ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

P.PORTO

Matemática Discreta 2022/2023

Estruturas Fundamentais, Relações e Indução Relações

Teste os seus conhecimentos

Faça o Diagnóstico no moodle

Exemplo 74:

Uma empresa vende determinados produtos que vamos designar por x, y, z e w. Os clientes são considerados do tipo a, b ou c de acordo com a quantidade de material comprada pelo cliente no último ano civil. Relativamente a um certo dia a empresa registou as vendas de acordo com a tabela seguinte:

Cliente	Tipo	Produto	Preço
J.Costa	a	x	50
A.Santos	c	y	15
C.Cardoso	b	y	15
H.Barros	a	w	30

Considerando $C = \{\text{clientes}\}, T = \{a, b, c\}, P = \{\text{produtos}\} \ \text{e } D = \{\text{preços dos produtos}\}, \text{ associada a esta tabela temos uma relação quaternária constituída pelos seguintes elementos de <math>C \times T \times P \times D$:

(J.Costa, a, x, 50), (A.Santos, c, y, 15), (C.Cardoso, b, y, 15), (H.Barros, a, w, 30).

Definição 28:

Sejam A_1, A_2, \ldots, A_n conjuntos e $A_1 \times A_2 \times \cdots \times A_n$ o seu produto cartesiano.

Uma relação R sobre $A_1 \times A_2 \times \cdots \times A_n$ consiste num conjunto de n-uplos (a_1, a_2, \ldots, a_n) com $a_i \in A_i, i = 1, 2, \ldots, n$, ou seja, é dada por um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$. Como R é uma relação constituída por n-uplos, R diz-se uma relação n-ária.

Definição 29:

Sejam A e B dois conjuntos.

Uma relação binária R de A para B é constituída por um conjunto de pares (x, y) com $x \in A$ e $y \in B$.

Notação:

Se $(x, y) \in R$, dizemos que $x \notin R$ -relacionado com y.

Escrevemos $R:A\longrightarrow B$ para exprimir que R é uma relação de A para B.

xRy para significar que $(x,y) \in R$;

x R y para significar que $(x, y) \notin R$.

Exemplo 75:

Considerem-se os conjuntos $A=\{1,2\}$ e $B=\{a,b,c\}$. Uma relação binária de A para B poderá ser, por exemplo, o conjunto

$$R = \{(1, a), (2, b), (2, c)\}.$$

Tem-se,

1Ra,

1Rb,

Exemplo 76:

Considere-se o conjunto $H = \{1, 2, 3, 4\}$, e defina-se em H a relação binária R estritamente menor que. Portanto,

aRb se e só se a < b.

Então,

$$R = \{$$

Observações:

- Uma relação $R:A\longrightarrow B$ pode ser vista como um subconjunto de $A\times B$ e podemos expressar relações usando a notação dos conjuntos.
- $A \times B$ é uma relação a qual designamos por relação universal de A para B.
- A relação vazia não contém nenhum par.

Definição 30:

Considerem-se os conjuntos A e B e seja $R \subseteq A \times B$ uma relação binária de A para B.

Um elemento $a \in A$ pertencerá ao domínio da relação binária R, se existir um elemento $b \in B$ tal que $(a,b) \in R$. Assim, o **domínio da relação binária** R é,

$$dom(R) = \{ a \in A : \exists b \in B \in (a, b) \in R \}.$$

Um elemento $b \in B$ pertencerá ao contradomínio da relação binária R, se existir um elemento $a \in A$ tal que $(a, b) \in R$. Assim, o **contradomínio da relação binária** R é,

$$cdom(R) = \{b \in B : \exists a \in A \in (a, b) \in R\}.$$

Exemplo 77:

Considerem-se os conjuntos $A=\{a,b,c\}$ e $B=\{1,2,3,4\}$ e a relação binária, de A para B,

$$R = \{(a, 2), (b, 3), (a, 3), (a, 4), (b, 4)\}.$$

O domínio de R é o conjunto dom(R) =

O contradomínio de R é o conjunto cdom(R) =

3.2 Representação de relações binárias

Matrizes booleana

Exemplo 78:

Sejam $A = \{1, 3\}$ e $B = \{2, 4, 6\}$.

Considerem-se os elementos de A e B ordenados pela ordem natural.

