

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

连接

- 由于使用、制造、装配、运输、维修等原因,机器中有相当多的零件需要彼此连接。
- 机械制造中,连接是指被连接件与连接件的组合。
- 机械静连接:被连接件间相互固定、不能作相对运动。
- <mark>机械动连接</mark>:能按一定运动形式作相对运动,如各种运动副。
- 机械连联接可分为:可拆连接和不可拆连接。
- 可拆连接:指连接拆开时,不破坏连接中的零件,重新安装后, 即可继续使用的连接。如:螺纹连接、键连接、销连接和成型 连接等。
- 不可拆连接:指连接拆开时,要破坏连接中的零件,不能继续 使用的连接。如:铆钉连接、焊连接和胶连接等。
- 本章仅讨论可拆连接。

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

- 将一倾斜角为ψ 的直线绕在圆柱面上便形成一条螺旋线 (图 a)。取一平面图形(图b),使它沿着螺旋线运动, 运动时保持此图形平面通过圆柱的轴线,就得到螺纹。
- 按照平面图形的形状,螺纹分为三角形螺纹、梯形螺纹和锯齿形螺纹等。

- 按照螺旋线的旋向,分为左旋螺纹和右旋螺纹。机械制造中一般采用右旋螺纹,有特殊要求时才采用左旋螺纹。
- 按照螺旋线的数目,螺纹还分为单线螺纹和等距排列的多 线螺纹。为了制造方便,螺纹的线数一般不超过4。

- 螺纹有内、外螺纹之分,两者旋合组成螺旋副或称螺纹副。 用于连接的螺纹称为连接螺纹;用于传动的螺纹称为传动 螺纹,相应的传动称为螺旋传动。
- 按照母体形状,螺纹分为圆柱螺纹和圆锥螺纹。

• 圆柱螺纹的主要几何参数:

大径*d*一与外螺纹牙顶(或内螺纹牙底)相重合的假想圆柱的直径,即螺纹的公称直径

小 Q_1 一与外螺纹牙底(或内螺纹牙顶)相重合的假想圆柱的直径,常用于连接的强度计算

中 d_2 一也是一个假想圆柱的直径,该圆柱的母线上牙型沟槽和凸起宽度相等,常用于连接的几何计算

线数n一螺纹的螺旋线数目

螺距P一螺纹相邻两个牙型上对应点间的轴向距离

导程 P_h 一螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离, $P_h = nP$ 螺纹升角 ψ 一中经螺旋线的切线与垂直于螺纹轴线的平面间的夹角 $\psi = \tan^{-1} \frac{nP}{\pi d_2}$ 牙型角a 一螺纹轴向截面内,螺纹牙型两侧边的夹角

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

一、螺纹连接的基本类型

- 螺纹紧固件连接有四种基本类型:螺栓连接、螺钉连接、 双头螺柱连接和紧定螺钉连接
- 螺栓连接:按螺栓主要受力状况不同可分为受拉螺栓连接 (普通螺栓连接)和受剪螺栓连接(铰制孔用螺栓连接) 两种,所用螺栓的结构型式和连接的结构也有所不同,前 一种制造和装拆方便,应用广泛;后一种多用于板状件的 连接,有时兼起定位作用
- 紧连接:工作前须拧紧的螺栓连接
- 松连接:不拧紧的螺栓连接,应用较少

螺纹余留长度 11

静载荷 $l_1 \ge (0.3 \sim 0.5) d$;

变载荷 $l_1 \ge 0.75d$;

冲击载荷或弯曲载荷 $l_1 \ge d$;

铰制孔用螺栓 $l_1 \approx 0$;

螺纹伸出长度 $a = (0.2 \sim 0.3) d$;

螺栓轴线到边缘的距离 $e = d + (3 \sim 6)$ mm

图 10-9 螺栓连接

座端拧入深度 H, 当螺孔材料为:

钢或青铜 $H \approx d$;

铸铁 $H=(1.25\sim1.5)d$;

铝合金 $H=(1.5\sim2.5)d$;

螺纹孔深度 $H_1 = H + (2 \sim 2.5) P$;

钻孔深度 $H_2 = H_1 + (0.5 \sim 1) d$;

*l*₁、*a*、*e* 值同图 10-9

图 10-10 螺钉连接和双头螺柱连接

二、螺纹紧固件

螺栓、螺钉、双头螺柱、紧定螺钉、螺母、垫圈

附表 C-3 六角头螺栓—A 级和 B 级(摘自 GB/T 5782—2000)

