MATH 417

Iwan Duursma

January 21, 2022

Week 1 - Friday

Course outline

Math 417 Introduction to Abstract Algebra [43 hrs]

- (a) Integers [4 hrs]
- (b) Permutations [3hrs]
- (c) Groups [10 hrs]
- (d) Group actions [10 hrs]
- (e) Rings [12 hrs]
- (*) Exams and leeway [4hrs]

(a) Integers [4hrs]

```
[Rotman-1.3-1.5]
The Integer division algorithm (p.35) - We 1/19
  optional: Euclidean algorithm (pp.43-45) - We 1/19, Fr 1/21
Greatest common divisor (pp.37-38) - We 1/19
Fundamental theorem of arithmetic (pp.53-55) - Fr 1/21
Congruence arithmetic (pp.57-59) - Mo 1/24
  optional: Application to RSA-cryptosystem (handout or homework)
```

Lemma

Let
$$b = q \cdot a + r$$
. Then $gcd(b, a) = gcd(a, r)$.

Proof

The pair b, a has the same set of common divisors as the pair a, r.

To compute gcd(119, 301) we use the lemma repeatedly.

$$d = \gcd(301, 119)$$
 $301 = 2 \cdot 119 + 63 : = \gcd(119, 63)$
 $119 = 1 \cdot 63 + 56 : = \gcd(63, 56)$
 $63 = 1 \cdot 56 + 7 : = \gcd(56, 7)$
 $56 = 8 \cdot 7 + 0 : = \gcd(7, 0) = 7$

Extended Euclidean algorithm

Theorem : Let $d = \gcd(a, b)$. Then d is of the form

$$d = sa + tb$$
,

where s and t are integers (called Bézout coefficients).

Proof: After the example.

Example: $7 = \gcd(301, 119)$. What are the integers s and t such that

$$7 = 301s + 119t$$
?

Bézout coefficients for (301, 119)

$$301 = 2 \cdot 119 + 63 :$$
 $63 = 301 - 2 \cdot 119.$
 $119 = 1 \cdot 63 + 56 :$ $56 = 119 - 1 \cdot 63.$
 $= -301 + 3 \cdot 119.$
 $63 = 1 \cdot 56 + 7 :$ $7 = 63 - 1 \cdot 56.$
 $= 2 \cdot 301 - 5 \cdot 119.$
 $56 = 8 \cdot 7 + 0$

Remark: We compute s and t working from the top down.

Example 1.42 in Rotman is slighly different and works from the bottom up.

Same procedure, formatted as a table

	q	r	S	t
-1		301	1	0
0	2	119	0	1
1	1	63	1	-2
2	1	56	-1	3
3	8	7	2	-5

Proof that $d = \gcd(a, b)$ is of the form sa + tb

We may assume that $0 \le a \le b$.

For
$$a = 0$$
 (and $b \neq 0$), $d = b = 0 \cdot a + 1 \cdot b$.

For a > 0, let b = qa + r with $0 \le r < a \le b$. Then

$$d \in \{sa + tb : s, t \in \mathbb{Z}\}$$

$$\Leftrightarrow d \in \{sa + t(qa + r) : s, t \in \mathbb{Z}\}$$

$$\Leftrightarrow d \in \{(s + tq)a + tr) : s, t \in \mathbb{Z}\}$$

$$\Leftrightarrow d \in \{tr + ua : t, u \in \mathbb{Z}\}.$$

Apply this to each step in $gcd(b, a) = gcd(a, r) = \cdots = gcd(d, 0)$.

$$\{sa + tb : s, t \in \mathbb{Z}\} = \{tr + ua : t, u \in \mathbb{Z}\} = \cdots =$$

$$= \{x \cdot 0 + y \cdot d : x, y \in \mathbb{Z}\} = \{\dots, -2d, -d, 0, d, 2d, \dots\}.$$

Least Integer Axiom

There is a smallest integer in every nonempty subset S of the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$.

(Also known as the Well-Ordering Principle)

Existence of prime factorizations

Theorem

Every integer $n \ge 2$ is either a prime or a product of primes.

Proof

Let $S \subset \mathbb{N}$ be the set of all n without the given property.

Assume that S is nonempty. Then S contains a least element m.

Since m is not a prime it can be written as m = ab with 1 < a, b < m.

But then $a, b \notin S$ shows that m is a product of primes. Contradiction.

Thus $S = \emptyset$.

Fundamental Theorem of Arithmetic

Theorem

Every integer $n \ge 2$ has a unique factorization as a product of primes.

Proof

With the previous theorem it remains to prove uniqueness.

Let $a=p_1p_2\cdots p_m=q_1q_2\cdots q_n$ be two factorizations of the integer a into products of primes. The right hand side is divisible by p_m . But then $q_i=p_m$ for some i. After cancellation of p_m and q_i we are left with a smaller number of prime factors. The claim follows by induction.

p divides $\overline{q_1q_2\cdots q_n}$

The proof uses that $q_i = p$ for some i when the prime p divides $q_1q_2\cdots q_n$.

Assume that $q_n \neq p$. Then $\gcd(q_n,p)=1$ and there exist Bézout coefficients s and t such that $1=sq_n+tp$. Multiplying both sides by $q_1q_2\cdots q_{n-1}$,

$$q_1 q_2 \cdots q_{n-1} = sq_1 q_2 \cdots q_n + tq_1 q_2 \cdots q_{n-1} p$$
.

Since both terms on the right are divisble by p, so is $q_1q_2\cdots q_{n-1}$. If $q_i\neq p$ for all i a repeated application would lead to p divides 1.