- 3. Let $X_1, X_2, ..., X_n$ be IID normal (μ, σ^2) , where $\mu \in \mathbb{R}$ is the mean of the normal distribution and $\sigma^2 > 0$ is the variance.
 - (a) Show the normal distribution is an exponential family.
 - (b) Find a complete minimal sufficient statistic for (μ, σ^2) .
 - (c) Let \bar{X} and S^2 denote the sample mean and sample variance, respectively, defined by

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Suppose the parameter σ^2 is known. Prove \bar{X} and S^2 are independent.

(d) Use the Derived Distribution approach to prove

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has a Student's T distribution with n-1 degrees of fredom.