

Troubleshooting BGP

Brad Edgeworth, Systems Architect
CCIE# 31574 @BradEdgeworth

BRKRST-3320

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- Find this session in the Cisco Events Mobile App
- Click "Join the Discussion"
- Install Webex Teams or go directly to the team space
- Enter messages/questions in the team space

Agenda

- Introduction
- Troubleshooting BGP Peering Issues
- Troubleshooting BGP Routing Issues
 - Missing Routes, Unexpected Routes, Stale Entries
- Troubleshooting BGP Route Churn
- Troubleshooting IPv6 BGP
- Troubleshooting with Cisco NXOS
- Applying Programmability for Troubleshooting
- Conclusion

Troubleshooting BGP Peering Issues

Border Gateway Protocol (BGP)

Is BGP A Routing Protocol?

In some ways we need to think of BGP as a routing application?

Troubleshooting BGP Peering Issues

Preliminary Checks

- Verify Configuration
 - ✓ Peering IP Address
 - ✓ AS Number
 - ✓ MD5 Authentication (Optional)
 - √ ebgp-multihop hop-count (eBGP only)

- Verify Reachability
 - √ ping remote-ip source source-ip
 - If reachability issues found:
 - ✓ Use traceroute to verify where the trace is dropping

disable-connected-check

- BGP uses a TTL of 1 for eBGP peers
 - Also verifies if NEXTHOP is directly connected
- For eBGP peers that are more than 1 hop away a larger TTL must be used
 - No longer verifies if NEXTHOP is directly connected
- Use neighbor disable-connected-check
- Disables the "is the NEXTHOP on a connected subnet" check

```
router bgp 65000
neighbor 192.168.3.3 remote-as 65535
neighbor 192.168.3.3 disable-connected-check
```


ACLs & Firewall

Verify any Firewall / ACLs in the path for TCP port 179

R1#telnet 2.2.2.2 179 /source-interface loopback 0
Trying 2.2.2.2 ...
% Destination unreachable; gateway or host down

- · Ensure BGP Pass-Through configured
 - ASA / PIX offsets TCP sequence number with a random number for every TCP session
 - Causes MD5 authentication to fail
 - ASA strips off TCP option 19
 - 1. Create ACL to permit BGP traffic

- 3. Create class-map to match BGP traffic
- 2. Create TCP Map to allow TCP option 19
- 4. Disable sequence number randomization and Enable TCP option 19 in global policy

BGP Pass-Through - ASA FW Configuration

```
access-list OUT extended permit tcp host 10.1.12.1 host 10.1.12.2 eq bgp
access-list OUT extended permit top host 10.1.12.2 eg bgp host 10.1.12.2
access-list BGP-TRAFFIC extended permit tcp host 10.1.110.2 host 10.1.110.10 eq bgp
access-list BGP-TRAFFIC extended permit tcp host 10.1.110.2 eg bgp host 10.1.110.10
tcp-map TCP-OPTION-19
tcp-options range 19 19 allow
access-group OUT in interface Outside
class-map BGP TRAFFIC
match access-list BGP-TRAFFIC
policy-map global_policy
 class BGP_TRAFFIC
  set connection random-sequence-number disable
  set connection advanced-options TCP-OPTION-19
```


Troubleshooting Scenario

R6 and R8 cannot establish an eBGP session.

- What do we do?
- Check the configuration for basics.
- View the BGP Summary State
- Can we ping between R6 & R8?
- Can we telnet into each other on port 179?

Problem with TCP Process (show tcp brief)

PCB	Recv-Q	Send-Q	Local Address	Foreign Address	State
0x48277ea4	0	0	:::179	:::0	LISTEN
0x48276c50	0	0	0.0.0:23	0.0.0.0:0	LISTEN
0x48290da8	0	0	12.26.28.152:23	223.255.254.249:4887	7 ESTAB
0x4827755c	0	0	0.0.0.0:179	0.0.0.0:0	LISTEN

- PCB is the internal identifier used by TCP. It can be used as input to other show commands.
- Recv-Q shows how much received data is waiting to be "read" from TCP by application.
- Send-Q shows how much application data is waiting to be "sent" by TCP.
- Local-address and foreign address identify the two end points of the connection.
- State identifies the current state of the connection.

Most Common TCP States

- LISTEN
 - · A listen socket on which incoming connections will be accepted.
- ESTAB
 - · An established connection
- CLOSED
 - · Socket not fully programmed most often seen on standby RP by applications that are warm or hot standby.

Connections that are getting established:

- SYNSENT
 - · A SYN message was sent to peer.
- SYNRCVD
 - A SYN message was received from peer socket will move into ESTAB state.

Connections that are getting terminated:

CLOSEWAIT, CLOSING, LASTACK, TIMEWAIT, FINWAIT1, FINWAIT2

Detailed info about a TCP Socket

XR# show tcp detail pcb 0x48277a58 Connection state is ESTAB, I/O status: 0, socket status: 0 PCB 0x48277a58, vrfid 0x60000000, Pak Prio: Unspecified, TOS: 16, TTL: 255 Local host: 12.26.28.152, Local port: 179 (Local App PID: 180393) Foreign host: 223.255.254.249, Foreign port: 49017 Current send queue size in bytes: 0 (max 16384) Current receive queue size in bytes: 0 (max 16384) mis-ordered: 0 bytes Current receive queue size in packets: 0 (max 50)

- Pak Prio: Did the application mark the packet with correct priority? Determines the queuing within the router before it goes out on the wire.
- TOS: Type of service, goes out on the wire.
- TTL: Important for eBGP for the TTL security check
- Mis-ordered: How much of the received data is out-of-order?
- Receive queue in packets: how many packets are sitting in receive buffers?

Malformed Update

- What if a peer sends you a message that causes us to send a NOTIFICATION?
 - Corrupt UPDATE
 - · Bad OPEN message, etc.
- View the message that triggered the NOTIFICATION

```
show ip bgp neighbor 1.1.1.1 | begin Last reset
```

```
Last reset 5d12h, due to BGP Notification sent, invalid or corrupt AS path
```

Message received that caused BGP to send a Notification:

http://bgpaste.convergence.cx/

Unsupported Capability

- Disable capability negotiation during session establishment process using the below hidden command

neighbor x.x.x.x dont-capability-negotiate

IPv4 vs IPv6

- BGPv4 carries only 3 pieces of information which are truly IPv4-specific:
 - NLRI in the UPDATE message contains an IPv4 prefix
 - NEXT_HOP path attribute in the UPDATE message contains an IPv4 address
 - BGP Router ID derived from an IPv4 address is in the OPEN message and AGGREGATOR attribute
- Adapting BGP for IPv6 targets primarily the NLRI and NEXT_HOP
 - NLRIs need to carry IPv6 prefixes
 - NEXT_HOP attribute needs to carry an IPv6 address; note that it may carry both global and link-local address
 - Router ID remains a 4-byte address

