

Subject A213 Contingencies Intermediate Technical Syllabus

For the 2020 Examinations

October 2019

Aim

The aim of the Contingencies subject is to provide a grounding in the principles of modelling as applied to actuarial work – focusing particularly on deterministic models which can be used to model and value cashflows that are dependent on death, survival, or other uncertain risks.

Competencies

On the successful completion of this subject, the candidate will be able to describe, interpret and discuss mathematical techniques used to model and value cashflows which are contingent on mortality and morbidity risks.

Links to other subjects

Concepts are introduced in:

A111 - Actuarial Statistics

A211 – Financial Mathematics

Topics in this subject are further built upon in:

A214 – Financial Engineering and Loss Reserving

A311 - Actuarial Risk Management

NA311 - Core Actuarial Professional Practice

F101 – Health and Care Principles

F102 – Life Insurance Principles

F104 - Retirement and Related benefits

Syllabus Topics

- 1 Single decrement models (20%)
- 2 Multiple decrement models (20%)
- 3 Pricing and reserving (60%)

The weightings are indicative of the approximate balance of the assessment of this subject between the main syllabus topics, averaged over a number of examination sessions.

The weightings also have a correspondence with the amount of learning material underlying each syllabus topic. However, this will also reflect aspects such as:

- The relative complexity of each topic, and hence the amount of explanation and support required for it
- The need to provide thorough foundation understanding on which to build the other objectives
- The extent of prior knowledge which is expected
- The degree to which each topic area is more knowledge or application based

Skills Level

The use of a specific command verb within a syllabus objective does not indicate that this is the only form of question which can be asked on the topic covered by that objective. The Examiners may ask a question on any syllabus topic using any of the agreed command verbs, as are defined in the document "Command verbs used in the Associate and Fellowship written examinations".

Questions may be set at any skill level: Knowledge (demonstration of a detailed knowledge and understanding of the topic), Application (demonstration of an ability to apply the principles underlying the topic within a given context) and Higher Order (demonstration of an ability to perform deeper analysis and assessment of situations, including forming judgements, taking into account different points of view, comparing and contrasting situations, suggesting possible solutions and actions, and making recommendations).

In the Contingencies subject, the approximate split of assessment across the three skill types is 20% Knowledge, 65% Application and 15% Higher Order skills.

Detailed Syllabus Objectives

1. Single decrement models

- 1.1. Define various assurance and annuity contracts.
 - 1.1.1. Define the following terms:
 - Whole life assurance
 - Term assurance
 - Pure endowment
 - Endowment assurance
 - Whole life level annuity
 - Temporary level annuity
 - Guaranteed level annuity
 - Premium
 - Benefit

including assurance and annuity contracts where benefits are deferred.

- 1.1.2. Describe the operation of conventional with-profits contracts, in which profits are distributed by the use of regular reversionary bonuses, and by terminal bonuses. Describe the benefits payable under the above assurance-type contracts.
- 1.1.3. Describe the operation of conventional unit-linked contracts, in which death benefits can be expressed as a combination of an absolute amount and the value of a unit fund.
- 1.1.4. Describe the operation of accumulating with-profits contracts, in which benefits take the form of an accumulating fund of premiums, where either:
 - the fund is defined in monetary terms, has no explicit charges, and is increased by the addition of regular guaranteed and bonus interest payments plus a terminal bonus; or
 - the fund is defined in terms of the value of a unit fund, is subject to explicit charges, and is increased by regular bonus additions plus a terminal bonus (Unitised with-profits).

In the case of unitised with-profits, the regular additions can take the form of (a) unit price increases (guaranteed and/or discretionary), or (b) allocations of additional units.

In either case a guaranteed minimum monetary death benefit may be applied.

- 1.2. Develop formulae for the means and variances of the payments under various assurance and annuity contracts, assuming a constant deterministic interest rate.
 - 1.2.1. Describe the life table functions l_x and d_x and their select equivalents $l_{[x]+r}$ and $d_{[x]+r}$.
 - 1.2.2. Define the following probabilities: ${}_np_x$, ${}_nq_x$, ${}_{n|m}q_x$, ${}_{n|}q_x$ and their select equivalents ${}_np_{[x]+r}$, ${}_nq_{[x]+r}$, ${}_{n|m}q_{[x]+r}$, ${}_{n|m}q_{[x]+r}$.
 - 1.2.3. Express the probabilities defined in 1.2.2 in terms of life table functions defined in 1.2.1.
 - 1.2.4. Define the assurance and annuity factors and their select and continuous equivalents. Extend the annuity factors to allow for the possibility that payments are more frequent than annual but less frequent than continuous.
 - 1.2.5. Understand and use the relations between annuities payable in advance and in arrear, and between temporary, deferred and whole life annuities.
 - 1.2.6. Understand and use the relations between assurance and annuity factors using equation of value, and their select and continuous equivalents
 - 1.2.7. Obtain expressions in the form of sums/integrals for the mean and variance of the present value of benefit payments under each contract defined in 1.1.1, in terms of the (curtate) random future lifetime, assuming:
 - contingent benefits (constant, increasing or decreasing) are payable at the middle or end of the year of the contingent event or continuously.
 - annuities are paid in advance, in arrear or continuously, and the amount is constant, or increases or decreases by a constant monetary amount or by a fixed or time-dependent variable rate.
 - premiums are payable in advance, in arrear or continuously; and for the full policy term or for a limited period.
 - Where appropriate, simplify the above expressions into a form suitable for evaluation by table look-up or other means.
 - 1.2.8. Define and evaluate the expected accumulations in terms of expected values for the contracts described in 1.1.1 and contract structures described in 1.2.7.

2. Multiple decrement and multiple life models

- 2.1. Define and use assurance and annuity functions involving two lives.
 - 2.1.1. Extend the techniques of objectives 1.2 to deal with cashflows dependent upon the death or survival of either or both of two lives.
 - 2.1.2. Extend the technique of 2.1.1 to deal with functions dependent upon a fixed term as well as age.

- 2.2. Describe and illustrate methods of valuing cashflows that are contingent upon multiple transition events.
 - 2.2.1. Define health insurance, and describe simple health insurance premium and benefit structures.
 - 2.2.2. Explain how a cashflow, contingent upon multiple transition events, may be valued using a multiple-state Markov Model, in terms of the forces and probabilities of transition.
 - 2.2.3. Construct formulae for the expected present values of cashflows that are contingent upon multiple transition events, including simple health insurance premiums and benefits, and calculate these in simple cases. Regular premiums and sickness benefits are payable continuously and assurance benefits are payable immediately on transition.
- 2.3. Describe and use methods of projecting and valuing expected cashflows that are contingent upon multiple decrement events.
 - 2.3.1. Describe the construction and use of multiple decrement tables.
 - 2.3.2. Define a multiple decrement model as a special case of a multiple-state Markov model.
 - 2.3.3. Derive dependent probabilities for a multiple decrement model in terms of given forces of transition, assuming forces of transition are constant over single years of age.
 - 2.3.4. Derive forces of transition from given dependent probabilities, assuming forces of transition are constant over single years of age.

3. Pricing and reserving

- 3.1. Define the gross random future loss under an insurance contract, and state the principle of equivalence.
- 3.2. Describe and calculate gross premiums and reserves for assurance and annuity contracts.
 - 3.2.1. Define and calculate gross premiums for the insurance contract benefits as defined in objective 1.1 under various scenarios, using the equivalence principle or otherwise. This includes scenarios where:
 - Contracts may accept only a single premium
 - Regular premiums and annuity benefits may be payable annually, more frequently than annually, or continuously.
 - Death benefits (which increase or decrease by a constant compound rate or by a constant monetary amount) may be payable at the end of the year of death, or immediately on death.
 - Survival benefits (other than annuities) may be payable at defined intervals other than at maturity.
 - 3.2.2. State why an insurance company will set up reserves.
 - 3.2.3. Define and calculate gross prospective and retrospective reserves.
 - 3.2.4. State the conditions under which in general the prospective reserve is equal to the retrospective reserve allowing for expenses.
 - 3.2.5. Prove that, under the appropriate conditions, the prospective reserve is equal to the retrospective reserve, with or without allowance for expenses, for all fixed benefit and increasing/decreasing benefit contracts.

- 3.2.6. Obtain recursive relationships between successive periodic gross premium reserves, and use this relationship to calculate the profit earned from a contract during the period.
- 3.2.7. Outline the concepts of net premiums and net premium valuation and how they relate to gross premiums and gross premium valuation, respectively.
- 3.3. Define and calculate, for a single policy or a portfolio of policies (as appropriate):
 - death strain at risk
 - expected death strain
 - actual death strain
 - mortality profit

for policies with death benefits payable immediately on death or at the end of the year of death; for policies paying annuity benefits at the start of the year or on survival to the end of the year; and for policies where single or non-single premiums are payable.

- 3.4. Project expected future cashflows for whole life, endowment and term assurances, annuities, unit-linked contracts, and conventional/unitised with-profits contracts, incorporating multiple decrement models as appropriate.
 - 3.4.1. Profit test life insurance contracts of the types listed above and determine the profit vector, the profit signature, the net present value, and the profit marain
 - 3.4.2. Show how a profit test may be used to price a product, and use a profit test to calculate a premium for life insurance contracts of the types listed above.
 - 3.4.3. Show how gross premium reserves can be computed, using the above cashflow projection model, and included as part of profit testing.
- 3.5. Show how, for unit-linked contracts, non-unit reserves can be established to eliminate ("zeroise") future negative cashflows, using a profit test model.

Assessment

Combination of a one hour 45 minute computer based modelling assignment and a two hour written examination.

End of Syllabus

ASSURED LIVES MORTALITY TABLE

AM92

AM92

This table is based on the mortality of assured male lives in the UK during the years 1991, 1992, 1993, and 1994. Full details are given in *C.M.I.R.* **17**.

Due to potential rounding errors at high ages, the commutation functions $(D_x, N_x, S_x, C_x, M_x \text{ and } R_x)$ are tabulated here to age 110 only.

x	$l_{[x]}$	$l_{[x-1]+1}$	l_x	x
17 18 19	9 997.809 1 9 991.890 4 9 986.035 1	9 993.540 0 9 987.633 8	10 000.000 0 9 994.000 0 9 988.063 6	17 18 19
20	9 980.243 2	9 981.791 1	9 982.200 6	20
21	9 974.504 6	9 976.001 6	9 976.390 9	21
22	9 968.839 1	9 970.265 4	9 970.634 6	22
23	9 963.196 7	9 964.582 4	9 964.931 3	23
24	9 957.577 5	9 958.922 5	9 959.261 3	24
25	9 951.991 3	9 953.285 8	9 953.614 4	25
26	9 946.398 2	9 947.662 2	9 947.980 7	26
27	9 940.798 4	9 942.021 8	9 942.340 2	27
28	9 935.181 8	9 936.354 9	9 936.673 0	28
29	9 929.508 8	9 930.661 3	9 930.969 4	29
30	9 923.749 7	9 924.891 6	9 925 209 4	30
31	9 917.914 5	9 919.026 0	9 919 353 5	31
32	9 911.953 8	9 913.054 7	9 913 382 1	32
33	9 905.828 2	9 906.928 5	9 907 265 5	33
34	9 899.498 4	9 900.607 8	9 900 964 5	34
35	9 892.915 1	9 894.053 6	9 894.429 9	35
36	9 886.039 5	9 887.206 9	9 887.612 6	36
37	9 878.812 8	9 880.028 8	9 880.454 0	37
38	9 871.166 5	9 872.450 8	9 872.895 4	38
39	9 863.022 7	9 864.404 7	9 864.868 8	39
40	9 854.303 6	9 855.793 1	9 856.286 3	40
41	9 844.902 5	9 846.538 4	9 847.051 0	41
42	9 834.703 0	9 836.524 5	9 837.066 1	42
43	9 823.599 4	9 825.635 4	9 826.206 0	43
44	9 811.447 3	9 813.746 3	9 814.335 9	44
45	9 798.083 7	9 800.693 9	9 801 312 3	45
46	9 783.337 1	9 786.316 2	9 786 953 4	46
47	9 766.998 3	9 770.423 1	9 771 078 9	47
48	9 748.860 3	9 752.787 4	9 753 471 4	48
49	9 728.649 9	9 733.193 8	9 733 886 5	49
50	9 706.097 7	9 711.352 4	9 712.072 8	50
51	9 680.899 0	9 686.966 9	9 687.714 9	51
52	9 652.696 5	9 659.707 5	9 660.502 1	52
53	9 621.100 6	9 629.211 5	9 630.052 2	53
54	9 585.691 6	9 595.056 3	9 595.971 5	54
55	9 545.992 9	9 556.800 3	9 557.817 9	55
56	9 501.483 9	9 513.937 5	9 515.104 0	56
57	9 451.593 8	9 465.929 3	9 467.290 6	57
58	9 395.697 1	9 412.171 2	9 413.800 4	58
59	9 333.128 4	9 352.016 5	9 354.004 0	59
60	9 263.142 2	9 284.764 1	9 287.216 4	60
61	9 184.968 7	9 209.656 8	9 212.714 3	61
62	9 097.740 5	9 125.881 8	9 129.717 0	62
63	9 000.588 4	9 032.564 2	9 037.397 3	63
64	8 892.574 1	8 928.817 7	8 934.877 1	64

x	$l_{[x]}$	$l_{[x-1]+1}$	l_x	x
65 66 67 68 69	8 772.735 9 8 640.048 1 8 493.518 7 8 332.139 6 8 154.931 8	8 813.688 1 8 686.201 6 8 545.353 2 8 390.161 1 8 219.639 0	8 821.261 2 8 695.619 9 8 557.011 8 8 404.491 6 8 237.132 9	65 66 67 68 69
70 71 72 73 74	7 960.977 6 7 749.465 9 7 519.702 7 7 271.146 1 7 003.521 6	8 032.860 6 7 828.968 6 7 607.240 0 7 367.082 8 7 108.105 2	8 054.054 4 7 854.450 8 7 637.620 8 7 403.008 4 7 150.240 1	70 71 72 73 74
75 76 77 78 79	6 716.823 1 6 411.345 9 6 087.808 4 5 747.362 4 5 391.640 0	6 830.184 4 6 533.500 8 6 218.575 9 5 886.362 8 5 538.279 1	6 879.167 3 6 589.925 8 6 282.980 3 5 959.168 0 5 619.757 7	75 76 77 78 79
80 81 82 83 84	5 022.793 1 4 643.512 9 4 257.005 6 3 866.988 4 3 477.592 9	5 176.222 4 4 802.629 0 4 420.452 5 4 033.146 7 3 644.632 7	5 266.460 4 4 901.478 9 4 527.496 0 4 147.670 8 3 765.599 8	80 81 82 83 84
85 86 87 88 89	3 093.286 3 2 718.712 8 2 358.529 9 2 017.229 8 1 698.908 9	3 259.186 2 2 881.346 7 2 515.731 0 2 166.880 5 1 839.045 8	3 385.247 9 3 010.839 5 2 646.741 6 2 297.297 6 1 966.649 9	85 86 87 88 89
90 91 92 93 94	1 407.055 0	1 535.980 1 1 260.735 4	1 658.554 5 1 376.190 6 1 121.988 9 897.502 5 703.324 2	90 91 92 93 94
95 96 97 98 99			539.064 3 403.402 3 294.206 1 208.706 0 143.712 0	95 96 97 98 99
100 101 102 103 104			95.847 6 61.773 3 38.379 6 22.928 4 13.135 9	100 101 102 103 104
105 106 107 108 109			7.196 8 3.759 6 1.866 9 0.878 4 0.390 3	105 106 107 108 109
110 111 112 113 114			0.163 2 0.064 0 0.023 4 0.008 0 0.002 5	110 111 112 113 114
115 116 117 118 119			0.000 7 0.000 2 0.000 0 0.000 0 0.000 0	115 116 117 118 119
120			0.000 0	120

x	$d_{[x]}$	$d_{[x-1]+1}$	d_x	x
17 18 19	4.269 1 4.256 5 4.244 1	5.476 5 5.433 3	6.000 0 5.936 4 5.863 0	17 18 19
20	4.241 6	5.400 1	5.809 6	20
21	4.239 2	5.367 1	5.756 4	21
22	4.256 7	5.334 1	5.703 2	22
23	4.274 2	5.321 1	5.670 0	23
24	4.291 7	5.308 1	5.646 9	24
25	4.329 1	5.305 1	5.633 7	25
26	4.376 4	5.322 0	5.640 5	26
27	4.443 5	5.348 8	5.667 1	27
28	4.520 5	5.385 5	5.703 7	28
29	4.617 2	5.451 9	5.760 0	29
30	4.723 7	5.538 1	5.855 9	30
31	4.859 8	5.643 9	5.971 5	31
32	5.025 4	5.789 2	6.116 6	32
33	5.220 4	5.964 0	6.301 0	33
34	5.444 7	6.178 0	6.534 6	34
35	5.708 2	6.441 0	6.817 3	35
36	6.010 7	6.753 0	7.158 6	36
37	6.362 0	7.133 4	7.558 5	37
38	6.761 7	7.582 0	8.026 7	38
39	7.229 6	8.118 4	8.582 4	39
40	7.765 2	8.742 1	9.235 3	40
41	8.378 0	9.472 4	9.984 9	41
42	9.067 6	10.318 5	10.860 1	42
43	9.853 1	11.299 5	11.870 1	43
44	10.753 3	12.434 0	13.023 6	44
45	11.767 5	13.740 6	14.358 9	45
46	12.914 0	15.237 3	15.874 4	46
47	14.211 0	16.951 7	17.607 5	47
48	15.666 4	18.900 9	19.585 0	48
49	17.297 5	21.121 0	21.813 6	49
50	19.130 7	23.637 4	24.357 9	50
51	21.191 5	26.464 8	27.212 8	51
52	23.485 0	29.655 3	30.449 9	52
53	26.044 3	33.240 0	34.080 8	53
54	28.891 3	37.238 4	38.153 6	54
55	32.055 4	41.696 3	42.713 9	55
56	35.554 6	46.646 8	47.813 4	56
57	39.422 6	52.128 9	53.490 2	57
58	43.680 6	58.167 2	59.796 5	58
59	48.364 3	64.800 1	66.787 6	59
60	53.485 4	72.049 8	74.502 0	60
61	59.086 9	79.939 8	82.997 3	61
62	65.176 2	88.484 6	92.319 7	62
63	71.770 7	97.687 2	102.520 2	63
64	78.886 0	107.556 5	113.615 9	64

x	$d_{[x]}$	$d_{[x-1]+1}$	d_x	x
65 66 67 68 69	86.534 3 94.694 9 103.357 6 112.500 5 122.071 2	118.068 2 129.189 9 140.861 6 153.028 1 165.584 6	125.641 2 138.608 2 152.520 2 167.358 6 183.078 5	65 66 67 68 69
70 71 72 73 74	132.008 9 142.225 9 152.619 9 163.040 9 173.337 2	178.409 8 191.347 8 204.231 6 216.842 7 228.937 9	199.603 6 216.830 0 234.612 4 252.768 3 271.072 8	70 71 72 73 74
75 76 77 78 79	183.322 3 192.769 9 201.445 6 209.083 3 215.417 6	240.258 6 250.520 6 259.407 9 266.605 1 271.818 7	289.241 5 306.945 6 323.812 2 339.410 4 353.297 3	75 76 77 78 79
80 81 82 83 84	220.164 1 223.060 4 223.858 9 222.355 7 218.406 7	274.743 5 275.133 0 272.781 7 267.546 8 259.384 9	364.981 5 373.982 8 379.825 2 382.071 0 380.351 9	80 81 82 83 84
85 86 87 88 89	211.939 6 202.981 8 191.649 4 178.183 9 162.928 8	248.346 7 234.605 0 218.433 4 200.230 6 180.491 3	374.408 4 364.097 8 349.444 0 330.647 8 308.095 4	85 86 87 88 89
90 91 92 93 94	146.319 7	159.789 5 138.746 4	282.363 9 254.201 7 224.486 4 194.178 3 164.260 0	90 91 92 93 94
95 96 97 98 99			135.662 0 109.196 2 85.500 1 64.994 0 47.864 4	95 96 97 98 99
100 101 102 103 104			34.074 3 23.393 7 15.451 2 9.792 5 5.939 1	100 101 102 103 104
105 106 107 108 109			3.437 3 1.892 7 .988 5 .488 1 .227 1	105 106 107 108 109
110 111 112 113 114			.099 2 .040 5 .015 4 .005 5 .001 8	110 111 112 113 114
115 116 117 118 119			.000 5 .000 1 .000 0 .000 0 .000 0	115 116 117 118 119
120			.000 0	120

x	$q_{[x]}$	$q_{[x-1]+1}$	q_x	x
17 18 19	.000 427 .000 426 .000 425	.000 548 .000 544	.000 600 .000 594 .000 587	17 18 19
20	.000 425	.000 541	.000 582	20
21	.000 425	.000 538	.000 577	21
22	.000 427	.000 535	.000 572	22
23	.000 429	.000 534	.000 569	23
24	.000 431	.000 533	.000 567	24
25	.000 435	.000 533	.000 566	25
26	.000 440	.000 535	.000 567	26
27	.000 447	.000 538	.000 570	27
28	.000 455	.000 542	.000 574	28
29	.000 465	.000 549	.000 580	29
30	.000 476	.000 558	.000 590	30
31	.000 490	.000 569	.000 602	31
32	.000 507	.000 584	.000 617	32
33	.000 527	.000 602	.000 636	33
34	.000 550	.000 624	.000 660	34
35	.000 577	.000 651	.000 689	35
36	.000 608	.000 683	.000 724	36
37	.000 644	.000 722	.000 765	37
38	.000 685	.000 768	.000 813	38
39	.000 733	.000 823	.000 870	39
40	.000 788	.000 887	.000 937	40
41	.000 851	.000 962	.001 014	41
42	.000 922	.001 049	.001 104	42
43	.001 003	.001 150	.001 208	43
44	.001 096	.001 267	.001 327	44
45	.001 201	.001 402	.001 465	45
46	.001 320	.001 557	.001 622	46
47	.001 455	.001 735	.001 802	47
48	.001 607	.001 938	.002 008	48
49	.001 778	.002 170	.002 241	49
50	.001 971	.002 434	.002 508	50
51	.002 189	.002 732	.002 809	51
52	.002 433	.003 070	.003 152	52
53	.002 707	.003 452	.003 539	53
54	.003 014	.003 881	.003 976	54
55	.003 358	.004 363	.004 469	55
56	.003 742	.004 903	.005 025	56
57	.004 171	.005 507	.005 650	57
58	.004 649	.006 180	.006 352	58
59	.005 182	.006 929	.007 140	59
60	.005 774	.007 760	.008 022	60
61	.006 433	.008 680	.009 009	61
62	.007 164	.009 696	.010 112	62
63	.007 974	.010 815	.011 344	63
64	.008 871	.012 046	.012 716	64

x	$q_{[x]}$	$q_{[x-1]+1}$	q_x	x
65 66 67 68 69	.009 864 .010 960 .012 169 .013 502 .014 969	.013 396 .014 873 .016 484 .018 239 .020 145	.014 243 .015 940 .017 824 .019 913 .022 226	65 66 67 68 69
70 71 72 73 74	.016 582 .018 353 .020 296 .022 423 .024 750	.022 210 .024 441 .026 847 .029 434 .032 208	.024 783 .027 606 .030 718 .034 144 .037 911	70 71 72 73 74
75 76 77 78 79	.027 293 .030 067 .033 090 .036 379 .039 954	.035 176 .038 344 .041 715 .045 292 .049 080	.042 046 .046 578 .051 538 .056 956 .062 867	75 76 77 78 79
80 81 82 83 84	.043 833 .048 037 .052 586 .057 501 .062 804	.053 078 .057 288 .061 709 .066 337 .071 169	.069 303 .076 300 .083 893 .092 117 .101 007	80 81 82 83 84
85 86 87 88 89	.068 516 .074 661 .081 258 .088 331 .095 902	.076 199 .081 422 .086 827 .092 405 .098 144	.110 600 .120 929 .132 028 .143 929 .156 660	85 86 87 88 89
90 91 92 93 94	.103 990	.104 031 .110 052	.170 247 .184 714 .200 079 .216 354 .233 548	90 91 92 93 94
95 96 97 98 99			.251 662 .270 688 .290 613 .311 414 .333 058	95 96 97 98 99
100 101 102 103 104			.355 505 .378 702 .402 588 .427 090 .452 127	100 101 102 103 104
105 106 107 108 109			.477 608 .503 432 .529 493 .555 674 .581 857	105 106 107 108 109
110 111 112 113 114			.607 918 .633 731 .659 171 .684 114 .708 442	110 111 112 113 114
115 116 117 118 119			.732 042 .754 809 .776 648 .797 477 .817 225	115 116 117 118 119
120			1.000 000	120

x	$\mu_{[x]}$	$\mu_{[x-1]+1}$	μ_x	x
17 18 19	0.000 367 0.000 367 0.000 367	0.000 488 0.000 485	0.000 603 0.000 597 0.000 591	17 18 19
20	0.000 369	0.000 483	0.000 585	20
21	0.000 370	0.000 482	0.000 580	21
22	0.000 374	0.000 480	0.000 574	22
23	0.000 377	0.000 481	0.000 570	23
24	0.000 380	0.000 481	0.000 568	24
25	0.000 385	0.000 482	0.000 566	25
26	0.000 391	0.000 485	0.000 566	26
27	0.000 400	0.000 489	0.000 568	27
28	0.000 408	0.000 495	0.000 572	28
29	0.000 419	0.000 502	0.000 577	29
30	0.000 430	0.000 512	0.000 585	30
31	0.000 443	0.000 523	0.000 596	31
32	0.000 460	0.000 537	0.000 609	32
33	0.000 479	0.000 555	0.000 626	33
34	0.000 500	0.000 576	0.000 647	34
35	0.000 524	0.000 601	0.000 674	35
36	0.000 551	0.000 630	0.000 706	36
37	0.000 582	0.000 665	0.000 744	37
38	0.000 616	0.000 706	0.000 788	38
39	0.000 656	0.000 754	0.000 840	39
40	0.000 701	0.000 810	0.000 902	40
41	0.000 752	0.000 875	0.000 974	41
42	0.000 808	0.000 950	0.001 057	42
43	0.000 871	0.001 037	0.001 154	43
44	0.000 943	0.001 136	0.001 265	44
45	0.001 023	0.001 250	0.001 394	45
46	0.001 113	0.001 380	0.001 541	46
47	0.001 214	0.001 529	0.001 709	47
48	0.001 326	0.001 698	0.001 902	48
49	0.001 451	0.001 890	0.002 122	49
50	0.001 592	0.002 108	0.002 372	50
51	0.001 750	0.002 354	0.002 656	51
52	0.001 925	0.002 633	0.002 978	52
53	0.002 122	0.002 947	0.003 343	53
54	0.002 342	0.003 300	0.003 756	54
55	0.002 588	0.003 696	0.004 221	55
56	0.002 862	0.004 139	0.004 747	56
57	0.003 170	0.004 636	0.005 340	57
58	0.003 513	0.005 189	0.006 005	58
59	0.003 898	0.005 806	0.006 754	59
60	0.004 327	0.006 493	0.007 593	60
61	0.004 809	0.007 254	0.008 533	61
62	0.005 348	0.008 099	0.009 586	62
63	0.005 949	0.009 032	0.010 763	63
64	0.006 623	0.010 063	0.012 078	64

x	$\mu_{[x]}$	$\mu_{[x-1]+1}$	μ_x	x
65 66 67 68 69	0.007 377 0.008 220 0.009 162 0.010 216 0.011 393	0.011 199 0.012 449 0.013 821 0.015 326 0.016 972	0.013 544 0.015 176 0.016 993 0.019 012 0.021 255	65 66 67 68 69
70 71 72 73 74	0.012 709 0.014 178 0.015 819 0.017 648 0.019 687	0.018 771 0.020 733 0.022 869 0.025 190 0.027 708	0.023 741 0.026 496 0.029 543 0.032 912 0.036 631	70 71 72 73 74
75 76 77 78 79	0.021 959 0.024 487 0.027 300 0.030 423 0.033 892	0.030 436 0.033 385 0.036 569 0.040 000 0.043 691	0.040 732 0.045 251 0.050 223 0.055 689 0.061 689	75 76 77 78 79
80 81 82 83 84	0.037 737 0.041 996 0.046 709 0.051 916 0.057 665	0.047 656 0.051 909 0.056 462 0.061 329 0.066 524	0.068 271 0.075 481 0.083 372 0.091 999 0.101 417	80 81 82 83 84
85 86 87 88 89	0.064 000 0.070 978 0.078 646 0.087 067 0.096 302	0.072 061 0.077 952 0.084 213 0.090 853 0.097 889	0.111 691 0.122 884 0.135 066 0.148 309 0.162 691	85 86 87 88 89
90 91 92 93 94	0.106 409	0.105 333 0.113 198	0.178 289 0.195 190 0.213 482 0.233 257 0.254 610	90 91 92 93 94
95 96 97 98 99			0.277 645 0.302 462 0.329 170 0.357 882 0.388 711	95 96 97 98 99
100 101 102 103 104			0.421 777 0.457 202 0.495 111 0.535 631 0.578 890	100 101 102 103 104
105 106 107 108 109			0.625 023 0.674 162 0.726 443 0.782 002 0.840 973	105 106 107 108 109
110 111 112 113 114			0.903 494 0.969 700 1.039 723 1.113 695 1.191 744	110 111 112 113 114
115 116 117 118 119			1.274 000 1.360 581 1.451 603 1.547 178 1.647 417	115 116 117 118 119
120			2.000 000	120

x	$e_{[x]}$	$e_{[x-1]+1}$	e_x	x
17 18 19	61.353 60.389 59.424	60.379 59.414	61.339 60.376 59.412	17 18 19
20	58.458	58.449	58.447	20
21	57.492	57.483	57.481	21
22	56.524	56.516	56.514	22
23	55.556	55.548	55.546	23
24	54.587	54.580	54.578	24
25	53.618	53.611	53.609	25
26	52.648	52.641	52.639	26
27	51.677	51.671	51.669	27
28	50.706	50.700	50.699	28
29	49.735	49.729	49.728	29
30	48.764	48.758	48.757	30
31	47.792	47.787	47.785	31
32	46.821	46.816	46.814	32
33	45.850	45.845	45.843	33
34	44.879	44.874	44.872	34
35	43.909	43.904	43.902	35
36	42.939	42.934	42.932	36
37	41.970	41.965	41.963	37
38	41.003	40.997	40.995	38
39	40.036	40.031	40.029	39
40	39.071	39.066	39.064	40
41	38.108	38.102	38.100	41
42	37.148	37.141	37.139	42
43	36.189	36.182	36.180	43
44	35.234	35.226	35.224	44
45	34.282	34.273	34.271	45
46	33.333	33.323	33.321	46
47	32.388	32.377	32.375	47
48	31.448	31.436	31.433	48
49	30.513	30.499	30.497	49
50	29.583	29.567	29.565	50
51	28.660	28.642	28.639	51
52	27.742	27.722	27.720	52
53	26.833	26.810	26.808	53
54	25.931	25.905	25.903	54
55	25.037	25.009	25.006	55
56	24.153	24.122	24.119	56
57	23.279	23.244	23.240	57
58	22.415	22.376	22.373	58
59	21.563	21.520	21.516	59
60	20.724	20.676	20.670	60
61	19.897	19.844	19.837	61
62	19.084	19.026	19.018	62
63	18.286	18.222	18.212	63
64	17.503	17.433	17.421	64

x	$e_{[x]}$	$e_{[x-1]+1}$	$e_{_{\chi}}$	x
65 66 67 68 69	16.736 15.987 15.255 14.541 13.847	16.660 15.903 15.164 14.443 13.740	16.645 15.886 15.143 14.418 13.711	65 66 67 68 69
70 71 72 73 74	13.172 12.517 11.883 11.270 10.679	13.057 12.394 11.751 11.129 10.529	13.023 12.354 11.704 11.075 10.467	70 71 72 73 74
75 76 77 78 79	10.110 9.562 9.037 8.534 8.053	9.950 9.393 8.859 8.346 7.856	9.879 9.313 8.768 8.244 7.742	75 76 77 78 79
80 81 82 83 84	7.594 7.157 6.741 6.347 5.974	7.388 6.942 6.518 6.116 5.734	7.261 6.802 6.364 5.947 5.550	80 81 82 83 84
85 86 87 88 89	5.620 5.287 4.972 4.676 4.397	5.374 5.034 4.713 4.412 4.129	5.174 4.817 4.480 4.161 3.861	85 86 87 88 89
90 91 92 93 94	4.136	3.864 3.616	3.578 3.312 3.063 2.829 2.610	90 91 92 93 94
95 96 97 98 99			2.405 2.214 2.035 1.869 1.715	95 96 97 98 99
100 101 102 103 104			1.571 1.437 1.314 1.199 1.093	100 101 102 103 104
105 106 107 108 109			0.994 0.904 0.820 0.743 0.672	105 106 107 108 109
110 111 112 113 114			0.606 0.546 0.491 0.440 0.394	110 111 112 113 114
115 116 117 118 119			0.352 0.313 0.277 0.240 0.183	115 116 117 118 119
120			0.000	120

4	0/
4	"/

x	$D_{[x]}$	$D_{[x-1]+1}$	D_x	x
17 18 19	5 132.61 4 932.28 4 739.80	4 933.09 4 740.55	5 133.73 4 933.32 4 740.76	17 18 19
20	4 554.85	4 555.56	4 555.75	20
21	4 377.15	4 377.80	4 377.98	21
22	4 206.41	4 207.01	4 207.16	22
23	4 042.33	4 042.89	4 043.04	23
24	3 884.66	3 885.19	3 885.32	24
25	3 733.16	3 733.64	3 733.77	25
26	3 587.56	3 588.01	3 588.13	26
27	3 447.63	3 448.06	3 448.17	27
28	3 313.16	3 313.55	3 313.66	28
29	3 183.91	3 184.28	3 184.38	29
30	3 059.68	3 060.03	3 060.13	30
31	2 940.27	2 940.60	2 940.69	31
32	2 825.48	2 825.79	2 825.89	32
33	2 715.13	2 715.43	2 715.52	33
34	2 609.03	2 609.33	2 609.42	34
35	2 507.02	2 507.31	2 507.40	35
36	2 408.92	2 409.20	2 409.30	36
37	2 314.57	2 314.86	2 314.96	37
38	2 223.83	2 224.12	2 224.22	38
39	2 136.53	2 136.83	2 136.93	39
40	2 052.54	2 052.85	2 052.96	40
41	1 971.72	1 972.04	1 972.15	41
42	1 893.92	1 894.27	1 894.37	42
43	1 819.02	1 819.40	1 819.50	43
44	1 746.89	1 747.30	1 747.41	44
45	1 677.42	1 677.86	1 677.97	45
46	1 610.47	1 610.96	1 611.07	46
47	1 545.95	1 546.49	1 546.59	47
48	1 483.73	1 484.32	1 484.43	48
49	1 423.70	1 424.37	1 424.47	49
50	1 365.77	1 366.51	1 366.61	50
51	1 309.83	1 310.65	1 310.75	51
52	1 255.78	1 256.70	1 256.80	52
53	1 203.53	1 204.55	1 204.65	53
54	1 152.98	1 154.11	1 154.22	54
55	1 104.05	1 105.30	1 105.41	55
56	1 056.63	1 058.02	1 058.15	56
57	1 010.66	1 012.19	1 012.34	57
58	966.04	967.73	967.90	58
59	922.70	924.57	924.76	59
60	880.56	882.61	882.85	60
61	839.55	841.80	842.08	61
62	799.59	802.06	802.40	62
63	760.62	763.33	763.74	63
64	722.59	725.54	726.03	64

x	$D_{[x]}$	$D_{[x-1]+1}$	D_x	x	4%
65	685.44	688.64	689.23	65	
66	649.11	652.57	653.28	66	
67	613.56	617.30	618.14	67	
68	578.75	582.78	583.77	68	
69	544.65	548.97	550.14	69	
70	511.25	515.87	517.23	70	
71	478.53	483.43	485.01	71	
72	446.48	451.68	453.48	72	
73 74	415.12 384.46	420.59 390.20	422.64 392.51	73 74	
75	354.54	360.52	363.11	75	
76	325.40	331.60	334.46	76	
77	297.09	303.48	306.62	77	
78	269.69	276.21	279.63	78	
79	243.27	249.89	253.56	79	
80	217.91	224.57	228.48	80	
81	193.71	200.35	204.47	81	
82	170.75	177.31	181.60	82	
83	149.14	155.55	159.97	83	
84	128.97	135.16	139.65	84	
85	110.30	116.22	120.71	85	
86	93.22	98.79	103.23	86	
87	77.76	82.94	87.26	87	
88	63.95	68.69	72.83	88	
89	51.78	56.06	59.95	89	
90	41.24	45.02	48.61	90	
91		35.53	38.78	91	
92 93			30.40	92 93	
93 94			23.38 17.62	93 94	
95			12.99	95	
96			9.34	96	
97 98			6.55 4.47	97 98	
99			2.96	99	
100			1.90	100	
101			1.18	101	
102 103			.70 .40	102 103	
103			.22	103	
105			.12	105	
106 107			.06 .03	106 107	
107			.03	107	
109			.01	109	
110			.00	110	

			AM92		
4%	x	$N_{[x]}$	$N_{[x-1]+1}$	N_x	x
	17 18 19	119 958.58 114 824.96 109 891.73	114 825.98 109 892.68	119 959.94 114 826.20 109 892.88	17 18 19
	20	105 151.06	105 151.94	105 152.13	20
	21	100 595.40	100 596.21	100 596.38	21
	22	96 217.50	96 218.25	96 218.40	22
	23	92 010.40	92 011.10	92 011.24	23
	24	87 967.43	87 968.07	87 968.21	24
	25	84 082.16	84 082.76	84 082.88	25
	26	80 348.43	80 349.00	80 349.12	26
	27	76 760.35	76 760.88	76 760.99	27
	28	73 312.22	73 312.71	73 312.82	28
	29	69 998.60	69 999.06	69 999.16	29
	30	66 814.23	66 814.68	66 814.78	30
	31	63 754.13	63 754.56	63 754.65	31
	32	60 813.46	60 813.87	60 813.96	32
	33	57 987.58	57 987.98	57 988.07	33
	34	55 272.07	55 272.45	55 272.55	34
	35	52 662.65	52 663.03	52 663.13	35
	36	50 155.24	50 155.63	50 155.73	36
	37	47 745.94	47 746.33	47 746.43	37
	38	45 430.98	45 431.37	45 431.47	38
	39	43 206.74	43 207.15	43 207.25	39
	40	41 069.80	41 070.21	41 070.31	40
	41	39 016.82	39 017.25	39 017.36	41
	42	37 044.65	37 045.10	37 045.21	42
	43	35 150.25	35 150.73	35 150.84	43
	44	33 330.72	33 331.23	33 331.34	44
	45	31 583.27	31 583.82	31 583.93	45
	46	29 905.26	29 905.86	29 905.96	46
	47	28 294.14	28 294.79	28 294.89	47
	48	26 747.50	26 748.20	26 748.30	48
	49	25 263.01	25 263.77	25 263.87	49
	50	23 838.46	23 839.30	23 839.41	50
	51	22 471.77	22 472.69	22 472.79	51
	52	21 160.92	21 161.94	21 162.04	52
	53	19 904.01	19 905.14	19 905.24	53
	54	18 699.23	18 700.48	18 700.59	54
	55	17 544.87	17 546.25	17 546.37	55
	56	16 439.29	16 440.82	16 440.95	56
	57	15 380.96	15 382.66	15 382.81	57
	58	14 368.41	14 370.30	14 370.47	58
	59	13 400.27	13 402.37	13 402.57	59
	60	12 475.24	12 477.57	12 477.80	60
	61	11 592.08	11 594.68	11 594.96	61
	62	10 749.66	10 752.54	10 752.88	62
	63	9 946.87	9 950.07	9 950.48	63
	64	9 182.71	9 186.25	9 186.74	64

x	$N_{[x]}$	$N_{[x-1]+1}$	N_x	x	4%
65 66 67 68 69	8 456.21 7 766.46 7 112.62 6 493.86 5 909.43	8 460.12 7 770.77 7 117.36 6 499.06 5 915.12	8 460.71 7 771.48 7 118.20 6 500.06 5 916.29	65 66 67 68 69	
70 71 72 73 74	5 358.59 4 840.63 4 354.86 3 900.59 3 477.14	5 364.78 4 847.34 4 362.10 3 908.38 3 485.47	5 366.14 4 848.92 4 363.91 3 910.43 3 487.78	70 71 72 73 74	
75 76 77 78 79	3 083.84 2 719.96 2 384.76 2 077.47 1 797.25	3 092.69 2 729.30 2 394.56 2 087.67 1 807.78	3 095.27 2 732.16 2 397.70 2 091.08 1 811.45	75 76 77 78 79	
80 81 82 83 84	1 543.20 1 314.35 1 109.67 928.03 768.19	1 553.98 1 325.29 1 120.65 938.92 778.88	1 557.89 1 329.41 1 124.94 943.34 783.37	80 81 82 83 84	
85 86 87 88 89	628.87 508.67 406.14 319.75 247.93	639.22 518.57 415.45 328.38 255.80	643.72 523.01 419.77 332.51 259.69	85 86 87 88 89	
90 91 92 93 94	189.12	196.15 147.88	199.74 151.13 112.35 81.95 58.56	90 91 92 93 94	
95 96 97 98 99			40.94 27.95 18.61 12.06 7.59	95 96 97 98 99	
100 101 102 103 104			4.63 2.73 1.55 .85 .45	100 101 102 103 104	
105 106 107 108 109			.23 .11 .05 .02 .01	105 106 107 108 109	
110			.00	110	

x	$S_{[x]}$	$S_{[x-1]+1}$	S_x	x
17 18 19	2 398 085.62 2 278 125.81 2 163 299.72	2 278 127.03 2 163 300.85	2 398 087.20 2 278 127.26 2 163 301.06	17 18 19
20	2 053 406.94	2 053 407.99	2 053 408.17	20
21	1 948 254.91	1 948 255.88	1 948 256.05	21
22	1 847 658.63	1 847 659.51	1 847 659.67	22
23	1 751 440.30	1 751 441.12	1 751 441.27	23
24	1 659 429.12	1 659 429.89	1 659 430.03	24
25	1 571 460.98	1 571 461.70	1 571 461.82	25
26	1 487 378.14	1 487 378.82	1 487 378.94	26
27	1 407 029.07	1 407 029.71	1 407 029.82	27
28	1 330 268.14	1 330 268.73	1 330 268.83	28
29	1 256 955.35	1 256 955.92	1 256 956.02	29
30	1 186 956.21	1 186 956.76	1 186 956.85	30
31	1 120 141.46	1 120 141.98	1 120 142.07	31
32	1 056 386.83	1 056 387.32	1 056 387.42	32
33	995 572.87	995 573.36	995 573.46	33
34	937 584.81	937 585.29	937 585.38	34
35	882 312.25	882 312.74	882 312.84	35
36	829 649.12	829 649.61	829 649.71	36
37	779 493.40	779 493.88	779 493.98	37
38	731 746.96	731 747.45	731 747.56	38
39	686 315.48	686 315.99	686 316.09	39
40	643 108.22	643 108.74	643 108.84	40
41	602 037.89	602 038.43	602 038.53	41
42	563 020.51	563 021.07	563 021.17	42
43	525 975.27	525 975.86	525 975.96	43
44	490 824.40	490 825.02	490 825.13	44
45	457 493.03	457 493.69	457 493.79	45
46	425 909.06	425 909.76	425 909.86	46
47	396 003.05	396 003.80	396 003.90	47
48	367 708.11	367 708.91	367 709.01	48
49	340 959.74	340 960.61	340 960.71	49
50	315 695.79	315 696.73	315 696.84	50
51	291 856.30	291 857.33	291 857.43	51
52	269 383.41	269 384.53	269 384.64	52
53	248 221.26	248 222.49	248 222.60	53
54	228 315.88	228 317.24	228 317.35	54
55	209 615.14	209 616.65	209 616.77	55
56	192 068.59	192 070.27	192 070.40	56
57	175 627.43	175 629.30	175 629.44	57
58	160 244.38	160 246.47	160 246.64	58
59	145 873.64	145 875.97	145 876.17	59
60	132 470.75	132 473.37	132 473.60	60
61	119 992.59	119 995.52	119 995.80	61
62	108 397.21	108 400.50	108 400.84	62
63	97 643.87	97 647.55	97 647.96	63
64	87 692.86	87 696.99	87 697.49	64

x	$S_{[x]}$	$S_{[x-1]+1}$	S_x	x	4%
65 66 67 68 69	78 505.54 70 044.17 62 271.97 55 152.99 48 652.08	78 510.15 70 049.32 62 277.71 55 159.35 48 659.12	78 510.74 70 050.03 62 278.55 55 160.35 48 660.29	65 66 67 68 69	
70 71 72 73 74	42 734.88 37 367.77 32 517.84 28 152.89 24 241.39	42 742.64 37 376.29 32 527.14 28 162.99 24 252.30	42 744.01 37 377.86 32 528.95 28 165.04 24 254.61	70 71 72 73 74	
75 76 77 78 79	20 752.53 17 656.21 14 923.03 12 524.40 10 432.48	20 764.24 17 668.69 14 936.25 12 538.27 10 446.93	20 766.83 17 671.56 14 939.39 12 541.69 10 450.60	75 76 77 78 79	
80 81 82 83 84	8 620.33 7 061.91 5 732.17 4 607.11 3 663.90	8 635.24 7 077.14 5 747.56 4 622.49 3 679.09	8 639.15 7 081.26 5 751.85 4 626.91 3 683.57	80 81 82 83 84	
85 86 87 88 89	2 880.92 2 237.83 1 715.71 1 297.05 965.85	2 895.71 2 252.05 1 729.16 1 309.57 977.30	2 900.21 2 256.49 1 733.48 1 313.71 981.19	85 86 87 88 89	
90 91 92 93 94	707.63	717.91 518.51	721.51 521.76 370.63 258.28 176.34	90 91 92 93 94	
95 96 97 98 99			117.78 76.84 48.88 30.28 18.22	95 96 97 98 99	
100 101 102 103 104			10.63 6.00 3.27 1.72 .87	100 101 102 103 104	
105 106 107 108 109			.42 .19 .09 .04	105 106 107 108 109	
110			.01	110	

		ANIT			
x	C_x x	$C_{[x-1]+1}$	$C_{[x]}$	x	4%
17 18 19	2.82 18	2.60 2.48	2.11 2.02 1.94	17 18 19	
20 21 22 23 24	2.43 21 2.31 22 2.21 23	2.37 2.26 2.16 2.08 1.99	1.86 1.79 1.73 1.67 1.61	20 21 22 23 24	
25 26 27 28 29	1.96 26 1.89 27 1.83 28	1.91 1.85 1.78 1.73 1.68	1.56 1.52 1.48 1.45 1.42	25 26 27 28 29	
30 31 32 33 34	1.70 31 1.68 32 1.66 33	1.64 1.61 1.59 1.57 1.57	1.40 1.39 1.38 1.38 1.38	30 31 32 33 34	
35 36 37 38 39	1.68 36 1.70 37 1.74 38	1.57 1.58 1.61 1.64 1.69	1.39 1.41 1.43 1.46 1.51	35 36 37 38 39	
40 41 42 43 44	1.92 41 2.01 42 2.11 43	1.75 1.82 1.91 2.01 2.13	1.56 1.61 1.68 1.75 1.84	40 41 42 43 44	
45 46 47 48 49	2.51 46 2.68 47 2.87 48	2.26 2.41 2.58 2.77 2.97	1.94 2.04 2.16 2.29 2.43	45 46 47 48 49	
50 51 52 53 54	3.54 51 3.81 52 4.10 53	3.20 3.44 3.71 4.00 4.31	2.59 2.76 2.94 3.13 3.34	50 51 52 53 54	
55 56 57 58 59	5.11 56 5.50 57 5.91 58	4.64 4.99 5.36 5.75 6.16	3.56 3.80 4.05 4.32 4.60	55 56 57 58 59	
60 61 62 63 64	7.29 61 7.80 62 8.33 63	6.59 7.03 7.48 7.94 8.40	4.89 5.19 5.51 5.83 6.16	60 61 62 63 64	
	1.68 1.70 1.79 1.85 1.92 2.01 2.11 2.13 2.23 2.36 2.51 2.68 2.87 3.07 3.30 3.54 3.54 3.54 4.10 4.41 4.75 5.11 5.50 5.91 6.35 6.81 7.29 7.80 8.33	1.58 1.61 1.64 1.69 1.75 1.82 1.91 2.01 2.13 2.26 2.41 2.58 2.77 2.97 3.20 3.44 3.71 4.00 4.31 4.64 4.99 5.36 5.75 6.16 6.59 7.03 7.48 7.94	1.41 1.43 1.46 1.51 1.56 1.61 1.68 1.75 1.84 1.94 2.04 2.16 2.29 2.43 2.59 2.76 2.94 3.13 3.34 3.56 3.80 4.05 4.32 4.60 4.89 5.19 5.83	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	

x	$C_{[x]}$	$C_{[x-1]+1}$	C_x	x	4%
65 66 67 68 69	6.50 6.84 7.18 7.51 7.84	8.87 9.33 9.78 10.22 10.63	9.44 10.01 10.59 11.18 11.76	65 66 67 68 69	
70 71 72 73 74	8.15 8.44 8.71 8.95 9.15	11.02 11.36 11.66 11.90 12.08	12.33 12.87 13.39 13.88 14.31	70 71 72 73 74	
75 76 77 78 79	9.30 9.41 9.45 9.43 9.35	12.19 12.23 12.17 12.03 11.79	14.68 14.98 15.19 15.31 15.33	75 76 77 78 79	
80 81 82 83 84	9.18 8.95 8.63 8.25 7.79	11.46 11.04 10.52 9.92 9.25	15.23 15.00 14.65 14.17 13.56	80 81 82 83 84	
85 86 87 88 89	7.27 6.69 6.08 5.43 4.78	8.52 7.73 6.92 6.10 5.29	12.84 12.00 11.08 10.08 9.03	85 86 87 88 89	
90 91 92 93 94	4.12	4.50 3.76	7.96 6.89 5.85 4.86 3.96	90 91 92 93 94	
95 96 97 98 99			3.14 2.43 1.83 1.34 .95	95 96 97 98 99	
100 101 102 103 104			.65 .43 .27 .17	100 101 102 103 104	
105 106 107 108 109			.05 .03 .01 .01	105 106 107 108 109	
110			.00	110	

			11111/2		
4%	x	$M_{[x]}$	$M_{[x-1]+1}$	M_x	x
	17	518.82		519.89	17
	18	515.93	516.71	516.93	18
	19	513.19	513.91	514.11	19
	20	510.58	511.25	511.43	20
	21	508.09	508.72	508.88	21
	22	505.73	506.31	506.46	22
	23	503.47	504.01	504.14	23
	24	501.30	501.80	501.93	24
	25	499.23	499.69	499.81	25
	26	497.23	497.67	497.78	26
	27 28	495.31 493.46	495.72 493.83	495.82 493.93	27 28
	28 29	493.46	493.83	493.93	28 29
	30	489.90	490.23	490.33	30
	31 32	488.19 486.50	488.50 486.80	488.59 486.89	31 32
	33	484.84	485.12	485.21	33
	34	483.18	483.46	483.55	34
	35	481.53	481.80	481.90	35
	36	479.87	480.14	480.24	36
	37	478.19	478.46	478.56	37
	38	476.48	476.76	476.86	38
	39	474.74	475.02	475.12	39
	40	472.94	473.23	473.33	40
	41	471.07	471.38	471.48	41
	42	469.12	469.46	469.56	42
	43 44	467.09 464.94	467.44 465.33	467.55 465.43	43 44
	44		403.33	403.43	44
	45	462.68	463.10	463.20	45
	46	460.27	460.74	460.84	46
	47 48	457.71 454.98	458.23 455.55	458.33	47 48
	49	452.05	452.68	455.65 452.78	49
	50	448.91	449.61	449.71	50
	51	445.53	446.32	446.42	51
	52 53	441.90 437.99	442.78 438.96	442.88 439.07	52 53
	54	433.78	434.86	434.97	54
	55	429.24	430.44	430.55	55
	56	424.35	425.68	425.80	56
	57	419.08	420.55	420.69	57
	58	413.41	415.03	415.19	58
	59	407.30	409.09	409.28	59
	60	400.74	402.71	402.93	60
	61	393.70	395.85	396.12	61
	62	386.14	388.50	388.83	62
	63 64	378.05 369.41	380.63 372.22	381.02 372.69	63 64
	04	307.41	314.44	3/4.07	04

x	$M_{[x]}$	$M_{[x-1]+1}$	M_x	x	4%
65 66 67 68 69	360.20 350.40 339.99 328.98 317.37	363.25 353.70 343.56 332.81 321.47	363.82 354.38 344.37 333.77 322.59	65 66 67 68 69	
70 71 72 73 74	305.15 292.35 278.98 265.09 250.72	309.53 297.00 283.90 270.27 256.14	310.84 298.51 285.64 272.24 258.37	70 71 72 73 74	
75 76 77 78 79	235.93 220.78 205.37 189.79 174.14	241.57 226.63 211.38 195.92 180.36	244.06 229.38 214.40 199.20 183.89	75 76 77 78 79	
80 81 82 83 84	158.56 143.16 128.07 113.45 99.42	164.80 149.37 134.21 119.44 105.20	168.56 153.34 138.34 123.69 109.52	80 81 82 83 84	
85 86 87 88 89	86.12 73.65 62.14 51.65 42.25	91.63 78.85 66.96 56.06 46.22	95.96 83.12 71.11 60.04 49.96	85 86 87 88 89	
90 91 92 93 94	33.97	37.47 29.84	40.93 32.97 26.08 20.23 15.37	90 91 92 93 94	
95 96 97 98 99			11.41 8.27 5.84 4.01 2.67	95 96 97 98 99	
100 101 102 103 104			1.72 1.07 .64 .37 .21	100 101 102 103 104	
105 106 107 108 109			.11 .05 .03 .01	105 106 107 108 109	
110			.00	110	

			ANITZ		
4%	x	$R_{[x]}$	$R_{[x-1]+1}$	R_x	x
	17 18 19	27 724.52 27 204.73 26 687.90	27 205.71 26 688.80	27 725.81 27 205.92 26 689.00	17 18 19
	20	26 173.87	26 174.71	26 174.89	20
	21	25 662.51	25 663.29	25 663.45	21
	22	25 153.71	25 154.42	25 154.57	22
	23	24 647.32	24 647.98	24 648.11	23
	24	24 143.23	24 143.85	24 143.97	24
	25	23 641.35	23 641.93	23 642.04	25
	26	23 141.58	23 142.12	23 142.23	26
	27	22 643.84	22 644.35	22 644.45	27
	28	22 148.06	22 148.53	22 148.63	28
	29	21 654.16	21 654.60	21 654.70	29
	30	21 162.07	21 162.50	21 162.60	30
	31	20 671.77	20 672.17	20 672.27	31
	32	20 183.20	20 183.59	20 183.68	32
	33	19 696.32	19 696.70	19 696.79	33
	34	19 211.11	19 211.48	19 211.57	34
	35	18 727.56	18 727.93	18 728.02	35
	36	18 245.66	18 246.03	18 246.12	36
	37	17 765.43	17 765.79	17 765.89	37
	38	17 286.86	17 287.23	17 287.33	38
	39	16 809.99	16 810.38	16 810.47	39
	40	16 334.87	16 335.26	16 335.36	40
	41	15 861.52	15 861.93	15 862.03	41
	42	15 390.01	15 390.45	15 390.55	42
	43	14 920.43	14 920.89	14 920.99	43
	44	14 452.85	14 453.35	14 453.45	44
	45	13 987.39	13 987.91	13 988.01	45
	46	13 524.14	13 524.71	13 524.81	46
	47	13 063.26	13 063.87	13 063.97	47
	48	12 604.88	12 605.55	12 605.65	48
	49	12 149.17	12 149.90	12 150.00	49
	50	11 696.32	11 697.12	11 697.22	50
	51	11 246.53	11 247.41	11 247.51	51
	52	10 800.02	10 800.99	10 801.09	52
	53	10 357.04	10 358.12	10 358.22	53
	54	9 917.85	9 919.05	9 919.15	54
	55	9 482.75	9 484.07	9 484.19	55
	56	9 052.04	9 053.51	9 053.63	56
	57	8 626.06	8 627.69	8 627.83	57
	58	8 205.17	8 206.98	8 207.14	58
	59	7 789.75	7 791.76	7 791.95	59
	60	7 380.21	7 382.44	7 382.67	60
	61	6 976.98	6 979.47	6 979.73	61
	62	6 580.53	6 583.29	6 583.61	62
	63	6 191.34	6 194.39	6 194.79	63
	64	5 809.91	5 813.29	5 813.76	64

х	$R_{[x]}$	$R_{[x-1]+1}$	R_x	х	4%
65 66	5 436.77 5 072.46	5 440.50 5 076.57	5 441.07 5 077.25	65 66	
67	4 717.54	4 722.06	4 722.87	67	
68	4 372.60	4 377.55	4 378.51	68	
69	4 038.20	4 043.61	4 044.74	69	
70	3 714.94	3 720.83	3 722.14	70	
71	3 403.41	3 409.79	3 411.31	71	
72 73	3 104.17 2 817.78	3 111.06 2 825.19	3 112.79 2 827.16	72 73	
74	2 544.78	2 552.69	2 554.91	74	
75	2 285.66	2 294.06	2 296.55	75	
76	2 040.87	2 049.74	2 052.49	76	
77	1 810.80	1 820.09	1 823.11	77	
78 79	1 595.76 1 396.00	1 605.43 1 405.97	1 608.71 1 409.51	78 79	
80	1 211.64	1 221.85	1 225.62	80	
81	1 042.74	1 053.09	1 057.05	81	
82	889.21	899.59	903.72	82	
83	750.83	761.13	765.38	83	
84	627.27	637.38	641.69	84	
85	518.06	527.85	532.17	85	
86	422.60	431.95	436.22	86	
87 88	340.15 269.86	348.95 278.01	353.10 281.99	87 88	
89	210.79	218.21	221.95	89	
90	161.90	168.54	171.99	90	
91		127.94	131.06	91	
92			98.09	92	
93 94			72.01 51.78	93 94	
95			36.41	95	
96 97			25.00 16.73	96 97	
98			10.73	98	
99			6.89	99	
100			4.22	100	
101			2.50	101	
102			1.43	102	
103 104			.79 .41	103 104	
105			.21	105	
106			.10	106	
107			.05	107	
108			.02	108	
109			.01	109	
110			.00	110	

4	0/
4	υ /^
7	/ U

x	$\ddot{a}_{[x]}$	$A_{[x]}$	$^{2}A_{[x]}$	\ddot{a}_x	A_{χ}	$^{2}A_{x}$	x
17	23.372	0.101 08	0.016 96	23.367	0.101 27	0.017 16	17
18	23.280	0.104 60	0.017 78	23.276	0.104 78	0.017 97	18
19	23.185	0.108 27	0.018 67	23.180	0.108 44	0.018 85	19
20	23.086	0.112 10	0.019 64	23.081	0.112 26	0.019 82	20
21	22.982	0.116 08	0.020 70	22.978	0.116 24	0.020 86	21
22	22.874	0.120 23	0.021 84	22.870	0.120 38	0.022 00	22
23	22.762	0.124 55	0.023 08	22.758	0.124 69	0.023 24	23
24	22.645	0.129 05	0.024 43	22.641	0.129 19	0.024 58	24
25	22.523	0.133 73	0.025 89	22.520	0.133 86	0.026 03	25
26	22.396	0.138 60	0.027 47	22.393	0.138 73	0.027 61	26
27	22.265	0.143 67	0.029 17	22.261	0.143 79	0.029 31	27
28	22.128	0.148 94	0.031 02	22.124	0.149 06	0.031 15	28
29	21.985	0.154 42	0.033 01	21.982	0.154 54	0.033 14	29
30	21.837	0.160 11	0.035 15	21.834	0.160 23	0.035 28	30
31	21.683	0.166 03	0.037 47	21.680	0.166 15	0.037 59	31
32	21.523	0.172 18	0.039 96	21.520	0.172 30	0.040 08	32
33	21.357	0.178 57	0.042 64	21.354	0.178 68	0.042 76	33
34	21.185	0.185 20	0.045 52	21.182	0.185 31	0.045 65	34
35	21.006	0.192 07	0.048 61	21.003	0.192 19	0.048 74	35
36	20.821	0.199 21	0.051 93	20.818	0.199 33	0.052 07	36
37	20.628	0.206 60	0.055 49	20.625	0.206 72	0.055 63	37
38	20.429	0.214 26	0.059 30	20.426	0.214 39	0.059 45	38
39	20.223	0.222 20	0.063 38	20.219	0.222 34	0.063 54	39
40	20.009	0.230 41	0.067 75	20.005	0.230 56	0.067 92	40
41	19.788	0.238 91	0.072 41	19.784	0.239 07	0.072 59	41
42	19.560	0.247 70	0.077 38	19.555	0.247 87	0.077 58	42
43	19.324	0.256 78	0.082 67	19.319	0.256 96	0.082 89	43
44	19.080	0.266 15	0.088 32	19.075	0.266 36	0.088 56	44
45	18.829	0.275 83	0.094 31	18.823	0.276 05	0.094 58	45
46	18.569	0.285 80	0.100 68	18.563	0.286 05	0.100 98	46
47	18.302	0.296 07	0.107 44	18.295	0.296 35	0.107 78	47
48	18.027	0.306 64	0.114 60	18.019	0.306 95	0.114 98	48
49	17.745	0.317 52	0.122 17	17.736	0.317 86	0.122 60	49
50	17.454	0.328 68	0.130 17	17.444	0.329 07	0.130 65	50
51	17.156	0.340 14	0.138 61	17.145	0.340 58	0.139 15	51
52	16.851	0.351 89	0.147 49	16.838	0.352 38	0.148 11	52
53	16.538	0.363 92	0.156 84	16.524	0.364 48	0.157 55	53
54	16.218	0.376 23	0.166 65	16.202	0.376 85	0.167 45	54
55	15.891	0.388 79	0.176 93	15.873	0.389 50	0.177 85	55
56	15.558	0.401 61	0.187 69	15.537	0.402 40	0.188 74	56
57	15.219	0.414 66	0.198 93	15.195	0.415 56	0.200 12	57
58	14.874	0.427 94	0.210 64	14.847	0.428 96	0.212 00	58
59	14.523	0.441 43	0.222 82	14.493	0.442 58	0.224 37	59
60	14.167	0.455 10	0.235 47	14.134	0.456 40	0.237 23	60
61	13.808	0.468 94	0.248 57	13.769	0.470 41	0.250 58	61
62	13.444	0.482 92	0.262 11	13.401	0.484 58	0.264 40	62
63	13.077	0.497 03	0.276 08	13.029	0.498 90	0.278 68	63
64	12.708	0.511 23	0.290 46	12.653	0.513 33	0.293 40	64

Note. ${}^{2}A_{[x]} = A_{[x]}$ at 8.16% and ${}^{2}A_{x} = A_{x}$ at 8.16%.

AM92

AWI							
							4%
x	$\ddot{a}_{[x]}$	$A_{[x]}$	$^{2}A_{[x]}$	\ddot{a}_x	A_{x}	$^{2}A_{x}$	x
65 66 67 68 69	12.337 11.965 11.592 11.221 10.850	0.525 50 0.539 81 0.554 14 0.568 44 0.582 70	0.305 22 0.320 33 0.335 78 0.351 51 0.367 51	12.276 11.896 11.515 11.135 10.754	0.527 86 0.542 46 0.557 10 0.571 75 0.586 38	0.308 55 0.324 10 0.340 03 0.356 30 0.372 89	65 66 67 68 69
70 71 72 73 74	10.481 10.116 9.754 9.396 9.044	0.596 87 0.610 93 0.624 85 0.638 60 0.652 14	0.383 72 0.400 12 0.416 65 0.433 27 0.449 93	10.375 9.998 9.623 9.252 8.886	0.600 97 0.615 48 0.629 88 0.644 14 0.658 24	0.389 75 0.406 86 0.424 16 0.441 62 0.459 19	70 71 72 73 74
75 76 77 78 79	8.698 8.359 8.027 7.703 7.388	0.665 45 0.678 51 0.691 27 0.703 73 0.715 85	0.466 59 0.483 20 0.499 71 0.516 09 0.532 27	8.524 8.169 7.820 7.478 7.144	0.672 14 0.685 81 0.699 24 0.712 38 0.725 23	0.476 83 0.494 48 0.512 10 0.529 65 0.547 07	75 76 77 78 79
80 81 82 83 84	7.082 6.785 6.499 6.222 5.957	0.727 62 0.739 03 0.750 05 0.760 68 0.770 90	0.548 22 0.563 90 0.579 27 0.594 30 0.608 95	6.818 6.502 6.194 5.897 5.610	0.737 75 0.749 93 0.761 75 0.773 19 0.784 25	0.564 32 0.581 36 0.598 14 0.614 61 0.630 75	80 81 82 83 84
85 86 87 88 89	5.701 5.457 5.223 5.000 4.788	0.780 72 0.790 12 0.799 11 0.807 69 0.815 85	0.623 20 0.637 01 0.650 38 0.663 29 0.675 73	5.333 5.066 4.811 4.566 4.332	0.794 90 0.805 14 0.814 98 0.824 39 0.833 38	0.646 52 0.661 88 0.676 80 0.691 27 0.705 25	85 86 87 88 89
90 91 92 93 94	4.586	0.823 62	0.687 68	4.109 3.897 3.695 3.504 3.323	0.841 96 0.850 12 0.857 87 0.865 22 0.872 18	0.718 74 0.731 72 0.744 17 0.756 09 0.767 48	90 91 92 93 94
95 96 97 98 99				3.153 2.992 2.840 2.698 2.564	0.878 75 0.884 94 0.890 77 0.896 25 0.901 39	0.778 34 0.788 67 0.798 47 0.807 76 0.816 54	95 96 97 98 99
100 101 102 103 104				2.439 2.321 2.212 2.110 2.015	0.906 21 0.910 71 0.914 92 0.918 85 0.922 51	0.824 83 0.832 63 0.839 97 0.846 86 0.853 31	100 101 102 103 104
105 106 107 108 109				1.926 1.844 1.768 1.697 1.632	0.925 91 0.929 07 0.932 01 0.934 72 0.937 24	0.859 34 0.864 98 0.870 23 0.875 12 0.879 66	105 106 107 108 109
110 111 112 113 114				1.571 1.516 1.464 1.417 1.374	0.939 56 0.941 70 0.943 67 0.945 49 0.947 15	0.883 87 0.887 77 0.891 37 0.894 69 0.897 75	110 111 112 113 114
115 116 117 118 119				1.334 1.298 1.264 1.229 1.176	0.948 68 0.950 08 0.951 39 0.952 73 0.954 78	0.900 56 0.903 15 0.905 57 0.908 04 0.911 81	115 116 117 118 119
120				1.000	0.961 54	0.924 56	120

Note. ${}^{2}A_{[x]} = A_{[x]}$ at 8.16% and ${}^{2}A_{x} = A_{x}$ at 8.16%.

			11	1111/2		
4%	x	$(I\ddot{a})_{[x]}$	$(IA)_{[x]}$	$(I\ddot{a})_x$	$(IA)_{\chi}$	x
	17	467.226	5.401 64	467.124	5.400 71	17
	18	461.881	5.515 65	461.784	5.514 73	18
	19	456.412	5.630 60	456.320	5.629 69	19
	20	450.817	5.746 37	450.729	5.745 47	20
	21	445.097	5.862 84	445.013	5.861 95	21
	22	439.249	5.979 86	439.170	5.978 99	22
	23	433.275	6.097 30	433.200	6.096 44	23
	24	427.174	6.215 01	427.102	6.214 15	24
	25	420.947	6.332 80	420.878	6.331 95	25
	26	414.593	6.450 51	414.528	6.449 67	26
	27	408.114	6.567 94	408.051	6.567 10	27
	28	401.510	6.684 88	401.450	6.684 05	28
	29	394.783	6.801 12	394.726	6.800 29	29
	30	387.935	6.916 44	387.878	6.915 59	30
	31	380.966	7.030 57	380.911	7.029 72	31
	32	373.879	7.143 28	373.825	7.142 42	32
	33	366.676	7.254 28	366.623	7.253 40	33
	34	359.361	7.363 31	359.308	7.362 39	34
	35	351.937	7.470 05	351.883	7.469 09	35
	36	344.407	7.574 21	344.353	7.573 20	36
	37	336.776	7.675 46	336.720	7.674 38	37
	38	329.048	7.773 46	328.991	7.772 31	38
	39	321.228	7.867 88	321.169	7.866 63	39
	40	313.323	7.958 35	313.260	7.956 99	40
	41	305.337	8.044 52	305.271	8.043 03	41
	42	297.278	8.126 02	297.207	8.124 35	42
	43	289.153	8.202 46	289.077	8.200 60	43
	44	280.970	8.273 47	280.888	8.271 37	44
	45	272.737	8.338 65	272.647	8.336 28	45
	46	264.462	8.397 62	264.365	8.394 93	46
	47	256.156	8.450 01	256.049	8.446 95	47
	48	247.828	8.495 42	247.711	8.491 93	48
	49	239.488	8.533 51	239.360	8.529 50	49
	50	231.149	8.563 90	231.007	8.559 29	50
	51	222.820	8.586 24	222.664	8.580 95	51
	52	214.514	8.600 22	214.342	8.594 12	52
	53	206.244	8.605 54	206.053	8.598 51	53
	54	198.022	8.601 90	197.811	8.593 81	54
	55	189.861	8.589 08	189.627	8.579 76	55
	56	181.774	8.566 87	181.516	8.556 11	56
	57	173.775	8.535 08	173.489	8.522 68	57
	58	165.878	8.493 60	165.561	8.479 31	58
	59	158.094	8.442 34	157.744	8.425 88	59
	60	150.440	8.381 28	150.053	8.362 34	60
	61	142.926	8.310 44	142.499	8.288 67	61
	62	135.566	8.229 90	135.096	8.204 91	62
	63	128.373	8.139 81	127.856	8.111 17	63
	64	121.359	8.040 36	120.790	8.007 60	64

x	$(I\ddot{a})_{[x]}$	$(IA)_{[x]}$		$(I\ddot{a})_x$	$(IA)_x$	x	4%
65 66 67 68 69	114.533 107.909 101.494 95.297 89.327	7.931 82 7.814 53 7.688 86 7.555 27 7.414 26	1	113.911 107.228 100.751 94.489 88.450	7.894 42 7.771 92 7.640 43 7.500 35 7.352 15	65 66 67 68 69	
70 71 72 73 74	83.589 78.089 72.832 67.819 63.053	7.266 40 7.112 29 6.952 57 6.787 95 6.619 14		82.641 77.067 71.732 66.640 61.793	7.196 35 7.033 51 6.864 24 6.689 22 6.509 13	70 71 72 73 74	
75 76 77 78 79	58.534 54.260 50.230 46.440 42.885	6.446 87 6.271 92 6.095 04 5.916 97 5.738 48		57.192 52.836 48.723 44.851 41.215	6.324 70 6.136 69 5.945 86 5.752 98 5.558 83	75 76 77 78 79	
80 81 82 83 84	39.559 36.457 33.570 30.890 28.410	5.560 29 5.383 08 5.207 53 5.034 26 4.863 82		37.811 34.633 31.673 28.924 26.378	5.364 17 5.169 76 4.976 31 4.784 53 4.595 08	80 81 82 83 84	
85 86 87 88 89	26.118 24.007 22.065 20.283 18.651	4.696 75 4.533 50 4.374 48 4.220 03 4.070 43		24.025 21.858 19.866 18.039 16.368	4.408 56 4.225 55 4.046 57 3.872 08 3.702 50	85 86 87 88 89	
90 91 92 93 94	17.159	3.925 89		14.843 13.453 12.191 11.045 10.007	3.538 17 3.379 39 3.226 40 3.079 39 2.938 48	90 91 92 93 94	
95 96 97 98 99				9.070 8.223 7.460 6.774 6.156	2.803 78 2.675 30 2.553 06 2.437 01 2.327 08	95 96 97 98 99	
100 101 102 103 104				5.602 5.104 4.659 4.259 3.902	2.223 16 2.125 12 2.032 81 1.946 07 1.864 71	100 101 102 103 104	
105 106 107 108 109				3.582 3.295 3.039 2.811 2.606	1.788 53 1.717 34 1.650 92 1.589 07 1.531 58	105 106 107 108 109	
110 111 112 113 114				2.424 2.261 2.115 1.985 1.869	1.478 23 1.428 82 1.383 15 1.341 02 1.302 22	110 111 112 113 114	
115 116 117 118 119				1.765 1.672 1.584 1.492 1.351	1.266 54 1.233 70 1.202 99 1.171 57 1.123 76	115 116 117 118 119	
120				1.000	0.961 54	120	

4%	x	$\ddot{a}_{[x]:n }$	$A_{[x]:\overline{n} }$	n = 60 - x	$\ddot{a}_{x:n}$	$A_{x:n}$	x
	17	20.941	0.194 59	43	20.936	0.194 75	17
	18	20.750	0.201 90	42	20.746	0.202 06	18
	19	20.750	0.209 53	41	20.740	0.202 68	19
	1)	20.332	0.207 55	41	20.340	0.207 08	1)
	20	20.346	0.217 46	40	20.342	0.217 60	20
	21	20.131	0.225 72	39	20.128	0.225 86	21
	22	19.908	0.234 32	38	19.904	0.234 45	22
	23	19.675	0.243 27	37	19.672	0.243 40	23
	24	19.433	0.252 59	36	19.430	0.252 71	24
	25	19.181	0.262 28	35	19.178	0.262 40	25
	26	18.918	0.272 37	34	18.916	0.272 48	26
	27	18.645	0.282 87	33	18.643	0.282 97	27
	28	18.361	0.293 79	32	18.359	0.293 89	28
	29	18.066	0.305 15	31	18.064	0.305 25	29
	30	17.759	0.316 97	30	17.756	0.317 06	30
	31	17.439	0.329 26	29	17.437	0.329 35	31
	32	17.107	0.342 04	28	17.105	0.342 12	32
	33	16.762	0.355 33	27	16.759	0.355 41	33
	34	16.402	0.369 14	26	16.400	0.369 23	34
	35	16.029	0.383 50	25	16.027	0.383 59	35
	36	15.641	0.398 43	24	15.639	0.398 52	36
	37	15.237	0.413 95	23	15.235	0.414 03	37
	38	14.818	0.430 07	22	14.816	0.430 16	38
	39	14.383	0.446 82	21	14.380	0.446 92	39
	40	13.930	0.464 23	20	13.927	0.464 33	40
	41	13.460	0.482 31	19	13.457	0.482 42	41
	42	12.971	0.501 10	18	12.969	0.501 21	42
	43	12.464	0.520 61	17	12.461	0.520 73	43
	44	11.937	0.540 88	16	11.934	0.541 00	44
	45	11.390	0.561 93	15	11.386	0.562 06	45
	46	10.821	0.583 80	14	10.818	0.583 93	46
	47	10.231	0.606 51	13	10.227	0.606 65	47
	48	9.617	0.630 10	12	9.613	0.630 25	48
	49	8.980	0.654 61	11	8.976	0.654 77	49
	50	8.318	0.680 07	10	8.314	0.680 24	50
	51	7.630	0.706 54	9	7.625	0.706 72	51
	52	6.914	0.734 06	9 8	6.910	0.734 24	52
	53	6.170	0.762 68	7	6.166	0.762 86	53
	54	5.396	0.792 46	6	5.391	0.792 64	54
	5.5	4.500	0.922.49	-	1 505	0.922.65	
	55 56	4.590	0.823 48	5 4	4.585 3.745	0.823 65	55
	56	3.749	0.855 80	4		0.855 95	56
	57 58	2.873	0.889 52 0.924 73	3 2 1	2.870	0.889 63	57 58
		1.957		2	1.955	0.924 79	
	59	1.000	0.961 54	I	1.000	0.961 54	59

