УТВЕРЖДАЮ Генеральный директор АО «Лазерные системы»

		Д.Н. Васильев
‹ ‹	>>	2024 г.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на разработку <mark>платы обработки и синхронизации</mark> для сканера ЛС-Терра

шифр «109-ЛС-ТЕРРА»

1. Наименование, шифр, основание для выполнения работ

- 1.1.Наименование работ: разработка платы обработки и синхронизации для сканера ЛС-ТЕРРА.
 - 1.2.Шифр работы: «109-ЛС-ТЕРРА».
- 1.3.Основание для выполнения работы: соглашение о предоставлении субсидии № 020-11-2022-1460 от 06.12.2022 г.
 - 1.4.Заказчик: АО «Лазерные системы», г. Санкт-Петербург.
 - 1.5.Исполнитель:

2. Цель выполнения работ, наименование, индекс и назначение образца

- 2.1.Целью выполнения работ является разработка платы обработки и синхронизации для сканера ЛС-ТЕРРА.
- 2.2.Наименование и обозначение изделия Плата обработки и синхронизации САЦН.234.01.08.00.000 (далее по тексту Изделие).
 - 2.3.Индекс (условное обозначение) образца: не присваивается.
- 2.4.Изделие предназначено для определения разности фаз между непрерывными опорным двумя входными сигналами и синхронизации полученных данных со входными сигналами от двух энкодеров с целью получения облака точек, преобразования данных с цифровой камеры и передачи данных в процессорный блок.
- 2.5.Область применения изделия: в составе сканирующего программно-аппаратного комплекса лазерного панорамного и направленного сканирования для систем интеллектуального управления в области промышленных измерений, транспорта, геоинформационных систем и информационного моделирования объектов строительства.

3. Тактико-технические требования к изделию

3.1.Состав изделий

- плата обработки и синхронизации – 1 шт.

3.2. Требования назначения

3.2.1. Общие требования к разрабатываемому изделию

Разрабатываемое изделие должно обеспечивать:

- Управление платой лазера по заданным пользователем параметрам;
- Управление платой приемника по заданным пользователем параметрам;
- Получение и обработка данных с 2-х канального 16-ти разрядного АЦП (или с двух одноканальных 16-ти разрядных АЦП) на частоте сэмплирования;
- Вычисление разности фаз принятых сигналов относительно опорного сигнала и сопоставление угловых координат, соответствующих времени прихода сигналов;
- Обработка входных сигналов от двух высокоточных энкодеров по согласованному протоколу;

- Определение угловых положений сканирующего зеркала и сканера в любой момент времени с заданной точностью;
- Обмен данными с процессорным модулем по согласованным интерфейсам и протоколам обмена данными. Предполагается, что управление будет осуществляться по CAN интерфейсу, передача потоковых данных по USB;
- Получение данных с цифровой камеры по интерфейсу CSI-MIPI, преобразование в интерфейс USB (Ethernet, LVDS) и передача на процессорный модуль без обработки в управляющей логике;
- 3.2.2. Требования к взаимодействию с платой лазера. Плата обработки и синхронизации должна генерировать дифференциальный сигнал LVDS для управления работой лазера. Также на плате обработки и синхронизации должен быть реализован интерфейс I2C для управления и контроля мощности излучения лазера (на плате лазера установлен АЦП, два цифровых потенциометра, драйвер лазера). Также на плате лазера установлен преобразователь I2C <-> GPIO, необходимо реализовать работу с этим преобразователем. Также, на плате лазера установлен источник питания, который включается дискретным сигналом (EnPow) и имеет дискретный выход корректности работы источника (PowGood), плата обработки и синхронизации должна иметь возможность обработки этих сигналов. В Приложении А приведено соответствие контактов соединителя и краткое описание сигналов.
- 3.2.3. Требования к взаимодействию с платой приемника. Плата приемника представляет собой отдельную плату, содержащую в себе усилитель ВЧ сигнала фотодиода лавинного, блок АРУ, два фильтра-усилителя сигнала на 125 МГц и 14,5 МГц, блок источников питания. Плата обработки и синхронизации должна принимать два дифференциальных сигнала с платы приемника и оцифровывать с частотой дискретизации 55МГц и разрешением 16 бит (в процессе проработки возможно разрешение 12 бит). С платы приемника поступает два аналоговых дифференциальных сигнала на частоте 125 МГц и 14,5 МГц. Блок АРУ реализован посредством ЦАП и АЦП, подключенных по шине I2C. На плате приемника также установлен преобразователь I2C<->GPIO, необходимо реализовать работу с этим преобразователем. Также необходимо предусмотреть включение источников питания на плате приемника с помощью стандартных GPIO. В Приложении Б приведено соответствие контактов соединителя и краткое описание сигналов.
- 3.2.4. Требования к взаимодействию с цифровой камерой. К плате обработки и синхронизации подключается цифровая камера SHWX19, Supertek Co. Цифровая камера имеет разрешение 13 Мпкс, подключается посредством МІРІ CSI интерфейса. Необходимо реализовать подключение камеры, обеспечение питанием, преобразование МІРІ CSI интерфейса в стандартный интерфейс для подключения к процессорному блоку. Цифровая камера не заводится на внутреннюю логику платы обработки и синхронизации. В Приложении В приведено соответствие контактов соединителя и краткое описание сигналов.

- 3.2.5. Требования к взаимодействию с энкодерами. К плате обработки и синхронизации подключены два высокоточных цифровых энкодера по интерфейсу BiSS. Энкодеры дают показания угловых положений вращающегося зеркала и корпуса сканера относительно оси вращения. Обработка данных от энкодеров позволяет вычислить угловые положения для последующего построения облака точек. Также к плате обработки и синхронизации подключен сигнал нулевого положения сканера, сигнал представляет собой TTL-сигнал. Алгоритм вычисления угловых положений будет описан на этапе согласования алгоритма работы платы обработки и согласования. В Приложении Д приведено соответствие контактов соединителя и краткое описание сигналов.
- 3.2.6. Требования по подключению к плате коммутации. Плата обработки и синхронизации подключается к плате коммутации для обмена данными с процессорным блоком, платой коммутации, получения электропитания для осуществления питания внутренней логики и последующей дистрибуцией к подключаемым модулям и устройствам. С платы коммутации поступает питание 12 В постоянного тока. Необходимо реализовать преобразование напряжения с максимальным КПД. На плату обработки и синхронизации заводятся интерфейсы: CAN, USB, Ethernet (возможно уточнение в процессе проработки). В Приложении Д приведено соответствие контактов соединителя и краткое описание сигналов.
- 3.2.7. Требования по управляющей логике платы обработки и синхронизации. На плате должна быть установлена управляющая логика в виде программируемой логики (ПЛИС), вычислительной мощности не ниже Cyclone V, Altera (5CEBA7F23C7N), позволяющая реализовать вычисление расстояний фазовым методом с синхронизацией полученных измерений с угловыми координатами* и все необходимые компоненты для осуществления загрузки и отладки внутреннего ПО ПЛИС.

3.3. Тактико-технические характеристики изделия

3.3.1. Технические характеристики изделия должны соответствовать требованиям Таблицы 1

Таблица 1 – Требования к изделиям

Наименование характеристики	Значение
Поддерживаемые интерфейсы	CAN, USB2.0, Ethernet(?)? LVDS
Напряжение питания, В	24
Максимальная потребляемая мощность, Вт	<mark>51</mark>
Подключение к плате лазера	
Поддерживаемые интерфейсы	I2C, LVDS 1 канал, GPIO 4 канала

^{* -} сам алгоритм будет уточняться в процессе разработки.

Напряжение питания, В	12
Ток, не более, А	
Подключение к плате прие	мника
Поддерживаемые интерфейсы	I2C, GPIO 4 канала
Аналоговый входной сигнал 1, частота, МГц	125
Аналоговый входной сигнал 2, частота, МГц	14,5
Напряжение питания, В	12
Потребляемый ток, А	
Подключение к цифровой в	камере
Поддерживаемые интерфейсы	CSI-MIPI
Напряжение питания, В	2.8, 2.7, 1.8, 1.2
Ток, не более, А	уточняется
Подключение энкодеро	
Поддерживаемые интерфейсы	BiSS x 2шт, GPIO – 1 шт
Габаритные размеры, мм, не более	70 x 80

3.3.2. Взаимодействие изделий с сопрягаемыми объектами

3.3.3.

3.4. Требования живучести и стойкости к внешним воздействиям

- 3.4.1. Изделие стойко следующим должно быть внешним воздействиям:
- Температура воздуха: от -20 до 50°C. Синусоидальная вибрация: диапазон частот 0.5-100 Гц, максимальная амплитуда ускорения 1g;

- Удары одиночного действия: пиковое ударное ускорение 3g, длительность действия ударного ускорения 2-20 мс.

