MACO344 - ARQUITETURA DE COMPUTADORES

tópicos de cada aula

SLIDES 01

- · azquitetura e organização
- ağınıf e szuturtee.
- · componentes de um computador
- · arquitetura de von Neumann
- · como foi o meu aprendizado: exquitetura x organização

SUIDES DA

- · evelução do computador
- · tembogias expressas em gerciças
- · histéria da computação
- · ciclo de velegie e fragiencia.
- · ExaFLOPS a ZettaFLOPS

TOP 500

- · computação paralela
- · avanço da tecnologia VLSI
- · primaire computador com EXAFIOPS
- · máquina da USP no top 500
- · performance: crescimento expenencial
- · avanço da microeletrônica partilhor de vilicio
- · lei de Moore
- · tamanho de um transister
- · como loi o meu aprendizado: verdadeixo < falso

SCIDES 03

- · tecnologia VLSI
- · transister MOS (chave, resister, capaciter)
- · portas lógicas NOT, NAND & NOR produzidas por tramsistores MOS
- · analogia circuitos elétricos × circuito de aqua
- · Lei de Moore: número de transistores numa pastilha de vilició dobra a cada 18 meses

VLSI

- · precesso de fabricação de VISI
- · vala limpa : poucas partículas
- . NRSI re magar bara bracassaglaces a maméria
- osilotais yarvo
 - · vode de processadores que calcula e passa dados vitricamente pelo vistema
 - · GOOGLE TPU: verench, street view, translate
 - · ocelexar as computações de vades neurais em aprendizado de máquina.
- fabricantes de VLSI

SLIDES 03

- · sudução do desempenho do processador
- · pipelining
- · pré-busca de unstruções
- · predicçõe de desvier
- · paralelismo
- · dependência de dades
- · . .VLIW.
 - · processador super escalar
- · væcução especulativa
- · processador multicore
- · lu de Amdahl : gamho obtide com o uso de múltiples processadores

SLIDES 04

- · hierarquia de memória
- · importancia da memoria cache um agilizar o acesso de dados a instruções
- · fenomeno de localidade
- · função de mapeamento.
- · analogia com biblioteca
- · mapeamente per conjunte : mais usado em processadores modernos

SUDESOS

- envetni siramem.
- · codigo de detecção / correção de exec
- · DRAM: wolatil
- · sram : estática
- · ROM; não-volátil
- · mormózia flash
- · co digo de Hamming

PORTA OU EXCLUSIVO (XOR) C=A®B

MACO344 - ARQUITETURA DE COMPUTADORES

SLIDESOI - introdução

ARQUITETURA: se refere aes atributes de sistema visiveis a um programador de linguagem de máquina, com um impacto direto na execução de um programa.

ORGANIZAÇÃO: as unidades operacionais e una unterconezão que realizam as especificações acquiteturais, umi vivois ao programador.

ESTRUTURA: a maneixa em que es componentes vão intex-selacionados. Como estão conectados. Estrutura en a especial esta componente individual como parte da estrutura. Para que vexue?

ESTRUTURA DE UM COMPUTADOR

Um computador tem como componentes:

memória lenta e processador rápido

- Processador ou CPU: tem a função de controlar a operação do computador e realizar o processamento de dados.
- Memória principal: a função é armazenar dados e instruções.
- I/O (ou E/S entrada e saída): movimenta dados entre o computador e o ambiente externo.
- Sistema de interconexão: para comunicação entre CPU, memória e I/O, através de um barramento de sistema (bus).
- Unidade de controle: controla a operação da CPU e portanto do computador.
- ALU (unidade aritmética e lógica): realiza as operações da função de processamento de dados.
- Registradores: fornece armazenamento interno para a CPU.
- Interconexão interna: mecanismo que faz a comunicação entre a unidade de controle, ALU e registradores.

ARQUITETURA DE VON NEUMANN

É uma exquitatura de computador que use coracteriza pela pessibilidade de uma máquina digital armazemar useus programas no mesmo espaço de memória que es dades, podendo assim manipular tais programas.

ARQUITETURA × ORGANIZAÇÃO

- A Representação de um número de ponto flutuante de dupla precisão.
- Níveis de prioridade na execução de um processo.
- Implementação do circuito somador com a técnica carry-lookahead.
- A Projeto do conjunto de instruções de máquina.
- Como implementar o conjunto de instruções.
- Usar um co-processador para aritmética de ponto flutuante.
- Usar um co-processador especializado para processamento de imagem.
- Técnicas de endereçamento.
- Usar memória cache para acelerar o acesso.
- Adotar técnicas de correção automática de erros de acesso à memória.

