$A = \{x \mid x \text{ \'e inteiro e } 3 < x \leq 7\}$

x tal que x é inteiro e 3 é menor que X e X é menor ou igual a 7

A ⊂ **B** A é subconjunto próprio de B

A ⊆ **B** A é subconjunto próprio ou igual a B

Conjuntos numéricos: Naturais

 $\mathbb{N} = \{\bar{0}, 1, 2, 3, 4, 5, 6, \dots\} \quad \mathbb{N} *= \{1, 2, 3, 4, 5, 6, \dots\}$

Conjuntos numéricos: Inteiros Z = {..., -3, -2, -1,0,1,2,3,...}

Conjuntos numéricos: Racionais

$$\mathbb{Q} = \{-1, -\frac{2}{5}, \frac{4}{3}, 5, \dots\}$$

Símbolos	
€: pertence	⊅: não contém
€: não pertence	∃: existe
⊂: está contido	∄: não existe
⊃: contém	∀: para todo

Símbolos das operações	
	A∩B: intersecção B
	A∪B: A união B
a -	b: diferença de A com B
	a < b: a menor que b
a≤	b: a menor ou igual a b
	a > b: a maior que b
a≥	b: a maior ou igual a b
	a∧b:aeb
	a∨b:a ou b

Tudo o que está fora do conjunto. O complemento de A é A'

Se um conjunto S é finito, então n(S) é sua cardinalidade: o número total de elementos do conjunto.

$(\forall x)[(x \in A \rightarrow x \in B) \land (\exists y)(y \in B \land y \notin A)]$

(para todo X) [(Se x está em A, então x está em B) e (Existe pelo menos um y) (O y está em B, mas y não está em A)]

Subconjunto próprio

Se A = $\{1, 7, 9, 15\}$, B = $\{7, 9\}$ e C = $\{7, 9, 15, 20\}$

Então:

 $B \subseteq C$ $15 \in C$ $B \subseteq A$ $\{7,9\} \subseteq B$ $B \subset C$ $\{7\} \subset A$ $A \not\subset C$ $\emptyset \subset C$

Funções

Domínio S

Contradomínio T

Uma função f de S em T, simbolizada por f: $S \rightarrow T$ é um subconjunto de S x T, onde cada elemento de S aparece exatamente uma única vez como primeiro elemento de um par ordenado.

S é o domínio e T é o contradomínio da função f.

Uma função é uma relação do tipo um-para-um ou muitos para um.

Função sobrejetora

É aquela em que o contradomínio é igual a imagem.

Função injetora

Cada elemento da imagem só tem um correspondente do domínio

Uma função f : S ightarrow T é uma função injetiva (ou função um-para-um) se:

nenhum elemento de T for imagem por f de 2 ou mais elementos distintos de S

Função bijetora

Injetora e sobrejetora

Uma função **f** : **S** → **T** é uma **função bijetiva** se for ao mesmo tempo:

injetiva (um-para-um) e sobrejetiva

Função composta

Sejam as funções f: $S \rightarrow T$ e g: $T \rightarrow U$. Então para qualquer $s \in S$, f(s) é um elemento de T, que também é um domínio de g. O resultado de g(f(s)) é um elemento de U.

Sejam as funções $f: S \rightarrow T$ e $g: T \rightarrow U$

Então a função composta ${\bf g}$ of ${\bf f}$ é uma função de ${\bf S}$ em ${\bf U}$ definida por:

$$(g^{\circ}f)(s) = g(f(s)),$$

onde s ∈ S

A função g°féa composição de feg