Algoritmi e Strutture Dati

Introduzione

Informazioni utili

• T.H. Cormen, C.E. Leiserson, R.L Rivest "Introduzione agli algoritmi". Jackson Libri

Sito web con le slides del corso:

http://people.na.infn.it/~bene/ASD/

Complessità degli algoritmi

- Analisi delle prestazioni degli algoritmi
- Servirà un Modello Computazionale di riferimento.
- Tempo di esecuzione degli algoritmi
- Notazione asintotica
- Analisi del Caso Migliore, Caso Peggiore e del Caso Medio
- Esempi di analisi di algoritmi di ordinamento.

Analisi di un algoritmo

- Correttezza
 - Dimostrazione formale (matematica)
 - Ispezione informale
- Utilizzo delle risorse
 - Tempo di esecuzione
 - Utilizzo della memoria
 - Altre risorse: banda di comunicazione
- Semplicità
 - Facile da capire, modificare e manutenere

Tempo di esecuzione

- Il *tempo di esecuzione* di un programma dipende da:
 - Hardware
 - Compilatore/Interprete
 - Tipo e dimensione dell'input
 - Altri fattori: casualità, ...

Un noto modello computazionale

- Il modello della Macchina di Turing
 - Nastro di lunghezza infinita
 - o In ogni *cella* può essere contenuta una quantità di informazione finita (un simbolo)
 - Una testina + un processore + programma
 - In 1 unità di tempo
 - Legge o scrive la cella di nastro corrente e
 - Si muove di 1 cella a sinistra, oppure di 1 cella a destra, oppure resta ferma

Il modello computazionale RAM

- Modello RAM (Random-Access Memory)
 - Memoria principale infinita
 - o Ogni cella di memoria può contenere una quantità di dati finita.
 - o Impiega lo stesso tempo per accedere ad ogni cella di memoria.
 - Singolo processore + programma
 - o In 1 unità di tempo: operazioni di *lettura*, *esecuzione* di una *computazione*, *scrittura*;
 - o Addizione, moltiplicazione, assegnamento, confronto, accesso a puntatore, ...
- Il modello RAM è una semplificazione dei moderni computer.

Un problema di conteggio

- Input
 - Un intero N dove $N \stackrel{\circ}{=} 1$.
- Output
 - Il numero di coppie ordinate (i,j) tali che $i \in j$ siano interi e $1 \le i \le j \le N$.
- Esempio: *N*=4
 - (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)
 - Output = 10

```
int Count_1(int N)
      sum
      for i = 1 to N
                                   -2N + 2
                                  -2\sum_{i=1}^{N}(N-i+2)
        for j = i to N
            sum = sum + 1 - 2\sum_{i=1}^{N} (N+1-i)
5
      return sum
```

Il tempo di esecuzione è
$$2+2N+2+2\sum_{i=1}^{N}(N+2-i)+2\sum_{i=1}^{N}(N+1-i)=2N^2+6N+4$$

Il tempo di esecuzione è 6N+4

Ma notate che:

$$\sum_{i=1}^{N} (N+1-i) = \sum_{i=1}^{N} i = N(N+1)/2$$

$$\sum_{i=1}^{N} (N+1-i) = \sum_{i=1}^{N} i = N(N+1)/2$$

Il tempo di esecuzione è 5 unità di tempo

Riassunto dei tempi di esecuzione

Algoritmo	Tempo di
	Esecuzione
Algoritmo 1	$2N^2 + 6N + 4$
Algoritmo 2	6N+4
Algoritmo 3	5

Ordine dei tempi di esecuzione

Supponiamo che 1 operazone atomica impieghi 1 $\eta s = 10^{-9} s$

	1.000	10.000	100.000	1.000.000	10.000.000
N	$1 \mu s$	$10 \mu \mathrm{s}$	$100 \mu \mathrm{s}$	1 ms	10 ms
20N	$20 \mu s$	$200~\mu \mathrm{s}$	2 ms	20 ms	200 ms
N Log N	$9.96\mu\mathrm{s}$	$132 \mu s$	1.66 ms	19.9 ms	232 ms
20N Log N	199 μs	2.7 ms	33 ms	398 ms	4.6 sec
N^2	1 ms	100 ms	10 sec	17 min	1.2 giorni
20N ²	20 ms	2 sec	3.3 min	5.6 ore	23 giorni
N^3	1 sec	17 min	12 gior.	32 anni	32 millenni

Riassunto dei tempi di esecuzione

Algoritmo	Tempo di Esecuzione	Ordine del Tempo di Esecuzione
Algoritmo 1	$2N^2 + 6N + 4$	N^2
Algoritmo 2	6N+4	N
Algoritmo 3	5	Costante

