Machine Learning: Introduction

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

4

Two paradigms of computing

- Computing by algorithms
 - Traditional
 - Knowledge driven
 - Deductive
- Computing by learning
 - Non-traditional
 - Data driven
 - Inductive

Computing by algorithms

- An algorithm: a sequence of instructions to be carried out to transform the input to output.
 - Needed for solving a problem on a computer
 - Example: Sorting of a set of numbers.
 - Many algorithms may exist for the same task.
- For some problems no algorithm may exist!
 - To detect spam mails.

Computing by learning

- No knowledge of an algorithm, but many examples of input and output.
 - Two sets of examples
 - Positive examples: Spam mails.
 - Negative examples: Ordinary mails.
 - To 'learn' what characterizes a mail spam.
 - The task is to extract the algorithm from examples and apply on any arbitrary input to get the output.
 - Automatic learning by a machine

- Existence of a process generating the data.
 - Details are not known.
- Existence of certain patterns in the data.
 - Such patterns help in characterizing the process.
 - Not going to change in near future.
- Approximate construction of a model of the process possible from examples.

- Data Mining: Application of machine learning on a large database.
 - A large volume of data processed to construct a simple model with valuable use.
 - Predicting consumer behavior.
 - Credit rating, fraud detection, etc. in financing.
 - Medical diagnosis.
 - Traffic analysis in telecommunication.

Machine learning: various contexts

- Intelligent System:
 - Adaptive to change 'algorithm' (learn) in a dynamic environment.
 - A part of AI
 - Robotics, Computer Vision, Speech Recognition.
 - Pattern Recognition, Biometry.
 - Autonomous driving car.

What is a Learning Problem?

- Learning involves performance improving
 - at some task T
 - with experience E
 - evaluated in terms of performance measure P
- Example: learn to play chess.
 - Task T: playing chess
 - Experience E: playing against a person
 - Performance P: percent of games won

Another Example

- Learn to recognise objects from a visual scene or an image
 - T: identify all objects
 - P: accuracy (e.g. a number of objects correctly recognized)
 - E: a database of objects recorded

What, how, when

- What is to be learnt?
 - How might this be represented?
 - A target function, a set of rules
- How it is to be learnt?
 - What specific algorithm to be used?
 - Applying experiences, instances, ...
- When it is accomplished?
 - Performance evaluation
 - Whether the performance improved at a given task over time, without reprogramming?

Learning and computing

- Programming computers to optimize a performance criterion using example data or past experience.
 - Build a model described by parameters.
 - Execute a program to learn parameters.
 - Optimization algorithms on data.
 - Use model for performing tasks.
 - Prediction: Of output.
 - Description: Gain knowledge from data.

A few examples

1

Learning Association

- An example:
 - Finding associations between products bought by customers (basket analysis).
 - People buying X most likely would buy Y
 - $X \rightarrow Y$
 - People buying X, probably would NOT buy Y.
 - $X \rightarrow \sim Y$

Classification and detection

Examples:

- 'low risk' vs. 'high risk' creditors.
 - Information about customers and credit history.
- Multiple classes
 - Character recognition, Biometry, Face Recognition
- Outlier detection

Web applications

- A lot of data for machine learning
 - Required various tasks to perform on them.
 - especially if the data is noisy or non-stationary.
- Spam filtering, fraud detection:
 - The enemy adapts so we must adapt too.
- Recommendation systems:
 - Lots of noisy data.
- Information retrieval:
 - Find documents or images with similar content.

Different types of learning

Supervised learning

- Learning with labeled data.
 - To learn a mapping from the input to an output
 - labels provided by a supervisor.
- Classification
 - Classify digits from hand written numerals.
- Regression
 - Predict the price of a car given a set of its attributes (brand, year, mileage, engine capacity, etc.).

Unsupervised learning

- Learning from only input data.
 - No labels of instances available.
 - no supervisor to provide mapping between input and output.
- The aim is to find the regularities / structures / patterns in the input.
 - Clustering

Reinforcement learning

- Learns a sequence of actions.
 - No emphasis on a single action
 - Emphasis on learning the policy
 - sequence of correct actions to reach the goal.
 - no such thing as the best action in any intermediate state.
 - an action is good if it is part of a good policy.
 - Examples:
 - Game playing, robot navigation.

Objectives of this course

- A brief exposure to the theory of computational learning
- Formulation and analysis of various learning problems
- Various approaches and methodologies to solve these problems.
- Performing a few case studies through implementation as programming assignments.

Syllabus

- Concept learning
- Decision Tree
- Evaluation of hypotheses
- Bayesian learning
- Parametric method
- Dimension Reduction

- Instance based learning
- Unsupervised learning
- Linear discriminant functions
- Support Vector Machines
- Artificial Neural Networks
- Ensemble learning
- Reinforcement learning

Background required

- 1st level courses on
 - Linear Algebra
 - Probability Theory
 - Discrete Mathematics
 - Algorithms
- Strong in programming
 - Programming knowledge in Python a must.

Books

- "Machine learning" by Tom M. Mitchel
- "Introduction to Machine Learning" by Ethem Alpaydin.
- "Pattern Classification" by Duda, Hart and Stork.

Weekly classes

- Wed: 11 AM 11:55 AM
- Thu: 12 Noon 12:55 PM
- Fri: 8 AM − 8:55 AM

Evaluation

- Mid Semester: 20
- End Semester: 40
- TA: 40 (Two assignments and weekly report)

All submissions and evaluation through CSE Moodle Server.

Slides and other resources to be uploaded in the CSE Moodle Server

Grading Policy

Relative grading.

EX: 15%

A: 20%

B: 25%

C: 20%

■ D: 15%

■ P,F: 5%

Attendance

- Attendance is compulsory and if you miss any class, you should inform our TA coordinator Dr. Sudipta Ghosh (<u>sudipta.kanti@gmail.com</u>).
- Attendance sheet will be circulated and you need to put your signature.
- For any proxy attendance detected for a student, 5 marks would be deducted from the total.
 - Your responsibility that no proxy attendance given against you.
 - For your benefit notify your absence in advance or as soon as possible through email to the TA coordinator.

Assignment submission

- By groups of two.
 - Pair by yourselves, and notify to TA coordinator by Thursday (11th Aug.) 5 PM, else to be done randomly.
- All programming assignments to be in Python.
- No copy case (sharing and copying to be treated in the same manner)
 - Deduction of 10 marks from the total for each copy case.
- Acknowledge if you have taken help from someone or from other resources during submission.
 - Marks would be adjusted, but not penalized to -10.
- Strictly follow the deadline of submission.

MS Team Page

- Machine Learning (2022-23, Autumn)
- Join through a team code (to be shared).
- On missing regular classes, supplementary classes to be held online
 - Saturday 8 AM / Tuesday 8 AM

