INFO 6205 Program Structure and Algorithms

Nik Bear Brown

Big-O

Data Structures

Algorithms

Topics

- Big-O
- Data Structures
- Algorithms

Big- O

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behavior of an algorithm that is O(|g|)
- Two additional notations
- $\bullet \Omega(g)$
 - the set of functions, f, such that

for some constant, c, and n > N

Big- O

• Informally, Time to solve a problem of size, n, T(n) is $O(\log n)$

$$T(n) = c \log_2 n$$

- Formally:
 - O(g(n)) is the set of functions, f, such that f(n) < c g(n)

for some constant, c > 0, and n > N

• Alternatively, we may write $n \to \infty$ $\frac{f(n)}{g(n)} \le 0$

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^{r} is $O(n^{s})$ if $0 \le r \le s$
- Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) eg $an^4 + bn^3$ is $O(n^4)$
- Polynomial's growth rate is determined by leading term
 - If f is a polynomial of degree d, then f is $O(n^d)$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$
- Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \ \forall \ b > 1$ and k > 0 eg $\log_2 n$ is $O(n^{0.5})$

Polynomial and Intractable Algorithms

- Polynomial Time complexity
 - An algorithm is said to be polynomial if it is $O(n^d)$ for some integer d
 - Polynomial algorithms are said to be efficient
 - They solve problems in reasonable times!
- Intractable algorithms
 - Algorithms for which there is no known polynomial time algorithm
 - We will come back to this important class later in the course

A General Portable Performance Metric

- Formally:
 - O(g(n)) is the set of functions, f, such that f(n) < c g(n) for some constant, c > 0, and n > N
 - Alternatively, we may write and say

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \leq c$$

ie for sufficiently large *n*

g is an upper bound for f

A General Portable Performance Metric

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behaviour of an algorithm that is O(g)
- Two additional notations
- $\bullet \Omega(g)$
 - the set of functions, f, such that

for some constant, c, and n > N

g is a lower bound for f

A General Portable Performance Metric

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behavior of an algorithm that is O(|g|)
- Two additional notations
- $\bullet \Omega(g)$
 - the set of functions, f, such that

for some constant, c, and n > N

$$\bullet \Theta(g) = O(g) \cap \Omega(g)$$

g is a lower bound for f

Set of functions growing at the same rate as g

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$

- Constant factors may be ignored
 - $\forall k > 0$, kf is O(f)
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$

- Constant factors may be ignored
 - $\forall k > 0$, kf is O(f)
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$
- Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) $eg \quad an^4 + bn^3 \quad \text{is} \quad O(n^4)$

- Constant factors may be ignored
 - $\forall k > 0$, kf is O(f)
- Higher powers grow faster
 - n^{r} is $O(n^{s})$ if $0 \le r \le s$
- Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g) eg $an^4 + bn^3$ is $O(n^4)$
- Polynomial's growth rate is determined by leading term
 - If f is a polynomial of degree d, then f is $O(n^d)$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$
- Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \ \forall \ b > 1 \ and \ k > 0$ eg $\log_2 n$ is $O(n^{0.5})$

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$
- Sum of first n r^{th} powers grows as the $(r+1)^{th}$ power

•
$$\mathcal{Z}$$
 k^r is $\Theta(n^{r+1})$
 $k=1$
 $eg \quad \mathcal{Z}$ $i = n(n+1)$
 $k=1$

is $\Theta(n^2)$

Analysing an Algorithm

Simple statement sequence

```
S_1; S_2; ....; S_k
```

- O(1) as long as k is constant
- Simple loops

```
for (i=0;i<n;i++) { s; } where s is O(1)
```

- Time complexity is n O(1) or O(n)
- Nested loops

```
for(i=0;i<n;i++)
  for(j=0;j<n;j++) { s; }</pre>
```

• Complexity is n O(n) or $O(n^2)$

Analysing an Algorithm

Loop index doesn't vary linearly

```
h = 1;
while ( h <= n ) {
    s;
    h = 2 * h;
}</pre>
```

- h takes values 1, 2, 4, ... until it exceeds n
- There are $1 + \log_2 n$ iterations
- Complexity $O(\log n)$

Data Structures - Arrays

Array Limitations

- Arrays
 - Simple,
 - Fast

but

- Must specify size at construction time
- Murphy's law
 - Construct an array with space for n
 - *n* = twice your estimate of largest collection
 - Tomorrow you'll need n+1
- More flexible system?

- Flexible space use
 - Dynamically allocate space for each element as needed
 - Include a pointer to the next item

Linked list

- Each node of the list contains
 - the data item (an object pointer in our ADT)
 - a pointer to the next node

- Collection structure has a pointer to the list head
 - Initially NULL

Collection

- Collection structure has a pointer to the list head
 - Initially NULL
- Add first item
 - Allocate space for node
 - Set its data pointer to object
 - Set Next to NULL
 - Set Head to point to new node

- Add second item
 - Allocate space for node
 - Set its data pointer to object
 - Set Next to current Head
 - Set Head to point to new node

Collection Head node node Data Next Data Next object2 object

Linked Lists C/C++

```
struct t node {
    void *item;
    struct t node *next;
    } node;
typedef struct t node *Node;
struct collection {
   Node head;
    };
int AddToCollection( Collection c, void *item ) {
    Node new = malloc( sizeof( struct t_node ) );
    new->item = item;
    new->next = c->head;
    c->head = new;
    return TRUE;
```

Linked Lists - C/C++

```
struct t node {
    void *item;
                                Recursive type definition -
    struct t node *next;
                                      C allows it!
    } node;
typedef struct t node *Node;
struct collection {
    Node head;
    };
int AddToCollection( Collection c, void *item ) {
    Node new = malloc( sizeof( struct t node ) );
    new->item = item;
    new->next = c->head;
    c->head = new;
                                    Error checking, asserts
    return TRUE;
                                      omitted for clarity!
```

- Insertion/Deletion
 - Constant independent of n
- Search time
 - Worst case n

Linked Lists – C/C++

```
void *FindinCollection( Collection c, void *key) {
   Node n = c->head;
   while ( n != NULL ) {
    if ( KeyCmp( ItemKey( n->item ), key ) == 0 ) {
       return n->item;
       n = n->next;
       }
   return NULL;
   }
```

Linked Lists - Delete implementation

```
void *DeleteFromCollection( Collection c, void *key ) {
    Node n, prev;
    n = prev = c->head;
    while ( n != NULL ) {
      if ( KeyCmp(ItemKey(n->item), key) == 0 ) {
            prev->next = n->next;
            return n;
     prev = n;
     n = n->next;
                     head
    return NULL;
```

Linked Lists - Delete implementation

```
void *DeleteFromCollection( Collection c, void *key ) {
    Node n, prev;
    n = prev = c->head;
    while ( n != NULL ) {
      if ( KeyCmp(ItemKey(n->item), key ) == 0 ) {
            prev->next = n->next;
            return n;
      prev = n;
      n = n->next;
                       head
    return NULL;
```

Minor addition needed to allow for deleting this one! An exercise!

Linked Lists - LIFO and FIFO

- Simplest implementation
 - Add to head
 - ▶ Last-In-First-Out (LIFO) semantics
- Modifications
 - First-In-First-Out (FIFO)
 - Keep a tail pointer

```
struct t_node {
    void *item;
    struct t_node *next;
    } node;

typedef struct t_node *Node;
struct collection {
    Node head, tail;
    };

tail is set in
the AddToCollection
    method if
head == NULL
```

Linked Lists - Doubly linked

- Doubly linked lists
 - Can be scanned in both directions

```
struct t node {
    void *item;
    struct t node *prev,
                   *next;
    } node;
typedef struct t node *Node;
struct collection {
    Node head, tail;
                          head
                                     prev
                                                            prev
                                                prev
    };
```

Stacks

- Stacks are a special form of collection with LIFO semantics
- Two methods
 - int push(Stack s, void *item);
 - add item to the top of the stack
 - void *pop(Stack s);
 - remove an item from the top of the stack
- Like a plate stacker
- Other methods

```
int IsEmpty( Stack s );
/* Return TRUE if empty */
void *Top( Stack s );
/* Return the item at the top,
    without deleting it */
```


Stacks - Implementation

- Arrays
 - Provide a stack capacity to the constructor
 - Flexibility limited but matches many real uses
 - Capacity limited by some constraint
 - Memory in your computer
 - Size of the plate stacker, etc
- push, pop methods
 - Variants of AddToC..., DeleteFromC...
- Linked list also possible

Stacks - Relevance

- Stacks appear in computer programs
 - Key to call / return in functions & procedures
 - Stack frame allows recursive calls
 - Call: push stack frame
 - Return: pop stack frame
- Stack frame
 - Function arguments
 - Return address
 - Local variables

Stacks - Implementation

- Arrays common
 - Provide a stack capacity to the constructor
 - Flexibility limited but matches many real uses
 - Stack created with limited capacity

Stack Frames - Functions in HLL

```
function f( int x, int y) {
    int a;
                                               Stack
                                                                 parameters
                                               frame
    if ( term cond ) return ...;
                                                                 return address
                                               for f
    a = ...;
                                                                 local variables
                                                          а
    return g(a);
                                                                 parameters
                                               Stack
                                                                 return address
                                               frame
                                                                 local variables
                                               for g
function g( int z ) {
    int p, q;
                                              Stack
                                                                 parameters
                                               frame
                                                                 return address
   p = .... ; q = .... ;
                                               for f
                                                                 local variables
    return f(p,q);
                          Context
```

for execution of f

Recursion

- Very useful technique
 - Definition of mathematical functions
 - Definition of data structures
 - Recursive structures are naturally processed by recursive functions!