Limite superiore asintotico

Esempio di limite superiore asintotico

Esercizio sulla notazione O

• Mostrare che $3n^2 + 2n + 5 = O(n^2)$

$$10n^{2} = 3n^{2} + 2n^{2} + 5n^{2}$$

$$3n^{2} + 2n + 5 \text{ per } n = 1$$

$$c = 10, n_0 = 1$$

Utilizzo della notazione O

- In genere quando impieghiamo la notazione *O*, utilizziamo la formula più "semplice".
 - Scriviamo:

$$\bullet 3n^2 + 2n + 5 = O(n^2)$$

- Le seguenti sono tutte corrette ma in genere non le si userà:

•
$$3n^2+2n+5=O(3n^2+2n+5)$$

•
$$3n^2+2n+5=O(n^2+n)$$

•
$$3n^2+2n+5=O(3n^2)$$

Esercizi sulla notazione O

•
$$f_1(n) = 10 n + 25 n^2$$

•
$$O(n^2)$$

•
$$f_2(n) = 20 n \log n + 5 n$$

•
$$O(n \log n)$$

•
$$f_3(n) = 12 n \log n + 0.05 n^2$$
 • $O(n^2)$

•
$$f_4(n) = n^{1/2} + 3 n \log n$$

•
$$O(n \log n)$$

Limite inferiore asintotico

Esempio di limite inferiore asintotico

Limite asintotico stretto

Riassunto della notazione asintotica

- *O*: *O-grande*: limite superiore asintotico
- W: *Omega-grande*: limite inferiore asintotico
- Q: *Theta*: limite asintotico stretto
- Usiamo la *notazione asintotica* per dare un limite ad una funzione (f(n)), a meno di un fattore costante (c).

Teoremi sulla notazione asintotica

Teoremi:

- 1. f(n) = O(g(n)) se e solo se g(n) = W(f(n)).
- 2. Se $f_1(n) = O(f_2(n))$ e $f_2(n) = O(f_3(n))$, allora $f_1(n) = O(f_3(n))$
- 3. Se $f_1(n) = W(f_2(n))$ e $f_2(n) = W(f_3(n))$, allora $f_1(n) = W(f_3(n))$
- 4. Se $f_1(n) = Q(f_2(n))$ e $f_2(n) = Q(f_3(n))$, allora $f_1(n) = Q(f_3(n))$
- 5. Se $f_1(n) = O(g_1(n))$ e $f_2(n) = O(g_2(n))$, allora

$$O(f_1(n) + f_2(n)) = O(\max\{g_1(n), g_2(n)\})$$

6. Se f(n) è un polinomio di grado d, allora $f(n) = Q(n^d)$

Teoremi sulla notazione asintotica

Proprietà:

$$Se \lim_{n \to \frac{1}{4}} f(n)/g(n) = 0 \qquad allora f(n) = O(g(n))$$

$$Se \lim_{n \to \frac{1}{4}} f(n)/g(n) = k > 0 \quad allora f(n) = O(g(n))$$

$$e \qquad f(n) = W(g(n))$$

$$quindi f(n) = Q(g(n))$$

$$Se \lim_{n \to \frac{1}{4}} f(n)/g(n) \to \frac{1}{4} \quad allora f(n) = W(g(n))$$

Algoritmo 4: analisi asintotica

int Count_4(int N)

1 sum = 0

O(1)

2 for i =1 to N

for j =1 to N

$$O(N^2)$$

4 if i <= j then

 $O(N^2)$

5 sum = sum+1

 $O(N^2)$
 $O(N^2)$
 $O(N^2)$
 $O(N^2)$
 $O(N^2)$

Il tempo di esecuzione è $O(N^2)$

Tempi di esecuzione asintotici

Algoritmo	Tempo di Esecuzione	Limite asintotico
Algoritmo 1	$2N^2 + 6N + 4$	$O(N^2)$
Algoritmo 2	6N+4	O(N)
Algoritmo 3	5	O (1)
Algoritmo 4	$4N^2 + 5N + 4$	$O(N^2)$

Somma Massima di una sottosequenza contigua

• Input

- Un intero N dove N ³ 1.
- Una sequenza $(a_1, a_2, ..., a_N)$ di N interi.

