Correctievoorschrift VWO

2019

tijdvak 2

natuurkunde

Het correctievoorschrift bestaat uit:

- 1 Regels voor de beoordeling
- 2 Algemene regels
- 3 Vakspecifieke regels
- 4 Beoordelingsmodel
- 5 Aanleveren scores

1 Regels voor de beoordeling

Het werk van de kandidaten wordt beoordeeld met inachtneming van de artikelen 41 en 42 van het Eindexamenbesluit VO.

Voorts heeft het College voor Toetsen en Examens op grond van artikel 2 lid 2d van de Wet College voor toetsen en examens de Regeling beoordelingsnormen en bijbehorende scores centraal examen vastgesteld.

Voor de beoordeling zijn de volgende aspecten van de artikelen 36, 41, 41a en 42 van het Eindexamenbesluit VO van belang:

- 1 De directeur doet het gemaakte werk met een exemplaar van de opgaven, de beoordelingsnormen en het proces-verbaal van het examen toekomen aan de examinator. Deze kijkt het werk na en zendt het met zijn beoordeling aan de directeur. De examinator past de beoordelingsnormen en de regels voor het toekennen van scorepunten toe die zijn gegeven door het College voor Toetsen en Examens.
- De directeur doet de van de examinator ontvangen stukken met een exemplaar van de opgaven, de beoordelingsnormen, het proces-verbaal en de regels voor het bepalen van de score onverwijld aan de directeur van de school van de gecommitteerde toekomen. Deze stelt het ter hand aan de gecommitteerde.

- De gecommitteerde beoordeelt het werk zo spoedig mogelijk en past de beoordelingsnormen en de regels voor het bepalen van de score toe die zijn gegeven door het College voor Toetsen en Examens.

 De gecommitteerde voegt bij het gecorrigeerde werk een verklaring betreffende de verrichte correctie. Deze verklaring wordt mede ondertekend door het bevoegd gezag van de gecommitteerde.
- 4 De examinator en de gecommitteerde stellen in onderling overleg het behaalde aantal scorepunten voor het centraal examen vast.
- Indien de examinator en de gecommitteerde daarbij niet tot overeenstemming komen, wordt het geschil voorgelegd aan het bevoegd gezag van de gecommitteerde. Dit bevoegd gezag kan hierover in overleg treden met het bevoegd gezag van de examinator. Indien het geschil niet kan worden beslecht, wordt hiervan melding gemaakt aan de inspectie. De inspectie kan een derde onafhankelijke corrector aanwijzen. De beoordeling van deze derde corrector komt in de plaats van de eerdere beoordelingen.

2 Algemene regels

Voor de beoordeling van het examenwerk zijn de volgende bepalingen uit de regeling van het College voor Toetsen en Examens van toepassing:

- 1 De examinator vermeldt op een lijst de namen en/of nummers van de kandidaten, het aan iedere kandidaat voor iedere vraag toegekende aantal scorepunten en het totaal aantal scorepunten van iedere kandidaat.
- Voor het antwoord op een vraag worden door de examinator en door de gecommitteerde scorepunten toegekend, in overeenstemming met correctievoorschrift. Scorepunten zijn de getallen 0, 1, 2, ..., n, waarbij n het maximaal te behalen aantal scorepunten voor een vraag is. Andere scorepunten die geen gehele getallen zijn, of een score minder dan 0 zijn niet geoorloofd.
- 3 Scorepunten worden toegekend met inachtneming van de volgende regels:
 - 3.1 indien een vraag volledig juist is beantwoord, wordt het maximaal te behalen aantal scorepunten toegekend;
 - 3.2 indien een vraag gedeeltelijk juist is beantwoord, wordt een deel van de te behalen scorepunten toegekend in overeenstemming met het beoordelingsmodel;
 - 3.3 indien een antwoord op een open vraag niet in het beoordelingsmodel voorkomt en dit antwoord op grond van aantoonbare, vakinhoudelijke argumenten als juist of gedeeltelijk juist aangemerkt kan worden, moeten scorepunten worden toegekend naar analogie of in de geest van het beoordelingsmodel;
 - 3.4 indien slechts één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, wordt uitsluitend het eerstgegeven antwoord beoordeeld;
 - 3.5 indien meer dan één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, worden uitsluitend de eerstgegeven antwoorden beoordeeld, tot maximaal het gevraagde aantal;
 - 3.6 indien in een antwoord een gevraagde verklaring of uitleg of afleiding of berekening ontbreekt dan wel foutief is, worden 0 scorepunten toegekend tenzij in het beoordelingsmodel anders is aangegeven;

