MATH868C - Several Complex Variables

Taught by Richard A. Wentworth Notes taken by Haoran Li $2020 \ \mathrm{Fall}$

Department of Mathematics University of Maryland

Contents

1	Review	2
2	Runge's theorem	6
3	Subharmonic functions	8
4	Almost complex structure	10
5	Hartogs theorem	14
6	Pseudoconvexity	15
7	Hörmander's L^2 estimate	18
8	Kahler metrics	21
9	Solving $\bar{\partial}$ equation	23
In	Index	

Review 1

Definition 1.1. C^1 function $f: \Omega \to \mathbb{C}$ is holomorphic if $\bar{\partial} f = 0$. Denote the set of all holomorphic functions on Ω as $A(\Omega)$

Lemma 1.2. If f is holomorphic, then $\int_{\infty} f dz = 0$

Proof.

$$\int_{\partial\Omega} f dz = \int_{\Omega} d\langle f dz \rangle = \int_{\Omega} \bar{\partial} f \wedge dz = 0$$

Poincaré-Lelong formula Theorem 1.3 (Poincaré-Lelong formula). Since $\Delta = \partial_x^2 + \partial_y^2 = 4\partial_z\partial_{\bar{z}} = 4\partial_{\bar{z}}\partial_z$, $dz \wedge d\bar{z} = -2idx \wedge dy = -2id\mu$. In the distributional sense, $-\frac{\log r}{2\pi} = -\frac{1}{4\pi}\log(x^2+y^2)$ is the fundamental solution of Laplacian equation in dimension 2, i.e. $\Delta\log(x^2+y^2) = 4\pi\delta$, we have $\Delta\log|z|^2dz \wedge d\bar{z} = -\frac{1}{4\pi}\log(x^2+y^2) = 4\pi\delta$

$$\Delta \log |z|^2 dz \wedge d\bar{z} = 4\pi \delta dz \wedge d\bar{z} \Leftrightarrow \bar{\partial} \partial \log |z|^2 = 2\pi i \delta dx \wedge dy$$

 $Note. \ \partial \log |z|^2 = \partial \log(z) + \partial \log(\bar{z}) = \frac{dz}{z} \ {\rm is \ integrable \ around \ } 0$

Proof. We prove a slightly general result. For any $\phi \in C_c^{\infty}(\Omega)$, by definition we have

$$\begin{split} \iint_{\Omega} \phi \bar{\partial} \partial \log |z - w|^2 &= -\iint_{\Omega} \bar{\partial} \phi \wedge \partial \log |z - w|^2 \\ &= -\lim_{\epsilon \to 0} \iint_{|z - w| \ge \epsilon} \bar{\partial} \phi \wedge \partial \log |z - w|^2 \\ &= -\lim_{\epsilon \to 0} \iint_{|z - w| \ge \epsilon} d \left(\phi \partial \log |z - w|^2 \right) \\ &= \lim_{\epsilon \to 0} \oint_{|z - w| = \epsilon} \phi \partial \log |z - w|^2 \\ &= \lim_{\epsilon \to 0} \oint_{|z - w| = \epsilon} \frac{\phi}{z - w} dz \\ &= 2\pi i \phi(w) \end{split}$$

Cauchy's formula

Theorem 1.4 (Cauchy's formula). If $f \in C^1(\overline{\Omega})$, then

$$f(w) = \frac{1}{2\pi i} \iint_{\Omega} \frac{\partial_{\bar{z}} f dz \wedge d\bar{z}}{z - w} + \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f}{z - w} dz$$

Proof. By Poincaré-Lelong formula 1.3, we have

$$f(w) = \frac{1}{2\pi i} \iint_{\Omega} f \bar{\partial} \partial \log |z - w|^{2}$$

$$= -\frac{1}{2\pi i} \iint_{\Omega} \bar{\partial} f \wedge \partial \log |z - w|^{2} + \frac{1}{2\pi i} \int_{\partial \Omega} f \partial \log |z - w|^{2}$$

$$= \frac{1}{2\pi i} \iint_{\Omega} \frac{\partial_{\bar{z}} f dz \wedge d\bar{z}}{z - w} + \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f}{z - w} dz$$

Corollary 1.5. If $f \in C^1(\overline{\Omega}) \cap A(\Omega)$, then by Cauchy's formula 1.4, we know

$$f(w) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z - w} dz$$

Which is C^{∞} in w

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{(z-w)^{n+1}} dz$$

2

Corollary 1.6 (Cauchy's estimate). For $K \subseteq \Omega$ compact, there are constants C_n such that for any $f \in A(\Omega)$

$$\sup_{\mathbf{z}\in K}|f^{(n)}(\mathbf{z})|\leq C_n\|f\|_{L^1(\Omega)}$$

Proof. Consider a bump function χ with supp $\chi \subseteq \Omega$ and $\chi \equiv 1$ on K, then for any $w \in K$

$$\begin{split} f(w) &= \frac{1}{2\pi i} \iint_{\Omega} \frac{\partial_{\bar{z}}(\chi f) dz \wedge d\bar{z}}{z - w} + \frac{1}{2\pi i} \int_{\partial \Omega} \frac{\chi f}{z - w} dz \\ &= \frac{1}{2\pi i} \iint_{\Omega} \frac{(\partial_{\bar{z}}\chi) f dz \wedge d\bar{z}}{z - w} \\ &= \frac{1}{2\pi i} \iint_{\Omega \setminus K} \frac{(\partial_{\bar{z}}\chi) f dz \wedge d\bar{z}}{z - w} \end{split}$$

$$\frac{\partial_{\bar{z}}\chi}{z-w}$$
 can be bounded on $\Omega\setminus K$

Corollary 1.7. $A(\Omega) \subseteq C(\Omega)$ is closed, thus a Fréchet space

Proof. Suppose $\{f_j\}\subseteq A(\Omega)$ converges to f in $C(\Omega)$, but since

$$f_j(w) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f_j(z)}{z - w} dz$$

$$f(w) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{z - w} dz$$
 which implies $\bar{\partial} f = 0$

Montel's theorem

Theorem 1.8 (Montel's theorem). Suppose $\{f_i\}\subseteq A(\Omega)$ are uniformly bounded on each compact subset, then there is a subsequence f_{i_k} uniformly converges on compact subsets

Proof. For $K \subseteq \Omega$ compact, by Cauchy's estimate 1.6, f_j are Lipschitz with the same C_k , by Ascoli-Arzela theorem, f_j are equicontinuous, thus have convergent subsequence, and then use diagonal argument by exhaust Ω with compact subsets K

Riemann extension theorem

Theorem 1.9 (Riemann extension theorem). $E \subseteq \Omega$ is a discrete subset, $f \in A(\Omega \setminus E)$, and f is bounded around each point in E, then f can be extended to a unique $\tilde{f} \in A(\Omega)$

Proof. For $z_0 \in E$, suppose such \tilde{f} exists, then by Cauchy's formula 1.4, for any $w \in D(z_0, r)$

$$\tilde{f}(w) = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(z)}{z - w} dz$$

Thus we just take this as a definition, then

$$\begin{split} \tilde{f}(w) - f(w) &= \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(z)}{z - w} dz - \frac{1}{2\pi i} \int_{\partial D(w, \epsilon)} \frac{f(z)}{z - w} dz \\ &= \frac{1}{2\pi i} \int_{\partial D(z_0, \epsilon)} \frac{f(z)}{z - w} dz \end{split}$$

Which can be show to arbitrarily small as $\epsilon \to 0$

d bar theorem

Theorem 1.10. If $\alpha = g(z)d\bar{z}$ is a smooth (0,1)-form on Ω , then there exists $u \in C^{\infty}(\Omega)$ such that $\bar{\partial}u = \alpha$

Proof. suppose such a u exists, then by Cauchy's formula 1.4

$$u(w) = \frac{1}{2\pi i} \iint_{\Omega} \frac{g(z)dz \wedge d\bar{z}}{z - w} + \frac{1}{2\pi i} \int_{\partial \Omega} \frac{u(z)}{z - w} dz$$

Since $\bar{\partial} \int_{\partial \Omega} \frac{u(z)}{z-w} dz = 0$. This motivates us to first assume α has compact support, and define

$$u(w) = \frac{1}{2\pi i} \iint_{\Omega} \frac{g(z)dz \wedge d\bar{z}}{z - w}$$

Then

$$u(w+\zeta) = \frac{1}{2\pi i} \iint_{\Omega} \frac{g(z)dz \wedge d\bar{z}}{(z-\zeta)-w} = \frac{1}{2\pi i} \iint_{\Omega} \frac{g(z+\zeta)dz \wedge d\bar{z}}{z-w}$$

Hence

$$\partial_{\bar{w}} u(w) = \frac{1}{2\pi i} \iint_{\Omega} \frac{\partial_{\bar{z}} g(z) dz \wedge d\bar{z}}{z - w}$$
$$= \frac{1}{2\pi i} \iint_{\Omega} \partial \log |z - w|^2 \wedge \bar{\partial} g$$
$$= g(w)$$

Therefore $\bar{\partial} u = \alpha$. In general, consider a compact exhaustion $\Omega = \bigcup_i K_i$, where $\hat{K}_i = K_i$,

 $K_i \subset\subset K_{i+1}^\circ$, ensured by Corollary 2.6, let χ_i be a cutoff function such that $\chi_i \equiv 1$ on K_i and $\sup \chi_i \subseteq K_{i+1}^\circ$, then there exists f_i such that $\bar{\partial} f_i = \chi_i \alpha$, by Runge's theorem 2.2, there exists $h_i \in \mathcal{O}(K_i)$ such that $\|f_{i+1} - f_i - h_i\|_{K_i} < \frac{1}{2^i}$. Now define

$$u_N = f_1 + \sum_{k=1}^{N} (f_{k+1} - f_k - h_k) = f_{N+1} - \sum_{k=1}^{N} h_N$$

Converges uniformly on compact subsets to u, and $\partial u_N = \alpha$ on K_i for any $i \leq N$

2 Runge's theorem

Definition 2.1. $K \subseteq \Omega$ is compact, define

 $\mathcal{O}(K) = \{f|_K : f \text{ is holomorphic in a neighborhood of } K\}$

Then for we have restriction map $\rho: \mathcal{O}(\Omega) \to \mathcal{O}(K)$, let $\|f\|_K = \max_{z \in K} |f(z)|$ to be the L^{∞} norm

Runge's theorem

Theorem 2.2 (Runge's theorem). The following are equivalent

- 1. The image of ρ is dense
- 2. No connected component of $\Omega \setminus K$ is relatively compact in Ω
- 3. If $\xi \in \Omega \setminus K$, then there exists $f \in \mathcal{O}(\Omega)$ such that $|f(\xi)| > ||f||_K$

Definition 2.3. For $K \subseteq \Omega$ compact, the holomorphic convex hull of K relative to Ω is

$$\hat{K} = \hat{K}_{\Omega} = \{ z \in \Omega : |f(z)| \le ||f||_{K}, \forall f \in \mathcal{O}(\Omega) \}$$

Clearly $K \subseteq \hat{K}$

Proposition 2.4.

