1.4 Відображення і функції

1.4.1 Функціональні відношення

Відношення R між множинами X і $Y (R \subseteq X \times Y)$ є функціональним, якщо всі його елементи різні за першим елементом:

кожному $x \in X$ або відповідає тільки один елемент $y \in Y$, такий, що xRy, або такого елемента y взагалі не існує.

Матриця функціонального відношення, що задане на скінченних множинах X і Y, містить не більше однієї одиниці в кожному рядку.

Якщо функціональне відношення задано у вигляді графа, то з кожної вершини, що зображує першу координату, виходить не більше однієї дуги.

б) функціональне відношення

в) нефункціональне відношення

Приклад. Нехай A — множина кроликів; B — множина кліток.

Нехай R — відношення розміщення кроликів по клітках — «Кролики — Клітки».

Нехай $A = \{a, b\}, B = \{1, 2, 3\}.$

 $R_1 = \{(a, 1), (b, 3)\}, R_2 = \{(a, 1), (b, 1)\}.$

 $R_3 = \{(a, 1), (a, 2), (b, 3)\}.$

Приклад. Українсько-англійський словник встановлює відповідність між множиною українських та англійських слів.

Нехай R — деяке відношення, $R \subseteq X \times Y$.

Областю визначення відношення R називається множина $Dom\ R\ (D_R)$, що складається з усіх елементів множини X, які зв'язані відношенням R з елементами множини Y:

 $Dom R \subseteq X$, $Dom R = \{x: \exists y \in Y, (x, y) \in R\}$.

Якщо Dom R = X, то функціональне відношення R називається всюди визначеним.

Областю значень відношення R називається множина $Im\ R$, що складається з усіх елементів множини Y, які зв'язані відношенням R з елементами множини X:

 $Im R \subseteq Y$, $Im R = \{y: \exists x \in X, (x, y) \in R\}$.

Відображенням f множини X в Y (або функцією f) називається всюди визначене функціональне відношення.

Позначення: $f: X \to Y$ або y = f(x), де $x \in X$, $y \in Y$.

При цьому перша координата x впорядкованої пари $(x, y) \in f$ ϵ прообразом (аргументом, змінною), а друга y — образом (значенням).

Приклад.

1.4.2 Типи відображень

Якщо для відображення $f: X \to Y$ будь-який елемент у з $Y \in$ образом принаймні одного елементу x з X, тобто: $\forall y \in Y \quad \exists x \in X : \quad y = f(x)$, то відображення називається **сюр'єктивним** відображенням.

Або, $f: X \to Y$ називається **сюр'єктивним** відображенням, якщо Im f = Y.

Приклад

Якщо для відображення $f: X \to Y$ для будь-яких двох різних елементів x_1 та x_2 з X їх образи y_1 та y_2 також різні, то відображення f називається ін'єктивним відображенням.

$$y = f(x_1)$$
 ra $y = f(x_2) \implies x_1 = x_2$.

Приклад

Відображення, яке одночасно є сюр'єктивним та ін'єктивним називається **бієктивним** (накладанням).

Приклад

Якщо f — взаємно однозначне відображення, а X = Y, то $f: X \to X$ називається відображенням множини A на себе. Елементи $(x, x) \in X \times X$ утворюють **тотожне відображення** E, причому $f \circ f$ $f = f^{-1} \circ f = E$.

Відображення множини в її фактор-множину називається канонічною сюр'єкцією.

Приклад. Нехай X та Y — множини дійсних чисел, $f: X \to Y, \ f(x) = 3x + 5.$

Функція f ін'єктивна:

якщо $f(x_1) = f(x_2)$, тоді $3x_1 + 5 = 3x_2 + 5$ і відповідно $x_1 = x_2$. Функція $f \in \text{сюр'}$ єкцією.

Для будь-якого дійсного числа у треба знайти таке x, що f(x) = y = 3x + 5. Якщо x = (1/3)(y - 5), тоді f(x) = y.

Функція f представляє собою бієкцію або взаємно однозначну відповідність.

Приклад. Нехай X та Y — множини дійсних чисел, функція $f: X \to Y, f(x) = x^2$.

Функція f не ϵ ін'єктивною, тому що f(2) = f(-2), але $2 \neq -2$.

Функція f не є сюр'єктивною, тому що не існує такого дійсного числа x, для якого f(x) = -1.

Якщо X та Y— множини невід'ємних дійсних чисел, то тоді f буде і сюр'єктивним, і ін'єктивним.

У випадку коли X та Y будуть множинами натуральних чисел, то f збереже ін'єктивність, але втратить сюр'єктивність.

Приклад. Різні види кодування є відповідністю між об'єктами, що кодуються, і кодами, що присвоюються їм.

1.4.3 Властивості відображень

Сукупність усіх елементів, образом яких є заданий елемент y, називається **повним прообразом** елемента y і позначається $f^{-1}(y)$.

Сукупність елементів f(x), які є образами всіх елементів множини $C \subset X$, називається **образом множини** C та позначається f(C).

Сукупність усіх елементів із X, образи яких належать якійсь множині $D \subset Y$, називається **повним прообразом множини** D і позначається $f^{-1}(D)$.

Приклад. Нехай $X=\{1, 2, 3, 4\}, Y=\{5, 6, 7, 8, 9\},$ $f=\{(1,5), (2,6), (2,7), (3,8), (3,5)\}.$

Повний прообраз елемента "5" з множини Y:

$$f^{-1}(5) = \{1, 3\}.$$

Нехай також $C = \{1, 2\}$. Образ множини C:

$$f(C) = \{5, 6, 7\}.$$

Нехай $D = \{6, 7\}$. Повний прообраз множини D:

$$f^{-1}(D) = \{2\}.$$

Теорема 4.1. Нехай f ϵ відображення $f: X \to Y$. Тоді справедливі наступні властивості відображень:

- а) Якщо $X \subset Y$, то $f(X) \subset f(Y)$, $f^{-1}(X) \subset f^{-1}(Y)$,
- 6) $f(X \cup Y) = f(X) \cup f(Y), f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y),$
- $\mathbf{B}) f(X \backslash Y) = f(X) \backslash f(Y), f^{-1}(X \backslash Y) = f^{-1}(X) \backslash f^{-1}(Y),$
- $\Gamma(X \cap Y) = f(X) \cap f(Y), f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y),$
- $д) f^{-1}(X') = (f^{-1})'(X).$

1.4.4 Композиція відображень

Якщо $f: A \to B$, $g: B \to C$, то їх **композиція** $(g \circ f): A \to C$, причому $(g \circ f)(a) = g(f(a))$.

Якщо існує множина пар $(a, b) \in f$ та $(b, c) \in g$, то множина пар $(a, c) \in f \circ g$ утворює композицію $(g \circ f)$.

Запис $(g \circ f)$ проводиться в порядку, який є зворотнім до того, в якому виконується операції $f: A \to B, g: B \to C.$

Правило: композицію відображень ($g \circ f$) треба починати з виконання операції f, яка розташована справа.

Приклад. Hexaй $f: R \to R$, $f(x) = \sin x$, $g: R \to R$, $g(x) = \ln x$.

$$(g \circ f)(x) = g(f(x)) = g(\sin x) = \ln(\sin x),$$

 $(f \circ g)(x) = f(g(x)) = f(\ln x) = \sin(\ln x),$
 $(f \circ f)(x) = f(f(x)) = f(\sin x) = \sin(\sin x),$
 $(g \circ g)(x) = g(g(x)) = g(\ln x) = \ln(\ln x).$

Композиція відображень асоціативна, тобто $(h \circ g) \circ f = h \circ (g \circ f)$ і записується у вигляді $h \circ g \circ f$.

Композиція відображень не комутативна:

$$g \circ f \neq f \circ g$$
.

Теорема 4.2. Функція f є взаємно однозначним функціональним відношенням тоді і тільки тоді, коли f^{-1} — взаємно однозначне відношення.

<u>Теорема 4.3.</u> Композиція двох функціональних відношень є функціональним відношенням.

 $\underline{\text{Теорема 4.4}}$. $\underline{\text{Нехай }}f:A\to B,\,g:B\to C.$ Тоді

- а) якщо f і g сюр'єкції A на B та B на C відповідно, то $g \circ f$ є сюр'єкцією A на C.
 - б) якщо f і g ін'єкції, то $g \circ f$ є ін'єкцією.
 - в) якщо f і g бієкції, то $g \circ f$ є бієкцією.