NOx_models_NG

2025-04-02

Libraries and Data Loading

glimpse(wetlands)

```
library(here)
## here() starts at /Users/nicolegutkowski/Desktop/ENV710/ENV710-Group-Project-3B
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats 1.0.0
                        v readr
                                    2.1.5
## v ggplot2 3.5.1 v stringr 1.5.1
## v lubridate 1.9.4 v tibble 3.2.1
## v purrr
              1.0.2
                         v tidyr
                                     1.3.1
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(moments)
library(readxl)
library(lubridate)
wetlands <- read.csv(here('Data/Processed/Log_Transformed_Data.csv'))</pre>
```

```
## Rows: 1,618
## Columns: 20
## $ Date
                                      <chr> "2015-08-25", "2015-09-15", "2015-09-~
                                      <chr> "WT3", "WT5", "WT3", "WT4", "WT1", "A~
## $ Site
                                      <dbl> 23.21, 20.14, 18.13, 18.69, 18.41, 18~
## $ Temp_C
## $ Log_SpCond_mScm
                                      <dbl> 0.16636154, 0.22713557, 0.09712671, 0~
## $ Log Cond mScm
                                      <dbl> 0.16126815, 0.20863887, 0.08434115, 0~
                                      <dbl> 0.11154137, 0.15357909, 0.06391333, 0~
## $ Log_TDS_mgl
## $ Log_Sal_ppt
                                      <dbl> 0.08617770, 0.11332869, 0.04879016, 0~
## $ DO_percent
                                      <dbl> 30.7, 72.5, 56.6, 62.4, 72.3, 18.5, 7~
## $ DO_mgL
                                      <dbl> 2.61, 6.56, 5.32, 5.80, 6.80, 1.72, 7~
                                      <dbl> 6.90, 6.71, 6.59, 6.55, 6.66, 6.71, 6~
## $ pH
## $ Month
                                      <int> 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1~
## $ Year
                                      <int> 2015, 2015, 2015, 2015, 2015, 2015, 2~
## $ Season
                                      <chr> "Summer", "Fall", "Fall", "Fall", "Fa-"
## $ Log_Unfiltered_TN_ugL
                                      <dbl> 7.319865, 6.752270, 6.648985, 6.89669~
## $ Log_Filtered_NOx_ugL
                                      <dbl> 5.420535, 4.727388, 3.761200, 5.33271~
## $ Log_Filtered_NHx_ugL
                                      <dbl> 5.817111, 4.859812, 4.934474, 4.82831~
## $ Log_Unfiltered_TP_ugL
                                      <dbl> 4.465908, 4.442651, 4.262680, 4.65396~
                                      <dbl> 28, 10, 4, 14, 29, 16, 8, 22, 3, 10, ~
## $ Filtered_OP_ugL
## $ Log_TSS_mgL
                                      <dbl> 3.7135721, 2.5649494, 1.9459101, 2.48~
## $ fecal_coliform_colonies_per100mL <dbl> 65, 5, 90, 30, 0, 5, 20, 45, 30, 60, ~
```

colnames(wetlands)

```
[1] "Date"
##
                                            "Site"
## [3] "Temp_C"
                                            "Log_SpCond_mScm"
## [5] "Log_Cond_mScm"
                                            "Log_TDS_mgl"
## [7] "Log_Sal_ppt"
                                            "DO_percent"
## [9] "DO_mgL"
                                            "pH"
## [11] "Month"
                                            "Year"
## [13] "Season"
                                            "Log_Unfiltered_TN_ugL"
## [15] "Log_Filtered_NOx_ugL"
                                           "Log_Filtered_NHx_ugL"
## [17] "Log_Unfiltered_TP_ugL"
                                            "Filtered_OP_ugL"
## [19] "Log_TSS_mgL"
                                            "fecal_coliform_colonies_per100mL"
```

Data Exploration: Continuous Variables Histograms

```
ggplot(wetlands, aes(x = Log_SpCond_mScm)) +
geom_histogram()

## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

## Warning: Removed 1 row containing non-finite outside the scale range
## ('stat_bin()').
```



```
skewness(wetlands$Log_SpCond_mScm, na.rm = T)
```

[1] 1.207848

```
kurtosis(wetlands$Log_SpCond_mScm, na.rm = T)
```

[1] 7.072255

```
ggplot(wetlands, aes(x = Log_Cond_mScm)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 2 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$Log_Cond_mScm, na.rm = T)
```

```
## [1] 1.529835
```

```
kurtosis(wetlands$Log_Cond_mScm, na.rm = T)
```

[1] 10.75839

```
ggplot(wetlands, aes(x = Log_TDS_mgl)) +
geom_histogram()
```

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```

Warning: Removed 2 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$Log_TDS_mgl, na.rm = T)
```

```
## [1] -1.922859
```

```
kurtosis(wetlands$Log_TDS_mgl, na.rm = T)
```

[1] 5.699103

```
ggplot(wetlands, aes(x = Log_Sal_ppt)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 1 row containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$Log_Sal_ppt, na.rm = T)
```

```
## [1] 2.898492
```

```
kurtosis(wetlands$Log_Sal_ppt, na.rm = T)
```

[1] 25.82352

```
ggplot(wetlands, aes(x = DO_percent)) +
geom_histogram()
```

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```

Warning: Removed 11 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$DO_percent, na.rm = T)
```

```
## [1] 0.348897
```

```
kurtosis(wetlands$DO_percent, na.rm = T)
```

[1] 2.748728

```
ggplot(wetlands, aes(x = DO_mgL)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 8 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$DO_mgL, na.rm = T)
```

[1] 0.4772204

```
kurtosis(wetlands$DO_mgL, na.rm = T)
```

[1] 2.665615

```
ggplot(wetlands, aes(x = pH)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 16 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$pH, na.rm = T)
```

```
## [1] -0.2046608
```

```
kurtosis(wetlands$pH, na.rm = T)
```

[1] 3.325108

```
ggplot(wetlands, aes(x = Log_TSS_mgL)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 15 rows containing non-finite outside the scale range
('stat_bin()').


```
skewness(wetlands$Log_TSS_mgL, na.rm = T)
```

[1] -0.03686939

```
kurtosis(wetlands$Log_TSS_mgL, na.rm = T)
```

[1] 2.642163

```
ggplot(wetlands, aes(x = fecal_coliform_colonies_per100mL)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 29 rows containing non-finite outside the scale range
('stat_bin()').

skewness(wetlands\$fecal_coliform_colonies_per100mL, na.rm = T)

```
## [1] 3.881634
```

kurtosis(wetlands\$fecal_coliform_colonies_per100mL, na.rm = T)

[1] 19.40906

```
ggplot(wetlands, aes(x = Log_Filtered_NOx_ugL)) +
geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 12 rows containing non-finite outside the scale range
('stat_bin()').

skewness(wetlands\$Log_Filtered_NOx_ugL, na.rm = T)

[1] -0.644908

kurtosis(wetlands\$Log_Filtered_NOx_ugL, na.rm = T)

[1] 3.200968

From the histogram plots, and skewness and kurtosis values, the variables that are normally distributed enough for analysis are DO%, DO (mg/L), pH, and log(TSS). Assessments of categorical variables will follow:

Data Exploration: Categorical Variables Bar Charts

```
unique(wetlands$Site)

## [1] "WT3" "WT5" "WT4" "WT1" "AN2" "AN5" "AN0" "P53" "P51" "CP3" "CP2" "AN3"
## [13] "CP1" "AN4" "P3D" "DP" "UP" "SP" "TV" "AS"

ggplot(wetlands, aes(Site))+
   geom_bar()
```


ggplot(wetlands, aes(Month))+
 geom_bar()

ggplot(wetlands, aes(Year))+
 geom_bar()

ggplot(wetlands, aes(Season))+
 geom_bar()

Data Exploration: Scatter and Box Plots

```
#Continuous Variables:
#- D0% / D0 mg_L/ pH / LogTSS
#Categorical Variables:
#- Site/ month/ Year/ season

D0_types_plot <- ggplot(wetlands, aes(x = D0_mgL, y = D0_percent)) +
    geom_point()
D0_types_plot</pre>
```

Warning: Removed 14 rows containing missing values or values outside the scale range
('geom_point()').


```
#variables extremely correlated (as expected) should not be used in the same model

DO_pH_plot <- ggplot(wetlands, aes(x = pH, y = DO_percent)) +
    geom_point()

DO_pH_plot</pre>
```

Warning: Removed 27 rows containing missing values or values outside the scale range ## ('geom_point()').


```
DO_pH_plot2 <- ggplot(wetlands, aes(x = pH, y = DO_mgL)) +
   geom_point()
DO_pH_plot2</pre>
```

Warning: Removed 24 rows containing missing values or values outside the scale range ## ('geom_point()').


```
#pH does not seem correlated with either DO mgl or DO %

DO_TSS_plot <- ggplot(wetlands, aes(x = Log_TSS_mgL, y = DO_percent)) +
    geom_point()

DO_TSS_plot</pre>
```

Warning: Removed 26 rows containing missing values or values outside the scale range ## ('geom_point()').


```
DO_TSS_plot2 <- ggplot(wetlands, aes(x = Log_TSS_mgL, y = D0_mgL)) +
   geom_point()
D0_TSS_plot2</pre>
```

Warning: Removed 23 rows containing missing values or values outside the scale range ## ('geom_point()').


```
#logTSS does not seem correlated with either DO mgl or DO %

DO_season_plot <- ggplot(wetlands, aes(x = Season, y = DO_mgL)) +
    geom_boxplot()
DO_season_plot</pre>
```

Warning: Removed 8 rows containing non-finite outside the scale range
('stat_boxplot()').


```
#season appears to influence DO mgL but not too much to avoid using together

TSS_season_plot <- ggplot(wetlands, aes(x = Season, y = Log_TSS_mgL)) +
    geom_boxplot()
TSS_season_plot</pre>
```

Warning: Removed 15 rows containing non-finite outside the scale range
('stat_boxplot()').


```
#season does not appear to strongly influence TSS

#site based differences?

TSS_site_plot <- ggplot(wetlands, aes(x = Site, y = Log_TSS_mgL)) +
    geom_boxplot()
TSS_site_plot</pre>
```

Warning: Removed 15 rows containing non-finite outside the scale range
('stat_boxplot()').


```
#potential influences of site on TSS

02_site_plot <- ggplot(wetlands, aes(x = Site, y = D0_mgL)) +
    geom_boxplot()

02_site_plot</pre>
```

Warning: Removed 8 rows containing non-finite outside the scale range
('stat_boxplot()').

#no signif differences

potential further filtering of data?

removal of sites and years with the lowest number of observations, probably should only use if we are going to do nested linear reg?

```
##filter out first and last years
##filter out AN3/ AS/ SP/TV/ UP

#wetlands2 <- wetlands %>%
  # filter(!(Year %in% c(2015, 2025))) %>%
  # filter(!(Site %in% c("AN3", "AS", "SP", "TV", "UP", "DP")))

#ggplot(wetlands2, aes(Site))+
  # geom_bar()

#ggplot(wetlands2, aes(Year))+
  # geom_bar()
```

Linear Models

Which Oxygen Measurement to Use

```
#Determining which oxygen measurement would be best to use in the models
wetlands02_perc.lm <- lm(Log_Filtered_NOx_ugL ~ D0_percent,</pre>
                      data = wetlands)
summary(wetlands02_perc.lm)
##
## Call:
## lm(formula = Log_Filtered_NOx_ugL ~ DO_percent, data = wetlands)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -6.6276 -0.9211 0.2515 1.0821 4.7298
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.59903
                          0.08180
                                    44.00
                                            <2e-16 ***
## DO_percent
              0.01853
                          0.00115
                                    16.12
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.581 on 1593 degrees of freedom
     (23 observations deleted due to missingness)
## Multiple R-squared: 0.1403, Adjusted R-squared: 0.1398
                 260 on 1 and 1593 DF, p-value: < 2.2e-16
## F-statistic:
AIC(wetlands02_perc.lm)
## [1] 5991.301
#DO % AIC = 5991.301
wetlands02_mgL.lm <- lm(Log_Filtered_NOx_ugL ~ D0_mgL,</pre>
                        data = wetlands)
summary(wetlands02_mgL.lm)
##
## lm(formula = Log_Filtered_NOx_ugL ~ DO_mgL, data = wetlands)
##
## Residuals:
               10 Median
                               3Q
      Min
                                      Max
## -6.6948 -0.9454 0.2326 1.0749 4.6245
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.70530
                          0.07675 48.28 <2e-16 ***
```

```
## D0_mgL     0.16194     0.01017     15.92     <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.585 on 1596 degrees of freedom
## (20 observations deleted due to missingness)
## Multiple R-squared: 0.1371, Adjusted R-squared: 0.1366
## F-statistic: 253.6 on 1 and 1596 DF, p-value: < 2.2e-16</pre>
AIC(wetlands02_mgL.lm)
```

[1] 6010.893

```
\#DO\ mgL\ AIC\ =\ 6010.893
```

 $\textit{\#The oxygen measurements were fairly similar in predictive power, however the DO\% had a slightly \textit{more p} \\$

Notes:

Continuous Variables: - DO% / DO mg_L/ pH / LogTSS Categorical Variables: - Site/ month/ Year/ season

 $Look\ at\ -\ DO\%\ vs\ DO\ mg/L\ -\ season\ v\ month\ v\ year\ -\ combinations\ of\ season\ +\ year/\ month\ +\ year$ Random Effects -\ site\ -\ year\ -\ potentially\ site\ nested\ in\ year