Recursion

- Very useful technique
 - Definition of mathematical functions
 - Definition of data structures
 - Recursive structures are naturally processed by recursive functions!
- Recursively defined functions
 - factorial
 - Fibonacci
 - GCD by Euclid's algorithm
 - Fourier Transform
 - Games
 - Towers of Hanoi
 - Chess

Recursion - Example

Fibonacci Numbers

Pseudo-code

```
fib( n ) = if ( n = 0 ) then 1
else if ( n = 1 ) then 1
else fib(n-1) + fib(n-2)
```

```
int fib( n ) {
    if ( n < 2 ) return 1;
    else return fib(n-1) +
fib(n-2);
}</pre>
```

Recursion – Issues?

Fibonacci Numbers

```
int fib( n ) {
   if ( n < 2 ) return 1;
   else return fib(n-1) + fib(n-2);
   }</pre>
```

Sorting

- i. Card players all know how to sort ...
 - i. First card is already sorted
 - ii. With all the rest,
 - Scan back from the end until you find the first card larger than the new one,
 - ii. Move all the lower ones up one slot
 - iii. insert it

- Complexity
 - For each card

```
• Scan O(n)
• Shift up O(n)
• Insert O(1)
• Total \sum_{i=1}^{n} O(n)
```

- First card requires O(1), second O(2), ...
- For n cards operations ς $O(n^2)$

```
for i \leftarrow 1 to length(A)

j \leftarrow i

while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]

j \leftarrow j - 1
```

6 5 3 1 8 7 2 4

```
struct LIST * SortList1(struct LIST * pList) {
   // zero or one element in list
   if(pList == NULL || pList->pNext == NULL)
       return pList;
   // head is the first element of resulting sorted list
   struct LIST * head = NULL;
   while(pList != NULL) {
        struct LIST * current = pList;
       pList = pList->pNext;
        if(head == NULL || current->iValue < head->iValue) {
            // insert into the head of the sorted list
           // or as the first element into an empty sorted list
            current->pNext = head;
           head = current;
        } else {
            // insert current element into proper position in non-empty sorted list
            struct LIST * p = head;
            while(p != NULL) {
                if(p->pNext == NULL || // last element of the sorted list
                   current->iValue < p->pNext->iValue) // middle of the list
                    // insert into middle of the sorted list or as the last element
                    current->pNext = p->pNext;
                    p->pNext = current;
                    break; // done
                p = p - pNext;
   return head;
```

Complexity

Use binary search!

- For each card
 - Scan $O(n) \longrightarrow O(\log n)$
 - Shift up O(n)
 - Insert O(1)
 - Total O(n)
- First card requires O(1), second O(2), ...
- For n cards operations $n \neq O(n^2)$ Σi

*i=*1

Unchanged!
Because the shift up operation still requires O(n) time

Sorting - Bubble

- From the first element
 - Exchange pairs if they're out of order
 - Last one must now be the largest
 - Repeat from the first to n-1
 - Stop when you have only one element to check

6 5 3 1 8 7 2 4

Bubble Sort

```
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int a[], int n ) {
  int i, j;
  for(i=0;i<n;i++) { /* n passes thru the array */</pre>
    /* From start to the end of unsorted part */
    for(j=1;j<(n-i);j++) {
      /* If adjacent items out of order, swap */
      if (a[j-1]>a[j]) SWAP (a[j-1],a[j]);
```

```
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int a[], int n ) {
  int i, j;
  for(i=0;i<n;i++) { /* n passes thru the array */</pre>
   /* From start to the end of unsorted part */
    for(j=1;j<(n-i);j++) {
     /* If adjacent items out of order, swap */
     if (a[j-1]>a[j]) SWAP (a[j-1],a[j]);
                  O(1) statement
```

```
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int a[], int n ) {
 int i, j;
  for (i=0; i < n; i++) { /* n passes thru the array */
   /* From start to the end of unsorted part */
    for(j=1;j<(n-i);j++) {
     /* If adjacent items out of order, swap */
     if( a[j-1]>a[j] ) SWAP(a[j-1],a[j]);
                                                   Inner loop
                 O(1) statement
                                                  n-1, n-2, n-3, ..., 1 iterations
```

```
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int a[], int n ) {
  int i, j;
  for (i=0; i < n; i++) { /* n passes thru the array */
    /* From start to the end of unsorted part */
    for(j=1;j<(n-i);j++) {
      /* If adjacent items out of order, swap */
     if(a[j-1]>a[j]) SWAP(a[j-1],a[j]);
                                         Outer loop n iterations
```

```
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int a[], int n ) {
  int i, j;
  for (i=0; i < n; i++) { /* n passes thru the array */
    /* From start to the end of unsorted part */
           Overall
      if(
                                       n(n+1)
                                                       = O(n^2)
                                             inner loop iteration count
n outer loop iterations
```

Sorting - Simple

- Bubble sort
 - $O(n^2)$
 - Very simple code
- Insertion sort
 - Slightly better than bubble sort
 - Fewer comparisons
 - Also $O(n^2)$
- But HeapSort is O(n log n)
- Where would you use bubble or insertion sort?

- Divide and Conquer algorithm
- Two phases
 - Partition phase
 - Divides the work into half
 - Sort phase
 - Conquers the halves!

- Partition
 - Choose a pivot
 - Find the position for the pivot so that
 - all elements to the left are less
 - all elements to the right are greater

< pivot pivot > pivot

- Conquer
 - Apply the same algorithm to each half


```
quicksort( void *a, int low, int high )
   int pivot;
   /* Termination condition! */
   if ( high > low )
     pivot = partition( a, low, high );
     quicksort(a, low, pivot-1);
     quicksort( a, pivot+1, high );
                                                             Divide
                                                      Conquer
```

```
int partition (int *a, int low, int high) {
   int left, right;
   int pivot item;
   pivot item = a[low];
   pivot = left = low;
   right = high;
   while ( left < right ) {</pre>
     /* Move left while item < pivot */</pre>
     while( a[left] <= pivot item ) left++;</pre>
     /* Move right while item > pivot */
     while (a[right] >= pivot item ) right--;
     if ( left < right ) SWAP(a,left,right);</pre>
   /* right is final position for the pivot */
   a[low] = a[right];
   a[right] = pivot item;
   return right;
```

```
uses int's
int partition( int *a, int low, int high ) {
                                                  to keep things
   int left, right;
                                                     simple!
   int pivot item;
  pivot item = a[low];
   pivot = left = low;
   right = high;
                             Any item will do as the pivot,
   while [ left < right )
                               choose the leftmost one!
     /* Move left while item . proce /
     while ( a[left] <= pivot item ) left++;</pre>
     /* Move right while item > pivot */
     while ( a[right] >= pivot item ) right--;
     if (left < right ) SWAP(a,left,right);</pre>
   a[low] = a[right];
   a[right] = pivot item;
   return right;
                                              high
         low
```

This example

```
int partition( int *a, int low, int high ) {
   int left, right;
   int pivot item;
   pivot item = a[low];
   pivot = left = low;
                                    Set left and right markers
   right = high;
   while ( left < right ) {</pre>
     /* Move left while item < pivot */</pre>
     whi left a[left] <= pivot_item ) left++ right</pre>
     /* move right while item > pivot */
     while (a[right] >= pivot item ) right--
   /* right is final position for the pivot
   a[low low a[right] a[right] a[right] = pivot: 23
   return right;
```

```
int partition( int *a, int low, int high ) {
   int left, right;
   int pivot item;
   pivot item = a[low];
                                       Move the markers
   pivot = left = low;
   right = high;
                                       until they cross over
   while ( left < right ) {</pre>
    /* Move left while item < pivot */</pre>
     while( a[left] <= pivot item ) left++;</pre>
     /* Move right while item > pivot */
     while( a[right] >= pivot item ) right--;
     if ( left < right ) SWAP(a, left, right);
                                                      right
               left
   /* right is final position for the pivot */
   a[low] = {\bf 23} | {\bf 12}
                        15
                              38
   a[right] = pivot item;
   return ric
                                                      high
                             pivot: 23
               low
```

```
int partition( int *a, int low, int high ) {
   int left, right;
   int pivot item;
   pivot item = a[low];
   pivot = left = low;
                                    Move the left pointer while
   right = high;
                                    it points to items <= pivot
   while ( left < right ) {</pre>
     /* Move left while item < pivot */
     while( a[left] <= pivot item ) left++;</pre>
     /* Move right while item > pivot */
     while( a[right] >= pivot item ) right--;
     if ( left < right ) SWAP(a, left, right);
     }..... | left
                           right
                                                     Move right
   /* right is final position for the pivot *
                                                      similarly
   return right;
                 pivot: 23
   low
```

```
int partition( int *a, int low, int high ) {
   int left, right;
   int pivot item;
   pivot item = a[low];
                                          Swap the two items
   pivot = left = low;
                                     on the wrong side of the pivot
   right = high;
   while ( left < right ) {</pre>
     /* Move left while item < pivot */</pre>
     while( a[left] <= pivot item ) left++;</pre>
      /* Move right while item > pivot */
     while( a[right] >= pivot item ) right--;
     if ( left < right ) SWAP(a,left,right);</pre>
   /* right is left l pos right for the pivot */
   a[low] = a[rignt];
                                                        pivot: 23
                                              high
   low
```

```
int partition( int *a, int low, int high ) {
   int left, right;
                                            left and right
   int pivot item;
   pivot item = a[low];
                                           have swapped over,
   pivot = left = low;
                                                 so stop
   right = high;
   while ( left < right ) {</pre>
    /* Move left while item < pivot */</pre>
     while( a[left] <= pivot item ) left++;</pre>
     /* Move right while item > pivot */
     while( a[right] >= pivot item ) right--;
      if ( left < right ) SWAP(a,left,right);</pre>
   /* right i right al left ition for the pivot */
   a[low] = a[right];
   low
                  pivot: 23
```

```
int partition( int *a, int low, int high ) {
    int left, right;
     int pivot item;
     pivot item = a[low];
     pivot = left = low;
                    left
    while ( right ) {
      /* Move let while item < pivot */
                                       27 eft++;
      while( a[right] >= pivot item \( \) right--;
              pivot: 23 t ) SWAP(a, l high ight);
low
    /* right is final position for the pivot */
    a[low] = a[right];
                                           Finally, swap the pivot
    a[right] = pivot item;
                                                and right
    return right;
```

```
int partition( int *a, int low, int high ) {
    int left, right;
     int pivot item;
     pivot item = a[low];
     pivot = left = low;
     right = hi right
    while ( left < right ) {
                                                   pivot: 23
      /* Move left while item < pivot */</pre>
                                            eft++;
       while( a[right] >= pivot_item f right--;
       if ( left < right ) SWAP(a,l high ight);</pre>
low
    /* right is final position for the pivot */
    a[low] = a[right];
                             Return the position
    a[right] = pivot ite
                                 of the pivot
    return right;
```

