PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-030835

(43)Date of publication of application: 09.02.1988

(51)Int.CI.

G03B 21/62

(21)Application number: 61-174212

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

24.07.1986

(72)Inventor: MURAO TSUGIO

MIYATAKE YOSHITO

(54) TRANSMISSION TYPE SCREEN

(57)Abstract:

PURPOSE: To obtain a transmission type screen on which contrast of an image is good, even if it is observed in a bright room, by arranging regularly a prism element whose section is a triangular shape, on the incident side face of a light transmissible plate, and arranging regularly a light absorbing means at a prescribed interval on the emitting side face, so that a projected luminous flux is refracted by a first face of the prism element and transmits through, and thereafter, brought to total reflection in the forward direction.

CONSTITUTION: A light beam which is made incident on an incident side face of a transmission type screen is reflected by the first face 15 of a prism element and transmits, brought to total reflection by a second face 16, and thereafter, emitted almost vertically to the screen. Accordingly, an area where a light beam 11 passes through an emitting side face of the screen is a part corresponding to the second face 16 of a prism element 14, and even if a groove 17 and a light absorbing

layer 18 and constituted in the part corresponding to the first face 15, a luminous flux required for forming an image is not affected at all. In this state, among external light beams which are made incident at a large angle, only the light beam passing through the vicinity of a trough part of the prism element 14 is refracted by plural prism elements 14 and passes and thereafter, brought to total reflection since an incident angle to the second face 16 exceeds a critical angle by some prism element 14, and emitted in the forward direction of the screen.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

Best Available Copy

19日本国特許庁(JP)

①特許出願公開

☑ 公 開 特 許 公 報 (A)

昭63-30835

Mint Cl. 4

識別記号

庁内整理番号

④公開 昭和63年(1988)2月9日

G 03 B 21/62

8306-2H

審査請求 未請求 発明の数 1 (全5頁)

透過型スクリーン の発明の名称

> 创特 願 昭61-174212

願 昭61(1986)7月24日 砂田

外1名

尾 伊発 明 明

次 男 義

大阪府門真市大字門真1006番地 松下電器産業株式会社内

79発 顖 松下電器産業株式会社 の出

大阪府門真市大字門真1006番地 松下電器產業株式会社内

大阪府門真市大字門真1006番地

弁理士 中尾 敏男 の代 理

- 1、発明の名称
 - 透過型スクリーン
- 2、特許請求の範囲
 - (1) 透光性板の入射側面に断面が三角形状のプリ ズム素子が配列され、出射側面に所定の間隔で 光吸収手段が配列され、投写光束が前記プリズ ム素子の第1面で屈折透過した後、第2面で前 方向に全反射するようにし、全反射後の光束が 前配光吸収手段の間を通過するようにした透過 型スクリーン。
 - ② 前方向からスクリーンに入射する外光の中で プリズム素子の第1面および第2面で屈折透過 を繰り返した後、第2面で全反射して前方向に 出射しようとする光線が、光吸収手段で遮蔽さ れるように透光性板の厚さが設定されている特 **許請求の範囲第(1)項記載の透過型スクリーン。**
 - (3) 光吸収手段は滞と前記簿の上に設けられた光 吸収層から構成されている特許請求の範囲第② 項記載の透過型スクリーン。

- (4) 溝はV字状であることを特徴とする特許請求 の範囲第四項記載の透過型スクリーン。
- (6) 光吸収層は黒色であることを特徴とする特許 請求の範囲第四項記載の透過型スクリーン。
- (6) 光吸収手段は出射側面上に設けられた光吸収 層から構成されたことを特徴とする特許請求の 範囲第四項記載の透過型スクリーン。
- の 光吸収層は黒色であることを特徴とする特許 請求の範囲第60項記載の透過型スクリーン。
- 3、発明の詳細な説明

産業上の利用分野

本発明は投写型画像表示装置に使用して有効な 透過型スクリーンに関するものであり、特に投写 光束を斜め方向からスクリーン上に控写する場合 に有効な透過型スクリーンに関するものである。

大画面のテレビジョン面像を得るために、比較 的小さな映像管にテレビジョン画像を映出し、投 写レンズによりスクリーン上に拡大投写する方法 が従来よりよく知られている。現在では、映像管、 役写レンズ、透過型スクリーンの性能向上により、キャピネット内に光学系、 国路系を配置し、 透過型のスクリーンの資後から面像を役写する方式の役写型テレビジョン装置の奥行を非常に薄くすることを狙って、 投写レンズから出る光束を透過型スクリーンに対してかなり斜め方向から入射させる方法が提案されている(たとえば、特別昭57-109481号公報).

