

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 09

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

The idea of computational modeling is never new

Scientists use mathematical models to approximate certain processes (physical or mental), in order to explain and to predict.

What is Cognitive Modeling?

statistics computing

Essentially, all the models are wrong, but some are useful.

- George E. P. Box

Essentially, all the models are wrong imperfect, but some are useful.

REINFORCEMENT LEARNING FRAMEWORK

cognitive model
statistics
computing

cognitive model

statistics computing

The very short history

1998 2018

Boom in Cognitive Modeling

cognitive model

statistics computing

Very recent examples

Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work

A. Westbrook^{1,2,3,*}, R. van den Bosch^{2,3}, J. I. Määttä^{2,3}, L. Hofmans^{2,3}, D. Papadopetraki^{2,3}, R. Cools^{2,3,†}, M. J. Frank^{1,4,†}

+ See all authors and affiliations

Science 20 Mar 2020: Vol. 367, Issue 6484, pp. 1362-1366 DOI: 10.1126/science.aaz5891

3 out of 4 focused on Reinforcement Learning models!

nature reviews neuroscience

Review Article | Published: 12 March 2020

The neural and computational systems of social learning

Andreas Olsson ≅, Ewelina Knapska & Björn Lindström

Nature Reviews Neuroscience 21, 197–212(2020) | Cite this article

Article Open Access Published: 17 March 2020

Neurocomputational mechanisms underpinning aberrant social learning in young adults with low self-esteem

Goodyer, Peter Fonagy, Peter B. Jones, NSPN Consortium, Robb B. Rutledge & Raymond J. Dolan

statistics computing

2-armed bandit task

a simple task often used in the laboratory:

- repeated choice between N options (N-armed bandit)
- ...whose properties (reward amounts, probabilities) are learned through trial-and-error
- ...with a goal in mind: maximize the overall reward

statistics computing

2-armed bandit task

What can be your strategies:

- I. predict the value of each deck
- 2. choose the best
- 3. learn from outcome to update predictions (repeat)

How prediction is shaped by learning?

cognitive model

statistics

computing

statistics computing

statistics

computing

One simple experiment: two choice task

action selection

outcome

what do we know?

what can we measure?

what do we not know?

Data: choice & outcome

Summary stats: choice accuracy

Learning algorithm: RL update

p(choosing the better option)

Rescorla-Wagner Value Update

statistics
computing

Cognitive Model

- cognitive process
- using internal variables and free parameters

Observation Model (Data Model)

- relate model to observed data
- has to account for noise

Rescorla & Wagner (1972)

Rescorla-Wagner (1972)

- The idea: error-driven learning
- Change in value is proportional to the difference between actual and predicted outcome

Robert A. Rescorla

Allan R. Wagner

Value update: $V_t = V_{t-1} + \alpha * PE_{t-1}$ Prediction error: $PE_{t-1} = R_{t-1} - V_{t-1}$

- learning rate

reward prediction error

reward

Expectations on the next trial = the expectation on the current trial + learning rate * prediction error (reward – current expectation)

Understand the learning rate

statistics computing

Value update: $V_t = V_{t-1} + \alpha * PE_{t-1}$

Prediction error: $PE_{t-1} = R_{t-1} - V_{t-1}$

$$V_1 = 0$$

$$V_2 = V_1 + 0.9 * (1 - V_1)$$

$$= 0 + 0.9 * (1 - 0)$$

$$= 0.9$$

Understand the learning rate

statistics computing

Value update: $V_t = V_{t-1} + \alpha * PE_{t-1}$

Prediction error: $PE_{t-1} = R_{t-1} - V_{t-1}$

Understand the learning rate

statistics computing

Value update:
$$V_t = V_{t-1} + \alpha * \mathrm{PE}_{t-1}$$

Prediction error: $\mathrm{PE}_{t-1} = R_{t-1} - V_{t-1}$

$$egin{aligned} V_t &= (1-lpha)\,V_{t-1} + lpha R_{t-1} \ &= (1-lpha)\,(V_{t-2} + lpha\,(R_{t-2} - V_{t-2})) + lpha R_{t-1} \ &= (1-lpha)^{\,t}V_0 + \sum_{i=1}^t (1-lpha)^{\,t-i} lpha R_i \end{aligned}$$

statistics computing

Optimal learning rate?

Rescorla-Wagner Value Update

cognitive model statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE_t$$

Prediction error:

$$PE_t = R_t - V_t$$

choice rule: greedy / ε-greedy / softmax

Choice rule: greedy

statistics computing

$$p(C = a) = \begin{cases} 1, V(a) > V(b) \\ 0, V(a) < V(b) \end{cases}$$

Choice rule: ε-greedy

statistics computing

$$p(C=a) = \begin{vmatrix} 1 - \varepsilon, V(a) > V(b) \\ \varepsilon, V(a) < V(b) \end{vmatrix}$$

Choice rule: softmax

statistics computing

Value difference: $V_t(A) - V_t(B)$

$$= \frac{1}{1 + e^{-\tau * (V_t(A) - V_t(B))}}$$

statistics computing

Choice rule: direct comparison

Rescorla-Wagner Value Update

cognitive model

statistics computing

Value update:

$$V_{t+1} = V_t + \alpha^* PE_t$$

$$PE_t = R_t - V_t$$

choice rule (sigmoid /softmax):

$$p(C=a) = \frac{1}{1+e^{\tau*(v(b)-v(a))}}$$

learning rate

reward prediction error

value

- reward

softmax temperature

cognitive model

statistics

computing

Generalizing RL framework

A. Trial details

ITI

(750-1500ms)

Palminteri et al. (2015)

Lockwood et al. (2016)

Swart et al. (2017)

Will et al. (2017)

AN JEST 101

Happy Computing!