

Please type	a nirre	eian (+)	incida t	tie hov	\rightarrow	
· .casc type	u pius	, aign (+)	HISIUC I	IIS DUX	-	17

Please type a plus sign (+) inside this box

Approved for use through 09/30/2000. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

a valid OMB control number.

UTILITY PATENT APPLICATION

EPI-067191 Attorney Docket No. First Inventor or Application Identifier Jonathan W. Nyce LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE... TRANSMITTAL

(Only for new nonprovisional app loations under 37 C.F.R. § 1.53(b))

Express Mail Label No. EJ 664079305 US

	APPLICATION ELEMENTS hapter 600 concerning utility patent application contents.	Assistant Commissioner for Patents ADDRESS TO: Box Patent Application Washington, DC, 20231
1. V (S	Fee Transmittal Form (e.g., PTO/SB/17) Submit an original and a duplicate for fee processing)	5. Microfiche Computer Program (Appendix)
2. 🗸 S _I	pecification [Total Pages]	Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
	preferred arrangement set forth below) Descriptive title o the Invention	a. Computer Readable Copy
- (Cross Reference: to Related Applications	b. Paper Copy (identical to computer copy)
1	Statement Regarding Fed sponsored R & D	
_	Reference to Microfiche Appendix Background of the Invention	c. Statement verifying identity of above copies
	-	ACCOMPANYING APPLICATION PARTS
	Brief Summary of the Invention Brief Description of the Drawings (<i>if filed)</i>	7. Assignment Papers (cover sheet & document(s))
	Detailed Description	37 C.F.R.§3.73(b) Statement Power of
- (Claim(s)	(when there is an assignee) Attorney (2) 9. English Translation Document (if anning the)
	Abstract of the Disclosure	Information Displacture
3 Dr	rawing(s) (35 U.S.C. 113) [Total Sheets]	10. Statement (IDS)/PTO-1449 Copies of IDS Citations
4. Oath or l	Declaration [Total Pages]	11. Preliminary Amendment
a.	Newly executed (original or copy)	12. Return Receipt Postcard (MPEP 503) (Should be specifically itemized)
b.	Copy from a prior application (37 C.F.R. § 1.63((for continua ion/divisional with Box 16 completed)	d)) * Cmoll Ensite
_	j. DEI ETION OF INVENTOR(S)	13. Statement(s) Statement filed in prior application (PTO/SB/09-12) Status still proper and desired
	Signed statement attached deleting	Certified Copy of Priority Document(s)
	inveritor(s) named in the prior application see (17 C.F.R. §§ 1.63(d)(2) and 1.33(b).	(if foreign priority is claimed)
* NOTE FOR	ITEMS 1 & 13: IN ORDER TO BE ENTITY FO TO PAY SMALL ENTITY	Toller.
IF ONE FILE	ALL ENTITY STATEMI: "NT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT D IN A PRIOR APPLIC ATION IS RELIED UPON (37 C.F.R. § 1.28).	
16. If a CO	NTINUING APPI.ICATION, check appropriate box, and s	upply the requisite information below and in a preliminary amendment.
	ontinuation Divisional Continuation-in-part (C	P) of prior application No: 60,127958
For CONTINU	plication information: Examiner	Group / Art Unit: If the prior application, from which an oath or declaration is supplied
under box 40	i, is considered a part of the disclosure of the accompanyl	a gentination or divisional application and is hereby incorporated by as been inadvertently omitted from the submitted application parts.
	17. CORRESPONDE	
		NOL ADDITION
☐ Custom	ner Number or Bar Code Label (Insert Customer No. or Atta	or
Name	Viviana Amzel, Ph.D.	
Ivame	ARTER & HADDEN, LLP	
Address	725 South Figueroa Street	
7100,000	Suite No. 3400	
City	Los Angeles, State	CA <i>Zip Code</i> 90017
Country	USA Telephone	(213) 430-3520 Fax (213) 617-9255
Name (F	Print/Type) Viviana Amzel, Ph.D.	Registration No. (Attorney/Agent) 30,930
Signature	· Man Musel	Date APRIL 4, 2000
n 1 11 01		

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the in comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent a nd Trademark Office, Washington, DC 20231. DO NOT S END FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

73999\01905

04-06-00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

SEQ, BOX

In re Application of:

: Appl. Ref.:

EPI-067191

Nyce et al

: Atty Ref.:

73999/01905

Appl. No:

not yet assigned

: Priority:

US 60/127,958

Filing Date:

For:

herewith

Herewitt

LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS,

KIT & METHOD FOR TREATMENT OF AIRWAY DISORDERS

ASSOCIATED WITH BRONCHOCONTRICTION, LUNCH

INFLAMMATION, ALLERGY(IES) & SURFACTANT DEPLETION

COVER LETTER

Box: New Application

Assistant Commissioner of Patents & Trademarks Washington, DC 20231

Sir\Madam:

Enclosed for filing are the following:

- 1. Utility Patent Application Transmittal Form
- 2. Fee Transmittal Form
- 3. Assignments (2) and Recordation form and \$40.00
- 4. U.S. Non-Provisional Paten Application
- 5. Sequence Listing, Declaration and diskette
- 6. IDS & 1449-PTO Form Listing References
- 7. Declarations (2)
- 8. Small Entity Status form
- 9. Postcard

Respectfully submitted. ARTER & HADDEN

Viviana Amzel, Ph. D.

Attorney for Applicant

Citicorp Building 725 South Figueroa St. #3400 213-430-3520 Ph. 213-617-9255 Fax

I hereby certify that this paper or fee is being deposited with the United States Postal Service via Express Mail service in an Express Mail Package under label No. EJ664079305US under 37 CFR 1.8 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington D C 20231, prApril 4, 2000, by Jenny R. Wilson

			-	•	LAIMING SMALL ENTIT PROFIT ORGANIZATION	- 1	Docket No. P66 42161
Т		al No. Assigned		ng Date erewith	Patent No.		Issue Date
Applica Patente		Jonathan W. Nyce	e and V/. Jar	nes Metzger			
Inventi	on:						
			_	-	Kit & Method for Treatment of A llergy(ies) & Surfactant Depletio	•	isorders
I herel	y de	clare that I am an	officia emp	owered to act on	behalf of the nonprofit organizat	tion iden	tified below:
		ORGANIZATION:		Carolina Universit	<u>y</u>		
	ESS	OF ORGANIZATI		pilman Building wille, North Carol	in 27050		
STATE OF THE PARTY			Green	iville, North Carol	III2 2/050		
In September 11 September 12 Se		ONPROFIT ORG					
111	_						
	_	•		of Higher Educati			
	X	Tax Exempt und	der Internal I	Revenue Service	Code (26 U.S.C. 501(a) and 50	1(c)(3))	
		Nonprofit Scient Name of Sta		ational under Stat	ute of State of The United State Citation of Statute:	s of Am	erica
pe pe		<u> </u>		pt under Internal he United States	Revenue Service Code (26 U.S of America	.C. 501(a) and
Tegletige GREENING 1 2 1 2 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4			ocated in Th	Scientific or Educ e United States o	ational under Statute of State of f America Citation of Statute:	f The Un	ited States of
37 C.F	F.R. 1	clare that the abo	ove-identifie		ization qualifies as a nonprofit ne United States Patent and Tra		
		the specification	to be filed I	nerewith.			
	×	the application i	dentified abo	ove.			
		the patent identi	fied at ove.				
with re	egard	to the above ider	itified i₁vent	ion.	een conveyed to and remain wi		
organi perso	ization n, oth rn wh	n having rights to er than the inver iich would not qu	the inventintor, who co	on is listed on th ould not qualify a	e next page and no rights to the sean independent inventor und cern under 37 CFR 1.9(d) or a	ne inven er 37 C	tion are held by any FR 1.9(c) or by any

Each person, concern or organization to which I have assigned, granted, conveyed, or licensed or am under an obligation under contract or law to assign, grant, convey, or license any rights in the invention is listed below:							
obligation and		J. 1211 10 45	, o.g. 1, g. a. 1., oo 1	· · · · · · · · · · · · · · · · · · ·		£	
			r organization ex			\$	
☐ each	such perso	n, concern	or organization	is listed below.			
FULL NAME					<u></u>		
ADDRESS				00		Name of Caracian	
CIUI MANE	U	Individual	u	Small Business Concern		Nonprofit Organization	
FULL NAME .							
ADDITEOU .		Individual		Small Business Concern		Nonprofit Organization	
FULL NAME							
ADDRESS							
Transfer		Individual		Small Business Concern		Nonprofit Organization	
FULL NAME							
ADDRESS						<u> </u>	
100000 100000 1000000 1000000000000000		Individual		Small Business Concern		Nonprofit Organization	
Saharata ver	ified statem	nonte aro :	equired from es	ach named person, concerr	or organiza	tion having rights to the	
invention ave	rring to thei	r status as	small entities. (3	87 CFR 1.27)	_		
entitlement to	small ent	ity status į	prior to paying,	or patent, notification of any or at the time of paying, as a small entity is no longe	the earliest	of the issue fee or any	
information a willful false st Title 18 of the	nd belief ar tatements a United Sta	e believed and the likeates ates Code, a	to be true; and so made are po and that such wi	of my own knowledge are the further that these statement unishable by fine or imprisor tillful false statements may jet in verified statement is direct	s were made nment, or bot opardize the	with the knowledge that h, under Section 1001 of	
NAME OF PER	RSON SIGN	IING:	Richard R. Ea	kin			
TITLE IN ORG	ANIZATION	1:	Chancellor				
ADDRESS OF	PERSON S	SIGNING:	East Carolina	University			
			103 Spilman B	Building			
			Greenville, No	orth Carolina 27858			
SIGNATURE:	Lin	and X	Eafer-	DATE	: <u>4/21</u>	199	
				·		ĺ	

10

20

25

30

35

40

45

LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS, KIT & METHOD FOR TREATMENT OF AIRWAY DISORDERS ASSOCIATED WITH BRONCHOCONSTRICTION, LUNG INFLAMMATION, **ALLERGY(IES) & SURFACTANT DEPLETION**

BACKGROUND OF THE INVENTION

Field of the Invention

This patent relates to a composition comprising oligonucleotides (oligos) that are anti-sense to adenosine receptors, and contain low amounts of or no adenosine (A). These agents are suitable for the treatment, among others, of pulmonary diseases associated with inflammation, impaired airways, including lung disease and diseases whose secondary effects afflict the lungs of a subject. Examples of these diseases are allergies, asthma, impeded respiration, allergic rhynitis, pain, cystic fibrosis, and cancers such as leukemias, e.g. colon cancer, and the like. The present agent may be administered prophylactically or therapeutically in conjunction with other therapies, or may be utilized as a substitute for therapies that have significant, negative side effects.

15 Background of the invention

Respiratory ailments, associated with a variety of diseases and conditions, are extremely common in the general population, and more so in certain ethnic groups, such as African Americans. In some cases they are accompanied by inflammation, which aggravates the condition of the lungs. Asthma, for example, is one of the most common diseases in industrialized countries. In the United States it accounts for about 1% of all health care costs. An alarming increase in both the prevalence and mortality of asthma over the past decade has been reported, and asthma is predicted to be the preeminent occupational lung disease in the next decade. While the increasing mortality of asthma in industrialized countries could be attributable to the depletion reliance upon beta agonists in the treatment of this disease, the underlying causes of asthma remain poorly understood.

Adenosine may constitute an important mediator in the lung for various diseases, including bronchial asthma. Its potential role was suggested by the finding that asthmatics respond favorably to aerosolized adenosine with marked bronchoconstriction whereas normal individuals do not. An asthmatic rabbit animal model, the dust mite allergic rabbit model for human asthma, responded in a similar fashion to aerosolized adenosine with marked bronchoconstriction whereas non-asthmatic rabbits showed no response. More recent work with this animal model suggested that adenosine-induced bronchoconstriction and bronchial hype responsiveness in asthma may be mediated primarily through the stimulation of adenosine receptors. Adenosine has also been shown to cause adverse effects, including death, when administered therapeutically for other diseases and conditions in subjects with previously undiagnosed hyper reactive airways.

A handful of medicaments have been available for the treatment of respiratory diseases and conditions, although in general they all have limitations. Theophylline, an important drug in the treatment of asthma, is a known adenosine receptor antagonist which was reported to eliminate adenosine-mediated bronchoconstriction in asthmatic rabbits. A selective adenosine A₁ receptor antagonist, 8-cyclopentyl-1, 3dipropylxanthine (CPCPX) was also reported to inhibit adenosine-mediated bronchoconstriction and bronchial hyperresponsiveness in allergic rabbits. The therapeutic and preventative applications of currently available adenosine A₁ receptor-specific antagonists are, nevertheless, limited by their toxicity. Theophylline, for example, has been widely used in the treatment of asthma, but is associated with frequent, significant toxicity resulting from its narrow therapeutic dose range. DPCPX is far too toxic to be useful clinically. The fact that, despite decades of extensive research, no specific adenosine receptor antagonist is available for clinical use attests to the general toxicity of these agents. Anti-sense oligonucleotides have received considerable theoretical consideration as potential useful pharmacological agents in human disease. Their practical application in actual models of human disease, however, has been somewhat elusive. Cne important impediment to their effective application has been a difficulty in finding

20

25

30

35

40

45

an appropriate route of administration to deliver them to their site of action. Many in vivo experiments were conducted by administering anti-sense oligonucleotides directly to specific regions of the brain. These applications, however, necessarily have limited clinical utility due to their invasive nature. Although antisense oligonucleoticles have received considerable theoretical consideration for their potential use as pharmacological agents in human disease, finding practical and effective applications for these agents in actual models of hur an disease, however, have been few and far between, particularly because they had to be administered in large doses. Another important consideration in the pharmacologic application of these molecules is their route of administration. Many in vivo applications have involved the direct administration of anti-sense oligonucleotides to limited regions of the brain. Such applications, however, have limited clinical utility due to their invasive nature. The systemic administration of anti-sense oligonucleotides as pharmacological agents has been found to have also significant problems, not the least of which being an inherent difficulty in targeting disease-involved tissues. That is, the necessary dilution of the anti-sense oligonucleotide in the circulatory system makes extremely difficult to attain a therapeutic dose at the target tissue by intravenous or oral administration. The bioavailability of orally administered anti-sense oligonucleotides is very low, of the order of less than about 5%. Anti-sense oligonucleotides have been used in therapy by many, including the present inventor, who in his previous work successfully treated various diseases and conditions by direct administration of these agents to the lung. In many instances, other workers have had to face the difficulties associated with the delivery of DNA molecules to a desired target. Thus, the route of administration may be of extreme importance for treating generalized diseases and conditions as well as those which are localized. In contrast, up to the present time, the delivery of anti-sense agents to the lung has been relatively undeveloped. As described by the present inventor in more detail below, the lung is an excellent target for the direct administration of anti-sense oligonucleotides

Clearly, there exist presently no effective therapies for treating these ailments, or at least no therapies which are effective and devoid of significant detrimental side effects. Accordingly, there is still a need for an agent for the treatment of adenosine mediated ailments afflicting the pulmonary and respiratory ailments affecting the lung airways, including respiratory problems, bronchoconstriction, inflammation, allergy(ies), depletion or hyposecretion of surfactant, etc., which is highly effective and sufficiently selective to avoid detrimental side effects produced by other therapies. In addition, there is a definite need for making available a delivery method that will require low amounts of therapeutic agents and will be effective for the rap d and targeted access of tissue genes of mRNAs and the reversal of untoward effects afflicting a subject.

and provides a non-invasive and a tissue-specific route.

SUMMARY OF THE INVENTION

The present invention generally relates to a pharmaceutical or veterinary composition, comprising an anti-sense oligonucleotide(s) (oligo(s)) which is (are) effective for alleviating bronchoconstriction and/or lung inflar mation, allergy(ies), and/or surfactant depletion and/or hyposecretion, when administered to a mammal, the oligo containing about 0 to about 15% adenosine (A) and being anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene encoding a target polypeptide associated with lung airway dysfunction or antisense to the polyreptide mRNA; combinations of the oligos; and mixtures of the oligos; and a pharmaceutically or veterinarily acceptable carrier or diluent. The targets are typically molecules associated with airway disease, cancer, etc., such as transcription factors, stimulating and activating peptide factors, cytokines, cytokine receptors, chemokines, chemokine receptors, adenosine receptors, bradykinin receptors, endogenously produced specific and non-specific enzymes, immunoglobulins and antibodies, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules, defensins, growth factors, vasoactive peptides and receptors, binding proteins, and malignancy associated proteins, among others. Examples are oligo(s) targeted to adenosine receptor(s) and it(they) are typically

20

25

30

35

40

45

present in the composition in an amount effective to reduce adenosine mediated effect(s), such as airway obstruction, inflammation, allergy(ies), and sufactant depletion, among others. The adenosine receptor is preferably selected from the group consisting of the adenosine A₁, A₂₆, and A₃ receptors, and in some instances even adenosine A_{2a} receptors. The oligo of the invention may be applied to the preparation of a medicament for (a) reducing adenosine-mediated bronchoconstriction, impeded respiration, inflammation, allergy(ies), depletion production of surfactant, and other detrimental pulmonary effects in a subject in need of treatment, and/or for (b) treating specific diseases and conditions such as asthma, cystic fibrosis, allergic rhynitis, COPD, etc. For the first time this invention provides the targeted administration of one or more oligonucleotides directly into the repiratory system. The oligos may be directed to any target and are intended for fast delivery through the mucosal tissue of the lungs for hybridization to a desired target polynucleotide, e. g. mRNA, to prevent gene transcription and translation, such that protein expression will be reduced, hampered, or completely stopped. Thus, this invention also provides a more general method for administering oligonucleotides that are anti-sense to targeted genes and mRNAs associated with any type of diseases, by lirect administration into the respiratory system, e. g. by inhalation, by introduction of a solution or aerosol into the respiratory airways, and/or directly into the lung.

The present oligos, moreover, are suitable for reducing effects mediated by a variety of target proteins and genes, for example adenosine-mediated effects, including pulmonary, respiratory, and other associated effects, e. g. bronchoconstriction, inflammation, immune mediated reactions, allergy(ies) and other airway problems, which may be caused by different conditions, including cancer. Examples of diseases and conditions, which may be treated preventatively, prophylactically and therapeutically with the agent of this invention, are pulmonary vasoconstriction, inflammation, allergies, asthma, impeded respiration, respiratory distress syndrome, pain, cystic fibrosis, allergic rhynitis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), bronchitis, and cancers such as leulemias, lymphomas, carcinomas, and the like, e.g. colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and prostate cancer. The present agents are also suitable for administration before, during and after other treatments, including radiation, chemotherapy, antibody therapy, phototherapy and cancer, and other types of surgery. The present agent is effectively administered prophylactically and therapeutically in conjunction with other therapies, or by itself for conditions without known therapies or as a substitute for therapies that have significant negative side effects. The oligo(s) may be administered by any means known to a subject, e. g. to the lungs of the subject, more generally through any and all systemic and topical routes. This oligonucleotide(s) (oligo(s)) employed are anti-sense to to a target DNA or RNA, e. g. an adenosine receptor DNA or RNA, and preferably consist essentially of up to about 15% adenosine (A), and more preferably contain no adenosine. The oligos are provided in the form of specific compositions and formulations, with a carrier or diluent, and optionally with other therapeutic agents and additives which are used for administration by specific routes, e.g. into the respiratory system, topically, transdermally, parenterally, by implantation, and the like. The oligo is also provided as a capsule or cartridge, and in the form of a kit. The oligos of the invention may be produced by selection of specific targeted segments of the gene or mRNA incoding the adenosine receptor as described below. In one preferred embodiment, the selection is made to obtain oligos that consisting essentially of less than about 15% adenosine (A). This may be done by selecting the target as done above, which includes genes, genomic flanking regions, RNAs and polypeptide associated with an ailment afflicting the lung airways, obtaining the sequence of a mRNA(s) correspording to the target gene(s) and/or their genomic flanking region(s) and/or the juxtamembrane regions thereof, and mRNA(s) encoding the target polypeptide(s), selecting at least one segment of the mRNA(s), and synthesizing one or more anti-sense oligonucleotide(s) to the selected mRNA segment(s), and substituting, if necessary, an alternative, e. g. a universal base(s) or other base(s) for one or more A to reduce the proportion of A present in the oligonucleotide to less than about 15%, and down to no adenosine. Similarly, alternative and/or universal bases may be substituted for adenosine, e. g. specific

15

20

25

30

35

40

adenosine A1, A2b and A3 receptor antagonists or A2a receptor agonists, theophilline, enprophylline, and many other adenosine receptor antagonists known in the art as well as agonists with significantly reduced agonist activity with respect to adenosine, e. g. less than 0.5%, less than 0.3%, and the like.

The invent on will now be described in general in conceptual and experimental terms, with reference to specific examples. Other objects, advantages and features of the present invention will become apparent to those skilled in the art from the description that follows.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

This invention arose from a desire by the inventor to improve on prior art treatments for pulmonary and othe diseases, which technology is generally frought with detrimental side effects and by the need of administering high doses of therapeutical agents. The present invention arises from the inventor's own discovery that adenosine receptor targeted anti-sense oligonucleotides (oligos) may be utilized therapeutically in the treatment of diseases or conditions which impair respiration, cause inflammation and/or allergy(ies), constrict bronchial tissue, obstruct the lung airways, depletion surfactant secretion, or otherwise impede normal breathing. In general, many diseases and conditions are associated with or cause inflam nation, constrict bronchial tissue or the lung airways, depletion secretion of surfactant, augment allergy(ies), or otherwise impede normal breathing. This treatment is selective for specific targets associated with or mediating these symptoms, and the agents are administered in up to 1000-fold lower doses than those seen in the art. The inventor, in addition, wanted to provide a treatment which would improve the outcome and life style of patients undergoing other procedures or being administered other therapies, including antibody therapy, chemotherapy, radiation, phototherapy, and surgery e.g. cancer surgery, and that could be effectively administered preventatively, prophylactically or therapeutically. He reasoned that he could further improve on this discovery by selecting oligos of reduced adenosine content, or reducing the ade iosine content of otherwise targeted anti-sense oligos corresponding to endogenous polynucleotide sequences. The present invention is premised on the discovery by the inventor that oligonucleotides are metabolized in vivo to their mononucleotides. Adenosine (A)-containing oligonucleotides break down and release adenosine which, in turn, activates adenosine receptors, thereby causing bronchoconstriction, inflammation, surfactant depletion, allergy(ies), and the like. He, thus, conceived of employing low adenosine-free adenosine oligos to avoid these side effects upon their administration. He succeeded in this endeavor and is providing in this patent novel and improved compositions, formulations and methods which afford greatly improved results when compared with previously known treatments for preventing and alleviating bronchoconstriction, allergy(ies), inflammation, breathing difficulties, surfactant depletion and blockage of airways, as well as for other conditions which affect the lung directly or indirectly. In different embodiments, one or more nucleic acids of the invention may be formulated alone, and/or with one or more surfactant components and/or with a carrier, and/or with other therapeutic agents and/or formulation agents known in the art. The compositions of this invention, thus, may be incorporated into a variety of formulations for systemic and topical administration. Moreover, the inventor also provides a broad method for delivery of anti-sense oligonucleotides (ol gos) through the respiratory system, as a fast means of starting treatment to address acute attacks of asthma and other diseases and conditions that have a rapid onset. In addition, the present agents have long ha flives and may be administered at very low doses. This makes them ideal for once a In the past, anti-sense oligonucleotides received considerable theoretical week type therapies. consideration as being potentially useful as pharmacologic agents for the treatment of human disease. Wagner, R., Nature 372: 333-335 (1994). However, it has been difficult to actually apply these molecules to alleviating and curing human diseases. One important consideration in the pharmacologic application of these molecules has been the failure of various routes of administration to deliver the compounds to its target while avoiding invading the circulation and, therefore, other untargeted tissues which, thus, produces a plethora of side effects. Most in vivo experiments utilizing anti-sense oligonucleotides involved a direct application of the ol go to limited regions of the brain. See, Wahlestedt, C., Trends in Pharmacol. Sci. 15: 42-46 (1994); Lai, .. et al., Neuroreport 5: 1049-1052 (1994); Standifer, K., et al., Neuron 12: 805-810

20

25

30

40

45

(1994); Akabayashi, A., et al., Brain Res. 21: 55-61 (1994). Others applied them into the spinal fluid. See, e.g. Tseng, L., et al., European J. Pharmacol. 258: R1-3 (1994); Raffa, R., et al., European J. Pharmacol. 258: R5-7 (1994); Gillardon, F., et al., European J. Neurosci. 6: 880-884 (1994). Such applications, clearly, have no practical clinical utility due to their invasive nature. Thus, the systemic administration of anti-sense oligonucleotides poses significant problems with respect to their pharmacologic application, not the least of which is the difficulty in selectively targeting disease-involved tissues. The systemic administration of anti-sense oligonucleotides also poses significant problems with respect to their pharmacologic application, not the least of which is the difficulty in selectively targeting disease-involved tissues.

The respira ory system, and in particular the lung, as the ultimate port of entry into the organism, however, is an excellent route of administration for anti-sense oligonucleotides. This is so not only for the treatment of lung disease, but also when utilizing the lung as a means for delivery, particularly because of its non-invasive and tissue-specific nature. Thus, local delivery of antisense oligonucleotides directly to the target tissue enables the therapeutic use of these compounds. Fomivirsen (ISIS 2302) is an example of a local drug delivery into the eye to treat cytomegalovirus (CMV) retinitis, for which a new drug application has been filed by ISIS. The administration of a drug through the lung offers the further advantage that inhalation is non-invasive whereas direct injection in to the vitreous of the eye is invasive. The composition and formulations of this invention are highly efficacious for preventing and treating diseases and conditions associated with bronchoconstriction, difficult breathing, impeded and obstructed lung airways, allergy(ies), inflammation and surfactant depletion, among others. Examples of diseases and conditions which are suitably treated by the present method are diseases and conditions, including Acute Respiratory Distress Syndrome (ARDS), asthma, adenosine administration e.g. in the treatment of SupraVentricular Tachycardia (SVT) and other arrhythmias, and in stress tests to hyper-sensitized individuals, ischemia, renal damage or failure induced by certain drugs, infantile respiratory distress syndrome, pain, cystic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), lung transplantation rejection, pulmonary infections, and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and prostate cancer. The invention will be described with respect to the adenosine receptors as targets, but is similarly applicable to any other target with respect to the pulmonary administration of anti-sense oligos. The examples provided below show a complete inhibition of such adenosine receptor associated symptoms in a rabbit model for human bronchoconstriction, allergy(ies) and inflammation as well as the elimination of the ability of the adenosine receptor agonist par excellence, adenosine, to cause bronchoconstriction in hyper-responsive monkeys, which are animal models for human hyper-responsiveness to adenosine receptor agonists. The pharmaceutical composition and formulations of the invention, therefore, are suitable for preventing and alleviating the symptoms associated with stimulation of adenosine receptors, such as the adenosine A_1 receptors. The compositions and formulations of this invention, thus, are also suitable for preven the untoward side effects of adenosine-mediated hyperresponsiveness in certain individuals, which are generally seen in diseases affecting respiratory activity.

The method of the present invention may be used to treat airway diseases and conditions in a subject of any kind and for any reason, with the intention that the adenosine content of anti-sense compounds be minimized, reduced or eliminated so as to prevent its liberation upon anti-sense degradation. Examples of diseases and conditions, which may be treated preventatively, prophylactically and therapeutically with the compositions and formulations of this invention, are pulmonary vasoconstriction, inflammation, allergies, asthma, allergic rhynitis, impeded respiration, Acute Respiratory Distress Syndrome (ARDS), renal damage and failure associated with ischemia as well as the administration of certain drugs, side effects associated with adenosine administration e.g. in SupraVentricular Tachycardia (SVT) and in adenosine stress tests, infantile Respiratory Distress Syndrome (infantile RDS), ARDS, pain,

15

20

25

30

35

40

cystic fibrosis, pulrionary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), lung transplantation rjejection, pulmonary infections, and cancers such as leukemias, lymphor as, carcinomas, and the like, e.g. colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, metastatic cancer such as hepatic metastases, lung, breast and prostate metastases, among others. The present compositions and formulations are suitable for administration before, during and after other treatments, including radiation, chemotherapy, antibody therapy, phototherapy and cancer, and other types of surgery. The present compositions and formulations may also be administered effectively as a substitute for therapies that have significant negative side effects. The terms "anti-sense" oligonucleotides generally refers to small, synthetic oligonucleotides, resembling single-stranded DNA, which in this patent are applied to the inhibition of gene expression by inhibition of a targe messenger RNA (mRNA). See, Milligan, J. F. et al., J. Med. Chem. 36(14), 1923-1937 (1993), the relevant portion of which is hereby incorporated in its entirety by reference. For consistency=s sake, all RNAs and oligonucleotides are represented in this patent by a single strand in the 5' to 3' direction, when read from left to right, although their complementary sequence(s) is (are) also encompassed within the four corners of the invention. In addition, all nucleotide bases and amino acids are represented utilizing the recommendations of the IUPAC-IUB Biochemical Nomenclature Commission, or by the known 3-letter code (for amino acids). Nucleotide sequences are presented herein by single strand only, in the 5' to 3' direction, from left to right. In addition, nucleotide and amino acids are represented herein in the manne recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code, in accordance with 37 CFR ' 1.822 and established usage. See, e.g., PatentIn User Manual, 99-102 (Nov. 1990) (U.S. Patent and Trademark Office, Office of the Assistant Commissioner for Patents, Washington, D.C. 20231); U.S. Patent No. 4,871,670 to Hudson et al. at col. 3, lines 20-43. The present method utilizes anti-sense agents to inhibit or down-regulate gene expression of target genes, including those listed in Tables 1 and 2 below. This is generally attained by hybridization of the anti-sense oligonucleotides to coding (sense) sequences of a targeted messenger RNA (mRNA), as is known in the art. The exogenously administered agents of the invention decrease the levels of mRNA and protein encoded by the target gene and/or cause changes in the growth characteristics or shapes of the thus treated cells. See, M lligan et al. (1993); Helene, C. and Toulme, J. Biochim. Biophys. Acta 1049, 99-125 (1990); Cohen, J. S. D., Ed., Oligodeoxynucleotides as Anti-sense Inhibitors of Gene Expression; CRC Press: Boca Raton, FL (1987), the relevant portion of which is hereby incorporated in its entirety by reference. As used herein, "anti-sense oligonucleotide or asnti-sense oligo" is generally a short sequence of synthetic nucleotide that (1) hybridizes to any segment of a mRNA encoding a targeted protein under appropriate hybridization conditions, and which (2) upon hybridization causes a decrease in gene expression of the targeted protein. The terms "desAdenosine" (desA) and "des-thymidine" (desT) refer to oligonucleotides substantially lacking either adenosine (desA) or thymidine (desT). In some instances, the des A or des T sequences are naturally occurring, and in others they may result from substitution of an undesirable nucleotide (A) by another lacking its undesirable activity, such as acting as an agonist or having a triggering e fect at the adenosine A receptor(s). In the present context, the substitution is generally accomplished by substitution of A with a "universal or alternative base", presently known in the art or to be ascertained at a later time. As used herein, the terms "prevent", "preventing", "treat" or "treating" refer to a preventative, prophylactic, maintenance, or therapeutic treatment which decreases the likelihood that the subject administered such treatment will manifest symptoms associated with adenosine receptor stimulation. The term "down-regulate" refers to inducing a decrease in production, secretion or availability and, thus, a decrease in concentration, of intracellular target product, be it a receptor e. g. adenosine A₁, A_{2b}, A₃, bradykinin 2B, GATA-3, or other receptors, or an increase in concentration of the adenosine A_{2a} receptor. The present technology relies on the design of anti-sense oligos targeted to mRNAs associated with ailments involving lung airway pathology(ies), and on their modification to reduce the occurrence of undesirable side effects caused by their release of adenosine upon breakdown, while preserving their activity and efficacy for their intended purpose. In this manner, the inventor targets a specific gene to

15

20

25

30

40

45

design one or more anti-sense oligonucleotide(s) (oligos) that selectively bind(s) to the corresponding mRNA, and then reduces, if necessary, their content of adenosine via substitution with an alternative or a universal base, or an adenosine analog incapable of significantly, or having substantially reduced ability for, activating or antagonizing adenosine A_1 , A_{2b} or A_3 receptors or which may act as an agonist at the adenosine A_{2a} , receptor. Any number of adenosines present may be substituted by an alternative and/or universal base, such as heteroaromatic bases, which binds to a thymidine base but has less than about 0.3 of the adenosine base agonist or antagonist activity at the adenosine A_1 , A_{2a} , A_{2b} and A_3 receptors. Based on his prior experience in the field, the inventor reasoned that in addition to "downregulating" specific genes, he could increase the effect of the agent(s) administered by either selecting segments of RNA that are devoid, or have a low content, of thymidine (T) or, alternatively, substitute one or more adenosine(s) present in the designed oligonucleotide(s) with other nucleotide bases, so called universal bases, which bind to thymidine but lack the ability to activate adenosine receptors and otherwise exercise the constricting effect of adenosine in the lungs, etc. Given that adenosine (A) is a nucleotide base complementary to thymidine (T), when a T appears in the RNA, the anti-sense oligo will have an A at the same position.

In one aspect of this invention, the anti-sense oligonucleotide has a sequence which specifically binds to a portion or segment of a mRNA molecule which encodes a protein associated with impeded breathing, allergy(ies), lung inflammation, depletion of lung surfactant or lowering of lung surfactant, airway obstruction, bronchitis, and the like. One effect of this binding is to reduce or even prevent the translation of the co responding mRNA and, thereby, reduce the available amount of target protein in the subject=s lung. In one preferred embodiment of this invention, the phosphodiester residues of the antisense oligonucleotide are modified or substituted. Chemical analogs of oligonucleotides with modified or substituted phosphodiester residues, e.g., to the methylphosphonate, the phosphotriester, the phosphorothioate, the phosphorodithioate, or the phosphoramidate, α = methoxy ethyl and similar modifications, which increase the in vivo stability of the oligonucleotide are particularly preferred. The naturally occurring phosphodiester linkages of oligonucleotides are susceptible to some degree of degradation by cellular nucleases. Many of the residues proposed herein, on the contrary, are highly resistant to nuclease degradation. See, Milligan et al.; Cohen, J. S. D., supra. In another preferred embodiment of the invention, the oligonucleotides may be protected from degradation by adding a "3'-end cap" by which nuclease-resistant linkages are substituted for phosphodiester linkages at the 3' end of the oligonucleotide. See Tidd, D. M. and Warenius, H.M., Be. J. Cancer 60: 343-350 (1989); Shaw, J.P. et al., Nucleic Acids Res. 19: 747-750 (1991), the relevant section of which are incorporated in their entireties herein by reference. Phosphoramidates, phosphorothioates, and methylphosphonate linkages all function adequately in this manner for the purposes of this invention, as do α ' modifications, such as α ' methoxy ethyl, and the like. The more extensive the modification of the phosphodiester backbone the more stable the resulting agent, and in many instances the higher their RNA affinity and cellular permeation. See, Milligan, et al., supra. In addition, a plurality of substitutions to the carbohydrate ring are also known to improve stability of nucleic acids. Thus, the number of residues which may be modified or substituted will vary depending on the need, target, and route of administration, and may be from 1 to all the residues, to any number in between. Many different methods for replacing the entire phosphodiester backbone with novel linkages are known. See, Millikan et al, supra. Preferred backbone analogue residues include phosphoramidate, phosphorothioate, methylphosphonate, phosphorotriester, phosphotriester, thioformacetal, phosphorodithioate, phosphoramidate, formacetal, triformacetal, thioether, carbamate, boranophosphate, 3'-thioformacetal, 5'-thioether, carbonate, C₅-substituted nucleotides, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, 2'-O methyl, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI). methoxymethyl (MOM), and methoxyethyl(MOE), methyleneoxy(methylimino) (MOMI) residues, and combinations thereof. Phosphorothioate methylphosphonate- nodified oligonucleotides are particularly preferred due to their availability through automated oligonuc eotide synthesis. See, Millikan et al, supra. Where appropriate, the agent of this

15

20

25

30

35

invention may be administered in the form of their pharmaceutically acceptable salts, or as a mixture of the anti-sense oligonucle otide and its salt. In another embodiment of this invention, a mixture of different antisense oligonucleotides or their pharmaceutically acceptable salts is administered. A single agent of this invention has the capacity to attenuate the expression of a target mRNA and/or various agents to enhance or attenuate the activity of a pathway. By means of example, the present method may be practiced by identifying all possible deoxyribonucleotide segments which are low in thymidine (T) or deoxynucleotide segments low in a lenosine (A) of about 7 or more mononucleotides, preferably up to about 60 mononucleotides, more preferably about 10 to about 36 mononucleotides, and still more preferably about 12 to about 21 mononucleotides, in a target mRNA or a gene, respectively. This may be attained by searching for mono nucleotide segments within a target sequence which are low in, or lack thymidine (RNA), a nucleotide which is complementary to adenosine, or that are low in adenosine (gene), that are 7 or more nucleotides long. In most cases, this search typically results in about 10 to 30 such sequences, i.e. naturally lacking or having less than about 40% adenosine, anti-sense oligonucleotides of varying lengths for a typical target mRNA of average length, i.e., about 1800 nucleotides long. Those with high content of T or A, respectively, may be fixed by substitution of a universal base for one or more As. The agent(s) of this invention may be of any suitable length, including but not limited to, about 7 to about 60 nucleotides long, preferably about 12 to about 45, more preferably up to about 30 nucleotides long, and still more preferably up to about 21, although they may be of other lengths as well, depending on the particular target and the mode of delivery. The agent(s) of the invention may be directed to any and all segments of a target RNA. One preferred group of agent(s) includes those directed to an mRNA region containing a junction between an intron and an exon. Where the agent is directed to an intron/exon junction, it may either entirely overlie the junction or it may be sufficiently close to the junction to inhibit the splicing-out of the intervening exon during processing of precursor mRNA to mature mRNA, e.g. with the 3' or 5' terminus of the anti-sense oligonucleotide being positioned within about, for example, within about 2 to 10, preferably about 3 to 5, nucleo ide of the intron/exon junction. Also preferred are anti-sense oligonucleotides which overlap the initiation codon, and those near the 5' and 3' termini of the coding region. The flanking regions of the exons may also be targeted as well as the spliced segments in the precursor mRNAs. The mRNA sequences of the ade nosine receptors and of many other targets are derived from the DNA base sequence of the gene expressing either receptors, e. g. the adenosine receptors, the enzymes, factors, or other targets associated with airway disease. For example, the sequence of the genomic human A₁ adenosine receptor is known and is disclosed in U.S. Patent No. 5,320,963 to Stiles, G., et al. The A₃ adenosine receptor has been cloned, sequenced and expressed in rat (see, Zhou, F., et al., P.N.A.S. (USA) 89: 7432 (1992)) and human (see, Jacobson, M. A., et al., U.K. Patent Application No. 9304582.1 (1993)). The sequence of the adenosine A_{2b} receptor gene is also known. See, Salvatore, C. A., Luneau, C. J., Johnson, R. G. and Jacobson, M., Geno nics (1995), the relevant portion of which is hereby incorporated in its entirety by reference. The sequences of many of the remaining exemplary target genes are also known. See, GenBank, NIH. The sequences of those genes whose sequences are not yet available may be obtained by isolating the target segments applying technology known in the art. Once the sequence of the gene, its RNA and/or the protein are known, an anti-sense oligonucleotides may be produced according to this invention as described above to reduce the production of the targeted protein in accordance with standard techniques. The sequences for the adenosine A_{2a} bradykinin, and other genes as well as methods for preparation of oligonucleotides are also known as those of many other target genes and mRNAs for which this invention is suitable. Thus, anti-sense oligonucleotides that downregulate the production of target sequences associated with airway disease, including the adenosine A₁, A_{2a}, A_{2b}, A₃, bradykinin, GATA-3, COX-2, and many other receptors, may be produced in accordance with standard techniques. Examples of diseases and conditions which are suitably treated by the present method are diseases and conditions, including Acute Respiratory Distress Syndrome (ARDS), asthma, adenosine administration e.g. in the treatment of SupraVentricular Tachycardia (SVT) and other arrhythmias, and in stress tests to hyper-sensitized individuals, ischemia, renal damage or failure induced by certain drugs, infantile respiratory distress

20

25

45

syndrome, pain, cys ic fibrosis, pulmonary hypertension, pulmonary vasoconstriction, emphysema, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, and cancers such as leukemias, lymphomas, carcinomas, and the like, including colon cancer, breast cancer, lung cancer, pancreatic cancer, hepatocellular carcinoma, kidney cancer, melanoma, hepatic metastases, etc., as well as all types of cancers which may metastasize or have metastasized to the lung(s), including breast and prostate cancer.

The adenosine receptors discussed above are mere examples of the high power of the inventor=s technology. In fact, a large number of genes may be targeted in a similar manner by the present agent(s), to reduce or down-regulate protein expression. By means of example, if the target disease or condition is one associated with impeded or reduced breathing, bronchoconstriction, chronic bronchitis, pulmonary bronchoconstriction and/or hypertension, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, allergy, asthma, cystic fibrosis, respiratory distress syndrome, cancers, which either directly or by metastasis afflict the lung, the present method may be applied to a list of potential target mRNAs, which includes the targets listed in Table 1 and Table 2 below, among others. The anti-sense agent(s) of the invention have a low A content to prevent its liberation upon in vivo degradation of the agent(s). For example, if the system is the pulmonary or respiratory system, a large number of genes is involved in different functions, including those listed in Table 1 below.

Table 1: Pulmonary Disease or Condition Pulmonary and Inflammation Targets

	Nf6B Transcription Factor	Interleukin-8 Receptor (IL-8 R)
)	Interleukin-5 Receptor (IL-5R)	Interleukin-4 Receptor (IL-4R)
	Interleukin-3 Receptor (IL-3R)	Interleukin-1β (IL-1β)
	Interleukin-1β Receptor (IL-1βR)	Eotaxin
	Tryptase	Major Basic Protein
	β2-adrenergic Receptor Kinase	Endothelin Receptor A
	Endothelin Receptor B	Preproendothelin
	Bradykinin B2 Receptor (B2BR)	IgE (High Affinity Receptor)
	Interleukin-1 (IL-1)	Interleukin 1 Receptor (IL-1 R)
	Interleukin-9 (IL-9)	Interleukin-9 Receptor (IL-9 R)
	Interleukin-11 (IL-1)	Interleukin-11 Receptor (IL-11 R)
	T 1 11 1 3 TH. 1 O 1 1 O 1	

30 Inducible Nitric Oxide Synthase Cyclooxygenase (COX)

Intracellular Adhesic n Molecule 1 (ICAM-1) Vascular Cellular Adhesion Molecule

Substance P (VCAM)

Rantes Endothelial Leukocyte Adhesion Molecule Endothelin ETA Receptor

(ELAM-1)

Cyclooxygenase-2 (COX-2) GM-CSF, Endothelin-1 Monocyte Activating, Factor Neutrophil Chemotactic Factor

Neutrophil Elastase Defensin 1,2,3

Muscarinic Acetylcholine Receptors Platelet Activating Factor

Tumor Necrosis Factor α 5-lipoxygenase Phosphodiesterase IV Substance P Substance P Receptor Histamine Receptor

Chymase CCR-1 CC Chemokine Receptor

Interleukin-2 (IL-2) Interleukin-4 (IL-4) Interleukin-12 (IL-12) Interleukin-5 (IL-5) Interleukin-6 (IL-6) Interleukin-7 (IL-7)

Interleukin-8 (IL-8) Interleukin-12 Receptor (IL-12R)

Interleukin-7 Receptor (IL-7R) Interleukin-1 (IL-1) Interleukin-14 Receptor (IL-14R) Interleukin-14

CCR-2 CC Chemoki ne Receptor CCR-3 CC Chemokine Receptor CCR-4 CC Chemokine Receptor CCR-5 CC Chemokine Receptor Prostanoid Receptors GATA-3 Transcription Factor

Neutrophil Adherence Receptor MAP Kinase

Interleukin-15 (IL-15) Interleukin-15 Receptor (IL-15R)

Interleukin-11 (IL-11) Interleukin-11 Receptor (IL-11R)

NFAT Transcription Factors STAT 4 MCP-2 MIP-1α MCP-3 MCP-4

Cyclophillin (A, B, etc.) Phospholipase A2 Basic Fibroblast Growth Factor Metalloproteinase CSBP/p38 MAP Kinase Tryptase Receptor PDG2 Interleukin-3 (IL-3)

Interleukin-10 (IL-10) Cyclosporin A - Binding Protein

10 FK506-Binding Protein α4β1 Selectin Fibronectin <u>α4β7 Selectin</u>

Table 1: Pulmonary Disease or Condition Pulmonary and Inflammation Targets

cMad CAM-1 LFA-1 (CD11a/CD18) PECAM-1 LFA-1 Selectin C3bi PSGL-1 E-Selectin P-Selectin CD-34 L-Selectin

p150.95 Mac-1 (CD11b/CD18)

Fucosyl transferase VLA-4 20 STAT-1 STAT-2 CD-18/CD11a CD11b/CD18

ICAM2 and ICAM3 C5a

CCR3 (Eotaxin Receptor) CCR1, CCR2, CCR4, CCR5 LTB-4 AP-1 Transcription Factor

Protein kinase C Cysteinyl Leukotriene Receptor

Tachykinnen Receptors (tach R) I6B Kinase 1 & 2

Interleukin-2 Recept or (IL-2R) (e.g., Substance P, NK-1 & NK-3 Receptors)

STAT 6 c-mas

NF-Interleukin-6 (NF-IL-6) Interleukin-10 Receptor (IL-10R) 30 Interleukin-3 (IL-3) Interleukin-2 Receptor (IL-2R) Interleukin-13 (IL-13) Interleukin-12 Receptor (IL-12R) Interleukin-14 (IL-14) Interleukin-6 Receptor (IL-6R) Interleukin-16 (IL-16) Interleukin-13 Receptor (IL-13R) Medullasin Interleukin-16 Receptor (IL-16R)

Adenosine A_1 Receptor $(A_1 R)$ Tryptase-I

Adenosine A_{2b} Receptor $(A_{2b} R)$ Adenosine A₃ Receptor (A₃ R)

β Tryptase STAT-3

Adenosine A_{2a} Receptor (A_{2a} R) IgE Receptor β Subunit (IgE R β) Fc-epsilon receptor CD23 antigen IgE Receptor α Subunit (IgE R α)

IgE Receptor Fc Epsilon Receptor (IgERFc ξ R) Substance P Receptor

Histidine decarboxylase Tryptase-1

Prostaglandin D Syn:hase Eosinophil Cationic Protein Eosinophil Derived Neurotoxin Eosinophil Peroxidase

Endothelial Nitric Oxide Synthase Endothelial Monocyte Activating Factor

45 Neutrophil Oxidase Factor Cathepsin G

Macrophage Inflamr atory Protein-1-Interleukin-8 Receptor α Subunit (IL-8 Rα)

Alpha/Rantes Receptor Endothelin Receptor ET-B

These genes, and others, are involved in the normal functioning of respiration as well as in diseases associated vith respiratory pathologies, including cystic fibrosis, asthma, pulmonary hypertension and vasoconstriction, chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, chronic bronchitis, respiratory distress syndrome (ARDS), allergic rhinitis, lung cancer and lung metastatic cancers and other airway diseases, including those with inflammatory response.

Anti-sense oligos to the target receptors, e. g. the adenosine A₁, A_{2a}, A_{2b}, and A₃ receptors, CCR3 (chemokine receptors), bradykinin 2B, CAM (vascular cell adhesion molecule), and eosinophil receptors,

20

25

30

40

among others, have been shown to be effective in down-regulating the expression of their genes. Some of these act to alleviate the symptoms or reduce respiratory ailments and/or inflammation, for example, by "down regulation" of the adenosine A1, A2a, A2b, and/or A3 receptors and CCR3, bradykinin 2B, VCAM (vascular cell adhesion molecule) and eosinophil receptors. These agents may be utilized by the present method alone or in conjunction with anti-sense oligos targeted to other genes to validate pathway and/or networks in which they are involved. For better results, the oligos are preferably administered directly into the respiratory system, e.g., by inhalation or other means, of the experimental animal, so that they may reach the lungs without widespread systemic dissemination. This permits the use of low agent doses as compared with those administered systemically or by other generalized routes and, consequently, reduces the number and degree of undesirable side effects resulting from the agent=s widespread distribution in the body. The agent(s) of this invention has (have) been shown to reduce the amount of receptor protein expressed by the tissue. These agents, thus, rather than merely interacting with their targets, e.g. a receptor, lower the number of target proteins that other drugs may interact with. In this manner, the present agent(s) afford(s) extremely high efficacy with low toxicity. Anti-sense oligonucleotides to the A₁, A_{2b}, A₃, bradykinin B2, GATA-3, CAM (vascular cell adhesion molecule), eosinophil receptors, and COX-2 receptors, among others, have been shown to be effective in the down-regulation of the respective receptor proteins in the cell. One novel feature of this treatment, as compared to traditional treatments for adenosine-mediated bronchoconstriction, is that administration is direct to the lungs, or in situ to other tissues, organs or systems of the body. Additionally, a receptor protein itself is reduced in amount, rather than merely interacting with a drug, and toxicity is reduced. Other proteins that may be targeted with antisense agents for the treatment of lung conditions include, but are not limited to: CCR3 (chemokine) receptors, human A_2 , adenosine receptor, human A_{2b} adenosine receptor, human IgE receptor β , human Fcepsilon receptor CD23 antigen, human histidine decarboxylase, human beta tryptase, human tryptase-I, human prostaglandi 1 D synthase, human cyclooxigenase-2, human eosinophil cationic protein, human eosinophil derived neurotoxin, human eosinophil peroxidase, human intercellular adhesion molecule-1 (ICAM-1), human vascular cell adhesion molecule-1 (VCAM-1), human endothelial leukocyte adhesion molecule-1 (ELAM 1), human P selectin, human endothelial monocyte activating factor, human IL-3, human IL-4, humar IL-5, human IL-6, human IL-8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 1, human defensin 3, human macrophage inflammatory protein-1-alpha, human muscarinic acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor α, human leukotriene C4 synthase, human major basic protein, and human endothelin 1. Although not intended to be exclusive, a more extensive list of genes is provided below. Some of these act to alleviate the symptoms or reduce respiratory ailments and/or inflammation, for example, by "down regulation" of the adenosine A₁, A_{2a}, A_{2b}, and/or A₃ receptors and CCR3, bradykinin 2B, VCAM (vascular cell adhesion molecule) and eosinophil receptors. These agents are preferably administered directly into the respiratory system, e.g., by inhalation or other means, so that they may reach the lungs without widespread systemic dissemination. This permits the use of substantially lower doses of the agent of the invention as compared with those administered by the prior art, systemically or by other generalized routes and, consequently, reduce undesirable side effects resulting from the agent=s widespread distribution in the body. The agent(s) of this invention has (have) been shown to reduce the amount of receptor protein expressed by the tissue. These agents, thus, rather than merely interacting with their targets, e.g. a receptor, lower the number of target proteins that other drugs may interact with. In this manner, the present agent(s) afford(s) extremely high efficacy with low toxicity. In these later targets, and in target genes in general, it is particularly imperative to eliminate or reduce the adenosine content of the corresponding anti-sense oligonucleotide to prevent their breakdown products from libera ing adenosine.

As used herein, the term "treat" or "treating" asthma refers to a treatment which decreases the likelihood that the subject administered such treatment will manifest symptoms of the lung disease. The term "downregulate' refers to inducing a decrease in production, secretion or availability (and thus a

15

20

25

30

35

40

decrease in concentration) of the targeted intracellular protein. The present invention is concerned primarily with the treatment of human subjects. However, the agents and methods disclosed here may also be employed for veterinary purposes, such as is the case in the treatment of other mammals, such as cattle, horses, wild animals, zoo animals, and domestic animals, e. g. dogs and cats. Targeted proteins are preferably mammalian and more preferably of the same species as the subject being treated. In general, "anti-sense" refers to the use of small, synthetic oligonucleotides, resembling single-stranded DNA, to inhibit gene expression by inhibiting the function of the target messenger RNA (mRNA). Milligan, J. F. et al., J. Med. Chem. 35(14), 1923-1937 (1993). In the present invention, inhibition of gene expression of the A₁ or A₃ adenosine receptor is desired. Gene expression is inhibited through hybridization to coding (sense) sequences in a specific messenger RNA (mRNA) target by hydrogen bonding according to Watson-Crick base pairing rules. The mechanism of anti-sense inhibition is that the exogenously applied oligonucleotides decrease the mRNA and protein levels of the target gene or cause changes in the growth characteristics or shapes of the cells. Id. See, also Helene, C. and Toulme, J., Biochim. Biophys. Acta 1049, 99-125 (1990); Cohen, J. S. D., Ed., Oligodeoxynucleotides as Anti-sense Inhibitors of Gene Expression; CRC Press: Boca Raton, FL (1987). As used herein, "anti-sense oligonucleotide" is defined as a short sequence of synthetic nucleotide that (1) hybridizes to any coding sequence in an mRNA which codes for the targeted protein, according to hybridization conditions described below, and (2) upon hybridization causes a decrease in gene expression of the A₁ or A₃ adenosine receptor. The receptors discussed above are mere examples of the high power of the present technology. In fact, a large number of genes may be targeted in a similar manner by practicing the present methods, to significantly down-regulate or obliterate protein expression and observe any changes wrought to one or more functions within a system, e.g. the respiratory system and other lung disease associated targets. By means of example, in the respiratory system, the targets may be associated with difficulties of breathing, bronchoconstriction, inflammation, allergic rhynitis, chronic bronchitis, surfactant depletion, and others associated with diseases and conditions such as chronic obstructive pulmonary disease (COPD), pulmonary transplantation rejection, pulmonary infections, inhalation burns, Acute Respiratory Distress Syndrome (ARDS), cystic fibrosis, pulmonary fibrosis, adiation pulmonitis, tonsilitis, emphysema, dental pain, oral inflammation, joint pain, esophagitis, cancers afflicting the respiratory system either directly such as lung cancer, esophageal cancer, and the like, or ind rectly by means of metastases, among others. These functions are of great interest because of their association with respiratory dysfunction, as is the case in asthma, allergies, allergic rhinitis, pulmonary bronchoconstriction and hypertension, chronic obstructive pulmonary disease (COPD), pulmonary transplar tation rejection, pulmonary infections, allergy, asthma, cystic fibrosis (CF), Acute Respiratory Distress Syndrome (ARDS) as well as infantile and pregnancy-related RDS, cancer, etc., which either directly or by netastasis afflict the lung, the present anti-sense oligonucleotides may be directed to a list of target mRNAs, which includes the targets listed in Table 1 above, among others.

The oligos of this invention may be obtained by first selecting fragments of a target nucleic acid having at least 4 contiguous nucleic acids selected from the group consisting of G and C and/or having a specific type and/or extent of activity, and then obtaining a first oligonucleotide 4 to 60 nucleotides long which comprises the selected fragment and has a thymidine (T) nucleic acid content of up to and including about 15%, preferably, about 12%, about 10%, about 7%, about 5%, about 3%, about 1%, and more preferably no thymidine. The latter step may be conducted by obtaining a second oligonucleotide 4 to 60 nucleotides long comprising a sequence which is anti-sense to the selected fragment, the second oligonucleotide having an adenosine base content of up to and including about 15%, preferably about 12%, about 10%, about 7%, about 5%, about 3%, about 1%, and more preferably no adenosine. When the selected fragment comprises at least one thymidine base, an adenosine base may be substituted in the corresponding anti-sense nucleotide fragment with a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have less than about bout 10%, preferably less than about 1%, and more preferably less than about 0.3% of the adenosine base agonist activity at the adenosine A₁, A_{2a}, A_{2b} and A₃ receptors, and heteroaromatic bases which have no activity at the adenosine

15

25

30

35

40

A_{2a} receptor, when validating in the respiratory system. Other adenosine activities in other systems may be determined in other systems, as appropriate. The analogue heteroaromatic bases may be selected from all pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alk oxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, arylsulfoxyl, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkylaryl, alkenylaryl, arylalkyn, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, heterocycloalkyl and heteroaryl. The pyrimidines and purines may be substituted at all positions as is known in the art, but preferred are those which are substituted at positions 1, 2, 3, 4, 7 and/or 8. More preferred are pyrimi lines and purines such as theophylline, caffeine, dyphylline, etophylline, acephylline piperazine, bamifylline, enprofylline and xantine having the chemical formula

wherein R1 and R2 are independently H, alkyl, alkenyl or alkynyl and R3 is H, aryl, dicycloalkyl, dicycloalkenyl, dicycloalkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, O-cycloalkyl, O-cycloalkenyl, Ocycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl, mono and dialkylaminoalkyl-N-alkylamino-SO, aryl, among others. Similar modifications in the sugar are also embodiments of this invention. Reduced adenosine content of the anti-sense oligos corresponding to the thymidines (T) present in the target RNA serves to prevent the breakdown of the oligos into products that free adenosine into the system, e.g. the lung, brain, heart, kidney, etc., tissue environment and, thereby, to prevent any unwanted effects due to it. By means of examp e, the Nf6B transcription factor may be selected as a target, and its mRNA or DNA searched for low thymidine (T) or desthymidine (desT) fragments. Only desT segments of the mRNA or DNA are selected which, in turn, will produce desA anti-sense as their complementary strand. When a number of RNA de:T segments are found, the sequence of the anti-sense segments may be deduced. Typically, about 10 .o 30 and even larger numbers of desA anti-sense sequences may be obtained. These anti-sense sequences may include some or all desA anti-sense oligonucleotide sequences corresponding to desT segments of the mRNA of the target, such as anyone of those shown in Table 1 above, in Table 2 below, and others associated with functions of the brain, cardiovascular and renal systems, and many others. When this occurs, the anti-sense oligonucleotides found are said to be 100% A-free. For each of the original desA anti-sense oligonucleotide sequences corresponding to the target gene, e.g. the NF6B transcription factor, typically about 10 to 30 sequences may be found within the target gene or RNA which have a low content of thymidine (RNA). In accordance with this invention, the selected fragment sequences may also contain a small number of thymidine (RNA) nucleotides within the secondary or tertiary or quaternary sequences. In some cases, a large adenosine content may suffice to render the antisense oligonucleotide less active or even inactive against the target. In accordance with this invention, these so called "non-fully desA" sequences may preferably have a content of adenosine of less than about 15%, about 12%, about 10%, about 7%, about 5%, and about 2% adenosine. Most preferred is no adenosine content (0%). In some instances, however, a higher content of adenosine is acceptable and the oligonucleotides still fail to show detrimental "adenosine activity". A particular important embodiment is that where the adenosine nucleotide is "fixed" or replaced by a "Universal or alternative" base that may base-pair with similar or equal affinity to two or more of the four nucleotide present in natural DNA: A, G, C, and T.

A universal or alternative base is defined in this patent as any compound, more commonly an

20

25

30

adenosine analogue. which has substantial capacity to hybridize to thymidine, while at the same time having reduced, or substantially lacking, ability to bind adenosine receptors or other molecules through which adenosine may exert an undesirable side effect in the experimental animal or in a cell system. Alternatively, adenosine analogs which completely fail to activate, or have significantly reduce ability for activating, adenosine receptors, such as the adenosine A1, A2b and/or A3 receptors, most preferably A1 receptors, and those that may even act as agonists of the adenosine A2a, receptor, may be used. One example of a universal base is α-deoxyribofuranosol-(5-nitroindole), and an artisan will know how to select others. This "fixing" step generates further novel sequences, different from those anti-sense to the ones found in nature, that permits the anti-sense oligonucleotide to bind, preferably equally well, with the target RNA. Other examples of universal or alternative bases are 2-deoxyribosyl-(5-nitroindole). Other examples of universal bases are 3 - nitropyrrole - 2' - deoxynucleoside, 5 - nitro-indole, 2 - deoxyribosyl -(5 - nitroindole), 2-deoxyribofuranosyl - (5-nitroindole), 2' - deoxyinosine, 2' -deoxynebularine, 6H, 8H-3,4-dihydropyrimidc [4, 5 - c] oxazine - 7 - one and 2 - amino - 6 -methoxy aminopurine. In addition to the above, Universal bases which may be substituted for any other base although with somewhat reduced hybridization potential, include 3 - nitropyrrole 2' - deoxynucleoside 2 - deoxyribofuranosyl - (5 nitroindole), 2' - de xyinosine and 2' - deoxynebularine (Glen Research, Sterling, VA). More specific mismatch repairs may be made using "P" nucleotide, 6H, 8H - 3, 4 - dihydropyrimido [4,5 - c] [1, 2] oxazin - 7 - one, which base pairs with either guanine (G) or adenine (A) and "K" nucleotide, 2 - amino - 6 - methoxyaminopuri 1e, which base pairs with either cytidine (C) or thymidine (T), among others. Others which are known in the art or will become available are also suitable. See, for example, Loakes, D. and Brown, D. M., Nucl. Acids Res. 22:4039-4043 (1994); Ohtsuka, E. et al., J. Biol. Chem.260(5):2605-2608 (1985); Lin, P.K.T. and Brown, D. M., Nucleic Acids Res. 20(19):5149-5152 (1992; Nichols, R. et al., Nature 369(6480): 492-493 (1994); Rahmon, M. S. and Humayun, N. Z., Mutation Research 377 (2): 263-8 (1997); Amosova, O., et al., Nucleic Acids Res. 25 (!0): 1930-1934 (1997); Loakes D. & Brown, D. M., Nucleic Acids Res. 22 (20): 4039-4043 (1994), the entire sections relating to universal bases and their preparation and use in nucleic acid binding being incorporated herein by reference. When non-fully desT sequences are found in the naturally occurring target, they typically are selected so that about 1 to 3 universal base subst tutions will suffice to obtain a 100% "desA" anti-sense oligonucleotide. Thus, the present method prov des either anti-sense oligonucleotides to different targets which are low in, or devoid of, A content, as well as anti-sense oligonucleotides where one or more adenosine nucleotides, e. g. about 1 to 3, or more, may be "fixed" by replacement with a "Universal" or "replacement" base. Universal bases are known in the art and need not be listed herein. An artisan will know which bases may act as universal bases, and replace them for A. Table 2 below provides a selected number of targets to which the agents of the invention are effectively applied. Others, however, may also be targeted.

35		Cancer Targets
	Transforming	Therapy
	Oncogenes	Targets
	ras	thymidylate synthetase
	src	thymidylate synthetase
40	my:	dihydrofolate reductase
	bel 2	thymidine kinase
		deoxycytidine kinase
		ribonucleotide reductase
	Angiogenesis factors	Adhesion Molecules
45	Oncogenes	Folate Pathway Enzymes
	DNA repair genes	(One Carbon Pool)
		Telomerase
		HMG CoA Reductase
		Farnesyl Transferase
50		Glucose-6-Phosphate Transferase

25

30

40

45

A group of preferred targets for the treatment of cancer are genes associated with any of different types of cancers, or hose generally known to be associated with malignancies, whether they are regulatory or involved in the production of RNA and/or proteins. Examples are transforming oncogenes, including, but not limited to, ras, src, myc, and BCL-2, among others. Other targets are those to which present cancer chemotherapeutic agents are directed to, such as various enzymes, primarily, although not exclusively. thymidylate synthetise, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, ribonucleotide reductase, and the like. The present technology is particularly useful in the treatment of cancer ailments given that traditiona cancer therapies are fraught with the unresolved problem of selectively killing cancer cells while preserving normal living cells from the devastating effects of treatments such as chemotherapy, radiotherapy, and the like. The present technology provides the ability of selectively attenuating or enhancing a desirec pathway or target. This approach provides a significant advantage over standard treatments of cance because it permits the selection of a pathway, including primary, secondary and possibly tertiary targets, which are not generally expressed simultaneously in normal cells. Thus, the present agent may be administered to a subject to cause a selective increase in toxicity within tumor cells that, for instance, express all three targets while normal cells that may expresses only one or two of the targets will be significantly less affected or even spared. A group of preferred targets for the treatment of cancers are genes associated with different types of cancers, or those generally known to be associated with malignancies, whether they are regulatory or involved in the production of RNA and/or proteins. Examples are transforming oncogenes, including, but not limited to, ras, src, myc, and BCL-2, among others. Other targets are those to which present cancer chemotherapeutic agents are directed to, such as various enzymes, primarily, although not exclusively, thymidylate synthetase, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, ribonucleotide reductase, and the like.

In one embodiment, at least one of the mRNAs to which the oligo of the invention is targeted encodes a protein such as transcription factors, stimulating and activating factors, intracellular and extracellular receptors and peptide transmitters in general, interleukins, interleukin receptors, chemokines, chemokine receptors, endogenously produced specific and non-specific enzymes, immunoglobulins, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules, defensines, growth factors, vasoactive peptides and receptors, and binding proteins, among others; or the mRNA is corresponding to an oncogene and other genes associated with various diseases or conditions. Examples of target proteins are eotaxin, major basic protein, preproendothelin, eosinophil cationic protein, P-selectin, STAT 4, MIP-1α, MCP-2, MCP-3, MCP-4, STAT 6, c-mas, NF-IL-6, cyclophillins, PDG2, cyclosporin A-binding protein, FK5-binding protein, fibronectin, LFA-1 (CD11a/CD18), PECAM-1, C3bi, PSGL-1,CD-34, substance P, p150,95, Mac-1 (CD11b/CD18), VLA-4, CD-18/CD11a, CD11b/CD18, C5a, CCR1, CCR2, CCR4, CCR5, and LTB-4, among others. Others are, however, suitable, as well. In another embodiment, at least one of the mRNAs to which the oligo is targeted encodes intracellular and extracellular receptors and peptide transmitters such as sympathomimetic receptors, parasympathetic receptors, GABA receptors, adenosine receptors, bradykinin receptors, insulin receptors, glucagon receptors, prostaglandin receptors, thyroid receptors, androgen receptors, anabolic receptors, estrogen receptors, progesterone receptors, receptors associated with the coagulation cascade, adenohypophyseal receptors, adenohypophyseal peptide transmitters, and histamine receptors (HisR), among others. However others are also contemplated. The encoded sympathomimetic receptors and parasympathomimetic receptors include acetylcholinesterase receptors (AcChaseR) acetylcholine receptors (AcChR), atropine receptors, muscarin c receptors, epinephrine receptors (EpiR), dopamine receptors (DOPAR), and norepinephrine receptors (NEpiR), among others. Further examples of encoded receptors are adenosine A receptor, adenosine A2B receptor, adenosine A3 receptor, endothelin receptor A, endothelin receptor B, IgE high affinity receptor, muscarinic acetylcholine receptors, substance P receptor, histamine receptor, CCR-1 CC chemokine receptor, CCR-2 CC chemokine receptor, CCR-3 CC chemokine receptor (Eotaxin Receptor), interleukin-1β receptor (IL-1βR), interleukin-1 receptor (IL-1R), interleukin-1β receptor (IL-

15

20

25

30

35

40

45

1βR), interleukin-3 receptor (IL-3R), CCR-4 CC chemokine receptor, cysteinyl leukotriene receptors, prostanoid receptors, GATA-3 transcription factor receptor, interleukin-1 receptor (IL-1R), interleukin-4 receptor (IL-4R), interleukin-5 receptor (IL-5R), interleukin-8 receptor (IL-8R), interleukin-9 receptor (IL-9R), interleukin-11 receptor (IL-11R), bradykinin B2 receptor, sympathomimetic receptors, parasympathomimet c receptors, GABA receptors, adenosine receptors, bradykinin receptors, insulin receptors, glucagon receptors, prostaglandin receptors, thyroid receptors, androgen receptors, anabolic receptors, estrogen receptors, progesterone receptors, receptors associated with the coagulation cascade, adenohypophyseal receptors, and histamine receptors (HisR). Others are also contemplated even though not listed herein. The encoded enzymes for development of the oligos of the invention include synthetases, kinases, oxidases, phosphatases, reductases, polysaccharide, triglyceride, and protein hydrolases, esterases, elastases, and , polysaccharide, triglyceride, lipid, and protein synthases, among others. Examples of target enzymes are tryptase, inducible nitric oxide synthase, cyclooxygenase (Cox), MAP kinase, eosir ophil peroxidase, β2-adrenergic receptor kinase, leukotriene c-4 synthase, 5lipooxygenase, phosphodiesterase IV, metalloproteinase, tryptase, CSBP/p38 MAP kinase, neutrophil elastase, phospholipise A2, cyclooxygenase 2 (Cox-2), fucosyl transferase, chymase, protein kinase C, thymidylate synthetase, dihydrofolate reductase, thymidine kinase, deoxycytidine kinase, and ribonucleotide reductase, among others. Any enzyme associated with a disease or condition, however, is suitable as a target for this invention. Suitable encoded factors for application of this invention are, among others, Nf6B transc iption factor, granulocyte macrophage colony stimulating factor (GM-CSF), AP-1 transcription factor, GATA-3 transcription factor, monocyte activating factor, neutrophil chemotactic factor, granulocyte/macrophage colony-stimulating-factor (G-CSF), NFAT transcription factors, platelet activating factor, tumor necrosis factor α (TNF α), and basic fibroblast growth factor (BFGF). Additional factors are also within the invention even though not specifically mentioned. Suitable adhesion molecules for use with this invention include intracellular adhesion molecules 1 (ICAM-1), 2 (ICAM-2) and 3 (ICAM-3), vascular cellular adhesion molecule (VCAM), endothelial leukocyte adhesion molecule-1 (ELAM-1), neutrophil adherence receptor, mad CAM-1, and the like. Other known and unknown factors (at this time) may also be targeted herein. Among the cytokines, lymphokines and chemokines preferred are interleukin-1 (II.-1), interleukin-1β (IL-1β), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-11 (IL-11), CCR-5 CC chemokine, and Rantes. Others, however, may also be targeted, as they are known to be involved in specific diseases or conditions to be treated, or for their generic activities, such as inflammation. Examples of defensins for the practice of this invention are de ensin 1, defensin 2, and defensin 3, and of selectins are $\alpha 4\beta 1$ selectin, $\alpha 4\beta 7$ selectin, LFA-1 selectin, E-se ectin, P-selectin, and L-selectin. Examples of oncogenes, although not an all inclusive list, are ras, src, myc, and bcBCL. Others, however, are also suitable for use with this invention.

The agents administered in accordance with this invention are preferably designed to be anti-sense to target genes and/or mRNAs related in origin to the species to which it is to be administered. When treating humans, the agents are preferably designed to be anti-sense to a human gene or RNA. The agents of the invention encompass oligonucleotides which are anti-sense to naturally occurring DNA and/or RNA sequences, fragments thereof of up to a length of one (1) base less than the targeted sequence, preferably at least about 7 nucleot des long, oligos having only over about 0.02%, more preferably over about 0.1%, still more preferably over about 1%, and even more preferably over about 4% adenosine nucleotides, and up to about 30%, more preferably up to about 15%, still more preferably up to about 10% and even more preferably up to about 5%, adenosine nucleotide, or lacking adenosine altogether, and oligos in which one or more of the adenosine nucleotides have been replaced with so-called universal bases, which may pair up with thymidine nucleotides but fail to substantially trigger adenosine receptor activity. Examples of human sequences and fragments, which are not limiting, of anti-sense oligonucleotide of the invention are the following fragments as well as shorter segments of the fragments and of the full gene or mRNA coding sequences, exons and intron-exon junctions encompassing preferably 7, 10, 15, 18 to 21, 24, 27, 30, n-1 nucleotides for each sequence, where n is the sequence=s total number of nucleotides. These fragments

15

20

25

30

35

40

45

50

may be selected from any portion of the longer oligo, for example, from the middle, 5'- end, 3'- end or starting at any other site of the original sequence. Of particular importance are fragments of low adenosine nucleotide content, that is, those fragments containing less than or about 30%, preferably less than or about 15%, more preferably less than or about 10%, and even more preferably less than or about 5%, and most preferably those devoid of adenosine nucleotide, either by choice or by replacement with a universal base in accordance with this invention. The agent of the invention includes as a most preferred group sequences and their fragments where one or more adenosines present in the sequence have been replaced by a universal base (B), as exemplified here. Similarly, also encompassed are all shorter fragments of the B-containing fragments designed by substitution of B(s) for adenosine(s) (A(s)) contained in the sequences, fragments thereof o segments thereof, as described above. A limited list of sequences and fragments is provided below.

Some of the examples of anti-sense oligonucleotide sequence fragments target the initiation codon of the respective gene, and in some cases adenosine is substituted with a universal or alternative base adenosine analogue denoted as "B", which lacks ability to bind to the adenosine A_1 and/or A_3 receptors. In fact, such replacement nucleotide acts as a "spacer". Many of the examples shown below provide one such sequence and many fragments overlapping the initiation codon, preferably wherein the number of nucleotides n is about 7, about 10, about 12, about 15, about 18, about 21 and up to about 28, about 35, about 40, about 50, about 60.

Human Receptor-related Antisense Polynucleotide

5'-GGCGGCCTGG AAAGCTGAGA TGGAGGGCGG CATGGCGGGC ACAGGCTGGG C TGCTTTTCT TTTCTGGGCC TCTGTGGTCT GTT1TTTTCT GGCCCTGCTG GGGCGCTCTC CGCCGCCCGC CTGGCTCCCG GBGCCCBTGB TGGGCBTGCC GTCGTTCTTG CCCTCCTTTG GCTGCCGTGC CCGCTCCCCG GCCTCCTGGC GGGTGGCCGT TGGGCCCGTG TTCCCCTGGG GCCTGGGGCT CCCTTCTCTC GCCCTTCTTG CTGGGCCTCT GCTGCTGCTG GTGCTGTGGC CCCCGTACA CCGAGGAGCC CATGATGGGC ATGCCACAGA CGACAGGCGT BCBCCGBGGB CGC GCG GGG CCC CTC CGG TCC GTT CGC GCC CGC GCG GGG CCC CTC CGG TCC CGG GTC GGG GCC CCC CCC CGG GCG CCC CCT CCC CTC TTG CTC GGG TCC CCG TG ACA GCG CGT CCT GTG TCT CCA GCA GCA TGG CCG GGC CAG CTG GGC CCC BCB GCG CGT CCT GTG TCT CCB GCB GCB TGG CCG GGC CBG CTG GGC CCC ACA GAG CAG TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G BCB GBG CB TGC TGT TGT TGG GCB TCT TGC CTT TTC ATT AAC CGA GCT GT BTT TGC TCT CCT BTT BCT TTC TGT GTC CBT TTT TTC BTT BBC CGB GCT GT GCC TCT TGC TCT GGG CCT GGC TGT GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC TCT CTG AAT ATT GAC CTT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA TCT CTG BBT BTT GBC CTT CCT CCB TGG CGG TCC TGC TTG GBT TCT CCC GB GCC TTT CCT GGT TCT CTT GTT GTT GTT TTT GGG GTT TGG CTT ACA GTA GAG TAG GGGI ATT CCA TGG CAG GAG CCA TCT TCT TCA TGG ACT CC TTC AAG GAG ACC TTA GGT TTC TGA GGG ACT GCT AAC ACG CCA TCT GGA GC BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCT TCB TGG BCT CC TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC GTT GTT TTT GGG GTT TGG CTT GCC TTT CCT GGT TCT CTT BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCT TCB TGG BCT CC TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC GCC TGT GTC TGT CCT CCT GCT TCG TTC CTC TCG TTC CTG CTT GGT GCC CTT GCC G GTC CTG CTC CGG GCT GTG BGB CCC GGB CC() BCB GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC GAT CTC TGA ATA TTGA CCT TCC A'G GCG GTC CTG CTT GGA GBT CTC TGB BTB TTGB CCT TCC BTG GCG GTC CTG CTT GGB TCT GGG GTG TCC TGG CCT TCG TGG TTC CTC TTC CTT CGT TTG CCG TCC GCG GGG GCC CCC GGG CCT GGC

25

35

45

50

CTC CTG GTC GCG (TT GTC GTT TTG GGG CCG GCT TTG CCC GCC TCC CGG CGC CTG GCC CGG CC TTC CTG GGC TGC GTG CGC (ITT CTG TTC TTC CTG GCT CTG GGG TGT CCT GGC CTT CGT GGT TCC TCT TCC TTC GTT TGC CGT CCG CGG GGG CCC CCG GGC CT GGC TGC GCT CCT GCC CCG CCT CTT TCC CGG GCT CTT GCG GAC AGG GCA GGG CGA TCA GGA GCA GCG TGA GCC AAA GGA GGA CCA TCG GGA ACG CAG CTC CGG AAC GCA GGA CAG AGG TGC C GC BGG BGB CBG GGC BGG GCG BTC BGG BGC BGC GTG BGC CBB BGG BGC BCC BTC GGG BBC GCB GCT CCG GBB CGC BGG BCB GBG GTG CC TCT GCC CTG TCC GCC GGC TCT TCG GTG GCT CGG CCC CGC TCC TIG TCT TGC CGC GGG TTG GTT CCT GGG CCT GGT TCT TGC GGG CGT TTC GGT CTG GCT GGT CTG GGC CCG CGG TGC GGC GGG TGG CTT GCT GTT CTG CCT GGG CTC TCC CCT CTC CTT TTC CGG GCG CTC GTG CCT GGT CCG CTC CCT GGG GGT GCT CCT TCC CTT TCC CCG CTC GTG GGG TTT GCG TCC CTG TGC CCC T°T CCT CTG CTG GGT CCC CCT CCC GTT CCA AGC TGC ACC GCA CAG ACC GGC GCT ACA GGA CAG AGC CAG GCA AGC ACC CAT GGG GAT CCA GGC CCA GCT GTT CCB BGC TGC BCC GCB CBG BCC GGC GCT BCB GGB CBG BGC CBG GCB BGC BCC CBT GGG GBT CCB GGC CCB GCT G CTCAGTGGCC CCCAAAAGGA TGAGTAATAC ATGCGCCACG ATGATCATAT CCTTTTTACT ATGAGGCCGT GTCTGTCGTG GTGTGTCTTT GCTGTGCCCT GCCTCTCTGC GGGGGTGGCT TCCTGCCGCG TCTCTGGGCC GTCCCGTCCC GCGCCGGGGC CTGTCCGCCT CTGCGGGCGC TGTCTCCTGG CTTGTCTTCC GGCTCTTCTG CTGGGGTGGG GGGGGTTTCT GGCCGTGGGG GTCTTGCCTG GCCTCCGGGC TCCTGCTTGT CTTGCCTTCC TTCTCTGGTC GGTTGTGGCT CGGGGCTCCG TGGGTCCCTG GCGCCCGTTT GTGTTTTGTC TTTTCCCCTG GCGTCCCTGT GCCCCTCTCC TCTCCTTCCT CTGCTTCTCG CTCTCCTTTG TGGGGCCCTC CCTGCTGCTC TTGGTTTTGG GCTTTTTTC TCTTCCTCT TTTTCGTGCG TGGGCCTCC GCACGCCTCT TGCCACCTCC TGCGCAGGGC AGCGCCTTGG GGCCAGCGC GCTCCCGGCG CGGCCAGCAG GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCCT CCTCGGCTAC CACTCCATGG TCCCGCAGAG GCGGACAGGC GCBCGCCTC TTGCCBCCTC CTGCGCBGGG CBGCGCCTTG GGGCCBGCGC CGCTCCCGGC GCGGCCBGCB GGGCBGCCBG CBGCGCGCBG CCGBCGCCB GCBTGCTTCC TCCTCGGCTB CCBCTCCBTG GTCCCGCBGB GGCGGBCBGG C GGGGTGTGCG CTTCIGCGCTC CCGTGCTCGG TTCTCTGTCT CCCGGTCCCC CTTGCCTGGC GTCTCGGGCC TTCGTCCTCT TCCTCTTCTT CCTTCCGCTC CGTGGGGGCT GCTTGGTGGG GGCCTGTGCCT CGGGGTCCCG GGGCTTCTGG CCCTTGCCGT TCATGGTGGC TAGGTGGGGC GTTCBTGGTG GCTBGGTGGG GC GGG GTG GGT BGG CCG TGT CTG G3GGTT GGC CBT GTT GGT TGC CTCT TGG TGC TGC GCC GGG CGCG TCT TGG CTT TCT TGGCG CTG GCG GGG GGG CCT CCTGCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGGTGG CGG GCG TGG TGG CCT CTG TCGGGGG CCC GCG GCT GCB GGG GTTG CCT GTC TGC TTC GTCCTT TGC GCT CCC GGG CCG CCGGG GTG GGT AGG CCG TGT CTG GGGGTT GGC CAT GTT GGT TGC CGGG CCC GCG GCT GCA GGG G ACAGGGGCTG TAATCTTCATC TGCAGGTGGC ATGCCAGTGA AATTTAGATC ATCAAAATCC CACATCTGTG GATCTGTAAT ATTTGACATG TCCTCTTCAG TTTCAGCAAT GGTTTGATCT AACTGAAGCA CCGGCCAGGB CBGGGGCTGT BBTCTTCBTC TGCBGGTGGC BTGCCBGTGB BBTTTBGBTC BTCBBBBTCC CBCBTCTGTG GBTCTGTBBT BTTTGBCBTG TCCTCTTCBG TTTCBGCBB TGGTTTGBTC TBBCTGBBGC BCCGGCCBGG TGGCTCGGTG CTTCTGCCCC TGTTGTTGCG GCGCTCGGTT GGTGTGGCCC CTGTGGTGCT TCGTTTCCCC CTCTTTCTCT TTGTTCGGGG GTTCTTGTGG CGGGCTGCTT GTCTCGTTCC GCCCTGTCGG GCGGGAAGCC TCTCTCCTCT CCCCAGATC CGCGACAGGC CGCAGGCAAG AACCAGCGCA ACCAGGGCGC GTCCGCACAG ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC GCCGCGCC CTGTCGGGCG GGBBGCCTCT CTCCICTCCC CBGBTCCGCG BCBGGCCGCB GGCBBGBBCC BGCGCBBCCB GGGCGCGTCC GCBCBGBCTT GGBGGCGGCT GCBTGCTGCT BCCTGCTCGGGCG GGBBGCCTCCG GTGGCCGCCG CGCGTCCGGT GGCCGCCGCG CCTCTCTCCT CTCCCCGTGG CCCTGTCGGG CGGGTCCTGC CGTCCTGTCT CCTTTTCTTT TGCTGTCTTG TCTTCCCGTC TCTGCTTT GTCTGTCCTC CCCGTCTCCT CCCACTGCTT CTCCCGGGGG

	CGTGGGTGCC	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACCTACTT	CCACACCTGC
	CTCATGGTTG	CCTGTCCGGT	CCTCATCCTC	ACCCAGAGCT	CCATCCTGGC	CCTGCTGGCA	ATTGCTGTGG
	ACCGCTACCT	CCGGGTCAAG	ATCCCTCTCC	GGTACAAGAT	GGTGGTGACC	CCCCGGAGGG	CGGCGGTGGC
	CATAGCCGGC	TGCTGGATCC	TCTCCTTCGT	GGTGGGACTG	ACCCCTATGT	TTGGCTGGAA	CAATCTGAGT
	${\tt GCGGTGGAGC}$	GGGCCTGGGC	AGCCAACGGC	AGCATGGGGG	AGCCCGTGAT	${\tt CAAGTGCGAG}$	TTCGAGAAGG
	TCATCAGCAT	GGAG'TACATG	GTCTACTTCA	ACTTCTTTGT	GTGGGTGCTG	CCCCCGCTTC	TCCTCATGGT
	CCTCATCTAC	CTGGA GGTCT	TCTACCTAAT	CCGCAAGCAG	CTCAACAAGA	AGGTGTCGGC	CTCCTCCGGC
	GACCCGCAGA	AGTACTATGG	GAAGGAGCTG	AAGATCGCCA	AGTCGCTGGC	CCTCATCCTC	TTCCTCTTTG
	CCCTCAGCTG	GCTGCCTTTG	CACATCCTCA	ACTGCATCAC	CCTCTTCTGC	CCGTCCTGCC	ACAAGCCCAG
)	CATCCTTACC	TACATTGCCA	TCTTCCTCAC	GCACGGCAAC	TCGGCCATGA	ACCCCATTGT	CTATGCCTTC
	CGCATCCAGA	AGTTCCGCGT	CACCTTCCTT	AAGATTTGGA	ATGACCATTT	CCGCTGCCAG	CCTGCACCTC
	CCATTGACGA	GGATCTCCCA	GAAGAGAGC	CTGATGACTA	GACCCCGCCT	TCCGCTCCCA	CCAGCCCACA
	TCCAGTGGGG	TCTC# GTCCA	GTCCTCACAT	GCCCGCTGTC	CCAGGGGTCT	CCCTGAGCCT	GCCCCAGCTG
	GGCTGTTGGC	TGGGC GCATG	GGGGAGGCTC	TGAAGAGATA	CCCACAGAGT	GTGGTCCCTC	CACTAGGAGT
	TAACTACCCT	ACACCTCTGG	GCCCTGCAGG	AGGCCTGGGA	GGGCAAGGGT	CCTACGGAGG	GACCAGGTGT
	CTAGAGGCAA	CAGTGTTCTG	AGCCCCCACC	TGCCTGACCA	TCCCATGAGC	AGTCCAGCGC	TTCAGGGCTG
	GGCAGGTCCT	GGGGA GGCTG	AGACTGCAGA	GGAGCCACCT	GGGCTGGGAG	AAGGTGCTTG	GGCTTCTGCG
	GTGAGGCAGG	GGAGTCTGCT	TGTCTTAGAT	GTTGGTGGTG	CAGCCCCAGG	ACCAAGCTTA	AGGAGAGGAG
					ATGCACTGGC		
i	GCCAGAGGCA	GCTA# GGGGC	AGGAATCAAG	GAGCCTCCGT	TCCCACCTCT	GAGGACTCTG	GACCCCAGGC
	CATACCAGGT	GCTAGGGTGC	CTGCTCTCCT	TGCCCTGGGC	CAGCCCAGGA	TTGTACGTGG	GAGAGGCAGA
	AAGGGTAGGT	TCAGT AATCA	TTTCTGATGA	TTTGCTGGAG	TGCTGGCTCC	ACGCCCTGGG	GAGTGAGCTT
	GGTGCGGTAG	GTGCTGGCCT	CAAACAGCCA	CGAGGTGGTA	GCTCTGAGCC	CTCCTTCTTG	CCCTGAGCTT
	TCCGGGGAGG	AGCCTGGAGT	GTAATTACCT	GTCATCTGGG	CCACCAGCTC	CACTGGCCCC	CGTTGCCGGG
					GCCTGATGGA		
					GAGGGAGTGT		
					GCAGAGGAGG		
	TGGGGGAAGG	CCTTGCTGTC	ATGTGAATCC	CTCAATACCC	CTAGTATCTG	GCTGGGTTTT	CAGGGGCTTT
	GGAAGCTCTG	TTGCAGGTGT	CCGGGGGTCT	AGGACTTTAG	GGATCTGGGA	TCTGGGGAAG	GACCAACCCA
,	TGCCCTGCCA	AGCCTGGAGC	CCCTGTGTTG	GGGGGCAAGG	TGGGGGAGCC	TGGAGCCCCT	GTGTGGGAGG
	GCGAGGCGGG	GGAGCCTGGA	GCCCCTGTGT	GGGAGGCGA	GGCGGGGGAT	CCTGGAGCCC	CTGTGTCGGG
					CATGAGTGTC		
	AGCCCTTCCC	TCTGT1GGAA	ATTGGGTGTG	CCCTGGCTCC	CAAGGGAGGC	CCATGTGACT	AATAAAAAAC
	TGTGAACCCT	CGC#TTTGT(G TTTTAATAAA	AGAATCTGGA	AGATAAATAG	TCTTGAAGAG	AGACAAAGGA
	AGGAAAATTT	AAATCCTTAG	ATTCAAGCAG	AAGAATTCCA	TGTGGAAGGT	TTGGGTTGTT	GTTGTTGTTG
	TTTGGTGTGT	TTTTTC·TTTT	TTTGTTTTTT	TGTTTTTTT	TGAGATGGAG	TCTCGCTGTG	TTACCGGGAG
	CGACAGAGCC	GCACG3CCGA	GTCGAGTCCC	AGCCAGCTAC	CATCCCTCTG	GAGCTTACCG	GCCGGCCTTG
	GCTTCCCCAG	GAATCCCTGG	AGCTAGCGGC	TGCTGAAGGC	GTCGAGGTGT	GGGGGCACTT	GGACAGAACA
	GTCAGGCAGC	CGGGAGCTCT	GCCAGCTTTG	GTGACCTTGG	GTGCTTGCCT	CGTGCCCCTT	GGTGCCCGTC
)	TGCTGATGTG	CCCAGCCTGT	GCCCGCCATG	CCGCCCTCCA	TCTCAGCTTT	CCAGGCCGCC	TACATCGGCA
		CATCGCCCTG				TGGGCGGTGA	
					GCGGTGGCTG		
					CCTACTTCCA		
		CATCCICACC				GCTGTGGACC	
					CGGAGGGCGG		
					GCTGGAACAA		
					GTGCGAGTTC		
	GTACATGGTC		TCTTTGTGTG			TCATGGTCCT	CATCTACCTG
					TGTCGGCCTC		
)					CATCCTCTTC		
					TCCTGCCACA		
					CCATTGTCTA		
		LOCIONIOGN		JULITORACC	COMPUTER	.000110000	.11 condition

	TCCGCGTCAC	CTTCCTTAAG	ATTTGGAATG	ACCATTTCCG	CTGCCAGCCT	GCACCTCCCA	TTGACGAGGA
	TCTCCCAGAA	GAGAGGCCTG	ATGACTAGAC	CCCGCCTTCC	GCTCCCACCG	CCCACATCCA	GTGGGGTCTC
	AGTCCAGTCC	TCACATGCCC	GCTGTCCCAG	GGGTCTCCCT	GAGCCTGCCC	CAGCTGGGCT	GTTGGCTGGG
	GGCATGGGGG	AGGCTCTGAA	GAGATACCCA	CAGAGTGTGG	TCCCTCCACT	AGGAGTTAAC	TACCCTACAC
5	CTCTGGGCCC	TGCAGGAGGC	CTGGGAGGGC	AAGGGTCCTA	CGGAGGGACC	AGGTGTCTAG	AGGCAACAGT
	GTTCTGAGCC	CCC ACCTGCC	TGACCATCCC	ATGAGCAGTC	CAGAGCTTCA	GGGCTGGGCA	GGTCCTGGGG
	AGGCTGAGAC	TGCAGAGGAG	CCACCTGGGC	TGGGAGAAGG	TGCTTGGGCT	TCTGCGGTGA	GGCAGGGGAG
	TCTGCTTGTC	TTAGATGTTG	GTGGTGCAGC	CCCAGGACCA	AGCTTAAGGA	GAGGAGAGCA	TCTGCTCTGA
	GACGGATGGA	$AGG \land GAGAGG$	TTGAGGATGC A	CTGGCCTGT TO	CTGTAGGAG AG	ACTGGCCA GA	CCCAGCCCCG
10	AGGCTCAGAA	GCGGCAGGCG	GAGGCGCGGT	CCGGGCGCTA	TGGCCATGCC	CGGCGGGTCT	CACGCGGCTG
	CCCCTCGCCC	GGC3CGCCTT	CGGTAGGGG	CGCCCGGGGC	CCAGCTGGCC	CGGCCATGCT	GCTGGAGACA
	CAGGACGCGC	TGTACGTGGC	GCTGGAGCTG	GTCATCGCCG	CGCTTTCGGT	GGCGGGCAAC	GTGCTGGTGT
	GCGCCGCGGT	GGGCACGGCG	AACACTCTGC	AGACGCCCAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCGGC
	CGACGTGGCC	GTGGGGCTCT	TCGCCATCCC	CTTTGCCATC	ACCATCAGCC	TGGGCTTCTG	CACTGACTTC
15	TACGGCTGCC	TCTTCCTCGC	CTGCTTCGTG	CTGGTGCTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCCG
	TGGCAGTCGA	CAGATACCTG				TTGGTCACGG	
	AAGAGGGGTC				ATCGGATTGA		GGGGTGGAAC
	AGTAAAGACA	GTGCCACCAA	CAACTGCACA			GAATGAAAGC	
	TGAAGTGTCT	CTT'rGAGAAT	_	TGAGCTACAT	GGTATATTTC	AATTTCTTTG	GGTGTGTTCT
20	GCCCCCACTG	CTTATAATGC			_	CCTGCAGGCA	GCTTCAGCGC
	ACTGAGCTGA	TGGACCACTC	GAGGACCACC				CTGGCCATGA
	TTGTGGGGAT	TTTTGCCCTG	TGCTGGTTAC		TGTTAACTGT	GTCACTCTTT	TCCAGCCAGC
	TCAGGGTAAA		AGTGGGCAAT				TTCAGTTGTC
	AATCCCATTG	TCTATGCTTA	CCGGAACCGA		ACACTTTTCA		TCCAGGTATC
25						CCTGCTCTCG	
						CAAAGAGGAC	
			CACCTCACAA				CTGGAGCTAC
			ATGTGTCAGT				TGATCTATTC
			TTATGCCAAC				TTTTTAAAAG
30			AAATTACTGA				TTATAATGCA
			CAATGGAAAA				TTGTTGCCAG
			AAAGTATAAT				TAATTCCAGC
						GCCTGTCCAA	
						ACCGGAGGGG	
35						CGGGCGGGCG	
						CCAGCGCCCC	
						CGGGTCTCAC	
						CCATGCTGCT	
						GGGCAACGTG	
40						GTGTCCCTGG	
						GCTTCTGCAC	
	GGCTGCCTCT					CTTCAGCCTT	
						GTCACGGGGA	
						CATTCCTGGG	
45						TGAAAGCTGC	
						TTCTTTGGGT	
						GCAGGCAGCT	
						CAAGTCACTG	
	TGGGGATTTT					ACTCTTTTCC	
50						ATGCCAATTC	
50							
						AATTATCTCC	
	TOTGCCAAGC	MANUTCHAU	DIAADDDIDA	OTCAGGCTGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG

ATCTAGGCTC TCGCCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTTC ATTGTGAAAG ATAGCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTTCCCTG GAGCTACCAC GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTTATG ATCTATTCAG CTGCTTTTAC TGTGTGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTTGTT TTTAAAAGTC TGCCTTGTTT ATGGTGGAAA ATTACTGAAA CTATTTTACT GTGAAACAGT GTGAACTATT ATAATGCAAA TACTTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTACTAAAA ATG GAATTCCCAG ATGGGCAGAG GTGGCTGGGC TGGTGACCCT AAGTGTGTCT CCTGCCTTTA TTCTCTCTAG TGGGTTATTC TTTCATGTGG TATCTTGCCT ACAGCATGCT GTGTTTGGAC ACAAACCCCT TTCCTTGGTT TCTCTGACCC AGCTGAGATG GACTGATTCC AAAAGAACTC ACCTATGTAC TGGGGTAGGG GAGGGAGGGT TTTTTGCAGT ATTTAACTAA GGTTCAAAGA GTCCTATATA GTGAGAAAGG CTTCTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTGGCA GAGTGCTGCC TCCTAGAAAT TTC CTTGGT AACTTCCTTC TCTGAAGCAC AGATAAAGAA AACAATTACA GTAGAAACAT TTATGAGGGA CACATTGGAG GCCGATGAAG CTTTTCAAGT TCCAGCAGTG CAGGGATGTG GGCAGAACTG ACATTGGAAA ATACTAGAAT GATGGAAATT CAGTTGGAGA GGACTGCCCT TTTTAATGTC TGGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGCGGGG ACAAGTATGG GATTTGGTAA GACTTGGATC AACTTGGGAT ACAGGGTGGG GGTCGGGAGT GGAATCAATG AATGATGCCA GAGCAGATCA ACTAACAAGA GGACCCTGAT GAGCCCCAGG CAGAGGCGTC TCCCTTATGC CCCACTCTGA AGTGTTTGTT AGTAAACACC AGAACGCCAT TGTTGTTACT GCTGAATTTT ATTTTGGGCT GTACATATTT AGATGCTTAA GGTAAAAATG ATAAAGCCCT CAAGCCACTG TGT3GGTTTG GGTCCAAGTG TTCCTTCTTG CTGCCTCTCT AACACGCCTG GTTAAAATAA TCCCTTTGGA TGGTGCTGAG AAGCACCTGA ACCAAGTGGG TCCCCAAATA ACAATGGCGT GCAAGTGTCT GGTTCCCAGA AGTTGGTGAC TAGGTAAGCA GCTTCAGGGA GAGGGGGCTG ATTCCCAGAC AGTCGCCTGT TCCTGCGGGG ATGGGGCTGA GGCTTGGGGA ATGTGGGCAG GAGGATATGC CATTTGATTC TGTTGCACAC GTTCTTTTCC CTTCTTCTG TATGTCTGGT CATTCTGCTA TTCTGTCGTT CCTCACATAG GTTGGACATT GGCCGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGCTAGG TGTGAGCTGA GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTTGCCCT TCTGAGCAGG GAATCTTTGC TTATCCCTTT GACCAAGGAT CTTTGCTGCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG TGCAAGAACT TAGCAGGAAT AGTICTGGCT AAGGTTAGGA GGCTGCCACC AAAGTCTCTT TTTTGTTCCT CTGCTTCTCC CGTTTGCCTC CTTATCATGA GATCTTTTTG CTAAGCTGGC AGAAAGATTG CATAGTCAGT GCTTCCAGCT CTGCTCCCAC CTGATCCTGC ACTGTCCTCT GGTCCCTGAA TGAATGAACT CTGATACCCA ATCTTGTCTC GAGCCTTCTC TATGCCACTC ATGGCTCCTC TTCTGCTCTT TCCATCTTTT TGCTGAGAGT TCTGAGCTCT GTACTTCCTC TTGGCCCATC TCACTTCCTG AAACACCCCT GAAGAGGGTT GCTTATCTTG ATGGAACTCA AAAAGCCAAA AAGCTGCAGG CAGAGGCGTT GAGGACATCT GTTTGGGGAA CTAAGAGCAG CAGCACTTTC AGATTCAGTC CATATAGAGC TGTCCTACAG CATTCTGGAA ACTTGAGGAT GTGCGGTGCA TAAAGGGGCT GGAAGTGACC CACCTGTGAT GAGCCCTTTC TAAGGAGAAG GGTTTCCAAG AGATCACCCC ACCAGAAAAG GGTAGGAATG AGCAAGTTGG GAATTTTAGA CTGTCACTGC ACATGGACCT CTGGGAAGAC GTCTGGCGAG AGCTAGGCCC ACTGGCCCTA CAGACGGATC TTGCTGGCTC ACCTGTCCCT GTGGAGGTTC CCCTGGGAAG GCAAGATGCC CAACAACAGC ACTGCTCTGT CATTGGCCAA TGTTACCTAC ATCACCATGG AAATTTTCAT TGGACTCTGC GCCATAGTGG GCAACGTGCT GGTCATCTGC GTGGTCAAGC TGAACCCCAG CCTGCAGACC ACCACCTTCT ATTTCATTGT CTCTCTAGCC CTGGCTGACA TTGCTGTTGG GGTGCTGGTC ATGCCTTTGG CCATTGTTGT CAGCCTGGGC ATCACAATCC ACTTCTACAG CTGCCTTTTT ATGACTTGCC TACTGCTTAT CTTTACCCAC GCC CCATCA TGTCCTTGCT GGCCATCGCT GTGGACCGAT ACTTGCGGGT CAAGCTTACC GTCAGGTAGC CTGCGGCGTG GGGTGGGCAG CAATTGAGGC AGCTGGGAAA TGAGGCTACA AAGCCAGAGC CTGCTGAATT TTA1TTTGGA CTGTACATAT TTAGATGCTT AAGGTAAAAA TGATAAAGCC CTCAAGCCAC TGTGTGGGTT GGGTCCAAGT GTTCCTTGCT GCTGCCTCTC TAACACGCCT GGTTAAAATA ATCCCTTTGG ATGGTGCTGA GAAGCCCTG AACCAAGTGG GTCCCCAAAT AACTATGGCG TGCAAGTGTC TGGTTCCCAG AAGTTGGTGA CTAGGTAAGC GACTCAGGGA GAGGGGCTGA TTCCCAGACA GTCGCCTGTT CCTGCTGGGA TGGGGCTGAG GCTTGGGGAA TGTGGGCAGG AGGATATGCC ATTTGATTCT GTTGCACACG TTCTTTTCCC TTCTTCTGT ATG1CTGGTC ATTCTGCTAT TCTGTCGTTC CTCACATAGG TTGGACATTG GCCGGCTGCC AGCATAAGTG CCAGTGTGAT TTTGCTAGGG TGTGAGCTGA GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTTGCCCT TCTGAGCAGG GAATCTTTGC TTATCCCTTT GACCAAGGAT CTTTGCTCCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG TGCAAGAACT TAGCAGGAAT AGTTCTGGCT AAGFTTAGGA GGCTGCCACC AAAGTCTCTT TTTTGTTCCT CTGCTTCTCC CGTTTGCCTC CTTATCATGA GATCTTTTTG CTAAGCTGGC AGAAAGATTG CATAATCAGT GCTTCCAGCT CCGCTCCCAC

	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC
	TATGCCACTC				TGCTGAGAGT	TACTGAGCTC	
	CTTGGCCCAT	CTCACTTCCT	GAAACACCCC	TGAAGAGGGT	TGCTTATCTT	GATGGAACTC	AAAAAGCCAA
	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGGA	ACTAAGAGCA	GCAGCACTTT	CAGATTCAGT
5	CCATATAGAG	CTGTCCTACA	GCATTCTGGA	AACTTGAGGA	TGTGCGGTGC	ATAAAGGGGC	TGGAAGTGAC
	CCACCTGTGA	TGAGCCCTTT	CTAAGGAGAA	GGGTTTCCAA	GAGATCACCC	CACCAGAAAA	GGGTAGGAAT
	GAGCAAGTTG	GGAATTTTAG	ACTGTCACTG	CACATGGACC	TCTGGGAAGA	CGTCTGGCGA	GAGCTAGGCC
	CACTGGCCCT	ACA GACGGAT	CTTGCTGGCT	CACCTGTCCC	TGTGGAGGTT	CCCCTGGGAA	GGCAAGATGC
	CCAACAACAG	CAC GCTCTG	CGAATTCGG	G GGACATCTG	Г TTGGGGAACT	AAGAGCAGCA	GCACTTTCAG
10	ATTCAGTCCA	TATAGAGCTG	TCCTACAGCA	TTCTGGAAAC	TTGAGGATGT	GCGGTGCATA	AACGGGCTGG
	AAGTGACCCA	CCTGTGATGA	GCCCTTTCTA	AGGAGAAGGG	TTTCCAAGAG	ATCACCCCAC	CAGAAAAGGG
	TAGGAATGAG		ATTTTAGACT				
	CTAGGCCCAC		GACGGATCTT				
	AAGATGCCCA		TGCTCTGTCA				
15	GACTCTGCGC		AACGTGCTGG				
	CACCTTCTAT		CTCTAGCCCT		GCTGTTGGGG	TGCTGGTCAT	GCCTTTGGCC
	ATTGTTGTCA	GCC GGGCAT	CACAATCCAC			GACTTGCCTA	CTGCTTATCT
	TTACCCACGC	CTCCATCATG	TCCTTGCTGG		GGACCGATAC	TTGCGGGTCA	AGCTTACCGT
	CAGATACAAG	AGGGTCACCA	CTCACAGAAG				GGTGTCATTC
20	CTGGTGGGAT	TGACCCCCAT			TGACCTCAGA		
	TCCTTTCATG	CCAATTTGTT			CATGGTATAC	TTCAGCTTCC	TCACCTGGAT
	TTTCATCCCC	CTGCTTGTCA	TGTGCGCCAT	CTATCTTGAC	ATCTTTTACA	TCATTCGGAA	
	CTGAACTTAT	CTA/.CTCCAA	AGAGACAGGT	GCATTTTATG	GACGGGAGTT		AAGTCCTTGT
	TTCTGGTTCT	TTTCTTGTTT	GCTCTGTCAT	GGCTGCCTTT	ATCTCTCATC	AACTGCATCA	TCTACTTTAA
25	TGGTGAGGTA	CCACAGCTTG			CTGTCCCATG		
	ATCGTCTATG	CCTATAAAAT	AAAGAAGTTC	AAGGAAACCT	ACCTTTTGAT		TGTGTGGTCT
	GCCATCCCTC	TGA1TCTTTG	GACACAAGCA	TTGAGAAGAA		TTATCCATCA	
	TGTCTCATTG	ACCTTCAGAT			AGGGCCTGTA	TGCCTGGGCC	AAGGGATTTT
	TACATCCTTG	ATTA CTTCCA			GTGCTCCCCA		CCCCACTCCA
30	CTACTCTCTT	CCTCCACTTC		TGTCCTTTCT	CTCTAATTCA	GTGTTTTGGA	GGCCTGACTT
	GGGGACAACG	TATTATTGAT				AAGAATAAGT	CATGGAGCCT
	GAAGGGTGCC		ACTGACAAAA		GGGCTGAACA		GGTGACTCAT
	TTCCATGCCA		GAGCAGAGAA				
	GAAATAAACT	GAGTTTAAGG	GGGACTTAAA (TGCTGAATT C	CAGATTCACA	AACTGCAGGA	CTCCCCACCC
35	AGCAGACAGT	GAGCAAACGC	CAGCAGGGCT	GCTGTGAATT	TGTGTAAGGA	TTGAGGGACA	CTTCCTTTTC
	AGCATGGGCC	CAGGAATGCC	AAGGAGACAT	CTATGCACGA	CCTTGGGAAA	TGAGTTGATG	TOTOCOCOTAA
	AACACCGGAG	ACTAATTCCT	GCCCTGCCCA	ATTTTGCAGG	GAGCATGCCT	GTGAGGATGG	GGTGAACTCA
	CGCACAGCCA	AGGACTCCAA	AATCACAACA	GCATTACTGT	TCTTATTTGC	TCCCACACCT	CACCCACCCT
	GCTCCTTCCC	AGGAGTGGAG	GAGGCCTGGG	GGGAGGGAGA	GGAGTGACTG	AGCTTCCCTC	CCCTCTCTTC
40	TCCGTCCCTG	CCCCAGCAAG	ACAACTTAGA	TCTCCAGGAG	AACTGCCATC	CACCTTTCCT	CCAATCCCTC
	AGTGCACAAG	TGAGTTGTTG	CCCTGGGTTT	CTTTAATCTA	TTCAGCTAGA	ACTTTCAACC	ACAATTTCTT
	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA	ACCTGGAGAG	CACCATTTA	ACAATTICIT
	CACTGATGGA	CAACGAGGTC	TGTGCCAAAG	AAGAATCCAA	TAACCACATA	TTCACCACTT	GGCTCCCCT
	CAGTATTGAG	CACTGTAGGC	AAGACCCAAG	AAGAGAAGG	ACCCATCTCC	ATCTTCAACC	GCTGTATATG
45	CTCAAGTGGG	AACC ACTGGG	CACTGCCACC	ACCAGAAACC	TCTTCCACCA	AICIIGAAGG	AACTCAAAGA
	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAACCTTCCA	COTCALOGA	GACGGTCGAG	CAGGGTGCTG
	GTCCCTGCCT	CAGTICCCTT	AOAOOOOAGAC TATGTAACA T	CAAGGIICCA	GUICAACCAA	TAACTATIGC	ACAACCACCT
	GTACTTAGAA	AAGCAAAGGG	TTATGTAACA	ATCTCACCC	GIGAGGGITA .	AAGGCAGTAA	CAGGTATAAA
	ACTATAAGGA	AAACACACTC	TGCTACGTAC	ATACCTCCC	CALTACGCA	GACGTAACTG	GGATATGTTT
50	GGTGTGAAGC	ACC! GTGTCT	AGGTCTAGAA	ACCTCCTCCT	TOCOMOCOM	CAGTATTGGG	AGCCGGTGGC
	CCTGAGGCCC	CAACCGCCAC	GGCACACAGA	AGGIGCICAT	1GGCTCCCTT	CCACCTGTCA	TTCCCACCAC
	GATGAGGCAG	AGG/ AGATAT	ACACACAGGA	TOTTOGGG	AGAAGGCCAT	GICTICAAAG	TCTGATTTGT
	UNDUDING	AUUMAUATAT	TTCTAATCGG	TCTTGCCCAG	AGGATCACAG	TGCTGAGACC	CCCCACCACC

	100000T100	T000 1000	C.L.C.L.C.T.C.C.L.C.	0.0000.000.00			
						TGTCTCAGCA	
						GAAGAGTGTG	
						AAATGAATAT	
5						AGGGCTAGAA	
3						AAAACCTGAG	
						CTGGAATCTG	
						GGAGGGCTGG	
						GAACCTGGAG	
10						GGGCTAGAAC	
10						CCTGGCAAGC	
						GGCAAAGAGC	
						CCTCCTTACC	
						AGAAAACAGG	
1.5						CATGGTGAAT	
15						CGTGATGGTC	
						TGAGGGGCAA	
						TGTCCTGTGA	
						ATGTAAACAT	
	TGTAGAGCAT	AATAAATGGA	TGAGGTTTTT	GCAAAAAAA	AAAAAAAA	ATGCCGCCCT	CCATCTCAGC
20	TTTCCAGGCC	GCCTA CATCG	GCATCGAGGT	GCTCATCGCC	CTGGTCTCTG	TGCCCGGGAA	CGTGCTGGTG
						CATCGTCTCG	
	CTGATGTGGC	CGTGGGTGCC	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC	ATTGGGCCAC	AGACCTACTT
	CCACACCTGC	CTCATGGTTG	CCTGTCCGGT	CCTCATCCTC	ACCCAGAGCT	CCATCCTGGC	CCTGCTGGCA
2.5						GGTGGTGACC	
25		CATAGCCGGC					TTGGCTGGAA
						AGCCCGTGAT	
						GTGGGTGCTG	
						CTCAACAAGA	
20						AGTCGCTGGC	
30						CCTCTTCTGC	
						TCGGCCATGA	
						ATGACCATTT	
						ATGAGTGTCA	
2.5						GGTGAGGAAG	
35						GGGGCACTTG	
						AGCGCTGCGG	
						CGCGGCCCGG	
						ATGGTGCTTG	
40						CCATCTCAGC	
40						CGTGCTGGTG	
						CTGGCGGTGG	
						AGACCTACTT	
						CCTGCTGGCA	
4.5						CCCCGGAGGG	
45						TTGGCTGGAA	
						CAAGTGCGAG	
		GGAG 'ACATG					TCCTCATGGT
						AGGTGTCGGC	
£0						CCTCATCCTC	
50						CCGTCCTGCC	
						ACCCCATTGT	
	CGCATCCAGA	AGTTCCGCGT	CACCTTCCTT	AAGATTTGGA	ATGACCATTT	CCGCTGCCAG	CCTGCACCTC

	CAGGACGCGC	TGTACGTGGC	GCTGGAGCTG	GTCATCGCCG	CGCTTTCGGT	GGCGGGCAAC	GTGCTGGTGT
	GCGCCGCGGT				CAACTACTTC		
	CGACGTGGCC	GTC GGGCTCT	TCGCCATCCC	CTTTGCCATC	ACCATCAGCC	TGGGCTTCTG	
	TACGGCTGCC	TCTTCCTCGC	CTGCTTCGTG	CTGGTGCTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCCG
5	TGGCAGTCGA	CAGATACCTG	GCCATCTGTG	TCCCGCTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC
	AAGAGGGGTC	ATTGCTGTCC	TCTGGGTCCT	TGCCTTTGGC	ATCGGATTGA	CTCCATTCCT	GGGGTGGAAC
	AGTAAAGACA	GTGCCACCAA	CAACTGCACA				
	TGAAGTGTCT		GTGGTCCCCA				GGTGTGTTCT
	GCCCCCACTG	CTT 4TAATGC	TGGTGATCTA	CATTAAGATC	TTCCTGGTGG	CCTGCAGGCA	GCTTCAGCGC
10	ACTGAGCTGA	TGGACCACTC	GAGGACCACC		AGATCCATGC	AGCCAAGTCA	
	TTGTGGGGAT	TTTTGCCCTG	TGCTGGTTAC	CTGTGCATGC	TGTTAACTGT	GTCACTCTTT	TCCAGCCAGC
	TCAGGGTAAA	AATAAGCCCA		GAATATGGCC		CACATGCCAA	
	AATCCCATTG	TCT.ATGCTTA		GACTTCCGCT	ACACTTTTCA	CAAAATTATC	TCCAGGTATC
	TTCTCTGCCA	AGCAGATGTC		ATGGTCAGGC		CCTGCTCTCG	GTGTGGGCCT
15	ATGATCTAGG	CTCTCGCCTC		AGATACAAAT	_		ACGGCTGGTT
	TTCATTGTGA	AAG ATAGCTA				GAGCACTTCC	CTGGAGCTAC
	CACGTATCTA			AGTAGCACCA			TGATCTATTC
	AGCTGCTTTT	ACTGTGTGGA		AGCTTGAATG			_
	TCTGCCTTGT	· -		AACTATTTA			TTTTTAAAAG
20	AATACTTTT			ATAAAAGTTG			TTATAATGCA
		TCAAAAATTA					TTGTTGCCAG
	ACTTTGGGAG		GCGGATCAC				
		TTAGTTATCC					
		TGGGCTCGGG					
25	TGGGTGCCGC	CTC TGGCCG	CGGGGGGCCC	CGACCCGTGG	GTCCCGGCCA	CCACCCCCC	ACCCCCCAA
		GCA/3GCGGAG					
		GCGCCTTCGG					
	GACGCGCTGT	ACG'TGGCGCT		ATCGCCGCGC			
	CCGCGGTGGG	CACGGCGAAC		CGCCCACCAA			CTGGTGTGCG
30	CGTGGCCGTG	GGGCTCTTCG	CCATCCCCTT			GTGTCCCTGG	
	GGCTGCCTCT	TCC1'CGCCTG	CTTCGTGCTG	GTGCTCACGC	ATCAGCCTGG	GCTTCTGCAC	TGACTTCTAC
	CAGTCGACAG	ATACCTGGCC		CGCTCAGGTA	AGAGCTCCAT	CTTCAGCCTT	CTGGCCGTGG
	AGGGGTCATT	GCTGTCCTCT	GGGTCCTTGC			GTCACGGGGA	CCCGAGCAAG
	AAAGACAGTG	CCACCAACAA			GGATTGACTC	CATTCCTGGG	GTGGAACAGT
35	AGTGTCTCTT	TGAGAATGTG	GTCCCCATGA	GCTACATGGT			TGCCTTGTGA
	CCCACTGCTT	_		TAAGATCTTC	ATATTTCAAT	TTCTTTGGGT	GTGTTCTGCC
							TCAGCGCACT
	TGGGGATTTT	ACCACTCGAG	TGGTTACCTC	TCCATCCTCT	TCCATGCAGC	CAAGTCACTG	GCCATGATTG
	GGGTAAAAAT	TGCCCTGTGC	CCCCAATCAA	TATCCCCATT	TAACIGIGIC	ACTORTICC	AGCCAGCTCA
40	CCCATTGTCT	AAG CCCAAGT	GAACCCACAC	TATGGCCATT	CITCIGICAC	ATGCCAATTC	AGTTGTCAAT
10	TCTGCCAAGC	ATGCTTACCG	ACTCCCAATC	CTCLCCCTACA	CTTTCACAA	AATTATCTCC	AGGTATCTTC
	ATCTAGGCTC	AGATGTCAAG	CACCACAACA	GICAGGCIGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG
	ATTGTGAAAG	TCGC CTCTTC	CTCACAAGGA	1ACAAATCCA	CAAGAAACAA	AGAGGACACG	GCTGGTTTTC
		ATAGCTACAC					
45	CTGCTTTTAC	AATATGTATG	ATGCCAAGAG	CTTC A ATCCA	GATTGACAAA	TATATTTATG	ATCTATTCAG
.5		TGTGTGGATT					
	TACTTTTTAA	ATGGTGGAAA	TOCALALATA	CIAITITACI	GIGAAACAGI	GIGAACTATT	ATAATGCAAA
	GTGGCTGGGC	CTTAGAGGCA A	A A CTCTCTCT	AAGIIGAC IG	TACTAAAA ATG	GAATTCCCAG	ATGGGCAGAG
	TATCTTGCCT	TGG GACCCT	CTCTTTCCAC	ACAAAGGGGT	TTCTCTCTAG	TGGGTTATTC	TTTCATGTGG
50	GACTGATTCC	ACAC CATGCT	ACCTATCTAC	TOGGGCTACCC	CACCCACCC	TETETGACCC	AGCTGAGATG
	GGTTCAAAGA	AAAA.GAACTC	GTGAGAAAGG	CTTCTTTTTTTT	UAGGGAGGGT	TITTIGCAGT	ATTTAACTAA
	TCCTAGAAAT	GTGCTATATA	ODAGADO OTTOOTTO	CITCITITIT	ACATAAACA	TITTTTGGCA	GAGTGCTGCC
	- Omonani	TTCTCTTGGT	ancii(til)	ICIGAAGCAC A	AGATAAAGAA	AACAATTACA	GTAGAAACAT

	TTATGAGGGA	CACATTGGAG	GCCGATGAAG	G CTTTTCAAGT	TCCAGCAGTG	CAGGGATGTG	GGCAGAACTG
	ACATTGGAAA	ATACTAGAAT	GATGGAAATT	CAGTTGGAGA	GGACTGCCC	TTTTAATGTC	TGGGGAGTCT
	GCTCAGGGAG	AAATGACAAG	TCTGGCGGG	G ACAAGTATGO	GATTTGGTAA	GACTTGGATC	AACTTGGGAT
	ACAGGGTGGG	GGTCGGGAGT	GGAATCAATG	AATGATGCCA	GAGCAGATCA	ACTAACAAGA	GGACCCTGAT
5	GAGCCCCAGG	CAC AGGCGTC	TCCCTTATGC	CCCACTCTGA	AGTGTTTGTT	AGTAAACACC	AGAACGCCAT
	TGTTGTTACT	GCTGAATTTT	ATTTTGGGCT	GTACATATTT	AGATGCTTAA	GGTAAAAATG	ATAAAGCCCT
	CAAGCCACTG	TGTGGGTTTG	GGTCCAAGTG	TTCCTTCTTG	CTGCCTCTCT	AACACGCCTG	GTTAAAATAA
	TCCCTTTGGA	TGGTGCTGAG	AAGCACCTGA	ACCAAGTGGG	TCCCCAAATA	ACAATGGCGT	GCAAGTGTCT
	GGTTCCCAGA	AGTTGGTGAC	TAGGTAAGCA	GCTTCAGGGA	GAGGGGGCTG	ATTCCCAGAC	AGTCGCCTGT
10	TCCTGCGGGG	ATG GGGCTGA	GGCTTGGGGA	ATGTGGGCAG	GAGGATATG	C CATTTGATTC	TGTTGCACAC
	GTTCTTTTCC			CATTCTGCTA		CCTCACATAG	GTTGGACATT
	GGCCGGCTGC	CAG CATAAGT	GCCAGTGTGA	TTTTGCTAGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA
	GCAGGTGTGA	TGCTTCTCAG	AGGTGCTGAG	TTTTTGCCCT	TCTGAGCAGC	GAATCTTTGC	TTATCCCTTT
	GACCAAGGAT	CTTTGCTGCA	AAGGCTGGGT	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT
15	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	C AAAGTCTCT	TTTTGTTCCT	CTGCTTCTCC
						CATAGTCAGT	
	CTGCTCCCAC	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC
	GAGCCTTCTC	TAT(3CCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTTT	TGCTGAGAGT	TCTGAGCTCT
	GTACTTCCTC	TTGGCCCATC	TCACTTCCTG	AAACACCCCT	GAAGAGGGTT	GCTTATCTTG	ATGGAACTCA
20	AAAAGCCAAA	AAGCTGCAGG	CAGAGGCGTT	GAGGACATCT	GTTTGGGGAA	CTAAGAGCAG	CAGCACTTTC
						GTGCGGTGCA	
	GGAAGTGACC	CACCTGTGAT	GAGCCCTTTC	TAAGGAGAAG	GGTTTCCAAG	AGATCACCCC	ACCAGAAAAG
						CTGGGAAGAC	
	AGCTAGGCCC	ACTGGCCCTA	CAGACGGATC	TTGCTGGCTC	ACCTGTCCCT	GTGGAGGTTC	CCCTGGGAAG
25	GCAAGATGCC	CAACAACAGC	ACTGCTCTGT	CATTGGCCAA	TGTTACCTAC	ATCACCATGG	AAATTTTCAT
						TGAACCCCAG	CCTGCAGACC
		ATTTCATTGT					ATGCCTTTGG
		CAGCCTGGGC					TACTGCTTAT
		GCCTCCATCA					CAAGCTTACC
30						TGAGGCTACA	
						TGATAAAGCC	
	TGTGTGGGTT	GGGTCCAAGT	GTTCCTTGCT	GCTGCCTCTC	TAACACGCCT	GGTTAAAATA	ATCCCTTTGG
	ATGGTGCTGA	GAAGCACCTG	AACCAAGTGG	GTCCCCAAAT	AACTATGGCG	TGCAAGTGTC	TGGTTCCCAG
2.5	AAGTTGGTGA	CTAGGTAAGC	GACTCAGGGA	GAGGGGCTGA	TTCCCAGACA	GTCGCCTGTT	CCTGCTGGGA
35	TGGGGCTGAG	GCT GGGGAA	TGTGGGCAGG	AGGATATGCC	ATTTGATTCT	GTTGCACACG	TTCTTTTCCC
	TTCTTTCTGT	ATGTCTGGTC	ATTCTGCTAT	TCTGTCGTTC	CTCACATAGG	TTGGACATTG	GCCGGCTGCC
	AGCATAAGTG	CCAGTGTGAT	TTTGCTAGGG	TGTGAGCTGA	GAAAGAGAGG	TGGAGGCTAA	GCAGGTGTGA
						TTATCCCTTT	
40	CTTTGCTCCA	AAGG CTGGGT	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT
40	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTTGTTCCT	CTGCTTCTCC	CGTTTGCCTC
	CTTATCATGA	GATCTTTTTG	CTAAGCTGGC	AGAAAGATTG	CATAATCAGT	GCTTCCAGCT	CCGCTCCCAC
	CIGATCCIGC	ACTC TCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC
						TACTGAGCTC	
15	CITGGCCCAT	CICACITCCT	GAAACACCCC	TGAAGAGGGT	TGCTTATCTT	GATGGAACTC	AAAAAGCCAA
45	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGGA	ACTAAGAGCA	GCAGCACTTT	CAGATTCAGT
	CCATATAGAG	CTGTCCTACA	GCATTCTGGA	AACTTGAGGA	TGTGCGGTGC	ATAAAGGGC	TGGAAGTGAC
	CACCLACTIGIGA	IGAGCCCTTT (CTAAGGAGAA	GGGTTTCCAA	GAGATCACCC	CACCAGAAAA	GGGTAGGAAT
	CACTEGGGGG	GGAATTTTAG	ACTGTCACTG	CACATGGACC	TCTGGGAAGA	CGTCTGGCGA	GAGCTAGGCC
50	CCAACAACAC	ACAC ACGGAT	CITGCIGGCT	CACCTGTCCC	TGTGGAGGTT	CCCCTGGGAA	GGCAAGATGC
50	ATTCACTCCA	CACIGCICIG	CGAATTCGGG	GGACATCTGT	TTGGGGAACT	AAGAGCAGCA	GCACTTTCAG
	AAGTGACCCA	COTOTO	CCCTACAGCA	TTCTGGAAAC	TTGAGGATGT	GCGGTGCATA	AACGGGCTGG
	AAGIGACCCA	CCIGIGAIGA	GCCCTTCTA	AGGAGAAGGG	TTTCCAAGAG	ATCACCCCAC	CAGAAAAGGG

			TGCCATTATC				
			GCCCTGGTGA				
			TCTGGGGGTG				
_			GGGCCACAAC				
5			CTGAATGTCG				
			TGCGGAACAA				
			TGTGCTGCTG				
			CTCGGCATCC				
	ACAGATCGCC	TCCTTCATGG	CCTACAGCAA	CAGCTGCCTC	AACCCACTGG	TGTACGTGAT	CGTGGGCAAG
10	CGCTTCCGAA	AGAAGTCTTG	GGAGGTGTAC	CAGGGAGTGT	GCCAGAAAGG	GGGCTGCAGG	TCAGAACCCA
	TTCAGATGGA	GAA CTCCATG	GGCACACTGC	GGACCTCCAT	CTCCGTGGAA	CGCCAGATTC	ACAAACTGCA
	GGACTGGGCA	GGG AGCAGAC	AGTGAGCAAA	CGCCAGCAGG	GCTGCTGTGA	ATTTGTGTAA	GGATTGAGGG
	ACAGTTGCTT	TTC# GCATGG	GCCCAGGAAT	GCCAAGGAGA	CATCTATGCA	CGACCTTGGG	AAATGAGTTG
	ATGTCTCCGG	TAAAACACCG	GAGACTAATT	CCTGCCCTGC	CCAATTTTGC	AGGGAGCATG	GCTGTGAGGA
15			CCAAGGACTC				
	CCTGAGCCAG	CCTGCTCCTT	CCCAGGAGTG	GAGGAGGCCT	GGGGGCAGGG	AGAGGAGTGA	CTGAGCTTCC
			CTGCCCCAGC				
			AAGTGAGTTG				
			TAAAGGTTAA				
20			GGACAAGGAG				
			GAGCACTGTA				
			GGGAACGACT				
			TATGGACAGC				
			GCCCTTCAAA				TGGCTTCTGG
25	GCTCCGAGGA	GGGGTGGGGA	CGGTGGTGAC	GGTGGGGACA	TCAGGCTGCC	CCGCAGTACC	AGGGAGCGAC
			CTCCGGAGAA				
			CCAGCACAGA				
			TTCA ATATTTT				
			GTGGACTCTG				
30			GCCCCAATGT				
			CTCAAGAGCC				
			CTCTGTTTCC				TTGCTGGTTT
			GTCACAGGGA				CTGGCCCTCC
			TGGGCCCACT				
35			CCCTGCCCTT				
			TGAGCAAAAC				
			CGGCCGCGTG				
			TTGGGAGCCG				
			CACCTTCCGC				
40			ATAATGATAA				
			CAGCCGGGAG				
			TTCCAAGAGC				
			CCCGGCCCCA				
			GCCCAGGAGG				
45			GGCTTCTGGG				
			GGGAGCGACT				
			CCTCACCTCT				
			GTTTCCCTGT GC				
			CTGGGCAGGG				
50			GTTGCTTTTC				
			TCTCCGGTAA				
			GGTGAACTCA				

	TAACCACCTC	A A C A A C A T A A	ATA ATC ATA A	C	TT 1 CCCC 1 CC	G t t t man t man	a. a. maaaaa
		AAGAAGATAA					
		ACTITGTGGT					
		CATCGAAATC					
_		CCGCAGCCTT					
5		AGGGGAAGT					
		CTCCAGCTCT					
		CGC# GTACCA					
		GCTC'CAGCCG					
		GCGGGGAGAA					
10		AACTGCAGGA					
		TTGAGGGACA					
		TGAGTTGATG					
		GTG# GGATGG					
		TGCCACACCT					
15	GGAGTGACTG	AGC TCCCTC	CCGTGTGTTC	TCCGTCCCTG	CCCCAGCAAG	ACAACTTAGA	TCTCCAGGAG
	AACTGCCATC	CAGCTTTGGT	GCAATGGCTG	AGTGCACAAG	TGAGTTGTTG	CCCTGGGTTT	CTTTAATCTA
	TTCAGCTAGA	ACTTTGAAGG	ACAATTTCTT	GCATTAATAA	AGGTTAAGCC	CTGAGGGGTC	CCTGATAACA
	ACCTGGAGAC	CAGGATTTTA	TGGCTCCCCT	CACTGATGGA	CAAGGAGGTC	TGTGCCAAAG	AAGAATCCAA
	TAAGCACATA	TTGAGCACTT	GCTGTATATG	CAGTATTGAG	CACTGTAGGC	AAGACCCAAG	AAAGAGAAGG
20	AGCCATCTCC	ATCTIGAAGG	AACTCAAAGA	CTCAAGTGGG	AACGACTGGG	CACTGCCACC	ACCAGAAAGC
	TGTTCGACGA	GACGGTCGAG	CAGGGTGCTG	TGGGTGATAT	GGACAGCAGA	AGGGGGAGAC	CAAGGTTCCA
	GCTCAACCAA	TAACTATTGC	ACAACCACCT	GTCCCTGCCT	CAGTTCCCTT	TTATGTAACA	TGAAGTCGTT
	GTGAGGGTTA	AAGGCAGTAA	CAGGTATAAA	GTACTTAGAA	AAGCAAAGGG	TGCTACGTAC	ATGTGAGGCA
	TCATTACGCA	GACC TAACTG	GGATATGTTT	ACTATAAGGA	AAAGACACTG	AGGTCTAGAA	ATAGCTCCGT
25	GGAGCAGAAT	CAGT'ATTGGG	AGCCGGTGGC	GGTGTGAAGC	ACCAGTGTCT	GGCACACAGT	AGGTGCTCAT
		CCACCTGTCA					
		GTCTTCAAAG					
		TGCTGAGACC					
	GGACTGTTCC	TGTCTCAGCA	ACCAAGGGAT	TGTTCCTGTC	AATCAATGGT	TTATTGGAAG	GTGGCCCAGT
30		GAAC AGTGTG					
		AAATGAATAT					
		AGGC CTAGAA					
	TAGAGAAGCT	AAAA.CCTGAG	CTAGAAGCTG	GAGGACTAGA	ACCTGGAGGG	CTGGAATCTG	AAGGGCTAGA
		CTGC AATCTG					
35	GCTAGAACCT	GGAC GGCTGG	AATCTGGAGA	GCTAGAACCT	GGAGGGCTAG	AACCTGGAGG	GCTAGAACCT
	AGAAGGGCTA	GAACCTGGAG	GGCTAGAACC	TGGCAGGTTA	GAACCTAGAA	GGGCTAGAAC	CTGGAGAGCC
	AGAACCTGGA	GGGCTAGAAC	CTGGAAGGGC	TAGAACCTGT	AGAGCTAGAA	CATGGAGAGC	TAGAACCCGG
	CAGGCTAGAA	CCTGGCAAGC	TAGAACCTGG	AGGGAATGAA	CCTGGAGGGC	TAGAACCTGG	AGAATGAGAA
		GGCAAAGAGC					
40		CCTCCTTACC					
		AGA#.AACAGG					
		CATGGTGAAT					
		CGTCATGGTC					
		TGAGGGGCAA					
45		TGTC CTGTGA					
		ATGT'AAACAT					
		AAAT/GATAGA					
		ACATCTGTAA					
		GGCCAACATG					
50		TGATCCCAGC					
		AAGA.TTACGC					
		AAA 4AATTAC					

	CAGGAGGCC	TCTCAGAGAG	GAAAGCTCCT	AGGTCTTCCT	TTCCCTCTGC	AAACTCCCTG	CCTTGAAGGT
	TCAGAAGGAC	TGTGCGTGCT	CGTTGCATCC	TTTGCAAGTG	TCCAAACCCT	GATCCCAGCT	GTGCTTAGGG
	GTTCCTGCAA	ACC TTTCCA	GGTGTTAATT	ACCTCCCACT	TCATTTCCTG	TTTACCAACT	CAGCTTTTTG
	TTTTAGTGTG	TTTGAATTCC	CTGAACTGAC				TAGGGGAGCT
5						GATGTGGCAG	
	ACATTCATGC	ACAC'ACACAC	ACCCACATAC	CCACACATGC	ACACACACAC	ACACACCCGC	ACTCACACAC
						CTTGGTATCC	
	GTGAAGTCCT					GGGACTGAGA	
	CCAACCCATC					CATGCCTGCC	
10	GGAGTGATGT	GAAA.CTTGAA	GGGCGGTCAG	${\bf AGCAAGGGTC}$	GGGAATGGAA	GGCCCTTGGG	AAAAAAGGCC
					TTGACAGCAC	CTTGTAATTG	GTAAGCCAAG
	CCCGAAGGGA	CTGGAAATAC	TCAGATGTGT	CTGTCTCCCT	TATTAGGTTC	AAAGTCCCTC	AAGACCCTGT
						CTGGACCCAA	
	GGGGTCGCAT	CCCCACCTGC	CTGGAATTCT	CCAAAGAACC	TCCCCTTTAA	CAGTTCCAGC	CTTTAACAGT
15	TCCAGTCTAA	ACACATGACC	TTTCTCCTCT	AAATCAGCCC	CCCATCTCTG	CCTTTGCAGG	AGATGGAAGC
	CATGACACCT	GCC1'CGCCCC	TGTCCTCACC	CCATCCATGT	CCAATCAAGC	ACTAGGCATG	TCAGGTTTAC
	CCTCTAAACT	CCTCTGGAAT	CCAGTCTCTC	AGTCTCCATC	ATCCCAGGTC	GAAGCTAATG	GGCTAACTGG
	TCCTTGCTTC	CACTCTACCC	CCACTGCAGT	CCTGACTTCC	TGAGCAGCAG	CCAGGGCCTA	ATCGATATTC
	ACACCAAGCG	CCAACCTGAC	TGAGATATCC	TCCTGCACCA	TCATCCCTCC	ACCCTGTTTA	GTTCTGCTCA
20	CCCTCAGTGT	TCTCATCAAT	AATCCACTCC	CCTCACAGGC	GCGTTTGGGA	CCCCATGTTC	TATGCTCTCA
	CAGGACCTTT	TGC1TGATTT	TTCACTGTAC	TTAGGTCAGT	TTGCAGTTAT	TAAGTGACTG	AGCAATGTCT
	GGCTTCTCCA	GTAGACTGTC	AGCTCCTAGC	CATTGTATAC	CTAGCACCGC	TGTGTGGGAG	CACGTGACAA
	ACGTCCAGTG	AGTC'AGGGAC	TCAGCAGTCT	CCATTTCTCC	GCCCTGCTGG	AGAATGCGTG	TATTTGGCAA
	TCCCCAGCCC	CTG1GCCATC	TAACCATCTT	TTCTTCTCTG	TTCAGCCCAG	GTGTGGCCTC	ACTCACATCC
25	CACTCTGAGT	CCA#.ATGTTC	TCTCCCTGGA	AGATATCAAT	GTTTCTGTCT	GTTCGTGAGG	ACTCCGTGCC
	CACCACGGCC	TCTTTCAGGT	GAGTCAAAGG	GATTCCTCAG	TTCACTAGTT	AGGGGAGGTG	GGCAGACACC
	CTGGAGAACT	CCCTGGAAAG	CTCAACTCTC	ATGCCCCGGA	CAACAGTTGA	AGGAACCATG	GTGATGTTAA
						AGCAGAGGGA	
	GTCTAGAGGA	AGAGGGGCTC	AGGGAGGAGA	AGGGCACATT	CCTGGTTGTT	ATATGTTTCT	ATCTATCCCA
30	GATGAACTTG	GAAC TGAAGG	GAAGAGAGTT	AAACATTAAA	GTAAATACCC	AGTGGATCAG	ACAGCAATGT
						TGGGAGATCA	
						AGAGGATAGG	
						CTCCACCCTG	
						ACTGGACCTA	
35						AGGGATGGGC	
						TACTTTGGTC	
						GGTTTTCTGT	
						AGAGGACTCT	
						CTCTGTTCCA	
40						GTAACTGGGG	
						TCACATGGCG	
						GACCTAGCCT	
						GAGGAAGCAG	
						CACCACAGGG	
45						CCTCACTTCC	
						TCCTGTCCAA	
						GCTGTTCCCC	
						CAGCTCTAGA	
60						GCTCCCTCCA	
50						GTGTCTTCTT	
						GATAGAAGCA	
	GGTCCCCCAG	TCTGGCTCCA	GGATGCCAGC	CAGCTGCTCC	TAGAAGCAAA	CGGACTTTTC	CTGGGAAATC

TTGCCCTGGG TTTCTTAAT CTATTCAGCT AGAACTTTGA AGGACAATTT CTTGCATTAA TAAAGGTTAA
GCCCTGAGGG GTCCCTGATA ACAACCTGGA GACCAGGATT TTATGGCTCC CCTCACTGAT GGACAAGGAG
GTCTGTGCCA AAGAAGAATC CAATAAGCAC ATATTGAGCA CTTGCTGTAT ATGCAGTATT GAGCACTGTA
GGCAAGAGGG AAGAAAGAAA AGGAGCCATC TCCATCTTGA AGGAACTCAA AGACTCAAGT GGGAACGACT
GGGCACTGCC ACCACCAGAA AGCTGTTCGA TGAGACGGTC GAGCAGGGTG CTGTGGGTGA TATGGACAGC
AGAAGGGGGA GCCAGGTTCC AGCTCACCAA TACTATTGCA CACCACCTGT CCTGCCTC CTGCAGAAAA
CAGCCTGAGC TCCACCTGG CTTCTCCTTG CCCTGGCTGG TTGTCCTTAA CCCCTGTCTC CTTCTGGACC
AGTTTTTGTC CTTCCTTGT GACCCTGAGG GGTAACAGCC TCTTTTCCAC TTTCTTTCAG CGCCGACATG
CTCAATGTCA CCTTGCAGAG GCCCACTCTT AACGGGACCT TTGCCCAGAG CAAATGCCCC CAAGTGGAGT
GGCTGGGCTG GCTCAACACC ATCCAGCCC CCTTCCTCTG GGTGCTGC CAGAGAATCCACC CCCTAGAGAA
CATCTTTGTC CTCAGCGTCT TCTGCCTGCA CAAGAGCAGC TGCACGGTGG CAGAGATCTA CCTGGGGAAC

	GATCTTCATG	TGGAATGACT	GGTTTCATTC	AATAGACTTA	ATTCAGCAGT	CTGTGGGGAA	GAGCAAGGTA
		GTTCCTCAAG			TTTAAATATA		CTTCTTCAGA
	GTTTTGGTAA	AGATAAAATA				TGACAAGCCA	
					TCCTGGAAGA		TTGACCTAGA
5						TGTATTTAAA	
						AAAATAAAAT	
		CCAT'AAGTAA				GCCAGATTAG	
					CAGACAGCGG		AATCAGATGA
						AGCGTTGGTA	GCTCTGGTGA
10	ATCCCAAAAG	AATTTGGCAG			TATGTATAAA		TATGACTAAG
	AGTTTGACTT	AGGGGTTAGA	TTTTATGTGT	TTGAACCCCA	AATTAGTTAT	TTAATAGTTG	GCACCCCAAA
	ACAAGTTACT	TAACCTCACT	AAGATTCAGT	TTTCCTGTTT	ATAAAATGTA	GATAGTGATA	GTATGTACTT
	TATAGGATTA	TTGTGAAAAA	TAAATGAAAT	ATCAGATTTA	TTTAGGATAA	CACCTGGCAT	ATGTTTGGTA
	TTCAGTAATT	AGT1GCTGCT	GTTTTATTCT	GCTCTCCCTT	GCATCCCACT	TTTCTAAGTT	GTAAACTAAA
15	TAGTTGTACA	CAGATTGACA	GATTAAGAAA	GGCTTGTGAT	TGTGCTAGAC	CTATGCCTCT	CTCTCACCAG
	ATTCCAGGTG	TATATGTGGA	GGTGGGATAG	GGAGTGGAGT	AAGTGGGTAA	ATATTAAATT	GCCCAGTTGG
	GCACCATCCT	GAATATTATC	TCTAAAGAAA	GAAGCAAAAC	CAGGCACAGC	TGATGGGTTA	ACCAGATATG
	ATACAGAAAA		TGCTTTTTGG	TTTTAAGCCT	ATATTTGAAG	CCTTAGATCT	CTCCAGCACA
	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG	CTCCTGCCAT	GGAATCCCCT	ACTCTACTGT	GTGTAGCCTT
20	ACTGTTCTTC	GGTAAGTAGA	GATTCAATTA	CCCCTCCCAG	GGAGGCCCAA	ATGAATTTGG	GGAGCAGCTG
	GGGTAGGAAC	CTTT'ACTGTG	GGTGGTGACT	TTTTCTAGGA	CATGTGCAAA	CTATTGGGCA	TTTCCCAGGG
	ACTCTGTAGT	GGAGCCAAGC	TAGAAAGCAG	AGGCAAGTGG	GCTGAGCAAC	ACCTAAGGAG	GAAGCCAGAC
	TGAAAGCTTG	GTT(CTTGCA	TTTGCTCTGG	CATCTTCCAG	AGTGCAAATT	TCCTACCAAG	GTAATGAGGG
	TAGAGGAGAG	AAA/JAAGCTC	TTTCTTCCCC	TGATTCTCAT	TCCTGAAAAG	ACGGTTGGTC	CTTAAAATTC
25	CATGGATGTA	GAT('TTATCC	CCACACCCAG	ATTCTAGTCC	TCTGGAGATA	AAGAAGACTG	CTGGACACTA
	ATGTATCCTC	TCTGGACTTT	TGCAGCTCCA	GATGGCGTGT	TAGCAGGTGA	GTCCTCTGTT	CTTGTTCCCT
	TGGTGTATCA	ACATGTCTGG	GCATTGCTTT	CCTCTCACTA	TTTTCTTCGT	CCCATCACTT	CTGCTTTCTA
	ATGAGCATGA	ATCTGTTCCT	TGGCCAGACT	ACTTTCCCTC	TCCACCTTGC	CTTGTCTTTC	TTTTTTTCCC
	TGATTCATTG	CATTCTCTCA	AGTCATTCTC	TCCTCTGTTT	TAGTCAATAA	CCATGTCTGT	TGCACATATA
30	CATGTCTCAT	TCTCTCTCCT	AGACACTTTG	GCATGATCTC	GCTCAATAAT	TACATTATTA	TTATTATTGC
	CATTTTATAA	TTGAGGATGC	TGAAACTCAG	TGATTTTCTG	GTGGTTACAT	GGCTAAGGAA	CTGGATTTCA
	ACGTAAGTTC	CTTCGATCTA	AGTCCAGTTC	TCTTCTGACT	ATATCACCCT	TTTGTTATCA	CCATGTATCT
	ACTTCTTTGG	TCTCTGTTCA	AATTTGCACT	ACATCCCCTT	GTTCCAGGAA	GCCATTCAAG	ACTGACTTTC
	TTAGTGCCTC	TCACTACTTT	CTGGAACTGA	CATATGTTTT	TCACTCTGTA	TATACTTACA	ATTAAATAGT
35	CATAAATATT	CAGAGCTTGG	AGAAACCTTA	TATTTCATCC	AGTCCAGTAA	ATTTATCCAT	CCATAATTCA
	CTCATTCATT	CACATAATAA	ATATTTAATG	TAACAATGGT	TGAACATGGC	AGACAGTGTT	TCTACCTCAA
	AAGAGATTGC	AGTCCTCATT	TACAGATACT	GAATTGAAAT	TAACAGAAGT	${\bf AGAGTGAGTC}$	AGCTCAAATC
	ACATAGTGAA	TTGGTTTCTT	TGTTTTTAAA	TCTCCTGCAT	ATGTGTCCTG	TCTTTCTCCC	TGTGTTGGGC
						GGGTCTTATC	
40						TAAGCCTAGA	
						CCCTCAGAAA	
						ACATGTAATG	
						AGACAAATTC	
						ACAAGTTAAT	
45						GATCTCTCAT	
						GAGTGGGATT	
						CCCAGCACTT	
						TGAAACCCCA	
						CCCAGGTACT	
50						ATCACGCCAC	
						AAAGACCCCT	
	TCTTCTACCC	CCTTCCCTTT	TGATTACTTG	TATGCCTTCT	TTCAATATTC	TAGTCATCTC	TCAATATTAT

TTGTCCCATC TAATCACTTG GATAGTGTTC AGGTGTTCTT GGTCAGTTAC TTGGATGCTC TGAGCTTTAG TTTCTTGGTG ATTACAATGA AGATTTGAAT TACAGGATGG CTTTGAAAAA ATAAACAAAA CTCCCCTTTC TGTCTGTCGA GAATGTTGCA CAGGGAGTTA CAGAATGTTC TCATGACTGA ATTGCTTTTA AATTTCACAG TGTGCCTGCA TTTGAAGTCT TGGAAATATC TCCCCAGGAA GTATCTTCAG GCAGACTATT GAAGTCGGCC TCATCCCCAC CACTGCATAC ATGGCTGACA GTTTTGAAAA AAGAGCAGGA GTTCCTGGGG GTGAGTGAGC CTCCTCCAAC TTTGACTAGA GTAAGGGTTG GGTCTAGAAA AGAATATTGA GTTGCATCAA CTGTTTTCCC ACTTGGATTC ATGAJAGGTG TTAGGTCCTT TAAAAAACAT GGTAGATAAA GAGTTGACAC TAACTGGGTC CTTTTGGGAA GAGCCAGAAG CATTTCCTCA TAAAGACTTT AAATTGCTAG GACGAGAATG GCCAACAGGA GTGAAGGATT CATAACTTTA TCTTTACTTA GATGTAAAGA ACAATTACTG ATGTTCAACA TGACTACATA CATAAAGGCG CATCGAGAAA AGTATTGGCC TTCCATGCAT TAGGTAGTGC TTGTATCAAT TCTTATAGTG GCTAGGGTAT CCTGGAAAAT CTTACGTGTG GATCATTTCT CAGGACAGTC TAGGACACTA ACGCAGTTTC TCATGTTTGG CTTCTATTAT TAAAAAATGA TACAATCTCG GGAAAATTTT TTTGATTTTC ATGAAATTCA TGTGTTTTC TATAGGTAAC ACAAATTCTG ACTGCTATGA TATGCCTTTG TTTTGGAACA GTTGTCTGCT CTGTACTTGA TATTICACAC ATTGAGGGAG ACATTTTTC ATCATTTAAA GCAGGTTATC CATTCTGGGG AGCCATATTT GTGAGTATAT ATCTATAATT GTTTCTGAAA TAACACTGAA CATAGGTTTT TCTCTTTCTC AGATCTAACC AGTIGTTTAT TCCCAGTATT AAGATGATAT TTATAATTCT TAATTATAAA TATATGTGAG CATATATAAC ATAGATATGC TCATTAACAA CAACAAAAGA TTCTTTTTAC AATTAACGGT GGGTTAAACA TTTAGCCCAC AGTTITATCC CATGAGAAAC CTGAATCTAA TACAAGTTAA ATGACTTGCC TAAGGGCCAC TTGACTAATA GTAATTGAAC CTAAACTTTC AGAATCCAAC TCCAGGAACA TACTTCTAGC ACTATTCATC AATAAAGTTA TATGATAAAT ACATACAACT TTATCTGTCA ACTAAAAATA ACAACAGAGG CTGGGCATGG TGGCTCACAC CCGTAATCCC AGCACTTTGG GAGGCTGAGG CAGGTGGATC ACCTGAGGTC AGGAGTTTGA GACCAGCCTG ACCAACATGG TGAAACCTCA TCTCTACTAA ATATAAAAAA TTAGCTGAGT GTGATAGTGC ATACCTGTAA TCCAGCTACT TAAGAGGCTG AGGCAGGAGG CTTGTTTGAA CCTGGAAGGC AGAGGTTGCA GTGAGCTGAG ATTGTGCCAT TGCACTCCAG CCTGGGCAAT AAGTGCGAAC TCTGTCTCAA AATAATAATA ATAATAATAG AAAATAAAGT TGTCTTCATG AAAAATGAGG AAAGAGATTG CTGGGGTGAG AAACATTAAG ATCAATGGC ATAIGGTGAC CTTCTATGCC CTAGAAACTC TTTTANGGTA TTTTCTCCTG GTATCTCTTT TACNCATCGT TCTA'ICTGGA AAAATAGGTG GATGAGTGAG ATAATAACGG TATATACTTT TTAAAGGTCT AATTGACATA TATAAATTGC AAGTATTTCA GATGTCAATT TGCTAACCTT GACACACATA GACACACATG AAAACATCAC CACATTAATA CAATGTATGT ATCCATCATT CCAAAAGCTT CCCTGTGTAT CTTTGTAACT CTTTCTTCCT CCCTCCACTC CTTGTCCTCT CGTTCCCAAG AAAACATTGA TCTGCTTCCT GTGAATATAA ATTAACTTAC ATTTITTAGA GCTTTATATA AGTATGTTCT CTTTACTGTT TGTCTTCCTT CGCTGCACAG TTATTTTGAG ATTCITCAAG TTTTTTCTTT ATATCGATAC TTCATTCACA AGAATATATT TTAATTCTAG ACTATGTCAC ATTGACTTTG TCGTCTGCTA AATCCTTAGT GCTCAGATGA CTTGTTCAGG ACTCTCCTTG AACCTGTACC TCTGTTANAT TGAAACTTGT CTCTACTGTC TTTTTATTTC AAACACAGCT TATTAGGTGT CTCTCAACCC ATCAAACNCA CAATCTGAGT CTTTAGGAGA TTGCTTTGAA TTTGTGCTAT TGACTTATAT NTATATNAAA TNTGTAAATG TTTGGTAAAA ATATCATCAT GTACNTTTTC ATAATTACGC TATNTNCACA TGATATATGT CAGACTCTGG AAATATGCAT GCCACAGACA CGTGTTTCTT GCCTAAAGGG GCTGATGGAA GACNCACATA CNA₽TAGACG ATTGCAGTAG AATGAGAGTG GTGGTCTAAN CAGTACATGT CCTGATGTTG CTCGGACAGT TACTACNCCA AGAGTACCCC CTGCATTGTC AGGGTTAGCA TCTCCTGGAA GCCTCATGTA AATGAAGAAT TTCATGCTCC ATCCAGGACC TAATGAATAA GAATCTGCAT TTTAGCAAGA CCCTCATATG ATTCATATAC ACTTITTTT TTTTTTTTA GATGGAGTCT CACTCTTGTC GCCCAGGCTG GAGTGCAATG GCATGATCTT GGCTCACTGC AACCTCTGCC TCCCGGGTTC AAGTGATTCT CCTGTCTCAG CCTCCCTAGT AGCTGGGACT ACACGTGCAT GCCACAGTGG CTGGCTAATT TTTGTATTTT TAGTAGAGAC AGGGTTTCAC CATTTTGGTC AGGCTGGTCT TGAACTCATG ACCTCCGGTG ATTCCCCCGC CTCGGCTTCC CAAAGTGCTG GGATTACAGA CATGAGCCAC CACACCCGCC TTATTCGTAT ACNCATTTAA TTCTGAGAAG CACTCTATAG AAAATAAGAA TAAGAAATA TTGGGCTCAC AGGTGACATT AATAAGTAAC TTTATCGAGT ACCCCAAATT TTACCTATGT TTGG.\AGATG GGGTTAAAAG GACACATTGA AAACAAGAAC TCATTGTGGC TTTTTTTTCC TCCTTTTTGA ACAGITTTCT ATTTCTGGAA TGTTGTCAAT TATATCTGAA AGGAGAAATG CAACATATCT GGTGAGTTGC CCGTTTCTGT CTTTGTCCAT CCTTGAAAAG ATAAGAAGAA CAGAGTTTTA AGAGTCTTAA GGGAAACACA TCTTTGTCTC CTATATTACT TGTGAATGTG GATATATGAT TTTGTTTCAA TCTATTTTGT GTCCTAAGGC TTTTIGCAAC AGAAGTTGGA TATATCATTA GAAACATAAA TTGTACCATT TAACATACAT GAAGTTTATG TTTACCTTGA CGTTCTTCTA AAAAGTGTCC TACACCGGCA TTGTCCTTGT AGGCATATTC

50

0 Human Enzyme-related Antisense Polynucleotide

					AAACTTAAGT		
	ATGCTGTGGA	GCTC TCTTAC	TAGCCCCAGA	CTACCTGCCT	CTCAATTTCT	AATTATATCA	GTGAAAGCAA
	ACAGCTTTGA	TTTGTTTAAG	CCTCTGATTT	TTTGGTCTAA	CTGATGTAAG	ACCACAAGGA	CAAGAGTTCT
	CCAGCTCCGG	ATTCTCTTCT	GTTCTGTTAA	TGGTGAAATG	CCCGAGAGAA	GAGTTGCCAA	CTTTGGCAAA
5					ACAACAATTT		
					TTCATCTGAA		
	TCTGAATATT	CTCTGGCAAC	CCCCGAGAGA	GTGAAGAAAG	TGGTACAAGG	ACACTTAAGA	AGACCAGATT
	TGAAAAGACA	TTAC'GGATGT	GTTTAAATGT	CTTATTCTAG	AGAGAGTTAG	AGCTGTAGGT	AGAACTTGGG
					TACTAAGGAG		
10					AGGCACTTAT	ACACTACTCA	
	TGAACTAAAT	GCCTTATAAA	TCTCCAAGAG	AAATGACAGT	CCACCATGTG	GACTGCTTTC	TGTAAGTCCA
	GGGAAAATAA	AAGCTATGTG	CTTGAAACCC	ACTTCTGATA	TTATAAGGTG	TGTGATCTTT	GTCATGTTAA
					ATGGTGTGTC		
	TTGATTCTTA				GAGCAAACAC		
15	CCTGCACATT				GTGCTAGAGC		
	TATCAGGAAA				TGATTTAAAA		
					GAAAGTAATA		
					AATCCCAATT		TAAAGTTCTG
	TCCTAGGGTC		CCACATCTAC			GTCTTTTTCA	TGTGGTTCAG
20	AGGAGGAGAG	AGA'`CCAGGT	CAATGTTTTT	CAAATTACAA	GGAATTATCA	TTTAAATGGG	GAAGAAGCTC
					AATGGAAACT		
	GGTTAAGATA	AAGATTGTTT	CCTGAAACCT	TTAATTTGTG	CTTACATACT	CACACATACA	TATGTGCATG
	CACTGGGACT				AGCCATAAAA		TGAACGTTCA
	GTGGGCCTTT	CACAAGCTGC	CCTAATTGGG	AAAGAAAAAC	ATGGTCCCTC	CATTTCCTGC	CCCCAACTCC
25	AGAAAAGTCA	CCATAGTTGA	GGGTACATCT	GAGAAGCCAG	CACTTGGGAG	TTCAGGGCTC	AAGTTCCTTT
	CTAGAAAAAC	ACTGGGTGAT	TCTAGGGGAA	CTTCCGATCA	GAAACAGCCA	ATTCAGAGTG	AGAGAAGAAA
					CTCTTGCCTT		
					TGGGAAGATG		
					TATCAGGGTT		
30					GACTCCTAAA		
					CCACCCCACC		
	TTCTCTACAG	CCTA/3GACAC	CCCCAGGAAC	AAGGAATTTC	ACCTCAATTG	TAGAAAAGCC	CAGAGCAAGT
					CTTAATCTTC		
					TATGGAGAAA		
35					AAGGTGGGAG		
					GGGAGGTTAT		
					GAGAATGAGA		
					TGGCCGTGTT		
4.0					TCCCGCCCCT		
40	GTAACTTCCA				TTATAAGACG		
					TCCAAATGGG		
					CTGGGTCTTG		
					CCTTGAGCCT		
15					TTGCAGTAGC		
45		CGGCTCACTT			CAGGGCCACT		
					TATGGGAGCA		
	CCCCCACTTT				GGCTGGCCCT		TCCCTGAATT
					TTCAGTCCCC		
50					AGCCTGAGCC		
30					AGAGTTTAGT		
			AGCCATCACT				
					AGACACATGG		
					CACGATATCA		
55	CCTCTCTTCT	CCCTTTCCAC					
33					CTCCCTGATC		
					AAGGAGAAAG		
					CTGGGAGAAT		
					AGAGGTGAAG		
60					CTGTGTGTGG AAACTCACTG		
00					GGGTGAGCAT		
					TGCACTGGGG		
	COLOGICCAA	Grandelle	UNCCATCUAL	ICCAUICIAC	TOCACIOGGG	OCVIDOODIA	ACIGIGGAGA

					ATTCCTTGAT		ACATGAATTG
						C AGTAACATGO	
	GAGCGTGGCC	CAGGAGCCTG	GGCCACCCTG	CGGCCTGGGG	CTGGGGCTGG	GCCTTGGGCT	GTGCGGCAAG
	CAGGGCCCAG	CCACCCCGGC	CCCTGAGCCC	AGCCGGGCCC	CAGCATCCCT	ACTCCCACCA	GCGCCAGAAC
5	ACAGCCCCCC	GAGCTCCCCG	CTAACCCAGC	CCCCAGAGGG	GCCCAAGTTC	CCTCGTGTGA	AGAACTGGGA
	GGTGGGGAGC	ATCA.CCTATG	ACACCCTCAG	CGCCCAGGCG	CAGCAGGATG	GGCCCTGCAC	CCCAAGACGC
	TGCCTGGGCT	CCCTGGTATT	TCCACGGAAA	CTACAGGGCC	GGCCCTCCCC	CGGCCCCCCG	GCCCCTGAGC
	AGCTGCTGAG	TCAC GCCCGG	GACTTCATCA	ACCAGTACTA	CAGCTCCATT	AAGAGGAGCG	GCTCCCAGGC
					GCCACAGGCA		TAGGGAGAGC
10						GGGCCGGATC	
					GGAAATGTTC		GCAACCACAT
						CGCAGCGCTG	
						GCAGCAGGAC	
						TGGACCCCAG	
15					CCCCCAGAAC		
13							GCCCCCGAG
					GGTTTGCAGC	CCTGGGCCTG	CGCTGGTACG
						CCCGCAGCCC	
					GACCCTCACC		CCTGGAGGAT
20						AGACAAGGCA	
20					CACCATCGTG		CCGCCACGGC
	CTCTTTCATG					CTGCAGACTG	GGCCTGGATC
	GTGCCCCCCA				AGGAGATGGT		CTGTCCCCGG
						GGCATCACCA	
						CGGTGATGGC	
25	AAGGCGACAA	TCCTGTATGG	CTCCGAGACC	GGCCGGGCCC	AGAGCTACGC	ACAGCAGCTG	GGGAGACTCT
	TCCGGAAGGC	TTTTGATCCC	CGGGTCCTGT	GTATGGATGA	GTATGACGTG	GTGTCCCTCG	AACACGAGAC
	GCTGGTGCTG	GTGGTAACCA	GCACATTTGG	GAATGGGGAT	CCCCGGAGA	ATGGAGAGAG	CTTTGCAGCT
					GGCCGGAACA		TATAAGATCC
					TTGGCGGCGG		AGTCCAGTAA
30					GTGTTCGGGC		GGCATACCCC
	CACTTCTGCG					CGGGGAGCGG	
						GCCCAGGCTG	
						ACATCTTCAG	
						GTTGCTGCCA	
35						CTGCAAAGCA	
23						AGTACCAGCC	
						CCGCGTGGAG	
					CAGCCCTGGT		
				GCGCCAGGCT			CCGGCTGGGT
40						TCCTGGACAT	CACCTCCCCA
40					AAGAGCCCAG		GAGCTGGAGG
					GTTCCGCTGC		TGGAGGTGCT
	GGAGCAGTTC			CCCACTGCTC			CCAGCCCCGG
						CACTGTAGCT	
4.5						TGGCTAAGCC	
45						CACCCGATCC	
						GCAGGAGCGG	
						CGATGCTCCC	
						GAGTCCTCAC	
						GCTGGCTGCG	
50						ATGGCAACCA	
	GACCGTGCAG	CGCATCCTGG	CGACGGAGGG	CGACATGGAG	CTGGACGAGG	CCGGCGACGT	CATCGGCGTG
	CTGCGGGATC	AGCAACGCTA	CCACGAAGAC	ATTTTCGGGC	TCACGCTGCG	CACCCAGGAG	GTGACAAGCC
	GCATACGCAC	CCAC AGCTTT	TCCTTGCAGG	AGCGTCAGTT	GCGGGGCGCA	GTGCCCTGGG	CGTTCGACCC
						AGTTCCGGGA	
55						GTGGTGCCTT	
						CCTCTTTTCC	
	CTGTTGCCTC	GGGCCTGGGT	CCGCCTTAAT	CTGGAAGGCC	CCTCCCAGCA	GCGGTACCCC	AGGGCCTACT
						CTCAGGAGTA	
						GACTGTGCCA	
60		AGTGC CTACC C				3.1010100M	JALISTINGON
				· · · · · · · · · · · · · · · · · · ·			

15

20

30

40

45

55

60

5'-CCT CCT TCC TGG 'FCT GTC TGC CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC CBG TCT C TTG CTG CCC CTT CTG TCC C TGT TTG CTG GTG TCT GCG C CCC CBB CBG BBG CBG BCB BBT TTG GGB TTG CGC CTC CTG CIG GGG GT CC CTC TGT TCT TGT TTT GGG GGC GGG CCC GGC CGT TGT CTT G GTT TGG GGG TTT CCG TTG GGG TTC TCC TGG CCC GGG CCT TGC CC GGC CGT GGT CCC GGC TTC GTTCCT GTC TCC GTC TCG GCT CTT (TG GGG CCT TGC GCT GTC TTT GGT G GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC GCG CGG GCC GGG GGC TGC TGG G GGT TGG CCC GGG GTG CCC C GCC GCT GGG TGC CCT CGT CCT CTG CGG TC GTG TCT CCT GGC TCT GGT TCC CC GCT GCG CCC GTT GGC GTG GCT TGT G1'G TTC GGT TTC TGC CCT GTC CTC CGG CGT CCC CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCB GCG CGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB G CCT CTT TTC TGT TTT TCC C GTC TTT GTT GTT TTC TCT TCC TTG CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC GBT TTT BBBB GCT TGB GBB GCT GCB BI:C BTT BTC CBB BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC TTC CCB GGC BTT TTB BGT TGC TGT CCT BBG TGB GBG CTG BGB GBB BCT GTG BBG CBB TCB TGB CTT CBB GBG TTC TTT TCB CCC GTT CTT GGC TTC TTC TGT C CGT TGG CTT CTC GTT GTC CC TGT GGG CTT CTC GTT GTC CC CCC TTC CCB GGB GTT GGB GCB GGB GCB GGG GCB GGC GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC CTC TGG TTG GCT TCC TTC GCC GGC BCB TGC TBG CBG GBB GBB CBG BGG GGG BBG CBG TTG GGB GGT GBG BCC CBT TBB TBG GTG TCG F TCCCTGTTTC CCCCCTTTCG TTCTGCGTTT GCCTTTGGCG TTTTTTGTTT GTTTTCTCTC TCCGTCTTTC TTCTCCCCT GTGGGBBTTT CTGTGGGGBT GGCBTBCBCG TBGGCBGCTC CBBGBGCTBG CBBBCTCBBB TGCBGBBGCB TCCTCBTGGC TCTGBBBCGG TGGGAATTTC TGTGGGGBTG GCATACACGT AGGCAGCTCC AAGAGCTAGC AAACTCAAAT GCAGAAGCATC CTCATGGCTC TGAAACG GGGGGTGGCT TCCTGCCGCG TCTCTGGGCCC GTCCCGTCCC TCGGCCCCGC GCCGCGCTCG GCTCCTCTCC CTCTGGCCCG GCTCGGGGCG GGGCGGGCGGCGGCCGCCCC TGCGCCCCCC GCTGGCCCCT GCTGGCCCTC GGCTGCGCGC TGCTGGCTGC CCTGCTGGCC GCGCCGGGGC CTGTCCGCCT CTGCGGGCGC TGTCTCCTGG GGGCTCTTCC GGGCTGTCTC CCTCCGGGGC GGGGGTTTCT GGCCGTGGGG GTCTTGCCTG GCCTCCGGGC TCCTGCTTGT CTTG-CCTTCC TTCTCTGGTC GGTTGTGGCT CGGGGCTCCG TGGGTCCCTG GCGCCCGTTT GTGTTTTGTC TTTTCCCCTG GCGTCCCTGT GCCCCTCTCC TCTCCTTCCT **CTGCTTCTCG** CTCTCCTTTG TGGGGCCCTC CCTGCTGCTC TTGGTTTTGG GCTTTTTTTC TCTTCCTCCT TTTTCGTGCG TGGGCCTCC TGCCACCTCC TGCGCAGGGC AGCGCCTTGG GGCCAGCGCC GCACGCCTCT GCTCCCGGCG CGGCCAGCAG GGCAGCCAGC AGCCCGCAGC CGACGGCCAG CATGCTTCCT CCTCGGCTAC CACTCCATGG **TCCCGCAGAG** GCBCGCCTC TTGCCBCCTC CTGCGCBGGG CBGCGCCTTG GCGGACAGGC GGGCCBGCGC **CGCTCCCGGC** GGGCBGCCBG CBGCGCGCBG CCGBCGGCCB GCBTGCTTCC TCCTCGGCTB GCGGCCBGCB **CCBCTCCBTG** GGGGTGGBBB GGTTTGGBGT BTGTCTTTBT GCBCTGBCBT CTBBGTTCTT GTCCCGCBGB GGCGGBCBGG C TBGCBCTCCT TGGCBBBBCT GCBCCTTCBC BCBGBGCTGC BGBBBTCBGG BBGGCTGCCB **BGBGBGCCBC** GGCCBGCTTG GBBCTCBTGT TTBCBCBCBG TGBGBTGGTT CCTTCCGGGC TTGTGTGCTC TGCTGTCTCT TGGTTCCTTC CGGTGGTTTC TTCCTGGCTC TTGTCCTTTC TCTTGG CCCT TGGC CGGGBGTGGG GGTCCTGGBC GGCBCTGBBG GCBTCCBGGG CTCCCTTCCB GTCCTTCTTG TCCGCTGCCB GCBCCCCTTC BTTCCBGBGG CTGBTGGCCT CCBCCBGGGB CBTGBTTBGG TBGBBBCTBG GBGGCCGGCC TCCBCCBGGG BCBTGGTCCT TCTTGTCCGC TGCCTCTCTG GGGTTTTCGG TCTGGGTGGG CTTTCCTCCT GGGGCTGCTG CTGGGCTCTT CTTTTTGTTT CTGG CCTGGT GCTCTCTCGT GCCCTTTCCC TTGGGTGTCT **TGTTTTTGTG GCCTCCBCCB GGGBCBTG** GTCTTTGTTT CTGGGCTCGT GCCCCBTCCC GGCTTCTCTC TGGTTCCGTC **CTCTGTGGTG** TTTGGCCCTG CTTCCTTTTG CCTGTTGAGG GGGCAGCAGT TGGGCCCCAA AGGCCCTCTC GTTCACCTTC TGGCACGGAGTT GCATCCCCATA GTCAAACTCT GTGGTCGTGT CATAGTCCTC TGTGGTGTTT GGAGTTTCCA TCCCGGCTTC TCTCIGGTTC CAAGGGAGB GGGGGCBGCB GTTGGGCCCC BBBGGCCCTC TCGTTCBCCT TCTGGCBCGG BGT1GCBTCC CCBTBGTCBB BCTCTGTGGT CGTGTCBTBG TCCTCTGTGG TGTTTGGBGT TTCCBTCCCG GCTTCTCTCT GGTTCCBBGG GB GGGCBCGGGG CBGTGGGCGG GCBBTGTBGG CBBBGCBGCB GGGTGTGGTG TCCCBGGBBT BTGGGGBGGC BGBTGCBGGB GCGCBGBGGG CBGTBGCBBT GBGGBTGBCB GCGBGGCGTG CCGCGGBGBC CTTCBTGGTB CCTGTGGBGB GGCTGTCGGB GGGGGTGTGG TGTCCGCTTG GCGGTTCTTT CGGGIGTTTC TTCTCTGGGT TGGCCTGCTG CTCGTCGTGGT CGCTCCGCTC CCGGGTTCGT CTCGCTCTGT CGCCCCTTCC TTCCTTGTCG TGTTCCTCCC TTCCTTGCCT CT GBTGTTTGTT BCCBBBGCBT CBBGBBTBGC TTTG-TBTCT BBGGBTCBCB TTTBGBCBTB GGBBBBCGCT GTBGGTCBGBB BGBTGTGCTT

15

20

BCCTTCBCBC BGBGCTGCBG BBBTCBGGBBGG CTGCCBBGBGBG CCBCGGCCBGC TTGGBGTCBT GTTTBCBCBC BGTGBGGTGC TCCGGTGGCT TTTTGCTTGT GTGCTCTGCT GTCTCTG TTC CTTCCGGTGG TTTCTTCCTG GCTCTTGTCC TTTC CTTGG CCCTTGGCCC CTTGBGCBGG BBGCTCTGGG GCBGGGBGCT GGCBGGGCCC BGGGGGGTGG CTTC:CTGCBC TGTCCBGBGT GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB TGGGGCTCTG GGTGGCBGGT CCBGCCBTGG GTCTGGGTGG GGCTGGGCTG CBGGCTCCGG GCGGTCCBGCCBTGGGTCTG GGGGCTGGG CTGCBGGCTC CGGGCGGGCG GGTGCGGGCT GCGTGCTGGG GCGGGCGGGT GCGGGCTGCG TGC: GGGGGC TGCCCCGCAG GCCCTGC GCBCCGCCTG GBGCCCTGGG GCCCCCCTGT CTTCTTGGGG BGCGCCTCCT CGGCCBGCTC CBCGTCCCGG BTCBTGCTTT CBGTGCTCBT GGTGTCCTTT CCBGGGGBGB GBGGGGCTGG TCCTCTGCTG TCCTTGCTGG TGCTCBTGGT GTCCTTTCCG CCCTGGGGCC CCCCTGTCTT CTTGGGGCCT CTTCCCTCTG GGGGCCGTCT CTCTCCCTCT CTTGCGTCTC TCTCTTTCTC TCTCTCTCTT CCCCITTCCC GCTCTTTCTG TCTCGGTGTC TGGTTTTCTC TCTCCGCTGG CTGCCTGTCT GGCCTGCGCT CTTCGCCTGT GCTGTTCCTC CTCCGGTTCC TGTCCTCTT GTCTGTCGCC CCCTCTGGGG TCTCCCTCTG GGTGGTGGTC TTGTTGCTTG GGCTGGGCTC CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB GGGBGCGTCT GCTG3CGCTG GTCCTCTGCTGTC CTTGCTGGTG CTCBTGGTGT CCTTTCCGCC CTGGGGCCCC CCTGTCTTCT TGGCGCCTCT TCCCTCTGGG GGCCGTCTC TCTCCCTCTC TTGCGTCTCT CTCTTTCTCT CTCTCTCTC CCCTTTCCCG CTCTTTCTGT CTCGGTGTCT GGTTTTCTCT CTCCGCTGGC TGCCTGTCTG GCCTGCGCTC TTGCCCTGTG CTGTTCCTCC TCCGGTTCCT GTCCTCTCTG TCTGTCGCCC CCTCTGGGGT CTCCCTCTGG CGTCGTGGTC TTGTTGCTTG GGCTGGGCTC CGTGTCTCCB GTGCTCBTGG TGTCCGCTGB GGGBGCGTCT GCTGC C CTGCTGBGGC TTGGGTCTCC GGGCGBTTCT CTGCBGBBGB TGCTCBBBGG GCTCCGGCBG TTCCTCCTTG BTCT3GTCGCT GTCGTBCCBG TCGGBCCBGT BBTTCBGBTC BTCBTTGGCT CCTBTTTCTT CTGCBBBCBG CTGEGTGGBG BCBBGBBBBB BGBCTGCCBB GGCCBCGBGG BTTTTCBTGT TGGBTTTTGC GBCGGBCBGT CCCCCGGGGT GCTGAGTTTC TCTGGTTCCT CCGBGCGCBC GTGGTCGCTC CGCGTTTCTC CGGCCCTTCT CACTGGAGGC ACCGGGCAGT CCTCCATGGG AGGGTTGGGC TTGGCCGGGG TTTTCCGC CTGCCCGGTG CCTCCTCTTG GCTGGTCCCT CGTTGTCCTT GGGCCCCGC TCCCGCTGCT CGGCCTCCGT GTTCTTTGGC CTCTTGCTCC GCCTGCTGTC TTGTCCCGTC CCCTCCTCGC TTGCGTTTCC CTCTTCCTTG TCTTCCAGGC CTTCCTCCGC TTCCGCTGCT GGGGCCCGCG CCGGGGGGGC GCTCGGCTCC GCGGCTTCCT CGTCCGCGGT GGGTGGCGCT GTCCCGCCGT GGTGTGTCTC CGTTCTCGTC CTGCGCCGTC CTGGTCTGCC CGTGGGGTCC TGGCCGTGGT GGGGGGCGTC TGGTGCCTCG TCTGCCCCGT GGGGCTTCGG GCTCGGGGCCT GTTCGTCCCC CCTGCCGCTC TGTGGCCTCC GGGGCTCCTC GTTTTCGCTG CTTCGGGTTGT CCTTCTCGGC GTGTGGCCCC GGGTCCCGGC CCTGCTGGGC TGGGCGGGGT CGCTGCCCTG GGCTTCTGGC CCGTCTGGTT GTCTGTCGGT GCTTGTCTCG GGTTTCTGGC CTCTGTGCTG GGCGCTTCTC TGCCTCCTGC TCCGCCCTCC TCT TGG CTT TAT CCTCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT CCC TCC CCT TCT TGG GTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC GGG GGB GTT TCB TCT TGG GGG GGB GTT TCB TCT TGG CTT T CCGTGTTGTC BGTGGTGCTG CCCGTTTGBG GTBTGGCGCT CCBCCBBTTC CCTTTTCTCC TTGTTTTCCG TTTCTCTTGC CGTCTGTGGT T GCTCAGCCTC CAAAGGAGCC AGCCTCTCCC CAGTTCCTGA AATCCTGAGT GTTGCCTGCC AGTCGCCATG AGAACTTCCT ACCTTCTGCT GTTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCTCAGGT GGTAACTTTC TCACAGGCCT TGGCCACAGA TCTC/ATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC TCTATTCTGC CTGCCCGATC TTTACCAAAA TTCAAGGCAC CTGTTACAGA GGGAAGGCCA AGTGCTGCAA GTGACCTGGG AGTGACCAGA AGAAATGACG CAGAAGTGAA ATGAACTTTT TATAAGCATT CTTTTAATAA AGGAAAATTG CTTTTGAAGT AT ATCCTTTAAG TCAATGGACT TTGCATCAGT CACACCATCT TTTGTTACTT TGGACTTCCC CAGCTATGTT CAATAATTAC TGTTCTCCC TTGGGCCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTTGA AGCATTAAGG CTCGGACATC AGCACCAAAT TTTACATCTT TACCATCACT TCAAGTGAGG TGAGGAGCCA GTAGCCTGGA CACTGGTCTC ATCTGGTGAA AGACTGTGGG TAATGGAAGC ATTTCTGTGG GGTGCTGGCA GGACATGTGC ATGCCGAGGC AGGTCATCAG CAGCAAGTGA GAGCTGCCTC TTACTTTCTA AAGGTGACAT AGCAAATATA CAAAAAAAA TAAATAAATT ATTAATTTAG GTAGAGCACA TAAAGGCTTT ATTTCATATT CCATTTCTCT GTATGCTTTC TTCACCAGGA AGAAATAGTT TTAGTGTCAG GAATGAATGA GTCTGCCCCT CAATTCCAGC CTGCTCAACA CACAAGGAAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC TCCCAGTCCT GGATGCATAT TTGTTTAGCA GTTCTGACAG CATTTGACCC AGCCCTCTC CTGCATATCC CATCAGAACC TTCTTTTTTT TGAGACTGAG TCTTGCTCT TCGGAAGCGA CTCCTGTGCC TCAGCCTCCC AAATTATAGGC GTAAGCCATC ATGCCTGGCT AATTTTTTA TTTTTCATGG AGATGGGGTT TTGCCATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCCTCAGC CTCCCAAACT GCTCGGATGA CAGGTGTAAG CCACCATGCT AGGCTCAGAA ATTTCCTTTT ATAAAAATGT CATTAAGGAT CTTCGCTGCA CAATATCGTT ACCAGCTTCC TTTAAATCCA CTTCTGGCCT GCCAGGAATC AGGTTCTTCA GAACCTGACA TTTTAAATGA AGAGGTCAGG CAGTTCATGA GGAAAGCCTC ATTGTCCCCA TGTCTCTGTC ACTGCTGCAC CCCTGAGACA TCACAGACAT GGACACTGGG GCCTGCTTGT TTCTCAAACT

	CAGGGAAATA	GGAGGGTTGG	CCAAATGGAA	GAATGGCGTA	GAAGTTCTCT	GTCTCCTCTC	ATTCCCCTCC
	ACCTATCTCT	CCCTCATCCC	TCTCTCTCCT	TCCTCTCTCT	GTGTGTCCCC	TCCATCCTTT	TCTCCTGCTT
	CTCTCTCTTC	TTCCCTCTCT	CTCTTTTTTT	CTGTCTTTCT	TTTTCCTCTC	TCCCTAGAGC	ATGTCTTTCT
	TTCTTTCTCT	TTCC TTCTT	CTACCCACAC	TTTTAGACTG	AGTAGACTGA	ATGCCCTATT	TAATTGAACC
5	AAGCATTGCT	TCCTTCAATA	GAAAAGGAGT	TTGAGAACCC	AATGGACAAC	TCACTCGTTC	TTCTAAGCCA
	ATATGAAGGA	GCCCAGTAGT	TTGTAAATAT	CATCTCTTCA	CTGCTTTCCA	TGCTACAACT	GCTGAGACTA
	TGGTTGAAAC	CTGTTAGGTG	ACTTTTTAAA	TAAAAGGCAG	AAATTTTGAT	TTTATCTAAA	GAAAGTAGTA
	TAGAATGTCA	TTTTCTAAAT		AAAGAGTAGA	TACTGCAACC	TAGAGAATTC	CAGATAATCT
	TAAGGCCCAG	CCTA TACTGT	GAGAACTACT	GCAGCAGACA		AGGACTTTTC	TGATCAGAGG
10	CCCTGAGAAC	AGTC CCTGCC	ACTAGGCCAC		CAGGACAGGG		GAAACCAACT
	TTTAAACCTG	GATGCCTAAC	CTTCATTTTC		TATGAAAATA		CATGAAAGGA
						TGAGAGTAAA	
	ATTAATCTAA	TAGATATCAT	CTTGTGAAAT	CCTCATTTTA	CCAATCTTAT	TTATGAGTCC	TGGGTTTTGT
	GAGAACAATG	GGGTTCTGAG		GACCTCATAT	TTTCCAAAAC	CTAGAACAGT	ATAATGAAGG
15						GGAGGGAAAC	
	ATGAGGTTGA	AACCAGGACT	TAGATATTAG	AAACAAGCCA		TATTTCTATG	GTTAATTGTG
	GTTTTCAACT	GTAAGTTACT	TGGTGTTAAT	TTCCTATTAA	ACAATTTCAG	TAAGTTGCAT	CTTTTTTATC
	CCATCTCAGA	TCAAATACTT	AACAGACTAA	ATGATTTGAA	AAAGCAAAAG		TGTGTGTGTT
	AAAATGGAGG	TATGGTGGCT	TTGATATTAT	CTTCTTGTGG	TGGAGCTGAA	TTCACAAGAG	ATCGTTGCTG
20	AGCTCCTGCC	AGACCCCACC	TGGAGGCCCC	AGTCACTCAG	GAGAGATCAG	GGTCTTTCAC	AATCAGGTTC
20	TACAAAAATA	AACATCCCCC	AAACCACAGC	AGTGCCAGTT	TCCATGTCAG	AAACTTAGAT	CCAAATGACT
	GACTCGCGTC	TCATTATCAT	GATGGAAAAG	CCCAGGCTTG	AGAAAGAAGC	CCGCTGCGGA	TTTACTCAAG
	GCGATACTGA	CACAGGGTTT	GTGTTTTTCC	AACATGAGTT	TTGAGTTCTT	ACACGCTGTT	TGCTCTTTTT
	GTGTGTTTTT	TCCCTGTTAG	GTGTTTTTGG	TGGTATAGGC	GATCCTGTTA	CCTGCCTTAA	GAGTGGAGCC
25	ATATGTCATC	CAGTCTTTTG	CCCTAGAAGG	TATAAACAAA	TTGGCACCTG	TGGTCTCCCT	GGAACAAAAT
23	GCTGCAAAAA		GGCCAAGAAG		TGATGCGGAT	TCAGAAAGGG	CTCCCTCATC
	AGAGACGTGC	GACATGTAAA	CCAAATTAAA		CAAAGATACG		CCTAGTAATT
	GTGGTCATTG	GGTCATGTTG	GTTTGGGCAG	GCCATCTCTA	ATATCCTTGA	AACACCTTTT	TCTGCTCTCC
	AGGAAGGGGT	CAGGGCTGCC			GAATTCCCTG	TAAGCCCTGT	TACAGGGGCT
30	GCACCCCAGA	TACA.ACCTGA	CCTGTGTCCA	AGGCGGGCAA	CTCAACCCTT	AGATATTGAA	TGGGTCCCAT
20	GGCACCAATG	CTTAAACACC	AGCAGCCCTC	ACAACCACAG	ATCGTGTTTT	AAGGATGAGG	AGGTAGTTCT
	CTGGATGCAC	AGGCTTCAAT	CCAAATGGGC	TCATGACGCC	GCAGCACACA		AGCCTGAAGA
	GTTGGAGCAT	TGCATTCACA	GAAAGCATCC	AGACATGATC	ATGGGCTCAG	GGATACACCT	GTTCTCCGAT
	GTGTACCAGT	GAAGGATGGA	AACTCCTATG	CCTCCCAGAA		AAGCTTTTGC	TGAATGCTTC
35	TCTGAAGGCC	CACAAGGCTG	AGAGGCTGTG	CAACACCAGC	AGTAAAGTGA	ATGCCCAGAC	TCCCACCTCC
	TTTCTTGGGT	GGCCATCTGG	AAAGGCCACT	CCCACCCTGA	TGGCTAATGC	CTCAGACCAG	TTCTTGGCCC
	AGATGATCCT	AGAC'AATTGT	TTAAGCTTAA	ACTGTTCATT	GGCCAAGCAA	ACAGGTGATA	GTACCTCTGG
	GGAACCACAT	GCCCCGTGTA	CATCCAGATC	TCAGGAGAAC	CCAAAAATGT	CTGTTCCACA	TAGCAACAGA
	AGCCCAGGTA	GCACTCAGTC	TCACCTGGGT	GTTCTCCAAC	ATCCCAGCTC	AGCCAAATGG	CTTTCATTAG
40	TTTTTATGGT	TAGACCCCAG	GTCCTCGGGA	CACTGCTTTA	GAAACACATT	CCAAATCCTC	CTCTGTGTGC
	AGGTGGCATT	CCTATCCCAA	TCTCTTTGCA	GGGCGTATAC	TGTGATACGC	AGCCAGGCTG	TCCCAGAGGC
	CTTAAATATT	CCCTTGGTGC	AGGTAGTTCA		AGCCAATGCA		AACTGTGTTA
						GACCAAGGTA	
	TCCTCTGTGG	AGT1CTACTT	TAACCTCACC		ATTTCTCAAC		
45						AAAAGACCTT	
						GACTGCTGTC	
						TACACTGAGT	
						CCCAGCGGGT	
	TAGGAACGTC					GCTAACTTAA	
50	CAAGCAGTTT					CAGTAAGAAG	
	GTCTTTGGAA	CATT CTTTTG		ATTTAGGTCC		TTTCAATCAG	
	TTTTGCTATT				ATTTGCCCCT		AGGTTTTGCA
	AATATTTTCT		GGGTTATCTT		TGATTGTTTC		CAGATGCTTT
			TTGTCTATTT				TAGCCAAGAA
55	ATCATTACCT	ACATCAATGT				TAGTTTATGG	
	TACATTTAGG				CATGGTGTGA		TAAATACATA
		ATCATGAGGT	AGTGTACACT			TGTTACTCAA	
		AATAAACTTT		CTTAAACCAC			TCACCTTTAG
	CCTGATAAAA					ACCCCATAAC	
60						TTCCATTGGA	
						TAAGAAGCAT	
						TGAATCATAA	