- 1. \hat{K} is compact
- 2. $||f||_{\hat{K}} = ||f||_{K}$ for all $f \in \mathcal{O}(\Omega)$
- 3. $\hat{\hat{K}} = \hat{K}$
- 4. If $\xi \in \Omega \setminus \hat{K}$, then there exists $f \in \mathcal{O}(\Omega)$ such that $|f(\xi)| > ||f||_K$

Proof.

- 1. \hat{K} is bounded by considering f = z. Suppose $z_i \in \hat{K}$ converges to ξ , if $\xi \in \Omega^c$, then $f = \frac{1}{z \xi}$ will be unbounded on \hat{K} , thus $\xi \in \Omega$, but then for any $f \in \Theta(\Omega)$, $|f(\xi)| = \lim_{t \to \infty} |f(z_t)| \le ||f||_K$, thus $\xi \in \hat{K}$
- 2. By definition, $||f||_{\hat{K}} \leq ||f||_{K}$, $\forall f \in \mathcal{O}(\Omega)$, and $||f||_{K} \leq ||f||_{\hat{K}}$, $\forall f \in \mathcal{O}(\Omega)$ is obvious
- 3. $\hat{K} = \{z \in \Omega : |f(z)| \le ||f||_{\hat{K}} = ||f||_{K}, \forall f \in \Theta(\Omega)\} = \hat{K}$
- 4. By definition

Example 2.5. K is the unit circle. If Ω is the anulus $\left\{\frac{1}{2} < |z| < 2\right\}$, then $\hat{K} = K$. If Ω is the disc $\{|z| < 2\}$, then $\hat{K} = \{|z| < 1\}$ is the unit disc. Just consider f = z and $f = \frac{1}{z}$

Compact exhaustion of a domain

Corollary 2.6. Any domain Ω has an exhaustion by compact sets $\hat{K}_i = K_i$ such that

$$K_i \subset\subset K_{i+1}^{\circ} \subset K_{i+1} \subset\subset \Omega$$

Vanishing theorem

Theorem 2.7. $\mathcal{U} = \{U_i\}$ is an open cover of Ω , then $H^1(\mathcal{U}, 0) = 0$

Proof. Let $\{\phi_i\}$ be a partion of unity. For any cocycle $\{g_{ij}\}\in Z^1(\mathcal{U},\Theta)$, consider $h_i=\sum_j\phi_jg_{ij}$, then

$$h_i - h_j = \sum_k \phi_k g_{ik} - \sum_k \phi_k g_{jk}$$

$$= \sum_k \phi_k (g_{ik} - g_{jk})$$

$$= \sum_k \phi_k g_{ij}$$

$$= g_{ij}$$

Hence $\bar{\partial}h_i - \bar{\partial}h_j = 0$, $\{\bar{\partial}h_i\}$ define a well-defined smooth (0,1) form. By Theorem 1.10, there exist a holomorphic fuction u such that $\bar{\partial}u = \bar{\partial}h_i$, define $f_i = h_i - u$, then $\bar{\partial}f_i = 0$, i.e. $\{f_i\}$'s are holomorphic, and $g_{ij} = f_i - f_j$. In other words, $\{g_{ij}\}$ is the image of $\{f_i\} \in C^1(\mathcal{U}, 0)$ under the coboundary map

Theorem 2.8 (Mittag-Leffler theorem). $\Omega \subseteq \mathbb{C}$ is an open set, $E \subseteq \Omega$ is a discrete subset, then there exists a meromorphic function f with prescribed principal parts on E

Proof. There exists and open cover $\mathcal{U} = \{U_i\}$ and $f_i \in \mathcal{M}(U_i)$ with the prescribed principal parts round each point of E, then $f_i - f_j \in \mathcal{O}(U_i \cap U_j)$ is a coycle, by Theorem 2.7, there exist holomorphic functions $\{g_i\}$ such that $f_i - f_j = g_i - g_j$ on $U_i \cap U_j$, then $f_i - g_i = f_j - g_j$ defines a global meromorphic function f such that $f - f_i = -g_i$ on U_i which is holomorphic

Weierstrass theorem

Theorem 2.9 (Weierstrass theorem). $E \subseteq \Omega$ is discrete, then

- 1. There is $f \in \mathcal{M}(\Omega)$ with arbitrary orders precisely at E
- 2. Any $f \in \mathcal{M}(\Omega)$ can be written as f = g/h for $g, h \in \mathcal{O}(\Omega)$

Proof.

1. First take care of poles, and then multiply by $a_k(z-z_k)^{r_k}$ for each zero z_k , that converges 2.

Definition 2.10. Open subset $\Omega \subseteq \mathbb{C}^n$ is called a *domain of holomorphy* if for any $p \in \overline{\Omega} \setminus \Omega$, there is no holomorphic function g defined on an open set $U \ni p$ with g = f on $U \cap \Omega$

Theorem 2.11. For any proper open subset $\Omega \subseteq \mathbb{C}$ is a domain of holomorphic

Proof. Suppose $p \in \partial\Omega$, $p \in U$ is a neighborhood, $g \in O(U)$ such that f = g on $\Omega \cap U$, then there exists $\{\xi_n\}$ discrete and converging to p. By Weierstrass theorem 2.9, there exists $f \in O(\Omega)$ having exactly $\{\xi_i\}$ as zeros, but then g has to be identically zero, so is f which is a contradiction

3 Subharmonic functions

Definition 3.1. $\Omega \subseteq \mathbb{C}$ is a domain. $u : \Omega \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous if for $y \in \mathbb{R}$ the set $\{u < y\}$ is open

Definition 3.2. An upper semicontinuous function \underline{u} is *subharmonic* if is not identitically $-\infty$, and for each $U \subset\subset \Omega$ and harmonic function h on \overline{U} with $u \leq h$ on ∂U , we have $u \leq h$ for all $z \in U$

Example 3.3. If $u \in C^2(\Omega)$ and $\Delta u \geq 0$, then u is subharmonic

Theorem 3.4. 1. If $\{u_i\}$ are subharmonic and $u = \sup u_i$ is finite and upper semicontinuous, then u is subharmonic

2. If $u_i \geq u_{i+1}$ are subharmonic, then $u = \lim u_i$ is subharmonic

Proof.

- 1. By definition
- 2. $\{u < y\} = \bigcup \{u_i < y\}$ is open, hence u is upper semicontinuous. Suppose $u \le h$ on ∂U for some $U \subset\subset \Omega$ and harmonic function h. For any $\epsilon > 0$, consider

$$F_i = \{x \in \partial U | u_i(x) \ge h(x) + \epsilon \}$$

are compact, thus $\bigcap F_i = \emptyset$ implies that a finite intersection is empty, hence $u \leq h + \epsilon$

Fact 3.5. If u is subharmonic on Ω , then $u \in L^1_{loc}(\Omega)$

Theorem 3.6. Subharmonic function u satisfies the sub-mean value property

$$u(z) \le \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{i\theta}) d\theta \tag{3.1}$$

For almost all r sufficiently small

Proof. u is integrable on circle of radius r about z for sufficiently small r, we can find continuous functions $h_n \geq u_n$ on the circle such that $h_n \to u$ in L^1 , extend h_n to harmonic functions, then

$$u(z) \leq h_n(z) = \frac{1}{2\pi} \int_0^{2\pi} h_n(z + re^{i\theta}) d\theta \rightarrow \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{i\theta}) d\theta$$

Proposition 3.7. Subharminoc functions satisfies $\Delta u \geq 0$ in the weak sense

$$\int_{\Omega} u\Delta\phi \geq 0, orall \phi \in C^{\infty}_{
m c}(\Omega), \phi \geq 0$$

Proof. Multiply ϕ on both sides of (3.1) and integrate over Ω we get

$$\int_{\Omega} 2\pi u(z)\phi(z)d\mu \leq \int_{\Omega} \phi(z) \int_{0}^{2\pi} u(z+re^{i\theta})d\theta d\mu$$
$$= \int_{\Omega} u(z) \int_{0}^{2\pi} \phi(z-re^{i\theta})d\theta d\mu$$

Then we get

$$\begin{split} 0 & \leq \int_{\Omega} u(z) \int_{0}^{2\pi} \phi(z-re^{i\theta}) - \phi(z) d\theta d\mu \\ & = \int_{\Omega} u(z) \int_{0}^{2\pi} -\partial_{z} \phi(z) r e^{i\theta} - \partial_{\bar{z}} \phi(z) r e^{-i\theta} + \partial_{z}^{2} \phi(z) r^{2} e^{2i\theta} + \partial_{\bar{z}}^{2} \phi(z) r^{2} e^{-2i\theta} + 2 \partial_{z} \partial_{\bar{z}} \phi(z) r^{2} + O(r^{3}) d\theta d\mu \\ & = \int_{\Omega} u(z) \int_{0}^{2\pi} \frac{1}{2} \Delta \phi(z) r^{2} + O(r^{3}) d\theta d\mu \end{split}$$

Divide $\frac{r^2}{2}$ and let $r \to 0$

Proposition 3.8. Subharmonicity is a local property, i.e. suppose u is upper semicontinuous on Ω , and locally subharmonic, then u is subharmonic on Ω

Proof. Suppose h is harmonic, $U \subset\subset \Omega$, $u \leq h$ on $\partial\Omega$, consider v = u - h, assume $\sup_U v = M > 0$, then by the upper semicontinuity, we know that $F = \{v = M\}$ is compact in U, there exists $\mathbf{z}_0 \in \partial F$ obtains the least distance from ∂U , then for any small r > 0, F will miss an arc of positive measure if $\partial B(\mathbf{z}_0, r)$, hence

$$\frac{1}{2\pi}v(z_0+re^{i\theta})d\theta < M$$

But this contradicts sub-mean value property

Example 3.9. If $f_1, \dots, f_k \in \Theta(\Omega)$, not all zero, then $u = \log(|f_1|^2 + \dots + |f_k|^2)$ is subharmonic since $\log |f|$ is harmonic and $\Delta u \geq 0$

4 Almost complex structure

Definition 4.1. V is a real vector space, an *almost complex structure* is an endomorphism $J: V \to V$ such that $J^2 = -I$. Let $V^{1,0} \oplus V^{0,1} = V_{\mathbb{C}}$ be the $\pm i$ eigenspaces of J

Proposition 4.2. We can find basis such that $V \cong \mathbb{R}^{2n}$ such that $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$. For local coordinate (x_i, y_i) of a complex manifold, $\left\{\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}\right\}$ is such a basis, $\frac{\partial}{\partial z_i}, \frac{\partial}{\partial \bar{z}_i}$ are the $\pm i$ eigenvectors. This motivates the definition of a real isomorphism $\rho: V \to V^{1,0}, v \mapsto \frac{1}{2}(v - iJv)$, then $\rho J = i\rho$. Suppose V, W both have almost complex structures, given an \mathbb{R} -linear map $T: V \to W$, let $\tilde{T}: V^{1,0} \to W^{1,0}$ be given by the commutative diagram

$$V \xrightarrow{T} W$$

$$\downarrow \rho \qquad \qquad \downarrow \rho$$

$$V^{1,0} \xrightarrow{\tilde{T}} W^{1,0}$$

 \tilde{T} is complex linear if $TJ = JT \iff \tilde{T}i = i\tilde{T}$. Alternatively, extend T to a map $V_{\mathbb{C}} \to W_{\mathbb{C}}$, and this conditions is exactly that this extension preserves (1,0) and (0,1) subspaces

