Série Nro. 5 – MEF Assíncronas

1Q: Peças de comprimento 10 cm e 15cm são transportadas por uma esteira. A longo do percurso existem dois **sensores óticos**, P_1 e P_2 que fornecem a saída 1 quando uma barra está passando. Logo após os sensores, há um **alçapão** que deve deixar cair apenas às peças de comprimento de 10 cm, e deixando as outras passarem. A **distância** entre P_1 e P_2 é 12 cm. **Supor** que uma peça só atinja P_1 quando a outra já passou totalmente por P_2 . Pede-se;

- a) A tabela de fluxo primitiva modelo Moore.
- **b**) Grafo de transição de estados (Diagrama de Estados).

2Q: Uma **rodovia** é atravessada por **automóveis** e **caminhões**, que podem trafegar em ambas as direções. Deseja-se projetar um **sistema** que seja capaz de **detectar** caminhões que vão da esquerda para a direita. Isto será feito pela colocação de um par de **sensores** (fotocélulas) X_1 e X_2 em pontos determinados da estrada. Estes **sensores** estão separados por uma distância L, e fornecem uma tensão constante e diferente de zero, sempre que um veículo estiver sobre eles. Todos os caminhões **excedem** L em comprimento, e são menores que 2L. Todos os automóveis são **menores** que L. **Assumir** que nas vizinhanças da fotocélula nunca dois veículos chegam a uma distância entre eles menor que 2L. Pede-se.

- a) A tabela de fluxo primitiva modelo Mealy.
- **b**) Grafo de transição de estados (Diagrama de estados).

3Q: Para o diagrama de temporização abaixo, onde x e y são entradas e z a saída. pede-se a tabela de fluxo primitiva modelo Mealy; obs: o circuito opera no modo fundamental normal e outras situações considerar dont´-care.

4Q: Encontre a tabela de fluxo minimizada para a tabela de fluxo primitiva modelo Mealy abaixo.

Obs: o circuito opera no modo fundamental normal.

X2 X1				X2 X1			
00	01	11	10	00	01	11	10
a	f	i	k	О		О	
Ь	f	g	j	О		О	
	d	h	j	0		0	-
С	d	i	k		1		1
а	(e)	i	j		1		
а	f	h	j		1		1
а	е	9	k	О		О	
С	f	h	k	О		О	
а	d	i	j	О		О	
С	f	i	j		1		1
а	d	h	$\binom{k}{k}$		1		1

5Q: Encontre a tabela de fluxo minimizada para a tabela de fluxo primitiva modelo Moore abaixo.

Obs: o circuito opera no modo fundamental normal.

		X 2		Saídas
00	01	11	10	Z1 Z2
1	2		3	00
1	2	4		01
1		5	3	10
	6	4	7	01
	8	(5)	9	10
1	6	5		11
1		10	7	11
1	8	10		00
1		11	9	11
	8	10	12	00
	2	11)	3	01
1		4	12	00

6Q: Para as funções abaixo, operando no modo fundamental normal, implemente a função na forma soma de produto livre de hazard lógico

- a) $F(a,b,c,d)=\sum (0,2,3,4,5,6,7,12,13,15)$
- b) $F(a,b,c,d)=\Pi(0,1,3,4,7,15)$

7Q: Considere a função Booleana abaixo, operando no modo fundamental normal, pede-se

$$F(X_1,X_2,X_3,X_4,X_5) = (X_1X_2 + X_1'X_3)(X_1(X_4 + X_5) + X_1'X_3'X_4'X_5)$$

- a) verifique se há hazard estático
- b) encontre uma solução soma de produto livre de hazard lógico para a função F.
- **8Q:** Usando a técnica de síntese de Huffman projetar um contador binário de módulo 8 (conta de zero a sete e volta ao zero), minimizado, livre de corrida crítica, oscilações e de hazard lógico combinacional. Verificar se este circuito tem hazard essencial

obs: O contador opera nas duas bordas do relógio e opera no modo fundamental normal.

9Q: Uma Máquina seqüencial **assíncrona** (Huffman) modelo **Moore**, operando no **modo fundamental normal**, realiza a operação de um **somador serial** de 3 bits, pede-se:

- a) Tabela de fluxo primitiva.
- b) Grafo de transição de estados.
- c) Tabela de fluxo reduzida.
- d) Usando o menor número de variáveis de estado, faça o assinalamento de estados livre de corrida crítica.
- e) As equações de próximo estado e de saída livre de risco lógico.
- f) Desenhe o circuito lógico

Obs: Quando o sinal de saída carry for 1, a máquina vai para o estado inicial e zera a contagem (seqüência de pulsos em A e B). Para a ocorrência de um evento (0→1) na entrada e o carry=0 a soma é incrementada.

10Q: Projete um **estágio** de um **registrador de deslocamento** (assíncrono que opera no modo fundamental normal), sendo que este circuito tem **duas entradas** X_1 e X_2 e **uma saída** Z. A entrada X_1 é à saída do **estágio anterior** do registrador de deslocamento, e a entrada X_2 é o pulso de deslocamento. **Quando** X_2 =1 ou X_2 =0, Z permanece inalterado; **quando** X_2 for ativado $1 \rightarrow 0$ ou $0 \rightarrow 1$, Z assume o valor de X_1 . Pede-se:

- a) Tabela de fluxo primitiva
- b) Tabela de fluxo reduzida
- c) Verifique se há risco essencial
- d) Tabela de fluxo de estados livre de corrida crítica e de oscilações
- e) Usando a arquitetura de Huffman, obter as equações de próximo estado e de saída livre de risco lógico.

11Q: Da tabela de operações do Flip-Flop TT descrita abaixo, pede-se:

- a) A tabela de fluxo primitiva
- b) A equação característica do FF
- c) A tabela de excitação do FF
- d) O FF TT a partir do FF JK

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clk	TT	Q_N	Q_{N+1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	X	X	$\overline{Q_N}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\uparrow	0	0	$\overline{Q_N}$
$ \uparrow $ 1 0 Q_N	\uparrow	0	1	$\overline{Q_N}$,
\uparrow 1 1 Q_N	\uparrow	1	0	$\overline{Q_N}$
	\uparrow	1	1	$\overline{Q_N}$

12Q: O FF LD tem a seguinte tabela de operações, pede-se:

- a) Tabela de fluxo primitiva
- b) A equação característica do FF LD.
- c) A tabela de excitação.
- d) Projete este FF a partir do FF D (7474). O FF 7474 possui sinais de entrada *Set* e *Reset* assíncronos.

Obs: {*} no FF LD os sinais L (set) e D (reset) operam sempre em defasagem, portanto L=D=1 nunca ocorre (proibido).

L	D	Q_{N+1}
0	0	$\frac{Q_{\mathrm{N}}}{Q_{\mathrm{N}}^{*}}$
1	1	$\overline{Q_N}^*$
\uparrow	0	1
0	\uparrow	0