LGBIO2010: Large scale gene expression analysis

Pierre Dupont

UCL - ICTEAM

Outline

Preprocessing

Introduction

Unsupervised gene selection

Supervised gene selection

P. Dupont (UCL)

LGBIO2010

1 / 73

3 / 73

4 / 73

Introduction

LGBIO2010

Gene expression

P. Dupont (UCL)

Illustration from Molecular Cell Biology, 5e (© WHFreeman 2004).

Outline

- Introduction
- Preprocessing
- Unsupervised gene selection
- Supervised gene selection
 - Filters
 - Non-specific filtering
 - Fold changes
 - t-Test
 - Mutual information
 - Multivariate filters
 - Wrappers
 - Embedded Methods
 - Classification

P. Dupont (UCL) LGBIO2010 2/73 P. Dupont (UCL)

LGBIO2010

DNA Microarrays

DNA Microarrays measure the level of expression of all genes in a single experiment

- Data measurements
- Preprocessing and sample normalization
- Gene selection and sample classification
- Diagnosis, prognosis or prediction of the response to a treatment

P. Dupont (UCL)

LGBIO2010

5/73

0,,,

Introduction

Affymetrix® technology

Alternative measurement technologies

- Other companies sell DNA chips (Agilent®, ...)
- Multiplex qPCR (Applied Biosystems®, ...)
 - ► larger dynamic range than microarrays
 - ▶ limited to ≈ 100 genes
- RNAseq (Illumina®, Ion Torrent®, ...)
 - fastly evolving
 - scaling effects influence per sample cost

P. Dupont (UCL)

LGBIO2010

7 / 73

Introduction

Example: diagnosis

Biomarkers for an early diagnosis of rheumatoid infections

Prediction problem: multi-class feature selection

- Rheumatoid arthritis
- Lupus
- Psoriatic rheumatism
- Microcristalline arthritis
- Inflammatory osteoarthritis

RHEUMAGENE research project with Prof. Lauwerys (UCL/IREC/RUMA)

P. Dupont (UCL) LGBIO2010 6 / 73 P. Dupont (UCL) LGBIO2010 8 / 73

Introduction

Example: prognosis

Biomarkers to predict the risk of allergies of newborns

- More than 30% of children are allergic in industrial countries
- Predicting who is more likely to become allergic is a path to prevention and possible treatment

CRISTALL research project with Profs. Sokal and Smets (UCL/IREC/PEDI)

P. Dupont (UCL) LGBIO2010 9 / 73

Introduction

Example: response to treatment prediction

Gene profiling for cancer treatment

Objective

Identify biomarkers for predicting patient response to MAGE-A3 immuno-therapy against melanoma before treatment

In collaboration with GSK Biologicals - WO/2010/029174 (patent).

Introduction

Clinical
Research
Consultancy

Markers ID

Data Mining
Statistics

Platform for
Doctors/Patients

Dx Web Sales

Dx Web Sales

Process Mgmt

Grid/Cloud Computing

www.dnalytics.com

P. Dupont (UCL)

LGBIO2010

11 / 73

Introduction

Supervised selection

	gene 1	gene 2	 gene p	response
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>x</i> _{1,<i>p</i>}	<i>y</i> ₁
sample n	<i>X</i> _{n,1}	<i>X</i> _{n,2}	 $x_{n,p}$	Уn
test sample	<i>X</i> ₁	<i>X</i> ₂	 Χp	?

- The number p of input dimensions (probes, probesets or genes) may be very large $(10^4 ... 10^6)$
- The number *n* of samples is typically much smaller ($\approx 50...100$)
- Each sample is characterized by a vector **x** of **p** measurements
- Each training sample has a known response: class label y $(y \in \{-1, 1\} \text{ or } y \in \mathbb{N}) \text{ or } y \in \mathbb{R}$

Gene selection

Find a small subset of genes, (a.k.a features, attributes or input variables), to predict the response or class *y* of new samples

P. Dupont (UCL) LGBIO2010 10 / 73 P. Dupont (UCL) LGBIO2010 12 / 73

Gene selection

Objectives

- Insight into the data and the predictive model
- Link between data analysis and medical expert
- Biological validation on a few genes rather than thousand ones
- Reduction of the financial cost of a diagnosis/prognosis kit (technological constraints)

