Zadanie 18. (0–1)

Na rysunku przedstawiona jest prosta k, przechodząca przez punkt A = (2, -3) i przez początek układu współrzędnych, oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox.

Zatem

A.
$$tg\alpha = -\frac{2}{3}$$
 B. $tg\alpha = -\frac{3}{2}$ **C.** $tg\alpha = \frac{2}{3}$ **D.** $tg\alpha = \frac{3}{2}$

B.
$$tg\alpha = -\frac{3}{2}$$

C.
$$tg\alpha = \frac{2}{3}$$

$$\mathbf{D.} \quad \mathsf{tg}\,\alpha = \frac{3}{2}$$

Zadanie 19. (0-1)

Na płaszczyźnie z układem współrzędnych proste k i l przecinają się pod kątem prostym w punkcie A = (-2,4). Prosta k jest określona równaniem $y = -\frac{1}{4}x + \frac{7}{2}$. Zatem prostą lopisuje równanie

A.
$$y = \frac{1}{4}x + \frac{7}{2}$$

A.
$$y = \frac{1}{4}x + \frac{7}{2}$$
 B. $y = -\frac{1}{4}x - \frac{7}{2}$ **C.** $y = 4x - 12$ **D.** $y = 4x + 12$

C.
$$y = 4x - 12$$

D.
$$y = 4x + 12$$

Zadanie 20. (0-1)

Dany jest okrąg o środku S = (2,3) i promieniu r = 5. Który z podanych punktów leży na tym okręgu?

A.
$$A = (-1, 7)$$

A.
$$A = (-1,7)$$
 B. $B = (2,-3)$ **C.** $C = (3,2)$ **D.** $D = (5,3)$

C.
$$C = (3,2)$$

D.
$$D = (5,3)$$

Zadanie 21. (0-1)

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, w którym wysokość jest 3 razy dłuższa od krawędzi podstawy, jest równe 140. Zatem krawędź podstawy tego graniastosłupa jest równa

A.
$$\sqrt{10}$$

B.
$$3\sqrt{10}$$

C.
$$\sqrt{42}$$
 D. $3\sqrt{42}$

D.
$$3\sqrt{42}$$