Quicksort - Conquer

Quicksort

- Sorted data
- Each partition produces
 - a problem of size 0
 - and one of size *n*-1!
- Number of partitions?

Quicksort

- Sorted data
- Each partition produces
 - a problem of size 0
 - and one of size n-1!
- Number of partitions?
 - n each needing time O(n)
 - Total nO(n) or $O(n^2)$
- ? Quicksort is as bad as bubble or insertion sort

Quicksort

- Quicksort's $O(n \log n)$ behaviour
 - Depends on the partitions being nearly equal
 - \blacktriangleright there are $O(\log n)$ of them
- On average, this will *nearly* be the case and quicksort is generally $O(n \log n)$
- Can we do anything to ensure $O(n \log n)$ time?
- In general, no
 - But we can improve our chances!!

Quicksort - Choice of the pivot

- Any pivot will work ...
- Choose a different pivot ...

- so that the partitions are equal
- then we will see O(n log n) time

Quicksort - Median-of-3 pivot

- Take 3 positions and choose the median
 - say ... First, middle, last

- median is 5
- perfect division of sorted data every time!
- \rightarrow $O(n \log n)$ time
- Since sorted (or nearly sorted) data is common, median-of-3 is a good strategy
 - especially if you think your data may be sorted!

Quicksort - Random pivot

- Choose a pivot randomly
 - Different position for every partition
 - ♦ On average, sorted data is divided evenly
 - $\rightarrow O(n \log n)$ time

- Key requirement
 - Pivot choice must take O(1) time

Quicksort - Guaranteed O(n log n)?

• Any pivot selection strategy could lead to $O(n^2)$ time

- Here median-of-3 chooses 2
 - →One partition of 1 and
 - One partition of 7
- Next it chooses 4
 - →One of 1 and
 - One of 5

Sorting - Key Points

- Sorting
 - Bubble, Insert
 - $O(n^2)$ sorts
 - Simple code
 - May run faster for small n, n ~10 (system dependent)
 - Quick Sort
 - Divide and conquer
 - *O*(*n* log *n*)

Quicksort - library implementation

Quicksort - library implementation

Divide-and-Conquer

- Divide-and-conquer.
 - Break up problem into several parts.
 - Solve each part recursively.
 - Combine solutions to sub-problems into overall solution.
- Most common usage.
 - Break up problem of size n into two equal parts of size ½n.
 - Solve two parts recursively.
 - Combine two solutions into overall solution in linear time.
- Consequence.
 - Brute force: n².
 - Divide-and-conquer: n log n.

Mergesort

- Mergesort.
 - Divide array into two halves.
 - Recursively sort each half.
 - Merge two halves to make sorted whole.

Jon von Neumann (1945)

Merging

- Merging. Combine two pre-sorted lists into a sorted whole.
- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

• Challenge for the bored. In-place merge. [Kronrud, 1969]

A Useful Recurrence Relation

- Def. T(n) = number of comparisons to mergesort an input of size n.
- Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

• Solution. $T(n) = O(n \log_2 n)$.

• Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace ≤ with =.

Recurrences

• The expression:

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

is a recurrence.

 Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence Examples

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

The Master Theorem

- Given: a divide and conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

The Master Theorem

• if T(n) = aT(n/b) + f(n) then

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta(n^{\log_b a} \log n) & f(n) = \Theta(n^{\log_b a}) \end{cases}$$

$$\begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

$$\Theta(f(n)) & f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{AND}$$

$$af(n/b) < cf(n) \text{ for large } n$$

Using The Master Method

- T(n) = 9T(n/3) + n
 - a=9, b=3, f(n) = n
 - $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$
 - Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon = 1$, case 1 applies:

• Thus the solution is $T(n) = \Theta(n^2)$

$$T(n) = \Theta(n^{\log_b a})$$
when $f(n) = O(n^{\log_b a - \varepsilon})$

When Master's Theorem cannot be applied

- You cannot use the Master Theorem if
 - T(n) is not monotone, e.g. $T(n) = \sin(x)$
 - f(n) is not a polynomial, e.g., $T(n)=2T(n/2)+2^n$
 - b cannot be expressed as a constant, e.g.

$$T(n) = T(\sqrt{n})$$

- Note that the Master Theorem does not solve the recurrence equation
- Does the base case remain a concern?

Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Merge Sort Code

```
MergeSort(A, left, right) {
 if (left < right) {</pre>
      mid = floor((left + right) / 2);
      MergeSort(A, left, mid);
      MergeSort(A, mid+1, right);
      Merge (A, left, mid, right);
// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Code for this is in the book. It requires O(n)
// time, and *does* require allocating O(n) space
```

Analysis of Merge Sort

Statement Effort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
        Merge(A, left, mid, right);
    }
}</pre>
T(n) = \( \Omega(1) \) where n = 1 and
```

- So T(n) = $\Theta(1)$ when n = 1, and $2T(n/2) + \Theta(n)$ when n > 1
- This expression is a *recurrence*

Sorting - Better than O(n log n)?

- If all we know about the keys is an ordering rule
 - No!
- However,
 - If we can compute an address from the key (in constant time) then bin sort algorithms can provide better performance

Sorting - Bin Sort/ Bucket sort

- Assume
 - All the keys lie in a small, fixed range
 - eg
 - integers 0-99
 - characters 'A'-'z', '0'-'9'
 - There is at most one item with each value of the key
- Bin sort

Allocate a bin for each value of the key

Usually an entry in an array

For each item,

Extract the key

Compute it's bin number

Place it in the bin

Finished!

Sorting - Bin Sort/ Bucket sort

```
function bucketSort(array, n) is
  buckets ← new array of n empty lists
  for i = 0 to (length(array)-1) do
    insert array[i] into buckets[msbits(array[i], k)]
  for i = 0 to n - 1 do
    nextSort(buckets[i]);
  return the concatenation of buckets[0], ...., buckets[n-1]!
```

Bin Sort/ Bucket sort Analysis

- All the keys lie in a small, fixed range
 - There are *m* possible key values
- There is at most one item with each value of the key
- Bin sort

```
Allocate a bin for each value of the key O(m)
Usually an entry in an array

For each item, n \text{ times}
Extract the key O(1)
Compute it's bin number O(1)
Place it in the bin O(1) \times n \in O(n)
Finished! O(n) + O(m) = O(n+m) = O(n) \text{ if } n >> m
```

Undirected Graphs

- Undirected graph. G = (V, E)
 - V = nodes.
 - E = edges between pairs of nodes.
 - Captures pairwise relationship between objects.
 - Graph size parameters: n = |V|, m = |E|.

Graph Representation: Adjacency Matrix

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0			0			0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

- Adjacency list. Node indexed array of lists.
 - Two representations of each edge.
 - Space proportional to m + n.
 - Checking if (u, v) is an edge takes O(deg(u)) time.
 - Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

• Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

10

Def. A path is simple if all nodes are distinct.

• Def. An undirected graph is connected

if for every pair of nodes u and v, there is a path between u and v.

Cycles

• Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Cycles and Cuts

• Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

• Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cut S = { 4, 5, 8 } Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

Cycle-Cut Intersection

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 Intersection = 3-4, 5-6

• Claim. A cycle and a cutset intersect in an even number of edges.

Trees

• Def. An undirected graph is a tree if it is connected and does not contain a cycle.

- Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

Rooted Trees

• Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

• Importance. Models hierarchical structure.

Connectivity

- s-t connectivity problem. Given two node s and t, is there a path between s and t?
- s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?
- Applications.
 - Friendster.
 - Maze traversal.
 - Kevin Bacon number.
 - Fewest number of hops in a communication network.

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Connected Component

