目录

1	准备知识		
	1.1	Riemann 面	2
	1.2	Riemann 面上的微积分	6
	1.3	层 (Sheaf)	11
	1.4	上同调群	13
	1.5	有限性定理	17
	1.6	正合上同调列	23
2	紧 F	Riemann 面	27
	2.1	Riemann-Roch 定理	27
	2.2	Serre 对偶定理	30
	2.3	除子与线丛, Serre 定理证明	34
	2.4	调和微分形式	39
	2.5	Mittag-Leffler 问题	12
	2.6	Abel 定理	16
3	非紧	Riemann 面	50
	3.1	Dirichlet 问题	5 C
	3.2	可数拓扑	53
	3.3	单值化定理	53

1 准备知识

1.1 Riemann 面

例子 1.1.1. \sqrt{z} : 多值函数. \sqrt{z} 的黎曼面.

定义 1.1.1. 2 维连通流形 X, X 上一个坐标指一个同胚 $\varphi: U \subset X \to V \subset \mathbb{C}$.

定义 1.1.2. 称两个坐标 $\varphi_i: U_i \to V_i, i = 1,2$ 是全纯相容的,若 $\varphi_2 \circ \varphi_1^{-1}: \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ 双全纯.

定义 1.1.3. X 上一个复图表指一族全纯相容的坐标 $\mathscr{U}=\{\varphi_j:U_j\to V_j, j\in J\}$ 使得 $X=\bigcup_i U_j$.

定义 1.1.4. X 上一个复结构 $\Sigma = [\mathcal{U}], \mathcal{U}: X$ 上的复图表, $\mathcal{U} \sim \mathcal{U}'$ 等价于其中任意两个 坐标全纯相容.

定义 1.1.5. (X,Σ) 称为一个 Riemann 面.-H. Weyl.

例于 1.1.2. X: Riemann 面, $Y \subset X$ 开、连通,则 Y 也是 Riemann 面. 设 \mathcal{U} 是 X 上的一个开图表,则 $\mathcal{U}|_{Y}$ 也是 Y 的一个开图表.

例子 1.1.3. $\Omega \subset \mathbb{C}$ 中的区域均为 *Riemann* 面,取 $\mathcal{U} = \{ id : \Omega \to \Omega \}$.

例子 1.1.4. Riemann 球面 \mathbb{P}^1 是 (紧) Riemann 面.

 $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$, 有球极投影 $\mathbb{P}^1 \cong \mathbb{S}^2$, 故 \mathbb{P}^1 是紧连通流形.

取 $U_1 = \mathbb{C}$, $U_2 = \mathbb{C}^* \cup \{\infty\}$. 定义: $\varphi_1 : U_1 \to \mathbb{C}$, $z \mapsto z$. $\varphi_2 : U_2 \to \mathbb{C}$, $z \mapsto \frac{1}{z}$, $\infty \mapsto 0$. $U_1 \cap U_2 = \mathbb{C}^*$. $\varphi_1(U_1 \cap U_2) = \varphi_2(U_1 \cap U_2) = \mathbb{C}^*$. $\varphi_2 \circ \varphi_1^{-1} : \mathbb{C}^* \to \mathbb{C}^*$, $z \mapsto \frac{1}{z}$ 是双全纯. 故 $\mathscr{U} = \{\varphi_j : j = 1, 2\}$ 是 \mathbb{P}^1 的一个复图表.

例子 1.1.5. 环面是 Riemann 面.

设 ω_1, ω_2 是 \mathbb{R} -线性无关的向量. 称 $\Gamma := \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ 是 \mathbb{C} 中的一个格.

定义 $z \sim z'$ 等价于 $z - z' \in \Gamma$. 称 $\mathbb{C}/\Gamma := \mathbb{C}/\sim$ 为一个环面. 商映射 $\pi: z \mapsto [z]$ 给出了 \mathbb{C}/Γ 上的一个拓扑,其是一个紧连通流形.

设 $V \subset \mathbb{C}$ 是一个区域,使得 V 中任何两个点不等价,则 $\pi: V \to U := \pi(V)$ 是一个同胚. 进而 $\varphi := \pi^{-1}: U \to V$ 是一个坐标.

设 $\varphi_i: U_i \to V_i$ 为坐标, i = 1, 2. 令 $\psi := \varphi_2 \circ \varphi_1^{-1}: \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$.

因为 $\pi \circ \psi(z) = \varphi_1^{-1}(z) = \pi(z)$, 所以有 $\psi(z) - z \in \Gamma$.

因为 $\psi(z)-z$ 连续,且取值在一个离散集上,所以 $\psi(z)-z$ 在 $\varphi_1(U_1\cap U_2)$ 的任何一个连通分支上均为常数. 因此 ψ 是双全纯函数. 覆盖是容易的.

例子 1.1.6. 设 $f \in C(\mathbb{C})$, 考虑 f 的图像 $\Gamma(f) := \{(z, f(z)) \in \mathbb{C} \times \mathbb{C} : z \in \mathbb{C}\}$. 取

$$\mathscr{U} = \{P : \Gamma(f) \to \mathbb{C}, (z, f(z)) \mapsto z\},\$$

推出 $\Gamma(f)$ 为 Riemann 面.

注 1.1.1. Riemann 面是由"同胚"来定义的,只是两个坐标的转换函数是双全纯的.

定理 1.1.1. (Gauss 证明实解析情形; Korn-Lichtenstein 证明一般情形)

任何一个可定向的光滑曲面,均存在一个复结构,使得其称为一个 Riemann 面. 参见 Jost, 紧 Riemann 面 (有关 PDE).

定义 1.1.6. X 是 Riemann 面, 称函数 $f: X \to \mathbb{C}$ 为一个全纯函数, 若对任意坐标 $\varphi: U \to V$, 有 $f \circ \varphi^{-1}: V \to \mathbb{C}$ 全纯. 记 $\mathcal{O}(X)$ 为 X 上的全纯函数全体.

注 1.1.2. 使用 O 是为了纪念 Oka.

定理 1.1.2. Riemann 可去奇点定理.

X: Riemann 面, $U \subset X$ 是开集, $a \in U$. 若 $f \in \mathcal{O}(U \setminus \{a\}) \cap L^{\infty}(U)$,则存在唯一的 $\tilde{f} \in \mathcal{O}(U)$ 使得 $\tilde{f}|_{U \setminus \{a\}} = f$. 利用平面区域的情形.

定义 1.1.7. X,Y: Riemann 面, $f \in C(X,Y)$. 称 f 是全纯的,若对所有的坐标 $\varphi_1: U_1 \subset X \to V_1, \varphi_2: U_2 \subset Y \to V_2$, 其中 $f(U_1) \subset U_2$, 有

$$\varphi_2 \circ f \circ \varphi_1^{-1} : V_1 \to V_2$$

全纯.

记 $\mathcal{O}(X,Y)$ 为 $X \to Y$ 的全纯映射全体.

注 1.1.3. 验证此处 $f \in C(X,Y)$ 不可少.

定义 1.1.8. 若 $f: X \to Y$ 同胚,且 f, f^{-1} 全纯,则称 f 为双全纯映射.

命题 1.1.1. 恒等原理.

 $f_1, f_2 \in \mathcal{O}(X, Y)$, 记 $A := \{x \in X : f_1(x) = f_2(x)\}$. 若 A 有聚点,则 $f_1 \equiv f_2$.

证明. 令 $G := \{x \in X :$ 存在邻域 $W \ni x, \text{ s.t. } f_1|_W = f_2|_W \}.$ 则 G 是开集.

 $G \subset X$ 闭:设 $b \in \partial G \cap X$,因为 f_i 连续,所以有 $f_1(b) = f_2(b)$.

取坐标 $\varphi: b \in U \subset X \to V$, $\psi: U' \subset Y \to V'$ 使得 $f_i(U) \subset U'$ 且 U 连通. 记 $g_i = \psi \circ f_i \circ \varphi^{-1}$. 由平面区域上的恒等原理,推出 $g_1 = g_2$ 在 V 上. 进而 $f_1 = f_2$ 在 U 上,故 $b \in G$. 所以 G 是闭集.

再由平面区域恒等原理,有聚点 $a \in G$.

因为 X 连通, 非空, 且既开又闭, 故有 G = X. 进而 $f_1 \equiv f_2$.

定义 1.1.9. X: Riemann 面. X 上的一个亚纯函数 (Meromorphic) 指, $f \in \mathcal{O}(X')$,其中 $X' \subset X$ 开且使得

1. $X \setminus X'$ 离散. 2. $\forall p \in X \setminus X'$ 为 f 的极点, 即 $f(x) \to \infty (x \to p)$.

记 M(X) 为 X 上的亚纯函数全体.

例子 1.1.7. $p(z) = z^n + c_1 z^{n-1} + \cdots + c_n \in \mathcal{O}(\mathbb{C}).$ $p(z) \to \infty(z \to \infty),$ 故 $p \in \mathcal{M}(\mathbb{P}^1).$

定理 1.1.3. $f \in \mathcal{M}(X)$, 补充定义 f 在极点处取值为 ∞ , 则 $f \in \mathcal{O}(X,\mathbb{P}^1)$. 反之,若 $f \in \mathcal{O}(X,\mathbb{P}^1)$, 则 $f \equiv \infty$ 或 $f \in \mathcal{M}(X)$.

证明. 设 $f \in \mathcal{M}(X)$, $f \neq \infty$, 则 $P = f^{-1}(\infty)$ 为离散的. 考虑坐标 $\varphi : U \subset X \to V$, $\psi : U' \subset \mathbb{P}^1 \to V'$, 使得 $f(U) \subset U'$, 且 V' 有界.

在 U 中有限个极点,进而在 $\varphi(U)$ 上亦为有限个极点,而 $\psi \circ f \circ \varphi^{-1}$ 是有界的. 由 Riemann 可去奇点定理,使得 $\psi \circ f \circ \varphi^{-1} \in \mathcal{O}(V)$, 进而 $f \in \mathcal{O}(X, \mathbb{P}^1)$.

定理 1.1.4. 全纯映射局部行为.

 $f \in \mathcal{O}(X,Y)$ 非常值, $a \in X$, $b := f(a) \in Y$. 则存在 $k \in \mathbb{Z}^+$, 以及坐标 $\varphi : U \subset X \to V$, $\psi : U' \subset Y \to V'$ 使得 $f(U) \subset U'$, $\varphi(a) = \psi(b) = 0$ 且

$$F(z) := \psi \circ f \circ \varphi^{-1}(z) = z^k. \tag{1.1.1}$$

称 k 为 f 在 a 处的重数.

证明. 首先可取坐标 φ, ψ 使得其满足除了方程 (1.1.1) 以外的所有性质.

定义 $f_1 := \psi \circ f \circ \varphi^{-1} \in \mathcal{O}(V, V')$, 使得 $f_1(0) = 0$ 且 f_1 不是常值. 进而 $f_1(z) = z^k g(z)$, 其中 $g \in \mathcal{O}(V)$, $g(0) \neq 0$.

适当选取 U, 可使 V 单连通,且 $|g||_V > 0$. 故存在 $g^{\frac{1}{k}}$ 的一个单值分支 h, 使得 $f_1(z) = (z \cdot h(z))^k$. $z \mapsto z \cdot h(z)$ 双全纯 (适当收缩 U).

记 $\alpha(z) := z \cdot h(z)$. 只需用 $\alpha \circ \varphi$ 来代替 φ 即可.

推论 1.1.1. (开映射) $f \in \mathcal{O}(X,Y)$ 不是常值映射,则 f 是开映射.

证明:对于任意 a,任意邻域 U,则 f(U)是 f(a)的一个邻域.

推论 1.1.2. $f \in \mathcal{O}(X,Y)$ 且单,则 $f: X \to f(X)$ 双全纯.

证明: f 单叶, 则 f 在任何点的重数为 1, 故 f^{-1} 全纯.

推论 1.1.3. (最大模) $f \in \mathcal{O}(X)$ 非常值,则 f 不能在 X 内部取最大值.

证明: 假设存在 $a \in X$, 使得 $|f(a)| = R := \sup_{\mathbf{Y}} |f|$, 则 $f(X) \subset K := \{z \in \mathbb{C} : |z| \le R\}$.

因为 f(X) 开, 所以 $f(X) \subset K$, 但 $f(a) \in \partial K$, 矛盾.

定理 1.1.5. X,Y: Riemann 面, X 紧, $f \in \mathcal{O}(X,Y)$ 非常值, 则 f 满且 Y 紧.

证明. $\emptyset \neq f(X) \subset Y$ 开,且 $f(X) \subset Y$ 是紧集进而闭集. 又因为 Y 连通,所以 Y = f(X).

推论 1.1.4. X 是紧 Riemann 面, $f \in \mathcal{O}(X)$, 则 f 是常数.

推论 1.1.5. $f \in \mathcal{M}(\mathbb{P}^1)$ 非常值,则 f 是有理函数,即 $f = \frac{P_1}{P_2}$,其中 P_2, P_2 是多项式.

证明. 因为 \mathbb{P}^1 是紧的,且 $f^{-1}(\infty)$ 离散,所以 $f^{-1}(\infty)$ 有限. 不妨设 $f(\infty) \neq \infty$ (否则用 $\frac{1}{f}$ 来代替 f). 进而 $f^{-1}(\infty) = \{a_1, \dots, a_n\} \subset \mathbb{C}$.

令 h_{ν} 为 f 在 a_{ν} 处的主部,则 $g := f - \sum_{\nu=1}^{n} h_{\nu} \in \mathcal{O}(\mathbb{P}^{1})$,进而 g 是常数.

推论 1.1.6. Liouville 定理: $f \in \mathcal{O}(\mathbb{C})$ 且有界,则 f 是常数.

证明. 由 Riemann 可去奇点定理,有 $f \in \mathcal{O}(\mathbb{P}^1)$. 又因为 \mathbb{P}^1 紧,故 f 是常数.

推论 1.1.7. 代数学基本定理: $p(z) = z^n + a_1 z^{n-1} + \cdots + a_n$, 则 p(z) = 0 至少有一个复根.

证明. $p \in \mathcal{O}(\mathbb{P}^1, \mathbb{P}^1), f^{-1}(\infty) = \{\infty\}.$ p 非常值,所以 p 是满射,进而 $p^{-1}(0) \cap \mathbb{C} \neq \emptyset$.

注 1.1.4. Gauss 是第一个定义复数的数学家: 复整数.

定义 1.1.10. 双周期函数.

设 $\Gamma = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \in \mathbb{C}$ 为一个格, 称 $f \in \mathcal{M}(\mathbb{C})$ 为 Γ -双周期的, 若

$$f(z) = f(z + \omega_i), \ \forall z \in \mathbb{C}. \ i = 1, 2$$

$$\iff f(z) = f(z + \omega), \ \forall z \in \mathbb{C}, \ \omega \in \Gamma.$$

若 f 是 Γ -双周期函数,则其诱导出 $F \in \mathcal{M}(\mathbb{C}/\Gamma)$ 使得 $f = F \circ \pi$. 反之,若 $F \in \mathcal{M}(\mathbb{C}\backslash\Gamma)$,则 $f = F \circ \pi$ 是 Γ -双周期的.

定理 1.1.6. 两个定理:

1. $f \in \mathcal{O}(\mathbb{C})$ 为 Γ-双周期,则 f 是常数.

2. $f \in \mathcal{M}(\mathbb{C})$ 为 Γ-双周期,且 f 不是常数,则 $f(\mathbb{C}) = \mathbb{P}^1$.

例子 1.1.8. Weierstrass P-函数.

$$\mathcal{P}(z) := \frac{1}{z^2} + \sum_{\omega \in \Gamma \setminus \{0\}} \left[\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right]$$

为 Γ-双周期的.

注 1.1.5. 可证明: $F:\mathbb{C}/\Gamma\to\mathbb{P}^2,\;[z]\mapsto[1:\mathcal{P}(z):\mathcal{P}'(z)]$ 为一个全纯嵌入(进而推出 \mathbb{C}/Γ 为代数曲线,一维流形)

1.2 Riemann 面上的微积分

定义 1.2.1. 设 U 是 \mathbb{C} 中的一个开集,令 z=x+iy, $\overline{z}=x-iy$,定义 $\frac{\partial}{\partial z}=\frac{1}{2}(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y})$, $\frac{\partial}{\partial \overline{z}}=\frac{1}{2}(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y})$, $f\in\mathcal{O}(U)$ 等价于 $\frac{\partial f}{\partial \overline{z}}=0$.

利用 $dx = \frac{1}{2}(dz + d\overline{z})$, $dy = \frac{1}{2i}(dz - d\overline{z})$. 则 U 上的任意一个可微 1-形式 fdx + gdy 写为 $\varphi dz + \psi d\overline{z}$.

X 是 Riemann 面, 称 f 为 X 上的一个可微函数, 即 $f \in \mathcal{E}(X)$, 若对任意坐标 $z: U \subset X \to V \subset \mathbb{C}$, 存在 $\tilde{f} \in \mathcal{E}(V)$ 使得 $f = \tilde{f} \circ z$.

定义 1.2.2. 设 $\mathcal{U} = \{(U, z_U)\}$ 为 X 上一个复图表. 若存在 $f_U, g_U \in \mathcal{E}(U)$, 使得当 $U \cap U' \neq \emptyset$ 时,有

$$f_U dz_U + g_U d\overline{z_U} = f_{U'} dz_{U'} + g_{U'} d\overline{z_{U'}}$$

在 $U \cap U'$ 上成立,则称 $\omega|_U := f_U dz_U + g_U d\overline{z_U}$ 为 X 上的一个可微 1-形式. 记 $\mathcal{E}^1(X)$ 是 X上可微 1-形式全体.

若 $g_U \equiv 0$, $\forall U (resp. \ f_U \equiv 0, \forall U)$, 则称 ω 为一个可微 (1,0) 形式 $(resp. \ (0,1)$ 形式), 其全体分别记为 $\mathcal{E}^{(1,0)}(X)(resp. \ \mathcal{E}^{(0,1)}(X))$.

例子 1.2.1. $f \in \mathcal{E}(X)$,

$$df|_{U} := \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z} \in \mathcal{E}^{1}(X),$$

$$d'f|_{U} := \frac{\partial f}{\partial z}dz \in \mathcal{E}^{(1,0)}(X),$$

$$d''f|_{U} := \frac{\partial f}{\partial \overline{z}}d\overline{z} \in \mathcal{E}^{(0,1)}(X).$$

d = d' + d''. $f \in \mathcal{O}(X) \iff d''f = 0$ (Cauchy-Riemann). (d''u = v, 非齐次 C-R 方程)

定义 1.2.3. $\Omega(X)$ 为 X 上全纯 1-形式全体,即 $\omega \in \mathcal{E}^{(1,0)}(X)$ 且局部可表示为 $\omega = fdz, f \in \mathcal{O}(X)$.

定义 1.2.4. 设 $a \in X$, $\omega \in \Omega(X \setminus \{a\})$. 取坐标 (U,z) 使得 z(a) = 0. $\omega := f(z)dz$, $f \in \mathcal{O}(U \setminus \{a\})$. 定义 ω 在 a 处的留数 (Residue) 为

$$\operatorname{Res}_a \omega := \frac{1}{2\pi i} \int_{|z|=\varepsilon} f(z) dz = c_{-1}, \ \varepsilon << 1.$$

其中 $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$.

引理 1.2.1. 留数不依赖于复坐标的选取.

证明. 设 (U',z') 为另一个复坐标,使得 z'(a)=0, $\omega|_{U'}=g(z')dz'$. 当 $\varepsilon<<1$ 时,坐标变换 $z'\mapsto z$,将 $\{|z'|<\varepsilon\}$ 映射为一个光滑 Jordan 区域 D_{ε} 使得 $0\in D_{\varepsilon}$. 取 $\varepsilon'<<\varepsilon$ 使得 $\{|z|<\varepsilon'\}\subset D_{\varepsilon}$, 则

$$\frac{1}{2\pi i}\int_{|z'|=\varepsilon}g(z')dz'=\frac{1}{2\pi i}\int_{\partial D_\varepsilon}f(z)dz=\frac{1}{2\pi i}\int_{|z|=\varepsilon'}f(z)dz.$$

定义 1.2.5. X 上一个 1-形式 ω 称为亚纯 1-形式,若 $\omega \in \Omega(X')$,其中 $X' \subset X$ 开, $X \setminus X'$ 离散且 $\forall a \in X \setminus X'$ 为 ω 的极点.

记 $M^1(X)$ 为 X 上亚纯 1-形式全体, 也称为 Abel 微分全体.

Abel 微分的分类 (Riemann):

1. 全纯 1-形式. 2. $\forall a \in X \backslash X', Res_a \omega = 0$. 3. 其余.

定义 1.2.6. 类似于 1-形式, 我们可以定义 2-形式, 使得局部地, $\omega = f(z)dz \wedge d\overline{z}$. 我们记 $\mathcal{E}^2(X)$ 为 X 上可微 2-形式全体.

定义 1.2.7. 定义 $d: \mathcal{E}^1 \to \mathcal{E}^2$, $\omega = f dz + g d\overline{z} \mapsto d\omega := df \wedge dz + dg \wedge d\overline{z}$. 同样可以定义 d', d'', 且有 d = d' + d''.

命题 1.2.1. 一些性质

- 1. $d^2f = d'^2f = d''^2f = 0$. 推出 $0 = d^2 = (d' + d'')^2 = d'^2 + d'd'' + d''d' + d''^2$ 即 d'd'' = -d''d'.
- $2. \ f \in \mathcal{E}(X), \ \omega \in \mathcal{E}^1(X), \ \mathbb{M} \ d(f \cdot \omega) = df \wedge \omega + f \cdot d\omega.$ 同样对 d', d'' 成立. 特别地, $\forall f \in \mathcal{E}(X), \ d'd''f = \frac{\partial^2 f}{\partial z \partial \overline{z}} dz \wedge d\overline{z}, \ \mathbb{M}$ 称 f 在 X 上调和若 d'd''f = 0. (解 d'd''u = v.)
- 3. $\mathcal{E}^{(1,0)} \cap \operatorname{Ker} d = \Omega$.
- 定义 1.2.8. X,Y 是 Riemann 面, $F \in \mathcal{O}(X,Y)$, 定义拉回 (pull-back):

$$\omega = f dz + g d\overline{z}, \ F^*\omega := F^*(f) dF + F^*(g) d\overline{F}, \ \sharp \, \forall \ F^*(f) = f \circ F.$$

$$\omega = f dz \wedge d\overline{z}, \ F^*\omega = F^*(f) dF \wedge d\overline{F}.$$

命题 1.2.2. F^* 与 d 交换, 即 $dF^* = F^* \circ d$, 对 d', d'' 也成立.

推论 1.2.1. 若 f 在 Y 上调和,则 $F^*(f)$ 在 X 上调和.

定义 1.2.9. 积分.

X 是 Riemann 面,c 为 X 上的分段光滑曲线,i.e. 存在连续映射 $c:[0,1] \to X$,取分划 $0=t_0 < t_1 < \cdots < t_n = 1$,坐标 (U_k, z_k) 使得 $c([t_{k-1}, t_k]) \subset U_k$ 且 $x_k \circ c, y_k \circ c \in C^1([t_{k-1}, t_k])$. 设 $\omega \in \mathcal{E}^1(X)$ 使得 $\omega|_{U_k} = f_k dz_k + g_k d\overline{z_k}$. 定义 ω 在 c 上的积分为

$$\int_{c} \omega := \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (f_{k} \circ c \frac{d(z_{k} \circ c)}{dt} + g_{k} \circ c \frac{d(\overline{z}_{k} \circ c)}{dt}) dt.$$

定理 1.2.1. Newton-Lebniz.

 $F \in \mathcal{E}(X)$, $\mathbb{N} \int_{\mathcal{E}} dF = F \circ c|_{0}^{1}$.

定义 1.2.10. 设 U 是复平面中的一个区域, $\omega \in \mathcal{E}^2(U)$, $\omega = f dx \wedge dy = f \circ \frac{i}{2} dz \wedge d\overline{z}$. 设 $\operatorname{supp} \omega \subset U$,定义

$$\int_{U}\omega:=\int_{U}fdx\wedge dy=\frac{i}{2}\int_{U}fdz\wedge d\overline{z}.$$

若 $\varphi: V \to U$ 是双全纯映射, $\varphi(s) = z$.

$$\int_{U}\omega=\frac{i}{2}\int_{U}fdz\wedge d\overline{z}=\frac{i}{2}\int_{V}f\circ\varphi|\varphi'|^{2}ds\wedge d\overline{s}=\int_{V}\varphi^{*}\omega.$$

定义 1.2.11. X 是 Riemann 面, $\varphi: U \to V$ 是坐标, $\omega \in \mathcal{E}^2(X)$,且 $supp \omega \subset U$ (推出 $(\varphi^{-1})^* \omega$ 的支集在 V 中),则定义

$$\int_X \omega = \int_U \omega := \int_V (\varphi^{-1})^* \omega.$$

定义与坐标选取无关.

定义 1.2.12. 设 X 是仿紧的 Riemann 面,则可选取坐标 $\varphi_k: U_k \to V_k, k \in \mathbb{Z}^+$,使得 $X = \bigcup_k U_k$,且每个 U_k 至多与其它有限个 U_j 相交非空.

取 $\{\chi_k\}$ 为从属于覆盖 $\{U_k\}$ 的单位分解, *i.e.* $\chi_k \in C_0^\infty(U_k)$, 且 $\sum_k \chi_k = 1$. 则若 $\omega \in \mathcal{E}^1(X)$, 则定义

$$\int_X \omega := \sum_k \int_X (\chi_k \cdot \omega).$$

定理 1.2.2. 留数定理.

设 X 是紧 Riemann 面, $a_1, \dots, a_n \in X$, 推出 $\forall \omega \in \Omega(X \setminus \{a_1, \dots, a_n\})$ 有

$$\sum_{k=1}^{n} \operatorname{Res}_{a_k} \omega = 0.$$

引理 1.2.2. $\omega \in \mathcal{E}^1(X)$ 且具有紧支集,则 $\int_X d\omega = 0$.

证明. 留数定理的证明.

取坐标 (U_k, z_k) , 使得 $z_k(a_k) = 0$ 且 $U_k \cap U_j = \varnothing$, $\forall j \neq k$, $z_k(U_k) \subset \mathbb{C}$ 是一个圆盘. 令 $X' = X \setminus \{a_1, \cdots, a_n\}$. 取 $\chi_k \in C_0^\infty(U_k)$ 使得 $\chi_k = 1$ 在 a_k 上的一个邻域. 令 $g := 1 - \sum_{k=1}^n \chi_k$,则 $g \in \mathcal{E}(X)$ 且 g 在 a_k 的某个邻域取值为 0,故 $g \cdot \omega \in \mathcal{E}^1(X)$.

$$0 = \int_X d(g \cdot \omega) = \int_{X'} d(g \cdot \omega) = \int_{X'} d\omega - \sum_{k=1}^n \int_{X'} d(\chi_k \cdot \omega)$$

$$\begin{split} \int_{X'} d(\chi_k \omega) &= \lim_{\varepsilon \to 0} \int_{X \setminus \{|z_k| \le \varepsilon\}} d(\chi_k \omega) \\ &= -\lim_{\varepsilon \to 0} \int_{|z_k| = \varepsilon} \chi_k \omega \\ &= -\lim_{\varepsilon \to 0} \int_{|z_k| = \varepsilon} \omega \\ &= -2\pi i \operatorname{Res}_{a_k} \omega. \end{split}$$

推论 1.2.2. X 是紧的 Riemann 曲面, $f \in \mathcal{M}(X)$ 且非常数,则 $\#f^{-1}(0) = \#f^{-1}(\infty)$,这里计重数在内.

证明. 令 $\omega := \frac{df}{f} \in \Omega(X \setminus (f^{-1}(0) \cup f^{-1}(\infty)))$. 设 $a \in f^{-1}(0)$, 其阶为 m. 取坐标 (U, z) 使得 z(a) = 0, 则 $f(z) = z^m g(z)$, 其中 $g \in \mathcal{O}(U)$ 且 $g(0) \neq 0$.

$$\frac{f'(z)}{f(z)} = (\log f(z))' = (m \log z + \log g(z))' = \frac{m}{z} + \frac{g'(z)}{g(z)},$$

推出 $\operatorname{Res}_a \omega = m$.

同理, 若 $b \in \omega$ 的 -m 阶极点, 则 $\mathrm{Res}_b \omega = -m$. 应用留数定理即得.

引理 1.2.3. Poincaré 引理.

