Folgen

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \epsilon > 0 \; \exists n_0 \in \mathbb{N}$ $\forall n \geq n_0 : |a_n - a| < \epsilon$
- Existiert a ∈ ℝ Grenzwert ⇒ (a_n) konvergent, sonst (a_n) divergent

Satz 2.3 - Rechenregeln für Grenzwerte $\ (a_n)_{n\in\mathbb{N}},\ (b_n)_{n\in\mathbb{N}}$ reelle Folgen, $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$
- $a_n \leq b_n$ für fast alle $n \in \mathbb{N} \to a \leq b$
- Einschließungskriterium $a = \overline{b}$, c reelle Folge und $a_n \leq c_n \leq b_n$ für fast alle $n \in \mathbb{N} \Rightarrow (c_n)_{n \in \mathbb{N}}$ konvergiert gegen a

Spezialfall des Einschließungskriteriums:

 $(x_n)_{n\in\mathbb{N}}$ Folge, $x\in R$, $(y_n)_{n\in\mathbb{N}}$ Nullfolge, sodass $|x_n-x_n|$ $|x| \leq y_n$ für fast alle $n \Rightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert gegen x

Satz 2.4 - Eigenschaften konvergenter Folgen Sei a_n konvergente reelle Folge

- (a_n) beschränkt
- (a_n) besitzt genau einen Grenzwert

Def: 2.5 - Uneigentliche Konvergenz $(a_n)_{a\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty \Leftrightarrow \forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0$: $a_n > K$ $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty$ \Leftrightarrow $(-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz $(b_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n \in \mathbb{N}} (b_n)_{n \in \mathbb{N}} = \infty$, $(a_n)_{n \in \mathbb{N}}$ reelle Folge, $\lim_{n\to\infty} a_n = a, a \in \mathbb{R} \cup \{\infty, -\infty\}$

- $a \neq -\infty \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
- $a \neq 0 \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
- $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
- $a \notin \{\infty, -\infty\} \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen 0

Def 2.7 - Monotone Folgen $(a_n)_{n\in\mathbb{N}}$ reelle Folge heißt

- monoton wachsend, falls $a_{n+1} \geq a_n \forall n \in \mathbb{N}$
- streng monoton wachsend, falls $a_{n+1} > a_n \forall n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n \forall n \in \mathbb{N}$
- streng monoton fallend, falls $a_{n+1} < a_n \forall n \in \mathbb{N}$

Satz 2.8 - Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ reelle Folge, wachsend und nach oben beschränkt $\Rightarrow (a_n)_{n \in \mathbb{N}}$ konvergent und $\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n := \sup\{a_n : n \in \mathbb{N}\}\$

Def 2.9 Häufungspunkt $a \in \mathbb{R}$ Häufungspunkt \Leftrightarrow $\exists (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge von $(a_n)_{n \in \mathbb{N}}$, die gegen a konvergiert.

Satz von Bolzano-Weierstraß Jede beschränkte reelle Folge $(an)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat also mindestens einen Häufungspunkt.

Def 2.11 - Limes superior, limes inferior $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschänkt ⇒ größter (kleinster) Häufungspunkt: Limes superior (inferior)

Komplexe und mehrdimensionale Folgen

Def 3.1 Grenzwert komplexer Folgen $z \text{ GW von } (z_n) \Leftrightarrow \forall \epsilon > 0$ $0\exists n_0 \in \mathbb{N} \forall n \ge n_0 : |z_n - z| < \epsilon$ $\exists G \check{W} \Leftarrow z_n \text{ konvergent}$

Konvergenz $(z_n)_{n\in\mathbb{N}} = a_n + ib_n : \lim_{n\to\infty} z_n =$ $\lim_{n\to\infty} a_n + i \lim_{n\to\infty} b_n$

Grenzwert $\lim_{n\to\infty} v_n = v \Leftrightarrow \lim_{n\to\infty} ||v_n - v||_2 = 0$

Def 2.2 - Folgen Grenzwert in \mathbb{R} *a* Grenzwert von $(a_n) \Leftrightarrow$ $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall b \ge n_0 : |a_n - a| < \epsilon$

Nullfolge $\lim_{n\to\infty} (a_n) \to 0$

Rechenregeln Grenzwerte

- $(a_n + b_n) \rightarrow a + b$
- $(a_n \cdot b_n) \rightarrow a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n}) \rightarrow \frac{a}{b}$
- Einschließungskriterium: $a = b \wedge a_n \leq c_n \leq$ b_n für fast alle $n \in \mathbb{N} \Rightarrow c_n \to a$

Eigenschaften konvergenter Folgen (a_n) beschränkt \Rightarrow $\{a_n : n \in \mathbb{N}\}$ beschrn $kt \land \exists ! \text{ ein GW}$

Uneigentliche Konvergenz $(a_n)_{n\in\mathbb{N}}$ divergent $\Rightarrow (a_n)_{n\in\mathbb{N}}$ konvergiert uneig. gg. $\infty \Leftrightarrow \forall K > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0$

Rechenregeln uneig. Konvergenz

- $a \neq -\inf \Rightarrow (a_n + b_n)_{n \in \mathbb{N}} \to \infty$
- $a \neq 0 \Rightarrow (a_n \cdot b_n)_{n \in \mathbb{N}}$ konvergiert
- $a \notin \{-\infty, \infty\} \vee (a_n)_{n \in \mathbb{N}}$ beschränkt \Rightarrow

Monotone Folge (a_n) monoton wachsend, falls $a_{n+1} >$ $a_n \forall n \in \mathbb{N}$. (Äquivalent für >, <, <)

Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ monoton wachsend \wedge nach oben beschränkt $\Rightarrow \lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n = \sup_{n \in \mathbb{N}} \{a_n : n \in \mathbb{N}\}$

Teilfolge, Häufungspunkte $(a_n)_{a\in\mathbb{N}}$ reelle Folge:

- $(n_k)_{k\in\mathbb{N}}$ streng monoton wachsend in $\mathbb{N} \Rightarrow$ $(a_{n,n})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$
- $a \in \mathbb{R}$ Häufungspunkt von $(a_n)_{n \in \mathbb{N}} \Leftrightarrow \exists$ Teilfolge, die gg. a konvergiert

Satz v. Bozano-Weierstraß Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat min. einen Häufungspunkt

Limes superior, Limes inferior $(a_n)_{a\in\mathbb{N}}$ reelle Folge: $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschränkt \to Bez. größter (kleinster) Häufungspunkt: Limes superior (inferior)

Komplexe und mehrdimensionale Folgen

Grenzwert komplexer Folgen z GW von $(z_n) \Leftrightarrow \forall \epsilon >$ $0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |z_n - z| < \epsilon.$ Existiert $z \Leftarrow (z_n)$ konvergent.

Konvergenz komplexer Folgen

- $z_n = a_n + ib_n$ konvergiert $\Leftrightarrow a_n$ und b_n kon-
- z_n konvergent $\Rightarrow \lim_{n \to \infty} z_n = \lim_{n \to \infty} a_n + i$ $\lim_{n\to\infty} b_n$

Grenzwert mehrdimensionaler Folgen $\lim_{n \to \infty} v_n = v \Leftrightarrow$

 $\lim_{n \to \infty} \|v_n - v\|_2 = 0 \Leftrightarrow \lim_{n \to \infty} \|v_n - v\|_{\infty} = 0$

Reihen

Konvergenz $(s_n)_{n\in\mathbb{N}}$ konvergent gg. $s\in\mathbb{C}\Leftrightarrow$ Folge der Partialsummen gg. s konvergiert

Majoranten- & Minorantenkriterium b_n

$$\sum_{k=0}^{\infty} b_k; (b_k)_{k \in \mathbb{N}} \text{ relle Folge}; a_s := \sum_{k=0}^{\infty} a_k, |(a_n)_{n \in \mathbb{N}}| \le$$

- b_s konvergiert ⇒ a_s konvergiert absolut
- a_s divergiert $\Rightarrow b_s$ divergiert

 $\lim_{n \in \mathbb{N}} \left| \frac{a_{n+1}}{a_n} \right| := q \text{ existient } \Rightarrow (*)$

 $\text{Wurzelkriterium} \quad \sum_{k=0}^{\infty} a_k; \ a_k \in \mathbb{C}: q := \limsup_{k \to \infty} \sqrt[k]{|a_k|} \Rightarrow \qquad \sin(z) := \frac{e^{iz} - e - iz}{2i} = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}$

q < 1 ⇒ Reihe konvergiert absolut
 q > 1 ⇒ Reihe divergiert

 $\text{folge} \Rightarrow \sum_{k=0}^{\infty} \left(-1\right)^k a_k \Rightarrow \forall n \in \mathbb{N} | \sum_{k=0}^{\infty} \left(-1\right)^k a_k - s_n | \leq a_{n+1}$ **Leibnitz-Kriterium** $(a_n)_{n\in\mathbb{N}}$ relle, monoton fallende Null-

Umordnungssatz

- · Jede Umordnung einer konvergenten Reihe konvergiert gegen denselben Wert
- · Konvergiert eine Reihe aus reellen Summanden. aber nicht absolut $\Rightarrow \forall s \in \mathbb{R} \exists$ bijektive Abbildung $\mathbb{N} \to \mathbb{N}$: die umgeordnete Reihe konvergiert

Potenzreihe
$$P(z):=\sum_{k=0}^{\infty}c_kz^k;c_k\in\mathbb{C};z\in\mathbb{C}$$

$$R:=\frac{1}{\limsup\sqrt[k]{|c_k|}}$$

• Seien $\sum_{k=0}^{\infty} a_k$, $\sum_{k=0}^{\infty} b_k$ absolut konvergent $\in \mathbb{C} \Rightarrow$

$$(\sum_{k=0}^{\infty} a_k)(\sum_{k=0}^{\infty} b_k) = (\sum_{m=0}^{\infty} c_m) \text{ mit } c_m = (\sum_{k=0}^{m} a_k b_{m-k}) \text{ mit } c_k \text{ konvergent.}$$

• Seien $\sum_{k=0}^{\infty} a_k z^k$, $\sum_{k=0}^{\infty} a_k z^k$ zwei Potenzrei-

hen mit Konvergenzradien
$$R_a$$
 und R_b \Rightarrow $(\sum_{k=0}^{\infty} a_k z^k)(\sum_{k=0}^{\infty} b_k z^k) = (\sum_{m=0}^{\infty} c_m z^m)$ mit $c_m = \sum_{m=0}^{\infty} a_k m_{m-k}$

Natürliche Exponentialfunktion $exp(z) := \sum_{k=1}^{\infty} \frac{z^k}{k!}$

Eigenschaften von exp $\ \forall z,w\in\mathbb{C},x\in\mathbb{R},n\in\mathbb{N}$

- $\exp(z + w) = \exp(z) \cdot \exp(w)$
- $\exp(-z) = \frac{1}{\exp(z)}, \exp(z) \neq 0 \land \exp(\overline{z}) = \exp(z)$
- $|e^{ix}| = 1$ $\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$
- $|\exp(z) \sum_{k=0}^{n} \frac{z^k}{k!}| \le 2 \cdot \frac{|z|^{n+1}}{(n+1)!}$
- $\lim_{x \to 0} \frac{e^x 1}{x} = 1$

Quotientenkriterum $\sum_{k=0}^{\infty} a_k, a \neq 0$ für fast alle $k \in \mathbb{N} \land n$ Trigonometrische Funktionen $\cos(z) := \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz} + e^{-iz}}{2}$

