2N3902 NPN (SILICON) _{2N}5157

HIGH VOLTAGE NPN SILICON TRANSISTORS

. . . designed for use in high-voltage inverters, converters, switching regulators and line operated amplifiers.

- High Collector-Emitter Voltage VCEX = 700 Vdc
- Excellent DC Current Gain -

hFE = 10 (Min) @ IC = 2.5 Adc

 Low Collector-Emitter Saturation Voltage — VCE(sat) = 0.8 Vdc (Max).@ IC = 1.0 Adc

*MAXIMUM RATINGS					
Rating	Symbol	2N3902	2N5157	Unit	
Collector-Emitter Voltage	VCEO	400	500	Vdc	
Collector-Emitter Voltage	VCEX	700		Vdc	
Emitter-Base Voltage	VEB	5.0	6.0	Vdc	
Collector Current — Continuous	Ic	3.5		Adc	
Base Current	IВ	2.0		Adc	
Total Device Dissipation @ T _C = 75 ^o C Derate above 75 ^o C	PD	100 1.33		Watts W/ ^O C	
Operating Junction Temperature Range	Тј	-65 to +150		°C	

THERMAL CHARACTERISTICS

Operating Junction Temperature Range

Storage Temperature Range

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	0.75	°C/W

T_{stg}

Indicates JEDEC Registered Data

3.5 AMPERE **POWER TRANSISTORS** NPN SILICON

400 and 500 VOLTS 100 WATTS

-65 to +200

٥С

2N3902, 2N5157 (continued)

*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
FF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage		V _{CEO(sus)}			Vdc
(I _C = 100 mAdc, I _B = 0) (See Figure 12)	2N3902 2N5157		325 400		l
Callanda Faridae Baral da ya Maisara	2105157	BV.			1 1/1-
Collector-Emitter Breakdown Voitage (I _C = 3.5 Adc, R _{BE} = 10 Ohms) (See Figure 12)	2N5157	BVCER	500	_	Vdc
Collector Cutoff Current	2110107				mAdc
(VCE = 400 Vdc, I _B = 0)	2N3902	ICEO	0.25	_	mAdd
(V _{CE} = 500 Vdc, I _B = 0)	2N5157	1	0.25	_	1
Collector Cutoff Current	2.10.01	ICEX			mAdo
(V _{CE} = 700 Vdc, V _{EB(off)} = 1.5 Vdc)	2N3902	CEX		2.5	IIIAGC
CE TEST EBIOTITY	2N5157	1	_	0.5	
(V _{CE} = 400 Vdc, V _{EB(off)} = 1.5 Vdc, T _C = 125 ^o C)	Both Types			0.5	1
Emitter Cutoff Current		I _{EBO}			mAdc
$(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	2N3902	250	-	5.0	
$(V_{BE} = 6.0 \text{ V/dc}, I_{C} = 0)$	2N5157		-	5.0	ł
ON CHARACTERISTICS(1)		L			
DC Current Gain		h _{FE}			T _
(I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	2N3902,2N5157		30	90	
(I _C = 2.5 Adc, V _{CE} = 5.0 Vdc)	2N3902,2N5157		10	-	1
$(I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}, T_C = -55^{\circ}\text{C})$	2N5157		10	-	
Collector-Emitter Saturation Voltage		VCE(sat)			Vdc
(I _C = 1.0 Adc, I _B = 0.1 Adc)	2N3902,2N5157	02 (801)	-	0.8	
(I _C = 2.5 Adc, I _B = 0.5 Adc)	2N3902		-	2.5	
$(I_C = 3.5 \text{ Adc}, I_B = 0.7 \text{ Adc})$	2N5157	1	-	2.5	
Base-Emitter Saturation Voltage		V _{BE} (sat)			Vdc
(I _C = 1.0 Adc, I _B = 0.1 Adc)	2N3902,2N5157		-	1.5	1
(I _C = 2.5 Adc, I _B = 0.5 Adc)	2N3902	1	-	2.0	1
(I _C = 3.5 Adc, I _B = 0.7 Adc)	2N5157			2.0	
DYNAMIC CHARACTERISTICS					
Current-Gain—Bandwidth Product	,	fτ			MHz
(I _C = 0.2 Adc, V _{CE} = 10 Vdc)	2N3902		2.8	-	
(I _C = 0.2 Adc, V _{CE} = 12 Vdc)	2N5157		2.8	-	
Output Capacitance		C _{ob}		150	pF
(V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	2N5157				
WITCHING CHARACTERISTICS					
Turn-On Time		t _{on}		0.8	μs
(V _{CC} = 125 Vdc, I _C = 1.0 Adc, I _{B1} = 0.1 Adc)	2N5157				
Turn-Off Time		toff		1.7	μs
$(V_{CC} = 125 \text{ Vdc}, I_C = 1.0 \text{ Adc}, I_{B1} = 0.1 \text{ Adc}, I_{B2} = 0.5 \text{ Adc})$	2N5157	1		}	

^{*}Indicates JEDEC Registered Data

(1) Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 5 - ACTIVE-REGION SAFE-OPERATING AREA

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe operating area curves indicate $I_C\!-\!V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on $T_J(\rho k) = 150^{\circ}C$; T_C is variable depending on conditions. Pulse curves are valid for duty cycles of 10% provided $T_J(\rho_k) \leq 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)

2N3902, 2N5157 (continued)