	GGTGAACCCA	CGAGTAACAT	AGCAGGGTCT	TTCTTGTCAT	TATTAGCTCC	AACCTAGCAC	AGACATTAAA
	GGTACAGATG	TAT ACTAGCA	TGAAACTGGG	AGAACAGGAG	CATTCGAGCA	ACCTTGAGAC	CAATGGGCCT
		ATG CACACCT				TCTCCGAGCC	TTCTCCCAGT
		ATCCAGGCTG				TCTCCCTCCT	CCAGGTGACC
5	CCAGCCATGA	GGACCCTCGC	CATCCTTGCT	GCCATTCTCC	TGGTGGCCCT	GCAGGCCCAG	GCTGAGCCAC
	TCCAGGCAAG	AGCIGATGAG	GTTGCTGCAG	CCCCGGAGCA	GATTGCAGCG	GACATCCCAG	AAGTGGTTGT
	TTCCCTTGCA	TGGGACGAAA	GCTTGGCTCC	AAAGCATCCA	GGTGAGAGAG	GCAGGCATGC	AGAGCTGCTA
	AGTCTAGAGG	GAAGGACGGG	AGAGAGGTTC	CAGAGTTGGG	TCTCAGCAGT	CTATGTCACT	GAGGTGGCTT
	CACTTAGAAT	CTC GGGCAT	TGATTTTCTC	ATCTAGAAAT	TGAACAGAGA	GCCAAATAAA	CCTGAGAAAC
10	TTTATTTCTC	CAAAGACTTG	ATTCCAAGAA	ACATCTGTGA	AATTCACTAA	GTTTAAGATA	TGAAGAGACA
		TTC GGATCT					TCTACAGAAG
	AGCTTTTAAA	AAC'`GCAGCC	AAGCCTGAGG	GTAAGTTCAG	GTGTGTGTGT	GATGGGGCAG	GAATGCAAAA
	ATGAGAGCAA	AGC AGAATGA	GTCTCAAATT	CTGTGTGACA	AGCACTGCTC	TGCGTGTTTA	TTCCTATCGA
	CTGAGGTTGT	TCGTGCTACC	GGCTGCAATG	CAGCCAGCAT	CACCTGTCAG	CTAGCATGTG	ACTTCCCCGA
15	GATTCTTTTT	CTT#.CCCACT		TACTCAATTT			GGCTCAAGGA
	AAAACATGGA	CTGCTATTGC	AGAATACCAG	CGTGCATTGC	AGGAGAACGT	CGCTATGGAA	CCTGCATCTA
	CCAGGGAAGA	CTCTGGGCAT	TCTGCTGCTG	AGCTTGCAGA	AAAAGAAAAA	TGAGCTCAAA	ATTTGCTTTG
	AGAGCTACAG			ACCTTCTGCT			AAATAAATGC
	CTTGTTACAA	GATITCTGTG	TTTCCACCTC	TTTAATGTGT	GATATGTGTC	TGTGTCAAGA	CACTTGGGAT
20	ACACGTACCA	AAACGCAAAA					
		CTGCCCTCTC	TGGTCACCCT	GCCTAGCTAG	AGGATCTGTG	ACCCCAGCCA	TGAGGACCCT
	CGCCATCCTT	GCTGCCATTC	TCCTGGTGGC	CCTGCAGGCC	CAGGCTGAGC	CACTCCAGGC	AAGAGCTGAT
	GAGGTTGCTG	CAGCCCCGGA	GCAGATTGCA	GCGGACATCC	CAGAAGTGGT	TGTTTCCCTT	GCATGGGACG
	AAAGCTTGGC	TCCAAAGCAT	CCAGGCTCAA	GGAAAAACAT	GGACTGCTAT	TGCAGAATAC	CAGCGTGCAT
25	TGCAGGAGAA	CGTCGCTATG	GAACCTGCAT	CTACCAGGGA	AGACTCTGGG	CATTCTGCTG	CTGAGCTTGC
	AGAAAAAGAA	AAA:TGAGCTC	AAAATTTGCT	TTGAGAGCTA	CAGGGAATTG	CTATTACTCC	TGTACCTTCT
	GCTCAATTTC	CTTT GATCAAA	ATT TTTACCTA	TT ATGCATTTG	A TATATAAATA	A AGTATATAAA	TGCACACACA
	GACACAGCAA	TGATGGTGAA	CAGTCTTCAT	ACAATTATAT	GGATGAATCT	CATAAAATGC	TGAGTTAAAG
	AAATCAGACC	AAAGAACATA	TACTGAAAGA	TTCTCTCTAT	ATACAAAGTT	CAAAAATAGG	TGGACCAATT
30	CATGGTGGTG	TTAGAAATCA	GAAGAGAGC	TACCTTTGTG	GGGAGGGAC	AGTTTAATGC	CCAGAAGCGG
		ATCCTCTGGG					TTGTAAAAAT
		ATA1'CTAGCT		GTATATTATA			TAATTTCTCA
		GAGTAGCTCA					
25	GICATITACA	AGTAGGAAAA	TTCACAGGGA	AAGTTAGAGT			
35		CATTTTCCAA				AGAAGTCTCA	GCATTGTGTC
	TTTTTCATGT	ATCITACAAG	AAGACAGCAT	GTGCTTCTAA	CACCTGATAC	ATTGTATCTA	CCAGCACTTG
	GIAAACAGAA	AAGAACCACA	TTTTTCTTGT	AGGAGAAATT	TGGTGCCTAT	TTCCTACCAG	GCACCAATAA
	GIGGGACCAA	TAGGTGGGAT	TAAAGATACA	GTAGAAAGTA	TTTAAAACTT		
40		ATT 3GTGCTA				TTCCCACAAG	ATCTGCTCCT
40		GAGACTTTTC	TGTCTGTTAC	TGTTTCTTCA	TTCCTCATCT	GCAGAGCCAG	CCCTGAGAAG
	TGCAGACCAA	AGCCAGGGAA	GGCTCTGCAA	AGATGTACAA	ATGGAAGTCA	CCTTAATAAC	CTCTGACTGC
	TGCGCATAAT	ACATTCACT	CAAAAGAGGG	GTTAAACAAT	GGAACAGAAT	ACAGAGGCCA	GAAATAATGC
	CCATAATCCT	CAACCATCTG	ATCITIGACA	AAATCCACAA	AAACAAGCAA	TGGAGAAAGG	ACTCCCTATT
45	ATACAAAAA	GCTGGGATAA	TOGLOTAGE	ATATACAGAA	GATTGAACCT	GGGCCCCTTC	CTTACATCAT
43	TAGCCTGGGA	TAACTCAAGA	TCCACATACC	ACTTAAATCT	AAAACCAAAC	ACTATAAAAA	CCCTGGAAGA
	CAACAAAAA	AATACCATTC	AATCAAACTA	ACCIGGCAAA	GACTTCATGA	CAAGACACCA	AAAGCAATAG
	AACAAAAAAA	CAAATTGACT	CACTALACIA	ATGAAACTCT	TTAGTTGTAC	AACAGATAGT	TTATCTGTAC
	CAAAGGTCTA	ACTATCAACA	GAGTAAACAA	CCTACAGAAT	GGAAAAATTT	TTTGCAAACT	ATGCATCTGA
50	AAGTGGGGAA	ATATCCAGAA	CACATOCTTT	ATTTAAACAA	ATTTACAAGC	AAAAAAATGA	CCTCATTAAA
50	GATGTTTAAC	AGG ACATGAA	ATTACACCAA	TACAAATAAG	ACATICACAC	ATCCAACAAC	CATATGAAAA
	AGGAATGACT	ATCACTAATC	ATTAGAGGAA	TACAAAICAA	TOCTOLLOCT	AGATACCATC	TAATACCAGT
	TATECACTEC	ACTATTAAAA	CTAAACTACT	TAACAGATGC	TGGTGAAGGT	TGTGGAGAAA	AGGGAATGTT
	TGTAAAACCG	TAGTGGGAAT	CAATCCACCA	ATCCCATTAT	TOGAAGAGAG	TGTGGTGATT	CCTCAAAGAA
55	TTTACCGTAA	AAC GCCTTT	ATGCATATOR	TCATTACACC	ACTATTACA	CCAAAAGGAA	TAGAAATTGT
55	TCTAAATCCC	AGGCGCATGC	ACACTACCTA	1CATTACAGC	ACTATITACG	ATAGCAAAGA	CATGGAATCG
	TGCAGCCATA	CATCAGTGGT	AGACIAGUIA	AAAAAAAAA	AATGTGGTAC	ATATACATCA	CAGAATAGTA
	CTAAGCAAAT	AAAATGAACA	ACACAAACCC	GICCITIGCA	GCAACATGGA	TATALOTT	GGCCATTATC
	TGAGTACACA	TAAT GCAGGA	GAAGCCAACA	AAATACCACA	CACCULATE	TATAAGTGAC	AGCTAAATAT
60	GGTGAGGATC	TGGA.CACAAA AAA.AAGTACC	CATAGGACAG	ATAGACATGG	ACCTCCCTC	AGAATAGAGG	TCCACACCAC
-	ACCCCTGTGA	CACACAATTT	ACCTATATAC	AAAACCTCTC	CATCTACCCC	TCAACCTAA	ACTTAATCCT
	GGGGGGGTCC	GGTTAAGCTA	CTTTCTCCT	TAAAACCIGIG	CATTCATATT	AAAATAAAA	AUTTACOTO
	200000100	JOITAAGCIA	CITIOIOGIA	INNATCIGAG	CALICATALL	MAMATAAAAT	ATTIACCTCA

	TTAGAGTAAT	TAACATTTAT	TAAGCAAAGA	GCCAAGTACC	TTACACACAT	GATGTTTAAT	CTCACAATGA
	TCTTTAATCT	CATA ACAACC	GTCCATTGTA	TGTACATATG		GCCTTGGAGA	GATTAAATGC
	ATGGGGCATG	CCA'l'TTGACT	AGAAACTGGA				GTTTTGTAGG
	CTTTGTTTTT	TCCACATTAT	AGCATGGCCT	GCCATGAAGA	ACAGGTCCTT	TCTGGTGTTT	GTCTTGTTTG
5	GTTTAAGTGA	AGC \AATATT	TATTTAAATA	TTCAAGATAT	GCTGTTAAAT	TTTTACTCAA	AAATTTGAGT
	ACAGTATGGA	TCTCCTGAAG	CCAAATAACT	CTTATTCAAT	GCTTAGTTGA	GAAATTTTAT	GGAGTAGTTC
	TCAATTTTTA	TGTA.GTTCCA	CTGCAAAGGT	AAGTCTTATG	GAAAGATTCA		TTTTCCTCAT
	TTGGACATCA	GCT TTTCTT	TTCCTCAGAC	CCGCTGAAAG	ATAATTTTTA	AAATAAAAAC	CTTGTTTTTA
	TATCAAGTGG	GGA CATTTTT	TCCAAATGAA		TCATTTTATA	TGATAAAATC	AATGTTATTA
10	TTTTTAAAAT	TTTGATTTAA	AAATCATTAA	AAATAAATTT	TCAGATATTA	CCTGAAATTC	TACCATCCAG
	AGATAATAGT	GCT 'AAAGAT	TTGATATATA	GACACACACA	CATATATACA		CCTAAACTTC
	TTTGTATAAA	TGTA.TATAAA	GTTTTTAATA	AAAACTAGGA		CTTTGAATGA	AAATAAATAC
	AATGTGTATG	CTTT'AACATC	TTGCCTTTAC	TTTATAACAT	TTATCACAGC	AGTCATGAGA	TAATGATTTA
	CATGGTCATT	GTTA.GTAAGC	TAATAGCTAA		TCTGGAGCTA	GCCTCCCTGG	ATTTTAATCC
15	CAGATCTGTC	ACTGACCAGC	TGAGCAATAC			CTTAGTTTCT	TCATCTGTAA
	AATAGAGATA	AAA ATAATAT	CCACCTCATA			TGAGCATACG	TATGTAGGCC
	ACTTAACAAC	AAT(3CCTTCA	CATACTGAAC	ACAAATATAC			TCATGTTTTT
	CCTACCACTA	AGCCGCATGC	ATGCAAGGAC		TTGTTCCACA	TTGCATCCCC	AACCTGGTAT
	ACAGTGTGCA	TTCAATAGTT	GTTGACTATT	ATTACTAGTG	GCATTTAACA	AATATCTGTT	AAATGAGTGA
20	AGAAATACCC			ATATTGATGG	CATAATGGGG	GAAACTCAAA	CTCTGGAGTC
	AAACAGGTTT	TAAAACCTTA	TTCCCTCATC	CTCAGTTATT	GACGTTTTTT	TTTTGGCAGG	TGTGTGTGTG
	GGACAACTTA		CTGAATTTCC	AGCTTCGCAT	ATATAAAATA	GAGATAGTGA	TTCATTCTTG
	CAATGTATGG	ATTTGAGACA	ATTGTGTAAG	TTTATCAATA	AATAGTAGCT	ATTTTTGTAT	AAGTATTACA
	TATAATATCC	AGGCCACTGC	TTTGCATAAC			GCAGAATACA	ACATAAATGG
25	TGTCCCTGGA	GCAGTGCAGT	ATAGGAACCC	TGAGGGGACC			ATAGATTACA
	AATTATCCCT	TTATCAGAGT	CTCTCAAGGT	TGGATGTATT	TGAGGTCCAT	AAGAGCAATT	TAGGATTAAC
	AGTAGCTGCA	GAAACCATCT	GCAGTGATAT			AAAGAAGACA	
	TGGGACCTGG	GTTT'AAGCAT		AAGTTCACCA	TTTTCTAAAA		ACCCAGTGAG
	AGAGGGAGAA	GGGAAGTAAA		TAAGCAAGTT		GTTGTACTGT	ATGCATATTG
30		GAGGAACCAA		GATGAGCAGG			GCCTTTGAGG
	AAAAATGATT	TTC1TGGCAA		AGCATTACAA		TACGCTTATC	ATCACTTATA
	CTAGCATACC	CTG1TGTGCA	AATGCTGTCT	GTGTTTGCAT	CTGCTATTGT	TGATGCCTGG	TGCATGAATC
	AGGACTCCAG	CCCACAAGTT	TTCCCAGAAC	TTTCTTATGG	CCATCATCTT	TAAGTGTCTG	GTGAACAGTC
	ATAGTTTGGT	ACAC'AAAAGG	GTCAACCTGG	GGGATGGCTA	GGGTTTGACT		ATTTCAATAG
35	AGCAGGAAGG	GGAAATGGTG	GCCTGTAACC				
	CCTGCTCTGA	GGAA GTGGCA	CAGCCTAGAA	CAGCACCACA			
	AGCAGACTCT	TTGCCAGTAG		GGACCACCAC		TAAAATTTTT	AATAACACTC
	AAGTATTGGC	AGAAAGAAAT	AATCTTGGGT	TAACTATAAC	TAGAATATTG	ACTCTTCCTC	TGTGGAAGAA
	TCAGCCAATC	ACATTTGTTT	ACATCAGTTC	CCCTGAAGAA			AGCAAGACAA
40	ATTTAAGCTA	GATGTAAATA	ACTTCCTTTA	GCCTGTAATG	CTAGGCTAAT	TACATATTGG	AACTATTTT
	TCAGGGAAGA	ATTGTAGG	GTTTCAGGGA	AGAATTCTGA			
	CTCACTGAAA	CTG('AGGGTT	TAGATCCACA	CTGATACTCG	TTCTATTATC	ACTGTAATGA	AGGCTGATGG
	AATAAGTAAA			TTTTACACTT			
	ATCTTAATTT	AATTCTAACA	TGTATTGTGC	ACAAGCTGTG	AGCAGTTTTC	AGGAGTTAGG	TATCTGGCCA
45	TGACTGATTT	TTCAGGAGTT	AATCATCTGG	TAGAAGGGTC	ATACACAATA	GGAAGATGTG	TGTGACAGGT
	TGTGATCATT	ACTATAATCA	CACAGAGAGC	TGTAGAATTT	TAGGCTGGCA	GGGTGGCTCA	CGCCTGTAAT
	CCCAGCACTT	TGGGAGGCCA	AGGCAGGCGG	ATCAAGAGGT	CAGGAGATGG	AGACCATCCT	GGCTAACACG
	GTGAAACCCC	GTCTGTACTA	AAAATACAAA	AAAAAAAAA	AGCCAGGCGT	GGTGGTGGGC	GCCTGTAGTC
	CCAGCTACTT	GGGAGGCTGA	GGCAGGAGAA	TGGCGTGAAC	CCGGGAGGTG	GAGCTTGCAG	TGAGCCGAGA
50	TCGCATCACT	GCAATCCAAC	CTGGGCGACA	GAGGGAGACT	CAGTCTCAAA	AAAAAAAAA	AAAAAAGTC
	ATGTTAGATC	CAGA GGGGTA	GCAACTGGGG	CTGGGCTGTC	AGTCAACTCA	GTCAACTCAG	TCAACTCTGC
	TCCCCCACAG	GAGATGCCAG	TGATGCATTT	TCATGGCCAA	CATTGTCAGT	CAGCATCATT	GAATTACTCC
				CCCATTAAAT			
	TCCTTTTTAG	TAAGGGAAAT	CCCCTCTTCT	GGCTTGCTGA	AAGTTTTTTC	TTTCCATTTT	
55	AATTCCTTTT	TGCAATATTG	AGGTGGTTAT	ATGGTTTCTC	TTCTCTAATC	TGTTAATATG	GTGATTTAAT
	GGTTAGAAAT	TTTCTAATGT	AAATTCCACT	CATATTGCAG	AAATAAACCT	AAACTGAGCA	TGAGGCTATA
	TTTTTTATTT	GCTTCTATAT	TTGGTTGCTA		TGTTTAAGAT		ATATTTGTGA
		ACTATTTTC	CTTCTTGCCG	ATTTTTATCT	GGTTTTTAAA	TTAAGGATAT	TTTAGACTTA
	TGAAATATTT	GGCAAACAAT	CCTTGGCAAG	TAATTTTTTG	GGGAATTTGT	TTTGGCTATT	TTGAGTATTA
60	CCCAATATAT	TTTAATTAAG	TTATTCTTAA	TGTTTTCTTA	ATTAAAAAAA	TTACCTACTC	
	CTTTATGTAC	TCCAGATTTT	GTCTATTTAT	ACCACTTTTC		GATGAGTGTC	ATAGATGTTC
	ATCTATTTTT	TTATCTTCTT	TGATCTTCTC	TTATTCCTTG	TTTCTATTAA	CTTCTGAAGT	TTATTATTTT

	TTTC & & CTTC	1001001000	CATTA COMPO	OTTO C L CTTT L C			
					AAAGAAAGGA		
	TTCTATAAGA			GAAGACGACG		TCTGCAAGAA	
	ATATTCACAT	ATGTATCAAA		ATTTAGAAGT	GTCTGTCATC	AAGTACAGCA	CTGAATTGAA
_				G TCAGCCATC		CATGAATCCT	
5	GGTCTTATTT			AAAAGCTGAG		ACCTGTGGGC	TGGGGGTTGA
					GGTCAGGTAG	AAATCTTCCC	AGATGCACTG
	AAGGAAACAC			GGTGCCACCA		TTCATGGAAG	GATTTAAAGG
	ATCTCATGAT	TTTTAGTATT	CCAAGAATTT	TCTTTCACCA	AGGGCGATTT	AATATGGGTC	ATTCATACTG
4.0	AAAGAAAAAC				ACTTGGAGTG	TTAGTAGTAA	
10	TCATTAGAGA	TGAC·AAGAGG	AGCAAGGAAA	TGCTTTCAGC	TGGAAATCTC	AGACAAGAGG	CCAGGCTTTA
	GGAACCTCTG	AAGATGAACA	AATGTAAGCA		GCAGCACTTC	TCAGATTTTC	ATGTGCTTAC
	CACTCAGAGA	TGGTGTTAAA	ATGCAGACTC	TGATTCAGTA	GGTCTGAGTG	GAGCCTGAGA	TTCTGCACCC
	CTAACAAGCT	CTT1 AGTGAT	GCTTATGCCA	CTGGCGCACA	GACCCCACTT	GGAGAAATTT	TTGTGGTGCA
	TACGGTCTTT	GTCTCCAGAT	CTAATGAGTC	TGAAGGACAG	TGTAGATTGA	TTTTTTAAAT	TTATGTTTAT
15	TTTAATTTAA	TTTAATTTAA	TTTATTTATT	TATTTATTTT	TGAGATGGAG	TCTCACTCTG	TTGCCCAGTC
	CGGAGTGCAG	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCTGGGTT	CAAGCGATTC	TTCCGCCTCA
	ACTTCCTGAG	TAGC TGGGAA	TACAGGCACG	TGCCAGCACA	CCCAGCTAAT	TTTTGTATTT	TTAGTAGAGA
	TGGGGTTTCA	CCAC'ATTGGC	CAAGCTAATC	TCAAACTCCT	GACCTCATGA	TCCACCTGCC	ACGGCCTCCG
	AAAGTGCTGG	GATT'ACAGGC	GTGAGCCACC	GAGCCCAGCT	GTAGATTGAT	TTTGAGCAGT	GGAAAGTCAA
20	GGAATTAGAA				AAAATTTAAA		AGTGGTGGTT
	ATAAACTCGT	GATA AATTAT	ATCCTGGGAT		GAGATGGTAA	CACATTTAGT	TTAAAGAAAT
	AAGTGACACT		GACACAACTG			AGGAGAGAAT	GAAATATGGT
	ATGTCTTCAC		AAAGGGAGAA		AGGAGCTGGT	CTCATGATGA	ACTGTCAGGG
	TAAACCACAG		GCAAATGTGC		AGAGACAAAA	AAATGTTTCT	GAAAACAAAA
25	TTTCACATAT	GCCCTCCTCT	GAGGTTGGCA	TCATATCTTC	CTGTGTATCT	TGGGTGTAGC	TTCTATCCTG
	CCAGAATTTA			GTGATAAACA		GCAGAAGAGT	CAAAATAACC
	CAGCAAGAAA			GAGTCATTCA		AAAAGCTAAT	AGAAATGAAC
				TTAAAAAAAA	AAAAAAAGGC	TCATGGTGTT	TAGTGTGATA
	GTATTCATTT	TACCITTGAC	TTGTTCTAAA	AACACACCAT	ACTTCTACCC	CACCCTTCCT	CAGTGCCGTC
30	ACACAATGGT		AAAAAAAAAC		GAAAAGGAGG		CTTGCCACTC
-	TAAGCTGGTA	GTCAAGGGTC	TTGAGTTCTA	AAAGCATACG		ATGATTCCTG	GATCCAAATG
	AGTATGGATC	TCAGCATTGC	CATTTATTGT	GACCTCAGGC		CTCTGTGCCT	GTTTCTTTAT
	CAGTAATGAA	GATGTTCATA		CCACAGACTT	AAAGGCATAT	TTCATGATTT	
	AACCATTCAT	AACAGTATAC	AACATGGAAT	TAATATTTGA	TAAAGGCATAT	TGATTATTGT	AAGACATGTA
35	GTCACTTGCT	CAAGGCCTAT	AGAAAACTTA	CTTAATTAGT	TCAACTACAA		AACTAACTCT
50	CCACCAAGAT	CATA TTCAGA	CCTAGAATTC	TGTGATTCTT	ATGAATTAAT	AAAGAGTTTG	AATGTGATAT
	AGAGCTGGGC	AAA' `AATTCT	TCTTTGCTAG	GCCTTTCTAG	ACCATCTGGT	ACAGCCTTGG GAAGCATTCA	TCAATAAATG
	TATTGGGGCC	AGC(TTCCTT	TCCAACTTCA	ACTCCACAAC	TCCTCAATAA		AGACTTATGT
	CTGCTCAGTG	GCCCCTGAAA	AATGCTTTCA	TAGTCTCACT	ACCATACCAC	GCCATGGGCT	CAAGAAAGTT
40	TACAGACTGC	CTTCCTTTCC	TGCTTTTCTC	CATATACCTA	AATCCTATCT	TGCTTACACA	ATTTCCTTCC
	TTTATAACAT	TTTCTATAAC	CACCAAGCCA	AATGACCTT		ATTCTTCATA	AGCAACCTTC
	TACCATGCTC	TGCCTTGTAT	TTTTCTGATT	TTTTTCTTTC	TCCTTCTTAA TATATTCCTG	ATATAGCACC	CATTGGCCAT
						TCTTAACTCC	CCAGCTAGGT
	CACAAAAATG	TTCAATAAC	AACTATTAAT	TCACTCATTA	GCTGTCTCAA TAAAAAATCA	GAAAGCTTAG	CAGITICCAA
45	TAGCAATTTG	CTTAGCATCC	TAATTAGCTT				
73					TTCTTCCAGC	CAGTCTCTCC	TCCTGTGCCT
	CCCTACCCAC	AAAAAAAAA	TOCOTACATE	CTCCCACAAA	CCATCTAGTG	GCAATTAAAA	CAGGIGGIIC
	AGAAATCTTC	ACATOTOTO	CTTTCCTCCC	GIGCCAGAAA	ATACTTTCAC	TCAGTAGGTG	CGAGTTTGAA
	TCACTAGACT	CCATTTCCAC	TACTALACAC	ACAGACATAG	GGAGACCAGC	CCAGAGAAAG	AAGCCTTTCC
50	ATCGTACATC		TAGTAAAGAG	AAGACAGAGI	AATTAAAAAG		
50	TGCTTGTTCT	GTCT/CTACTT				AACATTTTAA	
		CAAATAGTCT	TCTCATCCTC		AATGCTTGGC		CTGTCTTGAT
	CAATGTTTGA	AACCGTTCCC	CTTTCTTTGT		CATCCAGGGG		
	TTCTCCCTGC				TTCATTACCC		
55	TGGCTCCCAT	CTGGCAACAT	CTTTTCATTT	CTCTTTCCCT	TAGGTGACTT	ATTAGATAAT	
55	CCACTCCTGA	ACTCICTCCC	AGGTCCTCTT		AGCACTCACA		
		GATGGCAGTT	ACCICCIGAA	ATGTGAGGGA	CCCAAATCCA	CTTCTCCTGC	CATAGCCTCT
					CATACACCCA		
	CCCATGATCT	TTACCTCCAA	AACCTCTCAT	TCTTTTATGT		GAAGTAAACA	
60		CCAGGTGAGA					TAACAGACAC
60	ATTCAGTTAA	TATCACCTCC				GTTCCCTAGA	
		CTAAFAACTG	CAAATGCCTC	CAAAACAAGT	CTCTTTGAAT	CCAGGCTCAC	CTGTCTCCCA
	CACTIGCCAT	ACIGITCIGC	AGGGTGACCT	TATAAGATGC	CAGAGGTAAG	GCTACTCACT	GTTTAAACCC

	CTTTAGTGAT	ATCC CAAAAG	ACCTCAAGAT	AAAGCCCATA	TCACATGGCT	TATACATTAG	TTTATGATCT
	GGCTTCTGGT	GCC CATTTT	TCCCCACTTT	TTCCTTTGCA	TTCTAAGCAA	TGGCCCATAC	TAAGTTTGTG
	ATTGGTAGGA	TGGTTGCCCA	AACCAGCATC	CAATCCCTTC	AGAAATCATC		TCTAGCATTT
_	TAAAGGAAGC			TGAATATGTC	ACCAAAGTCC	TCCTTTCATA	GTTTATTTTA
5	CTTAAACTCT	CCTTCCTAAA	ATTCCAGAGC	AAGTCACTAA	ACCCTAGATA	CTGAGAAATA	TTTTTCCATC
	TTCATTTCTG	CCAC GTGGGC	CATCAACTTT	CACATGTCTG	CATCTCCTCC	CACTGTGCTA	TTTCTCCAGT
	AGAAGAAATT	TGAGCTTCAA	GACCAAACTG	AAAAATACTT	GCCTCCTTGG	GGAAGCTGTA	GGTAGAATTC
	ATGCTCCCTA	TCTTTCCCAC	ATTTCTGAAG	GACAATGCCT	GTTAGAGCAA	TTGAATGCAA	ATAGTCAATT
	GAATAAGCAT	TTATCATTT	CTCAATAAGT	GCTTGTTCAA	TTGAATATTT	CTTAAATAAT	ATATTTAAGA
10	ACAAGAAGAA	CAC ACCACAA	TGTTTTTAAC	CCTCAGAAAA	AATTCTGAGG	TAATCAGAAA	AATCTCCCTT
	TACATAAACT	GCCCTTTTCT	AATAGGGATT	ACTTGTTCGT	TCATTCATTC	ATTCAGCTCC	ACTAGCACCA
	AAAAGCACAG			ATTTATCACC		ATTTGGATGA	GGACCCCAGG
	TAAATAAACT	ACT#TGGGGT	TAATGTGTCT	AGCTAGAGCA	GGAAGTAACT	TAAGGAAGTA	GAGAATGAAT
	CAGCAGATGT	GGAAACTCCT	CGCCACTAAT	AAAACTTACC		TTTCTTGCCT	GAAAATAGAA
15		AGGCATTAGC	AAAAATTAGA	CAATTTAAAG	TTTTTCAAGT	AAGGGAGAAG	GAAGACTCCC
	ACTCTCAAAA	CTG1'CTTTTG	AAGTATATTA		AGGTGGACCC	TATCTGTGTC	AAAGGAGATT
					GAACAGACAT		ATGCCTCCTG
	AGGTTCCATT	CCATTCTCCG T	GCTACTCAA GA	AGACAGAA 254	41 TTGCTAAAT	r gcctggtggc	AAGACCCAAT
	ATGTCCATTC	AAG1'GTTTAT	CCCTTCCCAA		CATCCTACCT	GCAGATTCTT	CCCTTGAGGG
20	ACAGCTGCTA	ATACTGTAAA	ACTATGTGCC	ATTACAGCTC	ACAGCATCAT	CTCTATGAGA	ATCCACAAGA
	GAATTTCACT	TTG(TCTTGT	TGGTAGGAAT	TGTGCAGCCT	CATCTGAGTA	ACTAATGTGT	TTTTATCTTA
	CAAACACAAG		TGGTTCTCCT	TTGACTGGCT	GTAAGGAAAC	TCAGAGCTAG	ATCTGAGACC
	CTCTCCTACC	AAGT'ATATAA	AACTTTGTGA	CATACATTTT	TGTGCCATAA	CTTCAACCTT	GGTTCCAAAT
_	GATTTTTGTA	CCCI AAGTTT	AAATTTGGCT	TTCTTTTTTT	TTTTTTTGTA	CTCAATAAAA	CATCAAGCTC
25	ATTTATTATT		AAACAACAAA	GCTTCCACAG	CGTGGAAGGG	GACCCGAGTG	GGTTGCCCAA
	ATTGGCTTCT	TTTTCTTACT	TTTTAATTAA	TTTTAATTTG	CTATACTGAA	CACATTTTGT	ACTGTTCTCA
	CATTCTTTTT	GAAA 4AAGCA			CTTAAAAAAA	ACTCTTTGAG	CAGAAAGAAT
	CATTTGGGAG	GCAATATATT	TCAGTGGCTG	TAAAGTGGCA	TTCTAGAATC	ATCCTACCCA	GGTGAAAGCC
	CTATTTTGCC	ACCIGTAGTG	TAGTGTGTAT	TTGAACAGCT	ACTTTCTTTT	CTAAACTACA	ATTTCTTCAT
30	CTGTTAAAGA	GGCATAATAA	TTGTATCATC	CTCATTGGGT	TGATAAAATA	AAATATTTCC	AAGTATTTAG
	TTCAGGTCCT	AGCA.CGTAGA	CAGTGTTGCA	TTACTGTTTT	AATCCTTTAA	AGTATTAAAG	ACTACTATTT
	GAAATCTTTT	CTTC FAAAAT	TCAGCCTGCT			CAGGGGGAAT	CAAATCTGAA
	TTAATTTCAG	ATTCTGGTTA	GCTTCACATA		TTAGGGATGA	TGAACCTAAC	AGCAATAGAT
2.5	GAGTAAGAAT	CTGTTCCTAC	TGAGAGAGTT		${\sf GAAAAAGGAA}$		ATGTGTTCAG
35	TTTCATGCCC	TGGTCTAACC	CTGTGTGTTG	GTTCTGGTGG	GAAATTCTTC	CAACCGAGGA	AAAAACCAGT
	TCACAAATCT	GAAGACCAGT	GATTTTAGAA		GACTGGAGTC	TAATCTCTGA	CTCTGGGTCC
	TGCTGATATG	GTAITTTTGA	GATTTGGCCT	AAAACATCAT	TGCCCTGGTT		CCAAACAGGG
	CCAATGGTAG		GAAAATGATA	ATGCCTGGTG	CACAAAATGT	GTCTAGATGA	
40	AAGGACACAT	GTTTCTGGAA				AGGGAAAGTC	TCCATACTAA
40	GACTACTAGG				TCATCTGAGG		
	GCTCTAGTCA	CTTCATTGGC	TACCATGCTC	TAAATAGTTA	CCTGTGCCCT	TTTTCTAACT	ATTAGAACCC
	AAAAAGCCTA	TAAATTCTCT	CTCTCTCTCT	CTCTCTCTCT	GTGTATATAT	ATACATATAC	ACACACACAT
		ACACACCTAA	ACACACACAT	AGAGATTTAT	GACTTTTTAC	TTTTATCCTT	GTAAATGCCA
4.5	TTAACTATAT	TTTGTCTTAG	ATTTAGCCTG	GGAATGTAGC	CATTATTTCT	ACCATTGCCT	CCATAGGAAA
45					TCTTTGGAAA		
					TTTTTTTTT		
		GTGC AGTGGT	GCTGTCATGG	CTTACTGCAG	CCTTGACCTC	CTGGGTTCAA	GTGATCCTCC
	CACCTCAGTC	TCCTGGGTAG	CTGGGACTAC	ATGTGCATGC	TACCATGCCT	GACTAATTTT	TTGTATTTT
50					AACTCGTGGG		
50	CAGCCTCCAA	AAG1GCTGGG	ATTAGAGGTG	ACAGCCAAGG	TGCCTGGCCC	ACAGATGAAG	ACTATTTAAT
	GTTATCTTAA	AGATACCCTA	AGCTTCCTAC	CAAGCCAGTG	ATCTTTTGGG		
		ACTA.GCCTAA				CACTGATTCC	
	TTCAAGTTAT				AAGGTAAAAA		
	ATTTTTTAC				ACCCCTCACT		
55					GAATTCGGAA		
	GGTGACTTAC	AGCC CCAAAG	TCCTTAAAAT	TATTTAGACA	ATAGCCACCT	TATCCCAGGG	GGCAGTGTGT
	AATAACCCAC	CCTGTTCTCT	ATCCGTCAGT	TCTGCCATCA	TCGCCCAAGG	TAGGAAGAAA	GACAGGACAA
	CCGGGGTCAA	GATTTGAAGT	CTCAATGGAA	AGAATAATCA	GTGGTTGGAG	AAAACTGTCA	TTCTTCTTTT
60	GCCTTAATGC	AGTA CTTGAT	ACTTATACTT	AGTACTGTAT	AGTACTTAGT	ACTGTATAAT	ACTATAAGAT
60	AGTGAGATTC	AATCAGCACA	GAATTTCTAA	TAGCAAGGC	AGAGACATTT	TAACTGCTCA	GTGCTCTCAG
	GITATACATA	GCTAATGAAG	TTCTTGCATA	TCAACAATCC	CCACCCCCT	CACACACTTT	GTCTTTCTGG
	ATTGGTTAGA	AAACTTACCT	AGCGCCCACT	ATTCTCAAAT	TTAAATGAAA	GATAAGATCA	GAGTGGCACG

	CAACACATTA	TTT A TO CA A TO	GGGL LWGLGL				
					ACACAGTATA		ATTGCTATAA
	GTCATGTTAC	ACACTGGGAG	ATGGCTTCAG			TTGTTTGGGA	GGTTTTTCAA
	AAAAATTTAG	TTAGAATAAG		AACATCACAG		AAAGTTAGGT	TAAATTAGGC
_	TCCTAAGTTT	GACTICTCAG		CTGAATGTTC	TGACTGTAAG	CCCAGGATTG	CATGACAAAA
5	CCTCTAGTCT	GAAGTTACTC	ACCTTGACAG		GAGATGACCA	GTTTCCAAAT	GGTCCACAGG
	TGGTTTCTTC	AATCCCAGTT		CTTCAGAGCA	GCTGAAGGCA		TGAAGCTGAA
	GTTTCCCAAA	GGGTGAGTAC			GGGGCCTCCA		CTGAATCACT
	TCAATAGGGA	AAG/.AACAGT	ATGGGGAAGA	GTTAAGAGGA	ACTGACGCCT	GGATTTGAAT	CCTAGCCCTG
	CCACTTGATA	ACC#TGTGCC	TTTAAACAAG	GTTACTTGAA	CCCTCCAACT	TCAGTTTCTT	CATCTATATA
10	AGAGGAATAA	TGAAAATTGTG	TTATCTTTAT	CAAATTGATA	TGGAAACTAA	ATGTAATTCA	ATTAGCATAA
	GTCAAGGACC	TTAC AACAAA	GCCTGACTCA	TCAGAAATTC	TAAGTAAACA	TTAGCTAGTC	TTCATATTAT
	TATCTTCAGC	ATTA ICTGTA			ATAGGTGTAA	CTGGGAATGA	CCAGCTTAGT
	CGGGAAATAA				AGTATTGGGA		CAGAGAAAGA
	GTGGGTCTCC	ATAATAAGCC			TAAAAGTCTA		TGACCTCAAT
15	TCTGTCTTCT	ATTC TAGCTC	AGTTCCAGAA	TTTTAACTCT	TTTGATTTTG	ACAACCCTCT	CCAGAAACTG
	TATCTATTTC	CCTGTTCTGA	TTGGTGGTAC	AATAGGTAAA	TTTAAGACTT	GGAAATCAAA	GTTTTCACAT
	TTTAGACCCT	GCCATGCCAT		GTACAACTTT		TCCTCATCTG	TCAAATTTAA
	GCCATTATTG	CTACCTTGCT	CTAGAGACTT				
							AATTTTTGTA
20	TTTGGAAACT				AACTAAGAGA		TTTTTTCATT
20	GATTTAAAGA		TATATCAAGC	ATTACTCTGG		GCTTAGATTT	CACCCTGTAG
	GACAAAATGG	TAGGTAGAAA		GATTGTCATG			TGCTTTTAAT
	TGATCAGTCT	CCCTGTAGTA			AGCTAATTTA	AAATTGTGGA	ACTCATCTAA
					ATGGTAGTAG		TGGAAGACAA
	ATTAGAAAAA				CCCTGCATAA		AGTTAAGAGA
25	GTCTCATACC	AGGGTGCCCA	TGTAAATGGT	GATTCCACAT	ACTGAGATAA	GAAATACGAA	GAGAAAAGCT
	GACTGGGAAC	AATT'GGTTTT	ATAGTCTTTT	AAACATCCCA	AAGGACATCC	TTAGCATATT	TGAGTTCAGA
	GCTGGAGATA	GGCTTATCAG	TCCAAAGATC	ACATAGATTT	GTGAGTCCGC	AAAAGTCAGT	AAGTTTGACC
	AAAGGATACA	TGTAGATTAG	AGTCAGAAGA	GCAATATACA	AAAGACAAAA	GCTGAGAAAT	TATAGTAGTT
	TATGGTCCTG	GATA AGTGCT	CATGAAGGAT	CTCAGGAGAA	ATGATCACAG	GTAGAAAGAA	TGAGAAAAGA
30	GTGATATGAG	AGAAACCAAG	ACAAAGAAAA	GTAAAATGTT	AAAAATGAGT	GAAATAGGCA	TACCAATAAT
						GTTCAAAAAT	
		GGAAGGAGTC			AATGAGTTAG		CTATTTCAGT
	TGGTTGACAT	TTAAATGTAT	TTTGGTTTTA	ATTCTTTATT	GTTTACAAAC	ATTGCTTTTT	TAAAAAATTA
	AATTGTCCAA	TTCAATTCAG	GCTCACAAGC		TATATACAGG	CATTTTGTGG	ATCCCAAAGA
35		AATAGGACAC					
						CAGAACTAAG	
			AATGTCTTAA			ATGTGCAAAA	
						AACTGCAAGA	
	CTACTAGAAG	GAA/AAGCAA		GGGTAACTCA		GATAAATGGC	
40	CCAGACCTTA	GAGTTCTAAT		AGCTCATTAG			ATAGTTTCTT
70	CATGCTAATT	CCTTATGGTA			ATCGTGAGCT	TCTTGAGAGC	GGGAATCTAC
			ACCCTGACAG	CTTTTATCCC	AACACTGTGC	TTCTTGTGGT	ACTCAAAAAG
		AAGTGAGTCG			AAATCTTTAC		CAATATTGTG
	AAAGCAGAGC					CATTTTGTTC	
4.5						AAGGAAAGAG	
45					GTGTAATTAT		TACACATTCT
	CCATGGCCAC	TGCATGACCA	GGGCTGGCAA	GAAGCTTTAA	GGAGGTCAGA	AAAAAAATAT	TTTAATGTGA
					AACCTTTTGT		TTAAATAATC
						TTTACGTATA	
						TAATATTCTG	
50	AGGAAACTTA					GAGTGAGAAG	
	GACCTGACCT	CAATCATTTC	TGCATGCAAT	TATTTCTTGG	CAATCCCTTT	CTTTATAGAA	ATCAAAGATT
	AAAAAGTCCA	AATTTGCTAA	AACGGTAGAG	TCCAATTTAT	AAGAGACCAA	ATTAACTATG	GTTCATTATT
	AAAACATCAC	TTGGAAAATG	CTGGCTGTTT	TGGAATTGTA	GAAGATTTTA	CAGAAATATT	CATACACCAA
	AGATAGTGCA	ATTTTTATAT	AAAATTATAT			GCACGCAGCA	
55	TACTTCACAA					CCCCAGCTGT	
	TCCCCTGCCT	TATT ATCAAA	GGCACTGATT	GTCTAGCTCT	TCCTCTGTAC		GATCTATCAT
	TTTGATGTAA	CTTG ATTTAG	GGGTATAGCT	TTTGTGCACA	GGGACAAATC		
						AACCAGAAGC	
	CCCCCACCTT				CCGTGGCCCT		
60	AGCCGTCTTG				CTTTAGTTTG		
	TTTGCCTGCA	TCTTTGTTTC	TCTTGATATA		CAGTCCTCCT	TGTTCTTCTT	GTTGTTGGGC
	TCACCATCTC	CCCAGTTCTC	TGCTTCTTCA		TGTTGGTTCC	CACCCACGTC	
	- 5.100.11010	5564611616	IGCITCTICA	GIAAGAGAII	1011001100	CACCCACGIC	CATATICCIC

	CTATCTTCCG	GATTCCTATC	CAGTAGTAAG	AACGACTGAA	AGGCAGAGTC	ТТСТССАСАТ	ACTCAATTTC
	CGCCTTGTTT	TGTATGGCAA		GTAATTGTCT	CGGCAGAATC	TTCTAGCCCT	TTGCCAGTTC
	ATGGGTTTTT			CAGTCGGTTC			GCAAGACATC
	AGTGTGACCT			ACAGCTAAAA			GCTGAGCTAG
5							
-	CAGATTTGAA	GTAGAACCTA	GACCTTCTGG	CTTGAATATA		ATCTAAGGTT	CTATTTGAAA
	CAAATTTAGT	GGTTTTCTAG	GTTTATTTTC	TTATTAATTT	TTTTCTCAAA	ATTATTTCAG	GTGAAATTTA
	ACCAACATAT	TTT#GACATT	CATATTTCTT	TTTCTTTGTA	GCTGTTAATG	ATTTACAACT	AATTACCGTG
	TAATATCATA	TAACTATACA		ACTTTTTAAT		TTTCTTGAAG	GCCAACACAT
10				AGGAAGAACA			CTCTTTTACA
	TAAAAAACAT	TTTATTTTAC	CATAGGAAGA		GAAAAGCCCA	ATATACCACT	CAACTCTTAT
	ATATCTAACT	GTATAATTTT		AATTTACAAA		ATAGGATTAT	GAAATTCATT
	AGATCATGTT		AGAGACTCAA		TTAATAAACA	TATGGACCCA	TCAAATATGA
	GGGCTTTGAA	GATA TCTAAT		ATTACACAAT		TAATATATGG	CATTCTAAGC
15	ATGGTATGAT	CTACATGAAT		TACAGTAAAG			AAAGAGCATC
				ATGAGCATTC			
	ACTGTTGTGT	CCACTGCTGT				TTGTAGGGAC	TCAGAAAATA
	CCTGTTGTAT			ATGTGACACA			
				CTGAAAATCC			
20				TTGCTGGAGA			
				AACCCCCGTC			AATTGTAGAA
				AAAAATAGAA		TAAATATTTG	GTACAGATTG
	TAAGTACCTT	AACA GAGATT	TCTTAATTAA	CATTATTCCT	TTATAATTGA	GGGATTTTGT	GGGGTTATTG
	GGATTTGAAC	TCTACAGCAT		AGGTTAAAAA			
25	AAGGTAAGAA	GAAAAGAGAT		GGGATAGAAT			
	ACTATGTATA			AATGAATATA		ACTTAGCGAT	ATATAAATAT
	CATAACATAC		CATTGTCCAC		TGAAGATGTT	CCATAAGTCC	CTCTGGGTGC
	TCTGACATTT		ATCTGCAAAT		ATTATATTTA	GATGTATACT	CTTAAACCAC
	ACATTTATAG	CCTTTGAGGT	GGTGCTTACA	ACTTTCTTAA		AAAACACATA	TGTCTACTAA
30	CCCTGTCTGA	GGTAACAGGT	TTCTCAGACA		ATTACTTCAA		GAACTGATGC
	ACAGTTTTGT	TTTGTTCTAT	TTTATTTTTA	CGCTTTAGTC	TCAAGTTGCT	AATCGGTACT	GCCCTGAATT
	TTTTCTATGG	TTTGGTAATT	TTTATACCTG	CTTTTCTGCT	GAGCTATTAG	ATAAAACTAT	TTAATATTTA
	CTATGTATAT	TTTTTAAAGT	ATTGTTGCTG	CTTAATTAAC	TATTGATGCT	TATATTTAAT	GTTATAGCCT
	CACTCTTGAT	CATA ATGGGT	CAATGCCTCA	AATACCTAAA		ATTAGATAGC	CAGACACCAG
35	GAAAGAAAAG	TATTTTTT	TTTAATAAAA	AGAAATACCT	TTTTGAGCAA	CTGAAATGAC	AAAGTCACAA
	ATTTCCTGCA	CACCITAAAA	TATACTTAAT	GTAAATGACG	AGTTAATGGG	TGCAGCACAC	CAACATGGCA
	CATGTATACA	TGTGTGACAA	ACCTGTATGT	TGTGCACATG	TACCCTAGAA	CTTAAAGTAT	AATTTTAAAA
	AAATTCTATC	TTCC 4AAGCA	TATCACTTCT	CAGGTAGACA	CAGTGTTTAT	TGCAAAAGAT	CTGATTTCAA
	TAGTATTTCT	TCAAGAGTCT	CCCCAGAGAC	AAAGTCAAGA	AGAGGAAATC	AGCATATCTG	AGAAGAAAGA
40	TTTCAGGATC	ACTT ITTTTG	AGGGTCTGAG	AAAATGTTTA	GTTTCTATAT	TATTTAAAAC	CAGAATTGAA
	ATGGGGTGAT	TCCTATCCTT	GCCACCTGCC	TCTACAACCC	CAAGAGTTTC	TATCTGAGCA	TCTAAACGTC
	TTTTAGGCTG	AAAC GCTCAC	CATGGCTTTG	CTTGGTCCTT	CTCTAGTTCT	TCTGCAGCCC	ATTGAGCCTC
	TTGACTTAGC	ACAAGGGTCT	CAGGTCCTTG	CCCAAAGGGA	GTGTGCTGTG	CTGCAGGTAG	ACTGCACTGA
	ATGTCAACAG	AAA(3CCTTGC	TTTCTTTCAT	TTCTCTAACC	CAGTCTCACA	TCCTCCTCCT	CCTCCCCTTT
45	TCCCTCCCCT		CTTCTCTTTC		ACCCCTTTCC		TCTATTGCCT
	CCCACTGAGA			GAAAGTAATG		CTCTCTTCCT	TCCCTCCTTT
	CTATCCTTCC			TTCCTTACCC	TCCTCCTCCT	TCACTCATTG	TTGTTGCTGT
	TCTTCTTCCT	CTTCITTTTC		TCTTCTTCTA	CTTGTTCTTG	TTCTTGTTTT	TGTTTGGTTC
	TTGTTCTCCT	CTTCCTCCTT					TATCTTTTTC
50				TGGTAAATGG			
				GCAAAACTTC			
				CACCACCTAG			
	GTTAACCCCT	GAAC AGAGCC	CATGCTCTCT	AGCTTTTCAC	CGTGTAGGTT	TGGGAGCCTA	CAAGTACCTT
	TAATATTCTT	GGACTATAAA	ATGAGATGGT	TTTATAAGAC	TGCATGTGAA	ATTAGGACCC	ATATGATGAA
55				AGTCAATGAG			
	AAAATAATAA	TAACAACAAC	AAAAACTCTG	AAGCTCAGCG	CCCCATATTT	ATTATATTGT	TTAATCTTTA
				ATCCCCATTC			
				TAAGATCAGA			
				TGCATTTTGA			
60				ACAATAAAAA			
				ATAAACATCT			
	AATGGATAAA	TTCCTGGACA	CATACACCCT	CCCAAGACTA	AACCAGGAAG	AAGTCAAATC	CCTGAATAGA

AGGTAAATCC ATAGAGACAG AAAGTAGATT AGAGGTTCCC AGGGGCTGAG GAAGAAATGG GGACTAACTG CTTATAGGGT ACACAGTTTT CTTCTGATAA AAATATTTTG GAACTAGATA GACATTTTGT TAGGCCATTC TTGCATTGTT ATAAAGAATT ACCTGAGACT TGGTAATTTA TAAAGAAAAG ATGTTTAATT GGCTTACACT TCTGCAAGCT TTACAGGAAG CATGGTGCCG ATATCTGCTC AGCTTCTGGT AAGGCCTCAG GAAGCTTACA ATCATGGCAG AAGGTGAAAG GGGAGCAGGC ATATCACATA GCAAAAGCAG GAGCAAGAGA GGGATGTGGG GAGGTGACAG TCACTTTTAA ACAGCCAGAT CTTGTGAGAA CTCATTCACT ATCATGAAGA CAGTACCAAG AGGATGGTAC TAAATCATTC ATGAGAAACC CCACCCTCAT GATCAAATCA CCTCCCACCA GGCCCCACCT CCAACACTGG GGATTACAAT TTGACATGAG ATTTGAGTGA GAACACGGAT CCAAACCATA TCAGAGATGG
TGGTTATACA ATGCGATAAA CGTCACTGGA TTGTACACTT TAAGATGGTT GTTTTATGTT GTGTGAACTT CACCTCAATA AAAAAAAATA TTTAATGTAC ATTCAGCCAA AAGAAGATTT GGAATAGGAA AGGTCATGGA GATATATTAA CAGCCATTTG ATGGGTGGTA AGGAAAAGAG TGGTTATTAG ACTGTTTTGT GGCCCTCAAA AGGTAGAACT AGATCGAGTT GGTGAGCATT ATAAAACCAT CACAAAACCC TGGAGAGAGG ACCCAGTGCT GAAGAACCGT TTGCCTGCCA TGAGACATGA GGGAAGTACC AGTGAATGCC ATTGAAAGCA GCATCCCTGG GTCCAAGGGA TGGTCAAAGG ACCACTACCC AACCCTTCCC TAGCCTACGC CTCCATTACA GATGACCGCA AGATTTATTT GCTCATTGCT GCCAACCAAG GCTGCACTCA CTGCAGTTGC TATCAGTTTA TCATGGGTAA
AAGGAATGTG CAG1AGAGAA CTAACTAACT GCCCACCTAC CTCCACAATC CTATCAGGAC AAATCACCAT GGCTCACATT TCCTTACATT TGGCATGTAA GCCCCTCTTA CTGTCTGTCA TCTATCTCCT ACACAGTTCA CCTAAACTGT TCTCTCCTGA CCCAACCTTG ATTTTCATCC CAAATGCTTC CTTGCCATCT CTGGGATTCC TGTCTTCACC ATCACCAAAC TCCCCTCAAT CTTCCAGTTT CCTGTTCAAA CTTTTCTCCT ACCTCCTTGC TTTGTCATTA GCCCGACTGC CTCCCTAGGA CATCACTTCC CCTGCAGATC TCTCAAGATG ACAATATTTA TTCTCCACAC AGCACATACT TCAGGGTTGG AAGGCAGGGG CAATCTTCTC CTTTATAATG AGTGCCTCTT ATATATGTTT ATTCATCTGC CCTCTTGTAA AACACACAC CACACACAC CAAAGAAGAA ATAAAATAAC TCTGCTTCTT TGAAGCTTGT GACACTGAGA TAAACCATCT CACTGTCCTC ATTGTAGTGA CCTCTCAACT CCTCATGCAA GATIGGCTTT GGCACCTAGT TCCTGATCTT CCTTTCCCTG TAAGCACTTC TCATAGTCTT ACGGGACTTC ACCATCCATG GCACAACCAA TACCACAGCC CAGATCCTCA GCTCTCCAAT GACATTTTCC TCCACTAGAC TTGAGCTACC TCCTTCCCTA GGCACAGCCT CAACCTCGAC AACACCTAAG ACTGTACCGT CTCTAAAGTC ACATGTTCAA ACACTTCACT CTTTAACCAC TGTCTCCTAT TCTTGCAAGT GTATTGCTCA AGTATCTCAT TGCAATGCTT TTTACTTCTA CCTCATTGAA CCTCCAGGCC ATTAAACATT TCCTTATTTC TAACCATCAG GTT1CTCCTT ACTTGTTTGT TTGTTTATTT GTTTCTTTT TTTTTTTTT TTTGAGACAG GGTCTCACTC TGTT3CCCAG GCTGGAGTGC AGTGGTATGA TCTCGGCTCA CTGCAGCCTC CATCTCCCTG GTTCAAGTGA TTCTCATGTC TCAGCCTCCC GAGTAGCTGG GACTACAGGT GCATGCCACT ACGCCTGGCT AAGATTTTGT ATTTTATTA GAGAAGGGGT TTTGCCATGT TGGCCAAGCT GGTCTCGAAC TCCTAACCTC AGGTGATCCA CCTGCCTCAG CCTCCCAAAG TGCTGAGATT ATAGGCATGA GCCACTATGC CCCACCTGGT TTCTCCTTAT TTAT TCAAG TCTATGCTGC ACTATTAAAA CTGCCTTGAC AAAAATTATA ATAGTGAGAA AATTATGACA GTGAAAGAGA TCTGAAATAA TCAACCCCCA TCTTGCCTTT ACCTTCCAGA CTGCCCTTAA TAATTCCTGA GCTT3GGCCA AGCTATCTTT GGCAGAAATT TAGTTTATAG TTTAAATGAT AATAGCCCTT CTCCAAAACT AAACTGCCTT TGTAAAACTA ATAAAAGACC ACCAATGAAA GGTTAGGAGG ATGAGAGGAG CCTGAATTCT GCTAAGGTGT AGATGTAAAC AATTACCAAC TGTTATTCCG GAGGTCACAA GATTTGCAAC ATCGCCAATT ACTCCTGCAG ATAACAGCAC TATCATAGAA TCTGATTGGC CTTTTGAGAT GTCTTTTCAG ATTCTTACAT TTCAACTGGT GGCTCTACCT GGACCCATCA ACAAGTCCTG TGGCTCCACC CAGAAGCAGA CTTAACATGC ACAAGGACCA TTTTCCACAC CGCTATGATT GCATCCCAAC CAATCAGCAG CAACCATTCC TCTGCCTGCC AAATTATCCT TGAAAAATCT TAGCCTTAGA ATTTTGGGGG AGGCTGATTT CAGTAATAAC AAAACCCCGG TCTC'CCATTT GGCTGGCTCT GCATGAATTA AATTCTTTCT CTATTGCAGT TCCCATCTTG ATAAATCACC TTTAICTGGG CAGCAAACAA AAGGAACCCA TTGGACAGTT ACACTGTTGG CAGATATATC TTGCTTCCAA AATIGGATTT TTGTTTAATG AATTTATTCT GTTTTCTTGA TATTTACAAC TGTGAATGTT GTGTCTGAAT TCTCITTATT TCTTGTTGAA AAGAACTATA TTGCTACAGC CAGTACATAC AGATGGATAG CTAATTACTC AACACGGGG GATGTGACCA TCACCGCACT GTGCAAATGA ATGTTACCCA TTGTCCACTT TTCCCAAACT ACATAGTGTT ATATGGTATA TGACCCAATC AACGGTGGCA AAGCTCCAGA AATACCACAT AGACATCAGG GACACTITAA ACTAATCAGC CTATAGTCCT TTTTCAGTAA TTTCCAAACC TGGTTGTGCA TCCAAATCAC TTGGTAACAT TAAAAAAACA AAAAAATATA CACGCAACAT TCGCTCCCAA TCCTACTGAA TCAGAATATT TTGGGTTGGT TCAGGAACAT TCAGGAGTTT TTCAGGGTCC AAGGTTTATA TAATTTGAGG TCTCTCTTTG AGAAAAGGAA CGTAAAAGCG TCTTGCTTTT ATAGATCTTA CAAAGATGTA TTACCATGTA AACACATTCC TAGCACCCAG GCCCTTGTAA TTTAAAGGTT TATCTAAGTA ATGGGCCCTG AAGCTTAATT TCGCCAGGCT GGACTGCAGT GGCGTGATCT CTGCTCACTG CAAACTCCGC CTCCCAGGCT CAAGCGATTC TTCTGCCTCA GCCTCTTGAG TAGCTGGGAC TATAGGCACG CACCACTATG CCCAGCTAAT TTTTGTATTT TTAGTAGAGT TGGCGTTTCG CCATGTTGGC CAGGATGGTC TTGATCTCTT GACCTCGTGA TCCACCCGCC TCCACCTCCC AAAGTGCTGG GATTACAGGC GTGAGTCACC ATGCCCAGCA CTTGTGTGGA TGTTTTAAGC TCCCAGGTGA GTG/ATACAA AACTAGATCT TTCCCTTCTG TAGCATCTGT ACTGTTTACT CTATGCATCT CAATATTTT TCTTITAGTA TCTTTCCTTT TTCTCTCTTA TTACTTCCTC TTGTGCTATT TTTACACCTC CTTTTTTAAA AAATTTTTC CCTTTTATTT CTATTGACCT TTAGCCCTCA CAATGATTCC TACAAGCCCC

	TT ATCC A CT A	TTACAAATTCC	COTTOTTOTO A	mmm c c m	CTTTC L C L C C L	mammaaaa	~ . ~
	TTATGGAGTA	TTAGAAATCC	CTTGTTGTCA	TTTCAACAAT	GTTCACACCA	TCTTCCCCAG	GAGTATATTC
	TACCTCAAGA	AACC ACTTTC	TTTGCTCATC	TATAAGAAGC	AGCTCCTCAT	CCACTAAAGT	TTTATCCTGA
	GATTGCAACA	ATTC AGTTAC	ATCTTCAGGC	TCTACTTCTA	ATTCTAGTTC	TCTTGCTGTT	TCTATCTCAT
_	TTGTGCTTAC	TTTC CCGCT	GAAGTCTTGA	ACCCCTTAAA	GTCACTCATG	AGGGTTGGAA	TCAACTTCTT
5	ACAAACTCCT	GTTGATGTTG	ATATTTTGAC	CTGCTCCCAT	GATTCATGGG	TATTCTTAAT	GGCATCTAGA
	ATGGTGAACG	TTTTCAGAAG	GTTTTCAGTT	GGCTTTGCCC	GGATCCATCA	GACGAATCCC	TATCTATGGA
	AGCTATAGAT	TTATAAAATG	TATTTCTTTT	TTTGTGGGGG	CATAGCGTCT	CACCCTGTCA	CCCAACCTGG
	AATGCAGTGG	CAC#GTCATA	ACTCACTGAA	GACTCAAACT	CCTGGGCTCA	AGTGATTCTT	CCACCTTGGC
	CTCCCAAAAC	ACTGGATTAC	AAGCTTGAGC	CACTGTGTCT	AGCCCAAAAT	GTATATCATA	ACTAATGAGG
10	CTTGAAAGTC	AAAGTGACTC	CTTGATCCAT	GGGCTACAGA	ATGGACGCTG	GGTTACCAGA	CATGAAAACA
	ATACTCATCT	CCTC.\TACAT	CTCCTTCAGA	GCTCCTGGGT	GAGCAGGCCC	ATTGTCAAAT	GAGCAGTAGT
	ATCTTGAAAG	AAATTTTTT	TCTGAGCAGT	AGATCTCCAC	AGTGGACTTA	AAATAGTCAG	TAAACTATGC
	TGTAAACAGA	AGTC CTGTCA	TCCAAGCTCT	GTTTTTCCAC	TGATAGGGCA	AAAGCAGAGT	AGATTTGGCA
	TAATTCTCTA	GGGCCTTAGG	ATTTTTGGAA	TGGCAAATTG	AGCATTGGCT	TCAACTTTTT	TTTTTTTTT
15	TTTTTTTGAG	ACAG.AGTCTT	GGTCTGTCAC	CCAGGCTGGA	GTGCAGTGGT	GCAATCTCGG	CCCACTGCAA
	GCTCTGCCTC	CTAG 3TTCAC	ACCATTCTCC	TGCCTCTGCC	TCCTGAGTAG	CTGGGACTAC	AGGCACCCGC
	CACCATGCCC	GGCT AATTTT	TTGTATTTTA	GTACAGACGG	GGTTTCGCCA	TGTTAGCCAG	GATGGTCTCG
	ATCTCCTGAC	CTCG'[GATCC	ACCCGCCTCG	GCCTCCCAAA	GTGCTGGGAT	TACAGGCGTG	AGCCACAGCG
	CCCAGCCTGT	CTTC \ACTTA	AAGTCGCCAG	CTGTGTTAGC	CTCTAATAAG	AGAGTCTGCC	TGTCCTTTCA
20	AGCTTTGAAG	CCAGGCATCA	TTCTCTTCTC	TAGCTATGAA	AATCTTAGAT	AGCATCTTCT	CCCAATAGGA
	AGCCATTTTT	TATG CCCTAA	AAATCTGTCG	TTTGGTGTAG	CCACCTTCAT	CATTGATCTT	ACCTAGATCC
	GCTGGATAAC	TTACCACAGT	GTCTACATCA	TTACTTCTGC	TTCACCTTGC	ACTTTTATGT	TATGGGGATG
	GCTCCTTTCC	TCTAACCTCA	TAAACTAACC	TCCACTAGCC	TCACATTCTT	CTTTTACAGC	TTCCTCGCCT
	CTCTCAGAGT	TCAC 4GAATT	GAAGAATGTT	GGGCCTTGGA	TTACACTTTG	GTTTAAGGGA	ATGCTGTGGC
25	TGGTTTGATT	TTCTATCCAG	AACACTAAAA	CTTTCTTCAT	ATCAGCAATA	AGACTGTTTC	ACTTTCTTAC
	TATTTTTTGT	GATA 3CACTT	TTCCTTTCCT	TCAAGAATTT	TTCCTTTCTA	TTCACAATTT	GACCGTTTGA
	TATGAGAGGC	CTAC ATTTTA	GCCAATCTCA	GTTTACACCA	TGCCTTTTTC	ACTAAGCTTC	ATCATTTTAG
	CTTTTTATTT	AAAG'TAAGAT	GTGTGACCCT	TCCTTTCATT	TGAACACTTA	CATGATGATG	CCTGGCTTCA
	AAGCTTGAAA	GGAC AGGCAG	ACTCTCTTAT	TAGGGGCTAA	CACAGCTGGC	GACTTTTAAG	TTGAAGCCAA
30	TGCTCAATTT	GCCATTAGAA	GCCATTGTAG	GGTTAATTAA	TTTGCCTAAT	TTTAATATTA	TGGTGTCTCA
	GGGAATAAGG	AGGC CTGAGT	AGAGGGAGGG	AGATGGGGAA	ACAGCCAGTC	ATCAGAGCAC	ACACAACATT
	TATCAATTAA	GTTTATCACC	TTGAGGGCAC	AGGTCATGAT	ACTTCAAAAC	AATTACAATA	ATAAAATAAA
	AAATCATTGA	TCGCAGATCA	CCATAACAGA	TATAATGATA	ATGAAAAATT	TGAAGTATTG	TGAGAATTAC
	CAAAACGTGA	CACACAGACA	CAAAGTGAGC	ACATGTCATT	GGAAAAGTGG	TGCTGATAGA	CTTACTTCAT
35	GCAGGGTTGC	CACAAATACT	CAATCTGTAA	AAAATTCAAT	TATCTACATA	GTACCATAAA	AACAAGGTAT
	ACCTGTTTAT	ATAA′ΓCAAGA	CCAACAGAAC	CCTAGAGAAA	ATAGCTCACT	CCCTAGCTCG	GAGACATTCT
	AACCAACATA	CACTTACCTT	TCTTTTTGCT	GTGTACAGAA	TTCAAATCCC	TGTCTCAGCA	AAATTGCAAA
	GTATCAAATG	TCATGTCCAT	CTAATACTCA	AAACTGCAAA	TGTTAAGTCT	TGTAAGCCCA	GAGACCACTG
4.0	TATATACAAG	TGTTGCTATA	AGCATTAGTT	CTTCTCCAAA	GAAAATAGTC	CACTTGGTAG	AAACAAACAA
40	AAAGAAAAA	AAAGAAAGAA			ATTCAGTCTC	TTACCTACAT	AAGCAAAAAT
	ATGAGATGTT	CTCTTATCAT	TTTTCCATCT	ATCTTATAAT	CTTTGGTGCT	GACTTAGACA	CTCATTTTCC
	TTTTTGTACG	TGACCATGTA	AAAGTTCAAG	TCAAGAAAAA	CTTGTTTTGA	CATTTGTTTT	GCTGAGTGAT
						TGTGTGAATT	
4.5						GCATTCAGTG	
45						CACTGATTCA	
						ACTCCTTGTC	
						ATATATATAC	
						AAGGGAGGGT	
50						TAGATTGCTG	
50						GCTTATGCAT	
						AAAAATATAT	
						ATGAACAAAT	
						GTTAATTTGT	
55						TAAGATATGT	
55						CTAGTTATCT	
						ATAGTTTTGA	
						AAAAAAGAAG	
						GTGATAACGT	
60						ACATTCAGTG	
JU						TTATTGGTAG	
						TAAATATGTT	
	JUANCIANAA	IMICALICI	DADATDADDD	AAATATAAAT	AIGGACIIGG	CAAATGAAAC	AAAGACCIGC

	mom., moo., m.	~~~					
				ATAAAGAGAA			
				AAAAAAAGCA			
	TATTTACTTA	ACATITTAAA	AATAGCAAAA	TCATAGAGAT	GGAGAACAGA	TTAATGGGTA	CTGTGTTTTG
				AATATAAAGG			TGGTTGAAGG
5				AGGAATCTAC			TCTACATACG
				CATGTGAAGA			
				AAACATTGTC			
				GTGAATCCGT			
10				GTTTACCTAG			TGCTATAAGA
10				GCTCAGAGAA			
				ACTGAAAACA			
				ACAGCCTCTT			
	AMCOTOTOGO	TCCA.AGAGAG	AAAATGGATA	GATTAATTTT	TAAGAAAAA	AAAAAAACCT	CACCAATTTC
15	AIGCIGIGGC	COLATOACCT	AATCCCAGCT	ACCTACAAGG	CIGAGGIGAG	AGGCTTACTT	GAGCCCAGGA
13	GIICAAGGCI	GCAF IGAGCI	AIGAITGATT	GTGCTATCGC	ACTCCAACCT	GGAGTACTAA	GCTAAGAGCT
	CCACTCACCT	CACACTCCTC	AGAAGAAACA	AACAAATCTC	ACCAATAACC	CCCACTCCCC	TCATTTTACT
				CCTTTGACCT			
				GAGAAAACAA			
20				TGTGATATAT			
20				TATTAATGCC ACTCTGTTCT			
				TAGAGGAACT			ATACTTGCTG
	AAAATGAAGC	ATCT'ACTTCA	GAAAACCATT	TTATCAGTTT	CTACAAACTT	IACACIGCIA	GCAGGATGG
	GCCCAGCCAC	TCTACTCCTA	ACTATTACA	CAAGAGAAAT	CAAAACCTCT	AAACATAGAC	CCACCATGCA
25				GCTAGGCTAT			
23	TAGGTGCATC	TGTGAAGGTA	TTTTCTACAT	GTGGTTAACA	CCTACAATCT	CTTCACTTCA	AATAGTAATC
	ATTGCTCTTG	ATAGEATAGGG	TGGGGCTTCAT	CCAATCAATT	GAACCCCTTA	ACACCAAAAA	AGTAAAGGAG
				GCAGCCTCAA			
				ATCAGCTAAT			
30				GTAATAGCCA			
				TCCACAATTT			
				ACCTTAAAAC			
	ACTAATACAT	ACTGAATAAT	TCCATTTATA	TTGAAGTTCT	AGAAAATGAG	GACTAACCTA	TAGTAACAAA
				AGGGGGCGCA			
35				AGGGTGATTG			
	TAGGTGCATA	CATA TGTCAA	AACATCAAGT	TATACACTTT	TAAAATGTTC	AGTTTACTGT	ATATCTATTA
				GCAGGGTGGG			
	CCTAATAGGA	AGGATTTTGG	AGTTTAGATT	TTAAAATGAT	AAAGGATGTT	TGACACTCTA	GGCATATGAC
	GAATATAGGA	TTATGAGTCC	ACAAAAACCA	CCAGGAAGTC	ATGTATGTTT	ATACTTTTAA	GTGAAGGATC
40				TCTCTATGAC		CCTTCTCATC	
	TTCCAAAGCC	CCTTGCTTAA	ATGTAAGCCT	TCTTTCCTCC	TTTCAACACA	TCCTGCATTC	CGTGACAAAA
	TAAGTTTTCC	TTAA ACAGAA	TGTACAGCAT	ATTATTTGTA	CAATTAAAAA	TTTTTGGCCA	GGTGTGATGA
	CTCATGCCTG	TAATCCCAGC	AATTTGGGAG	GCCGAGATGT	GTGGATTACC	TGAGGTCAGG	AGTTCGAGAC
	CAGCCTGGCC	AACATGGTGA	AACCCTGTCT	CTACTAAAAA	TACAAAAATT	AGCTGAGTGT	AGTGTGGCAG
45	GTACCTGTAA	TCCC AGCTAC	TCAGGAAGCT	GAGGCAGGAG	AATCGCTTGA	ACCTGGGAGG	TGGAGGTTGC
				GGCTAGGAGA			AAAAAAAAAC
				GTAGGAAAAA		CCTTAGCCTG	GGCATCAGAG
				GTGGCACTAA		GTACTTGTCC	GCTCACTGGC
	CTGTGCCTCT			ATGTCCTCTC		TTACTCAACT	ATATCCAACC
50				TGGCTACTTC			
	TTCAGGACAT			CATTTACTTA			
		AATTTTCTTC					AATGCCAAGT
				ATAGATATGT			
e e				TAGAAGTATT			
55				AAGGACGTCA			
	ATTAAAAAAA			GTCTCACTCT			
		TGCAACCTCT			TCTCCTGCCT		
				AATATGATCA			CCTCAGTTGT
60				ATGACAAACT			
00				CTAGAAACATC			
				AGTAAAGATC			
	CCAAAAGCCA	TCACTTTGCA	LAGGAAACAC	CTTGTTTAGC	CIAAICITIT	TATTTTATT	ACTUTATTAG

	TTO A CO A TOTA	TO COOL COOT	COTOTO	CTCCTTC A CCTT	C + + CTC + TCC	maama aarma	G G G T G G L T L L
	TTCACCATGT	TGGCCAGGCT	GGTCTCAAAA	CTCCTGAGCT	CAAGTGATCC	TCCTGCCTTG	GCCTCCATAA
	GTGCTGGGAT	TACAGGCGTG	AGCCGCTGAG	CCTGGCCCCA		TGTTTTGTTT	TCAAGACAAG
	ATCTCACTCT	ATTGCCCAGG	CTGGAGAGCA	GTAGTGCGAT	CATAGCTCAC	TGCAGCCTGA	ACTCCTGGGT
~	TCAAGCTATT	CTCCIGCCTC	CATCTTCTAA	AGTGCTGTGA	TTACAGGTCT	GAGCCATGAT	GCTTGGCCTG
5	TGTTTTTGTT		GGGGGACAGG		GTCACCAAAA	CTGGAGTGTA	GTGGTGCGAA
	CATAGCTAGC	TCACTGCAGC	CTCCATCTCC	CACGCTCAAG	CAATCCTCTC	ACCTCAGCCT	TCCAAGTAGC
	TGAGACCGCA	GGTGCGTGCT	ACCATGCGTG	GCTAATTTTC	TATTTATATA	TTTATTTTTT	GGTAGACATG
	AGGTCTTGTC	ATGTITCCCA	GGTGGTCTTT	AACTCCTGGG	CTCAGACAGT	CCTCCCGCCT	CAGCCACCCA
4.0	AAGTGTTGGG	ATTA CAGGCG	TGAGCCACCA	TGCGTGGCAT		AAGTAAATTA	TTTTTTTATC
10	TTGAGTATAG	AAGTGATTCA		GGAAAATATG		AAAAACAGAA	AAGATTACAA
	AACATCTAAT	CTGAAATGGT	TAAGATTTTG	ATGAGAACAG	TCTCATCTCA	TTTCCGTATA	TTCCTGCCAG
	CCTATCCATC	ATTCTTCGTA	CATGTTTATC	TACATTAAAA	TTGGTGTTAT	ATTTTGGAAA	CTTTTTGTTT
	AACTACATTG	TGA# CATTTT	TCATGTTTTA	AAATGTCATT	TTAATGATGG	CAGATCCTAT	TCAATAGATG
	TACACACACC	TATITAACTG	GTCCACAATT	GTTGGATATG			TTTTTTTTT
15	TTTTTGGCTA	CTACITAATA	GTTTCTCTGT	ATAGAATGTG	GTATTTTGAA	AGTGTATCAA	GCTTTAGATT
	GGTAGTATTC	TTGCATTTAA	TAAAGGGCAG	TGGCCTTTGT	TGACTGACAT	GACAATATTT	TTATAAAATT
	TGTTATTTGC	TTTACAGAAA	TTTTGAAAAT	TATTGTAGAA	ATGTTTTTAC	CTCATATGAA	CCACCTGACA
	TTGGAACAGA	CTTTCTTTTC	ACAAGTGTTA	CCAAAGGTAT	AATACTATTA	CCTGAAAATA	CATGTTATAA
	GGAATCTAGC	CTC4.GTCTTA	GATGATTTAT	TATTAATTAT	GGCTCTCTTT	TTCTAATATA	TCAAATATAT
20	TCAAAATAAA	AAT# AGGAGT	AAGTAGATCT	CATGTGAGAC	TATAATGGTG	TTAGTGTGAT	CATTAGGCAG
	TTAAAAACTG	TTACAGGCTG	GGCACGGTGG	CTCATGCCTG	TAATCCCAGC	TCTCTGAGAG	GCTGAGGTGG
	GCAGATCATC	TGAGGTCAGG	AGTTCGAGAC	CACCCATGGT	CAACATGATG	AAACCTCGTC	TCTACTAAAA
	GTACAAAAAA	TTAC CTGGAC	ATGGTGGCAG	GTGCCTGTAA	TCCCAGCTAC	TTGGGAGACT	GAGACAGGAG
	AATTGCTTGA	GCCTGGGAGG	CGGAGGTTGC	ATTGAGTCAA	GATCGTGCCA	TTGCACTCCA	GCCTGGGCAA
25	TAAGAGCGAT	GCTCCGTCTC	AAAAAAAAA	AAAAAAAAAA	AAGAACTTAT	ATTTTCAGAT	TGTGTGGTTC
	CTTTACTAAC	TGAATTTAAA	TTATTTGTAG	TCAATTTTAA	ATGCTCTTGT	ATTTTAAAGC	CACTGTACTC
	CAGCCTGGGT	GACAGAGTGA	AACCCTTAAT	TCAAAAAAA	AAAAAAAAA	AAGAAAAGCT	GGAATATTGG
	CAAAATCAAG	TAACTAAGAG	AAAACATTAA	ATTCACAGAA	TACATTATTA	CATTTTAGAT	ATATATGGTA
	TATGTTTTCT	CTGAAAAGCA	CAAGCATACC	TTTTTTGTTT	TAAATGGAGG	GAACTAAAGA	TACTTTGGTG
30	CCAAAATGAA	ACATATTTG	TAATTAATCT	CTTATTGAAA	TGGGTTTCTA	ACTTTAGCTT	TGAATCGTAA
	TCTTTCAAAT	TTCTIGTACT	CATAGTCACT	TGATGATTCT	CTATCTGAAA	TATTTCTTAG	AATTTGTTCT
	TGACCACCAG	AAAA.AGATTC	AACTGTTACA	TAGATGAAAA	TGGATGTTGA	GTGTTAACAG	GCCTATGGGA
	AACAGTATTT	TCTTTAGCTA	CATTGTATTG	TTGACTGTGT	TGCTATTCTT	ATAATGTTTA	GGTCATTTAA
	ATTGTTAGAA	AGAT CCAAGT	ATTAAGATCT	AGGGTGGCTA	ACTTTTCACA	GACAAAAAGC	TTGTTTGTAA
35	GGTCATTTAC	TATA CCCTTA	ATTCAGGAAG	GTTAGCTTGA	ATTGGGTCAA	AAGGAAACTG	GTTAGAAAAT
	AAGTGAGTAG	TGAA.TAGGCG	ATTCAGTGCA	AATTCCTTCC	AGAAAATACC	CTTGTAAATG	ACTGTATGAA
	TGTGGATTCT	TCAAGACAGT	CAAATTTATT	GTGCGAAAGT	AATACTTTTA	TTTTTTGCAT	CTCTAAAACA
	TGAACTTTGA	GTGATTTTTT	AAAAAAATTG	ATGCTATTAA	ATAGATTCAA	ACCATAGAAA	TGGAAAATAA
	ATTTCTGTTT	GGGGCTTTTG	GGGGGATTAT	GTTGTAAAAA	TACCTTTTCT	CTGTATTTTG	TGCTTAATTA
40	GGTACAATTG	TTAAGCTAGA	TGATAGCCTG	TGGATGTTAC	TAGTGCAAAA	TCAAATTATC	GTATTGTGTT
	TTCTCTGTAA	AGTITTGTCT	TGTCTTTTCT	AGTGATTTCT	CTTATTCCTG	TTTATTACTT	GATTTGTTTT
	TACAGACTGT	GAAATTATTC	GATGACATGA	TGTATGAATT	AACCAGTCAA	GCCAGAGGAC	TGTCAAGCCA
	AAATTTGGAA	ATCCAGACCA	CTCTAAGGAA	TATTTTACAA	GTAAGTCAAA	TGTATTAGAA	AGCAGGAGAG
	AGAGGGAGCT	TAAAGAATGT	CAAAATTTTT	ATACTGATAC	TGATTAGCTA	TGTATTCTTA	TGTAATGGCC
45			TAGAATTAAA				
	TATAAGAAGA	GAAGTCATCA	AGCTAGCTGA	CCCTACCTGT	ATTTTCAAGG		
	ATGTGTTTTG	AAGTTTGTGT	TAGTATTCTA	AATGGCTAGA	CAGTTGTTCC	AGTATTTGTA	GTTCTGATAG
			GGAAGAGACT				
	GACTAATACC	TTTTCAGTGC	ACAAAAAATA	TATTCTAAGT	GAAATTTCCT	TCCTTATTCA	CAGACAATGG
50	TGCAGCTCTT	AGGAGCTCTC	ACAGGATGTG	TTCAGCATAT	CTGTGCCACA	CAGGAATCCA	TCATTTTGGA
	AAATATTCAG	AGTC TCCCCT	CCTCAGTCCT	TCATATAATT	AAAAGCACAT	TTGTGCATTG	TAAGGTGAGT
	AAAGGTCTAA	TTATACTTTG	AATGGTATAT	AATCAATGTG	CATAGGGGCT	GAGTAAAATA	ATGTTTGTAT
	AAGATTTTAC	ATTTTAGTCT	ATATTATTGA	AATAAACTTT	TCCATAGAAT	AAAGAACATG	TAAGTAAATA
	ATTGTTGCAA	AAA/.AGTGGT	TTTAAGGAAG	TCATTAAAAG	TGGCTTTTTG	GGGTTTTTTA	GTTTTATCTT
55	ATTTCCCCTC	TATA.\AGAAA	GAAGTTTTAA	GAATTTGTGT	TGAGACAGAC	ACAGGGATCC	TGAAATAGTT
	ATGTCATGTT	GCATTGACCA	ATATTCAATT	ACCATTATGA	TTAGATGTCA	GAACTTCCTT	TTATAAAGGA
	AAGTTAATCC	TTATITAGTC	CATCTCTACA	TGCCAGAGGT	AGCCTTGAGG	CACAAAAGCT	TGCCTAGAAT
	TTATGGGTCA	CAGA CAGTTT	TAATATTGCT	ATTTGTTGGG	CGAATGAAAA	TCACTAGTTA	ATTAATACCT
	CTCTTTGCTG		AAAAATGTCA				
60	GCAAGATCAT	GGAAGTCAGA	AATAATATTT	TATACATGCT	TGCATCTCTT	GAAGCACACT	ATATTTAATG
			TGAATATGTG				
	AAATTTGGCT	CTTC AGCTTT				CGTAATCAGA	

	ттсттстссс	AAACECACCC	CACTAACAAC	TATTCACAT	CAGTTGCCCA	TCCAAACTTC	TTT 4 TTC CC 4
	CAAAGCAAGA					GACTTTCAGA	
	CCAGGCGTAG	GTCTGGAGTC	TCACTTGTCT	CACTTGTGCA	GTGTTGACAG	TTCATATGTA	CCATGTACAT
~	GAAGAAGCTA	AAT('CTTTAC	TGTTAGTCAT	TTGCTGAGCA	TGTACTGAGC	CTTGTAATTC	TAAATGAATG
5	TTTACACTCT	TTGTAAGAGT	GGAACCAACA	CTAACATATA		TTAAAGAACA	CCCTATATTT
	TGCATAGTAC	CAATCATTTT	AATTATTATT	CTTCATAACA	ATTTTAGGAG	GACCAGAGCT	ACTGACTATG
	GCTACCAAAA	AGACTCTACC	CATATTACAG	ATGGGCAAAT	TAAGGCATAA	GAAAACTAAG	AAATATGCAC
	AATAGCAGTT	GAAA CAAGAA	GCCACAGACC	TAGGATTTCA		TCAACTGTTT	GCCTTCTGCT
	TTTAAGTTGC	TGAT/GAACTC	TTAATCAAAT	AGCATAAGTT	TCTGGGACCT	CAGTTTTATC	ATTTTCAAAA
10	TGGAGGGAAT	AATA CCTAAG	CCTTCCTGCC	GCAACAGTTT	TTTATGCTAA	TCAGGGAGGT	CATTTTGGTA
	AAATACTTCT	CGAAGCCGAG	CCTCAAGATG	AAGGCAAAGC	ACGAAATGTT	ATTTTTTAAT	TATTATTTAT
	ATATGTATTT	ATAA ATATAT	TTAAGATAAT	TATAATATAC	TATATTTATG	GGAACCCCTT	CATCCTCTGA
	GTGTGACCAG	GCATCCTCCA	CAATAGCAGA	CAGTGTTTTC	TGGGATAAGT	AAGTTTGATT	TCATTAATAC
	AGGGCATTTT	GGTCCAAGTT	GTGCTTATCC	CATAGCCAGG	AAACTCTGCA	TTCTAGTACT	TGGGAGACCT
15	GTAATCATAT	AATAAATGTA	CATTAATTAC	CTTGAGCCAG	TAATTGGTCC	GATCTTTGAC	TCTTTTGCCA
	TTAAACTTAC	CTGG 3CATTC	TTGTTTCATT	CAATTCCACC	TGCAATCAAG	TCCTACAAGC	TAAAATTAGA
	TGAACTCAAC	TTTGACAACC	ATGAGACCAC	TGTTATCAAA		CTGGAATGTA	ATCAATGTTT
	CTTCTAGGTT	CTAAAAATTG	TGATCAGACC	ATAATGTTAC	ATTATTATCA	ACAATAGTGA	TTGATAGAGT
	GTTATCAGTC	ATAACTAAAT	AAAGCTTGCA		CTGACACATA	GTTATTCATT	GCCTTAATCA
20	TTATTTTACT	GCATGGTAAT	TAGGGACAAA	TGGTAAATGT	TTACATAAAT	AATTGTATTT	AGTGTTACTT
	TATAAAATCA	AACC AAGATT	TTATATTTTT	TTCTCCTCTT	TGTTAGCTGC	CAGTATGCAT	AAATGGCATT
	AAGAATGATA	ATATTTCCGG		AGCTCATATT	ACACATACAC	AAAACATGTG	TTCCCATCTT
	TATACAAACT	CACACATACA			AATAGGCCAG		TCAGACCTGT
	AATCCCAGCA				A AGGCACAACA		
25	CAGCCAATCT			GCAGCCATGG		TGAGCTCGCC	
23	TGGCTTATTA	CAGTGGCAAT		TGTTCTTTGA		CCTAAACAGA	
	CTTCCAGGAC	CTGGACCTCT	GCCCTCTGGA	TGGCGGCATC	CAGCTACGAA		
		GGCAGGCCGC			ACAAGCTGAG		GTTCCCTGCC
	CACAGACCTT	CCAGGAGAAT		CCTTCTTTCC	CTTCATCTTT	GAAGAAGAAC	CTATCTTCTT
30		GATAACGAGG		CGATGCACCT		TGAACTGCAC	
30		AAAC CTTGGT		CCATATGAAC	TGAAAGCTCT	CCACCTCCAG	
		AGTGGTGTTC	TCCATGTCCT	TTGTACAAGG		AATGACAAAA	
	CTTGGGCCTC	AAGGAAAAGA				ATAAGCCCAC	
					TTGAAAGATG AAAAGCGATT	TGTCTTCAAC	
35	TCAATAACAA	GCTGGAATTT					
33				AGTTCCCCAA		AGCACCTCTC	
	CATGCCCGTC	TTCC GGGAG AGCTGTACCC	GGACCAAAGG				ATTTGTGTCT
	TCCTAAAGAG		AGAGAGTCCT	GTGCTGAATG	TGGACTCAAT		GGCAGAAAGG
	GAACAGAAAG	GTTTTTGAGT	ACGGCTATAG		CCTGTTGTCT	ACACCAATGC	CCAACTGCCT
40	GCCTTAGGGT	AGTGCTAAGA	GGATCTCCTG	TCCATCAGCC	AGGACAGTCA	GCTCTCTCCT	TTCAGGGCCA
40	ATCCCCAGCC	CTTT'I'GTTGA	GCCAGGCCTC	TCTCACCTCT	CCTACTCACT	TAAAGCCCGC	CTGACAGAAA
	CCACGGCCAC	ATTTGGTTCT	AAGAAACCCT		CTCCCACATT	CTGATGAGCA	ACCGCTTCCC
	TATTTATTTA					CAAAGGGGGC	AAGAAGTAGC
					CAATTCAATT		
45					AGATTATTTA		
45		ATACIGTTCA				AGAAAGAAAG	
					GGCTCTGAGG		
					GGCANNCAGA		
					CAGGAGGGCT		
~ 0					TTTAGATTTC		
50					ACTGGGAGCC		
					TAGAACCTAT		
					ACGATACCTG		
					TCTATCTCAC		
					GGAACCAGGA		
55	GCTATAAGAA	GTGTTACAGG	CTGGACACGG	TGGCTCACGC	CTGTAATCCC	AACATTTGGG	AGGCCGAGGC
	GGGCAGATCA	CAAC GTCAGG	AGATCGAGAC	CATCCTGGCT	AACATGGTGA	AACCCTGTCT	CTACTAAAAA
	TACAAAAAAT	TAGCCGGGCG	TTGGCGGCAG	GTGCCTGTAG	TCCCAGCTGC	TGGGGAGGCT	GAGGCAGGAG
	AATGGTGTGA	ACCCGGGAGG	CGGAACTTGC	AGGGGGCCGA	GATCGTGCCA	CTGCACTCCA	GCCTGGGCGA
	CAGAGTGAGA	CTCT GTCTCA	AAAAAAAAA	AAAAGTGTTA	TGATGCAGAC	CTGTCAAAGA	GGCAAAGGAG
60	GGTGTTCCTA	CACTICCAGGC	ACTGTTCATA	ACCTGGACTC	TCATTCATTC	TACAAATGGA	GGGCTCCCCT
					TAAAGAGAAA		
	CAAGAGATAG	AGTC TCAGAT	GGATATTCTT	ACAGAAACAA	TATTCCCACT	TTTCAGAGTT	CACCAAAAAA

	TCATTTTAGG	CAGAGCTCAT	CTGGCATTGA	TCTGGTTCAT	CCATGAGATT	GGCTAGGGTA	ACAGCACCTG
	GTCTTGCAGG	GTTGTGTGAG	CTTATCTCCA	GGGTTGCCCC	AACTCCGTCA	GGAGCCTGAA	CCCTGCATAC
	CGTATGTTCT	CTGCCCCAGC	CAAGAAAGGT	CAATTTTCTC	CTCAGAGGCT	CCTGCAATTG	ACAGAGAGCT
	CCCGAGGCAG	AGAACAGCAC	CCAAGGTAGA	GACCCACACC	CTCAATACAG	ACAGGGAGGG	CTATTGGCCC
5	TTCATTGTAC	CCATITATCC	ATCTGTAAGT	GGGAAGATTC	CTAAACTTAA	GTACAAAGAA	GTGAATGAAG
	AAAAGTATGT	GCATGTATAA	ATCTGTGTGT	CTTCCACTTT	GTCCCACATA	TACTAAATTT	AAACATTCTT
	CTAACGTGGG	AAA/.TCCAGT	ATTTTAATGT	GGACATCAAC	TGCACAACGA	TTGTCAGGAA	AACAATGCAT
	ATTTGCATGG	TGATACATTT	GCAAAATGTG	TCATAGTTTG	CTACTCCTTG	CCCTTCCATG	AACCAGAGAA
	TTATCTCAGT	TTATTAGTCC	CCTCCCCTAA	GAAGCTTCCA	CCAATACTCT	TTTCCCCTTT	CCTTTAACTT
10	GATTGTGAAA	TCAC GTATTC	AACAGAGAAA		TCCTACTTCT	GCTTTTGAAA	GCTATAAAAA
	CAGCGAGGGA		GATACCAAAC		CACAAGGCAC	AACAGGCTGC	TCTGGGATTC
	TCTTCAGCCA	ATCTTCATTG	CTCAAGTATG	ACTTTAATCT	TCCTTACAAC	TAGGTGCTAA	GGGAGTCTCT
	CTGTCTCTCT	GCCTCTTTGT	GTGTATGCAT	ATTCTCTCTC	TCTCTCTCTT		TCTCTCCTCT
	CCTTCCTCTC	TGCCTCCTCT	CTCAGCTTTT			TCTTTCTCTG	
15	AAATATTCTG	GGAATGGATA		TGCAAAAATG	CCAGGTGTAA	TATAATGCTT	ATGACTCGGG
15			CTGCTTATCT	AACAGCTGAC	ACCCTAAAGG	TTAGTGTCAA	AGCCTCTGCT
	CCAGCTCTCC	TAGCCAATAC	ATTGCTAGTT	GGGGTTTGGT	TTAGCAAATG	CTTTTCTCTA	GACCCAAAGG
	ACTTCTCTTT	CACA CATTCA	TTCATTTACT	CAGAGATCAT	TTCTTTGCAT	GACTGCCATG	CACTGGATGC
	TGAGAGAAAT	CACACATGAA				CTCCTTTTTA	CACAGGTGTC
20	TGAAGCAGCC	ATGC CAGAAG		CGCCAGTGAA	ATGATGGCTT	ATTACAGGTC	AGTGGAGACG
20	CTGAGACCAG	TAAC'ATGAGC		TTTCAAGAGT	AGAGTGTTAT	CTGTGCTTGG	AGACCAGATT
	TTTCCCCTAA	ATTG CCTCTT	TCAGTGGCAA	ACAGGGTGCC	AAGTAAATCT	GATTTAAAGA	CTACTTTCCC
	ATTACAAGTC	CCTCCAGCCT	TGGGACCTGG	AGGCTATCCA	GATGTGTTGT	TGCAAGGGCT	TCCTGCAGAG
	GCAAATGGGG	AGA/.AAGATT	CCAAGCCCAC	AATACAAGGA	ATCCCTTTGC	AAAGTGTGGC	TTGGAGGGAG
	AGGGAGAGCT	CAGATTTTAG	CTGACTCTGC	TGGGCTAGAG	GTTAGGCCTC	AAGATCCAAC	AGGGAGCACC
25	AGGGTGCCCA	CCTC CCAGGC	CTAGAATCTG	CCTTCTGGAC	TGTTCTGCGC	ATATCACTGT	GAAACTTGCC
	AGGTGTTTCA	GGCAGCTTTG	AGAGGCAGGC	TGTTTGCAGT	TTCTTATGAA	CAGTCAAGTC	TTGTACACAG
	GGAAGGAAAA	ATA/\ACCTGT	TTAGAAGACA	TAATTGAGAC	ATGTCCCTGT	TTTTATTACA	GTGGCAATGA
	GGATGACTTG	TTCTTTGAAG	CTGATGGCCC	TAAACAGATG	AAGGTAAGAC	TATGGGTTTA	ACTCCCAACC
	CAAGGAAGGG	CTCTAACACA	GGGAAAGCTC	AAAGAAGGGA	GTTCTGGGCC	ACTTTGATGC	CATGGTATTT
30	TGTTTTAGAA	AGACTTTAAC	CTCTTCCAGT	GAGACACAGG	CTGCACCACT	TGCTGACCTG	GCCACTTGGT
	CATCATATCA	CCACAGTCAC	TCACTAACGT	TGGTGGTGGT	GGCCACACTT	GGTGGTGACA	GGGGAGGAGT
	AGTGATAATG	TTCCCATTTC	ATAGTAGGAA	GACAACCAAG	TCTTCAACAT	AAATTTGATT	ATCCTTTTAA
	GAGATGGATT	CAGCCTATGC	CAATCACTTG	AGTTAAACTC	TGAAACCAAG	AGATGATCTT	GAGAACTAAC
	ATATGTCTAC	CCCTTTTGAG	TAGAATAGTT		TGGGGTGAAG	CTTATAACAA	CAAGACATAG
35	ATGATATAAA	CAAAAAGATG	AATTGAGACT	TGAAAGAAAA		GCTGTTTGAC	CTTGACAAGT
	CATTTTACCC	GCTT GGACC	TCATCTGAAA	AATAAAGGGC	TGAGCTGGAT	GATCTCTGAG	ATTCCAGCAT
	CCTGCAACCT	CCAGTTCTGA	AATATTTTCA	GTTGTAGCTA	AGGGCATTTG	GGCAGCAAAT	GGTCATTTTT
	CAGACTCATC	CTTACAAAGA	GCCATGTTAT	ATTCCTGCTG	TCCCTTCTGT	TTTATATGAT	GCTCAGTAGC
	CTTCCTAGGT	GCCC AGCCAT	CAGCCTAGCT	AGGTCAGTTG	TGCAGGTTGG	AGGCAGCCAC	TTTTCTCTGG
40	CTTTATTTTA	TTCCAGTTTG	TGATAGCCTC	CCCTAGCCTC	ATAATCCAGT	CCTCAATCTT	GTTAAAAACA
10	TATTTCTTTA	GAAGTTTTAA	GACTGGCATA	ACTTCTTGGC			
	CTGCCTGGCC	TTTGCCCCCC	ATTGCCTCTT		TGCAGCTGTG	GGAGGAGCCC	ATTGGCTTGT
				CCAGCAGCTT	GGCTCTGCTC	CAGGCAGGAA	ATTCTCTCCT
						CTTTGAACCA	
45						AAGTGGTAAC	
43	AAGIACICIC	ACAGJATTIG	CAGAATGCCT	ATGAGACAGT	GITATGAAAA	AGGAAAAAA	AGAACAGTGT
	AGAAAAAIIG	AATACTIGCT	GAGTGAGCAT	AGGTGAATGG	AAAATGTTAT	GGTCATCTGC	ATGAAAAAGC
						ACATGTATGG	
	GLATGTACAA	AAAGATGACA	AGTAGAATCG	GGATTTATTC	TAAAGAATAG	CCTGTAAGGT	
<i>5</i> 0				GCTGTGTGCC			CCTTGAGCTT
50	CAGAGAGGGA			ATTTTATTTT			GTTTTATGAG
	ACAGAGTCTC	ACTCTGTTGC	CCAGGCTGGA	GTGCAGTGGT	ACAATCTTGG	CTTACTGCAT	CCTCCACCTC
						AGGTGCACCC	
	AGCTAATTTT	TGTATTTTTA	GTAGAGAAGG	GGTTTCGCCA	TGTTGGCCAG	GCTGGTTTTG	AAGTCCTGAC
						GAGCCACCAC	GCCTGGCCCA
55				CTTTCAAGCC			TCTACTCTCT
	GATGTCAAAG	CATGGTTCCT	GGCAGGACCA	CCTCACCAGG	CTCCCTCCCT	CGCTCTCTCC	GCAGTGCTCC
						CTCCGACCAC	
						AAGATGCTGG	
	ACAGACCTTC	CAGGAGAATG	ACCTGAGCAC	CTTCTTTCCC	TTCATCTTTG	AAGAAGGTAG	TTAGCCAAGA
60						CCAACTCAAT	
						GCTGGAAACC	
						TTGCAACTCC	
	_						

	CTCAGGGGCC	TTTCACTTAC	ATTGTCACCA	GAGGTTCGTA	ACCTCCCTGT	GGGCTAGTGT	TATGACCATC
	ACCATTTTAC	CTAAGTAGCT	CTGTTGCTCG	GCCACAGTGA		ACCTGAAGCT	GGAACCCATG
	TCTAATAGTG	TCAC GTCCAG	TGTTCTTAGC	CACCCCACTC		CCCTACTGGT	GTTGTCATCA
	GACTTTGACC	GTATATGCTC	AGGTGTCCTC	CAAGAAATCA		CCTCGCCTCA	CGAGGCCTGC
5	CCTTCTGATT	TTATACCTAA	ACAACATGTG	CTCCACATTT	CAGAACCTAT	CTTCTTCGAC	ACATGGGATA
	ACGAGGCTTA	TGTGCACGAT	GCACCTGTAC	GATCACTGAA	CTGCACGCTC	CGGGACTCAC	AGCAAAAAAG
	CTTGGTGATG	TCTG 3TCCAT	ATGAACTGAA	AGCTCTCCAC	CTCCAGGGAC	AGGATATGGA	
	AAATGGAAAC	ATCCTGGTTT	CCCTGCCTGG	CCTCCTGGCA	GCTTGCTAAT	TCTCCATGTT	TTAAACAAAG
	TAGAAAGTTA	ATTT 4AGGCA	AATGATCAAC		AAAAATATTA	AAAAGGAATA	TACAAACTTT
10	GGTCCTAGAA		TGATTGCACT		TTTGTTAACA	GGAGTGTGAC	CCTGAGAAAT
	TAGACGGCTC	AAGC'ACTCCC	AGGACCATGT			TAGTGCAGTG	TCAATTCTTC
	CACAATATGG	GGTC'ATTTGA	TGGACATGGC		GTGGGTTCTC	TCTTCCTGTT	GTTGAGGCTG
	AAACAAGAGT				CCAGTCTTCC		CAACATCCGT
1.5	CCCACCCAAT	GCCAGGTGGT	TCCTTGTAGG	GAAATTTTAC	CGCCCAGCAG		
15	TAACGGGCAA		TGCGGTGAAC			CTGCCTGGCA	
	GTAGCCAAAG		GGAGTGTGGG		TGCTGACTTT	GAAGGACAGC	CTCACTCAGG
	GGGAAGCTAT	TTGCTCTCAG	CCAGGCCAAG		TTCTTTGGAA	TCGGGTAGTA	AGAGTGATCC
	CAGGGCCTCC	AATTGACACT	GCTGTGACTG	AGGAAGATCA			
20	CCAGCTCAGC	CTCTCCTCTC	CCAGTTTCTT	CCCATGGGCT	ACTCTCTGTT	CCTGAAACAG	TTCTGGTGCC
20	TGATTTCTGG TGGATGGGCA	CAGAAGTACA	GCTTCACCTC	TTTCCTTTCC	TTCCACATTG	ATCAAGTTGT	TCCGCTCCTG
	ACCCTCTTTC		CAGTGACACA			CTTCAGCATT	TAAAATGTAG
	TAAATCAACA		CCTACTGCTA GCTATTGTCT	TGAGGCTCTG	AGAAACCCTC	AGGCCTTTGA	GGGGAAACCC
	TCACTGTGGG	TTCCCACAGA	GGCTACCAAT	GTGAGAAGTC TACATGTATC	AAGTTATCCT	GTGTCTTAGG	CCAAGGAACC
25	CTGCATGCTG	TGTCCCTAAC	CACAAGACCC		CTACTCTCGG	GGCTAGGGGT	TGGGGTGACC
		GTAA.TGACAA			TCAGTGGTGT TCAAGGAAAA	TCTCCATGTC	CTTTGTACAA
	TGTTGAAAGA		ACTCTACAGC	TGGAGGTAAG	TGAATGCTAT		
	CTCCTGCTAC		CAGACAATTC	ACCTTCTCCC	CGCCCCCATC	CCTAGGAAAA	CCTTCTCAGC GCTGGGAACA
	GGTCTATTTG	ACAA GTTTTG	CATTAATGTA	AATAAATTTA	ACATAATTTT	TAACTGCGTG	CAACCTTCAA
30	TCCTGCTGCA	GAAAATTAAA	TCATTTTGCC	GATGTTATTA	TGTCCTACCA	TAGTTACAAC	CCCAACAGAT
	TATATATTGT	TAGGGCTGCT	CTCATTTGAT	AGACACCTTG	GGAAATAGAT	GACTTAAAGG	GTCCCATTAT
	CACGTCCACT	CCACTCCCAA	AATCACCACC	ACTATCACCT	CCAGCTTTCT	CAGCAAAAGC	TTCATTTCCA
	AGTTGATGTC	ATTC1'AGGAC	CATAAGGAAA		AAAGCCCCTG		ACTTCAAGAA
	GCTCTAGCTT	AATT TCACC	CCCCCAAAAA	AAAAAAATTC	TCACCTACAT	TATGCTCCTC	AGCATTTGGC
35	ACTAAGTTTT	AGAAAAGAAG	AAGGGCTCTT	TTAATAATCA	CACAGAAAGT	TGGGGGCCCA	
	AGGAGTCTGG	CTCCTGATCA	TGTGACCTGC	TCGTCAGTTT	CCTTTCTGGC	CAACCCAAAG	AACATCTTTC
	CCATAGGCAT	CTTT(3TCCCT	TGCCCCACAA	AAATTCTTCT	TTCTCTTTCG	CTGCAGAGTG	TAGATCCCAA
		AAGA 4GAAGA			AACAAGATAG	AAATCAATAA	CAAGCTGGAA
40	TTTGAGTCTG		CAACTGGTAC	ATCAGCACCT	CTCAAGCAGA	AAACATGCCC	GTCTTCCTGG
40		AGGCGGCCAG			GCAATTTGTG	TCTTCCTAAA	
	CCCAGAGAGT	CCTGTGCTGA	ATGTGGACTC	AATCCCTAGG	GCTGGCAGAA	AGGGAACAGA	AAGGTTTTTG
	AGIACGATOTO	TAGCCTGGAC	TTTCCTGTTG	TCTACACCAA	TGCCCAACTG	CCTGCCTTAG	GGTAGTGCTA
	TGAGCGACCC	CTGT/CCATCA	GCCAGGACAG	TCAGCTCTCT	CCTTTCAGGG	CCAATCCCCA	GCCCTTTTGT
45	TCTAAGAAAC	CTCTCTCACC	TCCCTCCCAC	ACTTAAAGCC	CGCCTGACAG	AAACCACGGC	CACATTTGGT
45	GTTTGTTTGT	CCTCIGTCAT	TCGCTCCCAC	TATTCALACC	GCAACCGCTT	CCCTATTTAT	TTATTTATTT
	CCTAGTTTTT	TTTGATTCAT AATAGCTATG	GAATCAATTC	AATTTCCACT	CCTCTCCTCTCT	TAGCAGTGTC	TGTAAAAGAG
	TTAAGACTGA	AAAT.\TATAA	GCTCAGATTA	TTTAAATGGG	AATATTTATA	AATCACCAAA	AGTCCTTTAA
	TTCAATGGTT	CTGA/ATAAA	CTTCACTGAA	GAAAAAAAA	AAIAIIIAIA	TCCTCATCAT	TCACTCTCTC
50	GATTGACACT	GACAGTAAGC	AAACAGGCTG	TGAGAGTTCT	TGGGACTAAG	CCCACTCCTC	ATTGCTGAGT
	GCTGCAAGTA	CCTAGAAATA	TCCTTGGCCA	CCGAAGACTA	TCCTCCTCAC	CCATCCCCTT	TATTTCCTTC
	TTCAACAGAA	GGATATTCAG	TGCACATCTG	GAACAGGATC	AGCTGAAGCA	CTGCAGGGAG	TCAGGACTGG
	TAGTAACAGC	TACCATGATT	TATCTATCAA	TGCACCAAAC	ATCTGTTGAG	CAAGCGCTAT	GTACTAGGAG
	CTGGGAGTAC	AGAGATGAGA	ACAGTCACAA	GTCCCTCCTC	AGATAGGAGA	GGCAGCTAGT	TATAAGCAGA
55	ACAAGGTAAC	ATGACAAGTA	GAGTAAGATA	GAAGAACGAA	GAGGAGTAGC	CAGGAAGGAG	GGAGGAGAAC
	GACATAAGAA	TCAAGCCTAA	AGGGATAAAC	AGAAGATTTC	CACACATGGG	CTGGGCCAAT	TGGGTGTCGG
	TTACGCCTGT	AATCC CAGCA	CTTTGGGTGG	CAGGGGCAGA	AAGATCGCTT	GAGCCCAGGA	GTTCAAGACC
	AGCCTGGGCA	ACATAGTGAG	ACTCCCATCT	CTACAAAAAA	TAAATAAATA	AATAAAACAA	TCAGCCAGGC
<i>~</i>	ATGCTGGCAT	GCACCTGTAG	TCCTAGCTAC	TTGGGAAGCT	GACACTGGAG	GATTGCTTGA	GCCCAGAAGT
60	TCAAGACTGC	AGTGAGCTTA T	CCGTTGACC TO	GCAGGTCGA C	ACAAACCTTT	TCGAGGCAAA	AGGCAAAAA
	GGCTGCTCTG	GGATT CTCTT	CAGCCAATCT	TCAATGCTCA	AGTGTCTGAA	GCAGCCATGG	CAGAAGTACC
	TAAGCTCGCC	AGTGAAATGA	TGGCTTATTA	CAGTGGCAAT	GAGGATGACT	TGTTCTTTGA	AGCTGATGGC

					CATCACTGAT	GATGACCTGG	AGGCCATCGC
	CAATGACTCA	GAGGAAGAAA	TCATCAAGCC	TAGGTCATCA	CCTTTTAGCT	TCCTGAGCAA	TGTGAAATAC
	AACTTTATGA	GGATCATCAA	ATACGAATTC	ATCCTGAATG	ACGCCCTCAA	TCAAAGTATA	ATTCGAGCCA
	ATGATCAGTA	CCTC ACGGCT	GCTGCATTAC	ATAATCTGGA	TGAAGCAGTG	AAATTTGACA	TGGGTGCTTA
5	TAAGTCATCA	AAGGATGATG	CTAAAATTAC	CGTGATTCTA	AGAATCTCAA	AAACTCAATT	GTATGTGACT
	GCCCAAGATG	AAGACCAACC	AGTGCTGCTG	AAGGAGATGC	CTGAGATACC	CAAAACCATC	ACAGGTAGTG
	AGACCAACCT	CCTCTTCTTC	TGGGAAACTC	ACGGCACTAA	GAACTATTTC	ACATCAGTTG	CCCATCCAAA
	CTTGTTTATT	GCCACAAAGC	AAGACTACTG	GGTGTGCTTG	GCAGGGGGC	CACCCTCTAT	CACTGACTTT
	CAGATACTGG	AAAACCAGGC	GTAGGTCTGG	AGTCTCACTT	GTCTCACTTG	TGCAGTGTTG	ACAGTTCATA
10	TGTACCATGT	ACAT GAAGAA	GCTAAATCCT	TTACTGTTAG	TCATTTGCTG	AGCATGTACT	GAGCCTTGTA
	ATTCTAAATG	AATCTTTACA	CTCTTTGTAA	GAGTGGAACC	AACACTAACA	TATAATGTTG	TTATTTAAAG
	AACACCCTAT	ATTITGCATA	GTACCAATCA	TTTTAATTAT	TATTCTTCAT	AACAATTTTA	GGAGGACCAG
	AGCTACTGAC	TATGGCTACC	AAAAAGACTC	TACCCATATT	ACAGATGGGC	AAATTAAGGC	ATAAGAAAAC
	TAAGAAATAT	GCACAATAGC	AGTCGAAACA	AGAAGCCACA	GACCTAGGAT	TTCATGATTT	CATTTCAACT
15	GTTTGCCTTC	TGCTTTTAAG	TTGCTGATGA	ACTCTTAATC	AAATAGCATA	AGTTTCTGGG	ACCTCAGTTT
	TATCATTTTC	AAAATGGAGG	GAATAATACC	TAAGCCTTCC	TGCCGCAACA	GTTTTTTATG	CTAATCAGGG
	AGGTCATTTT	GGTAAAATAC	TTCTCGAAGC	CGAGCCTCAA	GATGAAGGCA	AAGCACGAAA	TGTTATTTT
	TAATTATTAT	TTATATATGT	ATTTATAAAT	ATATTTAAGA	TAATTATAAT	ATACTATATT	TATGGGAACC
	CCTTCATCCT	CTGAGTGTGA	CCAGGCATCC	TCCACAATAG	CAGACAGTGT	TTTCTGGGAT	AAGTAAGTTT
20	GATTTCATTA	ATACAGGGCA	TTTTGGTCCA	AGTTGTGCTT	ATCCCATAGC	CAGGAAACTC	TGCATTCTAG
	TACTTGGGAG	ACC1'GTAATC	ATATAATAAA	TGTACATTAA	TTACCTTGAG	CCAGTAATTG	GTCCGATCTT
	TGACTCTTTT	GCCATTAAAC	TTACCTGGGC	ATTCTTGTTT	CATTCAATTC	CACCTGCAAT	CAAGTCCTAC
	AAGCTAAAAT	TAGATGAACT	CAACTTTGAC	AACCATGAGA	CCACTGTTAT	CAAAACTTTC	TTTTCTGGAA
	TGTAATCAAT	GTTTCTTCTA	GGTTCTAAAA	ATTGTGATCA	GACCATAATG	TTACATTATT	ATCAACAATA
25	GTGATTGATA	GAG1'GTTATC	AGTCATAACT	AAATAAAGCT	TGCAACAAAA	TTCTCTG	GCTCAGGGCA
	CATGCCTCCC	CTCCCCAGGC	CGCGGCCCAG	CTGACCCTCG	GGGCTCCCCC	GGCAGCGGAC	AGGGAAGGGT
	TAAAGGCCCC	CGGCTCCCTG	CCCCCTGCCC	TGGGGAACCC	CTGGCCCTGT	GGGGACATGA	ACTGTGTTTG
	CCGCCTGGTC	CTGGTCGTGC	TGAGCCTGTG	GCCAGATACA	GCTGTCGCCC	CTGGGCCACC	ACCTGGCCCC
	CCTCGAGTTT	CCCCAGACCC	TCGGGCCGAG	CTGGACAGCA	CCGTGCTCCT	GACCCGCTCT	CTCCTGGCGG
30	ACACGCGGCA	GCTC ₁ GCTGCA	CAGCTGAGGG	ACAAATTCCC	AGCTGACGGG	GACCACAACC	TGGATTCCCT
	GCCCACCCTG	GCCATGAGTG	CGGGGGCACT	GGGAGCTCTA	CAGCTCCCAG	GTGTGCTGAC	AAGGCTGCGA
	GCGGACCTAC	TGTC CTACCT	GCGGCACGTG	CAGTGGCTGC	GCCGGGCAGG	TGGCTCTTCC	CTGAAGACCC
	TGGAGCCCGA	GCT(GGCACC	CTGCAGGCCC	GACTGGACCG	GCTGCTGCGC	CGGCTGCAGC	TCCTGATGTC
	CCGCCTGGCC	CTGCCCCAGC	CACCCCGGA		CCCCCGCTGG	CGCCCCCCTC	CTCAGCCTGG
35	GGGGCATCA	GGGCCGCCCA	CGCCATCCTG	GGGGGGCTGC	ACCTGACACT	TGACTGGGCC	GTGAGGGGAC
	TGCTGCTGCT	GAAGACTCGG	CTGTGACCCG	GGGCCCAAAG	CCACCACCGT	CCTTCCAAAG	CCAGATCTTA
	TTTATTTATT	TATT CAGTA	CTGGGGGCGA	AACAGCCAGG	TGATCCCCCC	GCCATTATCT	CCCCCTAGTT
	AGAGACAGTC	CTT('CGTGAG	GCCTGGGGGA	CATCTGTGCC	TTATTTATAC	TTATTTATTT	CAGGAGCAGG
	GGTGGGAGGC	AGGT GGACTC	CTGGGTCCCC	GAGGAGGAGG	GGACTGGGGT	CCCGGATTCT	TGGGTCTCCA
40	AGAAGTCTGT	CCA('AGACTT	CTGCCCTGGC	TCTTCCCCAT	CTAGGCCTGG	GCAGGAACAT	ATATTATTTA
	TTTAAGCAAT	TACTITTCAT			GAAAGGGAAG	CCTGGGTTTT	TGTACAAAAA
	TGTGAGAAAC	CTTTGTGAGA	CAGAGAACAG	GGAATTAAA?	Γ GTGTCATAC	A TATCC	CAGCTGCGGC
	ATCCTCTGTC	TCAGAGTCTT	GGTGTCTCTG	TTCCTTTCCC	CTCGGGGTCT	CCCTGGGTCT	CCCCAAGTCC
4.5	CTCCTGCTGT	CTTCCTCCCG	CTCTCTGATC	TCTGACTCCC	AGAACCTCTC	CCTCTGTCTC	CAGGGCTGCC
45	CCTCTGATCC	TCTTTGCTTC	TCTGGTGTGT	CTCTCTGGCT	GCCTCCATCT	CTGTGGATCT	CCGTCTCCCT
	GTCTCTGTCT	CAGTCTGTCC	TTCACTCTGT	GTGTGTGTGT		CTCTCTCTCC	TTCCCTTCCA
	CTCCCTCTTC	CTCCTGCCTC	CACCTCTCCA	GGCCCCTGTC		GTCCGGCCTT	TCTCTGCCTT
	TCCGTCCTCC				CCAGCCGGAC	CCCCACCCAC	AGTCGGGCCC
					GGAGGGAGGG		ACCTCACCAG
50	CCCCTCTCCG	ACC# CCCCCC	CCTTTCCCTT	TTCAACTTTT	CCAACTTTTC	CTTCCGTGCC	CTCCTCCGAG
	CGCGGCGCG	TGAC CCCTGC	AAGGCAGCCG	CTCCGTCTGA	ATGGAAAAGG	CAGGCAGGGA	GGGTGAGTCA
	GGATGTGTCA	GGCCGGCCCT	CCCCTGCCGC	CTGCCCCCCG	CCCGCCCGCC	CCAGGCCCCC	TATATAACCC
	CCCAGGCGTC	CAC# CTCCCT	CACTGCCGCG	GGCCCTGCTG	CTCAGGGCAC	ATGCCTCCCC	TCCCCAGCCG
					GGGAAGGGTT		
55					CTGTAAGTTG		
					GGGAGCAGAC		
	GGGACCCGGA	GACAGGCAGC	CGGGGAGGAG	AGCAGCTTCG	GAGACAGGAG	GCGGCGGAGG	AGATGGGCAG
					AGGCGCCGCA		
C O					ACGCAGGGAC		
60					GAGACTCCCT		
	CCGGAGGGAA	ACTGAGGCAG	GGTCCGCGGA	GAGCGGAGCA	AGCCAGGGAG	TAGCGACCCC	AGCCGGGGGG
	AUGAGAGAGA	CTGCGCGCCCG	GGGGAAAGCG	GGGAGAGCCG	GGCAGATGCG	GCCGACGGAG	GCGCGGACAG


		~~~~~~					
		GGCC GGCCCG					
		TGGC CGGGTG					ACCCCCGCGC
	CCCCGGCGCC			GCTCTCCCGC		CGGCCGGGCC	ATGGCTCTGC
_		CCAGGTGCGC					GAGGGCGTCT
5		CCG1'GGGAGA			CGTCCTGGGC		TTCCCCTGCT
		TCGC GCTCCC					
		CCAC ATTCCG					
	GGGGCAGCCA	GAGCCAGGGA	GGGAGAGGGA	AGCCCGCCTG	GCCCTGCGAC	CTGCCCGCGG	GCGTTCCACC
	CTGGGACTTA	AGACCTCCAG	CTCCATCCTC	CCTAAGGCCG	GGAGTCCAGG	CCCCAGACCC	TCCTCCCGA
10	GACCCAGGAG	TCCAGACCCC	AGGCCTTCCT	CCCTCAGACC	TAGGAGTCCA	GGCCCCCAGC	CTCTCCTCCC
		GAGGAGTCCA					AGGCCCTCCT
		CGGA.GTCCAG					CCTGGTCCTG
		GCCIGTGGCC					CGAGTTTCCC
		GGCC GAGCTG					CGCGGCAGCT
15		CTGGTAGGAG					
		GCAC CCACTT					
	GGGCCTGGCG					TCACAGCTTT	
		ATTCCCAGCT					
		GCTCTACAGG					
20		GATGAGGGGC					
20		GCTGCGAGCG					
		AAGACCCTGG					
				ACCTGACACC			CCAAAATCCT
25		TCCTTGAAGC					
25		GCTCTGAGAC					
		TGACCCTGCA					
						ATGACCTCAA	AGTCCCCAGA
		TAAGACCCAA					TCACCTCAAG
• •		CCTGGCCCCA					ACGCCTGTAA
30		TTGGGAGGCC					
		CCTGTCTCTA					
		GGCTGAGGCA					
		TCCAGCCTGG					
		AGAAAACCAT					
35		CAGGCCCTAA					
	CCAAGACCTC	CAGGACCTAG	ACCCCGAGCC	CTGAGGCCCT	ATGTCTCACT	CCCAACATCG	AAAACCCTGA
	CACCTCAGAT	CCTGAGCCTG	CGCCTGTACG	ACTCCAAGAC	CCTCACTTCC	AAAGCCAGGC	CCAAAGCCCT
		GACTTCAAAC					ATTCCAACTT
	CTAGCTCTGA	GACTCCAGCC	CTCACCCATG	AGTTCCTGAA	CTTGAACCCA	GAGACCCCAT	CTCTAAGACT
40	TCAGCCTTGA	GATCCAGGGC	CTGACCCTAG	ACTCGAGCCC	ACAGACCTCA	GATACTGTCT	GTAAAACCCC
	AGCTCTGGTG	GGGAGCAGTG	GCTCACTCCT	GTAATCCCAA	GGCAGGGGAG	GCCAAGGCAG	AAGGACCTCT
	TGAGGCCATG	AGTTTGAGAC	AGCCTGGGCA	GCATAGCAAG	ACTCTGTTTC	TTAATTATTA	TTATTATTAT
	TATTTTTTGG	AGAC 4GAGTC	TCGCGCTCTG	TTGCCCAGGC	TAGAGTGCAA	TGGTGCCATT	TCGGCTTGCT
	GGAACCTCCG	CCTCCTGGGC	TCAAGCGATT	CTCCTGCCTC	AGCCTCCTGA	GTAGCTGGGA	CTTCAGGTGC
45	ACACTGCCAC	ACCCGGATAA	TTTTTTTGTA	TTTTAGTAGA	CACAGGGTTT	CACCGTGTTG	CCCAGGCTGG
	TCACAAACTC	CTGAGCTCAG	GCCATCCGCC	CGCCTCGGCC	TCCCAAAGCG	CTGGGATAAC	AGGCGTGACG
	CCGCGCCTGG	CTTC ITAATT	GTTCTAACAG	CAGCGACAAC	AACAAAAACC	CAGCTCTGAG	ATTCCAGCCC
	CGGCGACTCT	AACAGTCCCA	GGCCCGATCC	CTCACCTAGA	ACCGAGATGC	CAGCCCTGAC	TCCACAGACT
	TCACCCCAA	CCCCACACT	CAGCTCTGGA	AGCCCGTCCT	GACTCCAGCC	TCCATTTTCG	GAACCCCACA
50	GCCTGAAGAG	CTCCCGGCCT	AAACACTTCA	CCCCACGCGC	CACAGTCCCC	CTCTGAATAT	GCAGCCCCGA
	TTCAGCTGCA	GCTCCACAGC	ACCCCTGCCC	TGCACCCCCG	CTGCACCCCC	TACCTCTCAC	TCACCTCTCT
	CCTCTCCCCA	CAGATGTCCC	GCCTGGCCCT	GCCCCAGCCA	CCCCCGGACC	CCCCCCCCCC	CCCCCTCCCC
	CCCCCCTCCT	CAGCCTGGGG	GGGCATCAGG	GCCGCCCACG	CCATCCTGGG	GGGGGTGCAC	CTGACACTTG
	ACTGGGCCGT	GAGGGGACTG	CTCCTCCTCA	AGACTCCCCT	CTCACCCCCC	CCCCAAACCC	ACCACCCCCC
55	TTCCAAAGCC	AGAICTTATT	TATTTATTA	TTTCACTACT	GCGGGCCAAA	CACCCACCTC	ATCCCCCCCC
55		CCCTAGTTAG					
							ATTTATACTT
	CGGATTCTTC	GGAGCAGGGG GGTCTCCAAG	AACTCTCTCC	ACAGACTTCT	CCCCTCCCTC	TTCCCCATC	ACCCCTCCCC
60		ATTATTATT					
00		TACAAAAATG					
		GGCGATTTGT					
	GGAGACCICC	ATTC.AGGTGG	AGGTCCCGAG	CODDDOOD	AGCGACTGGG	AGATGGGTCG	GTCACCCAGA



CAGCTCTGTG GAGGCAGGGT CTGAGCCTTG CCTGGGGCCC CGCACTGCAT AGGGCCGTTT GTTTGTTTTT
TGAGATGGAG TCTCGCTCTG TTGCCTAGGC TGGAGTGCAG TGAGGCAATC TAAGGTCACT GCAACCTCCA
CCTCCCGGGT TCAAGCAATT CTCCTGCTC AGCCTCCGA TTAGCTGGGA TCACAGGTGT GCACCACCAT
GCCCAGCTAA TTATTATTT CTTTTGTATT TTTAGTAGAG ACAGGGTTTC ACCATGTTGG CCAGGCTGGT

TTCGAACTCC TGACCTCAGG TGATCCTCCT GCCTCGGCCT CCCAAAGTGC TGGGATTACA GGTGTAGCC
ACCACACCTG ACCC'ATAGGT CTTCAATAAA TATTTAATGG AAGGTTCCAC AAGTCACCCT GTGATCAACA
GTACCCGTAT GGGA CAAAGC TGCAAGGTCA AGATGGTTCA TTATGGCTGT GTTCACCATA GCAAACTGGA
AACAATCTAG ATATCCAACA GTGAGGGTTA AGCAACATGG TGCATCTGTG GATAGAACGC CACCCAGCCG
CCCGGAGCAG GGACTGTCAT TCAGGGAGGC TAAGGAGAGA GGCTTGCTTG GGATATAGAA AGATATCCTG
ACATTGGCCA GGCATGGTGG CTCACGCCTG TAATCCTGGC ACTTTGGGAG GACGAAGCGA GTGGATCACT
GAAGTCCAAG AGTTTGAGAC CGGCCTGCGA GACATGGCAA AACCCTGTCT CAAAAAAGAA AGAATACCTG
CCTGACATGA AACAGAAAATC CTAAAAGCAA ATACCCCAAA ATGTTGACAA TGATCCTGTC CAAAAAAAGAA AGAATGATGT
TATGGATTAA AACAAAAATC CTAAAAGGGAA ATACGCCAAA ATGTTGACAA TGACCGTCTC CAGGCCTGCATGA
TATGGATTAT TGCATGAGAC ATTTTAAAAA TAATAAACAC TATTTTAGA ATAACAGAAT ATCAGCCTCC
TCCTCCCAA AAATAAGCCC TCAGGAGGG ACAAAGTTGA CCGCTGATTG AGCCTGTCAG GGCTGTGCAC-3'
(SEQ. ID NO:3004)

# Human Adenosine A1 Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCGGGAA CGTCCTGGTG ATCTGGGCGG TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTTCTGCTT CATCGTCTCG CTGGCGGTGG CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTTG CCTGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG CCCCTATGT TTGGCIGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGGG AGCCCGTGAT CAACITGCGAG TTCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTCGGC CTCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATCGCCA AGTCGCTGGC CCTC'ATCCTC TTCCTCTTG CCCTCAGCTG GCTGCCTTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAAGCCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC CGCATCCAGA AGTTCCGCGT CACCTTCCTT AAGATTTGGA ATGACCATTT CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA G ATGAGTGTCA GAAGTGTGAA GGGTGCCTGT TCTGAATCCC AGAGCCTCCT CTCCCTCTGT GAGGCTGGCA GGTGAGGAAG GGT1TAACCT CACTGGAAGG AATCCCTGGA GCTAGCGGCT GCTGAAGGCG TCGAGGTGTG GGGGCACTTG GACAGAACAG TCAGGCAGCC GGGAGCTCTG CCAGCTTTGG TGACCTTGGG CCGGGCTGGG CGCGGCCCGG AGCTCTGTTC CCTGGAACTT TGGGCACTGC CTCTGGGACC CCTGCCGGCC AGCAGGCAGG ATGGTGCTTG CCTCGTGCCC CTTGGTGCCC GTCTGCTGAT GTGCCCAGCC TGTGCCCGCC ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCGGGAA CGTGCTGGTG ATCTGGGCGG TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTTCTGCTT CATCGTGTCG CTGGCGGTGG CTGATGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTTG CCTGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGGG AGCCCGTGAT CAAGTGCGAG TTCCAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTCGGC CTCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATCGCCA AGTCGCTGGC CCTCATCCTC TTCCTCTTG CCCTCAGCTG GCTGCCTTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAGCCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC CGCATCCAGA AGTTCCGCGT CACCTTCCTT AAGATTTGGA ATGACCATTT CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA GACCCCGCCT TCCGCTCCCA CCAGCCCACA TCCAGTGGGG TCTCAGTCCA GTCCTCACAT GCCCGCTGTC CCAGGGGTCT CCCTGAGCCT GCCCCAGCTG GGCTGTTGGC TGGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT GTGGTCCCTC CACTAGGAGT TAACTACCCT ACACCTCTGG GCCCTGCAGG AGGCCTGGGA GGGCAAGGGT CCTACGGAGG GACCAGGTGT CTAGAGGCAA CAGTGTTCTG AGCCCCCACC TGCCTGACCA TCCCATGAGC AGTCCAGCGC TTCAGGGCTG GGCAGGTCCT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG AAGGTGCTTG GGCTTCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG ACCAAGCTTA AGGAGAGGAG AGCATCTGCT CTGAGACGGA TGGAAGGAGA GAGGTTGAGG ATGCACTGGC CTGTTCTGTA GGAGAGACTG GCCAGAGGCA GCTAAGGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT GAGGACTCTG GACCCCAGGC CATACCAGGT GCTAGGGTGC CTGCTCTCCT TGCCCTGGGC CAGCCCAGGA



			AAGGGTAGGT				
			GGTGCGGTAG				
			TCCGGGGAGG				CCACCAGCTC
_	CACTGGCCCC		CCTGGACTGT				GCCTGATGGA
5			CAACTCGGGA				
			CTGTAGGCGC				
			TGGGGGAAGG				
	GCTGGGTTTT	CAGGGCTTT	GGAAGCTCTG				
10			TGCCCTGCCA				
10	TGGAGCCCCT	GTGTGGGAGG	GCGAGGCGGG	GGAGCCTGGA	GCCCCTGTGT	GGGAGGCGA	GGCGGGGGAT
			GGGCGAGGGA				
			AGCCCTTCCC				
		AATAAAAAAC			TTTTAATAAA		
15			AGGAAAATTT				
15	TTGGGTTGTT	GTTGTTGTTG	TTTGGTGTGT	TTTTTGTTTT	TTTGTTTTT	TGTTTTTTT	TGAGATGGAG
	TCTCGCTGTG		CGACAGAGCC				
			GCTTCCCCAG				
			GTCAGGCAGC				
20	CGTGCCCCTT	GGTGCCCGTC	TGCTGATGTG		GCCCGCCATG		TCTCAGCTTT
20			TCGAGGTGCT				GCTGGTGATC
	ATGTGGCCGT	GGG GCCCTG	GGCGCTGCGG				
	CACCTGCCTC			TCGCCATCCT			
			GGTCAAGATC	CATCCTCACC		TCCTGGCCCT	GCTGGCAATT
25	CGGTGGCCAT	AGCCGGCTGC		CCTTCGTGGT			CGGAGGGCGG
23			CCTGGGCAGC				
			GTACATGGTC			GGTGCTGCCC	CCGCTTCTCC
	TCATGGTCCT		GAGGTCTTCT				TGTCGGCCTC
			ACTATGGGAA				
30	CTCTTTGCCC	TCAC CTGGCT		ATCCTCAACT		CTTCTGCCCG	TCCTGCCACA
23	AGCCCAGCAT			TCCTCACGCA			CCATTGTCTA
	TGCCTTCCGC		TCCGCGTCAC			ACCATTTCCG	CTGCCAGCCT
	GCACCTCCCA		TCTCCCAGAA				
	CCCACATCCA		AGTCCAGTCC				GAGCCTGCCC
35	CAGCTGGGCT		GGCATGGGG				
			CTCTGGGCCC				
			GTTCTGAGCC			ATGAGCAGTC	
			AGGCTGAGAC				
			TCTGCTTGTC				
40			GACGGATGGA				
	AGACTGGCCA	GA GAT GGA G	GG CGG CAT GG	C GGG G CGG	GTC GCC GG	GC GGG CBC B	GG C GGC GGG
			GCGG C GBT GGI				
	CGG CAT GG	C GGG CAC	AGG CTG GGC	ATGCCGCCCT	CCATCTCAGC	TTTCCAGGCC	GCCTACATCG
			CTGGTCTCTG				
45	CCAGGCGCTG	CGGGATGCCA	CCTTCTGCTT	CATCGTCTCG	CTGGCGGTGG	CTGATGTGGC	CGTGGGTGCC
			CCTCATCAAC				
			ACCCAGAGCT				
			GGTACAAGAT				
			GGTGGGACTG				
50			AGCATGGGGG				
			ACTTCTTTGT				
			CCGCAAGCAG				
			AAGATCGCCA				
			ACTGCATCAC				
55			GCACGGCAAC				
			AAGATTTGGA				
			CTGATGACTA (				
			GAGGCTGGCA				
60			TCGAGGTGTG				
00			CCCCTACCCC				
			GCCCTACGCG				
	CICIOGGACC	CCICCCGGCC	AGCAGGCAGG	AIGGIGCTIG	CCTCGTGCCC	CITGGTGCCC	GICIGCIGAT



	GTGCCCAGCC	TGTGCCCGCC	ATGCCGCCCT	CCATCTCAGC	TTTCCAGGCC	GCCTACATCG	GCATCGAGGT
	GCTCATCGCC	CTGC TCTCTG	TGCCCGGGAA	CGTGCTGGTG	ATCTGGGCGG	TGAAGGTGAA	CCAGGCGCTG
	CGGGATGCCA	CCTTCTGCTT	CATCGTGTCG	CTGGCGGTGG	CTGATGTGGC	CGTGGGTGCC	CTGGTCATCC
	CCCTCGCCAT	CCTC ATCAAC	ATTGGGCCAC	AGACCTACTT	CCACACCTGC	CTCATGGTTG	CCTGTCCGGT
5	CCTCATCCTC	ACCC AGAGCT	CCATCCTGGC	CCTGCTGGCA	ATTGCTGTGG	ACCGCTACCT	CCGGGTCAAG
-	ATCCCTCTCC	GGTACAAGAT			CGGCGGTGGC	CATAGCCGGC	TGCTGGATCC
	TCTCCTTCGT	GGTGGGACTG	ACCCCTATGT	TTGGCTGGAA		GCGGTGGAGC	GGGCCTGGGC
		AGCATGGGGG					GGAGTACATG
10	GTCTACTTCA	ACTICTTTGT	GTGGGTGCTG	CCCCCGCTTC	TCCTCATGGT	CCTCATCTAC	CTGGAGGTCT
10	TCTACCTAAT	CCGCAAGCAG	CTCAACAAGA	AGGTGTCGGC	CTCCTCCGGC	GACCCGCAGA	AGTACTATGG
	GAAGGAGCTG	AAG ATCGCCA	AGTCGCTGGC	CCTCATCCTC	TTCCTCTTTG	CCCTCAGCTG	GCTGCCTTTG
	CACATCCTCA	ACTGCATCAC	CCTCTTCTGC	CCGTCCTGCC	ACAAGCCCAG	CATCCTTACC	TACATTGCCA
	TCTTCCTCAC	GCACGGCAAC	TCGGCCATGA	ACCCCATTGT	CTATGCCTTC	CGCATCCAGA	AGTTCCGCGT
	CACCTTCCTT	AAGA TTTGGA	ATGACCATTT	CCGCTGCCAG	CCTGCACCTC	CCATTGACGA	GGATCTCCCA
15	GAAGAGAGGC	CTGATGACTA			CCAGCCCACA		TCTCAGTCCA
			CCAGGGGTCT			GGCTGTTGGC	TGGGGGCATG
	GGGGAGGCTC				CACTAGGAGT		ACACCTCTGG
						CTAGAGGCAA	
20	AGCCCCCACC					GGCAGGTCCT	
20						GTGAGGCAGG	
	TGTCTTAGAT		CAGCCCCAGG			AGCATCTGCT	
	TGGAAGGAGA	GAGGTTGAGG	ATGCACTGGC	CTGTTCTGTA	GGAGAGACTG	GCCAGAGGCA	GCTAAGGGGC
	AGGAATCAAG	GAGCCTCCGT	TCCCACCTCT	GAGGACTCTG	GACCCCAGGC	CATACCAGGT	GCTAGGGTGC
	CTGCTCTCCT	TGCCCTGGGC	CAGCCCAGGA	TTGTACGTGG	GAGAGGCAGA	AAGGGTAGGT	TCAGTAATCA
25	TTTCTGATGA	TTTGCTGGAG	TGCTGGCTCC	ACGCCCTGGG	GAGTGAGCTT	GGTGCGGTAG	GTGCTGGCCT
	CAAACAGCCA	CGAGGTGGTA				TCCGGGGAGG	AGCCTGGAGT
	GTAATTACCT		CCACCAGCTC			CCTGGACTGT	CCTAGGTGAC
	CCCATCTCTG				CTAGACATGC		GCATTCTGCC
		CGGGGTGGAC					CCCTGGGGTG
30	GGTTTAGCAG					TGGGGGAAGG	
	ATGTGAATCC	CTCAATACCC	CTAGTATCTG	GCTGGGTTTT	CAGGGGCTTT	GGAAGCTCTG	TTGCAGGTGT
	CCGGGGGTCT		GGATCTGGGA			TGCCCTGCCA	
						GCGAGGCGGG	
25						GGGCGAGGGA	
35	CCGTCGGTTG	ACCITCTGAA	CATGAGTGTC		CTTGCTTCCA		TCTGTTGGAA
	ATTGGGTGTG	CCCIGGCTCC	CAAGGGAGGC	CCATGTGACT	AATAAAAAAC		CGCATTTGTG
		AGA ATCTGGA					AAATCCTTAG
	ATTCAAGCAG	AAG AATTCCA					TTTTTGTTTT
	TTTGTTTTTT	TGTT TTTTT	<b>FGAGATGGAG</b>	TCTCGCTGTG	TTACCGGGAG	CGACAGAGCC	GCACGGCCGA
40	GTCGAGTCCC	AGCCAGCTAC	CATCCCTCTG	GAGCTTACCG	GCCGGCCTTG	GCTTCCCCAG	GAATCCCTGG
	AGCTAGCGGC	TGC1GAAGGC	GTCGAGGTGT	GGGGGCACTT	GGACAGAACA	GTCAGGCAGC	CGGGAGCTCT
	GCCAGCTTTG	GTGACCTTGG	GTGCTTGCCT	CGTGCCCCTT	GGTGCCCGTC	TGCTGATGTG	CCCAGCCTGT
	GCCCGCCATG	CCGCCCTCCA	TCTCAGCTTT	CCAGGCCGCC	TACATCGGCA	TCGAGGTGCT	CATCGCCCTG
						GGCGCTGCGG	
45						GTCATCCCCC	TCGCCATCCT
						GTCCGGTCCT	
						GGTCAAGATC	
						TGGATCCTCT	
50						CCTGGGCAGC	
50						GTACATGGTC	
						GAGGTCTTCT	
						ACTATGGGAA	
	ATCGCCAAGT					GCCTTTGCAC	
						ATTGCCATCT	
55	CGGCAACTCG	GCCATGAACC	CCATTGTCTA	TGCCTTCCGC	ATCCAGAAGT	TCCGCGTCAC	CTTCCTTAAG
	ATTTGGAATG	ACCATTTCCG	CTGCCAGCCT	GCACCTCCCA	TTGACGAGGA	TCTCCCAGAA	GAGAGGCCTG
							TCACATGCCC
						GGCATGGGGG	
						CTCTGGGCCC	
60						GTTCTGAGCC	
						AGGCTGAGAC	
						TCTGCTTGTC	
						1010011010	



GTGGTGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTGA GACGGATGGA AGGAGAGAGG TTGAGGATGC ACTGGCCTGT TCTGTAGGAG AGACTGGCCA GA -3'(FRAG.NO: )(SEO.NO:3005) [2423]] 5'-CGCATTTGTG TT1TAATAAA AGAATCTGGA AGATAAATAG TCTTGAAGAG AGACAAAGGA AGGAAAATTT AAATCCTTAG ATTC'AAGCAG AAGAATTCCA TGTGGAAGGT TTGGGTTGTT GTTGTTGTTG TTTGGTGTGT TTTTTGTTTT TTTGTTTTTT TGAGATGGAG TCTCGCTGTG TTACCGGGAG CGACAGAGCC GCACGGCCGA GTCGAGTCCC AGCCAGCTAC CATCCCTCTG GAGCTTACCG GCCGGCCTTG GCTTCCCCAG GAATCCCTGG AGCIAGCGC TGCTGAAGGC GTCGAGGTGT GGGGGCACTT GGACAGAACA GTCAGGCAGC CGGGAGCTCT GCCAGCTTTG GTGACCTTGG GTGCTTGCCT CGTGCCCCTT GGTGCCCGTC TGCTGATGTG CCCAGCCTGT GCCCGCCATG CCGCCCTCCA TCTCAGCTTT CCAGGCCGCC TACATCGGCA TCGAGGTGCT CATCGCCCTG GTCTCTGTGC CCGGGAACGT GCTGGTGATC TGGGCGGTGA AGGTGAACCA GGCGCTGCGG GATGCCACCT TCTCCTTCAT CGTGTCGCTG GCGGTGGCTG ATGTGGCCGT GGGTGCCCTG GTCATCCCCC TCGCCATCCT CATCAACATT GGGCCACAGA CCTACTTCCA CACCTGCCTC ATGGTTGCCT GTCCGGTCCT CATCCTCACC CAGAGCTCCA TCCTGGCCCT GCTGGCAATT GCTGTGGACC GCTACCTCCG GGTCAAGATC CCTCTCCGGT ACAAGATGGT GGTGACCCCC CGGAGGGCGG CGGTGGCCAT AGCCGGCTGC TGGATCCTCT CCTTCGTGGT GGGACTGACC CCTATGTTTG GCTGGAACAA TCTGAGTGCG GTGGAGCGGG CCTGGGCAGC CAACGGCAGC ATGGGGGAGC CCGTGATCAA GTGCGAGTTC GAGAAGGTCA TCAGCATGGA GTACATGGTC TACTTCAACT TCTTTGTGTG GGTGCTGCCC CCGCTTCTCC TCATGGTCCT CATCTACCTG GAGGTCTTCT ACCTAATCCG CAACCAGCTC AACAAGAAGG TGTCGGCCTC CTCCGGCGAC CCGCAGAAGT ACTATGGGAA GGAGCTGAAG ATCIJCCAAGT CGCTGGCCCT CATCCTCTTC CTCTTTGCCC TCAGCTGGCT GCCTTTGCAC ATCCTCAACT GCATCACCCT CTTCTGCCG TCCTGCCACA AGCCCAGCAT CCTTACCTAC ATTGCCATCT TCCTCACGCA CGGC'AACTCG GCCATGAACC CCATTGTCTA TGCCTTCCGC ATCCAGAAGT TCCGCGTCAC CTTCCTTAAG ATTT3GAATG ACCATTTCCG CTGCCAGCCT GCACCTCCCA TTGACGAGGA TCTCCCAGAA TCACATGCCC GCTGTCCCAG GGGTCTCCCT GAGCCTGCCC CAGCTGGGCT GTTGGCTGGG GGCATGGGGG AGGCTCTGAA GAGATACCCA CAGAGTGTGG TCCCTCCACT AGGAGTTAAC TACCCTACAC CTCTGGGCCC TGCAGGAGGC CTGCGAGGGC AAGGGTCCTA CGGAGGGACC AGGTGTCTAG AGGCAACAGT GTTCTGAGCC CCCACCTGCC TGACCATCCC ATGAGCAGTC CAGAGCTTCA GGGCTGGGCA GGTCCTGGGG AGGCTGAGAC TGCAGAGGAG CCACCTGGGC TGGGAGAAGG TGCTTGGGCT TCTGCGGTGA GGCAGGGGAG TCTGCTTGTC TTAGATGTTG GTGGTGCAGC CCCAGGACCA AGCTTAAGGA GAGGAGAGCA TCTGCTCTGA GACGGATGGA AGGAGAGAGG TTGA 3GATGC ACTGGCCTGT TCTGTAGGAG AGACTGGCCA GA -3' (FRAG. NO: )(SEQ. ID NO: 2434) 5'- ATGAGTGTCA GAAGTGTGAA GGGTGCCTGT TCTGAATCCC AGAGCCTCCT CTCCCTCTGT GAGGCTGGCA GGTGAGGAAG GGTTAAACCT CACTGGAAGG AATCCCTGGA GCTAGCGGCT GCTGAAGGCG TCGAGGTGTG GGGGCACTTG GACAGAACAG TCAGGCAGCC GGGAGCTCTG CCAGCTTTGG TGACCTTGGG CCGGGCTGGG CGCGGCCCGG AGC1'CTGTTC CCTGGAACTT TGGGCACTGC CTCTGGGACC CCTGCCGGCC AGCAGGCAGG ATGGTGCTTG CCTCGTGCCC CTTGGTGCCC GTCTGCTGAT GTGCCCAGCC TGTGCCCGCC ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCGGGAA CGTGCTGGTG ATCTGGGCGG TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTTCTGCTT CATCGTGTCG CTGGCGGTGG CTGATGTGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCAC'ACCTGC CTCATGGTTG CCTGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGGG AGCCCGTGAT CAAGTGCGAG TTCCAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTCGGC CTCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATCGCCA AGTCGCTGGC CCTCATCCTC TTCCTCTTTG CCCTCAGCTG GCTGCCTTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAAGCCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC CGCATCCAGA AGTTCCGCGT CACCTTCCTT AAGATTTGGA ATGACCATTT CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA GACCCCGCCT TCCGCTCCCA CCAGCCCACA TCCAGTGGGG TCTCAGTCCA GTCCTCACAT GCCCGCTGTC CCAGGGGTCT CCCTGAGCCT GCCCCAGCTG GGCTGTTGGC TGGGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT GTGGTCCCTC CACTAGGAGT TAACTACCCT ACACCTCTGG GCCCTGCAGG AGGCCTGGGA GGGCAAGGGT CCTACGGAGG GACCAGGTGT CTAGAGGCAA CAGTGTTCTG AGCCCCCACC TGCCTGACCA TCCCATGAGC AGTCCAGCGC TTCAGGGCTG GGCAGGTCCT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG AAGGTGCTTG GGCTTCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG ACCAAGCTTA AGGAGAGGAG AGCATCTGCT CTGAGACGGA TGGAAGGAGA GAGGTTGAGG ATGCACTGGC CTGTTCTGTA GGAGAGACTG GCCAGAGGCA GCTAAGGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT GAGGACTCTG GACCCCAGGC CATACCAGGT GCTAGGGTGC CTGCTCTCCT TGCCCTGGGC CAGCCCAGGA TTGTACGTGG GAGAGGCAGA AAGGGTAGGT TCAGTAATCA TTTCTGATGA TTTGCTGGAG TGCTGGCTCC ACGCCCTGGG GAGTGAGCTT GGTGCGGTAG GTGCTGGCCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC



	CTCCTTCTTG	CCCTGAGCTT	TCCGGGGAGG	AGCCTGGAGT	GTAATTACCT	GTCATCTGGG	CCACCAGCTC
						CTGCTTCTGG	
	GAGGAGAACA	CTAGACATGC	CAACTCGGGA	GCATTCTGCC	TGCCTGGGAA	CGGGGTGGAC	GAGGGAGTGT
	CTGTAAGGAC	TCACTGTTGA	CTGTAGGCGC	CCCTGGGGTG	GGTTTAGCAG	GCTGCAGCAG	GCAGAGGAGG
5						CTCAATACCC	
	GCTGGGTTTT	CAGC GGCTTT	GGAAGCTCTG	TTGCAGGTGT	CCGGGGGTCT	AGGACTTTAG	GGATCTGGGA
						GGGGCAAGG	
	TGGAGCCCCT	GTGTGGGAGG	GCGAGGCGGG	GGAGCCTGGA	GCCCCTGTGT	GGGAGGGCGA	GGCGGGGGAT
						ACCTTCTGAA	
10						CCCTGGCTCC	
	CCATGTGACT A	AATAAAAAC T	GTGAACCCT -3'	(FRAG. NO:_	)(SEQ. ID NO	: 2433)	
	5'- ATGCCGCC	CT CCATCTCAC	GC TTTCCAGGC	C GCCTACATCO	G GCATCGAGGT	GCTĆATCGCC	CTGGTCTCTG
	TGCCCGGGAA	CGTGCTGGTG	ATCTGGGCGG	TGAAGGTGAA	CCAGGCGCTG	CGGGATGCCA	CCTTCTGCTT
	CATCGTCTCG	CTGC CGGTGG	CTGATGTGGC	CGTGGGTGCC	CTGGTCATCC	CCCTCGCCAT	CCTCATCAAC
15	ATTGGGCCAC	AGACCTACTT		CTCATGGTTG		CCTCATCCTC	
	CCATCCTGGC	CCTG CTGGCA	ATTGCTGTGG	ACCGCTACCT	CCGGGTCAAG	ATCCCTCTCC	GGTACAAGAT
	GGTGGTGACC	CCCC'GGAGGG				TCTCCTTCGT	
	ACCCCTATGT	TTGGCTGGAA	CAATCTGAGT	GCGGTGGAGC	GGGCCTGGGC	AGCCAACGGC	AGCATGGGGG
	AGCCCGTGAT	CAAGTGCGAG	TTCGAGAAGG	TCATCAGCAT	GGAGTACATG	GTCTACTTCA	ACTTCTTTGT
20				CCTCATCTAC			
	CTCAACAAGA	AGGT'GTCGGC	CTCCTCCGGC	GACCCGCAGA	AGTACTATGG	GAAGGAGCTG	AAGATCGCCA
		CCTCATCCTC				CACATCCTCA	
	CCTCTTCTGC	CCGTCCTGCC		CATCCTTACC		TCTTCCTCAC	
	TCGGCCATGA	ACCCCATTGT	CTATGCCTTC	CGCATCCAGA	AGTTCCGCGT	CACCTTCCTT	AAGATTTGGA
25	ATGACCATTT	CCGCTGCCAG C	CCTGCACCTC CO	CATTGACGA GG	ATCTCCCA GAA	AGAGAGGC CTG	ATGACTA G-3'
	(FRAG. NO:	)(SEQ. ID N	O: 2432)				
	5'-CGCATTTGT	G TTTTAATAAA	AGAATCTGGA	AGATAAATAG	TCTTGAAGAG	AGACAAAGGA	AGGAAAATTT
	AAATCCTTAG	ATTC AAGCAG	AAGAATTCCA	TGTGGAAGGT	TTGGGTTGTT	GTTGTTGTTG	TTTGGTGTGT
	TTTTTGTTTT		TGTTTTTTTT 7			TTACCGGGAG	CGACAGAGCC
30	GCACGGCCGA	GTCGAGTCCC	AGCCAGCTAC	CATCCCTCTG	GAGCTTACCG	GCCGGCCTTG	GCTTCCCCAG
	GAATCCCTGG					GGACAGAACA	
	CGGGAGCTCT				CGTGCCCCTT	GGTGCCCGTC	TGCTGATGTG
	CCCAGCCTGT	GCCCGCCATG		TCTCAGCTTT	CCAGGCCGCC	TACATCGGCA	
						AGGTGAACCA	
35	GATGCCACCT				ATGTGGCCGT	GGGTGCCCTG	GTCATCCCCC
	TCGCCATCCT	CATCAACATT		CCTACTTCCA	CACCTGCCTC	ATGGTTGCCT	
	CATCCTCACC	CAGAGCTCCA		GCTGGCAATT		GCTACCTCCG	
		ACAAGATGGT		CGGAGGGCGG	CGGTGGCCAT	AGCCGGCTGC	TGGATCCTCT
40	CCTTCGTGGT	GGGACTGACC	CCTATGTTTG	GCTGGAACAA	TCTGAGTGCG	GTGGAGCGGG	CCTGGGCAGC
40		ATGC GGGAGC	CCGTGATCAA	GTGCGAGTTC	GAGAAGGTCA	TCAGCATGGA	GTACATGGTC
	TACTTCAACT					CATCTACCTG	
	ACCTAATCCG	CAAGCAGCTC	AACAAGAAGG	TGTCGGCCTC	CTCCGGCGAC	CCGCAGAAGT	ACTATGGGAA
	GGAGCTGAAG	ATCGCCAAGT	CGCTGGCCCT	CATCCTCTTC	CTCTTTGCCC	TCAGCTGGCT	GCCTTTGCAC
15	ATCCTCAACT	GCATCACCCT	CTTCTGCCCG	TCCTGCCACA	AGCCCAGCAT	CCTTACCTAC	ATTGCCATCT
45	TCCTCACGCA	CGGC AACTCG	GCCATGAACC	CCATTGTCTA	TGCCTTCCGC	ATCCAGAAGT	TCCGCGTCAC
	CITCCITAAG	ATTT/3GAATG	ACCATTTCCG	CTGCCAGCCT	GCACCTCCCA	TTGACGAGGA	TCTCCCAGAA
	GAGAGGCCTG	ATGACTAGAC	CCCGCCTTCC	GCTCCCACCG	CCCACATCCA	GTGGGGTCTC	AGTCCAGTCC
	TCACATGCCC	GCTGTCCCAG	GGGTCTCCCT	GAGCCTGCCC	CAGCTGGGCT	GTTGGCTGGG	GGCATGGGGG
<i>-</i> 0	AGGCTCTGAA	GAGATACCCA	CAGAGTGTGG	TCCCTCCACT	AGGAGTTAAC	TACCCTACAC	CTCTGGGCCC
50	TGCAGGAGGC	CTGGGAGGGC	AAGGGTCCTA	CGGAGGGACC	AGGTGTCTAG	AGGCAACAGT	GTTCTGAGCC
	CCCACCTGCC	TGACCATCCC	ATGAGCAGTC	CAGAGCTTCA	GGGCTGGGCA	GGTCCTGGGG	AGGCTGAGAC
	TGCAGAGGAG	CCACCTGGGC	TGGGAGAAGG	TGCTTGGGCT	TCTGCGGTGA	${\tt GGCAGGGGAG}$	TCTGCTTGTC
	TTAGATGTTG	GTGGTGCAGC	CCCAGGACCA	AGCTTAAGGA	GAGGAGAGCA	TCTGCTCTGA	GACGGATGGA
<i></i>		TTGAGGATGC A		TGTAGGAG AGA	CTGGCCA GA -3	,	
55		_)(SEQ. ID No					
	o - ATGAGTGTC	A GAAGTGTGA.	A GGGTGCCTGT	TCTGAATCCC	AGAGCCTCCT	CTCCCTCTGT	GAGGCTGGCA
	GGGGGGGAAG	GGTTTAACCT	CACTGGAAGG	AATCCCTGGA	GCTAGCGGCT	GCTGAAGGCG	TCGAGGTGTG
						TGACCTTGGG	
	MITE LTE   14 0	I LEGEL ALECT YESTS	ATTENTO	120 1120 1120 120 120 120 120 120 120 12	A STREET STREET A A A A	CCCCACCCCA	COCCUTACOCC



CCATCTCAGC TTTC'CAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG TGCCCGGGAA CGTGCTGGTG ATCTGGGCGG TGAAGGTGAA CCAGGCGCTG CGGGATGCCA CCTTCTGCTT CATCGTGTCG CTGGCGGTGG CTGATGTGGC CGTGGGTGCC CTGGTCATCC CCCTCGCCAT CCTCATCAAC ATTGGGCCAC AGACCTACTT CCACACCTGC CTCATGGTTG CCTGTCCGGT CCTCATCCTC ACCCAGAGCT CCATCCTGGC CCTGCTGGCA ATTGCTGTGG ACCGCTACCT CCGGGTCAAG ATCCCTCTCC GGTACAAGAT GGTGGTGACC CCCCGGAGGG CGGCGGTGGC CATAGCCGGC TGCTGGATCC TCTCCTTCGT GGTGGGACTG ACCCCTATGT TTGGCTGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGGG AGCCCGTGAT CAAGTGCGAG TTCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGGTGTCGGC CTCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATCGCCA AGTCGCTGGC 10 CCTCATCCTC TTCCTCTTG CCCTCAGCTG GCTGCCTTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAAGCCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC CGCATCCAGA AGTTCCGCGT CACCTTCCTT AAGATTTGGA ATGACCATTT CCGCTGCCAG CCTCCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA GACCCCGCCT 15 TCCGCTCCCA CCACICCCACA TCCAGTGGGG TCTCAGTCCA GTCCTCACAT GCCCGCTGTC CCAGGGGTCT CCCTGAGCCT GCCCCAGCTG GGCTGTTGGC TGGGGGCATG GGGGAGGCTC TGAAGAGATA CCCACAGAGT GTGGTCCCTC CACTAGGAGT TAACTACCCT ACACCTCTGG GCCCTGCAGG AGGCCTGGGA GGGCAAGGGT CCTACGGAGG GACCAGGTGT CTAGAGGCAA CAGTGTTCTG AGCCCCCACC TGCCTGACCA TCCCATGAGC AGTCCAGCGC TTCAGGGCTG GGCAGGTCCT GGGGAGGCTG AGACTGCAGA GGAGCCACCT GGGCTGGGAG AAGGTGCTTG GGCTTCTGCG GTGAGGCAGG GGAGTCTGCT TGTCTTAGAT GTTGGTGGTG CAGCCCCAGG ACCAAGCTTA AGGAGAGAG AGCATCTGCT CTGAGACGGA TGGAAGGAGA GAGGTTGAGG ATGCACTGGC CTGTTCTGTA GGAGAGACTG GCCAGAGGCA GCTAAGGGGC AGGAATCAAG GAGCCTCCGT TCCCACCTCT GAGGACTCTG GACCCCAGGC CATACCAGGT GCTAGGGTGC CTGCTCTCCT TGCCCTGGGC CAGCCCAGGA TTGTACGTGG GAGAGGCAGA AAGGGTAGGT TCAGTAATCA TTTCTGATGA TTTGCTGGAG TGCTGGCTCC ACGCCCTGGG GAGTGAGCTT GGTGCGGTAG GTGCTGGCCT CAAACAGCCA CGAGGTGGTA GCTCTGAGCC CTCCTTCTTG CCCTGAGCTT TCCGGGGAGG AGCCTGGAGT GTAATTACCT GTCATCTGGG CCACCAGCTC CACTGGCCCC CGTIGCCGGG CCTGGACTGT CCTAGGTGAC CCCATCTCTG CTGCTTCTGG GCCTGATGGA GAGGAGAACA CTAGACATGC CAACTCGGGA GCATTCTGCC TGCCTGGGAA CGGGGTGGAC GAGGGAGTGT CTGTAAGGAC TCACTGTTGA CTGTAGGCGC CCCTGGGGTG GGTTTAGCAG GCTGCAGCAG GCAGAGGAGG AGTACCCCCC TGACAGCATG TGGGGGAAGG CCTTGCTGTC ATGTGAATCC CTCAATACCC CTAGTATCTG GCTGGGTTTT CAGGGGCTTT GGAAGCTCTG TTGCAGGTGT CCGGGGGTCT AGGACTTTAG GGATCTGGGA TCTGGGGAAG GACC'AACCCA TGCCCTGCCA AGCCTGGAGC CCCTGTGTTG GGGGGCAAGG TGGGGGAGCC TGGAGCCCCT GTGT3GGAGG GCGAGGCGGG GGAGCCTGGA GCCCCTGTGT GGGAGGGCGA GGCGGGGGAT CCTGGAGCCC CTGTGTCGGG GGGCGAGGGA GGGGAGGTGG CCGTCGGTTG ACCTTCTGAA CATGAGTGTC AACTCCAGGA CTTCCTTCCA AGCCCTTCCC TCTGTTGGAA ATTGGGTGTG CCCTGGCTCC CAAGGGAGGC CCATGTGACT AATAAAAAC TGTGAACCCT -3' (FRAG. NO:__) (SEQ. ID NO: 2421) 5'-ATGCCGCCCT CCATCTCAGC TTTCCAGGCC GCCTACATCG GCATCGAGGT GCTCATCGCC CTGGTCTCTG CCCCTATGT TTGGCIGGAA CAATCTGAGT GCGGTGGAGC GGGCCTGGGC AGCCAACGGC AGCATGGGGG AGCCCGTGAT CAACTGCGAG TTCGAGAAGG TCATCAGCAT GGAGTACATG GTCTACTTCA ACTTCTTTGT GTGGGTGCTG CCCCCGCTTC TCCTCATGGT CCTCATCTAC CTGGAGGTCT TCTACCTAAT CCGCAAGCAG CTCAACAAGA AGG1GTCGGC CTCCTCCGGC GACCCGCAGA AGTACTATGG GAAGGAGCTG AAGATCGCCA AGTCGCTGGC CCTCATCCTC TTCCTCTTG CCCTCAGCTG GCTGCCTTTG CACATCCTCA ACTGCATCAC CCTCTTCTGC CCGTCCTGCC ACAAGCCCAG CATCCTTACC TACATTGCCA TCTTCCTCAC GCACGGCAAC TCGGCCATGA ACCCCATTGT CTATGCCTTC CGCATCCAGA AGTTCCGCGT CACCTTCCTT AAGATTTGGA ATGACCATTT CCGCTGCCAG CCTGCACCTC CCATTGACGA GGATCTCCCA GAAGAGAGGC CTGATGACTA G (FRAG NO: ) (SEQ. ID NO: 2420) 5'-GAT GGA GGG CGG CAT GGC GGG-3' (FRAG. NO: 1657) (SEQ ID NO:2412) 5'-G CGG GTC GCC GC-3' (FRAG. NO: 1658) (SEQ ID NO:2413) 5'-GGC GGG CBC BGG C-3' (FRAG. NO: 1659) (SEQ ID NO:2414) 5'-GGC GGG CBC-3' (FRAG. NO: 1660) (SEQ ID NO:2415)

5'-GC GGC CTG G-3' (FRAG. NO: 1661) (SEQ ID NO:2416)

5'-GGB GGG CGG C-3' (FRAG. NO: 1662) (SEQ ID NO:2417)

5'-GBT GGB GGG-3' (FRAG. NO: 1663) (SEQ ID NO:2418)

5'-GG CTG GGC-3' (FRAG. NO: 1664) (SEQ ID NO:2419)

5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG.1) (SEQ. ID NO: 11) 5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3'(FRAG 2) (SEQ. .ID NO:12)



5'-GGC CTG GAA AGC' TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3'(FRAG 3)(SEQ.ID NO:13) 5'-GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 4)(SEQ. ID NO:14) 5'-C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 5) (SEQ. ID NO: 15) 5'-CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 6) (SEQ. ID NO: 16) 5'-TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 7) (SEQ. ID NO: 17) 5'-G GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 8) (SEQ. ID NO: 18) 5'-GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 9) (SEQ. ID NO: 19) 5'-AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 10) (SEQ. ID NO: 20) 5'-A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 11) (SEQ. ID NO: 21) 5'-AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 12) (SEQ. ID NO: 22) 5'-GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 13) (SEQ. ID NO: 23) 5'-C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 14) (SEQ. ID NO: 24) 5'-TGA GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 15) (SEQ. ID NO: 25) 5'-GA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 16) (SEQ. ID NO: 26) 5'-A GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 17) (SEQ. ID NO: 27) 5'-GAT GGA GGG CGC CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 18) (SEQ. ID NO: 28) 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 19) (SEQ. ID NO: 29) 5'-T GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 20) (SEQ. ID NO: 30) 5'-GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 21) (SEQ. ID NO: 31) 5'-GA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 22) (SEO. ID NO: 32) 5'-A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 23) (SEO. ID NO: 33) 5'-GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 24) (SEQ. ID NO: 34) 5'-GG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 25) (SEQ. ID NO: 35) 5'-G CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 26) (SEQ. ID NO: 36) 5'-CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 27) (SEQ. ID NO: 37) 5'-GG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 28) (SEQ. ID NO: 38) 5'-G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 29) (SEQ. ID NO: 39) 5'-CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 30) (SEQ. ID NO: 40) 5'-AT GGC GGG CAC AGG CTG GGC-3' (FRAG 31) (SEQ. ID NO: 41) 5'-T GGC GGG CAC AGG CTG GGC-3' (FRAG 32) (SEQ. ID NO: 42) 5'-GGC GGG CAC AGC CTG GGC-3' (FRAG 33) (SEQ. ID NO: 43) 5'-GC GGG CAC AGG CTG GGC-3' (FRAG 34) (SEQ. ID NO: 44) 5'-C GGG CAC AGG CT'G GGC-3' (FRAG 35) (SEQ. ID NO: 45) 5'-GGG CAC AGG CTG GGC-3' (FRAG 36) (SEQ. ID NO: 46) 5'-GG CAC AGG CTG (GC-3' (FRAG 37) (SEO, ID NO: 47) 5'-G CAC AGG CTG GGC-3' (FRAG 38) (SEQ. ID NO: 48) 5'-CAC AGG CTG GGC-3' (FRAG 39) (SEQ. ID NO: 49) 5'-AC AGG CTG GGC-3' (FRAG 40) (SEQ. ID NO: 50) 5'-C AGG CTG GGC-3' (FRAG 41) (SEQ. ID NO: 51) 5'-AGG CTG GGC-3' (FRAG 42) (SEQ. ID NO: 52) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3'(FRAG 43)(SEQ.ID NO:53) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 44)(SEO.ID NO:54) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 45)(SEQ.ID NO:55) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 46)(SEQ.ID NO:56) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 47)(SEQ.ID NO:57) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 48)(SEQ. ID NO:58) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 49) (SEQ. ID NO: 59) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 50) (SEQ. ID NO: 60) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 51) (SEQ. ID NO: 61) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 52) (SEQ. ID NO: 62) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 53) (SEQ. ID NO: 63) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 54) (SEQ. ID NO: 64) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 55) (SEQ. ID NO: 65) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 56) (SEQ. ID NO: 66) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3'(FRAG 57) (SEQ. ID NO: 67) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 58) (SEQ. ID NO: 68) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 59) (SEQ. ID NO: 69) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 60) (SEQ. ID NO: 70) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 61) (SEQ. ID NO: 71) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 62) (SEQ. ID NO: 72)

5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 63) (SEQ. ID NO: 73) 5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 64) (SEQ. ID NO: 74)



```
5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 65) (SEQ. ID NO: 75)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 66) (SEO. ID NO: 76)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 67) (SEQ. ID NO: 77)
5'-GGC GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 68) (SEQ. ID NO: 78)
5^{\circ}\text{-}GGC GGC CTG GAA AGC TGA GAT GGA G \text{-}3^{\circ} (FRAG 69) (SEQ. ID NO: 79)
5'-GGC GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 70) (SEQ. ID NO: 80)
5'-GGC GGC CTG GAA AGC TGA GAT GG -3' (FRAG 71) (SEQ. ID NO: 81)
5'-GGC GGC CTG GAA AGC TGA GAT G -3' (FRAG 72) (SEQ. ID NO: 82)
5'-GGC GGC CTG GAA AGC TGA GAT -3' (FRAG 73) (SEQ. ID NO: 83)
5'-GGC GGC CTG GAA AGC TGA GA-3' (FRAG 74) (SEQ. ID NO: 84)
5'-GGC GGC CTG GAA AGC TGA G-3' (FRAG 75) (SEQ. ID NO: 85)
5'-GGC GGC CTG GAA AGC TGA-3' (FRAG 76) (SEQ. ID NO: 86)
5'-GGC GGC CTG GAA AGC TG-3' (FRAG 77) (SEO. ID NO: 87)
5'-GGC GGC CTG GAA AGC T-3' (FRAG 78) (SEQ. ID NO: 88)
5'-GGC GGC CTG GAA AGC-3' (FRAG 79) (SEQ. ID NO: 89)
5'-GGC GGC CTG GAA AG-3' (FRAG 80) (SEQ. ID NO: 90)
5'-GGC GGC CTG GAA A-3' (FRAG 81) (SEQ. ID NO: 91)
5'-GGC GGC CTG GAA-3' (FRAG 82) (SEQ. ID NO: 92)
5'-GGC GGC CTG GA-(' (FRAG 83) (SEQ. ID NO: 93)
5'-GGC GGC CTG G-3' (FRAG 84) (SEQ. ID NO: 94)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 85) (SEQ. ID NO:
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 86) (SEO. ID NO: 96)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 87) (SEO. ID NO: 97)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 88) (SEO. ID NO: 98)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 89) (SEO. ID NO: 99)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 90) (SEQ. ID NO: 100)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 91) (SEQ. ID NO: 101)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 92) (SEO. ID NO: 102)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 93) (SEQ. ID NO: 103)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 94) (SEQ. ID NO: 104)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 95) (SEO. ID NO: 105)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 96) (SEO. ID NO: 106)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 97) (SEO. ID NO: 107)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 98) (SEQ. ID NO: 108)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 99) (SEQ. ID NO: 109)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 100) (SEQ. ID NO: 110)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 101) (SEQ. ID NO: 111)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 102) (SEQ. ID NO: 112)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 103) (SEQ. ID NO: 113)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 104) (SEQ. ID NO: 114)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 105) (SEO. ID NO: 115)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 106) (SEQ. ID NO: 116)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 107) (SEQ. ID NO: 117)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 108) (SEQ. ID NO: 118)
5'-GC GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 109) (SEQ. ID NO: 119)
5'-GC GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 110) (SEQ. ID NO: 120)
5'-GC GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 111) (SEQ. ID NO: 121)
5'-GC GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 112) (SEQ. ID NO: 122)
5'-GC GGC CTG GAA AGC TGA GAT GG -3' (FRAG 113) (SEQ. ID NO: 123)
5'-GC GGC CTG GAA AGC TGA GAT G -3' (FRAG 114) (SEO, ID NO: 124)
5'-GC GGC CTG GAA AGC TGA GAT -3' (FRAG 115) (SEO. ID NO: 125)
5'-GC GGC CTG GAA AGC TGA GA-3' (FRAG 116) (SEO. ID NO: 126)
5'-GC GGC CTG GAA AGC TGA G-3' (FRAG 117) (SEQ. ID NO: 127)
5'-GC GGC CTG GAA AGC TGA-3' (FRAG 118) (SEQ. ID NO: 128)
5'-GC GGC CTG GAA AGC TG-3' (FRAG 119) (SEQ. ID NO: 129)
5'-GC GGC CTG GAA A.GC T-3' (FRAG 120) (SEQ. ID NO: 130)
5'-GC GGC CTG GAA A.GC-3' (FRAG 121) (SEQ. ID NO: 131)
5'-GC GGC CTG GAA A.G-3' (FRAG 122) (SEQ. ID NO: 132)
5'-GC GGC CTG GAA A-3' (FRAG 123) (SEQ. ID NO: 133)
5'-GC GGC CTG GAA-3' (FRAG 124) (SEQ. ID NO: 134)
5'-GC GGC CTG GA-3' (FRAG 125) (SEQ. ID NO: 135)
```



```
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 126) (SEO. ID NO:
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 127) (SEO. ID NO:
137)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 128) (SEQ. ID NO: 138)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 129) (SEQ. ID NO: 139)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 130) (SEO. ID NO: 140)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 131) (SEQ. ID NO: 141)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 132) (SEQ. ID NO: 142)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 133) (SEQ. ID NO: 143)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 134) (SEO. ID NO: 144)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 135) (SEQ. ID NO: 145)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 136) (SEO. ID NO: 146)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 137) (SEQ. ID NO: 147)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 138) (SEO. ID NO: 148)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 139) (SEO. ID NO: 149)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 140) (SEQ. ID NO: 150)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 141) (SEQ. ID NO: 151)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 142) (SEQ. ID NO: 152)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRA 143) (SEQ. ID NO: 153)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 144) (SEQ. ID NO: 154)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 145) (SEQ. ID NO: 155)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 146) (SEQ. ID NO: 156)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 147) (SEQ. ID NO: 157)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 148) (SEQ. ID NO: 158)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 148) (SEO. ID NO: 159)
5'-C GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 150) (SEQ. ID NO: 160)
5'-C GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 151) (SEQ. ID NO: 161)
5'-C GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 152) (SEQ. ID NO: 162)
5'-C GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 153) (SEQ. ID NO: 163)
5'-C GGC CTG GAA AGC TGA GAT GG -3' (FRAG 154) (SEQ. ID NO: 164)
5'-C GGC CTG GAA AGC TGA GAT G -3' (FRAG 155) (SEO. ID NO: 165)
5'-C GGC CTG GAA AGC TGA GAT -3' (FRAG 156) (SEO. ID NO: 166)
5'-C GGC CTG GAA AGC TGA GA-3' (FRAG 157) (SEO. ID NO: 167)
5'-C GGC CTG GAA AGC TGA G-3' (FRAG 158) (SEQ. ID NO: 168)
5'-C GGC CTG GAA AGC TGA-3' (FRAG 159) (SEQ. ID NO: 169)
5'-C GGC CTG GAA AGC TG-3' (FRAG 160) (SEQ. ID NO: 170)
5'-C GGC CTG GAA AGC T-3' (FRAG 161) (SEQ. ID NO: 171)
5'-C GGC CTG GAA AGC-3' (FRAG 162) (SEQ. ID NO: 172)
5'-C GGC CTG GAA AG-3' (FRAG 163) (SEO. ID NO: 173)
5'-C GGC CTG GAA A-3' (FRAG 164) (SEQ. ID NO: 174)
5'-C GGC CTG GAA-3' (FRAG 165) (SEQ. ID NO: 175)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 166) (SEQ. ID NO:
176)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 167) (SEQ. ID NO: 177)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 168) (SEQ. ID NO: 178)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 169) (SEQ. ID NO: 179)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 170) (SEQ. ID NO: 180)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 171) (SEQ. ID NO: 181)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 172) (SEQ. ID NO: 182)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 173) (SEO. ID NO: 183)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 174) (SEQ. ID NO: 184)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 175) (SEQ. ID NO: 185)
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 176) (SEQ. ID NO: 186)
```

5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 177) (SEQ. ID NO: 187)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 178) (SEQ. ID NO: 188)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 179) (SEQ. ID NO: 189)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 180) (SEQ. ID NO: 190)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 181) (SEQ. ID NO: 191)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT GG -3' (FRAG 182) (SEQ. ID NO: 192)
5'- GGC CTG GAA AGC: TGA GAT GGA GGG CGG CAT G -3' (FRAG 183) (SEQ. ID NO: 193)

5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 184) (SEQ. ID NO: 194)



```
5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 185) (SEQ. ID NO: 195)
 5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 186) (SEQ. ID NO: 196)
 5'- GGC CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 187) (SEQ. ID NO: 197)
 5'- GGC CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 188) (SEQ. ID NO: 198)
 5'- GGC CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 189) (SEQ. ID NO: 199)
 5'- GGC CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 190) (SEQ. ID NO: 200)
 5'- GGC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 191) (SEQ. ID NO: 201)
 5'- GGC CTG GAA AGC TGA GAT GGA G -3' (FRAG 192) (SEQ. ID NO: 202)
 5'- GGC CTG GAA AGC TGA GAT GGA -3' (FRAG 193) (SEQ. ID NO: 203)
5'- GGC CTG GAA AGC TGA GAT GG -3' (FRAG 194) (SEQ. ID NO: 204)
 5'- GGC CTG GAA AGC TGA GAT G -3' (FRAG 195) (SEQ. ID NO: 205)
 5'- GGC CTG GAA AGC TGA GAT -3' (FRAG 196) (SEQ. ID NO: 206)
 5'- GGC CTG GAA AGC TGA GA-3' (FRAG 197) (SEQ. ID NO: 207)
 5'- GGC CTG GAA AGC TGA G-3' (FRAG 198) (SEQ. ID NO: 208)
 5'- GGC CTG GAA AGC TGA-3' (FRAG 199) (SEQ. ID NO: 209)
 5'- GGC CTG GAA AGC TG-3' (FRAG 200 (SEQ. ID NO: 210)
 5'- GGC CTG GAA AGC T-3' (FRAG 201) (SEQ. ID NO: 211)
 5'- GGC CTG GAA AGC-3' (FRAG 202) (SEQ. ID NO: 212)
 5'- GGC CTG GAA AG-3' (FRAG 203) (SEQ. ID NO: 213)
 5'- GGC CTG GAA A-3' (FRAG 204) (SEQ. ID NO: 214)
 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 205) (SEQ. ID NO:
 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 206) (SEQ. ID NO: 216)
 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 207) (SEQ. ID NO: 217)
5'- GC CTG GAA AGC 'TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 208) (SEQ. ID NO: 218)
 5'- GC CTG GAA AGC 'TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 209) (SEQ. ID NO: 219)
 5'- GC CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 210) (SEQ. ID NO: 220)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 211) (SEQ. ID NO: 221)
 5'- GC CTG GAA AGC 'I'GA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 212) (SEQ. ID NO: 222)
5'- GC CTG GAA AGC 'FGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 213) (SEO. ID NO: 223)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 214) (SEO. ID NO: 224)
 5'- GC CTG GAA AGC 'FGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 215) (SEQ. ID NO: 225)
 5'- GC CTG GAA AGC 'I'GA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 216) (SEQ. ID NO: 226)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 217) (SEQ. ID NO: 227)
5'- GC CTG GAA AGC 'TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 218) (SEQ. ID NO: 228)
 5'- GC CTG GAA AGC 'TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 219) (SEQ. ID NO: 229)
 5'- GC CTG GAA AGC 'TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 220) (SEQ. ID NO: 230)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT GG -3' (FRAG 221) (SEQ. ID NO: 231)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT G -3' (FRAG 222) (SEQ. ID NO: 232)
5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CAT -3' (FRAG 223) (SEQ. ID NO: 233)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG CA-3' (FRAG 224) (SEQ. ID NO: 234)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG C-3' (FRAG 225) (SEQ. ID NO: 235)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CGG -3' (FRAG 226) (SEQ. ID NO: 236)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG CG -3' (FRAG 227) (SEQ. ID NO: 237)
5'- GC CTG GAA AGC 'IGA GAT GGA GGG C -3' (FRAG 228) (SEQ. ID NO: 238)
 5'- GC CTG GAA AGC 'IGA GAT GGA GGG -3' (FRAG 229) (SEQ. ID NO: 239)
 5'- GC CTG GAA AGC TGA GAT GGA GG -3' (FRAG 230) (SEQ. ID NO: 240)
 5'- GC CTG GAA AGC TGA GAT GGA G -3' (FRAG 231) (SEQ. ID NO: 241)
 5'- GC CTG GAA AGC TGA GAT GGA -3' (FRAG 232) (SEO. ID NO: 242)
5'- GC CTG GAA AGC '[GA GAT GG -3' (FRAG 233) (SEO. ID NO: 243)
 5'- GC CTG GAA AGC 'TGA GAT G -3' (FRAG 234) (SEQ. ID NO: 244)
 5'- GC CTG GAA AGC 'IGA GAT -3' (FRAG 235) (SEQ. ID NO: 245)
 5'- GC CTG GAA AGC 'CGA GA-3' (FRAG 236) (SEQ. ID NO: 246)
5'- GC CTG GAA AGC '`GA G-3' (FRAG 237) (SEQ. ID NO: 247)
5'- GC CTG GAA AGC '`GA-3' (FRAG 238) (SEQ. ID NO: 248)
 5'- GC CTG GAA AGC 'G-3' (FRAG 239) (SEQ. ID NO: 249)
 5'- GC CTG GAA AGC '`-3' (FRAG 240) (SEQ. ID NO: 250)
 5'- GC CTG GAA AGC-3' (FRAG 241) (SEQ. ID NO: 251)
 5'- GC CTG GAA AG-3' (FRAG 242) (SEQ. ID NO: 252)
5'- C CTG GAA AGC TGA GAT GG A GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 243) (SEQ. ID NO: 253)
5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 244) (SEQ. ID NO: 254)
 5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 245) (SEO. ID NO: 255)
```



```
5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 246) (SEO. ID NO: 256)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 247) (SEO. ID NO: 257)
     5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 248) (SEQ. ID NO: 258)
     5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 249) (SEQ. ID NO: 259)
     5'- C CTG GAA AGC T-3A GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 250) (SEQ. ID NO: 260)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 251) (SEQ. ID NO: 261)
     5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 252) (SEQ. ID NO: 262)
     5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 253) (SEQ. ID NO: 263)
     5'- C CTG GAA AGC T'GA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 254) (SEQ. ID NO: 264)
     5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 255) (SEQ. ID NO: 265)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT GGC GG-3' (FRAG 256) (SEQ. ID NO: 266)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT GGC G-3' (FRAG 257) (SEQ. ID NO: 267)
     5'- C CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 258) (SEQ. ID NO: 268)
     5'- C CTG GAA AGC T3A GAT GGA GGG CGG CAT GG -3' (FRAG 259) (SEQ. ID NO: 269)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT G -3' (FRAG 260) (SEQ. ID NO: 270)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CAT -3' (FRAG 261) (SEQ. ID NO: 271)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CGG CA-3' (FRAG 262) (SEQ. ID NO: 272)
     5'- C CTG GAA AGC T'GA GAT GGA GGG CGG C-3' (FRAG 263) (SEQ. ID NO: 273)
     5'- C CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 264) (SEQ. ID NO: 274)
     5'- C CTG GAA AGC T'3A GAT GGA GGG CG -3' (FRAG 265) (SEQ. ID NO: 275)
     5'- C CTG GAA AGC T'GA GAT GGA GGG C -3' (FRAG 266) (SEQ. ID NO: 276)
     5'- C CTG GAA AGC T'3A GAT GGA GGG -3' (FRAG 267) (SEQ. ID NO: 277)
     5'- C CTG GAA AGC T'3A GAT GGA GG -3' (FRAG 268) (SEQ. ID NO: 278)
     5'- C CTG GAA AGC T'3A GAT GGA G -3' (FRAG 269) (SEQ. ID NO: 279)
     5'- C CTG GAA AGC T'GA GAT GGA -3' (FRAG 270) (SEQ. ID NO: 280)
     5'- C CTG GAA AGC TGA GAT GG -3' (FRAG 271) (SEQ. ID NO: 281)
     5'- C CTG GAA AGC TGA GAT G -3' (FRAG 272) (SEQ. ID NO: 282)
     5'- C CTG GAA AGC T'3A GAT -3' (FRAG 273) (SEQ. ID NO: 283)
     5'- C CTG GAA AGC TGA GA-3' (FRAG 274) (SEQ. ID NO: 284)
     5'- C CTG GAA AGC T'GA G-3' (FRAG 275) (SEO. ID NO: 285)
     5'- C CTG GAA AGC T'GA-3' (FRAG 276) (SEO. ID NO: 286)
     5'- C CTG GAA AGC T 3-3' (FRAG 277) (SEQ. ID NO: 287)
     5'- C CTG GAA AGC T 3' (FRAG 278) (SEQ. ID NO: 288)
     5'- C CTG GAA AGC-3' (FRAG 279) (SEQ. ID NO: 289)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 280) (SEQ. ID NO: 290)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 281) (SEQ. ID NO: 291)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 282) (SEQ. ID NO: 292)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 283) (SEQ. ID NO: 293)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 284) (SEQ. ID NO: 294)
40
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 285) (SEQ. ID NO: 295)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 286) (SEQ. ID NO: 296)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 287) (SEQ. ID NO: 297)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 288) (SEQ. ID NO: 298)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 289) (SEQ. ID NO: 299)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 290) (SEQ. ID NO: 300)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 291) (SEQ. ID NO: 301)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 292) (SEQ. ID NO: 302)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 293) (SEQ. ID NO: 303)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 294) (SEQ. ID NO: 304)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 295) (SEO. ID NO: 305)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 296) (SEQ. ID NO: 306)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 297) (SEQ. ID NO: 307)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 298) (SEQ. ID NO: 308)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 299) (SEQ. ID NO: 309)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 300) (SEQ. ID NO: 310)
     5'- CTG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 301) (SEQ. ID NO: 311)
     5'- CTG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 302) (SEQ. ID NO: 312)
     5'- CTG GAA AGC TGA GAT GGA GGG C -3' (FRAG 303) (SEQ. ID NO: 313)
     5'- CTG GAA AGC TGA GAT GGA GGG -3' (FRAG 304) (SEQ. ID NO: 314)
     5'- CTG GAA AGC TGA GAT GGA GG -3' (FRAG 305) (SEQ. ID NO: 315)
     5'- CTG GAA AGC TGA GAT GGA G -3' (FRAG 306) (SEQ. ID NO: 316)
     5'- CTG GAA AGC TGA GAT GGA -3' (FRAG 307) (SEQ. ID NO: 317)
```



