MCMC Part 1

Sam Bowyer

2023-04-27

For this task we will be using the Pima Indians Diabetes dataset from the R package mlbench, containing n=768 input-output pairs $\{(y_i^0,x_i^0)\}_{i=1}^n$ with $y_i^0\in\{0,1\}$ indicating whether patient i has diabetes and $x_i^0\in\mathbb{R}^p$ representing p=8 diagnostic measurements.

```
library(mlbench)
data(PimaIndiansDiabetes)
head(PimaIndiansDiabetes)
```

##		pregnant	glucose	pressure	triceps	${\tt insulin}$	${\tt mass}$	pedigree	age	diabetes
##	1	6	148	72	35	0	33.6	0.627	50	pos
##	2	1	85	66	29	0	26.6	0.351	31	neg
##	3	8	183	64	0	0	23.3	0.672	32	pos
##	4	1	89	66	23	94	28.1	0.167	21	neg
##	5	0	137	40	35	168	43.1	2.288	33	pos
##	6	5	116	74	0	0	25.6	0.201	30	neg

dim(PimaIndiansDiabetes)

[1] 768 9

First we will split up the data into inputs and outputs, and we will convert the y_i^0 types into zeroes and ones.

```
p = ncol(PimaIndiansDiabetes)-1
X = PimaIndiansDiabetes[,1:p]
```

Y = as.numeric(PimaIndiansDiabetes[,p+1] == "pos")

head(X); head(Y)

```
pregnant glucose pressure triceps insulin mass pedigree age
## 1
            6
                  148
                                     35
                                              0 33.6
                            72
                                                        0.627
                                     29
                                              0 26.6
## 2
            1
                   85
                            66
                                                        0.351 31
            8
                  183
                            64
                                     0
                                              0 23.3
                                                        0.672 32
## 3
                            66
                                     23
## 4
            1
                   89
                                             94 28.1
                                                        0.167
                                                               21
                  137
                            40
                                     35
                                            168 43.1
                                                        2.288
## 5
                                                               33
            5
                  116
                            74
                                     0
                                              0 25.6
                                                        0.201 30
```

[1] 1 0 1 0 1 0

dim(X); length(Y)

[1] 768 8

[1] 768

We'll be considering the logistic regression model

$$Pr_{\alpha,\beta}^{(i)}(Y_i^0=1) = \frac{1}{1+e^{-\alpha-\beta^Tx_i^0}}, \ \ i=1,...,n.$$

Then with a prior distribution $\pi(\alpha, \beta)$ on \mathbb{R}^{p+1} and a likelihood function

$$L_n(\alpha, \beta) = \prod_{i=1}^n Pr_{\alpha, \beta}^{(i)}(Y_i^0 = y_i^0),$$

we arrive at the posterior distribution over (α, β) given the data:

$$\pi(\alpha, \beta|y^0) \propto L_n(\alpha, \beta)\pi(\alpha, \beta).$$

First we'll implement functions to calculate the log prior and log likelihood. In particular, we'll put standard Gaussian priors on our parameters α and β , so $(\alpha, \beta) \sim \mathcal{N}_{p+1}(\mathbf{0}, \mathbf{I}_{p+1})$.

```
log_prior <- function(params) {
    return(sum(dnorm(params, log=TRUE)))
}

log_likelihood <- function(params) {
    logits = params[1] + params[-1] %*% t(X)
    return(sum(Y*logits - log(1+exp(logits))))
}

log_posterior <- function(params) {
    return(log_prior(params) + log_likelihood(params))
}</pre>
```

Next we obtain our initial values for α and β (note that we are referring to the vector $(\alpha, \beta) \in \mathbb{R}^{p+1}$ as params in the code).

```
# initial params
params0 = rnorm(p+1)
params0
```

For our proposal distribution Q we will use $Q(z, dz') = \mathcal{N}_{p+1}(z, c\Sigma_n)$ with a tuning parameter c > 0, where

$$\Sigma_n = -(\mathbf{H}_n(\mu_n))^{-1}$$

$$\mu_n = \operatorname*{argmax}_{(\alpha,\beta) \in \mathbb{R}^{p+1}} \log \pi(\alpha,\beta|y^0)$$

$$\mathbf{H}_n(\theta) = \left(\frac{\partial^2}{\partial \theta_l \partial \theta_l} \log \pi(\theta|y^0)\right)_{j,l=1}^{p+1}, \ \forall \theta \in \mathbb{R}^{p+1}.$$

We approximate μ_n using optim and calculate the Hessian $\mathbf{H}_n(\mu_n)$) using the hessian function from the package pracma.

```
mu_n = optim(par = params0, function(x) -log_likelihood(x))$par

library(pracma)
Sigma_n = -solve(hessian(f=log_posterior, x=mu_n))

library(mvtnorm)
proposal <- function(c){
    Q <- list()
    Q$sample <- function(x){</pre>
```

```
rmvnorm(1, mean = x, sigma = c*Sigma_n)
}
Q$density <- function(x,y){
  dmvnorm(y, mean = x, sigma = c*Sigma_n)
}
return(Q)
}</pre>
```

Finally we may write our Metropolis-Hastings algorithm.

```
runMH <- function(f, Q, x0, n){</pre>
  q = Q$density
 xs = matrix(rep(0, n*p+1), nrow=n)
 x = x0
 acceptanceCount = 0
 for(i in 1:n){
    z = Qsample(x)
    acceptProb = min(1, f(z)*q(z,x)/(f(x)*q(x,z)))
    if(runif(1) < acceptProb) {</pre>
      x = z
      acceptanceCount = acceptanceCount + 1
    }
    xs[i,] = x
 }
  return(list(samples = xs, acceptanceRate = acceptanceCount/n))
}
```

First we use c = 1 and obtain very good results after generating 100000 samples.

```
n = 1000000
c = 1
MH = runMH(function(x) exp(log_posterior(x)), proposal(c), mu_n, n)
```

In particular, we observe an acceptance rate of 0.19538, somewhat close to the theoretical optimal rate of 0.234.

MH\$acceptanceRate

[1] 0.19538

Furthermore, looking at the trace plots for the generated samples we observe healthy looking convergence after a small amount of mixing time.

```
var_names = c("alpha")
for (i in 1:9){
  var_names = c(var_names, paste("beta_", i))
}

par(mfrow=c(3,3))
for (i in 1:9){
  plot(1:n, MH$samples[,i], type="l", xlab="Sample No.", ylab=paste(var_names[i]))
}
```


We also see autocorrelation plots that diminish fairly quickly towards 0.

```
par(mfrow=c(3,3))
for (i in 1:9){
  acf(MH$samples[,i], lag.max=250, main="")
  title(var_names[i])
}
```


This culminates in acceptable-looking plots for estimated marginal posterior distributions for each of the model's nine parameters—each of which are unimodal and vaguely Gaussian.

```
par(mfrow=c(3,3))
for (i in 1:9){
   plot(density(MH$samples[,i]), xlab="Sample No.", ylab=paste(var_names[i]), main="Marginal Density")
}
```


For comparison against a badly-tuned chain, consider the results when we use c = 0.001 (again with 100000 generated samples).

```
c = 0.001
MH = runMH(function(x) exp(log_posterior(x)), proposal(c), mu_n, n)
```

This gives an acceptance rate of 0.96417, far above the optimal value which suggests that the proposal is failing to capture the behaviour of the posterior.

MH\$acceptanceRate

[1] 0.96417

Using these samples we see much worse convergence than before in the trace plots.

```
par(mfrow=c(3,3))
for (i in 1:9){
   plot(1:n, MH$samples[,i], type="l", xlab="Sample No.", ylab=paste(var_names[i]))
}
```


Similarly, the autocorrelation stays relatively large even as we increase the lag, further suggesting that the proposal isn't exploring the posterior space successfully.

```
par(mfrow=c(3,3))
for (i in 1:9){
   acf(MH$samples[,i], lag.max=250, main="")
   title(var_names[i])
}
```


And finally when we plot the estimated marginal posterior distributions we see plots that looks a lot less Gaussian and unimodal.

```
par(mfrow=c(3,3))
for (i in 1:9){
   plot(density(MH$samples[,i]), xlab="Sample No.", ylab=paste(var_names[i]), main="Marginal Density")
}
```

Marginal Density

Marginal Density

Marginal Density

Marginal Density

Sample No.

Marginal Density

Marginal Density

Marginal Density

Marginal Density

Marginal Density

