보험부채 할인율 현실화 연착륙 방안

2024. 11.

관계기관 합동

1. 추진배경

- □ IFRS17·K-ICS상 보험부채 시가 평가를 위한 **할인율**은 회사별 차이가 적은 경제적 가정 → 감독당국이 기준 제시
 - 이에 금융감독원은 매년 할인율 운영 자문위원회*를 개최하여
 차년도 할인율 적용기준을 마련
 - *IFRS17 전문가 등을 중심으로 학계·업계 및 유관기관에서 7인 이내 위원 구성
- □ 新제도의 안정적 도입을 위해 당초 할인율을 유럽 등에 비해 다소 높게 설정하였으나,
 - o 주요 요소별 **현실화 방안****을 마련하고 단계적 시행 中('24년~)

※ 할인율 단계적 현실화 방안('23.8월)

산출요소	현행	개선방안	시행
장기선도금리	조정폭 한도 15bp	•매년 조정폭 한도를 25bp로 확대	'24년
유동성프리미엄		• 대출채권 수익률 결정방식 현실화	′24년
		• 예상하지 못한 위험도 신용스프레드에 반영 → 유동성프리미엄에서는 제외	'27년
		• 조정비율 수준을 100%에서 합리화	′26년
최종관찰만기	20년	• 실제 국고채 수익률 활용구간(최종관찰만기) 현행 20년에서 30년으로 확대	′25년

- □ 다만, '25년 최종관찰만기 30년 확대가 예정되어있던 상황에서 최근 시장금리가 하락*
 - * 국고채_{10년}(%): ('22末)3.74 → ('23末)3.18 → ('24.3月)3.40 → (6月)3.26 → **(9月)2.99**
 - 美기준금리 인하 등 추가 금리하락 가능성 및 해지율 제도 개선영향 등 종합적 고려 필요성이 제기
 - ☞ 최근 금리하락 및 제도개선 추진 등에 따른 영향분석 결과를 토대로 '25년 할인율 적용방안 등 감독방향을 검토

Ⅱ. 보험부채 할인율 기본구조

- □ (개요) 보험계약은 주식·채권과 달리 시장에서 직접 거래되지 않아, 시장가격을 직접 평가할 수 없는 한계
 - 이에 보험계약의 장래 현금 유출입 등 현금흐름을 추정하고
 이를 현재시점으로 할인하여 시가평가
 - 따라서 할인율은 단일한 수치가 아닌 시점별 수익률 곡선이며,
 실무적으로는 국고채 수익률을 토대로 산출한 [□]무위험 금리
 기간구조에 [□]유동성프리미엄을 가산하여 산출 중
- □(□무위험 금리기간구조) 국고채 금리를 기초로, 만기가 매우 긴 보험부채 특성(최대 120년)에 맞추어, 시장 금리 구간(관찰금리)과 통계모형으로 산출한 구간(추정금리)으로 구성
 - (관찰금리) 0년 ~ 20년*까지는 국고채 금리를 직접 사용
 - * 시장 관찰금리를 사용하는 가장 긴 만기를 최종관찰만기(LOT: Last Observed Term 또는 LLP: Last Liquid Point)라 하며, 현재 국고채 20년을 사용 중
 - (추정금리) 20년 이후 구간은 장기 수렴점*과 모형을 이용한
 보간구간(20^{LOT}~60년) 및 수렴구간(60년 이후)으로 산출
 - * 장기선도금리(LTFR:Long Term Forward Rate): 시장금리 정보가 없어 모형상 수렴점으로 사용하는 금리(실질이자율 장기평균+물가상승목표, 現4.55%)
- □(²유동성프리미엄) 무위험 금리에 가산하는 요소로서, 총 위험 스프레드에서 계약과 관련이 없는 신용스프레드를 차감

Ⅲ. 최종관찰만기 확대 연착륙 방안

◈ [●]채권시장 영향, ^②해외동향, ^③당초 제도개선 취지 및 ^④할인율
 구조 특징 등을 종합 고려하여 최종관찰만기 확대 속도조절 필요

1. 최종관찰만기(LOT) 기본 평가

- □ (개요) 국고채 시장 발행잔액 및 유동성 수준 등을 정량적으로 평가(DLT조건)*하고, 정성적 분석을 고려하여 종합적으로 결정
 - * 대량 거래가 상품가격(금리)에 중요한 영향을 미치지 않고(**D**eep), 중요한 가격 변동없이 매매 가능하며(**L**iquid), 거래 정보를 쉽게 이용 가능한지(**T**ransparent) 평가 < **DLT 평가방법 요약** >
 - Sol II 의 DLT 분석 방법론을 참고하여 발행잔액의 DLT 조건을 판단하고 추가로 국고채 지표물 호가 스프레드 등을 감안
 - ① 발행잔액 : 채권 발행만기별 발행잔액이 전체 6% 미만인지 여부
 - ② **호가스프레드** : 매도 매수 호가 스프레드 측정 : **작을수록 유동성** ↑
 - ③ Roll 측정치 : Roll Measure 측정: 작을수록 유동성↑
 - ④ 기타 분석 : 발행량 등 국내 국고채 금리시장의 특성 등 고려
 - '23.8월 고금리 상황 및 국고채 30년물이 DLT 조건을 충족하는 점 등을 종합 감안하여 최종관찰만기 확대 결정
- □ (평가결과) '24년에도 국고채 30년물은 DLT 조건을 충족하고 있으나, 금리상황의 급반전 등 정성적 요인 고려 필요