Difficulties

- Measurements are noisy
- Gene expression varies due to many factors (gender, cell type, growth of the organism, chemical environment of the cell, ...)
 often not related to the response to be predicted
- Financial cost: 500 ... 1,000 €/experiment
- Small *n* (e.g. 50), large *p* (e.g. 50,000) problems

P. Dupont (UCL)

LGBIO2010

13 / 73

Introduction

Unsupervised selection

	gene 1	gene 2	 gene p	cluster
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> _{1,<i>p</i>}	?
	•••		 	
sample n	$X_{n,1}$	$X_{n,2}$	 $X_{n,p}$?
cluster	?	?	 ?	

Objective

Find clusters of genes and/or samples that share a similar profile: up or down regulated genes across the same samples

Outline

- Introduction
- 2 Preprocessing
- 3 Unsupervised gene selection
- Supervised gene selection

P. Dupont (UCL)

LGBIO2010

15 / 7

Preprocessing

Summarization

P. Dupont (UCL)

- Define a single probeset expression level from the various probe intensities
- Popular techniques: MAS 5.0, RMA, GC-RMA
 - background adjustment: optical noise correction, probe affinity adjustment (influenced by the GC content), RMA ignores the MM probes
 - sample normalization: quantiles should be stable across samples, after conversion to log intensities for (GC-)RMA

LGBIO2010

summarization: median polish

P. Dupont (UCL) LGBIO2010 14 / 73

Feature normalization

	gene 1	gene 2	 gene p
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> _{1,<i>p</i>}
sample n	<i>X</i> _{n,1}	<i>X</i> _{n,2}	 $x_{n,p}$

- Make sure that each gene (probeset) has roughly the same expression range across all samples
- Z-score normalization Replace $x_{i,j}$ by $\frac{x_{i,j}-\mu_j}{s_j}$ with μ_j the mean level of expression of probeset j over the training samples and s_i its standard deviation

P. Dupont (UCL) LGBIO2010 17/73

Prenrocessin

Feature normalization example

Distance between expression values

	gene 1	gene 2	 gene p
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> _{1,<i>p</i>}
sample n	$X_{n,1}$	$X_{n,2}$	 $X_{n,p}$

Euclidean distance

$$d(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_2\| = \sqrt{\sum_{i=1}^{n} (x_{i,1} - x_{i,2})^2}$$

Correlation based distance

$$d(\mathbf{x}_1, \mathbf{x}_2) = 1 - \frac{1}{2}(1 + \operatorname{corr}(\mathbf{x}_1, \mathbf{x}_2))$$

P. Dupont (UCL)

LGBIO2010

19 / 73

20 / 73

Preprocess

Correlation between expression values

Are both genes over/under expressed on the same samples?

Is one gene over-expressed when the other is under-expressed?

Pearson correlation

For two random vectors (e.g. gene expression values) $\mathbf{x}_1, \mathbf{x}_2$ measured over \mathbf{n} samples

$$\operatorname{corr}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) = \frac{\sum_{i=1}^{n} (x_{i,1} - \bar{x}_{1})(x_{i,2} - \bar{x}_{2})}{\sqrt{\sum_{i=1}^{n} (x_{i,1} - \bar{x}_{1})^{2} \sum_{i=1}^{n} (x_{i,2} - \bar{x}_{2})^{2}}}$$

- $\operatorname{corr}(\mathbf{x}_1, \mathbf{x}_2) = \pm 1$ if \mathbf{x}_1 and \mathbf{x}_2 are perfectly linearly correlated
- whenever x₁ and x₂ and normalized to zero mean and unit variance:

$$corr(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i=1}^n x_{i,1} x_{i,2} = \mathbf{x}_1^{\top} \mathbf{x}_2$$

P. Dupont (UCL)

LGBIO2010

21 / 73

Preprocessing

Pitfalls with correlation measures

Correlation is very sensitive to outliers

Correlation measures linear dependence

Spearman's rank correlation: less sensitive to outliers

- Replace feature value by feature value rank across observations
- Compute Pearson correlation between rank vectors