```
5'- CTG GAA AGC TG4 GAT GG -3' (FRAG 308) (SEQ. ID NO: 318)
     5'- CTG GAA AGC TG A GAT G -3' (FRAG 309) (SEQ. ID NO: 319)
     5'- CTG GAA AGC TGA GAT -3' (FRAG 310) (SEQ. ID NO: 320)
     5'- CTG GAA AGC TGA GA-3' (FRAG 311) (SEQ. ID NO: 321)
     5'- CTG GAA AGC TG 4 G-3' (FRAG 312) (SEQ. ID NO: 322)
     5'- CTG GAA AGC TG 4-3' (FRAG 313) (SEQ. ID NO: 323)
     5'- CTG GAA AGC TG 3' (FRAG 314) (SEQ. ID NO: 324)
     5'- CTG GAA AGC T-3' (FRAG 315) (SEQ. ID NO: 325)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 316) (SEQ. ID NO: 326)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 317) (SEQ. ID NO: 327)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 318) (SEO. ID NO: 328)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 319) (SEO. ID NO: 329)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 320) (SEO. ID NO: 330)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 321) (SEQ. ID NO: 331)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 322) (SEQ. ID NO: 332)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 323) (SEQ. ID NO: 333)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 324) (SEQ. ID NO: 334)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 325) (SEQ. ID NO: 335)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 326) (SEQ. ID NO: 336)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 327) (SEQ. ID NO: 337)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 328) (SEQ. ID NO: 338)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 329) (SEQ. ID NO: 339)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 330) (SEQ. ID NO: 340)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 331) (SEQ. ID NO: 341)
25
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 332) (SEQ. ID NO: 342)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 333) (SEQ. ID NO: 343)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 334) (SEQ. ID NO: 344)
     5'- TG GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 335) (SEO. ID NO: 345)
     5'- TG GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 336) (SEO. ID NO: 346)
     5'- TG GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 337) (SEO. ID NO: 347)
     5'- TG GAA AGC TGA GAT GGA GGG CG -3' (FRAG 338) (SEQ. ID NO: 348)
     5'- TG GAA AGC TGA GAT GGA GGG C -3' (FRAG 339) (SEQ. ID NO: 349)
     5'- TG GAA AGC TGA GAT GGA GGG -3' (FRAG 340) (SEQ. ID NO: 350)
     5'- TG GAA AGC TGA GAT GGA GG -3' (FRAG 341) (SEQ. ID NO: 351)
     5'- TG GAA AGC TGA GAT GGA G -3' (FRAG 342) (SEQ. ID NO: 352)
     5'- TG GAA AGC TGA GAT GGA -3' (FRAG 343) (SEQ. ID NO: 353)
     5'- TG GAA AGC TGA GAT GG -3' (FRAG 344) (SEQ. ID NO: 354)
     5'- TG GAA AGC TGA GAT G -3' (FRAG 345) (SEQ. ID NO: 355)
     5'- TG GAA AGC TGA GAT -3' (FRAG 346) (SEQ. ID NO: 356)
     5'- TG GAA AGC TGA GA-3' (FRAG 347) (SEQ. ID NO: 357)
     5'- TG GAA AGC TGA G-3' (FRAG 348) (SEQ. ID NO: 358)
     5'- TG GAA AGC TGA 3' (FRAG 349) (SEQ. ID NO: 359)
     5'- TG GAA AGC TG-3 (FRAG 350) (SEQ. ID NO: 360)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 351) (SEO. ID NO: 361)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 352) (SEQ. ID NO: 362)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 353) (SEQ. ID NO: 363)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 354) (SEQ. ID NO: 364)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 355) (SEQ. ID NO: 365)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 356) (SEQ. ID NO: 366)
    5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 357) (SEO. ID NO: 367)
     5'- G GAA AGC TGA C AT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 358) (SEQ. ID NO: 368)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 359) (SEQ. ID NO: 369)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 360) (SEQ. ID NO: 370)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 361) (SEQ. ID NO: 371)
    5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 362) (SEQ. ID NO: 372)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GGG -3' (FRAG 363) (SEQ. ID NO: 373)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC GG-3' (FRAG 364) (SEQ. ID NO: 374)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC G-3' (FRAG 365) (SEQ. ID NO: 375)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT GGC -3' (FRAG 366) (SEQ. ID NO: 376)
     5^{\circ}\text{--} G GAA AGC TGA CAT GGA GGG CGG CAT GG -3^{\circ} (FRAG 367) (SEQ. ID NO: 377)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT G -3' (FRAG 368) (SEQ. ID NO: 378)
     5'- G GAA AGC TGA CAT GGA GGG CGG CAT -3' (FRAG 369) (SEQ. ID NO: 379)
```



- 5'- G GAA AGC TGA (AT GGA GGG CGG CA-3' (FRAG 370) (SEO. ID NO: 380)
- 5'- G GAA AGC TGA (AT GGA GGG CGG C-3' (FRAG 371) (SEQ. ID NO: 381)
- 5'- G GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 372) (SEQ. ID NO: 382)
- 5'- G GAA AGC TGA GAT GGA GGG CG -3' (FRAG 373) (SEQ. ID NO: 383)
- 5'- G GAA AGC TGA GAT GGA GGG C -3' (FRAG 374) (SEQ. ID NO: 384)
  - 5'- G GAA AGC TGA GAT GGA GGG -3' (FRAG 375) (SEQ. ID NO: 385)
  - 5'- G GAA AGC TGA GAT GGA GG -3' (FRAG 376) (SEQ. ID NO: 386)
  - 5'- G GAA AGC TGA (AT GGA G -3' (FRAG 377) (SEQ. ID NO: 387)
  - 5'- G GAA AGC TGA GAT GGA -3' (FRAG 378) (SEQ. ID NO: 388)
- 10 5'- G GAA AGC TGA ('AT GG -3' (FRAG 379) (SEQ. ID NO: 389)
  - 5'- G GAA AGC TGA (¡AT G -3' (FRAG 380) (SEQ. ID NO: 390)
  - 5'- G GAA AGC TGA (AT -3' (FRAG 381) (SEQ. ID NO: 391)
  - 5'- G GAA AGC TGA (¡A-3' (FRAG 382) (SEQ. ID NO: 392)
  - 5'- G GAA AGC TGA (1-3' (FRAG 383) (SEQ. ID NO: 393)
- 15 5'- G GAA AGC TGA-3' (FRAG 384) (SEQ. ID NO: 394)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 385) (SEQ. ID NO: 395)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 386) (SEQ. ID NO: 396)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 387) (SEQ. ID NO: 397)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 388) (SEQ. ID NO: 398)
- 20 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 389) (SEQ. ID NO: 399)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 390) (SEQ. ID NO: 400)
    5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 391) (SEQ. ID NO: 401)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 392) (SEQ. ID NO: 402)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 392) (SEQ. ID NO: 402)
- 25 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 394) (SEQ. ID NO: 404)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 395) (SEQ. ID NO: 405)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 396) (SEQ. ID NO: 406)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 397) (SEQ. ID NO: 407)
- 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 398) (SEQ. ID NO: 408)
  5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 399) (SEQ. ID NO: 409)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 400) (SEQ. ID NO: 410)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 401) (SEQ. ID NO: 411)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 402) (SEQ. ID NO: 412)
  - 5'- GAA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 403) (SEQ. ID NO: 413)
- 35 5'- GAA AGC TGA GAT GGA GGG CGG CA-3' (FRAG 404) (SEQ. ID NO: 414)
  - 5'- GAA AGC TGA GAT GGA GGG CGG C-3' (FRAG 405) (SEQ. ID NO: 415)
  - 5'- GAA AGC TGA GAT GGA GGG CGG -3' (FRAG 406) (SEQ. ID NO: 416)
  - 5'- GAA AGC TGA GAT GGA GGG CG -3' (FRAG 407) (SEQ. ID NO: 417) 5'- GAA AGC TGA GAT GGA GGG C -3' (FRAG 408) (SEQ. ID NO: 418)
- 40 5'- GAA AGC TGA GAT GGA GGG -3' (FRAG 409) (SEQ. ID NO: 419)
  - 5'- GAA AGC TGA GAT GGA GG -3' (FRAG 410) (SEQ. ID NO: 420)
  - 5'- GAA AGC TGA GAT GGA G -3' (FRAG 411) (SEQ. ID NO: 421)
  - 5'- GAA AGC TGA GAT GGA -3' (FRAG 412) (SEQ. ID NO: 422)
  - 5'- GAA AGC TGA GAT GG -3' (FRAG 413) (SEQ. ID NO: 423)
- 45 5'- GAA AGC TGA GAT G -3' (FRAG 414) (SEQ. ID NO: 424)
  - 5'- GAA AGC TGA GAT -3' (FRAG 415) (SEQ. ID NO: 425)
  - 5'- GAA AGC TGA GA-3' (FRAG 416) (SEQ. ID NO: 426)
  - 5'- GAA AGC TGA G-3' (FRAG 417) (SEQ. ID NO: 427)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 418) (SEQ. ID NO: 428)
- 50 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 419) (SEQ. ID NO: 429)
  - 5'- AA AGC TGA GAI GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 420) (SEQ. ID NO: 430)
  - 5'- AA AGC TGA GAI GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 421) (SEQ. ID NO: 431)
  - 5'- AA AGC TGA GA1 GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 422) (SEQ. ID NO: 432)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 423) (SEQ. ID NO: 433) 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 424) (SEQ. ID NO: 434)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3 (FRAG 424) (SEQ. ID NO: 434)
    5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 425) (SEQ. ID NO: 435)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 426) (SEQ. ID NO: 436)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 427) (SEQ. ID NO: 437)
  - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 428) (SEQ. ID NO: 438)
  - 5'- AA AGC TGA GAI GGA GGG CGG CAT GGC GGG C-3' (FRAG 429) (SEQ. ID NO: 439)
    5'- AA AGC TGA GAI GGA GGG CGG CAT GGC GGG -3' (FRAG 430) (SEO. ID NO: 440)
    - 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 431) (SEQ. ID NO: 441)

55



- 5'- AA AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 432) (SEO. ID NO: 442)
- 5'- AA AGC TGA GAT' GGA GGG CGG CAT GGC -3' (FRAG 433) (SEO. ID NO: 443)
- 5'- AA AGC TGA GAT' GGA GGG CGG CAT GG -3' (FRAG 434) (SEQ. ID NO: 444)
- 5'- AA AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 435) (SEQ. ID NO: 445)
- 5'- AA AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 436) (SEQ. ID NO: 446)
  - 5'- AA AGC TGA GA7' GGA GGG CGG CA-3' (FRAG 437) (SEQ. ID NO: 447)
  - 5'- AA AGC TGA GAI' GGA GGG CGG C-3' (FRAG 438) (SEQ. ID NO: 448)
  - 5'- AA AGC TGA GAT GGA GGG CGG -3' (FRAG 439) (SEQ. ID NO: 449)
  - 5'- AA AGC TGA GAT GGA GGG CG -3' (FRAG 440) (SEQ. ID NO: 450)
- 10 5'- AA AGC TGA GA1' GGA GGG C -3' (FRAG 441) (SEQ. ID NO: 451)
  - 5'- AA AGC TGA GAT GGA GGG -3' (FRAG 442) (SEQ. ID NO: 452)
  - 5'- AA AGC TGA GAT GGA GG -3' (FRAG 443) (SEQ. ID NO: 453)
  - 5'- AA AGC TGA GAT GGA G -3' (FRAG 444) (SEQ. ID NO: 454)
  - 5'- AA AGC TGA GAT GGA -3' (FRAG 445) (SEQ. ID NO: 455)
- 5'- AA AGC TGA GAT GG -3' (FRAG 446) (SEQ. ID NO: 456)
  - 5'- AA AGC TGA GAT G -3' (FRAG 447) (SEQ. ID NO: 457)
  - 5'- AA AGC TGA GAT'-3' (FRAG 448) (SEQ. ID NO: 458)
  - 5'- AA AGC TGA GA-3' (FRAG 449) (SEQ. ID NO: 459)
- 5'- A AGC TGA GAT GGA GGG CG G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 450) (SEQ. ID NO: 460)
- 20 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 451) (SEQ. ID NO: 461)
  - 5'- A AGC TGA GAT 'GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 452) (SEQ. ID NO: 462)
    - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 453) (SEQ. ID NO: 463)

    - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 454) (SEQ. ID NO: 464)
  - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 455) (SEQ. ID NO: 465)
- 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 456) (SEQ. ID NO: 466)
  - 5'- A AGC TGA GAT 13GA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 457) (SEQ. ID NO: 467)
    - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 458) (SEQ. ID NO: 468)
    - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 459) (SEQ. ID NO: 469)
- 5'- A AGC TGA GAT 13GA GGG CGG CAT GGC GGG CA-3' (FRAG 460) (SEQ. ID NO: 470) 30
- 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 461) (SEQ. ID NO: 471)
  - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 462) (SEO. ID NO: 472)
  - 5'- A AGC TGA GAT (GGA GGG CGG CAT GGC GG-3' (FRAG 463) (SEQ. ID NO: 473) 5'- A AGC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 464) (SEO. ID NO: 474)
  - 5'- A AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 465) (SEQ. ID NO: 475)
  - 5'- A AGC TGA GAT (3GA GGG CGG CAT GG -3' (FRAG 466) (SEQ. ID NO: 476)
    - 5'- A AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 467) (SEQ. ID NO: 477)
    - 5'- A AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 468) (SEQ. ID NO: 478)
    - 5'- A AGC TGA GAT GGA GGG CGG CA-3' (FRAG 469) (SEQ. ID NO: 479)
  - 5'- A AGC TGA GAT GGA GGG CGG C-3' (FRAG 470) (SEQ. ID NO: 480)
- 40 5'- A AGC TGA GAT GGA GGG CGG -3' (FRAG 471) (SEQ. ID NO: 481)
  - 5'- A AGC TGA GAT (GGA GGG CG -3' (FRAG 472) (SEQ. ID NO: 482)
  - 5'- A AGC TGA GAT (3GA GGG C -3' (FRAG 473) (SEQ. ID NO: 483)
  - 5'- A AGC TGA GAT (3GA GGG -3' (FRAG 474) (SEO. ID NO: 484)
  - 5'- A AGC TGA GAT (3GA GG -3' (FRAG 475) (SEQ. ID NO: 485)
- 45 5'- A AGC TGA GAT GGA G -3' (FRAG 476) (SEQ. ID NO: 486)
  - 5'- A AGC TGA GAT (GGA -3' (FRAG 477) (SEQ. ID NO: 487)
  - 5'- A AGC TGA GAT (GG -3' (FRAG 478) (SEQ. ID NO: 488)
  - 5'- A AGC TGA GAT (3 -3' (FRAG 479) (SEQ. ID NO: 489)
  - 5'- A AGC TGA GAT · 3' (FRAG 480) (SEQ. ID NO: 490)
- 5'- AGC TGA GAT GIJA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 481) (SEQ. ID NO: 491)
  - 5'- AGC TGA GAT GJA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 482) (SEQ. ID NO: 492)
  - AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 483) (SEQ. ID NO: 493)
  - AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 484) (SEO. ID NO: 494) AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 485) (SEQ. ID NO: 495)
  - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 486) (SEQ. ID NO: 496)
    - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 487) (SEQ. ID NO: 497)
    - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 488) (SEQ. ID NO: 498)
    - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 489) (SEQ. ID NO: 499) 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 490) (SEQ. ID NO: 500)
  - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 491) (SEQ. ID NO: 501)
  - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 492) (SEQ. ID NO: 502)
  - 5'- AGC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 493) (SEQ. ID NO: 503)



- AGC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 494) (SEO. ID NO: 504)
- 5'- AGC TGA GAT G'3A GGG CGG CAT GGC G-3' (FRAG 495) (SEO. ID NO: 505)
- 5'- AGC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 496) (SEQ. ID NO: 506)
- 5'- AGC TGA GAT G'GA GGG CGG CAT GG -3' (FRAG 497) (SEQ. ID NO: 507)
- 5'- AGC TGA GAT GGA GGG CGG CAT G -3' (FRAG 498) (SEQ. ID NO: 508)
- 5'- AGC TGA GAT GGA GGG CGG CAT -3' (FRAG 499) (SEQ. ID NO: 509)
- 5'- AGC TGA GAT GGA GGG CGG CA-3' (FRAG 500) (SEQ. ID NO: 510)
- 5'- AGC TGA GAT GGA GGG CGG C-3' (FRAG 501) (SEQ. ID NO: 511)
- 5'- AGC TGA GAT GGA GGG CGG -3' (FRAG 502) (SEQ. ID NO: 512)
- 10 5'- AGC TGA GAT GGA GGG CG -3' (FRAG 503) (SEQ. ID NO: 513)
  - 5'- AGC TGA GAT GGA GGG C -3' (FRAG 504) (SEQ. ID NO: 514)
  - 5'- AGC TGA GAT GGA GGG -3' (FRAG 505) (SEQ. ID NO: 515)

  - 5'- AGC TGA GAT GGA GG -3' (FRAG 506) (SEQ. ID NO: 516) 5'- AGC TGA GAT GGA G -3' (FRAG 507) (SEQ. ID NO: 517)
- 15 5'- AGC TGA GAT GGA -3' (FRAG 508) (SEQ. ID NO: 518)
- - 5'- AGC TGA GAT GG -3' (FRAG 509) (SEQ. ID NO: 519) 5'- AGC TGA GAT G -3' (FRAG 510) (SEQ. ID NO: 520)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 511) (SEQ. ID NO: 521)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 512) (SEQ. ID NO: 522)
- 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 513) (SEQ. ID NO: 523) 20
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 514) (SEQ. ID NO: 524)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 515) (SEQ. ID NO: 525)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 516) (SEQ. ID NO: 526)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 517) (SEQ. ID NO: 527)
- 25 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 518) (SEQ. ID NO: 528)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 519) (SEQ. ID NO: 529)
    - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 520) (SEQ. ID NO: 530)
    - 5'- GC TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 521) (SEQ. ID NO: 531)
    - GC TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 522) (SEQ. ID NO: 532)
- 30 GC TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 523) (SEQ. ID NO: 533)
  - GC TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 524) (SEQ. ID NO: 534)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 525) (SEQ. ID NO: 535)
  - 5'- GC TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 526) (SEQ. ID NO: 536)
  - 5'- GC TGA GAT GGA GGG CGG CAT GG -3' (FRAG 527) (SEQ. ID NO: 537) 5'- GC TGA GAT GGA GGG CGG CAT G -3' (FRAG 528) (SEQ. ID NO: 538)
  - 5'- GC TGA GAT GGA GGG CGG CAT -3' (FRAG 529) (SEQ. ID NO: 539)
  - 5'- GC TGA GAT GGA GGG CGG CA-3' (FRAG 530) (SEQ. ID NO: 540)
  - 5'- GC TGA GAT GGA GGG CGG C-3' (FRAG 531) (SEQ. ID NO: 541)
  - 5'- GC TGA GAT GGA GGG CGG -3' (FRAG 532) (SEQ. ID NO: 542)
- 40 5'- GC TGA GAT GGA GGG CG -3' (FRAG 533) (SEQ. ID NO: 543)
  - 5'- GC TGA GAT GGA GGG C -3' (FRAG 534) (SEQ. ID NO: 544)
  - 5'- GC TGA GAT GGA GGG -3' (FRAG 535) (SEQ. ID NO: 545) 5'-
  - GC TGA GAT GGA GG -3' (FRAG 536) (SEQ. ID NO: 546) 5'-
  - GC TGA GAT GGA G  $\,$  -3' (FRAG 537) (SEQ. ID NO: 547) GC TGA GAT GGA -3' (FRAG 538) (SEQ. ID NO: 548)
  - GC TGA GAT GG -3' (FRAG 539) (SEQ. ID NO: 549)
    - C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 540) (SEQ. ID NO: 550)
    - C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 541) (SEQ. ID NO: 551)
- C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 542) (SEQ. ID NO: 552) 50
- C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 543) (SEQ. ID NO: 553)
  - C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 544) (SEQ. ID NO: 554)
  - C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 545) (SEQ. ID NO: 555) C TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 546) (SEQ. ID NO: 556)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 547) (SEQ. ID NO: 557)
- 55 5'- C TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 548) (SEQ. ID NO: 558)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 549) (SEQ. ID NO: 559)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 550) (SEQ. ID NO: 560)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 551) (SEQ. ID NO: 561) 5'- C TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 552) (SEQ. ID NO: 562)
- 60 5'- C TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 553) (SEQ. ID NO: 563)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 554) (SEQ. ID NO: 564)
  - 5'- C TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 555) (SEQ. ID NO: 565)

45



- 5'- C TGA GAT GGA GGG CGG CAT GG -3' (FRAG 556) (SEQ. ID NO: 566)
- 5'- C TGA GAT GGA GGG CGG CAT G -3' (FRAG 557) (SEQ. ID NO: 567)
- 5'- C TGA GAT GGA GGG CGG CAT -3' (FRAG 558) (SEO. ID NO: 568)
- 5'- C TGA GAT GGA GGG CGG CA-3' (FRAG 559) (SEQ. ID NO: 569)
- 5'- C TGA GAT GGA GGG CGG C-3' (FRAG 560) (SEQ. ID NO: 570)
  - 5'- C TGA GAT GGA GGG CGG -3' (FRAG 561) (SEQ. ID NO: 571)
  - 5'- C TGA GAT GGA GGG CG -3' (FRAG 562) (SEQ. ID NO: 572)
  - 5'- C TGA GAT GGA GGG C -3' (FRAG 563) (SEQ. ID NO: 573)
  - 5'- C TGA GAT GGA GGG -3' (FRAG 564) (SEQ. ID NO: 574)
- 10 5'- C TGA GAT GGA GG -3' (FRAG 565) (SEQ. ID NO: 575)
  - 5'- C TGA GAT GGA G -3' (FRAG 566) (SEQ. ID NO: 576)
    - 5'- C'TGA GAT GGA -3' (FRAG 567) (SEQ. ID NO: 577)
    - 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 568) (SEQ. ID NO: 578)
  - 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 569) (SEQ. ID NO: 579)
- 15 5'- TGA GAT GGA CGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 570) (SEO. ID NO: 580)
  - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 571) (SEQ. ID NO: 581)
  - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 572) (SEQ. ID NO: 582) 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 573) (SEQ. ID NO: 583)
  - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 574) (SEQ. ID NO: 584)
- 20 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 575) (SEQ. ID NO: 585)
  - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 576) (SEQ. ID NO: 586)
    - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 577) (SEQ. ID NO: 587)
    - 5'- TGA GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 578) (SEQ. ID NO: 588)
    - 5'- TGA GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 579) (SEQ. ID NO: 589)
- 25 5'- TGA GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 580) (SEQ. ID NO: 590)
  - 5'- TGA GAT GGA GGG CGG CAT GGC GG-3' (FRAG 581) (SEQ. ID NO: 591)
    - 5'- TGA GAT GGA GGG CGG CAT GGC G-3' (FRAG 582) (SEQ. ID NO: 592)
    - 5'- TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 583) (SEQ. ID NO: 593)
    - 5'- TGA GAT GGA GGG CGG CAT GGC -3' (FRAG 584) (SEQ. ID NO: 594)
    - 5'- TGA GAT GGA GGG CGG CAT G -3' (FRAG 585) (SEQ. ID NO: 595)
    - 5'- TGA GAT GGA GGG CGG CAT -3' (FRAG 586) (SEQ. ID NO: 596)
    - 5'- TGA GAT GGA GGG CGG CA-3' (FRAG 587) (SEQ. ID NO: 597)
    - 5'- TGA GAT GGA GGG CGG C-3' (FRAG 588) (SEQ. ID NO: 598)
    - 5'- TGA GAT GGA GGG CGG -3' (FRAG 589) (SEQ. ID NO: 599)
- 35 5'- TGA GAT GGA GGG CG -3' (FRAG 590) (SEQ. ID NO: 600)
  - 5'- TGA GAT GGA GGG C -3' (FRAG 591) (SEQ. ID NO: 601)
  - 5'- TGA GAT GGA GGG -3' (FRAG 592) (SEQ. ID NO: 602)
  - 5'- TGA GAT GGA GG -3' (FRAG 593) (SEQ. ID NO: 603) 5'- TGA GAT GGA G -3' (FRAG 594) (SEQ. ID NO: 604)
- 40 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 595) (SEQ. ID NO: 605)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 596) (SEQ. ID NO: 606)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 597) (SEQ. ID NO: 607)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 598) (SEQ. ID NO: 608)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG CT-3' (FRAG 599) (SEQ. ID NO: 609)
  - 5'- GA GAT GGA GC GCGC CAT GGC GGG CAC AGG C-3' (FRAG 601) (SEQ. ID NO: 610)
    5'- GA GAT GGA GC GCGC CAT GGC GGG CAC AGG -3' (FRAG 601) (SEQ. ID NO: 611)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AGG -3' (FRAG 601) (SEQ. ID NO: 611)
    5'- GA GAT GGA GC G CGG CAT GGC GGG CAC AG-3' (FRAG 602) (SEQ. ID NO: 612)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CAC A-3' (FRAG 603) (SEQ. ID NO: 613)
- 5'- GA GAT GGA GC G CGG CAT GGC GGG CA-3' (FRAG 604) (SEQ. ID NO: 614)
  50 5'- GA GAT GGA GC G CGG CAT GGC GGG CA-3' (FRAG 605) (SEQ. ID NO: 615)
  - 5'- GA GAT GGA GC G CGG CAT GGC GGG CA3' (FRAG 605) (SEQ. ID NO: 615)
    5'- GA GAT GGA GC G CGG CAT GGC GGG C-3' (FRAG 606) (SEQ. ID NO: 616)
    - 5'- GA GAT GGA GC G CGG CAT GGC GGG C-3' (FRAG 606) (SEQ. ID NO: 616)
      5'- GA GAT GGA GC G CGG CAT GGC GGG -3' (FRAG 607) (SEQ. ID NO: 617)
    - 5'- GA GAT GGA GC G CGG CAT GGC GG-3' (FRAG 608) (SEQ. ID NO: 618)
  - 5'- GA GAT GGA GC G CGG CAT GGC G-3' (FRAG 609) (SEQ. ID NO: 619)
- 55 5'- GA GAT GGA GC G CGG CAT GGC -3' (FRAG 610) (SEQ. ID NO: 620)
  - 5'- GA GAT GGA GC G CGG CAT GG -3' (FRAG 611) (SEQ. ID NO: 621)
  - 5'- GA GAT GGA GCG CGG CAT G -3' (FRAG 612) (SEQ. ID NO: 622)
  - 5'- GA GAT GGA GCG CGG CAT -3' (FRAG 613) (SEQ. ID NO: 623) 5'- GA GAT GGA GCG CGG CA-3' (FRAG 614) (SEQ. ID NO: 624)
  - 5'- GA GAT GGA GCG CGG C-3' (FRAG 615) (SEQ. ID NO: 625)
    - 5'- GA GAT GGA GCG CGG -3' (FRAG 616) (SEQ. ID NO: 626)
    - 5'- GA GAT GGA GC G CG -3' (FRAG 617) (SEQ. ID NO: 627)



- GA GAT GGA GCG C -3' (FRAG 618) (SEQ. ID NO: 628)
- 5'-GA GAT GGA GCG -3' (FRAG 619) (SEQ. ID NO: 629)
- 5'-GA GAT GGA GC: -3' (FRAG 620) (SEQ. ID NO: 630)
- 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 621) (SEQ. ID NO: 631)
  - 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 622) (SEQ. ID NO: 632)
    - 5'-A GAT-GGA GGC CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 623) (SEQ. ID NO: 633)
    - 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 624) (SEQ. ID NO: 634)
    - 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AGG CT-3' (FRAG 625) (SEQ. ID NO: 635)
- 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AGG C-3' (FRAG 626) (SEQ. ID NO: 636) 10 5'-
- A GAT GGA GGC CGG CAT GGC GGG CAC AGG -3' (FRAG 627) (SEQ. ID NO: 637)
  - 5'-A GAT GGA GGC CGG CAT GGC GGG CAC AG-3' (FRAG 628) (SEQ. ID NO: 638) 5'-
  - A GAT GGA GGC CGG CAT GGC GGG CAC A-3' (FRAG 629) (SEQ. ID NO: 639)
  - 5'-A GAT GGA GGC CGG CAT GGC GGG CAC-3' (FRAG 630) (SEQ. ID NO: 640)
- 5'-A GAT GGA GGC CGG CAT GGC GGG CA-3' (FRAG 631) (SEQ. ID NO: 641) 15
  - A GAT GGA GGC CGG CAT GGC GGG C-3' (FRAG 632) (SEQ. ID NO: 642) 5'-
    - A GAT GGA GGC CGG CAT GGC GGG -3' (FRAG 633) (SEQ. ID NO: 643) 5'-
    - A GAT GGA GGC CGG CAT GGC GG-3' (FRAG 634) (SEQ. ID NO: 644) 5'-
    - A GAT GGA GGC CGG CAT GGC G-3' (FRAG 635) (SEQ. ID NO: 645) A GAT GGA GGC CGG CAT GGC -3' (FRAG 636) (SEQ. ID NO: 646)
- 20 51-
- A GAT GGA GGC CGG CAT GG -3' (FRAG 637) (SEQ. ID NO: 647)
- 5'-A GAT GGA GGC CGG CAT G -3' (FRAG 638) (SEQ. ID NO: 648)
  - 5'-A GAT GGA GGC CGG CAT -3' (FRAG 639) (SEQ. ID NO: 649)
  - 5'-A GAT GGA GGC CGG CA-3' (FRAG 640) (SEQ. ID NO: 650)
- 5'-A GAT GGA GGC CGG C-3' (FRAG 641) (SEQ. ID NO: 651)
- 25 A GAT GGA GGC CGG -3' (FRAG 642) (SEQ. ID NO: 652) 5'-
  - 5'-A GAT GGA GGC CG -3' (FRAG 643) (SEQ. ID NO: 653)
    - 5'-A GAT GGA GGC C -3' (FRAG 644) (SEQ. ID NO: 654)
  - 5'-A GAT GGA GGC -3' (FRAG 645) (SEQ. ID NO: 655)
- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 646) (SEQ. ID NO: 656) 5'-
- 30 5'-GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 647) (SEQ. ID NO: 657)
- GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 648) (SEQ. ID NO: 658) 5'-
  - GAT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 6) (SEQ. ID NO: 659) 5'-
  - 5'-GAT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 650) (SEO. ID NO: 660)
  - 5'-GAT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 651) (SEQ. ID NO: 661)
  - 5'-GAT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 652) (SEQ. ID NO: 662) 5'-GAT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 653) (SEQ. ID NO: 663)
  - 5'-GAT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 654) (SEQ. ID NO: 664)
  - 5'-GAT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 655) (SEQ. ID NO: 665)
  - 5'-GAT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 656) (SEQ. ID NO: 666)
- 40 5'-GAT GGA GGG CGG CAT GGC GGG C-3' (FRAG 657) (SEQ. ID NO: 667)
  - 5'-GAT GGA GGG CGG CAT GGC GGG -3' (FRAG 658) (SEQ. ID NO: 668) 5'-
  - GAT GGA GGG CGG CAT GGC GG-3' (FRAG 659) (SEQ. ID NO: 669) 5'-
  - GAT GGA GGG CGG CAT GGC G-3' (FRAG 660) (SEQ. ID NO: 670)
- 5'-GAT GGA GGG CGG CAT GGC -3' (FRAG 661) (SEQ. ID NO: 671) 45 5'-GAT GGA GGG CGG CAT GG -3' (FRAG 662) (SEQ. ID NO: 672)
  - 5'-GAT GGA GGG CGG CAT G -3' (FRAG 663) (SEQ. ID NO: 673)
  - 5'-GAT GGA GGG CGG CAT -3' (FRAG 664) (SEQ. ID NO: 674)
  - 5'-GAT GGA GGG (CGG CA-3' (FRAG 665) (SEQ. ID NO: 675)
  - GAT GGA GGG CGG C-3' (FRAG 666) (SEQ. ID NO: 676)
- 50 5'-GAT GGA GGG CGG -3' (FRAG 667) (SEQ. ID NO: 677)
  - 5'-GAT GGA GGG CG -3' (FRAG 668) (SEQ. ID NO: 678)
  - 5'-GAT GGA GGG (C -3' (FRAG 669) (SEQ. ID NO: 679)
  - 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 670) (SEO. ID NO: 680)
  - 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 671) (SEQ. ID NO: 681)
- 55 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 672) (SEQ. ID NO: 682)
  - 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 673) (SEQ. ID NO: 683)
  - 5'-AT GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 674) (SEQ. ID NO: 684) 5'-
  - AT GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 675) (SEQ. ID NO: 685) 51-AT GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 676) (SEQ. ID NO: 686)
- 5'-60 AT GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 677) (SEQ. ID NO: 687)
  - 5'-AT GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 678) (SEQ. ID NO: 688)
  - AT GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 679) (SEQ. ID NO: 689)

35



- 5'- AT GGA GGG CGG CAT GGC GGG CA-3' (FRAG 680) (SEQ. ID NO: 690)
- 5'- AT GGA GGG CGG CAT GGC GGG C-3' (FRAG 681) (SEQ. ID NO: 691)
- 5'- AT GGA GGG CGG CAT GGC GGG -3' (FRAG 682) (SEQ. ID NO: 692)
- 5'- AT GGA GGG CGG CAT GGC GG-3' (FRAG 683) (SEQ. ID NO: 693)
- 5'- AT GGA GGG CGG CAT GGC G-3' (FRAG 684) (SEQ. ID NO: 694)
  - 5'- AT GGA GGG CGG CAT GGC -3' (FRAG 685) (SEQ. ID NO: 695)
  - 5'- AT GGA GGG CGG CAT GG -3' (FRAG 686) (SEQ. ID NO: 696)
  - 5'- AT GGA GGG CGG CAT G -3' (FRAG 687) (SEQ. ID NO: 697)
- 5'- AT GGA GGG CGG CAT -3' (FRAG 688) (SEQ. ID NO: 698)
- 10 5'- AT GGA GGG CGG CA-3' (FRAG 689) (SEQ. ID NO: 699)
  - 5'- AT GGA GGG CGG C-3' (FRAG 690) (SEQ. ID NO: 700)
  - 5'- AT GGA GGG CGG -3' (FRAG 691) (SEQ. ID NO: 701)
  - 5'- AT GGA GGG CG -3' (FRAG 692) (SEQ. ID NO: 702)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 693) (SEQ. ID NO: 703)
- 15 5'- T GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 694) (SEQ. ID NO: 704)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 695) (SEQ. ID NO: 705)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 696) (SEQ. ID NO: 706)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 697) (SEQ. ID NO: 707)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 698) (SEQ. ID NO: 708)
- 20 5'- T GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 699) (SEQ. ID NO: 709)
  - 5'- T GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 700) (SEQ. ID NO: 710)
    - 5'- T GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 701) (SEQ. ID NO: 711)
    - 5'- T GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 702) (SEQ. ID NO: 712)
    - 5'- T GGA GGG CGG CAT GGC GGG CA-3' (FRAG 703) (SEQ. ID NO: 713)
- 25 5'- T GGA GGG CGG CAT GGC GGG C-3' (FRAG 704) (SEQ. ID NO: 714)
  - 5'- T GGA GGG CGG CAT GGC GGG -3' (FRAG 705) (SEQ. ID NO: 715)
  - 5'- T GGA GGG CGG CAT GGC GG-3' (FRAG 706) (SEQ. ID NO: 716)
  - 5'- T GGA GGG CGG CAT GGC G-3' (FRAG 707) (SEQ. ID NO: 717)
  - 5'- T GGA GGG CGG CAT GGC -3' (FRAG 708) (SEQ. ID NO: 718)
- 30 5'- T GGA GGG CGG CAT GG -3' (FRAG 709) (SEQ. ID NO: 719)
  - 5'- T GGA GGG CGG CAT G -3' (FRAG 710) (SEQ. ID NO: 720)
  - 5'- T GGA GGG CGG CAT -3' (FRAG 711) (SEQ. ID NO: 721)
  - 5'- T GGA GGG CGG CA-3' (FRAG 712) (SEQ. ID NO: 722)
  - 5'- T GGA GGG CGG C-3' (FRAG 713) (SEQ. ID NO: 723)
  - 5'- T GGA GGG CGG: -3' (FRAG 714) (SEQ. ID NO: 724)
    5'- GGA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 715) (SEQ. ID NO: 725)
  - 5'- GGA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 716) (SEQ. ID NO: 726)
  - 5'- GGA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 717) (SEQ. ID NO: 727)
  - 5'- GGA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 718) (SEQ. ID NO: 728)
- 40 5'- GGA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 719) (SEQ. ID NO: 729)
  - 5'- GGA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 720) (SEQ. ID NO: 730)
  - 5'- GGA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 721) (SEQ. ID NO: 731) 5'- GGA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 722) (SEQ. ID NO: 732)
  - 5'- GGA GGG CGG CAT GGC GGG CAC A-3' (FRAG 723) (SEQ. ID NO: 733)
- 45 5'- GGA GGG CGG CAT GGC GGG CAC-3' (FRAG 724) (SEQ. ID NO: 734)
  - 5'- GGA GGG CGG CAT GGC GGG CA-3' (FRAG 725) (SEQ. ID NO: 735)
  - 5'- GGA GGG CGG CAT GGC GGG C-3' (FRAG 726) (SEQ. ID NO: 736)
  - 5'- GGA GGG CGG CAT GGC GGG -3' (FRAG 727) (SEQ. ID NO: 737)
  - 5'- GGA GGG CGG CAT GGC GG-3' (FRAG 728) (SEQ. ID NO: 738) 5'- GGA GGG CGG CAT GGC G-3' (FRAG 729) (SEQ. ID NO: 739)
  - 5'- GGA GGG CGG CAT GGC -3' (FRAG 729) (SEQ. ID NO: 739)
    - 5'- GGA GGG CGG CAT GG -3' (FRAG 731) (SEQ. ID NO: 741)
    - 5'- GGA GGG CGG CAT G -3' (FRAG 732) (SEQ. ID NO: 742)
    - 5'- GGA GGG CGG CAT -3' (FRAG 733) (SEQ. ID NO: 743)
- 55 5'- GGA GGG CGG CA-3' (FRAG 734) (SEQ. ID NO: 744)
  - 5'- GGA GGG CGG C-3' (FRAG 735) (SEQ. ID NO: 745)
  - 5'- GA GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 736) (SEQ. ID NO: 746)
  - 5'- GA GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 737) (SEQ. ID NO: 747)
  - 5'- GA GGG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 738) (SEQ. ID NO: 748)
- 60 5'- GA GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 739) (SEQ. ID NO: 749)
  5'- GA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 740) (SEQ. ID NO: 750)
  - 5'- GA GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 740) (SEQ. ID NO: 750) 5'- GA GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 741) (SEQ. ID NO: 751)

45



- 5'-GA GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 742) (SEQ. ID NO: 752)
- 5'-GA GGG CGG CAT GGC GGG CAC AG-3' (FRAG 743) (SEQ. ID NO: 753)
- 5'-GA GGG CGG CAT GGC GGG CAC A-3' (FRAG 744) (SEQ. ID NO: 754)
- 5'-GA GGG CGG CAT GGC GGG CAC-3' (FRAG 745) (SEQ. ID NO: 755)
- 5'-GA GGG CGG CAT GGC GGG CA-3' (FRAG 746) (SEQ. ID NO: 756)
- GA GGG CGG CAT GGC GGG C-3' (FRAG 747) (SEQ. ID NO: 757)
- 5'-GA GGG CGG CAT GGC GGG -3' (FRAG 748) (SEQ. ID NO: 758)
- 5'-GA GGG CGG CAT GGC GG-3' (FRAG 749) (SEQ. ID NO: 759)
- 5'-GA GGG CGG CAT GGC G-3' (FRAG 750) (SEQ. ID NO: 760)
- 10 5'-GA GGG CGG CAT GGC -3' (FRAG 751) (SEQ. ID NO: 761)
  - 5'-GA GGG CGG CAT GG -3' (FRAG 752) (SEQ. ID NO: 762)
  - 5'-GA GGG CGG CAT G -3' (FRAG 753) (SEQ. ID NO: 763)
  - 5'-
  - GA GGG CGG CAT -3' (FRAG 754) (SEQ. ID NO: 764) 5'-GA GGG CGG CA-3' (FRAG 755) (SEQ. ID NO: 765)
- 15 5'-A GGG CGG CA⁻⁻ GGC GGG CAC AGG CTG GGC-3' (FRAG 756) (SEQ. ID NO: 766)
  - 5'-A GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 757) (SEQ. ID NO: 767)
  - 5'-A GGG CGG CA" GGC GGG CAC AGG CTG G-3' (FRAG 758) (SEQ. ID NO: 768)
  - 5'-A GGG CGG CAC GGG CAC AGG CTG -3' (FRAG 759) (SEQ. ID NO: 769)
  - 5'-A GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 760) (SEQ. ID NO: 770)
- 20 5'-A GGG CGG CA' GGC GGG CAC AGG C-3' (FRAG 761) (SEQ. ID NO: 771)
- 5'-A GGG CGG CA⁻⁻ GGC GGG CAC AGG -3' (FRAG 762) (SEQ. ID NO: 772)
  - 5'-A GGG CGG CAC GGC GGG CAC AG-3' (FRAG 763) (SEQ. ID NO: 773)
  - A GGG CGG CA⁻⁻ GGC GGG CAC A-3' (FRAG 764) (SEQ. ID NO: 774) 5'-A GGG CGG CA⁻⁻ GGC GGG CAC-3' (FRAG 765) (SEQ. ID NO: 775) 5'-
- 25 51-A GGG CGG CA⁻⁻ GGC GGG CA-3' (FRAG 766) (SEQ. ID NO: 776)
- 5'-A GGG CGG CAT GGC GGG C-31 (FRAG 767) (SEQ. ID NO: 777)
  - A GGG CGG CA⁻⁻ GGC GGG -3' (FRAG 768) (SEQ. ID NO: 778) 51-
  - A GGG CGG CA⁻⁻ GGC GG-3' (FRAG 769) (SEQ. ID NO: 779) 5'-
  - 5'-A GGG CGG CA" GGC G-3' (FRAG 770) (SEQ. ID NO: 780)
- 30 5'-A GGG CGG CA[^] GGC -3' (FRAG 771) (SEQ. ID NO: 781)
  - 5'-A GGG CGG CA⁻⁻ GG -3' (FRAG 772) (SEQ. ID NO: 782)
  - 5'-A GGG CGG CA' G -3' (FRAG 773) (SEQ. ID NO: 783)
  - A GGG CGG CA" -3' (FRAG 774) (SEQ. ID NO: 784) 5'-
  - 5'-GGG CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 775) (SEQ. ID NO: 785)
- 35 GGG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 776) (SEQ. ID NO: 786)
  - 5'-GGG CGG CAT 3GC GGG CAC AGG CTG G-3' (FRAG 777) (SEQ. ID NO: 787)
  - 5'-GGG CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 778) (SEQ. ID NO: 788)
  - 5'-GGG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 779) (SEQ. ID NO: 789)
  - 5'-GGG CGG CAT GGC GGG CAC AGG C-3' (FRAG 780) (SEQ. ID NO: 790)
- 40 5'-GGG CGG CAT GGC GGG CAC AGG -3' (FRAG 781) (SEQ. ID NO: 791)
  - 5'-GGG CGG CAT 3GC GGG CAC AG-3' (FRAG 782) (SEQ. ID NO: 792)
  - GGG CGG CAT 3GC GGG CAC A-3' (FRAG 783) (SEQ. ID NO: 793) 5'-
  - 5'-GGG CGG CAT GGC GGG CAC-3' (FRAG 784) (SEQ. ID NO: 794)
  - GGG CGG CAT 3GC GGG CA-3' (FRAG 785) (SEQ. ID NO: 795) 5'-51-
  - GGG CGG CAT GGC GGG C-3' (FRAG 786) (SEQ. ID NO: 796) 5'-GGG CGG CAT GGC GGG -3' (FRAG 787) (SEQ. ID NO: 797)
  - 5'-GGG CGG CAT 3GC GG-3' (FRAG 788) (SEQ. ID NO: 798)
  - 5'-GGG CGG CAT GGC G-3' (FRAG 789) (SEQ. ID NO: 799)
  - 5'-GGG CGG CAT 3GC -3' (FRAG 790) (SEQ. ID NO: 800)
- 50 GGG CGG CAT GG -3' (FRAG 791) (SEQ. ID NO: 801)
  - 5'-GGG CGG CAT 3 -3' (FRAG 792) (SEQ. ID NO: 802)
    - 5'-GG CGG CAT GGC GGG CAC AG G CTG GGC-3' (FRAG 793) (SEQ. ID NO: 803)
    - GG CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 794) (SEQ. ID NO: 804) 5'-
    - 5'-GG CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 795) (SEQ. ID NO: 805)
    - GG CGG CAT G3C GGG CAC AGG CTG -3' (FRAG 796) (SEQ. ID NO: 806)
    - 5'-GG CGG CAT GGC GGG CAC AGG CT-3' (FRAG 797) (SEQ. ID NO: 807) GG CGG CAT GGC GGG CAC AGG C-3' (FRAG 798) (SEQ. ID NO: 808)
    - 5'-GG CGG CAT GGC GGG CAC AGG -3' (FRAG 799) (SEQ. ID NO: 809)
    - 5'-GG CGG CAT GGC GGG CAC AG-3' (FRAG 800) (SEQ. ID NO: 810)
- 60 5'-GG CGG CAT GGC GGG CAC A-3' (FRAG 801) (SEQ. ID NO: 811)
  - 5'-GG CGG CAT GGC GGG CAC-3' (FRAG 802) (SEQ. ID NO: 812)
  - 5'-GG CGG CAT GGC GGG CA-3' (FRAG 803) (SEQ. ID NO: 813)



GG CGG CAT GGC GGG C-3' (FRAG 804) (SEQ. ID NO: 814) 5'-5'-GG CGG CAT GGC GGG -3' (FRAG 805) (SEQ. ID NO: 815) 5'-GG CGG CAT GGC GG-3' (FRAG 806) (SEQ. ID NO: 816) 5'-GG CGG CAT GGC G-3' (FRAG 807) (SEQ. ID NO: 817) 5 5'-GG CGG CAT GGC -3' (FRAG 808) (SEQ. ID NO: 818) 5'-GG CGG CAT GG -3' (FRAG 809) (SEQ. ID NO: 819) 5'-G CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 810) (SEQ. ID NO: 820) 5'-G CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 811) (SEQ. ID NO: 821) 5'-G CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 812) (SEQ. ID NO: 822) 10 5'-G CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 813) (SEQ. ID NO: 823) G CGG CAT GGC GGG CAC AGG CT-3' (FRAG 814) (SEQ. ID NO: 824) 5'-5'-G CGG CAT GGC GGG CAC AGG C-3' (FRAG 815) (SEQ. ID NO: 825) 5'-G CGG CAT GGC GGG CAC AGG -3' (FRAG 816) (SEQ. ID NO: 826) 5'-G CGG CAT GGC GGG CAC AG-3' (FRAG 817) (SEQ. ID NO: 827) 15 5'-G CGG CAT GGC GGG CAC A-3' (FRAG 818) (SEQ. ID NO: 828) 5'-G CGG CAT GGC GGG CAC-3' (FRAG 819) (SEQ. ID NO: 829) 5'-G CGG CAT GGC GGG CA-3' (FRAG 820) (SEQ. ID NO: 830) 5'-G CGG CAT GGC GGG C-3' (FRAG 821) (SEQ. ID NO: 831) 5'-G CGG CAT GGC GGG -3' (FRAG 822) (SEQ. ID NO: 832) 20 5'-G CGG CAT GGC GG-3' (FRAG 823) (SEQ. ID NO: 833) 5'-G CGG CAT GGC G-3' (FRAG 824) (SEQ. ID NO: 834) G CGG CAT GGC -3' (FRAG 825) (SEQ. ID NO: 835) 5'-5'-CGG CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 826) (SEQ. ID NO: 836) 5'-CGG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 827) (SEQ. ID NO: 837) 25 5'-CGG CAT GGC GGG CAC AGG CTG G-3' (FRAG 828) (SEQ. ID NO: 838) 5'-CGG CAT GGC GGG CAC AGG CTG -3' (FRAG 829) (SEQ. ID NO: 839) 5'-CGG CAT GGC GGG CAC AGG CT-3' (FRAG 830) (SEQ. ID NO: 840) CGG CAT GGC GGG CAC AGG C-3' (FRAG 831) (SEQ. ID NO: 841) 5'-5'-CGG CAT GGC GGG CAC AGG -3' (FRAG 832) (SEQ. ID NO: 842) 30 5'-CGG CAT GGC GGG CAC AG-3' (FRAG 833) (SEQ. ID NO: 843) 5'-CGG CAT GGC GGG CAC A-3' (FRAG 834) (SEQ. ID NO: 844) CGG CAT GGC GGG CAC-3' (FRAG 835) (SEQ. ID NO: 845) 5'-5'-CGG CAT GGC GGG CA-3' (FRAG 836) (SEO. ID NO: 846) 5'-CGG CAT GGC GGG C-3' (FRAG 837) (SEO. ID NO: 847) 35 5'-CGG CAT GGC GGG -3' (FRAG 838) (SEQ. ID NO: 848) 5'-CGG CAT GGC GG-3' (FRAG 839) (SEQ. ID NO: 849) 5'-CGG CAT GGC G-3' (FRAG 840) (SEQ. ID NO: 850) 5'-GG CAT GGC GGG CAC AGG C TG GGC-3' (FRAG 841) (SEQ. ID NO: 851) 5'-GG CAT GGC GGG CAC AGG CTG GG-3' (FRAG 842) (SEQ. ID NO: 852) 40 5'-GG CAT GGC CIGG CAC AGG CTG G-3' (FRAG 843) (SEQ. ID NO: 853) 5'-GG CAT GGC GGG CAC AGG CTG -3' (FRAG 844) (SEQ. ID NO: 854) 5'-GG CAT GGC GGG CAC AGG CT-3' (FRAG 845) (SEQ. ID NO: 855) 5'-GG CAT GGC GGG CAC AGG C-3' (FRAG 846) (SEQ. ID NO: 856) 5'-GG CAT GGC (iGG CAC AGG -3' (FRAG 847) (SEQ. ID NO: 857) 45 5'-GG CAT GGC CiGG CAC AG-3' (FRAG 848) (SEQ. ID NO: 858) 5'-GG CAT GGC GGG CAC A-3' (FRAG 849) (SEQ. ID NO: 859) 5'-GG CAT GGC GGG CAC-3' (FRAG 850) (SEQ. ID NO: 860) 5'-GG CAT GGC (GG CA-3' (FRAG 851) (SEQ. ID NO: 861) 5'-GG CAT GGC CiGG C-3' (FRAG 852) (SEQ. ID NO: 862) 50 5'-GG CAT GGC (GG -3' (FRAG 853) (SEO. ID NO: 863) 5'-GG CAT GGC (G-3' (FRAG 854) (SEQ. ID NO: 864) 5'-G CAT GGC GGG CAC AGG CTG GGC-3' (FRAG 855) (SEO. ID NO: 865) 5'-G CAT GGC GGG CAC AGG CTG GG-3' (FRAG 856) (SEO. ID NO: 866) 5'-G CAT GGC GCiG CAC AGG CTG G-3' (FRAG 857) (SEQ. ID NO: 867) 55 5'-G CAT GGC GGG CAC AGG CTG -3' (FRAG 858) (SEQ. ID NO: 868) 5'-G CAT GGC GGG CAC AGG CT-3' (FRAG 859) (SEQ. ID NO: 869) 5'-G CAT GGC GGG CAC AGG C-3' (FRAG 860) (SEQ. ID NO: 870) 5'-G CAT GGC GCiG CAC AGG -3' (FRAG 861) (SEQ. ID NO: 871) 5'-G CAT GGC GGG CAC AG-3' (FRAG 862) (SEQ. ID NO: 872) 60 5'-G CAT GGC GGG CAC A-3' (FRAG 863) (SEQ. ID NO: 873) 5'-G CAT GGC GCG CAC-3' (FRAG 864) (SEQ. ID NO: 874)

G CAT GGC GGG CA-3' (FRAG 865) (SEQ. ID NO: 875)



5'-G CAT GGC GGG C-3' (FRAG 866) (SEQ. ID NO: 876) 5'-G CAT GGC GCiG -3' (FRAG 867) (SEQ. ID NO: 877) 5'-CAT GGC GGC CAC AGG CTG GGC-3' (FRAG 868) (SEQ. ID NO: 878) 5'-CAT GGC GGC; CAC AGG CTG GG-3' (FRAG 869) (SEQ. ID NO: 879) 5 5'-CAT GGC GGC CAC AGG CTG G-3' (FRAG 870) (SEQ. ID NO: 880) 5'-CAT GGC GGC CAC AGG CTG -3' (FRAG 871) (SEQ. ID NO: 881) 5'-CAT GGC GGC CAC AGG CT-3' (FRAG 872) (SEQ. ID NO: 882) 5'-CAT GGC GGC CAC AGG C-3' (FRAG 873) (SEQ. ID NO: 883) 5'-CAT GGC GGC CAC AGG -3' (FRAG 874) (SEQ. ID NO: 884) 10 5'-CAT GGC GGC CAC AG-3' (FRAG 875) (SEQ. ID NO: 885) 5'-CAT GGC GGC CAC A-3' (FRAG 876) (SEQ. ID NO: 886) 5'-CAT GGC GGC CAC-3' (FRAG 877) (SEQ. ID NO: 887) 5'-CAT GGC GGC CA-3' (FRAG 878) (SEQ. ID NO: 888) 5'-CAT GGC GGC C-3' (FRAG 879) (SEQ. ID NO: 889) 15 5'-AT GGC GGG CAC AGG CTG GGC-3' (FRAG 880) (SEQ. ID NO: 890) 5'-AT GGC GGG CAC AGG CTG GG-3' (FRAG 881) (SEQ. ID NO: 891) 5'-AT GGC GGG CAC AGG CTG G-3' (FRAG 882) (SEQ. ID NO: 892) AT GGC GGG CAC AGG CTG -3' (FRAG 883) (SEQ. ID NO: 893) 5'-5'-AT GGC GGG CAC AGG CT-3' (FRAG 884) (SEQ. ID NO: 894) 20 5'-AT GGC GGG CAC AGG C-3' (FRAG 885) (SEQ. ID NO: 895) 5'-AT GGC GGG CAC AGG -3' (FRAG 886) (SEQ. ID NO: 896) AT GGC GGG CAC AG-3' (FRAG 887) (SEQ. ID NO: 897) 5'-5'-AT GGC GGG CAC A-3' (FRAG 888) (SEQ. ID NO: 898) 5'-AT GGC GGG CAC-3' (FRAG 889) (SEQ. ID NO: 899) AT GGC GGG CA-3' (FRAG 890) (SEQ. ID NO: 900) 25 5'-T GGC GGG CAC AGG CTG GGC-3' (FRAG 891) (SEQ. ID NO: 901) 5'-T GGC GGG CAC AGG CTG GG-3' (FRAG 892) (SEQ. ID NO: 902) 5'-5'-T GGC GGG CAC AGG CTG G-3' (FRAG 893) (SEQ. ID NO: 903) T GGC GGG CAC AGG CTG -3' (FRAG 894) (SEQ. ID NO: 904) 30 T GGC GGG CAC AGG CT-3' (FRAG 895) (SEQ. ID NO: 905) 5'-T GGC GGG CAC AGG C-3' (FRAG 896) (SEQ. ID NO: 906) 5'-T GGC GGG CAC AGG -3' (FRAG 897) (SEO. ID NO: 907) 5'-T GGC GGG CAC AG-3' (FRAG 898) (SEQ. ID NO: 908) 5'-T GGC GGG CAC A-3' (FRAG 899) (SEQ. ID NO: 909) 35 5'-T GGC GGG CAC-3' (FRAG 900) (SEQ. ID NO: 910) 5'-GGC GGG CAC AGG CTG GGC-3' (FRAG 901) (SEQ. ID NO: 911) 5'-GGC GGG CAC AGG CTG GG-3' (FRAG 902) (SEQ. ID NO: 912) 5'-GGC GGG CAC AGG CTG G-3' (FRAG 903) (SEQ. ID NO: 913) 51-GGC GGG CAC AGG CTG -3' (FRAG 904) (SEQ. ID NO: 914) 40 5'-GGC GGG CAC AGG CT-31 (FRAG 905) (SEQ. ID NO: 915) 5'-GGC GGG CAC AGG C-3' (FRAG 906) (SEQ. ID NO: 916) 5'-GGC GGG CAC AGG -3' (FRAG 907) (SEQ. ID NO: 917) 5'-GGC GGG CAC AG-3' (FRAG 908) (SEQ. ID NO: 918) 5'-GGC GGG CAC A-3' (FRAG 909) (SEQ. ID NO: 919) 45 5'-GC GGG CAC AGG CTG GGC-3' (FRAG 910) (SEQ. ID NO: 920) 5'-GC GGG CAC AGG CTG GG-3' (FRAG 911) (SEQ. ID NO: 921) 5'-GC GGG CAC AGG CTG G-3' (FRAG 912) (SEQ. ID NO: 922) GC GGG CAC AGG CTG -3' (FRAG 913) (SEQ. ID NO: 923) 5'- GC GGG CAC AGG CT-3' (FRAG 914) (SEQ. ID NO: 924) 5'- GC GGG CAC AGG C-3' (FRAG 915) (SEQ. ID NO: 925) 5'- GC GGG CAC AGG -3' (FRAG 916) (SEO, ID NO: 926) 5'- GC GGG CAC AG-3' (FRAG 917) (SEO. ID NO: 927) 5'- C GGG CAC AGG CTG GGC-3' (FRAG 918) (SEO. ID NO: 928) 5'- GGG CAC AGG CTG GG-3' (FRAG 919) (SEQ. ID NO: 929) 5'- C GGG CAC AGG C'IG G-3' (FRAG 920) (SEQ. ID NO: 930) 5'- C GGG CAC AGG C'TG -3' (FRAG 921) (SEQ. ID NO: 931) 5'- C GGG CAC AGG CT-3' (FRAG 922) (SEQ. ID NO: 932) 5'- C GGG CAC AGG C-3' (FRAG 923) (SEQ. ID NO: 933) 5'- C GGG CAC AGG -(" (FRAG 924) (SEQ. ID NO: 934) 5'- GGG CAC AGG CTC GGC-3' (FRAG 925) (SEQ. ID NO: 935) 5'- GGG CAC AGG CTC GG-3' (FRAG 926) (SEQ. ID NO: 936)

5'- GGG CAC AGG CTG G-3' (FRAG 927) (SEQ. ID NO: 937)



```
5'- GGG CAC AGG CT(3-3' (FRAG 928) (SEQ. ID NO: 938)
5'- GGG CAC AGG CT-3' (FRAG 929) (SEO. ID NO: 939)
5'- GGG CAC AGG C-3' (FRAG 930) (SEQ. ID NO: 940)
5'- GG CAC AGG CTG (GGC-3' (FRAG 931) (SEQ. ID NO: 941)
5'- GG CAC AGG CTG (GG-3' (FRAG 932) (SEQ. ID NO: 942)
5'- GG CAC AGG CTG (3-3' (FRAG 933) (SEQ. ID NO: 943)
5'-GG CAC AGG CTG -3' (FRAG 934) (SEQ. ID NO: 944)
5'- GG CAC AGG CT-3' (FRAG 935) (SEQ. ID NO: 945)
5'-G CAC AGG CTG GC C-3' (FRAG 936) (SEQ. ID NO: 946)
5'-G CAC AGG CTG GC-3' (FRAG 937) (SEQ. ID NO: 947)
5'-G CAC AGG CTG G-3' (FRAG 938) (SEQ. ID NO: 948)
5'-G CAC AGG CTG -3' (FRAG 939) (SEQ. ID NO: 949)
5'-CAC AGG CTG GGC 3' (FRAG 940) (SEQ. ID NO: 950)
5'-CAC AGG CTG GG-3' (FRAG 941) (SEQ. ID NO: 951)
5'-CAC AGG CTG G-3' FRAG 942) (SEQ. ID NO: 952)
5'-AC AGG CTG GGC-3' (FRAG 943) (SEQ. ID NO: 953)
5'-AC AGG CTG GG-3' (FRAG 944) (SEQ. ID NO: 954)
5'-C AGG CTG GGC-3' [FRAG 945] (SEQ. ID NO: 955)
5'-TTT TCC TTC CTT 1GT CTC TCT TC (FRAG 946) (SEQ. ID NO: 956)
5'-GCT CCC GGC TGC CTG (FRAG 947) (SEQ. ID NO: 957)
5'-CTC GGC CGT GCG GCT CTG TCG CTC CCG GT (FRAG 948) (SEQ. ID NO: 958)
5'-CCG CCG CCC TCC 3GG GGG TC (FRAG 949) (SEQ. ID NO: 959)
5'-TGC TGC CGT TGG CTG CCC (FRAG 950) (SEQ. ID NO: 960)
5'-CTT CTG CGG GTC GCC GG (FRAG 951) (SEQ. ID NO: 961)
5'-TGC TGG GCT TGT GGC (FRAG 952) (SEQ. ID NO: 962)
```

5'-GGC CTC TCT TCT GGG (FRAG 953) (SEQ. ID NO: 963)
5'-CCT GGT CCC TCC GT (FRAG 954) (SEQ. ID NO: 964)
5'-GGT GGC TCC TCT GC (FRAG 955) (SEQ. ID NO: 965)
5'-GCT TGG TCC TGG GGC TGC (FRAG 956) (SEQ. ID NO: 966)
5'-TGC TCT CCT CTC CTT (FRAG 957) (SEQ. ID NO: 967)

## Human Adenosine A2a Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CTG GGC CTC-3' (I'RAG 1666) (SEQ. ID NO: 1681)

5'-TGC TTT TCT TTT CTG GGC CTC-3' (FRAG 958) (SEQ. ID NO: 968)

40 5'-TGT GGT CTG TTT TTT TCT G-3' (FRAG 959) (SEQ. ID NO: 969)

5'-GCC CTG CTG GGG CGC TCT CC-3' (FRAG 960) (SEQ. ID NO: 970)

5'-GCC GCC CGC CTG GCT CCC-3' (FRAG 961) (SEQ. ID NO: 971)

5'-GGB GCC CBT GBT GGG CBT GCC-3' (FRAG 962) (SEQ. ID NO: 972)

5'-GTG GTT CTT GCC CTC CTT TGG CTG-3' (FRAG 963) (SEQ. ID NO: 973)

45 5'-CCG TGC CCG CTC CCC GGC-3' (FRAG 964) (SEQ. ID NO: 974)

5'-CTC CTG GCG GGT GGC CGT TG-3' (FRAG 965) (SEQ. ID NO: 975)

5'-GGC CCG TGT TCC CCT GGG-3' (FRAG 966) (SEQ. ID NO: 976)

5'-GCC TGG GGC TCC CTT CTC TC-3' (FRAG 967) (SEQ. ID NO: 977)

5'-GCC CTT CTT GCT (GGG CCT C-3' (FRAG 968) (SEQ. ID NO: 978)

50 5'-TGC TGC TGC TGG TGC TGT GGC CCC C-3' (FRAG 969) (SEQ. ID NO: 979)

5'-GTACACCGAGGAGCCCATGATGGGCATGCCACAGACGACAGGC-3' (FRAG 970) (SEQ. ID NO: 980)

5'-GTBCBCCGBGGGGCCCBTGBTGGGCBTGCCBCBGBCGBCGGC-3' (FRAG 971) (SEQ. ID NO: 981)

## Human Adenosine A2b Receptor Nucleic Acid & Antisense Oligonucleotide Fragments



	GAGGCGCGGT			CGGCGGGTCT	CACGCGGCTG	CCCCTCGCCC	GGCGCGCCTT
	CGGTAGGGG	CGC('CGGGGC	CCAGCTGGCC	CGGCCATGCT	GCTGGAGACA	CAGGACGCGC	TGTACGTGGC
	GCTGGAGCTG	GTCATCGCCG	CGCTTTCGGT	GGCGGCAAC	GTGCTGGTGT	GCGCCGCGGT	GGGCACGGCG
	AACACTCTGC	AGAC'GCCCAC	CAACTACTTC	CTGGTGTCCC	TGGCTGCGGC	CGACGTGGCC	GTGGGGCTCT
5	TCGCCATCCC	CTTTGCCATC	ACCATCAGCC	TGGGCTTCTG	CACTGACTTC	TACGGCTGCC	TCTTCCTCGC
	CTGCTTCGTG	CTGGTGCTCA	CGCAGAGCTC	CATCTTCAGC	CTTCTGGCCG	TGGCAGTCGA	CAGATACCTG
	GCCATCTGTG	TCCCGCTCAG	GTATAAAAGT	TTGGTCACGG	GGACCCGAGC	AAGAGGGGTC	ATTGCTGTCC
	TCTGGGTCCT	TGCCITTGGC	ATCGGATTGA		GGGGTGGAAC		
	CAACTGCACA	GAAC'CCTGGG	ATGGAACCAC			TGAAGTGTCT	CTTTGAGAAT
10	GTGGTCCCCA	TGAC:CTACAT	GGTATATTTC	AATTTCTTTG	GGTGTGTTCT	GCCCCACTG	CTTATAATGC
	TGGTGATCTA	CATTAAGATC	TTCCTGGTGG	CCTGCAGGCA	GCTTCAGCGC	ACTGAGCTGA	TGGACCACTC
	GAGGACCACC		AGATCCATGC		CTGGCCATGA		TTTTGCCCTG
	TGCTGGTTAC	CTGTGCATGC	TGTTAACTGT		TCCAGCCAGC	TCAGGGTAAA	AATAAGCCCA
	AGTGGGCAAT	GAA"ATGGCC	ATTCTTCTGT	CACATGCCAA	TTCAGTTGTC	AATCCCATTG	TCTATGCTTA
15	CCGGAACCGA	GACTTCCGCT	ACACTTTTCA		TCCAGGTATC	TTCTCTGCCA	AGCAGATGTC
	AAGAGTGGGA		TGGGGTACAG		GTGTGGGCCT	ATGATCTAGG	CTCTCGCCTC
		AGATACAAAT		CAAAGAGGAC		TTCATTGTGA	
	CACCTCACAA	GGALATGGAC	TGCCTCTCTT	GAGCACTTCC		CACGTATCTA	GCTAATATGT
	ATGTGTCAGT	AGTAGCACCA					
20	TTATGCCAAC	AGCTTGAATG	GATTCTAACA	GACTCTTTTG	TTTTTAAAAG	AGCTGCTTTT TCTGCCTTGT	ACTGTGTGGA TTATGGTGGA
20	AAATTACTGA	AACTATTTTA	CTGTGAAACA				
		ATA/AAGTTG				AATACTTTTT	AACTTAGAGG
	AAAGTATAAT			CTCACACCTG		GAAGGTGACC	TCAAAAATTA
	GCGGATCACG	AGG''CAGGAG				ACTTTGGGAG	GCCAAGGCAG
25	-	AGACGCGGCA		GCCTGTCCAA		GGGCAATTTG	TTAGTTATCC
2.5	CGAGTGGGTG				CCCCGCGCGG		TGGGCTCGGG
					CGCGGGCCAA		CTCTTGGCCG
		GGCC CTATGG			AGCCCCGAGG		
			CCATGCCCGG	CGGGTCTCAC		CTCGCCCGGC	GCGCCTTCGG
30	TAGGGGGCGC				GGAGACACAG		ACGTGGCGCT
30		ATCGCCGCGC	TTTCGGTGGC			CCGCGGTGGG	CACGGCGAAC
	ACTCTGCAGA	CGCCCACCAA		GTGTCCCTGG	CTGCGGCCGA	CGTGGCCGTG	GGGCTCTTCG
	CCATCCCCTT	TGCCATCACC	ATCAGCCTGG	GCTTCTGCAC	TGACTTCTAC	GGCTGCCTCT	TCCTCGCCTG
	CTTCGTGCTG	GTGCTCACGC	AGAGCTCCAT	CTTCAGCCTT	CTGGCCGTGG	CAGTCGACAG	ATACCTGGCC
25	ATCTGTGTCC	CGCTCAGGTA	TAAAAGTTTG	GTCACGGGGA	CCCGAGCAAG	AGGGGTCATT	GCTGTCCTCT
35	GGGTCCTTGC				GTGGAACAGT		CCACCAACAA
	CTGCACAGAA			TGAAAGCTGC		AGTGTCTCTT	TGAGAATGTG
	GTCCCCATGA	GCTACATGGT	ATATTTCAAT	TTCTTTGGGT	GTGTTCTGCC	CCCACTGCTT	ATAATGCTGG
	TGATCTACAT		CTGGTGGCCT	GCAGGCAGCT	TCAGCGCACT	GAGCTGATGG	ACCACTCGAG
40	GACCACCCTC	CAGCGGGAGA			GCCATGATTG	TGGGGATTTT	TGCCCTGTGC
40	TGGTTACCTG				AGCCAGCTCA		AAGCCCAAGT
	GGGCAATGAA	TATCGCCATT	CTTCTGTCAC	ATGCCAATTC	AGTTGTCAAT	CCCATTGTCT	ATGCTTACCG
					AGGTATCTTC		
					TGGGCCTATG		
4.5					GCTGGTTTTC		
45					GAGCTACCAC		
					ATCTATTCAG		
					TTTAAAAGTC		
					ATAATGCAAA		
					G AGGCTCAGAA		
50					CCCCTCGCCC		
					CAGGACGCGC		
	GTCATCGCCG	CGCTTTCGGT	GGCGGGCAAC	GTGCTGGTGT	GCGCCGCGGT	GGGCACGGCG	AACACTCTGC
					CGACGTGGCC		
					TACGGCTGCC		
55					TGGCAGTCGA		
					AAGAGGGGTC		
	TGCCTTTGGC	ATCGGATTGA	CTCCATTCCT	GGGGTGGAAC	AGTAAAGACA	GTGCCACCAA	CAACTGCACA
	GAACCCTGGG	ATGGAACCAC	GAATGAAAGC	TGCTGCCTTG	TGAAGTGTCT	CTTTGAGAAT	GTGGTCCCCA
	TGAGCTACAT	GGTATATTTC	AATTTCTTTG	GGTGTGTTCT	GCCCCACTG	CTTATAATGC	TGGTGATCTA



	CATTAAGATC			GCTTCAGCGC		TGGACCACTC	GAGGACCACC
	CTCCAGCGGG	AGAT'CCATGC		CTGGCCATGA	TTGTGGGGAT	TTTTGCCCTG	TGCTGGTTAC
	CTGTGCATGC	TGTTAACTGT	GTCACTCTTT	TCCAGCCAGC	TCAGGGTAAA	AATAAGCCCA	AGTGGGCAAT
_	GAATATGGCC	ATTC TTCTGT	CACATGCCAA	TTCAGTTGTC	AATCCCATTG	TCTATGCTTA	CCGGAACCGA
5	GACTTCCGCT	ACACTTTTCA	CAAAATTATC	TCCAGGTATC	TTCTCTGCCA	AGCAGATGTC	AAGAGTGGGA
	ATGGTCAGGC	TGGCGTACAG	CCTGCTCTCG	GTGTGGGCCT	ATGATCTAGG	CTCTCGCCTC	TTCCAGGAGA
	AGATACAAAT	CCAC AAGAAA	CAAAGAGGAC	ACGGCTGGTT	TTCATTGTGA	AAGATAGCTA	CACCTCACAA
	GGAAATGGAC	TGCCTCTCTT	GAGCACTTCC	CTGGAGCTAC	CACGTATCTA	GCTAATATGT	ATGTGTCAGT
	AGTAGCACCA	AGGATTGACA	AATATATTTA	TGATCTATTC	AGCTGCTTTT	ACTGTGTGGA	TTATGCCAAC
10	AGCTTGAATG	GAT1 CTAACA	GACTCTTTTG	TTTTTAAAAG	TCTGCCTTGT	TTATGGTGGA	AAATTACTGA
	AACTATTTTA	CTGT GAAACA	GTGTGAACTA	TTATAATGCA	AATACTTTTT	AACTTAGAGG	CAATGGAAAA
	ATAAAAGTTG	ACTGTACTAA	AAATGTATAC	TTGTTGCCAG	GAAGGTGACC	TCAAAAATTA	AAAGTATAAT
	TATTCGGCCG	GGCATGGTGG	CTCACACCTG	TAATTCCAGC	ACTTTGGGAG	GCCAAGGCAG	GCGGATCACG
	AGGTCAGGAG	TTCAAAACCA	GCCTGTCCA	A TATAGTG	GGGCAATTTG	TTAGTTATCC	GCCGCCACCA
15	AGACGCGGCA	CGGCGCCTGG	ACCGGAGGGG			TGGGCTCGGG	CGAGTGGGTG
	GTGCTCCGCC	CAGCCCGAGA	CGGGCGGGCG	CGCGGGCCAA	TGGGTGCCGC	CTCTTGGCCG	CGGGGGGCCC
	CGACCCGTGG	GTCCCGGCCA	CCAGCGCCCC	AGCCCCGAGG		GCAGGCGGAG	GCGCGGTCCG
	GGCGCTATGG	CCATGCCCGG	CGGGTCTCAC	GCGGCTGCCC	CTCGCCCGGC	GCGCCTTCGG	TAGGGGGCGC
	CCGGGGCCCA	GCTGGCCCGG	CCATGCTGCT	GGAGACACAG	GACGCGCTGT	ACGTGGCGCT	GGAGCTGGTC
20	ATCGCCGCGC	TTTCGGTGGC	GGGCAACGTG	CTGGTGTGCG	CCGCGGTGGG	CACGGCGAAC	ACTCTGCAGA
	CGCCCACCAA	CTACTTCCTG	GTGTCCCTGG	CTGCGGCCGA	CGTGGCCGTG	GGGCTCTTCG	CCATCCCCTT
	TGCCATCACC	ATCAGCCTGG	GCTTCTGCAC	TGACTTCTAC	GGCTGCCTCT	TCCTCGCCTG	CTTCGTGCTG
	GTGCTCACGC	AGAC CTCCAT	CTTCAGCCTT	CTGGCCGTGG	CAGTCGACAG	ATACCTGGCC	ATCTGTGTCC
	CGCTCAGGTA	TAAAAGTTTG	GTCACGGGGA	CCCGAGCAAG	AGGGGTCATT	GCTGTCCTCT	GGGTCCTTGC
25	CTTTGGCATC	GGATTGACTC	CATTCCTGGG	GTGGAACAGT		CCACCAACAA	CTGCACAGAA
	CCCTGGGATG	GAAC CACGAA	TGAAAGCTGC	TGCCTTGTGA	AGTGTCTCTT	TGAGAATGTG	GTCCCCATGA
	GCTACATGGT	ATATTTCAAT	TTCTTTGGGT	GTGTTCTGCC	CCCACTGCTT	ATAATGCTGG	TGATCTACAT
	TAAGATCTTC	CTGG'TGGCCT	GCAGGCAGCT	TCAGCGCACT	GAGCTGATGG	ACCACTCGAG	GACCACCCTC
	CAGCGGGAGA	TCC#TGCAGC	CAAGTCACTG	GCCATGATTG	TGGGGATTTT	TGCCCTGTGC	TGGTTACCTG
30	TGCATGCTGT	TAACIGTGTC	ACTCTTTTCC	AGCCAGCTCA	GGGTAAAAAT	AAGCCCAAGT	GGGCAATGAA
	TATGGCCATT	CTTC'IGTCAC	ATGCCAATTC	AGTTGTCAAT	CCCATTGTCT	ATGCTTACCG	GAACCGAGAC
	TTCCGCTACA	CTTT 'CACAA	AATTATCTCC	AGGTATCTTC	TCTGCCAAGC	AGATGTCAAG	AGTGGGAATG
	GTCAGGCTGG	GGTACAGCCT	GCTCTCGGTG	TGGGCCTATG	ATCTAGGCTC	TCGCCTCTTC	CAGGAGAAGA
	TACAAATCCA	CAAGAAACAA	AGAGGACACG	GCTGGTTTTC	ATTGTGAAAG	ATAGCTACAC	CTCACAAGGA
35	AATGGACTGC	CTCTCTTGAG	CACTTCCCTG	GAGCTACCAC	GTATCTAGCT	AATATGTATG	TGTCAGTAGT
	AGGCTCCAAG	GATTGACAAA	TATATTTATG	ATCTATTCAG	CTGCTTTTAC	TGTGTGGATT	ATGCCAACAG
	CTTGAATGGA	TTCT 4ACAGA	CTCTTTTGTT	TTTAAAAGTC	TGCCTTGTTT	ATGGTGGAAA	ATTACTGAAA
	CTATTTTACT		GTGAACTATT	ATAATGCAAA		CTTAGAGGCA	ATGGAAAAAT
				O: 1670) (SEQ. ID			
40	5'- GGGCAATT	TG TTAGTTATC	C GCCGCCACC	A AGACGCGGCA	A CGGCGCCTGG	ACCGGAGGGG	CCCCGCGCGG
	GCGCGAACTT				CAGCCCGAGA		
					GTCCCGGCCA		
					CCATGCCCGG		
					GCTGGCCCGG		
45					TTTCGGTGGC		
					CTACTTCCTG		CTGCGGCCGA
		GGGCTCTTCG			ATCAGCCTGG		TGACTTCTAC
	GGCTGCCTCT		CTTCGTGCTG		AGAGCTCCAT		
<b>50</b>					TAAAAGTTTG		CCCGAGCAAG
50					GGATTGACTC		
					GAACCACGAA		
	AGTGTCTCTT			GCTACATGGT	ATATTTCAAT		GTGTTCTGCC
					CTGGTGGCCT		TCAGCGCACT
~~					TCCATGCAGC		GCCATGATTG
55	TGGGGATTTT	TGCCCTGTGC		TGCATGCTGT		ACTCTTTTCC	AGCCAGCTCA
					CTTCTGTCAC		AGTTGTCAAT
	CCCATTGTCT	ATGC'ITACCG	GAACCGAGAC		CTTTTCACAA		AGGTATCTTC
					GGTACAGCCT		TGGGCCTATG
	ATCTAGGCTC	TCGCCTCTTC	CAGGAGAAGA	TACAAATCCA	CAAGAAACAA	AGAGGACACG	GCTGGTTTTC



ATTGTGAAAG ATAGCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTTCCCTG GAGCTACCAC GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTTATG ATCTATTCAG CTGCTTTTAC TGTGIGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTTGTT TTTAAAAGTC TGCCTTGTTT ATGGIGGAAA ATTACTGAAA CTATTTTACT GTGAAACAGT GTGAACTATT ATAATGCAAA TACTTTTTAA CTTAG.AGGCA ATGGAAAAAT AAAAGTTGAC TGTACTAAAA ATG-3'(FRAG.NO: )(SEQ.ID NO:2436) 5'-CCCAGCCCCG AGGCTCAGAA GCGGCAGGCG GAGGCGCGGT CCGGGCGCTA TGGCCATGCC CGGCGGGTCT CACGCGGCTG CCCCTCGCCC GGCGCGCCTT CGGTAGGGGG CGCCCGGGGC CCAGCTGGCC CGGCCATGCT GCTGGAGACA CAGGACGCGC TGTACGTGGC GCTGGAGCTG GTCATCGCCG CGCTTTCGGT GGCGGGCAAC GTGCTGGTGT GCGCCGCGGT GGGCACGGCG AACACTCTGC AGACGCCCAC CAACTACTTC CTGGTGTCCC TGGCTGCGGC CGACGTGGCC GTGGGGCTCT TCGCCATCC CTTTGCCATC ACCATCAGCC TGGGCTTCTG CACTGACTTC TACGGCTGCC TCTTCCTCGC CTGCTTCGTG CTGGTGCTCA CGCAGAGCTC CATCTTCAGC CTTCTGGCCG TGGCAGTCGA CAGATACCTG GCCATCTGTG TCCCGCTCAG GTATAAAAGT TTGGTCACGG GGACCCGAGC AAGAGGGGTC ATTGCTGTCC TCTGGGTCCT TGCCTTTGGC ATCGGATTGA CTCCATTCCT GGGGTGGAAC AGTAAAGACA GTGCCACCAA CAACTGCACA GAACCCTGGG ATGGAACCAC GAATGAAAGC TGCTGCCTTG TGAAGTGTCT CTTTGAGAAT GTGGTCCCCA TGAGCTACAT GGTATATTTC AATTTCTTTG GGTGTGTTCT GCCCCCACTG CTTATAATGC TGGTGATCTA CATTAAGATC TTCCTGGTGG CCTGCAGGCA GCTTCAGCGC ACTGAGCTGA TGGACCACTC GAGGACCACC CTCCAGCGGG AGATCCATGC AGCCAAGTCA CTGGCCATGA TTGIGGGGAT TTTTGCCCTG TGCTGGTTAC CTGTGCATGC TGTTAACTGT GTCACTCTTT TCCAGCCAGC TCAGGGTAAA AATAAGCCCA AGTGGGCAAT GAATATGGCC ATTCTTCTGT CACATGCCAA TTCAGTTGTC AATCCCATTG TCTATGCTTA CCGGAACCGA GACTTCCGCT ACACTTTTCA CAAAATTATC TCCAGGTATC TTCT/TGCCA AGCAGATGTC AAGAGTGGGA ATGGTCAGGC TGGGGTACAG CCTGCTCTCG GTGTGGGCCT ATGATCTAGG CTCTCGCCTC TTCCAGGAGA AGATACAAAT CCACAAGAAA CAAAGAGGAC ACGGCTGGTT TTCATTGTGA AAGATAGCTA CACCTCACAA GGAAATGGAC TGCCTCTCTT GAGCACTTCC CTGGAGCTAC CACCTATCTA GCTAATATGT ATGTGTCAGT AGTAGCACCA AGGATTGACA AATATATTTA TGATCTATTC AGCTGCTTTT ACTGTGGGA TTATGCCAAC AGCTTGAATG GATTCTAACA GACTCTTTTG TTTTTAAAAG TCTGCCTTGT TTATGGTGGA AAATTACTGA AACTATTTTA CTGTGAAACA GTGTGAACTA TTATAATGCA AATACTTTTT AACTTAGAGG CAATGGAAAA ATAAAAGTTG ACTGTACTAA AAATGTATAC TTGTTGCCAG GAAGGTGACC TCAAAAATTA AAAGTATAAT TATTCGGCCG GGCATGGTGG CTCACACCTG TAATTCCAGC ACTTIGGGAG GCCAAGGCAG GCGGATCACG AGGTCAGGAG TTCAAAACCA GCCTGTCCAA TATAGTG -3' (FRAG. NO: ) (SEO. ID NO:2435) 5'- GGGCAATTTG TTAGTTATCC GCCGCCACCA AGACGCGGCA CGGCGCCTGG ACCGGAGGGG CCCCGCGCGG GCGCGAACTT TGGGCTCGGG CGAGTGGGTG GTGCTCCGCC CAGCCCGAGA CGGGCGGGCG CGCGGGCCAA TGGGTGCCGC CTCTTGGCCG CGGGGGGCCC CGACCCGTGG GTCCCGGCCA CCAGCGCCCC AGCCCCGAGG CTCAGAAGCG GCACGCGGAG GCGCGGTCCG GGCGCTATGG CCATGCCCGG CGGGTCTCAC GCGGCTGCCC CTCGCCCGGC GCGCCTTCGG TAGGGGGCGC CCGGGGCCCA GCTGGCCCGG CCATGCTGCT GGAGACACAG GACGCGCTGT ACGTGGCGCT GGAGCTGGTC ATCGCCGCGC TTTCGGTGGC GGGCAACGTG CTGGTGTGCG CCGCGGTGGG CACCGCGAAC ACTCTGCAGA CGCCCACCAA CTACTTCCTG GTGTCCCTGG CTGCGGCCGA CGTGGCCGTG GGGCTCTTCG CCATCCCCTT TGCCATCACC ATCAGCCTGG GCTTCTGCAC TGACTTCTAC GGCTGCCTCT TCCTCGCCTG CTTCGTGCTG GTGCTCACGC AGAGCTCCAT CTTCAGCCTT CTGGCCGTGG CAGTCGACAG ATACCTGGCC ATCTGTGTCC CGCTCAGGTA TAAAAGTTTG GTCACGGGGA CCCGAGCAAG AGGGGTCATT GCTCTCCTCT GGGTCCTTGC CTTTGGCATC GGATTGACTC CATTCCTGGG GTGGAACAGT AAAGACAGTG CCACCAACAA CTGCACAGAA CCCTGGGATG GAACCACGAA TGAAAGCTGC TGCCTTGTGA AGTGTCTCTT TGAGAATGTG GTCCCCATGA GCTACATGGT ATATTTCAAT TTCTTTGGGT GTGTTCTGCC CCCACTGCTT ATAATGCTGG TGATCTACAT TAAGATCTTC CTGGTGGCCT GCAGGCAGCT TCAGCGCACT GAGCTGATGG ACCACTCGAG GACCACCCTC CAGCGGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG TGGGGATTTT TGCCCTGTGC TGGTTACCTG TGCATGCTGT TAACTGTGTC ACTCTTTTCC AGCCAGCTCA GGGTAAAAAT AAGCCCAAGT GGGCAATGAA TATGGCCATT CTTCTGTCAC ATGCCAATTC AGTTGTCAAT CCCATTGTCT ATGCITACCG GAACCGAGAC TTCCGCTACA CTTTTCACAA AATTATCTCC AGGTATCTTC TCTGCCAAGC AGATGTCAAG AGTGGGAATG GTCAGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCCTATG ATCTAGGCTC TCGCCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTTC ATTGTGAAAG ATACCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTTCCCTG GAGCTACCAC GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTTATG ATCTATTCAG CTGCTTTTAC TGTGTGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTTGTT TTTAAAAGTC TGCCTTGTTT ATGGTGGAAA ATTACTGAAA CTATTTTACT GTGAAACAGT GTGAACTATT ATAATGCAAA TACTTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTACTAAAA ATG-3'(FRAG. NO: )(SEQ.ID NO:2425) 5'-CCCAGCCCCG AGGCTCAGAA GCGGCAGGCG GAGGCGCGGT CCGGGCGCTA TGGCCATGCC CGGCGGGTCT CACGCGGCTG CCCCTCGCCC GGCGCGCCTT CGGTAGGGGG CGCCCGGGGC CCAGCTGGCC CGGCCATGCT GCTGGAGACA CAGGACGCC TGTACGTGGC GCTGGAGCTG GTCATCGCCG CGCTTTCGGT GGCGGGCAAC GTGCTGGTGT GCGCCGCGGT GGGCACGGCG AACACTCTGC AGACGCCCAC CAACTACTTC CTGGTGTCCC



```
TGGCTGCGGC CGACGTGGCC GTGGGGCTCT TCGCCATCCC CTTTGCCATC ACCATCAGCC TGGGCTTCTG
CACTGACTTC TACGGCTGCC TCTTCCTCGC CTGCTTCGTG CTGGTGCTCA CGCAGAGCTC CATCTTCAGC
CTTCTGGCCG TGGCAGTCGA CAGATACCTG GCCATCTGTG TCCCGCTCAG GTATAAAAGT TTGGTCACGG
GGACCCGAGC AAGAGGGGTC ATTGCTGTCC TCTGGGTCCT TGCCTTTGGC ATCGGATTGA CTCCATTCCT
GGGGTGGAAC AGTAAAGACA GTGCCACCAA CAACTGCACA GAACCCTGGG ATGGAACCAC GAATGAAAGC
TGCTGCCTTG TGAAGTGTCT CTTTGAGAAT GTGGTCCCCA TGAGCTACAT GGTATATTTC AATTTCTTTG
GGTGTGTTCT GCCCCCACTG CTTATAATGC TGGTGATCTA CATTAAGATC TTCCTGGTGG CCTGCAGGCA
GCTTCAGCGC ACTGAGCTGA TGGACCACTC GAGGACCACC CTCCAGCGGG AGATCCATGC AGCCAAGTCA
CTGGCCATGA TTGTGGGGAT TTTTGCCCTG TGCTGGTTAC CTGTGCATGC TGTTAACTGT GTCACTCTTT
TCCAGCCAGC TCAGGGTAAA AATAAGCCCA AGTGGGCAAT GAATATGGCC ATTCTTCTGT CACATGCCAA
TTCAGTTGTC AATCCCATTG TCTATGCTTA CCGGAACCGA GACTTCCGCT ACACTTTTCA CAAAATTATC
TCCAGGTATC TTCTCTGCCA AGCAGATGTC AAGAGTGGGA ATGGTCAGGC TGGGGTACAG CCTGCTCTCG
GTGTGGGCCT ATGATCTAGG CTCTCGCCTC TTCCAGGAGA AGATACAAAT CCACAAGAAA CAAAGAGGAC
ACGGCTGGTT TTCATTGTGA AAGATAGCTA CACCTCACAA GGAAATGGAC TGCCTCTCTT GAGCACTTCC
CTGGAGCTAC CACCTATCTA GCTAATATGT ATGTGTCAGT AGTAGCACCA AGGATTGACA AATATATTTA
TGATCTATTC AGCTGCTTTT ACTGTGTGGA TTATGCCAAC AGCTTGAATG GATTCTAACA GACTCTTTTG
TTTTTAAAAG TCTGCCTTGT TTATGGTGGA AAATTACTGA AACTATTTTA CTGTGAAACA GTGTGAACTA
TTATAATGCA AATACTTTTT AACTTAGAGG CAATGGAAAA ATAAAAGTTG ACTGTACTAA AAATGTATAC
TTGTTGCCAG GAAGGTGACC TCAAAAATTA AAAGTATAAT TATTCGGCCG GGCATGGTGG CTCACACCTG
TAATTCCAGC ACTTIGGGAG GCCAAGGCAG GCGGATCACG AGGTCAGGAG TTCAAAACCA GCCTGTCCAA
TATAGTG (FRAG. NO ) ( SEQ. ID NO: 2424)
5'-GCGCGTCCTG-3' FRAG. NO: 1671) (SEQ. ID NO:1686)
5'-GCT GGG CCC CGG 3' (FRAG. NO: 1672) (SEQ. ID NO:1687)
5'-CGG GTC GGG GCC CCC C-3' (FRAG. NO: 1673) (SEQ. ID NO:1688)
5'- CGC GCC CGC G-3' (FRAG. NO: 1674) (SEO. ID NO:1689)
5'-GGC GCC GTG CCG CGT CTT GGT GGC GGC GG-3' (FRAG 972) (SEO. ID NO: 982)
5'-GTT CGC GCC CGC GCG GGG CCC CTC CGG TCC-3' (FRAG 973) (SEQ. ID NO: 983)
5'-GTT CGC GCC CGC GCG GGG CCC CTC CGG TCC-3' (FRAG 974) (SEQ. ID NO: 984)
5'-CGG GTC GGG GCC CCC CGC GGC C-3' (FRAG 975) (SEQ. ID NO: 985)
5'-GCC TCG GGG CTG GGG CGC TGG TGG CCG GG-3' (FRAG 976) (SEQ. ID NO: 986)
5'-CCG CGC CTC CGC CTG CCG CTT CTG-3' (FRAG 977) (SEO. ID NO: 987)
5'-GCT GGG CCC CGG GCG CCC CCT-3' (FRAG 978) (SEQ. ID NO: 988)
5'-CCC CTC TTG CTC (GGG TCC CCG TG-3' (FRAG 979) (SEQ. ID NO: 989)
```

## Human Adenosine A3 Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5'-ACAGCGCGTCCTGTGTCTCCAGCAGCATGGCCGGGCCAGCTGGGCCCC-3' (FRAG 980) (SEQ. ID NO: 990) 5'-BCBGCGCGTCCTGTGTCTCCBGCBGCBTGGCCGGGCCBGCTGGGCCCC-3' (FRAG 981) (SEQ. ID NO: 991)

5'-ACA GAG CAG TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G BCB GBG CB TGC TGT TGT TGG GCB TCT GAATTCCCAG ATGGCCAGAG GTGGCTGGCC TGGTGACCCT AAGTGTGTCT CCTGCCTTTA TTCTCTCTAG TGGGTTATTC TTTCATGTGG TATCTTGCCT ACAGCATGCT GTGTTTGGAC ACAAACCCCT TTCCTTGGTT TCTC GACCC AGCTGAGATG GACTGATTCC AAAAGAACTC ACCTATGTAC TGGGGTAGGG GAGGGAGGGT TTT1TGCAGT ATTTAACTAA GGTTCAAAGA GTGCTATATA GTGAGAAAGG CTTCTTTTTT TTTTTTTTT TTTTTTGGCA GAGTGCTGCC TCCTAGAAAT TTCTCTTGGT AACTTCCTTC TCTGAAGCAC AGATAAAGAA AACAATTACA GTAGAAACAT TTATGAGGGA CACATTGGAG GCCGATGAAG CTTTTCAAGT TCCAGCAGTG CAGGGATGTG GGCAGAACTG ACATTGGAAA ATACTAGAAT GATGGAAATT CAGTTGGAGA GGACTGCCCT TTTT.AATGTC TGGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGCGGGG ACAAGTATGG GATTTGGTAA GACTTGGATC AACTTGGGAT ACAGGGTGGG GGTCGGGAGT GGAATCAATG AATGATGCCA GAGCAGATCA ACTAACAAGA GGACCCTGAT GAGCCCCAGG CAGAGGCGTC TCCCTTATGC CCCACTCTGA AGTGTTTGTT AGTAAACACC AGAACGCCAT TGTTGTTACT GCTGAATTTT ATTTTGGGCT GTACATATTT AGATGCTTAA GGTAAAAATG ATAAAGCCCT CAAGCCACTG TGTGGGTTTG GGTCCAAGTG TTCCTTCTTG CTGCCTCTCT AACACGCCTG GTTAAAATAA TCCCTTTGGA TGGTGCTGAG AAGCACCTGA ACCAAGTGGG TCCCCAAATA ACAATGGCGT GCAAGTGTCT GGTTCCCAGA AGTTGGTGAC TAGGTAAGCA GCTTCAGGGA GAGGGGGCTG ATTCCCAGAC AGTCGCCTGT TCCTGCGGGG ATGGGGCTGA GGCTTGGGGA ATGTGGGCAG GAGGATATGC CAT TGATTC TGTTGCACAC GTTCTTTTCC CTTCTTTCTG TATGTCTGGT CATTCTGCTA TTCTGTCGTT CCTC.\CATAG GTTGGACATT GGCCGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGCTAGG TGTGAGCTGA GAAAGAGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTTGCCCT TCTGAGCAGG GAATCTTTGC TTATCCCTTT GACCAAGGAT CTTTGCTGCA AAGGCTGGGT ATCGGCTGTG





	00000001101	mamamaam	COMO LOMO LM	mm ca i ma ca i		G. GG. G. G.	
	GGGCTGAACA	TGTCTGTGGT			TTGTGGAATT		CCTGCTCTCG
					GAGTTTAAGG C		
	GAATTCCCAG	ATGGGCAGAG				CCTGCCTTTA	TTCTCTCTAG
	TGGGTTATTC	TTTCATGTGG	TATCTTGCCT	ACAGCATGCT	GTGTTTGGAC	ACAAACCCCT	TTCCTTGGTT
5	TCTCTGACCC	AGCTGAGATG	GACTGATTCC	AAAAGAACTC		TGGGGTAGGG	GAGGGAGGGT
	TTTTTGCAGT	ATTTAACTAA	GGTTCAAAGA	GTGCTATATA			TTTTTTTTT
	TTTTTTGGCA	GAGTGCTGCC	TCCTAGAAAT	TTCTCTTGGT	AACTTCCTTC	TCTGAAGCAC	AGATAAAGAA
	AACAATTACA		TTATGAGGGA	CACATTGGAG	GCCGATGAAG	CTTTTCAAGT	TCCAGCAGTG
• •		GGCA.GAACTG	ACATTGGAAA		GATGGAAATT	CAGTTGGAGA	GGACTGCCCT
10	TTTTAATGTC	TGGG GAGTCT	GCTCAGGGAG	AAATGACAAG	TCTGGCGGGG	ACAAGTATGG	GATTTGGTAA
	GACTTGGATC	AACTTGGGAT	ACAGGGTGGG	GGTCGGGAGT	GGAATCAATG	AATGATGCCA	GAGCAGATCA
	ACTAACAAGA	GGACCCTGAT	GAGCCCCAGG	CAGAGGCGTC	TCCCTTATGC	CCCACTCTGA	AGTGTTTGTT
	AGTAAACACC	AGAACGCCAT	TGTTGTTACT	GCTGAATTTT	ATTTTGGGCT	GTACATATTT	AGATGCTTAA
	GGTAAAAATG	ATAMAGCCCT	CAAGCCACTG	TGTGGGTTTG	GGTCCAAGTG	TTCCTTCTTG	CTGCCTCTCT
15	AACACGCCTG	GTTAAAATAA	TCCCTTTGGA	TGGTGCTGAG	AAGCACCTGA	ACCAAGTGGG	TCCCCAAATA
	ACAATGGCGT	GCA# GTGTCT	GGTTCCCAGA	AGTTGGTGAC	TAGGTAAGCA	GCTTCAGGGA	GAGGGGGCTG
	ATTCCCAGAC	AGTCGCCTGT	TCCTGCGGGG	ATGGGGCTGA	GGCTTGGGGA	ATGTGGGCAG	GAGGATATGC
	CATTTGATTC	TGTTGCACAC	GTTCTTTTCC	CTTCTTTCTG	TATGTCTGGT	CATTCTGCTA	TTCTGTCGTT
	CCTCACATAG	GTTGGACATT	GGCCGGCTGC	CAGCATAAGT	GCCAGTGTGA	TTTTGCTAGG	TGTGAGCTGA
20	GAAAGAGAGG	TGGAGGCTAA	GCAGGTGTGA	TGCTTCTCAG	AGGTGCTGAG	TTTTTGCCCT	TCTGAGCAGG
	GAATCTTTGC	TTATCCCTTT	GACCAAGGAT	CTTTGCTGCA	AAGGCTGGGT	ATCGGCTGTG	CTCAGCAAAG
	CGTCAACTCG	TGCAAGAACT	TAGCAGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT
	TTTTGTTCCT	CTGCTTCTCC	CGTTTGCCTC	CTTATCATGA	GATCTTTTTG	CTAAGCTGGC	AGAAAGATTG
	CATAGTCAGT	GCTTCCAGCT	CTGCTCCCAC	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT
25	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTTT
	TGCTGAGAGT	TCTC AGCTCT	GTACTTCCTC	TTGGCCCATC	TCACTTCCTG	AAACACCCCT	GAAGAGGGTT
	GCTTATCTTG	ATGG AACTCA	AAAAGCCAAA	AAGCTGCAGG	CAGAGGCGTT	GAGGACATCT	GTTTGGGGAA
	CTAAGAGCAG	CAGCACTTTC	AGATTCAGTC	CATATAGAGC	TGTCCTACAG	CATTCTGGAA	ACTTGAGGAT
	GTGCGGTGCA	TAA# GGGGCT	GGAAGTGACC	CACCTGTGAT	GAGCCCTTTC	TAAGGAGAAG	GGTTTCCAAG
30	AGATCACCCC	ACCAGAAAAG	GGTAGGAATG	AGCAAGTTGG	GAATTTTAGA	CTGTCACTGC	ACATGGACCT
	CTGGGAAGAC	GTC1'GGCGAG	AGCTAGGCCC	ACTGGCCCTA	CAGACGGATC	TTGCTGGCTC	ACCTGTCCCT
	GTGGAGGTTC	CCCTGGGAAG	GCAAGATGCC	CAACAACAGC	ACTGCTCTGT	CATTGGCCAA	TGTTACCTAC
	ATCACCATGG	AAATTTTCAT	TGGACTCTGC	GCCATAGTGG	GCAACGTGCT	GGTCATCTGC	GTGGTCAAGC
	TGAACCCCAG	CCTGCAGACC	ACCACCTTCT	ATTTCATTGT	CTCTCTAGCC	CTGGCTGACA	TTGCTGTTGG
35	GGTGCTGGTC	ATGC'CTTTGG	CCATTGTTGT	CAGCCTGGGC	ATCACAATCC	ACTTCTACAG	CTGCCTTTTT
	ATGACTTGCC	TACTGCTTAT	CTTTACCCAC	GCCTCCATCA	TGTCCTTGCT	GGCCATCGCT	GTGGACCGAT
	ACTTGCGGGT	CAAGCTTACC	GTCAGGTAGC	CTGCGGCGTG	GGGTGGGCAG	CAATTGAGGC	AGCTGGGAAA
	TGAGGCTACA	AAGCCAGAGC	CTGCTGAATT	TTATTTTGGA	CTGTACATAT	TTAGATGCTT	AAGGTAAAAA
	TGATAAAGCC	CTC#AGCCAC	TGTGTGGGTT	GGGTCCAAGT	GTTCCTTGCT	GCTGCCTCTC	TAACACGCCT
40	GGTTAAAATA	ATCCCTTTGG	ATGGTGCTGA	GAAGCACCTG	AACCAAGTGG	GTCCCCAAAT	AACTATGGCG
	TGCAAGTGTC	TGGTTCCCAG	AAGTTGGTGA	CTAGGTAAGC	GACTCAGGGA	GAGGGGCTGA	TTCCCAGACA
	GTCGCCTGTT	CCTGCTGGGA	TGGGGCTGAG	GCTTGGGGAA	TGTGGGCAGG	AGGATATGCC	ATTTGATTCT
	GTTGCACACG	TTCTTTTCCC	TTCTTTCTGT	ATGTCTGGTC	ATTCTGCTAT	TCTGTCGTTC	CTCACATAGG
	TTGGACATTG	GCCGGCTGCC	AGCATAAGTG	CCAGTGTGAT	TTTGCTAGGG	TGTGAGCTGA	GAAAGAGAGG
45	TGGAGGCTAA	GCAGGTGTGA	TGCTTCTCAG	AGGTGCTGAG	TTTTTGCCCT	TCTGAGCAGG	GAATCTTTGC
	TTATCCCTTT	GACC AAGGAT	CTTTGCTCCA	AAGGCTGGGT	ATCGGCTGTG	CTCAGCAAAG	CGTCAACTCG
	TGCAAGAACT	TAGC:AGGAAT	AGTTCTGGCT	AAGGTTAGGA	GGCTGCCACC	AAAGTCTCTT	TTTTGTTCCT
	CTGCTTCTCC	CGTTTGCCTC	CTTATCATGA	GATCTTTTTG	CTAAGCTGGC	AGAAAGATTG	CATAATCAGT
	GCTTCCAGCT	CCGCTCCCAC	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA
50	ATCTTGTCTC	GAGC CTTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTTT	TGCTGAGAGT
	TACTGAGCTC	TGTACTTCCT	CTTGGCCCAT	CTCACTTCCT	GAAACACCCC	TGAAGAGGGT	TGCTTATCTT
	GATGGAACTC	AAAA AGCCAA	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGGA	ACTAAGAGCA
					GCATTCTGGA		
					CTAAGGAGAA		
55					ACTGTCACTG		
					CTTGCTGGCT		
					CGAATTCGGG		
					TCCTACAGCA		
					GCCCTTTCTA		



ATCACCCCAC CAGAAAAGGG TAGGAATGAG CAAGTTGGGA ATTTTAGACT GTCACTGCAC ATGGACCTCT GGGAAGACGT CTGCCCGAGAG CTAGGCCCAC TGGCCCTACA GACGGATCTT GCTGGCTCAC CTGTCCCTGT GGAGGTTCCC CTGGGAAGGC AAGATGCCCA ACAACAGCAC TGCTCTGTCA TTGGCCAATG TTACCTACAT CACCATGGAA ATTITCATTG GACTCTGCGC CATAGTGGGC AACGTGCTGG TCATCTGCGT GGTCAAGCTG AACCCCAGCC TGCAGACCAC CACCTTCTAT TTCATTGTCT CTCTAGCCCT GGCTGACATT GCTGTTGGGG TGCTGGTCAT GCCTTTGCC ATTGTTGTCA GCCTGGGCAT CACAATCCAC TTCTACAGCT GCCTTTTTAT GACTTGCCTA CTGCTTATCT TTACCCACGC CTCCATCATG TCCTTGCTGG CCATCGCTGT GGACCGATAC TTGCGGGTCA AGCTTACCGT CAGATACAAG AGGGTCACCA CTCACAGAAG AATATGGCTG GCCCTGGGCC TTTGCTGGCT GGTGTCATTC CTGGTGGGAT TGACCCCCAT GTTTGGCTGG AACATGAAAC TGACCTCAGA GTACCACAGA AATCTCACCT TCCTTTCATG CCAATTTGTT TCCGTCATGA GGATGGACTA CATGGTATAC TTCAGCTTCC TCACCTGGAT TTTCATCCCC CTGGTTGTCA TGTGCGCCAT CTATCTTGAC ATCTTTTACA TCATTCGGAA CAAACTCAGT CTGAACTTAT CTAACTCCAA AGAGACAGGT GCATTTTATG GACGGGAGTT CAAGACGGCT AAGTCCTTGT TTCTGGTTCT TTTCTTGTTT GCTCTGTCAT GGCTGCCTTT ATCTCTCATC AACTGCATCA TCTACTTTAA TGGTGAGGTA CCACAGCTTG TGCTGTACAT GGGCATCCTG CTGTCCCATG CCAACTCCAT GATGAACCCT ATCGTCTATG CCTATAAAAT AAAGAAGTTC AAGGAAACCT ACCTTTTGAT CCTCAAAGCC TGTGTGGTCT GCCATCCCTC TGATTCTTTG GACACAAGCA TTGAGAAGAA TTCTGAGTAG TTATCCATCA GAGATGACTC TGTCTCATTG ACCTTCAGAT TCCCCATCAA CAAACACTTG AGGGCCTGTA TGCCTGGGCC AAGCGATTTT TACATCCTTG ATTACTTCCA CTGAGGTGGG AGCATCTCCA GTGCTCCCCA ATTATATCTC CCCCACTCCA CTACTCTCTT CCTCCACTTC ATTTTTCCTT TGTCCTTTCT CTCTAATTCA GTGTTTTGGA GGCCTGACTT GGGGACAACG TATTATTGAT ATTATTGTCT GTTTTCCTTC TTCCCAATAG AAGAATAAGT CATCGAGCCT GAAGGGTGCC TAGTTGACTT ACTGACAAAA GGCTCTAGTT GGGCTGAACA TGTGTGTGT GGTGACTCAT TTCCATGCCA TTGTGGAATT GAGCAGAGAA CCTGCTCTCG GAGGATGCCT AGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTTAAGG GGGACTTAAA CTGCTGAATT C -3' (FRAG. NO:1675) (SEQ. ID NO:3007) 5'- CGAATTCGGG GCACATCTGT TTGGGGAACT AAGAGCAGCA GCACTTTCAG ATTCAGTCCA TATAGAGCTG TCCTACAGCA TTCT/GGAAAC TTGAGGATGT GCGGTGCATA AACGGGCTGG AAGTGACCCA CCTGTGATGA GCCCTTTCTA AGGAGAAGGG TTTCCAAGAG ATCACCCCAC CAGAAAAGGG TAGGAATGAG CAAGTTGGGA ATTITAGACT GTCACTGCAC ATGGACCTCT GGGAAGACGT CTGGCGAGAG CTAGGCCCAC TGGCCCTACA GACGGATCTT GCTGGCTCAC CTGTCCCTGT GGAGGTTCCC CTGGGAAGGC AAGATGCCCA ACAACAGCAC TGCTCTGTCA TTGGCCAATG TTACCTACAT CACCATGGAA ATTTTCATTG GACTCTGCGC CATAGTGGGC AACGTGCTGG TCATCTGCGT GGTCAAGCTG AACCCCAGCC TGCAGACCAC CACCTTCTAT TTCATTGTCT CTCTAGCCCT GGCTGACATT GCTGTTGGGG TGCTGGTCAT GCCTTTGGCC ATTGTTGTCA GCCTGGGCAT CACAATCCAC TTCTACAGCT GCCTTTTTAT GACTTGCCTA CTGCTTATCT TTACCCACGC CTCCATCATG TCCTTGCTGG CCATGCTGT GGACCGATAC TTGCGGGTCA AGCTTACCGT CAGATACAAG AGGGTCACCA CTCACAGAAG AATATGGCTG GCCCTGGGCC TTTGCTGGCT GGTGTCATTC CTGGTGGGAT TGACCCCCAT GTTTGGCTGG AACATGAAAC TGACCTCAGA GTACCACAGA AATGTCACCT TCCTTTCATG CCAATTTGTT TCCGTCATGA GGATGGACTA CATGGTATAC TTCAGCTTCC TCACCTGGAT TTTCATCCCC CTGGTTGTCA TGTGCGCCAT CTATCTTGAC ATCTTTTACA TCATTCGGAA CAAACTCAGT CTGAACTTAT CTAACTCCAA AGAGACAGGT GCA'TTTATG GACGGGAGTT CAAGACGGCT AAGTCCTTGT TTCTGGTTCT TTTCTTGTTT GCTCTGTCAT GGCTGCCTTT ATCTCTCATC AACTGCATCA TCTACTTTAA TGGTGAGGTA CCACAGCTTG TGCTGTACAT GGGCATCCTG CTGTCCCATG CCAACTCCAT GATGAACCCT ATCGTCTATG CCTATAAAAT AAAGAAGTTC AAGGAAACCT ACCTTTTGAT CCTCAAAGCC TGTGTGGTCT GCCATCCCTC TGATTCTTTG GACACAAGCA TTGAGAAGAA TTCTGAGTAG TTATCCATCA GAGATGACTC TGTCTCATTG ACCTTCAGAT TCCCCATCAA CAAACACTTG AGGGCCTGTA TGCCTGGGCC AAGGGATTTT TACATCCTTG ATTACTTCCA CTGAGGTGGG AGCATCTCCA GTGCTCCCCA ATTATATCTC CCCCACTCCA CTACTCTCTT CCTCCACTTC ATTTTCCTT TGTCCTTTCT CTCTAATTCA GTGTTTTGGA GGCCTGACTT GGGGACAACG TATTATTGAT ATTATTGTCT GTTT CCTTC TTCCCAATAG AAGAATAAGT CATGGAGCCT GAAGGGTGCC TAGTTGACTT ACTGACAAAA GGCTCTAGTT GGGCTGAACA TGTGTGTGGT GGTGACTCAT TTCCATGCCA TTGTGGAATT GAGCAGAGAA CCTCCTCTG GAGGATGCCT AGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTTAAGG GGGACTTAAA CTGCTGAATT C -3' (FRAG. NO: ) (SEQ. ID NO:2439) 5'- CTGCTGAATT TTATTTTGGA CTGTACATAT TTAGATGCTT AAGGTAAAAA TGATAAAGCC CTCAAGCCAC TGTGTGGGTT GGGTCCAAGT GTTCCTTGCT GCTGCCTCTC TAACACGCCT GGTTAAAATA ATCCCTTTGG ATGGTGCTGA GAAGCACCTG AACCAAGTGG GTCCCCAAAT AACTATGGCG TGCAAGTGTC TGGTTCCCAG AAGTTGGTGA CTAGGTAAGC GACTCAGGGA GAGGGGCTGA TTCCCAGACA GTCGCCTGTT CCTGCTGGGA TGGGGCTGAG GCTTGGGGAA TGTGGGCAGG AGGATATGCC ATTTGATTCT GTTGCACACG TTCTTTTCCC TTCTTTCTGT ATGTCTGGTC ATTCTGCTAT TCTGTCGTTC CTCACATAGG TTGGACATTG GCCGGCTGCC AGCATAAGTG CCAGTGTGAT TTTGCTAGGG TGTGAGCTGA GAAAGAGGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTTGCCCT TCTGAGCAGG GAATCTTTGC TTATCCCTTT GACCAAGGAT CTTTGCTCCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG TGCAAGAACT TAGCAGGAAT



			GGCTGCCACC			CTGCTTCTCC	CGTTTGCCTC
	CTTATCATGA	GATCTTTTTG	CTAAGCTGGC			GCTTCCAGCT	CCGCTCCCAC
	CTGATCCTGC	ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT	CTGATACCCA	ATCTTGTCTC	GAGCCTTCTC
	TATGCCACTC	ATGC CTCCTC	TTCTGCTCTT	TCCATCTTTT	TGCTGAGAGT	TACTGAGCTC	TGTACTTCCT
5	CTTGGCCCAT	CTCACTTCCT	GAAACACCCC	TGAAGAGGGT	TGCTTATCTT	GATGGAACTC	AAAAAGCCAA
	AAAGCTGCAG	GCAGAGGCGT	TGAGGACATC	TGTTTGGGGA	ACTAAGAGCA	GCAGCACTTT	CAGATTCAGT
	CCATATAGAG	CTGTCCTACA	GCATTCTGGA	AACTTGAGGA	TGTGCGGTGC	ATAAAGGGGC	TGGAAGTGAC
	CCACCTGTGA	TGAGCCCTTT	CTAAGGAGAA	GGGTTTCCAA	GAGATCACCC	CACCAGAAAA	GGGTAGGAAT
	GAGCAAGTTG	GGAATTTTAG	ACTGTCACTG	CACATGGACC	TCTGGGAAGA	CGTCTGGCGA	GAGCTAGGCC
10	CACTGGCCCT	ACAGACGGAT	CTTGCTGGCT	CACCTGTCCC	TGTGGAGGTT	CCCCTGGGAA	GGCAAGATGC
	CCAACAACAG	CACTCCTCTG -3	' (FRAG. NO:_) (	SEQ. ID NO:2438)	1		
	5'- GAATTCCC	AG ATGGGCAG	AG GTGGCTGG	GC TGGTGACCC	T AAGTGTGTC	T CCTGCCTTTA	TTCTCTCTAG
	TGGGTTATTC	TTTC ATGTGG	TATCTTGCCT	ACAGCATGCT	GTGTTTGGAC	ACAAACCCCT	TTCCTTGGTT
	TCTCTGACCC	AGCT GAGATG	GACTGATTCC	AAAAGAACTC	ACCTATGTAC	TGGGGTAGGG	GAGGGAGGGT
15	TTTTTGCAGT	ATTT AACTAA	GGTTCAAAGA	GTGCTATATA	GTGAGAAAGG	CTTCTTTTT	TTTTTTTTT
	TTTTTTGGCA	GAGTGCTGCC	TCCTAGAAAT	TTCTCTTGGT	AACTTCCTTC	TCTGAAGCAC	AGATAAAGAA
	AACAATTACA	GTAC AAACAT	TTATGAGGGA	CACATTGGAG	GCCGATGAAG	CTTTTCAAGT	TCCAGCAGTG
			ACATTGGAAA				
	TTTTAATGTC		GCTCAGGGAG				
20			ACAGGGTGGG				
		GGACCCTGAT			TCCCTTATGC		AGTGTTTGTT
	AGTAAACACC			GCTGAATTTT	ATTTTGGGCT	GTACATATTT	AGATGCTTAA
		ATAMAGCCCT	CAAGCCACTG		GGTCCAAGTG		CTGCCTCTCT
		GTTAAAATAA			AAGCACCTGA		TCCCCAAATA
25			GGTTCCCAGA			GCTTCAGGGA	
23			TCCTGCGGGG				
	CATTTGATTC	TGTTGCACAC	GTTCTTTTCC	CTTCTTTCTG	TATGTCTGGT	CATTCTGCTA	TTCTGTCGTT
			GGCCGGCTGC			TTTTGCTAGG	TGTGAGCTGA
			GCAGGTGTGA			TTTTTGCTAGG	TCTGAGCAGG
30	GAATCTTTGC		GACCAAGGAT	CTTTGCTGCA		ATCGGCTGTG	CTCAGCAAAG
50		TGCAAGAACT			AAGGTTAGGA		AAAGTCTCTT
	TTTTGTTCCT	CTGCTTCTCC			GATCTTTTTG	CTAAGCTGGC	AGAAAGATTG
	CATAGTCAGT	GCTTCCAGCT	CTGCTCCCAC		ACTGTCCTCT	GGTCCCTGAA	TGAATGAACT
	CTGATACCCA	ATC1TGTCTC	GAGCCTTCTC	TATGCCACTC	ATGGCTCCTC	TTCTGCTCTT	TCCATCTTTT
35	TGCTGAGAGT	TCTC AGCTCT	GTACTTCCTC	TTGGCCCATC		AAACACCCCT	GAAGAGGGTT
33			AAAAGCCAAA			GAGGACATCT	GTTTGGGGAA
		CAGCACTTTC		CATATAGAGC		CATTCTGGAA	
	GTGCGGTGCA	TAA# GGGGCT ACC#GAAAAG					
40					GAATTTTAGA		ACATGGACCT
40			AGCTAGGCCC		CAGACGGATC		
			GCAAGATGCC				
			TGGACTCTGC				
			ACCACCTTCT				
15			CCATTGTTGT				
45			CTTTACCCAC				
			GTCAGGTAGC			CAATTGAGGC	AGCTGGGAAA
			3' (FRAG. NO:_) (	_			
			T TTGGGGAACT				
50			TTGAGGATGT				
50			TTTCCAAGAG				
			ATGGACCTCT				
			CTGTCCCTGT				
			TTACCTACAT				
			GGTCAAGCTG				
55			GCTGTTGGGG				
			GCCTTTTTAT				
			GGACCGATAC				
			GCCCTGGGCC				
	GTTTGGCTGG	AACA.TGAAAC	TGACCTCAGA	GTACCACAGA	AATGTCACCT	TCCTTTCATG	CCAATTTGTT

40



TCCGTCATGA GGAIGGACTA CATGGTATAC TTCAGCTTCC TCACCTGGAT TTTCATCCCC CTGGTTGTCA TGTGCGCCAT CTATCTTGAC ATCTTTTACA TCATTCGGAA CAAACTCAGT CTGAACTTAT CTAACTCCAA AGAGACAGGT GCA'TTTATG GACGGGAGTT CAAGACGGCT AAGTCCTTGT TTCTGGTTCT TTTCTTGTTT GCTCTGTCAT GGCTGCCTTT ATCTCTCATC AACTGCATCA TCTACTTTAA TGGTGAGGTA CCACAGCTTG TGCTGTACAT GGGCATCCTG CTGTCCCATG CCAACTCCAT GATGAACCCT ATCGTCTATG CCTATAAAAT AAAGAAGTTC AAGGAAACCT ACCTTTTGAT CCTCAAAGCC TGTGTGGTCT GCCATCCCTC TGATTCTTTG GACACAAGCA TTG&GAAGAA TTCTGAGTAG TTATCCATCA GAGATGACTC TGTCTCATTG ACCTTCAGAT TCCCCATCAA CAAACACTTG AGGGCCTGTA TGCCTGGGCC AAGGGATTTT TACATCCTTG ATTACTTCCA CTGAGGTGGG AGCATCTCCA GTGCTCCCCA ATTATATCTC CCCCACTCCA CTACTCTCTT CCTCCACTTC ATTITICCTT TGTC/TTTCT CTCTAATTCA GTGTTTTGGA GGCCTGACTT GGGGACAACG TATTATTGAT ATTATTGTCT GTTT CCTTC TTCCCAATAG AAGAATAAGT CATGGAGCCT GAAGGGTGCC TAGTTGACTT ACTGACAAAA GGCTCTAGTT GGGCTGAACA TGTGTGTGGT GGTGACTCAT TTCCATGCCA TTGTGGAATT GAGCAGAGAA CCTCCTCCG GAGGATGCCT AGGAGATGTT GGGAACAGAA GAAATAAACT GAGTTTAAGG GGGACTTAAA CTGCTGAATT C -3' (FRAG. NO:_) (SEQ. ID NO:2427) 5'-TTCCCAG ATGGGCAGAG GTGGCTGGGC TGGTGACCCT AAGTGTGTCT CCTGCCTTTA TTCTCTCTAG TGGGTTATTC TTTCATGTGG TATCTTGCCT ACAGCATGCT GTGTTTGGAC ACAAACCCCT TTCCTTGGTT TCTCTGACCC AGCT3AGATG GACTGATTCC AAAAGAACTC ACCTATGTAC TGGGGTAGGG GAGGGAGGGT TTTTTGCAGT ATTTAACTAA GGTTCAAAGA GTGCTATATA GTGAGAAAGG CTTCTTTTTT TTTTTTTTT TTTTTTGGCA GAGTGCTGCC TCCTAGAAAT TTCTCTTGGT AACTTCCTTC TCTGAAGCAC AGATAAAGAA AACAATTACA GTACAAACAT TTATGAGGGA CACATTGGAG GCCGATGAAG CTTTTCAAGT TCCAGCAGTG CAGGGATGTG GGCAGAACTG ACATTGGAAA ATACTAGAAT GATGGAAATT CAGTTGGAGA GGACTGCCCT TTTTAATGTC TGGGGAGTCT GCTCAGGGAG AAATGACAAG TCTGGCGGGG ACAAGTATGG GATTTGGTAA GACTTGGATC AACTTGGGAT ACAGGGTGGG GGTCGGGAGT GGAATCAATG AATGATGCCA GAGCAGATCA ACTAACAAGA GGACCCTGAT GAGCCCCAGG CAGAGGCGTC TCCCTTATGC CCCACTCTGA AGTGTTTGTT AGTAAACACC AGAACGCCAT TGTTGTTACT GCTGAATTTT ATTTTGGGCT GTACATATTT AGATGCTTAA GGTAAAAATG ATAAAGCCCT CAAGCCACTG TGTGGGTTTTG GGTCCAAGTG TTCCTTCTTG CTGCCTCTCT AACACGCCTG GTTAAAATAA TCCCTTTGGA TGGTGCTGAG AAGCACCTGA ACCAAGTGGG TCCCCAAATA ACAATGGCGT GCAAGTGTCT GGTTCCCAGA AGTTGGTGAC TAGGTAAGCA GCTTCAGGGA GAGGGGGCTG ATTCCCAGAC AGTCGCCTGT TCCTGCGGGG ATGGGGCTGA GGCTTGGGGA ATGTGGGCAG GAGGATATGC CATTTGATTC TGTTGCACAC GTTCTTTTCC CTTCTTTCTG TATGTCTGGT CATTCTGCTA TTCTGTCGTT CCTCACATAG GTTGGACATT GGCCGGCTGC CAGCATAAGT GCCAGTGTGA TTTTGCTAGG TGTGAGCTGA GAAAGAGAGG TGGAGGCTAA GCAGGTGTGA TGCTTCTCAG AGGTGCTGAG TTTTTGCCCT TCTGAGCAGG GAATCTTTGC TTATCCTTT GACCAAGGAT CTTTGCTGCA AAGGCTGGGT ATCGGCTGTG CTCAGCAAAG CGTCAACTCG TGCAAGAACT TAGCAGGAAT AGTTCTGGCT AAGGTTAGGA GGCTGCCACC AAAGTCTCTT TTTTGTTCCT CTGCTCTCC CGTTTGCCTC CTTATCATGA GATCTTTTTG CTAAGCTGGC AGAAAGATTG CATAGTCAGT GCTTCCAGCT CTGCTCCCAC CTGATCCTGC ACTGTCCTCT GGTCCCTGAA TGAATGAACT CTGATACCCA ATCITGTCTC GAGCCTTCTC TATGCCACTC ATGGCTCCTC TTCTGCTCTT TCCATCTTTT TGCTGAGAGT TCTGAGCTCT GTACTTCCTC TTGGCCCATC TCACTTCCTG AAACACCCCT GAAGAGGGTT GCTTATCTTG ATGGAACTCA AAAAGCCAAA AAGCTGCAGG CAGAGGCGTT GAGGACATCT GTTTGGGGAA CTAAGAGCAG CAGCACTTTC AGATTCAGTC CATATAGAGC TGTCCTACAG CATTCTGGAA ACTTGAGGAT GTGCGGTGCA TAAAGGGGCT GGAAGTGACC CACCTGTGAT GAGCCCTTTC TAAGGAGAAG GGTTTCCAAG AGATCACCCC ACCAGAAAAG GGTAGGAATG AGCAAGTTGG GAATTTTAGA CTGTCACTGC ACATGGACCT CTGGGAAGAC GTCTGGCGAG GCTAGGCCC ACTGGCCCTA CAGACGGATC TTGCTGGCTC ACCTGTCCCT GTGGAGGTTC CCTCGGAAG GCAAGATGCC CAACAACAGC ACTGCTCTGT CATTGGCCAA TGTTACCTAC TCACCATGG AAATTTCAT TGGACTCTGC GCCATAGTGG GCAACGTGCT GGTCATCTGC GTGGTCAAGC TGAACCCCAG CCTGCAGACC ACCACCTTCT ATTTCATTGT CTCTCTAGCC TGGCTGACA TTGCTGTTGG
GGTGCTGGTC ATGCCTTTGG CCATTGTTGT CAGCCTGGGC TCACAATCC ACTTCTACAG CTGCCTTTTT
ATGACTTGCC TACTGCTTAT CTTTACCCAC CCTCCATCA TGTCCTTGCT GGCCATCGCT GTGGACCGAT ACTTGCGGGT CAAGCTTACC GTCAGGTAGC CTGCGGCGTG GGGTGGGCAG CAATTGAGGC AGCTGGGAAA TGAGGCTACA AGCCAGAGC-3' (FRAG. NO: ) (SEQ. ID NO:2426) 5'-GGGCAATTTG TT/-GTTATCC GCCGCCACCA AGACGCGGCA CGGCGCCTGG ACCGGAGGGG CCCCGCGCGG GCGCGAACTT TGGGCTCGGG CGAGTGGGTG GTGCTCCGCC CAGCCCGAGA CGGGCGGGCG CGCGGGCCAA TGGGTGCCGC CTCTTGGCCG CGGGGGGCCC CGACCCGTGG GTCCCGGCCA CCAGCGCCCC AGCCCCGAGG CTCAGAAGCG GCAGGGGGG GCGCGGTCCG GGCGCTATGG CCATGCCCGG CGGGTCTCAC GCGGCTGCCC CTCGCCCGGC GCGCCTTCGG TAGGGGGCGC CCGGGGCCCA GCTGGCCCGG CCATGCTGCT GGAGACACAG GACGCGCTGT ACGTGGCGCT GGAGCTGGTC ATCGCCGCGC TTTCGGTGGC GGGCAACGTG CTGGTGTGCG CCGCGGTGGG CACGGCGAAC ACTCTGCAGA CGCCCACCAA CTACTTCCTG GTGTCCCTGG CTGCGGCCGA CGTGGCCGTG GGGCTCTTCG CCATCCCCTT TGCCATCACC ATCAGCCTGG GCTTCTGCAC TGACTTCTAC GGCTGCCTCT TCCTCGCCTG CTTCGTGCTG GTGCTCACGC AGAGCTCCAT CTTCAGCCTT CTGGCCGTGG



