Reinforcement learning Episode 2

Temporal Difference

Recap: reinforcement learning

Recap: reinforcement learning

Black box methods

- Metaheuristics (simulated annealing)
- Evolution strategies
- Crossentropy method

. . .

Black box drawbacks

- Both need a full session to start learning
- Requires a lot of interaction
 - A lot of crashed robots / simulations

Today: value-based methods

- Core idea:
 - 1. You are at state **s**
 - 2. Compute expected reward for session if you take each possible action (a1,a2,a3,...)

Then what? (e.g. chess)

You can compute expected win rate for each move. What do you do?

Today: value-based methods

- Core idea:
 - 1. You are at state **s**
 - 2. Compute expected reward for session if you take each possible action (a1,a2,a3,...)
 - 3. Take action with highest expected reward!

MDP formalism: reward on each tick

Classic MDP(Markov Decision Process) Agent interacts with environment

- Environment states: $s \in S$
- Agent actions: $a \in A$
- State transition: $P(s_{t+1}|s_t, a_t)$
- Reward: $r_t = r(s_t, a_t)$

Model-based setup

What we know

State transitions

$$P(s_{next}|s,a)$$
 or $s_{next}=T(s,a)$

• Rewards r(s, a)

Model-based setup

What we know

State transitions

$$P(s_{next}|s,a)$$
 or $s_{next}=T(s,a)$

Weaker version: we can only sample from P(s'|s,a)

• Rewards r(s, a)

Objective:

Discounted return G

$$G_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$G_t = \sum_{i} \gamma^{i} \cdot r_{t+i} \quad \gamma \in (0,1) const$$

y ~ patience Cake tomorrow is γ as good as now

Objective:

Discounted return G

$$G_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$G_t = \sum_i \gamma^i \cdot r_{t+i} \quad \gamma \in (0,1) const$$

γ ~ patience Cake tomorrow is γ as good as now

Q1: which γ corresponds to"only current reward matters"?Q2: with which γ G is just a sum of rewards?

Objective:

Discounted return G

$$G_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$G_t = \sum_{i} \gamma^{i} \cdot r_{t+i} \quad \gamma \in (0,1) const$$

Reinforcement learning:

 Find policy that maximizes the expected reward

$$\pi = P(a|s) : E[G] \rightarrow max$$

Objective:

Discounted return G

$$G_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

$$G_t = \sum_{i} \gamma^{i} \cdot r_{t+i} \quad \gamma \in (0,1) const$$

Reinforcement learning:

 Find policy that maximizes the expected reward

$$\pi = P(a|s) : E[G] \rightarrow max$$

Does not maximize sum of rewards Unless y = 1

Dealing with G

We rewrite G with sheer power of math!

Dealing with G

We rewrite G with sheer power of math!

Dealing with G

We rewrite G with sheer power of math!

More new letters!

State values : $V_{\pi}(s)$

• **Definition:** $V_{\pi}(s)$ – expected total reward G that can be obtained starting from state s and following policy π .

VS

small potential rewards

More new letters!

State values :
$$V_{\pi}(s)$$

$$V_{\pi}(s) = E_{a \sim \pi(a|s)} \dots$$

State values : $V_{\pi}(s)$

$$V_{\pi}(s) = E E_{a \sim \pi(a|s) \ s', r \sim P(s'|s, a)} \dots$$

State values : $V_{\pi}(s)$

$$V_{\pi}(s) = E \qquad E \qquad E \qquad \dots$$
 $a \sim \pi(a|s) \quad s', r \sim P(s'|s,a) \quad a', r', s'', \dots$

State values : $V_{\pi}(s)$

$$V_{\pi}(s) = E E_{a \sim \pi(a|s) \ s', r \sim P(s'|s,a) \ a', r', s'', \dots} E_{t+1} + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots + \gamma^n \cdot r_{t+n}$$

State values : $V_{\pi}(s)$

• **Definition:** $V_{\pi}(s)$ – expected total reward G that can be obtained starting from state s and following policy π .

$$V_{\pi}(s) = E_{\tau \sim p(\tau|...)} G(\tau)$$

trajectory $\tau = (s,a,r,s',a',r',...)$

Bellman equation

State values : $V_{\pi}(s)$

$$V_{\pi}(s) = E E_{a \sim \pi(a|s) \quad s', r \sim P(s', r|s, a)} [r + \gamma \cdot V_{\pi}(s')]$$

Bellman equation

State values : $V_{\pi}(s)$

Definition: $V_{\pi}(s)$ – expected total reward R that can be obtained starting from state s and following policy π .

$$V_{\pi}(s) = E E_{a \sim \pi(a|s) \quad s', r \sim P(s', r|s, a)} [r + \gamma \cdot V_{\pi}(s')]$$

how I like $s = \text{what } r \mid \text{can get right now} + \gamma * \text{how I like } s'$

Optimal policy

Imagine we know exact value of any $V_{\pi}(s)$. (also P(s',r|s,a))

Q: how do we pick optimal action?

Optimal policy

Imagine we know exact value of any $V_{\pi}(s)$. (also P(s',r|s,a))

Q: how do we pick optimal action?

$V^*(s)$ and $\pi^*(a|s)$

Optimal policy : $\pi^*(a|s)$

$$\pi^*(a|s) = \underset{a}{\operatorname{argmax}} \quad \underset{s',r \sim P(s',r|s,a)}{E} [r + \gamma \cdot V_{\pi^*}(s')]$$

Optimal state value : $V^*(s)$

$$V^*(s)=V_{\pi^*}(s)=\max_{a} E_{s',r\sim P(s',r|s,a)}[r+\gamma\cdot V(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

Idea:

$$\forall s, V_0(s) := 0$$

$$V_{i+1}(s) := \max_{a} [r(s,a) + \gamma \cdot E_{s' \sim P(s'|s,a)} V_{i}(s')]$$

At scale

Q: What to do if we have large/continuous state space?

