

Deep learning for quantum error mitigation

Simone Cantori

University of Camerino - School of Science and Technology
PhD student in Quantum Technologies

simone.cantori@unicam.it

Core idea:

Core idea:

Problem:

• The exact output of a generic large quantum circuit U can't be computed with classical simulation methods.

Core idea:

Problem:

• The exact output of a generic large quantum circuit U can't be computed with classical simulation methods.

Solution:

- Train a model using quantum circuits that are both classically simulable and structurally similar to U.
- Use the model to mitigate the errors in the output of U.

Proposed training-sets:

- Near Clifford quantum circuits [1]
- Product states [2]
- Small quantum circuits and scalable neural networks [3]

[1] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio, Error mitigation with Clifford quantum-circuit data, Quantum, 5, 592 (2021)

[2] Stefan H. Sack, and Daniel J. Egger, Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation, Phys. Rev. Research 6, 013223, (2024)

[3] S. Cantori, A. Mari, D. Vitali, and S. Pilati, **Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation**, EPJ Quantum Technol. **11**, 45 (2024)

Our approach:

ullet Circuit knitting with small sampling overhead o for VQE processes [1]

$$O = \prod_{\theta_i \in \mathbb{K}} (1 + 2|\sin \theta_i|)^2$$
, $\mathbb{K} = \text{set of connecting gates}$

 We increase the similarity between training circuits and testing circuits

Ansatz for the VQE process

• We use P = 8 repetitions of the following block

$$H = \sum_{i} -J_{i} \sigma_{i}^{Z} \sigma_{i+1}^{Z} - h \sum_{i} \sigma_{i}^{X}$$

Wen Wei Ho, Timothy H. Hsieh, Efficient variational simulation of non-trivial quantum states. SciPost Phys. 6, 029 (2019)

Product states

Product states

Partially knitted

Importance of similarity between training circuits and testing circuits

Importance of similarity between training circuits and testing circuits

• $C=2\times N\times P=48$ \longrightarrow product state; C=16 \longrightarrow near-Clifford circuit with 83% non-Clifford gates.

$$1 - R^2 = \frac{\sum_{i=1}^{K_{test}} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{K_{test}} (y_i - \hat{y}_i)^2}$$

$$10^0 \qquad \qquad N = 4$$

$$10^{-1} \qquad \qquad N = 10$$

$$10^{-2} \qquad \qquad 10^{-2}$$

$$2 \qquad 4 \qquad 6 \qquad 8 \qquad 10 \qquad 12 \qquad 14 \qquad 16$$

$$C \qquad \qquad \text{Number of } R_{ZZ} \text{ gates that have been cut in the training circuits}$$

Importance of similarity between training circuits and testing circuits

• $C = 2 \times N \times P = 48 \rightarrow$ product state; $C = 16 \rightarrow$ near-Clifford circuit with 83% non-Clifford gates.

$$1-R^2 = \frac{\sum_{i=1}^{Ktest}(y_i-\hat{y}_i)^2}{\sum_{i=1}^{Ktest}(y_i-\hat{y}_i)^2}$$

$$10^0 \begin{array}{c} N=4 \\ N=6 \\ N=8 \\ N=10 \end{array}$$

$$10^{-1} \begin{array}{c} N=1 \\ N=12 \\ N=12 \end{array}$$

$$10^{-1} \begin{array}{c} N=1 \\ N=12 \\ N=12 \end{array}$$

$$10^{-2} \begin{array}{c} N=1 \\ N=12 \end{array}$$

Future work and open questions:

Application on real quantum devices.

Future work and open questions:

Application on real quantum devices.

 Is there a sweet spot where ML-EM can provide "useful" results "efficiently"?

Acknowledgement

- Co-authors: Dr. Andrea Mari, Prof. David Vitali and Prof. Sebastiano Pilati
- Complex quantum matter group

Appendix

Overview (2)

Smart initialization

E.g. VQE process via patch circuits

Steps

Noisy VQE

ML for error mitigation

Training

Inference

Noise model and comparison with real quantum computers

Fake IBM Melbourne

 $p_{\text{noise}} = 0 \implies \text{No readout and gate errors}$

 $p_{\text{noise}} = 1 \implies \text{Original fake backend}$

Comparison with other approaches

 Gradient-based (ADAM) and gradient-free (COBYLA) VQE processes;

• Damping factor EM: $\langle \mathcal{O} \rangle_{\text{noisy}} = D \langle \mathcal{O} \rangle$, where D can be obtained with reference states;

Filtering the shot noise of target values

Impact of the training-set size

•
$$1 - R^2 = \frac{\sum_{i=1}^{K_{test}} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{K_{test}} (y_i - \bar{y})^2}$$
.

- Training on quantum circuits with $N \le 10$ qubits and testing on quantum circuits with N = 16 qubits.
- P = 20 layers of gates.

Visualization of the improvement

- Training on quantum circuits with $N \le 10$ qubits and testing on quantum circuits with N = 16 qubits.
- P = 20 layers of gates.

