MATH 162 – SPRING 2010 – THIRD EXAM – APRIL 13, 2010 VERSION 01 MARK TEST NUMBER 01 ON YOUR SCANTRON

STUDENT NAME SOLUTIONS	
STUDENT ID	
RECITATION INSTRUCTOR—	
INSTRUCTOR—	<u> </u>
RECITATION TIME	

INSTRUCTIONS

- 1. Fill in all the information requested above and the version number of the test on your scantron sheet.
- 2. This booklet contains 13 problems. Problem 1 is worth 4 points. The others are worth 8 points each. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it is this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes and calculators are not allowed.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

Useful Formulas

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$$

1)(4 points) For the series $\sum_{n=1}^{\infty} (-1)^n n^2$, the partial sum s_4 equals

A) 2.
(B) 10.

$$S_4 = \sum_{n=1}^{4} (-1)^n n^2 = -1 + 2 - 3 + 4^2$$

 $= -1 + 4 - 9 + 16$

C)
$$-10$$
.

D)
$$-2$$
.

E) 30.

2)(8 points) Which of the following statements are true?

(I) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges. False. $\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$

(II) If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges. True. Absolute convergence \Rightarrow Convergence (III) If $\sum_{n=1}^{\infty} \left| \frac{a_{n+1}}{a_n} \right|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. True. $\sum_{n=1}^{\infty} \left| \frac{a_{n+1}}{a_n} \right|$ converges \Rightarrow $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ (IV) If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. Ratio Test.

(IV) If
$$0 \le a_n \le b_n$$
 and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. Ratio Test.

(V) If
$$\lim_{n\to\infty} 5^n a_n = 2$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

$$A)(I)$$
, (II) and (III) only.

$$B)(I)$$
, (II) and (IV) only.

(V) If
$$\lim_{n\to\infty} 5^n a_n = 2$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

A)(I), (II) and (III) only.

B)(I), (II) and (IV) only.

 $\lim_{n\to\infty} \frac{1}{n} = \frac{1}{n}$
 $\lim_{n\to\infty} \frac{1}{n} = \frac{1}{n}$

=
$$\lim_{n\to\infty} \frac{1}{5^n} = \frac{1}{2} > 0$$
 and $\sum_{n\to\infty} \left(\frac{1}{5}\right)^n$ converges.

								∞	1
3)(8 points)	Which	of the	following	alternatives	is true	about	the serie	es $\sum_{n=2}^{\infty}$	$(\frac{1}{n(\log n)^2}?$

A) It converges by the comparison test with
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

B) It diverges by the comparison test with
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

C) It converges by the comparison test with
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

D) It diverges by the comparison test with
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
. $= \lim_{t \to \infty} \left(\frac{-1}{\log x} \right)_2^t$

$$\int_{2}^{\sigma} (\log x)^{-2} \frac{1}{x} dx$$

B) It diverges by the comparison test with
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

C) It converges by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$= \lim_{n \to \infty} \int_{1}^{\infty} (\log x)^{-2} \frac{1}{\chi} dx$$

$$= \lim_{t \to \infty} \left(\frac{-1}{\log x} \right)^{t}$$

$$= \lim_{t \to \sigma} \left(-\frac{1}{\log t} + \frac{1}{\log 2} \right) = 0 + \frac{1}{\log 2}$$

(I)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2}$$
 Div. $\lim_{n \to \infty} \frac{1}{n+1} = \lim_{n \to \infty} \frac{n^2}{n^2+n} = 1 > 0$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ Div.

$$(III) \sum_{n=2}^{\infty} \frac{1}{\ln n}$$

(II)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^2 + n}$$
 Limit Comparison Test

(III) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ DIV. $\lim_{n \to \infty} \frac{N^2 + n}{N^2 - n} = 1 \neq 0$. The Divergence Test

5)(8 points) Which statement is true about the following series?

(I)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 conditionally convergent. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ convergent but $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ absolutely convergent but $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \frac{$

(C)(I) is conditionally convergent; (II) is absolutely convergent.

D)(I) is absolutely convergent; (II) is conditionally convergent.

E)(I) and (II) are conditionally convergent; (III) is divergent.

6)(8 points) Let $S = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)(n-1)}$. Find the smallest integer N such that we can be sure that $|S_N - S| < \frac{1}{100}$, where $S_N = \sum_{n=1}^{N} \frac{(-1)^{n+1}}{(n+1)(n-1)}$

can be sure that
$$|S_N - S| < \frac{1}{100}$$
, where $S_N = \sum_{n=1}^N \frac{(-1)^{n+1}}{(n+1)(n-1)}$
A) 8.

b) $\frac{1}{(N+1)(N-1)}$

B) 9.

C) 10.

D) 11.

P) $\frac{1}{(10)(8)} = \frac{1}{80} > \frac{1}{100}$

E) 12.

