На правах рукописи

letz

Назаров Антон Андреевич

Правила ветвления аффинных алгебр Ли и приложения в моделях конформной теории поля

01.04.02 – Теоретическая физика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре физики высоких энергий и элементарных частиц физического факультета Санкт-Петербургского государственного университета.

Научный руководитель:	$\partial o \kappa mop \ \phi u $ зико-математических наук,
	$npo \phi eccop,$
	Ляховский Владимир Дмитриевич
Официальные оппоненты:	$\partial o \kappa mop \ \phi u $ зико-математических наук,
	$npo \phi eccop,$
	Кулиш Петр Петрович
	кандидат физико-математических на-
	$y\kappa,$
	ученое звание,
	Мудров Андрей Игоревич
Ведущая организация:	Объединенный институт ядерных ис-
	следований
Защита состоится «»	2012 г. в часов на заседании
совета \mathcal{A} 212.232.24 по защите ,	докторских и кандидатских диссертаций при
Санкт-Петербургском государа	ственном университете, расположенном по
адресу: Санкт-Петербург, Срес	дний пр. В.О., д. 41/43, ауд. 305
С диссертацией можно ознаком	миться в научной библиотеке <i>Санкт-Петер</i> -
бургского государственного уни	иверситета.
Автореферат разослан «» _	2012 г
Tibropopopur puoconun «	2012 1.
Ученый секретарь	
диссертационного совета,	
ученая степень, ученое звание	Подпись фамилия и. о.

Общая характеристика работы

Актуальность работы

Последние тридцать лет конформная теория поля в двух измерениях привлекает большое внимание исследователей. Эта теория используется для описания критического поведения в двумерных статистических системах. Благодаря наличию бесконечномерной алгебры симметрии двумерная конформная теория поля может быть сформулирована аксиоматически. Помимо математической красоты теория обладает огромной практической ценностью – с ее использованием было получено большое количество результатов и численных предсказаний в изучении критического поведения в двумерных системах. Методы двумерной конформной теории поля с успехом применяются также при изучении эффекта Кондо и дробного квантового эффекта Холла.

Поиски строгого математического доказательства для предсказаний двумерной конформной теории поля в последние годы привели к большому количеству новых идей и результатов в дискретном комплексном анализе [1].

Теория представлений бесконечномерных алгебр Ли является важным инструментом изучения моделей конформной теории поля. Помимо алгебры Вирасоро, наличие которой обязательно в двумерной конформной теории поля, большую роль играют аффинные алгебры Ли. Изучение аффинных алгебр Ли было начато Виктором Кацем и Робертом Муди в 1960-х годах с попытки обобщения классификации простых конечномерных алгебр Ли на бесконечномерный случай [2, 3]. Первоначально интерес к этим алгебрам был связан с модулярными свойствами характеров их модулей. После возникновения двумерной конформной теории поля были предложены модели Весса-Зумино-Новикова-Виттена, а затем и соset-модели, в которых теория представлений аффинных алгебр Ли играет определяющую роль.

Моделям Весса-Зумино-Новикова-Виттена, coset-моделям и теории пред-

ставлений аффинных алгебр Ли посвящены тысячи работ. Однако многие проблемы по-прежнему не имеют простых решений. Например, задача вычисления коэффициентов ветвления для представлений алгебр Ли стоит уже многие десятилетия. Она актуальна для различных физических приложений в coset-моделях конформной теории поля. При этом, в отличие от проблемы вычисления кратностей весов, для вычисления коэффициентов ветвления не существовало особенно эффективных алгоритмов.

Научная новизна и практическая значимость. В диссертации впервые решены следующие задачи:

- Получено эффективное рекуррентное соотношение для коэффициентов ветвления модулей аффинных и конечномерных алгебр Ли на модули не максимальных подалгебр. Алгоритм вычисления коэффициентов ветвления реализован в пакете **Affine.m** для популярной системы компьютерной алгебры *Mathematica*.
- Установлена прямая связь инъективного сплинта и ветвлений. Доказано, что при определенных условиях кратности весов вспомогательного модуля инъективного сплинта совпадают с коэффициентами ветвления в редукции на вложенную подалгебру. Наличие расщепления приводит к существенному упрощению при вычислении коэффициентов ветвления.
- Исследована связь процедуры редукции с обобщенной резольвентой Бернштейна-Гельфанда-Гельфанда. Показано, что разложение сингулярного элемента определяет как коэффициенты ветвления, так и обобщенную резольвенту Бернштейна-Гельфанда-Гельфанда, так как действие веера вложения на компоненты разложения порождает обобщенные модули Верма, которые образуют точную последовательность.

• Построена модель обобщеннного стохастического процесса Шрамма-Лёвнера для систем с калибровочной инвариантностью, соответствующих coset-моделям конформной теории поля.

Отметим, что пакет **Affine.m** может быть использован для решения задач теории представлений конечномерных и аффинных алгебр Ли, возникающих в различных областях физики, начиная от изучения атомных и молекулярных спектров и заканчивая конформной теорией поля и интегрируемыми системами.