六角头螺栓—全螺纹—A 级和 B 级(摘自 GB/T 5783—2000)

(单位:mm)

标记示例:

螺栓直径 d=8mm、公称长度 l=80、性能等级为 8.8 级、表面氧化、A 级的六角头螺栓标记为

螺栓 GB/T 5782 M8×80。

	螺纹规格 d		M4	M5	М6	M8	M10	M12	M16	M20	M24	M30	M36	M42
s	公称	= max	7	8	10	13	16	18	24	30	36	46	55	65
K	公称		2.8	3. 5	4	5. 3	6.4	7. 5	10	12.5	15	18. 7	22. 5	26
r	min		0.2	0. 2	0. 25	0. 4	0.4	0.6	0. 6	0. 8	0.8	1	1	1. 2
	min	A	7. 66	8. 79	11.05	14. 38	17.77	20.03	26. 75	33. 53	39.98	_		_
e		В	7. 50	8. 63	10.89	14. 20	17. 59	19.85	26. 17	32. 95	39. 55	50.85	60. 79	71. 3
1	min	A	5. 88	6. 88	8.88	11. 63	14. 63	16. 63	22. 49	28. 19	33.61	_	_	_
d_{w}		В	5. 74	6. 74	8. 74	11. 47	14. 47	16. 47	22	27.7	33. 25	42.75	51. 11	59. 95
	l < 125		4	16	18	22	26	30	38	46	54	66	_	_
b	125 ≤ l ≤ 200		20	22	24	28	32	36	44	52	60	72	84	96
	l > 200		33	35	37	41	45	49	57	65	73	85	97	109
c	max		0.4	0.	5	0.6		0.6	0.8				1. 0	
a	m	ax	2.1	2. 4	3	4	4.5	5. 3	6	7. 5	9	10. 5	12	13. 5
<i>l</i> 范围		25 ~40 2	25 ~ 50	30 ~ 60	40 ~ 80	45 ~	50 ~	65 ~	80 ~	90 ~	110 ~	140 ~	160 ~	
						100	120	160	200	240	300	360	440	
l(全螺线)			6 ~ 40	10 ~ 50	12 ~ 60	16 ~ 80	20 ~	25 ~	30 ~	40 ~	50 ~	60 ~	75 ~	80 ~
				10 3 30	12 3 00		100	120	150	150	150	200	200	200
<i>l</i> 系列 6,8,10,12,16,20~70(5 进位),80~160(10 进位),180~500(20 进位)														

螺纹紧固件: 螺栓、螺柱、 螺钉、螺母、 垫圈 均有国家标准

注: A 级用于 $d=1.6\sim24$ mm 和 $l\leqslant10d$ 或 $l\leqslant150$ mm (按较小值); B 级用于 d>24 mm 或 l>10d 或 l>150 mm (按较小值)的螺栓。

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

一、拧紧力矩

- 除个别情况外,螺纹连接在装配时都必须拧紧,这时螺纹 连接受到预紧力的作用。对于重要的螺纹连接,应控制其 预紧力。
- 预紧力的大小对螺纹连接的可靠性、强度、密封性和放松 能力均有很大的影响。

拧紧螺母时,需要克服——螺纹副的螺纹阻力矩 T_1 和螺母支承面上的摩擦阻力矩 T_2

 $T = T_1 + T_2 = F_a \frac{d_2}{2} \tan(\psi + \rho') + f_c F_a r_f$

 F_a 一轴向力, 对于不承受轴向工作载荷的螺纹, F_a 即预紧力;

 d_2 一螺纹中径;

 f_c 一螺母与被连接件支承面之间的摩擦系数, 无润滑时可取 $f_c = 0.15$;

 r_f 一支承面摩擦半径, $r_f \approx (d_w + d_0) / 4$,其中 d_w 为螺母支承面的外径, d_0 为螺栓孔直径。

对于M10 ~ M68的粗牙螺纹, 若取 $f' = \tan \rho' = 0.15$, $f_c = 0.15$, 则

 $T \approx 0.2 F_a d$ (N·mm)

控制拧紧力矩扳手——

二、螺纹连接的防松

螺纹连接防松的实质——<u>防止螺旋副的相对转动</u>。防止连接的松动,以免影响正常工作。

按防松装置或方法的工作原理可分为三类:

- 摩擦防松
- 直接锁住(机械防松)
- 不可拆卸防松(破坏螺纹副)(铆冲、粘接、焊接)

表 10-4 常用的防松方法

弹簧垫圈材料为弹簧钢,装 配后垫圈被压平,其反弹力能 使螺纹间保持压紧力和摩 擦力

利用两螺母的对顶作用使 螺栓始终受到附加的拉力和 附加的摩擦力。结构简单,可 用于低速、重载场合

尼龙圈锁紧螺母

螺母中嵌有尼龙圈,拧上后 尼龙圈内孔被胀大,箍紧螺栓

圆螺母用带翅垫片

止动垫片

槽形螺母拧紧后,用开口销 穿过螺栓尾部小孔和螺母的 槽,也可以用普通螺母拧紧后 再配钻开口销孔

使垫片内翅嵌入螺栓(轴) 的槽内,拧紧螺母后将垫片外 翅之一折嵌于螺母的一个 槽内

将垫片折边以固定螺母和 被连接件的相对位置

其他方法防松

用冲头冲 2~3点 冲点法防松

黏合法防松

用黏合剂涂于螺纹旋合表 面,拧紧螺母后黏合剂能自行 固化,防松效果良好

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

工作原理——利用键在轴与轮毂之 间形成静连接或动连接,是一种可 拆连接,其中键是标准零件。

键连接的功能——

- 基本功能——所有类型的键连接都能用来实现轴和轴上零件(如齿轮、带轮等)的周向固定,以传递转矩;
- 延伸功能—— ⇒ 部分类型的键连接还能实现轴上零件 的轴向固定,以传递轴向力;
 - 部分类型的键连接能构成轴向动连接,以使零件在轴上滑动。

一、键连接的类型

1. 平键连接

工作原理——平键的两侧面是工作面,上表面与轮毂槽底之间留有间隙。工作时,靠键与键槽的互相挤压传递转矩。

● 常用类型——普通平键,导向平键,滑键

- 普通平键(静连接)
 - ▶ 圆头(A型)——轴槽用指形铣刀加工,键在槽中固定良好
 - ▶ 方头(B型)——轴槽用盘形铣刀加工,键卧于槽中用螺钉紧固
 - ➤ 单圆头(C型)——常用于轴端

表 10-10 普通平键和键槽的尺寸(摘自 GB/T 1095-2003、GB/T 1096-2003)

mm

标记示例:

圆头普通平键(A型),b=16,h=10,L=100的标记为:GB/T 1096 键 $16\times10\times100$ 平头普通平键(B型),b=16,h=10,L=100的标记为:GB/T 1096 键 $B16\times10\times100$ 单圆头普通平键(C型),b=16,h=10,L=100的标记为:GB/T 1096 键 $C16\times10\times100$

表 10-10 普通平键和键槽的尺寸(摘自 GB/T 1095-2003、GB/T 1096-2003)

<u>b</u>

mm

轴的直径			键的尺寸	键槽			
d	b	h	C 或 r	L	t_1	t_2	半径 r
自 6~8	2	2		6~20	1.2	1	
>8~10	3	3	0. 16~0. 25	6~36	1.8	1.4	0.08~0.16
>10~12	4	4		8 ~ 45	2. 5	1.8	
>12~17	5	5		10~56	3.0	2. 3	
>17~22	6	6	0. 25 ~ 0. 4	14~70	3.5	2. 8	0. 16~0. 25
>22~30	8	7		18~90	4. 0	3. 3	

注:L系列为 6,8,10,12,14,18,20,22,25,28,32,36,40,45,50,56,63,70,80,90,100,110,125,140,160,180,200,220,…。

- 导向平键(动连接)
 - ➤ 导向平键有圆头(A型)和方头(B型)两种。
 - ▶ 导向平键用螺钉固定在轴槽中,导向平键与轮毂的键槽采用 间隙配合,轮毂可沿导向平键轴向移动。
 - 为了装拆方便,键中间设有起键螺孔。导向平键适用于轮毂 移动距离不大的场合。

- 滑键(动连接)
 - 用于轮毂轴向移动距离较大的场合。
 - ▶ 滑键固定在轮毂上,随轮毂一起沿轴上的键槽移动,轴上应 铣出较长的键槽。
 - > 滑键结构依固定方式而定,下图是两种典型的结构。

2. 半圆键连接

- 半圆键的两侧面为工作面, 工作时靠键与键槽侧面的 挤压传递转矩。
- 轴上键槽用盘铣刀铣出, 键在槽中能绕键的几何中 心摆动,可以自动适应轮 载上键槽的斜度。
- 制造简单、装拆方便、缺 点是轴上键槽较深、对轴 削弱较大。
- 适用于载荷较小的连接或 锥形轴端与轮毂的联接。

3. 楔键连接

- 楔键的上、下面是工作面。键上表面有1:100的斜度,轮毂键槽 底面也有1:100的斜度。
- 装配时将键打入轴和毂槽内(将使轴和轮毂产生偏心),其工作面上产生很大的预紧力 F_n 。
- 工作时,主要靠预紧力 F_n 产生的摩擦力传递转矩,并能承受<mark>单</mark> 方向的轴向力。
- 轴与轮毂的对中性差。用于低速、轻载、对中要求不严的场合。

4. 切向键连接

- 由一对楔键组成, 装配时, 将两键楔紧。
- 键的两个窄面是工作面,其中一个面在通过轴心线的平面内, 工作面上的压力沿轴的切线方向作用,能传递很大的转矩。

、平键连接的强度校核

平键连接的主要失效形式:工作面的压溃和磨损(对于动连接)。

 $\sigma_p = \frac{2T/d}{kl} = \frac{2T}{kdl} \le [\sigma_p] \qquad k = h/2$ 平键连接的挤压强度条件:

T一转矩($N \cdot mm$); d一轴径(mm); h一键的高度(mm); l一键的工作长度 (mm); $[\sigma_p]$ 一许用挤压应力(MPa); [p]一许用压强(MPa)。

导向平键、滑键的限制压强条件:

$$p = \frac{2T}{kdl} \le [p]$$

键连接的许用挤压应力和许用压强 (MPa)

许用值	<i>大</i> 人 吉匹士士 ¥3	载荷性质					
计用阻	轮毂材料	静载荷	轻微冲击	冲击			
r = 1	钢	125~150	100~120	60~90			
$[\sigma_{\!_{ m p}}]$	铸铁	70~80	50~60	30~45			
[<i>p</i>]	钢	50	40	30			

注:为键、轴、轮毂三者中最弱材料的许用值,通常轮毂材料较弱。

若强度不够,可采用两个键按180°布置。考虑到载荷分布的不均匀性,在强度校核中按1.5个键计算。

三、花键连接

工作原理——轴和轮毂孔周向均布多个凸齿(键)和凹槽(键槽) 所构成的连接。齿的侧面是工作面。是平键连接的发展。

特点——

- 既可作静连接,也可作动连接;
- 多齿(键)传递载荷,承载能力高;
- 键矮、槽浅,对轴、轮毂的强度削弱小;
- 多齿均布,对中性好;
- 加工精度高(可磨削),动联接导向性好。

• 需要专门设备加工,加工成本较高。

应用——

适用于定心精度要求高、载 荷大或经常滑移的连接。

常用类型——按齿形不同,分为**矩形花键和渐开线花键**两类,均已标准化。

• 矩形花键

按齿高的不同,分为轻系列和中系列,分别 用于不同的载荷情况。

小径*d*定心(配合面):内、外花键均可磨削精加工,定心精度高。

• 渐开线花键

齿形为渐开线,用齿轮加工设备进行加工。

- ▶ 压力角较大,齿短、根宽,齿根强度高。
- ▶ 齿形定心:工艺性好,定心精度高。

第十章 连接

- 10.1 螺纹参数
- 10.2 螺旋副的受力分析、效率和自锁
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.6 螺栓连接的强度计算
- 10.10 滚动螺旋简介
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。

销连接

- 用途:固定零件之间的相互位置,并可传递不大的载荷。
- 销的基本形式:圆柱销和圆锥销。圆柱销经过多次装拆,其定位精度会降低。圆锥销有1:50的锥度,安装方便,多次装拆对定位精度的影响较小。

大端螺纹,便于拆 卸,可用于盲孔

销连接

销上有三条压 制的纵向沟槽

细线: 打入销孔前的形状

实线: 打入后变形的结果

不易松脱, 能承受振动和变载荷

第十章 连接

- 10.1 螺纹参数
- 10.4 螺纹连接的基本类型及螺纹紧固件
- 10.5 螺纹连接的预紧和防松
- 10.11 键连接和花键连接
- 10.12 销连接

机械设计基础主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和方法。