 $\frac{1}{(11)(9)} = \frac{1}{99} > \frac{1}{100}$

Therefore S mallest $N = 10$

* therefore interval of convergence is (1,3] and radius of convergence is 1. 7)(8 points) The radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^n}{(n+1)^n}$ satisfy Ratio Test: lun anti A) The radius is equal to 1 and the interval is (-1, 1). = lim (-1) n+1 (x-2) n+1 (x-2) n+2 (-1) (x-2) n B) The radius is equal to 2 and the interval is (0,4). C) The radius is equal to 1 and the interval is (1,3). $= \lim_{h \to 0} \frac{h+1}{h+2} |X-2| = |X-2|.$ D) The radius is equal to 1 and the interval is (1,3]. E) The radius is equal to 1 and the interval is [1,3]. Series converges for $|x-2| \le |x-2| \le$ $X=3 \Rightarrow \sum_{n+1}^{\infty} (1)^n$ which converges (alt. series test) X (see above) 8)(8 points) Which of the following is a power series representation of the function $f(x) = \frac{x-2}{x^2 - 4x + 5}$? $\frac{x^{2}-4x+5}{A) \sum_{n=0}^{\infty} \frac{1}{n!} (x-2)^{n}} = \frac{\chi-2}{\chi^{2}-4\chi+5} = \frac{\chi-2}{(\chi^{2}-4\chi+4)+1} = \frac{\chi-2}{1-(-(\chi-2)^{2})}$ B) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} (x-2)^n$. $= (\chi - 2) \sum_{n=0}^{\infty} (-(\chi - 2)^2)^n = (\chi - 2) \sum_{n=0}^{\infty} (-1)^n (\chi - 2)^{n+1}$. $= \sum_{n=0}^{\infty} (-1)^n (\chi - 2)^{n+1}$. $= \sum_{n=0}^{\infty} (-1)^n (\chi - 2)^{n+1}$. $= \sum_{n=0}^{\infty} (-1)^n (\chi - 2)^{n+1}$. E) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)} (x-2)^{n+1}$.

9)(8 points) The Maclaurin series of the functon $f(x) = \frac{1}{(4-x)^3}$ is (Hint: Start with the power series of $(4-x)^{-1}$ and differentiate it enough times.)

$$\frac{1}{2(4^{n+1})} x^{n-2}. \qquad \frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n = \frac{1}{4^{n+1}} x^n$$

$$\frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n = \frac{1}{4^{n+1}} x^n$$

$$\frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n = \frac{1}{4^{n+1}} x^n$$

$$\frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n = \frac{1}{4^{n+1}} x^n$$

$$\frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n = \frac{1}{4^n} x^n$$

$$\frac{1}{4-x} = \frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{1-(\frac{x}{4})} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{4-x} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n} x^n$$

$$\frac{1}{4} \left(\frac{1}{4-x} \right) = \frac{1}{4} \sum_{n=0}^{\infty} \frac{x}{4^n}$$

10)(8 points) The Maclaurin series of $f(x) = (\cos x)^2$ is equal to (Hint: Use that $(\cos x)^2 = \frac{1}{2}(1 + \cos 2x)$)

(Hint: Use that
$$(\cos x)^2 = \frac{1}{2}(1 + \cos 2x)$$
.)

A) $\frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$.

(b) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(c) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(d) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(e) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(f) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(f) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(g) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(g) $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$

(h) $x = \sum_{n$

11)(8 points) Let $f(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} (x-2)^n$. We can say that the fifth derivative of f at the point 2 is equal to

A)
$$f^{(5)}(2) = 10$$
.

B)
$$f^{(5)}(2) = 64$$
.

$$(C) f^{(5)}(2) = 32.$$

D)
$$f^{(5)}(2) = 21$$
.

E)
$$f^{(5)}(2) = 100$$
.

$$\frac{f^{(5)}(2)}{5!} = \frac{2^{5}}{5!} \rightarrow f^{(2)}(2) = 2^{5} = 32$$

$$\left(\text{note: } \frac{f^{(n)}(2)}{n!} = \frac{2^n}{n!} \cdot \text{ let } n = 5.\right)$$

12)(8 points) If we use that
$$\frac{1}{\sqrt{1-x}} = 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} x^n$$
, and that

 $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}}$, we conclude that the Maclaurin series of arcsin x is equal to

(A)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n (2n+1) n!} x^{2n+1}$$
.

B)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+3}(2n+1)!} x^{2n+1}$$

C)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n (2n+1) n!} x^n$$
.

D)
$$1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} x^{2n+1}$$
.

E)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} x^{2n+3}$$
.

C)
$$x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n (2n+1) n!} x^n$$
.
D) $1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} x^{2n+1}$.
$$\int \frac{1}{\sqrt{1-\chi^2}} d\chi = \chi + \int_{\eta=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2n+1)(2^n)(n!)} \chi^{2n+1}$$

13)(8 points) Let f(x) be a function defined on $[1, \infty)$ such that f(x) > 1 for all x and $\lim_{x \to \infty} \frac{f(x)}{x} = 1$. What can we say about the convergence of the series

$$S_1 = \sum_{n=1}^{\infty} \sin\left(\frac{1}{f(n)}\right) \text{ and } S_2 = \sum_{n=1}^{\infty} \sin\left(\frac{1}{f(n)^3}\right)$$
?

- A) S_1 and S_2 diverge.
- B) S_1 converges and S_2 diverges.
- (C) S_1 diverges and S_2 converges.
 - D) S_1 and S_2 converge.
 - E) Nothing can be said about the convergence of the series.

Consequently
$$\sum_{x\to\infty} \frac{1}{f(x)} = 1$$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

And $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Consequently $\sum_{x\to\infty} \frac{1}{f(x)} = 1$

Converges Since $\sum_{$