KHOA KHOA HỌC CƠ BẨN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hê đào tao: Chính quy, Bâc học: Đai học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không \ k\mathring{e}$ thời gian phát $d\mathring{e}$)

Đề số 1

Câu 1 (2,0 điểm). Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{bmatrix}.$$

- (a) Tính $A + 2A^T$, trong đó A^T là ma trận chuyển vị của A.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases} x - 2y + 3z &= 1\\ x + 2y - z &= 1\\ 2x + y - 3z &= 0. \end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (3, 4, 2); v_2 = (-2, 0, 7); v_3 = (4, -5, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(10,6,-3) qua các véc tơ của hệ V.

Câu 4 (2,0 điểm). Cho ma trận

$$C = \begin{bmatrix} 1 & 3 & -3 \\ 5 & -1 & -5 \\ 2 & -2 & -4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Tìm A^{12} biết

$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hê đào tao: Chính quy, Bâc học: Đai học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không \ k\mathring{e}$ thời gian phát $d\mathring{e}$)

Đề số 2

Câu 1 (2,0) điểm). Cho hai ma trận A và B:

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

- (a) Hãy xác định ma trận C sao cho A + C = B.
- (b) Tính D = AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-2x + y - z &= 2 \\
x - 2y + z &= 2 \\
-x + y - 2z &= 2.
\end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (4, -2, 3); v_2 = (0, 3, -5); v_3 = (6, -2, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(7,9,-2) qua các véc tơ của hệ V.

Câu 4 (2,0 diểm). Cho ma trận

$$C = \begin{bmatrix} 3 & 1 & -1 \\ -1 & 5 & 1 \\ -2 & 2 & 4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 điểm). Tìm A^{20} biết

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không\ kể\ thời\ gian\ phát\ đề$)

Đề số 3

Câu 1 (2,0 điểm). Cho các ma trận sau:

$$A = \begin{bmatrix} -3 & 4 & -6 \\ 5 & 7 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 5 \\ -7 & 4 \\ 1 & -3 \end{bmatrix}.$$

Tính các ma trận $A^T + 2B$ và BA, trong đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
4x + 3y + z = 2 \\
-5x + 2y + 8z = -3 \\
x + 3y + 5z = 7.
\end{cases}$$

Câu 3 (2,0 điểm). Trong trong không gian véc tơ \mathbb{R}^3 cho hệ véc tơ

$$S = \{v_1 = (0, 1, 1); \ v_2 = (1, 0, 1); \ v_3 = (1, 1, 0)\}.$$

- (a) Chứng minh hệ S độc lập tuyến tính. Từ đó suy ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ u=(1,2,1) trong cơ sở S.

Câu 4 (2,0 điểm). Cho ma trận

$$C = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -11 & 1 & -2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ${\cal C}.$
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 điểm). Cho hai ma trận vuông, thực A và B thoả mãn các điều kiện sau:

$$A^{2021} = 0$$
 và $AB = A + B$.

Chứng minh rằng det(B) = 0.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng.....năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 4

Câu 1 (2,0 diểm). Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 3 & -1 \\ -3 & 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & -2 \end{bmatrix}.$$

- (a) Tính $2A + A^T$, trong đó A^T là ma trận chuyển vị của A.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình tuyến tính sau:

$$\begin{cases} x - 2y - 3z = 0 \\ 3x + 2y + z = 2 \\ 3x + y - 2z = 0. \end{cases}$$

Câu 3 (2,0 điểm). Trong không gian véc tơ \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, -2, 3); u_2 = (2, 3, 5); u_3 = (-7, -9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,1,4) trong cơ cở S.

Câu 4 (2,0 điểm). Cho ma trận sau:

$$C = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và đưa ra ma trận chéo đó?

Câu 5 (2,0 điểm).

- (a) Cho A là ma trận phản đối xứng cấp n (tức A là ma trận thực vuông cấp n thỏa mãn $A^T = -A$). Chứng minh rằng nếu n lẻ thì $\det(A) = 0$.
- (b) Cho ma trận cấp 2:

$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \quad a, b, c \in \mathbb{R}.$$

- Chứng minh rằng nếu $A^{2020} = 0$ thì $A^2 = 0$.
- $\bullet\,$ Tìm a,b,csao cho tồn tại n để $A^n=I,$ với I là ma trận đơn vị cấp 2.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HOC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng.....năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 5

Câu 1 (2,0 diểm). Cho ma trận

$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & -1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

Tính

- (a) $2A + A^T$;
- (b) $A^T A$, ở đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-x + 5y + 9z = -1 \\
-4x + 5y + 13z = 4 \\
5x + 6y + 6z = 9.
\end{cases}$$

Câu 3 (2,0 điểm). Cho họ véc tơ $S = \{v_1, v_2, v_3\}$ trong không gian véc tơ \mathbb{R}^3 với $v_1 = (0, 1, 1)$, $v_2 = (1, 0, 1)$ và $v_3 = (1, 1, 0)$.

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v = (1, 1, 1) trong cơ cở S.

 $\mathbf{Câu}$ 4 (2,0 điểm). Cho ma trận sau

$$C = \begin{bmatrix} 0 & -5 & -2 \\ 2 & 7 & 2 \\ -2 & -3 & 2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

 $\mathbf{Câu}\ \mathbf{5}\ (2,\!0\ \mathrm{diểm}).$ Cho các ma trận

$$D = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Đặt E = D M. Chứng minh rằng: EM = ME và $D^2 = E^2 + 2ME + M^2$.
- (b) Tính D^{2021} .

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 6

Câu 1 (2,0 điểm). Cho các ma trận sau:

$$A = \begin{bmatrix} 5 & 2 & 7 \\ -4 & -6 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & -8 \\ 5 & 3 \\ -1 & -2 \end{bmatrix}.$$

Tính

- (a) $A + 2B^T$, ở đó B^T là ma trận chuyển vị của B;
- (b) AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases} x_1 - 2x_2 + x_3 = -2\\ 2x_1 + 3x_2 - x_3 = 6\\ -x_1 + x_2 + 2x_3 = -2. \end{cases}$$

Câu 3 (2,0 điểm). Trong \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, 2, 3); u_2 = (2, -3, 5); u_3 = (7, 9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,-4,8) trong cơ cở S.

Câu 4 (2,0 điểm). Cho ma trận sau

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ${\cal C}.$
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Cho các ma trận

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}.$$

- (a) Đặt E=D-M. Chứng minh rằng: EM=ME và $D^2=E^2+2ME+M^2$.
- (b) Tính D^{2021} .

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng......năm 20...... Thời gian làm bài: 90 phút ($Không \ kể \ thời \ gian \ phát \ đề$)

Đề số 7

Câu 1 (2,0 điểm). Cho hai ma trận A và B xác định như sau:

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- (a) Tìm ma trận D sao cho A D = B.
- (b) Tính AB.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-3x_1 + 5x_2 + 7x_3 = 2 \\
2x_1 + 4x_2 + 9x_3 = 5 \\
4x_1 + 3x_2 - 5x_3 = -9.
\end{cases}$$

Câu 3 (2,0 điểm). Trong \mathbb{R}^3 cho hệ véc tơ

$$S = \{u_1 = (1, -2, 3); u_2 = (2, 3, 5); u_3 = (-7, -9, 2)\}.$$

- (a) Chứng minh rằng hệ S độc lập tuyến tính. Từ đó chỉ ra rằng S là một cơ sở của \mathbb{R}^3 .
- (b) Tìm tọa độ của véc tơ v=(2,1,4) trong cơ cở S.

Câu 4 (2,0 điểm). Cho ma trận

$$C = \begin{bmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -11 & 1 & -2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trân P sao cho $P^{-1}CP$ là ma trân chéo và viết ma trân chéo đó?

Câu 5 (2,0 điểm). Gọi A là ma trận vuông, thực cấp n thoả mãn tính chất sau $A^{-1} = 3A$. Hãy tính $\det(A^{2021} - A)$.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.

KHOA KHOA HỌC CƠ BẨN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2020–2021 (Đợt học...) Hệ đào tạo: Chính quy, Bậc học: Đại học

Tên học phần: Đại số tuyến tính. Số TC: 03

Thi ngày......tháng.....năm 20.....

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Đề số 8

Câu 1 (2,0 điểm). Cho các ma trận

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 2 & -3 & 1 \\ 3 & 5 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 \\ -3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Tính

- (a) $2A + A^T$;
- (b) AB, ở đó A^T là ma trận chuyển vị của A.

Câu 2 (2,0 điểm). Giải hệ phương trình sau:

$$\begin{cases}
-3x_1 + 5x_2 + 7x_3 = 2 \\
2x_1 + 4x_2 + 9x_3 = 5 \\
4x_1 + 3x_2 - 5x_3 = -9.
\end{cases}$$

Câu 3 (2,0 điểm). Trong không gian \mathbb{R}^3 cho hệ véc tơ:

$$V = \{v_1 = (3, 4, 2); \ v_2 = (-2, 0, 7); \ v_3 = (4, -5, 0)\}.$$

- (a) Kiểm tra xem hệ véc tơ trên là độc lập tuyến tính hay phụ thuộc tuyến tính?
- (b) Biểu diễn tuyến tính véc tơ x=(10,6,-3) qua các véc tơ của hệ V.

Câu 4 (2,0 điểm). Cho ma trận sau:

$$C = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của C.
- (b) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?

Câu 5 (2,0 điểm). Cho A và B là các ma trận vuông cấp n thoả mãn AB = BA và $B^{2021} = 0$.

- (a) Chứng minh rằng nếu $A^{2020}=0$ thì tồn tại số tự nhiên k để $(A+B)^k=0$.
- (b) Chứng minh rằng r(I+A+B)=r(I-A-B)=n (trong đó r(M) là hạng của ma trận M).
- (c) Chứng minh rằng nếu A là khả nghịch thì A+B là khả nghịch.

- Sinh viên **không được** sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.