

Description

Image

Caption

1. Organ pipes are made of tin or of a tin - lead alloy. 2. Close-up of the material. © Håkan Svensson (Xauxa) at en.wikipedia - (CC BY-SA 3.0)

The material

Tin (symbol Sn) has been know to man since at least 3500 BC. The discovery that copper alloyed with tin to give bronze, greatly improving the mechanical properties, launched the Bronze age. In 1800 Napoleon offered prize of 12,000 francs for a method for preserving food for his armies. The tin can (steel coated with tin), which revolutionise the storage and preservation of foodstuffs and liquids, was invented in 1810, ironically by an Englishman; the first commercial canning factory opened just 3 years later.

Composition (summary)

Tin, Sn.

General properties

Certeral properties					
Density	453	- 454	lb/ft^3		
Price	* 10.2	- 11.3	USD/lb		
Date first used	-3500				
Mechanical properties					
Young's modulus	5.95	- 6.53	10^6 psi		
Shear modulus	2.03	- 2.61	10^6 psi		
Bulk modulus	5.51	- 6.67	10^6 psi		
Poisson's ratio	0.325	- 0.335			
Yield strength (elastic limit)	1.02	- 2.18	ksi		
Tensile strength	1.6	- 2.61	ksi		
Compressive strength	1.02	- 2.18	ksi		
Elongation	55	- 75	% strain		
Hardness - Vickers	3	- 5	HV		
Fatigue strength at 10^7 cycles	* 0.58	- 1.31	ksi		
Fracture toughness	* 13.7	- 27.3	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	* 0.015	- 0.045			
Thermal properties					
Melting point	446	- 450	°F		
Maximum service temperature	* 194	- 212	°F		
Minimum service temperature	32	- 55.8	°F		
Thermal conductor or insulator?	Good co	Good conductor			
Thermal conductivity	34.7	- 35.5	BTU.ft/h.ft^2.F		

Specific heat capacity

0.0516 - 0.0545 BTU/lb.°F

Thermal expansion coefficient

12.5 - 13.1

µstrain/°F

Electrical properties

Electrical conductor or insulator?

Good conductor

Electrical resistivity

10 - 12 µohm.cm

Optical properties

Transparency Opaque

Processability

Castability 5
Formability 4 - 5
Machinability 5
Weldability 5
Solder/brazability 5

Durability: water and aqueous solutions

Water (fresh)

Water (salt)

Soils, acidic (peat)

Soils, alkaline (clay)

Excellent

Excellent

Excellent

Excellent

Excellent

Acceptable

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Excellent Citric acid (10%) Excellent Hydrochloric acid (10%) Acceptable Hydrochloric acid (36%) Limited use Hydrofluoric acid (40%) Limited use Nitric acid (10%) Unacceptable Nitric acid (70%) Unacceptable Phosphoric acid (10%) Acceptable Phosphoric acid (85%) Limited use Sulfuric acid (10%) Unacceptable Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%)

Sodium hydroxide (60%)

Limited use

Durability: fuels, oils and solvents

Amyl acetate Excellent Benzene Excellent Carbon tetrachloride Excellent Chloroform Excellent Crude oil Limited use Diesel oil Excellent Lubricating oil Excellent Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Excellent Toluene Excellent **Turpentine** Excellent

Tin Page 3 of 4

Vegetable oils (general)

White spirit

Excellent

Excellent

Durability: alcohols, aldehydes, ketones

Acceptable
Acetone Excellent
Ethyl alcohol (ethanol) Excellent
Ethylene glycol Excellent
Formaldehyde (40%) Excellent
Glycerol Excellent
Methyl alcohol (methanol) Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Unacceptable

Limited use

Excellent

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Unacceptable
Tolerance up to 150 C (302 F)

Acceptable
Tolerance up to 250 C (482 F)

Unacceptable
Tolerance up to 450 C (842 F)

Unacceptable
Unacceptable
Unacceptable
Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 3.02e5 ton/yr Reserves 5.51e6 l. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production * 2.34e4 - 2.58e4 kcal/lb CO2 footprint, primary production * 12.5 - 13.8 lb/lb Water usage * 1.25e3 - 1.38e3 gal(US)/lb

Material processing: energy

* 587 Casting energy 649 kcal/lb * 50.2 55.5 kcal/lb Extrusion, foil rolling energy Rough rolling, forging energy * 40.5 44.7 kcal/lb * 103 Wire drawing energy 114 kcal/lb Metal powder forming energy * 447 492 kcal/lb Vaporization energy * 2.59e5 2.86e5 kcal/lb Coarse machining energy (per unit wt removed) * 52.9 58.5 kcal/lb * 65.9 kcal/lb Fine machining energy (per unit wt removed) 72.8 Grinding energy (per unit wt removed) * 80.4 88.8 kcal/lb Non-conventional machining energy (per unit wt removed)

	2.59e3	-	2.86e3	kcal/lb
Material processing: CO2 footprint				
Casting CO2	* 0.407	-	0.45	lb/lb
Extrusion, foil rolling CO2	* 0.0347	-	0.0384	lb/lb
Rough rolling, forging CO2	* 0.028	-	0.031	lb/lb
Wire drawing CO2	* 0.0714	-	0.0789	lb/lb
Metal powder forming CO2	* 0.33	-	0.364	lb/lb
Vaporization CO2	* 179	-	198	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0366	-	0.0405	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.0456	-	0.0504	lb/lb
Grinding CO2 (per unit wt removed)	* 0.0556	-	0.0615	lb/lb
Non-conventional machining CO2 (per unit wt removed)	1.79	-	1.98	lb/lb
Material recycling: energy, CO2 and recycle	fraction			
Recycle	✓			
Embodied energy, recycling	* 3.87e3	-	4.27e3	kcal/lb
CO2 footprint, recycling	* 2.8	-	3.1	lb/lb
Recycle fraction in current supply	5.5	-	6.5	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			
Biodegrade	×			
Toxicity rating	Non-toxi	С		

A renewable resource? Environmental notes

Tin(II) salts can be poisonous by ingestion and other routes, and there is evidence that tin can have experimental carcinogenic and human mutagenic effects. Some organo-tin compounds are very toxic.

Supporting information

Technical notes

Tin is extracted by the reduction of cassiterite, SnO2, with carbon. At normal temperatures tin is metallic ("white" tin), but below 13.2 C it transforms (slowly) to non-metallic gray tin -- a problem known as "tin pest" when tin is used at low temperatures.

Typical uses

Tin is used in pure form in storage tanks for pharmaceutical chemical solutions, as electrodes of capacitors, and fuse wire and as organ pipes (though usually alloyed with some lead). Its most important applications, however, are as a coating on steel sheet ("tin plate") and as an alloying element in bronze, pewter and solder. Its salts are used as polymer additives, for antifouling paints, and to produce a transparent, conducting coating on glass.

Further reading

Eco data from Hammond, G. and Jones, C. (2006) "Inventory of carbon and energy (ICE), Dept. of Mechanical Engineering, University of Bath, UK

Links

Reference

ProcessUniverse

Producers