CS 540 Database Management Systems

Relational Schema Design

Integrity constraints

- We like to restrict the data stored in the database.
 - ssn contains only numerical symbols.
 - name does not contain numerical symbols.
 - Tuples with equal ssn values have equal names.

Emp

ssn	name	address
111122222	John	21 Kings St.
111122222	John	234 2 nd St.
	Charles	31 Kings St.
454565761	Charles	2 Harrison St.

• We use **integrity constraints** to express these restrictions.

Functional dependency (FD) & key

• Given set of attributes X, Y in relation R, the **functional dependency** X → Y means that all tuples in R that agree on attributes in X must also agree on Y.

```
ssn → name? Yes
ssn → address? No
```

Emp

ssn	name	address
111122222	•	21 Kings St.
111122222		234 2 nd St.
		31 Kings St.
454565761	Charles	2 Harrison St.

- A key in R is a set of attributes of R that functionally determines *all attributes* in R and *none of its subsets* is a key.
 - ssn? {ssn, address}? {ssn, name, address}?
- Super-key is a set of attributes that contains a key.

How to find FDs and keys?

- From domain and domain experts.
- Logically implied by other FDs.
- Example:

```
movies(title, year, actor, cost, revenue, b-buster) FD_1: title, year, actor\rightarrow cost FD_2: title, year, actor\rightarrow revenue Implied FD_3: title, year, actor\rightarrow cost, revenue
```

- Closure of a set of FDs: all FDs implied by a set of FDs.
- Generate them using Armstrong's axioms.

Armstrong's axioms

• Reflexivity: $A_1, ..., A_n \rightarrow A_1$ generally, $A_1, ..., A_n \rightarrow A_i, ..., A_j$; $1 \le i, j \le n$ (trivial FD)

• Augmentation:

If
$$A_1,..., A_n \rightarrow B_1,..., B_m$$
 then $A_1,..., A_n, C_1,..., C_k \rightarrow B_1,..., B_m, C_1,..., C_k$

• Transitivity:

If
$$A_1,..., A_n \rightarrow B_1,..., B_m$$
 and $B_1,..., B_m \rightarrow C_1,..., C_k$
then $A_1,..., A_n \rightarrow C_1,..., C_k$

Computing the closure of a set of FDs (U)

- U + = U.
- Repeat
 - Apply reflexivity and augmentation to each FD in U+
 and add the resulting FDs to U+.
 - Apply transitivity to each pairs of FDs in U+ and add the resulting FDs to U+.
- Until U+ does not change anymore.

Useful rules

• They are derived from axioms and we may use them to derive implied FDs faster.

Decomposition

If
$$A_1, ..., A_n \rightarrow B_1, ..., B_m$$
 then $A_1, ..., A_n \rightarrow B_1, A_1, ..., A_n \rightarrow B_2, ...,$ and $A_1, ..., A_n \rightarrow B_m$.

Proof: ?

Union

If
$$A_1, ..., A_n \rightarrow B_1, ..., and A_1, ..., A_n \rightarrow B_m$$
 then $A_1, ..., A_n \rightarrow B_1, ..., B_m$.

Proof: ?

Computing the closure of a set of FDs

```
movies(title, year, actor, cost, revenue, b-buster)
       FD_1 title, year, actor \rightarrow cost
       FD_2 title, year, actor \rightarrow revenue
       FD<sub>3</sub> cost, revenue →b-buster
Apply union on FD_1 and FD_2:
    FD_4: title, year, actor \rightarrow cost, revenue
Apply transitivity on FD_4 and FD_3:
    FD<sub>5</sub>: title, year, actor \rightarrow b-buster
Apply union on FD_4 and FD_5:
    FD<sub>5</sub>: title, year, actor \rightarrow cost, revenue, b-buster
```


Enforcing FDs

- Update 'John' to 'Richard' in the first tuple.
 - violates $ssn \rightarrow name$.
 - update anomaly.

Emp

ssn	name	address
111122222		21 Kings St.
111122222	John	234 2 nd St.
454565761	Charles	31 Kings St.
454565761	Charles	2 Harrison St.

- Write a program that checks the database after each update for violations of all FDs.
 - Large relations and many FDs => inefficient.

More problems

- Delete John's addresses => lose his ssn and name.
 - deletion anomaly.
- Insert a tuple with new ssn and name but no address.
 - insertion anomaly.

-		
ssn	name	address
111122222	John	21 Kings St.
111122222	John	234 2 nd St.
454565761	Charles	31 Kings St.
454565761	Charles	2 Harrison St.

