微分方程式の数値解析とデータサイエンス 正誤表

宮武勇登・佐藤峻 / 2025年5月13日

表 1: 正誤一覧

ページ	行・位置	誤	正	備考
7	注意 2.1 上から 6 行目	$oldsymbol{g}(t;oldsymbol{ heta})$	$oldsymbol{v}(t;oldsymbol{ heta})$	文字の誤り
7	注意 2.1 上から 12 行目	$m{f}(m{v}'(t;m{ heta}))$	$m{f}(m{v}(t;m{ heta}))$	f の中の v の微分が不要
27	注意 2.3 下から 2 行目	$u_1 = (u_0 - 1)\frac{2-h}{2+h} + \frac{2}{2+h}$	$u_1 = (u_0 - 1)\frac{2 - h}{2 + h} + 1$	u_1 の計算の誤り. 例そのものが適切 ではない.
31	注意 2.5 の 6 行目 上	かつ g が x に	かつgがzに	文字の誤り
36	4 行目 (最初の 数式の 2 行目)	$= (\cdots)^{T} S(\cdots) = 0$	$=h(\cdots)^{T}S(\cdots)=0$	h が必要
54	3.2.1 節 最後の別 行立ての 数式	$ abla_{m{u}(t)}C(m{u}(t_N;m{ heta}))$	$ abla_{m{u}}C(m{u}(t_N;m{ heta}))$	(t) が不要
55	最初の数 式の右辺 第一項	$(abla_{m{ heta}}m{u}(t_N;m{ heta}))^{\scriptscriptstyle{T}} abla_{m{u}}C(m{u}(t_N;m{ heta}))$ e	$oldsymbol{arphi} \left(abla_{oldsymbol{u}} C(oldsymbol{u}(t_N; oldsymbol{ heta})) ight)^{T} abla_{oldsymbol{ heta}} oldsymbol{u}(t_N; oldsymbol{ heta})$	ε 行列とベクトルの 順序が逆
55	上以外の 残り二つ の別行立 ての数式	$(abla_{m{ heta}}m{u}(t_N;m{ heta}))^{\scriptscriptstyle{T}}m{\delta}(t_N)$	$(abla_{m{u}}C(m{u}(t_N;m{ heta}))^{\scriptscriptstyle{T}}m{\delta}(t_N)$	$oldsymbol{\delta}(t_N)$ と内積をとる相手の誤り
56	最後の行	$ abla_{m{u}}$	$ abla_{m{ heta}}$	文字の誤り
81	16–17 行 目	比較すると,KLS 法のほうが 格段に誤差が小さい.また, KLS 法については	比較すると,KSL 法のほうが 格段に誤差が小さい.また, KSL 法については	文字の誤り

注意 2.3 の修正および補足

以下,時間の添字は上付きで表す.

ここで挙げている $\dot{u}=1-u$ や $\dot{u}=1-u^2$ に対し中点則を適用すると, $u^{(0)}=1$ ならば $u^{(1)}=1$ であり,この注意で取り上げる例としては不適切であった.

別の例として

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 - u_1^2 \\ -u_1 u_2 \end{bmatrix}$$

を考える.この方程式に対し,初期値が $\| {m u}^{(0)} \|^2 = 1$ を満たすとき, $Q({m u}) = \| {m u} \|^2$ は保存量である.この方程式に対して中点則を適用すると

$$\frac{u_1^{(1)} - u_1^{(0)}}{h} = 1 - \left(\frac{u_1^{(1)} + u_1^{(0)}}{2}\right)^2, \quad \frac{u_2^{(1)} - u_2^{(0)}}{h} = -\left(\frac{u_1^{(1)} + u_1^{(0)}}{2}\right) \left(\frac{u_2^{(1)} + u_2^{(0)}}{2}\right)$$

となる. これを解いて

$$u_1^{(1)} = -u_1^{(0)} + \frac{2\sqrt{2u_1^{(0)}h + h^2 + 1} - 2}{h}, \quad u_2^{(1)} = -\frac{\sqrt{2u_1^{(0)}h + h^2 + 1} - 3}{\sqrt{2u_1^{(0)}h + h^2 + 1} + 1}u_2^{(0)}$$

を得る($u_1^{(1)}$ については二つの解があるが,微分方程式の近似解として自然な方を選択する).簡単のため $u_1^{(0)}=0,\,u_2^{(0)}=1$,さらに h=3/4 のとき

$$u_1^{(1)} = \frac{2}{3}, \quad u_2^{(1)} = \frac{7}{9}$$

であるが、 $\|\mathbf{u}^{(1)}\|^2 \approx 1.04938$ より $Q(\mathbf{u})$ は保存されていないことが分かる.