Macroeconomic Influences on Healthcare Expenditures

A Comprehensive Econometric Approach with Markov Switching and Non-Linear Terms

Vishakha Gupta

The goal of this project is to understand the economic drivers of Personal Consumption Expenditures on Health Care (PCE-Health).

Overview

This dependent variable represents the expenditure on healthcare services within the broader economic context, providing insights into factors that affect healthcare spending. Personal Consumption Expenditures on Health Care (PCE-Health)

Independent Variables

• Time Period: 1971-01-01 to 2024-01-01

Frequency: Quarterly

Gross Domestic Product(GDP):

Economic output, affecting overall spending capacities (Finkelstein et al., 2012).

Federal Funds Effective Rate:

Reflects interest rates, which can influence health-related investments and insurance premiums (Chandra et al., 2014).

Real Disposable Personal Income Per Capita: Affects

disposable income and spending on healthcare (Hurst et

al., 2014).

Unemployment Rate(UNRATE):

A higher unemployment rate can lead to lower health spending, particularly if individuals lose employer-sponsored healthcare (Chakraborty et al., 2020).

Consumer Price Index for

Medical Care): Represents the inflation rate specifically for medical services, directly impacting the cost of healthcare (Ginsburg, 2009).

R&D Expenditure: Reflects investments in medical research, potentially affecting the healthcare services available (Cutler et al., 2007).

cPI for all items: A general inflation metric that could influence overall spending trends across sectors, including healthcare (Janke et al., 2015).

Data Treatment-Independent Variables

Linear Autometrics with IIS and SIS

First Step

The dataset is: C:\Users\drvis\OneDrive - Babson College\Documents\ECN7510\Project Data\DATASET.xlsx The estimation sample is: 1972-07-01 - 2024-01-01 Coefficient Std.Error t-value t-prob Part.R^2 DLDHLCRG3Q086SBEA_1 0.268582 0.06770 3.97 0.0001 0.0825 DLDHLCRG3Q086SBEA 2 0.202738 0.06855 2.96 0.0035 0.0476 0.002657 II#1979-04-01 -0.00841778 -3.17 0.0018 0.0542 0.002828 0.0983 SI#1981-01-01 0.0123533 4.37 0.0000 SI#1981-04-01 -0.0128784 0.003161 -4.07 0.0001 0.0867 SI#1982-01-01 0.0115385 0.003169 3.64 0.0004 0.0704 SI#1982-04-01 -0.0102578 0.002790 -3.68 0.0003 0.0717 Constant -0.00253564 0.001055 -2.40 0.0173 0.0319 DLGDP -0.0110021 0.03430 -0.321 0.7488 0.0006 DLGDP 1 0.0341266 0.03596 0.949 0.3439 0.0051 DLGDP 2 0.00258022 0.02075 0.124 0.9012 0.0001 **FEDFUNDS** 0.0002335 1.95 0.0528 0.000455102 0.0213 FEDFUNDS 1 0.000308044 0.0003366 0.915 0.3614 0.0048 FEDFUNDS 2 -0.000368299 0.0002416 -1.52 0.1292 0.0131 DLA229RX0 0.0174830 0.01655 1.06 0.2922 0.0063 0.0194367 0.01694 1.15 0.2528 0.0075 DLA229RX0 1 DLA229RX0 2 0.00313322 0.01535 0.204 0.8385 0.0002 UNRATE 9.71592e-05 0.0005149 0.189 0.8505 0.0002 UNRATE 1 0.000457040 0.0006830 0.669 0.5043 0.0026 UNRATE 2 -0.000307140 0.0005170 -0.594 0.5532 0.0020 DLCPIMEDSL 0.342911 0.05750 5.96 0.0000 0.1689 DLCPIMEDSL 1 -0.0696063 0.06468 -1.08 0.2833 0.0066 DLCPIMEDSL 2 0.0519369 0.06150 0.844 0.3996 0.0041 DLY694RC1Q027SBEA U -0.00511059 0.02403 -0.213 0.8318 0.0003 DLY694RC1Q027SBEA_1U -0.0123632 0.02352 -0.526 0.5999 0.0016 0.02435 DLY694RC1Q027SBEA 2U -0.0116479 -0.478 0.6330 0.0013 CPALTTØ1USM657N 0.00171021 0.0008038 2.13 0.0348 0.0252 -3.77424e-05 0.0007904 -0.0478 0.9620 CPALTT01USM657N 1 U 0.0000 CPALTT01USM657N 2 U 0.00123165 0.0008266 1.49 0.1380 0.0125 **EPIDEMIC** 0.00129519 0.001640 0.790 0.4307 0.0036 EPIDEMIC 1 -0.00141004 0.002223 -0.634 0.5267 0.0023 EPIDEMIC 2 0.000933227 0.001593 0.586 0.5587 0.0020 sigma 0.00252127 RSS 0.00111243645 F(31,175) =R^2 64.44 [0.000]** 0.919455 Adi.R^2 0.905187 log-likelihood 962.141 no. of observations 207 no. of parameters 32 0.0118368 0.00818812 mean(Y) se(Y) 3.5705 [0.0302]* AR 1-2 test: F(2,173) =F(1,205) = 0.86095 [0.3546]ARCH 1-1 test: Normality test: $Chi^2(2) =$ 3.5250 [0.1716] Hetero test: F(51,152) =1.6354 [0.0118]* F(2,173) =4.5880 [0.0114]* RESET23 test:

■EQ(20) Modelling DLDHLCRG3Q086SBEA by OLS

Linear Autometrics with IIS and SIS

Results

```
EQ(22) Modelling DLDHLCRG3Q086SBEA by OLS
      The dataset is: C:\Users\drvis\OneDrive - Babson College\Documents\ECN7510\Project Data\DATASET.xlsx
      The estimation sample is: 1972-07-01 - 2024-01-01
                      Coefficient Std.Error t-value t-prob Part.R^2
DLDHLCRG3Q086SBEA 1
                         0.275178
                                     0.05766
                                                 4.77 0.0000
                                                                0.1036
DLDHLCRG3Q086SBEA 2
                         0.234814
                                     0.05346
                                                 4.39 0.0000
                                                                0.0892
FEDFUNDS
                                                                0.1299
                      0.000408770 7.539e-05
                                                 5.42 0.0000
DLCPIMEDSL
                         0.314763
                                     0.04474
                                                 7.04 0.0000
                                                                0.2008
II#1979-04-01
                      -0.00883239
                                    0.002558
                                                -3.45 0.0007
                                                                0.0571
SI#1981-01-01
                        0.0117778
                                  0.002602
                                                 4.53 0.0000
                                                                0.0942
SI#1981-04-01
                       -0.0112383
                                    0.002904
                                                -3.87 0.0001
                                                                0.0706
SI#1982-01-01
                        0.0109626
                                    0.002920
                                                 3.75 0.0002
                                                                0.0668
                                                                0.0633
SI#1982-04-01
                      -0.00956261 0.002620
                                                -3.65 0.0003
Constant
                  U -0.000522309 0.0003809
                                                -1.37 0.1719
                                                                0.0095
sigma
                  0.00250839 RSS
                                              0.00123952408
R^2
                    0.910253 F(9,197) =
                                                222 [0.000]**
Adi.R^2
                              log-likelihood
                    0.906153
                                                    950.944
no. of observations
                              no. of parameters
mean(Y)
                   0.0118368 se(Y)
                                                 0.00818812
                 F(2,195) = 1.2243 [0.2962]
AR 1-2 test:
ARCH 1-1 test:
                 F(1,205) = 0.55351 [0.4577]
Normality test:
                 Chi^2(2) = 7.7119 [0.0212]*
                 F(10,193) = 0.87422 [0.5583]
Hetero test:
                 F(2,195) = 3.6873 [0.0268]*
RESET23 test:
```

Results-

R-squared (R²): 0.910- Explains 91% of the variance in the dependent variable, indicating a strong fit for time-series data.