设 $U:=\{z:|z|< R\},\ 0< R\leq \infty.\ \omega\in \mathcal{E}^1(U)$ 且 $d\omega=0$,则存在 $F\in \mathcal{E}(U)$ 使得 $dF=\omega.$

证明. 设 $\omega = f dx + g dy$, $d\omega = df \wedge dx + dg \wedge dy = (\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}) dx \wedge dy$, 故 $d\omega = 0$ 等价于 $\frac{\partial g}{\partial x} = \frac{\partial f}{\partial y}$.

 $\Rightarrow F(x,y) := \int_0^1 [f(tx,ty)x + g(tx,ty)y]dt$. 则有

$$\frac{\partial F}{\partial x} = \int_0^1 [f(tx, ty) + \frac{\partial f}{\partial x}(tx, ty)tx + \frac{\partial g}{\partial x}(tx, ty)ty]dt$$
$$= \int_0^1 [f(tx, ty) + \frac{\partial f}{\partial x}(tx, ty)tx + \frac{\partial f}{\partial y}(tx, ty)ty]dt$$
$$= \int_0^1 \frac{d}{dt} [tf(tx, ty)]dt = tf(tx, ty)|_0^1 = f(x, y).$$

同理 $\frac{\partial F}{\partial y} = g$, 证毕.

引理 1.2.4. Dolbeault 引理 (Grothendieck).

设 $\omega \in \mathcal{E}^{(0,1)}(U)$, 则存在 $f \in \mathcal{E}(U)$ 使得 $d''f = \omega$.

命题 1.2.3. 设 $g \in C_0^{\infty}(\mathbb{C})$,则存在 $f \in \mathcal{E}(\mathbb{C})$ 使得 $\frac{\partial f}{\partial z} = g$.

证明. $\diamondsuit f(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{g(\zeta)d\zeta \wedge d\overline{\zeta}}{\zeta - z}$. $\diamondsuit \zeta = z + re^{i\theta}$, $dx \wedge dy = \frac{i}{2}d\zeta \wedge d\overline{\zeta}$, 则

$$d\zeta \wedge d\overline{\zeta} = -2idx \wedge dy = -2irdr \wedge d\theta,$$

推出

$$f(z) = -\frac{1}{\pi} \int_0^\infty \int_0^{2\pi} g(z + re^{i\theta}) e^{-i\theta} dr \wedge d\theta,$$

进而 $f \in \mathcal{E}(\mathbb{C})$ 且

$$\frac{\partial f}{\partial \overline{z}} = -\frac{1}{\pi} \int_0^\infty \int_0^{2\pi} \frac{\partial g}{\partial \overline{z}} (z + re^{i\theta}) e^{-i\theta} dr \wedge d\theta$$

今 $\zeta = re^{i\theta}$,原式化为

$$\frac{1}{2\pi i} \int_{\mathbb{C}} \left[\frac{\partial g}{\partial \overline{z}} (z+\zeta)/\zeta \right] d\zeta \wedge d\overline{\zeta}.$$

当 ζ ≠ 0 时

$$\frac{\partial g}{\partial \overline{z}}(z+\zeta)/\zeta = \frac{\partial g}{\partial \overline{\zeta}}(z+\zeta)/\zeta = \frac{\partial}{\partial \overline{\zeta}}(g(z+\zeta)/\zeta),$$

推出

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int_{|\zeta| \ge \varepsilon} \frac{\partial}{\partial \overline{\zeta}} (\frac{g(z+\zeta)}{\zeta}) d\zeta \wedge d\overline{\zeta} \\ &= \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int_{|\zeta| \ge \varepsilon} d(-\frac{g(z+\zeta)}{\zeta} d\zeta) \\ &= \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int_{|\zeta| = \varepsilon} \frac{g(z+\zeta)}{\zeta} d\zeta \\ &= \lim_{\varepsilon \to 0^+} \frac{1}{2\pi} \int_0^{2\pi} g(z+\varepsilon e^{i\theta}) d\theta = g(z). \end{split}$$

证明. 逐次逼近法证明 Dolbeault 引理.

取 R_n 从小严格逼近 R. 令 $U_n:=\{z:|z|< R_n\}$,则 $U_1\subset U_2\subset U_3\subset\cdots$ (严格包含) 且 $U = \bigcup_{n=1}^{\infty} U_n$. 取 $x_n \in C_0^{\infty}(U_{n+1})$ 且 $x_n|_{U_n} = 1$. 设 $\omega = gd\overline{z}$,由命题推出对于任意 $n \in \mathbb{Z}^+$,存在 $f_n \in \mathcal{E}(U)$ 使得 $\frac{\partial f_n}{\partial \overline{z}} = x_n \cdot g$.

我们归纳地构造一列 $\tilde{f}_n \in \mathcal{E}(U)$ 使得

1.
$$\frac{\partial \tilde{f}_n}{\partial \overline{z}} = g + U_n$$
.

2.
$$\|\tilde{f}_{n+1} - \tilde{f}_n\|_{L^{\infty}(U_{n-1})} \le 2^{-n}$$
.

取 $\tilde{f}_1 := f_1$,则其满足 1.

假设 $\tilde{f}_1, \dots, \tilde{f}_n$ 已构造,则在 U_n 上有 $\frac{\partial (f_{n+1} - \tilde{f}_n)}{\partial \overline{z}} = g - g = 0$,故 $f_{n+1} - \tilde{f}_n \in \mathcal{O}(U_n)$. 因此存在多项式 P_n 使得 $\|f_{n+1} - \tilde{f}_n - P_n\|_{L^{\infty}(U_{n-1})} \leq 2^{-n}$,只需取 $\tilde{f}_{n+1} := f_{n+1} - P_n$.

对于任意正整数 n, 任意 k > l > n

$$\|\tilde{f}_k - \tilde{f}_l\|_{L^{\infty}(U_{n-1})} \le \sum_{j=l}^{k-1} \|\tilde{f}_{j+1} - \tilde{f}_j\|_{L^{\infty}(U_{n-1})}$$
$$\le \sum_{j=l}^{k-1} 2^{-j} \le 2^{-n+1}$$

说明 $\{\tilde{f}_n\}$ 在 U 上内闭匀敛于某个 $f \in C(U)$.

因为在每个 U_n 上有 $f = \tilde{f}_n + \sum_{k=n}^{\infty} (\tilde{f}_{k+1} - \tilde{f}_k)$,又因为 $\frac{\partial}{\partial \bar{z}} (\tilde{f}_{k+1} - \tilde{f}_k) = g - g = 0 于 <math>U_n$,即 $\tilde{f}_{k+1} - \tilde{f}_k \in \mathcal{O}(U_n)$ 且 $\sum_{k=n}^{\infty} (\tilde{f}_{k+1} - \tilde{f}_k)$ 一致收敛.

进而 $f = \tilde{f}_n +$ 全纯函数 于 U_n . 进而 $f \in \mathcal{E}(U_n)$ 且 $\frac{\partial f}{\partial \overline{z}} = \frac{\partial \tilde{f}_n}{\partial \overline{z}} = g$ 于 U_n . 由 n 的任意性即得.

推论 1.2.3. 对于 U 上任意可微函数 g, 存在可微函数 f 使得 $g = \frac{\partial^2 f}{\partial z \partial \overline{z}}$.

证明. 存在可微函数 f_1 使得 $\frac{\partial f_1}{\partial \overline{z}} = g$. 又存在可微函数 f_2 使得 $\overline{f}_1 = \frac{\partial f_2}{\partial \overline{z}}$ 进而 $\frac{\partial \overline{f}_2}{\partial z} = f_1$. 取 $f = \overline{f}_2$ 即可.

1.3 层 (Sheaf)

定义 1.3.1. X 是拓扑空间, \mathscr{T} 是 X 上的开集全体. 关于 X 上的一个预层是指一对 (\mathscr{T} , ρ) 使得

- $1. \ \forall U \in \mathcal{T}, \ \mathcal{F}(U) \$ 均为 $Abel \$ 群,且 $\mathcal{F} = \{\mathcal{F}(U) : U \in \mathcal{T}\}.$
- 2. $\rho = \{
 ho_V^U : V \subset U, V, U \in \mathcal{T} \}$ 其中 ho_V^U 为 $\mathcal{F}(U)$ 到 $\mathcal{F}(V)$ 的群同态使得
 - (a) $\rho_U^U = \mathrm{id}_{\mathscr{F}(U)}$.
 - (b) $\rho_W^V \circ \rho_V^U = \rho_W^U$, 对于任意开集 $W \subset V \subset U$.

通常记 (\mathscr{F}, ρ) 为 \mathscr{F} . $\rho_V^U(f) := f|_V$ 是限制映射.

例子 1.3.1. X 拓扑空间, $U \in \mathcal{T}$,记 $\mathcal{C}(U)$ 为 U 上的连续函数全体, ρ_V^U 是通常意义下的限制映射. 则诱导出预层 \mathcal{C} .

定义 1.3.2. 设 \mathscr{P} 是 X 上的一个预层. 若对于任意开集 U,对任意 $U_{\alpha} \in \mathscr{T}$ 使得 $U := \bigcup_{\alpha} U_{\alpha}$, 有

- 1. $f,g \in \mathcal{F}(U)$ 使得 $f|_{U_{\alpha}} = g|_{U_{\alpha}}$, 对于任意 α , 则 $f \equiv g$.
- 2. 拼接原理. 设 $f_i \in \mathscr{F}(U_i)$. 若 $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, 则 $f|_{U_i} := f_i \in \mathscr{F}(U)$. 则称 \mathscr{F} 为 X 上的一个层.

例子 1.3.2. X 是 Riemann 面,

- (1) C 是一个层, 类似地有 \mathcal{E} , $\mathcal{E}^{(1,0)}$ 和 $\mathcal{E}^{(0,1)}$ 是层.
- (2) 对于 $U \in \mathcal{T}$, 有层 \mathcal{O} . 类似地有 \mathcal{M} , Ω (全纯 1-形式), \mathcal{M}^1 (亚纯 1-形式).
- (3) $\mathcal{O}^* = \mathcal{O}(U, \mathbb{C}^*), U \in \mathcal{T}$,则可诱导层 \mathcal{O}^* ,类似可定义 \mathcal{M}^* .

例子 1.3.3. 存在预层但不是层.

设 X 是拓扑空间, $G = \mathbb{Z}$. 取 X 上的预层如下, 对于任意非空开集 U, 令 $\mathscr{G}(U) = G$,

$$\mathscr{G}(\varnothing) = 0.$$
 定义 $\rho_V^U = \begin{cases} \mathrm{id}_G, & V \neq \varnothing \\ 0, & V = \varnothing \end{cases}$. 这是一个预层.

设 X 上至少有两个不相交的非空开集 U_1, U_2 . 取 $g_1 \equiv 1 \in \mathcal{G}(U_1), g_2 \equiv -1 \in \mathcal{G}(U_2)$. 因为 $U \cap V = \emptyset$, 故 $g_1|_{U_1 \cap U_2} = 0 = g_2|_{U_1 \cap U_2}$. 但不存在 $g \in \mathcal{G}(U_1 \cup U_2)$ 使得 $g|_{U_1} = g_1$, $g|_{U_2} = g_2$, 所以 \mathcal{G} 不是层.

定义 1.3.3. 设 \mathscr{F} 是 X 上的预层, $a \in X$,在不相交并 $\bigcup_{\mathscr{T} \ni U \ni a} U$ 中引入等价关系 \sim_a 如下:

设 $f \in \mathscr{F}(U)$, $g \in \mathscr{F}(V)$, $U, V \in \mathscr{T}$, $a \in U \cap V$, 定义 $f \sim_a g$ 等价于存在邻域 $a \in W \subset U \cap V$ 使得 $f|_W = g|_W$. 称 $\mathscr{F}_a := \bigcup_{\mathscr{D} \ni U \ni a} \mathscr{F}(U) / \sim_a$ 为 \mathscr{F} 在 a 处的茎 (stalk).

设 $\mathcal{T} \ni U \ni a$, 定义 $\rho_a : \mathcal{F}(U) \to \mathcal{F}_a$, $f \mapsto [f]$. 称 $\rho_a(f)$ 为 f 在 a 处的芽 (germ).

例子 1.3.4. $X \subset \mathbb{C}$ 区域, $a \in X$. $\mathcal{O}_a := \{[f] : f \in a \text{ 的某个邻域上全纯 }\}$.

考虑 Taylor 展开, $f(z)=\sum\limits_{n=0}^{\infty}c_n(z-a)^n$,则 $f\sim_a g$ 等价于 f,g 在 a 处有相同的 Taylor 展开. 这表明 $\mathcal{O}_a\cong\mathbb{C}\{z-a\}$: 关于 z-a 的收敛级数组成的环.

定义 1.3.4. 令 $|\mathscr{F}|:=\bigcup_{a\in X}\mathscr{F}_a$, 投射 $P:|\mathscr{F}|\to X$ 由 $\varphi\in\mathscr{F}_\alpha\mapsto\alpha$ 给出. 引入 $|\mathscr{F}|$ 的拓扑如下:

 $U \in \mathcal{T}, f \in \mathcal{F}(U), \ \ \diamondsuit \ [U, f] := \{ \rho_{\alpha}(f) : \alpha \in U \} \subset |\mathcal{F}|.$

定理 1.3.1. $\mathscr{B} := \{[U, f] : U \in \mathscr{T}, f \in \mathscr{F}(U)\}\$ 为 $|\mathscr{F}|$ 的拓扑基,且 $P : |\mathscr{F}| \to X$ 为局部同胚.

证明. 先证明 *第* 是拓扑基,即证明:

- 1. 对于任意点 $\varphi \in |\mathscr{F}|$, 存在 $[U, f] \ni \varphi$.
- 2. 对于任意点 $\varphi \in [U, f] \cap [V, g]$,则存在 $[W, h] \subset [U, f] \cap [V, g]$ 使得 $\varphi \in [W, h]$.

设 $P(\varphi) = x, x \in U \cap V$,则 $\varphi = \rho_x(f) = \rho_x(g)$,进而存在邻域 $x \in W \subset U \cap V$ 使得 $f|_W = g|_W =: h$. 则 $\varphi \in [W, h] \subset [U, f] \cap [V, g]$.

然后证明 P 是局部同胚.

设 $\varphi \in |\mathscr{F}|, P(\varphi) = x$, 则存在 $[U, f] \ni \varphi$, $U \ni x$, $P : [U, f] \to U$ 为双射, 连续, 开映射, 进而 P 是局部同胚.

定义 1.3.5. 设 \mathscr{P} 是 X 上的预层,称 \mathscr{P} 满足恒等原理若对于任意区域 $Y \subset X$,若 $f,g \in \mathscr{P}(Y)$ 使得 $\rho_a(f) = \rho_a(g)$ 在某点 $a \in Y$ 成立,则 $f \equiv g$.

例子 1.3.5. \mathcal{O}, Ω 满足恒等原理, $\mathcal{E}, \mathcal{E}^1$ 不满足恒等原理.

定理 1.3.2. X 局部连通,Hausdorff. 设 \mathscr{F} 是 X 上的预层且满足恒等原理,则 $|\mathscr{F}|$ 也是 Hausdorff 空间.

证明. 需证明,对于任意 $\varphi_1 \neq \varphi_2, \varphi_1, \varphi_2 \in |\mathcal{F}|$,存在不相交的开集分离 φ_1 和 φ_2 .

(i) $P(\varphi_1) = x \neq y = P(\varphi_2)$.

取开集 $U \ni x, V \ni y$ 使得 $U \cap V = \emptyset$. 则 $P^{-1}(U) \ni \varphi_1, P^{-1}(V) \ni \varphi_2$ 开且 $P^{-1}(U) \cap P^{-1}(V) = \emptyset$.

(ii) $P(\varphi_1) = x = P(\varphi_2)$.

设 $\varphi_1 \in [U_1, f_1], \ \varphi_2 \in [U_2, f_2], \ x \in U_1 \cap U_2$. 设区域 $x \in U \subset U_1 \cap U_2$. 则 $\varphi_1 \in [U, f_1|_U], \varphi_2 \in [U, f_2|_U]$. 下证 $[U, f_1|_U] \cap [U, f_2|_U] = \emptyset$.

假设存在 $\psi \in [U, f_1|_U] \cap [U, f_2|_U]$,设 $P(\psi) = y$,则 $\psi = \rho_y(f_1) = \rho_y(f_2)$,由恒等原理 $f_1 \equiv f_2 \mp U$,进而 $\varphi_1 = \varphi_2$ 一个矛盾.

引理 1.3.1. \mathscr{F} 是层, $U \subset X$ 开集, $f \in \mathscr{F}(U)$, 则 f = 0 等价于 $\rho_x(f) = 0$, $\forall x \in U$.

证明. $\forall x \in U$, 存在邻域 $x \in U_x \subset U$ 使得 $f|_{U_x} = 0$. 因为 $U = \bigcup_{x \in U} U_x$, 由层的性质, f = 0 于 U.

注 1.3.1. 约定 # $\mathcal{F}(\emptyset) = 1$ (层的定义中).

考虑 \mathcal{C} , 设 U_1, U_2 是 X 中的非空开集,使得 $U_1 \cap U_2 = \varnothing$. 设 f_1, f_2 分别是 U_1, U_2 上的连续函数. 总希望 $f = \begin{cases} f_1, & \text{on } U_1 \\ f_2, & \text{on } U_2 \end{cases} \in \mathcal{C}(U_1 \cup U_2).$

由于 $\rho_{\varnothing}^{U_1} \circ \rho_{U_1}^{U_1 \cup U_2}(f) = \rho_{\varnothing}^{U_1 \cup U_2}(f) = \rho_{\varnothing}^{U_2} \rho_{U_2}^{U_1 \cup U_2}(f)$,则 $\rho_{\varnothing}^{U_1}(f_1) = \rho_{\varnothing}^{U_2}(f_2)$. 因此约定 # $\mathscr{F}(\varnothing) = 1$ 是合理的.

1.4 上同调群

定义 1.4.1. 设 X 是拓扑空间, \mathscr{F} 是 X 上的一个层. 设 $\mathscr{U} = \{U_i\}_{i \in I}$ 是 X 的一个开覆盖. 整数 $q \geq 0$,定义相应于 \mathscr{U} 的 \mathscr{F} 的 q-阶上链群为

$$C^q(\mathscr{U},\mathscr{F}) = \prod_{i_j \in I} \mathscr{F}(U_{i_0} \cap U_{i_1} \cap \dots \cap U_{i_q}),$$

其中 $C^q(\mathcal{U},\mathcal{F})$ 中任意元素 (q-上链) 可表示为 $(f_{i_0...i_q})_{i_j\in I}$, 其中 $f_{i_0...i_q}\in\mathcal{F}(U_{i_0}\cdots U_{i_q})$.

定义 1.4.2. 定义上边缘算子 $\delta: C^k(\mathcal{U}, \mathcal{F}) \to C^{k+1}(\mathcal{U}, \mathcal{F})$.

$$\delta((f_i)_{i\in I}) = (g_{ij})_{i,j\in I},$$

其中 $g_{ij} = f_i - f_j \in \mathscr{F}(U_i \cap U_j)$. 若 $(f_{ij})_{i,i \in I} \in C^1(\mathscr{U},\mathscr{F})$,则定义

$$\delta((f_{ij})_{i,j\in I}) = (g_{ijk})_{i,j,k\in I},$$

其中 $g_{ijk} = f_{ij} + f_{jk} - f_{ik} \in \mathscr{F}(U_i \cap U_j \cap U_k)$.

定义 1.4.3.

$$Z^{1}(\mathcal{U}, \mathcal{F}) := \operatorname{Ker}(\delta : C^{1}(\mathcal{U}, \mathcal{F}) \to C^{2}(\mathcal{U}, \mathcal{F})),$$
$$B^{1}(\mathcal{U}, \mathcal{F}) := \operatorname{Im}(\delta : C^{0}(\mathcal{U}, \mathcal{F}) \to C^{1}(\mathcal{U}, \mathcal{F})),$$

记 $Z^1(\mathcal{U},\mathcal{F})$ 是一阶闭上链群, $B^1(\mathcal{U},\mathcal{F})$ 是一阶上边缘群.

 $(f_{ij}) \in Z^1(\mathcal{U}, \mathcal{F})$ 等价于 $f_{ij} + f_{jk} = f_{ik}$ 于 $U_i \cap U_j \cap U_k$. 特别地, $f_{ii} = 0$, $f_{ij} = -f_{ji}$. 若 $(f_{ij}) \in B^1(\mathcal{U}, \mathcal{F})$, 则 $(f_i) \in C^0(\mathcal{U}, \mathcal{F})$ 使得 $f_{ij} = \delta((f_i)) = f_i - f_j$, 因此 $B^1(\mathcal{U}, \mathcal{F}) \subset Z^1(\mathcal{U}, \mathcal{F})$.

称商群 $H^1(\mathcal{U},\mathcal{F}):=Z^1(\mathcal{U},\mathcal{F})/B^1(\mathcal{U},\mathcal{F})$ 为相应于 \mathcal{U} 的系数在 \mathcal{F} 中的一阶上同调群.

为了得到仅依赖于 X, \mathcal{F} 的一个上同调群, 须引入加细覆盖的概念.

定义 1.4.4. 称 X 的开覆盖 $\mathscr{V} = \{V_k\}_{k \in K}$ 为 $\mathscr{U} = \{U_i\}_{i \in I}$ 的一个加细,记为 $\mathscr{V} < \mathscr{U}$,若对于任意 $k \in K$,存在 $i \in I$ 使得 $V_k \subset U_i$.

则存在加细映射 $\tau: K \to I$ 使得 $V_k \subset U_{\tau(k)}$.

定义 1.4.5. 定义

$$\tau_{\mathscr{B}}^{\mathscr{U}}: Z^{1}(\mathscr{U}, \mathscr{F}) \to Z^{1}(\mathscr{V}, \mathscr{F})$$
$$(f_{ij}) \mapsto (g_{kl} = f_{\tau(k), \tau(l)}|_{V_{k} \cap V_{l}}).$$

有 $g_{kl} + g_{lm} = g_{km}$ 于 $V_k \cap V_l \cap V_m$, 故其良定. 且有 $\tau_{\mathscr{V}}^{\mathscr{V}} : B^1(\mathscr{U}, \mathscr{F}) \to B^1(\mathscr{V}, \mathscr{F})$, 则其诱导出映射

$$\tau_{\mathscr{U}}^{\mathscr{V}}:H^1(\mathscr{U},\mathscr{F})\to H^1(\mathscr{V},\mathscr{F}).$$

引理 1.4.1. $\tau_{\psi}^{\mathscr{U}}: H^1(\mathscr{U},\mathscr{F}) \to H^1(\mathscr{V},\mathscr{F})$ 不依赖于加细映射的选取.

证明. 设 $\tilde{\tau}: K \to I$ 是另一个加细映射. 设 $(f_{ij}) \in Z^1(\mathcal{U}, \mathscr{F})$,有 g_{kl} 与 \tilde{g}_{kl} ,需证明 $(g_{kl}) \sim (\tilde{g}_{kl})$.

因为 $V_k \subset U_{\tau(k)} \cap U_{\tilde{\tau}(k)}$,则可定义 $h_k := f_{\tau(k),\tilde{\tau}(k)}|_{V_k} \in \mathscr{F}(V_k)$. 在 $V_k \cap V_l$ 上,

$$\begin{split} g_{kl} - \tilde{g}_{kl} &= f_{\tau(k),\tau(l)} - f_{\tilde{\tau}(k),\tilde{\tau}(l)} \\ &= (f_{\tau(k),\tau(l)} + f_{\tau(l),\tilde{\tau}(k)}) - (f_{\tau(l),\tilde{\tau}(k)} + f_{\tilde{\tau}(k),\tilde{\tau}(l)}) \\ &= f_{\tau(k),\tilde{\tau}(k)} - f_{\tau(l),\tilde{\tau}(l)} \\ &= h_k - h_l, \end{split}$$

推出 $(g_{kl}) \sim (\tilde{g}_{kl})$.

引理 1.4.2. $\tau_{\mathscr{B}}^{\mathscr{U}}: H^1(\mathscr{U},\mathscr{F}) \to H^1(\mathscr{V},\mathscr{F})$ 是单射.

证明. 设 $(f_{ij}) \in Z^1(\mathcal{U}, \mathcal{F})$ 使得 $\tau((f_{ij})) \in B^1(\mathcal{V}, \mathcal{F})$. 需证明 $(f_{ij}) \in B^1(\mathcal{U}, \mathcal{F})$. 设 $f_{\tau(k),\tau(l)} = g_k - g_l$, 其中 $(g_k) \in C^0(\mathcal{V}, \mathcal{F})$. 在 $U_i \cap V_k \cap V_l$ 上

$$g_k - g_l = f_{\tau(k),\tau(l)} = f_{\tau(k),i} + f_{i,\tau(l)} = f_{i,\tau(l)} - f_{i,\tau(k)},$$

推出 $g_k + f_{i,\tau(k)} = g_l + f_{i,\tau(l)}$. 进而由拼接引理, $h_i|_{V_k} := g_k + f_{i,\tau(k)} \in \mathscr{F}(U_i)$. 在 $U_i \cap U_j \cap V_k$ 上,

$$f_{ij} = f_{i,\tau(k)} + f_{\tau(k),j} = (f_{i,\tau(k)} + g_k) - (f_{j,\tau(k)} + g_k) = h_i - h_j.$$

由 k 的任意性及层的性质, $f_{ij} = h_i - h_j$ 于 $U_i \cap U_j$, 进而 $[(f_{ij})] = 0$.

定义 1.4.6. 在不相交并 $\bigsqcup H^1(\mathcal{U},\mathscr{F})$ 中引入等价关系如下:

 $\xi \in H^1(\mathcal{U}, \mathcal{F}) \sim \eta \in H^1(\mathcal{U}', \mathcal{F})$ 等价于,存在加细 $\mathcal{V} < \mathcal{U}, \mathcal{U}'$ 使得 $\tau_{\mathcal{V}}^{\mathcal{U}}(\xi) = \tau_{\mathcal{V}}^{\mathcal{U}'}(\eta)$. 定义 $H^1(X, \mathcal{F}) := \bigsqcup_{\mathcal{U}} H^1(\mathcal{U}, \mathcal{F}) / \sim$,称其为 X 上系数在 \mathcal{F} 中的一阶上同调群.

注 1.4.1. $H^1(X, \mathcal{O})$ 最重要, 亏格.

定义 1.4.7. 设 $x = [\xi], y = [\eta] \in H^1(X, \mathcal{F}), \ \xi \in H^1(\mathcal{U}, \mathcal{F}), \ \eta \in H^1(\mathcal{U}', \mathcal{F}).$ 设 $\mathcal{V} < \mathcal{U}, \mathcal{U}', \ 则定义$

$$x + y := \left[\tau_{\mathscr{V}}^{\mathscr{U}}(\xi) + \tau_{\mathscr{V}}^{\mathscr{U}'}(\eta)\right] \in H^{1}(X, \mathscr{F}).$$

验证该定义与代表元 ξ,η 以及加细 \checkmark 的选取无关.

命题 1.4.1. 典则映射 $H^1(\mathcal{U}, \mathcal{F}) \to H^1(X, \mathcal{F}), \ \xi \mapsto [\xi]$ 是单射.

证明. 设 $[\xi] = [\eta]$,则存在 $\mathscr{V} < \mathscr{U}$ 使得 $\tau_{\mathscr{V}}^{\mathscr{U}}(\xi) = \tau_{\mathscr{V}}^{\mathscr{U}}(\eta)$,由引理知 $\eta = \xi$.

命题 1.4.2. $H^1(X, \mathscr{F}) = 0$ 等价于 $H^1(\mathscr{U}, \mathscr{F}) = 0$, 对于任意开覆盖 \mathscr{U} .

定理 1.4.1. $X \in Riemann$ 面, $\mathcal{E} \in X$ 上的可微函数层, 则 $H^1(X,\mathcal{E}) = 0$.

证明. 设 $\mathscr{U} = \{U_i\}_{i \in I}$ 为 X 的任何一个开覆盖,不妨设为局部有限的. 只需证 $H^1(\mathscr{U}, \mathcal{E}) = 0$. 取 $\{\chi_i\}_{i \in I}$ 是从属于 \mathscr{U} 的一个单位分解. 设 $(f_{ij}) \in Z^1(\mathscr{U}, \mathcal{E})$.

 $\chi_j f_{ij} \in \mathcal{E}(U_i)$,定义 $g_i := \sum_i \chi_j f_{ij} \in \mathcal{E}(U_i)$. 在 $U_i \cap U_j$ 上

$$g_i - g_j = \sum_k \chi_k f_{ik} - \sum_k \chi_k f_{jk}$$
$$= \sum_k \chi_k (f_{ik} - f_{jk})$$
$$= f_{ij},$$

推出 $(f_{ij}) \in B^1(\mathcal{U}, \mathcal{E})$.

定理 1.4.2. 设 $X = \{z \mid |z| < R\}, 0 < R \le +\infty.$

1. $H^1(X, \mathbb{C}) = 0$. 2. $H^1(X, \mathbb{Z}) = 0$. $H^1(X, \mathcal{O}) = 0$.

证明. 设 $\mathscr{U} = \{U_i\}_{i \in I}$ 为开覆盖.

1. 设 $(C_{ij}) \in Z^1(\mathcal{U}, \mathbb{C}) \subset Z^1(\mathcal{U}, \mathcal{E})$. 因为 $H^1(\mathcal{U}, \mathcal{E}) = 0$, 所以 $C_{ij} = f_i - f_j$, $f_i \in \mathcal{E}(U_i)$. 因为 $0 = dC_{ij} = df_i - df_j$ 于 $U_i \cap U_j$, 所以 $\omega|_{U_i} := df_i \in \mathcal{E}^1(X)$ 且 $d\omega = 0$.

由 Poincaré 引理, 存在 $f \in \mathcal{E}(X)$ 使得 $\omega = df$. 令 $C_i = f_i - f$, 则 $dC_i = df_i - df = 0$. 因此 $((C_i)) \in C^0(\mathcal{U}, \mathbb{C})$ 且 $C_{ij} = f_i - f_j = C_i - C_j$,故 $((C_{ij})) \in B^1(\mathcal{U}, \mathbb{C})$.

2. 设 $(a_{jk}) \in Z^1(\mathcal{U}, \mathbb{Z}) \subset Z^1(\mathcal{U}, \mathbb{C})$. 因为 $H^1(\mathcal{U}, \mathbb{C}) = 0$, 所以 $a_{jk} = C_j - C_k$, $(C_j) \in C^0(\mathcal{U}, \mathbb{C})$.

因为 $1 = e^{2\pi i a_{jk}} = e^{2\pi i (C_j - C_k)}$,所以 $e^{2\pi i C_j} = e^{2\pi i C_k} = b \neq 0$. 取 $C \in \mathbb{C}$ 使得 $b = e^{2\pi i C}$,令 $a_i := C_i - C$.

因为 $e^{2\pi i a_j} = e^{2\pi i (C_j - C)} = 1$, 所以 $(a_j) \in C^0(\mathcal{U}, \mathbb{Z})$ 且 $a_{jk} = C_j - C_k = a_j - a_k$, 故 $(c_{jk}) \in B^1(\mathcal{U}, \mathbb{Z})$.

3. 设 $(f_{ij}) \in Z^1(\mathcal{U}, \mathcal{O}) \subset Z^1(\mathcal{U}, \mathcal{E})$. 故 $f_{ij} = f_i - f_j$, 其中 $f_i \in \mathcal{E}(U_i)$. $0 = d'' f_{ij} = d'' f_i - d'' f_j$ 于 $U_i \cap U_j$, 则定义 $\omega|_{U_i} = d'' f_i \in \mathcal{E}^{(0,1)}(X)$.

由 Dolbeault 引理,存在 $f \in \mathcal{E}(X)$ 使得 $\omega = d''f$. 令 $g_i := f_i - f$,因为 $d''g_i = d''f_i - d''f = 0$,故 $(f_{ij}) \in B^1(\mathcal{U}, \mathcal{O})$.

定理 1.4.3. Leray.

X 是拓扑空间, \mathscr{F} 是 X 上的一个层, $\mathscr{U} = \{U_i\}_{i \in I}$ 是 X 的一个开覆盖. 若 $H^1(U_i,\mathscr{F}) = 0$, $\forall i \in I$,则 $H^1(X,\mathscr{F}) \cong H^1(\mathscr{U},\mathscr{F})$.

证明. 只需证明对于任意 $\mathcal{V} < \mathcal{U}$,设 τ 为对应的加细映射,有同构

$$\tau_{\mathscr{V}}^{\mathscr{U}}: H^1(\mathscr{U},\mathscr{F}) \to H^1(\mathscr{V},\mathscr{F}).$$

只需再验证其是满射.

设 $(f_{\alpha\beta}) \in Z^1(\mathcal{V}, \mathcal{F})$,需找 $(F_{ij}) \in Z^1(\mathcal{U}, \mathcal{F})$ 使得 $(F_{\tau(\alpha), \tau(\beta)}) - (f_{\alpha\beta}) \in B^1(\mathcal{V}, \mathcal{F})$ (i.e. $\tau_{\mathcal{V}}^{\mathcal{U}}([(F_{ij})]) = [(f_{\alpha\beta})])$.

 $\{U_i \cap V_\alpha\}_\alpha$ 构成 U_i 的一个开覆盖,记 $U_i \cap \mathscr{V}$. 因为 $H^1(U_i,\mathscr{F}) = 0$,所以 $H^1(U_i \cap \mathscr{V},\mathscr{F}) = 0$. 进而存在 $g_{i\alpha} \in \mathscr{F}(U_i \cap V_\alpha)$ 使得 $f_{\alpha\beta} = g_{i\alpha} - g_{i\beta}$ 于 $U_i \cap V_\alpha \cap V_\beta$, $f_{\alpha\beta} = g_{j\alpha} - g_{j\beta}$ 于 $U_j \cap V_\alpha \cap V_\beta$ 于 $U_j \cap V_\alpha \cap V_\beta$.

因此在 $U_i \cap U_j \cap V_\alpha \cap V_\beta$ 上, $g_{j\alpha} - g_{i\alpha} = g_{j\beta} - g_{i\beta}$. 我们定义 $F_{ij}|_{U_i \cap U_j \cap V_\alpha} := g_{j\alpha} - g_{i\alpha} \in \mathscr{F}(U_i \cap U_j)$ 且 $(F_{ij}) \in Z^1(\mathscr{U}, \mathscr{F})$.

$$h_{\alpha}:=g_{\tau(\alpha),\alpha}\in \mathscr{F}(V_{\alpha}),$$
 有

$$F_{\tau(\alpha),\tau(\beta)} - f_{\alpha\beta} = (g_{\tau(\beta),\alpha} - g_{\tau(\alpha),\alpha}) - (g_{\tau(\beta),\alpha} - g_{\tau(\beta),\beta}) = g_{\tau(\beta),\beta} - g_{\tau(\alpha),\alpha} = h_{\beta} - h_{\alpha},$$

推出 $(F_{\tau(\alpha),\tau(\beta)}) - (f_{\alpha,\beta}) \in B^1(\mathcal{V},\mathcal{F}).$

定理 1.4.4. $H^1(\mathbb{P}^1, \mathcal{O}) = 0$.

证明. $\diamondsuit U_1 = \mathbb{P}^1 \setminus \{\infty\}$, $U_2 = \mathbb{P}^1 \setminus \{0\}$, $\mathbb{P}^1 = U_1 \cup U_2$. 则 $U_1 = \mathbb{C}$, $U_2 \cong \mathbb{C}$, 故 $H^1(U_i, \mathcal{O}) = 0$, i = 1, 2.

由 Leray 定理, $H^1(\mathbb{P}^1, \mathcal{O}) \cong H^1(\mathcal{U}, \mathcal{O})$. 因为 $U_1 \cap U_2 = \mathbb{C}^*$, 则对于任意 $f_{12} \in \mathcal{O}(U_1 \cap U_2)$, 可展开为 $f_{12}(z) = \sum_{n=-\infty}^{+\infty} a_n z^n$.

令 $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$, $f_2(z) = -\sum_{n=-\infty}^{-1} a_n z^n$. 则 $f_1 \in \mathcal{O}(U_1)$, $f_2 \in \mathcal{O}(U_2)$ 且 $f_{12} = f_1 - f_2$, 故 $(f_{12}) \in B^1(\mathcal{U}, \mathcal{O})$ 推出 $H^1(\mathcal{U}, \mathcal{O}) = 0$.

命题 1.4.3. $H^0(X, \mathscr{F}) \cong \mathscr{F}(X)$

证明. 若 $(f_i) \in Z^0(\mathcal{U}, \mathcal{F})$,则 $0 = \delta((f_i)) = f_i - f_j$,推出 $f_i = f_j$ 于 $U_i \cap U_j$,故可定义 $f|_{U_i} = f_i \in \mathcal{F}(X)$.

反过来,对于任意 $f \in \mathcal{F}(X)$,若令 $f_i = f|_{U_i}$,则 $(f_i) \in Z^0(\mathcal{U}, \mathcal{F})$,因此 $H^0(X, \mathcal{F}) \cong \mathcal{F}(X)$.

有限性定理 1.5

注 1.5.1. 目标: 若 X 是紧 Riemannm 面,则 $\dim_{\mathbb{C}} H^1(X,\mathcal{O}) < \infty$.

命题 1.5.1. $E, F \neq Banach$ 空间, $T: E \to F \neq F$ 是一个连续, 线性满射, 则存在 C > 0 使得 $\forall y \in F$, 存在 $x \in E$ 使得 Tx = y 且 $||x|| \le C||y||$.

证明. 令 $U := \{x \in E \mid ||x|| < 1\}$. 由 Banach 开映射定理,存在 $\varepsilon > 0$ 使得

$$F(U) \supset V := \{ y \in F \mid ||y|| < \varepsilon \}.$$

不妨设 $y\neq 0$. 则取 $y_1:=\frac{\varepsilon}{2}\cdot\frac{y}{\|y\|}\in V$. 则存在 $x_1\in U$ 使得 $Tx_1=y_1$. 因为 T 线性,故 $T(\frac{2\|y\|}{\varepsilon}x_1) = y. \Leftrightarrow x := \frac{2\|y\|}{\varepsilon}x_1, \quad \text{if } Tx = y, \quad \text{if } \|x\| \le \frac{2}{\varepsilon}\|y\|.$

定义 1.5.1. 设 $D \subset \mathbb{C}$ 是开集,

$$L^2(D):=\{f\mid \int_D |f|^2<\infty\},$$

定义 $A^2(D) = L^2(D) \cap \mathcal{O}(D)$ 是 Bergman 空间.

引理 1.5.1. Bergman 不等式.

记
$$D_r = \{z \in D : d(z, \partial D) > r\}$$
,则 $\forall f \in A^2(D)$,有

$$||f||_{L^{\infty}(D_r)} \le \frac{1}{\sqrt{\pi r}} \cdot ||f||_{L^2(D)}.$$

证明. 对于 D_r 中的任意一点, $\Delta(a,r)\subset D$. 由调和函数均值性 $f^2(a)=\frac{1}{|\Delta(a,r)|}\int_{\Delta(a,r)}f^2$,有

$$|f(a)|^2 \le \frac{1}{\pi r^2} \int_{\Delta(a,r)} |f|^2 \le \frac{1}{\pi r^2} \int_D |f|^2.$$

引理 1.5.2. L²-Schwarz 引理.

设 $D^1 \subset C$ $D \subset \mathbb{C}$ 为两个开集,则对于任意 $\varepsilon > 0$,存在余维数有限的闭子空间 $A \subset D$ $A^{2}(D)$ 使得 $||f||_{L^{2}(D)} \leq \varepsilon ||f||_{L^{2}(D)}, \forall f \in A.$

证明. 因为 $\overline{D^1} \subset D$ 是紧集,所以由 Heine-Borel 定理,存在 $a_1, \dots, a_k \in \overline{D^1}$ 以及 r > 0 使 得

1.
$$\Delta(a_j, r) \subset\subset D$$
, $1 \leq j \leq k$;

1.
$$\Delta(a_j, r) \subset\subset D$$
, $1 \leq j \leq k$;
2. $\overline{D^1} \subset \bigcup_{j=1}^k \Delta(a_j, \frac{r}{2})$.

$$A := \{ f \in A^2(D) : \operatorname{ord}_{a_j} f \ge n, 1 \le j \le k \},$$

则 $a \subset A^2(D)$ 为闭子空间.

$$A^{\perp} \subset \bigcup_{j=1}^{k} \{ f \in A^2(D) : \operatorname{ord}_{a_j} f < n \},$$

则 dim $A^{\perp} < k \cdot n$.

设 $f \in A$, 其在每个 a_j 处有 Taylor 展开 $f(z) = \sum_{\nu=n}^{\infty} c_{\nu} (z - a_j)^{\nu}$. 设 $\rho \leq r$, 则

$$\begin{split} \int_{\Delta(a_j,\rho)} |f|^2 &= \int_{\Delta(a_j,\rho)} \sum_{\mu,\nu=n}^{\infty} C_{\mu} \overline{C_{\nu}} (a-a_j)^{\nu} (\overline{z-a_j})^{\nu} \\ &= \int_{0}^{\rho} \sum_{\mu,\nu=n}^{\infty} C_{\mu} \overline{C_{\nu}} t^{\mu+\nu} e^{i(\mu-\nu)\theta} t dt d\theta \\ &= \int_{0}^{\rho} \int_{0}^{2\pi} \sum_{\nu=n}^{\infty} |C_{\nu}|^2 t^{2\nu} t dt d\theta \\ &= \pi \sum_{\nu=n}^{\infty} |C_{\nu}|^2 \cdot \frac{\rho^{2\nu+2}}{\nu+1}. \end{split}$$

故有

$$\|f\|_{L^2(\Delta(a_j,\frac{r}{2}))} \leq \frac{1}{2^{n+1}} \|f\|_{L^2(\Delta(a_j,r))}.$$

进而

$$||f||_{L^{2}(D^{1})} \leq \sum_{j=1}^{k} ||f||_{L^{2}(\Delta(a_{j}, \frac{r}{2}))}$$

$$\leq \frac{1}{2^{n+1}} \sum_{j=1}^{k} ||f||_{L^{2}(\Delta(a_{j}, r))}$$

$$\leq \frac{k}{2^{n+1}} \cdot ||f||_{L^{2}(D)}$$

$$\leq \varepsilon \cdot ||f||_{L^{2}(D)}.$$

定义 1.5.2. X 是 Riemann 面,考虑有限个坐标圆盘 U_1^*, \dots, U_n^* ,即 $z_j(U_j^*) \subset \mathbb{C}$ 是一个圆盘. 设 $U_j \subset U_i^*$ 是开集,令 $\mathcal{U} = \{U_j\}_{i=1}^n$.

我们引入 $C^0(\mathcal{U},\mathcal{O})$ 以及 $C^1(\mathcal{U},\mathcal{O})$ 上的 L^2 范数如下: 若 $\eta = (f_i) \in C^0(\mathcal{U},\mathcal{O})$,定义

$$\|\eta\|_{L^2(\mathscr{U})} := \sqrt{\sum_{i=1}^n \|f_i\|_{L^2(U_i)}}.$$

若 $\xi = (f_{ij}) \in C^1(\mathcal{U}, \mathcal{O})$, 定义

$$\|\xi\|_{L^2(\mathscr{U})} := \sqrt{\sum_{i,j=1}^n \|f_{ij}\|_{L^2(U_i \cap U_j)}}.$$

这里 $||f_i||_{L^2(U_i)} = ||f_i \circ z_i^{-1}||_{z_i(L^2(U_i))}, ||f_{ij}||_{L^2(U_i \cap U_j)} = ||f_{ij} \circ z_i^{-1}||_{z_i(L^2(U_i \cap U_j))}.$

 $\label{eq:continuous} \diamondsuit \ C^0_{(2)}(\mathscr{U},\mathcal{O}) := C^0(\mathscr{U},\mathcal{O}) \cap L^2, \\ C^1_{(2)}(\mathscr{U},\mathcal{O}) := C^1(\mathscr{U},\mathcal{O}) \cap L^2, \\ Z^1_{(2)}(\mathscr{U},\mathcal{O}) := Z^1_{(2)}(\mathscr{U},\mathcal{O}) \cap L^2.$

设 $\mathcal{V} = \{V_i\}_{i=1}^n$, 其中开集 $V_i \subset\subset U_i$, 记 $\mathcal{V} << \mathcal{U}$.

由上一个引理, $\forall \varepsilon>0$,存在余维数有限的闭子空间 $A\subset Z^1_{(2)}(\mathscr{U},\mathcal{O})$ 使得 $\|\zeta\|_{L^2(\mathscr{V})}\leq \varepsilon\cdot\|\zeta\|_{L^2(\mathscr{U})},\ \forall \xi\in A.$

引理 1.5.3. 设 $\mathscr{W} << \mathscr{V} << \mathscr{U} << \mathscr{U}^*$, 其中 \mathscr{U}^* 如上. 则存在 C>0 使得 $\forall \xi \in Z^1_{(2)}(\mathscr{V},\mathcal{O})$, 存在 $\zeta \in Z^1_{(2)}(\mathscr{U},\mathcal{O})$, $\eta \in C^0_{(2)}(\mathscr{W},\mathcal{O})$ 使得 $\zeta = \xi + \delta \eta$ 于 \mathscr{W} , 且

$$\max\{\|\zeta\|_{L^2(\mathscr{U})}, \|\eta\|_{L^2(\mathscr{W})}\} \le C \cdot \|\xi\|_{L^2(\mathscr{V})}.$$

证明. (1). 设 $\xi = (f_{ij}) \in Z^1_{(2)}(\mathcal{V}, \mathcal{O}) \subset Z^1(\mathcal{V}, \mathcal{E})$. 因为 $H^1(\mathcal{V}, \mathcal{E}) = 0$,所以 $f_{ij} = g_i - g_j$ 于 $V_i \cap V_j$, $g_i \in \mathcal{E}(V_i)$.

 $d''f_{ij}=0$,所以 $d''g_i=d''g_j$ 于 $U_i\cap U_j$. 故定义 $\omega|_{V_i}:=d''g_i\in\mathcal{E}^{(0,1)}(|\mathcal{V}|)$,其中 $|\mathcal{V}|=\bigcup_{i=1}^n V_i$.

因为 $\mathscr{W} << \mathscr{V}$,所以存在可微函数 ψ 使得 $supp \ \psi \subset |\mathscr{W}|$ 且 $\psi|_{\mathscr{W}} = 1$. 进而 $\psi \cdot \omega \in \mathcal{E}^{(0,1)}(|\mathscr{U}^*|)$.

因为任意 U_i^* 是坐标圆盘,由 Dolbeault 引理,存在 $H_i \in \mathcal{E}(U_i^*)$ 使得 $d''h_i = \psi \cdot \omega$.

在 $U_i^* \cap U_j^*$ 上, $d''h_i = d''h_j$,故 $h_i - h_j \in \mathcal{O}(U_i^* \cap U_j^*)$. 令 $F_{ij} = h_i - h_j$, $\zeta := (F_{ij}) \in Z^1_{(2)}(\mathcal{U}, \mathcal{O})$.

设 $\mathscr{W}=\{W_i\}_{i=1}^n$,在每个 W_i 上有 $d''h_i=\omega=d''g_i$,进而 $h_i-g_i\in\mathcal{O}(W_i)\cap L^2(W_i)$.定义

$$\eta := ((g_i - h_i)|_{W_i}) \in C^0_{(2)}(\mathcal{W}, \mathcal{O}).$$

$$F_{ij} - f_{ij} = (h_i - h_j) - (g_i - g_j) = (h_i - g_i) - (h_j - g_j)$$

即有 $\zeta - \xi = \delta \eta$ 于 \mathscr{W} .

(2). 考虑 Hilbert 空间

$$\begin{split} H := Z^1_{(2)}(\mathscr{U}, \mathcal{O}) \times Z^1_{(2)}(\mathscr{V}, \mathcal{O}) \times C^0_{(2)}(\mathscr{W}, \mathcal{O}), \\ \|(\zeta, \xi, \eta)\|_H := \sqrt{\|\zeta\|^2_{L^2(\mathscr{U})} + \|\xi\|^2_{L^2(\mathscr{B})} + \|\eta\|^2_{L^2(B)}}. \end{split}$$

作子空间

$$L := \{ (\zeta, \xi, \eta) \in H : \zeta = \xi + \delta \eta \text{ at } \mathcal{W} \},$$

则 $L \subset H$ 是闭子空间 (练习,利用 Bergman 不等式). 特别地,L 是 Hilbert 空间.

考虑投射 $\pi: L \to Z^1_{(2)}(\mathscr{V}, \mathcal{O}), \; (\zeta, \xi, \eta) \mapsto \xi, \;$ 其为线性映射,且由 (1) 知其为满射. 由命题,对于任意 $\xi \in Z^1_{(2)}(\mathscr{V}, \mathcal{O}), \;$ 存在 $(\zeta, \xi, \eta) \in L$ 使得 $\pi(\zeta, \xi, \eta) = \xi$ 且.

$$\|(\zeta,\xi,\eta)\|_H \le C \cdot \|\xi\|_{L^2(\mathscr{V})}.$$

引理 1.5.4. 在上一个引理的条件下,存在有限维子空间 $S \subset Z^1_{(2)}(\mathcal{U}, \mathcal{O})$ 使得对于任意 $\xi \in Z^1(\mathcal{U}, \mathcal{O})$,存在 $\sigma \in S$, $\eta \in C^0_{(2)}(\mathcal{W}, \mathcal{O})$ 使得 $\sigma = \xi + \delta \eta$ 于 \mathcal{W} .

即限制映射 $H^1(\mathcal{U}, \mathcal{O}) \to H^1(\mathcal{W}, \mathcal{O}), [\xi] \mapsto [\xi|_{\mathcal{W}}] = [\sigma|_{\mathcal{W}}]$ 的像的维数有限.

证明. 取 C 为上一个引理中的常数,由上上条引理,对于 $\varepsilon := \frac{1}{2C}$,存在余维数有限的子空间 $A \subset Z^1_{(2)}(\mathcal{U}, \mathcal{O})$ 使得 $\|\xi\|_{L^2(\mathcal{R})} \le \varepsilon \|\xi\|_{L^2(\mathcal{U})}$, $\forall \xi \in A$.

令 $S:=A^{\perp}\subset Z^1_{(2)}(\mathscr{U},\mathcal{O})$,则 $\dim S<\infty$. 设 $\xi\in Z^1(\mathscr{U},\mathcal{O})$,因为 $\mathscr{B}<<\mathscr{U}$,所以 $\|\xi\|_{L^2(\mathscr{B})}:=M<\infty$. 由上一条引理,存在 $\zeta_0\in Z^1_{(2)}(\mathscr{U},\mathcal{O})$, $\eta\in C^0_{(2)}(\mathscr{W},\mathcal{O})$ 使得 $\zeta_0=\xi+\delta\eta$ 于 \mathscr{W} ,且 $\|\zeta_0\|_{L^2(\mathscr{U})}\leq C\cdot M$, $\|\eta\|_{L^2(B)}\leq C\cdot M$.

令 $\zeta_0 = \xi_0 \oplus \sigma_0 \in A \bigoplus A^{\perp}$. 归纳地,构造 $\xi_{\nu} \in Z^1_{(2)}(\mathscr{U}, \mathcal{O}), \, \eta_{\nu} \in C^0_{(2)}(\mathscr{W}, \mathcal{O}), \, \xi_{\nu} \in A,$ $\sigma_{\nu} \in A^{\perp}$ 使得

- 1. $\zeta_{\nu} = \xi_{\nu-1} + \delta \eta_{\nu} + W$.
- 2. $\zeta_{\nu} = \xi_{\nu} \oplus \sigma_{\nu} \in A \bigoplus S$.
- 3. $\|\zeta_{\nu}\|_{L^{2}(\mathscr{U})} \leq \frac{C \cdot M}{2^{\nu}}$. $\|\eta_{\nu}\|_{L^{2}(B)} \leq \frac{C \cdot M}{2^{\nu}}$.

 $\nu = 0$ 成立. 假设 ν 时已构造, 因为 $\zeta_{\nu} = \xi_{\nu} \oplus \sigma_{\nu}$, 所以

$$\|\xi_{\nu}\|_{L^{2}(\mathscr{U})} \leq \|\zeta_{\nu}\|_{L^{2}(\mathscr{U})} \leq \frac{C \cdot M}{2^{\nu}}.$$

20

进而

$$\|\xi_{\nu}\|_{L^{2}(\mathscr{B})} \leq \varepsilon \|\zeta_{\nu}\|_{L^{2}(\mathscr{U})} \leq \frac{M}{2^{\nu+1}}.$$

由上条引理,存在 $\zeta_{\nu+1}\in Z^1_{(2)}(\mathscr{U},\mathcal{O}),\ \eta_{\nu+1}\in C^0(\mathscr{W},\mathcal{O})$ 使得 $\zeta_{\nu+1}=\xi_{\nu}+\delta\eta_{\nu+1}$ 且

$$\|\zeta_{\nu+1}\|_{L^2(\mathscr{U})} \le C \cdot \|\xi_{\nu}\|_{L^2(\mathscr{B})} \le \frac{C \cdot M}{2^{\nu+1}},$$

$$\|\eta_{\nu+1}\|_{L^2(B)} \le C \cdot \|\xi_{\nu}\|_{L^2(\mathscr{B})} \le \frac{C \cdot M}{2^{\nu+1}},$$

只需正交分解 $\zeta_{\nu+1} = \xi_{\nu+1} \oplus \sigma_{\nu+1}$ 即可.

$$\begin{cases} \xi_0 + \sigma_0 = \xi + \delta \eta_0 \\ \xi_1 + \sigma_1 = \xi_0 + \delta \eta_1 \\ \vdots \\ \xi_k + \sigma_k = \xi_{k-1} + \delta \eta_k. \end{cases}$$

相加,得到 $\zeta_k + \sum_{j=0}^k \sigma_j = \xi + \delta \sum_{j=0}^k \eta_j$. 由 3,当 $k \to \infty$ 时, $\zeta_k \to 0$,

$$\sum_{j=0}^{k} \sigma_j \to \sum_{j=0}^{\infty} \sigma_j =: \sigma \in S.$$

$$\sum_{j=0}^{k} \eta_j \to \sum_{j=0}^{\infty} \eta_j =: \eta \in C^0_{(2)}(\mathcal{W}, \mathcal{O}).$$

则 $\sigma = \xi + \delta \eta + W$.

定理 1.5.1. X 是 Riemann 面, $Y_1 \subset \subset Y_2 \subset X$ 是开集,则限制映射 $H^1(Y_2, \mathcal{O}) \to H^1(Y_1, \mathcal{O})$ 的像的维数有限.

证明. 取有限个坐标圆盘 $\{U_i^* \subset Y_2\}_{i=1}^n$,再取坐标圆盘 $W_i \subset \subset V_i \subset \subset U_i \subset \subset U_i^*$ 使得 $Y_1 \subset \bigcup_{i=1}^n W_i =: Y' \subset Y'' := \bigcup_{i=1}^n U_i \subset \subset Y_2$. 令 $\mathscr{W} = \{W_i\}$, $\mathscr{V} = \{V_i\}$, $\mathscr{U} = \{U_i\}$, $\mathscr{U}^* = \{U_i^*\}$,则 $\mathscr{W} << \mathscr{V} << \mathscr{U} << \mathscr{U}^*$.

由上个引理,限制映射 $H^1(\mathcal{U},\mathcal{O}) \to H^1(\mathcal{W},\mathcal{O})$ 的像的维数有限. 由 Dolbeault 引理, $H^1(U_i,\mathcal{O}) = 0 = H^1(W_i,\mathcal{O})$,由 Leray 定理, $H^1(Y'',\mathcal{O}) \cong H^1(\mathcal{U},\mathcal{O})$, $H^1(Y',\mathcal{O}) \cong H^1(\mathcal{W},\mathcal{O})$. 因此限制映射 $H^1(Y'',\mathcal{O}) \to H^1(Y',\mathcal{O})$ 的像的维数有限.

 $H^1(Y_2,\mathcal{O}) \to H^1(Y_1,\mathcal{O})$ 的限制映射由下面的限制映射复合而成:

$$H^1(Y_2, \mathcal{O}) \to H^1(Y'', \mathcal{O}) \to H^1(Y', \mathcal{O}) \to H^1(Y_1, \mathcal{O}),$$

得证.

推论 1.5.1. X 是紧 Riemann 面,则

$$q := \dim_{\mathbb{C}} H^1(X, \mathcal{O}) < \infty.$$

称其为 X 的亏格 (genus).

证明. 只需在定理中取 $Y_1 = Y_2 = X$.

例子 1.5.1. $H^1(\mathbb{P}^1, \mathcal{O}) = 0$, 故 \mathbb{P}^1 的亏格为 0.

定理 1.5.2. 设 $X \in Riemann$ 面, $Y \subset X$ 开,则对于任意 $a \in Y$,存在 $f \in \mathcal{M}(Y)$ 使得 $f \in \mathcal{O}(Y \setminus \{a\})$,且 $a \in f$ 的极点.

证明. 由定理, $k := \dim \operatorname{Im}(H^1(X, \mathcal{O}) \to H^1(Y, \mathcal{O})) < \infty$. 取 a 处的坐标邻域 (U_1, z) 使得 z(a) = 0. 令 $U_2 = X \setminus \{a\}$,则 $\mathscr{U} = \{U_1, U_2\}$ 是 X 的一个开覆盖.

 $U_1 \cap U_2 = U_1 \setminus \{a\}$,所以 $z^{-j} \in \mathcal{O}(U_1 \cap U_2)$, $1 \leq j \leq k+1$. 其代表了一个 $\zeta_j \in Z^1(\mathcal{U}, \mathcal{O})$. 则 $\zeta_j|_Y \in Z^1(\mathcal{U} \cap Y, \mathcal{O})$, $1 \leq j \leq k+1$,在模去上边缘以后是线性相关的. 即存在不全为 0 的复数 c_1, \dots, c_{k+1} 以及 $\eta = (f_1, f_2) \in C^0_{(2)}(\mathcal{U} \cap Y, \mathcal{O})$ 使得

$$c_1\zeta_1 + \dots + c_{k+1}\zeta_{k+1} = \delta\eta,$$

推论 1.5.2. 插值问题

X 是紧 Riemann 面, $a_1, \dots, a_n \in X$ 是 n 个不同点,则对于任意 $c_1, \dots, c_n \in \mathbb{C}$,存在 亚纯函数 $f \in \mathcal{M}(Y)$ 使得

$$f(a_j) = c_j, \ \forall 1 \le j \le n.$$

证明. 由上一个定理,对任意 i, j,存在 $f_{ij} \in \mathcal{M}(X)$ 使得 a_i 为 f_{ij} 的极点, $f_{ij} \in \mathcal{O}_{a_j}$. 取 $\lambda_{ij} \in \mathbb{C}^*$ 使得 $f_{ij}(a_k) \neq f_{ij}(a_j) - \lambda_{ij}$, $\forall i, j, k$.

令
$$g_{ij} := \frac{f_{ij} - f_{ij}(a_j)}{f_{ij} - f(a_j) + \lambda_{ij}} \in \mathcal{M}(X)$$
,则 $g_{ij} \in \mathcal{O}_{a_k}$, $\forall i, j, k$,且 $g_{ij}(a_i) = 1$, $g_{ij}(a_j) = 0$.
令 $H_i := \prod_{k \neq i} g_{ik} \in \mathcal{M}(X)$ 使得 $h_i(a_j) = \delta_{ij}$. 令 $f := \sum_{i=1}^n c_i h_i$ 即可.

推论 1.5.3. X 是非紧的 Riemann 面, $Y \subset X$ 开,则存在 $f \in \mathcal{O}(Y)$ 使得其在 Y 的任何一个连通分支上非常值.

证明. 取区域 Y' 使得 $Y \subset X' \subset X$. 取 $a \in Y' \setminus Y$, 对 (Y', a) 应用定理, 即得.

定理 1.5.3. X 是非紧的 Riemann 面, $Y \subset X$ 开, 则

$$\operatorname{Im}(H^1(Y',\mathcal{O}) \to H^1(Y,\mathcal{O})) = 0.$$

证明. 记像集为 L,设 $n := \dim L < \infty$. 取 $\xi_1, \dots, \xi_n \in H^1(Y', \mathcal{O})$ 使得 $\xi_1|_Y, \dots, \xi_n|_Y$ 生成 L. 取 Y' 上的全纯函数 f 使得其在 Y' 的任何连通分支上非常值.

取 $C_{\mu\nu} \in \mathbb{C}$ 使得

$$f\xi_{\nu} = \sum_{\mu=1}^{n} C_{\mu\nu} \xi_{\mu} \text{ at } Y, 1 \le \nu \le n.$$

令 $A := (f \cdot \delta_{\mu\nu} - C_{\mu\nu})_{n \times n}, F := \det A.$ 则 $F \in \mathcal{O}(Y')$ 且在 Y' 的任何连通分支上不恒为 0.

则有
$$A \cdot \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} = 0$$
. 记 A^* 为 A 的伴随矩阵,则 $A^*A = \begin{pmatrix} F & 0 & \cdots & 0 \\ 0 & F & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & F \end{pmatrix}$,推出

 $F\xi_{\nu} = 0, \ 1 \le \nu \le n + Y.$

设 $\zeta \in H^1(Y', \mathcal{O})$ 可由某个 $(f_{ij}) \in Z^1(\mathcal{U}, \mathcal{O})$ 表示, $\mathcal{U} = \{U_i\}$ 是 Y' 的开覆盖,使得 $\forall U_i$ 至多包含 F 的一个零点,则 $F \in \mathcal{O}^*(U_i \cap U_j), \forall i \neq j$. 进而 $g_{ij} := f_{ij}/F \in \mathcal{O}^*(U_i \cap U_j)$. 令 $\xi := [(g_{ij})] \in H^1(Y', \mathcal{O})$,则 $\zeta|_Y = F\xi|_Y = 0$.

推论 1.5.4. X 是非紧的 Riemann 面, $Y \subset \subset Y' \subset \subset X$ 开,则任意 $\omega \in \mathcal{E}^{(0,1)}(Y')$,存在 $f \in \mathcal{E}(Y)$,使得 $d''f = \omega$ 于 Y.

证明. 取 $\mathscr{U} = \{U_i\}_i$ 为 Y' 的一个坐标圆盘覆盖,由 Dolbeault 引理,对于任意 $f_i \in \mathcal{E}(U_i)$ 使 得 $d''f_i = \omega$ 于 U_i .

因为 $d''(f_i - f_j) = \omega - \omega = 0$ 于 $U_i \cap U_j$,所以 $f_i - f_j \in \mathcal{O}(U_i \cap U_j)$,故 $(f_i - f_j) \in Z^1(\mathcal{U}, \mathcal{O})$. 因为 $[(f_i - f_j)|_{Y \cap \mathcal{U}}] = 0$,所以存在 $g_i \in \mathcal{O}(Y \cap U_i)$ 使得 $f_i - f_j = g_i - g_j$ 于 $Y \cap U_i \cap U_j$,等价于 $f_i - g_i = f_j - g_j$.

定义 $f|_{Y\cap U_i}:=f_i-g_i\in\mathcal{E}(Y)$ 使得 $d''f=d''f_i-\omega$.

1.6 正合上同调列

定义 1.6.1. 设 X 是拓扑空间, \mathscr{F} , \mathscr{G} 是 X 上的层,一个层同态 $\alpha: \mathscr{F} \to \mathscr{G}$ 是指一族群同 态 $\alpha_U: \mathscr{F}(U) \to \mathscr{G}(U)$, $\forall U \subset X$ 开,满足 $\forall V \subset U$ 开,有下列图表交换

$$\begin{split} \mathscr{F}(U) & \stackrel{\alpha_U}{\longrightarrow} \mathscr{G}(U) \\ \downarrow^{\rho_V^U} & \downarrow^{\rho_V^U} \\ \mathscr{F}(V) & \stackrel{\alpha_V}{\longrightarrow} \mathscr{G}(V) \end{split}$$

例子 1.6.1. 1. 外微分算子 d,d',d".

2. 包含映射 $\iota: \mathcal{O} \to \mathcal{E}, \mathbb{C} \to \mathcal{E}, \mathbb{Z} \to \mathcal{O}$.

 $3. ex: \mathcal{O} \to \mathcal{O}^*$, 对于任意开集 U,

$$ex|_{U}: \mathcal{O}(U) \to \mathcal{O}^{*}(U)$$

$$f \mapsto e^{2\pi i f}$$

定义 1.6.2. 设 $\alpha: \mathscr{F} \to \mathscr{G}$ 是层同态,对于任意开集 U,定义

$$K(U) := \operatorname{Ker}(\mathscr{F}(U) \xrightarrow{\alpha_U} \mathscr{G}(U),$$

配以通常的限制映射, 其诱导出一个层 $\kappa = \text{Ker } \alpha$.

例子 1.6.2. $\mathcal{O} = \operatorname{Ker}(\mathcal{E} \xrightarrow{d''} \mathcal{E}^{(0,1)})$,即是 Cauchy-Riemann 方程. $\Omega = \operatorname{Ker}(\mathcal{E}^{(1,0)} \xrightarrow{d} \mathcal{E}^{2}).$ $\mathbb{Z} = \operatorname{Ker}(\mathcal{O} \xrightarrow{ex} \mathcal{O}^{*}).$

定义 1.6.3. 设 $\alpha: \mathscr{F} \to \mathscr{G}$ 是层同态,对于任意开集 U,定义

$$B(U) := \operatorname{Im}(\mathscr{F}(U) \xrightarrow{\alpha_U} \mathscr{G}(U),$$

配以通常的限制映射,其诱导出一个预层 $Im\ \alpha$,但一般来说其不是层. (一般不满足拼接原理)

例子 1.6.3. $ex: \mathcal{O} \to \mathcal{O}^*$, 令 $U_+ := \mathbb{C}^* \backslash \mathbb{R}_+$, $U_- := \mathbb{C}^* \backslash \mathbb{R}_-$, 则 $\mathbb{C}^* = U_+ \cup U_-$. 因为 U_\pm 单连通,

存在
$$f_{\pm} \in \mathcal{O}(U_{\pm})$$
, s.t. $ex(f_{\pm}) = z$

且 $f_+ = f_-$ 于 $U_+ \cap U_-$. 但是不存在 $f \in \mathcal{O}(\mathbb{C}^*)$ 使得 ex(f) = z 成立. 拼接原理不成立.

定义 1.6.4. 设 $\alpha: \mathcal{F} \to \mathcal{G}$ 是一个层, 其诱导出群同态 $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$. 称 $\mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H}$ 是正合的, 若对任意 $x \in X$, 有

$$\mathscr{F}_x \xrightarrow{\alpha_x} \mathscr{G}_x \xrightarrow{\beta_x} \mathscr{H}_x$$

正合, 即 $\operatorname{Ker} \beta_x - \operatorname{Im} \alpha_x$.

称

$$\mathscr{F} \xrightarrow{\alpha_1} \mathscr{F}_1 \xrightarrow{\alpha_2} \mathscr{F}_3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-1}} \mathscr{F}_n$$

是正合的,若 $\mathscr{F}_k \xrightarrow{\alpha_k} \mathscr{F}_{k+1} \xrightarrow{\alpha_{k+1}} \mathscr{F}_{k+2}$ 正合, $\forall 1 \leq k \leq n-2$. 称正合列 $0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$ 是一个短正合列.

例子 1.6.4. 短正合列

$$0 \to \mathcal{O} \xrightarrow{\iota} \mathcal{E} \xrightarrow{d''} \mathcal{E}^{(0,1)} \to 0.$$

最后一步是 Dolbeault 引理.

$$0 \to \mathbb{C} \xrightarrow{\iota} \mathcal{E} \xrightarrow{d} Ker(d: \mathcal{E}^1 \to \mathcal{E}^2) \to 0,$$

最后一步是 Poincaré 引理.

$$0 \to \mathbb{C} \xrightarrow{\iota} \mathcal{O} \xrightarrow{d} \Omega \to 0.$$

最后一步是 Poincaré 引理.

$$0 \to \Omega \xrightarrow{\iota} \mathcal{E}^{(1,0)} \xrightarrow{d} \mathcal{E}^2 \to 0,$$

 $\forall \Phi = gdz \wedge d\overline{z}$, 设 $\omega = fdz \in \mathcal{E}^{(1,0)}$, 则 $d\omega = \Phi$ 等价于 $\frac{\partial f}{\partial \overline{z}} = -g$, 这由 Dolbeault 引理保证.

$$0 \to \mathbb{Z} \xrightarrow{\iota} \mathcal{O} \xrightarrow{ex} \mathcal{O}^* \to 0.$$

引理 1.6.1. 若 $\alpha: \mathcal{F} \to \mathcal{G}$ 是单射,则对于任意开集 $U, \alpha_U: \mathcal{F}(U) \to \mathcal{G}(U)$ 是单射.

证明. 设 $f \in \mathcal{F}(U)$, 使得 $\alpha_U(f) = 0$.

因为对于任意 $x \in U$, $\alpha_x : \mathscr{F}_x \to \mathscr{G}_x$ 是单射,故存在邻域 $x \in V_x \subset U$ 使得 $f|_{V_x} = 0$. 因为 $U = \bigcup_{x \in U} V_x$,由层的定义, $f|_U = 0$.

引理 1.6.2. 设 $0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H}$ 正合,则对于任意开集 U,有正合列

$$0 \to \mathscr{F}(U) \xrightarrow{\alpha_U} \mathscr{G}(U) \xrightarrow{\beta_U} \mathscr{H}(U).$$

证明. 由引理 1.6.1, 第一处正合. 我们考虑第二处.

Im $\alpha \subset \text{Ker } \beta$: 设 $f \in \mathscr{F}(U)$, $g = \alpha_U(f)$. 因为 Ker $\beta_x = \text{Im } \alpha_x$, 故存在邻域 $x \in V_x \subset U$ 使得 $\beta(g) = \beta \circ \alpha(f) = 0$ 于 V_x . 因为 $U = \bigcup_{x \in U} V_x$, 由层的定义, $\beta(g) = 0$ 于 U, 即 Im $\alpha \subset \text{Ker } \beta$.

Ker $\beta \subset \text{Im } \alpha$: 设 $g \in \mathscr{G}(U)$ 使得 $\beta(g) = 0$. 因为对于任意 $x \in X$,有 Ker $\beta_x = \text{Im } \alpha_x$,故存在邻域 $\alpha \in V_x \subset U$ 以及 $f_x \in \mathscr{F}(V_x)$ 使得 $\alpha(f_x) = g$ 于 V_x .

因为 $\alpha(f_x - f_y) = g - g = 0$ 于 $V_x \cap V_y$,由引理 1.6.1,推出 $f_x \cong f_y$ 于 $V_x \cap V_y$. 故由拼接原理,存在 $f \in \mathscr{F}(U)$ 使得 $f|_{V_x} := f_x \in \mathscr{F}(V_x)$ 且在每个 $V_x \perp$, $\alpha(f) = \alpha(f_x) = g$.

定义 1.6.5. 设 $\alpha: \mathscr{F} \to \mathscr{G}$ 是层同态, 其诱导出

$$\alpha^1: H^1(X, \mathscr{F}) \to H^1(X, \mathscr{G})$$

如下:设 $\mathcal{U} = \{U_i\}$ 是X的一个开覆盖.定义

$$\alpha_{\mathscr{U}}: C^1(\mathscr{U}, \mathscr{F}) \to C^1(\mathscr{U}, \mathscr{G})$$

$$(f_{ij}) \mapsto (\alpha(f_{ij})).$$

则 $\alpha_{\mathscr{U}}: Z^1(\mathscr{U},\mathscr{F}) \to Z^1(\mathscr{U},\mathscr{G}), \ \alpha_{\mathscr{U}}: B^1(\mathscr{U},\mathscr{F}) \to B^1(\mathscr{U},\mathscr{G}).$ 故 $\alpha_{\mathscr{U}}$ 可以诱导出

$$\tilde{\alpha}_{\mathscr{U}}: H^1(\mathscr{U},\mathscr{F}) \to H^1(\mathscr{U},\mathscr{G}).$$

其诱导出同态

$$\alpha^1: H^1(X, \mathscr{F}) \to H^1(X, \mathscr{G})$$

定义 1.6.6. 有短正则列 $0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$. 定义连接同态 $\delta^* : \mathscr{H}(X) = H^0(X, \mathscr{H}) \to H^1(X, \mathscr{F})$ 如下:

设 $h \in \mathcal{H}(X)$, $\mathcal{G}_x \xrightarrow{\beta_x} \mathcal{H}_x$ 满, 故存在开覆盖 $\mathcal{U} = \{U_i\}$ 以及 $g_i \in \mathcal{G}(U_i)$ 使得 $\beta(g_i) = h$ 于 U_i . 因为 $\beta(g_i - g_j) = h - h = 0$ 于 $U_i \cap U_j$, 故由引理 1.6.2, 存在 $f_{ij} \in \mathcal{F}(U_i \cap U_j)$ 使得 $\alpha(f_{ij}) = g_i - g_j$.

在 $U_i \cap U_j \cap U_k$ 上, $\alpha(f_{ij} + f_{jk} + f_{ki}) = 0$, 由引理 6.1, 有 $f_{ij} + f_{jk} + f_{ki} = 0$, 故 $(f_{ij}) \in Z^1(\mathcal{U}, \mathcal{F})$. 定义 $\delta^* h := [(f_{ij})] \in H^1(X, \mathcal{F})$.

良定性,需要验证与开覆盖选取无关、与 g_i 的选取无关.

若 $g_i' \in \mathcal{G}(U_i), f_{ij}' \in \mathcal{F}(U_i \cap U_j)$ 使得 $\beta(g_i') = h, \alpha(f_{ij}') = g_i' - g_j'$. 因为 $\beta(g_i - g_i') = h - h = 0$, 由引理 6.2, 存在 $f_i \in \mathcal{F}(U_i)$ 使得 $\alpha(f_i) = g_i - g_i'$.

$$\alpha(f_{ij}) - \alpha(f'_{ij}) = (g_i - g_j) - (g'_i - g'_j) = \alpha(f_i) - \alpha(f_j),$$

推出 $f_{ij} - f'_{ij} - (f_i - f_j) \in Ker \ \alpha_{U_i \cap U_j} = \{0\}$,即有 $f_{ij} - f'_{ij} = f_i - f_j$,即 $[(f_{ij})] = [(f'_{ij})]$. 定理 1.6.1. 设 $0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$ 正合,则有

$$0 \to H^0(X, \mathscr{F}) \xrightarrow{\alpha^0} H^0(X, \mathscr{G}) \xrightarrow{\beta^0} H^0(X, \mathscr{H}) \xrightarrow{\delta^*} H^1(X, \mathscr{F}) \xrightarrow{\alpha^1} H^1(X, \mathscr{G}) \xrightarrow{\beta^1} H^1(X, \mathscr{H}).$$

证明. 我们需要验证第三、四、五处的正合性.

- 1. Im $\beta^0 \subset \text{Ker } \delta^*$. 设 $g \in \mathcal{G}(X), h = \beta(g)$. 在 δ^* 的定义中取 $g_i = g|_{U_i}$, 则 $\alpha(f_{ij}) = g_i g_j = 0$, 由 α 单, $f_{ij} = 0$,故 $\delta^* h = [(f_{ij})] = 0$,即 $h \in \text{Ker } \delta^*$.
- 2. Ker $\delta^* \subset \text{Im } \beta^0$. 设 $h \in \text{Ker } \delta^*$, 设 $\delta^* h = [(f_{ij})] = 0$, 则 $f_{ij} = f_i f_j$, $f_i \in \mathscr{F}(U_i)$. 推出 $\alpha(f_{ij}) = \alpha(f_i) \alpha(f_j)$, 即 $g_i g_j = \alpha(f_i) \alpha(f_j)$, 其中 $\beta(g_i) = h$, 则 $g_i \alpha(f_i) = g_j \alpha(f_j)$ 于 $U_i \cap U_j$, 故存在 $g \in \mathscr{G}(X)$ 使得 $g|_{U_i} = g_i \alpha(f_i)$ 在 $U_i \perp$, 且 $\beta(g) = \beta(g_i) \beta \circ \alpha(f_i) = h$ 于 U_i , $\forall i$. 则 $h \in \text{Im } \beta^0$.
- 3. Im $\delta^* \subset \text{Ker } \alpha^1$. 设 $\delta^* h = [(f_{ij})]$. 因为 $\alpha(f_{ij}) = g_i g_j$, 所以 $\delta^* h \in \text{Ker } \alpha^1$.
- 4. Ker $\alpha^1 \subset Im \ \delta^*$. 设 $\xi \in \text{Ker } \alpha^1, \ \xi = [(f_{ij})]$. 因为 $\alpha^1(\xi) = 0$,所以 $\alpha(\xi_{ij}) = g_i g_j$,其中 $g_i \in \mathcal{G}(U_i)$. 推出 $0 = \beta \circ \alpha(f_{ij}) = \beta(g_i) \beta(g_j)$ 于 $U_i \cap U_j$. 故存在 $h \in \mathcal{H}(X)$ 使得 $h|_{U_i} = \beta(g_i)$. 由 δ^* 定义, $\delta^*h = \xi$.
- 5. Im $\alpha^1 \subset \text{Ker } \beta^1$. 因为 $\mathscr{F}(U_i \cap U_j) \xrightarrow{\alpha} \mathscr{G}(U_i \cap U_j) \xrightarrow{\beta} \mathscr{H}(U_i \cap U_j)$ 正合
- 6. Ker $\beta^1 \subset \text{Im } \alpha^1$.

设 $\eta = [(g_{ij})] \in \text{Ker } \beta^1$,其中 $(g_{ij}) \in Z^1(\mathcal{U}, \mathcal{G})$. 则 $\beta(g_{ij}) = h_i - h_j$,其中 $h_i \in \mathcal{H}(U_i)$.

对于任意 $x \in X$,存在 $\tau x \in I$,使得 $x \in U_{\tau x}$. 因为 $\beta_x : \mathcal{G}_x \to \mathcal{H}_x$ 是满射,所以存在邻域 $x \in V_x \subset U_{\tau x}$ 使得存在 $g_x \in \mathcal{G}(V_x)$ 使得 $\beta(g_x) = h_{\tau x}|_{V_x}$.

令 $\tilde{g}_{xy} := g_{\tau x, \tau y}|_{V_x \cap V_y}$. 考虑 $\mathscr{V} = \{V_x\}_{x \in X}$,因为 $\mathscr{V} < \mathscr{U}$,所以 $\eta = [(\tilde{g}_{xy})]$. 令 $\psi_{xy} := \tilde{g}_{xy} - g_x + g_y$,则 $\eta = [(\psi_{xy})]$ 且 $\psi_{xy} \in \text{Ker } \beta$:

$$\beta(\psi_{xy}) = \beta(\tilde{g}_{xy}) - \beta(g_x) + \beta(g_y) = h_{\tau x} - h_{\tau y} - h_{\tau x} + h_{\tau y} = 0.$$

由引理 1.6.2,存在 $f_{xy} \in \mathscr{F}(V_x \cap V_y)$ 使得 $\alpha(f_{xy}) = \psi_{xy}$. 因为 $\psi_{xy} + \psi_{yz} + \psi_{zx} = 0$,所 以 $\alpha(f_{xy} + f_{yz} + f_{zx}) = 0$,又 α 单,故 $f \in Z^1(\mathscr{V},\mathscr{F})$,且 $\alpha^1([(f_{ij})]) = \eta$.

定理 1.6.2. 设 $0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$ 正合,且 $H^1(X,\mathscr{G}) = 0$,则

$$H^1(X, \mathscr{F}) \cong \mathscr{H}(X)/\beta \left(\mathscr{G}(X)\right).$$

定理 1.6.3. Dolbeault. 设 X 是 Riemann 面,则

1.
$$H^1(X, \mathcal{O}) \cong \mathcal{E}^{(0,1)}(X)/d''\mathcal{E}(X)$$
.

2.
$$H^1(X,\Omega) \cong \mathcal{E}^2(X)/d\mathcal{E}^{(1,0)}(X)$$
.

证明.由

$$0 \to \mathcal{O} \xrightarrow{\iota} \mathcal{E} \xrightarrow{d''} \mathcal{E}^{(0,1)} \to 0$$

正合及 $H^1(X,\mathcal{E})=0$.

由

$$0 \to \Omega \xrightarrow{\iota} \mathcal{E}^{(1,0)} \xrightarrow{d} \mathcal{E}^2 \to 0$$

正合及 $H^1(X, \mathcal{E}^{(1,0)}) = 0$.

定义 1.6.7. X 是 Riemann 面, 称

$$Rh^1(X) := \frac{\operatorname{Ker} (d : \mathcal{E}^1 \to \mathcal{E}^2)}{\operatorname{Im} (d : \mathcal{E} \to \mathcal{E}^1)}$$

为一阶 de Rham 上同调群.

定理 1.6.4. de Rham

$$H^1(X,\mathbb{C}) \cong Rh^1(X)$$
.

证明.

$$0 \to \mathbb{C} \to \mathcal{E} \xrightarrow{d} \operatorname{Ker}(d : \mathcal{E}^1 \to \mathcal{E}^2) \to 0$$

正合,且 $H^1(X,\mathcal{E})=0$ 即得.

2 紧 Riemann 面

2.1 Riemann-Roch 定理

定义 2.1.1. X 是 Riemann 面,X 上一个除子 (divisor) 指一个映射 $D: X \to \mathbb{Z}$ 使得对于任意紧集 $K \subset X$,只有有限个 $x \in K$ 使得 $D(x) \neq 0$.

记 Div(X) 为 X 上除子全体, 配以加法运算后, 其为一个 Abel 群.

设 $D, D' \in \text{Div}(X)$, 定义 $D \leq D'$ 等价于 $\forall x \in X, D(x) \leq D'(x)$.

例子 2.1.1. 设 $0 \neq f \in \mathcal{M}(X)$, 对 $x \in X$, 定义

$$\operatorname{ord}_{x} f = \begin{cases} 0, & f(x) \neq 0 \text{且} f \in \mathcal{O}_{x} \\ k, & x \not = f \text{的} k \text{阶零点} \\ -k, & x \not = f \text{的} k \text{阶极点} \end{cases}$$

则 $x \mapsto \operatorname{ord}_x f \in \operatorname{Div}(X)$,记为 (f).

例子 2.1.2. 设 $0 \neq \omega \in \mathcal{M}^1(X)$,对于任意 $x \in X$,在 x 的某坐标邻域使得 z(x) = 0, $\omega = fdz$, 定义 $\operatorname{ord}_x \omega := \operatorname{ord}_0 f$. 验证其与局部坐标选取无关.

则 $x \mapsto \operatorname{ord}_x \omega \in \operatorname{Div}(X)$, 记为 (ω) , 称为典范除子 canonical divisor.

读 $f, g \in \mathcal{M}(X) \setminus \{0\}, \ \omega \in \mathcal{M}^1(X) \setminus \{0\}, \ \mathbb{N} \ (f \cdot g) = (f) + (g), \ (f \cdot \omega) = (f) + (\omega), \ (\frac{1}{f}) = -(f).$

定义 2.1.2. 称一个除子 $D \in \text{Div}(X)$ 为一个主除子,若存在 $f \in \mathcal{M}\setminus\{0\}$ 使得 D = (f). 对于 $D, D' \in \text{Div}(X)$,则定义 $D \sim D'$ 当且仅当 D - D' 是主除子.

例子 2.1.3. 设 $\omega_1, \omega_2 \in \mathcal{M}^1(X) \setminus \{0\}$, 则 $(\omega_1) \sim (\omega_2)$.

设 $\omega \in \mathcal{M}^1(X)$,设 $(U,z_U),(V,z_V)$ 是两个局部坐标. 设 $\omega = \begin{cases} f_U dz_U, \ on \ U \\ f_V dz_V, \ on \ V \end{cases}$,则

 $f_U = f_V \cdot \frac{\partial z_V}{\partial z_U} + U \cap V.$

设在局部坐标下, $\omega_1 = f_1 dz$, $\omega_2 = f_2 dz$,定义 $f := \frac{\omega_1}{\omega_2} = \frac{f_1}{f_2} \in \mathcal{M} \setminus \{0\}$,则 $(\omega_1) - (\omega_2) = (f)$,进而 $(\omega_1) \sim (\omega_2)$.

定义 2.1.3. X 是紧 Riemann 面, 定义映射

$$\deg: \mathrm{Div}(X) \to \mathbb{Z}$$

$$D \mapsto \deg D := \sum_{x \in X} D(x)$$

称其为 D 的阶.

对于任意 $f \in \mathcal{M}(X)\setminus\{0\}$, 则 $\#f^{-1}(0) = \#f^{-1}(\infty)$, 则 $\deg(f) = 0$. 故若 $D \sim D'$, 则 $\deg D = \deg D'$.

定义 2.1.4. 给定 $D \in Div(X)$, $U \subset X$ 开集, 定义

$$\mathcal{O}_D(U) := \{ f \in \mathcal{M}(U) : \operatorname{ord}_x f \ge -D(x), \forall x \in U \}$$

配以通常的限制映射, 其诱导出一个 X 上的层 \mathcal{O}_D .

命题 2.1.1. O_D 的基本性质.

1. 若 D=0,则 $\mathcal{O}_D=\mathcal{O}$.

2. 若 $D \sim D'$, 则 $\mathcal{O}_D \cong \mathcal{O}_{D'}$.

