Universidad Politécnica de Guanajuato Ingeniería Robótica Mecanismos y máquinas (IRO05A) Examen Ordinario - Parcial I

Nombre:	Fecha:

1. En la figura se muestra un mecanismo de retorno rápido. El elemento de entrada es la barra O_1A , por lo que se supone conocida en todo momento su posición y velocidad angular (constante). Plantee (no resolver) las ecuaciones necesarias para calcular la posición, velocidad y aceleración angular de la barra O_2A . [30%]

2. Para el mecanismo de cuatro barras mostrado en la figura, use un método analítico para calcular las velocidades y aceleraciones angulares de los eslabones 3 y 4, además de la velocidad y aceleración para el punto C. Considere las dimensiones siguientes: $\overline{O_2O_4}=150$, $\overline{O_2A}=60$, $\overline{AB}=110$, $\overline{O_4B}=90$, AC=80 y $\angle BAC=30^\circ$ (todas las longitudes están dadas en mm). Tome en cuenta que 2 es el eslabón motriz y que en el instante mostrado este tiene una velocidad angular $\omega_2=20$ rad/s en sentido horario y una aceleración angular $\alpha_2=150$ rad/s² en sentido antihorario. [70%]