2. 추가 고려사항

- ① (채권시장) 국고채_{30년물} 보유 주체의 62%가 보험회사인 상황('24.6월) 으로 LOT 확대시 장·단기금리역전 등 시장 왜곡 심화 우려
- ② (해외사례) 자국 통화의 최종관찰만기를 30년 이상으로 적용하는 국가는 초장기 채권시장이 발달한 미국, 영국, 일본, 캐나다 정도
 - 한편, EU의 경우에도 유로화의 LOT 30년 확대를 결정하였으나,
 일시 확대가 아닌 외삽법* 도입을 결정(시행시기 미정)
 - * LOT 20년일 경우와 30년일 경우 사이의 곡선을 보정하여 할인율 산출

- ③ (당초취지) 회계 전환시기('22~'23년) 금리 급등으로 인한 **할인율** 상승의 착시효과를 해소하기 위해, 혐실화 방안을 마련했으나,
 - 최근 금리 하락으로 현재 할인율은 현실화 방안 검토시점
 대비 124bp* 하락하여 당초 예상 수준**을 초과
 - * 국고채 **금리 82bp**(10년물 3.82% → 3.00%) + **유동성프리미엄 42bp**(91bp → 49bp)
 - ** 할인율 현실화 방안 검토시 유동성프리미엄은 최대 45bp 단계적 하락을 예상
- ④ (구조적 특성) 시장 금리와 장기 수렴점을 기초로 할인율 곡선을 산출하는 구조적 특성상, 시장 금리가 장기 수렴점에 비해 낮을 수록 최종관찰만기 확대의 영향이 심화*되는 특징
 - * 금리가 하락할수록 **차이 면적이 급격히 증가 [A < B < C < D]** (하단 참조)
 - < 금리 수준별 최종관찰만기 확대 영향(前後 할인율 곡선 비교) >

주) LTFR 4.30% 수렴 기준

☞ 정량적·정성적 분석 결과를 종합적으로 고려하여, 최종관찰만기를 30년 으로 확대하되 3년간 단계적으로 적용(금리상황에 따른 시행여건 모니터링)

Ⅳ. 향후 계획

□ '25.1월 결산시부터 '25년 연중 일관되게 적용

참 고

K-ICS 금리충격시나리오 산출모형 적정성 검토

1. 검토배경

- □ K-ICS 금리위험액은 금리충격시나리오(5개) 적용시 순자산가치 변동분(시나리오별 위험액)을 합산*하여 산출
 - * 금리위험액 = 평균회귀위험 + $\sqrt{\max(상승위험, 하락위험)^2 + \max(평탄위험, 경사위험)^2}$
 - 금리변동성 확대시('22년)에도 금리충격량에 큰 변동이 없어, 산출 모형인 무차익DNS(이하 "AFDNS"*)의 적정성에 대한 문제 제기

2. 모형 비교·분석 결과

- □ 현행 K-ICS에서 적용하고 있는 **AFDNS 모형**을 국제보험건전성 기준(이하 'ICS')에서 채택한 **DNS 모형**과 비교·분석한 결과
 - AFDNS 모형은 전반적으로 충격수준이 크지 않고 안정적 산출이 가능하나, 금리변동이 큰 시기 리스크 반영에 일부 한계

< 항목별 세부 분석 결과 >

- (과거 금리변동 설명력 비교) 원화는 연도별로 적합도*가 높은 모형이 상이하나, 달러는 DNS모형, 유로는 AFDNS모형이 일관되게 높음
 - * 모수 추정과정에서 산출되는 로그우도(log-likelihood)의 값이 클수록 적합도가 높음
- ② (충격 시나리오 수준 비교) 원화·유로는 일관되게 DNS모형의 충격 수준이 높은데 반해, 달러는 AFDNS모형이 2배이상 높음
- ③ (금리충격 안정성 비교) 원화는 DNS대비 AFDNS의 변동성(표준편차♂)이 매우 작고, 달러는 약간 작은 수준
- ④ (금리변동과 금리충격 상관성) 금리변동성이 증가한 시기('22년)에 AFDNS 모형 금리 충격의 경우 원화는 거의 변동이 없고 다른 통화는 오히려 감소한 반면, DNS 모형은 모든 통화에서 금리충격이 확대

3. 할인율 운영 자문위원회 논의 결과

- □ 분석결과상 **모형간 적합도 차이**가 **작고 현재 제도 운영 초기인 점을** 감안시, **모형 변경이** 아닌 **모형의 결과물 검토**가 **필요**한 시점
 - 어떤 모형이든 완벽한 모형은 없으며, 지속적인 피드백을 통해 발전하므로 現모형을 유지하면서 모수 최적화 등을 우선 고려

4. 향후 계획

- □ 현행 AFDNS모형 고도화를 우선 추진하고, AFDNS·DNS·PCA 모형별 비교 영향분석을 추가 실시
 - ※ 필요시, 금리모형 전문가를 통한 연구용역 추진 고려