- One may use NULL values to solve these problems.
 - They do not necessarily indicate lack of knowledge.
 - It is hard to write correct SQL queries over the database.

Normalization

• Transform the schema to a schema without update, deletion, and insertion anomalies.

Emp

ssn	name	address
111122222	John	21 Kings St.
111122222	John	234 2 nd St.
		31 Kings St.
454565761	Charles	2 Harrison St.

Emp-name

ssn	name
111122222	John
454565761	Charles

Emp-addr

	ssn	address
ĺ	111122222	21 Kings St.
	111122222	234 2 nd St.
	454565761	31 Kings St.
	454565761	2 Harrison St.

- update anomaly?
- deletion anomaly?
- insertion anomaly?

Normalization

• Given schema S_1 , find schema S_2 that does not have update/deletion/insertion anomalies.

Emp

ssn	name	address
111122222	John	21 Kings St.
111122222	John	234 2 nd St.
454565761	Charles	31 Kings St.
454565761	Charles	2 Harrison St.

Emp-name

ssn	name
111122222	John
454565761	Charles

Emp-addr

ssn	address
	21 Kings St.
111122222	234 2 nd St.
454565761	31 Kings St.
454565761	2 Harrison St.

$$S_1 = (\{Emp\}, \{ssn \rightarrow name\})$$

 $S_2 = (\{Emp-name, Emp-addr\}, \{ssn \rightarrow name\})$

• Schema S_2 is in a normal form.

Many normal forms

	Normal form	Defined by	In
1NF	First normal form	Two versions: E.F. Codd (1970), C.J. Date (2003)	1970 ^[1] and 2003 ^[9]
2NF	Second normal form	E.F. Codd	1971 ^[2]
3NF	Third normal form	Two versions: E.F. Codd (1971), C. Zaniolo (1982)	1971 ^[2] and 1982 ^[10]
EKNF	Elementary Key Normal Form	C. Zaniolo	1982 [10]
BCNF	Boyce-Codd normal form	Raymond F. Boyce and E.F. Codd	1974 [11]
4NF	Fourth normal form	Ronald Fagin	1977 ^[12]
5NF	Fifth normal form	Ronald Fagin	1979 ^[13]
DKNF	Domain/key normal form	Ronald Fagin	1981 ^[14]
6NF	Sixth normal form	C.J. Date, Hugh Darwen, and Nikos Lorentzos	2002 [15]

Boyce-Codd normal form (BCNF)

- Relation R is in **BCNF**, if and only if:
 - For each non-trivial FD $X \rightarrow Y$, X is a super-key of R.
- Every attribute depends only on super-keys.
- Example: ssn→name
 - ssn is not a super-key.
 - *Employee* is **not** in BCNF.
- Decompose *Emp*.
 - super-key of *Emp-name*?
 - super-key of *Emp-addr?*
 - Schema is in BCNF.

Emp

ssn	name	address
111122222		21 Kings St.
111122222	J ~	234 2 nd St.
454565761	Charles	31 Kings St.
454565761	Charles	2 Harrison St.

Emp-name

ssn	name
111122222	John
454565761	Charles

Emp-addr

ssn	address
111122222	21 Kings St.
111122222	234 2 nd St.
454565761	31 Kings St.
454565761	2 Harrison St.

BCNF decomposition of R

- Find the closure of FDs in R.
- Find the keys for R.
- Pick an FD A B that violates the BCNF condition in R.
 - select the largest possible B.
- Decompose relation R to relational R1 and R2.

• Repeat until there is no BCNF violation left.

BCNF decomposition example

```
Emp2(ssn, name, street, city, state, zip)
  FD_1 ssn\rightarrow name
  FD_2 zip\rightarrow state
Key: {ssn, street, city, zip}
FD<sub>1</sub> violates BCNF.
  Emp2(ssn, name)
  Emp-addr(ssn, street, city, state, zip)
FD<sub>2</sub> violates BCNF.
   Emp2(ssn, name)
   Emp-addr(ssn, street, city, zip)
   Location(zip, state)
```


The danger of normalization

- Losing information.
- We like to preserve the information stored in R.
 - Recover the tuples in R from R's BCNF decomposition:
 lossless decomposition
 - Recover all FDs in R from its BCNF decomposition: dependency preserving
- Check these condition after normalizing a relation.

Lossless decomposition

If (R1, R2) is a decomposition of R, then
 Join (R1, R2) = R for all instances of R, R1, R2.