```
R will consist of nodes to which s has a path Initially R=\{s\} While there is an edge (u,v) where u\in R and v\not\in R Add v to R Endwhile
```

Bipartite Graphs

• Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

- Applications.
 - Stable marriage: men = red, women = blue.
 - Scheduling: machines = red, jobs = blue.

Directed Graphs

- Directed graph. G = (V, E)
 - Edge (u, v) goes from node u to node v.

- Ex. Web graph hyperlink points from one web page to another.
 - Directedness of graph is crucial.
 - Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

- Directed reachability. Given a node s, find all nodes reachable from s.
- Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?
- Graph search. BFS extends naturally to directed graphs.

 Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

- Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.
- Def. A graph is strongly connected if every pair of nodes is mutually reachable.
- Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.
- Pf. ⇒ Follows from definition.
- Pf.
 — Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path.

Directed Acyclic Graphs

• Def. An DAG is a directed graph that contains no directed cycles.

• Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

• Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

Graphs - Traversing

- Choices
 - Depth-First / Breadth-first
- Depth First
 - Use an array of flags to mark "visited" nodes

Graph - Breadth-first Traversal

- Adjacency List
 - Time complexity
 - Visited set for each node
 - Each edge visited twice
 - Once in each adjacency list
 - O(|V| + |E|)
 - $ightharpoonup O(|V|^2)$ for dense $|E| \sim |V|^2$ graphs
 - but O(|V|) for sparse |E| ~ |V| graphs
- Adjacency Lists perform better for sparse graphs

Graph - Breadth-first Traversal

```
static queue q;
void search( graph g ) {
  q = ConsQueue(q->n nodes);
  for (k=0; k < g > n \text{ nodes}; k++) g > visited[k] = 0;
  search index = 0;
  for (k=0; k < g > n \text{ nodes}; k++) {
    if ( !g->visited[k] ) visit( g, k );
void visit( graph q, int k ) {
  al node al node;
  int j;
  AddIntToQueue(q, k);
  while( !Empty( q ) ) {
    k = QueueHead(q);
    g->visited[k] = ++search index;
```

Graph - Breadth-first Traversal

```
void visit( graph g, int k ) {
  al node al node;
  int j;
 AddIntToQueue(q, k);
  while( !Empty( q ) ) {
    k = QueueHead(q);
    g->visited[k] = ++search_index;
    al node = ListHead( g->adj list[k]);
    while( al node != NULL ) {
      j = ANodeIndex(al node);
      if ( !g->visited[j] ) {
        AddIntToQueue(g, j);
        q \rightarrow visited[j] = -1; /* C hack, 0 = false! */
        al node = ListNext( al node );
```

Breadth-First Search

Pseudocode for Breadth-First Search

```
Initialize: Let Q = {S}

While Q is not empty

pull Q1, the first element in Q

if Q1 is a goal

report(success) and quit

else

child_nodes = expand(Q1)

eliminate child_nodes which represent loops

put remaining child_nodes at the back of Q

end

Continue
```

Depth-First Search

Depth First Search (DFS)

Pseudocode for Depth-First Search

```
Initialize: Let Q = {S}

While Q is not empty

pull Q1, the first element in Q

if Q1 is a goal

report(success) and quit

else

child_nodes = expand(Q1)

eliminate child_nodes which represent loops

put remaining child_nodes at the front of Q

end

Continue
```

Breadth First Search

(Use the simple heuristic of not generating a child node if that node is a parent to avoid "obvious" loops: this clearly does not avoid all loops and there are other ways to do this)

Comparing DFS and BFS

- Same Time Complexity, unless...
 - say we have a search problem with
 - goals at some depth d
 - but paths without goals and which have infinite depth (i.e., loops in the search space)
 - in this case DFS never may never find a goal!
 - (it stays on an infinite (non-goal) path forever)
 - BFS does not have this problem
 - it will find the finite depth goals in time O(bd)
- Practical considerations
 - if there are no infinite paths, and many possible goals in the search tree, DFS will work best
 - For large branching factors b, BFS may run out of memory
 - BFS is "safer" if we know there can be loops

Depth-Limited Search

- This is Depth-first Search with a cutoff on the maximum depth of any path
 - i.e., implement the usual DFS algorithm
 - when any path gets to be of length m, then do not expand this path any further and backup
 - this will systematically explore a search tree of depth m
- Properties of DLS
 - Time complexity = O(b^m), Space complexity = O(bm)
 - If goal state is within m steps from S:
 - DLS is complete
 - e.g., with N cities, we know that if there is a path to goal state G it can be of length N-1 at most
 - But usually we don't know where the goal is!
 - if goal state is more than m steps from S, DLS is incomplete!
 - => the big problem is how to choose the value of m

Iterative Deepening Search

- Basic Idea:
 - we can run DFS with a maximum depth constraint, m
 - i.e., DFS algorithm but it backs-up at depth m
 - this avoids the problem of infinite paths
 - But how do we choose m in practice? say m < d (!!)
 - We can run DFS multiple times, gradually increasing m
 - this is known as Iterative Deepening Search

Procedure

Iterative Deepening Search

- Complexity
 - Space complexity = O(bd)
 - (since its like depth first search run different times)
 - Time Complexity
 - $1 + (1+b) + (1+b+b^2) + \dots (1+b+\dots b^d)$ = $O(b^d)$ (i.e., the same as BFS or DFS in the the worst case)
 - The overhead in repeated searching of the same subtrees is small relative to the overall time
 - e.g., for b=10, only takes about 11% more time than DFS
- A useful practical method
 - combines
 - guarantee of finding a solution if one exists (as in BFS)
 - space efficiency, O(bd) of DFS

Bidirectional Search

- Idea
 - simultaneously search forward from S and backwards from G
 - stop when both "meet in the middle"
 - need to keep track of the intersection of 2 open sets of nodes
- What does searching backwards from G mean
 - need a way to specify the predecessors of G
 - this can be difficult,
 - e.g., predecessors of checkmate in chess?
 - what if there are multiple goal states?
 - what if there is only a goal test, no explicit list?
- Complexity
 - time complexity is $O(2 b^{(d/2)}) = O(b^{(d/2)})$ steps
 - memory complexity is the same

Repeated States

Example of a Search Tree

- For many problems we can have repeated states in the search tree
 - i.e., the same state can be gotten to by different paths
 - => same state appears in multiple places in the tree
 - this is inefficient, we want to avoid it
- How inefficient can this be?
 - a problem with a finite number of states can have an infinite search tree!

Techniques for Avoiding Repeated States

- Method 1
 - when expanding, do not allow return to parent state
 - (but this will not avoid "triangle loops" for example)
- Method 2
 - do not create paths containing cycles (loops)
 - i.e., do not keep any child-node which is also an ancestor in the tree
- Method 3
 - never generate a state generated before
 - only method which is guaranteed to always avoid repeated states
 - must keep track of all possible states (uses a lot of memory)
 - e.g., 8-puzzle problem, we have 9! = 362,880 states
- Methods 1 and 2 are most practical, work well on most problems

Heuristic search

Using heuristic search, we assign a quantitative value called a heuristic value (h value) to each node. This quantitative value shows the relative closeness of the node to the goal state. For example, consider solving the 8-puzzle.

Initial state

1	2	3	
7	8	6	6
	5	4	

1	2	3	
7	8	6	,
5		4	

Goal state

Uniform Cost Search

Uniform Cost Search

- orders the nodes on the Q according to path cost from S
- •always expands the node with minimum path cost from S

```
Initialize: Let Q = {S}

While Q is not empty

pull Q1, the first element in Q

if Q1 is a goal report(success) and quit

else

child_nodes = expand(Q1)

