión: Grado en que los componentes locales a un módulo colaboran para realizar una tarea concreta.

Niveles de cohesión:

- Funcional
- Secuencial
- Comunicaciones
- Temporal
- Procedimental
- Lógica
- Por coincidencia

Métricas basadas en estructura de diseño:

- Cohesión funcional: Los elementos del módulo están relacionados en el desarrollo de una única función.
- Cohesión secuencial: Un módulo realiza distintas tareas en secuencia, de forma que las entradas de cada tarea son las salidas de la tarea anterior.
- Cohesión comunicacional: El módulo realiza actividades paralelas usando los mismos datos de entrada y salida.
- Cohesión procedimental: El módulo tiene una serie de funciones relacionadas por un procedimiento efectuado por el código. Es similar a la secuencial, pero puede incluir el paso de controles. Será deseable que las funciones estén relacionadas o realicen tareas dentro del mismo ámbito (p.e. la biblioteca string.h de C contiene funciones para operar con cadenas de caracteres).
- Cohesión temporal: Los elementos del módulo están implicados en actividades relacionadas con el tiempo.
- **Cohesión lógica**: Las actividades que realiza el módulo tienen la misma categoría. Esto es: es como si se tuvieran partes independientes dentro del mismo módulo.
- Cohesión casual o coincidente: Los elementos del módulo contribuyen a las actividades relacionándose mutuamente de una manera poco significativa. Este tipo de cohesión viola el principio de independencia y de caja negra de los módulos.

MÉTRICAS PARA EL CÓDIGO FUENTE

- Estás métricas asignadas como cuantitativas por Halstead, se derivan después de que se ha generado el código o se estima una vez que el diseño esté completo.
- Métricas de construcción:
 - Código desarrollado
 - Código reutilizado
 - Código destruidos: Código eliminado, comentado
 - Complejidad del código: McCabe, Halstead
 - Estadísticas en la inspección del código: No de errores detectados.
 - Porcentaje de errores encontrados y reparados

Métricas basadas en código fuente:

- Nº de líneas de código.
- Nº de líneas de comentario.
- Nº de instrucciones.
- Densidad de documentación.

Líneas de código por método

- Número de constructores por tipo
- Número de campos por tipo
- Número de métodos por tipo
- Número de parámetros
- Líneas de código

MÉTRICAS PARA PRUEBAS

- La mayoría de las métricas se concentran en el proceso y no en producto. Debe apoyarse en las métricas del análisis y del diseño.
- La métricas basadas en la función, pueden utilizarse para predecir el esfuerzo global de las pruebas.
- La métrica Bang puede proporcionar una indicación del numero de los casos de prueba necesarios para examinar una medida primitiva.
- A medida que avanzan las pruebas, hay métricas que indican la completitud de las mismas:
 - Amplitud de las pruebas (cuantos requisitos se han probado).
 - Profundidad de las pruebas (% de los caminos básicos probados).
 - Perfiles de fallos (para dar prioridad y categorizar los errores encontrados).

Métricas de Pruebas

- Dirección de la prueba: Medida para ayudar a la planificación y diseño de pruebas. Métricas de tamaño, complejidad.
- Tendencias que muestran los casos de pruebas: Número de casos de pruebas sin resolver.
- Aumento de efectividad: Medida sobre los tipos de errores detectados, permite hacer una clasificación de acuerdo a la causa, etapa de desarrollo.
- Densidad de fallos: Relación de números de errores encontrados y el tamaño del programa.
- Conclusión de pruebas: Medida para determinar si una prueba se puede dar por terminada

El objetivo de las métricas de proyecto es el de reducir el costo y el tiempo total de desarrollo del mismo. Estas métricas nos permiten:

- Evaluar el estado del proyecto en curso.
- Realizar un seguimiento de los riesgos potenciales en un proyecto.
- Detectar las áreas de problemas entes de que se conviertan en "críticas". o Ajustar el flujo y las tareas de trabajo.
- Evaluar la habilidad del equipo del proyecto en controlar la calidad de los productos de trabajo de la ingeniería del software.

- Los recursos incluyen cualquier entrada en la producción de software
 - Personal
 - Materiales
 - Herramientas
 - □ Métodos ...
- Las medidas de recursos ayudan a controlar el proceso indicando cómo el proceso está usando y transformando las entradas en salidas
- Atributos internos
 - Tamaño del equipo
 - Tiempo de experiencia
 - Madurez de las herramientas ...
- Atributos externos
 - Coste
 - Productividad ...

productividad = cantidad de salida / esfuerzo de entrada

La productividad combina una medida de proceso (entrada) con una medida de producto (salida)

- Los recursos son las entidades que se requieren en las actividades de proceso.
- Los recursos incluyen cualquier entrada en la producción de software: personal, materiales, herramientas, métodos, costo, productividad
- El **costo** generalmente se mide, a partir del resto de los recursos, pudiéndose ver como el coste de las entradas afecta al coste de las salidas.
- La **productividad** es otro atributo externo importante que depende del proceso de desarrollo.

En un proyecto de implantación, las métricas más interesantes a aplicar y que ayudan a controlar el flujo de trabajo y las tareas técnicas son las siguientes:

- Cantidad de Funcionalidad. Se puede obtener a partir de las métricas de tamaño LOC (Lines of Code) o basado en los Puntos de Función.
- Esfuerzo. Cantidad de trabajo en Personas/Mes.
- Fiabilidad. Expresada en ratio de defectos.
- Productividad = Tamaño/Esfuerzo
- Tiempo / Calendario. Duración del proyecto.
- Velocidad_de_entrega = Tamaño / Duración

Entidad	Interno	Externo
Personal	edad, sal <mark>ario</mark>	productividad, experiencia
Software	precio, tamaño	uso (usability), confiabilidad
Oficinas	temperatura, tamaño, luz	confort, calidad

Productividad

 La productividad de un recurso de software se mide en función de la proporción entre lo que entra y sale de un proceso de producción de software

Productividad = tamaño de software/ esfuerzo Productividad = PF/ esfuerzo

Unidades más utilizadas:

- Tamaño: líneas de código, Punto de funcion PF
- Esfuerzo: persona-meses, persona- dias

Además, se pueden calcular otras métricas interesantes: ·

Productividad = KLDC/ persona-mes

Calidad = errores / KLDC

Documentación = páginas de documentación / KLDC

Medición del personal

- La estructura del equipo del proyecto es un factor clave en la productividad
- El factor particular que afecta a la productividad es la complejidad de las comunicaciones: complejidad causada por el número de individuos implicados y el método de comunicación requerido entre los miembros de un proyecto [Grady y Caswell, 1987]
 - □ Tamaño: número de individuos del equipo.
 □ Densidad de comunicación: Es la proporción entre el tamaño del equipo y el numero de comunicaciones que se producen entre ellos.
 □ Nivel de comunicación: Es un indicador que mide el grado de comunicación entre los miembros.
 □ Nivel de comunicación individual: Es el numero de individuos con que se comunica un determinado miembro del equipo
 □ Promedio del nivel de comunicación individual: Es la medida de los niveles individuales

Equipos

- Se representa la estructura del equipo mediante un grafo donde los nodos son los miembros del equipo y los arcos los caminos de comunicación directa entre ellos, se pueden establecer las siguientes medidas:
 - ☐ *Tamaño*: número de nodos del grafo (n)
 - ☐ Densidad de comunicación: relación entre arcos (e) y nodos (n)

Densidad de Comunicaciones = e/n

☐ Nivel de comunicación: medida de la impureza del árbol

$$m(G) = 2.(e - n + 1) / (n - 1) (n - 2)$$

- ☐ Nivel de comunicación individual (NCI): Numero de comunicaciones del nodo
- ☐ **Promedio del nivel de comunicación individual =** Suma NCI / n

ENTIDADES	ATRIBUTOS		
	Internos	Externos	
Productos Especificaciones, diseño, código	Tamaño, reusabilidad, modularidad, funcionalidad, acoplamiento, complejidad	Comprensión, mantenibilidad, calidad, fiabilidad	
Procesos Realización de la especificación, del diseño, del código	Tiempo, esfuerzo, cambios en requisitos, fallos en la especificación	Calidad, coste, estabilidad	
Recursos Personal, equipos, hardware, software	Edad, precio, tamaño del equipo, velocidad, tamaño de memoria	Productividad, experiencia, calidad, usabilidad, fiabilidad	

Ejemplo de Métrica de Madurez

NIV	E	RS	ID	A	
opul	ar	del	ce	sa	r

Nombre:	Suficiencia de las pruebas
Propósito:	Cuántas de los casos de prueba necesarios están cubiertos por el plan de pruebas.
Método de aplicación:	Contar las pruebas planeadas y comparar con el número de pruebas requeridas para obtener una cobertura adecuada.
Medición, fórmula:	X = A/B A = número de casos de prueba en el plan B = número de casos de prueba requeridos
Interpretación:	0 <= X Entre X se mayor, mejor la suficiencia.
Tipo de escala:	absoluta
Tipo de medida:	X = count/count A = count B = count
Fuente de medición:	A proviene del plan de pruebas B proviene de la especificación de requisitos
ISO/IEC 12207 SLCP:	Aseguramiento de Calidad Resolución de problemas Verificación
Audiencia:	Desarrolladores Mantenedores

Ejemplo de Métrica de Entendibilidad

Nombre:	Funciones evidentes
Propósito:	Qué proporción de las funciones del sistemas son evidentes al usuario.
Método de aplicación:	Contar las funciones evidentes al usuario y comparar con el número total de funciones.
Medición, fórmula:	X = A/B A = número de funciones (o tipos de funciones) evidentes al usuario B = total de funciones (o tipos de funciones)
Interpretación:	0 <= X <= 1 Entre más cercano a 1, mejor.
Tipo de escala:	absoluta
Tipo de medida:	X = count/count A = count B = count
Fuente de medición:	Especificación de requisitos Diseño Informe de revisión
ISO/IEC 12207 SLCP:	Verificación Revisión conjunta
Audiencia:	Requeridores Desarrolladores

Ejemplo de Conformidad de la Transportabilidad

Nombre:	Conformidad de transportabilidad
Propósito:	Qué tan conforme es la transportabilidad del producto con regulaciones, estándares y convenciones aplicables.
Método de aplicación:	Contar los artículos encontrados que requieren conformidad y comparar con el número de artículos en la especificación que requieren conformidad.
Medición, fórmula:	X = A/B A = número de artículos implementados de conformidad B = total de artículos que requieren conformidad
Interpretación:	0 <= X <= 1 Entre más cercano a 1, más completa.
Tipo de escala:	absoluta
Tipo de medida:	X = count/count A = count B = count
Fuente de medición:	Especificación de conformidad y estándares, convenciones y regulaciones relacionados. Diseño Código fuente Informe de revisión
ISO/IEC 12207 SLCP:	Verificación Revisión conjunta
Audiencia:	Requeridores Desarrolladores

