Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа По основам дискретной математики Часть 1 Вариант 92

Выполнила:

Джантуре Назерке

Группа:

P3108

Проверил:

Поляков Владимир Иванович

Оглавление

Условие	3
Таблица истинности	
Представление булевой функции в аналитическом виде	
Минимизация булевой функции методом Квайна-Мак-Класки	
• а) Нахождение простых импликант	5
• б) Составление импликантной таблицы	
Минимизация булевой функции на картах Карно	9-10
• Определение МДНФ	9
• Определение МКНФ	
Преобразование минимальных форм булевой функции	10
• Факторизация и декомпозиция для МДНФ:	10
• Факторизация и декомпозиция для МКНФ:	10
Синтез комбинационных схем в булевом базисе	11-12
Базис (И-НЕ)	13-14
Базис «И, НЕ»	
Синтез комбинационной схемы с учетом коэффициента объединения	16

Условие

Условия, при которых f = 1: $2 \le |x_2x_10-x_3x_4x_5| \le 5$

Условия, при которых f = d: $|x_2x_10-x_3x_4x_5| = 3$

Таблица истинности

N	$X_1X_2X_3X_4X_5$	X3X4X5	$(X_3X_4X_5)_{10}$	x_2x_10	$(x_2x_10)_{10}$	1-1	f
0	00000	000	0	000	0	0	0
1	00001	001	1	000	0	1	0
2	00010	010	2	000	0	2	1
3	00011	011	3	000	0	3	d
4	00100	100	4	000	0	4	1
5	00101	101	5	000	0	5	1
6	00110	110	6	000	0	6	0
7	00111	111	7	000	0	7	0
8	01000	000	0	100	4	4	1
9	01001	001	1	100	4	3	d
10	01010	010	2	100	4	2	1
11	01011	011	3	100	4	1	0
12	01100	100	4	100	4	0	0
13	01101	101	5	100	4	1	0
14	01110	110	6	100	4	2	1
15	01111	111	7	100	4	3	d
16	10000	000	0	010	2	2	1
17	10001	001	1	010	2	1	0
18	10010	010	2	010	2	0	0
19	10011	011	3	010	2	1	0
20	10100	100	4	010	2	2	1
21	10101	101	5	010	2	3	d
22	10110	110	6	010	2	4	1
23	10111	111	7	010	2	5	1
24	11000	000	0	110	6	6	0
25	11001	001	1	110	6	5	1

26	11010	010	2	110	6	4	1
27	11011	011	3	110	6	3	d
28	11100	100	4	110	6	2	1
29	11101	101	5	110	6	1	0
30	11110	110	6	110	6	0	0
31	11111	111	7	110	6	1	0

Представление булевой функции в аналитическом виде Канонический вид КДНФ:

ККНФ:

 $\begin{array}{l} (x1 \vee x2 \vee x3 \vee x4 \vee x5) \; (x1 \vee x2 \vee x3 \vee x4 \vee \neg x5) \; (\neg x1 \vee x2 \vee x3 \vee \neg x4 \vee x5) \; (x1 \vee \neg x2 \vee \neg x3 \vee x4 \vee x5) \\ (x1 \vee x2 \vee \neg x3 \vee \neg x4 \vee x5) \; (x1 \vee x2 \vee \neg x3 \vee \neg x4 \vee \neg x5) \; (x1 \vee \neg x2 \vee x3 \vee x4 \vee \neg x5) \\ (x1 \vee \neg x2 \vee \neg x3 \vee x4 \vee \neg x5) \; (\neg x1 \vee x2 \vee x3 \vee x4 \vee \neg x5) \; (\neg x1 \vee x2 \vee x3 \vee x4 \vee \neg x5) \\ (\neg x1 \vee \neg x2 \vee x3 \vee x4 \vee x5) \; (\neg x1 \vee \neg x2 \vee \neg x3 \vee x4 \vee \neg x5) \; (\neg x1 \vee \neg x2 \vee \neg x3 \vee \neg x4 \vee \neg x5) \\ (\neg x1 \vee \neg x2 \vee \neg x3 \vee \neg x4 \vee x5) \; (\neg x1 \vee \neg x2 \vee \neg x3 \vee \neg x4 \vee \neg x5) \\ (\neg x1 \vee \neg x2 \vee \neg x3 \vee \neg x4 \vee x5) \end{array}$

Минимизация булевой функции методом Квайна-Мак-Класки а) Нахождение простых импликант