BGP-4 Extension for IPv6 - NH Information & Router-ID

- NEXT_HOP carries a global IPv6 address, may be followed with a link-local
 - Link-local address as a next-hop is only set if the eBGP peer shares the subnet with both routers (advertising and advertised)
- The length of the NEXT_HOP field in the MP_REACH_NLRI attribute is
 - 16 bytes when only global address is present
 - 32 bytes when global and link-local are both present
- Router ID
 - · When no IPv4 interface is configured, an explicit 4B BGP RID needs to be set
 - The RID for BGP must not be a "martian" (falling under 0.0.0.0/8, 127.0.0.0/8, 224.0.0.0/4), even though it is not used as a real IPv4 address

IPv6 AFI / SAFI Peering (IOS-XR Criteria)

IPv4 session:

Neighbor source interface (update-source) must have a global IPv6 address

IPv6 session:

- Neighbor source interface must have at least a link-local IPv6 address
- A BGP session will not come up without the above configurations. These requirements stem from two facts:
 - BGP needs to set a valid IPv6 nexthop when IPv6 updates are being sent over an IPv4 session
 - eBGP needs to send both the global and the LL next hops while sending update to a directly connected IPv6 neighbor, and the neighbor needs both these next hops

IPv6 ND and NS

- Ensure ipv6 unicast-routing is configured globally on IOS / IOS-XE
- Ensure IPv6 ND is completed and no stale IPv6 neighbor (Global) is present
- Ensure correct IPv6 global address is being used for peering

```
      R2# show ipv6 neighbors

      IPv6 Address
      Age Link-layer Addr State

      Interface
      0 0cd1.9c2f.6807 REACH Gi2

      FE80::ED1:9CFF:FE2F:6807
      19 0cd1.9c2f.6807 STALE Gi2
```


IPv6 BGP Peering

OPEN Message

```
74 42072 → 179 [ACK] Seg=1 Ack=1 Win=14400 Len=0
   1039 1787,345624
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               TCP
   1040 1787.517468
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               BGP
                                                                         144 OPEN Message
                                                                          74 179 → 42072 [ACK] Seg=1 Ack=71 Win=16314 Len=0
   1041 1787.518365
                      2001:10:1:25::2
                                           2001:10:1:25::5
                                                               TCP
   1042 1787.518409
                      2001:10:1:25::2
                                           2001:10:1:25::5
                                                               BGP
                                                                         131 OPEN Message
                                                                          93 KEEPALIVE Message
   1043 1787.518419
                      2001:10:1:25::2
                                                               BGP
                                           2001:10:1:25::5
   1044 1787.523210
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               TCP
                                                                          74 42072 → 179 [ACK] Seq=71 Ack=58 Win=14400 Len=0
   1045 1787.523896
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               TCP
                                                                          74 42072 → 179 [ACK] Seq=71 Ack=77 Win=14400 Len=0
   1046 1787.529430
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               BGP
                                                                          93 KEEPALIVE Message
   1047 1787.530397
                      2001:10:1:25::2
                                           2001:10:1:25::5
                                                               BGP
                                                                          93 KEEPALIVE Message
   1048 1787.530693
                                                                         300 UPDATE Message, UPDATE Message, UPDATE Message
                      2001:10:1:25::2
                                           2001:10:1:25::5
                                                               BGP
                                                               TCP
                                                                          74 42072 → 179 [ACK] Seg=90 Ack=322 Win=15008 Len=0
   1049 1787.533124
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                                         216 UPDATE Message, UPDATE Message, KEEPALIVE Message
   1053 1788.537670
                      2001:10:1:25::5
                                           2001:10:1:25::2
                                                               BGP
▼ Border Gateway Protocol - OPEN Message
    Length: 57
    Type: OPEN Message (1)
    Version: 4
    Mv AS: 100
    Hold Time: 180
    BGP Identifier: 192.168.2.2
    Optional Parameters Length: 28
  ▼ Optional Parameters
     ▼ Optional Parameter: Capability
         Parameter Type: Capability (2)
          Parameter Length: 6
       ▶ Capability: Multiprotocol extensions capability
     ▼ Optional Parameter: Capability
         Parameter Type: Capability (2)
         Parameter Length: 2
```


Peering Issues

Stable BGP peers going into Idle State

- BGP Peering has been up for months, but all of a sudden, BGP session goes down and never comes back up
 - IGP goes down as well? Yes
- Debug shows keepalives are getting generated
- Check for the Interface Queue on both sides
 - Interface Queue (both input and output queue) getting wedge can cause this symptom
 - Temporary workarounds Increase the Queue size, RP Switchover
 - If its input queue wedge, check the **show buffer input-interface** x/y **packet** to analyze what packets are stuck in queue. Also checking for incoming traffic rate
 - If its output queue, check for outgoing traffic rate. Check the transmission side

```
R2#show interface gi0/1 | in queue
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Output queue: 1001/1000 (size/max)
```


Notifications - Hold Time Expired

%BGP-5-ADJCHANGE: neighbor 2.2.2.2 Down BGP Notification sent %BGP-3-NOTIFICATION: sent to neighbor 2.2.2.2 4/0 (hold time expired)

R1#show ip bgp neighbor 2.2.2.2 | include last reset
Last reset 00:01:02, due to BGP Notification sent, hold time expired

- R1 sends hold time expired NOTIFICATION to R2
 - R1 did not receive a KA from R2 for holdtime seconds
- One of two issues
 - R2 is not generating keepalives
 - R2 is generating keepalives but R1 is not receiving them

Notifications - Hold Time Expired

- Check if R2 is building keepalives (KA)
 - Check for output drops on R2 outgoing interface
 - When did R2 last build a BGP message for R1. (Should be within "keepalive interval" seconds

```
R2#show ip bgp neighbors 1.1.1.1

Last read 00:00:15, last write 00:00:44, hold time is 180, keepalive interval is 60 seconds
```

- R2 is building messages for R1 but possibly R2 is unable to send them
 - Check OutQ and MsgSent Counters show bgp afi safi summary
 - OutQ is the number of packets waiting for TCP to Tx to a peer
 - MsgSent is the number of packets TCP has removed from OutQ and transmitted for a peer

Notifications - Hold Time Expired

OutQ is incrementing due to keepalive generation MsgSent is not incrementing Something is "stuck" on the OutQ The keepalives are not leaving R2!!

Randomly Flapping Peers

Flapping continuously but not at regular intervals...

- What if the BGP peer is flapping continuously, but not at regular intervals.
 - Sometimes it flaps every 2 minutes and sometimes it flaps after 5 minutes

```
R2#show ip bgp sum | begin Neighbor
Neighbor
              MsqRcvd MsqSent
                                 TblVer
                                         InQ OutQ Up/Down
                                                              State/PfxRcd
10.1.13.3 ...
                   160
                          284
                                  10167
                                                    00:01:20
R2#show ip bgp sum | begin Neighbor
Neighbor
              MsqRcvd MsqSent
                                 TblVer
                                         InQ OutQ Up/Down
                                                              State/PfxRcd
10.1.13.3 ...
                  165
                          296
                                  10167
                                                    00:00:39
                                                                      10
```

- Most probable cause could be keepalives are not getting generated in timely manner
- Or, they are not being forwarded out in a timely manner

Can be identified by using BGP Debugs and/or packet captures

Randomly Flapping Peers

ASR1k - EPC Capture and Debugs

```
ASR1k(config) #ip access-list extended MYACL
ASR1k(config-acl) #permit tcp host 10.1.13.1 eq bgp host 10.1.13.3
ASR1k(config-acl) #permit tcp host 10.1.13.1 host 10.1.13.3 eq bgp
ASR1k#monitor capture CAP1 buffer circular packets 1000
ASR1k#monitor capture CAP1 buffer size 10
ASR1k#monitor capture CAP1 interface GigabitEthernet0/0/0 in
ASR1k#monitor capture CAP1 access-list MYACL
ASR1k#monitor capture CAP1 start
ASR1k#monitor capture CAP1 stop
ASR1k#monitor capture CAP1 export bootflash:cap1.pcap
```

ASR1k#debug ip bgp keepalives

Randomly Flapping Peers

ASR1k - EPC Capture

Regular Interval Flaps

```
*Jun 22 15:16:23.033: %BGP-3-NOTIFICATION: received from neighbor 192.168.2.2 4/0 (hold time expired) 0 bytes
```

```
*Jun 22 15:16:23.033: %BGP-5-ADJCHANGE: neighbor 192.168.2.2 Down BGP Notification received
```

```
*Jun 22 15:16:55.621: %BGP-5-ADJCHANGE: neighbor 192.168.2.2 Up
```

```
*Jun 22 15:19:56.409: %BGP-3-NOTIFICATION: received from neighbor 192.168.2.2 4/0 (hold time expired) 0 bytes
```

```
*Jun 22 15:19:56.409: %BGP-5-ADJCHANGE: neighbor 192.168.2.2 Down BGP Notification received
```

*Jun 22 15:20:13.361: %BGP-5-ADJCHANGE: neighbor 192.168.2.2 Up

Max = 1460

20+20 = 40

BGP Update Mechanism - Segment 1

MSS Calculation MSS = MTU – IP Header (20) – TCP

BGP Update Role of TCP MSS

TCP MSS (max segment size) is also a factor in convergence times. The larger the MSS, the fewer TCP packets it takes to transport the BGP updates. Fewer packets means less overhead and faster convergence.

BRKRST-3320

The entire BGP update can fit in one TCP packet

BGP Update Mechanism - Segment 2

Path MTU Discovery

- R1 sends a packet with packet size of outgoing interface MTU and DF-bit set
- Intermittent device having a lower MTU has three options
 - Fragment and send the packets (if DF-bit is cleared)
 - Drop the packet and send ICMP error message Type 3 Code 4
 - Drop the packet silently ⊗
- ICMP error message also has the MTU details in the Next-Hop MTU field
- Upon receiving the message, source can decrease the packet size accordingly

Type 3 – Destination Unreachable Code 4 – Fragmentation needed and DF-bit set

Notifications - Hold Time Expired

- MSS ping
 - BGP OPENs and Keepalives are small
 - UPDATEs can be much larger
 - Maybe small packets work but larger packets do not?

```
R1# ping 192.168.2.2 source loop0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/21/24 ms

R1# ping 192.168.2.2 source loop0 size 1500 df-bit

Type escape sequence to abort.
Sending 5, 1500-byte ICMP Echos to 192.168.2.2, timeout is 2 seconds:
Packet sent with the DF bit set
.....
Success rate is 0 percent (0/5)
```


Troubleshooting Route Filtering

Missing Routes / Stale Routes

What does it mean?

Missing Routes

- · The remote peer has not received the route
 - Either the speaker did not advertise the routes, or the remote peer did not receive or process the BGP update
 - Inbound / Outbound route-maps (Filtering)

Stale Routes

- A route is present in the local BGP table as learned from remote peer, but the peer no longer has that route present in its own BGP table
 - Either remote speaker did not advertise the withdraw, or the local device did not process the withdraw
 - EOR (End of RIB) received

Missing Routes

BGP not in read-write mode

- May not see the routes in BGP table in case BGP remains in read-only mode
 - To have the BGP routes installed, BGP should be in read-write mode
- On XR, use the below commands to verify BGP in read-write mode
 - · show bgp
 - show bgp process performance-statistics detail
 - At the very bottom of this output, you will see the lines shown below if the device entered the read-write mode

```
First neighbor established: Jan 23 20:15:45
Entered DO_BESTPATH mode: Jan 23 20:15:49
Entered DO_IMPORT mode: Jan 23 20:15:49
Entered DO_RIBUPD mode: Jan 23 20:15:49
Entered Normal mode: Jan 23 20:15:49
Latest UPDATE sent: Jan 23 20:18:39
```


Route Learning and Propagation Flow

- BGP prefixes are injected by explicit configuration
- Network statement network prefix mask mask
 - Prefix/mask needs to match the RIB exactly
 - Does not enable BGP on an interface like IGPs.
- Redistribution redistribute ...
 - Injects prefixes from the specified protocol
 - Does not inject 0.0.0.0/0
- Aggregate route aggregate-address prefix mask
 - Component route must exist in BGP
 - Aggregator attribute is added
- Default route default-information originate and neighbor X.X.X.X default-originate

Route Learning and Propagation Flow

Filtering Techniques

IOS and NX-OS:

- Prefix List (Based on destination networks)
- Filter-list (AS_Path)
- Route-map (Matching on a variety of path attributes in the NLRI

IOS XR:

- Route Policy Language (RPL)
- Programmatic, supports nesting, and multiple operations

Route-Map Behavior

- A route-map consists of one or more sections (blocks), each of them with a unique sequence number and an associated action (permit / deny)
- A route-map processes routes or IP packets in a linear fashion, that is, starting from the section with lowest sequence number
- If the referred policies (for example, prefix lists) within a match statement of a routemap section return either a no-match or a deny-match, the router will inspect the next route-map section
- If there is no applicable match statement in a route-map section, the fate of all routes or packets inspected at this stage is determined by the action of the routemap section being inspected

Route-Map Behavior

What is the outcome of the above redistribution?

```
ip prefix-list OSPF2BGP seq 15 permit 10.0.0.0/7 ge 8
!
route-map OSPF2BGP permit 10
  match ip prefix-list FILTERv4
!
router bgp 100
  address-family ipv4 unicast
  redistribute ospf 1 route-map OSPF2BGP
```


Route-Map Problem

What is the outcome of the above redistribution?

```
ip prefix-list FILTERv4 seq 10 permit 10.0.0.0/7 qe 8
ipv6 prefix-list FILTERv6 seg 5 permit 2001:2::/48 ge 48
route-map OSPF2BGP permit 10
match ip prefix-list FILTERv4
route-map OSPF2BGP permit 20
match ipv6 prefix-list FILTERv6
router bgp 100
 address-family ipv4 unicast
   redistribute ospf 1 route-map OSPF2BGP
 address-family ipv6 unicast
   redistribute ospfv3 1 route-map OSPF2BGP
```

Route-Map Problem

What is the outcome of the above redistribution?

```
ip prefix-list FILTERv4 seq 10 permit 10.0.0.0/7 qe 8
ipv6 prefix-list FILTERv6 seg 5 permit 2001:2::/48 ge 48
route-map OSPF2BGP permit 10
                                       Not a Conditional IPv6 Match
match ip prefix-list FILTERv4
route-map OSPF2BGP permit 20
match ipv6 prefix-list FILTERv6
                                      Not a Conditional IPv4 Match
router bgp 100
 address-family ipv4 unicast
   redistribute ospf 1 route-map OSPF2BGP
 address-family ipv6 unicast
   redistribute ospfv3 1 route-map OSPF2BGP
```

There is an implicit drop at the end of RPL processing. A route must be given a 'ticket' to ensure that it has been inspected by the RPL

- Pass prefix allowed if not later dropped
 - *pass grants a ticket to defeat default drop
 - Execution continues after pass
- Set value changed, prefix allowed if not later dropped
 - •Any set at any level grants a ticket
 - •Execution continues after set
 - Values can be set more than once
- Drop prefix is discarded
 - •Explicit drop stops policy execution
 - •Implicit drop (if policy runs to end without getting a ticket)
- Done accepts prefix and stops processing

IOS XR RPL

RPL to Pass Everything

```
route-policy PASS-ALL pass end-policy
```

RPL to Drop Everything

```
route-policy DROP-ALL drop end-policy
```

RPL for Filtering by Prefixes

```
if destination in (10.0.0.0/8 ge 8, 172.16.0.0/12 ge 12, 192.168.0.0/16 ge 16) then pass else drop endif
```


IOS XR RPL

Missing Routes RPL in IOS XR

- IOS and NX-OS by default install routes in the BGP table for prefixes learned from eBGP peers
- IOS XR requires a mandatory RPL policy to have them installed in BGP table.

```
RP/0/0/CPU0: 16:28:06.171 : bgp[1047]: %ROUTING-BGP-6-NBR_NOPOLICY : No inbound IPv4 Unicast policy is configured for eBGP neighbor 10.0.0.1. No IPv4 Unicast prefixes will be accepted from the neighbor until inbound policy is configured.

RP/0/0/CPU0:16:28:06.171 : bgp[1047]: %ROUTING-BGP-6-NBR_NOPOLICY : No outbound IPv4 Unicast policy is configured for eBGP neighbor 10.0.0.1. No IPv4 Unicast prefixes will be sent to the neighbor until outbound policy is configured.
```


Missing Routes

RPI in IOS XR

• Troute-policy INBOUND-ROUTES if destination in A1-PREFIX-SET then pass else drop endif end-policy route-policy PASS-ALL pass end-policy router bgp 100 neighbor 10.0.0.1 remote-as 200 address-family ipv4 unicast route-policy INBOUND-ROUTES in route-policy PASS-ALL out

Topology

R2# show bgp ipv4 unicast						
Network N	ext Hop	Metric	LocPrf	Weight	Path	
*> 172.16.0.0/24	192.168.200	.3	0		0 300	80 90 21003 2100 i
*> 172.16.4.0/23	192.168.200	.3	0		0 300	1080 1090 1100 1110 i
*> 172.16.16.0/22	192.168.200	.3	0		0 300	11234 21234 31234 i
*> 172.16.99.0/24	192.168.200	.3	0		0 300	40 i
*> 172.16.129.0/24	192.168.200	.3	0		0 300	10010 300 30010 30050 i
*>i192.168.0.0	10.12.1.1		0 :	100	0 100	80 90 21003 2100 i
*>i192.168.4.0/23	10.12.1.1		0 :	100	0 100	1080 1090 1100 1110 i
*>i192.168.16.0/22	10.12.1.1		0 :	100	0 100	11234 21234 31234 i
*>i192.168.99.0	10.12.1.1		0 :	100	0 100	40 i
*>i192.168.129.0	10.12.1.1		0 :	100	0 100	10010 300 30010 30050 i

Regex Query Modifiers

Modifier	Description	
_ (Underscore)	Matches a space	
^ (Caret)	Indicates the start of the string	
\$ (Dollar Sign)	Indicates the end of the string	
[] (Brackets)	Matches a single character of the set	
- (Hyphen)	Indicates a range of numbers or characters in brackets	
[^] (Caret in Brackets)	Excludes the characters listed in brackets; must be the first character	
() (Parentheses)	Used for nesting of search patterns	
(Pipe)	Provides 'or' functionality to the query	
. (Period)	Matches a single character, including a space	
* (Asterisk)	Matches zero or more preceding characters or patterns	
+ (Plus Sign)	Matches one or more preceding characters or patterns	
? (Question Mark)	Matches at most one preceding characters or patterns	

Regex

```
R2# show bgp ipv4 unicast regexp 300
! Output omitted for brevity
   Network Next Hop Metric LocPrf Weight Path
0 300 80 90 21003 455 i
0 300 878 1190 1100 1010 i
0 300 779 21234 45 i
0 300 145 40 i
*> 172.16.129.0/24 192.168.200.3
                                    0 300 10010 300 1010 40 50 i
*>i192.168.129.0 10.12.1.1
                            100
                                    0 100 10010 300 1010 40 50 i
```

```
R2# show bgp ipv4 unicast regexp ^300_!
Output omitted for brevity
Network
Next Hop
Metric LocPrf Weight Path

*> 172.16.0.0/24
192.168.200.3
0
0 300 80 90 21003 455 i

*> 172.16.4.0/23
192.168.200.3
0
0 300 878 1190 1100 1010 i

*> 172.16.16.0/22
192.168.200.3
0
0 300 779 21234 45 i

*> 172.16.99.0/24
192.168.200.3
0
0 300 145 40 i

*> 172.16.129.0/24
192.168.200.3
0
0 300 10010 300 1010 40 50 i
```


Regex

```
R2# show bgp ipv4 unicast regexp [4-8]0
! Output omitted for brevity
   Network Next Hop Metric LocPrf Weight Path
0 300 80 90 21003 455 i
0 300 145 40 i
*> 172.16.129.0/24 192.168.200.3 0
                                   0 300 10010 300 1010 40 50 i
                          0 100
*>i192.168.0.0 10.12.1.1
                                    0 100 80 90 21003 455 i
*>i192.168.99.0 10.12.1.1
                          0 100
                                   0 100 145 40 i
*>i192.168.129.0 10.12.1.1
                             100
                                    0 100 10010 300 1010 40 50 i
```


Prefix-List Blocking Prefixes

```
RTR# debug bgp ipv4 unicast updates in
BGP updates debugging is on (inbound) for address family: IPv4 Unicast

RTR# clear bgp ipv4 unicast 10.1.45.4 soft in
! Output omitted for brevity
* 18:59:42.515: BGP(0): process 10.1.12.0/24, next hop 10.1.45.4, metric 0 from 10.1.45.4
* 18:59:42.515: BGP(0): Prefix 10.1.12.0/24 rejected by inbound filter-list.
* 18:59:42.515: BGP(0): update denied
```

```
NXOS5# debug bgp updates
NXOS5# clear bgp ipv4 unicast 10.1.45.4 soft in
! Output omitted for brevity
19:02:54 bgp: 300 [8449] UPD: [IPv4 Unicast] 10.1.45.4 Inbound as-path-list 1, action permit
19:02:54 bgp: 300 [8449] UPD: [IPv4 Unicast] 10.1.45.4 Inbound as-path-list 1, action deny
19:02:54 bgp: 300 [8449] UPD: [IPv4 Unicast] Dropping prefix 10.1.12.0/24 from peer 10.1.45.4,
due to attribute policy rejected
```


IOS XR BGP RPL Debugging

```
route-policy R4-IN
  if destination in (10.0.0.0/8 le 32) then
   pass
  endif
  if destination in (172.16.0.0/12 le 32) then
    set med 20
  endif
end-policy
```

```
RP/0/0/CPU0:XR# debug bgp policy-execution events
RP/0/0/CPU0:XR# clear bqp ipv4 unicast 10.1.45.4 soft
RP/0/0/CPU0: 06:19:10.000 : bap[1053]: --Running policy 'R4-IN':---
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]: Attach pt='neighbor-in-dflt'
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                        Attach pt inst='default-IPv4-Uni-10.1.45.4'
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]: Input route attributes:
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         as-path: 200 100 600
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]:
                                         as-path-length: 3
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         as-path-unique-length: 3
                                         community: No Community Information
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         path-type: ebgp
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         aigp-metric: 0
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]:
                                         validation-state: not-found
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]: Policy execution trace:
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         Condition: destination in (10.0.0.0/8 ...)
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         Condition evaluated to FALSE
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         Condition: destination in (172.16.0.0/12 ...)
RP/0/0/CPU0: 06:19:10.000 : bgp[1053]:
                                         Condition evaluated to FALSE
RP/0/0/CPU0: 06:19:10.000 : bqp[1053]:
                                         End policy: result=DROP
```


Symptoms and Possible Causes

- Symptoms
 - Stale Entry to BGP Peer
 - · Traffic Black-Hole
 - Outage
- Possible Causes
 - BGP Slow Peer
 - Sender did not send the update
 - Receiver did not process the update

Topology Reference

Example - Route on BGP Speaker

```
RP/0/RSP0/CPU0:iRR2# show bgp ipv4 labeled-unicast 10.229.37.92
BGP routing table entry for 10.229.37.92/32
   Local Label: 25528
Last Modified: Jan 13 10:20:52.424 for 11:45:15
Paths: (1 available, best #1)
    Path #1: Received by speaker 0
 Advertised to update-groups (with more than one peer):
    0.1 0.2 0.3 0.7
 Local
    10.229.34.128 (metric 5) from 192.168.53.9 (10.229.37.92)
      Received Label 26596
      Origin IGP, metric 0, localpref 100, valid, internal, best, group-best
      Received Path ID 1, Local Path ID 0, version 301642
      Community: 65080:109
      Originator: 10.229.37.92, Cluster list: 0.0.254.56, 10.229.34.128
```


Example - Stale Entry on Receiving Router

```
Central-RR# show bgp ipv4 unicast 10.229.37.92
BGP routing table entry for 10.229.37.92/32, version 290518
BGP Bestpath: deterministic-med
Paths: (3 available, best #2, table default)
  Refresh Epoch 1
  Local, (Received from a RR-client)
                                                                        iRR1 IP
    10.229.34.128 (metric 116) from 10.229.34.128 (10.229.34.128)
      Origin IGP, metric 0, localpref 100, valid, internal, best2
      Community: 65080:109
      Originator: 10.229.37.92, Cluster list: 10.229.34.128
      mpls labels in/out nolabel/26596
      rx pathid: 0x1A, tx pathid: 0x1
  Local, (Received from a RR-client)
                                                                       iRR2 IP
    10.229.37.2 (metric 113) from 10.229.37.2 (10.229.37.2)
      Origin IGP, metric 0, localpref 100, valid, internal, best
      Community: 65080:109
      Originator: 10.229.37.92, Cluster list: 10.229.37.2
     mpls labels in/out nolabel/27183
      rx pathid: 0x7, tx pathid: 0x0
```

How to Troubleshoot?

- On IOS, it is difficult to get to the root cause after the problem has occurred
 - Enable conditional debugs and wait for the issue to happen again
 - Reproduce the problem in lab environment (hard but not impossible)
- On IOS XR, use show bgp trace and BGP debugs to understand if the advertisement has been sent/received
 - · Debug
- On NX-OS, use **show bgp internal event-history { events | errors }** to figure out if the prefix has been received / advertised

Stale Routes or Missing Routes / Advertisements

Conditional Debugs

```
IOS-1# show access-list 99
Standard IP access list 99
     permit 10.1.1.0 0.0.0.255
IOS-1# debug ip bgp 2.2.2.2 update 99
IOS-XR:
route-policy DEBUG BGP
 if destination in BGP PREFIX then
  pass
 else
 drop
 endif
end-policy
prefix-set BGP PREFIX
  100.1.1.0/24
 end-set
debug bgp update ipv4 unicast [in | out] route-policy DEBUG BGP
```

BGP Route Churn and Troubleshooting with BGP Table Version

Symptom - High CPU?

```
Router# show process cpu

CPU utilization for five seconds: 100%/0%; one minute: 99%; five minutes: 81%

....

139 6795740 1020252 6660 88.34% 91.63% 74.01% 0 BGP Router
```

- · Define "High"
 - Know what normal CPU utilization is for the router in question
 - Is the CPU spiking due to "BGP Scanner" or is it constant?
- Look at the scenario
 - Is BGP going through "Initial Convergence"?
- If not then route churn is the usual culprit
 - Illegal recursive lookup or some other factor causes bestpath changes for the entire table

High CPU due to BGP Router

- How to identify route churn?
 - Do sh ip bgp summary and note the table version
 - · Wait 60 seconds
 - Do sh ip bgp summary and compare the table version from 60 seconds ago
- You have 150K routes and see the table version increase by 300
 - · This is probably normal route churn
 - Know how many bestpath changes you normally see per minute
- You have 150K routes and see the table version fluctuating by 20K 50K
 - This is bad and is the likely cause of your high CPU


```
Router# show ip bgp all sum | in table
BGP table version is 936574954, main routing table version 936574954
BGP table version is 429591477, main routing table version 429591477
Router#
                                                             < 4 seconds later
                                   Over 1800 prefixes flapped
Router# show ip bgp all sum | in cable
BGP table version is 936576768, main routing table version 936575068
BGP table version is 429591526, main routing table version 429591526
Router#
Router# show ip route | in 00:00:0
        187.164.0.0 [200/0] via 218.185.80.140, 00:00:00
        187.52.0.0 [200/0] via 218.185.80.140, 00:00:00
        187.24.0.0 [200/0] via 218.185.80.140, 00:00:00
        187.68.0.0 [200/0] via 218.185.80.140, 00:00:00
        186.136.0.0 [200/0] via 218.185.80.140, 00:00:00
```

Table Version Changes?

- What causes massive table version changes?
- Flapping peers
 - Hold-timer expiring?
 - Corrupt UPDATE?
- Route churn
 - · Do not try to troubleshoot the entire BGP table at once
 - Identify one prefix that is churning and troubleshoot that one prefix
 - Will likely fix the problem with the rest of the BGP table churn

Flapping Routes in BGP

- Figuring out flapping routes from routing table is easy (even in VRF)
 - show ip route vrf * | in 00:00:0|VRF
- How about identifying flapping routes on the VPNv4 Route Reflector?
 - show bgp vpnv4 unicast all summary | in table
 - Use the table version as the marker in the below command to see the routes which flapped after the last command that was executed
 - show bgp vpnv4 unicast all version [version-num | recent version-num]
 - Use the next-hop of the prefixes from the above command, to see why the prefixes are flapping

Flapping Routes in BGP

```
R1# show bgp ipv4 unicast version recent 6
BGP table version is 12, local router ID is 192.168.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
             r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
             x best-external, a additional-path, c RIB-compressed,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found
    Network Next Hop Metric LocPrf Weight Path
r>i 192.168.2.2/32 192.168.2.2
                                          0 100
r>i 192.168.3.3/32 192.168.3.3
                                              100
*mi 192.168.200.200/32
                                              100 0 200 i
                   192.168.3.3
*>i
                   192.168.2.2
                                               100
                                                       0 200 i
```


Flapping Routes in BGP on IOS XR

- IOS XR has a more interesting command for table version updates
 - show bgp afi safi version start-version end-version

Which AFI?

- If there are too many updates coming onto the router, one way to identify it would be show ip traffic | section TCP
- Symptom TCP traffic increasing rapidly, but table version for IPv4 and VPNv4 AFI is only increasing by 200 or 300 or a smaller value
- Check for different AFIs enabled on the router and checking for the table version changes in those AFIs
 - Especially IPv6 or VPNv6 as those can have more impact with fewer prefixes flapping

Embedded Event Manager (EEM)

- Serves as a powerful tool for high CPU troubleshooting
- Triggered based on event and thresholds
- Multiple actions can be set based on events

```
event manager applet HIGHCPU
event snmp oid "1.3.6.1.4.1.9.9.109.1.1.1.1.3.1" get-type exact entry-op gt entry-val "90"
exit-op lt exit-val "70" poll-interval 5 maxrun 200
action 1.0 syslog msg "START of TAC-EEM: High CPU"
action 1.1 cli command "show clock"
action 1.3 cli command "show ip bgp all summary | append disk0:proc_CPU"
action 2.0 cli command "show process cpu sorted | append disk0:proc_CPU"
action 2.1 cli command "show process cpu sorted | append disk0:proc_CPU"
action 2.2 cli command "show proc cpu history | append disk0:proc_CPU"
action 2.3 cli command "show ip bgp all summary | append disk0:proc_CPU"
action 3.1 cli command "show log | append disk0:proc_CPU"
action 4.0 syslog msg "END of TAC-EEM: High CPU"
```


Dissecting NH for IPv6

Understanding NH for IPv6

Troubleshooting 6PE and 6VPE

Dissecting NH for IPv6 IPv6 Next-Hop

- Assume that BGP neighbors are peered using their global IPv6 addresses
- Given this, for IPv6 NLRIs, the NH will always contain a global IPv6 address, and may contain a link-local IPv6 address
- IPv6 iBGP
 - NH only contains a global IPv6 address
- IPv6 eBGP in IPv6 or VPNv6 address family
 - Between directly connected IPv6 addresses
 - NH contains both a global and a link-local address
 - Between indirect IPv6 addresses
 - · NH contains only a global IPv6 address

Dissecting NH for IPv6

IPv6 BGP Update

```
1048 1787.530693
                   2001:10:1:25::2
                                                              BGP
                                        2001:10:1:25::5
                                                                       300 UPDATE Message, UPDATE Message, UPDATE Message
                                        2001:10:1:25::2
                                                                        74 42072 → 179 [ACK] Seg=90 Ack=322 Win=15008 Len=0
1049 1787,533124
                   2001:10:1:25::5
                                                              TCP
1053 1788,537670
                   2001:10:1:25::5
                                        2001:10:1:25::2
                                                              BGP
                                                                        216 UPDATE Message, UPDATE Message, KEEPALIVE Message
                                                                       216 [TCP Retransmission] 42072 → 179 [PSH, ACK] Seq=90 /
1054 1788.738314
                   2001:10:1:25::5
                                        2001:10:1:25::2
                                                              TCP
1055 1788.739041
                   2001:10:1:25::2
                                        2001:10:1:25::5
                                                              TCP
                                                                        74 179 → 42072 [ACK] Seg=322 Ack=232 Win=16153 Len=0
                                                                        78 [TCP Retransmission] 179 → 37806 [SYN, ACK] Seq=0 Ac
1059 1801.159168
                   2001:10:1:25::5
                                        fe80::ed1:9cff:fe4... TCP
1075 1836.537106
                                                              BGP
                                                                        93 KEEPALIVE Message
                   2001:10:1:25::2
                                        2001:10:1:25::5
                                                                        74 42072 → 179 [ACK] Seq=232 Ack=341 Win=15008 Len=0
1076 1836.578287
                   2001:10:1:25::5
                                        2001:10:1:25::2
                                                              TCP
1086 1848.546976
                 2001:10:1:25::5
                                        2001:10:1:25::2
                                                              BGP
                                                                        93 KEEPALIVE Message
                                                                        74 179 → 42072 [ACK] Seq=341 Ack=251 Win=16134 Len=0
1087 1848.748150
                 2001:10:1:25::2
                                        2001:10:1:25::5
                                                             TCP
```

- ▼ Path Attribute MP_REACH_NLRI
 - ▶ Flags: 0x80, Optional, Non-transitive, Complete

Type Code: MP_REACH_NLRI (14)

Length: 54

Address family identifier (AFI): IPv6 (2)

Subsequent address family identifier (SAFI): Unicast (1)

▼ Next hop network address (32 bytes)

Next Hop: 2001:10:1:25::2

Next Hop: fe80::ed1:9cff:fe43:601

Number of Subnetwork points of attachment (SNPA) · 0

- ▼ Network layer reachability information (17 bytes)
 - ▶ 2001:192:168:2::2/128
- ▼ Path Attribute ORIGIN: IGP
 - ▶ Flags: 0x40, Transitive, Well-known, Complete

BRKRST-3320

Dissecting NH for IPv6

IPv4 Peering for IPv6 AFI

- When using IPv4 peering, NH is automatically set to IPv4-mapped IPv6 address ::ffff:X.X.X.X (on IOS and IOS-XE) (NX-OS won't install the prefix)
 - This cannot be used as an IPv6 NH since it is an inaccessible address
 - RR cannot advertise this prefix
 - Exception: Can be accessible if the session is for 6PE or 6VPE
- Alternate Solution
 - Have the advertising BGP speaker set an outbound route-map to set the NH to a global IPv6 address
 - Have the receiving BGP speaker set an inbound route-map to set the NH to a global IPv6 address

6PE Overview (RFC4798)

High Level 6PE/6VPE

MPLS as a IPv6 tunneling mechanism

- MPLS (VPN) network built on IPv4 can be upgraded to provide tunneling mechanism (6-4-6) using Multi-Protocol BGP
 - 6PE For global routing
 - 6VPE For VRF based routing

BRKRST-3320

IPv6 Provider Edge Router (6PE) over MPLS

- IPv6 global connectivity over an IPv4-MPLS core
- Transitioning mechanism for providing unicast IPv6 connectivity
- PEs are updated to support dual stack/6PE
- IPv6 reachability exchanged among 6PEs via iBGP (MBGP)
- IPv6 packets transported from 6PE to 6PE inside MPLS using labels

6PE Routing/Label Distribution

BRKRST-3320

6PE Forwarding (6PE-1)

6PE Forwarding (P1)

6PE Forwarding (P2)

6PE Forwarding (6PE-2)

6PE-1 Configuration

```
2001:DB8::
ipv6 cef
                                                                  iBGP Session
mpls label protocol ldp
                                                                                6PF-2
router bgp 100
                                                                      6PE-1
no synchronization
no bgp default ipv4 unicast
                                                          2001:DB8:1::1 Is the Local CE
neighbor 2001:DB8:1::1 remote-as 65014
                                                          200.10.10.1 Is the Remote 6PE
neighbor 200.10.10.1 remote-as 100
neighbor 200.10.10.1 update-source Loopback0
 address-family ipv6
neighbor 200.10.10.1 activate
 neighbor 200.10.10.1 send-label
                                                          Send Labels Along with
                                                          IPv6 Prefixes by Means of
neighbor 2001:DB8:1::1 activate
                                                          MP-BGP Note: Will Cause
 redistribute connected
                                                           Session to Flap
no synchronization
 exit-address-family
```


6PE Show Output

```
6PE-1# show ip route 200.10.10.1
Routing entry for 200.10.10.1/32
Known via "isis", distance 115, metric 20, type level-2
[snip]
 * 10.12.0.1, from 200.10.10.1, via FastEthernet1/0
Route metric is 20, traffic share count is 1
6PE-1# show ipv6 route
B 2001:F00D::/64 [200/0]
via ::FFFF:200.10.10.1, IPv6-mpls
```

```
6PE-1# show ipv6 cef internal
.. OUTPUT TRUNCATED ..

2001:F00D::/64,
nexthop ::FFFF:200.10.10.1
fast tag rewrite with F0/1, 10.12.0.1, tags imposed {17 28}
```

Other Useful Output:

show bgp ipv6 neighbors show bgp ipv6 unicast show mpls forwarding

Verifying BGP Configuration Parameters

- Sometimes we require verifying some configuration parameters for BGP
- To verify the config / process wide parameters, use the command show bgp process
- Includes the following:
 - BGP Router ID
 - Confederation ID or Cluster ID
 - Process and Memory state
 - Counts of configured peers and established peers
 - AFI information
 - Redistribution (if any)
 - Route-map

Show bgp process

```
N7K1# show bgp process
BGP Process Information
BGP Process ID: 5128
BGP Protocol Started, reason: : configuration
BGP Protocol Tag: 1
BGP Protocol State : Running
BGP Memory State : OK
BGP asformat : asplain
BGP attributes information
Number of attribute entries: 15
HWM of attribute entries: 49
Bytes used by entries: 1380
Entries pending delete : 0
HWM of entries pending delete: 0
BGP paths per attribute HWM: 11
BGP AS path entries : 0
Bytes used by AS path entries : 0
Information regarding configured VRFs:
BGP Information for VRF default VRF Id: 1
VRF state : UP
Router-ID: 192.168.1.1
Configured Router-ID: 192.168.1.1
Confed-ID: 0 Cluster-ID: 0.0.0.0
No. of configured peers: 10
No. of pending config peers : 0
No. of established peers : 0
VRF RD : Not configured
```

Show bgp process

```
N7K1# show bgp process
[ ... continued ... ]
Information for address family IPv4 Unicast in VRF default
Table state : UP
Peers Active-peers Routes Paths Networks Aggregates
5 0 19 20 <u>10 0</u>
Redistribution
  static, route-map static-bgp
  direct, route-map rm-permit-all
  eigrp, route-map rm-permit-all
Default-Information originate enabled
Nexthop trigger-delay
      critical 3000 ms
      non-critical 10000 ms
```


BGP Event-History

- NX-OS event-history capability is alternate, and preferred, to running debugs
- Event-History Buffer Sizes:
 - Large
 - Medium
 - Small
- Event-History maintained for:
 - Events
 - Errors
 - Detail
 - Msgs
 - CLI

Processing an Incoming Update - show bgp event-history detail

Manually enable detail event-history using the command event-history detail
 size [large | medium | small] in BGP process configuration

```
05:28:12.515623: (default) UPD: Received UPDATE message from 10.1.23.2
05:28:12.515616: (default) BRIB: [IPv4 Unicast] (192.168.1.1/32 (10.1.23.2)): returning from
bgp brib add, new path: 0, change: 0, undelete: 0, history: 0, force: 0, (pflags=0x28), reeval=0
05:28:12.515608: (default) BRIB: [IPv4 Unicast] 192.168.1.1/32 from 10.1.23.2 was already in BRIB
with same attributes
05:28:12.515600: (default) BRIB: [IPv4 Unicast] (192.168.1.1/32 (10.1.23.2)): bgp brib add:
handling nexthop
05:28:12.515593: (default) BRIB: [IPv4 Unicast] Path to 192.168.1.1/32 via 192.168.2.2 already
exists, dflags=0x8001a
05:28:12.515580: (default) BRIB: [IPv4 Unicast] Installing prefix 192.168.1.1/32 (10.1.23.2) via
10.1.23.2 into BRIB with extcomm
05:28:12.515557: (default) UPD: [IPv4 Unicast] Received prefix 192.168.1.1/32 from peer
10.1.23.2, origin 0, next hop 10.1.23.2, localpref 0, med
005:28:12.515524: (default) UPD: 10.1.23.2 Received attr code 2, length 10, AS-Path: <200 100 >
05:28:12.515503: (default) UPD: Attr code 3, length 4, Next-hop: 10.1.23.2
05:28:12.515454: (default) UPD: Attr code 1, length 1, Origin: IGP
05:28:12.515446: (default) UPD: 10.1.23.2 parsed UPDATE message from peer, len 52 , withdraw len
0, attr len 24, nlri len 5
```


Update Generation - show bgp event-history detail

```
05:28:11.478903: (default) UPD: [IPv4 Unicast] 10.1.23.2 Created UPD msq (len 52) with prefix
192.168.1.1/32 ( Installed in HW) path-id 1 for peer
05:28:11.478886: (default) UPD: 10.1.23.2 Sending attr code 3, length 4, Next-hop: 10.1.23.3
05:28:11.478880: (default) UPD: 10.1.23.2 Sending attr code 2, length 10, AS-Path: <300 100 >
05:28:11.478870: (default) UPD: 10.1.23.2 Sending attr code 1, length 1, Origin: IGP
05:28:11.478856: (default) UPD: [IPv4 Unicast] consider sending 192.168.1.1/32 to peer 10.1.23.2,
path-id 1, best-ext is off
05:28:11.478717: (default) EVT: [IPv4 Unicast] soft refresh out completed for 1 peers
05:28:11.478690: (default) EVT: [IPv4 Unicast] Adding peer 10.1.23.2 for update gen
05:28:11.478686: (default) BRIB: [IPv4 Unicast] Group setting SRM for dest 192.168.3.3/32
05:28:11.478682: (default) BRIB: [IPv4 Unicast] Group setting SRM for dest 192.168.2.2/32
05:28:11.478678: (default) BRIB: [IPv4 Unicast] Group setting SRM for dest 192.168.1.1/32
05:28:11.478666: (default) EVT: [IPv4 Unicast] 1 peer(s) being soft refreshed out
05:28:11.478661: (default) EVT: [IPv4 Unicast] 10.1.23.2 [peer index 2]
05:28:11.478638: (default) EVT: [IPv4 Unicast] Doing soft out BGP table walk for peers
05:28:10.478332: (default) EVT: [IPv4 Unicast] Scheduling peer 10.1.23.2 for soft refresh out
05:28:10.478321: (default) EVT: Received ROUTEREFRESH message from 10.1.23.2
```


Conditional Debugging and URIB

```
debug logfile bgp
debug bgp events updates rib brib import
debug-filter bgp vrf vpn1
debug-filter bgp address-family ipv4 unicast
debug-filter bgp neighbor 10.1.202.2
debug-filter bgp prefix 192.168.2.2/32
```

Troubleshooting URIB

```
show routing internal event-history { add | delete | modify | summ }
show routing internal event-history recursive
show routing internal event-history ufdm
show routing internal event-history ufdm-summary
```


Route Policy Manager

- Route-map functionality is provided by a standalone process in NX-OS called Route Policy Manager (RPM)
- RPM handles route-maps, AS-path ACLs, community lists, and prefix lists
- The route-maps are configured the same way they are configured in Cisco IOS, but are managed by RPM
 - If there are any issues seen with route-maps not functioning, RPM process status and traces should be inspected

Route Policy Manager

Troubleshooting with NX-OS Route Policy Manager

```
template peer-policy PP-Test1
    send-community
    route-map RM-Test1 out
neighbor 192.168.2.2 remote-as 65000
      inherit peer-session ps-ebgp-peer-
to-mpls-core
        address-family ipv4 unicast
        inherit peer-policy PP-Test1 5
        send-community
        prefix-list pl-nab-core-devl-
routes in
        no prefix-list pl-cloud-routes out
        route-map RM-Test2 out
        soft-reconfiguration inbound
```

```
NX-1# sh route-map RM-Test1
route-map RM-Test1, permit, sequence 10
  Match clauses:
    ip address prefix-lists: sy3-routes
  Continue: sequence 20
  Set clauses:
    community 65135:999
route-map RM-Test1, permit, sequence 999
  Match clauses:
  Set clauses:
NX-1# sh route-map RM-Test2
route-map RM-Test1, permit, sequence 10
  Match clauses:
    ip address prefix-lists: pl-cloud-
routes
  Set clauses:
route-map RM-Test1, permit, sequence 20
  Match clauses:
    as-path (as-path filter): as-mel-o365-
ext-routes
  Set clauses:
```

```
NX-2# show system internal rpm route-map
Policy name: RM-Test1
                               Type: route-map
Version: 6
                               State: Ready
Ref. count: 1
                               PBR refcount: 0
Stmt count: 5
                               Last stmt seq: 999
Set nhop cmd count: 0
                               Set vrf cmd count: 0
Set intf cmd count: 0
                               Flags: 0x0000003
PPF nodeid: 0x0000000
                               Config refcount: 0
PBR Stats: No
Clients:
    bqp-65136 (Route filtering/redistribution) ACN version: 0
```



```
# show system internal rpm event-history rsw
Routing software interaction logs of RPM
1) Event: E DEBUG, length: 88, at 96760 usecs after Sun Apr 23 22:19:12 2017
    [120] [3959]: Bind ack sent - client bgp-65136 uuid 0x0000011b for policy RM-
Test2 <<<< Outbound route-map bound to BGP client
2) Event: E DEBUG, length: 83, at 96717 usecs after Sun Apr 23 22:19:12 2017
    [120] [3959]: Bind request - client bqp-65136 uuid 0x0000011b policy RM-Test2
3) Event: E DEBUG, length: 88, at 782159 usecs after Sun Apr 23 21:51:06 2017
    [120] [3959]: Bind ack sent - client bqp-65136 uuid 0x0000011b for policy RM-
Test2
<snip>
    [120] [3959]: UnBind request succesfull - client bgp-65136 policy RM-
Test1 <<<< Unbind for route-map referenced in peer-policy
6) Event: E DEBUG, length: 99, at 781950 usecs after Sun Apr 23 21:51:06 2017
    [120] [3959]: UnBind request - client bqp-65136 unid 0x0000011b policy RM-Test1
7) Event: E DEBUG, length: 102, at 344591 usecs after Sun Apr 23 21:47:39 2017
    [120] [3959]: Bind ack sent - client bop-65136 uuid 0x0000011b for policy RM-
Test1 <<<<< Route-map referenced in peer-policy</pre>
8) Event: E DEBUG, length: 97, at 344557 usecs after Sun Apr 23 21:47:39 2017
    [120] [3959]: Bind request - client bgp-65136 uuid 0x0000011b policy RM-Test1
```

Route Policy Manager

- Use RPM Event-history when troubleshooting any misbehavior of route policy / redistribution / missing routes / routes not learnt
- In case of issues, collect show tech rpm
- Use the below commands to troubleshoot RPM issues
 - show system internal rpm event-history events (For RPM Events)
 - show system internal rpm event-history errors (For errors with RPM)
 - show system internal rpm event-history rsw (RPM Interaction with RPM software)
 - show system internal rpm event-history msgs (RPM Message logs)
 - show system internal rpm event-history trace (RPM Traces)

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illilli CISCO

Thank you

cisco live!

You make possible