2020.11期中

- 一、单项选择题(每小题 3 分, 共 15 分)
- 1、设随机事件A、B满足P(B|A)=1,则()。
 - (A) P(A) = P(B)
- (B) P(AB) = 0

(C) $B \subset A$

- (D) $A \subset B$
- 2、设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,则随 σ 的增大, $P\left\{\left|\frac{X-\mu}{\sigma}\right| < 1\right\}$ 的概率 ()。
 - (A)单调递增

(B)单调递减

(C)保持不变

- (D)增减不定
- 3、设A和B是任意两个概率不为零的互不相容(互斥)的随机事件,则下列结论中肯定正 确的是()。
 - (A) $P(\overline{A}\overline{B}) \neq 0$
- (B) $P(\overline{A}\overline{B}) = 0$
- (C) P(AB) = P(A)P(B) (D) P(A-B) = P(A)
- 4、设 $X \sim U(0,1), Y \sim U(0,1)$,且X 与 Y相互独立,则二维随机变量(X,Y)的密度函数为 ().
- (A) $f(x) = \begin{cases} x, & x \in (0,1) \\ 0, & \exists \dot{\Sigma} \end{cases}$
- (B) $f(x,y) = \begin{cases} 1, & x \in (0,1), y \in (0,1) \\ 0, & \sharp \ \ \ \ \ \ \end{cases}$
- (C) $f(x, y) = \begin{cases} y, & y \in (0, 1) \\ 0, & \sharp \not \succeq \end{cases}$
- (D) $f(x, y) = \begin{cases} xy, & x \in (0,1), y \in (0,1) \\ 0, & \sharp \dot{\Xi} \end{cases}$
- 5、已知连续型随机变量 X 的概率密度函数为 f(x) 是偶函数, F(x) 是 X 的分布函数,则 对于任意的实数c有F(-c)等于()。
 - (A) $\frac{1}{2} \int_0^c f(x) d(x)$
- (B) F(c)
- (B) 2F(c)-1
- (D) $1 \int_{0}^{c} f(x) dx$

二、填空题(每空3分,共15分)

- 1、已知随机事件 A 与 B 相互独立,且 $P(AB) = 0.15, P(A) = 0.3, 则 P(B) = _____。$
- 2、设P(AB) = 0.6,则 $P(\overline{A} \cup \overline{B}) =$ _____。
- 3、设 $X \sim N(5, \sigma^2), P\{5 < X < 10\} = 0.3, P\{0 < X \le 5\} = 则_____。$
- 4、设随机变量 X 的密度函数为 $f_x(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & 其它 \end{cases}$, Y 表示对 X 的三次独立重复

观察中事件
$$\left\{X \leq \frac{1}{3}\right\}$$
出现的次数,则 $P\left\{Y = 2\right\} =$ _____。

5、设公共汽车从上午6时起,每15分钟发一趟车,已知某乘客在6:00到6:30任一时刻到达车站,则该乘客候车时间少于5分钟的概率为。

三、(本题5分)

一批产品有 12 件,其中 4 件次品,8 件正品。现从中任取 3 件产品,试求取出的 3 件产品中有次品的概率。

四、(本题 10 分)

设随机变量X的分布律如下:

求: (1) 常数a; (2) $p{-2 \le X < 0}$; (3) $Y = X^2$ 的分布律

五、(本题 15 分)

设随机变量的密度函数为

$$f(x) = \begin{cases} 4x^3, 0 < x < 1 \\ 0, & \text{其它} \end{cases}$$

(1) 求 X 的分布函数 F(x); (2) 求 $Y = X^2$ 的密度函数 $f_Y(y)$; (3) 当 a 为何值时,

$$P\{x > a\} = P\{x < a\}$$
?

六、(本题 15 分)

已知二维随机变量(X,Y)的分布律如右:

X	2	5	8
4	0. 15	0.3	0.35
8	0.05	0.12	0.03

求: (1) X 和 Y 的边缘分布律; (2) X/Y 的分布律; (3) 当 Y = 4 时,关于 X 的条件分布律。

七、(本题 15 分)

已知二维随机变量(X,Y)概率密度函数为

$$f(x,y) = \frac{A}{(1+x^2)(1+y^2)}, -\infty < x < +\infty, -\infty < y < +\infty$$

求: (1)常数A

- (2) $P\{(X,Y) \in D\}$, 其中D为直线y = x, x = 1及x轴围成的三角形区域;
- (3) $f_{X}(x)$, $f_{Y}(y)$
- (4) X,Y 是否相互独立? 说明理由。(已知 $\int \frac{1}{1+x^2} dx = \arctan x + C$)

八、(本题5分)

一商店出售某公司三个分厂生产的同型号的产品,而这三个分厂生产的产品 比率为3:1:2,产品的不合格率分别为1%,12%,15%。某顾客从这批产品中任 意选购一件,试求顾客购到不合格产品的概率。

九、(本题5分)

已知 P(A) = 0.7, P(B) = 0.4, 试证: $P(A \mid \overline{B}) \ge 0.5$ 。

2020.11 重修班期中

	— 、	单项选择题	(每题3分,	共 15 分)
--	------------	-------	--------	---------

1. 事件 <i>A</i> , <i>B</i> 若满足 <i>P</i> (<i>AB</i>) = <i>P</i> (<i>A</i>) <i>P</i> ((B),则 A , B ()
A. 独立 B. 不独立	C. 互斥	D. 不互斥
2. 设 $f(x)$ 是随机变量 X 的概率密	度函数,则一定成立	立的是 ()
A. $f(x)$ 定义域为[0,1] B. $f(x)$	非负	
C. $f(x)$ 的值域为[0,1] D. $f(x)$		
3. 若连续型随机变量 X 的分布函数	$F(x) = \begin{cases} 0, & x \\ Ax, & 0 \\ 1, & x \end{cases}$	< 0, $\le x < 1$, 则 $A = ($) ≥ 1 .
A. 0 B. ln 2	C. 1	D. <i>e</i>
4. 设 $X \sim N(1,3)$, 要使 $P(X \le c) = \frac{1}{2}$	·,则 c= ()
A. 1 B. 2	C. 3	D. 4
5. 某人射击的命中率为 0.4, 用 X	表示他在3次独立	立射击中命中目标的次数,
则 X 的分布为 ()		
A. 0-1 分布 B. 二项分布	C. 均匀分布	D. 泊松分布
二、 填空题 (每题 3 分,共 1	15分)	
1. 设 A, B 为互不相容的随机事件 $P($	A) = 0.3, P(B) = 0.5	S ,则 $P(A \cup B) = $
2. $\c P(A) = 0.4, P(B) = 0.3, P(A \cup B)$	$= 0.6$, $\square P(A\overline{B})$	=
3. 设随机变量 X 的概率密度 $f(x)$ =	$\begin{cases} 1, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$	则 $P\{X>0.4\}=$
4. 设有10件产品,其中有4件次品,		
5. 设 <i>X</i> ~ <i>N</i> (0.1), 则概率密度函数		
	/ (

三、(本题8分)

甲、乙、丙三个同学同时独立参加考试,不及格的概率分别为: 0.2, 0.3, 0.4, 求恰有两位同学不及格的概率.

四、(本题8分)

一批产品由甲乙两厂生产,已知甲厂的产品占总产量的三分之一,且甲乙两厂产品的次品率分别为 2%和 1%,现随机挑选一件。

- (1) 求这批产品的次品率;
- (2) 若取得次品,求其为甲厂生产的概率。

五、(本题 10 分)

设离散型随机变量 X 的分布律为

X	-1	0	1	2
$p_{\scriptscriptstyle k}$	0.2	0.5	а	0.2

求: (1) a的值; (2) X的分布函数;

(3) $P(0 < X \le \frac{3}{2})$.

六、(本题8分)

设离散型随机变量
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < -2 \\ 0.4, & -2 \le x < 0 \\ 0.7, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$ 求 X 的分布律.

七、(本题 10 分)

设随机变量 X 具有概率密度函数: $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & 其它 \end{cases}$ 求 Y = X - 4的概率 密度函数.

