Feynmanovi diagrami. Reakcijo ponazorimo s sledečimi predpisi:

··· : Virtualni foton oz. nosilec interakcije

 \longrightarrow : Delec \leftarrow : Antidelec

V splošnem nepolne črte predstavljajo nosilce interakcij: fotone (EM interakcija), gluone (močna interakcija) in W^{\pm} , Z bozone (šibka interakcija). Z α označimo sklopitveno konstanto interakcije, ki jo potrebujemo za amplitudo prehoda. Propagator interakcije izračunamo po formuli

$$\frac{1}{q^2 + M^2c^4}$$

M je masa nosilca interakcije.

Šibka interakcija. Za primer vzemimo razpad $\beta\colon\thinspace n\to pe^-\,\overline{\nu}_e$

Pri opisani reakciji je nosilec šibke interakcije bozon W^- z energijo $M_Wc^2=95\,{\rm GeV}.$ Sklopitveno konstanto tokrat označimo z $\alpha_W.$

Potek reakcije: Eden od kvarkov d odda virtualni W^- in se pri tem spremeni v kvark u. Bozon 'razpade' v elektron e^- in elektronski antinevtrino $\overline{\nu}_e$.

$$\mathcal{M} \propto \sqrt{\alpha_w} \frac{1}{(p-p')^2 - M_w^2 c^4} \sqrt{\alpha_w} = \frac{\alpha_w}{q^2 - M_w^2 c^4}$$

$$|\mathcal{M}|^2 \propto lpha^2 \left(\frac{lpha_w}{q^2 - M_w^2 c^4} \right)^2 \sim \frac{lpha_w^2}{M_w^4 c^8}$$

Drugi primeri:

- $D^0 \to K^- e^+ \nu_e$: Kvark c odda virtualni W^+ bozon in se spremeni v kvark s. Iz bozona nastaneta e^+ in ν_e .
- $\pi^+ \to \mu^+ \nu_\mu$: Tu oba kvarka (u in \overline{d}) izgineta in oddata bozon W^+ . Iz tega nastaneta μ^+ in ν_μ .
- $D^0 \to K^-\pi^+$: Kvark c odda bozon in se spremeni v kvark s. Iz bozona nastaneta kvarka $u\bar{d}$, ki skupaj tvorita π^+ .
- $D^0 \to K^-\pi^+$: Kvark c odda bozon in se spremeni v kvark d. Iz bozona nastaneta kvarka $u\overline{d}$, ki skupaj tvorita π^+ .

Prehodi med kvarki. Narišemo tabelo prehodov med kvarki.

Verjetnosti za prehode. Imamo matriko Cabibbo-Kobayashi-Maskawa, ki opisuje potenciale med kvarki. Je unitarna, kompleksna matrika.

$$V_{CKM} = \begin{bmatrix} u & d & s & b \\ v_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ t & V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

1

Wolfsteinova parametrizacija:

$$V_{CKM} = \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho + i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & A\lambda^2 & 1 \end{bmatrix}$$

Po Wolfsteinovi parametrizaciji je

- $\lambda = 0.225$
- A = 0.826
- $\eta = 0.348$
- $\rho = 0.159$

Tedaj dobimo matriko absolutnih vrednosti

$$V = \begin{bmatrix} 0.974 & 0.225 & 0.004 \\ 0.225 & 0.974 & 0.041 \\ 0.009 & 0.041 & 0.999 \end{bmatrix}$$

Pri šibki interakciji se en kvark spremeni v drugega, nastanejo novi kvarki in tako naprej. Amplitudo (\mathcal{M}) dobimo iz matričnega elementa, na primer:

$$D^0 \rightarrow K^- \pi^+$$

Pri reakciji se \overline{u} ohrani, c postane s, nastaneta pa u in \overline{d} . Amplituda je tedaj enaka

$$\mathcal{M} \propto \sqrt{\alpha_w} \sqrt{\alpha_w} V_{cs} V_{ud}$$

Pretvorba delec-antidelec. Primer:

$$K^0 o \overline{K^0}$$

$$\widehat{H}\psi = \widehat{E}\psi$$

reakcija poteka z neko časovno odvisnostjo:

$$|K^0\rangle \to a(t)|K^0\rangle + b(t)|\overline{K^0}\rangle$$

Ker se tako $|K^0\rangle$ kot $|\overline{K^0}\rangle$ spreminjata skozi čas, nobena od njiju ne mora biti lastna vrednost, lahko pa je njuna linearna kombinacija:

$$|K_1\rangle = \cos \vartheta |K^0\rangle + \sin \vartheta |\overline{K^0}\rangle$$

$$|K_2\rangle = -\sin\vartheta |K^0\rangle + \cos\vartheta |\overline{K^0}\rangle$$

Iz razlogov, v katere se zaenkrat ne bomo poglabljali, je $\vartheta = 45^{\circ}$. Dobili smo lastni stanji \hat{H} .

$$\widehat{H}|K_1\rangle = E_1|K_1\rangle$$

$$\widehat{H}|K_2\rangle = E_2|K_2\rangle$$

$$|K_1(t)\rangle = |K_1(t=0)\rangle e^{-\frac{iE_1t}{\hbar}}$$

$$|K_2(t)\rangle = |K_2(t=0)\rangle e^{-\frac{iE_2t}{\hbar}}$$

Vrh tega lahko zapišemo $|K_1\rangle - |K_1\rangle = \sqrt{2}|K_0\rangle$ in na podlagi tega izrazimo $|K^0\rangle$ in $|\overline{K^0}\rangle$. S tem dobimo valovno funkcijo

$$|\psi\rangle = |K^0\rangle = \frac{1}{\sqrt{2}} \left(|K_1(0)\rangle e^{-\frac{iE_1t}{\hbar}} - |K_2(0)\rangle e^{-\frac{iE_2t}{\hbar}} \right)$$

Če želimo izraziti verjetnost, da se bo K^0 pretvoril v $\overline{K^0}$, moramo izračunati skalarni produkt:

$$\langle \overline{K^0} | \psi(t) \rangle = \left(\frac{1}{\sqrt{2}} \langle K_1 | + \langle K_2 | \right) \left(\frac{1}{\sqrt{2}} || K_1 \rangle e^{-\frac{iE_1 t}{\hbar}} - | K_2 \rangle e^{-\frac{iE_2 t}{\hbar}} \right)$$
$$= \frac{1}{2} \left(e^{-\frac{iE_1 t}{\hbar}} - e^{-\frac{iE_2 t}{\hbar}} \right)$$