<eliminate child_nodes which represent loops>

put remaining child_nodes in Q

sort Q according to path-cost to each node

end

Continue
```

Heuristics and Search

- in general
 - a heuristic is a "rule-of-thumb" based on domain-dependent knowledge to help you solve a problem
- in search
 - one uses a heuristic function of a state where
 h(node) = estimated cost of cheapest path
 from the state for that node to a goal state G
 - h(G) = 0
 - $h(other nodes) \ge 0$
 - (note: we will assume all individual node-to-node costs are > 0)

A(*) Algorithm

- Goal: Find shortest path
- Prerequisites
 - Graph
 - Method to estimate distance between points (heuristic)
- Basic Method
 - Try all paths?
 - Takes time
 - Orient search towards target
 - Minimizes areas of the map to be examined
 - Uses heuristics that indicate the estimated cost of getting to the destination
 - Main advantage

A(*) Algorithm

- Algorithm
 - Open list
 - Nodes that need to be considered as possible starts for further extensions of the path
 - Closed list
 - Nodes that have had all their neighbors added to the open list
 - G score
 - Contains the length or weight of the path from the current node to the start node
 - Low lengths are better
 - Every node has a G score
 - H score
 - Heuristic
 - Resembles G score except it represents an estimate of the distance from the current node to the endpoint
 - To find shortest path, this score must underestimate the distance

The A* Algorithm

- A heuristic h is admissible if
 - it for any node n it does NOT overestimate the true path cost from n to the nearest goal.
- The A* search is a search algorithm orders the nodes on the Q according to f(n)=g(n)+h(n), where h(n) is an admissible heuristic
 - i.e., it sorts nodes on Q according to an admissible heuristic h*
 - It is like uniform-cost,
 - but uses fcost(node) = path-cost(S to node) + h(node)
 - rather than just path cost(S to node)
 - note that uniform cost search can be viewed as A* search where h(n) equals 0 for all n (the latter heuristic equal to 0 for every node is clearly admissible! Why?)

Pseudo-code for the A* Search Algorithm

Example of A* Algorithm in action

Comments on heuristic estimation

- The estimate of the distance is called a heuristic
 - typically it comes from domain knowledge
 - e.g., the straight-line distance between 2 points
- If the heuristic never overestimates, then the search procedure using this heuristic is "admissible", i.e.,
 - h*(N) is less than or equal to realcost(N to G)
- A* is a search with admissible heuristic is optimal
 - i.e., if one uses an admissible heuristic to order the search one is guaranteed to find the optimal solution
- The closer the heuristic is to the real (unknown) path cost, the more effective it will be, ie if h1(n) and h2(n) are two admissible heuristics and h1(n)≤h2(n) for any node n then A* search with h2(n) will in general expand fewer nodes than A* search with h1(n)

Properties of A*

- A* generates an optimal solution if h(n) is an admissible heuristic and the search space is a tree:
 - h(n) is **admissible** if it never overestimates the cost to reach the destination node
- A* generates an optimal solution if h(n) is a consistent heuristic and the search space is a graph:
 - h(n) is consistent if for every node n and for every successor node n' of n:

$$h(n) \le c(n,n') + h(n')$$

- If h(n) is consistent then h(n) is admissible
- •Frequently when h(n) is admissible, it is also consistent

Admissible Heuristics

• A heuristic is admissible if it is too optimistic, estimating the cost to be smaller than it actually is.

• Example:

In the road map domain,

h(n) = "Euclidean distance to destination"

is admissible as normally cities are not connected by roads that make straight lines

Metric Space

- A set of points X
- Distance function d(x,y)

$$d: X \rightarrow [0... \infty)$$

- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x) Symmetric

Triangle inequali

• $d(x,z) \le d(x,y) + d(y,z)$ Triangle inequality

Metric space M(X,d)

Dominance

If $h2(n) \ge h1(n)$ for all n (both admissible) then h2 dominates h1

h2 is better for search: it is guaranteed to expand less or equal nr of nodes.

Examples of Heuristic Functions for A*

- the 8-puzzle problem
 - the number of tiles in the wrong position
 - is this admissible?
 - the sum of distances of the tiles from their goal positions, where distance is counted as the sum of vertical and horizontal tile displacements ("Manhattan distance")
 - is this admissible?
- How can we invent admissible heuristics in general?
 - look at "relaxed" problem where constraints are removed
 - e.g., we can move in straight lines between cities
 - e.g., we can move tiles independently of each other

IDA(*) Algorithm

- A*, like depth-first search, except based on increasing values of total cost rather than increasing depths
- IDA* sets bounds on the heuristic cost of a path, instead of depth
- A* always finds a cheapest solution if the heuristic is admissible
- IDA* is optimal in terms of solution cost, time, and space for admissible best-first searches on a tree

State Space

Model of a system as a set of input, output and state variables

Setting Up a State Space Model

- State-space Model is a Model for The Search Problem
 - usually a set of discrete states X
 - e.g., in driving, the states in the model could be towns/cities
- Start State a state from X where the search starts.
- Goal State(s)
 - a goal is defined as a target state
 - For now: all goal states have utility 1, and all non-goals have utility 0
 - there may be many states which satisfy the goal
 - e.g., drive to a town with an airport
 - or just one state which satisfies the goal
 - e.g., drive to Las Vegas
- Operators
 - operators are mappings from X to X
 - e.g. moves from one city to another that are legal (connected with a road)

A State Space and a Search Tree are different

- A State Space represents all states and operators for the problem
- A Search Tree is what an algorithm constructs as it solves a search problem:
 - so we can have different search trees for the same problem
 - search trees grow in a dynamic fashion until the goal is found

Puzzle-Solving as Search

- You have a 3-gallon and a 4-gallon
- You have a faucet with an unlimited amount of water
- You need to get exactly 2 gallons in 4-gallon jug
- State representation: (x, y)
 - x: Contents of four gallon
 - y: Contents of three gallon
- Start state: (0, 0)
- Goal state(s) G = {(2, 0), (2, 1), (2, 2)}
- Operators
 - Fill 3-gallon (0,0)->(0,3), fill 4-gallon (0,0)->(0,4)
 - Fill 3-gallon from 4-gallon (4,0)->(1,3), fill 4-gallon from 3-gallon (0,3)->(3,0) or (1,3)->(4,0) or (2,3)->(4,0)....
 - Empty 3-gallon into 4-gallon, empty 4-gallon into 3-gallon
 - Dump 3-gallon down drain (0,3)->(0,0), dump 4-gallon down drain (4,0)->(0,0)

Dijkstra's algorithm

- **Dijkstra's algorithm**: finds shortest (minimum weight) path between a particular pair of vertices in a weighted directed graph with nonnegative edge weights
 - solves the "one vertex, shortest path" problem
 - basic algorithm concept: create a table of information about the currently known best way to reach each vertex (distance, previous vertex) and improve it until it reaches the best solution
- in a graph where:
 - vertices represent cities,
 - edge weights represent driving distances between pairs of cities connected by a direct road, Dijkstra's algorithm can be used to find the shortest route between one city and any other

Single-Source Shortest Path Problem

<u>Single-Source Shortest Path Problem</u> - The problem of finding shortest paths from a source vertex *v* to all other vertices in the graph.

Dijkstra's algorithm

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex v∈V, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Dijkstra's algorithm - Pseudocode

```
dist[s] \leftarrow o
                                          (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                         (set all other distances to infinity)
                                          (S, the set of visited vertices is initially empty)
S←Ø
                                          (Q, the queue initially contains all
O←V
vertices)
                                         (while the queue is not empty)
while Q ≠Ø
do u \leftarrow mindistance(Q,dist)
                                          (select the element of Q with the min.
distance)
    S \leftarrow S \cup \{u\}
                                          (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                              (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                     (if desired, add traceback code)
return dist
```

Dijkstra's Algorithm

- Dijkstra's algorithm.
 - Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
 - Initialize $S = \{s\}, d(s) = 0.$
 - Repeatedly choose unexplored node v which minimizes

add v to S, and set $d(v) = \pi(v)$.

Dijkstra's Algorithm: Proof of Correctness

- Invariant. For each node u ∈ S, d(u) is the length of the shortest s-u path.
- Pf. (by induction on |S|)
- Base case: |S| = 1 is trivial.
- Inductive hypothesis: Assume true for $|S| = k \ge 1$.
 - Let v be next node added to S, and let u-v be the chosen edge.
 - The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
 - Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
 - P is already too long as soon as it leaves S.

• Find shortest path from s to t.

Shortest Paths: Failed Attempts

• Dijkstra. Can fail if negative edge costs.

• Re-weighting. Adding a constant to every edge weight can fail.

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

• Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

Shortest Paths: Dynamic Programming

- Def. OPT(i, v) = length of shortest v-t path P using at most i edges.
 - Case 1: P uses at most i-1 edges.
 - OPT(i, v) = OPT(i-1, v)
 - Case 2: P uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges

$$OPT(i, v) = \begin{cases} 0 & \text{if } i = 0 \\ \min \left\{ OPT(i-1, v), \min_{(v, w) \in E} \left\{ OPT(i-1, w) + c_{vw} \right\} \right\} & \text{otherwise} \end{cases}$$

• Remark. By previous observation, if no negative cycles, then OPT(n-1, v) = length of shortest v-t path.

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
 - Subproblems may share subsubproblems,
 - However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- Compute optimal solution values either top-down with caching or bottom-up in a table.
- 4. Construct an optimal solution from computed values. We'll study these with the help of examples.

Dynamic Programming History

• Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

- Etymology.
 - Dynamic programming = planning over time.
 - Secretary of Defense was hostile to mathematical research.
 - Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Dynamic Programming

- Dynamic Programming is a general algorithm design technique
- for solving problems defined by or formulated as recurrences with overlapping subinstances
- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
- set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Dynamic Programming: Binary Choice

- Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.
 - Case 1: OPT selects job j.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$

The 0-1 knapsack problem

- A thief breaks into a house, carrying a knapsack...
 - He can carry up to 25 pounds of loot
 - He has to choose which of N items to steal
 - Each item has some weight and some value
 - "0-1" because each item is stolen (1) or not stolen (0)
 - He has to select the items to steal in order to maximize the value of his loot, but cannot exceed 25 pounds
- A greedy algorithm does not find an optimal solution
- A dynamic programming algorithm works well
- This is similar to, but not identical to, the coins problem
 - In the coins problem, we had to make an exact amount of change
 - In the 0-1 knapsack problem, we can't *exceed* the weight limit, but the optimal solution may be *less* than the weight limit
 - The dynamic programming solution is similar to that of the coins problem

0/1 Knapsack Problem

- We are given a knapsack of capacity c and a set of n objects numbered 1,2,...,n. Each object i has weight w_i and profit p_i .
- Let $v = [v_1, v_2, ..., v_n]$ be a solution vector in which $v_i = 0$ if object i is not in the knapsack, and $v_i = 1$ if it is in the knapsack.
- The goal is to find a subset of objects to put into the knapsack so that

(that is, the objects fit into the knapsack) and

$$\sum_{i=1}^{n} w_i v_i \le \epsilon$$

is maximized (that is, the profit is maximized).

$$\sum_{i=1}^n p_i v_i$$

0/1 Knapsack Problem

- The naive method is to consider all 2^n possible subsets of the n objects and choose the one that fits into the knapsack and maximizes the profit.
- Let *F*[*i*,*x*] be the maximum profit for a knapsack of capacity *x* using only objects {1,2,...,*i*}. The DP formulation is:

$$F[i,x] = \left\{egin{array}{ll} 0 & x \geq 0, i = 0 \ -\infty & x < 0, i = 0 \ \max\{F[i-1,x], (F[i-1,x-w_i]+p_i)\} & 1 \leq i \leq n \end{array}
ight.$$

0/1 Knapsack Problem

- Construct a table *F* of size *n x c* in row-major order.
- Filling an entry in a row requires two entries from the previous row: one from the same column and one from the column offset by the weight of the object corresponding to the row.
- Computing each entry takes constant time; the sequential run time of this algorithm is $\Theta(nc)$.
- The formulation is serial-monadic.

Knapsack Problem

- Knapsack problem.
 - Given n objects and a "knapsack."
 - Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
 - Knapsack has capacity of W kilograms.
 - Goal: fill knapsack so as to maximize total value.

W = 11

• Ex: { 3, 4 } has value 40.

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

- Greedy: repeatedly add item with maximum ratio v_i / w_i .
- Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

- Def. OPT(i) = max profit subset of items 1, ..., i.
 - Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
 - Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

• Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

- Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.
 - Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
 - Case 2: OPT selects item i.
 - new weight limit = w − w_i
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Algorithm

_____ W+1 ____

		0	1	2	3	4	5	6	7	8	9	10	11
	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

- Running time. $\Theta(n W)$.
 - Not polynomial in input size!
 - "Pseudo-polynomial."
 - Decision version of Knapsack is NP-complete.
- Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

Dynamic Programming Summary

- Recipe.
 - Characterize structure of problem.
 - Recursively define value of optimal solution.
 - Compute value of optimal solution.
 - Construct optimal solution from computed information.
- Dynamic programming techniques.
 - Binary choice: weighted interval scheduling.
 - Multi-way choice: segmented least squares.
 - Adding a new variable: knapsack.
 - Dynamic programming over intervals: RNA secondary structure.
- Top-down vs. bottom-up: different people have different intuitions.

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v \in V {
       M[v] \leftarrow \infty
       successor[v] \leftarrow \phi
   M[t] = 0
   for i = 1 to n-1 {
       foreach node w \in V {
       if (M[w] has been updated in previous iteration) {
           foreach node v such that (v, w) \in E {
              if (M[v] > M[w] + C_{vw}) {
                  M[\Lambda] \leftarrow M[\Lambda] + C^{\Lambda M}
                  successor[v] \leftarrow w
       If no M[w] value changed in iteration i, stop.
```

