HiFace: High-Fidelity 3D Face Reconstruction by Learning Static and Dynamic Details

Experiments

Ablation Studies

Quick Review

Limitations of Existing Methods

- Traditional 3DMM-based methods fail to separate static and dynamic details.
- For example, wrinkles from an old person's face might be unnaturally transferred to a young person.
- Existing approaches use **image-level supervision only**, leading to poor decoupling of static and dynamic details.

Key Idea of Hiface

- Static Detail (Person-Specific Feature): Uses PCA-based
 Displacement Basis to capture identity-specific facial details
- Dynamic Detail (Expression-Based Wrinkles): Modeled through interpolation between compressed and stretched displacement maps

Key Idea of Hiface

SD-DeTail Module:

Separates and combines static & dynamic details in one module

Learning framework

Datasets and loss function

Dataset

- Hybrid Dataset
 - Synthetic dataset
 - Real-world dataset
- Synthetic dataset
 - generated in synthetic dataset pipeline
 - has GT labels
 - Ground truth vertices, landmarks, albedo, displacement maps
- Real-world dataset for generalization in wild
 - use pre-trained dense landmark detector
 - no labels->Self supervised learning loss functions

Loss Functions

- Detail Losses (use Ground-Truth from Synthetic dataset)
- displacement maps (height displacement in UV map)

$$\begin{split} \mathcal{L}_{sta} &= \left\| \mathbf{M}_{detail} \odot \left(\mathbf{D}_{sta} - \hat{\mathbf{D}}_{sta} \right) \right\|_{2} \\ \mathcal{L}_{com} &= \left\| \mathbf{M}_{detail} \odot \left(\mathbf{D}_{com} - \hat{\mathbf{D}}_{com} \right) \right\|_{2} \\ \mathcal{L}_{str} &= \left\| \mathbf{M}_{detail} \odot \left(\mathbf{D}_{str} - \hat{\mathbf{D}}_{str} \right) \right\|_{2} \\ \mathcal{L}_{detail} &= \mathcal{L}_{sta} + \mathcal{L}_{com} + \mathcal{L}_{str} \end{split}$$

Loss Functions

- Coarse shape Losses (use GT + KL divergence)
- vertices
- KL divergence loss for overfitting

$$\mathcal{L}_{\text{ver}} = \left\| \mathbf{M}_{\text{ver}} \odot (\mathbf{S} - \hat{\mathbf{S}}) \right\|_{2}, \tag{11}$$

$$\mathcal{L}_{kl} = \rho(\beta) \left(\log \rho(\beta) - \log \rho(\hat{\beta}) \right), \tag{12}$$

$$\mathcal{L}_{shp} = \mathcal{L}_{ver} + \mathcal{L}_{kl}.$$

Loss Functions $\mathcal{L}_{self} = \mathcal{L}_{pho} + \lambda_{id}\mathcal{L}_{id} + \lambda_{lmk}\mathcal{L}_{lmk},$ (13)

Self-supervised losses (used for Real-world dataset)

Loss function

$$\mathcal{L}_{kd} = \Gamma_{age}(\mathbf{I}) (\log \Gamma_{age}(\mathbf{I}) - \log \hat{\mathbf{p}}_{age}).$$

- knowledge distillation loss (지식 증류)
- consider the static detail heavily correlates to person specific age attribute
- static detail coefficient => get P_{age}
- P_{age}: age classification probabilities
- Γ_{age} : pre-trained age recognition model make similar

Overall loss function

$$\mathcal{L} = \lambda_{\text{detail}} \mathcal{L}_{\text{detail}} + \lambda_{\text{shp}} \mathcal{L}_{\text{shp}} + \lambda_{\text{self}} \mathcal{L}_{\text{self}} + \lambda_{\text{kd}} \mathcal{L}_{\text{kd}} + \lambda_{\text{reg}} \mathcal{L}_{\text{reg}},$$
(15)

4. Experiments

Experiment Objectives

- validate whether the model effectively decouples static and dynamic details
- evaluate whether HiFace outperforms existing models in reconstructing high-resolution 3D faces with realistic details

Dataset

- Synthetic dataset with GT: 200K pictures
- Real-world dataset for self-supervise: 400K pictures
 - mask the hair and accessory
- split data by training and validation

