www.devoir@t.net

Les Fonctions logarithmes

La fonction logarithme népérien

Définition:

La fonction logarithme népérien, notée ln, est la primitive sur]0;+ ∞ [de la fonction $x \mapsto \frac{1}{x}$ qui s'annule ne 1.

Donc:

$$y=e^x \Leftrightarrow x=\ln(y)$$
 see bijection de $]0;+\infty[$ sur $\mathbb R$. $e^{\ln x}=x$ avec $x>0$

In est une bijection de]0;+ ∞ [sur \mathbb{R} . $\ln(x) = \ln(y) \Leftrightarrow x = y$

$$\ln(e^x) = x$$

Les propriétés de la fonction In

Pour tout x, y de \mathbb{R}^*_+

•
$$\ln(xy) = \ln(x) + \ln(y)$$
 , $\ln\left(\frac{1}{x}\right) = -\ln(x)$, $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$. $\ln(\sqrt{x}) = \frac{1}{2}\ln(x)$

• Pour tout $p \operatorname{de} \mathbb{Z}$, $\ln(x^p) = p \cdot \ln(x)$

Dérivabilité et continuité de la fonction ln

In est continue et dérivable sur $]0;+\infty[$.

pour tout x > 0, que $\ln'(x) = \frac{1}{x}$

Approximation affine au voisinage de 1

• $\lim_{h\to 0} \frac{\ln(1+h)}{h} = 1$ ou $\lim_{x\to 1} \frac{\ln(x)}{x-1} = 1$

Remarque, une équation de la tangente à la courbe C_{ln} est : y = x - 1

Limites

$$\lim_{x\to +\infty} \ln(x) = +\infty$$

$$\lim_{x\to 0^+} \ln(x) = -\infty$$

$$\bullet \quad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\lim_{x\to 0} x \ln(x) = 0$$

Étude du sens de variation de \ln et étude de la fonction \ln $_{0}$ u

 $\ln'(x) = \frac{1}{x}$ avec x > 0 donc \ln est strictement croissante sur]0;+ ∞ [.

Donc:

$$a \in \mathbb{R}_{+}^{*}$$
, $b \in \mathbb{R}_{+}^{*}$, $\ln(a) > \ln(b) \Leftrightarrow a > b$
 $\ln a > 0 \Leftrightarrow a > 1$, $\ln a < 0 \Leftrightarrow 0 < a < 1$

Soit I un intervalle de ${\rm I\!R}$

Si u est dérivable et strictement positive sur I alors $f=\ln\circ u$ et définie et dérivable sur I et on a $\forall \, x\!\in\! I$, $f'(x)\!=\!u'(x)\cdot\frac{1}{u(x)}\!=\!\frac{u'(x)}{u(x)}$

 C_{ln} est le symétrique de C_{exp} par la droite d'équation y=x

Fonction logarithme décimal

La fonction logarithme décimal, notée \log , est définie sur $]0;+\infty[$ par $\log(x)=\frac{\ln(x)}{\ln(10)}$. On a donc $\log(1)=0$ et $\log(10)=1$.

Toutes les propriétés algébriques de la fonction \ln sont vérifiées par la fonction \log . En particulier, on a $\log(10^n)=n$.