L6470 (マイクロステップ最大 1/128) 使用 2相バイポーラ ステッピング モータ ドライブキット マイコンで正・逆転、加・減速、ブレーキ、速度、 位置のコントロールが出来ます。*

*マイコン、モータは付属していません。*詳しくはhttp://akizukidenshi.com/download/ds/st/L6470.pdfを御参照ください。

■特長■

- ★バイポーラ ステッピング モータドライブ I CのL6470を使用しています。
- ★1相をフルステップ、1/4、1/8、1/16、1/32、1/64、1/128ステップに細分可能です。
- ★マイコンのSPIインタフェイスで2相バイポーラ ステッピング モータの正・逆転、加・減速、プレーキ、速度制御、位置制御が出 来ます。
- ★脱調監視機能内蔵です。(外部にセンサは必要ありません)
- ★幅広いモータ動作電源電圧:8V~45V(マイコンとのインタフェイスは内部の3Vを使用、または外部から最大5.5V)
- ★出力電流:3.0A(ピーク7A) ★過電流、加熱保護機能内蔵です。
- ★モータの電源電圧の変動をキャンセルする機能の為のA/Dコンバータを内蔵しています。

■仕様■

モータ電圧:8V~45V(マイコンとのグランドは共通です)

・ロジック電圧:内部レギュレータの3Vを使用、または外部から最大5.5V(GNDはモータ電源と共通です)

最大駆動電流:3A(ピーク7A)

■部品表■				
番号	品名	数	規格等	備考
U1	モータドライブIC	1	L6470	ハンダ付済
D1	ツェナーダイオード	1	3. 6V	ハンダ付済
D2	小信号用ダイオード	1	BAV99	ハンダ付済
LED1	発光ダイオード	1	級	ハンダ付済
LED2	発光ダイオード	1	赤	ハンダ付済
C1.2.4	積層セラミックコンデンサ	3	0.01 μF	ハンダ付済
С3	積層セラミックコンデンサ	1	0.22 µF	ハンダ付済
C5	電解コンデンサ	1	100µF	ハンダ付済
C6,7,8,9,10,11	積層セラミックコンデンサ	6	0.1 μF	ハンダ付済
C12.13	積層セラミックコンデンサ	2	47μF6.3V	ハンダ付済
C14,15,16	積層セラミックコンデンサ	3	100pF	ハンダ付済
R1	チップ型抵抗	1	32kΩ	ハンダ付済
R2	チップ型抵抗	1	100Ω	ハンダ付済
R3	チップ型抵抗	1	8.2kΩ	ハンダ付済
R4,6,8	チップ型抵抗	3	39kΩ	ハンダ付済
R5.7	チップ型抵抗	2	470Ω	ハンダ付済
VR1	半固定抵抗	1	220kΩ	ハンダ付済
CN1,2,3	端子台	3	2P	
CN4	2.54mm ピッチピンヘッダ	1	2×5	
JP1	2.54mm ピッチピンヘッダ	1	2×2	
AE-L6470DRV	専用基板	1		

■製作■

ほとんどの部品は実装ハンダ付け済みです。端子台とピンヘッダをハンダ付けするのみです。

- ・ピンヘッダは長いもの(ピン数の多いもの)が入っている場合があります。適宜、必要なピン数に切ってお使いください。
- ・CN1、CN2、CN3端子台はケーブル接続面が基板の外側になるようにハンダ付けしてください。
- CN2、CN3はサイドの溝をすべり合わせて一体化させてからハンダ付けしてください。
- ・基板印刷の「SW」「OSCIN、OSCOUT」端子には何も取り付けません。

■マイコンとのインタフェイス■

SPIを使用します。

■端子の説明■

	_ 10 3 0 0/0	u->u-							
1, CN1 電源入力端子			? 2,	CN2 E-5	ヲ接続端子A相	3, CN3	モータ接続	端子B相	
	CN1	VS	モータ電源+	CN2	OUT1A	出力A 1	CN3	OUT2A	出力B1
		GND	GND		OUT2A	出力A2		OUT2B	出力B2

4、CN4 マイコン接続端子(#が付いている信号名は負論理です)

CN4	1	#BUSY/SYNC	#動作表示/同期表示	2	FLAG	内部フラグ状態出力
	3	GND	GND	4	EXT-VDD	VDD (JP1に依存)
	5	SDO	SPIデータOUT	6	CK	SPIクロック
	7	SDI	SPIデータIN	8	#CS	SPIチップセレクト
	9	STCK	ステップクロック入力	10	#STBY/#RST	#スタンバイ・#リセット

5、JP1 ロジック電源設定ジャンパ:

<u>(マイコンとのインタフェイス信号電圧を設定します)</u> 1 - 2JP1 1-2, 3-43 - 4JP1 JP1 JP1 2 0 0 1 2 0 0 1 2001 4003 4 • • 3 4 • • 3 内部レギュレータの EXT-VDD 端子から 内部レギュレータの 3 Vを使用し、 の外部電圧を使用し、 3 Vを使用し、 EXT-VDD 端子に3 EXT-VDD 端子は不 内部レギュレータ不 使用 使用 Ⅴを出力

■マイコンからL6470へのコマンドの送り方■

3バイトのデータを持ったコマンド

マイコンのVDDとの接続は、JP1の 設定により変わります。 ■端子の説明■の文中「5、JP1」の 項を御参照ください。

.....vdd

SDL

SCK

SDO

PORTC,5

PIC18F14K50など

D+

D-

TX

RХ

VR1はL6470のADCIN端子(5番ピン)が 1. 5Vになるように設定してください(初期設 定ではVR1は不使用に設定されています)

■コマンド表■

Command mnemonic	Con	nma	nd bir	nary co	ode	Action		
Command mnemonic	[75]	[4] [3] [21] [0]		[0]	Action			
NOP	000	0	0	00	0	Nothing		
SetParam(PARAM, VALUE)	000		[PA	RAM]		Writes VALUE in PARAM register		
GetParam(PARAM)	001		[PA	RAM]		Returns the stored value in PARAM register		
Run(DIR,SPD)	010	1	0	00	DIR	Sets the target speed and the motor direction		
StepClock(DIR)	010	1	1	00	DIR	Puts the device into Step-clock mode and imposes DIR direction		
Move(DIR,N_STEP)	010	0	0	00	DIR	Makes N_STEP (micro)steps in DIR direction (Not performable when motor is running)		
GoTo(ABS_POS)	011	0	0	00	0	Brings motor into ABS_POS position (minimum path)		
GoTo_DIR(DIR,ABS_POS)	011	0	1	00	DIR	Brings motor into ABS_POS position forcing DIR direction		
GoUntil(ACT,DIR,SPD)	100	0	ACT	01	DIR	Performs a motion in DIR direction with speed SPD until SW is closed, the ACT action is executed then a SoftStop takes place.		
ReleseSW(ACT, DIR)	100	1	ACT	01	DIR	Performs a motion in DIR direction at minimum speed until the SW is released (open), the ACT action is executed then a HardStop takes place.		
GoHome	011	1	0	00	0	Brings the motor into HOME position		
GoMark	011	1	1	00	0	Brings the motor into MARK position		
ResetPos	110	1	1	00	0	Resets the ABS_POS register (set HOME position)		
ResetDevice	110	0	0	00	0	Device is reset to power-up conditions.		
SoftStop	101	1	0	00	0	Stops motor with a deceleration phase		
HardStop	101	1	1	00	0	Stops motor immediately		
SoftHIZ	101	0	0	00	0	Puts the bridges into high impedance status after a deceleration phase		
HardHiZ	101	0	1	00	0	Puts the bridges into high impedance status immediately		
GetStatus	110	1	0	00	0	Returns the STATUS register value		
RESERVED	111	0	1	01	1	RESERVED COMMAND		
RESERVED	111	1	1	00	0	RESERVED COMMAND		

■コマンド・レジスタの扱い方■

Command mnemonic	Command binary code					
	[75]	[4]	[3]	[21]	[0]	
NOP	000	0	0	00	0	
SetParam(PARAM,VALUE)	000	[PARAM]				
	-		_			

= 読み出し可能 MR = 書き込み可能 WS = ストップ時のみ 書き込み可能 WH = ハイインピーチャ ンス時のみ書き 込み可能 - A - I - I - - - - 左 D A D A A A I - O 体 * 1 - 7 件 7

		7507 JBC						
1	Address	Register name	Register function	Len.	Reset	Reset	Remarks (1)	
١	[Hex]	riegister ritarie		[bit]	Hex	value		
	h01	ABS_POS	Current position	22	000000	0	R, WS	
	h02	EL_POS	Electrical position	9	000	0	R, WS	

★コマンドに続くデータバイト。8ビット単位で区切る。 22bitの場合は最上位6bit (LSB合わせ) +8bit+8bit

●例 (SPIで送信するデータ列)

「ABS_POS」レジスタに「-200」を書き込む場合 0×01 , $0 \times 3F$, $0 \times FF$, 0×38 (データは22ビットで2の補数です)

「ABS_POS」レジスタに「+200」を書き込む場合 0×01 , 0×00 , 0×00 , $0 \times C8$

「MARK」レジスタに「+5000」を書き込む場合

 0×03 , 0×00 , 0×13 , 0×88 「MAX_SPEED」レジスタに「10」を書き込む場合

 0×07 , 0×00 , $0 \times 0A$

「STEP_MODE」レジスタに「1/128ステップモード」を書き 込む場合

 $0 \times 18, 0 \times 07$

Address [Hex]	Register name	Register function	Len. [bit]	Reset Hex	Reset value	Remarks ⁽¹⁾
h01	ABS_POS	Current position	22	000000	0	R, WS
h02	EL_POS	Electrical position	9	000	0	R, WS
h03	MARK	Mark position	22	000000	0	R, WR
h04	SPEED	Current speed	20	00000	0 step/tick (0 step/s)	R
h05	ACC	Acceleration	12	08A	125.5e-12 step/tick ² (2008 step/s ²)	R, WS
h06	DEC	Deceleration	12	08 A	125.5e-12 step/tick ² (2008 step/s ²)	R, WS
h07	MAX_SPEED	Maximum speed	10	041	248e-6 step/tick (991.8 step/s)	R, WR
h08	MIN_SPEED	Minimum speed	13	000	0 step/tick (0 step/s)	R, WS
h15	FS_SPD	Full-step speed	10	027	150.7e-6 step/tick (602.7 step/s)	R, WR
h09	KVAL_HOLD	Holding K _{VAL}	8	29	0.16·VS	R, WR
h0A	KVAL_RUN	Constant speed K _{VAL}	8	29	0.16·VS	R, WR
h0B	KVAL_ACC	Acceleration starting K _{VAL}	8	29	0.16-VS	R, WR
h0C	KVAL_DEC	Deceleration starting K _{VAL}	8	29	0.16-VS	R, WR
h0D	INT_SPEED	Intersect speed	14	0408	15.4e-6 step/tick (61.5 step/s)	R, WH
h0E	ST_SLP	Start slope	8	19	0.038% s/step	R, WH
h0F	FN_SLP_ACC	Acceleration final slope	8	29	0.063% s/step	R, WH
h10	FN_SLP_DEC	Deceleration final slope	8	29	0.063% s/step	R, WH
h11	K_THERM	Thermal compensation factor	4	0	1.0	R, WR
h12	ADC_OUT	ADC output	5	XX (2)		R
h13	OCD_TH	OCD threshold	4	8	3.38A	R, WR
h14	STALL_TH	STALL threshold	7	40	2.03A	R, WR
h16	STEP_MODE	Step mode	8	7	128 microsteps	R, WH
h17	ALARM_EN	Alarm enable	8	FF	All alarms enabled	R, WS
h18	CONFIG	IC configuration	16	2E88	Internal oscillator, 2 MHz OSCOUT clock, supply voltage compensation disabled, overcurrent shutdown enabled, slew rate = 290 V/µs PWM frequency = 15.6 kHz.	R, WH

AE-L6470DRV

OUT1A

OUT1B

VS

GND

A相 OUT2A

B相

B相 OUT2B

#BUSY/SYNC 1

FLAG 2

EXT-VDD 4

GND 3

SDO 5

CK 6

SDI 7

#CS 8

STCK 9

#STBY/#RST 10

■レジスタ値設定例■

■接続例■

0

 $^{\circ}$

バイポーラ ステッピングモータ

8~45V DC

モータ雷源+

モータ電源ー

(モータ定格)

h1A

h1B

ステップ角: 1. 8度(±5%) 1回転ステップ数: 200 相数:2 コイル抵抗:5.6 Ω/相 コイルインピーダンス:7.5mH/相 定格電流: O. 9A/相 静止トルク: 270mNm

XXXX (2) 16

サイズ: 42 (D) x42 (W) x34 (H) mm

●上記のモータでの初期設定例(無負荷時)

★スタート、ストップが素早い動作

RESERVED Reserved address

RESERVED Reserved address

 $ACC = 0 \times 03E8$ $MAX_SPEED = 0x23$ $DEC = 0 \times 03E8$ $MIN_SPEED = 0$

High impedance state, UVLO/Reset flag set.

★スタート、ストップがゆっくりで脱調を抑える動作

 $ACC = 0 \times 0010$ $DEC = 0 \times 0010$ $MAX_SPEED = 0x23$ MIN SPEED = 0

★スタート、ストップが素早く、ゆっくり回転する動作

 $ACC = 0 \times 03E8$ $DEC = 0 \times 03E8$ $MAX_SPEED = 0 \times 10$ MIN SPEED = 0

■コマンド例■

★絶対位置「+2000」へ正転移動(SPI送信データ列) (GoToForward +2000) 0b01101001, 0x00, 0x07, 0xD0