Stage LaTeX

Le dessin sous LaTeX avec Pstricks ou Tikz

 $\begin{array}{c} \mathsf{IUT}\;\mathsf{GTE}\\ \mathsf{Dunkerque},\;\mathsf{France} \end{array}$

mis à jour le 12 juin 2012

Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.

- Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.
- Ce sont des outils extrêmement puissants : je ne ferai qu'effleurer ici leurs possibilités .

- Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.
- Ce sont des outils extrêmement puissants : je ne ferai qu'effleurer ici leurs possibilités .
- Ce sont des outils extrêmement précis : tout est dimensionné à l'aide de paramètres modifiables.

- Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.
- Ce sont des outils extrêmement puissants : je ne ferai qu'effleurer ici leurs possibilités .
- Ce sont des outils extrêmement précis : tout est dimensionné à l'aide de paramètres modifiables.
- Ce sont des outils extrêmement souples : Insertion possible d'éléments LATEX dans le dessin et vice versa.

- Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.
- Ce sont des outils extrêmement puissants : je ne ferai qu'effleurer ici leurs possibilités.
- Ce sont des outils extrêmement précis : tout est dimensionné à l'aide de paramètres modifiables.
- Ce sont des outils extrêmement souples : Insertion possible d'éléments LATEX dans le dessin et vice versa.
- Mais ce sont des outils non-wysiwyg 1 : plusieurs compilations sont souvent nécessaires pour terminer un dessin.

- Le dessin est compilé en même temps que le document ce qui contribue à son homogénéité.
- Ce sont des outils extrêmement puissants : je ne ferai qu'effleurer ici leurs possibilités.
- Ce sont des outils extrêmement précis : tout est dimensionné à l'aide de paramètres modifiables.
- Ce sont des outils extrêmement souples : Insertion possible d'éléments LATEX dans le dessin et vice versa.
- Mais ce sont des outils non-wysiwyg 1 : plusieurs compilations sont souvent nécessaires pour terminer un dessin.

PSTricks

■ PSTricks permet des interactions entre le texte et le dessin.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles!

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).
- PSTricks a été conçu pour créer des documents en PostScript.
 La compilation en document pdf n'est pas directe.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).
- PSTricks a été conçu pour créer des documents en PostScript.
 La compilation en document pdf n'est pas directe.
 - Le programme « ps2pdf » permet de convertir le document au format pdf.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).
- PSTricks a été conçu pour créer des documents en PostScript.
 La compilation en document pdf n'est pas directe.
 - Le programme « ps2pdf » permet de convertir le document au format pdf.
 - On peut utiliser le module pdftricks.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).
- PSTricks a été conçu pour créer des documents en PostScript.
 La compilation en document pdf n'est pas directe.
 - Le programme « ps2pdf » permet de convertir le document au format pdf.
 - On peut utiliser le module pdftricks.
 - Sous Windows, un certain nombre d'ajustements sont nécessaires.

- PSTricks permet des interactions entre le texte et le dessin.
- Il s'appuie sur le très puissant langage PostScript .
- Il possède de nombreuses extensions spécialisées.
- Mais celles-ci ont été développées indépendamment les unes des autres, ce qui crée certaines incompatibilités entre elles! (une solution : modifier l'ordre de leur déclaration).
- PSTricks a été conçu pour créer des documents en PostScript.
 La compilation en document pdf n'est pas directe.
 - Le programme « ps2pdf » permet de convertir le document au format pdf.
 - On peut utiliser le module pdftricks.
 - Sous Windows, un certain nombre d'ajustements sont nécessaires.
 - Il crée un document tex pour chaque image créée!

■ Il est assez récent : 2006

- Il est assez récent : 2006
- La syntaxe est un mélange de Metapost et de Pstricks .

- Il est assez récent : 2006
- La syntaxe est un mélange de Metapost et de Pstricks .
- C'est une interface au PGF (Portable Graphic Format), il est donc portable : on peut générer directement du pdf

- Il est assez récent : 2006
- La syntaxe est un mélange de Metapost et de Pstricks .
- C'est une interface au PGF (Portable Graphic Format), il est donc portable : on peut générer directement du pdf
- Mais il est gourmand en mémoire.

- Il est assez récent : 2006
- La syntaxe est un mélange de Metapost et de Pstricks .
- C'est une interface au PGF (Portable Graphic Format), il est donc portable : on peut générer directement du pdf
- Mais il est gourmand en mémoire. solution : utiliser le module etex

\usepackage{etex}

Chargement de PSTricks

Exemple de préambule pour un document

```
\documentclass[12pt,a4paper]{article}
\usepackage[frenchb]{dabel}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
%
\usepackage[pst-all} les modules de base

%exemples de modules spécialises
\usepackage{pst-func} % tracer de fonction
\usepackage{pst-3dplot} % courbe en 3D
\usepackage{pst-circ} % création de circuits électriques
\usepackage{pst-eucl} % Géométrie
%
```


Chargement de Tikz

Exemple de préambule pour un document

```
\documentclass[12pt,a4paper]{article}
\usepackage[frenchb]{babel}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
%
Le module de base
\usepackage{tikz}

D'autres modules
\usepackage{tikz}

b'autres modules
\usepackage{tikz-qtree}
%
Les bibliothèques :
\usepgflibrary{shapes.geometric}
\usetikzlibrary{arrows,trees,patterns,decorations,scopes}
\usetikzlibrary{backgrounds}
```


Voici la liste officielle des extensions de PSTricks. Ces extensions sont en perpétuelle amélioration et de nouvelles extensions sont ajoutées régulièrement.

nom	Nom en rouge : module installé automatiquement avec le module pst-all
	En magenta : les modules abordés dans ce document
	En vert : les modules abordés en annexe

pstricks	Les modules de base de PSTricks
pst-3d	Les modules de base de PSTricks pour la 3D
pst-3dplot	Les graphes en 3D

pst-2dplot	Le graphe compatible Matlab pst-2dplot-doc.pdf
pstricks-add	Modules complémentaires pour pstricks/pst-node/pst-plot
pst-abspos	Placement d'objets en coordonnées absolues
pst-am	simulation de modulation et demodulation
pst-asr	Linguistique : représentations autosegmentales
pst-bar	Module PSTricks pour graphiques à barres
pst-barcode	Module PSTricks pour impression de codes barres
pst-bezier	courbe de Bezier
pst-blur	Module PSTricks pour des ombres floues
pst-bspline	Bsplines cubique et interpolations
pst-calendar	Calendrier en tube ou en en dodécaèdre

pst-circ	Module PSTricks pour circuits électriques
pst-coil	Module PSTricks pour le dessins de ressorts
pst-cox	Dessin depolytopes complexes réguliers
pst-coxcoor	Module PSTricks pour le dessins de polytopes
pst-coxeterp	Module PSTricks pour le dessins de polytopes
pst-dbicons	Module PSTricks pour structures base data
pst-diffraction	
pst-electricfield	lignes de champ électrique
pst-eps	Module PSTricks de sauvegarde en tant que fichier eps
pst-eucl	Géométrie pour LaTeX avec PSTricks

pst-exa	Module PSTricks le remplissage
pst-fill	
pst-fr3d	Boites tridimensionnelle
pst-fractal	Module PSTricks pour les fractales
pst-fun	dessin avec des images
pst-func	Traçage de fonction mathématique spéciales
pst-gantt	Dessin Gantt
pst-ghsb	
pst-gr3d	Module PSTricks pour le quadrillage en 3D
pst-grad	Module PSTricks pour couleurs gradient
pst-infixplot	Module PSTricks pour des expressions mathématiques en notation algébrique

pst-jtree	arborescences en linguistique
pst-knot	
pst-labo	dessin de différents assemblages de matériel de chimie
pst-layout	
pst-lens	Utilisation d'une loupe pour agrandir une partie de texte ou de graphique
pst-light3d	Module PSTricks pour effets lumineux en 3D
pst-magneticfield	lignes de champ magnétique
pst-map2d	projection géographique en 2d
pst-map2dII	projection géographique en 2d
pst-map3d	projection géographique en 3d
pst-map3dII	projection géographique en 3d

pst-math	Module PSTricks opérateurs mathématiques étendus
pst-mirror	
pst-node	Module PSTricks pour les noeuds
pst-ob3d	module PSTricks pour des objets tridimensionnels de base
pst-optexp	systèmes optiques expérimentaux avec PSTricks
pst-optic	systèmes optiques avec PSTricks
pst-osci	Oscilloscopes avec PSTricks
pst-pad	Dessin de liaisons mécaniques
pst-pdf	PostScript vers PDF
pst-pdgr	Macros pour le dessin de pedigrees médicaux
pst-platon	

pst-plot	Macros pour le tracé de fonctions et de données enregistrées
pst-poly	Polygones avec PSTricks
pst-pulley	Poulies
pst-qtree	Module PSTricks pour q-trees
pst-rubans	Rubans
pst-sigsys	Signaux systèmes
pst-slpe	Amelioration remplissage gradué
pst-solarsystem	Système solaire
pst-solides3d	Tridimensionnel objets en projection centrale
pst-soroban	Module PSTricks pour le soroban
pst-spectra	diagramme d'emission et d'absortion

pst-stru	dessin en analyse de structures en génie civil
pst-support	Outils pour Distiller and TeXnicCenter
pst-text	module PSTricks pour la la manipulation de texte
pst-thick	
pst-tree	Module PSTricks pour des arborescences
pst-tvz	Module PSTricks pour des arborescences
pst-uml	Dessin facile de diagrammes en notation UML (langage de modélisation unifié)
pst-vowel	
pst-vue3d	vues tridimensionnelles
bclogo	mise en évidence de parties de documents grâce à un logo
vaucanson-g	dessin graphe automatisme

multido

module PSTricks pour la répétition de commandes

Des modules dépendant de PSTricks

bardiag	draw bar diagrams
dbicons	ER-diagrams
euklides	Euclidean geometry drawing language
gastex	Graphs and Automata Simplified
JasTeX	GUI written in Java for GasTeX
makeplot	Plotting exported data records from Mathlab
prerex	Prerequisite charts
psgo	draw Go diagrams
RRGtree	Linguistic tree diagrams for Role and Reference Grammar (RRG)
spectrum	fancy spectral coloring
sfg	drawing signal flow graphs

Des modules dépendant de PSTricks

synproof	syntactical diagrams
uml	another package to draw UML diagrams

Les modules TIKZ

tikz-3dplot	dessin et diagramme en 3D
tikz-cd	diagramme commutatif
tikz-dependency	pour la linguistique
tikz-inet	réseau interactif
tikzpagenodes	placement en position absolue
tikzpfeile	flèches
tikz-qtree	arbres de type qtree
tikz-timing	chronogramme
circuittikz	
tkz-base	
tkz-berge	

Les modules TIKZ

tkz-euclide	géométrie
tkz-fct	fonction
tkz-graph	
tkz-tab	tableau
tkz-kiviat	
tkz-linknodes	
tkz-orm	
tkz-doc	

à la librairie XXX correspond le fichier tikzlibraryXXX.code.tex

3d	tikzlibrary3d.code.tex
arrows	types supplémentaires de flèches
automata	schéma d'automatisme
backgrounds	cadrage
calc	tikzlibrarycalc.code.tex
calendar	calendrier
chains	séquence de noeud
decorations	décorations
decorations.footprints	décorations avec des traces de pas

decorations.fractals	décorations avec des fractales
decorations.markings	ajout d'étiquettes sur un graphe
decorations.pathmorphing	personnalise les traits de traçage
decorations.pathreplacing	remplacement des traits de traçage
decorations.shapes	formes pour la décoration
decorations.text	manipulation de texte
er	tracé dediagramme.
fadings	estompage
fit	ajustement de la taille d'un noeud .
folding	pliage papier
matrix	additional styles and options for creating matrices.

Les librairies TIKZ

mindmap	diagramme de reflexion.
patterns	patterns for filling areas.
petri	boites de Petri.
plothandlers	tikzlibraryplothandlers.code.tex
plotmarks	tikzlibraryplotmarks.code.tex
positioning	tikzlibrarypositioning.code.tex
scopes	tikzlibraryscopes.code.tex
shadows	tikzlibraryshadows.code.tex
shapes.arrows	tikzlibraryshapes.arrows.code.tex
shapes.callout	tikzlibraryshapes.callouts.code.tex
	tikzlibraryshapes.code.tex

shapes.gates.logic.IEC	tikzlibraryshapes.gates.logic.IEC.code.tex
shapes.gates.logic.US	tikzlibraryshapes.gates.logic.US.code.tex
shapes.geometric	tikzlibraryshapes.geometric.code.tex
shapes.misc	tikzlibraryshapes.misc.code.tex
shapes.multipart	tikzlibraryshapes.multipart.code.tex
shapes.symbols	tikzlibraryshapes.symbols.code.tex
	tikzlibrarysnakes.code.tex
through	tikzlibrarythrough.code.tex
topaths	tikzlibrarytopaths.code.tex
trees	tikzlibrarytrees.code.tex

Syntaxe d'une commande PSTricks

Les commandes se présentent ainsi :

```
\fonction [paramètre(s) optionnel(s)] (coordonnées) {paramètre(s) obligatoire(s) }
        cercle [trait rouge](position du centre x=2 y=2) { rayon =1 cm }
                      \pscircle [linecolor=red]( 2,2 ){ 1cm } :
```


Génération d'un dessin PSTricks en WYSIWYG

Un programme en java permet de générer automatiquement du code PSTricks : LaTeXDraw

Syntaxe d'une commande Tikz

Les commandes se présentent ainsi :

```
\label{lem:dessiner} $$ \dessiner [paramètres du dessin](position) fonction (paramètre de la fonction) $$ \dessiner [trait bleu épais](centre x=2 y=2) cercle (rayon =1 cm) $$ \draw[blue,very thick]( 2,2 ) circle (1cm) ;
```


Commandes Tikz

- \draw : dessiner le chemin « path » (suite d'éléments du dessin).
- \fill : remplir l'intérieur du chemin.
- \filldraw : dessiner et remplir l'intérieur du chemin .
- \pattern : remplir l'intérieur du chemin par des motifs.
- \shade : remplir l'intérieur du chemin par un ombrage .
- \shadedraw : dessiner et remplir l'intérieur du chemin par un ombrage .
- \clip : ne prendre qu'une partie du dessin
- \useasboundingbox : configurer la taille de la boite incluant le dessin

