

IN THE STATES PATENT AND TRADEMARK OFFICE

Applicant Raymond Grant Rowe

Serial No. 09/773,782

Filing Date February 2, 2001

For CREEP RESISTANT ZIRCONIUM ALLOY AND

NUCLEAR FUEL CLADDING INCORPORATING SAID

ALLOY

Examiner Harry D. Wilkins III

Art Unit 1742

Box AF Assistant Commissioner for Patents Washington, D.C. 20231

AMENDMENT AND RESPONSE TO FINAL OFFICE ACTION

RECEIVED JAN 09 MINS TC 1700

Dear Sir:

In response to the Office Action mailed November 7, 2002, rejecting claims 1-7 and 18-35 of the above-identified Application, Applicants respectfully request that the following amendments and remarks be considered.

IN THE SPECIFICATION

Please replace the fourth full paragraph on page 8 with the following:

Two plates of Zircaloy-2 were compared. Plate A was cold rolled 51 % from an as-hot rolled Zircaloy-2 plate nominally one inch thick. Plate B was cold rolled 36% from a second one inch thick plate which was beta heat treated and quenched before cold rolling. Following cold rolling, both plates were given a 3 hr heat treatment in Ar gas at 620°C. Plate A had a uniform fine recrystallized grain structure. Plate B had a coarse