Quiz 8, Solutions

(1) The series

$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

(a) diverges because it is a p-series with p < 1.

(b) diverges because $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \neq 0$.

(c) converges by the alternating series test.

(d) converges because it is a p-series with p < 1.

(e) diverges because the terms alternate.

Sol: Note that the given series is an alternating series. Hence we will try to use the alternating series test. For that let $b_n = \frac{1}{\sqrt{n}}$. Then we see that b_n is positive and decreasing. Moreover,

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

Hence, by the alternating series test the series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is convergent.

(2) Use Comparison Tests to determine which **one** of the following series is divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{1}{2}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}} + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 8}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^3 + 100}$$

(e)
$$\sum_{n=1}^{\infty} 7\left(\frac{5}{6}\right)^n$$

Sol:

(a) Since
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{1}{2}\right)^n < \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$
 and the geometric series $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$ con-

verges, by the comparison test we know $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{1}{2}\right)^n$ also converges.

- (b) Since $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}+1} < \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ and by p series test we know the right hand side coverges, the comparison test tells us that $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}+1}$ also converges.
- (c) Since $\sum_{n=1}^{\infty} \frac{1}{n^2 + 8} < \sum_{n=1}^{\infty} \frac{1}{n^2}$ and by p series test we know the right hand side coverges, the comparison test tells us that $\sum_{n=1}^{\infty} \frac{1}{n^2 + 8}$ also converges.
- (d) Since

$$\lim_{n \to \infty} \frac{\frac{n^2 - 1}{n^3 + 100}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^3 - n}{n^3 + 100} = 1$$

and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by the limit comparison test we know $\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^3 + 100}$ diverges.

(e) It is a constant times a geometry series, hence it converges.