证明. 2. 对于任意 $\psi \in \mathcal{M}(X) \setminus \{0\}$ 使得 $D - D' = (\psi)$. 定义同构

$$\mathcal{O}_D(U) \to \mathcal{O}_{D'}(U)$$

 $f \mapsto f \cdot \psi$

$$(f \cdot \psi) = (f) + (\psi) \ge -D + (\psi) = -D'$$
. 类似定义

$$\mathcal{O}_{D'}(U) \to \mathcal{O}_D(U)$$

 $g \mapsto g/\psi$

再验证即可.

定理 2.1.1. X 是紧 Riemann 面, $D \in Div(X)$ 使得 $\deg D < 0$,则 $H^0(X, \mathcal{O}_D) = 0$.

证明. 假设存在 $f \in H^0(X, \mathcal{O}_D) \setminus \{0\}$,使得 $f \ge -D$. $0 = \deg(f) \ge -\deg D > 0$,矛盾.

定义 2.1.5. 固定 $p \in X$,对于 $U \subset X$ 开集,定义 $\mathbb{C}_p(U) := \begin{cases} \mathbb{C}, & p \in U \\ 0, & p \notin U \end{cases}$,其诱导出 X 上的一个层 \mathbb{C}_p ,称其为一个摩天大楼层.

引理 2.1.1. 1. $H^0(X, \mathbb{C}_p) \cong \mathbb{C}$. 2. $H^1(X, \mathbb{C}_p) = 0$.

证明. 1. $H^0(X, \mathbb{C}_p) \cong \mathbb{C}_p(X) = \mathbb{C}$.

2. 设 $\zeta = [(f_{ij}) \in H^1(X, \mathbb{C}_p)]$, 其中 $(f_{ij}) \in Z^1(\mathcal{U}, \mathbb{C}_p)$, \mathcal{U} 是 X 的一个开覆盖. 取 \mathcal{U} 的一个加细 $\mathcal{V} = \{V_\alpha\}$ 使得只有一个 $V_\alpha \ni p$, 即 $p \notin V_\alpha \cap V_\beta$, $\forall \beta \neq \alpha$. 即得 $\zeta = 0$.

定义 2.1.6. 设 $p \in X$, 定义单点除子 P 为在 p 点取值为 1, 在其它点取值为 0 的除子.

对于任意 $D \in \text{Div}(X)$, 有 $D \leq D + P$, 故存在包含同态 $\iota: \mathcal{O}_D \to \mathcal{O}_{D+P}$ 是一个层同态. 取复坐标 z 使得 z(p) = 0,定义层同态 $\beta: \mathcal{O}_{D+P} \to \mathbb{C}_p$ 如下

设 $U \subset X$ 是开集,若 $p \notin U$,则定义 $\beta_U := 0$.若 $p \in U$,则对于任意 $f \in \mathcal{O}_{D+P}(U)$,在 p 的某邻域有 Laurant 展开 $f(z) = \sum_{n=-k-1}^{\infty} c_n \cdot z^n$,其中 k = D(p).此时,定义 $\beta_U(f) := c_{-k-1} \in \mathbb{C} = \mathbb{C}_p(U)$.

则

$$0 \to \mathcal{O}_D \xrightarrow{\iota} \mathcal{O}_{D+P} \xrightarrow{\beta} \mathbb{C}_p \to 0$$

正合. 进而有长正合列

$$0 \to H^0(X, \mathcal{O}_D) \to H^0(X, \mathcal{O}_{D+P}) \to \mathbb{C} \to H^1(X, \mathcal{O}_D) \to H^1(X, \mathcal{O}_{D+P}) \to 0.$$

定理 2.1.2. Riemann-Roch 定理.

X 是紧 Riemann 面, $D \in Div(X)$, g 是 X 的亏格, 则 $\dim H^0(X, \mathcal{O}_D)$ 和 $\dim H^1(X, \mathcal{O}_D)$ 有限, 且

$$\dim H^0(X, \mathcal{O}_D) - \dim H^1(X, \mathcal{O}_D) = 1 - g + \deg D.$$

证明. 当 D=0 时, $H^0(X,\mathcal{O})\cong\mathbb{C}$,故 dim $H^0(X,\mathcal{O})=1$,而 $g=\dim H^1(X,\mathcal{O})$,deg D=0. 设 $D\in \mathrm{Div}(X)$, $p\in X$,令 D'=D+P. 有长正合列

$$0 \to H^0(X, \mathcal{O}_D) \to H^0(X, \mathcal{O}_{D'}) \to \mathbb{C} \to H^1(X, \mathcal{O}_D) \to H^1(X, \mathcal{O}_{D'}) \to 0.$$

令 $V := \operatorname{Im}(H^0(X, \mathcal{O}_{D'}) \to \mathbb{C}), W = \mathbb{C}/V$. 则 $\dim V + \dim W = 1 = \deg D' - \deg D$. 于是有两个短正合列

$$0 \to H^0(X, \mathcal{O}_D) \to H^0(X, \mathcal{O}_{D'}) \to V \to 0,$$

$$0 \to W \to H^1(X, \mathcal{O}_D) \to H^1(X, \mathcal{O}_{D'}) \to 0.$$

于是,

$$\dim H^0(X, \mathcal{O}_{D'}) = \dim H^0(X, \mathcal{O}_D) + \dim V,$$

$$\dim H^1(X, \mathcal{O}_D) = \dim H^1(X, \mathcal{O}_{D'}) + \dim W.$$

由于任何除子 $D = P_1 + \cdots + P_m - Q_1 - \cdots - Q_n$,且 $\dim H^0(X, \mathcal{O})$, $\dim H^1(X, \mathcal{O})$ 有限,所以 $\dim H^0(X, \mathcal{O}_D)$, $\dim H^1(X, \mathcal{O}_D)$ 有限. 有

$$\dim H^0(X, \mathcal{O}_{D'}) + \dim H^1(X, \mathcal{O}_D) = \dim H^0(X, \mathcal{O}_D) + \dim H^1(X, \mathcal{O}_{D'}) + \deg D' - \deg D,$$

则

$$\dim H^0(X, \mathcal{O}_{D'}) - \dim H^1(X, \mathcal{O}_{D'}) - \deg D' = \dim H^0(X, \mathcal{O}_D) - \dim H^1(X, \mathcal{O}_D) - \deg D,$$

于是若 Riemann-Roch 定理对 D, D' 中一个成立,则对另一个也成立.

由于任何一个 $D \in \text{Div}(X)$ 可写为 $P_1 + \cdots + P_m - Q_1 - \cdots - Q_n$, 故再由数学归纳法即得.

定理 2.1.3. 设 X 是亏格为 g 的紧 Riemann 面,设 $a \in X$,则存在 $f \in \mathcal{M}(X)$ 使得 $f \in \mathcal{O}(X \setminus \{a\})$ 且 $a \to f$ 的极点且其阶不超过 g+1.

证明. 取
$$D \in \text{Div}(X)$$
 如下, $D(X) = \begin{cases} g+1, & x=a \\ 0, & x \neq a \end{cases}$. 由 Riemann-Roch 定理,

$$\dim H^0(X, \mathcal{O}_D) \ge 1 - g + \deg D = 1 - g + g + 1 = 2.$$

故存在非常值函数 $f \in H^0(X, \mathcal{O}_D)$ 其满足要求.

推论 2.1.1. X 是紧 Riemann 面,g 是亏格,则存在分歧全纯覆盖 $f: X \to \mathbb{P}^1$,其叶数不超过 g+1.

证明. 取 f 如上一个定理, 其定义了全纯映射 $X \to \mathbb{P}^1$, 其在 ∞ 的重数不超过 g+1.

推论 2.1.2. 亏格为 0 的紧 Riemann 面 $\cong \mathbb{P}^1$. (双全纯等价)

证明. 由上一个推论知叶数为 1, 而叶数为 1 的覆盖映射必双全纯.

2.2 Serre 对偶定理

此节假设 X 是紧 Riemann 面.

定义 2.2.1. 若 $D \in Div(X)$, 对 $U \subset X$ 开集, 定义

$$\Omega_D(U) = \{ \omega \in \mathcal{M}^1(U) : (\omega) \ge -D + U \},$$

诱导出层 Ω_D .

定理 2.2.1. Serre 对偶定理.

$$H^1(X, \mathcal{O}_D) \cong H^0(X, \Omega_{-D})$$

$$H^1(X,\Omega_D) \cong H^0(X,\mathcal{O}_{-D})$$

注 **2.2.1.** 1. 当 D=0 时, $\dim H^0(X,\Omega)=\dim H^1(X,\mathcal{O})=g$.

2. 设 K 是典范除子, $\Omega_{-K} \cong \mathcal{O}$, $\Omega \cong \mathcal{O}_K$.

证明. 设 $K = (\omega)$, 对 $\omega_1 \in \Omega_{-K}(U)$, 则 $(\omega_1) \geq K = (\omega)$, 则 $f = \omega_1/\omega \in \mathcal{O}(U)$, 这定义了一个从 $\Omega_{-k}(U)$ 到 $\mathcal{O}(U)$ 的同构.

注 2.2.2. R. Narasinhan, Compact Riemannian Surfaces.

定理 2.2.2. 设 $\omega \in \mathcal{M}^1(X) \setminus \{0\}$, 则 $\deg(\omega) = 2g - 2$. 特别地,若 $\omega \in \Omega(X) \setminus \{0\}$,则其零点个数为 2g - 2.

证明. 设 $K = (\omega)$, 由 Riemann-Roch 定理, dim $H^0(X, \mathcal{O}_K)$ – dim $H^1(X, \mathcal{O}_K) = 1 - g + \deg K$, 而

LHS = dim $H^{1}(X, \Omega_{-K})$ - dim $H^{0}(X, \Omega_{-K})$ = dim $H^{1}(X, \mathcal{O})$ - dim $H^{0}(X, \mathcal{O})$ = g - 1,

故 $\deg K = 2g - 2$.

推论 2.2.1. 环面 \mathbb{C}/Γ 的亏格为 1.

证明. dz 关于 Γ 不变,其诱导出 \mathbb{C}/Γ 上的一个全纯 1-形式 ω ,其无零点,进而 $0 = \deg \omega = 2g - 2$ 推出 g = 1.

定理 2.2.3. 若 $g \ge 1$,则对于任意 $p \in X$,存在 $\omega \in \Omega(X)$ 使得 $\omega|_p \ne 0$.

证明. 因为 X 不同构于 \mathbb{P}^1 ,所以 $\dim H^0(X, \mathcal{O}_P) = 1$ (否则存在非常值 $f \in H^0(X, \mathcal{O}_P)$ 且 $(f) \geq -P$ 推出 $X \cong \mathbb{P}^1$,矛盾.)

由 Serre 对偶, $\dim H^1(X,\Omega_{-P}) = \dim H^0(X,\mathcal{O}_P) = 1$, 由 Riemann-Roch 定理,

$$\dim H^0(X, \Omega_{-P}) = \dim H^1(X, \Omega_{-P}) + 1 - g + \deg K - 1 = g - 1 = \dim H^0(X, \Omega) - 1,$$

推出存在 $\omega \in H^0(X,\Omega)\backslash H^0(X,\Omega_{-P})$,则 $\omega|_p \neq 0$.

定理 2.2.4. $D \in Div(X)$, $\deg D > 2g - 2$, 则 $H^1(X, \mathcal{O}_D) = 0$.

证明. 取 K 为典范除子,

$$\dim H^{1}(X, \mathcal{O}_{D}) = \dim H^{0}(X, \Omega_{-D})(Serre)$$

$$= \dim H^{0}(X, \mathcal{O}_{K-D})$$

$$= 0$$

因为 $\deg(K - D) = 2g - 2 - \deg D < 0$.

注 2.2.3. 多元的情形即为 Kodaira 消灭定理.

推论 2.2.2. $H^1(X, \mathcal{M}) = 0$.

证明. 设 $\xi = [(f_{ij})] \in H^1(X, \mathcal{M}), \ \text{其中} (f_{ij}) \in Z^1(\mathcal{U}, \mathcal{M}), \ \mathcal{U} \ \text{是 } X \ \text{的开覆盖}.$

取 $\mathscr{V} = \{V_i\} << \mathscr{U} = \{U_i\}, i = 1, 2, \cdots, n.$ 因为 $\overline{V_i} \cap \overline{V_j} \subset U_i \cap U_j$, 所以存在 $D \in \mathrm{Div}(X)$ 使得 $\deg D > 2g - 2$ 且 $(f_{ij}) \geq -D$ 于 $\overline{V_i} \cap \overline{V_j}$. 推出 $(f_{ij}|_{V_i \cap V_i}) \in Z^1(\mathscr{V}, \mathcal{O}_D)$.

因为 $H^1(\mathcal{V}, \mathcal{O}_D) = 0$,所以 $f_{ij} = f_i - f_j$ 于 $V_i \cap V_j$,其中 $f_i \in C^0(V_i, \mathcal{O}_D) \subset C^0(V_i, \mathcal{M})$,故 $\xi = 0$.

定义 2.2.2. 设 $D \in Div(X)$, 称 \mathcal{O}_D 为整体生成的,若 $\forall x \in X$,存在 $f \in H^0(X, \mathcal{O}_D)$ 使得 $ord_x f = -D(x)$.

定理 2.2.5. 若 $\deg D \geq 2g$ 则 \mathcal{O}_D 是整体生成的.

证明. 令 $D'(y) := \begin{cases} D(y), & y \neq x \\ D(x) - 1, & y = x \end{cases}$. 则 $D' \in \text{Div}(X)$ 使得 $\deg D' = \deg D - 1 \ge 2g - 1 > g$

2g-2. 推出 $H^1(X,\mathcal{O}_D)=H^1(X,\mathcal{O}_{D'})=0$.

由 Riemann-Roch 定理, $\dim H^0(X, \mathcal{O}_D) > \dim H^0(X, \mathcal{O}_{D'})$.

因为 $H^0(X, \mathcal{O}_{D'}) \subset H^0(X, \mathcal{O}_D)((f) \geq -D' \geq -D)$, 所以只需取 $f \in H^0(X, \mathcal{O}_D) \setminus H^0(X, \mathcal{O}_{D'})$.

定义 2.2.3. N 维复射影空间 \mathbb{P}^{N} .

令 $\mathbb{P}^N:=\mathbb{C}^{N+1}/\sim$,其中 $(z_0,\cdots,z_N)\sim(z_0',\cdots,z_N')$ 等价于存在 $\lambda\in\mathbb{C}^*$ 使得 $z_j'=\lambda\cdot z_j, 0\leq j\leq N$.

设 $[z_0; z_1; \cdots; z_N]$ 为由 (z_0, \cdots, z_N) 所代表的等价类. 令 $U_j := \{[z_0; \cdots; z_N] : z_j \neq 0\}$,则 $\{U_j\}_{j=0}^N$ 是一个开覆盖. 考虑同胚 $\varphi_j : U_j \to \mathbb{C}^n$, $[z_0; \cdots; z_N] \mapsto (\frac{z_0}{z_j}, \cdots, \frac{z_{j-1}}{z_j}, \frac{z_{j+1}}{z_j}, \cdots, \frac{z_N}{z_j})$ 为一个复坐标.

定义 2.2.4. X 是紧 Riemann 面, $F \in C(X, \mathbb{P}^N)$,则 $\{W_j := F^{-1}(U_j)\}$ 构成 X 的开覆盖. 令 $F_j := \varphi_j \circ F : W_j \to \mathbb{C}^N$,记 $F_j = (F_{j1}, \cdots, F_{jN})$,若 $\forall F_{j\nu}$ 全纯,则称 F_j 为全纯映射. 如果 $\forall x \in X$,存在 $W_j \ni x$,且存在 ν 使得 $dF_{j\nu}|_x \neq 0$,则称 F 是全纯浸入. 称 F 为全纯嵌入,若 F 是全纯浸入且 F 是单射.

设 $f_0, \dots, f_N \in \mathcal{M} \setminus \{0\}$, 则构造全纯映射 $F := [f_0: f_1: \dots: f_N]: X \to \mathbb{P}^N$ 如下: 对于任意 $x \in X$, 取坐标 z 使得 z(x) = 0. 令 $k = \min_{0 \le j \le N} \operatorname{ord}_x f_j$. 则 $f_j = z^k \cdot g_j, g_j \in \mathcal{O}_x$, 且至少有一个 $g_j(x) \ne 0$. 则令 $F(x) := [g_0(x): g_1(x): \dots: g_N(x)]$. 而

$$F_j = (\frac{g_0}{g_j}, \cdots, \frac{g_{j-1}}{g_j}, \frac{g_{j+1}}{g_j}, \cdots, \frac{g_N}{g_j}) \in \mathcal{O}_x^{\oplus N}.$$

定理 2.2.6. 设 $D \in \text{Div}(X)$ 使得 $\deg D \ge 2g+1$, 设 $f_0, \dots, f_N \in H^0(X, \mathcal{O}_D)$ 的一组基,则

$$F:[f_0:f_1:\cdots:f_N]:X\hookrightarrow\mathbb{P}^N$$

为一个全纯嵌入.

注 2.2.4. 多复变

若 X 是非紧的 Riemann 面,则 X 可以作为闭一维复子流形全纯嵌入到 \mathbb{C}^3 中.

证明. 我们只需证明 F 是单浸入.

1. F 是单射.

作
$$D' \in \operatorname{Div}(X)$$
 如下: $D'(x) = \begin{cases} D(X), & x \neq x_2 \\ D(x_2) - 1, & x = x_2 \end{cases}$. 因为 $\deg D' = \deg D - 1 \ge$ 所以 $O_{D'}$ 是整体生成的。于是存在 $f \in H^0(X, O_{D'})$ 使得

2g, 所以 $\mathcal{O}_{D'}$ 是整体生成的. 于是存在 $f \in \mathcal{I}$

$$\operatorname{ord}_{x_1} f = -D'(x_1) = -D(x_1).$$

显然

$$\operatorname{ord}_{x_2} f \ge -D'(x_2) = -D(x_2) + 1.$$

因为
$$H^0(X, \mathcal{O}_{D'}) \subset H^0(X, \mathcal{O}_D)$$
,所以 $f = \sum_{j=0}^N \lambda_j f_j, \lambda_j \in \mathbb{C}$.

取 x_1, x_2 处的坐标 $(V_1, z_1), (V_2, z_2)$ 使得 $z_1(x_1) = z_2(x_2) = 0$. 因为 \mathcal{O}_D 是整体生成 的, $k_{\mu} := \min_{i} \operatorname{ord}_{x_{\mu}} f_{i} = -D(x_{\mu}), \mu = 1, 2$

在 x_{μ} 附近, $f_{j} = z_{\mu}^{k_{\mu}} \cdot g_{\mu j}$, $f = z_{\mu}^{k_{\mu}} \cdot g$, 其中 $g_{\mu j}$, $g \in \mathcal{O}_{x_{\mu}}$, $\mu = 1, 2$. 推出 $F(x_{\mu}) = 0$ $[g_{\mu 0}:g_{\mu 1}:\cdots:g_{\mu N}] \perp \sum_{j=0}^{N} \lambda_j g_{\mu j}(x_\mu) = g(x_\mu), \mu = 1, 2.$

曲 $\operatorname{ord}_{x_1} f = -D'(x_1) = -D(x_1)$ 推出 $g(x_1) \neq 0$, 由 $\operatorname{ord}_{x_2} f \geq -D'(x_2) = -D(x_2) +$ 1 推出 $g(x_2)=0$. 则 $F(x_1)\neq F(x_2)$. 若否,则存在 $\lambda\in\mathbb{C}$ 使得 $g_{\mu j}(x_1)=g_{\mu j}(x_2)\cdot\lambda$. 则

$$0 \neq g(x_1) = \sum_{j=0}^{N} \lambda_j g_{\mu j}(x_1) = \lambda \cdot \sum_{j=0}^{N} \lambda_j g_{\mu j}(x_2) = \lambda \cdot g(x_2) = 0,$$

得到矛盾.

2. F 是浸入.

设 $x_0 \in X$, 取 $D' \in \text{Div}(X)$ 如下: $D'(x) = \begin{cases} D(X), & x \neq x_0 \\ D(x_0) - 1, & x = x_0 \end{cases}$. 取 $f \in$ $H^0(X, \mathcal{O}_{D'}) \subset H^0(X, \mathcal{O}_D)$ 使得

$$\operatorname{ord}_{x_0} f = -D'(x_0) = -D(x) + 1.$$

设 $f = \sum_{j=0}^{N} \lambda_j f_j$. 取 $k = \min_j \operatorname{ord}_{x_0} f_j = -D(x_0)$ 使得取 x_0 处复坐标 z 使得 $f_j = z^k \cdot g_j, f = z^k \cdot g$, 其中 $g_i, g \in \mathcal{O}_{x_0}$. 不妨设 $g_0(x_0) \neq 0$. 则 $F_0 := \varphi_0 \cdot F : W_0 = \varphi_0$ $F^{-1}(U_0) \to \mathbb{C}^N$

$$F_0 = (F_{01}, \cdots, F_{0N}) = (\frac{g_1}{q_0}, \cdots, \frac{g_N}{q_0}).$$

$$\sum_{j=1}^{N} \lambda_{j} F_{0j} = \sum_{j=1}^{N} \frac{\lambda_{j} g_{j}}{g_{0}} = \frac{g}{g_{0}} - \lambda_{0}$$

推出

$$\sum_{j=1}^{N} \lambda_j dF_{oj}(x_0) = d(\frac{g}{g_0})(x_0).$$

因为 $g(x_0) \neq 0$, 且 $\operatorname{ord}_{x_0} f = -D'(x_0) = -D(x) + 1$ 推出 $\operatorname{ord}_{x_0} = 1$. 所以

$$d(\frac{g}{g_0})(x_0) = \frac{dg(x_0)}{g_0(x_0)} - \frac{g(x_0) \cdot dg_0(x_0)}{g_0(x_0)^2} = \frac{dg(x_0)}{g(x_0)} \neq 0$$

故存在某个 j 使得 $dF_{0i}(x_0) \neq 0$,故 F 是浸入.

注 2.2.5. $N+1=\dim H^0(X,\mathcal{O}_D)=1-g+\deg\ D\geq g+2$, 因此 $X\hookrightarrow \mathbb{P}^{g+1}$, 其中 g 是 X 的亏格. 特别地, $\mathbb{C}/\Gamma\hookrightarrow \mathbb{P}^2$. 一般地, 任意紧 Riemann 面 $X\hookrightarrow \mathbb{P}^3$.

注 2.2.6. 若 X 是非紧 Riemann 面,则存在逆紧全纯嵌入 $X \hookrightarrow \mathbb{C}^3$ (Bishop-Narasimhan-Remmert).

Conjecture: 存在逆紧全纯嵌入 $X \hookrightarrow \mathbb{C}^2$.

定义 2.2.5. X,Y 是紧 Riemann 面, 非常值映射 $F \in \mathcal{O}(X,Y)$. 令 f 在 x 处的重数 $\nu(f,x) := \#(f^{-1}(y) \cap U)$,这里 $U \ni x$ 是充分小邻域, $y \neq f(x)$ 但充分接近于 f(x).

称
$$b(f,x)=\nu(f,x)-1$$
 为 f 在 x 处的分歧阶 $($ 分歧: $branch)$. 令 $b:=\sum_{x\in X}b(f,x)$. 称 $n:=\sum_{x\in f^{-1}(y)}\nu(f,x)$ 为 f 的叶数. g 和 g' 分别是 X 和 Y 的亏格.

定理 2.2.7. Riemann-Hurwitz 定理.

$$g = \frac{b}{2} + n(g' - 1) + 1.$$

注 2.2.7. 推出 b 是偶数.

证明. 设 $\omega \in \mathcal{M}^1(Y) \setminus \{0\}$,由 Riemann Roch 定理, $\deg \omega = 2g' - 2$. 而 $f^*\omega \in \mathcal{M}^1(X) \setminus \{0\}$,再由 Riemann-Roch 定理, $\deg f^*\omega = 2g - 2$.

设 $x \in X$, $y = f(x) \in Y$. 取 x, y 处的坐标 z, w 使得 z(x) = w(y) = 0, 且 f 可表示为 $w = z^k$, $k = \nu(f, x)$. 设 $\omega = \psi(w)dw$, 则 $f^*\omega = \psi(z^k)dz^k = kz^{k-1}\psi(z^k)dz$. 于是有

$$\operatorname{ord}_x f^*\omega = b(f, x) + \nu(f, x) \cdot \operatorname{ord}_y \omega.$$

推出

$$\sum_{x \in f^{-1}(y)} \operatorname{ord}_x f^* \omega = \sum_{x \in f^{-1}(y)} b(f, x) + n \cdot \operatorname{ord}_y \omega.$$

故

$$\deg f^*\omega = \sum_{x \in X} \operatorname{ord}_x f^*\omega$$

$$= \sum_{y \in Y} \sum_{x \in f^{-1}(y)} \operatorname{ord}_x f^*\omega$$

$$= \sum_{y \in Y} \sum_{x \in f^{-1}(y)} b(f, x) + n \sum_{y \in Y} \operatorname{ord}_y \omega$$

$$= b + n \cdot \deg \omega.$$

例子 2.2.1. 当 $Y = \mathbb{P}^1$ 时,则 $g = \frac{b}{2} - n + 1$. 特别地,当 n = 2 时, $g = \frac{b}{2} - 1$,此时称 X 为超椭圆的.

2.3 除子与线丛, Serre 定理证明

定义 2.3.1. X 是 Riemann 面,X 上一个全纯线丛指 $L = \bigcup_{i \in I} U_i \times \mathbb{C} / \sim$,其中 $\mathscr{U} = \{U_i\}_{i \in I}$ 为 X 的一个开覆盖, $(x,v) \in U_i \times \mathbb{C} \sim (y,w) \in U_j \times \mathbb{C}$ 等价于 x = y 且 $v = g_{ij}(x) \cdot w$,其中 $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$ 满足 $g_{ij} \cdot g_{jk} = g_{ik}$ 于 $U_i \cap U_j \cap U_k$. 称 $\{g_{ij}\}$ 为 L 的转换函数.

定义 2.3.2. 设 $U \subset X$ 为开集, L 在 U 上的一个全纯截影指一族 $(f_i)_{i \in I}$, 其中 $f_i \in \mathcal{O}(U \cap U_i)$ 使得 $f_i = g_{ij} \cdot f_j$ 于 $U \cap U_i \cap U_j$. 记 $\Gamma(U, L) = \{L$ 在 U 上的全纯截影 $\}$. 其诱导出一个层,记为 \mathcal{O}_L .

定义 2.3.3. L 在 U 上的一个亚纯截影指一个 $f \in \Gamma(X', L)$, 其中 $X' \subset X$ 开, 满足

- 1. X\X' 离散.
- $2. \ \forall a \in X \setminus X', \$ 存在 a 处坐标 (U,z) 使得 z(a) = 0 且存在 $n \in \mathbb{Z}^+$ 使得 $z^n \cdot f \in \Gamma(U,L)$.

例子 2.3.1. 一些例子.

- 1. 平凡线丛 $L = X \times \mathbb{C}$. 此时 $g_{ij} = 1$, $\mathcal{O} = \mathcal{O}_L$.
- 2. 设 $\{(U_i,z_i)\}_{i\in I}$ 为 X 的一个坐标邻域覆盖. 定义 $g_{ij}:=\frac{dz_j}{dz_i}$, 称以 $\{g_{ij}\}$ 为转换函数诱导的全纯线丛为 X 上的典范线丛 K_X (即为 X 上的全纯余切丛).
- $3.\ L, L'$ 为 X 上全纯线丛,转换函数 $\{g_{ij}\}, \{g'_{kl}\}$,取一个公共加细覆盖后,不妨设转换函数为 $\{g_{ij}\}$ 于 $\{g'_{ij}\}$,称以 $\{g_{ij}\cdot g'_{ij}\}$ 为转移函数诱导出的全纯线丛为 L 与 L' 的张量积,记为 $L\otimes L'$.
- 记 $L^{\otimes m}=L\otimes L\otimes \cdots \otimes L$ 共 m 个做张量积. 称 $K^{\otimes m}$ 为 pluri-canonical line bundle, $P_m:=\Gamma(X,K^{\otimes m})$ 为 pluri-genera.
 - 4. 设 L 的转换函数为 $\{g_{ij}\}$, 以 $\{g_{ij}^{-1}\}$ 为转移函数诱导出的全纯线丛为 L 的对偶线丛.
- 5. 设 $D \in Div(X)$, 取 X 的开覆盖 $\mathscr{U} = \{U_i\}_{i \in I}$, 以及 $\psi_i \in \mathcal{M}(U_i)$, $i \in I$ 使得 $(\psi_i) = D + U_i$. 则 $g_{ij} := \psi_i/\psi_j \in \mathcal{O}^*(U_i \cap U_j)$. 记 L_D 为以 $\{g_{ij}\}$ 为转换函数的全纯线丛.