x	$\ddot{a}_{[x]}$	$A_{[x]:n}$	n = 65 - x	$\ddot{a}_{x:n}$	$A_{x:n}$	x	4%
17	21.723	0.164 48	48	21.719	0.164 66	17	
18	21.565	0.170 58	47	21.561	0.170 74	18	
19	21.400	0.176 93	46	21.396	0.177 09	19	
20	21.228	0.183 54	45	21.224	0.183 69	20	
21	21.049	0.190 42	44	21.045	0.190 57	21	
22	20.863	0.197 59	43	20.859	0.197 73	22	
23	20.669	0.205 05	42	20.665	0.205 18	23	
24	20.467	0.212 81	41	20.464	0.212 94	24	
25	20.257	0.220 90	40	20.254	0.221 02	25	
26	20.038	0.229 31	39	20.035	0.229 42	26	
27	19.811	0.238 05	38	19.808	0.238 17	27	
28	19.574	0.247 16	37	19.571	0.247 26	28	
29	19.328	0.256 62	36	19.325	0.256 73	29	
30	19.072	0.266 47	35	19.069	0.266 57	30	
31	18.806	0.276 71	34	18.803	0.276 81	31	
32	18.529	0.287 35	33	18.526	0.287 45	32	
33	18.241	0.298 42	32	18.239	0.298 52	33	
34	17.942	0.309 92	31	17.940	0.310 02	34	
35	17.631	0.321 87	30	17.629	0.321 97	35	
36	17.308	0.334 29	29	17.306	0.334 39	36	
37	16.973	0.347 19	28	16.970	0.347 29	37	
38	16.625	0.360 59	27	16.622	0.360 70	38	
39	16.263	0.374 51	26	16.260	0.374 62	39	
40	15.887	0.388 96	25	15.884	0.389 07	40	
41	15.497	0.403 95	24	15.494	0.404 07	41	
42	15.092	0.419 52	23	15.089	0.419 65	42	
43	14.672	0.435 67	22	14.669	0.435 81	43	
44	14.237	0.452 43	21	14.233	0.452 58	44	
45	13.785	0.469 82	20	13.780	0.469 98	45	
46	13.316	0.487 86	19	13.311	0.488 03	46	
47	12.829	0.506 56	18	12.824	0.506 75	47	
48	12.325	0.525 96	17	12.320	0.526 17	48	
49	11.802	0.546 08	16	11.796	0.546 30	49	
50 51 52 53 54	11.259 10.697 10.113 9.508 8.880	0.566 95 0.588 58 0.611 02 0.634 30 0.658 46	15 14 13 12	11.253 10.690 10.106 9.500 8.872	0.567 19 0.588 84 0.611 30 0.634 60 0.658 78	50 51 52 53 54	
55	8.228	0.683 54	10	8.219	0.683 88	55	
56	7.551	0.709 58	9	7.542	0.709 93	56	
57	6.847	0.736 64	8	6.838	0.737 01	57	
58	6.115	0.764 79	7	6.106	0.765 16	58	
59	5.353	0.794 10	6	5.344	0.794 46	59	
60	4.559	0.824 65	5	4.550	0.824 99	60	
61	3.730	0.856 54	4	3.722	0.856 85	61	
62	2.863	0.889 90	3	2.857	0.890 13	62	
63	1.954	0.924 85	2	1.951	0.924 98	63	
64	1.000	0.961 54	1	1.000	0.961 54	64	

6	9	6
•	,	v

x	$\ddot{a}_{[x]}$	$A_{[x]}$	$^{2}A_{[x]}$	\ddot{a}_x	A_{χ}	$^{2}A_{\chi}$	x
17	16.977	0.039 02	0.006 11	16.974	0.039 21	0.006 30	17
18	16.946	0.040 80	0.006 30	16.943	0.040 99	0.006 48	18
19	16.912	0.042 70	0.006 52	16.909	0.042 88	0.006 69	19
20	16.877	0.044 72	0.006 77	16.874	0.044 89	0.006 93	20
21	16.839	0.046 86	0.007 05	16.836	0.047 03	0.007 21	21
22	16.798	0.049 14	0.007 38	16.796	0.049 30	0.007 53	22
23	16.756	0.051 57	0.007 75	16.753	0.051 72	0.007 90	23
24	16.710	0.054 14	0.008 16	16.708	0.054 28	0.008 31	24
25	16.662	0.056 86	0.008 63	16.660	0.057 01	0.008 77	25
26	16.611	0.059 76	0.009 16	16.609	0.059 90	0.009 30	26
27	16.557	0.062 82	0.009 75	16.554	0.062 96	0.009 88	27
28	16.499	0.066 07	0.010 41	16.497	0.066 20	0.010 54	28
29	16.439	0.069 51	0.011 15	16.436	0.069 64	0.011 28	29
30	16.374	0.073 16	0.011 97	16.372	0.073 28	0.012 10	30
31	16.306	0.077 01	0.012 89	16.304	0.077 14	0.013 01	31
32	16.234	0.081 09	0.013 90	16.232	0.081 21	0.014 03	32
33	16.158	0.085 40	0.015 03	16.156	0.085 52	0.015 15	33
34	16.078	0.089 95	0.016 27	16.075	0.090 07	0.016 40	34
35	15.993	0.094 75	0.017 65	15.990	0.094 88	0.017 78	35
36	15.903	0.099 82	0.019 16	15.901	0.099 95	0.019 30	36
37	15.809	0.105 16	0.020 84	15.806	0.105 30	0.020 98	37
38	15.709	0.110 79	0.022 67	15.707	0.110 94	0.022 82	38
39	15.605	0.116 72	0.024 69	15.602	0.116 88	0.024 85	39
40	15.494	0.122 96	0.026 90	15.491	0.123 13	0.027 07	40
41	15.378	0.129 52	0.029 33	15.375	0.129 70	0.029 51	41
42	15.257	0.136 41	0.031 98	15.253	0.136 60	0.032 18	42
43	15.129	0.143 65	0.034 87	15.125	0.143 85	0.035 09	43
44	14.995	0.151 23	0.038 02	14.991	0.151 46	0.038 26	44
45	14.855	0.159 18	0.041 45	14.850	0.159 43	0.041 72	45
46	14.708	0.167 50	0.045 17	14.703	0.167 78	0.045 48	46
47	14.554	0.176 19	0.049 21	14.548	0.176 51	0.049 56	47
48	14.393	0.185 28	0.053 59	14.387	0.185 63	0.053 98	48
49	14.226	0.194 76	0.058 32	14.219	0.195 16	0.058 76	49
50	14.051	0.204 63	0.063 42	14.044	0.205 08	0.063 92	50
51	13.870	0.214 91	0.068 92	13.861	0.215 42	0.069 49	51
52	13.681	0.225 60	0.074 83	13.671	0.226 17	0.075 48	52
53	13.485	0.236 69	0.081 18	13.474	0.237 34	0.081 92	53
54	13.282	0.248 18	0.087 97	13.269	0.248 92	0.088 82	54
55	13.072	0.260 08	0.095 24	13.057	0.260 92	0.096 21	55
56	12.855	0.272 37	0.102 98	12.838	0.273 33	0.104 09	56
57	12.631	0.285 06	0.111 23	12.612	0.286 14	0.112 50	57
58	12.400	0.298 12	0.119 98	12.378	0.299 35	0.121 44	58
59	12.163	0.311 55	0.129 26	12.138	0.312 94	0.130 93	59
60	11.919	0.325 33	0.139 07	11.891	0.326 92	0.140 98	60
61	11.670	0.339 45	0.149 41	11.638	0.341 25	0.151 60	61
62	11.415	0.353 88	0.160 29	11.379	0.355 92	0.162 80	62
63	11.155	0.368 61	0.171 71	11.114	0.370 91	0.174 57	63
64	10.890	0.383 60	0.183 66	10.844	0.386 20	0.186 92	64

Note. ${}^{2}A_{[x]} = A_{[x]}$ at 12.36% and ${}^{2}A_{x} = A_{x}$ at 12.36%.

AM92

ANIZ							
							6%
x	$\ddot{a}_{[x]}$	$A_{[x]}$	$^{2}A_{[x]}$	\ddot{a}_x	A_{x}	$^{2}A_{x}$	x
65 66 67 68 69	10.621 10.348 10.072 9.794 9.513	0.398 83 0.414 27 0.429 88 0.445 64 0.461 50	0.196 14 0.209 13 0.222 62 0.236 58 0.251 00	10.569 10.289 10.006 9.720 9.431	0.401 77 0.417 58 0.433 61 0.449 82 0.466 17	0.199 85 0.213 35 0.227 40 0.242 00 0.257 12	65 66 67 68 69
70 71 72 73 74	9.232 8.950 8.669 8.388 8.109	0.477 43 0.493 38 0.509 33 0.525 21 0.541 01	0.265 83 0.281 06 0.296 64 0.312 54 0.328 70	9.140 8.848 8.555 8.262 7.969	0.482 65 0.499 19 0.515 78 0.532 36 0.548 90	0.272 74 0.288 82 0.305 34 0.322 26 0.339 55	70 71 72 73 74
75 76 77 78 79	7.832 7.559 7.289 7.024 6.763	0.556 67 0.572 15 0.587 42 0.602 44 0.617 17	0.345 09 0.361 64 0.378 33 0.395 08 0.411 86	7.679 7.390 7.105 6.822 6.544	0.565 35 0.581 69 0.597 86 0.613 83 0.629 56	0.357 14 0.375 01 0.393 09 0.411 33 0.429 69	75 76 77 78 79
80 81 82 83 84	6.509 6.260 6.018 5.783 5.556	0.631 59 0.645 66 0.659 35 0.672 65 0.685 53	0.428 60 0.445 25 0.461 77 0.478 11 0.494 22	6.271 6.004 5.742 5.487 5.239	0.645 01 0.660 16 0.674 97 0.689 42 0.703 46	0.448 11 0.466 52 0.484 88 0.503 13 0.521 21	80 81 82 83 84
85 86 87 88 89	5.336 5.124 4.920 4.724 4.537	0.697 97 0.709 97 0.721 50 0.732 58 0.743 18	0.510 05 0.525 57 0.540 75 0.555 55 0.569 94	4.998 4.765 4.540 4.323 4.114	0.717 10 0.730 29 0.743 04 0.755 31 0.767 11	0.539 07 0.556 67 0.573 96 0.590 88 0.607 41	85 86 87 88 89
90 91 92 93 94	4.358	0.753 32	0.583 90	3.914 3.723 3.541 3.367 3.201	0.778 43 0.789 25 0.799 59 0.809 44 0.818 80	0.623 50 0.639 13 0.654 26 0.668 88 0.682 96	90 91 92 93 94
95 96 97 98 99				3.044 2.896 2.755 2.622 2.498	0.827 69 0.836 10 0.844 06 0.851 56 0.858 63	0.696 49 0.709 46 0.721 87 0.733 70 0.744 96	95 96 97 98 99
100 101 102 103 104				2.380 2.270 2.167 2.070 1.980	0.865 27 0.871 51 0.877 36 0.882 83 0.887 94	0.755 65 0.765 79 0.775 37 0.784 42 0.792 93	100 101 102 103 104
105 106 107 108 109				1.895 1.817 1.744 1.676 1.614	0.892 71 0.897 15 0.901 28 0.905 11 0.908 66	0.800 94 0.808 45 0.815 48 0.822 05 0.828 17	105 106 107 108 109
110 111 112 113 114				1.556 1.502 1.452 1.407 1.365	0.911 95 0.914 99 0.917 79 0.920 37 0.922 75	0.833 87 0.839 17 0.844 08 0.848 61 0.852 80	110 111 112 113 114
115 116 117 118 119				1.326 1.291 1.258 1.224 1.172	0.924 92 0.926 93 0.928 80 0.930 72 0.933 64	0.856 66 0.860 22 0.863 55 0.866 94 0.872 10	115 116 117 118 119
120				1.000	0.943 40	0.890 00	120

Note. ${}^{2}A_{[x]} = A_{[x]}$ at 12.36% and ${}^{2}A_{x} = A_{x}$ at 12.36%.

AM92

				11111/2			
6%	x	$(I\ddot{a})_{[x]}$	$(IA)_{[x]}$		$(I\ddot{a})_x$	$(IA)_x$	x
	17 18 19	268.142 266.392 264.567	1.799 55 1.867 08 1.936 81		268.083 266.336 264.514	1.799 40 1.866 92 1.936 64	17 18 19
	20 21 22 23 24	262.666 260.687 258.626 256.482 254.253	2.008 74 2.082 89 2.159 25 2.237 82 2.318 58		262.615 260.638 258.579 256.437 254.210	2.008 56 2.082 70 2.159 06 2.237 62 2.318 37	20 21 22 23 24
	25 26 27 28 29	251.936 249.531 247.034 244.444 241.759	2.401 51 2.486 57 2.573 73 2.662 93 2.754 10		251.896 249.491 246.996 244.407 241.724	2.401 29 2.486 35 2.573 50 2.662 70 2.753 86	25 26 27 28 29
	30 31 32 33 34	238.978 236.099 233.120 230.041 226.861	2.847 18 2.942 06 3.038 64 3.136 81 3.236 43		238.943 236.065 233.087 230.008 226.827	2.846 92 2.941 80 3.038 37 3.136 53 3.236 13	30 31 32 33 34
	35 36 37 38 39	223.579 220.194 216.706 213.116 209.424	3.337 35 3.439 40 3.542 39 3.646 13 3.750 37		223.545 220.159 216.671 213.079 209.385	3.337 02 3.439 04 3.542 00 3.645 69 3.749 89	35 36 37 38 39
	40 41 42 43 44	205.630 201.736 197.744 193.654 189.471	3.854 89 3.959 42 4.063 68 4.167 36 4.270 14		205.589 201.692 197.696 193.603 189.416	3.854 35 3.958 80 4.062 97 4.166 55 4.269 22	40 41 42 43 44
	45 46 47 48 49	185.197 180.834 176.388 171.863 167.264	4.371 70 4.471 66 4.569 65 4.665 29 4.758 18		185.136 180.768 176.315 171.783 167.175	4.370 62 4.470 41 4.568 20 4.663 59 4.756 18	45 46 47 48 49
	50 51 52 53 54	162.597 157.867 153.082 148.249 143.376	4.847 89 4.934 00 5.016 09 5.093 72 5.166 47		162.497 157.757 152.959 148.113 143.224	4.845 55 4.931 26 5.012 87 5.089 94 5.162 03	50 51 52 53 54
	55 56 57 58 59	138.472 133.545 128.605 123.662 118.726	5.233 89 5.295 58 5.351 13 5.400 16 5.442 29		138.302 133.356 128.394 123.427 118.464	5.228 68 5.289 47 5.343 97 5.391 76 5.432 47	55 56 57 58 59
	60 61 62 63 64	113.808 108.918 104.067 99.267 94.528	5.477 20 5.504 57 5.524 16 5.535 74 5.539 13		113.516 108.594 103.707 98.868 94.087	5.465 72 5.491 18 5.508 56 5.517 59 5.518 08	60 61 62 63 64