- 3.7 indien in het beoordelingsmodel verschillende mogelijkheden zijn opgenomen, gescheiden door het teken /, gelden deze mogelijkheden als verschillende formuleringen van hetzelfde antwoord of onderdeel van dat antwoord;
- 3.8 indien in het beoordelingsmodel een gedeelte van het antwoord tussen haakjes staat, behoeft dit gedeelte niet in het antwoord van de kandidaat voor te komen;
- 3.9 indien een kandidaat op grond van een algemeen geldende woordbetekenis, zoals bijvoorbeeld vermeld in een woordenboek, een antwoord geeft dat vakinhoudelijk onjuist is, worden aan dat antwoord geen scorepunten toegekend, of tenminste niet de scorepunten die met de vakinhoudelijke onjuistheid gemoeid zijn.
- 4 Het juiste antwoord op een meerkeuzevraag is de hoofdletter die behoort bij de juiste keuzemogelijkheid. Voor een juist antwoord op een meerkeuzevraag wordt het in het beoordelingsmodel vermelde aantal scorepunten toegekend. Voor elk ander antwoord worden geen scorepunten toegekend. Indien meer dan één antwoord gegeven is, worden eveneens geen scorepunten toegekend.
- 5 Een fout mag in de uitwerking van een vraag maar één keer worden aangerekend, tenzij daardoor de vraag aanzienlijk vereenvoudigd wordt en/of tenzij in het beoordelingsmodel anders is vermeld.
- 6 Een zelfde fout in de beantwoording van verschillende vragen moet steeds opnieuw worden aangerekend, tenzij in het beoordelingsmodel anders is vermeld.
- Indien de examinator of de gecommitteerde meent dat in een examen of in het beoordelingsmodel bij dat examen een fout of onvolkomenheid zit, beoordeelt hij het werk van de kandidaten alsof examen en beoordelingsmodel juist zijn. Hij kan de fout of onvolkomenheid mededelen aan het College voor Toetsen en Examens. Het is niet toegestaan zelfstandig af te wijken van het beoordelingsmodel. Met een eventuele fout wordt bij de definitieve normering van het examen rekening gehouden.
- 8 Scorepunten worden toegekend op grond van het door de kandidaat gegeven antwoord op iedere vraag. Er worden geen scorepunten vooraf gegeven.
- 9 Het cijfer voor het centraal examen wordt als volgt verkregen. Eerste en tweede corrector stellen de score voor iedere kandidaat vast. Deze score wordt meegedeeld aan de directeur. De directeur stelt het cijfer voor het centraal examen vast op basis van de regels voor omzetting van score naar cijfer.
- NB1 *T.a.v. de status van het correctievoorschrift:*Het College voor Toetsen en Examens heeft de correctievoorschriften bij regeling vastgesteld. Het correctievoorschrift is een zogeheten algemeen verbindend voorschrift en valt onder wet- en regelgeving die van overheidswege wordt verstrekt. De corrector mag dus niet afwijken van het correctievoorschrift.
- NB2 T.a.v. het verkeer tussen examinator en gecommitteerde (eerste en tweede corrector):
 Het aangeven van de onvolkomenheden op het werk en/of het noteren van de
 behaalde scores bij de vraag is toegestaan, maar niet verplicht. Evenmin is er een
 standaardformulier voorgeschreven voor de vermelding van de scores van de
 kandidaten. Het vermelden van het schoolexamencijfer is toegestaan, maar niet
 verplicht. Binnen de ruimte die de regelgeving biedt, kunnen scholen afzonderlijk
 of in gezamenlijk overleg keuzes maken.

NB3 T.a.v. aanvullingen op het correctievoorschrift:

Er zijn twee redenen voor een aanvulling op het correctievoorschrift: verduidelijking en een fout.

