TA section 7

JERRY C.

jerryc520.github.io/teach/MS.html

May 14, 2024

Homework 3: part (II)

§7.3 #6, #10; §7.4 #2, #11

- 6. 設 X_1,\cdots,X_n 爲一組由 $\mathcal{N}(\mu,\sigma^2)$ 分佈所產生之隨機樣本,欲估計 μ^2 。 試證
 - (i) 若 σ 已知, 則 $T_1 = \overline{X}_n^2 \sigma^2/n$ 爲UMVUE;
 - (ii) 若 σ 未知,則 $T_2 = \overline{X}_n^2 S_n^2/n$ 爲UMVUE。
- Key: (1) C.S.S.; (2) (conditional) unbiasedness
- 若 σ^2 已知: let $\theta = \mu$,

$$f(x|\theta) = (2\pi\sigma^2)^{-1/2} e^{-x^2/2\sigma^2} e^{-\mu^2/2\sigma^2} \exp\{(\mu/\sigma^2)x\}$$

=: $h(x)c(\theta) \exp\{w(\theta)t(x)\},$

belongs to the one-dimensional exponential family, where $h(x)=(2\pi\sigma^2)^{-1/2}e^{-x^2/2\sigma^2} I(-\infty < x < \infty), \ c(\theta)=e^{-\mu^2/2\sigma^2}, \ t(x)=x,$ and $w(\theta)=\mu/\sigma^2.$

• $C=\{w(\theta)=\mu/\sigma^2:\mu\in{\rm I\!R}\}$ contains an open set in ${\rm I\!R}$. By theorem, $T(\boldsymbol{X})=\sum_{i=1}^n X_i$ is a C.S.S. of μ , as well as \bar{X} (equivalent statistics).

JERRY C. Mathematical Statistics II

• 若 σ^2 未知: let $\theta = (\mu, \sigma^2)$,

$$f(x|\theta) = (2\pi\sigma^2)^{-1/2} e^{-\mu^2/2\sigma^2} \exp\{(\mu/\sigma^2)x - x^2/(2\sigma^2)\}$$

=: $h(x)c(\theta) \exp\{w_1(\theta)t_1(x) + w_2(\theta)t_2(x)\},$

belongs to the two-dimensional exponential family, where $h(x) = (2\pi\sigma^2)^{-1/2} \mathbf{I}(-\infty < x < \infty)$, $c(\theta) = e^{-\mu^2/2\sigma^2}$, $w_1(\theta) = \mu/\sigma^2$,

$$w_2(\theta) = -1/\sigma^2$$
, $t_1(x) = x$, and $t_2(x) = x^2$.
• $C = \{(w_1(\theta), w_2(\theta)) = (\mu/\sigma^2, -1/\sigma^2) : (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+\}$, or

- $C=\{(w_1(\theta),w_2(\theta))=(\mu/\sigma^2,-1/\sigma^2):(\mu,\sigma^2)\in \mathbb{R}\times\mathbb{R}_+\}$, contains an open set on \mathbb{R}^2 .
- By theorem, $T(X) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ is a C.S.S. of (μ, σ^2) , and so is (\bar{X}, S_n^2) (equivalent statistics).
- 注意: 若 μ 已知,且 σ^2 未知,則 $C = \{(w_1(\theta), w_2(\theta)) = (\mu/\sigma^2, -1/\sigma^2) : (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+\}$, does NOT contain an open set on \mathbb{R}^2 .

- σ^2 已知: let $T(\boldsymbol{X}) = \bar{X}$, and $S(\boldsymbol{X}) = \bar{X}^2 \sigma^2/n$. Consider $T_1 = h(T(\boldsymbol{X})) = \mathbb{E}[S(\boldsymbol{X})|T(\boldsymbol{X})] = S(\boldsymbol{X})$ ($: S(\boldsymbol{X})$ is also a function of $T(\boldsymbol{X})$) $\Rightarrow \mathbb{E}[T_1] = \mathbb{E}[\bar{X}^2 \sigma^2/n] = \mathbb{E}[\bar{X}^2] \sigma^2/n = \sigma^2/n + \mu^2 \sigma^2/n = \mu^2$.
- So, T_1 is the UMVUE of μ^2 by R.-B. Theorem & L.-S. Thorem.
- σ^2 未知: let $T(\boldsymbol{X}) = (\bar{X}, S_n^2)$. Consider $T_2 = h(T(\boldsymbol{X})) = \bar{X}^2 S_n^2/n \Rightarrow$ $\mathbb{E}[T_2] = \mathbb{E}[\bar{X}^2] \mathbb{E}[S_n^2/n] = \sigma^2/n + \mu^2 \sigma^2/n = \mu^2$.
- So, T_2 is the UMVUE of μ^2 by R.-B. Theorem & L.-S. Theorem.

