1 Primary studies

 ${\bf Table~1} \hbox{: Primary studies}$

ID DC1	Title	Author	Year
PS1	Coalitional Negotiation Games with Emergent Communication [1]	Xiaoyang Gao, Siqi Chen, Lin Jie, Yang Yang, Haiying Wu, and Jianye Hao.	2022
PS2	Deep Learnable Strategy Templates for Multi-Issue Bilateral Negotiation [2]	Pallavi Bagga, Nicola Paoletti, and Kostas Stathis.	2022
PS3	Deep reinforcement learning with emergent communication for coali- tional negotiation games [3]	Siqi Chen, Yang Yang, and Ran Su.	2022
PS4	A Bayesian Policy Reuse Approach for Bilateral Negotiation Games [4]	Xiaoyang Gao, Siqi Chen, Qisong Sun, Yan Zheng, and Jianye Hao.	2022
PS5	Distributed Emergent Agreements with Deep Reinforcement Learning [5]	Kyrill Schmid, Robert Müller, Lenz Belzner, Johannes Tochtermann, and Claudia Linhoff-Popien.	2021
PS6	An Autonomous Negotiating Agent Framework with Reinforcement Learning based Strategies and Adap- tive Strategy Switching Mechanism [6]	Ayan Sengupta, Yasser Mohammad, and Shinji Nakadai.	2021
PS7	Convergence of probabilistic automatic negotiation: mutual maximum likelihood estimation [7]	Koji Tsumura	2021
PS8	A context-aware approach to automated negotiation using reinforcement learning [8]	Dan E Kröhling, Omar JA Chiotti, and Ernesto C Martínez	2021
PS9	Exploring Monte Carlo Negotiation Search with Nontrivial Agreements [9]	Elijah Alden Malaby and John Licato.	2021
PS10	A deep reinforcement learning-based agent for negotiation with multiple communication channels [10]	Xiaoyang Gao, Siqi Chen, Yan Zheng, and Jianye Hao	2021
PS11	Detecting and Learning Against Unknown Opponents for Automated Negotiations [11]	Leling Wu, Siqi Chen, Xiaoyang Gao, Yan Zheng, and Jianye Hao.	2021
PS12	A Bilevel Game Model for Ascertaining Competitive Target Prices for a Buyer in Negotiation with Multiple Suppliers [12]	Akhilesh Kumar, Anjana Gupta, and Aparna Mehra	2021
PS13	A Supervised Topic Model Approach to Learning Effective Styles within Human-Agent Negotiation [13]	Yuyu Xu, David Jeong, Pedro Sequeira, Jonathan Gratch, Javed Aslam, and Stacy Marsella.	2020
PS14	Modeling Opponent Strategy in Multi-Issue Bilateral Automated Negotiation Using Machine Learning [14]	Fatemeh Mohammadi Ashnani, Zahra Movahedi, and Kazim Fouladi.	2020
PS15	Negotiating team formation using deep reinforcement learning [15]	Yoram Bachrach, Richard Everett, Edward Hughes, Angeliki Lazaridou, Joel Z Leibo, Marc Lanctot, Michael Johanson, Wojciech M Czarnecki, and Thore Graepel.	2020
PS16	A hybrid concession mechanism for negotiating software agents in com- petitive environments [16]	Khalid Mansour	2020
PS17	Agent-based cloud service negoti- ation architecture using similarity grouping approach [17]	Rajkumar Rajavel, Sathish Kumar Ravichandran, and GR Kanagachi- dambaresan.	2020
PS18	Deep reinforcement learning for acceptance strategy in bilateral negotiations [18]	Yousef Razeghi, Celal Ozan Berk Yavuz, and Reyhan Aydoğan.	2020

