Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano@berkeley.edu, UC Berkeley), Tamara Broderick (MIT)

Theory and Foundations of Statistics in the Era of Big Data — Honoring Basu and Bahadur (April 2024)

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- + $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \mbox{Democratic }\%$ of vote on election day

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full–data posterior draws to form a linear approximation to *data reweightings*.

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

.

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of $\ensuremath{\mathsf{MCMC}}$

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- · Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- High-dimensional problems
 - · The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$

- · Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$
- · What should the exchangeable unit be?

Augment the problem with data weights w_1, \ldots, w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Augment the problem with data weights w_1,\ldots,w_N . We can write $\underset{p(\theta|X,w)}{\mathbb{E}}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$
 $\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta) \qquad \qquad \log p(X|\theta, w) = \sum_{n=1}^N w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\underset{p(\theta|X,w)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \underset{n=1}{\overset{N}{\sum}} \psi_n(w_n - 1) + \frac{\mathcal{E}(w)}{}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n-1) + \frac{\mathcal{E}(w_n)}{}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right](w_n-1)^2}_{\text{Cannot compute directly (don't know }\bar{w})}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n - 1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, for the remainder of the presentation, we will consider a single weight.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n-1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

Theorem [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem), a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Generalized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. \quad Marginally, $p(\gamma|X)$ concentrates.

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Generalized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n\mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}}[f(\gamma)]-\underset{p(\gamma|X)}{\mathbb{E}}[f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

High dimensional problems

What about when parts of the posterior don't concentrate?

Example: Generalized linear model with random effects (REs) λ and fixed effect γ .

Marginally, $p(\lambda|X)$ does not concentrate. Marginally, $p(\gamma|X)$ concentrates.

Does
$$w_n\mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}}[f(\gamma)]-\underset{p(\gamma|X)}{\mathbb{E}}[f(\gamma)]$$
 become linear as N grows? (Note $p(\gamma|X)$ does concentrate.)

Theorem 5 of Giordano and Broderick [2023] (paraphrase): In general, no!

Specifically, if $p(\lambda|X,\gamma)$ does not concentrate, then

— even if $p(\gamma|X)$ concentrates marginally —

both the slope ψ_n and the error $\mathcal{E}(w_n)$ are $O_p(N^{-1})$, and so

Nowever,
$$\mathcal{E}(w_n) \to 0$$
 as $\underset{p(\lambda|X,\gamma)}{\mathbb{E}}(f(\gamma)] = N\psi_n(w_n-1) + N\mathcal{E}(w_n)$ is nonlinear.

However,
$$\mathcal{E}(w_n) \to 0$$
 as $\mathop{\mathrm{Cov}}_{p(\lambda|X,\gamma)}(\lambda) \to 0$

Observations and consequences

Observations and consequences

- We use often use models of the form $p(\gamma, \lambda | X)$.
- Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - ... Especially given the linear approximation's huge computational advantage.

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (The preprint focuses on variance estimation, the present results are found in the proofs.)

References

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. Bayesian and Likelihood Methods in Statistics and Econometrics, 1990.

How can we use the approximation?

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \mathop{\mathbb{E}}_{p(\theta|x,w_{(-n)})}[f(\theta)] \mathop{\approx}_{p(\theta|x)} \mathop{\mathbb{E}}_{[f(\theta)] - \psi_n}$$

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\mathbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{aligned} \text{Bootstrap variance} &= \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right) \\ &\approx \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right) \\ &= \underset{n=1}{\overset{N}{\sum}} \left(\psi_n - \overline{\psi} \right)^2. \end{aligned}$$

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\textbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{split} \text{Bootstrap variance} &= \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &\approx \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] + \psi_n(w_n - 1) \right) \\ &= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2. \end{split}$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{.}$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Problem: Most computationally hard Bayesian problems don't concentrate.

Experiments

Example: Poisson model with random effects (REs) λ and fixed effect $\gamma.$

A contradiction?

Negative binomial observations.

Asymptotically linear in \boldsymbol{w} .

Poisson observations with random effects.

Asymptotically non-linear in \boldsymbol{w} .

A contradiction?

Negative binomial observations. Asymptotically linear in w.

Poisson observations with random effects.

Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}\left[\gamma\right]$ linear in the data weights or not?

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

The two weightings are not equivalent in general.

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Negative Binomial model

Uses
$$\log p(x_n|\gamma)$$
:

$$\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$$

Experimental results

Our results were actually computed on **identical datasets** with G = N and $g_n = n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from

$$\gamma, \lambda \sim p(\gamma, \lambda | X).$$

Experimental results

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses
$$\log p(x_n|\gamma)$$
:
 $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses
$$\log p(x_n|\gamma,\lambda)$$
:
$$\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