Preprocessi

Uncorrelated features are not necessarily independent

- $corr(x_1, x_2) = 0$ (both Pearson and Spearman correlations)
- $P(x_2|x_1) \neq P(x_2)$

Outline

- Preprocessing
- Unsupervised gene selection
- Supervised gene selection

P. Dupont (UCL)

LGBIO2010

25 / 73

Unsupervised gene selection

Agglomerative Hierarchical clustering

Each observation represents either a sample across genes or a gene across samples

Algorithm AgglomerativeHierarchicalClustering

Input: D a set of observations $\vec{x}_1, \dots, \vec{x}_m$; $d(\vec{x}, \vec{y})$ a distance measure between

observations

Output: A tree T of subsets of D

// Initialize a set \mathcal{D} of clusters D_1, \ldots, D_m

 $\mathcal{D} \leftarrow \{\{\vec{\mathbf{X}}_1\}, \dots, \{\vec{\mathbf{X}}_m\}\}$ // Initial clusters are tree leaves

 $T \leftarrow$ a partial tree whose leaves are the \vec{x}_i 's

while $|\mathcal{D}| > 1$ do

Choose pair of clusters (D_i, D_i) in \mathcal{D} such that $Distance(D_i, D_i, d)$ is minimal

Define a new cluster $D_k = D_i \cup D_i$

 $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_k - \{\mathcal{D}_i, \mathcal{D}_i\}$

Add D_k as parent node of D_i and D_i in the tree T

return T

Distance measure between clusters

Single-link or nearest neighbor rule

$$\textit{Distance}(D_i, D_j, d) = \min_{\vec{x} \in D_i, \vec{y} \in D_i} d(\vec{x}, \vec{y})$$

Complete-link or farthest neighbor rule

$$Distance(D_i, D_j, d) = \max_{\vec{x} \in D_i, \vec{y} \in D_j} d(\vec{x}, \vec{y})$$

Average-link rule

$$extit{Distance}(D_i, D_j, d) = rac{1}{|D_i|.|D_j|} \sum_{ec{x} \in D_i, ec{y} \in D_j} d(ec{x}, ec{y})$$

P. Dupont (UCL)

LGBIO2010

27 / 73

Unsupervised gene selection

Hierarchical clustering example

P. Dupont (UCL)

Unsupervised gene selection

Hierarchical clustering example

B D ullet A

	А	В	С	D	Е	F
Α						
В	8					
С	6	2				
D	5	8	6			
E	7	6	4	3		
F	8	6	5	4	1	

Hierarchical clustering example

	Α	В	С	D	EF
Α					
В	8				
С	6	2			
D	5	8	6		
EF	7	6	4	3	

P. Dupont (UCL)

LGBIO2010

29 / 73

P. Dupont (UCL)

LGBIO2010

31 / 73

Unsupervised gene selection

Hierarchical clustering example

Single-link rule

	А	В	С	D	El	F
Α						
В	8					
С	6	2				
D	5	8	6			
E F	7	6	4	3		
F	8	6	5	4	1	

Unsupervised gene selection

Hierarchical clustering example

Unsupervised gene selection

Hierarchical clustering example

	Α	ВС	D	EF
Α				
вс	6			
D	5	6		
EF	7	4	3	

Hierarchical clustering example

	A	вс	DEF
Α			
ВС	6		
DEF	5	4	

P. Dupont (UCL)

LGBIO2010

33 / 73

LGBIO2010

35 / 73

Unsupervised gene selection

Hierarchical clustering example

	Α	вс	DEF	
Α				
вс	6			
DEF	5	6		
DEF	7	4	3	

Unsupervised gene selection

Hierarchical clustering example

P. Dupont (UCL)

Single-link rule

Single-link rule

Hierarchical clustering example

P. Dupont (UCL) LGBIO2010 37 / 73

Unsupervised gene selection

A note on phylogeny

This hierarchical clustering algorithm, with the average-link rule, is known as the UPGMA algorithm used in phylogeny

- The observations are (fragments) of sequences representative of some species, called taxa
- The pairwise distance measure is based on alignment scores, generally corrected according to an evolutionary model (e.g. Kimura)
- The final tree is interpreted as a phylogenetic tree and the branch length as representative of time

Outline

- Introduction
- Preprocessing
- 3 Unsupervised gene selection
- Supervised gene selection
 - Filters
 - Wrappers
 - Embedded Methods

P. Dupont (UCL) LGBI02010 39 / 7

Supervised gene selection

Supervised gene selection

	gene 1	gene 2	 gene p	class
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> _{1,<i>p</i>}	+
sample 2			 	+
sample n-1			 	-
sample n	<i>x</i> _{n,1}	<i>X</i> _{n,2}	 $x_{n,p}$	-
test sample	<i>X</i> ₁	<i>X</i> ₂	 Χp	?

- we discuss binary classification first:
 e.g. responders (+ or class 1) vs non-responders (- or class 2)
- samples can be indexed by their class label
 - means and variances can be computed on samples of a given class
- find a subset of most discriminating genes for the prediction of the class of any new sample

P. Dupont (UCL) LGBIO2010 38 / 73 P. Dupont (UCL) LGBIO2010 40 / 73

Feature selection: filters

- Use only the training data + class labels during the feature selection step
- Standard techniques: fold changes, t-Test, mutual information,
- Train a single classifier taking the selected features as inputs
- The simplest and less computing intensive approach

P. Dupont (UCL) LGBIO2010 41 / 73

Supervised gene selection

Feature selection: wrappers

- Train a classifier on several subsets of all possible features
 - Exhaustive evaluation of all possible subsets is unfeasible Note: there are $\mathcal{O}(2^p)$ subsets with $p \ge 10,000$
 - Typical solutions: use feature ranking or forward/backward selection
- Select the feature set that optimizes the performance of the trained classifier

Feature selection: embedded approaches

- Define the feature selection and the classifier estimation as a combined optimization process
- Include classifier optimization in the feature selection process
- More elegant/relevant but also more computing intensive than a filter

P. Dupont (UCL) LGBIO2010 43 / 73

Supervised gene selection

Filters

Non-specific filtering

	gene 1	gene 2	 gene p	class
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> 1, <i>p</i>	+
sample 2			 	+
sample n-1			 	-
sample n	$X_{n,1}$	<i>X</i> _{n,2}	 $X_{n,p}$	-

- genes with a small variance across all training samples are unlikely to be discriminating between classes
- keep only those genes (e.g. 25 %) with the larger variances
 - before normalization to unit variance!

P. Dupont (UCL) LGBIO2010 42 / 73 P. Dupont (UCL) LGBIO2010 44 / 73

Fold changes

	gene 1	gene 2	 gene p	class
sample 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 <i>X</i> 1, <i>p</i>	+
sample 2			 	+
sample n-1			 	-
sample n	<i>X</i> _{n,1}	<i>X</i> _{n,2}	 $X_{n,p}$	-

Select genes with the larger fold changes between both conditions

$$rac{ar{x}_1}{ar{x}_2}$$
 or $\lograc{ar{x}_1}{ar{x}_2}=\logar{x}_1-\logar{x}_2$ or $ar{x}_1-ar{x}_2$

P. Dupont (UCL)

LGBIO2010

45 / 73

Supervised gene selection

Filters

Comments on fold changes

- whenever $\bar{x}_1 < \bar{x}_2$, one considers a small value as important
 - $ightharpoonup \log_2 \frac{\bar{x}_1}{\bar{v}_2}$ should be ≥ 1 or ≤ -1
- is a two-fold change significant?
 - dependence on the measurement technology
 - dependence on the class conditional variance

t-Test relevance index

- A feature relevance J(x) can be defined according to the distance between the average feature value in each class
- The larger the distance the better, relatively to standard deviations

t-Test statistic (actually Welch t-statistics)

$$J(x) = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

with n_1 (resp. n_2) the number of examples labeled as + (resp. -) and the estimated variances in each class $S_i^2 = \frac{1}{n_i-1} \sum_{i=1}^{n_i} (x_{ij} - \bar{x}_i)^2$

P. Dupont (UCL)

LGBIO2010

47 / 7

48 / 73

Supervised gene selection

Filter

Confidence measure

 The Welch statistics follows a t-distribution with a number of degrees of freedom equal to:

$$\frac{(S_1^2/n_1 + S_2^2/n_2)^2}{(S_1^2/n_1)(n_1 - 1) + (S_2^2/n_2)(n_2 - 1)}$$

 p-values assess the significance of the difference between the two class means

• A feature is selected if its associated *p*-value is below a prescribed threshold (e.g. $5\% \Rightarrow |J(x)| \ge 2.228$ when d.f. = 10)

LGBIO2010

P. Dupont (UCL) LGBIO2010 46 / 73 P. Dupont (UCL)

ers

The R Project for Statistical Computing

An efficient way of computing p-values, and many other useful things...

```
http://www.r-project.org/
```

where x1 (resp. x2) is the vector of expression values of a given gene from samples labeled as class 1 (resp. class 2)

p-value $> 0.05 \Rightarrow$ the difference between the 2 class means is not considered significant for this feature \Rightarrow discard the feature

P. Dupont (UCL)

LGBIO2010

49 / 73

Supervised gene selection

Filters

Alternatives to a simple t-Test

- Mann-Whitney rank test is an alternative non-parametric test
- ANOVA offers a generalization of the t-Test in a multi-class (> 2) setting
- Pairwise t-tests between one class and the others is a common alternative
- Kruskal-Wallis is a generalization of Mann-Whitney to multi-class

Supervised gene selection

Filters

The multiple test problem

A microarray experiment to distinguish between patients with a positive or a negative diagnosis

Among 50,000 gene expression values measured in each experiment, only those genes that are differently expressed, with a p-value $\leq 0.05 = \alpha$, are selected

The probability of type I error of a statistical test

Conclude that the mean expression values among the 2 classes are significantly different for a given gene while they are not \Rightarrow the feature is falsely selected with probability α

Test multiplicity

- The test will be performed for each gene ⇒ 50,000 times from the same experiment
- If $\alpha = 0.05$, we are expecting to select wrongly $50,000 \times .05 = 2,500$ genes !!

P. Dupont (UCL)

LGBIO2010

51 / 73

Supervised gene selection

Filters

Multiple test correction

Bonferroni correction

Divide the critical value (e.g. $\alpha = .05$) by the number of tests n_t performed

Example: $\frac{\alpha}{R} = \frac{.05}{50,000} = 10^{-6}$

 \Rightarrow only genes with associated p-values $< 10^{-6}$ are selected

Very conservative, often leads to select no feature

P. Dupont (UCL) LGBIO2010 50 / 73 P. Dupont (UCL) LGBIO2010 52 / 7

False Discovery Rate correction

Benjamini-Hochberg correction

• Select a confidence level α (e.g. 0.05)

2 Rank the p-values (one for each feature) in increasing order $p_1 \leq p_2 \leq \cdots \leq p_{n_t}$

Iterate over the n_t features

 $(n_t = p)$ with data in \mathbb{R}^p , not to be confused with p-values)

- Find the maximal index *i* such that $\frac{p_i \times n_t}{i} < \alpha$
- Keep all features up to index i_{max}

Notes:

- If $p_{n_t} < 0.05$ FDR correction leads to select all features
- FDR correction is equivalent to Bonferonni correction whenever a single feature is selected: $p_1 \times n_t < \alpha \Leftrightarrow p_1 < \frac{\alpha}{n_t}$
- Those corrections do not change the relative ranking of features, just the selection threshold
- See R function p.adjust

P. Dupont (UCL)

LGBIO2010

53 / 73

Supervised gene selection

Feature ranking with mutual information

$$I(X; Y) = -\sum_{ij} P(x_i, y_j) \log_2 \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$
$$= -\sum_{ij} P(x_i, y_j) \log_2 \frac{P(y_j|x_i)}{P(y_j)}$$

- A feature X is more relevant if its mutual information with the class value is higher
- If X tends to bring no information to predict Y then $P(y_i|x_i)\approx P(y_i)$ and $I(X;Y)\to 0$
- I(X; Y) = 0 if and only if X and Y are independent
- I(X; Y) is invariant under rescaling of the variables X and Y (often rescaled to unit variance)

