Global Short-Term Forecasting of Covid-19 Cases

Thiago de Paula Oliveira thiago.paula.oliveira@insight-centre.org https://prof-thiagooliveira.netlify.com

Rafael de Andrade Moral rafael.deandrademoral@mu.ie

30th July 2020

Contents

- 1 Introduction and Motivation
 - Social Impact
 - Economic Impact
 - Objectives
- 2 Data Acquisition
- 3 Methods
 - Modelling framework
 - Model Validation
 - Clustering
- 4 Results and Discission
- 5 Final Remarks
- 6 References

Introduction and Motivation

- The virus, which causes the respiratory infection Covid-19, was first detected in the city of Wuhan, China, in late 2019.
- Social and Economic Impact

Number of new cases, last 14 days Countries where cases **rose** or **fell** last week, compared with the previous week

Source: Johns Hopkins University

Introduction and Motivation - Forecast Models

- New disease with many factors acting in concert:
 - Spreading with great speed
 - Human behaviour
 - Government intervention/policies
 - Data quality number of cases did not reflect correct numbers
- Forecasting with great accuracy under these circumstances is very difficult, and, consequently, would prove itself invaluable

Introduction and Motivation - Forecast Models

- Short-term forecasts can give a good idea about the trend of the outbreak, and can be crucial to assist planning
- Could help low-and-middle-income countries/cities
- Develop strategic planning in the public health system to avoid deaths

Introduction and Motivation - Social Impact

- Impact COVID-19 has had on Irish society in April 2020
- Sample of 4,033 persons 18 years and over

Introduction and Motivation - Economic Impact

 Outbreaks of the COVID-19 pandemic have been causing worldwide socioeconomic and health concerns

IMF says that the global economy will shrink by 3% this year

Objectives

- Propose a new modelling framework to handle with the behaviour of reported number of cases by country
 - State-space hierarchical model
 - Generate forecasts with very good accuracy for up to seven days ahead
- Propose clustering the countries based on the behaviour of their estimated autoregressive parameter over the last 60 days
- Provide all results as an R Shiny Dashboard
 - Including week-long forecasts for every country in the world
 - Point forecasts
 - Prediction intervals to express the uncertainty in the forecasts

Data and model access:

https://github.com/Prof-ThiagoOliveira/covid_forecast

Data Acquisition

Data Acquisition

- European Centre for Disease Prevention and Control (ECDC)
- Data from the current day is removed, since it can be updated.

Data Acquisition

Table: Data structure

	dateRep	cases	deaths	countries	popData2019	continent
1	29/07/2020	103	1	Afghanistan	38041757	Asia
2	28/07/2020	105	1	Afghanistan	38041757	Asia
3	27/07/2020	106	10	Afghanistan	38041757	Asia
4	26/07/2020	121	13	Afghanistan	38041757	Asia
5	25/07/2020	108	35	Afghanistan	38041757	Asia
6	24/07/2020	13	0	Afghanistan	38041757	Asia
:	:	:	:	<u>:</u>	:	:

- Number of Rows: 32,850
- Number of Columns: 6
- 3 countries is a factor with 210 levels

Methods

Modelling framework

 We introduce a class of state-space hierarchical models for overdispersed count time series

$$\begin{split} Y_{it}|Y_{i,t-1} &\sim \mathsf{NB}(\mu_{it}, \psi) \\ \log \mu_{it} &= \gamma_{it} + \Omega_{it} \\ \gamma_{it} &= \phi_{it}\gamma_{it-1} + \eta_{it}, \text{ with } \eta_{it} \sim \mathsf{N}\left(0, \sigma_{\eta}^2\right) \\ \phi_{it} &= \sum_{q=0}^{Q} (\beta_q + b_{iq}) P_q(t), \text{ with } \boldsymbol{b}_i \sim \mathsf{N}_Q\left(\mathbf{0}, \boldsymbol{\Sigma}_b\right) \\ \Omega_{it} &= \lambda_{it}\omega_{it} \end{split}$$

where $\lambda_{it} \sim \text{Bernoulli}(\pi)$ and $\omega_{it} \sim N(0, \sigma_{\omega}^2)$.

• When $\lambda_{it}=1$, then observation y_{it} is considered to be an outlier, and the extra variability is modelled by σ_{ω}^2

- ullet ϕ_{it} varying by country: more flexible autocorrelation function
- Iterating γ_{it} we obtain

$$\gamma_{it} = \left(\prod_{k=2}^{t} \phi_{ik}\right) \gamma_{i1} + \sum_{j=2}^{t-1} \left[\left(\prod_{k=j+1}^{t} \phi_{ik}\right) \eta_{ij} \right] + \eta_{it}$$
 (1)

for t = 3, ..., T.

