Calculus II

Assignment 2

20180619

Name :	
Student ID:	
1. Find the domain of the vector fu	action
$\mathbf{r}(t) = \left\langle \sqrt{4 - t^2}, e^{-3t}, \ln(t+1) \right\rangle$	action.

2. Find the unit tangent vector $\mathbf{T}(t)$ at the point with the given value of the parameter t.

(a)
$$\mathbf{r}(t) = \langle t^3 + 3t, t^2 + 1, 3t + 4 \rangle$$
, $t = 1$
(b) $\mathbf{r}(t) = \cos t \mathbf{i} + 3t \mathbf{j} + 2\sin 2t \mathbf{k}$, $t = 0$

3. Find parametric equations for the tangent line to the curve with the given parametric equations at the specific point. $x = \sqrt{t^2 + 3}, y = \ln(t^2 + 3), z = t; \quad (2, \ln 4, 1)$

4. What force is required so that a particle of mass m has the position function $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$?

5. Prove that if $|\mathbf{r}(t)| = c$ (a constant), then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$ for all t. Hint : $(1)\frac{d}{dt}[\mathbf{r}(t) \cdot \mathbf{r}(t)]$ (2) \mathbf{a} is orthogonal to \mathbf{b} when $\mathbf{a} \cdot \mathbf{b} = 0$

Reading materials: Textbook Section 14.1~14.4.