Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO EA772 — 1º Semestre de 2007

$\mathrm{EA772}-\mathrm{Circuitos}\ \mathrm{Lógicos}$ $\mathrm{Prova}\ 1-\mathrm{B}$ 03/04/2007

Prof. Jaime Portugheis

RA: <u>071251</u>

Nome: João Antonio Guerreiro L. Silva

Ass.: Joshntonio 5. 1. Silv

		1
Questão	Valor	Nota
1	1.0	0,25
$\overline{2}$	1.5	1,50
3	$1.\overline{5}$	1,25
4	2.0	000
5	2.5	0,0
6	1.5	1,0
Soma	10.0	4.1
		71

41 100

Questão 1: Dados dois números em base 10, $(573)_{10}$ e $(26.73)_{10}$. Determine suas representações em

- 1. (0.5pt) vetores de bits correspondentes ao código BCD 8421.
- 2. (0.5pt) vetores de bits correspondentes ao código Excesso-3 (+3)

Mostre explicitamente a sua solução.

Questão 2: Usando os axiomas e os teoremas de Álgebra de Boole, prove a seguinte equivalência:

$$abc' + bc'd + a'bd = abc' + a'bd.$$

Mostre, passo a passo, a sua prova.

Questão 3: Um sistema combinacional tem como entrada um vetor de 4 bits, e como saída a paridade de 0's neste vetor. Ou seja, a saída é PAR, se o número de 0's for par e IMPAR, se o número de 0's for ímpar.

- 1. (0.25pt) Descreva o sistema em alto nível (a entrada, a saída e a função entre a entrada e a saída).
- 2. (0.5pt) Descreva o sistema em uma tabela-verdade, utilizando os códigos binários. Se necessário, defina um código binário para as possíveis combinações de entradas e de saídas.
- 3. (0.25pt) Especifique o sistema em termos de mintermos.

4. (0.25pt) Especifique o sistema em termos de maxtermos.

5. (0.25pt) Represente o sistema com uso de mapa de Karnaugh de maxtermos.

Questão 4: Analise o seguinte circuito

- 1. (0.25pt) Utilize o método progressivo para determinar a função de chaveamento que o circuito realiza (Mostre o seu raciocínio no diagrama lógico acima).
- 2. (0.25pt) Especifique a função do circuito com uso de tabela-verdade.
- 3. (0.20pt) Supondo que o fator de fanout de cada porta seja 12. Determine o fator de fanout de cada saída do circuito. Explique a sua solução.
- 4. (0.20pt) Estime o tamanho do circuito em termos de portas equivalentes. Somor famas ho
- 5. (0.10pt) Determine o fator de carga de cada entrada. Justifique.
- 6. (0.5pt) Considerando que os tempos de transição e de propagação dos sinais sejam desprezíveis em relação à largura de um pulso, esboce o sinal de saída b.

7. (0.5pt) Determine os maiores retardos t_{pHL} e t_{pLH} da saída <u>b</u> em relação ao sinal de entrada A. Esboce estes retardos através de um diagrama de tempo. Explicite os seus cálculos. (Alga es maises ne toados)

Tipo	Fanin	$t_{pLH}(ns)$	$t_{pHL}(ns)$	Fator de Carga	Tamanho
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3
NOT	1	0.02 + 0.038L	0.05 + 0.017L	, 1.0	1

Questão 5: Dados os sistemas representados pelos mapas de Karnaugh de mintermos

10+de + ed

Exprima em termos de literais das funções

- 1. (0.5pt) todos os mintermos implicantes das funções.
- 2. (0.5pt) todos os implicantes primos das funções.
- 3. (0.5pt) todos os implicantes primos essenciais das funções.
- 4. (0.5pt) as somas de produtos mínimas.
- 5. (0.5pt) Desenhe os diagramas lógicos do circuitos (circuito de portas lógicas).

Questão 6: Projete um sistema que controla o alarme (ALARME)' de um carro. ALARME é setado em nível baixo (lógica negativa) quando o assento de motorista ou o de passageiro (considere que o carro tenha somente 1 assento de passageiro) estiverem ocupados e os respectivos cintos de segurança não forem apertados quando se dá a partida do carro. A ocupação ou não de um assento i é indicada pelo sinal ASS_i e o uso ou não do correspondente cinto é indicado pelo sinal $CINTO_i$. A ignição do carro é indicada pelo sinal IGN.

Determine a função de chaveamento do sistema.

Tabela 2.6 As principais identidades da álgebra booleana

1.	a+b=b+a	ab = ba	Comutatividade
2.	a + (bc) = (a+b)(a+c)	a(b+c) = (ab) + (ac)	Distributividade
3.	a + (b+c) = (a+b) + c	a(bc) = (ab)c	Associatividade
	= a + b + c	= abc	
4.	a + a = a	aa = a	Idempotência
5.	a + a' = 1	aa' = 0	Complemento
6.	1 + a = 1	0a = 0	•
7.	0 + a = a	1a = a	Identidade
8.	(a')' = a		Involução
9.	a + ab = a	a(a+b)=a	Absorção
IO.	a + a'b = a + b	a(a'+b) = ab	Simplificação
11.	(a+b)'=a'b'	(ab)' = a' + b'	Lei de DeMorgan