4. a)
$$\spadesuit$$
 b \Rightarrow (a \cup b)

 $\pi |= \spadesuit$ b

 $\exists j \ge 0. \pi[j...] |= b$

if $a = true$:

 $\exists j \ge 0. \pi[j...] |= b$ and $\forall 0 \le i < j. \pi[i...] |= true$
 $\exists j \ge 0. \pi[j...] |= b$ and $\forall 0 \le i < j. \pi[i...] |= a$
 $\pi |= a \cup b$
 $\pi |= \spadesuit b \Rightarrow (a \cup b)$
 $\exists \pi. \pi |= \spadesuit b \Rightarrow (a \cup b)$

if $a = \neg true$:

 $\exists j \ge 0. \pi[j...] |= b$ and $\forall 0 \le i < j. \pi[i...] |\neq \neg true$
 $\neg (\exists j \ge 0. \pi[j...] |= b$ and $\forall 0 \le i < j. \pi[i...] |= a)$
 $\pi |\neq a \cup b$
 $\pi |\neq \spadesuit b \Rightarrow (a \cup b)$

So \blacklozenge b \Rightarrow (a U b) is satisfiable, but not valid.

 $\exists \pi. \ \pi \mid \neq \diamondsuit b \Rightarrow (a \cup b)$

 $\neg(\forall \pi. \ \pi \mid = \spadesuit b \Rightarrow (a \cup b))$

b)
$$O(a \lor \diamondsuit a) \Rightarrow \diamondsuit a$$

 $\pi|= O(a \lor \diamondsuit a)$
 $\pi[1...] \mid= a \lor \diamondsuit a$
if $\pi[1...] \mid= a$:
 $\exists j \ge 0. \pi[j...] \mid= a$

So O(a V
$$\diamondsuit$$
a) $\Rightarrow \diamondsuit$ a is valid.