このような投写型テレビジョン装置の機略構成を第3回に示す。キャビネット1の上部前側に透過型のスクリーン2が配置され、上端に平面をラー3が配置され、下部にフェイスプレート4を上に向けて映像管5が配置され、映像管5の上方に投写レンズ6が配置されている。映像管5に映出される画像が投写レンズ8の結像作用と平面をラー3の反射作用によりスクリーン2上に拡大投写されるが、投写レンズ6から出る光束はスクリーン2に対してかなり斜め方向から入射するので、平面ミラー3の実行方向の長さが短かくなり、キ

光線13はスクリーン2内に入射した後、複数の プリズム素子7の各面を屈折透過し、あるプリズム素子7の第2面で臨界角を越えて全反射し、再 びスクリーン2から前方に出射する。このような 光線13が画像形成に必要な投写光束に選じって 観察されるので、コントラストが若しく低下する。

本発明はかかる点に指みてなされたもので、役 写光束に対して斜めに配置することによりキャピ ネットが非常にコンパクトとなる透過型スクリー ンでありながら、明るい窓内で観察しても画像の コントラストの良好な透過型スクリーンを提供す ることを目的としている。

問題点を解決するための手段

上記問題点を解決するため、本発明の透過型スクリーンは、透光性板の入射側面に断固が三角形状のプリズム素子が規則正しく配列され、出射側面に所定の間隔で光吸収手段が規則正しく配列され、投写光束が前記プリズム素子の第1面で屈折透過した後、第2面で前方向に全反射するようにし、全反射後の光束が前記光吸収手段の間を通過

ャピネットしの奥行を非常に輝くすることが可能 となる。

スクリーン2は、第4回に示すように、透明平 板の裏面に断面が三角形のプリズム素子7を規則 正しく配列したものである。プリズム素子7の第 1面8に入射した光線9は、第1面8を囲折透過 した後、第2面10で全反射して前方向に折り過 げられる。このようにして、スクリーン2に対し てかなり斜め方向から光線が入射しても、プリズム素子7の光線がり曲げ作用により、スクリーン 2の正面に位置する観察者に対して明るい投写画 像を提供することができる。

発明が解決しようとする問題点

第3回に示した構成の校写型テレビジョン装置 に第4回に示すスクリーン2を用いた場合、明る い室内では画像のコントラストが著しく低下する という問題を生じる。

この問題は次のように説明できる。

第5 関に示すようにスクリーン2 が外光により 前方上方向から展明されると、ある入射角を持つ

するようにしたものである。

作用

上記構成によれば、簡像形成に必要な役写光束は光吸収手段に妨げられることなく前方向に出射する。一方、透光性根に入射し内部を屈折透過した後に前方向に出射しようとする外光は、大部分が入射時に出射側面の光吸収手段により吸収される。つまり、外光のうち前方向に出射する成分は光吸収手段により非常に小さくなる。従って、明るい室内で観察しても顕像のコントラストの良好な透過型スクリーンを提供できる。

実施例

本発明による透過型スクリーンの一実箱例につ いて版付図面を参照しながら説明する。

第1図は本発明の一実施例における透過型スクリーンの中心部における要部断面図を示したもので、11は透光性板、14はプリズム案子、17はV字状の構、18は光吸収層である。透光性板 11の入射側面には断面が三角形状のプリズム素子14が規則正しく配列され、プリズム素子14

特開昭63-30835(3)

は屈折面としての第1面15と全反射面としての第2面16とで構成されている。出射側面にはプリズム素子14の第1面15におよそ対応する領域にV字状の溝17とその上に充吸収層18が設けられている。光吸収層18は光を吸収し易い黒色としている。

透光性板の屈折率は1.492、プリズム素子 14の頂角は45°、中心軸12に対するプリズム素子14の第1面15の傾斜角は15°、プリズム素子14の谷部から出射側面までの厚さは3.0m。プリズム素子14のピッチは0.5mmである。

