付表 主要な MATLAB 関数

一般的な MATLAB 関数

■ コマンドウィンドウの表示形式

関数名	使用例	説明
clc	clc	コマンドウィンドウの表示をクリア
format	format loose	空行を追加して表示 (標準の設定)
	format compact	余分な空行を抑制して表示
	format short 小数点以下 4 桁の short 型固定小数点で表示 (標準の語	
	format short e short型の指数形式で表示	
	format long	double 値の場合は小数点以下 15 桁,single 値の場合は小
	数点以下 7 桁の long 型固定小数点で表示	
	format long e	long 型の指数形式で表示

■ コマンドウィンドウでの入出力

関数名	使用例	説明
disp	<pre>disp('text')</pre>	コマンドウィンドウに text を表示
pause	pause	キーボードから何か入力されるまで停止
input	y = input('text')	コマンドウィンドウに text を表示し, キーボー
		ドから入力された値を y に代入
fprintf	<pre>fprintf('text: %5.3f\fmathbf{Y}n',x)</pre>	コマンドウィンドウに表示 (C 言語の関数 printf
		と同様の使い方)
		• %d, %5d:整数 • %f, %5.3f: 実数
		• %e, %5.3e: 指数形式の実数
		• ¥n:改行 • ¥t:タブ

■ ワークスペース変数の保存と読み込み

関数名	使用例	説明
who	who	ワークスペース変数を表示
whos	whos	ワークスペース変数の名前、サイズ、
		型を表示
clear	clear	ワークスペース変数すべてを消去
	clear x y	ワークスペース変数のうち x, y のみ
		を消去
save	<pre>save('filename')</pre>	ワークスペース変数すべてを mat
	save filename	ファイル filename.mat に保存
	<pre>save('filename','x','y')</pre>	ワークスペース変数のうち x, y のみ
	save filename x y	を mat ファイル filename.mat に保
		存

T2 付表 主要な MATLAB 関数

関数名	使用例	説明
load	load('filename')	mat ファイル filename.mat に保存
	load filename	されている変数すべてをワークスペー
		スに読み込み
	<pre>load('filename','x','y')</pre>	mat ファイル filename.mat に保存
	load filename x y	されている変数のうち x, y のみを
		ワークスペースに読み込み
writematrix	<pre>writematrix(data,'filename.xlsx')</pre>	Excel ファイル "filename.xlsx"
		として data を保存
	writematrix(data,'filename.txt')	テキストファイル "filename.txt"
	<pre>writematrix(data,'filename')</pre>	として data を保存
readmatrix	<pre>data = readmatrix('filename.xlsx')</pre>	Excel ファイル "filename.xlsx"
		からデータを読み込み, data として
		定義
	<pre>data = readmatrix('filename.txt')</pre>	テキストファイル "filename.txt"
	<pre>data = readmatrix('filename')</pre>	からのデータの読み込み, data とし
		て定義

■ 基本的な数学関数

関数名	使用例	説明
sin	sin(x)	正弦関数 $\sin x$ (x [rad])
cos	cos(x)	余弦関数 $\cos x$ (x [rad])
tan	tan(x)	正接関数 $\tan x$ $(x [rad])$
asin	asin(x)	逆正弦関数 $\sin^{-1} x$ [rad]
acos	acos(x)	逆余弦関数 $\cos^{-1} x$ [rad]
atan	atan(x)	逆正接関数 $\theta = \tan^{-1} x \text{ [rad] } (-\pi/2 \le \theta \le \pi/2)$
atan2	atan2(y,x)	$\tan \theta = y/x$ となる θ [rad] $(-\pi \le \theta \le \pi)$
exp	exp(x)	指数関数 e^x
log	log(x)	自然対数関数 $\log_e x$, $\ln x$
log10	log10(x)	常用対数関数 $\log_{10} x$
sqrt	sqrt(x)	平方根 \sqrt{x}
real	real(x)	複素数 $x = a + jb$ の実部 $a = \text{Re}[x]$
imag	imag(x)	複素数 $x = a + jb$ の虚部 $b = \operatorname{Im}[x]$
abs	abs(x)	実数 x の絶対値 $ x $,複素数 $x=a+jb$ の大きさ $ x =\sqrt{a^2+b^2}$
angle	angle(x)	複素数 $x = a + jb$ の偏角 $\theta = \tan^{-1}(b/a)$ [rad] $(-\pi \le \theta \le \pi)$
mod	mod(m,n)	整数 m を整数 n で割ったときの余り

