

FAKULTA ELEKTROTECHNICKÁ KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno			Datum měření	
Anna Ruszová			29.11.2023	
Semestr		Ročník	Datum odevzdání	
zimní		2.	19.12.2023	
Studijní skupina	3	Laboratorní skupina	Klasifikace	
1081L		10		
Číslo úlohy	Název úlohy			
_				

Stefanův-Boltzmannův zákon 13

Stefanův-Boltzmannův zákon

Anna Ruszová

29. 11. 2023

1 Úkol měření

Ověřte platnost Stefanova-Boltzmannova zákona měřením teplotní závislosti výkonu vyzařovaného vláknem žárovky.

2 Seznam použitých přístrojů a pomůcek

regulovaný zdroj stejnosměrného a střídavého proudu (STELLTRAFO) přípravek s předřadným rezistorem $100\,\Omega$ ampérmetr (MASTECH MY65) voltmetr (MASTECH MY65) milivoltmetr (MASTECH MY65) žárovka stínící kryt termopil

3 Naměřené hodnoty

Měřila jsem při teplotě $t = (23, 0 \pm 0, 5)$ °C

3.1 Měření při malých proudech

Nejdříve jsem měřila proud a napětí na žárovce při stejnosměrném napětí za použití předřadného rezistoru, který zajistil malé proudy. Tím jsem zjistila odpor vlákna žárovky (při těchto hodnotách proudu konstantní). Odpor jsem vypočítala dle vzorce $R = \frac{U}{I}$. Výsledky jsou uvedeny v tabulce 1.

Rozsah voltmetru: $M=200~\mathrm{mV}$ Rozsah ampérmetru: $M=200~\mathrm{mA}$

číslo měření	I [mA]	U [mV]	R [Ohm]
1	24,86	4,76	0,191
2	50,45	9,66	0,187
3	75,33	14,42	0,191
4	100,20	19,25	0,192

Table 1: Měření při malých proudech.

Hodnoty odporů jsem zprůměrovala (N = 4):

$$\overline{R}(t_{lab}) = \frac{1}{N} \sum_{i=1}^{N} R(t_{lab})_i = 0,190 \,\Omega$$
 (1)

Dále jsem spočítala odpor vlákna žárovky při teplotě 0°C podle vzorce:

$$R_0 = \frac{R(t_{lab})}{1 + \alpha t_{lab} + \beta t_{lab}^2} = 0,171 \,\Omega \tag{2}$$

$$\alpha = 4,82 \times 10^{-3} \mathrm{K}^{-1}, \; \beta = 6,76 \times 10^{-7} \mathrm{K}^{-2}$$

3.2 Měření při velkých proudech

Následně jsem zkratovala předřadný rezistor a měřila hodnoty při střídavém napětí. Výsledky měření proudu a napětí na žárovce a napětí na termopilu jsou v tabulce 2.

Rozsah voltmetru: M = 20 VRozsah ampérmetru: M = 10 A

Rozsah mikrovoltmetru: M = 200 mV

číslo měření	U [V]	I [A]	$u_t [mV]$	R [Ohm]	T [K]
1	1,049	1,917	0,15	0,547	703,42
2	1,508	2,222	0,32	0,679	843,87
3	2,026	2,538	0,54	0,798	966,52
4	2,518	2,828	0,82	0,890	1058,97
5	3,020	3,094	1,16	0,976	1143,65
6	3,555	3,375	1,52	1,053	1218,12
7	4,019	3,601	1,86	1,116	1278,15
8	4,503	3,816	2,23	1,180	1338,33
9	5,075	4,071	2,72	1,247	1400,51
10	5,528	4,261	3,15	1,297	1446,38
11	6,021	4,456	3,62	1,351	1495,42

Table 2: Měření při velkých proudech.

Odpor jsem vypočítala z hodnot proudu a napětí podle vzorce $R=\frac{U}{I}.$

Teplotu jsem vypočítala za pomoci výše spočítaných hodnot pomocí následujícího vzorce:

$$T = 273, 15 + \frac{\alpha}{2\beta} \left[\sqrt{1 + \frac{4\beta}{\alpha^2} (\frac{R}{R_0} - 1)} - 1 \right]$$
 (3)

Hodnoty proložila metodou nejmenších čtverců funkcí:

$$u_t = AT^a (4)$$

Abych získala při proložení metodou nejmenších čtverců lineární rovnici, hodnoty jsem zlogaritmovala (viz tabulka 3) a zlogaritmované hodnoty následně proložila přímkou, kde hodnota a odpovídá její směrnici.

