Laboratório de Matemática (M1025) -

Formato do Teste e algumas perguntas "modelo"(*)

(*) As perguntas aqui colocadas são APENAS EXEMPLOS de ALGUMAS PER-GUNTAS que PODERÃO ENCONTRAR no teste.

Data:	Duração: 1 hora 15m	
NOME:		
	No de ordem :	
É permitida a consu Não é permitido o	 s no Moodle e do Manual do Maxima.	

Observações:

- 1. Todas as respostas em Maxima deverão ser submetidas em **um único ficheiro .wxmx**, com o título **nometeste.wxmx**. O nome do estudante deve ser escrito apenas com a primeira e ultima palavras, **sem acentos, cedilhas ou outros caracteres diferentes de letras** (exemplo: mariacostateste.wxmx).
- 2. Os ficheiros .wxmx terão que ser submetidos no Moodle no tópico "Teste ModuloI- Submissão do Ficheiro".
- 3. **Não serão avaliados** os testes dos estudantes que não tenham o ficheiro .wxmx submetido no Moodle;
 - ${f N\~{a}o}$ ser ${\~{a}o}$ avaliadas respostas que n ${\~{a}o}$ apresentem soluç ${\~{a}o}$ ou justificaç ${\~{a}o}$ em Maxima; em particular, quando as respostas s ${\~{a}o}$ ${f V}$ e ${f F}$ (verdadeira e falsa a afirmaç ${\~{a}o}$, respetivamente).
- 4. Sempre que for pedida justificação da resposta ou interpretação geométrica dos resultados obtidos em Maxima, essa devem ser clara e sucinta.
- 5. A apresentação e o processo de resolução das perguntas poderão ser tidos em conta na avaliação.
- 6. É permitida a consulta dos documentos disponibilizados no Moodle e do Manual do Maxima.
- 7. Não é permitido o uso do telemóvel.

1. Considere as funções $f(x) = x^2$, $g(x) = -x^3 - 1$ e $h(x) = f'(x)$ definidas em \mathbb{R} .
(a) Em Maxima,
i. defina $f(x)$ e $g(x)$ e $h(x)$;
ii. calcule $f(a)$ para $a = -1, 1$;
iii. calcule $g(a)$ para $a = -5^{1/3}, 1$;
iv. represente, no mesmo sistema de eixos , os gráficos das funções f , g e a retas $y = -2$ e $y = 4$ para $x \in [-2, 2]$ e $y \in [-10, 10]$;
v. defina $h'(x)$ e, no mesmo sistema de eixos, represente o gráfico de $h'(x)$ e a reta $y = 0$ para $x \in [-2, 2]$ e $y \in [-10, 10]$;
vi. determine o único valor $x_0 \in [-2, 2]$ tais que $f(x_0) - g(x_0) = 0$;
vii. represente, no mesmo sistema de eixos , os gráficos das funções f , g , a retas $x = x_0$ e $y = g(x_0)$ e o ponto $(x_0, f(x_0))$, para $x \in [-2, 2]$ e $y \in [-10, 10]$;
viii. represente, no mesmo sistema de eixos , os gráficos das funções f, g e o ponto $(x_0, f(x_0))$, para $x \in [-2, 2]$ e $y \in [-10, 10]$;
ix. determine, caso existam, os valores de $x \in [-2, 2]$ tais que $g(x) = 26$;
(b) Apenas com base nos resultados obtidos nas alíneas anteriores, diga quais das seguintes afirmações são verdadeiras ou falsas, preenchendo o quadrado com V ou F , respetivamente. Indique qual a(s) alínea(s) anteriores que justifica(m) cada uma das suas respostas.
i. \square o ponto $(1,-2)$ é um ponto do gráfico de $f(x)$;
Justificação:;
ii. \square A função f é injetiva em [-2,2];
Justificação:;
iii. \square O gráfico de $g(x)$ intersecta a reta $y=4$;
Justificação:;
iv. \square A função $g(x):[-2,2]\longrightarrow \mathbb{R}$ é sobrejetiva;
Justificação:
v. \square A função $f(x): [-2,2] \longrightarrow \mathbb{R}$ é bijetiva;
Justificação:
vi. \square A função $f(x): [-2,2] \longrightarrow [0,4]$ é sobrejetiva; Justificação:
vii. a função $f(x): \mathbb{R} \longrightarrow \mathbb{R}$ tem um mínimo global.
Justificação:
viii. \square existem subconjuntos $A,B\subset\mathbb{R}$ tais que $f(x):A\longrightarrow B$ é injetiva mas não é bijetiva.
$Justificaç\~ao$: Caso a afirmaç\~ao seja verdadeira, complete A=,B=
ix. \square existe um subconjuntos $A \subset \mathbb{R}$ tais que $g(x): A \longrightarrow [-2,4]$ é bijetiva. Caso a afirmação seja verdadeira, complete $A=$

