FCC RF Test Report

APPLICANT: Quectel Wireless Solutions Co., Ltd.

EQUIPMENT: LTE Module

BRAND NAME : Quectel MODEL NAME : SC20-A

FCC ID : XMR201706SC20A

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (NII) Unlicensed National Information Infrastructure

The product was received on Apr. 10, 2017 and testing was completed on Jul. 03, 2017. We, Sporton International (KunShan) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (KunShan) INC., the test report shall not be reproduced except in full.

Prepared by: James Huang / Manager

Approved by: Jones Tsai / Manager

Sporton International (KunShan) INC.
No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 1 of 34

Report Issued Date : Aug. 11, 2017

Report Version : Rev. 01

Testing Laboratory

Report No.: FR741007E

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	ММА	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant	5 6 6
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1 2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 10 11
3	TES	T RESULT	13
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	6dB and 26dB and 99% Occupied Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Unwanted Emissions Measurement AC Conducted Emission Measurement Frequency Stability Measurement Automatically Discontinue Transmission Antenna Requirements	16 20 26 30
4	LIST	OF MEASURING EQUIPMENT	33
ΑP	PENC	ERTAINTY OF EVALUATION	34
ΑP	PEND	DIX D. SETUP PHOTOGRAPHS	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 2 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

REVISION HISTORY

Report No. : FR741007E

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR741007E	Rev. 01	Initial issue of report	Aug. 11, 2017

 Sporton International (KunShan) INC.
 Page Number
 : 3 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID: XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	6dB, 26dB and 99% Occupied Bandwidth	> 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) (4)(i) 15.209(a)	Pass	Under limit 6.19 dB at 34.85 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 3.98 dB at 0.172 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 4 of 34
Report Issued Date : Aug. 11, 2017

Report No. : FR741007E

Report Version : Rev. 01

1 General Description

1.1 Applicant

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Report No.: FR741007E

1.2 Manufacturer

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	LTE Module
Brand Name	Quectel
Model Name	SC20-A
FCC ID	XMR201706SC20A
	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/
	HSPA+(16QAM uplink is not supported)/LTE/
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40
	WLAN 5GHz 802.11a/n HT20/HT40/
	Bluetooth v3.0 + EDR/Bluetooth v4.1 LE
	Conducted: 861097036481350/861097036481368
IMEI Code	Conduction: NA
	Radiation: 861097036472730/861097036472748
HW Version	R1.0
SW Version	SC20ASAR04A03H8G
EUT Stage	Identical Prototype

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (KunShan) INC.
 Page Number
 : 5 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

 FCC ID: XMR201706SC20A
 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range 5745 MHz ~ 5825 MHz				
	802.11a: 11.96 dBm / 0.0157 W			
Maximum Output Power	802.11n HT20 : 11.81 dBm / 0.0152 W			
	802.11n HT40 : 10.79 dBm / 0.0120 W			
	802.11a : 21.43 MHz			
99% Occupied Bandwidth	802.11n HT20 : 22.48 MHz			
	802.11n HT40 : 37.86 MHz			
Type of Modulation	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Antenna Type / Gain	Dipole Antenna with gain 4.00 dBi			

Report No.: FR741007E

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International (KunShan) INC.
 Page Number
 : 6 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

1.6 Testing Location

Test Site	Sporton International (KunShan) INC.			
	No.3-2, Pingxiang Road, Kunshan Development Zone, Jiangsu, China			
Test Site Location	TEL: +86-0512-5790-0158			
	FAX: +86-0512-5790-0958			
Toot Site No		Sporton Site No.		FCC Registration No.
Test Site No.	TH01-KS	03CH03-KS	CO01-KS	306251

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International (KunShan) INC.
TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 7 of 34
Report Issued Date : Aug. 11, 2017

Report No.: FR741007E

Report Version : Rev. 01

Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No.: FR741007E

: 8 of 34

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5745-5825 MHz Band 4	151*	5755	159*	5795
(U-NII-3)	153	5765	161	5805
(8 1111 8)	-	•	165	5825

Note: The above Frequency and Channel in "*" were 802.11n HT40.

Sporton International (KunShan) INC. Page Number TEL: 86-0512-5790-0158 Report Issued Date: Aug. 11, 2017

FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

2.2 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

AC					
Conducted	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link (5G) + Adapter				
Emission					
Remark: For	Remark: For Radiated TCs, the tests were performed with Adapter.				

