MV2201, MV2203 (SILICON) MV2205, MV2209

VVC ---

AFC SILICON EPICAP DIODES

. . . designed specifically for the high volume AFC applications of FM Radio and TV, utilizing the economical PLASTIC PACKAGE.

- · Very High Q with Guaranteed Minimum Values
- Guaranteed Uniformity with Minimum and Maximum Tuning Ratio Limits, Assuring Fixed Design
- Nominal Capacitance Values 6.8 pF Thru 33 pF Providing Complete AFC Design Flexibility

VOLTAGE-VARIABLE CAPACITANCE DIODES

6.8-33 pF 25 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	25	Voits
Forward Current	1 _F	200	mA
Device Dissipation @ TA = 25°C Derate above 25°C	PD	280 2.8	mW mW/ ^O C
Junction Temperature	Tj	+125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic—All Types	Symbol	Min	Тур	Max	Unit	
Reverse Breekdown Voltage (I _R = 10 μAdc)	BVR	25		_	Vdc	
Reverse Voltage Leekage Current (V _R = 10 Vdc, T _A = 25°C) (V _R = 10 Vdc, T _A = 85°C)	I _R	<u>-</u> -	-	0.5 5.0	μAdc	
Forward Voltage Drop (I = 250 µAdc)	VF	-	0.65	_	Vdc	
Series Inductance (f = 250 MHz, lead length≈1/16")	LS	-	6.0	<u>-</u>	nΗ	
Case Capacitance (f = 1.0 MHz, lead length ≈1/16")	cc	-	0.18	_	pF	

Device	C_T , Diode Capacitance $V_R = 4.0 \text{ Vdc}$, $f = 1.0 \text{ MHz}$ pF		Q, Figure of Merit VR = 4.0 Vdc, f = 50 MHz	TR, Tuning Ratio C ₁ /C ₁₀ f = 1.0 MHz	
	Min	Max	Min	Min	Max
MV2201	5.5	8.0	300	1.9	2.3
MV2203	8.5	11.5	200	2.0	2.4
MV2205	13	17	200	2.1	2.5
MV2209	29	37	150	2.1	2.5

FIGURE 2 - FIGURE OF MERIT versus REVERSE VOLTAGE

FIGURE 3 - FIGURE OF MERIT versus FREQUENCY

FIGURE 4 - NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE

NOTES ON TESTING AND SPECIFICATIONS

 ${\sf L}_{\sf S}$ is measured on a package having a short instead of a die, using an impedance bridge (Boonton Radio Model 250A RX Meter).

 C_C is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:

$$Q = \frac{2\pi f Q}{G}$$