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v ∈ V {
       M[v] \leftarrow \infty
       successor[v] \leftarrow \phi
   M[t] = 0
   for i = 1 to n-1 {
       foreach node w ∈ V {
       if (M[w] has been updated in previous iteration) {
          foreach node v such that (v, w) ∈ E {
              if (M[v] > M[w] + c_{vw}) {
                 M[v] \leftarrow M[w] + c_{vw}
                 successor[v] \leftarrow w
       If no M[w] value changed in iteration i, stop.
```

Detecting Negative Cycles

- Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
- Pf. Bellman-Ford algorithm.
- Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path from v to t contains a cycle W. Moreover W has negative cost.
- Pf. (by contradiction)
 - Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 - By pigeonhole principle, P must contain a directed cycle W.
 - Deleting W yields a v-t path with < n edges ⇒ W has negative cost.

Searching - Binary search

```
adds each item in correct place
```

```
Find position c_1 \log_2 n
Shuffle down c_2 n
Overall c_1 \log_2 n + c_2 n
or c_2 n
```

Each add to the sorted array is O(n)

Binary Search: Method

- The method is recursive:
- Compare b with the middle value X[mid]
- If b = X[mid], return mid
- If b < X[mid], then b can only be in the left half of X[], because X[] is sorted. So call the function recursively on the left half.
- If b > X[mid], then b can only be in the right half of X[], because X[] is sorted. So call the function recursively on the right half.

Illustration of Binary search

Binary search code

```
// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {
    int min = 0;
    int max = a.length - 1;
    while (min <= max) {</pre>
        int mid = (min + max) / 2;
        if (a[mid] < target) {</pre>
            min = mid + 1;
        } else if (a[mid] > target) {
            max = mid - 1;
        } else {
            return mid; // target found
    return -(min + 1);
                       // target not found
```

Binary search code

```
// Returns the index of an occurrence of the given value in
// the given array, or a negative number if not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {
    return binarySearch(a, target, 0, a.length - 1);
// Recursive helper to implement search behavior.
private static int binarySearch(int[] a, int target,
                                int min, int max) {
    if (min > max) {
        return -1; // target not found
    } else {
        int mid = (min + max) / 2;
        if (a[mid] < target) {</pre>
                                      // too small; go right
            return binarySearch(a, target, mid + 1, max);
        } else if (a[mid] > target) { // too large; go left
            return binarySearch(a, target, min, mid - 1);
        } else {
            return mid; // target found; a[mid] == target
```

Time Complexity of Binary Search

- Call T(n) the time of binary search when the array size is n.
- T(n) = T(n/2) + c, where c is some constant representing the time of the basis step and the last if-statement to choose between min1 and min2
- Assume for simplicity that $n = 2^k$. (so $k = \log_2 n$)
- $T(2^k)=T(2^{k-1})+c=T(2^{k-2})+c+c=T(2^{k-3})+c+c+c=...=$ $T(2^0)+c+c+...c=T(1)+kc=O(k)=O(log n)$
- Therefore, T(n)=O(log n).

Binary Trees

- Binary Tree
 - Consists of
 - Node
 - Left and Right sub-trees
 - Both sub-trees are binary trees

Trees - Implementation

```
struct t node {
     void *item;
     struct t node *left;
     struct t node *right;
     };
typedef struct t node *Node;
struct t collection {
     Node root;
     };
```

Trees - Implementation

```
extern int KeyCmp( void *a, void *b);
/* Returns -1, 0, 1 for a < b, a == b, a > b */
void *FindInTree( Node t, void *key ) {
   if ( t == (Node) 0 ) return NULL;
   switch( KeyCmp( key, ItemKey(t->item) ) ) {
      case -1 : return FindInTree( t->left, key );
      case 0: return t->item;
      case +1 : return FindInTree( t->right, key );
void *FindInCollection( collection c, void *key ) {
   return FindInTree( c->root, key );
```

Trees - Implementation

• Find

```
• key = 22;
 if ( FindInCollection( c , &key ) ) ....
      n = c -> root;
      FindInTree( n, &key );
                20
                           FindInTree(n->right, &key);
        12
                                  FindInTree(n->left,&key );
          13
                    22
                             • 37 •
                      return n->item;
```

Trees - Performance

- Find
 - Complete Tree

- Height, h
 - Nodes traversed in a path from the root to a leaf
- Number of nodes, h
 - $n = 1 + 2^1 + 2^2 + \dots + 2^h = 2^{h+1} 1$
 - $h = floor(log_2 n)$

Trees - Addition

Add 21 to the tree

- We need at most *h*+1 comparisons
- Create a new node (constant time)
- \therefore add takes $c_1(h+1)+c_2$ or $c \log n$
- So addition to a tree takes time proportional to log n also

Trees - Addition - implementation