■ When $\phi_{it} = \phi_i = \beta_0 + b_{0i}$ (country-specific AR(1) process):

$$\gamma_{it} = \phi_i^{t-1} \gamma_{i1} + \phi_i^{t-2} \eta_{i2} + \phi_i^{t-3} \eta_{i3} + \dots + \phi_i \eta_{it-1} + \eta_{it}$$
 (2)

■ When $\phi_{it} = \phi_i = \beta_0$ (same autocorrelation parameter):

$$\gamma_{it} = \phi^{t-1} \gamma_{i1} + \phi^{t-2} \eta_{i2} + \phi^{t-3} \eta_{i3} + \ldots + \phi \eta_{it-1} + \eta_{it}$$
 (3)

Forecast future observations $y_{i,t+1}^*$

- Median of the posterior distribution of $Y_{i,t+1}|Y_{it}$.
- Reasonable for short-term forecasting
 - error accumulates from one time step to the other
- Seven days ahead

https://revenue-hub.com

Model implementation - Bayesian framework

The model is estimated using a Bayesian framework, and the prior distributions used are

$$\begin{split} \boldsymbol{\beta_i} &\sim \mathsf{N}_Q(\mathbf{0}, \mathbf{I}_Q \times 1000) \\ \boldsymbol{\sigma}_{b_q}^{-2} &\sim \mathsf{Gamma}(0.001, 0.001) \\ \boldsymbol{\sigma}_{\eta}^{-2} &\sim \mathsf{Gamma}(0.001, 0.001) \\ \boldsymbol{\sigma}_{\omega}^{-2} &\sim \mathsf{Gamma}(0.001, 0.001) \\ &\boldsymbol{\pi} \sim \mathsf{Uniform}(0, 1) \end{split}$$

https://medium.com

- 3 MCMC chains
- 2,000 adaptation iterations
- 50,000 as burn-in
- 50,000 iterations per chain with a thinning of 25

Model Validation

Last seven observation by country as test set

Training set Test set

	Observed values				
Country A	y _{A1} y _{A2} y _{AT} y _{A,T+1} y _{A,T+6} y _{A,T+7}				
Country B	y _{B1} y _{B2} y _{BT} y _{B,T+1} y _{B,T+6} y _{B,T+7}				
÷					
Country N	y _{N1} y _{N2} y _{NT} y _{N,T+1} y _{N,T+6} y _{N,T+7}				

Time

• Compared the forecasts with the true observations y_{it} for each day ahead;

- Concordance correlation coefficient (Lin, 1989)
- ho Pearson Correlation Coefficient (precision)
- $lue{C}_b$ bias corrector factor (accuracy)

$$\rho_t^{(CCC)} = 1 - \frac{\mathbb{E}\left[\left(Y_t^* - Y_t \right)^2 \right]}{\sigma_1^2 + \sigma_2^2 + \left(\mu_1 - \mu_2 \right)^2} = \frac{2\sigma_{12}}{\sigma_1^2 + \sigma_2^2 + \left(\mu_1 - \mu_2 \right)^2} = \rho C_b$$

Observed Forecast

	$ ho_{T+1}^{(CCC)}$		$ ho_{T+2}^{(CCC)}$		 $ ho_{T+7}^{(CCC)}$	
Country A	У _{А,Т+1}	y* _{A,T+1}	y _{A,T+2}	y * _{A,T+2}	y _{A,T+7}	y * _{A,T+7}
Country B	У _{В,Т+1}	y* _{B,T+1}	У В,Т+2	y* _{B,T+2}	 У в,т+7	у [*] _{В,Т+7}
÷	:	:	÷	:	:	:
Country N	y _{N,T+1}	y* _{N,T+1}	y _{N,T+2}	y * _{N,T+2}	У _{N,Т+7}	y * _{N,T+7}

Time

- Aim: obtain sets of countries that presented a similar recent behaviour
- Last 60 values of the estimated autoregressive component

- Aim: obtain sets of countries that presented a similar recent behaviour
- Last 60 values of the estimated autoregressive component

Dynamic time warp (DTW) - Muller (2007)

Let M be the set of all possible sequences of m pairs preserving the order of observations in the form $r = ((\hat{\gamma}_{i1}, \hat{\gamma}_{i'1}), \dots, (\hat{\gamma}_{im}, \hat{\gamma}_{i'm}))$.