Objets de base PSTricks

Voici un échantillonnage des possibilités

- \psline
- \pspolygon
- \psframe \pscircle
- \pswedge
- \psellipse
- : \psarc
- : \psbezier
- : \pscurve : \psccurve
- : \psdiamond
- L : \pstriangle
- M : \psparabola

Objets de base PSTricks : codage

```
Exercices
```

```
\beta = \frac{1}{100} \cdot \frac{100}{100} \cdot \frac{100}{100} \cdot \frac{100}{100} \cdot \frac{100}{1000} \cdot \frac{1000}{1000} \cdot \frac{1
       \psset{linewidth=2pt}
              \psline(0,0)(1,1)(2,1)(3,2)
              \pspolygon(5,1)(6,0)(7,2)(6,2)
              \protect{psframe(0,3)(3,4)}
              \protect\operatorname{pscircle}(5,3){1}
              \pswedge(7,4){2}{-30}{60}
              \psellipse(2,6)(1,.5)
              \propty [showpoints=true] (4,6){1.5}{-45}{45}
              \psbezier(9,9)(6,7)(10,6)(8,9)
              \pscurve[showpoints=true](1,10)(0,9)(1,8)(2,7)
              \psccurve[showpoints=true](5,10)(4,9)(5,8)(6,7)
              \psdiamond(8,1)(1,1)
              \pstriangle(6.7)(1.1)
              \psparabola(3.5,10)(3,8)
       \end{pspicture}
```


Premiers pas avec PSTricks et Tikz

Objets de base PSTricks : commandes avec astérisque

Exercices

\psline*(0,0)(1,1)(2,1)(3,2)

Objets de base Tikz A - \draw [line width=2pt,color=red] (0,0) - (2,1); B- \draw (3,2) circle (1); C - \draw (0,3) rectangle (2,4) D - \draw (3,3) arc (0:135:1); E -\draw (1,6) .. controls (3,5) and (0,5) .. (2,6); F - \draw (3,6) parabola (4,7); $G - \frac{(0,6) \sin (1.57,7)}{}$

Objets de base Tikz avec remplissage


```
A - \filldraw [line width=2pt,fill=green] (0,0) - (2,1);
```

```
B- \filldraw (3,2) circle (1);
```

```
C - \filldraw (0,3) rectangle (2,4)
```

```
D - \filldraw (3,3) arc (0:135:1);
```

```
E -\filldraw(1,6) .. controls (3,5) and (0,5) .. (2,6);
```

```
F - \filldraw (3,6) parabola (4,7);
```

```
H - \filldraw[ (0,6) sin (1.57,7);
```


Notion de chemin PSTricks (Path)

Un chemin est une succession d'éléments de dessins. Les éléments sont reliés ou non selon l'option liftpen

\pscustom[linecolor=blue]{\psline[linecolor=green](0,0)(1,2) \psarc[showpoints=true,liftpen=1](2,1)1.5{-45}{45}\psbezier[showpoints=true,liftpen=2](7,3)(5,0)(4,3)(8,0)

\fill[fillstyle=solid,fillcolor=green] }

Les paramètres du dessin sont imposés par la commande pscustom

Notion de chemin Tikz (Path)

Un chemin est une suite de coordonnées qui peuvent ou non être reliées (--). Sur ces coordonnées, on peut placer des éléments Tikz.

\draw[ultra thick](0,0) - (1,1) rectangle (2,-1) - (4,2) circle (1cm) circle (1.5cm) - (6,3) rectangle (7,0) rectangle(8,-1);

\draw[ultra thick](0,0) (1,1) rectangle (2,-1) (4,2) circle (1cm) circle (1.5cm) (6,3) rectangle (7,0) rectangle (8,-1);

Paramétrage des objets PSTricks


```
\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{begin} \left( \text{pspicture} \right) * (-1, -1) \end{array} \end{array} \end{array} 
  \psset{linewidth=2pt} % modification générale
  \psline{[-o]}(0,0)(1,1)(2,1)(3,2)
  \protect{\protect} \operatorname{pspolygon}[\protect{\protect}](5,1)(6,0)(7,2)(6,2)
  \psframe[fillstvle=solid.fillcolor=blue](0.3)(3.4)
  \pscircle[linestyle=dotted,fillstyle=vlines](5,3){1}
  \pswedge[linecolor=red](7.4){2}{-30}{60}
  \psellipse[linestyle=dashed,linecolor=blue](2,6)(1,.5)
  \psarc[showpoints=true](4,6){1.5}{-45}{45}
\psbezier[doubleline=true](9.9)(6.7)(10.6)(8.9)
  \propty [linewidth=.3cm] (1,10) (0,9) (1,8) (2,7)
  \psccurve[showpoints=true] (5,10) (4,9) (5,8) (6,7)
   \psdiamond[fillstyle=hlines](8,1)(1,1)
\pstriangle[fillstyle=crosshatch](7,6)(1,1)
  \psparabola[shadow=true.shadowcolor=red](3.5.10)(3.8)
```

\end{pspicture}

paramétrage Tikz

Exercices

- A [solid,->]
- B [line width=.5cm,dotted]
- C [thin, densely dotted]
- D [semithick,dashed,-»]
- E -[thick,densely dashed, |-]
- F [very thick, loosely dashed, ->|]
- ${\tt G}$ [ultra thick,dash pattern=on 2pt off 3pt on 4pt off 4pt]

Remplissage de forme avec Tikz

\fill[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);

Dessin et remplissage de forme avec Tikz

\filldraw [fill=red,line width=5pt]

Les détails peuvent être paramétrés

Terminaison des lignes avec PSTricks

```
\psline[linewidth=10pt](0,3)(2,3)
\psline[linewidth=10pt]{c-c}(0,2)(2,2)
\psline[linewidth=10pt]{cc-cc}(0,1)(2,1)
\psline[linewidth=10pt]{c-c}(0,0)(2,0)
```


Terminaison des lignes avec Tikz

```
\draw [line cap=rect] (0,0) - - (1,0);
\draw [line cap=butt] (0,.5) - - (1,.5);
\draw [line cap=round] (0,1) - - (1,1);
```


Le trait blanc donne la dimension spécifiée.

Premiers pas avec PSTricks et Tikz

Jonction de lignes avec Tikz

```
\draw[line join=round] (0,0) - - ++(.5,1) - - ++(.5,-1);
\draw[line join=bevel] (1.25,0) - - ++(.5,1) - - ++(.5,-1);
\draw[line join=miter] (2.5,0) - - ++(.5,1) - - ++(.5,-1);
```


Quadrillage de référence avec PSTtricks

La fonction \psgrid permet de visualiser la position des objets :

```
\begin{pspicture}(4,4)
\psgrid[gridcolor=lightgray]
\psframe[linecolor=red,linewidth=3pt](1,1)(3,3)
\end(pspicture}
```


Quadrillage de référence avec Tikz

\begin{tikzpicture}
\draw[help lines] (0,0) grid (4,4);
\draw [line width=2pt,color=red](1,1) rectangle (3,3)
\end(tikzpicture)

Positionnement des objets dans un dessin

Superposition d'objets

Attention à l'ordre des commandes :

\psframe[fillcolor=red](0,0)(3,3) \psframe[fillcolor=blue] (1,1)(4,4)

\psframe[fillcolor=blue] (1,1)(4,4) \psframe[fillcolor=red](0,0)(3,3)

Positionnement des objets dans un dessin

Superposition d'objets

Attention à l'ordre des commandes :

\psframe[fillcolor=red](0,0)(3,3) \psframe[fillcolor=blue] (1,1)(4,4)

\psframe[fillcolor=blue] (1,1)(4,4) \psframe[fillcolor=red](0,0)(3,3)

Commencez le dessin par les éléments de l'arrière plan et finissez par ceux du premier plan!

Systèmes de coordonnées sous PSTricks

Avec la commande \SpecialCoor, on peut utiliser

- les coordonnées cartésiennes : (x, y)
- les coordonnées polaires : (r; Θ)
- des coordonnées calculés : (! formule en postcript)
- la position d'un noeud :(A)

Systèmes de coordonnées sous PSTricks

Exercices

Avec la commande \SpecialCoor, on peut utiliser

- les coordonnées cartésiennes : (x, y)
- les coordonnées polaires : (r; Θ)
- des coordonnées calculés : (! formule en postcript)
- la position d'un noeud :(A)

```
\SpecialCoor
```

```
% coordonnées polaire
\psline(2;30)(0;0)(2;75)
\psarc(0,0){1}{30}{75}
\rput[bl](1.2;52.5)(45°}
%coordonnées calculés
\pscircle[linecolor=blue](0,0)\alert{!4 sqrt}
\psline[linecolor=red](0,0)(!4 sqrt -1)
% position d'un noeud
\pnode(-1.5,1){A} % le noeud
\rput(-1.5,1){A}
\rbusine[linecolor=cyan](0,0)(A)
```


Systèmes de coordonnées relatives sous PSTricks

La commande \SpecialCoorpermet aussi

- le décalage par rapport à un noeud : ([décalage] noeud) :
 - en X : [nodesep= valeur]en Y : [offset = valeur]
- le placement d'après l'abcisse de A et l'ordonnée de B : (A|B)
- A et B pouvant être un noeud, une coordonée en polaire ...

Systèmes de coordonnées relatives sous PSTricks

Exercices

La commande \SpecialCoorpermet aussi

- le décalage par rapport à un noeud : ([décalage] noeud) :
 - en X : [nodesep= valeur]en Y : [offset = valeur]
- le placement d'après l'abcisse de A et l'ordonnée de B : (A|B)

A et B pouvant être un noeud, une coordonée en polaire ...

```
\SpecialCoor
\pnode(-1,1){A} \% d\(\) d\(\) distribution d'un noeud
\pnut(-1,1){A} \\
\pnode(.5,-1){B} \% d\(\) distribution d'un noeud
\pnut(.5,-1){B} \\
\psline[linecolor=red,linewidth=4pt](0,0)([nodesep=1]A)
\psline[linecolor=blue,linewidth=4pt](0,0)([foffset=-1]A)
\psline[linecolor=blue,linewidth=4pt](0,0)([nodesep=1,offset=-1]A)
\psline[linecolor=green,linewidth=4pt](0,0)(A|1;30)
\psline[linecolor=cyan,linewidth=4pt](0,0)(3;60|A)
\psline[linecolor=yellow,linewidth=4pt](0,0)(B|A)
\psline[linecolor=red,linewidth=4pt](0,0)(A|B)
```


Coordonnées Tikz : positionnement Explicite Implicite

Explicite:

Implicite:

```
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);
  \draw (canvas cs:x=0cm,y=2mm)
  - (canvas polar cs:radius=2cm,angle=30);
\end{tikzpicture}
```

```
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0cm,2mm) - - (30:2cm);
\end{tikzpicture}
```

Ces 2 syntaxes donnent le même résultat :

Positionnement avec Tikz

Dimension par défaut : 1cm

- cartésienne :

 \tikz \draw[blue,very thick] (0pt,0pt) - (20pt,6pt) - (20pt,-6pt);
- polaire :
 \tikz \draw[red,very thick] (Opt,Opt) - (15:2cm);
- relative à la position initiale :
 \tikz \draw[green,very thick](Opt,Opt) - +(20pt,6pt) +(20pt,-6pt);
- relative à la dernière position :
 \tikz \draw[blue,very thick] (Opt,Opt) - ++(20pt,-6pt);

Coordonnées nominatives avec Tikz

On peut donner des noms aux coordonnées et s'en servir pour tracer les figures


```
\begin{tikzpicture}
\coordinate (centre) at (0,0);
\coordinate (A) at (-1,-1);
\coordinate (B) at (1,1);
\draw (B) - (A);
\fill (A) circle (3pt);
\fill (B) circle (3pt);
\draw (centre) - (-1,1);
\draw (centre) circle (1);
\draw (A) rectangle (B);
\node [above]at (B){point B};
\node [below]at (A){point A};
\end{tikzpicture}
```


Positionnement des objets, coordonnées

Coordonnée à un intersection avec Pstricks

\begin{pspicture}(3,3)\psgrid \psline[linecolor=red](0,0)(3,3) \psline[linecolor=blue](1,2)(3,0) \psIntersectionPoint(0,0)(3,3)(1,2)(3,0){IP} \pscircle(IP){1} \end{pspicture}

voir aussi le package « pst-eucl » page 178

Coordonnée à un intersection avec Tikz


```
LION avec TIKZ
\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
```


Système perpendiculaire de coordonnées avec Tikz


```
begin{tikzpicture}

\path (30:1cm) node(p1){$p_1$}(75:1cm) node(p2){$p_2$};

\draw (-0.2,0) - - (1.2,0) node(xline)[right] {$q_1$};

\draw (2,-0.2) - - (2,1.2) node(yline)[above] {$q_2$};

\draw[->] (p1) - - (p1 |- xline);

\draw[->] (p2) - - (p2 |- xline);

\draw[->] (p1) - - (p1 -| yline);

\draw[->] (p2) - - (p2 -| yline);

\draw[->] (p2) - - (p2 -| yline);

\end{tikzpicture}
```


Système de coordonnées : tangentes avec Tikz


```
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\coordinate (a) at (3,2);
\node [circle,draw] (c) at (1,1) [minimum size=40pt] {$c$};
\draw[red] (a) - - (tangent cs:node=c,point={(a)},solution=1) - -
(c.center) - - (tangent cs:node=c,point={(a)},solution=2) - - cycle;
\end{tikzpicture}
```


Coordonnées barycentriques avec Tikz

Un point peut être défini relativement à d'autres points


```
\begin{tikzpicture}[scale=.5,blue]
\coordinate (A) at (90:3cm);
\coordinate (B) at (210:3cm):
\coordinate (C) at (-30:3cm):
\node [above] at (A) {point A};
\node [below left] at (B) {point B};
\node [below right] at (C) {point C};
\draw [thick,gray] (A.south) - (B.north east) -
(C.north west) - cvcle:
\node at (barvcentric cs:A=1.B=0 .C=0) {\tinv A = 1, B =
0, C = 0;
\fill [red](barycentric cs:A=1,B=0 ,C=0) circle (2pt);
\node at (barycentric cs:A=0.3,B=0.3 ,C=0.3) {\tiny A = 
.3, B = 0.3, C = 0.3;
\fill [red](barycentric cs:A=0.3,B=0.3,C=0.3) circle
(2pt):
\fill [red] (barycentric cs:A=0,B=.2,C=.2) circle
(2pt);
\node at (barycentric cs:A=0,B=.2 ,C=.2){\tiny
```