Lemma 4.3 (Osgood's lemma). If $f:\Omega\to\mathbb{C}$ is continuous and holomorphic in each variable, then it is analytic

Proof. Iterate Cauchy's formula and use Fubini's theorem to write

$$f(z) = \left(\frac{1}{2\pi i}\right)^n \int_{w_i \in \Delta(z_i, r_i)} \frac{f(w)dw}{(w_1 - z_1) \cdots (w_n - z_n)}$$

Then

$$\frac{1}{(w_1 - z_1) \cdots (w_n - z_n)} = \sum_{I} \frac{(z - \xi)^I}{(w - \xi)^I}$$

Then a convergent power series expression follows, with

$$c_I \left(\frac{1}{2\pi i}\right)^n \int_{w \in \Delta(z,r)} \frac{f(w)dw}{(w_1 - z_1)^{i_1 + 1} \cdots (w_n - z_n)^{i_n + 1}}$$

The total order of an analytic function f at ξ is the smallest value of |I| for which $c_I \neq 0$

Definition 4.4. A set $E \subseteq \Omega$ is called *thin* if for every $\xi \in E$ there is a polydisk $\Delta(\xi, r) \subset \Omega$ and $g \in A(\Delta(\xi, r))$ such that $E \cap \Delta(\xi, r) \subseteq Z(g)$. Note that for n = 1, this is equivalent to discrete

Theorem 4.5 (Riemann extension theorem). If $f \in A(\Omega \setminus E)$ where E is a thin set, and f is locally bounded on Ω , then there exists $\tilde{f} \in A(\Omega)$ such that $\tilde{f} = f$ on the complement of E

Proof. Let k be the total order of g at ξ . By an application of Rouché's theorem (and after modifying r and a change of variables), we can assume that for each z_1, \dots, z_{n-1} the function $z_n \mapsto g(z_1, \dots, z_{n-1}, z_n)$ has exactly k zeros and none on the boundary

In higher dimensions, to solve $\bar{\partial}$ equation, there must be a *integrability condition*. Indeed, if we can solve the equation, then $0 = \bar{\partial}^2 u = \bar{\partial} \alpha$, i.e. we require α to be $\bar{\partial}$ closed

Proposition 4.6. Let $n \geq 2$. If α is a smooth compactly supported (0,1) form on \mathbb{C}^n with $\bar{\partial}\alpha = 0$, then there is a $u \in C_c^{\infty}$, with $\bar{\partial}u = \alpha$

Proof.

Corollary 4.7 (Hartogs theorem). Let $K \subseteq \Omega$ be compact with $\Omega \setminus K$ connected. If $f \in A(\Omega \setminus K)$, there exists $\tilde{f} \in A(\Omega)$ that is equal to f on the complement of K

Proof. Let $\phi \in C_c^{\infty}(\Omega)$ be $\equiv 1$ in a neighborhood of K, let $\alpha = \bar{\partial}((1-\phi)f)$. Then α is $\bar{\partial}$ -closed and compactly supported. Hence, there is $u \in C_c^{\infty}(\mathbb{C}^n)$ with $\bar{\partial}u = \alpha$. Then let $\tilde{f} = (1-\phi)f - u$, $\tilde{f} \in A(\Omega)$, since u is compactly supported, $\tilde{f} = f$ on $\Omega \setminus K$

Note. The assumption that $\Omega \setminus K$ is connected is necessary. For example, let $K \subseteq B(0,1) = \{|z| < 1\}$ be the set where $|z| = \frac{1}{2}$, and take

$$f(z) = \begin{cases} z_n & \text{if } 1/2 < |z| < 1\\ 0 & \text{if } |z| < 1/2 \end{cases}$$

Then there is no holomorphic extension to B(0,1)

Proposition 4.8. If α is a smooth $\bar{\partial}$ -closed (0,1) form on a polydisk $\Delta = \Delta(0,r)$, then $\alpha = \bar{\partial}u$ for some $u \in C^{\infty}(\Delta)$

Proof. Just like in the one variable case, exhaust Δ by nested closed polydiscs K_i . Use cutoff functions to find u_i , $\bar{\partial}u_i$ in a neighborhood of K_i . Then $u_{i+1} - u_i$ is holomorphic in a neighborhood of K_i . Now by the power series expansion, there is a polynomial p_i such that $||u_{i+1} - u_i - p_i||_{K_i} < 2^{-i}$. The rest follows as in the proof of the one variable case

Note. We heavily used the geometric properties of the polydisc

Corollary 4.9 (Cousin theorem). $\mathcal{U} = \{u_i\}$ is an open cover of polydisc Δ , then $H^1(\Delta, \mathcal{U}) = 0$

Theorem 4.10. If $\alpha \in C^{\infty}_{(p,q)}(\Delta)$, $q \geq 1$, $\bar{\partial}\alpha = 0$. Then $\alpha = \bar{\partial}u$ for some $u \in C^{\infty}_{(p,q-1)}(\Delta)$

Remark 4.11. This states that the Dolbeault cohomology groups $H_{\tilde{a}}^{p,q}(\Delta) = 0$

Proof. Induct on $k=1,\cdots,n$, the smallest integer such that α only involves $d\bar{z}_1,\cdots,d\bar{z}_k$. If k=1, then q=1 and we have already proven the result. Suppose the result is true for k-1. Write $\alpha=\omega\wedge d\bar{z}_k+\beta$, where ω and β only involve $d\bar{z}_1,\cdots,d\bar{z}_{k-1}$. We have $0=\bar{\partial}\alpha=\bar{\partial}\omega\wedge d\bar{z}_k+\bar{\partial}\beta$. This implies both ω,β are holomorphic in the variables z_{k+1},\cdots,z_n . Apply the one variable solution to find $\mu,\bar{\partial}\mu=\omega\wedge d\bar{z}_k+\sigma$, here σ only involves $d\bar{z}_1,\cdots,d\bar{z}_{k-1}$. Now $\alpha-\bar{\partial}u=\beta-\sigma$ is $\bar{\partial}$ -closed. By induction, we can write $\beta-\sigma=\bar{\partial}v$, and so we set $u=v+\mu$

Example 4.12. Let $\Omega \subseteq \mathbb{C}^2$ be a domain. For $\xi \in \Omega$, let $\Omega^* = \Omega \setminus \{\xi\}$. Then $H^{0,1}_{\bar{\partial}}(\Omega^*) \neq \{0\}$

Proof. Without loss of generality assume $\xi = (0,0)$. Consider the (0,1)-form

$$\omega = \frac{1}{r^4}(-\bar{z}_2d\bar{z}_1 + \bar{z}_1d\bar{z}_2) = \bar{\partial}\left(\frac{\bar{z}_2}{z_1r^2}\right)$$

Clearly, ω is smooth on Ω^* , and $\bar{\partial}\omega=0$. Suppose $\omega=\bar{\partial}u$ for $u\in C^\infty(\Omega^*)$. Then $f(z_1,z_2)=z_1u-\frac{\bar{z}_2}{r^2}$ is holomorphic on $\Omega^*\setminus\{z_1=0\}$, and it is locally bounded on Ω^* . By Riemann extension, it is holomorphic on Ω^* . By Hartogs, it extends to Ω . But for $z_2\neq 0$ we clearly have $f(0,z_2)=-\frac{1}{z_2}$, contradiction

Proposition 4.13. $K \subseteq \Omega$ is compact

- 1. \hat{K}_{Ω} is closed in Ω
- 2. \hat{K}_{Ω} is not necessarily closed in \mathbb{C}^n . E.g. if $n \geq 2$, let $\Omega = \mathbb{B}^n \setminus \{0\}$, $K = \{|z| = 1/2\}$. Then by Hartogs' theorem, $\hat{K}_{\Omega} = \mathbb{B}^n_{1/2} \setminus \{0\}$
- 3. $\hat{K}_{\Omega} \subseteq \mathcal{C}(K)$, the closed convex hull of K. In particular, \hat{K}_{Ω} is bounded

Proof. Let $w \notin \mathcal{C}(K)$, $z_0 \in \mathcal{C}(K)$ minimizes distance to w, let $\xi \in (\mathbb{C}^n)^*$ define a supporting hyperplane for $\mathcal{C}(K)$ so that $\mathcal{C}(K) \subseteq \operatorname{Re}\langle \xi, z \rangle \leq 0$ and $\operatorname{Re}\langle \xi, w \rangle \geq 0$. Let $f(z) = \exp\langle \xi, z \rangle$, $|f(z)| = \exp\operatorname{Re}\langle \xi, z \rangle$ which violates the definition, so $w \notin \hat{K}_{\Omega}$

Definition 4.14. A domain $\Omega \subseteq \mathbb{C}^n$ is holomorphically convex if for every compact $K \subseteq \Omega$, \hat{K}_{Ω} is compact. If Ω is convex, then it is holomorphically convex. If n = 1, all domains are holomorphically convex. The previous counter-example shows this is not true if $n \geq 2$

Proposition 4.15. $\Omega \subseteq \mathbb{C}^n$ is holomorphically convex \iff every discrete, infinite set $\{z_j\} \subseteq \Omega$ there is $f \in A(\Omega)$ with $|f(z_j)|$ unbounded

Proof. \Leftarrow : If \hat{K}_{Ω} is not compact there is a discrete infinite subset $\{z_j\} \subseteq \hat{K}$. But then $|f(z_j)| \le ||f||_K$, $\forall j, f \in A(\Omega)$. This contradicts the existence of $f \in A(\Omega)$ where $|f(z_j)|$ is unbounded

 \Rightarrow : Exhaust Ω by nested compact sets K_j , $\hat{K}_j = K_j$. We may assume $z_j \in K_{j+1} \setminus K_j$. We can find $f_j \in A(\Omega)$ such that $f_j(z_j) = 1$, $||f_j||_{K_j} < 1$, by taking power, $||f_j||_{K_j}$ can actually be arbitrarily small. Let $g_j \in A(\Omega)$ be such that $g_j(z_j) = 1$, $g_j(z_j) = 0$ for i < j. Now define λ_j by

$$\lambda_j = j - \sum_{i=1}^{j-1} \lambda_i g_i f_i(z_j)$$

Assume $\|\lambda_j g_j f_j\|_{K_j} < 2^{-j}$. Now let $f(z) = \sum_{i=1}^{\infty} \lambda_i g_i f_i(z)$. This converges uniformly on compact sets, and so $f \in A(\Omega)$. Finally

$$f(z_j) = \sum_{i=1}^j \lambda_i g_i f_i(z_j) = \lambda_j g_j f_j(z_j) + \sum_{i=1}^{j-1} \lambda_i g_i f_i(z_j) = j$$

Definition 4.16. $\Omega \subseteq \mathbb{C}^n$ is called a *domain of holomorphy* if there is $f \in A(\Omega)$ such that for any $p \in \overline{\Omega} \setminus \Omega$ and any Ω' about p, there is no $g \in A(\Omega')$ such that g = f on $\Omega' \cap \Omega$

Theorem 4.17. $\Omega \subseteq \mathbb{C}^n$ is holomorphically convex \iff it is a domain of holomorphy

Corollary 4.18. A convex domain in \mathbb{C}^n is a domain of holomorphy

Proof. ⇒ is similar to the one variable case. \Leftarrow is a theorem of Oka (this will be generalized) ⇒: Fix a polydisc Δ about the origin. For $\xi \in \Omega$, let $\Delta_{\xi} = \xi + r\Delta$, where r is the supremum such that $\xi + r\Delta \subseteq \Omega$. Let $E \subseteq \Omega$ be countable dense. Let $\{\xi_j\}$ be a sequence containing every point of E infinitely may times. Write $\Omega = \bigcup K_j$. Since $\hat{K}_j \subset C$, $\exists z_j \in \Delta_{\xi_j}$ with $z_j \notin \hat{K}_j$. Choose $f_j \in A(\Omega)$, $f_j(z_j) = 1$, $||f_j||_{K_j} < 2^{-j}$. Set $f(z) = \prod (1 - f_j)^j$. Then f converges uniformly on compact sets, so $f \in A(\Omega)$. Now f has zeros of order $\geq j$ at z_j . Any continuation of f would have a zero of infinite order

 \Rightarrow : Let $d(z) = \sup_{\Delta(z,r) \subseteq \Omega} r$, $d(K) = \inf_{z \in K} d(z)$. Claim $d(\hat{K}) = d(K) > 0$. This will imply $\hat{K} \subset \subset \Omega$. Let $f \in A(\Omega)$ so that the radius of convergence at z is d(z), let $\delta < d(K)$, $K_{\delta} = \bigcup_{w \in K} \overline{\Delta(w,\delta)}$. By Cauchy estimates: $\|D^I f\|_K \leq \frac{I!}{\delta^{|I|}} \|f\|_{K_{\delta}}$. But $D^I f \in A(\Omega)$, so for $z \in \hat{K}$, $|D^I f(z)| \leq \|D^I f\|_K \leq \frac{I!}{\delta^{|I|}} \|f\|_{K_{\delta}}$. This implies that the radius of convergence at $z \in \hat{K}$ is at least δ , i.e. $d(z) \geq \delta$, and so $d(\hat{K}) \geq d(K)$. Since $K \subseteq \hat{K}$, the other inequality is trivial

Proposition 4.19. If $\{\Omega_{\alpha}\}_{{\alpha}\in I}$ are domains of holomorphy in \mathbb{C}^n , then the interior Ω of $\bigcap_{{\alpha}\in I}\Omega_{\alpha}$ is also a domain of holomorphy

Proof. $K \subseteq \Omega$ is compact. For each $\alpha \in I$, $K \subseteq \Omega \subseteq \Omega_{\alpha}$, which implies $\hat{K}_{\Omega} \subseteq \hat{K}_{\Omega_{\alpha}}$. This implies $d_{\Omega_{\alpha}}(\hat{K}_{\Omega_{\alpha}}) \leq d_{\Omega_{\alpha}}(\hat{K}_{\Omega})$, for all α . Since Ω_{α} is holomorphically convex, $d_{\Omega_{\alpha}}(\hat{K}_{\Omega_{\alpha}}) = d_{\Omega_{\alpha}}(K)$. Hence $d_{\Omega}(K) \leq d_{\Omega_{\alpha}}(K) \leq d_{\Omega_{\alpha}}(\hat{K}_{\Omega})$. Finally, this implies $d_{\Omega}(K) \leq d_{\Omega}(\hat{K}_{\Omega})$. As before, we conclude that $d_{\Omega}(K) = d(\hat{K}_{\Omega})$, and so \hat{K}_{Ω} is compact, so Ω is holomorphically convex

Claim. Suppose Ω is a domain of holomorphy. Let $f_1, \dots, f_N \in A(\Omega)$, and define

$$\Omega_c = \{z \in \Omega | |f_i(z)| < c, j = 1, \dots, N\}$$

Then Ω_c is also a domain of holomorphy

Proof. Let $K \subseteq \Omega_c$. Let $\mathbf{z} \in \hat{K}_{\Omega}$. Then in particular, for any $j = 1, \dots, N$, $|f_j(\mathbf{z})| \leq ||f_j||_K < c$. So $\mathbf{z} \in \Omega_c$. Now $\hat{K}_{\Omega_c} \subseteq \hat{K}_{\Omega} \subseteq \Omega$ and so \hat{K}_{Ω_c} is compact

Claim. Let $u: \Omega \subseteq \mathbb{C}^n \to \mathbb{C}^m$ be holomorphic, with Ω a domain of holomorphy. If $\Omega' \subseteq \mathbb{C}^m$ is a domain of holomorphy, then so is $\tilde{\Omega} = u^{-1}(\Omega')$

Proof. Let $K \subseteq \tilde{\Omega} \subseteq \Omega$ be compact. Since $\hat{K}_{\tilde{\Omega}} \subseteq \hat{K}_{\Omega} \subseteq \Omega$, it suffices to show $\hat{K}_{\tilde{\Omega}}$ is closed in Ω . Let $z_i \to z \in \Omega$, $z_i \hat{K}_{\tilde{\Omega}}$. Notice that $u(\hat{K}_{\tilde{\Omega}}) \subseteq u(K)_{\Omega'}$. Hence $u(z) \in \Omega'$, and so $z \in \tilde{\Omega}$

Lemma 4.20. Let $\Omega \subseteq \mathbb{C}^n$ be a domain of holomorphy, and $K \subseteq \Omega$. Suppose $f \in A(\Omega)$ is such that $|f(z)| \leq d(z)$ for all $z \in K$, then $|f(\xi)| \leq d(\xi)$ for all $\xi \in \hat{K}_{\Omega}$

Proof. We first claim that if $u \in A(\Omega)$, then the power series expansion of u at $\xi \in \hat{K}_{\Omega}$ converges on $\Delta(\xi, |f(\xi)|)$. This will prove the Lemma, because we can take u to be teh function with no analytic continuation beyond Ω

Proof of the claim: Let $0 < \delta < 1$, as before, the Cauchy estimates provide for some constant M that

$$|D^{I}u(z)|\frac{(\delta|f(z)|)^{|I|}}{I!}\leq M, \forall z\in K$$

Now $D^I u(z) f(z)^{|I|} \in A(\Omega)$, so the same estimate holds on \hat{K}_{Ω} . This means the radius of convergence at $\xi \in \hat{K}_{\Omega}$ is a t least $\delta |f(\xi)|$. Since δ was arbitrary, this proves the claim

Fundamental consequence: Let $D \subset\subset \Omega$ be a 1-dimensional disc

- 1. Suppose f is a polynomial in one variable such that $-\log d(z) \leq \operatorname{Re} f(z)$, for $z \in \partial D$
- 2. Let f be the restriction of $F \in A(\Omega)$. Then $|e^{-F(z)}| \le d(z)$, $z \in \partial D$
- 3. By the maximum principle, $D \subset \widehat{\partial D_0}$
- 4. From the Lemma, we have $|e^{-F(z)}| \le d(z)$, $z \in \partial D$
- 5. This in turn implies $-\log d(z) \leq \operatorname{Re} f$ on D

Approximating harmonic functions by polynomials, we conclude that $u = -\log d$ is subharmonic on any complex line in Ω

5 Hartogs theorem

Theorem 5.1.

6 Pseudoconvexity

Definition 6.1. An upper semicontinuous function $\phi: \Omega \subseteq \mathbb{C}^n \to [-\infty, \infty)$ is *plurisubharmonic* if the restriction of ϕ to every complex line $L \cap \Omega$, $L \cong \mathbb{C}$, is subharmonic. Let $P(\Omega)$ be the set of plurisubharmonic (psh) functions on Ω

Proposition 6.2. $\phi \in C^2(\Omega)$ is psh \iff for all $\xi \in \mathbb{C}^n$ and all $\mathbf{z} \in \Omega$, the complex Hessian is positive semidefinite

$$\sum_{i,j=1}^{n} \frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}(z) \xi_{i} \bar{\xi}_{j} \geq 0$$

 ϕ is strictly psh if > holds for every $\xi \neq 0$

Remark 6.3. A real (1,1) form on Ω can be written as

$$\omega(z) = i \sum_{i,i=1}^{n} g_{i\bar{j}}(z) dz_{i} \wedge d\bar{z}_{j}$$

where $g_{i\bar{j}}$ is a Hermitian matrix. We say that $\omega \geq 0$ (resp. $\omega > 0$) if $(g_{i\bar{j}}(z))$ is positive semidefinite(resp. positive definite) for every $z \in \Omega$. This means that for each $\xi \in \mathbb{C}^n$, $\xi \neq 0$

$$\sum_{i,j=1}^n g_{i\bar{j}}(\mathbf{z})\xi_i\bar{\xi}_j \geq 0 \text{(resp. } \omega > 0\text{)}$$

In the case $\omega > 0$, $g_{i\bar{j}}$ defines a Hermitian metric on Ω , and ω is its associate Kähler form

Proof. A line $j: L \hookrightarrow \mathbb{C}^n$ is given by a choice $\xi \neq 0$ in \mathbb{C}^n , so that $j(\tau) = z_0 + \tau \xi$, then

$$j^*(dz_i) = \xi_i d\tau, j^*(d\bar{z}_i) = \bar{\xi}_i d\bar{\tau}$$

$$j^*(i\partial\bar{\partial}\phi) = \left(\sum_{i,j=1}^n \frac{\partial^2\phi}{\partial z_i\partial\bar{z}_j}(z)\xi_i\bar{\xi}_j\right) id\tau \wedge d\bar{\tau}
 = \left(\sum_{i,j=1}^n \frac{\partial^2\phi}{\partial z_i\partial\bar{z}_j}(z)\xi_i\bar{\xi}_j\right) 2d\mu$$

On the other hand

$$j^*(i\partial\bar{\partial}\phi)=i\partial_z\bar{\partial}_z(\phi\circ j)=\Delta(\phi\circ j)2d\mu$$

Definition 6.4. A domain $\Omega \subseteq \mathbb{C}^n$ is *pseudoconvex* if there exists a continuous psh exhaustion function ϕ , i.e.

$$\Omega_c = \{ z \in \Omega | \phi(z) < c \} \subset \subset \Omega$$

For every $c \in \mathbb{R}$

Fact 6.5 (Richberg). If Ω is pseudoconvex, there is a C^{∞} strictly psh exhaustion function on Ω (see Demailly's book)

Theorem 6.6. $\Omega \subseteq \Omega$ is a domain of holomorphy iff it is pseudoconvex

Proof. Recall $d(z) = \sup_{\Delta(z,r) \subseteq \Omega} r$. \Rightarrow : We have shown that $-\log d(z)$ is psh. It is also continuous. We claim that $u(z) = |z|^2 - \log d(z)$ does the job Closedness: If $z_i \to w \in \overline{\Omega} \setminus \Omega$, then $d(z_i) \to 0$, so u diverges Boundedness: Fix any $w \in \overline{\Omega} \setminus \Omega$, then

$$d(z) \le |z - w| \le |z| + |w|$$

so for |z| large

$$\log d(\mathbf{z}) \leq 2\log |\mathbf{z}| \leq \frac{1}{2}|\mathbf{z}|$$

This means a bound on u implies a bound on |z|

Example 6.7. 1. Geometrically convex sets are pseudoconvex(e.g. balls and polydisks)

- 2. If $\{\Omega_{\alpha}\}$ are pseudoconvex, then the interior Ω of $\bigcap \Omega_{\alpha}$ is pseudoconvex
- 3. Annuli or punctured domains are not pseudoconvex
- 4. Let $\Omega \subseteq \mathbb{C}^n$ be pseudoconvex, $f_1, \dots, f_k \in A(\Omega)$, then $\tilde{\Omega} = \Omega \setminus V(f_1) \cup \dots \cup V(f_k)$ is pseudoconvex. Indeed, if ϕ is the psh exhaustion function on Ω , take $\tilde{\phi} = \phi \log |f_1| \dots \log |f_k|$ on $\tilde{\Omega}$

Proposition 6.8. Suppose $\Omega \subseteq \mathbb{C}^n$ is pseudoconvex. Then $-\log d(z)$ is psh

Proof. $D \subset\subset \Omega$ is a disc, f on D, $F \in A(\Omega)$ restricts to f, suppose $-\log d(z) \leq \operatorname{Re} f(z)$, $z \in \partial D$, or equivalently $d(z) \geq |e^{-f(z)}|$, $z \in \partial D$. We want to show this holds in D. Fix $w \in \Delta(0,1)$. Let

$$K = \{z + \lambda w e^{-f(z)} | z \in \partial D, 0 \le \lambda \le 1\}$$

Then $K \subseteq \Omega$

$$\Lambda = \{\lambda \in [0,1] | z + \lambda' w e^{-f(z)} \in \Omega, \forall z \in D, 0 \le \lambda' \le \lambda\}$$

Notice that $\Lambda \neq \emptyset$, since $0 \in \Lambda$. We want show that $\Lambda = [0,1]$. Λ is clearly open. Suppose $\lambda_i \nearrow c$, $\lambda_i \in \Lambda$, let ϕ be a continuous psh exhaustion function on Ω , then for each j, $z \in D$, $\phi(z + \lambda_j w e^{-f(z)}) \le \sup_K \phi$, but since this is a compact set, $c \in \Lambda$

Pseudoconvexity is a property of the boundary of Ω

Proposition 6.9. $\Omega \subseteq \mathbb{C}^n$. Suppose that for every $\xi \in \overline{\Omega}$ there is an open set $\xi \in U$ such that $U \cap \Omega$ is pseudoconvex. Then Ω is a pseudoconex

Proof. Let $\xi \in \partial \Omega$, set $\tilde{\Omega} = U \cap \Omega$. For z sufficiently close to ξ , $d(z) = d_{\Omega}(z) = d_{\tilde{\Omega}}(z)$, so $-\log d(z)$ is psh in a neighborhood of $\partial \Omega(\operatorname{say}, \Omega \setminus F \text{ for smote closed } F)$. Find a smooth proper psh function ψ on \mathbb{C}^n such that $\phi(z) > -\log d(z)$ for $z \in F$. Now let $\phi(z) = \max\{\psi(z), -\log d(z)\}$. Then ϕ is a continuous psh exhaustion function

Definition 6.10. $\Omega \subseteq \mathbb{C}^n$ have a C^2 boundary. In a neighborhood U of $\mathbf{z}_0 \in \partial \Omega$ we can find a C^2 defining function $\rho: U \to \mathbb{R}$, i.e.

$$\Omega \cap U = \{z \in U | \rho(z) < 0\}, \nabla \rho \neq 0 \text{ on } \partial \Omega \cap U$$

The Levi form L_{z_0} at the point z_0 is the quadratic form $\operatorname{Hess}(\rho)$ restricted to $V_{z_0} = T_{z_0}\partial\Omega \cap J(T_{z_0}\partial\Omega)$. Alternatively, let $\xi \in \mathbb{C}^n$ satisfy $\sum_{i=1}^n \frac{\partial \rho}{\partial z_i} \xi_i = 0$. Then we define

$$L(\xi) = \sum_{i,j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{j}} (z_{0}) \xi_{i} \bar{\xi}_{j}$$

Here, if ξ is the vector corresponding to v then $L(v) = L(\xi)$

d(z)>=d(w)-r

Lemma 6.11. Let $z, w \in \Omega$, $\xi \in \Delta(0, r)$ such that $z = w + \xi$. Then $d(z) \ge d(w) - r$

Proof. Let η be in some polydisk about 0, such that $z + \eta \in \partial\Omega$, and $d(z) = \max |\eta_i|$. Then $w + \xi + \eta \in \partial\Omega$. This implies

$$d(w) \leq \max_{j} |\langle \xi + \eta \rangle_{j}| \leq \max_{j} |\xi_{j}| + \max_{j} |\eta_{j}| \leq r + d(z)$$

Proposition 6.12. Ω is pseudoconvex \iff the Levi form is everywhere positive semidefinite on $\partial\Omega$

$$\textit{Proof.} \implies: \rho(\mathbf{z}) = \begin{cases} -d_{\Omega}(\mathbf{z}) & \mathbf{z} \in \Omega \\ 0 & \mathbf{z} \in \partial \Omega \text{, then } \rho \text{ is } C^2 \text{. The function } \phi = -\log d \text{ is } C^2 \text{ and psh} \\ -d_{\overline{\Omega}^c}(\mathbf{z}) & \mathbf{z} \in \overline{\Omega}^c \end{cases}$$

$$\frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_i} = -\frac{1}{d(z)} \frac{\partial^2 d}{\partial z_i \partial \bar{z}_i} + \frac{1}{d(z)^2} \frac{\partial d(z)}{\partial z_i} \frac{\partial d(z)}{\partial \bar{z}_i}$$

So for $z \in \Omega$

$$0 \leq \sum_{i,j=1}^{n} \frac{\partial^{2} \phi}{\partial z_{i} \partial \bar{z}_{j}}(z) \xi_{i} \bar{\xi}_{j} = \sum_{i,j=1}^{n} \frac{1}{d(z)} \frac{\partial^{2} d}{\partial z_{i} \partial \bar{z}_{j}}$$

Now let $z \to \partial \Omega$

 \Leftarrow : Suppose $c = \frac{\partial^2}{\partial \tau \partial \bar{\tau}} \log d(z_0 + \tau w_0) > 0$. $\log d(z_0 + \tau w_0) = \log d(z_0) + \text{Re}(A\tau + B\tau^2) + c|\tau|^2 + o(|\tau|^2)$. Choose $\xi_0 \in \partial \Delta(0, d(z_0))$ such that $z_0 + \xi_0 \in \partial \Omega$, $\max_i |\xi_{0,i}| = d(z_0)$. Let $z(\tau) = z_0 + \tau w_0 + \xi_0 \exp(A\tau + B\tau^2)$. By Lemma 6.11

$$d(z(\tau)) \ge d(z_0 + \tau w_0) - d(z_0) |\exp(A\tau + B\tau^2)|$$

 $\ge |\exp(A\tau + B\tau^2)|(e^{c|\tau|^2/2} - 1)$

Now d(z(0)) = 0. The inequalitity implies

$$\left. \frac{\partial}{\partial \tau} d(z(\tau)) \right|_{\tau=0} = 0, \left. \frac{\partial^2}{\partial \tau \partial \bar{\tau}} d(z(\tau)) \right|_{\tau=0} > 0$$

In other words

$$\sum_{i=1}^{n} \frac{\partial \rho}{\partial z_{i}} z_{i}'(0) = 0, \sum_{i,j=1}^{n} \frac{\partial^{2} \rho}{\partial z_{i} \partial \bar{z}_{j}} z_{i}'(0) \bar{z}_{j}'(0) < 0$$

This contradicts $L_{z(0)} \geq 0$

7 Hörmander's L^2 estimate

Definition 7.1. H_1 , H_2 are complex Hilbert space, $T: H_1 \to H_2$ is an unbounded operator, if it is a linear map defined on some linear subspace $D(T) \leq H_1$ called the domain of T. T is densely defined if D(T) is dense in H_1 . T is closed if the graph $Gr(T) = \{(x, Tx) \in H_2 \times H_2 | x \in D(T)\}$ is closed. T has closed range if $R(T) = \{Tx \in H_2 | x \in D(T)\}$ is closed in H_2 . Write $N(T) = \ker T$

Definition 7.2. $T: H_1 \to H_2$ is a densely defined unbounded operator, its adjoint $T^*: H_2 \to H_1$ is defined as an unbounded operator as follows

- $D(T^*)$ consists of $y \in H_2$ such that the functional $\langle T(-), y \rangle : D(T) \to \mathbb{C}$ is continuous
- By the Hahn-Banach theorem, $\langle T(-), y \rangle$ extends to a linear functional on H_1
- By the Riesz representation theorem and denseness, there is a vector $T^*y \in H_1$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$

Proposition 7.3. If T is densely defined, then T^* is closed

Proof. Let $y_j \in D(T^*)$, $y_j \to y$, and $x_j = T^*y_j \to x$. We need to show $y \in D(T^*)$ and $x = T^*y$. Fix $u \in D(T)$. Then

$$|u||x| \ge \langle u, x \rangle = \lim_{j} \langle u, x_j \rangle = \lim_{j} \langle u, T^* y_j \rangle = \lim_{j} \langle Tu, y_j \rangle = \langle Tu, y \rangle$$

So the map $u \mapsto \langle Tu, y \rangle$ is bounded on D(T) by |x|. This implies $y \in D(T^*)$ and $x = T^*y$

Fact 7.4. If T, T^* are densely defined then T is closed, and $(T^*)^* = T$

 $Gr(T^*)=Gr(-T)^perp$

Lemma 7.5. If T is closed and densely defined, then $Gr(T^*) = Gr(-T)^{\perp}$ in $H_1 \times H_2$

Proof. We have inclusion \subseteq since

$$\langle (T^*y, y), (x, -Tx) \rangle = \langle T^*y, x \rangle - \langle y, Tx \rangle = 0$$

Now if $\langle (x,y), (u,-Tu) \rangle = \langle x,u \rangle - \langle y,Tu \rangle = 0$ for all $u \in D(T)$, then $u \mapsto \langle Tu,y \rangle = \langle u,x \rangle$ is bounded on D(T), so $y \in D(T^*)$, and $x = T^*y$

Theorem 7.6. If T is closed and densely defined, then so is T^* . Moreover, $N(T^*) = R(T)^{\perp}$ and $N(T) = \overline{R(T^*)^{\perp}}$

Note. $(V^{\perp})^{\perp} = \overline{V}$

Proof. By Lemma 7.5, any $(u, v) \in H_1 \times H_2$ can be written as

$$(u, v) = (x, -Tx) + (T^*y, y), x \in D(T), y \in D(T^*)$$

Taking u=0, then $v=y+TT^*y$. This implies $\langle v,y\rangle=|y|^2+|T^*y|^2$. If $v\in D(T^*)^\perp$, then y=0, and so v=0. Hence $D(T^*)$ must be dense. $N(T^*)=R(T)^\perp$ follows form $\langle Tx,y\rangle=\langle x,T^*y\rangle$ \square T closed, densely defined, equivalent conditions for R(T) closed

Proposition 7.7. Let $T: H_1 \to H_2$ be closed and densely defined. The following are equivalent

- 1. R(T) is closed
- 2. $\exists C$ such that $|x| \leq C|Tx|$ for all $x \in D(T) \cap R(T^*)$
- 3. $R(T^*)$ is closed
- 4. $\exists C$ such that $|y| \leq C|T^*y|$ for all $y \in D(T^*) \cap R(T)$

Proof. 2. \Rightarrow 1.: Suppose $Tx_j \to y$, then x_j converges, say to x, $(x_j, Tx_j) \to (x, y)$ To show 1. \Rightarrow 2., recall $N(T) = R(T^*)^{\perp}$. Hence T is continuous and 1-1 from $D(T) \cap R(T^*)$ onto the closed subspace R(T). Hence the inverse is continuous by the closed graph theorem. This proves 2.

 $3. \Longleftrightarrow 4.$

 $2.\Rightarrow 4.$:

$$|\langle Tx, y \rangle| = |\langle x, T^*y \rangle| \le |x||T^*y| \le C|Tx||T^*y|$$

So
$$|\langle z, y \rangle| \le C|T^*y||z|$$
 for $z \in R(T), y \in D(T^*)$

Definition 7.8. Now consider densely defined closed unbounded operators $H_1 \xrightarrow{T} H_2 \xrightarrow{S} H_3$ satisfying $S \circ T = 0$. The *harmonic elements* are

$$\mathfrak{H}_2 = N(S) \cap N(T^*)$$

there is an orthogonal decomposition $H_2 = \mathcal{H}_2 \oplus (N(S) \cap N(T^*))^{\perp} = \mathcal{H}_2 \oplus \overline{R(T)} \oplus \overline{R(S^*)}$, so $N(S) = \mathcal{H}_2 \oplus \overline{R(T)}$

Theorem 7.9. There is C > 0 such that for all $y \in D(S) \cap D(T^*)$

$$|y| \le C(|Sy| + |T^*y|) \tag{7.1}$$

i.e. the basic estimate holds $\iff \mathfrak{H}_2 = 0$ and $R(T), R(S^*)$ are closed

Proof. ⇒: If $y \in \mathcal{H}_2$, then $|y| \leq C(|Sy| + |T^*y|) = 0$, hence $\mathcal{H}_2 = 0$. If $y \in R(T) \cap D(T^*)$, then $y \in N(S)$ and $|y| \leq C|T^*y|$, by Proposition 7.7, R(T) is closed, similarly, $R(S^*)$ is closed \Leftarrow : $H_2 = R(T) \oplus R(S^*)$ and $y \in D(S) \cap D(T^*)$, write $y = y_1 + y_2$, $y_1 \in R(T) \cap D(T^*)$, $y_2 \in R(S^*) \cap D(S)$. Apply the previous estimates and the triangle inequality

$$|y| \le |y_1| + |y_2| \le C_1 |T^*y| + C_2 |Sy| \le C(|Sy| + |T^*y|)$$

 $\mathcal{D}_{(p,q)}\langle\Omega\rangle\subseteq L^2_{(p,q)}(\Omega)$ be the smooth (p,q)-forms with compact support in Ω . Consider the unbounded operator $\bar{\partial}:L^2_{(p,q)}(\Omega)\to L^2_{(p,q+1)}(\Omega)$ with domain $D(\bar{\partial})=\{u\in L^2_{(p,q)}(\Omega)|\bar{\partial}u\in L^2_{(p,q+1)}(\Omega)\}$, the derivative is in the sense of distributions $\langle\bar{\partial}u,\alpha\rangle_{L^2}=\langle u,\bar{\partial}^*\alpha\rangle_{L^2}$ for $\alpha\in\mathcal{D}_{(p,q+1)}(\Omega)$. $\bar{\partial}^*$ is called the *formal adjoint* of $\bar{\partial}$. Then $\bar{\partial}u\in L^2$ if there is a constant C>0 such that $|\langle u,\bar{\partial}^*\alpha\rangle|\leq C\|\alpha\|_{L^2}$. In this case, the Hahn-Banach and Riesz representation theorem, $\langle u,\bar{\partial}^*\alpha\rangle=\langle v,\alpha\rangle$

Proposition 7.10. $\bar{\partial}: L^2_{(p,q)}(\Omega) \to L^2_{(p,q+1)}(\Omega)$ is a closed operator

Proof. $u_i \to u$ in L^2 , $u_i \in D(\bar{\partial})$, $\bar{\partial}u_i \to \alpha$. Let $\beta \in \mathcal{D}_{(p,q+1)}(\Omega)$, then

$$\langle u, \bar{\partial}^*\beta \rangle = \lim_{i \to \infty} \langle u_i, \bar{\partial}^*\beta \rangle = \lim_{i \to \infty} \langle \bar{\partial} u_i, \beta \rangle = \langle \alpha, \beta \rangle$$

So the map $\beta \mapsto \langle u, \bar{\partial}^* \beta \rangle$ is bounded and $\bar{\partial} u = \alpha$, thus $\bar{\partial}$ is closed

Example 7.11. Consider $T = i \frac{d}{dx}$ on $L^2([0,1])$, with D(T) consisting of $f, f' \in L^2$. One can show $f \in D(T)$ is (absolutely) continuous on [0,1]. By integration by parts

$$f \mapsto \langle Tf, g \rangle = \langle f, Tg \rangle + i \langle f(1)\bar{g}(1) - f(0)\bar{g}(0) \rangle$$

This is not continuous with respect to the L^2 topology on f, unless g(0) = g(1) = 0. Thus T^* is the same operator T, but with a different domain of definition

The problem is that while compactly supported functions are dense in L^2 topology, they are not dense in the L^2_1 topology, i.e. the graph norm $\|u\| + \|\bar{\partial}u\|$ Methods to fix this

- 1. Hömander uses a clever choice of (three) weights to prove the basic estimate
- 2. If Ω has sufficiently nice boundary, define boundary conditions (the $\bar{\partial}$ -Neumann problem)
- 3. Change the geometry of Ω to carry a complete Kähler metric

We will follow the last option (Demially, Gaffney)

Equivalent conditions of completeness and compact exhaustion

Lemma 7.12. (M,g) is a Riemannian manifold, the following are equivalent

1. (M, g) is complete (Hopf-Rinow theorem)

- 2. \exists compact exhaustion function ψ with $|d\psi|_g \leq 1$
- 3. \exists compact exhaustion $K_i \subseteq K_{i+1}^{\circ}$, and $0 \le \psi_i$ supported in K_{i+1} , $\equiv 1$ on K_i , such that $|d\psi_i|_g \le 2^{-i}$

Proof. 1. \Rightarrow 2.: Fix $x_0 \in M$, Let $\psi_0(x) = \frac{1}{2}d(x_0,x)$. Smooth ϕ_0 to ψ with $|\phi - \phi_0| < 1$, by convolution with some $g \in C^{\infty}$, compactly supported near 0 and $\int g = 1$ 2. \Rightarrow 3.: Choose a

smooth function $\rho: \mathbb{R} \to [0,1]$ with $\rho(t) = \begin{cases} 1 & t \leq 1 \\ 0 & t \geq 2 \end{cases}$ and $|\rho'(t)| \leq 2$. Then let $K_i = \{\psi(x) \leq 0\}$

 2^{i+1} }, $\psi_i(x) = \rho(2^{-i-1}\psi(x))$ 3. \Rightarrow 2.: Set $\psi = \sum 2^i(1-\psi_i)$ 2. \Rightarrow 1.: $|\psi(x)-\psi(y)| \leq d(x,y)$, $\{x_i\}$ is a Cauchy sequence, then $\{x_i\}$ lies in the set $\{\psi \leq C\}$ for some C. Since this is compact, the sequence converges, so (M,g) is complete

Corollary 7.13. Let Ω have a complete Riemannian metric ω . Then $\mathcal{D}_{(p,q)}(\Omega)$ is dense in graph norm of $\bar{\partial}$

Proof. Set $u_i = u\phi_i$ as in Lemma 7.12, 3. Then $u_i \to u$ in L^2 , and $\bar{\partial}u_i = \bar{\partial}u\psi_i + u\bar{\partial}\psi_i \to \bar{\partial}u$ in L^2 . Now choose $v_i \in \mathcal{D}_{(p,q)}(\Omega)$ so that $\|v_i - u_i\|_{L^2_1} = \|v_i - u_i\|_{L^2} + \|\bar{\partial}v_i - \bar{\partial}u_i\|_{L^2} \le 1/i$, the result follows

Corollary 7.14. (Ω, ω) is complete, $\bar{\partial}^*$ with domain

$$D(\bar{\partial}^*) = \left\{\alpha \in L^2_{(p,q+1)}(\Omega) \middle| \bar{\partial}^*\alpha \in L^2_{(p,q)}(\Omega) \right\}$$

is the adjoint of T^* of $T = \bar{\partial}$

Proof. $D(T^*) \subseteq D(\bar{\partial}^*)$. Let $u \in \mathcal{D}_{(p,q)}(\Omega) \subseteq D(T)$. If $\alpha \in D(T^*)$, then there is a constant C > 0 such that $|\langle \bar{\partial} u, \alpha \rangle| \leq C|u|$. But then by definition, $|\langle u, \bar{\partial}^* \alpha \rangle| \leq C|u|$. Since $\mathcal{D}_{(p,q)}(\Omega)$ is dense in L^2 , this implies $\bar{\partial}^* \alpha \in L^2$

 $D(\bar{\partial}^*) \subseteq D(T^*)$. If $\bar{\partial}^*\alpha \in L^2$, there is a constant C > 0 such that $|\langle u, \bar{\partial}^*\alpha \rangle| \leq C|u|$. Fix $u \in D(T)$. Let $u_i \in \mathcal{D}_{(p,q)}(\Omega)$ so that $u_i \to u$ and $\bar{\partial}u_i \to \bar{\partial}u$ in L^2 . Then since $\langle u_i, \bar{\partial}^*\alpha \rangle = \langle \bar{\partial}u_i, \alpha \rangle$, we have $|\langle \bar{\partial}u, \alpha \rangle| \leq C|u|$, and so $\alpha \in D(T^*)$

8 Kahler metrics

Definition 8.1. $\Omega \subseteq \mathbb{C}^n$. A hermitian metric on Ω is a positive definite hermitian valued smooth function $g = (g_{i\bar{j}})$. The Kähler form associated to g is $\omega = i \sum_{i,j=1}^n g_{i\bar{j}} dz_i \wedge d\bar{z}_j$, note that $\bar{\omega} = \omega$. We assume that g is tensorial, in the sense that ω is a well-defined (1,1)-form on Ω , $g_{i\bar{j}} = \left\langle \frac{\partial}{\partial z_i}, \frac{\partial}{\partial \bar{z}_j} \right\rangle$. This gives a pointwise hermitian inner product on (1,0)-forms: $\alpha = \alpha_i dz_i$, $\beta = \beta_j dz_j$

$$\langle \alpha, \beta \rangle = \sum_{i,j=1}^{n} \alpha_i \overline{\beta_j} g^{i\bar{j}}$$

 $(g^{i\bar{j}})$ is the inverse matrix of (g_{ij}) . Extend this to (p,0)-forms by

$$\langle \alpha_1 \wedge \cdots \wedge \alpha_p, \beta_1 \wedge \cdots \beta_p \rangle = \det \langle \alpha_i, \beta_i \rangle$$

Extend this to (p,q)-forms by taking the product of this. This gives a complex anti-linear isometry

$$\bar{*}: \Lambda^{p,q} \to \Lambda^{n-p,n-q}, \alpha \wedge \bar{*}\beta = \langle \alpha, \beta \rangle \frac{\omega^n}{n!}$$

 $\frac{\omega^n}{n!}$ is the volume form. Inducing L^2 inner products

$$\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \bar{*}\beta$$

Define the Lefschetz operator

$$L: \Lambda^{p,q} \to \Lambda^{p+1,q+1}, \alpha \mapsto \omega \wedge \alpha$$

Let $\Lambda = L^*$. Note that $L^n(1) = \omega^n$, $\Lambda^{n,n} \cong \mathbb{C}$

Example 8.2. If F is of type (1,1), write $F = \sum_{i,j} F_{i\bar{j}} dz_i \wedge d\bar{z}_j$. Then $\Lambda F = \sum_{i,j} F_{i\bar{j}} g^{i\bar{j}}$. If α is of type (1,0)

$$i\alpha \wedge \bar{\alpha} \wedge \frac{\omega^{n-1}}{(n-1)!} = |\alpha|^2 \frac{\omega^n}{n!}$$

Definition 8.3. A hermitian metric is called Kähler if $d\omega = 0$ (ω is closed), equivalently, $\frac{\partial g_{j\bar{k}}}{\partial z_i} = \frac{\partial g_{i\bar{k}}}{\partial z_j}$

Proposition 8.4. ω is Kähler iff about any point there are coordinates such that g is euclidean to order two

Proof. We may always choose local coordinate so that $g_{i\bar{j}}(0) = \delta_{ij}$, $g_{i\bar{j}} = \delta_{ij} + A^k_{i\bar{j}} z_k + B^{\bar{k}}_{i\bar{j}} \bar{z}_k + O(|z|^2)$. The Kähler condition implies: $A^k_{i\bar{j}} = A^i_{k\bar{j}}$. The fact that $g_{i\bar{j}}$ is hermitian implies $B^{\bar{k}}_{i\bar{j}} = \overline{A^k_{j\bar{i}}}$.

Define $w_m = z_m + \frac{1}{2} A^i_{j\bar{m}} z_i z_j$, then $\frac{\partial w_m}{\partial z_j} = \delta_{mi} + A^i_{j\bar{m}} z_i$. Now $\tilde{g}_{m\bar{n}} \frac{\partial w_m}{\partial z_i} \frac{\overline{\partial w_m}}{\partial z_i} = g_{i\bar{j}}$. This implies

$$\begin{split} g_{i\bar{j}}(z) &= \delta_{ij} + A^k_{i\bar{j}} z_k + B^{\bar{k}}_{i\bar{j}} \bar{z}_k + O(|z|^2) \\ &= \tilde{g}_{i\bar{j}} + \tilde{g}_{m\bar{j}} A^k_{i\bar{m}} z_k + \tilde{g}_{i\bar{k}} \overline{A^k_{j\bar{n}} z_k} + O(|z|^2) \end{split}$$

Proposition 8.5 (Kähler identities). (Ω, ω) has a Kähler metric. Then the formal L^2 adjoints are given by $\bar{\partial}^* = -i[\Lambda, \bar{\partial}], \partial^* = i[\Lambda, \bar{\partial}]$

Proof. It suffices to prove these for the euclidean metric. Then is a direct computation \Box

 $\textbf{Example 8.6.} \ \ \Omega \subseteq \mathbb{C}, \ \Lambda(idz \wedge d\bar{z}) = 1, \ f \in \mathcal{D}_{(0,0)}(\Omega), \ \beta \in \mathcal{D}_{(0,1)}(\Omega), \ \beta = \beta(z)d\bar{z}. \ \ \text{Then}$

$$\begin{split} \langle \bar{\partial} f, \beta \rangle &= \int_{\Omega} \partial_{\bar{z}} f \overline{\beta(z)} i dz \wedge d\bar{z} \\ &= -\int_{\Omega} f \overline{\partial z} \beta(z) i dz \wedge d\bar{z} \\ &= \int_{\Omega} f \overline{i \partial \beta} \\ &= \int_{\Omega} f \overline{\Lambda(i \partial \beta)} i dz \wedge d\bar{z} \\ &= -\int_{\Omega} f \overline{\Lambda(i \partial \beta)} i dz \wedge d\bar{z} \\ &= \langle f, -i \Lambda \partial \beta \rangle \\ &= \langle f, \bar{\partial}^* \beta \rangle \end{split}$$

9 Solving $\bar{\partial}$ equation

Theorem 9.1. If $\Omega \subseteq \mathbb{C}^n$ is pseudoconnvex, then there is a complete Kähler metric on Ω

Proof. From Richberg's lemma, there is a smooth strictly plurisubharmonic exhaustion function ψ on Ω . By adding a constant, we can assume $\psi > 0$. Let ω_0 denote the euclidean Kähler form on Ω , and consider: $\omega = \omega_0 + i\partial\bar{\partial}\psi^2$, $i\partial\bar{\partial}\psi^2$ is semi-positive definite

$$\begin{split} \omega &= \omega_0 + i \partial \psi \wedge \bar{\partial} \psi + i \psi \partial \bar{\partial} \psi \geq \omega_0 + i \partial \psi \wedge \bar{\partial} \psi \\ \omega^n &\geq \omega_0 \wedge \omega^{n-1} + i \partial \psi \wedge \bar{\partial} \psi \wedge \omega^{n-1} \geq i \partial \psi \wedge \bar{\partial} \psi \wedge \omega^{n-1} \\ &\frac{\omega^n}{n!} \geq \frac{2}{n} i \partial \psi \wedge \bar{\partial} \psi \wedge \frac{\omega^{n-1}}{(n-1)!} = \frac{2}{n} |\partial \psi|_\omega^2 \frac{\omega^n}{n!} \end{split}$$

So $|d\psi|_{\omega} = \sqrt{2} |\partial \psi|_{\omega} \leq C$. Completeness follows from Lemma 7.12

Definition 9.2. Let $d\mu = \omega^n/n!$ be a Kähler metric on Ω , $\phi \in C^0(\Omega)$ be an exhaustion function. Define $L^2_{(p,q)}(\Omega,\phi)$ to be the completion of smooth (p,q)-forms with respect to the norm

$$\|\alpha\|_{\phi}^2 = \int_{\Omega} |\alpha|_{\omega}^2 \mathrm{e}^{-\phi} d\mu$$

The same density theorems apply as for unweighted spaces For compactly supported α

$$\int_{\Omega} \langle \bar{\partial} \mathbf{u}, \alpha \rangle e^{-\phi} d\mu = \int_{\Omega} \langle \mathbf{u}, e^{\phi} \bar{\partial}^* \langle e^{-\phi} \alpha \rangle \rangle e^{-\phi} d\mu$$

The new adjoint is $-i[\Lambda, \partial_{\phi}], \partial_{\phi} = e^{\phi}\partial e^{-\phi} = \partial - \partial \phi$. Moreover

$$\int_{\Omega} \langle \partial_{\phi} u, \alpha \rangle e^{-\phi} d\mu = \int_{\Omega} \langle \partial (e^{-\phi} u), \alpha \rangle d\mu = \int_{\Omega} \langle u, \bar{\partial}^* \alpha \rangle e^{-\phi} d\mu$$

So $\partial_{\phi}^* = i[\Lambda, \bar{\partial}]$

Definition 9.3. The Laplacian is $\Delta = d^*d + dd^*$. The Dolbeault laplacians are

$$\Box_{\bar{\partial}} = \bar{\partial}^* \bar{\partial} + \bar{\partial} \bar{\partial}^*, \Box_{\partial} = \partial_{\dot{\partial}}^* \partial_{\dot{\partial}} + \partial_{\dot{\partial}} \partial_{\dot{\partial}}^*$$

The curvature is the pure imaginary (1,1) form

$$F_{\phi} = \bar{\partial}\partial_{\phi} + \partial_{\phi}\bar{\partial} = \partial\bar{\partial}\phi$$

Lemma 9.4. $\square_{\bar{\partial}} - \square_{\partial} = [iF_{\phi}, \Lambda]$

Proof.

$$\begin{split} \bar{\partial}^* \bar{\partial} &= -i [\Lambda, \partial_{\phi}] \bar{\partial} = -i \Lambda \partial_{\phi} \bar{\partial} + i \partial_{\phi} \Lambda \bar{\partial} \\ \bar{\partial} \bar{\partial}^* &= \bar{\partial} (-i [\Lambda, \partial_{\phi}]) = -i \bar{\partial} \Lambda \partial_{\phi} + i \bar{\partial} \partial_{\phi} \Lambda \\ -\partial_{\phi}^* \partial_{\phi} &= -i [\Lambda, \bar{\partial}] \partial_{\phi} = -i \Lambda \bar{\partial} \partial_{\phi} + i \bar{\partial} \Lambda \partial_{\phi} \\ -\partial_{\phi} \partial_{\phi}^* &= -\partial_{\phi} (i [\Lambda, \bar{\partial}]) = -i \partial_{\phi} \Lambda \bar{\partial} + i \partial_{\phi} \bar{\partial} \Lambda \bar{\partial} \end{split}$$

Corollary 9.5. For $\alpha \in D(\bar{\partial}) \cap D(\bar{\partial}^*)$

$$\|\bar{\partial}\alpha\|^2 + \|\bar{\partial}^*\alpha\|^2 \ge \langle [iF_{\phi}, \Lambda]\alpha, \alpha \rangle$$

Proof. $\langle \partial_{\phi} \alpha, \alpha \rangle \geq 0$ can be throw away, and $\langle \Box_{\bar{\partial}} \alpha, \alpha \rangle$ give the left hand side by integration by parts