We can no longer explore all states!

At scale

Q: What to do if we have large/continuous state space?

We can no longer explore all states!

Idea: we can only search some neighboring states!

Adversarial setup

Your agent plays a deterministic game with another agent in it.

And he's playing against us!

We want highest expected reward. He wants to minimize our expected reward.

Examples:

- Any board game: chess, checkers, go
- Pong :)

Adversarial search trees

Adversarial search trees

Adversarial search trees

Stochastic search trees

How to evaluate action value?

Large/continuous state space

We can't explore all the nodes.

Need to pick most interesting ones!

Examples:

- ~any practical use case :)
- Atari

UCB-1 for bandits

Idea:

Prioritize actions with uncertain outcomes!

Less times visited = more uncertain.

Math: add upper confidence bond to reward.

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

Upper conf. bound

- N number of time-steps so far for r in [0,1]
- n_a times action **a** is taken

UCB-1 for bandits

Take actions in in proportion to \tilde{v}_a

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

- N number of time-steps so far
- n_a times action **a** is taken

UCB generalized for multiple states

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

where

- N_s visits to state **s**
- $n_{s,a}$ times action **a** is taken from state **s**

MCTS

MCTS: selection

Selection

Starting from the root, recursively select node with highest ucb-1 score

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

MCTS: Expansion

Expansion

Add one or more children from the chosen node.

Each child is a one-step simulation $s \rightarrow s'$, a, r

Simple case: add one node per action.

MCTS: Expansion

Expansion

Add one or more children from the chosen node.

Each child is a one-step simulation $s \rightarrow s'$, a, r

Simple case: add one node per action.

Any ideas when this is won't work?

MCTS: Rollout (sampling)

Sampling

Estimate node value by playing game from that state till the end with simple policy.

e.g. random actions

Remember total reward.

MCTS: Rollout (sampling)

Sampling

Estimate node value by playing game from that state till the end with simple policy.

e.g. random actions

Remember total reward.

Can we do better than random?

MCTS: Backprop

Backpropagation

Given rollout reward, update value of leaf and all it's parents.

$$V(parent) = r + \gamma \cdot V(child)$$

Also increment visit counts (N and n_a for ucb-1)

MCTS

How do we pick action from root?

MCTS

Pick action to maximize expected reward!

Recap

What did we learn?

Recap

What did we learn?

- Discounted rewards, G
- State values, V(s) V*(s)
- Value iteration
- Planning trees, MCTS

Voila! We've solved the reinforcement learning! Or have we?

What happens if we apply it to real world problems?

Reality check: web

Cases:

- Pick ads to maximize profit
- Design landing page to maximize user retention
- Recommend items to users

Common traits:

- Independent states
- Large action space

Reality check: dynamic systems

Reality check: MOAR

Cases:

- Robots
- Self-driving vehicles
- Pilot assistant
- More robots!

Common traits:

- Continuous state space
- Continuous action space
- Partially-observable environment
- LONG sessions

Real world

Next on practical_rl

How to deal with unknown P(s'|s,a)?

How to learn from sampled trajectories?

How to learn from other agent's experience?

Remember discounted rewards?

terminal state

Trivial example:

R=1 R=1 s1terminal state

What path will agent choose?

- y=0.9
- arrows = actions
- game ends at s1 or s100
- left action has higher R!

Deephack'17 qualification round, Atari Skiing

- You steer the red guy
- Session lasts ~5k steps
- You get -3~-7 reward each tick (faster game = better score)
- At the end of session, you get up to r=-30k (based on passing gates, etc.)
- Q-learning with gamma=0.99 fails it doesn't learn to pass gates

What's the problem?

Deephack'17 qualification round, Atari Skiing

- You steer the red guy
- Session lasts ~5k steps
- You get -3~-7 reward each tick (faster game = better score)
- At the end of session, you get up to r=-30k (based on passing gates, etc.)
 - Q-learning with gamma=0.99 fails

CoastRunner7 experiment (openAI)

- You control the boat
- Rewards for getting to checkpoints
- Rewards for collecting bonuses
- What could possibly go wrong?
- "Optimal" policy video: https://www.youtube.com/watch?v=tlOIHko8ySg

Nuts and bolts: MC vs TD

Monte-carlo

- Ignores intermediate rewards doesn't need γ (discount)
- Needs full episode to learn Infinite MDP are a problem
- Doesn't use Markov property
 Works with non-markov envs

Temporal Difference

- Uses intermediate rewards trains faster under right γ
- Learns from incomplete episode Works with infinite MDP
- Requires markov property
 Non-markov env is a problem

Nuts and bolts: discount

• Effective horizon $1+\gamma+\gamma^2+...=\frac{1}{(1-\gamma)}$

Heuristic: your agent stops giving a damn in this many turns.

Typical values:

- y=0.9, 10 turns
- y=0.95, 20 turns
- y=0.99, 100 turns
- γ=1, infinitely long

Higher γ = less stable algorithm. γ =1 only works for episodic MDP (finite amount of turns).

Nuts and bolts: discount

• Effective horizon $1+\gamma+\gamma^2+...=\frac{1}{(1-\gamma)}$

Heuristic: your agent stops giving a damn in this many turns.

- Atari Skiing, reward was delayed by in 5k steps
- y=0.99 is not enough
- γ=1 and a few hacks works better
- Or use a better reward function

Let's write some code!