PS19	RLBOA: A Modular Reinforce- ment Learning Framework for	Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim	2019
	Autonomous Negotiating Agents [19]	Baarslag.	
PS20	Argumentation-based Negotiation with Incomplete Opponent Profiles	Yannis Dimopoulos, Jean-Guy Mailly, and Pavlos Moraitis.	2019
PS21	[20] MCTS-based Automated Negotia-	Cédric LR Buron, Zahia Guessoum,	2019
Dana	tion Agent [21]	and Sylvain Ductor.	2010
PS22	Numerical Abstract Persuasion Argumentation for Expressing Con- current Multi-Agent Negotiations [22]	Ryuta Arisaka and Takayuki Ito.	2019
PS23	Meta-Strategy for Multi-Time Nego- tiation: A Multi-Armed Bandit Approach [23]	Ryohei Kawata and Katsuhide Fujita.	2019
PS24	Automated Negotiation with Gaussian Process-based Utility Models [24]	Haralambie Leahu, Michael Kaisers, and Tim Baarslag.	2019
PS25	Negotiation Strategies for Agents with Ordinal Preferences [25]	Sefi Erlich, Noam Hazon, and Sarit Kraus.	2018
PS26	One-to-Many Multi-agent Negotia- tion and Coordination Mechanisms to Manage User Satisfaction [26]	Amro Najjar, Yazan Mualla, Kamal Singh, and Gauthier Picard.	2018
PS27	Automated Negotiations Under User Preference Uncertainty: A Linear Programming Approach [27]	Dimitrios Tsimpoukis, Tim Baarslag, Michael Kaisers, and Nikolaos G Pat- erakis.	2018
PS28	A systematic model of stable multi- lateral automated negotiation in e- market environment [28]	Taiguang Gao, Min Huang, Qing Wang, Mingqiang Yin, Wai Ki Ching, Loo Hay Lee, and Xingwei Wang.	2018
PS29	A multi-demand negotiation model based on fuzzy rules elicited via psy- chological experiments [29]	Jieyu Zhan, Xudong Luo, Cong Feng, and Minghua He.	2018
PS30	Emergent Communication through Negotiation [30]	Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and Stephen Clark.	2018
PS31	Concurrent bilateral negotiation for open e-markets: the CONAN strategy [31]	Bedour Alrayes, Özgür Kafalı, and Kostas Stathis.	2018
PS32	The Value of Information in Automated Negotiation: A Decision Model for Eliciting User Preferences [32]	Tim Baarslag and Michael Kaisers.	2017
PS33	POPPONENT: Highly accurate, individually and socially efficient opponent preference model in bilateral multi issue negotiations [33]	Farhad Zafari and Faria Nassiri- Mofakham.	2017
PS34	Designing an intelligent decision support system for effective negotiation pricing: A systematic and learning approach [34]	Xin Fu, Xiao-Jun Zeng, Xin Robert Luo, Di Wang, Di Xu, and Qing- Liang Fan.	2017
PS35	Human-computer negotiation in a three player market setting [35]	Galit Haim, Bo An, Sarit Kraus, et al.	2017
PS36	An Automated Negotiation Agent for Permission Management [36]	Tim Baarslag, Alan Alper, Richard Gomer, Muddasser Alam, Perera Charith, Enrico Gerding, et al.	2017
PS37	Algorithm selection in bilateral negotiation [37]	Litan Ilany and Ya'akov Gal.	2016
PS38	An Agent Architecture for Concurrent Bilateral Negotiations [38]	Bedour Alrayes and Kostas Stathis.	2013
PS39	Complex and Concurrent Negotia- tions for Multiple Interrelated e- Markets [39]	Kwang Mong Sim.	2012
PS40	Using Gaussian Processes to Optimise Concession in Complex Negotiations against Unknown Opponents [40]	Colin Richard Williams, Valentin Robu, Enrico Harm Gerding, and Nicholas Robert Jennings.	2011

