Scalable and Provably Secure Self-Revocation Protocols for V2X

Gianluca Scopelliti¹², Christoph Baumann¹, Fritz Alder², Eddy Truyen², Jan Tobias Mühlberg²

¹Ericsson Security Research, Sweden, ²KU Leuven, Belgium

Formal verification: Tamarin prover

	Property	Description
	А	Revocation is deterministic and completes within a fixed time
	В	The revoked credential can be removed from the heartbeat after a fixed time
	С	After a fixed time, other vehicles discard any message signed with the revoked credential

Example: Property A with trusted time in TC

Area C Area B Area B

End-to-End Evaluation

Area A

References

[1] https://www.qorvo.com/design-hub/blog/v2x-in-the-connected-car-of-the-future

Scalable: the number of

heartbeats does not depend

on the number of vehicles

[2] Förster, D., Löhr, H., Zibuschka, J., & Kargl, F. (2015). REWIRE – Revocation Without Resolution: A Privacy-Friendly Revocation Mechanism for Vehicular Ad-Hoc Networks. In M. Conti, M. Schunter, & I. Askoxylakis (Eds.), Trust and Trustworthy Computing (pp. 193–208). Springer International Publishing.
 [3] Whitefield, J., Chen, L., Giannetsos, T., Schneider, S., & Treharne, H. (2017). Privacy-enhanced capabilities for VANETs using direct anonymous attestation. 2017 IEEE Vehicular Networking Conference (VNC), 123–130.