Lemma 9.6. Write $iF_{\phi} = f_{i\bar{j}}dz_i \wedge d\bar{z}_j$. If there is $C_0 > 0$ such that $\sum f_{i\bar{j}}(z)\xi_i\bar{\xi}_j \geq C_0|\xi|^2$ for all $\xi \in \mathbb{C}^n$ and all $z \in \Omega$, then there is $C_1 > 0$ such that

$$\langle [iF_{\phi}, \Lambda]\alpha, \alpha \rangle \geq C_1 \|\alpha\|^2$$

for all $\alpha \in L^2_{(n,q)}(\Omega,\omega), q \geq 1$

Note that $[iF_{\phi}, \Lambda] = 0$ on (n, 0) forms. In particular, the condition that $q \ge 1$ is necessary. The applications of their result extends to (p, q) froms, $q \ge 1$. We will only prove a couple of special cases. For the general result see Demailly

Example 9.7. Consider an (n,1) form α . Let θ_i denote an orthonormal frame for $T^{1,0}\Omega$. Write $\omega = i \sum_i \theta_i \wedge \bar{\theta}_i$, and

$$\alpha = i \sum_{i=1}^{n} \alpha_i(z) \theta_1 \wedge \cdots \wedge \theta_n \wedge \bar{\theta}_i$$

Write $iF_{\phi} = \sum f_{i\bar{i}}\theta_i \wedge \bar{\theta}_j$

Write $\sum_{i,j} \frac{\partial^2 \phi_0}{\partial z_i \partial \bar{z}_j} (z) \xi_i \bar{\xi}_j \geq m(z) |\xi|^2$, where m is a continuous function, m(z) > 0 for all $z \in \Omega$. We will replace a given ϕ_0 with $\phi = \chi \circ \phi_0$, for an appropriate increasing convex function χ Set $M(t) = (\min_{\phi_0(z) \geq t} m(z))^{-1}$. Then M(t) is a positive, continuous, increasing function of t. Note that $M(\phi_0(z))m(z) \geq 1$

Claim. We can find a smooth $\tilde{M} \geq M$ that is increasing

Assuming the claim, set $\chi(t) = \int_0^t \tilde{M}(\tau) d\tau$. Then χ is convex, and $\chi'(t) \geq M(t)$. Set $\phi = \chi \circ \phi_0$. Then ϕ is psh exhaustion function, and

$$\sum_{i,j} \frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_j}(z) \xi_i \bar{\xi}_j \geq \sum_{i,j} \chi' \circ \phi_0 \frac{\partial^2 \phi_0}{\partial z_i \partial \bar{z}_j}(z) \xi_i \bar{\xi}_j \geq M(\phi_0(z)) m(z) |\xi|^2 \geq |\xi|^2$$

Proof of claim. This is probably obvious, by here is one idea: Let $\psi : \mathbb{R} \to \mathbb{R}$ be smooth with compact support in (-1,1), $0 \le \psi \le 1$ and $\int_{\mathbb{R}} \psi = 1$. Set

$$\tilde{M}(t) = \int_{\mathbb{R}} M(s)\psi(s-t-1)ds = \int_{\mathbb{R}} M(\tau+t+1)\psi(\tau)d\tau$$

The first equality proves that \tilde{M} is smooth. By the second equality

$$\tilde{M}(t) \geq \int_{\mathbb{R}} M(t) \psi(\tau) d\tau = M(t)$$

Also by the second equality, for $\delta > 0$

$$\tilde{M}(t+\delta)-M(t)=\int_{\mathbb{R}}(M(\tau+t+1)-M(\tau+t+1))\psi(\tau)d\tau\geq 0$$

So \tilde{M} is increasing

Summary: $\Omega \subseteq \mathbb{C}^n$ pseudoconvex, ω complete. For an (n,q) form $\alpha, q \geq 1$, and $\alpha \in D(\bar{\partial}) \cap D(\bar{\partial}^*)$, we have proved the basic estimate

$$\|\bar{\partial}\alpha\|_{\phi} + \|\bar{\partial}^*\alpha\|_{\phi} \ge C\|\alpha\|_{\phi}$$

This implies that $\bar{\partial}$ has closed range and that the harmonics $\mathcal{H}^{n,q} = \{0\}$, i.e. $\ker \bar{\partial} = \operatorname{im} \bar{\partial}$

Theorem 9.8. If $\alpha \in L^2_{(n,q)}(\Omega,\phi)$, $q \geq 1$, and $\bar{\partial}\alpha = 0$, then there is $u \in L^2_{(n,q-1)}(\Omega,\phi)$ such that $\bar{\partial}u = \alpha$. Moreover, $\|u\| \leq C\|\alpha\|$

Note. In applications, having the estimate on the norms is crucial. Notice that $\|\|$ depends on the Kähler metric ω and the weight ϕ . We can get rid of the dependence on ω , i.e. prove the same result for the euclidean metric, by taking a limit of solutions for metrics $\omega_{\epsilon} = \omega_0 + \epsilon \omega$ as $\epsilon \to 0$ (see Demailly). On the other hand, ϕ is necessary. Optimizing the choice of ϕ is an important issue we will skip for now. Finally, the result holds more generally for (p,q) forms: $\bigwedge^p T^*\Omega \cong \bigwedge^{n-p} T\Omega \otimes \bigwedge T^*\Omega$, so trivializing $\bigwedge^{n-p} T\Omega$ reduces the problem to this case. More importantly. This is not exactly what we want, since we are trying to solve $\bar{\partial}$ for all smooth α , not just those that are integrable. Let $L^2_{(p,q)}(\Omega, \log)$ denote the (p,q) forms that are locally L^2 . Notice that here the metric ω and weight ϕ are irrelevant

Theorem 9.9. If $\alpha \in L^2_{(p,q)}(\Omega, loc)$, $q \geq 1$, and $\bar{\partial}\alpha = 0$, then there is $u \in L^2_{(p,q-1)}(\Omega, loc)$ such that $\bar{\partial}u = \alpha$

Proof. The idea is to find some weight $\tilde{\phi}$ such that $\alpha \in L^2_{(p,q)}(\Omega, \tilde{\phi})$, and then apply the previous result. We again choose the form $\tilde{\phi} = \chi \circ \phi$, where χ is increasing and convex. To do this, let $K_i = \{z \in \Omega | \phi(z) \leq i\}$, and let $\ell_i = \|\alpha\|^2_{L^2(K_i)}$. Now choose χ so that $e^{-\chi(i)}(\ell_{i+1} - \ell_i) \leq 2^{-i}$, then

$$\int_{K_{i+1}\setminus K_i} |\alpha|^2 e^{-\tilde{\phi}} d\mu \leq e^{-\chi(i)} \int_{K_{i+1}\setminus K_i} |\alpha|^2 d\mu \leq e^{-\chi(i)} (\ell_{i+1}-\ell_i) \leq 2^{-i}$$

Hence

$$\int_{\Omega} |\alpha|^2 e^{-\tilde{\phi}} d\mu = \sum_i \int_{K_{i+t} \setminus K_i} |\alpha|^2 e^{-\tilde{\phi}} d\mu \leq \sum_i 2^{-i} < \infty$$

Elliptic regularity: The result applies, in particular, to the case where α is smooth. However, the theorem just concludes that the solution $\bar{\partial} u = \alpha$ is locally in L^2 . We want to improve this

Theorem 9.10. If α is a smooth (p,q)-form on Ω , $q \geq 1$, with $\bar{\partial}\alpha = 0$, then there is a smooth (p,q-1)-form on Ω such that $\bar{\partial}u = \alpha$

Proof. First consider the case q=1, i.e. u is a function. We know that $\partial^*\partial=\bar{\partial}^*\bar{\partial}$, so $\|\partial u\|\leq \|\bar{\partial}u\|$. In particular, if $\alpha\in L^2(\Omega,\log)$, then u is in $L^2_1(\Omega,\log)$ (one distributional derivative in L^2). Now differentiate the equation $\bar{\partial}u=\alpha k$ times to conclude that $u\in L^2_k(\Omega,\log)$ for arbitrary k. On the other hand, the Sobolev embedding theorem implies $L^2_k\hookrightarrow C^j$ for $k\geq n+j$. Hence, if α is smooth, so is u

If $q \geq 2$, then we have

$$L^2_{(p,q-1)}(\Omega,\phi)=R(\bar{\partial})\oplus R(\bar{\partial}^*)$$

Moreover, $N(\bar{\partial})^{\perp} = R(\bar{\partial}^*)$. Hence, u may be taken to be in the range of $\bar{\partial}^*$. Since $(\bar{\partial}^*)^2 = 0$, we have $\Box_{\bar{\partial}} u = \bar{\partial}^* \bar{\partial} u = \bar{\partial}^* \alpha$. Let $\Delta = dd^* + d^*d$ be the ordinary or de Rham Laplacian. Then in standard basis and euclidean metric, Δ acts on the coefficients of (p,q)-forms

Claim. $\Delta = 2\square_{\bar{\partial}}$

Proof. Write $d = \partial + \bar{\partial}$, $d^* = \partial^* + \bar{\partial}^*$, then

$$\Delta = \Box_{\bar{\partial}} + \Box_{\partial} + \bar{\partial}\partial^* + \partial^*\bar{\partial} + \partial\bar{\partial}^* + \bar{\partial}^*\partial$$

But the cross terms vanish: e.g. since $\bar{\partial}^2 = 0$

$$\bar{\partial}\partial^* = i\bar{\partial}[\Lambda,\bar{\partial}] = i\bar{\partial}\Lambda\bar{\partial}$$

$$\partial^* \bar{\partial} = i [\Lambda, \bar{\partial}] \bar{\partial} = -i \bar{\partial} \Lambda \bar{\partial}$$

The result now follows, since $\square_{\partial} = \square_{\bar{\partial}}$

It follows that if $\alpha \in L^2_1(\Omega, loc)$, then $\Delta u = 2\bar{\partial}^*\alpha$ is in $L^2(\Omega, loc)$. We now appeal to the following interior estimate: if $U \subset C$ $C \subset C$, then there is a constant C > 0 such that

$$\|u\|_{L^2_{k+1}(U)} \le C \left(\|\|_{L^2_{k}(U')} + \|\Delta u\|_{L^2_{k}(U')}\right)$$

for all smooth (p,q)-forms. By "bootstrapping" the equation, we conclude that if $\bar{\partial}u = \alpha$, $\bar{\partial}^*u = 0$, for α smooth, then u is in $L^2_k(\Omega, \log)$ for any k, and hence is smooth by Sobolev embedding

References

 $[1]\ An\ Introduction\ to\ Complex\ Analysis\ in\ Several\ Variables$ - Lars Hörmander

Index

Almost complex structure, 10Lefschetz operator, 21 Levi form, 16

Domain of holomorphy, 7

Plurisubharmonic, 15 Pseudoconvex, 15 Holomorphic convex hull, 6holomorphically convex, 12

Kähler form, 21 Upper semicontinuous, 8

Subharmonic function, 8