■ 等間隔のデータ列の生成

関数名	使用例	説明
linspace	<pre>x = linspace(xmin,xmax,n)</pre>	$x_{\min} \le x \le x_{\max}$ の範囲で等間隔に n 個のデータ
		x を生成
logspace	<pre>w = logspace(dmin,dmax,n)</pre>	$10^{d_{\min}} \le \omega = 10^d \le 10^{d_{\max}}$ の範囲で対数スケー
		ルで等間隔に n 個のデータ ω を生成 $(d_{\min} \leq d \leq$
		$d_{ m max}$ の範囲で等間隔に n 個のデータ d を生成)

■ 基本的な行列の生成

関数名	使用例	説明
eye	eye(n)	$n \times n$ の単位行列 $oldsymbol{I}$
zeros	zeros(m,n)	$m \times n$ の零行列 $oldsymbol{O}$
diag	D = diag([d1 d2 d3])	対角行列 $\mathbf{D} = \operatorname{diag} \{ d_1, d_2, \cdots, d_n \}$
blkdiag	D = blkdiag(D1,D2,D3)	ブロック対角行列
		$oldsymbol{D} = \operatorname{block-diag} ig\{ oldsymbol{D}_1, oldsymbol{D}_2, \cdots, oldsymbol{D}_n ig\}$
		$\coloneqq \begin{bmatrix} D_1 & & & 0 \\ & D_2 & & 0 \\ & & \ddots & \\ 0 & & & D_n \end{bmatrix}$

■ 基本的な行列の解析・操作

関数名	使用例	説明
size	[m n] = size(A)	$m \times n$ 行列 $oldsymbol{A}$ のサイズ m, n
length	n = length(x)	ベクトル $oldsymbol{x}$ の次元 $oldsymbol{n}$
	N = length(A)	$m \times n$ 行列 \mathbf{A} の最大次元 $N = \begin{cases} n & (n \ge m) \\ m & (n \le m) \end{cases}$
inv	inv(A)	正方行列 $m{A}$ の逆行列 $m{A}^{-1}$
pinv	pinv(A)	$m \times n$ 行列 \boldsymbol{A} の疑似逆行列 $\boldsymbol{A}^+ := (\boldsymbol{A}^\top \boldsymbol{A})^{-1} \boldsymbol{A}^\top \ (m \ge 1)$
		n) もしくは $oldsymbol{A}^+ := oldsymbol{A}^ op (oldsymbol{A}oldsymbol{A}^ op)^{-1} \ (m \leq n)$
eig	p = eig(A)	$n imes n$ 行列 $oldsymbol{A}$ の固有値 $p_i \; (i=1,2,\ldots,n)$ を集約した縦べ
		クトル $\boldsymbol{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}^{\top}$
	[V P] = eig(A)	$n \times n$ 行列 $m{A}$ の固有値 p_i ,固有ベクトル $m{v}_i$ からなる $n \times n$ 行
		列 $P = \operatorname{diag}\{p_1, p_2, \cdots, p_n\}, V = [v_1 \ v_2 \ \cdots \ v_n]$
rank	rank(A)	行列 \boldsymbol{A} のランク (階数) $\operatorname{rank} \boldsymbol{A}$
det	det(A)	$n \times n$ 行列 $oldsymbol{A}$ の行列式 $\det oldsymbol{A}$ (もしくは $ oldsymbol{A} $)
poly	c = poly(A)	$n \times n$ 行列 $oldsymbol{A}$ の特性多項式
		$ p\boldsymbol{I} - \boldsymbol{A} = a_n p^n + \dots + a_1 p + a_0$
		の係数を集約した横ベクトル $oldsymbol{c} = egin{bmatrix} a_n & \cdots & a_1 & a_0 \end{bmatrix}$

T4 付表 主要な MATLAB 関数

関数名	使用例	説明
roots	p = roots(c)	横ベクトル $\mathbf{c} = \begin{bmatrix} a_n & \cdots & a_1 & a_0 \end{bmatrix}$ の要素を係数とした n 次
		方程式
		$a_n p^n + \dots + a_1 p + a_0 = 0$
		の解 $p = p_i$ を集約した縦ベクトル $\mathbf{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}^\top$
max	xmax = max(x)	n 次元ベクトル $oldsymbol{x}$ の最大要素 $x_{ ext{max}}$
	[xmax imax] = max(x)	n 次元ベクトル $oldsymbol{x}$ の最大要素 $x_{ ext{max}}$ ($oldsymbol{x}$ の $i_{ ext{max}}$ 番目の要素)
min	xmin = min(x)	n 次元ベクトル $oldsymbol{x}$ の最小要素 x_{\min}
	[xmin imin] = min(x)	n 次元ベクトル $oldsymbol{x}$ の最小要素 x_{\min} ($oldsymbol{x}$ の i_{\min} 番目の要素)

■ グラフの描画・操作

関数名	使用例	説明
figure	figure(i)	i番目のフィギュアウィンドウを作成または指定
subplot	<pre>subplot(m,n,i)</pre>	フィギュアウィンドウを $m \times n$ に分割し、 i 番
		目の場所を指定
close	close(i)	i番目のフィギュアウィンドウを閉じる
	close all	すべてのフィギュアウィンドウを閉じる
plot	plot(x,y)	横軸を x , 縦軸を y としたグラフの描画
-	plot(x1,y1,x2,y2)	複数のグラフを描画
plot3	plot3(x,y,z)	3 次元グラフの描画
-	plot3(x1,y1,z1,x2,y2,z2)	複数の3次元グラフを描画
semilogx	semilogx(x,y)	横軸を $\log_{10} x$,縦軸を y としたグラフの描画
-	semilogx(x1,y1,x2,y2)	複数のグラフを描画
semilogy	semilogy(x,y)	横軸を x , 縦軸を $\log_{10}y$ としたグラフの描画
	semilogy(x1,y1,x2,y2)	複数のグラフを描画
loglog	loglog(x,y)	横軸を $\log_{10} x$,縦軸を $\log_{10} y$ としたグラフの
		描画
-	loglog(x1,y1,x2,y2)	複数のグラフを描画
title	title('text')	グラフの描画枠の上方にタイトル text を表示
xlabel	<pre>xlabel('text')</pre>	横軸にラベル text を表示
ylabel	ylabel('text')	縦軸にラベル text を表示
legend	legend('text')	凡例の表示
	<pre>legend('text1','text1')</pre>	複数のグラフの凡例を表示
xlim	<pre>xlim([xmin xmax])</pre>	横軸の範囲を $x_{\min} \le x \le x_{\max}$ に設定
ylim	<pre>ylim([ymin ymax])</pre>	縦軸の範囲を $y_{\min} \leq y \leq y_{\max}$ に設定
axis	axis([xmin xmax ymin ymax])	横軸の範囲を $x_{\min} \le x \le x_{\max}$, 縦軸の範囲を
		$y_{\min} \le y \le y_{\max}$ に設定
	axis normal	枠を長方形にする (標準の設定)
	axis square	枠を正方形にする
	axis on	枠を表示 (標準の設定)
	axis off	枠を非表示 (グラフのみを表示)

関数名	使用例	説明
xticks	xticks(xmin:h:xmax)	横軸の目盛りを x_{\min} から x_{\max} まで h 刻みに
		設定
yticks	<pre>yticks(ymin:h:ymax)</pre>	縦軸の目盛りを y_{\min} から y_{\max} まで h 刻みに
		設定
grid	grid on	補助線の表示
	grid off	補助線の非表示
hold	hold on	グラフの保持 (グラフの重ね描きを許可)
	hold off	グラフの解放 (グラフの重ね描きを不許可)
clf	clf(i)	i番目のフィギュアウィンドウのグラフを消去

