Practical 3.0

Convolutional Neural Networks – Basics

Overview (I)

- Rationale / motivation
- Sparsity (locality)
 - Receptive field
 - Hirarchical view
- Parameters sharing (omogeneity)
- Convolutional layer (3D conv.)
- Non linearity layer (decaying learning speed)
 - Logistic sigmoid
 - Rectifying linear unit

Overview (II)

- L-p pooling layer
 - Average pooling
 - Max pooling
- Rationale / conclusion
 - Convolutional benefit
 - Pooling benefit
- Network colour coding with pretty-nn
- e-lab/Torch7-profiling tool
 - Profile CNN in Torch

Rationale (I)

Alfredo Canziani © 2016

A Hi special correlation on Objects are made

Rationale (II)

$$n = 2n$$

$$2n$$

$$2n$$

$$2n$$

$$2n$$

$$2n$$

$$2n$$

$$2n$$

$$2n$$

$$3n$$

$$4n$$

$$n = 3.256.256 = 3.2.2 = 3.2$$

Sparsity => REDUCTION in computation by exploiting local correlation of the input data. ℓ $\ell+1$

 $\ell-1$

Parameters sharing =>

Reduce # 0 => helps convergence -> time b > emort

Convolutional layer (I)

```
1 256 x 256
3D: NA 2D N2 × N3 (image lupst => N1 = 3, RGB)
    m1 20 m2 × m3 yi feature maps (m2 × m3)
40: m1 30 n1 × p1 × p2 kernels ki, i=1,..., m1
10: ma bian torm
             CONJOURNON
  \forall i = 2c + b_i, i = 1, ..., m_1
```

 $\left(\frac{2}{2} = \Theta \cdot \underline{2} \quad \text{or} \quad \Theta \cdot \underline{z}\right)$

Convolutional layer (II)

nz

$$y_i = x \star k_i + b_i, \quad i = 1, 2, \cdots, m_1$$

$$\text{$\xi \text{ [e,m,n]} = \sum_{n} \sum_{n} \xi \text{ [u,v,w]} \cdot g\text{ [e-u,m-v,n-w]}}$$

m3

z = 0 $z^{(\ell-1)}$ ~ $z = \sqrt{z}$ feature map. Topojection by conv.

Non linearity

Rationale (III)

Alfredo Canziani © 2016

31,7M ruc / 2.2 GHz = 14 ms

Rationale (IV)

