1-of-8 **Decoder/Demultiplexer**

The MC74AC138/74ACT138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding.

The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three MC74AC138/74ACT138 devices or a 1-of-32 decoder using four MC74AC138/74ACT138 devices and one inverter.

- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA
- 'ACT138 Has TTL Compatible Inputs
- These devices are available in Pb-free package(s). Specifications herein
 apply to both standard and Pb-free devices. Please see our website at
 www.onsemi.com for specific Pb-free orderable part numbers, or
 contact your local ON Semiconductor sales office or representative.

Figure 1. Pinout: 16-Lead Packages Conductors (Top View)

Figure 2. Logic Symbol

PIN ASSIGNMENT

PIN	FUNCTION				
A ₀ -A ₂	Address Inputs				
$\overline{E}_1 - \overline{E}_2$	Enable Inputs				
E ₃	Enable Input				
$\overline{O}_0 - \overline{O}_7$	Outputs				

ON Semiconductor™

http://onsemi.com

DIP-16 N SUFFIX CASE 648

SO-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

EIAJ-16 M SUFFIX CASE 966

ORDERING INFORMATION

OTIDETHING INTO OTHER PROPERTY.									
Device	Package	Shipping							
MC74AC138N	PDIP-16	25 Units/Rail							
MC74ACT138N	PDIP-16	25 Units/Rail							
MC74AC138D	SOIC-16	48 Units/Rail							
MC74ACT138D	SOIC-16	48 Units/Rail							
MC74AC138DR2	SOIC-16	2500 Tape & Reel							
MC74ACT138DR2	SOIC-16	2500 Tape & Reel							
MC74AC138DT	TSSOP-16	96 Units/Rail							
MC74ACT138DT	TSSOP-16	96 Units/Rail							
MC74AC138DTR2	TSSOP-16	2500 Tape & Reel							
MC74ACT138DTR2	TSSOP-16	2500 Tape & Reel							
MC74AC138M	EIAJ-16	50 Units/Rail							
MC74ACT138M	EIAJ-16	50 Units/Rail							
MC74AC138MEL	EIAJ-16	2000 Tape & Reel							
MC74ACT138MEL	EIAJ-16	2000 Tape & Reel							

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

FUNCTIONAL DESCRIPTION

The MC74AC138/74ACT138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A_0, A_1, A_2) and, when enabled, provides eight mutually exclusive active-LOW outputs $(\overline{O}_0 - \overline{O}_7)$. The MC74AC138/74ACT138 features three Enable inputs, two active-LOW $(\overline{E}_1, \overline{E}_2)$ and one active-HIGH (E_3) . All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is

HIGH. This multiple enabled function allows easy parallel expansion of the device to a 1–of–32 (5 lines to 32 lines) decoder with just four MC74AC138/74ACT138 devices and one inverter (See Figure 4). The MC74AC138/74ACT138 can be used as an 8–output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active—HIGH or active—LOW state.

TRUTH TABLE

	Inputs					Outputs							
E ₁	\overline{E}_2	E ₃	A ₀	A ₁	A ₂	\overline{O}_0	\overline{O}_1	\overline{O}_2	\overline{O}_3	\overline{O}_4	\overline{O}_5	\overline{O}_6	\overline{O}_7
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	X	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	L	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

Figure 4. Expansion to 1-of-32 Decoding

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit	
.,	O and Mallana	'AC	2.0	5.0	6.0	.,	
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V	
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V	
t _r , t _f		V _{CC} @ 3.0 V	-	150	-		
	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V	
		V _{CC} @ 5.5 V	-	25	-		
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	ns/V	
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-		
TJ	Junction Temperature (PDIP)		-	-	140	°C	
T _A	Operating Ambient Temperature Range			25	85	°C	
I _{OH}	Output Current - High	-	-	-24	mA		
I _{OL}	Output Current – Low			-	24	mA	

V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA	
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟυΤ} = 50 μΑ	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current		-	-	-75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

^{*}All outputs loaded; thresholds on input associated with output under test. \dagger Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74AC			
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay A_n to \overline{O}_n	3.3 5.0	1.5 1.5	8.5 6.5	13.0 9.5	1.5 1.5	15.0 10.5	ns	3–6
t _{PHL}	Propagation Delay A_n to \overline{O}_n	3.3 5.0	1.5 1.5	8.0 6.0	12.5 9.0	1.5 1.5	14.0 10.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.3 5.0	1.5 1.5	11.0 8.0	15.0 11.0	1.5 1.5	16.0 12.0	ns	3–6
t _{PHL}	Propagation Delay E_1 or E_2 to \overline{O}_n	3.3 5.0	1.5 1.5	9.5 7.0	13.5 9.5	1.5 1.5	15.0 10.5	ns	3–6
t _{PLH}	Propagation Delay E_3 to \overline{O}_n	3.3 5.0	1.5 1.5	11.0 8.0	15.5 11.0	1.5 1.5	16.5 12.5	ns	3–6
t _{PHL}	Propagation Delay E_3 to \overline{O}_n	3.3 5.0	1.5 1.5	8.5 6.0	13.0 8.0	1.5 1.0	14.0 9.5	ns	3–6

DC CHARACTERISTICS

			74	CT	74ACT			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	٧	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -24 mA I _{OH} -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA	
		4.5 5.5	- -	0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA I _{OL} 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	_	1.5	mA	V _I = V _{CC} - 2.1 V	
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	_	-75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

^{*}All outputs loaded; thresholds on input associated with output under test.

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

			74ACT			74ACT			Fig. No.
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay A_n to \overline{O}_n	5.0	1.5	7.0	10.5	1.5	11.5	ns	3–6
t _{PHL}	Propagation Delay A_n to \overline{O}_n	5.0	1.5	6.5	10.5	1.5	11.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	5.0	2.5	8.0	11.5	2.0	12.5	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_1 or \overline{E}_2 to \overline{O}_n	5.0	2.0	7.5	11.5	2.0	12.5	ns	3–6
t _{PLH}	Propagation Delay $E_{3 \text{ to }} \overline{O}_n$	5.0	2.5	8.0	12.0	2.0	13.0	ns	3–6
t _{PHL}	Propagation Delay E_3 to \overline{O}_n	5.0	2.0	6.5	10.5	1.5	11.5	ns	3–6

^{*}Voltage Range 5.0 V is 5.0 V \pm 0.5 V

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	60	pF	V _{CC} = 5.0 V

MARKING DIAGRAMS

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

PACKAGE DIMENSIONS

PDIP-16 **N SUFFIX** 16 PIN PLASTIC DIP PACKAGE CASE 648-08

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTINCLING DIMENSION. INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	METERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.740	0.770	18.80	19.55		
В	0.250	0.270	6.35	6.85		
С	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100	BSC	2.54 BSC			
Н	0.050	BSC	1.27	BSC		
J	0.008	0.015	0.21	0.38		
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
M	0°	10°	0°	10 °		
S	0.020	0.040	0.51	1.01		

SO-16 **D SUFFIX** 16 PIN PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES			
DIM	MIN MAX		MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27	BSC	0.050 BSC				
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
M	0 °	7°	0°	7°			
P	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX**

16 PIN PLASTIC TSSOP PACKAGE CASE948F-01 **ISSUE O**

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.06) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

EIAJ-16 **M SUFFIX** 16 PIN PLASTIC EIAJ PACKAGE CASE966-01 ISSUE O

DETAIL E

-T- SEATING PLANE

D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.

 DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INCHES	
D.114				
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

Notes

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.