```
static void AddToTree( Node *t, Node new ) {
  Node base = *t;
   /* If it's a null tree, just add it here */
   if (base == NULL) {
      *t = new; return; }
   else
      if ( KeyLess(ItemKey(new->item), ItemKey(base->item)) )
         AddToTree( & (base->left), new );
      else
         AddToTree( & (base->right), new );
void AddToCollection( collection c, void *item ) {
        Node new, node p;
        new = (Node) malloc(sizeof(struct t node));
        /* Attach the item to the node */
        new->item = item;
        new->left = new->right = (Node)0;
        AddToTree( &(c->node), new);
```

Trees - Addition

- Find $c \log n$
- Add $c \log n$
- Delete $c \log n$

- Usually efficient in every respect!
- But there's a catch Balance!!!

Trees - Addition

Take this list of characters and form a tree
 A B C D E F

- In this case
 - ? Find
 - ? Add
 - ? Delete

Searching - Re-visited

- Binary tree O(log n) if it stays balanced
 - Simple binary tree good for static collections
 - Low (preferably zero) frequency of insertions/deletions

but my collection keeps changing!

- It's dynamic
- Need to keep the tree balanced
- First, examine some basic tree operations
 - Useful in several ways!

Trees - Searching

- Binary search tree
 - Preserving the order
 - Observe that this transformation preserves the search tree

Trees - Searching

- Binary search tree
 - Preserving the order
 - Observe that this transformation preserves the search tree
- We've performed a rotation of the sub-tree about the T and O nodes

AVL and other balanced trees

- AVL Trees
 - First balanced tree algorithm
 - Discoverers: Adelson-Velskii and Landis
- Properties
 - Binary tree
 - Height of left and right-subtrees differ by at most
 - Subtrees are AVL trees

Which is an AVL Tree?

AVL (Adelson-Velskii and Landis) Trees

An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.

Motivation

When building a binary search tree, what type of trees would we like? Example: 3, 5, 8, 20, 18, 13, 22

Motivation

- Complete binary tree is hard to build when we allow dynamic insert and remove.
 - We want a tree that has the following properties
 - Tree height = O(log(N))
 - allows dynamic insert and remove with O(log(N)) time complexity.
 - The AVL tree is one of this kind of trees.

AVL (Adelson-Velskii and Landis) Trees

- AVL tree is a binary search tree with balance condition
 - To ensure depth of the tree is O(log(N))
 - And consequently, search/insert/remove complexity bound O(log(N))
- Balance condition
 - For every node in the tree, height of left and right subtree can differ by at most 1

Height of an AVL tree

- Theorem: The height of an AVL tree storing n keys is O(log n).
- Proof:
 - Let us bound **n(h)**, the minimum number of internal nodes of an AVL tree of height h.
 - We easily see that n(0) = 1 and n(1) = 2
 - For h > 2, an AVL tree of height h contains the root node, one AVL subtree of height h-1 and another of height h-2 (at worst).
 - That is, n(h) >= 1 + n(h-1) + n(h-2)
 - Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction), $n(h) > 2^{i}n(h-2i)$
 - Solving the base case we get: $n(h) > 2^{h/2-1}$
 - Taking logarithms: h < 2log n(h) +2
 - Since n>=n(h), h < 2log(n)+2 and the height of an AVL tree is O(log n)

AVL Trees - Data Structures

Insertion

- Insert a new node (as any binary tree)
- Work up the tree re-balancing as necessary to restore the AVL property

m-way trees (Multiway Trees)

- A multiway tree is a tree that can have more than two children. A multiway tree of order m (or an m-way tree) is one in which a tree can have m children.
- But you have to search through the m keys in each node!
- Reduces your gain from having fewer levels.

m-way trees

- Only two children per node?
- Reduce the depth of the tree to $O(\log_m n)$ with m-way trees

• $m = 10 : 10^6$ keys in 6 levels vs 20 for a binary tree

B-trees

- All leaves are on the same level
- All nodes except for the root and the leaves have
 - at least *m/2* children
 - at most *m* children
- B+ trees
 - All the keys in the nodes are dummies
 - Only the keys in the leaves point to "real" data
 - Linking the leaves
 - Ability to scan the collection in order without passing through the higher nodes

Motivation for B-Trees

- Index structures for large datasets cannot be stored in main memory
- Storing it on disk requires different approach to efficiency

- Assuming that a disk spins at 3600 RPM, one revolution occurs in 1/60 of a second, or 16.7ms
- Crudely speaking, one disk access takes about the same time as 200,000 instructions

Motivation B-trees

- Assume that we use an AVL tree to store about 20 million records
- We end up with a **very** deep binary tree with lots of different disk accesses; $\log_2 20,000,000$ is about 24, so this takes about 0.2 seconds
- We know we can't improve on the log n lower bound on search for a binary tree
- But, the solution is to use more branches and thus reduce the height of the tree!
 - As branching increases, depth decreases

Definition of B-Tree

- Definition assumes external nodes (extended m-way search tree).
- B-tree of order m.
 - m-way search tree.
 - Not empty => root has at least 2 children.
 - Remaining internal nodes (if any) have at least ceil(m/2) children.
 - External (or failure) nodes on same level.

An example B-Tree

Note that all the leaves are at the same level

B+-trees

- B+ trees
 - All the keys in the nodes are dummies
 - Only the keys in the leaves point to "real" data
 - Data records kept in a separate area

Minimum Spanning Tree (MST)

• A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such that the subgraph spans (includes) all nodes, is connected, is acyclic, and has minimum total edge weight

Greedy Algorithms

- Simplifying assumption. All edge costs c_e are distinct.
- Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e.
- Pf. (exchange argument)
 - Suppose e does not belong to T*, and let's see what happens.
 - Adding e to T* creates a cycle C in T*.
 - Edge e is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say f, that is in both C and D.
 - T' = T* \cup {e} {f} is also a spanning tree.
 - Since c_e < c_f, cost(T') < cost(T*).
 - This is a contradiction. •

Prim's Algorithm

- Initially discovered in 1930 by Vojtěch Jarník, then rediscovered in 1957 by Robert C. Prim
- Similar to Dijkstra's Algorithm regarding a connected graph
- Starts off by picking any node within the graph and growing from there

Prim's Algorithm

- Label the starting node, A, with a 0 and all others with infinite
- Starting from A, update all the connected nodes' labels to A with their weighted edges if it less than the labeled value
- Find the next smallest label and update the corresponding connecting nodes
- Repeat until all the nodes have been visited

Prim's Algorithm: Proof of Correctness

- Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
 - Initialize S = any node.
 - Apply cut property to S.

Add min cost edge in cutset corresponding to S to T, and add one new explored

node u to S.

Implementation: Prim's Algorithm

- Implementation. Use a priority queue ala Dijkstra.
 - Maintain set of explored nodes S.
 - For each unexplored node
 v, maintain attachment
 cost a[v] = cost of cheapest
 edge v to a node in S.
 - O(n²) with an array; O(m log n) with a binary heap.

```
Prim(G, c) {
   foreach (v \in V) a[v] \leftarrow \infty
   Initialize an empty priority queue Q
   foreach (v \in V) insert v onto Q
   Initialize set of explored nodes S \leftarrow \phi
   while (Q is not empty) {
       u \leftarrow delete min element from Q
       S \leftarrow S \cup \{u\}
       foreach (edge e = (u, v) incident to u)
            if ((v \notin S) \text{ and } (c_e < a[v]))
                decrease priority a[v] to ce
```

Kruskal's Algorithm: Proof of Correctness

- Kruskal's algorithm. [Kruskal, 1956]
 - Consider edges in ascending order of weight.
 - Case 1: If adding e to T creates a cycle, discard e according to cycle property.
 - Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component.

Case 1 Case 2

Kruskal's Algorithm

- Created in 1957 by Joseph Kruskal
- Finds the MST by taking the smallest weight in the graph and connecting the two nodes and repeating until all nodes are connected to just one tree
- This is done by creating a priority queue using the weights as keys
- Each node starts off as it's own tree
- While the queue is not empty, if the edge retrieved connects two trees, connect them, if not, discard it
- Once the queue is empty, you are left with the minimum spanning tree

Kruskal's Algorithm

```
KRUSKAL(G):
A = \emptyset
foreach v \in G.V:
MAKE-SET(v)
foreach (u, v) ordered by weight(u, v), increasing:
 if FIND-SET(u) \neq FIND-SET(v):
   A = A \cup \{(u, v)\}
   UNION(u, v)
return A
```

Implementation: Kruskal's Algorithm

- Implementation. Use the union-find data structure.
 - Build set T of edges in the MST.
 - Maintain set for each connected component.
 - O(m log n) for sorting and O(m α (m, n)) for unionfind.

```
Kruskal(G, c) {
    Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m.
    T \leftarrow \phi
    foreach (u \in V) make a set containing
singleton u
    for i = 1 to m
        (u,v) = e_i
        if (u and v are in different sets) {
          \mathtt{T} \leftarrow \mathtt{T} \cup \{\mathtt{e}_\mathtt{i}\}
            merge the sets containing u and v
    return T
   merge two components
```

Graphs - Kruskal's Algorithm

- Calculate the minimum spanning tree
 - Put all the vertices into single node trees by themselves
 - Put all the edges in a priority queue
 - Repeat until we've constructed a spanning tree
 - Extract cheapest edge
 - If it forms a cycle, ignore it else add it to the forest of trees (it will join two trees into a larger tree)
 - Return the spanning tree

Graphs - Kruskal's Algorithm in C

```
Forest MinimumSpanningTree (Graph g, int n,
                                   double **costs ) {
   Forest T;
   Queue q;
   Edge e;
   T = ConsForest(q);
   q = ConsEdgeQueue( q, costs );
   for (i=0; i<(n-1); i++) {
       do {
          e = ExtractCheapestEdge( q );
       } while ( !Cycle( e, T ) );
       AddEdge(T, e);
   return T;
```

Graphs - Kruskal's Algorithm in C

```
Forest MinimumSpanningTree( Graph g, int n,
                   double **costs ) {
 Forest T;
 Queue q;
 Edge e;
 T = ConsForest(g);
 q = ConsEdgeQueue(g, costs);
 for(i=0;i<(n-1);i++) {
   do {
     e = ExtractCheapestEdge( q );
   } while ( !Cycle( e, T ) );
   AddEdge(T, e);
 return T;
```

Graphs - Kruskal's Algorithm in C

```
Forest MinimumSpanningTree (Graph g, int n,
                                  double **costs ) {
   Forest T;
   Queue q;
  Edge e;
   T = ConsForest(g);
   q = ConsEdgeQueue( g, costs );
   for (i=0; i<(n-1); i++) {
       do {
          e = ExtractCheapestEdge( q );
       } while (!Cycle(e, T));
      AddEdge(T, e);
   return T;
```

Kruskal's Algorithm

```
Forest MinimumSpanningTree (Graph g, int n,
                                   double **costs ) {
   Forest T;
   Queue q;
   Edge e;
   T = ConsForest(g);
   q = ConsEdgeQueue( g, costs );
   for (i=0; i<(n-1); i++) {
       do {
          e = ExtractCheapestEdge( q );
       } while ( !Cycle( e, T ) );
       AddEdge(T, e);
   return T;
```

MST - Time complexity

Steps

- Thus we would class MST as O(n² log n) for a graph with n vertices
- This is an *upper bound*, some improvements on this are known ...
 - Prim's Algorithm can be O(|E|+|V|log|V|) using Fibonacci heaps
 - even better variants are known for restricted cases, such as sparse graphs (|E| » |V|)

Hash Tables

- All search structures so far
 - Relied on a comparison operation
 - Performance O(n) or $O(\log n)$
- Assume I have a function
 - f (key) ® integer
 ie one that maps a key to an integer
- What performance might I expect now?

Hash Tables - Structure

- Simplest case:
 - Assume items have integer keys in the range
 - Use the value of the key itself to select a slot in a direct access table in which to store the item
 - To search for an item with key, k, just look in slot k
 - If there's an item there, you've found it
 - If the tag is 0, it's missing.
 - Constant time, O(1)

Hash Tables - Constraints

- Constraints
 - Keys must be unique
 - Keys must lie in a small range
 - For storage efficiency,
 keys must be dense in the range
 - If they're sparse (lots of gaps between values), a lot of space is used to obtain speed
 - Space for speed trade-off

Hash Tables - Relaxing the constraints

- Keys must be unique
 - Construct a linked list of duplicates "attached" to each slot
 - If a search can be satisfied by any item with key, k, performance is still O(1) but
 - If the item has some other distinguishing feature which must be matched, we get O(n^{max}) where n^{max} is the largest number of duplicates or length of the longest chain

Hash Tables - Relaxing the constraints

- Keys are integers
 - Need a hash function
 h(key)
 [®] integer
 ie one that maps a key to
 an integer
 - Applying this function to the key produces an address
 - If *h* maps each key to a *unique integer* in the range 0 .. *m*-1 then search is *O*(1)

Hash Tables - Hash functions

• Example - using an *n*-character key

```
int hash( char *s, int n ) {
   int sum = 0;
   while( n-- ) sum = sum + *s++;
   return sum % 256;
  }
returns a value in 0 .. 255
```

- xor function is also commonly used sum = sum ^ *s++;
- But any function that generates integers in 0..m-1 for some suitable (not too large)
 m will do

Hash Tables - Collisions

- Hash function
 - With this hash function

```
int hash( char *s, int n ) {
   int sum = 0;
   while( n-- ) sum = sum + *s++;
   return sum % 256;
}
```

- hash("AB", 2) and hash("BA", 2) return the same value!
- This is called a collision
- A variety of techniques are used for resolving collisions

Hash Tables - Collision handling

- Collisions
 - Occur when the hash function maps two different keys to the same address
 - The table must be able to recognise and resolve this
 - Recognise
 - Store the actual key with the item in the hash table
 - Compute the address
 - k = h(key)
 - Check for a hit
 - if (table[k].key == key) then hit else try next entry
 - Resolution
 - Variety of techniques

Hash Tables - Linked lists

- Collisions Resolution
 - **1** Linked list attached to each primary table slot
 - h(i) == h(i1)
 - h(k) == h(k1) == h(k2)
 - Searching for i1
 - Calculate h(i1)
 - Item in table, i, doesn't match
 - Follow linked list to i1
 - If NULL found, key isn't in table

Hash Tables - Overflow area

```
Overflow area
    Linked list constructed
    in special area of table
    called overflow area
h(k) == h(j)
k stored first
Adding j
    Calculate h(j)
    Find k
    Get first slot in overflow area
    Put j in it
    k's pointer points to this slot
Searching - same as linked list
```


Hash Tables - Re-hashing

```
Use a second hash function
     Many variations
     General term: re-hashing
h(\mathbf{k}) == h(\mathbf{j})
k stored first
Adding
     Calculate h(j)
     Find k
     Repeat until we find an empty slot
         Calculate h'(j)
     Put j in it
Searching - Use h(x), then h'(x)
```


Hash Tables - Re-hash functions

The re-hash function

Many variations

Linear probing

h'(x) is +1

Go to the next slot until you find one empty

Can lead to bad clustering

Re-hash keys fill in gaps between other keys and exacerbate the collision problem

Hash Tables - Summary so far ...

- Potential *O*(1) search time
 - If a suitable function h(key) ® integer can be found
- Space for speed trade-off
 - "Full" hash tables don't work (more later!)
- Collisions
 - Inevitable
 - Hash function reduces amount of information in key
 - Various resolution strategies
 - Linked lists
 - Overflow areas
 - Re-hash functions
 - Linear probing h' is +1
 - Quadratic probing h' is $+ci^2$
 - Any other hash function!
 - or even sequence of functions!

Hash Tables - Choosing the Hash Function

- "Almost any function will do"
 - But some functions are definitely better than others!
- Key criterion
 - Minimum number of collisions
 - Keeps chains short
 - Maintains O(1) average

Collision Frequency

- Birthdays *or* the von Mises paradox
 - There are 365 days in a normal year
 - Birthdays on the same day unlikely?
 - How many people do I need before "it's an even bet" (ie the probability is > 50%) that two have the same birthday?
 - View
 - the days of the year as the slots in a hash table
 - the "birthday function" as mapping people to slots
 - Answering von Mises' question answers the question about the probability of collisions in a hash table

Birthday Problem

• What is the smallest number of people you need in a group so that the probability of 2 or more people having the same birthday is greater than 1/2?

Answer: 23

No. of people 23 30 40 60

Probability .507 .706 .891 .994

Birthday Problem

- A={at least 2 people in the group have a common birthday}
- A' = {no one has common birthday}

3 people :
$$P(A') = \frac{364}{365} \times \frac{363}{365}$$

23 people :
$$P(A') = \frac{364}{365} \times \frac{363}{365} \times \dots \frac{343}{365} = .498$$
so $P(A) = 1 - P(A') = 1 - .498 = .502$

Coincident Birthdays

- Probability of having two identical birthdays
- P(n) = 1 Q(n)
- P(23) = 0.507

With 23 entries, table is only 23/365 = 6.3% full!

Decision Problems

- Decision problem.
 - X is a set of strings.
 - Instance: string s.
 - Algorithm A solves problem X: A(s) = yes iff s ∈ X.
- Polynomial time. Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where $p(\cdot)$ is some polynomial.
- PRIMES: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37,\}$

Definition of P

• P. Decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

NP

- Certification algorithm intuition.
 - Certifier views things from "managerial" viewpoint.
 - Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.
- Def. Algorithm C(s, t) is a certifier for problem X if for every string $s, s \in X$ iff there exists a string t such that C(s, t) = yes.

- NP. Decision problems for which there exists a poly-time certifier.
- Remark. NP stands for nondeterministic polynomial-time.

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

- Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.
- Conclusion. HAM-CYCLE is in NP.

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm.
- EXP. Decision problems for which there is an exponential-time algorithm.
- NP. Decision problems for which there is a poly-time certifier.
- Claim. $P \subseteq NP$.
- Pf. Consider any problem X in P.
 - By definition, there exists a poly-time algorithm A(s) that solves X.
 - Certificate: $t = \varepsilon$, certifier C(s, t) = A(s).
- Claim. NP \subseteq EXP.
- Pf. Consider any problem X in NP.
 - By definition, there exists a poly-time certifier C(s, t) for X.
 - To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
 - Return yes, if C(s, t) returns yes for any of these. •

Polynomial Transformation (Mapping)

- Def. Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:
 - Polynomial number of standard computational steps, plus
 - Polynomial number of calls to oracle that solves problem Y.
- Def. Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y.
- Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.
- Open question. Are these two concepts the same?

NP-Complete

- NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \le_p Y$.
- Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in polytime iff P = NP.
- Pf. \leftarrow If P = NP then Y can be solved in poly-time since Y is in NP.
- Pf. \Rightarrow Suppose Y can be solved in poly-time.
 - Let X be any problem in NP. Since $X \le_p Y$, we can solve X in poly-time. This implies NP \subseteq P.
 - We already know P ⊆ NP. Thus P = NP.

• Fundamental question. Do there exist "natural" NP-complete problems?

Polynomial-Time Reduction

• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

• Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

• Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$.

Independent Set

- INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?
- Ex. Is there an independent set of size ≥ 6? Yes.
- Ex. Is there an independent set of size ≥ 7 ? No.

independent set

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4? Yes.
- Ex. Is there a vertex cover of size ≤ 3 ? No.

Vertex Cover and Independent Set

- Claim. $vertex-cover \equiv_P independent-set.$
- Pf. We show S is an independent set iff V S is a vertex cover.

Vertex Cover and Independent Set

- Claim. $vertex-cover \equiv_P independent-set$.
- Pf. We show S is an independent set iff V S is a vertex cover.
- $\bullet \Rightarrow$
 - Let S be any independent set.
 - Consider an arbitrary edge (u, v).
 - Sindependent \Rightarrow u \notin Sor v \notin S \Rightarrow u \in V Sor v \in V S.
 - Thus, V S covers (u, v).
- \Leftarrow
 - Let V − S be any vertex cover.
 - Consider two nodes $u \in S$ and $v \in S$.
 - Observe that (u, v) ∉ E since V S is a vertex cover.
 - Thus, no two nodes in S are joined by an edge ⇒ S independent set.

Set Cover

- SET COVER: Given a set U of elements, a collection S_1 , S_2 , . . . , S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?
- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all n capabilities using fewest pieces of software.

```
U = \{ 1, 2, 3, 4, 5, 6, 7 \}
k = 2
S_1 = \{ 3, 7 \} \qquad S_4 = \{ 2, 4 \}
S_2 = \{ 3, 4, 5, 6 \} \qquad S_5 = \{ 5 \}
S_3 = \{ 1 \} \qquad S_6 = \{ 1, 2, 6, 7 \}
```

Vertex Cover Reduces to Set Cover

- Claim. $vertex-cover \leq p$ set-cover.
- Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set cover instance whose size equals the size of the vertex cover instance.


```
SET COVER

U = \{1, 2, 3, 4, 5, 6, 7\}
k = 2
S_a = \{3, 7\}
S_b = \{2, 4\}
S_c = \{3, 4, 5, 6\}
S_d = \{5\}
S_e = \{1\}
S_f = \{1, 2, 6, 7\}
```

Polynomial-Time Reduction

- Basic strategies.
 - Reduction by simple equivalence.
 - Reduction from special case to general case.
 - Reduction by encoding with gadgets.