Analisis Hasil Dataset RegresiUTSTelkom dengan Model PyTorch

A. MLP Regression PyTorch

- 1. Analisis Training
 - Terjadi penurunan loss yang signifikan dari Epoch 1 hingga 30
 - Loss awal: ~3 juta → Akhir: ~25 ribu → Training convergence terlihat baik
- 2. Evaluasi Matriks
 - MSE: 289.54
 - RMSE: 19.74
 - R² Score: -2.26 (negatif menandakan model *sangat buruk* dibanding model ratarata)
- 3. Catatan

Meski training loss menurun, model overfitting atau gagal generalisasi, terbukti dari R² negatif.

B. MLP Classification PyTorch

- 1. Analisis Training
 - Loss konsisten menurun namun lambat dan stagnan di akhir.
 - Dari $3.24 \rightarrow 3.08$ (cukup kecil perubahannya).
- 2. Evaluasi Matriks
 - Accuracy: 10.26%
 - Precision: 5.86%
 - Recall: 3.64%
 - F1-Score: 3.17%

3. Catatan

- Akurasi sangat rendah, mendekati tebak acak (jika banyak kelas).
- Terdapat peringatan dari sklearn: banyak label tidak terprediksi sama sekali.
- Menunjukkan underfitting parah, kemungkinan disebabkan model tidak cukup kompleks, data imbalance, atau preprocessing tidak optimal.

C. CNN Regression PyTorch

- 1. Analisis Training
 - Loss stagnan dari Epoch 2 hingga 10 (tidak banyak perubahan setelah epoch awal).

- Penurunan hanya sedikit dari 62.3k ke 61.8k → Model tidak belajar optimal.

2. Evaluasi Matriks

MSE: 1558.97RMSE: 39.48

- R^2 Score: -12.05 \rightarrow Sangat buruk, bahkan lebih buruk dari MLP Regressor.

3. Catatan

CNN kurang cocok untuk data non-visual seperti dataset tabular, kemungkinan besar penyebab performa buruk.

D. Kesimpulan

Model	RMSE	R ² Score	Catatan	
MLP Regressor	19.74	-2.26	Cukup baik dalam	
			training, namun	
			overfitting	
MLP Classifier	-	-	Akurasi dan F1-	
			Score rendah	
CNN Regressor	39.48	-12.05	Jauh lebih buruk	
			dari MLP	

Model Terbaik adalah MLP Regression, karena:

- Meskipun R² masih negatif (artinya performa di test set buruk), MLP Regression lebih stabil dan menunjukkan proses training yang baik.
- RMSE-nya juga paling kecil, menunjukkan prediksi numerik lebih dekat ke target.
- CNN tidak cocok untuk data tabular, dan model klasifikasi saat ini belum mampu mengenali pola signifikan.

Rekomendasi Perbaikan:

1. Untuk Regression:

- Tambahkan regularisasi (dropout/L2) untuk mengurangi overfitting.
- Uji arsitektur model yang lebih dalam atau lebih kompleks.
- Normalisasi target/label (min-max atau standar).
- Hyperparameter tuning (learning rate, batch size).

2. Untuk Classification:

- Gunakan metode balancing (misalnya: SMOTE, class weight).
- Coba model lebih kompleks (MLP lebih dalam).
- Gunakan feature selection/reduksi dimensi.
- Evaluasi distribusi label target (cek apakah imbalance).

3. Untuk CNN:

- Hanya gunakan jika data memiliki struktur spasial (misal: citra).
- Jika tetap ingin pakai CNN, ubah format data (misalnya reshape menjadi gambar 2D logis jika memungkinkan).