Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка набора автоматически проверяемых лабораторных работ на базе симулятора NAO

Выполнил: Руководитель: Азаров Артур Игоревич, гр. 4303 Заславский Марк Маркович, к.т.н., доцент

Цель и задачи

Цель: разработать набор автоматически проверяемых лабораторных работ на базе симулятора NAO

Задачи:

- 1. Провести обзор аналогов
- 2. Создать лабораторные работы
- 3. Разработать систему проверки лабораторных работ
- 4. Обеспечить возможность подключения разработанной системы к существующим площадкам онлайнобучения
- 5. Исследовать время проверки решений и количество потребляемых ресурсов

Актуальность

Актуальность обусловлена следующими факторами:

- рост спроса на специалистов в области робототехники
- обучение программированию робота сопряжено с трудностями
- популярность онлайн-обучения

Обзор аналогов. Сравнение аналогов

Критерий / название аналога	ROS Basics in 5 Days	Hour of Code	Управление мобильным и роботами	Введение в ROS	Begin Robotics
Степень интерактивно сти	2	1	3	4	2
Случайность условий задач	Нет	Нет	Нет	Нет	Нет
Используемые устройства	Симулятор робота	Симулятор несуществующ его робота	Нет	Нет	Симулятор несуществ ующего робота
Вид проверки решения	Проверка отсутствует	Проверка отсутствует	Автоматичес кая	Автоматичес кая	Проверка отсутствуе т

Обзор аналогов. Разработка архитектуры лабораторной работы

Диаграмма активности лабораторной работы по программированию робота

Создание лабораторных работ. Выбор робота для программирования

Критерии робота:

- Востребованность робота в мировом сообществе
- Наличие симулятора
- Открытая платформа для программирования

Робот NAO

Создание лабораторных работ. Условия лабораторных работ

- Лабораторная работа №1: Изменить положение на StandInit
- Лабораторная работа №2: Переместить робота на некоторое расстояние
- Лабораторная работа №3: Сказать реплику в файл
- Лабораторная работа №4: Установить углы наклона головы
- Лабораторная работа №5: Установить максимальную жесткость головы

Система проверки лабораторных работ

```
получение расположения и идентификатора лабораторной работы;
проверка на правильность переданных аргументов;
если аргументы правильные, то:
   определение лабораторной работы для проверки;
   если для проверки лабораторной работы нужно взаимодействовать с
   роботом, то:
        обнуление состояние робота;
   если нужно запустить пользовательское решение, то:
        запустить пользовательское решение;
   начать измерение времени проверки решения;
   запустить скрипт проверки и получить обратную связь по решению;
   если время проверки решения превысило таймаут, то:
        завершить выполнение скрипта-решения;
   иначе:
        закончить измерение времени проверки решения;
        завершение работы скрипта;
иначе:
   завершение работы скрипта;
```

Псевдокод алгоритма работы скрипта-контроллера

Алгоритм проверки лабораторной работы "Изменить положение на StandInit"

Создание объекта сессии с симулятором робота;

Попытка подключения к симулятору робота;

Если подключение успешно то:

Подключение к сервису ALRobotPosture, который отвечает за установку робота в позу или получение позы, в которой робот сейчас находится;

Если подключение успешно то:

Получение позы;

Если поза правильная, то:

Вывод в консоль и лог файл информации о том, что поза правильная и задача решена корректно;

Иначе:

Завершение работы скрипта;

Иначе:

Завершение работы скрипта;

Иначе:

Завершение работы скрипта;

Подключение к существующим площадкам онлайн-обучения

Исследование зависимости времени проверки от количества контейнеров с модулем проверки

Количество контейнеров

Зависимость времени проверки 10 лабораторных работ "Изменить положение на StandInit"" при использовании разного количества контейнеров с модулем проверки лабораторных работ

Исследование количества потребляемых ресурсов

Ресурс/ тип контейнера	хранения	проверки
Процессор, %	12,9	50,6
Оперативная память, МБ	69,4	75,3

Потребление ресурсов различными типами контейнеров

Исследование времени проверки

Название лабораторной работы	Значение, с
«Изменить положение на StandInit»	5.19
«Переместить робота на некоторое расстояние»	15.4
«Сказать реплику в файл»	2
«Установить углы наклона головы»	0.2
«Установить максимальную жесткость головы»	2

Среднее время проверки лабораторной работы

Апробация работы

- «Обзор ресурсов, обучающих программированию роботов» // Конференция ППС СПбГЭТУ «ЛЭТИ», 2020
- Репозиторий проекта
 https://github.com/moevm/msc_azarov.
- Docker контейнеры
 https://hub.docker.com/repository/docker/turrik/solution

https://hub.docker.com/repository/docker/turrik/runningxqueue

Заключение

- Был проведён обзор аналогов. В результате была разработана архитектура лабораторной работы
- Было создано 5 лабораторных работ
- Была разработана система проверки лабораторных работ, представляющая собой набор Python скриптов
- Для обеспечения единообразного интерфейса системе была добавлена поддержка Docker контейнеров
- Исследование показало, что зависимость времени проверки от количества исполнителей прямо пропорциональная. Было проведено исследование потребления процессора и оперативной памяти
- В дальнейшем планируется добавление новых лабораторных работ и случайной генерации условий

Запасные слайды

Характеристики ЭВМ, на которой проводились измерения

- 8 ГБ 1867 MHz LPDDR3 RAM
- 2 GHz 2-ядерный процессор Intel Core i5
- Intel Iris Graphics 540 1536 M5