Grunnleggende Bildebehandling

Forelesninger for RAD230 Ivan I. Maximov

Timeline i typisk analyse etter målingen til noe viktig diagnose

To første steg er kjen allerede: MRI og BET

Hva er "bias field correction"?

MRI	skull stripping	bias field correction	tissue classification	cerebrum identification	topology correction	tessellation	pial surface generation
	<2 sec	40s - 4 mins	<5 sec	<20 sec	<40 sec	<2 sec	<10 mins

Bias field correction

Et alternative i FAST -

Bias field correction

La oss se på 1D signal.

- a) idealisk signal. Inget proglem, ingen forvregning
- b) støy kommer fra en spole
- c) "bias field" fra RF spolen, hallo from "real world"

Vevet

Forskjellige typer av vev i menneske kroppen. I hjernen kan vi se Hvit og grå substans plus litt vann (CSF eller liquor).

Vevet

MRI er veldig bra for vevet kontrast (som dere vet allerede fra MRI). Men kontrast betyr INTENSITET i signalet.

Vi kan bruke et histogram eller frekvens analyse og å se hvor mye vev komponenter per voxel

Histogram for enkele bildet

18000 Grey 16000 14000 White 12000 10000 8000 6000 **CSF** 4000 2000 15000.5 22500.2 Intensity = 17203

Histogram er tilnærmet med Gaussiansk distribusjoner

"Partial volume effect" betyr multikomponente vevene på en voxel.

Histogram metode fungerer ikke så bra!

04/22/2022

10

Er det enkelt å segmentere?

Likevil, hva skjer hvis vi bruker to modaliteter? Fx, T₁ og T₂-vekt?

Gaussisk sannsynlighetfordeling

$$p_f(f|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp(-\frac{(f-\mu_c)^2}{2\sigma_c^2})$$

sannsynlighetfordeling

Vi valg data ukjent klass fra k-naboersklass. Naboer er nær til data langs noen metrik, for eksampel, Euklidisk avstand.

K-means klustering

Deformable models (deformerbar modell)

Maskinlæring

Convolution Neural Network

Deep Learning

FAST

FAST utiliti tillater oss å segmentere MRI bilder som bruker T₁ eller T₂ kontraster. Tall av klasses er tall for vev, fx, i hjernen det er 3 (hvit og grå substans + CSF).

Viktig: før segmentering man skal ekstrakter hjernen fra skull etc, det er veldig bra hvis "bias field correction" var brukt, høyt SNR etc.

Oppgave 3: å segmentere bildet fra Oppgave 1 og bildet fra Oppgave 2 med hjelp av FAST.

Prøve å bruke "bias field correction" trick i FAST for bedre resultater. Sammenlign segmentasjon resultater.