```
CAGTCGACAG ATACCTGGCC ATCTGTGTCC CGCTCAGGTA TAAAAGTTTG GTCACGGGGA CCCGAGCAAG
    AGGGGTCATT GCTCTCTCT GGGTCCTTGC CTTTGGCATC GGATTGACTC CATTCCTGGG GTGGAACAGT
    AAAGACAGTG CCAC'CAACAA CTGCACAGAA CCCTGGGATG GAACCACGAA TGAAAGCTGC TGCCTTGTGA
    AGTGTCTCTT TGAGAATGTG GTCCCCATGA GCTACATGGT ATATTTCAAT TTCTTTGGGT GTGTTCTGCC
    CCCACTGCTT ATAATGCTGG TGATCTACAT TAAGATCTTC
                                                   CTGGTGGCCT GCAGGCAGCT TCAGCGCACT
    GAGCTGATGG ACCACTCGAG GACCACCCTC CAGCGGGAGA TCCATGCAGC CAAGTCACTG GCCATGATTG
    TGGGGATTTT TGCCCTGTGC TGGTTACCTG TGCATGCTGT TAACTGTGTC ACTCTTTTCC AGCCAGCTCA
    GGGTAAAAAT AAGCCCAAGT GGGCAATGAA TATGGCCATT CTTCTGTCAC ATGCCAATTC AGTTGTCAAT
    CCCATTGTCT ATGCTTACCG GAACCGAGAC TTCCGCTACA CTTTTCACAA AATTATCTCC AGGTATCTTC
    TCTGCCAAGC AGATGTCAAG AGTGGGAATG GTCAGGCTGG GGTACAGCCT GCTCTCGGTG TGGGCCTATG
    ATCTAGGCTC TCGCCTCTTC CAGGAGAAGA TACAAATCCA CAAGAAACAA AGAGGACACG GCTGGTTTTC
    ATTGTGAAAG ATACCTACAC CTCACAAGGA AATGGACTGC CTCTCTTGAG CACTTCCCTG GAGCTACCAC
    GTATCTAGCT AATATGTATG TGTCAGTAGT AGGCTCCAAG GATTGACAAA TATATTTATG ATCTATTCAG
    CTGCTTTTAC TGTGTGGATT ATGCCAACAG CTTGAATGGA TTCTAACAGA CTCTTTTGTT TTTAAAAGTC
15
    TGCCTTGTTT ATGGTGGAAA ATTACTGAAA CTATTTTACT GTGAAACAGT GTGAACTATT ATAATGCAAA
    TACTTTTTAA CTTAGAGGCA ATGGAAAAAT AAAAGTTGAC TGTACTAAAA ATG-3'(FRAG. NO: )(SEQ.ID NO:2425)
    5'-GBG CB TGC-3' (FRAG. NO:1676) (SEO. ID NO:1691)
    5'-TTG TTG GGC-3' (J'RAG. NO:1677) (SEQ. ID NO:1692)
    5'-TGC CTT CCC BGG 3-3' (FRAG. NO:1678) (SEO. ID NO:1693)
    5'-GTT GTT GGG CAT CTT GCC-3' (FRAG. NO:1679) (SEQ ID NO:3)
    5'-GTG GGC CTA GCT CTC GCC-3' (GRAG. NO:1680) (SEQ ID NO:5)
```

- - 5'-ACA GAG CA TGC TGT TGT TGG GCA TCT TGC CTT CCC AGG G-3' (FRAG 982) (SEO. ID NO: 992) 5'-BCB GBG CB TGC TIJT TGT TGG GCB TCT TGC CTT CCC BGG G-3' (FRAG 983) (SEQ. ID NO: 993)
  - 5'-CCC TTT TCT GGT (GGG GTG-3' (FRAG 984) (SEQ. ID NO: 994)
- 5'-GTG CTG TTG TTG 3GC-3' (FRAG 985) (SEO. ID NO: 995)
  - 5'-TTT CTT CTG TTC ('C-3' (FRAG 986) (SEO. ID NO: 996) 5'-CCC TTT TCT GGT (3GG GTG-3' (FRAG 987) (SEQ. ID NO: 997)
  - 5'-GTG CTG TTG TTG 3GC-3' (FRAG 988) (SEQ. ID NO: 998)
  - 5'-TTT CTT CTG TTC ('C-3' (FRAG 989) (SEQ. ID NO: 999)

# Human IgE Recept or β Nucleic Acid and Antisense Oligonucleotide Fragments

TTC ATT AAC CGA GOT GT BTT TGC TCT CCT BTT BCT TTC TGT GTC CBT TTT TTC BTT BBC CGB GCT GT-3' (FRAG. NO:1681) (SE(). ID NO:1694)

- 5'-CCC CTG GG-3' (FRAG. NO:1682) (SEQ. ID NO:1695)
- 5'-GCTCTCCTBTT-3' (I'RAG. NO:1683) (SEQ. ID NO:1696)
  - 5'-CBTTBBCCGBGCTG-3' (FRAG. NO:1684) (SEQ. ID NO:1697)
  - 5'-TTT CCC CTG GGT CTT CC-3' (FRAG 990) (SEQ. ID NO: 1000)
  - 5'-CTC CTG CTC TTT 1'TT C-3' (FRAG 991) (SEQ. ID NO: 1001)
  - ATTTGCTCTCTATTACTTTCTGTGTCCATTTTTTCATTAACCGAGCTGT (FRAG 992) (SEQ. ID NO: 1002)
- 40 BTTTGCTCTCTBTTBCTTTCTGTGTCCBTTTTTTCBTTBBCCGBGCTGT (FRAG 993) (SEO. ID NO: 1003)

#### Human Fc-E Receptor CD23 Antigen (IgE Receptor) Nucleic Acid and Antisense Oligonucleotide Fragments

- C GGG TCT TGC TCT GGG CCT GGC TGT GGC CGT GGT TGG GGG TCT TC GCT GCC TCC GTT TGG GTG GC TCT CTG AAT ATT GAC CIT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA TCT CTG BBT BTT GBC CTT CCT CCB TGG CGG TCC TC C TTG GBT TCT CCC GB-3'(FRAG 1685)(SEO.ID NO:1698)
  - 5'-GT CCT CCT-3' (FRAG 1686) (SEQ. ID NO: 1699)
  - 5'-TGT GTC TGT CCT CC-3' (FRAG 1687) (SEQ. ID NO: 1700)
- 5'-GTG GCC CTG GC-3' (FRAG 1688) (SEQ. ID NO: 1701)
  - 5'-CGT GGT TGG GG-3' (FRAG 1689) (SEQ. ID NO: 1702)
  - 5'-TCT CTG BBT BTT (GBC C-3' (FRAG1690) (SEQ. ID NO:1703)
  - 5'-GCC TGT GTC TGT CCT CCT-3' (FRAG 994) (SEQ. ID NO: 1004)
  - 5'-GCT TCG TTC CTC ''CG TTC-3' (FRAG 995) (SEQ. ID NO:1005)
- 5'-CTG CTT GGT GCC CTT GCC G-3' (FRAG 996) (SEQ. ID NO: 1006)
  - 5'-GTC CTG CTC CTG GCT GTG G-3' (FRAG 997) (SEQ. ID NO: 1007)
  - 5'-GTC GTG GCC CTG GCT CGG GCT GGT GGG CTC CCC TGG-3' (FRAG 998) (SEQ. ID NO: 1008)
  - 5'-CCT TCG CTG GCT (GGC GGC GTG C-3' (FRAG 999) (SEQ. ID NO: 1009)



5'-GGG TCT TGC TCT (GGG CCT GGC TGT-3' (FRAG 1000) (SEO. ID NO: 1010)

5'-GGC CGT GGT TGG GGG TCT TC-3' (FRAG 1001) (SEQ. ID NO: 1011)

5'-GCT GCC TCC GTT FGG GTG GC (FRAG 1002) (SEQ. ID NO: 1012)

5'-TCT CTG AAT ATT 'JAC CTT CCT CCA TGG CGG TCC TGC TTG GAT TCT CCC GA (FRAG 1003) (SEQ.ID NO:1013)

5'-TCT CTG BBT BTT (iBC CTT CCT CCB TGG CGG TCC TGC TTG GBT TCT CCC GB (FRAG 1004) (SEQ.ID NO:1014)

## Human IgE Recept or α Subunit Nucleic Acid and Antisense Oligonucleotide Fragments

5'- GCC TTT CCT GGT TCT CTT GTT GTT TTT GGG GTT TGG CTT ACA GTA GAG TAG GGG ATT CCA TGG CAG GAG CCA TCT TCT TC'A TGG ACT CC TTC AAG GAG ACC TTA GGT TTC TGA GGG ACT GCT AAC ACG CCA TCT GGA GC BCB GTB GEG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCT TCB TGG BCT CC TTC BBG GBG BCC TTB GGT TTC TGB GC G BCT GCT BBC BCG CCB TCT GGB GC GTT GTT TTT GGG GTT TGG CTT GCC TTT CCT GGT TCT CTT BCB GTB GBG TBG GGG BTT CCB TGG CBG GBG CCB TCT TCT TCB TGG BCT CC TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG. NO: 1691) (SEQ. ID NO:1704)
5'- TGG BCT CC -3' (FRAG. NO: 1692) (SEQ. ID NO:1705)

5'-CCB TCT GGB-3' (I'RAG. NO: 1693) (SEQ. ID NO:1706)

- 15 5'-CT GCT BBC BCG-3' (FRAG. NO: 1694) (SEQ. ID NO:1707)
  - 5'-GTT TTT GGG GTT 'TG-3' (FRAG. NO: 1695) (SEQ. ID NO:1708)
  - 5'-GCC TTT CCT GGT 'I'CT CTT GTT GTT TTT GGG GTT TGG CTT-3' (FRAG. NO:1005) (SEQ. ID NO:1015)
  - 5'-ACAGTAGAGTAGGGGAGTCCATGGCAGGAGCCATCTTCTTCATGGACTCC-3'(FRAG.NO:1006)(SEQ.ID NO:1016)
  - 5'-TTC AAG GAG ACC TTA GGT TTC TGA GGG ACT GCT AAC ACG CCA TCT GGA GC-3' (FRAG. NO:1007) (SEQ.
- 20 ID NO:1017)
  - 5'-BCB GTB GBG TBG '3GG BTT CCB TGG CBG GBG CCB TCT TCT TCB TGG BCT CC TTC BBG GBG BCC TTB GGT TTC TGB GGG-3' (FRAG. NO:1008) (SEQ. ID NO:1018)
  - 5'-BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG. NO:1009) (SEQ. ID NO:1019)
  - 5'-GTT GTT TTT GGG GTT TGG CTT-3' (FRAG. NO:1010) (SEQ. ID NO:1020)
- 25 5'-GCC TTT CCT GGT 'CT CTT-3' (FRAG. NO:1011) (SEQ. ID NO:1021)
  - 5'-BCBGTBGBGTBGGGGBTTCCBTGGCBGGBGCCBTCTTCTTCBTGGBCTCC-3'(FRAG.NO:1012) (SEQ.ID NO:1022)
    5'-TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC-3' (FRAG.NO:1013) (SEQ.ID NO:1023)

#### Human IgE Recept or (Fc Epsilon R) Nucleic Acid and Antisense Oligonucleotide Fragments

- 35 5'-TCG TTC CTC TCG-3' (FRAG: 1697) (SEQ. ID NO:3001)
  - 5'-BGB BCG BGB C-3' (FRAG: 1698) (SEQ. ID NO:1711)
  - 5'-TGB BTB TTGB-3' (FRAG: 1699) (SEQ. ID NO:1712)
  - 5'-GCC TGT GTC TGT CCT CCT-3' (FRAG. NO:1014) (SEQ. ID NO:1024)
  - 5'-GCT TCG TTC CTC TCG TTC-3' (FRAG. NO:1015)(SEQ. ID NO:1025)
- 40 5'-CTG CTT GGT GCC CTT GCC G-3' (FRAG. NO:1016)(SEQ. ID NO:1026)
  - 5'-GTC CTG CTC CTG GGG GCT GTG G-3' (FRAG. NO:1017)(SEQ. ID NO:1027)
  - 5'-GTC CTC GCC CTG GCT CCG GCT GGT GGG CTC CCC TGG-3' (FRAG. NO:1018) (SEQ. ID NO:1028)
  - 5'-CCT TCG CTG GCT '3GC GGC GTG C-3' (FRAG. NO:1019) (SEQ. ID NO:1029)
  - 5'-CCC BGB BCG BGB CCC GGB CCG BCB-3' (FRAG. NO:1020) (SEQ. ID NO:1030)
- 45 5'-GGC CGT GGT TGG GGG TCT TC-3' (FRAG. NO:1021) (SEQ. ID NO:1031)
  - 5'-GCT GCC TCC GTT 'IGG GTG GC-3' (FRAG. NO:1022) (SEQ. ID NO:1032)
  - 5'-GBT CTC TGB BTB "TGB CCT TCC BTG GCG GTC CTG CTT GGB-3" (FRAG. NO:1023) (SEQ. ID NO:1033)

#### Human High Affinity IgE Receptor Oligonucleotide Fragments

5'-AACAAGAAAA GCGTTGGTAG CTCTGGTGAA TCCCAAAAGA ATGTGGCAGT TGCTAGCCAT GCTCCTGAAT

ATGTATAAAC AGTACATCAT ATGACTAAGA GTTTGACTTA GGGGTTAGAT TTTATGTGTT TGAACCCCAA
ATTAGTTATT TAATAGTTGG CACCCCAAAA CAAGTTACTT AACCTCACTA AGGTTCAGTT TTCCTGTTTA
TAAAATGTAG ATACTGATAG TATGTACTTT ATAGGATAAT TGTGAAAAAT AAATGAAATA TCAGATTTAT
TTAGGATAAC ACCTGGCATA TGTTTGGTAT TCAGAATTAG TTGCTGCTGT TTTATTCTGC TCTCCCTTGC
ATCCCACTTT TCTAAGTTGT AAACTAAATA GTTGTACACA GATTGACAGA TTAAGAAAGG CTTGTGATTG

55 TGCTAGACCT ATGCCTATGC CTCTGTCTCA CCAGATTCCA GGTGTATATG TGGAGGTGGG ATAGGGAGTG
GAGTAAGTGG GTAAATATA AATTGCCCAG TTGGGCACCA TCCTGAATAT TATCTCTAAA GAAAGAAGCA
AAACCAGGCA CAGCTGATGG GTTAACCAGA TATGATACAG AAAACATTTC CTTCTGCTTT TTGGTTTTAA
GCCTATATTT GAAGCCTTAG ATCTCTCCAG CACAGTAAGC ACCAGGAGTC CATGAAGAAG ATG
TGGAATGACT GGTTTCATC AATAGACTTA ATTCAGCAGT CTGTGGGGAA GAGCAAGGTA

60 GTTCCTCAAG TGCTTCAGAT GTGAAGTGGG TTTAAATATA CTGTCCCTGT CTTCTTCAGA GTTTTGGTAA



	ACATA A A ATA	CCACACTCAT	TT	TOTTO A A A	TCACAACCCA	CTATACACAT	TA ATTA CA COTT
				TCTTTGCAAA			
				TCCTGGAAGA			
				GCCCCTGCTG			
_				GCTAGGAAGT			
5	CCATAAGTAA			TGTGTTCTGA			
	GTCTCTGAAA	ATGTTTCCAA	TTTCGCTGGT			AATCAGATGA	
	ATTTATGCAC	TAACIGATCA		AAACAAGAAA			
	AATTTGGCAG	TTGCTAGCCA		TATGTATAAA		TATGACTAAG	AGTTTGACTT
	AGGGGTTAGA	TTTTATGTGT	TTGAACCCCA	AATTAGTTAT	TTAATAGTTG	GCACCCCAAA	ACAAGTTACT
10	TAACCTCACT	AAGA TTCAGT	TTTCCTGTTT	ATAAAATGTA		GTATGTACTT	TATAGGATTA
	TTGTGAAAAA	TAAA.TGAAAT	ATCAGATTTA	TTTAGGATAA	CACCTGGCAT	ATGTTTGGTA	TTCAGTAATT
	AGTTGCTGCT	GTTT TATTCT		GCATCCCACT	TTTCTAAGTT	GTAAACTAAA	TAGTTGTACA
	CAGATTGACA	GATI AAGAAA	GGCTTGTGAT	TGTGCTAGAC	CTATGCCTCT	CTCTCACCAG	ATTCCAGGTG
	TATATGTGGA	GGTGGGATAG	GGAGTGGAGT	AAGTGGGTAA	ATATTAAATT	GCCCAGTTGG	GCACCATCCT
15	GAATATTATC	TCTA.\AGAAA	GAAGCAAAAC	CAGGCACAGC	TGATGGGTTA	ACCAGATATG	ATACAGAAAA
	CATTTCCTTC	TGCTTTTTGG	TTTTAAGCCT	ATATTTGAAG	CCTTAGATCT	CTCCAGCACA	GTAAGCACCA
	GGAGTCCATG	AAGAAGATGG	CTCCTGCCAT	GGAATCCCCT	ACTCTACTGT	GTGTAGCCTT	ACTGTTCTTC
	GGTAAGTAGA	<b>GATT CAATTA</b>	CCCCTCCCAG	GGAGGCCCAA	ATGAATTTGG	GGAGCAGCTG	GGGTAGGAAC
	CTTTACTGTG	GGTGGTGACT	TTTTCTAGGA	CATGTGCAAA	CTATTGGGCA	TTTCCCAGGG	ACTCTGTAGT
20	GGAGCCAAGC	TAGAAAGCAG	AGGCAAGTGG	GCTGAGCAAC	ACCTAAGGAG	GAAGCCAGAC	TGAAAGCTTG
	GTTCCTTGCA	TTTGCTCTGG			TCCTACCAAG		TAGAGGAGAG
	AAAGAAGCTC	TTTCTTCCCC	TGATTCTCAT	TCCTGAAAAG	ACGGTTGGTC	CTTAAAATTC	CATGGATGTA
	GATCTTATCC	CCACACCCAG	ATTCTAGTCC	TCTGGAGATA	AAGAAGACTG	CTGGACACTA	
	TCTGGACTTT	TGCAGCTCCA	GATGGCGTGT	TAGCAGGTGA		CTTGTTCCCT	TGGTGTATCA
25	ACATGTCTGG	GCATTGCTTT	CCTCTCACTA	TTTTCTTCGT	CCCATCACTT	CTGCTTTCTA	ATGAGCATGA
	ATCTGTTCCT	TGGCCAGACT	ACTTTCCCTC	TCCACCTTGC	CTTGTCTTTC	TTTTTTTCCC	TGATTCATTG
	CATTCTCTCA	AGTCATTCTC	TCCTCTGTTT	TAGTCAATAA	CCATGTCTGT	TGCACATATA	CATGTCTCAT
	TCTCTCTCCT	AGACACTTTG	GCATGATCTC	GCTCAATAAT	TACATTATTA	TTATTATTGC	CATTTTATAA
	TTGAGGATGC	TGAAACTCAG		GTGGTTACAT			
30	CTTGGATCTA	AGTC CAGTTC	TCTTCTGACT	ATATCACCCT	TTTGTTATCA	CCATGTATCT	ACTTCTTTGG
20	TCTCTGTTCA	AATTIGCACT	ACATCCCCTT	GTTCCAGGAA	GCCATTCAAG	ACTGACTTTC	TTAGTGCCTC
	TCACTACTTT	CTGGAACTGA	CATATGTTTT	TCACTCTGTA	TATACTTACA	ATTAAATAGT	CATAAATATT
	CAGAGCTTGG	AGAAACCTTA		AGTCCAGTAA		CCATAATTCA	CTCATTCATT
	CACATAATAA	ATATTTAATG	TAACAATGGT	TGAACATGGC	AGACAGTGTT	TCTACCTCAA	
35	AGTCCTCATT	TACAGATACT	GAATTGAAAT	TAACAGAAGT	AGAGTGAGTC	AGCTCAAATC	ACATAGTGAA
22	TTGGTTTCTT	TGTTTTTAAA	TCTCCTGCAT	ATGTGTCCTG	TCTTTCTCCC	TGTGTTGGGC	GTTCCCTGGG
						ACCAACAGAA	
	TTGACCACTG	ATTCTCAGAA	TATTGCTTCG	TTTGTACTTT	TAAGCCTAGA	CAGTTTTCAA	TGACTTTTTT
	TCTCTCTACA	TGTCITTTCA	TATTTTTATC		CCCTCAGAAA	CCTAAGGTCT	CCTTGAACCC
40	TCCATGGAAT		AAGGAGAGAA		ACATGTAATG		CTTTGAAGTC
10	AGTTCCACCA			CTTTCAGAAG			ATTGTGAATG
				GTCAGCACCA			
				TGGAAATACA			
				TAGGACACCA			
45				CGCCTGTAAT			
73				GCTAACATGG			
				CACCTGTAGT			
				GTGAGCTGAG			
				AATAAATAAA			
50	CCTTCCCTTT		TATGCCTTCT		TAGTCATCTC		
50				AGGTATATAT			
				GGATCAAAAG			
				CTCTTCGTTA			
55				ATGCTTGTTT			
))				TTAGCAAATG			
				TTTTCTCTTG			
				GAATAGCTTC			
				TTATTATGCT			
60				TAACCATAGA			
60				TCCTAAGTAT			
				TCCCTGACTT			
	CATTAAATAA	AGAATTACAT	AAGTAATTAA	TTTAAATTAT	ACATGITTIG	AAGAAGTTTT	TTTTTGACAA



	CYT A TO A A TYT A A	CA CT: A CA A CT	GGG L LOTTEG	m.m. 1.00m. 1	a.a.aa.a.		ama am
		CACTAGAACT			GAGAGGACAA		CTCCTAAGCT
		AGAAAGACTG	TTTATTTTCC			AACAGAAGAT	CTGAAAGGAA
	TTCTGGCTTT	CAACTGTTCC	ATGTATGGAC	TCATCAGGGA	GGTCCGAGAG	GCTTTGTGGC	CCCAGACTGA
5	CTTTTCAGGA	GGGGAAAGGA	TTTATCAATA				CCCTTTAAAA
5	ATCCACTTTA	TGACCCAAAA	AGTGAGTTAA		TAGTTTCTGA	CACATGCTCT	ATGCGTGGCT
	CTCTTTTCTC CTGGCTGCTC	TATTCATTCT	CTCTCTCTTC	ATTTATTGTT	AAATAAATAA	TGTAATGAAT	GTTCTTCAGA
	TGGAGGAACT	CTTC AGGCCT GGGATGTGTA	CTGCTGAGGT	GGTGATGGAG	GGCCAGCCC	TCTTCCTCAG	GTGCCATGGT
	ACCACAACAT	CTCCATTACA	CAAGGTGATC	TATTATAAGG	ATGGTGAAGC	TCTCAAGTAC	TGGTATGAGA
10	GCAGCTGGAC	TATGAGTCTG	AATGCCACAG AGCCCCTCAA	TTGAAGACAG	TGGAACCTAC	TACTGTACGG	GCAAAGTGTG
10		GCAGGGGAAG		CATTACTGTA CTTCTGAGCC		AGTTGGTAAA	GGAAAGGAAA
	CCTGTGATAC	ACTCGAAAGC				CAGCTTGTAG	AAGGGGGCA
	CTGTTTCAAA	GCCTTGACTT	CTACCAGACT	TGCAATGAGG	AGACCTGGGT	GATAGTATAT	ATCTCAATCT
	TTAATGTGGT	AATATTTGTG	GTTAAATGGT AAATGACTTT	GATAGTAATA GTAAACTGTT	CCTGCTTGCA	CTATGAAATT	TTTATGAAGA
15	TACTATTTTG	ATCTCAAAGT	CATCTGTTGC	TCCTGGGGGA	AAGCACTACC	CAAGCATAAC	AGATTGTGAT
13	TTCAAAGTTG	AATC AAGAAA	GGATATAAAG	AGCTTGAGGA	ACACTTATAT GCCCATTCCA	TTATCAAATT GCTTAGGAGG	GAAAAAAAGT
		AGTCAGTAAG	CTGTGTGCCT	GTGTATTGAG	GGAGGAGGGA	ATGGACTTGA	GCTGGGAAAG TATGGAGAGG
	GTAGGGAGGT	GGACTGCCTC	TATGGCCTGT	AAGAAAAACT	GCTCTCTCCA	AACTCTTTAT	AAGAGAGGGA
	GCCTGTGAAG	TAT CACTTT	TGAAGGAGAA		TTCCTTCACA	CACTTTGTAC	ATAATAATGT
20	TTAAAAAAGC	ATGAGGTCAA	AATACATAAT	TAAGTCCTAG	CAGTTCTCTG	TTAACTAATT	TGAGACTGAA
20	GTGCTATGTA	CTTCTCTCTA	GGCTTCCAGT	ATCTTCATCT	GTAAAACAGA	ATATTTGGTC	TAGATTCCAT
	TAGAATCATT	TGA''AACTTA	AAAAATATAT	TGATGCTCAT	GTCTCATTTC	TTGAGATTCT	GATTTAATTG
	GTTTGGGGTG	CAGCCTGGGT	ATACGTATTT	TTCATAGGTC	TTTCACATAA	TGGTAATGGG	TAGCCAATAT
	TGAGAATCAC	TTGTCTAGGT	GATCTTTAAA	TGATTTCTGG	ATGTAATATT	CTGAGGCTCT	ATAATTTGAG
25	ACTAATCACA	AAA/\TCGGTA	CAGTTTATAA	ACAGACTAAC	AGAACCACAA	AATAATAGAA	TTGGAAGGCA
20	ATTTAACTAG	TGCAATTTCT	TCATTTTGCC	TAACAGGCAT	GTAAGAAATG	ATGATTGATT	GAGTAATAGG
	CATTGATGAC	CCC GTCCTC	ACTTTGTCCC	CTTTCCACCC	CTTAATTATA	TGTGAATTCT	GGTCTTGTCA
	TTTCGAATAA	GGGGTTTATC	TTTCCTATTG	TCTTCCCCTC	TGGGCACGGC	ACACTGGCTA	CTGGAGTTAA
	GAGGAAATGC	TTAGGACTCC	CTGTGGCTCC	AGGGAGCACC	AACAGAGCAA		TGTTAATCTG
30	AGTGTTTTCT	CTGTGCTTCT	GGATGCCACA	TCACGCTAAA	AATGAAGGAC	AAAGCTTGGT	CTTTCTCTTA
	GGGAGGATGA	AACTCTGAAC	CTCATTTTTC	AGTTCCCAAG	ATGAATTATG	TTTCTCATTG	CATCTGTGTT
	CCACTACAGC	TCCGCGTGAG	AAGTACTGGC	TACAATTTTT	TATCCCATTG	TTGGTGGTGA	TTCTGTTTGC
	TGTGGACACA	GGA' TATTTA	TCTCAACTCA	GCAGCAGGTC	ACATTTCTCT	TGAAGATTAA	GAGAACCAGG
	AAAGGCTTCA	GAC TCTGAA	CCCACATCCT	AAGCCAAACC	CCAAAAACAA	CTGATATAAT	TACTCAAGAA
35	ATATTTGCAA	CATT'AGTTTT	TTTCCAGCAT	CAGCAATTGC	TACTCAATTG	TCAAACACAG	CTTGCAATAT
	ACATAGAAAC	GTC GTGCTC	AAGGATTTAT	AGAAATGCTT	CATTAAACTG	AGTGAAACTG	GTTAAGTGGC
	ATGTAATAGT	AAG GCTCAA	TTAACATTGG	TTGAATAAAT	GAGAGAATGA	ATAGATTCAT	TTATTAGCAT
	TTGTAAAAGA	GATGTTCAAT	TTCAATAAAA	TAAATATAAA	ACCATGTAAC	AGAATGCTTC	TGAGTATTCA
	AGGCTTGCTA	GTTTGTTTGT	TTGTTTTCTA	CTAAAGGCAA	GGACCATGAA	GTTCTAGATT	GGAAATGTCC
40	TCTCTTGACT	ATTGCAAGTG	CGATCTAGGA	ATGAAAAGAC	ATAGGAGGAT	GCCAGTGAGG	TGGATCATTT
	TTATGCTTCT	TCTT CAGCTT	ACTAAATATG	AACTTTCAGT	TCTTGGCAGA	ATCAGGGACA	GTCTCAAGAC
	ATAGGACTCT	CAGGATGAAG	TAGAGTCCAG	GATTCCTCTG	TGATTGTTTT	GCCCCTCCCA	AATTTATATC
	TTGAACTTAT				AGCATTTTGG		
	ATAACCAAAA				ATAAGATCTT		ACTAGACAGT
45	TTTGGTTTAT	TTTCCCTTTC	ATTTTATGTC	TTCATCATAG	TCATTGGAGG	CTCATTCTTC	TTGTCATGGA
	GTAAATGGGA				CTCCACCTGT		
					GGAGTCCATG		CTCCTGCCAT
					GCTCCAGATG		
<b>~</b> 0					TTAAAGGAGA		
50					CCACAATGGC		
					GGAGAATACA		
					GGCTGCTCCT		
					GAGGAACTGG		
<b>.</b> .					CACAACATCT		
55					AGCTGGACTA		
					ATTTTTTATC		
					CAGGTCACAT		
					CAAACCCCAA		
60					AATTGCTACT		
00					ATGCTTCATT		
					ATAAATGAGA		
	INCOMITICI	DIADAUAAAA	TICAATITCA	AIAAAAIAAA	TATAAAACCA	IGIAACAGAA	1GC11C1GAG





	ATTGACTTTG	TCGTCTGCTA	AATCCTTAGT	GCTCAGATGA	CTTGTTCAGG	ACTCTCCTTG	AACCTGTACC
	TCTGTTANAT	TGAAACTTGT	CTCTACTGTC	TTTTTATTTC	AAACACAGCT	TATTAGGTGT	CTCTCAACCC
	ATCAAACNCA	CAA1'CTGAGT	CTTTAGGAGA	TTGCTTTGAA	TTTGTGCTAT	TGACTTATAT	NTATATNAAA
	TNTGTAAATG	TTTGGTAAAA	ATATCATCAT	GTACNTTTTC	ATAATTACGC	TATNTNCACA	TGATATATGT
5	CAGACTCTGG	AAATATGCAT	GCCACAGACA	CGTGTTTCTT	GCCTAAAGGG	GCTGATGGAA	GACNCACATA
	CNAATAGACG	ATTC CAGTAG	AATGAGAGTG	GTGGTCTAAN	CAGTACATGT	CCTGATGTTG	CTCGGACAGT
	TACTACNCCA	AGAC TACCCC	CTGCATTGTC	AGGGTTAGCA	TCTCCTGGAA	GCCTCATGTA	AATGAAGAAT
	TTCATGCTCC	ATCC AGGACC	TAATGAATAA	GAATCTGCAT	TTTAGCAAGA	CCCTCATATG	ATTCATATAC
	ACTTTTTTT				GCCCAGGCTG	GAGTGCAATG	GCATGATCTT
10	GGCTCACTGC	AACCTCTGCC	TCCCGGGTTC	AAGTGATTCT	CCTGTCTCAG	CCTCCCTAGT	AGCTGGGACT
	ACAGGTGCAT	GCCA.CAGTGG		TTTGTATTTT	TAGTAGAGAC	AGGGTTTCAC	CATTTTGGTC
	AGGCTGGTCT	TGAACTCATG	ACCTCCGGTG	ATTCCCCCGC	CTCGGCTTCC	CAAAGTGCTG	GGATTACAGA
	CATGAGCCAC	CACA CCCGCC	TTATTCGTAT	ACNCATTTAA	TTCTGAGAAG	CACTCTATAG	AAAATAAGAA
	TAAGAAAATA	TTGGGCTCAC	AGGTGACATT	AATAAGTAAC	TTTATCGAGT	ACCCCAAATT	TTACCTATGT
15	TTGGAAGATG	GGGTTAAAAG					TCCTTTTTGA
	ACAGTTTTCT	ATTTCTGGAA	TGTTGTCAAT		AGGAGAAATG	CAACATATCT	GGTGAGTTGC
	CCGTTTCTGT			ATAAGAAGAA	CAGAGTTTTA	AGAGTCTTAA	GGGAAACACA
	TCTTTGTCTC	CTATATTACT	TGTGAATGTG	GATATATGAT	TTTGTTTCAA	TCTATTTTGT	GTCCTAAGGC
	TTTTTGCAAC	AGAAGTTGGA	TATATCATTA	GAAACATAAA	TTGTACCATT	TAACATACAT	GAAGTTTATG
20	TTTACCTTGA	CGTTCTTCTA	AAAAGTGTCC	TACACCGGCA	TTGTCCTTGT	AGGCATATTC	ACATGATCAA
	ATAAAATAAT	TAGITTTCAA	TTAAGGAGAA	TATTTGAGGA	AAGACCGTAC	GTGTTCATGT	GGTTCCTGAA
	GGCAGTCCAG	TGAGAAAGTA		CATTAAACAA	TGCGGACATT	TTCAGGGTTT	CCCTTTTTAA
	CCAAAATTTG	GAAGCAATGT	GGAATTTACT	GGATGCATCC	AGCCCTGAAA	TGAAGATAGG	TTTATTGAAT
	GTGCCAGCAA	GTGCAGGCCC	AGGTCTGAGT	GTTCTTCATT	ATTATCAGGT	GAGAGGAAGC	CTGGGAGCAA
25	ACACTGCCAG	CAGC'ATAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA	AGAGCTTGGC
	CTATATCCAC	ATCC ACAGTT	GCCAGAAATT	TTTTGAGACC	AAGTGCTTTA	TGGCTTCCTT	TTCCACTGTA
	TGTATTTTTT	TTTGTGTGGG	AAGACTAAGA	TTCTGGGTCC	TAATGTAAGT	AAGAAGCCCT	CTTCTCCTGT
	TCCATGAACA	CCATCCTTTT	CTGTAACTTC	TATTACACAG	TATAGTGGTT	CTGTAAGTTC	ACACAGCCCA
	GGGAGATGCT	GGC GCCCAC	TCCCCTCAAC	CCAGGCAAAT	TCCTCGGGGT	TAAAGTTATC	TACTGCAAGT
30	GACGATCTCT	GGG TTTTCT	GTGCCTGTGT	TTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTATGTGTCA
	CTTTAAAAGG	ACTG GTCAGA	TGGTAGGGAG	ATGAAAACAG	GAGATGCTAT	AAGAAAATAA	ACTTTTGGGG
	CGAATACCAA	TGTGACTCTT	TTTGTTTGTC	ATTTGTTGCT	GTTCAATAGG	AAATTGTAGT	GATGATGCTG
	TTTCTCACCA	TTCT/3GGACT	TGGTAGTGCT	GTGTCACTCA	CAATCTGTGG	AGCTGGGGAA	GAACTCAAAG
	GAAACAAGGT	AGA'[AGAAGC	CCGATATAAA	ATCTTGAATG	ACAGGTTAAC	GAATTGGAGC	TTTATTCCTT
35	AAAATATGGC	CTGGGTTTTC	TGAAACATTT	CTTCCAGAAA	ATAGTTTCTC	CAAGTTTTAT	TACTTTGGTT
	TACAAATCTC	ACATTTAAAT	CACATTTTAT	ACCATAAGTA	GCACACATTT	CATAATATTC	CTCTGAATGA
	GGGTTGGGAT	AATAGGACTG	ATATGTTAGA	AATGCCTTAA		GCATGAGAGA	TGGATGTACA
	GAAGGCTTGT	GAGGAAACCA	CCCAGGTATC	TGGCCTTGTT	TTCTGCCCCA	GAACTAGCCG	CCTATTCCTG
	TTTCTGTTTT	ATTCCTTTGT	TTCTTGACTT	TTCCTTTCCA	ACTTGCTCTA	AAACCTCAGT	TTTCTTTCCT
40	TTCTGATTCA	TGAC TACCAA	ATGTTTTCAC	TTGCCTCACC	CGTCCATTAC	ACCTTTGATA	AGAACCACCA
	GACCTTGTGC	TCATGTACTT	GCCCATGTCT	GATGGAAGAA	ACATACTCTC	TCCATCTGTC	CACTTTCCTG
	AGGCATTCAA	GTC: AGCCAC			CAGGCTGGGC	ACGGTGTCAC	GCCTGTAATC
						AAAACCAGCC	
						CTAAAAAATA	
45						AGGTACCTGA	
						GCAGTGAGCC	
						GGCCAAAGCT	
						TGTACTAAAA	
<b>50</b>						AGGCAGGAGA	
50						GCCTGGGTGA	
						GATAGATAAA	
						TTTTGGCCCA	
						CAGAGAGCGT	
55	AAGACAAAG	TAGATGAGGI	AAGICICITG	AGCATCCTCT	CIAGGGAIGG	GAAATTTGTG	ATTCACCTAC
55	TGAAATGATT	TTTCCCTTAT	CAGGITCCAG	AGGATCGTGT	11AIGAAGAA	TTAAACATAT	TOTOGACAAC
						AAGAATCACG	
						TACTGGAAAA	
						TTTTGTTTCT	
60						TCTTGTTTTA TTGATTATAA	
60						ATAATATTTG	
						CCATCCACCC	
	1111111111	TITIAGCATI	CHAMIAGH	ACAGI IGGGC	AIUAIIIUIA	CONTROL	MINCOLNOAC



	AGTCACAGTC		ATGTATTACT			ATGCAAATAT	TTTACCACCA
	GTCAATAATA	CATTTTTGCC	AAGACATGAA	GTTTTATAAA	GATCTGTATA	ATTGCCTGAA	TCACCAGCAC
	ATTCACTGAC	ATGATATTAT	TTGCAGATTG	ACAAGTAGGA	AGTGGGGAAC	TTTTATTAAG	TTACTCGTTG
	TCTGGGGAGG	TAAA TAGGTT	AAAAACAGGG	AAATTATAAG	TGCAGAGATT	AACATTTCAC	AAATGTTTAG
5	TGAAACATTT	GTGAAAAAAG	AAGACTAAAT	TAAGACCTGA	GCTGAAATAA	AGTGACGTGG	AAATGGAAAT
	AATGGTTATA	TCTAAAACAT	GTAGAAAAAG	AGTAACTGGT	AGATTTTGTT	AACAAATTAA	AGAATAAAGT
	TAGACAAGCA	ACTC GTTGAC	TAATACATTA	AGCGTTTGAG		AAGGAGAACA	CTGGTTATGT
	TGATAGAATG	ATAAAAAGGG	TCGGGCGCGG		CTGTAATCCC		GAGGCCGAGG
	TGGGCAGATC	ACG/ AGTCAG	TAGTTTGAGA	CCAGCCTGGC		AAACCCCGTC	TCTACTAAAA
10	ATACAAAAAA	AAAATTAGCT	GGGTGTGGTG		GTAGTCCCAG		GGATGAGGCA
10		TTGAACCTGG					
	GGAGAATCGC		GAGGCGGAGG		CCGAGATCGC		TCCAGCCTTG
					AAAAAAGATA		
	GTGGAGGAAG	AGTACAAATA		AAGTCTCATT		GATTTTGGGG	AGACAAAGGG
	AAATGCAGCC	ATAC AGGGCC		CAATACATGA	GTTCTGGTAA		TGATACACGG
15	TTTGGTGTCA	TTAT.\AGAGA	AATCATTATT	AAATGAAGCA	AGTTAACACT	CTAAGAGAAT	TATTTTGAGA
	TAGAAGTGAA	GCT#AGCTAA	ACTTCACATG	CCTATAATTG	GAGGGAAAAA		AATCTAGCCT
	AGAAGATACA	ATA#.TTAGTC	ATAAACATGC	ATTGTGAAAC	TGTAGAGAGC	AGGTAGCCCA	AAATAGAGAA
	AGATTAGATA	AAG# GAAAAT	AAGTATCCAT	CAGAGACAGT	ATCTCTAGGC	TTGGGCAAGA	GAAAAGTCCA
	CAGTGATAAG	CAACTCCACC	TAAGGCATGA	ATATGCGGCA	GAGAAAACAG	CAATAGTGAA	TGAATGCAAA
20	AGGTGCTGAG	CAAATTCCAC	ACATGAGTAT	TGTGCATGAG	TAAATGAATA	AAACATTTGC	AAAGACCTTT
	AGAGAAAGAG	AATGGGAGCA	TATGTGCGAA	ATAAGATAGT		TAGAAGGTAG	TGAAGAAAAG
	CAAGCTAAGA	AAAAATTCTG	TTTATAAAAG	AAGGAAAAGA		TTTTAGCCTA	AGTATAAGAG
	TCCTACAGAT	GGACTGAAAA	AAATCAGTCT		GTCACAATTA	ATGAAATAAT	TACATTTTAT
	GTATTGAGGA	TGCC AAGATT	AAAAGGTGAC	AGGTAGATGT	TAATTTCCCT	AGATTGTGAA	AGTGATCACG
25	ACAATCACAC	AACAAATAAT	TAAGTGACTT	GGTATGCTTT	ATTTAATTGT	AGGGCCTGAG	GTTTTCCATT
	CTCATTTTTC	TAAAATACAA	TTTTGTTTCT	CCAAATTTGA	CAGCAGAATA	AAAACCCTAC	CCTTTCACTG
	TGTATCATGC	TAAC CTGCAT	CTCTACTCTT	GATCATCTGT	AGGTATTAAT	CACATCACTT	CCATGGCATG
	GATGTTCACA	TACAGACTCT	TAACCCTGGT	TTACCAGGAC	CTCTAGGAGT	GGATCCAATC	TATATCTTTA
	CAGTTGTATA	GTAT'ATGATA	TCTCTTTTAT	TTCACTCAAT	TTATATTTTC	ATCATTGACT	ACATATTTCT
30	TATACACAAC	ACACAATTTA	TGAATTTTTT		-		
50				CTCAAGATCA	TTCTGAGAGT	TGCCCCACCC	TACCTGCCTT
	TTATAGTACG	CCCACCTCAG	GCAGACACAG	AGCACAATGC	TGGGGTTCTC	TTCACACTAT	CACTGCCCCA
	AATTGTCTTT	CTAAATTTCA	ACTTCAATGT	CATCTTCTCC	ATGAAGACCA	CTGAATGAAC	ACCTTTTCAT
	CCAGCCTTAA	TTTCTTGCTC	CATAACTACT	CTATCCCACG	ATGCAGTATT	GTATCATTAA	TTATTAGTGT
2.5	GCTTGTGACC	TCCTTATGTA	TTCTCAATTA	CCTGTATTTG	TGCAATAAAT	TGGAATAATG	TAACTTGATT
35	TCTTATCTGT	GTTTGTGTTG	GCATGCAAGA	TTTAGGTACT	TATCAAGATA	ATGGGGAATT	AAGGCATCAA
	TAAAATGATG	CCAA.AGACCA	AGAGCAGTTT	CTGAAGTCCT	CCTTTTCATC	AGCTCTTTAT	CAAACAGAAC
	ACTCTATAAA	CAACCCATAG	CCAGAAAACA		ACAATCACCA		TAAACAACCC
	ATAGCCAGAA	AACAGAATGT	AAGGACAATC	ACCAGCCATC	TTTTGTCAAT	AATTGATGGA	ATAGAGTTGA
	AAGGAACTGG	AGCATGAGTC	ATATTTGACC	AGTCAGTCCT	CACTCTTATT	TACTTGCTAT	GTAAACTTGA
40	GAAAGCTTTT	TTCTCTTTGT	GAACCTCAGG	TTTTACATCT	GAAAATGAGA	AATTTGGAAC	AAAAGATTCC
	TAACTGGTCT	TTCTGTTCCC	ATATTCTGTG	ATTTTTCAAT	ATTTAGGATT	TTTGGTAATC	ACAATTACTT
	AGTTTGTGGT	TGAGATAGCA	ACACGAATCA	GAACTATTTG	GTGGACATAT	TTTCAAAGGA	GTAGCTCTCC
	ACTTTGGGTA	AAGAAGTGAT	GCNGGTCGTG	GTGGCTCACG	CCTGTAATCC	CAGCACTTTA	GGGAGGCCAA
	GGCGGGTGGA	TCAC'GAGGTC	AGGAGATCGA	GACCATCCTG	GCTAACACGG	TGAAACCCCG	TCTCTACTAA
45	AAAATACAAA	AAA] TAGCCA	GGCGTGGTGG	CGGGCGCCTG	TAGTCCCACG	TACTCGGGAG	GCTGAGGCAG
					CGAGATAGCG		
					AAAAAAAGAA		
					CTAATCAAAG		
					CAGATCACGA		
50					GGGGNGTGGT		
•					AG. NO: )(SEQ. II		cerdingree
					A ATGTGGCAGT		CCTCCTG A AT
					GGGGTTAGAT		
55					AACCTCACTA		
55					TGTGAAAAAT		
					TTGCTGCTGT		
					GATTGACAGA		
					GGTGTATATG		
					TCCTGAATAT		
60	AAACCAGGCA	CAGCTGATGG	GTTAACCAGA	TATGATACAG	AAAACATTTC	CTTCTGCTTT	TTGGTTTTAA



GCCTATATTT GAAGCCTTAG ATCTCTCCAG CACAGTAAGC ACCAGGAGTC CATGAAGAAG ATG-3' (FRAG. NO: )(SEQ. ID NO:2500)

5'-GATCTTCATG TGGAATGACT GGTTTCATTC AATAGACTTA ATTCAGCAGT CTGTGGGGAA GAGCAAGGTA TGATAGAATG GTTCCTCAAG TGCTTCAGAT GTGAAGTGGG TTTAAATATA CTGTCCCTGT CTTCTTCAGA GTTTTGGTAA AGATAAAATA GGACACTCAT TTAAAAGCAA TCTTTGCAAA TGACAAGCCA CTATAGACAT TAATAGAGTT TTC/.TTTCCA GTATTATCAT TAATATCAGA TCCTGGAAGA AGGTTGAGCC TTGACCTAGA GCAAAAAAAC AGAAGAATTA GTAAAGGAAT CCTGGAGAAA GCCCCTGCTG TGTATTTAAA GGAGAAAGGG GCCTAGATCC CCATAAGTAA TGGTTTAACT TCTGCCTTCC TGTGTTCTGA GCCAGATTAG GGCACAGTAG AGAAAGAGGA GTCICTGAAA ATGTTTCCAA TTTCGCTGGT CAGACAGCGG ATCATCAGTG AATCAGATGA AAATTTGTGG ATTTATGCAC TAACTGATCA GCAGGAAATT AAACAAGAAA AGCGTTGGTA GCTCTGGTGA ATCCCAAAAG AAT TGGCAG TTGCTAGCCA TGCTCCTGAA TATGTATAAA CAGTACATCA TATGACTAAG AGTTTGACTT AGGGGTTAGA TTTTATGTGT TTGAACCCCA AATTAGTTAT TTAATAGTTG GCACCCCAAA ACAAGTTACT TAACCTCACT AAGATTCAGT TTTCCTGTTT ATAAAATGTA GATAGTGATA GTATGTACTT 15 TATAGGATTA TTG1GAAAAA TAAATGAAAT ATCAGATTTA TTTAGGATAA CACCTGGCAT ATGTTTGGTA TTCAGTAATT AGTTGCTGCT GTTTTATTCT GCTCTCCCTT GCATCCCACT TTTCTAAGTT GTAAACTAAA TAGTTGTACA CAGATTGACA GATTAAGAAA GGCTTGTGAT TGTGCTAGAC CTATGCCTCT CTCTCACCAG GCACCATCCT GAATATTATC TCTAAAGAAA GAAGCAAAAC CAGGCACAGC TGATGGGTTA ACCAGATATG ATACAGAAAA CATITCCTTC TGCTTTTTGG TTTTAAGCCT ATATTTGAAG CCTTAGATCT CTCCAGCACA GTAAGCACCA GGAGTCCATG AAGAAGATGG CTCCTGCCAT GGAATCCCCT ACTCTACTGT GTGTAGCCTT ACTGTTCTTC GGTAAGTAGA GATTCAATTA CCCCTCCCAG GGAGGCCCAA ATGAATTTGG GGAGCAGCTG GGGTAGGAAC CTT'ACTGTG GGTGGTGACT TTTTCTAGGA CATGTGCAAA CTATTGGGCA TTTCCCAGGG ACTCTGTAGT GGACCCAAGC TAGAAAGCAG AGGCAAGTGG GCTGAGCAAC ACCTAAGGAG GAAGCCAGAC TGAAAGCTTG GTTC:CTTGCA TTTGCTCTGG CATCTTCCAG AGTGCAAATT TCCTACCAAG GTAATGAGGG TAGAGGAGAG AAAGAAGCTC TTTCTTCCCC TGATTCTCAT TCCTGAAAAG ACGGTTGGTC CTTAAAATTC CATGGATGTA GATCTTATCC CCACACCCAG ATTCTAGTCC TCTGGAGATA AAGAAGACTG CTGGACACTA ATGTATCCTC TCTCGACTTT TGCAGCTCCA GATGGCGTGT TAGCAGGTGA GTCCTCTGTT CTTGTTCCCT TGGTGTATCA ACATGTCTGG GCATTGCTTT CCTCTCACTA TTTTCTTCGT CCCATCACTT CTGCTTTCTA ATGAGCATGA ATCIGTTCCT TGGCCAGACT ACTTTCCCTC TCCACCTTGC CTTGTCTTTC TTTTTTTCCC TGATTCATTG CATTCTCA AGTCATTCTC TCCTCTGTTT TAGTCAATAA CCATGTCTGT TGCACATATA CATGTCTCAT TCTCTCCT AGACACTTTG GCATGATCTC GCTCAATAAT TACATTATTA TTATTATTGC CATTITATAA TIGAGGATGC TGAAACTCAG TGATTITCTG GTGGTTACAT GGCTAAGGAA CTGGATTTCA ACGTAAGTTC CTTGGATCTA AGTCCAGTTC TCTTCTGACT ATATCACCCT TTTGTTATCA CCATGTATCT ACTTCTTTGG TCTCTGTTCA AATTTGCACT ACATCCCCTT GTTCCAGGAA GCCATTCAAG ACTGACTTTC TTAGTGCCTC TCACTACTTT CTGGAACTGA CATATGTTTT TCACTCTGTA TATACTTACA ATTAAATAGT CATAAATATT CAGAGCTTGG AGAAACCTTA TATTTCATCC AGTCCAGTAA ATTTATCCAT CCATAATTCA CTCATTCATT CACATAATAA ATATTTAATG TAACAATGGT TGAACATGGC AGACAGTGTT TCTACCTCAA AAGAGATTGC AGTCCTCATT TACAGATACT GAATTGAAAT TAACAGAAGT AGAGTGAGTC AGCTCAAATC 40 ACATAGTGAA TTGGTTTCTT TGTTTTTAAA TCTCCTGCAT ATGTGTCCTG TCTTTCTCCC TGTGTTGGGC GTTCCCTGGG GCAC'CAATAC TAATTTCTCC TTCCCCTAGA AATCAAAACA GGGTCTTATC ACCAACAGAA TAAGGACAGG TTGACCACTG ATTGTCAGAA TATTGCTTCG TTTGTACTTT TAAGCCTAGA CAGTTTTCAA TGACTTTTT TCTCTCTACA TGTCTTTCA TATTTTTATC TTCTTGAAGT CCCTCAGAAA CCTAAGGTCT CCTTGAACCC TCCATGGAAT AGAATATTTA AAGGAGAGAA TGTGACTCTT ACATGTAATG GGAACAATTT CTTTGAAGTC AGTICCACCA AATGGTTCCA CAATGGCAGC CTTTCAGAAG AGACAAATTC AAGTTTGAAT ATTGTGAATG CCAAATTTGA AGACAGTGGA GAATACAAAT GTCAGCACCA ACAAGTTAAT GAGAGTGAAC CTGTGTACCT GGAAGTCTTC AGTGGTAAGT TCCAGGGATA TGGAAATACA GATCTCTCAT GTGAGGGATG GCTCATCTGA AGA1GGGAAA AAACAGGTTA TTCCAAGGGT TAGGACACCA GAGTGGGATT CAAGGCCTCT CATTTTAAG ACCCCTGCAT TGGCTGGGCA CAGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGGAGGCTG AGGCAGGTGG ATCACGAGGT CAGGAGATCG AGACCATCCG GCTAACATGG TGAAACCCCA TCTCTGCTAA AAAATATATA TATATAAAAT TAGCCGGGCG TAGTGGTGGG CACCTGTAGT CCCAGGTACT CGGGAGGCTG AGGCAGGAGA ATGGTGTGAA CCCAGGAGGT GGAGGTTGCA GTGAGCTGAG ATCACGCCAC TGCCCTCCAG CCTGGGCTAC AGAGCAAGAC TCCGTCTCAA AAAATAAATA AATAAATAAA AAAGACCCCT GCATCTCTTT TCTTCTACCC CCTTCCCTTT TGATTACTTG TATGCCTTCT TTCAATATTC TAGTCATCTC TCAATATTAT TCCTCCACCC TATITTCCTC TATCTTTTCT GCCTAGATTC AGGTATATAT TATGTGGTCA AACAGCATGA CATATATGTG AACATTTCAA AGAGCTGTGT ATCTGGAATA GGATCAAAAG GTTTGACTTA AAGTTTTGCT CTGCATAATC CATATGGCAG GACCTGAATA TTAGGTTGTA CTCTTCGTTA TGAAACATAT CTGGGTACAT TTCCTTATGT CCTCTGTTGT TACTTAAGAA CACATATTTC ATGCTTGTTT CATTTTTATC ACTCCTACTG CCAACAATA GCATAGCATG CTTAGGCACA TGTGGCTTAA TTAGCAAATG TTGAATAAAC AAATTAATGA TTTTGAATAG TGACCAATAG GTCTCTTTA TACTCTATAT TTTTCTCTTG AGTGAAAAAA AATGTTTCAA



	CCTCCATATG	ΤΑΑΛΤΤΟΟΑΑ	ΔCΔCΔΔΔCTΔ	AAGCAATGTA	GAATAGCTTC	<b>ምም ለ ምምር ር ር ጥ</b>	CCACTACCTT
	CTAGAGAAGT	CCTAAAGGAT	TGGTCCTAAA	TTAATTATGC	TTATTATCCT	ACCCATATT	CCTTTCAAAA
	TTCTCCTTTA	ATGAATGCTT		ACAAAAGCAT			
		GTGACAAATA		ACCTACCAAC			TGTCTTTCAC
5						TGCTACCAAC	TCCTAAATAC
5				CTAGACAGGG			
	TTTTTCACAA	CTATAATTAA	CACTACAACT	AAGTAATTAA	TITAAATTAT	ACATGITITG	
				GGGAAGTTTC			
				TTTATTTTCC		TAGAACTAGC	
10				ATGTATGGAC			
10	CCCAGACIGA			TTTATCAATA			
				AGTGAGTTAA			
	ATGCGTGGCT	CTCTTTTCTC	TATTCATTCT		ATTTATTGTT	AAATAAATAA	
				CTGCTGAGGT			
1.5				CAAGGTGATC			
15	TGGTATGAGA			AATGCCACAG			
	GCAAAGTGTG			AGCCCCTCAA			
				GAAGAGAGAA			
				CTACCAGACT			GATAGTATAT
	ATCTCAATCT	CTG1TTCAAA	GCCTTGACTT	GTTAAATGGT	GATAGTAATA	CCTGCTTGCA	CTATGAAATT
20	TTTATGAAGA	TTAATGTGGT	AATATTTGTG	AAATGACTTT	GTAAACTGTT	AAGCACTACC	CAAGCATAAC
	AGATTGTGAT	TACTATTTTG	ATCTCAAAGT	CATCTGTTGC	TCCTGGGGGA	ACACTTATAT	TTATCAAATT
	GAAAAAAAGT			GGATATAAAG			GCTTAGGAGG
				CTGTGTGCCT			
	TATGGAGAGG	GTA/GGGAGGT	GGACTGCCTC	TATGGCCTGT	AAGAAAAACT	GCTCTCTCCA	AACTCTTTAT
25		GCCTGTGAAG			AGTTAGACTT		CACTTTGTAC
	ATAATAATGT	TTA/AAAAGC	ATGAGGTCAA	AATACATAAT			TTAACTAATT
	TGAGACTGAA	GTGCTATGTA			ATCTTCATCT	GTAAAACAGA	
	TAGATTCCAT	TAGAATCATT		AAAAATATAT		GTCTCATTTC	TTGAGATTCT
	GATTTAATTG	GTT1 GGGGTG		ATACGTATTT		TTTCACATAA	TGGTAATGGG
30	TAGCCAATAT	TGAGAATCAC		GATCTTTAAA		ATGTAATATT	
	ATAATTTGAG	ACTAATCACA		CAGTTTATAA			
		ATT `AACTAG				GTAAGAAATG	ATGATTGATT
	GAGTAATAGG	CATTGATGAC			CTTTCCACCC	CTTAATTATA	TGTGAATTCT
	GGTCTTGTCA	TTTC GAATAA		TTTCCTATTG	TCTTCCCCTC	TGGGCACGGC	ACACTGGCTA
35	CTGGAGTTAA			CTGTGGCTCC			
	TGTTAATCTG		CTGTGCTTCT		TCACGCTAAA	AATGAAGGAC	
	_			CTCATTTTTC			TTTCTCATTG
	CATCTGTGTT	CCACTACAGC		AAGTACTGGC			TTGGTGGTGA
						ACATTTCTCT	TGAAGATTAA
40				CCCACATCCT			
				TTTCCAGCAT			
	CTTGCAATAT	ACATAGAAAC	GTCTGTGCTC	AAGGATTTAT	AGAAATOCTT	CATTALACTC	ACTCAAACACAG
	GTTAAGTGGC	ATGT'A ATAGT	AAGTGCTCAA	TTAACATTGG	TTCAATAAAT	CACACAATCA	AGIGAAACIG
	TTATTAGCAT	TTGTAAAAGA	GATGTTCAAT	TTCAATAAAA	TAAATATAAA	ACCATCTAAC	ATAGATICAT
45	TGAGTATTCA	ACCUTTCUTA	GTTTCTTTCT	TTGTTTTCTA	CTAAACCCAA	ACCAIGIAAC	AGAATGUTT
13	GGAAATGTCC	TCTCTTGACT	ATTGCAAGTG	CGATCTAGGA	ATCAAAGGCAA	ATACCACCAT	CCCACTCACC
				ACTAAATATG			
	GTCTCAAGAC	ATAGGACTCT	CAGGATGAAG	TAGAGTCCAG	AACTITCAGI	TCATTCTTTT	COCCOTTOCAL
	AATTTATATC	TTGAACTTAT	CTCTTCTATC	TTTATACACC	ACCTCAACCA	ACCATTETEC	GCCCCTCCCA
50				TTTATACAGC			
50	ACTAGACAGT	TTTCCTTTAT	TTTCCCTTTC	TGAAAACAGT	CCAGGACTGA	ATAAGATCTT	GGGCAAAAGA
	TTCTCATCCA	TALLEGGE	TITICCCITIC	ATTTTATGTC	TICATCATAG	TCATTGGAGG	CICATTETTE
	FI TACTA ACAC	TIAAF.IGGGA TI	TAAAGTTC-3′ (F)	RAG. NO:_)(SEQ.	ID NO:2501)		
	OTCOACCA CA	CTALCOLOGI	CICCACCIGI	CTACCACCGA	GCATGGGCCT	ATATTTGAAG	CCTTAGATCT
55	CTCTACCCTT	GTAAGCACCA	GGAGTCCATG	AAGAAGATGG	CTCCTGCCAT	GGAATCCCCT	ACTCTACTGT
55	CCCTCCATCC	ACTUITCTTC	GCTCCAGATG	GCGTGTTAGC	AGTCCCTCAG	AAACCTAAGG	TCTCCTTGAA
	GTCAGTTCCA	AAI#GAATAT	TTAAAGGAGA	GAATGTGACT	CITACATGTA	ATGGGAACAA	TTTCTTTGAA
	ATGCCAAATT	TCAACACAC	CCACAATGGC	AGCCTTTCAG	AAGAGACAAA	TTCAAGTTTG	AATATTGTGA
	CCTCCAACTC	TTCACTCACT	GGGTGGTGGT	AATGTCAGCA	CCAACAAGTT	AATGAGAGTG	AACCTGTGTA
60	TTCCTCACCT	CCCATCCTTC	CACCAACTCC	TCAGGCCTCT	GCTGAGGTGG	TGATGGAGGG	CCAGCCCCTC
00	TICCICAGGI	GCCAIGGIIG	GAGGAACIGG	GATGTGTACA	AGGIGATCIA	TTATAAGGAT	GGTGAAGCTC



	TCAAGTACTG	GTAT GAGAAC	CACAACATCT	CCATTACAAA	TGCCACAGTT	GAAGACAGTG	GAACCTACTA
	CTGTACGGGC	AAA/3TGTGGC	AGCTGGACTA	TGAGTCTGAG	CCCCTCAACA	TTACTGTAAT	AAAAGCTCCG
	CGTGAGAAGT	ACT/3GCTACA	ATTTTTTATC	CCATTGTTGG	TGGTGATTCT	GTTTGCTGTG	GACACAGGAT
	TATTTATCTC	AACTCAGCAG	CAGGTCACAT	TTCTCTTGAA	GATTAAGAGA	ACCAGGAAAG	GCTTCAGACT
5	TCTGAACCCA	CATCCTAAGC	CAAACCCCAA	AAACAACTGA	TATAATTACT	CAAGAAATAT	TTGCAACATT
	AGTTTTTTC	CAGC ATCAGC	AATTGCTACT	CAATTGTCAA	ACACAGCTTG	CAATATACAT	AGAAACGTCT
	GTGCTCAAGG	ATT: ATAGAA	ATGCTTCATT	AAACTGAGTG	AAACTGGTTA	AGTGGCATGT	AATAGTAAGT
	GCTCAATTAA	CATTGGTTGA	ATAAATGAGA	GAATGAATAG	ATTCATTTAT	TAGCATTTGT	AAAAGAGATG
		ATAAAATAAA					
10		' (FEAG. NO:					
		A ATAATATTC			TAATGAAAAA	ATGGACACAG	AAAGTAATAG
	GAGAGCAAAT	CTT/3CTCTCC	CACAGGAGCC	TTCCAGTGTG	CCTGCATTTG	AAGTCTTGGA	AATATCTCCC
	CAGGAAGTAT	CTTCAGGCAG	ACTATTGAAG	TCGGCCTCAT	CCCCACCACT	GCATACATGG	CTGACAGTTT
	TGAAAAAAGA	GCAGGAGTTC	CTGGGGGTAA	CACAAATTCT	GACTGCTATG	ATATGCCTTT	GTTTTGGAAC
15	AGTTGTCTGC			CATTGAGGGA			AGCAGGTTAT
				TCTGGAATGT			AGAAATGCAA
		GAGA.GGAAGC		ACACTGCCAG	CAGCATAGCT	GGGGGAACGG	
	CCTGATCATC	AACCTGAAGA	AGAGCTTGGC	CTATATCCAC	ATCCACAGTT	GCCAGAAATT	TTTTGAGACC
	AAGTGCTTTA			ATTGTAGTGA			CTGGGACTTG
20		GTCACTCACA	ATCTGTGGAG	CTGGGGAAGA	ACTCAAACGA	AACAACCTTC	CAGACCATCC
	TGTTTATGAA	GAATTAAACA	TATATTCAGC	TACTTACAGT	GAGTTGGAAG	ACCCAGGGA	AATCTCTCCT
	CCCATTGATT	TATAAGAATC	ACGTGTCCAG	AACACTCTGA	TTCACAGCCA	ACCUAGOGGA	AGGCCAACCT
	CTTGTTAAGG	GGCTACTGGA A	AAATTTCTA TT	TOTOLOGY AGO	TECACAGCCA TCCTCC TTTT :	AUGATCCAGA	AGGCCAAGG1
	5'-AAGCTTTTC	'A AAGGTGCAA'	T TGGATAACTI	CTGCCATGAG	A ATCCCOTA A A	ATTCCCACAC	A A CTCCCC A C
25	AATTCCAGAA	GAA 3GGCACA	TCTCTTTCTT	TTCTCCACTT	CTTTCTCACC	TTCTCAACTC	CTACTAAAA
20	GTCTCATTTT	CAGC TTCTGT	AAATCCTGCT	AGTCTCAGGC	AAAATTATCC	TCCACCACTC	TCAAATTTTC
		TTACTCTTTA	TTTAGTAGAC				
		CCAA.GAAACT				CACAAGIAAA	AGCCTGTTGA
	GGTAACCCAT	TTCAACTGCC	TATTCAGAGC	ATGCAGTAAG	ACCAAATCCA	CCAACTCTCA	AAIGICAIGA
30	ATTCTTTATT	CCTGGACAGC	TCCCTTAATC	AAAAAATCCA	CACACAAACT	AATAGGAGAG	AIAIAAIAAI
50	TCTCCCACAG	GAGCCTTCCA	GCTACCTACA	ACCTATTATT	TTTTTCTACC	CTCACTCACT	
	GAAGTCATAG			AACTTTATTG			
	ATATATTGGG	TATCAGGAAG	CTACTTCCTC	TACTTTCCAT	CTCCTTCTCT		AGTTTAATTA
		TGCAAACTGG					
35		GTG1 ATGTAG					
55		TAAA TACTTG				AGGGACACAT	
	TGCTTCTCTG					ATAATCCATA	
	TGTGCACATG	AAG' TGGGGT				GCCATTCCTT	
	-	GGTAAATGTG			TCAGATACAT		
40	AGTAACACTG	CATTALON	ACCAAAATTT	GGCATGGATT	TCAACATAGA		
40	GATAGTGTTC	AGG GTTCTT				TTGTCCCATC	TAATCACTTG
				TTGGATGCTC			
			CITIGAAAAA	ATAAACAAAA	CICCCCTTTC	TGTCTGTCGA	GAATGTTGCA
	TCCAAATATC	CAGAATGTTC	CTATCACAC	ATTGCTTTTA	AATTTCACAG	TGTGCCTGCA	TITGAAGICT
45	ATGGCTGACA	TCCC'CAGGAA	MACACCACCA	GCAGACIAII	GAAGTUGGUU	CTCCTCCCCAC	CACIGCATAC
43	GTAACCCTTC	GTTTTGAAAA	AAGAGCAGGA	GTTCCTGGGG	GTGAGTGAGC	CTCCTCCAAC	TTTGACTAGA
	TTACCTCCTT	GGTCTAGAAA	AGAATATIGA	GIIGCAICAA	CIGITITECE	ACTIGGATIC	ATGAGAGGTG
	CATTTCCTCA	TAAAAAAACAT	GGIAGAIAAA	GAGIIGACAC	TAACIGGGIC	CTTTTGGGAA	GAGCCAGAAG
	TCTTTACTTA	TAAAGACTTT	AAATIGCIAG	GACGAGAATG	GCCAACAGGA	GTGAAGGATT	CATAACTTTA
50	AGTATTGGCC	GATGTAAAGA	TACCTACTCC	AIGIICAACA	TGACTACATA	CATAAAGGCG	CATGGAGAAA
50	CTTACCTCTC	TTCCATGCAT	CACCACACAC	TAGGAGAGA	TCTTATAGTG	GCTAGGGTAT	CCTGGAAAAT
	TAAAAAATCA	GATC'ATTTCT	CAGGACAGTC	TAGGACACTA	ACGCAGTTTC	TCATGTTTGG	CTTCTATTAT
	ACAAATTCTC	TACAATCTCG	GGAAAATITT	TTTGATTTC	ATGAAATTCA	TGTGTTTTC	TATAGGTAAC
		ACTGCTATGA					
55		ACATTTTTC	ATCATTTAAA	GCAGGITATC	CATTCTGGGG	AGCCATATTT	GTGAGTATAT
55	ATCTATAATT	AACATTOATT	TRACACTGAA	CATAGGTTTT	TCTCTTTCTC	AGATCTAACC	AGTTGTTTAT
	TCATTALCAL	AAGATGATAT	TIATAATTCT	IAATTATAAA	TATATGTGAG	CATATATAAC	ATAGATATGC
	CATGACAAAC	CAACAAAAGA	TAGAAGTTAC	AATTAACGGT	GGGTTAAACA	TTTAGCCCAC	AGTTTTATCC
	CTAAACTTTC	CTG/ATCTAA	TACAAGTTAA	ATGACTTGCC	TAAGGGCCAC	TTGACTAATA	GTAATTGAAC
60	ACATACAACT	AGAATCCAAC	ICCAGGAACA	TACTTCTAGC	ACTATTCATC	AATAAAGTTA	TATGATAAAT
60	ACCACTETEC	TTATCTGTCA	ACTAAAAATA	ACAACAGAGG	CTGGGCATGG	TGGCTCACAC	CCGTAATCCC
	AGCACTTIGG	GAGC CTGAGG	CAGGTGGATC	ACCTGAGGTC	AGGAGTTTGA	GACCAGCCTG	ACCAACATGG
	TGAAACCTCA	TCTCTACTAA	ATATAAAAA	TTAGCTGAGT	GTGATAGTGC	ATACCTGTAA	TCCAGCTACT



	TAAGAGGCTG	AGGCAGGAGG	CTTGTTTGAA	CCTGGAAGGC	AGAGGTTGCA	GTGAGCTGAG	ATTGTGCCAT
	TGCACTCCAG	CCTGGGCAAT	AAGTGCGAAC	TCTGTCTCAA	AATAATAATA	ATAATAATAG	AAAATAAAGT
	TGTCTTCATG	AAAA ATGAGG	AAAGAGATTG	CTGGGGTGAG	AAACATTAAG	ATCAATGGGC	ATATGGTGAC
	CTTCTATGCC	CTAGAAACTC	TTTTANGGTA	TTTTCTCCTG	GTATCTCTTT	TACNCATCGT	TCTATCTGGA
5	AAAATAGGTG	GAT/GAGTGAG	ATAATAACGG	TATATACTTT	TTAAAGGTCT	AATTGACATA	TATAAATTGC
	AAGTATTTCA	GATGTCAATT	TGCTAACCTT	GACACACATA	GACACACATG	AAAACATCAC	CACATTAATA
	CAATGTATGT	ATCCATCATT	CCAAAAGCTT	CCCTGTGTAT	CTTTGTAACT	CTTTCTTCCT	CCCTCCACTC
	CTTGTCCTCT	CGTTCCCAAG	AAAACATTGA	TCTGCTTCCT	GTGAATATAA	ATTAACTTAC	ATTTTTTAGA
	GCTTTATATA	AGTATGTTCT	CTTTACTGTT	TGTCTTCCTT	CGCTGCACAG	TTATTTTGAG	ATTCTTCAAG
10	TTTTTTCTTT	ATATCGATAC	TTCATTCACA	AGAATATATT	TTAATTCTAG	ACTATGTCAC	ATTGACTTTG
	TCGTCTGCTA	AATCCTTAGT	GCTCAGATGA	CTTGTTCAGG	ACTCTCCTTG	AACCTGTACC	TCTGTTANAT
	TGAAACTTGT	CTC1'ACTGTC	TTTTTATTTC	AAACACAGCT	TATTAGGTGT	CTCTCAACCC	ATCAAACNCA
	CAATCTGAGT	CTTT'AGGAGA	TTGCTTTGAA	TTTGTGCTAT	TGACTTATAT	NTATATNAAA	TNTGTAAATG
	TTTGGTAAAA	ATATCATCAT	GTACNTTTTC	ATAATTACGC	TATNTNCACA	TGATATATGT	CAGACTCTGG
15	AAATATGCAT	GCCACAGACA	CGTGTTTCTT	GCCTAAAGGG	GCTGATGGAA		CNAATAGACG
	ATTGCAGTAG	AATGAGAGTG	GTGGTCTAAN	CAGTACATGT	CCTGATGTTG	CTCGGACAGT	TACTACNCCA
	AGAGTACCCC	CTGCATTGTC	AGGGTTAGCA	TCTCCTGGAA	GCCTCATGTA	AATGAAGAAT	TTCATGCTCC
	ATCCAGGACC	TAA'IGAATAA	GAATCTGCAT	TTTAGCAAGA			ACTTTTTTT
	TTTTTTTTA	GATGGAGTCT	CACTCTTGTC	GCCCAGGCTG	GAGTGCAATG	GCATGATCTT	GGCTCACTGC
20	AACCTCTGCC	TCCCGGGTTC	AAGTGATTCT	CCTGTCTCAG	CCTCCCTAGT	AGCTGGGACT	ACAGGTGCAT
	GCCACAGTGG	CTGGCTAATT	TTTGTATTTT	TAGTAGAGAC	AGGGTTTCAC	CATTTTGGTC	AGGCTGGTCT
	TGAACTCATG	ACCT'CCGGTG	ATTCCCCCGC	CTCGGCTTCC	CAAAGTGCTG	GGATTACAGA	CATGAGCCAC
	CACACCCGCC	TTATTCGTAT	ACNCATTTAA	TTCTGAGAAG	CACTCTATAG	AAAATAAGAA	TAAGAAAATA
	TTGGGCTCAC	AGG GACATT	AATAAGTAAC	TTTATCGAGT	ACCCCAAATT	TTACCTATGT	TTGGAAGATG
25	GGGTTAAAAG	GACACATTGA	AAACAAGAAG	C TCATTGTGGC	TTTTTTTCC	TCCTTTTTGA	ACAGTTTTCT
	ATTTCTGGAA	TGT1GTCAAT	TATATCTGAA	AGGAGAAATG	CAACATATCT	GGTGAGTTGC	CCGTTTCTGT
	CTTTGTCCAT	CCTTGAAAAG	ATAAGAAGAA	CAGAGTTTTA	AGAGTCTTAA	GGGAAACACA	TCTTTGTCTC
	CTATATTACT	TGTC AATGTG	GATATATGAT	TTTGTTTCAA	TCTATTTTGT	GTCCTAAGGC	TTTTTGCAAC
	AGAAGTTGGA	TATATCATTA	GAAACATAAA	TTGTACCATT	TAACATACAT	GAAGTTTATG	TTTACCTTGA
30	CGTTCTTCTA	AAAA.GTGTCC	TACACCGGCA	TTGTCCTTGT	AGGCATATTC	ACATGATCAA	ATAAAATAAT
	TAGTTTTCAA	TTAAGGAGAA	TATTTGAGGA	AAGACCGTAC	GTGTTCATGT	GGTTCCTGAA	GGCAGTCCAG
	TGAGAAAGTA	ATA'TATGCTT	CATTAAACAA	TGCGGACATT	TTCAGGGTTT	CCCTTTTTAA	CCAAAATTTG
	GAAGCAATGT	GGAATTTACT	GGATGCATCC	AGCCCTGAAA	TGAAGATAGG	TTTATTGAAT	GTGCCAGCAA
	GTGCAGGCCC	AGG CTGAGT		ATTATCAGGT	GAGAGGAAGC	CTGGGAGCAA	ACACTGCCAG
35	CAGCATAGCT	GGGGGAACGG	GAATTACCAT	CCTGATCATC	AACCTGAAGA	AGAGCTTGGC	CTATATCCAC
	ATCCACAGTT	GCCAGAAATT	TTTTGAGACC	AAGTGCTTTA	TGGCTTCCTT	TTCCACTGTA	TGTATTTTT
	TTTGTGTGGG	AAGACTAAGA	TTCTGGGTCC	TAATGTAAGT	AAGAAGCCCT	CTTCTCCTGT	TCCATGAACA
	CCATCCTTTT		TATTACACAG	TATAGTGGTT	CTGTAAGTTC	ACACAGCCCA	GGGAGATGCT
40	GGCTGCCCAC	TCCCCTCAAC	CCAGGCAAAT	TCCTCGGGGT	TAAAGTTATC	TACTGCAAGT	GACGATCTCT
40	GGGTTTTTCT	GTGC CTGTGT	TTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTATGTGTCA	CTTTAAAAGG
	ACTGGTCAGA	TGGTAGGGAG			AAGAAAATAA		CGAATACCAA
	TGTGACTCTT	TTTGTTTGTC	ATTTGTTGCT	GTTCAATAGG	AAATTGTAGT	GATGATGCTG	TTTCTCACCA
						GAACTCAAAG	
15						TTTATTCCTT	
45						TACTTTGGTT	
						CTCTGAATGA	
						TGGATGTACA	
						CCTATTCCTG	
50	ATTCCTTTGT				AAACCTCAGT		TTCTGATTCA
30						AGAACCACCA	
	CTCTACCCAC	GCCCAIGICI	GATGGAAGAA	ACATACICIC	TCCATCTGTC	CACTTTCCTG	AGGCATTCAA
	GTCACCCTCA	CCACCCCCCA	TCACTCTCCTC	CAGGCTGGGC	ACGGTGTCAC	GCCTGTAATC	TCAGCACTTT
	ATCTTCTTCA	ATTARA COA	TCACTTGAAG	TCAGGAGTTC	AAAACCAGCC	TGGCCAAATG	GCAAAACCAA
55						CAACAAAACA	
55	CTCAACCACC	ACA PROCOTE	CACCCCA	GATGGAGGT	AGGTACCTGA	GGTTCCAGAT	ACTIGGGAGG
						GAGATCATGC	
	GATTTCCACA	CCACCCTGGG	CAACATCCTC	AAACTCCCTC	TOTACTAAAA	GAAGAATAAT	TACTCCCCCC
						ATATAAAACT	
60						ATTGCTTGAA CATAGTGAGA	
00						TAAGACAGCA	
						CTTGGCCAGC	
	Sommer	OHOLMACI I U	TOTALIGACIO	ACATUATTIC	TTTTOUCCCA	CITOUCCAUC	INGICIOGII



	ma ammma ama	G					
		GAAATGAAAG					
	TAGATGAGGT			CTAGGGATGG		GTGATTGATA	TGAAATGATT
	TTTCCCTTAT	CAGC TTCCAG	AGGATCGTGT	TTATGAAGAA	TTAAACATAT	ATTCAGCTAC	TTACAGTGAG
_	TTGGAAGACC	CAGGGGAAAT		ATTGATTTAT	AAGAATCACG	TGTCCAGAAC	ACTCTGATTC
5	ACAGCCAAGG			GTTAAGGGGC			TCTCCACAGC
	CTGCTGGTTT	TACATTAGAT	TTATTCGCCT	GATAAGAATA	TTTTGTTTCT	GCTGCTTCTG	TCCACCTTAA
	TATGCTCCTT	CTATTTGTAG	ATATGATAGA	CTCCTATTTT	TCTTGTTTTA	TATTATGACC	ACACACATCT
	CTGCTGGAAA	GTCAACATGT	AGTAAGCAAG	ATTTAACTGT	TTGATTATAA	CTGTGCAAAT	ACAGAAAAAA
	AGAAGGCTGG	CTG AAAGTTG	AGTTAAACTT	TGACAGTTTG	ATAATATTTG	GTTCTTAGGG	TTTTTTTTT
10	TTTTAGCATT	CTTAATAGTT	ACAGTTGGGC	ATGATTTGTA	CCATCCACCC	ATACCCACAC	AGTCACAGTC
	ACACACACAT	ATG' [ATTACT	TACACTATAT	ATAACTTCCT	ATGCAAATAT	TTTACCACCA	GTCAATAATA
	CATTTTTGCC	AAGA.CATGAA	GTTTTATAAA	GATCTGTATA	ATTGCCTGAA	TCACCAGCAC	ATTCACTGAC
	ATGATATTAT	TTGC AGATTG	ACAAGTAGGA	AGTGGGGAAC	TTTTATTAAG	TTACTCGTTG	TCTGGGGAGG
	TAAATAGGTT	AAAAACAGGG	AAATTATAAG	TGCAGAGATT	AACATTTCAC	AAATGTTTAG	TGAAACATTT
15	GTGAAAAAAG	AAG ACTAAAT	TAAGACCTGA	GCTGAAATAA	AGTGACGTGG	AAATGGAAAT	AATGGTTATA
		GTAGAAAAAG					TAGACAAGCA
	ACTGGTTGAC		AGCGTTTGAG	TCTAAGATGA	AAGGAGAACA	CTGGTTATGT	TGATAGAATG
	ATAAAAAGGG	TCGGGCGCGG	AGGCTCACGC		AGCCCTTTGG		TGGGCAGATC
						TCTACTAAAA	
20		GGGTGTGGTG				GGATGAGGCA	
		GAGGCGGAGG					
		CTCAAAAAA					
		GACCTAAATT	AAGTCTCATT		GATTTTGGGG		AAATGCAGCC
	ATAGAGGGCC	TGATGACATC		GTTCTGGTAA		TGATACACGG	TTTGGTGTCA
25	TTATAAGAGA	AATCATTATT			CTAAGAGAAT	TATTTTGAGA	TAGAAGTGAA
23					CTAAGGATAA		
		ATA# ACATGC					AGAAGATACA
		AAGTATCCAT				GAAAAGTCCA	
	CAACTCCACC			GAGAAAACAG			
30		ACATGAGTAT		TAAATGAATA		TGAATGCAAA	
50		TATGTGCGAA					AGAGAAAGAG
						TGAAGAAAAG	
	AAAAATTCTG	TTTATAAAAG		TAGTTTATGT	TTTTAGCCTA	AGTATAAGAG	TCCTACAGAT
	GGACTGAAAA	AAA CCTCAC	GAGAGTATTA		ATGAAATAAT	TACATTTTAT	GTATTGAGGA
25	TGCCAAGATT	AAAAGGTGAC	AGGTAGATGT	TAATTTCCCT		AGTGATCACG	ACAATCACAC
35	AACAAATAAT	TAA GTGACTT	GGTATGCTTT	ATTTAATTGT	AGGGCCTGAG	GTTTTCCATT	CTCATTTTTC
	TAAAATACAA	TTTTGTTTCT	CCAAATTTGA	CAGCAGAATA	AAAACCCTAC	CCTTTCACTG	TGTATCATGC
	TAAGCTGCAT	CTCTACTCTT	GATCATCTGT	AGGTATTAAT	CACATCACTT	CCATGGCATG	GATGTTCACA
	TACAGACTCT	TAACCCTGGT	TTACCAGGAC	CTCTAGGAGT	GGATCCAATC	TATATCTTTA	CAGTTGTATA
40	GTATATGATA	TCTCTTTTAT	TTCACTCAAT	TTATATTTTC	ATCATTGACT	ACATATTTCT	TATACACAAC
40	ACACAATTTA	TGAATTTTTT	CTCAAGATCA	TTCTGAGAGT	TGCCCCACCC	TACCTGCCTT	TTATAGTACG
	CCCACCTCAG	GCAGACACAG	AGCACAATGC	TGGGGTTCTC	TTCACACTAT	CACTGCCCCA	AATTGTCTTT
	CTAAATTTCA	ACT1 CAATGT	CATCTTCTCC		CTGAATGAAC	ACCTTTTCAT	CCAGCCTTAA
		CATAACTACT	CTATCCCACG	ATGCAGTATT	GTATCATTAA		GCTTGTGACC
	TCCTTATGTA	TTCTCAATTA	CCTGTATTTG	TGCAATAAAT	TGGAATAATG		TCTTATCTGT
45		GCATGCAAGA					
		AGA/3CAGTTT					
		CCAGAAAACA					
	AACAGAATGT	AAGGACAATC	ACCAGCCATC	TTTTGTCAAT	AATTGATGGA	ATAGAGTTGA	AAGGAACTGG
	AGCATGAGTC	ATA' TTGACC	AGTCAGTCCT	CACTCTTATT	TACTTGCTAT	GTAAACTTGA	GAAAGCTTTT
50	TTCTCTTTGT	GAACCTCAGG	TTTTACATCT	GAAAATGAGA	AATTTGGAAC	AAAAGATTCC	TAACTGGTCT
	TTCTGTTCCC	ATATTCTGTG	ATTTTTCAAT	ATTTAGGATT	TTTGGTAATC	ACAATTACTT	AGTTTGTGGT
	TGAGATAGCA	ACACGAATCA	GAACTATTTG	GTGGACATAT	TTTCAAAGGA	GTAGCTCTCC	ACTTTGGGTA
		GCNGGTCGTG					
		AGGAGATCGA					
55		GGCCTGGTGG					
		AGGCGGAGCT					
		TCAAAAAAA					
		CTAAATCCCT					
		CTTT GGGAGA					
60		AAAAATACTA					
		CTGGAGAATC A					



### Human Histidine L'ecarboxylase Nucleic Acid and Antisense Oligonucleotide Fragments

- 5 5'-GGC TCT GGC (FRAG. NO:1701) (SEQ. ID NO: 1712)
  - 5'-CCC TTG G (FRAG. NO:1702) (SEQ. ID NO: 1713)
  - 5'- TT TGT TCT TCC (FRAG. NO:1703) (SEQ. ID NO: 1714)
  - 5'- TCT CCC TTG GGC TCT GGC TCC TTC TC-3' (FRAG. NO:1024) (SEO. ID NO: 1034)
  - 5'- TCT CTC TCC CTC TCT CTC TGT -3' (FRAG. NO:1025) (SEQ. ID NO:1035)
- 10 5'- CGC CTC CGC CCI GGC TGC TGG GGT GGT GGT GC-3' (FRAG. NO:1026) (SEQ. ID NO:1036)
  - 5'- TTT TGT TCT TCC TTG CTG CC-3' (FRAG. NO:1027) (SEQ. ID NO:1037)
  - 5'- GCC CCG CTG CTT GTC T TC CTC G-3' (FRAG. NO:1028) (SEQ. ID NO:1038)
  - 5'-CTC TGT CCC TCT CTC TCT GTB CTC CTC BGG CTC CBT CBT CTC CCT TGG GC (FRAG.NO:1029)(SEQ.ID NO:1039)

#### Human Beta Tryptase Nucleic Acid and Antisense Oligonucleotide Fragments

- - 5'- GCT CCT GGG GGC CT-3' (FRAG. NO:1705) (SEQ. ID NO: 1716)
  - 5'-CGT BGG CGC-3' (FRAG. NO:1706) (SEQ. ID NO: 1717)
- 20 5'-T GGC CTG GGG-3' (FRAG. NO:1707) (SEQ. ID NO: 1718)
  - 5'-CTT GCT CCT GGG GGC CTC CTG-3' (FRAG. NO:1030) (SEQ. ID NO:1040)
  - 5'-GTC CCT CCG GGT GTT CCC GGC-3' (FRAG. NO:1031) (SEQ. ID NO:1041)

# 25 <u>Human Tryptase-I Nucleic Acid and Antisense Oligonucleotide Fragments</u>

5'-CTT GCT CCT GGG GGC CTC CTG GTC CCT CTG GCT G TT CCC GGC CCT GGB CTG GGG CBG GGG CCG CGT BGG CGC GGC TCG CCB GGB CGG GCB GCC GCB GCB GCC GCC TCB GCC TCG CCC CGG BBT TCC-3' (FRAG. NO: 1708) (SEQ. ID NO:1719)

- 5'-CT CCT GGG GGC CTC CTG-3' (FRAG. NO:1709) (SEQ. ID NO:1720)
- 30 5'-B TCC TGG CCB CGG BBT TCC -3' (FRAG. NO:1710) (SEQ. ID NO:1721)
  - 5'-GTC CCT C-3' (FRAG. NO:1711) (SEQ. ID NO:1722)
  - 5'-CTT GCT CCT GGG GGC CTC CTG-3' (FRAG. NO:1033) (SEO. ID NO:1043)
    - 5'-GTC CCT CTG GCT G TT CCC GGC-3' (FRAG. NO:1034) (SEQ. ID NO:1044)
- 35 TCB GCB TCC TGG CCB CGG BBT TCC -3' (FRAG. NO:1035) (SEO. ID NO:1045)

#### Human Prostaglan lin D Synthase Nucleic Acid and Antisense Oligonucleotide Fragments

- 40 5'-T TCT CCT GCB GCC GBG -3' (FRAG. NO:1713) (SEQ. ID NO:1724)
  - 5'-CTT GCT GCC CTG GCT GT-3' (FRAG. NO:1714) (SEQ. ID NO:1725)
  - 5'- TCT TCT CCT GG-3' (FRAG. NO:1715) (SEQ. ID NO:1726)
  - 5'-GGT GTG CGG GGC CTG GTG CC-3' (FRAG. NO:1036) (SEQ. ID NO:1046)
  - 5'-CCT GGG CCT CGG GTG CTG CCT GT-3' (FRAG. NO:1037) (SEQ. ID NO:1047)
- 45 5'-GCG CTG CCT TCT TCT CCT GG-3' (FRAG. NO:1038) (SEQ. ID NO:1048)
  - 5'-GTC CTC GCC GGG GCC CTT GCT GCC CTG GCT GT-3' (FRAG. NO:1039) (SEQ. ID NO:1049)
  - 5'-GCC CTG GGG GTC TGG GTT CGG CTG T-3' (FRAG. NO:1040) (SEQ. ID NO:1050)
  - 5'-CCC CBG CBG GBC CBG TCC CBT CCB CBG CGT GTG BTG BGT BGC CBT TCT CCT GCB GCC GBG -3' (FRAG. NO:1041) (SEQ. ID NO:1051)

## 50 Human Cyclooxygenase-2 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGG CGC GGG CGB GCB TCG C TTT GGG CTT TTC TCC TTT GGT T TGB GCG CCB GGB CCG CGC BCB GCB GCB GGG CGC GGG CGB GCB CGC GGG CGG GCB GGG-3' (FRAG. NO: 1716) (SEQ. ID NO:1729)

- 5'-G GCB GGG -3' (FF:AG. NO: 1717) (SEQ. ID NO: 1730)
- 5'-TCC TTT GGT T-3' (FRAG. NO:1718) (SEQ. ID NO:1731)
- 55 5'- GGG CGC GGG CGB GCB TCG C-3' (FRAG. NO:1042) (SEQ. ID NO:1052)
  - 5'- TTT GGG CTT TTC TCC TTT GGT T-3' (FRAG. NO:1043) (SEQ. ID NO:1053)
  - 5'-TGB GCG CCB GGB CCG CGC BCB GCB GCB GGG CGC GGG CGB GCB TCG CBG CGG CGG GCB GGG -3' (FRAG. NO:1044) (SE(). ID NO:1054)



### Human Eosinophil Cationic Protein Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CCT CCT TCC TGG TCT GTC TGC CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC CBG TCT CTG BGC TGT GGC-3' (FRAG. NO: 1719) (SEQ. ID NO: 1732)

- 5'-TTC TCC TTT GGT I-3' (FRAG. NO:1720) (SEQ. ID NO: 1733)
- 5'-T TTC TCC TTT GGT T-3' (FRAG. NO:1721) (SEQ. ID NO:1734)
  - 5'- GGG CGC GGG CGB GCB TCG C-3' (FRAG. NO:1042) (SEQ. ID NO:1052)
  - 5'- TTT GGG CTT TTC TCC TTT GGT T-3' (FRAG. NO:1043) (SEQ. ID NO:1053)
  - 5'-TGB GCG CCB GGB CCG CGC BCB GCB GCB GGG CGC GGG CGB GCB TCG CBG CGG CGG GCB GGG -3' (FRAG. NO:1044) (SE(). ID NO:1054)

## 10 <u>Human Eosinophil Derived Neurotoxin Nucleic Acid and Antisense Oligonucleotide Fragments</u>

- 5'-TTC CTG T-3' (FRAG. NO:1723) (SEQ. ID NO: 1736)
- 15 5'-CTC TTT CTG CT-3' (FRAG. NO: 1724) (SEQ. ID NO:1737)
  - 5'-CCC CTT CTG TCC C-3' (FRAG. NO:1725) (SEQ. ID NO: 1738)
    5'- GCC CTG CTG CTC TTT CTG CT-3' (FRAG. NO:1047) (SEO. ID NO:1055)
  - 5'- TCC CTT GGT GGC TTG GGC C-3' (FRAG. NO:1048) (SEQ. ID NO:1056)
  - 5'- GCT GGT TGT TCT GGG GTT C-3' (FRAG. NO:1049) (SEQ. ID NO:1058)
  - 5'- TTG CTG CCC CTT CTG TCC C-3' (FRAG. NO:1050) (SEQ. ID NO:1057)
- 5'- TGT TTG CTG GTG TCT GCG C -3' (FRAG. NO:1050) (SEQ. ID NO:1057)
  - 5'- CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC TGT-3' (FRAG. NO:1052) (SEO. ID NO:1060)

### Human Eosinophil Peroxidase Nucleic Acid and Antisense Oligonucleotide Fragments

TCT TGT TTT GGG GGC CGC GGC CGT TGT CTT G GTT TGG GGG TTT CCG TTG GGG TTC TCC TGG CCC GTC TTT GGT G 5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC CACCGCTCCT GTCAGCCAAC AAATATCCAT TGAGCGACAC CTGTGTCCCA GGTGCTGCTC TGGGCCCTGG GAGAAGTGCA TCAGTGGGCT TGGTAGTAGA GGGTAGGGAT GGAGTGAAGG GTAGGCAGGA AGAATGTCCC CAGGCTGGTA GGAGGTGGGG TGGGGGGTTT CAGTCTCAAA ACTCCCATGA AAACCAGAGA GAAGTTTCAG AACTCCACCC AAGAGGCTGG GTTTCTAGGG CCCAGAGCTG CCCTCCCCCA CCCTAGAATG GGCTATAAAA GTCCCTTCCC AGCTACGTCC AGAGAAGAGC TGGAGGAAGT GAGAGGTCGG CTGGGGGTCC TCAAAGTGAG AGGGGAGCAG AGGATCCTCC CGTGCAGGCT GTGGATGTCA CTCACTTCCC AGCTGGTGAA GCCTCGCTGC AGAGATGCAT CTGCTCCCAG CCCTGGCAGG GGTCCTGGCC ACACTCGTCC TCGCCCAGCC CTGTGAGGGC ACTGACCCAG GTA/TAGTCC CCTAGACAGG CAAGGAGGAG GGAGGGGAAA TGGAAGGGGA AGCACTTGGG TCTTGGAGGG GGTCTTGTGG CTTGCTGAAC CCTGAGTCCC CATCTCTTTG AACAGCCTCC CCTGGGGCAG TGGAGACCTC GGTCCTGCGA GACTGCATAG CAGAGGCCAA GTTGCTGGTG GATGCTGCCT ACAATTGGAC CCAGAAGAGG TGGACTTGGG TCTGGGGGCT GCATGGGCCT GGGAGGATCA GT TAATACCTTG TGGGGTCAGG GAGCCCATGT CCCGTGCTGA TGTTATTTCC CCACCAGGTC CGGGCTGTCT CCAACCAGAT TGTGCGCTTC CCCAATGAGA GACTGACCTC CGACCGTGGC CGAGCCCTCA TGTTCATGCA GTGGGGCCAG TTCATTGACC ATGACCTGGA CTTCTCCCCG GAGTCCCCGG CCAGAGTGGC CTTCACTGCA GGCGTTGACT GTGAGAGGAC CTGCGCCCAG CTGCCCCCCT GCTTTCCCAT CAAGGTACCT ACCCTCAGCC AATCTCCCAT GCCCTTGTGT GGCCTCCCCC AAAGGCAAGG TGCTGGGGGT GGGGATCTGG AAGACTGGAG CACCATCCTT AAGGAGCTGC CTGTGGAGCT AGGGTATGAG ACAGAGACAC AAG CACTGTCTCC TCTTCCATCT CAGATCCCAC CCAATGACCC CCGCATCAAG AACCAGCGTG ACTGCATCCC TTTCTTCCGC TCGGCACCCT CATGCCCCCA AAACAAGAAC AGAGTCCGCA ACCAGATCAA CGCGCTCACC TCCTTTGTGG ACGCCAGCAT GGTGTATGGC AGTGAGGTCT CCCTCTCGCT GCGCCTCCGC AACCGGACCA ACTACCTGGG GCTGCTGGCC ATCAACCAGC GCTTTCAAGA CAACGGCCGG GCCCTGCTGC CCTTCGACAA CCTGCACGAT GACCCCTGTC TCCTCACCAA CCGCTCGGCG 50 CGCATCCCCT GCTTCCTGGC AGGTCAGACA GGGAGGAAGG TGGTGTCTTC CCAGGAAACA GCCATCCCTG GGGTCCCAAC TGGGAAGCAA TGGTGGGATG TGGTGAAGGT ACATGGTTTG GGACCTCAGT ATTAGGCACA CCATAAGCAT GGATCTGTGC AC TGAAGAGATG GAGGTCCAGT GAGGGCCAGG AGTTTGGCCC ACCCCGTCTC TCCCATCCCC AGCCCTGGGT CTACCCTGGT AGAAAGACAT TTCTCTGGGA AAGGCTGCAG TAAATCTGAG CTTGGGGTTT TCAAGGTGAC ACCCGATCAA CGGAAACCCC CAAACTGGCA GCCATGCACA CCCTCTTTAT GCGAGAGCAC AACCGGCTGG CCACCGAGCT GAGACGCCTG AATCCCCGGT GGAATGGAGA CAAACTGTAC AATGAGGCTC GGAAGATCAT GGGGGCCATG GTCCAGGTAA GGAGCTCTGC ATCCCAGCAT CCCC CTTTGTATCT CCACCCACCA ATAGTAAATT AATGTTGTCA CATTTGACGT GATGACAATA AAGAATATGT CTGAGCCACC CTTTGAAAAG GCAAGGGTAT GGGTGAGTAG CCTCTGGGGA ATGTTCCTCC TGTCTTCCCT TCCAGATCAT CACCTACCGA GACTTCTGC CCCTGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCCTGGG GCACTACAGG 60 GGGTACTGCT CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCTGGC CTTCCGCTTT GGCCACACAA



	TGCTCCAGCC				GGCCTCCGCA		ATGTCCCACT
						TTTTCCAGGG	
	GGTGAGGGTG					CT CCAGAACTCT	GTTTCCTGAC
	AAACGTTACT				GCTAGCTTGG		TAACCCAAGT
5	AGCTTCCCAG	AGGCTGGTCC			CCTGCCACCA	GGGGGCATCG	ACCCCATCCT
	CCGGGGCCTC	ATGGCCACCC	CTGCCAAGCT	GAACCGTCAG	GATGCCATGT	TAGTGGATGA	GCTCCGGGAC
	CGGCTGTTTC	GGC/AGTGAG	GAGGATTGGG			CATGCAACGA	AGCCGGGACC
	ACGGCCTTCC	AGGTGAGGGG	GCTGTCCACC				CTCAAGGGGT
	TCTGGGAAGA	CCCT'GGTACC			GTGGCAGAAA	CGAGGTGTTT	TCACCAAAAG
10	ACAGCGCAAG	GCCCTGAGCA	GAATTTCCTT	GTCTCGAATT	ATATGTGACA	ATACCGGTAT	CACCACGGTT
	TCAAGGGACA	TCT CAGAGC	CAACATCTAC			CAGCCGTATC	CCCAGGTTGA
	ACCTATCAGC	CTGCCGAGGG	ACATGAGGCT	TCTGCAGGTA	AGGGGAGGCC	ACCTCCAGCA	CCCTGGGCTG
	GTTAAGCCTC	ACAT'CCTTCC	CTGGATGGAT	GGCTGAGTCC	TCTTAGGTCT	CTAAGCAGAG	AAAACAGAAC
	TTGTCACTAG	GTACTCTTTC	CAAGTGGCTT	CCCAATGTGC	TAGTTTCTGG	GCTGACAGTC	AATTCCAGGC
15	CCTAGGACTT	TGGGGGAAA				GCCAGGACCC	CTGCCAGGGC
	ACTGACCCAG	CCTCCCCTGG	GGCAGTGGAG	ACCTCGGTCC	TGCGAGACTG	CATAGCAGAG	GCCAAGTTGC
	TGGTGGATGC	TGCCTACAAT	TGGACCCAGA	AGAGCATCAA	GCAGCGGCTT	CGCAGCGGTT	CAGCCAGCCC
	CATGGACCTC	CTG1'CCTACT	TCAAACAACC	GGTAGCAGCC	ACCAGGACAG	TTGTTCGGGC	CGCAGATTAT
	ATGCATGTGG	CTT1'GGGGCT	GCTTGAAGAG	AAGTTACAAC	CCCAGCGGTC	CGGACCCTTC	ATTGTCACTG
20	ATGTGCTAAC	AGAACCACAG	CTGCGGCTGC	TGTCCCAGGC	CAGTGGCTGT	GCTCTCCGGG	ACCAGGCCGA
	GCGCTGCAGC	GACAAGTACC	GCACCATCAC	TGGACGGTGC	AACAACAAGA	GGAGACCCTT	GCTAGGGGCC
	TCCAACCAGG	CTCTGGCTCG	CTGGCTGCCC	GCCGAGTATG	AGGATGGGCT	GTCGCTCCCC	TTCGGCTGGA
	CCCCCAGCAG	GAG 3CGCAAT	GGCTTCCTTC	TCCCTCTTGT	CCGGGCTGTC	TCCAACCAGA	TTGTGCGCTT
	CCCCAATGAG	AGACTGACCT	CCGACCGTGG	CCGAGCCCTC	ATGTTCATGC	AGTGGGGCCA	GTTCATTGAC
25	CATGACCTGG	ACTT'CTCCCC	GGAGTCCCCG	GCCAGAGTGG	CCTTCACTGC	AGGCGTTGAC	TGTGAGAGGA
	CCTGCGCCCA	GCTGCCCCCC	TGCTTTCCCA	TCAAGATCCC	ACCCAATGAC	CCCCGCATCA	AGAACCAGCG
	TGACTGCATC	CCTTTCTTCC	GCTCGGCACC	CTCATGCCCC	CAAAACAAGA	ACAGAGTCCG	CAACCAGATC
	AACGCGCTCA	CCTCCTTTGT	GGACGCCAGC	ATGGTGTATG	GCAGTGAGGT	CTCCCTCTCG	CTGCGGCTCC
	GCAACCGGAC	CAACTACCTG	GGGCTGCTGG	CCATCAACCA	GCGCTTTCAA	GACAACGGCC	GGGCCCTGCT
30	GCCCTTCGAC	AACCTGCACG	ATGACCCCTG	TCTCCTCACC	AACCGCTCGG	CGCGCATCCC	CTGCTTCCTG
	GCAGGTGACA	CCCGATCAAC	GGAAACCCCC	AAACTGGCAG	CCATGCACAC	CCTCTTTATG	CGAGAGCACA
	ACCGGCTGGC	CACCGAGCTG	AGACGCCTGA	ATCCCCGGTG	GAATGGAGAC	AAACTGTACA	ATGAGGCTCG
	GAAGATCATG	GGGGCCATGG			GACTTTCTGC		GGGCAAGGCC
	CGGGCCAGGA	GAACCCTGGG	GCACTACAGG	GGGTACTGCT	CCAATGTGGA	CCCACGGGTG	GCCAATGTCT
35	TCACCCTGGC	CTT('CGCTTT	GGCCACACAA		CTTCATGTTC	CGCTTGGACA	GTCAGTACCG
	GGCCTCCGCA	CCCAACTCGC	ATGTCCCACT	TAGCTCTGCC	TTCTTTGCCA	GCTGGCGGAT	CGTGTATGAA
	GGGGGCATCG	ACCCCATCCT	CCGGGGCCTC	ATGGCCACCC	CTGCCAAGCT	GAACCGTCAG	GATGCCATGT
	TAGTGGATGA	GCTCCGGGAC	CGGCTGTTTC		GAGGATTGGG	CTGGACCTGG	CAGCTCTCAA
	CATGCAACGA	AGCCGGGACC	ACGGCCTTCC	AGGGTACAAT	GCTTGGAGGC	GCTTCTGTGG	GCTCTCCCAG
40	CCCCGGAATT	TGGCACAGCT			AGGACTTGGC	AAGGAAGTTC	CTGAATTTGT
	ATGGAACACC	TGACAACATT	GACATCTGGA	TTGGGGCCAT	CGCTGAGCCT	CTTTTGCCGG	GGGCTCGAGT
	GGGGCCTCTT	CTGC CTTGTC	TGTTCGAGAA	CCAGTTCAGA	AGAGCCGAGA	CGGAGACAGG	TTCTGGTGGC
	AGAACGAGGT					CTTGTCTCGA	ATTATATGTG
						TACCCTCGGG	
45						GCTTCTGCAG	
						CTTGTCTCCC	
						CCAGGAGTGA	
						TATGAATCAG	
						CAGCTGGAGG	
50						ACCACTCGGT	
						TTCTACCAAT	
			(SEQ. ID NO: 30				
					CTGTGTCCCA	GGTGCTGCTC	TGGGCCCTGG
						GTAGGCAGGA	
55						AAACCAGAGA	
						CCCTAGAATG	
						CTGGGGGTCC	
						AGCTGGTGAA	
						TCGCCCAGCC	
60						TGGAAGGGGA	
						AACAGCCTCC	
						GATGCTGCCT	



CCAGAAGAGG TGG/1CTTGGG TCTGGGGGCT GCATGGGCCT GGGAGGATCA GT-3' (FRAG. NO:_)(SEQ. ID NO:2483)

5'-TAATACCTTG TGGGGTCAGG GAGCCCATGT CCCGTGCTGA TGTTATTTCC CCACCAGGTC CGGGCTGTCT CCAACCAGAT TGTCCGCTTC CCCAATGAGA GACTGACCTC CGACCGTGGC CGAGCCCTCA TGTTCATGCA GTGGGGCCAG TTCATTGACC ATGACCTGGA CTTCTCCCCG GAGTCCCCGG CCAGAGTGGC CTTCACTGCA GCCGTTGACT GTGAGAGGAC CTGCGCCCAG CTGCCCCCCT GCTTTCCCAT CAAGGTACCT ACCCTCAGCC AATCTCCCAT GCCCTTGTGT GGCCTCCCCC AAAGGCAAGG TGCTGGGGGT GGGGATCTGG AAGACTGGAG CACCATCCTT AAGCAGCTGC CTGTGGAGCT AGGGTATGAG ACAGAGACAC AAG-3' (FRAG.NO: )(SEQ.ID NO:2484)

5'-CACTGTCTCC TCTTCCATCT CAGATCCCAC CCAATGACCC CCGCATCAAG AACCAGCGTG ACTGCATCCC TTTCTTCCGC TCGGCACCCT CATGCCCCCA AAACAAGAAC AGAGTCCGCA ACCAGATCAA CGCGCTCACC TCCTTTGTGG ACGCCAGCAT GGTGTATGGC AGTGAGGTCT CCCTCTCGCT GCGGCTCCGC AACCGGACCA ACTACCTGGG GCTCCTGGCC ATCAACCAGC GCTTTCAAGA CAACGGCCGG GCCCTGCTGC CCTTCGACAA CCTGCACGAT GACCCCTGTC TCCTCACCAA CCGCTCGGCG CGCATCCCCT GCTTCCTGGC AGGTCAGACA CGGAGGAAGG TGGTGTCTTC CCAGGAAACA GCCATCCCTG GGGTCCCAAC TGGGAAGCAA TGGTGGGATG TGGTGAAGGT ACATGGTTTG GGACCTCAGT ATTAGGCACA CCATAAGCAT GGATCTGTGC AC-3' (FRAG.NO: )(SEQ.ID NO:2485)

5'-TGAAGAGATG GAGGTCCAGT GAGGGCCAGG AGTTTGGCCC ACCCCGTCTC TCCCATCCCC AGCCCTGGGT CTACCCTGGT AGA/AGACAT TTCTCTGGGA AAGGCTGCAG TAAATCTGAG CTTGGGGTTT TCAAGGTGAC ACCCGATCAA CGG/AAACCCC CAAACTGGCA GCCATGCACA CCCTCTTTAT GCGAGAGCAC AACCGGCTGG CCACCGAGCT GAG/ACGCCTG AATCCCCGGT GGAATGGAGA CAAACTGTAC AATGAGGCTC GGAAGATCAT GGGGGCCATG GTCC/AGGTAA GGAGCTCTGC ATCCCAGCAT CCCCC-3' (FRAG.NO: )(SEQ.IDNO:2486)

5'-CTTTGTATCT CCACCCACCA ATAGTAAATT AATGTTGTCA CATTTGACGT GATGACAATA AAGAATATGT CTGAGCCACC CTTTGAAAAG GCAAGGGTAT GGGTGAGTAG CCTCTGGGGA ATGTTCCTC TGTCTTCCCT TCCAGATCAT CACCTACCGA GACTTTCTGC CCCTGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCCTGGG GCACTACAGG GGGTACTGCT CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCTGGC CTTCCGCTTT GGCCACACAA TGC'CCAGCC CTTCATGTTC CGCTTGGACA GTCAGTACCG GGCCTCCGCA CCCAACTCGC ATGTCCCACT TAGC'TCTGCC TTCTTTGCCA GCTGGCGGAT CGTGTATGAA GGTGACCAGG TTTTCCAGGG GGCAAATGGG GGTGAGGGTG GGGAGCATGC CCTCCCCTAG GTGG-3' (FRAG.NO: )(SEQ.ID NO:2487)

5'-TCCAGCTGCT TCATGTCTCT CCAGAACTCT GTTTCCTGAC AAACGTTACT AACATACCCG ACTGGCTTGT CCAGCTCTGG GCTAGCTTGG CATCATGTGA TAACCCAAGT AGCTTCCCAG AGGCTGGTCC AATCTGTGCT GCTCACATTC CCTCCCACCA GGGGGCATCG ACCCCATCCT CCGGGGCCTC ATGGCCACCC CTGCCAAGCT GAACCGTCAG GATGCCATGT TAGTGGATGA GCTCCGGGAC CGGCTGTTC GGCAAGTGAG GAGGATTGGG CTGGACCTGG CAGCTCTCAA CATGCAACGA AGCCGGGACC ACGGCCTTCC AGGTGAGGGG GCTGTCCACC

35 TCTTCTCCCA GCTTT 3CTCG GGCCAGGCTG CTCAAGGGGT TCTGGGAAGA CCCTGGTACC-3' (FRAG.NO:_)(SEQ.ID NO:2488)
5'-CGACTGCCTG GTAGGTTCTG GTGGCAGAAA CGAGGTGTTT TCACCAAAAG ACAGCGCAAG GCCCTGAGCA

GAATTTCCTT GTCICGAATT ATATGTGACA ATACCGGTAT CACCACGGTT TCAAGGGACA TCTTCAGAGC CAACATCTAC CCTC'GGGGCT TTGTGAACTG CAGCCGTATC CCCAGGTTGA ACCTATCAGC CTGGCGAGGG ACATGAGGCT TCTC'CAGGTA AGGGGAGGCC ACCTCCAGCA CCCTGGGCTG GTTAAGCCTC ACATCCTTCC CTGGATGGAT GGC GAGTCC TCTTAGGTCT CTAAGCAGAG AAAACAGAAC TTGTCACTAG GTACTCTTTC CAAGTGGCTT CCCAATGTGC TAGTTTCTGG GCTGACAGTC AATTCCAGGC CCTAGGACTT TGGGGGGAAA TTAGGAGCAT CCAACTA-3' (FRAG.NO: )(SEQ.ID NO:2489)

5'-GAATTCCGTG GCCAGGACCC CTGCCAGGGC ACTGACCCAG CCTCCCCTGG GGCAGTGGAG ACCTCGGTCC TGCGAGACTG CATAGCAGAG GCCAAGTTGC TGGTGGATGC TGCCTACAAT TGGACCCAGA AGAGCATCAA GCAGCGGCTT CGCAGCGGTT CAGCCAGCCC CATGGACCTC CTGTCCTACT TCAAACAACC GGTAGCAGCC ACCAGGACAG TTG TCGGGC CGCAGATTAT ATGCATGTGG CTTTGGGGCT GCTTGAAGAG AAGTTACAAC CCCAGCGGTC CGGACCCTTC ATTGTCACTG ATGTGCTAAC AGAACCACAG CTGCGGCTGC TGTCCCAGGC CAGTGGCTGT GCTCTCCGGG ACCAGGCCGA GCGCTGCAGC GACAAGTACC GCACCATCAC TGGACGGTGC AACAACAAGA GGAGACCCTT GCTAGGGGCC TCCAACCAGG CTCTGGCTCG CTGGCTGCCC GCCGAGTATG AGGATGGGCT GTCGCTCCCC TTCGGCTGGA CCCCCAGCAG GAGGCGCAAT GGCTTCCTTC TCCCTCTTGT CCGGGCTGTC TCCAACCAGA TTGTGCGCTT CCCCAATGAG AGACTGACCT CCGACCGTGG CCGAGCCCTC ATGTTCATGC AGTGGGCCA GTTCATTGAC CATGACCTGG ACTTCTCCCC GGAGTCCCCG GCCAGAGTGG CCTTCACTGC AGGCGTTGAC TGTGAGAGGA CCTGCGCCCA GCTGCCCCCC TGCTTTCCCA TCAAGATCCC ACCCAATGAC CCCCGCATCA AGAACCAGCG TGACTGCATC CCTTTCTTCC GCTCGGCACC CTCATGCCCC CAAAACAAGA ACAGAGTCCG CAACCAGATC AACGCGCTCA CCTCCTTTGT GGACGCCAGC ATGGTGTATG GCAGTGAGGT CTC/CTCTCG CTGCGGCTCC GCAACCGGAC CAACTACCTG GGGCTGCTGG CCATCAACCA GCGCTTTCAA GACAACGGCC GGGCCCTGCT GCCCTTCGAC AACCTGCACG ATGACCCCTG TCTCCTCACC AACCGCTCGG CGCGCATCCC CTGCTTCCTG GCAGGTGACA CCCGATCAAC GGAAACCCCC AAACTGGCAG CCATGCACAC CCTCTTTATG CGAGAGCACA ACCGGCTGGC CACCGAGCTG AGACGCCTGA ATCCCCGGTG GAATGGAGAC AAACTGTACA ATGAGGCTCG GAAGATCATG GGGGCCATGG TCCAGATCAT CACCTACCGA

GACTTTCTGC CCCTGGTTCT GGGCAAGGCC CGGGCCAGGA GAACCCTGGG GCACTACAGG GGGTACTGCT



CCAATGTGGA CCCACGGGTG GCCAATGTCT TCACCCTGGC CTTCCGCTTT GGCCACACAA TGCTCCAGCC CTTCATGTTC CGCITGGACA GTCAGTACCG GGCCTCCGCA CCCAACTCGC ATGTCCCACT TAGCTCTGCC TTCTTTGCCA GCTGGCGGAT CGTGTATGAA GGGGGCATCG ACCCCATCCT CCGGGGCCTC ATGGCCACCC CTGCCAAGCT GAACCGTCAG GATGCCATGT TAGTGGATGA GCTCCGGGAC CGGCTGTTTC GGCAAGTGAG GAGGATTGGG CTGGACCTGG CAGCTCTCAA CATGCAACGA AGCCGGGACC ACGGCCTTCC AGGGTACAAT GCTTGGAGGC GCT'CTGTGG GCTCTCCCAG CCCCGGAATT TGGCACAGCT TAGCCGGGTG CTGAAAAACC AGGACTTGGC AAGGAAGTTC CTGAATTTGT ATGGAACACC TGACAACATT GACATCTGGA TTGGGGCCAT CGCTGAGCCT CTT1TGCCGG GGGCTCGAGT GGGGCCTCTT CTGGCTTGTC TGTTCGAGAA CCAGTTCAGA AGAGCCGAGA CGGAGACAGG TTCTGGTGGC AGAACGAGGT GTTTTCACCA AAGACAGCGC AAGGCCCTGA 10 GCAGAATTTC CTTCTCGA ATTATATGTG ACAATACCGG TATCACCACG GTTTCAAGGG ACATCTTCAG AGCCAACATC TACCCTCGGG GCTTTGTGAA CTGCAGCCGT ATCCCCAGGT TGAACCTATC AGCCTGGCGA GGGACATGAG GCT CTGCAG GAGTCTATCC CAAGTCTCCA ACTTTTGGAG ACAAGGGGAA GGGGAGGACC ATGAGGCTGC CTTC/TCTCCC TGGAGCAGT GCAGGCTCGT GACGCTTCTG CTGGCTACAG CTCAGAGCTG GGTTCCCCAG CCAGGAGTGA AGGCTGGGGG CTCCTATCAG CAATGGACCT TCCGCCTTGG GAGCCTCTTA 15 GGTATTAGGC TATCAATCAG CGCCACGTGC AAAGGCTTGG GAGCCAAGCC ATGTGGTCTT GCACCCCAGG CAAGAAAAGT CAGCTGGAGG GTTTACAGCA CTTTCTACTG TTTCCCAGCC CTCCCTCCCC TCCCTCACCA TGACTAAGAG ACCACTCGGT CCTAGCCTCC AGACACCCCA CAATACTCCT CTGAGCCTGA GGCCAGGCAG CATGCTCTGC TTCTACCAAT AAAGCACTGC CGGAATTC-3' (FRAG.NO: ) (SEQ.ID no:2490) 5'-TC GGC CTG GTC CCG G-3' (FRAG. NO: 1727) (SEQ. ID NO:1740)

- 20 5'-TGG GGG TTT CCC; TTG-3' (FRAG. NO: 1728) (SEQ. ID NO: 1741)
  5'-TG GTC CCG GBG F.GC -3' (FRAG. NO: 1729) (SEQ. ID NO: 1742)
  5'-GCG CTC GGC CTG GTC CCG G-3' (FRAG. NO: 1053) (SEQ. ID NO: 1061)
  5'-GGG TCT CCT CTT GTT GC-3' (FRAG. NO: 1054) (SEQ. ID NO: 1062)
  5'- TTG CGC CTC CTG CTG GGG GT CC-3' (FRAG. NO: 1055) (SEQ. ID NO: 1063)
- 5'-CTC TGT TCT TGT 'ITT GGG GGC-3' (FRAG. NO:1056) (SEQ. ID NO:1064)
   5'-GGG CCC GGC CGT TGT CTT G-3' (FRAG. NO:1057) (SEQ. ID NO:1065)
   5'-GTT TGG GGG TTT CCG TTG-3' (FRAG. NO:1058) (SEQ. ID NO:1066)
   5'-GGG TTC TCC TGG CCC GGG CCT TGC CC-3' (FRAG. NO:1059)(SEQ. ID NO:1067)
   5'-GGC CGT GGT CCC GGC TTC GTT GC-3' (FRAG. NO:1060) (SEQ. ID NO:1068)
- 5'-CCT GTC TCC GTC ICG GCT CTT CTG-3' (FRAG. NO:1061) (SEQ. ID NO:1069)
  5'-GGG CCT TGC GCT GTC TTT GGT G-3' (FRAG. NO:1062) (SEQ. ID NO:1070)
  5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC -3' (FRAG. NO:1063) (SEQ. ID NO:1071)

## Human Intercellt lar Adhesion Molecule-1 (ICAM-1)

#### 35 Nucleic Acid and Antisense Oligonucleotide Fragments

- 40 TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCC GGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB G-3' (FRAG. NO: 1730) (SEQ. ID NO: 1743)
  - 5'-GGG GGC TGC TGG G-3' (FRAG. NO: 1731) (SEQ. ID NO:1744)
  - 5'-T GTC CTC CGG CCT CCC-3' (FRAG. NO:1732) (SEQ. ID NO:1745)
  - 5'-G CCB TBG CGB GC C TGB G-3' (FRAG. NO: 1733) (SEQ. ID NO: 1746)
- 45 5'-CTC TGG GGT GGC CTT C-3' (FRAG. NO:1734) (SEQ. ID NO:1747)
  - 5'-GCG CGG GCC GGG GGC TGC TGG G-3' (FRAG. NO:1064) (SEQ. ID NO:1072)
  - 5'-GGT TGG CCC GGG GTG CCC C-3' (FRAG. NO:1065) (SEQ. ID NO:1073)
  - 5'-GCC GCT GGG TGC CCT CGT CCT CTG CGG TC-3' (FRAG. NO:1066) (SEQ. ID NO:1074)
  - 5'-GTG TCT CCT GGC TCT GGT TCC CC-3' (FRAG. NO:1067) (SEQ. ID NO:1075)
- 5'-GCT GCG CCC GTT GTC CTC TGG GGT GGC CTT C-3' (FRAG. NO:1068) (SEQ. ID NO:1076)
  - 5'-GCT CCC GGG TCT GGT TCT TGT GT-3' (FRAG. NO:1069) (SEQ. ID NO:1077)
    5'-TGG GGG TCC CTT TTT GGG CCT GTT GT-3' (FRAG. NO:1070) (SEQ. ID NO:1078)
  - 5'-GGC GTG GCT TGT GTG TTC GGT TTC-3' (FRAG. NO:1071) (SEQ. ID NO:1079)
  - 5'-TGC CCT GTC CTC CGG CGT CCC-3' (FRAG. NO:1072) (SEQ. ID NO:1080)
- 55 5'- CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB GCG GGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB G-3' (FRA/3. NO:1073) (SEQ. ID NO:1081)

# Human Vascular Cell Adhesion Molecule 1 (VCAM-1)

#### Nucleic Acid and Oligonucleotide Fragments



5'-C TGT CGT-3' (FRAG. NO:1736) (SEQ. ID NO:<u>1749)</u>

5'-TGC TTC TTC C-3' (FRAG. NO:1737) (SEQ. ID NO:<u>1750)</u>

 ${\tt HSVCAM1AS1: 5'-CCT\ CTT\ TTC\ TGT\ TTT\ TCC\ C-3'\ (FRAG.\ NO:1074)\ \ (SEQ.\ ID\ NO:\underline{1082})}$ 

HSVCAM1AS2: 5'-CTC TGC CTT TGT TTG GGT TCG-3' (FRAG. NO:1075) (SEQ. ID NO:1083)

HSVCAM1AS3: 5'-CTT CCT TTC TGC TTC TTC C-3' (FRAG. NO:1076) (SEQ. ID NO:1084)

HSVCAM1AS4: 5'-CTG TGT CTC CTG TCT CCG CTT TTT TCT TC-3' (FRAG. NO:1077) (SEQ. ID NO:1085)

HSVCAM1AS5: 5'-GTC TTT GTT GTT TTC TCT TCC TTG-3' (FRAG. NO:1078) (SEQ. ID NO:1086)
CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC GBT TTT BBBB GCT TGB GBB GCT GCB BBC BTT BTC CBB
BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC TTC CCB GGC BTT TTB BGT TGC TGT CGT(FRAG.
NO:1079)(SEQ. ID NO:1087)

Human Endothelial Leukocyte Adhesion Molecule(ELAM-1) **Nucleic Acid and Antisense Oligonucleotide Fragments** 5'-BBG TGB GBG CTG BGB GBB BCT GTG BBG CBB TCB TGB CTT CBB GBG TTC TTT TCB CCC GTT CTT GGC TTC 20 GATACCCACC TGAGAGATCC TGTGTTTGAA CAACTGCTTC CCAAAACGGA AAGTATTTCA AGCCTAAACC TTTGGGTGAA AAGAACTCTT GAAGTCATGA TTGCTTCACA GTTTCTCTCA GCTCTCACTT TGGTGCTTCT CATTAAAGAG AGTGGAGCCT GGTCTTACAA CACCTCCACG GAAGCTATGA CTTATGATGA GGCCAGTGCT TATTGTCAGC AAACGTACAC ACACCTGGTT GCAATTCAAA ACAAAGAAGA GATTGAGTAC CTAAACTCCA TATTGAGCTA TTCACCAAGT TATTACTGGA TTGGAATCAG AAAAGTCAAC AATGTGTGGG TCTGGGTAGG AACCCAGAAA CCTCTGACAG AAGAAGCCAA GAACTGGGCT CCAGGTGAAC CCAACAATAG GCAAAAAGAT GAGGACTGCG TGGAGATCTA CATCAAGAGA GAAAAAGATG TGGGCATGTG GAATGATGAG AGGTGCAGCA AGAAGAAGCT TGCCCTATGC TACACAGCTG CCTGTACCAA TACATCCTGC AGTGGCCACG GTGAATGTGT AGAGACCATC AATAATTACA CTTGCAAGTG TGACCCTGGC TTCAGTGGAC TCAAGTGTGA GCAAATTGTG AACTGTACAG CCCTGGAATC CCCTGAGCAT GGAAGCCTGG TTTGCAGTCA CCCACTGGGA AACTTCAGCT ACAATTCTTC CTGCTCTATC AGCTGTGATA GGGGTTACCT GCCAAGCAGC ATGGAGACCA TGCAGTGTAT GTCCTCTGGA GAATGGAGTG CTCCTATTCC AGCCTGCAAT GTGGTTGAGT GTGATGCTGT GACAAATCCA GCCAATGGGT TCGTGGAATG TTTCCAAAAC CCTGGAAGCT TCCCATGGAA CACAACCTGT ACATTTGACT GTGAAGAAGG ATTIGAACTA ATGGGAGCCC AGAGCCTTCA GTGTACCTCA TCTGGGAATT GGGACAACGA GAAGCCAACG TGTAAAGCTG TGACATGCAG GGCCGTCCGC CAGCCTCAGA ATGGCTCTGT GAGGTGCAGC CATTCCCCTG CTGCAGAGTT CACCTTCAAA TCATCCTGCA ACTTCACCTG TGAGGAAGGC TTCATGTTGC AGGGACCAGC CCAGGTTGAA TGCACCACTC AAGGGCAGTG GACACAGCAA ATCCCAGTTT GTGAAGCTTT CCAGTGCACA GCC TGTCCA ACCCCGAGCG AGGCTACATG AATTGTCTTC CTAGTGCTTC TGGCAGTTTC CGTTATGGGT CCACCTGTGA GTTCTCCTGT GAGCAGGGTT TTGTGTTGAA GGGATCCAAA AGGCTCCAAT GTGGCCCCAC AGGGGAGTGG GACAACGAGA AGCCCACATG TGAAGCTGTG AGATGCGATG CTGTCCACCA GCCCCCGAAG GGT TGGTGA GGTGTGCTCA TTCCCCTATT GGAGAATTCA CCTACAAGTC CTCTTGTGCC TTCAGCTGTG AGGA.GGGATT TGAATTATAT GGATCAACTC AACTTGAGTG CACATCTCAG GGACAATGGA CAGAAGAGT TCC1TCCTGC CAAGTGGTAA AATGTTCAAG CCTGGCAGTT CCGGGAAAGA TCAACATGAG CTGCAGTGGG GAGCCCGTGT TTGGCACTGT GTGCAAGTTC GCCTGTCCTG AAGGATGGAC GCTCAATGGC TCTGCAGCTC GGACATGTGG AGCCACAGGA CACTGGTCTG GCCTGCTACC TACCTGTGAA GCTCCCACTG 45 AGTCCAACAT TCCCTTGGTA GCTGGACTTT CTGCTGCTGG ACTCTCCCTC CTGACATTAG CACCATTTCT CCTCTGGCTT CGGAAATGCT TACGGAAAGC AAAGAAATTT GTTCCTGCCA GCAGCTGCCA AAGCCTTGAA TCAGACGGAA GCTACCAAAA GCCTTCTTAC ATCCTTTAAG TTCAAAAGAA TCAGAAACAG GTGCATCTGG GGAACTAGAG GGA'TACACTG AAGTTAACAG AGACAGATAA CTCTCCTCGG GTCTCTGGCC CTTCTTGCCT ACTATGCCAG ATGC:CTTTAT GGCTGAAACC GCAACACCCA TCACCACTTC AATAGATCAA AGTCCAGCAG GCAAGGACGG CCT CAACTG AAAAGACTCA GTGTTCCCTT TCCTACTCTC AGGATCAAGA AAGTGTTGGC TAATGAAGGG AAAGGATATT TTCTTCCAAG CAAAGGTGAA GAGACCAAGA CTCTGAAATC TCAGAATTCC TTTTCTAACT CTCCCTTGCT CGCTGTAAAA TCTTGGCACA GAAACACAAT ATTTTGTGGC TTTCTTTCTT TTGCCCTTCA CAGIGTTTCG ACAGCTGATT ACACAGTTGC TGTCATAAGA ATGAATAATA ATTATCCAGA GTTTAGAGGA AAAAAATGAC TAAAAATATT ATAACTTAAA AAAATGACAG ATGTTGAATG CCCACAGGCA AATGCATGGA GGGTTGTTAA TGGTGCAAAT CCTACTGAAT GCTCTGTGCG AGGGTTACTA TGCACAATTT AATCACTTTC ATCCCTATGG GATTCAGTGC TTCTTAAAGA GTTCTTAAGG ATTGTGATAT TTTTACTTGC ATTGAATATA TTATAATCTT CCATACTTCT TCATTCAATA CAAGTGTGGT AGGGACTTAA AAAACTTGTA AATGCTGTCA ACTATGATAT GGTAAAAGTT ACTTATTCTA GATTACCCCC TCATTGTTTA TTAACAAATT ATGTTACATC TGTTTTAAAT TTATTTCAAA AAGGGAAACT ATTGTCCCCT AGCAAGGCAT GATGTTAACC AGAATAAAGT TCTGAGTGTT TTTACTACAG TTGTTTTTTG AAAACATGGT AGAATTGGAG AGTAAAAACT

GAATGGAAGG TTTGTATATT GTCAGATATT TTTTCAGAAA TATGTGGTTT CCACGATGAA AAACTTCCAT



	GAGGCCAAAC	GTT7 TGAACT	AATAAAAGCA	TAAATGCAAA	CACACAAAGG	TATAATTTTA	TGAATGTCTT
	TGTTGGAAAA	GAA^`ACAGAA	AGATGGATGT	GCTTTGCATT	CCTACAAAGA	TGTTTGTCAG	ATGTGATATG
	TAAACATAAT	<b>TCT1GTATAT</b>	TATGGAAGAT	TTTAAATTCA	CAATAGAAAC	TCACCATGTA	AAAGAGTCAT
	CTGGTAGATT	TTTA ACGAAT	GAAGATGTCT	AATAGTTATT	CCCTATTTGT	TTTCTTCTGT	ATGTTAGGGT
5	GCTCTGGAAG	AGAGGAATGC	CTGTGTGAGC	AAGCATTTAT	GTTTATTTAT	AAGCAGATTT	AACAATTCCA
	AAGGAATCTC	CAG TTTCAG	TTGATCACTG	GCAATGAAAA	ATTCTCAGTC	AGTAATTGCC	AAAGCTGCTC
	TAGCCTTGAG	GAG1'GTGAGA	ATCAAAACTC	TCCTACACTT	CCATTAACTT	AGCATGTGTT	GAAAAAAAA
					CCAACAGTCA		
					TGGGAAATAA		
10					GTTTAAGTGT		TATGTAAACT
					GTTTGAGTTT		TTTAAATTAT
		ATTTTATAAT			TAAGCTTATG		TTGACATAAC
					TT TTTACCTAT		
					CAGTCTTCAT		
15					TACTGAAAGA		
10					GAAGAGAGGC		
					GAGTGGTAAT		
		TTGT'AAAAAT					
					GTTAGCCCCA		GGCTTAATCT
20					TTCACAGGGA		
20	GAATGAAGGT				AGCCCGTTTA		CCAGTTCTTA
	AGAAGTCTCA				AAGACAGCAT		
					TTTTTCTTGT		TGGTGCCTAT
					TAAAGATACA		
25					TAGAATGGAA		
23	TTCCCACAAG	ATC GCTCCT		GAGACTTTTC		TGTTTCTTCA	TTCCTCATCT
					GGCTCTGCAA		
					CAAAAGAGGG		
					ATCTTTGACA		
30					CTGTCTAGCT		
50					TGGAGTAAAG		
					TGGACATAGG		
					AATGAAACTA		
					GAGTAAACAA		
35					TCTATAAGGA		
					CAGATGCTTT		
					ATTAGAGGAA		
					AGTCAGACAA		
					GTAAACTAGT		
40	TGTGGTGATT				CAATCCAGCA		
	CCAAAAGGAA				ATGCATATGT		
	ATAGCAAAGA	CATGGAATCG	TCTAAATGCC	CATCAGTGGT	AGACTAGCTA	AAAAAAAAA	AATGTGGTAC
	ATATACATCA	CAGAATAGTA	TGCAGCCATA	AAAATGAACA	AGATCATCAT	GTCCTTTGCA	GCAACATGGA
					ACAGAAAGCC		
45					GAAGGGAACA		
	AGAATAGAGG	GTGGGAGGAG	GGTGAGGATC	AAAAAGTACC	CATAGGACAC	TGTGCTTATT	ACCTGGGTGA
	TGAAATAATT	TGCACCAA	ACCCCTGTGA	CACACAATTT	ACCTATATAG	AAAACCTGTG	CATGTACCCC
					CTTTGTGGTA		
					TAAGCAAAGA		
50					GTCCATTGTA		
					AGAAACTGGA		
					AGCATGGCCT		
					TATTTAAATA		
					CCAAATAACT		
55					CTGCAAAGGT		
	CTGTAATTTT			GCTTTTTCTT			
	AAATAAAAAC				TCCAAATGAA		
					AAATCATTAA		
					TTGATATATA		
60					GTTTTTAATA		
	CTTTGAATGA	AAA'`AAATAC	AATGTGTATG	CTTTAACATC	TTGCCTTTAC	TTTATAACAT	TTATCACAGC
	AGTCATGAGA	TAA' GATTTA	CATGGTCATT	GTTAGTAAGC	TAATAGCTAA	GTGCATGAAC	TCTGGAGCTA



	GCCTCCCTGG	ATTITAATCC	CAGATCTGTC	ACTGACCAGC	TGAGCAATAC	TAGGTAAATT	GCTCTTGTTC
	CTTAGTTTCT	TCATCTGTAA	AATAGAGATA	AAAATAATAT	CCACCTCATA	GGATTGGTGT	GAGCATTAAA
	TGAGCATACG	TATCITAGGCC	ACTTAACAAC	AATGCCTTCA	CATACTGAAC	ACAAATATAC	GAGCTGTTGT
	CTTATTGGGC	TCATGTTTTT	CCTACCACTA	AGCCGCATGC	ATGCAAGGAC	CATGTTGGTT	TTGTTCCACA
5	TTGCATCCCC	AACC'TGGTAT	ACAGTGTGCA	TTCAATAGTT	GTTGACTATT	ATTACTAGTG	GCATTTAACA
	AATATCTGTT	AAATGAGTGA	AGAAATACCC	ATTTACTGCA	AGTGTGTCTA	ATATTGATGG	CATAATGGGG
	GAAACTCAAA	CTC GGAGTC	AAACAGGTTT	TAAAACCTTA	TTCCCTCATC	CTCAGTTATT	GACGTTTTTT
	TTTTGGCAGG	TGTCTGTGTG	GGACAACTTA	TTGAACTTTT	CTGAATTTCC	AGCTTCGCAT	ATATAAAATA
	GAGATAGTGA	TTCATTCTTG	CAATGTATGG	ATTTGAGACA	ATTGTGTAAG	TTTATCAATA	AATAGTAGCT
10	ATTTTTGTAT	AAGTATTACA	TATAATATCC	AGGCCACTGC	TTTGCATAAC	CCAAAAGGGG	CACCATTCAT
	GCAGAATACA	ACA"AAATGG	TGTCCCTGGA	GCAGTGCAGT	ATAGGAACCC	TGAGGGGACC	TACAGTATAC
	TTTATAGTTC	ATAC ATTACA	AATTATCCCT	TTATCAGAGT	CTCTCAAGGT	TGGATGTATT	TGAGGTCCAT
	AAGAGCAATT	TAGGATTAAC	AGTAGCTGCA	GAAACCATCT	GCAGTGATAT	TCTCATTTTA	AATCCGCGGG
	AAAGAAGACA	GCTATAAACT	TGGGACCTGG	GTTTAAGCAT	TTTAAATGCC	AAGTTCACCA	TTTTCTAAAA
15	CACAACAAAT	ACCC'AGTGAG			TGCCTCTGAA		AATGTCAGTA
	GTTGTACTGT	ATGCATATTG	ATGAACAATA	GAGGAACCAA			ATATTTGGCA
	ATAACAAGTT	GCCTTTGAGG	AAAAATGATT	TTCTTGGCAA	GTTCTTTATC	AGCATTACAA	AGCTAAAAGC
	TACGCTTATC	ATCA.CTTATA	CTAGCATACC	CTGTTGTGCA	AATGCTGTCT	GTGTTTGCAT	CTGCTATTGT
	TGATGCCTGG	TGCATGAATC	AGGACTCCAG	CCCACAAGTT	TTCCCAGAAC	TTTCTTATGG	CCATCATCTT
20	TAAGTGTCTG	GTGA ACAGTC	ATAGTTTGGT	ACACAAAAGG	GTCAACCTGG	GGGATGGCTA	GGGTTTGACT
	CAGTCGTTAC	ATTTCAATAG	AGCAGGAAGG	GGAAATGGTG	GCCTGTAACC	TCAGGGAATT	TTGCCAGTTG
	GTCCACCCCA		CCTGCTCTGA		CAGCCTAGAA	CAGCACCACA	GGTGAGAGAA
	ATGCAAACCC		AGCAGACTCT	TTGCCAGTAG	TAATAGTTCA	GGACCACCAC	CAGCTTTTAT
	TAAAATTTTT	AATAACACTC	AAGTATTGGC	AGAAAGAAAT	AATCTTGGGT	TAACTATAAC	TAGAATATTG
25	ACTCTTCCTC	TGTGGAAGAA	TCAGCCAATC	ACATTTGTTT	ACATCAGTTC	CCCTGAAGAA	GAAAAATACA
20	CTGATGTTGC	AGCA AGACAA	ATTTAAGCTA	GATGTAAATA		GCCTGTAATG	CTAGGCTAAT
	TACATATTGG	AACTATTTT		ATTGTGTAGG	GTTTCAGGGA	AGAATTCTGA	AGAAAATATA
	GAGCTGAAAT	GATCTTGCAG	CTCACTGAAA	CTGCAGGGTT	TAGATCCACA	CTGATACTCG	TTCTATTATC
	ACTGTAATGA	AGGCTGATGG	AATAAGTAAA	AATGTTTTGT	ATTAGTATGT	TTTTACACTT	ATTTGCAAGG
30	CATAAATAGG	TTAGGTTTTG	ATCTTAATTT	AATTCTAACA	TGTATTGTGC	ACAAGCTGTG	AGCAGTTTTC
	AGGAGTTAGG	TATCTGGCCA	TGACTGATTT	TTCAGGAGTT	AATCATCTGG	TAGAAGGGTC	ATACACAATA
	GGAAGATGTG	TGTGACAGGT	TGTGATCATT	ACTATAATCA	CACAGAGAGC	TGTAGAATTT	TAGGCTGGCA
	GGGTGGCTCA	CGCCTGTAAT		TGGGAGGCCA		ATCAAGAGGT	CAGGAGATGG
	AGACCATCCT	GGCTAACACG	GTGAAACCCC	GTCTGTACTA		AAAAAAAAA	AGCCAGGCGT
35	GGTGGTGGGC	GCCIGTAGTC			GGCAGGAGAA	TGGCGTGAAC	CCGGGAGGTG
	GAGCTTGCAG	TGAC CCGAGA		GCAATCCAAC	CTGGGCGACA	GAGGGAGACT	CAGTCTCAAA
	AAAAAAAAA			CAGAGGGGTA		CTGGGCTGTC	AGTCAACTCA
	GTCAACTCAG	TCAA.CTCTGC	TCCCCCACAG	GAGATGCCAG	TGATGCATTT	TCATGGCCAA	CATTGTCAGT
	CAGCATCATT	GAATTACTCC	TGATTATAGA	GACACAGCTG	CAAACGATTC	CCCATTAAAT	ATGATGTTTC
40	TTGCAATGTT	TGGAAGGTAC	TCCTTTTTAG	TAAGGGAAAT	CCCCTCTTCT	GGCTTGCTGA	AAGTTTTTTC
	TTTCCATTTT	AAAAATCGTG	AATTCCTTTT	TGCAATATTG	AGGTGGTTAT	ATGGTTTCTC	TTCTCTAATC
	TGTTAATATG	GTGATTTAAT	GGTTAGAAAT	TTTCTAATGT	AAATTCCACT	CATATTGCAG	AAATAAACCT
	AAACTGAGCA	TGAGGCTATA		GCTTCTATAT	TTGGTTGCTA	TACAGTATTA	TGTTTAAGAT
	TTGTTCACAT	ATATTTGTGA	ATGGGATTGG	ACTATTTTC	CTTCTTGCCG	ATTTTTATCT	GGTTTTTAAA
45		TTTAGACTTA	TGAAATATTT		CCTTGGCAAG	TAATTTTTTG	GGGAATTTGT
	TTTGGCTATT	TTGAGTATTA		TTTAATTAAG	TTATTCTTAA		ATTAAAAAAA
	TTACCTACTC	TAGAGATATT	CTTTATGTAC	TCCAGATTTT	GTCTATTTAT	ACCACTTTTC	TTTTTTCCTC
	GATGAGTGTC	ATAGATGTTC	ATCTATTTTT	TTATCTTCTT	TGATCTTCTC	TTATTCCTTG	TTTCTATTAA
	CTTCTGAAGT	TTATTATTT	CTTTTTTCCA	CTTCCTTATG	GTTTATTCTT	TCAATTTTTC	TCTAACTTCT
50	TAAGTTGGGT	GTTTAATTTT	TAGCTTGCTT	TGCTTTTTTA	GGATAAGCAT		
	GTTATTCTTT	TGCTGCACCC	CAAATTGTTG	ATATTTCTAT	TGTCTAATTT	CTATTCAATT	AGAATACTTT
	AAAGTTTCTT	TTTGGTTTTT	AAAAACTAAC		GACAAATAAA	AATTGTGTAT	ATTTATTGTG
					GCTAAATTTA		
	TCTCACATAC	TTATCATTTT	TTGTGGTGAG			TATGAGTTAT	TTAAATATTT
55	TTAAATTATT	AAGC ATATTG	GGATTTTAAG			AACTTATAAC	AAGTAGAACA
	GTTAACCTGT		ATCATTGAAA	TTTATTGACA	TTTGCTTCAT	AGTCTATTAT	ATGGTCTACT
					GAGTAAAGTA		TATGAAATCA
					GTTCTAGGTG		TTGTCATGTT
	TAATCCTCAC				CCACTTTACA		CTGAGGGTTA
60					AGATACAAAT		
• •	ACTAGATATT	TAAC CATTTT	AATTCAAGCT	TTAAAACTGC	TAAATAAAAT		
					AATCTTTGAT		
		J. L. COLIMITO		COMMITTINGA	MICHIGAL	GCITCAGAGI	CONCACIONA



	ATGTGGAGGC	ACA'TAGTGAG	TTGGTCCCCA	GCCTTCAGTC	CACCCACCTT	CTCTTTACTA	AATCACCTTT
	CACATACATG	TATC AACACC	CCAGCCTCCA	AGTCCAAACC	CTAAACAAAA	TGGGACACCC	TTGTGCATAC
	ACAGAGACAC	AGCCCATCCT	CAGGAAAACC	TGGAAAAGTC	CATACAAGTT	CTGGAAGCAA	GCTTGGGACG
	GTTTCAGTAG	TGTC GTCTAT	AAGGGAGGCC	TCAGAAGACA	GGTTTTCTTA	ATTCTGTGAA	CTTCTCCCAC
5	AGTAGAAAGG	GTGCTGGAGG	AGGGTCAGAG	TGAGGACTTC	TAAAGCATGG	GTCCTGAGTA	GGGGCCACTC
	TTGCCCAAGT	CTAAGAAGGG	TACTAGAATA	GCACACTACT	ACTAGATACT	AGAACCCAGA	TACAAGCACA
	GGTCTTCTGA	TAATAATTAA	AATAATAACT	ATTACCATTA	TTATACCAGT	AGCTGTCATT	TATTTAGTGC
	TTATTATTTG	CCACTCACTG	TTCTAAATTC	TTTACATGTA	TTATACAACT	GCCATATAAC	TGCCATATGA
	GGGATGTACC	CTCATTGTCA	CCATTTTACC	GATGAGAAAA	CTGGCATAAA	ACGTTTAAGT	AACTTGTCCA
10	AGTTACAGAG	CTT# GTGAAG	CCACAATGTT	GCTCAATTTG		TCAAAGGGAT	GGGAAGGACA
	CCTAAGTCAT	AGAGTCTTTA	AGAATCAGAG	CTAGAAGGAA	TCTTAGATGT	TATCTAGTCA	GCCTCCTCCC
	ATTACAGTCC	AAGAGAAGAT	GGCCCTGAGT	TACTTGTAGC	TATTTTTGCA	TGTGAATTGC	AAGTGAATAT
	ACATTCTACT	GAACATAAAA	GATATTTAAA				
				GATATCGCTG	GATATAGGAA	CAGTGGTTTT	AAATCTCTAG
15	GCTTTAACTT	TTCTCAGAAC	AAGAAATCCT	TTTTGGTTTT	AATCTATATG	CACATCTGTA	TTTTTCTCAA
15	TTATCGGGTA	GTAAAATATA	ACTTTTCTTC	TGTAATATTT	TTTAACTTTA	ATGAGTGTTC	CTCATAATAG
	AAAAGTTTGG	AAACCATTGC	TATGGGTATA	TACTTTCTAA	AGGGATAGTA	ATTTCTCTAG	AATATTCATT
	TAATGCTCCA	GAAGTAATTA	GCACAATTGT	GCAAGTCTGT	GCATCATCAA	CTATACATTC	TGCCTGTTTA
	CTCCAAATCC	ACATGAAACT	GATTATACAG	TCAAAGGCGA	GCCCAGTGGA	GAGGCATTTT	TGGAGACTTC
	CTGGTACATT	GAGACAGGGT	CGGCCAGTCT	GCGTTAGGGT	CTTGGTCAAA	ACTGCATTTC	TGAAACTAAA
20	CTCAGATTGC	TTTCTTTTAA	GGGGTCAGAA	CTGATTCAAA	TCTACATTTT	TAAAAGCCTT	AGATGTGGGG
	CTTTTCCTAT	TCCCAGTCTC	CGCTATTGGT	CTTTGTGAAT	CCACAGGCAA	TTTGGCCACA	TCCTTGACTC
	TCTCTTATAT	TAAGAATTAA	ACAGCTAAGT	TCATGCAGAG	GAAATATAAC	AAAGGAGGA	CTTTCCTACA
	AGATCTTTGA	AAAATGGAAC	ATTTGCATAA	GTCATATTTA	GCCAGAACTG	TTGTTTTATA	TTTTCCTTTC
	TGAATACTTT	GTTACACCTC	CTCCCAGCCA	ACCCCCCCC	TCCCTGACCC	CAACTAGTCA	GAGACCAAAG
25	CCTTCACAAT	GGTTTACACT	TGAACCTTCC	TGGCCCCACC	CTCATCATCA	CGCCTGAATA	ATTACATTCA
	CTGACTGGTC	TCCCCTGCTT	CCGTTTATCT	CCACTCCTAA	ACCCTCTGAC	ACCTTAATCT	TCCCAGAATA
	CCATTGTGAT	CCTCTTCCAC	TCTTGCTCAA	GTTTTCCCAG	AAACTAGAGT	ACAAACTTTA	TAAGCTTTAG
	AGTTGAAAGC	CAC CTATCT	CTTTTTCATC	CCCAGGTCTC	TGCCAAGGCA	GTATAACCTG	TCCAACATCT
	CTAACTTCAA	TACCTTTGTC	TTAGATACTA	GACTCTCCTC	CTGGTTTCTA	ATTAAACCTG	ATCTAGGATC
30	TAATTTTGCC	TCTGAATTCT	GTTGCCCTTT	GCCAAGTGAT	CTCTTCCTCC	TCTGAGCCGC	AGCATCTCTG
50	AGCTTGCACA	CTTA GCATAG	CCATAGCACA	CACAGCCTTA	GCTTGCAGTT	CAGGGTGTTT	ACCTTCCCTC
	CCCTTCCAGA	TGCTGGATCC	CCAGGGATAG				
				GAACTCTGCC	CTTATGTGTC	CATAGCCCCT	GGTAGTATGT
	CTCTTTTTCC	TACATTTTCA	GCAAATGTTT	AATTGGTTAA	TTGAAGACAA	CTGTCCCATG	CCTTAAGCCT
25	CTCTTTTTGC	TAAACATGCC	TGTGTCCTTT	GTCATTGAAC	AACTATTTTG	ATCTATTTC	TTCCTGACAT
35	AGGGGTCAGT	TCCCAGGATG	CTGAAATCAA	GAGACATAGC	TTATTCTCTC	AAAATTGCTT	TCAAGAGTGA
	TTTTGTTGTG	AATTGAGAAC	TGGCTGCCTA	CTTTTGGACT	ACCCACTTCA	GCAAGAGTGT	TTGAAACCAA
	ATCTATTCTA	AGTAATTTTT	TATTCCCTTT	TCTCTATGGC	ATTAGACACA	CAGCTCTTTT	AAACTACCTT
	TCGTTATCTA	TTAAACAGAC	ATTCAGTAAC	TCTATAGACA	CTGTCTAGCT	ATATGAACTT	AGACAAACTA
	ATATCTCTGA	GCTTCAGTTT	CTTAAAATTT	AAAATGAGGA	CAATACCATC	TATGGCCGGG	GATTAAATGC
40	TATGAGGAAT	GTA/.ACCAGA	TGTCAGGTAC	CATCTCTCTA	AAATCCAGAT	AAAATGAATT	AAAAATACTG
	GCCGCAAACC	CTCTCTAAGA	GTTCTCAAAA	TTCTCAGAGA	GCTTAATTTT	CATGCTCACC	ATAGCACCGA
	TTTTCTTCTA	AATATTTTGT	TTCTACCAAA	ATATTTTGTC	CCAATTTTGC	CTTTTATGGC	TATTTCTTCA
	TATCCACTTT	CCCAAACTAA	AGAAGCAGCC	CCTTCACCTT	AAACTCCTCC	TTCAAAGCAA	CCTAAATACA
	GGTCTGGGTT	TGTATTCCTA	GTGGGATGTT	ACAGAGGTTA	GTGTGATGCA	GAGGAGGAGT	CATGCTGTTT
45	AAATCCATAC	TAGTCCCCAG	AGGCCAGGCT	GCTTCTGCCA	CCCCTACCCC	TCCCGCCACA	GAGCTCTTCA
	GCTTCTCACA			ACTTTCATTA			
	GCTCACGGGA	GCAGAGAAAA	TTAACTCCTC	TAAGTTTTCT	TAACACAGAG	TGCCTTAATT	ACATATTACT
				GTAGGGTCAC			
				GCCTACTAAG			
50				ATTAGAGATA			
				CAAAGTCCTG			
				TCTGCCCAGC			
				TTCTGGTTTC			
				CTCAACCAAG			
55				AGTGTTAAAA			
55							
				TTATTGTCAG			
				AAAAGAACTG			
				ACCTTGACTG			
60				TGACCCCCAC			
60				ATAAAACAGC			
				ATTCAAAAGC			
	TCTCTTCACA	CAGACCATGT	GACATTTGGT	GCCGTAACTC	AGATCGGGGA	ACCTCCCTTG	GGAGATCAGT



	ССССТСТСАТ	CCTC CTCTTT	CCTCCATCAC	A A A C A TO CO A C	OT A TO A COMO	TO CT COT CA C	1001100100
	CCCCTGTCAT CCAAGGAACA			AAAGATCCAC	CTATGACCTC	TGGTCCTCAG	ACCAACCAGC
		TCT/CACCAAT	TTTAAATTGG			CTCTTCTCCA	GCCTCTCTCA
	CTATCCCTCA	ACACCTTTCT	CCTTTCAATC	TTGGCACCAC	GCTTCAATCT	CTCCCTTCCC	TTAATTTCAG
5	TTCCTTTCTT	TTTCTGGTAG	AGACAGAGGA	AACGTGTTCT	ATCTGTGAAC	CCAAAACTCC	AGCACTGGTC
5	ATGGACTTGG	AAAGACAGTC	TTCCCTTGAT	GTTTAATCAC	TGCAGGGATG	CCTGCCTGAT	TATTCACCCA
	CATTTCAGAG	CTG1'CTGATC	ACTGCAGGGA		GATCCTTCAC	CTTAGTGGCA	AGTACCACTT
	TGCCTGGGTG	GCAAGCACCA	CCTCTCCTGG	GGGGCAAGCA	CCACCTCTCC	TGGGGGCAA	GTACCCCCCA
	ACCCCTTCTC	TCC# TGTCTC	CACCCTCTCT	TCTCTGGGCT	TGCCTCCTTC	ACTATGGGCC	ACCTTCCACC
10	CTCCATTCCT	CCCITTTCTC	CCTTAGCCTG	TGTTCTCAAG	AACTTAAAAC	CTCTTCAACT	CACGTCTGAC
10	CTAAAACCTA	AATGCCTTAC	TTTCTTCTGC	AATACCGCTT	GACCCCAATA	CAAACTCAAC	AATGGTTCCA
	AATAGCCTGA	AAACGGCACT	TTCAATTTCT	CCATCCCACA	AGATCTAAAT	AATTCTTGTC	GTAAAATGGA
	CAAATGGTCT	GAGGTGCCTG	ACATCTGGGC		ACGTCGGTCC	CTCCCTAGTC	TCTGTTCCCA
	ATGCAACTCA	TCCCAAATCC	TCCTTCTTTC	CCTCCTGCCT	GTCCCCTCAG	TCCCAACCCC	AAGTGTCGCT
1.5	GAGTCTTTCC	AATCTTCCTT	TTCTACTGAC	CCATCTGACC	TCTCCCCTCT	TCCCCAGACT	GCTCCTCCTC
15	AGGTCGCTCC	CCGCCAGGCT	GAATCAGGCT	· · · · · <del>-</del>	CTCAGCGTCC	GCTCCTCCAC	CCTATAATCC
	TTCTATCACC	TCCCCTCCTC	ACACCTGGTC	CAGCTTACAG	TTTCATTCTG	TGACTAGCCC	TCCCCCACCT
	GCCCAACAAT	TTCCTCTTAA	AGAGGTGGCT	GGAGCTAAAG	GCATAGTCAA		CCTTTTTCTT
	TATCCAACCT	CTCCCATCTC	AGTTAGTATT	TAGGCTTTTT	TTCATCAAAT	ATGAATACCT	AGCCCACTCC
20	ATGGCTCATT	TGGCAGCAAC	TCCTAGACAT	TTTACAGCCT	TGGACCCAGA	GGGGCCAGAA	GGTCATCTTA
20	TTCTCAATAT	GCATTTATT	ACCCAATCCA	CTCCCAACAT	TAGAAAAAGC	TCCAAAAGTT	AGACTCCGGC
	CCTCAAACCC	CACAACAGGA	CTTAATTAAC	CTTGCCTTCA	AAGCGTACAA	TAATAGAGTA	GAGGCAGCCA
	AGTAGCAACA	TATTTCTGAG	TTGCAATTCC	TTGCCTCCAC	TGTGAGAGAA	ACCCCAGCCA	CATCTCCAGT
	ACACAAGAAC	TTCAAAATGC	CTAAGCCACA		ATTCCTACAG	GACCTCCTCC	ATCAGGATCT
25	TGCTTCAAGT	GCCA GAAATC	TGGCCACTGG	GCCAAGGAAT	GCCCTCAGCC	TGGGATTCCT	CCTAAGCCAT
25	GTTCCATCTG	TGTGGGACCC	CACTGGAAAT	CGGACTGTCC	AACTTGCCCA	GCACCCACTC	CCAGAGCCCC
	TGGAACTCTG	GCCCAAGGCT	CTCTGACTGA	CTCCTTCCCA	GATCTTCTTG	GCTTAGTGGC	TGAAGACTGA
	TGCTGCCTGA	TCGCCTCAGA	AGCCTCCTGG	ACCATCACAG	ATGCTTTTGG	TAACTCTTAC	AGTGGAGGGT
	AAGTCCGTCC	CCTTCTTAAT	CAATGCAGAG	GCTACCCACT	CCACATTACC	TTCTCTTCAA	GGTCCTGTTT
30	CCCTTGTCTT	CATAAATGTT	GTGGGTATTG	ATGGCCAGGC	TTCTAAACCC	CTTAAAACTC	CCCAACTCTG
30	GTGCCGATTT GGCTGAGACA	AAACAACATT	CTTTTATACA	CTTCTTTTTA	GTTATCCCCA	CCTGCCCAGT	TCCCTTATTA
		TTTT'AACCAA	ATTATTTGCT	TCCCTGACTA	TTCCTGGACT	ACAGCCACAT	CTCATTGCTG
	CCCTTCTTCC	CAACCCAAAA	GTGGCAACTC	CTTTGCCACT	TCCTCTCATA	TCCCCCTACC	TTAACCCACA
	GGTATGGGAC CACCCTTACC	ACC CTACTC TGGCTCAACG	CCTCCCTGGC	AACAAATCAC	ACCCTCATTA	CTATCCCATT	AAAACCTAAT
35	CTTGCCTGTT	ACA# CATGTC	CCAGTATCCC CTTTTAAAGC	ATCCCACAAC CTGTAAACTC	AGGCTTTAAA	GGGATTAAAG	CCTGTTATCA
33	AAAACTGGAC	ATGCCTTACA	GGTTAGTTCA		TCCTTACAAT	TCCCCCATTT	TACCTGTCCA
	GCCATGGTGC	CAAACCCATA	TACTCTCCTA	GGATCTGTGC TCCTCAATAC	CTTATCAACC	AAATTGTCTT	GCCTATCCAC
	TCTGTTCTGG	ATCTCAAAAC	ATGCTTTCTT	TACTATTCAT	CTCCCTCCAA TTGCACCCTT	AACCCCTCCA CATCCCAGCC	TAACCCTTAT TCTCTTCACT
	TTCACTTGGA	CTGACCCTGA	CACCCATCAG	CCTCAGCAAC	TTACCTGGGC	TGTACTGCCG	CAAGGCTTCA
40	TGGACAGCCC	CCATTACCTC	AGTCAACCCA	AATTTCTTCT	TCATCCATTA	CCTATCCAGG	CATAGTTCTT
.0	CATGAAAACA	CACGTGCTCT	CCCTGCTGAT	CATGTCCAGC	TAATCTCCCC	AACCCCAGGA	CTGGCAAATT
	GACTTTACTC	ACATGCCCCA	AATCAGGACA	CTAAAGTACC	TCTTGGTCTG	GGTAGACACT	TTCACTGGAT
				AGGCCACCGT			
	TCCTTGGTTT	GGCCTTCCCA	CCTCTATACA	GTCTGATAAT	GGACAAGCCT	TTACTACTCA	AAGCACGCAA
45				AACCTTCATA			TTAGGAAAGG
				ACCTCACCAA			AGGACTGGAC
	AGTACTTTTA	CCACTTGCCA	TTCTCAGAAT	TCGGGCCTGT	CCTCGAAATG	CTACAAGGTA	
	AAGATTCTGT	ATGC ACGCTC	CTTTTTATTA	GGCCCCAGTC		CACCAGCCCA	
				TCTGTCTAGT			
50		TGCCCTTTTT		ATTTATACTT		CCATCATAAC	
				CTCTCTTAAA			
	ACTCCAATAC			ATTCTTTACT			TGTTCCCATT
	CTTATGCCAC			TCTCCACCAC			
	ATTTCTAATC			TGGCTTTACA			
55				CTGCATATTT			TTACCTAAAT
				AAAACTCAAG			
	AGTAATTATG	CTGAACCCCC	TTGGGCACTC	TAATTAGATG	TCCTGGGTTC	TCCCGATTCT	TAATCCTTTA
	ATACCTGTTT	TTCTCCTTCT	CTTATGCAGA			TTCTCAATTC	ATACAAAACC
				GACAAATGTT		AGACCACCCC	
60	TTATGCCCAA	TTTCTGCCTC	CAAAGAAAGA	AGTAAAAATG	AAAAGGCAGA	AATGAAATCC	ACAGGCAGAC
				TAAGATCAAC			
	ATTACAGACA	TTG1 ATGGAA	AAGCACTGTG	AAAATCCCTG	TCTTGTTCTG	TTCCTCTAAT	TACCAGTACA



			~~~~				
	CGCAGCCCCT	AGTCATGTAC	CCCCTGCTTG	CTCCCCCTGC	TTGCTCAATC	AGTCATGACC	CTCTCACGCA
	GACCCCCTTA	GAGTTGTAAG	CCCTTAAGAG	GAAAAGGAAT	TGTTCACTCG	GAGAGCTCGG	TTTTTGAGAC
	ATGAGTCTTG	CCAATGCTCC	CAGCTGAATA	AAGCCCTTCC	TTCTTTAACT	CAGTGTCTGA	GGGGTTTTGT
-	CTGTGTCTTG	TCCIGCTACA	GTTTCATCTA	ACAACCCCAT	AATATCACCC	CTTACCACAA	AATCTTCCTT
5	CAGCTTAATC	TCTCCCACTC	TAGGTTCTCA	CGCCACCCCT		GAAGCAGCCC	TGAGAAACAT
	CGCCCGTTAT	CTCTCCACAC	CACCCCAAA	AATTTTCACT	GCCCCAACAC	TTTACCACTA	TTTCGTTTTA
		TAAT ATAAGA	AGATAGAAAT	GTCAGGCCTC	TGAGCCCAAG	CCTGCACGTA	TACATCCACA
	TGGCCTGAAG		ATCACAAAAG			TGCCTTAACT	GATGATATTC
	CACCATTGTG	ATTTGTTCCT	GCGCCACCTT	GACTGAGGGA	TTAACCTTGT	GAAATTCCTT	CCCCTGGCTC
10	AGAAGCTCCC	CCACTGAGCA	CCTTGTGACC	CCCACCCCTA	CCCACAAGTG	AAAAACCCCC	TTTGACTGTA
	ATTTTCCACT	ACCC ACCCAA	ATCCTATAAA	ACAGCCCCAC	CCCATCTCCC	TTTGCTGACT	CTATTTTTGG
	ACTCAGCCCA	CCTGCACCCA		AAGCTTCATT	GCTCACACAA	AGCCTGTTTG	GTGGTCTCTT
	CACACCGACA	CGCGTGATAA	TTATTATATT	ACTTTTAACT	AAAACCCTTT	CAGAGTCTCG	CAGGGAAGGC
	TGTATATATC		TTGGGGCCCA	CTGGATCAGA	CAAGGCCACA	AAGGCCAAAG	GGAAGTAAAG
15	ATCTCATTAT	TTCTCCTAAT	AATTTCCCTG	TCCTTTGTCA	TAAATGGTGG	GTAGGCTGTT	ATGGTGATGG
	CAGATTTTCT	TTCCATAAAA		AGGACATTTG	AACAGAAGGG	AAAAATCAAA	TTGCTGAAGT
	TGAAAGAGGG	CAATGCAAAG	AACTTTGGAG	AAAGAACTGT	ACAGAGAAGT	CAACTGGCAG	ATGGGAGGAA
	GTTTAAGGGG	AAAAATATAG	ATGTCTAAAG	AATACATTTA	TTCATTTTCC	ACAGTGCAAT	TTGGACAAGA
	AGCCTCTTTC	TTGC TTCTTT	CTATTCTCAT	TAAATCATTA	GAGCTCAAGC	AATCCTTCTG	CCTCAGCTTC
20	CCGACTAGCT	AGGACTACAG	GTATGTGCTA	CTATGCCCAG	CTAATTTTTT	AAAAATTAGA	TTTTAATTTG
	GTGAACTATT	TCTGTAGGAA	ACTACAATAA	TACAGCCCAG	GCACATTGAT	CTTGGGTGAA	CAAATCAGAA
	GGAATGAATA	ATTCTGTGTT	CCTGGGACTC	TGACAATTTC	ATGAACTTGG	TACTCTGAGT	AAAGCATAGG
	AGGAGTTATT	TCATAAAATG	TGGAGCACAA	TCATGTGACA	AAGATAATGG	GATCCCCATT	TCATAAATAA
	ATCTGAAGTT	CAGA GAGAGT	AACAACTGGC	CAGGGTCACA	TCACGGAGAC	AGAGGCAGGG	TTCCCACTGA
25	TGCCTCTGAC	TCCCTGTCCC	AGGCCCTTCC	TCCTCCCGCA	AGCAGAAGTG	CAGGGGGCAG	AGCTGACCCT
	GTGCAGTGAA	AATCTGAGGG	CTGAGTTCCT	ATTGGAACAC	AAGTGAAAGA	CTTCCTGGCT	TCTAATCTCA
	GGATAAGGAC	TCAGAGCTCC	ATCTGTTCCA	GCCTTAGGAT	AAGAACCAGA	ATCTTACACC	ATGAAAGCAT
	GAAAGGTAAG	ATT GAGTGA	GGAAAAAAA	AAAAAAAGTC	TGTGTTTCAG	ATTCAGTTCA	CAAAGCAGTT
	TCATACTTAA	GGTA.CCATCA	CAATAACCCT	GTGGGGTAAG	CAAGGCAAAT	TTCATTCTTG	TTTTATGGGC
30	ATAGGAAGTA	AGTCTCAGGG	AGGTTAAGAC	CAAGGTTTCT	GGAGAATTTT	ATATTATGAA	TCTTGATTTA
	TGGGATTACT	ATTATGTAAT	TCCTAAGATC	ATATAGGAAT	CCTAGAGCTT	GAATATAGAA	CTTTATTTTT
	AAATCTATAT	ACATCATAAT	TACAAGGAGT	AGTGTCCATT	TGGGTTCCTT	GGCCCTGATG	TGTTAGTGGA
	ATAAACATTT	TTG1 CAGGGT	TGCCATGTGT	GTCTGTGCAC	GTGTGCACTG	TACACCTCCA	GGGGATGTAC
	CCTAAACCAC	ATGAATGTGA	TTTGCACATC	CAAGATTTAC	AGTGTACTAT	AGGGAGAATC	TTTTGCAACA
35	GCTTTTGCTA	TAATACAGAA	TCTGAGATGT	CTTTGAGAAA	GAAAAGTGTA	ATCATTACCA	AAAAATTATT
	CTCATAATGT	GTGC'AAATTT	GTATGAAATC	TATATTGGCC	ATGGGACAAG	GAGGTATTTC	CAGCTAGCTT
	CTGAAAGGC	TCTATTCTCT	CATAAGAATT	CAGCTGTTGA	CATTAGGTGA	TATCTGCCCA	GGTCATCAGA
	TGCCATAGAG	AAAGAGGGTT	TGCTGAAACT	TATATCAGCA	GTGCACTGTA	TGCTCTTTCT	GATTTATTTG
	AACATTCATT	TATTGAGTGT	CAAGTAATGC	ACTAGATACT	CCAGGGATCT	GACACAAACT	CTGCCCTGAA
40	GGAGCATGTA	ATC1'CACTGG	GGAGAAAACA	AAACATATGA	TAATTTCAAA	ATAACAAACT	AGGCAAACTA
	GTTAACACTT	AAAAAGCAGG	CTTTATTCAA	ATGCAAAATT	GCATGTTACA	GGGTAACCTT	TCAGTAAGAA
	GCCAGGAAGA	GGA/3CTCATC	ATGGGTTGGA	TTAGTAAAGG	ACTAGTTATA	AAAGAAGTGG	TGGGGTTGAG
	GGAGGCCTGA	GATGAAATTT	AAAGAATATG	TAGAATCTAG	GTAAGTGGAT	AAAAGGTCTG	GGGGCAGGGG
					CTGTTTTAAC		
45					CTAATAATAT		
	CTATAAGAAA	TAGGAATGGG	TCTCATAAAA	GGAAACAGCA	AAACCCCCAA	ACTAAAAAAC	AGCGCAGGCT
	ATTTCTCTCT	TCTC ICCTTT	TGCTTGGCAC	TCATGAGATG	CTAGGTGTGG	AAGTCAGCCA	ACTGAAAAAG
	AGAGGTGGCT	GAAGAAGGTG	GGGAGGCTGA	AGCCAGTTAA	ATAGGATGGT	CCAATTCACA	GACGGCGAGG
	CTACAGTGCA	AATAGGACTC	TTTCAACTTG	AGCAGGACCC	CATTACTTCA	CTGGAGTTAG	AAAGAAAGGA
50	GAGCGTAGAC	TTTTTGAACT	TTCTATAAGA	GTGTACCTCC	ACAGTATACA	GAAGACGACG	TGAAATTTGA
	TCTGCAAGAA	AAC'IGAGTCC	ATATTCACAT	ATGTATCAAA	TTTGCACTTC	ATTTAGAAGT	GTCTGTCATC
					AAGAGCAAAG		
					AGAAAAGACA		
					TGGAAGCTGA		
55	AAATCTTCCC	AGATGCACTG	AAGGAAACAC	ACTTCATGTT	TGACGTAGGA	GGTGCCACCA	CACAAAACGT
	TTCATGGAAG	GAT TAAAGG	ATCTCATGAT	TTTTAGTATT	CCAAGAATTT	TCTTTCACCA	AGGGCGATTT
					AAGAGTTTAA		
	TTAGTAGTAA	AGGT'AAATAT	TCATTAGAGA	TGAGAAGAGG	AGCAAGGAAA	TGCTTTCAGC	TGGAAATCTC
	AGACAAGAGG	CCA/3GCTTTA	GGAACCTCTG	AAGATGAACA	AATGTAAGCA	AACCCTAGTA	GCAGCACTTC
60					ATGCAGACTC		
	GAGCCTGAGA	TTC GCACCC	CTAACAAGCT	CTTTAGTGAT	GCTTATGCCA	CTGGCGCACA	GACCCCACTT
	GGAGAAATTT	TTGTGGTGCA	TACGGTCTTT	GTCTCCAGAT	CTAATGAGTC	TGAAGGACAG	TGTAGATTGA

	TTTTTTAAAT	TTATGTTTAT	TTTAATTTAA	TTTAATTTAA	TTTATTTATT	TATTTATTTT	TGAGATGGAG
	TCTCACTCTG	TTGCCCAGTC	CGGAGTGCAG	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCTGGGTT
	CAAGCGATTC	TTCCGCCTCA	ACTTCCTGAG	TAGCTGGGAA	TACAGGCACG	TGCCAGCACA	CCCAGCTAAT
-	TTTTGTATTT	TTAG l'AGAGA	TGGGGTTTCA	CCACATTGGC	CAAGCTAATC	TCAAACTCCT	GACCTCATGA
5	TCCACCTGCC	ACGCCCTCCG	AAAGTGCTGG	GATTACAGGC	GTGAGCCACC	GAGCCCAGCT	GTAGATTGAT
	TTTGAGCAGT	GGAA.AGTCAA		GGCATGCTTA	AATGGAAAGT	GAAATTGGAG	AAAATTTAAA
	CTCATGAAAT	AGTGGTGGTT	ATAAACTCGT	GATAAATTAT	ATCCTGGGAT	ATAATTTAAT	GAGATGGTAA
	CACATTTAGT	TTA#AGAAAT	AAGTGACACT	TTTTTTGTGT	GACACAACTG	TCTTATTCTT	GGAAAGGACA
	AGGAGAGAAT	GAA 4TATGGT	ATGTCTTCAC	AGCACCTTTC	AAAGGGAGAA	CCAGATTCTG	AGGAGCTGGT
10	CTCATGATGA	ACTC TCAGGG	TAAACCACAG	TTCAGCAGCT	GCAAATGTGC	TTGCCAAAAT	AGAGACAAAA
	AAATGTTTCT	GAAAACAAAA	TTTCACATAT	GCCCTCCTCT	GAGGTTGGCA	TCATATCTTC	CTGTGTATCT
	TGGGTGTAGC	TTCTATCCTG	CCAGAATTTA	GACAGTAGAA	ACCAAATGAG	GTGATAAACA	GAGTCATTTT
	GCAGAAGAGT	CAAAATAACC	CAGCAAGAAA	TGAAACCACA	AATGCCCAAG	GAGTCATTCA	TTCACCATTC
	AAAAGCTAAT	AGAAATGAAC	ACAAACTACT	ATGAAAATTC	ACCCAAGAAC	TTAAAAAAAA	AAAAAAGGC
15	TCATGGTGTT	TAGTGTGATA	GTATTCATTT	TACCTTTGAC	TTGTTCTAAA	AACACACCAT	ACTTCTACCC
	CACCCTTCCT	CAGTGCCGTC	ACACAATGGT	TTCAGTGTGA	AAAAAAAAAC	CACGTTACTG	GAAAAGGAGG
	GTGCCTGGGA	CTTC ₁ CCACTC	TAAGCTGGTA	GTCAAGGGTC	TTGAGTTCTA	AAAGCATACG	CGTTAAGAGC
	ATGATTCCTG	GATCCAAATG	AGTATGGATC	TCAGCATTGC	CATTTATTGT	GACCTCAGGC	TATTTTATTT
	CTCTGTGCCT	GTTTCTTTAT	CAGTAATGAA	GATGTTCATA	GACCCTTCTC	CCACAGACTT	AAAGGCATAT
20	TTCATGATTT	AAGA CATGTA	AACCATTCAT	AACAGTATAC	AACATGGAAT	TAATATTTGA	TAAAGGTTTA
	TGATTATTGT	AACT AACTCT	GTCACTTGCT	CAAGGCCTAT	AGAAAACTTA	CTTAATTAGT	TCAACTACAA
	AAAGAGTTTG	AATGTGATAT	CCACCAAGAT	CATATTCAGA	CCTAGAATTC	TGTGATTCTT	ATGAATTAAT
	ACAGCCTTGG	TCAATAAATG	AGAGCTGGGC	AAATAATTCT	TCTTTGCTAG	GCCTTTCTAG	ACCATCTGGT
	GAAGCATTCA	AGACTTATGT	TATTGGGGCC	AGCCTTCCTT	TCCAACTTCA	ACTCCACAAC	TCCTCAATAA
25	GCCATGGGCT	CAAGAAAGTT	CTGCTCAGTG	GCCCCTGAAA	AATGCTTTCA	TAGTCTCACT	ACCATACCAC
	TGCTTACACA	ATT1'CCTTCC	TACAGACTGC	CTTCCTTTCC	TGCTTTTCTC	CATATACCTA	AATCCTATCT
	ATTCTTCATA	AGCAACCTTC	TTTATAACAT	TTTCTATAAC	CACCAAGCCA	AATGACCTTT	TCCTTCTTAA
	ATATAGCACC	CATTGGCCAT	TACCATGCTC	TGCCTTGTAT	TTTTCTGATT	TTTTTCTTTC	TATATTCCTG
	TCTTAACTCC	CCAC CTAGGT	AATAATTTTC	CTGAAATCAG	GGACCAGGCT	GACTCCTCTT	GCTGTCTCAA
30	GAAAGCTTAG	CAG TTCCAA	CACAAAAATG	TTCAATAAAC	AACTATTAAT	TGACTGATTA	TAAAAAATCA
	GTGAACCATT	AAACTTAATA	TAGCAATTTG	CTTAGCATGG	TAATTAGCTT	TTTGCTAATA	TTCTTCCAGC
	CAGTCTCTCC	TCCTGTGCCT	CAAGGACATC	TTAAAAAAAA	AAAATCTAGT	TGATCTGCTT	CCATCTAGTG
	GCAATTAAAA	CAGGTGGTTC	CGGTAGCCAG	AAAACAGCTC	TGGGTAGATT	GTGCCAGAAA	ATACTTTCAC
	TCAGTAGGTG	CGAGTTTGAA	AGAAATCTTC	ACATCTGTGG	GTTTCCTGCC	ACAGACATAG	GGAGACCAGC
35	CCAGAGAAAG	AAGCCTTTCC	TCACTAGACT	CCATTTGCAC	TAGTAAAGAG	AAGACAGAGT	AATTAAAAAG
	AATAAAAAGA	ACCTCCACTG	ATCGTACATC	CTCATCCAGT	TACCCCTGCC	CCACTTCTCC	TTCACAGCCA
	AACATTTTAA	AAGAGATGAC	TGCTTGTTCT	GTCTCTACTT	TCTCATCCTC	AGTAATGCTC	AATGCTTGGC
	CGTCTGACCT	CTGTCTTGAT	GTCTGCACTG	CAAATAGTCT	CCCCACTGAC	ACCCTTGTTG	CATCCAGGGG
	ATACTTACTG	GTT('TCTTGG	CAATGTTTGA	AACCGTTCCC	CTTTCTTTGT	TTCCTTGGCA	TTCATTACCC
40	CACACTCTTT	CTC('TCTTCC	TTCTCCCTGC	CTGGCAACAT	CTTTTCATTT	CTCTTTCCCT	TAGGTGACTT
	ATTAGATAAT	GATGTTCCTC	TGGCTCCCAT	ACTCTCTCCC	AGGTCCTCTT	CCATTCTTAA	AGCACTCACA
	CCCTCCCTGG	ATG ATAGTAC	CCACTCCTGA	GATGGCAGTT	ACCTCCTGAA	ATGTGAGGGA	CCCAAATCCA
					GAGCCACAGT		
4.5			CCCATGATCT		AACCTCTCAT	TCTTTTATGT	TCCCTTCTCA
45					AAGATGATAA		
	TTTAGCCAAT				TCTTATTTCA		
					CAAATGCCTC		
					AGGGTGACCT		
50					ACCTCAAGAT		
50		TTTATGATCT	GGCTTCTGGT	GCCTCATTTT	TCCCCACTTT	TTCCTTTGCA	TTCTAAGCAA
					AACCAGCATC		
					AGCTGGGTAC		
		GTTTATTTTA			ATTCCAGAGC		
	CTGAGAAATA		TTCATTTCTG		CATCAACTTT		
55		TTTCTCCAGT			GACCAAACTG		
					ATTTCTGAAG		
					CTCAATAAGT		TTGAATATTT
					TGTTTTTAAC		
C C	TAATCAGAAA		TACATAAACT		AATAGGGATT		TCATTCATTC
60					AAGCTAGTAG		
					TAATGTGTCT		
	TAAGGAAGTA	GAGAATGAAT	CAGCAGATGT	GGAAACTCCT	CGCCACTAAT	AAAACTTACC	TTCTCTTGGA

					AAAAATTAGA	CAATTTAAAG	TTTTTCAAGT
	AAGGGAGAAG			CTGTCTTTTG		GGTATTTGTT	AGGTGGACCC
	TATCTGTGTC	AAAC GAGATT	TGAGGAACTG	GCTTAATAAA	CAGTGGTAGA	CACTAATACA	GAACAGACAT
	GTTGATGCAG	ATGCCTCCTG	AGGTTCCATT	CCATTCTCCG	TGCTACTCAA	GAAGACAGAA	TTGCTAAATT
5	GCCTGGTGGC	AAG.ACCCAAT	ATGTCCATTC	AAGTGTTTAT	CCCTTCCCAA	TCTGCCATCT	CATCCTACCT
	GCAGATTCTT	CCCTTGAGGG	ACAGCTGCTA	ATACTGTAAA	ACTATGTGCC	ATTACAGCTC	ACAGCATCAT
	CTCTATGAGA	ATCCACAAGA		TTGGTCTTGT	TGGTAGGAAT	TGTGCAGCCT	CATCTGAGTA
	ACTAATGTGT	TTTTATCTTA	CAAACACAAG	GAATATCACA	TGGTTCTCCT	TTGACTGGCT	GTAAGGAAAC
	TCAGAGCTAG	ATC: GAGACC	CTCTCCTACC	AAGTATATAA	AACTTTGTGA	CATACATTTT	TGTGCCATAA
10	CTTCAACCTT	GGTT'CCAAAT	GATTTTTGTA	CCCTAAGTTT	AAATTTGGCT	TTCTTTTTTT	TTTTTTTGTA
	CTCAATAAAA	CAT('AAGCTC	ATTTATTATT	GCGAAGAGCG	AAACAACAAA	GCTTCCACAG	CGTGGAAGGG
	GACCCGAGTG	GGTTGCCCAA	ATTGGCTTCT	TTTTCTTACT	TTTTAATTAA	TTTTAATTTG	CTATACTGAA
	CACATTTTGT	ACTGTTCTCA	CATTCTTTTT (GAAAAAAGCA	GAATATAAAT	AAGTAGATAA	CTTAAAAAAA
	ACTCTTTGAG	CAGA.AAGAAT	CATTTGGGAG	GCAATATATT	TCAGTGGCTG	TAAAGTGGCA	TTCTAGAATC
15	ATCCTACCCA	GGTGAAAGCC		ACCTGTAGTG	TAGTGTGTAT	TTGAACAGCT	ACTTTCTTTT
	CTAAACTACA	ATT1'CTTCAT	CTGTTAAAGA	GGCATAATAA	TTGTATCATC	CTCATTGGGT	TGATAAAATA
	AAATATTTCC	AAGT'ATTTAG	TTCAGGTCCT	AGCACGTAGA	CAGTGTTGCA	TTACTGTTTT	AATCCTTTAA
	AGTATTAAAG	ACTACTATTT	GAAATCTTTT	CTTCTAAAAT	TCAGCCTGCT	GATGACCAAG	TGCACTTGAG
	CAGGGGGAAT	CAA ATCTGAA	TTAATTTCAG	ATTCTGGTTA	GCTTCACATA	AATATTTTTT	TTAGGGATGA
20	TGAACCTAAC	AGCAATAGAT	GAGTAAGAAT	CTGTTCCTAC	TGAGAGAGTT	TCATTTTGAA	GAAAAAGGAA
	CTAAGGGGGC	ATG'TGTTCAG	TTTCATGCCC	TGGTCTAACC	CTGTGTGTTG	GTTCTGGTGG	GAAATTCTTC
	CAACCGAGGA	AAAAACCAGT	TCACAAATCT	GAAGACCAGT	GATTTTAGAA	GATGTATCTG	GACTGGAGTC
	TAATCTCTGA	CTCIGGGTCC	TGCTGATATG	GTATTTTTGA	GATTTGGCCT	AAAACATCAT	TGCCCTGGTT
	TCCTTATTTA	CCAAACAGGG	CCAATGGTAG	TGACTAATCA	GAAAATGATA	ATGCCTGGTG	CACAAAATGT
25	GTCTAGATGA	GCCCATGCAC	AAGGACACAT	GTTTCTGGAA	CTGTTCCTTA	TTCCTTTCCT	AAAAGAAAGG
	AGGGAAAGTC	TCCATACTAA	GACTACTAGG	GCAGGGGACA	AAGTGCTAGA	GTCAGAAGAT	TCATCTGAGG
	ACAGAAGAAT	AGG GGTGAAG	GCTCTAGTCA	CTTCATTGGC	TACCATGCTC	TAAATAGTTA	CCTGTGCCCT
	TTTTCTAACT	ATTAGAACCC	AAAAAGCCTA	TAAATTCTCT	CTCTCTCTCT	CTCTCTCTCT	GTGTATATAT
	ATACATATAC	ACACACACAT	AGACACACAC	ACACACCTAA	ACACACACAT	AGAGATTTAT	GACTTTTTAC
30	TTTTATCCTT	GTAAATGCCA	TTAACTATAT	TTTGTCTTAG	ATTTAGCCTG	GGAATGTAGC	CATTATTTCT
	ACCATTGCCT	CCATAGGAAA	AATACTCTTC	ATGTTTTAAA	GGACCAACCT	ACAACTAAAA	TCTTTGGAAA
	GCAGAATCAT	TTGTAAGTTG	GTGAAAATGG	AAGATGTTGT	TTTATAAATG	AAGACTTTTT	TTTTTTTTT
	TTTTGAGACA	GGGCCTCACT	CTGTTGTGGA	GTGCAGTGGT	GCTGTCATGG	CTTACTGCAG	CCTTGACCTC
	CTGGGTTCAA	GTGATCCTCC	CACCTCAGTC	TCCTGGGTAG	CTGGGACTAC	ATGTGCATGC	TACCATGCCT
35	GACTAATTTT	TTGTATTTTT	GTAGAGATGT	GGTTTCGCCA	TGTTGCCCAG	GCTGGTCTTG	AACTCGTGGG
	CTCAAGTAAT	CCTC CTGCCT	CAGCCTCCAA	AAGTGCTGGG	ATTAGAGGTG	ACAGCCAAGG	TGCCTGGCCC
	ACAGATGAAG	ACTATTTAAT	GTTATCTTAA	AGATACCCTA	AGCTTCCTAC	CAAGCCAGTG	ATCTTTTGGG
	GCTTCTGTTT	TCTTIGTTGG	CATAACTGTA	ACTAGCCTAA	CTGCCCGTTA	TCTGTTTCCT	GTTTGCCCCA
	CACTGATTCC	CACA GCAGTT	TTCAAGTTAT	CGGTTTGAGA	TCTTGTACAG	AAATGACTCC	AAGGTAAAAA
40	ATTTAAAAAC	AACCCCTCTA	ATTTTTTAC	CCTTGCTTAT	AAAACAGCCT	TAGCCAGCTA	ACCCCTCACT
	ACATGCAAAT	GAGTTTGATT	CTATTCTTTT	GATTCTACAA	ACACTTATTA	AAAGATTTTA	GAATTCGGAA
	ATAAATAGCT	TCCTTATTAA	GGTGACTTAC	AGCCCCAAAG	TCCTTAAAAT	TATTTAGACA	ATAGCCACCT
					ATCCGTCAGT		
					CTCAATGGAA	AGAATAATCA	GTGGTTGGAG
45		TTCTTCTTTT				AGTACTGTAT	AGTACTTAGT
					GAATTTCTAA		
					TTCTTGCATA		
	CACACACTTT				AGCGCCCACT		
50					ATATTTTTGT		
50					CGTACTAACT		
					GCAGTTGGTT		
	CCCTGAACTT		TATCTTTTT		TTGAGACAGA		GTCACCAGGC
	TGGAGTGCAA				CCTCCCGGGT		
<i>E E</i>					GCCTGGCTAA		TTTAGTAGAG
55					TGAGCTCATG		
					CAAAACAGGT		
	TGTCCATGAA		TTGAATGGTT		AGTTTGGCCA		
					TGAGACACAC		
60	AGTGATAATC				TCCTCCTTCT		
60					GGCCTTGGTG		TGGGAGAATA
			TTAATGCAAT				
	GIAIIIGGGA	GCAGTGCCTT	GAAACCITAG	IGGACATTAG	ACCCACTTCC	TAGTGGAATT	GTAGCATTGA

	AATCCAAGGC	ATGTAGGCTC	TTAGAGGACA	GAGATAGTGT	GTCATTTTTT	CAGAATTAAT	TAAGAGCAGG
	CCAGGCGTGG	TGGCTCACAC	CTGTAATCCA	AGCCCTTTGG	GAGGCCAAGG	CAGGCAGATC	ACGAGGTCAG
	GAGATCGAGA	CCACTCTGGC	TAACACAGTG	AAACCCCGTG	TCTACTAAAA	ATACAAAAAA	TTAGCTGGGC
					GAGGTGGGAG		
5	CGGAGGTTGC	AGTGAGCTGA	AATTGCACCA	CTGCACTCTA	GCCTGGTGAC	AGAGTGAGGC	TCTGTCTCAA
					C CATTAGAATA		
	CCTAGCAAGC	TGCCTTGAAG	GTAATAGACA	TTTTTAAAAG	TTTATCAGAT	GAAAAGCGAA	AATCAGCCAA
	CCTGTTTTAA	TGAAGGTGTG	TCCTGGGCTG	ATTTACATGT	CTCCAGGGAC	TGATGGCTCT	AGAATGTAAA
	GCTTGGCATC	CTGCTTGTGT	TGAATCTATC			TTCTTTTTTT	TTTCTTTTTC
10	ACTTTAAAGT	TGTGTTTTT	TCATGTGAAG	TTAAACTCAC		TTAATCTCCT	TGCCAGCCAA
	ATGATAAATG				CCACTGGAAT		
					AGAAATCAGT		
	ACCAGCATTA	TTTCCTTAGT	CTATCTCATG			TTACATCTCC	CAGTAGTAGC
	CCATTTGATG	CCATTTGACA	GATGAGGAAA		AAGGCCCCTG		AGCATAGGCA
15					TCAATGCCCA		TCATAGAGTT
					GTTGTATTTA		CTTGTTCAAT
					TACAACTTCA		
	TCTGAACTGG			AATCATTAAT		TAAAGCAGTT	GTGCAAAAAT
	AAGCACTTGA			GCACTAATTT		CAGTAGTTAC	CACTTCCCTC
20	TACTTCCTTC				ACTCTTGTAA		
					TCTCCTGATA		
	CTTTTTTACA	TATTGGCAGA		CTATCCTTAG		TACTTTGATG	AACCTTTTCA
	AGGTGATTTG	ATCC CCACAC	CCAAATATAT	GATTGAGAGA		TCCCAGGAGC	
					ACTAGCTAGG		
25		ATACACAGTC		GGCCTCCCTG		CTCATCCACT	CTACTCCCTG
	GCCCTGGGCA	CGCAGCACAC			GCTTCTGTAG		TTAAAGACTT
	TTGTCATCCA	TGCAGATAGT	CTCAGGAGCA	GACACAGGTA	GCTATTCTTT	CACATGCTAG	CTTAACATGC
	ATTTGCTTTA	GCACCTATTG	CCAGGCACTG	TGTCAGGTGG	AGGGTATACA	AAGATGAACA	AGACATGATT
	CTTCTCATAT	ACAC ATAGAT	TTTGGAGGCA	TTAGCTTAGT	GATGATTCAG	GAGTATCCAT	TATTTGGGGA
30	AGTAGGTGGT	CATT'AGTGAC	CTTTTACAGG	CATTTCAATG	GGCTAACAGA	GATGTTAGAT	TGTAGTGGAA
	TAGAAGAATG	GGTAAAAAGT	AAATCAGTGA	GTTCAGATTT	TAGGAGTTAA	GATGGCAAGA	GGTGAGAACA
	AAAAAAGGAA	ATGATTGTCA	TTAAAGGAGG	AGGAAAGACC	AGCCAAAGAT	TTTACAGTGA	GTTAAGCATA
	CAAATTTATT	TCTAGGCCAC	ATATTCTTAG	CAAAACAACA	TGTAAATGTT	TATGTATGTC	TTTCCTCATA
	TCTGCTCATC	CATC AGCTCC	ATCGTTAAGA	TTTCAGTTTT	CCAGGACAAA	CTTACTCACT	TTGACATATT
35	GGACTAGGAT	TTGACCAGAT	TCCAGATGAT	TCACAAATGO	TTTTCTTCTT	CCCAATTAAC	TCAGTTCCTT
	CTGAGCAGAT	GAAGGTACAT	GCAGAGGTAA	AGCTGAAGCT	GGCCAGGGGA	TGGCTACAGT	TCATGATCCC
	CAAATCTGGT	GCTGATAGAG	GCTCACACTG	AATCACTTCA	ATGAAAAAGA	AAAAAAAAA	AAAGACAAAA
	CAGTATTTCT				TTTAGCCAAA		TACATTACTT
					TGGGTGGTGA		
40	AGCATTGAAA	GCTGTGGGGA	GAGGAGTAGC	TACTCCAGGC	TGCTGCCCTA	GCTAAGGTGA	CCCTCCCCTT
					CTCTTATGGG		
					AACATCCCAA		
					TCAATAAGGG		
					AGAAAAGTTA		
45					GTTAAAAATG		
					TTTTTCAGTT		
					ATAAAACAAC		
					AAAACAGGTG		
50					GGCAATGAGA		
50					ATGGCTTCAG		
					TCCTTTGAGA		
					CAAACTTCTA		
					ACCTTGACAG		
					AAGTTTGTTC		
55					AGTCCATGGT		
					ATGGGGAAGA		
					TTTAAACAAG		
					TTATCTTTAT		
60					GCCTGACTCA		
60					GTGAGAATCC		
					AGAGCCCCTG		
	GCAAGATGTT	CAGAGAAAGA	GTGGGTCTCC	ATAATAAGCC	TTCTTTGCAA	GGAGAGAATA	TAAAAGTCTA

	COLLOCATE	TO A COTTO A A M	mamamam am	A TOTAL COMPO	1 COTTO CA LO LA	mmmm A A CM CM	mmma + mmmma
	GGAAGCATTT	TGACCTCAAT	TCTGTCTTCT	ATTCTAGCTC	AGTTCCAGAA	TTTTAACTCT	TTTGATTTTG
	ACAACCCTCT	CCAGAAACTG	TATCTATTTC	CCTGTTCTGA	TTGGTGGTAC	AATAGGTAAA	TTTAAGACTT
	GGAAATCAAA	GTTTTCACAT	TTTAGACCCT	GCCATGCCAT	TTAGTAAACA	GTACAACTTT	CATGTCTTAT
_	TCCTCATCTG	TCAAATTTAA	GCCATTATTG	CTACCTTGCT		CAAGGAAGAA	TGGACTCAAG
5	GAATCAGAAG	AATTTTTGTA	TTTGGAAACT		AGATTAGGGA		AACTAAGAGA
	AAATGTTATC	TTTTTTCATT	GATTTAAAGA	GTATCTATTA	TATATCAAGC	ATTACTCTGG	GGCTTGAAGA
	GCTTAGATTT	CACCCTGTAG	GACAAAATGG	TAGGTAGAAA	TTAATGGGTG	GATTGTCATG	TATGTGTGAT
	GTGTTTTAAT	TGCTTTTAAT	TGATCAGTCT	CCCTGTAGTA	TGAATAATGT	ATTTGAGGGG	AGCTAATTTA
	AAATTGTGGA	ACTC'ATCTAA	TAAACTATTG	CAAGAATCTA	GAAGAAAGAT	AATGACGGCA	ATGGTAGTAG
10	AGTTGACAAG	TGGAAGACAA	ATTAGAAAAA	CACTAAGTTG	TAAAAATTGG	TAGAATGTTA	CCCTGCATAA
	ATGTTGGGGG	AGTT'AAGAGA	GTCTCATACC	AGGGTGCCCA	TGTAAATGGT	GATTCCACAT	ACTGAGATAA
	GAAATACGAA	GAG AAAAGCT	GACTGGGAAC	AATTGGTTTT	ATAGTCTTTT	AAACATCCCA	AAGGACATCC
	TTAGCATATT	TGAC TTCAGA	GCTGGAGATA	GGCTTATCAG	TCCAAAGATC	ACATAGATTT	GTGAGTCCGC
	AAAAGTCAGT					GCAATATACA	
15	GCTGAGAAAT	TATAGTAGTT	TATGGTCCTG			CTCAGGAGAA	
					ACAAAGAAAA		AAAAATGAGT
					ATACCAATAA		AAAAAATAGA
	GTTCAAAAAT					GATCAAGTGA	-
	ATCTATAGAT	CTACTTCAGT	TGGTTGACAT	TTAAATGTAT	TTTGGTTTTA	ATTCTTTATT	GTTTACAAAC
20				TTCAATTCAG			
20	ATTGCTTTT	TAAAAAATTA	AATTGTCCAA		GCTCACAAGC	AAGTGCCTCA	TATATACAGG
	CATTTTGTGG		TGCAATGATA		TTACTGATCT	CAAGAAGTTT	TCAGTACCAG
						GAAGAAATAT	
	CAGAACTAAG	AAAGCTTCCT	AGAAGAAACT			AGATGACATG	TTTTTTGGCC
25		TGAGAGAGAA			TGCTACAGAG		AAGTGTGGAG
25					GATACTTTCT		
	GATAAATGGC	ATAGTTTCTT	CCAGACCTTA		TAATCTAACA	AGCTCATTAG	ATCGTGAGCT
	TCTTGAGAGC	GGGAATCTAC	CATGCTAATT	CCTTATGGTA	ACCCTGACAG	CTTTTATCCC	AACACTGTGC
	TTCTTGTGGT	ACTCAAAAAG	ACTTGTTGAG	AAGTGAGTCG	AAACTTCATG	CŢGACTTATG	AAATCTTTAC
	GGAAAGGTAA	CAATATTGTG	AAAGCAGAGC	TTTCTGATCA	AAACTTCCCA	TTTCTCAGAG	TGGCTAGTAT
30	CATTTTGTTC	CAACCAGCTT	CATGATAAGC	TATAATGATT	CCTGTGACTT	TACCTAAGAA	GAAGCAAAGA
	AAGGAAAGAG	ACTΓACCAAA	CTGACACTGG	GGCCCATAGT	ACCCCACATC	ACAGTTGCAG	GTGTAATTAT
	TGATGATTTC	TACACATTCT	CCATGGCCAC	TGCATGACCA	GGGCTGGCAA	GAAGCTTTAA	GGAGGTCAGA
	AAAAAAATAT	TTTAATGTGA	TTACATTTTA	GTACTCAAAG	TCATTTCTTT	AGACATAGAT	AACCTTTTGT
	CTGAGATGAT	TTALATAATC	AGGAAAGGTT	TATTTGTAAA	TTCATAGCAT	AAAAATCATA	TGCTAAAATT
35	TTTACGTATA	AAAT'ACACTA	AGCATATAGT	CATAGGCATT	TATTTGCTTT	TGGAATGAAA	TTACCAATAC
	TAATATTCTG	TAACACTTAT	AGGAAACTTA	GTGGCATACC	TTGAAACTCT	TGAAATTACT	TGTTTTTAAT
	GAGTGAGAAG	GTT 4AATGAT	GACCTGACCT	CAATCATTTC	TGCATGCAAT	TATTTCTTGG	CAATCCCTTT
	CTTTATAGAA	ATC#AAGATT	AAAAAGTCCA	AATTTGCTAA	AACGGTAGAG	TCCAATTTAT	AAGAGACCAA
	ATTAACTATG	GTTC'ATTATT	AAAACATCAC	TTGGAAAATG	CTGGCTGTTT	TGGAATTGTA	GAAGATTTTA
40	CAGAAATATT	CATACACCAA	AGATAGTGCA	ATTTTTATAT	AAAATTATAT		CAAGAAGGAA
	GCACGCAGCA	CCACACTCTC	TACTTCACAA	TGTGAAAACT	GAGGTGATGT	GAGCCTAAGT	TTCCAACTGG
	CCCCAGCTGT	CAGCTTCTCC	TCCCCTGCCT	TATTATCAAA	GGCACTGATT	GTCTAGCTCT	TCCTCTGTAC
	TTCCTACGTA			CTTGATTTAG		TTTGTGCACA	~~~.~
						GCTAGATGTA	
45		TGTTCTCATC	CCCCCACCTT			ATTCTCTTAA	
13	TCCTGAGTCT		AGCCGTCTTG	TCACTCCCTA		AGAGGGCTGC	
	TGGCAGGCGT	CATCGTTCCA			TCTTGATATA		CAGTCCTCCT
	TGTTCTTCTT	GTTGTTGGGC	TCACCATCTC	CCCAGTTCTC		GTAAGAGATT	TGTTGGTTCC
		CATATTCCTC	CTATCTTCCG		CAGTAGTAAG		
50	TTCTCCAGAT	ACTCAATTTC	CGCCTTGTTT	TGTATGGCAA		GTAATTGTCT	CGGCAGAATC
50			ATGGGTTTTT				CATGATGTGC
	TTCTAGCCCT				GTAAGTCCAG	CAGTCGGTTC	
						ACAGCTAAAA	
						AGTGTATGTG	
<i>5 5</i>		TAGTTGTTTG			GACCTTCTGG		
55	ATCTAAGGTT	CTA' TTGAAA					TTTTCTCAAA
	ATTATTTCAG		ACCAACATAT				GCTGTTAATG
	ATTTACAACT	AATT'ACCGTG			ATTTACGTAT		
						AGGAAGAACA	
		CTC1TTTACA				ACTGCTTCTG	
60	ATATACCACT					AATTTACAAA	
						CTGATGATGT	
	TATGGACCCA	TCAAATATGA	GGGCTTTGAA	GATATCTAAT	TAAACACATA	ATTACACAAT	GACTTCATAA

	TAATATATGG	CATICTAAGC	ATGGTATGAT	CTACATGAAT	CACTATTTAA	TACAGTAAAG	AAACAGATAT
	AATTGATGGT	AAAGAGCATC	ATAAAATAAA	CATTTTGAAC	AGAGTTTTGA	ATGAGCATTC	CACTAGAATG
	CAAGTTCTAA	GAGGGAAAAA	ACTGTTGTGT	CCACTGCTGT	ATCCTTAGTG	CCTAGCATAA	ATTTCACACA
	TTGTAGGGAC	TCACAAAATA	CCTGTTGTAT	GAAAAGAGCA	CTAAGTTTCT	ATGTGACACA	GTGCAGACAT
5	GGCATAAGGA	ATGT:GTGAAC	GGGAGAGTTA	GCATGTTTGC	TTGGCTAGAG	CTGAAAATCC	AGGCTAGGGA
	GAAAGAAGAC	ATTAGTTTAC	TTAGGAAATG	AAAAACCAAG	TTCAAAGCTA	TTGCTGGAGA	GTCTTCAAGA
	ATCAGATATA	AAATTTGTCA	CAACAATGGG	AGAAGGACCA	AAAAATGATA	AACCCCCGTC	CCTTAATAAG
	CTCGTATTGT	AATTGTAGAA	ATGACATTAA	TGTACACTGA	ACTATGAATA	AAAAATAGAA	AATGAGGTGC
	TAAATATTTG	GTAC'AGATTG	TAAGTACCTT	AACAGAGATT		CATTATTCCT	TTATAATTGA
10	GGGATTTTGT	GGGGTTATTG	GGATTTGAAC	TCTACAGCAT	GGGCTATTAT	AGGTTAAAAA	TAGTGTTCAG
	GAGTTTCTGG	GGAA GAACTA	AAGGTAAGAA	GAAAAGAGAT	GTTTACAGAA	GGGATAGAAT	TAACAGCTCT
	GTGAAATAAT	TTTC CCTTAG	ACTATGTATA	ACTAGTGGAT	ATTTAAGAAA	AATGAATATA	AGTAAAATAG
	ACTTAGCGAT	TATAAATAT	CATAACATAC	CACAACAGAG	CATTGTCCAC	CCCCACAACT	TGAAGATGTT
	CCATAAGTCC	CTC1 GGGTGC	TCTGACATTT	CCATGGAAAT	ATCTGCAAAT	GAAATACAAA	ATTATATTTA
15	GATGTATACT	CTTAAACCAC	ACATTTATAG	CCTTTGAGGT	GGTGCTTACA	ACTTTCTTAA	TAATCAGAAT
	AAAACACATA	TGTCTACTAA	CCCTGTCTGA	GGTAACAGGT	TTCTCAGACA	TAGATGAAAA	ATTACTTCAA
	ATTTACATCA	GAACTGATGC	ACAGTTTTGT	TTTGTTCTAT	TTTATTTTTA	CGCTTTAGTC	TCAAGTTGCT
	AATCGGTACT	GCCCTGAATT	TTTTCTATGG	TTTGGTAATT	TTTATACCTG	CTTTTCTGCT	GAGCTATTAG
	ATAAAACTAT	TTAATTTA	CTATGTATAT	TTTTTAAAGT	ATTGTTGCTG	CTTAATTAAC	TATTGATGCT
20	TATATTTAAT	GTTATAGCCT	CACTCTTGAT	CATAATGGGT	CAATGCCTCA	AATACCTAAA	AAAAAAAAA
	ATTAGATAGC	CAGACACCAG	GAAAGAAAAG	TATTTCTTTT	TTTAATAAAA	AGAAATACCT	TTTTGAGCAA
	CTGAAATGAC	AAAGTCACAA	ATTTCCTGCA	CACCTTAAAA	TATACTTAAT	GTAAATGACG	AGTTAATGGG
	TGCAGCACAC	CAACATGGCA	CATGTATACA	TGTGTGACAA	ACCTGTATGT	TGTGCACATG	TACCCTAGAA
	CTTAAAGTAT	AATTTTAAAA	AAATTCTATC	TTCCAAAGCA	TATCACTTCT	CAGGTAGACA	CAGTGTTTAT
25	TGCAAAAGAT	CTGATTTCAA	TAGTATTTCT	TCAAGAGTCT	CCCCAGAGAC	AAAGTCAAGA	AGAGGAAATC
	AGCATATCTG	AGAAGAAAGA	TTTCAGGATC	ACTTTTTTTG	AGGGTCTGAG	AAAATGTTTA	GTTTCTATAT
	TATTTAAAAC	CAGAATTGAA	ATGGGGTGAT	TCCTATCCTT	GCCACCTGCC	TCTACAACCC	CAAGAGTTTC
	TATCTGAGCA	TCT/AACGTC	TTTTAGGCTG	AAAGGCTCAC	CATGGCTTTG	CTTGGTCCTT	CTCTAGTTCT
	TCTGCAGCCC	ATTC AGCCTC	TTGACTTAGC	ACAAGGGTCT	CAGGTCCTTG	CCCAAAGGGA	GTGTGCTGTG
30	CTGCAGGTAG	ACTGCACTGA	ATGTCAACAG	AAAGCCTTGC		TTCTCTAACC	CAGTCTCACA
	TCCTCCTCCT	CCTCCCCTTT	TCCCTCCCCT	TCCTCCTGCA	CTTCTCTTTC	CTCTTTCCCC	ACCCCTTTCC
	TAGACTGGCC	TCT#TTGCCT	CCCACTGAGA	CAAAAATGAA	CTGCTGATCA	GAAAGTAATG	TGACTAGATT
	CTCTCTTCCT	TCCC TCCTTT	CTATCCTTCC	TTCCATTCTC	CTATGCATCT	TTCCTTACCC	TCCTCCTCCT
	TCACTCATTG	TTGTTGCTGT	TCTTCTTCCT	CTTCTTTTTC	CTCCTGCTCC	TCTTCTTCTA	CTTGTTCTTG
35	TTCTTGTTTT	TGTTTGGTTC	TTGTTCTCCT	CTTCCTCCTT	CTCTCTCTCC	TCCTCCTCCT	TCTTTTCCAC
	CACCCTCCCC	TATCTTTTC	ATAAATGCTA	AACTAACTCT	TGGCTACCTG	TGGTAAATGG	CCCTTGGAAA
	TTGCAAATAC	TACAAATCAA	AACTGCATTT	CAGACATATT	TATGATGTTT	GCAAAACTTC	AGTAGAGCTA
	AGCAGTGGAC	TTGACTCGTT	TCGGTTCCTT	CACCTCCGTC	TTTCCTTGCT	CACCACCTAG	TGGACGTCCT
40	TGTTAGTGGC	ACTTCCTGAA	GTTAACCCCT	GAAGAGAGCC		AGCTTTTCAC	CGTGTAGGTT
40	TGGGAGCCTA	CAAGTACCTT	TAATATTCTT	GGACTATAAA		TTTATAAGAC	TGCATGTGAA
					CACTGATGTG		TCAAATGCAA
					AAAAACTCTG		CCCCATATTT
					TATGATTATT		
45					AAGAAATAAC		
43					ATCCAGGAGC ATCAATAGAC		
					AGAGATTACT		
					CATACACCCT		
					TAAGGCAGCA		
50					CAGAGGTACA		
50					TCCCTCACTC		
					AAATTTCAGG		
					AGCAGCACAT		
					CATACACAAA		
55					ATAGATGCAG		
					TTGATGGAAC		
					GCAAAAACTG		
					ACATAGTATT		
					GAGGAAGTCA		
60					AAAATCTCCT		
					AGAATTCCTA		
					ACAAAGAGAA		
							

	CTT A C A A C C A	ATCTCAACCA	CCTATTCAAC	CACAACTACA	A A COLA COMO COM	C + + C C + + + M +	1010100101
					AACCACTGCT		
		GAAAAACATT			AATCAATATC		
	CAAGGTAATT	TATA GATTCA	GTGCTATCCC	CATCAAGCTA	CTACTGACTT	TTTTCACAGA	ATTAGAAAAA
_	AACTACTTTA		GGAACCAAAA		ATAGCCAAGA		CAAAAAGAAC
5	AAAGCTGGAG	GCA' CATGCT			ACAAGGCTAT		ACAGCATGGT
					AGAGGCATCA		CACACATCTA
	CAACCATCTG		AAGCTGACAA		TTGGGAAAGG		TAATAAATGA
				AAACTGAAAC		CCTTACACCT	TATATAAAAA
				GAAGACCTAA			AAAACCTAGG
10					ACTAAAACAC		
					TCTGCACAGT	AGAAAAAAA	AAACTATCAT
	CAAAGTGAAC			GAAAATTTTT		CACCTGACAA	AGGGCTAATA
	TCCAAAATCT	ACAAGAAACT	TAAACAAATT	TACAAGAAAA	AACAAACAAC	ACCATCAAAA	AGTGAGTGAA
	GGATATGAAC			AGTTTATGCA		ATATGAAAAA	AAGCTCATCA
15	TCACTGGTCA	TTAGAGAAAT	GCAAATCAAA	ACCACAATGA	GATGCCATCT	CATGCCAGTT	AGAATGGCGA
	TTATTAAAAA	GTCAGGAAAC	AACAGATGCT	GGAGAGGATG	TGGAGAAATA	AGAATGCTTT	TTACAGTGTT
	GGTGGAAGTG	TAAATTAGTT	CAATCATTGT	GGAAGACAAT	GTGGCGATTT	CTCAAGGATC	TATAACTAGA
	AAAACCATTT	GACC'CAGCAA	TCCCATTACT	GGGTATATAC	CCAAAGGATT	ATAAATCATT	CTACGATAAA
	GACACATGCA	CACTTATGTT	TATTGAGGCA			TTGGAACCAA	CCCAAATGCC
20	CACCAATGAT	AAA('TGGATA	AAGATGATGT	GGCACATATA	CATCATGGAA	TACTATACAG	CCATAAAAAA
	GGATGAGTTC	ATGTCCTTTG	CAGGGACATG	GATGAAGCTG	GAAACCGTCA	TTCTCAGCAA	ACTAACACTG
		CCAAACATTA		CTCATAAGTG	GGAGTTGAAC		CATGGACACA
	GGGAGGGAA	CATCACACAC	TGGGGCATGT	CAGGGGATGT	GGGGCTAGGG	GAGGAACAGC	ATTAGGAGAA
	ATACCTAATG	TAGATGACAG	GTTGATGAAT	GCAGCAAACC	ACCATGGCAC	ATGTATACCT	ATGTAACAAA
25	CCTGCACGTT	CTGCTCATGT	ATCCCAGAAA	TTAAAGTATA	ATTTAAAAAA	AGTTTAAAAA	AAGAAAGTTG
	CCTTAGTCAC	ATAACTAGTA	AGAGACATGG	TTGGGAATTT	GAACAGAGGC	CAATCAGTTC	CAAATCCATG
	CTCTTGATCA	TTAA GCTGAA	CTTATGGCAG	GAACTTGGAA	GACATGGTAA	AATGGGGAAA	AACGTGGAGC
	CAGGGAGACT	TGTGAAAGTG	CCAGTGCTCC	CACTATACCC	TGAAAGAAGT	ATCTAGACTT	ACTTTTTTCT
	AAGTCCTCTC	CTCTAATTCT	CTCAATCTCT	CTCTCTCTTT	CTCTAAGAGA	TGGGAATGCT	GCTCTGTCAC
30	TCAGGCTAGA	GTGCAGTGGT	GCGATCATAG	CTCATTGCAC	TCAAGGAATC	CTAGGGTCTA	GTGCCCCTTC
	TCCCTCAGCC	TCCCATGTAG	CTAAGACTAC	AGGCACATGC	CCCAACCCTC	GACTAATTTT	TTTATTTTTT
	ATTTTTGTAG	AGAC AGGATC	TCACTATGTT	GCTCAGGCTG	TAATTCTGTC	TTGAAGCTTG	TCCAATCAGG
	CTTTCAGCCA	CACCAATTCC	CTGAGACTGC	TCTCACCAAG	GTCCTACACT	TCACTAACAC	AAACAGCCTA
	TTCTCCATCC	TCATCTTACT	TCACCAGGGA	GCTCCTGGTT	TTCCTCCTAC	TTCACTGGCT	ATTTCTTCTG
35	TATCATGTGT	TGATTCTCCC	TCATCTCCCC	AACCTCCAAA	CCCTTGGAGT	ACTCCAGAGA	TCACCGCTTT
	GCTCTTCTGT	GTCTAACCTC	ACTAACTTGG	TGGTCCAATT	CACACTCTTG	ACTTTGAATA	CCATTTAAAT
	GCGAACGAAT	TCT/.AATTCT	GTACAACCAG	AACCATTCTC	CTGTAGCCAA	ATGCCTACTC	AACATCTCCA
	TCCCCAAACA	AAT1 TAGTTG	TTCAATAAGC	CTCTCATATT	TTACATATCC	CAAACTGAAC	TTCTGAATTT
	CTCCTCCAAT	CTGTAGGGCT	CTTCCCACAG	CCTTTCCATC	TCAGTGGATT	ATAACTCCAT	CCTTCCAGTT
40	ACTCAGACCA	AAACTTTTGG	AGTTAACTGA	GACACCTCTC	TTTTTTTCA	CAAGTCATAT	CCAATGTGTC
	AACAAATTTT	GGTAGTGGAA	ATATTGCGGG	ATTTTTTAAG	AAATCAGAGA	GACCGATGGG	GTTCAGGAGG
	ATATTTATTA	TTTA/GGTGCA	CTGGCCAAGT	CAGATTAACA	TCCAAAGGAC	TGAGCCCTGA	ACAAAGAGTT
	AAGTTACCTT	TTAAGCATTT	TGTGGGGTGG	GAGAGAGGGG	TATCTGTGCA	GGGGGAAGCA	TACTACAGAA
	GTGAGAAATA	AAGACAGTTA	TTCAATTAAT	TGAGACATGC	ATTACATCAT	TTCTTACTTT	TCAAGAAGAA
45					CAGCTGCACA		
	ACAATGCCTG	GGAA.AGGAGG	AGAGGTAAGT	CTCACTAGCC	ACAGAAAAAC	AGGCAGTTAA	TTTTTAAAGG
	GCTCCAGCTC	TTTCTCTTTC	TCAGGGGGAG	TTGGGTTTTG	TTACATACAA	CTGAGTTTCC	GCTTACACAT
	TATTTAATTT	CTTTTAATTC	CTGTTCCAAA	AGAAGCCAGA	TACAAAAGGT	TACATGTTGT	CTGATTCCAT
	TTATATGAAA	CATATAGAAG	AGGTAAATCC	ATAGAGACAG	AAAGTAGATT	AGAGGTTCCC	AGGGGCTGAG
50	GAAGAAATGG	GGACTAACTG	CTTATAGGGT	ACAGAGTTTT	CTTCTGATAA	AAATATTTTG	GAACTAGATA
	GACATTTTGT	TAGGCCATTC	TTGCATTGTT	ATAAAGAATT	ACCTGAGACT	TGGTAATTTA	TAAAGAAAAG
	ATGTTTAATT	GGCT TACACT	TCTGCAAGCT	TTACAGGAAG	CATGGTGCCG	ATATCTGCTC	AGCTTCTGGT
	AAGGCCTCAG	GAAGCTTACA	ATCATGGCAG	AAGGTGAAAG	GGGAGCAGGC	ATATCACATA	GCAAAAGCAG
					ACAGCCAGAT		
55					ATGAGAAACC		
					TTGACATGAG		
					CGTCACTGGA		
					TTTAATGTAC		
					ATGGGTGGTA		
60					GGTGAGCATT		
					TGAGACATGA		
					ACCACTACCC		
							_

	CTCCATTACA	GATC ACCGCA	AGATTTATTT	GCTCATTGCT	GCCAACCAAG	GCTGCACTCA	CTGCAGTTGC
	TATCAGTTTA	TCATGGGTAA	AAGGAATGTG	CAGTAGAGAA	CTAACTAACT	GCCCACCTAC	CTCCACAATC
	CTATCAGGAC	AAA `CACCAT	GGCTCACATT	TCCTTACATT	TGGCATGTAA	GCCCCTCTTA	CTGTCTGTCA
	TCTATCTCCT	ACAC AGTTCA	CCTAAACTGT	TCTCTCCTGA	CCCAACCTTG	ATTTTCATCC	CAAATGCTTC
5	CTTGCCATCT	CTGC GATTCC	TGTCTTCACC	ATCACCAAAC	TCCCCTCAAT	CTTCCAGTTT	CCTGTTCAAA
	CTTTTCTCCT	ACCTCCTTGC	TTTGTCATTA	GCCCGACTGC	CTCCCTAGGA	CATCACTTCC	CCTGCAGATC
	TCTCAAGATG	ACAATATTTA	TTCTCCACAC	AGCACATACT	TCAGGGTTGG	AAGGCAGGGG	CAATCTTCTC
	CTTTATAATG	AGTC CCTCTT	ATATATGTTT	ATTCATCTGC	CCTCTTGTAA	AACACACACA	CACACACACA
	CAAAGAAGAA	ATA AAATAAC	TCTGCTTCTT	TGAAGCTTGT	GACACTGAGA	TAAACCATCT	CACTGTCCTC
10	ATTGTAGTGA	CCTCTCAACT	CCTCATGCAA	GATTGGCTTT	GGCACCTAGT	TCCTGATCTT	CCTTTCCCTG
	TAAGCACTTC	TCATAGTCTT	ACGGGACTTC	ACCATCCATG	GCACAACCAA	TACCACAGCC	CAGATCCTCA
	GCTCTCCAAT	GACATTTTCC	TCCACTAGAC	TTGAGCTACC	TCCTTCCCTA	GGCACAGCCT	CAACCTCGAC
	AACACCTAAG	ACTGTACCGT	CTCTAAAGTC	ACATGTTCAA	ACACTTCACT	CTTTAACCAC	TGTCTCCTAT
	TCTTGCAAGT	GTATTGCTCA	AGTATCTCAT	TGCAATGCTT	TTTACTTCTA	CCTCATTGAA	CCTCCAGGCC
15	ATTAAACATT	TCC TATTTC	TAACCATCAG	GTTTCTCCTT	ACTTGTTTGT	TTGTTTATTT	GTTTCTTTTT
13	TTTTTTTTT	TTTGAGACAG	GGTCTCACTC	TGTTGCCCAG	GCTGGAGTGC	AGTGGTATGA	TCTCGGCTCA
	CTGCAGCCTC	CATCTCCCTG	GTTCAAGTGA	TTCTCATGTC			GACTACAGGT
					TCAGCCTCCC	GAGTAGCTGG	
	GCATGCCACT	ACGCCTGGCT	AAGATTTTGT	ATTTTTATTA	GAGAAGGGGT	TTTGCCATGT	TGGCCAAGCT
20	GGTCTCGAAC	TCCTAACCTC	AGGTGATCCA	CCTGCCTCAG	CCTCCCAAAG	TGCTGAGATT	ATAGGCATGA
20	GCCACTATGC	CCCACCTGGT	TTCTCCTTAT	TTATTTCAAG	TCTATGCTGC	ACTATTAAAA	CTGCCTTGAC
	AAAAATTATA	ATAGTGAGAA	AATTATGACA	GTGAAAGAGA			TCTTGCCTTT
	ACCTTCCAGA	CTG('CCTTAA	TAATTCCTGA	GCTTGGGCCA	AGCTATCTTT	GGCAGAAATT	TAGTTTATAG
	TTTAAATGAT	AAT#GCCCTT	CTCCAAAACT	AAACTGCCTT	TGTAAAACTA	ATAAAAGACC	ACCAATGAAA
	GGTTAGGAGG	ATGAGAGGAG		GCTAAGGTGT	AGATGTAAAC	AATTACCAAC	TGTTATTCCG
25	GAGGTCACAA	GATTTGCAAC	ATCGCCAATT	ACTCCTGCAG	ATAACAGCAC	TATCATAGAA	TCTGATTGGC
	CTTTTGAGAT	GTCTTTTCAG	ATTCTTACAT	TTCAACTGGT	GGCTCTACCT	GGACCCATCA	ACAAGTCCTG
	TGGCTCCACC	CAGAAGCAGA	CTTAACATGC	ACAAGGACCA	TTTTCCACAC	CGCTATGATT	GCATCCCAAC
	CAATCAGCAG	CAACCATTCC	TCTGCCTGCC	AAATTATCCT	TGAAAAATCT	TAGCCTTAGA	ATTTTGGGGG
	AGGCTGATTT	CAGT'AATAAC	AAAACCCCGG	TCTCCCATTT	GGCTGGCTCT	GCATGAATTA	AATTCTTTCT
30	CTATTGCAGT	TCCCATCTTG	ATAAATCACC	TTTATCTGGG	CAGCAAACAA	AAGGAACCCA	TTGGACAGTT
	ACACTGTTGG	CAGATATATC	TTGCTTCCAA	AATTGGATTT	TTGTTTAATG	AATTTATTCT	GTTTTCTTGA
	TATTTACAAC	TGTCAATGTT	GTGTCTGAAT	TCTCTTTATT	TCTTGTTGAA	AAGAACTATA	TTGCTACAGC
	CAGTACATAC	AGAT'GGATAG	CTAATTACTC	AACACGGGGG	GATGTGACCA	TCACCGCACT	GTGCAAATGA
	ATGTTACCCA	TTG1 CCACTT	TTCCCAAACT	ACATAGTGTT	ATATGGTATA	TGACCCAATC	AACGGTGGCA
35	AAGCTCCAGA	AATACCACAT	AGACATCAGG	GACACTTTAA	ACTAATCAGC	CTATAGTCCT	TTTTCAGTAA
	TTTCCAAACC	TGGTTGTGCA	TCCAAATCAC	TTGGTAACAT	TAAAAAAACA	AAAAAATATA	CACGCAACAT
	TCGCTCCCAA	TCCTACTGAA	TCAGAATATT	TTGGGTTGGT	TCAGGAACAT	TCAGGAGTTT	TTCAGGGTCC
	AAGGTTTATA	TAATTTGAGG	TCTCTCTTTG	AGAAAAGGAA	CGTAAAAGCG	TCTTGCTTTT	ATAGATCTTA
	CAAAGATGTA	TTACCATGTA	AACACATTCC	TAGGACCCAG	GCCCTTGTAA	TTTAAAGGTT	TATCTAAGTA
40	ATGGGCCCTG	AAGCTTAATT	TTCATTATCT	TCAGGGCAAA	TTACCTGTGG	GTTAGGGTTT	AGGAATATAT
	CTCTCTGTGT	ATG1'GTGTGC	ACATTAGCAT	GTACGCTTGT	GTGGATTTT	TTTTTTTTTT	TTTTTTTTC
	TGAGACAGAG	TCTCGCTCTG	TCGCCAGGCT	GGAGTGCAGT	GGCGTGATCT	CTGCTCACTG	CAAACTCCGC
	CTCCCAGGCT	CAAGCGATTC	TTCTGCCTCA	GCCTCTTGAG	TAGCTGGGAC	TATAGGCACG	CACCACTATG
		TTT1 GTATTT	TTAGTAGAGT		CCATGTTGGC		TTGATCTCTT
45		TCCA.CCCGCC					
	CTTGTGTGGA				AACTAGATCT		
	ACTGTTTACT	CTATGCATCT	CAATATTTT			TTCTCTCTTA	TTACTTCCTC
	TTGTGCTATT	TTT# CACCTC			CCTTTTATTT		TTAGCCCTCA
		TACA AGCCCC					
50		GCALACTGGC					
50		TTCCATTTGT					
		TTTA.TTCATT					
		GCAATGAACA					
55		AAACAATTGT					
33		GAGGGCATTA					
	GTTGGAGTTC				TGTGTGTGTG		
		GGT(3TGGTAT					
		ACGAGCTGAG					
60		GTTCGAAGGC					
60		GGGCCTCAAT					
		CTAATCTCTT					
	AGAAATCTTC	TGGAGTTAAA	CAATGGTGAT	AGCTGTACAA	TCACATACAT	TTTTAAAGGG	TGCGTTTTAT

	GGAAAGTGAG	TTT1 ATCTAA	ATAAAATTTC	TAAGAAAGAG	ACTTAACACA	GAGATAAACA	TAAGCACATT
	TATTGTCAAC	CTTTATAGTG	TTATGTCAAA	TAGGTCTGAC	ATAAGCTTAA	ATAAATATAT	ACTTTAAAAA
	TTATAAAATA	TTTTAAGTTA	TAATTTAAAA	TTCTCAATAA	AACTCAAACA	CAAACCACAC	TGGTATTTCA
	CACAGCTAAT	TTCTAATGCA	GTTTACATAA	ATATTTACAA		ATTTCAAAGA	AAATAACACT
5	GTATTCCATA	CATA GCCTGA	TCACAGTAGT	TGTTCTCTCT	TATTTCCCAG	AGTTTTTCTG	CCCCTTTAAA
-	AGAACCTCTG	CTGTTCTGAT	CCTTATCACA	TCTCTGTTTT	GACTGTTGGC	TTTGTTGTTG	CCAGTGTTCA
	GCCAGAACTT	CTCTGAAACT	TTTTTTCAA	CACATGCTAA	GTTAATGGAA	GTGTAGGAGA	GTTTTGATTC
	TCACACTCCT	CAAC GCTAGA	GCAGCTTTGG	CAATTACTGA	CTGAGAATTT	TTCATTGCCA	GTGATCAACT
	GAAAACTGGA		GAATTGTTAA	ATCTGCTTAT	AAATAAACAT	AAATGCTTGC	TCACACAGGC
10	ATTCCTCTCT	TCCA/JAGCAC	CCTAACATAC	AGAAGAAAAC	AAATAGGGAA	TAACTATTAG	ACATCTTCAT
10	TCGTTAAAAA	TCTACCAGAT	GACTCTTTTA	CATGGTGAGT	TTCTATTGTG	AATTTAAAAT	CTTCCATAAT
	ATACAAGAAT	TATGTTTACA	TATCATATCT	GACAAACATC	TTTGTAGGAA	TGCAAAGCAC	ATCCATCTTT
	CTGTATTCTT	TTCCAACAAA	GACATTCATA	AAATTATACC	TTTGTGTGTTT	TGCATTTATG	CTTTTATTAG
	TTCAAAACGT	TTGC CCTCAT	GGAAGTTTTT	CATCGTGGAA	ACCACATATT	TCTGAAAAAA	TATCTGACAA
15		TTCC'ATTCAG	TTTTTACTCT	CCAATTCTAC		AAAAACAACT	GTAGTAAAAA
13	TATACAAACC	TTTATTCTGG					
	CACTCAGAAC		TTAACATCAT	GCCTTGCTAG	GGGACAATAG	TTTCCCTTTT	TGAAATAAAT
	TTAAAACAGA	TGT/ACATAA	TTTGTTAATA	AACAATGAGG	GGGTAATCTA		CTTTTACCAT
	ATCATAGTTG	ACAGCATTTA	CAAGTTTTTT	AAGTCCCTAC		TTGAATGAAG	AAGTATGGAA
20	GATTATAATA	TATTCAATGC	AAGTAAAAAT	ATCACAATCC	TTAAGAACTC	TTTAAGAAGC	ACTGAATCCC
20	ATAGGGATGA	AAGTGATTAA	ATTGTGCATA	GTAACCCTCG	CACAGAGCAT	TCAGTAGGAT	TTGCACCATT
	AACAACCCTC	CATGCATTTG	CCTGTGGGCA	TTCAACATCT	GTCATTTTT	TAAGTTATAA	TATTTTTAGT
	CATTTTTTC	CTCT AAACTC	TGGATAATTA	TTATTCATTC	TTATGACAGC	AACTGTGTAA	TCAGCTGTCG
	AAACACTGTG	AAGGGCAAAA	GAAAGAAAGC			TGCCAAGATT	TTACAGCGAG
25	CAAGGGAGAG	TTAGAAAAGG				CACCTTTGCT	TGGAAGAAA
25	TATCCTTTCC	CTTCATTAGC	CAACACTTTC		GAGTAGGAAA	GGGAACACTG	AGTCTTTTCA
	GTTGAAGGCC	GTCCTTGCCT	GCTGGACTTT	GATCTATTGA	AGTGGTGATG	GGTGTTGCGG	TTTCAGCCAT
	AAAGGCATCT	GGCATAGTAG			GAGGAGAGTT		GTTAACTTCA
	GTGTATCCCT	CTAC TTCCCC	AGATGCACCT	GTTTCTGTAA	ATATAAACAT	GCATGTCATC	AGAACACTTA
20	ATATTCTGCA	TACTGATCAT	GACAACAAAA	TGTACCTTCT	AACACAGACA	CTCTCACTAG	GATAGACCAT
30	GTAGGAACAT	CGAATTCTAT	TCAGTTAGGA	CAGTGATGAT	GTCTACATAT	TATACCTCTG	TCAAAACCTA
	CAGAATATAC	AACACAGCAC	AGAGTGAATT	CTAATGTAGC	CTGTGGACAT	TAATGAATAA	TAATGTATCA
	ATATTGGCCC			AAGATGTTAA		AATTGAAGGG	
	GATATGTTGG	AACTCTTTGT	GCTTTCTGCT			AACCGCACAC	ACAAAAAAG
25	TTATTTTAAT	TTTTTAAAAA	GTATTCAGAG	GGACTTGACC	TTTCCAAATT	CTCTCAAAGC	AGGTCGGAGT
35	AGTTAAGAAC	ACAAATTTTA		GCCAGAGTTT	GAATCCTGGC	TACACCACTT	ACTAGCTTTG
	AGATTTCAGA	CAA'TTACTT	AACTTCTCTG	TCTCATTTTC	TTCATCTGTG	TGATAAGAAA	TAAAGTAACA
	GGCCAGGCCC	AGTGGCTCAC	GCCTGTAATC		GAGAGGCCAA		TCAGGAGTTC
	AAGATCAGCC	TGGCCAACAT			CTACTAAAAA	TACAAAAATT	AGCTGGGTGT
40	GGTGGCAGGC	ACCTGTAATC			GGCAGGAGAA		GCAGGAGGTG
40	GAGGTTGCAG	TGAGCCAAGA		GCACTCCAGT	CTAGGCAACA		CCATCTCAAA
	ATTAAAAAA	AAAAAAGTAA			AGTACCAGCC		AGTTCCTAGC
	TTAGAAAAAT	TCCCAGAATA		AATGTAAGGG			TATCTATCAT
					CTCCTTCTAC		
15					CTAAGATATT		
45					CATTTGTGAT		
					CATCTGATTC		
					ATGAAGAGAG		
					ACAAATTTCT		
50					TTAAATCCAG		
50					ATCAGAGCAC		
					GCAGCTTCCT		
					AGTCCAAAGT		
					TAAGTACTCT		
					GAGACTCTCA		
55					GTGCTCATCA		
					TGGAGTTGTA		
					ACTAACTCTT		
					CAGTAAGCAA		
60					TAAACTTCCT		
60					GTCCAGCAGC		
					AGAAAGGTCA		
	AGTUTUTUUG	TCCTGTCCCT	TIGGCCTTTT	TTCTGTACAT	TCATTACTAG	GAGCAGAAGA	GCTATCTAGT

	TTAATACAAG	AAGCAGAGAT	GTGGCATTAC		GATCTGCTCC	AAGCCACCTT	TGAAGCTATT
	TCCACCATTG	GCAC GCAGAA	CTCTAACTTG	CCAAGCTCGT	TCACAATACC	ACACCACACC	TTGGTTAATA
	AACACTGCAC	TTGCTTGCTC	TCTTGCTCTC	ACTCCCTCTT	GTTTTCCATT	TCCCCTTTCT	CCTCTCCTCT
_	CTCTGTCTCC	TTTTTCCAGT	TGTCAGAATT	CTACCCTTTC	CATCAACATG	CAACTTCTGT	TTTTTCTCTA
5	TCCCCATACA	ACTTAATATT	CACAACTTGT	CAACCTGGGC	GAACTTTCTG	GTTTGGATAT	AATGAATAGT
	TGATTACTGT	AACA AGATAG	CTCCCCCTTT	TTCTTTTTAA	TCACCAGACA	ACCACCATCA	ATCAATGCAT
	CACCTTCACA	GGTAGGTAGC	AGGCCAGACC	AGTGTCCTGT	GGCTCCACAT	GTCCGAGCTG	CAGAGCCATT
	GAGCGTCCAT	CCTTCAGGAC	AGGCGAACTT	GCACACAGTG	CCAAACACGG	GCTCCCCACT	GCAGCTCATG
	TTGATCTTTC	CCGGAACTGC	CAGGCTTGAA	CATTTTACCA	CTGCAAATGT	TAGGTACACA	GGCAGAGTTT
10	CAGAAAAATC	TACIGGAAAA	CTTCCAAAAC	TTGCTTAAAA	GTCAACAATG	AATGTAAAGT	GTAAGCGCTA
	CTTAGTTTTC	AGCA I GTAGG	AAATTAGGAC	CAAACCCCTT	TGGGGCAATC	TAGGTTCAGA	AACTTTATGA
	AGTATTTGAC	CTGTACCCTA	AAAAAGTCTG	CACTCAATTC	TACCTTGGCA	GGAAGGAACC	TCTTCTGTCC
	ATTGTCCCTG	AGATGTGCAC	TCAAGTTGAG	TTGATCCATG	TAATTCAAAT	CCCTCCTCAC	AGCTGAAGGC
	ACAAGAGGAC	TTGT'AGGTGA	ATTCTCCAAT	AGGGGAATGA	GCACACCTCA	CCAAACCCTT	CGGGGGCTGG
15	TGGACAGCAT	CGCA.TCTCAC	AGCTGGAACA	CACGAGAGAG	CACTTTAGAA	GTTTGTTTGC	ATCTCCAGCA
	ATACGTTTCC	CAAGGTAACC	AAGTTCCCAA	GCTCTTCAAT	AGTTCTTTTT	ATCTTAAAAT	AAAATAAAAA
	CAAAGACTGT	ACC1 TCACAT	GTGGGCTTCT	CGTTGTCCCA	CTCCCCTGTG	GGGCCACATT	GGAGCCTTTT
	GGATCCCTTC	AACACAAAAC	CCTGCTCACA	GGAGAACTCA	CAGCTGGACC	CATAACGGAA	ACTGCCAGAA
	GCACTAGGAA	GACAATTCAT	GTAGCCTCGC	TCGGGGTTGG	ACAAGGCTGT	GCACTGGAAA	GCTGAGACAT
20	CAAAATGATG	GTCA.GAAAAT	ATTGCAGTGG	AACTAGAGAG	TACTTGGCGT	TTGTTGAGTG	AACCCAGTTC
	ATTCAAGCAA	CACTTGGAGA	ACTGAAGATT	CTTTATAATT	CCCTGGACAA	ATGGGAAGAT	GGCTGTGTTT
	TCTTTGAATT	TCAGCCCCCT	CACTGATCAT	GGCACTAATT	AAAAGACTAA	TTAATCAGAA	CATTAGTTCC
	TGAGCACTGT	TCTTCTAACA	CACAAAATAA	ATTATGGTCC	AAGGAAAGAT	TTCACGCAGT	CTGAGGACAA
	CATATGGGTC	ATGGATGTTT	ATAGATGGTG	CCAAAAAGAA	AGAAAAGAAA	GCACCCCTAT	AAAATTTGTC
25	TGTTTTGCAG	TTTGGTTTTT	GTGTTATGTT	TTGCTACTGG	AAATCATTCT	GTGCTGGCTT	TGGCTAGGAC
	AAGGCCAGTG	CCTGATAGTA	AAAACTGCTT	GTTTTCAATA	TCCTTGCTCT	CACTTTAAAG	TGAATTAAAA
	TTTACTGCTT	ATAT ATGCAT	CAATACTATC	TCTGTAGCTG	ACACCATGCT	TGAAACAGTC	TCATCACTGC
	TAATTATGAG	CCATTTCAGA	AGACAGGTGT	GATGAGAGTT	TTACATTCAA	ATCATGTTCT	CATTATTCTG
	CTTTCCGAAT	ТТТСГААТАТ	GATTCCTTTA	GATTAAGAAT	TCTGTCTATT	CCATGCTAAT	GTCTACAAAG
30	TTTTATCAGC	ACATCACAGT	TAAAAAAAA	CAGCAAAGAA	TTCATTCTTA	ACACATATGA	TCCTTTCCCT
	GGCCAAACAT	TAGTTCTTTT	AAATGAATCT	CAAAGATACG	AGGGTTGCTC	ATCAAATCTG	ATTTCTATAG
	TTAAAGTGGG	TAT1'GGTTTT	TTTTTTCACT	GTCCAAGTTT	GAAGATGGTT	GTTCTTTAAG	AAAGTATAAA
	TCGAAGGATC	TCAAGCTTAC	CTTCACAAAC	TGGGATTTGC	TGTGTCCACT	GCCCTTGAGT	GGTGCATTCA
	ACCTGGGCTG	GTCC CTGCAA	CATGAAGCCT	TCCTCACAGG	TGAAGTTGCA	GGATGATTTG	AAGGTGAACT
35	CTCCAGCAGG	GGAATGGCTG	CACCTCACAG	AGCCATTCTG	AGGCTGGCGG	ACGGCCCTGC	ATGTCACAGC
	TGTAACAAAT	ATACGCATTG	ATATTAGCAC	GGCCTAGAAT	TAGCTTGCCC	ATTTCCAGTA	TGGGTTGAGA
	GAAAGAATGT	TCACAGTAAG	TCTCCATGTG	GAACAACTCT	ACCTTTACAC	GTTGGCTTCT	CGTTGTCCCA
	ATTCCCAGAT	GAGGTACACT	GAAGGCTCTG	GGCTCCCATT	AGTTCAAATC	CTTCTTCACA	GTCAAATGTA
	CAGGTTGTGT	TCCATGGGAA	GCTTCCAGGG	TTTTGGAAAC	ATTCCACGAA	CCCATTGGCT	GGATTTGTCA
40	CAGCATCACA	CTCAACCACT	GAGGATTTTA	AAGAGCACCA	TGAATTTTAC	AGAAGAATGA	TCTTTTCACT
	TCCTATTGAG	CTGGGTGCCT	AACAGAGTGA	GGAAGCTGCC	TTCAAAGGGT	AGATCCCAAA	GTCCTATGTC
	AATTCTTAGG	GACATGCACA	GCCAGAATAA			GGATATTCTA	TCTTTTCTGA
						TGAGGTAAAA	
						TCATTTATTT	
45	GAGCCTGAAG	AAC GATTTT	TCTTTTTTTG	GCCTCTGGTT	CAGAAAGATA	AAATTAAGAG	AGAAAAAGAG
						AAAAGTTAAA	
						CTTACAAATC	
						CAGGTACTGG	
	TACATTGGCT	GAGAGAACAA	ATTGTATTAA	AAACAAAAAC	AAAAAAAAAA	CTTTCCCTGA	AGTTTTGAAA
50						TTCTGTGCAT	
						CACTGCATGG	
						TGAAGTTTCC	
						AACTGAAAAA	
- -						AACTACAGTT	
55	TTTTTTTAGT					ACTGTAATTC	
						GATGACAACC	
						GTTCAAATTA	
						TGCTAAAAAT	
						TACTAGAATA	
60						GCTACTCAAA	
						GCCACATTTC	
	TAACCACATG	TGGC TCATAG	GTACACACTG	GAAAACACAG	CTATGGAACA	TTTCCATTAT	CACAAAAGCT

	CTACTGCACA	ACGCTGTGCT		GGAGAGAAGC		CTCTTAATGT	ACAAATTTAG
	GAACTGAGAC	CTCATTTCAT	TCAAGTGACT	TGCTCCATGC	TACACGGCTA	GTCATTACAG	AGCCAGAGGC
	CAGAGCATGA	ACCAAGATAC	CCTGGACTCT	GTAACTCACT	CATTTCTACT	GCAACGTCTT	GTTACCACCT
	AGATGAGGTG	AGTACATGTT	CCTCGCAGGG	ACACAGAATT	ACAGTTTATT	GAATGTGTCC	TGTGTGCCAG
5	GCACCATGTA	ACCATGAGCC	TATGAAGTTC	ACACTATTAT	TATCCTCATT	TTACAATGAG	AAAACTGACA
	TAGAGAGTTA	AACT'ATCTTG	TCAAGGTGCC	AAAATAAATA	ACTGGTGAAT	CTAGGACTCA	AACCCAGCAG
	GGTCTGACTT	CATAGTCTCA	GCTCACGATC	ACCATATGAC	ACCATCTGCA	CCAGGGAAGG	GAAGGCATGC
	AGACCTGACT	CTAATGCCAG	CTAGGACGTG	AGATGGTGCT	ACCATCTCAA	GTGAAGAAAG	AGGCAAGAAC
	CAGACTTACT	TTGCTCACAC	TTGAGTCCAC	TGAAGCCAGG	GTCACACTTG	CAAGTGTAAT	TATTGATGGT
10	CTCTACACAT	TCACCGTGGC	CACTGCAGGA	TGTATTGGTA	CAGGCAGCTA	CGGAAAATAC	AAAGCATGAT
	GAGGAGGACT	ATTACTGTGC	TTATACTGAG	TGCCTTTGAT	TTTAGAATCA	ACAGTGTGCA	ACAGAGACAT
	CAGCAGTCCT	ACAGAGTGCC	ATAGACTTTA	ACTGAAGTGT	TTTACAAAGT	TCCAAATCTG	AGTTTCAGGC
	CCACCTATCC	TAAA.CCTTGA	TGCTAATGTA	TAGCTGTGGC	TGGCACCTAC	CGTAGAAAAT	TTACTTCTTC
	ACAAACTCTG	AAGACAGTTC	CCCTACCACA	AATAAACAAG	TAATTAAAAT	ATGTATTGTG	TGTGTGCATT
15	TTTATATGTA	AAGAACTACA	TATTTGCCTA	CAGTATTTAT	ATATATTTTA	TATATATACA	TACACACATA
	TATGTGTGTA	TATC TGTGTA	TGTATATATA	TAAAATGTAT	ATAAATGCTG	TAGGCTATAT	ATATATACAC
	ACACACATAT	ATG GTGTGT	GTATATATGT	GTGTGTGTGT	ATATATATAC	ATATCCACAT	ATTCTTGCCC
	ACATTCACAC	AAAA.CAGCAA	AAGAGAGAAA		TAAACAGAAT	CTTTTGGAAC	ATAAAATGAC
	CACAATAGAG	AGCAGTTTTT	GCATGCTGTA	AATTTGCCAA	GATGCCCACA	CACTGAAACT	ACCTCCCACT
20	GCTGCCGCAA	ACTCCCTACC	TGTGTAGCAT	AGGGCAAGCT	TCTTCTTGCT	GCACCTCTCA	TCATTCCACA
20	TGCCCACATC	TTTTTCTCTC	TTGATGTAGA			TTTTGCCTAT	TGTTGGGTTC
	ACCTGGAGCC			TCTCCACGCA	GTCCTCATCT		
		CAGTTCTTGG	CTTCTTCTGT	CAGAGGTTTC	TGGGTTCCTA	CCCAGACCCA	CACATTGTTG
	ACTTTTCTGA	TTCCAATCCA	GTAATAACTT	GGTGAATAGC	TCAATATGGA	GTTTAGGTAC	TCAATCTCTT
25	CTTTGTTTTG	AATTGCAACC	AGGTGTGT	ACCTTTGCTG	ACAATAAGCA	CTGGCCTCAT	CATAAGTCAT
25	AGCTTCCGTG	GAGCITGTTGT	AAGACCAGGC	TCCACTCTCT	TTAATGAGAA		GAGAAAAAGA
	AAAGAAATGG	TAGAGTTTGG			GACAACTGTG		TCTTATTTT
	GGCAATGTTT	GTG/ CATGGC	CCAGACTTTT		CAAAAGTAAG		GAAGAAACAG
	CGACTTATTG	TTTATCTCTT	TTGTGACTGC	CACCCACTAG	GTACCTTATC	CACACTCACT	CACAACATTA
20	TAGTATACCC	ATTTTGTAGT	AGAATAATAA	TCAGAATAAC	TAAGCTTTAT	TGAGCACTTA	GTATGCACCA
30	AGAAGCACTG	TATGAGGTAC	TTTCCATGAA	CCATGCTATT	GAATCCTCAC	AATGCATCTG	GGAAATAGGT
	CATTATGATC	CACACTTTAC		AGGGAGACAC	CAAGAGGTAA	AGTAAATGAC	CCCAAGCCCA
	GGGAAGAACA	CAT GCAGGT	AGAGGTCAAG	GATGCTGCCA	GATATCCTGT	GCAGGACAGC	CCCAGACAAG
	CAAGGATATT	TCACTCTGAA	ATATCTATAG	TGCGAGAATG	AGAAATCTTG	GTCTAATGGC	ACTGACTTAC
~ ~	CCAAAGTGAG	AGC GAGAGA				CTTTTCACCC	AAAGGTTTAG
35	GCTTGAAATA	CTTTCCTGGG	GAGATAAAAC	ACAAAATGAA	TTAAAGAAGG	AAATCGTGGG	TAGCTAGTTA
	CATTATTCTA	CCATGATGTT	TAAGGCAGCA	TCCTAAGATT	TTGGGCAAAG	GACACTAGTG	CAATAATCTT
	TATTTCAGAG	TTTAATCAAA	TAAATAAACA	AATTTTAAGA	CTTTCATTAT	TTAGGTCAAA	GAGAAAAGAC
	AGGTTTTAGC	TACAATACAA	TAAGAGCTTG	TACAGATGTG	GTTTTTATTA	GAAGGCCTTT	TGCATATCTG
	TGTTTCATGG	CCCC AGGCTG	CCCTTATAAA	GCGTTCTGCA	CTTACCGTTT	TGGGAAGCAG	TTGTTCAAAC
40	ACAGGATCTC	TCAGGTGGGT	ATCACTGCTG	CCTCTGTCTC	AGGTCAGTAT	AGGAGTTTTG	ATGTGAAGTC
	AGCCAAGAAC	AGC'TGAACAC	TACTTCGGCT	GAGGCCCTTT	TATAGGAGGG	ATTGCTTCCT	GTGAATAATA
	GGAGGATATT	GTCC'ACATCC	AGTAAAGAGG	AAATCCCCAA	TGGCATCCAA	AAACTTTCCC	GGGAATATCC
	ACGATGCTTA	AAA' TACAAT	GATGTCAGAA	ACTCTGTCTC	TTGAAGCTAC	TTCACCTTTG	TCCATGCCTT
	TATATCGTAT	ATGC AATTTT	ATTAATATGA	CAAAAATGCA	TGATTTTTAA	TTATAATAAC	ATAAAGTCTA
45	TGTCTTTAAA	AAGTTGTAAA	ACTTTGCTTG	TTAGTAGTGT	CTCTCATGTA	GTTGTGGTAG	TAATTAGAAT
	TTCAGAAACA	GAAGGAAACC	AAGAATAGGT	TTGTCATCCA	TAGTCTACTA	CCTTCAATTT	CTCATTCATA
	GCTGTGGATA	ACCAATCACT	ACTCATTTTT	TCTTCCTTTT	TCACCTGCCA	ATTCAACATA	TTTAACATGC
	ACTGTCTCAC	AGAGGAATGA	CTCACAAGGT	AGATATTAAT	CTTCAGATTT	TGCACGGCAG	TTATGCCTAA
	ATTAAAATAT	TATCTAAAAA	TAATATCTAA	CACTCAAATG	GTTAAAATAA	TGCCTTATTT	TAAAAAAAGA
50	AAAATGGGAA	ATAGATATTT	ACATCTGGGA	AAGTTTCATG	GTTTGTTCAG	TGAAAAAAAT	AAAAAGGAGG
	CCAGGCACAG	TGGCTCACGC	CTGTAATCCC	ACCACTTTGG	GAGGCCGAGG	CAGGCGGATC	ACCTGAGGCC
						AAATACAAAA	
	ATGGTGGCGC	ATGCCTGTAA	TCCCAGCTAC	TCGGGAGGCT	GAGGCAGGAG	AATCGCTTGA	ACCCGGGAAG
						CGAGTGAAAC	
55						ATATATATAT	
						TTCTTCCACA	
						TTATTTTCAG	
						TAAAGAAACT	
						TGGGTGGATC	
60						AAATACAAAA	
						AGAATCGCTT	
						GACAGAGCAA	
		2011.7011001	Simulation City	MIT I JOHOTO	2100010000	SHOLISHIGGIA	5.1010011101