- 10. 設 X_1,\cdots,X_n 爲一組由 $\mathcal{P}(\lambda)$ 分佈所產生之隨機樣本, $\lambda>0$ 。欲求 $\theta=P(X_1=0)=e^{-\lambda}$ 之UMVUE。
 - (i) 先找出一完備充分統計量T;
 - (ii) 利用 $I_{\{X_1=0\}}$ 爲 θ 之一不偏估計量, 以求出UMVUE;
 - (iii) 利用找一T的函數h(T), 滿足 $E(h(T)) = \theta$, 以求出UMVUE。

$$f(x|\lambda) = (x!)^{-1} e^{\lambda} \exp\{(\log \lambda)x\}$$

=: $h(x)c(\lambda) \exp\{w(\lambda)t(x)\},$

belongs to the one-dimensional exponential family, where $h(x) = (x!)^{-1} I(x = 0, 1, \dots), c(\lambda) = \exp(\lambda), w(\lambda) = \log \lambda$, and t(x) = x.

- $C = \{w(\lambda) = \log \lambda : \lambda \in \mathbb{R}_+\}$ contains an open set in \mathbb{R} . So, $T(\boldsymbol{X}) = \sum_{i=1}^n X_i$ is a C.S.S. of λ .
- (ii) Let $S(X) = I(X_1 = 0)$, such that $\mathbb{E}[S(X)] = e^{-\lambda} = \theta$. Then, $U(T(X)) := \mathbb{E}[S(X)|T = t]$ is an UMVUE of θ , where

$$U(t) = \mathbb{E}[S(\mathbf{X})|T = t] = \frac{\mathbb{P}(X_1 = 0, T = t)}{\mathbb{P}(T = t)}$$

$$= \frac{\mathbb{P}(X_1 = 0, \sum_{i=2}^n X_i = t - 0)}{\mathbb{P}(T = t)}$$

$$= \frac{(e^{-\lambda}\lambda^0/0!)(e^{-(n-1)\lambda}((n-1)\lambda)^{(t-0)}/(t-0)!)}{e^{-n\lambda}(n\lambda)^t/t!}$$

$$= \left(\frac{n-1}{n}\right)^t.$$

So, $U(\boldsymbol{X}) = [(n-1)/n]^{n\bar{X}}$ is the UMVUE of θ by R.-B. Theorem & L.-S. Theorem.

- Note: the conditional distribution $X_i|T=t\sim Bin(t,1/n)$ (it's easy to check by yourself).
- verify:

•

$$\begin{split} \mathbb{E}[U] &= \mathbb{E}[\left(\frac{n-1}{n}\right)^T] = \sum_{k=0}^{\infty} (\frac{n-1}{n})^k \frac{e^{-n\lambda}(n\lambda)^k}{k!} \\ &= e^{-n\lambda} \sum_{k=0}^{\infty} \frac{(n\lambda(n-1)/n)^k}{k!} = e^{-n\lambda} e^{n\lambda((n-1)/n)} = e^{-\lambda} = \theta. \end{split}$$

Consider

$$U = h(T) = \left(\frac{n-1}{n}\right)^T,$$

such that $E[U] = \sum_{k=0}^{\infty} (\frac{n-1}{n})^k \frac{e^{-n\lambda}(n\lambda)^k}{k!} = e^{-n\lambda} \sum_{k=0}^{\infty} \frac{(n\lambda(n-1)/n)^k}{k!} = \theta.$ So, U is the UMVUE of θ .

2. 設X與Y獨立, 皆有 $\mathcal{N}(\mu,\sigma^2)$ 分佈。分別對參數爲 μ 及 σ^2 時, 求(i) X+

$$Y$$
, (ii) $X - Y$ 之資訊數。(解. (i) $I_{X+Y}(\mu) = 2/\sigma^2$, $I_{X+Y}(\sigma^2) = 1/(2\sigma^4)$, (ii) $I_{X-Y}(\mu) = 0$, $I_{X-Y}(\sigma^2) = 1/(2\sigma^4)$)