AM92

x	$(I\ddot{a})_{[x]}$	$(IA)_{[x]}$	$(I\ddot{a})_{\rm r}$	$(IA)_{r}$	x	6%
65 66 67 68 69	89.861 85.277 80.785 76.397 72.121	5.534 21 5.520 93 5.499 28 5.469 31 5.431 14	89.374 84.740 80.196 75.752 71.416	5.509 85 5.492 80 5.466 88 5.432 09 5.388 51	65 66 67 68 69	
70 71 72 73 74	67.965 63.939 60.048 56.300 52.700	5.384 97 5.331 01 5.269 59 5.201 07 5.125 86	67.198 63.105 59.146 55.326 51.652	5.336 28 5.275 60 5.206 73 5.129 99 5.045 77	70 71 72 73 74	
75 76 77 78 79	49.251 45.958 42.822 39.846 37.028	5.044 44 4.957 31 4.865 04 4.768 19 4.667 37	48.128 44.758 41.545 38.491 35.596	4.954 52 4.856 72 4.752 91 4.643 69 4.529 64	75 76 77 78 79	
80 81 82 83 84	34.369 31.866 29.517 27.320 25.268	4.563 20 4.456 30 4.347 29 4.236 78 4.125 36	32.860 30.283 27.861 25.594 23.475	4.411 42 4.289 68 4.165 09 4.038 31 3.910 00	80 81 82 83 84	
85 86 87 88 89	23.359 21.586 19.944 18.426 17.026	4.013 61 3.902 05 3.791 19 3.681 49 3.573 36	21.503 19.671 17.974 16.406 14.962	3.780 82 3.651 39 3.522 31 3.394 16 3.267 46	85 86 87 88 89	
90 91 92 93 94	15.738	3.467 16	13.634 12.417 11.303 10.287 9.361	3.142 70 3.020 33 2.900 75 2.784 31 2.671 32	90 91 92 93 94	
95 96 97 98 99			8.518 7.754 7.061 6.435 5.869	2.562 02 2.456 63 2.355 32 2.258 21 2.165 37	95 96 97 98 99	
100 101 102 103 104			5.358 4.898 4.483 4.111 3.776	2.076 86 1.992 70 1.912 86 1.837 31 1.765 98	100 101 102 103 104	
105 106 107 108 109			3.475 3.205 2.963 2.746 2.551	1.698 78 1.635 63 1.576 39 1.520 96 1.469 20	105 106 107 108 109	
110 111 112 113 114			2.377 2.221 2.081 1.956 1.845	1.420 96 1.376 11 1.334 50 1.295 98 1.260 40	110 111 112 113 114	
115 116 117 118 119			1.744 1.654 1.570 1.481 1.345	1.227 60 1.197 34 1.169 04 1.140 18 1.096 31	115 116 117 118 119	
120			1.000	0.943 40	120	

6%

x	$\ddot{a}_{[x]:\overline{n} }$	$A_{[x]:\overline{n} }$	n = 60 - x	$\ddot{a}_{x:n}$	$A_{x:\overline{n} }$	x
17	16.076	0.090 05	43	16.072	0.090 24	17
18	15.990	0.094 93	42	15.986	0.095 11	18
19	15.898	0.100 11	41	15.895	0.100 28	19
20	15.801	0.105 61	40	15.798	0.105 77	20
21	15.698	0.111 45	39	15.695	0.111 60	21
22	15.588	0.117 64	38	15.586	0.117 79	22
23	15.472	0.124 22	37	15.470	0.124 36	23
24	15.349	0.131 19	36	15.347	0.131 33	24
25	15.218	0.138 59	35	15.216	0.138 72	25
26	15.080	0.146 43	34	15.078	0.146 56	26
27	14.933	0.154 75	33	14.931	0.154 87	27
28	14.777	0.163 57	32	14.775	0.163 69	28
29	14.612	0.172 92	31	14.610	0.173 03	29
30	14.437	0.182 83	30	14.435	0.182 94	30
31	14.251	0.193 33	29	14.249	0.193 44	31
32	14.054	0.204 46	28	14.053	0.204 57	32
33	13.846	0.216 26	27	13.844	0.216 36	33
34	13.625	0.228 75	26	13.624	0.228 85	34
35	13.392	0.241 98	25	13.390	0.242 08	35
36	13.144	0.255 99	24	13.142	0.256 09	36
37	12.882	0.270 82	23	12.880	0.270 93	37
38	12.605	0.286 53	22	12.603	0.286 64	38
39	12.311	0.303 16	21	12.309	0.303 27	39
40	12.000	0.320 76	20	11.998	0.320 88	40
41	11.671	0.339 38	19	11.669	0.339 51	41
42	11.323	0.359 10	18	11.320	0.359 23	42
43	10.954	0.379 96	17	10.952	0.380 10	43
44	10.564	0.402 03	16	10.561	0.402 19	44
45	10.151	0.425 39	15	10.149	0.425 56	45
46	9.715	0.450 11	14	9.712	0.450 28	46
47	9.253	0.476 26	13	9.249	0.476 45	47
48	8.764	0.503 94	12	8.760	0.504 15	48
49	8.246	0.533 24	11	8.242	0.533 46	49
50	7.698	0.564 26	10	7.694	0.564 49	50
51	7.118	0.597 11	9	7.114	0.597 35	51
52	6.503	0.631 91	8	6.499	0.632 16	52
53	5.851	0.668 79	7	5.847	0.669 04	53
54	5.160	0.707 91	6	5.156	0.708 15	54
55	4.427	0.749 41	5	4.423	0.749 65	55
56	3.648	0.793 50	4	3.645	0.793 70	56
57	2.820	0.840 36	3	2.817	0.840 52	57
58	1.939	0.890 24	2	1.937	0.890 34	58
59	1.000	0.943 40	1	1.000	0.943 40	59

6%

						0,
x	$\ddot{a}_{[x]:n }$	$A_{[x]:\overline{n} }$	n = 65 - x	$\ddot{a}_{x:n}$	$A_{x:n}$	x
17	16.409	0.071 21	48	16.405	0.071 40	17
18	16.343	0.074 95	47	16.339	0.075 13	18
19	16.272	0.078 92	46	16.269	0.079 09	19
20	16.198	0.083 13	45	16.195	0.083 30	20
21	16.119	0.087 61	44	16.116	0.087 77	21
22	16.035	0.092 36	43	16.032	0.092 51	22
23	15.946	0.097 40	42	15.943	0.097 54	23
24	15.852	0.102 74	41	15.849	0.102 88	24
25	15.751	0.108 42	40	15.749	0.108 55	25
26	15.645	0.114 43	39	15.643	0.114 56	26
27	15.532	0.120 81	38	15.530	0.120 94	27
28	15.413	0.127 58	37	15.411	0.127 70	28
29	15.286	0.134 75	36	15.284	0.134 86	29
30	15.152	0.142 34	35	15.150	0.142 46	30
31	15.010	0.150 39	34	15.008	0.150 50	31
32	14.859	0.158 92	33	14.857	0.159 03	32
33	14.700	0.167 95	32	14.698	0.168 06	33
34	14.531	0.177 51	31	14.529	0.177 62	34
35	14.352	0.187 63	30	14.350	0.187 74	35
36	14.163	0.198 33	29	14.161	0.198 45	36
37	13.963	0.209 67	28	13.960	0.209 79	37
38	13.751	0.221 65	27	13.749	0.221 78	38
39	13.527	0.234 33	26	13.525	0.234 46	39
40	13.290	0.247 74	25	13.288	0.247 87	40
41	13.040	0.261 91	24	13.037	0.262 06	41
42	12.775	0.276 89	23	12.772	0.277 05	42
43	12.495	0.292 72	22	12.492	0.292 89	43
44	12.200	0.309 44	21	12.197	0.309 63	44
45	11.888	0.327 11	20	11.884	0.327 31	45
46	11.558	0.345 78	19	11.554	0.345 99	46
47	11.210	0.365 49	18	11.206	0.365 72	47
48	10.842	0.386 30	17	10.837	0.386 56	48
49	10.454	0.408 28	16	10.449	0.408 57	49
50	10.044	0.431 50	15	10.038	0.431 81	50
51	9.610	0.456 02	14	9.604	0.456 35	51
52	9.153	0.481 91	13	9.146	0.482 28	52
53	8.669	0.509 27	12	8.662	0.509 67	53
54	8.159	0.538 19	11	8.151	0.538 62	54
55	7.618	0.568 77	10	7.610	0.569 22	55
56	7.047	0.601 12	9	7.038	0.601 60	56
57	6.442	0.635 36	8	6.433	0.635 86	57
58	5.801	0.671 65	7	5.792	0.672 16	58
59	5.121	0.710 15	6	5.112	0.710 66	59
60	4.398	0.751 04	5	4.390	0.751 52	60
61	3.630	0.794 54	4	3.622	0.794 97	61
62	2.811	0.840 90	3	2.805	0.841 23	62
63	1.936	0.890 42	2	1.933	0.890 60	63
64	1.000	0.943 40	1	1.000	0.943 40	64

PENSIONER MORTALITY TABLES

PMA92 and PFA92 (Base tables) and PMA92C20 and PFA92C20 (Projected tables)

The Base tables are based on the mortality of pensioners insured by UK life offices during the years 1991, 1992, 1993, and 1994. Mortality is measured by amounts of annuities held.

The projected tables are projected to the calendar year 2020.

Full details are given in *C.M.I.R.* **16** and **17**.

PMA92 PFA92

PROJECTION FORMULAE

The projected mortality rate applicable in a particular calendar year is calculated using the formula:

$$q_x^{Year}$$
 (projected) = $q_x^{Base} \times RF(x,t)$ where $t = Year - 1992$

The reduction factor is calculated as: $RF(x,t) = \alpha + (1-\alpha)(1-f)^{t/20}$

The parameters used are:

Age range	α	f
x < 60	0.13	0.55
$60 \le x \le 110$	$1 - 0.87 \left(\frac{110 - x}{50}\right)$	$0.55 \left(\frac{110 - x}{50}\right) + 0.29 \left(\frac{x - 60}{50}\right)$
x > 110	1	0.29

PMA92Base

x	q_x
50	0.001 315
51	0.001 519
52	0.001 761
53	0.002 045
54	0.002 379
55	0.002 771
56	0.003 228
57	0.003 759
58	0.004 376
59	0.005 090
60	0.005 914
61	0.006 861
62	0.007 947
63	0.009 189
64	0.010 604
65	0.012 211
66	0.014 032
67	0.016 088
68	0.018 402
69	0.020 998
70	0.023 901
71	0.027 137
72	0.030 732
73	0.034 713
74	0.039 105
75	0.043 935
76	0.049 227
77	0.055 006
78	0.061 292
79	0.068 106
80	0.075 464
81	0.083 379
82	0.091 862
83	0.100 917
84	0.110 544
85	0.120 739
86	0.131 492
87	0.142 786
88	0.154 599
89	0.166 903
90	0.179 664
91	0.192 841
92	0.206 389
93	0.220 257
94	0.234 389
95	0.248 727
96	0.263 206
97	0.277 762
98	0.292 327
99	0.306 832
100	0.321 209
101	0.335 389
102	0.349 305
103	0.362 893
104	0.376 091
105	0.388 838

PFA92base

x	q_x
50	0.001 271
51	0.001 456
52	0.001 670
53	0.001 917
54	0.002 200
55	0.002 524
56	0.002 894
57	0.003 317
58	0.003 799
59	0.004 345
60	0.004 965
61	0.005 667
62	0.006 458
63	0.007 350
64	0.008 352
65	0.009 476
66	0.010 734
67	0.012 138
68	0.013 703
69	0.015 442
70	0.017 371
71	0.019 505
72	0.021 861
73	0.024 455
74	0.027 306
75	0.030 432
76	0.033 849
77	0.037 577
78	0.041 632
79	0.046 035
80	0.050 800
81	0.055 946
82	0.061 488
83	0.067 441
84	0.073 817
85	0.080 629
86	0.087 885
87	0.095 594
88	0.103 761
89	0.112 386
90	0.121 470
91	0.131 009
92	0.140 996
93	0.151 420
94	0.162 267
95	0.173 519
96	0.185 155
97	0.197 150
98	0.209 477
99	0.222 103
100	0.234 995
101	0.248 115
102	0.261 424
103	0.274 879
104	0.288 437
105	0.302 054

PMA92C20

x	l_x	d_x	q_x	μ_x	$\overset{\circ}{e}_{x}$	x
50	9 941.923	5.418	0.000 545	0.000 507	34.10	50
51	9 936.504	6.260	0.000 630	0.000 585	33.12	51
52	9 930.244	7.249	0.000 730	0.000 677	32.14	52
53	9 922.995	8.415	0.000 848	0.000 786	31.17	53
54	9 914.580	9.776	0.000 986	0.000 914	30.19	54
55	9 904.805	11.371	0.001 148	0.001 063	29.22	55
56	9 893.434	13.237	0.001 338	0.001 239	28.25	56
57	9 880.196	15.393	0.001 558	0.001 444	27.29	57
58	9 864.803	17.895	0.001 814	0.001 681	26.33	58
59	9 846.908	20.777	0.002 110	0.001 957	25.38	59
60	9 826.131	24.084	0.002 451	0.002 266	24.43	60
61	9 802.048	28.965	0.002 955	0.002 685	23.49	61
62	9 773.083	34.694	0.003 550	0.003 241	22.56	62
63	9 738.388	41.398	0.004 251	0.003 889	21.64	63
64	9 696.990	49.193	0.005 073	0.004 651	20.73	64
65	9 647.797	58.195	0.006 032	0.005 543	19.83	65
66	9 589.602	68.537	0.007 147	0.006 583	18.95	66
67	9 521.065	80.348	0.008 439	0.007 792	18.08	67
68	9 440.717	93.746	0.009 930	0.009 191	17.23	68
69	9 346.970	108.836	0.011 644	0.010 806	16.40	69
70	9 238.134	125.685	0.013 605	0.012 661	15.59	70
71	9 112.449	144.350	0.015 841	0.014 783	14.79	71
72	8 968.099	164.834	0.018 380	0.017 204	14.02	72
73	8 803.265	187.096	0.021 253	0.019 956	13.28	73
74	8 616.170	211.010	0.024 490	0.023 072	12.55	74
75	8 405.160	236.362	0.028 121	0.026 587	11.86	75
76	8 168.798	262.864	0.032 179	0.030 537	11.18	76
77	7 905.934	290.116	0.036 696	0.034 962	10.54	77
78	7 615.818	317.595	0.041 702	0.039 899	9.92	78
79	7 298.223	344.688	0.047 229	0.045 390	9.33	79
80	6 953.536	370.644	0.053 303	0.051 473	8.77	80
81	6 582.891	394.658	0.059 952	0.058 188	8.23	81
82	6 188.234	415.856	0.067 201	0.065 576	7.73	82
83	5 772.378	433.321	0.075 068	0.073 676	7.25	83
84	5 339.057	446.180	0.083 569	0.082 522	6.80	84
85	4 892.878	453.648	0.092 716	0.092 149	6.37	85
86	4 439.230	455.092	0.102 516	0.102 590	5.97	86
87	3 984.138	450.084	0.112 969	0.113 873	5.59	87
88	3 534.054	438.463	0.124 068	0.126 023	5.24	88
89	3 095.591	420.387	0.135 802	0.139 060	4.91	89
90	2 675.203	396.334	0.148 151	0.152 998	4.61	90
91	2 278.869	367.099	0.161 088	0.167 846	4.32	91
92	1 911.771	333.759	0.174 581	0.183 606	4.06	92
93	1 578.012	297.596	0.188 589	0.200 273	3.81	93
94	1 280.416	260.008	0.203 065	0.217 836	3.59	94
95	1 020.409	222.405	0.217 957	0.236 273	3.38	95
96	798.003	186.098	0.233 205	0.255 556	3.18	96
97	611.905	152.209	0.248 746	0.275 647	3.00	97
98	459.696	121.595	0.264 511	0.296 499	2.84	98
99	338.101	94.813	0.280 429	0.318 054	2.68	99
100	243.288	72.117	0.296 425	0.340 247	2.54	100
101	171.171	53.478	0.312 423	0.363 002	2.41	101
102	117.693	38.644	0.328 344	0.386 232	2.29	102
103	79.050	27.202	0.344 113	0.409 842	2.18	103
104	51.848	18.647	0.359 653	0.433 729	2.08	104
105	33.200	12.446	0.374 887	0.457 778	1.99	105