■ 制御文

関数名	使用例	説明
if	if i > 0	分岐処理
	<pre>fprintf('positive number\forall n')</pre>	
	elseif i < 0	
	<pre>fprintf('negative number\forall'n')</pre>	
	else	
	fprintf('zero¥n')	
	end	
for	for i = 1:10	指定した回数の反復処理
	fprintf('i = %d\frac{y}n')	
	end	
while	i = 1;	条件が true (真) の場合に反復
	while i <= 10	
	fprintf('i = %d\frac{y}n')	
	i = i + 1;	
	end	
break	i = 1;	反復処理を強制終了
	while true	
	if i > 5	
	<pre>fprintf('i = %d\forall n')</pre>	
	break	
	end	
	i = i + 1;	
	end	

数式処理における MATLAB 関数

関数名	使用例	説明
syms	syms x y	x,yを複素数のシンボリック変数として定義
	syms x y real	x,yを実数のシンボリック変数として定義
	syms x y positive	x,yを正数のシンボリック変数として定義
	syms x y integer	x,yを整数のシンボリック変数として定義
simplify	simplify(fx)	f(x) を単純化
collect	collect(fx)	f(x) をべき乗でまとめる
	<pre>collect(fx,x)</pre>	f(x) を x に関するべき乗でまとめる
factor	factor(fx)	f(x) を因数分解したときの因数
	<pre>prod(factor(fx))</pre>	f(x) を因数分解
expand	expand(fx)	f(x) の展開
subs	subs(fx,x,a)	$f(x)$ の x に a を代入 $(f(x) _{x=a})$
limit	limit(fx,x,a)	極限 $\lim_{x \to a} f(x)$
fplot	fplot(fx)	グラフの描画
	<pre>fplot(fx,[xmin xmax])</pre>	グラフの描画 (横軸の範囲を指定)
laplace	fs = laplace(ft)	$f(t)$ のラプラス変換 $f(s) = \mathcal{L}[f(t)]$
ilaplace	ft = ilaplace(fs)	$f(s)$ の逆ラプラス変換 $f(t) = \mathcal{L}^{-1} \big[f(s) \big]$
partfrac	partfrac(fs,s)	f(s) を部分分数分解
diff	diff(fx,x)	f'(x): $f(x)$ を x で微分
int	int(fx,x)	$\int f(x)\mathrm{d}x$: $f(x)$ を x で不定積分
	int(fx,x,a,b)	$\int_a^b f(x) dx : f(x) \in x$ で定積分
taylor	taylor(fx)	f(x) の 5 次までのマクローリン展開
	<pre>taylor(fx,x,'Order',n)</pre>	f(x) の n 次までのマクローリン展開
	taylor(fx,x,a)	f(x) の $x = a$ における 5 次までのテイラー展開
	taylor(fx,x,a,'Order',n)	f(x) の $x = a$ における n 次までのテイラー展開

制御工学に関連した MATLAB 関数

■ モデルの定義

関数名	使用例	説明
tf	sys = tf(num,den)	(T.1) 式の形式の伝達関数 $P(s)$ を定義
	sys = tf(sys)	(T.1) 式の形式の伝達関数 $P(s)$ に変換
	s = tf('s')	ラプラス演算子 s の定義
zpk	sys = zpk(z,p,K)	(T.2) 式の形式の伝達関数 $P(s)$ の定義
	sys = zpk(sys)	(T.2) 式の形式の伝達関数 $P(s)$ に変換
SS	sys = ss(A,B,C,D)	状態空間表現 (T.3) 式の定義
	sys = ss(sys)	状態空間表現 (T.3) 式に変換

$$P(s) = \frac{N(s)}{D(s)}, \begin{cases} N(s) = b_m s^m + \dots + b_1 s + b_0 \\ D(s) = a_n s^n + \dots + a_1 s + a_0 \end{cases} \implies \begin{cases} \text{num = [bm } \dots \text{ b1 b0]} \\ \text{den = [an } \dots \text{ a1 a0]} \end{cases}$$
(T.1)
$$P(s) = \frac{k(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)} \implies \begin{cases} \text{z = [z1 } \text{z2 } \dots \text{zm]} \\ \text{p = [p1 } \text{p2 } \dots \text{pn]} \end{cases}$$
(T.2)

$$P(s) = \frac{k(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \implies \begin{cases} \mathbf{z} = [\mathtt{z1} \ \mathtt{z2} \ \cdots \ \mathtt{zm}] \\ \mathbf{p} = [\mathtt{p1} \ \mathtt{p2} \ \cdots \ \mathtt{pn}] \end{cases} \tag{T.2}$$

