MAT1120

Robin A. T. Pedersen

November 16, 2016

Contents

1	For	ord		3				
4	Kpt.4 - Vektorrom							
	4.1^{-1}	Vekto	r rom og underrom	4				
		4.1.1	Definisjon - vektorrom	4				
		4.1.2	Definisjon - underrom	4				
		4.1.3	Teorem 1	4				
	4.2	Nullro	om, kolonnerom og lineærtransformasjoner	5				
		4.2.1	Definisjon - nullrom	5				
		4.2.2	Teorem 2	5				
		4.2.3	Definisjon - kolonnerom	5				
		4.2.4	Teorem 3	5				
		4.2.5	Definisjon - lineærtransformasjon	5				
		4.2.6	Begrep - kjerne (kernel)	5				
	4.3	Lineæ	ert uavhengige mengder: basiser	5				
		4.3.1	Teorem 4	5				
		4.3.2	Definisjon - basis	6				
		4.3.3	Teorem 5 - utspennende mengde teoremet	6				
		4.3.4	Teorem 6	6				
	4.4	Koord	linatsystemer	6				
		4.4.1	Teorem 7 - unik representasjon teoremet	6				
		4.4.2	Definisjon - \mathcal{B} -koordinater	6				
		4.4.3	Begrep - koordinatskiftematrise	6				
		4.4.4	Teorem 8	7				
		4.4.5	Begrep - isomorfi	7				
	4.5	Dimer	nsjon av vektorrom	7				
		4.5.1	Teorem 9	7				
		4.5.2	Teorem 10	7				
		4.5.3	Definisjon - dimensjon	7				
		4.5.4	Teorem 11	7				
		4.5.5	Teorem 12 - basisteoremet	7				
		4.5.6	Observasion - DimNul og DimCol	7				

	4.6	Rang
		4.6.1 Definisjon - radrom
		4.6.2 Teorem 13
		4.6.3 Definisjon - rang
		4.6.4 Teorem 14 - rangteoremet
		4.6.5 Teorem - invertibel matrise teoremet (fortsatt) 8
	4.7	Basisskifte
		4.7.1 Teorem 15
		4.7.2 Begrep - koordinatskiftematrise 9
		4.7.3 Observasjon - Invers av koord.skiftematr 9
	4.8	Ikke eksamensrelevant
	4.9	Anvendelser til Markovkjeder
		4.9.1 Begrep - sannsynlighetsvektor 9
		4.9.2 Begrep - stokastisk matrise 9
		4.9.3 Begrep - markovkjede
		4.9.4 Begrep - tilstandsvektor
		4.9.5 Begrep - ekvilibriumsvektor
		4.9.6 Begrep - regulæritet
		4.9.7 Teorem 18
5	Kpt	.5 - Egenverdier og Egenvektorer 10
	5.1	Egenvektor og egenverdier
		5.1.1 Definisjon - egenvektor og egenverdi 10
		5.1.2 Begrep - egenrom
		5.1.3 Teorem 1
		5.1.4 Teorem 2
		5.1.5
	5.2	Den karakteristisk ligningen
		5.2.1 Teorem - IMT fortsatt
		5.2.2 Teorem 3 - egenskaper til determinanter
		5.2.3 Begrep - karakteristisk ligning
		5.2.4 Teorem 4
		5.2.5
	5.3	Diagonalisering
		5.3.1
	5.4	Egenvektorer og lineærtransformasjoner
		5.4.1
	5.5	Komplekse egenverdier
		5.5.1
	5.6	Diskrete dynamiske systemer
		5.6.1
	5.7	Anvendelser til differensialligninger
		5.7.1 Repetisjon - Diffligninger
		5.7.2 Metode - initialverdiproblem
		5.7.3 Observasjon - frastøter, sadel, attraktor
		5.7.4 Metode - avkobling av dynamiske systemer

			13
	5.8	Iterative estimater for egenverdier	13
		5.8.1 Metode - potensmetoden	13
		5.8.2 Metode - invers potensmetode	14
6	Kpt	5.6 - Ortogonalitet og Minstekvadrater	15
	6.1	Indre produkt, lengde og ortogonalitet	15
		6.1.1	15
	6.2	Ortogonale mengder	15
		6.2.1	15
	6.3	Ortogonal projeksjon	15
		6.3.1	15
	6.4	Gram-Schmidt prosessen	15
		6.4.1	15
	6.5	Minstekvadraters problem	15
		6.5.1	15
	6.6	Anvendelser til lineære modeller	15
		6.6.1	15
	6.7	Indreproduktrom? TODO	15
		6.7.1	15
	6.8	Anvendelser til indreproduktrom	15
		6.8.1	15
7	Kpt	7.7 - Symmetriske Matriser og Kvadratisk Form	16
	7.1	Diagonalisering av symmetriske matriser	16
		7.1.1	16
	7.2	Kvadratisk form	16
		7.2.1	16
	7.3	Begrenset optimalisering? TODO	16
		7.3.1	16
	7.4	Singulærverdidekomposisjon	16
		7.4.1	16
	7.5	Ikke pensum? TODO	16
8	Not		16
		8.0.1	16
9	Not	at 2	16
		9.0.2	16

1 Forord

Dette er en oversikt over alle definisjoner, teoremer og lignende fra læreboka i MAT1120.

NB! Noensteder har jeg skrevet $c \in \mathbb{R}$, men det kan hende at \mathbb{C} hadde fungert like fint. Lignende "feil" kan finnes andre steder.

NB! Noen av kapitlene er mangelfulle. Jeg har selv skrevet observasjoner og metoder.

4 Kpt.4 - Vektorrom

4.1 Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $u + v \in V$
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $10. \ 1\mathbf{u} = \mathbf{u}$

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er $\mathrm{Span}\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$Col(A) = Span\{\mathbf{a}_1, ..., \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 Lineært uavhengige mengder: basiser

4.3.1 Teorem 4

En mengde $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ (minst 2 vektorer) er lineært avhengig hvis (minst) en vektor kan skrives som en lineærkombinasjon av de andre vektorene.

4.3.2 Definisjon - basis

La H være et underrom av vektorrommet V. En mengde $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_p\}$ i V, er en basis for H hvis:

- 1. \mathcal{B} er lineært uavhengig
- 2. underrommet utspent av \mathcal{B} er det samme som H. Altså, $H = \text{Span}\{\mathbf{b}_1, ..., \mathbf{b}_p\}$

4.3.3 Teorem 5 - utspennende mengde teoremet

La $S = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$ være en mengde i V, og la $H = \text{Span}\{\mathbf{v}_1, ..., \mathbf{v}_p\}.$

- 1. Hvis \mathbf{v}_k er en lin.komb. av de andre vektorene, så kan man fjerne den fra mengden og den vil fremdeles utspenne H.
- 2. Hvis $H \neq \{0\}$, så er en delmengde av S en basis for H.

4.3.4 Teorem 6

Pivotkolonnene til en matrise A, utgjør en basis for Col(A). Man velger altså de kolonnene i A som er lineært uavhengige.

4.4 Koordinatsystemer

4.4.1 Teorem 7 - unik representasjon teoremet

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for et vektorrom V. Da fins in unik mengde $c_1, ..., c_n \in \mathbb{R}$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n, \quad \forall \ \mathbf{x} \in V$$

4.4.2 Definisjon - \mathcal{B} -koordinater

Hvis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ er en basis for V, og $\mathbf{x} \in V$. Koordinatene til \mathbf{x} relativt til \mathcal{B} , er vekter $c_1, ..., c_n$ s.a.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Med andre ord: \mathcal{B} -koordinatene til $\mathbf{x} = [\mathbf{x}]_{\mathcal{B}} = (c_1, ..., c_n)$.

4.4.3 Begrep - koordinatskiftematrise

Koordinatskiftematrisen $P_{\mathcal{B}}$, tar en vektor fra \mathcal{B} til standardbasis i \mathbb{R} ,

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Hvor $P_{\mathcal{B}}$ lages enkelt ved

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$$

4.4.4 Teorem 8

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ være en basis for vektorrommet V. Da er koordinatavbildningen $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ en-til-en lineærtransformasjon fra V $p\mathring{a} \mathbb{R}^n$.

4.4.5 Begrep - isomorfi

En isomorfi er en $\mathit{en-til-en}$ og $p\aa$ lineærtransformasjon.

Altså: den dekker hele V og enhver \mathbf{x} har en unik $T(\mathbf{x})$.

4.5 Dimensjon av vektorrom

4.5.1 Teorem 9

Hvis et vektorrom V har en basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$, så er alle mengder i V med fler enn n vektorer lineært avhengig.

4.5.2 Teorem 10

Hvis et vektorrom V har en basis med n vektorer, så må alle basiser for V ha nøyaktig n vektorer.

4.5.3 Definisjon - dimensjon

Hvis V er utspent av en endelig mengde, så er V *endelig-dimensjonalt*. Dimensjonen til V, Dim V, er antall vektorer i en basis for V.

Hvis V ikke er utspent av en endelig mengde, så er V uendelig-dimensjonalt. Dimensjonen til nullvektorrommet $\{0\}$ er null.

4.5.4 Teorem 11

La H være et underrom av et endelig-dimensjonalt vektorrom V. Alle lineært uavhengige mengder i V kan utvides, hvis nødvendig, til en basis for H.

H er også endelig-dimensjonalt.

 $\dim H \leq \dim V$

4.5.5 Teorem 12 - basisteoremet

La V være et p-dimensjonalt vektorrom, $p \geq 1$.

Alle lin.uavh. mengder med nøyaktig p elementer i V, er en basis for V. Alle mengder som spenner V med nøyaktig p elementer, er en basis for V.

4.5.6 Observasjon - DimNul og DimCol

Dimensjonen til Nul(A) er antall fri variable i $A\mathbf{x} = \mathbf{0}$. Dimensjonen til Col(A) er antall pivot-kolonner i A.

4.6 Rang

4.6.1 Definisjon - radrom

Radrommet til A, Row(A), er mengden av alle lineærkonbinasjoner av radvektorene i A.

4.6.2 Teorem 13

A og B er radekvivalente hvis Row(A) = Row(B).

Hvis B er på trappeform, så er ikkenull radene i B en basis for både $\mathrm{Row}(A)$ og $\mathrm{Row}(B).$

4.6.3 Definisjon - rang

Rangen til A er dimensjonen til kolonnerommet til A.

$$rank(A) = dim(Col(A))$$

4.6.4 Teorem 14 - rangteoremet

Kolonne-rang er det samme som rad-rang:

$$\dim(\operatorname{Col}(A)) = \dim(\operatorname{Row}(A))$$

Rangen til A er lik antall pivotelementer i A.

Rangen til A oppfyller:

$$rank(A) + dim(Nul(A))$$

4.6.5 Teorem - invertibel matrise teoremet (fortsatt)

Med $An \times n$, så er følgende påstander ekvivalente

- 1. A er invertibel.
- 2. Kolonnene i A er en basis for \mathbb{R}^n .
- 3. $Col(A) = \mathbb{R}^n$.
- 4. $\dim(\operatorname{Col}(A)) = n$.
- 5. rank(A) = n.
- 6. Nul(A) = 0.
- 7. $\dim(\text{Nul}(A)) = 0$.

4.7 Basisskifte

4.7.1 Teorem 15

La $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ og $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_n\}$ være basiser for V. Da finnes en unik $n \times n$ matrise $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ s.a.

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$

Hvor

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = [\ [\mathbf{b}_1]_{\mathcal{C}} \quad \dots \quad [\mathbf{b}_n]_{\mathcal{C}} \]$$

4.7.2 Begrep - koordinatskiftematrise

Matrisen $\mathop{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ kalles for koordinatskiftematrisen fra \mathcal{B} til $\mathcal{C}.$

4.7.3 Observasjon - Invers av koord.skiftematr.

$$\left(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \right)^{-1} = \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$$

4.8 Ikke eksamensrelevant

Ikke eksamensrelevant.

4.9 Anvendelser til Markovkjeder

4.9.1 Begrep - sannsynlighetsvektor

En sannsynlighetsvektor: har ikkenegative elementer, og summerer til 1.

4.9.2 Begrep - stokastisk matrise

En stokastisk matrise: en kvadratisk matrise med sannsynlighetsvektorer som kolonner.

4.9.3 Begrep - markovkjede

En markovkjede er en følge av sannsynlighetsvektorer, sammen med en stokastisk matrise ${\bf P}$ s.a.

$$\mathbf{x}_{k+1} = P\mathbf{x}_k, \quad k = 0, 1, 2, \dots$$

4.9.4 Begrep - tilstandsvektor

Et element \mathbf{x}_k i markovkjeden.

4.9.5 Begrep - ekvilibriumsvektor

Tilstandsvektorene i markovkjeden forandres for hver iterasjon, men hvis man finner en vektor som ikke endres, er det en ekvilibriumsvektor.

$$P\mathbf{q} = \mathbf{c}$$

Alle stokastiske matriser har en ekvilibriumsvektor.

4.9.6 Begrep - regulæritet

Hvis en potens av stokastisk matrise P^k kun inneholder positive elementer, så er den regulær.

