SEGUNDA PARTE LABORATORIO AUTO - 1

Etapa 1: Procesamiento y limpieza de datos

Objetivos específicos

- Cargar y explorar datos en formato JSON.
- Transformar una estructura jerárquica a un DataFrame de pandas.
- Limpiar, convertir y preparar los datos para su análisis.

Actividades

1. Carga del archivo JSON

- Cargue el archivo pokemonDB_dataset.json usando la librería json o pandas.
- Explore su estructura inicial (keys(), items()) para entender su jerarquía.

2. Revisión de estructura y tipos

- Use df.info() y df.describe(include='all') para identificar tipos de datos.
- Determine cuántas variables son numéricas y cuántas categóricas.

3. Limpieza y conversión de campos

Convierta columnas como "Height", "Weight", "HP Base", "Attack Base", "Defense Base", etc., a valores numéricos.

Elimine unidades ("m", "kg", "lbs") y convierta los campos a tipo float.

Separe las columnas compuestas, por ejemplo:

```
"Type" → Type1, Type2

"Gender" → Male (%), Female (%)
```

4. Normalización y verificación final

- Verifique valores nulos y duros:
- Cree un nuevo DataFrame df_clean con los campos limpios listos para análisis:

["Type1", "Type2", "HP Base", "Attack Base", "Defense
Base", "Speed Base", "Height_m", "Weight_kg", "Base
Exp"]

Etapa 2: Exploratory Data Analysis (EDA)

Objetivos específicos

- Aplicar técnicas de análisis exploratorio de datos.
- Extraer estadísticas descriptivas y patrones visuales.
- Interpretar relaciones entre variables.

Preguntas y ejercicios de análisis

En cada pregunta se indica si debe realizar **análisis estadístico** o **visualización gráfica**.

1. Análisis estadístico

¿Cuál es el promedio, mínimo y máximo de los atributos base (HP, Attack, Defense, Speed) de todos los Pokémon?

2. Análisis gráfico

Cree un histograma para visualizar la distribución de los valores de Base Exp.

Interprete si la distribución es simétrica o sesgada.

3. Análisis gráfico

Realice un **boxplot** comparando los valores de Attack Base entre los tipos principales (Type1).

Identifique qué tipo tiene Pokémon con ataques más altos en promedio.

4. Análisis estadístico

¿Cuál es el top 5 de especies (Species) más frecuentes en el dataset?

5. Análisis gráfico

Genere un **gráfico de barras** que muestre la cantidad de Pokémon por tipo principal (Type1). ¿Qué tipo es el más común?

6. Análisis estadístico

Calcule la **correlación** entre los atributos HP Base, Attack Base, Defense Base y Speed Base. ¿Qué atributos están más correlacionados entre sí?

7. Análisis gráfico

Cree un **heatmap** (mapa de calor) con la matriz de correlaciones obtenida en el punto anterior. Interprete los resultados.

8. Análisis gráfico

Realice un **diagrama de dispersión** (scatter plot) entre Weight_kg y Attack Base.

¿Existe relación entre el peso de un Pokémon y su capacidad de ataque?

9. Análisis estadístico

Determine el **promedio de altura y peso** por tipo principal (Type1). Interprete cuál tipo tiende a tener Pokémon más grandes.

10. Análisis gráfico

Construya un **gráfico de violín o boxplot múltiple** comparando el atributo Speed Base entre los tipos Flying, Electric y Ground. ¿Qué tipo de Pokémon tiende a ser más rápido?

Entregables

Cada grupo debe entregar:

- 1. Un proyecto en github titulado "Laboratorio 2: Data processing-EDA", donde estarán los códigos (preferiblemente notebooks) de la parte 1 y la parte 2 del laboratorio y sus bases de datos
- 2. Un breve reporte en markdown como archivo Readme del laboratorio, que contenga:
 - Las respuestas interpretativas a las 10 preguntas.
 - Los gráficos generados y comentarios sobre ellos.
 - Conclusión general sobre qué factores parecen influir más en las estadísticas base de los Pokémon.