

ASME IDETC-CIE 2022

International Design Engineering Technical Conferences & Computers and Information in Engineering Conference

CONFERENCE: AUG. 14–17 EXHIBITION: AUG. 15–17

ST. LOUIS UNION STATION HOTEL,

ST. LOUIS, MISSOURI

MULTIDISCIPLINARY OPTIMIZATION TO REDUCE COST AND POWER VARIATION OF A WAVE ENERGY CONVERTER

IDETC2022-90227

Rebecca McCabe, Olivia Murphy, Maha Haji Symbiotic Engineering Analysis Lab

Cornell University

Motivation

Goal: use MDO to minimize energy cost and power variation of the RM3 WEC

MDO	WEC	RM3
Multidisciplinary · Design · Optimization	Wave · Energy · Converter	Reference · Model · 3
 Procedure to optimize engineering systems with cross-discipline coupling 	 Renewable energy for utility grids and distributed offshore projects Costs more than solar and wind, but perhaps more consistent power 	 Reference WEC design by NREL and Sandia [10] Comprised of two-body floating point absorber

Problem Formulation

Parameter(s) minimize J (x, p) **ObjectiveFunction (s)** subject to g(x, p) < 0**Inequality Constraint(s)** h(x,p)=0**Equality Constraint(s)** Lower Design Upper Variable(s) **Bound Bound**

Problem Formulation: J

Objective 1: LCOE	Objective 2: c _v		
Levelized · Cost · of · Energy	Power Coefficient of Variation		
\$/kWhElectricity price over full system lifetime	 σ/μ Normalized standard deviation of power across sea states 		

Problem Formulation: x

7 Design Variables

	Design Variable	Description		
	D _f	WEC Surface Float Outer Diameter		
Geometry 2	D _{s,ratio}	Ratio of WEC Surface Float Inner Diameter to Outer Diameter		
Geometry 2	h _{f,ratio}	Ratio of WEC Surface Float Height to Outer Diameter		
	T _{s,ratio}	Percent of WEC Spar Submergence		
	F _{max}	Maximum Powertrain Force		
WEC Control	B _p	Powertrain/Controller Damping		
	w _n	Controller Natural Frequency		

6

WEC Visuals

Inspired by, SANDIA REPORT, SAND2014-9040, Vincent S. Neary, Mirko Previsic, et al.

Source: Crozier, Richard. "RM3 Point Absorber." YouTube, YouTube, 13 June 2018, https://www.youtube.com/watch?v=KNbzy6iamM0.

echnical Conferences gineering Conference

Problem Formulation: p

33 Parameters

	Parameter	Description
	H _s	Wave Height
Dynamics <	Т	Wave Period
	pto _{eff}	Power Take-Off Efficiency
	cost _m	Material Cost
Economics	FCR	Fixed Charge Rate
	N _{WEC}	# of WECs in Array
	$\sigma_{_{_{\mathrm{V}}}}$	Material Yield Strength
Structures	Е	Material Young's Modulus
	ρ_{m}	Material Density
	D_d/D_s	Normalized Damping Plate Diameter
Geometry <	T _s /D _s	Normalized Spar Draft
	T _f /h _f	Normalized Float Draft
		+ 21 Additional Parameters

Dynamics

Economics **《**

Structures

Geometry

Problem Formulation: g

14 Inequality Constraints

Description Units Constr. Prevent Float Above Top of the Spar m F_{p,max}/F_{ma} Prevent Irrelevant Max Force **Net Generated Power** kW 0 Prevent LCOL Greater Than Nomina ې/KVVII FOS_{min} FOS (4) Structural Factor of Safety Prevent Float too Heavy/Light Prevent Spar to Heavy/Light 0 Metacentric Height GM m Minimum Damping Plate Diameter $\mathsf{D}_{\mathsf{d},\mathsf{min}}$ m

minimize J(x, p)subject to g(x, p) < 0 h(x, p) = 0 $x_{i,LB} \le x_i \le x_{i,UB}$

4 structural Factors of Safety (FOS)

- 1. Float yield
- 2. Reaction plate yield
- 3. Column yield
- 4. Column buckling

Simulation Structure: Four Modules

Dynamics Modeling Assumptions

	This Model		
Overall simulation	Frequency domain simulation with linear hydrodynamics, powertrain, and controls		
Hydrodynamic coefficients	Analytical approximations with tuning		
Saturation strategy	Peak powertrain force (describing function)		
Controller tuning	Same damping and stiffness for all sea states		
Maximum storm loadcase	Float moves on spar (analytical)		

chnical Conferences Jineering Conference

Model Validation against Nominal RM3

Mass Validation					
	Simulated Actual				
Surface Float	196 MT	208 MT			
Vertical Column	210 MT	224 MT			
Reaction Plate	267 MT	245 MT			
Total	673 MT	680 MT			

Performance Validation						
	Simulated Actual					
Average Power	86.2 kW	85.9 kW				
Max Structural Force	8460 kN	8500 kN				
LCOE	\$0.87 / kWh	\$0.76 / kWh				
c _v	75.5%	71.1%				

Cost Validation (100 WECs)						
	Simulated Actual					
СарЕХ	\$ 416 M	\$ 390 M				
OpEX *	\$ 15 M	\$ 9 M				
Total	\$ 431 M	\$ 399 M				

^{*} Discrepancy: cost scales nonlinearly with number of devices

12

Single Objective Optimization

Gradient Based Algorithm:

Sequential Quadratic Programming (SQP)

	Nom [10]	Min LCOE	Min c _v	Solar
LCOE (\$/kWh)	0.76	0.02	0.48	0.03
c _v (%)	71	153	35	125

Parameter Sensitivities

- Normalized: 1 means 10% increase in parameter causes 10% increase in objective
- **LCOE** sensitive to dynamic and economic parameters, insensitive to structural and geometric parameters
- **c**, insensitive overall, except to wave period and float submersion
- Implies correct choice of design variables

Normalized Sensitivities

Sensitivity to Deployment Location

Optimal Design Variable Values for LCOE _{min}									
Location D_f $D_{s,ratio}$ $D_{f,ratio}$ $D_{f,ratio}$ $D_{s,ratio}$ D_{max} D_{p} D_{m} $D_{$								LCOE	
Humboldt Bay, CA	Nominal	20	0.30	0.20	0.80	9e6	3.1e5	1.49	0.75
Humboldt Bay, CA	Optimized	20	0.30	0.10	0.52	60e6	8.2e5	0.54	0.02
PacWave North, OR	Optimized	20	0.30	0.10	0.50	61e6	8.2e5	0.55	0.01
PacWave South, OR	Optimized	21	0.29	0.10	0.49	67e6	8.5e5	0.55	0.01
WETS, HI	Optimized	17	0.35	0.10	0.59	23e6	6.2e5	0.62	0.05

- Optimal design consistent across the west coast
- Hawaii requires slightly smaller float and submerged spar for optimality
- Using California design in Hawaii increases LCOE by 5% compared to optimal

Multiobjective **Optimization**

Pattern search algorithm

Tradeoff: low LCOE possible at the cost of high power variation

Diminishing returns as solution approaches single-objective optimal

Design Takeaways

The optimal value of geometric design variables remain relatively constant, while control design variables tend to vary across the pareto front.

This may allow a single hardware design across applications.

Representative **Designs**

Applications with cheap, abundant energy storage: Minimum LCOE design

Applications with expensive but available energy storage: **Balanced design**

Applications with extremely limited energy storage: Minimum variation design

Conclusions

- Multidisciplinary Design Optimization framework applied to the RM3 WEC
- Achieved 40 x lower LCOE and 2 x lower c
- Optimal pareto tradeoff curve with three representative designs
- High **sensitivity** to sea states and economic parameters
- Potential to share hardware designs across applications

Future Work

- 1. Improve simulation fidelity
 - BEM integration for hydrodynamic coefficients
 - b. More complex controllers
- 2. Consider application-specific objective functions
- 3. Extend to other WEC architectures

