Tutorial 6 (with solution)

Modulo

Question 1: Divisibility by 9

Let *x* be an *n*-digit number. Prove that

$$x \equiv a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \pmod{9}$$
,

where a_i is the (i + 1)-th digit of x.

- **Example 1:**
 - Suppose x = 6213. $x \mod 9 = 6 + 2 + 1 + 3 \mod 9 = 3$.
- Example 2:
 - O Suppose x = 7218. Since the digit sum (mod 9) = $7 + 2 + 1 + 8 \pmod{9} = 0$, x must be divisible by 9.

Q.1 (solution)

An *n*-digit number *x* can be represented by

$$x = a_{n-1}10^{n-1} + a_{n-2}10^{n-2} + \dots + a_110 + a_0.$$

Since $10 \equiv 1 \mod 9$,

 $10^i \equiv 1 \mod 9$, for any integer *i*.

Then,

$$x \equiv a_{n-1} \times 1 + a_{n-2} \times 1 + \dots + a_1 \times 1 + a_0 \times 1 \pmod{9}.$$

 $\equiv a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \pmod{9}.$

Q.E.D

Question 2: Diophantine Equation

■ Solve the equation

$$98x + 35y = 14$$
,

where *x* and *y* are integers.

Q.2 (solution)

- □ First, find gcd(98,35).
- By extended Euclidean algorithm,

$$98(-1) + 35(3) = 7.$$

■ Multiplying both sides by 2, we obtain
$$98(-2) + 35(6) = 14$$
.

- □ Therefore, $x_0 = -2$, $y_0 = 6$ is a particular solution.
- Dividing both sides by 7, we obtain

$$14(-2) + 5(6) = 2.$$

It can be seen that

$$14(-2-5t) + 5(6+14t) = 2.$$

The general solution is

$$x = -2 - 5t$$
, $y = 6 + 14t$,

where t is an integer.

Question 3: Repeat-and-Multiply

a) Use the Repeat-and-Multiply method to compute 3⁹⁴ mod 17.

b) Use Fermat's Little Theorem to compute 40^{110} mod 37.

Q.3(a) (solution)

 $\square 3^2 \equiv 9 \pmod{17}$ $3^4 \equiv (9)^2 \equiv 81 \equiv 13 \equiv -4 \pmod{17}$ $3^8 \equiv (-4)^2 \equiv 16 \equiv -1 \pmod{17}$ $3^{16} \equiv (-1)^2 \equiv 1 \pmod{17}$ $3^{32} \equiv 1 \pmod{17}$ $3^{64} \equiv 1 \pmod{17}$ \square Therefore. $3^{94} \equiv 3^{64}3^{16}3^83^43^2$ $\equiv (1)(1)(-1)(-4)(9)$ $\equiv 36 \equiv 2 \pmod{17}$

Q.3(b) (solution)

☐ First, note that

$$40^{110} \equiv 3^{110} \mod 37$$
.

- □ Since 37 is a prime, we can use Fermat's Little Theorem, which implies $3^{36} \equiv 1 \mod 37$.
- ☐ Hence,

$$40^{110} \equiv 3^{110} \equiv 3^{36 \times 3} 3^2 \equiv 9 \pmod{37}$$
.

Question 4: Fermat's Little Theorem

 \square Solve $x^{103} \equiv 4 \mod 11$.

Q.4 (solution)

- \square By Fermat's Little Theorem, $x^{10} \equiv 1 \mod 11$.
- \square Therefore, $x^{103} \equiv x^3 \mod 11$.
- We only need to solve $x^3 \equiv 4 \mod 11$.
- ☐ If we try all values from x = 1 through x = 10, we find that

$$x \equiv 5 \mod 11$$
.