```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
In [2]: df=pd.read_csv('heart.csv')
df.head()
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

```
In [3]: df.exang.value_counts()
```

Out[3]: 0 204

1 99

Name: exang, dtype: int64

memory usage: 33.3 KB

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

Ducu	CO_u	cocar in coramins	, •					
#	Column	Non-Null Count	Dtype					
0	age	303 non-null	int64					
1	sex	303 non-null	int64					
2	ср	303 non-null	int64					
3	trestbps	303 non-null	int64					
4	chol	303 non-null	int64					
5	fbs	303 non-null	int64					
6	restecg	303 non-null	int64					
7	thalach	303 non-null	int64					
8	exang	303 non-null	int64					
9	oldpeak	303 non-null	float64					
10	slope	303 non-null	int64					
11	ca	303 non-null	int64					
12	thal	303 non-null	int64					
13	target	303 non-null	int64					
dtypes: float64(1), int64(13)								

In [5]: df.describe()

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	tha
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.64
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.90
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.50
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.00

In [6]: df.corr()

Out[6]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0.0
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020	0.'
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762	-0.3
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698	0.0
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940	0.0
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567	0.0
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123	-0.0
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000	-0.3
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812	1.0
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187	0.2
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784	-0.2
ca	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177	0.
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439	0.2
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741	-0.∠
4									•

In [7]: df.cov()

Out[7]:

	age	sex	ср	trestbps	chol	fbs	restecg	thala
age	82.484558	-0.416661	-0.643499	44.495902	100.585076	0.392433	-0.555013	-82.9033
sex	-0.416661	0.217166	-0.023736	-0.463970	-4.780309	0.007475	-0.014261	-0.4698
ср	-0.643499	-0.023736	1.065132	0.861714	-4.113774	0.034719	0.024108	6.9916
trestbps	44.495902	-0.463970	0.861714	307.586453	111.967215	1.109042	-1.052324	-18.7591
chol	100.585076	-4.780309	-4.113774	111.967215	2686.426748	0.245427	-4.116703	-11.8004
fbs	0.392433	0.007475	0.034719	1.109042	0.245427	0.126877	-0.015769	-0.0698
restecg	-0.555013	-0.014261	0.024108	-1.052324	-4.116703	-0.015769	0.276528	0.5314
thalach	-82.903318	-0.469871	6.991618	-18.759131	-11.800494	-0.069897	0.531462	524.6464
exang	0.413022	0.031014	-0.191168	0.557111	1.631991	0.004295	-0.017474	-4.0762
oldpeak	2.214583	0.051993	-0.178821	3.934486	3.246794	0.002377	-0.035883	-9.1535
slope	-0.944791	-0.008819	0.076137	-1.312832	-0.128964	-0.013147	0.030151	5.4593
са	2.566356	0.056357	-0.191080	1.818373	3.737252	0.050259	-0.038741	-4.9932
thal	0.378139	0.059930	-0.102201	0.668022	3.135488	-0.006983	-0.003858	-1.3524
target	-1.021343	-0.065307	0.223330	-1.267950	-2.203855	-0.004983	0.035998	4.8187

localhost:8888/notebooks/heart prediction.ipynb

```
In [8]: | df.age.value_counts()
Out[8]: 58
                19
         57
                17
         54
                16
         59
                14
                13
         52
         51
                12
         62
                11
         60
                11
         44
                11
         56
                11
         64
                10
         41
                10
         63
                 9
                 9
         67
                 8
         65
         43
                 8
         45
                 8
         55
                 8
         42
                 8
                 8
         61
                 8
         53
         46
                 7
                 7
         48
                 7
         66
                 7
         50
                 5
         49
                 5
         47
                 4
         70
         39
                 4
         35
                 4
                 4
         68
         38
                 3
                 3
         71
                 3
         40
         69
                 3
                 2
         34
                 2
         37
         29
                 1
                 1
         74
         76
                 1
         77
                 1
         Name: age, dtype: int64
In [9]: df.sex.value_counts()
Out[9]: 1
               207
                96
         Name: sex, dtype: int64
```