На защиту выносятся следующие основные результаты и положения:

- Получены новые рекуррентные соотношения на коэффициенты ветвления представлений аффинных алгебр Ли на представления произвольных редуктивных подалгебр, с использованием разложения сингулярных элементов
- Установлено, что разложение сингулярного элемента определяет как коэффициенты ветвления, так и обобщенную резольвенту Бернштейна-Гельфанда-Гельфанда, так как действие веера вложения на компоненты разложения порождает обобщенные модули Верма, которые образуют точную последовательность
- Доказано, что при определенных условиях кратности весов вспомогательного модуля инъективного сплинта совпадают с коэффициентами ветвления в редукции на вложенную подалгебру. Наличие расщепления приводит к существенному упрощению при вычислении коэффициентов ветвления.
- Показано, что условие для мартингала, определяющее классификацию операторов изменения граничных условий в наблюдаемых стохастиче-

ского процесса Шрамма-Лёвнера, задает ограничения на структуру сингулярных элементов представлений аффинной алгебры Ли, порожденных граничными состояниями. Изучение структуры сингулярных элементов существенно упрощает поиск операторов смены граничных условий. Построена модель обобщеннного стохастического процесса Шрамма-Лёвнера для систем с калибровочной инвариантностью, соответствующих соset-моделям конформной теории поля и показано, что такое обобщение совместно с соset-реализацией минимальных моделей.

• Разработан пакет программ **Affine.m**, реализующий различные алгоритмы для вычислений в теории представлений конечномерных и аффинных алгебр Ли

Апробация работы

Материалы диссертации докладывались на семинарах кафедры физики высоких энергий и элементарных частиц СПбГУ, на семинарах в лаборатории имени П.Л. Чебышева математико-механического факультета СПбГУ, на международном семинаре молодых ученых "Workshop on Advanced Computer Simulation Methods" 27 - 29 апреля 2009 (Санкт-Петербург), на международных конференциях: "Модели квантовой теории поля (МQFT-2010)" 18-22 октября 2010 (Санкт-Петербург), "Supersymmetries and Quantum Symmetries - 2011", 18-23 июля 2011 (Дубна), "Quantum Theory and Symmetries (QTS-7)", 7-13 августа 2011 (Прага).

Публикации.

Материалы диссертации опубликованы в 10 печатных работах, из них 5 статей в рецензируемых журналах [A1, A2, A3, A4, A5], 5 статей в сборниках тезисов и трудов конференций [A6, A7, A8, A9, A10].

Структура и объем диссертации

Диссертация состоит из введения и шести глав, содержит 160 страниц и

30 рисунков. Список литературы включает 151 наименование.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

Глава 1 носит обзорный характер. В ней мы даем аксиоматическую формулировку конформной теории поля, описываем модели Весса-Зумино-Новикова-Виттена и соset-модели. Затем мы демонстрируем роль аффинных алгебр в описании этих моделей и приводим основные понятия теории представлений, использующиеся в диссертации. Мы указываем на то, что основные свойства интегрируемых модулей старшего веса определяются структурой сингулярного элемента, что выражается в формуле Вейля-Каца для формальных характеров. Мы обсуждаем конформную теорию поля на области с границей, так как она оказывается связана со стохастическим описанием решеточных моделей.

В главе 2 мы выводим основное рекуррунтное соотношение на коэффициенты ветвления. Пользуясь тем, что структура сингулярного элемента определяет свойства модуля алгебры Ли, мы доказываем лемму о разложении сингулярного элемента. Это разложение определяет правила ветвления и позволяет сформулировать рекуррентную процедуру редукции. Основные результаты данной главы опубликованы в работе [A1].

Формула Вейля-Каца для формальных характеров интегрируемых модулей старшего веса конечномерных и аффинных алгебр Ли имеет вид $\mathrm{ch}V^{(\mu)}=\frac{\Psi^{(\mu)}}{R}$, где $\Psi^{(\mu)}$ – сингулярный элемент модуля, а $R=\prod_{\alpha\in\Delta^+}(1-e^{-\alpha})^{\mathrm{mult}(\alpha)}$ – знаменатель Вейля. Сингулярный элемент определяется набором сингуляр-

ных весов модуля и имеет разный вид для разных типов модулей старшего веса. Например, $\Psi^{(\mu)} = \sum_{w \in W} \epsilon(w) e^{w(\mu+\rho)-\rho}$ для неприводимых модулей. Знаменатель Вейля R является универсальным объектом, характеризующим корневую систему алгебры Π и, а свойства модуля определяются сингулярным элементом.

Процедура редукции состоит в разложении модуля алгебры Ли $\mathfrak g$ в сумму модулей некоторой подалгебры $\mathfrak a$: $L^\mu_{\mathfrak g\downarrow\mathfrak a}=\bigoplus_{\nu\in P^+}b^{(\mu)}_\nu L^\nu_{\mathfrak a}.$

Используя оператор проекции $\pi_{\mathfrak{a}}$ (на весовое пространство $\mathfrak{h}_{\mathfrak{a}}^*$), перепишем это разложение для формальных характеров:

$$\pi_{\mathfrak{a}} \circ ch\left(L^{\mu}\right) = \sum_{\nu \in P_{\mathfrak{a}}^{+}} b_{\nu}^{(\mu)} ch\left(L_{\mathfrak{a}}^{\nu}\right). \tag{1}$$

Нас интересуют коэффициенты ветвления $b_{\nu}^{(\mu)}$.