PFA92C20

x	l_x	d_x	q_x	μ_x	$\overset{\circ}{e}_x$	x
50	9 952.697	5.245	0.000 527	0.000 492	37.08	50
51	9 947.452	5.998	0.000 603	0.000 563	36.10	51
52	9 941.454	6.879	0.000 692	0.000 645	35.12	52
53	9 934.574	7.898	0.000 795	0.000 741	34.15	53
54	9 926.676	9.053	0.000 912	0.000 851	33.17	54
55	9 917.623	10.374	0.001 046	0.000 976	32.20	55
56	9 907.249	11.879	0.001 199	0.001 120	31.24	56
57	9 895.370	13.606	0.001 375	0.001 284	30.27	57
58	9 881.764	15.564	0.001 575	0.001 472	29.31	58
59	9 866.200	17.769	0.001 801	0.001 685	28.36	59
60	9 848.431	20.268	0.002 058	0.001 918	27.41	60
61	9 828.163	23.991	0.002 441	0.002 236	26.46	61
62	9 804.173	28.285	0.002 885	0.002 655	25.53	62
63	9 775.888	33.248	0.003 401	0.003 135	24.60	63
64	9 742.640	38.932	0.003 996	0.003 691	23.68	64
65	9 703.708	45.423	0.004 681	0.004 332	22.78	65
66	9 658.285	52.802	0.005 467	0.005 069	21.88	66
67	9 605.483	61.158	0.006 367	0.005 914	21.00	67
68	9 544.325	70.580	0.007 395	0.006 882	20.13	68
69	9 473.745	81.124	0.008 563	0.007 986	19.28	69
70	9 392.621	92.874	0.009 888	0.009 240	18.44	70
71	9 299.747	105.887	0.011 386	0.010 663	17.62	71
72	9 193.860	120.210	0.013 075	0.012 272	16.81	72
73	9 073.650	135.860	0.014 973	0.014 086	16.03	73
74	8 937.791	152.836	0.017 100	0.016 126	15.27	74
75	8 784.955	171.113	0.019 478	0.018 414	14.52	75
76	8 613.841	190.598	0.022 127	0.020 974	13.80	76
77	8 423.243	211.162	0.025 069	0.023 829	13.10	77
78	8 212.080	232.615	0.028 326	0.027 004	12.42	78
79	7 979.465	254.729	0.031 923	0.030 527	11.77	79
80	7 724.737	277.179	0.035 882	0.034 425	11.14	80
81	7 447.558	299.593	0.040 227	0.038 728	10.54	81
82	7 147.965	321.523	0.044 981	0.043 464	9.96	82
83	6 826.442	342.455	0.050 166	0.048 664	9.41	83
84	6 483.987	361.832	0.055 804	0.054 357	8.88	84
85	6 122.154	379.053	0.061 915	0.060 576	8.37	85
86	5 743.101	393.506	0.068 518	0.067 349	7.89	86
87	5 349.595	404.595	0.075 631	0.074 708	7.43	87
88	4 945.000	411.770	0.083 270	0.082 686	7.00	88
89	4 533.230	414.537	0.091 444	0.091 308	6.59	89
90	4 118.693	412.545	0.100 164	0.100 604	6.20	90
91	3 706.149	405.590	0.109 437	0.110 601	5.84	91
92	3 300.559	393.644	0.119 266	0.121 325	5.49	92
93	2 906.914	376.882	0.129 650	0.132 801	5.17	93
94	2 530.033	355.677	0.140 582	0.145 048	4.87	94
95	2 174.356	330.617	0.152 053	0.158 084	4.58	95
96	1 843.738	302.467	0.164 051	0.171 926	4.32	96
97	1 541.271	272.119	0.176 555	0.186 586	4.07	97
98	1 269.152	240.562	0.189 545	0.202 071	3.84	98
99	1 028.591	208.795	0.202 991	0.218 386	3.62	99
100	819.796	177.783	0.216 863	0.235 531	3.41	100
101	642.013	148.385	0.231 125	0.253 502	3.22	101
102	493.627	121.303	0.245 737	0.272 288	3.05	102
103	372.325	97.048	0.260 654	0.291 872	2.89	103
104	275.277	75.930	0.275 830	0.312 234	2.73	104
105	199.347	58.053	0.291 217	0.333 348	2.59	105

		PMA92		PFA92C20		
4%	x	\ddot{a}_x	$^{2}A_{x}$	x	\ddot{a}_x	2

4%	x	\ddot{a}_x	$^{2}A_{x}$	x	\ddot{a}_x	$^{2}A_{\chi}$
	50	18.843	0.088 02	50	19.539	0.074 21
	51	18.567	0.094 71	51	19.291	0.079 78
	52	18.281	0.101 87	52	19.034	0.085 74
	53	17.985	0.109 54	53	18.768	0.092 11
	54	17.680	0.117 73	54	18.494	0.098 91
	55	17.364	0.126 47	55	18.210	0.106 16
	56	17.038	0.135 80	56	17.917	0.113 90
	57	16.702	0.145 74	57	17.615	0.122 14
	58	16.356	0.156 32	58	17.303	0.130 91
	59	15.999	0.167 56	59	16.982	0.140 24
	60	15.632	0.179 50	60	16.652	0.150 15
	61	15.254	0.192 17	61	16.311	0.160 68
	62	14.868	0.205 50	62	15.963	0.171 77
	63	14.475	0.219 50	63	15.606	0.183 43
	64	14.073	0.234 16	64	15.242	0.195 66
	65	13.666	0.249 46	65	14.871	0.208 47
	66	13.252	0.265 38	66	14.494	0.221 83
	67	12.834	0.281 90	67	14.111	0.235 76
	68	12.412	0.298 99	68	13.723	0.250 22
	69	11.988	0.316 60	69	13.330	0.265 21
	70	11.562	0.334 69	70	12.934	0.280 69
	71	11.136	0.353 20	71	12.535	0.296 64
	72	10.711	0.372 08	72	12.135	0.313 02
	73	10.288	0.391 25	73	11.734	0.329 80
	74	9.870	0.410 65	74	11.333	0.346 93
	75	9.456	0.430 21	75	10.933	0.364 37
	76	9.049	0.449 84	76	10.536	0.382 07
	77	8.649	0.469 47	77	10.142	0.399 97
	78	8.258	0.489 03	78	9.752	0.418 02
	79	7.877	0.508 44	79	9.367	0.436 16
	80	7.506	0.527 62	80	8.989	0.454 33
	81	7.148	0.546 50	81	8.618	0.472 47
	82	6.801	0.565 01	82	8.254	0.490 53
	83	6.468	0.583 10	83	7.900	0.508 45
	84	6.148	0.600 71	84	7.555	0.526 16
	85	5.842	0.617 79	85	7.220	0.543 63
	86	5.551	0.634 29	86	6.896	0.560 80
	87	5.273	0.650 19	87	6.582	0.577 62
	88	5.010	0.665 45	88	6.281	0.594 05
	89	4.762	0.680 06	89	5.991	0.610 06
	90	4.527	0.693 99	90	5.713	0.625 60
	91	4.306	0.707 25	91	5.447	0.640 66
	92	4.098	0.719 83	92	5.193	0.655 20
	93	3.903	0.731 74	93	4.951	0.669 21
	94	3.721	0.742 97	94	4.722	0.682 68
	95	3.551	0.753 56	95	4.504	0.695 59
	96	3.393	0.763 50	96	4.297	0.707 94
	97	3.245	0.772 82	97	4.102	0.719 73
	98	3.109	0.781 55	98	3.918	0.730 97
	99	2.982	0.789 69	99	3.744	0.741 64
	100	2.864	0.797 28	100	3.581	0.751 77
	101	2.755	0.804 34	101	3.428	0.761 36
	102	2.655	0.810 89	102	3.284	0.770 43
	103	2.562	0.816 96	103	3.149	0.778 99
	104	2.477	0.822 57	104	3.023	0.787 05
	105	2.399	0.827 74	105	2.905	0.794 63

Note. ${}^{2}A_{x} = A_{x}$ at 8.16%.

PMA92C20 and PFA92C20

 \ddot{a}_{xy} for male (x) and female (y) Age difference d = (y - x)

d	50 52 53 54	55 57 58 59	60 62 63 64	65 67 68 69	70 75 80 85 90 95
+20	12.638 12.232 11.823 11.413 11.004	10.595 10.189 9.786 9.387 8.993	8.605 8.224 7.851 7.487 7.133	6.790 6.457 6.137 5.829 5.533	5.250 4.027 3.108 2.449 1.998 1.708
+10	15.801 15.433 15.057 14.672 14.279	13.880 13.473 13.061 12.644 12.222	11.796 11.368 10.939 10.511 10.085	9.662 9.243 8.830 8.423 8.025	7.636 5.860 4.422 3.340 2.571 2.049
÷ \$	16.909 16.572 16.225 15.867 15.499	15.121 14.733 14.337 13.932 13.520	13.101 12.675 12.245 11.812 11.376	10.940 10.504 10.070 9.639 9.213	8.792 6.822 5.161 3.870 2.933 1.861
+	17.090 16.758 16.416 16.064 15.701	15.328 14.945 14.553 14.151 13.742	13.325 12.901 12.472 12.039 11.604	11.167 10.729 10.293 9.859 9.429	9.005 7.005 5.306 3.977 3.008 2.339 1.895
+3	17.258 16.931 16.594 16.246 15.888	15.521 15.143 14.755 14.357 13.950	13.536 13.114 12.686 12.255 11.819	11.382 10.944 10.506 10.070 9.637	9.209 7.182 5.449 4.084 3.084 2.391 1.930
+2	17.413 17.091 16.758 16.415 16.062	15.699 15.326 14.942 14.549 14.145	13.734 13.314 12.888 12.458 12.023	$\begin{array}{c} 11.586 \\ 11.147 \\ 10.708 \\ 10.270 \\ 9.835 \end{array}$	9.404 7.355 5.588 4.189 3.160 2.444 1.965
+	17.556 17.238 16.910 16.572 16.223	15.864 15.495 15.116 14.727 14.327	13.918 13.501 13.078 12.648 12.215	11.778 11.339 10.900 10.460 10.023	9.590 7.520 5.725 4.294 3.235 2.496 2.001
0	17.688 17.374 17.050 16.716 16.371	16.016 15.651 15.276 14.891 14.495	14.090 13.675 13.254 12.826 12.394	11.958 11.520 11.080 10.640 10.201	9.766 7.679 5.857 4.396 3.310 2.549 2.038
ī	17.808 17.498 17.178 16.848	16.156 15.795 15.423 15.041 14.650	14.248 13.837 13.418 12.992 12.561	12.126 11.688 11.248 10.808 10.369	9.932 7.831 5.985 4.496 3.384 2.602 2.075
7	17.918 17.612 17.295 16.968	16.284 15.926 15.558 15.180 14.791	14.393 13.985 13.569 13.145 12.716	12.282 11.845 11.406 10.966 10.526	10.088 7.975 6.107 4.593 3.456 2.654 2.112
$\dot{\omega}$	18.019 17.715 17.402 17.078 16.744	16.400 16.046 15.681 15.306 14.921	14.526 14.121 13.708 13.287 12.859	12.427 11.991 11.552 11.112 10.672	10.233 8.110 6.224 4.687 3.528 2.706 2.149
4	18.110 17.809 17.499 17.178 16.847	16.506 16.155 15.793 15.421 15.039	14.646 14.244 13.834 13.416 12.991	12.560 12.125 11.687 11.247 10.807	10.368 8.238 6.336 4.777 3.597 2.757 2.186
4	18.192 17.894 17.586 17.269 16.941	16.602 16.253 15.894 15.525 15.146	14.756 14.356 13.949 13.533 13.111	12.682 12.248 11.811 11.372 10.933	10.494 8.357 6.441 4.864 3.664 2.808
-10	18.493 18.206 17.908 17.601 17.283	16.955 16.617 16.269 15.910 15.541	15.161 14.772 14.374 13.968 13.555	13.136 12.711 12.282 11.849 11.414	10.978 8.833 6.876 5.235 3.963 3.039 2.400
d -20	18.746 18.467 18.179 17.881 17.573	17.255 16.926 16.587 16.238 15.879	15.509 15.129 14.740 14.343 13.939	13.529 13.112 12.692 12.267 11.840	11.412 9.295 7.335 5.660 4.339 3.361 2.670
×	50 51 53 54	55 57 58 59	61 63 63 64	65 67 69 69	70 75 80 85 90 95

Exam Permit

Member Number: MAHA00035 Surname: Maharai

Candidate Number: A213-exa-2020-2-Vir-0001-1NVWF

Dear Ratul Maharaj

This letter serves as your entry permit for the forthcoming examination for which you have been entered. Please check all details (date, venue) to ensure that they are correct. You must bring this permit with you to your exam.

EXAM DETAILS

Start Date: 02 Oct 2020 09:00 End Date: 02 Oct 2020 15:45 Subject: A213 - Contingencies

Exam Venue: Virtual

Medium: Both written and typed sections

IMPORTANT NOTICE:

Please be reminded that the following calculators ONLY are permitted:

Casio FX82 (with/without any suffix) Sharp ELW535 (with/without any prefix/suffix) Casio FX83 (with/without any suffix) Sharp EL531 (with/without any prefix/suffix) Casio FX85 (with/without any suffix) Texas Instruments BA II Plus (with/without any suffix) Texas Instruments TI-30 (with/without any suffix)

Hewlett Packard HP12c (with/without

any suffix)

For further information on exam logistics e.g. venue, please click here For further information on exam policies, please click here

Should you have any queries, please contact the Actuarial Society of South Africa:

Senior Education Administrator Head of Administration **Bobbie Beukes** Michelle Abrahams

bbeukes@actuarialsociety.org.za mabrahams@actuarialsociety.org.za

Kind regards, Actuarial Society of South Africa http://www.actuarialsociety.org.za