$K0(f) \cap N(f)$	K1(f)	K2(f)	Z(f)
1. 00010 ✓	1. 0001X(1-5)	1.X010X(3-12)(4-8)	1. 0001X
2. 00100 ✓	2. 0X010(1-8)	2.101XX(12-17)(13-16)	2. 0X010
3. 01000 ✓	3. 0010X(2-6) ✓		3. X010X
4. 10000 ✓	4. X0100(2-9) ✓		
5. 00011 ✓	5.100X(3-7)		4. 0100X
6. 00101 ✓	6. 010X0(3-8)		5. 010X0
7 . 01001 ✓	7. 10X00(4-9)		
8. 01010 ✓			
9. 10100 ✓			
			6. 10X00 7. X1001
	8. X0101(6-11) ✓		8. X1010
10.01110 🗸	9. X1001(7-13)		9. 101XX
	10.01X10(8-10) ✓		10.1X100
11.10101 ✓	11.X1010(8-14)		11.0111X
12.10110 ✓	12.1010X(9-11) ✓		12.110X1
13.11001 ✓	13.101X0(9-12) ✓		13.1101X
14.11010 ✓	1/ 1V100(0 15)		
15.11100 ✓	14.1X100(9-15) 15.0111X(10-16)		
16.01111 🗸	16.101X1(11-17) ✓		
17.10111 ✓	17.1011X(12-17) ✓		
18.11011 ✓	18.110X1(13-18)		
	19.1101X(14-18)		

b) Составление импликантной таблицы

Простые	0	0	0	0	0	0	1	1	1	1	1	1	1
импликанты	0	0	0	1	1	1	0	0	0	0	1	1	1
(максимальные кубы)	0	1	1	0	0	1	0	1	1	1	0	0	1
,	1	0	0	0	1	1	0	0	1	1	0	1	0
	0	0	1	0	0	0	0	0	0	1	1	0	0
	1	2	3	4	5	6	7	8	9	10	11	12	13
1. 0001X	*												
2. 0X010	*												
3. X010X		*	*										
4. 0100X				*									
5. 010X0				*	*								
6. 10X00							*	*					
7. X1001											*		
8. X1010					*							*	
9. 101XX								*	*	*			
10. 1X100								*					*
11. 0111						*							
12. 110X1											*		
13. 1101												*	

Импликанты 3, 6, 9, 10 и 11 — существенные т.к покрывают вершины 2, 3, 6, 7, 9, 10 и 13, не покрытые другими импликантами, вычеркнем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам, покрытым существенным импликантам (2, 3, 6, 7, 8, 9, 10, 13)

Простые		0	0	0	1	1
импликанты (максимальные		0	1	1	1	1
кубы)		0	0	0	0	0
		1	0	1	0	1
		0	0	0	1	0
		a	b	c	d	e
0001X	A	*				
0X010	В	*				
0100X	С		*			
010X0	D		*	*		
X1001	Е				*	
X1010	F			*		*
110X1	G				*	
1101X	Н					*

Множество существенных импликант (максимальных кубов) образует ядро покрытия как его обязательную часть:

 $T = \{X010X \\ 10X00 \\ 101XX \\ 1X100 \\ 0111X\}$

Определение минимального покрытия:

Выпишем булево выражение Y, определяющее условие покрытия всех 0-кубов (существенных вершин), не покрываемых существенными импликантами

$$Y = (A \lor B) (C \lor D) (D \lor F) (E \lor G) (F \lor H)$$

Выполняя операции попарного логического умножения применительно к термам, содержащим одинаковые буквы, с последующим применением закона поглощения, приведем исходную конъюнктивную форму Y к дизъюнктивной:

 $Y = ACEF \lor ACFG \lor ADEF \lor ADEH \lor ADFG \lor ADGH \lor BCEF \lor BCFG \lor BDEF \lor BDEH \lor BDFG \lor BDGH$

Возможны следующие варианты покрытия:

$$C_1 = \{T, A, C, E, F\}, S_1^a = 34, S_1^b = 43$$

$$C_2 = \{T, A, C, F, G\}, S_2^a = 34, S_2^b = 43$$

$$C_3 = \{T, A, D, E, F\}, S_3^a = 34, S_3^b = 43$$

$$C_4 = \{T, A, D, E, H\}, S_4^a = 34, S_4^b = 43$$

$$C_5 = \{T, A, D, F, G\}, S_5^a = 34, S_5^b = 43$$

$$C_6 = \{T, A, D, G, H\}, S_6^a = 34, S_6^b = 43$$

$$C_7 = \{T, B, C, E, F\}, S_7^a = 34, S_7^b = 43$$

$$C_8 = \{T, B, C, F, G\}, S_8^a = 34, S_8^b = 43$$

$$C_9 = \{T, B, D, E, F\}, S_9^a = 34, S_9^b = 43$$

$$C_{10} = \{T, B, D, E, H\}, S_{10}^a = 34, S_{10}^b = 43$$

$$C_{11} = \{T, B, D, F, G\}, S_{11}{}^a = 34, S_{11}{}^b = 43$$

$$C_{12} = \{T, B, D, G, H\}, S_{12}^a = 34, S_{12}^b = 43$$

Все покрытия являются минимальными, так что возьмем за минимальное покрытие C_1 .

$$C_{min} = \{X010X$$

10X00

101XX

1X100

0111X

0001X

0100X

X1001

X1010}

$$S^a = 34$$
, $S^b = 43$

 $f = \neg x_2 x_3 \neg x_4 \lor x_1 \neg x_2 \neg x_4 \neg x_5 \lor x_1 \neg x_2 x_3 \lor x_1 x_3 \neg x_4 \neg x_5 \lor \neg x_1 x_2 x_3 x_4 \lor \neg x_1 \neg x_2 \neg x_3 x_4 \lor \neg x_1 x_2 \neg x_3 \neg x_4 \lor x_2 \neg x_3 \neg x_4 \neg x_5 \lor x_2 \neg x_3 \neg x_4 \neg x_5 \lor x_2 \neg x_3 \neg x_4 \lor x_2 \neg x_3 \neg x_4 \lor x_3 \neg x_4 \neg x_5 \lor x_2 \neg x_3 \neg x_4 \lor x_3 \neg x_4 \neg x_5 \lor x_4 \neg x_5 \lor x_5 \neg x_5 \neg x_5 \lor x_5 \neg x_5 \neg x_5 \lor x_5 \neg x_5 \neg x_5 \neg x_5 \lor x_5 \neg x_5 \neg x_5 \neg x_5 \lor x_5 \neg x_$

Упрощение импликантной таблицы не является возможным

Минимизация булевой функции на картах Карно

• Определение МДНФ

$$X5 = 0$$

МДНФ:

 $C_{min} = \{101XX,$

X010X

10X00

1X100

110X1

0111X

X1010

0100X

0001X}

 $S^a = 34, \, S^b = 43 \,\, f = x_1 \neg x_2 x_3 \, \vee \, \neg x_2 x_3 \neg x_4 \, \vee \, x_1 \neg x_2 \neg x_4 \neg x_5 \, \vee \, x_1 x_3 \neg x_4 \neg x_5 \, \vee \, x_1 x_2 \neg x_3 x_5 \, \vee \, \neg x_1 x_2 x_3 x_4 \, \vee \, x_2 \neg x_3 x_4 \neg x_5 \, \vee \, \neg x_1 x_2 \neg x_3 \neg x_4 \, \vee \, \neg x_1 \neg x_2 \neg x_3 x_4$

МКНФ:

 $C_{min} = \{X11X1$

0X0X1

X00X1

1001X

1111X

0110X

0011X

0000X

11000},

$$S^a = 34$$
, $S^b = 43$

 $f = (\neg x_2 \lor \neg x_3 \lor \neg x_5)(x_1 \lor x_3 \lor \neg x_5)(x_2 \lor x_3 \lor \neg x_5)(\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)(\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)(x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)(x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)(x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)(x_1 \lor \neg x_2 \lor x_3 \lor x_4)(\neg x_1 \lor \neg x_2 \lor x_3 \lor x_4)(\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor \neg x_4)(x_1 \lor \neg x_2 \lor \neg x_4)(x_1 \lor \neg x_4 \lor \neg x_4 \lor \neg x_4)(x_1 \lor \neg x_4 \lor \neg x_4 \lor \neg x_4)(x_1 \lor \neg x_4 \lor \neg x$

Факторное преобразование МДНФ:

$$\begin{split} f &= x_1 \neg x_2 x_3 \lor \neg x_2 x_3 \neg x_4 \lor x_1 \neg x_2 \neg x_4 \neg x_5 \lor x_1 x_3 \neg x_4 \neg x_5 \lor x_1 x_2 \neg x_3 x_5 \lor \neg x_1 x_2 x_3 x_4 \lor \\ x_2 \neg x_3 x_4 \neg x_5 \lor \neg x_1 x_2 \neg x_3 \neg x_4 \lor \neg x_1 \neg x_2 \neg x_3 x_4 = \neg x_2 (x_3 (x_1 \lor \neg x_4) \lor x_1 \neg x_4 \neg x_5) \lor x_1 (x_3 \neg x_4 \neg x_5 \lor x_2 \neg x_3 x_5) \lor x_4 (\neg x_1 x_2 x_3 \lor x_2 \neg x_3 \neg x_5) \lor \neg x_1 \neg x_3 (x_2 \neg x_4 \lor \neg x_2 x_4) (S_Q = 36) \end{split}$$

Факторное преобразование МКНФ:

$$\begin{split} f &= (\neg x_2 \vee \neg x_3 \vee \neg x_5)(x_1 \vee x_3 \vee \neg x_5)(x_2 \vee x_3 \vee \neg x_5)(\neg x_1 \vee x_2 \vee x_3 \vee \neg x_4)(\neg x_1 \vee \neg x_2 \vee \neg x_3 \vee \neg x_4)(x_1 \vee \neg x_2 \vee \neg x_3 \vee \neg x_4)(x_1 \vee x_2 \vee x_3 \vee x_4)(\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4)(\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4)(\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4 \vee x_5) = \\ &(\neg x_5 \vee (\neg x_2 \vee \neg x_3)(x_1 \vee x_3)(x_2 \vee x_3))(\neg x_1 \vee \neg x_4 \vee (x_2 \vee x_3)(\neg x_2 \vee \neg x_3))(x_1 \vee (\neg x_3 \vee (\neg x_2 \vee x_4)(x_2 \vee \neg x_4))(x_2 \vee x_3 \vee x_4))(\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4 \vee x_5) &(S_0 = 36) \end{split}$$

Комбинационные схемы

Задержка схемы с парафазными входами $T{=}5\tau$, цена схемы $S_Q{=}44$.

Для схемы с однофазными входами T=8 τ , цена схемы S_Q =61.

Базис «И-НЕ»

 $f = (x_1 \mid x_2 \mid \neg x_3 \mid x_4) \mid (x_1 \mid \neg x_2 \mid x_3) \mid (x_1 \mid x_3 \mid \neg x_4 \mid \neg x_5) \mid (x_1 \mid \neg x_3 \mid \neg x_4 \mid x_5) \mid (\neg x_1 \mid x_2 \mid x_3 \mid x_4) \mid (\neg x_1 \mid x_2 \mid \neg x_3 \mid \neg x_4) \mid (\neg x_1 \mid x_2 \mid x_4 \mid \neg x_5) \mid (\neg x_1 \mid \neg x_2 \mid \neg x_3 \mid x_4) \mid (\neg x_2 \mid x_3 \mid \neg x_4)$

Задержка схемы $T=4\tau$, цена схемы $S_Q=39$.

Задержка схемы $T=9\tau$, цена схемы $S_Q=92$.

Базис «И,НЕ»

 $f = \neg (\neg (\neg x_2 \neg (\neg (x_3 \neg (\neg x_1 x_4)) \neg (x_1 \neg x_4 \neg x_5))) \neg (x_1 \neg (\neg (x_3 \neg x_4 \neg x_5) \neg (x_2 \neg x_3 x_5))) \neg (x_4 \neg (\neg (\neg x_1 x_2 x_3) \neg (x_2 \neg x_3 \neg x_5))) \neg (\neg x_1 \neg x_3 \neg (\neg (x_2 \neg x_4) \neg (\neg x_2 x_4))))$

x1 x2 x3 x4 x5 ¬x1 ¬x2 ¬x3 ¬x4 ¬x5 & & & & & & & & & & & & & & & & & &

Задержка схемы $T=5\tau$, цена схемы $S_Q=44$

Синтез комбинационной схемы с учетом коэффициента объединения

«И-НЕ»

 $f = ((x_1 \mid x_2) \mid (\neg x_3 \mid x_4)) \mid ((x_1 \mid \neg x_2) \mid x_3) \mid ((x_1 \mid x_3) \mid (\neg x_4 \mid \neg x_5)) \mid ((x_1 \mid \neg x_3) \mid (\neg x_4 \mid x_5)) \mid ((\neg x_1 \mid x_2) \mid (x_3 \mid x_4)) \mid ((\neg x_1 \mid x_2) \mid (\neg x_3 \mid \neg x_4)) \mid ((\neg x_1 \mid x_2) \mid (x_4 \mid \neg x_5)) \mid ((\neg x_1 \mid \neg x_2) \mid (\neg x_3 \mid x_4)) \mid ((\neg x_2 \mid x_3) \mid \neg x_4)$

Задержка схемы $T=6\tau$, цена схемы $S_Q=6$