

PERVASIVE IOT

Domotics

Robotics

Smart Wearable

Autonomous Vehicle

SMART CITIES

SMART CAMERAS

CLOUD APPROACH

SINGLE POINT OF FAILURE

HIGH COMPUTATIONAL AND STORAGE POWER

RISK OF OVERLOADING

LOCAL APPROACH

NO INTERNET CONNECTION

LIMITED COMPUTATIONAL AND STORAGE POWER

RISK OF DATA LOSS

USE CASE: SMART CITY

- In a smart city there can be numerous heterogeneous IoT cameras.
- It is not possible to guarantee that cameras are always connected to the Internet.
- It is important that the management of the network is as efficient as possible given the amount of data.
- •It is necessary to have a global view of the whole city.
- It may also be necessary to focus on a specific area to make detailed observations.
- In some cases the cameras can be placed in areas where nothing happens most of the time.

THE PROBLEM

Is it possible to design a system of several cameras that is efficient from network point of view and that is able to work both alone and integrated with a centralised cloud?

A HYBRID APPROACH

SERVER

Stores frames and metadata

Send a frame upon request

Send a stream of the stored frames

Updates the configuration

USER INTERFACE

Establishes the connection with the camera and the server

Retrieves a preview of frames from the server

Retrieves higher quality data from the camera when needed

IMPLEMENTATION: THE SERVER

IMPLEMENTATION: THE SMARTCAM

IMPLEMENTATION: THE USER INTERFACE

EXPERIMENTS: CPU

EXPERIMENTS: MEMORY

EXPERIMENTS: DISK & BANDWIDTH

CONCLUSIONS

Hybrid approach that seeks to mitigate the cons of totally cloud or local solutions

SmartCam configurable on demand with possible options for tradeoff between the use of the CPU and quantity of stored and sent frames

User Interface that allows to interact both with the cloud and the cameras

THANKS FOR YOUR ATTENTION!

