Database Management System 18 Advanced Normal Forms

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)

5NF(Fifth Normal Form)

Denormalization

Chittaranjan Pradhan School of Computer Engineering, KIIT University

MVD(Multi-Valued Dependency)

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

A table involves a multi-valued dependency if it may contain multiple values for an entity

A multi-valued dependency A \to B exists iff for every occurrence of A; there exists multiple occurrences of B

If A $\rightarrow \rightarrow$ B and A $\rightarrow \rightarrow$ C, then we have a single attribute A which multi-determines two other attributes, B and C

Multi-valued dependencies are also referred to as tuple generating dependencies

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)
5NF(Fifth Normal

Form)

Denormalization

Denomalization

MVD(Multi-Valued Dependency)...

Name Project Hobby Asis Microsoft Reading Asis Oracle Music Asis Microsoft Music Employee Asis Oracle Reading Bikash Movies Intel Bikash Sybase Riding Bikash Intel Ridina Bikash Sybase Movies

MVDs are: Name $\rightarrow \rightarrow$ Project and Name $\rightarrow \rightarrow$ Hobby

MVD

An MVD $X \rightarrow Y$ in relation R is called a trivial MVD if:

- Y is a subset of X, or
- $X \cup Y = R$

An MVD that satisfies neither the first nor the second condition is called a nontrivial MVD

Normally, MVDs exist in pair

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)
5NF(Fifth Normal

Form)

Denormalization

Denormanzation

A relation is in 4NF iff the following two conditions are satisfied simultaneously:

- It is in 3NF
- It contains no multiple MVDs

In other words, a relation is in 4NF iff:

- · There are no nontrivial MVDs in the relation, or
- The determinant of any nontrivial MVD in the relation is a key

Name $\rightarrow \rightarrow$ Project

The previous relation is not in 4NF

Employee_Project | Name | Project | Asis | Microsoft | Asis | Oracle |

Bikash Sybase

Name	Hobby	
Asis	Reading	
V	Asis	Music

Intel

Rikash

Employee_Hobby | Asis | Music | Name → Hobby | Bilkash | Riding | Bilkash | Movies |

MVD(Multi-Valued Dependency)

4NF(Fourth Normal

JD(Join Dependency)

5NF(Fifth Normal Form)

These relations are present in 4NF because the MVDs are

JD(Join Dependency)

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

J(Join Dep

5NF(Fifth Normal Form)

Denormalization

JD(Join Dependency)

A relation R satisfies join dependency $(R_1, R_2 ... R_n)$ iff:

 R is equal to the join of R₁, R₂ ... R_n on the common attributes, where R_i is a subset of the relation R

That means R satisfies join dependency iff $R = R_1 \bowtie R_2 \bowtie ... \bowtie R_n$

In other words, a join dependency is said to hold over a relation R if R_1 , R_2 ... R_n is a lossless-join decomposition of R

5NF(Fifth Normal Form)

5NF(Fifth Normal Form)

A relation is in 5NF iff the following two conditions are satisfied simultaneously:

- It is in 4NF
- Every join dependency is implied by the candidate keys In other words, a relation is in 5NF if it is in 4NF and the decomposition is lossless type

	Dealer	Parts	Customer
- .	<i>D</i> ₁	P_1	C ₁
Dealer	D_1	P_1	C ₂
	D_1	P_2	C ₁
	D ₂	P_1	C ₁

Dealer $\rightarrow \rightarrow$ Parts, Dealer $\rightarrow \rightarrow$ Customer

	Dealer	Parts	
Dealer_Parts	<i>D</i> ₁	<i>P</i> ₁	Dealer $\rightarrow \rightarrow$ Parts
Dealer_i arts	D_1	P_2	Dealer / / raits
	D_2	P_1	

Dealer_Customer

Dealer	Customer	
D_1	C_1	Dealer $\rightarrow \rightarrow$ Customer
D_1	C_2	Dealer / / Gastorner
D_2	C ₁	

 D_2 C_1

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)

5NF(Fifth Normal Form)

Denormalization

5NF(Fifth Normal Form)...

Dealer_Parts

Dealer	Parts
D_1	P_1
D_1	P_2
D_2	P_1

 $\mathsf{Dealer} \to \to \mathsf{Parts}$

Dealer_Customer

	Dealer	Customer
r	D_1	C_1
ı	D_1	C_2
	D_2	C_1

Parts_Customer

Parts	Customer
P_1	C_1
P_1	C_2
P_2	C_1

 $| \mathsf{Parts} \to \to \mathsf{Customer} |$

 $Dealer_Parts \bowtie Parts_Customer \bowtie Dealer_Customer = Dealer$

Thus, decomposition of Dealer to Dealer_Parts,
Parts_Customer and Dealer_Customer is in 4NF as well as in
5NF

Advanced Normal

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)

NF(Fifth Normal orm)

Denormalization

Denormalization

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency) 4NF(Fourth Normal

Form)

JD(Join Dependency)

5NF(Fifth Normal Form)

Denormalization

Denormalization

- Advantages of normalization:
 - It removes data redundancy
 - It solves Insertion, Updation, and Deletion anomalies
 - This makes it easier to maintain in the database in a consistent state
- Disadvantages of normalization:
 - It leads to more tables in the database
 - For retrieving the records or information, these tables need to be joined back together, which is an expensive task
- Thus, sometimes it is worth denormalizing

Denormalization...

Once a normalized database design has been achieved, adjustments can be made with the potential consequences (anomalies) in mind

Possible denormalization steps include the following:

- Recombining relations that were split to satisfy normalization rules
- Storing redundant data in tables
- Storing summarized data in tables

Denormalization is the opposite of Normalization

It is the process of increasing redundancy in the database either for convenience or to improve performance

Advanced Normal Forms

Chittaranjan Pradhan

MVD(Multi-Valued Dependency)

4NF(Fourth Normal Form)

JD(Join Dependency)

5NF(Fifth Normal Form)

Denormalizatio