Ch. #		Band IV:5745-5825 MHz				
	Cn. #	802.11a	802.11n HT20	802.11n HT40		
L	Low	149	149	151		
M Middle		157	157	-		
Н	High	165	165	159		

Sporton International (KunShan) INC.
TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 9 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 10 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
3.	Notebook	Lenovo	G480	PRC4	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
4.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m
5.	Test jig	N/A	N/A	N/A	N/A	N/A
6.	Adapter	N/A	P-050B	N/A	N/A	Unshielded,1.8m
7.	Dipole WWAN Antenna	Saintenna	SAA30968A	N/A	N/A	N/A
8.	Dipole WLAN/BT Antenna	INPAQ	DAM-L0-H-N0-000-08 -13	N/A	N/A	N/A
9.	GNSS Antenna	INPAQ	03D-S3-00-A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the Notebook under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.8 dB.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 11 of 34
Report Issued Date : Aug. 11, 2017

Report No.: FR741007E

Report Version : Rev. 01

Offset (dB) = RF cable loss(dB). = 6.8 (dB)

Report No. : FR741007E

: 12 of 34

: Rev. 01

Sporton International (KunShan) INC. Page Number TEL: 86-0512-5790-0158 Report Issued Date: Aug. 11, 2017 FAX: 86-0512-5790-0958 Report Version

FCC ID: XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04.
 Section C) Emission bandwidth for the band 5.725-5.85GHz

Report No.: FR741007E

- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

 Sporton International (KunShan) INC.
 Page Number
 : 13 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

 FCC ID: XMR201706SC20A
 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

Report No.: FR741007E

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 15 of 34 Report Issued Date: Aug. 11, 2017 Report Version : Rev. 01

Report No.: FR741007E

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR741007E

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, 10 log(1/x), where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

 Sporton International (KunShan) INC.
 Page Number
 : 16 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

 FCC ID: XMR201706SC20A
 Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

Sporton International (KunShan) INC.
TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 17 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report No.: FR741007E

3.3.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

: 18 of 34

Page Number

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 19 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

Report No.: FR741007E

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band
- (2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note: The following formula is used to convert the EIRP to field strength.

edge increasing linearly to a level of 27 dBm/MHz at the band edge.

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3} \quad \text{ µV/m, where P is the eirp (Watts)}$$

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

(3) KDB789033 D02 v01r04 G)2)c)

- (i) Section 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.³
- (ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a Peak detector. An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the devices using the alternative limit.⁴
 - **Note 3:** An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.
 - **Note 4:** Only devices with antenna gains of 10 dBi or less may be approved using the emission limits specified in Section 15.247(d) till March 2, 2018; all other devices operating in this band must use the mask specified in Section 15.407(b)(4)(i).

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 21 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Sporton International (KunShan) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 22 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 23 of 34

Report No.: FR741007E

Report Issued Date: Aug. 11, 2017
Report Version: Rev. 01

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 24 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Report No.: FR741007E

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.4.7 Duty Cycle

Please refer to Appendix C.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

 Sporton International (KunShan) INC.
 Page Number
 : 25 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR741007E

Eroquency of emission (MUz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

 Sporton International (KunShan) INC.
 Page Number
 : 26 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

3.5.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 27 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

3.5.5 Test Result of AC Conducted Emission

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 28 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

Test Mode :	Mode 1	Temperature :	22~24 ℃				
Test Engineer :	gineer : Amos Zhang Relative Humidity		42~46%				
Test Voltage :	120Vac / 60Hz	Phase :	Neutral				
Function Type :							
80 Leve	l (dBuV)						
70.0							
70.0							
60.0			FCC PART 15E				
5001			FCC PART 15E(AVG)				
50.0							
40.0	HA						
	NOTE TO A SECOND PROPERTY OF THE SECOND PROPE						
30.0			#/ _{M************************************}				
20.0		(4, 1, 14, 1)					
	יין אָן אָן די די די די אין און און און און און און אין די		"A THE PARTY OF TH				
10.0			ather Danker				
0.15	.2 .5 1	2 5 Frequency (MHz)	10 20 30				
Site	: CO01-KS	rroquonoj (mnz)					
Condition	: FCC PART 15E LISN-N-1610	17-060103 NEUTRAL					
mode	: Mode 1 : #14						
	Over Limit	Read LISN Cable					
	Freq Level Limit Line	Level Factor Loss R	lemark				
_	MHz dBuV dB dBuV	dBuV dB dB					
1	0.173 50.60 -14.21 64.81	39.90 0.34 10.36 ()P				
2 *		38.40 0.34 10.36 A	verage				
3	0.182 37.29 -27.08 64.37	,					
4 5	0.182 31.19 -23.18 54.37 1.441 39.19 -16.81 56.00	20.51 0.33 10.35 A 28.59 0.41 10.19 (_				
6	1.441 38.29 -7.71 46.00						
7	1.725 37.40 -18.60 56.00		_				
8	1.725 36.40 -9.60 46.00	25.80 0.41 10.19 A	lverage				
9	2.309 38.50 -17.50 56.00	•					
10 11	2.309 37.30 -8.70 46.00 2.487 37.21 -18.79 56.00						
12	2.487 35.51 -10.49 46.00						

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 29 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall
 be measured by radiation emissions at upper and lower frequency points, and finally
 compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

Report No.: FR741007E

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Sporton International (KunShan) INC.

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A

TEL: 86-0512-5790-0158

Page Number : 31 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2) ,if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.8.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (KunShan) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 32 of 34
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 09, 2016	Jun. 01, 2017~ Jun. 19, 2017	Aug. 08, 2017	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 19, 2017	Jun. 01, 2017~ Jun. 19, 2017	Jan. 18, 2018	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 19, 2017	Jun. 01, 2017~ Jun. 19, 2017	Jan. 18, 2018	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-960502	-40~+150°C	Oct. 13, 2016	Jun. 01, 2017~ Jun. 19, 2017	Oct. 12, 2017	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY56400004	3Hz~8.5GHz;Ma x 30dBm	Oct. 22, 2016	Jun. 01, 2017~ Jul. 03, 2017	Oct. 21, 2017	Radiation (03CH03-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz-44GHz	Apr. 18, 2017	Jun. 01, 2017~ Jul. 03, 2017	Apr. 17, 2018	Radiation (03CH03-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 23, 2016	Jun. 01, 2017~ Jul. 03, 2017	Nov. 22, 2017	Radiation (03CH03-KS)
Bilog Antenna	TeseQ	CBL6112D	35406	25MHz-2GHz	Apr. 22, 2017	Jun. 01, 2017~ Jul. 03, 2017	Apr. 21, 2018	Radiation (03CH03-KS)
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1356	1GHz~18GHz	Apr. 22, 2017	Jun. 01, 2017~ Jul. 03, 2017	Apr. 21, 2018	Radiation (03CH03-KS)
SHF-EHF Horn	com-power	AH-840	101070	18GHz ~40GHz	Oct. 19, 2016	Jun. 01, 2017~ Jul. 03, 2017	Oct. 18, 2017	Radiation (03CH03-KS)
Amplifier	com-power	PA-103A	161069	1MHz ~1000MHz / 32 dB	Apr. 18, 2017	Jun. 01, 2017~ Jul. 03, 2017	Apr. 17, 2018	Radiation (03CH03-KS)
Amplifier	MITEQ	TTA1840-35-H G	1887435	18GHz~40GHz	Oct. 13, 2016	Jun. 01, 2017~ Jul. 03, 2017	Oct. 12, 2017	Radiation (03CH03-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr. 18, 2017	Jun. 01, 2017~ Jul. 03, 2017	Apr. 17, 2018	Radiation (03CH03-KS)
Amplifier	Agilent	8449B	3008A02370	1GHz~26.5GHz	Oct. 13, 2016	Jun. 01, 2017~ Jul. 03, 2017	Oct. 12, 2017	Radiation (03CH03-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Jun. 01, 2017~ Jul. 03, 2017	NCR	Radiation (03CH03-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 01, 2017~ Jul. 03, 2017	NCR	Radiation (03CH03-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 20, 2017	Jun. 26, 2017	Apr. 19, 2018	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 13, 2016	Jun. 26, 2017	Oct. 12, 2017	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (KunShan) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : 33 of 34
Report Issued Date : Aug. 11, 2017

Report No. : FR741007E

Report Version : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

	
Measuring Uncertainty for a Level of Confidence	2.3dB
of 95% (U = 2Uc(y))	2.305

Report No.: FR741007E

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	-
Measuring Uncertainty for a Level of Confidence	4.6dB
of 95% (U = 2Uc(y))	4.000

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

Measuring Uncertainty for a Level of Confidence	4.5dB
of 95% (U = 2Uc(y))	4.Jub

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

Measuring Uncertainty for a Level of Confidence	4.7dB
of 95% (U = 2Uc(y))	4.700

 Sporton International (KunShan) INC.
 Page Number
 : 34 of 34

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

Appendix A. Conducted Test Results

Report No.: FR741007E

 Sporton International (KunShan) INC.
 Page Number
 : A1 of A1

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

Report Number : FR741007E

Test Engineer:	Silent Hai	Temperature:	21~25	°C
Test Date:	2017/6/1~2017/6/19	Relative Humidity:	51~55	%

