First Order Logic and KR Syntax of First Order Logic

Objectives

Objective
Explain the Syntax of
First-Order Logic

Signature

Signature consists of two kinds of symbols:

- function constants (with arity n): +/2, a/0, father/1
 - function constants of arity 0 are called object constants
- predicate constants (with arity n): even/1, >/2
 - predicate constants of arity 0 are called propositional constants

Other Symbols Not in Signature

These symbols can be used in addition to the symbols in the signature

- (object) variables: x, y, z, x₁, y₁, z₁, x₂, y₂, z₂, ...
- the propositional connectives: \bot , \top , \neg , \land , \lor , \rightarrow , \leftrightarrow
- the universal quantifier ∀ and the existential quantifier ∃
- the parentheses and the comma

Terms

A term is meant to denote an individual. It is defined recursively:

- an object constant is a term
 - john, andy, mary, ...
- an object variable is a term
 - X, y, Z
- for every function constant f of arity n (n>0), if $t_1, ..., t_n$ are terms then so is $f(t_1, ..., t_n)$.
 - father(john), +(a, x)
 - father(father(john))), +(a, +(x, john))

Syntax of First-Order Formulas

An atomic formula is meant to denote a base fact that is either true or false

They work like atoms in propositional logic (smallest unit that can be assigned true or false), but has a more complicated internal structure

Atomic formulas are either

- Propositional constants R, or
 - TrainLate, TaxiLate
- R(t₁, ..., t_n) where R is a predicate constant and t_i are terms, or
 - even(2), prime(3), > (3, 2), 3 > 2
- $t_1 = t_2$
 - father(john) = james, 1+2=3

Syntax of First-Order Formulas, cont'd

A (first-order) formula of signature σ is defined recursively:

- every atomic formula of σ is a formula
- both 0-place connectives (T, ⊥) are formulas
- if F is a formula, then $\neg F$ is a formula
- if F, G are formulas, then (F ⊙ G) is a formulas, where ⊙ is any binary connective
- if F is a formula then ∀x F and ∃x F are formulas

Examples

Let $\sigma = \{a, P, Q\}$, where a is an object constant, P is a unary and Q is a binary predicate constant

Q: Are these formulas?

- 1. a
- 2. P(a)
- 3. Q(a)
- 4. ∀x P(a)
- 5. $\neg P(a) \lor \exists x (P(x) \land Q(x,y))$

Bound and Free Variables: Free

An occurrence of a variable v in a formula F is bound if it belongs to a subformula of F that has the form Qv G; otherwise it is free.

 Informally speaking, the occurrence is bound if, in the parse tree, one of its ancestors is Qv.

$$\exists y \ P(x,y) \land \neg \exists x \ P(x,y)$$
1 2 3 4 5 6

Q: Which occurrences are free?

v is a free variable of F if v has a free occurrence in F.

Q: Which variables are free?

Example

Formula:
$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$
1 2 3 4 5

- Q: What are the free occurrences of a variable?
- Q: What are the free variables of the formula?

Bound and Free Variables: Bound

- Bound variables can be renamed without changing meaning:
 - $\forall x P(x)$ means the same as $\forall y P(y)$.
- A sentence is a formula without free variables.
- The universal closure of F is the $\forall v_{1,...,}v_n$ F where $v_{1,...,}v_n$ are free variables of F.

Assume that the signature consists of the object constant *Me*, the unary predicate constant *Male*, and the binary predicate constant *Parent*, and nothing else. Express each of the given English sentences in first-order logic.

- 1. I have no daughters
- 2. I have a granddaughter
- I have a brother.

Let the underlying signature be {a, P, Q} (1) where a is an object constant, P is a unary predicate

constant, and Q is a binary predicate constant.

We will think of object variables as ranging over the set N of nonnegative integers, and interpret the signature as follows:

- A represents the number 10,
- P(x) represents the condition "x is a prime number,"
- Q(x, y) represents the condition "x is less than y."

As an example, the sentence All prime numbers are greater than x can be represented by the formula

$$\forall y \big(P(y) \to Q(x,y) \big). \tag{2}$$

In the follow two problems, represent the given English sentences by predicate formulas.

Problem 1

- a) There is a prime number that is less than 10.
- b) x equals 0.
- c) x equals 9.

Problem 2

There are infinitely many prime numbers

Wrap-Up