Seja R a relação "menor do que". Tem-se

$$R = \{(1,2), (1,4), (1,6), (3,4), (3,6)\}.$$

A matriz desta relação é:

A matriz $m \times n$, $M_R = (a_{ij}^R)_{i=1,\dots,m;j=1,\dots,n}$ de uma relação $R: A \longrightarrow B$ é definida por

$$a_{ij}^R = \begin{cases} 0 \text{ se } a_i R b_j \\ 1 \text{ se } a_i R b_j \end{cases}.$$

Matrizes booleana

Exercício:

Determine a relação binária R de $A=\{1,3\}$ para $B=\{2,4,6\},$ definida pela matriz:

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right].$$

Grafo orientado

As relações podem também ser representadas por um grafo orientado (ou digrafo)

Exemplo 79:

Seja $A = \{a, b, c\}$ e considere-se a relação binária

$$R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a)\}.$$

O grafo orientado desta relação é:

A cada par $(a, b) \in R$ corresponde um **ramo** unindo cada vértice $a \in A$ a um vértice $b \in B$.

O ramo correspondendo a um par ordenado $(a, a) \in R$ diz-se um **lacete**.

Grafo orientado

Exercício:

Determine a relação dada pelo grafo orientado:

Exemplo 80:

No conjunto $A = \{1, 2, 3, 4, 5\}$, a relação "x é maior que y" determina o conjunto

$$R = \{(5,4),$$

Exercício:

Represente a relação anterior por uma matriz booleana e por um grafo orientado.

Exemplo 81:

Para os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, e, i, o, u\}$,

$$R = \{(1, a), (2, e), (3, i), (1, o), (2, u)\}$$

é uma relação de A em B.

Exercício:

Represente a relação anterior por uma matriz booleana.

Observações:

- Se A é um conjunto e R e uma relação de A para A, dizemos que R é uma relação em A ou sobre A. Esta relação designa-se por relação identidade e denota-se por $I_A = \{(a, a) : a \in A\}$.
- Se $R:A\longrightarrow B$, então a relação inversa $R^{-1}:B\longrightarrow A$ é constituída por todos os pares (b,a) tais que $(a,b)\in R$.

Tem-se assim:

- $bR^{-1}a$ sse aRb;
- $(R^{-1})^{-1} = R$.

Exemplo 82:

A relação inversa da relação $R = \{(1,x),(2,z),(3,y)\}$ de $A = \{1,2,3\}$ para

$$B = \{x, y, z\}$$
 é:

$$R^{-1} =$$

Todas as operações efetuadas sobre conjuntos podem ser também efectuadas sobre relações.

$$x(R \cap S)y \Leftrightarrow$$
 $x(R \cup S)y \Leftrightarrow$
 $x(R - S)y \Leftrightarrow$
 $x\overline{R}y \Leftrightarrow$

Definição 31:

Sejam $R: X \longrightarrow Y$ e $S: Y \longrightarrow Z$ duas relações.

A composição de R e S, denotada por $S \circ R$, tem X como conjunto de partida, Z como conjunto de chegada e é constituída por todos os pares (x,y) para os quais existe algum objeto $y \in Y$ tal que $(x,y) \in R$ e $(y,z) \in S$. Ou seja,

 $x(S \circ R)z$ se existe algum $y \in Y$ para o qual xRy e ySz.

Isto é,

$$S \circ R = \{$$

Exemplo 83:

Considere as relações $R = \{(1,3), (2,2), (3,1)\}$ e $S = \{(1,2), (2,1), (3,1)\}$.

Tem-se que,

$$1(S \circ R)1$$
, pois $2(S \circ R)1$, pois $3(S \circ R)2$, pois

Portanto,

$$S \circ R = \{$$

- A composição de relações é associativa, i.e., $(R \circ S) \circ T = R \circ (S \circ T)$.
- Seja R uma relação sobre um conjunto A.

Geralmente abreviamos $R \circ R$ por R^2 , $R \circ R \circ R$ por R^3 , etc.

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Reflexiva: Se para todo o $x \in A$, $(x, x) \in R$.

Para o conjunto $A = \{1, 2, 3, 4\}$

Não é uma relação reflexiva, pois

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$
 (3,3) $\notin R_1$

É uma relação reflexiva

$$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

Observação:

Mostrar que uma dada relação R num conjunto A satisfaz alguma das propriedades anteriores implica mostrar a propriedade em causa é válida para todos os elementos de R.

Por outro lado, para mostrar que R não satisfaz uma dada propriedade basta arranjar um contra-exemplo.

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Irreflexiva: Se para todo o $x \in A$, $(x, x) \notin R$.