Adjusted R²: 0.906- Accounts for unnecessary variables, confirming the model is well-specified.

Residual Sum of Squares (RSS): 0.00124- Low RSS suggests minimal unexplained variance.

Autocorrelation (AR 1-2 Test): No evidence of residual autocorrelation, a favorable result.

ARCH Effect (ARCH 1-1 Test): No heteroskedasticity, confirming stable residual variance.

Normality Test: Residuals deviate slightly from normality, which could require further analysis.

Heteroscedasticity Test: Stable variance across residuals.

RESET Test: Indicates possible model misspecification, suggesting the need for additional predictors or transformations.

Model Fit

Bias Correction Codes

```
//Code for Bias Correction
    #include <oxstd.h>
    main()
        //Insert coefficient estimates here:
        decl beta = <-0.00883239; 0.0117778; -0.112383; 0.0109626; -0.00956261>;
        //Insert estimated t-statistics here:
        decl t = <-3.45; 4.53; -3.87; 3.75; -3.65>;
        decl M = rows(beta);
        decl k, c_alpha, beta_1step = zeros(M,1), beta_2step = zeros(M,1);
        //Choose significance level and sample size
        decl p_a = 0.001;
        decl T = 207;
        c_alpha = quant(1-(p_a/2), T);
19
        for (k = 0; k < M; ++k)
20
21
                          decl db = beta[k][];
22
23
                          decl dt = t[k][];
                          decl dr = (densn(c_alpha-dt)-densn(-c_alpha-dt)) / (1-probn(c_alpha-dt)+probn(-c_alpha-dt));
                          decl dtbar = dt - dr;
                          decl drbar = (densn(c_alpha-dtbar)-densn(-c_alpha-dtbar)) / (1-probn(c_alpha-dtbar)+probn(-c_alpha-dtbar));
                         beta_1step[k][] = fabs(dt).> c_alpha .? db .* (1 - (dr ./ dt)) .: 0;
beta_2step[k][] = fabs(dt).> c_alpha .? db .* (1 - (drbar ./ dt)) .: 0;
        println("Uncorrected Coefficients, 1-step corrected coefficients and 2-step corrected coefficients",
31
        beta~beta_1step~beta_2step);
32
33
34
```

```
//Code for Bias Correction
    #include <oxstd.h>
    main()
        //Insert coefficient estimates here:
        decl beta = <0.275178; 0.234814; 0.000408770; 0.314763>;
        //Insert estimated t-statistics here:
        decl t = <4.77; 4.39; 5.42; 7.04>;
11
        decl M = rows(beta);
12
        decl k, c_alpha, beta_1step = zeros(M,1), beta_2step = zeros(M,1);
        //Choose significance level and sample size
        decl p_a = 0.01;
        decl T = 207;
17
        c_alpha = quant(1-(p_a/2), T);
        for (k = 0; k < M; ++k)
22
                        decl db = beta[k][];
                        decl dt = t[k][];
23
                        decl dr = (densn(c alpha-dt)-densn(-c alpha-dt)) / (1-probn(c alpha-dt)+probn(-c alpha-dt));
25
                        decl dtbar = dt - dr;
26
                        decl drbar = (densn(c_alpha-dtbar)-densn(-c_alpha-dtbar)) / (1-probn(c_alpha-dtbar)+probn(-c_alpha-dtbar));
27
                        beta_1step[k][] = fabs(dt).> c_alpha .? db .* (1 - (dr ./ dt)) .: 0;
28
                       beta_2step[k][] = fabs(dt).> c_alpha .? db .* (1 - (drbar ./ dt)) .: 0;
29
30
        println("Uncorrected Coefficients, 1-step corrected coefficients and 2-step corrected coefficients",
31
        beta~beta 1step~beta 2step);
32
33 }
34
```

Bias Correction- Results

Bias Correction-Interpretation

1-step Corrected Coefficients:

The first iteration of bias correction, making a preliminary adjustment to reduce systematic bias.

2-step Corrected Coefficients:

A refined estimate after the second correction step, further minimizing bias.

For DLDHLCRG3Q086SBEA_1:

The uncorrected coefficient was 0.28, which reduced slightly to 0.27 after 2-step correction.

For SI#1981-01-01:

The uncorrected coefficient was 0.012, which dropped slightly to 0.011 after correction.

Generally, the changes in coefficients are small, suggesting that our OLS estimates were relatively robust, with minimal bias.

Non-linear Autometrics with IIS and SIS

Index Test for Non-Linearity

```
Index test coefficients in auxiliary regression (regressors concentrated out):
              Coefficient Std.Error
                                        t-value
Z0^2
               7.0867e-05 7.243e-05
                                        0.9785
Z1^2
              -0.00010013 0.0001078
                                       -0.9289
Z2^2
                0.0001107 0.0001213
                                         0.9126
Z3^2
               8.6624e-05
                          0.0001044
                                         0.8298
X0* | Z0 |
                   0.2432
                             0.1477
                                          1.647
X1* | Z1 |
                 -0.25547
                             0.09997
                                         -2.556
X2* | Z2 |
               0.00044182 0.0006699
                                         0.6595
X3* Z3
                                         0.9822
                  0.11693
                               0.119
X0*Z0^2
                -0.052275
                             0.04135
                                         -1.264
X1*Z1^2
                 0.034472
                             0.03848
                                         0.896
X2*Z2^2
              -0.00018766 0.0003172
                                        -0.5917
X3*Z3^2
                0.0015138
                              0.0429
                                        0.03528
RSS = 0.00107712 sigma = 5.69905e-06
```

Testing for non-linearity using the new Index test based on pre-whitened and then orthogonalized regressors:

Chi^2(12) = 29.656 [0.0031]** and F-form F(12,189) = 2.5900 [0.0033]**

Inclusion of Non-Linear Variables-Results

■EQ(16) Modelling DLDHLCRG3Q086SBEA by OLS

The dataset is: C:\Users\drvis\OneDrive - Babson College\Documents\ECN7510\Project Data\DATASET.xlsx The estimation sample is: 1971-10-01 - 2024-01-01

	Coeffi	cient	Std.Error	t-value	t-prob	Part.R^2
DLDHLCRG3Q086SBEA	6SBEA_1 0.199		0.05392	3.70	0.0003	0.0652
DLDHLCRG3Q086SBEA_1 0.19 DLDHLCRG3Q086SBEA_2 0.29 DLCPIMEDSL 0.30 CUBFEDFUNDS 2.74497 SQDLA229RX0 0.61 II#1975-10-01 0.0087		30095	0.05152	4.47	0.0000	0.0924
DLCPIMEDSL	0.3	805737	0.03655	8.37	0.0000	0.2631
CUBFEDFUNDS	2.7449	2.74497e-06		3.30	0.0011	0.0527
SQDLA229RX0	0.6	0.613229		4.37	0.0000	0.0888
II#1975-10-01	0.008	0.00872871		3.78	0.0002	0.0681
II#1978-10-01	0.005	0.00598451		2.61	0.0097	0.0336
II#1979-04-01	-0.006	-0.00689648		-3.01	0.0030	0.0441
II#1981-04-01	-0.01	-0.0140060		-5.21	0.0000	0.1216
II#1982-04-01	-0.01	-0.0108763		-4.61	0.0000	0.0977
SI#1973-10-01	-0.004	126790	0.001435	-2.97	0.0033	0.0432
SI#1974-10-01	0.004	0.00402289		3.35	0.0010	0.0540
SI#1995-01-01	0.002	0.00223105		3.73	0.0003	0.0661
SI#1995-01-01 FEDFUNDS	0.0003	806625	8.139e-05	3.77	0.0002	0.0675
sigma	0.00226052	RSS		0.001001	55110	
R^2	0.930309	log-	-likelihood	988.621		
no. of observations 210		no.	of paramete	ers	14	
mean(Y)	0.0118042	2 se(\	r)	0.008	13579	
AR 1-2 test:	F(2,194) =	0.43	3322 [0.6490)]		
ARCH 1-1 test:						
Normality test:	Chi^2(2) =	5.6	0469 [0.0802	1]		
Hetero test:						
RESET23 test:						

Index Test after inclusion of Non-linear terms

```
Index test coefficients in auxiliary regression (regressors concentrated out):
              Coefficient Std.Error
                                       t-value
Z0^2
                                         1.853
               0.00014389
                          7.763e-05
Z1^2
                                        -0.1893
              -2.5799e-05
                          0.0001363
Z2^2
                                         -1.839
                          0.0001134
              -0.00020857
Z3^2
               0.00012862 0.0001088
                                        1.183
Z4^2
               7.0615e-05 0.0001184
                                        0.5966
Z5^2
               0.00023368 0.0001908
                                         1.225
X0* | Z0 |
                 0.078398
                             0.1598
                                        0.4907
X1* Z1
                             0.1065
                                       -0.4538
                -0.048329
                            0.09246
                                        1.462
X2* Z2
                  0.13522
X3* Z3
               1.4024e-05 9.368e-06
                                        1.497
                                         -0.527
X4* Z4
                 -0.86847
                               1.648
                                        -0.3034
X5* Z5
              -0.00024838 0.0008186
X0*Z0^2
                -0.041022
                             0.0403
                                         -1.018
X1*Z1^2
               -0.0014876
                          0.04203
                                       -0.03539
X2*Z2^2
                            0.03353
                -0.058015
                                         -1.73
X3*Z3^2
              -6.9468e-06
                          4.41e-06
                                        -1.575
X4*Z4^2
                                      -0.08446
                -0.087473
                               1.036
X5*Z5^2
               0.00017051 0.0002155
                                         0.7912
RSS = 0.000894876 sigma = 5.02739e-06
```

Testing for non-linearity using the new Index test based on pre-whitened and then orthogonalized regressors:

Chi^2(18) = 22.355 [0.2166] and F-form F(18,178) = 1.1782 [0.2835]