Verduidelijking

Het correctievoorschrift is vóór de afname opgesteld. Na de afname blijkt pas welke antwoorden kandidaten geven. Vragen en reacties die via het Examenloket bij de Toets- en Examenlijn binnenkomen, kunnen duidelijk maken dat het correctievoorschrift niet voldoende recht doet aan door kandidaten gegeven antwoorden. Een aanvulling op het correctievoorschrift kan dan alsnog duidelijkheid bieden. *Een fout*

Als het College voor Toetsen en Examens vaststelt dat een centraal examen een fout bevat, kan het besluiten tot een aanvulling op het correctievoorschrift.

Een aanvulling op het correctievoorschrift wordt door middel van een mailing vanuit Examenblad.nl bekendgemaakt. Een aanvulling op het correctievoorschrift wordt zo spoedig mogelijk verstuurd aan de examensecretarissen.

Soms komt een onvolkomenheid pas geruime tijd na de afname aan het licht. In die gevallen vermeldt de aanvulling:

- Als het werk al naar de tweede corrector is gezonden, past de tweede corrector deze aanvulling op het correctievoorschrift toe.
 en/of
- Als de aanvulling niet is verwerkt in de naar Cito gezonden Wolf-scores, voert
 Cito dezelfde wijziging door die de correctoren op de verzamelstaat doorvoeren.

Dit laatste gebeurt alleen als de aanvulling luidt dat voor een vraag alle scorepunten moeten worden toegekend.

Als een onvolkomenheid op een dusdanig laat tijdstip geconstateerd wordt dat een aanvulling op het correctievoorschrift ook voor de tweede corrector te laat komt, houdt het College voor Toetsen en Examens bij de vaststelling van de N-term rekening met de onvolkomenheid.

3 Vakspecifieke regels

Voor dit examen zijn de volgende vakspecifieke regels vastgesteld:

- 1 Een afwijking in de uitkomst van een berekening/bepaling door acceptabel tussentijds afronden wordt de kandidaat niet aangerekend.
- 2 Het laatste scorepunt, aangeduid met 'completeren van de berekening/bepaling', wordt niet toegekend als:
 - een fout in de nauwkeurigheid van de uitkomst gemaakt is (zie punt 3),
 - een of meer rekenfouten gemaakt zijn,
 - de eenheid van een uitkomst niet of verkeerd vermeld is, tenzij gezien de vraagstelling het weergeven van de eenheid overbodig is, (In zo'n geval staat in het beoordelingsmodel de eenheid tussen haakjes.)
 - antwoordelementen foutief met elkaar gecombineerd zijn,

- een onjuist antwoordelement een substantiële vereenvoudiging van de berekening/bepaling tot gevolg heeft.
- De uitkomst van een berekening/bepaling mag één significant cijfer meer of minder bevatten dan op grond van de nauwkeurigheid van de vermelde gegevens verantwoord is, tenzij in de vraag is vermeld hoeveel significante cijfers de uitkomst dient te bevatten.
- 4 Het scorepunt voor het gebruik van een formule wordt toegekend als de kandidaat laat zien kennis te hebben van de betekenis van de symbolen uit de formule. Dit blijkt als:
 - de juiste formule is geselecteerd, én
 - voor minstens één symbool een waarde is ingevuld die past bij de betreffende grootheid.

4 Beoordelingsmodel

Vraag Antwoord Scores

Pariser Kanone

1 maximumscore 3

uitkomst: L = 34 m (met een marge van 2 m)

voorbeeld van een bepaling:

De lengte van de loop is gelijk aan de door de granaat afgelegde weg. Deze volgt uit de oppervlakte onder de grafiek van figuur 2a: $L = 34 \pm 2$ m.

- inzicht dat de oppervlakte onder de grafieklijn gevraagd wordt
 bepalen van de oppervlakte onder de grafiek
 1
- completeren van de bepaling

2 maximumscore 5

voorbeeld van een antwoord:

Aflezen in figuur 2b op t = 0.01 s levert: $F_{res} = 6.6 \cdot 10^6$ N.

Aflezen in figuur 2a van de helling van de raaklijn op t = 0,01 s levert:

$$a = \frac{\Delta v}{\Delta t} = \frac{1,8 \cdot 10^3}{0,034 - 0,0035} = 5,90 \cdot 10^4 \text{ m s}^{-2}.$$

Er geldt:
$$F_{\text{res}} = ma$$
. Invullen levert: $m = \frac{F_{\text{res}}}{a} = \frac{6.6 \cdot 10^6}{5.90 \cdot 10^4} = 112 \text{ kg}$.

Het verschilpercentage met de waarde uit de tabel is

$$\frac{112-106}{106}$$
 = 0,057 = 5,7%. (Dit valt binnen de marge van 10%.)

- inzicht dat in beide figuren afgelezen moet worden op hetzelfde tijdstip 1
- gebruik van $F_{res} = ma$
- gebruik van $a = \frac{\Delta v}{\Delta t}$ (voor de raaklijn) in figuur 2a
- uitrekenen van het verschilpercentage 1
- completeren van de bepaling

Opmerkingen

- De bepaling mag op elk tijdstip in de grafieken gedaan worden.
- Als de kandidaat geen eenheid geeft bij de berekening van de massa, dit niet aanrekenen.
- Bij deze vraag hoeft geen rekening gehouden te worden met significantie.

3 maximumscore 4

uitkomst: $\eta = 0, 26 = 26\%$

voorbeeld van een berekening:

Bij het ontbranden van 180 kg buskruit komt $180 \cdot 3, 0 \cdot 10^6 = 5, 4 \cdot 10^8$ J energie vrij. Deze energie wordt omgezet in onder andere kinetische energie van de granaat.

Daarvoor geldt: $E_{\rm k} = \frac{1}{2} m v^2 = \frac{1}{2} \cdot 106 \cdot 1640^2 = 1,43 \cdot 10^8 \text{ J.}$

Dus geldt: $\eta = \frac{E_k}{E_{ch}} = \frac{1,43 \cdot 10^8}{5,4 \cdot 10^8} = 0,26 = 26\%.$

- inzicht dat $\eta = \frac{E_{\rm k}}{E_{\rm ch}}$
- gebruik van $E_{\rm ch} = r_{\rm m} m$
- gebruik van $E_k = \frac{1}{2}mv^2$
- completeren van de berekening

Opmerkingen

- Als de kandidaat de massa gebruikt die hij/zij berekend heeft in vraag 2, dit niet aanrekenen.
- Als de kandidaat bij de nuttige energie toch rekening houdt met de toename van de zwaarte-energie, dit niet aanrekenen.

4 maximumscore 4

voorbeeld van een antwoord:

- Het model moet stoppen als de granaat de grond raakt.
- (In de y-richting werkt, naast een luchtweerstand, ook de zwaartekracht op de granaat, in negatieve richting:) $F_y = -F_z F_{wy}$.
- $A = \pi r^2 = \pi \cdot 0.10^2 = 3.1 \cdot 10^{-2} \text{ (m}^2\text{)}.$
- inzicht dat het model moet stoppen als de granaat de grond raakt
- inzicht dat $F_y = -F_z F_{wy}$
- gebruik van $A = \pi r^2$
- completeren van de berekening

Opmerkingen

- De formulering van de antwoorden hoeft niet volgens de afspraken van een computermodel te zijn.
- Bij de beantwoording hoeven geen modelregels gebruikt te worden.
- Bij de waarde voor A hoeft de eenheid niet gegeven te worden.

5 maximumscore 2

voorbeeld van een antwoord:

De granaat komt terug op de grond met een lagere snelheid in de y-richting dan dat hij weggeschoten wordt (zonder rekening te houden met de richting van de snelheid). De absolute waarde van de steilheid van de raaklijn is in figuur 4a aan het eind kleiner dan aan het begin.

Hieruit volgt dat figuur 4a het (y,t)-diagram is.