引理 2.3.1.

$$\mathcal{O}_D \cong \mathcal{O}_{L_D}$$
.

证明. 设 $U \subset X$ 为一个开集, $f \in \mathcal{O}_D(U)$ 则 $(f) \geq -D$ 于 U. 故 $f_i := f \cdot \psi_i \in \mathcal{O}(U \cap U_i)$. $((f_i) = f(f) + (\psi_i) \geq -D + (\psi_i) = 0.)$

在 $U \cap U_i \cap U_j$ 上, $\frac{f_i}{\psi_i} = f = \frac{f_j}{\psi_j}$ 推出 $f_i = g_{ij}f_j$,推出 $(f_i) \in \Gamma(U, L_D)$.

反过来,设 $(f_i) \in \Gamma(U, L_D)$,在 $U \cap U_i \cap U_j$ 上, $f_i = g_{ij}f_j$,则 $\frac{f_i}{\psi_i} = \frac{f_j}{\psi_j}$,推出 $f|_{U \cap U_i} := \frac{f_i}{\psi_i} \in \mathcal{M}(U)$,且使得 $(f) = (f_i) - (\psi_i) \geq (-\psi_i) = -D$, $\forall U \cap U_i$,则 $f \in \mathcal{O}_D(U)$.

定义 2.3.4. 设 $L \in X$ 上的全纯线丛,记 $\pi: L \to X$, $[(x,v)] \mapsto x$ 为自然投影. 商映射 $\bigcup_{i \in I} U_i \times \mathbb{C} \to L$ 诱导出同胚 $\Phi_i: \pi^{-1}(U_i) \to U_i \times \mathbb{C}$ 使得下图交换

$$\pi^{-1}(U_i) \xrightarrow{\Phi_i} U_i \times \mathbb{C}$$

$$\downarrow^{\pi}_{U_i}$$

称 Φ_i 为 L 在 U_i 上的平凡化. $\Phi_i \circ \Phi_j^{-1}(x,v) = (x,g_{ij}(x)v)$ 是全纯的. 说明 L 为一个二维复流形.

称 $\xi_i := \Phi_i^{-1}(x,1)$ 为 L 在 U_j 上的一个局部标架. 则有 $\xi_j = g_{ij}\xi_i$.

设 $f=(f_i)\in \Gamma(U,L),\,U\subset X$ 开,则 $\tilde{f}|_{U\cap U_i}:=f_i\times \xi_i\in \mathcal{O}(U,L)$. 我们将 f 与 \tilde{f} 恒同起来(解释了为什么叫全纯截影).

定义 2.3.5. L 上的一个 Hermitian 度量 h 指一族函数 $\{h_i\}$, 其中 $0 < h_i \in \mathcal{E}(U_i)$ 使得 $h_i = h_i/|g_{ii}|^2$ 于 $U_i \cap U_i$.

设 $f \in \Gamma(U, L)$, $f = (f_i)$, 其中 $f_i \in \mathcal{O}(U \cap U_i)$, 有 $|f_i|^2 h_i = |f_j|^2 h_j$ 于 $U \cap U_i \cap U_j$. 定义 $|f|_h^2|_{U_i} := |f_i|^2 \cdot h_i \in \mathcal{E}(U)$, 称其为 f 关于 h 的点态长度的平方.

定义 2.3.6. 因为 $d'd''(-\log h_i) = d'd''(-\log h_j)$ 于 $U_i \cap U_j$, 故定义 $\Theta|_{U_i} := id'd''(-\log h_i) \in \mathcal{E}^{(1,1)}(X)$ 称为 h 的曲率.

定义 2.3.7. 称 $C(L) := \frac{1}{2\pi} \int_X \Theta_h \ \ \ \ \ \ L$ 的 Euler 示性数或第一陈类.

定理 2.3.1. Gauss-Bonnet.

X 是紧 Riemann 面, $D \in Div(X)$, 则 $C(L_D) = \deg D$.

证明. 取 X 的(有限)坐标邻域覆盖 $\mathscr{U} = \{(U_i, z_i)\}$ 以及 $\psi \in \mathcal{M}(U_i)$ 使得 $(\psi_i) = D$ 于 U_i . 于是有 $f = (\psi_i) \in \mathcal{M}(X, L_D)$.

设 $D=\sum_{k=1}^n n_k\cdot P_k,\ n_k\in\mathbb{Z},\,P_k\in X.$ 令 $X'=X\setminus\{P_1,\cdots,P_n\}$ 则 $f\in\Gamma(X',L_D)$ 且无零点. 则 $\Theta_h=id'd''(-\log|f|_h^2)$ 于 X'. 所以

$$C(L_D) = \frac{1}{2\pi} \int_{X'} \Theta_h = \frac{1}{2\pi} \int_{X'} i d' d'' (-\log|f|_h^2).$$

设 z_k 为 P_k 处坐标使得 $z_k(P_k)=0$. 则 ξ_k 为 L 在 P_k 附近的一个局部标架.

设 $f = z_k^{n_k} \cdot g_k \otimes \xi_k$ 于 P_k 附近, $g_k \in \mathcal{O}_{P_k}^*$, 推出

$$C(L_D) = \lim_{\delta \to 0} \frac{1}{2\pi} \int_{X \setminus \bigcup_{k=1}^n \{|z_k| < \delta\}} idd' \log |f|_h^2$$

$$= \lim_{\delta \to 0} \frac{1}{2\pi i} \sum_{k=1}^n \int_{|z_k| = \delta} d' \log |f|_h^2$$

$$= \lim_{\delta \to 0} \sum_{k=1}^n \frac{1}{2\pi i} \int_{|z_k| = \delta} (n_k \frac{dz_k}{z_k} + d' \log |g_k \otimes \xi_k|_h^2)$$

$$= \sum_{k=1}^n n_k = \deg D.$$

注 2.3.1. 设 $g=\lambda^2 dz\otimes d\overline{z}$ 为 X 上一个 Riemann 度量,其可以看作 X 的全纯切丛 K^* 上的一个 Hermitian 度量.记 $\omega_g:=\frac{i}{2}\lambda^2 dz\wedge d\overline{z}$ 为 g 的 $K\ddot{a}hler$ 形式.称 $K_g:=-\frac{2}{\lambda^2}\frac{\partial\log\lambda^2}{\partial z\partial\overline{z}}$ 为 g 的 Gauss 曲率.则 $\Theta_g=K_g\cdot\omega_g$.则由上条定理推出

$$\frac{1}{2\pi} \int_X K_g \cdot \omega_g = -\deg K = 2 - 2g = \chi(X).$$

其中 K 是 Canonical divisor, g 是 X 的 "柄" 的个数, $\chi(X)$ 是 X 的 Euler 示性数.

定义 2.3.8. X 是 Riemann 面,L 是 X 上的全纯线丛, $U \subset X$ 开,与全纯截影类似可定义 C^{∞} 截影,令

 $\{\mathcal{E}_L(U)\}, \{\mathcal{E}_L^{(0,1)}(U)\}$ 诱导出层 \mathcal{E}_L 和 $\mathcal{E}_L^{(0,1)}$.

定义 2.3.9. 引入层同态 $d'': \mathcal{E}_L \to \mathcal{E}_L^{(0,1)}$, 设 $U \subset X$ 开, $\mathscr{U} = \{U_i\}$ 为 X 的开覆盖使得 L_{U_i} 平凡..

设 $S \in \mathcal{E}_L(U)$, 则 $S = f_i \otimes \xi_i + U \cap U_i$, $f_i \in \mathcal{E}(U_i \cap U)$. 定义 $d''S|_{U \cap U_i} := d''f_i \otimes \xi_i$. 则 $d''S \in \mathcal{E}_L^{(0,1)}(U)$: $f_i \otimes \xi_i = f_j \otimes \xi_j + U \cap U_i \cap U_j$, $f_i = g_{ij}f_j$, $\xi_i = g_{ij}^{-1}\xi_j$.

$$d'' f_i \otimes \xi_i = d''(g_{ij} f_j) \otimes (g_{ij}^{-1} \xi_j)$$
$$= g_{ij} d'' f_j \otimes (g_{ij}^{-1} \xi_j)$$
$$= d'' f_j \otimes \xi_j.$$

注 2.3.2. 无法定义 $d': \mathcal{E}_L \to \mathcal{E}_L^{(1,0)}$.

令 $H^0(X,L) := H^0(X,\mathcal{O}_L), H^1(X,L) := H^1(X,\mathcal{O}_L).$ 则有

定理 2.3.2. Dolbeault 定理

 $H^1(X,L) \cong \mathcal{E}_L^{(0,1)}(X)/d''\mathcal{E}_L(X).$

定义 2.3.10. 设 $L \in X$ 上的全纯线丛, $L^* \in L$ 的对偶丛, $K \in X$ 上的典范线丛, 定义双线性形式 $\langle , \rangle : H^0(X, K \otimes L^*) \times \mathcal{E}_L^{(0,1)}(X) \to \mathbb{C}$ 如下

设 ξ 为 L 的一个局部标架,则 $\xi^*:=\xi^{-1}$ 为 L^* 的一个局部标架,则对于任意 $S\in H^0(X,K\times L^*)$ 以及对于任意 $\varphi\in\mathcal{E}_L^{(0,1)}(X)$,可局部表示为

$$S = fdz \otimes \xi^*, f \in \mathcal{O}(U)$$

$$\varphi = gd\overline{z} \otimes \xi, g \in \mathcal{E}(U)$$

定义 $(S,\varphi)|_U:=f\cdot gdz\wedge d\overline{z}$,其不依赖于 U 以及标架的选取,故 $(S,\varphi)\in\mathcal{E}^{(1,1)}(X)$,则定义 $\langle S,\varphi\rangle:=\int_V(S,\varphi).$

定理 2.3.3. 表示定理

X 是紧 Riemann 面,L 是 X 上的全纯线丛, $F:\mathcal{E}_L^{(0,1)}\to\mathbb{C}$ 是一个连续线性泛函,使得 $F|_{d''\mathcal{E}_L(X)}=0$ 可推出存在唯一的 $S\in H^0(X,K\otimes L^*)$ 使得 $F(\varphi)=\langle S,\varphi\rangle, \forall \varphi\in\mathcal{E}_L^{(0,1)}(X)$.

证明. (i). 设 $U \subset X$ 开, $\sigma \in H^0(U, K \otimes L^*)$ 使得 $\langle \sigma, \varphi \rangle = 0, \forall \varphi \in \mathcal{E}_L^{(0,1)}(X)$, Supp $\varphi \subset U$, 则 $\sigma = 0$ (定理的唯一性)

(ii). 设 U 为 X 的一个坐标邻域,使得 $L|_U$ 平凡,则存在 $S\in H^0(U,K\otimes L^*)$ 使得 $F(\varphi)=\langle S,\varphi\rangle, \forall \varphi\in\mathcal{E}_L^{(0,1)}(X)$ 且 $\operatorname{Supp}\varphi\subset U$.

假设 (ii) 成立,取 X 的坐标邻域覆盖 $\{(U_i,z_i)\}$ 使得 $L|_{U_i}$ 平凡,由 2,存在 $S_i \in H^0(U_i,K\otimes L^*)$ 使得 $F(\varphi) = \langle S_i, \varphi \rangle, \forall \varphi \in \mathcal{E}_L^{(0,1)}(X)$ 且 $\operatorname{Supp} \varphi \subset U_i$. 若 $\operatorname{Supp} \varphi \subset U_i \cap U_j$,则 $\langle S_i - S_j, \varphi \rangle = 0$,由 (i) 推出 $S_i = S_j$ 于 $U_i \cap U_j$,故定义 $S|_{U_i} := S_i$,有 $S \in H^0(X,K \otimes L^*)$.

取 $\{\chi_i\}$ 为从属于 $\{U_i\}$ 的单位分解,对 $\varphi \in \mathcal{E}_L^{(0,1)}(X)$,令 $\varphi_i = \chi_i \varphi$,则 $\operatorname{Supp} \varphi_i \subset U_i$ 且 $\varphi = \sum_i \varphi_i$.

$$\langle S, \varphi \rangle = \sum \langle S, \varphi_i \rangle = \sum \langle S_i, \varphi_i \rangle = \sum F(\varphi_i) = F(\sum \varphi_i) = F(\varphi).$$

接下来我们证明 (ii) 成立. 设 $S = fdz \otimes \xi^*$, $\varphi = gd\overline{z} \otimes \xi$, 则 $\langle S, \varphi \rangle = \int_U f \cdot gdz \wedge dOz$. 因此只需证明下面的 Weyl 引理.

设 $U \subset \mathbb{C}$ 是有界区域, $T: C_0^{\infty}(U) \to \mathbb{C}$ 为一个线性映射, 使得

- 1. 若 $f_i \in C_0^{\infty}(U)$ 按 C^{∞} 拓扑收敛于 $f \in C_0^{\infty}(U)$, 则 $Tf_i \to Tf$;
- 2. $T(\partial g/\partial \overline{z}) = 0, \forall g \in C_0^{\infty}(U)$ (即在分布意义下, $\overline{\partial}T = 0$)

则存在唯一的 $h \in \mathcal{O}(U)$,使得 $Tg = \int_U h \cdot g dz \wedge d\overline{z}$.

我们证明 Weyl 引理.

引理 2.3.2. Weyl 引理.

设 $U \subset \mathbb{C}$ 是有界区域, $T: C_0^{\infty}(U) \to \mathbb{C}$ 为一个线性映射, 使得

1. 若 $f_i \in C_0^{\infty}(U)$ 按 C^{∞} 拓扑收敛于 $f \in C_0^{\infty}(U)$, 则 $Tf_i \to Tf$;

 $2. T(\partial g/\partial \overline{z}) = 0, \forall g \in C_0^{\infty}(U)$ (即在分布意义下, $\overline{\partial}T = 0$)

则存在唯一的 $h \in \mathcal{O}(U)$,使得 $Tg = \int_U h \cdot g dz \wedge d\overline{z}$.

引理的证明. $\forall \varepsilon > 0$,定义 $U_{\varepsilon} := \{ z \in U : d(z, \partial U) > \varepsilon \}$,取 $\chi_{\varepsilon} \in C_0^{\infty}(\Delta_{\varepsilon})$ 使得 $\chi_{\varepsilon}|_{\overline{\Delta_{\frac{\varepsilon}{2}}}} = 1$. 对于 $f \in C_0^{\infty}(U_{\varepsilon})$,定义 $f_{\varepsilon} \in C_0^{\infty}(U)$ 如下:

$$f_{\varepsilon}(z) := \frac{1}{2\pi i} \int_{\mathbb{C}} f(z+w) \cdot \frac{\chi_{\varepsilon}(w)}{w} dw \wedge d\overline{w}.$$

$$\begin{split} \frac{\partial f_{\varepsilon}}{\partial \overline{z}} &= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial}{\partial \overline{z}} f(z+w) \frac{\chi_{\varepsilon}(w)}{w} dw \wedge dOw \\ &= \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\mathbb{C}\backslash \overline{\Delta_{\delta}}} \frac{\partial}{\partial \overline{w}} f(z+w) \frac{\chi_{\varepsilon}(w)}{w} dw \wedge d\overline{w} \\ &= -\lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\mathbb{C}\backslash \overline{\Delta_{\delta}}} d\left(f(z+w) \frac{\chi_{\varepsilon}(w)}{w} dw \right) - \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\mathbb{C}\backslash \overline{\Delta_{\delta}}} f(z+w) \frac{\partial}{\partial \overline{w}} (\frac{\chi_{\varepsilon}(w)}{w}) dw \wedge d\overline{w} \\ &= \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\partial \Delta_{\delta}} f(z+w) \frac{\chi_{\varepsilon}(w)}{w} dw - \lim_{\delta \to 0} \frac{1}{2\pi i} \int_{\mathbb{C}\backslash \Delta_{\delta}} f(w) \rho_{\varepsilon}(w-z) dw \wedge d\overline{w} \\ &= f(z) - \frac{1}{2\pi i} \int_{\mathbb{C}} f(w) \rho_{\varepsilon}(w-z) dw \wedge d\overline{w}, \end{split}$$

其中 $\rho_{\varepsilon}(w) = \frac{\partial}{\partial \overline{w}} \left(\frac{\chi_{\varepsilon}(w)}{w} \right) \in C_0^{\infty}(\Delta_{\varepsilon} \setminus \overline{\Delta_{\frac{\varepsilon}{2}}}).$

将上面积分写成 Riemann 和的极限,再利用 1 推出 $\forall f \in C_0^{\infty}(U_{\varepsilon})$,有

$$0 = T(\frac{\partial f_{\varepsilon}}{\partial \overline{z}}) = Tf - \frac{1}{2\pi i} \int_{U} f(w) h_{\varepsilon}(w) dw \wedge d\overline{w},$$

其中 $h_{\varepsilon}(w) = T(z \to \rho_{\varepsilon}(w-z))$,第一处等号是因为 2,则

$$Tf = \frac{1}{2\pi i} \int_{U} f(w) h_{\varepsilon}(w) dw \wedge d\overline{w}.$$

$$\frac{h_{\varepsilon}(w+t) - h_{\varepsilon}(w)}{t} = T(\frac{\rho_{\varepsilon}(w+t-\cdots) - \rho_{\varepsilon}(w-\cdots)}{t}) \to T(\frac{\partial \rho_{\varepsilon}}{\partial t})$$

推出 $h_{\varepsilon} \in C^1(U_{\varepsilon})$.

设 $g \in C_0^{\infty}(U_{\varepsilon})$,则

$$\begin{split} 0 &= T(\frac{\partial g}{\partial \overline{z}}) \\ &= \frac{1}{2\pi i} \int_{U_{\varepsilon}} \frac{\partial g}{\partial \overline{z}} \cdot h_{\varepsilon}(z) dz \wedge d\overline{z} \\ &= 0 \frac{1}{2\pi i} \int_{U_{\varepsilon}} g \cdot \frac{\partial h_{\varepsilon}}{\partial \overline{z}} dz \wedge d\overline{z} \end{split}$$

推出 $\frac{\partial h_{\varepsilon}}{\partial \overline{z}} - 9$, 故 $h_{\varepsilon} \in \mathcal{O}(U_{\varepsilon})$.

设 $\varepsilon_1 < \varepsilon_2$, 则 $U_{\varepsilon_1} \supset U_{\varepsilon_2}$, 对 $g \in C_0^{\infty}(U_{\varepsilon_2})$,

$$Tg = \frac{1}{2\pi i} \int_{U} g(w) \cdot h_{\varepsilon_{2}}(w) dw \wedge d\overline{w} = \frac{1}{2\pi i} \int_{U} g(w) h_{\varepsilon}(w) dw \wedge d\overline{w}.$$

推出 $\int_{U_{\varepsilon_2}} g(w)(h_{\varepsilon_1}(w) - h_{\varepsilon_2}(w))dw \wedge d\overline{w} = 0, \forall g \in C_0^{\infty}(U_{\varepsilon_2}), \ \text{则 } h_{\varepsilon_1}|_{U_{\varepsilon_2}} = h_{\varepsilon_2}.$ 最后,取 $h|_{U_{\varepsilon}} := \frac{1}{2\pi i}h_{\varepsilon} \in \mathcal{O}(U), \ \text{其满足要求}.$

引理 2.3.3. X 是紧 Riemann 面, $f \in \mathcal{E}_L(X)$, $S \in H^0(X, K \otimes L^*)$, 则 $\langle S, d''f \rangle = 0$.

引理的证明. 设 $\{(U_i, z_i)\}$ 是 X 的一个坐标邻域覆盖,使得 L_{U_i} 平凡. 取 $\{U_i\}$ 的单位分解 χ_i 令 $f_i = \chi_i \cdot f \in C_0^{\infty}(U_i), \ f = \sum f_i, \ S|_{U_i} = h_i dz_i \otimes \xi^*, h_i \in \mathcal{O}(U_i).$

$$\begin{split} \langle S, d''f \rangle &= \sum \langle S, d''f_i \rangle \\ &= \sum \int_{U_i} h_i \cdot \frac{\partial f_i}{\partial \overline{z_i}} dz_i \wedge d\overline{z_i} \\ &= - \sum \int_{U_i} \frac{\partial h_i}{\partial \overline{z_i}} f_i dz_i \wedge d\overline{z_i} = 0. \end{split}$$

定义 2.3.11. 于是 $\langle \cdot, \cdot \rangle$ 诱导出一个双线性形式

$$H^0(X, K \otimes L^*) \times \left(\mathcal{E}_L^{(0,1)}(X)/d''\mathcal{E}_L(X)\right) \to \mathbb{C}$$

仍记为 (·,·).

设 $D: H^1(X,L) \to \mathcal{E}_L^{(0,1)}(X)/d''\mathcal{E}_L(X)$ 为 Dolbeault 同构, 再定义一个双线性形式

$$H^0(X, K \otimes L^*) \times H^1(X, L) \to \mathbb{C}$$

$$\langle S, \xi \rangle_L := \langle S, D(\xi) \rangle$$

其诱导出映射 $\Delta_L: H^0(X, K \otimes L^*) \to H^1(X, L)^*, S \mapsto \Delta_L(S): \xi \mapsto \langle S, \xi \rangle_L.$

定理 2.3.4. Serre.

 Δ_L 是一个同构.

证明. Δ_L 单: 若 $S \in H^0(X, K \otimes L^*)$ 使得 $\langle S, \varphi \rangle = 0, \forall \varphi \in \mathcal{E}_L^{(0,1)}(X)$, 则 S = 0. Δ_L 满. 设 $l : \mathcal{E}_L^{(0,1)}(X)/d''\mathcal{E}_L(X) \to \mathbb{C}$ 是一个线性映射,因为 $\dim \mathcal{E}_L^{(0,1)}(X)/d''\mathcal{E}_L(X) < \infty$,故 l 连续. 定义线性映射

$$F: \mathcal{E}_L^{(0,1)}(X) \to \mathbb{C}$$
 $\varphi \mapsto l([\varphi]).$

则 F 为连续线性泛函,且使得 $F|_{d''\mathcal{E}_L(X)}=0$,所以由表示定理,存在唯一的 $S\in H^0(X,K\otimes L^*)$ 使得

$$l([\varphi]) = F(\varphi) = \langle S, \varphi \rangle = \langle S, [\varphi] \rangle, \forall \varphi \in \mathcal{E}_L^{(0,1)}(X).$$

再利用同构 D, 知 Δ_L 是满的.

推论 2.3.1. Serre 对偶定理.

$$H^0(X,\Omega_{-D}) \cong H^1(X,\mathcal{O}_D)^*.$$

$$H^0(X, \mathcal{O}_{-D}) \cong H^1(X, \Omega_D)^*$$
.

证明. 第一个是因为

$$\Omega_{-D} \cong \mathcal{O}_{K \otimes L_D^*},$$

$$\mathcal{O}_D \cong \mathcal{O}_{L_D}.$$

第二个是

$$H^{0}(X, \mathcal{O}_{-D}) \cong H^{0}(X, \Omega_{-K-D}) \cong H^{1}(X, \mathcal{O}_{K+D}) \cong H^{1}(X, \Omega_{D}).$$

2.4 调和微分形式

定义 2.4.1. X 是 Riemann 面, $\omega \in \mathcal{E}^1(X)$, 局部地, $\omega = fdz + gd\overline{z}$. 定义 $\overline{\omega} := \overline{f}d\overline{z} + \overline{g}dz \in \mathcal{E}^1(X)$.

若 $\omega = \overline{\omega}$, 则称 ω 为实的. 令 $\text{Re}\,\omega := \frac{1}{2}(\omega + \overline{\omega})$, 则 ω 为实的等价于 $\omega = \text{Re}\omega$.

 $\overline{\Omega}(X) = \{\overline{\omega} : \omega \in \Omega(X)\}. \ \forall \omega \in \mathcal{E}^1(X), \ \text{存在唯一分解} \ \omega = \omega_1 + \omega_2, \ \text{其中} \ \omega_1 \in \mathcal{E}^{(1,0)}(X), \\ \omega_2 \in \mathcal{E}^{(0,1)}(X).$

定义 2.4.2. 定义 Hodge * 算子如下: $*\omega := i(\overline{\omega_1} - \overline{\omega_2})$ (其为一个共轭线性算子.)

命题 2.4.1. *Hodge* * 算子的若干性质.

 $1.**\omega = -\omega, \ \overline{*\omega} = *\overline{\omega}.$

2. $d * \omega = id(\overline{\omega_1} - \overline{\omega_2}) = id'\overline{\omega_1} - id''\overline{\omega_2}$.

3. $*d'f = i\overline{d'} = id''\overline{f}, *d''f = -id'\overline{f}.$

4. $d*df = 2id'd''\overline{f}$.

定义 2.4.3. 称 $\omega \in \mathcal{E}^1(X)$ 为调和的,若

$$d\omega = 0 = d * \omega.$$

记 $\mathcal{H}^1(X)$ 是 X 上的调和 1-形式全体.

定理 2.4.1. 下列命题等价 (TFAE):

- 1. $\omega \in \mathcal{H}^1(X)$.
- 2. $d'\omega = 0 = d''\omega$.
- 3. $\omega = \omega_1 + \omega_2 \in \Omega(X) + \overline{\Omega}(X)$.
- 4. $\forall a \in X$,存在坐标邻域 $U \ni a$ 以及 $f \in \mathcal{H}(U)$ 使得 $\omega = df$.

证明.

$$0 = d\omega = d\omega_1 + d\omega_2 = d''\omega_1 + d'\omega_2$$

$$0 = d * \omega = id(\overline{\omega_1} - \overline{\omega_2}) = i(d'\overline{\omega_1} - d''\overline{\omega_2})$$

等价于 $0 = d''\omega_1 - d'\omega_2$. 故 $\omega \in \mathcal{H}^1(X)$ 等价于 $d''\omega_1 = 0 = d'\omega_2$. 容易验证 1, 2, 3 等价.

3 推 4: 设 $\omega_1 = h_1 dz$, $\overline{\omega_2} = h_2 dz$, $h_1, h_2 \in \mathcal{O}$. 令

$$f(z) := \int_0^z h_1 dz + \int_0^{\overline{z}} \overline{h_2 dz} \in \mathscr{H}(X),$$

则 $df = h_1 dz + \overline{h_2 dz} = \omega$.

4 推 1: 设 $\omega = df$, $d\omega = d^2f = 0$. $d*\omega = d*df = 2id'd''\overline{f} = 0$ 推出 $\omega \in \mathcal{H}^1(X)$.

定理 2.4.2. 设 $\sigma \in \mathcal{H}^1(X)$ 且是实的,则存在唯一的 $\omega \in \Omega(X)$ 使得 $\sigma = Re \omega$.

证明. 存在性: 设 $\sigma = \omega_1 + \overline{\omega_2}, \ \omega_1, \omega_2 \in \Omega(X).$ $\omega_1 + \overline{\omega_2} = \sigma = \overline{\sigma} = \overline{\omega_1} + \omega_2.$ 推出 $\omega_1 - \omega_2 = \overline{\omega_1 - \omega_2},$ 故 $\omega_1 = \omega_2,$ 因此 $\sigma = \omega + \overline{\omega} = 2\operatorname{Re} \omega.$

唯一性: 设 $\omega \in \Omega(X)$ 使得 Re $\omega = 0$. 局部地, $\omega = df$, $f \in \mathcal{O}$.

$$0 = \text{Re } \omega = \text{Re } df = d \, \text{Re } f$$

推出 Re f 局部为常数, 进而 f 局部为常数, 进而 df = 0, 则 $\omega = 0$.

定义 2.4.4. 设 X 是紧 Riemann 面(本节下述命题均有此假设), $\omega_1,\omega_2 \in \mathcal{E}^1(X)$,令 $\langle \omega_1,\omega_2 \rangle := \int_X \omega_1 \wedge *\omega_2$.

局部地,设 $\omega_1 = f_1 dz + g_1 d\overline{z}, \omega_2 = f_2 dz + g_2 d\overline{z},$

$$\omega_1 \wedge *\omega_2 = (f_1 dz + g_1 d\overline{z}) \wedge i(\overline{f_2} d\overline{z} - \overline{g_2} dz)$$
$$= i(f_1 \overline{f_2} + g_1 \overline{g_2}) dz \wedge d\overline{z}$$

故 $\langle \cdot, \cdot \rangle$ 是 $\mathcal{E}^1(X)$ 上的一个内积.

引理 2.4.1. 1. $d'\mathcal{E}(X), d''\mathcal{E}(X), \Omega(X), \overline{\Omega}(X)$ 相互正交.

$$2.$$
 $d\mathcal{E}(X)$ 与 $*d\mathcal{E}(X)$ 正交,且 $d\mathcal{E}(X) \oplus *d\mathcal{E}(X) = d'\mathcal{E}(X) \oplus d''\mathcal{E}(X)$.

引理的证明. 第一条引理: $\mathcal{E}^{(1,0}(X) \perp \mathcal{E}^{(0,1)}(X)$ 显然, 故 $\mathcal{E}^{1}(X) = \mathcal{E}^{(1,0)}(X) \oplus \mathcal{E}^{(0,1)}(X)$. 故 只需证 $d'\mathcal{E}(X) \perp \Omega(X)$, $d''\mathcal{E}(X) \perp \overline{\Omega}(X)$.

设
$$f \in \mathcal{E}(X)$$
, $\omega \in \Omega(X)$

$$\omega \wedge *d'f = \omega \wedge id''\overline{f} = -id''(\overline{f}\omega) = -id(\overline{f}\omega)$$

推出

$$\langle \omega, d'f \rangle = \int_X \omega \wedge *d'f = -i \int_X d(\overline{f}\omega) = 0$$

故 $\omega \perp d'f$.

第二条引理: 设 $f,g \in \mathcal{E}(X)$, 则 $df \wedge **dg = -df \wedge dg = -d(fdg)$, 推出 $\langle df,*dg \rangle = -\int_X d(fdg) = 0$, 进而 $d\mathcal{E}(X) \perp *d\mathcal{E}(X)$.

又因为 $d'\mathcal{E}(X)\oplus d''\mathcal{E}(X)\supset d\mathcal{E}(X),\ *d\mathcal{E}(X)\subset d'\mathcal{E}(X)\oplus d''\mathcal{E}(X)$ (性质 3). 所以 LHS 包含于 RHS.

RHS 包含于 LHS 由性质 3 易得.

推论 2.4.1. $\mathcal{H}^1(X) = \Omega(X) \oplus \overline{\Omega}(X)$, 进而 dim $\mathcal{H}^1(X) = 2 \dim \Omega(X) = 2q$.

推论 2.4.2. $\sigma \in \mathcal{H}^1(X)$ 且正合,则 $\sigma = 0. (\sigma \in \mathcal{H}^1(X) \cap d\mathcal{E}(X))$

推论 2.4.3. $f \in \mathcal{H}(X)$, 则 f 恒为常数.(考虑 $\sigma = df$)

定理 2.4.3. $\mathcal{E}^{(0,1)}(X) = d''\mathcal{E}(X) \oplus \overline{\Omega}(X)$.

证明. 由 Dolbeault 定理, $\mathcal{E}^{(0,1)}(X)/d''\mathcal{E}(X)\cong H^1(X,\mathcal{O})$,则 $\dim \mathcal{E}^{(0,1)}(X)/d''\mathcal{E}(X)=g$. 显然 $\mathcal{E}^{(0,1)}(X)\supset d''\mathcal{E}(X)\oplus \overline{\Omega}(X)$,则 $\mathcal{E}^{(0,1)}(X)/d''\mathcal{E}(X)\supset \overline{\Omega}(X)$. 因为 $\dim \overline{\Omega}=g$,所以 $\mathcal{E}^{(0,1)}(X)/d''\mathcal{E}(X)=\overline{\Omega}(X)$.

定理 2.4.4. Hodge 正交分解定理.

$$\mathcal{E}^1(X) = d\mathcal{E}(X) \oplus *d\mathcal{E}(X) \oplus \mathscr{H}^1(X).$$

证明. 由上述定理, $\mathcal{E}^{(1,0)} = d'\mathcal{E}(X) \oplus \Omega(X)$,推出

$$\mathcal{E}^{1}(X) = \mathcal{E}^{(1,0)}(X) \oplus \mathcal{E}^{(0,1)}(X)$$
$$= d'\mathcal{E}(X) \oplus d''\mathcal{E}(X) \oplus \Omega(X) \oplus \overline{\Omega}(X)$$
$$= d\mathcal{E}(X) \oplus *d\mathcal{E}(X) \oplus \mathscr{H}^{1}(X).$$

推论 2.4.4. $\sigma \in \mathcal{E}^{(0,1)}(X)$, 方程 $d''f = \sigma$ 可解等价于

$$\int_X \sigma \wedge \omega = 0, \quad \forall \omega \in \Omega(X).$$

证明. 左推右:

$$\int_X \sigma \wedge \omega = \int_X d'' f \wedge \omega = \int_X d'' (f \omega) = \int_X d(f \omega) = 0.$$

右推左:

$$\langle \sigma, \overline{\omega} \rangle = \int_{X} \sigma \wedge (-i\omega) = -i \int_{X} \sigma \wedge \omega = 0$$

推出 $\sigma \perp \overline{\Omega}(X)$, 由定理 2.4.3 知 $\sigma \in d''\mathcal{E}(X)$.

定理 2.4.5.

$$\operatorname{Ker}\left(d:\mathcal{E}^1(X)\to\mathcal{E}^2(X)\right)=d\mathcal{E}(X)\oplus\mathcal{H}^1(X).$$

证明. 记 LHS 为 \mathcal{L} ,LHS 包含 RHS 是显然的,对于另一方向,由 Hodge 正交分解,只需证 $\mathcal{L} \perp *d\mathcal{E}(X)$ 即可.

设
$$\omega \in \mathcal{L}$$
, $f \in \mathcal{E}(X)$,

$$\omega \wedge * * df = -\omega \wedge df = d(f\omega)$$

推出 $\langle \omega, *df \rangle = \int_X d(f\omega) = 0.$

推论 2.4.5. $\sigma \in \mathcal{E}^1(X)$ 正合 (即 $df = \sigma$ 可解) 等价于

$$\int_X \sigma \wedge \omega = 0, \quad \forall \mathfrak{H} \omega \in \mathcal{E}^1(X).$$

证明. 左推右是 Stokes 公式, 右推左:

$$\langle \omega, *\sigma \rangle = \int_X \omega \wedge * *\sigma = -\int_X \omega \wedge \sigma = 0$$

对于任意闭的 $\omega \in \mathcal{E}^1(X)$. 推出 $*\sigma \perp \mathcal{L}$, 则由 Hodge 分解, $*\sigma \in *d\mathcal{E}(X)$, 进而 $\sigma \in d\mathcal{E}(X)$.

定理 2.4.6. Hodge-de Rham.

$$H^1(X,\mathbb{C}) \cong Rh^1(X) \cong \mathscr{H}^1(X)$$

其中第一个同构是 de Rham 同构, 第二处同构是上一条定理.

定义 2.4.5. 称 $b_1 := \dim H^1(X, \mathbb{C})$ 为 X 的第一 Betti 数, 其为一个拓扑不变量.

注 2.4.1. 由 Hodge-de Rham 定理, $b_1 = 2g$, 故 g 也是拓扑不变量.

注 2.4.2. 由可定向紧曲面的拓扑分类, X 同胚于球面加上 g 个柄.

2.5 Mittag-Leffler 问题

定理 2.5.1. Mittag-Leffler 定理.

给定 $\mathbb C$ 中一个离散点列上的一列主部,存在 $f\in M(\mathbb C)$ 使得 f 在这些点上的主部恰好为给定主部.

问:在Riemann面上是否有类似现象?

定义 2.5.1. X 是 Riemann 面, $\mathcal{U} = \{U_i\}_{i \in I}$ 为 X 的开覆盖. 称 $\mu = (f_i) \in C^0(\mathcal{U}, \mathcal{M})$ 为 一个 Mittag-Leffler 分布,若 $f_i - f_j \in \mathcal{O}(U_i \cap U_j), \forall i, j$,即 $\delta \mu \in Z^1(\mathcal{U}, \mathcal{O})$.

相应于 μ 的一个解指的是一个 $f \in \mathcal{M}(X)$ 使得 $f - f_i \in \mathcal{O}(U_i), \forall i$.

注 2.5.1. 则 Mittag-Leffler 定理等价于 $\mathbb C$ 上的任何 M-L 分布存在解.

定理 2.5.2. *M-L* 分布 μ 存在解等价于 $[\delta\mu] = 0$ 于 $H^1(\mathcal{U}, \mathcal{O})$.

证明. 左推右: 设 f 为 $\mu = (f_i)$ 的解, 则 $g_i := f_i - f \in \mathcal{O}(U_i)$,

$$\delta \mu = (f_i - f_j) = (g_i - g_j) \in B^1(\mathcal{U}, \mathcal{O}).$$

右推左: $[\delta\mu] = 0$,推出存在 $g_i \in \mathcal{O}(U_i)$ 使得 $\delta\mu = (g_i - g_j)$,则 $f_i - f_j = g_i - g_j$,即 $f_i - g_i = f_j - g_j$,做 $f|_{U_i} := f_i - g_i \in \mathcal{M}(X)$,其为 μ 的解.

注 2.5.2. 设 X 是紧 Riemann 面,则 $H^1(X,\mathcal{M})=0$. 对于任意 $\xi\in H^1(X,\mathcal{O})$,则 $\xi=[(f_{ij})],(f_{ij})\in Z^1(\mathcal{U},\mathcal{O})\subset Z^1(\mathcal{U},\mathcal{M})$,故存在 $f_i\in\mathcal{M}(U_i)$,使得 $f_{ij}=f_i-f_j$. 故 $\mu=(f_i)$ 为一个 M-L 分布,且 $\xi=[\delta\mu]$.

当 $g \ge 1$ 时,存在 $\xi \in H^1(X, \mathcal{O})$ 非 0,其对应的 M-L 分布 μ 不存在解.

定义 2.5.2. 称 $\mu = (\omega_i)_{i \in I} \in C^0(\mathcal{U}, \mathcal{M}^1)$ 为一个 M-L 分布,若 $\omega_i - \omega_j \in \Omega(U_i \cap U_j), \forall i, j$. 对于 $a \in X$,定义 μ 在 a 处的留数为 $\mathrm{Res}_a \mu := \mathrm{Res}_a \omega_i$,若 $a \in U_i$. (验证定义良好) 若 X 是紧 Riemann 面,则定义 $\mathrm{Res} \mu = \sum_{i \in V} \mathrm{Res}_a \mu$. (本质是有限和)

定理 2.5.3. X 是紧 Riemann 面,M-L 分布 $\mu = (f_i)$ 存在解等价于

Res
$$\mu\omega = 0$$
, $\forall \omega \in \Omega(X)$.

证明. 左推右:设 f 为 μ 的解,则 $f - f_i \in \mathcal{O}(U_i)$,则 $\forall x \in U_i$, $\mathrm{Res}_x f \cdot \omega = \mathrm{Res}_x f_i \cdot \omega, \forall i$. 另一方面,因为 $f \cdot \omega \in \mathcal{M}^1(X)$,由留数定理, $\mathrm{Res} f \cdot \omega = 0$.

右推左: 因为 $\delta\mu \in Z^1(\mathcal{U},\mathcal{O}) \subset Z^1(\mathcal{U},\mathcal{E})$,而 $H^1(\mathcal{U},\mathcal{E}) = 0$,故存在 $(\sigma_i) \in C^0(\mathcal{U},\mathcal{E})$ 使得 $\mathcal{O}(U_i \cap U_j) \ni f_i - f_j = \sigma_i - \sigma_j \oplus U_i \cap U_j$. 故 $d''\sigma_i = d''\sigma_j \oplus U_i \cap U_j$,则 $\alpha|_{U_i} := d''\sigma_i \in \mathcal{E}^{(0,1)}(X)$. 我们假设有

$$\int_{X} \alpha \wedge \omega = 0, \quad \forall \omega \in \Omega(X), \tag{2.5.1}$$

则存在 $u \in \mathcal{E}(X)$ 使得 $d''u = \alpha$.

令 $g_i = \sigma_i - u$, 则 $d''g_i = 0$, 故 $g_i \in \mathcal{O}(U_i)$, 且 $\delta \mu = (f_i - f_j) = (\sigma_i - \sigma_j) = (g_i - g_j)$, 则 $[\delta \mu] = 0$, 故 μ 存在解.

我们再说明方程 (2.5.1) 成立. 令 $\beta|_{U_i} := f_i - \sigma_i \in \mathcal{E}(X^1), \ X' = X \setminus \{a_1, \cdots, a_n\}, \$ 其中 $a_i \in \mu$ 的极点. 则 $d''\beta = d''f_i - d''\sigma_i = -\alpha$ 于 X'.

$$\begin{split} \int_X \alpha \wedge \omega &= -\lim_{\varepsilon \to 0} \int_{X \setminus \bigcup_j \{|z_j| \le \varepsilon\}} d'' \beta \wedge \omega \\ &= -\lim_{\varepsilon \to 0} \int_{X \setminus \bigcup_j \{|z_j| \le \varepsilon\}} d(\beta \wedge \omega) \\ &= \sum_{j=1}^n \lim_{\varepsilon \to 0} \int_{\{|z_j| = \varepsilon\}} \beta \wedge \omega \\ &= \sum_{j=1}^n \lim_{\varepsilon \to 0} \int_{\{|z_j| = \varepsilon\}} f_j \wedge \omega - \sigma_j \wedge \omega \\ &= 2\pi i \operatorname{Res} \mu \cdot \omega = 0. \end{split}$$

一些应用.

g=1 的情形. $\Gamma := \mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2$ 为一个格. $P := \{t_1\gamma_1 + t_2\gamma_2 : t_1, t_2 \in [0,1)\}.$

命题 2.5.1. 给定 $a_1, \dots, a_n \in P$ 以及主部 $\sum_{\nu=-r_j}^{-1} C_{\nu}^{j} (z-a_j)^{\nu}, \ 1 \leq j \leq n.$ 存在 Γ 双周期亚纯函数,使得其在 a_j 处有上述给定主部,等价于

$$\sum_{j=1}^{n} C_{-1}^{j} = 0.$$

证明. 设 $X = \mathbb{C}/\Gamma$. 记 ω 为由 dz 诱导的 X 上的全纯 1-形式,则 $\Omega(X) = \mathbb{C} \cdot \omega$. 设 μ 为相应的 M-L 分布. 则 μ 存在解等价于 $\operatorname{Res} \mu \cdot \omega = 0$ (这里用到了 ω 构成基),即等价于 $\sum_{i=1}^{n} C_{-1}^{i} = 0$.

 $g \ge 2$ 的情形.

定义 2.5.3. $U \subset \mathbb{C}$ 为区域, $f_1, \dots, f_g \in \mathcal{O}(U)$, 称

$$W(f_1, \cdots, f_g) := \det \left(egin{array}{cccc} f_1 & f_2 & \cdots & f_g \ f_1' & f_2' & \cdots & f_g' \ dots & dots & \ddots & dots \ f_1^{(g-1)} & f_2^{(g-1)} & \cdots & f_g^{(g-1)} \end{array}
ight)$$

为 Wronski 行列式.

引理 2.5.1. f_1, \dots, f_g 线性无关等价于 $W(f_1, \dots, f_g)$ 不恒等于 0.

引理的证明. 右推左: 假设 f_1, \dots, f_g 线性相关,即存在不全为 0 的 $c_1, \dots, c_g \in \mathbb{C}$ 使得

$$c_1 f_1 + \dots + c_a f_a = 0.$$

不妨设 $c_g \neq 0$, 则 $f_g = -\sum_{i=1}^{g-1} \frac{c_j}{c_g} f_j$, 则 $W(f_1, \dots, f_g) \equiv 0$, 矛盾.

左推右: 首先证明,若 $h_j^{g=1}$ = $\varphi \cdot f_j, \varphi \in \mathcal{O}(U)$,则 $W(h_1, \cdots, h_g) = \varphi^g \cdot W(f_1, \cdots, f_j)$. 由 Lebnitz 法则, $H_k^{(\nu)} = \varphi \cdot f_k^{(\nu)} + \sum_{\mu < \nu} C_{\nu}^{\mu} \varphi^{(\nu-\mu)} f_k^{(\mu)}$,则

$$W(h_1, \dots, h_g) = \det(\varphi f_k^{(j)}) = \varphi^g W(f_1, \dots, f_g).$$

回到原题,用数学归纳法,g=1 时显然,现假设 g-1 情形已证明,若 $f_g^{-g}W(f_1,\cdots,f_g)=0$,且不妨设 f_g 不恒等于 0. 令 $V:=U\backslash f_g^{-1}(0)$,在 V 上

$$W(\frac{f_1}{f_q}, \cdots, \frac{f_{g-1}}{f_q}, 1) = f_g^{-g}W(f_1, \cdots, f_g) = 0$$

记 $h_k := \frac{f_k}{f_a}$,有

$$W(\frac{f_1}{f_q}, \dots, \frac{f_{g-1}}{f_q}, 1) = W(h_1, \dots, h_{g-1}, 1) = \pm W(h'_1, \dots, h'_{g-1})$$

由归纳假设,存在不全为 0 的复数 c_1, \cdots, c_{g-1} 使得 $\sum_{j=1}^{g-1} c_j h'_j = 0$,则 $\sum_{j=1}^{g-1} c_j h_j$ 时常数,故 $h_1, \cdots, h_{g-1}, 1$ 线性相关,即 f_1, \cdots, f_g 在 V 上线性相关,又 $V \subset U$ 稠密,所以 f_1, \cdots, f_g 再 U 上线性相关,矛盾.

定义 2.5.4. X 是紧 Riemann 面,亏格恰为 g,设 $\omega_1, \dots, \omega_g$ 为 $\Omega(X)$ 的一组基. 局部地, $\omega_k = f_k dz$,定义 $W_z(\omega_1, \dots, \omega_g) := W(f_1, \dots, f_g)$.

定理 2.5.4. 设 (U,z) 和 (V,\overline{z}) 为 X 上的两个坐标邻域,且 $U \cap V$ 非空.则在 $U \cap V$ 上成立

$$W_z(\omega_1, \cdots, \omega_g) = (\frac{d\overline{z}}{dz})^N W_{\overline{z}}(\omega_1, \cdots, \omega_g),$$

其中 $N = \frac{g(g+1)}{2}$.

注 2.5.3. $\sigma|_U := W_z(\omega_1, \cdots, \omega_q) dz^{\otimes N} \in \Gamma(X, K^{\otimes N}).$

定义 2.5.5. 设 $g \geq 2$,称 $p \in X$ 为一个 Weierstrass 点,若存在基 $\omega_1, \cdots, \omega_g \in \Omega(X)$ 以及 坐标 (U,z) 使得 $W_z(\omega_1, \cdots, \omega_g)|_p = 0$. 上述定理保证此定义不依赖于坐标选取,还需验证定 义与 $\Omega(X)$ 的正交基的选取无关

$$(\omega_1,\cdots,\omega_g)=(\overline{\omega_1},\cdots,\overline{\omega_g})\cdot C, \ \ \mathbb{M} \ \ W_z(\omega_1,\cdots,\omega_g)=|C|W_z(\overline{\omega_1},\cdots,\overline{\omega_g}) \ \ (\, \mathfrak{F}\, \mathfrak{F}\,)$$

定理 2.5.5. 设 $p \in X$,存在 $f \in \mathcal{M}(X) \cap \mathcal{O}(X \setminus \{p\})$ 使得其在 p 处有阶小于等于 g 的极点,等价于,p 是一个 Weierstrass 点.

证明. 取 $\omega_1, \dots, \omega_g \in \Omega(X)$ 的一组基. 取坐标 (U, z) 使得 z(p) = 0. 记 $\omega_k = \sum_{\gamma=0}^{\infty} a_{k\gamma} z^{\gamma} dz$ 于

U. 则存在 $f \in \mathcal{M}(X) \cap \mathcal{O}(X \setminus \{p\})$,其在 p 处主部为 $h = \sum_{\gamma=0}^{q-1} c_{\gamma}/z^{\gamma+1}$, c_0, \dots, c_{q-1} 不全为 0,等价于其是下面 M-L 分布的一个解: $\mu = (h, 0) \in C^0(\mathcal{U}, \mathcal{M})$, $\mathcal{U} = \{U, X \setminus \{p\}\}$.

$$\operatorname{Res}(\omega_k \mu) = \operatorname{Res}_p(\omega_k \cdot h) = \sum_{\gamma=0}^{g-1} a_{k\gamma} \cdot c_{\gamma}$$

推出 $\begin{cases} \operatorname{Res}(\omega_k \mu) = 0 \\ q \leq k \leq g \end{cases}$ 有非平凡解 (c_0, \dots, c_{g-1}) 等价于 $\det(a_{k\gamma})_{1 \leq k \leq g, 0 \leq \gamma \leq g-1} = 0$,即 $W_*(\omega_1, \dots, \omega_g)|_{p} = 0$,为一个 Weierstrass 点.

定理 2.5.6. Weierstrass 点的个数为 (g-1)g(g+1), 记重数在内.

证明. 设 (U_i, z_i) , $i \in I$ 为 X 的一个坐标邻域覆盖,记 $\psi_{ij} := dz_j/dz_i$ 于 $U_i \cap U_j$. 设 $\omega_1, \dots, \omega_q \in \Omega(X)$ 为一组基. 令 $W_i = W_{z_i}(\omega_1, \dots, \omega_q) \in \mathcal{O}(U_i)$.

定义 $D \in \text{Div}(X)$: $D(x) := \text{ord}_x W_i$ 若 $x \in U_i$. 只须证明 $\deg D = (g-1)g(g+1)$.

设 $D_1 = (\omega_1)$, 则 $\deg D_1 = 2g - 2$. 设 $\omega_1 = f_{1i}dz_i$ 于 U_i , 则 $D_1(x) = \operatorname{ord}_x f_{1i}$, 若 $x \in U_i$. 注意到 $f_{1i} = \psi_{ij}f_{1j}$ 于 $U_i \cap U_j$,则 $\psi_{ij} = f_{1i}/f_{1j}$.

因为 $W_i = \psi_{ij}^N W_j$,所以 $W_i \cdot f_{1i}^{-N} = W_j \cdot f_{1j}^{-N}$ 于 $U_i \cap U_j$. 进而 $f|_{U_i} := W_i \cdot f_{1i}^{-N} \in \mathcal{M}(X)$. 则 $0 = \deg(f) = \deg D - N \cdot \deg D_1$,

$$\deg D = N \cdot \deg D_1 = (g-1)g(g+1).$$

推论 2.5.1. $g \ge 2$ 时,Weierstrass 点存在,更加地,存在分歧全纯覆盖 $f: X \to \mathbb{P}^1$ 使得叶数不超过 g.

特别地, 若 g=2, 则全纯覆盖的叶数只能为 2, 进而 X 为超椭圆.

定义 2.5.6. X 是紧 Riemann 面,定义 X 的阶为

$$\deg X := \min\{n : 存在n$$
叶全纯覆盖 $f : X \to \mathbb{P}^1\}.$

由推论, $\deg X \leq g$.

2.6 Abel 定理

定理 2.6.1. Weierstrass

设 $\{a_n\} \subset \mathbb{C}$ 离散, $\{m_n\} \in \mathbb{Z} \setminus \{0\}$,则存在 $f \in \mathcal{M}(\mathbb{C})$ 使得 $f \in \mathcal{O} \setminus \{a_1, \dots, a_n, \dots\}$ 且 $\operatorname{ord}_{a_n} f = m_n$.

问:在Riemann面上是否有类似现象?

定义 2.6.1. X 是 Riemann 面, $D \in Div(X)$. 称 f 为 D 的一个解,若 $f \in \mathcal{M}(X)$ 使得 (f) = D (即 D 是一个主除子).

注 2.6.1. 则 Weierstrass 定理等价于, 任意 $D \in Div(X)$ 存在一个解.

若 X 是紧 Riemann 面,则 $D \in \text{Div}(X)$ 存在解可推出 $\deg D = 0$. 记 $X_D = \{x \in X : D(x) \ge 0\}$,则 $X \setminus X_D$ 离散.

定义 2.6.2. D 的一个弱解指一个 $f \in \mathcal{E}(X_D)$ 使得 $\forall a \in X$,存在坐标 (U,z) 使得 z(a) = 0 及 $\psi \in \mathcal{E}(U)$, $\psi(a) \neq 0$,使得 $f = z^k \cdot \psi + X_D \cap U$,k = D(a).

弱解 f 为一个解, 等价于 $f \in \mathcal{O}(X_D)$.

命题 2.6.1. 若 f_1, f_2 为 D_1, D_2 的弱解,则 $f_1 \cdot f_2$ 是 $D_1 + D_2$ 的弱解, f_1/f_2 是 $D_1 - D_2$ 的弱解.

命题 2.6.2. 设 f 为 D 的一个弱解,则 $\frac{df}{f} \in \mathcal{E}^1(X \setminus \operatorname{Supp} D)$.

定义 2.6.3. 对 $a \in \operatorname{Supp} D$, k = D(a), 则 $f = z^k \cdot \psi$, $\psi(a) \neq 0$. $\frac{df}{f} = k \frac{dz}{z} + \frac{d\psi}{\psi}$. 则可定义 $\int_X \frac{df}{f} \wedge \sigma$, $\sigma \in \mathcal{E}^1(X)$ 具紧支集. 注意 $\frac{d''f}{f} = \frac{d''\psi}{\psi}$, 则 $\frac{d''f}{f} \in \mathcal{E}^{(0,1)}(X)$.

引理 2.6.1. 设 $a_1, \dots, a_n \in X$, $k_1 \dots, k_n \in \mathbb{Z}$, 设 $D = \sum_{j=1}^n k_j \cdot a_j \in \text{Div}(X)$. 若 f 为 D 的 一个弱解,则 $\forall g \in \mathcal{E}(X)$ 具紧支集,有

$$\frac{1}{2\pi i} \int_X \frac{df}{f} \wedge dg = \sum_{j=1}^n k_j g(a_j).$$

引理的证明. 取坐标 (U_j, z_j) 使得 $z_j(a_j) = 0$, 且在 $U_j \perp f = z_j^{k_j} \cdot \psi_j$, $\psi_j \in \mathcal{E}(U_j)$, $\psi_j(a_j) \neq 0$.

$$\int_{X} \frac{df}{f} \wedge dg = -\lim_{\varepsilon \to 0} \int_{X \setminus \bigcup_{j} \{|z_{j}| \le \varepsilon\}} d(g \cdot \frac{df}{f})$$

$$= \lim_{\varepsilon \to 0} \sum_{j} \int_{|z_{j}| = \varepsilon} g \cdot \frac{df}{f}$$

$$= \lim_{\varepsilon \to 0} \sum_{j} \int_{|z_{j}| = \varepsilon} (gk_{j} \cdot \frac{dz_{j}}{z_{j}} + g \cdot \frac{d\psi_{j}}{\psi_{j}})$$

$$= 2\pi i \sum_{j} k_{j} g(a_{j}).$$

定义 2.6.4. X 上一个 1-链指 $C=\sum\limits_{j=1}^k n_j c_j,\ n_j\in\mathbb{Z},\ c_j:[0,1]\to X$ 为分段光滑曲线. 记 $C_1(X)$ 为 X 上 1-链全体.

若 $\omega \in \mathcal{E}^1(X)$, 则定义 $\int_C \omega := \sum_{j=1}^k n_j \int_{C_j} \omega$. 定义上边缘算子 $\partial : C_1(X) \to \operatorname{Div}(X)$ 如下:

设 $c:[0,1]\to X$ 为一条曲线, 若 c(0)=c(1), 则 $\partial C:=0$, 否则定义

$$\partial C(x) = \begin{cases} 1, & x = c(1) \\ -1, & x = c(0) \end{cases}.$$

$$0, \quad \sharp 条情形$$

一般地,若 $c=\sum\limits_{j=1}^k n_j c_j \in C_1(X)$,则定义 $\partial c:=\sum\limits_{j=1}^k n_j \partial c_j$.

若 X 是紧 Riemann 面, $D \in \text{Div}(X)$, $\deg D = 0$, 则 $D = a_1 + a_2 + \cdots + a_n - b_1 - \cdots - b_n$. 令 c_i 为连接 a_i, b_i 的一条曲线. 则定 $c = c_1 + \cdots + c_k$,则 $\partial c = D$.

定义 2.6.5. 称 $Z_1(X) := \operatorname{Ker}\left(C_1(X) \xrightarrow{\partial} \operatorname{Div}(X)\right)$ 为 X 上一个 1-循环群. 对于 $c, c' \in Z_1(X)$,定义 $c \sim c'$ 等价于 $\int_c \omega = \int_{c'} \omega$,对于任意闭的 $\omega \in \mathcal{E}^1(X)$ 成立. 称 $H_1(X) := Z_1(X) / \sim$ 为 X 的一阶下同调群.

定理 2.6.2. Abel 定理

X 是紧 Riemann 面, $D \in Div(X)$, $\deg D = 0$. 则 D 有一个解等价于,存在 $c \in C_1(X)$ 使得 $\partial c = D$ 且 $\int_c \omega = 0$ 对于任意 $\omega \in \Omega(X)$ 成立.

证明. 右推左: Step 1, 寻找弱解; Step 2, 通过解 d'' 方程把弱解调整为强解.

引理 2.6.2. X 是 Riemann 面,c 是 X 上曲线, $U \supset c$ 为一个相对紧邻域,则存在 ∂c 的弱解 f,使得 1. $f|_{X\setminus U}=1$,2. $\int_c \omega = \frac{1}{2\pi i} \int_X \frac{df}{f} \wedge \omega$,对于任意闭的 $\omega \in \mathcal{E}^1(X)$.

引理的证明. 首先设 (U,z) 为一个坐标邻域,使得 z(U) 为单位圆盘,且 $c \subset U$. 记 a = c(0),b = c(1),取 r < 1 使得 $c \subset \overline{\Delta_r}$. 则 $\log \frac{z-b}{z-a}$ 在 $\{r < |z| < 1\}$ 上可取单指支,再取 r < r' < 1 及 $\psi \in C_0^\infty(\Delta_{r'})$, $\psi|_{\overline{\Delta_r}} = 1$. 定义

$$f := \begin{cases} \exp(\psi \cdot \log \frac{z-b}{z-a}), & r < |z| < 1\\ \frac{z-b}{z-a}, & |z| \le r\\ 1, & X \setminus U \end{cases}.$$

则 f 为 ∂c 的一个弱解. 设 $\omega \in \mathcal{E}^1(X)$ 闭,由 Poincaré 引理,存在 $g \in \mathcal{E}(X)$ 使得 $\operatorname{Supp} g \subset X$ 且 $\omega = dg$ 于 $\overline{\Delta_{r'}}$. (取 r' < r'' < 1, 则 $h \in \mathcal{E}(\Delta_{r''})$ 使得 $dh = \omega$ 于 $\Delta_{r''}$, 取 $\chi \in C_0^\infty(\Delta_{r''})$ 使得 $\chi|_{\overline{\Delta|_{-r'}}} = 1$, 取 $g = \chi \cdot h \in \mathcal{E}(X)$).

$$\frac{1}{2\pi i} \int_X \frac{df}{f} \wedge \omega = \frac{1}{2\pi i} \int_X \frac{df}{f} \wedge dg \xrightarrow{\exists \exists \underline{a} \text{ 2.6.1}} g|_a^b = \int_{\mathcal{C}} dg = \int_{\mathcal{C}} \omega.$$

一般地,取划分 $0=t_0 < t_1 < t_2 < \cdots < t_n = 1$ 及坐标邻域 $(U_j,z_j),\ 1 \leq j \leq n$ 使得

- (i) $c_j := c|_{[t_{j-1},t_j]} \subset U_j \subset U$.
- (ii) $z_j(U_j)$ 为单位圆. 取 ∂c_j 的弱解 f_j 使得 $f_j|_{X\setminus U_j}=1$ 且 $\int_{c_j}\omega=\frac{1}{2\pi i}\int_X\frac{df_j}{f_j}\wedge\omega$,对于任意闭的 $\omega\in\mathcal{E}^1(X)$. 取 $f:=f_1\cdots f_n$,则 f 为 ∂c 的一个弱解,使得 $f|_{X\setminus U}=1$ 且

$$\frac{1}{2\pi i}\int_X \frac{df}{f}\wedge\omega = \sum_j \frac{1}{2\pi i}\int_X \frac{df_j}{f_j}\wedge\omega = \sum_j \int_{c_j} \omega = \int_c \omega.$$

证明. 回到 Abel 定理,右推左方向. 设 $c = \sum_{j=1}^k n_j c_j$,由引理 2.6.2,存在相应于 ∂c_j 的弱解 f_j 使得 $\frac{1}{2\pi i} \int_X \frac{df_j}{f_j} \wedge \omega = \int_c \omega$,对于任意闭的 $\omega \in \mathcal{E}^1(X)$.

令 $f := f_1^{n_1} \cdots f_k^{n_k}$, 则 f 为 ∂c 的一个弱解, 且

$$\frac{1}{2\pi i} \int_X \frac{df}{f} \wedge \omega = \sum_j \frac{n_j}{2\pi i} \int_X \frac{df_j}{f_j} \wedge \omega = \sum_j n_j \int_{c_j} \omega = \int_c \omega.$$

对于 $\omega \in \Omega(X)$, 则

$$0 = \int_{\mathcal{C}} \omega = \frac{1}{2\pi i} \int_{Y} \frac{df}{f} \wedge \omega = \frac{1}{2\pi i} \int_{Y} \frac{d''f}{f} \wedge \omega.$$

注意到 $\frac{d''f}{f} \in \mathcal{E}^{(0,1)}(X)$, 由 Hodge 理论,存在 $g \in \mathcal{E}(X)$ 使得 $d''g = \frac{d''f}{f}$. 令 $F := e^{-g} \cdot f$, 则 F 也为 $D = \partial c$ 的一个弱解,且在 X_D 上,

$$d''F = -e^{-g}d''g \cdot f + e^{-g} \cdot d''f = 0.$$

进而 $F \in \mathcal{O}(X_D)$, 即 $F \neq D$ 的一个解.

注 2.6.2. Oka 原理

M 是复流形,使得 d''u = v 对任意 $v \in \mathcal{E}^{(0,1)}(X)$ 使得 d''v = 0,均可解. 那么一个问题,在全纯框架下可解,等价于其在拓扑框架下可解.

证明. Abel 定理的左推右方向. 设 f 为 D 的一个解,其定义一个分歧覆盖 $X \to \mathbb{P}^1$. 记 a_1, \dots, a_r 为分歧点全体,记 $Y = \mathbb{P}^1 \setminus \{f(a_1), \dots, f(a_r)\} = \mathbb{P}^1 \setminus \{y_1, \dots, y_s\}, \ s \leq r$.

对 $\omega \in \Omega(X)$, 定义 Push-down $f_*\omega$ 如下:

 $\forall y \in Y$,存在邻域 $V \ni y$,使得 $f^{-1}(V) = \bigcup_{k=1}^n U_k$, $U_k \subset X \setminus \{a_1, \cdots, a_r\}$ 且 $f|_{U_k} : U_k \to V$ 是双全纯映射,令 $\varphi_k = (f|_{U_k})^{-1}$.定义

$$f_*\omega|_V := \sum_{k=1}^n \varphi_k^*\omega,$$

其与 V 的选取无关, 故 $f_*\omega \in \Omega(Y)$.

则有如下的可去奇性:

$$f_*\omega$$
可全纯延拓至 \mathbb{P}^1 (2.6.1)

假设 (*) 成立,则 $f_*\omega \in \Omega(\mathbb{P}^1)$,进而 $f_*\omega = 0$. 取曲线 $\gamma:[0,1] \to \mathbb{P}^1$, $\gamma(0) = \infty$, $\gamma(1) = 0$, $\gamma|_{(0,1)} \subset Y$.

令 $f^{-1}(\gamma) = c_1 + \dots + c_n =: c \in C_1(X)$. 其中 c_j 为 X 中连接 f 的极点与零点的曲线,则 $\partial c = D$,且 $\forall \omega \in \Omega(X)$,有 $\int_c \omega = \sum_{k=1}^n \int_\gamma f_* \omega = 0$.

不妨设 $f^{-1}(y_1) \cap \{a_1, \dots, a_r\} = \{a_1, \dots, a_{r'}\}, r' \leq r$. 记 $n_j = \operatorname{ord}_{a_j} f$, 不妨设 $\varphi_1, \dots, \varphi_{n_1}$ 由 a_1 确定. 只需证明, $\varphi_1^*\omega + \dots + \varphi_{n_1}^*\omega$ 可全纯沿拓至 y_1 .

取 a_1 处坐标 (U,z), y_1 处坐标 (W,ζ) , 使得 f 可表示为 $\zeta=z^{n_1}$. 若 $\omega=z^mdz$, $m\in\mathbb{Z}^+$. 注意到 $\varphi_1(\zeta)$, \cdots , $\varphi_{n_1}(\zeta)$ 为多项式 $h(z,\zeta):=z^{n_1}-\zeta$ 的根.

当 $|\zeta| << 1$ 时, $|\varphi_i(\zeta)| << 1$. 取 $0 < \delta << \varepsilon << 1$,当 $|\zeta| < \delta$,计算留数

$$\begin{split} \sum_{k=1}^{n_1} \varphi_k(\zeta)^l &= \frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{z^l \partial h(z,\zeta)/\partial z}{h(z,\zeta)} dz \\ &= \frac{n_1}{2\pi i} \int_{|z|=\varepsilon} \frac{z^{l+n_1-1}}{z^{n_1}-\zeta} dz \\ &= \frac{n_1}{2\pi i} \int_{|z|=\varepsilon} z^{l-1} \sum_{i=0}^{\infty} (\zeta/z^{n_1})^i dz \in \mathcal{O}_0. \end{split}$$

推出 $\sum_{k=1}^{n_1} \varphi_k^* \omega = \sum_{k=1}^{n_1} \varphi_k^m d\varphi_k = \frac{1}{m} d(\sum_{k=1}^{n_1} \varphi_k^{m+1})$,可全纯沿拓过 $\zeta = 0$,即 y_1 . 对于一般的 ω ,总可写有 Taylor 展开 $\omega = \sum_{m=0}^{\infty} a_m z^m dz$,即得.

命题 2.6.3. $\Gamma = \mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2 \subset \mathbb{C}$ 为一个格, $P = \{t_1\gamma_1 + t_2\gamma_2 : t_1, t_2 \in [0, 1)\}, a_1, \dots, a_n, b_1, \dots, b_n \in P$.

存在 Γ -双周期函数以 a_j 为零点, b_j 为极点,等价于 $\sum_{j=1}^n (a_j - b_j) \in \Gamma$.

证明. 记 $\pi: \mathbb{C} \to \mathbb{C}/\Gamma$ 是自然投影. 记 $D = \pi a_1 + \dots + \pi a_n - \pi b_1 - \dots - \pi b_n$,则 $\deg D = 0$. 记 $c_i = [a_i, b_i]$ 是连接 a_i, b_i 的线段.

令 $c:=\pi c_1+\cdots+\pi c_n\in C_1(\mathbb{C}/\Gamma)$ 使得 $\partial C=D$. 设 dz 诱导 $\omega\in\Omega(\mathbb{C}/\Gamma)$,则 $\int_c\omega=\sum\limits_k\int_{c_k}dz=\sum\limits_k(b_k-a_k)$,则 $\int_c\omega=0$ 等价于 $\sum\limits_k(b_k-a_k)\in\Gamma$,由 Abel 定理即证.

命题 2.6.4. 设 $\omega_1, \cdots, \omega_g$ 为 $\Omega(X)$ 的一组基,记 c_1, \cdots, c_{2g} 为 $H_1(X)$ 的一组典范基. 作 $\gamma_j = \left(\int_{c_j} \omega_1, \cdots, \int_{c_j} \omega_g\right) \in \mathbb{C}^g, \ 1 \leq j \leq 2g.$

可以证明, $\Gamma:=\mathbb{Z}\gamma_1+\cdots+\mathbb{Z}\gamma_{2g}\subset\mathbb{C}^g\cong\mathbb{R}^{2g}$ 为一个格,进而 $J(X):=\mathbb{C}^g/\Gamma$ 为一个 g 维环面,称其为 X 的 Abel 簇.

固定 $a \in X$, 定义映射 $j_x: X \to J(X)$, $x \mapsto [\left(\int_a^x \omega_1, \cdots, \int_a^x \omega_g\right)]$, 称为 Abel-Jacobi 映射.

当 $g \ge 1$ 时, j_x 为一个全纯嵌入.

3 非紧 Riemann 面

目标:证明下面的单值化定理.

定理 3.0.1. 单值化定理 (Kobe 1907, Poincaré 1907)

每个单连通 Riemann 面,双全纯同胚于 Δ , \mathbb{C} 或 \mathbb{P}^1 .

证明方法:

1. PDE(解 Dirichlet 问题); 2. 拓扑; 3. 复分析

动机:如何把一条代数曲线单参数化?

注 3.0.1. 高维不成立, 如 \mathbb{B}^2 不全纯同胚于 $\Delta \times \Delta$ (Poincaré).

3.1 Dirichlet 问题

引理 3.1.1. $X \in Riemann$ 面, $G \subset X$ 单连通区域. 若 $u \in \mathcal{H}(G; \mathbb{R})$,则存在 $f \in \mathcal{O}(G)$ 使 得 $u = \operatorname{Re} f$.

证明. 令 $\sigma = du$, 则 $\sigma \in \mathcal{H}^1(G)$ 且 $\overline{\sigma} = \sigma$, 故存在 $\omega \in \Omega(X)$ 使得 $\sigma = \operatorname{Re} \omega$.

取定 $a \in X$, 定义 $f(x) := \int_a^x \omega$. 因为 G 单连通, 所以积分与路径的选取无关, $f \in \mathcal{O}(G)$ 且 $df = \omega$.

 $\sigma = \operatorname{Re} \omega$ 等价于 $du = \operatorname{Re} df = d \operatorname{Re} f$, 故 $u = \operatorname{Re} (f + 常数)$.

命题 3.1.1. 最大值原理

设 $u \in \mathcal{H}(X)$ 不恒为常数,则 u 不能在 X 内部取最大值.

证明. 假设存在 $x_0 \in X$ 使得 $u(x_0) = \max u$, 则 $S := \{x \in X : u(x) = \max u\} \subset X$ 是闭的.

同时 $S \subset X$ 是开的: 设 $a \in S$,取 $G \ni a$ 单连通,则存在 $f \in \mathcal{O}(G)$ 使得 $\operatorname{Re} f = u$,进 而 $|e^f| = e^u$. 由全纯函数最大模原理, e^f 是常数,进而 $u|_G$ 恒等于 u 的最大值,故 $G \subset S$,即 S 开.

S 是非空的既开又闭的集合,故 S 是全集 X.

命题 3.1.2. Dirichlet 问题

设 $Y \subset X$ 开, $f \in C(\partial Y, \mathbb{R})$, 是否存在 $u \in C(\overline{Y}) \cap \mathcal{H}(Y)$ 使得 $u|_{\partial Y} = f$.

命题 3.1.3. 若 $Y \subset \subset X$, 则 Dirichlet 问题有唯一解.

证明. 若 u_1, u_2 均为 Dirichlet 问题的解,则 $u_1 - u_2, u_2 - u_1 \in \mathcal{H}(Y) \cap C(\overline{Y})$,且在 ∂Y 取值为 0. 由最大值原理, $u_1 - u_2, u_2 - u_1$ 在 Y 上均非正,故 $u_1 \equiv u_2$.

定理 3.1.1. Poisson

$$u(z) := \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} f(Re^{i\theta}) d\theta$$

为 $\Delta_R = \{|z| < R\}$ 上由 f 为边值的 Dirichlet 问题的解.

推论 3.1.1. $\{u_n\} \subset \mathcal{H}(\Delta_R)$,且 $u_n \xrightarrow{\text{内闭}} u$,则 $u \in \mathcal{H}(\Delta_R)$.

推论 3.1.2. Hanarck 定理

定义 3.1.1. X 是 Riemann 面 $Y \subset X$ 开. 记 $Reg Y := \{D \subset Y \mathcal{H} : D \succeq h \text{ Dirichlet in } in \mathbb{R}\}$. 坐标圆盘在 Reg Y 内 (Poisson 定理).

对于 $u \in C(Y,\mathbb{R})$, 定义 $P_D u := \begin{cases} u, & Y \setminus D \\ \forall u \mid \partial D \end{pmatrix}$ 边值的 Dirichlet 问题的解, D $\mathcal{H}(Y)$ 等价于 $P_D u = u, \forall D \in \operatorname{Reg} Y$.

定义 3.1.2. 称 $u \in C(Y,\mathbb{R})$ 次调和 (subharmonic),若 $P_D u \geq u$, $\forall D \in \operatorname{Reg} Y$. 称 u 为局部次调和的,若 $\forall a \in Y$,存在邻域 $U \ni a$ 使得 u 在 U 上次调和.记 $SH(Y) = \{Y$ 上的次调和函数 $\}$, $SH(Y,loc) = \{Y$ 上的局部次调和函数 $\}$.

命题 3.1.4. 最大值原理

 $u \in SH(Y, loc)$,若存在 $x_0 \in Y$ 使得 $u(x_0) = \max_{V} u$,则 $u \equiv u(x_0)$.

证明. 令 $S := \{x \in Y : u(x) = u(x_0)\}$,则 $S \subset Y$ 闭. 假设 $S \neq Y$,则存在 $a \in Y \cap \partial S$. 因为 u 连续,所以 $u(a) = u(x_0)$. 取 $D \subset \operatorname{Reg} Y$ 使得 $a \in D$, $u \in SH(\overline{D})$ 且存在 $x \in \partial D$ 使得 $u(x) < u(x_0)$.

 $u \leq P_D u =: v. \quad v \in \mathcal{H}(D) \cap C(\overline{D})$ 且 $v|_{\partial D} = u \leq u(x_0)$,由调和函数的最大值原理, $v = P_D u \leq u(x_0)$ 于 D,但 $v(a) \geq u(a) = u(x_0)$. 由最大值原理, $v \equiv u(x_0)$. 因为 $v|_{\partial D} = u|_{\partial D}$,所以 $u|_{\partial D} \equiv u(x_0)$,矛盾.

推论 3.1.3. $u \in SH(Y)$ 等价于 $u \in SH(Y, loc)$.

证明. 只需考虑右推左. 设 $D \in \text{Reg } Y$, $u \in SH(Y,loc)$, $v := u - P_D u \in SH(D,loc)$, 且 $v|_{\partial D} = 0$. 由最大值原理, $v \le 0 \mp D$, 即 $u \le P_D u \mp D$, 故 $u \in SH(Y)$.

命题 3.1.5. 次调和函数的一些性质.

1. $u, v \in SH(Y), \lambda, \mu \geq 0, \mathbb{N} \lambda u + \mu v \in SH(Y).$

$$P_D(\lambda u + \mu v) = \lambda P_D(u) + \mu P_D(v) \ge \lambda u + \mu v.$$

2. $u, v \in SH(Y)$, $\mathbb{N} \max\{u, v\} \in SH(Y)$.

$$u \le P_D u \le P_D \max\{u, v\},$$

 $v \le P_D v \le P_D \max u, v.$

 $3. \ u \in SH(Y), \ \mathbb{N} \ P_D u \in SH(Y).$

证明. 性质 3 的证明. 今 $v = P_D u$, 须证: $\forall D' \in \text{Reg} Y$, $P_{D'} v \geq v$.

在 $Y \setminus D'$, $P_{D'}v = v$.

在 $Y \setminus D$, 因为 $v \ge u$, 由最大值原理, 有 $P_{D'}v \ge P_{D'}u \ge u = v$.

因为 $(Y \setminus D') \cup (Y \setminus D) = Y \setminus (D \cap D')$ 且 $v - P_{D'}v \in \mathcal{H}(D \cap D')$ 且在 $\partial(D \cap D')$ 上非正. 所以由最大值原理, $v \leq P_{D'}v$ 于 $D \cap D'$.

引理 3.1.2. Perron

设 $F \subset SH(Y)$ 非空, 使得

1. $u, v \in \mathcal{F}$, $\mathbb{N} \max\{u, v\} \in \mathcal{F}$.

2. $u \in \mathcal{F}, D \in \operatorname{Reg} Y, \mathbb{N} P_D u \in \mathcal{F}.$

3. 存在 $C \in \mathbb{R}$, 使得 $u \leq C$, $\forall u \in \mathcal{F}$.

 $\mathbb{M} \ u^*(x) := \sup\{u(x) : u \in \mathcal{F}\} \in \mathcal{H}(Y).$

引理的证明. 设 $a \in Y$, 取 $D \in RegY$ 为 a 的一个坐标邻域圆盘,目标:证明 $u^* \in \mathcal{H}(D)$.

取一列 $\{u_n\} \subset \mathcal{F}$ 使得 $u_n(a) \to u^*(a)(n \to \infty)$. 若用 $\max\{u_1, \dots, u_{n-1}\}$ 代替 u_n ,则 不妨设 $u_1 \leq u_2 \leq \dots (\leq C)$ 且 $u_n(a) \to u^*(a)$. 令 $v_n := P_D u_n$,则 $v_1 \leq v_2 \leq \dots (\leq C)$. 由 Harnack 定理, $v_n \xrightarrow{\text{hfl}} v \in \mathscr{H}(D)$ 且 $v \leq u^*$ 且 $v(a) = u^*(a)$.

 $v \leq u^*$: 因为 $v_n \in \mathcal{F}$, 所以 $v_n \leq u^*$ 进而 $v \leq u^*$.

 $v(a) = u^*(a)$: $u^*(a) \ge v(a) \ge v_n(a) \ge u_n(a) \to u^*(a)$.

只需证明: $u^* = v \oplus D$.

设 $x \in D$,取 $\{w_n\} \subset \mathcal{F}$ 使得 $w_n(x) \to u^*(x)$. 利用 $\max\{w_1, \dots, w_{n-1}, v_n\}$ 代替 w_n ,可设 w_n 是单调增加的,且 $v_n \leq w_n \leq C$). 同样地,由 Harnack 定理,设 $P_D w_n$ 收敛到 $w \in \mathcal{H}(D)$,则 $v \leq w \leq u^*$, $w(x) = u^*(x)$.

 $u^*(a) = v(a) \le w(a) \le u^*(a)$, 则 v(a) = w(a). 因为 v - w 是 D 上非正的调和函数,又在内点 a 处取 0,故 $v \equiv w$ 于 D. $u^*(x) = w(x) = v(x)$, $\forall x \in D$.

定义 3.1.3. 设 $f \in C(\partial Y, \mathbb{R})$ 使得 $||f||_{\infty} < \infty$. 记 $K := \sup_{\partial Y} f(< \infty)$.

令 $\mathcal{P}_f:=\{u\in C(\overline{Y})\cap SH(Y):u\leq K,u|_{\partial Y}\leq f\}$,称其为一个 Perron 族. $\mathcal{P}_f\neq\varnothing$,因为 $u=-\|f\|_{\infty}\in\mathcal{P}_f$.

定义 3.1.4. 称 $x \in \partial Y$ 为一个正则点,若存在邻域 $U \ni x$ 以及 $\beta \in SH(Y \cap U) \cap C(\overline{Y} \cap U)$,使得 $\beta(x) = 0$ 且 $\beta(y) < 0$, $\forall y \in \overline{Y} \cap (U \setminus \{x\})$. 称 β 为 x 处的一个障碍 (barrier).

例子 3.1.1. 0 不是 Δ^* 的一个障碍.

若否,则存在 0 处的一个障碍 $\beta < 0$.则 0 是 β 的可去奇点,与最大值原理矛盾.

引理 3.1.3. 设 $x \in \partial Y$ 是一个正则点, $V \ni x$ 是邻域, $m \le c$,则存在 $v \in C(\overline{Y}, \mathbb{R}) \cap SH(Y)$ 使得

(1).
$$v(x) = c$$
. (2). $v|_{\overline{Y} \cap V} \le c$. (3). $v|_{\overline{Y} \setminus V} = m$.

证明. 不妨设 c=0,设 $U\ni x$ 及 $\beta\in C(\overline{Y}\cap U,\mathbb{R})$ 为 x 处的一个障碍. 不妨设 $V\subset\subset U$,则

$$\sup\{\beta(y):y\in\overline{Y}\cap\partial V\}<0.$$

则存在 k >> 1,使得 $k\beta|_{\overline{Y} \cap \partial V} < 0$.

$$\mathfrak{P} V := \begin{cases}
\max\{m, k\beta\}, & \overline{\mp}\overline{Y} \cap V \\
m, & \overline{\mp}\overline{Y} \setminus V.
\end{cases}, \quad V \in SH(Y \setminus V), \quad V \in SH(Y \setminus \overline{V}).$$

另一方面, V = m 于 $Y \cap \partial Y$ 的一个充分小邻域, 其在那里也次调和, 故 $V \in SH(Y)$.

定理 3.1.2. Perron

设 $Y \subset X$ 开,使得任意 $x \in \partial Y$ 正则,则相应于 ∂Y 上的有界的连续函数的 Dirichlet 问题可解.

证明. $\forall \varepsilon > 0$,存在邻域 $V \ni x$ 使得

$$|f(y) - f(x)| < \varepsilon, \quad \forall y \in \partial Y \cap V,$$

设 $k \leq f(y) \leq K \mp \partial Y$.

由引理
$$3.1.3$$
,存在 $\nu \in SH(Y) \cap C(\overline{Y}, \mathbb{R})$ 使得
$$\begin{cases} \nu(x) = f(x) - \varepsilon \\ \nu|_{\overline{Y} \cap V} \le f(x) - \varepsilon \end{cases}, \quad \text{则 } \nu|_{\partial Y} \le f. \text{ 进}$$

而推出
$$\nu \in \mathcal{P}_f$$
, 故 $\nu \leq u_f^*$, 故 $\lim_{y \to x} u_f^*(y) \geq \nu(x) = f(x) - \varepsilon$.

同样, 存在 $\omega \in SH(Y) \cap C(\overline{Y}, \mathbb{R})$ 使得
$$\begin{cases} \omega(x) = -f(x) \\ \omega|_{\overline{Y} \cap V} \leq -f(x) \end{cases}, \text{则对于任意 } \mu \in \mathcal{P}_f, \text{ 任意} \\ \omega|_{\overline{Y} \setminus V} = -K \end{cases}$$

 $y \in \partial Y \cap V$, $f(y) \leq f(y) < f(x) + \varepsilon \leq -\omega(y) + \varepsilon$, $f(y) = \omega(y) + \varepsilon$, $f(y) = \omega(y) + \varepsilon$.

另一方面, $(\mu + \omega)|_{\nabla \cap \partial V} \leq K - K = 0 \leq \varepsilon$.

因为 $\mu + \omega \in SH(Y \cap V)$, 所以由最大值原理, $\mu + \omega \leq \varepsilon$ 于 $Y \cap V$, $\forall \mu \in \mathcal{P}_f$. 故 $\overline{\lim} \ u_f^*(y) \le \varepsilon w(x) = f(x) + \varepsilon.$

例子 3.1.2. $Y \subsetneq \mathbb{C}$ 单连通, $a \in \partial Y$. 不妨设 a = 0. 取 $\beta(z) := \operatorname{Re}(1/\log z)$ 于 $\overline{Y} \cap \Delta$. 因为 $\beta(z) = \operatorname{Re} \frac{\overline{\log z}}{|\log z|^2} = \frac{\log |z|}{|\log z|^2} \le 0$ 于 $\overline{Y} \cap \Delta$,且 $-\beta(z) = \frac{-\log |z|}{|\log z|^2} \le \frac{1}{-\log |z|}$,进而 β 为 $0 \in \partial Y$ 处的一个障碍.

命题 3.1.6. $X \in Riemann$ 面, $Y \subset X$ 开, $x \in \partial Y$. 若存在邻域 $V \ni x$ 使得 $Y \cap V$ 单连通, 则 x 为 Y 的正则点. 特别地, 若 ∂Y 为 C^1 光滑的, 则任意 $x \in \partial Y$ 是正则点.

注 3.1.1. $Y \subset X$, ∂Y 分段光滑, 此时 Dirichlet 问题的解属于 Riemann 本人. Riemann 采用了下面的所谓 Dirichlet 原理:

设 $\mathscr{F} = \{u \in \Omega$ 内部分片 $C^2 \perp u|_{\partial Y} = f, \in \overline{\Omega}$ 上分片 $C^1\}$,则使得能量积分 $\int_{Y} du \wedge *du =:$ $D(u), u \in \mathcal{F}$ 达到最小值的 u_0 为 Dirichlet 问题的解.

 $D(u,w) := \int_{V} du \wedge *dw, \ t \in \mathbb{R}, \ \mathbb{M} \ D(u_0 + tw) = D(u_0) + 2tD(u_0,w) + t^2D(w), \ \text{if } \exists t \in \mathbb{R}$ $\int_{V} \Delta u_0 \cdot w = D(u_0, w) = 0, \forall w, 故 \Delta u_0 = 0.$ (变分法)

Weierstrass 提出了严厉的批评:一个变分问题一般情形下最小值不一定达到!

但在 1900 年左右, Hilbert 给出了 Dirichlet 原理的正确叙述, 从而挽救了 Dirichlet 原 理.

- 3.2可数拓扑
- 3.3 单值化定理