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{u}(t) \end{cases}$$
(T.3)

■ モデルの解析

関数名	使用例	説明
tfdata	<pre>[num den] = tfdata(sys,'v')</pre>	伝達関数 $P(s)$ の分子 $N(s)$,分母 $D(s)$ を抽出
zpkdata	<pre>[z p k] = zpkdata(sys,'v')</pre>	伝達関数 $P(s)$ の零点 z_i ,極 p_i ,ゲイン k を抽出
pole	pole(sys)	伝達関数 $P(s)$ の極 p_i を抽出
zero	zero(sys)	伝達関数 $P(s)$ の零点 z_i を抽出
tzero	tzero(sys)	伝達関数 $P(s)$ の (不変) 零点 z_i を抽出 (多入力
		多出力系にも対応)
rlocus	rlocus(sys)	1+kP(s) の根軌跡
ssdata	[A B C D] = ssdata(sys)	状態空間表現 $(T.3)$ 式の係数行列 $oldsymbol{A}$, $oldsymbol{B}$, $oldsymbol{C}$, $oldsymbol{D}$
		を抽出

■ モデルの結合

関数名	使用例	説明
*	sys = sys1*sys2	直列結合 $P(s) = P_1(s)P_2(s)$
+, -	sys = sys1 + sys2 - sys3	並列結合 $P(s) = P_1(s) + P_2(s) - P_3(s)$
feedback	sys = feedback(sys1,sys2)	フィードバック結合 $P(s) = \frac{P_1(s)}{1 + P_1(s)P_2(s)}$
minreal	sys = minreal(sys)	伝達関数 P(s) の極零相殺 (分母と分子の約分)

■ 時間応答

関数名	使用例	説明
residue	[k p] = residue(num,den)	部分分数分解 (T.4) 式
impulse	impulse(sys)	インパルス応答 $y(t)$ の描画 (時間指定なし)
	impulse(sys,t)	インパルス応答 $y(t)$ の描画 (時間指定あり)
	y = impulse(sys,t);	インパルス応答 $y(t)$ の計算
step	step(sys)	単位ステップ応答 $y(t)$ の描画 (時間指定なし)
	step(sys,t)	単位ステップ応答 $y(t)$ の描画 (時間指定あり)
	y = step(sys,t);	単位ステップ応答 $y(t)$ の計算

関数名	使用例	説明
stepinfo	S = stepinfo(sys)	単位ステップ応答 $y(t)$ の特性
	y = step(sys,t); S = stepinfo(y,t,yinf)	単位ステップ応答 $y(t)$ の特性 (yinf: $y_{\infty} = P(0)$)
		7 t. (//)= [[] 2 85 BB - (// 5 B- T
lsim	lsim(sys,u,t)	入力 $u(t)$ に対する時間応答 $y(t)$ の描画
	<pre>y = impulse(sys,u,t);</pre>	入力 $u(t)$ に対する時間応答 $y(t)$ の計算

$$f(s) = \frac{N(s)}{D(s)} = \frac{k_1}{s - p_1} + \dots + \frac{k_n}{s - p_n}, \quad \begin{cases} N(s) = b_m s^m + \dots + b_1 s + b_0 \\ D(s) = a_n s^n + \dots + a_1 s + a_0 \end{cases} \quad (n > m)$$
(T.4)

■ 周波数特性

関数名	使用例	説明	
nyquist	nyquist(sys)	ナイキスト軌跡の描画	
bode	bode(sys)	ボード線図の描画 (周波数指定なし)	
	bode(sys,w)	ボード線図の描画 (周波数指定あり)	
	[Gg Gp] = bode(sys,w);	ゲイン, 位相差の計算	
bodemag	bodemag(sys)	ゲイン線図の描画 (周波数指定なし)	
	bodemag(sys,w)	ゲイン線図の描画 (周波数指定あり)	
getPeakGain	[Mp wp] = getPeakGain(sys)	ピーク角周波数 $\omega_{ m p}$,共振ピーク $M_{ m p}$ の	
		計算	
margin	margin(sys)	ボード線図の描画と安定余裕の表示	
	[invL Pm wpc wgc] = margin(sys)	ゲイン余裕 $G_{ m m}$,位相余裕 $P_{ m m}$,位相交	
	Gm = 20*log10(invL)	差角周波数 $\omega_{ m pc}$,ゲイン交差角周波数	
		$\omega_{ m gc}$ の計算	