TEST RESULTS DATA 6dB and 26dB EBW and 99% OBW

						Band IV			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	6 dB Bandwidth (MHz)	6dB Bandwidth min. Limit (MHz)	Pass/Fail
11a	6M bps	1	149	5745	21.43	36.71	16.42	0.5	Pass
11a	6Mbps	1	157	5785	20.48	37.61	16.34	0.5	Pass
11a	6Mbps	1	165	5825	20.03	33.27	16.36	0.5	Pass
HT20	MCS 0	1	149	5745	22.48	39.51	17.58	0.5	Pass
HT20	MCS 0	1	157	5785	21.78	41.51	17.58	0.5	Pass
HT20	MCS 0	1	165	5825	19.93	31.02	17.60	0.5	Pass
HT40	MCS 0	1	151	5755	37.86	55.56	35.28	0.5	Pass
HT40	MCS 0	1	159	5795	37.56	52.87	35.12	0.5	Pass

TEST RESULTS DATA Average Power Table

						Band	IV		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	Pass/Fail
11a	6M bps	1	149	5745	0.58	11.96	30.00	4.00	Pass
11a	6Mbps	1	157	5785	0.58	11.59	30.00	4.00	Pass
11a	6Mbps	1	165	5825	0.58	11.61	30.00	4.00	Pass
HT20	MCS 0	1	149	5745	0.62	11.81	30.00	4.00	Pass
HT20	MCS 0	1	157	5785	0.62	11.39	30.00	4.00	Pass
HT20	MCS 0	1	165	5825	0.62	10.64	30.00	4.00	Pass
HT40	MCS 0	1	151	5755	0.64	10.26	30.00	4.00	Pass
HT40	MCS 0	1	159	5795	0.64	10.79	30.00	4.00	Pass

TEST RESULTS DATA Power Spectral Density

						Band	IV			
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Duty Factor (dB)	10log (500kHz /RBW) Factor (dB)	Average Power Density (dBm/500kHz)	Average PSD Limit (dBm/500kHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	149	5745	0.58	2.22	-1.15	30.00	4.00	Pass
11a	6Mbps	1	157	5785	0.58	2.22	-0.96	30.00	4.00	Pass
11a	6Mbps	1	165	5825	0.58	2.22	-1.17	30.00	4.00	Pass
HT20	MCS 0	1	149	5745	0.62	2.22	-1.29	30.00	4.00	Pass
HT20	MCS 0	1	157	5785	0.62	2.22	-1.36	30.00	4.00	Pass
HT20	MCS 0	1	165	5825	0.62	2.22	-1.92	30.00	4.00	Pass
HT40	MCS 0	1	151	5755	0.64	2.22	-5.39	30.00	4.00	Pass
HT40	MCS 0	1	159	5795	0.64	2.22	-5.29	30.00	4.00	Pass

TEST RESULTS DATA Frequency Stability

						Band	IV			
Mod.	Data Rate	NTX CH. (MHz)			Center Frequency (MHz)	Frequency Deviation (MHz)	Frequency Stablility (ppm)	Temperature (°C)	Voltage (V)	Note
11a	6M bps	1	149	5745	5745.000	0.000	0.00	50	3.8	
11a	6M bps	1	149	5745	5745.025	0.025	4.35	-30	3.8	
11a	6M bps	1	149	5745	5744.975	-0.025	-4.35	20	4.2	
11a	6M bps	1	149	5745	5744.975	-0.025	-4.35	20	3.5	
11a	6M bps	1	149	5745	5744.975	-0.025	-4.35	20	3.8	

Appendix B. Radiated Spurious Emission

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5607.4	46.49	-21.81	68.3	41.06	30.26	7.36	32.19	291	360	Р	Н
		5698.8	53.2	-51.22	104.42	47.45	30.62	7.47	32.34	291	360	Р	Н
		5719.6	63.19	-47.6	110.79	57.21	30.89	7.52	32.43	291	360	Р	Н
		5723.4	70.1	-48.55	118.65	64.12	30.89	7.52	32.43	291	360	Р	Н
		5738	99.96	-	-	93.87	31.03	7.54	32.48	291	360	Р	Н
802.11a		5738	92.51	-	-	86.42	31.03	7.54	32.48	291	360	Α	Н
CH 149 5745MHz		5643	45.78	-22.52	68.3	40.37	30.2	7.41	32.2	339	71	Р	V
3743WITIZ		5699	49.05	-55.51	104.56	43.3	30.62	7.47	32.34	339	71	Р	V
		5717.8	59.23	-51.05	110.28	53.25	30.89	7.52	32.43	339	71	Р	V
		5723.2	66.53	-51.67	118.2	60.55	30.89	7.52	32.43	339	71	Р	V
		5750	96.11	-	-	90.02	31.03	7.54	32.48	339	71	Р	V
		5750	88.53	-	-	82.44	31.03	7.54	32.48	339	71	Α	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B1 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5613.2	46.32	-21.98	68.3	40.89	30.26	7.36	32.19	319	0	Р	Н
		5682.8	46.73	-45.88	92.61	41.09	30.48	7.45	32.29	319	0	Р	Н
		5714.4	46.2	-63.13	109.33	40.34	30.75	7.49	32.38	319	0	Р	Н
		5723.4	46.11	-72.54	118.65	40.13	30.89	7.52	32.43	319	0	Р	Н
		5790	100.66	-	-	94.23	31.45	7.6	32.62	319	0	Р	Н
		5790	92.88	-	-	86.45	31.45	7.6	32.62	319	0	Α	Н
		5851	47.21	-72.81	120.02	40.48	31.86	7.62	32.75	319	0	Р	Н
		5871	47.13	-59.29	106.42	40.23	32.05	7.63	32.78	319	0	Р	Н
000 44 -		5914	47.46	-28.95	76.41	40.4	32.16	7.64	32.74	319	0	Р	Н
802.11a CH 157		5945.5	47.35	-20.95	68.3	40.14	32.27	7.65	32.71	319	0	Р	Н
5785MHz		5629.4	45.53	-22.77	68.3	40.11	30.23	7.39	32.2	323	69	Р	V
37 0311112		5674.8	45.36	-41.33	86.69	39.72	30.48	7.45	32.29	323	69	Р	V
		5714	45.47	-63.75	109.22	39.61	30.75	7.49	32.38	323	69	Р	7
		5722	45.99	-69.47	115.46	40.01	30.89	7.52	32.43	323	69	Р	7
		5788	96.74	-	-	90.31	31.45	7.6	32.62	323	69	Р	7
		5788	89.08	-	-	82.65	31.45	7.6	32.62	323	69	Α	V
		5854.75	46.06	-65.41	111.47	39.24	32	7.62	32.8	323	69	Р	٧
		5866.75	47.27	-60.34	107.61	40.45	32	7.62	32.8	323	69	Р	٧
		5911.5	46.58	-31.68	78.26	39.52	32.16	7.64	32.74	323	69	Р	V
		5992	47.17	-21.13	68.3	39.74	32.42	7.66	32.65	323	69	Р	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B2 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5828	102.12	-	-	95.5	31.72	7.61	32.71	301	0	Р	Н
		5828	94.3	-	-	87.68	31.72	7.61	32.71	301	0	Α	Н
		5854.75	62.29	-49.18	111.47	55.47	32	7.62	32.8	301	0	Р	Н
		5858.25	61.26	-48.73	109.99	54.44	32	7.62	32.8	301	0	Р	Н
		5877.25	50.34	-53.29	103.63	43.44	32.05	7.63	32.78	301	0	Р	Н
802.11a		5953.25	47.46	-20.84	68.3	40.25	32.27	7.65	32.71	301	0	Р	Н
CH 165 5825MHz		5828	97.51	-	-	90.89	31.72	7.61	32.71	302	73	Р	V
3023WITZ		5828	89.66	-	-	83.04	31.72	7.61	32.71	302	73	Α	V
		5853.75	58.55	-55.2	113.75	51.73	32	7.62	32.8	302	73	Р	V
		5859	58.99	-50.79	109.78	52.17	32	7.62	32.8	302	73	Р	V
		5887	48.03	-48.36	96.39	41.13	32.05	7.63	32.78	302	73	Р	V
		5981.25	47.37	-20.93	68.3	40.01	32.37	7.66	32.67	302	73	Р	V

Remark

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B3 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11a (Harmonic @ 3m)

Ant. 1 802.11a	(MH	,	dΒμV/m)	Limit (dB)	Line	Level	Factor	Loca	F			1	
802.11a	•	,	dBμV/m)	(dR)				Loss	Factor	Pos		Avg.	
	114			(45)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
011.4.40		90	43.07	-30.93	74	55.45	39.57	10.63	62.58	100	360	Р	Н
CH 149	44.4		10.50	00.44	7.		00.57	10.00	01	400	000	-	.,
5745MHz	114	90	43.59	-30.41	74	55.97	39.57	10.63	62.58	100	360	Р	V
802.11a	115	70	42.9	-31.1	74	55.53	39.39	10.68	62.7	100	360	Р	Н
CH 157			10.10		,					400			
5785MHz	115	70	43.48	-30.52	74	56.11	39.39	10.68	62.7	100	360	Р	V
802.11a	116	50	43.28	-30.72	74	56.21	39.19	10.72	62.84	100	360	Р	Н
CH 165													
5825MHz	116	50	43.21	-30.79	74	56.14	39.19	10.72	62.84	100	360	Р	V

Remark

Sporton International (KunShan) INC.

FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A

TEL: 86-0512-5790-0158

Page Number : B4 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5621	47.24	-21.06	68.3	41.82	30.23	7.39	32.2	276	360	Р	Н
		5698.2	47.43	-56.54	103.97	41.68	30.62	7.47	32.34	276	360	Р	Н
		5718.4	61.7	-48.75	110.45	55.72	30.89	7.52	32.43	276	360	Р	Н
		5724.4	68.46	-52.47	120.93	62.48	30.89	7.52	32.43	276	360	Р	Н
802.11n		5742	97.11	-	-	91.02	31.03	7.54	32.48	276	360	Р	Н
HT20		5742	89.62	-	-	83.53	31.03	7.54	32.48	276	360	Α	Н
CH 149		5642.6	45.71	-22.59	68.3	40.3	30.2	7.41	32.2	307	77	Р	V
5745MHz		5699.99	51.66	-53.63	105.29	45.91	30.62	7.47	32.34	307	77	Р	V
		5719.8	62.73	-48.11	110.84	56.75	30.89	7.52	32.43	307	77	Р	V
		5724.99	70.11	-52.17	122.28	64.13	30.89	7.52	32.43	307	77	Р	V
		5754	97.71	-	-	91.5	31.17	7.56	32.52	307	77	Р	V
		5754	90.19	-	-	83.98	31.17	7.56	32.52	307	77	Α	٧

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B5 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5603.6	46.16	-22.14	68.3	40.73	30.26	7.36	32.19	287	0	Р	Н
		5696	46.63	-55.72	102.35	40.88	30.62	7.47	32.34	287	0	Р	Н
		5700.4	47.08	-58.33	105.41	41.33	30.62	7.47	32.34	287	0	Р	Н
		5721.4	46.46	-67.63	114.09	40.48	30.89	7.52	32.43	287	0	Р	Н
		5788	98.74	-	-	92.31	31.45	7.6	32.62	287	0	Р	Н
		5788	90.82	-	-	84.39	31.45	7.6	32.62	287	0	Α	Н
		5854.99	46.76	-64.16	110.92	39.94	32	7.62	32.8	287	0	Р	Н
		5855.25	46.83	-64	110.83	40.01	32	7.62	32.8	287	0	Р	Н
802.11n		5878.75	47.34	-55.17	102.51	40.44	32.05	7.63	32.78	287	0	Р	Н
HT20		5931.25	48.77	-19.53	68.3	41.65	32.21	7.64	32.73	287	0	Р	Н
CH 157		5621.4	45.91	-22.39	68.3	40.49	30.23	7.39	32.2	335	78	Р	٧
5785MHz		5680	46.03	-44.51	90.54	40.39	30.48	7.45	32.29	335	78	Р	/
		5719.6	46.07	-64.72	110.79	40.09	30.89	7.52	32.43	335	78	Р	٧
		5722	45.61	-69.85	115.46	39.63	30.89	7.52	32.43	335	78	Р	٧
		5794	98.84	-	-	92.41	31.45	7.6	32.62	335	78	Р	V
		5794	91.35	-	-	84.92	31.45	7.6	32.62	335	78	Α	V
		5851.75	47.88	-70.43	118.31	41.15	31.86	7.62	32.75	335	78	Р	V
		5856.75	47.64	-62.77	110.41	40.82	32	7.62	32.8	335	78	Р	V
		5891.25	47.56	-45.68	93.24	40.58	32.11	7.63	32.76	335	78	Р	V
		5943.5	47.85	-20.45	68.3	40.64	32.27	7.65	32.71	335	78	Р	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B6 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5822	97.73	-	-	91.11	31.72	7.61	32.71	285	0	Р	Н
		5822	90.05	-	-	83.43	31.72	7.61	32.71	285	0	Α	Н
		5850.25	60.61	-61.12	121.73	53.88	31.86	7.62	32.75	285	0	Р	Н
		5855.01	55.99	-54.91	110.9	49.17	32	7.62	32.8	285	0	Р	Н
802.11n		5911.75	47.39	-30.68	78.07	40.33	32.16	7.64	32.74	285	0	Р	Н
HT20		5988.5	46.88	-21.42	68.3	39.52	32.37	7.66	32.67	285	0	Р	Н
CH 165		5830	99.38	-	-	92.76	31.72	7.61	32.71	314	76	Р	V
5825MHz		5830	91.94	-	-	85.32	31.72	7.61	32.71	314	76	Α	V
		5850.01	63.88	-58.4	122.28	57.15	31.86	7.62	32.75	314	76	Р	V
		5857.5	60.07	-50.13	110.2	53.25	32	7.62	32.8	314	76	Р	V
		5876.75	50.37	-53.63	104	43.47	32.05	7.63	32.78	314	76	Р	V
		5996.75	47.09	-21.21	68.3	39.66	32.42	7.66	32.65	314	76	Р	V

Remark 2.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B7 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
802.11n		11490	41.89	-32.11	74	54.27	39.57	10.63	62.58	100	360	Р	Н
HT20													
CH 149		11490	43.23	-30.77	74	55.61	39.57	10.63	62.58	100	360	Р	V
5745MHz													
802.11n		11570	42.43	-31.57	74	55.06	39.39	10.68	62.7	100	360	Р	Н
HT20													
CH 157		11570	41.45	-32.55	74	54.08	39.39	10.68	62.7	100	360	Р	V
5785MHz													
802.11n		11650	42.33	-31.67	74	55.26	39.19	10.72	62.84	100	360	Р	Н
HT20													
CH 165		11650	42.19	-31.81	74	55.12	39.19	10.72	62.84	100	360	Р	V
5825MHz													
					1	ı	1		1	ı	ı		ı

Remark

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B8 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)			(H/V)
		5611.2	46.86	-21.44	68.3	41.43	30.26	7.36	32.19	120	202	Р	Н
		5699	51.06	-53.5	104.56	45.31	30.62	7.47	32.34	120	202	Р	Н
		5719.6	61.28	-49.51	110.79	55.3	30.89	7.52	32.43	120	202	Р	Н
		5720.8	60.82	-51.9	112.72	54.84	30.89	7.52	32.43	120	202	Р	Н
		5760	93.12	-	-	86.91	31.17	7.56	32.52	120	202	Р	Н
		5760	85.3	-	-	79.09	31.17	7.56	32.52	120	202	Α	Н
		5850.5	47.24	-73.92	121.16	40.51	31.86	7.62	32.75	120	202	Р	Н
		5862.75	47.05	-61.68	108.73	40.23	32	7.62	32.8	120	202	Р	Н
802.11n		5876.25	48.25	-56.12	104.37	41.35	32.05	7.63	32.78	120	202	Р	Н
HT40		5991	48.6	-19.7	68.3	41.17	32.42	7.66	32.65	120	202	Р	Н
CH 151		5602.2	45.93	-22.37	68.3	40.5	30.26	7.36	32.19	360	76	Р	V
5755MHz		5697.6	50.65	-52.88	103.53	44.9	30.62	7.47	32.34	360	76	Р	V
		5714.8	61.08	-48.37	109.45	55.22	30.75	7.49	32.38	360	76	Р	V
		5724.6	62.2	-59.19	121.39	56.22	30.89	7.52	32.43	360	76	Р	V
		5760	93.85	-	-	87.64	31.17	7.56	32.52	360	76	Р	V
		5760	85.87	-	-	79.66	31.17	7.56	32.52	360	76	Α	V
		5853.25	47.5	-67.39	114.89	40.77	31.86	7.62	32.75	360	76	Р	V
		5861.5	47.07	-62.01	109.08	40.25	32	7.62	32.8	360	76	Р	V
		5902.75	46.96	-37.77	84.73	39.98	32.11	7.63	32.76	360	76	Р	V
		5943.25	47.83	-20.47	68.3	40.62	32.27	7.65	32.71	360	76	Р	V

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B9 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5639	46.68	-21.62	68.3	41.27	30.2	7.41	32.2	106	316	Р	Н
		5690.2	46.35	-51.72	98.07	40.6	30.62	7.47	32.34	106	316	Р	Н
		5719.8	48.05	-62.79	110.84	42.07	30.89	7.52	32.43	106	316	Р	Н
		5722	49.57	-65.89	115.46	43.59	30.89	7.52	32.43	106	316	Р	Н
		5792	93.19	-	-	86.76	31.45	7.6	32.62	106	316	Р	Н
		5792	85.65	-	-	79.22	31.45	7.6	32.62	106	316	Α	Н
		5850.01	52.58	-69.7	122.28	45.85	31.86	7.62	32.75	106	316	Р	Н
		5866.75	50.92	-56.69	107.61	44.1	32	7.62	32.8	106	316	Р	Н
802.11n		5878	47.37	-55.7	103.07	40.47	32.05	7.63	32.78	106	316	Р	Н
HT40		5978	48.08	-20.22	68.3	40.72	32.37	7.66	32.67	106	316	Р	Н
CH 159		5613.4	46.85	-21.45	68.3	41.42	30.26	7.36	32.19	359	75	Р	V
5795MHz		5677.8	46.9	-42.01	88.91	41.26	30.48	7.45	32.29	359	75	Р	V
		5716.8	49.13	-60.88	110.01	43.27	30.75	7.49	32.38	359	75	Р	V
		5723.2	48.46	-69.74	118.2	42.48	30.89	7.52	32.43	359	75	Р	V
		5786	94.24	-	-	87.81	31.45	7.6	32.62	359	75	Р	V
		5786	86.63	-	-	80.2	31.45	7.6	32.62	359	75	Α	V
		5850.01	53.87	-68.41	122.28	47.14	31.86	7.62	32.75	359	75	Р	V
		5858.75	51.94	-57.91	109.85	45.12	32	7.62	32.8	359	75	Р	V
		5877.5	49	-54.44	103.44	42.1	32.05	7.63	32.78	359	75	Р	V
		5964.75	47.71	-20.59	68.3	40.43	32.32	7.65	32.69	359	75	Р	V

Remark

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B10 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		11510	42.04	-31.96	74	54.36	39.6	10.64	62.56	100	360	Р	Н
HT40													
CH 151		11510	43.37	-30.63	74	55.69	39.6	10.64	62.56	100	360	Р	٧
5755MHz													
802.11n		11590	41.53	-32.47	74	54.24	39.34	10.69	62.74	100	360	Р	Н
HT40													
CH 159		11590	43.27	-30.73	74	55.98	39.34	10.69	62.74	100	360	Р	٧
5795MHz													

Remark

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B11 of B14
Report Issued Date : Aug. 11, 2017

Report No.: FR741007E

Report Version : Rev. 01

[.] No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

5GHz WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	24.9	-15.1	40	29.2	26.3	0.5	31.1	-	-	Р	Н
		241.46	26.26	-19.74	46	38.37	17.52	1.55	31.18	-	-	Р	Н
		316.15	28.68	-17.32	46	38.28	20.12	1.78	31.5	-	-	Р	Н
		478.14	35.27	-10.73	46	40.9	23.75	2.22	31.6	150	253	Р	Н
5GHz		513.06	28.57	-17.43	46	33.57	24.28	2.29	31.57	-	-	Р	Н
802.11n		932.1	31.47	-14.53	46	29.71	29.81	3.18	31.23	-	-	Р	Н
HT20		34.85	33.81	-6.19	40	40.75	23.5	0.56	31	100	252	Р	V
LF		111.48	22.74	-20.76	43.5	35.36	17.68	0.45	30.75	-	-	Р	V
		133.79	25.3	-18.2	43.5	37.52	17.46	1.15	30.83	-	-	Р	V
		241.46	22.21	-23.79	46	34.32	17.52	1.55	31.18	-	-	Р	V
		477.17	28.51	-17.49	46	34.17	23.73	2.21	31.6	-	-	Р	V
		556.71	35.76	-10.24	46	40	24.89	2.37	31.5	-	-	Р	V

Remark 1.

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B12 of B14
Report Issued Date : Aug. 11, 2017

Report No.: FR741007E

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : B13 of B14
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No. : FR741007E

A calculation example for radiated spurious emission is shown as below:

Report No.: FR741007E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (KunShan) INC.
 Page Number
 : B14 of B14

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Aug. 11, 2017

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : XMR201706SC20A Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11a	87.51	1.370	0.730	1kHz
802.11n HT20	86.76	1.283	0.780	1kHz
802.11n HT40	86.29	1.232	0.812	1kHz

802.11a

Date: 1.JUN.2017 21:22:07

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : C1 of C2
Report Issued Date : Aug. 11, 2017
Report Version : Rev. 01

Report No.: FR741007E

Report Version : Rev. 01
Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0

Report No. : FR741007E

802.11n HT20

Date: 1.JUN.2017 21:22:55

802.11n HT40

Date: 1.JUN.2017 21:24:05

Sporton International (KunShan) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: XMR201706SC20A Page Number : C2 of C2
Report Issued Date : Aug. 11, 2017

Report Version : Rev. 01
Report Template No.: BU5-FR15EWLB4 AC MA Version 2.0