Àlex Batlle Casellas

- **15.** Siguin $f \in \mathbb{C}^1(\mathbb{R}, \mathbb{R})$ estrictament creixent i $G: \mathbb{R}^2 \to \mathbb{R}^2$ definida per G(x, y) = (f(x), -y + xf(x)).
 - (a) Demostreu que G satisfà les hipòtesis del teorema de la funció inversa, en tots els punts de \mathbb{R}^2 .
 - (b) Donat $(u_0, v_0) \in \operatorname{Im} G$, calculeu $DG^{-1}(u_0, v_0)$.
 - (c) Demostreu que G és injectiva i calculeu l'expressió explícita de G^{-1} .
- 19. Considereu el sistema d'equacions

$$\begin{cases} x - u - v = 0 \\ y - u^2 - v^2 = 0 \\ z - u^3 - v^3 = 0. \end{cases}$$

Trobeu els punts $p=(x_0,y_0,z_0,u_0,v_0)\in\mathbb{R}^5$ que compleixin les dues condicions següents:

- (a) el sistema defineix funcions implícites diferenciables, $z = f_1(x, y), u = f_2(x, y), v = f_3(x, y)$, al voltant de p.
- (b) la derivada direccional de f_1 en (x_0, y_0) és màxima en la direcció del vector (1, 0), i el valor d'aquesta derivada és 3.