

AD-A076 911 LOUISIANA STATE UNIV BATON ROUGE DIV OF ENGINEERING --ETC F/G 11/3
CURRENT STATUS OF THE CHEMICAL SPECIFICATION OF ORGANOTIN TOXIC--ETC(1)
AUG 79 C P MONAGHAN , E J O'BRIEN, H REUST N00014-79-C-0487

UNCLASSIFIED

TR-1

NL

| OF |
AD
AD 769 //

END
DATE
FILMED
R-74
DDC

AD A 076911

Office of Naval Research
Contract No. 15 N00014-79-C-0487

Project No. NR 356-709

Technical Report No. 1

(2) FF
LEVEL

(6) CURRENT STATUS OF THE CHEMICAL SPECIATION
OF ORGANOTIN TOXICANTS IN ANTIPOULANTS.

(9) Interim rept.

(10)

by

Charles P. Monaghan, Elmer J. O'Brien, Jr., Heinz Reust, and Mary L. Good

Prepared for publication in
Developments in Industrial Microbiology.

Division of Engineering Research.

Louisiana State University

Baton Rouge, Louisiana 70803

(11) 25 August 25, 1979

(12) 17 (14) TIR-1

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release: Distribution Unlimited

389 061

LB

79 11 19 118

CURRENT STATUS OF THE
CHEMICAL SPECIATION OF ORGANOTIN
TOXICANTS IN ANTIPOULANTS

by

C. P. Monaghan
Department of Chemistry and Physics
Northwestern State University of Louisiana
Natchitoches, LA 71457

E. J. O'Brien, Jr.
Department of Chemistry
University of New Orleans
New Orleans, LA 70122

Heinz Reust and Mary L. Good
Division of Engineering Research
Louisiana State University
Baton Rouge, LA 70803

Accession For	
NTIS GRA&I	<input type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution _____	
Availability Codes _____	
Dist	Availand/or special

A

↓
Abstract

Although antifouling coatings are complex systems which contain four or five coordinate organotin compounds that are monomeric or polymeric, a simple diffusion model adequately explains the time release of organotin toxicant from the coatings. This result suggests that the mechanism of release is dependent primarily on matrix properties rather than the chemistry of individual compounds. Whereas, our understanding of the leaching of organotin compounds of the type R_3SnY ^(where R is phenyl or butyl) in aqueous solutions is still incomplete, we believe the Y group to be labile and R_3SnOH or R_3SnCl to be the species formed in seawater.

↑

Introduction

Marine fouling of man-made structures is of significant scientific and economic interest. The increased drag caused by the marine growth on a ship bottom severely reduces maneuverability, and a ship that has a six month accumulation of fouling can use up to 40% more fuel just to maintain a normal cruising speed (Starbird and Sisson, 1973). Putting a ship into dry dock for cleaning and painting is costly in lost service time and revenues. On other structures such as buoys or oil rigs, marine growth causes surface damage and corrosion which results in high maintenance costs. Usually the surface is protected with a coating containing a substance toxic to marine organisms. After the coating is exposed to water, the toxic substance leaches out, repelling or killing organisms at the surface. Thus, the organisms are prevented from settling on the surface.

In recent years organotin compounds of the type R_3SnY (where R is phenyl or butyl) have been used as the toxic substance in the antifouling coatings. As these compounds are toxic to marine organisms, their use can be tolerated only if they have a minor or temporary impact on the environment. Sheldon (1975) has suggested that the organotin compounds degrade to innocuous SnO_2 in seawater, but there is no experimental verification of this suggestion. In order to develop efficient antifouling coatings which result in minimal environmental insult, one must have a complete understanding of the aqueous chemistry of these compounds both in the coating (as the coating interacts with the seawater) and in the bulk seawater.

Results and Discussion

Marine coatings are complex systems. A polymeric matrix and organic solvent are used to disperse pigments and organotin toxicant. Liquid organotins such as tri(n-butyl)tin chloride and bis[tri(n-butyl)tin] oxide are soluble in the paint solvent and disperse homogeneously throughout the coating. Mössbauer

(O'Brien et al., 1978) and infrared spectroscopic studies (Hoffman et al., 1978) have shown that these two organotin compounds are four coordinate in the pure state and that bis[tri(n-butyl)tin] oxide reacts with the organic solvent in one vinyl-type coating mixture to form a tri(n-butyl)tin carboxylate. Solid organotin compounds can either be insoluble such as tri(n-butyl)tin fluoride or partially soluble (depending upon the amount of solvent used) such as tri(n-butyl)tin acetate. The Mössbauer spectroscopic studies indicate that tri(n-butyl)tin acetate and tri(n-butyl)tin fluoride are five coordinate linear polymers in the pure solid state and do not change upon incorporation into a vinyl type coating. Since a wide variety of polymer matrices can be used in the coating as well as several different organotin compounds, an accurate model of the toxicant release mechanism is very difficult to achieve.

A two-parameter diffusion model has been developed which describes the leaching of coatings that may contain either organotin compounds (Monaghan et al., 1978), cuprous oxide, or triphenyllead acetate (Monaghan et al., 1978a). In laboratory tests the toxicant release from coated panels is monitored by analyzing the toxicant in bulk seawater. The concentration, c , of organotin in the bulk solution is given by

$$c = c_s - c_s \exp(-\alpha \frac{A_0}{v} t)$$

where c_s is the organotin concentration at the coating surface, A_0 is the surface area of the panel, v is the volume of bulk seawater, t is time, and α is a parameter characteristic of the coating for a given temperature and solution flow condition at the coating surface. The parameter, c_s , does not correlate with the solubility of the organotin compounds, but in other studies on cuprous oxide systems and triphenyllead acetate systems, c_s increases as the toxicant loading in the coating is increased. It is thought that only a fraction of the surface is active in the diffusion process and that α provides a relative measure for comparing the fraction of active surface between various coatings. Results

obtained in a study on various organotin compounds in the vinyl-type coating Alum-A-Tox are presented in the table (Monaghan et al., 1978).

The reaction scheme presented in the figure has been suggested (Monaghan et al., 1977) as depicting the organotin reactions occurring in the coating when it is exposed to seawater. The polymeric notation for the starting material in the figure is used to emphasize that organotin compounds can be monomeric or polymeric in a coating. The release of toxicant should be governed not only by the thermochemistry of breaking a Sn-Y bond but also on the ability of water molecules to reach a reactive site. An examination of the c_s values obtained for organotin compounds in the vinyl-type coating Alum-A-Tox in the table, reveals that the c_s values for the acetates (linear polymers) are larger than the c_s values for the chlorides (monomeric units). One would expect the R_3SnCl molecules to be more easily solvated than the R_3SnOAc molecules since a polymeric backbone must be destroyed in the acetates. Thus coatings containing R_3SnCl should have a greater number of solvated R_3Sn -residues for diffusion to the coating surface compared to a similiar coating with R_3SnOAc . This increased availability of solvated R_3Sn -residues should be reflected in higher values of c_s for coatings containing R_3SnCl than for coatings containing R_3SnOAc . Since this is clearly not the case, the R_3Sn -moieties in the coatings containing R_3SnCl must be solvated with difficulty, or the coating porosity is considerably different for a homogeneous coating than for a heterogeneous coating. Inasmuch as the acetates are expected to dissolve partially in the paint solvent and the chlorides are expected to disperse completely, the coatings may differ very much in internal porosity. Since the R_3SnCl molecules are dispersed throughout the coating, water would have to completely diffuse through the matrix to dissolve each R_3SnCl molecule. On the other hand, the acetates are thought to retain their polymeric structure, even if dissolved in the coating (O'Brien et al., 1978). As a polymeric strand of R_3SnOAc is solvated, a channel

