Keď proces zavolá operáciu wait() nad semáforom

moze dojst k jeho zablokovaniu

Keď proces zavolá operáciu signal() nad semáforom

jeden cakajuci proces pokracuje vo svojom vykonavani

Keď v Linux-e proces vytvára svojho potomka

caka na jeho ukonecnie

Ktoré kroky vykonáva OS pri obsluhe výpadku stránky?

- skontroluje či odkaz na danú stránku bol platný.
- nájde voľný ramec
- presunie požadovanú stránku do pamäte
- modifikuje tabuľku stránok (bit platná/neplatná)
- reštartuje inštrukciu, ktorá spôsobila výpadok

_

Máme nasledovnú množinu procesov, ktorých požiadavky na čas procesora sú uvedené v tabuľke:

proces	pož. čas	čas príchodu
\mathbf{P}_{1}	10	0
P ₂	1	1
$\overline{\mathbf{P_3}}$	2	2
$\overline{\mathbf{P_4}}$	1	3
$\overline{P_5}$	5	4

V akom poradí sa ukončia procesy pri použití algoritmu plánovania "najkratší najskôr" (SJF) s preempciou?

p2,p3,p4,p5,p1

Aká je kapacita bufra pri komunikácií medzi 2 procesmi v prípade, ktorý sa nazýva rendezvous (randevu)

0

Monitor

- dovoľuje čakať na podmienku
- ma procedury, ktoré nesmú byť reentrantné
- dovoľuje vykonavanie iba jednej zo svojich procedúr

Ktorá z uvedených podmienok nepatrí do Coffmanových podmienok pre vznik uviaznutia? použitie s preempciou

Máme proces, ktorého logický adresný priestor pozostáva z 4 stránok po 1024 bajtov, ktoré sú mapované do fyz. pamäte, ktorá pozostáva z 32 rámcov. Logická adresa pozostáva z 10 bitov. Nie

Systémové volanie spôsobí:

- skok do jadra
- prerušenie

_ ?

K prostriedkom s pasívnym čakaním patrí:

- monitor
- semafor

Logický Adresný Priestor = LAP Fyzický Adresný Priestor = FAP Pri segmentácií sa LAP procesu mapuje do FAP

pomocou tabulky segmentov

Pri stránkovaní sa LAP procesu mapuje do FAP

suvisle (tj. LAP sa ako suvisly celok mapuje do nesuvisleho FAP)

Rámce a stránky majú

rovnaku velkost

Segmenty majú

roznu velkost

Ktorý príkaz pokužijete na skopírovanie obsahu celého adresára (aj s podadresármi) do iného adresára?

cp -R *.* meno_adresara

Ktoré z nasledujúcich tvrdení je pravdivé?

- Pri výskyte prerušenia sa riadenie odovzdá operačnému systému
- pri stlačení klávesy terminálu vzniká prerušenie.
- prerušenie spracováva kód ovládača zariadenia

Segmentácia so stánkovaním má následovné vlastností:

- odstraňuje vonkajšiu fragmentciu
- sa už dávno nepoužíva

Ktoré systémové volanie z uvedených sa tyka správy procesov v Linuxe ? (argumenty volaní sa neuvádzajú)

- fork()
- pthread join()
- wait()
- exit()

Ktory z nasledovnych planovacich algoritmov moze sposobit starvaciu?

- Planovanie s viacerymi frontmi
- SJF / SRTF
- Planovanie s viacerymi frontmi so spatnou vazbou

Máme nasledujúcu tabuľku segmentov:

Segment	Začiatok	Dĺžka
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

Je zodpovedajúca fyzická adresa pre logickú adresu <2, 500> ---> 680 Nie (ani sa nemoze o 500 posunut)

Indexové prideľovanie blokov disku súborom sa uskutočňuje pomocou index bloku

Pri strankovani na ziadost po vypadku stranky sa prislusna stranka presunie do pamate

Pri strankovani na ziadost v pamati je len cast stranok procesu

Pri strankovani vykonavany proces je cely v pamati

Pri swapovani na disk sa prenasa cely proces

Process Control Blok obsahuje:

- Počítadlo inštrukcií
- Zoznam otvorených súborov
- Ukazovateľ na zásobník
- Zoznam zariadení, pridelené procesu
- Stav procesu
- ID procesu
- Obsah registrov CPU
- Premenné, zdieľané s inými procesm

Máme proces, ktorého logický adresný priestor pozostáva z 4 stránok po 1024 bajtov, ktoré sú mapované do fyz. pamäte, ktorá pozostáva z 32 rámcov. Ak máme tabuľku stránok:

číslo stránky	rámec
0	1
1	14
2	5
3	28

aká je fyzická adresa 256-tého bajtu zo stránky č.1?

RAID0 využíva

Disk stripping (nezaistuje bezpecnost, ale zrychluje zapis/citanie dat)

RAID1 využíva

Disk mirroring

RAID2 využíva

Hamming code

RAID3 využíva

paritny disk

RAID4 využíva

paritny disk (ale vie viac I/O v jednom okamziku)

RAID5 využíva

rotujuca parita

RAID6 využíva

dualna rotujuca parita

RAID7 využíva

asynchronna architektura: datove, paritne, stand-by disky

V ktorom z uvedených prípadov je možná synchronizácia procesov pomocou správ?

blokujúca operácia send, blokujúca operácia receive

Doplňte vetu tak, aby vybrané tvrdenie bolo správne.

Obrazovka

virtualizacia

Terminal

spracováva I/O po znakoch

Magneticka paska

spracováva I/O sekvencne

Disk

spracováva I/O spo blokoch

Tlaciaren

spooling

Vyberte pravdivé tvrdenia.

Vlákna

- sa implementujú pomocou knižnice
- sa implementujú priamo v jadre systému
- zdieľajú adresný priestor, ale každé vlákno má svoj zásobník a registre
- komunikujú medzi sebou v rámci svojho adresného priestoru
- sa plánujú v rámci času procesu

Napište príkaz bash-u, pomocou ktorého nastavíte cestu tak, aby sa pre nájdenie vykonateľného súboru prehľadával aj aktuálny adresár.

PATH=\$PATH (toto je to nastavenie cesty)

Find ./ -executable (toto je to hladanie ale to asi nechce uz)

K synchronizačným prostriedkom s aktívnym čakaním patrí:

- inštrukcia SWAP
- spolocne premenne
- hw prostriedky
- test-and-set
- TSL
- spinlock

Máme proces, ktorého logický adresný priestor pozostáva z 6 stránok po 1024 bajtov, z ktorých 2 nie sú využité. Koľko položiek má tabuľka stránok?

Zoznam voľných úsekov diskového priestoru obsahuje položky s danou veľkosťou (v blokoch) v tomto poradí: 13, 11,18, 9 a 20 blokov. Vznikla požiadavka na pridelenie 10 súvislých blokov nejakému súboru.

Ktorý z úsekov mu bude pridelený pri použití algoritmu "Worst-fit" (uveďte veľkost úseku v blokoch).

20

Ktorý z úsekov mu bude pridelený pri použití algoritmu "First-fit" (uveďte veľkost úseku v blokoch).

13

Ktorý z úsekov mu bude pridelený pri použití algoritmu "Best-fit" (uveďte veľkost úseku v blokoch).

11

Adresár je možne implementovať pomocou

- hash table
- linearny zoznam

Ktoré synchronizačné problémy je potrebne vyriešiť v úlohe typu producent-konzument?

- Súbežmý prístup k zdieľaným premenným pre synchronizáciu
- Synchronizácia rýchlosti producenta a konzumenta
- Výlučný prístup k bufru

Spravne tvrdenia:

- Rozmer virtuálneho adresného priestoru môže presahovať rozmer fyzickej pamäte.
- Máme 3 procesy, ktorý zdieľajú 4 prostriedky, ktoré sú vyžadované a uvoľňované vždy po jednom. Ak každý proces potrebuje 2 prostriedky, uviaznutie nikdy nenastane.

Ochrana pamäte pri segmentácií je založená na:

využivaní tabuľky segmentov

Ktorá z uvedených možností sa používa pre overenie identity používateľa?

- heslo
- odtlacok prsta

- magneticka karta

Ktoré z nasledujúcich tvrdení nie je správne? Prerušenie:

signalizuje chybu pretečenia pri vykonávaní inštrukcie.

Ako kritérium pre výber plánovacieho algoritmu môžeme použiť:

- čas behu procesu
- čas odozvy
- priemerná doba čakania
- využitie procesora
- priepustnost systému

Na virtualizáciu pamäte môžeme použiť

- stránkovanie na ziadosť
- segmentácia na žiadosť

RPC (Remote Procedure Call) sa využíva pre:

nadviazanie komunikacie so vzdialenym serverom

Pre komunikáciu medzi procesmi v jednom systéme sa môžu využiť spravy

Pre komunikáciu medzi procesmi v jednom systéme sa môže využiť zdielana pamat

Pre komunikáciu medzi procesmi v sieti sa môže využiť

RPC

Komunikácia medzi procesmi v sieti sa môže uskutočniť pomocou soketov

Ako komunikujú procesy , ak hovoríme o "rendezvous" (randevu) spravy

Máme nasledujúcu tabuľku segmentov

Segment Začiatok Dĺžka

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

Je zodpovedajúca fyzická adresa pre logickú adresu

<3, 400> ---> 2700

Nie (1727)

Ktorá z metód prideľovania diskového priestoru umožňuje sučasne udržiavanie informácií o pridelenom diskovom priestore a o voľných blokoch na disku?

FAT tabulka

Zreťazené prideľovanie blokov na disku

- nedovoľuje priamy prístup
- odoberá konštantnú časť kapacity disku na ukladanie adries

DMA sa používa na

Rychly prenos dat z-do pamate

Asociatívna pamäť TLB sa používa na

ulozenie casti tabulky stranok

Čítač inštrukcií (PC) sa používa na

ulozenie adresy nasledujucej instrukcie

Segment Table Base Register (STBR) sa používa na

ulozenie zaciatocnej adresy tabulky segmentov

Ktorá z odpovedí nie je pravdivá?

