Mục lục

1	Chu	Chuan bị				
	1.1	Kiến thức về giải tích	1			
	1.2	Sai số làm tròn và số học máy tính	3			
	1.3	Thuật toán và sự hội tụ	3			
	1.4	Python: ngôn ngữ tính toán và lập trình	3			
	1.5	Python + VS Code: giải tích và đai số	11			
2	Giải phương trình một biến					
	2.1	Phương pháp chia đôi	22			
	2.2	Phương pháp Newton và mở rộng	24			
	2.3	Lặp điểm bất động	30			
	2.4	Phân tích sai số của các phương pháp lặp	34			
	2.5	Tăng tốc độ hội tụ	34			
	2.6	Nghiệm của đa thức và phương pháp Müller	35			
3	Nội suy và xấp xỉ bằng đa thức					
	3.1	Nội suy tổng quát	36			
	3.2	Đa thức nội suy	37			
	3.3	Xấp xỉ số liệu và phương pháp Neville	41			
	3.4	Sai phân chia	41			
	3.5	Nội suy Hermite	42			
	3.6	Nội suy Newton	42			
	3.7	Nội suy spline bậc ba	45			
	3.8	Đường cong tham số	45			
4	Đạo hàm và tích phân bằng số					
	4.1	Đạo hàm bằng số	41			
	4.2	Ngoại suy Richardson	45			
	4.3	Tích phân bằng số	45			
	4.4	Tích phân Romberg	50			

ii Mục lục

	4.5	Phương pháp câu phương thích ứng	50		
	4.6	Cầu phương Gauss	50		
	4.7	Tích phân bội	50		
	4.8	Tích phân suy rộng	50		
5 Bài toán giá trị ban đầu của phương trình vi phân thường					
	5.1	Lý thuyết cơ bản về bài toán giá trị ban đầu	52		
	5.2	Phương pháp Picard	53		
	5.3	Phương pháp chuỗi Taylor	57		
	5.4	Phương pháp Euler	59		
	5.5	Phương pháp Taylor bậc cao	62		
	5.6	Phương pháp Runge-Kutta	63		
	5.7	Điều khiển sai số và phương pháp Runge-Kutta-Fehlberg	67		
	5.8	Phương pháp đa bước	67		
	5.9	Phương pháp đa bước với bước nhảy biến thiên	67		
	5.10	Phương pháp ngoại suy	67		
	5.11	Phương trình cấp cao và hệ phương trình vi phân	67		
	5.12	Sự ổn định	67		
	5.13	Phương trình vi phân cứng	67		
6	Phư	ơng pháp trực tiếp giải hệ phương trình tuyến tính	68		
	6.1	Hệ phương trình tuyến tính	68		
	6.2	Chiến thuật chốt	69		
	6.3	Đại số tuyến tính và ma trận nghịch đảo	69		
	6.4	Định thức của ma trận	69		
	6.5	Phân tích ma trận	69		
	6.6	Các dạng ma trận đặc biệt	69		
7	Kỹ thuật lặp trong đại số tuyến tính				
	7.1	Chuẩn của véctơ và ma trận	70		
	7.2	Giá trị riêng và véctơ riêng	72		
	7.3	Lặp điểm bất động	72		
	7.4	Kỹ thuật lặp Jacobi và Gauss–Seidel	76		
	7.5	Ma trận nghịch đảo	79		
	7.6	Kỹ thuật giảm dư giải hệ tuyến tính	80		
	7.7	Giới hạn sai số và tinh chỉnh phép lặp	80		
	7.8	Phương pháp gradient liên hợp	80		

Mục lục iii

8	Lý thuyết xấp xỉ			
	8.1	Xấp xỉ bình phương nhỏ nhất	81	
	8.2	Đa thức trực giao và xấp xỉ bình phương nhỏ nhất	85	
	8.3	Đa thức Chebyshev và [Economization] chuỗi lũy thừa	86	
	8.4	Xấp xỉ hàm hữu tỷ	86	
	8.5	Xấp xỉ đa thức lượng giác	86	
	8.6	Biến đổi Fourier nhanh	86	
9	Xấp	xỉ giá trị riêng	84	
	9.1	Đại số tuyến tính và giá trị riêng	84	
	9.2	Ma trận trực giao và biến đổi đồng dạng	84	
	9.3	Phương pháp lũy thừa	84	
	9.4	Phương pháp Householder	84	
	9.5	Thuật toán QR	84	
	9.6	Phân tích giá trị kỳ dị	84	
10	Ngh	iệm số của hệ phương trình phi tuyến	85	
	10.1	Điểm bất động của hàm nhiều biến	85	
	10.2	Phương pháp Newton	85	
	10.3	Phương pháp tựa Newton	85	
	10.4	Phương pháp độ dốc nhất	85	
	10.5	Đồng luân và các phương pháp mở rộng	85	
11	Bài	toán giá trị biên của phương trình vi phân thường	86	
	11.1	Phương pháp bắn tuyến tính	86	
	11.2	Phương pháp bắn cho bài toán phi tuyến	86	
	11.3	Phương pháp sai phân hữu hạn cho bài toán tuyến tính	86	
	11.4	Phương pháp sai phân hữu hạn cho bài toán phi tuyến	87	
	11.5	Phương pháp Rayleigh–Ritz	87	
12	Ngh	iệm số của phương trình đạo hàm riêng	88	
	12.1	Phương trình đạo hàm riêng Elliptic	88	
	12.2	Phương trình đạo hàm riêng Parabolic	89	
	12.3	Phương trình đạo hàm riêng Hyperbolic	89	
	12.4	Giới thiệu về phương pháp phần tử hữu hạn	89	

Chương 3

Nội suy và xấp xỉ bằng đa thức

3.1 Nội suy tổng quát

Cho không gian véctơ V. Ánh xạ tuyến tính $L:V o\mathbb{R}$ gọi là một phiếm hàm tuyến tính.

Ví dụ 3.1. Trên không gian hàm *V* thường xét một số phiếm hàm:

$$L(f) = f(x_0)$$

$$L(f) = f^{(k)}(x_0)$$

$$L(f) = \int_a^b f(x) f_0(x) dx.$$

Cho hệ n hàm độc lập tuyến tính $\{f_1, f_2, \dots, f_n\}$ trong V và n phiếm hàm độc lập tuyến tính L_1, L_2, \dots, L_n . Khi đó tồn tại duy nhất hàm P có dạng

$$P = \sum_{i=1}^{n} c_i f_i \tag{3.1}$$

sao cho

$$L_{i}(P) = b_{i}, \ \forall i = \overline{1, n}$$
 (3.2)

Thật vậy,

$$(3.2) \Leftrightarrow L_{i}\left(\sum_{j=1}^{n} c_{j} f_{j}\right) = b_{i}, \ \forall i = \overline{1, n}$$

$$\Leftrightarrow \sum_{j=1}^{n} L_{i}\left(f_{j}\right) c_{j} = b_{i}, \ \forall i = \overline{1, n}$$

$$\Leftrightarrow \sum_{j=1}^{n} a_{ij} c_{j} = b_{i}, \ \forall i = \overline{1, n}$$

hay

$$Ac = b ag{3.3}$$

trong đó $A = (a_{ij})_n$, $b = (b_1, b_2, ..., b_n)$, $c = (c_1, c_2, ..., c_n)$. Với các giả thiết độc lập tuyến tính của hệ hàm và hệ phiếm hàm, ta có $|A| \neq 0$. Do đó, bài toán có nghiệm duy nhất.

3.2 Đa thức nội suy

Tìm

$$P(x) = \sum_{i=0}^{n} a_i x^i$$

sao cho, tai mốc nôi suy x_i :

$$P(x_i) = y_i, \ \forall i = \overline{0, n}. \tag{3.4}$$

Đây là trường hợp đặc biệt của bài toán nội suy tổng quát với hệ hàm

$$f_0 = 1, \ f_1 = x, \ f_2 = x^2, \dots, \ f_n = x^n$$

và phiếm hàm $L_i(f) = f(x_i)$. Ta có $L_i(x^j) = x_i^j$ với $i, j = \overline{0, n}$, trong đó quy ước $0^0 = 1$. Hoặc, ta biến đổi trực tiếp

$$(3.4) \Leftrightarrow \sum_{j=0}^{n} a_{j} x_{i}^{j} = b_{i}, i = \overline{0, n}$$

$$\Leftrightarrow \begin{bmatrix} 1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\ 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\ & & & & \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}.$$

Định thức của hệ là định thức Vandermonde: $|A| = \prod_{i < j} (x_j - x_i) \neq 0$.

Ví dụ 3.2. Tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Mô tả các điểm và đa thức bằng đồ thị.

Giải. Đa thức nội suy có dạng $P(x) = a + bx + cx^2 + dx^3$.

Cách 1: Ta có

```
P(-1) = a - b + c - d = 4, P(0) = a = 3,

P(1) = a + b + c + d = 2, P(2) = a + 2b + 4c + 8d = 7
```

Giải hê được a = 3, b = -2, c = 0, d = 1, và kết luân $P(x) = 3 - 2x + x^3$.

```
from sympy import *
a, b, c, d = symbols('a b c d')
P = lambda x: a + b*x + c * x**2 + d * x**3
P(-1) # a - b + c - d

solve([P(-1) - 4, P(0) - 3, P(1) - 2, P(2) -7], [a, b, c, d]) # {a: 3, b: -2, c: 0, d:
1}
```

hoặc tổng quát hơn

```
1 X = [-1, 0, 1, 2]
Y = [4, 3, 2, 7]
3 list( zip(X, Y) ) # [(-1, 4), (0, 3), (1, 2), (2, 7)]
4 from sympy import *
5 a = MatrixSymbol('a', 4, 1)
6 a[0] # a_0
7 def P(x):
   tong = 0
9
   for i in range(4):
     tong += a[i] * x**i
    return tong
11
12 P(2) # a_0 + 2a_1 + 4a_2 + 8a_3
13 solve([P(x) - y for (x, y) in zip(X, Y)], a) # {a0:
     3, a1: -2, a2: 0, a3: 1}
```

Cách 2: Giải hê

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 7 \end{bmatrix}.$$

Cách 3: dùng lênh có sẵn của gói sympy

```
from sympy import *
  x = symbols('x')

interpolate([(-1, 4), (0, 3), (1, 2), (2, 7)], x) #
  x<sup>3</sup> - 2x + 3
```

Để vẽ các điểm nội suy và đa thức nội suy tìm được, ta dùng lệnh sau

```
import matplotlib.pyplot as plt
import numpy as np

X = [-1, 0, 1, 2]
Y = [4, 3, 2, 7]
plt.scatter(X, Y, label='data')

P = lambda x: x**3 - 2*x + 3
X = np.linspace(-1.5, 2.5, 101)
Y = [P(x) for x in X]
plt.plot(X, Y, label='P(x)')

plt.legend();
```


3.2.1 Da thức Lagrange

Tìm

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$
 (3.5)

trong đó
$$L_i\left(x_j\right) = \delta_{ij} = \begin{cases} 0 & \text{n\'eu } i \neq j \\ 1 & \text{n\'eu } i = j \end{cases}$$

$$\text{Ta có } L_i\left(x\right) = C \prod_{j \neq i} \left(x - x_j\right). \text{ Mặt khác } L_i\left(x_i\right) = 1 \text{ nên } C \prod_{j \neq i} \left(x_i - x_j\right) = 1. \text{ Vậy}$$

$$L_{i}(x) = \prod_{j \neq i} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(3.6)

Ví dụ 3.3. Trong Ví dụ 3.2, tìm đa thức nội suy bằng đa thức Lagrange.

Giải. Các đa thức Lagrange

$$L_{0}(x) = \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} = -\frac{x^{3}}{6} + \frac{x^{2}}{2} - \frac{x}{3}$$

$$L_{1}(x) = \frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)} = \frac{x^{3}}{2} - x^{2} - \frac{x}{2} + 1$$

$$L_{2}(x) = \frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)} = -\frac{x^{3}}{2} + \frac{x^{2}}{2} + x$$

$$L_{3}(x) = \frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)} = \frac{x^{3}}{6} - \frac{x}{6}.$$

Vậy

$$P\left(x\right) = 4L_{0}\left(x\right) + 3L_{1}\left(x\right) + 2L_{2}\left(x\right) + 7L_{3}\left(x\right) = x^{3} - 2x + 3.$$

Cách 1: lập trình

```
1  X = [-1, 0, 1, 2]
2  Y = [4, 3, 2, 7]

3  def L(i, x):
    prod = 1
5    for j in range(4):
        if j != i:
        prod *= (x - X[j]) / (X[i] - X[j])
```

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

```
8
      return prod
9 from sympy import *
10 x = symbols('x')
11 L(0, x)
12 L(0, x).expand()
13 P = 0
14 for i in range (4):
     P += Y[i] * L(i, x)
15
16 P
17 P.expand()
```

Cách 2: dùng lệnh của gói sympy

```
1 from sympy import *
2 x = symbols('x')
P = interpolating_poly(4, x, [-1, 0, 1, 2], [4, 3, 2,
     7]) # 4 là số mốc nội
     suv
4 P.expand()
```

Cách 3: gói scipy

```
from scipy.interpolate import lagrange
2 lagrange([-1, 0, 1, 2], [4, 3, 2, 7]) # \rightarrow poly1d([ 1.,
     0., -2., 3.])
```

Định lý 3.1. Cho hàm số $f \in C^{n+1}$ [a, b]. Giả sử P(x) là đa thức nội suy hàm f(x)tại các mốc nội suy $x_i \in [a, b]$, $i = \overline{0, n}$. Khi đó với mỗi $x \in [a, b]$, tồn tại $\xi(x)$ ở $gi\tilde{u}a \min_{0 \le i \le n} x_i và \max_{0 \le i \le n} x_i$, sao cho

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

Xấp xỉ số liêu và phương pháp Neville

3.4 Sai phân chia

3.5 Nội suy Hermite

3.6 Nội suy Newton

Định nghĩa 3.1 (Sai phân). Cho dãy y_i , $i = \overline{0, n}$. Sai phân cấp k của dãy tại phần tử y_i , $i = \overline{0, n - k}$ được định nghĩa đệ quy:

$$\Delta^{0} y_{i} = y_{i}, \ \forall i$$

$$\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i}, \ k = \overline{1, n}.$$
(3.7)

Ba sai phân cấp đầu tiên:

$$\Delta y_{i} = \Delta^{1} y_{i} = \Delta^{0} y_{i+1} - \Delta^{0} y_{i} = y_{i+1} - y_{i}$$

$$\Delta^{2} y_{i} = \Delta^{1} y_{i+1} - \Delta^{1} y_{i} = (y_{i+2} - y_{i+1}) - (y_{i+1} - y_{i}) = y_{i+2} - 2y_{i+1} + y_{i}$$

$$\Delta^{3} y_{i} = \Delta^{2} y_{i+1} - \Delta^{2} y_{i} = (y_{i+3} - 2y_{i+2} + y_{i+1}) - (y_{i+2} - 2y_{i+1} + y_{i})$$

$$= y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_{i}.$$

Tổng quát:

$$\Delta^{k} y_{i} = \sum_{i=0}^{k} (-1)^{k-j} C_{k}^{j} y_{i+j}.$$

Ta dùng lược đồ sai phân

để xây dựng bảng sai phân $\Delta^k y_i$ với $k = \overline{0, n}$, và $i = \overline{0, n - k}$.

k i	0	1	2	3	
0	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
1	Δy_0	Δy_1 $\Delta^2 y_1$	Δy_2		
2	$\Delta^2 y_0$	$\Delta^2 y_1$			
3	y_0 Δy_0 $\Delta^2 y_0$ $\Delta^3 y_0$				
:					

Giả sử các mốc nội suy cách đều

$$x_i - x_{i-1} = h$$
, $\forall i = \overline{1, n}$.

Công thức Newton tiến: tính $t = \frac{x - x_0}{h}$ và

$$P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{0}}{k!} \prod_{i=0}^{k-1} (t-i)$$

$$= y_{0} + \Delta y_{0} t + \frac{\Delta^{2} y_{0}}{2!} t (t-1) + \dots + \frac{\Delta^{n} y_{0}}{n!} t (t-1) \dots (t-n+1)$$
(3.8)

Công thức Newton lùi: tính $t = \frac{x - x_n}{h}$ và

$$P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{n-k}}{k!} \prod_{i=0}^{k-1} (t+i)$$

$$= y_{n} + \Delta y_{n-1} t + \frac{\Delta^{2} y_{n-2}}{2!} t (t+1) + \dots + \frac{\Delta^{n} y_{0}}{n!} t (t+1) \dots (t+n-1)$$
(3.9)

Ví du 3.4. Trong Ví dụ 3.2, tìm đa thức nội suy bằng đa thức nội suy Newton.

 $Gi\acute{a}i$. Các mốc nội suy cách đều với h=1. Ta có bảng sai phân

Công thức Newton tiến:
$$t = \frac{x - (-1)}{1} = x + 1$$
 và

$$P(x) = 4 + (-1)t + \frac{0}{2!}t(t-1) + \frac{6}{3!}t(t-1)(t-2)$$
$$= 4 - (x+1) + (x+1)x(x-1) = x^3 - 2x + 3.$$

Công thức Newton lùi: $t = \frac{x-2}{1}$ và

$$P(x) = 7 + 5t + \frac{6}{2!}t(t+1) + \frac{6}{3!}t(t+1)(t+2)$$

$$= 7 + 5(x - 2) + 3(x - 2)(x - 1) + (x - 2)(x - 1) x$$
$$= x^3 - 2x + 3.$$

Dưới đây là mã Python của công thức Newton tiến. Đối với công thức Newton lùi, ta chỉ sửa một chút tại các dòng có chú thích.

```
1 from sympy import *
2 \times t = symbols('x t')
  P = Y[0]
                                        # Y[3]
3
4 for k in range(1, 4):
5
     prod = d(k, 0) / factorial(k) # d(k, 3-k)
6
     for i in range(k):
           prod *= t - i
                                        #t+i
7
      P += prod
8
9 P
10 P.subs(t, (x - X[0]) / 1)
                                        # X[3]
11 _ . expand()
```

Ta cũng có thể định nghĩa cho sai phân bằng từ khóa def

```
1 def d(k, i):
2    if k == 0:
3       return Y[i]
4    return d(k-1, i+1) - d(k-1, i)
```

hoặc dùng quy hoạch động theo lược đồ


```
1 Y = [4, 3, 2, 7]

2 for k in range(1, 4):

3 for i in range(4-k):

4 Y[i] = Y[i+1] - Y[i] # Δ<sup>k</sup>y<sub>i</sub>

5 print(Y[:4-k])
```

Khi đó để tính P(x), ta thêm vào sau dòng 1 mã

```
P = Y[0] # Y[3]
prod = 1
```

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

và sau dòng 5 mã đồng cấp (trong vòng lặp tại dòng 2)

prod *= (t - (k-1)) / k # t + (k-1), lutu
$$\frac{1}{k!} \prod_{i=0}^{k-1} (t \mp i)$$

P += Y[0] * prod # Y[3-k]

Còn với công thức Newton lùi, ta cũng thay mã tương ứng ở phần chú thích tại vị trí phù hợp.

- 3.7 Nội suy spline bậc ba
- 3.8 Đường cong tham số

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Richard L. Burden, Douglas J. Faires and Annette M. Burden. Numerical Analysis. phiên bản 10. Cengage Learning, 2016. 918 trang.
- [3] NumPy community. *NumPy User Guide*. phiên bản 1.22.0. 531 trang. URL: https://numpy.org/doc/stable.
- [4] SciPy community. *SciPy Reference Guide*. phiên bản 1.8.1. 3584 trang. URL: https://docs.scipy.org/doc.
- [5] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [6] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.
- [7] Matplotlib development team. *Matplotlib documentation*. phiên bản 3.5.1. URL: https://matplotlib.org/3.5.1/tutorials/index.html.
- [8] SymPy Development Team. *SymPy Documentation*. phiên bản 1.8. 2750 trang. URL: https://github.com/sympy/sympy/releases.

Tài liệu tham khảo