A = 0, B = .2, C = .2; \end{tikzpicture}

Position calculée avec Tikz

Les points rouges sont placés à 1/3 et 2/3 cm à droite du point A

```
\begin{tikzpicture} \draw [help lines] (0,0) grid (3,2); \node (a) at (1,1) {A}; \fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt); \fill [red] ($(a) + 2/3*(1cm,0)$) circle (2pt); \end{tikzpicture}
```


Placement d'objets

Voici les différentes possibilités de placement d'objets grâce à la commande \rput


```
\begin{pspicture}(11,2)
\rput[1](2,1){\psframebox{left}}\rput[r](2,1){\psframebox{right}}
\rput[1](2,1){\psframebox{top}} \rput[b](4,1){\psframebox{bottom}}
\rput[t](6,1){\psframebox{tl}} \rput[tr](6,1){\psframebox{tr}}
\rput[b](6,1){\psframebox{bl}} \rput[b](6,1){\psframebox{br}}
\rput[B](8,1){\psframebox{Base}}
\rput[B](10,1){\psframebox{Base}}
\rput[B](10,1){\psframebox{Br}} \qdisk(2,1){3pt} \qdisk(4,1){3pt} \qdisk(6,1){3pt} \qdisk(8,1){3pt} \qdisk(10,1){3pt}
\end{pspicture}
```


Placement étiquettes

Voici les différentes possibilités de placement d'objet par rapport au point de référence grâce à la commande \uput

Placement étiquettes (code)

```
Exercices
```

```
\begin{pspicture}(0,-1)(8,3)\psgrid[gridcolor=lightgray,subgridcolor=white]
\qdisk(1,1){1pt}
\uput[u](1,1){u}
\uput [d] (1,1) {d}
\uput[1](1,1){1}
\qdisk(3,1){1pt}
\uput[ur](3,1){ur}
\uput[dr](3,1){dr}
\uput[d1](3,1){d1}
\uput[u1](3,1){u1}
\d(6,1){1pt}
\ On peut insérer d'autres éléments que du texte! :
\displaystyle \left[ ur \right] \left\{ -45 \right\} \left( 6,1 \right) \left\{ 2x+1 \right\} \right\}
\uput[dr]{135}(6,1){\includegraphics[width=0.1\textwidth]{logoiut.eps}}
\displaystyle \left[dl]_{-135}(6,1)_{\scriptstyle x=1}\right] \left[ul]_{45}(6,1)_{\scriptstyle x=1}\right]
```


Insertion objets

Tikz ne permet d'insérer que du texte .

Pour insérer des objets ; il faut les mettre dans un environnement pgftext

```
\tikz{\draw[help lines] (-1,-.5) grid (1,.5);
\pgftext[left] {\sy=\sqrt{a^2+b^2}\}}
\tikz{\draw[help lines] (-1,-.5) grid (1,.5);
\pgftext{\\\landahas > }}
\tikz{\draw[help lines] (-1,-.5) grid (1,.5);
\pgftext[\\\landahas > \rangle}
\tikz{\draw[help lines] (-1,-.5) grid (1,.5);
\pgftext[left] {\includegraphics[width=1cm] {logoiut.eps}}}
```


Rotation d'objet

Un objet peut être placé et pivoté par rapport au point de référence grâce à la commande \rput :

Rotation avec Tikz

Echelle spécifique avec Tikz

tikz draw[x=1cm,y=.5cm] (0,0) rectangle(2,2);

\psframe(2,2)

Echelle spécifique avec Tikz \tikz \draw[x=1cm,y=.5cm] (0,0) rectangle(2,2); Echelle spécifique avec PSTricks \psset{xunit=1cm, yunit=.5cm}

Décalage origine (shift)

```
xshift=2cm :
```



```
\tikz \draw (0,0) rectangle (1,0.5) [xshift=2cm] (0,0) rectangle (1,0.5);
```

Changement échelle (scale)


```
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) - - (1,1) - - (1,0);
\draw[scale=2,blue] (0,0) - - (1,1) - - (1,0); % \'echelle 2 \\draw[scale=-1,red] (0,0) - - (1,1) - - (1,0); % \'echelle -1 \\end{tikzpicture}
```


Expansion suivant un axe (xslant)

suivant x:

Translation (xshift, yshift)

Translation et rotation dans un chemin PSTricks

Le dernier élément du chemin a subi une rotation de 20° centré sur le point (0,0)

\pscustom[linecolor=blue]{\psline(0,0)(1,2)\psarc[showpoints=true,liftpen=1](2,1){1.5}{-45}{45}\rotate{20}\psbezier[showpoints=true,liftpen=2](7,3)(5,0)

(4,3)(8,0) }

Le dernier élément du chemin a subi une translation

\pscustom[linecolor=blue]{\psline(0,0)(1,2) \psarc[showpoints=true,liftpen=1](2,1){1.5} {-45}{45}\translate(1,1) \psbezier[showpoints=true,liftpen=2](7,3)(5,0)(4,3)(8,0)}

Dessin PSTricks directement dans le texte

Les commandes PSTricks peuvent être utilisées directement dans le texte.

Dans ce cas, l'élément se positionne par rapport à la position actuelle.

Dessin PSTricks directement dans le texte

Les commandes PSTricks peuvent être utilisées directement dans le texte.

Dans ce cas, l'élément se positionne par rapport à la position actuelle.

Exemple avec la commande :

```
\psline[linecolor=red](0,0)(4,4) \psline[linecolor=bfue](0,0)(4,2)
```

les lignes sont tracées ici ..

Dessin PSTricks directement dans le texte

Les commandes PSTricks peuvent être utilisées directement dans le texte.

Dans ce cas, l'élément se positionne par rapport à la position actuelle.

Exemple avec la commande :

\psline[linecolor=red](0,0)(4,4) \psline[linecolor=blue](0,0)(4,2)

les lignes sont tracées ici ..

Vous pouvez remarquer que le dessin se superpose au texte! Il n'a pas de dimension!

Insertion d'un dessin dans un document

Commande Tikz directement dans le corps du texte

L'élément doit être placé dans un environnement Tikz (entre \tikz et un point virgule).

L'élément Tikz se positionne par rapport à la position actuelle.

Commande Tikz directement dans le corps du texte

L'élément doit être placé dans un environnement Tikz (entre \tikz et un point virgule).

L'élément Tikz se positionne par rapport à la position actuelle.

Exemple avec la commande :

```
Les lignes sont tracées ici séparemment! .\tikz \draw [red](0,0)-(1,1);. \tikz \draw [blue](0,0)-(1,1)
```

Les lignes sont tracées ici séparemment!

Commande Tikz directement dans le corps du texte

L'élément doit être placé dans un environnement Tikz (entre \tikz et un point virgule).

L'élément Tikz se positionne par rapport à la position actuelle.

Exemple avec la commande :

Les lignes sont tracées ici séparemment! .\tikz \draw [red](0,0)-(1,1);. \tikz \draw [blue](0,0)-(1,1)

Les lignes sont tracées ici séparemment!

Le dessin ne se superpose pas au texte

Commande Tikz directement dans le corps du texte

L'élément doit être placé dans un environnement Tikz (entre \tikz et un point virgule).

L'élément Tikz se positionne par rapport à la position actuelle.

Exemple avec la commande :

Les lignes sont tracées ici séparemment! .\tikz \draw [red](0,0)-(1,1);. \tikz \draw [blue](0,0)-(1,1)

Les lignes sont tracées ici séparemment!

Le dessin ne se superpose pas au texte

Pour chaque commande Tikz, une boîte est crée automatiquement à la taille de la figure.

Dessin PSTricks dans un environnement pspicture

Une boite de 4cm x 4cm est positionnée à l'endroit de la commande(visualisée ici par un cadre).

Il n'y a plus de superposition par rapport au texte!

le texte qui suit directement la figure se trouve ici!

```
\begin{pspicture}(4,4) \psframe(4,4) \psframe(4,4) \pscircle[linecolor=red](2,2){1cm} \end(pspicture) le texte qui suit directement la figure se trouve ici!
```


Dessin Tikz dans un espace tikzpicture

le texte qui suit directement la figure se trouve ici!

```
\tikzpicture[blue]
\draw[help lines] (-2,-2) grid (2,2);
\draw (0,0) circle (.5);
\draw (0,0) circle (1);
\draw (0,0) circle (1.5);
\endth{kendtikzpicture}
le texte qui suit directement la figure se trouve ici!
```


Dessin Tikz dans un espace tikzpicture

le texte qui suit directement la figure se trouve ici!

```
\tikzpicture[blue]
\draw[help lines] (-2,-2) grid (2,2);
\draw (0,0) circle (.5);
\draw (0,0) circle (1);
\draw (0,0) circle (1.5);
\endth{kendtikzpicture}
le texte qui suit directement la figure se trouve ici!
```


Dessins PSTricks et Tikz dans un tableau

Exercices

Pour centrer le texte et l'image, on peut utiliser un tableau et la commande \parbox :

Ce texte est centré par rapport la figure sur une largeur de 4,5 cm

```
\begin{tabular}{ c c c } \
parbox[c]{2.5cm}{ \begin{pspicture}(2,2) \psframe[blue](2,2) \pscircle[red](1,1){1} \end{pspicture} } & \parbox[c]{2.5cm}{ \tikz \draw[blue](1,1) ci
```

\parbox[c]{2.5cm}{
\tikz \draw[blue] (1,1) circle(1) (0,0) rectangle (2,2);} &

\parbox[c]{5cm}{

Ce texte est centré par rapport la figure sur une largeur de 5 cm }\ \hline \end{tabular} \hline

6 1 ... / 1 540 1

position fixe sur une page

Le module pst-abspos permet de positionner une image à une position fixe de la page (position absolue ou relative).

```
\pstSetAbsoluteOrigin %point d'origine
%un point et un texte
\pstPutAbs(0,0){\qdisk(0,0){4pt}{origine}}
\pstPutAbs(0,0){\psgrid[gridlabels=0](0,0)(12,-4)}
% une image PSTricks
\pstPutAbs(2,-3){\qdisk(0,0){4pt}{}}
\pstPutAbs(2,-3){
\beginpspicture(2,2)
\psframe[fillcolor=blue,fillstyle=solid](2,2)
\pscircle[fillcolor=red,fillstyle=solid](1,1)1
\end{pspicture}}
% une image Tikz
\pstPutAbs(6,-3){\qdisk(0,0){4pt}{}}
\pstPutAbs(6,-3){
\tikzpicture
\filldraw[green] (0,0) rectangle (2,2);
\filldraw[magenta] (1.1) circle (1):
\endtikzpicture }
% un objet pstricks
\pstPutAbs(5,-2) {\psframebox[fillcolor=yellow,fillstyle=solid] {Un texte en boite}}
```


position fixe sur une page

Le module pst-abspos permet de positionner une image à une position fixe de la page (position absolue ou relative).

```
\pstSetAbsoluteOrigin %point d'origine
%un point et un texte
\pstPutAbs(0,0){\qdisk(0,0){4pt}{origine}}
\pstPutAbs(0,0){\psgrid[gridlabels=0](0,0)(12,-4)}
% une image PSTricks
\pstPutAbs(2,-3){\qdisk(0,0){4pt}{}}
\pstPutAbs(2,-3){
\beginpspicture(2,2)
\psframe[fillcolor=blue,fillstyle=solid](2,2)
\pscircle[fillcolor=red,fillstyle=solid](1,1)1
\end{pspicture}}
% une image Tikz
\pstPutAbs(6,-3){\qdisk(0,0){4pt}{}}
\pstPutAbs(6,-3){
\tikzpicture
\filldraw[green] (0,0) rectangle (2,2);
\filldraw[magenta] (1.1) circle (1):
\endtikzpicture }
% un objet pstricks
\pstPutAbs(5,-2) {\psframebox[fillcolor=yellow,fillstyle=solid] {Un texte en boite}}
```


Dans un environnement figure

Votre dessin est traité comme une image : vous pouvez lui donner une légende, la référencer dans une liste d'images . . .

FIGURE : figure Pstricks

FIGURE : figure Tikz

```
\begin{figure} [!h]
\centering
\begin{figure} (2,2)
\begin{figure} (2,2)
\pscircle[linecolor=red](1,1){1cm}
\end{figure}
\caption(légende la figure)% le texte de légende et donne un numéro à la figure
\label{votre référence} % permet de faire référence à cette figure
```


En tant qu'image flottante

Le rond bleu a l'option b (botton) et le rond vert a l'option h (here)


```
\begin{figure} [h ou b ou t]
\begin{pspicture}(1,1)
\pscircle[linecolor=red](.5,.5){.5cm}
\end{figure}
\endfigure}
```


Habillage du dessin par le texte

Exercices

Deux modules permettent de positionner automatiquement le dessin dans le texte : « wrapfig » et « picins ³ »

1°ligne du texte 2°ligne du texte

3°ligne du texte 4°ligne du texte 5°ligne du texte 6°ligne du texte 7°ligne du texte 8°ligne du texte 9°ligne du texte 10°ligne du texte

- 1° ligne du texte
- 2° ligne du texte

\begin{wrapfigure}{1}{3.2cm}
\begin{pspicture}(3cm,3cm)
psframe(3cm,3cm)
\pscircle[linecolor=blue](1.5cm,1.5cm){1cm}
\end{pspicture}
\end{wrapfigure}

- 3° ligne du texte
- 4° ligne du texte

etc

12°ligne du texte

Sur deux colonnes

Personnellement, j'utilise la commande « minipage » qui permet de séparer la largeur de la page en deux parties de largeur paramétrable.

\begin{minipage}[C]{.38\linewidth}
Cette partie fait 38% de la largeur de la ligne
\begin{pspicture}(4,4) \psgrid
\pscircle[linecolor=blue](2,2){1cm}
\end{pspicture}
\end{minipage}\fill
\begin{minipage}\fill
\begin{minipage}{C]{.58\linewidth}}
Cette partie fait 58% de la largeur de la ligne
\bigskip
On peut mettre ici du texte, un autre dessin,
une équation mathématique \dots
\end{minipage}

Sur deux colonnes

Personnellement, j'utilise la commande « minipage » qui permet de séparer la largeur de la page en deux parties de largeur paramétrable.