lacksquare minimise the distance between the coupled observations $(\hat{\gamma}_{it}, \hat{\gamma}_{i't})$

$$d(\hat{\boldsymbol{\gamma}}_i, \hat{\boldsymbol{\gamma}}_{i'}) = \min_{r \in M} \left(\sum_{t=1}^m |\hat{\gamma}_{it} - \hat{\gamma}_{i't}| \right).$$

- Recognise similar shapes in time series, even in the presence of shifting and/or scaling (Montero & Vilar, 2014).
- *M* is a set of all possible sequences of *m* pairs preserving the observation order in *r*

Rakthanmanon et al. 2012

Picks the deformation of the time axes of $\hat{\gamma}_i$ and $\hat{\gamma}_{i'}$ which brings the two time series as close as possible to each other

Minimising the variability within clusters

- Hierarchical clustering using the matrix of DTW distances using Ward's method (Murtagh & Legendre, 2014)
- Produce a dendrogram using hierarchical clustering analysis

Results

Predictive Performance - [30-April-2020, 06-May-2020]

Predictive Performance - [07-May-2020, 13-May-2020]

Predictive Performance - [14-May-2020, 20-May-2020]

Autoregressive component - Pandemic behaviour

Proportional to the natural logarithm of the daily number of cases $\gamma_{it}|\gamma_{i,t-1}$

Overdispersion Parameter $\Omega_{it} = \lambda_{it}\omega_{it}$

large number of accumulated suspected cases that were then confirmed

Estimates

Table: Parameter estimates and associated 95% credible intervals (CI) for the fitted autoregressive hierarchical state-space negative binomial model.

Parameter	Estimate	95% CI [lower; upper]
β_0	0.9993	[0.9974, 1.0012]
eta_1	-0.1658	[-0.1871, -0.1447]
eta_2	0.4090	[0.3630, 0.4080]
σ_{b_0}	0.0072	[0.0061, 0.0085]
σ_{b_1}	0.0325	[0.0168, 0.0565]
σ_{b_2}	0.2392	[0.1979, 0.2821]
σ_{η}	0.5206	[0.5071, 0.5341]
π	0.1080	[0.0983, 0.1180]
σ_{ω}	3.3797	[3.1391, 3.6544]
ψ	0.0009	[0.0002, 0.0025]

 about 11% of the number of reported cases can be viewed as contributing to extra variability

• We introduces statistical novelty in terms of modelling the autoregressive parameter as a function of time

- We introduces statistical novelty in terms of modelling the autoregressive parameter as a function of time
- Translates directly into improved predictive power in terms of forecasting future numbers of daily cases

- We introduces statistical novelty in terms of modelling the autoregressive parameter as a function of time
- Translates directly into improved predictive power in terms of forecasting future numbers of daily cases
- Model can be adapted to other types of data:
 - number of deaths
 - inclusion more variable in the linear predictor
 - obtain forecasts for smaller regions within a country

- We introduces statistical novelty in terms of modelling the autoregressive parameter as a function of time
- Translates directly into improved predictive power in terms of forecasting future numbers of daily cases
- Model can be adapted to other types of data:
 - number of deaths
 - inclusion more variable in the linear predictor
 - obtain forecasts for smaller regions within a country
- Model will obtain forecasts based on what is being reported
 - direct reflection of the data collection process
 - be it appropriate or not

- We introduces statistical novelty in terms of modelling the autoregressive parameter as a function of time
- Translates directly into improved predictive power in terms of forecasting future numbers of daily cases
- Model can be adapted to other types of data:
 - number of deaths
 - inclusion more variable in the linear predictor
 - obtain forecasts for smaller regions within a country
- Model will obtain forecasts based on what is being reported
 - direct reflection of the data collection process
 - be it appropriate or not
- Predictive models for large countries, such as the US, are even more problematic because they aggregate heterogeneous subepidemics in local areas

References

- Holmes, E. A.et al.Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental healthscience. The Lancet Psychiatry, v.7, 547-560 (2020)
- Lin, L. I. A Concordance Correlation Coefficient to Evaluate Reproducibility. **Biometrics**, v. 45, 255-268 (1989)
- Muller, M. Dynamic Time Warping, v. 2, 69-84 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007).
- Montero, P. & Vilar, J. A. TSclust: An R package for time series clustering.
 J. Stat. Softw, v. 62, 1-43 (2014)
- Murtagh, F. & Legendre, P. Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion? J Classif, v.31, 274-295 (2014)
- Rakthanmanon, T et al. Searching and Mining Trillions of Time Series Subsequencesunder Dynamic Time Warping. ACM, 2012, DOI: 10.1145/2339530.2339576