Univariate versus multivariate filters

- Correlation measures, t-Test (ANOVA), and I(X; Y) are univariate filters
- Mutual information can be used to select several variables at a time $I(X_1, \ldots, X_k; Y)$ but MI depends on the distributions $P(X_1, \ldots, X_k, Y), P(X_1, \ldots, X_k)$ and P(Y), which need to be reliably estimated
 - replace the joint problem by an approximation with a greedy selection of features

P. Dupont (UCL)

LGBIO2010

Filters

Maximum relevance minimum redundancy [Peng et al., 05]

Supervised gene selection

Select the feature with maximum mutual information with the response

- $\hat{X} = \operatorname{argmax}_{X} I(X; Y)$ $\Phi = {\hat{X}}$ $F = {X_{1}, ..., X_{p}} \setminus {\hat{X}}$

// Initialize the set of selected features // The remaining set of features

55 / 73

2 Repeat

$$\hat{X} = \operatorname{argmax}_{X \in F} \left[\underbrace{I(X; Y)}_{\text{maximize relevance}} - \frac{1}{|\Phi|} \sum_{X_j \in \Phi} I(X; X_j) \right]$$

minimize redundancy

$$\Phi \leftarrow \Phi \cup \{\hat{X}\} ; F \leftarrow F \setminus \{\hat{X}\}$$

until an appropriate number of features are selected

P. Dupont (UCL) LGBIO2010 54 / 73 P. Dupont (UCL) **LGBIO2010** 56 / 73

Filters in a nutshell

- Use only the training data + class labels during selection
- Filters offer interesting baselines which are fast to compute
- Popular univariate filters are based on a *t*-Test (with multiple test correction) or mutual information
 - they ignore the interactions between genes!
- Maximum relevance minimum redundancy is a popular multivariate extension

P. Dupont (UCL)

LGBIO2010

57 / 73

Supervised gene selection

Filters

Are filters independent from a predictive model?

- The two step approach is sometimes considered as a benefit since the features are claimed to be selected independently from the subsequent classifier/regression model
 - ▶ Is it really better? (see embedded methods)
 - ► Is it really the case?

t-Test revisited

t-Test statistic

A feature *x* is selected whenever the difference between the class means is significant (after correction for multiplicity)

$$J(x) = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

Equivalently, one easily discriminates between the classes using 2 uni-dimensional Gaussian classifiers (with a common variance)

59 / 73

P. Dupont (UCL)

LGBIO2010

Supervised gene selection

Wrappers

Wrapper principle

- Estimate a classifier from a given subset of all possible features
- Select the feature subset that optimizes the performance of the classifier (usually on an independent validation set)
 - ► Feature selection depends on the evaluation protocol of the classifier
 - ▶ There are $\mathcal{O}(2^p)$ possible subsets

P. Dupont (UCL) LGBIO2010 58 / 73 P. Dupont (UCL) LGBIO2010 60 / 75

Univariate feature ranking

P. Dupont (UCL) LGBIO2010 61 / 73

Supervised gene selection

Wrappers

Multivariate Forward/Backward selection

- Forward selection goes bottom-up
- Backward selection goes top-down

Search order matters

 x₃ alone is better than x₁ or x₂ alone, but x₁ together with x₂ offer the best discrimination

2 best features:

- ► Univariate feature ranking selects (x₃, x₂)
- Forward selection selects (x_3, x_1)
- ▶ Backward selection selects (x_1, x_2)

Single best feature:

- Forward selection or univariate feature ranking selects x₃
- ► Backward selection selects x₂

P. Dupont (UCL)

LGBIO2010

Wrappers

Supervised gene selection

Wrappers in a nutshell

- A wrapper with univariate feature ranking offers a good baseline
 - The t-Test statistics can be used to rank features only (no need for multiple test correction nor fixing a confidence measure)
 - Classifier performance is used to decide how many features to keep
 - This can outperform a pure filter approach while not increasing much the computational cost
- A backward selection may be preferable over a forward selection, but should not be used to select just a few features (what "a few" means depends on the data...)
- More sophisticated search strategies are possible (backward + forward, randomized search, ...)
- If one can afford the computational cost of a multivariate selection, one should probably consider an embedded approach