PS41	Automated Negotiation with Decommitment for Dynamic Resource Allocation in Cloud Computing [41]	Bo An, Victor Lesser, David Irwin, and Michael Zink.	2010
PS42	A Multilateral Negotiation Model for Cloud Service Market [42]	Dongjin Yoo and Kwang Mong Sim.	2010
PS43	An Opponent's Negotiation Behavior Model to Facilitate Buyer-seller Negotiations in Supply Chain Management [43]	Fang Fang, Ye Xin, Xia Yun, and Xu Haitao.	2008
PS44	Opponent Modelling in Automated Multi-Issue Negotiation Using Bayesian Learning [44]	Koen Hindriks and Dmytro Tykhonov.	2008
PS45	A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-competitive environments [45]	Xudong Luo, Nicholas R Jennings, Nigel Shadbolt, Hofung Leung, and Jimmy Ho-man Lee	2003
PS46	Optimal Negotiation Strategies for Agents with Incomplete Information [46]	S Shaheen Fatima, Michael Wooldridge, and Nicholas R Jennings.	2001
PS47	On Fuzzy E-Negotiation Agents: Autonomous Negotiation with Incomplete and Imprecise Information [47]	Ryszard Kowalczyk and Van Bui.	2000
PS48 (a)	Strategic Negotiations for Extensive- Form Games [48]	Dave De Jonge and Dongmo Zhang.	2020
PS48 (b)	Automated Negotiations for General Game Playing [49]	Dave De Jonge and Dongmo Zhang.	2017
PS49 (a)	A Deep Reinforcement Learning Approach to Concurrent Bilateral Negotiation [50]	Pallavi Bagga, Nicola Paoletti, Bedour Alrayes, and Kostas Stathis.	2021
PS49 (b)	ANEGMA: an automated negotiation model for e-markets [51]	Pallavi Bagga, Nicola Paoletti, Bedour Alrayes, and Kostas Stathis.	2021
PS50 (a)	Decoupling Negotiating Agents to Explore the Space of Negotiation Strategies [52]	Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alexander Dirkzwager, and Catholijn Jonker.	2014
PS50 (b)	A Tit for Tat Negotiation Strategy for Real-Time Bilateral Negotiations [53]	Tim Baarslag, Koen Hindriks, and Catholijn Jonker.	2013

References

- [1] Gao X, Chen S, Jie L, Yang Y, Wu H, Hao J. Coalitional Negotiation Games with Emergent Communication. 2022;.
- [2] Bagga P, Paoletti N, Stathis K. Deep Learnable Strategy Templates for Multi-Issue Bilateral Negotiation. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems; 2022. p. 1533–1535.
- [3] Chen S, Yang Y, Su R. Deep reinforcement learning with emergent communication for coalitional negotiation games. Math Biosci Eng. 2022;19:4592–4609.
- [4] Gao X, Chen S, Sun Q, Zheng Y, Hao J. A Bayesian policy reuse approach for bilateral negotiation games. In: Proceedings of AAAI Conference on Artificial Intelligence, Workshop on Reinforcement Learning in Games; 2022.
- [5] Schmid K, Müller R, Belzner L, Tochtermann J, Linhoff-Popien C. Distributed emergent agreements with deep reinforcement learning. In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE; 2021. p. 1–8.
- [6] Sengupta A, Mohammad Y, Nakadai S. An Autonomous Negotiating Agent Framework with Reinforcement Learning based Strategies and Adaptive Strategy Switching Mechanism. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems; 2021. p. 1163–1172.
- [7] Tsumura K. Convergence of probabilistic automatic negotiation: mutual maximum likelihood estimation. In: 2021 60th IEEE Conference on Decision and Control (CDC). IEEE; 2021. p. 4295–4300.
- [8] Kröhling DE, Chiotti OJ, Martínez EC. A context-aware approach to automated negotiation using reinforcement learning. Advanced Engineering Informatics. 2021;47:101229.
- [9] Malaby EA, Licato J. Exploring Monte Carlo Negotiation Search with Nontrivial Agreements. In: The International FLAIRS Conference Proceedings. vol. 34; 2021.
- [10] Gao X, Chen S, Zheng Y, Hao J. A deep reinforcement learning-based agent for negotiation with multiple communication channels. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE; 2021. p. 868–872.
- [11] Wu L, Chen S, Gao X, Zheng Y, Hao J. Detecting and learning against unknown opponents for automated negotiations. In: Pacific Rim International Conference on Artificial Intelligence. Springer; 2021. p. 17–31.

