Факультет безопасности информационных технологий Университет ИТМО

Группа	ФИЗ-2 Э БИТ 1.1.1	К работе допущены				
Студенты	Бардышев Артём					
	Машин Егор	Работа выполнена				
	Суханкулиев Мухаммет					
	Шегай Станислав					
Преподаватель		Отчет принят				
	Рабочий протокол и отчет по					

лабораторной работе №3.07

Изучение свойств ферромагнетика

1. Цель работы.

1. Изучить свойства ферромагнетика.

2. Задачи, решаемые при выполнении работы.

- 1. Измерить зависимость магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H);
- 2. Определить по предельной петле гистерезиса индукцию насыщения, остаточную индукцию и коэрцитивную силу;
- 3. Получить зависимость магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценить максимальное значение величины магнитной проницаемости;
- 4. Рассчитать мощность потерь энергии в ферромагнетике в процессе его перемагничивания.

3. Объект исследования.

Ферромагнетик – сердечник (магнитопровод) трансформатора прямоугольной формы с прямоугольным поперечным сечением.

Рисунок 1 – Магнитопровод (сердечник) трансформатора

4. Метод экспериментального исследования.

Многократные измерения.

5. Рабочие формулы и исходные данные.

Рисунок 2 — Зависимость магнитной индукции от напряженности магнитного поля в ферромагнетике (петля гистерезиса)

Формулы:

1. Напряжённость магнитного поля:

$$H = \alpha K_{x} x$$
, $\alpha = \frac{N_{1}}{LR_{1}}$

2. Индукция:

$$B = \beta K_y y, \qquad \beta = \frac{R_2 C_1}{N_2 S}$$

3. Магнитная проницаемость:

$$\mu = \frac{B}{\mu_0 H}$$

4. Средняя мощность:

$$P = \chi \cdot S_{\Pi\Gamma}, \qquad \chi = K_{\chi} K_{y} \frac{N_{1} R_{2} C}{N_{2} R_{1}} f$$

Магнитная постоянная:

$$\mu_0 = 4\pi \cdot 10^{-7} \; \Gamma$$
н/м

Исходные данные:

$$R_1 = 68~{
m Om} \pm 10\%; R_2 = 470~{
m кOm} \pm 10\%;$$
 $C_1 = 0.47~{
m mk}\Phi \pm 10\%;$

Средняя длина ферромагнетика:

$$L = 7.8 \pm 0.1 \text{ cm}$$

2

Число витков намагничивающей обмотки (I):

$$N_1 = 1665$$
 вит

Число витков измерительной обмотки (II):

$$N_2 = 970$$
 вит

Подаваемая частота:

$$f = 35 \Gamma$$
ц

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон
1	C3-PM01	Стенд	0–20 B
2	АКИП-3409/2	Генератор сигналов	20–40 Гц
3	GDS-71102B	Осциллограф	0–20 B

7. Схема установки.

Рисунок 3 – Электрическая схема установки

8. Результаты прямых измерений и их обработки.

Начальная амплитуда выходного сигнала генератора 20 В.

Значения коэффициентов: $K_{\chi} = 100$ мВ, $K_{y} = 50$ мВ.

По формулам 1, 2:

$$\alpha = \frac{1665}{0.078 \text{ M} \cdot 68 \text{ OM}} \approx 313.91 \frac{1}{\text{M} \cdot \text{OM}}$$

$$\beta = \frac{470 \cdot 10^3 \text{ OM} \cdot 0.47 \cdot 10^{-6} \text{ }\Phi}{970 \cdot 0.64 \cdot 10^{-4} \text{ M}} \approx 3.56 \frac{\text{OM} \cdot \Phi}{\text{M}}$$

$$\boldsymbol{H_c} = 313.91 \frac{1}{\text{M} \cdot \text{OM}} \cdot 0.1 \text{ B} \cdot 0.8 \approx \boldsymbol{25.11} \text{ A/M}$$

$$\boldsymbol{B_r} = 3.558 \frac{\text{OM} \cdot \Phi}{\text{M}} \cdot 0.05 \text{ B} \cdot 1 \approx \boldsymbol{0.18} \text{ Тл}$$

Таблица 1

X_c , дел.	Y_r , дел.	H_c , А/м	B_r , Тл
0,8	1	25.113	0.178

По тем же формулам вычислим H_m и B_m :

$$H_m = 313.91 \frac{1}{\text{M} \cdot \text{OM}} \cdot 0.1 \text{ B} \cdot 3 \approx 94.17 \text{ A/M}$$
 $B_m = 3.558 \frac{\text{OM} \cdot \Phi}{\text{M}} \cdot 0.05 \text{ B} \cdot 2.4 \approx 0.43 \text{ Тл}$

Затем по формуле 3:

$$μ = {0.427 \text{ Tл} \over 4π \cdot 10^{-7} \text{ ΓH/M} \cdot 94.174 \text{ A/M}} \approx 3608.14 \text{ ΓH/M}$$

Таблица 2

X_m , дел.	Y_m , дел.	H_m , А/м	B_m , Тл	μ_m
3	2.4	94.174	0.427	3608.14

Вычислим среднюю мощность P, расходуемую на перемагничивание образца (4):

$$\chi = 0.1~\mathrm{B}~\cdot 0.05~\mathrm{B}~\cdot \frac{1665 \cdot 470 \cdot 10^3~\mathrm{Om} \cdot 0.47 \cdot 10^{-6}~\Phi}{970 \cdot 68~\mathrm{Om}} \cdot 35~\Gamma\mathrm{ц} \approx 9.8 \cdot 10^{-4}~\mathrm{B}^2 \cdot \Phi \cdot \Gamma\mathrm{ц}$$

Рисунок 4 — Петля гистерезиса ферромагнетика

По графику петли оценим численно площадь петли гистерезиса: $S_{\Pi\Gamma}\approx 4$ дел 2

$$P = 9.758 \cdot 10^{-4} \text{ B}^2 \cdot \Phi \cdot \Gamma \text{ц} \cdot 4 \text{ дел}^2 \approx \mathbf{0.0039} \text{ BT}$$

Таблица 3

U, B	Х, дел	K_{x} , В/дел	Н,А/м	<i>Y</i> , дел	K_y , В/дел	В, Тл	μ
20	3	0,1	94,174	2,4	0,05	0,427	3608,140
19	2,7	0,1	84,757	2,2	0,05	0,391	3674,958
18	2,5	0,1	78,479	2,1	0,05	0,374	3788,547
17	2,2	0,1	69,061	2	0,05	0,356	4100,159
16	2	0,1	62,783	1,8	0,05	0,320	4059,158
15	1,9	0,1	59,644	1,8	0,05	0,320	4272,798
14	1,8	0,1	56,505	1,7	0,05	0,302	4259,610

13	1,8	0,1	56,505	1,75	0,05	0,311	4384,893
12	1,5	0,1	47,087	1,5	0,05	0,267	4510,175
11	1,4	0,1	43,948	1,4	0,05	0,249	4510,175
10	2,4	0,05	37,670	3	0,02	0,213	4510,175
9	2	0,05	31,391	2,6	0,02	0,185	4690,582
8	1,9	0,05	29,822	2,4	0,02	0,171	4557,651
7	1,8	0,05	28,252	2,1	0,02	0,149	4209,497
6	1,6	0,05	25,113	1,9	0,02	0,135	4284,667
5	1,4	0,05	21,974	1,6	0,02	0,114	4123,589

9. Расчет погрешностей измерений

$$\Delta P =$$

$$\left(K_{y} \frac{N_{1}R_{2}C}{N_{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta K_{x} \right)^{2} + \left(K_{x} \frac{N_{1}R_{2}C}{N_{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta K_{y} \right)^{2} + \left(K_{x}K_{y} \frac{R_{2}C}{N_{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta N_{1} \right)^{2} + \\ + \left(K_{x}K_{y} \frac{N_{1}C}{N_{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta R_{2} \right)^{2} + \left(K_{x}K_{y} \frac{N_{1}R_{2}}{N_{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta C \right)^{2} + \left(K_{x}K_{y} \frac{N_{1}R_{2}C}{N_{2}R_{1}} S_{\Pi\Gamma} \cdot \Delta f \right)^{2} + \\ + \left(K_{x}K_{y} \frac{N_{1}R_{2}C}{N_{2}R_{1}} f \cdot \Delta S_{\Pi\Gamma} \right)^{2} + \left(-K_{x}K_{y} \frac{N_{1}R_{2}C}{N_{2}^{2}R_{1}} f S_{\Pi\Gamma} \cdot \Delta N_{2} \right)^{2} + \left(-K_{x}K_{y} \frac{N_{1}R_{2}C}{N_{2}R_{1}^{2}} f S_{\Pi\Gamma} \cdot \Delta R_{1} \right)^{2}$$

$$= \sqrt{\left(K_{x}K_{y}\frac{N_{1}C}{N_{2}R_{1}}fS_{\Pi\Gamma} \cdot \Delta R_{2}\right)^{2} + \left(K_{x}K_{y}\frac{N_{1}R_{2}}{N_{2}R_{1}}fS_{\Pi\Gamma} \cdot \Delta C\right)^{2} + \left(-K_{x}K_{y}\frac{N_{1}R_{2}C}{N_{2}R_{1}^{2}}fS_{\Pi\Gamma} \cdot \Delta R_{1}\right)^{2}} \approx \mathbf{0.69} \cdot \mathbf{10^{-3}}$$

10. Графики

Рисунок 5 – График зависимости $B_m = B_m(H_m)$

Рисунок 6 – График зависимости $\mu = \mu(H_m)$

Из второго графика видно, что $\mu_{max} \approx 4690.58 \, \Gamma$ н/м достигается при $H \approx 31.39 \, \text{A/M}.$

11. Окончательные результаты.

Коэрцитивная сила:

$$H_c \approx 25.11 \,\mathrm{A/m}$$

Остаточная индукция:

$$B_r \approx 0.18 \, \mathrm{T}$$
л

Магнитная проницаемость в состоянии насыщения:

$$\mu \approx 3608.14 \, \Gamma \text{H/M}$$

Мощность потерь на перемагничивание ферромагнетика:

$$P \approx 3.9 \pm 0.69 \,\text{мВт}$$

Максимальное значения проницаемости и напряжённость поля, при которой она наблюдается:

$$\mu_{max} \approx 4690.58 \, \text{Гн/м}, \qquad H \approx 31.39 \, \text{А/м}$$

12. Выводы и анализ результатов работы.

В ходе лабораторной работы были исследованы ключевые свойства ферромагнетиков в переменном электрическом поле. Проведенные измерения позволили оценить зависимость магнитной индукции от напряженности магнитного поля, а также магнитной проницаемости от этой же величины. Результаты эксперимента показали, что индукция растет линейно с увеличением напряженности поля, в то время как проницаемость изменяется нелинейно.

Результаты эксперимента подтверждают теоретические модели поведения ферромагнитных материалов в условиях переменного магнитного поля, а также дают практическое представление о механизмах перемагничивания и потерь энергии в ферромагнетиках.

13. Дополнительные задания.

- 1. Что такое гистерезис в ферромагнетике?
- 2. Что такое домен?
- 3. \vec{P}_m как определяется? Физический смысл?
- 4. Что такое \vec{B} и \vec{M} или \vec{J} ? Как связаны с μ и χ ? Что такое μ и χ ?
- 5. Графики зависимости $B(H), M(H), \mu(H), \chi(H)$?
- 6. Что такое мощность потерь? Математический и физический смысл, формула.

14. Выполнение дополнительных заданий.

- 1. Гистерезис в ферромагнетике это явление, при котором магнитная индукция B зависит не только от текущего значения напряженности магнитного поля H, но и от его предшествующих значений. Гистерезис обусловлен внутренними процессами перемагничивания, такими как движение доменных границ. В результате на графике формируется петля гистерезиса, характеризующаяся остаточной индукцией B_r и коэрцитивной силой H_c и потерями энергии на перемагничивание.
- 2. Домен это область внутри ферромагнитного материала, в которой магнитные моменты атомов ориентированы в одном направлении из-за взаимодействий между ними. При отсутствии внешнего магнитного поля домены имеют случайную ориентацию, и суммарная магнитная индукция материала равна нулю. При приложении внешнего поля домены переориентируются, что приводит к намагничиванию материала.
- 3. \vec{P}_m это вектор поляризации магнетика, который характеризует намагниченность материала. Он определяется как магнитный момент единицы объема:

$$\vec{P}_m = \frac{\vec{M}}{V}$$

где \overrightarrow{M} — суммарный магнитный момент, а V — объем.

 \vec{P}_m показывает, насколько материал намагничен под воздействием внешнего магнитного поля.

4. \vec{B} — магнитная индукция, характеризует полное магнитное поле, включая поле внутри и снаружи материала. Она выражается как:

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$

 \vec{M} или \vec{J} — вектор намагниченности, характеризующий магнитный момент материала на единицу объема.

Связь с магнитной проницаемостью и магнитной восприимчивостью:

$$\chi = \frac{\vec{M}}{\vec{H}}, \qquad \mu = \mu_0 (1 + \chi)$$

5. B(H): Зависимость магнитной индукции от напряженности поля.

M(H): Процесс намагничивания материала. При больших H достигается насыщение.

Рисунок 7 — График зависимости M = M(H)

 $\mu(H)$: Зависимость магнитной проницаемости от напряженности полня, характеризующая способность материала концентрировать магнитный поток. Достигает максимального значения при определенной H.

 $\chi(H)$: График магнитной восприимчивости, которая показывает, как интенсивно материал намагничивается под действием внешнего поля. Повторяет зависимость $\mu(H)$, так как $\chi \propto (\mu - \mu_0)/\mu_0$.

Рисунок 8 – График зависимости $\chi = \chi(H)$

6. Мощность потерь в ферромагнетике — это энергия, теряемая материалом на перемагничивание при каждом цикле изменения магнитного поля. Она связана с площадью петли гистерезиса:

$$P = \chi S_{\Pi\Gamma}$$

P — интеграл по площади петли, отражающий энергию, теряемую в виде тепла.

Список использованных источников

- 1. Электромагнетизм. Основные законы / Иродов И.Е., ISBN 978-5-00101-498-0, Издательство "Лаборатория знаний10-е изд.
- 2. Методические указания по лабораторной работе 3.07
- 3. Савельев, И. В. Курс общей физики. В 5 т. Том 2. Электричество и магнетизм: учебное пособие для вузов / И. В. Савельев. 6-е изд., стер. Санкт-Петербург: Лань, 2022. 344 с. ISBN 978-5-8114-9248-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/189298
- 4. Физика. Обработка экспериментальных данных: Учебно-методическое пособие: Для студ. 1,2 и 3-го курсов всех спец. и направлений очной и заочной форм обучения/ В.В. Курепин, И.В. Баранов. СПб.: НИУ ИТМО; ИХиБТ, 2012.- 56 с.