

節末問題 2.3 的解答

問題 2.3.1

這是測試是否理解 f(x) 這樣的函數標記(\rightarrow **2.3.1項**)、多項式函數(\rightarrow **2.3.7項**)的問題。答案如下。

- $f(1) = 1^3 = 1 \times 1 \times 1 = 1$
- $f(5) = 5^3 = 5 \times 5 \times 5 = 125$
- $f(10) = 10^3 = 10 \times 10 \times 10 = 1000$

另外, $f(x) = ax^3 + bx^2 + cx + d$ 形式的函數稱為 **三次函數**。這個問題的 $f(x) = x^3$ 也是三次函數的一種。

問題 2.3.2(1)

這是測試對對數函數(→2.3.10項)的理解的問題。

因為 $2^3 = 8$, 所以答案是 $\log_2 8 = 3$ 。 (參考第36頁的例子)

問題 2.3.2(2)

這是測試對乘冪擴展(→2.3.8項)的理解的問題。

一般來說,因為 $a^{\frac{n}{m}} = \sqrt[m]{a^n}$ 成立,所以將 a = 100 、 n = 3 、 m = 2 代入,可以得知答案為 $100^{1.5} = \sqrt{100^3} = \sqrt{1000000} = 1000$ 。

問題 2.3.2 (3)

這是測試對取底函數、取頂函數(→2.3.11項)的理解的問題。

[20.21] 是 20.21 以下最大的整數 20。

[20.21] 是 20.21 以上最小的整數 21。

問題 2.3.3

這是測試對函數圖形(→**2.3.4項**)的理解的問題。答案如下圖所示。注意以下幾點, 會更容易繪製圖形。

- 一次函數的圖形是直線
- 指數函數是單調遞增,且遞增速度非常快
- 對數函數是單調遞增,但遞增速度較慢

此外,請注意第 3 個圖形和第4個圖形完全相同。根據底數轉換公式, $\log_4 x = \log_2 x \div \log_2 4 = (\log_2 x)/2$ 會成立。

問題 2.3.4

這是測試對指數法則(→2.3.9項)的理解的問題。答案如下:

- 2. 根據指數法則, $2^{20}=2^{10}\times 2^{10}$ 。因為 2^{10} 大約等於1000,所以 2^{20} 大約是 $1000\times 1000=1000000$ (= 10^6) である。

問題 2.3.5 (1)

這是測試對對數函數 (→2.3.10項) 的理解的問題。

由於 $10^6 = 1000000$,因此 $g(1000000) = \log_{10} 1000000 = 6$ 。

問題 2.3.5 (2)

這是測試對對數函數公式(→2.3.10項)的理解的問題。

$$\log_2 16N - \log_2 N$$

$$=\log_2\left(\frac{16N}{N}\right)$$

$$= \log_2 16 = 4$$

因此,答案是 4 。另外,對數函數 $\log_a b$ 具有「當真數 b 以常數倍增(如 2 倍等)時,對數值會增加固定的量 | 這一性質。

問題 2.3.6

這是測試是否可以熟練使用指數為小數時的乘冪公式(→**2.3.8項**)、指數法則 (→**2.3.9項**)的問題。每個問題的答案如下所示。

編號	規模	差為幾倍?	答案
1.	6.0 vs 5.0	$32^{6.0-5.0} = 32^{1.0}$	= 32 倍
2.	7.3 vs 5.3	$32^{7.3-5.3} = 32^{2.0}$	= 1024 倍
3.	9.0 vs 7.2	$32^{9.0-7.2} = 32^{1.8}$	= 512 倍

此外, $32^{1.8}$ 的值可以透過 $32^{1.0} \times 32^{0.8} = 32 \times 16 = 512$ 得到。另外,像 $32^{0.8}$ 這樣的值參考 2.3.8 項的圖即可理解。

問題 2.3.7

這個問題的答案是 $y = \lfloor \log_2 x \rfloor + 1$ 。依如下過程可以導出。

步驟 1

某個整數 x 要在二進制中表示成 n 位數的條件是滿足 $2^{n-1} \le x < 2^n$ 。具體例子如下:

- 成為 3 位數的條件是、 $2^2 = 4$ 以上且小於 $2^3 = 8$
- 成為 4 位數的條件是、 $2^3 = 8$ 以上且小於 $2^4 = 16$
- 成為 5 位數的條件是、 $2^4 = 16$ 以上且小於 $2^5 = 32$

步驟 2

將步驟 1 換句話說, 當 $n-1 \le \log_2 x < n$ 時, 在二進制為 n 位數。

即,因為 $|\log_2 x| = n - 1$,所以在二進制的位數 $n \in |\log_2 x| + 1$ 位。

問題 2.3.8

可以思考例如 $f(x) = 1/(1 + 2^{-x})$ 作為答案的例子。另外,有一個類似的函數是**S型函數**,在機器學習中經常使用,有興趣的人可以調查看看。