Для любой алгебры \mathfrak{g} и подалгебры $\mathfrak{a} \subset \mathfrak{g}$ можно построить подалгебру \mathfrak{a}_{\perp} такую, что $\Delta_{\mathfrak{a}_{\perp}} = \{\beta \in \Delta_{\mathfrak{g}} | \forall h \in \mathfrak{h}_{\mathfrak{a}}; \beta\left(h\right) = 0\}.$

Обозначим через $W_{\mathfrak{a}_{\perp}}$ подгруппу группы Вейля W, порожденную отражениями w_{β} , соответствующими корням $\beta \in \Delta_{\mathfrak{a}_{\perp}}^{+}$. Подсистема $\Delta_{\mathfrak{a}_{\perp}}$ определяет подалгебру \mathfrak{a}_{\perp} с подалгеброй Картана $\mathfrak{h}_{\mathfrak{a}_{\perp}}$. Пусть $\mathfrak{h}_{\perp}^{*} := \{ \eta \in \mathfrak{h}_{\perp \mathfrak{a}}^{*} | \forall h \in \mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{a}_{\perp}}; \eta (h) = 0 \}$, тогда имеет место разложение подалгебры Картана $\mathfrak{h} = \mathfrak{h}_{\mathfrak{a}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} \oplus \mathfrak{h}_{\perp}$.

Для подалгебр из ортогональной пары $(\mathfrak{a},\mathfrak{a}_{\perp})$ рассмотрим соответствующие векторы Вейля $\rho_{\mathfrak{a}}$ и $\rho_{\mathfrak{a}_{\perp}}$, и образуем так называемые "дефекты" вложения $\mathcal{D}_{\mathfrak{a}} := \rho_{\mathfrak{a}} - \pi_{\mathfrak{a}} \rho, \, \mathcal{D}_{\mathfrak{a}_{\perp}} := \rho_{\mathfrak{a}_{\perp}} - \pi_{\mathfrak{a}_{\perp}} \rho.$

Рассмотрим сингулярные веса $\{(w(\mu+\rho)-\rho)\,|w\in W\}$ модуля старшего веса $L^{\mu}_{\mathfrak{g}}$ и их проекции на $h^*_{\widetilde{\mathfrak{a}_{\perp}}}$ (дополнительно сдвинутые на дефект $-\mathcal{D}_{\mathfrak{a}_{\perp}}$):

$$\mu_{\widetilde{\mathfrak{a}_{\perp}}}(w) := \pi_{\widetilde{\mathfrak{a}_{\perp}}} \circ [w(\mu + \rho) - \rho] - \mathcal{D}_{\mathfrak{a}_{\perp}}, \quad w \in W.$$

Среди весов $\left\{\mu_{\widetilde{\mathfrak{a}_{\perp}}}\left(w\right)|w\in W\right\}$ выберем находящиеся в главной камере Вейля $\overline{C_{\widetilde{\mathfrak{a}_{\perp}}}}$. Множество $U:=\left\{u\in W|\quad \mu_{\widetilde{\mathfrak{a}_{\perp}}}\left(u\right)\in\overline{C_{\widetilde{\mathfrak{a}_{\perp}}}}\right\}$ состоит из элементов группы

Вейля, переводящих старший вес в главную камеру Вейля подалгебры $\tilde{\mathfrak{a}}_{\perp}$ (с учетом сдвига на ρ и на дефект). Элементы U являются представителями классов смежности $W/W_{\mathfrak{a}_{\perp}}$. Каждому элементу U поставим в соответствие вес $\mu_{\mathfrak{a}}(u) := \pi_{\mathfrak{a}} \circ [u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$. Аналогичным образом определим $\mu_{\tilde{\mathfrak{a}}}(u) := \pi_{\tilde{\mathfrak{a}}}[u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$ и $\mu_{\mathfrak{a}_{\perp}}(u) := \pi_{\mathfrak{a}_{\perp}}[u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$. Мы доказываем следующую лемму о разложении сингулярного элемента:

Лемма 1. Пусть $(\mathfrak{a}, \mathfrak{a}_{\perp})$ – ортогональная пара редуктивных подалгебр \mathfrak{g} и $\widetilde{\mathfrak{a}_{\perp}} = \mathfrak{a}_{\perp} \oplus \mathfrak{h}_{\perp}, \ \widetilde{\mathfrak{a}} = \mathfrak{a} \oplus \mathfrak{h}_{\perp}$,

 L^{μ} – модуль старшего веса с сингулярным элементом $\Psi^{(\mu)}$,

 $R_{\mathfrak{a}_{\perp}}$ – знаменатель Вейля для подалгебры $\mathfrak{a}_{\perp}.$