Výsledek jsem vykreslila do grafu (viz část Grafy). Výsledek je $a=4,23\pm0,11$

Aproximační funkce

$$y(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$
, $y(x) = A e^{kx}$, $y(x) = c x^m (m=1,2)$

Průběh č. 1
$a_0 = -12.885800932578$
$a_1 = 4.2335510398576$
$\sigma_{a0} = 0.33179587413377$
$\sigma_{a1} = 0.10864788942564$
$\chi^2/\nu = 0.052981416764361$
$(\chi^2/\nu)^{1/2} = 0.23017692491725$

Figure 1: Získaná aproximační funkce z metody nejmenších čtverců

číslo měření	log T [K]	$\log u_t [V]$
1	2,84721372	-0,823908741
2	2,926274484	-0,494850022
3	2,985209411	-0,26760624
4	3,024883139	-0,086186148
5	3,058292737	0,064457989
6	3,085689513	0,181843588
7	3,106580295	0,269512944
8	3,126562769	0,348304863
9	3,146284949	0,434568904
10	3,16028099	0,498310554
11	3,174763351	0,558708571

Table 3: Zlogaritmované hodnoty teploty a napětí.

4 Výpočet nejistot

4.1 Nejistota R(t_{lab})

Nejistotu typu A jsem vypočítala následovně:

$$u_A(R(t_{lab})) = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (R(t_{lab})_i - \overline{R}(t_{lab}))^2} = 0,0011 \Omega$$
 (5)

Nejistotu B jsem vypočítala pomocí nepřesností měřících přístrojů (voltmetru a ampérmetru):

$$u_B(I) = 1,5 \% \ u_B(U) = 0,5$$

$$u_B(R(t_{lab})) = \sqrt{(u_B(I))^2 + (u_B(U))^2} = 2\% \sim 0,095 \Omega$$
 (6)

Kombinovanou standardní nejistotu jsem vypočítala vzorcem:

$$u_C(R(t_{lab})) = \sqrt{(u_A(R(t_{lab})))^2 + (u_B(R(t_{lab})))^2} = 0.95 \Omega$$
 (7)

4.2 Nejistota R_0

$$u_{R_0} = \sqrt{\left(\frac{1}{1 + \alpha t_{lab} + \beta t_{lab}^2} u_c(R(t_{lab}))\right)^2 + \left(\frac{R(t_{lab})(\alpha + 2\beta t_{lab})}{(1 + \alpha t_{lab} + \beta t_{lab}^2)} u_t\right)^2} = 0,083 \Omega$$
(8)

4.3 Nejistota R_t

$$u_{R_t} = u_B(I) + u_B(U) = 2.8 \%$$
 (9)

Nejistoty $u_B(I)$ a $u_B(U)$ jsou získané z nepřesností přístrojů pro dané rozsahy při měření při velkých proudech:

$$u_B(I) = 2,0\%, u_B(U) = 0,8\%$$

4.4 Nejistota T

$$u_T = u_{R_0} + u_{R_T} (10)$$

4.5 Nejistota u_t

Nejistotu napětí na termopilu jsem získala z nepřesností měřícího voltmetru.

$$u_{u_t} = 0.5 \%$$
 (11)

4.6 Nejistoty zlogaritmovaných hodnot

$$u_{logT} = \frac{u_T}{logT} \tag{12}$$

$$u_{logu_t} = \frac{u_{u_t}}{logu_t} \tag{13}$$

4.7 Tabulka nejistot

číslo měření	$\mathrm{u}\left(R_{t}\right)\left[\mathrm{Ohm}\right]$	u (T) [K]	$\mathbf{u} (u_t) [\mathbf{V}]$	u (log T) [K]	$u (\log u_t)[V]$
1	0,015316	0,098316	0,00075	0,034530601	-0,000910295
2	0,019012	0,102012	0,0016	0,034860708	-0,003233303
3	0,022344	0,105344	0,0027	0,035288647	-0,010089451
4	0,02492	0,10792	0,0041	0,035677411	-0,04757145
5	0,027328	0,110328	0,0058	0,036075029	0,089981088
6	0,029484	0,112484	0,0076	0,036453441	0,04179416
7	0,031248	0,114248	0,0093	0,03677613	0,034506691
8	0,03304	0,11604	0,01115	0,03711424	0,032012186
9	0,034916	0,117916	0,0136	0,037477851	0,031295382
10	0,036316	0,119316	0,01575	0,037754871	0,031606796
11	0,037828	0,120828	0,0181	0,0380589	0,032396138

Table 4: Tabulka nejistot.

5 Grafy

Figure 2: Graf závislosti napětí na teplotě

6 Závěr

Ověřila jsem platnost Stefanova-Boltzmannova zákona, který říká, že výkon vyzařovaný tělesem roste se čtvrtou mocninou jeho termodynamické teploty. Exponent mi vyšel $a=4,23\pm0,11,$ což je o 5% více, než správná hodnota. Žárovka není lineární obvodový prvek.

Při měření dosáhla žárovka maximální teploty 1495,42 K, tedy 122,27 °C. Této teplotě odpovídá vlnová délka maxima vyzařování $\lambda_{max}=\frac{b}{T}=1,938~\mu\text{m}$, kde b=2,898~mm K (Wienův posunovací zákon).