2. Considere as funções $f(x)=x^2-1$ e g(x)=3x-2 definidas em $\mathbb R$. Usando apenas ficheiro ResPergunta2.wxmx, preencha o quadrado com V ou F caso as afirmações abaixo

sejam verdadeiras ou falsas. Indique, caso se aplique, qual a(s) alínea(s) do ficheiro Res-Pergunta2.wxmx justifica(m) cada uma das suas respostas.

	ia $S = \{x \in [-5, 5] : f(x) = f(x) \}$ e $S_1 = \{x \in [-5, 5] : f(x) \ge f(x) \}$ Então, demos afirmar que
-	. \square $S = S_1$ Justificação:
	. $\Box T = \{x \in [-5, 5] : h(x) = f(x) - f(x) = 0\} = S \text{ Justificação: } _$
	. \square Os zeros de $f(x)$ e $ f(x) $ coinidem.
	Justificação:
iv	. \square Seja $S = \{x \in [-5, x_0] \cup [x_1, x_2]\}$. Então se $x \in S, x^2 - 1 \ge 3x - 2 $
	Justificação:
V	Seja $S = \{x \in ([-5, x_0] \cup [x_1, x_2])\}$. Então se $x \in S$, $ x^2 - 1 \le 3x - 2 $;
	Justificação:
vi	. \square Se $x \in [-5, 5]$ e $ x^2 - 1 \ge 3x - 2 $ então $x \in ([-5, x_0] \cup [x_1, x_2]);$
	Justificação:
vii	As regiões do plano pintadas a "amarelo", "azul"e "cinza" correspondem ao conjunto de todos os pontos $[-5,5] \times \mathbb{R}$ delimitada pelos gráficos de $ f(x) $ e de $ g(x) $ onde $ g(x) \ge f(x) (x)$, com $x \in [-5,5]$; Justificação:
viii	As região do plano pintadas a "cinza" corresponde a um dos conjunto de pontos do plano delimitada pelos gráficos de $ f(x) $ e de $ g(x) $ onde $ f(x) \ge g(x) (x)$;
3. Conside	re os sistemas de equações lineares em \mathbb{R}^3 $(S_1) \begin{cases} x + 2y + z = 1 & (eq_1) \\ 2x + 4y = 0 & (eq_2) \end{cases} \qquad (S_2) \begin{cases} x + 2y + z = 1 & (eq_1) \\ 2x + 4y = 0 & (eq_2) \\ x + y - z = 0 & (eq_3) \end{cases}$
(a) En	n Maxima,
i ii iii	 encontre, caso existam, as soluções de cada um dos sistemas e, no mesmo sistema de eixos, represente graficamente os conjuntos de pontos que são solução do sistema (1) a azul e do sistema (2) a vermelho; verifique que a solução do sistema S₁ está contida no plano z = 1; verifique que a solução do sistema S₁ interseta qualquer plano y = k, k ∈ ℝ; verifique se o ponto [0,0,0] é solução de algum dos sistemas.
v	. verifique que, qualquer ponto da reta $r: \left\{ \begin{array}{l} x+2y=0\\ z=1 \end{array} \right.$, satisfaz a equação $(eq1)$;
vi	. verifique se, para algum valor de $t \in \mathbb{R}$, o ponto $[-2t,t,1]$ pertence ao plano $x=2;$
vii	. represente graficamente os três planos que contêm a solução do sistema S_2 .
fals	eencha o quadrado com V ou F caso as afirmações abaixo sejam verdadeiras ou sas. Indique qual a(s) alínea(s) anteriores que justifica(m) cada uma das suas postas. O conjunto de soluções do sistema (S_1) é indeterminado. Justificação:

ii.	\square O conjunto de soluções do sistema (2) está contido no plano $x=0$.
	Justificação:
iii.	\square O conjunto de soluções do sistema (1) é paralelo ao plano $z=-2;$
	$Justifica$ ç $ ilde{a}o$:
iv.	\Box A representação gráfica do conjunto de soluções do sistema (2) é um plano em $\mathbb{R}^3;$
	$Justifica$ ç $\tilde{a}o$:
v.	\square O conjunto de soluções do sistema (2) está contida no conjunto de soluções do sistema (1);
	Justificação:
vi.	$\hfill \Box$ O conjunto de soluções do sistema (2) contêm o conjunto de soluções do sistema (1);
	Justificação:
vii.	O conjunto de soluções do sistema (2) está contida num único plano; Justificação:
viii.	\square O conjunto de soluções do sistema (1) é um subespaço vetorial de \mathbb{R}^3 . **Justificação:
ix.	\Box Os conjuntos de pontos $C1$ e $C3$ de \mathbb{R}^3 que satifazem respetivamente as equações $eq1$ e $eq3,$ não se intersectam.
	Justificação: