Derivatives of trig, functions:

1.
$$\left(\sin(x)\right) = \cos(x)$$

$$\partial. \quad (\cos(x))' = -\sin(x)$$

3.
$$(tan(x))' = sec^2(x)$$

$$4. \quad \left(\cos \left(x \right) \right) = - \csc^2(x)$$

5.
$$(\operatorname{Sec}(x))' = +\operatorname{an}(x) \cdot \operatorname{Sec}(x)$$

6.
$$\left(\csc(x) \right)' = - \cot(x) \cdot \csc(x)$$

Product rule:

$$\left(f(x)\cdot g(x)\right) = f'(x)\cdot g(x) + g'(x)\cdot f(x)$$

Quotient rule:

$$\left(\frac{f}{g}\right) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{g^2(x)}$$

example,		
F(x) is a composition	of two function	s found
$F = f(g(x)) = f \circ g$		
Outside inside		
$F(x) = \sqrt{x-1}$	Checking:	
utside -> f(x) = vx	f(g(x1) = \(\overline{g}(x) \)	7 =
vside -2 g(x1= x=1	The state of the	
	= VX-1	
$F(x) = \cos x^2$		
putside -2 $f(x) = \cos(x)$		
·		
inside -> g(x)= x2		

1. Complete the Chain Rule (using both types of notation)

• If
$$F(x) = f(g(x))$$
,
$$\text{then } F'(x) = \begin{cases} f(x) \cdot g'(x) \end{cases}$$
 then $\frac{dy}{dx} = \frac{df}{dx} \cdot \frac{du}{dx}$

2. For each function below, write it as a nontrivial composition of functions in the form f(g(x)). Then use the chain rule to compute the derivative.

(a)
$$H(x) = \sqrt[3]{4 - 2x}$$

outside $= f(x) = \sqrt[3]{x} = x^{4/3}$
inside $= g(x) = \sqrt[4-2x]{2/3}$
 $H^{1}(x) = \frac{1}{3}(4-2x)^{-2/3} \cdot (4-2x)^{2/3} \cdot (-2)$

(b)
$$H(x) = \tan(2 - x^4)$$

outside $= f(x) = \tan(x)$
inside $= g(x) = 2 - x^4$
 $H^1(x) = \sec^2(2 - x^4) \cdot (-4x^3)$

(c)
$$H(x) = e^{2-2x^3}$$

outside $= f(x) = e^{2x}$
inside $= g(x) = 2 - 2x^3$
 $H^1(x) = e^{2-3x^3} \cdot (-6x^2)$

(d)
$$H(x) = \frac{4}{x + \sin(x)}$$

outside $= f(x) = \frac{4}{x}$ $\left(\frac{1}{x}\right)^{\prime} = \frac{1}{x^2}$
inside $= g(x) = x + \sin(x)$
 $H'(x) = \frac{-4}{(x + \sin(x))^2} \cdot (1 + \cos(x))$

3. For each problem below, find the derivative.

(a)
$$z o = (2x^3 - 5x)^7$$
 $f = x^2$
 $g = 3x^3 - 5x$

$$z'(x) = 7 \cdot (3x^3 - 5x)^6 \cdot (6x^2 - 5)$$
(b) $x(\theta) = (\cos(\theta))^3$

$$f(\theta) = 0^3$$

$$g(\theta) = \cos(\theta)$$

$$x'(\theta) = 3\cos^3(\theta) \cdot (-\sin(\theta))$$
(c) $y = x^2 - 3\sin(x^3)$

$$f = \sin(x)$$

$$g = x^3$$

$$x' = 3x - 3 \cdot \cos(x^3) \cdot 3x^2$$
(d) $y = 10e^{\sqrt{3}}$

$$g = x^3$$

$$y' = 10 \cdot (e^{x})' = 10 \cdot (e^{x})' = 10 \cdot e^{x}$$

$$f' = x^2 + 4$$

$$f'(x) = x^2 - 4$$

$$f'(x) = x^2 - 4$$

$$f'(x) = x^2 - 4$$
(f) $g(x) = \frac{\sec(x^2 + 2)}{12}$

$$f = \sec(x)$$

$$g = x^2 + 2$$

$$g'(x) = \frac{1}{12} + \cos(x^2 + 2) \cdot 2x$$
(g) $k(s) = \frac{A^2}{B + Cs} (A, B, C \text{ are constants})$

$$f = \frac{A^2}{S}$$

$$g = B + Cs$$

$$W'(s) = -\frac{A^2}{(B + cs)^2} \cdot (B + cs)' = -\frac{A^2}{(B + cs)^2} \cdot C$$