4.9.7 Teorem 18

Hvis P er regulær og stokastisk, så vil markovkjeden konvergere mot den unike ekvilibriumsmatrisen.

$$\{\mathbf{x}_k\} \to \mathbf{q}$$
 når $k \to \infty$

5 Kpt.5 - Egenverdier og Egenvektorer

5.1 Egenvektor og egenverdier

5.1.1 Definisjon - egenvektor og egenverdi

En egenvektor til matrisen A, er en ikkenul vektor \mathbf{x} s.a.

$$A\mathbf{x} = \lambda \mathbf{x}$$

Hvor λ er en egenverdi til A hvis det finnes en ikketriviell løsning.

5.1.2 Begrep - egenrom

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A\mathbf{x} - \lambda\mathbf{x} = 0$$

$$(A - \lambda I)\mathbf{x} = 0$$

Mengden av alle løsninger kalles egenrommet til A for λ .

5.1.3 Teorem 1

Egenverdiene til en triangulær matrise er elementene langs hoveddiagonalen.

5.1.4 Teorem 2

Hvis $\mathbf{v}_1,...,\mathbf{v}_r$ er egenvektorer til $\lambda_1,...,\lambda_r$, for en matrise A, så er mengden $\{\mathbf{v}_1,...,\mathbf{v}_r\}$ lineært uavhengig.

5.1.5

TODO Egenvektorer og differensligninger

5.2 Den karakteristisk ligningen

5.2.1 Teorem - IMT fortsatt

Invertibel matrise teoremet:

Følgende er ekvivalent:

- 1. A er invertibel.
- 2. 0 er ikke en egenverdi til A.
- 3. $det(A) \neq 0$.

For A 3 imes 3, så er $|\det(A)|$ volumet utspent av kolonnene. Hvis volumet er null, så har kolonnene kollapset inn i hverandre og er lineært avhengige.

5.2.2 Teorem 3 - egenskaper til determinanter

La A og B være $n \times n$ matriser. Da gjelder følgende:

- 1. A er invertibel \iff det $(A) \neq 0$.
- 2. det(AB) = (det(A))(det(B)).
- 3. $det(A^T) = det(A)$.
- 4. A triangulær \implies det(A) = produktet av diagonalelementene.
 - a Radmultippel endrer ikke determinanten.
 - b Radbytte endrer determinantens fortegn.
 - c Radskalering, skalerer determinanten.

5.2.3 Begrep - karakteristisk ligning

 λ er en egenverdi for A \iff $\det(A - \lambda I) = 0$.

5.2.4 Teorem 4

Hvis Matrisene A,B $n \times n$ har samme karakteristiske polynom, altså samme egenverdier med lik multiplisitet, så er de similære.

$$B = P^{-1}AP$$

5.2.5

TODO Anvendelse til dynamiske systemer

5.3 Diagonalisering

beg1 teo5 met1 teo6 teo7

5.3.1

TODO

5.4 Egenvektorer og lineærtransformasjoner

5.4.1

TODO

5.5 Komplekse egenverdier

5.5.1

TODO

5.6 Diskrete dynamiske systemer

5.6.1

TODO

5.7 Anvendelser til differensialligninger

5.7.1 Repetisjon - Diffligninger

La x(t) være en funksjon og $a \in \mathbb{R}$. Gitt ligningen

$$x'(t) = a \cdot x(t)$$

 $\mathrm{S}\mathring{\mathrm{a}}$ er

$$x(t) = c \cdot e^{a \cdot t}$$

${\bf 5.7.2}\quad {\bf Metode\ \hbox{--}\ initial verdiproblem}$

Gitt egenverdier λ_1, λ_2 , og egenvektorer $\mathbf{v}_1, \mathbf{v}_2$, og initialverdi $\mathbf{x}(0)$: Løs ligningen $\mathbf{x}'(t) = A\mathbf{x}$.

Løsning

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

5.7.3 Observasjon - frastøter, sadel, attraktor

Hvis egenverdiene er positive, så er origo en frastøter.

Hvis egenverdiene er negative, så er origo en attraktor.

Hvis egenverdiene er blandet, så er origo et sadelpunkt.

5.7.4 Metode - avkobling av dynamiske systemer

Når vi har $\mathbf{x}' = A\mathbf{x}$, med A diagonaliserbar $A = PDP^{-1}$. Så kan vi gjøre et variabelskifte $\mathbf{y} = P^{-1}\mathbf{x}$.

$$x' = \frac{d}{dt}(P\mathbf{y}) = A(p\mathbf{y}) = (PDP^{-1})P\mathbf{y} = PD\mathbf{y}$$

Venstremultipliser med P^{-1} og få

$$\mathbf{y}' = D\mathbf{y}$$

Det er mye enklere å løse.

5.7.5 Komplekse egenverdier

Hvis matrisen A har komplekse egenverdier λ og egenvektorer $\mathbf{v},$ så kan vi finne generelle løsninger.

Kompleks generell løsning

På vanlig vis:

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$

Reell generell løsning

$$\mathbf{x}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t)$$

$$\mathbf{y}_1 = \operatorname{Re} \mathbf{x}_1 = ([\operatorname{Re} \mathbf{v}] \cos bt - [\operatorname{Im} \mathbf{v}] \sin bt)e^{at}$$

$$\mathbf{y}_2 = \operatorname{Re} \mathbf{x}_2 = ([\operatorname{Re} \mathbf{v}] \sin bt + [\operatorname{Im} \mathbf{v}] \cos bt)e^{at}$$

hvor $\lambda_1 = a + bi$ og $\mathbf{x}_1 = \mathbf{v}_1 e^{\lambda_1 t}$.

5.8 Iterative estimater for egenverdier

5.8.1 Metode - potensmetoden

Teori

Potensmetoden gjelder $n \times n$ matriser A med en Strengt dominant egenverdi.

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n|$$

Vis ser på \mathbf{x} skrevet som

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

$$A^k \mathbf{x} = c_1(\lambda_1)^k \mathbf{v}_1 + \dots + c_n(\lambda_n)^k \mathbf{v}_n$$

Vi deler på den største egenverdien

$$\frac{1}{(\lambda_1)^k} A^k \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k \mathbf{v}_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1}\right)^k \mathbf{v}_n$$

Fordi λ_1 er størst får man

$$(\lambda_1)^{-k} A^k \mathbf{x} \to c_1 \mathbf{v}_1, \quad k \to \infty$$

Altså har vi at $A^k \mathbf{x}$ går i ca samme retning som \mathbf{v}_1 .

Algoritme

- 1. Vel initialvektor \mathbf{x}_0 med største komponent 1.
- 2. For k = 0, 1, ...
 - a Beregn $A\mathbf{x}_k$
 - b La μ_k være komponenten i $A\mathbf{x}_k$ med størst abs.
 - c Beregn $\mathbf{x}_{k+1} = (1/\mu_k)A\mathbf{x}_k$
- 3. For nesten alle \mathbf{x}_0 vil $\mu_k \to \lambda_1$ og $\mathbf{x}_k \to \mathbf{v}_1$

5.8.2 Metode - invers potensmetode

Teori

Metoden tilnærmer hvilkensomhelst egenverdi, gitt at initialgjetning α er nærme nok λ

La $B = (A - \alpha I)^{-1}$ og bruk potensmetoden på B.

Egenverdiene til B er $\lambda_1, ..., \lambda_n$, og egenverdiene til B er $\frac{1}{\lambda_1 - \alpha}, ..., \frac{1}{\lambda_n - \alpha}$.

Egenverdiene til A vil ligge innenfor $[-|\lambda_1|, |\lambda_1|]$.

Algoritme

- 1. Velg initialgietning α nærme λ
- 2. Velg initialvektor \mathbf{x}_0 med største komponent 1.
- 3. For k = 0, 1, ...
 - a Beregn $(A \alpha I)\mathbf{y}_k = \mathbf{x}_k$
 - b La μ_k være komponent i \mathbf{y}_k med størst abs.
 - c Beregn $v_k = \alpha + (1/\mu_k)$
 - d Beregn $\mathbf{x}_{k+1} = (1/\mu_k)\mathbf{y}_k$
- 4. $v_k \to \lambda \text{ og } \mathbf{x}_k \to \mathbf{v}$

6 Kpt.6 - Ortogonalitet og Minstekvadrater
6.1 Indre produkt, lengde og ortogonalitet
6.1.1
TODO
6.2 Ortogonale mengder
6.2.1
TODO
6.3 Ortogonal projeksjon
6.3.1
TODO
6.4 Gram-Schmidt prosessen
6.4.1
TODO
6.5 Minstekvadraters problem
6.5.1
TODO
6.6 Anvendelser til lineære modeller
6.6.1
TODO
6.7 Indreproduktrom? TODO
6.7.1
TODO
6.8 Anvendelser til indreproduktrom
6.8.1

TODO

7 Kpt.7 - Symmetriske Matriser og Kvadratisk Form

7.1 Diagonalisering av symmetriske matriser

7.1.1

TODO

7.2 Kvadratisk form

7.2.1

TODO

7.3 Begrenset optimalisering? TODO

7.3.1

TODO

7.4 Singulærverdidekomposisjon

7.4.1

TODO

7.5 Ikke pensum? TODO

Ikke pensun? TODO

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO TODO egenfunksjon