Para o conjunto $A=\{1,2,3,4\}$

É uma relação irreflexiva

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

Não é uma relação irreflexiva, pois

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$
 (1,1) $\in R_1$

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Simétrica: Se para todo o $x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R.$

Para o conjunto $A = \{1, 2, 3, 4\}$

É uma relação simétrica

$$R_2 = \{(1,1), (1,2), (2,1)\}$$

Não é uma relação simétrica, pois

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$
 $(4,1) \in R_1 \text{mas } (1,4) \notin R_1$

$$R_6 = \{(3,4)\}$$

Não é uma relação simétrica, pois

 $(3,4) \in R_6 \text{mas} (4,3) \notin R_6$

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Anti-Simétrica: Se para todo $x, y \in A : ((x, y) \in R \ e \ (y, x) \in R) \Rightarrow x = y.$

Para o conjunto $A=\{1,2,3,4\}$

É uma relação anti-simétrica

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

Não é uma relação anti-simétrica

$$R_2 = \{(1,1), (1,2), (2,1)\}$$

$$R_6 = \{(3,4)\}$$
 Não é uma relação anti-simétrica

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Transitiva: Se para todo o $x, y, z \in A$, $((x, y) \in R \in (y, z) \in R) \Rightarrow (x, z) \in R$.

Para o conjunto $A = \{1, 2, 3, 4\}$

É uma relação transitiva

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

É uma relação transitiva

$$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

Não é uma relação transitiva, pois

$$R_2 = \{(1,1), (1,2), (2,1)\}\$$
 $(2,1) \in R_2 \text{ e } (1,2) \in R_2 \text{ mas } (2,2) \notin R_2$

Para o conjunto $A = \{1, 2, 3, 4\}$, considere as relações

$$R_{1} = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1)\}$$

$$R_{3} = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R_{4} = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

$$R_{5} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

$$R_{6} = \{(3,4)\}$$

Reflexivas; Resposta: R_3 e R_5 , pois ...

Simétricas; Resposta: R_2 e R_3 , pois ...

Para o conjunto $A = \{1, 2, 3, 4\}$, considere as relações

$$R_{1} = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1)\}$$

$$R_{3} = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R_{4} = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

$$R_{5} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

$$R_{6} = \{(3,4)\}$$

Anti-simétricas; Resposta: R_4 , R_5 e R_6 , pois ...

Transitivas; Resposta: R_4 , R_5 e R_6 , pois ...

Exercício:

Represente as relações anteriores por um grafo orientado e confirme os resultados obtidos anteriormente.

Observação:

Do ponto de vista gráfico:

- uma relação é reflexiva se para todo o vértice existir um ramo ligando-o a ele mesmo (ou seja, existe um lacete para todo o vértice).
- a relação será simétrica sempre que ao haver uma aresta de a para b também haja uma aresta de b para a;
- ullet a relação será transitiva sempre que ao haver uma aresta da a para b e outra de b para c, também haja uma aresta de a para c.

Fecho de uma relação

Considerem-se um conjunto A e o conjunto de todas as relações em A. Seja \mathcal{P} uma propriedade de uma dessas relações, como a transitividade ou a simetria.

Uma relação com a propriedade \mathcal{P} é designada uma \mathcal{P} -relação.

O \mathcal{P} -fecho de relação arbitrária R em A, denotado por $\mathcal{P}(R)$, é uma relação tal que,

$$R \subseteq \mathcal{P}(R) \subseteq S$$
,

para a \mathcal{P} -relação S contendo R. Usaremos a notação

reflexivo(R), simétrico(R) e transitivo(R),

para os fecho reflexivo, simétrico e transitivo de R.

Fecho de uma relação

Dados um conjunto A com n elementos e uma relação R em A:

reflexivo(R) é obtido adicionando a R os elementos (x, x) que não pertencem a R;

Exemplo 84:

Considerem-se o conjunto $A = \{1, 2, 3\}$ e a relação $R = \{(1, 2), (2, 3), (3, 3)\}.$

Então,

$$reflexivo(R)=R \cup$$

Fecho de uma relação

Dados um conjunto A com n elementos e uma relação R em A:

simétrico(R) é obtido adicionando a R os elementos (y, x) tais que (x, y) pertencem a R;

Exemplo 84:

Considerem-se o conjunto $A = \{1, 2, 3\}$ e a relação $R = \{(1, 2), (2, 3), (3, 3)\}.$

Então,

$$simétrico(R)=R \cup$$

Fecho de uma relação

Dados um conjunto A com n elementos e uma relação R em A:

$$transitivo(R) = R \cup R^2 \cup \cdots \cup R^n.$$

Exemplo 84:

Considerem-se o conjunto $A = \{1, 2, 3\}$ e a relação $R = \{(1, 2), (2, 3), (3, 3)\}.$

Então,

$$transitivo(R) = R \cup R^2 \cup R^3 =$$

Relação de equivalência

Definição 33:

Uma relação binária R num conjunto A diz-se uma relação de equivalência se R for simultaneamente uma relação reflexiva, simétrica e transitiva.