References

- [1] Lehmann, M., Karimpour, F., Goudey, C. A., Jacobson, P. T., and Alam, M.-R., 2017. "Ocean wave energy in the united states: Current status and future perspectives". Renewable and Sustainable Energy Reviews, 74, pp. 1300–1313.
- [2] LiVecchi, A., Copping, A., Jenne, D., Gorton, A., Preus, R., Gill, G., Robichaud, R., Green, R., Geerlofs, S., Gore, S., Hume, D., McShane, W., Schmaus, C., and Spence, H.,2019. Powering the blue economy: Exploring opportunities for marine renewable energy in maritime markets. Tech. rep., US Department of Energy, Apr.
- [3] Aderinto, T., and Li, H., 2018. "Ocean Wave Energy Converters: Status and Challenges". Energies, 11(5), May, p. 1250.
- [4] Agte, J., de Weck, O., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck, M., 2009. "MDO: Assessment and direction for advancement—an opinion of one international group". Structural and Multidisciplinary Optimization, 40(1), Apr., p. 17.
- [5] Martins, J. R. A., and Lambe, A. B., 2013. "Multidisciplinary Design Optimization: A Survey of Architectures". AIAA Journal, 51(9), Sept., pp. 2049–2075.
- [6] Al Shami, E., Wang, X., Zhang, R., and Zuo, L., 2019. "A parameter study and optimization of two body wave energy converters". Renewable Energy, 131, Feb., pp. 1–13.
- [7] Herber, D., 2014. "Dynamic system design optimization of wave energy converters utilizing direct transcription". PhD thesis, 05.
- [8] Gaudin, C., David, D. R., Cai, Y., Hansen, J. E., Bransby, M. F., Rijnsdorp, D. P., Lowe, R. J., O'Loughlin, C. D., Lu, T., and Uzielli, M., 2021. "From single to multiple wave energy converters: Cost reduction through location and configuration optimisation". Final Report. The University of Western Australia.
- [9] Goteman, M., Engstr om, J., Eriksson, M., Isberg, J., and Leijon, M., 2014. "Methods of reducing power fluctuations in wave energy parks". Journal of Renewable and Sustainable Energy, 6(4), July, p. 043103.
- [10] Neary, V. S., Previsic, M., Jepsen, R. A., Lawson, M. J., Yu, Y.-H., Copping, A. E., Fontaine, A. A., Hallett, K. C., and Murray, D. K., 2014. Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. Tech. Rep. SAND2014-9040, Sandia National Laboratories, Albuquerque, New Mexico, Mar.
- [11] Falcao, A. F. d. O., 2010. "Wave energy utilization: A re- view of the technologies". Renewable and Sustainable Energy Reviews, 14(3), Apr., pp. 899–918. [12] Newman, J. N., 1977. Marine Hydrodynamics. Aug.
- [13] Franklin, G., Powell, J., and Emami-Naeini, A., 2015. "Equivalent Gain Analysis Using Frequency Response: Describing Functions". In Feedback Control of Dynamic Systems, seventh ed. Pearson, pp. 678–682.
- [14], 2020. System Advisor Model (SAM). National Renewable Energy Laboratory, Nov.
- [15] Paretosearch Algorithm MATLAB & Simulink. https://www.mathworks.com/help/gads/paretosearchalgorithm.html.
- [16] Boretti, A., 2020. "High-frequency standard deviation of the capacity factor of renewable energy facilities: Part 1—Solar photovoltaic". Energy Storage, 2(1), p. e101.

Learn more:

MATLAB code available open source Updated paper to be posted shortly https://github.com/symbiotic-engineering/MDOcean/

> Rebecca McCabe rgm222@cornell.edu

Funding Sources:

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2139899, and the Cornell Engineering Fellowship. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.

Modeling and Simulation

Device Power Capability

From Simulation

* Site Wave Data

JPD for Humboldt, CA

Power Production

Force Saturation with Describing Functions

Approximate the saturated signal with its fundamental amplitude

Power Distribution Comparison

ASME