- inzicht dat de granaat met een kleinere snelheid in de y-richting terugkomt dan dat hij is weggeschoten
 consequente conclusie
- 6 maximumscore 3

voorbeeld van een antwoord:

- De granaat heeft gedurende de hele vlucht een snelheid in de x-richting.
- Tijdens de val werken er twee krachten op de granaat, de zwaartekracht en de luchtwrijving. (Doordat de dichtheid van de atmosfeer toeneemt bij het naar beneden gaan zal ook de luchtwrijving groter worden, bij dezelfde snelheid.) De granaat zal door de grote luchtwrijving een resulterende kracht tegen de bewegingsrichting ondervinden. De granaat vertraagt daardoor.
- inzicht dat de granaat gedurende de hele vlucht een snelheid in de *x*-richting heeft

1

1

1

1

1

1

- inzicht dat de luchtwrijving groot is (bij dezelfde snelheid) (als de luchtdichtheid toeneemt)
 - inzicht dat er daardoor (een component van) de resulterende kracht tegen de bewegingsrichting is

7 maximumscore 3

voorbeeld van een antwoord:

- De oppervlakte onder de grafieklijn geeft de lengte van de baan van de granaat. Fabian wil echter de horizontale afstand die de granaat aflegt, bepalen.
- Aangezien de baan van de granaat een kromme is, zal de lengte van de baan groter zijn dan de gezochte afstand. Fabian komt uit op een te grote afstand.
- inzicht dat de oppervlakte onder de grafieklijn de lengte van de baan van de granaat is

 inzicht dat het niet over deze baanlengte gaat, maar over de horizontale afstand

consequente conclusie

Opmerking

Een antwoord uitgaande van het inzicht dat $v_x < v$ goed rekenen.

Elektrische gitaar

8 maximumscore 2

voorbeeld van een antwoord:

- inzicht dat aan de onderkant van de snaar zuidpolen ontstaan
- inzicht dat aan de bovenzijde van de snaar polen ontstaan tegengesteld aan de polen aan de onderzijde

1

1

1

lees verder ▶▶▶

Opmerking

Als de kandidaat in plaats van de letter Z de letter S gebruikt, dit niet aanrekenen.

9 maximumscore 3

voorbeeld van een antwoord:

De schakeling is een spanningsdelingsschakeling. Om een kleinere spanning naar de versterker te sturen moet de weerstand parallel aan de versterker kleiner worden. Dus moet de knop linksom (L) gedraaid worden.

- inzicht dat er sprake is van spanningsdeling
- inzicht dat de weerstand parallel aan de versterker kleiner moet worden
- consequente conclusie 1

10 maximumscore 5

voorbeeld van een antwoord:

De massa van de snaar geldt:

$$m = \rho V = \rho \left(\frac{1}{4}\pi d^2\ell\right) = 7.8 \cdot 10^3 \left(\frac{1}{4}\pi \cdot \left(1.42 \cdot 10^{-3}\right)^2 \cdot 0.645\right) = 7.97 \cdot 10^{-3} \text{ kg}.$$

De golfsnelheid in de snaar kan vervolgens berekend worden:

$$v = \sqrt{\frac{F\ell}{m}} = \sqrt{\frac{1,5 \cdot 10^2 \cdot 0,645}{7,97 \cdot 10^{-3}}} = 110 \text{ m s}^{-1}.$$

Er is sprake van de grondtoon en dus geldt voor de golflengte in de snaar:

$$\ell = \frac{1}{2}\lambda \rightarrow \lambda = 2\ell = 2.0,645 = 1,29 \text{ m}.$$

Voor de frequentie van de toon geldt dan:

$$f = \frac{v}{\lambda} = \frac{110}{1,29} = 85 \text{ Hz.}$$

- gebruik van $m = \rho V$
- gebruik van $V = \frac{1}{4}\pi d^2 \ell$
- inzicht dat voor de grondtoon geldt $\ell = \frac{1}{2}\lambda$
- gebruik van $v = \lambda f$
- completeren van de berekening

Opmerkingen

- Als de kandidaat voor de dichtheid de waarde voor een andere staalsoort kiest, dit niet aanrekenen.
- Als de kandidaat voor de dichtheid van roestvrij staal de waarde $7.9 \cdot 10^3 \text{ kg m}^{-3}$ gebruikt, dit goed rekenen
- Als de kandidaat de eenheid niet noteert, dit niet aanrekenen.
- Bij deze vraag hoeft geen rekening gehouden te worden met significantie.