Počas vykonania sú generované zhodné logické a fyzické adresy

Aké práva budú pridelené súboru, ak pomocou príkazu chmod nastavíme hodnotu 0750?

rwx | r-x | --- (0750 (oct) = 111101000(bin))

Hlavný princíp monitora je:

Kontroluje niekolko prostriekov

V ktorých z uvedených prípadov je nutné aktualizovať informácie o súbore v štruktúre i-node (i-node neobsahuje údaj o poslednom prístupe k súboru)?

Neviem

Zoraďte uvedené typy pamäti podľa rýchlosti prístupu, počnúc od najrýchlejšej (č.1).

Cache > registre > RAM > USB disk > HDD (magneticky) > magneticka paska

V grafe prideľovania prostriedkov každý prostriedok má len jednu inštanciu. Ktorá/é z podmienok označuje/ú uviaznutie?

V grafe existuje aspon jedna slucka

Aká je veľkosť stránky pri segmentácii so stránkovaním, ak počet bitov pre jednotlive položky logickej adresy je

10,10,12 ?

4096

Pracovná sada (working set) sa využíva pre zamedzenie javu nazvaný:

Zahltenie

Zdieľanie stránok sa uskutočňuje:

niekoľko tabuliek stránok ukazuje na ten istý rámec v OP

Akého typu maju býť operácie

send a receive, aby sa mohlo realizovat' stretnutie (rendezvous) procesov

obidve blokujuce

Autorizacia

udelenie opravnenia

Autentifikacia

overenie

Bezpecnostna politika

specifikacia, ako pouzivat ochranny mechanizmus (asi)

Ocharnny mechanizmus

mechanizmus, ze prostriedky sa pouzivaju v sulade s bezpecnostnou politikou (asi)

Súborový systém plní následovné úlohy:

neviem, proste nieco co umoznuje pracovat so subormi?

Odopretie službý je útok na

dostupnost

Zachytenie informacie je útok na

utajenie

Modifikácia je útok na

integritu

Falzifikácia je útok na

autenticitu

Metóda RAID0 využíva polovicu kapacity konfigurovaných diskov, aby mohla zabezpečiť spoľahlivosť?

Nespravne (RAID0 ani spolahlivost nezabezpecuje)

Zo stavu "pripravený" proces prejde do stavu

beziaci

Zo stavu "bežiací" proces prejde do stavu

pripraveny

Zo stavu "bežiací" proces prejde do stavu

ukonceny

Zo stavu "bežiací" proces prejde do stavu

cakajuci

Zo stavu "čakajúci" proces prejde do stavu

pripraveny

Systém, ktorý podporuje multiprogramovanie je taký systém, v ktorom:

v pamäti je súčasne niekoľko procesov

Viacúrovňové stránkovanie je možné charakterizovať ako:

- 1. Máme disk, ktorý má 200 stôp, očíslované od 0 do 200. Momentálne je ramienko použité pri 40 stope. Front požiadaviek je: 85, 145, 90, 175, 95, 150, 102, 180, 130. Spočítajte koľko pohybov(v stopách) vykoná ramienko ak je použitý algoritmus:
 - a) Výťahu(ide najskôr hore) 175 (neviem na isto)
 - b) Najkratšieho presunu 170

Nahradzovací algoritmus stránok v pamäti FIFO je:

Niekedy môže spôsobiť viacej výpadkov stránok keď proces dostane viac pamäte

Proces definujeme ako

Program, ktory sa vykonava

Na zadanom reťazci odkazov na stránky a počet rámcov porovnajte počty výpadkov stránok nahradzovacích algoritmov FIFO a LRU: (rátajte aj počiatočné výpadky)

Počet rámcov – 2, reťazec odkazov – ABACBAC

FIFO(4), LRU(6)

22. OP počítača ma 4 rámce, ktoré sú obsadené. Čas zavedenia stránky do pamäte je uvedený v tabuľke:

Stránka Čas zavedenia

- 0 160
- 1 230
- 2 120
- 3 126

Ktora stranka bude odsunuta na disk podla nahradzovacieho algoritmu FIFO? 2 (120)

Podmienková premenná sa používa vo vnútri

monitora

Mutex je

binarny semafor

Monitor je

reentrantny

Synchronizacia je mozna pomocou

sprav

Využitie ktorého z uvedených prostriedkov môže spôsobit uviaznutie?

- tlaciaren
- magneticka paska
- semafor

Na vykonanie V/V operácií sa využíva:

- DMA
- V/V riadeny preruseniami
- programovo riadeny V/V

PCB je:

datova struktura, obsahujuca informacie o procese

OS UNIX dovoluje tvorbu, suborov s velkostou, ktora je:

obmedzena, ale velka

OP Počítača má 4 rámce, ktoré sú obsadené. Čas posledného prístupu k stránke je uvedený v tabuľke:

Stránka Posl. Prístup

- 0 279
- 1 260
- 2 272
- 3 280

Ktorá stránka bude odsunutá na disk podľa nahradzovacieho algoritmu LRU?

1 (260)

Ktorá z nasledujúcich operácii môže uviesť proces do stavu zablokovaný:

proces vykonava operaciu wait nad semaforom