What is claimed is:

solder.

2

1	l.	A semiconductor package comprising:	
2	a semiconductor die having a front side and an opposed backside;		
3	a backside metallization layer formed on the backside of the die;		
4	an integrated heat spreader; and		
5	a thermal interface including a fluxlessly-capable solder portion deposited on a top		
6	surface of the integrated heat spreader and bonded to said metallization layer under load and		
7	heat.		
l	2.	The semiconductor package of claim 1, said backside metallization layer	
2	including three layers including an adhesion/barrier layer, a wetting layer, and a protection lay		
l	3.	The semiconductor package of claim 2, said adhesion/barrier layer formed of a	
2	material selected from the group consisting of Ti, TiN, Ta, and TaN.		
1	4.	The semiconductor package of claim 2, said wetting layer formed of a material	
2	selected from the group consisting of NiV and Ni.		
	: 		
ı	5.	The semiconductor package of claim 2, said protection layer formed of a	
2	material selected	d from the group consisting of Au, Pt and Pd.	
1	6	The semiconductor nackage of claim 1 said solder nortion including AuSn	

- 7. The semiconductor package of claim 6 wherein said solder portion includes
- either separate Au and Sn layers or a single eutectic AuSn layer.
- 1 8. The semiconductor device of claim 7 wherein a thickness of Au layer and Sn 2 layer is formed so that an overall Au-to-Sn ratio by weight is 80 to 20.
- 9. The semiconductor package of claim 1, said thermal interface layer including a barrier layer disposed between the solder portion and the integrated heat spreader.

1	10. The semiconductor package of claim 9 wherein said barrier layer is formed of		
2	Ni.		
ı	11. The semiconductor package of claim 1, wherein said backside metallization		
		1	
2	layer includes an adhesion/barrier layer, a wetting layer, and a protection layer, and said thermal		
3 ·	interface layer includes a solder portion including gold (Au) and tin (Sn) together with a barrier		
4	layer formed of nickel (Ni) disposed between the solder portion and the integrated heat spreader	Γ.	
1			
l	12. A method for forming a semiconductor package having a semiconductor die		
2	coupled to an integrated heat spreader, the method comprising:		
3	forming a metallization layer on a backside of the semiconductor die;		
4	forming a thermal interface portion on a topside of the integrated heat spreader, said		
5	thermal interface portion including a solder layer; and		
6	forcing together under load and heat the metallization layer and the solder layer		
7	without flux to bond the semiconductor die to the integrated heat spreader.		
1			
1	13. The method of claim 12, further including heating the package to above 300°C	•	
2	for a package heating time of between about 1 and 30 minutes and ramping down the		
3	temperature lower than about 100°C per minute.		
1			
i	The method of claim 13, wherein the package heating time is between about 2		
2	and 3 minutes.		
l		-	
ı · ·	15. The method of claim 13, wherein the temperature is ramped down approximatel	y	
2	30°C per minute.		
1			
1	16. The method of claim 12 further including reacting the solder layer with the	-	
2	metallization layer to form bonded intermetallic layers.		
1	17. The method of claim 16, wherein the solder layer includes gold (Au) and tin (Sn	1)	
2	and the metallization layer includes a protection layer formed of a material selected from the		
3	group consisting of gold (Au), Platinum (Pt), and Palladium (Pd) and a wetting layer formed of		

a material selected from the group consisting of nickel-vanadium (NiV) and nickel (Ni).

3

1	18.	The method of claim 17, wherein the solder layer reacts with the protection layer	
2	and wetting layer to form internetallics using a fluxless bonding approach.		
1	19.	The method of claim 18, wherein the solder layer includes gold (Au) and tin	
2	(Sn), the protection layer is gold (Au) and the wetting layer is nickel (Ni) where the intermetal		
3	formed is Au	-Sn-Ni.	
1	20.	The method of claim 12 wherein the metallization layer includes an	
2	adhesion/bar	rier layer, a wetting layer, and a protection layer.	
1 ·	21.	The method of claim 12, further including bonding the die of the semiconductor	
2 package onto an organic printed circuit board substrate.		an organic printed circuit board substrate.	
1	22.	The method of claim 12 wherein forcing the metallization layer and fluxless	
2	solder layer to	ogether under load and heat includes placing the package within a reflow oven	
3 -	purged with l	N_2 .	
	•		
1	23.	The method of claim 12 wherein the step of forcing the metallization layer and	
2	fluxless solder layer together under load and heat further includes:		
3	resting the integrated heat spreader on a carrier with the fluxlessly-capable solder layer		
4 .	exposed;		
5	placing the die on top of the integrated heat spreader with the metallization layer in		
6	contact with the fluxlessly-capable solder layer;		
7	holding the die onto the integrated heat spreader using a downward force on the		
8	package; and		
9 .	heating the package within a reflow oven purged with N ₂ .		
0			
1	24.	The method of claim 23 wherein the downward force includes a clip holding the	
2	die onto the integrated heat.		

PATENT APPLICATION PAGE 8 MJM Do. No. 5038-266

25.

package after heating the package.

1

The method of claim 23 further including ramping down the heat applied to the

- 1 26. The method of claim 23 wherein the reflow oven used for heating the package 2 includes multiple zones each with independent temperature controls.
- 27. The method of claim 26, said reflow oven multiple zones have a maximum temperature of 400°C.