4: Asymptotic and connections to non-Bayesian approaches

09/18/19

1/10

We go through some common examples where one of the above assumptions is not met. In these cases, using asymptotics is not allowed.

2/10

A *model* is **underidentified** given data y if the likelihood, $p(y \mid \theta)$, is equal for a range of values θ .

A *model* is weakly identified given data y if the likelihood, $p(y \mid \theta)$, is close to being equal for a range of values θ .

These can be problematic because $\hat{\theta}$ will not have any specific number/vector θ to which it can converge. These are violations of assumption (3).

$$\left[\begin{array}{c} u \\ v \end{array}\right] \left| \rho \sim \mathsf{Normal}\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

If v is latent/hidden, then we work with the marginal likelihood $p(u \mid \rho)$:

$$u \mid \rho \sim \mathsf{Normal}\left(0,1\right)$$

Notice that this is free of ρ !

$$p(\rho \mid u) \propto p(u \mid \rho)p(\rho) \propto p(\rho)$$

Here we say the *parameter* is **nonidentified**.

09/18/19 4/10

Sometimes it is harder to spot nonidentifiable parameters. It may be the case that $p(y \mid \theta)$ yields the same function in y for two different values of θ . If this is true, then for any particular data set y, $p(y \mid \theta)$ will be equal for these two values of θ .

Example
$$y \mid \theta \sim \text{Normal}(0, \theta^2)$$
. Then $p(y \mid \theta) = p(y \mid -\theta)!$

We can fix this easily by restricting the parameter space. The model is no longer underidentified if $\theta \in \mathbb{R}^+$. When this happens, we call this problem aliasing.

09/18/19 5/10

Another example of **aliasing**. If you look at a histogram of y and it's bimodal, then a possibly suitable model is the **normal mixture model**:

$$p(y_i \mid \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \lambda)$$

$$= \lambda \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left[-\frac{1}{2\sigma_1^2} (y_i - \mu_1)^2\right]$$

$$+(1 - \lambda) \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left[-\frac{1}{2\sigma_2^2} (y_i - \mu_2)^2\right]$$

09/18/19 6/10

Unbounded likelihoods might also be a problem. Assume

$$p(y \mid \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{y^2}{2\sigma^2}\right].$$

If y = 0, then this simplifies to

$$p(y \mid \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}$$

which goes to ∞ as $\sigma^2 \to 0$. The theoretical probablity of you getting y=0 is obviously 0, but it is possible to get 0s computationally if you have an **underflow** problem. Double precision floating point numbers give you about 15-17 digits of precision.

09/18/19 7 / 10

Improper posterior distributions

$$y \sim \mathsf{Binomial}(n,p), p \sim \mathsf{Beta}(0,0)$$
 $p \mid y \propto p^{y-1}(1-p)^{n-y-1}$

 $Pr(p \mid 0)$ or $Pr(p \mid n)$ is improper!

- ullet Prior distributions that exclude $heta_0$
- Convergence to the edge of parameter space, $heta_0 \in \partial \Theta$
- Tails of the distribution is less accurate

' 09/18/19 8/10

Asymptotic Normality: difficulty in high dimension

The number of parameters increases with the sample size, the standard asymptotics won't apply.

- Consistency is hard to obtain (not impossible though): prior distribution plays a much bigger role; the sample size is not big in each dimension of θ
- Normal approximation is of high dimension
- Asymptotic normality is not efficient even if we can

It makes more sense to consider other asymptotic properties (consistency, convergence rates) instead by putting restriction on θ_0 and the prior as well.

When the number of parameter is large, hierarchical prior is preferred since then their common distribution can be estimated from data.

....4

Frequency evaluations of Bayesian inferences

ullet Large sample correspondence, $\hat{ heta}$, MLE

$$(nJ(\hat{\theta}))^{-1}(\theta - \hat{\theta})|y \sim N(0, I)$$
$$(nJ(\theta_0))^{-1}(\hat{\theta} - \theta_0)|\theta_0 \sim N(0, I)$$

- ⇒ Bayesian posterior credible interval is asymptotically the same as confidence interval in repeated sampling
- Consistency/ Asymptotic unbiasedness/ Asymptotic efficiency of point estimate

" 09/18/19 10 / 10