3.5. Требования надежности

- 3.5.1. Средняя наработка изделия на отказ должна быть не менее 5000 часов.
- 3.5.2. Средний срок службы (до списания) изделия должен быть не менее 5 лет.

3.6. Требования эргономики, обитаемости и технической эстетики

3.6.1. Не предъявляются.

3.7. Требования к эксплуатации, хранению, удобству технического обслуживания и ремонта

- 3.7.1. Программные средства изделия должны включать в свой состав средства диагностики и контроля функционирования.
- 3.7.2. Ремонт изделия должен осуществляться путем замены комплектующих. При этом допускается подстройка и регулировка оборудования, в котором производится такая замена.
- 3.7.3. Должна быть исключена возможность неправильной сборки и неправильного подключения внешних модулей и блоков.

3.8. Требования транспортабельности

3.8.1. Не предъявляются.

3.9. Требования безопасности

3.9.1. Не предьявляются.

3.10. Требования обеспечения режима секретности

3.10.1. Требования по обеспечению режима секретности не предъявляются.

3.11. Требования стандартизации, унификации и каталогизации

3.11.1. Разработка изделия должна производиться на основе унификации и стандартизации технических средств, комплектующих изделий, схемно-конструкторских и технологических решений.

3.12. Требования технологичности

- 3.12.1. Изделие должно быть технологичным для производства, не требовать разработки уникальных технологических процессов, обеспечивать удобство сборки, разборки и обслуживания.
- 3.12.2. Технические решения, принимаемые при разработке изделия, должны быть ориентированы на технологию серийного производства.

3.13. Конструктивные требования

- 3.13.1. Конструктивное исполнение входящих в разрабатываемое изделие устройств и агрегатов, должно обеспечивать:
 - 1) удобство эксплуатации;
 - 2) возможность ремонта;
- 3) доступ ко всем элементам, узлам и блокам, требующим регулирования или замены в процессе эксплуатации.

3.14. Требования к математическому, программному и информационно-лингвистическому обеспечению

- 3.14.1. Среда разработки схемотехники и топологии печатных плат Altium Designer.
- 3.14.2. Среда разработки встраиваемого программного обеспечения должна быть согласована с Заказчиком.

4. Требования к сырью, материалам и комплектующим межотраслевого применения

4.1. Требования не предъявляются.

5. Требования к консервации, упаковке и маркировке

5.1. Все разъемы должны иметь маркировку.

6. Требования противодействия ИТР

6.1. Требования противодействия ИТР не предъявляются.

7. Специальные требования

7.1. Требования не предъявляются.

8. Технико-экономические требования

8.1. Предельное значение стоимости выполнения работ определяется договором на выполнение работы.

9. Этапы выполнения работы

- 9.1. Работа выполняется в два этапа.
- 9.2.Состав работ на каждом этапе представлен в Таблице 2.

Таблица 2 – Этапы выполнения работы

Этап	Содержание работ	<mark>Документация</mark>
1.		
2.		
3.		

10.Порядок выполнения и приемки этапов инициативного проекта

- 10.1. Разрабатываемая рабочая конструкторская документация на изделие должна соответствовать требованиям ЕСКД.
- 10.2. В процессе выполнения работ допускается уточнение отдельных технических требований и корректировка сроков выполнения работ.
- 10.3. Внесение изменений в настоящее техническое задание производится в соответствии с ГОСТ 15.016.

Приложение A. Соответствие контактов соединителя платы лазера и краткое описание сигналов.

Н	Наименование	Описание
OM	сигнала	
ep		
ко		
НТ		
ак		
та		
1,	Vin	Входное питающее напряжение
3		до 36 В
2,	GND	Входное напряжение 0 В
4,		
13		
,		
14		
,		
17		
,		
19		
,		
20	F3.15	
5	ENPow	Сигнал включения источника
	O. LIED	питания на плате лазера
6	OUTB	Выходной сигнал с ОУ на плате
		лазера. Для настройки и отладки.
	70.00	Никуда не подключать
7	I2C_SCL	Интерфейс I2C
8	OUTA	Выходной сигнал с ОУ на плате
		лазера. Для настройки и отладки.
	100 00 1	Никуда не подключать
9	I2C_SDA	Интерфейс I2C
10	SHDN	Выходной сигнал драйвера
		лазера, сигнализирует о том, что
		драйвер неактивен. Лог 1 –
		неактивен, авария, лог 0 –
1.2	DIC (DIC	активен.
12	DISABLE	Входной сигнал драйвера лазера,
		служит для деактивации
		драйвера. Лог 0 – драйвер
		работает в штатном режиме, Лог

		1 – драйвер деактивируется
16	DIN-	LVDS - сигнал модуляции
		драйвера лазера
18	DIN+	LVDS - сигнал модуляции
		драйвера лазера

Предполагаемый тип соединителя — DS1031-09-2x10P8BS21X Connfly.

Приложение Б. Соответствие контактов соединителя платы приемника и краткое описание сигналов.

7.7		0
Н	Наименование	Описание
OM	сигнала	
ep		
КО		
HT		
ак		
та		
1	Low_Freq_ADC	Выходной сигнал
	_P	дифференциального усилителя,
		низкой частоты 14 МГц
2	High_Freq_ADC	Выходной сигнал
	_P	дифференциального усилителя,
		высокой частоты 125 МГц
3	Low_Freq_ADC	Выходной сигнал
	_N	дифференциального усилителя,
	_	низкой частоты 14 МГц
4	High Freq ADC	Выходной сигнал
	N N	дифференциального усилителя,
	_	высокой частоты 125 МГц
7	ADC INT	Выходной сигнал прерывания от
	_	АЦП. Завести в ПЛИС, в данный
		момент зарезервировать.
9	I2C SCL	Интерфейс I2C
11	I2C SDA	Интерфейс I2C
13	LDAC	Входной сигнал разрешения
		записи в ЦАП. Завести в ПЛИС,
		в данный момент
		зарезервировать.
15	HV ENABLE	Сигнал включения напряжения
		смещения лавинного фотодиода.
		Лог 1 – вкл, лог 0 – выкл.
17	GND	Входное напряжение питания 0
17	OIND	В В
18		U
19		
19		
20		
	Vin	Dvo
23	Vin	Входное напряжение питания до
,		15 В постоянного тока, не более

25	1 A
, 26	
28	
30	

Предполагаемый тип соединителя — DS1031-09-2x15P8BS21X Connfly.

Приложение В. Соответствие контактов соединителя цифровой камеры и краткое описание сигналов.

Н	Наименование	Описание
ОМ	сигнала	
ep		
ко		
HT		
ак		
та		
1	AGND	0 В Аналоговых цепей питания
2, 5, 8,	DGND	0 В Цифровых цепей питания
5,		
11		
,		
14		
17		
18		
22		
24		
,		
25		
,		
34		
3	MDP2	
4	MDN2	
6	MDP0	
7	MDN0	
9	MCP	
10	MCN	
12	MDP1	
13	MDN1	
15	MDP3	
16	MDN3	
19	FSTROBE	
20	SDA	
21	SCL	
23	MCLK	

26	RESET	
28	AFVDD 2.8	
29	AVDD 2.7	
30	DOVDD 1.8	
31	DVDD 1.2	
27	NC	Не подключены
32		
1		

Предполагаемый тип соединителя — Розетка 24 5861 034 024 829+ Kyocera.

Приложение Д. Соответствие контактов соединителя платы коммутации и краткое описание сигналов.

Н	Наименование	Описание
ОМ	сигнала	
ep		
ко		
нт		
ак		
та		
1 -	+12 B	
5		
6,	GND	
7		
8	USB_P	
9	USB_N	
10	CANH	
11	EXT_I2C_SCL	
12	CAN L	
13	EXT I2C SDA	
14	GND	
,		
15		
16	SLO+	
17	SLO-	
18	MA+	
19	MA-	
20	GND	
,		
21		
22	SLO2+	
23	SLO2-	
24	MA2+	
25	MA2-	
26	ZERO POINT	
27	GND	
_		
30		

Предполагаемый тип соединителя – Розетка DS1065-22-2x15S8V

Лист согласования

Со стороны Заказчика: Со стороны

Исполнителя:

Исполнительный директор Должность

А.С. Михайленко И.О. Фамилия

Руководитель службы качества Должность

В.С. Лугиня И.О. Фамилия

Директор департамента перспективных технологий

<mark>А.Е. Орлов</mark>