Model Implementation

- Use PyTorch, use PyTorch3D's differentiable rasterizer to render
- Training Setup
 - 35 epoch
 - 8 x NVIDEA Tesla V100 GPU, batch size = 320
 - initialize ResNet-50 to pre-trained model on ImageNet
 - use **Adam** optimizer, initial learning rate = 1e-4
- Preprocessing: align and resize
- Loss weights

$$\lambda_{detail} = 10, \lambda_{shp} = 1, \lambda_{self} = 1, \lambda_{id} = 0.1, \lambda_{lmk} = 0.5, \lambda_{kd} = 1, \lambda_{reg} = 10^{-3}.$$

Quantitative Evaluation - REALY

- Use REALY benchmark
 - evaluates errors in different facial regions: nose, mouth, forehead, cheeks.
 - Metric: Normalized Mean Squared Error (NMSE)
 - $MSE = rac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$ 는 예측값과 실제값 간의 평균 제곱 오차입니다.
 - σ^2 는 실제값의 분산(variance)입니다.

Quantitative Evaluation Result

Table 1. Quantitative comparison of 3D face reconstruction methods on REALY benchmark. "-c" and "-d" indicate coarse and detail shape, respectively. $@\mathcal{R}_N/@\mathcal{R}_M/@\mathcal{R}_F/@\mathcal{R}_C$ /all indicate errors in nose/mouth/forehead/cheek/all regions. We highlight the best method for the two groups respectively. HiFace achieves the best reconstruction performance in the overall error by a large margin. Each component in HiFace contributes to a better reconstruction quality. The reconstructed details of HiFace further boost the quality while previous methods [24, 19] modeling details with only image-level supervision even deteriorate the reconstruction accuracy.

Group	Methods /	frontal-view					side-view				
	e (mm)	$@\mathcal{R}_N$	$@\mathcal{R}_M$	$@\mathcal{R}_F$	$@\mathcal{R}_C$	all	$@\mathcal{R}_N$	$@\mathcal{R}_M$	$@\mathcal{R}_F$	$@\mathcal{R}_C$	all
Coarse	Deep3D [21]	1.719±0.354	1.368 ± 0.439	2.015 ± 0.449	1.528 ± 0.501	1.657	1.749±0.343	1.411 ± 0.395	2.074 ± 0.486	1.528 ± 0.517	1.691
	MGCNet [64]	1.771 ± 0.380	1.417 ± 0.409	2.268 ± 0.503	1.639 ± 0.650	1.774	1.827±0.383	1.409 ± 0.418	2.248 ± 0.508	1.665 ± 0.644	1.787
	3DDFA-v2 [29]	1.903±0.517	1.597 ± 0.478	2.447 ± 0.647	1.757 ± 0.642	1.926	1.883±0.499	1.642 ± 0.501	2.465 ± 0.622	1.781 ± 0.636	1.943
	DECA-c [24]	1.694 ± 0.355	2.516 ± 0.839	2.394 ± 0.576	1.479 ± 0.535	2.010	1.903±1.050	2.472±1.079	2.423 ± 0.720	1.630 ± 1.135	2.107
	SADRNet [61]	1.791 ± 0.542	1.591 ± 0.488	2.413 ± 0.537	1.856 ± 0.701	1.913	1.771 ± 0.521	1.560 ± 0.462	2.490 ± 0.566	2.010 ± 0.715	1.958
	EMOCA-c [19]	1.868 ± 0.387	2.679 ± 1.112	2.426 ± 0.641	1.438 ± 0.501	2.103	1.867 ± 0.554	2.636 ± 1.284	2.448 ± 0.708	1.548 ± 0.590	2.125
	MICA [81]	1.585 ± 0.325	3.478 ± 1.204	2.374 ± 0.683	1.099 ± 0.324	2.134	1.525 ± 0.322	3.567 ± 1.212	2.379 ± 0.675	1.109 ± 0.325	2.145
	Ours-c (w/o Syn. Data) [†]	1.227 ± 0.407	1.787 ± 0.439	1.454 ± 0.382	1.762 ± 0.436	1.558	1.187 ± 0.379	1.826 ± 0.490	1.470 ± 0.426	1.653 ± 0.450	1.534
	Ours-c	1.054 ± 0.317	1.461 ± 0.430	1.331 ± 0.347	1.342 ± 0.384	1.297	0.992±0.246	1.505 ± 0.454	1.427 ± 0.400	1.439 ± 0.429	1.341
Detail	DECA-d [24]	2.138±0.461	2.802 ± 0.868	2.457±0.559	1.443±0.498	2.210	2.286±1.103	2.684±1.041	2.519±0.718	1.555±0.822	2.261
	EMOCA-d [19]	2.532 ± 0.539	2.929 ± 1.106	2.595 ± 0.631	1.495 ± 0.469	2.388	2.455±0.636	2.948 ± 1.292	2.606 ± 0.686	1.599 ± 0.563	2.402
	HRN [42]	1.722 ± 0.330	1.357 ± 0.523	1.995 ± 0.476	1.072 ± 0.333	1.537	1.642 ± 0.310	1.285 ± 0.528	1.906 ± 0.479	1.038 ± 0.322	1.468
	Ours-d (w/o Syn. Data) [†]	1.465 ± 0.557	1.790 ± 0.425	1.528 ± 0.373	1.618 ± 0.362	1.600	1.422 ± 0.537	1.849 ± 0.473	1.530 ± 0.414	1.572 ± 0.399	1.594
	Ours-d (w/o static)*	1.055 ± 0.290	1.469 ± 0.415	1.336 ± 0.337	1.319 ± 0.374	1.295	1.004 ± 0.233	1.491 ± 0.437	1.418 ± 0.392	1.418 ± 0.415	1.332
	Ours-d (w/o dynamic)*	1.069 ± 0.318	1.469 ± 0.414	1.358 ± 0.336	1.270 ± 0.344	1.292	0.991 ± 0.239	1.496 ± 0.437	1.411 ± 0.393	1.375 ± 0.402	1.318
	Ours-d	1.036 ± 0.280	1.450 ± 0.413	1.324 ± 0.334	1.291 ± 0.362	1.275	0.985±0.237	1.489 ± 0.436	1.399 ± 0.388	1.360 ± 0.395	1.308

