

Extensions of CDCL Branching Heuristics by Exploration during Conflict Depression

Md Solimul Chowdhury Martin Müller Jia-Huai You

Department of Computing Science, University of Alberta.

February 21, 2022

Introduction

- Boolean Satisfiability (SAT)
 - Given a SAT formula, determine assignments of the variables to satisfy that formula, if one exists. Otherwise, unsatisfiable
 - A toy example:

Easy? Not so easy ...

Introduction

- SAT solving is NP-Complete
 - SAT is hard!
 - Intractable, in general.
- However, Modern SAT solvers are very efficient.
 - Conflict Directed Clause Learning (CDCL) has many real world applications.
 - Applications in many important domains:
 - Hardware design verification
 - Software testing
 - Encryption
 - Planning
 - Theorem proving
 - CDCL is highly scalable.
 - able to solve large formulas consisting of millions of variables and clauses.
 - Hypothesis: CDCL Exploits problem structures

Contributions

Major contributions:

- **Contribution 1:** An empirical investigation of the CDCL SAT solving process to obtain insights on its conflict generation pattern.
 - Identifies a pathological phase in CDCL search.
- Contribution 2: A CDCL algorithmic extension, based on the obtained insights.
 - Employs random exploration in a novel way.
- Contribution 3: An extensive evaluation.
- Contribution 4: Analysis of the results to reveal insights.

Background: How does a CDCL SAT solver work?

• Performs a backjumping tree-search to determine satisfiabilty.

• **Restarts frequently:** abandons the current partial assignment and starts the search from the scratch.

Background: Importance of Fast Conflict Generation

- Conflict Generation at a fast rate is crucial for CDCL SAT solvers.
- Conflict \longrightarrow Clause learning \longrightarrow Pruning \longrightarrow Faster Solving.
- CDCL branching heuristics are conflict-greedy.
 - Examples:

Variable State Independent Decaying Sum (VSIDS) (Moskewicz 2001 et. al.)

Learning Rate Based (LRB) (Liang 2016 et. al.)

- based on look-back principle
- selection priority is based on recent conflict involvements.
- intuition: such selection will generate more conflicts.
- CDCL branching heuristics generate conflicts at a fast rate.
 - On average, 1 conflict in 2 decisions. (Liang 2017 et. al.)

Background: Monte-Carlo Random-Walks (MRW)

- Designed for random sampling of non-terminal states.
- First proposed by (Nakhost & Müller, 2009) in the context of deterministic planning.
- At a given state s of a plan search, MRW performs
 - a fixed number of random walks in the local neighborhood of s.
 - a walk consists of a fixed number of steps.
 - Goal: to find a state s* which is the best among the explored states near s.
- Exploration in our work is fundamentally inspired by MRW.

Notions and Definitions

- We formulate two novel notions:
 - Conflict Depression: Sequence of one or more consecutive decisions with no conflict.
 - Conflict Burst: Sequence of one or more consecutive decisions with at least one conflict.

- Some Measures:
 - Decision Rate: number of decisions per restart.
 - CD phase Rate: number of CD phases per restarts.
 - Average CD phase Length

Contribution 1: A series of empirical insights

- We studied CD (and briefly, CB) phases with VSIDS and LRB.
 - CDCL solvers:
 - (i) Glucose (uses VSIDS exclusively).
 - (ii) MAPLECOMSPS_PURE_LRB (uses LRB exclusively)
 - 750 maintrack instances from SAT-2017, 2018.
 - Time-out per run: 5000 seconds.
- We have a series of interesting observations ...

CD Phase Rate with VSIDS and LRB

Observations:

#1: CD phases occur frequently with VSIDS (left) and LRB (right).

CD phase Rate with VSIDS

CD phase Rate with LRB

Average CD Phase Length with VSIDS and LRB

#2: For many instances, avg. CD phase length are high with VSIDS (left) and LRB (right).

Propagation Depression during a CD phase

- During a CD phase, VSIDS/LRB decisions are ineffective to create conflicts and only create truth value propagation.
 - But, how much propagation ?

#3:

- On average, for both VSIDS and LRB <u>Propagations in a CD phase</u> is 10 times lower than Propagations in a CB phase.
 - → During a CD phase, VSIDS/LRB branching decisions **go through** a **propagation depression** as well !

Bursts of Conflict Generation

• #4:

For both of the heuristics, on average,

- Only 25% of the decisions produce at least one conflict.
 - Some of which produces more than one conflicts. How many of them?
- Of all decisions which produce any conflict, 61% produce more than one.
- Conflict Burst phases are short, but conflict intense.
 - Many conflicts within a short span of consecutive decisions.

Summary of Empirical Observations

- The typical search behavior contains
 - shorter but conflict intense Conflict Burst phases
 - followed by longer Conflict Depression phases
 - where the search does not find any conflicts.

Contribution 2: Random Exploration amid CD phases

- Amid a CD phase, the variables that are deemed best by the CDCL heuristics are ineffective ...
- Can we do better amid a CD phase? variable re-ranking?
- Formulated an exploration based CDCL framework named expSAT.

expSAT: an exploration guided CDCL SAT solver

- Main Idea: Amid a substantial CD phase, with a non-zero probability,
 - perform exploration episodes to identify conflict friendly variables.
 - Exploration Episode: a fixed number of random walks, with a fixed number of steps per walk.
- Goal: to find a conflict amid a CD phase.

expSAT: an exploration guided CDCL SAT solver

- Rewards variables in a conflict reaching walk by assigning **bonus**.
 - Only x and y in the 2nd walk receives **bonuses**.

- bonus are computed based on the conflict quality (i.e., LBD).
 - Largest bonus is given to the walk closest to conflict.
 - bonus(y) >bonus(x)
 - Bonus decays exponentially with distance from the conflict.
 - Temporal Credit Assignment as studied in RL.
- exploration score = **bonus**.

Branching in expSAT

- expVSIDS: VSIDS score + (scaled) exploration score for VSIDS.
- expLRB: LRB score + (scaled) exploration score for LRB.
 - Why scale?

- The value of scale_factor f is different for VSDIS and LRB.
- While branching, expSAT selects the variable that maximizes the combined score.

$$v^* \leftarrow argmax_{v \in uVars(\mathcal{F})} \exp B(v);$$

Contribution 3: Empirical Evaluation

- Implemented expSAT on top of 5 CDCL solvers:
 - glucose 4.2.1 (gLCM)
 - MAPLECOMSPS_PURE_LRB (MplLRB)
 - MapleCOMSPS (MpICOMSPS)
 - Maple_CM (MplCM)
 - MapleLCMDist_ChronoBT (MpICBT)
 - 11 expSAT solvers
 - (i) 4 employ expVSIDS exclusively
 - (ii) 4 employ expLRB exclusively
 - (iii) 3 employ a combination of expVSIDS and expLRB
- Exploration Parameter Settings:
 - exploration is expensive.
 - need to have a balance between overhead and gains.
 - 5 walks/exploration episode.
 - 5 steps/walk.
 - exploration trigger probability=0.02.
 - same for all experiments.

Test Sets

- Two test sets:
 - Competition Benchmarks: 750 maintrack instances from SAT-2017 and 2018.
 - Time Out: 5,000 seconds
 - SATCoin Benchmarks: 52 hard SATCoin benchmark instances generated by an instance generator submitted for SAT Competition 2018.
 - Time Out: 36,000 secs

Experimental Results for 4 expVSIDS extensions

• Competition Benches Results: **Good-to-Strong** gains.

Solver Name	Solved by Baseline	Solved by expSAT Extension	PAR2 Score Decrement
gLCM	372	379 (+7)	1.59%
MpICOMSPS	412	428 (+16)	7.52%
MpICM	442	443 (+1)	0.3%
MplCBT	442	451 (+9)	2.88%

• Results with <u>SATCoin Benches</u>: **Very Strong** gains

Solver Name	Solved by Baseline	Solved by expSAT Extension
gLCM	7	12 (+5)
MpICOMSPS	4	13 (+9)
MpICM	1	10 (+9)
MpICBT	41	43 (+2)

Experimental Results for 4 expLRB extensions

• Competition Benches Results: Good-to-Strong gains.

Solver Name	Solved by Baseline	Solved by expSAT Extension	PAR2 Score Decrement
MpILRB	378	393 (+15)	3.84%
MplCOMSPS	412	423 (+11)	2.37%
MpICM	442	438 (-4)	-0.7%
MpICBT	442	449 (+7)	2.46%

• Results with SATCoin Benches: Very Strong-to-Fair gains

Solver Name	Solved by Baseline	Solved by expSAT Extension
MpILRB	0	46 (+46)
MpICOMSPS	4	4 (+0)
MpICM	1	3 (+2)
MpICBT	41	43 (+2)

Experimental Results for 3 expVSIDS+expLRB extensions

• Competition Benches Results: Good-to-Strong gains.

Solver Name	Solved by Baseline	Solved by expSAT Extension	PAR2 Score Decrement
MplCOMSPS	412	425 (+13)	2.77%
MpICM	442	436 (-6)	-1.03%
MpICBT	442	451 (+9)	2.79%

Results with <u>SATCoin Benches</u>: Very Strong-to-Good gains

Solver Name	Solved by Baseline	Solved by expSAT Extension
MplCOMSPS	4	13 (+9)
MplCM	1	10 (+9)
MpICBT	41	44 (+3)

Analysis of the Solving Efficiency

- Analyzed the experimental data for
 - (i) gLCM and expGLCM and
 - (ii) MpILRB and expMpILRB
- Observation for conflict efficiency: In general,
 - Better solver for a subset of the tested problems is more conflict efficient.
 - Produces conflict at a fast rate, from which high quality clauses are learned.
- Observation for average CD phase Length: In general,
 - Better solver for a subset of these problems reduces average CD phase length.
 - exploration helps a solver to escape from CD phases.

Pathological Perspective of CD

- Heuristics search often exhibit pathological phases ...
 - Plateaus in local search SAT
 - many consecutive search states without decrease in heuristic value (Frank, Cheeseman, Stutz, 1997)
 - Search in deterministic planning
 - heuristic values of states do not improve within a plateau region (Hoffmann, 2005)
- CDCL branching heuristic values for each variable amid a CD phase are different.
 - However, none of these selected variables generates any conflicts.
- Lack of progress of CDCL SAT search amid CD
 ≈ lack of progress of local search algorithms in plateau.

We characterize CD as a pathological phase for CDCL.

Conclusions

Conclusions:

- Defined concept of conflict depression (CD).
- Showed that leading CDCL branching heuristics
 - frequently undergo the pathological phase of CD, in which branching decisions are ineffective.
- To combat CD phases, we proposed expSAT
 - performs random exploration in SAT search space.
 - designed to overcome CD phase.
- Empirically showed the effectiveness of the expSAT approach.
 - For some extensions, strong gains for competition benchmarks.
 - Impressive gains over hard bitcoin mining benchmarks.

Future Work

• Future Work:

- Identify underlying reasons that causes CD phases ...
 - Hypothesis: Onset of CD phases corresponds to switch between communities (sub-problems)?
- Identify characteristics of SAT domains which influence the effectiveness of exploration.
- Can we develop Machine Learning models to
 - predict onset of a long CD phase?
 - predict better variable selection amid a CD phase?

Acknowledgements

- This work has been funded by
 - NSERC Post Graduate Scholarship Doctoral
 - Alberta Innovates Graduate Students Scholarship
 - NSERC Discovery Grant (from my PhD supervisors)
 - Martin Müller and Jia You