Diagnosing ML for Applications

Debugging a learning algorithm:

A regularized linear regression model has been implemented for predicting house re-sale price. The parameters in the model are obtained from minimizing the following cost:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{i}^{2} \right]$$

- However, the model does not generalize well (i.e., when the realtor uses your model to list the house on the market, the price is way off.)
- How to improve this model?
 - Collecting more data?
 - Our Using smaller sets of features?
 - Including additional features?
 - O Using polynomial features $(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, ...)$?
 - \circ Increasing/decreasing λ ?

How to address the problem?

- Intuitive idea plot price against features. Not feasible.
- Run tests to evaluate a hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

(just one physical feature)

 x_1 = size of house

 x_2 = number of bedrooms

 x_3 = area safety

 x_4 = school rating

 x_5 = shopping convenience

 x_6 = average income of neighborhood

 x_7 = newly upgraded kitchen

....

Then how to evaluate a hypothesis?
And then how to select a good hypothesis?

Model Selection – prepare datasets

	at	١_	_	_	L.
- 1 1	a	га	C	$\boldsymbol{\omega}$	Γ'

	ı	
Size	Price	_
2104	400	_
1600	330	
2400	369	
1416	232	
3000	540	
1985	300	
1534	315	
1427	199	
1380	212	
1494	243	
	1	

$$(x^{(1)}, y^{(1)})$$

$$(x^{(2)}, y^{(2)})$$

:

$$\left(x^{(m)},y^{(m)}\right)$$

$$\begin{pmatrix}
x_{cv}^{(1)}, y_{cv}^{(1)} \\
x_{cv}^{(2)}, y_{cv}^{(2)}
\end{pmatrix}$$

:

$$\left(x_{cv}^{(m_{cv})},y_{cv}^{(m_{cv})}\right)$$

$$\begin{pmatrix} x_{test}^{(1)}, y_{test}^{(1)} \\ x_{test}^{(2)}, y_{test}^{(2)} \end{pmatrix}$$

:

$$\left(x_{test}^{(m_{test})}, y_{test}^{(m_{test})}\right)$$

Training set

~60% (random shuffle if possible) m: # of training examples

Cross validation (cv) set $^{\sim}20\%$ (random shuffle if possible) m_{cv} : # of cv examples

Testing set

~20% (random shuffle if possible) m_{test} : # of testing examples

Model Selection (through model evaluation)

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
 — to obtain parameters in a given hypothesis

selection

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

$$\rightarrow \text{to evaluate a hypothesis for model}$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^{2}$$

$$\rightarrow \text{to test how well the hypothesis}$$
generalizes

Model Selection (choose the complexity of a hypothesis)

- First obtain model parameters given a structure using training set
- Then evaluate the hypothesis
- A set of models with different complexity then become available for choice

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x \rightarrow \theta^{(1)} \rightarrow J_{CV}(\theta^{(1)})$$

2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} \rightarrow \theta^{(2)} \rightarrow J_{CV}(\theta^{(2)})$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3} \rightarrow \theta^{(3)} \rightarrow J_{CV}(\theta^{(3)})$
:
10. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10} \rightarrow \theta^{(10)} \rightarrow J_{CV}(\theta^{(10)})$

Pick the 3rd order hypothesis if $J_{CV}(\theta^{(3)})$ has small value

Diagnosing Bias vs Variance problem (classical view)

Bias or Variance (let's make an observation)

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

Diagnosis of a bias or variance problem

- Realizing that there is a problem with the hypothesis/model you generated
- Either $J_{cv}(\Theta)$ or $J_{test}(\Theta)$ is high
- Two possibilities: model too simple (underfit) or model too complex (overfit)

Bias problem (underfit)

$$J_{train}(\Theta)$$
 - $high$

$$J_{cv}(\Theta) \sim J_{train}(\Theta)$$

Variance problem (overfit)

$$J_{train}(\Theta)$$
 - low

$$J_{cv}(\Theta) >> J_{train}(\Theta)$$

With the bias vs variance diagnosis tool, we can now apply it to the diagnosis of a learning problem (use regularization problem as an example)

Recall the regularized linear regression problem

$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

The parameters θ_0 θ_1 ... θ_n are determined from minimizing the following cost function,

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \right]$$

How to choose λ

Given a hypothesis with parameters θ_0 θ_1 ... θ_n

$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Obtain parameters θ_0 θ_1 ... θ_n from minimizing the following cost function,

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \right]$$

Evaluation of a Hypothesis

For selecting an appropriate regularization parameter λ , use the following costs:

Training:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Cross Validation:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^2$$

Test:
$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right) - y_{test}^{(i)} \right)^2$$

Choosing the regularization parameter λ

1. Try
$$\lambda = 0$$
 $\rightarrow \theta^{(1)} \rightarrow J_{\text{CV}}(\theta^{(1)})$

2. Try
$$\lambda = 0.01$$
 $\rightarrow \theta^{(2)} \rightarrow J_{\text{cv}}(\theta^{(2)})$

3. Try
$$\lambda = 0.02$$
 $\rightarrow \theta^{(3)} \rightarrow J_{\text{CV}}(\theta^{(3)})$

4. Try
$$\lambda = 0.04$$
 $\rightarrow \theta^{(4)} \rightarrow J_{CV}(\theta^{(4)})$

5. Try
$$\lambda = 0.08$$
 $\rightarrow \theta^{(5)} \rightarrow J_{CV}(\theta^{(5)})$

•••

20. Try
$$\lambda = 10$$
 $\rightarrow \theta^{(20)} \rightarrow J_{\text{CV}} \left(\theta^{(20)} \right)$

Pick $\lambda = 0.08$ say if $J_{\text{CV}}(\theta^{(5)})$ has small value

Diagnosis of a bias or variance problem

- Realizing that there is a problem with the hypothesis/model, which is related to choice of λ
- Either $J_{cv}(\Theta)$ or $J_{test}(\Theta)$ is high
- Two possibilities: model too simple/very large λ (underfit) or model too complex/very small λ (overfit)

Impact of # of samples on bias-variance relationship

Consider a hypothesis with given structure/complexity:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2}$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} (x^{(i)}_{cv}) - y^{(i)}_{cv} \right)^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^{2}$$

Illustration of hypothesis vs # of samples (m)

Learning curves associated with high bias / high variance

High bias problems

If learning suffers from a high bias problem, getting more training data by itself is not likely helpful

Given a hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

High variance problems

Given a hypothesis (the parameters of which are obtained using a small λ for regulation)

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_{100} x_{100}$$

If learning suffers from a high variance problem, getting more training data is likely helpful

Debugging a learning algorithm:

A regularized linear regression model has been implemented for predicting house re-sale price. The parameters in the model are obtained from minimizing the following cost:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} (x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \right]$$

- However, the model does not generalize well (i.e., when the realtor uses your model to list the house on the market, the price is way off.)
- How to improve this model?
 - Collecting more data? addresses high variance problem
 - Using smaller sets of features? addresses high variance problem
 - Including additional features? addresses high bias
 - O Using polynomial features $(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, ...)$? addresses high bias
 - \circ Increasing λ ? addresses high variance
 - \circ Decreasing λ ? addresses high bias

Modern development

- Rich models such as deep neural networks can fit or interpolate the data really well
- Current evidence shows that they also are accurate on test data
- The "double-descent" performance curve instead of the U-shaped bias—variance trade-off curve, for beyond the point of interpolation
- On-going research to understand the phenomenon