八、(本题 12 分)

设二维离散型随机变量(X,Y)的分布律为

Y	-1	0	1
0	0.2	0.2	0.1
1	0.3	0.2	0

求: (1) 关于 X 的边缘分布律; (2) X+Y 的分布律; (3) $P\{X+Y\leq 1\}$; (4) $P\{X\leq 0|Y=1\}$

九、(本题 14 分)

设(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} k, 0 < x < 1, 0 < y < x; \\ 0, & \text{其它.} \end{cases}$$

求: (1) k; (2) 关于 X 的边缘概率密度; (3) 概率 $P(X + Y \le 1)$.

概率论与数理统计练习题

注.	期中考试题型参考,	不是题目参考。
ة ملـــار	カバインサルル公主ジンサナ	11/00/00 日 多 15 0

一、单项选择题		
1、已知 A、B、C 为三· (A) \(\overline{ABC} \) (C) \(A \cup B \cup C \)	•	A、B、C 都发生的事件为(
2、设 A,B 是两个随机事	手件,则不能用	AB 表示的事件是()
(A) A、B 都不发生		
(B) A、B 不同时发生		
(C) A、B 中至多一个发生	Ė	
(D) A、B 中至少一个不为	发生	
3 、设 \overline{A} 与 B 为互相独立	的两事件,且 I	$P(\overline{A}) = 0.7, P(B) = 0.4, 则 P(AB)$ 的值为
()		
(A) 0.28	(B) 0.7	
(C) 0.12	(D) 0.4	
4、设离散型随机变量 X 的	分布律为:	
X 0	2 4	
Pa	0.3 b	
·		
其分布函数为 $F(x)$,且 $F(x)$	2.2) = 0.8,则:	a 的值为 ()
(A) 0.2		(B) 0.5
(C) 0.8		(D) 0.4
	产品甲畅销,方	^空 品乙滞销",则 A 的对立事件 A 为
	> □ → 17 M	(A)
(A)产品甲滞销,产	品乙畅销	(B) 产品甲、乙均畅销

6、对于任意事件 A, B, 下列等云	弋一定 成立 的是()
$(A) P(A \mid B) = P(A)$	(B) $P(AB) = P(A)P(B)$
(C) $P(A\overline{B}) = P(A) - P(AB)$	(D) $P(A \cup B) = P(A) + P(B)$
7、设随机变量 X 和 Y 相互独立,	且他们的分布函数分别为 $F_{X}(x)$ 和 $F_{Y}(y)$,
则 $Z = \min\{X, Y\}$ 的分布函数 $F_Z(z)$	是 ()
(A) $\min\{F_{\chi}(z), F_{\chi}(z)\}$	(B) $F_X(z)F_Y(z)$
(C) $1 - F_{\chi}(z)F_{\gamma}(z) \qquad ($	D) $1 - [1 - F_{\chi}(z)][1 - F_{\chi}(z)]$
8、设函数 $f_X(x)$ 为某一随机变量 X	的概率密度函数,下列说法一定正确的是
()	
(A) $f_{X}(x)$ 的定义域为[0, 1]	(B) $f_{X}(x)$ 的值域为[0, 1]
(C) $f_X(x)$ 不恒等于 0	(D) $f_X(x)$ 在 $(-\infty,+\infty)$ 内连续
二、填空题	
1、设 $P(A) = 0.4$, $P(B) = 0.3$, $P(A) = 0.3$	$\bigcup B) = 0.5, $
2、10 把钥匙中有 3 把能打开一个	门锁,现任取两把,则能打开门锁的概率
= 3、设随机变量 <i>X ~U</i> (-1,7),则关于	f_y 的一元二次方程 $y^2 + Xy + 1 = 0$ 有
实根的概率=	
4、已知随机变量 $X \sim N(\mu, \sigma^2)$, F	$P\{\mu < X < 5\} = P\{1 < X < \mu\}, \ \text{M} \mu$
=	
5、设随机变量 $X \sim \pi(\lambda)$,且 $P(X =$	$0)=e^{-2}$,则 $\lambda=$
6 、设随机变量 $X \sim U(-4,4)$,则关于	F_y 的一元二次方程 $4y^2 + 4Xy + X + 2 = 0$
有实根的概率=	