Тогда элемент $\Psi^{(\mu)}_{(\mathfrak{a},\mathfrak{a}_{\perp})} = \pi_{\mathfrak{a}} \left(\frac{\Psi^{\mu}_{\mathfrak{g}}}{R_{\mathfrak{a}_{\perp}}} \right)$ можно разложить в сумму по $u \in U$ сингулярных весов $e^{\mu_{\mathfrak{a}}(u)}$ с коэффициентами $\epsilon(u) \dim \left(L_{\widetilde{\mathfrak{a}_{\perp}}}^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)} \right)$:

$$\Psi_{(\mathfrak{a},\mathfrak{a}_{\perp})}^{(\mu)} = \pi_{\mathfrak{a}}\left(\frac{\Psi^{\mu}}{R_{\mathfrak{a}_{\perp}}}\right) = \sum_{u \in U} \epsilon(u) \dim\left(L_{\widetilde{\mathfrak{a}_{\perp}}}^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)}\right) e^{\mu_{\mathfrak{a}}(u)}. \tag{2}$$

Введем "веер вложения", который необходим для формулировки рекуррентных соотношений:

Определение 1. Рассмотрим произведение

$$\prod_{\alpha \in \Delta^{+} \setminus \Delta_{\mathfrak{a}_{\perp}}^{+}} \left(1 - e^{-\pi_{\mathfrak{a}} \alpha} \right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\mathfrak{a}}(\pi_{\mathfrak{a}} \alpha)} = -\sum_{\gamma \in P_{\mathfrak{a}}} s(\gamma) e^{-\gamma}$$
(3)

и носитель $\Phi_{\mathfrak{a}\subset\mathfrak{g}}\subset P_{\mathfrak{a}}$ функции $s(\gamma)=\det{(\gamma)}: \quad \Phi_{\mathfrak{a}\subset\mathfrak{g}}=\{\gamma\in P_{\mathfrak{a}}|s(\gamma)\neq 0\}$ Упорядочение корней в $\overset{\circ}{\Delta_{\mathfrak{a}}}$ индуцирует естественное упорядочение весов в $P_{\mathfrak{a}}$. Обозначим через γ_0 наименьший вектор $\Phi_{\mathfrak{a}\subset\mathfrak{g}}$. Множество

$$\Gamma_{\mathfrak{a}\to\mathfrak{g}} = \{\xi - \gamma_0 | \xi \in \Phi_{\mathfrak{a}\subset\mathfrak{g}}\} \setminus \{0\}$$
 (4)

называется веером вложения.

Веер вложения универсален и зависит только от вложения $\mathfrak{a} \to \mathfrak{g}$ и не зависит от модуля $L^{(\mu)}.$

Введем сингулярные коэффициенты ветвления следующим образом:

$$k_{\xi}^{(\mu)}=b_{\xi}^{(\mu)}$$
 если $\xi\in \bar{C}_{\mathfrak{a}}$ $k_{\xi}^{(\mu)}=\epsilon(w)b_{w(\xi+
ho_{af})-
ho_{\mathfrak{a}}}^{(\mu)}$ где $w\in W_{\mathfrak{a}}:w(\xi+
ho_{\mathfrak{a}})-
ho_{\mathfrak{a}}\in \bar{C}_{\mathfrak{a}}.$

Теперь мы можем сформулировать основную теорему, которая позволит нам рекуррентно вычислять коэффициенты ветвления.

Теорема 1. Для сингулярных коэффициентов ветвления $k_{\nu}^{(\mu)}$ выполняется соотношение

$$k_{\xi}^{(\mu)} = -\frac{1}{s(\gamma_0)} \left(\sum_{u \in U} \epsilon(u) \operatorname{dim} \left(L_{\widetilde{\mathfrak{a}}_{\perp}}^{\mu_{\widetilde{\mathfrak{a}}_{\perp}}(u)} \right) \delta_{\xi - \gamma_0, \pi_{\mathfrak{a}}(u(\mu + \rho) - \rho)} + \sum_{\gamma \in \Gamma_{\mathfrak{a} \to \mathfrak{g}}} s(\gamma + \gamma_0) k_{\xi + \gamma}^{(\mu)} \right).$$

$$(5)$$

Далее мы анализируем пары $(\mathfrak{a}, \mathfrak{a}_{\perp})$ для простых алгебр Ли. Оказывается, что для "ортогональной пары" $(\mathfrak{a}, \mathfrak{a}_{\perp})$, вообще говоря, $\mathfrak{a} \oplus \mathfrak{a}_{\perp} \not\subset \mathfrak{g}$. В частности, для серии простых конечномерных алгебр B_n существуют "ортогональные пары" подалгебр (B_k, B_{n-k}) .

На основании рекуррентного соотношения (5) сформулирован алгоритм вычисления коэффициентов ветвления. Остальные разделы главы 2 содержат примеры вычислений с использованием предложенного алгоритма, а также описание роли функций ветвления в формулировке конформной теории поля на торе и в coset-моделях конформной теории поля.

В главе 3 мы используем разложение сингулярного элемента, чтобы показать связь ветвления с (обобщенной) резольвентой Бернштейна-Гельфанда-Гельфанда. Результаты третьей главы опубликованы в работах [A2, A7].

Для полупростой конечномерной алгебры $\mathfrak g$ и полупростой конечномерной подалгебры $\mathfrak a$ алгебра $\mathfrak a_\perp$ является регулярной. Отношение знаменателей Вейля порождает параболические модули Верма. Сингулярный элемент $\Psi^{(\mu)}$

может быть разложен в сумму по $u \in U$ сингулярных элементов $\Psi_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}$ с коэффициентами $\epsilon(u)e^{\mu_{\widetilde{\mathfrak{a}}}(u)}$:

$$\Psi^{(\mu)} = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \Psi_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}. \tag{6}$$

Мы доказываем следующее утверждение, демонстрирующее, что разложение сингулярного элемента связано с разложением характера неприводимого модуля в комбинацию характеров обобщенных модулей Верма

Утверждение 1. Для ортогональной подалгебры \mathfrak{a}_{\perp} в \mathfrak{g} (являющейся ортогональным партнером редуктивной подалгебры $\mathfrak{a} \hookrightarrow \mathfrak{g}$) характер интегрируемого модуля старшего веса L^{μ} может быть представлен в виде комбинации (с целочисленными коэффициентами) характеров параболических модулей Верма, распределенных по множеству весов $\mu_{\widetilde{\mathfrak{a}}}$ (и):

$$\operatorname{ch}(L^{\mu}) = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \operatorname{ch} M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)}, \tag{7}$$

где $U:=\left\{u\in W|\quad \mu_{\mathfrak{a}_{\perp}}\left(u\right)\in\overline{C_{\mathfrak{a}_{\perp}}}\right\}$ и I – такое подмножество в S, что Δ_{I}^{+} эквивалентно $\Delta_{\mathfrak{a}_{\perp}}^{+}$.

Связь редукции и (обобщенной) резольвенты Бернштейна-Гельфанда-Гельфанда дается следующим утверждением:

Утверждение 2. Пусть $L^{\mu} - \mathfrak{g}$ -модуль со старшим весом $\mu \in P^+$, и пусть регулярная подалгебра $\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}$ является ортогональным партнером редуктивной подалгебры $\mathfrak{a} \hookrightarrow \mathfrak{g}$. Тогда разложение (6) определяет как обобщенную резольвенту L^{μ} по отношению к \mathfrak{a}_{\perp} , так и правила ветвления L^{μ} по отношению к \mathfrak{a} .

Глава 4 посвящена сплинтам – расщеплением корневой системы алгебры Ли в объединение образов корневых систем двух алгебр, не обязательно являющихся подалгебрами данной алгебры. Если одна из алгебр является подал-

геброй, то сплинт приводит к резкому упрощению в вычислении коэффициентов ветвления – они совпадают с кратностями весов в модуле другой алгебры. Основная часть главы посвящена доказательству этого факта. Кроме того, сплинт корневой системы простой конечномерной алгебры Ли приводит к возникновению новых соотношений на струнные функции и функции ветвления соответствующего аффинного расширения. Эти соотношения обсуждаются в разделе 4.4. Данные результаты опубликованы в статьях [А3, А10].

Определение 2. Пусть Δ_0 и Δ – корневые системы с соответствующими весовыми решетками P_0 и P. Рассмотрим отображение $\phi: \{\Delta_0 \hookrightarrow \Delta, P_0 \hookrightarrow P\}$. Оно называется "вложением", если

- (a) оно вкладывает Δ_0 в Δ , и
- (b) ϕ действует гомоморфно по отношению к группам сложения векторов в P_0 и P: $\phi(\gamma) = \phi(\alpha) + \phi(\beta)$ для любой тройки $\alpha, \beta, \gamma \in P_0$, такой, что $\gamma = \alpha + \beta$.

 ϕ индуцирует вложение формальных алгебр: $\mathcal{E}_0 \hookrightarrow \mathcal{E}$ и для образа $\mathcal{E}_i = \mathrm{Im}_{\phi}\left(\mathcal{E}_0\right)$ можно рассмотреть обратное отображение $\phi^{-1}: \mathcal{E}_i \longrightarrow \mathcal{E}_0$.

Заметим, что нужно различать два класса вложений: когда скалярное произведение (заданное формой Киллинга) в корневом пространстве P_0 инвариантно по отношению к ϕ и когда оно не ϕ -инвариантно. Вложения первого класса называются "метрическими", второго – "неметрическими".

Определение 3. Корневая система Δ "расщепляется" на (Δ_1, Δ_2) , если существует два вложения $\phi_1 : \Delta_1 \hookrightarrow \Delta$ и $\phi_2 : \Delta_2 \hookrightarrow \Delta$, где (а) Δ – несвязное объединение образов ϕ_1 и ϕ_2 , и (b) ни ранг Δ_1 , ни ранг Δ_2 не превосходит ранга Δ .