- [12] Kumar A, Gupta A, Mehra A. A bilevel game model for ascertaining competitive target prices for a buyer in negotiation with multiple suppliers. RAIRO-Operations Research. 2022;56(1):293–330.
- [13] Xu Y, Jeong DC, Sequeira P, Gratch J, Aslam J, Marsella S. A Supervised Topic Model Approach to Learning Effective Styles within Human-Agent Negotiation. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS '20; 2020.
- [14] Mohammadi Ashnani F, Movahedi Z, Fouladi K. Modeling Opponent Strategy in Multi-Issue Bilateral Automated Negotiation Using Machine Learning. International Journal of Web Research. 2020;3(2):16–25.
- [15] Bachrach Y, Everett R, Hughes E, Lazaridou A, Leibo JZ, Lanctot M, et al. Negotiating team formation using deep reinforcement learning. Artificial Intelligence. 2020;288:103356.
- [16] Mansour K. A hybrid concession mechanism for negotiating software agents in competitive environments. International Journal on Artificial Intelligence Tools. 2020;29(06):2050016.
- [17] Rajavel R, Ravichandran SK, Kanagachidambaresan G. Agent-based cloud service negotiation architecture using similarity grouping approach. International Journal of Wavelets, Multiresolution and Information Processing. 2020;18(01):1941015.
- [18] Razeghi Y, Yavuz COB, Aydoğan R. Deep reinforcement learning for acceptance strategy in bilateral negotiations. Turkish Journal of Electrical Engineering and Computer Sciences. 2020;28(4):1824–1840.
- [19] Bakker J, Hammond A, Bloembergen D, Baarslag T. RLBOA: A Modular Reinforcement Learning Framework for Autonomous Negotiating Agents. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS '19; 2019. p. 260–268.
- [20] Dimopoulos Y, Mailly JG, Moraitis P. Argumentation-based negotiation with incomplete opponent profiles. In: 13èmes Journées d'Intelligence Artificielle Fondamentale (JIAF 2019); 2019. p. 91–100.
- [21] Buron CL, Guessoum Z, Ductor S. MCTS-based automated negotiation agent. In: International Conference on Principles and Practice of Multi-Agent Systems. Springer; 2019. p. 186–201.
- [22] Arisaka R, Ito T. Numerical abstract persuasion argumentation for expressing concurrent multi-agent negotiations. In: International Joint Conference on Artificial Intelligence. Springer; 2019. p. 131–149.

- [23] Kawata R, Fujita K. Meta-Strategy for Multi-Time Negotiation: A Multi-Armed Bandit Approach. In: AAMAS '19: 18th International Conference on Autonomous Agents and MultiAgent Systems; 2019. .
- [24] Leahu H, Kaisers M, Baarslag T. Automated Negotiation with Gaussian Processbased Utility Models. In: IJCAI; 2019. p. 421–427.
- [25] Erlich S, Hazon N, Kraus S. Negotiation strategies for agents with ordinal preferences. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence; 2018. p. 210–218.
- [26] Najjar A, Mualla Y, Singh K, Picard G. One-to-Many Multi-agent Negotiation and Coordination Mechanisms to Manage User Satisfaction. In: the 11th International Workshop on Agent-based Complex Automated Negotiations (ACAN2018); 2018.
- [27] Tsimpoukis D, Baarslag T, Kaisers M, Paterakis NG. Automated negotiations under user preference uncertainty: A linear programming approach. In: International conference on agreement technologies. Springer; 2018. p. 115–129.
- [28] Gao T, Huang M, Wang Q, Yin M, Ching WK, Lee LH, et al. A systematic model of stable multilateral automated negotiation in e-market environment. Engineering Applications of Artificial Intelligence. 2018;74:134–145.
- [29] Zhan J, Luo X, Feng C, He M. A multi-demand negotiation model based on fuzzy rules elicited via psychological experiments. Applied Soft Computing. 2018;67:840–864.
- [30] Cao K, Lazaridou A, Lanctot M, Leibo JZ, Tuyls K, Clark S. Emergent Communication through Negotiation. In: International Conference on Learning Representations; 2018. Available from: https://openreview.net/forum?id=Hk6WhagRW.
- [31] Alrayes B, Kafalı Ö, Stathis K. Concurrent bilateral negotiation for open e-markets: the CONAN strategy. Knowledge and Information Systems. 2018;56(2):463–501.
- [32] Baarslag T, Kaisers M. The value of information in automated negotiation: A decision model for eliciting user preferences. In: Proceedings of the 16th conference on autonomous agents and multiagent systems; 2017. p. 391–400.
- [33] Zafari F, Nassiri-Mofakham F. Popponent: Highly accurate, individually and socially efficient opponent preference model in bilateral multi issue negotiations. Artificial Intelligence. 2016;237:59–91.
- [34] Fu X, Zeng XJ, Luo XR, Wang D, Xu D, Fan QL. Designing an intelligent decision support system for effective negotiation pricing: A systematic and learning