(C) 产品甲滞销或产品乙畅销 (D) 产品甲畅销或产品乙滞销

7、设随机变量 X 和 Y 相互独立, 且分布律如下:

则概率 $P\{X + Y = 2\} =$ ______

三、计算题

1、已知 P(A) = 1/4, $P(B \mid A) = 1/3$, $P(A \mid B) = 1/2$,求 $P(A \cup B)$ 。

2、设离散型随机变量
$$X$$
 数的分布函数为 $F(x) = \begin{cases} 0, & x < -2 \\ 0. & 2, -2 \le x < 0 \\ 0. & 6, 0 \le x < 3 \\ 1, & x \ge 3 \end{cases}$

求: (1) X 的概率分布律;

(2)
$$Y = (X - 1)^2$$
 的概率分布律。

3、设随机变量
$$X$$
 的概率密度函数为 $f(x) =$
$$\begin{cases} ke^x, x < 0 \\ \frac{1}{4}, 0 \le x \le 2 \\ 0, & \text{其他} \end{cases}$$

求: (1) 常数 k 的值; (2) X 的分布函数 F(x); (3) 求 $P\{1 < X < 2\}$ 。

4、设随机变量 X 的概率密度为

$$f(x) = \begin{cases} k(1 - 1/x^2), & 1 \le x \le 2 \\ 0, & \text{ } \sharp \text{ } \end{cases}$$

- (1) 确定常数 k; (2) 求 X 的分布函数; (3) 求 P{1 / 2 < X < 3 / 2}
 - 5、设随机变量(X,Y)的概率分布律为:

Y	-1	0	1	2
0	0.1	0.1	0.2	0.1

1 0.2	0.1	0.1	0.1
-------	-----	-----	-----

求: (1) 关于 X 的边缘分布律;

- (2) 关于 XY 的分布律;
- (3) $P\{X \le 1 \mid Y = 0\}$;
- (4) 判断 X 和 Y 是否相互独立? 并说明理由。
- 6、己知(X,Y)的密度函数 为:

$$f(x, y) = \begin{cases} e^{-y}, 0 \le x \le 1, y > 0 \\ 0, & \text{#th} \end{cases}$$

则: (1) 求关于 X 和 Y 的边缘概率密度 $f_{y}(x)$, $f_{y}(y)$;

- (2) 判断X与Y相互独立,并说明理由;
- (3) 求Z = Y / X 的概率密度函数 $f_z(z)$ 。
- 7、已知随机变量(X,Y)的概率密度函数为:

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & 其他 \end{cases}$$

则: (1) 求关于 X 和 Y 的边缘密度函数 $f_{Y}(x), f_{Y}(y)$;

- (2) 问于 X 和 Y 是否相互独立? 说明理由;
- (3) 求 $Z = \frac{Y X}{2}$ 的概率密度函数 $f_z(z)$ 。
- **8、**已知 5%的男性和 25%的女性是色盲,假设男性女性各占一半。现随机 地挑选一人,利用全概率公式求此人恰好是色盲者的概率。
- 9、市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的两倍,第二、第三厂家相等,且第一、第二、第三厂家的次品率依次为2%,2%,4%。若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率为多少?
 - 10、设连续型随机变量 X = Y 相互独立,且具有概率密度分别为

$$f_X(x) = \begin{cases} 2e^{-2x}, x > 0 \\ 0,$$
其他 \end{cases} , $f_Y(y) = \begin{cases} e^{-y}, y > 0 \\ 0,$ 其他 \end{cases} , 求 $P(Y \le 1 \mid X = 1)$

四、证明题:

- 1、证明:事件 A,B 相互独立的充分必要条件是 $P(A|B) = P(A|\overline{B})$ 。
- 2、已知P(A) = 0.9, P(B) = 0.8, 试证: $P(A|B) \ge 0.875$ 。