

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/00, 15/05, 15/29, 15/64, 15/82, A01H 1/00, 4/00

(11) International Publication Number:

(43) International Publication Date:

WO 97/13851

17 April 1997 (17.04.97)

(21) International Application Number:

PCT/US96/16387

A1

(22) International Filing Date:

11 October 1996 (11.10.96)

(30) Priority Data:

60/005,404

13 October 1995 (13.10.95)

US

(71) Applicant (for all designated States except US): PURDUE RESEARCH FOUNDATION [US/US]; Office of Technology Transfer, Room 328 ENAD, Purdue University, West Lafayette, IN 47907 (US).

(75) Inventors/Applicants (for US only): HANDA, Avtar, K. [IN/US]; 3420 Boone Street, West Lafayette, IN 47904 (US). KAUSCH, Kurt, D. [US/US]; Apartment 2, 1457 W. Walton, Chicago, IL 60622 (US).

(74) Agents: HENRY, Thomas, Q. et al.; Woodard, Emhardt, Naughton, Moriarty & McNett, Bank One Center/Tower, Suite 3700, 111 Monument Circle, Indianapolis, IN 46204-5137 (US).

(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: IMPROVEMENT OF FRUIT QUALITY BY INHIBITING PRODUCTION OF LIPOXYGENASE IN FRUITS

(57) Abstract

The present invention relates generally to a transgenic fruit-bearing plant having a foreign nucleotide sequence inserted therein which is substantially similar to a portion of the plant's fruit ripening specific lipoxygenase cDNA. Transgenic plants according to the present invention produce fruits having modified and surprinsingly superior ripening characteristics, including improved quality and texture, greater firmness, longer shelf life, better packaging and storage characteristics and improved processing characteristics. Also provided are transgenic fruits; transgenic plant cells; methods for making inventive transgenic plants, fruits and plant cells; methods for inhibiting lipoxygenase production in plants; isolated nucleotide sequences; and vectors comprising these isolated nucleotide sequences.

 ⁽Referred to in PCT Gazette No. 40/1997, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	Winter A det		
AT .	Austria	GE	United Kingdom	MW	Malawi
AU	Australia	GN	Georgia	MX	Mexico
BB	Barbados		Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Feso	HU	Hungary	NO	Norway
BG	Bulgaria	IR	Ireland	NZ	New Zealand
BJ	Benin	ır	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Pederation
CF		KP	Democratic People's Republic	SD	Sudan
CG:	Central African Republic Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SG	Singapore
Ci.	Côte d'Ivoire	KZ	Kazakhstan	22	Slovenia
CM	Cameroon	u	Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal
CS		LR	Liberia	82	Swaziland
cz	Czechoslovakia	LT	Lithuania	TD	Chad
DE	Czech Republic	LU	Luxembourg	TG	Togo
DK	Germany	LV	Latvia	TJ	Tajikistan
	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
F	Finland	ML.	Mali	US	
FR	Prance	MN	Mongolia	UZ.	United States of America Uzhekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

IMPROVEMENT OF FRUIT QUALITY BY INHIBITING PRODUCTION OF LIPOXYGENASE IN FRUITS

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates to isolated nucleotide sequences; methods for using the sequences to make transgenic plants which produce edible fruits having improved firmness and longevity; and vectors having the nucleotide seguences incorporated therein. specifically, the present invention relates to transgenic 10 plants and methods for making the same, the genomes of said plants having incorporated therein foreign nucleotide sequences which function to inhibit production of fruit ripening specific lipoxygenase ("FRS-LOX") in a ripening fruit. The inhibition of FRS-LOX gene expression provides a mechanism to improve characteristics of a fruit, including controlling fruit senescence and tissue softening associated with post-maturation processes.

Discussion of Related Art

20 Biochemistry of Lipoxygenases

Lipoxygenases ("LOXs") are nonheme iron-containing dioxygenases that catalyze the incorporation of molecular oxygen into unsaturated fatty acids containing cis, cis 1,4-pentadiene structure to yield a 1-hydroperoxy-2-4-trans, cis pentadiene product. Typical substrates for LOXs in plants are linoleate (Cl8:2) and linolenate (Cl8:3) fatty acids, while animal LOXs prefer arachidonate (C20:4). Some LOXs are able to act on substituted fatty acid substrates, while

others require free fatty acids. LOXs can vary in respect to (1) the site of primary hydrogen abstraction, (2) the direction of the double bond shifts in the primary radicle leading to the hydroperoxide product and (3) the stereospecificity of both hydrogen abstraction and dioxygen insertion (Ford-Hutchinson et al., Annu. Rev. Biochem. 63:383, 1994).

In plants, most fatty acids are esterified to a glycerol backbone in the form of glycerolipids and lipases 10 are thought to cleave these phosopholipids into usable plant LOX substrates (free fatty acids). The LOX-catalyzed fatty acid hydroperoxides serve as intermediates for a number of secondary reactions leading to jasmonic acid, traumatin, traumatic acid, volatile alcohols (hexanal), aldehydes, 15 ketols and 9C oxo fatty acids (Vick and Zimmerman, Biochemistry of Plants, Vol. 9:53, 1987; Hildebrand, Physiol. Plantarum 76:249, 1989). The 5-LOX from humans is representative of a unique type of LOX that requires the association of the 5-LOX Activating Protein (FLAP) for 20 activity. Also, a LOX from the rabbit reticulocyte has been reported to attack mitochondrial membranes in the absence of any lipid hydrolyzing enzymes during the maturation of erythroid cells (Schewe et al., Adv. Enzymol. 58:191, 1986).

Lipoxygenases: A Multigenic Family

LOXs have been found in a wide range of organisms including higher plants, animals, yeast, fungi and cyanobacterium (Siedow, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:145, 1991). LOX multigenic families have been characterized in several plant and animal species (Siedow, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:145, 1991; Ford-Hutchinson et al., Annu. Rev. Biochem. 63:383, 1994). The best characterized plant LOXs are the three soybean cotyledon LOX monomer isozymes; L-1, L-2 and L-3, all globular, water soluble proteins with MWs of about 96 kD. LOXs from rice, soybean, cotton, sunflower, tomato,

Arabidopsis, cucumber, kiwi and tobacco are some that have been identified and are on the order of 95kD, with the exception of pea (72-108 kD). Sequences reported for plant LOXs are approximately 60% homologous to one another. Human LOXs are about 60% homologous and are only 25% identical to plant LOXs (Ford-Hutchinson et al., Annu. Rev. Biochem. 63:383, 1994). Some of the plant LOXs are larger than animal LOXs and show homology with them only in limited regions (Minor et al., Biochem. 32:6320, 1993).

10 Biological Role(s) of Lipoxygenases

The function of various LOX isozymes in plant and mammalian systems is unknown. The hydroperoxide products from some animal LOXs serve as precursors in the production of leukotrienes and lipoxins, regulatory molecules involved in responses include leukotiene induced altered cell 15 functions such as chemotaxis and chemokinesis. Roles of LOX during all stages of plant growth and development have been speculated (Siedow, Annu. Rev. Plant Physiol. Plant Mol. Bio. 42:145, 1991). LOX activity has been demonstrated in 20 rapidly growing young tissues (germinating seedlings). has been suggested that jasmonic acid and hydroperoxide free radicles, primary and secondary products of LOX, may play roles in plant senescence by promoting cell membrane deterioration, inhibiting protein synthesis and chloroplast photochemical activity. Upon tissue wounding, increases in 25 LOX activity and mRNA accumulation have been seen in some Traumatin and traumatic acid may be involved in wound healing of damaged plant tissues (Hildebrand, Physio. Plantarum 76:249, 1989). Another secondary LOX product, 30 hexanal, may be produced in response to pest/pathogen However, no evidence to support any of these hypothesis has been obtained.

The second of the second of the second of the second of the second of

Commence of the Commence of th

10

15

20

25

30

35

Shelf Life of Fruits and Vegetables

Fruits and vegetables are highly perishable crops and significant losses often occur after their harvest but before they reach the consumer. The primary causes of these losses are the inability to control: 1) senescence of these 2) the ripening process in fruits; and 3) ripening-and sensescence-associated tissue softening. of the objectives of plant breeders for many years has been to control these processes by introducing traits from wild germ plasm into the cultivated species. In recent years, attempts have been made to use recombinant DNA technology to modify some of these traits. Both antisense and cosuppression technologies have been used in some crop plants to modify the expression of specific genes which may have deleterious effects on plant growth and development or crop productivity in general. However, none have proven fully satisfactory in reducing the rate of tissue softening associated with post-maturation plant processes.

Major transitions in fruit development and metabolism accompany the initiation of fruit ripening. In addition to alterations in pigment biosynthesis and production of volatile compounds, fruits undergo significant changes in texture during ripening. The biochemical bases for ripening— and senescence—associated fruit softening are not yet understood; however, dissolution of the middle lamella and cell wall separation due to depolymerization of pectins by polygalacturonase as well as loss of calcium have been suggested to contribute to fruit softening. Only slight improvement in fruit integrity has been reported in fruits with low polygalacturonase activity (Schuch et al. HortScience 26: 1517, 1991; Carrington et al., Plant Physiology 103: 429, 1993).

There is a need for transgenic plants which produce fruits having modified ripening and post-maturation characteristics including improved quality and texture, greater firmness, longer shelf life, better packing and

storage characteristics and improved processing characteristics.

10

15

20

25

30

35

SUMMARY OF THE INVENTION

The invention described herein features inhibiting the expression of fruit ripening specific lipoxygenase ("FRS-LOX") in a plant, specifically in cells of a fruit of the plant. For instance, foreign DNA can be introduced into cells to reduce FRS-LOX production. In a preferred embodiment, the cell is a plant cell and the genetic material is a sense or antisense fragment substantially similar to a portion of the FRS-LOX cDNA shown in SEQ ID NO:4. Most preferably, the cell is a cell of a fruit-bearing plant, such as a tomato plant cell.

It is expected that the present invention can be applied to the inhibition of FRS-LOX gene products in a wide variety of useful plants. These may include, for example, commercially important fruit-bearing plants in which post-maturation weakening reduces economic value, such as melons, peaches, bananas, apples, strawberries, kiwi fruit, and in particular the tomato.

The present inventors have made the surprising discoveries that (1) inhibition of FRS-LOX greatly improves fruit qualities such as, for example, firmness and shelf life; and (2) antisense and co-suppression (sense) technologies can be successfully used to inhibit FRS-LOX gene expression in plants so as to provide fruits having superior qualities such as, for example, firmness and shelf life. It is believed that improved fruit qualities result from reduced activity of degradative pathways (e.g., membrane deterioration); however, it is not intended that the present invention be limited to this theory.

Briefly describing one aspect of the present invention, there is provided a method for making a transformed plant having improved fruit quality comprising inserting a nucleotide sequence into DNA of the plant in a sense or antisense orientation under a suitable promoter so as to inhibit production of lipoxygenase in the fruit of the plant as it ripens. In a preferred method, a sequence of

nucleotides is inserted into a target cell by providing a vector comprising the nucleotide sequence and contacting the vector with the target cell.

Additional aspects of the present invention include vectors having incorporated therein nucleotide sequences having substantial similarity to all or a portion of the sequence of SEQ ID NO:4 (FIG. 4).

Additional aspects of the invention include constructs selected from the group consisting of pMLSL, pMLAL, pUSL2, pUAL2, pUEL300S and pUEL300A, which are useful for inserting foreign DNA into a plant cell genome.

According to other aspects of the present invention there are provided transgenic fruits, transgenic plants and transgenic host cells, preferably plant cells such as germ cells and cotyledon cells. These various transgenic hosts are preferably transformed by having incorporated into their genomes, nucleotide sequences as delineated above and described in greater detail below.

It is an object of the present invention to provide 20 transgenic plants which produce fruits having modified ripening characteristics, including improved quality and texture, greater firmness, longer shelf life, better packaging and storage characteristics and improved processing characteristics.

25 Further objects, advantages, and features of the present invention will be apparent from the detailed description which follows.

16 4

State of the state

\$ 1. 1 A 2 ... 18 ...

All the second

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 sets forth the nucleotide sequence of one portion of the fruit ripening specific lipoxygenase ("FRS-LOX") gene which is inserted into a plant cell genome according to one preferred embodiment of the present invention.
- FIG. 2 sets forth the nucleotide sequence of another portion of the FRS-LOX gene which is inserted into a plant cell genome according to another preferred embodiment of the present invention.
- FIG. 3 sets forth the nucleotide sequence of another portion of the FRS-LOX gene which is inserted into a plant cell genome according to another preferred embodiment of the present invention.
- FIG. 4 sets forth the nucleotide sequence of the coding region of a tomato FRS-LOX gene cloned and characterized for use in accordance with the present invention.
- FIG. 5A shows various regions of the tomato FRS-LOX cDNA advantageously used for making vectors according to the present invention.
- FIG. 5B shows the 2871 base pair region of the tomato FRS-LOX cDNA shown in FIG. 5A, which is preferably used for (making pUSL2 and pUAL2 according to the present invention.
- FIG. 5C shows the 2440 base pair region of the tomato FRS-LOX cDNA shown in FIG. 5A, which is preferably used for making pMLSL and pMLAL according to the present invention.
- FIG. 5D shows the 297 base pair region of the tomato FRS-LOX cDNA shown in FIG. 5A, which is preferably used for making pUEL300A according to the present invention.
- FIG. 6 is a plot of fruit firmness vs. the number of days after breaker for a transgenic tomato of the present invention (650-1) and an Ohio control tomato. "Breaker," as used herein, is intended to denote the time at which a tomato begins to change color from green to orange.

10

DESCRIPTION OF THE PREFERRED EMBODIMENTS

For the purposes of promoting an understanding of the principles of the invention, references will now be made to certain embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and modifications in the invention, and such further applications of the principles of the invention therein being contemplated as would normally occur to one skilled in the art to which the invention relates.

In accordance with the present invention, there are provided transgenic plants and fruits and methods and materials for making them. It has been discovered that the 15 expression of the fruit ripening specific lipoxygenase ("FRS-LOX") gene, and correspondingly, the level of FRS-LOX enzyme activity, are implicated in causing fruit weakening and membrane deterioration in post-maturation fruits. has also been discovered that these processes can be suppressed in plants by the introduction of a foreign 20 nucleotide sequence having substantial similarity to all or a portion of the coding sequence of the FRS-LOX gene (e.g., as set forth in FIG. 4, SEQ ID NO:4) in either the sense or the antisense orientation. The invention thus provides recombinant DNA with which to achieve such suppression, 25 methods for transforming plants to achieve such suppression, and the resultant transgenic plant cells, transgenic plants and transgenic fruits thereof. The term "substantial similarity," as used herein, is intended to mean sufficiently similar to cause improved fruit quality by 30 inhibiting lipoxygenase production in a fruit when inserted in sense or antisense orientation. For example, it is contemplated that nucleotide sequences useful in the invention will hybridize, under stringent hybridization conditions, to the coding sequence of the FRS-LOX gene 35 (e.g., the nucleotide sequence of SEQ ID NO:4; FIG. 4).

The Examples given below clearly show that the methods of the invention, using the expression of a nucleotide sequence comprising a portion of the FRS-LOX cDNA, results in substantial inhibition of FRS-LOX. Tomato fruit and 5 their seeds, for example, and progeny of these plants will find use in the production of new tomato varieties containing reduced FRS-LOX. These plants are useful in the production of tomatoes of improved quality, which have a longer storage life, better transportablility, better field holding (i.e, fruit lasts longer in good condition on the plant prior to harvest) or be easier to process, and may produce improved products such as whole peeled tomatoes, It will be understood that an puree, ketchup or sauces: FRS-LOX gene appears not only in tomatoes, but also in a 15 wide variety of other plants and that the invention can be used not only for the inhibition of tomato FRS-LOX, but also for the inhibition of FRS-LOX and similar enzymes in various other fruit-bearing plant species. In these other species, of course, the inserted foreign nucleotide sequence must 20 have substantial similarity to all or a portion of the FRS-LOX gene associated with that species.

The preferred aspects of the present invention are carried out using the FRS-LOX gene. The cDNA clone for a tomato FRS-LOX gene (shown in FIG. 4; SEQ ID NO:4) has 2871nucleotide base pairs and an open reading frame encoding a protein of 859 amino acids with calculated molecular mass of 97kD and pI of 5.5. Comparison of its sequence reveals 73 and 82 percent similarity at nucleic acid and amino acid levels, respectively, to a LOX cloned from wounded potato tubers which show 5-LOX activity on arachidonic acid (Mulliez et al., Biochem. Biophys. Acta 916,13, 1987; Casey, Plant Physiology 107:265, 1995).

In accordance with the present invention, a nucleotide sequence having substantial similarity to all or a portion of the coding sequence of the FRS-LOX gene (SEQ ID NO:4) is incorporated in a recombinant DNA molecule under the control

of a promoter. In this regard, a recombinant DNA molecule is one which has either been naturally or artificially produced from parts derived from heterologous sources, which parts may be naturally occurring or chemically synthesized molecules, and wherein those parts have been joined by ligation or other means known in the art. The introduced FRS-LOX coding sequence is under control of the promoter and thus will be generally downstream from the promoter. Stated alternatively, the promoter sequence will be generally upstream (i.e., at the 5' end) of the coding sequence.

A constitutive promoter was used in the methods described in the Examples below. However, targeting of the gene product can be obtained using a constitutive (e.g. Cauliflower Mosaic Virus 35S promoter), inducible (e.g. Tomato E8 ethylene inducible promoter) or developmentally regulated (e.g. Tomato polygalacturonase promoter) promoter to construct the vectors.

with respect to the function of the promoter, it is well known that there may or may not be other regulatory elements (e.g., enhancer sequences) which cooperate with the promoter and a transcriptional start codon to achieve transcription of the introduced (i.e., foreign) sequence. The phrase "under control of" contemplates the presence of such other elements as are necessary to achieve transcription of the introduced sequence. Such transcription can be assessed, for example, by the detection of the mRNA products of the same. Also, the recombinant DNA will preferably include a termination sequence downstream from the introduced sequence.

The introduced sequence according to the instant invention is preferably a nucleotide sequence having substantial similarity to all or a portion of the nucleotide sequence that encodes the FRS-LOX enzyme (see for example, SEQ ID NO:4). As used herein, the term "portion" is intended to refer to a nucleotide sequence having a sufficient number of nucleotides to cause improved fruit

WO 97/13851 PCT/US96/16387

- 12 -

quality by inhibiting lipoxygenase production in a fruit when inserted in sense or antisense orientation. regard, coding sequences of about 90 base pairs have been shown to possess inhibitory properties in sense interactions. (See Vaueheret H. (1993) Identification of a General Silencer for 19S and 35S Promoter in a Transgenic Tobacco Plant: 90 bp of homology in the promoter sequence are sufficient for transactivation. C.R.Acad.Sci. III 316:1471-1483.)

According to the present invention, the introduced sequence can have either a sense or an antisense orientation, and can contain nucleotide sequences from any suitable source, including both natural and synthetic In a preferred embodiment, the introduced sequence is one of those of FIGS. 1-3 (SEQ ID NOS:1-3) or one having substantial similarity to one of these sequences, and is incorporated in either a sense or an antisense orientation.

One preferred vector according to the present invention, for example the pMLSL construct, comprises the nucleotide sequence shown in FIG. 1 (SEQ ID NO:1) in the sense orientation (See Example 3, below). The DNA insert shown in SEQ ID NO:1 is a 2440 base pair DNA fragment representing nucleotides 158 to 2598 of the fruit FRS-LOX gene shown in FIG. 4 (SEQ ID NO:4). Another preferred vector, for example the pMLAL construct (See Example 3, below), comprises the same DNA fragment inserted into the vector in the antisense orientation (reverse order).

Another nucleotide sequence which is advantageously inserted into a vector according to the present invention is a sequence containing the full-length FRS-LOX cDNA (SEQ ID NO:4) having 2871 base pairs. This nucleotide sequence is shown in FIG. 2 (SEQ ID NO:2). This sequence may also be inserted in either the sense orientation (See, for example, the pUSL2 construct described in Example 4, below) or the 35 antisense orientation (See, for example, the pUAL2 construct construct described in Example 4, below).

5

10

20

25

15

20

35

A third nucleotide sequence which is inserted into a vector according to a preferred embodiment of the present invention is a sequence containing nucleotides 1 through 297 of the FRS-LOX gene shown in FIG. 4 (SEQ ID NO:4). This sequence is also set forth in FIG. 3 (SEQ ID NO:3). As with the previously-described sequences, this nucleotide sequence may be inserted into a vector in either the sense orientation (see, for example, the pUEL300S construct described in Example 5, below) or the antisense orientation (see, for example, the pUEL300A construct described in Example 5, below). These vectors are all useful for making inventive transgenic plants as described above.

Additionally contemplated by the present invention is a vector having incorporated therein a nucleotide sequence substantially similar to one of the above-described nucleotide sequences.

Suitable nucleotide sequences for use as starting materials in the present invention can be isolated from DNA libraries obtained from other species by means of nucleic acid hybridization or PCR, using as hybridization probes or primers for FRS-LOX, nucleotide sequences that have been published for FRS-LOX genes. Alternatively, antibodies to the FRS-LOX protein can be used to screen a plant cDNA library for clones that express the FRS-LOX protein. The cDNA thus identified as FRS-LOX-protein-encoding can then be used to isolate a genomic clone containing a similar nucleotide sequence or a portion thereof. For an illustrative list of clones obtained in this way, see Table 1 in Example I below.

In accordance with the present invention, the FRS-LOX insertion sequence can be, but is not necessarily, a mutant form. Mutations may include, for example, insertions, deletions, and/or substitutions of one or more nucleotides. Such a mutation in accordance with the invention will provide a coding sequence which, when inserted into a plant in the sense or antisense orientation under the control of

a promoter that is expressed in the plant, achieves the suppression of the expression of a natural FRS-LOX gene and the FRS-LOX activity of the transgenic plant.

Recombinant DNA in accordance with the invention can be incorporated into vectors and introduced into the genome of plants using conventional techniques. In this regard, the term "genome" as used herein is intended to refer to DNA which is present in the plant and which is heritable by progeny during propagation of the plant. For example, the invention is illustrated in the Examples below utilizing 10 Agrobacterium tumefaciens-mediated transformation, although other techniques can also be used and are within the purview of the ordinarily skilled artisan. The technique used for a given plant species or specific type of plant tissue will 15 depend upon the known successful techniques. Additional means for introducing recombinant DNA into plant tissue include but are not limited to electroporation, microprojectiles, microinjection, as well as other T-DNA mediated transfer from Agrobacterium tumefaciens.

Once the recombinant DNA is introduced into the plant tissue, successful transformants can be screened using standard techniques such as the use of marker genes, e.g., genes encoding resistance to antibiotics. Additionally, the level of expression of the natural FRS-LOX gene of transgenic plants may be measured at the transcriptional level or as protein synthesized.

Transgenic plants in accordance with the present invention can also be identified by detection of a significant increase in the firmness of the fruit of the transgenic plant as compared to its wild-type counterparts. The level of firmness of a whole fruit can be determined, for example, by using conventional testing equipment such as a McCormick Fruit Tech (Yakima, WA) firmness pressure tester. This tester has a plunger tip and measures the penetration force necessary for the plunger tip to enter the fruit epidermis. In performing these tests, about a 1 cm square

section of the waxy epidermis from each fruit was removed where the measurement was to be taken. A minimum of six fruits were analyzed and the mean and standard error were calculated. The results of various firmness tests are given in Table 3 below.

Fruits produced by transgenic plants made according to the present invention are superior to other fruits due to the advantageously modified ripening characteristics including improved quality and texture and greater These characteristics are believed to result from 10 reduced activity of degradative pathways in the fruit (e.g., membrane deterioration); however, the present invention is not intended to be limited by this theory. characteristics are economically important, for example, because they impart to the fruit improved shelf life, better packaging and storage characteristics and improved processing characteristics. The present invention provides fruits which are much more easily handled than other fruits, and which are much less likely to be bruised or smashed in 20 the normal course of harvesting, handling, transportation and delivery to a consumer.

According to the present invention, a partial inhibition of lipoxygenase production is adequate for improving fruit quality. Varying levels of inhibition can be obtained by either selecting other transformants, using different fragments of the nucleotide sequence of the FRS-LOX gene (e.g., SEQ ID NO:4) or using a different promoter, as will be apparent by those skilled in the art. In this regard, preferred transgenics of the invention exhibit at least about a 50% reduction in the level of natural FRS-LOX gene expression or FRS-LOX activity, and in more preferred transgenic plants, reduction is 60% or more. Most preferably, transgenic plants of the invention exhibit at least about 70% reduction of these processes.

35 Transgenic plants in accordance with the invention can be cultured and reproduced under standard conditions and

WO 97/13851 PCT/US96/16387

- 16 -

using standard techniques. Likewise, transgenic fruits obtained from transgenic plants can be conventionally used and processed.

The invention will be further described with reference to the following specific Examples. However, it will be understood that the Examples are offered to further illustrate the present invention, but are not to be construed as limiting the scope thereof.

10

EXAMPLE ONE

Molecular Cloning of FRS-LOX cDNA

A 90 kd protein that accumulates in the red-ripe fruit of a tomato plant, purified by ammonium sulfate precipitations, ion-exchange chromatography and SDS-PAGE was used to produce polyclonal antibodies in a rabbit. 15 antibodies were used to immunoscreen more than 150,000 recombinant clones from an expression cDNA library made from poly A+RNA from red-ripe tomato pericarp in the UNI-ZAP XR vector. Among the 24 cDNA clones obtained, 17 clones were similar and had inserts which showed 60-65% homology with 20 the LOX gene family (Gen Bank and EMBL sequence libraries). One of the cDNAs obtained was used to rescreen the cDNA library to obtain a full-length FRS-LOX gene (Kausch and Handa, Plant Physiology 107:669, 1995). FIG. 4 shows the Table 1 shows percent nucleic acid sequence of this gene. 25 similarities of this FRS-LOX gene to LOX clones from other plant species.

Table 1. Comparison of the fruit ripening specific lipoxygenase gene sequences at DNA and amino acid levels with other plant Lipoxygenases.

Lox Gene Accession #	Percent Similarity			
	Nucleic Acid	Amino Acid		
Leu09025	99.5	99.1		
Leu09026	72.7	81.7		
Stlox1	73.2	81.6		
Athlipoxy	64.6	75.7		
Athatlo	51.6	61.4		
Pvlipoxy	64.8	74.9		
Soylox	61.4	69.7		
Soyloxb	62.8	73.3		
Soyloxc	62.7	67.6		
Pslipox	61.4	71.9		
Gmu04526	62.0	73.0		
Gmu04785	54.1	71.2		
Pslipocy	61.7	73.7		
Oslma	54.1	71.2		
Ricl20p	48.2	61.2		

EXAMPLE TWO

Construction of Vectors

Several sense and antisense vectors containing different regions of the cloned FRS-LOX (FIG. 4) were made to create transgenic tomato plants. Table 2 summarizes the vectors made and specific procedures used to prepare them are described in Examples 3-6.

Table 2. Summary of Sense and Antisense LOX Vectors.

Name of Sense Vector	Name of Antisense Vector	Insert Size
PMLSL	pMLAL	2440 bp
pusl2	pUAL2	2871 bp
PUEL300S	PUEL	300A 297 bp

EXAMPLE THREE

Construction of pMLSL/pMLAL

- 1. A 1.7 kb Eco RI and Cla I DNA fragment containing the Cauliflower Mosaic Virus (CaMV 35S) promoter and the small subunit of the Ribulose 1,2-Bisphosphate Carboxylase/Oxygenase (rbcS) 3' terminator with intervening multi-cloning sites was isolated from pKYLX7 (Schardl et al., Gene 61:1, 1987) and cloned into pTZ18U to generate vector pTZ35rbcS.
- A 2440 bp DNA fragment representing nucleotides 158 to 2598 of the fruit FRS-LOX (FIG. 1, SEQ ID NO:1) was isolated form a partial LOX clone 8-27-1 and ligated into the multi-cloning sites present between the CaMV 35S promoter and rbcS 3' terminator sequences in pTZ35rbcS in both orientations. The clone with the LOX cDNA in the sense orientation relative to the CaMV 35S promoter was named pTZSL, while the clone with the LOX cDNA in the antisense orientation relative to the CaMV 35S promoter designation as

15

pTZAL. Restriction mapping and Southern blotting with CaMV 35S, LOX and rbcS 3' probes and DNA sequencing were used to establish structure of pTZSL and pTZAL.

- 5 3. The 4.1 kb DNA fragments containing the CaMV 35S promoter, 2440 bp LOX DNA fragment in sense or antisense orientation and rbcS 3' terminator were obtained from pTZSL or pTZAL, respectively. These fragments were cloned between the EcoRI and SmaI sites in pMLJ1 (an Agrobacterium
- based transformation vector) both in sense and antisense configuration to obtain pMLSL and pMLAL, respectively. Restriction mapping and Southern blotting with CaMV 35S, LOX and rbcS 3' probes and DNA sequencing were used to establish structures of pMLSL and pMLAL.

15

EXAMPLE FOUR

Construction of pUSL2/pUAL2

- A 0.6 kb DNA fragment (0.6 kb) containing the rbsS terminator was isolated from pTZ35rbcS and cloned at Xba I
 site of pGEM11Z to create pGllrbcX.
- The CaMV35S promoter (1.1 kb) was isolated from pTZ35rbcS after digestion with Sac I and Hind III, ligated with Hind III-Eco RI linkers, and forced cloned between Sac I and Eco RI sites of pGllrbcX to create pG35rbcX.
- The Sac I and Hind III DNA fragment containing CaMV
 35S promoter and rbcS terminator isolated from pG35rbcX was
 blunt ended (using T4 polymerase) and ligated to the blunt
 ended Apa I and Sal I digested pMLJI to create pML35rbc.
 This vector (8.45 kb) has been designated as pPUH11.

4. A DNA fragment containing the full-length FRS-LOX cDNA (nucleotide 1 to 2871, See FIG. 2, SEQ ID NO:2) was isolated from clone 10-1#4-1 after digestion with Pst I, and Xho I and blunt-ended with T4 DNA Polymerase. This DNA fragment was cloned in both orientations in the blunt-ended pPUHll at Xho I site to create pUSL2 (sense) and pUAL2 (antisense) vectors, respectively. Restriction mapping and Southern blotting with CaMV 35S, LOX and rbcS 3' probes and DNA sequencing were used to establish structure of pUSL2 and pUAL2.

EXAMPLE FIVE

Construction of pUEL300s/pUEL300A

- A DNA fragment containing nucleotides 1 to 297 of FRS-LOX (FIG. 3, SEQ ID NO:3) was obtained after polymerase chain reaction using a LOX-specific primer (a 17-mer olignucleotide with the sequence 5' GGGTGATGTCTGTAAGC3' corresponding to the nucleotides 297-281) and the T3 Primer (a 17-mer primer specific for the T3 promoter located 90 bp upstream of the FRS-LOX cDNA sequence in pBluescript). This DNA fragment (0.387 kb) was cloned into Eco RV T-tailed pBluescript KS to yield pKSRS17.
- 2. The LOX specific DNA fragment was obtained from pKSRS1: after EcoRI digestion and cloned in both orientations into an EcoRI digested pPUHll using T4 DNA ligase to create pUEL300S (sense) and pUEL300A (antisense) chimeric genes, respectively. Restriction mapping and Southern blotting with CaMV 35S, LOX and rbcS 3' probes, and DNA sequencing were used to establish structure of pUEL300S and pUEL300A.

EXAMPLE SIX

Transfer of Vectors to Agrobacterium

The vectors pUSL2, pUAL2, pMLSL, pMLAL, pUEL300S and

35 pUEL300A were mobilized into Agrobacterium tumefaciens

- 21 -

strain pGV3850 using standard tri-parental mating techniques with a helper plasmid pGJ23. Transformers were selected using appropriate antibiotics. Total DNA was isolated from selected strains, digested with several endonucleases, separated on agarose gels by electrophoresis, blotted to membrane and hybridized to various probes to confirm the presence of all parts of the respective chimeric gene in Agrobacterium.

EXAMPLE SEVEN

10

15

20

25

30

5

Creation of Transgenic Plants

Cotyledons from eight day old tomato plants were cut and placed on tobacco cell feeder layers for 24 hours before infecting with an Agrobacterium strain (as prepared according to Example 6) harboring plasmid containing a chimeric gene. After a 30 minute infection period, the cotyledons were placed back on the tobacco cell feeder layers and incubated for an additional 48 hours before transferring onto a tomato regeneration medium containing kanamycin and cefotaxime. Every two weeks the explants were subcultured into new regeneration media. Regenerated shoots were rooted using a tomato rooting medium. The rooted plants were removed from tissue culture and placed in a growth chamber in soil for 2 weeks. The plants were then moved to the greenhouse. The presence of the inserted DNA in transgenic plants was confirmed using DNA gel blotting of genomic DNA obtained from transformed (regenerated) tomato plants.

EXAMPLE EIGHT

Level of FRS-LOX mRNA and Protein in Plants Transformed with pMLSL

The levels of FRS-LOX mRNA and protein in ripening fruits from the primary transgenic tomato plants expressing pMLSL analyzed were about 50% of that wild type parental fruits. FRS-LOX mRNA and protein levels were determined

using RNA gel blotting and immuno blotting, respectively. Since seeds from these primary transgenic plants segregated in a normal Mendelian manner they are believed to be herterozygous for the introduced pMLSL construct.

5

EXAMPLE NINE

Effect of Reduced FRS-LOX on Ripening-Associated Fruit Firmness

The level of firmness of whole transgenic fruits transformed with the nucleotide sequence of SEQ ID NO:1 in sense orientation were determined by using a McCormick Fruit 10 Tech (Yakima, WA) firmness pressure tester. This tester has a plunger tip and measures the penetration force necessary for the plunger tip to enter the fruit epidermis. performing these tests, about a 1 cm square section of the waxy epidermis from each fruit was removed where the 15 measurement was to be taken. A minimum of six fruits were analyzed and the mean and standard error were calculated. FIG. 6 shows the comparison of ripening-associated fruit firmness over time post breaker in PMSL-650-1 fruits 20 (transgenic tomato transformed with the pMLSL vector) and wild type parental plants. Table 3 shows the firmness of fruits from segregating progeny of PMSL-650-1 with zero, one and two copies of the inserted pMLSL gene. These data clearly demonstrate that reduction of the FRS-LOX inhibits **25** . ripening-associated fruit softening.

Table 3. Firmness of Fruits from Transgenic Tomato Plant Containing 0, 1 and 2 copies of inserted pMLSL Gene.

	Fru	uits Firmness, l	bs.	
Days After Breaker Stage	Cor	Copies of Inserted Gene		
·	0	. 1	2	
7	8.85+/-0.96	9.51+/-0.67	15.51+/-1.94	
10	6.29+/-0.49	7.43+/-0.42	11.46+/-2.93	

While the invention has been described in detail in the foregoing description, the same is considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

What is claimed is:

1. A method for making a transformed plant having improved fruit quality comprising:

inserting a foreign nucleotide sequence into DNA of a plant in a sense or antisense orientation so as to inhibit production of fruit ripening specific lipoxygenase in a fruit produced by the plant.

- 2. The method according to claim 1, wherein the plant is a tomato plant.
- 3. The method according to claim 1, wherein said inserting comprises:

providing a vector comprising the foreign nucleotide sequence; and

contacting the vector with a target cell of the plant such that the nucleotide sequence becomes incorporated into the target cell.

- 4. The method according to claim 1, wherein the nucleotide sequence has substantial similarity to all or a portion of the coding region of the plant's native fruit ripening specific lipoxygenase gene.
- 5. The method according to claim 1, wherein the nucleotide sequence has substantial similarity to all or a portion of the sequence of SEQ ID NO:4.
- 6. The method according to claim 1, wherein the nucleotide sequence has substantial similarity to the nucleotide sequence set forth in SEQ ID NO:1.

- 7. The method according to claim 1, wherein the nucleotide sequence has substantial similarity to the nucleotide sequence set forth in SEQ ID NO:2.
- 8. The method according to claim 1, wherein the nucleotide sequence has substantial similarity to the nucleotide sequence set forth in SEQ ID NO:3.
 - 9. A method for inhibiting lipoxygenase production in a plant comprising:
- inserting a nucleotide sequence into DNA of the plant in
 the sense or antisense orientation so as to inhibit
 production of fruit ripening specific lipoxygenase in the
 fruit of the plant during ripening;

wherein the nucleotide sequence is substantially similar to all or a portion of the plant's native fruit ripening specific lipoxygenase.

- 10. A vector for inserting a nucleotide sequence into a fruit-bearing plant genome comprising a nucleotide sequence, in either a sense or an antisense orientation, having substantial similarity to all or a portion of a nucleotide sequence of a fruit ripening specific lipoxygenase native to the plant being transformed.
- 11. The vector according to claim 10 comprising a nucleotide sequence having substantial similarity to the nucleotide sequence of SEQ ID NO:1 in either a sense or an antisense orientation.
 - 12. The vector according to claim 10 comprising a nucleotide sequence having substantial similarity to the nucleotide sequence of SEQ ID NO:2 in either a sense or an antisense orientation.

SUBSTITUTE SHEET (RULE 26)

20

.15

- 13. The vector according to claim 10 comprising a nucleotide sequence having substantial similarity to the nucleotide sequence of SEQ ID NO:3 in either a sense or an antisense orientation.
- 5 14. A DNA construct selected from the group consisting of pMLSL, pMLAL, pUSL2, pUAL2, pUEL300S or pUEL300A.
 - 15. A transgenic plant cell comprising a foreign nucleotide sequence in its genome in the sense or antisense orientation, the foreign nucleotide sequence being substantially similar to all or a portion of a fruit ripening specific lipoxygenase native to the plant being transformed.
 - 16. A transgenic plant comprising a foreign nucleotide sequence in its genome in the sense or antisense orientation, the foreign nucleotide sequence being substantially similar to all or a portion of the plant's native fruit ripening specific lipoxygenase.
 - 17. The transgenic plant of claim 16, the foreign nucleotide sequence being substantially similar to the nucleotide sequence of SEQ ID NO:1.
 - 18. The transgenic plant of claim 16, the foreign nucleotide sequence being substantially similar to the nucleotide sequence of SEQ ID NO:2.
- 19. The transgenic plant of claim 16, the foreign nucleotide 25 sequence being substantially similar to the nucleotide sequence of SEQ ID NO:3.
 - 20. A transgenic fruit produced by the plant of claim 16.

- 21. The transgenic fruit according to claim 20, wherein the foreign nucleotide sequence is substantially similar to a member selected from the group consisting of the nucleotide sequence set forth in SEQ ID NO:1; the nucleotide sequence set forth in SEQ ID NO:2; or the nucleotide sequence set forth in SEQ ID NO:3.
- 22. The transgenic fruit according to claim 16 which is a tomato.

FIG. 1

SEQ ID NO:1

158		C AGTTGTTG!	AT GGCATTTCT		G CCAAAAAGTC
201		•• • outingati	יא איוייויב צוי ווייו פופ	T Mamos	
251		CONTRACT	. 1 ALSA(2A(27PP)	7 /////////////////////////////////////	_
301			. 1 1 1 1 Δ (2'1'C2'1''')	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
351		ON A T C CROCKIC	אידימיזיוימיזיוימיטווירא או	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
401		C WIGHT CHETE	A CACTICANA	\	
451		+ WIGCHWITC	ירי איריינייניבוב ורייבו	* AMA AMM	
501		* * * * * * * * * * * * * * * * * * *	רו אלידשויי זביבו באבו אב		
551		·· · · · · · · · · · · · · · · · · · ·	G AAAATTAAA	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
601		·· octionwoh	A IIIIIIACACACAC	• • • • • • • • • • • • • • • • • • •	_
651		a arouncede	A TAALICICAN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
701	TGGAGGGTC	C TCTGAGTAC	C CGTATCCTCG	GAGTATGCT	GGCCTATCCT
751	AACCAACCA	A AGCAGATCC	T AATTGCGAGA	TAGAGGCAGG	ACAGGCCGCG
801	AGCTTAGAC	A TATATGTCC	C AAGGGACGAG	GCAGGAACCC	ATTGCCTATG
851	GTCAGACTT.	TTGACGTCG	T CCTTAAAATC	CGATTTGGTC	ATGTGAAGAA
901	CTGCGTTTA	A GGCTTTGTG	C GATAACACGC	CTCTTTGCAA	ACGCTTCTCC
951					
1001					
1301	GGCAATCAAG	AGTAACAGGT	TATTCATATT	AATGGATTAA	CAGTGAATGA
1401	TCAAGAACTC	TGCTCTTCCT	ACATGTCAG ACAAGATGAT	CAAACACAAA	AGCCTATGCC
1451	AATTGAACTA	AGCTTGCCAC	ACAAGATGAT	AGAACTTTGA	AGCCACTAGC
1501	GTAAAGTATA	TACACCAGCT	GACCAAGGTG	AGATCAATTT	GGTACTGTTA
1551					
1601					
1651	CAAATAGGCA	TCTAAGTGTG	CTTCATCCCA	CGAACCATTT	GTGATTGCAA
1701	CATTTCCGTA	ACACGATGAA	CATAAATGCT	TTCATAAACT	TCTTCATCCT
1751	CTATGATGGT	GGTTTTGAGA	CATAAATGCT	TTAGCAAGAG	AGACCTTGAC
1801	AAATGTCAGC	AGCAGCTTAC	AAAGATTGGG	TCCTGCCAAA	TATTCCATGG
1851	CCTGCTGATC	TCCTCAAAAG	AGGAGTGGCT	TTTTCCCTGA	ACAAGCACTT
1901	ACATGGCATT	CGTTTACTCA	TTCTCC3 Cm3	GTTGAGGACT	TGAGCTCCCC
1951	TGGAAATTTG	GGCAGCAATC	AAAAGTTGGG	TCCATATGCT	GTTGATGGCT
2001	TATTACAAAT	CTGACGAGAC	AGTAGAGAAA	TAACAGAATA	TTGCAAGTTC
2051	GTGGAAGGAG	CTCCGCGAAG	ACCACAMO	GACACTGAAC	TCCAAGCTTG
2101	GGTGGCCTAA	ACTGCAAACT	CGACAAGAGC	CGACAAGAAA	GATGAGGCTT
			CONCHAGAGC	TCAGAGATTG	TTGCACCATC
				7-1	The first of the

			ACTTCATGCA		
2201	CTCTTACGCT	GGTTATCTCC	CTAATCGCCC	TACTTTAAGC	TGTAATTTGA
			GAGTATGAAG		
			TGTTCCTCAG		
2351	TTCCATCTTT	GAGGTCTCGT	CAAGGCATGC	TTCAGATGAG	GTTTACTTGG
2401	GACAAAGGGA	CTCAATTGAA	TGGACAAAGG	ATAAAGAACC	ACTTGTAGCT
2451	TTTGAGAGGT	TTGGAAAGAT	GCTAAGTGAT	ATCGAGAATC	GAATTATGAT
2501	AATGAATAGT	CATAAGAGTT	GGAAGAACAG	GTCAGGGCCT	GTTAACGTTC
2551	CATATACGTT	GCTCTTTCCC	ACAAGTGAAG	AGGGACTCAC	AGGCAAAG

3/9

FIG. 2

SEQ ID NO:2

1 TTTTCTTAAT TAAAAAAAA ATATTTCTGT TTAAATAGTT AATCATGTCT 51 TTGGGTGGAA TTGTGGATGC CATCCTTGGA AAAGATGT
51 TTGGGTGGAA TTGTGGATGC CATCCTTGGA AAAGATGATA GGCCAAAAGT 101 GAAAGGAAGA GTGATTTGA TGAAAAAAA TGTTGTA GGCCAAAAGT
TOT GAAAGGAAGA CTCATTTTTCT
TOT TAGGIGCTTC ACTIONS TO THE TOTAL TOTAL TAGAC TITE ATTENTION TO THE ACTION OF THE AC
ZOI ICIATCCAAT TCATAACTCC
ACTGAGCAAT CCACCAMA CO.
TAACAGCAGG GGAATGAAGT GCTTACAGAC ATCACCGGA
GAGTITGGAG TTCCACCACA
TOT GITCITTCTC AACTCACTCACTCTC ATCTTA ATCT
TOTAL TOTAL TATERNAMENT TO THE T
GACCGCATTP TCTTTCCCC
ACCATTGCGA AAATAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
GAACIGGAAA COTTON ACT
AAIGACTTGG CTCAACCACA
TGGAGGGTCC TCTC3 Cm3 cc
AACCAACCAA ACCACAMACON IAGAGGCAGG ACACCAGGO
AGCTTAGACA TATATOMOGO
GICAGACTIT THE THE CONTROL OF COALLIEGTE ATTENDED
CIGCGITTAA CCCOppenance
JUL GUGGATCTAC TOTAL TOTAL CLARATGACTT CARREST
TOUT ITEMS AND COOK TO THE COURT OF THE COUR
TAVE ALTUADOCO AMARA AULACIONA MORRA
THE PARTICIPATION OF THE PROPERTY OF THE PROPE
TO THE CITCLES AGAIN OF THE CAST ACTUAL CONTRACTOR OF THE CAST ACT
TOUR MILLAUT ACTION TO THE TOUR AND THE TOUR
TOUT GGCAATCAAC ACMAS TO THE TOUT OF THE CALCULATION OF CALCULATIO
TOUL IGUCACTATO ANAMA
TOTALIANCE MOOMENT TO COMMUNICATION TO COMUNICATION TO COMMUNICATION TO COMMUNICATION TO COMMUNICATION TO COMPUNICATION TO CO
AGII(4AA(" ") 7/2000
CAAATACCA Manaa CGAACTATITO AMAA
TOTAL CIATION COMMENTS
1001000 AAA Mamman
ALATTICIONOM COMMO
1901 ACATGCATT CGTTTACTGA TTCTGGACTA TCCATATGCT GTTGAGCACTCCCC 1951 TGGAAATTG GGCAGCAATC AAAAGTTGGG TAACAGCACTT
1951 TGGAAATTTG GGCAGCAATC AAAAGTTGGG TAACAGAATA TTGCAAGTTC

1. 网络10 22 * 1

State of the state of

2001	TATTACAAAT	CTGACGAGAC	AGTAGAGAAA	GACACTGAAC	TCCAAGCTTG
2051	GTGGAAGGAG	CTCCGCGAAG	AAGGACATGG	CGACAAGAAA	GATGAGGCTT
2101	GGTGGCCTAA	ACTGCAAACT	CGACAAGAGC	TCAGAGATTG	TTGCACCATC
2151	ATTATATGGA	TAGCTTCAGC	ACTTCATGCA	GCACTCCATT	TTGGCTTATA
2201	CTCTTACGCT	GGTTATCTCC	CTAATCGCCC	TACTTTAAGC	TGTAATTTGA
2251	TGCCAGAGCC	AGGAAGTGTT	GAGTATGAAG	AGCTCAAGAC	AAATCCAGAC
2301	AAGGTATTCC	TAAAAACATT	TGTTCCTCAG	TTGCAATCAC	TGCTTGAAAT
2351	TTCCATCTTT	GAGGTCTCGT		TTCAGATGAG	GTTTACTTGG
2401	GACAAAGGGA	CTCAATTGAA	TGGACAAAGG	ATAAAGAACC	ACTTGTAGCT
2451	TTTGAGAGGT	TTGGAAAGAT		ATCGAGAATC	
2501	AATGAATAGT	CATAAGAGTT	GGAAGAACAG	GTCAGGGCCT	GTTAACGTTC
2551	CATATACGTT	GCTCTTTCCC	ACAAGTGAAG	AGGGACTCAC	AGGCAAAGGA
2601	ATTCCCAACA	GTGTGTCTAT	ATAGAACTTA		AGTTTGTTGT
2651	GCTTGTGTTA	CTTGTTATTC	CCAACCAAAT	AAACTCTTTG	TTCCAAATAA
2701	AGAGTATTGT	ATTGTATTGT	CTTGTGTGTT	GTGTTGTATT	GTATTATATT
2751	GTATAGTATT	ATTGATTTAA	ATACAATGTT	TGTTGCACTT	GTTTCTTGTT
2801	ATTCCCAACC	AAATAAACTC	TTTGTTCCAA		AGTTGGTTTT
2851		AAAAAAAAA			

5/9

FIG. 3

SEQ ID NO:3

101 151 201	TCTATCCAAT	GTGATTTTGA AGTTGTTGAT	TGAAAAAA GGCATTTCTG	AAAGATGATA TGTTCTAGAC ATTTACTTGG	GGCCAAAAGT TTCATTAATA
231	ACTGAGCAAT	CCAGCATACT	TAGAGAGTTG	GCTTACAGAC	TGGAAGGGAA

6/9

Fig. 4

Nucleotide sequence of ripening-specific LOX cDNA used for chimeric gene constructions.

SEQ ID NO:4

1	TTTTCTTAAT	TAAAAAAAAA	ATATTTCTGT	TTAAATAGTT	AATCATGTCT
51	TTGGGTGGAA	TTGTGGATGC	CATCCTTGGA	AAAGATGATA	GGCCAAAAGT
101	GAAAGGAAGA	GTGATTTTGA	TGAAAAAAA	TGTTCTAGAC	TTCATTAATA
151				ATTTACTTGG	CCAAAAAGTC
201		TGATAAGTGG	,	TATGATGGTT	TGGAAGGGAA
251		CCAGCATACT		GCTTACAGAC	ATCACCCCAA
301	TAACAGCAGG	GGAATCAACT	TTTAGTGTTA	CATTTGACTG	GGATCGTGAC
351	GAGTTTGGAG	TTCCAGGAGC	ATTCATCATC	AAGAATCTTC	ATCTTAATGA
401	GTTCTTTCTC	AAGTCACTCA	CACTCGAAGA	TGTTCCTAAT	TATGGAAAAA
451				CTGCTTTTAG	
501	GACCGCATTT	TCTTTGCCAA	TCAGGCTTAT	CTCCCAAGTG	AAACACCACA
551	ACCATTGCGA	AAATACAGAG	AAAATGAACT	GGTAGCTTTG	CGAGGAGATG
601	GAACTGGAAA	GCTTGAAGAA	TGGGACAGGG	TTTATGATTA	TGCTTGCTAC
651	AATGACTTGG	GTGAACCAGA	TAAGGGGGAA	GAGTATGCTA	GGCCTATCCT
701	TGGAGGGTCC	TCTGAGTACC	CGTATCCTCG	TAGAGGCAGG	ACAGGCCGCG
751	AACCAACCAA	AGCAGATCCT	AATTGCGAGA	GCAGGAACCC	ATTGCCTATG
801	AGCTTAGACA	TATATGTCCC	AAGGGACGAG	CGATTTGGTC	ATGTGAAGAA
851	GTCAGACTTT	TTGACGTCGT	CCTTAAAATC	CTCTTTGCAA	ACGCTTCTCC
901	CTGCGTTTAA	GGCTTTGTGC	GATAACACGC	CTAATGAGTT	CAATAGCTTT
951	GCGGATGTAC	TTAATCTCTA	TGAAGGAGGA	ATCAAGTTGC	CTGAAGGCCC
1001	TTGGTTGAAA	GCCATTACTG	ATAACATTTC	CTCAGAGATA	CTAAAAGACA.
1051	TCCTTCAAAC	GGATGGTCAA	GGCCTACTTA	AGTACCCAAC	TCCTCAGGTT
1101	ATTCAAGGCG	ATAAAACTGC	ATGGAGGACG	GATGAAGAAT	TTGGGAGAGA
1151	AATGTTGGCA	GGATCCAATC	CTGTCTTAAT	CAGTAGACTC	CAAGAATTTC
1201	CTCCGAAGAG	CAAGTTGGAT	CCAACCATAT	ATGGAAACCA	AAACAGTACA
1251	ATTACCACAG	AACATGTACA	GGATAAGTTG	AATGGATTAA	CAGTGAATGA
1301	GGCAATCAAG	AGTAACAGGT	TATTCATATT	GAACCACCAT	GACATCGTGA
1351	TGCCACTATT	GAGGAAAATT	AACATGTCAG	CAAACACAAA	AGCCTATGCC
1401	TCAAGAACTC	TGCTCTTCCT	ACAAGATGAT	AGAACTTTGA	AGCCACTAGC
1451	AATTGAACTA	AGCTTGCCAC	ATCCAGACGG	AGATCAATTT	GGTACTGTTA
1501	GTAAAGTATA	TACACCAGCT	GACCAAGGTG	TTGAAGGTTC	TATCTGGCAG
1551	TTTGCCAAAG	CCTATGTAGC	AGTGAATGAC	ATGGGCATTC	ATCAGCTCAT
1601	TAGCCACTGG	TTGAATACAC	ACGCGGTGAT	CGAACCATTT	ርፐር ልጥፐር ር አ አ
1651	CAAATAGGCA	TCTAAGTGTG	CTTCATCCCA	TTCATAAACT	TCTTCATCCT
1701	CATTTCCGTA	ACACGATGAA	CATAAATGCT	TTAGCAAGAG	
1751	CTATGATGGT	GGTTTTGAGA	CGTCTCTTTT	TCCTGCCAAA	ጥልጥጥርር አጥርር
1801	AAATGTCAGC	AGCAGCTTAC	AAAGATTGGG	TTTTCCCTGA	ACAAGCACTT

1851	CCTGCTGATC	TCCTCAAAAG	AGGAGTGGCT	GTTGAGGACT	TGAGCTCCCC
1901	ACATGGCATT	CGTTTACTGA	TTCTGGACTA		
1951	TGGAAATTTG	GGCAGCAATC			
2001	TATTACAAAT	CTGACGAGAC			TCCAAGCTTG
2051	GTGGAAGGAG	CTCCGCGAAG	AAGGACATGG		
2101	GGTGGCCTAA	ACTGCAAACT	CGACAAGAGC		
2151	ATTATATGGA	TAGCTTCAGC	- -	GCACTCCATT	TTGCACCATC
2201		GGTTATCTCC		TACTTTAAGC	TTGGCTTATA
2251	TGCCAGAGCC	· · · -			
2301	AAGGTATTCC	·	TGTTCCTCAG	AGCTCAAGAC	
2351	TTCCATCTTT	GAGGTCTCGT			TGCTTGAAAT
2401	GACAAAGGGA	CTCAATTGAA	CAAGGCATGC		GTTTACTTGG
2451	TTTGAGAGGT	TTGGAAAGAT	TGGACAAAGG		ACTTGTAGCT
2501	AATGAATAGT		GCTAAGTGAT	ATCGAGAATC	GAATTATGAT
2551	CATATACGTT	CATAAGAGTT		GTCAGGGCCT	GTTAACGTTC
2601		GCTCTTTCCC	ACAAGTGAAG	AGGGACTCAC	AGGCAAAGGA
	ATTCCCAACA		ATAGAACTTA	TTATTCAATC	AGTTTGTTGT
2651	GCTTGTGTTA	CTTGTTATTC	CCAACCAAAT	AAACTCTTTG	TTCCAAATAA
2701	AGAGTATTGT	ATTGTATTGT	CTTGTGTGTT	GTGTTGTATT	GTATTATATT
2751	GTATAGTATT	ATTGATTTAA	ATACAATGTT	TGTTGCACTT	GTTTCTTGTT
2801		AAATAAACTC	TTTGTTCCAA	ATAAAGCTGT	AGTTGGTTTT
2851	AAAAAAAAA	AAAAAAAAA	A		

SUBSTITUTE SHEET (RULE 26)

% FRUIT FIRMNESS (Lbs) MEASUREMENTS OF pMLSL 650-1 AND OHIO CONTROLS

Fig. 6

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/16387

A. CLA	SSIFICATION OF SUBJECT MATTER					
US CL :	: 800/205, DIG 44; 435/172.3, 240.4, 320.1; 536/23.6, 24.1, 24.5	DC .				
	o International Patent Classification (IPC) or to both national classification and I					
	DS SEARCHED					
Minimum de	ocumentation searched (classification system followed by classification symbols)					
U.S. :	800/205, DIG 44; 435/172.3, 240.4, 320.1; 536/23.6, 24.1, 24.5					
Documentat	tion searched other than minimum documentation to the extent that such documents	are included	in the fields scarched			
Electronic d	lata base consulted during the international search (name of data base and, where	e practicable,	search terms used)			
	ABA, CAPLUS, MEDLINE, BIOSIS, GENBANK erms: lipoxygenase, ripening, antisense, tomato					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant p	assages	Relevant to claim No.			
Y	US 5,107,065 A (SHEWMAKER et al.) 21 April columns 1-5.	1992,	1-22			
Y.	US 5,254,800 A (BIRD et al.) 19 October 1993, cold 4.	umns 1-	1-22			
Y	US 5,453,566 A (SHEWMAKER et al.) 26 September columns 1-10.	r 1995,	1-22			
Y	FERRIE et al. The Cloning of Two Tomato Lipox Genes and Their Differential Expresson during Fruit R Plant Physiol. 1994, Vol. 106, pages 109-118. es pages 109-113.	ipening.	1-22			
. :						
}						
· ·						
Purt	her documents are listed in the continuation of Box C. See patent fan	nily annex.	<u> </u>			
· s.			ternational filing date or priority			
۸ م			cation but cited to understand the vention			
.E. œ			he claimed invention cannot be ered to involve an inventive step			
l di	ocument which may throw doubts on priority chim(s) or which is ied to establish the publication date of another citation or other	is taken alone				
-0- 4	considered to involve an inventive step when the document is					
	ocurrent published prior to the international filing data but later then *&* document member of the priority date claimed	of the same pater	at family			
Date of the actual completion of the international search Date of mailing of the international search report						
09 DECE	EMBER 1996 21 JAN 1	997				
	mailing address of the ISA/US oner of Petents and Trademarks	for				
	on, D.C. 20231 THOMAS HAAS	- · .				
Facsimile N		308-0196				
Form PCT/ISA/210 (second sheet)(July 1992)*						

THIS PAGE BLANK (USPTO)