

Метод определения функции импульсного отклика искажающих помех на основе априорной информации о границах объекта

Студент: Гасанзаде Мухаммедали Алиназим оглы Руководитель: Филиппов Михаил Владимирович

Актуальность

- Чаще всего характер и свойства шумов неизвестны.
- Невозможно дать оценку внешним искажающим факторам фотографии при сложных условиях, получаемые с огромных расстояний и т. д.
- В большинстве случаев искажения имеют случайных характер.

Цель и задачи работы

Цель – разработать метод определения искажающей функции импульсного отклика на основе известной информации о границах фрагмента изображения.

Задачи:

- Сравнительный анализ методов получения импульсного отклика искаженных изображений;
- Разработка метода определения функции импульсного отклика, на основе априорной информации;
- Создание ПО, реализующего разработанный метод;
- Исследование результатов и времени работы.

Обзор методов определения импульсного отклика изображения

Метод	Недостатки	Скорость	Применимость
Деконволюция по ОБПФ	Побочные спектры, невозможно при шумах	Низкая	Частичная
Деконволюция Ричардсона–Люси	Требуется дополнительная информация	Средняя	Не применима
Деконволюция регуляр. методами (Тихонова)	Выбор параметров регуляризации	Высокая	Соответствует всем критериям

IDEF0 диаграмма

Принцип работы метода

Результат обработки изображений

Результат обработки **билатеральным** фильтром. Сглаживающий эффект с усреднением шумов.

Результат обработки **шок** фильтром – резкость на границах объектов.

Билатеральный фильтр

$$h(\vec{x}) = \frac{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\vec{\xi}) c(\vec{\xi} - \vec{x}) s(f(\vec{\xi}) - f(\vec{x})) d\vec{\xi}}{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} c(\vec{\xi} - \vec{x}) s(f(\vec{\xi}) - f(\vec{x})) d\vec{\xi}}$$

$$c(\vec{\xi} - \vec{x}) = e^{-\frac{1}{2} \left(\frac{d(\vec{\xi} - \vec{x})}{\sigma_d}\right)^2}$$

$$s(f(\xi) - f(x)) = e^{-\frac{1}{2} \left(\frac{g(f(\xi) - f(x))}{\sigma_r}\right)^2}$$

 $h(\vec{x})$ — значение цвета каждого пикселя; c — нормиров. константа; $d(\vec{\xi} - \vec{x})$ — расстояние между текущим и рассчитываемым пикселем; $g(f(\xi) - f(x))$ — разность цветовых значений текущего и рассчитываемого пикселя; σ_d и σ_r — параметры, контролирующие падение весов.

8

Шок фильтр

$$f_n(x, y) = f_{n-1}(x, y) - \alpha \operatorname{sign}(\Delta f_{n-1}) |\nabla f_{n-1}|$$

 $f_{n-1} - n$ -1 этап обработки; f_n — результат n-го этапа; sign — знаковая функция, Δf_{n-1} — оператор Лапласа, ∇ — градиент функции f_{n-1} ; α — константа.

Итерационный фильтр, работает до порогового значения:

$$||f_n(x, y) - f_{n-1}(x, y)|| < \Delta_{\text{mopor}}$$

Придаёт резкость, выделяя границы объектов на сглаженном билатеральным фильтром изображении. Результатом является априорная информация об объектах в кадре.

Схема алгоритма (1) Билатеральный фильтр

Схема алгоритма (2) Шок фильтр

Схема алгоритма (3) Метод Тихонова

Структура ПО

Результат работы (1) Обработка выбранного участка изображения

Выбранный участок Результат обработки содержащий границу Билатеральный фильтр Шок фильтр Метод регуляризации Тихонова Функция импульсного отклика

Результат работы (2) Функция импульсного отклика

Исследование ПО

Заключение

- выполнен анализ предметной области и существующих методов получения функции импульсного отклика;
- разработан метод, позволяющий определить определить функцию импульсного отклика на основе априорной информации о границах объекта;
- создано ПО, реализующее разработанный метод;
- проведено исследование точности и применимости разработанного метода.