		GAAAAAAAA	AAAAGAAAAG	AAAAGAAATT	TGTTTCCAAA	TGCAACAGAA	GGAGATGTAT
	GTGGTATCCT	ATAITCCTGC	TCTTCATTTT	GACATTTCTT	CTGGGTGATT	GTATACATTC	CCCATCTCTG
	CATCTTACCC	TATCTAAATG	ATGGTAACAG	TAAATGGGGA	TCATTTTAAT	TTCCATATTC	TGTAGGTTTT
	CAGAGCTCAA	GTCŁAGCTAA	TATTCTATAT	CTACAGCCTT	TCAAAATAGG	AGGTCTATCT	AAAAATGTAC
5	TGTCAGCAGA	CCTGAACGAG	TAGTGGTAAA	AGCCTCGTTT	TTCTCTTTAC	TTGTTAGCAC	TGGTCTTTCT
	GTGTTCATAA	AGATGTCAAG	ACCCAAAAAA		AAGAGAAGAA	AAATTCCAAA	AAAGACAACT
	GATTAGAAAA	AAA^`AACTTA	ATTAACGAAT	TTAATTCAAC	CCCTATCAAA	AAGCATAGAA	TTTATTCCCT
	CCACCTTACC	ACTCTCTTAC	ATGATCCAGA	TACTGACATT	ATTCCAATTC	TTTATCCCAC	TTTACTTAGC
	TCAATGTGGT	TGTTGCTTCA	ATAAATTCAG	AAGAGTAATC	ACTCATATAG	TGTTTATTTA	GATTTTAGGG
10	CAGAATGTCA	AGTT'GGGTTA	ATACATTATC	TGTATGTATT	TTATTTTAA	TAAAGTATGA	ATACATAATC
	TGCTATTTTT	AAAAAGCATG	GTCAAATGTA	TAGAGTAGCC	AAATCTTAAA	AAACAATTTA	TCTTCGATAT
	CAATAAAGTA	CCT/ATAATT	ATATTGCTAA	TAGAAATTAG	TCGTTAACAT	CCCTAGATAA	CTAACTTTAT
	TATTGCGAAT	TTTTCATAAC	TAAGTTTATA	GTTTATCTCT	TCCCCTTTTT	AAAATTAGTT	CAAAGATATC
	TAAAAATAGC	CCCAGTGGTG	ATGAAGTTTC	TATTTTACTT	ACATATATAT	GTCCTGGACC	CCCAATTATA
15	ATCTCTAACA	TTTATTGAGT	GCTTACTATG	TGCCAGGCCA	TATTCTGAGC	ATTTTGTATG	TTCACCTATT
	GATTATTCAA	TCCGTACAAC	AGCCTATGAA	ATAGGTACTC	CTATTATCCC	CATTTTACAG	ATGAGGAAAT
	TGAGAATCTG	GGGATTTTAT	CTCATTCAAA	AGCACAGAGC	TAAGGGTTGA	AACCAGGCAG	TTGATATCCA
	GAGCCCACTC	CCTT'ACCTGC	TACTCCAAAC	CATGATTTCT	TTTGTTGTTA	TGCCCCGAGA	TTCCTTGTTC
	TACCCAAGTT	TCCTGTACTC	TTCTTGCCCT	CTTCTTCCTG	AGACATCCTT	GACCATCACA	GCTCTCCACT
20	GAGATAACTG	TGTCCTGGGT	TCTGAGACAT	GGGGGCTGGA	AGGGACCCCA	GGGACAGTGA	GCAGTAGGGA
	GAGGATGCAG	TGACAACAGA		CCGGTGCATA	GGCAGGGAGA	AAGTGGACAA	AGGAAAAAAC
	AAGCAAGGCA	GGTGGAGCCA	TGCCTAGGTA	AAGTTGATCC	CTAAGCCACA	GTTCCCAGAA	GTTCCTGATT
	CAAAAGCAAA	TTTT'CTCTAA	GGTCAAAGGG	CAAACTGATT	ATTCTAAATT	CTAAACTGAT	TATTTCTAAA
	TTGAGAAAGC	TTCAGGGAGA	GATCCCAATA	TTCGAAGGAT	AAGAGAAATG	AGGAGTGGAA	GAGATAGGTG
25	AGTAACAGTA	ACTT'AAATGT	AGACTATATA	TAATATATAA	TATATGTAGA	GTATATATAT	ATAATTACAA
	TATATTATAT	ATGTGGAATA	TATATATTAT	TTATATATAT	TTATATATTT	TATATATATA	GATATTTTA
	TATTTTATAT	ATAAATATAG	ATATTTTAT	ATTTTATATA	TAAATATAGA	TATTTTTATA	TATATTATAT
	ATAAATATAT	GTAAAATACT	GTGAAAGAAG	AATAGAATCT	TGAGACCTCA	AATTCACTAT	GCCAAAGGGA
20	AAGTTAAGCT	TGGGAAATGA	GTCATGCAAA	AACTGCCTTC		CAAATACCTG	TAATTTCACA
30	TGCTTACTTT	ATCTTATATA	AAATGTAGAT	GTACTGAGCA	TGAGATCCAT	GCATAATTTC	CCTCTAGTCC
	CTTCTTTTTA	CATGTAAAGT	GTAGACTCAC	TGAGTGTTAC	AGAGCCTTGC	CACAATGTAA	ACACTTGTCT
	CATTGCCAAC	CCA CTTTCG	TTTATTTTCT	TCCCCTCCTG	CTTGCTCTTT	CCCCTCTAAA	GATGGAAGTT
	CCCAAAACTC	TCTTTGGAAA	AAGCGCAGGT	CACAGATCCT	ACAGTGATTT	GTGTTTCTTT	TACCTGGGAC
25	AAAATAAACC	TCTAATCTGT	TGAGATATGC	TTCAGTTACT	TTTTGGTTTA	CAATATGTAC	ATGTATGTAT
35	ATAATTTATA	TGTATATAAT	ATATGTACTT	GTTTTAACCA	GAGGTATGTT	ATTCAAAATC	CATTCATCCT
	TACAATTACC	TGC/TTCTCC	CACAGTATTT	TCTGTGTCCC	TGCCCCCGAG	GTTGTCACTG	CAAATCAGGT
	ACATGGATAC	TGGCAGCTGA	TGGGCTCCCC	TCTGGCTACC	TGGGCTGCTG	AAGGGGCCAT	AGACAGACCC
	AGCTTTCCTC	TCGT GGAGAG	GCCCTGGGCC	AGCGCTGCGT	GGGAGTGGGA	TTACAACCAG	ACTATAGCTT
40	CTTCACCTGC	TTTTTCCTAT	CAGGATTTCA	TAAGAGGCAA	TTGCTTGTTT	TTTGAGGGTG	GGGGCAAATC
40	AGGGGGAGTT	GAAGAGGAAA ATAATCCAAA	TTGGGTAAGA ATATACCCCC			GAATATTATG	AATATCATCT
	CCCTCTTCAA	CTCTGAAGAT	GTAGCTAGCT	AAGAAACAGG	CTGATTAGAG	GTGCTTCAAG	GCTCCACTGA CTCACATGGA
				GTTACCGGAT	TGCCGGTTTT	CAAGCCTCGC	
					ATAGATGGGA TATTTAATCT		
45							
73					CACACCCTTT TTTATGGCAA		
					TAGAATTTTA		
					ACCACACGTG		
					AGTGGTGTCC		
50					TGCTTAGTTT		
50					CTTTGCAGAG		
					GGTATTTCTT		
					TTGATCAAAA		
					TACTCACTTG		
55					TTTTCTCCCA		
					TCACCTAAAA		
					GAATTTGGGC		
					CACTTAGATG		
					AGCTATAGGT		
60					AGAACCCCAC		
					ACATGGAAAG		
					TAACACAAAT		
						3	

	CTTTTCTCCT	CTGATTCCAG	AGGACTTTGT	AATTCCACTA	ATTCTTCTTG	AGCTTCCAGG	ATGATCTGAG
	ACTTGAATTT	TTCATGTGCT	TTTTGCTTCC	TATTTGGCAG	CATCTTATCT	TGAAGTTTCC	GCTTTCTGCT
	TGGGGACCTA	AAAACTAACT	AATGGGAATT	TCTTCAAAAT	GAGCAAACTC	TGGTGAATTC	CCAAAGCGGA
	AGAAACAAGT	GAGGATCGGG	CTGGTTAATT	AAGAGAACTT	TTCCTGAATG	TAGCCAGACT	GTTTGCCGAC
5	TGTTGTTAAC	ATGAGGGAAG	AAATACCCCT	GGATTTTAGA	AGAGCCCCTT	GTTTGTTTTC	CTTGGCCATT
	TGTGCTGCTT	GTTTTGTAAG	TCAGAAATTT	CCTGAAGGAC	TATTATTAGC	TTTGTTCTCA	CGTCAGAAAA
	CTTCTGCTCT	GGCCACTTTT	AAACATATAA	CTTGGATTTT	ACTGTATTAG	AAAATGTAAC	AATTACAGAC
	AGCACTAAAA	GGACACCAAA	GGGCAAAGAA	AATGGGTAAC	TTTTTTTTCT	TCCCCAAATC	TAAAATAGGT
	GATTTTGGAG	AAGT AGGAGA	AAAACCTGGA	TTTTCTAGAT	CTCTTTAGAG	CTCAACAACT	GATATAGTTA
10	ATTATGTAAG	TCTTIGATAT	TTGGAAATGA	TTGGATTAAC	CGGATAACAA	TGAATATTTA	AATACAGTGA
	TTTGGCCAGG	AGC AGTGGCT	CATGCCTGTA	ATCCCAGCAT	TTGGGGAGGC	TGAGGCGGGT	GGATCACCTA
	AGGCCGGGAG	TTCC'AGACCA	GCCTGGCCAA	CATGGTGAAA	CCCCATCTCT	ACTAAAAATA	CAAAATTAGC
	CAGGCGTGGT	GGTC CAAGAC			AGGCTGAGGC	AGGAGAATTG	CTTGAACCCG
	GGAGGCAGAG	GTTGCAGTGA		CGCCATTGCA		GGCAACAAGA	
15	ATCTCAATAA	ATAA ATAAAT	AAATACAGTG	ATTTAACACA	AGAGATTTCT	ATTTCACACT	AATGAGCTCT
10	GTCACTGGGG	CAAGCTTCTT	TGCCTCATTA	AGTCTCAGAT	TTCCCGAGAG	CTTATTTATT	TATACCAAGA
	GTGCTTTACT	ACCGICTCTG		CATAATATGA		AAATATGGGA	AAAGGCACTA
	ATTTATATCA	AAGC'GTTCTT	CGTTTTTCCT	TGCTGTGAAG	TTTTTAGCTA	ATAATTCATA	AGAATATACC
	ATATTTAGAG	TGTTTACTAT	GCATGGGCCT	GGCACTTCAC	ATACATTGCT	TCTTACAAAT	TTTACAAAGT
20	GAAAGGTAGA	-					
20		TATT'AATCTC	ATTTTATGGA	GGACAAGATA	GAGATCTGGA	GAGGTTACAT	AACTTGCCAG
	TGTTTTTTCA	GTTA ATAAAT	GGTAGGGTGG	AGATTCAATC	TGTGTTACTC	TAAAGTCCGT	GTCCTTTTTA
	TTGGCTCCAT	GCCTACTCAG	ATTTAAATCT	CAGCAGGGAA	GTAAACCTTA	GTTTTTACAT	GAGAAAATGT
	TACAGCAGCC	TTC1 CGGCTT	CCTTTACCCC	CATCCCAGTT	TCACGAGCTT	AGTGCCTTAG	ATCGGGTTCC
25	TTTAGAAGCA	GACCTCGAAA	TAAGGATGTG	GGTGCCAGTC	ATTTATTGAA	AAGATGATCC	CAAGAAAGCC
25	TAGTAGGAGA	GTGA GGAAGT	GAGATGGGGA	AAGGAAGAAA			
	ACCGCTGTGG	GCAGCCATGG	GGCTCAGCTG	CACTAACAAA	CTCTGTCTAG	TACAGAAAAC	CTCAGGGTCT
	CCCCAAGGAG	GGGCAAGAAG	TCTGCCTAGG	GTATATATCC	GCCAACTCAG	TCACTGGCTG	AGAGCTGATC
	CTGGGAGGGC	ATGGTTAATT	CCTCTGCACT	TTCAAGTGGA	TTCCTGTGGT	CAGAAAAAGC	CCTCTACAAT
	GAATTCCAGA	TGCTTGTATT	TAAATCTGAC	ATGATCTGAA	TGCTGTGTTG	GGACAGGGTG	GGCGTTATTA
30	GTTTTCTGTC	ATTA CTGTAA	CAGATTACTA	CAAACCTGAT	GGCTGCAAAC	AACACATATT	TATTATGTCA
	TAGTTTGTGT	GGGTCAGAAG	TACAGGTTAG	CTCAACTAGT	TTCTCTGCTC	TAGGTTTCAC	ATTGCCAATA
	TCAAGGTGTC	ATCC AGTTGG	GCTCTTCTTG	GGAGGCTTGG	GGATGAATCC	ACTTTCAAGC	TCATTCAGAT
	TGTTGGCAGA	ATCC'AGTTCC	TTGTGGTTGC	AGGACCAAGG	TCCCTGTTGC	CTTGCTGGCT	GTTGGCCAGG
	AGTCATTCTT	AGCTTCTAGA	GACTACCTGT	ACTCTCTGAC	TCGTGTCTCC	ACTTCACCTT	TCAAACCAGC
35	AGCGGCTAGT	CGAGTCCCTC	TCTTCAAATG	TCTCCAACTG	TGCCTTCACC	TCATTTCTCC	TCTGTGTACC
	ATGTCTGCCT	CTACTGCTTG	TAAGGGCTCA	TGGGATTACA	TTGGATTTAT	TCAATCCAGG	ATAATCTCCA
	TATTTTAAGG	CTAC CTGACT	AGTGATCTTA	ATTCCATCTA	CAAAGTCCCT	TCCAATAGTA	CTGTATTAGT
	CCATTTTCAT	GCTA CTGATA	AAGACATACC	CAAGACTGGG	CAATTCACAA	AAGAAAGAGG	TTTAATTAGA
	TTTACAGTTC	CACATGGCTG	GGGAAGCCTC	ACAATCATGG	CAGAAGTCAA	GGAAGAGCAA	GTCATGTCTT
40	ACATAGATGG	CAGCAGGCAA	AGAGAGAGAG	CTTGTGCAGG	GAACTCCTCT	TTTTAAAACC	ATCAGATCTC
	ATAATACTTA	TTCACTATCA	CAAGAACAGC	ATGGGAAAGT	CTTGCCCCCA	TGATTCAATT	ACTCCCACCA
	GGTCCCTCCC	ACAACATGCA	GGAATTCAAG	ATGAGATTTG	TGTGGGGACA	CAGCCAAACC	ATATCAAGTA
	CCTAGATTCA	TGTTTGATTA	AACAACCAGG	GAGCAGAAAT	CTTCAGGAGT	GGGGGGCATC	TTTAGAATTC
	TGCCCACCAA	GGC1GGGCGC	GGTGGCTCAC	ACCTGTAATC	CCAGCACTTT	GGGAGGCCAA	GGTGGGTGGA
45			GACCACCCTG				
	AGCCAGGTAT	GGTCGTGGGC	ACCTGTAGTC	CCAGCTACTC	AGGAGGCTGA	GGTAGGAGAA	TCACTTGAAC
	CCAGGAAGCG	GAGGTTGCAG	TGAGCCAAGA	TTGCGCCGCT	GCACTCCAGC	CTGGGAGACA	GAGCAAGACT
			TGCCCATCAT				
			ACTGTGATGT				
50			AGGGTTTGTC				
			ATGTCCCCTT				
			ACTCTGTGAA				
			TTAATCTAGC				
			TCATTTGATC				
55			GTTAGAGTTT				
55			CCATCTGACT				
			ACTATATTCA				
			AAAACACATG				
60			TCTAATCCAG				
UU			AAGTCATAAT				
			TGGCTTTTAG				
	ACCIGAAACA	IGITAAACAT	TTGTTCATGT	GICCIAATCG	IGGATITCAG	GATAGTAAGC	AICCIAAAAG

	C.L.L.CCLTTCC	4 C 4 2 TO COTTO	maan				
	GAAAGCATGC				ATATAAAAAA		CTGAAAAAAG
	CTGCCAGCCG	CTG1GTCTCC	TAATATCAAA		ATATGGAGAA	GCTAAGGGAG	AGGGATGATG
	GGCCATGCCT	CTA/.CCTCAT	CATGGCAAAA		TCAGACCCGA	GGAGAGCAGG	AAGTGTCTTT
_	TGAGGGATAC	ATT: CCACAG	TGGAAATAAT	GAGACTTAAA		ATACACAGTT	CAACTGTTTT
5	TATGTGTAAA	GGTAGTAGGT	TTTCACAGTA	AGGAAGCACT	TCTTTTTTT	TTTGTTTGAG	ACAGAGTCTC
	GCTCTGTCTC	CCAC CCTGGA	GTACAGTGGT	GCTATCTCGG	CTCACTGCAA	TCTCTGCCTC	CTGGATTCAA
	GTGATTCTCC	TGCCTCAGCC	TCCCGAGTAG	CTGGGACAAC	AGGTGTGTGC	CATTACACCT	GGCTAATTTT
	TGTATTTTTA	GCAC AGATGC	GGTTTCACCA	TGTTGGCCAG	GCTGATCTCG	AACTCCTGAC	CTCAGGTGTT
	CTGCCCGCCT	CTGC CTCCCA	ATGTGCTGGG	ATTACAGGCA	TGAGCCACTG	CACTCACCAA	GCACTTCTAC
10	TGATAGCATT	TACA.AACCCT	TCTTAGAATA	TTTAAAAATT	CTAAGAGAAG	AGTAAATTGA	GCCTTCCCAA
	CTAATACTAG	GAGGTTATAA	CCTTCATACC	AAAACTGGAC	AATGCTTGCA	CAAAAGAAGG	AAGCCAATGA
	GGCCACCTAG	AAGGAAGACT	GGGCATTGGG	CCCAGTGAGT	CCTGGAAACC	TCATCTGTGC	CAGCCACCCC
	GGCATGGCCT	GTATGAGTGG	ATGAGGGTGA	CTTGTCCACA	GACAATAGCC	ATCTAGCTGT	GATAAAGGAG
	TCAAGGTAGT	CAGCTGCATC	TCTTTCACCT	GTTTGCCAAT	GTTACACAGG	TTGAAAAGCT	AAGGTTTATG
15	TAAAGCAAGC	ATCAAAGATG	ATGAAATGAT		ATGAGTACTA	TGCTGCATTG	TCCAGAAAGG
	AACTGTGGAA	GAT TTGGGC	TGAATTTCAA	AACAGAATTT	CCTCACTCTC	TGGATGTTGG	CTTACTTGGC
	CTTTGATGTT	CAGAGGTGGT	GCCTTTGTGT	TGTTGAACAA	TGTTGATTTT	GGAGAGAAAA	CAGAGTTGAA
	AAACCCACAA		GGGGAGTATT	ACCGGAATAC	AGAGGATAAT	TTCAGCAAGC	CAGCAAGGCC
	TCATCTCTGC	TTCTAATAGA	TAGGAAGAAA	GGAAGAGAGG			
20	TCGCCTTATC	TCATAGAAAG	ATGCCTCCAG			TTTTAAGAAG	CTCAGCTTTA
20	CTGTGATTCT			TCTGTCTGGC	TAAAGGTAAT	TGGCATGGGA	AAGTCTTTAT
	TTTCTCCGAT	AACAAGTGGA	ATGTTTCCCT	TCATTAAGAG	AGCCTTGTCT	GGCTTGGGGA	AATGAAACAC
		ATGAGTGGGC	TGTAACCCCT	GCTACTAAAT	ACTCAGAAGA	AATAAGGCGG	TTGTGGAGCA
	GTCAGGAATG	AGTCACTTGC	CTCCCTGGAA		ACTGAATCAA	AAGTACATTC	TTCTGGGTTT
25	TCTTAGTCTA	ATAGACTAAG	GGTCTCTACT		TCTGGGAAAC	AGCATAGAAT	GGGAGAAAAA
25	ACTGGTCACT	GTAC TCATGC	AAATCTGCAA	AACAAACAAA		TATTGCTGCT	AACTAGCTAT
	GTGACCTTAA	GCAAGGTATT	AACTCTCTCT	GAATTTCAGG	TTCTTCATCT	GTTAAATAGC	ATATCTGTAA
	AATGGGAATT	ATTITCATAT	CATAATGCTG	TAGCTTTAAA	AAATAAAATA	AAATGGATGA	GATAATCAGA
	ATTAAAGAGC	CTGGGATATA	TAGTTAATAT	ATAGCAGCAT	GTAAAGATCC	TGTTAGAAAT	GCTAATTTTA
2.0	CAGTTAACCA	TTTGGAGATG	ATCCGCCAAA	GCTGCTAGTG	TAGAGGCAAC	TGAGAATTTG	CCTGTCCTTC
30	AGAATATGAA	TAAATAACTG	TCAATGATGT	CTCAAGCCTA	GAAAAACCTA	TCCATCTGGA	TGGGTGGGAA
	ATTTCTAGGC	TAGTATTGAG	AAGCCCATTT	CTTGGGAAAT	AGGTCCTGGA	CTGAGTGAAG	GAAAAGAAAC
	AGTAAAACCC	ATGCTAAAGC	AGCAAGGCTC	TCTAGAGGCT	CTGGAGAGGA	TGAATTGAAT	TCTAGAAGAT
	GAAGTAGGGA	AGA/CGCTTTA	CCTTCTTGTG	AAATGGATTC	AAAGATTCAA	AGACCTTCGG	GAATCTCCAA
	TTGTATAAAT	GGCACCATAG	CTGTATGTTC	CATGGAACAC	TACTTCCCAG	AGATGCCCAG	TGAAAAAAGA
35	ATGCCACAGT	CAAATAAGTT	TGGAAACACT	CCATTATGTG	GCCACCTCCT	TGAAGACTCT	AATGCACATT
	AGCATGTTAA	ACAGTCTTGA	GAAGTCCTGC	AGAGCAGAAA	TTGCTTCACA	TCTGCTAAGC	CGGCAGTTTC
	CCAATATACT	TGATTATGGA	TAGTTTTTTC	CTTACAACAC	CATTCTCTGA	TATGCTTCCA	ATGACATGAA
	ATAAATATAT	ATGC'ATGAGG	TTCTTCATTA	GGGCATACTT	TTTAATAGAA	AATATTGAGA	ATAATCTAAA
	TATAAATGCA	CAGCATTTAC	CTTTTCTGCA	TAAACTATAT	ACAGGCATAC	CTTGGAGATA	CTATGGGTTT
40	GGTTCCCACA	ATATCTCCAA	AACCACATTC	GGTTTTATGA	CCACTGCCAT	AAAACCAGCC	ACATGAATTT
	TTTGGTTTCC	CAATGTATAT	CAAAGTTACA	TTTTTACTAT	ACCATAGTCT	ATTATATATA	CAATAGCATT
	ATATCTAAAA	AACAACGTAA	ACACCTTAAT	TTAAGGCTGT	GGCTGGTTTG	ATTTTCTACC	CAGACCACTA
	AAACTTTCTT	CATA TCAGCA	ATAAGGCTGT		TACTATTTTT	TGTGATAGCA	
	CCTTCAAGAA						CTTATCTCAG
45	TTTAAGGTGT	TTACATTGTT			ATCTGAGACT		
					TGGGTGGCTT	TGGCAATTTC	
					ATAAATGATT		CTGTAGCCTG
	CAATGCTCTT				AAAATTGGAG		
	TGCTGTTTTA	TCAACTAAGT		TTAGAAATCC		TTTCAACAAT	
50	TCTTCCCCAG		TACCTCAAGA		TTTGCTCATC	TATAAGAAGC	
50			GATTGCAACA		ATCTTCAGGC		
	TCTTGCTGTT		TTGTGCTTAC	TTTCTCCGCT		TCTACTTCTA	
						ACCCCTTAAA	
					ATATTTTGAC		
55					GTTTTCAGTT		
55		TATCTATGGA				TTTGTGGGGG	
	LACCCIGICA				ACTCACTGAA		
					AAGCTTGAGC		AGCCCAAAAT
	GIATATCATA	ACTAATGAGG	CITGAAAGTC	AAAGTGACTC	CTTGATCCAT	GGGCTACAGA	
60	GGTTACCAGA	CATC AAAACA	ATACTCATCT	CCTCATACAT	CTCCTTCAGA	GCTCCTGGGT	GAGCAGGCCC
60		GAGC'AGTAGT				AGATCTCCAC	
	AAATAGTCAG	TAAACTATGC	TGTAAACAGA	AGTGCTGTCA	TCCAAGCTCT	GTTTTTCCAC	TGATAGGGCA
	AAAGCAGAGT	AGA' TTGGCA	TAATTCTCTA	GGGCCTTAGG	ATTTTTGGAA	TGGCAAATTG	AGCATTGGCT

		arananan paramanan	TTTTTTTTTTC + C		a a mamama La	aa. aaamaa.	cmaacmaa
	TCAACTTTTT			ACAGAGTCTT	GGTCTGTCAC	CCAGGCTGGA	GTGCAGTGGT
	GCAATCTCGG	CCCACTGCAA	GCTCTGCCTC	CTAGGTTCAC	ACCATTCTCC	TGCCTCTGCC	TCCTGAGTAG
	CTGGGACTAC	AGGCACCCGC	CACCATGCCC		TTGTATTTTA	GTACAGACGG	GGTTTCGCCA
_	TGTTAGCCAG	GATGGTCTCG	ATCTCCTGAC	CTCGTGATCC	ACCCGCCTCG	GCCTCCCAAA	GTGCTGGGAT
5	TACAGGCGTG	AGCCACAGCG	CCCAGCCTGT	CTTCAACTTA	AAGTCGCCAG	CTGTGTTAGC	CTCTAATAAG
	AGAGTCTGCC	TGTCCTTTCA	AGCTTTGAAG	CCAGGCATCA	TTCTCTTCTC	TAGCTATGAA	AATCTTAGAT
	AGCATCTTCT	CCC# ATAGGA	AGCCATTTTT	TATGCCCTAA	AAATCTGTCG	TTTGGTGTAG	CCACCTTCAT
	CATTGATCTT	ACCTAGATCC	GCTGGATAAC	TTACCACAGT	GTCTACATCA	TTACTTCTGC	TTCACCTTGC
	ACTTTTATGT	TATGGGGATG	GCTCCTTTCC	TCTAACCTCA	TAAACTAACC	TCCACTAGCC	TCACATTCTT
10	CTTTTACAGC	TTCCTCGCCT	CTCTCAGAGT	TCACAGAATT	GAAGAATGTT	GGGCCTTGGA	TTACACTTTG
	GTTTAAGGGA	ATGCTGTGGC	TGGTTTGATT	TTCTATCCAG	AACACTAAAA	CTTTCTTCAT	ATCAGCAATA
	AGACTGTTTC	ACTITCTTAC	TATTTTTGT	GATAGCACTT	TTCCTTTCCT	TCAAGAATTT	TTCCTTTCTA
	TTCACAATTT	GACC GTTTGA	TATGAGAGGC	CTAGATTTTA	GCCAATCTCA	GTTTACACCA	TGCCTTTTTC
	ACTAAGCTTC	ATCATTTTAG	CTTTTTATTT	AAAGTAAGAT	GTGTGACCCT	TCCTTTCATT	TGAACACTTA
15	CATGATGATG	CCTC GCTTCA	AAGCTTGAAA	GGACAGGCAG	ACTCTCTTAT	TAGGGGCTAA	CACAGCTGGC
	GACTTTTAAG	TTGAAGCCAA	TGCTCAATTT	GCCATTAGAA	GCCATTGTAG	GGTTAATTAA	TTTGCCTAAT
	TTTAATATTA	TGGT TCTCA	GGGAATAAGG	AGGCCTGAGT	AGAGGGAGGG	AGATGGGGAA	ACAGCCAGTC
	ATCAGAGCAC	ACACAACATT	TATCAATTAA	GTTTATCACC	TTGAGGGCAC	AGGTCATGAT	ACTTCAAAAC
	AATTACAATA	ATAA.AATAAA	AAATCATTGA	TCGCAGATCA	CCATAACAGA	TATAATGATA	ATGAAAAATT
20	TGAAGTATTG	TGAC AATTAC	CAAAACGTGA	CACACAGACA	CAAAGTGAGC	ACATGTCATT	GGAAAAGTGG
	TGCTGATAGA	CTT# CTTCAT	GCAGGGTTGC	CACAAATACT	CAATCTGTAA	AAAATTCAAT	TATCTACATA
	GTACCATAAA	AACAAGGTAT	ACCTGTTTAT	ATAATCAAGA	CCAACAGAAC	CCTAGAGAAA	ATAGCTCACT
	CCCTAGCTCG	GAGACATTCT	AACCAACATA	CACTTACCTT	TCTTTTTGCT	GTGTACAGAA	TTCAAATCCC
	TGTCTCAGCA	AAATTGCAAA	GTATCAAATG	TCATGTCCAT	CTAATACTCA	AAACTGCAAA	TGTTAAGTCT
25	TGTAAGCCCA	GAGACCACTG	TATATACAAG	TGTTGCTATA	AGCATTAGTT	CTTCTCCAAA	GAAAATAGTC
	CACTTGGTAG	AAAC AAACAA	AAAGAAAAAA	AAAGAAAGAA	AAAACATTTT	TTACAAGAAG	ATTCAGTCTC
	TTACCTACAT	AAGCAAAAAT	ATGAGATGTT	CTCTTATCAT	TTTTCCATCT	ATCTTATAAT	CTTTGGTGCT
	GACTTAGACA	CTCATTTTCC	TTTTTGTACG	TGACCATGTA	AAAGTTCAAG	TCAAGAAAAA	CTTGTTTTGA
	CATTTGTTTT	GCTG AGTGAT	GGGTCCCTAA	AAGAAATTTG	GCTTTGCTTT	TGAAAAGTTC	AGCATGATAT
30	TGTGTGAATT	TTTCATGGCT	AATGATTTTT	AGAACAGTTG	TGATGTGTTT	AGGTGTTTTA	AGAATATGAA
	GCATTCAGTG	GTTTAAGTTG	GTTGTTATAA	AATGAAAGAA	TATGAAGGAA	AGCCTTCTTG	TCTTAGAACA
	CACTGATTCA	CAA# TAAGCA	GCTTCTCTCA	AAATGTTGTA	ATTACAAAAA	TTCCAAGGCA	AATATAATAA
	ACTCCTTGTC	GGTGCTATGT	CTAGAAACTT	AACAGCCCCA	AAGAAAGTCC	TGACAAGGCA	AAAAATATAT
	ATATATATAC	AAATTGTGGA	AGCAGGGTGT	TGAAAGAAGA	ATAAAGACTA	TATAAGGACA	AACTGTTTAA
35	AAGGGAGGGT	ATCCTTGAAA	GCTTGACACT	TGACTCTTTT	GACGAGGCTG	AGGGAAAACA	CTCAGTTTCA
	TAGATTGCTG	GTACGGATGT	AAAATAGTGA	CATCCCTATA	GAGAGGAATT	TGGCAATATC	TAGCAAAAGT
	GCTTATGCAT	TTATTCTTTG	ACCTAGTAAT	CCCGCTTCTA	GGATTAGTGG	TGAAGATACA	CCTCAACAAT
	AAAAATATAT	ATACATTAGG	TTATTAGTTA	TGGTTTAATT	TTTAATAGCA	AAATATTTAA	AACAACCTAC
	ATGAACAAAT	AGGAGACTTA	CTGAATAAAC	TATGGTATAT	CTGTACAATA	AAGTGCAATT	CACTTATGTT
40	GTTAATTTGT	TCCAAAAATC	CAGAGCCAAA	GAGTATTTGT	TATGCTCTCT	TTAGTATAAG	AAAGGGGAAA
	TAAGATATGT	GTGC ATCTGT	TTATTTTTGT	GAAAATAAGT	ACAGAAAGGA	TAAGTAAGAA	ACTAGTAAAA
	CTAGTTATCT	CCTAGTGTTA	GTAGAAATAG	AATGAAAGTG	AATTAGGCTT	CTTTGAGTAT	ATGTTTATAT
	ATAGTTTTGA	CTTTTGAATT	ATGTTTATGT	TTACATAGTC	AAAAATATAA	ATTAATCAAC	AGAAATAACA
	AAAAAAGAAG	AAA'TCACAAG	CTTTAAAATT	TAATACAAAC	AGAAATAATT	GAATCTAACA	GTATATCAAA
45	GTGATAACGT	AAACTCAGAA	GAAAAAAACA	TAATCCAACA	TACCAGTGGA	ACACAATATT	CTAACTGTAT
					AAATATCTTG		
					GTTCGTGTAT		
	TAAATATGTT	GATC TTATTG	GGAACTAAAA	TTATCATTCT	GGGAGTAGAG	AAATATAAAT	ATGGACTTGG
					TCATTATTTT		
50					AGACAGGAGG		
	GGTTTCCAAA	TGCC ATTCTC	CATTAAAAGG	AACAAGGTCT	TCTTGGAGAA	AAGACTGATT	CTAGGTCTGG
	ATTAGGTAAA	GTAC'AACGTT	AGTCTGGAAT	TTCTTGCTGA	ATCAGAAGTA	AGAAAGTGCT	CAAAAACATG
	GGAACATGTC	ACAAACACAC	GTGAGGCAAC	TTGAATCCTC	ACTGGCCATA	TTTAGGACAA	TCGAGCATCA
					AAAACAAAAA		
55	GGGGAAGAGA	GGG/GGAGCTC	TTATTTACAG	ATGAATATCA	AATAGCAAAG	ACAGAAGAAA	TGACAGAATT
					TTCAGGCAAG		
					GTCTGAAGGT		
					GCAGAAACCA		
	TTAGTATCAC	CAATAATGGA	TCATACTGAG	TCATGTGTCT	CCTAATATGA	TGCACCAGGA	AGGATGCAAC
60					AGGGTAAAGG		
	CAGAATTGTT				CTTACTTTCT		
	TAAGATGATT	TTT# TCTTTT	ATTCAATACT	TTAGCTTGGA	GAACCATTCA	GAGTTTCTAA	CTCATTGTAT

	mccc. A A A A M	1011110100	, ma commandom	mm c + + + + m c m	OTT 1 1 OTT TO 1	A COMM A COMM COM	cmcmcmc . cm
	TGCCAAAAAT	AGAAAACAGC		TTGAAAATGT	CTAACTTTAA		GTGTGTCACT
	CAGATTCACA	TAGCTTTTTT	GCCTAGTAAT	GTAGTATCAT	GTGGCAAGGC	TATAAAAATG	TTTACAATCT
	TTTATTTAAT	ATGACTCTTG	AGAGTTTATT	CTAAGGAAAT	AATTGAATAG	TAACAAAACA	CTATTAACAC
-	AAAGCATAGC	AAT] TGATTT		ACACTGGAAA		GTCCATTACA	GGAATCATTT
5	ATGAAGCAAA	CACTAAAATA			AACATAGAAG	ACAGTTATGA	GAGTAAATTT
		ACACAAAACT	TACATATACT		CTTATAAAAA	ATACGTGCAT	ATAAGGATAA
	AACAGTACAA	ACAAAAAAT			ATTATGGCTC		CTTAATTTTT
	TCCTTTTACA	TTTT GATACA	TTATTTTAAT	TTTAATTTTA	AAATTCAAAA	GAATTTGCCA	CTCATCTTTG
1.0	CCACTTCAAG	GAAAAAAGAA			CTTAGTATAG	TTTTGGCAAT	TTCCTCACGT
10	GTAAAAAGAG	AATACTATTA	ATAATTTCAG	TATCTATAAG	ACAATATAAA	ATTAAAGAAT	CTAGCCCAGT
	AACTGGTACA	TGGAACGTAA	TTAATAAATC	ATTATGGACT	TTTTTTCTCA	CACCCAAGTA	GGGAGGAATC
	AGTGGTCCCC	TAGAGGCCCA			ATCCCTAGGG		TGGTGATGAT
	AATTCCTGAG	CAGA CAGTTA	GCTGAGAATT		AAAGTAAGAA		TCTTGCTAAC
1.5	ACCTTTCCAC	CCACGTTTCC				TGGATGGAGG	CAGAGGAAAG
15	AGAACCAAGT	TTGCTCTTAG	TCATTCACTA	TGTTGTTTAA	TCTGCCTTCC	ATCTTTCTTA	TCAGTTCAAA
	TTAGAATGTA	GACCTGAATT	TAAATCCCCG	TTCTGTCAGT	TATAATGTGA	CCCTAGACAA	AACACATTCT
	CTGAACCTCA	GAGAACATTC	TTCATTTGTA	GAATGGGAAG	ATTAATCTAT	ATTCCACTTG	GATGGCAAGT
	CTTTTATAAA	CTTTATAACC	TAAACATGTG	TGAGTTGCTA	GTATCATTAT	GTTGGTAAAG	TTATTCTGAG
•	ATATGATAAC	AGAACTGTTT	TGTCTAACTC	CACTAGCATG	GTTCAGGTTT	AGAGAGTGTG	GAATTAAAAG
20	GCTTTATCCT	CAAATATGAC	TTAAATCCGA	TTTTTCTCAT	CCACTTTCCT	CCACAAACAA	ATCCTCAGGA
	AATGACAAAC	TTTACATGGT	TAAACATCAG	TTTTGTTTAG	TCTTTGACAT	CCACATGGTT	AAATCATACA
	TTTGAAAACT	GCTTATATTT	GTGTTGTCTA		GAAAAGACTT	ATTGAGGAAT	AGAAGACTAC
	ACATTTTTCA	GCAAACACTG	CACGTTTTGC	AGAATTTCCC	CAGGCACCAG	TCTCCAGGAA	TTTATTGGCT
25	ACTAACAATA	CTAA GATATG		GAAATCAAAA		GCAAGTTTTG	TGAGAATGGG
25	TGAATGGTCC	AAATGAAGAG	ATAAGTTGTG	AAATATTAGT	ACAAGTAAAA	ATTATTTACA	ATGAAAGACA
	TTTTGTCAAT	AGCTATGAGA	ATTTTACCAT	TGACCCAGAA	ATTCCATTTC	TTTCTTCAGA	AATACCCACG
	TAGGTATACA	TATAAAAAGT	TATTCATTAC	AGTATCGTTT	TTCATAGGAA	AAAGTTTTAA	AAATCAGAAG
	CTATCTAAAC	TATGGTATAT	CTAGGTCATA	GAAATCAAAT	GACTAAAAAT	GTTAATATAA	GCATATGTTT
20	TTAAATTAAC	TTGC CTTGGG	TCTTCAGCAA	AATTGGCTTC	TTAACATTGC	ACTCCAGAGT	TAGACTTACC
30	CACTCAGTCA	CTTATCATGC	AGGAGCAGAC			GAGCAGAGTA	GGACACAGGT
	TCTCTGCAGG	CAGCCAAATC	CCAAAGAGAA		GGCTGAGACA		
	GAACTCTGCA	ATG1 ACGGAG	GTGGACAGTG	TCCACAAAGA	TTGCTCCCCT	GGACCCACCA	TCATAATAAC
	ACAACGCTT	TGTTTTGTTT	TTGTTTTTGT	TTTTTGACAC	GGAGTTTTGC	TCTTGTTGTC	CAGGCTGGAG
25	TGCAATGGTG	TGAT'CTCGAC	TCACCACAAC	CTCCACTTCC	TGGGTTCAAG	TGATTCTCCT	GCCTCAGCCT
35	CCTGAGTGGA	TGGGATTACA	GGCATGCACC	ACCATGCCCA	GCTAATTTTG	TATTTTTAGT	AGAGACGAGG
	TTTCTCCACG	TTGGCCAGGC	TGGTCTCAAA	CTCTTAACCT	CAGGTGATCC	ACCCGTCTTG	GCCTCCCAAA
	GTGCTGCGAT	TACA GGTGTG	AGCCACCGCG	CCCAGCCCAC	AATGGCCTTT	TGTTTACATC	TCTAGTGCAG
	CACTCATTTC	ATGITCTTTC	AAGAAGAATA	CATATTTCAT	CTTTTTATTT	TATACAGCAA	TTAGCACAGT
40	GCCTGGCATA	AGG! AAATGA			AACCTAATAA		GATAGGAACT
40			AACTATGAGC	CAGATATTGA	CATCATCCTG	AAAGGCAGAA	
	AGGCAAGAAG	TATGCTTTTG	GAATATAGAA	AATCTGGATT	ATGATAAGAA	AAGAATCATA	TTTGTCTTAT
	CACTCTTTCT	CACTTCTCAG	TTCCACATGT	TTCTGAGGCT	GTTTGTCCTT	ACTTTCTTT	CTGTTTTATC
	CACTCTTTCT TCCAAACTGC	GTTCTTTAGA TGTTAAATGC	TTGGATCATT	CCTATTGAGC	TGACATCAAG	TTAACTGACC	TTTTATTTTG
45	CCACATGAGT	TTTTTAAGTT	ATCCATTTCTC	TTTTTAACTT TGCTGAGATC	TATATAGTAT	ATCTTTTAGT	CCTAGAATTT
43	TTTCTCTACA	TTATIGAGCA	TCCATTTCTC TAATTATAAC		TCCTATTTGT	TCATTCATTA	TGACCATATT
	ATTATTCTGG	GGTC'AGTCTC			AAATTCTTGT AAAACAGTAT		
		AAATGATTTT				ATTATAGAGA	
		ATTGACTTGT			CTTGACTGGA		
50	TCCTCTGTAA	TGGC CAACTG		TGTTTAGTTC	TTTAAGACTT		
50					GGATCACCTG		
					CAAAAATTAG		
					ACTTGAACCT		
					AGCGAGACTC		
55	TGGCACTGCT	TGGC'ATCTGC		TGAAGTTCAT	GGGTCAGCTA		
55	ACAGAATTTG	GGTCTCCCTT	TCTCTGGATT	TCTCCTTTTC	TGGATTTCTT	TTCTCATTTT	CCAGCAGCTG
	TGGTTGCCCT	AAACTCGGTC	CTCTGTTTCT		AAGATTTGGG	AACTTTTAGG	TTTTACCTGC
					CTCCTTTCTT		
	AATTTCCAGT	TGC1TTTTAT	TGCTCTCCAG	AGTCTAAAGA	TTATCATTGT	TTTCTGTGGG	AGAGTTGGTC
60					GTAATTATGA		
		AAGGATTTTA		ATGTACTTCT	TTATTTCCTG	TTTTTCTCAT	
		TACTICCTAA			GAAGATTCAG	TGACTGCTAT	
		crrccina	GICHUNCAAI	TITCCIACII	GAAGATICAG	IOACIUCIAI	CAMATUMCCC

	CCATATTACT	A A AT'A C'A AT'A	TCCCCA ACTC	CATTATAAA	AAGAAAATTT	ል <i>ር</i> ጥር ጥጥጥ ል ጥጥ	ACTALACAT
	GTTGTAGAAT						AGTAAACAAT
		AGTAAAATAT	TGCTGGGCTT		TAATCAAGGT	TAGAATCCCA	
	TACTAGCTGG	TGTATTAGTC	CTTTCTCATG	CTGCTAATAA	AGACATACCC	CAGACTGGGA	GACTGGGTAA
_	TTTATGAAGA	AAAGAGGTTT		CAGTTCAGCA		GGCCTTAGGA	AACTTACAGT
5					AGCCCCTTAT		GATCTTATGA
	GAACTCACTC	ACTATCACGA		AGGGTAACTG		TAATTACCTT	CCACCAGTTC
	CCCCCATGA	CACA TGGGGA	TTATGAAAGC	TATAATTCAA		GGGTGGAGAA	ATAGCCAAAC
	CATATAATTC	CACCCCTGGC	CCCTCTCAAA	TCTCATGTCC	TCACATTTCA	AAACTCAATC	ATGCCCTCCC
4.0	AACTGTCCCC	CAAGGTCTTA	ACTCATTCCA		AAAAATCCAA	GTTCAAAGTC	TCATCTGAGA
10	CAAGGCAAGT	CCC TCTGCC	TATGAGCCTA		AGCATGTTAG	TTACTTCCTA	GATACAGTGG
	GGGTACAGGC			CCAAATGGGA		AAACAAAAGA	
	CCATGCAAGT		ATAGGGCAGT		AAAGTTCCAA		TTTGACTTCA
	TGTCTCACAT	CCAC GTCACA	CTGATGCAAG	AGGTGGGCTT	CCAATGGCCT	TGGGCAGCTC	TGCCCCTGTG
	GCTTTGCAGG	GTA ``AGCCTG	CTTCCTGTTT	GCTTTTTCAC	AGGCTGACAT	TGAGTGTCTG	TGGCTTTTCC
15	ATGAGTATGG	TGCAAGCTGT	TGGTGGATTT	ACCATTCTGG	GGTCTGGGCC	AGGTGCAGTG	GCTCATGCCT
	GTAATCCCAG	CACTTTGGGA	GGCTGAGGTG	GGGGATCACA	AGGTCAGGAG	ATCGAGACCA	TCCTGGCTAA
	CACGGTAAAA	CCCAGTCTCT	GCTTAAAAAA	TACAAAAAAT	TAGCCAGGCG	TGGTGGTGGG	TGCCTGTAGT
	CCCAGATACT		AGGCAGGAGA		CCCAGGAGGT	GGAGCTTGCA	GCGAGCTGAG
••	ATTGTGCCAC	TGCACTCCAG				AAAAAAACAA	
20	CTGGGGTCTG	GAGAATGGTA		CACCACCAGG	CAGTGCCCCA	GTGGGGACTC	TGTGTGGGGG
	CTCTGACCCC	ACATTTCCCT	TCTGCACGGC	CCTAGTAGAG	GTTCTCCATG	AGGGTTCTAC	CCCTGCAGCA
	AACTTCTGCC	TGGA CATCCA	GGCATTTCCA	TACATCCTCG	GAAATCTAAG	CCGCGGAGGT	TCCCAAACTT
	CAATTCTTGA	CTCCTGTGCA	CCCACAGGCT	CAATACCACA	TGTAAGCCAC	CAATGCTTGG	TCAGGGCTTG
	AACCCTCTGA	AGCAATGGCC	TGAGCTGTAC	GTTGACACCT	TTTAGCCTAG	ACATCTAGGA	CACAGGGCAC
25	CATGACCCGA	AGCTTCATAA	AGTGGGAGGG	CCTTGGGACT	AGCTGAGGAA	ACCATTTTTC	CATCCTAGGC
	CTCCAGGCCT	GTGA TGGGAA	GGGCAGCCAT	GAAGGTGCCT	GACATGCCCT	GGAGACGTTT	TCCCCATTGT
	CTTGGTAACT	AACATTCAGC	TCCGTGTGCA	GCACCAACTT	ACTTATGCAA	ATTTCTGTCA	CTGGTTTGAA
	TTTCTCCCCA	GAA/ACAGGA	TTTTTCTTTT	CTATTGCATC	ATCATGCTGC	AAATTTTCAA	ACTTTTATGC
	TATGCTTCCT	GTTGAAGACT	TTGCGGCTTA	GAAATTTCTT	CCCCCAGATA	CCCAAAATTA	TCTCTCTCAA
30	GTTCAAAGTT	CCAC'AGATAT	CTAGGGGACA	AAATGTTGCC	AGTCTCTTTG	CATAGCAAGA	GTGACCTTTA
	CTCCAGTTCC	CAA('AAGTTT	CTCATCTCCA	TATGAGACCA	TCTCAGCTTG	GACTTAGTTG	TCCATGTTAC
	TATCAACATT	TTGC TCAAAG	CCATTCAACA	AGTCTCTATG	AAGTTTCAAA	CTTCCCCATG	TTTTCCTGTC
	TTCTAATAGC	CCT('CAAATT	TTTCCAACCT	CTGTCTGTTA	CCCAGTTCTA	AAGTCACTTC	TACATTTTTG
	GGTATCTTTA	CAGC'AGTGGC	ACTCCCCATG	GTACTAATTT	ACTGTATTAG	TCTGTTCTCA	TGCTGCTAAT
35	AAAGACTTAC	TCGA.GACTGG	GTAATTTATA	AAGAACAGAG	GTTCAACTGG	CTCACAGTTC	AGCATGGCTG
	GGAGGCCTCA	GGAAACTTAC	AAACATGGTG	GCAGCAAAGA	GAAGTTCCAA	GCAAAGAGGG	AAAAGCCCCT
	TATAAAACCA	TCAGATCTTG	TGAGAATTCA	CTATCATGAA	AATAGCATGA	GGGTAACTGC	CCCCATGATT
	AATTTACCTC	CCACAGGGTC	CCTCCCATGA	CAGGTGGGGA	TTATGGGAAC	TACAATTCAA	GATGAGATTT
	GGGTGGGGAC	ACAGCCATAC	CATGCCAGCT	AGAGAGCCTT	AAGAAAGTCA	CCTAATCTCC	ACAAATAAAA
40	GGTTTCCTAT	TTGTTCAACA	AAAATAATGA	CACCCCTTTT	ATGGGATTTC	TGTGAGGACA	AATGATAACT
	AACATAGCCT	TGC#TAGTGT	CTGGCACAAA	ATAGCTACTC	AAAAAATAAT	AGAAACAACA	TTTAAAAAAT
	GTAGACTTTA	TTTTTTAGAG		AAAGCAAAAT	TGAGCAGAAT	GTACAGAGAG	TTTCCGTATA
	GCACTCCCTA	CCCC CAAGCA	CAGATAGCCT	CCCCCAGTAT	CAGCATCCCG	CACCAGAGTG	GTACATTTAT
	TATAACTGAT	GAATCTATAT	TGACGTGTCA	TTTTCATCCA	AAATCCATAG	TTTATATTAG	GGATGCCTCT
45	TGGTGTTGTA	CCTTCTATGG	GTTTTGACAA	ATGTATAATG	ACATGTATTC	ACCATTACAG	TATCATAAAG
	AATAGTTTCA	CTGT'CCTAAA	AATCTTTGAT	CTTCTTCCTA	TTCATCACTC	CCTCCCCATT	AATCCCTGAC
	AACTACTGCT	AATT TTCCTG	TCTCCATTGT	TTTGTCTTTT	CCTGAATGTC	ATATAGTTTA	AATATACAGT
	ATGTAGGATT	TTCAAACTGG	TTTATTTCAC	TTAGTAATAT	GCATTTGATG	TTCTTCCATA	TCTTTTCAAA
	GCTTCATAGT	TCA# TATTTA	TAGAATTGAA	TAATATTCCA	TTGTCTGGAT	GTACTACAGT	TTATGTATTC
50	ATTCACCTAT	CAA#GAACAC	CTTGGTTGCT	TCCAAGTTTC	AACAATCATG	AGTAAAGCTG	CTATAAACAT
	CTATGTACAT	GTTTTTTGT	GAATTGAACA	TTTTCAGCTT	TTTTAGCTCC	ATTCCTAGGA	GTGCAATTGC
	TGGATTGTAT	GATA AGGGTA	TGTTTAGTGT	TGTAAGAAAC	TGCCACGCTC	TTCCTAACTG	GATGTACTGT
	TTTGCATTCT	CACCAGCAAT	GAAAGAGTTC	CTGTTGCTCC	ACATACTCAC	CAGCATTTGG	TGTCGTCAAT
	GTTTTGAGCA	ATAGCATTTT	GATCTAACTT	TTCCTAGGTA	TTCTTTTTGA	AGGAAATAAT	ATGACAGATA
55	ATAGAGAAAG	GATATACGAG	GACAGTTCTG	TCCTTTATTT	ATAGTCCATC	ATTTAATGAA	GGACTCTGTC
	CACACTTGGT	ATTITTAACT	CTGATCCTCC	TCTCCCATGA	ACTCTGACAA	TCTCCTAAAT	CCCTGTTGCT
	GGCACACATG	GTTGTGTATC	AGGCCCCCTG			TTTTTTTTT	TTTTTTTTT
	TTTTTTTGAG	ACGGAGTCTC				GCGATCTCGG	CTCACTGCAA
	GCTCCGCCTC	CCGC GTTCAC	GCCATTCTCC	TGCCTCAGCC	TCCCGAGTAG		AGGCGCCCGC
60	CACCACGCCT	GGC1'AATTTT	TTGTATTTT	AGTAGAGGCG		GTGTTAGCCA	GGATGGTCTC
	GATCTCCTGA	CCTTGTGATC				TTACAGGCGT	GAGCCACCGC
	GCCCGGCCTT	TTTTTTTTT			AGTCTGTCAC	TCTGTCACCC	AGGCTGGTGC

	AGTGATGCAA	TCT: GGCTCA	CTACAACCTC	CATCTTTCAG	GTTCAAGTGA	TTCTGCCACC	TCAGCCTCCC
	AAGTACCTGG	GAT `ACAGGT	GCCCGCCACC	ACACCCAGCT	ATTTTTTTGT	ATTTTTAGTA	GAGACGTAGT
	TTCACCATGT	TGGC'CAGGCT	GGTCTCATTC	CTGACCTTGA	GTGATCCACC	TGCCTTGGCC	TCCCAAAGTG
	CTGGGATTAC	AGGCATGGGT	CATCACATGT	GGCCTGAAGC	ATGACTGTTG	CTTTAATCAT	ATGAAATACT
5	GCTCTGTATT	GTTATCTATT	TGAAATGCCA	CACCTCCTGA	GCTAAATTGC	AAGCTTTTAT	GGAGCACAAA
	CCATATTTAT	ATATATTAGC	ATGATACCAT	GACACATATC	AAAAGCTGTT	ATATATTGTT	ACGTGAATTG
	ATTCTTTCTC	AGTTAAGAGG	ACCTCTGTAG	TAGCACTTTC	ATACCGTTAA	TTTTTCATTT	TGTGCCCAGC
	CCCTACTCTG	TGAA.AAATGA	AATGAATCCT	GTTATCATTT	CCCTCCCAGG	CCTTTTCTCC	TTGTGGACAA
	TGTGTGGCTC	AAGAGAAAAT	TCAGTCAGTA	AATTTGTTCA	GTGCACAAAC	TCTTTATCAC	CTCTCACTGT
10	TCTCAAGTGA	GAT/.GAACAG	AACATCCATC	CAGTGTCTTA	CAAATTGTCT	GGTATATAGT	AGGCACTCAA
	TAAATGTTTT	TTGAATAAAT	GCATACATGA	ATCCTATTCC	TATATATAGT	ATGGTAGACA	GATCATTGAT
	ACCCAAAGAT	GCCCAAATGC	TGATCCCCAG	AACTTGTGAA	TATGTTACAT	TTCATGTCAA	AAGGGACTTT
	GCTAATGTGA	TTAA.GGATTC	AGACCCTTGG	ATTGTAAGAT	TATCCCGGAT	TAACCAGGGC	CAATCTAATC
	ACATGAGACC	TTAA AAAAGC	AGAAAACATT	TCCCAGCTGG	GTTAGAGAGA	GATGAGACAG	AGTAAAAAGG
15	AAAGAGATTC	AGGGCATGAA	AATGACTCTA	CCCACTGTTG	CTGGCTTTGA	AGATAGAGGA	ACTAGGCCAC
					CCCTCATCTG		
					TGAGCAAGGA		CCCCTAGAAC
	CTCCAGAAAG	GAACACAGCT					ACTTTTGACC
	TATGGAAATA	TAAGATAATA	AAGTTTTATT	GTATGCTGCT	AAATTTGCGG	TAGTTTATTA	CTGAAGCAAT
20	GGAAAGCCAA	TACAGACAGA	ATATACAGAG	AGAAAGAGA	A TGAGTTCTTT	CCTGATAATT	TGTAAATATT
		CTGC ACAAGC			TCCCTAGCAA		CCAGTCCTGC
	AGCCTCCCTT	TCTT AGGCCC				CAAAGCAGGA	CCCTGAGTAG
	TTGGAAAGAA				TGAGGAAACA	AGAGGTAGGA	GACCGGCATC
	TCTTTCTCAT	ATGTCCCAGG	CTGACTCTTG	TGAGTTGTTT	TCCCTTGGAG		ACAGTCACAG
25	TAACCTGATG	GAACCTGGAT	CATGATGAAA	GAAGTAAGTG	TCAATGGCTC	CGACTTCCAA	
	GTCCCACAGC				CTTAAATGGG		
	CTATTGTTAG	GAAGCCAGGT			ATGCCAAGCA		AGAGTCCCTA
	GGGACATGAT	ATTAAGTGAT		CAAACAACTT	AATAATCATT	TATACTAATA	
	CAACGGCTGA	TATICCACTT			ACTGGAAGAG		
30	CCAGGGAGCC	ACTAAAAGGA		CCTCTGGATT		TTATATTACC	TCTCAGCACT
	GGCAGGCCTT	TATTTCAGGA		CAAGTATTAT	GTCACGTCTC	TGAGAATTAT	GTTGGTAGAT
	ATTTGCTCCT	CTGGCCAGAA	AGACCTAGTT	TGGAGTCTGG	AGTCATGAAG	GTGACATACA	TGTAGCTAGT
	GACATAAGTG	TAGCTAGTAA	AAATAGTGAG		GAAATTCTAT	TGAATGCCCA	
		CATGCTCTAG				TCAAAAATCC	TAGTAGCTAA
35	GATTTCTTAG		ACTAAGGCAC		AACTTGACCC	TTAGGTGACT	TTTAAGGACT
	ATTCTATAAA			TCCAAGCCAG			TAATTGACAG
	TGTCCACACT	GGT AAATAA		AAATACATTA		GCACTTTCTA	CACAGCCCCA
	AGTCCAGAAC	TTT('CCCAGA	ATAGGTCTAT	GTTTTGCAAT	CTGCTACTCC	ATACAGAGAT	TTGAGTTCAC
	TTGGCAATTT	AGTGCTGCTT	ATATGTGACC	AGTTAGTCTG	TTTTACTTAT	CTATGCCTTA	AACATTACTA
40	TACTTACTAA	CTCCAAGATG	CCTGGTCTCA		AATACCCCAA	GTTGGGAAAT	CCTTATGTGA
	ATATGTAGAT	AGTCACAATT		GATGATCTGT	CTTTTCCTGT	ATTTGAGAAA	
	AATGGACCAA	TCC/AATAAT			TGAGAGAGAG		
					GACGGAAAAT		
	CTAGGGGAAA	ATAATGAGCT	CAAGTTTTAA	CACTCTGAGT	TCCCGGATGT	GAGACATCCA	GGCGCATTTA
45					AGAGGCATGA		
					TTAGAAAATT		
					AAAAAAAAAG		
					TGGAAAAAAC		
					ATGCTTAGCA		
50					GCTGAGTGGG		
					AATAGCAAAA		
					GTAAGGTGTA		
					TCGTGATTGC		
					AAACTGGTGA		
55					CAGTTATACA		
					GCAATTTCCT		
					AAGTTGATGA		
	TGTTAATATC	TGCTATAAGA	CTACTGAAAA	TGACAGTTAT	GCAAGTATAA	GCTCAGAGAA	CTTTCCTCCC
					GGCAAGCAGT		
60					ATCCAGAAAC		
					AAAATGGATA		
					AATCCCAGCT		
	. •						2101101010

						GTGCTATCGC	
						AACAAATCTG	
	CCCACTCCCC				GCAAACATGG		AGCCTGAACT
_						GAGAAAACAA	
5						TGTGATATAT	
					ATTGAATATG		
	GAGTGAGCTT				CAAAAAAATC		CTCCCCATTC
					AGAGGGGACT		AGAACTCTAA
4.0					GAAAACCATT		CTAGAAAGTT
10						CAAGAGAAAT	
	CCCCACACAG		AGGTGATGGT			GCTAGGCTAT	
		AATAGTAATC		TGTGAAGGTA		GTGGTTAACA	GCTACAATCT
		AGT#AAGGAG			TGGGCTTCAT		GAAGGCCTTA
						GCAGCCTCAA	
15					TTATAATCAC		TTCTTAAAAT
		ATATATATTG				GTAATAGCCA	CAAACTGGAA
					TTGTGGTATA		TTACGCAGCA
	GTAAAAAGGA	ATAAATGGTT	GAATAAGGAA	TAAACACATA	ACAAGGATGA	ACCTTAAAAC	CGTAAGGCTG
	AATGGAAAAA	GTCAGACAAA	ACTAATACAT	ACTGAATAAT	TCCATTTATA	TTGAAGTTCT	AGAAAATGAG
20	GACTAACCTA	TAGTAACAAA	AAGCAGAAAA	ATTTTGCCCA	CTGGTGATGG	AGGGGGCGCA	GGTATTGTAG
	AGTATCTGAG	AAAGGACAAC	TGGATAAAAG	GGGGCACAAG	AAAACTTTTG	AGGGTGATTG	ATATGTTCAT
	TATCTTGTGG	CATC GTTTCA	TAGGTGCATA	CATATGTCAA	AACATCAAGT	TATACACTTT	TAAAATGTTC
	AGTTTACTGT	ATAT CTATTA	TACTTCAGTA (GAGAGGAAGG	AAGAAAGTGG	GCAGGGTGGG	GGAGAGGAAA
	GGAAACGAGG	GAGGAAAGGC	CCTAATAGGA	AGGATTTTGG	AGTTTAGATT	TTAAAATGAT	AAAGGATGTT
25	TGACACTCTA	GGCA.TATGAC	GAATATAGGA	TTATGAGTCC	ACAAAAACCA	CCAGGAAGTC	ATGTATGTTT
	ATACTTTTAA	GTGA.AGGATC	AGTGGATTAT	CAACTCCCTA	ATGCTTTGCC	TCTCTATGAC	TGGCTGCTGT
	CCTTCTCATC	CCAA TACTCC	TTCCAAAGCC	CCTTGCTTAA	ATGTAAGCCT	TCTTTCCTCC	TTTCAACACA
	TCCTGCATTC	CGTGACAAAA	TAAGTTTTCC	TTAAACAGAA	TGTACAGCAT	ATTATTTGTA	CAATTAAAAA
	TTTTTGGCCA	GGTGTGATGA	CTCATGCCTG	TAATCCCAGC	AATTTGGGAG	GCCGAGATGT	GTGGATTACC
30	TGAGGTCAGG	AGTT'CGAGAC	CAGCCTGGCC	AACATGGTGA	AACCCTGTCT	CTACTAAAAA	TACAAAAATT
	AGCTGAGTGT	AGTGTGGCAG	GTACCTGTAA	TCCCAGCTAC	TCAGGAAGCT	GAGGCAGGAG	AATCGCTTGA
	ACCTGGGAGG	TGGAGGTTGC	TGTGAGCAGA	GATCAGACTA	TTGCATTCTA	GGCTAGGAGA	CAGAGTGAGA
	CTCGGTCCCC	AAA/AAAAAC	ACATTTTTT	TTAATGTTTC	CTCCTTGCCT	GTAGGAAAAA	GGCTCTGACT
	CCTTAGCCTG	GGCATCAGAG	CTCTATCTAA	ATGGACTTTA	ACCTGATTTT	GTGGCACTAA	TTCCATTGCA
35	GTACTTGTCC	GCT('ACTGGC	CTGTGCCTCT	CTGCCACTAT	TTTTGGAATA	ATGTCCTCTC	TCCATCTTGT
	TTACTCAACT	ATATCCAACC	TCTAAGGCTG	TGCTCCTACA	AAGCCTCCCC	TGGCTACTTC	AGCCCACAGA
	GATATTTAAC	TGCTCTGCAG	TTCAGGACAT	TCTTCTGACT	CTTTAAATCA	CATTTACTTA	TATATGATCT
	TGTGATATTT	TTTGTTGACG	TGTTTACTTT	AATTTTCTTC	CATAACCTAT	TCATTCAACA	AACTCAACAA
	TTATTTATTA	AATG CCAAGT	TAGAAAAATA	TTATTGATTT	TATATAGATT	ATAGATATGT	TTGAAATTTT
40	ATTTGGCAAT	CTGCAAGTAG	AAAAATAATT	ATAATGTGGT	ATATCTGTGA	TAGAAGTATT	AGTGCAGAGA
	CCATGGGGAA	CATAATCCAG	CCTGGAAGTT	CAGGAGAGAT	ACGTGGAAGA	AAGGACGTCA	GAGCCTTTTT
	CCTACAGGCA	TGGAAGAAAC	ATTAAAAAAA	ATTTTTTTT	TTGAGATGGA	GTCTCACTCT	GTCTCCCAGC
	CTAGACTGTG	GTGGTGCGAT	CTCTGCTCAC	TGCAACCTCT	GTCTCCCGGG	TTCAAGTGAT	TCTCCTGCCT
	CAGCTTCCCA	AGT/.GCTGGG	ATTACAGGTA	CCTGCCACAC	ATGGATGATA	AATATGATCA	TATTTTCTTG
45	TTCTTTTCCT	CCTC AGTTGT	CTTCCCTGAA	GAAAGGAATG	CCTTTTATAG	ATGACAAACT	CCCATTCTCA
	AGAACAAGGA	TTT TGACCA	ATTTAATTTA	ATCAGATGTC	TGGCTTTGAC	CTAGAAACAC	AGTCACGAAA
	CTTGGTGATT	AGAC ACCAAT	TCCCAAACAT	GAGCATTTCT	TAGGAAACAC	AGTAAAGATC	TGAGAGACCC
	AAGAGCAGAA	GGGCGAGAAA	CCAAAAGCCA	A TCAGTTTGCA	TAGGAAACAC	CTTGTTTAGC	CTAATCTTTT
	TATTTTTATT	ACTCTATTAG	TCACTACAAC	TATTTTCTGA	TTGCTATGGT	GATAGATGGT	TTAAAACAAG
50	CCTTCATTAA	GAATTGTCAC	ACCATGGTCT	CAGTCAAAAA	CACCAACATT	TTTATTGGTA	TTGACAATTA
	TGGGAATATC	CAATTCCAAG	AAGACAAGGA	GACCTCTGAA	CTTTCTAAAT	GAAGACTCCA	ATCTTCCTGA
	TCTGATGGGA	AGCAGCTTGG	CAAGATTACC	AACCACCACC	ACAGAGAGTG	GACTCTAAGC	TAAGACTTAA
						ATCCAGGGGA	
						AAGCAGAGTT	
55						ACCTATGTAG	
						TCATTGAACA	
						AGGACACATA	
						AACAAATCAT	
						CAGCGAAAAG	
60						CCACATGTGA	
-						GACTGAATAG	
						GTGCCTGCAG	

						GATAATATAG	TCTCTTATAG
	GTCATAATAA				AAAATCACTG		ACTAGGGTGA
	GAGGTGTGAT	TTGTATTTTT	AAAAGATAAT	TCTGGAGAAT	TAACTATAAT	GAGGTAGGAG	TAAACTAAGT
	TAGGGGCTAT	TTCAGTGGCT	CAGACAAGAG	ATAATGGTAG	CTTAGACTAG	GATAGTAGTC	GTAGAAATAA
5	ATAAAAGTGG	CAC CTACTT	TGGGGGTAGA	GTCTATAATA	GGTTTGGTTT	ATGGATCATA	TATGAGAGTA
	AAAAAAAGAA	AATAAATTAA	TAATGGTTCC		CCTGAGCAAC	TGAATAAATG	GGTGCTGTGA
	ATTGAGATAA	AGGAGATTGA	GAATCACAGG	CTTTGTTTTG	CAAATTAATT	TTGAGAGGCT	TATTAGACAT
	CCCAGTGGAG	ATTT CAGGTG	AGTGGAGCCC	ATTGAAAGGT	AAGGGACAGG	GTCAGGTGTG	GTAGGTCAGG
	CCTGTGATCC	CAGGACTTTG	GAAGGCCAAG	GCAGACAGAT	CAGTTGAGCT	CAGGAGTTTG	AGACCAGCCT
10	GGGCAACATG	GGAAAACCCT	GTCTCTACAA	AATATGCAAA	ATATTACCTG	GGCATGGTGG	CATATGACTG
	TGGTCCAAGC	CACTTGGGGG	GCTGAGATGG	GAGGATCACT	TGAGTACAGG	AGGCGGAGGT	TGCAGTGAGC
	CAAGATCTCG	CCACTGCAAA	CCAGCTTAGG	TGACAGAGTG	AGAACCTGTC	TCAATAAATA	AATAAGAAAC
	GTAAGGGAAA	AGGAAATTAA	TCTGATCATT	GGCAAATGCA	TAGTATTTAA	AGCCAGGGGA	GTAGATGAGA
	TACTCAAAGT	AGG1GAAGAT	AAGGAGGCAA	TGAAGGCCTA	GGACTCTGGT	GTACATTTAG	ATGGTTATAA
15						AGAGGAAAGC	
						TCAACTTCTG	GGCAGTCAAA
	TAATATAAGG	ACAGAAAAGT	GACCATTGGA	TTTGGAAATA	TGATGAGCAC	TTTGAGTGGA	GTGTTGAGAC
	AGAAGACCAA	TTAGAGTAGA	TTGAGGAGAT	AACGAGAAAT	GAGAAAATGT	AACCTGCAAG	CACAGACAAT
	TCTTGAGAGA	CTTTTCTGTG	AAAGGAAACA	GACACAGAGT	CTTAGCATGT	CTTGTCTTTC	TATGGGAAAT
20	GTAAATAGTT	TGAGATCAGG	GATAGTATTT	TATTCTGCTT	TTTGTACCTC	TACATTACCT	AGCATAGAGC
	TAGCTAATGT	GCACTTAAGT	ATGTTCTCAA	TTCTTATCGC	CTGAATGACT	GGATGGGTGA	AAGAATGGAT
	GGATGGATGG	ATGGATGGAT	GGAAGGATGG	ATGGATGGAT	GGAAGACTTC	TGATTTGCCA	AGAAGAGGAT
	ACTGGTAGCA	GAAATAAAAA	CAGCACTGGA	GAAAGAAGAG	TTTAGATTTT	TATTCTTTGG	TGTCAGTTAG
	ACAGGAAAGT	AAG ACATTAG	AAGAGTCCTT	AGATAATTTA	TGTAATTGTT	CACTTAGGAT	TTTTAAATGT
25	GATCACTGAT	ATTC GACATG	TTCCTAGTGA	AGCATTTTTG	GTGTTTCACT	GGTTGAAGTT	AATAACTGTA
	AAATTATTTC	CCGTTCAGGA	CAGAAAAACA	GAAAACTTGA	AGCTCCTATT	AGAAAGTTCA	AGATTCTCTG
	GGGTTCTTAG	GATITACTGT	TCCCAAAACT	CTGTCAAGAA	CAAGAAAATG	ACCTGTATAC	TTAACTGGTC
	TAGGCAACAG	TGGAAAGACA	ATTCTCAGAG	AAGATTTGTT	TTAAGAAGAC	ACTTTCCATA	GGAATCAAAC
	AATAGCTTTC	AGTC ACTAAC	ATGGTAAGAC	ACAGGGTGTT	AGCTCTTTCC	TTCCAACCTC	ATGGCTGTTG
30	TACCTTACCT	TTCGACCCCG	TGTTCCTGAA	ATTGTTAAAT	TCATAAACTT	ACCAAGGACT	AACCAGCCTC
	TGGGGAATTG	CTGT'ATACTT	AGCAAACTTA	CAATGGACAT	ATTTATAAGC	CATAATGATA	ACTGACTAAT
	AGGAAATACC	CTCAACTGAA	AATGAGAGAT	CATCATTTGC	AAATGAGTTC	CCTTGCCCAG	GCAACTACTG
	GGGAAAATGT	CATGCAAGCA	AAATTAATCT	` TTGAAATCCT	CCTTTTCCAT	TTTTTGTGTC	TTCCTTTTCC
	ATAGGCACCA	GAAATATCAT	GGTGCCTGGA	TCTCATCTCT	ACAGAAAAAA	AAAGTGATTT	GATAAACTGA
35	TTTATATTGT	GTCC 4AATGT	GATTGTATTT	TCAAAGATAA	CCTAAGGGGA	GAATGCTGTC	TGGCCCAACA
	GCAGGCTCTC	GAC1TCATTT	CAGACACTGT	GGCCAATGGC	TGGGAAACAG	GTATGAACAG	TAGGTTTCTG
	AGTCCCCTGG	AATT'ATTCCA	TTTATGTAGC	CACCTCCATG	ACAGGAAGCC	TCCCTACTCT	TACTTCCCAG
	TTTGTTCATT	CATGGCACCA	GGTTGCAGAT	TAAAATTTGC	TCAGTGACCT	TTTATCTAAT	AATGTGTTAC
	CTTCTTCTCT	TAAAAAGTAC	AAGGGACAAA	TGCTCATGGT	ATACTTTTAG	GAGATTGTGG	CTCTCTATTA
40	ACAGTATTTA	TTCAACAAAC	ATTTATTGAG	CATTTATATG	TGCATCATGC	TAGGGACTGG	AACCTAGTAA
	GTGTAGCACA	TATT'ATTTCA	TTTAATCCTC	ACAACAAACC	CATGAGGTTG	GTTTTATGAT	CCCAATTTTT
	CAGAAGAAGA		CAGAACCAGT			ATGCAATTTC	TAAGATACAG
						ACATTGCTTC	
4.5						AGCTTAGGAA	
45						AATATAATGG	
						AAACTTAACA	
						TTACATGTAT	
						CCAAATTAAT	
50						AATTACAAAG	
50						ACAAAAAAGG	
						GGTGTATTGA	
						ACCAGAACTA	
						ATTGGCATAG	
E						TTAGGTTCCT	
55						GAAACCACAA	
						AGAGACAGGG	
						ACTCCTGGGC	
						ATCCAACTTA	
60						TGCCTTCAAG	
60						CATAAATGAA	
						TAAAAAGCAA	
	TTTGTAGCAC	TTATGACAAA	TATATGTATA	TATATGAATA	CAAAAAGAGC	CTTTACAAAA	CAGTAAGAAA

	1011501151	OTTO CO. 1 TO CO.			m	maa	
					TAAAAGCAAT		
	TATGCATATA	TGTATGTGAA		CTTATCAAAG		TCAAAGAAAT	AAACATCAAA
	TAAGGAAATA	GCCITTTCCC	ACAAATAACC	AAAATCTGTA	AGAATACTGA	GCTGCGAATG	TTTCAGAAAA
_	AAAAAAAAAT	CATACACCTA		TAATTAATAT	AGATCAGAAC	ACTTTAAAAA	TATTTATAGG
5	CCAGGCACGG	TGGCTCATGC	CTATAATCCC	AGCACTTTGG	GAGGCCAAGG	CGGGTGGATC	ACCTGAAGTC
	AGGAGTTTGA	GACCATCCTG	ACCAACATGG	TGAAACCCTG	TCTCTACTAA	AAATACAAAA	ACTAGCCAGG
	CATGTTGGCG	TATGCTGGTA	ATCCTGGCTA	CTCGGGAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGAG
	GTGGAGGTTG	CAGTGAGCTG	ACATTGTGCC	ACTGTACTCC	AGCCTGGGCA	ACAAGAGCAA	AACTCTGTCT
	CAAAAAATAA	TAATAAATAA			CTGACCCATC	AATTTGTCCA	GCATAATTAG
10	GCATGTGTAC	AAGC GTTTAC	ACACAAGAAT	GCCTATTGCA	ATATTGCTTT	TAATGCTAAA	AAAAATTGGG
	GAAAATGCTT	TAAAAATATA	GATTAAGACT	GTACATTGTG	GTACAGTCAT	ATAATCAATA	GTATACAGCT
	ATTATTTATT	TTCAGCCACT	GTCCAAAATA	TAGCCTGGCC	TAACAACATT	CTGTTAGGAT	ACGCAAGCAC
	CGTGAGGAGA	TCAGCTATAA	AGTATCAGTG	TTTCACACCA	CTGCTCCTTT	GCTAATAACC	TTCAATGGCT
	TTTAAAGAAG	TAAAAAACAA	AGGCAAAATT		CCCTTAAGAC	TCTCTGTTAC	TTAGCTCAAA
15	CTACCCTTTT	CAAC AACACT	GCCCTAACCA	GGATGAGTTT	TTTGCCCCCC	TGGAGTACAT	TCAGCCTTTC
	CTTATCAAAC	CTTCCTTTAA	ATAAGTATCT	TCTCCAGGAC	CACTTCACTT	TCTTCCCCAA	TTTAGCATTT
	TCTATATCTC	CAGGCCTACC	TCTATAAAGC	CTGTCCTAAC	CACTCAAACC	CTAGCTTTTT	CTCTGAACTG
	CTAGAAATAT	TTTTCTCTCA	TTGGCCATTT	AGGTAAAAAG	GTTTTTACTG	TTTATTACCT	ACTCAATAAA
	AATTTTCTTT	TTTTGAGACA	AGGTCTTACT	CTGTCGCCTA	GAATGGGGGG	AAGTGGTGTG	ATCACAACTC
20	ACTGCAGCTT	CTACCTCCCA	GCTCAACAGT	CCTCCCACCT	CAGCCTAGTG	AGTAGCTGTG	ACTACAGGCA
	TGTGCCACCA	TACCCCACTA	CTTTTCATTT	TTTATTTTTT	GTGAGATGGA	ATCTCACTAT	GTTACCCAGG
	CTGGTCTGCT	GATCICAATT	GATCCTCCCA	CTGTGGCCTC	CCAAAATGCT	GGGATTACAG	GCATGAGCCA
	CAATATCTGG	CCCCAGTAAG	CTTTTAAGGC	CATTAACATG	AGGAACAGTG	TTCTTTACAC	TATTTTATCA
	GCTAGGGCTT	TGCATGGAGT	AGGAGTTTAG	TAAATGCGGT	TGATGGGTTA	ATCAATGTGT	GAAAATATTC
25	AGAGCCACCA	AAAACAGATA	TTATGTCTAT	TCTCATCAAC	AATCAAAATT	GAGTAAACAG	CCATTTTCTA
	ATACAGGAAA	CCA('AAAACA	TTGAATGGTG	ACATTAAAAA	ATTCCCCCAG	CAGGAGCCAA	CCAATTTTT
	CATCCTGATC	CAAGITAGCA	AACTGCAAAA	GATAGGAAGC	ACTAATGAGT	GGAAATTTGA	GTAGAAGCAT
	TTCTTATGAA	GGCTGTCTTG	ACTGGATCAC	ATTTTTATTG	CTGTTGGAGG	TGCCAAATGT	GTGTGTTTAT
	GCTAATCCTC	CACCICAGGC	AACACACAGT	CAAGGATCCT	ACCAAGTGTT	ACCGTCAAGT	GTCTGTTGGC
30	AGCTCAAGGC	CCCA GCGTTG	TTCCCTTGCA	CTAGGGAAAA	GACATATTCC	AGGTACAAGT	ACTCCCACTT
	TGATGCTACA	GAGGAGTTGC	TGAACTTTGT	GTCATTAATC	TCTCTTCGTT	AGATCCCAAC	CCTGTTTAAA
	TCCCACTATC	TGCCTACTCT	GGGTCTTCAC	CAATTTACTA	GATCATAGTT	GGAGAAAATC	TACAAAGCCT
	TGCTCCCTTT	AGATITAAAC	AGGTCTCCGT	TTAAATTTAG	AATTGCTAAC	TTCAAGCGGG	CCCTTATGCG
2.5	ACAGTATGCC	TGTC AGTCAT	ACTACATTTC	CTCAATTCCA	TTCATGTGAC	TGCTCCATAC	CCTTCCCTCT
35	CTCTTCATAC	TACTATTATC	TCTTCCCCCC	TCCCTCATTT	TTAACTGATG	ATCTTGTTTC	CTATTTCTCT
	GAGAAAATAG	AAGCCATCAA				ATCTAGCCCT	GTACCATATA
	CTTTGCATTT	CCTCTCATTA	CCATGGATGT	ACTGCCTATC	TGTGCTTCTA	TCTAAGGCTA	ACCCTTCCAC
	TTCAGTTTTG	AATATTATCA	GCTCTTACCA	ACTCAAGGCC	ATTGCTCTAG	CAATTCTCTC	ATTCTCTCTC
40	ATTTTCTTCC	ATCA AGTTTT		AATTAACAGA	GTAGCTCCTA	AAGGGAAAAA	AAAGTCTTCT
40	TTTTCAATGC	TCATCATCAC	TGGCCATCAG	AGAAATGCAA	ATCAAAACCA	CAATGAGATA	TCATCTCACA
	CCAGTTAGAA	TGGCAATCAT	TAAAAAGTCA	GGAAACAACA	GGTGCTGGAG		GAAATAGGAA
	CACTTTTACA	CTGTTGGTGG	GACTGTAAAC	TAGTTCAACC	ATTGTGGAAG	ACAGTGTGGC	GATTCCTCAG
					TTACTGGGTA		
45					TGGCACTACT		
43					AATGTGGCAC		
					ACATGGAGGA TCTCACTCAT		
					CCTGTTGTGG		
					ATGGGTGCAG		
50					TAAAACTTAA		
50					GCAGGATCAG		
	CTGTGTTTTA				CAGATCCCAC		
		ACTTCTTTTT			AGTTACATAT		
	CTCCCTCAGT		ATAATCATTT		TCATTTTCAC	TCTAATTGCA	
55	CTCCCTTTTT				GCTGGAGTGC		
55					TTAGCCTCCT		
	ATGCACCACC		AATTGCTTTG				TTTTTTTGGA
					TGATCTCAGC		
					TGGGACTACA		
60	GCTAATTTTT	TTGTATTTTC	AGTAGAGACC		ATGTTGGTCA		GAACTCCTGA
					GATTACAGAC		
	ATTTTGTGTT				CCAGGCTGGT		

	TGATCCGCTC	GCCTCAGGCC	CTCAAAGTGC	TGGGATTACA	GGAGTGAGCC	ACCATGCCTG	GCCATAAAAC
	TGCCCTTTGT	TAAT ATGACT	GTTGGCCTGC	ACATTGTCAA	ATCCAGTGGC	ATTCATCTTA	CTCGGCCAAC
	CTACGGCATT	TGAC'ACTGTC	TGTCTTTCCT	TCTGTTCCTC	TATCTGTTTC	CAGTATACTG	GCCTGGCTTT
	CTTTTTACCT	CTTT `ATATG	CTCTTCCAGT	CTCAGGCTCC	TTTGGGGATT	TGAAGGTATG	TTGCATTTTG
5	CTATTCAATG	AATAATGACA	AGTAATGATC	ACTTAAGACA	TTAAGTGGTC	AGTTCCTTTA	CTAGGATAAA
	AATAATTTTC	TTCCCAACAT	GGGGCATATT	CCATTTCCAG	TCTGACTGTT	CTGTGTAATC	TTTGTATTCC
	TTGGCAGCCC	CTTTTATATC	AGTTCATCTA	CTGTGCAGGA	AATTGGACAA	ACATTTGCAC	TGGTATAACC
	AAATACAGTT	GAAC TTTTGG	CTTGACTCTT	AGCTGAACTC	ACCAAAAATA	ATTTCTGTAA	GAGACTGAGA
	CGTCTACGAG	TAGGTTTTTC	AGAATTAGTA	AACATAAATC	AAGGATACAC	AGGTAGATTT	GAATTTCAGA
10	TAAACAACAA	ATACTTTTTT	AGTATGTCTA	CTGAAATATT	TGTATCTTAT	CTGGCAATTC	TACCTGGTAC
	AGAACTAATC	CATTCTCTTG	AAAGATCTTG	ACTCTGTAAT	AAGTTCTTTG	GTGATGGAAG	GGAGGTATTT
	CTGTAATTAG	AGTCACTGTC	TTCCTCCCAG	TTTTTTATCC	TGGCCCAGAT	CTGCAATGAA	CACACGACAG
	AATCCAGGGG	GGAT GAAGAT	GGGTGCTTTG	CAGGAAAAAA	AAATTAAAAA	CATCTGAAAA	AGCTTTTGTA
	CTAAAAGAAT	GTGATCTAAA	AAAGAAAGCA	GGAGAACTTT	CTGTCTGCAC	TTTACATCAG	AACAACCTTG
15	GCGTCTAGAA	GCTGTGCCCT	GTGGGAAGTG	GTGGTGCTTG	GTAAGAGATG	CCAGGACCAG	TGGTACCCAC
	TGGGAGCACT	GCCAATACCC	AGCAAGGAGC	ATGGGTGCAC	AGTAAGGCAT	TGCACTGTGA	TTCAGCATAA
	AATAACAATA	AGGGAACGTC	ACGGAGAAAA	GGCCAGACTT	CCTTTGTTTA	GAATGTGGGA	AATGTCTTCT
	GAAAAATGGT	AGTA AAAAAG	CATGCTTGGA	TGGTCCACTC	CAGGCAAAAC	TGACTAATCG	GGGGTCAGGG
	ATACAACCCC	TGC/TCATAT	GTTTGTTTCT	GTTGGGCTGA	CATGAGGTTC	ACTGTGACCA	CTGTGGTTTA
20	ACCCCATAGT	CTCCTGGAAA	TACAGCCAGG	TCAAGAGAGC	TCCACATAAA	ACATAATCAA	AAAAATAAAC
	TCAAGTTTCC	ACTGATCAGC	TTTTCACAAC	TCTTATCCTT	TCACTAACTT	TGGAGCAAGA	TTTGAGAATT
	GGATGGCTAT	TTGA GGGCTA	TTTCTGCGCT	TTAGTTCAAT	GTTTTGTTCT	TTCTTTATTA	GAGAACTATG
	GTTTTTTATT	ATATTTACAC	TTTAAGTTCT	AGGGTACATG	TGCACAACGT	GCAGATTTGT	TACACAGGTA
	TAAATGTGCC	ATGTTGGTTT	GCTGCACCCA	TCAACTCGTC	ATTTACATTA	GGTATTTCTC	CTAATGCTAT
25	CCCTCCCCCA	GTCCCCCACC	CCCCGACAGG	CCCTGGTGTG	TGATGTTCCC	CTTCCTGTGT	CCAAGTGTTC
	TGTTTATGTG	ATAGATTACG	TTTATTGATT	TGTGTATGTT	GAACCAGCCT	TGCATCACAG	TCACTTGCTT
		AACACTTCAC	AGATGGATCA	TTATGTGTGA	TAAGTGAAAT	CCAAGGATTT	ATGCTCAGAG
	GTGGGCTTAA	CAGGTAGGAA					TCTTTTCTTT
20	TTTGAGATGG	AGTCTCACTC	TTTTACCCAG	GCTGGCGCGC	AGTGGTGCGA	TCTTGGCTCA	CTGTAACCTC
30	TGCCACCTGG	GTTCAAGCAA	TTCTCCTGCC	TCAGCCTCCC	AAGTGGCTGG	GATTACAGGC	ACCTGCCACT
	GTCTCCGGCT	AATTTTTGTC	TTTTTAGTAG	AGATGGGGTT	TCACCATCTT	GGCCAGCCTT	GTCTTGAACT
	CCTGACCTCA	TGAATCATCC	TTCTCAGCCT		TGGGATTACA	GGCATGAGCC	ACTGCGCCCA
	GCCCACAGGT			AAAAAAAAA		AATGAAATAT	
25	TGCTAAACTG	TGATAGACTG	TTTTACAAGA	ATGCCAGTTT	TCACAAGTGT	CTATAGAACA	TGTAATTTAG
35	ATAGGTAAGA			ATGGCAAATT	TAAACAGGTA	TACAACAAAA	ATAAAATTCT
	AAGCCCCTCA GTTTTGGCCA	ACCAACTGAA	TGGACTCCTT	CTCTCAGCCA		AAAGTAAACC	TGAAAAACTA
	TCAGGCACAA	GGATTGGGGG CTGAATGTCA	TAGGTGGGGG GCATTGACAC			TTCTCTCCTC	CACTCTTTCT
	AGCAGAGAGC	CAGGCCCTGG		TAAAACACAG GTTATTTAT	ATCTTAAGAC	TGACAAGCCA	GACTCTTTGT
40	AATGGCCCTG	CAGGCCCTGG	TCTTGTGGGG		CCCAAAAAAT		TATATTTCA
40	TTTTTACTGA	TCCAGGAGAG	ATTTAACTAA	AAAATTGACA GAGGCTAGCA		AATTTCCTTC TTTTTTTTTT	TCTTTCCAAG TGAGGCGGAG
	TCTTGCTCTG	TTGCCCAGGC	TGGAGTGCAG		TCAGCTCACT	GCAACCTTCG	CCTCCCGGGT
		CTCCTGCCTC				ATGCCACTAT	
	TTTTTGTATT			ACCATGTTGG	CCAGGCTAGT	ATTGAACTCC	TGACCTCGTG
45						CGTGCCCAGC	
		TCTCTCTGAA				AAGACCCTTG	GTCTCCACAA
	CTCCTTATCT						TCAACCAATT
						TCAAGTTATC	
				TGATGGATAT		CTTCCATTCC	
50						CATGAGACTG	
	CTTGGTCACT	CATATTTGGC		CTTCTTTAAA		AGTTTGGCTT	TTTTCATTGA
	CACAGGAAAA					TTCATATCTG	
		TGATTTGTAG				AGAAGCATCA	
		GAAA TGCAGA				ATTCTTGGCA	
55		TATTGAACTC				TGAATTAACA	
	GTTTAGTGCT	TTTT/CACAGA		TGCCTCTTAA		CACCACGCTT	
		GTCT GATTAA		CATGTGAGTC			TCTGAGAAGT
	CTTCCCTCAC	TGGCCCAAAG				GTTGACTTGT	
	GTCTTTTTCA	TATTAGTTGT			AGGAAACTAG		
60		CCTTIGGGGT	TGGCAATGGA			GGGGGAAGAG	
	ATATTTTTCT	TACG AGATTT	ATGTTGCTCA	TCTTTAGCCT	TTAGTCCCCC	ATTGCCTGCC	
	AGAGACCATC	TGTTCTCTCA	CTGTCAGGAA	CTGTCTCAAT	TCTTGAAGTT	CAGAGTCAAA	AAAGAAGCAA

	GTTTTCCTAG	CTCTTTGATC	AACTTTCAAA	GTTTTACTTC	CATTTGAAAA	TTTACTAAGT	CACCAGGAGA
	TGGTTTATAC	TGAC AAATAT	CCACTCATAC	TCTTCCTCTT	CAACTTTCTT	CCATATACAC	CCTATTACAG
	GGATATAGTC	TTACTCTATA	GCTCAAAAGG	ATGACCCTAT	CAGAAACCTG	CACAGTATGT	AAAACATTCT
	CACCAGAGGT	TCACTTGTGT	ATTTCCACCC	TAGAATGGAA	GCTCTACAAA	AGCACAGAAT	GTATCATTTT
5	AACTTTAGAT	TCTATTTTCA	CACCCAGTGC	TTGACACATG	ATTTGAAGTT	AATATTTATT	TATCAAGTGA
	TTGTTTTAAA	ATCA FGACTC	ACTCAACAAA	GTTATAAGAA	TAAGAATAGT	GTTACAGAAT	TGGTATACAC
	AAGCTGACCA	TAAT'CAACAC	ACCTATTATC	ATTTTTTTGC	GACAGGTTCT	CGCTGTCTCA	CCCTGGCTGG
	AGTGGAGTGG	CATGACCACG	GTTCACTGCA	GGTTTGAACT	TCCAGGCTCA	AGCAATCCTC	CCACCTCAGC
	CTCCCACATA	GCTGAGCCCA	CAGGTGTGTG	CCACCATGTC	CAGCTAACTT	TTTAATTCTT	TGTAGAGACA
10	GGGTCACCCT	ATGTTGCCCA	AGCTGGTCTT	GAACTCCTTG	GCTAGAGAGA	TCCTCCCTCC	AAGGTCCCCC
	AAAATGCTGG	GATCTCAGGC	AAGAGCCACC	ATGCCTGGCC	ATAATCAATA	CACTTTTAAG	AATGCTAGAA
	TGTTATATCA	GATGCATACT	TCAGCACTAT	CTCAAGCAAA	CTGGGGTGTG	GGTTATTCTA	CATATAAAGT
	TCAGCAGTGT	TGTTCCACAG	TCCCAAACTC	CAACTGAGGT	CAAATGTAGG	GTGCAGCAAG	GTCACTGGGG
	CTGTCATCAA	GGGCCTCTCC	TTGCACTCTT	GCCAACCCTG	TTTCTTGATT	GTCTCTACCA	CCATGAGTCA
15	CCAGCAATCT	CCCA CAGTCA	CTTGTTTAAA	AGTTCACAAG	TATTGTGTGA	ATTGCAGGCA	ACCCCTTGAC
	TCCCTGATTG	CCTC GTCTTC	TTCCTTGGGC	TCTACCATTT	TTTTTCCCCA	GCACTCTTTC	TGCTGCTCTA
	AATTTTAATT	CATC CAATTC	CATATGTGTT	TCTCTATCAT	TCTTCATCTC	TTTCCTCTCC	CTTCCATCCA
	ATTTTGTTTG	TCTGTTTGCT	TGCTTGCTTG	CTTTAATACA	TTTCTCTTTT	TCTGAGAAGG	CTTGAGTCCA
	AAACTCTCAG	TTAC'CTGTTG	TTCTGTTTCC	CGTTAGTTAA	TCTCCGAACC	TTCATAAATT	AAATCTGACA
20	AAGTCCCCTG	ACTAACAAAG	GAAATGCACA	AGTCACAGTA	AAAGGGCAC	ACACAGAACA	CAAATAGACC
	CAGGGTCTTT	TCTGTTCATC	ACTCAGCTTT	TTATAGGAGA	TCCAGGAGAA	ATGAAGTGGA	AAGGGAAGTG
	TGTTGAGTTA	CTATACAACA	CAAGAGTAAA	CTTTCTTATA	AGTGGTAATT	TTTTTTTACA	GGAATAATTG
	AAAATGGAAA	TTACCTTCTC	TACTCATAGT	AAGTACTCAG	TGCGTTCTTG	ATGGGATGAG	AATGTGTTTG
	AGCTTTAGTG	TAAGGCAGAA	TTCTGTTTAG	TCTGCCAGTA	TTGGAGAAAA	ATAAAACACA	AAGGGACTGA
25	CATGTAGGAA	GTGGCACCTG	GGAGGGTCTC	AATTCTTCCT	ATTACAAAAA	TGCCCCAGAG	AAATAAAAAG
	CTTGTGTACA	TGTT GAGATG	GGAGAGTTCT	CTGGCCCCCC	TCGCAGGATG	TGTGACAGTG	GGGTGGCTCT
	CTGCTGCGCC	ACCATGAGCT	CAAACCCCTC	ATAGGAGGG	GAGCACACAG	GCAGGAAGGT	GCAGGAGCTG
	GGCGAGCTCT	TTGC GCTCTG	GCCCCGTGGT	ACTGTCTAGA	GGTGGGTGCC	TGCAACTCCT	GAAAGCCCAA
	GTGGGCATGT	GTTA.CAGTGC	ACTCTTTCAG	CTTTGCTGTC	TGCAGCTTAA	GCGTTAACCA	GCTCAGTTTC
30	TTCTTGGTAC	CCAGGTCCTT	GTCTGGCATC	CAGGAAGAAT	CAGGTTACAC	ATGGACTTGA	AGGATGAATG
	TGGGAGTTTT	ATGGAGTGGT	GGAGGTGGCT	CTCAGTGGGA	TGGATGGGGA	GCTGGAAGGG	GGATGGAGTG
	GGAAGATGAT	ATTCTCCTGG	AGTTTGGCTG	TCCAGCAGCC	GATCTCCTCT	CCAGTCGTCC	CCAGCCTCTC
	GACGTTCAGA	TGC `CCTCTT	CTCTCCTTCT	CTGCCATGCT	GTTCTGCCGT	TCATCTGCCT	GTCTCTCTCT
	GGAGCCTGGA	ATT1 GGGGTT	TATATGGTAC	ACAATAAGGG	GCATGGCAGG	CCAAAAGGGA	ACTTTTTAGG
35	TGCAAAAAAC	AGGAATGCCT	CTTCTCACTT	AGGGCTATAG	ATTTTCAGGC	TTGAAGGTGG	GGCCTTTACC
	AGCGAACCTG	TAT1TCCCTG	TCTCCTGTGC	ATATCAATGT	AATCAAATAC	TGGGCTGATC	CAGGATGTTT
	CTTTAGACCA	ATT/.TGGGTA	AAATAATTTA			CTTTTGTCAT	TTCTTTTTAA
	GCAATCATGT	AAA/.TATCTA		ATAGATGATA	GCGAACCTAA	TTAAAATTAC	CAGAAACTTA
4.0	AGAATCTCTA	ATGATTTCAA	CTGTAACTAA	GGTTATTTCT		AACAATGTTG	GGAGATAAGA
40	CACAAGAGTT	TCTC AAGTAT	TTCAGAAACA	CAAAGAGGGA			TTTCCTACTT
	TGGGAAAATG	AAAGCTAGTC	ACAAAGTTAA		ATTTTAATAT	TTAAAATACA	GGCTTGGATG
					CGTCTGACCA		AAAATGCATC
					GAGAAGCTTG		
4.5	ATGCAGAGTT				AAATCATTAA		
45					AAAAAGCTGG		
	GCTGTGCCAC	TGAGCTGACT			GGCATTAGTG		
		AAAATGCCCA		ACTTTTTCA		AATAAGCGCA	
		CACTAGAAGT			AGATCTAGAA		
50					CAGACATGAC		
50	TATTTATCTC	TTTG AATAAA		TCTTACAGTG			
		CTCCTCTGTA				TGATTGAATG	
					CTGCTGGAGG		
		CTACACAGAT	ACTGTGTGGC			GCTTTCAGAA	
55					GCTCTTGAAT		
55	CAGCAGCCAT	CTGACTTCAG	TGCTCATTTT		CTGCAGGGTG	CAGTGTGCAG	TGTGCAGTGT
	GCAGTGGTGG			TGCTTCTGTA		CCGGTTCAAA	
	ACCTTGACAG	ATTCTTTCCT	TGGCCAAAAT	TTAGTTAGGC	TTCTGGGCTT	TCTCTTATGC	CCACCTGCAG
	ACTCACTATC	AAAATCCAGT	TTTAGTAAAG	AGCTCTGCTA	AGTCAGTTTA	GCAAGAATCC	
60	AGTCACTATC	TCCCTCCCTG	GTAGTGTCTG	GCTTGTCTTC	AGCGAGAATT	CTATTAGGTT	CTGTTAGATT
60	AGAATCCTCC	TTACCCTTGA	TGCTTCCTCT	TAGTATTTT	TCATCCACTG	ACTCCTTGAC	CCACCTTGCT
	CCTCGGCTAT	AAA] TCCCAC	TTGCCCATAC	TCTGCAGTTA		CTCCCCACTA	
	CCATTGCCAT	GGTC CCTATA	CTATCTCAAT	GGTAATGAAT	AAAGTCTGCC	TTACCATGCT	TTAACAAGTA

	ACATTGAACC	ATTTTTTCT	TTAACAATCT	GCTGCACAAT	GAGATTACTA	AAACTTTATT	CCATTTTGCC
	ATGCTGGATG	TCCTCAATGG	AATGGCTCTT	GTGAGCACCA	AATCATTGTG	AGAAGGAAAA	CCCATCTCTT
	ACAGCCCCCT	GTAA.CGTGAT	GTATGTTACA	TGTGATGTAT	GTTACATAGT	TTTTTTTCAT	GTTGATCACT
	TTTTGCCCAT	TTTCCTATAT	CTTATCAGTT	GGAAGACTGT	GGAAGTTTGT	AGTACTAAGC	CACAAGATGA
5	CTAAGAAGAG	TTGA.AAGGGC	AAGTGGGGCT	AAAAACAGAT	TTTGTTTGAC	TTACCCCACC	ATTCCCCCTA
	TCATGGGGCT	GAATCTGCCT	GGAGGAAGGA	GCATCTTTAT	CTTTGTACTG	TGAACCACAC	AGTCTAGCAG
	CAGCACAGCC	AAGGCACTTG	GGGTTTCATG	AGACTAAGTA	CATGCAATTC	TATTGTAAAG	GCTTAAAATA
	TATACAACTG	ACCCTTGAAC	AACATGAATT	TGAATTGCAT	GGTCAGTTAT	ACGCAGATTT	TCTTCCACCT
	CTGCCACCCC	TGAGACAGTA	AGATCAATCA	ATCCTCTTCC	TCCTACTCCT	CAGTCTACTC	AAAGATACTT
10	GAAGTCTACT	TGAAGATGAC	AAGCACAAAG		TGATCCACTT	CCACTTAGTG	AATAGTAAAT
	ATGTTTTCTC	ТТССГССТАА	TTTTTTAACA	CTTTCTTCTC	TCTAGCTTAA	TTTATTGTTA	AGAATACAAT
	CTATAATACA	TATGACATAC	AAAATATGTC	TTAGTTGACT	GTTTATGTTA	TCTGTAAGGC	TTCAGGTCAA
	GAGTATGCTA	TTAGTGGTTA	AGTTTTCGAG	GAGTCAAAAG	GTGTATGTGG	ACTTTCAACT	GCAGGGGGT
	GGGCACCCCT	GCCC CCATGT	TGTTCAAGGG	TCAACTTTAC	TGCCAAAGGC	AAGCCTTTAC	ATCCACTTTT
15	TCCATCCCAT	CAGTAAATGG	AAAAAGATAG		CCTGCGTCAA		TTGCAGATCA
	CAAATTGGCC	ACTCACCTTG	CTCTGTGAGG	GGTAAAATGC	CCCACTTTCT	TTAGTAATAT	TTAAGTTAGA
	TAATATTTAA	GTTATAAAGT	TGTTCTTTGT	AATCGTTAAT	TGTAATTTTT	ACATAGTTTC	TTTCAAACAG
	AAATAGCATT	TTTGTTAGAT	AACCTCCCGT	ATAGATGATG	AAACTCCTTT	TAAGGGCTAT	CTGAATTTTA
	ATTCCTTGAA	AAGGCAGAAA	TTGGATAGCT	AGTAGTCATA	AATGTACTGT	GGCTTCCCCC	AACCATCTGG
20	GCTATATAGA	AGCTGCATCC		GTAGAGGAGT	CTTACAAAGC	ACAGAGCAAC	TTCTCTCCTG
	GGTTGCGCTA	GTTATGATGG	CAATTTTAAA	TGTGTACTTT	TACCCAAAGA	AAATCCTTAT	TATCAACAAT
	CACAATGCCA	TCATAACCAT	GGTATAAAAA		TCCCAGCTGA	AGTGGAGGCA	AAGACTCAAG
	TTCATGGAGT	CAGA GTTTCC	TTGCTATTCC	TCTTTTTCAA	ATGACCATTT	AGTAAGCACC	TGAAGAAAAT
	ACTATGGACG		GTGAAGATAG		CTCGAAAATC	TAATTCTCCA	GATGAAACGC
25	TGACACTTAT	CCACCCCACA	GACCCTATAG	CAGATGTGTC	ACTGGCCATC	ACATTTGACA	CAGAGAAGTC
20	ATAACTCAGT	CAGCACAGAG		GAGTTTCTGA		GAACGTCGTC	TGTGGGACAT
		ACTTAGAGGA			GCAGTTTAAA		AGCACATATG
	TGACTGGGTT	TTAGAAGCAA	ATTTACAAGA		TTCATCCTAA	ATAATCTGCA	ACCAAAGCTT
	CCAAAAAAGA			GAGGAGTAGG			
30	TAATGGTGGG	CAGA.GCGAGG		AGTGGTTTCT	TCAGGTTCTG	AACTGAAATT	TGTATACTGT
	AAAGGCACAA		TAACAAAAGT	GAGCAGGACT	TCCTATCTGG	TTCAGAAAAT	AGGTGAATAA
	ATAGTACGAA	TTATTAAAAA	TAATAATTTC	CACTTATACA	TAGGAAACTT	GATAGGAACC	ATGATAAATG
	CTTAACTCTT	AATC'[TCAAG	GAACTCTGCT	AGGGATATAA	TATTATAAAT	CTTGTTTTGC	AGATGGAGAA
	ATTGAATTTT	AACCCAAGTT	ATCATAACCC	TTAAATGATT	AAATGATACT	GTTACATGAG	AAAGCTGCGT
35	ATCTGTTTCC	TGGAITTGTA	GCCATAATTT	GTGTCTCAAG	TCCCTTTTGC	TGCCAGCTAT	CTTGGGTAGG
	TGTGTTCCCT	TTGGGCTGTT	TGATACCCCC	ACATTTATCT	TTTTTTTTC	TCTTTTTTTG	TTGAGAGAGT
	CTTTCCCTGT	TGCC AGGCT	GGAGGGCAAT	GGCGCGATCT	CGGCTCACTG	CAACCTCCGC	CTCCTGGGTT
	CAAGTGCTTC	TCACGATTCT	CTTGTCCCAG	CCTCTCTAAT	AGCTCGGATT	ACTGGCATGC	ACCACCACGC
	CCACCTAATT	TTGT ATTTTT	AGTAGACAAG	GGGTTTCTCC	ATGTTGGTCA	GGGTGGTCTC	AAACTCCTGA
40	CCTCAGGTGA	TCTGCCTGCC	TTGGCCTCCC	AAAGTGCTGG	GATTACAGGT	GTGAGCCACC	ATGCCTGGCC
	CCAAATTTAT	CTTTAATGCC	CCAAATTATC	TAGTTCCCAT	GACTGGGCTT	CTGCTTTGAT	CCTTTCTGCA
	CTTGCTGGAC	CCTCTCCCTG	GGAAATGAGA	TTGTGTCCTG	AGCCCCTAGT	TAGAGGCTAT	GTCTCTGCTG
	TTCCTGAATG	GGCCTCCTGG	ATGAGACCTC	ATTAAAAGTC	TAATTCTCTT	GGAGAATTGA	GAGATACCTA
				GTATTATGAG			
45				ACCTTACCTA			
				CCCCAACCTT			
				GTGGTTTCAG			
				AGATCCCTCA			
				ACAGGAGACA			
50				TAACAGGCCA			
				TGGCTGCTGC			
				AAATTACTTT			
				TTTTAATAAT			
				AAATATTTGT			
55				AAAGCCTTCA			
				ATAGGGCAGT			
				TTAGCTATTA			
				ACTATACAAA			
				GAGAGAAAA			
60				AACGTGAAAA			
				AAGTCTATAC			
				TTTTACTTGG			
					_		

	TTCTCTGTAT	ТАСТІТТАТА	CTCTGTCACA	GATTCCCTTT	GTTTCCTC AT	CTCCATGTGA	ATTTAGTTAA
	ATTCTCAGCA					AAACGAAACA	
	CCTATTTACA		ACCTAATATT			AACAAGGAAC	TAACGAAGAC
						ACAATTTCAT	
5			GAATGAAGAT			ACAAAATGAT	TTCCCAGGAG
Ū	ATCTCATCAA	ATGCACGAGG	ATACCTTCTC	AGTTTCACCT		AGACTGGTAA	CATAGCTCAC
	TTACAATTTG		ACTAAACAAA				AAAACAGAAA
	TCAAACACTC	AAATTTTTGG	TCCTTCTGTT	TATTTCATTT	TGGATACTCA	GTGAATGTTA	ATTAACCAGG
	AAACTTAAAA	GTTATTTCAA	TTATGAACCT	CTTCAATCCT	TCATCAATTA	TTTTGAGTAT	TCTGGTCTTA
10	AAAACATCTC		AAACTTCTGA			TACACCAAAA	TAATGTGCTT
10	TGCTGGCCAA	AAGTACACGT	CCATTTTTAC	TTAACAGTCT	AAGGAAAGTC	TGGTGCAAAT	TACTATAATA
	ATCTGGGTTG	TAAATGGTTT	CTGAGGTGAG	AATGAGATCA		AAAGTTTTC	ACTACTTAGT
	ACAAGCTTAC		CCACTCACCA				
	TCCTGCATCT	TTTCACATCT	GGCTCATTTA	CATCATTTTC	TTCATCTTCC	AAAGTGGAGT	ACTTTTGGTT
15	ATTAGGTAAG	GTTA CTTCAT	CAATCACCAT	ACTGTTATAA	TCTTGAAAGT		TAGCTACTAC
13	TTGAATGCAG	TTATACCTAG	TAAACCTGAT	CCACAACCAA		GAATTTCTTT	GGACCCTCCC
	CTTTGGCCTT	TGTGAAATAA	GCCAGGAGGT	CAAAGGTACA		TTTTTTCCCA TTTAAGCCTC	GCAAATTTCA
	ACCTGTAATC	AGATCAGAGT		GCTTTTTGAA			CCTCATAAAC
	AACAAGATGG	TTTTCACTAC				CTCCAGGGAA	
20	CTAACATCTT	CTTT.\AATCT	TGATAACTTA	ACATGCTCTTT			ACTTTATTTT
20	TGGCTCCAAG		TTAGGCATAG	CATGCTCTTT	GGCAGCTCTC	AAGGAGGGCT	GTTTTCCATG
		TTCCTTGAAC	TGCTGGCTGC	ACTGAGTGGA	CTGTCTGTGT	CTTGAGAGGG	AGCTGCATTT
	TCCATTGACT	TATGITCCCA	CAAGTGATCC	TGAGGCAAGT	CAAATTGTTC	TGCAGAACAT	TTTCTGTCCC
	TCTCTTCTCC		TCTGAGACTG	ACAGCTCTTT	TGAGGAATCC	AGGGTCAAAG	CTCCATCTCT
25	AATGGAGAGA	AATTCATTTT	CCAGATGGTC	TTCTATAGTG		GAAAGGTCAT	CCTCTTATTA
23		ATCITTAAAT	TCAGATTCTT		ATAGAATTTG	ATGATACACA	
	TCAATTATTC	AATTAGTTTT	GTTGGGCCCA	ATTTCTCTTT	AGCAGCTTAT	ACATGGTAAC	AAATATTTAG
		AAATGACTTT	TTAGACGTCT		TTCCAAGCAG		AAAAAAAAA
						TGTAATATTA	
20			CATACAGCTG			GGGAAGAGAG	
30						TCAACTATAA	
						AGATATTCAG	
	CTAGCTACTT	GCTGTCTTTC	AGCTGTCTTG	ATTTGTGTCC	AACCATATTC	ACCCCCTAAG	CTTCCAGAAT
	AACTTCACTT	CTGT CTTTTA	CAGAAGAGGT	GCAGTATTTT	ATTTTGGTAA	GTCAGCGTCC	CTTTAAAAAC
25	ATGCATAGGT		GTGTGTAAAT			AACATTTAGT	CGAGAACAGC
35	AGCCCTAAGT	GTATAGAAGT	GGGGGTAATT	TGGCAATAAT	TAGTAAAGAC		GCAGAGCAAA
		GGCA CTGCAG	TAGTTTGGAG	AGACCTGTAG	AAATAAGAAG		GAGAATCTTC
	TATCTACTGC	GCTAGACACT	ATACCATCTG	CCTCAATTTT	CACAGTTCTG	GCAAGTGGGA	TCTTTGTTCC
	CTTTATACAA	GATTTACAAT	TTGGGGGAGA	GGCGGGTCAC		GGCTAGGAAC	GCGCCTCTTT
40	CCTCTCCCAT	CACGCTGCAA	GGCTTGGAGT	CACTTCCGGC		GGAACAAATC	CGACCCCAGA
40	AGTGGGGACT	TCTGGCCCTC	ACCTCCCCAT	TTGAATGTAA	TGTTTACAGT	GATCCAGACC	TGGGGATGCT
	TGCTTCCCGA		GATCGCGCTT	CTGAAAAAGC		ACGCCTCCTC	CGGACCTAAA
					CCCGACTTTC		TGAGGGACCC
						GGAGAGCGCG	
15						TCCTGTTTGA	
45						TAGCTGGCCA	
						GGTTGTCACT	
						CCGCCAGGCT	
						GAGGGACTGG	
60						CGTGTTCTGA	
50						CTCGTTGCTT	
						GGTATGACGA	
						AAAAGGGTGG	
						GAAATCTTTA	
					CTTTTTCTTC		TTTTTTTGAC
55					AGAGTTCTTC		
					GCAGCACATT		
					AAACCATATG		TTTTTCACAA
						TCACTTGAGA	
						TTCACCTAGG	
60						ACTGCCGTCT	
						TGCGTGCATA	
	GACATGGTGT	TAGGCTTTGG	GAGAACAGAG	ACACGGAACG	TGATTCCTCT	TCTTCCCCAC	AAGCTTATAG

	10101000000	mm + + 0 mm C + +	. cmc c. mm	aaa, aan, aa			
	AGAGACTTCA	TTAAGTTGAA		CCCACCTAGC		AAACGACATA	TTCAAAAAAG
	CCCAAACTTC	CTCTAGTTTT	CTTCATCTGA	GTAAATGGTT	TCACAAACTG	AAACCTTGAA	TCCTCTCTGT
	CTCACACACC	CGATCAGTAA	GTTCTATTGT	TTCTGATTCC	AAACTATGTC	TTGAATCAAT	CCGTTTATCT
5	CCATCCTCAT	TGCTACCACT	CTGATTCCAA	ACCCTTATCA	CCTCTCACTT	GGAGTATTAA	TAGTTTCCTT
J	GTTTCTACTC TTAAACCACT	ATAA FTCATT TTACCTTCAA	ATTCCAAAAA	AGTTAAGAGG	GGAAAAACAT	AGATCTCGTC	ATTTCCCTTT
	TACACTCTGT	TCATGAATAC	GGTTCCAGGT ATTAGGCTCA	GATCTAAGCC	TTGCCCTTCT	CTCACACCTCA	GTTAATTAAC
	CAGCCTTTTG	CATATTTCAT	GTTTATGTCT	CCTACCTCAA TGGCCCAAAT	GATCTTTTTG GTCACTTCCT	CTCAGCCTGA TAGAGGGGCT	TTTGTTCTCT TTTTCAGAGC
	CTTCAATCTT	AGGCAGTTCC	CCCAAACGCA	GTCTTACACT	TGTATCACAT	TGGCCTGTTC	AGTTTTCTAA
10	AAAGCACATT	ACCATTAAAA	GAAATGCTCT	TGTTTGCTTT	GTATATTTTC	CACTTCTACA	CATTATGTTG
10	CAAAGTTCAT	AAACGCAGGA	TGTTGATTTT	CTTCACAGCG	TTACCCTCAG	CACCTAGAAC	AGTGCCTGAC
	ACATAGTAAG	CATICATTAA	AGGGCTAAAA	ATATTTCATG	TTTTAAAAAT	ACTTGGGAGT	CTAATTAGAC
	AATACTTTTT	TTCA GCTTAA	TGGTAGTATT	TTAGCTTCAC	TATTTTAACA	AATGAAAAAT	TTGCAATAAA
	TCTACAATGC	CATTACCCCC	CAAAATCTTT	TTCATGTTTT	GCATTTTACG	TATTATTTTC	CAGGCCTTAC
15	CTGCATGTCT	GCATAATCAT	AACTGACTAA	TTTTGGAACA	GCTGGTAATT	ATTTGAGCTT	TACTGAAATT
	TTTTCATGAG	GCCAATTCTA	CCCTACTGAA	CTCAAATTTG	AGTTAATGAT	GACCTCATTT	TGATTGCTGC
	TGTAAAAAAT	AAGATTTCGG	AAGAGGAATG	AATTCTTGTA	TTACTGTGGT	AGGACTATGG	GTTTTTTTT
	GTTTGTTTGT	TTGT TTGAG	ACGGAGTCTC	ACCCTGTCAC	CCAGGCTGGA	GTGCAGTGGT	GCGATCTCAG
	CTCACAGCAG	CCAGGTTCAA	GTGATTCTCC	TTCCTCAGCC	TCCCGAGTAG	CTGAGATTAC	AGGCACGTGC
20	CACCATGCCC	GGCT'AATTTT	TTGTATCTTT	AGTAGAGATG	GTTTCACCAT	GTTGGCCAGG	CTGGTCTCGA
	ACTCCTGACC	TCGTGATCCG	CCTGCCTCAG	CCTCCCAAAG	TGCTGGGACT	ACAGGCGTGA	GCCACCGTGC
	CCGGCCGGGT	TATT'CATTTT	TCTTATTAAC	ATTCTTTGAT	GATTCTTATG	GTGTTGTTAC	AGTAAAACAT
	TTCTAACAAT	TATTCTAACA	ATTATTCTTG	ATGGTGTATA	TGAAGAATTT	ATTGTCGTGT	ATTTGTAAGC
	TGCTATGTGC	AGAAGAATTT	CAGTCAAATA	AAGTTGGTAA	GATAGGTATG	TAAGTAATAT	GAAAAAAGAT
25	AGAAGGTGAT	GAG1'GACTTA	GGTATAAATT	AAGTACAATA	GAAATGTTGA	GGAAAGAAAA	
	ATAGAAATCG	GAAGTACAAA	CTGGGCATGG	TGGTGTGCAT	CTCTAATCCC	AGCTCCTTGA	
	TGGGAGGATC	ACTITAGCCC	AGGAGCTTGA	GGCTGCAGTG	AGGTGTGATC	ATGTCACCGC	ACTCCATCCT
	GGGTGACAGC	AAGACCGTCT	CTCTTTTTT	TTTTTTTTGA	GACGGAGTCT	CGCCTATGCT	GGAGTGCAAT
30	GGCGCGATCT	TGGCTCACTG	CAACCTCTGC	CTCCCAGTTT	CAAGTGATTC	TCCTGCCTCA	GCCTCCTGAG
50	CACCATACTG	TACAGGTGTG GCCAGGCTGG	CGCCACCATG TCTTCAACTC	CCCAGCTAAT CTGACCTCTT	TATTTTGTAT GTTCGCCCAT	TTTAAGTAGA CTAGGTCTCC	GACGGGTTCT CAAAGTGCTG
	GGATTACAGG	TGTC AGCCAC	CCCACTTGGC	CCCGAGCGAG	ACCCTCTCTC	TAAAAAAAAA	TAAATAAATA
	AATCATAAAC	CTGTGGGATTA	TTGTAGCATT	GTTTCTCATC	TGTCAAAAAT	ATTTCATGAC	TATGCATAGT
	TTGAAAAGGC	AAGTTTGTCC	CTGGGCAATT	TTCAAAATAT	TTCTTTAATG	TGTTTTCACA	ATACTGTTTA
35	CCTAATAAAT	CTTAAGTTTT	TAAAAGCAAA	ATTAAGCCAG	TAATTTGAGT	CCAATTCCAA	TCTCTTATGA
	GTCATTGCTT	AAATTTCAAA	AGGGTTTTAT	TTTTTTTTA	GGTTTGTTCT	GAGTAATGAA	TACCCTATTA
	CTATGATACT	AGTA TCTTCC	TTAATTATCC	TACTCATTGT	CTCAACATTC	TGACAGTTGG	ATTGAGCATA
	TTCGTAAGTA	AAATTGTTTT	AACTGTATGA	TGTACTTTGA	TGTTAAGGTC	CGAGTCCCCA	CATACCTCGG
	TAGATGTGTT	CTTACAGTTT	TGTATTCCCT	TGAAATGTAA	CTGTTCTCTA	TGTTACAGCC	TTTATAACCT
40	TCAGTTACTT	GAAATGAACA	AATTCATTCA	AATTCCAGCA	CTTAAAAGTT	TTAAATTACA	TTTTGGATAA
	ATACCAAAGT	GTT1TGTTGA	TGATGTATGT	ATAAACAAAT	TGTAAATATT	AAACGTTAGT	TGTTACGATT
	AGACCTATAT	AAAACATGAT	ATGCAGTCTA	CTGAATAGCT	ATCAGCCTCT	AACATGTTTA	GTGTCATTTA
	GAAAATGCTT					TTACCATTTG	
15	ACTITCTCAT	TTTC ATGTCT	TCATCAGTCT	TACTTGATGA	GATTCATTCT	TCTAGTCAGA	AGAGAGTTTA
45	GACTGCTCAG	TTT# CTCATA	TTTTGAGTTA	GCTTTTCTAT	TTAGAGTTCA	CTTGGTTGTG	GAATATTCAT
	TTATAATTTG	AATCTACGTT	GTGTAATGGG		TTTTTCCTTT	GTTTTTGTTG	GAGTCTCGTT
	TTGTCACCCA ATTCTCCTGC	GGTTGGAGTG CTCAGTCTCC	CAAGTAGCTG	GGATTACAGG	ACTGCAACCT CATGCTTCAC	CCACCTTCCA CACGCCTGGC	GGTTCAGGTG TAATTTTTGT
	ATTTTTAGTA	GAGATGGGGT	TTCACCATGT		GGTCTCAAAA		
50	TCCTGCCTTG	GCCTCCATAA	GTGCTGGGAT		AGCCGCTGAG	CCTGGCCCCA	
30	TGTTTTGTTT	TCAAGACAAG	ATCTCACTCT	ATTGCCCAGG	CTGGAGAGCA		
	TGCAGCCTGA	ACTCCTGGGT	TCAAGCTATT	CTCCTGCCTC	CATCTTCTAA	AGTGCTGTGA	TTACAGGTCT
	GAGCCATGAT	GCTTGGCCTG	TGTTTTTGTT		GGGGGACAGG	GTCTTGCTTT	GTCACCAAAA
		GTGCTGCGAA				CACGCTCAAG	
55	ACCTCAGCCT	TCCAAGTAGC			ACCATGCGTG		TATTTATATA
	TTTATTTTTT	GGTA GACATG	AGGTCTTGTC	ATGTTTCCCA		AACTCCTGGG	CTCAGACAGT
	CCTCCCGCCT	CAGCCACCCA	AAGTGTTGGG	ATTACAGGCG	TGAGCCACCA		AATTTTTTT
	AAGTAAATTA	TTTTTTTATC	TTGAGTATAG	AAGTGATTCA	TGTTCATTGT	GGAAAATATG	AAACATATAG
			AACATCTAAT	CTGAAATGGT	TAAGATTTTG	ATGAGAACAG	TCTCATCTCA
60	TTTCCGTATA	TTCCTGCCAG	CCTATCCATC	ATTCTTCGTA	CATGTTTATC	TACATTAAAA	TTGGTGTTAT
	ATTTTGGAAA	CTT1TTGTTT	AACTACATTG			AAATGTCATT	TTAATGATGG
	CAGATCCTAT	TCA# TAGATG	TACACACACC	TATTTAACTG	GTCCACAATT	GTTGGATATG	TAGGTCGTTT

	CCTTTCTCTC	TTTT TTTTT	TTTTTGGCTA	CTACTTAATA	GTTTCTCTGT	ATAGAATGTG	GTATTTTGAA
	AGTGTATCAA	GCTTTAGATT	GGTAGTATTC	TTGCATTTAA	TAAAGGGCAG	TGGCCTTTGT	TGACTGACAT
	GACAATATTT	TTATAAAATT	TGTTATTTGC	TTTACAGAAA	TTTTGAAAAT	TATTGTAGAA	ATGTTTTTAC
	CTCATATGAA	CCACCTGACA	TTGGAACAGA	CTTTCTTTTC	ACAAGTGTTA	CCAAAGGTAT	AATACTATTA
5	CCTGAAAATA	CATC TTATAA	GGAATCTAGC	CTCAGTCTTA	GATGATTTAT	TATTAATTAT	GGCTCTCTTT
	TTCTAATATA	TCAA ATATAT	TCAAAATAAA	AATAAGGAGT	AAGTAGATCT	CATGTGAGAC	TATAATGGTG
	TTAGTGTGAT	CATT AGGCAG	TTAAAAACTG	TTACAGGCTG	GGCACGGTGG	CTCATGCCTG	TAATCCCAGC
	TCTCTGAGAG	GCTGAGGTGG	GCAGATCATC	TGAGGTCAGG	AGTTCGAGAC	CACCCATGGT	CAACATGATG
	AAACCTCGTC	TCTACTAAAA	GTACAAAAA	TTAGCTGGAC	ATGGTGGCAG	GTGCCTGTAA	TCCCAGCTAC
10	TTGGGAGACT					ATTGAGTCAA	GATCGTGCCA
10	TTGCACTCCA	GCCTGGGCAA			AAAAAAAAA		
	ATTTTCAGAT	TGTGTGGTTC	CTTTACTAAC	TGAATTTAAA	TTATTTGTAG	TCAATTTTAA	ATGCTCTTGT
	ATTTTAAAGC			GACAGAGTGA		TCAAAAAAAA	
					AAAACATTAA		TACATTATTA
1.5							TAAATGGAGG
15	CATTTTAGAT	ATATATGGTA	TATGTTTTCT	CTGAAAAGCA	CAAGCATACC	TTTTTTTTTT	
	GAACTAAAGA	TACTTTGGTG	CCAAAATGAA			CTTATTGAAA	TGGGTTTCTA
	ACTTTAGCTT	TGAATCGTAA	TCTTTCAAAT	TTCTTGTACT	CATAGTCACT	TGATGATTCT	CTATCTGAAA
	TATTTCTTAG	AATTTGTTCT	TGACCACCAG	AAAAAGATTC	AACTGTTACA	TAGATGAAAA	TGGATGTTGA
	GTGTTAACAG	GCCT'ATGGGA	AACAGTATTT	TCTTTAGCTA	CATTGTATTG	TTGACTGTGT	TGCTATTCTT
20	ATAATGTTTA	GGTCATTTAA	ATTGTTAGAA	AGATCCAAGT	ATTAAGATCT	AGGGTGGCTA	ACTTTTCACA
	GACAAAAAGC	TTG1TTGTAA	GGTCATTTAC	TATACCCTTA	ATTCAGGAAG	GTTAGCTTGA	ATTGGGTCAA
	AAGGAAACTG	GTT#GAAAAT	AAGTGAGTAG	TGAATAGGCG	ATTCAGTGCA	AATTCCTTCC	AGAAAATACC
	CTTGTAAATG	ACTGTATGAA	TGTGGATTCT	TCAAGACAGT	CAAATTTATT	GTGCGAAAGT	AATACTTTTA
	TTTTTTGCAT	CTCTAAAACA	TGAACTTTGA	GTGATTTTTT	AAAAAAATTG	ATGCTATTAA	ATAGATTCAA
25	ACCATAGAAA	TGGAAAATAA	ATTTCTGTTT	GGGGCTTTTG	GGGGGATTAT	GTTGTAAAAA	TACCTTTTCT
	CTGTATTTTG	TGCTTAATTA	GGTACAATTG	TTAAGCTAGA	TGATAGCCTG	TGGATGTTAC	TAGTGCAAAA
	TCAAATTATC	GTATTGTGTT	TTCTCTGTAA	AGTTTTGTCT	TGTCTTTTCT	AGTGATTTCT	CTTATTCCTG
	TTTATTACTT	GATTIGTTTT	TACAGACTGT	GAAATTATTC	GATGACATGA	TGTATGAATT	AACCAGTCAA
	GCCAGAGGAC	TGTC'AAGCCA		ATCCAGACCA		TATTTTACAA	GTAAGTCAAA
30	TGTATTAGAA	AGCAGGAGAG				ATACTGATAC	TGATTAGCTA
50	TGTATTCTTA	TGTAATGGCC		ATTAAATTTA	TAGAATTAAA	GACGTGAATA	TAGAAACATG
				GAAGTCATCA		CCCTACCTGT	ATTTTCAAGG
	AATTCTGAAT	AATAAACTCT	TATAAGAAGA				
	ATATGTGTGG	AACACCTGCC	ATGTGTTTTG	AAGTTTGTGT	TAGTATTCTA	AATGGCTAGA	CAGTTGTTCC
25	AGTATTTGTA	GTTCTGATAG	ACTAAAGTTC	TGTGAAAAGA		GTGTTTTGTT	CATTGCTGTA
35	TTTGTAGCAC	CCAC CATGCT	GACTAATACC	TTTTCAGTGC	ACAAAAAATA	TATTCTAAGT	GAAATTTCCT
	TCCTTATTCA	CAGACAATGG	TGCAGCTCTT	AGGAGCTCTC	ACAGGATGTG	TTCAGCATAT	CTGTGCCACA
	CAGGAATCCA	TCATTTTGGA	AAATATTCAG	AGTCTCCCCT	CCTCAGTCCT	TCATATAATT	AAAAGCACAT
	TTGTGCATTG	TAAGGTGAGT	AAAGGTCTAA	TTATACTTTG	AATGGTATAT	AATCAATGTG	CATAGGGGCT
	GAGTAAAATA	ATG TTGTAT	AAGATTTTAC	ATTTTAGTCT	ATATTATTGA	AATAAACTTT	TCCATAGAAT
40	AAAGAACATG	TAAGTAAATA	ATTGTTGCAA	AAAAAGTGGT	TTTAAGGAAG	TCATTAAAAG	TGGCTTTTTG
	GGGTTTTTTA	GTTTTATCTT	ATTTCCCCTC	TATAAAGAAA	GAAGTTTTAA	GAATTTGTGT	TGAGACAGAC
	ACAGGGATCC	TGAAATAGTT	ATGTCATGTT	GCATTGACCA	ATATTCAATT	ACCATTATGA	TTAGATGTCA
	GAACTTCCTT	TTATAAAGGA	AAGTTAATCC	TTATTTAGTC	CATCTCTACA	TGCCAGAGGT	AGCCTTGAGG
	CACAAAAGCT	TGCCTAGAAT	TTATGGGTCA	CAGACAGTTT	TAATATTGCT	ATTTGTTGGG	CGAATGAAAA
45	TCACTAGTTA	ATTA ATACCT	CTCTTTGCTG	ATAGGATGCT	AAAAATGTCA	CGCACCTGGC	CTAATGTTAC
	CCTTTTTTAG	TTCT 3TATTT	GCAAGATCAT		AATAATATTT	TATACATGCT	TGCATCTCTT
		ATATTAATG		AAACAATGAA		ATTCAGTAAA	TTTATGATCT
	CTAATAGTAT	GAA'ITAAAGT				TTCTCTCATT	TTTATTTATC
	CGTAATCAGA					AGACCTTCTC	CAGGCTCTTT
50	TCAAGGAGGC						
50	AGATGACAAT						GTATATGGTG
		ATG ATCAAT				TCTTACTAAT	TATGCATTAA
		AATCTTACCA				TGTAAAATTT	ATTTTGGGTA
					CACAATGATT	AACTTATATA	ACTTTATAAT
<i>E E</i>	CCTTAACCTA		TTTAGTTACT	GTAATTTCTC			
55	CTCTGAGGTT	GTCC'ATATTC	AGAGACAATA		TTTTTTAACC	ATAACTGATA	TTGAGATGCA
	GTTTATATTT	CCTTCCAGAA	TACATATAAA				TTCTCATATA
	CATATTATAA	TGAAATAACT					TTTATTTAT
	TTTTTTGAGA	CAGA GTCTCA		CAGGCTGGAG			TCACTGCAAC
_	CTCGCCTCCC	GGACTCAAGC		CCTCAGCCTC	ATGAGTAGCT	GGGATTATAG	GCGTCCGCCA
60	CCACACCTGG		TATTTTTAGT	AGAGACAGGG		TTGGCCAGGC	TGGTCTTGAA
	CTCCTGACCT	CAGCITAATCC	ACCTGCCTCA	GCCTCCCAAA	GTGCTGGGAT		AGCCACCGTG
	CCCAGCCAAT	ACTAGTTTAT	TTTTAAAGAA	TTGCTGGTCG	TAACACACTT	CATTGATTTT	ATCACTCATT

AATGGATTAT GAACAAGAGT TTGAAAAACA ATATAAAGGC AAAGTTTGCA TTCAAAACTT TGGTATAAAG AGAGTAAGTT GGTTTTGTGC AGTGTATCAG GCACCTGTTG CTCTGCAACA CACCACCTCA AAATCTATTT ATTCACTATT TATT ATTCA TGATTCTGTG AGTCTGCAGT TTAGGGTGGG ATGTCCTGAG ACAACTTTCT CTGATCCACC TGGGGCACTA GCTCACCCAT GTGACTTCAG TGACTTCATT CACATCTGGC TGTTGGCAGA GGCAGAAGTA CTTGAGAAAG CCATGTGCAT CATCCAGCAG GTTCACCCTA TCTCAGATAC CTGATGCCAG TGGTTTCAGG GTTTCTAAGA GTAGCAAAAG TGTGAGCAGG TCGCTGTGTG CTAGCACTTT TCAAGTTTCT GCTTGCCTTA ATTT ATTAT TGTCCCCCGG GCCACAGCAG GTCATAGCGT TTAGCCCAGA GTCATTGTAG AAAAGTGTGG ATTCACAAAG GGCAGTCATT GTGGCCATTT TTATAAATAA TCTACCACAG ACTGAGTAAA AGCCTTGCAT GAATACCATG GATATTAATT TGAATTCTTC CTTTTTAGAT TTTCTTTCCT TAGCAATTTG TTTTGTCATT TTGGATTAGA ATTATATCTG TAGAATATTT CAGTTATAAT AGGGTACAAC TTTTATTCCA
CTGAACATCT TTAGTTTTAT TTAGGTCATC TGGTAGGTAT AAACTTCAGA AGTTAATATT CAATATTTAT AAAAACCATT AACAAGTGTG ACACTTAAAT AGTTTAAATA ATTCTTTTGA CACAACTGTT TCCAAGTTGT GTTACGTATT TTAA'ITCAAT CAAATGTTGA AATTGTTCAG TAGATAGTTT TAATTATAGG AGAAACTCAC CCCCATGACA TTTGGATGTC TTAAAAGTTC TGTTATCTTT CTTTGCAGTT ATTCATTCTT TATTGGATAT CTGCTCTGTT ATTTCCAGTA TGGACCATGC ATTTCATGCC AATACTTGGA AGTTTATAAT TAAGTAAGTT TGTTTGTTAT TTTT ACTTT TTAGAAAATG TTTTCCATAT TCCCCAATCT TAATTATTCA TGATTCTTTA GATTGCATTT AAAACATTTT GTGTGAATTT AATGTTCACT GACACTGCTG TCTGATAATC CAGATATTCT ACATGTAGCT CTCAAGCCAA ATTGGACTTC TTTACCCTGT GGCCTCTAAA ATTAAAAAAA ATGTTCTTCC TAGTTAGCTA GTACITCAGA AATAATGGGC CATGGGCCAG ACTAGAACTT AACCACTTTT CTTCTGCTAC TGTTGTTTAA CCAGCTATCA AGTATCCTAT TTCTAGGATT AGATAAATTG ATAACTATAA TTAAAACTGA ATATAATCTT TTCAITAGGT ACTITTAAGT TGTTCACACT TAATTCCATT TGTACAGTAA TTTTAACTTT CTGAAACTGA AGCATTTTAA AGGGTCACCA GGGATAGTGC CTGTAGCATT CATCAGATTC TTAGGGGTGA GAGGAGATGT GGTTGAGATG TAAAAATGGT TAAGAATATC TACTTTATAC ACATACATAA AACATTAAAG GTCAGTGTAT TTTCAGGTCT TAGGTACTTT TCTTGTACTA CCAGGACATT AAGTTGCCAT TCAGTGGTTA AGAGTGTTGC CTGGGAGCTG TATCACATGT GCTTAAATCC ATTCTTGAAA TCATTTACTC CTTCTGAGCC CTTGGGCTAT TTGGTTAATT TCTCTGAACG TTAGTTTGCT CATCTGAAAA TGGAAATAAT AATAGCAACT TCTTGACAGG GTTATAGTGA GAATTGAGTT CATCACTGTG AAATGCTTAG AAATGTGCAT GACACATAGT TAATACTCAA GGA!.TTAGCC ACATCACTAT CATCATCACT GATTATCTTC CACTCTTACC CTCTTCCAGT TCATTTTCTG CCCAGCAGAA TGATCTTTTA AAAAGTAAAT CAGATCATGT TACTCTATTG CTTGAAGTCT ATCCCATTTG ATTAAGAATA ACAACCTAAT CCTCTGTGGA TGCTGCCTCC TTCACCAGCC TGTCTCATGC TGCTCTCCCT ACTCITAGTT CCTCAAACAT ACCAAACTCT CCTGTCCCAG AGTCTTTTCG TGGTTTTTCC ATCTGCCTAG GATGCTTCTC TCTCCTATTT TGTGTACCTT GCTAACTCCT GCTTACTGTC TTTCAGTTCT CAGCTTAAGA GTTATATCTT CATGATAACA TTCTTTGATA TCCTTACCCT AAGATTAAGT TAGATTGATA TCCTTACCCT AAGAATAAGT TAGATTAGGT CTCTCTATTG TAGCACCTTA GACTCTGTCA TTTGACAAAT CACAGCCCTA ATTAATTATT CTTAAAATTA TTTAACATTC TCTCTCATGC TAGACCACAA GTTTCATGCA GGTAAGGCGG AGA'TGTGTC CATTTGTTTG ACCCCTTTGT CTCCAGGGCC TGGTAGAATG CCTCATACAT AGTAAGAATT CAATTAATAT TTTACACAGA GAAAAAATTA GCAACTTATT TAAACAAATA TAACTGCTTC AGAGGTAAAC TGGGCACATC TTAGTTATAT TATGTGATAT ATGATGCTTT TTGATTGTTT TTTTAAATGT TCTACAAGGT AGAT'ATTGTT AGAGGTCCTA AGTTACTTGA TGTGTTACTT GTGGTGATTG TATTCTTTTC TTTTTATTCA TTTA(;GCAGA GCCTTAAGCA CCAGTCCATA ATAAAAAGCC AGTTGAAACA CAAAGATATA ATTACTAGCT TGTGTGAAGA CATTCTTTC TCCTTCCATT CTTGTTTACA GTTAGCTGAG CAGATGACAC AGTCAGATGC ACAGGTAAAA TTTGGGCTAA TAGCATTTTA AACAGCAACT CTTATTTCT TTGGCAGTTA GTAAATCTCA TTTGAATGTC TGGGTCAGTC TATTTAAGAG GATTTTAATT TATTTCATTT GGGTGTTTTT TTTTGATCTG TGGGATTATT TATATCCCAT AATTACTTTT CACCCAGAGC ATTGTATTAG ATTCCTAACT GCTGTCATTG CCTCTGGGGT CTGCCTGGCT CCCTCTTTGC TTGGTAACTG GTTGGTCACA GCATTCTTCT CAGAATCCTT TCATTCTTTT CTGCATGAGA ACAAAAATTC TTTTGTTCAT ATTTGTATAA GATCTGATAT AGCTGCAATC AATCTTGCAT TTTTTCTTCA CCAACGCATT GCGACCTTTA GGGATACAAG TATGTTTGTG CATGTATATG TATCTATCAG TCTTTTAAAT TTGATATAGT CATACATTTG TTTTTATTTT GAAAAGTTAG AGTGTTGAAT TGGTATCCCA TTTATGAAAC ATTATATTCT AAAAATTTGT AGTACGATTA TTGGGAATTA TAACTCATTT TCCTGTAACA CTGTTATACA TAGTACCTTT TGCTTTCAGA CTAGCCCTCA ATTTTATTTA ACTATAGTAG TCCIAAATTA TAAGATTAAT AGTACTCAGG ACCTAACAGT TATATGTCAT TTGTTTTTT TTTTTTTGAG ATGGCGTCTC ACTCTGTCAC CCAAGCTGGA GTGCAGTGGT ATGACCTTGG CTCACTGCAG CCTCTGCCTC ACGGGTTCAA GGGATCGTTC TGCCTTAGCC TCCTGAGTAG CTGGGATTAT AGGCGCCTGC CACCACGCCT GGCTAATTTT TTTAGTAGAG ACGGGGTTTC GCCATGTTGG CCAGGCTGGT CTCGAACTCC TGACCTCAGG TGGTCCACCC GCCTTGGCCT CCCAAAGTGC TGGGATTACA GGTGTGAGCC ACCGCGCCCA GCCTATATGT AATAATTTTA ATGGGACCAT GAATTGAATA TTTCTTCCTT GAATAGCAAT GACATAGCCC CTTCTATTGT ACATCTGCAA GCTGATACAG GGAATTCCTT TGTACCTGCG CTCTTCCCTG CCAGTCAGCT ATGGGGGTGA AAG GTAGGG GTTCATCCAA GTCCTAAAAC TGGTAGCAAC TCCTAGGGCA GGGCTGATCT GGAAGGACAG ACCCTAGGGG AGGGTGGAAC TTTAAAAAGA AGTTCTGAAG GTAGTAAGAA GGAAATGAGG AGTAGTGTTA GGAAGGGGCT AACTTTTTC TTCTTGCTTC TCTTCTTTAT CTCACCTGCC CCTCCCCTTG TATCCCTTCT TCCTTTTCC CTTTCCTTTT TTGTCCTCAC TTCATTCGTG CATCCTTTCT GATTCCTCTT ACCTTGCTAA AAGGAGAAGT TTGTTTGGGT ATCCTATATC AATGGCAGGA AGGTTGTTTT CTTCTTTACC

	TTTATCCTAT	AGATTCATAT	TCTCAACACC	AACCTCCTCC	TTTTTCAGTT	TCCTTCTTGC	TTCTCTTGAC
	ACCACAGAGT	TTGCAGCTAG	TACTTGGAGA	GGAAAATTAA			AGTAAGATGA
	AGAAAGTCTA	AACAACAGTA	TAGTCTATAG	TGGCAAGAGA	GAGTATGGGG	GCTGCTTAGC	CAGGGTGGCT
	GTACATAAAG	TATATCTTCA	GTTTATATAA	ACTGCTTATA	GATGGAAATC	AGAAAATTTA	AATTCTCTTA
5	ACTGTCCAAG	AAAATTCTCA	TTTTTTCAAA	TTTGGGACTG	ATAAATGTGA	CCAGTTCTGC	TTACTGTCCA
	TTGCCTGAAA	TGGAGCTTTG	AGGTGGACTG	TATAATTTCT	TCAATCTTAA	CTCCAAATTC	TGATCAGCGA
	CGCCCTCTGC	TGTT CACTAT	TAATATTTAT	TTACCAATCA	AAGTAAAGTA	TTGAAGTTTT	CCTGGCAGTT
	TTCACTTTGT	GTTT 'AGTCC	ATTTAGGCTG	CTATAACAAA	ATCCCTTAAA	CTGGGTAAGG	GATTATAAAT
	ATTAGAAATT	TATCTCTCAC	AGTTCTGGAA	GCTGGGAAGC	CCAATATCAA	GGCACCAGTA	GATTTGGTGT
10	CTAACGAGGG	TGTC CCGTCT	GCTTCAAAAA	TGGCCCCTTG	TTGCTGCATC	CTCACTTAGT	GCAAGGGCA
	AGACAGCTCC	CTTCAACCTC	TTTTATAAGG	GCACTTATGT	CATTCATGAG	GGCAGAGCCC	TCATGACTTA
	ATCACTTCCC	CAAAGGCCCC	ACCTCTTAAT	AGTATCACAT	TGGGTGTTAG	GTGTCTGGGA	GGACACCAAT
	CTTCAAGCCA	TATCATCTCA	CTTGGAAAAA	AGTCAAAATA	AAACCAGTAG	ATTTAATTAA	TATTACACTA
	TTTATAGAAG	CATCTGATGT	ATCATTCCTT	GTATTAATTT	CCTGGGGTTG	CCGTAACAAG	TTACCACAAA
15	CTAGGTGGCT	TAAAACAATA	GAATTTTATT	CTCTCACATT	TCTAGAGGCA	GAAGTTCACA	GTGTGTCAAT
	AGGGCCATGT	TCTCTGGAAG	GCTTTAGGGG	AGAATATATT	TCATATCTTT	CTCTTAGCTT	CTCGGTGTCA
	CTGGCAATCC	TTAC CTTACT	TTGGCTTTCT	GTGTCTTCAC	ATCATCTTTT	TATAAGAACA	CCAGTGATAG
	TGATTAAGGG	CATACCTTAC	TTTAATATGA	CCTCATCTTA	ACTAATTATG	TCTTCAATAA	CCCTATTTCC
	AAATAAGGCC	ACATTCTGAA	GTATTGGGAG	TTAGAACTTA	AAGCTTTTTG	GGAGGGACAC	AGTTCAACCC
20	ATAACAACCC	CTA#AATCGA	TATTTATTCT	CAATTAAGTC	TTGAAATTGG	TTTCAAAAAG	AGAATATTCT
	ATTAGAGTTT	TTAA.TGTATA	GTTTTAACAT	ATAGTTCTTT	AGCCCCCAAT	TTTTTTTTT	TTTTTTTTT
	TTTTTTTTTT	TTTTTGAGAC	GGAGTCTCGC	TCTGTCGCCC	AGGCCGGACT	GCGGACTGCA	GTGGCGCAAT
	CTCGGCTCAC	TGCAAGCTCC	GCTTCCCGGG	TTCACGCCAT	TCCCCTGCCT	CAGCCTCCCG	AGTAGCTGGG
	ACTACAGGCG	CCTGCCACCG	CGCCCGGCTA	ATTTTTTTGT	ATTTTTAGTA	GAGACGGGGT	TTCACCTTGT
25	TAGCCAGGAT	GGTCTCGATC	TCCTGACCTC	ATGATCCACC	CGCCTCGGCC	TCCCAAAGTG	CTGGGATTAC
	AGGCGTGAGC	CACCGCGCCC	GGCCTGCCCC	CAATTATTTA	GTTTTTCTAT	AAACAGGGAA	ATTTATTTGT
	GTGGCCCTTA	GAACTAATTT	AATTTCCACT	CTAATTCCTA	CTTATGTTTA	TATAATGCTT	TTAGAAATTT
	GTATTATTCA	GAA/ATAAAC	ATATACTATT	GTATCTGTTG	CCTACACTTA	GATTTTATTG	CCTGCTATAT
	TTAAATTTTA	TTAGTATTTT	AATTGTTTTA	TTAAAGAAAG	AATGTGCCTG	TAATCTCAGC	ACTTTTGAGA
30		GAAGGATTGC			CCAGACTGAG	CAACACAGGG	AGACCCCCAT
		AATA.AAAAAA			ATACCTGTAG	TTCTAGTTAC	TTGGGAGACT
				TTGAGGCTGC		GATCAGGCCA	CTGTACTCCA
		CAGA.GTGAGA			AGATAGATAA	TCTAAATAGA	TAATAGACAG
	ATTATCTAAA	TAGATAATAG		TAAATAGATA	ATAGACAGAT	TATCTAAATA	GATAATAGAC
35	AGATTATCTA	AATA GATAAT		TCTAAATAGA	TAATAGACAG	ATTATCTATC	TAAATAGATA
	ATAGATTATC		ATAGATAGAT		GATAGATAGA	TAGATAGAGC	TTGGACAACA
	GAGTGAGAGC			AAAGAAAGAA			TTTAAAGCAT
	TGAAAAATGG	TCT CCTTGC	TTATATTACC	CACACCTTCT	TTGTTGGCAT	TAAGATGCAA	ACTTTGTTTT
	AAACAGTTGA	GTAAATCAAA				ACCTGCTTTT	TGAAAATGTA
40	AAAATAAAAC		ATTAGTAGTA	TGCTATTTAG	TAATGAAGTA	AAGCTAGAGG	CTTCGAACAA
	ATCTTGTGTA		GAATGAGAGA	GAAAATTTAA	AGTAAGCAAA	CAAATAAGTT	GTGTGTCACC
	ACTCATTCAG		AGTATTTCCA	GAGTACTTAT	TCTGTGCCAG	GAAATGTTGT	AGGTGCCCTC
					ATTATTATAG		
					CCAGTGATGA		
45					AGAATAAACT		
15					GGCTGAGTGT		
					TAGGAGTTCG		
					GAGTGATGGT		
					GGTGGAGGTT		
50					CAAAAAAAA		
50					ATTTTCAAAT		
					TCCTTTTGGC		TGGATGTGTA
					ATCATGTGGA		
					TAATTTGGTC		
55					TTCAAATACA		
23					TCAGGATCAT		
					AGACCTTATC		
					GATCACAATG		
					CCGTCCTCAA		
60					AATTGGGATT		
00					CCTGAAGCGA		
					ATGCCACATC		
	IIIOAAIAIA	JUJUTTUUACA	UCATAAAACC	IOIAIUCICA	AIGCCACAIC	AAAATICAIG	3/1011CIACC

AAGATGTAAA GGACTGGTGG CTCTTCGGGT TCTATTTCTG TATGCCCTTG GTGTGCACTG CGATCTTCTA CACCCTCATG ACTGGTGAGA TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCCTCAG TGAACATCTT AAGCAGCGTC GAGAAGTGGC AAAAACAGTT TTCTGCTTGG TTGTAATTTT TGCTCTTTGC TGGTTCCCTC TTCATTTAAG CCGT TATTG AAGAAAACTG TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG CTCA'TGGATT ACATCGGTAT TAACTTGGCA ACCATGAATT CATGTATAAA CCCCATAGCT CTGTATTTTG TGAGCAAGAA ATTTAAAAAT TGTTTCCAGT CATGCCTCTG CTGCTGCTG TACCAGTCCA AAAGTCTGAT GACCTCGGTC CCCATGAACG GAACAAGCAT CCAGTGGAAG AACCACGATC AAAACAACCA CAACACAGAC CGGAGCAGCC ATAAGGACAG CATGAACTGA CCACCCTTAG AAGCACTCCT-3' (FRAG. NO: 1738) (SEQ. ID NO: 3009) 5'-GCCACCATGG AAACCCTTTG CCTCAGGGCA TCCTTTTGGC TGGCACTGGT TGGATGTGTA ATCAGTGATA ATCCTGAGAG ATACAGCACA AATCTAAGCA ATCATGTGGA TGATTTCACC ACTTTTCGTG GCACAGAGCT CAGCTTCCTG GTTACCACTC ATCAACCCAC TAATTTGGTC CTACCCAGCA ATGGCTCAAT GCACAACTAT TGCCCACAGC AGA(TAAAAT TACTTCAGCT TTCAAATACA TTAACACTGT GATATCTTGT ACTATTTTCA TCGTGGGAAT GGTGGGGAAT GCAACTCTGC TCAGGATCAT TTACCAGAAC AAATGTATGA GGAATGGCCC CAACGCGCTG ATACCCAGTC TTGCCCTTGG AGACCTTATC TATGTGGTCA TTGATCTCCC TATCAATGTA
TTTAAGCTGC TGGCTGGGCG CTGGCCTTTT GATCACAATG ACTTTGGCGT ATTTCTTTGC AAGCTGTTCC CCTTTTTGCA GAAGICCTCG GTGGGGATCA CCGTCCTCAA CCTCTGCGCT CTTAGTGTTG ACAGGTACAG AGCAGTTGCC TCCTGGAGTC GTGTTCAGGG AATTGGGATT CCTTTGGTAA CTGCCATTGA AATTGCCTCC ATCTGGATCC TGTCCTTTAT CCTGGCCATT CCTGAAGCGA TTGGCTTCGT CATGGTACCC TTTGAATATA GGGGTGGACA GCATAAAACC TGTATGCTCA ATGCCACATC AAAATTCATG GAGTTCTACC AAGATGTAAA GGACTGGTGG CTCTTCGGGT TCTATTTCTG TATGCCCTTG GTGTGCACTG CGATCTTCTA CACCCTCATG ACTGGTGAGA TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCCTCAG TGAACATCTT AAGCAGCGTC GAGAAGTGGC AAAAACAGTT TTCTGCTTGG TTGTAATTTT TGCTCTTTGC TGGTTCCCTC TTCATTTAAG CCGTATATTG AAGAAAACTG TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG CTCATGGATT ACATCGGTAT TAACTTGGCA ACCATGAATT CATGTATAAAA CCCCATAGCT CTGTATTTTG TGAGCAAGAA ATTIAAAAAT TGTTTCCAGT CATGCCTCTG CTGCTGCTGT TACCAGTCCA AAAGTCTGAT GACCTCGGTC CCCA'FGAACG GAACAAGCAT CCAGTGGAAG AACCACGATC AAAACAACCA CAACACAGAC CGGAGCAGCC ATAACGACAG CATGAACTGA CCACCCTTAG AAGCACTCCT-3'(FRAG.NO:)(SEQ. ID NO: 2481) 5'-GATCAAAATT TTIACCTATT ATGCATTTGA TATATAAATA AGTATATAAA TGCACACACA GACACAGCAA TGATGGTGAA CAGTCTTCAT ACAATTATAT GGATGAATCT CATAAAATGC TGAGTTAAAG AAATCAGACC AAAGAACATA TACIGAAAGA TTCTCTCTAT ATACAAAGTT CAAAAAATAGG TGGACCAATT CATGGTGGTG
TTAGAAATCA GAAGAGGC TACCTTTGTG GGGAGGGGAC AGTTTAATGC CCAGAAGCGG TAAATAAGGA
ATCCTCTGGG GAGIGGTAAT GATCTGGATG CTGGCTACAG GATGTGTTGG TTGTAAAAAAT GCATTTTTT
ATATCTAGCT TTTTCCATGT GTATATTATA CTTCAAAGAA GTTCAGTTAA TAATTTCTCA TGTCACTGTA GAGTAGCTCA GTTAGCCCCA GCAAGCCTCT GGCTTAATCT TGTTTTACCT TAAGCCATCA GTCATTTACA AGTAGGAAAA TTCACAGGGA AAGTTAGAGT ATAAAATCCA GAATGAAGGT TTACTGGGTA AGAGTCTCTC CATTTTCCAA AGCCCGTTTA TTTCTTGATT CCAGTTCTTA AGAAGTCTCA GCATTGTGTC TTTTTCATGT ATCTTACAAG AAGACAGCAT GTGCTTCTAA CACCTGATAC ATTGTATCTA CCAGCACTTG GTAAACAGAA AAGAACCACA TTTTICTTGT AGGAGAAATT TGGTGCCTAT TTCCTACCAG GCACCAATAA GTGGGACCAA TAGGTGGGAT TAAAGATACA GTAGAAAGTA TTTAAAACTT GCCAGGGGGC AATAGTCTGA AAATAAGTAA ATTGGTGCTA TAGAATGGAA GTTACAGGCT TCTTTCTTTT TTCCCACAAG ATCTGCTCCT TGAGCCCCTA
GAGACTTTC TGTCTGTTAC TGTTTCTTCA TTCCTCATCT GCAGAGCCAG CCCTGAGAAG TGCAGACCAA
AGCCAGGGAA GGCTCTGCAA AGATGTACAA ATGGAAGTCA CCTTAATAAC CTCTGACTGC TGCGCATAAT ACATTTCACT CAAAAGAGG GTTAAACAAT GGAACAGAAT ACAGAGGCCA GAAATAATGC TGAACACTGA CAACCATCTG ATCTTTGACA AAATCCACAA AAACAAGCAA TGGAGAAAGG ACTCCCTATT CCATAATGGT GCTGGGATAA CTGTCTAGCT ATATACAGAA GATTGAACCT GGGCCCCTTC CTTACATCAT ATACAAAAAA TAACTCAAGA TGGAGTAAAG ACTTAAATCT AAAACCAAAC ACTATAAAAA CCCTGGAAGA TAGCCTGGGA AATACCATTC TGGACATAGG ACCTGGCAAA GACTTCATGA CAAGACACCA AAAGCAATAG CAACAAAAAC CAAATTGACT AATGAAACTA ATGAAACTCT TTAGTTGTAC AACAGATAGT TTATCTGTAC AACAAAATAA ACTATCAACA GAGTAAACAA CCTACAGAAT GGAAAAATTT TTTGCAAACT ATGCATCTGA CAAAGGTCTA ATATCCAGAA TCTATAAGGA ATTTAAACAA ATTTACAAGC AAAAAAATGA CCTCATTAAA AAGTGGGCAA AGGACATGAA CAGATGCTTT TCAAAATAAG ACATTCACAC ATCCAACAAC CATATGAAAA GATGTTTAAC ATCACTAATC ATTAGAGGAA TACAAATCAA AAGCATAATA AGATACCATC TAATACCAGT AGGAATGACT ACTATTAAAA AGTCAGACAA TAACAGATGC TGGTGAAGGT TGTGGAGAAA AGGGAATGTT TATGCACTGC TAGTGGGAAT GTAAACTAGT TCAGCCATTG TGGAAGAGAG TGTGGTGATT CCTCAAAGAA TGTAAAACCG AACTGCCTTT CAATCCAGCA ATCCCATTAT TGGATATACA CCAAAAGGAA TAGAAATTGT TTTACCGTAA
AGGCGCATGC ATGCATATGT TCATTACAGC ACTATTTACG ATAGCAAAGA CATGGAATCG TCTAAATGCC
CATCAGTGGT AGACTAGCTA AAAAAAAAAA AATGTGGTAC ATATACATCA CAGAATAGTA TGCAGCCATA AAAATGAACA AGAI'CATCAT GTCCTTTGCA GCAACATGGA TGTAGTTGGA GGCCATTATC CTAAGCAAAT TAATGCAGGA ACACAAAGCC AAATACCACA TGTTCTCATT TATAAGTGAC AGCTAAATAT TGAGTACACA TGGACACAAA GAAGGAACA ATAGACATGG GACCTACTTG AGAATAGAGG GTGGGAGGAG GGTGAGGATC AAAAAGTACC CATAGGACAC TGTGCTTATT ACCTGGGTGA TGAAATAATT TGCACACCAA ACCCCTGTGA CACACAATTT ACCTATATAG AAAACCTGTG CATGTACCCC TGAACCTAAA AGTTAATGGT GGGGGGGTGG GGTTAAGCTA CTTT FTGGTA TAAATCTGAG CATTCATATT AAAATAAAAT ATTTACCTCA TTAGAGTAAT

TAACATTTAT TAAGCAAAGA GCCAAGTACC TTACACACAT GATGTTTAAT CTCACAATGA TCTTTAATCT

					GCCTTGGAGA		
	CCATTTGACT		AGCATCAGGA		GTTCTGAATG		CTTTGTTTTT
	TCCACATTAT	AGCATGGCCT	GCCATGAAGA		TCTGGTGTTT	GTCTTGTTTG	GTTTAAGTGA
_	AGCAAATATT	TATTTAAATA	TTCAAGATAT	GCTGTTAAAT		AAATTTGAGT	ACAGTATGGA
5	TCTTCTGAAG	CCAAATAACT	CTTATTCAAT	GCTTAGTTGA		GGAGTAGTTC	TCAATTTTTA
	TGTAGTTCCA	CTGCAAAGGT		GAAAGATTCA		TTTTCCTCAT	TTGGACATCA
		TTCCT'CAGAC		ATAATTTTTA		CTTGTTTTTA	TATCAAGTGG
	GGACATTTTT	TCCA 4ATGAA	AACCGTGTAT	TCATTTTATA	TGATAAAATC	AATGTTATTA	TTTTTAAAAT
	TTTGATTTAA	AAAT CATTAA	AAATAAATTT	TCAGATATTA	CCTGAAATTC	TACCATCCAG	AGATAATAGT
10	GCTTAAAGAT	TTGATATATA		CATATATACA		CCTAAACTTC	TTTGTATAAA
	TGTATATAAA	GTTTTTAATA			CTTTGAATGA		AATGTGTATG
	CTTTAACATC	TTGCCTTTAC	TTTATAACAT	TTATCACAGC	AGTCATGAGA		CATGGTCATT
	GTTAGTAAGC	TAATAGCTAA	GTGCATGAAC		GCCTCCCTGG	ATTTTAATCC	CAGATCTGTC
	ACTGACCAGC	TGAC CAATAC	TAGGTAAATT		CTTAGTTTCT		AATAGAGATA
15	AAAATAATAT	CCACCTCATA			TGAGCATACG	TATGTAGGCC	ACTTAACAAC
	AATGCCTTCA	CATACTGAAC	ACAAATATAC	GAGCTGTTGT	CTTATTGGGC	TCATGTTTTT	CCTACCACTA
	AGCCGCATGC	ATGC AAGGAC			TTGCATCCCC		ACAGTGTGCA
	TTCAATAGTT	GTTG ACTATT	ATTACTAGTG		AATATCTGTT	AAATGAGTGA	AGAAATACCC
	ATTTACTGCA	AGTGTGTCTA	ATATTGATGG	CATAATGGGG	GAAACTCAAA	CTCTGGAGTC	AAACAGGTTT
20	TAAAACCTTA	TTCCCTCATC	CTCAGTTATT	GACGTTTTTT	TTTTGGCAGG	TGTGTGTGTG	GGACAACTTA
	TTGAACTTTT	CTGAATTTCC	AGCTTCGCAT	ATATAAAATA	GAGATAGTGA	TTCATTCTTG	CAATGTATGG
	ATTTGAGACA	ATTGTGTAAG			ATTTTTGTAT	AAGTATTACA	TATAATATCC
	AGGCCACTGC				GCAGAATACA		TGTCCCTGGA
	GCAGTGCAGT	ATAC GAACCC	TGAGGGGACC	TACAGTATAC	TTTATAGTTC	ATAGATTACA	AATTATCCCT
25	TTATCAGAGT	CTCTCAAGGT	TGGATGTATT	TGAGGTCCAT	AAGAGCAATT	TAGGATTAAC	AGTAGCTGCA
	GAAACCATCT	GCAGTGATAT	TCTCATTTTA	AATCCGCGGG	AAAGAAGACA	GCTATAAACT	TGGGACCTGG
	GTTTAAGCAT	TTTAAATGCC			CACAACAAAT	ACCCAGTGAG	AGAGGGAGAA
	GGGAAGTAAA			AATGTCAGTA			ATGAACAATA
	GAGGAACCAA	TGTC CAATCA	GATGAGCAGG	ATATTTGGCA	ATAACAAGTT	GCCTTTGAGG	AAAAATGATT
30	TTCTTGGCAA	GTTCITTATC	AGCATTACAA	AGCTAAAAGC		ATCACTTATA	CTAGCATACC
	CTGTTGTGCA	AATGCTGTCT	GTGTTTGCAT	CTGCTATTGT	TGATGCCTGG	TGCATGAATC	AGGACTCCAG
	CCCACAAGTT	TTCCCAGAAC	TTTCTTATGG	CCATCATCTT	TAAGTGTCTG	GTGAACAGTC	ATAGTTTGGT
	ACACAAAAGG		GGGATGGCTA		CAGTCGTTAC		
0.7	GGAAATGGTG	GCCTGTAACC			GTCCACCCCA		CCTGCTCTGA
35					ATGCAAACCC		
	TTGCCAGTAG			CAGCTTTTAT		AATAACACTC	
	AGAAAGAAAT	AATCTTGGGT	TAACTATAAC		ACTCTTCCTC	TGTGGAAGAA	
				GAAAAATACA			ATTTAAGCTA
40	GATGTAAATA	ACTTCCTTTA	GCCTGTAATG		TACATATTGG		TCAGGGAAGA
40		GTTTCAGGGA			GAGCTGAAAT		
	CTGCAGGGTT	TAGATCCACA			ACTGTAATGA		AATAAGTAAA
	AATGTTTTGT	ATTAGTATGT	TTTTACACTT	ATTTGCAAGG	CATAAATAGG	TTAGGTTTTG	ATCTTAATTT
	AATTCTAACA	TGTATTGTGC	ACAAGCTGTG	AGCAGTTTTC	AGGAGTTAGG	TATCTGGCCA	TGACTGATTT
15	TTCAGGAGTT	AATCATCTGG		ATACACAATA		TGTGACAGGT	TGTGATCATT
45	ACTATAATCA	CACAGAGAGC		TAGGCTGGCA		CGCCTGTAAT	CCCAGCACTT
					AGACCATCCT		
	CCCACCCTCA	AAAATACAAA	MAAAAAAAAAA MAAAAAAAAA	AGCCAGGCGI	GGTGGTGGGC	TOLOGOGAGA	TOGGLEGACT
					GAGCTTGCAG		
50					AAAAAAAAA		
50	GAGATGCCAG			CATTGTCAGT	GTCAACTCAG CAGCATCATT		
		CAAACGATTC				TGGAAGGTAC	TCCTTTTTAG
		CCCCTCTTCT		AAGTTTTTTC	TTTCCATTTT	AAAAATCGTG	AATTCCTTTT
	TGCAATATTG	AGG1GGTTAT	ATGGTTTCTC		TGTTAATATG	GTGATTTAAT	
55	TTTCTAATGT	AAATTCCACT	CATATTGCAG	TTCTCTAATC AAATAAACCT	AAACTGAGCA		
55	GCTTCTATAT	TTGGITGCTA	TACAGTATTA	TGTTTAAGAT	TTGTTCACAT	ATATTTGTGA	ATGGGATTGG
	ACTATTTTC	CTTCTTGCCG	ATTTTTATCT	GGTTTTTAAA	TTAAGGATAT	TTTAGACTTA	TGAAATATTT
		CCTTGGCAAG		GGGAATTTGT		TTGAGTATTA	CCCAATATAT
	TTTAATTAAG	TTATICTTAA	TGTTTTCTTA	ATTAAAAAAA	TTACCTACTC	TAGAGATATT	CTTTATGTAC
60	TCCAGATTTT	GTCTATTTAT	ACCACTTTTC	TTTTTTCCTC	GATGAGTGTC	ATAGATGTTC	ATCTATTTTT
00	TTATCTTCTT	TGATCTTCTC	TTATTCCTTG	TTTCTATTAA	CTTCTGAAGT	TTATTATTTT	CTTTTTTCCA
	CTTCCTTATG	GTTTATTCTT	TCAATTTTTC	TCTAACTTCT	TAAGTTGGGT	GTTTAATTTT	TAGCTTGCTT
	TGCTTTTTTA	GGATAAGCAT	TAAAACTACA		GTTATTCTTT	TGCTGCACCC	CAAATTGTTG
	ATATTTCTAT	TGTCFAATTT	CTATTCAATT	AGAATACTTT	AAAGTTTCTT	TTTGGTTTTT	AAAAACTAAC
65	TTTTTAAATT	GACAAATAAA	AATTGTGTAT	ATTTATTGTG	CACAGCATAT	GGCTTTGAAA	TATATGTACA
0.5	TTGTGGAATG	GCTAAATTTA	GCTTATTAAT	GTATGCATTA	TCTCACATAC	TTATCATTTT	TTGTGGTGAG
	AGCTATGTGA	CTTTTGAACT	TATGAGTTAT	TTAAATATTT	TTAAATTATT	AAGCATATTG	GGATTTTAAG
	TAATTTACCT		AACTTATAAC	AAGTAGAACA	GTTAACCTGT	ATGATTCTAC	ATCATTGAAA
					511.11.001.01		

TTTATTGACA TTTGTTCAT AGTCTATTAT ATGGTCTACT TTTGTTCATG TTACATCTGT AGTAGAATTG GCTAATAGTT GAGTAAAGTA CACATATGTC TATGAAATCA AGTGTAATCC AGAGAAAAAG AGAAATTTAC TGAATATATT GTTCIAGGTG CTATTATATG TTGTCATGTT TAATCCTCAC CACAATTGTA TGAGGCAGCC ATAATTAATT CCACITTACA CATGAGGAGC CTGAGGGTTA AAAAAAAAGC TAGCTCTACT ATTTGTAAAG AATGAAGCAA AGATACAAAT GAAGGCCCAC ATATCCTATA ACTAGATATT TAAGCATTTT AATTCAAGCT TTAAAACTGC TAAATAAAAT GTGCTCCAAT TTCTATATTG ACAGACATAC CTTCCTAATG AGCTGGGGTT CGAATTTAGA AATCTTTGAT GCTTCAGAGT CCACACTGAA ATGTGGAGGC ACATAGTGAG TTGGTCCCCA AGTCCAAACC CTAAACAAAA TGGGACACCC TTGTGCATAC ACAGAGACAC AGCCCATCCT CAGGAAAACC TGGAAAAGTC CATACAAGTT CTGGAAGCAA GCTTGGGACG GTTTCAGTAG TGTGGTCTAT AAGGGAGGCC TCAGAAGACA GGTTTCTTA ATTCTGTGAA CTTCTCCCAC AGTAGAAAGG GTGCTGGAGG AGGGTCAGAG TGAGGACTTC TAAAGCATGG GTCCTGAGTA GGGGCCACTC TTGCCCAAGT CTAAGAAGGG TACTAGAATA GCACACTACT ACTAGATACT AGAACCCAGA TACAAGCACA GGTCTTCTGA AATTAATAAT AATAATAACT ATTACCATTA TTATACCAGT AGCTGTCATT TATTTAGTGC TTATTATTTG CCAGTCACTG TTCTAAATTC
TTTACATGTA TTATACAACT GCCATATAAC TGCCATATGA GGGATGTACC CTCATTGTCA CCATTTTACC
GATGAGAAAA CTGCCATAAAA ACGTTTAAGT AACTTGTCCA AGTTACAGAG CTTAGTGAAG CCACAATGTT
GCTCAATTTG CTCCAAACT TCAAAGGGAT GGGAAGGACA CCTAAGTCAT AGAGTCTTTA AGAATCAGAG 15 CTAGAAGGAA TCTTAGATGT TATCTAGTCA GCCTCCTCCC ATTACAGTCC AAGAGAAGAT GGCCCTGAGT TACTTGTAGC TATTTTTGCA TGTGAATTGC AAGTGAATAT ACATTCTACT GAAGATAAAA GATATTTAAA GATATCGCTG GATATAGGAA CAGTGGTTTT AAACTCTAG GCTTTAACTT TCTCAGAAC AAGAAATCCT
TTTTGGTTTT AATCIATATG CACATCTGTA TTTTTCTCAA TTATCGGGTA GTAAAATATA ACTTTCTTC
TGTAATATTT TTTAACTTTA ATGAGTGTTC CTCATAATAG AAAAGTTTGG AAACCATTGC TATGGGTATA
TACTTTCTAA AGGGATAGTA ATTTCTCTAG AATATCATT TAATGCTCCA GAAGTAATTA GCACAATTGT 20 GCAAGTCTGT GCATCAAC CTATACATTC TGCCTGTTTA CTCCAAATCC ACATGAAACT GATTATACAG 25 TCAAAGGCGA GCCCAGTGGA GAGGCATTTT TGGAGACTTC CTGGTACATT GAGACAGGGT CGGCCAGTCT GCGTTAGGGT CTTGGTCAAA ACTGCATTTC TGAAACTAAA CTCAGATTGC TTTCTTTTAA GGGGTCAGAA CTGATTCAAA TCTACATTTT TAAAAGCCTT AGATGTGGGG CTTTTCCTAT TCCCAGTCTC CGCTATTGGT CTTTGTGAAT CCACAGGCAA TTTGGCCACA TCCTTGACTC TCTCTTATAT TAAGAATTAA ACAGCTAAGT TCATGCAGAG GAAATATAAC AAAGGAGGGA CTTTCCTACA AGATCTTTGA AAAATGGAAC ATTTGCATAA 30 GTCATATTTA GCCAGAACTG TTGTTTTATA TTTTCCTTTC TGAATACTTT GTTACACCTC CTCCCAGCCA ACCCCCCCC TCCCIGACCC CAACTAGTCA GAGACCAAAG CCTTCACAAT GGTTTACACT TGAACCTTCC TGGCCCCACC CTCATCATCA CGCCTGAATA ATTACATTCA CTGACTGGTC TCCCCTGCTT CCGTTTATCT CCACTCCTAA ACCCTCTGAC ACCTTAATCT TCCCAGAATA CCATTGTGAT CCTGTTCCAC TCTTGCTCAA GTTTTCCCAG AAACTAGAGT ACAAACTTTA TAAGCTTTAG AGTTGAAAGC CACTCTATCT CTTTTTCATC CCCAGGTCTC TGCCAAGGCA GTATAACCTG TCCAACATCT CTAACTTCAA TACCTTTGTC TTAGATACTA
GACTCTCCTC CTGGTTTCTA ATTAAACCTG ATCTAGGATC TAATTTTGCC TCTGAATTCT GTTGCCCTTT
GCCAAGTGAT CTCTTCCTCC TCTGAGCCGC AGCATCTCTG AGCTTGCACA CTTAGCATAG CCATAGCACA
CACAGCCTTA GCTTGCAGTT CAGGGTGTTT ACCTTCCCTC CCCTTCCAGA TGCTGGATCC CCAGGGATAG 35 GAACTCTGCC CTTATGTGTC CATAGCCCCT GGTAGTATGT CTTGCAGTCG TACATTTTCA GCAAATGTTT 40 AATTGGTTAA TTGAAGACAA CTGTCCCATG CCTTAAGCCT CTCTTTTTGC TAAACATGCC TGTGTCCTTT GTCATTGAAC AACTATTTTG ATCTATTTTC TTCCTGACAT AGGGGTCAGT TCCGAGGATG CTGAAATCAA
GAGACATAGC TTATTCTCTC AAAATTGCTT TCAAGAGTGA TTTTGTTGTG AATTGAGAAC TGGCTGCCTA
CTTTTGGACT ACCCACTTCA GCAAGAGTGT TTGAAACCAA ATCTATTCTA AGTAATTTTT TATTCCCTTT
TCTCTATGGC ATTAGACACA CAGCTCTTTT AAACTACCTT TCGTTATCTA TTAAACAGAC ATTCAGTAAC TCTATAGACA CTGTCTAGCT ATATGAACTT AGACAAACTA ATATCTCTGA GCTTCAGTTT CTTAAAATTT AAAATGAGGA CAATACCAGC TATGGCCGGG GATTAAATGC TATGAGGAAT GTAAACCAGA TGTCAGGTAC CATCTCTCTA AAAATCAGAT AAAATGAATT AAAAATACTG GCCGCAAACC CTCTCTAAGA GTTCTCAAAA TTCTCAGAGA GCTTAATTTT CATGCTCACC ATAGCACCGA TTTTCTTCTA AATATTTTGT TTCTACCAAA 45 ATATTTTGTC CCAATTTGC CTTTTATGGC TATTTCTTCA TATCACTTT CCCAAACTAA AGAAGCAGCC CCTTCACCTT AAACTCCTCC TTCAAAGCAA CCTAAATACA GGTCTGGGTT TGTATTCCTA GTGGGATGTT ACAGAGGTTA GTGTGATGCA GAGGAGGAGT CATGCTGTTT AAATCCATAC TAGTCCCCAG AGGCCAGGCT GCTTCTGCCA CCCCTACCCC TCCCGCCACA GAGCTCTTCA GCTTCTCACA TTTCTAGTTC TTCTCTCTCT ACTITICATTA CCTTCTCTT TTTTTTTTT CTTCTCATGT GCTCACGGGA GCAGAGAAAA TTAACTCCTC
TAAGTTTTCT TAACACAGAG TGCCTTAATT ACATATTACT ATTGTTTGAG TTCCTGCCAA CACTACGTCT
GTAGGGTCAC ACCIGCTATA TTAGAGGCTT ATCAAAAAAA GATAGCTTTC TCCTAAAAAG GGATTTGGAT
GCCTACTAAG ATA/CTGGAT GCCAAGATAA GTTTAACCTA ACAAACTTTA TTATTATTAT TATTATTATT ATTAGAGATA GGTA.CTTATT CTGTCACCCA GACTGCAGTG CAGGGATGCA ATAATAGCTC ACTGCAGCCT CAAGTCCTG AGTICATGCA ATCCTTCTGC TTCAGCTCCC TGAGTAGCTA GGACTACAGG CATATGCTAC
TCTGCCCAGC TACTITTAAA AAAATAATTA GGGATGGGGT CTTGTTGTAT TGCCCAGGCT CGTCTCAAAC
TTCTGGTTTC AAGCAATCCT CCTGCCTTTT ACCTCCCTAA TTGTTGGAGT TACAGGCATG AGCCACAGCA
CTCAACCAAG ATTIAAAAAC TTTTAAAAGA AATCACATTA CTTACTGTTA TCATCATTAT GGTTACTACC
AGTGTTAAAA CAATTGGTAT TGAAAACACC ACTACCAGAT CAAGCTTCAA ACCAAGATGT CAAGATAAATA 60 TTATTGTCAG ACCTCTGAGC CCAAGCCTGC AGGTATACAC CCAGATGGCC TGAAGCAAGT GAAGAATCAC AAAAGAACTG AAAATGGCCG GTTCCTGCCT TAACTGATGA CATTCCACCA TTGTGATTTG TTCCTGCCCC ACCTTGACTG AGGGATTAAC CTTGTGAAAT TCCTTCCCCT GGCTCAGAAG CTCCCCGACT GAGTACCTTG TGACCCCCAC CCCTGCCCAC AAGTGAAAAA CCCCCTTTGA CTGTAATTTT CCACTACCCA CCCAAATCCT ATAAAAACAGC CTCACCCCTA TCTCCCTTCG CTGACTCTC TTTCAGACTC AACCTGCCTG CACCTAGGTG 65 ATTCAAAAGC TTTATTGCTC ACACAAAGCC TGTTTGGTGG TCTCTTCACA CAGACCATGT GACATTTGGT

	GCCGTAACTC	AGATCGGGGA	ACCTCCCTTG	GGAGATCAGT	CCCCTGTCAT	CCTGCTCTTT	GCTCCATGAG
	AAAGATCCAC	CTATGACCTC	TGGTCCTCAG	ACCAACCAGC	CCAAGGAACA	TCTCACCAAT	TTTAAATTGG
	GTAAGTGGCC	TCTTTTTACT	CTCTTCTCCA	GCCTCTCTCA	CTATCCCTCA	ACATCTTTCT	CCTTTCAATC
	TTGGCACCAC	GCTTCAATCT	CTCCCTTCCC	TTAATTTCAG	TTCCTTTCTT	TTTCTGGTAG	AGACAGAGGA
5	AACGTGTTCT	ATCT 3TGAAC	CCAAAACTCC	AGCACTGGTC	ATGGACTTGG	AAAGACAGTC	TTCCCTTGAT
	GTTTAATCAC	TGCAGGGATG	CCTGCCTGAT	TATTCACCCA	CATTTCAGAG	CTGTCTGATC	ACTGCAGGGA
	CGCCTGCCTG	GATCCTTCAC	CTTAGTGGCA	AGTACCACTT	TGCCTGGGTG	GCAAGCACCA	CCTCTCCTGG
	GGGGCAAGCA	CCACCTCTCC	TGGGGGGCAA			TCCATGTCTC	CACCCTCTCT
	TCTCTGGGCT	TGCCTCCTTC	ACTATGGGCC	ACCTTCCACC	CTCCATTCCT	CCCTTTTCTC	CCTTAGCCTG
10	TGTTCTCAAG	AACTTAAAAC	CTCTTCAACT	CACGTCTGAC	CTAAAACCTA	AATGCCTTAC	TTTCTTCTGC
10	AATACCGCTT	GACCCCAATA	CAAACTCAAC	AATGGTTCCA	AATAGCCTGA	AAACGGCACT	TTCAATTTCT
		AGATCTAAAT			CAAATGGTCT		
	CCATCCCACA		AATTCTTGTC			GAGGTGCCTG	ACATCTGGGC
	ATTCTTTTAC	ACGTCGGTCC	CTCCCTAGTC	TCTGTTCCCA	ATGCAACTCA	TCCCAAATCC	TCCTTCTTTC
1.7	CCTCCTGCCT	GTCCCCTCAG	TCCCAACCCC	AAGTGTCGCT	GAGTCTTTCC	AATCTTCCTT	TTCTACTGAC
15	CCATCTGACC	TCTCCCCTCT	TCCCCAGACT	GCTCCTCCTC	AGGTCGCTCC	CCGCCAGGCT	GAATCAGGCT
	CCAATTCTTC	CTCAGCGTCC	GCTCCTCCAC	CCTATAATCC	TTCTATCACC	TCCCCTCCTC	ACACCTGGTC
	CAGCTTACAG	TTTCATTCTG	TGACTAGCCC	TCCCCCACCT	GCCCAACAAT	TTCCTCTTAA	AGAGGTGGCT
	GGAGCTAAAG	GCATAGTCAA	GGTTAATGCT	CCTTTTTCTT	TATCCAACCT	CTCCCATCTC	AGTTAGTATT
	TAGGCTTTTT	TTCA'[CAAAT	ATGAATACCT	AGCCCACTCC	ATGGCTCATT	TGGCAGCAAC	TCCTAGACAT
20	TTTACAGCCT	TGGACCCAGA	GGGGCCAGAA	GGTCATCTTA	TTCTCAATAT	GCATTTTATT	ACCCAATCCA
	CTCCCAACAT	TAGAAAAAGC	TCCAAAAGTT	AGACTCCGGC	CCTCAAACCC	CACAACAGGA	CTTAATTAAC
	CTTGCCTTCA	AAGCGTACAA	TAATAGAGTA		AGTAGCAACA	TATTTCTGAG	TTGCAATTCC
	TTGCCTCCAC	TGTG AGAGAA	ACCCCAGCCA	CATCTCCAGT	ACACAAGAAC	TTCAAAATGC	CTAAGCCACA
	GTGGTCAAGC	ATTCCTACAG	GACCTCCTCC	ATCAGGATCT	TGCTTCAAGT	GCCAGAAATC	TGGCCACTGG
25	GCCAAGGAAT						
23		GCCCTCAGCC	TGGGATTCCT	CCTAAGCCAT	GTTCCATCTG	TGTGGGACCC	CACTGGAAAT
	CGGACTGTCC	AACTTGCCCA	GCACCCACTC	CCAGAGCCCC	TGGAACTCTG	GCCCAAGGCT	CTCTGACTGA
	CTCCTTCCCA	GATCITCTTG	GCTTAGTGGC	TGAAGACTGA	TGCTGCCTGA	TCGCCTCAGA	AGCCTCCTGG
	ACCATCACAG	ATGCTTTTGG	TAACTCTTAC	AGTGGAGGGT	AAGTCCGTCC	CCTTCTTAAT	CAATGCAGAG
	GCTACCCACT	CCAC'ATTACC	TTCTCTTCAA	GGTCCTGTTT	CCCTTGTCTT	CATAAATGTT	GTGGGTATTG
30	ATGGCCAGGC	TTCTAAACCC	CTTAAAACTC	CCCAACTCTG	GTGCCGATTT	AAACAACATT	CTTTTATACA
	CTTCTTTTTA	GTTATCCCCA	CCTGCCCAGT	TCCCTTATTA	GGCTGAGACA	TTTTAACCAA	ATTATTTGCT
	TCCCTGACTA	TTCCIGGACT	ACAGCCACAT	CTCATTGCTG	CCCTTCTTCC	CAACCCAAAA	GTGGCAACTC
	CTTTGCCACT	TCCTCTCATA	TCCCCCTACC	TTAACCCACA	GGTATGGGAC	ACCTCTACTC	CCTCCCTGGC
	AACAAATCAC	ACCCTCATTA	CTATCCCATT	AAAACCTAAT	CACCCTTACC	TGGGTCAACG	CCAGTATCCC
35	ATCCCACAAC	AGGCTTTAAA	GGGATTAAAG		CTTGCCTGTT	ACAACATGTC	CTTTTAAAGC
	CTGTAAACTC	TCCTTACAAT	TCCCCCATTT	TACCTGTCCA	AAAACTGGAC	ATGCCTTACA	GGTTAGTTCA
	GGATCTGTGC	CTTATCAACC	AAATTGTCTT	GCCTATCCAC	GCCATGGTGC	CAAACCCATA	TACTCTCCTA
	TCCTCAATAC	CTCCCTCCAA	AACCCCTCCA	TAACCCTTAT	TCTGTTCTGG	ATCTCAAAAC	ATGCTTTCTT
	TACTATTCAT	TTGCACCCTT	CATCCCAGCC	TCTCTTCACT	TTCACTTGGA	CTGACCCTGA	CACCCATCAG
40	CCTCAGCAAC	TTACCTGGGC	TGTACTGCCG	CAAGGCTTCA	TGGACAGCCC	CCATTACCTC	AGTCAACCCA
70	AATTTCTTCT	TCATCCATTA	CCTATCCAGG	CATAGTTCTT	CATGAAAACA	CACGTGCTCT	CCCTGCTGAT
	CATGTCCAGC	TAATCTCCCC	AACCCCAGGA	CTGGCAAATT		ACATGCCCCA	AATCAGGACA
	CTAAAGTACC	TCTTGGTCTG	GGTAGACACT	TTCACTGGAT	AGGTAGATGC	CTTTCCCACA	GGGCCTAAGA
1.5	AGGCCACCGT	GGTCATTTCT	TCCCTTCTGT	CAGACATAAT	TCCTTGGTTT	GGCCTTCCCA	CCTCTATACA
45	GTCTGATAAT	GGAC AAGCCT	TTACTAGTCA	AAGCACGCAA	GCAGTTTCTC	AGGCTCTTGG	TATTCAGTGA
	AACCTTCATA	CCCCTTACCG	TCCTCAATCC	TTAGGAAAGG	TAGAACTGAT	TAATGGTCTT	TTAAAAACAC
		GCTCAGCCTC			C AGTACTTTTA		
		CCTCGAAATG			AAGATTCTGT		
	GGCCCCAGTC	TCATTCCAGA	CACCAGCCCA	ACTTGAACTG	TGCCCCAAAA	ACTTGTCATC	CCTACAATCT
50	TCTGTCTAGT	CATACTCCTA	TTCACCATTC	TCAACTACTT		TGCCCTTTTT	TACAGTGCTG
	ATTTATACTT	TTCCTCCAAA	CCATCATAAC	TGATATCTCC	TGGTTTTACC	TCAAACCGCC	ACCCTTAAGT
	CTCTCTTAAA	GTGGATAGAA	GATCTTCAGT	GACAAGGTAC	ACTCCAATAC	TTTCACCCTA	ATAAAGCCCT
	ATTCTTTACT	TTTATATTCA	CTCTTATTCT	TGTTCCCATT	CTTATGCCAC		TCCCCAGCTA
	TCTCCACCAC	ACT#TCAATC			ATTTCTAATC	CTTCTTTAAC	
55						CACTGCTAAA	
	CTGCATATTT	TTAAATGAAG		TTACCTAAAT		TGGTATATGA	
					AGTAATTATG		
	TAATTAGATG	TCCTGGGTTC			ATACCTGTTT	TTCTCCTTCT	CTTATGCAGA
						CATCACCAAT	
60	CCTTGTGTCT GACAAATGTT	TCCATTTAGT		ATACAAAACC	TTATGCCCAA		CAAAGAAAGA
00							
					AGCCTGATGC		
					ATTACAGACA		
	AAAATCCCTG	TCTTGTTCTG		TACCAGTACA		AGTCATGTAC	
<i>-</i> -	CTCCCCCTGC		AGTCATGACC		GACCCCCTTA		
65					ATGAGTCTTG		
	AAGCCCTTCC	TTCTTTAACT		GGGGTTTTGT		TCCTGCTACA	
	ACAACCCCAT	AATATCACCC	CTTACCACAA	AATCTTCCTT	CAGCTTAATC	TCTCCCACTC	TAGGTTCTCA
	CGCCACCCCT	AATC CTGCTC	GAAGCAGCCC	TGAGAAACAT	CGCCCGTTAT	CTCTCCACAC	CACCCCAAA

				TTTCGTTTTA			
	GTCAGGCCTC	TGAGCCCAAG	CCTGCACGTA	TACATCCACA	TGGCCTGAAG	CAAGTGAAGA	ATCACAAAAG
5	AAGTGAAAAT	GGCTGGTTCC	TGCCTTAACT	GATGATATTC	CACCATTGTG	ATTTGTTCCT	GCGCCACCTT
				CCCCTGGCTC			
	CCCACCCCTA	CCCACAAGTG	AAAAACCCCC	TTTGACTGTA	ATTTTCCACT	ACCCACCCAA	ATCCTATAAA
	ACAGCCCCAC	CCCATCTCCC	TTTGCTGACT	CTATTTTTGG	ACTCAGCCCA	CCTGCACCCA	GGTGATTCAA
				CTATITIOU	ACTCAGCCCA	CCTGCACCCA	GGIGATICAA
	AAGCTTCATT			GTGGTCTCTT			
				CAGGGAAGGC			
	CTGGATCAGA			GGAAGTAAAG			AATTTCCCTG
10	TCCTTTGTCA	TAAATGGTGG	GTAGGCTGTT	ATGGTGATGG	CAGATTTTCT	TTCCATAAAA	TGTCCATAAT
	AGGACATTTG	AACAGAAGGG	AAAAATCAAA	TTGCTGAAGT	TGAAAGAGGG	CAATGCAAAG	AACTTTGGAG
	AAAGAACTGT	ACAC AGAAGT	CAACTGGCAG	ATGGGAGGAA	GTTTAAGGGG	AAAAATATAG	ATGTCTAAAG
	AATACATTTA		ACAGTGCAAT		AGCCTCTTTC		CTATTCTCAT
					CCCACTACCT	ACCACTACAC	
15	CTATALCALIA	CTLA ATTEMPTED	AAICCIICIG	CCTCAGCTTC	CCGACTAGCT		
15	CTATGCCCAG	CIAATITIT	AAAAATTAGA	TTTTAATTTG	GTGAACTATT	TCTGTAGGAA	
				CAAATCAGAA			CCTGGGACTC
	TGACAATTTC	ATGAACTTGG	TACTCTGAGT	AAAGCATAGG	AGGAGTTATT	TCATAAAATG	TGGAGCACAA
	TCATGTGACA	AAGA TAATGG	GATCCCCATT	TCATAAATAA	ATCTGAAGTT	CAGAGAGAGT	AACAACTGGC
	CAGGGTCACA	TCAC'GGAGAC	AGAGGCAGGG	TTCCCACTGA	TGCCTCTGAC	TCCCTGTCCC	AGGCCCTTCC
20				AGCTGACCCT			
				TCTAATCTCA			
	CCCTTACCAT	AACAACCACA	ATCTTACACC	ATCALACCAT	CALACCTAGO	ATTTCAGAGCICC	AICIGITCCA
				ATGAAAGCAT			
	AAAAAAAGTC	TGTGTTTCAG	ATTCAGTTCA	CAAAGCAGTT	TCATACTTAA	GGTACCATCA	CAATAACCCT
	GTGGGGTAAG	CAAGGCAAAT	TTCATTCTTG	TTTTATGGGC	ATAGGAAGTA	AGTCTCAGGG	AGGTTAAGAC
25	CAAGGTTTCT	GGACIAATTTT	ATATTATGAA	TCTTGATTTA	TGGGATTACT	ATTATGTAAT	TCCTAAGATC
	ATATAGGAAT	CCT A GAGCTT	GAATATAGAA	CTTTATTTTT			TACAAGGAGT
	AGTGTCCATT	TGGCTTCCTT		TGTTAGTGGA			TGCCATGTGT
	GTCTGTGCAC			GGGGATGTAC			
			AGGGAGAATC	TTTTGCAACA	CCTTTTCCTA	TAATACACAA	TOTOLOGIC
30	CTTTGAGAAA	GAA/ACTCTA	ATCATTACCA	AAAAATTATT	CTCATAATCT	CTCCAAATTT	
50	TATATTCCCC	ATCCCALCALC	ATCATTACCA	AAAAAIIAII	CICATAAIGI	GTGCAAATTT	
	TATATTGGCC	AIGGGACAAG	GAGGIATITC	CAGCTAGCTT	CTGAAAGGGC	TCTATTCTCT	
			TATCTGCCCA	GGTCATCAGA			TGCTGAAACT
		GTGC'ACTGTA			AACATTCATT		CAAGTAATGC
	ACTAGATACT	CCAGGGATCT	GACACAAACT	CTGCCCTGAA	GGAGCATGTA	ATCTCACTGG	GGAGAAAACA
35	AAACATATGA	TAATTTCAAA	ATAACAAACT	AGGCAAACTA	GTTAACACTT	AAAAAGCAGG	CTTTATTCAA
	ATGCAAAATT	GCATGTTACA	GGGTAACCTT	TCAGTAAGAA	GCCAGGAAGA	GGAGCTCATC	ATGGGTTGGA
	TTAGTAAAGG	ACTAGTTATA	AAAGAAGTGG	TGGGGTTGAG	GGAGGCCTGA	GATGAAATTT	AAAGAATATG
	TAGAATCTAG	GTA A GTGG AT	AAAAGGTCTG	GGGGCAGGGG	AAACCACACC	ATTTCATTCT	CAATCAACCA
40		CTGTTTTAAC		GACATCAAAG		TGCAGCTAGC	ATTTCAGTGA
40				GAAACATTGA		TAGGAATGGG	TCTCATAAAA
				C AGCGCAGGCT			TGCTTGGCAC
	TCATGAGATG	CTAGGTGTGG	AAGTCAGCCA	ACTGAAAAAG	AGAGGTGGCT	GAAGAAGGTG	GGGAGGCTGA
	AGCCAGTTAA	ATAC GATGGT	CCAATTCACA	GACGGCGAGG	CTACAGTGCA	AATAGGACTC	TTTCAACTTG
	AGCAGGACCC	CATI ACTTCA	CTGGAGTTAG	AAAGAAAGGA	GAGCGTAGAC	TTTTTGAACT	TTCTATAAGA
45	GTGTACCTCC	ACAGTATACA	GAAGACGACG	TGAAATTTGA	TCTGCAAGAA	AACTGAGTCC	ATATTCACAT
	ΔΤΩΤΔΤΩΔΔΔ	TTTGCACTTC	ATTTAGAAGT	GTCTGTCATC	AAGTACAGCA	CTGAATTGAA	ACTGAAAACA
	AGAGTCAAGA	AAGAGGGAAAG	TCACCCATC	TTATATTCA	CATCAATCCT	TTCCCTTTAT	COTOTALATE
	CTTTCTCCTC	AAGAGCAAAG	1 CAGCCATC	TTATATTCCA	CATGAATCCI	TICCCITIAI	GGICHAIH
	GITTCTCCTC	AGAAAAGACA	AAAAGCTGAG	CTGTATAAAC	ACCIGIGGC	TGGGGGTTGA	GGGATAAATG
	AGGGGCGAAA	TGGAAGCTGA	AGGAACTGTT	GGTCAGGTAG	AAATCTTCCC	AGATGCACTG	AAGGAAACAC
50	ACTTCATGTT	TGACGTAGGA	GGTGCCACCA	CACAAAACGT	TTCATGGAAG	GATTTAAAGG	ATCTCATGAT
	TTTTAGTATT	CCAA 3AATTT	TCTTTCACCA	AGGGCGATTT	AATATGGGTC	ATTCATACTG	AAAGAAAAAC
	AAAAGATAAT	AAGAGTTTAA	AAATTGCAAA	ACTTGGAGTG	TTAGTAGTAA	AGGTAAATAT	TCATTAGAGA
				TGGAAATCTC			
				GCAGCACTTC			
55	TCCTCTTAAA	ATCCACACTC	TCATTCACTA	GGTCTGAGTG	CACCCTCACA	TTOTOCITAC	CTAACAACCT
55	CTTTACTCAT	COTTATCCCA	CTCCCCCACA	CACCCCACTT	GAGCCIGAGA	TTCTGCACCC	CIAACAAGCI
	CITTAGIGAT	GCTTATGCCA	CIGGCGCACA	GACCCCACTT	GGAGAAATTT	TIGIGGIGCA	TACGGTCTTT
	GICICCAGAI	CTAPIGAGIC	TGAAGGACAG	TGTAGATTGA	TTTTTAAAT	TTATGTTTAT	TTTAATTTAA
60	TTTAATTTAA	TTTATTTATT	TATTTATTTT	TGAGATGGAG	TCTCACTCTG	TTGCCCAGTC	CGGAGTGCAG
	TGGCACGGAG	GCAGCTCATG	CAACCACGGC	CTCCTGGGTT	CAAGCGATTC	TTCCGCCTCA	ACTTCCTGAG
	TAGCTGGGAA	TACA.GGCACG	TGCCAGCACA	CCCAGCTAAT	TTTTGTATTT	TTAGTAGAGA	TGGGGTTTCA
	CCACATTGGC	CAAC CTAATC	TCAAACTCCT	GACCTCATGA	TCCACCTGCC	ACGGCCTCCG	AAAGTGCTGG
	GATTACAGGC	GTGAGCCACC	GAGCCCAGCT	GTAGATTGAT	TTTGAGCAGT	GGAAAGTCAA	GGAATTAGAA
65	GGCATGCTT4	AATGGAAAGT	GAAATTGGAG	AAAATTTAAA	CTCATGAAAT	AGTGGTGGTT	ΔΤΑΛΑΟΤΟΩΤ
	GATAAATTAT	ATCCTCCCAT	777711100VQ	CACATOOTAA	CACATTTACT	TTAAACAAA	AACTCACACT
	THITTANTON	CACACACAC	AIAAIIIAAI	GAGATGGTAA	CACATITAGE	TIAAAGAAAI	AAGIGACACI
	11111111111	GACACAACTG	CLIATICIT	GGAAAGGACA	AGGAGAAT	GAAATATGGT	ATGICITCAC
	AGCACCITIC	AAAGGGAGAA	CCAGATTCTG	AGGAGCTGGT	CTCATGATGA	ACTGTCAGGG	TAAACCACAG
		GCAAATGTGC	TTGCCAAAAT	AGAGACAAAA	AAATGTTTCT	GAAAACAAAA	TTTCACATAT
	GCCCTCCTCT	GAGC TTGGCA	TCATATCTTC	CTGTGTATCT	TGGGTGTAGC	TTCTATCCTG	CCAGAATTTA

						CAAAATAACC	
	TGAAACCACA	AATCCCCAAG				AGAAATGAAC	ACAAACTACT
	ATGAAAATTC	ACCC AAGAAC	TTAAAAAAAA	AAAAAAAGGC	TCATGGTGTT	TAGTGTGATA	GTATTCATTT
	TACCTTTGAC	TTGTTCTAAA	AACACACCAT	ACTTCTACCC	CACCCTTCCT	CAGTGCCGTC	ACACAATGGT
5	TTCAGTGTGA	AAAAAAAAC	CACGTTACTG	GAAAAGGAGG	GTGCCTGGGA	CTTGCCACTC	TAAGCTGGTA
	GTCAAGGGTC	TTGAGTTCTA	AAAGCATACG		ATGATTCCTG		AGTATGGATC
	TCAGCATTGC	CATITATTGT	GACCTCAGGC	TATTTTATTT	CTCTGTGCCT	GTTTCTTTAT	CAGTAATGAA
	GATGTTCATA	GACCCTTCTC	CCACAGACTT	AAAGGCATAT	TTCATGATTT	AAGACATGTA	AACCATTCAT
10	AACAGTATAC	AACATGGAAT		TAAAGGTTTA	TGATTATTGT	AACTAACTCT	GTCACTTGCT
10	CAAGGCCTAT	AGAAACTTA	CTTAATTAGT	TCAACTACAA	AAAGAGTTTG	AATGTGATAT	CCACCAAGAT
	CATATTCAGA	CCTAGAATTC	TGTGATTCTT	ATGAATTAAT	ACAGCCTTGG	TCAATAAATG	AGAGCTGGGC
	AAATAATTCT	TCTTIGCTAG	GCCTTTCTAG	ACCATCTGGT	GAAGCATTCA	AGACTTATGT	TATTGGGGCC
	AGCCTTCCTT	TCCA ACTTCA	ACTCCACAAC	TCCTCAATAA	GCCATGGGCT	CAAGAAAGTT	CTGCTCAGTG
	GCCCCTGAAA	AATGCTTTCA	TAGTCTCACT	ACCATACCAC	TGCTTACACA	ATTTCCTTCC	TACAGACTGC
15	CTTCCTTTCC	TGCTTTTCTC	CATATACCTA	AATCCTATCT	ATTCTTCATA	AGCAACCTTC	TTTATAACAT
	TTTCTATAAC	CACCAAGCCA	AATGACCTTT	TCCTTCTTAA	ATATAGCACC	CATTGGCCAT	TACCATGCTC
	TGCCTTGTAT	TTTTCTGATT	TTTTTCTTTC	TATATTCCTG	TCTTAACTCC	CCAGCTAGGT	AATAATTTTC
	CTGAAATCAG	GGACCAGGCT	GACTCCTCTT	GCTGTCTCAA	GAAAGCTTAG	CAGTTTCCAA	CACAAAAATG
	TTCAATAAAC	AACTATTAAT	TGACTGATTA				
20				TAAAAAATCA	GTGAACCATT	AAACTTAATA	TAGCAATTTG
20	CTTAGCATGG	TAATTAGCTT	TTTGCTAATA	TTCTTCCAGC	CAGTCTCTCC	TCCTGTGCCT	CAAGGACATC
	TTAAAAAAAA	AAAATCTAGT	TGATCTGCTT	CCATCTAGTG	GCAATTAAAA	CAGGTGGTTC	CGGTAGCCAG
	AAAACAGCTC	TGGC¦TAGATT			TCAGTAGGTG	CGAGTTTGAA	AGAAATCTTC
	ACATCTGTGG	GTTTCCTGCC	ACAGACATAG	GGAGACCAGC	CCAGAGAAAG	AAGCCTTTCC	TCACTAGACT
	CCATTTGCAC	TAGT 4AAGAG	AAGACAGAGT	AATTAAAAAG	AATAAAAAGA	ACCTCCACTG	ATCGTACATC
25	CTCATCCAGT	TACCCCTGCC	CCACTTCTCC	TTCACAGCCA	AACATTTTAA	AAGAGATGAC	TGCTTGTTCT
	GTCTCTACTT	TCTCATCCTC	AGTAATGCTC	AATGCTTGGC	CGTCTGACCT	CTGTCTTGAT	GTCTGCACTG
	CAAATAGTCT	CCCC ACTGAC	ACCCTTGTTG	CATCCAGGGG	ATACTTACTG	GTTCTCTTGG	CAATGTTTGA
	AACCGTTCCC	CTT1 CTTTGT	TTCCTTGGCA	TTCATTACCC	CACACTCTTT	CTCCTCTTCC	TTCTCCCTGC
	CTGGCAACAT	CTTTTCATTT	CTCTTTCCCT	TAGGTGACTT	ATTAGATAAT	GATGTTCCTC	TGGCTCCCAT
30	ACTCTCTCCC	AGGTCCTCTT	CCATTCTTAA	AGCACTCACA	CCCTCCCTGG	ATGATAGTAC	CCACTCCTGA
50	GATGGCAGTT						
		ACCTCCTGAA		CCCAAATCCA		CATAGCCTCT	GTGCTTTGGA
	TAGGTCCAAT	GAGC CACAGT	GAATGATGTG		AAGCTCAGTA	CAAAACTGAA	CCCATGATCT
	TTACCTCCAA	AACCTCTCAT	TCTTTTATGT		GAAGTAAACA	GGACTACCAT	CCGCCAGTTT
	CCAGGTGAGA	AAGATGATAA	TTTGATTCTT	CTCTCTCACT	TTTAGCCAAT	TAACAGACAC	ATTCAGTTAA
35	TATCACCTCC	TCTTATTTCA	TGAACCCATT	CTTACTACTA	GTTCCCTAGA	CAGGCGCCAT	CGGTTTTAAT
	CTAATAACTG	CAAATGCCTC	CAAAACAAGT	CTCTTTGAAT	CCAGGCTCAC	CTGTCTCCCA	CACTTGCCAT
	ACTGCTCTGC	AGGC TGACCT	TATAAGATGC	CAGAGGTAAG	GCTACTCACT	GTTTAAACCC	CTTTAGTGAT
	ATCCCAAAAG	ACCT'CAAGAT	AAAGCCCATA	TCACATGGCT	TATACATTAG	TTTATGATCT	GGCTTCTGGT
	GCCTCATTTT	TCCCCACTTT	TTCCTTTGCA	TTCTAAGCAA	TGGCCCATAC	TAAGTTTGTG	ATTGGTAGGA
40	TGGTTGCCCA	AACC'AGCATC	CAATCCCTTC	AGAAATCATC	TCACTTCATT	TCTAGCATTT	TAAAGGAAGC
	TCAGTTGTCC	AGCTGGGTAC	TGAATATGTC	ACCAAAGTCC	TCCTTTCATA	GTTTATTTTA	CTTAAACTCT
	CCTTCCTAAA	ATTCCAGAGC	AAGTCACTAA	ACCCTAGATA			TTCATTTCTG
	CCAGGTGGGC						AGAAGAAATT
		CATCAACTTT	CACATGTCTG	CATCTCCTCC	CACTGTGCTA	TTTCTCCAGT	
15	TGAGCTTCAA		AAAAATACTT	GCCTCCTTGG		GGTAGAATTC	ATGCTCCCTA
45	TCTTTCCCAC			GTTAGAGCAA	TTGAATGCAA		GAATAAGCAT
	TTATTCATTT	CTCA.4TAAGT	GCTTGTTCAA				ACAAGAAGAA
						AATCTCCCTT	
	GCCCTTTTCT	AATAGGGATT	ACTTGTTCGT	TCATTCATTC	ATTCAGCTCC	ACTAGCACCA	AAAAGCACAG
	CTCTGAAAGG	AAGCTAGTAG	ATTTATCACC	TTATCTGGTC	ATTTGGATGA	GGACCCCAGG	TAAATAAACT
50	ACTATGGGGT	TAATGTGTCT	AGCTAGAGCA	GGAAGTAACT	TAAGGAAGTA	GAGAATGAAT	CAGCAGATGT
						GAAAATAGAA	
						GAAGACTCCC	
						AAAGGAGATT	
						ATGCCTCCTG	
55							
55						C AAGACCCAAT	
						CCCTTGAGGG	
						ATCCACAAGA	
						TTTTATCTTA	
						ATCTGAGACC	
60	AAGTATATAA	AACTTTGTGA	CATACATTTT	TGTGCCATAA	CTTCAACCTT	GGTTCCAAAT	GATTTTTGTA
	CCCTAAGTTT	AAA] TTGGCT	TTCTTTTTTT	TTTTTTTGTA	CTCAATAAAA	CATCAAGCTC	ATTTATTATT
	GCGAAGAGCG	AAACAACAAA	GCTTCCACAG	CGTGGAAGGG	GACCCGAGTG	GGTTGCCCAA	ATTGGCTTCT
	TTTTCTTACT			CTATACTGAA			CATTCTTTTT
						CAGAAAGAAT	
65						GGTGAAAGCC	
05		TAGTGTGTAT				ATTTCTTCAT	
		TTGT'ATCATC	CTCATTCCCCT	TCATAAAATA		AAGTATTTAG	
						ACTACTATTT	
	MUCACUTAUA	CAGIGITUCA	IIVCIGIIII	AATCCITIAA	AUIAIIAAAU	ACIACIAIII	UNAMICITII

	CTTCTAAAAT	TCAGCCTGCT	GATGACCAAG	TGCACTTGAG	CAGGGGGAAT	CAAATCTGAA	TTAATTTCAG
	ATTCTGGTTA	GCTTCACATA	AATATTTTTT	TTAGGGATGA	TGAACCTAAC	AGCAATAGAT	GAGTAAGAAT
	CTGTTCCTAC	TGAGAGAGTT	TCATTTTGAA	GAAAAAGGAA	CTAAGGGGGC	ATGTGTTCAG	TTTCATGCCC
5	TGGTCTAACC				CAACCGAGGA		TCACAAATCT
5					TAATCTCTGA		TGCTGATATG
	GTATTTTTGA	GATTIGGCCT		TGCCCTGGTT		CCAAACAGGG	
	TGACTAATCA					GCCCATGCAC	AAGGACACAT
	GTTTCTGGAA	CTGTTCCTTA	TTCCTTTCCT	AAAAGAAAGG	AGGGAAAGTC	TCCATACTAA	GACTACTAGG
	GCAGGGGACA	AAGT'GCTAGA	GTCAGAAGAT	TCATCTGAGG	ACAGAAGAAT	AGGGGTGAAG	GCTCTAGTCA
10	CTTCATTGGC	TACCATGCTC	TAAATAGTTA			ATTAGAACCC	AAAAAGCCTA
10	TAAATTCTCT		CTCTCTCTCT			ACACACACAT	AGACACACAC
	ACACACCTAA			GACTTTTTAC		GTAAATGCCA	TTAACTATAT
	TTTGTCTTAG	ATTTAGCCTG	GGAATGTAGC	CATTATTTCT	ACCATTGCCT	CCATAGGAAA	AATACTCTTC
	ATGTTTTAAA	GGACCAACCT	ACAACTAAAA	TCTTTGGAAA	GCAGAATCAT	TTGTAAGTTG	GTGAAAATGG
15	AAGATGTTGT	TTTATAAATG	AAGACTTTTT	TTTTTTTTT	TTTTGAGACA	GGGCCTCACT	CTGTTGTGGA
	GTGCAGTGGT	GCTC TCATGG				GTGATCCTCC	CACCTCAGTC
		CTGC GACTAC	ATGTGCATGC		GACTAATTTT	TTGTATTTTT	
							GTAGAGATGT
	GGTTTCGCCA			AACTCGTGGG	CTCAAGTAAT	CCTCCTGCCT	CAGCCTCCAA
	AAGTGCTGGG	ATTAGAGGTG	ACAGCCAAGG	TGCCTGGCCC	ACAGATGAAG	ACTATTTAAT	GTTATCTTAA
20	AGATACCCTA	AGC1TCCTAC	CAAGCCAGTG	ATCTTTTGGG	GCTTCTGTTT	TCTTTGTTGG	CATAACTGTA
	ACTAGCCTAA	CTGC'CCGTTA			CACTGATTCC	CACAGCAGTT	TTCAAGTTAT
	CGGTTTGAGA				ATTTAAAAAC		ATTTTTTTAC
	CCTTGCTTAT	AAAACAGCCT		ACCCCTCACT	ACATGCAAAT	GAGTTTGATT	CTATTCTTTT
	GATTCTACAA			GAATTCGGAA		TCCTTATTAA	GGTGACTTAC
25	AGCCCCAAAG	TCCTTAAAAT	TATTTAGACA	ATAGCCACCT	TATCCCAGGG	GGCAGTGTGT	AATAACCCAC
	CCTGTTCTCT	ATCCGTCAGT	TCTGCCATCA	TCGCCCAAGG	TAGGAAGAAA	GACAGGACAA	CCGGGGTCAA
	GATTTGAAGT				AAAACTGTCA		GCCTTAATGC
	AGTACTTGAT	ACTTATACTT	AGTACTGTAT			ACTATAAGAT	AGTGAGATTC
20				AGAGACATTT			GTTATACATA
30	GCTAATGAAG	TTCTTGCATA			CACACACTTT	GTCTTTCTGG	ATTGGTTAGA
	AAACTTACCT	AGCGCCCACT	ATTCTCAAAT	TTAAATGAAA	GATAAGATCA	GAGTGGCACG	CAATTAGGGA
	CTGATAAATA	ATATTTTGT	AATTGCCAGT	GTAAATGGAC	AGGGGGCAAC	CTTTACATAC	CATATTCAGT
						TCAACTGAGC	CCACAGAAAG
						GAAACAGGTA	
25							
35				GTCACCAGGC	TGGAGTGCAA		TCAGCTCACT
	GCAACCTCCG		TCAAGTGATT		AGCCTCCCGA	GTAGCTGGGA	TTACAGGTGC
	CCGCCACCAC	GCC1 GGCTAA	TTTTTGTATT	TTTAGTAGAG	ACAGGGTTTC	ACCATGTTGG	CCAGGCTGGT
	CTTGAACTGC	TGAGCTCATG	ATCCGCCCGC	CTCGGCCTCC	CAAAGTGCTG	GGATTACAGG	CATGAGCCAC
	CACACCTGGC	CAA#ACAGGT	ATATCTTAAA	AGCTGCCCAA	TGTCCATGAA	TGTTACAGCC	TTGAATGGTT
40					AGGCCTGCTG		GGTTGCTCAC
- TU	ACTTTAAAGC			AGGTAAAGGG			
		TGAGACACAC				TGGGCAGCAG	
	CTCAAGGCAG	TCC1CCTTCT	CTTTTCCTCT	CCAGTGACGG	ATGGTTGGAA	AGCATATATG	GTGCATTTGG
	TTAGAGCTGT			TGGGAGAATA		TCTCCCAGGG	TTAATGCAAT
	GCCCATGTGT	TGGGAACCAG	GTGACTCTTG	AAGAGGTCAG	GTATTTGGGA	GCAGTGCCTT	GAAACCTTAG
45	TGGACATTAG				AATCCAAGGC	ATGTAGGCTC	TTAGAGGACA
						TGGCTCACAC	
						CCACTCTGGC	
						GCTCCTGTAG	
	TTGGGAGGCT	GAGC TGGGAG	AATAGCTTGA	ACCCAGAAGG	CGGAGGTTGC	AGTGAGCTGA	AATTGCACCA
50	CTGCACTCTA	GCCT GGTGAC	AGAGTGAGGC	TCTGTCTCAA	AAAAAAAAA	GTATTAAAGA	ATTACATAAG
						TGCCTTGAAG	
						TGAAGGTGTG	
						CTGCTTGTGT	
	ACATTTAATT				ACTTTAAAGT		TCATGTGAAG
55	TTAAACTCAC	ATAC CTTTTT	TTAATCTCCT	TGCCAGCCAA	ATGATAAATG	CCAACCCAGA	GAATGCAGTA
	ACCATGACTG	CCA('TGGAAT	GAAGAGGGG	TTATAATCAC	CCTCCTTAAT	CATTGAGAAA	CTTTTGTCCA
	ATTCTGAAAG	AGAAATCAGT	AAGGCACATA	GCATGAGACC	ACCAGCATTA	TTTCCTTAGT	CTATCTCATG
						CCATTTGACA	
						CAGCCTTGCT	
60							
						CACCTAAAAA	
						CTGAAACACA	
	AAAAGCCTAA	TAC/ACTTCA	GGAAAAATAA	AAGCCAATGA	TCTGAACTGG	ATAATTCACC	AGTCAAAGGA
	AATCATTAAT	GCTTTTACTT	TAAAGCAGTT	GTGCAAAAAT	AAGCACTTGA	TTTTTACATG	CCAAGGACCT
						ACGAATAAGT	
						TTTGAAAATA	
						TATTGGCAGA	
						ATCCCCACAC	
	GATTGAGAGA	AGGCTCAAGT	TCCCAGGAGC	TCCAGACAGA	AGGTACCTGT	TGGCTTGATG	AAGATGAGGA

	GGAAATGAAC	ACTA.GCTAGG	CCTTAAAGGG	AAATGTCTCT	GATAGGCCTA	ATACACAGTC	CTCTGCTAAA
	GGCCTCCCTG	CCTCTCTCTG	CTCATCCACT	CTACTCCCTG	GCCCTGGGCA	CGCAGCACAC	AGAGATCAGC
	ATTTCTGACA	GCTTCTGTAG	ATCCTACCAT	TTAAAGACTT	TTGTCATCCA	TGCAGATAGT	CTCAGGAGCA
	GACACAGGTA	GCTATTCTTT	CACATGCTAG	CTTAACATGC	ATTTGCTTTA	GCACCTATTG	CCAGGCACTG
5	TGTCAGGTGG	AGGC TATACA	AAGATGAACA	AGACATGATT	CTTCTCATAT	ACAGATAGAT	TTTGGAGGCA
	TTAGCTTAGT	GATGATTCAG	GAGTATCCAT	TATTTGGGGA	AGTAGGTGGT	CATTAGTGAC	CTTTTACAGG
	CATTTCAATG	GGCT AACAGA	GATGTTAGAT	TGTAGTGGAA	TAGAAGAATG	GGTAAAAAGT	AAATCAGTGA
	GTTCAGATTT	TAGG AGTTAA	GATGGCAAGA	GGTGAGAACA	AAAAAAGGAA	ATGATTGTCA	TTAAAGGAGG
	AGGAAAGACC	AGCCAAAGAT	TTTACAGTGA	GTTAAGCATA	CAAATTTATT	TCTAGGCCAC	ATATTCTTAG
10	CAAAACAACA	TGTAAATGTT	TATGTATGTC	TTTCCTCATA	TCTGCTCATC	CATCAGCTCC	ATCGTTAAGA
	TTTCAGTTTT	CCAG GACAAA	CTTACTCACT	TTGACATATT	GGACTAGGAT	TTGACCAGAT	TCCAGATGAT
	TCACAAATGG	TTTTCTTCTT	CCCAATTAAC	TCAGTTCCTT	CTGAGCAGAT	GAAGGTACAT	GCAGAGGTAA
	AGCTGAAGCT	GGCC AGGGGA	TGGCTACAGT	TCATGATCCC	CAAATCTGGT	GCTGATAGAG	GCTCACACTG
	AATCACTTCA	ATGAAAAAGA	AAAAAAAAA		CAGTATTTCT	GAGTAGAGAC	CCTCCCTTGA
15	GCAAAGGATT	TTT# GCCAAA	GCTGCCTGAC	TACATTACTT	GTGATATTGC	TTCCAGGCTT	TATTTTCTTG
	AGAATGATGG				AGCATTGAAA		
	TACTCCAGGC	TGCTGCCCTA	GCTAAGGTGA	CCCTCCCCTT	CTGCTGGAAG	TACCATGCCA	TATGGCCTCT
	GCATCAAGGG	CTCTTATGGG	ATATTCTCAG	AGAATCTCTG	CCGTTTCATC	TGTTCTGATA	TCTACCCAAG
	CATTTTGAAA	AACATCCCAA	TTCACTGAAG	CAAGTCCAAC	TTCCGTAAAT	TCCAGTAGGT	GGGTTGACAG
20	TTTTATAATT	TCAA'ſAAGGG	ATTTTGATAG	CACTTCTAAG	AATTAAACTA	CTTAAACTAA	TGCATCAGGA
_ •	GCATACTTGT	AGAA AAGTTA	ACCAAAACTT	CGTAAGTTCA		GTTTTCTCCC	ATATGGAGAT
					CTTATTTCAA		ATCAAGAGAT
	TGTGTTTTTG				TGCATGAGGA	AAAGTAAAAG	TGATTTTAAG
		ATA#AACAAC	CAAGAAAGAC		CTGGGAAGGA		TATTAAGTAG
25			TTATTGAGAG		AAAATGTAAC	TGAGGTTCAA	
	TTTATGCAAT	GGCAATGAGA	AAAATAAAAA		-	ATTGCTATAA	GTCATGTTAC
	ACACTGGGAG	ATGGCTTCAG	GGGTATTTGG	TTTTTACTTT	TTGTTTGGGA	GGTTTTTCAA	AAAAATTTAG
	TTAGAATAAG	TCCTTTGAGA	AACATCACAG	TAGGTTAAAC	AAAGTTAGGT	TAAATTAGGC	TCCTAAGTTT
	GACTTCTCAG	CAAA CTTCTA	CTGAATGTTC	TGACTGTAAG	CCCAGGATTG	CATGACAAAA	CCTCTAGTCT
30	GAAGTTACTC	ACCITGACAG	GTTGGTTCTG	GAGATGACCA	GTTTCCAAAT	GGTCCACAGG	TGGTTTCTTC
20	AATCCCAGTT	AAGTTTGTTC	CTTCAGAGCA	GCTGAAGGCA	CACTGTGAGC	TGAAGCTGAA	GTTTCCCAAA
	GGGTGAGTAC	AGTC'CATGGT	ACCCAGCTCT	GGGGCCTCCA	AAGGCTCACA	CTGAATCACT	TCAATAGGGA
		ATGGGGAAGA				CCTAGCCCTG	
	ACCATGTGCC	TTTAAACAAG	GTTACTTGAA	CCCTCCAACT	TCAGTTTCTT	CATCTATATA	AGAGGAATAA
35	TGAAATTGTG		CAAATTGATA	TGGAAACTAA	ATGTAATTCA	ATTAGCATAA	GTCAAGGACC
33	TTAGAACAAA	GCCTGACTCA	TCAGAAATTC	TAAGTAAACA		TTCATATTAT	TATCTTCAGC
	ATTATCTGTA	GTGAGAATCC		ATAGGTGTAA		CCAGCTTAGT	CGGGAAATAA
	CTATCACATC	AGAG CCCCTG		AGTATTGGGA		CAGAGAAAGA	GTGGGTCTCC
	ATAATAAGCC	TTCTTTGCAA	GGAGAGAATA	TAAAAGTCTA		TGACCTCAAT	TCTGTCTTCT
40	ATTCTAGCTC	AGTT CCAGAA	TTTTAACTCT	TTTGATTTTG	ACAACCCTCT	CCAGAAACTG	TATCTATTTC
	CCTGTTCTGA	TTGGTGGTAC	AATAGGTAAA	TTTAAGACTT	GGAAATCAAA	GTTTTCACAT	TTTAGACCCT
	GCCATGCCAT	TTAC TAAACA	GTACAACTTT	CATGTCTTAT	TCCTCATCTG	TCAAATTTAA	GCCATTATTG
	CTACCTTGCT	CTAGAGACTT	CAAGGAAGAA	TGGACTCAAG	GAATCAGAAG	AATTTTTGTA	TTTGGAAACT
	ATATGAGATG	AGATTAGGGA				TTTTTTCATT	GATTTAAAGA
45	GTATCTATTA	TATATCAAGC	ATTACTCTGG	GGCTTGAAGA	GCTTAGATTT	CACCCTGTAG	GACAAAATGG
_	TAGGTAGAAA	TTAATGGGTG	GATTGTCATG	TATGTGTGAT		TGCTTTTAAT	TGATCAGTCT
	CCCTGTAGTA	TGAATAATGT			AAATTGTGGA	ACTCATCTAA	TAAACTATTG
					AGTTGACAAG		
	CACTAAGTTG	TAAA AATTGG	TAGAATGTTA	CCCTGCATAA	ATGTTGGGGG	AGTTAAGAGA	GTCTCATACC
50					GAAATACGAA		
					TTAGCATATT		
					AAAAGTCAGT		
					GCTGAGAAAT		
					GTAGAAAGAA		
55	AGAAACCAAG	ACA/\AGAAAA	GTAAAATGTT	AAAAATGAGT	GAAATAGGCA	TACCAATAAT	TAAAAATGAG
	TAAAATAGGC	ATAC'CAATAA	CATAAGGGTT	AAAAAATAGA	GTTCAAAAAT	GGGGTGAGGG	TAAAGTATTA
					ATCTATAGAT		
					ATTGCTTTTT		
					CATTTTGTGG		
60					AGGAGACGGA		
					CAGAACTAAG		
					ATGTGCAAAA		
					AACTGCAAGA		
65					GATAAATGGC		
					TCTTGAGAGC		
					TTCTTGTGGT		
	AAGTGAGTCG	AAACTTCATG	CTGACTTATG	AAATCTTTAC	GGAAAGGTAA	CAATATTGTG	AAAGCAGAGC
					CATTTTGTTC		

AACTAACTCT TGGCTACCTG TGGTAAATGG CCCTTGGAAA TTGCAAATAC TACAAATCAA AACTGCATTT CAGACATATT TATCATGTTT GCAAAACTTC AGTAGAGCTA AGCAGTGGAC TTGACTCGTT TCGGTTCCTT CACCTCCGTC TTTCCTTGCT CACCACCTAG TGGACGTCCT TGTTAGTGGC ACTTCCTGAA GTTAACCCCT GAAGAGACC CATGCTCTCT AGCTTTTCAC CGTGTAGGTT TGGGAGCCTA CAAGTACCTT TAATATTCTT GGACTATAAA ATGAGATGGT TTTATAAGAC TGCATGTGAA ATTAGGACCC ATATGATGAA GGACAATAAA AAGGAAGACC CAC; GATGTG AGTCAATGAG TCAAATGCAA ATCAGATTTG CATTTTTAGG AAAATAATAA TAACAACAAC AAAAACTCTG AAGCTCAGCG CCCCATATTT ATTATATTGT TTAATCTTTA TAACAGCTCT CTGCTATAGA TATGATTATT ATCCCCATTC TAAAGAGTCT CAAAGAGGTT AAGAAACAAA TTCAAAAACT AGCGAAAGAC AAGAAATAAC TAAGATCAGA GCAGAACCAT AGGAGGTAGA GACACGAAAA AGCCTTCAAA AAATCAATAA ATCCAGGAGC TGCATTTGA AAAGATTAAC AAAATAGATG GACCACTAGC TAGACTAATA
AGAAAGAAGA ATCAATAGAC ACAATAAAAA ATGGTAAAGG GGATATTACC ACTGATCCCG TAGAAATACA
AACTACCATC AGACATTACT ATAAACATCT TTACACAAAT AAACTAGAAA ATCTAGAAGA AATGGATAAA
TTCCTGGACA CATACACCCT CCCAAGACTA AACCAGGAAG AAGTCAAATC CCTGAATAGA CTAATAACAA GTTCTGAAAT TAAGGCAGCA ATTAATAGCC TACCAACTAA AAAAAGCCCA GGACCAGATG GATTCACAGC 15 GCTGGTTCAA CATACACAAA TCAATAAACA GAATCCATTA CGTAAACAGA ACCAATCACA AAAACCACGT GATTATCTCA ATAGATGCAG AAAAGGCCTT GGATAAAATT CAACACCCCT TCATGCTAAA AACTCTCAAT 20 AAACTAGGTA TTGATGGAAC GTATCTCAAA ATAATAAGAG CTATTTATGA CAAACCCACA GCCAATAGCA TACTGAATGG GCAAAACTG AAAGCGTTCC CTTTAAAAAC TGGCACAAGA CAAGTATGCC TCTCTCACCA CTCCTGTTCA ACATAGTATT GGAAGTTCTG GCCAGGGCAA TCAGGCAAGA GAAAGAAATA AAGTGTATTC AAATAGAAGA GAGGAAGTCA AATTGTGTCT GTTTGCAGAT GACATGATTG TATATTTAGA AAATCCCATT GTCTCAGCCC AAAATCCTCT TAAACTGATC AGCAACTTCA GCAAAGTCTC AGGTTACAAA ATCAATGTGA
AAAAATCACA AGAATCCCA TAAACTGATC AGGAACCAAA ATCAATGTGA
AAAAATCACA AGAATCCCA TAAAATACCT AGGAATCCAA CTTACAAGGA ATGTGAAGGA CCTATTCAAG
GAGAACTACA AACCACTGCT CAAGGAAATA AGAGAGGACCA CAAATGAATG GAAAAAACATT CCATGCTCAT GGGTAGGAAG AATCAATATC ATGAAAATGA CCATACTGCC CAAGGTAATT TATAGATTCA GTGCTATCCC CATCAAGCTA CTACTGACTT TTTCACAGA ATTAGAAAAA AACTACTTTA AATTTCATAT GGAACCAAAA AAGAGCTTGT ATAGCCAAGA CAATCCTAAG CAAAAAGAAC AAAGCTGGAG GCATCATGCT ACCTGACTTC AAACTATACT ACAAGGCTAT AGTAACCAAA ACAGCATGGT GCTGGTACAA AAACAGATAT ATGGACCAAC GGAACAGAAC AGAGGCATCA GAAATAACAC CACACATCTA CAACCATCTG ATCTTTGACA AAGCTGACAA AAAGAAGCAA TTGGGAAAGG ATTCCCCATT TAATAAATGA TGTTGGGAAA ACTGGCTAGC CATATGCAGA AAACTGAAAC TGGATCCCTT CCTTACACCT TATATAAAAA TTAACTCAAG ATGGATTAAA GACTTAAATG GAAGACCTAA AACCATAAAA ATTCTAGGAG AAAACCTAGG CAATACCATT CAGGACGTAG GTATGGGCAA
AGACTTCATG ACTAAAACAC CAAAAGCAAC AGCAACAAAA GCCAAAATTG ACAAATGGGA TCTAATTAAA
CTAAAGAGCT TCTGCACAGT AGAAAAAAAA AAACTATCAT CAAAGTGAAC AGGAAACCTA CAGAATGGGA GAAAATTTTT GCAATCTATT CACCTGACAA AGGGCTAATA TCCAAAATCT ACAAGAAACT TAAACAAATT TACAAGAAAA AACAAACAAC ACCATCAAAA AGTGAGTGAA GGATATGAAC AGATGCTTCT CAAAAGAAGA AGTTTATGCA GTCAACAAC ATATGAAAAA AAGCTCATCA TCACTGGTCA TTAGAGAAAT GCAAATCAAA ACCACAATGA GATC CCATCT CATGCCAGTT AGAATGGCGA TTATTAAAAAA GTCAGGAAAC AACAGATGCT GGAGAGGATG TGGAGAAATA AGAATGCTTT TTACAGTGTT GGTGGAAGTG TAAATTAGTT CAATCATTGT GGAAGACAAT GTGGCGATTT CTCAAGGATC TATAACTAGA AAAACCATTT GACCCAGCAA TCCCATTACT 45 GGGTATATAC CCAAAGGATT ATAAATCATT CTACGATAAA GACACATGCA CACTTATGTT TATTGAGGCA CTATTCACAA CAGCAAAGAG TTGGAACCAA CCCAAATGCC CACCAATGAT AAACTGGATA AAGATGATGT GGCACATATA CATCATGGAA TACTATACAG CCATAAAAAA GGATGAGTTC ATGTCCTTTG CAGGGACATG GATGAAGCTG GAAACCTG GAAACCTG GAACAGAAAA CCAAACATTA CCCATTCTCA CTCATAAGTG GGAGTTGAAC AATGAGAACA CATGGACACA GGGAGGGGAA CATCACACAC TGGGGCATGT CAGGGGATGT GGGCCTAGGG GAGGAACAGC ATTAGGAGAA ATACCTAATG TAGATGACAG GTTGATGAAT GCAGCAAACC ACCATGGCAC ATGTATACCT ATGTAACAAA CCTGCACGTT CTGCTCATGT ATCCCAGAAA TTAAAGTATA ATTTAAAAAA AGTTTAAAAAA AAGAAAGTTG CCTTAGTCAC ATAACTAGTA AGAGACATGG TTGGGAATTT GAACAGAGGC CAATCAGTTC CAAATCCATG CTCTTGATCA TTAAGCTGAA CTTATGGCAG GAACTTGGAA GACATGGTAA AATGGGGAAA AACGTGGAGC CAGGGAGACT TGTGAAAGTG CCAGTGCTCC CACTATACCC TGAAAGAAGT ATCTAGACTT ACTTTTTTCT AAGTCCTCTC CTCTAATTCT CTCAATCTCT CTCTCTCTTT CTCTAAGAGA TGGGAATGCT GCTCTGTCAC TCAGGCTAGA GTGCAGTGGT GCGATCATAG CTCATTGCAC TCAAGGAATC CTAGGGTCTA GTGCCCCTTC TCCCTCAGCC TCCCATGTAG CTAAGACTAC AGGCACATGC CCCAACCCTC GACTAATTTT TTTATTTTTT ATTTTTTGTAG AGACAGGATC TCACTATGTT GCTCAGGCTG TAATTCTGTC TTGAAGCTTG TCCAATCAGG CTTTCAGCCA CACCAATTCC CTGAGACTGC TCTCACCAGG GTCCTACACT TCACTAACAC AAACAGCCTA TTCTCCATCC TCATCTTACT TCACCAGGGA GCTCCTGGTT TTCCTCCTAC TTCACTGGCT ATTCTTCTG TATCATGTGT TGATTCTCCC TCATCTCCCC AACCTCCAAA CCCCTTGGAGT ACTCCAGAGA TCACCGCTTT GCTCTTCTGT GTCTAACCTC ACTAACTTGG TGGTCCAATT CACACTCTTG ACTTTGAATA CCATTTAAAT GCGAACGAAT TCTAAATTCT GTACAACCAG AACCATTCTC CTGTAGCCAA ATGCCTACTC AACATCTCCA TCCCCAAACA AATTTAGTTG TTCAATAAGC CTCTCATATT TTACATATCC CAAACTGAAC TTCTGAATTT CTCCTCCAAT CTGTAGGGCT CTTCCCACAG CCTTTCCATC TCAGIGGATT ATAACTCCAT CCTTCCAGTT ACTCAGACCA AAACTTTTGG AGTTAACTGA GACACCTCTC TTTTTTTCA CAAGTCATAT CCAATGTGTC AACAAATTTT GGTAGTGGAA ATATTGCGGG ATTTTTTAAG AAATCAGAGA GACCGATGGG GTTCAGGAGG ATATTTATTA TTTAGGTGCA CTGGCCAAGT

AAATTTTTC CCTITTATTT CTATTGACCT TTAGCCCTCA CAATGATTCC TACAAGCCCC ATTTCTGTAA ATGGGGATTG AAA'IAATTGC TGGACTTTTG AGAGATAGAT ATATTAAATT GCAAACTGGC AGTAGTGGGG GCAGTTGATA CATAACTAGG TTTTAAAGTC TAGCCTTCTG AGACCACTCA TTCCATTTGT GAAAAGTGAT TCTACTTCTT ATTATGAGCC AAAATATGCA TTCATTCACC CATGCATTGA TTTATTCATT CAATAAATAT TTGTTGGATG TCC/CTCTGT ATCAGGAATG TGCTAGGTTC TGGGAATACA GCAATGAACA AGGTAATTTT TCCCTACCCC TAACGAACTT AGAGTTTAGT GGGGAAGACA GACATTAAAC AAACAATTGT GCAAGTAATA
ATCTATAATT ATTTATTACA ATTAAAGGAA GGAAGAGACA TATGGATTAT GAGGGCATTA AAGAGGAGAC CTAGTGTAAG TAGCCAGTTC TCGTGAAGGG ACATGTATTA GTTGGAGTTC TCCAGAGAAA CAGAACCAAT 10 AATTGTCTCA CACAATTATG GAAGCTGAGA AGTCCCATGG CCTGCTGTCT ACGAGCTGAG AACCAGGAAA GCCAGTGGAA TACTTCAAAG TCCAAAGGCC CTGGAACCAA GAGTGCCAGT GTTGGAAGGC AGGAGAAGAT GGGTGTCCCA GCTTAAAAAAG ACAGTGAATT CACTCTTTTT GCTCTACATA GGGCCTCAAT GGGTTGGATC ATGGCCACCC ACA'TGGTGA AGGCAATCCT CTTAGTCTAC CAATTAAATA CTAATCTCTT TGGAAATACT CTCACAGACA CAC GAGAAA TAATGTTTTA TCAGGGTGAT AGAAATCTTC TGGAGTTAAA CAATGGTGAT AGCTGTACAA TCACATACAT TTTTAAAGGG TGCGTTTTAT GGAAAGTGAG TTTTATCTAA ATAAAATTTC 15 TAAGAAAGAG ACTIAACACA GAGATAAACA TAAGCACATT TATTGTCAAC CTTTATAGTG TTATGTCAAA
TAGGTCTGAC ATAAGCTTAA ATAAATATAT ACTTTAAAAA TTATAAAAATA TTCTCAATAA AACTCAAACA CAAACCACAC TGGTATTTCA CACAGCTAAT TTCTAATGCA GTTTACATAA ATATTTACAA CACITAAACA ATTTCAAAGA AAATAACACT GTATTCCATA CATAGCCTGA TCACAGTAGT 20 TGTTCTCTT TATTTCCCAG AGTTTTTCTG CCCCTTTAAA AGAACCTCTG CTGTTCTGAT CCTTATCACA TCTCTGTTTT GACIGTTGGC TTTGTTGTG CCAGTGTTCA GCCAGAACTT CTCTGAAACT TTTTTTTCAA CACATGCTAA GTTAATGGAA GTGTAGGAGA GTTTTGATTC TCACACTCCT CAAGGCTAGA GCAGCTTTGG CAATTACTGA CTGAGAATTT TTCATTGCCA GTGATCAACT GAAAACTGGA GATTCCTTTG GAATTGTTAA ATCTGCTTAT AAATAAACAT AAATGCTTGC TCACACAGGC ATTCCTCTCT TCCAGAGCAC CCTAACATAC AGAAGAAAAC AAATAGGGAA TAACTATTAG ACATCTTCAT TCGTTAAAAA TCTACCAGAT GACCTTTTTA
CATGGTGAGT TTCTATTGTG AATTTAAAAT CTTCCATAAT ATACAAGAAT TATGTTTACA TATCATATCT
GACAAACATC TTTGTAGGAA TGCAAAGCAC ATCCATCTTT CTGTATTCTT TTCCAACAAA GACATTCATA
AAATTATACC TTTGTGTGTT TGCATTATG CTTTTATTAG TTCAAAACGT TTGGCCTCAT GGAAGTTTTT
CATCATACAACC TTCCATTCAG TTTTTACTCT
CATCAGAGAAAAAA TATCTGACAA TATACAAACC TTCCATTCAG TTTTTACTCT CCAATTCTAC CATCTTTCA AAAAACAACT GTAGTAAAAA CACTCAGAAC TTTATTCTGG TTAACATCAT GCCTTGCTAG GGGACAATAG TTTCCCTTTT TGAAATAAAT TTAAAACAGA TGTAACATAA TTTGTTAATA
AACAATGAGG GGGAATCTA GAATAAGTAA CTTTTACCAT ATCATAGTTG ACAGCATTTA CAAGTTTTTT
AAGTCCCTAC CACACTTGTA TTGAATGAAG AAGTATGGAA GATTATAATA TATTCAATGC AAGTAAAAAT ATCACAATCC TTAAGAACTC TTTAAGAAGC ACTGAATCCC ATAGGGATGA AAGTGATTAA ATTGTGCATA GTAACCCTCG CACAGAGCAT TCAGTAGGAT TTGCACCATT AACAACCCTC CATGCATTTG CCTGTGGGCA TTCAACATCT GTCATTTTT TAAGTTATAA TATTTTTAGT CATTTTTTC CTCTAAACTC TGGATAATTA
TTATTCATTC TTATGACAGC AACTGTGTAA TCAGCTGTCG AAACACTGTG AAGGGCAAAA GAAAGAAAGC
CACAAAATAT TGTCTTTCTG TGCCAAGATT TTACAGCGAG CAAGGGAGAG TTAGAAAAGG AATTCTGAGA
TTTCAGAGTC TTGCTCTCTT CACCTTTGCT TGGAAGAAAA TATCCTTTCC CTTCATTAGC CAACACTTTC TTGATCCTGA GAGTAGGAAA GGGAACACTG AGTCTTTTCA GTTGAAGGCC GTCCTTGCCT GCTGGACTTT GATCTATTGA AGTCGTGATG GGTGTTGCGG TTTCAGCCAT AAAGGCATCT GGCATAGTAG GCAAGAAGGG CCAGAGACCC GAGGAGAGTT ATCTGTCTCT GTTAACTTCA GTGTATCCCT CTAGTTCCCC AGATGCACCT GTTTCTGTAA ATATAAACAT GCATGTCATC AGAACACTTA ATATTCTGCA TACTGATCAT GACAACAAAA TGTACCTTCT AACACAGACA CTCTCACTAG GATAGACCAT GTAGGAACAT CGAATTCTAT TCAGTTAGGA 45 CAGTGATGAT GTC1ACATAT TATACCTCTG TCAAAACCTA CAGAATATAC AACACAGCAC AGAGTGAATT CTAATGTAGC CTGTGGACAT TAATGAATAA TAATGTATCA ATATTGGCCC ATCAGTTGTA ACACTAATAT AAGATGTTAA TAAC'AGGGGG AATTGAAGGG GTGGTGGGGA GATATGTTGG AACTCTTTGT GCTTTCTGCT AGGAGGCTGA GGCAGGAGAA TTGCTTGAAC GCAGGAGGTG GAGGTTGCAG TGAGCCAAGA TCATGCCACT TAAGAAATAT AGTACCAGCC CCTATCTCAG AGTTCCTAGC TTAGAAAAAT TCCCAGAATA TAATAAGTGC AATGTAAGGG TCAGCTATCT TCATTATTAT TATCTATCAT AAATGAAATT ACACAATAAA GCTAGATCCG TTTCTTTCCT CTCCTTCTAC AAAAAATAAA GCAACTTTCC AGAACAATAC CCAGGTGATG ATTTCTCCCC TGCTCCCTCC CTAAGATATT GGCAAGTTTG GAGGGTTCAA GGAGAAACAG AGCATGTAGA GAAGATACCT CTCTCATAAC CATITGTGAT TTACAAGTCT TACCTGATTC TTTTGAACTT AAAGGATGTA AGAAGGCTTT
TGGTAGCTTC CATCTGATTC AAGGCTTTGG CAGCTGCTGT GGAATACATG AGAACACTAG GTAAAGCACT
GTCTTCCAAC ATGAAGAGAG AAAAATATGT GGAATGTTCA ATGCCATGCT TTGTATAAGA ATGCAACTTA
CCTGGCAGGA ACAAATTTCT TTGCTGCAAA AGAAAAGACA AACAACCATT AATTCAGACT AAATGACTTT TAAGGATATA TTAAATCCAG ATACAATATG ACTTAATTCA TCAAGTGTTG CAAACTCGAT GCTTCAGGGC 65 CTCTGTAATA ATCAGAGCAC AAGCATGGCT CTGTGGCATC TAGGGTAAAA TGCAAAGTGC ACAGCCATCC AAAGGGCATA GCAGCTTCCT AATGCCAGCA AATAGCTACG GGGTCATCTT GCCCAATTCATGAGA AGTCCAAAGT CTTAATTTAA ATGTGAGATT TCCTATTTTG TAAACGTCAG AACTTAACTC AAAAATGTTT TAACTACTC TAAACATGTA AGCCAAACAA ACCATGAGTG TAGTCAGATG TGCTTCCATA

AGGTTTCACC ATGTTGGTCA GGCTGGTCTT GAACTCCTGA CCTCAAATGA TCTGCGCACC TGGACCTCCC AAAGTGCTGG GAT ACAGAC TTGAGCTACT GCGCCGGGCT ATTTTGTGTT TTTAGTAAAG ACGGGGTTTC ACCATGTTGT CCACGCTGGT CTCAAACTCC TGACCTCAAG TGATCCGCTC GCCTCAGGCC CTCAAAGTGC TGGGATTACA GGAGTGAGCC ACCATGCCTG GCCATAAAAC TGCCCTTTGT TAATATGACT GTTGGCCTGC ACATTGTCAA ATCCAGTGGC ATTCATCTTA CTCGGCCAAC CTACGGCATT TGACACTGTC TGTCTTTCCT TCTGTTCCTC TATCTGTTTC CAGTATACTG GCCTGGCTTT CTTTTTACCT CTTTTATATG CTCTTCCAGT CTCAGGCTCC TTTGGGGATT TGAAGGTATG TTGCATTTTG CTATTCAATG AATAATGACA AGTAATGATC ACTTAAGACA TTAAGTGGTC AGTTCCTTTA CTAGGATAAA AATAATTTTC TTCCCAACAT GGGGCATATT CCATTTCCAG TCTGACTGTT CTGTGTAATC TTTGTATTCC TTGGCAGCCC CTTTTATATC AGTTCATCTA CTGTGCAGGA AAT.GGACAA ACATTTGCAC TGGTATAACC AAATACAGTT GAACTTTTGG CTTGACTCTT 10 AGCTGAACTC ACCAAAAATA ATTTCTGTAA GAGACTGAGA CGTCTACGAG TAGGTTTTTC AGAATTAGTA AACATAAATC AAGGATACAC AGGTAGATTT GAATTTCAGA TAAACAACAA ATACTTTTTT AGTATGTCTA CTGAAATATT TGTATCTTAT CTGGCAATTC TACCTGGTAC AGAACTAATC CATTCTCTTG AAAGATCTTG ACTCTGTAAT AAGTTCTTTG GTGATGGAAG GGAGGTATTT CTGTAATTAG AGTCACTGTC TTCCTCCCAGTTTTTTTATCC TGGCCCAGAT CTGCAATGAA CACACGACAG AATCCAGGGG GGATGAAGAT GGGTGCTTTG CAGGAAAAAA AAA'TTAAAAA CATCTGAAAA AGCTTTTGTA CTAAAAGAAT GTGATCTAAA AAAGAAAGCA GGAGAACTTT CTGTCTGCAC TTTACATCAG AACAACCTTG GCGTCTAGAA GCTGTGCCCT GTGGGAAGTG 20 GTGGTGCTTG GTAAGAGATG CCAGGACCAG TGGTACCCAC TGGGAGCACT GCCAATACCC AGCAAGGAGC ATGGTGCAC AGTAAGGCAT TGCACTGTGA TTCAGCATAA AATAACAATA AGGGAACGTC ACGGAGAAAA GGCCAGACTT CCTTTGTTTA GAATGTGGGA AATGTCTTCT GAAAAATGGT AGTAAAAAAG CATGCTTGGA TGGTCCACTC CAGCCAAAAC TGACTAATCG GGGGTCAGGG ATACAACCCC TGCATCATAT GTTTGTTTCT GTTGGGCTGA CATCIAGGTTC ACTGTGACCA CTGTGGTTTA ACCCCATAGT CTCCTGGAAA TACAGCCAGG 25 TCAAGAGAGC TCCACATAAA ACATAATCAA AAAAATAAAC TCAAGTTTCC ACTGATCAGC TTTTCACAAC TCTTATCCTT TCACIAACTT TGGAGCAAGA TTTGAGAATT GGATGGCTAT TTGAGGGCTA TTTCTGCGCT
TTAGTTCAAT GTT1TGTTCT TTCTTTATTA GAGAACTATG GTTTTTATT ATATTTACAC TTTAAGTTCT
AGGGTACATG TGCACAACGT GCAGATTTGT TACACAGGTA TAAATGTGCC ATGTTGGTTT GCTGCACCCA TCAACTCGTC ATTTACATTA GGTATTTCTC CTAATGCTAT CCCTCCCCCA GTCCCCCACC CCCCGACAGG 30 CCCTGGTGTG TGATGTTCCC CTTCCTGTGT CCAAGTGTTC TGTTTATGTG ATAGATTACG TTTATTGATT TGTGTATGTT GAACCAGCCT TGCATCACAG TCACTTGCTT ACAAGAAACA AACACTTCAC AGATGGATCA GCTGGCGCC AGTGGTGCGA TCTTGGCTCA CTGTAACCTC TGCCACCTGG GTTCAAGCAA TTCTCCTGCC TCAGCCTCCC AAGTGGCTGG GATTACAGGC ACCTGCCACT GTCTCCGGCT AATTTTTGTC TTTTTAGTAG ATGCCAGTTT TCACAAGTGT CTATAGAACA TGTAATTTAG ATAGGTAAGA TGAAATTTTG ATAATATTTG ATGGCAAATT TAAA.CAGGTA TACAACAAAA ATAAAATTCT AAGCCCCTCA ACCAACTGAA TGGACTCCTT CTCTCAGCCA AAGCAATACC AAAGTAAACC TGAAAAACTA GTTTTGGCCA GGATTGGGGG TAGGTGGGGG AAGCCCAACA TGACTCATTA TTCTCTCCTC CCTTTGGAAT TCAGGCACAA CTGAATGTCA GCATTGACAC TAAAACACAG ATCITAAGAC TGACAAGCCA GACTCTTTGT AGCAGAGAGC CAGGCCCTGG AAGAAATCAA GTTATTTTAT CCCAAAAAAT ATTTCTTTGA TATATTTTCA AATGGCCCTG CAAAGCTGTC TCTTGTGGGG AAAATTGACA TGCTGTACAG AATTTCCTTC TCTTTCCAAG TTTTTACTGA TCCAGGAGAG ATTTAACTAA GAGGCTAGCA TGT TTTTTT TTTTTTTTT TGAGGCGGAG TCTTGCTCTG TTGCCCAGG TGGAGTGCAG TGGAGTGCAG TCAGCTGGGA TCACACCTCC CCTCCCGGGT TCAAGCGATT CTCCTGCCTC AGCTTCCCGA GTAGCTGGGA TTACAGATCC ATGCCACTAT GCCCAGCTAA TTTTTGTATT TTTTGTAGAG ACAGGGTTTC 45 ACCATGTTGG CCACGCTAGT ATTGAACTCC TGACCTCGTG ATCCGCCCAC CTCGGCCTCC CAAAGTGCTG 50 GCATTACAGG CGTGAGCCAC CGTGCCCAGC ACAAGACATT TACCGTCTAT TCTCTCTGAA GCTACTATCT AGAGGCTTCA TCA/CATAAT AAGACCCTTG GTCTCCACAA CTCCTTATCT TATCCTATTA GTTTCTACTG ATTCCAGGTC TTTAGATAAT AACAACTCTT TCAACCAATT GCCAATCAGA AAGTCTTTGA ATCCACCTAT GACTTAAAAG CCCCACTCCT TCAAGTTATC CCGCCTTTCT GGACTGAACC AATGTACACC TTATATGTGT TGATGGATAT CTGC'CTGTAA CTTCCATTCC CCTAAAATGT ATAACATCAA GCTGTAACCC AACCACCTTG GGCACATGTT TTCAGGAACT CATGAGACTG TGTTGCAGAC CTTGGTCACT CATATTTGGC TCACAGTAAA CTTCTTTAAA TATTGTATAG AGTTTGGCTT TTTTCATTGA CACAGGAAAA ATAAAGAATT GGAAGGTCTT TCATCAGTCA CTGAGCCAGC TTCATATCTG ACTGAGGTCA TACAGTTCAG TGATTTGTAG CTTTGCTACT TAGATTGCTA TCCATTATCT AGAAGCATCA GGATCACGTG GGACCTATTG GAAATGCAGA CTTTCCTCCT AGAACCCAGG ACC TGGAAT ATTCTTGGCA CATAGTAGGT GCTCAATACA TATTGAACTC CTAGGTGCAA TTCATTAATT CATGAATTAA TGAATTAACA CGCTCTCAAA GTTTAGTGCT TTTTCACAGA CTAGTCTTTC TGCCTCTTAA GCACTCAGCT CACCACGCTT CCAGTCTCAC TCCCCTATTA GTCTGATTAA AATCTGCTTA 60 CATGTGAGTC TGAGATCAAG TGTTATCTCT TCTGAGAAGT CTTCCCTCAC TGGCCCAAAG GAATTTCTCC TCTATTTTAG CACIGTCCCA GTTGACTTGT CATTATTCTA GTCTTTTTCA TATTAGTTGT TTTTCATATA TATGTTATTA AGGAAACTAG TCATTTCCCC TAATAGAACA AAATTGCTGG CCTTTGGGGT TGGCAATGGA GGGGAGGCTC TTC1TGAAAA GGGGGAAGAG TGTTCTCCTA ATATTTTTCT TACGAGATTT ATGTTGCTCA TCTTTAGCCT TTAGTCCCCC ATTGCCTGCC TACAGTTGGC AGAGACCATC TGTTCTCTCA CTGTCAGGAA CTGTCTCAAT TCTTGAAGTT CAGAGTCAAA AAAGAAGCAA GTTTTCCTAG CTCTTTGATC AACTTTCAAA GTTTTACTTC CATTIGAAAA TTTACTAAGT CACCAGGAGA TGGTTTATAC TGAGAAATAT CCACTCATAC

AGCATGTGTT GAAAAAAAA GTTTCAGAGA AGTTCTGGCT GAACACTGGC AACGACAAAG CCAACAGTCA AAACAGAGAT GTG/.TAAGGA TCAGAACAGC AGAGGTTCTT TTAAAGGGGC AGAAAAACTC TGGGAAATAA

TCAGACCTAT TTGACATAAC ACTATAAAGG TTGACAATAA ATGTGCTTAT GTTT-3'(FRAG.NO:)(SEQ.ID NO:2479)

5'-CCT TGC CTG CTG G-3' (FRAG. NO: 1739) (SEQ. ID NO: 1752)

5'-GTT GTC CC-3' (FRAG. NO: 1740) (SEQ. ID NO:1753)

5'-GTT CTT GGC TTC "TC TGT C-3' (FRAG. NO:1080) (SEQ. ID NO:1088)

5'-GGC TGG TGG-3' (F RAG. NO:1083) (SEQ. ID NO:1092)

5'-CGT TGG CTT CTC (FTT GTC CC-3' (FRAG. NO:1081) (SEQ. ID NO:1089)

5'-TGT GGG CTT CTC '3TT GTC CC-3' (FRAG. NO:1082) (SEQ. ID NO:1090)

5'-CCC TTC GGG GGC TGG TGG-3' (FRAG. NO:1083) (SEQ. ID NO:1091)

5'-GGC CGT CCT TGC CTG CTG G-3' (FRAG. NO:1084) (SEQ. ID NO:1093)

Human P Selectin Fragments

TTT CTT TTC-3' (FRAG. NO: 1741) (SEQ. ID NO: 1754)

5'-TCC TTT CTT TTC-3' (FRAG. NO: 1742) (SEQ. ID NO: 1755)]

5'-CTC CTT TT-3' (FRAG. NO:1743) (SEQ. ID NO:1756)

5'-TTT TCT CTT TCG (TT TCT TTT CGT CTC CTG TTC CTC CTT TT-3'(FRAG.NO:1085)(SEQ. ID NO:1094) 5'-TTG CTG TTT TTT (TC CTT CTT CTC TCT TTT CTT TTC-3' (FRAG. NO:1086) (SEQ. ID NO:1095)

Human Endothelial Monocyte Activating Factor

Nucleic Acid & Antisense Oligonucleotide Fragments

TTT CTT TTC-3' (FRAG. NO: 1744) (SEQ. ID NO: 1757)

5' -CC TTT CTT TTC (I'RAG. NO: 1745) (SEQ. ID NO: 1758)

5'-CTG TTC CTC CTT "T-3' (FRAG. NO:1746) (SEQ. ID NO:1759)

5'-TTT TCT CTT TCG ('TT TCT TTT CGT CTC CTG TTC CTC CTT TT-3'(FRAG.NO:1087)(SEQ. ID NO:1096)

5'-TTG CTG TTT TTT ('TC CTT CTT CTC TCC TTT CTT TTC-3' (FRAG. NO:1088) (SEQ. ID NO:1097)

Human IL3* Nucle c Acid and Antisense Oligonucleotide Fragments

GGB GTT GGB GCB GGB GGB GGB GGC GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC (FRAG. NO: 1747) (SEQ. ID NO: 1750)]

5'-G GBG GCB CTC-3' (FRAG. NO: 1748) (SEQ. ID NO: 1761)

5'-GT GGG GCT CTG-3 (FRAG. NO:1749) (SEQ. ID NO:1762)

HUMIL3AAS1: 5'-CTC "GT CTT GTT CTG GTC CTT CGT GGG GCT CTG-3' (FRAG.NO:1089)(SEQ.ID NO:1098) HUMIL3AAS2: 5'-TGT (CGC GTG G GTG CGG CCG TGG CC-3' (FRAG. NO:1090) (SEQ. ID NO:1099)

GGC GGB CCB GGB GT T GGB GCB GGB GGB GGB GGG GGC GGC TCB TGT TTG GBT CGG CBG GBG GCB CTC (FRAG. NO:1091) (SEQ. ID NO:1100)

Human IL3 Recept or Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TCT GGG GTG TCC TGG CCT TCG TGG TTC CTC TTC CTT CGT TTG CCG TCC GCG GGG GCC CCC GGG CCT TC CTC CTG GTC GC3 CTT GTC GTT TTG GGG CCG GCT TTG CCC GCC TCC CGG CGC CTG GCC CGG CC TTC CTG GGC TGC GTG CFC GTT CTG TTC TTC CTG GCT CTG GGG TGT CCT GGC CTT CGT GGT TCC TCT TCC

- TTC GTT TGC CGT CCG CGG GGG CCC CCG GGC CT GGC TGC GCT CCT GCC CCG CCT CTT TCC CGG GCT CTT GGA GAC AGG GCA CGG CGA TCA GGA GCA GCG TGA GCC AAA GGA GGA CCA TCG GGA ACG CAG CTC CGG AAC GCA GGA CAG AGG TGC C GC BGG BGB CBG GGC BGG GCG BTC BGG BGC BGC GTG BGC CBB BGG BGG
- BCC BTC GGG BBC GCB GCT CCG GBB CGC BGG BCB GBG GTG CC-3' (FRAG. NO: 1750) (SEQ. ID NO: 1763)

GBG GTG CC-3' (FRAG. NO: 1751) (SEO. ID NO: 1764)

- 5'- GCC CCG C-3' (FRAG. NO:1752) (SEQ. ID NO:1765)
- 5'-TCTGGGGTGTCCTG (FRAG. NO:1092) (SEQ. ID NO:1101)
- 5'-GCCTTCGTGGTTCC (FRAG. NO:1093) (SEQ. ID NO:1102)
- 55 5'-TCTTCCTTCGTTTGC (FRAG. NO:1094) (SEQ. ID NO:1103)
 - 5'-CGTCCGCGGGGCCCCCGGGCCT (FRAG. NO:1095) (SEQ. ID NO:1105)
 - 5'-GGC TGC GCT CCT GCC CCG C (FRAG. NO:1096) (SEQ. ID NO:1104)

- 5'-CTCTTTCCCGGGCTCTT (FRAG. NO:1097) (SEO. ID NO:1106)
- 5'-GCGCTGGGGGGTGCTCC (FRAG. NO:1098) (SEO. ID NO:1107)
- 5'-CGTGTGTTTTGCGCC'CTCCTCCTGGTCGC (FRAG. NO:1099) (SEQ. ID NO:1108)
- 5'-GCTTGTCGTTTTGC (FRAG. NO:1100) (SEQ. ID NO:1109)
- 5 5'-GGCCGGCTTTGCCCGCCTCCC (FRAG. NO:1101) (SEQ. ID NO:1110)
 - 5'-GGCGCCTGGCCCGGCC (FRAG. NO:1102) (SEQ. ID NO:1111)
 - 5'-TTCCTGGGCTGCGT'GCGC (FRAG. NO:1103) (SEQ. ID NO:1112)
 - 5'-GTTCTGTTCTTCTTCCTGGC (FRAG. NO:1104) (SEQ. ID NO:1113)
 - 5'-GCB GGB GBC BGG GCB GGG CGB TCB GGB GCB GCG TGB GCC BBB GGB GGB CCB TCG GGB BCG CBG CTC
- 10 CGG BBC GCB GGB 5' CBG BGG TGC C (FRAG. NO:1105) (SEQ. ID NO:1114)

Human IL-4 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CTC TGG TTG GCT TCC TTC GCC GGC BCB TGC TBG CBG GBB GBB CBG BGG GGG BBG CBG TTG GGB GGT GBG BCC CBT TBB TBG GTG TCG B-3' (FRAG. NO: 1753) (SEQ. ID NO: 1766)

5'-GCC GGC BCB-3' FRAG. NO: 1754) (SEQ. ID NO: 1767)

15 5'-T TCC TTC-3' (FRAG. NO:1755) (SEQ. ID NO:1768)

5'-CTC TGG TTG GCT TCC TTC-3' (FRAG. NO:1106) (SEQ. ID NO:1115)

5'-GCCGGCBCBTGCTEGCBGGBBGBBCBGBGGGGBBGCBGTTGGGBGGTGBGBCCCBTTBBTBGGTGTCGB-3' (FRAG. NO:1107) (SEQ. ID NO:1116)

Human IL4 Receptor Nucleic Acid and Antisense Oligonucleotide Fragment

- GTC GGC TGG CTG CTG CTT CGG GCC GCC TGG GCT TCC CTG TGC CCC TTT CCT CTG GGT CCC CCT CCC GTT CCA AGC TGC ACC GCA CAG ACC GGC GCT ACA GGA CAG AGC CAG GCA AGC ACC CAT GGG GAT CCA GGC CCA GCT GTT CCB BGC TGC BCC GCB CBG BCC GGC GCT BCB GGB CBG BGC CBG GCB BGC BCC CBT GGG GBT CCB GGC CCB GCT G -3'(FRAG. NO: 1756)(SEQ ID NO:1769)
 - 5'-TCTGCGC-3' (FRA G. NO: 1757) (SEQ ID NO: 1770)
- 30 5'-CCT GCT CCT GGG G (FRAG. NO:1758) (SEQ. ID NO:1771)
 - 5'-TCTGCGCGCCCCTC CTCC (FRAG. NO:1108) (SEQ. ID NO:1117)
 - 5'-CGCCCGGCTTCTCI (FRAG. NO:1109) (SEQ. ID NO:1118)
 - 5'-CGTGTGGGCTTCG(; (FRAG. NO:1110) (SEQ. ID NO:1119)
 - 5'-CCCCGCGCCTCCGTTGTTCTC (FRAG. NO:1111) (SEQ. ID NO:1120)
- 5'-TGCTCGCTGGGCTTG (FRAG. NO:1112) (SEQ. ID NO:1121)
 - 5'-GGTTTCCTGGGGCC'CTGGGTTTC (FRAG. NO:1113) (SEQ. ID NO:1122)
 - 5'-TCTGCCGGGTCGTTTTC (FRAG. NO:1114) (SEQ. ID NO:1123)
 - 5'-GGGTGCTGCCG (FRAG. NO:1115) (SEO. ID NO:1124)
 - 5'-CTTGGTGCTGGGGCTCC (FRAG. NO:1116) (SEQ. ID NO:1125)
- 40 5'-GGCGGCTGCGGGCTGGGTTGGG (FRAG. NO:1117) (SEQ. ID NO:1126)
 - 5'-CTTGGCTGGTTCCTGGCCTCGGG (FRAG. NO:1118) (SEQ. ID NO:1127)
 - 5'-CCTCCTCCTCCTCCTCGCTCCCTTTTTCTTCCTCT (FRAG, NO:1119) (SEQ. ID NO:1128)
 - 5'-TCCCTGCTGCTCTC (FRAG. NO:1120) (SEQ. ID NO:1129)
- 5'-TGCCCTCCCTCCCTCGG (FRAG. NO:1121) (SEQ. ID NO:1130)
- 45 5'-GGTGCCTCCTTGGCCCCTGC (FRAG. NO:1122) (SEQ. ID NO:1131)
 - 5'-GGCTGCTCCTTGCCCC (FRAG. NO:1123) (SEQ. ID NO:1132)
 - 5'-CTCTGGGTCGGGCTGGC (FRAG. NO:1124) (SEQ. ID NO:1133)
 - 5'-GGGGCGTCTCTGTC'C (FRAG. NO:1125) (SEQ. ID NO:1134)
 - 5'-CTGGCCTGGGTGCC (FRAG. NO:1126) (SEQ. ID NO:1135)
- 50 5'-GCCTCTCCTGGGGCGGTGGCTCCCTGTCC (FRAG. NO:1127) (SEQ. ID NO:1136)
 - 5'-CCTTTTCCCCCGGCTCC (FRAG. NO:1128) (SEQ. ID NO:1137)
 - 5'-GTGGGGGCTTTGGC (FRAG. NO:1129) (SEQ. ID NO:1138)
 - 5'-GGG GGT CTG TGG CCT GCT CCT GGG G (FRAG. NO:1130) (SEQ. ID NO:1139)
 - 5'-AGGGGTCTGGGGCCCTC (FRAG. NO:1131) (SEO. ID NO:1140)
- 55 5'-TTTTGGGGGTCTGC CTTG (FRAG. NO:1132) (SEQ. ID NO:1141)
 - 5'-GCCTGGCTGCCTTCC (FRAG. NO:1133) (SEQ. ID NO:1142)
 - 5'-GGGGCCTGCCGTGGGGC (FRAG. NO:1134) (SEQ. ID NO:1143)
 - 5'-TGTCCTCTGTTGCTCCCCTT (FRAG. NO:1135) (SEQ. ID NO:1144)
 - 5'-TGCCTGCTGTCTGG (FRAG. NO:1136) (SEQ. ID NO:1145)
- 60 5'-GGTTCCCGCCTTCCCT (FRAG. NO:1137) (SEQ. ID NO:1146)

5'-GTT CCC AGA GCT TGC CAC CTG CAG CAG GAC CAG GCA GCT CAC AGG GAA CAG GAG CCC AGA GCA AAG CCA CCC CAT TGG GAG ATG CCA AGG CAC CAG GCT G (FRAG. NO:1138) (SEQ. ID NO:1147)
5'-GTT CCC BGB GCT TGC CBC CTG CBG CBG GBC CBG GCB GCT CBC BGG GBB CBG GBG CCC BGB GCB BBG CCB CCC CBT TGG GEG BTG CCB BGG CBC CBG GCT G-3' (FRAG. NO:1139) (SEQ. ID NO:1148)

5 Human IL5* Nucleic Acid and Antisense Oligonucleotide Fragments

5'-TCCCTGTTTC CCCCCTTTCG TTCTGCGTTT GCCTTTGGCG TTTTTTGTTT GTTTCTCT TCCGTCTTTC TTCTCCCCT GTGGGB3TTT CTGTGGGGBT GGCBTBCBCG TBGGCBGCTC CBBGBGCTBG CBBBCTCBBB TGCBGBBGCB TCCTCBTGGC TCTGBBBCGG TGGGAATTTC TGTGGGGBTG GCATACACGT AGGCAGCTCC AAGAGCTAGC AAAC `CAAAT GCAGAAGCATC CTCATGGCTC TGAAACG-3' (FRAG. NO: 1759) (SEQ. ID NO:

10 1772)

5'-GCC CCG GG-3' (FRAG. NO: 1760) (SEQ. ID NO: 1773) 5'-G GGT TTC T-3' (FRAG. NO: 1761) (SEQ. ID NO: 1774) 5'-GTG GGG BTG GC-3' (FRAG. NO: 1762) (SEQ. ID NO: 1775) 5'-CCB BGB GCT BGC-3' (FRAG. NO: 1763) (SEQ. ID NO: 1776)

- 5'-TCC CTG TTT CCC CCC TTT-3' (FRAG. NO:1140) (SEQ. ID NO:1149)
 5'-CGT TCT GCG TTT GCC TTT GGC-3' (FRAG. NO:1141)(SEQ. ID NO:1150)
 5'-GTT TTT TGT TTG T'TT TCT-3' (FRAG. NO:1142)(SEQ. ID NO:1151)
 5'-CTC TCC GTC TTT CTT CTC C-3' (FRAG. NO:1143) (SEQ. ID NO:1152)
 5'-CCT CCT GCC TGT GTC CCT GCT CCC C-3' (FRAG. NO:1144) (SEQ. ID NO:1153)
- 5'-GAG GGT TTC TGG CTT CCT CTC T-3' (FRAG. NO:1145) (SEQ. ID NO:1154)
 5'-TGT CTC TCT GTC (CTT TTG TT-3' (FRAG. NO:1146) (SEQ. ID NO:1155)
 5'-TGT TGT GCG GCC TGG TGC CCT GCC CCG GG-3' (FRAG. NO:1147) (SEQ. ID NO:1156)
 5'-GTG GGA ATT TCT GTG GGG BTG GCA TAC ACG TAG GCA GCT CCA AGA GCT AGC AAA CTC AAA TGC AGA AGC ATC CTC ATG GCT CTG AAA CG-3' (FRAG. NO: 1764) (SEQ. ID NO: 1777)
- 25 5'-GTG GGB BTT TCT 5TG GGG BTG GCB TBC BCG TBG GCB GCT CCB BGB GCT BGC BBB CTC BBB TGC BGB BGC BTC CTC BTG GCT CTG BBB CG-3' (FRAG. NO:1148) (SEQ. ID NO:1157)

Human IL-5 Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

5 5'-TTCCTTTGCTCTTG-3' (FRAG. NO:1150) (SEQ. ID NO:1159)
5'-GTGTGTCTTTGCTCT-3' (FRAG. NO:1151) (SEQ. ID NO:1160)
5'-GCCCTGCCTCTCTC C-3' (FRAG. NO:1152) (SEQ. ID NO:1161)
5'-CT CBGTGGCCCC (BBBBGGBTG BGTBBTBCBT GCGCCBCGBT GBTCBTBTCC TTTTTBCTBT GBGG (FRAG. NO: 1768) (SEQ. ID NO: 1781)

40 Human IL-6 Receptor Fragments

- 55 5'-GGCCBGCBGG-3' (FRAG. NO:1186) (SEQ. ID NO:1195)
 - 5'-GCBGCCBGCBGCG-3' (FRAG. NO: 1770) (SEQ. ID NO: 1783)
 - 5'-C GCBGCCGBCGGCC -3' (FRAG. NO: 1771) (SEQ. ID NO: 1784)
 - 5'-GGGGGTGGCTTCC'IGCC3'- (FRAG. NO:1153) (SEQ. ID NO:1162)
 - 5'-GCGTCTCTGGGCCGTCCC-3' (FRAG. NO:1154) (SEQ. ID NO:1163)


```
5'-GTCCCTCGGCCCCCCCGCGCTCGGCTCCTCTCCC-3' (FRAG. NO:1155) (SEQ. ID NO:1164)
     5'-TCTGGCCCGGCTC-3' (FRAG. NO:1156) (SEQ. ID NO:1165)
     5'-GGGGCGGGGGGGGGGGGGGGC-3' (FRAG. NO:1157) (SEQ. ID NO:1166)
     5'-GGCGCTGCCCTGCGC-3' (FRAG. NO:1158) (SEQ. ID NO:1167)
    5'-GCGGCGCTGGCCCC'-3' (FRAG. NO:1159) (SEQ. ID NO:1168)
     5'-TGCTGGCCGTCGGCTGCGCTGCTGCCCT-3' (FRAG. NO:1160) (SEQ. ID NO:1169)
     5'-GCTGGCCGCGCGGG-3' (FRAG. NO:1161) (SEQ. ID NO:1170)
    5'-GCCTGTCCGCCTCTGCGGG-3' (FRAG. NO:1162) (SEQ. ID NO:1171)
5'-CGCTGTCTCCTGGC-3' (FRAG. NO:1163) (SEQ. ID NO:1172)
5'-TTGTCTTCCGGCTCT-3' (FRAG. NO:1164) (SEQ. ID NO:1173)
5'-TCTGCTGGGGGTGGG-3' (FRAG. NO:1165) (SEQ. ID NO:1174)
     5'-GCTGGGCGGCCGGCCCGGT-3' (FRAG. NO:1166) (SEQ. ID NO:1175)
     5'-GCTGGGGCTCCTCGGGGGG-3' (FRAG. NO:1167) (SEO. ID NO:1176)
     5'-GGGGGCTCTTCCG(i-3' (FRAG. NO:1168) (SEQ. ID NO:1177)
    5'-GCTGTCTCCCTCCGGG-3' (FRAG. NO:1169) (SEQ. ID NO:1178)
     5'-GCGGGGGTTTCTGGCC-3' (FRAG. NO:1170) (SEQ. ID NO:1179)
     5'-GTGGGGGTCTTGCC-3' (FRAG. NO:1171) (SEQ. ID NO:1180)
     5'-TGGCCTCCGGGCTC'C-3' (FRAG. NO:1172) (SEQ. ID NO:1181)
     5'-TGCTTGTCTTGCCTTCCTTC-3' (FRAG. NO:1173) (SEQ. ID NO:1182)
    5'-TCTGGTCGGTTGTCGCTCG-3' (FRAG. NO:1174) (SEQ. ID NO:1183)
    5'-GGGCTCCGTGGGTCCCTGGC-3' (FRAG. NO:1175) (SEQ. ID NO:1184)
     5'-GCCCGTTTGTGTTTTGTC-3' (FRAG. NO:1176) (SEQ. ID NO:1185)
     5'-TTTTCCCCTGGCGT-3' (FRAG. NO:1177) (SEQ. ID NO:1186)
    5'-CCCTGTGCCCCTCTCCTCCTCCTCTCTCTCTC-3' (FRAG. NO:1178) (SEQ. ID NO:1187)
    5'-GCTCTCCTTTGTGGG-3' (FRAG. NO:1179) (SEQ. ID NO:1188)
    5'-GCCCTCCCTGCTGCT-3' (FRAG. NO:1180) (SEQ. ID NO:1189)
    5'-CTTGGTTTTGGGCT-3' (FRAG. NO:1181) (SEQ. ID NO:1190)
    5'-TTTTTTCTCTCCTCCTTTTTC-3' (FRAG. NO:1182) (SEQ. ID NO:1191)
    5'-GTGCGTGGGCCTCC'-3' (FRAG. NO:1183) (SEQ. ID NO:1192)
    5'-GCACGCCTCT TGCCACCTCC TGCGCAGGGC AGCGCCTTGG GGCCAGCGCC GCTCCCGGCG CGGCCAGCAG
     GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCCT CCTCGGCTAC CACTCCATGG TCCCGCAGAG
     GCGGACAGGC-3' (FRAG. NO:1185) (SEO. ID NO:1194)
     5'-GCBCGCCTCT TGCCBCCTCC TGCGCBGGGC BGCGCCTTGG GGCCBGCGCC GCTCCCGGCG CGGCCBGCBG
     GGCBGCCBG CBGCGCGBG CCGBCGGCCB GCBTGCTTCC TCCTCGGCTB CCBCTCCBTG GTCCCGCBGB
35
     GGCGGBCBGG C-3' (FRAG. NO:1187) (SEQ. ID NO:1196)
     Human IL-6 Nucleic Acid and Antisense Oligonucleotide Fragments
     5'-GGGGGTGGCT TCCTGCCGCG TCTCTGGGCC GTCCCGTCCC TCGGCCCCGC GCCGCGCTCG GCTCCTCTCC
     GCTGGCCGTC GGCTGCGCGC TGCTGGCTGC CCTGCTGGCC GCGCCGGGGC CTGTCCGCCT CTGCGGGCGC
     40
     GCCTCCGGGC TCCTGCTTGT CTTGCCTTCC TTCTCTGGTC GGTTGTGGCT CGGGGCTCCG TGGGTCCCTG
    45
     CGGCCAGCAG GGCAGCCAGC AGCGCGCAGC CGACGGCCAG CATGCTTCCT CCTCGGCTAC CACTCCATGG
     TCCCGCAGAG GCGGACAGGC GCBCGCCTC TTGCCBCCTC CTGCGCBGGG CBGCGCCTTG GGGCCBGCGC CGCTCCCGGC GCGGCCBGCB GGGCBGCCBG CCBCGCCCB GCBTGCTTCC TCCTCGGCTB
     CCBCTCCBTG GTCCCGCBGB GGCGGBCBGG C-3' (FRAG. NO:1772) (SEQ. ID NO:1785)
     5'-GGGGCBGG-3' (FRAG. NO:1773) (SEQ. ID NO:1786)
     5'-GBBGGCBG CBGGC 3' (FRAG. NO:1774) (SEQ. ID NO:1787)
     5'-CCBGGBGCBG CCCC-3' (FRAG. NO:1775) (SEQ. ID NO:1788)
     5'-BGGG BGBBGGCBBC-3' (FRAG. NO:1776) (SEQ. ID NO:1789)
     5'-GCT TCT CTT TCG 'TC CCG GTG GGC TCG-3' (FRAG. NO:1188) (SEQ. ID NO:1197)
    5'-GTG GCT GTC TGT GTG GGG CGG CT-3' (FRAG. NO:1189) (SEQ. ID NO:1198)
     5'-GTG CCT CTT TGC 'TGC TTT C-3' (FRAG. NO:1190) (SEQ. ID NO:1199)
     5'-GAT TCT TTG CCT 'TTT TCT GC-3' (FRAG. NO:1191) (SEQ. ID NO:1200)
     5'-CTCCTGGGGG TBCTGGGGCB GGGBBGGCBG CBGGCBBCBC CBGGBGGCBC CCCBGGGBGB BGGCBBCTGG BCCGBBGGCG
     CTTGTGGBGB BGGBGTT: DBT BGCTGGGCTC CTGGBGGGGB GBTBGBGC-3' (FRAG., NO:1777) (SEO.ID NO:1790)
```

60 Human Monocyte-derived Neutrophil Chemotactic Factor

Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGGGTGGBBB GGTTTGGBGT BTGTCTTTBT GCBCTGBCBT CTBBGTTCTT TBGCBCTCCT TGGCBBBBCT GCBCCTTCBC BCBGBGCTGC BGBBBTCBGG BBGGCTGCCB BGBGBGCCBC GGCCBGCTTG GBBGTCBTGT TTBCBCBCBG TGBGBTGGTT CCTTCCGGGC TTGTGTGCTC TGCTGTCTCT TGGTTCCTTC CGGTGGTTTC

- TTCCTGGCTC TTGTCCTTTC TCTTGG CCCT TGGC-3' (FRAG. NO:1778) (SEQ. ID NO: 1791)
 - 5'-GGBGT BTG-3' (FRAG. NO:1779) (SEQ. ID NO: 1792)
 - 5'-GCBCTGBCBT CT-3' (FRAG. NO:1780) (SEQ. ID NO:1793)
 - 5'-CCG GTG G-3' (FRAG. NO:1781) (SEQ. ID NO: 1794)
 - 5'-GG CCC TTG GC-3' (FRAG. NO:1782) (SEQ. ID NO: 1795)
- 5'-GCT TGT GTG CTC 'IGC TGT CTC T-3' (FRAG. NO:1192) (SEQ. ID NO:1201)
 - 5'-TGG TTC CTT CCG GTG GTT TCT TCC TGG CTC TTG TCC T-3' (FRAG. NO:1193) (SEQ. ID NO:1202)
 - 5'-TTC TCT TGG CCC TG GC-3' (FRAG. NO:1194) (SEQ. ID NO:1203)
 - 5'-GGGGTGGBBB GGTTTGGBGT BTGTCTTTBT GCBCTGBCBT CTBBGTTCTT TBGCBCTCCT TGGCBBBBCT GCBCCTTCBC BCBGBGC-3' (FRAG. NO:1783) (SEO. ID NO: 1796)
- 15 Human Neutrophil Elastase (Medullasin) Nucleic Acid and Antisense Oligonucleotide Fragments
 - 5'-GGGCTCCCGC CG:JGBGBGGT TBTGGGCTCC CBGGBCCBCC CGCBCCGCGC GGBCGTTTBC BTTCGCCBCG CBGTGCGCGG CCGI-CBTGBC GBBGTTGGGC GCBBTCBGGG TGGCGCCGCB GBBGTGGCCT CCGCGCBGCT GCBGGGBCBC CBTGBBGGGC CBCGCGTGGG GCCGCGCTCG CCGGCCCCCC BCBBTCTCCG BGGCCBGCGC GGTGCCCCC BGCBGCBGG CCGGCBGGBC BCBGGCGBGG BGBCBCGCGB GTCGGCGGCC GBGGGTCBTG
- 20 GTGGGGCTGG GGC CCGGGG TCTCTGCCCC TCCGTGCTGG TGGGGCTGGG GCTCCGGGG TCTCTGCCCC TCCGTGCCGC GTGGGGCCGC GCTCGCCGGC CCCCCCTGC CGGGTGGGCT CCCGCCGCGC GCCGGCCTGC CGGCCCCTCG TGGGTCCTGC TGGCCGGGTC CGGGTCCCGG GGGTGGGGCG CGBGTCGGCG GCCGBGGGTC-3' (FRAG. NO:1784) (SE(). ID NO: 1797)
 - 5'-GG TGG GGC-3' (I'RAG. NO:1785) (SEQ. ID NO: 1798)
- 5'-G GGG CCG -3' (F RAG. NO:1786) (SEQ. ID NO:1799)
 - 5'- GGC CGG GTC CGC G-3' (FRAG. NO:1787) (SEQ. ID NO: 1800)
 - 5'-TGG TGG GGC TGG GGC TCC GGG GTC TCT GCC CCT CCG TGC-3' (FRAG.NO:1195)(SEQ.ID NO:1204)
 - 5'-CGC GTG GGG CCG CGC TCG CCG GCC CCC C-3' (FRAG. NO:1196) (SEQ. ID NO:1205)
 - 5'-CCT GCC GGG TGG GCT CCC GCC GCG-3' (FRAG. NO:1197) (SEQ. ID NO:1206)
- 5'-CGC CGG CCT GCC GGC CCC TC-3' (FRAG. NO:1198) (SEQ. ID NO:1207)
 - 5'-GTG GGT CCT GCT 3GC CGG GTC CGG GTC CCG GGG GTG GGG-3'(FRAG.NO:1199)(SEQ.ID NO:1208)
 - 5'-CGC GBG TCG GCG GCC GBG GGT C-3' (FRAG. NO:1200) (SEQ. ID NO:1209)
 - 5'-GGGCTCCCGC CGCGBGBGGT TBTGGGCTCC CBGGBCCBCC CGCBCCGCGC GGBCGTTTBC BTTCGCCBCG CBGTGCGCGG CCGECBTGBC GBBGTTGGGC GCBBTCBGGG TGGCGCCGCB GBBGTGGCCT CCGCGCBGCT GCBGGGBCBC CBTGBBGGGC CBCGCGTGGG GCCGCGCTCG CCGGCCCCCC BCBBTCTCCG BGGCCBGCGC GGTGCCCCCC BGCBGCBBGG CCGGCBGGBC BCBGGCGBGG BGBCBCGCGB GTCGGCGGCC GBGGGTCBTG GTGGGGCTGG GGCT('CGGGG TCTCTGCCCC TCCGTGC-3' (FRAG. NO:1788) (SEO. ID NO: 1801)

Human Neutrophil Oxidase Factor Nucleic Acid and Antisense Oligonucleotide Fragments

- 5'-CGGGBGTGGG GGTCCTGGBC GGCBCTGBBG GCBTCCBGGG CTCCCTTCCB GTCCTTCTTG TCCGCTGCCB GCBCCCCTTC BTTCCBGBGG CTGBTGGCCT CCBCCBGGGB CBTGBTTBGG TBGBBBCTBG GBGGCCGGCC GGGGCTGCTG CTGGGCTCTT CTTTTTGTTT CTGGCCTGGT GCTCTCTCGT GCCCTTTCCC TTGGGTGTCT TGTTTTTGTG GCCTCCBCCB GGGBCBTG-3' (FRAG. NO:1789) (SEO. ID NO: 1802) 5'-CGGGBGTGGG GG-3' (FRAG.NO:1790) (SEQ. ID NO: 1803)
- 5'-GCCBGCBCCCC-3' (FRAG.NO:1791) (SEQ. ID NO: 1804)
- - 5'-C CBC CBG-3' (FRAG.NO:1792) (SEQ. ID NO: 1805)
 - 5'-GGC CTC CBC CBG 3GB CBT G-3' (FRAG. NO:1201) (SEQ. ID NO:1210)
 - 5'-GTC CTT CTT GTC (CGC TGC C -3' (FRAG. NO:1202) (SEQ. ID NO:1211)
 - 5'-TCT CTG GGG TTT TCG GTC TGG GTG G-3 (FRAG. NO:1203) (SEQ. ID NO:1212)
- 5'-GCT TTC CTC CTG GGG CTG CTG CTG-3' (FRAG. NO:1204) (SEQ. ID NO:1213)
 - 5'-GGC TCT TCT TTT "GT TTC TGG CCT GGT G-3' (FRAG. NO:1205) (SEQ. ID NO:1214) 5'-CTC TCT CGT GCC CTT TCC-3' (FRAG. NO:1206) (SEQ. ID NO:1215)
 - 5'-CTT GGG TGT CTT GTT TTT GT-3' (FRAG. NO:1207) (SEQ. ID NO:1216
 - 5'-GGC CTC CBC CBG 3GB CBT G-3' (FRAG. NO:1208) (SEQ. ID NO:1217)
- 5'-CGGGBGTGGG GGTCCTGGBC GGCBCTGBBG GCBTCCBGGG CTCCCTTCCB GTCCTTCTTG TCCGCTGCCB GCBCCCCTTC BTTCCBGBGG CTGBTGGCCT CCBCCBGGGB CBTGBTTBGG TBGBBBCTBG GBGGCC-3' (FRAG. NO:1793) (SEQ. ID NC: 1806)

Human Cathepsin G Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CCCTCCBCBT CTGCTCTGBC CTGCTGGBCT CTGGBTCTGB BGBTBCGCCB TGTBGGGGCG GGBGTGGGGC

CTGCTCTCCC GGCCTCCGBT GBTCTCCCCT GCCTCBGCCC CBGTGGGTBG GBGBBBGGCC BGCBGBBGCB GGBGTGGCTG CBTCTTTCCT GGTGGGGCCT GCTCTCCCGG CCTCCGTGTG TTGCTGGGTG TTTTCCCGTC TCTGGTCTGC CTTCGGGGGT CGT-3' (FRAG. NO:1794) (SEQ. ID NO: 1807)

5'-GBBGBTBCGCC-3' (FRAG. NO:1795) (SEQ. ID NO: 1808)

5'-CBGCCCCBG-3' (F RAG. NO:1796) (SEQ. ID NO: 1809)

5'-TCC CGT CTC TGG-3' (FRAG. NO:1797) (SEQ. ID NO: 1810)

5'-GTG GGG CCT GCT CTC CCG GCC TCC G-3' (FRAG. NO:1209) (SEQ. ID NO:1218)

5'-TGT GTT GCT GG GIG TTT TCC CGT CTC TGG-3' (FRAG. NO:1210) (SEQ. ID NO:1219)

5'-TCT GCC TTC GGG GGT CGT-3' (FRAG. NO:1211) (SEQ. ID NO:1220)

10 5'-CCCTCCBCBT CTGCTCTGBC CTGCTGGBCT CTGGBTCTGB BGBTBCGCCB TGTBGGGGCG GGBGTGGGGC CTGCTCTCCC GGCC'TCCGBT GBTCTCCCCT GCCTCBGCCC CBGTGGGTBG GBGBBBGGCC BGCBGBBGCB GGBGTGGCTG-3' (I*RAG. NO:1798) (SEQ. ID NO: 1811)

Human Defensin 1 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CCGGGGCTGC BGCBBCCTCB TCBGCTCTTG CCTGGBGTGG CTCBGCCTGG GCCTGCBGGG CCBCCBGGBG BBTGGCBGCB BGGETGGCGB GGGTCCTCBT GGCTGGGGTC BCBGBTCCTC TBGCTBGGCB GGGTGBCCBG BGBGGGC GGG TCC 1CB TGG CTG GGG GCC TGG GCC TGC BGG GCC GCT CTT GCC TGG BGT GGC TC GCC CBG BGT CTT CCC TGG T GCTCAGCCTC CAAAGGAGCC AGCCTCTCCC CAGTTCCTGA AATCCTGAGT GTTGCCTGCC AGTCGCCATG AGAACTTCCT ACCTTCTGCT GTTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCTCAGGT GGTAACTTTC TCACAGGCCT TGGCCACAGA TCTGATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC 20 TCTATTCTGC CTGCCCGATC TTTACCAAAA TTCAAGGCAC CTGTTACAGA GGGAAGGCCA AGTGCTGCAA GTGAGCTGGG AGTGACCAGA AGAAATGACG CAGAAGTGAA ATGAACTTTT TATAAGCATT CTTTTAATAA AGGAAAATTG CTTTTGAAGT AT CTGCAGTGGT AAAAAGATTC TATATCTGCT GTTTGATGAA TGCAGCACCC ACTAGCCACA TAGTGCTCGT GAGCACTTGC AATGCGGCTA GGGTGATTTC AATTAACCTA AAAGAGAACA GCCACAGGGA GCATGTGGCT GCCATATTGG ATGGTGCTGC TTTGAGAACA AAATGAGAGA AATGAAGCCT CTATTTACCT TGGTTGGCGG AACACATTGA AGGGACTCTG TATTGATACC AGGCTTCAAA CTTTGGGAAG TGTACTGGCC AACTTAAACA CATCCACAGG AGAATGAAGA GGTTTGGGAA GGGACCAGAA ACCAGGCATT GAGGACAATG AGAAGAGTTT TTCAAAAGTG GAATTACTGC AAAAAGTGGA AAAATAGCCT TTGGATGGAA GTTACTGATG AGACAATTTC CATCGGTGTG AAAGCCATCT TTCCAACAGA GATCTGCAAC ATGAGAATGT ACTGTCTCCT AGGCTAGCGA TGGCCTCTTG TATTAGTCCG CTCAGGCTAC CAGATTTATC GTTTAAACTG CCCATAAACA GACC'AGGCAG TTTAAACAAC AGAAATTTAT TTCCTCGCAG TCCTGGAGGC AGGAAGTCTG CGATCAAGGT GGAAGCAGGG TTGGCTTCTT CTCAGGTGTC TGTCCTTGGC TGGTAGATGA CCGCCGCCTC CCTGGGTCCT CACATGGTCT TTCCTCTGTG TGTGTCTGTC CCAATCTCTT CTTATAAGGA TGCAAGTCTT ATGGATCAGA GCACACCCA ATGACCGTGT TTAACTTGAA TCACCTCTTT AAAGTTTCTC TCTCCAAATA CAATCACCTC CTGAGGCACT GTTAGGGCTT CGACACAGGA ATTCTTTTCC TAGGGGATTC AGTTCAGTCC AAAACGCCTA CCACTGGAGA CTTGCAACAT GGCGGCCTGC TGGTCCCTCG CCAGGAATAT CACAGGCGAC TGTTCCCTGT TGCATGGAAT AGAAGGCTAT TCCAGAGTAC TGTCTCTATT TATCAGATCT GGGATACTGG GAGAAGGGCA AAA AAAGTC CAAGTAGAAA AAAAAACTAT GAAAGTTTTA GAGAGTAACC ATAATTTCAG CCCGATGTGA AACCATCCTA GATTTCAGCT GAAATAGTGA TGTGGGAAGT GAGGGGGCCG GGATTCAAGG CAGAGGGAAC AGCCTAACTG AAGGCATGGA AGGAGGGAAG TGTAGGCTGT GTTTGAAGAG TGGCAGCTGC TTCCACATTT CTAAAACACA GGATGTGATT TTGGGGTGTG TTGAGACAAG GCAGAAAACT TGTTTGGAAA
AATAACTTGA ATTCCCTGCA CATTTAAAAT CTCTCAGCAG AAGAAAACCC CACTCAGAAC CCCACTGTTC
ATTCCTTGGC TTGTATTTGG SCACAGCTGG CATAGCCCCA GACTGAGTAA GCTCTTCAGA CACCTCATTT ATTTGTTCTG CTTTCGCGAG ATGTTCTCAA ATCGTTGCAG CTACAAGCCA TGAGTCTGAA GTGTTTGTGT TCCCTCCTTA CAGGTGGTAA CTTTCTCACA GGCCTTGGCC ACAGATCTGA TCATTACAAT TGCGTCAGCA GTGGAGGGCA ATGTCTCTAT TCTGCCTGCC CGATCTTTAC CAAAATTCAA GGCACCTGTT ACAGAGGGAA GGCCAAGTGC TGCAAGTGAG CTGAGAGTGA CCAGAAGAAA TGACGCAGAA GTGAAATGAA CTTTTTATAA GCATTCTTTT AATAAGGAA AATTGCTTTT GAAGTATACC TCCTTTGGGC CAAAATGAAT CTTGTGTCTC AATTGGAAGA GGTAAAGAAG TAGGGGGTTA GGGTGCATGG GTTGGAACGT GAGACAGGTC GAACCACAAA GCCTGCCTGG AAAAGGGGAG TGACGTCCTA GGCTTCAGTG ATGTCACCTC CACTTTGTTT GATCCACAAA CCAACAGGTG ACTGATTTTG GTCAGCTCAG CCTCCAAAGG AGCCAGCCTC TCCCCAGTTC CTGAAATCCT GAGTGTTGCC TGCCAGTCGC CATGAGAACT TCCTACCTTC TGCTGTTTAC TCTCTGCTTA CTTTTGTCTG AGATGGCCTC AGGTGGTAAC TTTCTCACAG GCCTTGGCCA CAGATCTGAT CATTACAATT GCGTCAGCAG TGGAGGGCAA TGTCTCTATT CTGCCTGCCC GATCTTTACC AAAATTCAAG GCACCTGTTA CAGAGGGAAG GCCAAGTGCT GCAAGTGAGC TGGGAGTGAC CAGAAGAAAT GACGCAGAAG TGAAATGAAC TT -3' (FRAG.NO:1799) (SEO. ID NO: 3010) 5'-GTCAGCTCAG CC'CCAAAGG AGCCAGCCTC TCCCCAGTTC CTGAAATCCT GAGTGTTGCC TGCCAGTCGC CATGAGAACT TCCIACCTTC TGCTGTTTAC TCTCTGCTTA CTTTTGTCTG AGATGGCCTC AGGTGGTAAC TTTCTCACAG GCCTIGGCCA CAGATCTGAT CATTACAATT GCGTCAGCAG TGGAGGGCAA TGTCTCTATT CTGCCTGCCC GATCITTACC AAAATTCAAG GCACCTGTTA CAGAGGGAAG GCCAAGTGCT GCAAGTGAGC

TGGGAGTGAC CAGAA.GAAAT GACGCAGAAG TGAAATGAAC TT-3' (FRAG.NO:) (SEQ. ID NO: 2475)

5'-CTGCAGTGGT AAAAAGATTC TATATCTGCT GTTTGATGAA TGCAGCACCC ACTAGCCACA TAGTGCTCGT GAGCACTTGC AATCCGGCTA GGGTGATTTC AATTAACCTA AAAGAGAACA GCCACAGGGA GCATGTGGCT GCCATATTGG ATGCTGCTGC TTTGAGAACA AAATGAGAGA AATGAAGCCT CTATTTACCT TGGTTGGCGG AACACATTGA AGGGACTCTG TATTGATACC AGGCTTCAAA CTTTGGGAAG TGTACTGGCC AACTTAAACA CATCCACAGG AGA/.TGAAGA GGTTTGGGAA GGGACCAGAA ACCAGGCATT GAGGACAATG AGAAGAGTTT TTCAAAAGTG GAATTACTGC AAAAAGTGGA AAAATAGCCT TTGGATGGAA GTTACTGATG AGACAATTTC CATCGGTGTG AAAGCCATCT TTCCAACAGA GATCTGCAAC ATGAGAATGT ACTGTCTCCT AGGGTAGCGA TGGCCTCTTG TATTAGTCCG CTCAGGCTAC CAGATTTATC GTTTAAACTG CCCATAAACA GACCAGGCAG TTTAAACAAC AGAAATTTAT TTCCTCGCAG TCCTGGAGGC AGGAAGTCTG CGATCAAGGT GGAAGCAGGG TTGGCTTCTT CTCAGGTGTC TGTCCTTGGC TGGTAGATGA CCGCCGCCTC CCTGGGTCCT CACATGGTCT TTCCTCTGTG TGTGTCTGTC CCAATCTCTT CTTATAAGGA TGCAAGTCTT ATGGATCAGA GCACACCCCA
ATGACCGTGT TTAA.CTTGAA TCACCTCTTT AAAGTTTTCC TCTCCAAATA CAATCACCTC CTGAGGCACT
GTTAGGGCTT CGAC'ACAGGA ATTCTTTCC TAGGGGATTC AGTTCAGTCC AAAACGCCTA CCAGTGGAGA CTTGCAACAT GGCGGCCTGC TGGTCCCTCG CCAGGAATAT CACAGGCGAC TGTTCCCTGT TGCATGGAAT AGAAGGCTAT TCCAGAGTAC TGTCTCTATT TATCAGATCT GGGATACTGG GAGAAGGGCA AAATAAAGTC 15 CAAGTAGAAA AAAAAACTAT GAAAGTTTTA GAGAGTAACC ATAATTTCAG CCCGATGTGA AACGATCCTA GATTTCAGCT GAAATAGTGA TGTGGGAAGT GAGGGGGCCG GGATTCAAGG CAGAGGGAAC AGCGTAACTG AAGGCATGGA AGGAGGGAAG TGTAGGCTGT GTTTGAAGAG TGGCAGCTGC TTCCACATTT CTAAAACACA GGATGTGATT TTGCGGTGTG TTGAGACAAG GCAGAAAACT TGTTTGGAAA AATAACTTGA ATTCCCTGCA CATTTAAAAT CTCTCAGCAG AAGAAAACCC CACTCAGAAC CCCACTGTTC ATTCCTTGGC TTGTATTTGG SCACAGCTGG CATAGCCCCA GACTGAGTAA GCTCTTCAGA CACCTCATTT CATGAGTAGC CCCAAAGATC AATCATGGGC CAA'TTCTTG GAAGAAGA CTCTCCGGTG TTTTGCAGTT ATTTGTTCTG CTTTCGCGAG ATGTTCTCAA ATCCTTGCAG CTACAAGCCA TGAGTCTGAA GTGTTTGTGT TCCCTCCTTA CAGGTGGTAA CTTTCTCACA GGCCTTGGCC ACAGATCTGA TCATTACAAT TGCGTCAGCA GTGGAGGGCA ATGTCTCTAT TCTGCCTGCC CGATCTTTAC CAAAATTCAA GGCACCTGTT ACAGAGGGAA GGCCAAGTGC TGCAAGTGAG CTGAGAGTGA CCAGAAGAAA TGACGCAGAA GTGAAATGAA CTTTTTATAA GCATTCTTTT AATAAAGGAA AATTGCTTTT GAAGTATACC TCCTTTGGGC CAAAATGAAT CTTGTGTCTC AATTGGAAGA GGTAAAGAAG TAGGGGGTTA GGGTGCATGG GTTGGAACGT GAGACAGGTC GAACCACAAA GCCTGCCTGG AAAAGGGGAG TGACGTCCTA GGCTTCAGTG ATGTCACCTC CACTTTGTTT GATCCACAAA CCAACAGGTG ACTGATTTTG-3' (FRAG.NO:) (SEQ. ID NO: 2474) 5'-GCTCAGCCTC CA.\AGGAGCC AGCCTCTCCC CAGTTCCTGA AATCCTGAGT GTTGCCTGCC AGTCGCCATG AGAACTTCCT ACCITCTGCT GTTTACTCTC TGCTTACTTT TGTCTGAGAT GGCCTCAGGT GGTAACTTTC TCACAGGCCT TGG('CACAGA TCTGATCATT ACAATTGCGT CAGCAGTGGA GGGCAATGTC TCTATTCTGC CTGCCCGATC TTTACCAAAA TTCAAGGCAC CTGTTACAGA GGGAAGGCCA AGTGCTGCAA GTGAGCTGGG AGTGACCAGA AGANATGACG CAGAAGTGAA ATGAACTTTT TATAAGCATT CTTTTAATAA AGGAAAATTG CTTTTGAAGT AT-3' (IFRAG.NO:___) (SEQ. ID NO: 2472) 5'-CCGGGGC-3' (FRACLNO:1800) (SEQ. ID NO: 1813) 5'-GG GCCTGCBGGG CC-3' (FRAG.NO:1801) (SEQ. ID NO: 1814) 5'-GGCBGCB BGG-3' (J'RAG.NO:1802) (SEQ. ID NO: 1815) 5'-GGG TCC TCB TGG CTG GGG-3' (FRAG. NO:1212) (SEQ. ID NO:1221) 5'-GCC TGG GCC TGC BGG GCC-3' (FRAG. NO:1213) (SEQ. ID NO:1222) 5'-GCT CTT GCC TGG 3GT GGC TC-3' (FRAG. NO:1214) (SEQ. ID NO:1223) 5'-GCC CBG BGT CTT CCC TGG T-3' (FRAG. NO:1215) (SEQ. ID NO:1224)

5'-CCGGGGCTGC BGCBBCCTCB TCBGCTCTTG CCTGGBGTGG CTCBGCCTGG GCCTGCBGGG CCBCCBGGBG BBTGGCBGCB BGGI:TGGCGB GGGTCCTCBT GGCTGGGGTC BCBGBTCCTC TBGCTBGGCB GGGTGBCCBG BGBGGGC-3' (FRAG.NO:1803) (SEQ. ID NO: 1816)

Human Defensin 2 Nucelic Acid and Antisense Oligonucleotide Fragments

5'-ATCCTTTAAG TCAATGGACT TTGCATCAGT CACACCATCT TTTGTTACTT TGGACTTCCC CAGCTATGTT CAATAATTAC TGTTCTCCC TTGGGCCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTTGA AGCATTAAGG CTCGGACATC AGCACCAAAT TTTACATCTT TACCATCACT TCAAGTGAGG TGAGGAGCCA GTAGCCTGGA CACTGGTCTC ATCTGGTGAA AGACTGTGGG TAATGGAAGC ATTTCTGTGG GGTGCTGGCA GGACATGTGC ATGGCGAGGC AGGTCATCAG CAGCAAGTGA GAGCTGCCTC TTACTTTCTA AAGGTGACAT AGCAAATATA CAAAAAAAA TAAATAAATT ATTAATTTAG GTAGAGCACA TAAAGGCTTT ATTTCATATT CCATTTCTCT GTATGCTTTC TTCACCAGGA AGAAATAGTT TTAGTGTCAG GAATGAATGA GTCTGCCCCT CAATTCCAGC CTGCTCAACA CACAAGGAAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC TCCCAGTCCT GGATGCATAT TTGTTTAGCA GTTCTGACAG CATTTGACCC AGCCCTCTCT CTGCATATCC CATCAGAACC TTCTTTTTT TTTTTTCTT TGAGACTGAG TCTTGCTCTG TCGGAAGCGA CTCCTGTGCC TCAGCCTCCC AAATACCTGG AATTATAGGC GTAAGCCATC ATGCCTGGCT AATTTTTGTA TTTTTCATGG AGATGGGGTT TTGC:CATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCCTCAGC CTCCCAAACT GCTCGGATGA CAGGTGTAAG CCACCATGCT AGGCTCAGAA ATTTCCTTTT ATAAAAATGT CATTAAGGAT CTTCGCTGCA CAATATCGTT ACCAGCTTCC TTTAAATCCA CTTCTGGCCT GCCAGGAATC

	A COMPONIO A	CAACCTCACA	TTTTTAAATICA	1010000100	O LOTTO LTO L	COLL LOCOTO	, mmamagaa
					CAGTTCATGA		ATTGTCCCCA
	TGTCTCTGTC	ACTGCTGCAC		TCACAGACAT	GGACACTGGG	GCCTGCTTGT	TTCTCAAACT
	GCCCTTAGAT	CGAAAGAGGG		ATGAATGCCA		CAAGAAAGGC	CCTCTCCTGA
-	GTGCCCGGGA	TGGGGCTCTG	TCCATTGCCT	GGGGCCGCCA		TGGGTTACGG	AGGAAGGACA
5	GGGTCCTGAG				ACATGGGGCT		TGTTTCCCAT
	CACCAACAGG	GAGACCACGT	GGAGGCCTTG		CGGTGCTTCT	CCACCAAATC	CCAAGGGCAG
	TGACGCTGAC	GTCTGTGGAA		GCCCTGGCTC		GAAGTCCCTG	TGGAGCTGAC
	ATTCCCTGAG	TGACGGTGTG	AATGGAAGGA	ACTCAAGTGC	GGGTGGTAGG	CCACCTCCTG	GCCCAGGCCT
	GGGTGAACTC	TGAGGGGACA	CATGTAGTCA	CAATCCCATC	CTCCCATTCT	CCTTCTCAGA	GGAAGGAAGT
10	GGGCATCCAT	CTGCCTCATC	TCTCTCCCGT	GGGGAAGATG	GGGAGTTTCA	GGGGAACTTT	CACATAAATT
	TCACCAGCTC	AGA1CTCCTG	TGAGGATGGG	GCCCACCATG	CTCCCGGTGC	TGCCAGAGGC	CCTGAGCCCC
	TCCCAGGGTC	CCTGGGTTTG	AGCCAGCCCT	GTATCATCCC	CAGGAGCTGA	ATGTCAGAGC	AATGGATAGA
	ATTAGATGGA	AAGAGCTCTC	AATTTGACCT	GAGACTGTCC	CCAGATACTC	AGGAAAAACA	GGACGTCGCA
	CAGAGTGGGC	AGCAGGTGAG	TGGCAGGTTA	TAGGTCCTGA	GTTTGAGTTT	GTTCTCACGT	GAGACAGACC
15	CAGCCCCTCA	CTCC ATTCAC	ACACTGGGTT	TTAAATGGTG	CAAGATAGGA	GCAATTTTCT	GGTCCCAAGA
	GCAGGAGGAA	GGG ATTTTCT	GGGGTTTCCT	GAGTCCAGAT	TTGCATAAGA	TCTCCTGAGT	GTGCATTGTT
	CTTTGAGGAC	CATI CTCTGA	CTCACCAGGT	AAGTGGCTGA	ATTCTAACCT	CTGTAATGAG	CATTGCACCC
	AATACCAGTT	CTGA ACTCTA	CCTGGTGACC	AGGGACCAGG	ACCTTTATAA	GGTGGAAGGC	TTGATGTCCT
	CCCCAGACTC	AGCTCCTGGT	GAAGCTCCCA	GCCATCAGCC	ATGAGGGTCT	TGTATCTCCT	CTTCTCGTTC
20	CTCTTCATAT	TCCTGATGCC	TCTTCCAGGT	GAGATGGGCC	AGGGAAATAG	GAGGGTTGGC	CAAATGGAAG
	AATGGCGTAG	AAGITCTCTG	TCTCCTCTCA	TTCCCCTCCA	CCTATCTCTC	CCTCATCCCT	CTCTCTCCTT
	CCTCTCTCTG	TGT(TCCCCT	CCATCCTTTT	CTCCTGCTTC	TCTCTCTTCT	TCCCTCTCTC	TCTTTTTTCT
	GTCTTTCTTT	TTCCTCTCTC	CCTAGAGCAT	GTCTTTCTTT	CTTTCTCTTT	CCTTTCTTCT	ACCCACACTT
	TTAGACTGAA	TGCC'CTATTT	AATTGAACAA	AGCATTGCTT	CCTTCAATAG	AAAAGGAGTT	TGAGAACCCA
25	ATGGACACCT	CACT'CGTTCT	TCTAAGCCAA	TATGAAGGAG	CCCAGTAGCT	TGTAAATATC	ATCTCTTCAC
	TGCTTTCCAT	GCTACAACTG	CTGAGACTAT	GGTTGAAACC	TGTTAGGTGA	CTTTTTAAAT	AAAAGGCAGA
	AATTTTGATT	TTATCTAAAG	AAAGTAGTAT	AGAATGTCAT	TTTCTAAATT	TTTATATTTA	AAGGGTAGAT
	ACTGCAACCT	AGAGAATTCC	AGATAATCTT	AAGGCCCAGC	CTATACTGTG	AGAACTACTG	CAGCAAGACA
	CTCTGCCTCC	AGGA CTTTTC		CCCTGAGAAC	AGTCCCTGCC	ACTAGGCCAC	TGCAGGTTCA
30	CAGGACAGGG	TACAGCCCAT		TTTTAAACCT			CTCCTTGATA
-					GAGAGTGGAA		
	AAAAGAAAAT			AATTAATCTA		TCTTGTGAAA	TCCTCATTTT
	ACCAATCTTA			TGAGAACAAT	GGGGTTCTGA		AGACCTCATG
					AGGCAGGGAG		
35					GGAGGGAGGG		
	AAAAAGAAGA		AACCAGGACT		AAACAAGCCA		
	GTTAATTGTG	GTTTTCAACT	GTAAGTTACT	TGGTGTTAAT	TTCCTATTAA	ACAATTTCAG	TAAGTTGCAT
	CTTTTTATCC	CATCTCAGGT	CAAATACTTA	ACAGACTAAA	TGATTTGAAA	AAGCAAAAGT	TTACTGGCTT
	GTGTGTGTTA	AAATGGAGGT	ATGGTGGCTT	TGATATTATC	TTCTTGTGGT	GGAGCTGAAT	TCACAAGAGA
40	TCGTTGCTGA	GCTCCTACCA	GACCCCACCT	GGAGGCCCCA	GTCACTCAGG	AGAGATCAGG	GTCTTTCACA
	ATCAGGTTCT	ACAA AAATAA	ACATCCCCCC	AACCACAGCA	GTGCCAGTTT	CCATGTCAGA	AACTTAGATC
	CAAATGACTG		CATTATCATG		CCAGGCTTGA		CGCTGCGGAT
		~~			ACATGAGTTT		
	GCTCTTTTTG				GGTATAGGCG		
45					ATAAACAAAT		
					TGCTGTGGCT		
					TATGGTGTCC		
					CCATCTCTAA		
					TGGAGTGCTT		
50	TATTCTTTGG	ATTCCTTGAC			ATTTTCCTAA		TTGCTCCTCC
20					CCCTAAAAAA		
					GGATGCCCAG		
					CAT TTCTCACCT		
					ATTTCTAATT		
55	TCCTTTACTG		CTTTCTTCCA		TTGCATCAGA		
55	TGTCTCCATT			GTGCAATTTC		GTCACAGGTT	
					CCTCTCTTGA		TAGACTGCTT ATTAGCACCT
					CCAGTACAGC		
					GTTTAGCTCC		
60	TTAAGTCAAT				TACTTTGGGA		TATTTATCCT
00	AATTACTGTT				GCATCGACAA		
					ATCACTTCAA		
	ITTERGOCICA	JACAT CAUCA	COAATITIA	CATCLITACE	ATCACTICAA	OLONGOLONG	UNUCCAUIAU

CCTGGACACT GGTCTCATCT GGTGAAAGAC TGTGGGTAAT GGAAGCATTT CTGTGGGGTG GTGGCAGGAC ATGTGCATGG TGACGCAGGT CATCAGCAGC AAGTGAGAGC TGCCTCTTAC TTTCTAAAGG TGACATAGCA AGTATACAAA AAAAAATAAA ATATTAATTT AGGCAGAGCA CATAAAGGCT TTATTTCATA TTCCATTTCT CTGTATGCTT TCTTCACCAG GAAGAAATAG TTTTAGTGTC AGGAATGAAT GAGTCTGCCC CTCAATTCCA GCCTGCTCAG CACACAAGGA AACAAAGCCC TGACAATCAG AGTGACTCCC TGGTGACTAA GCTCCAGTCC TGGATGCATA TTTCTTTAGC AGTTCTGACA GCATCTGACC CAGCCCTCC TTTTGCATACC CCACCAGAAC CTTCTTTTTT TTTTT TTTTC TTTGAGACTG AGTCTTGCTC TGTCGGAAGC GATTCCCGTG CCTCAGCCTC CCAAATACCT GGAATTATAG GCGTAAGCCA TCATGCCTGG CTAATTTTTG TATTTTTCAT GGAGATGGGG TTTTGCCATG TTGGTCAAAT TGGTCTCACA CTCCTGACCT CATGTGATCC ACCTGCCTCA GCCTCCCAAA GTGCTGGGAT GACAGGTGTA AGCCACCATG CTAGGCTCAG AAATTTCCTT TTATAAAAAT GTCATTAAGG ATCTTGGCTG CACAATATCG TTACCAGCTT CCTTTAAATC CACCTCTGGC CTGCCAGGAA TCAGGGTTCT TCAGAACCTG ACATTTTAAA TGAAGAGGTC AGGCAGGTCA TGAGGAAAGC CTCATTGTCC CCATGTCTCT GTCACTGCTG CACCCCTGAG ACATCACAGA CATGGACACT GGGGCCTGCT TGTTTCTCAA ACTGCCCTTA GATCGAAAGA GGGAGGAACC AGGATGAATG CCACTCATTT TCCCAAGAAA GGCCCTCTCC TGAGTGCCCG GGATGGGGCT CTGTCCATTG CCTGGGGCCG CCAATTGCTA CTCTGGGTTA CGGAAGAAGG ACAGGGTCCT 15 GAGAGACACC AGAGACCTCA CACAGCCCTG AAAACATGGG GCTCCTTCAT AAGTGTTTCC CATCACCAAC AGGGAGACCA CGTGGAGGCC TTGCAGCCCT ACTCGGTGCT TCTCCACCAA ATCCCAAGGG CAGTGACGCT GACGTCTGTG GAAA.GCAGAG AAAGCCCTGG CTCCCAAAGC CCTGAAGTCC TGTGGAGCTG ACATTCCCTG AGTGACGGTG TGA/.TGGAAG GAACTCAAGT GCGGGTGGTA GGCCACCTCC TGGCCCAGGC CTGGGTGAAC TCTGAGGGGA CACATGTAGT CACAATCCCA TCCTCCCATT CTCCTTCTCA GAGGAAGGAA GTGGGCATCC ATCTGCCTCA TCTCTCCC GTGGGGAAGA TGGGGAGTTT CAGGGGAACT TTCACATAAA TTTCACCAGC TCAGATCTCC TGTGAGGATG GGGCCCACCA TGCTCCCGGT GCTGCCAGAG GCCCTGAGCC CCTCCAGGGT CCCTGGGTTT GAGCCAGCCC TGTATCATCC CCAGGAGCTG AATGTCCGAA CAATGGATAG AATTAGATGG AAAGAGCTCT CAATTTGGCC TGAGACTGTC CCCAGATACT CAGGAAAAAC AGGACGTCGC ACAGAGTGGG CAGCAGGTGA GTGGCAGGTT ATAGGTCCTG AGTTTGAGTT TGTTCTCACG TGAGACAGAC CCAGCCCCTC ACTCCATTCA CACACTGGGT TTTAAATGGT GCAAGATAGG AGGAATTTTC TGGTCCCAAG AGCAGGAGGA AGGGATTTTC TGGCGTTTCC TGAGTCCAGA TTTGCATAAG ATCTCCTGAG TGTGCATTGT TCTTTGAGGA CCATTCTCTG ACTCACCAGG TAAGTGGCTG AATTCTAACC TCTGTAATGA GCATTGCACC CAATACCAGT TCTGAACTCT ACCTGGTGAC CAGGGACCAG GACCTTTATA AGGTGGAAGG CTTGATGTCC TCCCCAGACT CAGCTCCTGG TGAAGCTCCC AGCCATCAGC CATGAGGGTC TTGTATCTCC TCTTCTCGTT CCTCTTCATA TTCCTGATGC CTCTTCCAGG TGAGATGGGC CAGGGAAATA GGAGGGTTGG CCAAATGGAA GAATGGCGTA GTGTGTCCCC TCCATCCTTT TCTCCTGCTT CTCTCTTCT TTCCCTCTCT CTCTTTTTTT CTGTCTTCT TTTTCCTCTC TCCCIAGAGC ATGTCTTTCT TTCTTTCTCT TTCCTTTCTT CTACCCACAC TTTTAGACTG AGTAGACTGA ATGCCCTATT TAATTGAACC AAGCATTGCT TCCTTCAATA GAAAAGGAGT TTGAGAACCC AATGGACAAC TCACTCGTTC TTCTAAGCCA ATATGAAGGA GCCCAGTAGT TTGTAAATAT CATCTCTTCA CTGCTTTCCA TGCT4CAACT GCTGAGACTA TGGTTGAAAC CTGTTAGGTG ACTTTTTAAA TAAAAGGCAG AAATTTTGAT TTTATCTAAA GAAAGTAGTA TAGAATGTCA TTTTCTAAAT TTTTATATTT AAAGAGTAGA TACTGCAACC TAGAGAATTC CAGATAATCT TAAGGCCCAG CCTATACTGT GAGAACTACT GCAGCAGACA CTCTGCCCCC AGGACTTTTC TGATCAGAGG CCCTGAGAAC AGTCCCTGCC ACTAGGCCAC TGCAGGTTCA CAGGACAGGG ACAGCCCATT GAAACCAACT TTTAAACCTG GATGCCTAAC CTTCATTTTC TCCTTGATAT TATGAAAATA AAATAAAAAC CATGAAAGGA TAAAAGAGGG AGAGTGGAAG GGAAGGATGG AGAAAGGGAA AAAGAAAATT TGAGAGTAAA TCCTAAAACA ATTAATCTAA TAGATATCAT CTTGTGAAAT CCTCATTTTA CCAATCTTAT TTAT3AGTCC TGGGTTTTGT GAGAACAATG GGGTTCTGAG AGGCACCAGA GACCTCATAT AGGGAGGGAG GGAGGGAAAC AAAAAGAAGA ATGAGGTTGA AACCAGGACT TAGATATTAG AAACAAGCCA TTACAAAATT TATTTCTATG GTTAATTGTG GTTTTCAACT GTAAGTTACT TGGTGTTAAT TTCCTATTAA ACAATTTCAG TAACITTGCAT CTTTTTTATC CCATCTCAGA TCAAATACTT AACAGACTAA ATGATTTGAA AAAGCAAAAG TTTACTGGCT TGTGTGTTT AAAATGGAGG TATGGTGGCT TTGATATTAT CTTCTTGTGG TGGAGCTGAA TTCACAAGAG ATCGTTGCTG AGCTCCTGCC AGACCCCACC TGGAGGCCCC AGTCACTCAG GAGAGATCAG GGTCTTTCAC AATCAGGTTC TACAAAAATA AACATCCCCC AAACCACAGC AGTGCCAGTT TCCATGTCAG AAACTTAGAT CCAAATGACT GACTCGCGTC TCATTATCAT GATGGAAAAG CCCAGGCTTG AGAAAGAAGC CCGCTGCGGA TTTACTCAAG GCGATACTGA CACAGGGTTT GTGTTTTTCC AACATGAGTT TTGAGTTCTT ACACGCTGTT TGCTCTTTTT GTGTGTTTTT TCCCTGTTAG GTGTTTTTGG TGGTATAGGC GATCCTGTTA CCTGCCTAA GAGTGGAGCC ATATGTCATC CAGTCTTTTG CCCTAGAAGG TATAAACAAA TTGGCACCTG TGGTCTCCCT GGAACAAAAT GCTGCAAAAA GCCATGAGGA GGCCAAGAAG CTGCTGTGGC TGATGCGGAT TCACAAAGGG CTCCCTCATC AGAGACGTGC GACATGTAAA CCAAATTAAA CTATGGTGTC CAAAGATACG CAA'TCTTTAT CCTAGTAATT GTGGTCATTG GGTGATGTTG GTTTGGGCAG GCCATCTCTA ATATCCTTGA AACACCTTTT TCTGCTCTCC AGGAAGGGGT CAGGGCTGCC ACAGCGGGGC TTGGAGTGC-3' (FRAG. NO: __) (SEQ. ID NO:3011) 5'-GAATTCACAT TTCTCACCTT TTGATGTATT AAGAAAGTAT GGAGAAATAT ATCCTCTATC AAATTTTCAT GCCTTCAATA ATTTCTAATT CATCAGTCAG TGTTTTTCCA TCCTTTACTG TGATGATGCC CTTTCTTCCA

ATATGTCATC CAGICTTTTG CCCTAGAAGG TATAAACAAA TTGGCACCTG TGGTCTCCCT GGAACAAAAT GCTGCAAAAA GCCATGAGGA GGCCAAGAAG CTGCTGTGGC TGATGCGGAT TCAGAAAGGG CTCCCTCATC AGAGACGTGC GACATGTAAA CCAAATTAAA CTATGGTGTC CAAAGATACG CAATCTTTAT CCTAGTAATT GTGGTCATTG GGTGATGTTG GTTTGGGCAG GCCATCTCTA ATATCCTTGA AACACCTTTT TCTGCTCTCC AGGAAGGGGT CAGGGGCTGCC ACAGCGGGGC TTGGAGTGC-3' (FRAG. NO:___) (SEQ. ID NO:2476) 5'-ATCCTTTAAG TCAATGGACT TTGCATCAGT CACACCATCT TTTGTTACTT TGGACTTCCC CAGCTATGTT CAATAATTAC TGTTCTCCC TTGGGCCCCA TTGTAATGGC TACAGCCTCG ACAAAAAGTC TACACTTTGA
AGCATTAAGG CTCGGACATC AGCACCAAAT TTTACATCTT TACCATCACT TCAAGTGAGG TGAGGAGCCA
GTAGCCTGGA CACTGGTCTC ATCTGGTGAA AGACTGTGGG TAATGGAAGC ATTTCTGTGG GGTGCTGGCA GGACATGTGC ATGCCGAGGC AGGTCATCAG CAGCAAGTGA GAGCTGCCTC TTACTTTCTA AAGGTGACAT AGCAAATATA CAAAAAAAA TAAATAAATT ATTAATTTAG GTAGAGCACA TAAAGGCTTT ATTTCATATT CCATTTCTCT GTATGCTTC TTCACCAGGA AGAAATAGTT TTAGTGTCAG GAATGAATGA GTCTGCCCCT CAATTCCAGC CTGCTCAACA CACAAGGAAA CAAAGCCCTG ACAATCAGAG TGACTCCCTG GTGACTAAGC TCCCAGTCCT GGATGCATAT TTGTTTAGCA GTTCTGACAG CATTTGACCC AGCCCTCTC CTGCATATCC CATCAGAACC TTCTTTTTT TTTTTTCTT TGAGACTGAG TCTTGCTCTG TCGGAAGCGA CTCCTGTGCC TCAGCCTCCC AAATACCTGG AATTATAGGC GTAAGCCATC ATGCCTGCT AATTTTTGTA TTTTTCATGG AGATGGGGTT TTGCCATGTT GGTCAAATTG GTCTCACACT CCTGACCTCA TGTGATCCAC CTGCCTCAGC 15 CTCCCAAACT GCTGGGATGA CAGGTGTAAG CCACCATGCT AGGCTCAGAA ATTTCCTTTT ATAAAAATGT CATTAAGGAT CTTCGCTGCA CAATATCGTT ACCAGCTTCC TTTAAATCCA CTTCTGGCCT GCCAGGAATC AGGTTCTTCA GAACCTGACA TTTTAAATGA AGAGGTCAGG CAGTTCATGA GGAAAGCCTC ATTGTCCCCA TGTCTCTGTC ACTGCTGCAC CCCTGAGACA TCACAGACAT GGACACTGGG GCCTGCTTGT TTCTCAAACT GCCCTTAGAT CGAAAGAGGG AGGAACCAGG ATGAATGCCA CTCATTTTCC CAAGAAAGGC CCTCTCCTGA GTGCCCGGGA TGGCGCTCTG TCCATTGCCT GGGGCCGCCA ATTGCTACTC TGGGTTACGG AGGAAGGACA GGGTCCTGAG AGACACCAGA GACCTCACAC AGCCCTGAAA ACATGGGGCT CCTTCATAAG TGTTTCCCAT CACCAACAGG GAGACCACGT GGAGGCCTTG CAGCCCCACT CGGTGCTTCT CCACCAAATC CCAAGGGCAG TGACGCTGAC GTCTGTGGAA AGCAGAGAAA GCCCTGGCTC CCAAAGCCCT GAAGTCCCTG TGGAGCTGAC ATTCCCTGAG TGACGGTGTG AATGGAAGGA ACTCAAGTGC GGGTGGTAGG CCACCTCCTG GCCCAGGCCT GGGTGAACTC TGACGGGACA CATGTAGTCA CAATCCCATC CTCCCATTCT CCTTCTCAGA GGAAGGAAGT GGGCATCCAT CTGCCTCATC TCTCTCCCGT GGGGAAGATG GGGAGGTTTCA GGGGAACTTT CACATAAATT TCACCAGCTC AGATCTCCTG TGAGGATGGG GCCCACCATG CTCCCGGTGC TGCCAGAGGC CCTGAGCCCC TCCCAGGGTC CCTGGGTTTG AGCCAGCCCT GTATCATCCC CAGGAGCTGA ATGTCAGAGC AATGGATAGA ATTAGATGGA AAG/AGCTCTC AATTTGACCT GAGACTGTCC CCAGATACTC AGGAAAAACA GGACGTCGCA CAGAGTGGGC AGC/1GGTGAG TGGCAGGTTA TAGGTCCTGA GTTTGAGTTT GTTCTCACGT GAGACAGACC CAGCCCCTCA CTCCATTCAC ACACTGGGTT TTAAATGGTG CAAGATAGGA GCAATTTTCT GGTCCCAAGA GCAGGAGGAA GGGATTTTCT GGGGTTTCCT GAGTCCAGAT TTGCATAAGA TCTCCTGAGT GTGCATTGTT CTTTGAGGAC CATICTCTGA CTCACCAGGT AAGTGGCTGA ATTCTAACCT CTGTAATGAG CATTGCACCC AATACCAGTT CTGAACTCTA CCTGGTGACC AGGGACCAGG ACCTTTATAA GGTGGAAGGC TTGATGTCCT CCCCAGACTC AGCTCCTGGT GAAGCTCCCA GCCATCAGCC ATGAGGGTCT TGTATCTCCT CTTCTCGTTC CTCTTCATAT TCCTGATGCC TCTTCCAGGT GAGATGGGCC AGGGAAATAG GAGGGTTGGC CAAATGGAAG CCTCTCTCT TGTC/TCCCCT CCATCCTTTT CTCCTGCTTC TCTCTTCTT TCCCTCTCTC TCTTTTTTCT GTCTTTCTTT TTCCICTCC CCTAGAGCAT GTCTTTCTTT CTTTCTCTTT CCTTTCTTCT ACCCACACTT TTAGACTGAA TGCCCTATTT AATTGAACAA AGCATTGCTT CCTTCAATAG AAAAGGAGTT TGAGAACCCA ATGGACACCT CACTCGTTCT TCTAAGCCAA TATGAAGGAG CCCAGTAGCT TGTAAATATC ATCTCTTCAC TGCTTTCCAT GCTACAACTG CTGAGACTAT GGTTGAAACC TGTTAGGTGA CTTTTTAAAT AAAAGGCAGA AATTTTGATT TTATCTAAAG AAAGTAGTAT AGAATGTCAT TTTCTAAATT TTTATATTTA AAGGGTAGAT ACTGCAACCT AGACAATTCC AGATAATCTT AAGGCCCAGC CTATACTGTG AGAACTACTG CAGCAAGACA CTCTGCCTCC AGGACTTTTC TGATCAGAGG CCCTGAGAAC AGTCCCTGCC ACTAGGCCAC TGCAGGTTCA CAGGACAGGG TACAGCCCAT TGAAACCTAC TTTTAAACCT GGATGCCTAA CCTTCATTTT CTCCTTGATA TTATGAAAAT AAAATAAAAA CCATGAAAGG ATAAAAGAGG GAGAGTGGAA GGGAAGGATG GAGAAAGGGA AAAAGAAAAT TTGAGAGTAA ATCCTAAAAC AATTAATCTA ATAGATATCA TCTTGTGAAA TCCTCATTTT ACCAATCTTA TTTAIGAGTC CTGGGTTTTG TGAGAACAAT GGGGTTCTGA GAGGCACCAG AGACCTCATG TTTTCCAAAA CCTAGAACAG TATAATGAAG GAAGGCGGGG AGGCAGGGAG GCAGGGAGGC AGGGAGGCAG AAAAAGAAGA ATGAGGTTGA AACCAGGACT TAGATATTAG AAACAAGCCA TTACAAAATT TATTTCTATG GTTAATTGTG GTTTTCAACT GTAAGTTACT TGGTGTTAAT TTCCTATTAA ACAATTTCAG TAAGTTGCAT CTTTTTATCC CATCTCAGGT CAAATACTTA ACAGACTAAA TGATTTGAAA AAGCAAAAGT TTACTGGCTT GTGTGTGTA AAATGGAGGT ATGGTGGCTT TGATATTATC TTCTTGTGGT GGAGCTGAAT TCACAAGAGA TCGTTGCTGA GCTCCTACCA GACCCCACCT GGAGGCCCCA GTCACTCAGG AGAGATCAGG GTCTTTCACA ATCAGGTTCT ACAAAAATAA ACATCCCCCC AACCACAGCA GTGCCAGTTT CCATGTCAGA AACTTAGATC CAAATGACTG ACTCGCGTCT CATTATCATG ATGGAAAAGC CCAGGCTTGA GAAAGAAGCC CGCTGCGGAT TTACTCAAGG CGATACTGAC ACAGGGTTTG TGTTTTTCCA ACATGAGTTT TGAGTTCTTA CACGCTGTTT

GCTCTTTTTG TGTGTTTTTT CCCTGTTAGG TGTTTTTGGT GGTATAGGCG ATCCTGTTAC CTGCCTTAAG AGTGGAGCCA TATGTCATCC AGTCTTTTGC CCTAGAAGGT ATAAACAAAT TGGCACCTGT GGTCTCCCTG GAACAAAATG CTGC'AAAAAAG CCATGAGGAG GCCAAGAAGC TGCTGTGGCT GATGCGGATT CAGAAAGGGC TCCCTCATCA GAGACGTGCG ACATGTAAAC CAAATTAAAC TATGGTGTCC AAAGATACGC AATCTTTATC CTAGTAATTG TGG1CATTGG GTGATGTTGG TTTGGGCAGG CCATCTCTAA TATCCTTGAA ACACCTTTTT CTGCTCTCCA GGAAGGGGTC AGGGCTGCCA CAGCGGGGCT TGGAGTGCTT TCCAGGGTCA CAGGCATCTG TATTCTTTGG ATTCCTTGAC CTTCCCCATT TATTCCCGGC ATTTTCCTAA AACGTGTGCT TTGCTCCTCC TGCATCCTCC CCTTGCATGC CCTCACCTAC CCCACATCTT CCCTAAAAAA AGCAAGCCCA ACTCAAAGAC CAGTTCCCTC ATGGAATCAT AGTGGATCTG CCAAGGGAGG GGATGCCCAG TCCTCTGTTC TTCACAAGAC TCCCTTCTTC TGGCT4AGGT TTCTTATGCA ATTAT GAATTCCCTG TAAGCCCTGT TACAGGGGCT GCACCCCAGA TACAACCTGA CCTGTGTCCA AGGCGGGCAA CTCAACCCTT AGATATTGAA TGGGTCCCAT GGCACCAATG CTTAAACACC AGCAGCCCTC ACAACCACAG ATCGTGTTTT AAGGATGAGG AGGTAGTTCT CTGGATGCAC AGGCTTCAAT CCAAATGGGC TCATGACGCC GCAGCACACA CCCAGTCTGC AGCCTGAAGA GTTGGAGCAT TGCATTCACA GAAAGCATCC AGACATGATC ATGGGCTCAG GGATACACCT GTTCTCCGAT GTGTACCAGT GAAGGATGGA AACTCCTATG CCTCCCAGAA AGCACCACTC AAGCTTTTGC TGAATGCTTC TCTGAAGGCC CACAAGGCTG AGAGGCTGTG CAACACCAGC AGTAAAGTGA ATGCCCAGAC TCCCACCTCC TTTCTTGGGT GGCCATCTGG AAAGGCCACT CCCACCCTGA TGGCTAATGC CTCAGACCAG TTCTTGGCCC AGATGATCCT AGACAATTGT TTAAGCTTAA ACTGTTCATT GGCCAAGCAA ACAGGTGATA GTACCTCTGG GGAACCACAT GCCGCGTGTA CATCCAGATC TCAGGAGAAC CCAAAAATGT CTGTTCCACA TAGCAACAGA AGCCCAGGTA
GCACTCAGTC TCAC'CTGGGT GTTCTCCAAC ATCCCAGCTC AGCCAAATGG CTTTCATTAG TTTTTATGGT
TAGACCCCAG GTCCTCGGGA CACTGCTTTA GAAACACATT CCAAATCCTC CTCTGTGTC AGGTGGCATT
CCTATCCCAA TCTCITTGCA GGGCGTATAC TGTGATACGC AGCCAGGCTG TCCCAGAGGC CTTAAATATT CCCTTGGTGC AGGTAGTTCA GCTTAGCCAC AGCCAATGCA TCACAGGGTC AACTGTGTTA GGAGCCATTG AGAATCCATA GTTCGTTGCT GCCTGGGCCT GGCCAGGGCT GACCAAGGTA GATGAGAGGT TCCTCTGTGG AGTTCTACTT TAACCTCACC TTCCCACCAA ATTTCTCAAC TGTCCTTGCC ACCACAATTA TTTAATGGAC CCAACAGAAA GTA/CCCCGG AAATTAGGAC ACCTCATCCC AAAAGACCTT TAAATAGGGG AAGTCCACTT GTGCACGGCT GCTCCTTGCT ATAGAAGACC TGGGACAGAG GACTGCTGTC TGCCCTCTCT GGTCACCCTG CCTAGCTAGA GGATCTGTAA GTACTACAAA ACTTAAACTT TACACTGAGT TTTCATCATT GAAGCTATGC CTCCAATCTG ACCTCTGACT GTGGGGCCGC CCCAGAGGGA CCCAGCGGGT GAATCCCTGC TAGGAACGTC TGTCCGGACC TCTGGTGACT GCTGGGGACG ATGGCTTCCA GCTAACTTAA TAGAGAAACT CAAGCAGTTT CCTTCTAAAT ACACATGTCA CATGTCCTGG TTGACATGTC CAGTAAGAAG ACTATCACAG GTCTTTGGAA CATTCTTTTG AGAC AAACCT ATTTAGGTCC TTGGTCTGTT TTTCAATCAG GTTGTTTGAT TTTTGCTATT GAGTTGTTGG AATI'CCTTAT GTATTCAGAT ATTTGCCCCT TCTGCCATGT AGGTTTTGCA AATATTTTCT CTCATTTCT GGGTTATCTT TTCACTCGGT TGATTGTTTC CTTTGCTGTG CAGATGCTTT AGCGTTAAAT GAAGCCACAC TTG: CTATTT TCCCTTTTAT TGCCTGTGCC TTTGGTGTCA TAGCCAAGAA ATCATTACCT ACATCAATGT CAAAAGCTTT ATCCTTCTAT ACACTTCTAG TAGTTTATGG TTTCAGTTGT TACATTTAGG TTTTCAATTC ATTCIGAGTT GATGTTCCTA CATGGTGTGA GATAAAGATT TAAATACATA CATATATAAA ATCATGAGGT AGTCTACACT ATAAATATAC AATTGTTAAT TGTTACTCAA GTCTAAGTAG AGGTGGAAAT AATAAACTTT CTTTTTTTA CTTAAACCAC TCTGTGTCAC TGAGCTGATT TCACCTTTAG CCTGATAAAA TCATTGTCCT CTCCACCTG ATTCCTACAG GAGACTACTC ACCCCATAAC CTCAAAAAACC TCTTCATGAG GATGGTAAGT CACCTGAATC CTGAAGTGAA TTACTCGCTA TTCCATTGGA ACTCATATAG GACACCAGAA TCTAGACCTC CAGAGAACAG CAGGACCCAT CTTCAGAAAA TAAGAAGCAT TTGTTCCCTG AGCCTGTTGA ATCAAAGTGC AATITCTATT CTTTTTGGAA TGTTAAAAAG TGAATCATAA TATTTAAGCA GGTGAACCCA CGAGTAACAT AGCAGGGTCT TTCTTGTCAT TATTAGCTCC AACCTAGCAC AGACATTAAA GGTACAGATG TATACTAGCA TGAAACTGGG AGAACAGGAG CATTCGAGCA ACCTTGAGAC CAATGGGCCT CTCTTATAAA ATGCACACCT CCTCTCACTG AGATTGAGGA AGGTTTCTTG TCTCCGAGCC TTCTCCCAGT AGAGCTATAA ATCCAGGCTG GCTC'CTCCCT CCCCACACAG CTGCTCCTGC TCTCCCTCCT CCAGGTGACC CCAGCCATGA GGACCCTCGC CATCCTTGCT GCCATTCTCC TGGTGGCCCT GCAGGCCCAG GCTGAGCCAC TCCAGGCAAG AGCTGATGAG GTTC CTGCAG CCCCGGAGCA GATTGCAGCG GACATCCCAG AAGTGGTTGT TTCCCTTGCA TGGGACGAAA GCTIGGCTCC AAAGCATCCA GGTGAGAGAG GCAGGCATGC AGAGCTGCTA AGTCTAGAGG GAAGGACGGG AGAGAGTTC CAGAGTTGGG TCTCAGCAGT CTATGTCACT GAGGTGGCTT CACTTAGAAT CTCTGGGCAT TGATTTCTC ATCTAGAAAT TGAACAGAGA GCCAAATAAA CCTGAGAAAC TTTATTTCTC CAAAGACTTG ATTCCAAGAA ACATCTGTGA AATTCACTAA GTTTAAGATA TGAAGAGACA GACTAGTTAT TTCTGGATCT AAACAAGTAG ACTTAGTTGT AAAGAGAACA TTTTACTCTA TCTACAGAAG AGCTTTTAAA AACTGCAGCC AAGCCTGAGG GTAAGTTCAG GTGTGTGTGT GATGGGGCAG GAATGCAAAA ATGAGAGCAA AGGAGAATGA GTC CAAATT CTGTGTGACA AGCACTGCTC TGCGTGTTTA TTCCTATCGA CTGAGGTTGT TCGTGCTACC GGCIGCAATG CAGCCAGCAT CACCTGTCAG CTAGCATGTG ACTTCCCCGA GATTCTTTTT CTTACCCACT GCTAACTCCA TACTCAATTT CTCATGCTCT CCCTGTCCCA GGCTCAAGGA AAAACATGGA CTGCTATTGC AGAATACCAG CGTGCATTGC AGGAGAACGT CGCTATGGAA CCTGCATCTA CCAGGGAAGA CTCTGGGCAT TCTGCTGCTG AGCTTGCAGA AAAAGAAAAA TGAGCTCAAA ATTTGCTTTG AGAGCTACAG GGAATTGCTA TTACTCCTGT ACCTTCTGCT CAATTTCCTT TCCTCATCTC AAATAAATGC CTTGTTACAA GATTTCTGTG TTTCCACCTC TTTAATGTGT GATATGTGTC TGTGTCAAGA CACTTGGGAT ACACGTACCA

AAACGCAAAA TCAAATTTTT GAACAATATA-3' (FRAG. NO:) (SEQ. ID NO:3012)

Human Defensin 3 Nucleic Acid and Antisense Oligonucleotide Fragments

5'-CGCTGCBBTC TGCTCCGGGG CTGCBGCBBC CTCBTCBGCTC TTGCCTGGBGTG GCTCBGCCTGG GCCTGCBGGG CCBCCBGGBGB BTGCCBGCBBG GBTGGCGBGGG TCCTCBTGGC TGGGGTCBCCT GGBGGBGGGB GBGCBGGGG TCCTCBTGGC TGGGGTCCCT CTCTCCCGTC CT CCTACCTTGC TATAGAAGAC CTGGGACAGA GGACTGCTGT CTGCCCTCTC TGGTCACCCT GCCTAGCTAG AGGATCTGTG ACCCCAGCCA TGAGGACCCT CGCCATCCTT GCTGCCATTC TCCT3GTGGC CCTGCAGGCC CAGGCTGAGC CACTCCAGGC AAGAGCTGAT GAGGTTGCTG CAGCCCCGGA GCAGATTGCA GCGGACATCC CAGAAGTGGT TGTTTCCCTT GCATGGGACG AAAGCTTGGC TCCAAAGCAT CCAGGCTCAA GGAAAAACAT GGACTGCTAT TGCAGAATAC CAGCGTGCAT TGCAGGAGAA CGTCGCTATG GAACCTGCAT CTACCAGGGA AGACTCTGGG CATTCTGCTG CTGAGCTTGC AGAAAAAGAA AAATGAGCTC AAAA' TTGCT TTGAGAGCTA CAGGGAATTG CTATTACTCC TGTACCTTCT GCTCAATTTC CTTT-3' (FRAG. NO:1804) (SEQ. ID NO:3013) 5'-CCTACCTTGC TAT'AGAAGAC CTGGGACAGA GGACTGCTGT CTGCCCTCTC TGGTCACCCT GCCTAGCTAG AGGATCTGTG ACCC'CAGCCA TGAGGACCCT CGCCATCCTT GCTGCCATTC TCCTGGTGGC CCTGCAGGCC CAGGCTGAGC CACTCCAGGC AAGAGCTGAT GAGGTTGCTG CAGCCCCGGA GCAGATTGCA GCGGACATCC CAGAAGTGGT TGTTTCCCTT GCATGGGACG AAAGCTTGGC TCCAAAGCAT CCAGGCTCAA GGAAAAACAT GGACTGCTAT TGCAGAATAC CAGCGTGCAT TGCAGGAGAA CGTCGCTATG GAACCTGCAT CTACCAGGGA AGACTCTGGG CATICTGCTG CTGAGCTTGC AGAAAAAGAA AAATGAGCTC AAAATTTGCT TTGAGAGCTA CAGGGAATTG CTATTACTCC TGTACCTTCT GCTCAATTTC CTTT-3' (FRAG. NO:___) (SEQ. ID NO:2478)
5'-GAATTCCCTG TAAGCCCTGT TACAGGGGCT GCACCCCAGA TACAACCTGA CCTGTGTCCA AGGCGGGCAA CTCAACCCTT AGATATTGAA TGGGTCCCAT GGCACCAATG CTTAAACACC AGCAGCCCTC ACAACCACAG ATCGTGTTTT AAGGATGAGG AGGTAGTTCT CTGGATGCAC AGGCTTCAAT CCAAATGGGC TCATGACGCC GCAGCACACA CCCAGTCTGC AGCCTGAAGA GTTGGAGCAT TGCATTCACA GAAAGCATCC AGACATGATC ATGGGCTCAG GGATACACCT GTTCTCCGAT GTGTACCAGT GAAGGATGGA AACTCCTATG CCTCCCAGAA AGCACCACTC AAGCTTTTGC TGAATGCTTC TCTGAAGGCC CACAAGGCTG AGAGGCTGTG CAACACCAGC AGTAAAGTGA ATGCCCAGAC TCCCACCTCC TTTCTTGGGT GGCCATCTGG AAAGGCCACT CCCACCCTGA TGGCTAATGC CTCAGACCAG TTCTTGGCCC AGATGATCCT AGACAATTGT TTAAGCTTAA ACTGTTCATT GGCCAAGCAA ACAGGTGATA GTACCTCTGG GGAACCACAT GCCGCGTGTA CATCCAGATC TCAGGAGAAC CCAAAAATGT CTGTTCCACA TAGCAACAGA AGCCCAGGTA GCACTCAGTC TCACCTGGGT GTTCTCCAAC ATCCCAGCTC AGCC'AAATGG CTTTCATTAG TTTTTATGGT TAGACCCCAG GTCCTCGGGA CACTGCTTTA GAAACACATT CCAAATCCTC CTCTGTGTC AGGTGGCATT CCTATCCCAA TCTCTTTGCA GGGCGTATAC TGTGATACGC AGCC'AGGCTG TCCCAGAGGC CTTAAATATT CCCTTGGTGC AGGTAGTTCA GCTTAGCCAC AGCCAATGCA TCACAGGGTC AACTGTGTTA GGAGCCATTG AGAATCCATA GTTGGTTGCT GCCTGGGCCT GGCCAGGGCT GACCAAGGTA GATGAGAGGT TCCTCTGTGG AGTTCTACTT TAACCTCACC TTCCCACCAA ATTTCTCAAC TGTCCTTGCC ACCACAATTA TTTAATGGAC CCAACAGAAA GTAACCCCGG AAATTAGGAC ACCTCATCCC AAAA GACCTT TAAATAGGGG AAGTCCACTT GTGCACGGCT GCTCCTTGCT ATAGAAGACC
TGGGACAGAG GACTGCTGC TGCCCTCTCT GGTCACCCTG CCTAGCTAGA GGATCTGTAA GTACTACAAA
ACTTAAACTT TACACTGAGT TTTCATCATT GAAGCTATGC CTCCAATCTG ACCTCTGACT GTGGGGCCGC
CCCAGAGGGA CCCAGCGGGT GAATCCCTGC TAGGAACGTC TGTCCGGACC TCTGGTGACT GCTGGGGACG
ATGGCTTCCA GCTAACTTAA TAGAGAAACT CAAGCAGTTT CCTTCTAAAT ACACATGTCA CATGTCCTGG
TTGACATGTC CAGTAAGAAG ACTATCACAG GTCTTTGGAA CATTCTTTTG AGAGAAACCT ATTTAGGTCC 40 TTGGTCTGTT TTTCAATCAG GTTGTTTGAT TTTTGCTATT GAGTTGTTGG AATTCCTTAT GTATTCAGAT ATTTGCCCCT TCTGCCATGT AGGTTTTGCA AATATTTTCT CTCATTTTCT GGGTTATCTT TTCACTCGGT TGATTGTTTC CTTTGCTGTG CAGATGCTTT AGCGTTAAAT GAAGCCACAC TTGTCTATTT TCCCTTTTAT TGCCTGTGCC TTTGGTGTCA TAGCCAAGAA ATCATTACCT ACATCAATGT CAAAAGCTTT ATCCTTCTAT ACACTTCTAG TAGTTATGG TTTCAGTTGT TACATTTAGG TTTTCAATTC ATTCTGAGTT GATGTTCCTA CATGGTGTGA GATA.AAGATT TAAATACATA CATATATAAA ATCATGAGGT AGTGTACACT ATAAATATAC AATTGTTAAT TGTTACTCAA GTCTAAGTAG AGGTGGAAAT AATAAACTTT CTTTTTTTA CTTAAACCAC TCTGTGTCAC TGAC:CTGATT TCACCTTTAG CCTGATAAAA TCATTGTCCT CTCCACCCTG ATTCCTACAG GAGACTACTC ACCC'CATAAC CTCAAAAACC TCTTCATGAG GATGGTAAGT CACCTGAATC CTGAAGTGAA TTACTCGCTA TTCCATTGGA ACTCATATAG GACACCAGAA TCTAGACCTC CAGAGAACAG CAGGACCCAT CTTCAGAAAA TAAGAAGCAT TTGTTCCCTG AGCCTGTTGA ATCAAAGTGC AATTTCTATT CTTTTTGGAA TGTTAAAAAG TGA/TCATAA TATTTAAGCA GGTGAACCCA CGAGTAACAT AGCAGGGTCT TTCTTGTCAT TATTAGCTCC AACCTAGCAC AGACATTAAA GGTACAGATG TATACTAGCA TGAAACTGGG AGAACAGGAG CATTCGAGCA ACCITGAGAC CAATGGGCCT CTCTTATAAA ATGCACACCT CCTCTCACTG AGATTGAGGA AGGTTTCTTG TCTCCGAGCC TTCTCCCAGT AGAGCTATAA ATCCAGGCTG GCTCCTCCCT CCCCACACAG CTGCTCCTGC TCTCCCTCCT CCAGGTGACC CCAGCCATGA GGACCCTCGC CATCCTTGCT GCCATTCTCC TGGTGGCCCT GCACGCCCAG GCTGAGCCAC TCCAGGCAAG AGCTGATGAG GTTGCTGCAG CCCCGGAGCA GATTGCAGCG GACATCCCAG AAGTGGTTGT TTCCCTTGCA TGGGACGAAA GCTTGGCTCC AAAGCATCCA

GGTGAGAGAG GCAGGCATGC AGAGCTGCTA AGTCTAGAGG GAAGGACGGG AGAGAGGTTC CAGAGTTGGG

TCTCAGCAGT CTATGTCACT GAGGTGGCTT CACTTAGAAT CTCTGGGCAT TGATTTCTC ATCTAGAAAT TGAACAGAGA GCCAAATAAA CCTGAGAAAC TTTATTTCTC CAAAGACTTG ATTCCAAGAA ACATCTGTGA AATTCACTAA GTTTAAGATA TGAAGAGACA GACTAGTTAT TTCTGGATCT AAACAAGTAG ACTTAGTTGT AAAGAGAACA TTTTACTCTA TCTACAGAAG AGCTTTTAAA AACTGCAGCC AAGCCTGAGG GTAAGTTCAG GTGTGTGTGT GATGGGGCAG GAATGCAAAA ATGAGAGCAA AGGAGAATGA GTCTCAAATT CTGTGTGACA AGCACTGCTC TGCCTGTTA TTCCTATCGA CTGAGGTTGT TCGTGCTACC GGCTGCAATG CACCTGTCAG CTACCAGTG ACTTCCCGA GATTCTTTTT CTTACCACCT GCTAACTCCA TACTCAATTT CTCATGCTCT CCCT-3TCCCA GGCTCAAGGA AAAACATGGA CTCTGGGCAT TCTGCTGCTG AGCTTGCAGA AAAAGAAAAA TGA-3CTCAAA ATTTGCTTTG AGAGCTACAG GGAATTGCTA TTCCTCTGCT CAATTTCCTGCT TCCTCATCT AAATAAATGC CTTGTTACAA GATTTCTGTG TTTCCACCTC TTTAATGTGT GATATTCCTT TCCTCATCTC AAATAAATGC CTTGTTACAA GATTTCTGTG TTTCCACCTC TTTAATGTGT GATATGTGT TGTGTCAAGA CACTTGGGAT ACACGTACCA AAACGCAAAA TCAAATTTTT GAACAATATA-3' (FRAG. NO:__) (SEQ. ID NO:2477)

5'-GGCBGCBBGG-3' (FRAG. NO:1805) (SEQ. ID NO:1818)

- 15 5'-GG CTG GGG-3' (FRAG. NO:1806) (SEQ. ID NO:1819)
 - 5'-GGGGTCBCC-3' (FRAG. NO:1807) (SEQ. ID NO:1820)
 - 5'-GGG TCC TCB TGG CTG GGG TC-3' (FRAG. NO:1216) (SEQ. ID NO:1225)
 - 5'-CCT CTC TCC CGT CCT-3' (FRAG. NO:1217) (SEQ. ID NO:1226)
- 5'-CGCTGCBBTC TGC1CCGGGG CTGCBGCBBC CTCBTCBGCTC TTGCCTGGBGTG GCTCBGCCTGG GCCTGCBGGG

 CCBCCBGGBGB BTGGCBGCBBG GBTGGCGBGGG TCCTCBTGGC TGGGGTCBCCT GGBGGBGGGB GBGCBGG-3'

 (FRAG. NO:1808) (SE(). ID NO:1821)

Human Macrophage Inflammatory Protein-1-alpha/RANTES Receptor Nucleic Acid and Antisense Oligonucleotide Fragments

- 5'-GTCTTTGTTT CTCGGCTCGT GCCCCBTCCC GGCTTCTCC TGGTTCCGTC CTCTGTGGTG TTTGGCCCTG

 CTTCCTTTTG CCTGTTGAGG GGGCAGCAGT TGGGCCCCAA AGGCCCTCTC GTTCACCTTC TGGCACGGAGTT
 GCATCCCCATA GTCAAACTCT GTGGTCGTGT CATAGTCCTC TGTGGTGTTT GGAGTTTCCA TCCCGGCTTC
 TCTCTGGTTC CAACGGAGB GGGGGCBGCB GTTGGGCCCC BBBGGCCCTC TCGTTCBCCT TCTGGCBCGG
 BGTTGCBTCC CCBTBGTCBB BCTCTGTGGT CGTGTCBTBG TCCTCTGTGG TGTTTGGBGT TTCCBTCCCG
 GCTTCTCTCT GGTTC\'DBGG GB-3' (FRAG. NO:1809) (SEQ. ID NO:1822)
- 30 5'-GGGCC CC-3' (FRAG. NO:1810) (SEQ. ID NO:1823)
 5'-GGGGGCBGC-3' (I'RAG. NO:1811) (SEQ. ID NO:1824)
 5'-CCCGGCTTC-3' (FRAG. NO:1812) (SEQ. ID NO:1825)
 5'-GTC TTT GTT TCT GGG CTC GTG CC-3' (FRAG. NO:1218) (SEQ. ID NO:1227)
 5'-CCB TCC CGG CTT (TC TCT GGT TCC-3' (FRAG. NO:1219) (SEQ. ID NO:1228)
- 5'-GTC CTCTGT GGT (itt tgg-3' (frag. No:1220) (seq. id no:1229)
 5'-CCC tgc ttc ctt 'tg cct gtt-3' (frag. no:1221) (seq. id no:1230)
 5'-GAGGGGGCAG CAGTTGGGCC CCAAAGGCCC tctcgttcac cttctggcac ggagttgcat ccccatagtc AAACTCTGTG gtcgt-3' (frag. no:1222) (seq. id no:1231)
- 5'-GTCATAGTCCTCTCTGGTGTTTGGAGTTTCCATCCCGGCTTCTCTCTGGTTCCAAGGGA-3' (FRAG.NO:1223)(SEQ.ID NO:1232)
 - 5'-GBGGGGGCBG CB3TTGGGCC CCBBBGGCCC TCTCGTTCBC CTTCTGGCBC GGBGTTGCBT CCCCBTBGTC BBBCTCTGTG GTCGT'3-3' (FRAG. NO:1224) (SEQ. ID NO:1233)
 - 5'-TCBTBGTCCTCTGT'3GTGTTTGGBGTTTCCBTCCCGGCTTCTCTCTGGTTCCBBGGGB-3'(FRAG. NO:1225)(SEQ. ID NO:1234)

45 **RANTES Antisense Oligonucleotide Fragments**

50 TGTTCCTCCC TTCCT GCCT CT-3' (FRAG. NO: 1813) (SEQ. ID NO: 1826)

- 5'-GGGTTGGC-3' (FRAG. NO: 1814) (SEQ. ID NO: 1827)
- 5'-CGGGG CBG-3' (FRAG. NO: 1815) (SEQ. ID NO: 1828)
- 5'-CCCGGGTTCG-3' (I'RAG. NO: 1816) (SEQ. ID NO: 1829)
- 5'-GGGTGTGGTG-3' (I'RAG. NO: 1817) (SEQ. ID NO: 1830)
- 55 5'-GGGCBCGGGG CB3TGGGCGG GCBBTGTBGG CBBBGCBGCB GGGTGTGGTG TCCGBGGBBT BTGGGGBGGC BGBTGCBGGB GCGC-2' (FRAG. NO:1226) (SEQ. ID NO:1235)
 5'-BGBGGGCBGTB GCBBTGBGGB TGBCBGCGBG GCGTGCCGCG GBGBCCTTCB TGGTBCCTGT GGBGBGGCTG TCGGBGG-3' (FRAG. NO:1227) (SEQ. ID NO:1236)
- 60 NO:1228) (SEQ. ID NC:1237)

NO:1229) (SEQ. ID NC:1238)

- 5'-GGGTGTGGTGTCC(i-3' (FRAG. NO:1230) (SEQ. ID NO:1239)
- 5'-CTTGGCGGTTCTTTCGGGTG-3' (FRAG. NO:1231) (SEQ. ID NO:1240)
- 5'-TTTCTTCTCTGGGTTGGC-3' (FRAG. NO:1232) (SEQ. ID NO:1241)
 5'-CTGCTGCTCGTCGTGGTC-3' (FRAG. NO:1233) (SEQ. ID NO:1242)
 5'-GCTCCGCTCCCGGC(TTC-3' (FRAG. NO:1234) (SEQ. ID NO:1243)
 5'-GTCTCGCTCTGTCGCCC-3' (FRAG. NO:1235) (SEQ. ID NO:1244)
 - 5'-CTTCCTTCTTGTC 3' (FRAG. NO:1236) (SEQ. ID NO:1245)
- 5'-GTGTTCCTCCCTTCCTTGCCTCT-3' (FRAG. NO:1237) (SEQ. ID NO:1246)
 - 5'-GGCBCGGGG CB'TGGGCGG GCBBTGTBGG CBBBGCBGCB GGGTGTGGTG TCCGBGGBBT BTGGGGBGGC BGBTGCBGGB GCGCBGBGGG CBGTBGCBBT GBGGBTGBCB GCGBGGCGTG CCGCGGBGBC CTTCBTGGTB CCTGTGGBGB GGCTGTCGGB GG-3' (FRAG. NO:1818) (SEO. ID NO:1831)

Human Muscarinic Acetylcholine Receptor HM1* Nucleic Acid and Antisense Oligonucleotide Fragments

- 15 5'-GCTGCCCGGC GG'3GTGTGCG CTTGGCGCTC CCGTGCTCGG TTCTCTGTCT CCCGGTCCCC CTTGCCTGGC GTCTCGGGCC TTCGTCCTCT TCCTCTTCTT CCTTCCGCTC CGTGGGGGGCT GCTTGGTGGG GGCCTGTGCCT CGGGGTCCCG GGGCITCTGG CCCTTGCCGT TCATGGTGGC TAGGTGGGGC GTTCBTGGTG GCTBGGTGGG GC-3'(FRAG. NO:1819)(SEQ. ID NO: 1832)
 - 5'-GGTGGGGC-3' (FRAG. NO:1820) (SEQ. ID NO: 1833)
- 5'-GCCCGGCGGGG-3' FRAG. NO:1821) (SEQ. ID NO: 1834)
 - 5'-CGG GGC TTC TGG CCC-3' (FRAG. NO:1822) (SEQ. ID NO: 1835)
 - 5'-GTT CBT GGT GGC TBG GTG GGG C-3' (FRAG. NO:1238) (SEQ. ID NO:1247)
 - 5'-GCT GCC CGG CGG GGT GTG CGC TTG GC-3' (FRAG. NO:1239) (SEQ. ID NO:1248)
 - 5'-GCT CCC GTG CTC 3GT TCT CTG TCT CCC GGT-3' (FRAG. NO:1240) (SEQ. ID NO:1249)
- 5'-CCC CCT TTG CCT GGC GTC TCG G-3' (FRAG. NO:1241) (SEQ. ID NO:1250)
 - 5'-GCC TTC GTC CTC TTC CTC TTC CTT CC-3' (FRAG. NO:1242) (SEO. ID NO:1251)
 - 5'-GCT CCG TGG GGG CTG CTT GGT GGG GGC CTG TGC CTC GGG GTC C-3' (FRAG. NO:1243) (SEO. ID NO:1252)
 - 5'-CGG GGC TTC TGG CCC TTG CC-3' (FRAG. NO:1244) (SEQ. ID NO:1253)
 - 5'-GTT CAT GGT GGC TAG GTG GGG C-3' (FRAG. NO: 1245) (SEQ. ID NO:1254)

Human Muscarinic Acetylcholine Receptor HM3* Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GGG GTG GGT BGG CCG TGT CTG GGGGTT GGC CBT GTT GGT TGC CTCT TGG TGC TGC GCC GGG CGCG TCT GGG GCT TCT TGGC3 CTG GCG GGG GGG CCT CCTGCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGGTGG CGG GCG TCG TGG CCT CTG TGGGGG CCC GCG GCT GCB GGG GTTG CCT GTC TGC TTC GTCCTT TGC

- GCT CCC GGG CCG C'GGG GTG GGT AGG CCG TGT CTG GGGGTT GGC CAT GTT GGT TGC CGGG CCC GCG GCT GCA GGG G-3' (FRAG. NO:1823) (SEO. ID NO:1836)
 - 5'-CCC GGG CGG-3' (FRAG. NO:1824) (SEQ. ID NO:1837)
 - 5'-G GCG GGG GGG CC-3' (FRAG. NO:1825) (SEQ. ID NO:1838)
 - 5'-CCC GGG CCG CC-3' (FRAG. NO: 1826) (SEQ. ID NO: 1839)
- 5'-GG CCG TGT-3' (F RAG. NO:1827) (SEQ. ID NO:1840)
 - 5'-GGG GTG GGT BGG CCG TGT CTG GGG-3' (FRAG. NO:1246) (SEQ. ID NO:1255)
 - 5'-GTT GGC CBT GTT GGT TGC C-3' (FRAG. NO:1247) (SEQ. ID NO:1256)
 - 5'-TCT TGG TGG TGC GCC GGG C-3' (FRAG. NO:1248) (SEQ. ID NO:1257)
 - 5'-GCG TCT TGG CT' TCT TCT CCT TCG GGC CCT CGG GCC GGT GCT TGT GG-3'(FRAG.NO:1249)(SEQ.ID
- NO:1258)

 - 5'-GCG CTG GCG GGG GGG CCT CCT CC-3' (FRAG. NO:1251) (SEQ. ID NO:1260)
 - 5'-GCT CTG TGG CTG GGC GTT CCT TGG TGT TCT GGG TGG C-3' (FRAG. NO:1252) (SEQ. ID NO:1261)
 - 5'-TGG CGG GCG TGG TGG CCT CTG TGG TGG-3' (FRAG. NO:1253) (SEQ. ID NO:1262)
- 5'-GGG CCC GCG GCT GCB GGG G-3' (FRAG. NO:1254) (SEQ. ID NO:1263)
 - 5'-TTG CCT GTC TGC 'TTC GTC-3' (FRAG. NO:1255) (SEQ. ID NO:1264)
 - 5'-CTT TGC GCT CCC GGG CCG CC-3' (FRAG. NO:1256) (SEQ. ID NO:1265)
 - 5'-GGG GTG GGT AGC CCG TGT CTG GGG-3' (FRAG. NO:1257) (SEO. ID NO:1266)
 - 5'-GTT GGC CAT GTT GGT TGC C-3' (FRAG. NO:1258) (SEQ. ID NO:1267)
- 5'-GGG CCC GCG GCT GCA GGG G-3' (FRAG. NO:1259) (SEO. ID NO:1268)

Human Fibronectin* Antisense Oligonucleotide Fragments

GGC GTC GG CCG CTC GCG CCT GGG GTT CCC TCT CCC CCT GTG C GCC TGC CTC TTG CTC TTCTGC GTC 234

5'-GGCCCGGGC-3' (FRAG. NO:1829) (SEQ. ID NO: 1842)

- 10 5'-GCCGGCGGGGGG 3' (FRAG. NO:1830) (SEQ. ID NO:1843)
 - 5'-GCCTGGGCTGGCC-3' (FRAG. NO:1831) (SEQ. ID NO: 1844)
 - 5'-GGGGG TGGCCG-3' (FRAG. NO:1832) (SEQ. ID NO: 1845)
 - 5'-GG GGG TGG CCG 'TG TGG GCG G-3' (FRAG. NO:1833) (SEQ. ID NO: 1846)
 - 5'-CGG TTT CCT TTG (CGG TC-3' (FRAG. NO:1260)(SEQ. ID NO:1269)
- 15 5'-TTG GCC CGG GCT CCG GGT G-3' (FRAG. NO:1261)(SEQ. ID NO:1270)
 - 5'-CCC GCC CGC CCG GCC GCC GC-3' (FRAG. NO:1262)(SEQ. ID NO:1271)
 - 5'-CCC GCC GGG CTG TCC CCG CCC CGC CCC-3' (FRAG. NO:1263)(SEQ. ID NO:1272)
 - 5'-GGC CCG GGG CGC GGG GG-3' (FRAG. NO:1264)(SEQ. ID NO:1273)
 - 5'-CGG CCC TCC CGC CCC TCT GG-3' (FRAG. NO:1265)(SEQ. ID NO:1274)
- 20 5'-GCC GGC GCG GGC GTC GG-3' (FRAG. NO:1266)(SEQ. ID NO:1275)
 - 5'-CCG CTC GCG CCT GGG GTT CCC TCT CCT CCC CCT GTG C-3' (FRAG. NO:1267)(SEQ. ID NO:1276)
 - 5'-GCC TGC CTC TTG CTC TTC-3' (FRAG. NO:1268)(SEQ. ID NO:1277)
 - 5'-TGC GTC CGC TGC CTT CTC CC-3' (FRAG. NO:1269)(SEO. ID NO:1278)
 - 5'CTC TCC TCG GCC (iTT GCC TGT GC-3' (FRAG. NO:1270)(SEQ. ID NO:1279)
- 25 5'-TGT CCG TCC TGT CGC CCT TCC GTG GTG C-3' (FRAG. NO:1271)(SEQ. ID NO:1280)
 - 5'-TGT TGT CTC T'GC CCT C-3' (FRAG. NO:1272)(SEQ. ID NO:1281)
 - 5'-GGT GTG CTG GTG GTG GTG GTG-3' (FRAG. NO:1273)(SEQ. ID NO:1282)
 - 5'-CCT CTG CCC GTG CTC GCC-3' (FRAG. NO:1274)(SEQ. ID NO:1283)
- 5'-CTG CCT GGG CTG GCC TCT TCG GGT-3' (FRAG. NO:1275)(SEQ. ID NO:1284)
- 5'-GTG GCT TTG GGG CTC TCT TGG TTG CCC TTT-3' (FRAG. NO:1276)(SEQ. ID NO:1285)
 - 5'-CTT CTC GTG GTG CCT CTC CTC CCT GGC TTG GTC GT-3' (FRAG. NO:1277)(SEQ. ID NO:1286)
 - 5'- TGT CTG GGG TGG TGC TCC TCT CCC-3' (FRAG. NO:1278)(SEQ. ID NO:1287)
 - 5'-TTT CCC TGC TGG CCG TTT GT-3' (FRAG. NO:1279)(SEQ. ID NO:1288)
 - 5'-CCT GTT TTC TGT CTT CCT CT-3' (FRAG. NO:1280)(SEQ. ID NO:1289)
- 5'-TTC CTC CTG TTT ('TC CGT-3' (FRAG. NO:1281)(SEQ. ID NO:1290)
 - 5'-TTG GCT TGC TGC 'ITG CGG GGC TGT CTC C-3' (FRAG. NO:1282)(SEQ. ID NO:1291)
 - 5'-CTT GCC CCT GTG GGC TTT CCC-3' (FRAG. NO:1283)(SEQ. ID NO:1292)
 - 5'-TGG TCC GGT CTT CTC CTT GGG GGT C-3' (FRAG. NO:1284)(SEO. ID NO:1293)
 - 5'-GCC CTT CTT GGT 13GG CTG-3' (FRAG. NO:1285)(SEQ. ID NO:1294)
- 40 5'-GCT CGT CTG TCT TTT TCC TTC C-3' (FRAG. NO:1286)(SEQ. ID NO:1295)
 - 5'-TGG GGG TGG CCG TTG TGG GCG GTG TGG TCC GCC T-3' (FRAG. NO:1287)(SEO. ID NO:1296)
 - 5'-TGC CTC TGC TGG TCT TTC-3' (FRAG. NO:1288)(SEQ. ID NO:1297)

Human Interleukin 1 (IL-1) Nucleic Acid and antisense Oligocnucleotide Fragments

					-		
	5'-AAGCTTCTA	C CC AGTCTG	G TGCTACACT	Γ ACATTGCTTA	CATCCAAGTG	TGGTTATTTC	TGTGGCTCCT
45	GTTATAACTA	TTAT AGCACC	AGGTCTATGA	CCAGGAGAAT	TAGACTGGCA	TTAAATCAGA	ATAAGAGATT
	TTGCACCTGC	AATAGACCTT	ATGACACCTA	ACCAACCCCA	TTATTTACAA	TTAAACAGGA	ACAGAGGGAA
	TACTTTATCC	AACTCACACA	AGCTGTTTTC	CTCCCAGATC	CATGCTTTTT	TGCGTTTATT	ATTTTTTAGA
	GATGGGGGCT	TCA('TATGTT	GCCCACACTG	GACTAAAACT	CTGGGCCTCA	AGTGATTGTC	CTGCCTCAGC
	CTCCTGAATA	GCTGGGACTA	CAGGGGCATG	CCATCACACC	TAGTTCATTT	CCTCTATTTA	AAATATACAT
50	GGCTTAAACT	CCAA CTGGGA	ACCCAAAACA	TTCATTTGCT	AAGAGTCTGG	TGTTCTACCA	CCTGAACTAG
	GCTGGCCACA	GGAA.TTATAA	AAGCTGAGAA	ATTCTTTAAT	AATAGTAACC	AGGCAACATC	ATTGAAGGCT
	CATATGTAAA	AATCCATGCC	TTCCTTTCTC	CCAATCTCCA	TTCCCAAACT	TAGCCACTGG	TTCTGGCTGA
	GGCCTTACGC	ATAC CTCCCG	GGGCTTGCAC	ACACCTTCTT	CTACAGAAGA	CACACCTTGG	GCATATCCTA
	CAGAAGACCA	GGCTTCTCTC	TGGTCCTTGG	TAGAGGGCTA	CTTTACTGTA	ACAGGGCCAG	GGTGGAGAGT
55	TCTCTCCTGA	AGCT CCATCC	CCTCTATAGG	AAATGTGTTG	ACAATATTCA	GAAGAGTAAG	AGGATCAAGA
	CTTCTTTGTG	CTCA 4ATACC	ACTGTTCTCT	TCTCTACCCT	GCCCTAACCA	GGAGCTTGTC	ACCCCAAACT
	CTGAGGTGAT	TTATGCCTTA	ATCAAGCAAA	CTTCCCTCTT	CAGAAAAGAT	GGCTCATTTT	CCCTCAAAAG
	TTGCCAGGAG	CTGCCAAGTA	TTCTGCCAAT	TCACCCTGGA	GCACAATCAA	CAAATTCAGC	CAGAACACAA
	CTACAGCTAC	TATTAGAACT	ATTATTATTA	ATAAATTCCT	CTCCAAATCT	AGCCCCTTGA	CTTCGGATTT
60	CACGATTTCT	CCCTTCCTCC	TAGAAACTTG	ATAAGTTTCC	CGCGCTTCCC	TTTTTCTAAG	ACTACATGTT
	TGTCATCTTA	TAAAGCAAAG	GGGTGAATAA	ATGAACCAAA	TCAATAACTT	CTGGAATATC	TGCAAACAAC

	AATAATATCA	GCTA TGCCAT	CTTTCACTAT			ATGAACATAG	
	AACTGAATTC	TTCCCTGTAA	ATTCCCCGTT	TTGACGACGC	ACTTGTAGCC	ACGTAGCCAC	GCCTACTTAA
	GACAATTACA	AAAGGCGAAG	AAGACTGACT	CAGGCTTAAG	CTGCCAGCCA	GAGAGGGAGT	CATTTCATTG
	GCGTTTGAGT	CAGCAAAGGT	ATTGTCCTCA	CATCTCTGGC	TATTAAAGTA	TTTTCTGTTG	TTGTTTTTCT
5	CTTTGGCTGT	TTTCTCTCAC	ATTGCCTTCT	CTAAAGCTAC	AGTCTCTCCT	TTCTTTTCTT	GTCCCTCCCT
	GGTTTGGTAT	GTGA CCTAGA	ATTACAGTCA	GATTTCAGAA	AATGATTCTC	TCATTTTGCT	GATAAGGACT
	GATTCGTTTT	ACTG AGGGAC	GGCAGAACTA	GTTTCCTATG	AGGGCATGGG	TGAATACAAC	TGAGGCTTCT
	CATGGGAGGG	AATCTCTACT	ATCCAAAATT	ATTAGGAGAA	AATTGAAAAT	TTCCAACTCT	GTCTCTCTCT
	TACCTCTGTG	TAAC GCAAAT	ACCTTATTCT	TGTGGTGTTT	TTGTAACCTC	TTCAAACTTT	CATTGATTGA
10	ATGCCTGTTC	TGGCAATACA	TTAGGTTGGG	CACATAAGGA	ATACCAACAT	AAATAAAACA	TTCTAAAAGA
	AGTTTACGAT	CTAATAAAGG	AGACAGGTAC	ATAGCAAACT	AATTCAAAGG	AGCTAGAAGA	TGGAGAAAAT
	GCTGAATGTG	GACTAAGTCA	TTCAACAAAG	TTTTCAGGAA	GCACAAAGAG	GAGGGGCTCC	CCTCACAGAT
	ATCTGGATTA	GAGC CTGGCT	GAGCTGATGG	TGGCTGGTGT	TCTCTGTTGC	AGAAGTCAAG	ATGGCCAAAG
	TTCCAGACAT	GTTTGAAGAC	CTGAAGAACT	GTTACAGGTA	AGGAATAAGA	TTTATCTCTT	GTGATTTAAT
15	GAGGGTTTCA	AGGC TCACCA	GAATCCAGCT	AGGCATAACA	GTGGCCAGCA	TGGGGGCAGG	CCGGCAGAGG
	TTGTAGAGAT	GTGTACTAGT	CCTGAAGTCA	GAGCAGGTTC	AGAGAAGACC	CAGAAAAACT	AAGCATTCAG
	CATGTTAAAC	TGAC ATTACA	TTGGCAGGGA	GACCGCCATT	TTAGAAAAAT	TATTTTTGAG	GTCTGCTGAG
	CCCTACATGA	ATATCAGCAT	CAACTTAGAC	ACAGCCTCTG	TTGAGATCAC	ATGCCCTGAT	ATAAGAATGG
	GTTTTACTGG	TCCATTCTCA	GGAAAACTTG	ATCTCATTCA	GGAACAGGAA	ATGGCTCCAC	AGCAAGCTGG
20	GCATGTGAAC	TCACATATGC	AGGCAAATCT	CACTCAGATG	TAGAAGAAAG	GTAAATGAAC	ACAAAGATAA
	AATTACGGAA	CATATTAAAC	TAACATGATG	TTTCCATTAT	CTGTAGTAAA	TACTAACACA	AACTAGGCTG
	TCAAAATTTT	GCCTGGATAT	TTTACTAAGT	ATAAATTATG	AAATCTGTTT	TAGTGAATAC	ATGAAAGTAA
	TGTGTAACAT	ATA#TCTATT	TGGTTAAAAT	AAAAAGGAAG	TGCTTCAAAA	CCTTTCTTTT	CTCTAAAGGA
	GCTTAACATT	CTTCCCTGAA	CTTCAATTAA	AGCTCTTCAA	TTTGTTAGCC	AAGTCCAATT	TTTACAGATA
25	AAGCACAGGT	AAAGCTCAAA	GCCTGTCTTG	ATGACTACTA	ATTCCAGATT	AGTAAGATAT	GAATTACTCT
	ACCTATGTGT	ATGTGTAGAA	GTCCTTAAAT	TTCAAAGATG	ACAGTAATGG	CCATGTGTAT	GTGTGTGACC
	CACAACTATC	ATGC TCATTA	AAGTACATTG	GCCAGAGACC	ACATGAAATA	ACAACAATTA	CATTCTCATC
	ATCTTATTTT	GACAGTGAAA	ATGAAGAAGA	CAGTTCCTCC	ATTGATCATC	TGTCTCTGAA	TCAGGTAAGC
	AAATGACTGT	AATT'CTCATG	GGACTGCTAT	TCTTACACAG	TGGTTTCTTC	ATCCAAAGAG	AACAGCAATG
30	ACTTGAATCT	TAAA TACTTT	TGTTTTACCC	TCACTAGAGA	TCCAGAGACC	TGTCTTTCAT	TATAAGTGAG
	ACCAGCTGCC	TCTCTAAACT	AATAGTTGAT	GTGCATTGGC	TTCTCCCAGA	ACAGAGCAGA	ACTATCCCAA
	ATCCCTGAGA	ACTC GAGTCT	CCTGGGGCAG	GCTTCATCAG	GATGTTAGTT	ATGCCATCCT	GAGAAAGCCC
	CGCAGGCCGC	TTCACCAGGT	GTCTGTCTCC	TAACGTGATG	TGTTGTGGTT	GTCTTCTCTG	ACACCAGCAT
	CAGAGGTTAG	AGA#.AGTCTC	CAAACATGAA	GCTGAGAGAG	AGGAAGCAAG	CCAGCTGAAA	GTGAGAAGTC
35	TACAGCCACT	CATC AATCTG	TGTTATTGTG	TTTGGAGACC	ACAAATAGAC	ACTATAAGTA	CTGCCTAGTA
	TGTCTTCAGT	ACTGGCTTTA	AAAGCTGTCC	CCAAAGGAGT	ATTTCTAAAA	TATTTTGAGC	ATTGTTAAGC
	AGATTTTTAA	CCTCCTGAGA	GGGAACTAAT	TGGAAAGCTA	CCACTCACTA	CAATCATTGT	TAACCTATTT
	AGTTACAACA	TCT('ATTTTT	GAGCATGCAA	ATAAATGAAA	AAGTCTTCCT	AAAAAAATCA	TCTTTTTATC
	CTGGAAGGAG	GAAGGAAGGT		GGAGAGAGGG	AGGGAAGCCT	AATGAAACAC	CAGTTACCTA
40	AGACCAGAAT	GGAGATCCTC	CTCACTACCT	CTGTTGAATA	CAGCACCTAC	TGAAAGAACT	TTCATTCCCT
	GACCATGAAC	AGCCTCTCAG	CTTCTGTTTT	CCTTCCTCAC	AGAAATCCTT	CTATCATGTA	AGCTATGGCC
	CACTCCATGA	AGGCTGCATG	GATCAATCTG	TGTCTCTGAG	TATCTCTGAA	ACCTCTAAAA	CATCCAAGCT
						AGAAGAGACG	
						GGAAGGTAAG	
45						AGGGGAAAAT	
						GAAAATTAAT	
						AGCCATTATT	
						ACCACTTACG	
.						TTCAGTTTCC	
50						AGTCTCAGGC	
						CCCTAACTTC	
						TTATTATTAT	
						GCACAATCTC	
						AAGCTGGGAA	
55						ACCGTGGTCT	
						CACCGCGCCC	
						ATTTATTAAT	
						TAAGCTCATT	
C C						AGTTCTACCT	
60						TAAACCCAAT	
						TGTAACAAAA	
	TAAAAATCAC	TCATATCGTC	AGTGAGAGTT	TACTACTGCC	AGCACTATGG	TATGTTTCCT	TAAAATCTTT

