## **Cover Sheet for Submission of Maths Examinations Summer 2020**

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

**Module Name: Linear Algebra and Groups** 

**Module Code: MATH40003** 

Date: 07/05/2020

## **Questions Answered (in the file):**

Please tick next to the question or questions you have answered in this file.

| Q1 | <b>√</b> |
|----|----------|
| Q2 |          |
| Q3 |          |
| Q4 |          |
| Q5 |          |
| Q6 |          |

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

## (Optional) Page Numbers for each question;

| Page<br>Number | Question<br>Answered |
|----------------|----------------------|
| - Trainiboi    | 7410470104           |
|                |                      |
|                |                      |
|                |                      |
|                |                      |
|                |                      |
|                |                      |
|                |                      |
|                |                      |

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{52} & 0 & -\frac{1}{52} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{R_1 \times 52}
\begin{pmatrix}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{R_1 \times 52}
\begin{pmatrix}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}$$

$$\frac{R_3 = (R_3 - R_1)}{R_1 = (R_1 + R_3)}$$

$$\frac{R_{3} = (R_{3} - R_{1})/2}{R_{1} = (R_{1} + R_{3})/2} \begin{pmatrix} 1 & 0 & 0 & | \sqrt{2}/2 & 0 & \sqrt{2}/2 \\ 0 & 1 & 0 & | \sqrt{2}/2 & 0 & | \sqrt{2}/2 \\ 0 & 0 & 1 & | \sqrt{2}/2 & 0 & | \sqrt{2}/2 \\ 0 & 0 & 1 & | \sqrt{2}/2 & | \sqrt{2}/2 & | \sqrt{2}/2 \\ 0 & 0 & 1 & | \sqrt{2}/2 & | \sqrt{2}/2 & | \sqrt{2}/2 & | \sqrt{2}/2 \\ 0 & 0 & 1 & | \sqrt{2}/2 & |$$

$$\left(\frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}}\right)$$

$$A^{T} = \begin{pmatrix} f_{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = A^{-\frac{1}{2}} = 7$$

$$A^{T}A = A^{-1}A = \frac{1}{\sqrt{2}} = 3$$
orthog

$$R_{\theta} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$



So we get:
$$R_{\theta}(x) = R_{\theta}(x(0) + y(0)) = (R_{\theta} \text{ is } \\ \text{linear})$$

$$= x R_{\theta}(x(0) + y R_{\theta}(x(0))) = x (\cos \theta) + y (-\sin \theta)$$

$$= x R_{\theta}(x(0) + y R_{\theta}(x(0))) = x (\sin \theta) + y (\cos \theta)$$

=> 
$$R_{\theta}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos v & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$

For 
$$\mu$$
 (we have  $\lambda$  had  $\lambda_1 = 0$  for all  $\lambda_1 = 0$ )

 $\lambda_1 = 0 = 0 = 0$ 
 $\lambda_2 = 0 = 0$ 
 $\lambda_3 = 0$ 
 $\lambda_4 = 0 = 0$ 
 $\lambda_4 = 0$ 
 $\lambda_4$ 

For |U|, we have  $x_1 = x_2 \Rightarrow x_2 = x_1 \operatorname{dan}\theta \Rightarrow \operatorname{ban}\theta = 1$   $\Rightarrow \sin \theta = \cos \theta \Rightarrow \theta = \operatorname{n} \operatorname{sin}\theta = 1$   $\sin 2\theta = 1$  $\cos 2\theta = 0$   $\Rightarrow \operatorname{n} U = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right)$ 

$$M |M| = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos(ni) - \sin(2\pi i) \\ \sin(2\pi i) \end{pmatrix} = and idocumise reflection on  $\frac{3}{2}$  of radians$$

(+) A-ordhagand 2x2 => its columns are perpendicular unit vectors.

there are only 2 unit vectors perpendicular to (cos(x)) sin(x) and by sin(x) and (sin(x)) - cos(x) and (sin(x)) =) We get two matrices only -> precisely M and M!