TABLE
Leaching Parameters for Alum-A-Tox Coatings

Compound	Name	c_s (ppm)	α (cm day $^{-1}$)
$(C_6H_5)_3 SnOAc$	triphenyltin acetate	7.2	0.16
$(C_6H_5)_3 SnCl$	triphenyltin chloride	2.2	0.18
$(n-C_4H_9)_3 SnOAc$	tri(n-butyl)tin acetate	12.8	0.19
$(n-C_4H_9)_3 SnCl$	tri(n-butyl)tin chloride	3.3	0.45
$[(n-C_4H_9)_3 Sn]_2O$	bis[tri(n-butyl)tin] oxide	9.9	0.17

would develop through the matrix allowing the water to have access to more R_3SnOAc units without interacting with the matrix. A steady state concentration of organotin at the surface is limited by the availability of solvated R_3Sn- units from the coating interior. The increased availability of solvated R_3Sn- units in a coating which contains R_3SnOAc would result in the observed higher c_s value compared to a coating containing R_3SnCl .

In a highly dilute and slightly alkaline ($pH = 8.1$) solution such as seawater, the only organotin species expected are R_3SnOH and R_3SnCl regardless of the R_3SnY initially incorporated into the coating (see the figure). That such a result is feasible can be inferred from solution studies in the literature.

Bock and Burkhardt (1961) and Bock, et al. (1962) have demonstrated that triphenyltin hydroxide dissolved in benzene can be used to extract various anions from slightly acidic aqueous solutions. The more acidic the solution, the more effective the extraction. For example, at a pH equal to 0.1, 98.0% of the chloride is extracted by triphenyltin hydroxide into benzene; whereas, at a pH equal to 7.0, only 1.4% of the chloride is extracted. This experimental study provides a basis for the proposed aqueous reaction scheme. In an acidic solution, the equilibrium in equation (2) would be stressed to favor the formation of $R_3Sn^+(aq)$. The increased concentration of $R_3Sn^+(aq)$ would place a stress on the equilibrium in equation (3). To relieve the stress on the equilibrium, the system would adjust to favor the formation of R_3SnCl .

Although we cannot describe the complete tin species that leaches out of the antifouling coating at this time, we have been able to establish that an organotin and not an inorganic tin species is leached (Monaghan et al., 1978). By employing a colorimetric procedure similar to that described by Aldridge and Cremer (1957) for the analysis of triethyltin and diethyltin compounds using dithizone, we have established that a triphenyltin species leaches out of the vinyl-type coating Alum-A-Tox when triphenyltin acetate or triphenyltin

chloride is incorporated into the coating as toxicant. Using the same procedure for the analysis of tributyltin has presented some problems, however. The color of the analyte does not stabilize for some time, and we believe that the visible spectrum of the resulting stable analyte to be that of dibutyltin dithizonate. Aldridge and Cremer (1956) have described the slow degradation of triethyltin dithizonate to diethyltin dithizonate which they determined to be the result of a photochemical reaction. We are of the opinion that a tributyltin species leaches out of the Alum-A-Tox coating containing a tributyltin compound and that the leached species degrades to a dibutyltin species during the colorimetric analysis. Details of the colorimetric analysis are now being organized in manuscript form for subsequent publication.

We are currently evaluating the first part of the organotin aqueous reaction scheme as shown in the figure. By dissolving the various organotin compounds in distilled water, artificial seawater, or artificial river water and then extracting the resulting solutions with chloroform, we expect to be able to determine if the Y group is indeed lost as is predicted. The extracts will be analyzed by infrared spectroscopy and thin layer chromatography.

Acknowledgments

This work is a result of research sponsored by the Office of Naval Research and the NOAA Office of Sea Grant, Department of Commerce, under grant no. R/MTR-1.

Literature Cited

Aldridge, W. N., and J. E. Cremer. 1956. Photochemical Conversion of Triethyltin to Diethyltin. *Nature*. 178: 1306-1307.

Aldridge, W. N., and J. E. Cremer. 1957. Organotin-Dithizone complexes. *Analyst*. 82: 37-43.

Bock, R. and P. Burkhardt. 1961. Ausschütteln von Anionen mit nichtwässrigen Lösungen von Triphenylzinnhydroxyd. *Angew. Chem.* 73: 114.

Bock, R., H. Niederauer, and K. Behrends. 1962. Die Verteilung der Triphenylzinnverbindungen von Anionen zwischen wässrigen Lösungen und Benzol. *Z. Analyt. Chem.* 190: 33-37.

Hoffman, J. F., K. C. Kappel, L. M. Frenzel, and M. L. Good. 1978. Infrared and Nuclear Magnetic Resonance Analysis of Organotin Toxicants for Marine Antifouling Coatings. Pages 195-205 in C. E. Carraher, Jr., J. E. Sheats, and C. U. Pittman, Jr., eds. *Organometallic Polymers*. Academic Press. New York, NY.

Monaghan, C. P., J. F. Hoffman, E. J. O'Brien, L. M. Frenzel, and M. L. Good. 1977. An Evaluation of Leaching Mechanisms for Organotin Containing Antifouling Coatings. in R. L. Goulding, ed. *Proceedings 1977 Controlled Release Pesticide Symposium*. Corvallis, Oregon.

Monaghan, C. P., V. H. Kulkarni, and M. L. Good. 1978. Pages 359-371. in F. Brinckman and M. Bellama, eds. *Organometals and Organometaloids: Occurrence and Fate in the Environment*. ACS Symposium Series, No. 82. American Chemical Society, Washington, D. C.

--- 1978a. Further Evaluation of a Diffusion Model for the Characterization of the Leaching Properties of Several Conventional Antifouling Coatings. in F. Brinckman and J. Montemarano, eds. *Proceedings of the Fifth Annual International Controlled Release of Bioactive Materials Symposium*. National Bureau of Standards, Washington, D. C.

O'Brien, E. J., C. P. Monaghan, and M. L. Good. 1978. Determination of Organotin Structures in Antifouling Coatings by Mössbauer Spectroscopic Techniques. Pages 207-218 in C. E. Carraher, Jr., J. E. Sheats, and C. U. Pittman, Jr., eds. Organometallic Polymers. Academic Press. New York, NY.

Sheldon, A. W. 1975. Effect of Organotin Antifouling Coatings on Man and his Environment. *J. Paint Technol.* 47: 54-58.

Starbird, E. A., and R. F. Sisson. 1973. Friendless Squatters of the Sea. *National Geographic*, November, 623-633.

FIG. Proposed reaction scheme of organotin compounds dispersed in antifouling
coatings exposed to seawater.

TECHNICAL REPORT DISTRIBUTION LIST

<u>No. of Copies</u>		<u>No. of Copies</u>	
Office of Naval Research Arlington, Virginia 22217 Attn: Code 472	2	Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12
ONR Branch Office 536 S. Clark St. Chicago, Illinois 60605 Attn: Dr. George Sandoz	1	U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709	1
ONR Branch Office 715 Broadway New York, NY 10003 Attn: Scientific Dept.	1	Commander Naval Underseas Research & Dvlpmnt. Center San Diego, CA 92132 Attn: Technical Library, Code 133	1
ONR Branch Office 1030 East Green St. Pasadena, CA 91106 Attn: Dr. R. J. Marcus	1	Naval Weapons Center China Liske, CA 93555 Attn: Head, Chemistry Division	1
ONR Branch Office 760 Market St., Room 447 San Francisco, CA 94102 Attn: Dr. P. A. Miller	1	Naval Civil Engineering Laboratory Port Hueneme, CA 93041 Attn: Mr. W. S. Haynes	1
ONR Branch Office Building 114, Section D 666 Summer St. Boston, Mass. 02210 Attn: Dr. L. H. Peebles	1	Professor O. Heinz Department of Physics and Chemistry Naval Postgraduate School Monterey, CA 93940	1
Director, Naval Research Lab. Washington, DC 20390 Attn: Technical Info. Div. Code 6100, 6170	1	Dr. A. L. Slafosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, DC 20380	1
The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, DC 20350	1	Navy Ship Engineering Center Attn: Code 6101C (E. Morganstern) National Center, Building 2 Room 5N06 Washington, DC 20362	2
Commander, Naval Air Systems Command Department of the Navy Washington, DC 20360 Attn: Code 310C (H. Rosenwaser)	1		