Eigenschaften v. sin, cos, tan $\forall z, w \in \mathbb{C}, x \in \mathbb{R}$

- $\exp(iz) = \cos(z) + i\sin(w)$
- $(\sin(z))^2 + (\cos(z))^2 = 1$
- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- cos(z+w) = cos(z) sin(w) sin(z) sin(w)• $cos(x) = Re(e^{ix}) sin(x) = Im(e^{ix})$
- $z = \tan(c)$: $\arctan'(z) =$

Recherregeln $D \subseteq \mathbb{R}; f, g : D \to \mathbb{R}; f, g \text{ stetig in } c \Rightarrow$ $f+g, f\cdot g, \frac{f}{g} \ (g\neq 0)$ stetig in c

- - $f, q \text{ stetig } \land f(D) \subseteq D' \Rightarrow (q \circ f) : D \to \mathbb{R} \text{ stetig}$

 ϵ -δ-Charakterisierung $D \subseteq \mathbb{R}, f \to \mathbb{R}, c \in D \Rightarrow f$ stetig in $c \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 : \forall x \in D : |x-c| < \delta : |f(x)-f(c)| <$

Zwischenwertsatz $f:[a,b]
ightarrow \mathbb{R}$ stetig $\Rightarrow \forall x \in \mathbb{R}$ mit $\min\{f(a), f(b)\} \le y \le \max\{f(a), f(b)\} : \exists x \in [a, b] :$

Satz v. Max. und Min. [a,b] beschränkt, $f:[a,b] \to \mathbb{R}$

- $\exists x_{\max}, x_{\min} \in [a, b] : f(x_{\max}) = \sup\{f(x) : x \in a\}$ [a,b] $\land f(x_{\min} = \inf\{f(x) : x \in [a,b]\}$

Stetigkeit in $\mathbb{C} \& \mathbb{R}^n$ wörtlich übertragbar $D \subset \mathbb{C}$ oder $D \subset \mathbb{R}^n$ abgeschlossen: $\forall f : D \to \mathbb{C}$ bzw.

 $f:D\to\mathbb{R}^m$ beschränkt und nimmt auf D Maximum und Minimum an

Stetigkeit von Potenzreihen $f(z) = \sum_{k=0}^{\infty} c_k z^k$ mit Konvergenzradius $R \Rightarrow f: \{z: |z| < R\} \rightarrow \mathbb{C}$ stetig

Differenziation

- $f'(c) := \lim_{x \to c} \frac{f(x) f(c)}{x c}$
- f stetig diff'bar ⇔ f' stetig

Diff'barkeit \Rightarrow **Stetigkeit** f diffbar in $c \Rightarrow f$ in c stetig

Monotonie & Umkehrbarkeit

- f stetig: f injektiv $\Leftrightarrow f$ streng monoton wachsend
- f außerdem surjektiv $\Rightarrow f^{-1}$ stetig \land monoton wachsend / fallend

Differentiation v. f^{-1} f bijektiv, $f'(c) \neq 0 \Rightarrow z := f(c)$ diff'bar, $(f^{-1})'(z) = \frac{1}{f'(c)}$

Logarithmus $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

Diff. v. Potenzreihen
$$f(x)=\sum_{k=0}^{\infty}c_kx^k\in\mathbb{R}:f'(x)=\sum_{k=1}^{\infty}kc_kx^{k-1}$$

$$\sum_{k=1}^{\infty} k c_k x^{k-1}$$

Höhere Ableitungen $\mathscr{C}^n(I)\colon$ Vektorraum aller n-mal stetig diff'baren Funktionen $f:I\to\mathbb{R}$

- Extrema lokales Maximum $\Leftrightarrow \epsilon > 0: f(c) \geq f(x) \forall x \in (c \epsilon, c + \epsilon) \cap I$ lokales Minimum $\Leftrightarrow \epsilon > 0: f(c) \leq f(x) \forall x \in (c \epsilon, c + \epsilon) \cap I$ isoliertes lok. Max/Min \Leftrightarrow Max/min $\land x \neq c$ globales Max (Min) $f(x) \geq (\leq) f(c)$