	GCTATACACA	TACCTACATG	TGAACAAATA	TGTCTAACAT	CAAGACCACA	CTATTTACAA	CTTTATATCC
	AGCTTTTCTT	ACTT AGCAAT	GTATTGAGGA	CATTTTAGAG	TGCCCGTTTT	TCACCATTAT	AAGCAATGCA
	ACAATGAACA	TCTGTATAAA	TAAATATTCA	TTTCTCTCAC	CCTTTATTTC	CTTAGAATAT	ATTCCTAGAA
	GTAGAATTTC	CCAGAGCCAT	GAGGATTTGT	GACGCTATTG	ATATGTGCCA	CTTTGCACTC	TCTGTGACAT
5	ATATAATTAT	TTTTAATGCA	TTCATTTTTT	TCTCAGAGTG	CATTCGTTTG	AAAACATAGA	CGGGAAATAC
	TGGTAGTCTT	CCTT 3TCAGT	TAGAAACACC	CAAACAATGA	AAAATGAAAA	AGTTGCACAA	ATAGTCTCTA
	AAAACAATGA	AACT ATTGCC	TGAGGAATTG	AAGTTTAAAA	AGAAGCACAT	AAGCAACAAC	AAGGATAATC
	CTAGAAAACC	AGT CTGCTG	ACTGGGTGAT	TTCACTTCTC	TTTGCTTCCT	CATCTGGATT	GGAATATTCC
	TAATACCCCC	TCCA.GAACTA	TTTTCCCTGT	TTGTACTAGA	CTGTGTATAT	CATCTGTGTT	TGTACATAGA
10	CATTAATCTG	CACITGTGAT	CATGGTTTTA	GAAATCATCA	AGCCTAGGTC	ATCACCTTTT	AGCTTCCTGA
	GCAATGTGAA	ATACAACTTT	ATGAGGATCA	TCAAATACGA	ATTCATCCTG	AATGACGCCC	TCAATCAAAG
	TATAATTCGA	GCCA ATGATC	AGTACCTCAC	GGCTGCTGCA	TTACATAATC	TGGATGAAGC	AGGTACATTA
	AAATGGCACC	AGACATTTCT	GTCATCCTCC	CCTCCTTTCA	TTTACTTATT	TATTTATTTC	AATCTTTCTG
	CTTGCAAAAA	ACATACCTCT	TCAGAGTTCT	GGGTTGCACA	ATTCTTCCAG	AATAGCTTGA	AGCACAGCAC
15	CCCCATAAAA	ATCC CAAGCC	AGGGCAGAAG	GTTCAACTAA		TCCACAAGAG	AGAAGTTTCC
13	TATCTTTGAG	AGT# AAGGGT	TGTGCACAAA	GCTAGCTGAT	GTACTACCTC	TTTGGTTCTT	TCAGACATTC
	TTACCCTCAA	TTTTAAAACT	GAGGAAACTG	TCAGACATAT	TAAATGATTT		
	CAATGAAGAA	CAA^CACTCT				ACTCAGATTT	ACCCAGAAGC
	ATCTTTATTA	TCTCTGATAA	CATATTTCTC	GTCTGTTGAT		AGTAACACCA	AACCAGGAAG
20			CATATTTGTG	AGGCAAAACC	TCCAATAAGC	TACAAATATG	GCTTAAAGGA
20	TGAAGTTTAG	TGTC'CAAAAA	CTTTTATCAC	ACACATCCAA	TTTTCATGGC	GGACATGTTT	TAGTTTCAAC
	AGTATACATA	TTTTCAAAGG	TCCAGAGAGG	CAATTTTGCA	ATAAACAAGC	AAGACTTTTT	CTGATTGGAT
	GCACTTCAGC	TAACATGCTT	TCAACTCTAC	ATTTACAAAT	TATTTTGTGT	TCTATTTTC	TACTTAATAT
	TATTTCTGCA	ATTTTCCCAA	TATTGACATC	GTGTATGTAT	TTGCCATTTT	TAATATCACT	AGACAATTCA
25	ATCAGGTTGC	TACGTTGGTC	CCTTGGGTTT	ACTCTAAATA	GCTTGATTGC	AAATATCTTT	GTATATATTA
25					CAAAGAGGAA	TGCCTAGATC	AATGGGCACA
	AATAATTTGA	CAGCTCTTAT	TAAACATTAT	TCTGTAAGTA	AAAACTGAAC	TACTTTTCAG	TATCACTAGC
	AACATATGAG	TGTATCAGCT	TCCTAAACCC	CTCCATGTTA	GGTCATTATG	AACTTATGAT	CTAACAAATT
	ACAGGGTCTT	ATCC CACTAA	TGAAATTATA	AGAGATTCAA	CACTTATTCA	GCCCCGAAGG	ATTCATTCAA
••	CGTAGAAAAT	TCT#AGAACA	TTAACCAAGT	ATTTACCTGC	CTAGTGAGTG	TGGAAGACAT	TGTGAAGGAC
30	ACAAAGATGT	ATAGAATTCC	ATTCCTGACT	TCCAGGTATT	TACACCATAG	GTGGGGACCT	AACTACACAC
	ACACACACAC	ACACACACAC	ACACACACAC		CACAATCTAC	ATCAACACTT	GATTTTATAC
	AAATACAATG	AATTTACTTT	CTTTTTGGTT	CTTCTCTTCA	CCAGTGAAAT	TTGACATGGG	TGCTTATAAG
	TCATCAAAGG	ATGATGCTAA	AATTACCGTG	ATTCTAAGAA	TCTCAAAAAC	TCAATTGTAT	GTGACTGCCC
	AAGATGAAGA	CCAACCAGTG	CTGCTGAAGG	TCAGTTGTCC		ACTTACCTTC	ATTTACATCT
35	CATATGTTTG	TAAATAAGCC	CAATAGGCAG	ACACCTCTAA	CAAGGTGACA	CTGTCCTCTT	TCCTTCCTAC
	CACAGCCCCC	ACCTACCCAC	CCCACTCCCA		AGGCGTGCCT	AGGCAGGATC	TATGAGAAAA
	TATAACAGAG	AGT.\AGAGGA	AAATTACCTT	CTTTCTTTTT	CCTTTCCCTG	CCTGACCTTA	TTCACCTCCC
	ATCCCAGAGC	ATCCATTTAT	TCCATTGATC	TTTACTGACA	TCTATTATCT	GACCTACACA	ATACTAGACA
	TTAGGACAAT	GTGC CCTGCC	TCCAAGAAAC	TCAAATAAGC	CAACTGAGAT	CAGAGAGGAT	TAATCACCTG
40	CCAATGGGCA	CAAAGCAACA	AGCTGGGAGC	CAAGTCCCAA	AATGGGGCCT	GCTGCTTCCA	GTTCCCCTCT
	CTCTGCATTG	ATG1 CAGCAT	TATCCTTCGT	CCCAGTCCTG	TCTCCACTAC	CACTTTCCCC	CTCAAACACA
	CACACACACA	ACAGCCTTAG	ATGTTTTCTC	CACTGATAAG	TAGGTGACTC	AATTTGTAAG	TATATAATCC
					TGCTTTTCTA		
	CAGAGTAGGG	CAG'l'AGCTTC	ATTCATGAAC	TCATTCAACA	AGCATTATTC	ACTGAGAGCC	TTGTATTTT
45	CAGGCATAGT	GCCAACAGCA	GTGTGGACAG	TGGTGCATCA	AAGCCTCTAG	TCTCATAGAA	CTTAGTCTTC
	TGGAGGATAT	GGAA.AACAGA	CAACCCAAAC	AACCAACAAA	AGAGCAAGAT	GCTGCAAAAA	AAAAAAAAT
	GAATAGGGTG	CTA/.GATAGA	GAAAAGTGGG	AGAGTGCTAT	TTAGACAAAG	TGGTAAAAAC	AAAGCCCCTT
	GTGAGATGAG	AGCT'GCCGAC	AGAGGGGGCG	GGTCATGGTT	GTGGGTTTTT	GGGTAGGACA	TTCAGAGGAG
	GGGGCGGGTC	GTGGTTGTGG	GTTTTTGGGT	AGGACATTCA	GAGGAGGGG	CGGGTCGTGG	TTGTGGGTTT
50	TTGGGTAGGA	CATICAGAGG	AGGGGGCGGG	TCGTGGTTGT	GGGTTTTTGG	GTAGGACATT	CAGAGGAGGG
	GGCGGGTCGT	GGT1'GTGGGT	TTTTGGGACA	TTCAGAGGAG	TCTGAATGCA	CCCAGGCCTA	CAACTTCAAG
					GGAACTGGGG		
	ATATGCAGAG	ACTAGTGCTT	GCAGAGCTTG	CATTTGGATT	TCATTTGAGG	TACAATGAAA	ACCCATTAAT
					CCTAAAATAG		
55					AGTCATGGGG		
					AACCAACAGA		
					AAATAAATCC		
					AGAATAGGAA		
					CTCATACTCA		
60					GTGTGTATGT		
-					AATGTCATCT		
					GGGCTTAGAA		
				3111100	JUJUTA	Londing	JULUIGHIII


		~~~~					
	GATGCAAAAT	GTCTTAGGCC		GCAGGACAGA			TGCCTGGATA
	CAGTAAGATA	CTAGTGTCAC	TGACAATCTT	CATAACTAAT	TTAGATCTCT	CTCCAATCAA	CTAAGGAAAT
	CAACTCTTAT	TAATAGACTG	GGCCACACAT	CTACTAGGCA	TGTAATAAAT	GCTTGCTGAA	TGAACAAATG
_	AATGAAGAGC	CTA 'AGCATC	ATGTTACAGC		AAGTGGTGTT	TCTCATGAAG	GCCAAATGCT
5	AAGGGATTGA	GCTTCAGTCC	TTTTTCTAAC	ATCTTGTTCT	CTAACAGAAT	TCTCTTCTTT	TCTTCATAGG
	AGATGCCTGA	GATACCCAAA	ACCATCACAG			TTCTTCTGGG	AAACTCACGG
	CACTAAGAAC	TATTTCACAT	CAGTTGCCCA	TCCAAACTTG	TTTATTGCCA	CAAAGCAAGA	CTACTGGGTG
	TGCTTGGCAG	GGGGGCCACC	CTCTATCACT	GACTTTCAGA	TACTGGAAAA	CCAGGCGTAG	GTCTGGAGTC
	TCACTTGTCT	CACTIGTGCA	GTGTTGACAG	TTCATATGTA	CCATGTACAT	GAAGAAGCTA	AATCCTTTAC
10	TGTTAGTCAT	TTGCTGAGCA	TGTACTGAGC	CTTGTAATTC	TAAATGAATG	TTTACACTCT	TTGTAAGAGT
	GGAACCAACA	CTAACATATA		TTAAAGAACA		TGCATAGTAC	CAATCATTTT
	AATTATTATT	CTTC ATAACA	ATTTTAGGAG	GACCAGAGCT	ACTGACTATG	GCTACCAAAA	AGACTCTACC
	CATATTACAG	ATGGGCAAAT	TAAGGCATAA	GAAAACTAAG	AAATATGCAC		GAAACAAGAA
	GCCACAGACC	TAGGATTTCA	TGATTTCATT	TCAACTGTTT	GCCTTCTGCT	TTTAAGTTGC	TGATGAACTC
15	TTAATCAAAT	AGCATAAGTT	TCTGGGACCT	CAGTTTTATC	ATTTTCAAAA	TGGAGGGAAT	AATACCTAAG
	CCTTCCTGCC	GCAA CAGTTT	TTTATGCTAA	TCAGGGAGGT	CATTTTGGTA	AAATACTTCT	CGAAGCCGAG
	CCTCAAGATG	AAGGCAAAGC				ATATGTATTT	ATAAATATAT
	TTAAGATAAT	TATA ATATAC	TATATTTATG	GGAACCCCTT	CATCCTCTGA	GTGTGACCAG	GCATCCTCCA
• •	CAATAGCAGA	CAGTGTTTTC	TGGGATAAGT	AAGTTTGATT	TCATTAATAC	AGGGCATTTT	GGTCCAAGTT
20	GTGCTTATCC	CATAGCCAGG	AAACTCTGCA	TTCTAGTACT	TGGGAGACCT	GTAATCATAT	AATAAATGTA
	CATTAATTAC	CTTGAGCCAG	TAATTGGTCC	GATCTTTGAC	TCTTTTGCCA	TTAAACTTAC	CTGGGCATTC
	TTGTTTCATT	CAATICCACC	TGCAATCAAG	TCCTACAAGC	TAAAATTAGA	TGAACTCAAC	TTTGACAACC
	ATGAGACCAC	TGTT'ATCAAA	ACTTTCTTTT	CTGGAATGTA	ATCAATGTTT	CTTCTAGGTT	CTAAAAATTG
	TGATCAGACC	ATAATGTTAC	ATTATTATCA	ACAATAGTGA	TTGATAGAGT	GTTATCAGTC	ATAACTAAAT
25	AAAGCTTGCA	ACAAAATTCT	CTGACACATA		GCCTTAATCA	TTATTTTACT	GCATGGTAAT
	TAGGGACAAA	TGGTAAATGT			AGTGTTACTT	TATAAAATCA	AACCAAGATT
	TTATATTTTT	TTCTCCTCTT	TGTTAGCTGC	CAGTATGCAT	AAATGGCATT	AAGAATGATA	ATATTTCCGG
	GTTCACTTAA	AGCTCATATT	ACACATACAC	AAAACATGTG	TTCCCATCTT	TATACAAACT	CACACATACA
20				GCACGGTGGC			
30	ACCAACCTCT	TCGAGGCACA	AGGCACAACA			CAGCCAATCT	TCATTGCTCA
	AGTGTCTGAA	GCAGCCATGG	CAGAAGTACC		AGTGAAATGA		CAGTGGCAAT
	GAGGATGACT	TGTTCTTTGA	AGCTGATGGC	CCTAAACAGA	TGAAGTGCTC	CTTCCAGGAC	CTGGACCTCT
	GCCCTCTGGA	TGGC GGCATC	CAGCTACGAA	TCTCCGACCA	CCACTACAGC	AAGGGCTTCA	GGCAGGCCGC
25	GTCAGTTGTT	GTGGCCATGG	ACAAGCTGAG	GAAGATGCTG	GTTCCCTGCC	CACAGACCTT	CCAGGAGAAT
35	GACCTGAGCA	CCTTCTTTCC	CTTCATCTTT	GAAGAAGAAC	CTATCTTCTT	CGACACATGG	GATAACGAGG
	CTTATGTGCA	CGATGCACCT	GTACGATCAC	TGAACTGCAC	GCTCCGGGAC	TCACAGCAAA	AAAGCTTGGT
	GATGTCTGGT	CCATATGAAC	TGAAAGCTCT	CCACCTCCAG	GGACAGGATA	TGGAGCAACA	AGTGGTGTTC
	TCCATGTCCT	TTGT.ACAAGG	AGAAGAAAGT	AATGACAAAA	TACCTGTGGC	CTTGGGCCTC	AAGGAAAAGA
40	ATCTGTACCT	GTCCTGCGTG	TTGAAAGATG AAAAGCGATT	ATAAGCCCAC	TCTACAGCTG	GAGAGTGTAG	ATCCCAAAAA
40	TTACCCAAAG	AAGAAGATGG			AAGATAGAAA	TCAATAACAA	GCTGGAATTT
	GAGTCTGCCC GGACCAAAGG	AGTTCCCCAA CGGCCAGGAT	CTGGTACATC	AGCACCTCTC TCACCATGCA	AAGCAGAAAA	CATGCCCGTC TCCTAAAGAG	TTCCTGGGAG AGCTGTACCC
				CCCTAGGGCT ACACCAATGC			
45				GCTCTCTCCT			
77				TAAAGCCCGC			
				CTGATGAGCA			
				CAAAGGGGGC			
				TGGACTGGTG			
50				AATGGGAATA			
50		AATAAACTTC		AGAAAGAAAG			
				AAGGTGGCAG			
				GGAGTCCCCT			
				CAGTGTTAGG			
55				CTGTGGAAAA			
00				AAATTAAAAA			
				TTCCCTCGTG			
				GCACATACTA			
				CTGAATGTAC			
60				GGGCAAGGTT			
				AACATTTGGG			
				AACCCTGTCT			
		2.11.0010001	CITIOOTOA	.11.00010101	UIIIUIIIIIIII		11100000000



TTGGCGGCAG GTGCCTGTAG TCCCAGCTGC TGGGGAGGCT GAGGCAGGAG AATGGTGTGA ACCCGGGAGG CGGAACTTGC AGGGGCCGA GATCGTGCCA CTGCACTCCA GCCTGGGCGA CAGAGTGAGA CTCTGTCTCA AAAAAAAAA AAAAGTGTTA TGATGCAGAC CTGTCAAAGA GGCAAAGGAG GGTGTTCCTA CACTCCAGGC ACTGTTCATA ACCTGGACTC TCATTCATTC TACAAATGGA GGCAAAGGAG GGTGTTCCTA CACTCCAGGC ACTGTTCATA ACCTGGACTC TCATTCATTC TACAAATGGA GGGCTCCCCT GGGCAGATCC CTGGAGCAGG CACTTTGCTG GTGTCTCGGT TAAAGAGAAA CTGATAACTC TTGGTATTAC CAAGAGATAG AGTCTCAGAT CACCAAAAAA TCATTTTAGG CAGAGCTCAT CTGGCATTGA TCTGGTTCAT CCATGAGATT GGCTAGGGTA ACAGCACCTG GTCTTGCAGG GTTGTGTGAG CTTATCTCCA GGGTTGCCCC AACTCCGTCA GGAGCCTGAA CCCTGCATAC CGTATGTTCT CTGCCCCAGC CAAGAAAGGT CAA'TTTCTC CTCAGAGGCT CCTGCAATTG ACAGAGAGCT CCCGAGGCAG AGAACAGCAC CCAAGGTAGA GACCCACACC CTCAATACAG ACAGGGAGGG CTATTGGCCC TTCATTGTAC CCATTTATCC ATCTGTAAGT GGGAAGATTC CTAAACTTAA GTACAAAGAA GTGAATGAAG AAAAGTATGT GCATGTATAA ATCTGTGTGT CTTCCACTTT GTCCCACATA TACTAAATTT AAACATTCTT CTAACGTGGG AAAATCCAGT ATTTTAATGT GGACATCAAC TGCACAACGA TTGTCAGGAA AACAATGCAT ATTTGCATGG TGATACATTT GCAAAATGTG TCATAGTTTG CTACTCCTTG CCCTTCCATG AACCAGAGAA TTATCTCAGT TTATTAGTCC CCTCCCCTAA GAAGCTTCCA CCAATACTCT TTTCCCCTTT CCTTTAACTT GATTGTGAAA TCAGGTATTC 15 AACAGAGAAA TTTCTCAGCC TCCTACTTCT GCTTTTGAAA GCTATAAAAA CAGCGAGGGA GAAACTGGCA GATACCAAAC CTCTTCGAGG CACAAGGCAC AACAGGCTGC TCTGGGATTC TCTTCAGCCA ATCTTCATTG CTCAAGTATG ACTITAATCT TCCTTACAAC TAGGTGCTAA GGGAGTCTCT CTGTCTCTCT GCCTCTTTGT GTGTATGCAT ATTUTCTCTC TCTCTCTTT TCTTTCTCTG TCTCTCCTCT CCTTCCTCTC TGCCTCCTCT CTCAGCTTTT TGCAAAAATG CCAGGTGTAA TATAATGCTT ATGACTCGGG AAATATTCTG GGAATGGATA 20 CTGCTTATCT AACAGCTGAC ACCCTAAAGG TTAGTGTCAA AGCCTCTGCT CCAGCTCTCC TAGCCAATAC ATTGCTAGTT GGGCTTTGGT TTAGCAAATG CTTTTCTCTA GACCCAAAGG ACTTCTCTTT CACACATTCA TTCATTTACT CAGAGATCAT TTCTTTGCAT GACTGCCATG CACTGGATGC TGAGAGAAAT CACACATGAA CGTAGCCGTC ATGCGGAAGT CACTCATTTT CTCCTTTTTA CACAGGTGTC TGAAGCAGCC ATGGCAGAAG TACCTGAGCT CGCCAGTGAA ATGATGGCTT ATTACAGGTC AGTGGAGACG CTGAGACCAG TAACATGAGC AGGTCTCCTC TTTCAAGAGT AGAGTGTTAT CTGTGCTTGG AGACCAGATT TTTCCCCTAA ATTGCCTCTT TCAGTGGCAA ACAGGGTGCC AAGTAAATCT GATTTAAAGA CTACTTTCCC ATTACAAGTC CCTCCAGCCT TGGGACCTGG AGGCTATCCA GATGTGTTGT TGCAAGGGCT TCCTGCAGAG GCAAATGGGG AGAAAAGATT CCAAGCCCAC AATA.CAAGGA ATCCCTTTGC AAAGTGTGGC TTGGAGGGAG AGGGAGAGCT CAGATTTTAG CTGACTCTGC TGGGCTAGAG GTTAGGCCTC AAGATCCAAC AGGGAGCACC AGGGTGCCCA CCTGCCAGGC CTAGAATCTG CCTICTGGAC TGTTCTGCGC ATATCACTGT GAAACTTGCC AGGTGTTTCA GGCAGCTTTG AGAGGCAGGC TGTTTGCAGT TTCTTATGAA CAGTCAAGTC TTGTACACAG GGAAGGAAAA ATAAACCTGT TTAGAAGACA TAA'TGAGAC ATGTCCCTGT TTTTATTACA GTGGCAATGA GGATGACTTG TTCTTTGAAG CTGATGGCCC TAAACAGATG AAGGTAAGAC TATGGGTTTA ACTCCCAACC CAAGGAAGGG CTCTAACACA GGGAAAGCTC AAAGAAGGGA GTTCTGGGCC ACTTTGATGC CATGGTATTT TGTTTTAGAA AGACTTTAAC CTCTTCCAGT GAGACACAGG CTGCACCACT TGCTGACCTG GCCACTTGGT CATCATATCA CCACAGTCAC TCACTAACGT TGGIGGTGGT GGCCACACTT GGTGGTGACA GGGGAGGAGT AGTGATAATG TTCCCATTTC ATAGTAGGAA GACAACCAAG TCTTCAACAT AAATTTGATT ATCCTTTTAA GAGATGGATT CAGCCTATGC CAATCACTTG AGTTAAACTC TGAAACCAAG AGATGATCTT GAGAACTAAC ATATGTCTAC CCCTTTTGAG TAGAATAGTT TTTTGCTACC TGGGGTGAAG CTTATAACAA CAAGACATAG ATGATATAAA CAAAAAGATG AATTGAGACT TGAAAGAAAA CCATTCACTT GCTGTTTGAC CTTGACAAGT CATTTTACCC GCTTTGGACC TCATCTGAAA AATAAAGGGC TGAGCTGGAT GATCTCTGAG ATTCCAGCAT CCTGCAACCT CCAGTTCTGA AATATTTTCA GTTGTAGCTA AGGGCATTTG GGCAGCAAAT GGTCATTTTT CAGACTCATC CTTACAAAGA GCCATGTTAT ATTCCTGCTG TCCCTTCTGT TTTATATGAT GCTCAGTAGC CTTCCTAGGT GCCCAGCCAT CAGCCTAGCT AGG CAGTTG TGCAGGTTGG AGGCAGCCAC TTTTCTCTGG CTTTATTTTA TTCCAGTTTG TGATAGCCTC CCCTAGCCTC ATAATCCAGT CCTCAATCTT GTTAAAAACA TATTTCTTTA GAAGTTTTAA GACTGGCATA ACTICTTGGC TGCAGCTGTG GGAGGAGCCC ATTGGCTTGT CTGCCTGGCC TTTGCCCCCC ATTGCCTCTT CCACCAGCTT GGCTCTGCTC CAGGCAGGAA ATTCTCTCCT GCTCAACTTT CTTTTGTGCA CTTACAGGTC TCTTTAACTG TCTTTCAAGC CTTTGAACCA TTATCAGCCT TAAGGCAACC TCAGTGAAGC CTTAATACGG AGCITCTCTG AATAAGAGGA AAGTGGTAAC ATTTCACAAA AAGTACTCTC ACAGGATTTG CAGAATGCCT ATGAGACAGT GTTATGAAAA AGGAAAAAAA AGAACAGTGT AGAAAAATTG AATACTTGCT GAGTGAGCAT AGG GAATGG AAAATGTTAT GGTCATCTGC ATGAAAAAGC AAATCATAGT GTGACAGCAT TAGGGATACA AAAAGATATA GAGAAGGTAT ACATGTATGG TGTAGGTGGG GCATGTACAA AAAGATGACA AGTAGAATCG GGA'TTTATTC TAAAGAATAG CCTGTAAGGT GTCCAGAAGC CACATTCTAG TCTTGAGTCT GCCTCTACCT GCTCTGTGCC CTTGAGTACA CCCTTAACCT CCTTGAGCTT CAGAGAGGGA TAATCTTTTT ATTTTATTT ATTTTATTTT GTTTTGTTTT GTTTTGTTTT GTTTTATGAG ACAGAGTCTC ACTCTGTTGC CCAGGCTGGA GTGCAGTGGT ACAATCTTGG CTTACTGCAT CCTCCACCTC CTGAGTTCAA GCGATTCTCC TTCCTCAGTC TCCTGAATAG CTAGGATTAC AGGTGCACCC CACCACACCC AGCTAATTTT TGTATTTTTA GTAGAGAAGG GGTITCGCCA TGTTGGCCAG GCTGGTTTTG AAGTCCTGAC CTAAATGATT CATCCACCTC GGCTTCCCAA AGTCCTGGGA TTACAGGCAT GAGCCACCAC GCCTGGCCCA GAGAGGGATG ATCTTTAGAA GCTCGGGATT CTTTCAAGCC CTTTCCTCCT CTCTGAGCTT TCTACTCTCT GATGTCAAAG CATGGTTCCT GGCAGGACCA CCTCACCAGG CTCCCTCCCT CGCTCTCTCC GCAGTGCTCC TTCCAGGACC TGGACCTCTG



	CCCTCTGGAT				CACTACAGCA		
	TCAGTTGTTG	TGGCCATGGA	CAAGCTGAGG	AAGATGCTGG	TTCCCTGCCC	ACAGACCTTC	CAGGAGAATG
	ACCTGAGCAC	CTTCTTTCCC		AAGAAGGTAG	TTAGCCAAGA	GCAGGCAGTA	GATCTCCACT
	TGTGTCCTCT	TGGAAGTCAT	CAAGCCCCAG	CCAACTCAAT	TCCCCCAGAG	CCAAAGCCCT	TTAAAGGTAG
5	AAGGCCCAGC	GGGGAGACAA	AACAAAGAAG	GCTGGAAACC	AAAGCAATCA	TCTCTTTAGT	GGAAACTATT
	CTTAAAGAAG	ATCTTGATGG	CTACTGACAT	TTGCAACTCC	CTCACTCTTT	CTCAGGGGCC	TTTCACTTAC
	ATTGTCACCA	GAGGTTCGTA	ACCTCCCTGT	GGGCTAGTGT	TATGACCATC	ACCATTTTAC	CTAAGTAGCT
	CTGTTGCTCG	GCCACAGTGA	GCAGTAATAG	ACCTGAAGCT	GGAACCCATG	TCTAATAGTG	TCAGGTCCAG
	TGTTCTTAGC	CACCCCACTC	CCAGCTTCAT	CCCTACTGGT	GTTGTCATCA	GACTTTGACC	GTATATGCTC
10	AGGTGTCCTC	CAAGAAATCA	AATTTTGCCA	CCTCGCCTCA	CGAGGCCTGC	CCTTCTGATT	TTATACCTAA
	ACAACATGTG	CTCC'ACATTT	CAGAACCTAT	CTTCTTCGAC	ACATGGGATA	ACGAGGCTTA	TGTGCACGAT
	GCACCTGTAC	GATC ACTGAA	CTGCACGCTC	CGGGACTCAC	AGCAAAAAAG	CTTGGTGATG	TCTGGTCCAT
	ATGAACTGAA	AGC1'CTCCAC	CTCCAGGGAC	AGGATATGGA	GCAACAAGGT	AAATGGAAAC	ATCCTGGTTT
	CCCTGCCTGG	CCTCCTGGCA	GCTTGCTAAT	TCTCCATGTT	TTAAACAAAG	TAGAAAGTTA	ATTTAAGGCA
15	AATGATCAAC	ACAA.GTGAAA	AAAAATATTA	AAAAGGAATA		GGTCCTAGAA	ATGGCACATT
10	TGATTGCACT	GGCC AGTGCA	TTTGTTAACA	GGAGTGTGAC	CCTGAGAAAT	TAGACGGCTC	AAGCACTCCC
	AGGACCATGT	CCACCCAAGT	CTCTTGGGCA	TAGTGCAGTG	TCAATTCTTC	CACAATATGG	GGTCATTTGA
	TGGACATGGC	CTAACTGCCT	GTGGGTTCTC		GTTGAGGCTG	AAACAAGAGT	GCTGGAGCGA
	TAATGTGTCC	ATCCCCCTCC	CCAGTCTTCC	CCCCTTGCCC	CAACATCCGT	CCCACCCAAT	GCCAGGTGGT
20			CGCCCAGCAG	GAACTTATAT		TAACGGGCAA	
20	TCCTTGTAGG	GAAATTTTAC			CTCTCCGCTG		AAGTTTCAAG
	TGCGGTGAAC	CCATCATTAG	CTGTGGTGAT	CTGCCTGGCA	TCGTGCCACA	GTAGCCAAAG	CCTCTGCACA
	GGAGTGTGGG	CAACTAAGGC	TGCTGACTTT	GAAGGACAGC	CTCACTCAGG	GGGAAGCTAT	TTGCTCTCAG
	CCAGGCCAAG	AAAATCCTGT	TTCTTTGGAA	TCGGGTAGTA	AGAGTGATCC	CAGGGCCTCC	AATTGACACT
0.5	GCTGTGACTG	AGGAAGATCA	AAATGAGTGT		AGCCACTTTC	CCAGCTCAGC	CTCTCCTCTC
25	CCAGTTTCTT	CCCATGGGCT	ACTCTCTGTT	CCTGAAACAG	TTCTGGTGCC	TGATTTCTGG	CAGAAGTACA
	GCTTCACCTC	TTTCCTTTCC	TTCCACATTG	ATCAAGTTGT	TCCGCTCCTG	TGGATGGGCA	CATTGCCAGC
	CAGTGACACA	ATGGCTTCCT	TCCTTCCTTC	CTTCAGCATT	TAAAATGTAG	ACCCTCTTTC	ATTCTCCGTT
	CCTACTGCTA	TGAGGCTCTG	AGAAACCCTC	AGGCCTTTGA	GGGGAAACCC	TAAATCAACA	AAATGACCCT
	GCTATTGTCT	GTGAGAAGTC	AAGTTATCCT	GTGTCTTAGG	CCAAGGAACC	TCACTGTGGG	TTCCCACAGA
30	GGCTACCAAT	TACATGTATC	CTACTCTCGG	GGCTAGGGGT	TGGGGTGACC	CTGCATGCTG	TGTCCCTAAC
	CACAAGACCC	CCTTCTTTCT	TCAGTGGTGT	TCTCCATGTC	CTTTGTACAA	GGAGAAGAAA	GTAATGACAA
	AATACCTGTG	GCCTTGGGCC	TCAAGGAAAA	GAATCTGTAC	CTGTCCTGCG	TGTTGAAAGA	TGATAAGCCC
	ACTCTACAGC	TGGAGGTAAG	TGAATGCTAT	GGAATGAAGC	CCTTCTCAGC	CTCCTGCTAC	CACTTATTCC
	CAGACAATTC	ACC1 TCTCCC	CGCCCCCATC	CCTAGGAAAA	GCTGGGAACA	GGTCTATTTG	ACAAGTTTTG
35	CATTAATGTA	AAT#AATTTA	ACATAATTTT	TAACTGCGTG	CAACCTTCAA	TCCTGCTGCA	GAAAATTAAA
	TCATTTTGCC	GATGTTATTA	TGTCCTACCA	TAGTTACAAC	CCCAACAGAT	TATATATTGT	TAGGGCTGCT
	CTCATTTGAT	AGAC ACCTTG	GGAAATAGAT	GACTTAAAGG	GTCCCATTAT	CACGTCCACT	CCACTCCCAA
	AATCACCACC	ACTATCACCT	CCAGCTTTCT	CAGCAAAAGC	TTCATTTCCA	AGTTGATGTC	ATTCTAGGAC
	CATAAGGAAA	AATACAATAA	AAAGCCCCTG	GAAACTAGGT	ACTTCAAGAA	GCTCTAGCTT	AATTTTCACC
40	CCCCCAAAAA	AAAAAAATTC	TCACCTACAT	TATGCTCCTC	AGCATTTGGC	ACTAAGTTTT	AGAAAAGAAG
	AAGGGCTCTT	TTAATAATCA	CACAGAAAGT	TGGGGGCCCA	GTTACAACTC	AGGAGTCTGG	CTCCTGATCA
	TGTGACCTGC	TCGT'CAGTTT	CCTTTCTGGC	CAACCCAAAG	AACATCTTTC	CCATAGGCAT	CTTTGTCCCT
	TGCCCCACAA	AAA' TCTTCT	TTCTCTTTCG	CTGCAGAGTG	TAGATCCCAA	AAATTACCCA	AAGAAGAAGA
					CAAGCTGGAA		
45					GTCTTCCTGG		
					GAGAGCTGTA		
					AAGGTTTTTG		
					GGTAGTGCTA		
					GCCCTTTTGT		
50					CACATTTGGT		
50		ATTCTGATGA					TTTGATTCAT
					TGTAAAAGAG		
					AGTCCTTTAA		
55					TATCATACTG TGACTGTCTG		
33							
					ATTGCTGAGT		
					TATTTCGTTG		
					TCAGGACTGG		
60					GTACTAGGAG		
60					TATAAGCAGA		
					GGAGGAGAAC		
	AGGGATAAAC	AGA.AGATTTC	CACACATGGG	CTGGGCCAAT	TGGGTGTCGG	TTACGCCTGT	AATCCCAGCA



CTTTGGGTGG CAGGGCAGA AAGATCGCTT GAGCCCAGGA GTTCAAGACC AGCCTGGGCA ACATAGTGAG ACTCCCATCT CTACAAAAAA TAAATAAAATA AATAAAACAA TCAGCCAGGC ATGCTGGCAT GCACCTGTAG TCCTAGCTAC TTGGGAAGCT GACACTGGAG GATTGCTTGA GCCCAGAAGT TCAAGACTGC AGTGAGCTTA TCCGTTGACC TGCAGGTCGA C ACAAACCTTT TCGAGGCAAAA AGGCAAAAAA GGCTGCTCTG GGATTCTCTT CAGCCAATCT TCAATGCTCA AGTGTCTGAA GCAGCCATGG CAGAAGTACC TAAGCTCGCC AGTGAAATGA TGGCTTATTA CAGTGGCAAT GAGGATGACT TGTTCTTTGA AGCTGATGGC CCTAAACAGA TGAAGTGCTC CTTCCAGGAC CTGGACCTCT GCCCTCTGGA TGGCGGCATC CAGCTACGAA TCTCCGACCA CCACTACAGC AAGGGCTTCA GGCAGGCCGC GTCAGTTGTT GTGGCCATGG ACAAGCTGAG GAAGATGCTG GTTCCCTGCC CACAGACCTT CCACGAGAAT GACCTGAGCA CCTTCTTTCC CTTCATCTTT GAAGAAGAAC CTATCTTCTT CGACACATGG GATAACGAGG CTTATGTGCA CGATGCACCT GTACGATCAC TGAACTGCAC GCTCCGGGAC TCACAGCAAA AAAGCTTGGT GATGTCTGGT CCATATGAAC TGAAAGCTCT CCACCTCCAG GGACAGGATA TGGAGCAACA AGTGGTGTTC TCCATGTCCT TTGTACAAGG AGAAGAAAGT AATGACAAAA TACCTGTGGC CTTGGGCCTC AAGCAAAAGA ATCTGTACCT GTCCTGCGTG TTGAAAGATG ATAAGCCCAC TCTACAGCTG GAGAGTGTAG ATCCCAAAAA TTACCCAAAG AAGAAGATGG AAAAGCGATT TGTCTTCAAC AAGATAGAAA TCAATAACAA GCTCGAATTT GAGTCTGCCC AGTTCCCCAA CTGGTACATC AGCACCTCTC AAGCAGAAAA CATGCCCGTC TTCCTGGGAG GGACCAAAGG CGGCCAGGAT ATAACTGACT TCACCATGCA ATTTGTGTCT TCCTAAAGAG AGCTGTACCC AGAGAGTCCT GTGCTGAATG TGGACTCAAT CCCTAGGGCT GGCAGAAAGG GAACAGAAAG GTT TTGAGT ACGGCTATAG CCTGGACTTT CCTGTTGTCT ACACCAATGC CCAACTGCCT GCCTTAGGGT AGTCCTAAGA GGATCTCCTG TCCATCAGCC AGGACAGTCA GCTCTCTCCT TTCAGGGCCA ATCCCAGCCC TTTTGTTGAG CCAGGCCTCT CTCACCTCTC CTACTCACTT AAAGCCCGCC TGACAGAAAC CAGGCCACAT TTTCGTTCTA AGAAACCCTC CTCTGTCATT CGCTCCCACA TTCTGATGAG CAACCGCTTC CCTATTTATT TATTTATTTG TTTGTTTGTT TTGATTCATT GGTCTAATTT ATTCAAAGGG GGCAAGAAGT AGCAGTGTCT GTAAAAGAGC CTAGTTTTTA ATAGCTATGG AATCAATTCA ATTTGGACTG GTGTGCTCTC TTTAAATCAA GTCCTTTAAT TAAGACTGAA AATATATAAG CTCAGATTAT TTAAATGGGA ATATTTATAA ATGAGCAAAT ATCATACTGT TCAATGGTTC TCAAATAAAC TTCACT CTGGCAGGAG TAGCAGCTGC CCCTTGGCGC GACTGCTGGA GCCGCGAACT AGAGAAACAC AGACACGCCT CATAGAGCAA CGGCGTCTCT CGGAGCGTGG AGCCCGCCAA GCTCGAGCTG AGCTTTCGCT TGCCGTCCAC CACTGCCCAC ACTGTCGTTT GCTGCCATCG CAGACCTGCT GCTGACTTCC ATCCCTCTGG ATCCGGCAAG GGCCTGCGAT TTTGACAATG TCAAGATTTA CCGTATATCC CTGTTTGTTT GGATACACCA GTGACGTCCA CTTCTAGAAG ACAAAGTTAT ATTACTTAAA CAACCAAAGA TATGAAACTA TCCATGAAGA ACAATATTAT CAATACACAG CAGTCTTTTG TAACCATGCC CAATGTGATT GTACCAGATA TTGAAAAGGA AATACGAAGG ATGGAAAATG GAGCATGCAG CTCCTTTTCT GAGGATGATG ACAGTGCCTC TACATCTGAA GAATCAGAGA ATGAAAACCC TCATGCAAGG GGTTCCTTTA GTTA'IAAGTC ACTCAGAAAG GGAGGACCAT CACAGAGGGA GCAGTACCTG CCTGGTGCCA TTGCCATTTT TAATGTGAAC AACAGCGACA ATAAGGACCA GGAACCAGAA GAAAAAAAGA AAAAGAAAAA AGAAAAGAAG AGCAAGTCAG ATGATAAAAA CGAAAATAAA AACGACCCAA AGAAGAAGAT GGAAAAGCGA ATGGCCAAAG TTCCAGACAT GTTTGAAGAC CTGAAGAACT GTTACAGTGA AAATGAAGAA GACAGTTCCT CCATTGATCA TCTGTCTCTG AATCAGAAAT CCTTCTATCA TGTAAGCTAT GGCCCACTCC ATGAAGGCTG CATGGATCAA TCTGTGTCTC TGAGTATCTC TGAAACCTCT AAAACATCCA AGCTTACCTT CAAGGAGAGC ATGGTGGTAG TAGCAACCAA CGGGAAGGTT CTGAAGAAGA GACGGTTGAG TTTAAGCCAA TCCATCACTG ATGATGACCT GGACGCCATC GCCAATGACT CAGAGGAAGA AATCATCAAG CCTAGGTCAG CACCTTTTAG CTTCCTGAGC AATGTGAAAT ACAACTTTAT GAGGATCATC AAATACGAAT TCATCCTGAA TGACGCCCTC AATCAAAGTA TAA1TCGAGC CAATGATCAG TACCTCACGG CTGCTGCATT ACATAATCTG GATGAAGCAG TGAAATTTGA CATGGGTGCT TATAAGTCAT CAAAGGATGA TGCTAAAATT ACCGTGATTC TAAGAATCTC AAAAACTCAA TTGTATGTGA CTGCCCAAGA TGAAGACCAA CCAGTGCTGC TGAAGGAGAT GCCTGAGATA CCCAAAACCA TCAC'AGGTAG TGAGACCAAC CTCCTCTTCT TCTGGGAAAC TCACGGCACT AAGAACTATT TCACATCAGT TGCCCATCCA AACTTGTTTA TTGCCACAAA GCAAGACTAC TGGGTGTGCT TGGCAGGGGG GCCACCCTCT ATCACTGACT TTCAGATACT GGAAAACCAG GCGTAGGTCT GGAGTCTCAC TTGTCTCACT TGTGCAGTGT TGACAGTTCA TATGTACCAT GTACATGAAG AAGCTAAATC CTTTACTGTT AGTCATTTGC TGAGCATGTA CTGAGCCTTG TAATTCTAAA TGAATGTTTA CACTCTTTGT AAGAGTGGAA CCAACACTAA CATATAATGT TGTTATTTAA AGAACACCCT ATATTTTGCA TAGTACCAAT CATTTTAATT ATTATTCTTC ATAACAATTT TAGGAGGACC AGAGCTACTG ACTATGGCTA CCAAAAAGAC TCTACCCATA TTACAGATGG GCAAATTAAG GCATAAGAAA ACTAAGAAAT ATGCACAATA GCAGTTGAAA CAAGAAGCCA CAGACCTAGG ATTTCATGAT TTCATTTCAA CTGTTTGCCT TCTGCTTTTA AGTTGCTGAT GAACTCTTAA TCAAATAGCA TAAGTTTCTG GGACCTCAGT TTTATCATTT TCAAAATGGA GGGAATAATA CCTAAGCCTT CCTGCCGCAA CAGTTTTTA TGCT/ATCAG GGAGGTCATT TTGGTAAAAT ACTTCTCGAA GCCGAGCCTC AAGATGAAGG CAAAGCACGA AATGTTATTT TTTAATTATT ATTTATATAT GTATTTATAA ATATATTAA GATAATTATA ATATACTATA TTTAIGGGAA CCCCTTCATC CTCTGAGTGT GACCAGGCAT CCTCCACAAT AGCAGACAGT GTTTTCTGGG ATAAGTAAGT TTGATTTCAT TAATACAGGG CATTTTGGTC CAAGTTGTGC TTATCCCATA GCCAGGAAAC TCTGCATTCT AGTACTTGGG AGACCTGTAA TCATATAATA AATGTACATT AATTACCTTG AGCCAGTAAT TGGCCCGATC TTTGACTCTT TTGCCATTAA ACTTACCTGG GCATTCTTGT TTCATTCAAT TCCACCTGCA ATCAAGTCCT ACAAGCTAAA ATTAGATGAA CTCAACTTTG ACAACCATAG ACCACTGTTA TCAAAACTTT CTTTICTGGA ATGTAATCAA TGTTTCTTCT AGGTTCTAAA AATTGTGATC AGACCATAAT





	mm.a.aaa	~					
	TTCCAGACAT	GTTTGAAGAC			AGGAATAAGA		GTGATTTAAT
					GTGGCCAGCA		CCGGCAGAGG
	TTGTAGAGAT	GTGTACTAGT	CCTGAAGTCA		AGAGAAGACC	CAGAAAAACT	AAGCATTCAG
_	CATGTTAAAC	TGAGATTACA	TTGGCAGGGA	GACCGCCATT	TTAGAAAAAT	TATTTTTGAG	GTCTGCTGAG
5	CCCTACATGA	ATATCAGCAT	CAACTTAGAC	ACAGCCTCTG	TTGAGATCAC	ATGCCCTGAT	ATAAGAATGG
	GTTTTACTGG	TCCATTCTCA	GGAAAACTTG	ATCTCATTCA	GGAACAGGAA	ATGGCTCCAC	AGCAAGCTGG
	GCATGTGAAC	TCAC ATATGC	AGGCAAATCT	CACTCAGATG	TAGAAGAAAG	GTAAATGAAC	ACAAAGATAA
	AATTACGGAA	CATATTAAAC	TAACATGATG	TTTCCATTAT	CTGTAGTAAA	TACTAACACA	AACTAGGCTG
	TCAAAATTTT	GCCTGGATAT	TTTACTAAGT	ATAAATTATG	AAATCTGTTT	TAGTGAATAC	ATGAAAGTAA
10	TGTGTAACAT	ATA#.TCTATT	TGGTTAAAAT	AAAAAGGAAG	TGCTTCAAAA	CCTTTCTTTT	CTCTAAAGGA
	GCTTAACATT	CTTCCCTGAA	CTTCAATTAA	AGCTCTTCAA	TTTGTTAGCC	AAGTCCAATT	TTTACAGATA
	AAGCACAGGT	AAAGCTCAAA	GCCTGTCTTG	ATGACTACTA	ATTCCAGATT	AGTAAGATAT	GAATTACTCT
	ACCTATGTGT	ATGTGTAGAA	GTCCTTAAAT	TTCAAAGATG	ACAGTAATGG	CCATGTGTAT	GTGTGTGACC
	CACAACTATC	ATGC/TCATTA	AAGTACATTG	GCCAGAGACC	ACATGAAATA	ACAACAATTA	CATTCTCATC
15	ATCTTATTTT	GACAGTGAAA	ATGAAGAAGA	CAGTTCCTCC	ATTGATCATC	TGTCTCTGAA	TCAGGTAAGC
	AAATGACTGT	AATT'CTCATG	GGACTGCTAT	TCTTACACAG	TGGTTTCTTC	ATCCAAAGAG	AACAGCAATG
	ACTTGAATCT	TAAA.TACTTT	TGTTTTACCC	TCACTAGAGA	TCCAGAGACC	TGTCTTTCAT	TATAAGTGAG
	ACCAGCTGCC	TCTCTAAACT	AATAGTTGAT	GTGCATTGGC	TTCTCCCAGA	ACAGAGCAGA	ACTATCCCAA
	ATCCCTGAGA	ACTGGAGTCT	CCTGGGGCAG	GCTTCATCAG	GATGTTAGTT	ATGCCATCCT	GAGAAAGCCC
20	CGCAGGCCGC	TTCACCAGGT	GTCTGTCTCC	TAACGTGATG	TGTTGTGGTT	GTCTTCTCTG	ACACCAGCAT
	CAGAGGTTAG	AGA/AGTCTC	CAAACATGAA	GCTGAGAGAG	AGGAAGCAAG	CCAGCTGAAA	GTGAGAAGTC
	TACAGCCACT	CATC'AATCTG	TGTTATTGTG	TTTGGAGACC	ACAAATAGAC	ACTATAAGTA	CTGCCTAGTA
	TGTCTTCAGT	ACTGGCTTTA	AAAGCTGTCC	CCAAAGGAGT	ATTTCTAAAA	TATTTTGAGC	ATTGTTAAGC
	AGATTTTTAA	CCTCCTGAGA	GGGAACTAAT	TGGAAAGCTA	CCACTCACTA	CAATCATTGT	TAACCTATTT
25	AGTTACAACA	TCT('ATTTTT	GAGCATGCAA	ATAAATGAAA	AAGTCTTCCT	AAAAAAATCA	TCTTTTTATC
	CTGGAAGGAG	GAAGGAAGGT	GAGACAAAAG	GGAGAGAGGG	AGGGAAGCCT	AATGAAACAC	CAGTTACCTA
	AGACCAGAAT	GGA/3ATCCTC	CTCACTACCT	CTGTTGAATA	CAGCACCTAC	TGAAAGAACT	TTCATTCCCT
	GACCATGAAC	AGCCTCTCAG	CTTCTGTTTT	CCTTCCTCAC	AGAAATCCTT	CTATCATGTA	AGCTATGGCC
	CACTCCATGA	AGGCTGCATG	GATCAATCTG	TGTCTCTGAG	TATCTCTGAA	ACCTCTAAAA	CATCCAAGCT
30	TACCTTCAAG	GAGA GCATGG	TGGTAGTAGC	AACCAACGGG	AAGGTTCTGA	AGAAGAGACG	GTTGAGTTTA
	AGCCAATCCA	TCAC TGATGA	TGACCTGGAG	GCCATCGCCA	ATGACTCAGA	GGAAGGTAAG	GGGTCAAGCA
					TIT GITCT CITCIT	00.11.001.11.10	000101110011
	CAATAATATC	TTTCTTTTAC	AGTTTTAAGC	AAGTAGGGAC	AGTAGAATTT	AGGGGAAAAT	TAAACGTGGA
	CAATAATATC GTCAGAATAA	TTTCTTTTAC CAAGAAGACA		AAGTAGGGAC	AGTAGAATTT		
			ACCAAGCATT	AAGTAGGGAC AGTCTGGTAA	AGTAGAATTT CTATACAGAG	AGGGGAAAAT	TAAACGTGGA
35	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG	CAAGAAGACA GAGAAATGAG TCGTGTGACT	ACCAAGCATT	AAGTAGGGAC AGTCTGGTAA	AGTAGAATTT CTATACAGAG	AGGGGAAAAT GAAAATTAAT	TAAACGTGGA TTTTATCCTT
35	GTCAGAATAA CTCCAGGAGG	CAAGAAGACA GAGAAATGAG TCG1'GTGACT AAC1'ATGCCT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAT	AGTAGAATTT CTATACAGAG ACTTGCTCAC	AGGGGAAAAT GAAAATTAAT AGCCATTATT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA
35	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG	CAAGAAGACA GAGAAATGAG TCGTGTGACT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAT CAGGAGAAAG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC
35	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAT CAGGAGAAAG GTTACATAAT	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA
	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA	CAAGAAGACA GAGAAATGAG TCG1'GTGACT AAC1'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG CAGGAGAAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
35 40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG CAGGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCG1'GTGACT AAC1'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG CAGGAGAAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG CAGGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC TCCTGGGTTC CCCCGGCTAAT CACCTTGGCC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG	AAGTAGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCCCC	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC TCCTGGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC	CAAGAAGACA GAGAAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC TCCTGGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCACAAGAAT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC TCCI GGGTTC CCCCIGCTAAT CACCTTTGGCC ACTACTACTA TCAC AAGAAT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTATAT TAAGCTCATT AGTTCTACCT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCCAA ATCATGGTTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGGAGTC TCCIGGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCACAAGAAT TGGCATACAT CTCCTCCATC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AAGCAA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTATAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AAGCAA TCAC'AATCGTC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG	AGGGGAAAAT GAAAATTAAT AGCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTATTAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AAGCAA TCAC AAGCAA TCAC AAGCAA TCAC AAGCAA TCAC AAGCAA TCAC AACCATC ACCI AAGCAA TCAC AACCATC TCACTACATC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACAA	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTTATTT
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCCAA ATCATGGTTT TTAAGATAAT TAAAAATCAC GCTATACACA AGCTTTTCTT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGAT GAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AAGCAA TCAC'ATCGTC TCACTACTAC TCACTACTAC ACCI AAGCAA TCAC'ATCGTC TACCTACATG ACTTACATG	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT	AGGGGAAAAT GAAAATTAAT AGCCATTACT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACAA TCACCATTAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA TAAAATCTTT CTTTATATCC AAGCAATGCA
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCCAA ATCATGGTTT TTAAGATAAT TAAAAATCAC GCTATACACA AGCTTTTCTT ACAATGAACA	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGC'CTCCTG TACAAAGTAA AGAT GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TCGCATCACT ACCI AAGCAA TCAC TACGTC TCCTTCCATC ACCI AAGCAA TCAC TACGTC TACCTACATG ACTTACATG ACTTACATG ACTTAGCAAT TCTGTTATAAA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCCAC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACAA TCACCATTAT CTTAGAATAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAA ATTCCTGTTT TATAAGAAAA TAAAATCTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCCAA ATCATGGTTT TTAAGATAAT TAAAAATCAC GCTATACACA AGCTTTTCTT ACAATGAACA GTAGAACTTC	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGC'CTCCTG TACAAAGTAA AGAT GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TCGCATCACT ACCI AAGCAA TCAC'AAGCAA TCAC'AAGCAA TCAC'AAGCAA TCAC'AAGCAA TCAC'AAGCAA TCAC'AAGCAA TCAC'TACATG ACTTAGCAAT TCTGTATAAA CCAGAGCCAT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA GAGGATTTGT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTAGAATAT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA TAAAATCTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCCAA ATCATGGTTT TTAAGATAAT TAAAAATCAC GCTATACACA AGCTTTTCTT ACAATGAACA GTAGAACTTC ATATAATTAT	CAAGAAGACA GAGAAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGC'CTCCTG TACAAAGTAA AGAT GAGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TCGC'ATACAT CACCI TCCATC ACCI AAGCAA TCA' ATCGTC TACCTACAT ACCTACAT ACCTACAT ACCTACAT TCTGTCATC ACCTACAT TCTGTATAAA CCAGAGCCAT TTTTTATAAACCA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA GAGGATTTGT TTCATTTTTT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCAC GACGCTATTG TCTCACAGAGTG	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTGGTTTG	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTAGAATAT CTTTGCACTC AAAACATAGA	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA TAAAATCTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC
40	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TTATTTTTTG AAGCTCTGCC CGCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCAA ATCATGGTTT TTAAGATAAT TAAAAATCAC GCTATACACA AGCTTTTCTT ACAATGAACA GTAGAATTTC ATATAATTT TGGTAGACCT TTAAGATAAT TAAAATTAT TACAATGAACA GTAGAATTTC ATATAATTAT TGGTAGTCTT	CAAGAAGACA GAGAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGC'CTCCTG TACAAAGTAA AGAT GAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AAGCAA TCA' ATCGTC TACCTACAT ACTTAGCAAT TCTGTCATC ACTTAGCAAT TCTGTTATAAA CCAGAGCCAT TTTTATAATGCA CCTTGTCAGT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTATAT CCTACCTTCT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA GAGGATTTGT TTCATTTTTT TAGAAACACC	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCACAGAGTG CAAACAATGA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTGCACTC AAAACATAGA AGTTGCACAA	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAATGAG TCGI'GTGACT AACI'ATGCCT ATCAGAATCC GGC'CTCCTG TACAAAGTAA AGAT'GAGTC TCCI GGGTTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGC'ATACAT CTCC TCCATC ACCI AAGCAA TCA' ATCGTC TACCTACAT ACCTTACAT ACTTAGCAAT TCTGTTATAAA CCAGAGCCAT TTTTAATGCA CCTTGTCAGT AAC' ATTGCC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATCA GAGGATTTGT TTCATTTTT TAGAAACACC TGAGGAATTG	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCACAGAGTG CAAACAATGA AAGTTTAAAA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTGCACTC AAACATAGA AGTTGCACAA AGCACAACAAC	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA TAAAATCTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTG AAGCTCTGCC CGCCACTGTT GTGATCCACC TATTATTATT TGTCTAAACC AACTGCCAA ATCATGGTTT TAAGATAAT TAAAAATCAC GCTATACACA AGCTTTCTT ACAATGAACA GTAGAATTC ATATAATTAT TGGTAGTCTT AAAACAATGA CTAGAAAACC CTAGAAAACC	CAAGAAGACA GAGAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CACCTACAT CACCTACAT CACCTACAT CACCTACAT CTCCTCCATC ACCTACAT CTCCTCCATC ACCTACAT CTCTTACAT CTCTTACAT CTCTTACAT CTCTTTATAAA CCAGAGCCAT TTTTAATGCA CCTTGTCAGT AACTATTGCC AGTTCTGCTG	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATCA GAGGATTTGT TTCATTTTT TAGAAACACC TGAGGAATTG ACTGGGTGAT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCACAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT TTTGCTTCCT	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTGCACTC AAACATAGA AGTTGCACAA AGCACAAC CATCTGGATT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC GGAATATTCC GGAATATCC GGAATATCC
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CACCTACATC ACCTACATC ACCTACATC ACCTACATC ACCTACATC TCACTACATC ACCTACATC ACCTTGCTC ACCTTGCTG TCCAGAACTA	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATCA GAGGATTTGT TTCATTTTT TAGAAACACC TGAGGAATTG ACTGGGTGAT TTTTCCCTGT	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCACAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAACA AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT TTTGCTTCCT CTGTGTATATT	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCTC AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTTGCACTC AAACATAGA AGTTGCACAA AGCTCGATT CATCTGGATT CATCTGGATT CATCTGGATT CATCTGGATT CATCTGGATT CATCTGGATT CATCTGGATT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC GGAATATTCC TGTACATAGA
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CACCTACATC ACCTACATC ACCTACATC ACCTACATC ACCTACATC TCACTACATC ACCTACATC ACCTTGTCAGT AACTATTGCC AGTTCTGCTG TCCAGAACTA CACTTGTGAT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATCA GAGGATTTGT TCATTTTT TAGAAACACC TGAGGAATTG ACTGGGTGAT TTTTCCCTGT CATGGTTTTA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA GAAATCATCA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT TTTGCTTCCT CTGTGTATAT AGCCTAGGTC	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCT AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTAGAATAT CTTTGCACT AAACATAGA AGTTGCACAA AGCTTGGATT CATCTGGTT ATCACCTTTT CATCTGGTT ATCACCTTTT ATCACACAC CATCTGGATT CATCTGTGTT ATCACCTTTT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC GGAATATTC TGTACATAGA AGCTTCCTGA AGCTTCCTGA
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAATGAG TCGTGTGACT AACTATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CACCTACATC ACCTACATC ACCTACATC ACCTACATC ACCTACATC TCACTACAT CTCCTCCATC ACCTACATC ACCTACATC ACCTACATC ACCTACATC TCTTTACATG ACTTAGCAAT TCTGTTATAAA CCAGAGCCAT TTTTAATGCA CCTTGTCAGT AACTATTGCC AGTTCTGCTG TCCAGAACTA CACTTGTGAT AACTATTGCT ACCTTGTGAT AACTACACTTT	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA GAGGATTTGT TCATTTTT TAGAAACACC TGAGGAATTG ACTGGGTGAT TTTTCCCTGT CATGGTTTTA ATGAGGATCA	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA GAAATCATCA CATACTACTAC CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA GAAATCATCA TCAAATACGA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT TTTGCTTCCT CTGTGTATAT AGCCTAGGTC ATTCATCCTG	AGGGGAAAAT GAAAATTAAT AGCCATTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCT AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTAGAATAT CTTTGCACT AAACATAGA AGTTGCACAA AGCTCGTTT ACTTGCACT CACCTTTT CACCTTTT CATCTGCATT CATCTGGATT CATCTGGTTT ATCACCTTTT ATCACCTCTTT ATCACCTTTT ATCACCTCTTT ATCACCTCTT ATCACCTCTT ATCACCTCTT ATCACCTCTT ATCACCTCT ATCACCT	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC GGAATATTCC TGTACATAGA ACCTTCCTGA ACCTTCCTGA ACCTTCCTGA TCAATCAAAG TCAATCAAAG
40 45 50	GTCAGAATAA CTCCAGGAGG ATTGTAAAGG CTCTCATACT AATGGAGATA GAGCTAGCTG TAATGTCTGG TTTTTTTTTT	CAAGAAGACA GAGAATGAG TCGIGTGACT AACI'ATGCCT ATCAGAATCC GGCCCTCCTG TACAAAGTAA AGATGAGTC CCCGGCTAAT CACCTTGGCC ACTACTACTA TCAC AAGAAT TGGCATACAT CTCC TCCATC ACCI AGCAAT CTCC TCCATC ACCI AGCAAT TCTCTACATG ACTTACATG ACTTAGCAAT TCTGTATAAA CCAGAGCCAT TTTTAATGCA CCTTGTCAGT AAC'ATTGCC AGTTCTGCTG TCCAGGACTA CACITGTGAT AAC'ATTGCC AGTTCTGCTG TCCAGAACTA CACITGTGAT ATCAAACTTT GCCAATGATC	ACCAAGCATT CAGTGGCCTG TTTAGCCTTT CCTTGGTCAT CCCACTCATT ACTGTTATAA GCACCCAATA TGGCTCTGTC ATGCCATTCT TTTTTGTATT TCCCAAAGTG CTACCTACT CTGTAAGTGG CCTTTACTGT TAACGCATGT AGTGAGAGTT TGAACAAATA GTATTGAGGA TAAATATTCA GAGGATTTGT TCATTTTT TAGAAACACC TGAGGAATTG ACTGGGTGAT TTTTCCCTGT ACTGGGTGAT TTTTCCCTGT CATGGTTTTA ATGAGGATCA AGTACCTCAC	AAGTAGGGAC AGTCTGGTAA AATCGAGAAAG GTTACATAAT GGATTGTTGT AGATTAAATG AATGTTAGCT ACCCAGGCTG CCTGCCTCAG TTTAGTAGAG CCGGGATTAC GAATACTACC CATTTTACAT GAGAGCCTCA ACAAGCCTCC TCACCTAGAA TACTACTGCC TGTCTAACAT CATTTTAGAG TTTCTCTCAC GACGCTATTG TCTCAGAGTG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA GAAATCATCA CATACTACAG CAAACAATGA AAGTTTAAAA TTCACTTCTC TTGTACTAGA GAAATCATCA TCAAATACGA GGCTGCTGCA	AGTAGAATTT CTATACAGAG ACTTGCTCAC CAGTAATAAG CTTTTCGTGA AAAGATTAAG AGTCAACATC ATTACTATCA GAGTGCAGTG CCTCCCGAGT ACGGAGTTTC AGGCGTGAGC AGCAATACTA AAAAGGAAAC AATCTAATTC ACATGAACTA GGTTTTAAAA AGCACTATGG CAAGACCACA TGCCCGTTTT CCTTTATTTC ATATGTGCCA CATTCGTTTG AAAATGAAAA AGAAGCACAT TTTGCTTCCT CTGTGTATAT AGCCTAGGTC	AGGGGAAAAT GAAAATTAAT AGCCATTATT ACCACTTACG TTCAGTTTCC AGTCTCAGGC CCCTAACTTC TTATTATTAT GCACAATCT AAGCTGGGAA ACCGTGGTCT CACCGCGCCC ATTTATTAAT TAAGCTCATT AGTTCTACCT TAAACCCAAT TGTAACAAAA TATGTTTCCT CTATTTACA TCACCATTAT CTTAGAATAT CTTAGAATAT CTTTGCACT AAACATAGA AGTTGCACA AGTTGCACA AGCTCGTTT ATCACTTTT ATCACTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCTTTT ATCACCCTTTT ATCACCCTTTT ATCACCCCTTGGATG	TAAACGTGGA TTTTATCCTT TCTTAGCCAT AGCTATGTTC TCTACTGTAA TTTACAGACT TGGACTAGAA TATTTATTT GGCTCACTGC TACAGGCACC CCATCTCCTC GGCCTATTAT GACTGGATTA GAGTAAAAAA ATTCCTGTTT TATAAGAAAA ATTCCTGTTT CTTTATATCC AAGCAATGCA ATTCCTAGAA TCTGTGACAT CGGGAAATAC ATAGTCTCTA AAGGATAATC GGAATATTCC TGTACATAGA ACCTTCCTGA ACCTTCCTGA ACCTTCCTGA TCAATCAAAG TCAATCAAAG













#### Human Interleukin-1 Receptor (IL-1 R) Nucleic Acids and Anti-sense Oligonucleotide Fragments

5'-GCCACGTGCT GCIGGGTCTC AGTCCTCCAC TTCCCGTGTC CTCTGGAAGT TGTCAGGAGC AATGTTGCGC TTGTACGTGT TGGTAATGGG AGTTTCTGCC TTCACCCTTC AGCCTGCGGC ACACACAGGG GCTGCCAGAA GCTGCCGGTT TCGTGGGAGG CATTACAAGC GGGAGTTCAG GCTGGAAGGG GAGCCTGTAG CCCTGAGGTG CCCCCAGGTG CCCTACTGGT TGTGGGCCTC TGTCAGCCCC CGCATCAACC TGACATGGCA TAAAAATGAC 35 TCTGCTAGGA CGGTCCCAGG AGAAGAAGAG ACACGGATGT GGGCCCAGGA CGGTGCTCTG TGGCTTCTGC CAGCCTTGCA GGAGGACTCT GGCACCTACG TCTGCACTAC TAGAAATGCT TCTTACTGTG ACAAAATGTC CATTGAGCTC AGAGTTTTTG AGAATACAGA TGCTTTCCTG CCGTTCATCT CATACCCGCA AATTTTAACC TTGTCAACCT CTGGGGTATT AGTATGCCCT GACCTGAGTG AATTCACCCG TGACAAAACT GACGTGAAGA TTCAATGGTA CAACIGATTCT CTTCTTTTGG ATAAAGACAA TGAGAAATTT CTAAGTGTGA GGGGGACCAC TCACTTACTC GTACACGATG TGGCCCTGGA AGATGCTGGC TATTACCGCT GTGTCCTGAC ATTTGCCCAT GAAGGCCAGC AAT/LCAACAT CACTAGGAGT ATTGAGCTAC GCATCAAGAA AAAAAAAGAA GAGACCATTC CTGTGATCAT TTCCCCCCTC AAGACCATAT CAGCTTCTCT GGGGTCAAGA CTGACAATCC CGTGTAAGGT GTTTCTGGGA ACCCGCACAC CCTTAACCAC CATGCTGTGG TGGACGGCCA ATGACACCCA CATAGAGAGC GCCTACCCGG GAGGCCGCGT GACCGAGGGG CCACGCCAGG AATATTCAGA AAATAATGAG AACTACATTG 45 AAGTGCCATT GATITTTGAT CCTGTCACAA GAGAGGATTT GCACATGGAT TTTAAATGTG TTGTCCATAA TACCCTGAGT TTTCAGACAC TACGCACCAC AGTCAAGGAA GCCTCCTCCA CGTTCTCCTG GGGCATTGTG CTGGCCCCAC TTTCACTGGC CTTCTTGGTT TTGGGGGGAA TATGGATGCA CAGACGGTGC AAACACAGAA CTGGAAAAGC AGA'IGGTCTG ACTGTGCTAT GGCCTCATCA TCAAGACTTT CAATCCTATC CCAAGTGAAA TAAATGGAAT GAAATAATTC AAACACAAAA AAAAAAAAA AAAAAAAA GCCGGAGCCG ACTCGGAGCG CGCGGCGCGG CCG(GAGGAG CCGAGCGCGC CGGGCGCGGC GTGGGGGCGC CGGCTGCCCC GCGCGCCCAG GGAGCGGCAG GAA'IGTGACA ATCGCGCGCC CGCACCGTAG CACTCCTCGC TCGGCTCCTA GGGCTCTCGC CCTCTGAGCT GAGC'CGGGTT CCGCCCGGGC TGGGATCCCA TCACCCTCCA CGGCCGTCCG TCCAGGTAGA CGCACCCTCT GAACIATGGTG ACTCCCTCCT GAGAAGCTGG ACCCCTTGGT AAAAGACAAG GCCTTCTCCA AGAAGAATAT GAAAGTGTTA CTCAGACTTA TTTGTTTCAT AGCTCTACTG ATTTCTTCTC TGGAGGCTGA TAAATGCAAG GAACGTGAAG AAAAAATAAT TTTAGTGTCA TCTGCAAATG AAATTGATGT TCGTCCCTGT





### 15 <u>Human Interleukin-8* Fragments Antisense Oligonucleotide Fragments</u>

5'-GBTGTTTGTT BCCBBBGCBT CBBGBBTBGC TTTGCTBTCT BBGGBTCBCB TTTBGBCBTB GGBBBBCGCT GTBGGTCBGBB BGBTGTGCTT BCCTTCBCBC BGBGCTGCBG BBBTCBGGBBGG CTGCCBBGBBGG CCBCGGCCBGC TTGGBGTCBT GTTT3CBCBC BGTGBGGTGC TCCGGTGGCT TTTTGCTTGT GTGCTCTGCT GTCTCTG TTC CTTCCGGTGG TTTCTCCTG GCCC-3' (FRAG. NO:1834) (SEO. ID NO:1847)

- 20 5'-G CTC CGG-3' (FRAG. NO:1835) (SEQ. ID NO:1848)
  - 5'-CBBGBBTBGC-3' (FRAG. NO:1836) (SEQ. ID NO:1849)
  - 5'-CBCBC BGTGBGGT(GC-3' (FRAG. NO:1837) (SEQ. ID NO:1850)
  - 5'-BCCBBBGCBT CBBGBBTBGC-3' (FRAG. NO:1838) (SEQ. ID NO:1851)
  - 5'-GCCBBGBGBG CCBCGGCCBGC-3' (FRAG. NO:1839) (SEQ. ID NO:1852)
- 25 5'-GTG CTC CGG TGG CTT TTT-3' (FRAG. NO:1289)(SEQ. ID NO:1298)
  - 5'-GCT TGT GTG CTC TGC TGT CTC TG-3' (FRAG. NO:1290)(SEQ. ID NO:1299)
  - 5'-'TTC CTT CCG GTG GTT TCT TCC TGG CTC TTG TCC T-3' (FRAG. NO:1291)(SEQ. ID NO:1300)
  - 5'-TTC TCT TGG CCC 'ITG GCC C-3' (FRAG. NO:1292)(SEQ. ID NO:1301)
- 5'-GBTGTTTGTT BCCBBBGCBT CBBGBBTBGC TTTGCTBTCT BBGGBTCBCB TTTBGBCBTB GGBBBBCGCT GTBGGTCBGBB BGB1GTGCTT BCCTTCBCBC BGBGCTGCBG BBBTCBGGBBGG CTGCCBBGBGBG CCBCGGCCBGC TTGGBGTCBT GTTTBCBCBC BGTGBGGTGC TCCGGTGGCT TTTTGCTTGT-3' (FRAG. NO:1840) (SEQ. ID NO:1853)

### Human IL-8 Receptor Alpha Antisense Oligonucleotide Fragments

5'-ACAGGGGCTG TAATCTTCATC TGCAGGTGGC ATGCCAGTGA AATTTAGATC ATCAAAATCC CACATCTGTG GATCTGTAAT ATTIGACATG TCCTCTTCAG TTTCAGCAAT GGTTTGATCT AACTGAAGCA CCGGCCAGGB CBGGGCTGT BBTCTTCBTC TGCBGGTGGC BTGCCBGTGB BBTTTBGBTC BTCBBBBTCC CBCBTCTGTG GBTCTGTBBT BTTT3BCBTG TCCTCTTCBG TTTCBGCBB TGGTTTGBTC TBBCTGBBGC BCCGGCCBGG TGGCTCGGTG CTTCTGCCC TGTTGTTGCG GCGCTCGGTT GGTGTGCCC CTGTGGTGCT TCGTTTCCCC CTCTTTCTCT TTGTTCGGGG GTTCTTGTGG CGGGCTGCTT GTCTCGTTCC-3'(FRAG.NO:1841)(SEQ. ID NO:1854) 5'-CBGGGGC-3' (FRAG. NO:1842) (SEQ. ID NO:1855)

- 40 5'-GCBGGTGGC-3' (FF AG. NO:1843) (SEQ. ID NO:1856)
  - 5'-GCGGCGCTC-3' (FF AG. NO:1844) (SEQ. ID NO:1857)
  - 5'-TGGCTCGGTGCTTC'TGCCCC (FRAG. NO:1293)(SEQ. ID NO:1302)
  - 5'-TGTTGTTGCGGCGCTC (FRAG. NO:1294)(SEQ. ID NO:1303)
  - 5'-GGTTGGTGTGGCCCCTG (FRAG. NO:1295)(SEQ. ID NO:1304)
- 45 5'-TGGTGCTTCGTTTCC (FRAG, NO:1296)(SEO, ID NO:1305)
  - 5'-CCCTCTTTCTCTTTGTTC (FRAG. NO:1297)(SEQ. ID NO:1306)
  - 5'-GGGGGTTCTTGTGGC (FRAG. NO:1298)(SEQ. ID NO:1307)
  - 5'-GGGCTGCTTGTCTCGTTCC (FRAG. NO:1299)(SEQ. ID NO:1308)
- 5'-ACAGGGGCTG TAATCTTCATC TGCAGGTGGC ATGCCAGTGA AATTTAGATC ATCAAAATCC CACATCTGTG
  GATCTGTAAT ATTTGACATG TCCTCTTCAG TTTCAGCAAT GGTTTGATCT AACTGAAGCA CCGGCCAGG-3'
  (FRAG. NO:1845) (SE(). ID NO:1858)
  - 5'-B CBGGGGCTGT BBTCTTCBTC TGCBGGTGGC BTGCCBGTGB BBTTTBGBTC BTCBBBBTCC CBCBTCTGTG GBTCTGTBBT BTTTGBCBTG TCCTCTTCBG TTTCBGCBB TGGTTTGBTC TBBCTGBBGC BCCGGCCBGG-3' (FRAG. NO:1846) (SEQ. ID NO:1859)

## 55 <u>Interleukin-11 (IL-11) Nucleic Acid and Antisnese Oligonucleotide Fragments</u>

5'-GCTCAGGGCA CATGCCTCCC CTCCCCAGGC CGCGGCCCAG CTGACCCTCG GGGCTCCCCC GGCAGCGGAC AGGGAAGGGT TAAAGGCCCC CGGCTCCCTG CCCCTGCCC TGGGGAACCC CTGGCCCTGT GGGGACATGA ACTGTGTTTG CCGCCTGGTC CTGGTCGTCC TGAGCCTGTG GCCAGATACA GCTGTCGCCC CTGGGCCACC









CAGGTCAAAG GAGAGAGGTG GGATTGTGGG TGACTTTTAA TGTGTATGAT TGTCTGTATT TTACAGAATT TCTGCCATGA CTGTGTATTT TGCATGACAC ATTTTAAAAA TAATAAACAC TATTTTTAGA ATAACAGAAT ATCAGCCTCC TCCTCTCCAA AAATAAGCCC TCAGGAGGGG ACAAAGTTGA CCGCTGATTG AGCCTGTCAG GGCTGTGCAC-3' (FRAG. NO: )(SEQ. ID NO:2522)

# 5 <u>Human GM-CSF Nucleic Acid and Antisense Oligonucleotide Fragments</u>

5'-CTTGBGCBGG BBGCTCTGGG GCBGGGBGCT GGCBGGGCCC BGGGGGGTGG CTTCCTGCBC TGTCCBGBGT GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB TGGGGCTCTG GGTGGCBGGT CCBGCCBTGG GTCTGGGTGG GGCTGGGGCTG CBGGCTCCGG GCGGTCCBGCCBTGGGTCTG GGGCCTGGG CTGCBGGCTC CGGGCGGGCG GGTGCGGGCT GCGTGCTGGG GGCTGCCCCG CAGGCCCTGC GGTCCBGCCB TGGGTCTGGG

- GGCTGGGCTG CBGGCTCCGG GCGGGCGGGT GCGGGCTGCG TGCTGGGGGC TGCCCCGCAG GCCCTGC-3' (FRAG. NO:1847) (SEQ. ID NC: 1860)
  - 5'-GBGCBGG BBG-3' FRAG. NO:1848) (SEQ. ID NO: 1861)
  - 5'-GCCBCBGCBGCBGC'-3' (FRAG. NO:1849) (SEQ. ID NO: 1862)
  - 5'-GGG TGC GGG C-3' (FRAG. NO:1850) (SEQ. ID NO: 1863)
- 15 5'-GGT CCB GCC BTG 3GT CTG GG-3' (FRAG. NO:1300)(SEQ. ID NO:1309)
  - 5'-GGC TGG GCT GCB GGC TCC GG-3' (FRAG. NO:1301)(SEQ. ID NO:1310)
  - 5'-GCG GGC GGG TGC GGG CTG CGT GCT GGG-3' (FRAG. NO:1302)(SEO. ID NO:1311)
  - 5'-GGC TGC CCC GCA GGC CCT GC-3' (FRAG. NO:1303)(SEQ. ID NO:1312)
- 5'-CTTGBGCBGG BBGCTCTGGG GCBGGGBGCT GGCBGGGCCC BGGGGGGTGG CTTCCTGCBC TGTCCBGBGT

  20 GCBCTGTGCC BCBGCBGCBG CTGCBGGGCC BTCBGCTTCB TGGGGCTCTG GGTGGCBGGT CCBGCCBTGG

  GTCTGGGTGG GGCTC/GGCTG CBGGCTCCGG GC-3' (FRAG. NO:1851) (SEQ. ID NO: 1864)

## Human Tumor Necrosis Factor α Antisense Oligonucleotide Fragments

- 35 5'-GGGGCCCCCC-3' (FRAG. NO:1853) (SEQ. ID NO:1866)
  - 5'- GGG GGC CG TCT-3' (FRAG. NO:1854) (SEQ. ID NO:1867)
  - 5'-CCBGGGGBGB GBGGGGCTGG-3' (FRAG. NO:1855) (SEQ. ID NO:1868)
  - 5'-GCBCCGCCTG GBGCCCCCTGT CTTCTTGGGG BGCGCCTCCT CGGCCBGCTC CBCGTCCCGG BTCBTGCTCTT CBGTGCTCBT GGTGTCCTTT CCBGGGGBGB GBGGG-3' (FRAG. NO:1304) (SEQ. ID NO:1313)
- 45 (SEQ. ID NO:1314)
- - 5'-GCT GGT CCT CTG CTG TCC TTG CTG-3' (FRAG. NO:1655) (SEQ. ID NO:1664)
  - 5'-GTG CTC BTG GTG TCC TTT CC-3' (FRAG. NO:1656)(SEQ. ID NO:1665)
  - 5'-GCC CTG GGG CCC CCC TGT CTT CTT GGG G-3' (FRAG. NO:1657)(SEQ. ID NO:1666)
- 55 5'-CCT CTT CCC TCT (3GG GGC CG-3' (FRAG. NO:1658)(SEQ. ID NO:1667)
  - 5'-TCT CTC TCC CTC 'CT TGC GTC TCT C-3' (FRAG. NO:1659)(SEQ. ID NO:1668)
  - 5'-TCT TTC TCT CTC T'CT CTT CCC C-3' (FRAG. NO:1660)(SEQ. ID NO:1669)
  - 5'-TTT CCC GCT CTT 'CT GTC TC-3' (FRAG. NO:1661)(SEQ. ID NO:1670)
  - 5'-GGT GTC TGG TTT 'TCT CTC TCC-3' (FRAG. NO:1662)(SEQ. ID NO:1671)

5'-GCT GGC TGC CTG TCT GGC CTG CGC TCT T-3' (FRAG. NO:1663)(SEQ. ID NO:1672)
5'-GGC CTG TGC TGT ICC TCC-3' (FRAG. NO:1664)(SEQ. ID NO:1673)
5'-TCC GGT TCC TGT ICCT CTC TGT CTG TC-3' (FRAG. NO:1665)(SEQ. ID NO:1674)
5'-GCC CCC TCT GGG GTC TCC CTC TGG C-3' (FRAG. NO:1666)(SEQ. ID NO:1675)
5'-GTG GTG GTC TTG ITG CTT-3' (FRAG. NO:1667)(SEQ. ID NO:1676)
5'-GGG CTG GGC TCC GTG TCT C-3' (FRAG. NO:1668)(SEQ. ID NO:1677)
5'-CBG TGC TCB TGG IGT CC-3' (FRAG. NO:1669)(SEQ. ID NO:1678)

5'-GCT GBG GGB GCG TCT GCT GGC-3' (FRAG. NO:1670)(SEQ. ID NO:1679)

### Human Leukotriene C4 Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

- 5'-CTCGGTBGBC GCCCTCGBBC TCGGGTGGGC CGGTGGTGBG CGGCGGCBCB CGCGGBBGGC CCTGCGCGCC GBGBTCBCCTG CBGGGBGBG TBGGCTTGCB GCBGGBCTCC CBGGBGGGTG BCBGCBGCCB GTBGBGCTBC CTCGTCCTTC BTGGTBCCGT CGGTGTGGTG GCBCGGGCTG TGTGTGBBGG CGBGCTGGC CCCGTCTGCT GCTCCTCGTG CCGCCTCGTC CTTCA TGG TA CCGTCGGTGT GGTGGCCTCG GGTGGGCCGG TGGTGGGGCCG CGCGCGCTCG CGTCGCTCCT CCCCGGCTCCT CGGCCCGGGG GCCTTGGTCT CCCTCGTCCT
- 15 TCBTGGTBCC G-3' (FRAG. NO:1856) (SEQ ID NO: 1869)
  5'-GCB GCBGGBC-3' (FRAG. NO:1857) (SEQ ID NO: 1870)
  5'-CCCGGCTCCG-3' (FRAG. NO:1858) (SEQ ID NO: 1871)
  5'-CGGCCCGGGG GCC-3' (FRAG. NO:1859) (SEQ ID NO:1872)
  5'-CB CGCGG-3' (FRAG. NO:1860) (SEQ ID NO: 1873)
- 5'-GCC CCG TCT GCT GCT CCT CGT GCC G-3' (FRAG. NO:1307)(SEQ. ID NO:1316)
  5'-CCT CGT CCT TCA 'FGG TAC CGT CGG TGT GGT GGC-3' (FRAG. NO:1308)(SEQ. ID NO:1317)
  5'-CTC GGG TGG GCC GGT GGT G-3' (FRAG. NO:1309)(SEQ. ID NO:1318)
  5'-GGG CGC GCG CGC TCG CGT-3' (FRAG. NO:1310)(SEQ. ID NO:1319)
- 5'-GGC TCC GGC TCT TCT TTC CCG GCT CCG TCG GCC CGG GGG CCT TGG TCT C-3'(FRAG.NO:1311)(SEQ.ID NO:1320)
  5'-CCT CGT CCT TCB IGG TBC CG-3' (FRAG. NO:1312)(SEQ. ID NO:1321)
  5'-CTCGGTBGBC GCGCTCGBBC TCGGGTGGGC CGGTGGTGBG CGGCGGCGBCB CGCGGBBGGC CCTGCGCCC GBGBTCBCCTG CBGGGBGBG TBGGCTTGCB GCBGGBCTCC CBGGBGGGTG BCBGCBGCCB GTBGBGCTBC CTCGTCCTTC BTGGT'BCCGT CGGTGTGGTG GCBCGGGCTG TGTGTGBBGG CGBGCTGG-3' (FRAG.NO:1861)
  (SEQ ID NO:1874)

# 30 <u>Human Endothel n-1 Nucleic Acids and Antisense Oligonucleotide Fragments</u>

5'-BCCGGCGGBG CC3CCBGGGT GGBCTGGGBG TGGGTTTCTC CCCGCCGTTC TCBCCCBCCG CGCTGBGCTC
BGCGCCTBBG BCTGCTGTTT CTGGBGCTCC TTGGCBBGCC BCBBBCBGCB GBGBGBBBBT CBTGBGCBBB
TBBTCCBTTC TGBBBBBBBG GGBTCBBBBB CCTCCCGTTC CCCGTTCGCC TGGCGCGCG TGCGGGTTCC
TCGTGGGTTT CTCCCCGCCG TTCTCCGGTC TGTTGCCTTT GTGGTCTTTT TCCTGCTTGG CGTCTTTTCC TTTCTTTTGTG CTCGGTTGTG GGTCCCCTGG TCCTTTGCCC TGTGTGTTTC
TCTTGTGGG CTTCTTGTCT TTTTGGCTGT GTTCCTCGTG GGTTTCTCC CGCCGTTCT CGGTCTTG
CCTTTGTGGG CTTCTTGTCT TTTTGGCTGT TCTTTTCCTG CTTGGCGTCT TTTCCTTTCT TTGTGTCTGGG
TTGTGGGTCC GCTGC TCCTT TGCCCTGTG GTTTCTGCTG-3' (FRAG. NO:1862) (SEQ. ID NO:1875)
5'-CCGGCGGBG CCGCCBGGGT GGBC-3' (FRAG. NO:1863) (SEQ. ID NO:1876)

- 40 5'-CCGCCBGGG-3' (FRAG. NO:1864) (SEQ. ID NO:1877)
  5'-GGCGCGCGC-3' (FRAG. NO:1865) (SEQ. ID NO:1878)
  5'-GTGGGTCCGC-3' (FRAG. NO:1866) (SEQ. ID NO:1879)
  5'-CCCGTTCGCCTGGCGC-3' (FRAG. NO:1313)(SEQ. ID NO:1322)
  5'-GCGCTGCGGGTTCCTC-3' (FRAG. NO:1314)(SEQ. ID NO:1323)
- 5'-GTGGGTTTCTCCC('GCCGTTCTC-3' (FRAG. NO:1315)(SEQ. ID NO:1324)
  5'-CGGTCTGTTGCCT'TGTGGG -3' (FRAG. NO:1316)(SEQ. ID NO:1325)
  5'-CTTCTTGTCTTTTT 3GCT-3' (FRAG. NO:1317)(SEQ. ID NO:1326)
  5'-GTTCTTTCCTGCTTGGC-3' (FRAG. NO:1318)(SEQ. ID NO:1327)
  5'-GTCTTTTCCTTCTT-3' (FRAG. NO:1319)(SEQ. ID NO:1328)
- 50 5'-TGTGCTCGGTTGTGGGTC-3' (FRAG. NO:1320)(SEQ. ID NO:1329)
  5'-CGCTGGTCCTTTGCC-3' (FRAG. NO:1321)(SEQ. ID NO:1330)
  5'-CTGTGTGTTTCTGCTG-3' (FRAG. NO:1322)(SEQ. ID NO:1331)
  5'-CCCGTTCGCCTGGCGC-3' (FRAG. NO:1323)(SEQ. ID NO:1332)
  5'-GCGCTGCGGGTTCCTC-3' (FRAG. NO:1324)(SEQ. ID NO:1333)
- 55 5'-GTGGGTTTCTCCCCGCCGTTCTC-3' (FRAG. NO:1325(SEQ. ID NO:1334)
  5'-CGGTCTGTTGCCTTTGTGGG-3' (FRAG. NO:1326)(SEQ. ID NO:1335)
  5'-CTTCTTGTCTTTTTGGCT-3' (FRAG. NO:1327)(SEQ. ID NO:1336)
  5'-GTTCTTTTCCTGCTTGGC-3' (FRAG. NO:1328)(SEQ. ID NO:1337)
  5'-GTCTTTTCCTTTCTT-3' (FRAG. NO:1329)(SEQ. ID NO:1338)
- 60 5'-TGTGCTCGGTTGT(\(\)GGTC-3'\) (FRAG. NO:1330)(SEQ. ID NO:1339)

5'-CGCTGGTCCTTTGC C-3' (FRAG. NO:1331)(SEQ. ID NO:1340) 5'-CTGTGTGTTTCTGCTG-3' (FRAG. NO:1332)(SEO. ID NO:1341)

#### Endothelin Receptor ET-B Nucleic Acids and Antisense Oligonucleotide Fragments

- 5'-GCCCTGTCGG GC'3GGAAGCC TCTCTCCTCT CCCCAGATC CGCGACAGGC CGCAGGCAAG AACCAGCGCA
  ACCAGGGCGC GTCC'GCACAG ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC
  GCCGCGCC CTGTC'3GGCG GGBBGCCTCT CTCCTCTCCC CBGBTCCGCG BCBGGCCGCB GGCBBGBBCC
  BGCGCBBCCB GGGCGCGTCC GCBCBGBCTT GGBGGCGGCT GCBTGCTGCT BCCTGCTCGGGCG GGBBGCCTCCG
  GTGGCCGCCG CGCGTCCGGT GGCCGCCGCG CCTCTCTCCT CTCCCCGTGG CCCTGTCGGG CGGGTCCTGC
  CGTCCTGTCT CCTTT'TCTTT TGCTGTCTTG TCTTCCCGTC TCTGCTTT-3' (FRAG. NO: 1867) (SEO. ID NO: 1880)
- 10 5'-CGGGCG GGBBGCC-3' (FRAG. NO: 1868) (SEQ. ID NO: 1881) 5'-CGGGCGGG-3' (FRAG. NO: 1869) (SEQ. ID NO: 1882) 5'-CCGCBCBGBC-3' (FRAG. NO: 1870) (SEQ. ID NO: 1883) 5'-GCGTCCGGTGGCCGCCGC-3' (FRAG. NO:1333)(SEQ. ID NO:1342) 5'-GCCTCTCTCCTCCCC-3' (FRAG. NO:1334)(SEQ. ID NO:1343)
- 5'-GTGGCCCTGTCGGGCGGG-3' (FRAG. NO:1335)(SEQ. ID NO:1344) 5'-TCCTGCCGTCCTGTCTCCTTT-3' (FRAG. NO:1336)(SEQ. ID NO:1345) 5'-TCTTTTGCTGTCTT 3T-3' (FRAG. NO:1337)(SEQ. ID NO:1346)

5'-CTTCCCGTCTCTGCTTT-3' (FRAG. NO:1338)(SEQ. ID NO:1347)

- 5'-GCCCTGTCGG GC3GGAAGCC TCTCTCCTCT CCCCAGATC CGCGACAGGC CGCAGGCAAG AACCAGCGCA
  ACCAGGGCGC GTCCGCACAG ACTTGGAGGC GGCTGCATGC TGCTACCTGC TCCAGAAGCG TCCGGTGGCC
  GCCGC-3' (FRAG. NO: 1871) (SEQ. ID NO: 1884)
- 5'-GCCCTGTCGG GCGGGBBGCC TCTCTCCTCT CCCCBGBTCC GCGBCBGGCC GCBGGCBBGB BCCBGCGCB BCCBGGGCG GTCCCCCBCBG BCTTGGBGGC GGCTGCBTGC TGCTBCCTGC TCCBGBBGCG TCCGGTGGCC GCCGC-3' (FRAG. NO: 1872) (SEQ. ID NO: 1885)

# 25 Endothelin ETA Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

TTGBGGCBBB TTTGBGGB-3' (FRAG. NO:1873) (SEQ. ID NO: 1886)

5'-GBGGCBBBGGG-3' (FRAG. NO:1874) (SEQ. ID NO: 1887)

5'-GCCBGCCBB BBGG 3-3' (FRAG. NO:1875) (SEQ. ID NO: 1888)

- 40 5'-CGCCTGGGCC C-3' (FRAG. NO:1876) (SEQ. ID NO: 1889)
  - 5'-GTCTGTCCTCCCCC'TCTCCTCCC-3' (FRAG. NO:1339)(SEQ. ID NO:1348)
  - 5'-ACTGCTTCTCCCGCGGG-3' (FRAG. NO:1340)(SEQ. ID NO:1349)
  - 5'-GCTTCCCCGGCTT('-3' (FRAG. NO:1341)(SEQ. ID NO:1350)
  - 5'-GGGTGGCCGGTGTCCCGGGCTCCGGCGCGCGCGCG' (FRAG. NO:1342)(SEQ. ID NO:1351)
- 45 5'-GGCTTCGGCTGC-3 (FRAG. NO:1343)(SEO. ID NO:1352)
  - 5'-GGGTGGGTGGCGC3G-3' (FRAG. NO:1344)(SEQ. ID NO:1353)
  - 5'-GCTGCCGGGTCCGCGCGCGCCCTGGGCC-3' (FRAG. NO:1345)(SEQ. ID NO:1354)
  - 5'-CTTGTGCTGCTTTT-3' (FRAG. NO:1346(SEQ. ID NO:1355)
  - 5'-TGCTTGTTCCGTTC-3' (FRAG. NO:1347)(SEQ. ID NO:1356)
- 50 5'-TGGCTGCTCCGGTCTGTTGTTGTGGTTGTTTTG-3' (FRAG. NO:1348)(SEQ. ID NO:1357)
  - 5'-TTTCTTCTTGGGTGTGGG-3' (FRAG. NO:1349)(SEQ. ID NO:1358)
  - 5'-CCTTGCGGTTTTGC-3' (FRAG. NO:1350)(SEQ. ID NO:1359)
  - 5'-CTGTGGGCCCTTT(i-3' (FRAG. NO:1351)(SEQ. ID NO:1360)
  - 5'-GGGCCTTGGCTTCl'GGCTC-3' (FRAG. NO:1352)(SEQ. ID NO:1361)
- 55 5'-CATCCACATG ATIGCTTAGA TTTGTGCTGT ATCTCTCAGG ATTATCACTG ATTACACATC CAACCAGTGC CAGCCAAAAG GATCCCCTGA GGCAAAGGGT TTCCATCTTG AGGCAAATTT GAGGA-3' (FRAG.NO:1353) (SEQ.ID NO:1362)
  - 5'-CBTCCBCBTG BT'IGCTTBGB TTTGTGCTGT BTCTCTCBGG BTTBTCBCTG BTTBCBCBTC CBBCCBGTGC CBGCCBBBBG GBTGCCCTGB GGCBBBGGGT TTCCBTCTTG BGGCBBBTTT GBGGB-3' (FRAG. NO:1354)(SEQ. ID NO:1363)

## Endothelin Receptor A Nucleic Acid and Antisense Oligonucleotide Fragments

5'-GCCACCATGG AAACCCTTTG CCTCAGGGCA TCCTTTTGGC TGGCACTGGT TGGATGTGTA ATCAGTGATA ATCCTGAGAG ATACAGCACA AATCTAAGCA ATCATGTGGA TGATTTCACC ACTTTTCGTG GCACAGAGCT CAGCTTCCTG GTTACCACTC ATCAACCCAC TAATTTGGTC CTACCCAGCA ATGGCTCAAT GCACAACTAT TGCCCACAGC AGACTAAAAT TACTTCAGCT TTCAAATACA TTAACACTGT GATATCTTGT ACTATTTTCA TCGTGGGAAT GGTCIGGGAAT GCAACTCTGC TCAGGATCAT TTACCAGAAC AAATGTATGA GGAATGGCCC CAACGCGCTG ATAGCCAGTC TTGCCCTTGG AGACCTTATC TATGTGGTCA TTGATCTCCC TATCAATGTA TGGCTGGGCG CTGGCCTTTT GATCACAATG ACTTTGGCGT ATTTCTTTGC AAGCTGTTCC CCTTTTTGCA GAAGTCCTCG GTGGGGATCA CCGTCCTCAA CCTCTGCGCT CTTAGTGTTG ACAGGTACAG AGCAGTTGCC TCCTGGAGTC GTGTTCAGGG AATTGGGATT CCTTTGGTAA CTGCCATTGA AATTGCCTCC ATCTGGATCC TGTCCTTTAT CCTGGCCATT CCTGAAGCGA TTGGCTTCGT CATGGTACCC TTTGAATATA GGGGTGGACA GCATAAAACC TGTATGCTCA ATGCCACATC AAAATTCATG GAGTTCTACC AAGATGTAAA GGACTGGTGG CTCTTCGGGT TCTATTTCTG TATGCCCTTG GTGTGCACTG CGATCTTCTA CACCCTCATG ACTGGTGAGA TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCCTCAG TGAACATCTT AAGCAGCGTC GAGAAGTGGC AAAAACAGTT TTC GCTTGG TTGTAATTTT TGCTCTTTGC TGGTTCCCTC TTCATTTAAG CCGTATATTG AAGAAAACTG TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG CTCATGGATT ACATCGGTAT TAACTTGGCA ACCATGAATT CATGTATAAA CCCCATAGCT CTGTATTTTG TGAGCAAGAA ATTTAAAAAT TGTTTCCAGT CATGCCTCTG CTGCTGCTGT TACCAGTCCA AAAGTCTGAT GACCTCGGTC CCCATGAACG GAACAAGCAT CCAGTGGAAG AACCACGATC AAAACAACCA CAACACAGAC CGGAGCAGCC 20 ATAAGGACAG CATGAACTGA CCACCCTTAG AAGCACTCCT GAATTCGGGA AAAAGTGAAG GTGTAAAAGC AGCACAAGTG CAA'AAGAGA TATTTCCTCA AATTTGCCTC AAGATGGAAA CCCTTTGCCT CAGGGCATCC TTTTGGCTGG CACTGGTTGG ATGTGTAATC AGTGATAATC CTGAGAGATA CAGCACAAAT CTAAGCAATC ATGTGGATGA TTTC/ACCACT TTTCGTGGCA CAGAGCTCAG CTTCCTGGTT ACCACTCATC AACCCACTAA TTTGGTCCTA CCCAGCAATG GCTCAATGCA CAACTATTGC CCACAGCAGA CTAAAATTAC TTCAGCTTTC AAATACATTA ACACTGTGAT ATCTTGTACT ATTTTCATCG TGGGAATGGT GGGGAATGCA ACTCTGCTCA GGATCATTTA CCACAACAA TGTATGAGGA ATGGCCCCAA CGCGCTGATA GCCAGTCTTG CCCTTGGAGA CCTTATCTAT GTGCTCATTG ATCTCCCTAT CAATGTATTT AAGCTGCTGG CTGGGCGCTG GCCTTTTGAT CACAATGACT TTGGCGTATT TCTTTGCAAG CTGTTCCCCT TTTTGCAGAA GTCCTCGGTG GGGATCACCG TCCTCAACCT CTGCGCTCTT AGTGTTGACA GGTACAGAGC AGTTGCCTCC TGGAGTCGTG TTCAGGGAAT TGGGATTCCT TTGCTAACTG CCATTGAAAT TGTCTCCATC TGGATCCTGT CCTTTATCCT GGCCATTCCT GAAGCGATTG GCTTCGTCAT GGTACCCTTT GAATATAGGG GTGAACAGCA TAAAACCTGT ATGCTCAATG CCACATCAAA ATTCATGGAG TTCTACCAAG ATGTAAAGGA CTGGTGGCTC TTCGGGTTCT ATTTCTGTAT GCCCTTGGTG TGCACTGCGA TCTTCTACAC CCTCATGACT TGTGAGATGT TGAACAGAAG GAATGGCAGC TTGAGAATTG CCCTCAGTGA ACATCTTAAG CAGCGTCGAG AAGTGGCAAA AACAGTTTTC TGCTTGGTTG TAATTTTTGC TCTTIGCTGG TTCCCTCTTC ATTTAAGCCG TATATTGAAG AAAACTGTGT ATAACGAGAT GGACAAGAAC CGAIGTGAAT TACTTAGTTT CTTACTGCTC ATGGATTACA TCGGTATTAA CTTGGCAACC ATGAATTCAT GTATAAACCC CATAGCTCTG TATTTTGTGA GCAAGAAATT TAAAAATTGT TTCCAGTCAT GCCTCTGCTG CTGCTGTTAC CAGTCCAAAA GTCTGATGAC CTCGGTCCCC ATGAACGGAA CAAGCATCCA GTGGAAGAAC CACGATCAAA ACAACCACAA CACAGACCGG AGCAGCCATA AGGACAGCAT GAACTGACCA 40 CCCTTAGAAG CACTCCTCGG TACTCCCATA ATCCTCTCGG AGAAAAAAT CACAAGGCAA CTGTGAGTCC GGGAATCTCT TCTCTGATCC TTCTTCCTTA ATTCACTCCC ACACCCAAGA AGAAATGCTT TCCAAAACCG CAAGGGTAGA CTGGTTTATC CACCCACAAC ATCTACGAAT CGTACTTCTT TAATTGATCT AATTTACATA TTCTGCGTGT TGTATCAGC ACTAAAAAT GGTGGGAGCT GGGGGAGAAT GAAGACTGTT AAATGAAACC AGAAGGATAT TTACTACTTT TGCATGAAAA TAGAGCTTTC AAGTACATGG CTAGCTTTTA TGGCAGTTCT GGTGAATGTT CAATGGGAAC TGGTCACCAT GAAACTTTAG AGATTAACGA CAAGATTTTC TACTTTTTTT AAGTGATTTT TTTGTCCTTC AGCCAAACAC AATATGGGCT CAAGTCACTT TTATTTGAAA TGTCATTTGG 45 TGCCAGTATC CCGAATTC GAATTCGGGA AAAAGTGAAG GTGTAAAAGC AGCACAAGTG CAATAAGAGA TATTTCCTCA AATTTGCCTC AAGATGGAAA CCCTTTGCCT CAGGGCATCC TTTTGGCTGG CACTGGTTGG ATGTGTAATC AGTCATAATC CTGAGAGATA CAGCACAAAT CTAAGCAATC ATGTGGATGA TTTCACCACT TTTCGTGGCA CAGAGCTCAG CTTCCTGGTT ACCACTCATC AACCCACTAA TTTGGTCCTA CCCAGCAATG
GCTCAATGCA CAACTATTGC CCACAGCAGA CTAAAATTAC TTCAGCTTTC AAATACATTA ACACTGTGAT ATCTTGTACT ATTTICATCG TGGGAATGGT GGGGAATGCA ACTCTGCTCA GGATCATTTA CCAGAACAAA TGTATGAGGA ATGGCCCCAA CGCGCTGATA GCCAGTCTTG CCCTTGGAGA CCTTATCTAT GTGGTCATTG ATCTCCCTAT CAAIGTATTT AAGCTGCTGG CTGGGCGCTG GCCTTTTGAT CACAATGACT TTGGCGTATT TCTTTGCAAG CTG1TCCCCT TTTTGCAGAA GTCCTCGGTG GGGATCACCG TCCTCAACCT CTGCGCTCTT AGTGTTGACA GGTACAGAGC AGTTGCCTCC TGGAGTCGTG TTCAGGGAAT TGGGATTCCT TTGGTAACTG CCATTGAAAT TGTCTCCATC TGGATCCTGT CCTTTATCCT GGCCATTCCT GAAGCGATTG GCTTCGTCAT GGTACCCTTT GAATATAGGG GTGAACAGCA TAAAACCTGT ATGCTCAATG CCACATCAAA ATTCATGGAG TTCTACCAAG ATGT'AAAGGA CTGGTGGCTC TTCGGGTTCT ATTTCTGTAT GCCCTTGGTG TGCACTGCGA TCTTCTACAC CCTCATGACT TGTGAGATGT TGAACAGAAG GAATGGCAGC TTGAGAATTG CCCTCAGTGA ACATCTTAAG CAGCGTCGAG AAGTGGCAAA AACAGTTTTC TGCTTGGTTG TAATTTTTGC TCTTTGCTGG



CGTACTTCTT TAATTGATCT AATTTACATA TTCTGCGTGT TGTATTCAGC ACTAAAAAAT GGTGGGAGCT GGGGGAGAAT GAAGACTGTT AAATGAAACC AGAAGGATAT TTACTACTTT TGCATGAAAA TAGAGCTTTC AAGTACATGG CTAGCTTTTA TGGCAGTTCT GGTGAATGTT CAATGGGAAC TGGTCACCAT GAAACTTTAG AGATTAACGA CAA'GATTTTC TACTTTTTTT AAGTGATTTT TTTGTCCTTC AGCCAAACAC AATATGGGCT CAAGTCACTT TTATTIGAAA TGTCATTTGG TGCCAGTATC CCGAATTC-3'(FRAG. NO: __) (SEQ ID NO: 2470) 5'-GCCACCATGG AAACCCTTTG CCTCAGGGCA TCCTTTTGGC TGGCACTGGT TGGATGTGTA ATCAGTGATA ATCCTGAGAG ATACAGCACA AATCTAAGCA ATCATGTGGA TGATTTCACC ACTTTTCGTG GCACAGAGCT TCCTGGAGTC GTGTTCAGGG AATTGGGATT CCTTTGGTAA CTGCCATTGA AATTGCCTCC ATCTGGATCC TGTCCTTTAT CCTGGCCATT CCTGAAGCGA TTGGCTTCGT CATGGTACCC TTTGAATATA GGGGTGGACA GCATAAAACC TGTATGCTCA ATGCCACATC AAAATTCATG GAGTTCTACC AAGATGTAAA GGACTGGTGG CTCTTCGGGT TCTATTTCTG TATGCCCTTG GTGTGCACTG CGATCTTCTA CACCCTCATG ACTGGTGAGA TGTTGAACAG AAGGAATGGC AGCTTGAGAA TTGCCCTCAG TGAACATCTT AAGCAGCGTC GAGAAGTGGC AAAAACAGTT TTC GCTTGG TTGTAATTTT TGCTCTTTGC TGGTTCCCTC TTCATTTAAG CCGTATATTG AAGAAAACTG TGTATAACGA GATGGACAAG AACCGATGTG AATTACTTAG TTTCTTACTG CTCATGGATT ACATCGGTAT TAACTTGGCA ACCATGAATT CATGTATAAA CCCCATAGCT CTGTATTTTG TGAGCAAGAA ATTTAAAAAT TGTTTCCAGT CATGCCTCTG CTGCTGCTGT TACCAGTCCA AAAGTCTGAT GACCTCGGTC CCCATGAACG GAACAAGCAT CCAGTGGAAG AACCACGATC AAAACAACCA CAACACAGAC CGGAGCAGCC ATAAGGACAG CATGAACTGA CCACCCTTAG AAGCACTCCT-3' (FRAG. NO: ) (SEQ ID NO: 2469)

## Substance P Antisense Nucleic Acids and Oligonucleotide Antisense Oligonucleotide Fragments

5'-CTGCTGBGGC TT'3GGTCTCC GGGCGBTTCT CTGCBGBBGB TGCTCBBBGG GCTCCGGCBG TTCCTCCTTG BTCTGGTCGCT GTCGTBCCBG TCGGBCCBGT BBTTCBGBTC BTCBTTGGCT CCTBTTTCTT CTGCBBBCBG CTGBGTGGBG BCBI:GBBBBB BGBCTGCCBB GGCCBCGBGG BTTTTCBTGT TGGBTTTTGC GBCGGBCBGT CCCGCGGGGT GCTGAGTTTC TCTGGTTCCT CCGBGCGCBC GTGGTCGCTC CGCGTTTCTC TGGTTCCTCC 

NO:1877) (SEQ ID NO: 1890)

5'-CTCC GGGCGB-3' (FRAG. NO:1878) (SEQ ID NO: 1891)

5'-GGCCBCGBGG-3' (FRAG. NO:1879) (SEQ ID NO: 1892)

5'-GGGTCTCCGGGCG 3' (FRAG. NO:1880) (SEQ ID NO: 1893)

- 5'-GGG TCTCCGGGCG G-3' (FRAG. NO:1881) (SEQ ID NO:1894)
  - 5'-CGTGGTCGCTCCGC-3' (FRAG. NO:1355)(SEQ. ID NO:1364)
  - 5'-GTTTCTCTGGTTCCTCCG-3' (FRAG. NO:1356)(SEQ. ID NO:1365)
  - 5'-GTCCCGCGGGGTGCTG-3' (FRAG. NO:1357)(SEQ. ID NO:1366)
  - 5'-TCTGGTCGCTGTC('T-3' (FRAG. NO:1358)(SEQ. ID NO:1367)
- 5'-GGCTTGGGTCTCC(jGGCG-3' (FRAG. NO:1359)(SEQ. ID NO:1368) 5'-GTTTCCTTCCTTTTCCGC-3' (FRAG. NO:1360)(SEQ. ID NO:1369)

  - 5'-CTGCTGBGGC TT'GGGTCTCC GGGCGBTTCT CTGCBGBBGB TGCTCBBBGG GCTCCGGCBG TTCCTCCTTG BTCTGGTCGCT GTCGTBCCBG TCGGBCCBGT BBTTCBGBTC BTCBTTTGGCT CCTBTTTCTT CTGCBBBCBG CTGBGTGGBG BCBI/GBBBBB BGBCTGCCBB GGCCBCGBGG BTTTTCBTGT TGGBTTTTGC **GBCGGBCBGT** CCCGCGGGGT GCTGAGTTTC TCTGGTTCCT CCGBGCGCB-3' (FRAG. NO:1882) (SEQ ID NO: 1895)

## Substance P Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GGGCTBBGBT GBTCCBCBTC BCTBCCBCGT TGCCCBCCBC BGBGGTCBCC BCBBTGBCCG TGTBGGCBGC TGCCCBBBGG BCBETTTGCC BGGCTGGTTG CBCGBBCTGB TTGGGTTCCG BGGTGTTBGT GGBGBTGTTT GGGGBGBGGT CTG3GTCCBC CGGGBGGBCG TTBTCCBTTT CGBBGCTBGG CGGTBBBGCC CTBCTBTCTG
TBCBCBBCCC CCCTCTGCBG CBGBGTCCTG TCGTGGCGCC TGGGGCTCBG GGTCCGGGC TAAGATGATC CACATCACTA CCACGTTGCC CACCACAGAG GTCACCACAA TGACCGTGTA GGCAGCTGCC CAAAGGACAA TTTGCCAGGC TGG1TGCACG AACTGATTGG GTTCCGAGGT GTTAGTGGAG ATGTTTGGGG AGAGGTCTGA GTCCACCGGG AGGACGTTAT CCATTTCGAA GCTAGGCGGT AAAGCCCTAC TATCTGTACA CAACCCCCCT CTGCAGCAGA GTCCTGTCGT GGCGCCTGGG GCTCAGGGTC CGTCCTGTCG TGGCGCCTGG GGCTCTTCTT 55 TTGTGGGCTC TTTCGTGGCT GTGGCTGTGG TCTCTGTGGT TGCTGCCCTG GGTCTGGGGG TGTGGCCTTG

GGGCCGTCCT CTGGCTCCTC CTCGTGGGCC CCC-3' (FRAG. NO:1883) (SEQ. ID NO:1896)

- 5'-GGGBGGBCG-3' (FRAG. NO:1884) (SEQ. ID NO:1897)
- 5'-GGGTC CG-3' (FRAG. NO:1885) (SEQ. ID NO:1898)
- 5-'GGGCC CCC-3' (FRAG. NO:1886) (SEQ. ID NO:1899)
- 5'-GTCCTGTCGTGGCGCCTGGGGCTC-3' (FRAG. NO:1361)(SEQ. ID NO:1370)

- 5'-TTCTTTTGTGGGCT-3' (FRAG. NO:1362)(SEQ. ID NO:1371)
- 5'-CTTTGGTGGCTGT(GCTG-3' (FRAG. NO:1363)(SEQ. ID NO:1372)
- 5'-TGGTCTCTGTGGTTG-3' (FRAG. NO:1364)(SEQ. ID NO:1373)
- 5'-CTGCCCTGGGTCT(iG-3' (FRAG. NO:1365)(SEQ. ID NO:1374)
- 5 5'-GGGTGTGGCCTTGGGGCCGTCCTCTGGCTCCTCCTCGTGGGCCCCC (FRAG.NO:1366)(SEQ.ID NO:1375)
  - 5'-GGGCTAAGAT GAICCACATC ACTACCACGT TGCCCACCAC AGAGGTCACC ACAATGACCG TGTAGGCAGC TGCCCAAAGG ACAATTTGCC AGGCTGGTTG CACGAACTGA TTGGGTTCCG AGGTGTTAGT GGAGATGTTT GGGGAGAGGT CTGAGTCCAC CGGGAGGACG TTATCCATTTC GAAGCTAGGC GGTAAAGCCC TACTATCTGTA CACAACCCCC CTCTC CAGCA GAGTCCTGTC GTGGCGCCCTG GGGCTCAGGGTCC-3'(FRAG.NO:1367)(SEO.ID NO:1376)
- 10 5'-GGGCTBBGBT GBTCCBCBTC BCTBCCBCGT TGCCCBCCBC BGBGGTCBCC BCBBTGBCCG TGTBGGCBGC TGCCCBBBGG BCBETTTGCC BGGCTGGTTG CBCGBBCTGB TTGGGTTCCG BGGTGTTBGT GGBGBTGTTT GGGGBGBGGTC TGF.GTCCBCC GGGBGGBCGT TBTCCBTTTC GBBGCTBGGC GGTBBBGCCC TBCTBTCTGTB CBCBBCCCCC CTCTG CBGCB GBGTCCTGTC GTGGCGCCTG GGGCTCBGGG TCC-3' (FRAG. NO:1369) (SEO. ID NO:1377)

#### Chymase Antisense Nucleic Acids and Oligonucleotides Antisense Oligonucleotide Fragments

20 TGGCCCTCTT CCCTCTCCTG TCTCCTGTCC CTGTGTTCCG CCCGTCTTCC

CTCTCCTGAC CTCCTTTCC TCCGCTGGGT GGGGCCCTGC CTGTTCTCTG CTCCCTGGCT TGGGGTTTCT
TCTGTGTGTC TTCTCCTCT GTTGGCTGGC TTTCTCCTTC TTTTGTCTTC CTGGGTGCCC CTTCTTCCTT
TCTTGGGTCC TTGGTGCTTG GGCTGGG TCCCAGTTAA TACATAATCA ATATGCAATT TATTAATACA
TCTCTCCATG TCCACTCCCC CTGTATCTTG CCATTCTTGA CCTGCATTTC CATCCTCCTT ACCTTCCCTA
GAGGCCAACT CATTTTCTTT GAAAAACCTG GCATTTCCCA GAAAAAAAAG TGAAGGGCTG GGAGCTGTCC
GTTGTCCTGA TTTGCTCCCT CTGCCCTTGC TTCCAAATGT GGTTGGAAAG AAGCACTATT GAAAAATCCC

TAAACGCACC CCTGCAGGGT TGGCTCTACC CTGTAGCCAT GGACACATGC TGTTGATACC ACCTGCCTCA
TGAGTCTCAC ATAATTTGCC CTTTCACACT ATCTACCCCA TCAGCCTTAC CAAAACCATA CCTGCATCCT
GGGCAGCATC TGCCCTTCAA GAGACTAAGG AATCTCCTTG CAACCAAGAA TGACTAGACC AATGAGACAC
CCTTTAAGGC CCCAGCACAA TATAGAAATC CCACAATATG GTAATCCCAG TAAGGAGCTA TCAAGCCATT
GCAGGACCAT CTAGAATACA ACTAGAGTAT AGTTCCTTTC AATCCAGGAA CTATACTCTA ACAGCTTGGC

TCACAGGAAC CAGAAGTGAA GATGATGAGG ATCAGGGCTG AGCCTGTGAG CACCAGCTCC ACCACTGACA CCAACCACAG ATTAAACAAG CATCTTGTGG ACCCCTGGGA TGGAAAGAAT AGTTGTTGCC TTATCAACCT CCCCCACAGC CCACAGAA AAGATAAAAT CATCATGGCT ACAGTGTTAC AGAAGATGAT GACCCAAGGA GTAGGCCTGC CTGAGTGAAT GCTGAGAGTG ATAATGGGAG CAGTAGCATC TCAGAGACTA CAGCAGAAAC

CATCCACATA AAGAGCTTTG CCCAAACTTA TGATAAAGGG CACCCTCAGA GACTCTCCCT ACTTTAATAT
TAGCCCATTG CAGAAATGGT GAGTGGAAAG AGAAATCTTA GGAAGAACCC CTTAAAAAAG CAAAATGCTT
TTTAGGTTTG TGCT3AAGAG CCTGGAAAAG AAATAATGCCCC
AACACTGGGA TAACCTCCCAA GGATCTCTCC ATATCTCATT CTCCTGGATA CACTGTCCAC TCAGAAATAT

AACACTGGGA TAA'CTCCAA GGATCTCTCC ATATCTCATT CTCCTGGATA CACTGTCCAC TCAGAAATAT TGTGCAGAGT GCACITAATTC AAAAGTGAGC TATTGTGTTA GGAGTGAAGG CAAGAGTATC GTAAAATAAA TCAAATTTGA AATCIAATTCT CTTAAATTGC TTTATAGATG TTTAATGTAA GCCAGCAGCT ATTAAACGAT AAACCTTAAA TTCGAGAAAA ACTTGGTCAT TCAGAAACTA TAGAAACAGG CAGGACTTAT TGCGAGGGCA

AACACAGAGT GAGITCCAGC CTGCTTCAGG AAAATCTGCC AGTGCCATGA AGGATGTACT CTGTCTGCTC
CACTGCACTA CTGCTCAGTA TGAGCCCATG CCATCAGCTG TCCCTGACCC ACAGGAGTTC TTTAGAAGAG
ACTGGTCAAC AAAAGTTTCT AGGGTGTTTT ATACCTGCCA ACTCGAGGGT TAAAACAAGT TGCATAGAAA
TGCTCAATCA AGAAAGACAC AGTCATTACT CAGAGAATAA TAAACAGCCT GGCAGCACAT GAATGAATAG

TGCTCAATCA AGAAAGACAC AGTCATTACT CAGAGAATAA TAAACAGCCT GGCAGCACAT GAATGAATAG
AAAAAAGATG TTACATGCAA AGCATGAAAT AACCAAATTC CATAACAGAT GTTAATCTGT AATGTGTTTA
GGAGAATTTA GAGGAAGTAT AAGATTTATT CTTTCATCAA AAAAATTATA GCCAATGAGG ATATATCTAT

CAATTATCCA TCAAGTGGTG ATATGGCAGC ACAAGGTAAA ACACAAAGGA ATAAAACCAA CGTTTATTAA GAACCAATCA TGTGGCATTT CACATTGAGC ATCATATTTA ATTCTGAAAA AAATCCTTGT ACTGTATCAT TCTTCATATT TTATGGATGC AGTAACTAAG GCTGAGAACT TTAAAATTTT TCCTAAGTTC AGACACATAG CTAAGTGGCA GAACCAAGAT TCAAACTCAC CCCATCTAAC TGCAGAGCAA ACTGCATGCC TTAAATGTCA

AAGTGAATAC TAGCACAGTT AATACAATGT TTGGAAACTC AGAGAAGGAA TGATCCCTCT GCATTATAGT TACTAAGGAA TCA'TGCCAT TATTTAAATG CCAGTGCTTC TACATCAGGC CCAAATTTTC TGTCCTACTA ACTGTGAATC AAGACTTGAT TCAACCTCTA CTTGAGTATC TGCCGCAATG AGAAATCACT TACCTCCACT

AACCACACAT TTATTTATA ACAACAGATT GTTAGTAAGT CCTTTCTTAT ACATACTCAA CAGCTGCTTC
CCAAGATGCT GTACGATTAT GTCTAGAGTC AAACTAGCCA GAAGCAATGT CCAAAATACA CCATAACACT
GTGCAGCAAA GGTCCTACTA CCACTTGTTT GGCCCAAACA TTCTAGGCAG CACTGGATAT CTGAATCATC
AATTATTTCC ACAAACACTG ACCCCTCTAC CAGTCACCCT CACTAGAAGA ATTAATTCCA CATGATAATA

GCTCCCTCAT GTTACTCCCT TCTAAGTCAA ATTGTACACC CCTTTATCTG ATTAACAGAG TCTAAGTCAC ATGACCTAAA TGCAAGAGAA CTGGGAATGG ACGTTTGTGG ATTCTACCTT AGTAAGGCAA AGTTATCATT









30 5'-GGBGCBCBBG-3' (FRAG. NO:1888) (SEQ. ID NO:1901)

5'-GBBGCBGC-3' (FRAG. NO:1889) (SEQ. ID NO:1902)

5'-GGGGCBBGG CG-3' (FRAG. NO:1890) (SEQ. ID NO:1903)

5'-CGTTTTCTTCTC.3' (FRAG. NO:1369)(SEQ. ID NO:1378)

5'-GCTGGTTTTCCTTTCC-3' (FRAG. NO:1370)(SEQ. ID NO:1379)

5'-TTCCTTGTTCCTGGGGGTGTCCT-3' (FRAG. NO:1372)(SEQ. ID NO:1381)

5'-CTTGCTCTGGGCTTTTCT-3' (FRAG. NO:1373)(SEQ. ID NO:1382)

5'-CCCCTTTTCCTTCC-3' (FRAG. NO:1374)(SEQ. ID NO:1383) [

5'-TGTCTGTTTTCCTGGGG-3' (FRAG. NO:1375)(SEQ. ID NO:1384)

0 5'-CTCTCCTCTGTCTCTGTGT-3' (FRAG. NO:1376)(SEO. ID NO:1385)

5'-CCTTGCCCTGGCCC'-3' (FRAG. NO:1377)(SEQ. ID NO:1386)

5'-TCTTCCCTCTCTGTCTCCTGT-3' (FRAG. NO:1378)(SEQ. ID NO:1387)

5'-CCCTGTGTTCCGCC'C-3' (FRAG. NO:1379)(SEQ. ID NO:1388)

5'-GTCTTCCCTCTG-3' (FRAG. NO:1380)(SEQ. ID NO:1389)

5'-ACCTCCTTTTCCTCCG-3' (FRAG. NO:1381)(SEQ. ID NO:1390)

5'-CTGGGTGGGGCCC'IG-3' (FRAG. NO:1382)(SEQ. ID NO:1391)

5'-CCTGTTCTCTGCTCCC-3' (FRAG. NO:1383)(SEQ. ID NO:1392)

 $5\text{'-}TGGCTTGGGGTTTC'TTCTG-3\text{'} (FRAG.\ NO:1384) (SEQ.\ ID\ NO:1393)$ 

5'-TGTGTCTTCTTCTCTGTT-3' (FRAG. NO:1385)(SEQ. ID NO:1394)

50 5'-GGCTGGCTTTCTC('TTC-3' (FRAG. NO:1386)(SEQ. ID NO:1395)

5'-TTTTGTCTTCCTGGG-3' (FRAG. NO:1387)(SEQ. ID NO:1396) [1397)]

5'-TGCCCCTTCTTCCTTTCTTGGG-3' (FRAG. NO:1388)(SEQ. ID NO:1397)

5'-TCCTTGGTGCTTGC·GCTGGG-3' (FRAG. NO:1389)(SEQ. ID NO:1398)

5'-GGBGCTGBTB CT'GCBGATTT CBGBGGGBBG BBCCCTGBTB CTCBCCBGCT TCBGCTCTGG BGCBCBBGBG
55 BBBGBGCBGC BGGC'GGBGBG GBBGBBGCBG CBTCTTCCCB GBGBGGCTGC CTGBGCBBBT GCTGGTTTTC
CTTTCCBGTC TTGGGTTTTB TBBCTCCCBG BBGGCBBGBG BGGGCBBGG-3' (FRAG.NO:1891) (SEQ.ID NO:1904)

#### Endothelial Nitric Oxide Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GCGTCTTGGG GT'3CBGGGCC CBTCCTGCTG CGCCTGGGCG CTGCTGTGCG TCCGTCTGCT GGGGGGCCGG
GGTGGCTGGG CCC'GCTTGC CGCACGACCC CGGGCCGACC CGAGGCTCGG GGGGCTGTG TCTGGCGCTG
GTGGGCTTGG GCCC'CTCTGG GGGCTGGGTT TCCTGCTGCG CCTGGGCGCT GGCGTCTTGG GGTGCGGGGC
CGGGGGGCCG GGG'3GCCGCT GTTCGTGGGC CTGGGGGTGC CTGTGGCTGC CGGTTGCCCC GGTTGGTGGC



- 5'-GCGGGGCCG-3' (FRAG. NO:1893) (SEQ. ID NO: 1906)
- 5'-CGGGGGGC-3' (FRAG. NO:1894) (SEQ. ID NO: 1907)
- 5'-GCGCGGCGGC-3' (FRAG. NO:1895) (SEQ. ID NO: 1908)
- 5°-CTGTGCGTCCGTCTGCTGG (FRAG. NO:1390)(SEQ. ID NO:1399)
  GGGGCCGGGGTGGCTGGGCCCTGCTTGCCGC (FRAG. NO:1391)(SEQ. ID NO:1400)
  ACGACCCCGGGCCGACCCGAG (FRAG. NO:1392)(SEQ. ID NO:1401)
  GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGG (FRAG. NO:1393)(SEQ. ID NO:1402)
  CTTGGGCCCCTCTGGGGGCTGGGTT (FRAG. NO:1394)(SEO. ID NO:1403)
- TCCTGCTGCGCCTGGGCGCTG (FRAG. NO:1395)(SEQ. ID NO:1404)
  GCGTCTTGGGGTGC (FRAG. NO:1396)(SEQ. ID NO:1405)
  GGGGCCGGGGGGCCC GGGG (FRAG. NO:1397)(SEQ. ID NO:1406)
  GCCGCTGTTCGTGGGCCTGGG (FRAG. NO:1398)(SEQ. ID NO:1407)
  GGTGCCTGTGGCTGCC (FRAG. NO:1399)(SEQ. ID NO:1408)
- 40 GGTTGCCCCGGTTGGTGGC (FRAG. NO:1400)(SEQ. ID NO:1409)
  GCCGTCCTGCTGCCGGTT (FRAG. NO:1401)(SEQ. ID NO:1410)
  CGTTGGCTGGGTCCCCCCCC (FRAG. NO:1402)(SEQ. ID NO:1411)
  CCGTTTCCTGGGGTCC (FRAG. NO:1403)(SEQ. ID NO:1412)
  GCGTGGGGTGCTCC (FRAG. NO:1404)(SEQ. ID NO:1413)
- 45 GGTTCCTCGTGCCG (I'RAG. NO:1405)(SEQ. ID NO:1414)
  CTGCTGCCTTGTCTTTCC (FRAG. NO:1406)(SEQ. ID NO:1415)
  GGCCGTGGCGGCGTGGTGGTCC (FRAG. NO:1407)(SEQ. ID NO:1416)
  GCCCCCCCTGGCCTTCTGCTC (FRAG. NO:1408)(SEQ. ID NO:1417)
  GGGGTCTGGCTGGT (*RAG. NO:1409)(SEQ. ID NO:1418)
- 50 TGCCGGTGCCCTTGGCGGC (FRAG. NO:1410)(SEQ. ID NO:1419)
  GGTCTTCTTCCTGGTC; (FRAG. NO:1411)(SEQ. ID NO:1420)
  GCTCTGGGCCCGGCC3GTCTCGG (FRAG. NO:1412)(SEQ. ID NO:1421)
  GCGTCTCGTGTTCG (FRAG. NO:1413)(SEQ. ID NO:1422)
  CTCTTGTGCTGTTCCCGCCG (FRAG. NO:1414)(SEQ. ID NO:1423)
- 55 CTCCTTCCTCTCCGC CGCC (FRAG. NO:1415)(SEQ. ID NO:1424)
  GCCGCTCCCCGCCC (FRAG. NO:1416)(SEQ. ID NO:1425)
  GCTCGTCGCCCTGGCCC (FRAG. NO:1417)(SEQ. ID NO:1426)
  GGCCTCCTCCTGGCCGC (FRAG. NO:1418)(SEQ. ID NO:1427)
  TGTCTCGGGCGGCGCTTTGGC (FRAG. NO:1419)(SEQ. ID NO:1428)
  60 GCTCCGTTTGGGGCTG (FRAG. NO:1420)(SEQ. ID NO:1429)

60 GCTCCGTTTGGGGCT() (FRAG. NO:1420)(SEQ. ID NO:1429) CCTCTGGCGCTTCC (FRAG. NO:1421)(SEQ. ID NO:1430) GGCCCTCGGCCTGGG CGCTC (FRAG. NO:1422)(SEQ. ID NO:1431) 10

15

TCTTCCGCCTGTGC (FRAG. NO:1423)(SEQ. ID NO:1432) TGGTGGCCCTCGTGG (FRAG. NO:1424)(SEQ. ID NO:1433) GCCCCTCCTGGCCTCCGGTGTCC (FRAG. NO:1425)(SEQ. ID NO:1434) TGTGGTCCCCCGGCTGGT (FRAG. NO:1426)(SEQ. ID NO:1435) GGCCGGGCCGGTTGGGCGGGC (FRAG. NO:1427)(SEQ. ID NO:1436) GTGGGCGCGGGGTCCTCC (FRAG. NO:1428)(SEQ. ID NO:1437) GGGCTGCCCTTCTCC (FRAG. NO:1429)(SEQ. ID NO:1438) GCCGGGGGTCCCGC (FRAG. NO:1430)(SEQ. ID NO:1439) GCTCCTGCTGTTCCCTGGGCTCTTCTGCC (FRAG. NO:1431)(SEQ. ID NO:1440) TCTCTCCTGGGTGGG' GCTGGGTGCCG (FRAG. NO:1432)(SEQ. ID NO:1441) GGGTCTCCGGGCTTG (FRAG. NO:1433)(SEO. ID NO:1442) CCCCGCGCTGCTGGGCGTTCTGC (FRAG. NO:1434)(SEO. ID NO:1443) GGTCTTGGGGTTGTC (FRAG. NO:1435)(SEQ. ID NO:1444) TGTGGCCCCGCTCG (J'RAG, NO:1436)(SEQ, ID NO:1445) TGTCGCCCTCCGTCGCC (FRAG. NO:1437)(SEQ. ID NO:1446) CGTCGCCGGCCTCGTCC (FRAG. NO:1438)(SEQ. ID NO:1447) CCTCCTGGGTGCGC (JiRAG, NO:1439)(SEQ, ID NO:1448) GGCGGGCTGGTCCT (7RAG. NO:1440)(SEQ. ID NO:1449)

GGCGTTTTGCTCCTTC'CTGG (FRAG. NO:1441)(SEQ. ID NO:1450)

20 5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCGCCTGGGCGCTG-3'(FRAG. NO:1896) (SEQ. ID NO: 1909)

## Inducible Nitric Oxide Synthase Nucleic Acids and Antisense Oligonucleotide Fragments

267

5'-CTGCCCCBGT TT'TGBTCCT CBCBTGCCGT GGGGBGGBCB BTGGCTGCCT CCCCGGGGTT TCTGCTGCTT GCTGCTTCTT TCCCGTCTCC CTTCTTTCCC GTCTCCTTTT TGCCTCTTTG GGTTCCTGTT GTTTCTGGCC TGCTTGGTGG CGGCTTGTGC GTTTCCTCTC TCTTCTCTTG GGTCTCCGCT TCTCGTCCTG CCTTTTCCTG TCTCTGTCGC GCCCTTCCTC CTCCGGCGTC CTCCTGCCCT GTGCTGTTTG CCTCGGGTGG TGCGGGTCCC GGTGCTCCCC CGG(GGGCCG GCTGGTTGCC TGGGCCTGTC TGGTGGGGTG TGGGGCCGCT GGGTTGGGGG TGTGGTGGGC TCTTCTGTGG CCTGTGGGGC TGTTGGTGTC TCTGTGGGCG TGTGCTGGGT CTTGGGGCTT CCTCCCTTGT GCTGGGTGCG GCCTCCCCGC CCCCCTTCTG GGCCGGTGGC CTGGCTCCTT GTGGGCGCTT CTGGCTCTTG CCCTGTCCTT CTTCGCCTCG TGGCTGCTGG GCTGC CATATGTATG GGAATACTGT ATTTCAGGCA TTATAAGGAA TGAAATTATA GGCCGGGCAT TGTGGCTAAC CCTTGTAATC CTAGCACTTT GAGAGGCTGA AGTGGGCAGA TCACTTGAGC TTCAGAGTTC GAGACCAGCA TGGACAACAT GGTGAAACCC AGTCTCTACC AAAAACACAA AAA'TATTAGC TGGGTGTGGT GGTGCATGCC TGTAGTCCCA GCTACTCAGG AGGCTGAGGT GGGAGGATCG CTT()AGCCTG GGAGGCAGAA GTTGCAATGA GCAGAGATCG TGCCACTCCG CTCCAGTCTT GGTGACAGAA TGAGACTCCA TCTCAAAAAT AAATAAATAA ATAAATAAAA TAAATGAAAT GAAATTATAA GAAATTACCA CTTTTCATG TAAGAAGTGA TCATTTCCAT TATAAGGGAA GGAATTTAAT CCTACCTGCC ATTCCACCAA AGCTTACCTA GTGCTAAAGG ATGAGGTGTT AGTAAGACCA ACATCTCAGA GGCCTCTCTG TGCCAATAGC CTTC'CTTCCT TTCCCTTCCA AAAACCTCAA GTGACTAGTT CAGAGGCCTG TCTGGAATAA TGGCATCATC TAATATCACT GGCCTTCTGG AACCTGGGCA TTTTCCAGTG TGTTCCATAC TGTCAATATT CCCCCAGCTT CCTGGACTCC TGTCACAAGC TGGAAAAGTG AGAGGATGGA CAGGGATTAA CCAGAGAGCT CCCTGCTGAG GAAAAATCT CCCAGATGCT GAAAGTGAGG CCATGTGGCT TGGCCAAATA AAACCTGGCT CCGTGGTGCC TCTCTCTAG CAGCCACCCT GCTGATGAAC TGCCACCTTG GACTTGGGAC CAGAAAGAGG TGGGTTGGGT GAACIAGGCAC CACACAGAGT GATGTAACAG CAAGATCAGG TCACCCACAG GCCCTGGCAG TCACAGTCAT AAA1TAGCTA ACTGTACACA AGCTGGGGAC ACTCCCTTTG GAAACCAAAA AAAAAAAAA AAAAAAGAGA CCTTTATGCA AAAACAACTC TCTGGATGGC ATGGGGTGAG TATAAATACT TCTTGGCTGC CAGTGTGTTC ATAA.CTTTGT AGCGAGTCGA AAACTGAGGC TCCGGCCGCA GAGAACTCAG CCTCATTCCT GCTTTAAAAT CTCTCGGCCA CCTTTGATGA GGGGACTGGG CAGTTCTAGA CAGTCCCGAA GTTCTCAAGG CACAGGTCTC TTCC GGTTT GACTGTCCTT ACCCCGGGGA GGCAGTGCAG CCAGCTGCAA GGTGAGTTGC C CATATGTATG GGAATACTGT ATTTCAGGCA TTATAAGGAA TGAAATTATA GGCCGGGCAT TGTGGCTAAC CCTTGTAATC CTACCACTTT GAGAGGCTGA AGTGGGCAGA TCACTTGAGC TTCAGAGTTC GAGACCAGCA TGGACAACAT GGTGAAACCC AGTCTCTACC AAAAACACAA AAATATTAGC TGGGTGTGGT GGTGCATGCC TGTAGTCCCA GCTACTCAGG AGGCTGAGGT GGGAGGATCG CTTGAGCCTG GGAGGCAGAA GTTGCAATGA GCAGAGATCG TGCCACTCCG CTCCAGTCTT GGTGACAGAA TGAGACTCCA TCTCAAAAAT AAATAAATAA ATAAATAAAA TAAATGAAAT GAAATTATAA GAAATTACCA CTTTTTCATG TAAGAAGTGA TCATTTCCAT TATAAGGGAA GGAATTTAAT CCTACCTGCC ATTCCACCAA AGCTTACCTA GTGCTAAAGG ATGAGGTGTT AGTAAGACCA ACAICTCAGA GGCCTCTCTG TGCCAATAGC CTTCCTTCCT TTCCCTTCCA AAAACCTCAA GTGACTAGTT CAGAGGCCTG TCTGGAATAA TGGCATCATC TAATATCACT GGCCTTCTGG AACCTGGGCA TTTTCCAGTG TGTTCCATAC TGTCAATATT CCCCCAGCTT CCTGGACTCC TGTCACAAGC TGGAAAAGTG AGAGGATGGA CAGGGATTAA CCAGAGAGCT CCCTGCTGAG GAAAAAATCT CCCAGATGCT GAAAGTGAGG CCATGTGGCT TGGCCAAATA AAACCTGGCT CCGTGGTGCC TCTGTCTTAG CAGCCACCCT GCTGATGAAC CAAGATCAGG TCACCCACAG GCCCTGGCAG TCACAGTCAT AAATTAGCTA ACTGTACACA AGCTGGGGAC





TTTTCCAGTG TGTTCCATAC TGTCAATATT CCCCCAGCTT CCTGGACTCC TGTCACAAGC TGGAAAAGTG AGAGGATGGA CAGGGATTAA CCAGAGAGCT CCCTGCTGAG GAAAAAATCT CCCAGATGCT GAAAGTGAGG CCATGTGGCT TGGCCAAATA AAACCTGGCT CCGTGGTGCC TCTGTCTTAG CAGCCACCCT GCTGATGAAC TGCCACCTTG GACTIGGGAC CAGAAAGAGG TGGGTTGGGT GAAGAGGCAC CACACAGAGT GATGTAACAG CAAGATCAGG TCACCCACAG GCCCTGGCAG TCACAGTCAT AAATTAGCTA ACTGTACACA AGCTGGGGAC ACTCCCTTTG GAAACCAAAA AAAAAAAAA AAAAAAGAGA CCTTTATGCA AAAACAACTC TCTGGATGGC ATGGGGTGAG TATAAATACT TCTTGGCTGC CAGTGTGTTC ATAACTTTGT AGCGAGTCGA AAACTGAGGC TCCGGCCGCA GAGAACTCAG CCTCATTCCT GCTTTAAAAT CTCTCGGCCA CCTTTGATGA GGGGACTGGG CAGTTCTAGA CAGTCCCGAA GTTCTCAAGG CACAGGTCTC TTCCTGGTTT GACTGTCCTT ACCCCGGGGA

GGCAGTGCAG CCAGCTGCAA GGTGAGTTGC C-3' (FRAG. NO: )(SEQ. ID NO: 2506)

5'-CTGCTTTAAA ATCTCTCGGC CACCTTTGAT GAGGGGACTG GGCAGTTCTA GACAGTCCCG AAGTTCTCAA GGCACAGGTC TCTTCCTGGT TTGACTGTCC TTACCCCGGG GAGGCAGTGC AGCCAGCTGC AAGCCCCACA GTGAAGAACA TCTCAGCTCA AATCCAGATA AGTGACATAA GTGACCTGCT TTGTAAAGCC ATAGAGATGG CCTGTCCTTG GAAATTTCTG TTCAAGACCA AATTCCACCA GTATGCAATG AATGGGGAAA AAGACATCAA CAACAATGTG GAG/AAGCCC CCTGTGCCAC CTCCAGTCCA GTGACACAGG ATGACCTTCA GTATCACAAC CTCAGCAAGC AGCAGAATGA GTCCCCGCAG CCCCTCGTGG AGACGGGAAA GAAGTCTCCA GAATCTCTGG TCAAGCTGGA TGCAACCCCA TTGTCCTCCC CACGGCATGT GAGGATCAAA AACTGGGGCA GCGGGATGAC TTTCCAAGAC ACACTTCACC ATAAGGCCAA AGGGATTTTA ACTTGCAGGT CCAAATCTTG CCTGGGGTCC ATTATGACTC CCAAAAGTTT GACCAGAGGA CCCAGGGACA AGCCTACCCC TCCAGATGAG CTTCTACCTC

AAGCTATCGA ATTTGTCAAC CAATATTACG GCTCCTTCAA AGAGGCAAAA ATAGAGGAAC ATCTGGCCAG GGTGGAAGCG GTA/.CAAAGG AGATAGAAAC AACAGGAACC TACCAACTGA CGGGAGATGA GCTCATCTTC GCCACCAAGC AGGCCTGGCG CAATGCCCCA CGCTGCATTG GGAGGATCCA GTGGTCCAAC CTGCAGGTCT TCGATGCCCG CAGCTGTTCC ACTGCCCGGG AAATGTTTGA ACACATCTGC AGACACGTGC GTTACTCCAC CAACAATGGC AACATCAGGT CGGCCATCAC CGTGTTCCCC CAGCGGAGTG ATGGCAAGCA CGACTTCCGG GTGTGGAATG CTCAGCTCAT CCGCTATGCT GGCTACCAGA TGCCAGATGG CAGCATCAGA GGGGACCCTG CCAACGTGGA ATTCACTCAG CTGTGCATCG ACCTGGGCTG GAAGCCCAAG TACGGCCGCT TCGATGTGGT

CCCCCTGGTC CTGCAGGCCA ATGGCCGTGA CCCTGAGCTC TTCGAAATCC CACCTGACCT TGTGCTTGAG GTGGCCATGG AACATCCCAA ATACGAGTGG TTTCGGGAAC TGGAGCTAAA GTGGTACGCC CTGCCTGCAG TGGCCAACAT GCTCCTTGAG GTGGGCGGCC TGGAGTTCCC AGGGTGCCCC TTCAATGGCT GGTACATGGG CACAGAGATC GGAGTCCGGG ACTTCTGTGA CGTCCAGCGC TACAACATCC TGGAGGAAGT GGGCAGGAGA ATGGGCCTGG AAACGCACAA GCTGGCCTCG CTCTGGAAAG ACCAGGCTGT CGTTGAGATC AACATTGCTG TGATCCATAG TTTTCAGAAG CAGAATGTGA CCATCATGGA CCACCACTCG GCTGCAGAAT CCTTCATGAA GTACATGCAG AATGAATACC GGTCCCGTGG GGGCTGCCCG GCAGACTGGA TTTGGCTGGT CCCTCCCATG TCTGGGAGCA TCACCCCGT GTTTCACCAG GAGATGCTGA ACTACGTCCT GTCCCCTTTC TACTACTATC GAAAGTCTTG GTCAAAGCTG TGCTCTTTGC CTGTATGCTG ATGCGCAAGA CAATGGCGTC CCGAGTCAGA GTCACCATCC TCTTIGCGAC AGAGACAGGA AAATCAGAGG CGCTGGCCTG GGACCTGGGG GCCTTATTCA

GCTGTTGGTG GTGACCAGTA CGTTTGGCAA TGGAGACTGC CCTGGCAATG GAGAGAAACT GAAGAAATCG CTCTTCATGC TGAAAGAGCT CAACAACAAA TTCAGGTACG CTGTGTTTGG CCTCGGCTCC AGCATGTACC CTCGGTTCTG CGCCTTTGCT CATGACATTG ATCAGAAGCT GTCCCACCTG GGGGCCTCTC AGCTCACCCC GATGGGAGAA GGGGATGAGC TCAGTGGGCA GGAGGACGCC TTCCGCAGCT GGGCCGTGCA AACCTTCAAG GCAGCCTGTG AGACGTTTGA TGTCCGAGGC AAACAGCACA TTCAGATCCC CAAGCTCTAC ACCTCCAATG TGACCTGGGA CCCCCACCAC TACAGGCTCG TGCAGGACTC ACAGCCTTTG GACCTCAGCA AAGCCCTCAG CAGCATGCAT GCCAAGAACG TGTTCACCAT GAGGCTCAAA TCTCGGCAGA ATCTACAAAG TCCGACATCC AGCCGTGCCA CCATCCTGGT GGAACTCTCC TGTGAGGATG GCCAAGGCCT GAACTACCTG CCGGGGGAGC ACCTTGGGGT TTGCCCAGGC AACCAGCCGG CCCTGGTCCA AGGCATCCTG GAGCGAGTGG TGGATGGCCC

GCTGTGCCTT CAACCCCAAG GTTGTCTGCA TGGATAAGTA CAGGCTGAGC TGCCTGGAGG AGGAACGGCT CACACCCCAC CAGA.CAGTGC GCCTGGAGGA CCTGGATGAG AGTGGCAGCT ACTGGGTCAG TGACAAGAGG CTGCCCCCT GCTCACTCAG CCAGGCCCTC ACCTACTCCC CGGACATCAC CACACCCCCA ACCCAGCTGC

TGCTCCAAAA GCTCGCCCAG GTGGCCACAG AAGAGCCTGA GAGACAGAGG CTGGAGGCCC TGTGCCAGCC CTCAGAGTAC AGCAAGTGGA AGTTCACCAA CAGCCCCACA TTCCTGGAGG TGCTAGAGGA GTTCCCGTCC CTGCGGGTGT CTGCTGCTT CCTGCTTTCC CAGCTCCCCA TTCTGAAGCC CAGGTTCTAC TCCATCAGCT CCTCCCGGGA TCAC'ACGCCC ACGGAGATCC ACCTGACTGT GGCCGTGGTC ACCTACCACA CCGGAGATGG CCAGGGTCCC CTGC'ACCACG GTGTCTGCAG CACATGGCTC AACAGCCTGA AGCCCCAAGA CCCAGTGCCC





### NF-kB Nucleic Aci ls and Antisense Oligonucleotide Fragments

60 5'-GGGCGGGGTCGC-3' (FRAG. NO:1903) (SEQ. ID NO:1916) 5'-GCGCCGTCC-3' (FRAG. NO:1904) (SEQ. ID NO:1917)

- 5'-GGGCGTGGTGG-3' (FRAG. NO:1905) (SEQ. ID NO:1918) 5'-GTTGGGCTTGGCCGGGG-3' (FRAG. NO:1471)(SEQ. ID NO:1480) 5'-CTGCCCGGTGCCTCC-3' (FRAG. NO:1472)(SEQ. ID NO:1481) 5'-TCTTGGCTGGTCCCTCGT-3' (FRAG. NO:1473)(SEO. ID NO:1482) 5'-TGTCCTTGGGCCCC-3' (FRAG. NO:1474)(SEQ. ID NO:1483) 5'-GCTCCCGCTGCTCGGCCTCCGT-3' (FRAG. NO:1475)(SEQ. ID NO:1484) 5'-GTTCTTTGGCCTC'ITGCTCC-3' (FRAG. NO:1476)(SEQ. ID NO:1485) 5'-GCCTGCTGTCTTGTCC-3' (FRAG. NO:1477)(SEQ. ID NO:1486) 5'-CGTCCCCTCCTCGCTTTGCGTTTC-3' (FRAG. NO:1478)(SEQ. ID NO:1487) 5'-CCTCTTCCTTGTC' TCCA-3' (FRAG. NO:1479)(SEQ. ID NO:1488) 5'-GGCCTTCCTCCGCTCCGCTGC-3' (FRAG. NO:1480)(SEQ. ID NO:1489) 5'-TGGGGCCCGCGCGG-3' (FRAG. NO:1481)(SEQ. ID NO:1490) 5'-GGGGGCGCTCCGCGGCTTCCTCCCCGG-3' (FRAG. NO:1482)(SEQ. ID NO:1491) 5'-CTGGGGGGTCCTGG-3' (FRAG. NO:1483)(SEQ. ID NO:1492) 5'-TCTCCGGGGCCTGCGGCTCGC-3' (FRAG. NO:1484)(SEQ. ID NO:1493) 5'-GGGCTCGGGGCTGCGCCC-3' (FRAG. NO:1485)(SEQ. ID NO:1494) 5'-GCGCGCGCGTCCGCGGTG-3' (FRAG. NO:1486)(SEQ. ID NO:1495) 5'-GGTGGCGCTGTCCCGCC-3' (FRAG. NO:1487)(SEQ. ID NO:1496) 5'-GTGGTGTCTCCGTCCTGCGCCGTC-3' (FRAG. NO:1488)(SEQ. ID NO:1497) 5'-CTGGTCTGCCCGTGG-3' (FRAG. NO:1489)(SEQ. ID NO:1498) 5'-GGTCCTGGGCGTGGTGG-3' (FRAG. NO:1490)(SEQ. ID NO:1499) 5'-GGGGCGTCTGGTGC-3' (FRAG. NO:1491)(SEQ. ID NO:1500) 5'-CTCGTCTGCCCCG'[G-3' (FRAG. NO:1492)(SEQ. ID NO:1501) 5'-GGGCTTCGGGCTC 3G-3' (FRAG. NO:1493)(SEQ. ID NO:1502) 5'-GGCTGTTCGTCCCCCCCCCCCCCCTGTGGCCTCC-3' (FRAG. NO:1494)(SEQ. ID NO:1503) 5'-GGGGCTCCTCGTT'[TC-3' (FRAG. NO:1495)(SEQ. ID NO:1504) 5'-GCTGCTTCGGGTG'ICCTTCTC-3' (FRAG. NO:1496)(SEQ. ID NO:1505) 5'-GGCGTGTGGCCCC3G-3' (FRAG. NO:1497)(SEQ. ID NO:1506) 5'-GTCCCGGCCCTGC'IGGGCTGGGCGGGGTC-3' (FRAG. NO:1498)(SEQ. ID NO:1507) 5'-GCTGCCCTGGGCT'ICTGGCCCGTCT-3' (FRAG. NO:1499)(SEQ. ID NO:1508) 5'-GGTTGTCTGTCGG' '-3' (FRAG. NO:1500)(SEO. ID NO:1509) 5'-GCTTGTCTCGGGT' TCTGG-3' (FRAG. NO:1501)(SEQ. ID NO:1510) 5'-CCTCTGTGCTGGGC-3' (FRAG. NO:1502)(SEQ. ID NO:1511) 5'-GCTTCTCTGCCTCC'TGCTCC-3' (FRAG. NO:1503)(SEQ. ID NO:1512) 5'-GCCCTCCTGGTGGCTC-3' (FRAG. NO:1504)(SEQ. ID NO:1513) 5'-GGCTGGGGTGCCCGTGCG-3' (FRAG. NO:1505)(SEQ. ID NO:1514) 5'-GGGGTGGGGTGTT-3' (FRAG. NO:1506)(SEQ. ID NO:1515) 5'-TTCGGGGTCCTCCCCTTCCC-3' (FRAG. NO:1507)(SEQ. ID NO:1516) 5'-CGGCCCTTCTCACT'GGAGGCACCGGGCAGTCCTCCATGGGAGG-3' (FRAG.NO:1906)(SEQ.ID NO:1919) Human Major Basic Protein Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GTT TCA TCT TGG CTT TAT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT GGA GTT TCA TCT T3G GTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG 

CCC TGC TGG GGG GGB GTT TCB TCT TGG-3' (FRAG. ID:1907) (SEQ. ID NO:1920)

5'-GGG GGA GTT-3' (FRAG. ID:1908) (SEQ. ID NO:1921)

5'-G CCC TGG GCC C-3' (FRAG. ID:1909) (SEQ. ID NO:1922)

5'-GTT TCA TCT TGG CTT TAT CC-3' (FRAG. NO:1508) (SEQ. ID NO:1517)

5'-TCT CCC CTT GTT CCT CCC C-3' (FRAG. NO:1509)(SEQ. ID NO:1518)

5'-TCT CCT GCT CTG 3RG TCT CCT C-3' (FRAG. NO:1510)(SEQ. ID NO:1519)

5'-TTC CCT CCC TCC CCT GCC-3' (FRAG. NO:1511)(SEQ. ID NO:1520)

5'-GTG TTG TCT GTG GGT GTC C-3' (FRAG. NO:1512)(SEQ. ID NO:1521)

5'-GTT TCG CTC TTG 'ITG CCC-3' (FRAG. NO:1513)(SEO. ID NO:1522)

5'-TGG GCC CTT CCC TGC TGG-3' (FRAG. NO:1514)(SEQ. ID NO:1523)

5'-GGG GGA GTT TCA TCT TGG-3' (FRAG. NO:1515)(SEQ. ID NO:1524)

5'-GTT TCA TCT TGG CTT TAT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT GGA GTT TCA TCT TCG-3' (FRAG. ID:1910) (SEQ. ID NO:1923)

5'-GTT TCB TCT TGG CTT TBT CCTCT CCC CTT GTT CCT CCC CTCT CCT GCT CTG GRG TCT CCT C TTC CCT CCC 60 

GTT TCB TCT TGG-3' (FRAG. ID:1911) (SEQ. ID NO:1924)

10

# Human Eosinophi | Major Basic Protein Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GGG GGB GTT TCI: TCT TGG-3' (FRAG. NO:1519)(SEQ. ID NO: 1528)
5'-GGG GGB GTT TCI: TCT TGG CT-3' (FRAG. NO:1517)(SEQ. ID NO: 1526)
5'-GGG GGB GTT TCI: TCT TGG CT-3' (FRAG. NO:1517)(SEQ. ID NO: 1526)
5'-GGG GGB GTT TCI: TCT TGG CT-3' (FRAG. NO:1518)(SEQ. ID NO: 1527)
5'-GGG GGB GTT TCI: TCT TGG-3' (FRAG. NO:1529)(SEQ. ID NO: 1528)
5'-GGG GGB GTT TCI: TCT TG-3' (FRAG. NO:1520)(SEQ. ID NO: 1530)
5'-GGG GGB GTT TCI: TCT T-3' (FRAG. NO:1522)(SEQ. ID NO: 1531)
5'-GGG GGB GTT TCI: TCT-3' (FRAG. NO:1523)(SEQ. ID NO: 1532)
5'-GGG GGB GTT TCI: TC-3' (FRAG. NO:1524)(SEQ. ID NO: 1533)
5'-GGG GGB GTT TCI: TC-3' (FRAG. NO:1525)(SEQ. ID NO: 1534)
5'-GGG GGB GTT TCI: T-3' (FRAG. NO:1526)(SEQ. ID NO: 1535)

5'-GGG GGB GTT TCI: T-3' (FRAG. NO:1525)(SEQ. ID NO: 1534)
5'-GGG GGB GTT TCI:-3' (FRAG. NO:1526)(SEQ. ID NO: 1535)
5'-GG GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1527)(SEQ. ID NO: 1536)
5'-GG GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1528)(SEQ. ID NO: 1537)

5'-GG GGB GTT TCB 'TCT TGG CT-3' (FRAG. NO:1529)(SEQ. ID NO: 1538)
 5'-GG GGB GTT TCB 'TCT TGG C-3' (FRAG. NO:1530)(SEQ. ID NO: 1539)
 5'-GG GGB GTT TCB 'TCT TGG-3' (FRAG. NO:1531)(SEQ. ID NO: 1540)
 5'-GG GGB GTT TCB 'TCT TG-3' (FRAG. NO:1532)(SEQ. ID NO: 1541)
 5'-GG GGB GTT TCB 'TCT T-3' (FRAG. NO:1533)(SEQ. ID NO: 1542)

20 5'-GG GGB GTT TCB 'CT-3' (FRAG. NO:1534)(SEQ. ID NO: 1543)
5'-GG GGB GTT TCB 'C-3' (FRAG. NO:1535)(SEQ. ID NO: 1544)
5'-GG GGB GTT TCB 'C-3' (FRAG. NO:1536)(SEQ. ID NO: 1545)
5'-G GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1537)(SEQ. ID NO: 1546)
5'-G GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1538)(SEQ. ID NO: 1547)

25 5'-G GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1539)(SEQ. ID NO: 1548)
5'-G GGB GTT TCB TCT TGG C-3' (FRAG. NO:1540)(SEQ. ID NO: 1549)
5'-G GGB GTT TCB TCT TGG-3' (FRAG. NO:1541)(SEQ. ID NO: 1550)
5'-G GGB GTT TCB TCT TG-3' (FRAG. NO:1542)(SEQ. ID NO: 1551)
5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1543)(SEQ. ID NO: 1552)

5'-G GGB GTT TCB TC T-3' (FRAG. NO:1544)(SEQ. ID NO: 1553)
5'-G GGB GTT TCB TC -3' (FRAG. NO:1545)(SEQ. ID NO: 1554)
5'-GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1546)(SEQ. ID NO: 1555)
5'-GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1547)(SEQ. ID NO: 1556)
5'-GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1548)(SEQ. ID NO: 1557)

5'-GGB GTT TCB TCT TGG C-3' (FRAG. NO:1549)(SEQ. ID NO: 1558)
 5'-GGB GTT TCB TCT TGG-3' (FRAG. NO:1550)(SEQ. ID NO: 1559)
 5'-GGB GTT TCB TCT TG-3' (FRAG. NO:1551)(SEQ. ID NO: 1560)
 5'-GGB GTT TCB TCT T-3' (FRAG. NO:1552)(SEQ. ID NO: 1561)
 5'-GGB GTT TCB TCT-3' (FRAG. NO:1553)(SEQ. ID NO: 1562)

5'-GB GTT TCB TCT T'GG CTT T-3' (FRAG. NO:1554)(SEQ. ID NO: 1563)
 5'-GB GTT TCB TCT T'GG CTT-3' (FRAG. NO:1555)(SEQ. ID NO: 1564)
 5'-GB GTT TCB TCT T'GG CT-3' (FRAG. NO:1556)(SEQ. ID NO: 1565)
 5'-GB GTT TCB TCT T'GG C-3' (FRAG. NO:1557)(SEQ. ID NO: 1566)
 5'-GB GTT TCB TCT T'GG-3' (FRAG. NO:1558)(SEQ. ID NO: 1567)

5'-GB GTT TCB TCT Tig-3' (FRAG. NO:1559)(SEQ. ID NO: 1568)
5'-GB GTT TCB TCT Tig' (FRAG. NO:1560)(SEQ. ID NO: 1569)
5'-B GTT TCB TCT Tig' CTT T-3' (FRAG. NO:1561)(SEQ. ID NO: 1570)
5'-B GTT TCB TCT Tig' CTT-3' (FRAG. NO:1562)(SEQ. ID NO: 1571)
5'-B GTT TCB TCT Tig' CTT-3' (FRAG. NO:1563)(SEQ. ID NO: 1572)

5'-B GTT TCB TCT TGG CT-3' (FRAG. NO:1564)(SEQ. ID NO: 1573)
5'-B GTT TCB TCT TGG C-3' (FRAG. NO:1565)(SEQ. ID NO: 1574)
5'-B GTT TCB TCT TGG-3' (FRAG. NO:1565)(SEQ. ID NO: 1575)
5'-B GTT TCB TCT TG-3' (FRAG. NO:1567)(SEQ. ID NO: 1576)
5'-GTT TCB TCT TGG CTT T-3' (FRAG. NO:1568)(SEQ. ID NO: 1577)

5'-GTT TCB TCT TGG (CTT-3' (FRAG. NO:1569)(SEQ. ID NO: 1577)
5'-GTT TCB TCT TGG (CT-3' (FRAG. NO:1569)(SEQ. ID NO: 1578)
5'-GTT TCB TCT TGG (C-3' (FRAG. NO:1571)(SEQ. ID NO: 1580)
5'-GTT TCB TCT TGG-C' (FRAG. NO:1572)(SEQ. ID NO: 1581)
5'-TT TCB TCT TGG C'T T-3' (FRAG. NO:1574)(SEQ. ID NO: 1582)
5'-TT TCB TCT TGG C'T-3' (FRAG. NO:1574)(SEQ. ID NO: 1583)

5'-TT TCB TCT TGG CT'-3' (FRAG. NO:1574)(SEQ. ID NO: 1583) 5'-TT TCB TCT TGG CT'-3' (FRAG. NO:1575)(SEQ. ID NO: 1584)

5'-TT TCB TCT TGG C-3' (FRAG. NO:1576)(SEQ. ID NO: 1585) 5'-T TCB TCT TGG C"T T-3' (FRAG. NO:1577)(SEQ. ID NO: 1586) 5'-T TCB TCT TGG C'T-3' (FRAG. NO:1578)(SEQ. ID NO: 1587) 5'-T TCB TCT TGG C'-3' (FRAG. NO:1579)(SEQ. ID NO: 1588) 5'-TCB TCT TGG CTT T-3' (FRAG. NO:1580)(SEQ. ID NO: 1589) 5'-TCB TCT TGG CTT-3' (FRAG. NO:1581)(SEQ. ID NO: 1590) 5'-GGG GGB GTT TCI; TCT TGG CTT T-3' (FRAG. NO:1582)(SEQ. ID NO:1591) 5'-GG GGB GTT TCB 'TCT TGG CTT T-3' (FRAG. NO:1583)(SEQ. ID NO: 1592) 5'-G GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1584)(SEQ. ID NO: 1593) 5'-GGB GTT TCB TCT TGG CTT T-3' (FRAG. NO:1585)(SEQ. ID NO: 1594) 5'-GB GTT TCB TCT T'GG CTT T-3' (FRAG. NO:1586)(SEO. ID NO: 1595) 5'-B GTT TCB TCT TC G CTT T-3' (FRAG. NO:1587)(SEO. ID NO: 1596) 5'-GTT TCB TCT TGG CTT T-3' (FRAG. NO:1588)(SEQ. ID NO: 1597) 5'-TT TCB TCT TGG ('TT T-3' (FRAG. NO:1589)(SEQ. ID NO: 1598) 5'-T TCB TCT TGG Cl'T T-3' (FRAG. NO:1590)(SEQ. ID NO: 1599) 5'-TCB TCT TGG CTT T-3' (FRAG. NO:1591)(SEQ. ID NO: 1600) 5'-CB TCT TGG CTT 7-3' (FRAG. NO:1592)(SEQ. ID NO: 1601)  $5^{\circ}\text{-}GGG\ GGB\ GTT\ TCF\ TCT\ TGG\ CTT-3^{\circ}\ (FRAG.\ NO:1593)(SEQ.\ ID\ NO:\ 1602)$ 5'-GG GGB GTT TCB 'CT TGG CTT-3' (FRAG. NO:1594)(SEQ. ID NO: 1603) 5'-G GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1595)(SEQ. ID NO: 1604) 5'-GGB GTT TCB TCT TGG CTT-3' (FRAG. NO:1596)(SEO. ID NO: 1605) 5'-GB GTT TCB TCT TGG CTT-3' (FRAG. NO:1597)(SEQ. ID NO: 1606) 5'-B GTT TCB TCT TGG CTT-3' (FRAG. NO:1598)(SEO. ID NO: 1607) 5'-GTT TCB TCT TGG CTT-3' (FRAG. NO:1599)(SEQ. ID NO: 1608) 5'-TT TCB TCT TGG CTT-3' (FRAG. NO:1600)(SEQ. ID NO: 1609) 5'-T TCB TCT TGG CTT-3' (FRAG. NO:1601)(SEQ. ID NO: 1610) 5'-TCB TCT TGG CTT 3' (FRAG. NO:1602)(SEQ. ID NO: 1611) 5'-GGG GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1603)(SEQ. ID NO: 1612) 5'-GG GGB GTT TCB 1'CT TGG CT-3' (FRAG. NO:1604)(SEQ. ID NO: 1613) 5'-G GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1605)(SEQ. ID NO: 1614) 5'-GGB GTT TCB TCT TGG CT-3' (FRAG. NO:1606)(SEQ. ID NO: 1615) 5'-GB GTT TCB TCT TGG CT-3' (FRAG. NO:1607)(SEQ. ID NO: 1616) 5'-B GTT TCB TCT TGG CT-3' (FRAG. NO:1608)(SEQ. ID NO: 1617) 5'-GTT TCB TCT TGG CT-3' (FRAG. NO:1609)(SEQ. ID NO: 1618) 5'-TT TCB TCT TGG CT-3' (FRAG. NO:1610)(SEQ. ID NO: 1619) 5'-T TCB TCT TGG CT-3' (FRAG. NO:1611)(SEQ. ID NO: 1620) 5'-GGG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1612)(SEQ. ID NO: 1621) 5'-GG GGB GTT TCB TCT TGG C-3' (FRAG. NO:1613)(SEQ. ID NO: 1622) 5'-G GGB GTT TCB TCT TGG C-3' (FRAG. NO:1614)(SEQ. ID NO: 1623) 5'-GGB GTT TCB TCT TGG C-3' (FRAG. NO:1615)(SEQ. ID NO: 1624) 5'-GB GTT TCB TCT T3G C-3' (FRAG. NO:1616)(SEQ. ID NO: 1625) 5'-B GTT TCB TCT TG 3 C-3' (FRAG. NO:1617)(SEQ. ID NO: 1626) 5'-GTT TCB TCT TGG C-3' (FRAG. NO:1618)(SEO. ID NO: 1627) 5'-TT TCB TCT TGG C-3' (FRAG. NO:1619)(SEQ. ID NO: 1628) 5'-GGG GGB GTT TCB TCT TGG-3' (FRAG. NO:1620)(SEO. ID NO: 1629) 5'-GG GGB GTT TCB TCT TGG-3' (FRAG. NO:1621)(SEQ. ID NO: 1630) 5'-G GGB GTT TCB TCT TGG-3' (FRAG. NO:1622)(SEQ. ID NO: 1631) 5'-GGB GTT TCB TCT TGG-3' (FRAG. NO:1623)(SEQ. ID NO: 1632) 5'-GB GTT TCB TCT T'3G-3' (FRAG. NO:1624)(SEQ. ID NO: 1633) 5'-B GTT TCB TCT TG/G-3' (FRAG. NO:1625)(SEQ. ID NO: 1634) 5'-GTT TCB TCT TGG-3' (FRAG. NO:1626)(SEQ. ID NO: 1635) 5'-GGG GGB GTT TCB TCT TG-3' (FRAG. NO:1627)(SEQ. ID NO: 1636) 5'-GG GGB GTT TCB TCT TG-3' (FRAG. NO:1628)(SEQ. ID NO: 1637) 5'-G GGB GTT TCB TCT TG-3' (FRAG. NO:1629)(SEQ. ID NO: 1638) 5'-GGB GTT TCB TCT 'FG-3' (FRAG. NO:1630)(SEQ. ID NO: 1639) 5'-GB GTT TCB TCT TG-3' (FRAG. NO:1631)(SEQ. ID NO: 1640) 5'-B GTT TCB TCT TG-3' (FRAG. NO:1632)(SEQ. ID NO: 1641) 5'-GGG GGB GTT TCB TCT T-3' (FRAG. NO:1633)(SEQ. ID NO: 1642)

5'-GG GGB GTT TCB TCT T-3' (FRAG. NO:1634)(SEQ. ID NO: 1643)
5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1635)(SEQ. ID NO: 1644)
5'-G GGB GTT TCB TCT T-3' (FRAG. NO:1636)(SEQ. ID NO: 1645)
5'-GGB GTT TCB TCT '[-3' (FRAG. NO:1637)(SEQ. ID NO: 1646)

5'-GB GTT TCB TCT 1-3' (FRAG. NO:1638)(SEO. ID NO: 1647) 5'-GGG GGB GTT TCE TCT-3' (FRAG. NO:1639)(SEQ. ID NO: 1648) 5'-GG GGB GTT TCB "CT-3" (FRAG. NO:1640)(SEQ. ID NO: 1649) 5'-G GGB GTT TCB TCT-3' (FRAG. NO:1641)(SEQ. ID NO: 1650) 5'-GGB GTT TCB TCT 3' (FRAG. NO:1642)(SEQ. ID NO: 1651) 5'-GGG GGB GTT TCE TC-3' (FRAG. NO:1643)(SEQ. ID NO: 1652) 5'-GG GGB GTT TCB  $\ensuremath{\text{TC-3'}}$  (FRAG. NO:1644)(SEQ. ID NO: 1653) 5'-G GGB GTT TCB T('-3' (FRAG. NO:1645)(SEQ. ID NO: 1654) 5'-GGG GGB GTT TCB T-3' (FRAG. NO:1646)(SEQ. ID NO: 1655) 5'-GG GGB GTT TCB T-3' (FRAG. NO:1647)(SEQ. ID NO: 1656) 5'-GGG GGB GTT TCB-3' (FRAG. NO:1648)(SEQ. ID NO: 1657) 5'-TCT CCC CTT GTT CCT CCC C-3' (FRAG. NO:1649)(SEO. ID NO: 1658) 5'-TCT CCT GCT CTG GTG TCT CCT C-3' (FRAG. NO:1650)(SEO. ID NO: 1659) 5'-TTC CCT CCC TCC CCT GCC-3' (FRAG. NO:1651)(SEQ. ID NO:1660) 5'-GTG TTG TCT GTG GGT GTC C-3' (FRAG. NO:1652)(SEQ. ID NO: 1661) 5'-GTT TCG CTC TTG TTG CCC-3' -3' (FRAG. NO:1653)(SEQ. ID NO: 1661) 5'-TGG GCC CTT CCC TGC TGG-3' (FRAG. NO:1654)(SEQ. ID NO: 1663) 5'-GGG GGB G-3' (FRAG. NO:1912)(SEQ. ID NO:1925) 5'-GTG GGT GTC C-3' (FRAG. NO:1913) (SEQ. ID NO: 1926)

# **BP-1 Nucleic Acids and Antisense Oligonucleotide Fragments**

5'-CCGTGTTGTC BGTGGTGCTG CCCGTTTGBG GTBTGGCGCT CCBCCBBTTC CCTTTTCTCC TTGTTTTCCG TTTCTCTTGC CGTCTGTGGT T-3' (FRAG. NO:1914) (SEQ. ID NO: 1927) 5'-CCCGTTTGBGGTBTGGC-3'(FRAG. NO:1915) (SEQ. ID NO: 1928)

5'-GCTCCBCCBBTTCCCTTTTCTCC-3'(FRAG. NO:1916) (SEQ. ID NO: 1929)

5'-TTGTTTTCCGTTTC CTTG-3'(FRAG. NO:1917) (SEO. ID NO: 1930)

5'-CCGTCTGTGGTT-3'(FRAG. NO:1918) (SEQ. ID NO: 1931)

5'-CCCGTTTGAGGTATGGC-3'(FRAG. NO:1919) (SEQ. ID NO: 1932)

5'-GCTCCBCCAATTCCCTTTTCTCC-3'(FRAG. NO:1920) (SEQ. ID NO: 1933)

# C/EBPNucleic Acicls and Antisense Oligonucleotide Antisense Oligonucleotide Fragments

5'-GGGCCCBGCCCGCCGCCTTTTCTBGCCCC GGCC-3' (FRAG. NO:1921) (SEQ. ID NO: 1934)

5'-GGGCCCBGCCCGCCTTTTCTBGCCCC GGC-3' (FRAG. NO:1922) (SEQ. ID NO: 1935)

5'-GGGCCCB GCCCGCCGCCTTTTCTBGCCCCGG-3' (FRAG. NO:1923) (SEQ. ID NO: 1936)

5'-GGGCCCBGCCCGCCCTTTTCTBGCCCCG-3' (FRAG. NO:1924) (SEQ. ID NO: 1937)

5'-GGGCCCBGCCCGCCTTTTCTBGCCCC-3' (FRAG. NO:1925) (SEQ. ID NO: 1938)

5'-GGGCCCBGCCCGCCGCTTTTCTBGCCC-3' (FRAG. NO:1926) (SEQ. ID NO: 1939)

5'-GGGCCCBGCCCGCCGCCTTTTCTBGCC-3' (FRAG. NO:1927) (SEQ. ID NO: 1940)

5'-GGGCCCBGCCCGCCGCCTTTTCTBGC-3' (FRAG. NO:1928) (SEO. ID NO: 1941) 5'-GGGCCCBGCCCGCCTTTTCTBG-3' (FRAG. NO:1929) (SEQ. ID NO: 1942)

5'-GGGCCCBGCCCGCCCTTTTCTB-3' (FRAG. NO:1930) (SEQ. ID NO: 1943)

5'-GGGCCCBGCCCGCCGCTTTTCT-3' (FRAG. NO:1931) (SEQ. ID NO:1942) 1944)

5'-GGGCCCBGCCCGCCGCTTTTC-3' (FRAG. NO:1932) (SEQ. ID NO: 1945) 5'-GGGCCCBGCCCGCCGCCTTTT-3' (FRAG. NO:1933) (SEQ. ID NO: 1946)

5'-GGGCCCBGCCCGCCGCCTTT-3' (FRAG. NO:1934) (SEQ. ID NO: 1947) [1945)]

5'-GGGCCCBGCCCGCCGCTT-3' (FRAG. NO:1935) (SEQ. ID NO: 1948)

5'-GGGCCCBGCCCGCCGCCT-3' (FRAG. NO:1936) (SEQ. ID NO: 1949)

5'-GGGCCCBGCCCGCCGCC-3' (FRAG. NO:1937) (SEQ. ID NO: 1950)

5'-GGGCCCBGCCCGCCGC-3' (FRAG. NO:1938) (SEQ. ID NO: 1951)

5'-GGGCCCBGCCCGCCG-3' (FRAG. NO:1939) (SEQ. ID NO: 1952)

5'-GGGCCCBGCCCGCC-3' (FRAG. NO:1940) (SEQ. ID NO: 1953)

50 5'-GGGCCCBGCCCGC-3' (FRAG. NO:1941) (SEQ. ID NO: 1954)

5'-GGGCCCBGCCCCG-3' (FRAG. NO:1942) (SEO. ID NO: 1955)

5'-GGGCCCBGCCCC-3' (FRAG. NO:1943) (SEQ. ID NO: 1956)

5'-GGGCCCBGCCC-3' (FRAG. NO:1944) (SEQ. ID NO: 1957)

5'-GGCCCBGCCCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1945) (SEQ. ID NO: 1958)

5'-GCCCBGCCCGCCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1946) (SEQ. ID NO: 1959)

5'-CCCBGCCCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1947) (SEQ. ID NO: 1960)

5'-CCBGCCCGCCGCC'TTTTCTBGCCCCGGC-3' (FRAG. NO:1948) (SEQ. ID NO: 1961)

5'-CBGCCCGCCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1948) (SEQ. ID NO: 1962)

5'-BGCCCCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1950) (SEQ. ID NO: 1963)

5'-GCCCCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1951) (SEQ. ID NO: 1964)

5'-CCCCGCCGCCTTT. CTBGCCCCGGC-3' (FRAG. NO:1952) (SEO. ID NO: 1965) 5'-CCCGCCGCCTTTT('TBGCCCCGGC-3' (FRAG. NO:1953) (SEO. ID NO: 1966) 5'-CCGCCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1954) (SEO. ID NO: 1967) 5'-CGCCGCCTTTTCTE GCCCCGGC-3' (FRAG. NO:1955) (SEQ. ID NO: 1968) 5'-GCCGCCTTTTCTBC CCCCGGC-3' (FRAG. NO:1956) (SEQ. ID NO: 1969) 5'-CCGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1957) (SEQ. ID NO: 1970) 5'-CGCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1958) (SEQ. ID NO: 1971) 5'-GCCTTTTCTBGCCCCGGC-3' (FRAG. NO:1959) (SEQ. ID NO: 1972) 5'-CCTTTTCTBGCCCCGGC-3' (FRAG. NO:1960) (SEQ. ID NO: 1973) 5'-CTTTTCTBGCCCCC GC-3' (FRAG. NO:1961) (SEQ. ID NO: 1974) 5'-TTTTCTBGCCCCGC C-3' (FRAG. NO:1962) (SEQ. ID NO: 1975) 5'-TTTCTBGCCCCGG('-3' (FRAG. NO:1963) (SEQ. ID NO: 1976) 5'-TTCTBGCCCCGGC-3' (FRAG. NO:1964) (SEQ. ID NO: 1977) 5'-TCTBGCCCCGGC-3' (FRAG. NO:1965) (SEQ. ID NO: 1978) 5'-CTBGCCCCGGC-3' (FRAG. NO:1966) (SEQ. ID NO: 1979) 5'-GCGBGGCTGTCBCCTCGCTGGGCCC-3' (FRAG. NO:1967) (SEQ. ID NO: 1980) 5'-GCGBGGCTGTCBCCTCGCTGGGCC-3' (FRAG. NO:1968) (SEQ. ID NO: 1981) 5'-GCGBGGCTGTCBCCTCGCTGGGC-3' (FRAG. NO:1969) (SEQ. ID NO: 1982) 5'-GCGBGGCTGTCBCCTCGCTGGG-3' (FRAG. NO:1970) (SEQ. ID NO:1983) 5'-GCGBGGCTGTCBCCTCGCTGG-3' (FRAG. NO:1971) (SEQ. ID NO:1984) 5'-GCGBGGCTGTCBCCTCGCTG-3' (FRAG. NO:1972) (SEQ. ID NO:1985) 5'-GCGBGGCTGTCBCCTCGCT-3' (FRAG. NO:1973) (SEO. ID NO:1986) 5'-GCGBGGCTGTCBCCTCGC-3' (FRAG. NO:1974) (SEQ. ID NO:1987) 5'-GCGBGGCTGTCBCCTCG-3' (FRAG. NO:1975) (SEQ. ID NO:1988) 5'-GCGBGGCTGTCBCCTC-3' (FRAG. NO:1976) (SEQ. ID NO:1989) 5'-GCGBGGCTGTCBCCT-3' (FRAG. NO:1977) (SEQ. ID NO:1990) 5'-GCGBGGCTGTCBCC-3' (FRAG. NO:1978) (SEQ. ID NO:1991) 5'-GCGBGGCTGTCBC-3' (FRAG. NO:1979) (SEQ. ID NO:1992) 5'-GCGBGGCTGTCB-3' (FRAG. NO:1980) (SEQ. ID NO:1993) 5'-GCGBGGCTGTC-3' (FRAG. NO:1981) (SEQ. ID NO:1994) 5'-GCGBGGCTGT-3' (F RAG. NO:1982) (SEQ. ID NO:1995) 5'-CGBGGCTGTCBCCTCGCTGGGCCC-3' (FRAG. NO:1983) (SEQ. ID NO:1996) 5'-GBGGCTGTCBCCTC'GCTGGGCCC-3' (FRAG. NO:1984) (SEQ. ID NO:1997) 5'-BGGCTGTCBCCTCC CTGGGCCC-3' (FRAG. NO:1985) (SEQ. ID NO:1998) 5'-GGCTGTCBCCTCGC TGGGCCC-3' (FRAG. NO:1986) (SEO. ID NO:1999) 5'-GCTGTCBCCTCGCTGGGCCC-3' (FRAG. NO:1987) (SEQ. ID NO:2000) 5'-CTGTCBCCTCGCTGGGCCC-3' (FRAG. NO:1988) (SEQ. ID NO:2001) 5'-TGTCBCCTCGCTGCGCCC-3' (FRAG. NO:1989) (SEQ. ID NO:2002) 5'-GTCBCCTCGCTGGC CCC-3' (FRAG. NO:1990) (SEQ. ID NO:2003) 5'-TCBCCTCGCTGGGCCC-3' (FRAG. NO:1991) (SEQ. ID NO:2004) 5'-CBCCTCGCTGGGCC'C-3' (FRAG. NO:1992) (SEQ. ID NO:2005) 5'-BCCTCGCTGGGCCC('-3' (FRAG. NO:1993) (SEQ. ID NO:2006) 5'-CCTCGCTGGGCCC-3' (FRAG. NO:1994) (SEQ. ID NO:2007) 5'-CTCGCTGGGCCC-3' (FRAG. NO:1995) (SEQ. ID NO:2008) 5'-TCGCTGGGCCC-3' (FRAG. NO:1996) (SEQ. ID NO:2009) 5'-CGCTGGGCCC-3' (FRAG. NO:1997) (SEQ. ID NO:2010) 5'-GCGCGGCCGTCBT(|GCGGCCGTCGGGCCGGGC-3' (FRAG. NO:1998) (SEQ. ID NO:2011) 5'-GCGCGGCCGTCBT(iGCGGCGTCGGGCCGGG-3' (FRAG. NO:1999) (SEQ. ID NO:2012) 5'-GCGCGGCCGTCBTCGCGGCGTCGGGCCGG-3' (FRAG. NO:2000) (SEQ. ID NO:2013) 5'-GCGCGGCCGTCBTGGCGGCGTCGGGCCG-3' (FRAG. NO:2001) (SEQ. ID NO:2014) 5'-GCGCGGCCGTCBT(GCGGCGTCGGGCC-3' (FRAG. NO:2002) (SEQ. ID NO:2015) 5'-GCGCGGCCGTCBT(GCGGCGTCGGGC-3' (FRAG. NO:2003) (SEQ. ID NO:2016) 5'-GCGCGGCCGTCBT(GCGGCGTCGGG-3' (FRAG. NO:2004) (SEO. ID NO:2017) 5'-GCGCGGCCGTCBTCGCGGCGTCGG-3' (FRAG. NO:2005) (SEQ. ID NO:2018) 5'-GCGCGGCCGTCBT(GCGGCGTCG-3' (FRAG. NO:2006) (SEQ. ID NO:2019) 5'-GCGCGGCCGTCBTCGCGGCGTC-3' (FRAG. NO:2007) (SEQ. ID NO:2020) 5'-GCGCGGCCGTCBTCGCGGCGT-3' (FRAG. NO:2008) (SEQ. ID NO:2021) 5'-GCGCGGCCGTCBTC GCGGCG-3' (FRAG. NO:2009) (SEQ. ID NO:2022) 5'-GCGCGGCCGTCBTC GCGGC-3' (FRAG. NO:2010) (SEQ. ID NO:2023) 5'-GCGCGGCCGTCBTC GCGG-3' (FRAG. NO:2011) (SEQ. ID NO:2024) 5'-GCGCGGCCGTCBTC GCG-3' (FRAG. NO:2012) (SEQ. ID NO:2025) 5'-GCGCGGCCGTCBTCGC-3' (FRAG. NO:2013) (SEQ. ID NO:2026)

5'-GCGCGGCCGTCBT 3G-3' (FRAG. NO:2014) (SEQ. ID NO:2027) 5'-GCGCGGCCGTCBT 3-3' (FRAG. NO:2015) (SEQ. ID NO:2028) 5'-GCGCGGCCGTCBT-3' (FRAG. NO:2016) (SEQ. ID NO:2029) 5'-GCGCGGCCGTCB-3' (FRAG. NO:2017) (SEQ. ID NO:2030) 5'-GCGCGGCCGTC-3' FRAG. NO:2018) (SEQ. ID NO:2031) 5'-GCGCGGCCGT-3' (FRAG. NO:2019) (SEQ. ID NO:2032) 5'-CGCGGCCGTCBTG'3CGGCGTCGGGCCGGGC-3' (FRAG. NO:2020) (SEQ. ID NO:2033) 5'-GCGGCCGTCBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2021) (SEO. ID NO:2034) 5'-CGGCCGTCBTGGCGGCGGGCCGGGC-3' (FRAG. NO:2022) (SEO. ID NO:2035) 5'-GGCCGTCBTGGCGGCCGGGCCGGCC-3' (FRAG. NO:2023) (SEO. ID NO:2036) 5'-GCCGTCBTGGCGGCGGCCGGGC-3' (FRAG. NO:2024) (SEQ. ID NO:2037) 5'-CCGTCBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2025) (SEQ. ID NO:2038) 5'-CGTCBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2026) (SEQ. ID NO:2039) 5'-GTCBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2027) (SEQ. ID NO:2040) 5'-TCBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2028) (SEQ. ID NO:2041) 5'-CBTGGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2029) (SEQ. ID NO:2042) 5'-BTGGCGGCGTCGG3CCGGGC-3' (FRAG. NO:2030) (SEQ. ID NO:2043) 5'-TGGCGGCGTCGGGCCGGC-3' (FRAG. NO:2031) (SEQ. ID NO:2044) 5'-GGCGGCGTCGGGCCGGGC-3' (FRAG. NO:2032) (SEQ. ID NO:2045) 5'-GCGGCGTCGGGCC3GGC-3' (FRAG. NO:2033) (SEQ. ID NO:2046) 5'-CGGCGTCGGGCCG3GC-3' (FRAG. NO:2034) (SEQ. ID NO:2047) 5'-GGCGTCGGGCCGGGC-3' (FRAG. NO:2035) (SEQ. ID NO:2048) 5'-GCGTCGGGCCGGGC-3' (FRAG. NO:2036) (SEQ. ID NO:2049) 5'-CGTCGGGCCGGGC 3' (FRAG. NO:2037) (SEQ. ID NO:2050) 5'-GTCGGGCCGGGC-3' (FRAG. NO:2038) (SEQ. ID NO:2051) 5'-TCGGGCCGGGC-3' (FRAG. NO:2039) (SEQ. ID NO:2052) 5'-CGGGCCGGGC-3' (FRAG. NO:2040) (SEQ. ID NO:2053) 5'-CCGCBGGCCBGGGCGCCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2041) (SEQ. ID NO:2054) 5'-CCGCBGGCCBGGGCGCCGCCGGCCGGCCGGCC-3' (FRAG. NO:2042) (SEQ. ID NO:2055) 5'-CCGCBGGCCBGGGCGCCGCCGGCCGGCC3' (FRAG. NO:2043) (SEQ. ID NO:2056) 5'-CCGCBGGCCBGGGCGCCGCCGGCCGGCGGG-3' (FRAG. NO:2044) (SEQ. ID NO:2057) 5'-CCGCBGGCCBGGGCGCCGCCGGCCGG-3' (FRAG. NO:2045) (SEQ. ID NO:2058) 5'-CCGCBGGCCBGGCGCCGCCGCCGCCG-3' (FRAG. NO:2046) (SEO. ID NO:2059) 5'-CCGCBGGCCBGGCCGCCGCCGCC-3' (FRAG. NO:2047) (SEQ. ID NO:2060) 5'-CCGCBGGCCBGGGCGCCGCCGGC-3' (FRAG. NO:2048) (SEQ. ID NO:2061) 5'-CCGCBGGCCBGGG'CGCCGCCGG-3' (FRAG. NO:2049) (SEQ. ID NO:2062) 5'-CCGCBGGCCBGGCCGCCGCCG-3' (FRAG. NO:2050) (SEQ. ID NO:2063) 5'-CCGCBGGCCBGGCCGCCGCC-3' (FRAG. NO:2051) (SEQ. ID NO:2064) 5'-CCGCBGGCCBGGCGCGCCGC-3' (FRAG. NO:2052) (SEQ. ID NO:2065) 5'-CCGCBGGCCBGGGCGCCG-3' (FRAG. NO:2053) (SEQ. ID NO:2066) 5'-CCGCBGGCCBGGGCGCCC-3' (FRAG. NO:2054) (SEQ. ID NO:2067) 5'-CCGCBGGCCBGGGCGCGC-3' (FRAG. NO:2055) (SEQ. ID NO:2068) 5'-CCGCBGGCCBGGCGCG-3' (FRAG. NO:2056) (SEQ. ID NO:2069) 5'-CCGCBGGCCBGGCCGC-3' (FRAG. NO:2057) (SEQ. ID NO:2070) 5'-CCGCBGGCCBGGGCG-3' (FRAG. NO:2058) (SEQ. ID NO:2071) 5'-CCGCBGGCCBGGGC-3' (FRAG. NO:2059) (SEQ. ID NO:2072) 5'-CCGCBGGCCBGGG 3' (FRAG. NO:2060) (SEQ. ID NO:2073) 5'-CCGCBGGCCBGG-3 (FRAG. NO:2061) (SEQ. ID NO:2074) 5'-CCGCBGGCCBG-3' (FRAG. NO:2062) (SEQ. ID NO:2075) 5'-CCGCBGGCCB-3' (F RAG. NO:2063) (SEQ. ID NO:2076) 5'-CCGCBGGCC-3' (FRAG. NO:2064) (SEQ. ID NO:2077) 5'-CGCBGGCCBGGCCGCCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2065) (SEO. ID NO:2078) 5'-GCBGGCCBGGCGCCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2066) (SEQ. ID NO:2079) 5'-CBGGCCBGGGCGCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2067) (SEQ. ID NO:2080) 5'-BGGCCBGGCGCGCCGGCCGGCCGGCCGGCCG-3' (FRAG. NO:2068) (SEQ. ID NO:2081) 5'-GGCCBGGGCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2069) (SEQ. ID NO:2082) 5'-GCCBGGGCGCCGCCGGCCGGGCCG-3' (FRAG. NO:2070) (SEQ. ID NO:2083) 5'-CCBGGGCGCCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2071) (SEQ. ID NO:2084) 5'-CBGGGCGCCGCCGGCCGGGCCGGCCG-3' (FRAG. NO:2072) (SEQ. ID NO:2085) 5'-BGGGCGCCGCCGGCCGGCCG-3' (FRAG. NO:2073) (SEQ. ID NO:2086) 5'-GGGCGCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2074) (SEO. ID NO:2087) 5'-GGCGCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2075) (SEQ. ID NO:2088)

5'-GCGCGCCGGCCGGCCGGCCG-3' (FRAG. NO:2076) (SEQ. ID NO:2089) 5'-CGCGCCGCCGGCCGGGCCG-3' (FRAG. NO:2077) (SEO. ID NO:2090) 5'-GCGCCGCCGGCCGGCCG-3' (FRAG. NO:2078) (SEQ. ID NO:2091) 5'-CGCCGCCGGCCGGCCG-3' (FRAG. NO:2079) (SEQ. ID NO:2092) 5'-GCCGCCGGCCGGCCG-3' (FRAG. NO:2080) (SEQ. ID NO:2093) 5'-CCGCCGGCCGGCCG-3' (FRAG. NO:2081) (SEQ. ID NO:2094) 5'-CGCCGGCCGGCCG-3' (FRAG. NO:2082) (SEQ. ID NO:2095) 5'-GCCGGCCGGCCG-3' (FRAG. NO:2083) (SEQ. ID NO:2096) 5'-CCGGCCGGGCCG-3' (FRAG. NO:2084) (SEQ. ID NO:2097) 5'-CGGCCGGGCCG-3' FRAG. NO:2085) (SEQ. ID NO:2098) 5'-GGCCGGGCCG-3' (FRAG. NO:2086) (SEQ. ID NO:2099) 5'-GGGCGCBGGCTCCGCB-3' (FRAG. NO:2087) (SEQ. ID NO:2100) 5'-GGGCCCCTGGCTCi3GCCCGGGGCCGGCCTGCCCGGCCC3' (FRAG.NO:2090)(SEO.ID NO:2103) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCCCGGCCC3' (FRAG. NO:2091) (SEQ. ID NO:2104) 5'-GGGCCCTGGCTC'3GCCCGGGGCCGGCTTGCCCGCCGGC-3' (FRAG. NO:2092) (SEO. ID NO:2105) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCCCGCCCGG-3' (FRAG. NO:2093) (SEQ. ID NO:2106) 5'-GGGCCCTGGCTC\GCCCGCGGCCCGGCTTGCCCGCCCG-3' (FRAG. NO:2094) (SEO. ID NO:2107) 5'-GGGCCCTGGCTC\GCCCGGGCCCGGCTTGCCCGCCC-3' (FRAG. NO:2095) (SEO. ID NO:2108) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCCCGCC-3' (FRAG. NO:2096) (SEQ. ID NO:2109) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCCCGC-3' (FRAG. NO:2097) (SEQ. ID NO:2110) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCCCG-3' (FRAG. NO:2098) (SEQ. ID NO:2111) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCCC-3' (FRAG. NO:2099) (SEQ. ID NO:2112) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGCC-3' (FRAG. NO:2100) (SEQ. ID NO:2113) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCTTGC-3' (FRAG. NO:2101) (SEQ. ID NO:2114) 5'-GGGCCCCTGGCTCGGCCCCGCGGCCCGGCTTG-3' (FRAG. NO:2102) (SEQ. ID NO:2115) 5'-GGGCCCCTGGCTCGGCCCGCGGCCCGGCTT-3' (FRAG. NO:2103) (SEQ. ID NO:2116) 5'-GGGCCCCTGGCTCGGCCCGGGCCCGGCT-3' (FRAG. NO:2104) (SEQ. ID NO:2117) 5'-GGGCCCCTGGCCCCGCGCCCGCGCC3' (FRAG. NO:2105) (SEQ. ID NO:2118) 5'-GGGCCCCTGGCTCGGCCCCGCGGCCCGG-3' (FRAG. NO:2106) (SEQ. ID NO:2119) 5'-GGGCCCCTGGCTCGGCCCGCGGCCCG-3' (FRAG. NO:2107) (SEQ. ID NO:2120) 5'-GGGCCCCTGGCTCGGCCCCGCGGCCC-3' (FRAG. NO:2108) (SEO. ID NO:2121) 5'-GGGCCCCTGGCTCGGCCCCGCGGCC-3' (FRAG. NO:2109) (SEO. ID NO:2122) 5'-GGGCCCCTGGCTCGGCCCCGCGGC-3' (FRAG. NO:2110) (SEQ. ID NO:2123) 5'-GGGCCCCTGGCTCGGCCCCGCGG-3' (FRAG. NO:2111) (SEQ. ID NO:2124) 5'-GGGCCCCTGGCTCGGCCCCGCG-3' (FRAG. NO:2112) (SEQ. ID NO:2125) 5'-GGGCCCCTGGCCCCGC-3' (FRAG. NO:2113) (SEQ. ID NO:2126) 5'-GGGCCCCTGGCTCGGCCCCG-3' (FRAG. NO:2114) (SEQ. ID NO:2127) 5'-GGGCCCCTGGCCCC-3' (FRAG. NO:2115) (SEQ. ID NO:2128) 5'-GGGCCCCTGGCTC()GCCC-3' (FRAG. NO:2116) (SEQ. ID NO:2129) 5'-GGGCCCCTGGCTCGGCC-3' (FRAG. NO:2117) (SEQ. ID NO:2130) 5'-GGGCCCCTGGCTC(GC-3' (FRAG. NO:2118) (SEO. ID NO:2131) 5'-GGGCCCCTGGCTCGG-3' (FRAG. NO:2119) (SEO. ID NO:2132) 5'-GGGCCCCTGGCTCG-3' (FRAG. NO:2120) (SEQ. ID NO:2133) 5'-GGGCCCCTGGCTC-3' (FRAG. NO:2121) (SEQ. ID NO:2134) 5'-GGGCCCCTGGCT-3' (FRAG. NO:2122) (SEQ. ID NO:2135) 5'-CCCCTGGCTCGGCC'CCGCGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2125) (SEQ. ID NO:2138) 5'-CCCTGGCTCGGCCC'CGCGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2126) (SEQ. ID NO:2139) 5'-CCTGGCTCGGCCCC'GCGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2127) (SEQ. ID NO:2140) 5'-GGCTCGGCCCGGCCGGCCTGCCCGGCCCGGCCCGG-3' (FRAG. NO:2130) (SEQ. ID NO:2143) 5'-GCTCGGCCCGGCGCCCGGCCCGGCCCGGCCCGG-3' (FRAG. NO:2131) (SEQ. ID NO:2144) 5'-CTCGGCCCCGCGCCCGGCCCGGCCCGGCCCGG-3' (FRAG. NO:2132) (SEQ. ID NO:2145) 5'-TCGGCCCCGCGGCCCGGCCCGGCCCGGCCCGG-3' (FRAG. NO:2133) (SEQ. ID NO:2146) 5'-CGGCCCGGGCCCGGCCCGGCCCGGCCCGG-3' (FRAG. NO:2134) (SEQ. ID NO:2147) 5'-GGCCCCGCGCCCGGCCCGGCCCGGCCCGG-3' (FRAG. NO:2135) (SEQ. ID NO:2148) 5'-GCCCGGGGCCGGCCGGCCGGCCGG-3' (FRAG. NO:2136) (SEO. ID NO:2149) 5'-CCCCGCGGCCCGGCCTGCCCGGCCCGG-3' (FRAG. NO:2137) (SEQ. ID NO:2150)

5'-CCCGCGGCCCGGC'lTGCCCGCCCGGCCCGG-3' (FRAG. NO:2138) (SEQ. ID NO:2151) 5'-CCGCGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2139) (SEQ. ID NO:2152) 5'-CGCGGCCCGGCTT'GCCCGCCCGGCCCGG-3' (FRAG. NO:2140) (SEQ. ID NO:2153) 5'-GCGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2141) (SEQ. ID NO:2154) 5'-CGGCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2142) (SEQ. ID NO:2155) 5'-GGCCCGGCTTGCCCGGCCCGGCCCGG-3' (FRAG. NO:2143) (SEQ. ID NO:2156) 5'-GCCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2144) (SEQ. ID NO:2157) 5'-CCCGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2145) (SEQ. ID NO:2158) 5'-CCGGCTTGCCCGC('CGGCCCGG-3' (FRAG. NO:2146) (SEQ. ID NO:2159) 5'-CGGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2147) (SEQ. ID NO:2160) 5'-GGCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2148) (SEQ. ID NO:2161) 5'-GCTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2149) (SEQ. ID NO:2162) 5'-CTTGCCCGCCCGGCCCGG-3' (FRAG. NO:2150) (SEO. ID NO:2163) 5'-TTGCCCGCCCGGCCCGG-3' (FRAG. NO:2151) (SEQ. ID NO:2164) 5'-TGCCCGCCCGGCCCGG-3' (FRAG. NO:2152) (SEQ. ID NO:2165) 5'-GCCCGCCCGGCCCGG-3' (FRAG. NO:2153) (SEQ. ID NO:2166) 5'-CCCGCCCGGCCCGG-3' (FRAG. NO:2154) (SEQ. ID NO:2167) 5'-CCGCCCGGCCCGG 3' (FRAG. NO:2155) (SEQ. ID NO:2168) 5'-CGCCCGGCCCGG-3 (FRAG. NO:2156) (SEQ. ID NO:2169) 5'-GCCCGGCCCGG-3' (FRAG. NO:2157) (SEQ. ID NO:2170) 5'-GGCGGGGGGGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2158) (SEQ. ID NO:2171) 5'-GGCGGGGGGGGGCGCCTGGCTCGCCTBGGGCCC-3' (FRAG. NO:2159) (SEQ. ID NO:2172) 5'-GGCGGGGGGGGCGCCTGGCTCGCCTBGGGCC-3' (FRAG. NO:2160) (SEQ. ID NO:2173) 5'-GGCGGGGGGGGGCGCCTGGCTCGCCTBGGGC-3' (FRAG. NO:2161) (SEQ. ID NO:2174) 5'-GGCGGGGGCGCCCTGGCTCGCCTBGGG-3' (FRAG. NO:2162) (SEQ. ID NO:2175) 5'-GGCGGGGGCGCCCTGGCTCGCCTBGG-3' (FRAG. NO:2163) (SEQ. ID NO:2176) 5'-GGCGGGGGGGGCGCCTGGCTCGCCTBG-3' (FRAG. NO:2164) (SEQ. ID NO:2177) 5'-GGCGGGGGCGCCCTGGCTCGCCTB-3' (FRAG. NO:2165) (SEQ. ID NO:2178) 5'-GGCGGGGGCGCCCTGGCTCGCCT-3' (FRAG. NO:2166) (SEQ. ID NO:2179) 5'-GGCGGGGGGGGCGCCTGGCTCGCC-3' (FRAG. NO:2167) (SEQ. ID NO:2180) 5'-GGCGGGGGGGGCGCCTGGCTCGC-3' (FRAG. NO:2168) (SEQ. ID NO:2181) 5'-GGCGGGGGGGGGCGCCTGGCTCG-3' (FRAG. NO:2169) (SEQ. ID NO:2182) 5'-GGCGGGGGGGGGCGCCTGGCTC-3' (FRAG. NO:2170) (SEO. ID NO:2183) 5'-GGCGGGGGGGGGCGCCTGGCT-3' (FRAG. NO:2171) (SEO. ID NO:2184) 5'-GGCGGGGGGGGCGCCTGGC-3' (FRAG. NO:2172) (SEQ. ID NO:2185) 5'-GGCGGGGGCGCCCTGG-3' (FRAG. NO:2173) (SEQ. ID NO:2186) 5'-GGCGGGGGGGGGCGCCTG-3' (FRAG. NO:2174) (SEQ. ID NO:2187) 5'-GGCGGGGGGGGGCGCCT-3' (FRAG. NO:2175) (SEQ. ID NO:2188) 5'-GGCGGGGGGGGGCGCC-3' (FRAG. NO:2176) (SEQ. ID NO:2189) 5'-GGCGGGGGGGGGGG'3' (FRAG. NO:2179) (SEQ. ID NO:2192) 5'-GGCGGGGGCGGG3' (FRAG. NO:2180) (SEQ. ID NO:2193) 5'-GGCGGGGGCGCG-3' (FRAG. NO:2181) (SEQ. ID NO:2194) 5'-GGCGGGGGCGC-3' (FRAG. NO:2182) (SEQ. ID NO:2195) 5'-GGCGGGGGCGG-3' (FRAG. NO:2183) (SEQ. ID NO:2196) 5'-GCGGGGGCGCCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2184) (SEQ. ID NO:2197) 5'-CGGGGGCGCGCGCTCGCCTBGGGCCCC-3' (FRAG. NO:2185) (SEQ. ID NO:2198) 5'-GGGGGCGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2186) (SEQ. ID NO:2199) 5'-GGGGCGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2187) (SEO. ID NO:2200) 5'-GGGCGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2188) (SEQ. ID NO:2201) 5'-GGCGGCGCCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2189) (SEQ. ID NO:2202) 5'-GCGGCGCCCTGGCCTBGGGCCCC-3' (FRAG, NO:2190) (SEO, ID NO:2203) 5'-CGGCGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2191) (SEQ. ID NO:2204) 5'-GGCGGCGCCTGGC' CGCCTBGGGCCCC-3' (FRAG. NO:2192) (SEQ. ID NO:2205) 5'-GCGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2193) (SEO. ID NO:2206) 5'-CGGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2194) (SEQ. ID NO:2207) 5'-GGCGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2195) (SEQ. ID NO:2208) 5'-GCGCCTGGCTCGC('TBGGGCCCC-3' (FRAG. NO:2196) (SEQ. ID NO:2209) 5'-CGCCTGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2197) (SEQ. ID NO:2210) 5'-GCCTGGCTCGCCTEGGGCCCC-3' (FRAG. NO:2198) (SEQ. ID NO:2211) 5'-CCTGGCTCGCCTBC GGCCCC-3' (FRAG. NO:2199) (SEQ. ID NO:2212)

5'-CTGGCTCGCCTBG(GCCCC-3' (FRAG. NO:2200) (SEQ. ID NO:2213) 5'-TGGCTCGCCTBGGGCCCC-3' (FRAG. NO:2201) (SEQ. ID NO:2214) 5'-GGCTCGCCTBGGGCCCC-3' (FRAG. NO:2202) (SEQ. ID NO:2215) 5'-GCTCGCCTBGGGCCCC-3' (FRAG. NO:2203) (SEQ. ID NO:2216) 5'-CTCGCCTBGGGCCCC-3' (FRAG. NO:2204) (SEQ. ID NO:2217) 5'-TCGCCTBGGGCCCC-3' (FRAG. NO:2205) (SEQ. ID NO:2218) 5'-CGCCTBGGGCCCC-3' (FRAG. NO:2206) (SEQ. ID NO:2219) 5'-GCCTBGGGCCCC-3 (FRAG. NO:2207) (SEQ. ID NO:2220) 5'-CCTBGGGCCCC-3' (FRAG. NO:2208) (SEQ. ID NO:2221) 5'-CTBGGGCCCC-3' (FRAG. NO:2209) (SEQ. ID NO:2222) 5'-GGGTGGGCBCGGCGGCC-3' (FRAG. NO:2210) (SEO. ID NO:2223) 5'-GGTCGGCGBBGBGCTCGTCGTGGC-3' (FRAG. NO:2211) (SEQ. ID NO:2224) 5'-GGTCGGCGBBGBGCTCGTCGTGG-3' (FRAG. NO:2212) (SEQ. ID NO:2225) 5'-GGTCGGCGBBGBGCTCGTCGTG-3' (FRAG. NO:2213) (SEO. ID NO:2226) 5'-GGTCGGCGBBGBGCTCGTCGT-3' (FRAG. NO:2214) (SEQ. ID NO:2227) 5'-GGTCGGCGBBGBGCTCGTCG-3' (FRAG. NO:2215) (SEQ. ID NO:2228) 5'-GGTCGGCGBBGBGCTCGTC-3' (FRAG. NO:2216) (SEQ. ID NO:2229) 5'-GGTCGGCGBBGBGCTCGT-3' (FRAG. NO:2217) (SEQ. ID NO:2230) 5'-GGTCGGCGBBGBGCTCG-3' (FRAG. NO:2218) (SEQ. ID NO:2231) 5'-GGTCGGCGBBGBGCTC-3' (FRAG. NO:2219) (SEQ. ID NO:2232) 5'-GGTCGGCGBBGBGCT-3' (FRAG. NO:2220) (SEQ. ID NO:2233) 5'-GGTCGGCGBBGBGC-3' (FRAG. NO:2221) (SEQ. ID NO:2234) 5'-GGTCGGCGBBGBG-3' (FRAG. NO:2222) (SEQ. ID NO:2235) 5'-GGTCGGCGBBGB-3' (FRAG. NO:2223) (SEQ. ID NO:2236) 5'-GGTCGGCGBBG-3' (FRAG. NO:2224) (SEQ. ID NO:2237) 5'-GTCGGCGBBGBGC1'CGTCGTGGC-3' (FRAG. NO:2225) (SEQ. ID NO:2238) 5'-TCGGCGBBGBGCTC'GTCGTGGC-3' (FRAG. NO:2226) (SEQ. ID NO:2239) 5'-CGGCGBBGBGCTC('TCGTGGC-3' (FRAG. NO:2227) (SEQ. ID NO:2240) 5'-GGCGBBGBGCTCGT'CGTGGC-3' (FRAG. NO:2228) (SEQ. ID NO:2241) 5'-GCGBBGBGCTCGT('GTGGC-3' (FRAG. NO:2229) (SEQ. ID NO:2242) 5'-CGBBGBGCTCGTCC TGGC-3' (FRAG. NO:2230) (SEO. ID NO:2243) 5'-GBBGBGCTCGTCGIGGC-3' (FRAG. NO:2231) (SEQ. ID NO:2244) 5'-BBGBGCTCGTCGTCGC-3' (FRAG. NO:2232) (SEQ. ID NO:2245) 5'-BGBGCTCGTCGTGC'C-3' (FRAG. NO:2233) (SEQ. ID NO:2246) 5'-GBGCTCGTCGTGG('-3' (FRAG. NO:2234) (SEQ. ID NO:2247) 5'-BGCTCGTCGTGGC-3' (FRAG. NO:2235) (SEQ. ID NO:2248) 5'-GCTCGTCGTGGC-3' (FRAG. NO:2236) (SEQ. ID NO:2249) 5'-CTCGTCGTGGC-3' ( RAG. NO:2237) (SEQ. ID NO:2250) 5'-TCGTCGTGGC-3' (FRAG. NO:2238) (SEQ. ID NO:2251) 5'-GGGGCCCCGCCCGCC-3' (FRAG. NO:2239) (SEQ. ID NO:2252) 5'-GGGGCCCGCGCCGCCGC-3' (FRAG. NO:2240) (SEQ. ID NO:2253) 5'-GGGGCCCGCGCCGCCG-3' (FRAG. NO:2241) (SEQ. ID NO:2254) 5'-GGGGCCCGCCCGCCC-3' (FRAG. NO:2242) (SEQ. ID NO:2255) 5'-GGGGCCCGCGCCGCC-3' (FRAG. NO:2243) (SEQ. ID NO:2256) 5'-GGGGCCCGCGCCGCCGCG' (FRAG. NO:2244) (SEQ. ID NO:2257) 5'-GGGGCCCGCGCCG-3' (FRAG. NO:2245) (SEQ. ID NO:2258) 5'-GGGGCCCCGCGCC-3' (FRAG. NO:2246) (SEQ. ID NO:2259) 5'-GGGGCCCCGCGC-3 (FRAG. NO:2247) (SEQ. ID NO:2260) 5'-GGGCCCCGCCGCCCGCC-3' (FRAG. NO:2248) (SEQ. ID NO:2261) 5'-GGCCCCGCCCCCCCC3' (FRAG. NO:2249) (SEQ. ID NO:2262) 5'-GCCCGCGCCCCGCC-3' (FRAG, NO:2250) (SEQ. ID NO:2263) 5'-CCCCGCGCCCCCCC3' (FRAG. NO:2251) (SEQ. ID NO:2264) 5'-CCCGCGCCCCGC'C-3' (FRAG. NO:2252) (SEQ. ID NO:2265) 5'-CCGCGCCCCCCC'-3' (FRAG. NO:2253) (SEQ. ID NO:2266) 5'-CGCGCCGCCCGCC-3' (FRAG. NO:2254) (SEQ. ID NO:2267) 5'-GCGCCGCCCG' (FRAG. NO:2255) (SEQ. ID NO:2268) 5'-CGCCGCCCGCC-3' (.7RAG. NO:2256) (SEQ. ID NO:2269) 5'-GCCGCCCGCC-3' (FRAG. NO:2257) (SEQ. ID NO:2270) 5'-GGGGCGCGGGGCCGCCGGG-3' (FRAG. NO:2258) (SEQ. ID NO:2271) 5'-GGCGGGGGGCCGGGCCC-3' (FRAG. NO:2259) (SEQ. ID NO:2272) 5'-GGCGCGTCGCCGT('GCCCCBGTCGGGCTCGCGC-3' (FRAG. NO:2260) (SEQ. ID NO:2273) 5'-GCGCGGGCBBCBGC'GBGCCGGGCGCG-3' (FRAG. NO:2261) (SEQ. ID NO:2274)

- 5'-GCGCBCGGGCCCBCCTGCGCGGGC-3' (FRAG. NO:2262) (SEQ. ID NO:2275)
- 5'-GGGCGGGGTGGCCTGCCGCCCC3' (FRAG. NO:2263) (SEQ. ID NO:2276)
- 5'-GGGCTGCTGCGCGGCGCGCGA-3' (FRAG. NO:2264) (SEQ. ID NO:2277)
- 5'-CTCCCGGGCGGGGCCGGGGG-3' (FRAG. NO:2265) (SEQ. ID NO:2278)
- 5 5'-GGGCTGCCGCGGTCCGGGCCCCTCTTGCCGGCG-3' (FRAG. NO:2266) (SEQ. ID NO:2279)
  - 5'-GCGCTCGCGCCGC'[GCCGG-3' (FRAG. NO:2267) (SEQ. ID NO:2280)
  - 5'-GCGCCGCTTGGCC' TGTCGCGGC-3' (FRAG. NO:2268) (SEQ. ID NO:2281)
  - 5'-GCTGCTCCBCGCGCTGG-3' (FRAG. NO:2269) (SEQ. ID NO:2282)
  - 5'-GCCGGBGGCCGGCCBGGTCCCGCG-3' (FRAG. NO:2270) (SEQ. ID NO:2283)
- 10 5'-CCCGGCGGCGGC3GGBBGGGCGGGCTGGGC-3' (FRAG. NO:2271) (SEQ. ID NO:2284)
  - 5'-GTCTCTCCCGCCCC'GGCCGCGCG-3' (FRAG. NO:2272) (SEQ. ID NO:2285)
  - 5'-GGGCGTCCGGGCCGTCGGG-3' (FRAG. NO:2273) (SEQ. ID NO:2286)
  - 5'-GCGGGCACGCGGCGGCTCTGGCGTCGGC-3' (FRAG. NO:2274) (SEQ. ID NO:2287)

# Bradykinin Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-GGTGBCBTTG BGCBTGTCGG CGCGGTCCCG TTBBGBGTGG GCCCGCCAGC CCAGCCACTC CACTTGGGGG CGGGTGGCCA GCACGAACAG CACCCAGAGG AAGGGGGGCG GCCCAGAAGG GCAGCCCGCA GGCCAGGATC AGGTCTGCTG CGGCCGGAGA TAATGGCATT CACCACGCGG CGGCCCAGCG CACGCCGCGC ATCCGGCCCG GGTTCTGACC TGCAGCCCCC GTCTCCTTGG CATTCCTGGG CCCCAGTCAC TCCTCTCCCT GCCCCCCTTG CTGGGGCAGG GACGGGGTG BCBTTGBGCB TGTCGGCGCG GTCCCGTTBB GBGTGGGCCC GCCAGCCCAG 20 CCACTCCACT TGGGGGGGGG TGGCCAGCAC GAACAGCACC CAGAGGAAGG GGGGGGGCCC AGAAGGGCAG CCCGCAGGCC AGGATCAGGT CTGCTGCGGC CGGAGATAAT GGCATTCACC ACGCGGCGGC CCAGCGCACG CCGCGCATCC GGCCCGGGTT CTGACCTGCA GCCCCCGTCT CCTTGGCATT CCTGGGCCCC AGTCACTCCT CTCCCTGCCC CCCTTGCTGG GGCAGGGACG GCCGTGTTGT CBGTGGTGCT GCCCGTTTGB GGTBTGGCGC TCCBCCBBTT CCCTTTCTC CTTGTTTTCC GTTTCTCTTG CCGTCTGTGG TT CAGATTCACA AACTGCAGGA CTGGGCAGGG AGCAGACAGT GAGCAAACGC CAGCAGGGCT GCTGTGAATT TGTGTAAGGA TTGAGGGACA GTTGCTTTTC AGCAIGGGCC CAGGAATGCC AAGGAGACAT CTATGCACGA CCTTGGGAAA TGAGTTGATG TCTCCGGTAA AACACCGGAG ACTAATTCCT GCCCTGCCCA ATTTTGCAGG GAGCATGGCT GTGAGGATGG GGTGAACTCA CGCA.CAGCCA AGGACTCCAA AATCACAACA GCATTACTGT TCTTATTTGC TGCCACACCT GAGCCAGCCT GCTCCTTCCC AGGAGTGGAG GAGGCCTGGG GGGAGGGAGA GGAGTGACTG AGCTTCCCTC CCGTGTGTTC TCCGTCCCTG CCCCAGCAAG ACAACTTAGA TCTCCAGGAG AACTGCCATC CAGCTTTGGT GCAATGGCTG AGTGCACAAG TGAGTTGTTG CCCTGGGTTT CTTTAATCTA TTCAGCTAGA ACTTTGAAGG ACAATTTCTT GCATTAATAA AGGTTAAGCC CTGAGGGGTC CCTGATAACA ACCTGGAGAC CAGGATTTTA TGGCTCCCCT CACTGATGGA CAAGGAGGTC TGTGCCAAAG AAGAATCCAA TAAGCACATA TTGAGCACTT GCTGTATATG CAGTATTGAG CACTGTAGGC AAGACCCAAG AAAGAGAAGG AGCCATCTCC ATCTTGAAGG AACTCAAAGA CTCAAGTGGG AACGACTGGG CACTGCCACC ACCAGAAAGC TGTTCGACGA GACGGTCGAG CAGGGTGCTG TGGGTGATAT GGACAGCAGA AGGGGGGAGAC CAAGGTTCCA GCTCAACCAA TAACTATTGC ACAACCACCT GTCCCTGCCT CAGTTCCCTT TTATGTAACA TGAAGTCGTT GTGAGGGTTA AAGGCAGTAA CAGGTATAAA GTACTTAGAA AAGCAAAGGG TGCTACGTAC ATGTGAGGCA TCATTACGCA GACGTAACTG GGATATGTTT ACTATAAGGA AAAGACACTG AGGTCTAGAA ATAGCTCCGT GGAGCAGAAT CAGTATTGGG AGCCGGTGGC GGTCTGAAGC ACCAGTGTCT GGCACACAGT AGGTGCTCAT TGGCTCCCTT CCACCTGTCA TTCCCACCAC CCTGAGGCCC CAACCGCCAC ACACAGGA GCATTTGGAG AGAAGGCCAT GTCTTCAAAG TCTGATTTGT GATGAGGCAG AGGAAGATAT TTCTAATCGG TCTTGCCCAG AGGATCACAG TGCTGAGACC CCCCACCACC AGCCGGTACC TGGGAAGGGG GAGAGTGCAG GCCTGCTCAG GGACTGTTCC TGTCTCAGCA ACCAAGGGAT TGTTCCTGTC AATCAATGGT TTATTGGAAG GTGGCCCAGT ATGAGCCCTA GAAGAGTGTG AAAAGGAATG GCAATGGTGT TCACCATCGG CAGTGCCAGG GCAGCACTCA TTCACTTGAT AAATGAATAT TTATTAGCTG GTTGGAGAGC TAGAACCTGG AGAGCTAGAA CCTGGAGAAC TAGAACCTGG AGGGCTAGAA CCTGGAGAGG CTAGAACCAA GAAGGGCTAG AACCTGGAGG GGCTAGAACC TAGAGAAGCT AAAACCTGAG CTAGAAGCTG GAGGACTAGA ACCTGGAGGG CTGGAATCTG AAGGGCTAGA ACCTGGAGGG CTGGAATCTG GAGAGCTAGA ACCTGGAGGG CTAGAACCTG GAGGGCTAGA ACCTAGAAGG GCTAGAACCT GGAGGGCTGG AATCTGGAGA GCTAGAACCT GGAGGGCTAG AACCTGGAGG GCTAGAACCT AGAAGGGCTA GAACCTGGAG GGCTAGAACC TGGCAGGTTA GAACCTAGAA GGGCTAGAAC CTGGAGAGCC AGAACCTGGA GGGCTAGAAC CTGGAAGGC TAGAACCTGT AGAGCTAGAA CATGGAGAGC TAGAACCCGG CAGGCTAGAA CCTGGCAAGC TAGAACCTGG AGGGAATGAA CCTGGAGGGC TAGAACCTGG AGAATGAGAA AAATTTACAT GGCAAAGAGC CCATAAATCC TGACCAATCC AACTCTGAAT TTTAAAGCAA AAGCGTGAAA AAAAAGATTC CCTCCTTACC CCCAACCCAC TCTTTTTCC CACCACCCAC TCTCCTCTGC CTCAGTAAGT ATCTGGAGGA AGAAAACAGG 55 TGAAAGAAGA AGTAAAAACC ATTTAGTATT AGTATTAGAA TGAAGTCAAA CTGTGCCACA CATGGTGAAT GAAAAAAAA AAAAAGAGGC TGTGTTTTGT CACACAGGGC AGTCATTCAG CACCAGAGCA CGTGATGGTC TGAGACTCTC TTAGGAGCAG AGCTCTGCCG CAATGGCCAT GTGGGGATCC ACACCTGGTC TGAGGGGCAA CTGAGTCTGC GGGAGAAGAG CGGCCCTATG CATGGTGTAG ATGCCCTGAT AAAGAACATC TGTCCTGTGA AAGACTCAAT GAGCTGTTAT GTTGTAAACA GGAAGCATTT CACATCCAAA CGAGAAAATC ATGTAAACAT GTGTCTTTTC TGTAGAGCAT AATAAATGGA TGAGGTTTTT GCAAAAAAAA AAAAAAAA AAATGATAGA





















15



- 5'- GAGCTCTTCA ATATTTTAGT GAAAGCTATA GATGAGGCTC CATAGGGGAT AAAGCACAGA CACACCTTTT CAGAGGGCTT GTGCACTCTG GGCAGCCTGT CCATAGACCT CTGTCCCCAA CTGGCAAGTC AGGAAACTCC AGATTAAGGA GCCCCAATGT GGTTGAACAG CCAGGTGCAC AGATGAGTCA ACCACACAGC CAGGCCAGGG AGGGCCTTCA CTCAAGAGCC TACAGCCAGT TCACAGCCAA GCCAGGGCTA GCGCCAGGCC ACCCATAAAC TGATCTGAGA CTCIGTTTCC CTGTCTCCAT GATGATGGGA TCAGGCTTGA TTGCTGGTTT GTAGGCTTGT TATGAATCAA GTCACAGGGA AGAGGAGCTG ATGGGCTGGG GGGACGTCCT CTGGCCCTCC TGTCTCTTCC CCAGATCCAC TGGCCCCACT CTTATCTGTT CTCTTCTGAA GGAAGGGTTT TAAGGCTTCA AAAAAAAATG TTTTGAAAGT CCCTGCCTT TCCAGCTCCT ACCGTCTCAG CCCTGGGAGT GTAAAGTGCT GCAGATAGTT AGTAAGTCTT TGAGCAAAAC TGAGAAAGCC AGCCTGAGCC TTGACATGGG AGAAACCTCC GCCATACATC TCCGAAGAAA CGGC'CGCGTG TCTCAGGGGA GCGCAAACAC CCGTACCCAG GAAACAGGAC AGCTTCTGCC ACTGTCGCCC TTGGGAGCCG TACGTGGCAT GACAAAGAAA TCCCAGGACT CCGCCTGCCC ACCTGGCCAC CCTCTGTTTA CACCITCCGC GTAAACGCCC ACTGTTTACA TCCAAAACTC AGACACAAAA TAACCACCTC AAGAAGATAA ATAATGATAA GAAATAAATG TTACGCGAGG CAAATTTATT CACATGGGGC TTCCCAGGCC ACTITGTGGT CAGCCGGGAG GGACGTTTTT GCCGTCCCAC GACTCCAACG GGCAGCCGGG CCTACGCAAA CATGGAAATC TTCCAAGAGC CTCCCTGGCC CCCAGGGCTC AGAGGGTGGC AGAGCGGAGA GCGAAGGTGG CCGCAGCCTT CCCGGCCCCA CAGCCAGCCT GGCTCCAGCT GGGCAGGAGT GCAGAGCTCA GCTGGAGGCG AGGGGGAAGT GCCCAGGAGG CTGATGACAT CACTACCCAG CCCTTCAAAG ATGAGCTGTT CCCGCCGCCA CTCCAGCTCT GGCT/CTGGG CTCCGAGGAG GGGTGGGGAC GGTGGTGACG GTGGGGACAT CAGGCTGCCC CGCAGTACCA GGGAGCGACT GAAGTGCCCA TGCCGCTTGC TCCGGAGAAG GTGGGTGCCG GGCAGGGGCT GCTCCAGCCG CCTCACCTCT GCTGGGAGGA CAAACTGTCC CAGCACAGAG GGAGGGAGGG AGGGCAGGCA
  - 5'- GCCCTTCAAA GATGAGCTGT TCCCGCCGCC ACTCCAGCTC TGGCTTCTGG GCTCCGAGGA GGGGTGGGGA CGGTGGTGAC GGTGGGGACA TCAGGCTGCC CCGCAGTACC AGGGAGCGAC TGAAGTGCCC ATGCCGCTTG CTCCGGAGAA GGTCGGTGCC GGGCAGGGGC TGCTCCAGCC GCCTCACCTC TGCTGGGAGG ACAAACTGTC CCAGCACAGA GGGAGGGAGG GAGGGCAGGC AGCGGGGAGA AGTTTCCCTG TGGTCGTGGG GAGTT -3' (FRAG. NO:2275) (SEQ. ID NC:2460)

GCGGGGAGAA GTT'ICCCTGT GGTCGTGGGG AGTTGGGAAA AGTTCCCTTC CTTCCGGAGG GAGG-3'

(FRAG.NO:2275) (SEC).ID NO:2461)

- 5'- ATGTTCTCTC CCTGGAAGAT ATCAATGTTT CTGTCTGTTC GTGAGGACTC CGTGCCCACC ACGGCCTCTT TCAGCGCCGA CATGCTCAAT GTCACCTTGC AAGGGCCCAC TCTTAACGGG ACCTTTGCCC AGAGCAAATG CCCCCCAAGTG GAGIGGCTGG GCTGGCTCAA CACCATCCAG CCCCCCTTCC TCTGGGTGCT GTTCGTGCTG GCCACCCTAG AGAA CATCTT TGTCCTCAGC GTCTTCTGCC TGCACAAGAG CAGCTGCACG GTGGCAGAGA TCTACCTGGG GAACCTGGCC GCAGCAGACC TGATCCTGGC CTGCGGGCTG CCCTTCTGGG CCATCACCAT CTCCAACAAC TTCGACTGGC TCTTTGGGGA GACGCTCTGC CGCGTGGTGA ATGCCATTAT CTCCATGAAC















CCTTCTTGTC CGGTCAAAAT GCTTCTTATC CTTCAAGACC CAGCTCTAGA GTCACCTCCA ACCCCTTACC CACCAGCCCC CTCTCCAAGT CTGTGTCCCA CAACCCCCCT GCTCCCTCCA GGGCACCCTC CACCCTCTGG











5'-GGAGATAATGGCATTCACCACGCGGC-3' (FRAG. NO:2281) (SEQ. ID NO:2294)

5'-GGCCCAGCGCACGCCGCATCCGGCCC-3' (FRAG. NO:2282) (SEQ. ID NO:2295)

5'-GGGTTCTGACCTGC'AGCCCCC-3' (FRAG. NO:2283) (SEQ. ID NO:2296)

5'-GTCTCCTTGGCATTCCTGGGCCC-3' (FRAG. NO:2284) (SEQ. ID NO:2297)

5'-CAGTCACTCCTCCCTGCCCCC-3' (FRAG. NO:2285) (SEQ. ID NO:2298) 5'-CTTGCTGGGGCAGGGACGG-3' (FRAG. NO:2286) (SEQ. ID NO:2299)

5'-GGTGBCBTTGBGCETGTCGGCGC-3' (FRAG. NO:2287) (SEQ. ID NO:2300)

5'-GGTCCCGTTBBGBCTGGGCCC-3' (FRAG. NO:2288) (SEQ. ID NO:2301)

5'-GCCAGCCCACTCCACTTGGGGGC-3' (FRAG. NO:2289) (SEQ. ID NO:2302)

5'-GGGTGGCCAGCACGAACAGCACCCAGAGGAAGGGGGGC-3' (FRAG. NO:2290) (SEQ. ID NO:2303)

5'-GGCCCAGAAGGGC AGCCCGCAGGCCAGGATCAGGTCTGCTGCGGCC-3'(FRAG.NO:2291)(SEQ.ID NO:2304)

5'-GGAGATAATGGCATTCACCACGCGGC-3' (FRAG. NO:2292) (SEQ. ID NO:2305)

5'-GGCCCAGCGCACGCCGCGCATCCGGCCC-3' (FRAG. NO:2293) (SEQ. ID NO:2306)

5'-GGGTTCTGACCTGC AGCCCCC-3' (FRAG. NO:2294) (SEQ. ID NO:2307)

5'-GTCTCCTTGGCATTCCTGGGCCC-3' (FRAG. NO:2295) (SEQ. ID NO:2308)

5'-CAGTCACTCCTCTCCCTGCCCCC3' (FRAG. NO:2296) (SEQ. ID NO:2309)

5'-CTTGCTGGGGCAG(iGACGG-3' (FRAG. NO:2297) (SEQ. ID NO:2310)

5'-CCGTGTTGTCBGTGGTGCTG-3' (FRAG. NO:2298) (SEO. ID NO:2311) 5'-CCCGTTTGBGGTBTGGC-3' (FRAG. NO:2299) (SEQ. ID NO:2312)

5'-GCTCCBCCBBTTCCCTTTTCTCC-3' (FRAG. NO:2300) (SEQ. ID NO:2313)

5'-TTGTTTTCCGTTTC~CTTG-3' (FRAG. NO:2301) (SEQ. ID NO:2314)

5'-CCGTCTGTGGTT-3' (FRAG. NO:2302) (SEQ. ID NO:2315)

#### **β2 Adrenergic Receptor Kinase Nucleic Acids and Antisense Oligonucleotide Fragments**

5'- GCCGCCGCCG CCAAGATGGC GGACCTGGAG GCGGTGCTGG CCGACGTGAG CTACCTGATG GCCATGGAGA 40 AGAGCAAGGC CACGCCGGCC GCGCGCCCA GCAAGAAGAT ACTGCTGCCC GAGCCCAGCA TCCGCAGTGT CATGCAGAAG TACCTGGAGG ACCGGGGCGA GGTGACCTTT GAGAAGATCT TTTCCCAGAA GCTGGGGTAC CTGCTCTTCC GAGACTTCTG CCTGAACCAC CTGGAGGAGG CCAGGCCCTT GGTGGAATTC TATGAGGAGA TCAAGAAGTA CGACAAGCTG GAGACGGAGG AGGAGCGTGT GGCCCGCAGC CGGGAGATCT TCGACTCATA CATCATGAAG GAGCTGCTGG CCTGCTCGCA TCCCTTCTCG AAGAGTGCCA CTGAGCATGT CCAAGGCCAC CTGGGGAAGA AGCAGGTGCC TCCGGATCTC TTCCAGCCAT ACATCGAAGA GATTTGTCAA AACCTCCGAG GGGACGTGTT CCACAAATTC ATTGAGAGCG ATAAGTTCAC ACGGTTTTGC CAGTGGAAGA ATGTGGAGCT CAACATCCAC CTGACCATGA ATGACTTCAG CGTGCATCGC ATCATTGGGC GCGGGGGCTT TGGCGAGGTC TATGGGTGCC GGAAGGCTGA CACAGGCAAG ATGTACGCCA TGAAGTGCCT GGACAAAAAG CGCATCAAGA TGAAGCAGGG GGAGACCTG GCCCTGAACG AGCGCATCAT GCTCTCGCTC GTCAGCACTG GGGACTGCCC 50 ATTCATTGTC TGCATGTCAT ACGCGTTCCA CACGCCAGAC AAGCTCAGCT TCATCCTGGA CCTCATGAAC GGTGGGGACC TGCACTACCA CCTCTCCCAG CACGGGGTCT TCTCAGAGGC TGACATGCGC TTCTATGCGG CCGAGATCAT CCTGGGCCTG GAGCACATGC ACAACCGCTT CGTGGTCTAC CGGGACCTGA AGCCAGCCAA CATCCTTCTG GACGAGCATG GCCACGTGCG GATCTCGGAC CTGGGCCTGG CCTGTGACTT CTCCAAGAAG AAGCCCCATG CCACCGTGGG CACCCACGGG TACATGGCTC CGGAGGTCCT GCAGAAGGGC GTGGCCTACG ACAGCAGTGC CGACTGGTTC TCTCTGGGGT GCATGCTCTT CAAGTTGCTG CGGGGGCACA GCCCCTTCCG GCAGCACAAG ACCAAAGACA AGCATGAGAT CGACCGCATG ACGCTGACGA TGGCCGTGGA GCTGCCCGAC TCCTTCTCCC CTGAACTACG CTCCCTGCTG GAGGGGTTGC TGCAGAGGGA TGTCAACCGG AGATTGGGCT GCCTGGGCCG AGGGGCTCAG GAGGTGAAAG AGAGCCCCTT TTTCCGCTCC CTGGACTGGC AGATGGTCTT CTTGCAGAAG TACCCTCCCC CGCTGATCCC CCCACGAGGG GAGGTGAACG CGGCCGACGC CTTCGACATT GGCTCCTTCG ATGAGGAGGA CACAAAAGGA ATCAAGTTAC TGGACAGTGA TCAGGAGCTC TACCGCAACT





GCCTGGGCCG AGGGGCTCAG GAGGTGAAAG AGAGCCCCTT TTTCCGCTCC CTGGACTGGC AGATGGTCTT CTTGCAGAAG TACCCTCCC CGCTGATCCC CCCACGAGGG GAGGTGAACG CGGCCGACGC CTTCGACATT GGCCTCTCG ATGAGGAGGA CACAAAAGGA ATCAAGTTAC TGGACAGTGA TCAGGAGCTC TACCGCAACT TCCCCCTCAC CATCTCGGAG CGGTGGCAGC AGGAGGTGGC AGAGACTGTC TTCGACACCA TCAACGCTGA GACAGACCGG CTGCAGGCTC GCAAGAAAGC CAAGAACAAG CAGCTGGGCC ATGAGGAAGA CTACGCCCTG GGCAAGGACT GCATCATGCA TGGCTACATG TCCAAGATGG GCAACCCCTT CCTGACCCAG TGGCAGCGCG GGTACTTCTA CCTGTTCCCC AACCGCCTCG AGTGGCGGGG CGAGGGCGAG GCCCCGCAGA GCCTGCTGAC CATGGAGAAC AGTTCATTT GCAGTGCAG AGCGCAACT AGCGCCTG AGCTGCTGCC GGTGGGAAAC AGTTCATTTT GCAGTGCGAT AGCGACCCTT AGCTGGTGCA GTGGAAGAAG GAGCTGCCCG ACGCCTACCG CGAC GCCCAG CAGCTGGTCC CAAGATCAAG AACAAGCCGC GCTCGCCCGT GGTGGAGCTG AGCAAGGTGC CGCTGGTCCA GCCGGCGAGT GCCAACGGCC TCTGACCCCGC GCTCGCCCGT GGTGGAGCTG AGCAAGGTGC CGCTGGTCCA GCCGGCAGT GCCAACGGCC TCTGACCCCC CCACCCGCCT-3' (FRAG. NO:_) (SEQ. II) NO:2428)

## 50 CCR-2 CC Chemoltine Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-CTTTGTGAAG AAGGAATTGG CAACACTGAA ACCTCCAGAA CAAAGGCTGT CACTAAGGTC CCGCTGCCTT
GATGGATTAT ACAC'TTGACC TCAGTGTGAC AACAGTGACC GACTACTACT ACCCTGATAT CTTCTCAAGC
CCCTGTGATG CGGAACTTAT TCAGACAAAT GGCAAGTTGC TCCTTGCTGT CTTTTATTGC CTCCTGTTTG
TATTCAGTCT TCTG-3GAAAC AGCCTGGTCA TCCTGGTCCT TGTGGTCTGC AAGAAGCTGA GGAGCATCAC

55 AGATGTATAC CTC'TTGAACC TGGCCCTGTC TGACCTGCTT TTTGTCTTCT CCTTCCCCTT TCAGACCTAC
TATCTGCTGG ACCAGTGGGT GTTTGGGACT GTAATGTGCA AAGTGGTGTC TGGCTTTTAT TACATTGGCT
TCTACAGCAG CATC'TTTTC ATCACCCTCA TGAGTGTGGA CAGGTACCTG GCTGTTGTCC ATGCCGTGTA
TGCCCTAAAG GTGAGGACGA TCAGGATGGG CACAACGCTG TGCCTGGCAG TATGGCTAAC CGCCATTATG
GCTACCATCC CATTGCTAGT GTTTTACCAA GTGGCCTCTG AAGATGGTGT TCTACAGTGT TATTCATTTT

60 ACAATCAACA GAC'TTGAAG TGGAAGATCT TCACCAACTT CAAAATGAAC ATTTTAGGCT TGTTGATCCC
ATTCACCATC TTTATGTTCT GCTACATTAA AATCCTGCAC CAGCTGAAGA GGTGTCAAAA CCACAACAAG



### CCR-4 CC Chemoline Receptor Nucleic Acids and Antisense Oligonucleotide Fragments

5'-TTTCATCTCT CCCGGCTTAT TTGCTGGTTT CTCCGAATGC GGGCCTTGTC TGGTTCACGC TGGATCCCCA ACGCCTAGAA CAGTGCGTGG CACGCAGTTC GTCCTTCTAT AAATATCGGA CTAAATGCAT CTCTGTGATG GTAATACCCA CACCGTGTTG TGAGAATGAA TGAGTGATTC TGTGCAAGTT CCTAGTGATC TGTTACAAAA AGTACTGGTC GCTAAATTAC TCTTATAATA AAGCATACTT TTAGGATAAT AAAGCACTAT TCGCGAATTG GTTACCGCTA TTATGAAATT ACTGAGCAAT ACATATCTAC ATCTGATCAG TCTCCAGAAT TATGCCAAAT CCTACCTTCT TCTGAAAGTA TCTCCTAATT ATCTGCACCT GACCCTAGTG ATGCTGTGAA TGTGCAAGTA TAGCTACATC CTCCGAAGGA AGGATCTTTA CTCCTTTTAC CTCCTGAATG GGCTGCGTCT GCTGAAAGCG CGGGGGAATG GGCGGTTGGA AGCTTGGCCC TACTTCCAGC ATTGCCGCCT ACTGGTTGGG TTACTCCAGC AAGTCACTCC CCTTCCCTGG GCCTCAGTGT CTCTACTGTA GCATTCCCAG GTCTGGAATT CCATCCACTT TAGCAAGGAT GGACGCCCA CAGAGAGACG CGTTCCTAGC CCGCGCTTCC CACCTGTCTT CAGGCGCATC CCGCTTCCCT CAAACTTAGG AAATGCCTCT GGGAGGTCCT GTCCGGCTCC GGACTCACTA CCGACCACCC GCAAACAGCA GGG*CCCCTG GGCTTCCCAA GCCGCGCACC TCTCCGCCCC GCCCCTGCGC CCTCCTTCCT CGCGTCTGCC CCTCTCCCC ACCCCGCCTT CTCCCTCCCC GCCCCAGCGG CGCATGCGCC GCGCTCGGAG CGTGTTTTTA TAAAAGTCCG GCCGCGCCA GAAACTTCAG TTTGTTGGCT GCGGCAGCAG GTAGCAAAGT GACGCCGAGG GCCTGAGTGC TCCAGTAGCC ACCGCATCTG GAGAACCAGC GGTTACCATG GAGGGGATCA GTGTAAGTCC AGTTTCAACC TGCTTTGTCA TAAATGTACA AACGTTTGAA CTTAGAGCGC AGCCCCTCTC CGAGCGGCA GAAGCGGCCA GGACATTGGA GGTACCCGTA CTCCAAAAAA GGGTCACCGA AAGGAGTTTT CTTGACCATG CCTATATAGT GCGGGTGGGT GGGGGGGGGA CAGGATTGGA ATCTTTTTCT CTGTGAGTCG AGGAGAAACG ACTGGAAAGA GCGTTCCAGT GGCTGCATGT GTCTCCCCCT TGAGTCCCGC CGCGCGGGC GGCTTGCACG CTGTTTGCAA ACGTAAGAAC ATTCTGTGCA CAAGTGCAGA GAAGGCGTGC GCGCTGCCTC GGGACTCAGA CCACCGGTCT CTTCCTTGGG GAAGCGGGGA TGTCTTGGAG CGAGTTACAT TGTCTGAATT TAGAGGCGGA GGGCGCGTG CCTGGGCTGA CTTCCCAGGA GGAGATTGCG CCCGCTTTAA CTTCGGGGTT AAGCGCCTGG TGACTGTTCT TGACACTGGG TGCGTGTTTG TTAAACTCTG TGCGGCCGAC GGAGCTGTGC CAGTCTCCCA GCACAGTAGG CAGAGGGCGG GAGAGGCGGG TGGACCCACC GCGCCGATCC TCTGAGGGGA TCGAGTGGTG GCAC CAGCTA GGAGTTGATC CGCCCGCGCG CTTTGGGTTT GAGGGGGAAA CCTTCCCGCC GTCCGAAGCG CGCCTCTTCC CCACGGCCGC GAGTGGGTCC TGCAGTTCGA GAGTTTGGGG TCGTGCAGAG GTCAGCGGAG TGGTTTGACC TCCCCTTTGA CACCGCGCAG CTGCCAGCCC TGAGATTTGC GCTCCGGGGA TAGGAGCGGG TACCGGGTGA GGGGCGGGGG CGGTTAAGAC CGCACCTGGG CTGCCAGGTC GCCGCCGCA AGACTGGCAG GTGCAAGTGG GGAAACCGTT TGGCTCTCTC CGAGTCCAGT TGTGATGTTT AACCGTCGGT GGTTTCCAGA AACCTTTTGA AACCCTCTTG CTAGGGAGTT TTTGGTTTCC TGCAGCGGCG CGCAATTCAA AGACGCTCGC GGCCGAGCCG CCCAGTCGCT CCCCAGCACC CTGTGGGACA GAGCCTGGCG TGTCGCCCAG CGGAGCCCCT GCACCGCTGC TTGCGGGCGG TTGGCGTGGG TGTAGTGGGC AGCCGCGGCG GCCCGGGGCT GGACGACCCG GCCCCCGCG TGCCCACCGC CTGGAGGCTT CCAGCTGCCC ACCTCCGGCC GGGTTAACTG GATCAGTGGC GGGGTAATGG GAAGCCACCC GGGAGAGTGA GGAAATGAAA CTTGGGGCGA GGACCACGGG TGCAGACCCC GTTACCTTCT CCACCCAGGA AAATGCCCCG CTCCCTAACG TCCCAAACGC GCCAAGTGAT AAACACGAGG ATGCCAAGAG ACCCACACAC CGGAGGAGGAGCG CCCGCTTGGG GGAGGAGGTG CCGTTTGTTC ATTTTCTGAC ACTCCCGCCC AATATACCCC AAGCACCGAA GGGCCTTCGT TTTAAGACCG CATTCTCTTT ACCCACTACA AGTIGCTTGA AGCCCAGAAT GGTTTGTATT TAGGCAGGCG TGGGAAAATT AAGTTTTTGC GCTTTAGGAG AAT(AGTCTT TGCAACGCCC CCGCCCTCCC CCCGTGATCC TCCCTTCTCC CCTCTTCCCT CCCTGGGCGA AAAACTTCTT ACAAAAAGTT AATCACTGCC CCTCCTAGCA GCACCCACCC CACCCCCAC GCCGCCTGGG AGTGGCCTCT TTGTGTGTAT TTTTTTTTC CTCCTAAGGA AGGTTTTTTT TCTTCCCTCT AGTGGGCGGG GCAGAGGAGT TAGCCAAGAT GTGACTTTGA AACCCTCAGC GTCTCAGTGC CCTTTTGTTC TAAACAAAGA ATTITGTAAT TGGTTCTACC AAAGAAGGAT ATAATGAAGT CACTATGGGA AAAGATGGGG AGGAGAGTTG TAGGATTCTA CATTAATTCT CTTGTGCCCT TAGCCCACTA CTTCAGAATT TCCTGAAGAA AGCAAGCCTG AAT. GGTTTT TTAAATTGCT TTAAAAATTT TTTTTAACTG GGTTAATGCT TGCTGAATTG GAAGTGAATG TCC/.TTCCTT TGCCTCTTTT GCAGATATAC ACTTCAGATA ACTACACCGA GGAAATGGGC TCAGGGGACT ATGACTCCAT GAAGGAACCC TGTTTCCGTG AAGAAAATGC TAATTTCAAT AAAATCTTCC TGCCCACCAT CTACTCCATC ATCTTCTTAA CTGGCATTGT GGGCAATGGA TTGGTCATCC TGGTCATGGG TTACCAGAAG AAACTGAGAA GCATGACGGA CAAGTACAGG CTGCACCTGT CAGTGGCCGA CCTCCTCTTT GTCATCACGC TTCCCTTCTG GGCAGTTGAT GCCGTGGCAA ACTGGTACTT TGGGAACTTC CTATGCAAGG



# 25 CD-34 Nucleic Acics and Antisense Oligonucleotide Fragments

5'-AGGATGATGG TGATGGGGAA CTAAATGGGG AAATATGGAA GGTCACAGGA AAAGTTAACA CAAGTTAGCA AAAGTTAAC ATAACACAAA AAGGTCTTGC AGGAAAAAA AAAGAAAGA AAAGAAAGAA AAAGTCTCCA AGAATGGTTT GGACAGCCAA AATGAATACT TATAGTCACG TATACCTGCT CACTCCTGAC GCTTCACTCA
CACACAGCAC AGGATCTGGT GAGGCTATCA TAAATGTGC CACATTGTGG TTAAGTTTTA CCTGATTAAC
GAAATGCTCA CACTTCTAAA CTGAGGTCCT TACAGTAGAT TCCTTTTGCA AGATTGTTAC TGGCTTACAA CTTAAAAATA AAGCAAAATC ACAAGGAAAG AAAAGTGGGG AAAAAATCGG AGGAAACTTG CCCCTGCCCT GGCCACCGGC AAGCCTGCA CAAAGGGGTT AAAAGTTAAG TGGAAGTGGA GCTTGAAGAA GTGGGATGGG GCCTCTCCAG GAAAGCTGAA CGAGGCATCT GGAGCCCGAA CAAACCTCCA CCTTTTTTGG CCTCGACGGC GGCAACCCAG CCTCCCTCCT AACGCCCTCC GCCTTTGGGA CCAACCAGGG GAGCTCAAGT TAGTAGCAGC CAAGGAGAGG CGCTGCCTTG CCAAGACTAA AAAGGGAGGG GAGAAGAGG GAAAAAAGCA AGAATCCCCC ACCCCTCTCC CGGGCGGAGG GGGCGGGAAG AGCGCGTCCT GGCCAAGCCG AGTAGTGTCT TCCACTCGGT GCGTCTCTCT AGGAGCCGCG CGGGAAGGAT GCTGGTCCGC AGGGGCGCGC GCGCAGGGCC CAGGATGCCG CGGGGCTGGA CCGCGCTTTG CTTGCTGAGT TTGCTGC CCTTTTTTGG CCTCGACGGC GGCAACCCAG CCTCCCTCCT AACGCCCTCC GCCTTTGGGA CCAACCAGGG GAGCTCAAGT TAGTAGCAGC CAAGGAGAGG CGCTGCCTTG CCAAGACTAA AAAGGGAGGG GAGAAGAGAG GAAAAAAGCA AGAATCCCCC ACCCCTCTCC CGGGCGGAGG GGGCGGAAG AGCGCGTCCT GGCCAAGCCG AGTAGTGTCT TCCACTCGGT GCGTCTCTCT AGGAGCCGCG CGGCIAAGGAT GCTGGTCCGC AGGGGCGCGC GCGAGGGCCC AGGATGCCGC GGGGCTGGAC CGCGCTTTGC TTGCTGAGTT TGCTGCCTTC TGGGTTCACA ACTACTCTA CCCAAGAAACT ACAACACCTA GTACCCTTGG AAGTACCAGC CTGCACCCTG TGTCTCAACA TGGCAATGAG GCCACAACAA ACATCACAGA AACGACAGTC AAA: TCACAT CTACCTCTGT GATAACCTCA GTTTATGGAA ACACAAACTC TTCTGTCCAG 50 ACAGGGGAGA GGGCCTGGCC CGAGTGCTGT GTGGGGAGGA GCAGGCTGAT GCTGATGCTG GGGCCCAGGT ATGCTCCCTG CTCCITGCCC AGTCTGAGGT GAGGCCTCAG TGTCTACTGC TGGTCTTGGC CAACAGAACA GAAATTTCCA GCAAACTCCA ACTTATGAAA AAGCACCAAT CTGACCTGAA AAAGCTGGGG ATCCTAGATT TCACTGAGCA AGAIGTTGCA AGCCACCAGA GCTATTCCCA AAAGACCCTG ATTGCACTGG TCACCTCGGG AGCCCTGCTG GCTGTCTTGG GCATCACTGG CTATTTCCTG ATGAATCGCC GCAGCTGGAG CCCCACAGGA GAAAGGCTGG GCGAAGACCC TTATTACACG GAAAACGGTG GAGGCCAGGG CTATAGCTCA GGACCTGGGA CCTCCCCTGA GGCTCAGGGA AAGGCCAGTG TGAACCGAGG GGCTCAGAAA AACGGGACCG GCCAGGCCAC CTCCAGAAAC GGCCATTCAG CAAGACAACA CGTGGTGGCT GATACCGAAT TGTGACTCGG CTAGGTGGGG CAAGGCTGGG CAGTGTCCGA GAGAGCACCC CTCTCTGCAT CTGACCACGT GCTACCCCCA TGCTGGAGGT GACATCTCTT ACGCCCAACC CTTCCCCACT GCACACACCT CAGAGGCTGT TCTTGGGGCC CTACACCTTG AGGAGGGGC AGGTAAACTC CTGTCCTTTA CACATTCGGC TCCTGGAGC CAGACTCTGG TCTTCTTTGG GTAAACGTGT GACGGGGAA AGCCAAGGTC TGGAGAAGCT CCCAGGAACA ATCGATGGCC TTGCAGCACT CACACAGGAC CCCCTTCCCC TACCCCCTCC TCTCTGCCGC AATACAGGAA CCCCCAGGGG AAAGATGAGC TTTTCTAGGC TACAATTTC TCCCAGGAAG CTTTGATTTT TACCGTTTCT TCCCTGTATT TTCTTTCTCT





## **Eotaxin Antisense Nucleic Acids and Oligonucleotide Fragments**

5'-GCATTTTTC AAGTTTTATG ATTTATTTAA CTTGTGGAAC AAAAATAAAC CAGAAACCAC CACCTCTCAC GCCAAAGCTC ACACCTTCAG CCTCCAACAT GAAGGTCTCC GCAGCACTTC TGTGGCTGCT GCTCATAGCA GCTGCCTTCA GCCCCCAGGG GCTCGCTGGG CCAGCTTCTG TCCCAACCAC CTGCTGCTTT AACCTGGCCA ATAGGAAGAT ACCCCTTCAG CGACTAGAGA GCTACAGGAG AATCACCAGT GGCAAATGTC CCCAGAAAGC TGTGATCTTC AAGACCAAAC TGGCCAAGGA TATCTGTGCC GACCCCAAGA AGAAGTGGGT GCAGGATTCC ATGAAGTATC TGGA.CCAAAA ATCTCCAACT CCAAAGCCAT AAATAATCAC CATTTTTGAA ACCAAACCAG AGGCTTTAAA ACTTATCCTC CATGAATATC AGTTATTTTT AAACTGTAAA GCTTTGTGCA GATTCTTTAC GAATCTTGTA AAGCTCCTGG CAAAGATGAT CAGTATGAAA ATGTCATTGT TCTTGTGAAC CCAAAGTGTG ACTCATTAAA TGGAAGTAAA TGTTGTTTTA GGAATAC ATGAAGGTCT CCGCAGCACT TCTGTGGCTG CTGCTCATAG CAGCTGCCTT CAGCCCCCAG GGGCTCGCTG GGCCAGCTTC TGTCCCAACC ACCTGCTGCT TTAACCTGGC CAATAGGAAG ATACCCCTTC AGCGACTAGA GAGCTACAGG AGAATCACCA GTGGCAAATG TCCCCAGAAA GCTCTGATCT TCAAGACCAA ACTGGCCAAG GATATCTGTG CCGACCCCAA GAAGAAGTGG GTGCAGGATT CCATGAAGTA TCTGGACCAA AAATCTCCAA CTCCAAAGCC ATAA CCACATATTC CCCTCCTTTT CCAAGGCAAG ATCCAGATGG ATTAAAAAAT GTACCAAGTC CCTCCTACTA GCTTGCCTCT CTTCTGTTCT GCTTGACTTC CTAGGATCTG GAATCTGGTC AGCAATCAGG AATCCCTTCA TCGTGACCCC CGCATGGGCA AAGGCTTCCC TGGAATCTCC CACACTGTCT GCTCCCTATA AAAGGCAGGC AGATGGGCCA GAGGAGCAGA GAGGCTGAGA CCAACCCAGA AACCACCACC TCTCACGCCA AAGCTCACAC CTTCAGCCTC CAACATGAAG GTCTCCGCAG CACITCTGTG GCTGCTCC ATAGCAGCTG CCTTCAGCCC CCAGGGGCTC GCTGGGCCAG
GTAAGCCCCC CAACTCCTTA CAGGAAAGGT AAGGTAACCA CCTCCAGGCT ACTAGGTCAG CAAGAATCTT
TACAGACTCA CTGCAAATTC TCCATTTGAA AAATAGGGAA ACAGGTTTTG TGGGTGGACA AGAAATGCCT
CAACCGTCAC ATCCAGTCAC TGGAAGAGCC AGAACTAGAA AGCTCCCGAG TCTTTTCCCC ACATTCAAGA
GGGCCGCTGG GTGCATCCTT ACCCAGCTAT CCTTACAGTG TTTGGGAATG GGGAATGGCT CTGTCTTACT
GTGGGCATGG TGGCCATTTT TGGCAGTGGG AGAGAAGGAA AATCTGTTGA TTAGAAGCTC AGTATGTTAA TTCGACTCCA GGACAGCTTT CAGAGACAGT GGCTAAGAGA AGAACGAGGT CCCAGGGGAT CTCTTGAGGT GACTTATTTT GACACTCTTT GGGAAAGTTA TCTAGGAGAT TTGTTCCATA ACTCATTTTC CCATACTCTG GTGACAAATT TACIGAGTGT ATCGGTCCCA CTGAGCCAGT GCATAGCATG GTAACAAACA GTTCTAAATT ATCAATGACT TAAC'AGAATT AACTAAATTA ACAAAAGTTA CTTTCTCACT TGTACTAAAT ATCTATAATG TATGGGCTCA GGCTTCTGCA TTTTATACTC AGGATTCTAG ACTGATGGAG AAGTTGCCAT GTGGGGGAAC ATTGATGGAT ACTGTGATAA AGCAGAAGAA AGCTCTCAGG AGTCTTGCAT AGGCAATGCA CTGTGGCTCA AAAATGACAC CCA CACTTT GTCTCCTTCT TTATTGATCA AAACTAATTA ATGCCTCCAA CCAAACAAAA GTGGCCAAGA AATGCAAGTC TACCTTGTGT CTCAAAACAG AGGATGGAGA ATATTTGGTG AAAATTACCA TGACCATCAC ATGCCCACGT AGGTCTTTAT AATGACAGAG CTAGCATTTG TCACATTGAC CAAGCTTTGT CCATACACTC TACAGTAATG ATGAGTCCTC AGTGCACAGG GGAGGATGCT GAAGACACAG GACAGCATCC TCCAGACACA TAAGACTTCA GAGCAGAGGG ATTCTCCCTC CACCTCTCGC AATTCCTTGC TTTCTCCTAA CTTCCTTTAC AAACTCATGC TTGGAAATGT CTATGTATCA TCATGTGGCT CATTTTTTC TCTGTTCATT TTTTTTCCCC AAAATTCAGC TTCTGTCCCA ACCACCTGCT GCTTTAACCT GGCCAATAGG AAGATACCCC TTCAGCGACT AGAGAGCTAC AGGAGAATCA CCAGTGGCAA ATGTCCCCAG AAAGCTGTGA TGTAAGTAAA TAAAGTTCAC CCTCCCCTAG ACAAAAAAT AATGTCTAGG GCACAGAGTC AAGAACTGTG GGAGTCATAG ACTCTGATAG TTTGACCTCT ATGGTCCAAT TCATTAATTT TCACAAGTGA GTGTTCACTC CCAGCTCCCT GCCTGGGAGA TTGCTGTAGT CATATCAATT TCTTCAAGTC AAGAGCAAAG ATGGTTTTAC TGGGCCTTTA AGAGCAGCAA CTAACCCAAG AGTCTCATCC TTCCTCCTCT CCGTAGCAAC CCTTTGTCCA GGGGCAGATG GTCCTTAAAT ATTTAGGGTC AAATGGGCAG AATTTTCAAA AACAATCCTT CCAATTGCAT CCTGATTCTC CCCACAGCTT CAAGACCAAA CTGGCCAAGG ATATCTGTGC CGACCCCAAG AAGAAGTGGG TGCAGGATTC GAGCCTGAGT GTTGCCTAAT TTGTTTTCCC TTCTTACAAT GCATTCTGAG GTAACCTCAT TATCAGTCCA AAGGGCATGG GTT TATTAT ATATATAT ATATATTTT TTTTAAAAAA AAACGTATTG CATTTAATTT ATTGAGGCTT TAAAACTTAT CCTCCATGAA TATCAGTTAT TTTTAAACTG TAAAGCTTTG TGCAGATTCT TTACCCCCTG GGACICCCCAA TTCGATCCCC TGTCACGTGT GGGCAATGTT CCCCCTCTCC TCTCTTCCTC CCTGGAATCT TGTAAAGGTC CTGGCAAAGA TGATCAGTAT GAAAATGTCA TTGTTCTTGT GAACCCAAAG TGTGACTCAT TAAATGGAAG TAATGTTGTT TTAGGAATAC ATAAAGTATG TGCATATTTT ATTATAGTCA CTAGTTGTAA TTTTTTTGTG GGAAATCCAC ACTGAGCTGA GGGGG-3' (FRAG.NO: ) NO:2494) 5'-GCATTTTTC AACITTTATG ATTTATTTAA CTTGTGGAAC AAAAATAAAC CAGAAACCAC CACCTCTCAC GCCAAAGCTC ACACCTTCAG CCTCCAACAT GAAGGTCTCC GCAGCACTTC TGTGGCTGCT GCTCATAGCA GCTGCCTTCA GCCCCCAGGG GCTCGCTGGG CCAGCTTCTG TCCCAACCAC CTGCTGCTTT AACCTGGCCA



## FK-506 Binding Frotein Nucleic Acids and Oligonucleotide Fragments

55 5'- GCCAGGTCGC TGITGGTCCA CGCCGCCGT CGCGCCGCC GCCCGCTCAG CGTCCGCCGC CGCCATGGGA
GGCCGGAGCC GAGCCGGGGT CGGGCAGCAG CAGGGACCC CCAGAGGCGG GGCCTGTGG ACCGCTATGG
GCGTGGAGAT CGACACCATC TCCCCCGGAG ACGGAAGGAC ATTCCCCAAG AAGGGCCAAA CGTGTGTGGT
GCACTACACA GGA≜TGCTC AAAATGGGAA GAAGTTTGAT TCATCCAGAG ACAGAAACAA ACCTTTCAAG
TTCAGAATTG GCAAACAGGA AGTCATCAAA GGTTTTGAAG AGGGTGCAGC CCAGATGAGC TTGGGGCAGA
GGGCGAAGCT GACCTGCACC CCTGATGTGG CATATGGAGC CACGGGCCAC CCCGGTGTCA TCCCTCCCAA
TGCCACCCTC ATCT↑TGACG TGGAGCTGCT CAACTTAGAG TGAAGGCAGG AAGGAACTCA AGGTGGCTGG



5'- GCCAGGTCGC TG'TTGGTCCA CGCCGCCCGT CGCGCCGCCC GCCCGCTCAG CGTCCGCCGC CGCCATGGGA-3' (FRAG. No: )(SEQ. ID NO: 2495)

5'-GGCCGGAGCC GA3CCGGGGT CGGCCAGCAG CAGGGACCCC CCAGAGGCGG GGCCTGTGGG CCGCTATGG
GCGTGGAGAT CGACACCATC TCCCCCGGAG ACGGAAGGAC ATTCCCCAAG AAGGGCCAAA CGTGTGTGGT
GCACTACACA GGAATGCTC AAAATGGGAA GGAGTTTGAT TCATCCAGAG ACGAAAACAA ACCTTTCAAG
TTCAGAATTG GCAAACAGGA AGTCATCAAA GGTTTTGAAG AGGGTGCAGC CCAGATGAGC TTGGGGCAGA
GGGCGAAGCT GACCTGCACC CCTGATGTGG CATATGGAGC CACGGGCCAC CCCGGTGTCA TCCCTCCCAA
TGCCACCCTC ATCTTTGACG TGGAGCTGCT CAACTTAGAG TGAAGGCAGG AAGGAACTCA AGGTGGCTGG
AGATGGCTGC TGCTCACCCT CCTAGCCTGC TCTGCCCACTG GGACGGCTCC TGCTTTTGGG GCTCTTGATC
AGTGTTCATG CGAATTCTTG CTTGAGGAAA CTTCGGTTGC AGATTGAAGC ATTTCAGGTT GTGCATTTTG
TGTGATGCAT GTAGTAGCCT TCCTGATGA CAGAACACAG ATCTCTTGTT CGCACAATCT ACACTGCCTT
ACCTTCACTT AAACCACACA CACAAGGTGC TCAGACATGA AATGTACATG GCGTACCGTA CACAGAGGGA
CTTGAGCCAG TTACCTTTCC TGTCACTTT TCTCTTATAA ATTCTGTTAG CTGCTCACTT AAACCACTC
CTCTTTGAGA AAATGTAAAAA TAAAGGCTCT GTGCTTTGACA-3'(FRAG. NO:)) (SEQ. ID NO:2496)

5'-GAATTCGGGC CGI:CGCCAGG TCGCTGTTGG TCCACGCCGC CCGTCGCGCC GCCCGCCCGC TCAGCGTCCG

5CGCCGCCAT GGGAGTGCAG GTGGAAACCA TCTCCCCAGG AGACGGGCG ACCTTCCCCA AGCGCGCCA
GACCTGCGTG GTGCACTACA CCGGGATGCT TGAAGATGGA AAGAAATTTG ATTCCTCCCG GGACAGAAAC
AAGCCCTTTA AGTT'IATGCT AGGCAAGCAG GAGGTGATCC GAGGCTGGGA AGAAGGGGTT GCCCAGATGA
GTGTGGGTCA GAGAGCCAAA CTGACTATAT CTCCAGATTA TGCCTATGGT GCCACTGGGC ACCCAGGCAT
CATCCCACCA CATGCCACTC TCGTCTTCGA TGTGGAGCTT CTAAAACTGG AATGACAGGA ATGGCCTCCT

60 CCCTTAGCTC CCTGTTCTTG GATCTGCCAT GGAGGGATCT GGTGCCTCCA GACATGTGCA CATGAGTCCA
TATGGAGCTT TTCCIGATGT TCCACTCCAC TTTGTATAGA CATCTGCCCT GACTGATTTAC CTAAACTATA

25

30

CTC/AGTTAT TCATTTTATT TTGTTTTCAT TTTGGGGTGA AGATTCAGTT TCAGTCTTTT GGATATAGGT TTCCAATTAA GTACATGGTC AAGTATTAAC AGCACAAGTG GTAGGTTAAC ATTAGAATAG GAATTGGTGT TGGGGGGGG GTTTGCAAGA ATATTTTATT TTAATTTTTT GGATGAAATT TTTATCTATT ATATATTAAA CATTCTTGCT GCTGCGCTGC AAAGCCATAG CAGATTTGAG GCGCTGTTGA GGACTGAATT ACTCTCCAAG TTGAGAGATG TCTTTGGGTT AAATTAAAAG CCCTACCTAA AACTGAGGTG GGGATGGGGA GAGCCTTTGC CTCCACCATT CCCACCCACC CTCCCCTTAA ACCCTCTGCC TTTGAAAGTA **GATCATGTTC** ACTGCAATGC TGGA CACTAC AGGTATCTGT CCCTGGGCCA GCAGGGACCT CTGAAGCCTT **CTTTGTGGCC** TTTTTTTTT TTCATCCTGT GGTTTTTCTA ATGGACTTTC AGGAATTTTG TAATCTCATA **ACTTTCCAAG** CTCCACCACT TCCTAAATCT TAAGAACTTT AATTGACAGT TTCAATTGAA GGTGCTGTTT **GTAGACTTAA** CACCCAGTGA AAGCCCAGCC ATCATGACAA ATCCTTGAAT GTTCTCTTAA GAAAATGATG CTGGTCATCG CAGCTTCAGC ATC1'CCTGTT TTTTGATGCT TGGCTCCCTC TGCTGATCTC **AGTTTCCTGG** CTTTTCCTCC TCTCACCCCT TTGCTGTCCT GTGTAGTGAT TTGGTGAGAA ATCGTTGCTG CTCAGCCCCT CACCCTTCCC CCAGCACCAT TTATGAGTCT CAAGTTTTAT TATTGCAATA AAAGTGCTTT ATGCCCGAAT TC-3' (FRAG.NO: ) (SEQ. ID NO:2497)

15 5' GCCGCCGCCA TGGGAGTGCA GGTGGAAACC ATCTCCCCAG GAGACGGCGC CACCTTCCCC AAGCGCGGCC AGACCTGCGT GGTCCACTAC ACCGGGATGC TTGAAGATGG AAAGAAATTT GATTCCTCCC GGGACAGAAA CAAGCCCTTT AAGTITATGC TAGGCAAGCA GGAGGTGATC CGAGGCTGGG AAGAAGGGT TGCCCAGATG AGTGTGGGTC AGACIAGCCAA ACTGACTATA TCTCCAGATT ATGCCTATGG TGCCACTGGG CACCCAGGCA TCATCCCACC ACATGCCACT CTCGTCTTCG ATGTGGAGCT TCTAAAACTG GAATGACAGG AATGGCCTCC 20 TCCCTTAGCT CCCTGTTCTT GGATCTGCCR TGGAGGGATC TGGTGCCTCC AGACATGTGC ACATGARTCC ATATGGAGCT TTTCCTGATG TTCCACTCCA CTTTGTATAG ACATCTGCCC TGACTGAATG TGTTCTGTCA CTCAGCTTTG CTTCCGACAC CTCTGTTTCC TCTTCCCCTT TCTCCTCGTA TGTGTGTTTA CCTAAACTAT ATGCCATAAA CCTCAAGTTA TTCA-3' (FRAG. NO: ) (SEQ. ID NO:2498)

wherein B is adenosine, or, more preferably, replaces adenosine and is an "equivame\lent" or a "universal" base, and adenosine  $A_{2a}$  receptor agonist or only minimally antagonist, an adenosine  $A_{2b}$  receptor antagonist, an adenosine  $A_3$  receptor antagonist, or an adenosine  $A_1$  receptor antagonist. Similarly, adenosine (A) may always be replaced by an "alternative", "equivalent" and/or "universal" base having a smal fraction, preferably less than 0.3 of the activity of adenosine at the adenosine receptor(s), as described above.

In one preferred embodiment, the links between neighboring mononucleotides are phosphodiester links. In another preferred, at least one mononucleotide phosphodiester residue of the anti-sense oligonucleotide(s) is substituted by a methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, poranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, 2'-O-methyl, methylene(methyimino), methyleneoxy (methylimino), phosphoramidate residues, and combinations thereof. The oligos having one or more phosphodiester residues substituted by one or more of the other residues are general y longer lasting, given that these residues are more resistant to hydrolysis than the phosphodiester residue. In some cases up to about 10%, about 30%, about 50%, about 75%, and even all phosphodiester residues may be substituted (100%). Typically, the multiple target anti-sense oligonucleotide (oligo) of the invention comprises at least about 7 mononucleotides, in some instances up to 60 and more mononucleotides, preferably about 10 to about 36, and more preferably about 12 to about 21 mononucleotides. However, other lengths are also suitable depending on the length of the target macromolecule. Examples of the MTA oligos of the invention are provided in Table 3 below, which includes ninety-four sequences (SEQ ID NOS.: 2316 through 2410).

Table 3:	Table 3: MTA Oligos, Location Targeted & Target				
MTA Oligo	SEQ. ID	Location	Compound	Target	
	No.		Targeted		
HUMNFKBP65A AS					
CCC GGC CCC GCC TCG TGC C	3019	5′=1	EPI 2192		
CGT CCB TGC CGC GGG CCC	3020	5′=28(AU	G)EPI 2193		
GCC CCG CTG CTT GGG CTG CTC TGC CGC	g G 3021	5′=65	EPI 2194		
TCT GTG CTC CTC TCG CCT GGG	3022	5'=137	EPI 2195		
TGG TGG GGT GGG TCT TGG TGG	3023	5'=159	EPI 2196		
CTG TCC CTG GTC CTG TG	3024	5'=196	EPI 2197		

40

35

	GGT CCC GCT TCT TC	3025	5'=362 EPI 2198
	GGG GTT GTT GTT CTG G	3026	5'=401 EPI 2199
	TGT CCT CTT TCT GC	3026	5'=656 EPI 2200
	GCC TCG GGC CTC CC	3027	5'=697 EPI 2201
5	GGC TGG GGT CTG CGT	3028	5'=769 EPI 2202
	GGC CGG GGG TCG GTG GGT CCG CTG	3029	5'=953 EPI 2203
	GGG CTG GGG TGC TGG CTT GGG G	3030	5'=1022 EPI 2204
	GGG GCT GGG GCC TGG GCC	3031	5'=1208 EPI 2205
	GCC TGG GTG GGC TTG GGG GC	3032	5'=1272 EPI 2206
10	GCT GGG TCT GTG CTG TTG CC	3033	5'=1362 EPI 2207
	GTT GTG TGG GGG GCC	3034	5'= 1451 EPI 2208
	GCT GGG TCG GGG GGC CTC TGG GCT GTC		5'=1511 EPI 2209
	GCC CCG GGG CCC CC	3036	5'=1550 EPI 2210
	TGG CTC CCC CCT CC	3037	5'=1772 EPI 2211
15	GCT CCC CCC TTT CC	3038	5'=1863 EPI 2212
	CGG ACG AAG ACA GAG A	3039	5'=1979 EPI 2213
	GGC TTT GTG GGC TC	3040	5'=2011 EPI 2214
	GCC TGC TCT CCC CC	3041	5'=2312 EPI 2215
	CCC GGC CCC GCC BCG BBC C	3042	intron EPI 2192-01A HSU50136C4Synth
20	CCC GGC CCC GCC BCG	3043	intron EPI 2192-01B
	CCC GGC CCC GCC BCG BBC C	3044	5'untr EPI 2192-02A HUMLIPOX5LO
	CCC GGC CCC GCC BCG	3045	5'untr EPI 2192-02B
	CCC GBC CCC GCC TCB BG	3046	trans EPI 2192-03A HSNFKBS Subunit
	CCC GBC CCC GCC TC	3047	trans EPI 2192-03B
25	CCG GCC CCG CCT C	3048	5'untr EPI 2192-04 TGFβR1
	CCC GBB CCC GCB TBG TGC C	3049	5'trans EPI 2192-05A HSU5819811 enhan
	CCC GCB TBG TGC C	3050	5'untr EPI 2192-05B
	CCC GGB CCC BCC BBG TGC C	3051	3'trans EPI 2192-06 HSVECAD
	CBG BBC CCG CCT CGT GCC	3052	intron EPI 2192-07A NFKB2
30	C CCG CCT CGT GCC	3053	intron EPI 2192-07B NFKB2
	CCG GCB CCG CCT CBT GCC	3054	5'trans EPI 2192-08 Carboxypep
	CCG GCC CCG CCB CBT GCC	3055	3'trans EPI 2192-09 HumADRA2Cα2AdrKid
	CCC GBC CCC GBC TCG	3056	5'untrs EPI 2192-10 HUMFK506B
	CCC GGC CBC GBC TCG	3057	5'untrs EPI 2192-11 HSNBARKS1βAdrKin
35	CCC GGC CCB GCC TBG	3058	5'UTR EPI 2192-12 HSNFXN1(NFKB1)
	CCC GGC BCB GBC TCG TBC C	3059	3'UTR EPI 2192-13 HSILF(transcrp.
			Factor ILF)
	CCC GGC CCC GCC BCG	3060	EPI-2192-14 NFKB/C4Syn/5-LO/
40			TGFBrec1 MTA
40	CCC GGC CCC GCC BCG	3061	EPI-2192-15NFKB/C4Syn/5-LOMTA
	TCC BTG CCG CGG GC	3062	3' trans EPI-2193-01 METOncogene
	TCC BTG CCB CGG GCC	3063	3' trans EPI-2193-02 HSFGR2(IG)
	TCC BTG CCB CGG GCC	3064	mid cod EPI-2193-03 5-LO
45	TCC BTG CCB CBG GCC	3065	mid cod EPI-2193-04 HUMTK14
45 ,	GTC CBT GBC GCG G	3066	3'trans EPI-2193-05 HUMTNFR
	TC CBT GBC GCG (iG	3067	AUG Probl.HUMPTCH
	MOM CDG CMG CMG MDD CCM CCG	2060	cardiacK+channel
	TCT GBG CTC CTC TBB CCT GGG	3068	intr EPI-2195-01 humCSPAcytotox.
50	CTC TCC BCC TBB CBC CTC CC	2000	Ser.Protease
50	CTG TGC BCC TBB CBC CTG GG TGT GBT CCB CTB GBC TGG G	3069	intr EPI-2195-02 HSINOSX08induc.NOS EPI-2195-03 HUMACHRM2musc.m2
	IGI GDI CCD CID GDC IGG G	3070	EPI-2195-03 HUMACHRM2musc.m2 acetylch.rec.
	TCT GTB CTC BBC TCB CCT G	3071	EPI-2195-04 s86371s1
	101 31 <b>2</b> 010 <b>22</b> 0 10 <b>3</b> 001 G	3011	Neurokinin3Recept
55	TGC TCC TCB CBB CTG GG	3072	EPI-2195-05 HUMMIP1 Amacro
	inflam.factor		

Table 3: MTA Oligos, Location Targeted & Target (Cont'd)

MTA Oligo			SEQ. ID No.	Location	Compound Targeted	Target
CTC CTC TBG CCT	GG		3073	·	EPI-2195-06	HSNBARKS4
						β-Adr Rec Kinase
GTG CTC CBB TCB	BCT	GGG	3074		EPI-2195-07	HSTNFR2SO6TNF R2
GTG CBC CBB TCB	CCT	GGG	3075		EPI-2195-08 1	
	~	_ ~~	2056			oinding prot.
TCT GTG CBC CTC	TBG	BCT	3076	exon	EP1-2195-09 E	ISNBARKS1β-Adr. Recept.Kinase
CTG TBB TCC TBB	CBC	ста а	3077	intron	EPI-2195-10	HUMIL8
TGT GCT BBT CBC			3078	11101011	EPI-2195-11	HSU50157 PDE4
GTG CBC CBC TCB			3079	intron/exon	EPI-2195-12	IL-2 R
CTG TGC BCC TCT			3080	3'UTR	EPI-2203-05	IL-6 R HSIL6R
CBG TGC BCC BCT	CBC	CTG	3081	intr/ex	EPI-2203-06A	HSIL2rG6
G TGC BCC BCT C	E/C C	TG	3082	intr/ex	EPI-2203-06B	HSIL2rG6
CBC CTC TCB CCT	GGG		3083	coding	EPI-2203-07A	HUMIL71
C CTC TCB CCT G	G		3084	coding	EPI-2203-07B	IL-7 HUMIL71
GCT CCB CTC GCC			3085	coding	EPI-2203-08	IL-6 R HSI6REC
TGC TCC TCB CGC			3086		A EPI-2303-09	Chain HUMPDGFAB
GTT GTT GBT CTG	G		3087	3'utr	EPI-2199-01	GATA-4Transcrip.
	m <	maa	2000	O = 2	EDT 0100 00	Factor for IL-5
GGT TGB BBT TGG GGT TGT TGB TGB			3088 3089	Coding	EPI-2199-02 EPI-2199-03	TNFα HUMTNFA HSSUBP1G(Sub Pr)
GGT TGT TGB TGB			3089	Coding	EPI-2199-03 EPI-2199-04	NeutrophilAdh.
פון פעם בון פפט	יום	100	3090	Coding	EFI ZIJJ 04	R HUMNARIA
GGG TTB BBG TTG	BTC	TGG	3091	HSHM2	EPI-2199-05	m2 Muscarinic R
TTG TTG TBG BTC			3092	HUML1CAM	EPI-2199-06	Ll LeukAadhProt
GGG TBG BBG BGT	CCG	CTG	3093	coding	EPI-2203-01	HUMGATA2A
GGG TCB GBG GBT	C <b>B</b> G	CTG	3094	S71424S2	EPI-2203-02	IGE eps
GGG TBG GTG GGT	C		3095	coding	EPI-2203-03	HSGCSFR2
GGG TCG GBG GGT	CBG	C	3096	HUMITGF	EPI-2203-04	TGFβ3
GGG TGG GCT T			3097	HUMNK65PR	O EPI-2206-01	TCell
GGG TGG GCT TGG	C		3098	CHACHCHIL	Activ EPI 2206-02	ating Prot NFKB/Prostagl.
666 166 661 166	G		3096	HUMPEREED	EPI 2206-02	EP3 Rec
CCTGGGTGGGBBTGG	C‡		3099		EPI 2206-03	
001000100022100	.,		3033			FKB/GranuLocCSF/
						ranscr.FactorNF2B
CCTGGBTGGGCBTGG	C}		3100		EPI-2206-04	•
CCCMCDCMCDDCMC	cic.		2101		Leu EPI2206-05 1	k.Adhes.Prot
GCCTGBGTGBBCTTG	خان		3101		₽₽17700-02 [	NFKB/Endothel
CCCAVGVCCVCCCAG	CiC		3102		EPT 2206-06	NZ S63833 NFKBAS13/B Lymph
CCCIVO V CC V CCCAG	.,_		3102			SerThrProt.Kinase
AGCCCACCCAGGC			3103		EPI2206-07	NFKBAS13/GCSF1
						HSGCSFR1Rec
BCCTGGGTGGGCTB			3104		EPI2206-08 N	
GGTGGGCTTGGG			3105		EPI 2206-09	NK7TCELLACT.Prot NFKBAS13/
001000011000			3103		HII 2200 05	HSTGFB1 TGFB
CCBBGGTGGGCTTGG	(}		3106		EPI 2206-10	NFKBAS13/
						HSTGFB1 TGFB1
CTGGGTGGGBBTGGG			3107		EPI 2206-11	•
					cood 10	HSGCSFR1 GCSFR1
aanaaamaaa			3108			NFKBAS13/HUMCD30A mphActAntigCoding
CCBGGGTGGGCTTGG					ШУ	INDITACE CATTE TACOUTIIA
			3109	म	PI-2206-12B	
GGGTGGGCTTGG	( <del>}</del>		3109 3110	Е		NFKBAS13/HUMCD30A
	(}		3109 3110	Е		

The MTA oligos of Table 3 are suitable for use with two or more of the targets listed in Table 4 below.

Table 4: Targets for the MTA Oligos of Table 3

Compound	Target
EPI 2010	Adenosine A1 receptor
EPI 2045	Adenosine A3 receptor
EPI 2873, EPI 2193	NFκB
EPI 1873	Interleukın-l
EPI 1857	Interleukın -5
EPI 2945	Interleukın -4
EPI 2977	Interleukin -8
EPI 2031	5-Lipoxygenase
EPI 1898	Leukotriene C-4 Synthase
EPI 1856	Eotaxin
EPI 1131	ICAM
EPI 1085	VCAM
EPI 2085	TNFα
EPI 1908	PAF
EPI 1925	IL-4 receptor
EPI 2643	β2 aderenergic receptor kinase
EPI 2934	Tryptase
EPI 2033	Major Basic Protein
EPI 2795	Eosinophil Peroxidase

NfκB: nuclear factor κB

ICAM: intracellular adhesion molecule VCAM: vascular cell adhesion molecule

TNF: tumor necrosis factor PAF: platelet activating factor

5

10

15

20

25

The mRNA sequence of the targeted protein may be derived from the nucleotide sequence of the gene expressing the protein, whether for existing targets or those to be found in the future. Sequences for many target genes of different systems are presently known. See, GenBank data base, NIH, the entire sequences of which are incorporated here by reference. The sequences of those genes, whose sequences are not yet available, may be obtained by isolating the target segments applying technology known in the art. Once the sequence of the gene, its RNA and/or the protein are known, anti-sense oligonucleotides are produced as described above and utilized to validate the target by in vivo administration and testing for a reduction of the procuction of the targeted protein in accordance with standard techniques, and of specific functions. As already described above, the anti-sense oligonucleotides may be of any suitable length, e.g., from about 7 to about 60 nucleotides in length, depending on the particular target being bound and the mode of delivery thereof. The anti-sense oligonucleotide preferably is directed to an mRNA region containing a junction between intron and exon or to regions vicinal to the junction. Where the anti-sense oligonucleotide is directed to an intron/exon junction, it may either entirely overlie the junction or may be sufficiently close to the junction to inhibit splicing out of the intervening exon during processing of precursor mRNA to nature mRNA, e.g., with the 3' or 5' terminus of the anti-sense oligonucleotide being positioned within about, for example, 10, 5, 3, or 2 nucleotide of the intron/exon junction. Also preferred are anti-sense oligon icleotides which overlap the initiation codon and, more generally, those that target the coding region of the target mRNA. When practicing the present invention, the anti-sense oligonucleotides administered may be related in origin to the species to which it is administered. When treating humans, human anti-sense may be used if desired. Anti-sense oligos to endogenous sequences from other species,

15

20

25

30

35

40

however, are also encompassed.

Pharmaceutical compositions comprising an anti-sense oligonucleotide as given above effective to reduce expression of an A1 or A3 adenosine receptor by passing through a cell membrane and binding specifically with mR NA encoding an A₁ or A₃ adenosine receptor in the cell so as to prevent its translation are another aspect of the present invention. Such compositions are provided in a suitable pharmaceutically acceptable carrier, e.g., sterile pyrogen-free saline solution. The anti-sense oligonucleotides may be formulated with a hydrophobic carrier capable of passing through a cell membrane, e.g., in a liposome, with the liposomes carried in a pharmaceutically acceptable aqueous carrier. The oligonucleotides may also be coupled to a substance which inactivates mRNA, such as a ribozyme. Such oligonucleotides may be administered to a subject to inhibit the activation of a target, such as the adenosine receptors, which subject is in need of such treatment for any of the reasons discussed herein. Furthermore, the pharmaceutical formulation may also contain chimeric molecules comprising anti-sense oligonucleotides attached to molecules which are known to be internalized by cells. These oligonucleotide conjugates utilize cellular uptake pathways to increase cellular concentrations of oligonucleotides. Examples of macromolecules used in this manner include transferrin, asialoglycoprotein (bound to oligonucleotides via polylysine) and streptavidin. In the pharmaceutical formulation, the anti-sense compound may be contained within a lipid particle or vesicle, such as a liposome or microcrystal. The particles may be of any suitable structure, such as unilamellar or plurilamellar, so long as the anti-sense oligonucleotide is contained therein. Positively charged lipids such as N- [1-(2, 3 -dioleoyloxi) propyl] -N, N, N-trimethylammoniumethylsulfate, or "DOTAP," are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Patent Nos. 4,880,635 to Janoff et al.; 4,906,477 to Kurono et al.; 4,911,928 to Wallach; 4,917,951 to Wallach; 4,920,016 to Allen et al.; 4,921,757 to Wheatley et al.; etc.

Subjects may be administered the active composition by any means which transports the antisense nucleotide composition to the lung. The antisense compounds are particularly disclosed herein may be administered to the lungs of a patient by any suitable means, but are preferably administered by generating an aerosol comprised of respirable particles, the respirable particles comprised of the antisense compound, which particles the subject inhales. The respirable particles may be liquid or solid. The particles may optionally contain other therapeutic ingredients. Particles comprised of antisense compound for practicing the present invention should include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general particles ranging from about .5 to about 10 microns in size are respirable. Particles of non-respirable size which are included in the aerosol tend to deposit in the throat and be swallowed, and the quantity of non-respirable particles in the aerosol is preferably minimized. For nasal administration, a particle size in the range of 10-500 :m is preferred to ensure retention in the nasal cavity. Thus, particles of about 4, about 10, about 25, about 50 to about 75, about 100, about 250, about 500, and other specific ranges therewithin, are preferred. Others, however, are also contemplated within the confines of this invention.

Liquid pharmaceutical compositions of active compound for producing an aerosol can be prepared by combining the anti-sense compound with a suitable vehicle, such as sterile pyrogen free water. Other therapeutic compounds may optionally be included. Solid particulate compositions containing respirable dry particles of mic onized anti-sense compound may be prepared by grinding dry anti-sense compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates. A solid particulate composition comprised of the anti-sense compound may optionally contain a dispersant which serves to facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the anti-sense compound in any suitable ratio (e.g., a 1 to 1 ratio by weight). Again, other therapeutic compounds may also be included.

The dosage of the anti-sense compound administered will depend upon the disease being treated, the condition of the subject, the particular formulation, the route of administration, the timing of administration to a subject, etc. In general, intracellular concentrations of the oligonucleotide of from about

15

20

30

35

40

45

0.01, about 0.05, about 0.1, about 0.2, about 1 to about 5 µM, about 50 µM, about 100 µM or more, and more particularly about 0.2 to about 0.5 μM, are desired. For administration to a subject such as a human, a dosage of from about 0.01, about 0.1 or about 1 mg/Kg up to about 50, about 100, or about 150 mg/Kg and even higher doses are typically employed depending on the route of administration as is known in the art. Depending on the solubility of the particular formulation of active compound administered, the daily dose may be divided among one or several unit dose administrations. Administration of the anti-sense compounds may be carried out therapeutically (i.e., as a rescue treatment) or prophylactically. Aerosols of liquid particles comprising the anti-sense compound may be produced by any suitable means, such as with a nebulizer. See, e.z., U.S. Patent No. 4,501,729. Nebulizers are commercially available devices which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable formulations for use in nebulizers consist of the active ingredient in a liquid carrier, the active ingredient comprising up to 40% w/w of the formulation, but preferably less than 20% w/w. The carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body fluids by the addition of, for example, sodium chloride. Optional additives include preservatives if the formulation is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.

In one preferred embodiment, the pharmaceutical composition comprises nucleic acid(s) which comprise the anti-sense oligo(s) described above and one or more surfactants. Suitable surfactants or surfactant components for enhancing the uptake of the anti-sense oligonucleotides of the invention include synthetic and natural as well as full and truncated forms of surfactant protein A, surfactant protein B, surfactant protein C, surfactant protein D and surfactant Protein E, di-saturated phosphatidylcholine (other dipalmitoylphosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, dipalmitoyl). phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine; phosphatidic acid, ubiquinones, lysophosphatidylethe nolamine, lysophosphatidylcholine, palmitoyl-lysophosphatidylcholine, dehydroepiandrosterone, dolichols, sulfatidic acid, glycerol-3-phosphate, dihydroxyacetone phosphate, glycerol, glycero-3-phosphocholine, dihydroxyacetone, palmitate, cytidine diphosphate (CDP) diacylglycerol, CDP choline, choline, choline phosphate; as well as natural and artificial lamellar bodies which are the natura carrier vehicles for the components of surfactant, omega-3 fatty acids, polyenic acid, polyenoic acid, leci hin, palmitinic acid, non-ionic block copolymers of ethylene or propylene oxides, polyoxypropylene, rionomeric and polymeric, polyoxyethylene, monomeric and polymeric, poly (vinyl amine) with dextran and/or alkanoyl side chains, Brij 35, Triton X-100 and synthetic surfactants ALEC, Exosurf, Survan and Atovaquone, among others. These surfactants may be used either as a single, or as part of a multiple co nponent, surfactant in a formulation, or as covalently bound additions to the 5' and/or 3' ends of the anti-sense oligo(s). Aerosols of solid particles comprising the active compound may likewise be produced with any solid particulate medicament aerosol generator. Aerosol generators for administering solid particulate medicaments to a subject produce particles which are respirable, as explained above, and generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. One illustrative type of solid particulate aerosol generator is an insufflator. Suitable formulations for administration by insufflation include finely comminuted powders which may be delivered by means of an insufflator or taken into the nasal cavity in the manner of a snuff. In the insufflator, the powder (e.g., a metered dose thereof effective to carry out the treatments described herein) is contained in capsules or cartridges, typically made of gelatin or plastic, which are either pierced or opened in situ and the powder delivered by air drawn through the device upon inhalation or by means of a manually-operated pump. The powder employed in the insufflator consists either solely of the active ingredient or of a powder blend comprising the active ingredient, a suitable powder diluent, such as lactose, and an optional surfactant. The active ingredient typically comprises from 0.1 to 100 w/w of the formulation. A second type of illustrative aerosol generator comprises a metered dose inhaler. Metered dose inhalers are pressurized aerosol dispensers, typically containing a suspension or

10

15

25

30

35

40

45

solution formulation of the active ingredient in a liquefied propellant. During use these devices discharge the formulation through a valve adapted to deliver a metered volume, typically from 10 to 150 :l, to produce a fine particle spray containing the active ingredient. Suitable propellants include certain chlorofluorocarbon compounds, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroet ane and mixtures thereof. The formulation may additionally contain one or more cosolvents, for example, ethanol, surfactants, such as oleic acid or sorbitan trioleate, antioxidants and suitable flavoring agents. The aerosol, whether formed from solid or liquid particles, may be produced by the aerosol generator for example at a rate of from about 10, about 30, about 70 to about 100, about 150, about 150 liters per minute, more preferably from about 30 to 150 liters per minute, and most preferably about 60 liters per minute. Aerosols containing greater amounts of medicament, however, may be administered more rapidly as is known in the art.

The relevant disclosures of all scientific publications and patent references cited in this patent are specifically intended to be incorporated herein by reference, particularly in reference to preparatory methods and technologies which are enabling of the invention. The following examples are provided to illustrate the present invention, and should not be construed as limiting thereon.

### **EXAMPLES**

In the following examples, :M means micromolar, ml means milliliters, :m means micrometers, mm means millimeters, cm means centimeters, EC means degrees Celsius, :g means micrograms, mg means milligrams, g means grams, kg means kilograms, M means molar, and h or hr. means hours.

### 20 Example 1: Design and Synthesis of Anti-sense Oligonucleotides

The design of anti-sense oligonucleotides against the  $A_1$  and  $A_3$  adenosine receptors may require the solution of the complex secondary structure of the target  $A_1$  receptor mRNA and the target  $A_3$  receptor mRNA. After generating this structure, anti-sense nucleotide are designed which target regions of mRNA which might be construed to confer functional activity or stability to the mRNA and which optimally may overlap the initiation codon. Other target sites are readily usable. As a demonstration of specificity of the anti-sense effect, other oligonucleotides not totally complementary to the target mRNA, but containing identical nucleotide compositions on a w/w basis, are included as controls in anti-sense experiments.

The mRNA secondary structure of the adenosine A₁ receptor was analyzed and used as described above, to design a phosphorothioate anti-sense oligonucleotide. The anti-sense oligonucleotide which was synthesized was designated HAdA₁AS and had the following sequence: 5'-GAT GGA GGG CGG CAT GGC GGG-3' (SEQ ID NO:1). As a control, a mismatched phosphorothioate anti-sense nucleotide designated HAdAlMM1 was synthesized with the following sequence: 5'-GTA GCA GGC GGG GAT GGG GGC-3' (SEQ ID NO:2). Each oligonucleotide had identical base content and general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the anti-sense oligonucleotide was specific for the human and rabbit adenosine A₁ receptor genes, and that the mismatched control was not a candidate for hybridization with any known gene sequence.

The secondary structure of the adenosine A₃ receptor mRNA was similarly analyzed and used as described above to design two phosphorothioate anti-sense oligonucleotides. The first anti-sense oligonucleotide (HAdA3AS1) synthesized had the following sequence: 5' -GTT GTT GGG CAT CTT GCC-3' (SEQ ID NO:3). As a control, a mismatched phosphorothioate anti-sense oligonucleotide (HAdA3MM1) was synthesized, having the following sequence: 5' -GTA CTT GCG GAT CTA GGC-3' (SEQ ID NO:4). A second phosphorothioate anti-sense oligonucleotide (HAdA3AS2) was also designed and synthesized, having the following sequence: 5' -GTG GGC CTA GCT CTC GCC-3' (SEQ ID NO:5). Its control oligonucleotide (HAdA3MM2) had the sequence: 5' -GTC GGG GTA CCT GTC GGC-3' (SEQ ID NO:6). Phosphorothioate oligonucleotides were synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, MD).

**Example 2:** In Vivo Testing of Adenosine  $A_1$ 

15

20

25

30

35

40

45

#### **Receptor Anti-sense Oligos**

The anti-sense oligonucleotide against the human  $A_1$  receptor (SEQ ID NO:1) described above, was tested for efficacy in an in vitro model utilizing lung adenocarcinoma cells HTB-54. HTB-54 lung adenocarcinoma cells were demonstrated to express the  $A_1$  adenosine receptor using standard northern blotting procedures and receptor probes designed and synthesized in the laboratory.

HTB-54 hu nan lung adenocarcinoma cells (106/100 mm tissue culture dish) were exposed to 5.0 :M HAdAlAS or HAdAlMM1 for 24 hours, with a fresh change of media and oligonucleotides after 12 hours of incubation. Following 24 hour exposure to the oligonucleotides, cells were harvested and their RNA extracted by standard procedures. A 21-mer probe corresponding to the region of mRNA targeted by the anti-sense (and therefore having the same sequence as the anti-sense, but not phosphorothioated) was synthesized and used to probe northern blots of RNA prepared from HAdAlAS-treated, HAdAlMM1-treated and non-treated HTB-54 cells. These blots showed clearly that HAdAlAS but not HAdAlMM1 effectively reduced human adenosine receptor mRNA by >50%. This result showed that HAdAlAS is a good candidate for an anti-asthma drug since it depletes intracellular mRNA for the adenosine A₁ receptor, which is involved in asthma.

### Example 3: In Vivo Efficacy of Adenosine A₁ Receptor Anti-sense Oligos

A fortuitous homology between the rabbit and human DNA sequences within the adenosine A₁ gene overlapping the initiation codon permitted the use of the phosphorothioate anti-sense oligonucleotides initially designed for use against the human adenosine A₁ receptor in a rabbit model. Neonatal New Zealand white Pasteurella-free rabbits were immunized intraperitoneally within 24 hours of birth with 312 antigen units/ml house dustmite (D. farinae) extract (Berkeley Biologicals, Berkeley, CA), mixed with 10% kaolin. Immunizations were repeated weekly for the first month and then biweekly for the next 2 months. At 3-4 months of age, eight sensitized rabbits were anesthetized and relaxed with a mixture of ketamine hydrochloride (44 nig/kg) and acepromazine maleate (0.4 mg/kg) administered intramuscularly. The rabbits were then laid supine in a comfortable position on a small molded, padded animal board and intubated with a 4.0-mm intratracheal tube (Mallinkrodt, Inc., Glens Falls, NY). A polyethylene catheter of external diameter 2.4 mm with an attached latex balloon was passed into the esophagus and maintained at the same distance (approximately 16 cm) from the mouth throughout the experiments. The intratracheal tube was attached to a heated Fleisch pneumotachograph (size 00; DOM Medical, Richmond, VA), and flow was measured using a Validyne differential pressure transducer (Model DP-45161927; Validyne Engineering Corp., Northridge, CA) driven by a Gould carrier amplifier (Model 11-4113; Gould Electronic, Cleveland, OH). The esophageal balloon was attached to one side of the differential pressure transducer, and the outflow of the intratracheal tube was connected to the opposite side of the pressure transducer to allow recording of transpulmonary pressure. Flow was integrated to give a continuous tidal volume, and measurements of total lung resistance (RL) and dynamic compliance (Cdyn) were calculated at isovolumetric and flow zero points, respectively, using an automated respiratory analyzer (Model 6; Buxco, Sharon, CT). Animals were randomized and on Day 1 pretreatment values for PC50 were obtained for aerosolized adenosine. Anti-sense (HAdAlAS) or mismatched control (HAdAlMM) oligonucleotides were dissolved in sterile physiological saline at a concentration of 5000 :g (5 mg) per 1.0 ml. Animals were subsequently administered the aerosolized anti-sense or mismatch oligonucleotide via the intratracheal tube (approximately 5000 :g in a volume of 1.0 ml), twice daily for two days. Aerosols of either saline, adenosine, or anti-sense or mismatch oligonucleotides were generated by an ultrasonic nebulizer (DeVilbiss, Somerse, PA), producing aerosol droplets 80% of which were smaller than 5 :m in diameter. In the first arm of the experiment, four randomly selected allergic rabbits were administered anti-sense oligonucleotide and four the mismatched control oligonucleotide. On the morning of the third day, PC50 values (the concentration of aerosolized adenosine in mg/ml required to reduce the dynamic compliance of the bronchial airway 50% from the baseline value) were obtained and compared to PC50 values obtained for these animals prior to exposure to oligonucleotide. Following a 1 week interval, animals were crossed

15

20

25

30

35

45

over, with those previously administered mismatch control oligonucleotide now administered anti-sense oligonucleotide, and those previously treated with anti-sense oligonucleotide now administered mismatch control oligonucleotide. Treatment methods and measurements were identical to those employed in the first arm of the experiment. It should be noted that in six of the eight animals treated with anti-sense oligonucleotide, adenosine-mediated bronchoconstriction could not be obtained up to the limit of solubility of adenosine, 20 mg/ml. For the purpose of calculation, PC50 values for these animals were set at 20 mg/ml. The values given therefore represent a minimum figure for anti-sense effectiveness. Actual effectiveness was higher. The results of this experiment are illustrated in Table 5 below.

Table 5: Effect of Adenosine A₁ Receptor Anti-sense Oligo up on PC50 Values in Asthmatic Rabbits

Mismatch Control		A ₁ Receptor Anti-sense Oligo	
Pre Oligonucleotide	Post Oligonucleotide	Pre Oligonucleotide	Post Oligonucleotide
$3.56 \pm 1.02$	$5.16 \pm 1.03$	$2.36 \pm 0.68$	>19.5 ± 0.34**

The results are presented as the mean (n=8) ± SEM.

The significance was determined by repeated-measures analysis of variance (ANOVA), and Tukev's protected test,

**Significantly different from all other groups, p<0 01

In both arms of the experiment, animals receiving the anti-sense oligonucleotide showed an order of magnitude increase in the dose of aerosolized adenosine required to reduce dynamic compliance of the lung by 50%. No effect of the mismatched control oligonucleotide upon PC50 values was observed. No toxicity was observed in any animal receiving either anti-sense or control inhaled oligonucleotide. These results show clearly that the lung has exceptional potential as a target for anti-sense oligonucleotide-based therapeutic intervention in lung disease. They further show, in a model system which closely resembles human asthma, that downregulation of the adenosine  $A_1$  receptor largely eliminates adenosine-mediated bronchoconstriction in asthmatic airways. Bronchial hyperresponsiveness in the allergic rabbit model of human asthma is an excellent endpoint for anti-sense intervention since the tissues involved in this response lie near to the point of contact with aerosolized oligonucleotides, and the model closely simulates an important human disease.

### **Example 4:** Specificity of A₁-adenosine Receptor Anti-sense Oligonucleotide

At the conc usion of the cross-over experiment of Example 3 above, airway smooth muscle from all rabbits was quantitatively analyzed for adenosine A₁ receptor number. As a control for the specificity of the anti-sense oligorucleotide, adenosine A2 receptors, which should not have been affected, were also quantified. Airway smooth muscle tissue was dissected from each rabbit and a membrane fraction prepared according to the method of Kleinstein et al. (Kleinstein, J. and Glossmann, H., Naunyn-Schmiedeberg's Arch. Pharmacol. 305: 191-200 (1978)), the relevant portion of which is hereby incorporated in its entirety by reference, with slight modifications. Crude plasma membrane preparations were stored at 70EC until the time of assay. Protein content was determined by the method of Bradford (M. Bradford, Anal. Biochem. 72, 240-254 (1976), the relevant portion of which is hereby incorporated in its entirety by reference). Frozen plasma membranes were thawed at room temperature and were incubated with 0.2 U/ml adenosine deaminase for 30 minutes at 37EC to remove endogenous adenosine. The binding of [3H] DPCPX (A1 receptor-specific) or [3H] CGS-21680 (A1 receptor-specific) was measured as previously described by Ali et al. (Ali, S. et al., J. Pharmacol. Exp. Ther. 268, Am. J. Physiol 266, L271-277 (1994), the relevant portion of which is hereby incorporated in its entirety by reference). The animals treated with adenosine A₁ anti-sense oligonucleotide in the cross-over experiment had a nearly 75% decrease in A₁ receptor number compared to controls, as assayed by specific binding of the A₁-specific antagonist DPCPX. There was no change in adenosine A2 receptor number, as assayed by specific binding of the A₂ receptor-specific agonist 2- [p- (2-carboxyethyl)-phenethylamino] -5' - (N-ethylcarboxamido) adenosine (CGS-21630). This is illustrated in Table 6 below.

<u>Table 6</u>: Specificity of Action of Adenosine A₁
Receptor Oligonucleotide Anti-sense

Mismatch Control Oligonucleotide

A₁ Anti-sense Oligonucleotide

10

15

20

25

35

40

45



The results are presented as the mean  $(n = 8) \pm SEM$ .

The significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected test **Significantly different from mismatch control, p<0.01.

The above results illustrate the effectiveness of anti-sense oligonucleotides in treating airway disease. Since the anti-sense oligos described above, eliminate the receptor systems responsible for adenosine-mediated bronchoconstriction, it may be less imperative to eliminate adenosine from them. However, it would be preferable to eliminate adenosine from even these oligonucleotides to reduce the dose needed to attain a similar effect. Described above are other anti-sense oligonucleotides targeting mRNA of proteins it volved in inflammation. Adenosine has been eliminated from their nucleotide content to prevent its liberation during degradation.

#### **Example 5:** Anti-sense Oligos directed to other Target Nucleic Acids

This work was conducted to demonstrate that the present invention is broadly applicable to antisense oligonucleotides ("oligos") specific to nucleic acid targets broadly. The following experimental studies were conducted to show that the method of the invention is broadly suitable for use with anti-sense oligos designed as  $t\epsilon$  ught by this application and targeted to any and all adenosine receptor mRNAs. For this purpose, various anti-sense oligos were porepared to adenosine receptor mRNAs exemplified by the adenosine  $A_1$ ,  $A_{2b}$  and  $A_3$  receptor mRNAs. Anti-sense Oligo I was disclosed above (SEQ. ID NO:1). Five additional anti-sense phosphorothioate oligos were designed asnd synthesized as indicated above.

- 1- Oligo II (SEQ. ID NO: 7) also targeted to the adenosine A, receptor, but to a different region than Oligo I.
- 2- Oligo V (SEQ. ID NO: 10) targeted to the adenosine  $\rm A_{2b}$  receptor.
- 3- Oligos III (SEQ. ID NO: 8) and IV (SEQ. ID NO: 9) targeted to different regions of the adenosine A₃ receptor.
- 4- Oligo I-PD (SEQ. II) NO: 1681)(a phosphodiester oligo of the same sequence as Oligo I).

These anti-sense oligos were designed for therapy on a selected species as described above and are generally specific for that species, unless the segment of the target mRNA of other species happens to contain a similar sequences. All anti-sense oligos were prepared as described below, and tested in vivo in a rabbit model for bronchoconstriction, inflammation and allergy, which have breathing difficulties and impeded lung airways, as is the case in ailments such as asthma, as described in the above-identified application.

### 30 Example 6: Design & Sequences of other Anti-sense Oligos

Six oligos and their effects in a rabbit model were studied and the results of these studies are reported and discussed below. Five of these oligos were selected for this study to complement the data on Oligo I (SEQ ID NO: 1) provided in Examples 1 to 4 above. This oligo is anti-sense to one region of the adenosine A₁ receptor mRNA. The oligos tested are identified as anti-sense Oligos I (SEQ ID NO: 1) and II (SEQ. ID No: 7) targeted to a different region of the adenosine A₁ receptor mRNA, Oligo V (SEQ. ID No:8) targeted to the adenosine A_{2b} receptor mRNA, and anti-sense Oligos III and IV (SEQ. ID NOS: 9 and 10) targeted to two different regions of the adenosine A₃ receptor mRNA. The sixth oligo (Oligo I-PD) is a phosphodiester version of Oligo I (SEQ. ID NO:1). The design and synthesis of these anti-sense oligos was performed in accordance with Example 1 above.

#### (I) Anti-sense Oligo I

The anti-sense oligonucleotide I referred to in Examples 1 to 4 above is targeted to the human A₁ adenosine receptor rnRNA (EPI 2010). Anti-sense oligo I is 21 nucleotide long, overlaps the initiation codon, and has the following sequence:5'-GAT GGA GGG CGG CAT GGC GGG-3'(SEQ.ID NO:1). The oligo I was previously shown to abrogate the adenosine-induced bronchoconstriction in allergic rabbits, and to reduce allergen-induced airway obstruction and bronchial hyperresponsiveness (BHR), as discussed above and shown by Nyce, J. W. & Metzger, W. J., Nature, 385:721 (1977), the relevant portions of which reference are incorporated in their entireties herein by reference.

### (II) Anti-sense Oligo II

20

25

30

40

45

A phosphorothioate anti-sense oligo (SEQ. ID NO:7) was designed in accordance with the invention to target the rabbit adenosine A₁ receptor mRNA region +936 to +956 relative to the initiation codon (start site). The anti-sense oligo II is 21 nucleotide long, and has the following sequence: 5'-CTC GTC GCC GTC GCC GGC GGG-3' (SEQ. ID NO:7).

### (III) Anti-sense Oligo III

A phosphotothioate anti-sense oligo other than that provided in Example 1 above (SEQ. ID NO:8) was designed in accordance with the invention to target the anti-sense A₃ receptor mRNA region +3 to + 22 relative to the initiation codon start site. The anti-sense oligo III is 20 nucleotide long, and has the following sequence: 5'-GGG TGC TAT TGT CGG GC-3' (SEQ. ID NO:8).

### 10 (IV) Anti-sense Oligo IV

Yet another phosphorothioate anti-sense oligo (SEQ. ID NO:9) was designed in accordance with the invention to target the adenosine A₃ receptor mRNA region + 386 to + 401 relative to the initiation codon (start site). The anti-sense oligo IV is 15 nucleotide long, and has the following sequence: 5'-GGC CCA GGC CCA GCC-3' (SEQ. ID NO:9)

### 15 (V) Anti-sense Oligo V

A phosphorothioate anti-sense oligo (SEQ. ID NO:10) was designed in accordance with the invention to target the adenosine A_{2b} receptor mRNA region -21 to -1 relative to the initiation codon (start site). The anti-sense oligonucleotide V is 21 nucleotide long, and has the following sequence: 5'-GGC CGG GCC AGC CGG GCC CGG-3' (SEQ. ID NO:10).

### (VI) A₁ Mismatch Oligos

Two different mismatched oligonucleotides having the following sequences were used as controls for anti-sense oligo I (SEQ. ID NO: 1) described in Example 5 above: A₁ MM2:5'-GTA GGT GGC GGG CAA GGC GGG-3' (SEQ. ID NO:2421), and A₁ MM3:5'-GAT GGA GGC GGG CAT GGC GGG-3' (SEQ. ID NO:2422). Anti-sense oligo I and the two mismatch anti-sense oligos had identical base content and general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the anti-sense oligo I was specific, not only for the human, but also for the rabbit, adenosine A₁ receptor genes, and that the mismatched controls were not candidates for hybridization with any known human or animal gene sequence.

### (VII) Anti-sense Oligo A₁-PD (Oligo VI)

A phosphodiester anti-sense oligo (Oligo VI; SEQ. ID NO:2420) having the same nucleotide sequence as Oligo I was designed as disclosed in the above-identified application. Anti-sense oligo I-PD is 21 nucleotide long, overlaps the initiation codon, and has the following sequence: 5'- GAT GGA GGG CGG CAT GGC GGG-3' (SEQ. ID NO:2420).

### III) Controls

Each rabbit was administered 5.0 ml aerosolized sterile saline following the same schedule as for the anti-sense oligos in (II), (III), and (IV) above.

### **Example 7:** Synthesis of Anti-sense Oligos

Phosphorothioate anti-sense oligos having the sequences described in (a) above, were synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (Di Pont, DE). TETD (tetraethylthiuram disulfide) was used as the sulfurizing agent during the synthesis. Anti-sense oligonucleotide II (SEQ. ID NO:7), anti-sense oligonucleotide III (SEQ. ID NO: 8) and anti-sense oligonucleotide IV (SEQ. ID NO: 9) were each synthesized and purified in this manner.

### **Example 8:** Preparation of Allergic Rabbits

Neonatal New Zealand white Pasturella-free rabbits were immunized intraperitoneally within 24 hours of birth with 0.5 ml of 312 antigen units/ml house dust mite (D. *farinae*) extract (Berkeley Biologicals, Berkeley, CA) mixed with 10% kaolin as previously described (Metzger, W. J., in Late Phase Allergic Reactions, Dorsch, W., Ed., CRC Handbook, pp. 347-362, CRC Press, Boca Raton (1990); Ali,

20

25

30

45

S., Metzger, W. J. and Mustafa, S. J., Am. J. Resp. Crit. Care Med. 149: 908 (1994)), the relevant portions of which are incorporated in their entireties here by reference. Immunizations were repeated weekly for the first month and then biweekly until the age of 4 months. These rabbits preferentially produce allergen-specific IgE antibody, typically respond to aeroallergen challenge with both an early and late-phase asthmatic response, and show bronchial hyper responsiveness (BHR). Monthly intraperitoneal administration of allergen (312 units dust mite allergen, as above) continues to stimulate and maintain allergen-specific IgE antibody and BHR. At 4 months of age, sensitized rabbits were prepared for aerosol administration as described by Ali et al. (Ali, S., Metzger, W. J. and Mustafa, S. J., Am. J. Resp. Crit. Care Med. 149 (1994)), the relevant section being incorporated in its entirety here by reference.

### 10 DOSE-RESPONSE STUDIES

### **Example 9:** Experimental Setup

Aerosols of either adenosine (0-20 mg/ml), or anti-sense or one of two mismatch oligonucleotides (5 mg/ml) were separately prepared with an ultrasonic nebulizer (Model 646, DeVilbiss, Somerset, PA), which produced aerosol droplets, 80% of which were smaller than 5:m in diameter. Equal volumes of the aerosols were administered directly to the lungs *via* an intratracheal tube. The animals were randomized, and administered aerosolized adenosine. Day 1 pre-treatment values for sensitivity to adenosine were calculated as the dose of adenosine causing a 50% loss of compliance (PC₅₀ Adenosine). The animals were then administered either the aerosolized anti-sense or one of the mismatch anti-sense oligos via the intratracheal tube (5 mg/1.0 ml), for 2 minutes, twice daily for 2 days (total dose, 20 mg). Post-treatment PC₅₀ values were recorded (post-treatment challenge) on the morning of the third day. The results of these studies are provided in Example 21 below.

### **Example 10:** Crossover Experiments

For some experiments utilizing anti-sense oligo I (SEQ ID NO: 1) and a corresponding mismatch control oligonucleot de A1MM2, following a 2 week interval, the animals were crossed over, with those previously administered the mismatch control A₁MM2, now receiving the anti-sense oligo I, and those previously treated with the anti-sense oligo I, now receiving the mismatch control A₁MM2 oligo. The number of animals rer group was as follows. For mismatch A₁MM2 (Control 1), n=7, since one animal was lost in the second control arm of the experiment due to technical difficulties, for mismatch A₁MM3 n=4 (Control 2) and for A₁AS anti-sense oligo I, n=8. The A₁MM3 oligo-treated animals were analyzed separately and were not part of the cross-over experiment. The treatment methods and measurements employed following the cross-over were identical to those employed in the first arm of the experiment. In 6 of the 8 animals treated with the anti-sense oligo I (SEQ. ID NO: 1), no PC₅₀ value could be obtained for adenosine doses of up to 20 mg/ml, which is the limit of solubility of adenosine. Accordingly, the PC₅₀ values for these an mals were assumed to be 20 mg/ml for calculation purposes. The values given, therefore, represent a minimum figure for the effectiveness of the anti-sense oligonucleotides of the invention. Other groups of allergic rabbits (n=4 for each group) were administered 0.5 or 0.05 mg doses of the anti-sense oligo (SEQ ID NO: 1), or the A₁MM2 oligo in the manner and according to the schedule described above (the total doses being 2.0 or 0.2 mg). The results of these studies are provided in Example 22 below.

#### 40 Example 11: Ar ti-sense Oligo Formulation

Each one of anti-sense oligos were separately solubilized in an aqueous solution and administered as described for anti-sense oligo I (SEQ. ID No:1) in (e) above, in four 5 mg aliquots (20 mg total dose) by means of a nebulizer via endotracheal tube, as described above. The results obtained for anti-sense oligo I and its mismatch controls confirmed that the mismatch controls are equivalent to saline, as described in Example 19 below and in Table 1 of Nyce & Metzger, Nature 385: 721-725 (1997). Because of this finding, saline was used as a control for pulmonary function studies employing anti-sense oligos II, III and IV (SEQ. IS NOS; 7, 8 and 9).

10

15

20

25

30

35

40

45

### Example 12: Specificity of Oligo I for Adenosine A₁ Receptor (Receptor Binding Studies)

Tissue from airway smooth muscle was dissected to primary, secondary and tertiary bronchi from rabbits which had been administered 20 mg oligo I (SEQ ID NO: 1) in 4 divided doses over a period of 48 hours as described above. A membrane fraction was prepared according to the method of Ali et al. (Ali, S., et al., Am. J. Resp. Crit. Care Med. 149: 908 (1994), the relevant section relating to the preparation of the membrane fraction is incorporated in its entirety hereby by reference). The protein content was determined by the method of Bradford and plasma membranes were incubated with 0.2 U/ml adenosine deaminase for 30 minutes at 37EC to remove endogenous adenosine. See, Bradford, M. M. Anal. Biochem. 72, 240-254 (1976), the relevant portion of which is hereby incorporated in its entirety by reference. The binding of [3H]DPCPX, [3H]NPC17731, or [3H]CGS-21680 was measured as described by Jarvis et al. See, Jarvis, M.F., et al., Pharmacol. Exptl. Ther. 251, 888-893 (1989), the relevant portion of which is fully incorporated herein by reference. The results of this study are shown in Table 8 and discussed in Example 20 below.

### Example 13: Pulmonary Function Measurements (Compliance c_{DYN} and Resistance)

At 4 months of age, the immunized animals were anesthetized and relaxed with 1.5 ml of a mixture of ketamine HCl (35 mg/kg) and acepromazine maleate (1.5 mg/kg) administered intramuscularly. After induction of ar esthesia, allergic rabbits were comfortably positioned supine on a soft molded animal board. Salve was applied to the eyes to prevent drying, and they were closed. The animals were then intubated with a 4.0 mm intermediate high-low cuffed Murphy 1 endotracheal tube (Mallinckrodt, Glen Falls, NY), as previously described by Zavala and Rhodes. See, Zavala and Rhodes, Proc. Soc. Exp. Biol. Med. 144: 509-512 (1973), the relevant portion of which is incorporated herein by reference in its entirety. A polyethylene catheter of OD 2.4 mm (Becton Dickinson, Clay Adams, Parsippany NJ) with an attached thin-walled latex balloon was passed into the esophagus and maintained at the same distance (approximately 16 cm) from the mouth throughout the experiment. The endotracheal tube was attached to a heated Fleisch pneumotach (size 00; DEM Medical, Richmond, VA), and the flow (v) measured using a Validyne differential pressure transducer (Model DP-45-16-1927, Validyne Engineering, Northridge, CA), driven by a Gould carrier amplifier (Model 11-4113, Gould Electronics, Cleveland, OH). An esophageal balloon was attached to one side of the Validyne differential pressure transducer, and the other side was attached to the outflow of the endotracheal tube to obtain transpulmonary pressure (P_m). The flow was integrated to yield a continuous tidal volume, and the measurements of total lung resistance (R₁) and dynamic compliance (C_{dyn}) were made at isovolumetric and zero flow points. The flow, volume and pressure were recorded on an eight channel Gould 2000 W high-frequency recorder and C_{dvn} was calculated using the otal volume and the difference in Ptp at zero flow, and . Rt was calculated as the ratio of Ptp and V at miltidal lung volumes. These calculations were made automatically with the Buxco automated pulmonary mechanics respiratory analyzer (Model 6, Buxco Electronics, Sharon, CT), as previously described by Giles et al. See, Giles et al., Arch. Int. Pharmacodyn. Ther. 194: 213-232 (1971), the relevant portion of which describing these calculations is incorporated in toto hereby by reference. The results obtained upon administration of oligo II on allergic rabbits are shown and discussed in Example 26 below.

### **Example 14:** Measurement of Bronchial Hyperresponsiveness (BHR)

Each allergic rabbit was administered histamine by aerosol to determine their baseline hyperresponsiveness Aerosols of either saline or histamine were generated using a DeVilbiss nebulizer (DeVilbiss, Somerset, PA) for 30 seconds and then for 2 minutes at each dose employed. The ultrasonic nebulizer produced aerosol droplets of which 80% were <5 micron in diameter. The histamine aerosol was administered in increasing concentrations (0.156 to 80 mg/ml) and measurements of pulmonary function were made after each dose. The B4R was then determined by calculating the concentration of histamine (mg/ml) required to reduce the  $C_{\rm dyn}$  50% from baseline (PC_{50 Histamine}).

15

20

25

30

35

40

45



The measurement of cardiac output and other cardiovascular parameters using CardiomaxJ utilizes the principal of thermal dilution in which the change in temperature of the blood exiting the heart after a venous injection of a known volume of cool saline is monitored. A single rapid injection of cool saline was made into the right atrium via cannulation of the right jugular vein, and the corresponding changes in temperature of the mixed injectate and blood in the aortic arch were recorded via cannulation of the carotid artery by a temperature-sensing miniprobe. Twelve hours after the allergic rabbits had been treated with aerosols of oligo I (EPI 2010; SEQ. ID NO: 1) as described in (d) above, the animals were anesthetized with 0.5 ml/kg of 80% Ketamine and 20% Xylazine. This time point coincides with previous data showing efficacy for SEQ. ID NO: 1, as is clearly shown by Nyce & Metzger, (1997), supra, the pertinent disclosure being incorporated in its entirety here by reference. A thermocouple was then inserted into the left carotid artery of each rabbit, and was then advanced 6.5 cm and secured with a silk ligature. The right jugular vein was then cannulated and a length of polyethylene tubing was inserted and secured. A thermodilution curve was then established on a CardiomaxJ II (Columbus Instruments, Ohio) by injecting sterile saline at 20EC to determine the correctness of positioning of the thermocouple probe. After establishing the correctness of the position of the thermocouple, the femoral artery and vein were isolated. The femo al vein was used as a portal for drug injections, and the femoral artery for blood pressure and heart rate measurements. Once constant baseline cardiovascular parameters were established, CardiomaxJ measurements of blood pressure, heart rate, cardiac output, total peripheral resistance, and cardiac contractility were made.

### **Example 16:** Duration of Action of Oligo I (SEQ. ID NO: 1)

Eight allergic rabbits received initially increasing log doses of adenosine by means of a nebulizer via an intra-tracheal tube as described in (f) above, beginning with 0.156 mg/ml until compliance was reduced by 50% (PC_{50 Adenosine}) to establish a baseline. Six of the rabbits then received four 5 mg aerosolized doses of (SEQ. ID NO: 1) as described above. Two rabbits received equivalent amounts of saline vehicle as controls. Beginning 18 hours after the last treatment, the PC_{50 Adenosine} values were tested again. After this point, the measurements were continued for all animals each day, for up to 10 days. The results of this study are discussed in Example 25 below.

### Example 17: Reduction of Adenosine A_{2b} Receptor Number by Anti-sense Oligo V

Sprague Dawley rats were administered 2.0 mg respirable anti-sense oligo V (SEQ ID NO:10) three times over two days using an inhalation chamber as described above. Twelve hours after the last administration, lung parenchymal tissue was dissected and assayed for adenosine  $A_{2b}$  receptor binding using [311]-NECA as described by Nyce & Metzger (1997), supra. Controls were conducted by administration of equal volumes of saline. The results are significant at p<0.05 using Student's paired t test, and are discussed in Example 28 below.

### Example 18: Comparison of Oligo I & Corresponding Phosphodiester Oligo VI (SEQ. ID NO:1681)

Oligo I (SFQ ID NO:1) countered the effects of adenosine and eliminated sensitivity to it for adenosine amounte up to 20 mg adenosine/5.0 ml (the limit of solubility of adenosine). Oligo VI (SEQ ID NO:1681), the phosphodiester version of the oligonucleotide sequence, was completely ineffective when tested in the same manner. Both compounds have identical sequence, differing only in the presence of phosphorothioate residues in Oligo I (SEQ ID NO:1), and were delivered as an aerosol as described above and in Nyce & Metzger (1997), supra. Significantly different at p<0.001, Student's paired t test. The results are discussed in Example 29 below.

### RESULTS OBTAINED FOR ANTI-SENSE OLIGO I (SEQ. ID NO: 1)



The nucleo ide sequence and other data for anti-sense oligo I (SEQ. ID NO: 1), which is specific for the adenosine A receptor, were provided above. The experimental data showing the effectiveness of oligo I in down regulating the receptor number and activity were also provided above. Further information on the characteristics and activities of anti-sense oligo I is provided in Nyce, J. W. and Metzger, W. J., Nature 385:721 (1957), the relevant parts of which relating to the following results are incorporated in their entireties herein by reference. The Nyce & Metzger (1997) publication provided data showing that the antisense oligo I (SEQ. ID NO: 1):

- (1) The anti-sense oligo I reduces the number of adenosine  $A_1$  receptors in the bronchial smooth muscle of allergic rabbits in a dose-dependent manner as may be seen in Table 5 below.
- (2) Anti-sense Oligo I attenuates adenosine-induced bronchoconstriction and allergen-induced bronchoconstriction.
- (3) The Oligo I attenuates bronchial hyperresponsiveness as measured by  $PC_{50}$  histamine, a standard measurement to assess bronchial hyperresponsiveness. This result clearly demonstrates anti-inflammatory activity of the anti-sense oligo I as is shown in Table 5 above.
- (4) As expected, because it was designed to target it, the anti-sense oligo I is totally specific for the adenosine  $A_1$  receptor, and has no effect at all at any dose on either the very closely related adenosine  $A_2$  receptor or the related bradykinin  $B_2$  receptor. This is seen in Table 5 below.
- (5) In contradistinction to the above effects of the Oligo I, the mismatch control molecules MM2 and MM3 (SEQ. ID NO:1682 and SEQ. ID NO:1683) which have identical base composition and molecular weight but differed from the anti-sense oligo I (SEQ ID NO: 1) by 6 and 2 mismatches, respectively. These mismatches, which are the minimum possible while still retaining identical base composition, produced absolutely no effect upon any of the targeted receptors  $(A_1, A_2 \text{ or } B_2)$ .

These results, along with a complete lack of prior art on the use of anti-sense oligonucleotides, such as oligo I, targeted to the adenosine A₁ receptor, are unexpected results. The showings presented in this patent clearly enable and demonstrate the effectiveness, for their intended use, of the claimed agents and method for treating a disease or condition associated with lung airway, such as bronchoconstriction, inflammation, allergi/(ies), and the like.

### **Example 20:** Oligo I Significantly Reduces Response to Adenosine Challenge

The receptor binding experiment is described in Example 12 above, and the results shown in Table 5 below which shows the binding characteristics of the adenosine  $A_1$ -selective ligand [ $_3$ H]DPCPX and the bradykinin  $E_2$ -selective ligand [ 3 H]NPC 17731 in membranes isolated from airway smooth muscle of  $A_1$  adenosine receptor and  $B_2$  bradykinin receptor anti-sense- and mismatch-treated allergic rabbits.

Table 5: Binding Characteristics of Three Anti-Sense Oligos

Treatment ¹	A ₁ receptor		B ₂ receptor	
	Kd	B _{max}	Kd	Bmax
Adenosine A ₁	Receptor			
20 mg	0.36±0.029 nM	19±1.52 fmoles*	0.39±0.031 nM	14.8±0.99fmoles
2 mg	0.38±0.030 nM	32±2.56 fmoles*	0.41±0.028 nM	15.5±1.08
0.2 mg	0.37±0.030 nM	49±3.43 fmoles	0.34±0.024 nM	15.0±1.06
$A_1MM1$	(Control)			
20 mg	0.34±0.027 nM	52.0±3.64 fmoles	0.35±0.024 nM	14.0±1.0 fmoles
2 mg	0.37±0.033 nM	51.8±3.88 fmoles	0.38±0.028 nM	14.6±1.02
B ₂ A (Bradykinin	Receptor)			
20 mg	0.36±0.028 nM	45.0±3.15 fmoles	0.38±0.027 nM	8.7±0.62

25

30

35

20

10

15

10

15

20

25

30

35

40

2 mg	0.39±0.035 nM	44.3±2.90 fmoles	0.34±0.024 nM	11.9±0.76
0.2 mg	$0.40 \pm 0.028 \text{ nM}$	47.0±3.76 fmoles	0.35±0.028 nM	15.1±1.05 fmoles
B ₂ MM				
20 mg	0.39±0.031 nM	42.0±2.94 fmoles	0.41±0.029 nM	14.0±0.98 fmoles
2 mg	0.41±0.035 nM	40.0±3.20 fmoles	0.37±0.030 nM	14.8±0.99 fmoles
0.2 mg	0.37±0.029 nM	43.0±3.14 fmoles	0.36±0.025 nM	15.1±1.35 fmoles
Saline Control	0.37±0.041	46.0±5.21	0.39±0.047 nM	14.2±1.35 fmoles

¹ Refers to total oli; o administered in four equivalently divided doses over a 48 hour period. Treatments and analyses were performed as described in methods. Significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey=s protected t test. n = 4-6 for all groups.

### **Example 21:** Dose-response Effect of Oligo I

Anti-sense oligo I (SEQ ID NO:1) was found to reduce the effect of adenosine administration to the animal in a dose dependent manner over the dose range tested as shown in Table 6 below.

Table 6:	Table 6: Dose-Response Effect to Anti-sense Oligo I	
<b>Total Dose</b>	PC _{50 Adenosine}	
(mg)	(mg Adenosine)	
Anti-sense Oligo I		
0.2	8.32±7.2	
2.0	14.0±7.2	
20	19.5±0.34	
A ₁ MM2 oligo (control)		
0.2	2.51±0.46	
2.0	$3.13\pm0.71$	
20	3.25± 0.34	

The above results were studied with the Student's paired t test and found to be statistically different, p=0.05

The oligo I (SEQ. ID NO:1), an anti-adenosine  $A_1$  receptor oligo, acts specifically on the adenosine  $A_1$  receptor, but not on the adenosine  $A_2$  receptors. These results stem from the treatment of rabbits with anti-sense oligo I (SEQ. ID NO.1) or mismatch control oligo (SEQ. ID NO:1682;  $A_1$ MM2) as described in Example 9 above and in Nyce & Metzger (1997), supra (four doses of 5 mg spaced 8 to 12 hours apart via nebu izer via endotracheal tube), bronchial smooth muscle tissue excised and the number of adenosine  $A_1$  and adenosine  $A_2$  receptors determined as reported in Nyce & Metzger (1997), supra.

### Example 22: Specificity of Oligo I (SEQ. ID NO:1) for Target Gene Product

Oligo I (SFQ. ID No:1) is specific for the adenosine A₁ receptor whereas its mismatch controls had no activity. Figure 1 depicts the results obtained from the cross-over experiment described in Example 10 above and in Nyce & Metzger (1997), supra. The two mismatch controls (SEQ. ID NO:1682 and SEQ. ID NO:1683) evidenced no effect on the PC_{50 Adenosine} value. On the contrary, the administration of antisense oligo I (SEQ. ID NO:1) showed a seven-fold increase in the PC_{50 Adenosine} value. The results clearly indicate that the ant-sense oligo I (SEQ. ID NO: 1) reduces the response (attenuates the sensitivity) to exogenously administered adenosine when compared with a saline control. The results provided in Table 6 above clearly establish that the effect of the anti-sense oligo I is dose dependent (see, column 3 of Table 5). The Oligo I was also shown to be totally specific for the adenosine A₁ receptor, (see, top 3 rows of Table), inducing no activity at either the closely related adenosine A₂ receptor or the bradykinin B₂ receptor (see, lines 8-10 of Table 6 above). In addition, the results shown in Table 6 establish that the anti-sense oligo I (SEQ. ID NO:1) decreases sensitivity to adenosine in a dose dependent manner, and that it does this in an

^{*} Significantly different from mismatch control- and saline-treated groups, p<0.001; **Significantly different from mismatch control- and saline-treated groups, p<0.05.

10

15

20

25

30

35

40

45

anti-sense oligo-der endent manner since neither of two mismatch control oligonucleotides (A₁MM2; SEQ. ID NO:1682 and A MM3; SEQ. ID NO:1683) show any effect on PC_{50 Adenosine} values or on attenuating the number of adenosine A₁ receptors.

### Example 23: E. fect on Aeroallergen-induced Bronchoconstriction & Inflammation

The Oligo I (SEQ. ID NO:1) was shown to significantly reduce the histamine-induced effect in the rabbit model wien compared to the mismatch oligos. The effect of the anti-sense Oligo I (SEQ. ID No:1) and the mis natch oligos (A₁MM2, SEQ. ID NO:1682 and A₁MM3, SEQ. ID NO:1682) on allergen-induced airway obstruction and bronchial hyperresponsiveness was assessed in allergic rabbits. The effect of the anti-sense oligo I (SEQ. ID NO:1) on allergen-induced airway obstruction was assessed. As calculated from the area under the plotted curve, the anti-sense oligo I significantly inhibited allergeninduced airway obstruction when compared with the mismatched control (55%, p<0.05; repeated measures ANOVA, and Tukey's t test). A complete lack of effect was induced by the mismatch oligo A₁MM2 (Control) on allergen induced airway obstruction. The effect of the anti-sense oligo I (SEQ. ID NO:1) on allergen-induced BHR was determined as above. As calculated from the  $PC_{50 \; Histamine}$  value, the anti-sense oligo I (SEQ. ID NO:1) significantly inhibited allergen-induced BHR in allergic rabbits when compared to the mismatched cor.trol (61%, p<0.05; repeated measures ANOVA, Tukey's t test). A complete lack of effect of the A₁MM mismatch control on allergen-induced BHR was observed. The results indicated that anti-sense oligo I (SEQ. ID NO: 1) is effective to protect against aeroallergen-induced bronchoconstriction (house dust mite). In addition, the anti-sense oligo I (SEQ. ID NO:1) was also found to be a potent inhibitor of dust m te-induced bronchial hyper responsiveness, as shown by its effects upon histamine sensitivity which incicates anti- inflammatory activity for anti-sense oligo I (SEQ. ID NO:1).

### Example 24: Anti-sense Oligo I is Free of Deleterious Side Effects

The Oligo I (SEQ. ID NO:1) was shown to be free of side effects that might be toxic to the recipient. No changes in arterial blood pressure, cardiac output, stroke volume, heart rate, total peripheral resistance or heart contractility (dPdT) were observed following administration of 2.0 or 20 mg oligo I (SEQ. ID NO:1). The addition, the results of the measurement of cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), heart rate (HR), total peripheral resistance (TPR), and contractility (dPdT) with a CardiomaxJ apparatus (Columbus Instruments, Ohio) were assessed. evidenced that oligo I (SEQ. ID NO:1) has no detrimental effect upon critical cardiovascular parameters. More particularly, this oligo does not cause hypotension. This finding is of particular importance because other phosphorothioate anti-sense oligonucleotides have been shown in the past to induce hypotension in some model systems. Furthermore, the adenosine A1 receptor plays an important role in sinoatrial conduction within the heart. Attenuation of the adenosine A₁ receptor by anti-sense oligo I (SEQ. ID NO:1) might be expected to result, therefore, in deleterious extrapulmonary activity in response to the downregulation of the receptor. This is not the case. The anti-sense oligo I (SEQ. ID NO:1) does not produce any deleterious intrapulmonary effects and renders the administration of the low doses of the present anti-sense oligo free of unexpected, undesirable side effects. This demonstrates that when oligo I (SEQ. ID NO:1) is administered directly to the lung, it does not reach the heart in significant quantities to cause deleterious effects. This is in contrast to traditional adenosine receptor antagonists like theophylline which do escape the lung and can cause deleterious, even life-threatening effects outside the lung.

### **Example 25:** Long Lasting Effect of Oligo I

The Oligo I (SEQ. ID NO:1) evidenced a long lasting effect as evidenced by the  $PC_{50}$  and Resistance values obtained upon its administration prior to adenosine challenge. The duration of the effect was measured for with respect to the  $PC_{50}$  of adenosine anti-sense oligo I when administered in four equal doses of 5 mg each by means of a nebulizer via an endotracheal tube, as described above. The effect of the agent is significant over days 1 to 8 after administration. When the effect of the anti-sense oligo I (SEQ. ID

20

30

35

40

45

NO:1) had disappeared, the animals were administered saline aerosols (controls), and the  $PC_{50}$  Adenosine values for all animals were measured again. Saline-treated animals showed base line  $PC_{50}$  adenosine values (n=6). The duration of the effect (with respect to Resistance) was measured for six allergic rabbits which were administered 20 mg of anti-sense oligo I (SEQ. ID NO: 1) as described above, upon airway resistance measured as also described above. The mean calculated duration of effect was 8.3 days for both  $PC_{50}$  adenosine (p<0.05) and resistance (p<0.05). These results show that anti-sense oligo I (SEQ. ID NO:1) has an extremely long duration of action, which is completely unexpected.

### **Example 26:** A nti-sense Oligo II

Anti-sense oligo II, targeted to a different region of the adenosine  $A_1$  receptor mRNA, was found to be highly active against the adenosine  $A_1$ -mediated effects. The experiment measured the effect of the administration of anti-sense oligo II (SEQ. ID NO:7) upon compliance and resistance values when 20 mg anti-sense oligo II or saline (control) were administered to two groups of allergic rabbits as described above. Compliance and resistance values were measured following an administration of adenosine or saline as described above in Example 13. The effect of the anti-sense oligo of the invention was different from the control in a statistically significant manner, p<0.05 using paired t-test, compliance; p<0.01 for resistance. The results showed that anti-sense oligo II (SEQ. ID NO:7), which targets the adenosine  $A_1$  receptor, effectively maintains compliance and reduces resistance upon adenosine challenge.

### **Example 27:** Antisense Oligos III and IV

Oligos III (SEQ. ID NO:8) and IV (SEQ. ID NO:9) were shown to be in fact specifically targeted to the adenosine A₃ receptor by their effect on reducing inflammation and the number of inflammatory cells present upon separate administration of 20 mg of the anti-sense oligos III (SEQ. ID NO:8) and IV (SEQ. ID NO:9) to allergic rabbits as described above. The number of inflammatory cells was determined in their bronchial lavage fluid 3 hours later by counting at least 100 viable cells per lavage. The effect of anti-sense oligos III (SEQ. ID NO:8) and IV (SEQ. ID NO:9) upon granulocytes, and upon total cells in bronchial lavage were assessed following exposure to dust mite allergen. The results showed that the antisense oligo IV (SEQ. ID NO:9) and anti-sense oligo III (SEQ. ID NO:8) are very potent antiinflammatory agents in the asthmatic lung following exposure to dust mite allergen. As is known in the art, granulocytes, especially eosinophils, are the primary inflammatory cells of asthma, and the administration of an i-sense oligos III (SEQ. ID NO:8) and IV (SEQ. ID NO:9) reduced their numbers by 40% and 66%, respectively. Furthermore, anti-sense oligos IV (SEQ. ID NO:9) and III (SEQ. ID NO:8) also reduced the total number of cells in the bronchial lavage fluid by 40% and 80%, respectively. This is also an important ir dicator of anti-inflammatory activity by the present anti-adenosine A3 agents of the invention. Inflammation is known to underlie bronchial hyperresponsiveness and allergen-induced bronchoconstriction in asthma. Both anti-sense oligonucleotides III (SEQ. ID NO:8) and IV (SEQ. ID NO:9), which are targeted to the adenosine A3 receptor, are representative of an important new class of anti-inflammatory agents which may be designed to specifically target the lung receptors of each species.

### **Example 28:** Ar ti-sense Oligo V

The anti-sense oligo V (SEQ. ID NO:10), targeted to the adenosine  $A_{2b}$  adenosine receptor mRNA was shown to be highly effective at countering adenosine  $A_{2b}$ -mediated effects and at reducing the number of adenosine  $A_{2b}$  receptors present to less than half.

## Example 29: Un expected Superiority of Substituted over Phosphodiester-residue Oligo I-DS (SEQ. ID NO:1681)

Oligos I (SLQ. ID NO:1) and I-DS (SEQ. ID NO:1681) were separately administered to allergic rabbits as described above, and the rabbits were then challenged with adenosine. The phosphodiester oligo I-DS (SEQ. ID NO:1681) was statistically significantly less effective in countering the effect of adenosine whereas oligo I (SEQ. ID NO:1) showed high effectiveness, evidencing a PC_{50 Adenosine} of 20 mg.

25

30

40

### Example 30: Anti-sense Oligo VI

For the present work, I designed an additional anti-sense phosphorothioate oligo targeted to the adenosine A₁ receptor (Oligo VI). This anti-sense oligo was designed for therapy on a selected species as described in the above patent application and is generally specific for that species, unless the segment of the adenosine recep or mRNA of other species elected happens to have a similar sequence. The anti-sense oligos were prepared as described below, and tested in vivo in a rabbit model for bronchoconstriction, inflammation and lung allergy, which have breathing difficulties and impeded lung airways, as is the case in ailments such as asthma, as described in the above-identified application. One additional oligo and its effect in a rabbit model was studied and the results of the study are reported and discussed below. The present oligo (anti-sense oligo VI) was selected for this study to complement the data on SEQ ID NO: 1 (Oligo I), which is anti-sense to the adenosine A1 receptor mRNA provided in the above-identified patent application. This additional oligo is identified as anti-sense Oligo VI, and is targeted to a different region of the adenosine A1 receptor mRNA than Oligo I. The design and synthesis of this anti-sense oligo was performed in accordance with the teaching, particularly Example 1, of the above-identified patent application. The an i-sense Oligo VI is a phosphorothioate designed to target the coding region of the rabbit adenosine A₁ receptor mRNA region +964 to +984 relative to the initiation codon (start site). The Oligo VI was prepared as described in the above-indicated application, and is 20 nucleotides long. The OligoVI is directed to the adenosine A₁ receptor gene, and has the following sequence: 5'-CGC CGG CGG GTG CGG GCC GG-3' (SEQ. ID NO: ). The phosphorothioate anti-sense Oligo VI having the sequence described in (5) above, was synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, DE). TETD (tetraethylthiuram disulfide) was used as the sulfurizing agent during the synthesis.

### **Example 31:** Preparation of Allergic Rabbits

Neonatal New Zealand white Pasturella-free rabbits were immunized intraperitoneally within 24 hours of birth with 0.5 ml of 312 antigen units/ml house dust mite (D. farinae) extract (Berkeley Biologicals, Berkeley, CA) mixed with 10% kaolin as previously described (Metzger, W. J., in Late Phase Allergic Reactions, Dorsch, W., Ed., CRC Handbook, pp 347-362, CRC Press, Boca Raton, 1990; Ali, S. Et al., Am. J. Resp. Crit. Care Med. 149: 908 (1994)). The immunizations were repeated weekly for the first month and then bi-weekly until the animals were 4 months old. These rabbits preferentially produce allergen-specific IgE antibody, typically respond to aeroallergen challenge with both an early and late-phase asthmatic response, and show bronchial hyper responsiveness (BHR). Monthly intraperitoneal administration of al ergen (312 units dust mite allergen, as above) continues to stimulate and maintain allergen-specific IgE antibody and BHR. At 4 months of age, sensitized rabbits were prepared for aerosol administration as described by Ali et al. (1994), supra.

### 35 Example 32: Adenosine Aerosol Preparation

An adenos ne aerosol (20 mg/ml) was prepared with an ultrasonic nebulizer (Model 646, DeVilbiss, Somerse, PA), which produced aerosol droplets, 80% of which were smaller than 5:m in diameter. Equal volumes of the aerosols were administered directly to the lungs via an intratracheal tube to all three rabbits. The animals were then administered the aerosolized adenosine and Day 1 pre-treatment values for sensitivity to adenosine were calculated as the dose of adenosine causing a 50% loss of compliance (PC₅₀ Adenosine). The animals were then administered the aerosolized anti-sense via the intratracheal tube (5 mg/1.0 ml), for 2 minutes, twice daily for 2 days (total dose, 20 mg). Post-treatment PC₅₀ values were recorded (post-treatment challenge) on the morning of the third day. The results of these studies are provided in (9) below.

### 45 Example 33: Ar ti-sense Oligo Formulation

Each one of anti-sense oligos were separately solubilized in an aqueous solution and administered as described for anti-sense oligo I in (e) above, in four 5 mg aliquots (20 mg total dose) by means of a nebulizer via endotracheal tube, as described above.

15

20

30

35

40

45



Oligo VI was tested in three allergic rabbits of the characteristics and readied as described in (7) above and in the above-indicated patent application. Oligo VI targets a section of the coding region of the A₁ receptor which is different from Oligo I. Both these target sequences were selected randomly from many possible coding region target sequences. The three rabbits were treated identically as previously indicated for Oligo I. Briefly, 5 mg of Oligo VI were nebulized to the rabbits twice per day at 8 hour intervals, for two days. Thereafter, PC₅₀ adenosine studies were performed on the morning of the third day and compared to pre-treatment PC₅₀ values. This protocol is described in more detail in Nyce and Metzger (Nyce & Metzger, Nature 385: 721-725 (1997)). The results obtained for the three rabbits are shown in Table 7 below.

<u>Table 7</u> :	PC ₅₀ Adenosine before & after	
	Aerosolized Adenosine Treatment	
Treatment Time	PC ₅₀ Adenosine	
	(mg)	
Pre-treatment	$3.0 \pm 2.1$	
Post-treatment	>20.0*	
* ınaximum achievable	dose due to adenosine insolubility in saline	

All three animals treated with Oligo VI completely eliminated sensitivity to adenosine up to the measurable level of the agent shown in Table 7 above. That is, the administration of the Oligo VI abrogated the adenosine-induced bronchoconstriction in the three allergic rabbits. The actual efficacy of Oligo VI is, therefore, greater than could be measured in the experimental system used. By comparing with the previously submitted results for the Oligo I, it may be seen that the Oligo VI was found to be as effective, or more, than Oligo I.

#### 25 Example 34: Conclusions

The work described and results discussed in the examples clearly indicates that all anti-sense oligonucleotides designed in accordance with the teachings of the above-identified application were found to be highly effective at countering or reducing effects mediated by the receptors they are targeted to. That is, each and all of the two anti-sense oligos targeting an adenosine A₁ receptor mRNA, 1 anti-sense oligo targeting an adenosine A_{2b} receptor mRNA, and the 2 anti-sense oligos targeting an A₃ receptor mRNA were shown capable of countering the effect of exogenously administered adenosine which is mediated by the specific receptor they are targeted to. The activity of the anti-sense oligos of this invention, moreover, is specific to the target and substitutively fails to inhibit another target. In addition, the results presented also show that the administration of the present agents results in extremely low or non-existent deleterious side effects or toxicity. This represents 100% success in providing agents that are highly effective and specific in the treatment of bronchoconstriction and/or inflammation. This invention is broadly applicable in the same manner to all gene(s) and corresponding mRNAs encoding proteins involved in or associated with airway diseases. A comparison of the phosphodiester and a version of the same oligonucleotide wherein the phosphodiester bonds are substituted with phosphorothioate bonds evidenced an unexpected superiority for the pl osphothiorate oligonucleotide over the phosphodiester anti-sense oligo.

### Example 35: In Vivo Response to Adenosine Challenge with & without Oligo I Pretreatment

Two hyper responsive monkeys (ascaris sensitive) were challenged with inhaled adenosine, with and without pre-treatment with anti-sense oligo I (SEQ.ID NO: 1). The PC₄₀ adenosine was calculated from the data collected as being equivalent to that amount of adenosine in mg that causes a 40% decrease in dynamic compliance in hyper-responsive airways. The Oligo I (SEQ. ID NO:1; EPI 2010) was subsequently administered at 10 mg/day for 2 days by inhalation. On the third day, the PC adenosine was again measured. The PC₄₀ adenosine value prior to treatment with Oligo I was compared side-by-side with

15

20

to the PC₄₀ adenosine taken after administration of Oligo I (Figure not shown). The results of the experiment conduced with two animals showed that any sensitivity to adenosine was completely eliminated by the administration of the oligo of this invention in one animal, and substantially reduced in the second.

### 5 Example 36: Extension of the experimental Results

The method of the present invention is also practiced with anti-sense oligonucleotides targeted to many genes, mRNAs and their corresponding proteins as described above, in essentially the same manner as given above, for the treatment of various conditions in the lungs. Examples of these are Human A2a adenosine receptor, Human A2b adenosine receptor, Human IgE receptor β, Human Fc-epsilon receptor CD23 antigen (IgE receptor), Human IgE receptor, α subunit, Human IgE receptor, Fc epsilon R, Human histidine decarboxylase, Human beta tryptase, Human tryptase-I, Human prostaglandin D synthase, Human cyclooxygenase-2, Human eosinophil cationic protein, Human eosinophil derived neurotoxin, Human eosinophil peroxidase, Human intercellular adhesion molecule-1 (CAM-1), Human vascular cell adhesion molecule 1 (VCAM-1), Human endothelial leukocyte adhesion molecule (ELAM-1), Human P Selectin, Human endothelial monocyte activating factor, Human IL3, Human IL4, Human IL5, Human IL6, Human monocyte-derived neutrophil chemotactic factor, Human neutrophil elastase (medullasin), Human neutrophil oxidase factor, Human cathepsin G, Human defensin 1, Human defensin 3, Human muscarinic acetylcholine receptor HM1, Human muscarinic acetylcholine receptor HM3, Human fibronectin, Human interleukin 8, Human GM-CSF, Human tumor necrosis factor α, Human leukotriene C4 synthase, Human major basic protein, and many more.

The forego ng examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

15

20

25

30

### WHAT IS CLAIMED AS NOVEL & UNOBVIOUS IN UNITED STATES LETTERS PATENT IS:

1. A pharmaceutical composition, comprising

an oligonucleotide(s) (oligo(s)) which is (are) effective for alleviating bronchoconstriction and/or lung inflammation, allergy(ies), or surfactant depletion or hyposecretion, when administered to a mammal, the oligo containing about 0 to about 15% adenosine (A) and being anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene encoding a target polypeptide associated with lung airway dysfunction or anti-sense to the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; and

a pharmaceutically or veterinarily acceptable carrier or diluent.

- 2. The composition of claim 1, wherein the oligo is A-free.
- 3. The composition of claim 1, wherein the target is selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctiors, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and a gene(s) encoding a target polypeptide(s) associated with lung airway dysfunction or anti-sense to the oncogene mRNA and the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; the polypeptides being selected from the group consisting of peptide factors and transmitters, antibodies, cytokines and chemokines, enzymes, binding proteins, adhesion molecules, their receptors, and malignancy associated proteins.
- 4. The composition of claim 3, wherein the target is selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctiors, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and a gene(s) encoding a target polypeptide(s) associated with lung airway dysfunction or anti-sense to the oncogene mRNA and the polypeptide mRNA; combinations of the oligos; and mixtures of the oligos; wherein the polypeptides are selected from the group consisting of transcription factors, stimulating and activating peptide factors, cytokines, cytokine receptors, chemokines, chemokine receptors, adenosine receptors, bradykinin receptors, endogenously produced specific and non-specific enzymes, immunoglobulins and antibodies, antibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules, defensins, growth factors, vasoactive peptides and receptors, binding proteins, and malign incy associated proteins.
- 5. The agent of claim 4, wherein the encoded polypeptide(s) is(are) selected from the group consisting of adencsine receptors A1, A2a, A2b and A3, bradykinin receptors B1 and B2, Nf6B 35 Transcription Factor, Interleukin-8 Receptor (IL-8 R), Interleukin 5 Receptor (IL-5 R), Interleukin 4 Receptor (IL-4 R), Interleukin 3 Receptor (IL-3 R), Interleukin-1β (IL-1β), Interleukin 1β Receptor (IL-1 R), Eotaxin, Tryotase, Major Basic Protein, \( \beta 2\)-adrenergic Receptor Kinase, Endothelin Receptor A, Endothelin Receptor B, Preproendothelin, Bradykinin B2 Receptor, IgE High Affinity Receptor, Interleukin 1 (IL-1), Interleukin 1 Receptor (IL-1 R), Interleukin 9 (IL-9), Interleukin-9 Receptor (IL-9 R), 40 Interleukin 11 (IL-1), Interleukin-11 Receptor (IL-11 R), Inducible Nitric Oxide Synthase, Cyclooxygenase-1 (COX 1), Cyclo-oxygenase-2 (COX-2), Intracellular Adhesion Molecule 1 (ICAM-1) Vascular Cellular Adhesion Molecule (VCAM), Rantes, Endothelial Leukocyte Adhesion Molecule (ELAM-1), Monocy e Activating Factor, Neutrophil Chemotactic Factor, Neutrophil Elastase, Defensin 1, 2 and 3, Muscarinic Acetylcholine Receptors, Platelet Activating Factor, Tumor Necrosis Factor α, 5lipoxygenase, Phosphodiesterase IV, Substance P, Substance P Receptor, Histamine Receptor, Chymase. CCR-1 CC Chemokine Receptor, CCR-2 CC Chemokine Receptor, CCR-3 CC Chemokine Receptor, CCR-4 CC Chemoltine Receptor, CCR-5 CC Chemokine Receptor, Prostanoid Receptors, GATA-3 Transcription Factor, Neutrophil Adherence Receptor, MAP Kinase, Interleukin-9 (IL-9), NFAT Transcription Factors, STAT 4, MIP-1α, MCP-2, MCP-3, MCP-4, Cyclophillins, Phospholipase A2, Basic

15

20

25

30

35

40

45

Fibroblast Growth Factor, Metalloproteinase, CSBP/p38 MAP Kinase, Tryptose Receptor, PDG2, Interleukin-3 (IL-3), Interleukin-1β (IL-1β), Cyclosporin A-Binding Protein, FK5-Binding Protein, α4β1 Selectin, Fibronectin, α4β7 Selectin, Mad CAM-1, LFA-1 (CD11a/CD18), PECAM-1, LFA-1 Selectin, C3bi, PSGL-1, E-Selectin, P-Selectin, CD-34, L-Selectin, p150,95, Mac-1 (CD11b/CD18), Fucosyl transferase, VLA-4, CD-18/CD11a, CD11b/CD18, ICAM2 and ICAM3, C5a, CCR3 (Eotaxin Receptor), CCR1, CCR2, CCR4, CCR5, LTB-4, AP-1 Transcription Factor, Protein kinase C, Cysteinyl Leukotriene Receptor, Tachychinnen Receptors (tach R), I6B Kinase 1 & 2, STAT 6, c-mas and NF-Interleukin-6 (NF-IL-6).

- 6. The composition of claim 1, wherein one or more As is(are) substituted by a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have antagonist activity and less than about 0.3 of the adenosine base agonist or antagonist activity at the adenosine  $A_1$ ,  $A_{2a}$ ,  $A_{2b}$  and  $A_3$  receptors.
- 7. The composition of claim 6, wherein the heteroaromatic bases are selected from the group consisting of pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, ar/lsulfoxyl, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkynylaryl, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, heterocycloalkyl and heteroaryl.
- 8. The composition of claim 7, wherein the pyrimidines and purines are substituted at a position selected from the group consisting of positions 1, 2, 3, 4, 7, and 8, and the pyrimidines and purines are selected from the group consisting of the ophylline, caffeine, dyphylline, etophylline, acephylline piperazine, bamifylline, enprofylline and xantine having the chemical formula

R¹ N C 3 C N R³

wherein  $R^1$  and  $R^2$  are independently H, alkyl, alkenyl or alkynyl and  $R^3$  is H, aryl, dicycloalkyl, dicycloalkenyl, dicycloalkynyl, cycloalkynyl, cycloalkynyl, O-cycloalkynyl, O-cycloalkynyl, O-cycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl and mono and dialkylaminoalkyl-N-alkylamino-SO₂ aryl.

- 9. The composition of claim 8, wherein the universal base is selected from the group consisting of 3-nitropyrrole-2'-deoxynucleoside, 5-nitro-indole, 2-deoxyribosyl-(5-nitroindole), 2-deoxyribofuranosyl-|5-nitroindole), 2'-deoxynosine, 2'-deoxynebularine, 6H, 8H-3,4-dihydropyrimido [4,5-c] oxazine-7-one or 2-amino-6-methoxyaminopurine.
- 10. The composition of claim 1, where one or more methylated cytocine(s) (^mC) is(are) substituted for a C in one or more CpG dinocleotide(s), if present in the oligo(s).
- 11. The composition of claim 1, wherein one or more mononucleotide(s) of the oligo(s) is(are) linked or modified by one or more methylphosphonate, 5'-N-carbamate, phosphotriester, phosphorothioate, phosphorodithioate, boranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylmino) (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy (methylimino) (MOMI), 2'-O-methyl, phosphoramidate, C-5 substituted residues, or combinations thereof.
- 12. The composition of claim 11, wherein the mononucleotide residues are linked by phosphorothioate residues.
- 13. The composition of claim 1, wherein the anti-sense oligo comprises about 7 to about 60 mononucleotides.

10

15

20

25

30

35

40

45

- 14. The composition of claim 1, wherein the anti-sense oligo comprises fragments 1, 3, 5, 7 and 8 to 2313 (SEQ. ID NOS: 1 through 2419).
- 15. The composition of claim 1, wherein the anti-sense oligo is operatively linked to, or complexed with, an agent selected from the group consisting of cell internalized or up-taken agents and cell targeting agents.
- 16. The composition of claim 15, wherein the cell internalized or up-taken agent is selected from the group consisting of transferrin, asialoglycoprotein and streptavidin.
- 17. The composition of claim 1, wherein the oligo is operatively linked to a vector that is a prokaryotic or eukaryotic vector.
  - 18. The composition of claim 1, wherein the oligo(s) is(are) hybridized to a ribonucleic acid.
  - 19. A cell, carrying the oligo of claim 1.
- 20. The composition of claim 1, wherein the carrier or diluent is selected from the group consisting of gaseous, liquid, and solid carriers or diluents.
- 21. The composition of claim 20, further comprising an agent selected from the group consisting of other therapeutic agents, surfactants, flavoring and coloring agents, fillers, volatile oils, buffering agents, dispersants, RNA inactivating agents, anti-oxidants, flavoring agents, propellants and preservatives.
- 22. The composition of claim 21, comprising one or more oligo(s), a surfactant, and a carrier or diluent for the oligo and the surfactant.
- 23. The composition of claim 21, wherein the the agent is an RNA inactivating agent which comprises an enzyme, optionally an ribozyme.
- 24. The composition of claim 1, wherein the anti-sense oligo is present in an amount of about 0.01 to about 99.99 w/w of the composition.
  - 25. The composition of claim 1, which is a systemic or topical formulation.
- 26. The formulation of claim 25, selected from the group consisting of oral, intrabuccal, intrapulmonary, rectal, intrauterine, intratunor, intracranial, nasal, intramuscular, subcutaneous, intravascular, intratlecal, inhalable, transdermal, intradermal, intracavitary, implantable, iontophoretic, ocular, vaginal, intraarticular, otical, intravenous, intramuscular, intraglandular, intraorgan, intralymphatic, implantable, slow re ease and enteric coating formulations.
- 27. The formulation of claim 26, which is an oral formulation, wherein the carrier is selected from the group consisting of solid and liquid carriers.
- 28. The oral formulation of claim 27, which is selected from the group consisting of a powder, dragees, tablets, capsules, sprays, aerosols, solutions, suspensions and emulsions, optionally oil-inwater and water-in-cil emulsions.
- 29. The formulation of claim 25, which is a topical formulation, wherein the carrier is selected from the group consisting of creams, gels, ointments, sprays, aerosols, patches, solutions, suspensions and emil lsions.
- 30. The formulation of claim 26, which is an injectable formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions and suspensions, oily solutions and suspensions and oil- n-water and water-in-oil emulsions.
  - 31. The formulation of claim 26, which is a rectal formulation, optionally a suppository.
- 32. The formulation of claim 26, which is a transdermal formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.
- 33. The transdermal formulation of claim 32, which is an iontophoretic transdermal formulation, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions, oily solutions and s ispensions and oil-in-water and water-in-oil emulsions, and wherein the formulation further comprises a transdermal transport promoting agent.
  - 34. The formulation of claim 26, which is provided in an implant, a capsule or a cartridge.

20

25

30

35

40

45

- 35. The composition of claim 20, wherein the carrier is selected from the group consisting of aqueous and alcoholic solutions and suspensions, oily solutions and suspensions and oil-in-water and water-in-oil emulsions.
  - 36. The formulation of claim 20, wherein the carrier comprises a hydrophobic carrier.
- 37. The formulation of claim 36, wherein the carrier comprises lipid vesicles, optionally liposomes, or particles, optionally microcrystals.
- 38. The formulation of claim 37, wherein the carrier comprises liposomes, and the liposomes comprise the anti-sense oligo.
- The formulation of claim 26, which is a respirable or inhalable formulation, optionally an aerosol.
  - 40. The composition of claim 1, in single or multiple unit form.
  - 41. The composition of claim 1, in bulk.
  - 42. A kit, comprising

a delivery device;

in a separate container(s), the oligo(s) of claim 1; and

instructions for adding a carrier and for use of the kit.

- 43. The kit of claim 42, wherein the formulation is a respirable formulation and the delivery device comprises a nebulizer which delivers single metered doses of the formulation.
- 44. The kit of claim 43, wherein the nebulizer comprises an insufflator and the composition is provided in a piercable or openable capsule or cartridge.
- 45. The kit of claim 44, wherein the delivery device comprises a pressurized inhaler and the composition comprises a suspension, solution or dry formulation of the oligo.
- 46. The kit of claim 45, further comprising, in a separate container, an agent selected from the group consisting of other therapeutic agents, surfactants, anti-oxidants, flavoring agents, fillers, volatile oils, dispersants, antioxidants, propellants, preservatives, buffering agents, RNA inactivating agents, cell-internalized or up-taken agents and coloring agents.
- 47. The kit of claim 46, comprising, in separate containers, one or more oligos, one or more surfactants, and a carrier or diluent, and optionally other therapeutic agents.
- 48. The kit of claim 42, wherein the device is a transdermal delivery device, and the kit further comprises a transdermal delivery agent, a transdermal carrier or diluent, and instructions for preparing a transdermal delivery formulation.
- 49. The kit of claim 42, wherein the device is an iontophoretic delivery device, and the kit further comprises iontophoretic agents and instructions for preparing an iontophoretic formulation.
- 50. An in vivo method of delivering an anti-sense oligonucleotide(s) (oligo(s)) to one or more target polynucleotide(s), comprising administering into the respiratory system of a subject one or more oligo(s) that are anti-sense to the polynucleotide(s), in an amount effective to reach and hybridize to the target polynucleotide(s), and reduce the production or availability, or to increase the degradation, of the target mRNA, or to reduce the amount of the target polypeptide present in the lungs.
- 51. An in vivo method of delivering an anti-sense oligonucleotide (oligo) to a target polynucleotide associated with bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction, comprising administering to a subject the composition of claim 1, that comprises an amount of the oligo(s) effective to reach and hybridize to the target polynucleotide(s), and reduce or inhibit the polynucleotide(s)' transcription and/or expression and, thereby, alleviating bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction.
- 52. The method of claim 51, wherein the administered composition comprises an amount of the oligo(s) and is administered under conditions effective for alleviating bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant depletion or hyposecretion, when administered to a mammal.
- 53. The method of claim 51, wherein the composition is administered into the subject's respiratory system.

20

25

30

35

45

- 54. The method of claim 53, wherein the composition is administered directly into the subject's lung (s).
- 55. The method of claim 51, wherein the administered composition comprises an amount of the oligo(s) and is a liministered under conditions effective to reduce the production or availability, or to increase the degrada ion, of the target mRNA or to reduce the amount of the target polypeptide present in the lungs.
  - 56. The method of claim 51, wherein the agent is administered as a respirable aerosol.
- 57. The method of claim 51, wherein the pulmonary obstruction, and/or bronchoconstriction and/or lung inflammation, allergy(ies) and/or surfactant hypoproduction are associated with a disease or condition selected from the group consisting of pulmonary vasoconstriction, inflammation, allergies, asthma, impeded respiration, respiratory distress syndrome (RDS), pain, cystic fibrosis (CF), allergic rhynitis (AR), pulmonary hypertension, emphysema, chronic obstructive pulmonary disease (COPD), pulmonary transplan ation rejection, pulmonary infections, bronchitis, and cancer.
- 58. The method of claim 57, wherein the disease or condition is associated with an allergy(ies), and the oligo is anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene(s) encoding an immunoglobulin(s) and antibody(ies) and immunoglobulin and antibody receptors or are anti-sense to the immunoglobulin(s) and antibody(ies) and immunoglobulin and antibody receptors mRNA; combinations of the oligo(s); and mixtures of the oligos.
- 59. The method of claim 57, wherein the disease or condition is associated with a malignancy or cancer, and the oligo is anti-sense to a target selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intronexon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene(s) and/or encodes a malignancy associated protein, or is(are) anti-sense to the oncogene or malignancy associated protein mRNA; combinations of the oligo(s); and mixtures of the oligos and the oligo(s) is(are) administered in an amount effective to reduce either the level of the protein mRNA or of the malignancy associated protein, or to reduce the growth of or provide beneficial characteristics to malignant cells.
- 60. The method of claim 51, wherein the composition is administered transdermally or systemically.
- 61. The method of claim 60, wherein the composition is administered orally, intracavitarily, intransally, intravaginally, intrauterally, intraarticularly, transdermally, intrabucally, intravenously, subcutaneously, intramuscularly, intravascularly, intratumorously, intraglandularly, intraocularly, intracranial, into an organ, intravascularly, intrathecally, intralymphatically, intraotically, by implantation, by inhalation, intradermally, intrapulmonarily, intraotically, by slow release, by sustained release and by a purp.
  - 62. The method of claim 51, wherein the subject is a non-human mammal.
  - 63. The method of claim 51, wherein the mammal is a human.
- 64. The method of claim 51, wherein the oligo is administered in amount of about 0.005 to about 150 mg/kg body weight.
  - 65. The method of claim 51, wherein the oligo is obtained by
  - (a) selecting fragments of a target nucleic acid having at least 4 contiguous nucleic acids selected from the group consisting of G and C;
  - (b) obtain ng a first oligonucleotide 4 to 60 nucleotides long which comprises the selected fragment and has a C and G nucleic acid content of up to and including about 15%; and
  - (c) obtaining a second oligonucleotide 4 to 60 nucleotides long comprising a sequence which is anti-sense to the selected fragment, the second oligonucleotide having an A base content of up to and including about 15%.
    - 65. The method of claim 64, wherein the oligo is A-free.

15

20

30

40

45

- 66. The method of claim 51, wherein the target is selected from the group consisting of the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intronexon junctions, and regions within 2 to 10 nucleotides of the junctions of an oncogene or a gene encoding a target polypeptide associated with lung airway dysfunction or anti-sense to the polypeptide or oncogene mRNA; combinations of the oligo(s); and mixtures of the oligos; wherein the polypeptide isselected from the group consisting of transcription factors, stimulating and activating factors, interleukins, interleukin receptors, chemokines, chemokine receptors, endogenously produced specific and non-specific enzymes, immunoglobulins, a tibody receptors, central nervous system (CNS) and peripheral nervous and non-nervous system receptors, CNS and peripheral nervous and non-nervous system peptide transmitters, adhesion molecules defensines, growth factors, vasoactive peptides, peptide receptors and binding proteins, and malign mcy associated proteins.
- 67. The method of claim 51, wherein one or more As in the oligo(s) is(are) substituted by a universal base selected from the group consisting of heteroaromatic bases which bind to a thymidine base but have less than about 0.3 of the adenosine base agonist or antagonist activity at an adenosine  $A_1$ ,  $A_{2a}$ ,  $A_{2b}$  and  $A_3$  receptors.
- 68. The method of claim 67, wherein the heteroaromatic bases are selected from the group consisting of pyrimidines and purines, which may be substituted by O, halo, NH₂, SH, SO, SO₂, SO₃, COOH and branched and fused primary and secondary amino, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, alkenoxy, acyl, cycloacyl, arylacyl, alkynoxy, cycloalkoxy, aroyl, arylthio, arylsulfoxyl, halocycloalkyl, alkylcycloalkyl, alkenylcycloalkyl, alkynylcycloalkyl, haloaryl, alkynylaryl, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, which may be further substituted by O, halo, NH₂, primary, secondary and tertiary amine, SH, SO, SO₂, SO₃, cycloalkyl, heterocycloalkyl and heteroaryl.
- 69. The method of claim 67, wherein the pyrimidines and purines are substituted at positions
  1, 2, 3, 4, 7 and 8 and the pyrimidines and purines are selected from the group consisting of theophylline, caffeine, dyphylline, etophylline, acephylline piperazine, bamifylline, enprofylline and xantine having the chemical formula

- wherein R¹ and R² are independently H, alkyl, alkenyl or alkynyl and R³ is H, aryl, dicycloalkyl, dicycloalkenyl, dicycloalkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, O-cycloalkyl, O-cycloalkynyl, NH₂-alkylamino-ketoxyalkyloxy-aryl and mono and dialkylaminoalkyl-N-alkylamino-SO₂ aryl.
  - 70. The method of claim 69, wherein the universal base is selected from the group consisting of 3-nitropyrole-2'-deoxynucleoside, 5-nitro-indole, 2-deoxyribosyl-(5-nitroindole), 2-deoxyribofuranosyl-(5-nitroindole), 2'-deoxyinosine, 2'-deoxynebularine, 6H, 8H-3,4-dihydropyrimido [4,5-c] oxazine-7-one or 2-amino-6-methoxyaminopurine.
    - 71. The method of claim 51, further comprising substituting a methylated cytocine (mC) for a C in one or more CpG dinucleotide(s), if present in the oligo(s).
  - 72. The method of claim 51, further comprising substituting by, or modifying one or more nucleotide residue(s) of the oligo(s) with, methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, phosphorodithioate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methyimino) (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy

15

20

25

30

35

40

(methylimino) (MOMI), methoxy methyl (MOM), 2'-O-methyl, phosphoramidate, C-5 substituted residues, or combinations thereof.

- 73 The method of claim 51, further comprising operatively linking to, or complexing the oligo(s) with, an agent selected from the group consisting of cell internalized and up-taken agent(s) and cell targeting agents.
- 74. The method of claim 73, wherein the cell internalized or up taken agent is selected from the group consisting of transferrin, asialoglycoprotein, and streptavidin.
- 75. The method of claim 73, wherein the cell targeting agent is a vector, optionally a prokaryotic or eukaryotic vector.
- 76. A nethod of treating a disease or condition associated with a target selected associated with a disease or condition afflicting lung airways, comprising conducting the method of claim 56.
- 77. The method of claim 76, wehrein the amount of oligo(s) administered is (are) effective to reduce the production or availability, or to increase the degradation, of the mRNA, or to reduce the amount of the polypeptide present in the lungs.
- 78. The method of claim 77, wherein the amount of oligo(s) administered is (are) effective to reduce the production or availability, or to increase the degradation, of the mRNA, or to increase the amount of the surfac ant present in the subject's lungs.
  - 79. The composition of claim 4, wherein the oligo(s) is(are) anti-sense to the initiation codon, the coding region, the 5'-end and the 3'-end genomic flanking regions, the 5' and 3' intron-exon junctions, and regions within 2 to 10 nucleotides of the junctions of a gene(s) encoding an adenosine A1, A2a, A2b and\or A3 receptor, or anti-sense to the adenosine A1, A2a, A2b and\or A3 receptor mRNA.
  - 80. The composition of claim 79, wherein all nucleotide linking residues are phosphorothioates.
    - 81. The composition of claim 1, wherein the oligo is a DNA.
    - 82. The composition of claim 1, wherein the oligo is an RNA.
  - 83. The composition of claim 1, wherein the oligo comprises about 7 to up to about 60 mononucleotides.
  - 84. The composition of claim 79, wherein the oligo(s) is selected from the group consisting of fragment(s) SEQ ID NOS: 1, 3, 5, 7, 8, and/or 11 through 2419, optionally wherein at least one mononucleotide residue is substituted or modified by methylphosphonate, phosphotriester, phosphorothioate, phosphorodithioate, boranophosphate, formacetal, thioformacetal, thioether, carbonate, carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methyimino), (MMI), methoxymethyl (MOM), methoxyethyl (MOE), methyleneoxy (methylimino) (MOMA), methoxy methyl (MOM), 2'-O-methyl, phosphoramidate residues and/or combinations thereof.
  - 85. The method of claim 51, wherein the oligo is administered topically to the airway, respiratory or pulmonary epithelium of the subject.
  - 86. The composition of claim 1, wherein the oligo has a particle size of about 5-10  $\mu m$  or in the range of 10-500  $\mu m$ .
    - 87. The composition of claim 1, further comprising a propellant.
  - 88. The method of claim 50, wherein the oligo has a particle size of about 5-10  $\mu m$  or in the range of 10-500  $\mu m$ .
    - 89. The method of claim 50, further comprising adding to the oligo a propellant.
- 90. The method of claim 51, wherein the oligo has a particle size of about 5-10  $\mu$ m or in the range of 10-500  $\mu$ m.
  - 91. The method of claim 51, further comprising adding to the oligo a propellant.

10

15

20

25

30

35

40

# LOW ADENOSINE ANTI-SENSE OLIGONUCLEOTIDE, COMPOSITIONS, KIT & METHOD FOR TREATMENT OF AIRWAY DISORDERS ASSOCIATED WITH BRONCHOCONSTRICTION, LUNG INFLAMMATION, ALLERGY(IES) & SURFACTANT DEPLETION

### ABSTRACT OF THE INVENTION

An in vivo method of selectively delivering a nucleic acid to a target gene or mRNA, comprises the topical administration, e. g. to the respiratory system, of a subject of a therapeutic amount of an oligonucleotide (oligo) that is anti-sense to the initiation codon region, the coding region, the 5' or 3' intron-exon junction; or regions within 2 to 10 nucleotides of the junctions of the gene, or antisense to a mRNA complementary to the gene in an amount effective to reach the target polynucleotide and reducing or inhibiting express on. In addition a method of treating an adenosine mediated effect, comprises topically administering to a subject an anti-sense oligo in an amount effective to treat the respiratory, pulmonary, or airway disease. In order to minimize triggering adenosine receptors by their metabolism, the administered oligos have a low content of or are essentially free of adenosine. A pharmaceutical composition and formulations comprise the oligo anti-sense to an adenosine receptor, genes and mRNAs encoding them, genomic and mRNA flanking regions, intron and exon borders and all regulatory and functionally related segments of the genes and mRNAs encoding the polypeptides, their salts and mixtures. Various formulations contain a requisite carrier, and optionally other additives and biologically active agents. The low adenosine or adenosine free (des-A) agent for practicing the method of the invention may be prepared by selecting a target gene(s), genomic flanking region(s), RNA(s) and/or polypeptide(s) associated with a disease(s) or condition(s) afflicting lung airways, obtaining the sequence of the mRNA(s) corresponding to the target gene(s) and/or genomic flanking region(s), and/or RNAs encoding the target polypeptide(s), selecting at least one segment of the mRNA which may be up to 60% free of thymidine (T) and synthesizing one or more anti-sense oligonucleotide(s) to the mRNA segments which are free of adenosine (A) by substituting a universal base for A when present in the oligonucleotide. The agent may be prepared by selection of target nucleic acid sequences with GC running stretches, which have low T content, and by optionally replacing A in the anti-sense oligonucleotides with a "Universal or alternative base". The agent, composition and formulations are used for prophylactic, preventive and therapeutic treatment of ailments associated with impaired respiration, lung allergy(ies) and/or inflammation and depletion lung surfactant or surfactant hypoproduction, such as pulmonary vasoconstriction, inflammation, allergies, allergic rhynitis, asthma, impeded respiration, lung pain, cystic fibrosis, bronchoconstriction. The present treatment is suitable for administration in combination with other treatments, e.g. before, during and after other treatments, including radiation, chemotherapy, antibody therapy and surgery, among others. Alternatively, the present agent is effectively administered prophylactically or therapeutically by itself for conditions without known therapies or as a substitute for therapies exhibiting undesirable side effects. The treatment of this invention may be administered directly into the respiratory system of a subject so that the agent has direct access to the lungs, or by other effective routes of administration, e. g. topically, transdermally, by implantation, etc., in an amount effective to reduce or inhibit the symptoms of the ailment.

H:\epi\06719\epi-0671') PCT Application.doc 394887