Rappel
Concepts de base sur la récurrence
Les différents types de récursivité
Exécution d'une fonction récursive : la pile des appels
Le module turtle
Exemple d'application graphique : Flocon de Von Koch

La récursivité

Programmation en Python-MPSI-

MPSI2-3

mazza8azzouz@gmail.com

23 décembre 2024

Plan

- Rappel
- Concepts de base sur la récurrence
 - Récurrence en mathématique
 - Définition d'algorithme récursif
 - Comment écrire une fonction récursive?
- 3 Les différents types de récursivité
 - La récursivité simple
 - La récursivité multiple
- 4 Exécution d'une fonction récursive : la pile des appels
- 6 Le module turtle
- 6 Exemple d'application graphique : Flocon de Von Koch

Rappel

- L'approche efficace pour résoudre un problème complexe consiste souvent à le décomposer en plusieurs sous-problèmes plus simples qui seront étudiés séparément.
- D'autre part, il arrive souvent qu'une même séquence d'instructions sera utilisée à plusieurs reprises dans un programme, et on souhaite évidemment ne pas avoir à la reproduire systématiquement.
- La programmation modulaire permet de résoudre les difficultés évoquées ci-dessus en utilisant des fonctions.
- Toutes les fonctions qu'on a définit jusqu'au maintenant représentent des algorithmes itératifs.
- Une fonction peut appeler une autre fonction. Un cas particulier elle peut appeler elle même, c'est l'objectif de ce cours.

Rappel

Syntaxe d'une fonction

La syntaxe python pour la définition d'une fonction est la suivante : def nomdelafonction (paramètres eventuels) : bloc d'instructions

Exemples

```
Exemple 1 : Une fonction qui nécessite un paramètre
   def cube(x):
      v = x^{**}3
      return(y)
```

En entrant print(cube(2)), on obtiendrait l'affichage du nombre 8

2 Exemple 2 : Une fonction ne nécessite pas forcément de paramètre. def table8(): n=1while n <= 10: $print(n, " \times ", 8," = ", n*8)$ n=n+1

L'appel de la fonction lancerait l'affichage de la table de 8.

Récurrence en mathématique

Nous allons commencer par l'exemple de la suite numérique, (U_n) définie pour $n \in IN$ par

$$\begin{cases} U_0 = 1 \\ U_n = 2 * U_{n-1} + 3 \end{cases}$$

• U_n est appelé une suite récurrente.

$$U_n = 2 * (2 * (...(2 * U_0 + 3)...) + 3) + 3$$

- La conception d'une fonction récursive n'est pas éloignée du principe de démonstration par récurrence.
- Le principe de démontration par récurrence est le suivant :
 - ① On démontre d'une part que la suite U_n satisfait une telle propriété (croissante, décroissante,....) pour le cas de base U_0
 - ② D'autre part, on suppose que cette propriété est valide pour U_{n-1} et on démontre que cela implique que la suite U_n satisfait aussi cette propriété pour tout n > 0.

Définition d'algorithme récursif

Fonction récursive

Une fonction est dite récursive si elle s'appelle elle-même au cours de son exécution.

Avantages de la récursivité

- La récursivité permet d'exprimer d'une manière élégante la solution de plusieurs problèmes :
 - Récurrences mathématiques classiques
 - Tour d'Hanoï
 - Tri rapide, tri fusion, ...
 - Recherche dichotomique, ...
- La récursivité est particulièrement adapté lorsqu'elle est appliquée à une structure récursive
- Les listes et les arbres peuvent être vu comme des structure récursives.

Comment écrire une fonction récursive?

Principe

- L'idée de base pour écrire une fonction récursive consiste à définir tout d'abord le modèle mathématique de la fonction de récurrence.
- Dans ce modèle de mathémtique, il faut determiner la condition d'arrêt pour assurer la terminaison de l'algorithme.

Exemple

Nous pouvons donc définir la fonction factorielle de la manière suivante :

$$n! = \begin{cases} 1 & \text{si } n = 0 \\ n * (n-1)! & \text{sinon} \end{cases}$$

- n!=n*(n-1)! représente la relation de récurrence.
- 0!=1 représente la valeur de la terminaison de l'algorithme.

Le code en Python

Méthode itérative

```
def fact_lter(n) :
    F=1
    for i in range (1,n+1) :
        F=F*i
    return F
```

Méthode récursive

```
 \begin{split} \text{def fact\_Rec}(n) : \\ & \text{if } n{=}{=}0 : \\ & \text{return } 1 \\ & \text{else :} \\ & \text{return } n^*\text{fact\_Rec}(n{-}1) \end{split}
```

La récursivité simple

Définition :pour ce type de récursivité on fait un seul appel récursif pour la fonction P dans le corps d'une fonction récursive P.

Exemple 1 : calcul de puissance

Questions :

$$x^n = \begin{cases} 1 & \text{si } n = 0 \\ x * x^{n-1} & \text{sinon} \end{cases}$$

- **1** Ecrire le code de la fonction récursive Puissance qui retourne la valeur de x^n .
- 2 Donner la trace d'exécution pour calculer 2³

Exemple 2 : calcul de puissance (version rapide)

$$x^{n} = \begin{cases} 1 & \text{si } n = 0 \\ a*a & \text{si n est pair, avec } a = x^{\frac{n}{2}} \\ x*a*a & \text{si n est impair, avec } a = x^{\frac{n}{2}} \end{cases}$$

- Questions :
 - 1 Ecrire le code de cette fonction récursive nommée Puiss_rapide.
 - 2 Donner la trace d'exécution pour calculer *Puiss_rapide*(3, 5)

La récursivité multiple

Définition : Une récursivité est multiple si il y a plusieurs appels résursifs a une fonction P dans le corps d'une fonction récursive P.

Exemple 3 : suite de Fibonacci

$$F_n = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si } n = 1 \\ F_{n-1} + F_{n-2} & \text{si } n > 1 \end{cases}$$

Questions :

- Ecrire le code de la fonction récursive Fibo_Re qui retourne la valeur de F_n .
- Donner la trace d'exécution pour calculer F_{Δ}

Exemple 4 : Calcul de combinaison

$$C_n^p = \begin{cases} 1 & \text{si } p = 0\\ 1 & \text{si } n = 0\\ C_{n-1}^p + C_{n-1}^{p-1} & \text{sinon} \end{cases}$$

- Questions :
 - 1 Ecrire le code de cette fonction récursive.
- Donner la trace d'exécution pour calculer

Trace d'exécution d'une fonction récursive

Principe de fonctionnement

- L'exécution d'une fonction récursive est basée sur une pile de la mémoire vive.
- La manipulation de cette zone mémoire appelé pile est similaire à la structure données pile traitée cours de la première année.
- On empile les appels successifs dans une pile. (LIFO: Last In First Out)

Attention il faut être sur que la fonction se termine. Considérons par exemple cette fonction proche de la factorielle :

Une fonction

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ n * f(n+1) & \text{si } n > 0 \end{cases}$$

Que vaut f(4)?

• Phase 1 : Empiler les apples

- Dans étape 1 on empile fact(3)
- Appel de fact(3) : retourne 3*fact(2)

PILE (étape 2) fact(2) = 2*fact(1) fact(3) = 3*fact(2)

- Dans étape 2 on empile fact(2)
- Appel de fact(3) : retourne 3*fact(2)
- Appel de fact(2) retourne 2*fact(1)=2

Phase 1 : Empiler les apples

PILE (étape 3)
fact(1) = 1*fact(0)
fact(2) = 2*fact(1)
fact(3) = 3*fact(2)

- Dans étape 3 on empile fact(1)
- Appel de fact(3) : retourne 3*fact(2)
- Appel de fact(2) : retourne 2*fact(1)
- Appel de fact(1) : retourne 1*fact(0)

PILE (étape 4)
fact(0) = 1
fact(1) = 1*fact(0)
fact(2) = 2*fact(1)
fact(3) = 3*fact(2)

- Dans étape 4 on empile fact(0)
- Appel de fact(3) : retourne 3*fact(2)
- Appel de fact(2) retourne 2*fact(1)=2
- Appel de fact(1): retourne 1*fact(0)
- Appel de fact(0) retourne 1

• Phase 2 : Dépiler les apples

fact(1) = 1*fact(0)=1*1=1 fact(2) = 2*fact(1) fact(3) = 3*fact(2)

- Dans étape 1 on dépile fact(0)
- Appel de fact(3): retourne 3*fact(2)
- Appel de fact(2) : retourne 2*fact(1)
- Appel de fact(1) : retourne 1*fact(0)= 1
- Appel de fact(0) : retourne 1

PILE (étape 2)

$$fact(2) = 2*fact(1)=2*1=2$$

- Dans étape 2 on dépile fact(1)
- Appel de fact(3) : retourne 3*fact(2)

fact(3) = 3*fact(2)

- Appel de fact(2) : retourne 2*fact(1)=2*1=2
- Appel de fact(1) : retourne 1*fact(0)= 1
- Appel de fact(0) : retourne 1

• Phase 2 : Dépiler les apples

- Dans étape 3 on dépile fact(2)
- Appel de fact(3) : retourne 3*fact(2)=3*2=6
- Appel de fact(2) : retourne 2*fact(1)=2*1=2
- Appel de fact(1) : retourne 1*fact(0)= 1
- Appel de fact(0) : retourne 1

PILE (étape 4)	
	_

- Dans étape 4 on dépile fact(4)
- On dépile le dernier appel (fact(3))
- Le résultat retourné est 6
- La pile devient vide

Limitation de la récursivité en Python

- Le langage Python limite, arbitrairement, le nombre d'appels imbriqués à 1000 (la taille de la pile).
- Une fonction qui fait plus de 1000 appels récursifs provoque une erreur
- Exemple

```
>>>def fact(n):
    if(n==0):
        return 1
    else:
        return n*fact(n-1)
>>>fact(1005)
RuntimeError: maximum recursion depth exceeded
```

 Il existe de nombreuses situations où l'on sait que le nombre d'appels sera bien inférieur à 1000.

Remarque

```
On peut modifier la taille de la pile par les instructions suivantes : import sys sys.setrecursionlimit(10000)
```

Le module turtle

- Turtle est un module graphique du langage de programmation Python il permet de construire des figures en donnant des instructions a une tortue
- Les principales fonctions du module turtle :

Exception	Description
reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
forward(d), backward(d)	Avancer, reculer d'une distance d
left(a), right(a)	Tourner à gauche, droite, d'une angle a en degrés
goto(x,y)	Se déplace au point de coordonnées (x,y)
position()	Retourne la position courante
color(couleur)	Détermine la couleur = 'black', 'blue', 'red',
width(I)	Détermine l'épaisseur du trait l
fill(1)	Remplir un contour fermé à l'aide de la couleur
	sélectionnée (on termine la construction par fill(0))
write(texte)	texte doit être une chaîne de caractères délimitée
	avec des " ou des '
circle(r)	Trace un cercle de rayon r
Mainloop() ou done()	lance la construction (animation)

Le module turtle

• Exemple 1 :Drapeau marocain

Code python

```
from turtle import *
speed(1)##### vitesse entre 0 et 10
width(5)##### epaisseur entre 0 et 10
shape('turtle')##### traceur turtle
bgcolor("red")##### couleur de fond
color('green')#####couleur du tracé
c=2 ##### longueur de la cote
u=100##### unite graphique
right(36) #### angle 36
for k in range(5): ##### etoile a 5 branches
forward(c*u)
left(144)
exitonclick()
```

Le module turtle

• Exemple 2 :polyôgne

Code python

```
import turtle as tt
def polygone(n=3, l=100, clr='black') :
    forward(c*u)
    tt.color(clr)
    tt.down()
    for i in range(n) :
        tt.forward(l)
        tt.left(360/n)
    #####Programme principal####
tt.reset()
polygone()
tt.up()
tt.goto(-200,0)
polygone(12,30,'blue')
```


Cette courbe est construite en partant d'un triangle équilatéral

- Sur chaque segment :
 - 1 Diviser en 3 segments de mêmes longueurs.
 - 2 Considérer le triangle équilatéral extérieur construit sur le segment du milieu.
 - Remplacer ce segment par les 2 autres côtés du triangle équilatéral.
- Recommencer avec chaque segment obtenu.

- Pour le tracer, on peut procéder par récursivité sur chacun des 3 segments du triangle initial : vonKoch(longueur,n)
 - appeler vonKoch(longueur /3., n-1)
 - 2 Tourner à gauche de 60X : tt.left(60)
 - appeler vonKoch(longueur / 3., n-1)
 - Tourner à droite de 120X : tt.right(120)
 - appeler vonKoch(longueur / 3, n-1)
 - Tourner à gauche de 60X : tt.left(60)
 - appeler vonKoch(longueur / 3., n-1)


```
def vonkoch(longueur,n):
    if n == 1:
        tt.forward(longueur)
    else:
        I = longueur / 3.
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1); tt.right(120)
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1)
def floconVonKoch(longueur, n):
    tt.pen(speed = 0) # Accélération du mouvement
    tt.hideturtle() # Pour ne pas tracer la tortue
    tt.up()
    tt.goto(-longueur/2., longueur/3.) # Départ en haut à gauche
    tt.down()
    for i in range(3):
        vonkoch(longueur,n); tt.right(120)
```

 Nous illustrons Flocon de Von Koch avec l'appel suivant : >>> floconVonKoch(300,6)

 Nous illustrons Flocon de Von Koch avec l'appel suivant : >>> floconVonKoch(300,6)

La courbe du dragon

À partir d'un segment [AB] , on construit le point C tel que le triangle ACB dans le sens direct soit isocèle et rectangle en C, et on recommence le procédé pour les segments [AC] et [BC] , etc. . .. La courbe du dragon à la ne étape est la réunion de courbe du dragon d'ordre n -1 construite sur [AC] et de celle d'ordre n - 1 construite sur [BC] .

La figure ci-dessous représente la courbe obtenue pour n=20, A(0,0) et B(1,1).

Indications : On démontrera d'abord que si A a pour coordonnées (x, y) et B pour coordonnées (z, t) les coordonnées de C sont (u, v) avec :

$$u = \frac{x - y + z + t}{2} \quad \text{et} \quad v = \frac{x + y - z + t}{2}.$$

Triangle de Sierpinski

