LABS03:ANÁLISIS DE REGRESIÓN. ECUACIÓN DE REGRESIÓN

Aranda Huerta, Milene || Escriba Flores, Daniel

2025-04-02

Contents

A. Preparacion de Datos - Diagrama de dispersion	1
B.Regresion Lineal	9
C. Pronostico Interpretacion	5

Contexto:

Cargo, empresa que realiza entrega de pedidos a todo el Perú, desea llevar a cabo un estudio para ver la relación entre la distancia de recorrido de un embarque y el tiempo que demora en llegar.

Embarque	Distancia (millas)	Tiempo de envío (días)	Embarque	Distancia (millas)	Tiempo de envío (días)
1	656	5	11	862	7
2	853	14	12	679	5
3	646	6	13	835	13
4	783	11	14	607	3
5	610	8	15	665	8
6	841	10	16	647	7
7	785	9	17	685	10
8	639	9	18	720	8
9	762	10	19	652	6
10	762	9	20	828	10

Considerando a la distancia de envío como la variable independiente y al tiempo de envío como la variable dependiente, haga lo siguiente:

A. Preparacion de Datos - Diagrama de dispersion

Traslade la información de la tabla mostrada a un documento de texto, asígnele el nombre 'entregas.txt' y elabore un diagrama de dispersión para las variables numéricas.

Lectura de datos

```
#Leemos el archivo redactado
data = read.table("entrega.txt" , sep="", header=T)
data = data[-1]
data
##
     distancia.millas T.envio.dias
## 1
                 656
## 2
                  853
                               14
## 3
                  646
                               6
## 4
                 783
                               11
## 5
                 610
                               8
## 6
                 841
                              10
## 7
                 785
                               9
## 8
                 639
                               9
## 9
                 762
                              10
## 10
                 762
                               9
## 11
                               7
                 862
## 12
                 679
                               5
## 13
                 835
                               13
## 14
                 607
                               3
## 15
                 665
                               8
## 16
                 647
                               7
## 17
                  685
                               10
## 18
                 720
                               8
## 19
                  652
                               6
## 20
                 828
                               10
## distancia.millas T.envio.dias
## Min. :607.0 Min. : 3.00
## 1st Qu.:650.8 1st Qu.: 6.75
## Median: 702.5 Median: 8.50
## Mean :725.9 Mean : 8.40
## 3rd Qu.:795.8 3rd Qu.:10.00
## Max. :862.0
                   Max. :14.00
```

Diagrama de dispersion

```
x = data$distancia.millas
y = data$T.envio.dias

plot(x=x, y=y,
    pch=18, col="blue",
    xlab="Distancias (millas)",
    ylab="Tiempo de envio en (dias)",
    main="Diagrama de dispersion")
```

Diagrama de dispersion

B.Regresion Lineal

Realice un análisis de regresión, escriba la ecuación y grafique la recta de regresión.

Creamos el modelo

```
modelo = lm(y ~ x)
#summary(modelo)
modelo$coefficients
## (Intercept) x
```

Escribiendo la ecuación

-7.12639554 0.02139064

Con los resultados obtenidos podemos escribir la ecuación obtenida.

La ecuación de regresión lineal será:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

y = -7.12639554 + 0.02139064x

Graficamos la recta de regresion

Diagrama de dispersion

C. Pronostico

Realice un pronóstico para distancias que van de 900 a 1000 millas en intervalos de 10.

Distancia	Dias_estimados
900	12.12518
910	12.33909
920	12.55299
930	12.76690
940	12.98081
950	13.19471
960	13.40862

Distancia	Dias_estimados
970	13.62252
980	13.83643
990	14.05034
1000	14.26424

Interpretacion

• La ecuación que obtuvimos nos indica que por cada milla adicional recorrida, el valor de la variable dependiente aumenta en 0.02139064 unidades. Partiendo de un valor base negativo de -7.12639554, esto permite predecir valores que oscilan entre 12.12 y 14.26 para distancias de 900 a 1000 millas.