```
In [10]: df.cp.value_counts()
Out[10]: 0
               143
                87
                50
         1
         3
                23
         Name: cp, dtype: int64
In [11]: pd.crosstab(df.sex,df.cp).T.head()
Out[11]:
           sex
                    1
           ср
            0
               39
                  104
            1
               18
                   32
               35
                   52
            3
               4
                   19
In [12]: pd.crosstab(df.sex,df.age).T.head()
Out[12]:
           sex 0 1
          age
           29 0 1
           34 1 1
           35 1 3
           37 1 1
           38 0 3
```

Data Visualization

In [13]: sns.pairplot(df)

Out[13]: <seaborn.axisgrid.PairGrid at 0x22f5b5449a0>

In [14]: plt.figure(figsize=(16,16))
 sns.heatmap(df.corr(),annot=True,cmap="RdYlGn")
 plt.show()


```
In [17]: plt.figure(figsize=(10,5))
    plt.hist(df.age)
    plt.title('The Histogram of age')
    plt.xlabel('age')
    plt.ylabel('frequency')
    plt.show()
```



```
In [18]: plt.plot(df.age)
plt.show()
```



```
In [19]: plt.figure(figsize=(15,5))
    plt.bar(df.age,df.chol,color='green')
    plt.xlabel('Sex')
    plt.ylabel('chol')
    plt.title('Bar graph')
    plt.show()
```



```
In [20]: plt.figure(figsize=(15,5))
    plt.bar(df.age,df.trestbps,color='purple')
    plt.xlabel('Sex')
    plt.ylabel('trestbps')
    plt.title('Bar graph')
    plt.show()
```



```
In [21]: plt.figure(figsize=(10,5))
    sns.countplot(df.sex,palette='YlOrRd')
    plt.title('the countplot of sex distribution')
    plt.show()
```



```
In [23]: plt.figure(figsize=(10,5))
    plt.hist(df.sex)
    plt.title('The Histogram of sex')
    plt.xlabel('sex')
    plt.ylabel('frequency')
    plt.show()
```



```
In [24]: plt.figure(figsize=(10,5))
    plt.barh(df.sex,df.chol,color='green')
    plt.xlabel('Sex')
    plt.ylabel('chol')
    plt.title('Bar graph')
    plt.show()
```



```
In [25]: plt.figure(figsize=(10,5))
    plt.bar(df.sex,df.trestbps,color='grey')
    plt.xlabel('Sex')
    plt.ylabel('trestbps')
    plt.title('Bar graph')
    plt.show()
```



```
In [27]: sns.swarmplot(df.sex,df.age)
    plt.xlabel('sex')
    plt.ylabel('age')
    plt.show()
```



```
heart prediction - Jupyter Notebook
In [1]: |gender_size = df.groupby('sex').size()
        plt.pie(gender_size, startangle=150, explode=[0.005,0],autopct='% 1.1f %%',shadov
        plt.title('Pie chart for Employee sex')
        plt.legend(title="sex")
        plt.show()
                                                   Traceback (most recent call last)
        ~\AppData\Local\Temp/ipykernel 8036/4286359145.py in <module>
        ----> 1 gender_size = df.groupby('insured_sex').size()
              2 plt.pie(gender size, startangle=150, explode=[0.005,0],autopct='% 1.1f
         %%',shadow=False, labels=['Female','Male'])
              3 plt.title('Pie chart for Employee sex')
              4 plt.legend(title="sex")
              5 plt.show()
        NameError: name 'df' is not defined
        Feature engineering
                                       else 'adult'
                                       if 36<=age<=45
                                       else 'old'
                                       if 46<=age<=77
```

```
In [30]: |df['age_category'] = ['youth' if 29<=age<=35</pre>
                                          else None
           for age in list(df.age.values)]
In [31]: df.age_category.value_counts()
Out[31]: old
                   239
          adult
                    57
          youth
          Name: age_category, dtype: int64
In [32]: pd.crosstab(df['target'], df['age_category'])
Out[32]:
           age_category adult old youth
                 target
                    0
                         14 122
                                     2
                    1
                         43 117
                                     5
```



```
In [35]: plt.bar(df.age_category,df.chol,color='green')
```

Out[35]: <BarContainer object of 303 artists>


```
In [36]: features= ['sex', 'age_category']
fig= plt.subplots(figsize= (10,15))

for i,j in enumerate(features):
    plt.subplot(4,2, i+1)
    plt.subplots_adjust(hspace=1.0)
    sns.countplot(x=j, data=df , hue= "target")
    plt.xticks(rotation= 90)
    plt.title("No of Employee")
```



```
In [37]: age_size = df.groupby('age_category').size()
    plt.pie(age_size, startangle=150, explode=[0,0,0.09],autopct='% 1.1f %%',shadow=F
    plt.title('Pie chart for Employee age')
    plt.legend(title="age category")
    plt.show()
```


Data preprocessing

```
In [38]: from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    df.age_category=le.fit_transform(df.age_category)

In [39]: df.age_category.value_counts()

Out[39]: 1     239
          0     57
          2     7
          Name: age_category, dtype: int64
```

```
In [40]: dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slot dataset.head()
```

Out[40]:

	age	trestbps	chol	thalach	oldpeak	target	age_category	sex_0	sex_1	cp_0	•••	slope_2	(
0	63	145	233	150	2.3	1	1	0	1	0		0	
1	37	130	250	187	3.5	1	0	0	1	0		0	
2	41	130	204	172	1.4	1	0	1	0	0		1	
3	56	120	236	178	8.0	1	1	0	1	0		1	
4	57	120	354	163	0.6	1	1	1	0	1		1	

5 rows × 32 columns

Model Building

```
In [41]: x=df.drop('target',axis=1)
y=df.target
```

In [42]: x.head()

Out[42]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	age_cate(
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	

In [43]: |y.head()

Out[43]: 0

- 0 1
- 1 1
- 2 1
- 3 1
- 4 1

Name: target, dtype: int64

In [45]: from sklearn.model_selection import train_test_split,cross_val_score
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)

```
In [46]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,
In [47]: # Fitting Naive Bayes to the Training set
         from sklearn.naive bayes import GaussianNB
         nb classifier = GaussianNB()
         nb classifier.fit(x train, y train)
Out[47]: GaussianNB()
In [48]: nb pred=nb classifier.predict(x test)
         nb pred
Out[48]: array([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1,
                0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
                0, 0, 0], dtype=int64)
In [49]: print('Score: ',nb classifier.score(x test,y test))
         print('acuracy score: ',accuracy_score(y_test,nb_pred))
         print('precision score: ',precision_score(y_test,nb_pred))
         print('recall score: ',recall_score(y_test,nb_pred))
         Score:
                 0.8021978021978022
         acuracy score: 0.8021978021978022
         precision score: 0.7843137254901961
         recall score: 0.851063829787234
In [50]: def display confusion matrix(test,pred,model name =''):
             confmatrix= confusion matrix(test, pred)
             ax = plt.subplot()
             sns.heatmap(confmatrix, annot=True, ax=ax, cbar=False)
             plt.title('Confusion Matrix for '+str(model name) + '\n')
             ax.set xlabel('Ground Truth')
             ax.set_ylabel('Predicted')
             ax.xaxis.set ticklabels(['0','1'])
             ax.yaxis.set ticklabels(['0','1'])
             plt.show()
```

In [51]: display_confusion_matrix(y_test,nb_pred, 'naive bayes')

Confusion Matrix for naive bayes


```
In [55]: print('Score: ',sv_classifier.score(x_test,y_test))
    print('accuracy score: ',accuracy_score(y_test,sv_pred))
    print('precision score: ',precision_score(y_test,sv_pred))
    print('recall score: ',recall_score(y_test,sv_pred))
    print('f1 score: ',f1_score(y_test,sv_pred))
    print('\n')
    print('\n')
    print('classification report: ',classification_report(y_test,sv_pred))
```

Score: 0.8131868131868132

classificat	ion rep	ort:		precision	recall	f1-score	support
	0	0.86	0.73	0.79	44		
	1	0.78	0.89	0.83	47		
accurac	Cy			0.81	91		
macro av	/g	0.82	0.81	0.81	91		
weighted av	/g	0.82	0.81	0.81	91		

In [56]: display_confusion_matrix(y_test,sv_pred, 'SVM')

Confusion Matrix for SVM


```
In [57]: # Fitting Random Forest Classification to the Training set
    from sklearn.ensemble import RandomForestClassifier
    rfc_classifier = RandomForestClassifier()
    rfc_classifier.fit(x_train, y_train)
```

Out[57]: RandomForestClassifier()

```
In [58]: rfc_pred=rfc_classifier.predict(x_test)
```

```
In [59]: print('Score: ',rfc_classifier.score(x_test,y_test))
    print('accuracy score: ',accuracy_score(y_test,rfc_pred))
    print('precision score: ',precision_score(y_test,rfc_pred))
    print('recall score: ',recall_score(y_test,rfc_pred))
```

Score: 0.8021978021978022

accuracy score: 0.8021978021978022 precision score: 0.7735849056603774 recall score: 0.8723404255319149

In [60]: display_confusion_matrix(y_test,rfc_pred, 'Random Forest')

Confusion Matrix for Random Forest


```
In [61]: from sklearn.neighbors import KNeighborsClassifier
    knn_classifier = KNeighborsClassifier(n_neighbors=5)
    knn_classifier.fit(x_train, y_train)
```

Out[61]: KNeighborsClassifier()

In [62]: knn_pred=knn_classifier.predict(x_test)

```
In [63]: print('Score: ',rfc_classifier.score(x_test,y_test))
    print('accuracy score: ',accuracy_score(y_test,knn_pred))
    print('precision score: ',precision_score(y_test,knn_pred))
    print('recall score: ',recall_score(y_test,knn_pred))
```

Score: 0.8021978021978022

accuracy score: 0.8241758241758241 precision score: 0.803921568627451 recall score: 0.8723404255319149

In [64]: display_confusion_matrix(y_test,knn_pred)

Confusion Matrix for

In [65]: from xgboost import XGBClassifier
 xgb=XGBClassifier()
 xgb.fit(x_train,y_train)

[14:38:39] WARNING: ..\src\learner.cc:1115: Starting in XGBoost 1.3.0, the defa ult evaluation metric used with the objective 'binary:logistic' was changed fro m 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

In [66]: xgb pred=xgb.predict(x test)

```
In [67]: |print('Score: ',xgb.score(x_test,y_test))
         print('accuracy score: ',accuracy_score(y_test,xgb_pred))
         print('precision score: ',precision_score(y_test,xgb_pred))
         print('recall score: ',recall_score(y_test,xgb_pred))
         Score: 0.8021978021978022
         accuracy score: 0.8021978021978022
         precision score: 0.7735849056603774
         recall score: 0.8723404255319149
In [68]: from catboost import CatBoostClassifier
         cat=CatBoostClassifier()
         cat.fit(x train,y train)
         ModuleNotFoundError
                                                    Traceback (most recent call last)
         ~\AppData\Local\Temp/ipykernel_9816/4008524781.py in <module>
         ----> 1 from catboost import CatBoostClassifier
               2 cat=CatBoostClassifier()
               3 cat.fit(x train,y train)
         ModuleNotFoundError: No module named 'catboost'
In [76]: cat pred=cat.predict(x test)
In [77]: |print('Score: ',cat.score(x_test,y_test))
         print('accuracy score: ',accuracy_score(y_test,cat_pred))
         print('precision score: ',precision_score(y_test,cat_pred))
         print('recall score: ',recall_score(y_test,cat_pred))
         Score: 0.8241758241758241
         accuracy score: 0.8241758241758241
         precision score: 0.7924528301886793
         recall score: 0.8936170212765957
In [69]: import pickle
In [72]:
         pkl model=open('rfheart.pkl','wb')
         pickle.dump(rfc_classifier,pkl_model)
In [73]: model=pickle.load(open('heart.pkl','rb'))
         print(model.predict([[63,1,3,145,233,1,0,150,0,2.3,0,0,1,1]]))
         [0]
In [74]: sv model=open('svheart.pkl','wb')
         pickle.dump(sv_classifier,sv_model)
In [75]: model=pickle.load(open('svheart.pkl','rb'))
         print(model.predict([[63,1,3,145,233,1,0,150,0,2.3,0,0,1,1]]))
         [1]
```

```
In [70]: xg_model=open('xheart.pkl','wb')
pickle.dump(xgb,xg_model)

In [75]: kn_model=open('knheart.pkl','wb')
pickle.dump(knn_classifier,kn_model)

In []:
```