Можно сказать, что (Δ_1, Δ_2) – "сплинт" (расщепление) Δ и мы можем обозначить его через $\Delta \approx (\Delta_1, \Delta_2)$. Каждая из компонент Δ_1 и Δ_2 называется "стеблем" сплинта (Δ_1, Δ_2) .

Чтобы показать связь веера вложения со сплинтом рассмотрим случай "инъективного" сплинта, когда один из стеблей $\Delta_1 = \Delta_{\mathfrak{a}}$ является подсистемой корневой системы, соответствующей регулярной редуктивной подалгебре $\mathfrak{a} \hookrightarrow \mathfrak{g}$. В случае инъективного сплинта второй стебель $\Delta_{\mathfrak{s}} := \Delta_2 = \Delta \setminus \Delta_{\mathfrak{a}}$ может быть переписан как произведение (аналогично формуле (3)) и определяет веер вложения $\Gamma_{\mathfrak{a} \hookrightarrow \mathfrak{g}}$. Обозначим через $\Delta_{\mathfrak{s}0}$ кообраз второго вложения $\phi: \Delta_{\mathfrak{s}0} \to \Delta_{\mathfrak{g}}$. Верно следующее утверждение.

Утверждение 3. Каждый интективный сплинт $\Delta \approx (\Delta_{\mathfrak{a}}, \Delta_{\mathfrak{s}})$ определяет веер вложения с носителем $\{\xi\}_{\mathfrak{a} \to \mathfrak{g}}$, задающимся произведением $\prod_{\beta \in \Delta_{\mathfrak{s}}^+} \left(1 - e^{-\beta}\right) = -\sum_{\gamma \in P} s(\gamma) e^{-\gamma}$

В случае инъективного сплинта мы можем сказать, что подалгебра $\mathfrak{a} \hookrightarrow \mathfrak{g}$ расщепляется Δ (и назовем \mathfrak{a} "расщепляющей подалгеброй" алгебры \mathfrak{g}). Сплинты были классифицированы в работе [4] (см. Приложение в конце главы) и первые три класса сплинтов в этой классификации инъективны.

Если выполнено техническое требование на структуру сингулярного элемента, то верно следующее свойство:

Свойство 1. Любой вес с ненулевой кратностью, входящий в правую часть равенства:

$$\frac{e^{\rho_{\mathfrak{g}}}}{\prod_{\beta\in\Delta_{\mathfrak{s}}^{+}}(1-e^{-\beta})}\left(\Psi^{\widetilde{\mu}+\rho_{\mathfrak{s}}}\right)=\sum_{\widetilde{\nu}\in\mathcal{N}_{\mathfrak{s}}^{\widetilde{\mu}}}M_{(\mathfrak{s})\widetilde{\nu}}^{\widetilde{\mu}}e^{(\mu-\phi(\widetilde{\mu}-\widetilde{\nu}))}=\sum_{\nu\in P_{\mathfrak{a}}^{++}}b_{\nu}^{(\mu)}e^{\nu},$$

равен одному из старших весов в разложении. Кратность $M^{\widetilde{\mu}}_{(\mathfrak{s})\widetilde{\nu}}$ веса $\widetilde{\nu} \in \mathcal{N}^{\widetilde{\mu}}_{\mathfrak{s}}$ определяет коэффициент ветвления $b^{(\mu)}_{\nu}$ для старшего веса $\nu = (\mu - \phi \, (\widetilde{\mu} - \widetilde{\nu}))$:

$$b_{(\mu-\phi(\widetilde{\mu}-\widetilde{\nu}))}^{(\mu)} = M_{(\mathfrak{s})\widetilde{\nu}}^{\widetilde{\mu}}.$$

Заключительная глава 5 посвящена практическим приложениям результатов диссертации. В разделе 5.1 мы описываем применение алгебраических

методов к проблеме поиска соответствия между квантовополевым и решеточным описанием критического поведения. Эти результаты были опубликованы нами в работах [A4, A6].

Стохастический процесс, который удовлетворяет уравнению $\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \sqrt{\kappa} \xi_t}$, называется *эволюцией Шрамма-Левнера* на верхней полуплоскости $\mathbb H$. Здесь ξ_t – Броуновское движение. Динамика конца z_t критической кривой γ_t (конец следа эволюции Шрамма-Левнера) описывается уравнением $z_t = g_t^{-1}(\sqrt{\kappa} \xi_t)$. Нам удобнее использовать отображение $w_t(z) = g_t(z) - \sqrt{\kappa} \xi_t$.