[†] To align the dataset scale, w/o Syn. Data indicates we train the model without using the ground-truth labels from the synthetic dataset.

^{*} To eliminate the bias of coarse shape in estimating the reconstruction error, we fix the coarse shape and train the details with/without static and dynamic factors for comparisons.

Quantitative Evaluation Result

- HiFace outperforms state-of-the-art (SOTA) methods by 15% in the REALY benchmark.
- Achieves lower reconstruction error across different face regions
- Compared to DECA and EMOCA (noisy), HiFace produces more natural facial expressions and details.
- Synthetic dataset is crucial also for detail
- HiFace effectively separates static and dynamic details while learning

Qualitative Evaluation-visual comparison

- Visual comparisons were conducted against existing models (Deep3D, 3DDFA-v2, MGCNet, DECA, EMOCA, etc.).
 - Coarse
 - Detail
- HiFace was tested on real-world face images to assess realism and detail accuracy.

Qualitative Evaluation Result – Coarse Shape

Qualitative Evaluation Result – With detail

Dense + SD-DeTail

give identity, expression coefficient of Dense to SD-DeTail

Animated with Detail (static, dynamic, both)

5. Ablation studies

Ablation Studies on loss functions and datasets

- Importance of real-world dataset
 - trained by synthetic dataset only
 - synthetic dataset + real-world dataset (self supervision)
- Importance of Loss functions
 - Coarse shape: $w/o L_{shp'}$ $w/o L_{kl}$ (overfitting prevention in L_{shp})
 - Detail reconstruction: w/o L_{detail} , w/o L_{kd} (knowledge distillation to static detail coefficient)
- Qualitative Experiment

Ablation Studies on loss functions and datasets-Result

Ablation Studies on SD-DeTail

- SD-1: directly generate D_{dvn} (learn without interpolating)
- SD-2: directly generate D_{com} and D_{str} , use interpolation
- SD-3: directly generate D_{sta}
- Ours: SD-DeTail

SD-1: directly generate D_{dyn} (learn without interpolating)

SD-2: directly generate D_{com} and D_{str} , use interpolation

SD-3: directly generate D_{sta}

Ours: SD-DeTail

6.Conclusion

Summary

- HiFace: 3D face regeneration from single image to highfidelity 3D face
- based on 3DMMs.
- simplify fine detail generation problem as regression and interpolation tasks
- SD-DeTail module: decouple static and dynamic detail
- vertex tension: interpolates dynamic detail from expression
- hybrid dataset: synthetic GT + real-world self-supervision
- new loss function: learn coarse shape & fine detail simultaneously