Foundations of Computer Science

COMP9020 18s1

Week 4 Problem Set Functions and Relations

[Show with no answers] [Show with all answers]

1. (Matrix functions)

Prove each of the following statements.

- a. $(\mathbf{A}^T)^T = \mathbf{A}$ for any matrix \mathbf{A} .
- b. If two matrices **A** and **B** are of the same size, then $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$.
- c. A(B + C) = AB + AC for any matrix A of size $m \times n$ and matrices B, C of size $n \times p$.

show answer

2. (Binary relations)

Consider the relation $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}$ defined by $(a, b) \in \mathcal{R}$ if, and only if, $b + 0.5 \ge a \ge b - 0.5$.

Is \mathcal{R}

- a. reflexive?
- b. antireflexive?
- c. symmetric?
- d. antisymmetric?
- e. transitive?

[show answer]

3. (Binary relations)

For each of the following statements, provide a valid proof if it is true for all sets S and all relations $\mathcal{R}_1 \subseteq S \times S$ and $\mathcal{R}_2 \subseteq S \times S$. If the statement is not always true, provide a counterexample.

- a. If \mathcal{R}_1 and \mathcal{R}_2 are symmetric, then $\mathcal{R}_1 \cap \mathcal{R}_2$ is symmetric.
- b. If \mathcal{R}_1 and \mathcal{R}_2 are antisymmetric, then $\mathcal{R}_1 \cup \mathcal{R}_2$ is antisymmetric.

[show answer]

4. Challenge Exercise

Consider a relation \mathcal{R} on Pow(U) for some set U defined by $(A,B) \in \mathcal{R}$ iff $|A \cap B| \ge 1$. Prove that \mathcal{R} is transitive if and only if $|U| \le 1$.

[show answer]