Мы обобщаем анализ соответствия между эволюцией Шрамма-Левнера и конформной теорией поля на случай coset-моделей. Такие модели задаются алгеброй Ли \mathfrak{g} и ее подалгеброй \mathfrak{a} . G/A-coset модель конформной теории поля может быть реализована как ВЗНВ-модель (с калибровочной группой G), взаимодействующая с чисто калибровочными полями, с калибровочной группой $A \subset G$. Действие записывается через поля $\gamma : \mathbb{C} \to G$ и $\alpha, \bar{\alpha} : \mathbb{C} \to A$:

$$S_{G/A}(\gamma,\alpha) = -\frac{k}{8\pi} \int_{S^2} d^2x \, \mathcal{K}(\gamma^{-1}\partial^{\mu}\gamma, \gamma^{-1}\partial_{\mu}\gamma) - \frac{k}{24\pi} \int_{B} \epsilon_{ijk} \mathcal{K}\left(\tilde{\gamma}^{-1}\frac{\partial\tilde{\gamma}}{\partial y^i}, \left[\tilde{\gamma}^{-1}\frac{\partial\tilde{\gamma}}{\partial y^j}\tilde{\gamma}^{-1}\frac{\partial\tilde{\gamma}}{\partial y^k}\right]\right) d^3y + \frac{k}{4\pi} \int_{S^2} d^2z \left(\mathcal{K}(\alpha, \gamma^{-1}\bar{\partial}\gamma) - \mathcal{K}(\bar{\alpha}, (\partial\gamma)\gamma^{-1}) + \mathcal{K}(\alpha, \gamma^{-1}\bar{\alpha}\gamma) - \mathcal{K}(\alpha, \bar{\alpha})\right).$$
(8)

Здесь через \mathcal{K} обозначена форма Киллинга в алгебре Ли \mathfrak{g} , соответствующей группе Ли G.

Если мы фиксируем A-калибровку, у нас останется G/A калибровочная инвариантность. Значит мы должны добавить случайные калибровочные преобразования к эволюции Шрамма-Левнера, аналогично случаю ВЗНВ-моделей. Обозначим через t_i^a (\tilde{t}_i^b) генераторы представления алгебры \mathfrak{g} (соответственно, представления \mathfrak{a}), соответствующего примарному полю φ_i .

Рассмотрим наблюдаемые в присутствии следа эволюции Шрамма-Лев-

нера. Математическое ожидание решеточной наблюдаемой \mathcal{O} на верхней полуплоскости можно вычислить как сумму ожиданий этой наблюдаемой в присутствии (конечной части) траектории эволюции Шрамма-Левнера γ_t вплоть до некоторого времени t, умноженных на вероятность этой траектории:

$$\prec \mathcal{O} \succ_{\mathbb{H}} = \mathbb{E} \left[\prec \mathcal{O} \succ_{\gamma_t} \right] = \sum_{\gamma_t} P \left[C_{\gamma_t} \right] \prec \mathcal{O} \succ_{\gamma_t}$$

Решеточная наблюдаемая $\prec \mathcal{O} \succ_{\mathbb{H}}$ не зависит от t, следовательно $\prec \mathcal{O} \succ_{\gamma_t}$ – мартингал. Это должно выполняться и для ее непрерывного предела, дающегося комбинацией корреляционных функций в конформной теории поля:

$$\prec \mathcal{O} \succ_{\mathbb{H}_t} \to \mathcal{F}(\{z_i\})_{\mathbb{H}_t} = \frac{\left\langle \mathcal{O}(\{z_i\})\phi(z_t)\phi^{\dagger}(\infty)\right\rangle_{\mathbb{H}_t}}{\left\langle \phi(z_t)\phi^{\dagger}(\infty)\right\rangle_{\mathbb{H}_t}}$$
 (9)

Мы рассматриваем теорию с границей, так что мы должны использовать модели граничной конформной теории поля и накладывать соответствующие граничные условия. В случае верхней полуплоскости корреляционные функции в граничной конформной теории поля могут быть переписаны как корреляционные функции для теории на всей плоскости, но с удвоенным числом полей.

Мы предполагаем, что \mathcal{F} содержит некоторый набор примарных полей φ_i с конформными весами h_i . Так как мы рассматриваем граничную конформную теорию поля, мы должны добавить объемные поля в сопряженных точках \bar{z}_i . Кроме того, у нас есть операторы смены граничного условия ϕ на конце следа эволюции Шрамма-Левнера и на бесконечности.

Рассмотрим, что происходит с наблюдаемыми при эволюции следа SLE γ_t с момента t до t+dt. Через \mathcal{G}_i мы обозначили генераторы инфинитезимальных преобразований примарных полей $\varphi_i:d\varphi_i(w_i)=\mathcal{G}_i\varphi_i(w_i)$. Нормируем дополнительное (dim \mathfrak{g})-мерное Броуновское движение следующим обра-

зом: $\mathbb{E}\left[d\theta^a\;d\theta^b
ight]=\mathcal{K}(t^a,t^b)dt$. Тогда генератор преобразования поля равен

$$\mathcal{G}_{i} = \left(\frac{2dt}{w_{i}} - \sqrt{\kappa}d\xi_{t}\right)\partial_{w_{i}} + \frac{\sqrt{\tau}}{w_{i}}\left(\sum_{a:\mathcal{K}(t^{a},\tilde{t}^{b})=0} (d\theta^{a}t_{i}^{a})\right). \tag{10}$$

То есть мы фиксировали A-калибровку, разрешив случайное блуждание только в направлении, ортогональном подалгебре \mathfrak{a} .