Cette partie fait 38% de la largeur de la ligne

\begin{minipage} [C] {.38\linewidth}
Cette partie fait 38% de la largeur de la ligne
\begin{pspicture} \(4,4\) \psgrid
\pscircle[linecolor=blue] \(2,2\) \{1cm\}
\end{minipage} \\hfill
\begin{minipage} \\hfill
\begin{minipage} \\fill
Cette partie fait 58% de la largeur de la ligne
\bigskip
On peut mettre ici du texte, un autre dessin, une équation mathématique \dots
\end{minipage}

Cette partie fait 58% de la largeur de la ligne

Sur deux colonnes

Personnellement, j'utilise la commande « minipage » qui permet de séparer la largeur de la page en deux parties de largeur paramétrable.

\begin{minipage} [C] { .38\linewidth}
Cette partie fait 38% de la largeur de la ligne
\begin{pspicture} (4,4) \psgrid
\pscircle[linecolor=blue] (2,2) {1cm}
\end{pspicture}
\end{minipage} \hfill
\begin{minipage} [C] { .58\linewidth}
Cette partie fait 58% de la largeur de la ligne
\bigskip
On peut mettre ici du texte, un autre dessin,
une áquation mathématique \dots

Cette partie fait 38% de la largeur de la ligne

Cette partie fait 58% de la largeur de la ligne

On peut mettre ainsi côte à côte du texte, un dessin, une équation mathématique ...

\end{minipage}

Problème de cadrage avec PSTricks

Exercices

\begin{pspicture}(4,4)
\psframe(4,4)
\pscircle[linecolor=red](2,2){2.2}
\end{pspicture}

On observe un dépassement du cadre fixé avec un risque d'empiétement sur les éléments avoisinants.

Problème de cadrage avec PSTricks

\begin{pspicture}(4,4)
\psframe(4,4)
\pscircle[linecolor=red](2,2){2.2}
\end{pspicture}

On observe un dépassement du cadre fixé avec un risque d'empiétement sur les éléments avoisinants.

> Vous avez dans ce cas un avertissement bad box à la compilation.

Problème de cadrage avec PSTricks

\begin{pspicture}(4,4)
\psframe(4,4)
\pscircle[linecolor=red](2,2){2.2}
\end{pspicture}

On observe un dépassement du cadre fixé avec un risque d'empiétement sur les éléments avoisinants.

Solution

\begin{pspicture}*(4,4) \psframe(4,4) \pscircle[linecolor=red](2,2){2.2}\end{pspicture}

On peut limiter l'image au cadre désiré grâce à l'ajout d'un astérisque :

Vous avez dans ce cas un avertissement bad box à la compilation.

Modifation du cadrage d'un dessin Tikz : « bounding box »

rectangle noir : « bounding box » utilisé rectangle rouge : La zone de la figure Tikz

```
texte avant\begin{tikzpicture} \ draw [use as bounding box] (2,0) rectangle (3,1); \ draw [1,0) - - (4,.75); \ draw [red](0,0) rectangle (4,1); \ lond{tikzpicture}texte après.
```


Taille du dessin ajustée à l'aide de la commande « clip »

On peut réduire la taille du dessin à la partie qui nous intéresse.

Partie déssinée


```
\tikzpicture[red]
\clip (-1,-1) - -(0,2) - - (1,-1) - - cycle;
etc
```


Insertion d'un dessin dans un document

Ne dessiner qu'une partie du dessin : « psclip »


```
\begin{pspicture}*(-2,-2)(2,2) \psgrid
\pscilp {\pscirate[linecolor=blue](-1.1,-.2)(2,1.5)}
\pscircle[linecolor=red]{5}
\endpsclip
\pscircle[linecolor=red]{1.5}
\endpsclip
\pscircle[linecolor=red]{1.5}
```


Ne dessiner qu'une partie du dessin avec « clip »

Dessin sans clip Avec la commande clip


```
\tikzpicture[red]
\draw[help lines] (-2,-2) grid (2,2);
\draw[blue] (-1.1,-0.2) rectangle (2,1.5);
\draw (0,0) circle (1.5);
\clip (-1.1, -0.2) rectangle (2, 1.5);
\draw (0,0) circle (.5);
etc
```


On peut facilement changer la taille d'un dessin en changeant la valeur de « unit » grâce à la commande

\psset{unit=.5cm} \begin{pspicture}(3.4,3.4) \psframe[linecolor=red,linewidth=3pt](1,1)(3,3) \pscircle[linecolor=blue,linewidth=3pt](2,2){1cm}

On peut facilement changer la taille d'un dessin en changeant la valeur de « unit » grâce à la commande

Taille par défaut

\psset{unit=.5cm}
\begin{spicture}(3.4,3.4)
\psframe[linecolor=red,linewidth=3pt](1,1)(3,3)
\pscircle[linecolor=blue,linewidth=3pt](2,2){1cm}
}

Attention, seules les dimensions sont changées!

On peut facilement changer la taille d'un dessin en changeant la valeur de « unit » grâce à la commande

\psset{unit=.5cm} \begin{pspicture}(3.4,3.4) \psframe[linecolor=red,linewidth=3pt](1,1)(3,3) \pscircle[linecolor=blue,linewidth=3pt](2,2){1cm}

Attention, seules les dimensions sont changées!

Si vous précisez la dimension d'une variable, la commande psset n'aura pas d'influence sur elle!

On peut changer la taille de la totalité d'un dessin en l'insérant dans un « scalebox »

Taille par défaut

Echelle 1/2

\scalebox{.5}{

\begin{pspicture}(3.4,3.4)

\psframe[linecolor=red,linewidth=3pt](1,1)(3,3)
\pscircle[linecolor=blue.linewidth=3pt](2,2){1cm}}

Tout est à l'échelle : ici, l'épaisseur des traits!

Le module pst-node

Le module « pst-node » donne la possibilité de positionner des nœuds dans le document et de les relier.

Un exemple simple

 $\verb|\hspace{2cm}| \quad \verb|\hspace{2cm}| \quad \hspace{2cm}| \quad \hspace{$

\rnode{B1}{\psframebox{noeud B1}} % définition du noeud B1

Échantillonage des nœuds disponibles

dotnode	•	\dotnode[dotstyle=*](1,0){A}
fnode		\fnode(1,0){B}
cnode	0	\cnode(1,0){.2cm}{D}
circlenode	dim	\rput(1,0){\circlenode{H}{dim}}
ovalnode	dim	\rput(1,0){\ovalnode{I}{dim}}
rectangulaire	dim	\rput(1,0){\rnode{J}{\psframebox{dim}}}
trinode	dim	\rput(1,0){\trinode{K}{dim}}
dianode	dim	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
cnodeput	(girt)	\cnodeput*\{45\}(1,0)\{M\}\{dim\}

Echantillonage des connexions disponibles

\begin{pspicture}(11,9)

\rput(1,1){\circlenode(A){A}}\rput(3,1){\circlenode(B){B}}\rput(5,1){\circlenode(C){C}}\rput(7,1){\circlenode(D){D}}\rput(1,3){\circlenode(E){E}}\rput(3,3){\circlenode(E){F}}}\rput(5,3){\circlenode(G){G}}\rput(7,3){\circlenode(H){H}}\rput(1,5){\circlenode(I){I}}\rput(3,5){\circlenode(I){I}}}\rput(5,5){\circlenode(H){H}}\rput(7,7){\circlenode(I){I}}\rput(1,7){\circlenode(I){I}}\rput(1,7

\ncline{->}{A}{B} \nccurve{->}{B}{G} \ncarc{->}{E}{F} \ncarc{->}{G}{F} \ncbar{angle=30]{->}{D}{H} \ncdiag{->}{C}{L} \ncdiag{->}{J}{N} \ncangles{->}{J}{N} \ncargles{->}{J}{N} \nccircle{->}{P}{1}

\end{pspicture}

Étiquette sur un nœud

Exercices

syntaxe:

\nput*[paramètres]{position=angle}{nom}{texte}

\pssetfillcolor=yellow % couleur de remplissage

\rnode{A}{\psframebox{noeud \$A\$}}
\nput*[labelsep=0,rot=45]{45}{A}{texte}
\nput[labelsep=3pt]{-45}{A}{texte}
\nput*[labelsep=5pt.rot=90]{180}{A}{texte}

\vspace{2cm}
\cnode(.5cm){A}
\nput*[labelsep=0,rot=45]{45}{A}{texte}
\nput[labelsep=-3pt]{-45}{A}{texte}
\nput*[labelsep=-5pt,rot=90]{180}{A}{texte}

Étiquette sur une connexion syntaxe : \naput*[paramètres]{étiquette} narc nœud Bnœud A ncline \rnode{A}{\psframebox{noeud \$A\$}} \hspace{4cm} \rnode{B}{\psframebox{noeud \$B\$}} \ncline{<->}{A}{B} \ncput*{\red ncline} \ncarc[arcangle=45,linecolor=red]{->}{A}{B} \naput[npos=.3]{\red narc} % positionner à 30 % \ncbar[angle=-90]{->}{A}{B} \nbput[nrot=90]{\red ncbar} % avec rotation du texte

Matrice de nœuds

La commande \psmatrix permet de créer un tableau où chaque case est un nœud. Les nœuds sont désignés par leur position {ligne,colonne}. On peut aussi leur donner un nom.


```
\psmatrix[colsep=.7,rowsep=.5cm]

& [mnode=circle] A \\
[mnode=oval] B & [mnode=dia] C & [mnode=tri] D\\
& [mnode=dot,name=E] E \\
$E = m c^2$ & & [mnode=f] F\\
\endpsmatrix
\ncarc{->}{4,1}{3,2}\
\ncline{->}{1,1}{2,3}\
\ncbar[ang]le=-45] {->}{2,3}{2,1}\
\ncdiag{->}{1,2}{2,1}\
\ncdiag{->}{1,1}{E}
```



```
\pspicture*(0,1)(15,10)
\psframe[linewidth=Opt.linestvle=dotted.fillstvle=solid.fillcolor=magenta](0,1)(2,10)
\psframe[linewidth=0pt,linestyle=dotted,fillstyle=solid,fillcolor=magenta](13,1)(15,10)
\rput*(1,9){paroi $S 1$ } \rput*(14,9){paroi $S 2$} \rput*(7.5,9){gaz}
\psframe[linewidth=1pt,linestyle=dotted,fillstyle=solid,fillcolor=yellow](6.5,1)(8.8,10)
\ \cline{A}{\psframebox{$\alpha_1E_1$}}
\rput[b1](3,7){\rnode{B}{\psframebox[fillstyle=solid,fillcolor=cvan]{$E 1$}}}
\rput[b1](7,7){\rnode{D}{\psframebox{$\alpha g J 2$}}}
\rput[bl](9.5.7){\rnode{E}}{\psframebox[fillstvle=solid.fillcolor=cvan]{$J2$}}}
\rput[cl](14,8){\rnode{F}{\psframebox{$\varepsilon_2 \sigma T^4_2$}}}
\poode(2,5){G} \poode(13,5){I}
\rput[bl](7.5){\rnode{H}}{\psframebox{$\varepsilon g \sigma T^4 g$}}}
\rput[bl](5,3){\rnode{J}{\psframebox[fillstyle=solid,fillcolor=cyan]{$J_1$}}}
\rput[b1](7,3){\rnode{K}{\psframebox{$\alpha g J 1$}}}
\rput[bl](12,3){\rnode{M}{\psframebox[fillstyle=solid,fillcolor=cyan]{$E 2$}}}
\ \left[ cl \right] (14,2.5) \left[ \psframebox{{\alpha 2E 2$}} \right]
\rput[c1](1.25,2.5){\rnode{0}{\psframebox{$\varepsilon_1 \sigma T^4_1$}}}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=blue] {->}{B}{A}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=blue] {->}{D}{B}
\mput*{\psframebox{$(1-\alpha_g)J_2$}}
\ncline[nodesep=3pt.linewidth=3pt.linecolor=blue]{->}{C}{E}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=red]{->}{F}{E}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=red]{->}{E}{D}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=red]{-}{B}{G}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=red]{->}{G}{J}
\mput*{\psframebox{$(1-\alpha_1)E_1$}}
\ncline[nodesep=3pt,linewidth=3pt,linecolor=red]{->}{J}{K}
\ncline[nodesep=3pt.linewidth=3pt.linecolor=blue]{->}{K}{M}
\mput*{\psframebox{$(1-\alpha_g)J_1$}}
```


Utilisation pour commenter une image (code)

```
\begin{minipage}[C]{.36\linewidth}
\rnode{deplaceur}{Le déplaceur d'air}
\rnode{piston}{Le piston}
\end{minipage}\hfill
\begin{minipage}[C]{.56\linewidth}
\begin{pspicture}(8,7)
\rput{0}(4.3.5){\includegraphics[width=8cm]{stirling.eps}}
\rput{0}(6.6){\psframebox{Le moteur de Stirling}}
%\psgrid
               % pour le positionnement des objets
\q isk(2,2.5){3pt}
\qtimes (2.5, 4.5){3pt}
\poline{2,2.5}{pist}
\prode(2.5,4.5){dep1}
\ncangles[angleB=180]{piston}{pist}
\ncangles[angleB=180]{deplaceur}{depl}
\end{pspicture}
\end{minipage}
```


Utilisation de psComment pour commenter une image

La macro « psComment » est inclus dans le module pstricks-add. Elle utilise les commandes vues précédemment. syntaxe :

```
\psComment*[option]{->}(position)(position){le commentaire}
[le type de connexion]
```


Utilisation de psComment pour commenter une image

La macro « psComment » est inclus dans le module pstricks-add. Elle utilise les commandes vues précédemment. syntaxe :

\psComment*[option]{->}(position)(position){le commentaire}
[le type de connexion]

Utilisation de psfrag

module à installer : « \psfrag »

Il permet de modifier un dessin créé par un autre logiciel.