11 maximumscore 2

voorbeeld van een antwoord:

In 0,050 s zijn 4,25 trillingen te herkennen. Voor de trillingstijd geldt dan:

$$T = \frac{0,050}{4,25} = 0,0118 \text{ s. De frequentie bedraagt } f = \frac{1}{T} = \frac{1}{0,0118} = 85 \text{ Hz (met)}$$

een marge van 1 Hz)

(Deze frequentie komt overeen met de frequentie van de grondtoon van de E-snaar.)

- gebruik van $f = \frac{1}{T}$ en aflezen van de trillingstijd
- completeren van de bepaling

1

12 maximumscore 2

voorbeelden van een antwoord:

Als de (gemagnetiseerde) snaar door de evenwichtsstand beweegt, is de snelheid en dus de fluxverandering per tijdseenheid het grootst.

Er geldt: $U_{\rm ind} \propto \frac{{\rm d}\, \Phi}{{\rm d}t}$. Hieruit volgt dat de opgewekte spanning dan het grootst is.

- inzicht dat de snelheid van de trillende snaar maximaal is in de evenwichtsstand
- inzicht dat $U_{\rm ind} \propto \frac{\mathrm{d} \Phi}{\mathrm{d} t}$

13 maximumscore 3

voorbeeld van een antwoord:

Bij één trilling in de z-richting wordt de flux één keer groter en kleiner. Bij één trilling in de y-richting wordt de flux twee keer groter en kleiner. (Het element reageert op fluxveranderingen.) Het element levert dus in één trilling van de snaar twee trillingen in de spanning.

- inzicht dat bij één trilling in de *z*-richting de flux één keer groter en kleiner wordt
- inzicht dat bij één trilling in de *y*-richting de flux twee keer groter en kleiner wordt
- inzicht in het gevolg van deze verdubbeling voor de spanning 1

14 maximumscore 3

voorbeeld van een antwoord:

Een boventoon wordt niet (of nauwelijks) gedetecteerd als de amplitude van de snaar boven het element (nagenoeg) gelijk is aan 0. Er zal zich dan dus een knoop van de boventoon boven het element bevinden.

De afstand op de foto van element 1 tot aan de brug bedraagt 2,8 cm. De afstand van de brug tot de topkam bedraagt op de foto 11,3 cm.

De verhouding tussen deze twee waarden is $\frac{11,3}{2,8} = 4,0$.

Er bevinden zich bij de laagste boventoon die het element niet detecteert dus 4 halve golflengten op de snaar. Dus is het juiste antwoord: b derde boventoon.

- inzicht dat er een knoop boven het element zal liggen
- inzicht dat de verhouding tussen de afstand van het element tot de brug en de afstand van de brug tot de topkam bepaald moet worden
- completeren van de bepaling en consequente keuze

1

1

1

1

1

Vraag Antwoord

Scores

Elektronendiffractie

15 maximumscore 3

voorbeeld van een antwoord:

Er geldt: $\lambda = \frac{h}{p} = \frac{h}{mv}$. Bovendien geldt dat de toename in kinetische energie

gelijk is aan de afname van de elektrische energie. In formule: $\frac{1}{2}mv^2 = eU$.

Omschrijven levert: $v = \sqrt{\frac{2eU}{m}}$. Invullen in de eerste formule geeft de

gevraagde formule: $\lambda = \frac{h}{\sqrt{2emU}}$.

• inzicht dat
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

• inzicht dat
$$\frac{1}{2}mv^2 = eU$$

16 maximumscore 2

uitkomst:
$$\lambda = 1, 7 \cdot 10^{-11} \text{ m}$$

voorbeeld van een berekening:

Er geldt:
$$\lambda = \frac{h}{\sqrt{2emU}}$$
.

Invullen levert:
$$\lambda = \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 1,60 \cdot 10^{-19} \cdot 9,11 \cdot 10^{-31} \cdot 5,0 \cdot 10^3}} = 1,7 \cdot 10^{-11} \text{ m}$$

Vraag

Antwoord

Scores

17 maximumscore 4

voorbeeld van een antwoord:

- De dikke lijnen geven het verschil in weglengte aan:

- Constructieve interferentie treedt op als het weglengteverschil gelijk is aan een geheel aantal maal de golflengte: $\Delta s = n\lambda$.