本発明の作用を以下に説明する。

第1 図に示すように、透過型スクリーンの入射 側面に入射する光線は、プリズムな子の第1面 1 5 で屈折透過し、第2面16で全反射した後スクリーンにほぼ垂直に出射する。使って光線11 がスクリーンの出射側面を遭遇する領域はプリズムを子14の第2面16に対応した部分であり、 第1面15に対応した部分に沸17 および光吸収

0.5 mで規則正しく殺けられており、光線13 のスクリーン内の屈折角がおよそ 0 = 40 * であるから、プリズム素子14の谷部から出封側面までの厚さしをP/tan 0 = 0.6の整致倍とすれば、光線13のスクリーンへの入射領域がV字状の溝17および光吸収層18に一致する。本実施例の場合、プリズム素子14の谷部から出射側面までの厚さしをP/tan 0 = 0.6の5倍である3.0mとしている。

本実籍例のV字状の沸17はスクリーン内を斜めに迅通する先線に対し、光吸収層18の面積を等価的に増大させており、外光遮蔽効果をさらに効果的にしている。以上のように本一実施例によれば、画像のコントラストの低下が少ない良好な透過型スクリーンが得られる。

映像管からの光線の入射角は第3図から理解されるようにスクリーンの上部および下部では中心 部での値から値かに変るので、中心軸12に対す るブリズム素子14の第1面15の傾斜角を変え る等すると良好な画像が得られる。 増18を構成しても画像形成に必要な光束は全く 影響を受けない。

外光の中で垂直に近い角度でスクリーンに入射する光線18はプリズム素子14の第2面16を開折透過した後、スクリーンの背面へ突き抜けて、大きな角度で入射する外光の中でプリズム素子14を囲折透過した後、スクリーンの背面へ突き抜けてしまう。大きい角度で入射する外流の中でプリズム素子14の谷部付近を透過した後、の中でプリズム素子14で第2面16への入射対は複数のプリズム素子14で第2面16への入射対は複数のブリズム素子14で第2面16への向方へ出射する。

簡単な光線追跡の結果、本一実施例の場合スクリーン内の屈折角が40°付近の極めて限られた 光線だけがスクリーンの前方へ出射することが分

▼字状の滞17および光吸収層18はプリズム *** 孝子の第1面15におよそ対応して、ピッチP=

第2図は本発明の第2の一実施例における透過型スクリーンの中心部における要部断面図を示したもので、プリズム無子14の第1面15におよそ対応する出射側面上の領域に黒色の光吸収層19が直接配列されている以外は第1図に示した一審施例と同様である。

第2図に示した構成における作用、効果は第1 図に示した一実施例と同様であるが、海のない構造であるので製造が容易で低コストでありながら 画像のコントラストの良好な透過型スクリーンを 提供できる。

発明の効果

以上述べたごとく本発明によれば、役事光東に対して斜めに配置することによりキャビネットが非常にコンパクトとなる透過型スクリーンでありながら、スクリーンの厚さ、プリズム素子の構造等を選択して、面像のコントラストを署しく低下させる外光の入射点を出射倒菌上の投写光束が退退しない領域に一致させ、この領域に光吸収手段を投けることにより、外光は光吸収手段で吸収し

特開昭63-30835 (4)

てしまう一方、投写光束は光吸収手段による損失 がないので、コントラストの良好な画像が得られ るという効果がある。

4、図面の簡単な説明

第1回は本発明の一実施例における透過型スクリーンの構成を示す要部断面図、第2図は本発明の他の一実施例における透過型スクリーンの構成を示す要部断面図、第3図は投写型テレビジョン装置の構成を示す断面図、第4図は第3図に示した投字型テレビジョン装置に用いる従来の透過型スクリーンの構成を示す断面図、第5図は第4図に示した従来の透過型スクリーンの問題点を説明するための要部断面図である。

11……適光性板、14……ブリズム素子、17 ……V字型溝、18……光吸収層。

代理人の氏名 弁理士 中尾敏男 ほか1名

第 1 図

然 3 図

第 2 図

-236-

郊 4 🖾

第 5 図