- $T_1 := X + Y \sim \mathcal{N}(2\mu, 2\sigma^2), T_2 := X Y \sim \mathcal{N}(0, 2\sigma^2).$
- $\log L(\mu, \sigma^2; T_1) = -2^{-1} \log(4\pi\sigma^2) (t_1 2\mu)^2/(4\sigma^2)$.
- $\partial \log L(\mu)/\partial \mu = (t_1 2\mu)/(\sigma^2);$ $\partial \log L(\sigma^2)/\partial \sigma^2 = -1/(2\sigma^2) + (t_1 - 2\mu)^2/(4\sigma^4).$
- $I_{T_1}(\mu) = \mathbb{E}[(\partial \log L(\mu)/\partial \mu)^2] = \mathbb{E}[(T_1 2\mu)^2]/\sigma^4 = 2/(\sigma^2);$
- $I_{T_1}(\sigma^2) = \mathbb{E}[(\partial \log L(\sigma^2)/\partial \sigma^2)^2] = \mathbb{E}[(-1/(2\sigma^2) + (T_1 2\mu)^2/4\sigma^4)^2] = \mathbb{E}\left[1/(4\sigma^4) + (T_1 2\mu)^4/(16\sigma^8) (T_1 2\mu)^2/(4\sigma^6)\right] = 1/(2\sigma^4).$
- Note: $Z \sim \mathcal{N}(\mu, \sigma_Z^2) \Rightarrow \mathbb{E}[Z \mu] = 0, \mathbb{E}[(Z \mu)^2] = \sigma_Z^2, \mathbb{E}[(Z \mu)^3] = 0, \mathbb{E}[(Z \mu)^4] = 3\sigma_Z^4.$

- $\log L(\mu, \sigma^2; T_2) = -2^{-1} \log(2\sigma^2) y^2/(4\sigma^2)$.
- $\partial \log L(\mu)/\partial \mu = t_2/(\sigma^2);$ $\partial \log L(\sigma^2)/\partial \sigma^2 = -1/(2\sigma^2) + t_2^2/(4\sigma^4).$
- $$\begin{split} \bullet \ I_{T_2}(\mu) &= \mathbb{E}[(\partial \log L(\mu)/\partial \mu)^2] = 0; \\ I_{T_2}(\sigma^2) &= \mathbb{E}[(\partial \log L(\sigma^2)/\partial \sigma^2)^2] = \mathbb{E}\left[(-1/(2\sigma^2) + T_2^2/(4\sigma^4))^2\right] = \\ \mathbb{E}\left[1/(4\sigma^4) + T_2^4/(16\sigma^8) T_2^2/(4\sigma^6)\right] &= 1/(2\sigma^4). \end{split}$$

JERRY C.

- 11. 設 X_1, \cdots, X_n 爲一組由p.d.f. $f_i(x|\theta)$ 所產生之隨機樣本, i=1,2, 其中
 - (i) $f_1(x|\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0;$
 - (ii) $f_2(x|\theta) = \theta^x \log \theta / (\theta 1), 0 < x < 1, \theta > 1$

試分別對此二p.d.f., 討論是否有 $-\theta$ 之函數 $q(\theta)$, 使得存在 $-q(\theta)$ 之不偏估計量, 且其變異數達到CRLB。若有則找出來, 若沒有亦證明之。

• Theorem (Efficiency Attainment)

假設 $\pmb{X} = (X_1, \cdots, X_n)$ 有一 joint pdf $f(\pmb{x}|\theta)$, 與其對應之 likelihood function $L(\theta|\pmb{x}) = \prod_{i=1}^n f(x_i|\theta)$, 則對 $q(\theta)$ 的任一不偏估計量 $U(\pmb{X})$ 之變異數可達到 CRLB, 若且唯若存在一個 (θ,n) 的函數 $a(\theta,n)$ 使得以下等式成立:

$$a(\theta, n) \left[U(\mathbf{X}) - \mathbf{q}(\theta) \right] = \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}).$$

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \theta + (\theta - 1) \log x_i] \\ &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log \theta + (\theta - 1) \log x_i] \quad \text{(why)} \\ &= \sum_{i=1}^{n} \left[\theta^{-1} + \log x_i \right] \\ &= -n \left[-\sum_{i=1}^{n} \log x_i / n - \frac{1}{\theta} \right] = a(\theta, n) \left[U(\boldsymbol{X}) - \boldsymbol{q}(\boldsymbol{\theta}) \right]. \end{split}$$

• Then, $a(\theta,n)=-n$, $q(\theta)=1/\theta$, and $U(\boldsymbol{X})=-\sum_{i=1}^n \log X_i/n$ is the UMVUE of $1/\theta$, which attains the CRLB.

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \theta + (\theta - 1) \log x_i] \\ &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log \theta + (\theta - 1) \log x_i] \quad \text{(why)} \\ &= \sum_{i=1}^{n} \left[\theta^{-1} + \log x_i \right] \\ &= -n \left[-\sum_{i=1}^{n} \log x_i / n - \frac{1}{\theta} \right] = a(\theta, n) \left[U(\boldsymbol{X}) - q(\theta) \right]. \end{split}$$

- Then, $a(\theta, n) = -n$, $q(\theta) = 1/\theta$, and $U(X) = -\sum_{i=1}^{n} \log X_i/n$ is the UMVUE of $1/\theta$, which attains the CRLB.
- Note: $\nexists a(.)$ such that $\partial \log L/\partial \theta = a(.)[U(X) \theta]$, i.e., no UMVUE of θ that can attain the CRLB.

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \theta + (\theta - 1) \log x_i] \\ &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log \theta + (\theta - 1) \log x_i] \quad \text{(why)} \\ &= \sum_{i=1}^{n} \left[\theta^{-1} + \log x_i \right] \\ &= -n \left[-\sum_{i=1}^{n} \log x_i / n - \frac{1}{\theta} \right] = a(\theta, n) \left[U(\boldsymbol{X}) - q(\theta) \right]. \end{split}$$

- Then, $a(\theta, n) = -n$, $q(\theta) = 1/\theta$, and $U(X) = -\sum_{i=1}^{n} \log X_i/n$ is the UMVUE of $1/\theta$, which attains the CRLB.
- Note: $\nexists a(.)$ such that $\partial \log L/\partial \theta = a(.)[U(\boldsymbol{X}) \theta]$, i.e., no UMVUE of θ that can attain the CRLB.
- Note:「有限項部份和」與微分 (或極限) 可以直接交換符號。

JERRY C.

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \theta + (\theta - 1) \log x_i] \\ &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log \theta + (\theta - 1) \log x_i] \quad \text{(why)} \\ &= \sum_{i=1}^{n} \left[\theta^{-1} + \log x_i \right] \\ &= -n \left[-\sum_{i=1}^{n} \log x_i / n - \frac{1}{\theta} \right] = a(\theta, n) \left[U(\boldsymbol{X}) - q(\theta) \right]. \end{split}$$

- Then, $a(\theta, n) = -n$, $q(\theta) = 1/\theta$, and $U(X) = -\sum_{i=1}^{n} \log X_i/n$ is the UMVUE of $1/\theta$, which attains the CRLB.
- Note: $\nexists a(.)$ such that $\partial \log L/\partial \theta = a(.)[U(\boldsymbol{X}) \theta]$, i.e., no UMVUE of θ that can attain the CRLB.
- Note:「有限項部份和」與微分 (或極限) 可以直接交換符號。
- Note:「無窮項和」與微分(或極限)若可交換符號,當此級數是均勻收斂 (uniform convergence)或控制收斂(dominated (bounded) convergence)。

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \theta + (\theta - 1) \log x_i] \\ &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta} [\log \theta + (\theta - 1) \log x_i] \quad \text{(why)} \\ &= \sum_{i=1}^{n} \left[\theta^{-1} + \log x_i \right] \\ &= -n \left[-\sum_{i=1}^{n} \log x_i / n - \frac{1}{\theta} \right] = a(\theta, n) \left[U(\boldsymbol{X}) - q(\theta) \right]. \end{split}$$

- Then, $a(\theta, n) = -n$, $q(\theta) = 1/\theta$, and $U(X) = -\sum_{i=1}^{n} \log X_i/n$ is the UMVUE of $1/\theta$, which attains the CRLB.
- Note: $\nexists a(.)$ such that $\partial \log L/\partial \theta = a(.)[U(\boldsymbol{X}) \theta]$, i.e., no UMVUE of θ that can attain the CRLB.
- Note:「有限項部份和」與微分 (或極限) 可以直接交換符號。
- Note:「無窮項和」與微分(或極限)若可交換符號,當此級數是均勻收斂 (uniform convergence)或控制收斂(dominated (bounded) convergence)。

$$\begin{split} \partial \log L/\partial \theta &= \frac{\partial}{\partial \theta} \sum_{i=1}^{n} [\log \log \theta - \log(\theta - 1) + x_i \log \theta] \\ &= (\frac{n}{\theta \log \theta} - \frac{n}{\theta - 1}) + \theta^{-1} \sum_{i=1}^{n} x_i \\ &= \frac{n}{\theta} \left[\bar{x} - (\frac{\theta}{\theta - 1} - \frac{1}{\log \theta}) \right] = a(\theta, n) \left[U(\boldsymbol{X}) - \boldsymbol{q}(\boldsymbol{\theta}) \right]. \end{split}$$

- Then, $a(\theta, n) = n/\theta$, and $q(\theta) = \theta/(\theta 1) 1/(\log \theta)$;
- $U(X) = \bar{X}$ is the UMVUE of $q(\theta)$, which attains the CRLB.
- Note: No UMVUE of θ that attains the CRLB.

