Index Theorem

by Sven Nilsen, 2020

In this paper I present an index theorem found in Path Semantical Logic.

The Index Theorem is a proof in Path Semantical Logic^[1]:

(tr, fa, i, one) (
$$\mathbb{B}$$
, \mathbb{N}): (\mathbb{B} \wedge $\neg i$)=fa, (\mathbb{B} \wedge i)=tr, (\mathbb{N} \wedge i)=one => tr=one

Where the tuple `(tr, fa, i, one)` has level 1 and the tuple `(\mathbb{B} , \mathbb{N})` has level 0.

Notice that `tr` and `fa` are propositions that model booleans (`B`).

The theorem assigns each member of `B` an index, using `¬i` and `i`. Since `i` is used to assign `one` to `N`, an equality is propagated to `tr=one`. However, this is not trivial, since the theorem no longer holds when removing `($\mathbb{B} \land \neg i$)=fa`.

Notice that implications is not expressed directly, but follows from the use of equality.

References:

"Path Semantical Logic"
AdvancedResearch, reading sequence on Path Semantics
https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic