Работа 4.3.3

Исследование разрешающей способности микроскопа методом Аббе

Стрижак Даниил

1 Аннотация

В работе предлагается определить периоды сеток сначала по их спектру на удалённом экране, затем по увеличенному с помощью модели микроскопа изображению сеток на экране и, наконец, по результатам измерения разрешающей способности микроскопа, наблюдать явления саморепродукции, пространственной фильтрации и мультиплицирования.

2 Теоретические сведения

Для иммерсионного микроскопа разрешающая способность объектива при некогерентном освещении

$$\ell_{\min} \approx \frac{0.61\lambda}{n\sin u}$$

где u— апертурный угол объектива микроскопа (угол между оптической осью и лучом, направленным из центра объекта в край линзы).

Метод Аббе для оценки разрешающей способности состоит в разделении хода лучей на две части: сначала рассматривается картина в задней фокальной плоскости F объектива она называется первичным изображением или фурье-образом. Это первичное изображение рассматривается как источник волн (принцип Гюйгенса-Френеля), создающий изображение в плоскости P_2 , сопряжённой плоскости предмета - вторичное изображение. Первичное изображение есть картина дифракции Фраунгофера (на дифракционной решётке), если её период d, то для направления максимальной интенсивности φ_m

$$d\sin\varphi_m = m\lambda$$

При этом проходят пучки только с $\varphi_m < u$. Можно условием разрешения считать, что $u > \varphi_1$, иначе говоря

$$\sin u > \lambda/d$$

Или

$$d \ge \frac{\lambda}{\sin u} \approx \frac{\lambda}{D/2f}$$

где D- диаметр лин3ы, f- фокусное расстояние. Двумерную решётку можно рассматривать как две перпендикулярные друг другу, для максимумов которых выполняется соотношение

$$d\sin\varphi_x = m_x\lambda, \quad d\sin\varphi_y = m_y\lambda$$

Установка

Рис. 1: Схема установки.

Схема установки приведена на Рис. 1. Предметом P_1 служат сетки в кассете C. Линза Л1 — длиннофокусная, а Л2 — короткофокусная. В F Устанавливаются диафрагмы D, с помощью сеток с разными d и щелевой диафрагмы можно проверить третье соотношение. Период сеток может быть измерен либо по расстоянию между дифракционными максимумами на экране, либо по увеличенному с помощью микроскопа изображению сетки на экране. Пространственную фильтрацию (получение наклонного изображение решётки) можно получить с помощью подбора угла наклона и ширины вспомогательной щели.

3 Результаты измерений и обработка данных

I. Определение периода решёток по их пространственному спектру

Соберём установку согласно описанию. Длина волны излучения лазера $\lambda=532$ Расстояние от сетки до экрана $H=100\pm 2$ см, погрешность объясняется неопределённостью положения сетки внутри кассеты, погрешностью меток на столе, использованных при измерении, и погрешностью прямого измерения. Измерим линейкой на экране расстояние Δx между n+1 максимумами и рассчитаем по второй формуле с учётом $\varphi=\frac{\Delta x}{H}$ период решетки $d=\frac{n\lambda}{\Delta x}H$. Результаты приведены в Таблице 1.

Номер	Δx , cm	n	d, mkm
решётки			
1	22.7	6	20
2	22.6	9	30
3	25.1	20	60
4	22.5	35	117
5	22.7	48	159

Таблица 1.

Дифракция Фраунгофера на двумерной решетке.

II. Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

Соберём модель микроскопа, добавив линзы согласно Рис. 1. Фокусные расстояния линз $F_1 = \text{мм}, F_2 = \text{мм}$. Измеряем необходимые расстояния:

$$a_1 = 120 \pm 10,$$

 $a_2 + b_1 = 455 \pm 10,$
 $b_2 = 815 \pm 10,$

Погрешности здесь обусловлены неточностями в положенияъ сеток и линз. Из формулы тонкой линзы $a_2 = \frac{b_2 F_2}{b_2 - F_2} = 25.79$ мм, откуда $a_2 \approx F_2$, поэтому в дальнейшем будем использовать это значение, следовательно $b_1 = 420 \pm 10$ мм. Увеличение микроскопа $\Gamma = \frac{b_1 b_2}{a_1 a_2} = 114 \pm 10$.

Повторим измерения периодов изображений в новой конфигурации, погрешности считаются аналогично. Измерение представлены в Таблице 2.

Здесь d определялось по формуле $d=\frac{\Delta x}{\Gamma n}$. Обратим внимание, что значения периодов решётки совпадают в пределах погрешности.

Номер	Δx , cm	n	d, MKM
решётки			
1	3.7	16	20
2	15.7	49	28
3	25.3	38	58
4	24.1	18	117
5	23.6	13	159

Таблица 2.

Увеличенное изображение сетки.

III. Определение периода решёток по оценке разрешающей способности микроскопа

Поместим в фокальной плоскости линзы Π_1 щелевую диафрагму с микрометрическим винтом и определим минимальную толщину D при которой на экране видна двумерная решётка. В этом случае период будет вычисляться по формуле (3) в предельном случае

$$d = \frac{2\lambda F_1}{D}$$

погрешность вычисляется по формуле

$$\sigma_d = d \frac{\sigma_D}{D}.$$

Результаты приведены в Таблице 3.

Номер	D , мм	1/D, мм	d, MKM
решётки			
1	_	_	_
2	4.14	0.242	28.3
3	1.96	0.510	59.7
4	1.02	0.980	114.7
5	0.81	1.240	144.5

Таблица 3.

Зависимость d = f(1/D).

Через щель проходили только нулевой (по центру) и два первых максимумы, за исключением второй щели, где нулевой максимум был помещён к краю щели. Для первой решётки период таким методом измерить не получилось, так как ширины щели не хватает.

Для проверки теории Аббе построим график $d=f\left(\frac{1}{D}\right)$ со значениями d из части 1, погрешность $\frac{1}{D}$ рассчитывается по формуле

$$\sigma_{1/D} = \frac{\sigma_D}{D^2}$$

Угловой коэффициент прямой из МНК $k=(124\pm8)\cdot10^{-9}\mathrm{m}^2$, в пределах погрешности он совпадает с теоретическим $2\lambda F_1=117\cdot10^{-9}\mathrm{m}^2$. Таким образом, теория Аббе подтвердилась.

IV. Пространственная фильтрация и мультиплицирование

Для наблюдения фильтрации на сетке 2 откроем щель так, чтобы она пропускала только максимум нулевого порядка и, поворачивая щель, наблюдаем за изменением картины. Картины представлены на рисунках ниже.

Горизонатальная щель $(0, m_y)$.

Щель, повернутая на 45° ($m_x = m_y$).

Для наблюдения мультиплицированния поменяем местами сетку и щель, пронаблюлюдаем мультипликацию, картина представлена на Рис. 4.

Схема для наблюдения интерфереционной картины.

4 Вывод

По измерениям спектров получилось определить дифракционные углы и по теоретическим формулам рассчитали периоды решеток. Полученные данные сошлись с результатами, полученными по измерениям увеличенных с помощью микроскопа изображений сеток. Построив график зависимости d=f(1/D), взяв периоды сеток, определённые по спектру мы убедились в справедливости теории Аббе.