Q1. Consider a linked list of n elements, what is the time taken to insert an element after an element pointed by some pointer
O(1)
O(n)
O(n log n)
$O(n^2)$
Answer: a
Q2. A linear list in which elements are added or deleted at either end but not in the middle is called
Tree
Queue
Stack
dequeue
Answer: d
Q3. Single linked lists are not suitable for
Insertion sort
Binary search
Polynomial operation
Stack implementation
Answer: b
Q4. In a typical implementation the address field of a linked-list node
contains address of next node
contains address of next pointer
may contain NULL value
both (a) and (c)
Answer: d

Every node has a successor Time complexity of inserting a new node at the head of the list is O(1) Time complexity for deleting the last node is O(n) None of the mentioned Answer: d Q6. Assuming the size of data type int is 4 bytes, what is the size of int arr[15];? 15 19 60 11 Answer: c Q7. Number of push and pop operations required to access the n/2th element of a stack with n elements so that original stack remains same (using another stack) 2×n 4×n 2×n (n-1) 4×n (n-1) Answer: b Q8. The best data structure to check whether an arithmetic expression has balanced parentheses is Queue Stack Tree List

Answer: b

Q5. Which of the following is false about a circular linked list?

Q9. In doubly lin	ked list, for	deletion of a	node, the	minimum	number	of pointer
modifications req	quired in sor	ne cases is				

2 pointers
1 pointer
4 pointers
3 pointers
Answer: a
Q10. Convert the given infix expression A + B * C $^{\land}$ K to postfix
ABCK^*+
ABC*K^+
ABCKA*+
AB+CKA.
Answer: a
Q11. Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are
<pre>full: (REAR+1) mod n == FRONT; empty: REAR == FRONT</pre>
full: (REAR+1) mod n == FRONT; empty: (FRONT+1) mod n == REAR
<pre>full: REAR == FRONT; empty: (REAR+1) mod n == FRONT</pre>
full: (FRONT+1) mod n == REAR: empty: REAR == FRONT

Q12. If the address of A[1][1] and A[2][1] are 1000 and 1010 respectively and each element occupies 2 bytes, then the array is stored in

```
row-major order

column-major order

compiler dependent

none of these

Answer: a
```

Answer: a

Q13. Minimum possible height of a binary tree with 18 nodes is
3
5
4
18
Answer: b
Q14. With respect to graph i) Adjacency list can represent parallel edges in the graph ii) Adjacency matrix cannot represent parallel edges iii) Adjacency matrix representation uses less space compared to Adjacency list for a given graph Which of the following are correct?
I & II
II & III
I & III
1, 11 & 111
Answer: a
Q15. If space occupied by a null-terminated string "S1" and "S2" in C are m and n respectively, then the space occupied by the string obtained by concatenating "S1" and "S2" is always
less than m+n
greater than m+n
equal to m+n
none of these
Answer: c
Q16. Evaluate the postfix expression AB^DE^+A- for A=3, B=2, D=2 and E=3
15
12
6
9

Answer: b)
-----------	---

Q17. Why do we need to ensure height balancing for a binary search tree with n elements?

To ensure the worst-case search is O(n log n)
To ensure the best-case search is O(1)
To ensure the best-case search is O(n)
To ensure the worst-case search is O(log n)
Answer: d
Q18. Preorder traversal of a binary tree is J I G A B F C H E D, then the root node is
J
A
F
I
Answer: a
Q19. Breadth First Search implementation of a graph uses
Stack
Queue
Linked list
Tree
Answer: b
Q20. A list node representing an arc of a graph requires how many fields?
3
4
1
2
Answer: a

O(n)
O(log n)
O(1)
O(n log n)

Answer: a

Q22. Consider the following pseudo-code. What is its average-case complexity (how many times the print statement executes in terms of parameters m and n)?

```
for (i = 0; i < n; i++) {
    for (k = 0; k < m; k++) {
        print(...);
    }
}</pre>
```

 $\Theta(m \cdot n)$

Θ(n)

Θ(m + n)

Θ(log n)

Answer: a

Q23. Given $a[6] = \{10, 90, 70, 60, 50, 20\}$, after two passes of selection sort the array becomes

