LiteBIRD r statistics

Aditya Rotti

```
Case
                                               Moments
cNILC00
                                               I_{\rm CMB}
cNILC01
                                              I_{\rm CMB}; I_{\rm sync}
cNILC02
                                               I_{\rm CMB}; I_{\rm dust}
cNILC03
                                              I_{\rm CMB}; I_{\rm sync}; I_{\rm dust}
                                              I_{\text{CMB}}; I_{\text{dust}}; \frac{dI_{\text{dust}}}{d\beta}
cNILC04
                                           I_{\mathrm{CMB}}; I_{\mathrm{sync}}; I_{\mathrm{dust}}; \frac{dI_{\mathrm{sync}}}{d\beta}

I_{\mathrm{CMB}}; I_{\mathrm{sync}}; I_{\mathrm{dust}}; \frac{dI_{\mathrm{sync}}}{d\beta} (H)

I_{\mathrm{CMB}}; I_{\mathrm{sync}}; I_{\mathrm{dust}}; \frac{dI_{\mathrm{dust}}}{d\beta}
cNILC05
cNILC06
cNILC07
                                              I_{\rm CMB}; I_{\rm sync}; I_{\rm dust}; \overline{\frac{d\beta}{d\beta}} (H)
{
m cNILC08}
                                             I_{\text{CMB}} ; I_{\text{sync}} ; I_{\text{dust}} ; \frac{dI_{\text{aust}}}{d\beta} \text{ (H)}
I_{\text{CMB}} ; I_{\text{sync}} ; I_{\text{dust}} ; \frac{dI_{\text{sync}}}{d\beta} ; \frac{dI_{\text{dust}}}{d\beta}
I_{\text{CMB}} ; I_{\text{sync}} ; I_{\text{dust}} ; \frac{dI_{\text{sync}}}{d\beta} ; \frac{dI_{\text{dust}}}{d\beta} ; \frac{dI_{\text{dust}}}{dT}
cNILC09
cNILC10
                                                                                                                                 \frac{dI_{\text{sync}}}{d\beta}, \frac{dI_{\text{dust}}}{d\beta}, \frac{dI_{\text{dust}}}{dT},
cNILC11
                                              I_{\text{CMB}}; I_{\text{sync}}; I_{\text{dust}};
                                             I_{\text{CMB}}; I_{\text{sync}}; I_{\text{dust}}; \frac{d}{d\beta}; \frac{d}{d\beta}; \frac{d}{d\beta}; \frac{d}{dT}; I_{\text{CMB}}; I_{\text{sync}}; I_{\text{dust}}; \frac{dI_{\text{sync}}}{d\beta}; \frac{dI_{\text{dust}}}{d\beta}; \frac{dI_{\text{dust}}}{dT};
cNILC12
                                             \begin{split} I_{\text{CMB}} \; ; \; I_{\text{sync}} \; ; \; I_{\text{dust}} \; ; \; \frac{dI_{\text{sync}}}{d\beta} \; ; \; \frac{dI_{\text{dust}}}{d\beta} \; ; \\ I_{\text{CMB}} \; ; \; I_{\text{sync}} \; ; \; I_{\text{dust}} \; ; \; \frac{dI_{\text{sync}}}{d\beta} \; ; \; \frac{dI_{\text{dust}}}{d\beta} \; ; \end{split}
                                                                                                                                                                                                                                                                                            \begin{array}{l} \frac{d^2I_{\rm dust}}{d\beta dT} \\ \frac{d^2I_{\rm dust}}{d\beta dT} \end{array} ;
                                                                                                                                                                                                                           d^2 I_{\rm sync} .
cNILC13
                                                                                                                                                                                                                           \frac{d^2\beta}{d^2I_{\rm sync}}
cNILC14
```

		22		<i>m</i>	SNR
Case	Alens	$r_{ m bias}$	σ_r	r_{95}	SNR
	Alens				
cNILC00	0.0	0.02109	0.00052	NaN	40.73629
	0.3	0.02003	0.00056	NaN	35.93392
	0.6	0.01869	0.00059	NaN	31.77255
	0.9	0.01790	0.00065	NaN	27.36483
cNILC01	0.0	0.03007	0.00076	NaN	39.50028
	0.3	0.02981	0.00079	NaN	37.82447
	0.6	0.02955	0.00094	NaN	31.45093
	0.9	0.02905	0.00091	NaN	31.93785
cNILC02	0.0	0.02381	0.00056	NaN	42.72864
	0.3	0.02280	0.00061	NaN	37.68090
	0.6	0.02146	0.00062	NaN	34.88065
	0.9	0.02073	0.00069	NaN	30.21976
cNILC03	0.0	0.02280	0.00060	NaN	38.14262
	0.3	0.02260	0.00064	NaN	35.53196
	0.6	0.02222	0.00072	NaN	30.87493
	0.9	0.02184	0.00079	NaN	27.75223
cNILC04	0.0	0.01869	0.00072	NaN	25.82096
	0.3	0.01869	0.00075	NaN	25.06234
	0.6	0.01869	0.00080	NaN	23.25812
	0.9	0.01869	0.00088	NaN	21.25918
cNILC05	0.0	0.04879	0.00187	NaN	26.07391
	0.3	0.04879	0.00190	NaN	25.74046
	0.6	0.04837	0.00177	NaN	27.30459
	0.9	0.04837	0.00188	NaN	25.73093
cNILC06	0.0	0.02573	0.00066	NaN	38.71207
	0.3	0.02465	0.00070	NaN	35.40307
	0.6	0.02360	0.00077	NaN	30.84190
	0.9	0.02320	0.00085	NaN	27.16119
cNILC07	0.0	0.01642	0.00096	NaN	17.08166
	0.3	0.01642	0.00096	NaN	17.10652
	0.6	0.01642	0.00096	NaN	17.15928
	0.9	0.01656	0.00102	NaN	16.22199
cNILC08	0.0	0.02128	0.00089	NaN	23.79307
	_				

Continued on next page

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.3	0.01986	0.00093	NaN	21.29457
	0.6	0.01837	0.00094	NaN	19.46130
	0.9	0.01774	0.00101	NaN	17.65515
cNILC09	0.0	0.02664	0.00313	NaN	8.50872
	0.3	0.02664	0.00313	NaN	8.49936
	0.6	0.02641	0.00304	NaN	8.69549
	0.9	0.02641	0.00305	NaN	8.64685
cNILC10	0.0	0.00524	0.00543	0.01706	0.96652
	0.3	0.00524	0.00543	0.01706	0.96651
	0.6	0.00524	0.00543	0.01706	0.96648
	0.9	0.00524	0.00543	0.01706	0.96643
cNILC11	0.0	0.00204	NaN	NaN	NaN
	0.3	0.00204	NaN	NaN	NaN
	0.6	0.00204	NaN	NaN	NaN
	0.9	0.00204	NaN	NaN	NaN
cNILC12	0.0	0.01192	NaN	NaN	NaN
	0.3	0.01192	NaN	NaN	NaN
	0.6	0.01192	NaN	NaN	NaN
	0.9	0.01192	NaN	NaN	NaN
cNILC13	0.0	0.10000	NaN	NaN	NaN
	0.3	0.10000	NaN	NaN	NaN
	0.6	0.10000	NaN	NaN	NaN
	0.9	0.10000	NaN	NaN	NaN
cNILC14	0.0	0.10000	NaN	NaN	NaN
	0.3	0.10000	NaN	NaN	NaN
	0.6	0.10000	NaN	NaN	NaN
	0.9	0.10000	NaN	NaN	NaN