• Example: $R(A, B, C) \rightarrow R1(A, B), R2(A, C)$

Α	В	С
a1	b1	c1
a1	b2	c2

Α	В
a1	b1
a1	b2

Α	С
a1	c1
a1	c2

А	С
a1	c1
a1	c2

A	В
a1	b1
a1	b2

Α	В	С
a1	b1	c1
a1	b1	c2
a1	b2	c1
a1	b2	c2

we get bogus tuples, not a lossless decomposition.

BCNF decomposition is lossless

• **Example:** $\{R(A, B, C), A \rightarrow B\}$ $\{R1(A, B), R2(A, C), A \rightarrow B\}$

Α	В	С		Α	В	Α	С
a1	b1	c1	→	a1	b1	a1	c1
a1	b1	c2				a1	c2

Α	С	Α	В	→	Α	В	C
a1	c1	a1	b1	_	a1	b1	c1
a1	c2			•	a1	b1	c2

The join does not produce bogus tuples. Informally speaking, if the join attribute is a key, we are OK. It is true for all BCNF decompositions.

BCNF is not dependency preserving

Emp(ssn, name, address), ssn→name, name, address→ssn
BCNF decomposition:

Emp-name(ssn, name) ssn→name
Emp-addr(ssn, address) No FD!

not dependency preserving

• What will happen?

Emp-name

ssn	name
111122222	John
444455555	John

Emp-addr

ssn	address
111122222	21 Kings St.
111122222	21 Kings St.
444455555	21 Kings St.
444455555	21 Kings St.

Emp

	ssn	name	address
	111122222	John	21 Kings St.
>	111122222	John	21 Kings St.
	444455555	John	21 Kings St.
	444455555	John	21 Kings St.

satisfies the dependencies

does **not** satisfies the dependencies

Given FD A →B, If normalization puts A and B in different relations, it is not dependency preserving.

Dependency preserving normal form: 3NF

- Relation R is in 3^{rd} normal form if for each non-trivial FD $X \rightarrow Y$ in R
 - X is a super-key or
 - Y is a part of a key.
- Every non-key attribute must depend on a key, the whole key, and nothing but the key!

• Example:

```
Emp(ssn, name, address)
ssn→name, address, name→ssn
```

- 3NF but not BCNF.
- 3NF is a lossless decomposition and preserves dependencies.

Minimal basis (minimal cover)

- The FD sets U1 and U2 are equivalent if and only if U1+=U2+.
- U2 is a minimal basis for U1 iff:
 - U2 and U1 are equivalent.
 - The FDs in **U2** have only one attribute in their right hand side.
 - If we remove an FD from U2 or an attribute from an FD in U2,
 U2 will not be equivalent to U1.
- Intuition: a smaller set of FDs with fewer attributes that implies U+.

Finding minimal basis of U

- 1. Standard form: replace each FD $A_1,...,A_n \rightarrow B_1,...,B_m$ by $A_1,...,A_n \rightarrow B_1,...,A_n \rightarrow B_m$
- 2. Minimize left hand side: for each attribute A_j and each FD $A_1, ..., A_j, ..., A_n \rightarrow B_i$, check if you can remove A_j from the FD while preserving U+.
- 1. **Delete redundant FD:** check each remaining FD to see if you can remove it while preserving U+.
- The minimal basis for **U** is not necessarily unique.

Finding minimal basis of U

• Example:

$$U = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$$

- 1. It is already in standard form.
- 2. We can remove A from $\{AB \rightarrow D\}$ to get $U = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
- 3. We can remove $B \rightarrow A$ as it is implied by transitivity from others.

3NF synthesizing algorithm

Input: relation R and set of FDs U.

Output: Normalized schema S

- 1. Find a minimal basis **M** for **U**.
- 2. For each FD A \rightarrow B in M, if AB is not covered by any relation in S, add Ri = (A,B) to S.
- 3. If none of the relations in S contain a super-key for R, add a relation to S whose attributes form a key for R.
- Why step 3? consider relation R(A,B,C) with U={A→B, C→B}.
 Minimal basis of U is U : 3NF = R₁(A,B) R₂(C,B)
 lossless join property? 3NF = R₁(A,B) R₂(C,B) R₃(A,C)

3NF versus BCNF

- BCNF eliminates more redundancies than 3NF.
- Normalization must be dependency preserving, unless there is a strong reason.
- Try BCNF, but if it is not dependency preserving use 3NF.

De-normalization

- Normalization improves data quality, but it has some drawbacks.
 - performance: normalized schemas require more joins.
 - readability: normalized schemas are hard to understand.
 - they contains larger numbers of relations.
 - they place related attributes in different relations.
- DB designers find the trade-off.
 - No write in OnLine Analytical Processing (OLAP) → argues against normalization.
 - write in OnLine Transaction Processing (OLTP) → argues for normalization.