■ PID コントローラの設計

関数名	使用例	説明
pidtune	[sysC info] = pidtune(sysP,type)	制御対象のモデル sysP に対し,形式を
		type とした PID コントローラの設計
	<pre>sysC = pidtune(sysP,type,wgc)</pre>	開ループ伝達関数のゲイン交差角周波数
		$\omega_{ m gc}$ を指定
	<pre>sysC = pidtune(sysP,type,opts)</pre>	pidtuneOptionsにより位相余裕や、目標
		値追従と外乱抑制のバランスを設定
pidTuner	pidTuner(sysP)	制御対象のモデル sysP に対し,PID コン
		トローラを視覚的に設計

- type には 'P', 'PI', 'PD', 'PDF' (不完全微分とした PD コントローラ), 'PID', 'PIDF' (不 完全微分とした PID コントローラ) や 'PI-D', 'PI-DF' (不完全微分とした PI-D コントロー ラ), 'I-PD', 'I-PDF' (不完全微分とした I-PD コントローラ) などを設定する.
- pidtuneOptions の設定方法については文献 14) を参照されたい.

■ 状態空間表現に基づく解析

関数名	使用例	説明
initial	<pre>initial(sys,x0)</pre>	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $y(t)$ の描画 (時間指定
		なし)
	<pre>initial(sys,x0,t)</pre>	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $y(t)$ の描画 (時間指定
		あり)
	<pre>y = initial(sys,x0,t);</pre>	$oldsymbol{x}(0) = oldsymbol{x}_0$ に対する零入力応答 $y(t)$ の計算
ctrb	Vc = ctrb(A,B)	可制御性行列 $oldsymbol{V}_{ m c}=\left[oldsymbol{B} \;\;oldsymbol{A}oldsymbol{B} \;\;\cdots\;\;oldsymbol{A}^{n-1}oldsymbol{B} ight]$ の計算
obsv	Vo = obsv(A,C)	可制御性行列 $oldsymbol{V}_{ m o}=\left[egin{array}{c} oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{A} \ dots \ oldsymbol{C} oldsymbol{A}^{n-1} \end{array} ight]$ の計算 $oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{A}^{n-1} \ oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{C} oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{C} \ oldsymbol{C} oldsymbol{C} \ o$

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{cases} \implies \text{ sys = ss(A,[],C,[]);}$$

■ 状態空間表現に基づくコントローラ設計

関数名	使用例	説明
acker	K = - acker(A,B,p)	極配置法: 1 入力 n 次系の制御対象に対し, $A+BK$ の固
		有値を $\boldsymbol{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\boldsymbol{u}(t) = \boldsymbol{K}\boldsymbol{x}(t)$ を設計
place	K = - place(A,B,p)	極配置法: m 入力 n 次系の制御対象に対し, $A+BK$ の固
		有値を $\mathbf{p} = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}$ とする $\mathbf{u}(t) = \mathbf{K}\mathbf{x}(t)$ を設計
		$(p_i の重複は m を超えてはならない)$
lqr	K = - lqr(A,B,Q,R)	最適レギュレータ:評価関数
		$J = \int_0^\infty (\boldsymbol{x}(t)^\top \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)^\top \boldsymbol{R} \boldsymbol{u}(t)) \mathrm{d}t$
		を最小化する $u(t) = \boldsymbol{K} \boldsymbol{x}(t)$ を設計
care	P = care(A,B,Q,R)	リッカチ方程式
		$PA + A^{\top}P - PBR^{-1}B^{\top}P + Q = O$
		の解 $\mathbf{P} = \mathbf{P}^{\top} > 0$ を求める