4C-999: Electromagnetism for Sci/Eng	NAME:
Week 05	
Croup:	

- 1. (20 points) A Carnot heat engine operates on a four step cycle as follows:
 - 1. Isothermal expansion at temperature T_3 , where heat Q_H flows into the system from an external temperature reservoir T_4 ($T_4 \ge T_3$). This step is reversible if $T_4 = T_3$.
 - 2. Adiabatic expansion (no heat flow), where the temperature drops from T_3 to T_2 ($T_2 < T_3$). This step is always reversible (as long as it is quasi-static).
 - 3. Isothermal compression at temperature T_2 , where heat Q_C flows out of the system to an external temperature reservoir T_1 ($T_1 \leq T_2$). This step is reversible if $T_1 = T_2$.
 - 4. Adiabatic compression (no heat flow), where the temperature rises from T_2 back up to T_3 . This step is always reversible.

The efficiency of this cycle is given by $e = 1 - T_2/T_3$, and is maximized when $T_3 = T_4$ and $T_2 = T_1$ (reversible), although the work output rate in that case is zero (heat flowrates are zero for steps 1 and 3). Allowing $T_1 < T_2 < T_3 < T_4$ enables us to consider a real heat engine that would run at a finite rate.

Consider such a heat engine with $T_4 = 600 \,\mathrm{K}$, $T_3 = 500 \,\mathrm{K}$, $T_2 = 400 \,\mathrm{K}$, and $T_1 = 300 \,\mathrm{K}$. Suppose also that the heat conductance for the rods connecting the system to T_4 during step 1 and to T_1 during step 3 are each $10 \,\mathrm{W/K}$, and that the adiabatic steps (2 and 4) are both very rapid (essentially zero time).

a. (6 points) Calculate the efficiency of this heat engine. If $Q_H = 100 \,\mathrm{J}$ for one cycle of this heat engine, how much heat flows into the cold reservoir (Q_C) and how much work is output (W) for each cycle?

Calculate the native entropy char	entropy dur	ing one cycle.	During which	steps
Determine the total time for on	\mathbf{p}	or this engine	(work/time).	(Hint: