Regression

2.1 MLP regression.ipynb

How machine learns from data?

• Regression
$$y = f(x)$$
• Classification

- Define a function to be learned: y = f(x)
- Define a loss function \mathcal{L} to describe the error between $\hat{y} = f(x)$ and y
- Find the optimal parameters of f that minimize \mathcal{L}

Statistics vs Machine Learning

Statistics versus machine learning

Statistics draws population inferences from a sample, and machine learning finds generalizable predictive patterns.

$$y = f(x)$$

Ij, H. (2018). Statistics versus machine learning. Nat Methods, 15(4), 233.

Statistics draw population inferences

動作	range (delta D)	
A1	8.20	
A1	6.42	
A1	8.26	
A1	14.55	
A1	11.70	
A1	11.75	
A1	12.72	
A1	11.96	
A1	6.03	
A1	9.20	
A1	14.25	
A1	13.93	
A2	14.17	
A2	19.91	
A2	9.40	
A2	8.48	
A2	10.61	
A2	13.86	
A2	7.15	
A2	7.66	
A2	6.09	
A2	13.18	
A2	9.15	
A2	13.29	

Evaluation of generalizable prediction performance with test data

Split input data to train and test data

```
from sklearn.model_selection import train_test_split
    trainX, testX, trainY, testY = train_test_split(numpyX, numpyY, test_size=0.20, random_state=0)
    print(trainX.shape, testX.shape, trainY.shape, testY.shape)

(1600, 7) (400, 7) (1600, 1) (400, 1)
```

Statistics vs Machine Learning

Statistics – R² of the variance explained ML – MSE, MAE of test data which are unseen by the model

Input data

У	x1	x2	•••
0.578			
0.64			
-0.96			
0.23			

$$y = 0.323x_1^2 + 0.586x_1x_2 + 0.4x_3 + 0.8972x_5^3 + 0.267x_3^2x_5x_6 + 0.78x_7^2$$
$$x_1 \sim \mathcal{N}(0.5, 0.3)$$

$$x_2 \sim \mathcal{N}(0.8, 0.5)$$

• • •

Feature scaling

Make different features have the same scaling

Reference: 李弘毅 ML Lecture 3-1 https://youtu.be/yKKNr-QKz2Q

ReLU activation function

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Reference: 李弘毅 ML Lecture 9-1 https://youtu.be/xki61j7z-30

Vanishing gradient problem

 W_{13} W₃₆ x1 W₃₇ W_{6y} W_{14} W_{46} W_{7y} n4 W_{23} W₅₆ W_{57}

Larger gradients

Learn very slow

Almost random

Smaller gradients

Learn very fast

Already converge

 $\frac{\partial L}{\partial w_{57}} = \frac{\partial L}{\partial y_1} \frac{\partial y_1}{\partial n_7} \frac{\partial n_7}{\partial w_{57}}$

based on random!?

Reference: 李弘毅 ML Lecture 9-1 https://youtu.be/xki61j7z-30

ReLU results in a thinner linear network

Sigmoid is hard to get the power of deep

ML finds generalizable predictive patterns

ML finds generalizable predictive patterns

Good results on training data?

Good results on test data?

Try different NNs

- Good results on training data?
- Good results on test data?

7-56-56-1 (current one)
7-256-256-256-1
7-512-512-512-1
7-1024-1024-1024-1024-1

2.2. Overfitting.ipynb

Add noises to y

$$y = 0.323x_1^2 + 0.586x_1x_2 + 0.4x_3 + 0.8972x_5^3 + 0.267x_3^2x_5x_6 + 0.78x_7^2 + \mathcal{N}(2,3)$$

Use a complicated NN

7-1024-1024-1024-1024-1

Good results on training data

Bad results on test data

Do not always blame overfitting

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

What to do if overfitting?

Early stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

Regularization – L2

 Find a set of weight not only minimizing original cost but also close to zero

$$L'(\theta) = \underline{L(\theta)} + \lambda \frac{1}{2} \underline{\|\theta\|_2} \rightarrow \text{Regularization term}$$

$$\theta = \{w_1, w_2, \ldots\}$$

Original loss

$$L(\theta) = \sum_{n=1}^{N} (\hat{y}^n - y^n)^2$$

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

(usually not consider biases)

L2 regularization

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{2} \quad \text{Gradient:} \quad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$$

$$\text{Update:} \quad w^{t+1} \to w^{t} - \eta \frac{\partial L'}{\partial w} = w^{t} - \eta \left(\frac{\partial L}{\partial w} + \lambda w^{t} \right)$$

$$= \underbrace{(1 - \eta \lambda) w^{t}}_{\text{Closer to zero}} - \eta \frac{\partial L}{\partial w} \quad \text{Weight Decay}$$

Vanilla gradient decent update
$$w^{t+1} \rightarrow w^t - \eta \frac{\partial L}{\partial w}$$

L1 regularization

L1 regularization:

$$\|\theta\|_1 = |w_1| + |w_2| + \dots$$

$$\begin{split} \mathsf{L}'(\theta) &= L(\theta) + \lambda \frac{1}{2} \|\theta\|_1 & \frac{\partial \mathsf{L}'}{\partial w} = \frac{\partial \mathsf{L}}{\partial w} + \lambda \operatorname{sgn}(w) \\ \mathsf{Update:} & w^{t+1} \to w^t - \eta \frac{\partial \mathsf{L}'}{\partial w} = w^t - \eta \left(\frac{\partial \mathsf{L}}{\partial w} + \lambda \operatorname{sgn}(w^t) \right) \\ &= w^t - \eta \frac{\partial \mathsf{L}}{\partial w} - \underline{\eta \lambda} \operatorname{sgn}(w^t) \quad \mathsf{Always delete} \\ &= (1 - \eta \lambda) w^t - \eta \frac{\partial \mathsf{L}}{\partial w} \quad \dots \quad \mathsf{L2} \end{split}$$

Regularization

Drop out

Drop out

Each time before updating θ , each neuron has p% to dropout. So the NN structure is changed (become thinner). That is, for each mini-batch, we resample the dropout neurons.

Drop out

No neuron drop out at test stage. All weights time 1 - p%

Why drop out makes NN perform better?

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Why multiply weights by (1-p)% during testing?

 Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Why drop out makes NN performs better?

Drop out can be seen as an ensemble method.

Why drop out makes NN performs better?

- ➤ Using one mini-batch to train one network
- ➤ Some parameters in the network are shared

Why multiply weights by (1-p)% during testing?

Why multiply weights by (1-p)% during testing?

Simpler model is less influenced by the sampled data and has smaller variance

Errors of ML model

How to reduce model's variances?

Training with cross validation

