Numerical Methods for solving SDEs

Tyler Chen

May 30, 2018

Why do we want to study SDEs?

- ► Model physical systems (molecular dynamics, neurodynamics)
- ► Make \$\$\$\$ (sell soul and model financial things)
- solve PDEs (avoid efficiency issues in high dimensions)

Brownian Motion

Brownian motion is characterized by four properties,

- 1. $W_0 = 0$
- 2. $(W_d W_c) \perp \!\!\! \perp (W_b W_a)$ for $0 \le a \le b \le c \le d$)
- 3. $(W_t W_s) \sim \mathcal{N}(0, t s)$ for $0 \le s \le t$
- 4. the map $t \to W_t$ is continuous almost surely

What is an SDE?

► A Stochastic Differential Equation (SDE) is an equation of the form,

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$$

where W_t denotes a standard Brownian Motion [1].

► This has solution,

$$X_T - X_0 = \int_0^T \mu(t, X_t) dt + \int_0^T \sigma(t, X_t) dW_t$$

A Simple Numerical Method

Approximating each integral in the simplest way gives,

$$\hat{X}_{t+\Delta t} = \hat{X}_t + \mu(t, \hat{X}_t) \Delta t + \sigma(t, \hat{X}_t) \Delta W_t$$

- Given timestep Δt we sample ΔW_t , where $\Delta W_t \sim \mathcal{N}(0, \Delta t)$.
- This method is referred to as the Euler-Maruyama Method [2].

Convergence

Strong Convergence tells us individual trajectories converge

$$\lim_{\Delta t \to 0} \mathbb{E}\left[\left| X_T - \hat{X}_T \right| \right] = 0$$

 Weak Convergence tells us the statistics (mean and higher moments) converge

$$\lim_{k \to 0} \left| \mathbb{E} \left[p(X_T) - p(\hat{X}_T) \right] \right| = 0$$

Higher Order (Taylor) Methods

- Higher order methods can be derived from stochastic Taylor expansion
- Recall Itô's Lemma

$$f(T, X_T) = f(t, X_t) + \int_t^T \mathcal{M}f(s, X_s) ds + \int_t^T \mathcal{S}f(s, X_s) dW_s$$

$$\mathcal{M} := \frac{\partial}{\partial s} + \mu(s, X_s) \frac{\partial}{\partial x} + \frac{1}{2} \sigma^2(s, X_s) \frac{\partial^2}{\partial x^2}, \quad \mathcal{S} := \sigma(s, X_s) \frac{\partial}{\partial x}$$

Euler-Maruyama Method

▶ Apply previous identity to μ and σ to obtain,

$$\begin{split} X_T - X_0 &= \int_0^T \mu(t, X_t) \mathrm{d}t + \int_0^T \sigma(t, X_t) \mathrm{d}W_t \\ &= X_t + \mu(t, X_t) \int_t^T \mathrm{d}s + \sigma(t, X_t) \int_t^T \mathrm{d}W_s + R \end{split}$$

where,

$$R = \int_{t}^{T} \int_{t}^{s} \mathcal{M}\mu(u, X_{u}) du ds + \int_{t}^{T} \int_{t}^{s} \mathcal{S}\mu(u, X_{u}) dW_{u} ds$$
$$+ \int_{t}^{T} \int_{t}^{s} \mathcal{M}\sigma(u, X_{u}) du dW_{s} + \int_{t}^{T} \int_{t}^{s} \mathcal{S}\sigma(u, X_{u}) dW_{u} dW_{s} \quad (1)$$

Milstein Method

- lacktriangle using the heursitics the $\mathrm{d}W_u\mathrm{d}W_s$ term is lowest order
- use identity on $S\sigma$ to obtain,

$$X_T = X_t + \int_t^T \mu(t, X_t) ds + \int_t^T \sigma(t, X_t) dW_s$$
$$+ \int_t^T \int_t^s \mathcal{S}\sigma(t, X_t) dW_u dW_v + R$$

This gives the Millstein method,

$$\hat{X}_{t+\Delta t} = \hat{X}_t + \mu(t, \hat{X}_t) \Delta t + \sigma(t, \hat{X}_t) \Delta W_t + \sigma(t, \hat{X}_t) \partial_x \sigma(t, \hat{X}_t) \left((\Delta W_t)^2 - \Delta t \right) / 2$$

Runge Kutta Method

- lacktriangle Expand integral form of solution using Itô's lemma and drop terms of $\mathcal{O}(\mathrm{d}t)$
- Replace derivatives with finite difference

$$\begin{split} \hat{X}_{t+\Delta t} &= \hat{X}_t + \mu(t, \hat{X}_t) \Delta t + \sigma(t, \hat{X}_t) \Delta W_t \\ &+ \sigma(t, \hat{X}_t - X^*) \left((\Delta W_t)^2 - \Delta t \right) / (2 \sqrt{\Delta t}) \\ X^* &= \hat{X}_t + \sigma(t, \hat{X}_t) \sqrt{\Delta t} \end{split}$$

Tests of Weak Convergence

OU process with $\theta=2, \mu=1, \sigma=1/100, T=1$, 5000 trajectories

Figure: Circles: Euler–Maruyama, triangles: Runge-Kutta, squares: Euler–Maruyama with $\Delta W_t \in \{-\Delta t, \Delta t\}$.

Note that all slopes are about 1

Tests of Strong Convergence

Geometric Brownian motion with $\mu=1, \sigma=1/2, T=8$, 300 trajectories

Figure: Values of $\mathbb{E}|X_T - \hat{X}_T|$, circles: Euler–Maruyama, triangles: Runge-Kutta

Note that all slopes are about 1/2 and 1 for EM and RK respectively.

References

- [1] Matthew Lorig, *Introduction to probability and stochastic processes*, 2006.
- [2] Timothy Sauer, Numerical solution of stochastic differential equations in finance, 2006.