Non-Linear Plot: Fed Rates

Markov-switching estimates

2 Regime Markov Switching estimates

```
■Switching( 4) Modelling DLDHLCRG3Q086SBEA by MS(2)
               The dataset is: C:\Users\drvis\OneDrive - Babson College\Documents\ECN7510\Project Data\DATASET.xlsx
               The estimation sample is: 1971-04-01 - 2024-01-01
                        Coefficient
                                       Std.Error t-value t-prob
 Constant(0)
                         -0.00355007
                                        0.007175
                                                   -0.495
                                                            0.621
 Constant(1)
                        -0.000280650
                                        0.008482 -0.0331
                                                            0.974
 DLGDP(0)
                          0.0384224
                                         0.03394
                                                            0.259
                                                     1.13
 DLGDP(1)
                        -9.69175e-05
                                         0.06114 -0.00159
                                                            0.999
 FEDFUNDS(0)
                        0.000676891
                                       0.0004484
                                                            0.133
                                                     1.51
 FEDFUNDS(1)
                        0.000647509
                                       0.0002465
                                                     2.63
                                                            0.009
 DLA229RX0(0)
                         -0.0373289
                                         0.02988
                                                    -1.25
                                                            0.213
 DLA229RX0(1)
                          0.0210617
                                         0.05588
                                                    0.377
                                                            0.707
                           0.565090
 DLCPIMEDSL(0)
                                         0.07611
                                                     7.42
                                                            0.000
 DLCPIMEDSL(1)
                           0.195478
                                         0.07169
                                                     2.73
                                                            0.007
 DLY694RC1Q027SBEA(0)
                         -0.00155964
                                         0.04507
                                                  -0.0346
                                                            0.972
 DLY694RC1Q027SBEA(1)
                         0.00673713
                                          0.1729
                                                   0.0390
                                                            0.969
 UNRATE(0)
                        0.000766014
                                        0.001003
                                                    0.763
                                                            0.446
                                       0.0006382
                                                    0.472
                                                            0.637
 UNRATE(1)
                        0.000301509
 CPALTT01USM657N(0)
                         0.00209207
                                        0.004947
                                                    0.423
                                                            0.673
 CPALTT01USM657N(1)
                         0.00123535
                                        0.002665
                                                    0.464
                                                            0.643
 EPIDEMIC(0)
                         -0.00281360
                                        0.002430
                                                    -1.16
                                                            0.248
                         0.00234219
 EPIDEMIC(1)
                                       0.0009818
                                                     2.39
                                                            0.018
                 Coefficient
                               Std. Error
                  0.00242964
 sigma
                               0.0002657
 p {0 | 0}
                    0.963096
                                 0.04273
 p {1|1}
                    0.980143
                                  0.04537
 log-likelihood
                    950.392855
 no. of observations
                            212
                                no. of parameters
                    -8.76785713 SC
 AIC
                                                   -8.43536509
 mean(DLDHLCRG3Q086SBEA)
                            0.0118059 se(DLDHLCRG3Q086SBEA)
                                                                 0.0080973
 Linearity LR-test Chi^2(11) = 52.984 [0.0000]** approximate upperbound: [0.0000]**
 Transition probabilities p {i|j} = P(Regime i at t+1 | Regime j at t)
                 Regime 0,t
                              Regime 1,t
 Regime 0,t+1
                    0.96310
                                 0.019857
                                 0.98014
 Regime 1,t+1
                   0.036904
```

2 Regime Markov Switching estimates: Plot

Markov Switching Estimates: Interpretation

Key variable effects:

+ FEDFUNDS (Federal Funds Rate):

- + Significant in Regime1 (p=0.009), indicating monetary policy influences health consumption during periods of economic stress or volatility.
- + Insignificant in Regime 0.

+ **DLCPIMEDSL** (Medical CPI):

- + Strongly significant in both regimes, showing that healthcare price inflation is a dominant driver of changes in health expenditures regardless of the regime.
- + However, the effect is more pronounced in Regime 0 (β =0.565) compared to Regime 1 (β =0.195).

+ EPIDEMIC (Epidemic Indicator):

- + Significant only in Regime 1Regime (p=0.018), reflecting its heightened impact during crisis-like periods.
- + Other variables (e.g., GDP growth, unemployment rate) do not show significant effects in either regime, suggesting limited influence on short-term changes in health expenditures in this model.

Markov Switching Estimates: Interpretation

Model Fit and Diagnostics

- + **Log-Likelihood**: The high value of 950.39 indicates a good fit.
- + **AIC/SC Criteria**: These values confirm model parsimony and fit relative to other potential models.
- + **Linearity Test (Chi-Square):** p<0.0001 strongly rejects the null hypothesis of linearity, validating the use of a non-linear Markov-Switching framework.

Interpretation

- + The results suggest distinct dynamics in healthcare spending under different economic conditions. Healthcare inflation (Medical CPI) is consistently important but has a dampened effect during periods of economic stress.
- + Monetary policy (FEDFUNDS) and crisis-specific factors (EPIDEMIC) become more influential in Regime 1, underscoring their role in driving healthcare expenditures during volatile periods.

Future Implications

- + **Policy Implications:** Highlight the sensitivity of healthcare spending to monetary policy and healthcare inflation in your report, especially under stressed economic conditions.
- + **Forecasting:** Use the regime probabilities and distinct coefficients for scenario-based forecasting of healthcare spending.
- + **Economic Insight:** Investigate potential causes of regime shifts, such as structural economic changes or major policy interventions.
- + This model provides a robust framework for capturing non-linear dynamics and regime-specific behaviors in healthcare spending.