Exemple : j'ai créé ce dessin sous « Xfig » :

A l'aide de la commande psfrag, j'ai remplacé les lettres E, S et F et créé des liaisons avec du texte placé en vis à vis :

gain statique E(p) K S(p) constante de temps $1+\tau p$

Utilisation de psfrag (code)

```
\begin{minipage}[C]{.46\linewidth}
\rnode{G}{gain statique}
\rnode{G}{gain statique}
\rnode{T}{constante de temps}
\end{minipage}\hfill
\begin{minipage}(C]{.46\linewidth}
\begin{psfrags}
\psfrag{F}{B c]{\linewidth}^{\text{rnode}{GS}_{K}}_{1+\rnode{CT}_{\tau}} p}$}
\psfrag{E}{E(p)}
\psfrag{S}_{S(p)}
\includegraphics[width=6cm]{s1.eps}
\end{psfrags}
\ncangles[angleB=0,angleA=90]{GS}_{G}
\ncangles[angleB=0,angleA=-90]{CT}_{T}\end{minipage}
```


Les types de nœuds sous Tikz

Nœuds à plusieurs parties

\begin{tikzpicture}
\node [circle split,draw,double]
{\$q_1\$ \nodepart{lower}\$00\$ };
\end{tikzpicture}

partie supérieure

partie intermédiare

partie inférieure

```
\begin[tikzpicture] [every text node part/.style=text centered]
\node[rectangle split, rectangle split parts=3,
draw, text width=2.75cm]
{partie \\ supérieure
\nodepart{second}
partie \\ intermédiare
\nodepart{third}
partie \inférieure};
\end{tikzpicture}
```

nécessite \usepgflibrary{shapes.multipart}.

Taille minimale des nœuds sous Tikz hauteur 1cm 2cmpar3cm 1.5 cm 1.5 cm exemple: \draw (3,0) node[fill=blue!20,minimum height=2cm,minimum width=3cm,draw] {\$2cm par 3 cm\$};

\tikz \draw (0,0) node[shape aspect=3
,diamond,draw] {aspect 3};

\tikz \draw (0,-2) node[shape aspect=2
,diamond,draw] {aspect 2};

Nœuds: texte

On peut spécifier la configuration du texte dans un nœud :

Ceci est une démonstration d'un texte sur une largeur de 2cm.

Ceci est une démonstration d'un texte ragged sur 2cm

Ceci est une démonstration d'un texte justifié sur 2cm.

Ceci est une démonstration d'un texte badly ragged sur 2cm. Ceci est une démonstration d'un texte centré sur 2cm .

Ceci est une démonstration d'un texte badly centered sur 2cm.


```
\draw (D) |- (H);
\draw (B) -- (C);
\draw (C) -| (G);
\draw (A) -- (E);
\draw (A) -- (E);
\draw[color=blue] (A) to [bend right] (F);
\draw[color=med] (A) to [bend left=0] (M);
\draw[color=magenta] (I) to[bend left=30] (M);
\draw[color=reen] (I) to[bend left=30] (M);
\draw[color=reen] (I) to[bend left=90] (M);
\draw[color=red] (N) to[out=90,in=135] (N);
\draw[color=blue] (L) to[out=45,in=-90] (P);
\draw (O) to[out=45,in=135] (O);
\draw (O) to[out=45,in=135] (H);
```


Les nœuds et leurs connexions

Les liaisons de nœud sous Tikz

Les liaisons entre nœuds ne peut se faire que dans le même environnement Tikz!

Les liaisons entre nœuds ne peut se faire que dans le même environnement Tikz! pour lier des nœuds extérieurs, il faut utiliser les options « remember picture » et « overlay »

Les liaisons entre nœuds ne peut se faire que dans le même environnement Tikz! pour lier des nœuds extérieurs, il faut utiliser les options « remember picture » et « overlay » .

Attention, deux compilations sont nécessaires!

dessin

Les liaisons entre nœuds ne peut se faire que dans le même environnement Tikz! pour lier des nœuds extérieurs, il faut utiliser les options « remember picture » et « overlay » .

Attention, deux compilations sont nécessaires!

```
placé dans le texte à l'aide de la commande :
Voici le nœud
 \tikz[remember picture] \node[circle,fill_red!50] (n1) { n1}
voici un autre nœud placé dans du texte 12
                                              \begin{tikzpicture}[remember picture,overlay]
                                             \draw[->, very thick] (n1) - (n2);
Voi<mark>¢</mark>i une image Tikz :
                                             \end{tikzpicture}
                                             \bigskip
                                             \begin{tikzpicture}[remember picture]
```

\node (c) [circle,draw] {dessin}; \draw [overlay, ->, very thick, red, opacity=.5]

Nœuds : positions étiquettes

```
\begin{tikzpicture}
                                       \fill (0,0) circle (2pt) node[above] {above};
                                       \fill (0,0) circle (2pt) node[below] {below};
above
left • right
                                       \fill (0,0) circle (2pt) node[left] {left};
                                       \fill (0,0) circle (2pt) node[right] {right};
  below
                                       \endtikzpicture
above left above right
                                       \begintikzpicture
                                       \fill (0,0) circle (2pt) node [above left] {above left};
                                       \fill (0,0) circle (2pt) node[below left] {below left};
below left below right
                                       \fill (0,0) circle (2pt) node[above right] {above right};
                                       \fill (0,0) circle (2pt) node[below right] {below right};
                                       \end{tikzpicture}
```


Nœuds : positions étiquettes

```
begin{tikzpicture}

\fill (0,0) circle (2pt) node[above] {above};

\fill (0,0) circle (2pt) node[below] {below};

\fill (0,0) circle (2pt) node[left] {left};

\fill (0,0) circle (2pt) node[left] {left};

\fill (0,0) circle (2pt) node[right] {right};

\text{below}

above left

below right

\text{begintikzpicture}

\text{begintikzpicture}

\text{bejour circle (2pt) node[above left] {above left};

\fill (0,0) circle (2pt) node[below left] {below left};

\text{fill (0,0) circle (2pt) node[above right] {above right};

\text{fill (0,0) circle (2pt) node[above right] {below right};

\text{vend(tikzpicture}}

\text{vend(tikzpicture} {\text{fill (0,0) circle (2pt) node[below right] {below right};

\text{vend(tikzpicture} {\text{fill (0,0) circle (2pt) node[below right] {below right};}

\text{vend(tikzpicture} {\text{vend(tikzpicture} {\text{fill (0,0) circle (2pt) node[below right] {below right};}}

\text{vend(tikzpicture} {\text{vend(tikzpicture} {\text{fill (0,0) circle (2pt) node[below right] {below right};}}

\text{vend(tikzpicture} {\text{vend(tikzpicture} {\text{fill (0,0) circle (2pt) node[below right] {below right};}}

\text{vend(tikzpicture} {\text{vend(tikzpicture} {\text{ven
```

\tikz \draw (0,0)

Nœuds : ancres des étiquettes

102

```
south east owest north south east south west north west
```

```
circle(2pt)node[anchor=south] {south}
node[anchor=west] {west}
node[anchor=north] {north}
node[anchor=east] {east};

\tikz \draw (0,0)
circle(2pt)node[anchor=south east] {south east}
node[anchor=south west] {south west}
node[anchor=north west] {north west}
node[anchor=north east] {north east};
```

4 D > 4 A > 4 B > 4 B >

Nœuds : étiquettes sur un chemin

```
0 0.15 0.29999 0.44998 0.59998 0.74997 0.89996
```



```
Nœuds : étiquettes sur un chemin
           0.15 0.29999 0.44998 0.59998 0.74997 0.89996
\tikz \draw (0,0) - - (10,0)
foreach \ p in {0,0.15,...,1}{node[pos=\p][above=.2]{\p}}
\foreach \p in \{0,0.15,...,1\}\{\text{node}[pos=\p]\{+\}\};
 near start
very near start
                                                 near end very near end at end
    at start
\tikz \draw (0,0) .. controls +(up:2cm) and +(left:5cm) .. (9,0)
node[at end] {|at end|}
node[verv near end] {|verv near end|}
node[near end] {|near end|}
node[midway] {|midway|}
node[near start] {|near start|}
node[very near start] {|very near start|}
node[at start] {|at start|};
```

Créer ses Couleurs : du gris avec \newgray

 $Syntaxe: \texttt{\newgray}\{color\}\{pourcentage\}: \\ avec \ pourcentage=0 \ (noir) \ \grave{a} \ pourcentage=1 \ (blanc)$

Exemples:

{0}	{.2}	{.4}	{.6}	{.8}	{1}

%création de la couleur \newgray{mongris}{0.4}

%utilisation de la nouvelle couleur
\psframe[fillstyle=solid,fillcolor=mongris](1,1)

Créer ses Couleurs avec \newrgbcolor

Syntaxe : $\newrgbcolor{color}{rouge vert bleu}$: avec les pourcentages de rouge , de vert et de bleu

Exemples:

{1 0 0}	{0 1 0}	{0 0 1}	{0 0 .5}	{.5 .5 0}	{0 .5 .5}	{.2 .5 .7}	{.2 .5 .7}

```
%création de la couleur \label{lem:couleur} $$\operatorname{mevrgbcolor\{macouleur\}\{.75 .5 .75\}}$
```

%utilisation de la nouvelle couleur
\psframe[fillstyle=solid,fillcolor=macouleur](1,1)

Créer ses Couleurs avec \newhsbcolor

Exercices

Exemples:

{0 .5 .5}	{.5 .5 .5}	{1 .5 .5}	{.5 0 .5}	{.5 1 .5}	{.5 .5 0}	{.5 .5 .7}	{.5 .5 1}

```
%création de la couleur
\newhsbcolor{macouleur}{.5 .5 .75}

%utilisation de la nouvelle couleur
\psframe[fillstyle=solid,fillcolor=macouleur](1,1)
```


Créer ses Couleurs avec \newcmykcolor

Exercices

Exemples:

{1 0 0 0}	{0 1 0 0}	{0 0 1 0}	{.5 .5 0 0}	{0 .5 .5 0}	{.5 .5 0.5 0}	{1 0 0 .2}	{100.7}

%création de la couleur \newcmykcolor{macouleur}{1 0 0 .75}

%utilisation de la nouvelle couleur
\psframe[fillstyle=solid,fillcolor=macouleur](1,1)

Créer ses objets

Si un objet est souvent utilisé avec des paramètres non standard, il peut être intéressant de le déclarer comme nouveau objet. Deux avantages :

- Cela simplifie l'écriture.
- Si on désire changer un des paramètres, tous les objets seront automatiquement mis à jour.

mon objet personnalisé

%création de l'objet
\newpsobject\myboite\\psframebox\\fillstyle=solid,fillcolor=yellow
,linewidth=2pt,linecolor=red\

%utilisation du nouveau objet \myboite{mon objet personnalisé}

Créer ses styles

De même pour les paramètres des objets

\newpsstyle{myfleche}{arrowsize=4pt 6,arrowlength=2,doubleline=true}

\psline[arrows=->,style=myfleche](3,0)

\pscurve[style=myfleche]{«->}(0,0)(3,-1)(6,0)

Créer son style sous tikz


```
\begin{tikzpicture}[mon style/.style={draw=blue,fill=red!20,very thick}]
\draw (0,0) circle (2cm);
\draw[mon style] (0,0) circle (1cm);
\end(tikzpicture)
```


Créer son style sous tikz

On peut définir un style à option variable :

red

blue

```
\begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1!50}]
\node [outline=red] at (0,0) {red};
\node [outline=blue] at (5,0) {blue};
\end(tikzpicture)
```


Créer son style sous tikz

On peut définir un style à option variable :

red


```
\begin{tikzpicture}[outline/.style={draw=#1,thick,fill=#1!50}]
\node [outline=red] at (0,0) {red};
\node [outline=blue] at (5,0) {blue};
\end(tikzpicture)
```

et définir une option par défaut :

default


```
\begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1!50},
outline/.default=black]
\node [outline] at (0,0) {default};
\node [outline=blue] at (5,0) {blue};
\end{tikzpicture}
```


Créer ses commandes

Pour un dessin répétitif avec un ou plusieurs paramètres variables, il peut être intéressant de créer une commande. Voici un exemple de schéma bloc utilisé en cours de contrôle régulation.

Attention la déclaration des nouvelles commandes se fait avant le début du document!

```
\newcommand{\FTBO}[2]{ \nspace{1cm} \rnode{Aaa}{\psframebox{#1}}
\hspace{1cm} \rnode{Bbb}{\psframebox{#2}} \ncline{Aaa}{Bbb}
\hspace{1cm} \vspace{1cm}\
\newcommand{\FTBF}[2]{ \hspace{1cm} \cnode{.5cm}{Aaa}
\hspace{1cm}\rnode{#1}{\psframebox(#2)} \ncline{Aaa}{#1}
\ncangles[angleA=0,angleB=-90]{#1}{Aaa}\hspace{1cm} \vspace{1cm}}
```


Créer ses commandes

Utilisation des 2 commandes créées :

Créer ses commandes

Utilisation des 2 commandes créées :

Ce qui donne :

La bou<u>cle ouverte :</u>

la fonction en boucle fermée :

Code

Exercices

```
% Dans le préambule
\newcommand{\bob}[2]{\begin{pspicture}(0,-1)(1,1)
\propty [linewidth=1pt] (1,0){1}{150}{210}
\psarc[linewidth=1pt](0.0){1}{330}{30}
\rput(0.5.0){\textbf{#1}} \rput(.5..8){\scriptsize #2}
\end{pspicture}}
\newcommand{\cont}[2]{\begin{pspicture}(0,-1)(1,1)
\propty [linewidth=1pt] (0,.5)(0,-.5)
\propty [linewidth=1pt](.5,.5)(.5,-.5)
\rput(0.25,0){\textbf{#1}}
\rput(.25..8){\scriptsize \textbf{#2}}
\end{pspicture}}
la figure
\begin{pspicture}(-1.0)(10.8)
\rput(-1,7){12} % numero de label
\psline(0,0)(0,8) \psline(10,0)(10,8)
\psline(0,7)(1.5,7) \rput(2,7){\cont{ }{I0,20}}
\psline(2.7)(4.7) \psframe(4.8)(6.4) \rput(5.6){\huge T\small 1}
\rput(6.5,7.5){\scriptsize D} \rput(6.5,5.5){\scriptsize R}
\rput(3.7,7.5){\scriptsize E} \rput(3.7,5.5){\scriptsize C}
\psline(6,7)(8.5,7) \psline(8,7)(8,5)
\t(9,7){\bob{}}\{00,8\}} \psline(9.5,7)(10,7)
\propto (0,5)(1.5,5) \propt(2,5){\cont{}{I0,21}} \propt(2,5)(4,5)
\psline(6.5)(7.5) \psline(7.3)(7.5)
\psline(8,5)(8.5,5)
\t(9,5){\bob{/}{00,9}} \psline(9.5,5)(10,5)
\psline(7,3)(8.5,3)
\rput(9,3){\bob{ }{00,10}} \psline(9.5,3)(10,3)
\end{nsnicture}
```


Répétitions d'un motif Le motif de base Le motif répété 5 fois : \multips(2,0){5}{ $\left(0,-.5\right)(2,.5)$ \psbezier[fillstyle=solid,fillcolor=red](0,0)(1,.5)(2,0) \psbezier[fillstyle=solid,fillcolor=red](0,0)(1,-.5)(2,0) \end{pspicture}}

Répétitions paramétrables

La commande « multido » du module du même nom permet répéter une commande en incrémentant une variable Exemple : variation de l'angle de rotation d'un dessin


```
\begin{pspicture}(-4,-4)(4,4)
\multido{\i=0+30}{12}{%}
\rput{\i)}{
  \psbezier[fillstyle=solid,fillcolor=blue](0,0)(1,.5)(2,0)
  \psbezier[fillstyle=solid,fillcolor=blue](0,0)(1,-.5)(2,0))}
\multido{\i=15+30}{12}{%}
  \rput{\i}{
  \psbezier[fillstyle=solid,fillcolor=red](0,0)(1,.5)(2,0)
  \psbezier[fillstyle=solid,fillcolor=red](0,0)(1,.5)(2,0)
  \psbezier[fillstyle=solid,fillcolor=red](0,0)(1,.5)(2,0)
}
\end{\ipspicture}
\end{\ipspicture}
```

Répétitions avec foreach

Exercices

\begin\pspicture\(0,-5mm\)(11,2)
\psforeach\\nA\\0, 1,..,10\
\psline(\nA,0)(\nA,1)\
\end{pspicture}

Boucles imbriquées

Répétitions avec Psloop

Répétition d'un texte : Un texte Un texte Un texte

```
\psLoop{3}{Un texte }
```


Répétitions avec Psloop

Répétition d'un texte : Un texte Un texte Un texte

\psLoop{3}{Un texte }

Répétition d'une équation :
$$\frac{\sqrt{2x+2}}{5}$$
 $\frac{\sqrt{2x+2}}{5}$ $\frac{\sqrt{2x+2}}{5}$ $\frac{\sqrt{2x+2}}{5}$

 $\psLoop4{$\dfrac{\sqrt{2x +2}}{5}$} \$

Répétitions avec Psloop

Répétition d'un texte : Un texte Un texte Un texte

```
\psLoop{3}{Un texte }
```

Répétition d'une équation :
$$\frac{\sqrt{2x+2}}{5}$$
 $\frac{\sqrt{2x+2}}{5}$ $\frac{\sqrt{2x+2}}{5}$ $\frac{\sqrt{2x+2}}{5}$

 $\psLoop4{$\dfrac{\sqrt{2x +2}}{5}$} \$

Répétition d'une image Tikz : 🔲 🔲 🔲 🕕

```
Dans le préambule
\newcommand{\DFR}{ \tikzpicture[scale=.25]}
\draw [fill=blue](0,0) rectangle (0.5,1.0);
\draw [fill=white](0.5,0) rectangle (1,1.0);
\draw [fill=red](1,0) rectangle (1.5,1.0);\endtikzpicture }

Dans le texte
\psLoop{5}{ \DFR }
```


Psloop et son index

\begin{pspicture}[showgrid](3,3)
\psLoop{4}{ \psdots(\the\psLoopIndex,\the\psLoopIndex)}
\end{pspicture}

 $\psLoop{4}{$\dfrac{\x +2}}{\theta\x+x} \ \}$

Psloop et son index

\begin{pspicture}[showgrid](3,3)
\psLoop{4}{ \psdots(\the\psLoopIndex,\the\psLoopIndex)}
\end{pspicture}

 $\psLoop{4}{$\dfrac{\x +2}}{\the\psLoopIndex+x}$ }$

mais on ne peut effectuer des opérations avec l'index!

Répétition avec Tikz

Répétition d'un tracé :

 $\label{tikz horeach x in {1,...,10}} $$ \ \ (x,0) \ \ (0.4cm);$

Répétition avec Tikz

Répétition d'un tracé :

Répétition à 2 paramètres :

 $\label{tikz foreach x/y in {1/10,2/20,3/30,4/40,5/50,6/60,7/70,8/80,9/90,10/100} $$ \left(x,0 \right) $$ (x,0) $$ (x,$

Répétition avec Tikz

Répétition d'un tracé :

 $\tikz foreach \x in {1,...,10} fill[blue](x,0) circle (0.4cm);$

Répétition à 2 paramètres :

\tikz \foreach \x/\y in \frac{1/red,2/green,3/magenta,4/blue} \shade[ball color=\y](\x,0) circle (2ex)

Répétition avec foreach							
1,3	1,3 2,3		4,3				
1,2	1,2 2,2		4,2				
1,1	2,1	3,1	4,1				

7,3	8,3	9,3	10,3
7,2	8,2	9,2	10,2
7,1	8,1	9,1	10,1

```
\begintikzpicture
\foreach \x in \{1,2,...,4,7,8,...,10\}
\foreach \y in \{1,...,3\}
\draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
\draw (\x,\y) node\x,\y;
\endtikzpicture
```


Répétition de commande


```
\begin{tikzpicture}
\foreach \x in \{0,20,...,360\} \filldraw[red] (0,0) .. controls (\x+10:.3)
.. (\x:1) .. controls (\x-10:.3) .. (0,0);}
\foreach \x in \{10,30,...,370\} \filldraw[blue] (0,0) .. controls (\x+10:.3)
.. (\x:1) .. controls (\x-10:.3) .. (0,0);}
\end{tikzpicture}
```


Boucle imbriquée : sens d'exécution

\begin{tikzpicture}
\draw (0,0)
\foreach \x in {1,2,3}
{\foreach \y in {0,1,2}}
{- - (\x,\y) node{X}}};
\end{tikzpicture}

\begin{tikzpicture}
\draw (0,0)
\foreach \y in {1,2,3}
\foreach \x in {0,1,2}
{- - (\x,\y) node{X}};
\end{tikzpicture}

module de géometrie

Utilisation du module « pst-eucl »

module de géometrie

Utilisation du module « pst-eucl »

Les points

\pstGeonode{A}

\pstGeonode(1,2){B}

 $\position{ \begin{tabular}{ll} \position{ \begin{tabular}{ll$

\pstGeonode[PointSymbol=square,PosAngle=90] (-1,1){D}

 $\label{eq:curveType=polygon} $$ \operatorname{CurveType=polygon}(-1,-2)_{E_1}(-2,-1)_{E_2}(-1,0)_{E_3}$$$

 $\label{lem:pstGeonode} $$ \operatorname{CurveType=curve}(1,-2)_{F_1}(2,-1)_{F_2}(1,0)_{F_3}$$

 $\ncline{<-}{G}{D}$

Les intersections


```
\psset{unit=1.5cm}
\begin{pspicture}*(-7,-5)(5,5)
\psgrid(gridcolor=lightgray, subgridcolor=white](-6,-4)(5,5)
```

 $\label{eq:pstGeonode(-2,1){A}(1,3){B}(0,0){C}(-2,2){D}} % intersection E de 2 droites$

\pstInterLL[CodeFig=true,linecolor=blue,CodeFigColor=blue]{A}{B}{

%intersections F G droite et cercle \pstCircleOA[linecolor=red]{A}{B} \pstCircleOA[linecolor=red]{C}{D}

\pstInterLC[CodeFig=true,linecolor=blue,CodeFigColor=blue]{C}{D}{

% intersections H I de 2 cercles
\pstInterCC(C){D}{A}{B}{H}{I}

\pstLineAB[linewidth=2pt]{A}{B} \pstLineAB[linewidth=2pt]{C}{D}
\pstLineAB[linewidth=.2pt]{G}{F}
\pstLineAB[linewidth=.2pt]{H}{I}
\end{pspicture}

Environnement classique : pspicture

Avec le module de base "'pst-plot"'

- La commande \psaxes permet de définir les axes
- Les commandes \fileplot, \dataplot et\listplot permettent de créer les courbes à partir d'un fichier
- La commande \psplot permet de créer des courbes à partir d'une équation
- La commande\parametricplot permet de créer des courbes à partir de deux équations
- La commande \psgrid permet éventuellement de définir un quadrillage

Environnement psgraph

syntaxe:

```
\begin{psgraph} [Options] {flèches} (xOrig, yOrig) (xMin, yMin) (xMax, yMax) {largeur graphe} {hauteur graphe} tracer des courbes à l'aide des commandes classiques \end{psgraph}
```

- Les options regroupent tous les paramètres du graphe
- Mise à l'échelle automatique grâce à l'indication de la largeur et de la hauteur du graphe

Graphe avec \fileplot

 $\begin{tabular}{ll} $$ $$ \left[Options \right] {fichier} ou \proper [Options] {fichier} \\ Séparation des données : {} par () par , ou par un espace blanc \\ Exemple : $$ \end{tabular} $$$

\fileplot[linecolor=red,linewidth=2pt]{mesdata.dat}

Graphe avec \dataplot

\dataplot [Options] {\macro} ou \psdataplot [Options] {\macro} Elle doit être précédé de : \readdata{\macro}{nomfichier}

Séparation des données : {} par () par , ou par un espace blanc Exemple :

\readdata{\dat}{mesdata.dat} \dataplot[linecolor=red,linewidth=2pt]{\dat}

Graphe avec \dataplot

Exercices

\listplot{data} ou \pslistplot{données}

liste des coordonnées séparées que par des espaces!

On peut changer l'échelle grace à la commande \pstScalePoints

\pstScalePoints(1,100)\{}\{\} \listplot[linecolor=red,linewidth=2pt]\{\dat\}

Graphe avec \psplot

Exercices

\psplot [Options] {x min}{x max}{fonction}

- La fonction écrite en langage PostScript : sin(x) s'écrit x sin
- L'unité de x ou de t est le degré
- le paramètre plotpoints (= entier)définit le nombre de points utilisés pour tracer la courbe (par défaut plotpoints = 50)

Exemple:

 $\protect\operatorname{protection} = 200, \protect\operatorname{linecolor} = \protect\operatorname{red} = 200, \protect\operatorname{re$

Option algebraic

xercices

- Cette option permet de s'affranchir des équations en langage PostScript
- L'unité de x ou de t est le radian

 $\label{eq:psplot} $$ \proptotemular[algebraic, plotpoints=200, linecolor=red] {0}{12.56}{\sin(x)} $$$

Avec PSTricks-add et xkeyval : Notation algébrique

Les fonctions suivantes sont disponibles :

- sin, cos, tan, acos, asin (en radians)
- log, In
- ceiling, floor, truncate, round
- sqrt
- abs
- fact
- Sum
- IfTE

Graphe avec \parametricplot

Exercices

 $\label{eq:parametric} $$ \operatorname{parametricplot}[algebraic,plotpoints=200]{0}{6.28}{\sin(4*t)|\sin(t)}$$

polaire

Exercices

 $\label{true} $$ \proptoteta [polarplot=true]{angle début}{angle fin}{{\'equation}} $$ Exemple :$

 $\label{eq:curve_polar_$

Riemann

```
\label{eq:loss_step} $$ \operatorname{[Options]}((\ )\times1,\times2) \ nfunction $$ \operatorname{[upper]Riemann[infimum]supremum or \ Yalternative StepType=I \ |u|R|i|s $$ $$
```



```
\psset{xunit=2cm}
\begin{pspicture}(-1,-3)(5,3)
\psframe(-1,-3)(5,3)
\psplot[algebraic,linecolor=red,plotpoints=100]{0}{4} { 2* sin(2*x) }
\psStep[algebraic,linecolor=blue,StepType=Riemann](0,4){30} { 2* sin(2*x)}
\psaxes[Dx=2]{->}(0,0)(0,-2)(4.5,2.5)
\end(pspicture)
```


PSTricks et les graphes

Le module pst-math

Il permet des courbes avec les fonctions

- COS ,
- SIN,
- TAN ,
- SEC ,
- COSEC,
- COTAN ,
- ACOS .
- ASIN .
- ATAN,
- / (1/ (iv ,
- COSH,
- SINH,
- TANH,
- ACOSH ,
- ASINH ,
- ATANH
- GAUSS ,
- SINC ,
- GAMMA ,
- GAMMALN ,
- BESSEL

Le module pst-func

Installer le module « pst-func » dans le préambule Documentation : « pst-doc-func.pdf » Il permet de tracer :

- les fonctions polynomiales
- les fonctions de Fourier
- les fonctions de Bessel
- les courbes de Gauss
- les fonctions sinus intégral, cosinus intégral
- les lois binomiales
- la fonction de Lamé
- les tableaux de valeurs d'une fonction

Le module pst-func

Exemple: Fonction polynomiale


```
\psset{yunit=1cm,xunit=3cm}
\begin{pspicture}*(-2,-4)(2.5,4)
% les coefficients sont indiqués dans l'ordre croissant des exposants. ici y = 1 -2x ...
\psPolynomial[coeff= 1 -2 -3 +2,linecolor=magenta,markZeros=true]{-1}{2}
%La dérivée de la courbe précédente :
\psPolynomial[coeff= 1 -2 -3 +2,Derivation=1,linecolor=blue,markZeros=
true,zeroLineTo=0]{-.5}{1.5}
\psaxes[Dx=1]{->}(0,0)(-1,-3)(2,2.5)
\end(pspicture)
```


Les graphes en 3D

A l'aide des modules

- « pst-3d » (inclus dans le module pst-all)
- « pst-3dplot »

Exemple Paraboloïde :


```
\begin{pspicture}(-.25\linewidth,-1)
(.25\linewidth,7.5)
\psset{unit=0.8cm }
```

```
\pstParaboloid[showInside=false,
SegmentColor={[cmyk]{0.8,0.1,.11,0}}]{4}{5}%
```

\pstThreeDCoor[xMax=3,yMax=3, zMax=7.5,IIIDticks]

\end{pspicture}

Exemple Courbe paramétrique

$$x = r \cos t$$

$$y = r \sin t$$

$$z = \frac{t}{600}$$

\begin{pspicture}(-3.25,-2.25)(3.25,5.25) \psset{unit=0.8cm}

\pstThreeDCoor[zMax=5]

\parametricplotThreeD[xPlotpoints=200,linecolor=blue, linewidth=1.5pt,plotstyle=curve](0,2160)

linewidth=1.5pt,plotstyle=curve](0,2160)
{ 2.5 t cos mul 2.5 t sin mul t 600 div}
\end{pspicture}

La 3D avec pst-solides3d


```
\begin{pspicture}(-.15\linewidth,-5)
(.35\linewidth,6)
\psframe(-.15\linewidth,-5)(.35\linewidth,6)
\psset{unit=.1cm}
\psSolid[object=grille,base=-5 5 -5 10]%
```

```
\psSolid[object=cylindrecreux,h=10,r=2,fillcolor=white,mode=4,incolor=green!50](0,0,-3)
```

\psSolid[object=conecreux,h=15,r=2,RotY=-60,fillcolor=white,incolor=green!50,mode=5](2,5,2)%

\end{pspicture}

Fusion de 2 solides

Fusion de 2 solides (code)

```
\begin{pspicture}(-.25\linewidth,-1)(.25\linewidth,7.5)
\pset{solidmemory}

%le premier solide nommé A1:
\psSolid[object=cylindrecreux,h=10,r=2,fillcolor=white,mode=4,name=A1,incolor=green!50](0,0,-3)

%le deuxième solide nommé B1:
\psSolid[object=conecreux,h=15,r=2,RotY=-60,fillcolor=white,incolor=red!50,mode=5,name=B1](4,0,0)%

%la fusion des 2 solides
\psSolid[object=fusion,action=draw**,base=A1 B1,](0,0,0)
\composeSolid
\end{pspicture}
```


Tracé de fonctions à l'aide de la commande plot


```
\begin{tikzpicture} \draw[help lines] (0,0) grid (3,1); \draw[line width=2pt,color=red] plot coordinates {(0,0) (1,1) (2,0) (3,1) (2,1) (10:2cm)}; \draw[line width=2pt,color=blue,smooth] plot coordinates (0,0) (1,1) (2,-1.5) (3,2) (4,0); \end{tikzpicture}
```


Tracé à partir de coordonnées polaires


```
\begin{tikzpicture} \draw[line width=1pt,color=red] plot coordinates {(0:1cm)(60:0.5)(120:0)(180:1)(240:3)(300:1)(0:1cm)}; draw[line width=2pt,color=blue,smooth] plot coordinates {(0:1cm) (60:0.5) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (240:3) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (120:0) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (180:1) (
```

Tracé de graphe en peigne

\tikz \draw[ultra thick,scale=.5] plot[ycomb,thin,mark=*] coordinates {(0,0)(1,1)(2,.5)(3,2)(4,1)};

Tracé de graphe en barre

Les graphes avec Tikz

Tracé de courbe radar


```
\begin{tikzpicture} \draw[help lines] (-2,-3) grid (2,2); \draw [help lines] (-2,-3) grid (2,2); \draw plot[polar comb,mark=pentagon*,mark options=fill=white,draw=red,mark size=4pt,color=blue] coordinates (0:1cm) (60:0.5) (120:1.5) (180:1) (240:3) (300:1) (0:1cm); \draw[line width=[pt,color=red] plot coordinates (0:1cm)(60:0.5)(120:1.5)(180:1)(240:3)(300:1)(0:1cm){tikzpicture}
```

Lissage des courbes : tension de lissage


```
\begin{tikzpicture}[smooth cycle] \draw[color=red] plot[tension=0.2] coordinates(0,0) (1,1) (2,0) (1,-1); \draw[color=blue] plot[tension=0.5] coordinates(0,0) (1,1) (2,0) (1,-1); \draw[color=green] plot[tension=1] coordinates(0,0) (1,1) (2,0) (1,-1); \end(tikzpicture) \draw[color=green] plot[tension=1] coordinates(0,0) (1,1) (2,0) (1,-1); \end(tikzpicture) \draw[color=green] \draw[color=gre
```


Tracé de Courbes paramétriques

Tracé de fonctions


```
\begin{tikzpicture} [domain=0:4, scale=.5] \draw[very thin, color=gray] (-0.1,-1.1) grid (3.9,3.9); \( \frac{1}{\text{saxes}} \\ \draw[->] (-0.2,0) - (4.2,0) node[right] \{\text{sx}\}; \\ \draw[->] (0,-1.2) - (0,4.2) node[above] \{\text{sf(x)}\}; \( \frac{1}{\text{scourbes}} \\ \draw[color=red] plot (\x,\x) node[right] \{\text{sf(x)} = \x\}; \\ \draw[color=blue] plot (\x,\{\sin(\x r)\}) node[right] \{\text{sf(x)} = \sin x\}; \\ \draw[color=orange] plot (\x,\{0.05*\text{exp(\x)}\}) node[right] \{\x\}f(x) = \\frac\{1\}{20\} \\ \mathrm e^x\}; \\ \end{tikzpicture}
```


Tracé de fonctions

Attention! : problème avec « domain », incompatible avec le module Babel français! une des solutions :

\usepackage[babel=true,kerning=true] {microtype}

Tracé de courbes semilogarithmiques


```
\begintikzpicture
\beginsemilogxaxis
\addplot[color=blue] coordinates {
(10,20)
(10000,-20)};
\addplot[smooth,color=red] coordinates {
(10,20)
(100,20)
(1000,17)
(10000,0)
(100000,-20)};
\end{semilogxaxis}
\end{tikzpicture}
```


Le logiciel libre geogebra permet

- d'exporter des dessins au format eps qui peuvent être insérer dans la document
- de générer du code PSTricks

Le logiciel libre geogebra permet

- d'exporter des dessins au format eps qui peuvent être insérer dans la document
- de générer du code PSTricks : exemple

```
\documentclass[10pt]{article}
\usepackage{pstricks-add}
\uperpackage{pstricks-add}
\uperpackage{p
```


Le logiciel libre geogebra permet aussi

de générer du code Tikz

Le logiciel libre geogebra permet aussi

de générer du code Tikz : exemple

```
\documentclass[10pt]{article}
\usepackage{pgf,tikz}
\usetikzlibrary{arrows}
\pagestvle{emptv}
\begin{document}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw[->,color=black] (-4.3,0) - (8.42,0);
\foreach \x in \{-4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8\}
\draw[shift=(\x,0),color=black] (Opt,2pt) - (Opt,-2pt) node[below] {\footnotesize $\x$};
\frac{-}{\cos[-)}, color=black] (0,-3.9) - (0,6.3);
\foreach \v in \{-3, -2, -1, 1, 2, 3, 4, 5, 6\}
\draw[shift={(0,\y)},color=black] (2pt,0pt) - (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-4.3,-3.9) rectangle (8.42,6.3):
\frac{1}{2} \draw [samples=50.rotate around={0:(0,0)}.xshift=0cm.vshift=0cm] plot (\x.\x^2/2/0.5):
\draw[color=black] (-0.54,1.16) node {$c$}
\end{tikzpicture}
\end{document}
```


PSTricks et les vecteurs

Chaîne de vecteurs

Le module pstricks-add donne la possibilité de créer des chaînes de vecteurs


```
% point d'origine
\psStartPoint(1,1)
% 4 vecteurs
\psVector(2;30)
\psVector(4;60)
\psVector[linecolor=red](3;-45)
```

\psVector[linestyle=dashed](4;110)

PSTricks et les vecteurs

Chaîne de vecteurs avec indication des angles

% point d'origine
\psStartPoint(1,1)\psset{markAngle}

% 4 vecteurs \psVector(2;30) \psVector(4;60) \psVector[linecolor=red](3;-45) \psVector[linestyle=dashed](4;110)

PSTricks et les vecteurs

Chaîne de vecteurs et leurs noeuds

On peut spécifier automatiquement le nom des noeuds à chaque extrémité de vecteur

\psline[linewidth=2pt,linecolor=magenta] {->}(A0)(A3)

```
\psStartPoint[B](1,1) % noeud B0
\psVector[linecolor=red](2;45) % noeud B1
\psVector[linecolor=red](2;90) % noeud B2
```

\psline[linewidth=2pt,linecolor=blue] {->}(B2)(A4)

Utilisation de symboles comme style de ligne

```
| begin{pspicture}
| psset[pstricks]{symbolStep=10pt}
| psset[pstricks]{symbolWidth=10pt}
| psset[pstricks]{symbolFont=Dingbats}
| psset[pstricks]{fortateSymbol=false}
| psset[pstricks]{fortateSymbol=false}
| psset[pstricks]{startAngle=0}
| psset[pstricks]{startAngle=0}
| psset[pstricks]{startAngle=0}
| psset[pstricks]{symbol=n](-3,-3)(-3,3)(3,3)(3,3)(3,-3)(-3,-3)
| psline[linestyle=symbol,symbol=n](-3,-3)(-3,3)(3,3)(3,-3)(-3,-3)
| pscircle[linestyle=symbol,symbol=n](-2,-2)(1,2)(-1,-2)
| pscircle[linestyle=symbol,symbol=n](0,0){2cm}
| end{pspicture}
```


Symboles : échantillonnage des possibilités

A :☆ ☆	B:+ +	C : 💠 💠	D :� �	E:
F : ♦ ♦	G:	H :★ ★	I:☆ ☆	J:0 0
K :★ ★	L :★ ★	M :★ ★	N : _{★ ★}	0 :☆ ☆
P :☆ ☆	Q: * *	R:* *	S:* *	T:* *
U :* *	V :* *	W :* *	X :* *	Y:* *
Z :* *	1 :>>	2 :•• ••	3: ✓ ✓	4 : /
5 :× ×	6 : * *	7 : X X	8 : x x	9:# #
				•
a:🗱 🏶	b :🗘 🗘	c:* *	d:* *	e:* *
f:₩ ₩	g:* *	h:* *	i :* *	j:* *
k : * *	1:● ●	m :O O	n : ■ ■	o:🔲 🛄
p :🗖 🗖	q :🗆 🗅	r : 🗆 🗇	s : 🛦 🛕	t : ▼ ▼
u : ♦ ♦	v : * *	w : D	x:	y : I I
7 : ■ ■	+ ins ns	" ">~ >~	' :A A	0:00

pst-barcode : tracé à la main levée

le module pstricks-add permet de tracer des lignes à main levée :

 $\protect\operatorname{PslineByHand[linecolor=blue](0,0)}\linewidth, 0$

L'amplitude est réglé par le paramètre varsteptol (0,8 par défaut) et la largeur par VarStepEpsilon (2 par défaut) :

 $\verb|\pslineByHand[linecolor=blue,VarStepEpsilon=2,varsteptol=2](0,0) \\| \textit{linewidth}, 0 \\$

 $\verb|\pslineByHand[linecolor=red,VarStepEpsilon=4,varsteptol=2](0,0) \\| \textit{linewidth}, 0 \\| \text{linewidth}, 0 \\|$

 $\verb|\pslineByHand[linecolor=magenta,VarStepEpsilon=4,varsteptol=5](0,0) \\| \textit{linewidth}, 0 \\| \textit{linewidth},$

Effets spéciaux avec PSTricks

Objets en bouton utilisation du module « pst-fr3d » des bouton en 3D pst-fr3d \psset{framesep=0.3,FrameBoxThreeDBrightnessDistance=0.3,doublesep=0.3} \PstFrameBoxThreeD{pst-fr3d} \PstFrameBoxThreeD{\ includegraphics[width=1.5cm]{tiger.eps}} $\PstFrameBoxThreeD{\Huge $\frac{1}{\sqrt{3}}$}$

Gradient de couleurs

- utilisation du module « pst-grad ». Ce module est inclus dans le module « pst-all »
- psdiabox utilisation du module « pst-slpe », une amélioration du module « pst-grad »

\pstribox[fillstyle=gradient,gradangle=15,gradbegin=blue,gradend=red]{\white \tiny pstribox} \psdiabox[fillstyle=slope,slopebgin=red,slopeend=green]{psdiabox}

Les ressorts

Ce module est installé automatiquement avec le module pst-all .

 $\label{lem:coil} $$ \operatorname{linewidth=1pt,coilwidth=.5cm, arrowsize=3pt 6]_{(4,0) \ hspace{5cm}\pszigzag[coilar=arrowsize=3pt 6]_{(4,0)}$} $$$

Liaison de noeuds :

\pnode(0,0){A}\pnode(5,0){B}\pnode(10,0){C}\nccoil{o->}[coilarm=1cm,linewidth=1pt,coilwidth=.5cm,as*** followidth=1ft,coilwidth=.5cm,arrowsize=3pt 6]{*->}{B}{C}

Décorations avec Tikz


```
\begin{tikzpicture}[scale=.7]
\draw [red, decorate, decoration=zigzag](0,0) rectangle (2.5,2);
\draw [blue, decorate, decoration=triangles](1,1) rectangle (3.5,3);
\draw [red,decorate,decoration={coil,segment length=4pt}](2,2) rectangle (4.5,4);
\draw [blue,decorate,decoration={coil,aspect=0}](3,3) rectangle (5.5,4);
\end{tikzpicture}
```

nécessite \usetikzlibrary{decorations.pathmorphing}.

Manipulation de texte avec Pstricks

Le module « pst-text » (inclus dans le module PSTricks-all) permet de manipuler du texte.

Par exemple , écrire du texte suivant une courbe :

\begin{pspicture}*(-4,-2.5)(4,2.5)
\psset{linewidth=0.2pt}\pstextpath[1](0,-2ex){\psellipset{Derivation of Thermique et Energie IUT Génie Thermique et Energie IUT Génie Thermique et Energie }}\end{pspicture}

Manipulation de texte avec Tikz

\tikz \fill[decorate,decoration={text along path,}
text=Ceci est un texte sur un chemin
il manque la fin!.]
[fill=blue!20,draw=blue,thick] (0,0) - - (2,1)

arc (90:-90:.5) - - cycle;

SCENZ SUISO

\tikz \fill[decorate,decoration=text along path,
text=IUT GTE IUT GTE IUT GTE IUT GTE IUT GTE]
[fill=blue!20,draw=blue,thick] (0,0) circle (1cm);

nécessite \usetikzlibrary{decorations.text}

Manipulation de texte avec pst-3D

Ombrage

Ombrage par défaut Ombrage rouge

\psshadow{\huge Ombrage par défaut}\psshadow[Tshadowcolor=red]{\huge Ombrage rouge}

$$f(x) = x^{2}$$

\psshadow{\huge $f(x) = x^2$ }\[15pt]

Tableau de variation avec Tikz

Utilisation du module « tkz-tab »

Tableau de variation avec Tikz

Utilisation du module « tkz-tab »

Exemple

Exemple : code

```
\begin{tikzpicture}\tkzTabInit[ lgt=4, deltacl=1, espcl=2]
description 1° colonne:
t = 1.5, Variations de \ /1,Signe de \\$x'(t)$ /1.5, Variations de \\$x'(t)$ /3,Signe de \\$y'(t)$ /1.5}
description 1°ligne :
\{\$-\infty\$, \$-4\$, \$-1\$, 0, 2, \$+\infty\$\}
description 2°ligne :
\tkzTabLine {, - , z , + , d , + , z , - , d , - , }
description 3°ligne :
\t = \frac{+/1,-/}{\frac{8}{9}},+D-/+\frac{5,-/3}{1}
/ }
description 4°ligne :
\tkzTabVar {+/$+\inftv$.R/.-D+/$-\inftv$/$+\inftv$..-/$0$.R /.+/$+\inftv$ }
\t TabIma{1}{3}{2}{\$ frac {32 }{3 }\$}
\tkzTabIma{4}{6}{5}{$ \frac {16 }{3 }$}
description 5°ligne:
\t x TabLine{, -, } frac{-64}{9}, -, d, -, z, +, \\ frac{44}{9}, +, }
\end{tikzpicture}
```

Tableau de variation avec Tikz : \tkzTablnit

1° ligne et 1° colonne \tkzTablnit :

- la première série d'arguments donne les éléments de la première colonne et la hauteur des lignes
- la deuxième série donne les éléments de la première ligne

Une virgule sert de séparateur entre les arguments.

Tableau de variation avec Tikz : \tkzTabLine

Création d'une ligne de signes avec \tkzTabLine : avec alternance d'un des éléments suivant

- z : place un trait en pointillés et un zéro centré
- t : place un trait en pointillés centré
- d : place une double barre centrée
- absence de symbole : aucune action

et d'un des éléments suivant

- h : zone interdite
- + : le signe +
- : le signe -
- absence de symbole : aucune action

Tableau de variation avec Tikz : \tkzTabLine

Création d'une ligne de signes avec \tkzTabLine : avec alternance d'un des éléments suivant

- z : place un trait en pointillés et un zéro centré
- t : place un trait en pointillés centré
- d : place une double barre centrée
- absence de symbole : aucune action

et d'un des éléments suivant

- h : zone interdite
- + : le signe +
- : le signe -
- absence de symbole : aucune action

Tableau de variation avec Tikz : \tkzTabVar

Création d'une ligne de variation : les arguments avec \tkzTabVar

- décroissante / une expression centrée en bas
- + croissant / une expression centrée en haut
- R rien (on passe à l'expression suivante) /
- +D- discontinuité / l'expression à gauche / l'expression à droite

liste non exhaustive!

Tableau de variation avec Tikz : \tkzTablma

Placement d'une valeur sur les variations avec \tkzTablma 4 arguments :

- Début : rang de l'origine de la flèche
- Fin : rang de l'extrémité de la flèche
- Position : rang de l'antécédent correspondant à l'image
- Image : valeur de l'image si nécessaire

Tableau de variation avec Tikz : \tkzTablma

Placement d'une valeur sur les variations avec \tkzTablma 4 arguments :

- Début : rang de l'origine de la flèche
- Fin : rang de l'extrémité de la flèche
- Position : rang de l'antécédent correspondant à l'image
- Image : valeur de l'image si nécessaire

Exemple:

\tkzTabIma{4}{6}{5}{\$ \frac{16}{3}\$}: variation du 4° argument au 6°élément avec placement de la fraction au niveau du 5°élément

Les autres modules

Les autres modules sont traités dans un autre fichier pour des problème de compatibilité entre eux et pour ne pas surcharger ce document

voir:

Les autres modules

Les modules et librairy Tikz : callout

Le texte appès danderte après.

Le texte avant. \begin{tikzpicture}[remember picture] \node[ellipse callout, draw] (hallo) {ellipse callout}; \end{tikzpicture}Le texte après.

Animation d'objets PSTricks

Utilisation du module « animate »

```
\begin{animateinline}[ controls,loop,autoplay]{5}
\begin{animateinline}[ controls,loop,autoplay]{5}
\begin{pspicture}(6,6)
\rput(3,3){\includegraphics[width=3cm]{logoiut.eps}}
\pscircle[linecolor=blue,linewidth=3pt](3,3){2.5}
\end{pspicture}
\heatimex{\text{heating}}
\begin{pspicture}(6,6)
\rput(3,3){\includegraphics[width=3cm]{logoiut.eps}}
\pscircle[linecolor=red,linewidth=3pt](3,3){2}
```


Animation d'images

```
\begin{animateinline}[ controls,loop,autoplay]{5}
\begin{pspicture}(6,6)
\rput(3,3){\includegraphics[width=3cm]{logoiut.eps}}
\end{pspicture}
```


Animation : utilisation de whiledo

Animation d'objets PSTricks

```
%A mette dans le préambule!!
%création d'une commande
\newcommand{\mydessin}[1]{%
\begin{pspicture}(-.25\linewidth,-1)(.25\linewidth,7.5)
\psset{unit=.3cm}
\psset{solidmemorv}
\psset{viewpoint=50 #1 20}
\psSolid[object=cylindrecreux.h=10.r=2.fillcolor=white.mode=4.name=A1.action=none.incolor=green!50.Spheric
\psSolid[object=conecreux,h=15,r=2,RotY=-60.fillcolor=white,incolor=red!50,action=none,mode=5,name=B1,Sph
\psSolid[object=fusion,action=draw**,base=A1 B1,SphericalCoor,](0,0,0) \composeSolid%
\end{pspicture}}
% A mettre où le dessin doit être affiché!
\newcounter{iter} % declare le compteur de boucle
\FPset{nInit}{30}% valeur initiale
\FPset{nIncr}{30}% valeur de l'incrementation
\begin{animateinline}[ controls,loop,autoplay]{12}
\setcounter{iter}{0}% mise à zero du compteur de diapo
\FPset{i}{30}%
\mydessin{1} % traçage de la première diapo
\whiledo{\theiter<11}{% soit 12 diapo!
\newframe%
\stepcounter{iter}% incrémentation du compteur
\FPeval{n}{nInit+nIncr*\theiter}%calcul de la nouvelle valeur de n
\mvdessin{\n}} % tracer du dessin avec la nouvelle valeur de n
\end{animateinline}
```


Animation avec Tikz

Animation avec tikz (code)

```
\newcounter{iter}
\FPset{nInit}{30}
\FPset{nIncr}{15}
\begin{animateinline}[ controls,loop,autoplay]{10}
\setcounter{iter}{0}%
\begin{tikzpicture}
% dessin de la première image code identique à l'image suivante
\end{tikzpicture}
\whiledo{\theiter<23}{
\newframe%
\stepcounter{iter}%
\FPeval{n}{nInit+nIncr*\theiter}%
\begin{tikzpicture}
\draw[line width=0pt] (-2,-3) rectangle(6,3);
\pgfmathparse{sgrt(9-sin(\n)*sin(\n))+cos(\n)} % calcul avec le module pgfmath
\draw (0,0) circle (1);
\coordinate (abc) at (\pgfmathresult,0); %coordonnée calculée
\coordinate (xyz) at (\n :1);
\draw[ultra thick] (0.0) - -(xvz):
\draw[ultra thick] (xyz) - - (abc);
\fill[color=blue!30] (abc)++(0.5.-1) rectangle (5.1): % positions relatives
\draw[ultra thick] (abc) ++(0,-1) rectangle ++ (.5,2);
\draw[ultra thick] (1.5,1) - - (5,1) - - (5,-1) - - (1.5,-1);
\fill [red] (xyz) circle (4pt);
\fill [red] (abc) circle (4pt);
\end{tikzpicture}}
\end{animateinline}
```


PSTricks sur le WEB

- http://tug.org/PSTricks/main.cgi
- http://melusine.eu.org/syracuse/pstricks/: un site à visiter!
- http://www.grappa.univ-lille3.fr/FAQ-LaTeX/: une foire aux questions
 - http://www.ctan.org/tex-archive/help/Catalogue/entries/pstricks.html:catalogue des modules latex. vous y trouverez de la documentation sur chaque module.

Tikz sur le WEB

- Livre (en français) : TikZ pour l'impatient à télécharger sur http://math.et.info.free.fr/TikZ/
- Un site d'exemples sur Tikz : http ://www.texample.net/

Pour en savoir plus

Sur votre ordinateur

De nombreuses documentations au format pdf se trouve dans les répertoires

- XXXX\doc\latex(XXXX : votre répertoire d'installation)
- XXXX\doc\géneric.

Pour débuter avec PSTricks, ayez sous le coude le document « pst-user.pdf »

Référence rapide PSTricks « pst-quickref.pdf »

La notice complète sur Tikz est le document « pgfmanual.pdf »

La documentation sur les modules PSTricks I

Voici les documentations sur les packages au format pdf que l'on peut trouver dans le répertoire texlive

En magenta : les modules abordés dans ce document
En magenta : les modules abordés en annexe

	pst-user.pdf	131 pages
	pstricks-doc.pdf	338 pages
page 207	pst-3d-doc.pdf	17 pages
page 207	pst-3dplot-doc.pdf	69 pages
page ??	pst-2dplot-doc.pdf	4 pages
	pstricks-add-doc.pdf	130 pages

La documentation sur les modules PSTricks II

page 98	pst-abspos-doc.pdf	10 pages
	pst-am-doc.pdf	24 pages
	pst-asr-doc.pdf , pst-asr-examples.pdf	47 pages
	pst-bar-doc.pdf	14 pages
	pst-barcode-doc.pdf	28 pages
	pst-bezier-doc.pdf	10 pages
	pst-blur.pdf	9 pages
	pst-bspline-doc.pdf	16 pages
	pst-calendar-docFR.pdf	15 pages
	pst-circ-doc.pdf	93 pages

La documentation sur les modules PSTricks III

page 237	pst-coil-doc.pdf	13 pages
	pst-coxcoor_doc.pdf , pst-coxeterp_doc.pdf	18 pages
	pst-dbicons.pdf	17 pages
	pst-diffraction-docFR.pdf	8 pages
	pst-electricfield-docFR.pdf	22 pages
	pst-eps-doc.pdf	6 pages
page 178	pst-eucl-doc.pdf	45 pages
	pst-exa-doc.pdf	1 page
	pst-fill.pdf	17 pages
page 235	pst-fr3d.pdf	10 pages

La documentation sur les modules PSTricks IV

	pst-fractal-doc.pdf	18 pages
	pst-fun-doc.pdf	11 pages
page 205	pst-func-doc.pdf	67 pages
	pst-gantt-doc.pdf	10 pages
pst-ghsb	pas de documentation	
	pst-gr3d.pdf	10 pages
page 234	pst-grad-doc.pdf	11 pages
page ??	pst-infixplot.pdf	2 pages
	pst-jtree-doc.pdf , pst-jtree-doc-add.pdf	
	pst-knot-doc.pdf	8 pages

La documentation sur les modules PSTricks V

	pst-labo-docFR.pdf	24 pages
	pst-lens.pdf	23 pages
	pst-light3d-doc.pdf	8 pages
	pst-magneticfield-docFR.pdf	21 pages
	pst-map2d-doc.pdf	14 pages
	pst-map2dll-doc.pdf	16 pages
	pst-map3d-doc.pdff	10 pages
	pst-map3dII-doc.pdf	21 pages
page 204	pst-math-doc.pdf	18 pages
	pst-mirror-doc.pdf	30 pages

La documentation sur les modules PSTricks VI

	pst-node-doc.pdf	52 pages
	pst-ob3d.pdf	25 pages
	pst-optexp-doc.pdf	41 pages
	pst-optic-doc.pdf , pst-optic-examples.pdf	45 pages
	pst-osci-doc.pdf	12 pages
	pst-pad-doc.pdf	7 pages
	pst-pdf.pdf , pst-pdf-example1.pdf , pst-pdf-example2.pdf	19 pages
	pst-pdgr.pdf	37 pages
	pst-platon-doc.pdf	12 pages
page ??	pst-plot-doc.pdf	92 pages

La documentation sur les modules PSTricks VII

	pst-poly-doc.pdf	22 pages
	pst-qtree-manual.pdf	5 pages
	pst-sigsys-doc.pdf	40 pages
page 234	pst-slpe.pdf	16 pages
page 209	pst-solides3d-doc.pdf	197 pages
	pst-soroban-doc.pdf	5 pages
	pst-spectra.pdf,	7 pages
	pst-stru-doc.pdf	20 pages
page 239	pst-text-doc.pdf	11 pages

La documentation sur les modules PSTricks VIII

pst-tree-doc.pdf	24 pages
pst-tvz-doc.pdf	42 pages
pst-uml-doc.pdf , pst-uml-encapsuled-pdf-fig.pdf , pst-uml-exempl	es.pdf
pst-vowel.pdf	4 pages
pst-vue3d-doc.pdf	19 pages
test-pst.pdf	15 pages
bclogo-doc.pdf	
VCManual.pdf	
multido-doc.pdf	

La documentation sur les modules PGF Tikz I

Voici les documentions sur les packages au format pdf que l'on peut trouver dans le répertoire texlive

En vert : les manuels de base
En magenta : les modules abordés dans ce document

pgfmanual.pdf	726	pages	
TKZdoc-linknodes-us.pdf	40	pages	H
TKZdoc-tab.pdf	74	pages	
tkz-orm.pdf	19	pages	H
pgfdatabasearrows.pdf	1	l page	H
pgfgantt.pdf	54	pages	

La documentation sur les modules PGF Tikz II

pgfmanual-mindmap-1.pdf	1 page
pgfmanual-mindmap-2.pdf	1 page
pgfopts.pdf	3 pages
pgfplots.pdf	263 pages
pgfplotsexample.pdf	1 page
pgfplotstable.pdf	59 pages
pgfplotstodo.pdf	42 pages
pgf-soroban-doc.pdf	5 pages
pgf-umlsd-demo.pdf	2 pages
pgf-umlsd-demo2.pdf	2 pages

La documentation sur les modules PGF Tikz III

	tikz-3dplot_documentation.pdf	44	pages	*
	tikz-inet-doc.pdf	6	pages	
	tikz-qtree-manual.pdf	8	pages	
	tikz-timing.pdf	54	pages	
	circuitikzmanual.pdf	38	pages	
utilise tikz	grafcet.pdf	43	pages	
utilise tikz	randomwalk.pdf	11	pages	
utilise tikz	schemabloc.pdf	13	pages	**

