Задание 4 по курсу «Байесовский выбор моделей»

Общая информация

- Время сдачи задания: 11е декабря, 21:00 по Москве;
- Максимальная базовая оценка за задание 100 баллов, так что при желании можно выполнять не всё;
- Оценка автора наилучшей работы удваивается (с учетом баллов сверх 100), но не более, чем до 250 баллов;
- Вопросы и само задание принимаются по почте: aduenko1@gmail.com;
- Тема письма: вопрос по заданию #4 или решение задания #4;
- Опоздание на неделю снижает оценку в 2 раза, опоздание на час на $0.5^{1/(7\cdot24)}=0.41\%$;
- Работы опоздавших не участвуют в конкурсе на лучшую работу;
- Задание не принимается после его разбора и / или после объявления об этом.

Задача (байесовский метод главных компонент). Рассмотрим вероятностную модель метода главных компонент, считая, что для каждого объекта $\mathbf{x}_i \in \mathbb{R}^n$ существует описание $\mathbf{z}_i \in \mathbb{R}^d$ в признаковом пространстве меньшей размерности, причем $\mathbf{x}_i = \mathbf{W}\mathbf{z}_i + \boldsymbol{\mu} + \boldsymbol{\varepsilon}_i$, где $\boldsymbol{\mu} \in \mathbb{R}^n$ – есть некоторое смещение (на случай нецентрированности признаков), а $\boldsymbol{\varepsilon}_i \in \mathbb{R}^n$ – шумовой вектор.

Пусть имеется выборка $\mathbf{X} = [\mathbf{x}_1, \, \ldots, \, \mathbf{x}_m]$ независимых объектов. Пусть

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{z}_i | \mathbf{0}, \mathbf{I}), \ p(\boldsymbol{\varepsilon}_i) = \mathcal{N}(\boldsymbol{\varepsilon}_i | \mathbf{0}, \ \sigma^2 \mathbf{I}).$$

Считая W, σ^2 , μ – неизвестными параметрами задачи, а d фиксированным

- а) выписать $p(X, Z|W, \mu, \sigma)$ (3 балла);
- б) найти $p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma)$ (3 балла);
- в) с помощью ЕМ-алгоритма решить задачу нахождения наиболее правдоподобных оценок $\mathbf{W},\ \pmb{\mu},\ \sigma,$ то есть решить задачу

$$p(\mathbf{X}|\mathbf{W}, \boldsymbol{\mu}, \sigma) \to \max_{\mathbf{W}, \boldsymbol{\mu}, \sigma}$$

получив итеративные формулы пересчета для Е и М шагов (25 баллов). Каково апостериорное распределение $p(\mathbf{z}_i|\mathbf{x}_i,\mathbf{W},\sigma,\boldsymbol{\mu})$? (10 баллов) Как изменить вероятностную модель, чтобы учесть, что в данных есть пропуски? (10 баллов)

- г) сгенерировать признаковую матрицу $\mathbf{X} \in \mathbb{R}^{m \times n}$, m = 1000, n = 10 для d = 2 путем генерации $\mathbf{Z} \in \mathbb{R}^{m \times d}$ поэлементно независимо из $\mathcal{N}(0,1)$ и выполнения преобразования $\mathbf{X} = \mathbf{Z}\mathbf{W}^{\mathsf{T}} + \boldsymbol{\varepsilon}$ для $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{\varepsilon}|\mathbf{0}, \mathbf{I})$, где $\mathbf{W} \in \mathbb{R}^{n \times d}$ матрица преобразования, выбранная Вами. Сравнить результат работы алгоритма из п. в) с обычным методом главных компонент для d = 2 (10 баллов);
- д) (автоматическое определение числа компонент) Считаем, что d=n. Введем априорное распределение на $\mathbf{W}=[\mathbf{w}_1,\ldots,\mathbf{w}_n]$ вида

$$p(\mathbf{W}|\boldsymbol{\alpha}) = \prod_{j=1}^{n} \left(\sqrt{\frac{\alpha_j}{2\pi}} \right)^n \exp\left(-\frac{\alpha_j}{2} \mathbf{w}_j^{\mathsf{T}} \mathbf{w}_j \right),$$

где \mathbf{w}_i – столбцы матрицы \mathbf{W} .

Если $\alpha_j \to \infty$, то $\mathbf{w}_j^\mathsf{T} \mathbf{w}_j \to 0$, то есть происходит исключение соответствующей компоненты

из разложения $\mathbf{x}_i = \mathbf{W}\mathbf{z}_i + \boldsymbol{\mu} + \boldsymbol{\varepsilon}$, что соответствует сокращению числа главных компонент. С помощью вариационного ЕМ-алгоритма решить задачу (50 баллов)

$$p(\mathbf{X}|\boldsymbol{\mu}, \, \sigma, \, \boldsymbol{\alpha}) \to \max_{\boldsymbol{\alpha}, \, \boldsymbol{\mu}, \, \sigma}.$$

Подсказка: в качестве скрытых переменных рассмотреть (\mathbf{Z}, \mathbf{W}) и на Е-шаге использовать вариационное приближение $p(\mathbf{Z}, \mathbf{W} | \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\alpha}) \approx q(\mathbf{Z}) q(\mathbf{W})$.

е) Для матрицы признаков из п. г) воспользоваться результатом пункта д) и проверить, происходит ли исключение восьми лишних главных компонент в ходе максимизации обоснованности (20 баллов).