TECHNICAL REPORT DISTRIBUTION LIST

<u>No. of Copies</u>	<u>No. of Copies</u>		
Dr. T. C. Williams Union Carbide Corp. Chemicals and Plastics Tarrytown Technical Center Tarrytown, NY 10591	1	Dr. M. Good Department of Chemistry University of New Orleans Lakefront New Orleans, LA 70122	1
Dr. K. A. Reynard Horizons, Inc. 23800 Mercantile Road Cleveland, Ohio 44122	1	Douglas Aircraft Co. 3855 Lakewood Boulevard Long Beach, CA 90846 Attn: Technical Library C1 290/36-84 AUTO-Sutton	1
Dr. R. Soulen, Director Contract Research Department Pennwalt Corp. 900 First Avenue King of Prussia, Penn. 19406	1	NASA-Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Dr. T. T. Serafini, MS 49-1	1
Dr. A. G. MacDiarmid University of Pennsylvania Department of Chemistry Philadelphia, Penn. 19174	1	Dr. J. Griffith Naval Research Laboratory Chemistry Section, Code 6120 Washington, DC 20375	1
Dr. E. Hedaya Union Carbide Corp. Corporate Research Laboratory Tarrytown Technical Center Tarrytown, NY 10591	1	Dr. G. Goodman Globe-Union, Inc. 5757 North Breen Bay Avenue Milwaukee, Wisconsin 53201	1
Dr. A. Rheingold SUNY Plattsburg Department of Chemistry Plattsburg, NY 12901	1	Dr. E. Fischer, Code 2853 Naval Ship Research & Development Ctr. Annapolis Division Annapolis, Maryland 21402	1
Dr. C. Pittman University of Alabama Department of Chemistry University, Alabama 35486	1	Dr. Martin H. Kaufman, Head Materials Research Branch (Code 4542) Naval Weapons Center China Lake, CA 93555	1
Dr. H. Allcock Pennsylvania State University University Park, Penn. 16802	1	Professor R. V. Submaranian Department of Materials Science and Engineering Washington State University Pullman, Washington 99164	1
Dr. M. Kenney Case-Western University Department of Chemistry Cleveland, Ohio 44106	1		
Dr. R. Lenz Department of Chemistry University of Massachusetts Amherst, Massachusetts 01002	1		

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 1	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) CURRENT STATUS OF THE CHEMICAL SPECIATION OF ORGANOTIN TOXICANTS IN ANTIPOULANTS		5. TYPE OF REPORT & PERIOD COVERED Interim
7. AUTHOR(s) Charles P. Monaghan, Elmer J. O'Brien, Jr., Heinz Reust, and Mary L. Good		8. PERFORMING ORG. REPORT NUMBER N00014-79-C-0487
9. PERFORMING ORGANIZATION NAME AND ADDRESS Division of Engineering Research Louisiana State University Baton Rouge, LA 70803		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 356-709
11. CONTROLLING OFFICE NAME AND ADDRESS ONR Branch Office 536 South Clark Street Chicago, Illinois 60605		12. REPORT DATE August 25, 1979
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Chemistry Program Material Sciences Division Office of Naval Research, 800 N. Quincy Arlington, Virginia 22217		13. NUMBER OF PAGES eleven (11)
15. SECURITY CLASS. (of this report) Unclassified		
16. DISTRIBUTION STATEMENT (of this Report) "Approved for public release, distribution unlimited."		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Antifoulant, organotin, marine fouling, marine pollution, antifouling coatings, tributyltin chloride, bis[tri(n-butyl)tin]oxide, diffusion, leaching.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Although antifouling coatings are complex systems which contain four or five coordinate organotin compounds that are monomeric or polymeric, a simple diffusion model adequately explains the time release of organotin toxicant from the coatings. This result suggests that the mechanism of release is dependent primarily on matrix properties rather than the chemistry of individual compounds. Whereas, our understanding of the leaching of organotin compounds of the type R_3SnY in aqueous solutions is still incomplete, we		
(cont'd)		

(cont'd) - Block 20

believe the Y group to be labile and R_3SnOH or R_3SnCl to be species formed in seawater.