10, 20, 90, 70, 60, 50

10, 20, 70, 60, 50, 90

10, 20, 50, 60, 70, 90

10, 20, 60, 50, 70, 90

Answer: a

Q24. Given a[6] = {10, 90, 70, 60, 50, 20}, after two passes of insertion sort the array becomes

```
10, 70, 90, 60, 50, 20
10, 20, 90, 70, 60, 50
10, 20, 70, 90, 60, 50
10, 70, 20, 90, 60, 50
```

Answer: a

Q25. Determine the sorting algorithm represented by this snippet:

```
void sort() {
  for (i = 1; i < 6; i++) {
    temp = e[i];
    for (j = i; j > 0 && e[j-1] > temp; j--) {
      e[j] = e[j-1];
    }
    e[j] = temp;
}
```

Selection sort

Bubble sort

Heap sort

Insertion sort

Answer: d

Q26. Determine the value returned by this function:

```
int computeSome(int jaadu) {
  if (jaadu > 9)
    return ((jaadu%10)*(jaadu%10)) + computeSome(jaadu/10);
  else
    return jaadu*jaadu;
}
```

generates magic number from "jaadu" and returns it

squares "jaadu" and returns the total sum of its digits

squares only the numbers greater than 9 and returns the value

squares the digits of "jaadu" and returns their total sum

Answer: d

```
Q27. Determine the output when called as
```

```
determine("kitkat", "katkit", 6, 6);:

void determine(char* ch1, char* ch2, int len1, int len2) {
  int count1 = 0;
  for (int i = 0; i < len1; i++)
    for (int j = 0; j < len2; j++)
        if (ch1[i] == ch2[j]) count1++;
    cout << len1 << "," << count1;
}

6,2

6,0

6,1

6,3</pre>
```

Answer: d

Q29. Which sorting algorithm is most sensitive to the data being sorted?

Heap Sort

Merge Sort

Quick Sort

Radix Sort

Answer: c

Q30. Number of swaps required to sort n elements using Selection sort (worst case)?

```
Θ(n)
```

Θ(n log n)

Θ(n²)

 $\Theta(n^2 \log n)$

Answer: a

Q31. Which sorting algorithm has the lowest worst-case time complexity?
Quick sort
Bubble sort
Merge sort
Selection sort
Answer: c
Q32. In a binary max-heap containing n numbers, the smallest element can be found in time
O(n)
O(log n)
O(log log n)
O(1)
Answer: a
Q33. After this loop finishes, j is $\Theta()$
for (i = n, j = 0; i > 0; i /= 2) j += i;
Θ(log n)
Θ(n)
$\Theta(n \log n)$
Θ(1)
Answer: b
Q34. An element in array A is a "legend" if it's greater than all elements to its right. The best algorithm to find all legends is
linear time left-to-right pass
linear time right-to-left pass
divide-and-conquer in $\Theta(n \log n)$
Θ(n²) brute force
Answer: b

Q35. Given inputs (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and hash x mod 10, which are true?

- (i) 9679, 1989, 4199 hash to same value
- (ii) 1471, 6171 hash to same value
- (iii) all elements hash to same value
- (iv) each element hashes to a different value

1 only

2 only

1 and 2

3 or 4

Answer: c

Q36. Keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted (in that order) into an empty hash table of length 10 using $h(k)=k \mod 10$ and linear probing. The final table is:

```
Index: 0 1 2 3 4 5 6 7 8 9 Value: _ 12 13 2 3 23 5 18 15
```

Answer: as shown above

Q37. Hash table of size 7, h(x)=(3x+4)%7, insert 1, 3, 8, 10 via closed hashing. The table becomes:

```
Index: 0 1 2 3 4 5 6 Value: 1 8 \_ \_ \_ \_ 3 (after inserting 10 at index 7 \rightarrow wrap to next free slot)
```

Actually final positions:

- 1 → 0
- 3 → 6
- $8 \rightarrow (0 \rightarrow 1)$
- $10 \rightarrow (6 \rightarrow 0 \rightarrow 1 \rightarrow 2)$ at index 2

Table:

- 0: 1 1: 8
- 2: 10
- 3: _
- 4: -5:
- 6: $\overline{3}$

Answer: as shown above

Q38. Determine output of this recursive function when called with 8:

```
int nothing(int something) {
  if (something == 0 || something == 1) return something;
  else return 2*nothing(something-1) + 3*nothing(something-2);
}
cout << nothing(8);

1540

1740

1840</pre>
```

Q40. How many distinct binary search trees can be created from 4 distinct keys?

5

Answer: b

14

24

42

Answer: b