MAT389 Fall 2013, Midterm 1

Oct 8, 2013

Please justify your reasoning. Answers without an explanation will not be given any credit.

- 1. [2pt] Find all solutions to each of the following equations, and plot them:
 - (i) [0.5pt] $(z+1)^4 + i = 0$,
 - (ii) [0.5pt] Re(z+5) = Im(z-i),
 - (iii) [0.5pt] Re $\left(\frac{z}{1+i}\right) = 0$, (iv) [0.5pt] Re $(z^2 + 5) = 0$.
- 2. [2pt] Describe the following subsets of the complex plane, and plot them:
 - (i) [0.5pt] $\{z \in \mathbb{C} \mid |\text{Re } z| + |\text{Im } z| < 1\},$
 - (ii) [0.5pt] $\{z \in \mathbb{C}^{\times} \mid 0 \le \text{Arg } z \le \pi, |z| \le 1\},$
 - (iii) $[\mathbf{0.5pt}]$ $\{w \in \mathbb{C} \mid w = e^z \text{ for some } z \text{ with } \operatorname{Re} z \leq 0 \text{ and } 0 \leq \operatorname{Im} z \leq \pi\}$
 - (iv) [0.5pt] $\{z \in \mathbb{C} \mid \text{Re } z^2 > 0\}$
- **3.** [2pt] Prove that

$$\left| \frac{az+b}{\bar{b}z+\bar{a}} \right| = 1$$

whenever |z| = 1.

Hint: if |z| = 1, then $z = e^{i\theta}$ for some $\theta \in \mathbb{R}$.

- **4.** [1pt] Express $f(z) = z^3 + z + 1$ as f(z) = u(x, y) + iv(x, y).
- **5.** [2pt] Find the unique Möbius transformation, T, that takes $i \mapsto -i$, $0 \mapsto 0$, $-1 \mapsto \infty$. **Hint:** remember that the unique Möbius transformation that takes $z_1 \mapsto 0, z_2 \mapsto 1,$ $z_3 \mapsto \infty$ is given by the rule

$$z \mapsto \frac{z - z_1}{z_2 - z_1} \frac{z_2 - z_3}{z - z_3}$$

- **6.** [1pt] Show that f(z) = 1/z takes the line $z \bar{z} = 2i$ to the circumference of radius 1/2centered at the point -i/2.
- 7. [2pt] Consider the transformation f(z) = z + 1/z.
 - (i) [1pt] What is the image under f of the unit circle, |z| = 1?
 - (ii) [1pt] What about the image of the open punctured disk $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$?

- **8.** [2pt] Let $S = \{z \in \mathbb{C}^{\times} \mid 0 \le \text{Arg } z \le \pi/2\} \cup \{1/2 i\} \subset \mathbb{C}$.
 - (i) [0.5pt] Classify all points in \mathbb{C} as interior, exterior or boundary with respect to S.
 - (ii) [0.25pt] What are the accumulation points of S?
 - (iii) [0.25pt] Is S bounded?
 - (iv) [0.25pt] Is S open? Is S closed?
 - (v) [0.25pt] Is S connected?
 - (vi) [0.25pt] Is S compact?
 - (vii) [0.25pt] Is S a domain? Is S a region?

Note: for (i) and (ii), you do not need to justify your answer.

9. [1pt] Let Log denote the principal branch of the logarithm, defined by

$$\text{Log } z = \log |z| + i \operatorname{Arg} z$$

for $z \in \mathbb{C}^{\times}$. Give a counterexample to the identity

$$Log(z_1 z_2) = Log z_1 + Log z_2$$

- 10. [1pt] Enunciate the Cauchy-Riemann equations (in rectangular coordinates). We know that if a function $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ is differentiable at $z_0\in\mathring{\Omega}$, then its real and imaginary parts satisfy these equations. The latter is only a necessary condition for differentiability of f at z_0 , though. According to the theorem we proved in class, what are sufficient conditions for f to be differentiable at z_0 ?
- 11. [2pt] Find out where each of the functions below is holomorphic:

(i)
$$[\mathbf{0.4pt}] \ f(z) = z + \frac{1}{z}$$
, (ii) $[\mathbf{0.4pt}] \ e^{e^z}$, (iii) $[\mathbf{0.4pt}] \ \frac{1}{e^z - 1}$,

(ii) **[0.4pt]**
$$e^{e^z}$$
,

(iii) [**0.4pt**]
$$\frac{1}{e^z - 1}$$

(iv) **[0.4pt]**
$$|z|^2$$

(iv) [0.4pt]
$$|z|^2$$
, (v) [0.4pt] $\frac{z}{z^n - 2}$, $(n \in \mathbb{N})$

12. [2pt] Check that $u(x,y) = x^3 - 3xy^2$ is harmonic at every $(x,y) \in \mathbb{R}^2$. Calculate the unique harmonic conjugate, v(x, y), that satisfies v(0, 0) = 0.