• Output

- Un intero S tale che $S = \sum_{k=i}^{j} a_k$ dove $1 \pm i$, $j \pm N$ e S è il più grande possibile.
- (tutti gli elementi nella sommatoria sono contigui).
- Esempio:
 - N=9, (2,-4,8,3,-5,4,6,-7,2)
 - Output = 8+3-5+4+6=16

```
int Max_seq_sum_1(int N, array a[])
                                   O(1)
 maxsum = 0
  for i=1 to N
    for j=i to N
      sum = 0
      for k=i to j
         sum = sum + a[k]
      maxsum = max(maxsum,sum)
 return maxsum
```

Tempo di esecuzione $O(N^3)$

```
int Max_seq_sum_2(int N, array a[])
 maxsum = 0
                                     O(1)
  for i=1 to N
    sum = 0
    for j=i to N
                             O(N^2)
       sum = sum + a[j]
       maxsum = max(maxsum,sum)
 return maxsum
```

Tempo di esecuzione $O(N^2)$

Esiste un algoritmo che risolve il problema in tempo O(N)

Algoritmo 3: intuizione

1. Se $a_p+...+a_r>0$ allora

$$a_{p}+...+a_{r+k}>a_{r+1}+...+a_{r+k}$$
 " $k^{3}1$

2. Se $a_p+...+a_{r-1}>0$ ma $a_p+...+a_r<0$ allora $a_p+...+a_{r+k}< a_{r+1}+...+a_{r+k} \qquad " k^31$

```
int Max_seq_sum_3(int N, array a[])
 maxsum = 0
                                     O(1)
  sum = 0
  for i=1 to N
                                O(N)
    if (sum + a[i]>0) then
        sum = sum + a[i]
    else
        sum = 0
    maxsum = max(maxsum,sum)
 return maxsum
```

Tempo di esecuzione O(N)

Ordinamento di una sequenza

- Input : una sequenza di numeri.
- Output: una permutazione (riordinamento) tale che tra ogni 2 elementi adiacenti nella sequenza valga "qualche" relazione di ordinamento (ad es. ≤).

Insert Sort

- È efficiente solo per piccole sequenze di numeri;
- Algoritmo di ordinamento sul posto.
- 1) La sequenza viene scandita dal dal primo elemento; l'indice *i, inizial-mente* assegnato al primo elemento, indica l'elemento corrente;
- 2) Si considera la parte a sinistra di *i* (compreso) già ordinata;
- 3) Si seleziona il primo elemento successivo ad i nella sottosequenza non-ordinata assegnando j = i+1;
- 4) Si cerca il posto giusto per l'elemento j nella sottosequenza ordinata.
- 5) Si incrementa *i*, si torna al passo 3) se la sequenza non è terminata;

Insert Sort

Algoritmo:

- A[1..n]: sequenza numeri di input
- Key: numero corrente da mettere in ordine

```
1 for j = 2 to Lenght(A)
2 do Key = A[j]

/* Scelta del j-esimo elemento da ordinare */
3 i = j-1 /* [1...i] è la porzione ordinata */
4 while i > 0 and A[i] > Key do
5 A[i+1] = A[i]
6 i=i-1
7 A[i+1] = Key
```

Analisi di Insert Sort

```
for j = 2 to Lenght(A)
                                    \boldsymbol{n}
  do Key = A[j]
                                   n-1
 /* Commento */
                                   n-1
i = j-1
 while i>0 and A[i] > Key
      do A[i+1] = A[i]
         i=i-1
                                   n-1
   A[i+1] = Key
```

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Analisi di Insert Sort: Caso migliore

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il caso migliore si ha quando l'array è già ordinato:

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + c_7(n-1)$$

Inoltre, in questo caso t_i è 1, quindi:

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an+b$$

Analisi di Insert Sort: Caso migliore

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an+b$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il caso peggiore si ha quando l'array è in ordine inverso. In questo caso t_i è j (perché?)

$$\sum_{j=2}^{n} t_{j} = \sum_{j=1}^{n} t_{j} - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} t_j = \sum_{j=1}^{n} t_j - 1 = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} t_j - \sum_{j=2}^{n} 1 = \frac{n(n+1)}{2} - 1 - (n-1) = \frac{n(n-1)}{2}$$

Quindi:
$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1)$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1)$$

$$T(n) = \left(\frac{c_4 + c_5 + c_6}{2}\right)n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4 - c_5 - c_6}{2} + c_7\right)n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an^2 + bn + c$$

Analisi di Insert Sort: Caso peggiore

$$T(n) = \left(\frac{c_4 + c_5 + c_6}{2}\right) n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4 - c_5 - c_6}{2} + c_7\right) n - (c_2 + c_3 + c_4 + c_7)$$

$$T(n) = an^2 + bn + c$$

Analisi di Insert Sort: Caso medio

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_5 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Il caso medio è il valore medio del tempo di esecuzione.

Supponiamo di scegliere una *sequenza casuale* e che tutte le sequenze abbiano uguale probabilità di essere scelte.

In media, *metà degli elementi* ordinati saranno *maggiori* dell'elemento che dobbiamo sistemare.

In media *controlliamo metà del sottoarray* ad ogni ciclo while.

Quindi $t_i \ \dot{z}_j/2$.

$$\sum_{j=2}^{n} t_{j} = \sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \left(\sum_{j=1}^{n} j - 1 \right) = \frac{n^{2} + n - 2}{4}$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} \left(\frac{j}{2} - 1 \right) = \frac{n^2 - 3n + 2}{4}$$

Analisi di Insert Sort: Caso medio

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_4 \sum_{j=2}^{n} (t_j - 1) + c_5 \sum_{j=2}^{n} (t_j -$$

Analisi del Caso Migliore e Caso Peggiore

- Analisi del Caso Migliore
 - Ω -grande, limite inferiore, del tempo di esecuzione per un qualunque *input di dimensione* N.
- Analisi del Caso Peggiore
 - *O*-grande, limite superiore, del tempo di esecuzione per un qualunque *input di dimensione N*.

Analisi del Caso Medio

Analisi del Caso Medio

- Alcuni algoritmi sono efficienti in pratica.
- L'analisi è in genere molto più difficile.
- Bisogna generalmente assumere che tutti gli input siano ugualmente probabili.
- A volte non è ovvio quale sia la media.

Tecniche di sviluppo di algoritmi

- Agli esempi visti fino ad ora seguono l'approccio incrementale: la soluzione viene costruita passo dopo passo.
- Insert sort avendo ordinato una sottoparte dell'array, inserisce al posto giusto un altro elemento ottenendo un sottoarray ordinato più grande.
- Esistono altre tecniche di sviluppo di algoritmi con filosofie differenti:
 - Divide-et-Impera

Divide-et-Impera

• Il problema viene suddiviso in sottoproblemi analoghi, che vengono risolti separatamente. Le soluzioni dei sottoproblemi vengono infine fuse insieme per ottenere la soluzione dei problemi più complessi.

• Consiste di 3 passi:

- *Divide* il problema in vari sottoproblemi, tutti *simili* (tra loro e) al *problema originario* ma più semplici.
- *Impera* (conquista) i sottoproblemi risolvendoli ricorsivamente. Quando un sottoproblema diviene banale, risolverlo direttamente.
- Fondi le soluzioni dei sottoproblemi per ottenere la soluzione del (sotto)problema che li ha originati.

Divide-et-Impera e ordinamento

- Input: una sequenza di numeri.
- Output: una permutazione (riordinamento) tale che tra ogni 2 elementi adiacenti nella sequenza valga "qualche" relazione di ordinamento (ad es. ≤).
- *Merge Sort* (divide-et-impera)
 - *Divide*: scompone la sequenza di n elementi in 2 sottosequenze di n/2 elementi ciascuna.
 - *Impera:* conquista i sottoproblemi ordinando ricorsivamente le sottosequenze con *Merge Sort* stesso. Quando una sottosequenza è unitaria, il sottoproblema è banale.
 - Fondi: compone insieme le soluzioni dei sottoproblemi per ottenere la sequenza ordinata del (sotto-)problema.

Merge Sort

Algoritmo:

- A[1..n]: sequenza dei numeri in input
- p,r: indici degli estremi della sottosequenza da ordinare

Merge Sort: analisi

```
Merge_Sort(array A, int p,r)
      if p < r then
             q = |(p+r)/2|
              Merge_Sort(A,p,q)
              Merge_Sort(A,q+1,r)
              Merge(A,p,q,r)
                                    Equazione di Ricorrenza
T(n) = \Theta(1)/\text{ se } n=1
                                                      sen=1
```

Merge Sort: analisi

```
Merge_Sort(array A, int p,r)

1  if p < r then
2    q = [(p+r)/2]

3    Merge_Sort(A,p,q)

4    Merge_Sort(A,q+1,r)

5    Merge(A,p,q,r)</pre>
```

$$T(n) = \begin{cases} \Theta(1) & se \ n = 1 \\ 2T(n/2) + \Theta(n) + \Theta(1) & se \ n > 1 \end{cases}$$

Soluzione: $T(n) = \Theta(n \log n)$

Divide-et-Impera: Equazioni di ricorrenza

- Divide: D(n) tempo per dividere il problema
- *Impera*: se si divide il problema in a sottoproblemi, ciascuno di dimensione n/b, il tempo per conquistare i sottoproblemi sarà aT(n/b).
 - Quando un sottoproblema diviene banale (l'input è minore o uguale ad una costante c), in tempo è $\Theta(1)$.
- Fondi: C(n) tempo per comporre le soluzioni dei sottoproblemi nella soluzione più complessa.

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(n/b) + D(n) + C(n) & \text{se } n > c \end{cases}$$

Gli argomenti trattati

- Analisi della bontà di un algoritmo
 - Correttezza, utilizzo delle risorse, semplicità
- Modello computazionali: modello RAM
- Tempo di esecuzione degli algoritmi
- Notazione asintotica: *O*-grande, W-grande, Q
- Analisi del Caso Migliore, Caso Peggiore e del Caso Migliore