Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea 4

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

12 de Marzo 2020

Ejercicio 1.

Sea G un grupo y H un subgrupo de G de índice igual a 2. Demuestre que H es un subgrupo normal de G.

Demostración. Por contradicción. Es suficiente con probar que que si $h \in H$, entonces el conjugado $ghg^{-1} \in H$ para cada $g \in G$ (esto es para mostrar que $H \triangleleft G$).

Como H tiene ínidice 2, hay exactamente dos clases laterales, las cuales son H y aH, donde $a \notin H$. Ahora, o bien $g \in G$ ó $g \in aH$.

Si $g \in H$, entonces $ghg^{-1} \in H$ porque H es un subgrupo.

En el segundo caso, escribimos a g = ax, donde $x \in H$. Entonces

 $ghg^{-1} = (ax)h(ax)^{-1} = a(xhx^{-1})a^{-1} = ah'a^{-1}$, donde $h' = xhx^{-1} \in H$ (donde h' es un producto de tres elementos en H). Si $ghg^{-1} \notin H$, entonces $ghg^{-1} = ah'a^{-1} \in aH$, que es $ah'a^{-1} = ay$ para alguna $y \in H$. Cancelando a, tenemos $h'a^{-1} = y$, que da la contradicción $a = y^{-1}h' \in H$.

Por tanto, si $h \in H$, cada conjugado de h también vive en H, que es que H se un subgrupo normal de G.

Muestre mediante un ejemplo que si el índice de H es mayor que dos, entonces H no necesariamente es normal en G.

Sea $G = S_3$ y $H = \{1, (1\ 2)\}$ un subgrupo de índice 3. Entonces $(1\ 2\ 3)H = \{(1\ 2\ 3), (1\ 3)\}$ y $H(1\ 2\ 3) = \{(1\ 2\ 3), (1\ 2)\}$, por tanto $(1\ 2\ 3)H \neq H(1\ 2\ 3)$ y H no es normal.

Ejercicio 2.

Sea G un grupo y H un subgrupo de G de índice igual a 2. Muestre que $a^2 \in H$ para todo $a \in G$.

Demostración. Por contradicción, suponer que $a^2 \notin G$.

Como H tiene ínidice 2, entonces hay exactamente dos clases laterales, las cuales son H y aH, donde $a \notin H$. Por tanto G es la unión disjunta $G = H \sqcup aH$. Tomemos $g \in G$ con $g \notin H$ de forma que g = ah para alguna $h \in H$.

Si $g^2 \notin H$, entonces $g^2 = ah'$, donde $h' \in H$. Teniendo así que,

$$g = g^{-1}g^2 = (ah)^{-1}ah' = h^{-1}a^{-1}ah' = h^{-1}h' \in H$$

lo cual es una contradicción por suponer que $g^2 \notin G$.

Ejercicio 3.

Muestre que si $H \leq G$, entonces H es normal en G si y sólo si para todo $x,y \in G$, $xy \in H$ si y sólo si $yx \in H$.

Demostración.

 \iff Asumimos que H es un subgrupo normal de G.

Entonces por definición de grupo normal tenemos que $h \in H$ y $g \in G$ entonces $ghg^{-1} \in H$.

Tomemos $x, y \in G$ y $xy \in H$. Como H es un subgrupo normal y $y \in G$, se sigue que,

$$y(xy)y^{-1} = yx(yy^{-1}) = yx \in H$$

De manera análoga, $yx \in H$ y $x \in G$, se sigue que,

$$x(yx)x^{-1} = xy(xx^{-1}) = xy \in H$$

 \Longrightarrow) Asuminmos que para todo $x,y\in G,\, xy\in H$ si y sólo si $yx\in G.$ Sea $a=yx\in H,$ entonces,

$$a = yx$$

$$xa = x(yx)$$

$$(xa)x^{-1} = (xyx)x^{-1}$$

$$xax^{-1} = xy$$

Entonces vemos que xy se puede escribir de la forma xax^{-1} para toda $x \in G$ y $a \in H$. Por tanto $H \triangleleft G$.

Ejercicio 4.

Demuestre que A_n es un subgrupo normal de S_n .

Demostración. Como $[S_n:A_n]=\frac{|S_n|}{|A_n|}=\frac{n!}{n!/2}=2$ y por el ejercicio 1, se tiene que si $[S_n:A_n]=2$ entonces $A_n \triangleleft S_n$.