Technologie Sieciowe – LISTA 2

Lena Jasińska 261740

Kwiecień 2022

1. Topologia i funkcje

• Zaproponuj topologię grafu G, ale tak, aby żaden wierzchołek nie był izolowany oraz aby |V|=20, |E|<30.

Zaproponuj N:

Macierz 20x20 uzupełniona przez losowe liczby z zakresu 0-14 włącznie. Niekoniecznie symetryczna, N[x][x] = 0 (nie wysyłamy pakietów do siebie).

0	3	9	5	0	2	6	13	11	3	6	2	9	1	4	2	2	5	6	11
13	0	7	1	3	13	11	9	5	8	2	11	10	11	3	1	4	11	8	4
9	11	0	9	13	13	1	7	3	11	12	10	1	13	11	4	10	0	4	13
3	13	10	0	9	4	10	3	13	3	8	9	6	5	7	2	14	6	12	6
5	8	6	13	0	12	2	7	6	2	13	7	7	11	12	7	14	12	2	4
0	4	9	4	13	0	12	10	6	14	5	4	14	8	9	14	8	3	10	7
1	7	10	0	7	7	0	5	4	5	2	0	14	0	4	8	5	12	13	11
3	2	8	10	10	0	13	0	5	13	1	13	10	3	13	6	6	2	11	8
3	7	0	0	2	2	2	3	0	4	12	7	13	12	8	7	10	11	7	9
1	10	4	9	9	14	4	13	7	0	2	2	0	13	11	7	13	1	5	3
10	7	8	7	11	8	14	9	2	5	0	11	12	9	6	5	9	10	2	13
3	7	1	6	11	4	13	6	0	6	6	0	3	11	13	5	1	9	12	0
11	3	9	2	9	5	9	6	5	1	6	6	0	7	7	5	9	3	2	9
8	3	1	1	3	14	1	14	0	2	13	5	3	0	11	11	11	13	4	6
7	12	11	9	4	4	13	9	5	1	12	3	12	0	0	11	13	12	8	0
10	13	7	7	5	1	6	12	6	9	2	5	11	13	1	0	0	1	1	4
0	14	6	5	5	14	10	11	5	0	10	14	11	10	10	9	0	3	11	9
8	5	10	1	8	1	12	14	7	5	1	6	13	6	5	0	7	0	13	2
6	4	13	14	10	5	10	3	12	13	6	0	6	1	0	6	14	13	0	6
10	6	14	3	9	0	4	9	8	11	7	7	1	0	0	2	8	0	3	0

Rysunek 1 – zaproponowana topologia

Tabela 1 – przykładowa macierz natężeń N

...oraz funkcję przepustowości 'c' [..], oraz funkcję przepływu 'a' [..]

W moim modelu wierzchołki przesyłają pakiety po najkrótszej ścieżce. Funkcję a(e) wyliczamy przez zsumowanie wszystkich pakietów

w przesyłanych po ścieżkach zawierających krawędź e. Funkcja c(e) jest dobrana spośród wartości 10Mb/s, 100Mb/s, 1Gb/s – wybrane jest minimum spełniające c(e)/m > a(e). Średnia wielkość pakietu w bitach "m" została przyjęta jako 1500B*8 = 12000 bitów.

2. Niezawodność sieci

 Napisz program szacujący niezawodność takiej sieci przyjmując, że prawdopodobieństwo nieuszkodzenia każdej krawędzi w dowolnym interwale jest równe 'p'. Uwaga: 'N', 'p', 'T_max' oraz topologia wyjściowa sieci są parametrami.

Moja funkcja niezawodności sieci działa według następującego schematu:

- Powtarzaj "sampleSize" razy:
 - o Przejdź po zbiorze krawędzi grafu, usuwając je z prawd. 0.01 (1 p)
 - Sprawdź, czy graf wciąż jest spójny
 - Sprawdź, czy każda z krawędzi nadal zachowuje własność c(e)/m > a(e)
 - Sprawdź, czy T < Tmax (0.05)
 - o Jeśli wszystkie trzy powyższe warunki są prawdziwe, zwiększ licznik działających sieci.
- Zwróć liczbę działających sieci podzieloną przez sampleSize

Niezawodnosc = 0.999163 Liczba testow: 1000000

Ile razy co spowodowalo usterke:
Graph not connected: 242

Edge overflow: 570 T > Tmax: 25

[Tmax = 0.05, m = 12000, Nsr = 6.852631578947369]

Niezawodnosc = 0.998909

Liczba testow: 1000000 lle razy co spowodowało usterke:

Graph not connected: 210

Edge overflow: 695 T > Tmax: 186

[Tmax = 0.05, m = 12000, Nsr = 6.957894736842105]

Wykorzystuję metodę Monte Carlo – wielokrotnie powtarzam próby "psucia" naszej sieci. Zliczam jednocześnie, ile razy pozostała ona mimo tego sprawna, a następnie dzielę tę liczbę przez liczbę wykonanych testów. W ten sposób uzyskuję prawdopodobieństwo, z jakim sieć będzie działać w ciągu danego interwału, czyli niezawodność sieci. Liczba wykonywanych przeze mnie testów ("sampleSize") wynosi 1 000 000 – dzięki temu uzyskuję niedokładność rzędu

 $\frac{1}{\sqrt{1000000}} = \frac{1}{1000}.$

Przykładowe wyniki po wywołaniu programu

3. Zwiększanie wartości w macierzy natężeń a niezawodność

• Przy ustalonej strukturze topologicznej sieci i dobranych przepustowościach stopniowo zwiększaj wartości w macierzy natężeń. Jak będzie zmieniać się niezawodność zdefiniowana tak jak punkcie poprzednim (Pr[T < T_max]).

Dla wartości N od 0 do 4:

Niezawodnosc = 0.999785 Liczba testow: 1000000

Ile razy co spowodowalo usterke:
Graph not connected: 215

Edge overflow: 0 T > Tmax: 0

[Tmax = 0.05, m = 12000, Nsr = 1.9342105263157894]

Dla wartości N od 0 do 19:

Niezawodnosc = 0.949105 Liczba testow: 1000000

Ile razy co spowodowalo usterke:

Graph not connected: 244 Edge overflow: 50307

T > Tmax: 344

[Tmax = 0.05, m = 12000, Nsr = 9.55]

Dla wartości N od 0 do 24:

Niezawodnosc = 0.843095 Liczba testow: 1000000

Ile razy co spowodowalo usterke: Graph not connected: 223

Edge overflow: 148870

T > Tmax: 7812

[Tmax = 0.05, m = 12000, Nsr = 12.055263157894737]

Wraz ze zwiększaniem wartości w macierzy natężeń N, możemy zaobserwować spadek niezawodności sieci. Jednoczenie widzimy, że jest to związane głównie z przekraczeniem przepustowości krawędzi, jednak odbija się także w wartości opóźnienia.

4. Zwiększanie przepustowości a niezawodność

Przy ustalonej macierzy natężeń i strukturze topologicznej stopniowo zwiększaj
przepustowości. Jak będzie zmieniać się niezawodność zdefiniowana tak jak punkcie
poprzednim (Pr[T < T_max]).

Wciąż działamy na macierzy N z wartościami od 0 do 24.

Po zwiększeniu przepustowości o 10%:

ści o 10%: Po zwiększeniu przepustowości o 50%:

Niezawodnosc = 0.91778 Liczba testow: 1000000

lle razy co spowodowało usterke: Graph not connected: 214 Edge overflow: 81748

T > Tmax: 258

[Tmax = 0.05, m = 12000, Nsr = 12.25]

Niezawodnosc = 0.997555 Liczba testow: 1000000

lle razy co spowodowalo usterke: Graph not connected: 209 Edge overflow: 1963

T > Tmax: 273 [Tmax = 0.05, m = 12000, Nsr = 11.615789473684211]

Po zwiększeniu przepustowości o 100%:

Niezawodnosc = 0.999695 Liczba testow: 1000000

lle razy co spowodowalo usterke: Graph not connected: 209

Edge overflow: 94 T > Tmax: 2

[Tmax = 0.05, m = 12000, Nsr = 11.957894736842105]

Analizując wyniki przeprowadzonych testów łatwo możemy zaobserwować, że zwiększenie przepustowości wiąże się z poprawą niezawodności sieci - w oczywisty sposób znacząco zmniejsza liczbę porażek ze względu na przepełnienie krawędzi.

5. Zmiana topologii a niezawodność

 Przy ustalonej macierzy natężeń i pewnej początkowej strukturze topologicznej, stopniowo zmieniaj topologię poprzez dodawanie nowych krawędzi o przepustowościach będących wartościami średnimi dla sieci początkowej. Jak będzie zmieniać się niezawodność zdefiniowana tak jak punkcie poprzednim (Pr[T < T_max]).

Wartości N od 0 do 9.

Niezawodnosc = 0.818437 Liczba testow: 1000000

lle razy co spowodowało usterke:
Graph not connected: 16759
Edge overflow: 164804

T > Tmax: 0

[Tmax = 0.05, m = 12000, Nsr = 4.678947368421053]

Niezawodnosc = 0.921054 Liczba testow: 1000000

lle razy co spowodowalo usterke:

Graph not connected: 3112 Edge overflow: 66745 T > Tmax: 9089

[Tmax = 0.05, m = 12000, Nsr = 4.705263157894737]

Niezawodnosc = 0.999733 Liczba testow: 1000000

Ile razy co spowodowalo usterke:
Graph not connected: 232

Edge overflow: 33

T > Tmax: 2

[Tmax = 0.05, m = 12000, Nsr = 4.597368421052631]

Niezawodnosc = 0.999964 Liczba testow: 1000000

lle razy co spowodowalo usterke: Graph not connected: 21

Edge overflow: 10 T > Tmax: 5

[Tmax = 0.05, m = 12000, Nsr = 4.5131578947368425]

Zgodnie z intuicją, dodawanie kolejnych krawędzi poprawia niezawodność sieci. Przede wszystkim obniża liczbę porażek spowodowanych rozspójnieniem sieci – to dlatego, że będziemy potrzebować do takiej porażki średnio większej liczby usuniętych krawędzi. W celu osiągnięcia dobrych parametrów krawędzie dodajemy tak, aby graf był jak najbardziej wyważony – próbujemy wyrównać stopień wierzchołków i dążymy do jak najkrótszych cykli. Możemy zaobserwować, że szczególnie grafy k-spójne (ostatni z grafów jest 3-spójny) dają dobrą niezawodność sieci.

6. Wnioski

Z przeprowadzonych badań wynika, że skonstruowanie modelu sieci wymaga bardzo dokładnej analizy. Należy uważnie dobrać odpowiednie parametry, a także szczegółowo przeanalizować potrzeby komunikacyjne, takie jak dopuszczalne opóźnienie czy możliwa do zapewnienia przepustowość i niezawodność łączy. Metoda Monte Carlo pozwala na skuteczną symulację wpływu konkretnych parametrów na niezawodność sieci. Reakcja modelu na modyfikację określonych parametrów jest zgodna z intuicją: zwiększanie liczby krawędzi (w mądry sposób) i/lub przepustowości poprawiają niezawodność sieci, zwiększanie wartości w macierzy natężeń obniża ją.