

parameter	estimate	lower 95%	upper 95%	χ^2	$prob > \chi^2$
intercept	-5.8880	-6.2263	-5.5717	1246.00	< 0.0001
depth	-0.0839	-0.1374	-0.0299	9.36	0.0022
distance	-0.0016	-0.0023	-0.0009	21.31	< 0.0001

Outline

- · Generalizing the linear model
- 4 common situations exhibiting:
 - Non-constant / non-homogeneous variance
 - Non-normal error distribution
- · Linear predictors and link functions
- Overdispersion

"Difficult" response variables

- · May not have constant variance
- · Errors not normally distributed
- Logan text covers four situations:
 - Count data (no proportions)
 - Proportion data
 - Binary responses
 - "Time-to-event" data

GLMs (pronounced glims): Generalized linear models

- Not to be confused with general linear models (also sometimes called GLMs)
- · Have three properties
 - Error structure
 - Linear predictor
 - Link function

Error structure

- · We previously assumed normal errors
- Actual errors can have properties that violate this assumption in several ways:
 - Strong skew
 - Kurtosis
 - Strict bounds
 - e.g., predicted values must be between 0 & 1, or predicted values never below zero

Error structure

- Four common error structures:
 - Poisson errors, for count data
 - Binomial errors, for proportion data
 - Exponential errors, for time to event
 - Gamma errors, for data with constant CV

Linear predictor

- The sum of linear effects of 1 or more explanatory variables
- GLM compares *transformed* value from linear predictor to observations
 - Transformation specified by the link function
 - Fitted value = predicted value * reciprocal of link function

Link function

- · Relates the mean of y to linear predictor
- Model prediction is not y except in special case we have used until now: the identity link
- · 4 canonical (default) link functions

Error	Canonical link	
normal	identity	
poisson	log	
binomial	logit	
Gamma	reciprocal	

From Logan:

Table 17.1 Common generalized linear models and associated canonical link-distribution pairs.

Model	Response variable	Predictor variable(s)	Residual distribution	Link		
Linear regression ^a	Continuous	Continuous/ Categorical	Gaussian (normal)	Identity $g(\mu) = \mu$		
Logistic regression	Binary	Continuous/ Categorical	Binomial	$\operatorname{Logit} g(\mu) = \log_e \frac{\mu}{1 - \mu}$		
Log-linear models	Counts	Categorical	Poisson	$\log g(\mu) = log_e \mu$		

⁴Includes the standard ANOVA and ANCOVA designs.

Count data

- These are data on frequencies rather than proportions
- Count data are bounded below (can't have counts <0)
- Variance not constant (increases with the mean)
- · Errors not normally distributed
- Data are whole numbers (integers), which affects the error distribution

Count data

- · Use generalized linear model
 - with log link (to ensure fitted values bounded below)
 - and family=poisson to specify appropriate error variance
 - Can specify family=quasipoisson if data are overdispersed, but this is quite conservative
 - Alternative error distributions available (e.g., negative binomial distributions), but you need to read about these yourself!

Overdispersion

- Variance of Poisson or binomial models assumed to relate to mean or sample size, respectively
- · Dispersion (variance) parameter set to 1
- Often can get more (or less) variance than expected
- If residual deviance/df < 0.5 OR > 2, can use quasibinomial or quasipoisson to model the dispersion (but this will be conservative)
- · Or try other error distributions:
 - e.g., negative binomial (negbin) for count data; betabinomial (betabin) for binomial data (see {aod})
- Or try other models (e.g., zero-altered models)

```
Can't do an F-test to compare generalized models

> model1<-glm(Species-Biomass*pH,data=specdat,poisson)
> model2<-glm(Species-Biomass*pH,data=specdat,poisson)
> anova(model1,model2,test="Chi")
Analysis of Deviance Table

Model 1: Species - Biomass * pH
Model 2: Species - Biomass * pH
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 84 83.201
2 86 99.242 -2 -16.04 0.0003288 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
```

```
> summary(model1)
Call:
glm(formula = Species ~ Biomass * pH, family = poisson, data = specdat)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4978 -0.7485 -0.0402 0.5575 3.2297
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
                               0.06153 61.240 < 2e-16 ***
0.01249 -8.577 < 2e-16 ***
(Intercept)
                  3.76812
                                 0.10284 -7.931 2.18e-15 ***
pHlow
                  -0.81557
                  -0.33146
                                 0.09217 -3.596 0.000323 ***
pHmid
                                 0.04003 -3.873 0.000108 ***
0.02308 -1.382 0.166954
Biomass:pHlow -0.15503
Biomass:pHmid -0.03189
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39
Number of Fisher Scoring iterations: 4
```


Binomial data

- These are data on proportions or binary outcomes
- · Errors not normally distributed
- · Variance not constant
- Response is bounded (by 1 above and by 0 below)
- Calculating a percentage and transforming, loses information of the size of the sample from which the proportion was estimated.

Binomial data

- · Use generalized linear model
 - with logit link (to ensure fitted values bounded both above and below)
 - and family=binomial to specify appropriate error variance
 - If data as counts of two outcomes, bind columns to create 2-vector response
 - If data are binary outcome, leave as is


```
Plaz Zeon.

| Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz Zeon. | Plaz
```


Suggested reading:

- Ch. 17 in LoganChs. 13, 14, 16 in Crawley