SCIDES D2 - evolução

- Tecnologia expressa em gerações
 - Primeira geração: válvulas
 - Segunda geração: transistores
 - Terceira geração: circuito integrado VLSI
 - Novas gerações
- Evolução caracterizada por:
 - Aumento da velocidade do processador
 - Diminuição do tamanho dos componentes
 - Aumento da capacidade de I/O e velocidade

HISTÓRIA DA COMPUTAÇÃO

- · àbaces
- · baqua a o vistema binário
- · regua de cálculo
- · geração 0: computador meranico
- · geração 1 : invenção da valvula
 - e as valuelas tem usu funcionamento baseado no fluxo de elétrons no vácuo
- · gezação de innuenção do transister
 - · componente de circulo eletrônico
 - · aumentar a charecer es vinais elétrices
 - · primeire computador na USP
- · geração 3: circuito integrado
 - · conjunto de transisteres, voisisteres e capaciteres
- · geração 4: VLSI hoje
 - · Very large Scale of Integration
 - · componentes eletrânices miniscules implementades em vilicie

tep. 500.

- Vocês verão que hoje todos os supercomputadores usam computação paralela, alguns com milhões de processadores (cores ou núcleos).
- Isso se deve ao avanço da tecnologia VLSI (microeletrônica) com o aumento da capacidade de uma pastilha de Silício, que pode conter cada vez mais componentes eletrônicos minúsculos.
- Aumentar a frequência de relógio é uma forma de aumentar o desempenho, mas tem o limitante de dissipação de calor que impede o seu rápido aumento. Daí a solução por computação paralela.

VERDADEIRO OU FALSO

- F. Pela lista TOP500, vivemos hoje na era de PetaFLOPS. 🔏 astames em Excepte
- V Todos os computadores da lista TOP500 hoje possuem mais do que um processador.
- A Lei de Moore, por ser lei, vale sempre, no presente e no futuro.
- P. O Brasil ainda não conseguiu colocar nenhum computador na lista TOP500.
- Pela Lei de Moore, a frequência do relógio dobra em cada 18 meses.

número de transistores

uslides 03 - VLSI

- · integra uma grande quantidade de dispositivos eletrônicos (transisteres) numa pastilha (chip) de vilício.
- · very large iscale of integration
- · bilhões de transistères
- · analogia circuites elétrices × circuite de aqua
- MOS = Metal Oxide Semiconductor
 - · chave liga e desliga feito de vernicenduter (vilicie Si)
- · saplicação simplificada: NMOS
- · tecnologia mais usada: CMOS

CHANE LIGA - DESLIGA (MOS)

- · transister MOS: triba de polisibicio auga uma triba de difusão
 - · chave liga e desliga
- · a trilha de difusão está untercompida e não passa covente
- · injetando corrente eletrica entre o Grate a Source Vos, as cargas positivas do polisibilità de difusción está interconspida a parsa corrente eletrica.

CAPACITOR (MOS)

- · armazena arga eletrica
- Voltagem alta no Gate carrega cargas elétricas no capacitor. Voltagme zero no Gate descarrega as cargas do capacitor. Um transistor pode então implementar um bit de memória.

RESISTOR OU RESISTENCIA

Um transistor que não conduz corrente apresenta uma resistência 'infinita' pois a trilha difusão está interrompida no Canal.

Mas um transistor conduzindo ou passando corrente possui uma pequena resistência R cujo valor é diretamente proporcional ao comprimento L e inversamente proporcional à largura W.

 $R = \alpha \frac{L}{W}$, onde α é uma constante.

- O comprimento L e a largura W são medidas na região de interseção entre Polissilício e Difusão (ver figura).
- L é a medida na direção do fluxo da corrente
- W é a medida ortogonal ao comprimento.

PORTA NOT

· dois transistores

Para uma porta NOT funcionar, basta fazer a resistência de condução do transistor de cima R_1 ser 4 vezes a resistência de condução do transistor de baixo R_2 :

$$R_1 = 4R_2$$

 $\frac{L_1}{W_1} = 4\frac{L_2}{W_2}$

Notação sem cor

Notação colorida (palito)

PORTA NAND

· três transistères

Precisamos fazer L1/W1=8 L2/W2 pois as resistências de condução dos transistores A e B se somam.

O efeito final é que a resistência do transistor 1 fica 4 vezes a resistência equivalente de A e B.

Notação sem cor

Notação colorida (palito)

PORTA NÃO E (NAND) D= A•B						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	Α	В	S = (A.B)'	1		
	Α	В	S = (A.B)'			
	A 0	B	S = (A.B)'			
	A 0 0	0 1	S = (A.B)'			

0

PORTA NOR

· três transisteres

PORTA NÃO OU (NOR)
$$D = \overline{A+B}$$

$$\begin{array}{ccc} A & & & \\ \hline B & & & \\ \hline \end{array}$$

Α	В	S = (A+B)'	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

estides 03 - performance

- Aumentar a frequência do relógio tem o problema de dissipação de calor. Então outras técnicas devem ser investigadas para melhorar a velocidade do processador.
- Ao longo dos anos, várias técnicas foram desenvolvidas para essa finalidade.
- Várias dessas técnicas procuram atenuar o gargalo de von Neumann: pré-busca de instruções, VLIW (very Large Instruction Word), etc.
- Várias técnicas procuram explorar o paralelismo: pipelining, processador superescalar, processadores multicore, execução foram de ordem ou de forma concorrente (se não houver dependência), etc.
- Lei de Amdahl sobre a limitação da computação paralela.

DEPENDÊNCIA DE DADOS

- Dependência verdadeira ou de fluxo
- + Anti-dependência
- + Dependência de saída

Anti-dependência e dependência de saída podem ser removidas renomeando variáveis.

 Dependência verdadeira ou dependência de fluxo ou Read-After-Write (RAW): quando uma instrução depende do resultado de outra.

Modelo:
$$A = \dots = A \dots$$

1:
$$A = A + 2$$

2:
$$B = 2 \times A$$

3:
$$C = B - A$$

Instrução 2 depende verdadeiramente da instrução 1 (escrevemos 1 \rightarrow^{ν} 2).

Instrução 3 depende verdadeiramente da instrução 1 (escrevemos 1 \rightarrow^{ν} 3).

Instrução 3 depende verdadeiramente da instrução 2 (escrevemos 2 \rightarrow^{ν} 3).

 Anti-dependência ou Write-After-Read (WAR): quando uma instrução usa uma variável que depois vai ser alterada: a ordem de executar essas duas instruções não pode ser alterada, nem executadas em paralelo.

Modelo:
$$A = \dots$$

1:
$$B = A + 5$$

2: $A = 7$

A instrução 2 anti-depende da instrução 1 (escrevemos 1 \rightarrow anti 2):

- Suponha que gostaríamos muito de poder executar as instruções 1 e 2 ao mesmo tempo. Isso é possível se removermos a anti-dependência. Veremos isso agora.
- Anti-dependência pode ser removida ao renomear variáveis. Isso permite executar instruções que tinham anti-dependências em paralelo.

Modelo da anti-dependência Remoção da anti-dependência

$$0: A1 = A$$

 $1: ... = ... A...$
 $2: A = ...$
 $0: A1 = A$
 $1: ... = ... A1...$
 $2: A = ...$

- A instrução 0 : A1 = A deve ser executada antes das outras duas instruções.
- Depois disso, as instruções 1 e 2 podem ser executadas em qualquer ordem. A anti-dependência foi removida.

Sejam as duas instruções com anti-dependência.

1:
$$B = A \times X$$

2: $A = Y \times Z$

Renomeamos a variável A:

0:
$$A1 = A$$

1: $B = A1 \times X$
2: $A = Y \times Z$

Após a renomeação da variável na instrução 0 e a execução da instrução 0, podemos executar instruções 1 e 2 em paralelo. Mas note que introduzimos uma dependência verdadeira entre as instruções 0 e 1.

 Dependência de saída ou Write After Write (WAW): quando a ordem das instruções afeta o valor final de saída de uma variável.

```
Modelo: A = \dots
A = \dots
A = \dots
1: A = X * X
2: B = A + 5
3: A = Y * Y
```

Instução 3 tem dependência de saída em relação à instrução 1 (escrevemos 1 ightarrow 3).

- Suponha que gostaríamos muito de poder executar as instruções 1 e 3 ao mesmo tempo. Isso é possível se removermos a dependência de saída. Veremos isso agora.
- Dependência de saída também pode ser removida ao renomear variáveis.

```
Modelo da dependência de saída 1:A=\dots 1:A1=\dots 2:\dots=\dots se aparecer A\dots 2:\dots=\dots trocar por A1\dots 3:A=\dots 3:A=\dots
```

- A instrução 1 : A1 = ... deve ser executada antes da instrução 2.
- As instruções 1 e 3 podem ser executadas em qualquer ordem. A dependência de saída foi removida.

Considerem instruções 1 e 3 com dependência de saída:

```
1: A = X * X
2: B = A + 5
3: A = Y * Y
```

Renomeanos a variável A:

```
1: A1 = X * X
2: B = A1 + 5
3: A = Y * Y
```