

Team Double Decker

Capstone Design 2

Professor: YongHwa Park / TA: KyungEun Lee Team member: Jeongsu Park, SangWon Yoon, DuckYoung Kim, Won Choi, SeongWoong Hong, Cheol Sagong

Contents

Content 1 System Key Features

Content 2 Hardware Design

- Roller
- Elevator system
- Ball releasing system
- Function improvement

Content 3 Software

- DQN

Door + Guide

System Dimension

Hardware 1

Roller

Roller Design

Optimize Roller Dimension!

Roller – Problems

Roller - Solutions

1. Sweep Up Condition

Objective : sweep force $F_x > 0$

$$\sum F_x > 0$$
 when $l > h - r$

3. Roller sweep

Minimize $D_1 - D_2$

Numercial Analysis – MonteCarlo Simulation

2. Ball Enter Condition

Objective : ball should get into the storage

$$l \ge \sqrt{(h-H-r)^2 + d^2} - r$$

4. Detecting Range Condition

Objective : $D_{max} \ge 3\sqrt{2}$ & minimize D_{min}

$$sin^{-1} \left(\frac{l}{\sqrt{(d-6cm)^2 + (H_c - h)^2}} \right) + tan^{-1} \left(\frac{l}{H_c - h} \right) = 42^{\circ}$$

Roller – Optimized Dimension

f(l,h) = Kick out range

→ h=14cm, l=10.2cm d=12cm

Hardware 2

Elevator

Elevator system

Elevator system

<Contradiction>

<Blue ball enters>

The number of motors needs to be reduced(10)

Control complexity increases(46)

Mechanics substitution(28)

→ 1 motor, 2 functions

Elevator Safety

100% secure to Separate

$$\sum F_y = mg \cdot cos\theta - mr\alpha \cdot sin\theta - N = 0$$

$$\sum F_x = mg \cdot sin\theta - mr\alpha \cdot cos\theta - \mu_s N > 0$$

$$\alpha < 38.8rad/s^2$$

Vehicle's α_{max} : 2 rad/s^2

→ Can separate well!

Hardware 3

Ball Releasing

<Problem>

Need Door and Guide(8)

Complexity, Volume(12)

<Solution>

Merging(5)

→ Door + Guide

<Problem>

Need Slide for Ball(13)

Disturb Roller Rotaion(12)

<Solution>

Separation of space(1)

→Comb shape slide

<Final Design>

Bounce out?

<Experiment>

- Releasing height(h) = 93.0cm
- Bouncing height(h') = 34.6cm

Restitution coefficient(e)

$$e = \sqrt{\frac{h}{h'}} = \sqrt{\frac{34.6}{93.0}} = 0.610$$

$$h_p = e^2 H = 4.8 \text{cm} < 8.0 \text{cm} \text{ (e=0.610, H=13cm)}$$

Never bounce out!

Hardware 4

Function improvement

Oversteer

<Problem>

<Root Cause Analysis>

Angular momentum occurs!
Unbalanced weight to wheel

Oversteer-Additional weight

<Solution>

$$X_{com} = \frac{b}{2} = \frac{(W_{RF} + W_{RR} + W_2)b}{W_{RF} + W_{LF} + W_{LR} + W_{RR} + W_1 + W_2}$$

$$Y_{com} = \frac{a+2c}{2} = \frac{(a+c)(W_{LF} + W_{RF}) - c(W_{LR} + W_{RR})}{W_{RF} + W_{LF} + W_{LR} + W_{RR} + W_1 + W_2}$$

$$W_1 = 1245g$$
 $W_2 = 621g$

Oversteer- Additional weight

Software

DQN

DQN

Repeat certain actions

→ Longer task time

DQN

<Original>

Use domain knowledge

Analytic answer

<DQN>

Repeated operation

Experimental answer

If we can find analytic answer

→ Domain Knowledge >> DQN

Thanks

QnA

Appendix 1-1. Roller dynamics

2. Sweep Up Condition

Objective : sweep force $F_x > 0$

$$\sum F_{x} = -\mu_{s,1}N + F_{n}\cos(\theta - \theta') + \mu_{s,1}F_{n}\sin(\theta - \theta') - mg\sin\theta$$

$$\sum F_{y} = N - F_{n}\sin(\theta - \theta') + \mu_{s,1}F_{n}\cos(\theta - \theta') - mg\cos\theta = 0$$

$$\tau = F_{n}l$$

$$\sum F_x > 0$$
 when $l > h - r$

Appendix 1–2. Roller dynamics

3. Roll In Condition

Ball "Roll In" geometric condition

$$l \ge \sqrt{(h-H-r)^2 + d^2} - r$$

Appendix 1–3. Roller dynamics

(Case1) Roller pass by ball

(Case2)
First time ball enters

Appendix 1–4. Roller dynamics

1. Detecting Range Condition

Appendix 1–5. Possible sets of I d h

Appendix 1–5. Roller Dynamic Constraints

1. Sweep Up Condition

Objective : sweep force $F_x > 0$

 $\sum F_x > 0$ when l > h - r

2. Ball Enter Condition

Objective: ball should get into the storage

$$l \ge \sqrt{(h-H-r)^2 + d^2} - r$$

3. Roller sweep

Minimize $\frac{\theta_1 - \theta_2}{360^{\circ}}$

Numercial Analysis - MonteCarlo Simulation

4. Detecting Range Condition

Objective : $D_{max} \ge 3\sqrt{2}$ & minimize D_{min}

$$sin^{-1} \left(\frac{l}{\sqrt{(d-6cm)^2 + (H_c - h)^2}} \right) + tan^{-1} \left(\frac{l}{H_c - h} \right) = 42^{\circ}$$

Appendix 2. Elevator Safety

-100% secure to Separate

$$\sum F_{y} = mg \cdot cos\theta - r\alpha \cdot sin\theta - N = 0$$

$$\sum_{s} F_{x} = mg \cdot sin\theta - r\alpha \cdot cos\theta - \mu_{s}N > 0$$

$$mg(sin\theta - \mu_s cos\theta) - r\alpha(cos\theta - \mu_s sin\theta) > 0$$

$$\theta = 30^{\circ} \Rightarrow \alpha < 38.8 \, rad/s^2$$

Appendix 3. Storage Slope

Can ball roll in storage?

Static friction coefficient $\mu = 0.09$

Needed angle of inclination = 5.3°

Our storage's angle of inclination = 7.6°

Appendix 4. Oversteer- Additional weight

$$X_{com} = \frac{b}{2} = \frac{(W_{RF} + W_{RR} + W_2)b}{W_{RF} + W_{LF} + W_{LR} + W_{RR} + W_1 + W_2}$$

$$Y_{com} = \frac{a+2c}{2} = \frac{(a+c)(W_{LF} + W_{RF}) - c(W_{LR} + W_{RR})}{W_{RF} + W_{LF} + W_{LR} + W_{RR} + W_1 + W_2}$$

$$W_1 = 1245g$$
 $W_2 = 621g$