- approach. Decision Support Systems. 2017;96:49-66.
- [35] Haim G, An B, Kraus S, et al. Human–computer negotiation in a three player market setting. Artificial Intelligence. 2017;246:34–52.
- [36] Baarslag T, Alan AT, Gomer R, Alam M, Perera C, Gerding EH, et al. An Automated Negotiation Agent for Permission Management. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017. ACM; 2017. p. 380–390.
- [37] Ilany L, Gal Y. Algorithm selection in bilateral negotiation. Autonomous Agents and Multi-Agent Systems. 2016;30(4):697–723.
- [38] Alrayes B, Stathis K. An agent architecture for concurrent bilateral negotiations. In: Decision Support Systems III-Impact of Decision Support Systems for Global Environments. Springer; 2013. p. 79–89.
- [39] Sim KM. Complex and concurrent negotiations for multiple interrelated e-markets. IEEE transactions on cybernetics. 2012;43(1):230–245.
- [40] Williams CR, Robu V, Gerding EH, Jennings NR. Using gaussian processes to optimise concession in complex negotiations against unknown opponents. In: Twenty-Second International Joint Conference on Artificial Intelligence; 2011.
- [41] An B, Lesser V, Irwin D, Zink M. Automated negotiation with decommitment for dynamic resource allocation in cloud computing. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1. Citeseer; 2010. p. 981–988.
- [42] Yoo D, Sim KM. A multilateral negotiation model for cloud service market. In: Grid and Distributed Computing, Control and Automation. Springer; 2010. p. 54–63.
- [43] Fang F, Xin Y, Yun X, Haitao X. An opponent's negotiation behavior model to facilitate buyer-seller negotiations in supply chain management. In: 2008 International Symposium on Electronic Commerce and Security. IEEE; 2008. p. 582–587.
- [44] Hindriks K, Tykhonov D. Opponent modelling in automated multi-issue negotiation using bayesian learning. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems-Volume 1; 2008. p. 331–338.
- [45] Luo X, Jennings NR, Shadbolt N, Leung Hf, Lee JHm. A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-competitive environments. Artificial Intelligence. 2003;148(1-2):53-102.

- [46] Fatima SS, Wooldridge M, Jennings NR. Optimal negotiation strategies for agents with incomplete information. In: International workshop on agent theories, architectures, and languages. Springer; 2001. p. 377–392.
- [47] Kowalczyk R, Bui V. On fuzzy e-negotiation agents: Autonomous negotiation with incomplete and imprecise information. In: Proceedings 11th International Workshop on Database and Expert Systems Applications. IEEE; 2000. p. 1034– 1038.
- [48] De Jonge D, Zhang D. Strategic negotiations for extensive-form games. Autonomous Agents and Multi-Agent Systems. 2020;34:1–41.
- [49] de Jonge D, Zhang D. Automated Negotiations for General Game Playing. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems; 2017. p. 371–379.
- [50] Bagga P, Paoletti N, Alrayes B, Stathis K. A deep reinforcement learning approach to concurrent bilateral negotiation. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence; 2021. p. 297–303.
- [51] Bagga P, Paoletti N, Alrayes B, Stathis K. ANEGMA: an automated negotiation model for e-markets. Autonomous Agents and Multi-Agent Systems. 2021;35(2):1–28.
- [52] Baarslag T, Hindriks K, Hendrikx M, Dirkzwager A, Jonker C. Decoupling negotiating agents to explore the space of negotiation strategies. In: Novel insights in agent-based complex automated negotiation. Springer; 2014. p. 61–83.
- [53] Baarslag T, Hindriks K, Jonker C. A tit for tat negotiation strategy for real-time bilateral negotiations. In: Complex automated negotiations: theories, models, and software competitions. Springer; 2013. p. 229–233.