Exemplo 85:

Seja $A = \{1, 2, 3\}.$

A relação

$$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

é uma relação de equivalência.

Provar!!

Classes de equivalência

Definição 34:

Sendo R uma relação de equivalência sobre um conjunto A não vazio e sendo $a \in A$, o conjunto:

$$C_a = \frac{a}{R} = [a]_R = \{x \in A : xRa\}$$

chama-se classe de equivalência do elemento a.

Exemplo 86:

Sejam $A = \{a, b, c, d, e\}$ um conjunto e

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (c, d), (d, c)\}$$

uma relação de equivalência em A (Provar!).

Temos,

$$[a]_R = [b]_R = [c]_R =$$

Observação:

Classe de equivalência do elemento a é o conjunto de todos os elementos que estão em relação com a.

Definição 35:

O conjunto de todas as classes de equivalência duma relação R, chama-se conjunto quociente de A por R e denota-se:

$$\frac{A}{R} = A/R = \{C_x : x \in A\}.$$

Exercício

Sejam $A = \{a, b, c, d, e\}$ um conjunto e

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (c, d), (d, c)\}$$

uma relação de equivalência em A.

Construa o conjunto quociente.

Teorema 9:

Seja R uma relação de equivalência num conjunto A. O conjunto quociente A/R é uma partição de A, isto é:

- $[a]_R \neq \emptyset$ (De facto, para cada $a \in A$, temos $a \in [a]_R$);
- $\bullet \ A = \cup_{a \in A} [a]_R;$
- $aRb \Leftrightarrow [a]_R \cap [b]_R = \emptyset.$

Relação de ordem

Definição 36:

Uma relação binária R num conjunto A diz-se:

- R é uma relação de ordem parcial (fraca) (r.o.p.) em A sse é reflexiva, anti-simétrica e transitiva. Ao par (A,R) chama-se um conjunto parcialmente ordenado ou c.p.o. ou poset.
- R é uma relação de ordem parcial estrita em A sse é irreflexiva, anti-simétrica e transitiva;
- R é uma relação de ordem total em A sse é uma r.o.p. em que cada elemento de A está relacionado com todos os outros elementos de A, ou seja, para todo o x ∈ A se tem xRy, ∀y ∈ A.
 O para (A, R) chama-se um conjunto totalmente ordenado ou c.t.o..

Exemplo 87:

A relação inclusão de conjuntos é uma relação de ordem parcial pois:

Reflexiva;
Anti-simétrica;
Transitiva.

Definição 37:

Seja \leq (que se lê "menor ou igual geral") uma relação de ordem parcial em A.

- Denotamos por \prec (que se lê "menor geral") a correspondente ordem parcial estrita, i.e., a ordem parcial estrita obtida de \preceq tirando-lhe todos os pares (x, x), com $x \in A$.
- A inversa de \prec denota-se por \succ e a inversa de \preceq denota-se por \succeq .
- Se (A, \preceq) é um c.p.o., então (A, \succeq) também é um c.p.o. e diz-se o dual de (A, \preceq) .
- Seja (A, \preceq) é um c.p.o.. Se $x \prec y$ dizemos que x é um predecessor de y, ou que y é um sucessor de x.
- Se $x \prec y$ e não existem elementos entre x e y, i.e., não existe nenhum $z \in A$ tal que $x \prec z \prec y$, dizemos que x é um predecessor imediato de y, ou que y é um sucessor imediato de x.

Diagrama de Hasse

Um c.o.p. pode ser representado por um diagrama de Hasse do seguinte modo:

representamos os elementos do conjunto e sempre que x é um predecessor imediato de y ligamos x a y por um arco com x situado num nível inferior a y.

Exemplo 88:

O diagrama de Hasse do conjunto $\{1,2,3\}$ com a relação \leq habitual é:

Exemplo 89:

O diagrama de Hasse para o c.o.p. $(\mathcal{P}(A),\subseteq)$, com $A=\{a,b\}$ é:

