Khintchine Inequality

David Brandfonbrener

Math 731

October 24, 2017

Aleksandr Khinchin

1894 - 1959

Moscow State University
Studied under Luzin

Worked with Kolmogorov

Contributed to law of iterated logarithm, central limit theorem, and information theory

Won the Stalin Prize (1941)

Aleksandr Khinchin (fun facts)

Interested in literature and theater, acted in plays and wrote poetry

His student Gelfond proved that a^b transcendental if a, b algebraic and b irrational

Not a member of the communist party

Friends with Mayakovsky

Theorem (Khinchin, 1923)

Generalized by Littlewood (1930) and Paley and Zygmund (1930). Sometimes called Khinchin-Kahane after a paper of Kahane (1964)

Let $\{\varepsilon_n\}_{n=1}^N$ be independent random variables taking values ± 1 with probability 1/2 and $\{a_n\}_{n=1}^N$ be real numbers. Then, for $0 there exist constants <math>A_p, B_p$ depending only on p such that

$$A_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}\leq\left(\mathbb{E}\left[\left|\sum_{n=1}^{N}\varepsilon_{n}a_{n}\right|^{p}\right]\right)^{1/p}\leq B_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}.$$

Theorem (Khinchin, 1923)

Generalized by Littlewood (1930) and Paley and Zygmund (1930). Sometimes called Khinchin-Kahane after a paper of Kahane (1964)

Let $\{\varepsilon_n\}_{n=1}^N$ be independent random variables taking values ± 1 with probability 1/2 and $\{a_n\}_{n=1}^N$ be real numbers. Then, for $0 there exist constants <math>A_p, B_p$ depending only on p such that

$$A_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}\leq\left(\mathbb{E}\left[\left|\sum_{n=1}^{N}\varepsilon_{n}a_{n}\right|^{p}\right]\right)^{1/p}\leq B_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}.$$

*Note: Actually holds for a_n complex and has analogs in many other spaces.

Lemma

Take $x \in \mathbb{R}$. Then

$$\frac{\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}}{2} \leq \mathbf{e}^{\frac{\mathbf{x}^2}{2}}.$$

Lemma

Take $x \in \mathbb{R}$. Then

$$\frac{e^{x}+e^{-x}}{2}\leq e^{\frac{x^2}{2}}.$$

Proof

Taylor series.

Lemma

Take $x \in \mathbb{R}$. Then

$$\frac{\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}}{2} \leq \mathbf{e}^{\frac{\mathbf{x}^2}{2}}.$$

Proof

Taylor series.

$$1 + \frac{\mathsf{x}^2}{2!} + \frac{\mathsf{x}^4}{4!} + \dots \le 1 + \frac{\mathsf{x}^2}{2} + \frac{\mathsf{x}^4}{2^2 \cdot 2!} + \dots$$

Since $(2n)! \ge 2^n \cdot n!$ for $n \ge 0$.

Lemma

Take f a real valued function on a probability space (Ω,μ) and $0< p<\infty$. Then

$$\mathbb{E}(|f|^p) = \int_{\Omega} |f(x)|^p d\mu = p \int_0^{\infty} \lambda^{p-1} \mathbb{P}(|f| \ge \lambda) d\lambda.$$

Lemma

Take f a real valued function on a probability space (Ω,μ) and $0< p<\infty.$ Then

$$\mathbb{E}(|f|^p) = \int_{\Omega} |f(x)|^p d\mu = p \int_0^{\infty} \lambda^{p-1} \mathbb{P}(|f| \ge \lambda) d\lambda.$$

Proof

First note that $|f(x)|^p = p \int_0^{|f(x)|} \lambda^{p-1} d\lambda$.

Lemma

Take f a real valued function on a probability space (Ω,μ) and $0< p<\infty$. Then

$$\mathbb{E}(|f|^p) = \int_{\Omega} |f(x)|^p d\mu = p \int_0^{\infty} \lambda^{p-1} \mathbb{P}(|f| \ge \lambda) d\lambda.$$

Proof

First note that $|f(x)|^p = p \int_0^{|f(x)|} \lambda^{p-1} d\lambda$. Now by Fubini,

$$\int_{\Omega} |f(x)|^{p} d\mu = \int_{\Omega} \left(p \int_{0}^{|f(x)|} \lambda^{p-1} d\lambda \right) d\mu$$

$$= \int_{0}^{\infty} p \lambda^{p-1} \left(\int_{\Omega} \mathbb{1}_{\lambda \le |f(x)|} d\mu \right) d\lambda$$

$$= \int_{0}^{\infty} \lambda^{p-1} \mathbb{P}\left(|f| \ge \lambda \right) d\lambda \quad \Box$$

By independence of the ε_n we have that for t > 0,

$$\mathbb{E}\left(e^{t\sum_{n}a_{n}\varepsilon_{n}}\right)=\prod_{n}\mathbb{E}\left(e^{ta_{n}\varepsilon_{n}}\right)=\prod_{n}\left(\frac{e^{-ta_{n}}+e^{ta_{n}}}{2}\right).$$

By independence of the ε_n we have that for t > 0,

$$\mathbb{E}\left(e^{t\sum_{n}a_{n}\varepsilon_{n}}\right)=\prod_{n}\mathbb{E}\left(e^{ta_{n}\varepsilon_{n}}\right)=\prod_{n}\left(\frac{e^{-ta_{n}}+e^{ta_{n}}}{2}\right).$$

Which by Lemma 1 gives us

$$\mathbb{E}\left(e^{t\sum_{n}a_{n}\varepsilon_{n}}\right)\leq e^{\frac{t^{2}\sum_{n}a_{n}^{2}}{2}}.$$

By independence of the ε_n we have that for t > 0,

$$\mathbb{E}\left(e^{t\sum_{n}a_{n}\varepsilon_{n}}\right)=\prod_{n}\mathbb{E}\left(e^{ta_{n}\varepsilon_{n}}\right)=\prod_{n}\left(\frac{e^{-ta_{n}}+e^{ta_{n}}}{2}\right).$$

Which by Lemma 1 gives us

$$\mathbb{E}\left(e^{t\sum_{n}a_{n}\varepsilon_{n}}\right)\leq e^{\frac{t^{2}\sum_{n}a_{n}^{2}}{2}}.$$

So, like in the proof of Chernoff, and using Markov,

$$\mathbb{P}\left(\sum_{n} a_{n} \varepsilon_{n} \geq \lambda\right) = \mathbb{P}\left(e^{t \sum_{n} a_{n} \varepsilon_{n}} \geq e^{t\lambda}\right) \leq \frac{e^{\frac{t^{2} \sum_{n} o_{n}^{2}}{2}}}{e^{\lambda t}}$$

Now we set $t = \frac{\lambda}{\sum_{n} a_{n}^{2}}$ and we get

$$\mathbb{P}\left(\sum_{n} a_{n} \varepsilon_{n} \geq \lambda\right) \leq e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}} \quad \Rightarrow \quad \mathbb{P}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right| \geq \lambda\right) \leq 2e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}}.$$

Now we set $t = \frac{\lambda}{\sum_{n} a_n^2}$ and we get

$$\mathbb{P}\left(\sum_{n} a_{n} \varepsilon_{n} \geq \lambda\right) \leq e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}} \quad \Rightarrow \quad \mathbb{P}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right| \geq \lambda\right) \leq 2e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}}.$$

Now we consider to the case $\sum_{n} a_n^2 = 1$. Then we have

$$\mathbb{P}\left(\left|\sum_{n}a_{n}\varepsilon_{n}\right|\geq\lambda\right)\leq2e^{\frac{-\lambda^{2}}{2}}$$

Now we set $t = \frac{\lambda}{\sum_{n} a_{n}^{2}}$ and we get

$$\mathbb{P}\left(\sum_{n} a_{n} \varepsilon_{n} \geq \lambda\right) \leq e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}} \quad \Rightarrow \quad \mathbb{P}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right| \geq \lambda\right) \leq 2e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}}.$$

Now we consider to the case $\sum_{n} a_n^2 = 1$. Then we have

$$\mathbb{P}\left(\left|\sum_{n}a_{n}\varepsilon_{n}\right|\geq\lambda\right)\leq2e^{\frac{-\lambda^{2}}{2}}$$

By Lemma 2, this gives us

$$\left(\mathbb{E}(|\sum_{n} a_{n} \varepsilon_{n}|^{p})\right)^{1/p} \leq \left(p \int_{0}^{\infty} \lambda^{p-1} 2e^{\frac{-\lambda^{2}}{2}} d\lambda\right)^{1/p} = B_{p}$$

Now we set $t = \frac{\lambda}{\sum_{n} a_n^2}$ and we get

$$\mathbb{P}\left(\sum_{n} a_{n} \varepsilon_{n} \geq \lambda\right) \leq e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}} \quad \Rightarrow \quad \mathbb{P}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right| \geq \lambda\right) \leq 2e^{\frac{-\lambda^{2}}{2 \sum_{n} a_{n}^{2}}}.$$

Now we consider to the case $\sum_{n} a_n^2 = 1$. Then we have

$$\mathbb{P}\left(\left|\sum_{n}a_{n}\varepsilon_{n}\right|\geq\lambda\right)\leq2e^{\frac{-\lambda^{2}}{2}}$$

By Lemma 2, this gives us

$$\left(\mathbb{E}(|\sum_{n} a_{n} \varepsilon_{n}|^{p})\right)^{1/p} \leq \left(p \int_{0}^{\infty} \lambda^{p-1} 2e^{\frac{-\lambda^{2}}{2}} d\lambda\right)^{1/p} = B_{p}$$

Now, note that

$$\left(\mathbb{E}\left(\left|\sum_{n}a_{n}\varepsilon_{n}\right|^{p}\right)\right)^{1/p}\leq B_{p}=B_{p}\left(\sum_{n}a_{n}^{2}\right)^{1/2}$$

The upper bound follows by scaling the a_n . If $\sum_n a_n^2 = S$, then define $b_n = \frac{a_n}{\sqrt{S}}$ and $\sum_n b_n^2 = 1$. Apply the inequality to the b_n , then multiply both sides by \sqrt{S} to get the desired result.

Lemma

If $p_0 \le p_1$ and f is "nice" a function on a probability space (Ω, μ) , then

$$||f||_{L^{p_0}} \leq ||f||_{L^{p_1}}$$

Lemma

If $p_0 \le p_1$ and f is "nice" a function on a probability space (Ω, μ) , then

$$||f||_{L^{p_0}} \leq ||f||_{L^{p_1}}$$

Proof

Assume $p_0 < p_1$. Set $F = |f|^{p_0}$ and G = 1. Set $p = p_1/p_0 > 1$ and 1/p + 1/q = 1 then by Hölder,

$$\int_{\Omega} |\mathbf{f}|^{\rho_0} \mathrm{d}\mu = \int_{\Omega} |\mathbf{F}\mathbf{G}| \mathrm{d}\mu \leq \left(\int_{\Omega} |\mathbf{F}|^{\rho} \mathrm{d}\mu\right)^{1/\rho} \cdot 1 = \left(\int_{\Omega} |\mathbf{f}|^{\rho_1} \mathrm{d}\mu\right)^{\rho_0/\rho_1}$$

Then take the p_0 root.

First consider $2 \le p < \infty$. Then, since we are in a probability space, by independence of the ε_n and Lemma 3 we have

$$\left(\sum_{n} (a_{n})^{2}\right)^{1/2} = \left(\mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{2}\right)\right)^{1/2}$$

$$\leq \left(\mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{p}\right)\right)^{1/p}$$

Now, take $0 and assume that not all of the <math>a_k$ are 0. Then, by Cauchy-Schwarz we have

$$\sum_{n} (a_{n})^{2} = \mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{2}\right)$$

$$= \mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{p/2} \left|\sum_{n} a_{n} \varepsilon_{n}\right|^{2-p/2}\right)$$

$$\leq \left(\mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{p}\right)\right)^{1/2} \left(\mathbb{E}\left(\left|\sum_{n} a_{n} \varepsilon_{n}\right|^{4-p}\right)\right)^{1/2}$$

Now we apply the upper bound for 4 - p to get that

$$\sum_{n} (a_{n})^{2} \leq \left(\mathbb{E} \left(\left| \sum_{n} a_{n} \varepsilon_{n} \right|^{p} \right) \right)^{1/2} \left(\left(B_{p} \sum_{n} (a_{n})^{2} \right)^{\frac{4-p}{2}} \right)^{1/2}$$

$$= B_{p}^{2-p/2} \left(\mathbb{E} \left(\left| \sum_{n} a_{n} \varepsilon_{n} \right|^{p} \right) \right)^{1/2} \left(\sum_{n} (a_{n})^{2} \right)^{1-p/4}$$

Now we apply the upper bound for 4 - p to get that

$$\sum_{n} (a_n)^2 \le \left(\mathbb{E} \left(\left| \sum_{n} a_n \varepsilon_n \right|^p \right) \right)^{1/2} \left(\left(B_p \sum_{n} (a_n)^2 \right)^{\frac{4-p}{2}} \right)^{1/2}$$

$$= B_p^{2-p/2} \left(\mathbb{E} \left(\left| \sum_{n} a_n \varepsilon_n \right|^p \right) \right)^{1/2} \left(\sum_{n} (a_n)^2 \right)^{1-p/4}$$

This yields:

$$\left(\sum_{n} (a_n)^2\right)^{p/4} \leq B_p^{2-p/2} \left(\mathbb{E}\left(\left|\sum_{n} a_n \varepsilon_n\right|^p\right)\right)^{1/2}$$

Taking both sides to the 2/p power gives the result.

Sharp Constant (Haagerup, 1982)

Let
$$p_0 \in (1,2)$$
 solve $\Gamma\left(\frac{p_0+1}{2}\right) = \frac{\sqrt{\pi}}{2}$, so $p_0 \approx 1.847$. Then

$$A_{p} = \begin{cases} 2^{1/2 - 1/p} & 0
$$B_{p} = \begin{cases} 1 & 0$$$$

Sharp Constant (Haagerup, 1982)

Let
$$p_0 \in (1,2)$$
 solve $\Gamma\left(\frac{p_0+1}{2}\right) = \frac{\sqrt{\pi}}{2}$, so $p_0 \approx 1.847$. Then

$$A_{p} = \begin{cases} 2^{1/2 - 1/p} & 0
$$B_{p} = \begin{cases} 1 & 0$$$$

The proof is 50 pages and relies on a lot of casework and inequalities involving the function:

$$F(s) = \frac{2}{\pi} \int_0^\infty (1 - |\cos(\frac{t}{\sqrt{s}})|^s) t^{-2} dt$$

Sharp Constant (p = 1, Szarek, 1976)

Let $\{\varepsilon_n\}_{n=1}^N$ be independent random variables taking values ± 1 with probability 1/2 and $\{a_n\}_{n=1}^N$ be real numbers.

$$\frac{1}{\sqrt{2}} \left(\sum_{n=1}^{N} |a_n|^2 \right)^{1/2} \leq \mathbb{E} \left[\left| \sum_{n=1}^{N} \varepsilon_n a_n \right| \right] \leq \left(\sum_{n=1}^{N} |a_n|^2 \right)^{1/2}.$$

Proof (p = 1) (Latala and Oleszkiewicz, 1994)

This proof works for a_n in any normed vector space F.

Notation

$$\sigma = (\sigma_1, \dots, \sigma_N) \in \{0, 1\}^N, \ \eta = (\eta_1, \dots, \eta_N) \in \{-1, 1\}^N,$$

$$x = (x_1, \dots, x_N) \in \mathbb{R}^N$$

$$|\sigma| = \sum_{n=1}^N \sigma_n$$

$$x^{\sigma} = \prod_{n=1}^N x_n^{\sigma_n}$$

$$L_{\varepsilon} = \|\sum_{n=1}^N \varepsilon_n a_n\|$$

$$d(\varepsilon, \eta) = \operatorname{card}\{n : \varepsilon_n \neq \eta_n\}$$

Proof (p = 1) (Latala and Oleszkiewicz, 1994)

This proof works for a_n in any normed vector space F.

Notation

$$\sigma = (\sigma_1, \dots, \sigma_N) \in \{0, 1\}^N, \, \eta = (\eta_1, \dots, \eta_N) \in \{-1, 1\}^N, \\ x = (x_1, \dots, x_N) \in \mathbb{R}^N \\ |\sigma| = \sum_{n=1}^N \sigma_n \\ x^{\sigma} = \prod_{n=1}^N x_n^{\sigma_n} \\ L_{\varepsilon} = \|\sum_{n=1}^N \varepsilon_n a_n\| \\ d(\varepsilon, \eta) = \operatorname{card}\{n : \varepsilon_n \neq \eta_n\}$$

Statement

Let $\{a_n\}_{n=1}^N$ be vectors in a normed vector space F and $\{\varepsilon_n\}_{n=1}^N$ be random variables in ± 1 each with probability 1/2. Define $S = \sum_{n=1}^N a_n \varepsilon_n$, then

$$\frac{1}{\sqrt{2}} (\mathbb{E}(\|\mathbf{S}\|^2))^{1/2} \le \mathbb{E}\|\mathbf{S}\| \le (\mathbb{E}(\|\mathbf{S}\|^2))^{1/2}$$

Upper bound holds by Lemma 3, tight if $a_1 = 1, N = 1$.

Upper bound holds by Lemma 3, tight if $a_1 = 1$, N = 1. Lower bound. Let $t \in \mathbb{R}$, then we have the equality

$$t^{2} \prod_{n=1}^{N} (1 + t^{-1} x_{i}) = \sum_{\sigma \in \{0,1\}^{N}} t^{2-|\sigma|} x^{\sigma}$$

Differentiating in t and then setting t = 1 we get

$$2\prod_{n=1}^{N}(1+X_n)-\sum_{n=1}^{N}X_n\prod_{i=1,i\neq n}^{N}(1+X_i)=\sum_{\sigma\in\{0,1\}^{N}}(2-|\sigma|)X^{\sigma}$$

Now we substitute $x_n = \varepsilon_n \eta_n$ and sum both sides over all possible η and ε .

$$\sum_{\varepsilon,\eta\in\{-1,1\}^N} \left(2 \prod_{n=1}^N (1+\varepsilon_n \eta_n) - \sum_{n=1}^N \varepsilon_n \eta_n \prod_{i=1,i\neq n}^N (1+\varepsilon_i \eta_i) \right) L_{\varepsilon} L_{\eta}$$

$$= \sum_{\varepsilon,\eta\in\{-1,1\}^N} \sum_{\sigma\in\{0,1\}^N} (2-|\sigma|) \varepsilon^{\sigma} \eta^{\sigma} L_{\varepsilon} L_{\eta}$$

$$= \sum_{\sigma\in\{0,1\}^N} (2-|\sigma|) \left(\sum_{\varepsilon\in\{-1,1\}^N} \varepsilon^{\sigma} L_{\varepsilon} \right)^2$$

$$\leq 2 \left(\sum_{\varepsilon\in\{-1,1\}^N} \varepsilon^{\sigma} L_{\varepsilon} \right)^2$$

The inequality holds because $L_{\varepsilon} = L_{-\varepsilon}$ so that for each σ with $|\sigma| = 1$ we have $\sum_{\varepsilon \in \{-1,1\}^N} \varepsilon^{\sigma} L_{\varepsilon} = 0$.

Note that $\prod_n (1 + \varepsilon_n \eta_n) \neq 0$ iff $\varepsilon = \eta$ and $\prod_{i,i\neq n} (1 + \varepsilon_i \eta_i) \neq 0$ iff $\varepsilon_i = \eta_i$ for all $i \neq n$. So, we can rewrite the previous inequality as:

$$\begin{split} & 2^{N+1} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon}^{2} - N 2^{N-1} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon}^{2} + 2^{N-1} \sum_{\varepsilon,\eta \in \{-1,1\}^{N},d(\varepsilon,\eta)=1} L_{\varepsilon} L_{\eta} \\ & = 2^{N} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon}^{2} + 2^{N-1} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon} \left(\sum_{\substack{\varepsilon,\eta \in \{-1,1\}^{N},\\d(\varepsilon,\eta)=1}} L_{\eta} - (N-2) L_{\varepsilon} \right) \\ & \leq 2 \left(\sum_{\varepsilon \in \{-1,1\}^{N}} \varepsilon^{\sigma} L_{\varepsilon} \right)^{2} \end{split}$$

By the triangle inequality, for fixed ε we have

$$(N-2)L_{\varepsilon} \le \sum_{\varepsilon,\eta\in\{-1,1\}^N,d(\varepsilon,\eta)=1} L_{\eta}$$

So, we get that the long term in the previous sum is positive, yielding:

$$2^{N} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon}^{2} \leq 2 \left(\sum_{\varepsilon \in \{-1,1\}^{N}} \varepsilon^{\sigma} L_{\varepsilon} \right)^{2}$$

By the triangle inequality, for fixed ε we have

$$(N-2)L_{\varepsilon} \le \sum_{\varepsilon,\eta \in \{-1,1\}^N,d(\varepsilon,\eta)=1} L_{\eta}$$

So, we get that the long term in the previous sum is positive, yielding:

$$2^{N} \sum_{\varepsilon \in \{-1,1\}^{N}} \mathcal{L}_{\varepsilon}^{2} \leq 2 \left(\sum_{\varepsilon \in \{-1,1\}^{N}} \varepsilon^{\sigma} \mathcal{L}_{\varepsilon} \right)^{2}$$

Dividing by $(2^N)^2$ yields

$$\mathbb{E}\|\mathbf{S}\|^2 = \frac{1}{2^N} \sum_{\varepsilon \in \{-1,1\}^N} \mathbf{L}_\varepsilon^2 \le 2 \left(\frac{1}{2^N} \sum_{\varepsilon \in \{-1,1\}^N} \varepsilon^{\sigma} \mathbf{L}_\varepsilon \right)^2 = 2 (\mathbb{E}\|\mathbf{S}\|)^2$$

By the triangle inequality, for fixed ε we have

$$(N-2)L_{\varepsilon} \le \sum_{\varepsilon,\eta \in \{-1,1\}^N,d(\varepsilon,\eta)=1} L_{\eta}$$

So, we get that the long term in the previous sum is positive, yielding:

$$2^{N} \sum_{\varepsilon \in \{-1,1\}^{N}} L_{\varepsilon}^{2} \leq 2 \left(\sum_{\varepsilon \in \{-1,1\}^{N}} \varepsilon^{\sigma} L_{\varepsilon} \right)^{2}$$

Dividing by $(2^N)^2$ yields

$$\mathbb{E}\|\mathsf{S}\|^2 = \frac{1}{2^N} \sum_{\varepsilon \in \{-1,1\}^N} \mathsf{L}_\varepsilon^2 \le 2 \left(\frac{1}{2^N} \sum_{\varepsilon \in \{-1,1\}^N} \varepsilon^\sigma \mathsf{L}_\varepsilon \right)^2 = 2 (\mathbb{E}\|\mathsf{S}\|)^2$$

Note this is tight since we have equality if $a_1 = a_2$, N = 2.

Example Application

Take $1 \le p < \infty$ and $T: L^p(X, \mu) \to L^p(Y, \nu)$ a bounded linear operator. Then, there exists a constant $C_{p,||T||} > 0$ such that

$$\left\| \left(\sum_{n=1}^{N} T f_{n} \right)^{1/2} \right\|_{L^{p}(Y,\nu)} \leq C_{p,\|T\|} \left\| \left(\sum_{n=1}^{N} f_{n} \right)^{1/2} \right\|_{L^{p}(X,\mu)}$$

Rademacher Functions

These results are often formulated in Rademacher functions instead of ε_n .

The Rademacher functions $r_k(t)$ for $k \in \mathbb{N}_+$ and $t \in [0,1]$ are defined as

$$r_k(t) = \operatorname{sign}\left(\sin(2^k \pi t)\right)$$

Rademacher Functions

These results are often formulated in Rademacher functions instead of ε_n .

The Rademacher functions $r_k(t)$ for $k \in \mathbb{N}_+$ and $t \in [0,1]$ are defined as

$$r_k(t) = \operatorname{sign}\left(\sin(2^k \pi t)\right)$$

These functions can be treated as independent random variables taking on values ± 1 with probability 1/2. Since

$$\int_0^1 r_k(t)r_j(t)dt = \begin{cases} 1 & k=j\\ 0 & k \neq j \end{cases}$$

Rademacher Functions

These results are often formulated in Rademacher functions instead of ε_n .

The Rademacher functions $r_k(t)$ for $k \in \mathbb{N}_+$ and $t \in [0,1]$ are defined as

$$r_k(t) = \text{sign}\left(\sin(2^k \pi t)\right)$$

These functions can be treated as independent random variables taking on values ± 1 with probability 1/2. Since

$$\int_0^1 r_k(t)r_j(t)dt = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$$

Then the inequality can be restated as

$$A_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2} \leq \left(\int_{0}^{1}\left[\left|\sum_{n=1}^{N}r_{k}(t)a_{n}\right|^{p}\right]dt\right)^{1/p} \leq B_{p}\left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}$$

The End