P. Dupont (UCL) LGBIO2010 62 / 73 P. Dupont (UCL) LGBIO2010 64 / 73

Embedded Methods

- Define the feature selection and the classifier estimation as a combined optimization process
- The features are selected as a by-product of the estimated classifier and its parameters

P. Dupont (UCL) LGBIO2010 65 / 73

Supervised gene selection

Embedded Methods

Linear Discriminants

- The actual number of dimensions may be \approx 10,000 for microarray classification
- The linear discriminant is a hyperplane in $\mathbb{R}^{\geq 10,000}$
- Decision rule: sign $(\sum_{j=1}^p w_j x_j + w_0) = \text{sign}(\mathbf{w}^\top \mathbf{x})$ (with $x_0 \stackrel{\triangle}{=} 1$)
 - $\Rightarrow |w_i|$ is a measure of the importance of the jth feature

Linear Separability

Facts

- The data is linearly separable if the two classes can be perfectly separated by a hyperplane
- A hyperplane in $\mathbb{R}^{10,000}$ can separate perfectly at least 10,001 (unaligned) points, given any possible 2 class labeling
- There is no problem to find a perfect linear separator of less than 100 points in $\mathbb{R}^{\geq 10,000}$ (e.g. for microarray data)
- The problem is that there are many apparently perfect models

P. Dupont (UCL)

LGBIO2010

67 / 73

Supervised gene selection

Embedded Methods

Linear Support Vector Machines in a nutshell

- When the data is linearly separable the separating hyperplane is not unique but the maximal margin hyperplane separates the data with the largest margin
- For each separating hyperplane, there is an associated set of support vectors

P. Dupont (UCL) LGBIO2010 66 / 73

Conclusion

Recursive Feature Elimination [Guyon et al., 02]

Embedded Backward Selection

Estimate a SVM on a given set of dimensions

(initially p dimensions)

- ▶ Decision rule: sign $(\sum_{i=1}^{p} w_i x_i + w_0)$
- 2 Consider $|w_i|$ as the relevance of the j^{th} dimension
- Remove the least relevant dimension(s)
- Iterate to on a reduced feature set

P. Dupont (UCL) LGBIO2010 69 / 73

Conclusion

General Summary

- Feature selection aims at reducing the dimensionality of the data while preserving the interpretation of the original features
- Filters methods use only the data + class labels:
 - simple, fast, generally univariate (often an implicit use of a classifier)
- Wrappers take the performance of the classifier into account
 - Multivariate as soon as the classifier is multivariate
 - Often computing intensive
- Embedded methods take the structure of the classifier into account
 - More elegant and often faster than wrappers, not always better in terms of performance
 - A way to get an insight into a black-box classifier

Further information

- LINGI2262 Machine Learning: classification and evaluation (Semester 2)
- LELEC2870 Machine Learning: regression, dimensionality reduction and data visualization (Semester 1)
- LINGI2369 Artificial Intelligence and Machine Learning Seminar (Semester 1)

P. Dupont (UCL) LGBIO2010 71 / 73

References

Further Reading I

- Guyon, I., Gunn, S., Nikarvesh, M. and Zadeh, L.A. (editors) (2006). Feature Extraction: Foundations and Applications. Springer.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009).

 The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
 (2nd edition), Springer.
- Abeel, T., Helleputte, T., Dupont, P. and Saeys, Y. (2010)

 Robust biomarker identification for cancer diagnosis with ensemble feature selection methods

 Bioinformatics, Vol. 26 (3), pp. 392-398.
- Bolstad, B.M., Irizarry, R.A., Astrand, M. and Speed, T.P. (2003)

 A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
 Bioinformatics, Vol. 19 (2), pp. 185-193.

P. Dupont (UCL) LGBIO2010 70 / 73 P. Dupont (UCL) LGBIO2010 72 / 73

Further Reading II

Peng, H., Long, F., and Ding, C. (2005).

Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, N° 8, pp. 1226-1238

P. Dupont (UCL) LGBIO2010 73 / 73