Problem 5

Prove that for any integer n, at least one of the integers n, n+2, n+4 is divisible by 3.

PROOF In order to prove the statement, let's look at the division theorem: if $a,b\in\mathbb{Z}$, b>0, then there exist a unique $q,r\in\mathbb{Z}$ such that $a=q\cdot b+r$, $0\leq r < b$.

So, according to the theorem, it is possible to write a integer a in the form of $q \cdot b + r$.

To start the proof, it is necessary to know that $0,\,1$ and 2 are the only possible remainders for a division by 3.

$$\exists \; k \in \mathbb{Z} \; | \; n = 3k + r$$
 , where $r \in \mathbb{Z}$ and $0 \leq r < 3$.

Three cases.

 $r=0\Longrightarrow 3$ divides n.

$$r=1 \Longrightarrow n+2=3k+1+2=3k+3 \Longrightarrow 3$$
 divides $n+2$.

$$r=2 \Longrightarrow n+4=3k+2+4=3k+6 \Longrightarrow 3$$
 divides $n+4$.

So, by replacing n with 3k, 3k+1 and 3k+2, I proved that for any integer n, at least one of the integers n, n+2, n+4 is divisible by 3.