More Spatial Filtering

More Spatial Filtering

CS 450: Introduction to Digital Signal and Image Processing

Slides created by Dr. Bryan Morse BYU Computer Science

More Spatial Filtering

LSharpening

Sharpening

The goal of sharpening is to *enhance differences*, so all sharpening kernels involve differences—some positive and some negative weights.

- Unsharp masking
- ► 1st-derivative operators
- 2nd-derivative operators

コト 4間ト 4 差ト 4 差ト 差 りなる

More Spatial Filtering

Sharpening

Unsharp Masking

- ▶ Idea: "subtract out the blur"
- Can be done in analog (originated in dark rooms)
- ► Procedure:
 - 1. Blur the image
 - 2. Subtract from the original
 - 3. Multiply by some weighting fraction
 - 4. Add back to the original

Sharpening

More Spatial Filtering

Unsharp Masking

Mathematically:

$$g = f + \alpha \left(f - \overline{f} \right)$$

where

- ▶ f is the original image
- $ightharpoonup \overline{f}$ is the blurred image
- ightharpoonup g is the sharpened result
- ightharpoonup α controls how much sharpening is added

<ロ > (日 > (日 > (豆 > (豆 >) 豆 の)へ

4 B > 4 B > 4 E > 4 E > 9 Q C

More Spatial Filtering

Sharpening

Unsharp Masking - Alternative Formulation

Unsharp Masking:

$$g = f + \alpha \left(f - \overline{f} \right)$$

 \blacktriangleright Rather than working with fractional weights $\alpha,$ we can write this as

$$g = Af + \left(f - \overline{f}\right)$$

- In other words, what really matters is the ratio of the original image to the "unsharp masked" (sharpening) part, not the absolute values used.
 - Larger A: more original image, less removal of the blur
 - ► Smaller A: less original image, more removal of the blur

4 D F 4 B F 4 B F B F 9 9 9

More Spatial Filtering

Implementing Unsharp Masking

Can directly blur, weight, and subtract, OR

Original (× A)

Original

Blur

$$\frac{1}{A} \left[\begin{array}{c|cccc}
0 & 0 & 0 \\
0 & A & 0 \\
\hline
0 & 0 & 0
\end{array} \right] + \left(\begin{array}{c|cccc}
0 & 0 & 0 \\
0 & 5 & 0 \\
\hline
0 & 0 & 0
\end{array} \right] - \begin{array}{c|cccc}
0 & 1 & 0 \\
\hline
1 & 1 & 1 \\
\hline
0 & 1 & 0
\end{array} \right)$$

$$= \frac{1}{A} \begin{array}{c|ccccc}
0 & -1 & 0 \\
\hline
-1 & A+4 & -1
\end{array}$$

More Spatial Filtering

∟_{Derivatives}

Derivative Operators

- Local derivatives are a great way of measuring local image geometry
- Differential Geometry: a branch of mathematics built around using derivatives to describe local geometry
- Derivatives can be measured (or at least approximated) using convolution
- First derivative measure local changes to the signal
- Second derivatives measure changes to the changes (i.e., curvature)

 $\mathrel{\sqsubseteq_{\mathsf{Derivatives}}}$

Derivative Operators

More Spatial Filtering

Derivatives

Derivative Operators

- ▶ Consider a 1-d signal f(t). How is it changing?
- Recall from calculus that

$$\frac{d}{dt}f(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

But for sampled signals, we can't measure values closer together than one sample. So,

$$\frac{d}{dt}f(t)\approx\frac{f(t+1)-f(t)}{1}$$

▶ This is called a forward difference

More Spatial Filtering

L_{Derivatives}

Derivative Operators

Can also measure a derivative from the other side:

$$\frac{d}{dt}f(t) = \lim_{h \to 0} \frac{f(t) - f(t-h)}{h}$$

Again setting h to one sample spacing,

$$\frac{d}{dt}f(t) \approx \frac{f(t) - f(t-1)}{1}$$

This is called a backwards difference

More Spatial Filtering

Derivatives

Derivative Operators

 Can also compromise between forward and backwards derivatives by measuring from both sides:

$$\frac{d}{dt}f(t) = \lim_{h \to 0} \frac{f(t+h) - f(t-h)}{2h}$$

Again setting h to one sample spacing,

$$\frac{d}{dt}f(t)\approx\frac{f(t+1)-f(t-1)}{2}$$

▶ This is called a central difference

Kernels for Derivatives

More Spatial Filtering

L Derivatives

Forward difference: $\frac{d}{dt}f(t) \approx \frac{f(t+1)-f(t)}{1}$

+1

Backward difference: $\frac{d}{dt}f(t) \approx \frac{f(t)-f(t-1)}{1}$

+1

Central difference: $\frac{d}{dt}f(t) \approx \frac{f(t+1)-f(t-1)}{2}$ $\frac{1}{2}$ -1

More Spatial Filtering

∟_{Derivatives}

Second Derivatives

► Forward difference:

$$\frac{d}{dt}f(t)\approx f(t+1)-f(t)$$

► Backwards difference:

$$\frac{d}{dt}f(t)\approx f(t)-f(t-1)$$

▶ Difference of the differences:

$$\frac{d^{2}}{dt^{2}}f(t) \approx [f(t+1) - f(t)] - [f(t) - f(t-1)]$$

$$= f(t+1) - 2f(t) + f(t-1)$$

$$+1 | -2| +1$$

+1 | -2 | +1

More Spatial Filtering

L_Derivatives

Two Dimensions

Differentiate in one dimension, ignore the other

		$\frac{\partial}{\partial x}$			$\frac{\partial}{\partial y}$	
	0	0	0	0	-1	C
Ì	-1	0	+1	0	0	C
	0	0	0	0	+1	C

$\frac{\partial^2}{\partial x^2}$					$\frac{\partial^2}{\partial y^2}$	
0	0	0		0	+1	0
+1	-2	+1		0	-2	0
0	0	0		0	+1	0

More Spatial Filtering

Derivatives

Better Approach for Multiple Dimensions

Differentiate in one dimension, *smooth* in the other (handles noise better)

		$\frac{\partial}{\partial x}$	
ſ	-1	0	+1
	-1	0	+1
ſ	-1	0	+1

	$\frac{\partial}{\partial y}$	
-1	-1	-1
0	0	0
+1	+1	+1

	$\frac{\partial^2}{\partial x^2}$	
+1	-2	+1
+1	-2	+1
+1	-2	+1

	$\frac{\partial^2}{\partial y^2}$	
+1	+1	+1
-2	-2	-2
+1	+1	+1

More Spatial Filtering

L Derivatives

Edge Detectors

Prewitt Kernels (Uniform averaging in opposite direction)

-1 0 +1 -1 0 +1 -1 0 +1 -1 0 +1 -1 +1 +1 +1		$\frac{\partial}{\partial x}$			$\frac{\partial}{\partial y}$		
	-1	0	+1		-1	-1	-1
-1 0 +1 +1 +1 +1	-1	0	+1		0	0	0
	-1	0	+1		+1	+1	+1

Sobel Kernels (Center-weighted averaging in opposite direction)

	$\frac{\partial}{\partial x}$			$\frac{\partial}{\partial y}$	
-1	0	1	-1	-2	-1
-2	0	+2	0	0	0
-1	0	1	+1	+2	+1

More Spatial Filtering

Derivatives

The Gradient

The gradient of a multivariate function is a vector defined by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{bmatrix}$$

- Orientation = direction of greatest change
- ► Magnitude (length) = steepness in that direction

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

By far the most common way to do edge detection.

4 m + 4 m + 4 m + 4 m + 2 m + 9 q (+

More Spatial Filtering

L_Derivatives

The Laplacian

- The Laplacian is the sum of the second derivatives in x and y.
- ▶ Sort of an "overall curvature" for multiple dimensions

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	0	0		0	+1	0		0	+1	0
+1	-2	+1	+	0	-2	0	=	+1	-4	+1
0	0	0		0	+1	0		0	+1	0

- ▶ Same as the pure-sharpening part of the unsharp mask kernel
- Places where the Laplacian changes from positive to negative are also good potential edges.

