PHY 407 Lab 1

Natalie Price-Jones, 999091021

natalie.price.jones@mail.utoronto.ca

12 September 2014

1 Question 4 Pseudocode

- \bullet DEFINE gravitational constant in units of AU, Msun and years (39.5 $AU^3M_{sun}^{-1}yr^{-1}).$
- DEFINE initial time, final time and timestep $(t_i, t_f, \Delta t)$.
- CREATE sampled array of time based on the above criteria.
- SET dependent variable arrays (x,y position and velocity as well as total separation r) to be arrays of zeros as long as the sampled array of time.
- SET initial positions and velocities in x and y.
- FOR values in time array:
 - CALCULATE updated velocities $(v_{x,i+1},v_{y,i+1})$ with $v_{k,i+1} = -\frac{GM_{sun}k}{r^3} \cdot \Delta t + v_{k,i}$.
 - CALCULATE updated positions (x_{i+1}, y_{i+1}) with $k_{i+1} = v_{k,i+1} \cdot \Delta t + k_i$.
 - CALCULATE updated separation (r_{i+1}) with $r_{i+1} = (x_{i+1}^2 + y_{i+1}^2)^{1/2}$.
- PLOT y vs x, v_x vs t and v_y vs t.

2 Question 5 Plots

Plots produced with code written in lab1q5.py follow below.

Figure 1: Orbital position of Mercury over the course of one Earth year. The yellow dot marks the Sun's position.

Figure 2: Velocity of Mercury in each dimension over the course of one Earth year.

time [yr]

3 Question 6 Plot

Figure 3: Orbital position of Mercury over the course of one Earth year with exaggerated affects of general relativity ($\alpha = 0.01\,AU^2$). The yellow dot marks the Sun's position.

4 Question 7 Plot

Figure 4: Orbital position of the Earth and Jupiter over the course of 10 Earth years, with the mass of Jupiter as $M_{jup}=1\times 10^{-3}\,M_{sun}$.

5 Question 8 Plot

Figure 5: Orbital position of the Earth and Jupiter over the course of 3 Earth years, with the mass of Jupiter as $M_{jup}=1\,M_{sun}$.