# Does Finance Reform Move Teachers and School Organizations?

California's \$23 Billion Effort to Narrow Inequality

Joon-Ho Lee & Bruce Fuller University of California, Berkeley

Presentation at 2019 AEFP in Kansas City, Missouri March 22, 2019 Introduction

Data and Measures

Analytic and Estimation Strategy

Findings

Discussion and Policy Implications



# Equity and Adequacy in School Finance

States have continued to implement aggressive resource-based policies over the past decades, aimed in part at reducing achievement gaps (Lafortune, Rothstein, & Schanzenbach, 2018).



## Income Gap in Student Achievement

➤ Yet the achievement gap between the rich and poor students has grown since the early 1970s despite the concurrent improvement in resource equity and adequacy in school finance (Reardon, 2011).



# Why? One Plausible Explanation

- Changes in school resource levels have not been able to alter the existing differentiation in school quality between the rich and the poor induced by increasing income segregation.
- ex) Teacher sorting: Poor students tend to attend schools whose teachers are less experienced or qualified, earn lower salaries, and have lower value-added scores than their rich counterparts (Goldhaber, Lavery, & Theobald, 2015).

#### Focus on Mediators



► Uncovering not simply *whether* money matters, but *how* money alter teacher qualities or school organizational features

#### Research Question

▶ Do large increases in per-pupil spending in districts serving disadvantaged students lead to changes in distribution of educational *inputs* (teacher characteristics, school organizational features, and curricular structure) across schools in ways that equalize opportunities to learn?



#### The California Case



- Annual Survey of School System Finances (F-33) data
- https://joonho.shinyapps.io/F33\_trends/

#### **Data Sources**

We draw on an extensive set of longitudinal administrative data from serveral sources.

- ► The standardized account code structure (SACS) annual financial data
- Local Confrol Funding Formula (LCFF) funding snapshot data
- Monthly statements of general fund cash receipts and disbursements from the state's fiscal controller
- The California Longitudinal Pupil Achievement Data System (CALPADS)

We built school-by-year panel data sets, 2003-04 to 2016-17, for 6,867 traditional elementary (5,764) and high schools (1,103) in 941 districts in California (excluding charter schools)

#### SACS Annual Financial Data



https://joonho.shinyapps.io/California\_School\_Finance/

## LCFF Funding Snapshot Data



https://joonho.shinyapps.io/LCFF\_Funding\_Snapshot/

## State Cash Receipts and Disbursements Data

# State Local Assistance Provided Excluding Education: Per–pupil Inflation adjusted using CPI–U deflator (in real 2016 dollars)



Source: The State Controller's Office

#### **CALPADS:** Teacher Characteristics



#### **CALPADS:** Teacher Characteristics



# CALPADS: Organizational Features & Curricular Structure



## CALPADS: Organizational Features & Curricular Structure



# CALPADS: English Learner's Access to Resources



▶ The average percentage of English learners (ELs) in classes taught by the novice teachers munus the average percentage of ELs in classes taught by the experienced teachers (more than 2 years of experience) within the school



#### The Key Empirical Challenge

School spending is an endogenous treatment.



## Sources of Exogeneity

- 1. The timing of reform events  $\rightarrow$  an event study framework
  - assume that the exact timing of school finance reform is as good as random
- 2. The funding formula  $\rightarrow$  instrumental variable (IV) estimation
  - leverage only reform-induced variation in funding brought about by the funding formula
- ► California's recent school finance reform, the Local Control Funding Formula (LCFF) signed into law in 2013, allows us to leverage both sources by conducting an event study with a simulated IV approach.

### Research Design

- ▶ **Step 1**: Prediction of the counterfactural trends of district per-pupil revenue if LCFF had not occured
- ▶ **Step 2**: Estimating LCFF-induced exogenous increases in district per-pupil expenditure
- ▶ **Step 3**: Estimating the effect of LCFF-induced increases in funding on the within-district distribution of teacher and school-organization outcomes

## Step 1. Counterfactual Predictions



→ Observed district per-pupil revenues - Counterfactual predictions

## Step 1. Counterfactual Predictions

$$PPR_{dt} = \sum_{r=1}^{N_d} I_{r=d} \times (\alpha_{0,r} + \alpha_{1,r} \cdot State_t + \alpha_{2,r} \cdot Local_t) + \lambda_t + \epsilon_{dt}.$$

- We directly model the predicted district per-pupil revenues as a function of
  - 1. California's economic cycle
  - 2. general underlying differences across districts
  - district-specific sensitivity of revenues to fluctuations in the statewide business cycle

# Step 1. Counterfactual Predictions

$$PPR_{dt} = \sum_{r=1}^{N_d} I_{r=d} \times (\alpha_{0,r} + \alpha_{1,r} \cdot State_t + \alpha_{2,r} \cdot Local_t) + \lambda_t + \epsilon_{dt}.$$

- PPR<sub>dt</sub>: the district per-pupil revenue from the state for district d for year t
- State<sub>t</sub>: expenditures for total state operations, excluding education-related categories such as spending on state universities and colleges
- Local<sub>t</sub>: the total local assistance expenditures outside of spending on K-12 schools, community colleges, and the state teacher retirement system
- $\triangleright \lambda_t$ : a year fixed effect
- $\sim \alpha_{1,r}$  and  $\alpha_{2,r}$  encapsulate the district-specific sensitivity of revenues to changes in statewide expenditures

# Step 2. LCFF-induced Exogenous Increases in PPE<sub>dt</sub>

$$PPE_{dt} = \sum_{z=1}^{10} \sum_{p=0}^{4} (I_{\text{Exposure}_d = p} \times I_{\text{Dosage}_d = z}) \cdot \alpha_{p,z} +$$

$$\gamma_1 \cdot \widehat{PPR}_{dt} + \mu_d + \lambda_t + v_{dt}$$

- ▶ The endogenous treatment  $PPE_{dt}$ :
  - the district per-pupil spending for district d for year t
  - we excludes district spending categories that are distant from classroom instruction, teacher salaries or student support services, such as debt services, capital outlay and facilities

# Step 2. LCFF-induced Exogenous Increases in PPE<sub>dt</sub>

$$PPE_{dt} = \sum_{z=1}^{10} \sum_{p=0}^{4} (I_{\text{Exposure}_d = p} \times I_{\text{Dosage}_d = z}) \cdot \alpha_{p,z} +$$

$$\gamma_1 \cdot \widehat{PPR}_{dt} + \mu_d + \lambda_t + v_{dt}$$

#### Control variables

- ▶ time-varying confounder  $\widehat{PPR}_{dt}$ : the predicted counterfactual per-pupil revenue for district d for year t estimated from step 1. This reflect the dynamic effect of time-varying structural economic conditions on district revenues that might confound the relationship between the LCFF policy treatment and changes in teacher profiles and school-level organizational features
- $ightharpoonup \mu_d$  and  $\lambda_t$  are district and year fixed effects respectively

# Step 2. LCFF-induced Exogenous Increases in PPE<sub>dt</sub>

$$PPE_{dt} = \sum_{z=1}^{10} \sum_{p=0}^{4} (I_{\text{Exposure}_d = p} \times I_{\text{Dosage}_d = z}) \cdot \alpha_{p,z} +$$

$$\gamma_1 \cdot \widehat{PPR}_{dt} + \mu_d + \lambda_t + v_{dt}$$

#### Instruments:

- Exposure<sub>d</sub>: the number of school years after the initial year of LCFF reform for district d. This varies from 0 (pre-LCFF years from 2003, before 2013-14) to 4 (post-LCFF year 2016-17)
- Dosage<sub>d</sub>: the LCFF-intended amount of supplemental and concentration grants in 2013. This *simulated IV* is generated from the state funding formula  $Dosage_d = \{0.20 \times Base_d^{2013} \times UPP_d^{2013}\} + \{0.50 \times Base_d^{2013} \times \max[UPP_d^{2013} 0.55, 0]\}.$

# Step 2. LCFF-induced Exogenous Increases in $PPE_{dt}$

$$PPE_{dt} = \sum_{z=1}^{10} \sum_{p=0}^{4} (I_{\text{Exposure}_d = p} \times I_{\text{Dosage}_d = z}) \cdot \alpha_{p,z} +$$

$$\gamma_1 \cdot \widehat{PPR}_{dt} + \mu_d + \lambda_t + \nu_{dt}$$

- Thus,  $\alpha_{p,z}$  summarize the LCFF-reform induced exogenous increases in per-pupil spending in districts with dosage decile z after p years from the reform.
- ▶  $\widehat{PPE}_{dt}$  is the per-pupil student spending for district d for year t instrumented by the two sources of exogeneity.

- In finance reform studies, district-level increases in per-pupil spending may have little effect on the district-level averages of school quality measures.
- ▶ But they may still move the lower or higher *quantiles* of school quality distributions within a district.



► The grouped/multilevel instrumental variable (IV) quantile regresion (Chetverikov, Larsen, & Parmer, 2016) allows us to estimate the *distributional* or *heterogenous* effects of LCFF-induced funding increases on quantiles of the *within-district distribution* of school-level outcomes.



Level-1 within-cluster model:

$$\textit{Q}_{\textit{Y}_{\textit{sdt}}}(\tau) = \alpha_{\textit{dt}}(\tau) + \beta_1 \cdot \textit{Enroll}_{\textit{sdt}} + \beta_2 \cdot \textit{FRPM}_{\textit{sdt}}, \tau \in (0,1)$$

Level-2 between-cluster model:

$$\alpha_{dt}(\tau) = \sum_{r=-9}^{4} (I_{r=t} \times \log \widehat{PPE}_{dt}) \cdot \delta_r(\tau) + \gamma_2(\tau) \cdot \log \widehat{PPR}_{dt} + u_{dt}(\tau)$$

► The cluster is difined as a district-by-year cell.

Level-1 within-cluster model:

$$Q_{Y_{sdt}}(\tau) = \alpha_{dt}(\tau) + \beta_1 \cdot \textit{Enroll}_{sdt} + \beta_2 \cdot \textit{FRPM}_{sdt}, \tau \in (0, 1)$$

- The varying intercept  $\alpha_{dt}(\tau)$ : the district-by-year-specific conditional quantile of the school level outcome  $Y_{sdt}$ , after adusting for differences between clusters in the level of the two school-level confounders:
  - ▶ total enrollment (Enroll<sub>sdt</sub>)
  - percentage of students eligible for free or reduced priced lunch (FRPM<sub>sdt</sub>)
- ▶ Each cluster has one value of  $\alpha_{dt}(\tau)$ .

Level-2 between-cluster model:

$$\alpha_{dt}(\tau) = \sum_{r=-9}^{4} (I_{r=t} \times \log \widehat{PPE}_{dt}) \cdot \delta_r(\tau) + \gamma_2(\tau) \cdot \log \widehat{PPR}_{dt} + u_{dt}(\tau)$$

- We are primarily interested in estimating the difference-in-difference parameters  $\delta_r(\tau)$ .
- $\delta_r( au)$  represents the difference in the effect of  $\log PPE_{dt}$  on  $\alpha_{dt}( au)$  between reference year 2012-13 (t=0, the year prior to June 2013 enactment of LCFF) and t years after (or before) the reference year after controlling for the effect of the time-varying confounder  $\log \widehat{PPR}_{dt}$ .

# Findings

#### **Teacher Characteristics**

- ► LCFF-induced increases in funding result in significant increases in the perentages of teachers who were newly hired to their districts, including novice teachers.
- The newly hired teachers appear most often to be non-tenured (long-term substitutes, probationary).
- High-poverty schools hired more white teachers and teachers holding a master's degree or more.

## Districts and schools hired rising counts of new teachers



▶ 10% increases in LCFF-induced funding  $\rightarrow$  a 0.95 percentage point gain in the share of newly hired teachers in the first LCFF year

# Districts and schools hired rising counts of new teachers



#### Districts relied on non-tenured teachers



#### Districts relied on non-tenured teachers



## High-poverty schools hired more white teachers



### ... and teachers holding a master's degree or more



### Organizational Features & Curricular Structure

- LCFF-induced funding increases lowered average class size.
- Schools in district receiveing larger funding increases shrink the count of college-prep courses in proportion to growing number of elective courses.
- We found no evidence that LCFF-induced funding successfully reduced disparities in access to experienced teachers or A-G courses by EL students.

# LCFF-induced funding increases lowered average class size



- Elementary schools show immediate declines in class size after on year of LCFF exposure.
- ▶ Though statistically significant, effect sizes were modest: 10% increase in funding  $\rightarrow$  reduce class size by 0.59

# LCFF-induced funding increases lowered average class size



High schools felt the effect incrementally as the exposure to the reform accumulates.

## The proportional shrinkage of college-prep courses



- ▶ 10% increase in LCFF-induced funding  $\rightarrow$  lower the % ELA classes always approved as A-G about 0.52 percentage point in the third year of reform
- ▶ This occurs most severely at the higher quantile ( $\tau=0.8$ ), in schools that began with higher shares of college-prep courses in the reference year



## School Quality vs. School Quantity

- Klopfer (2017) found that finance infusions did not lead districts or schools to hire more teachers or better qualified instructional staff.
- But fresh funding did affect the length of the academic year, on average, allowing districts or schools to add additional instructional days.
- Our findings from the recent California case show that new funding did go for additional teaching positions.

# Between-school Teacher Sorting

- ➤ The schools with lower shares of white or master's holder tend to serve higher-poverty stduents (84.5% white teachers in lowest-poverty schools, 47.6% in highest-poverty schools)
- The grouped IV quantile regression allowed us to find that the infusion of new LCFF dollars helped high-poverty schools to attract more white or better highly-educated teachers, mitigating any disproportionate sorting of teachers between schools.

# Within-school Teacher Sorting

- We observe the significant disparities in access to experienced teachers or A-G courses by EL students, which has widened particularly in high-poverty schools during the post-LCFF period.
- We found no evidence that LCFF-induced funding successfully reduced the disparities.
- This raise concern that within-school teacher sorting may prevent experienced teachers from being assigned to students who need them most, even when between-school teacher sorting can be mitigated by school finance reform.

#### The Curricular Structure

- ► The curricular structure of high schools began to de-emphasize college-prep courses after 2013 enactment of LCFF.
- This may have occurred in response to the partial collapse of NCLB and strict testing-and-accountability policies.
- Or, the hiring of new teachers may have allowed schools the chance to recover lost elective courses during the recession.