Er geldt:
$$\sin \alpha = \frac{AB}{BD} = \frac{\frac{1}{2}\Delta s}{d}$$
.

Voor het weglengteverschil geldt dan: $\Delta s = 2d \sin \alpha$. Combineren levert formule (2).

- aangeven van het verschil in weglengte in de figuur
 inzicht dat Δs = nλ
- inzicht dat $\sin \alpha = \frac{AB}{BD}$
- completeren van de afleiding

18 maximumscore 2

voorbeeld van een antwoord:

Ook voor de verschillende ringen geldt: $2d \sin \alpha = n\lambda$. Dus als λ hetzelfde blijft, is bij kleinere d de waarde van $\sin \alpha$ groter. Dus is de hoek groter. Dus hoort d_1 bij de buitenste ring.

- inzicht dat voor de ringen geldt $2d \sin \alpha = n\lambda$
- consequente conclusie

Antwoord Scores Vraag

19 maximumscore 2

voorbeeld van een antwoord:

Bij lage versnelspanningen (krijgen de elektronen een lagere snelheid en) wordt de debroglie-golflengte te groot om interferentie te zien. De debroglie-golflengte moet kleiner zijn dan 2d.

•	inzicht dat de debroglie-golflengte groter wordt bij een lagere
	versnelspanning

1

inzicht dat de debroglie-golflengte kleiner moet zijn dan 2d

1

Opmerkingen

- Als de kandidaat voor het tweede scorepunt antwoordt: $\sin \alpha$ wordt groter dan 1, dit goed rekenen.
- Als de kandidaat bij het tweede scorepunt antwoordt dat de debrogliegolflengte in de orde van grootte moet zijn van de afstanden tussen de lijnen, dit goed rekenen.

Antwoord Scores Vraag

20 maximumscore 4

uitkomst : $d = 1, 2 \cdot 10^{-10}$ m (met een marge van $0, 2 \cdot 10^{-10}$ m)

voorbeeld van een bepaling:

Door de punten is een lijn te tekenen.

De helling van de lijn is gelijk aan $\frac{2R}{d}$.

Voor de bovenste lijn geldt dan:
helling =
$$\frac{0.021 - 0.013}{1.98 \cdot 10^{-11} - 1.22 \cdot 10^{-11}} = 1.05 \cdot 10^9 = \frac{2R}{d}$$
.

Omschrijven levert: $d = \frac{2 \cdot 65 \cdot 10^{-3}}{1.05 \cdot 10^9} = 1, 2 \cdot 10^{-10} \text{ m}.$

- tekenen van een lijn door de punten 1
- inzicht dat voor de helling van de lijn geldt: helling = $\frac{2R}{d}$ 1
- aflezen van de helling in de figuur op de uitwerkbijlage / aflezen van een punt op de lijn 1
- completeren van de bepaling 1

Opmerking

Als de kandidaat een punt neemt dat niet op de lijn ligt, het derde scorepunt niet toekennen.

Gamma-chirurgie

21 maximumscore 3

voorbeeld van een antwoord:

$$^{60}_{27}{\rm Co} \rightarrow ^{60}_{28}{\rm Ni} + ^{0}_{-1}{\rm e} + ^{0}_{0}\gamma + (\overline{\nu}_{\rm e})$$

- elektron (en anti-neutrino) rechts van de pijl
- inzicht in het vrijkomen van twee γ-fotonen
- nikkel-60 als vervalproduct mits verkregen via een kloppende reactievergelijking

22 maximumscore 3

uitkomst:
$$\lambda_2 = 9.32 \cdot 10^{-13} \text{ m}$$

voorbeeld van een berekening:

Voor de energie van foton γ_2 geldt: $E_{\gamma_2} = 1{,}33 \text{ MeV}.$

Voor de golflengte geldt:

$$E_{\gamma_2} = \frac{hc}{\lambda_2} \rightarrow \lambda_2 = \frac{hc}{E_{\gamma_2}} = \frac{6,626 \cdot 10^{-34} \cdot 2,998 \cdot 10^8}{1,33 \cdot 1,602 \cdot 10^{-13}} = 9,32 \cdot 10^{-13} \text{ m}.$$

- gebruik van $E = \frac{hc}{\lambda}$
- fotonenergie in joule 1
- completeren van de berekening

1

23 maximumscore 4

uitkomst: $m = 2, 6 \cdot 10^{-5} \text{ kg}$

voorbeeld van een berekening:

Het aantal atoomkernen kan berekend worden met behulp van de activiteit:

$$A = \frac{\ln 2}{t_{\perp}} N \rightarrow N = \frac{At_{\perp}}{\ln 2}.$$

Voor de halveringstijd van cobalt-60 geldt: $t_{\frac{1}{2}} = 5,27$ jr $= 1,66 \cdot 10^8$ s.

Voor het aantal atoomkernen geldt daarmee:

$$N = \frac{At_{\frac{1}{2}}}{\ln 2} = \frac{1,1 \cdot 10^{12} \cdot 1,66 \cdot 10^8}{\ln 2} = 2,64 \cdot 10^{20}.$$

De massa van het cobalt-60 in een bron kan berekend worden met de atoommassa: $m = Nm_{\rm at} = 2,64 \cdot 10^{20} \cdot 60 \cdot 1,66 \cdot 10^{-27} = 2,6 \cdot 10^{-5}$ kg.

• gebruik van
$$A = \frac{\ln 2}{t_{\frac{1}{2}}}N$$

- opzoeken van de halveringstijd van cobalt-60
- inzicht dat $m = Nm_{at}$
- completeren van de berekening

24 maximumscore 5

uitkomst: $t = 1, 5 \cdot 10^3 \text{ s } (= 25 \text{ min})$

voorbeeld van een berekening:

Voor het volume van de bolvormige tumor geldt:

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \cdot (0.015)^3 = 1.41 \cdot 10^{-5} \text{ m}^3.$$

De massa van de tumor bedraagt dan:

$$m = \rho V = 0.998 \cdot 10^3 \cdot 1.41 \cdot 10^{-5} = 0.0141 \text{ kg}.$$

Per radioactief verval van cobalt-60 komen twee γ -fotonen vrij: een γ -foton met een energie van 1,48-0,31=1,17 MeV en een γ -foton met een energie van 1,33 MeV. Per verval komt er dus 2,50 MeV aan energie vrij in de vorm van γ -straling.

De hoeveelheid geabsorbeerde energie in de tumor in één seconde bedraagt:

$$E = 3.5 \cdot 10^9 \cdot 2.50 \cdot 1.602 \cdot 10^{-13} = 1.40 \cdot 10^{-3} \text{ J}.$$

Voor de stralingsdosis in één seconde geldt dan:

$$D = \frac{E}{m} = \frac{1,40 \cdot 10^{-3}}{0,0141} = 0,0994 \text{ Gy}.$$

Voor de tijd die de patiënt bestraald moet worden, geldt dan:

$$t = \frac{150}{0,0994} = 1,5 \cdot 10^3 \text{ s } (= 25 \text{ min}).$$

- gebruik van $m = \rho V$
- gebruik van $V = \frac{4}{3}\pi r^3$
- inzicht dat de energie per verval gelijk is aan de optelling van de twee γ -foton-energieën
- gebruik van $D = \frac{E}{m}$
- completeren van de berekening

Opmerking

Als de kandidaat voor water uitgaat van $\rho = 1,0 \cdot 10^3 \text{ kg m}^{-3}$, dit goed rekenen.

25 maximumscore 2

voorbeeld van een antwoord:

Vanwege het radioactieve verval van cobalt-60 zal de activiteit in de loop van de tijd afnemen. (Dit betekent dat er minder energie zal worden uitgestraald door de bronnen en er dus ook minder energie zal worden geabsorbeerd door de tumor.) Dit kan gecompenseerd worden door een langere bestralingstijd.

• inzicht in een afname van de activiteit van de radioactieve bronnen

consequente conclusie 1

5 Aanleveren scores

Verwerk de scores van alle kandidaten per examinator in de applicatie Wolf. Accordeer deze gegevens voor Cito uiterlijk op 24 juni.