الاسم:	مسابقة في مادة الكيمياء
الرقم:	المدة: ساعة واحدة

Cette épreuve est constituée de trois exercices. Elle comporte deux pages numérotées 1 et 2. Traiter les trois exercices suivants

Premier exercice (6 points) Composés covalents et ioniques

Les composés inorganiques ioniques sont des électrolytes et ont des points de fusion élevés. Au contraire, presque tous les composés organiques sont des composés covalents non électrolytes et ont des points de fusion faibles.

Figure - 1: Modèle moléculaire éclaté du dichlorométhane

Figure - 2: Représentation schématique du transfert des électrons de l'atome de magnésium aux atomes de chlore.

- 1- Écrire la représentation de Lewis des atomes C, Mg et Cl.
- 2- Expliquer, en se basant sur la **Figure 1** et la **Figure 2**, comment l'atome de chlore atteint l'octet stable dans chacun des deux composés : le dichlorométhane et le chlorure de magnésium.
- **3-** Justifier lequel des deux composés : le dichlorométhane ou le chlorure de magnésium a le point de fusion le plus élevé.
- **4-** La réaction d'un composé **(A)** avec le gaz dichlore, dans des conditions appropriées, produit le dichlorométhane et le chlorure d'hydrogène (HCl) selon l'équation:

(A) +
$$Cl_2 \rightarrow CH_2Cl_2 + HCl$$

Déterminer la formule moléculaire de (A).

Deuxième exercice (7 points) Composés organiques

Les hydrocarbures aliphatiques à chaîne carbonée ouverte peuvent être des alcanes, des alcènes et des alcynes. Le premier membre de la famille des alcanes contient un atome de carbone dans sa molécule, son nom est le méthane. Le premier membre de la famille des alcènes contient deux atomes de carbone dans sa molécule, son nom est l'éthène.

- 1-Écrire la formule semi développée du deuxième membre de la famille des alcynes, qui contient trois atomes de carbone dans sa molécule et donner son nom.
- 2- Trois réactions (A), (B) et (C) sont représentées par les trois équations suivantes : (I), (II) et (III)

Réaction (A): $CH_4 + 2Cl_2$ \longrightarrow $CH_2Cl_2 + 2HCl$ Réaction (B): $CH_2 = CH_2 + H_2$ \longrightarrow $CH_3 - CH_3$ Réaction (C): $CH_2 = CH_2 + H_2O$ \longrightarrow $CH_3 - CH_2OH$ \rightarrow CH₂Cl₂ + 2HCl Équation (I) Équation (II)

- **Équation (III**
- a) Donner le nom systématique du produit organique obtenu dans chacune des réactions (A) et (C). b) Identifier laquelle des réactions (A) et (C) est une réaction d'addition et laquelle ne l'est pas.
- 3- Le produit obtenu dans la réaction (C) peut réagir avec un monoacide carboxylique. Écrire la formule générale d'un monoacide carboxylique et donner le nom de cette réaction.
- 4- Le composé organique de formule moléculaire C₂H₄Cl₂ admet deux isomères possibles. Écrire la formule développée et donner le nom systématique de chaque isomère.

Troisième exercice (7 points) Dioxyde de soufre et pluies acides

Le graphique donné ci-dessous, montre la quantité moyenne du dioxyde de soufre gazeux SO₂ émis dans l'air par la combustion des carburants contenant le soufre comme impureté. Le gaz SO₂ contribue à la formation des pluies acides. Le niveau tolérable maximal de SO₂ dans l'air est 75(μ g/m³). La combustion du soufre donne le dioxyde de soufre selon l'équation:

$$S + O_2 \rightarrow SO_2$$
 (E₁)

SO₂ se transforme dans l'air en trioxyde de soufre SO₃ selon l'équation:

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$
 (E₂)

Dans les nuages, en présence de l'humidité, SO₃ se transforme en acide sulfurique H₂SO₄ selon l'équation:

 $SO_3+H_2O \rightarrow H_2SO_4$ (E₃)

- 1- Calculer le nombre d'oxydation du soufre dans chacun des composés suivants : SO₂, SO₃ et H₂SO₄.
- **2-** En utilisant les nombres d'oxydation :
 - a) Montrer que la réaction représentée par l'équation (E₃) n'est pas une réaction d'oxydoréduction.
 - b) Préciser si le soufre est réduit ou oxydé dans la réaction d'oxydoréduction représentée par l'équation (E_1) .
- 3- Indiquer et justifier pendant quels mois l'air est pollué par l'émission du dioxyde de soufre.
- 4- Proposer une méthode pour réduire l'émission du dioxyde de soufre dans l'air.