Формула Ито дает выражение для дифференциала $d\mathcal{F}$, который равняется нулю в силу условия мартингала. Это равенство можно переписать в виде дифференциального уравнения на корреляционные функции, которое эквивалентно алгебраическому условия на граничное состояние $\phi(0) |0\rangle$.

$$|\psi\rangle = \left(-2L_{-2} + \frac{1}{2}\kappa L_{-1}^2 + \frac{1}{2}\tau \left(\sum_{a=1}^{\dim\mathfrak{g}} J_{-1}^a J_{-1}^a - \sum_{b=1}^{\dim\mathfrak{a}} \tilde{J}_{-1}^b \tilde{J}_{-1}^b\right)\right) \cdot \phi(0)|0\rangle \quad (11)$$

является нулевым состоянием, то есть соответствуют сингулярному весу в представлении алгебры Вирасоро. Действуя повышающими операторами мы получаем соотношения, связывающие параметры стохастического процесса и coset-модели конформной теории поля:

$$(3\kappa - 8)h_{(\mu,\nu)} - c + \tau(k\dim\mathfrak{g} - x_ek\dim\mathfrak{a}) = 0. \tag{12}$$

$$-12h_{(\mu,\nu)} + 2\kappa h_{(\mu,\nu)}(2h_{(\mu,\nu)} + 1) + \tau(C_{\mu} - \tilde{C}_{\nu}) = 0, \tag{13}$$

здесь $C_{\mu} = (\mu, \mu + 2\rho)$ и $\tilde{C}_{\nu} = (\nu, \nu + 2\rho_{\mathfrak{a}})$ – это собственные значения квадратичных операторов Казимира $\sum_a t^a t^a$ и $\sum_b \tilde{t}^b \tilde{t}^b$ алгебр Ли \mathfrak{g} и \mathfrak{a} . Из уравнения (12),(13) мы сразу получаем значения κ,τ для каждой пары весов (μ,ν) алгебр \mathfrak{g} и \mathfrak{a} . Для соset-реализаций минимальных и парафермионных моделей эти результаты совпадают с тем, что было ранее получено путем введения стохастического процесса с дополнительным дискретным случайным блужданием [5].

Остальная часть главы представляет собой описание пакета **Affine.m**, предназначенного для вычислений в теории представлений аффинных и ко-

нечномерных алгебр Ли и реализованного с использованием методов диссертации. Вычислительным методам посвящены наши работы [A5, A9, A8].

Список публикаций

- [A1] V. Lyakhovsky, A. Nazarov. Recursive algorithm and branching for nonmaximal embeddings // Journal of Physics A: Mathematical and Theoretical.— 2011. Vol. 44, no. 7. P. 075205(20).
- [A2] V. Lyakhovsky, A. Nazarov. Recursive properties of branching and BGG resolution // Theoretical and Mathematical Physics. — 2011. — Vol. 169, no. 2. — Pp. 1551–1560.
- [A3] V. Laykhovsky, A. Nazarov. Fan, splint and branching rules // Zapiski Nauchnykh Seminarov POMI. 2012. Vol. 398. Pp. 162–179.
- [A4] A. Nazarov. SLE martingales in coset conformal field theory // JETP lett.-2012.- Vol. 96, no. 2. Pp. 93–96.
- [A5] A. Nazarov. Affine.m Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras // Computer Physics Communications. 2012. Vol. 183. Pp. 2480–2493.
- [A6] A. Nazarov. Algebraic properties of CFT coset construction and Schramm-Loewner evolution // Journal of Physics: Conference Series. 2012. Vol. 343, no. 1. P. 012085(10).
- [A7] V. Lyakhovsky, A. Nazarov. Branching functions generated by the injection fan for Lie algebras. (The role of BGG-resolvent) // Models in Quantum Field Theory. 2010. http://hep.niif.spbu.ru/conf/mktp2010/.

- [A8] A. Nazarov. Comparison of algorithms for construction of representations of Lie algebras // Physics and Progress / SPbSU. Physics and Progress. 2008.
- [A9] A. Nazarov. Computational tools for representation theory of affine Lie algebras // second Workshop on Advanced Computer Simulation Methods for Junior scientists / EIMI. ACSM. 2009.
- [A10] V. Laykhovsky, A. Nazarov. On affine extension of splint root systems // Supersymmetries & Quantum Symmetries / JINR. SQS'2011. 2012.

Цитированная литература

- [1] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits // Comptes Rendus de l'Académie des Sciences-Series I-Mathematics. 2001. Vol. 333, no. 3. Pp. 239–244.
- [2] V.G. Kac. Simple irreducible graded Lie algebras of finite growth // Mathematics of the USSR-Izvestiya. 1968. Vol. 2. P. 1271.
- [3] $R.V.\ Moody$. A new class of Lie algebras $//\ Journal$ of algebra. 1968. Vol. 10, no. 2. Pp. 211–230.
- [4] David Richter. Splints of classical root systems // Journal of Geometry.— 2012.—Vol. 103.—Pp. 103–117.
- [5] R. Santachiara. SLE in self-dual critical Z (N) spin systems: CFT predictions // Nuclear Physics B. 2008. Vol. 793, no. 3. Pp. 396–424.