Problem Set 8 (due 6/5) (Physics 115A, Spring 2015, H. W. Jiang)

1. Derive the following inverse Fourier transform relation using the Dirac bra-ket notation.

$$\Phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int dx \Psi(x) e^{-ipx/\hbar}$$

2. Consider a particle in a one-dimensional infinite potential box of length a. Its wave function has the most general form

$$\psi(x) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$

Write this in the Dirac Notation using the ket-bra sum for the box base kets denoted by $|n\rangle$. Show the correspondence between the two notations. Interpret $\langle x|\Psi\rangle$, $\langle x|n\rangle$, and $\langle n|\Psi\rangle$ that will arise as you do the problem.

- 3. If A and B are hermitian operators, prove that (1) the operator of AB is only hermitian if A and B commute, and (2) the operator $(A+B)^n$ is hermitian.
- 4. The initial state $|\Psi_i\rangle$ of a quantum system is given in an orthonormal basis of three states $|\alpha\rangle$, $|\beta\rangle$, and $|\gamma\rangle$ that form a complete set:

$$<\alpha|\Psi_i>=i/(3)^{1/2},$$
 $<\beta|\Psi_i>=(2/3)^{1/2},$ $<\gamma|\Psi_i>=0$

Calculate the probability of finding the system in a state $|\Psi_f\rangle$ given in the same basis as

$$<\alpha|\Psi_f>=(1+i)/(3)^{1/2}, <\beta|\Psi_f>=1/(6)^{1/2}, <\gamma|\Psi_f>=1/(6)^{1/2}$$

- 5. Show that if the operator H is hermitian, then $\exp(-iH)$ is unitary.
- 6. Use the commutation relations between the momentum p and the position x to obtain the equations describing the time dependence of $\langle x \rangle$ and $\langle p \rangle$ given the Hamiltonians

(a)
$$H = \frac{p^2}{2m} + \frac{1}{2}m(\omega_1^2 x^2 + \omega_2 x + \varepsilon)$$

(b)
$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 - \frac{A}{x^2}$$