5.10 Posons
$$s_n = \sum_{k=1}^{+\infty} (-1)^k$$
 pour tout $n \in \mathbb{N}$.

Manifestement
$$s_n = \begin{cases} -1 & \text{si } k \text{ est impair} \\ 0 & \text{si } k \text{ est pair} \end{cases}$$

La suite $(s_n)_{n\in\mathbb{N}}$ est clairement divergente.

En effet
$$s_n = \frac{1}{2} ((-1)^n - 1)$$
.

Si la suite $(s_n)_{n\in\mathbb{N}}$ convergeait, alors la suite $2s_n=(-1)^n-1$ convergerait également.

Vu que la suite constante $(c_n)_{n\in\mathbb{N}}$ définie par $c_n=1$ pour tout $n\in\mathbb{N}$ converge vers 1, la suite de terme général $2s_n+c_n=(-1)^n-1+1=(-1)^n$ devrait également converger. Mais l'exercice 3.7 a montré que la suite $(-1)^n$ diverge.

Analyse : séries Corrigé 5.10