

ALY6060: Decision Support & Business Intelligence

Assignment 5

Exploring Data Insights: K-Means Clustering and Neural Networks Analysis Using SPSS Statistics

Submitted to: Prof. Fatemeh Abkenari

Submitted by: Group 8

Abhilash Kumar Dikshit

Shamim Sherafati

Date: 12/10/2023

College of Professional Studies, Northeastern University Vancouver, Canada

I. Introduction:

The comprehensive statistical examination of property tax data using IBM SPSS Statistics sought to deeply investigate and comprehend diverse facets pertaining to property tax assessments in the Vancouver region until 2023. The primary focus was on extracting data insights through visualization, statistical analysis, and compelling storytelling. Leveraging a dataset encompassing 873,124 entries, the study probed into relationships between independent variables and dependent variables. Visualizations were employed to discern the influence of TAX_LEVY, REPORT_YEAR, and YEAR_BUILT on CURRENT_LAND_VALUE, CURRENT_IMPROVEMENT_VALUE, PREV_LAND_VALUE, and PREV_IMPROVEMENT_VALUE. The objective was to reveal latent patterns within property tax assessment variables, utilizing descriptive statistics, clustering, ANOVA, Multilayer Perceptron, Classification, and AUC techniques to predict land values of legal types based on property characteristics.

II. Analysis:

As depicted in the below bar chart, it illustrates the zoning classification in the Vancouver region along with past and present land values. The examination offers a thorough visualization of zoning attributes in conjunction with previous and current land values, offering insights into the urban landscape. This report delves into the observations derived from the dashboard components, portraying a clear picture of the correlation between zoning classifications and property values.

Descriptive Statistics

The FOLIO variable, representing unique identifiers, showcases a wide range, from 2.E+10 to 8E+11, with a mean of 4.99E+11 and a standard deviation of 2.496E+11. This indicates significant variability in the property tax data, with a concentration around the mean.

LAND_COORDINATE, denoting the geographic coordinates of properties, exhibits considerable diversity, ranging from 1963206 to 84531342. The mean of 49897988 with a standard deviation of 24958687.1 indicates a spread across different regions.

The variable FROM_CIVIC_NUMBER, depicting civic numbers of properties, has a mean of 866.30, suggesting a concentration around this value, with a standard deviation of 875.560, signifying variability in civic number assignments.

CURRENT_LAND_VALUE, representing the current assessed land values, shows a wide range, from 0 to 3568531000, with a mean of 1749660.86 and a substantial standard deviation of 100578195.3, indicating diverse property valuations.

Other variables like CURRENT_IMPROVEMENT_VALUE, TAX_ASSESSMENT_YEAR, PREVIOUS_LAND_VALUE, PREVIOUS_IMPROVEMENT_VALUE, YEAR_BUILT, BIG_IMPROVEMENT_YEAR, TAX_LEVY, NEIGHBOURHOOD_CODE, REPORT_YEAR.

Descriptive Statistics								
	N	Minimum	Maximum	Mean	Std. Deviation			
FOLIO	873484	2.E+10	8.E+11	4.99E+11	2.496E+11			
LAND_COORDINATE	873484	1963206	84531342	49897988.80	24958687.1			
FROM_CIVIC_NUMBER	427023	0	6705	866.30	875.560			
TO_CIVIC_NUMBER	871240	1	31888	2389.22	1994.596			
CURRENT_LAND_VALUE	860914	0	3568531000	1749660.86	10057195.3			
CURRENT_IMPROVEMENT _VALUE	860914	0	876401000	451709.80	4766582.444			
TAX_ASSESSMENT_YEAR	860914	2020	2023	2021.51	1.118			
PREVIOUS_LAND_VALUE	850976	0	3488433000	1736914.94	10018672.3			
PREVIOUS_IMPROVEMENT _VALUE	850976	0	652775000	424229.23	4279501.536			
YEAR_BUILT	847604	1800	2022	1984.36	29.752			
BIG_IMPROVEMENT_YEAR	847604	200	2022	1991.84	19.664			
TAX_LEVY	861605	.00	9760300.00	8964.5822	64805.61572			
NEIGHBOURHOOD_CODE	873484	1	30	16.55	8.943			
REPORT_YEAR	873484	2020	2023	2021.51	1.118			
Valid N (listwise)	408964							

Fig 1: Descriptive Statistics.

Initial Cluster Centers

The clustering process begins with the calculation of Z scores for Cluster 1 and 2. In the first iteration, we observe Z scores of 7.162 for Cluster 1 and 4.153 for Cluster 2. Subsequently, in the second iteration, convergence is swiftly achieved, with Z scores stabilizing at 0.000 for both clusters, signifying minimal changes in cluster centers.

Initial Cluster Centers Zscore(FOLIO) .24895 -1.49919 Zscore (LAND_COORDINATE) .24895 -1.49919 Zscore (FROM_CIVIC_NUMBER) -.35554 -.63764 Zscore (TO_CIVIC_NUMBER) -.69700 2.42594 Iteration Historya Zscore (CURRENT_LAND_VALUE) 22.80938 -.17397 Change in Cluster Centers Zscore (CURRENT_IMPROVEMEN T_VALUE) -.09477 14.79284 **Iteration** Zscore (TAX_ASSESSMENT_YEAR) -.45759 1.33119 1 7.162 4.153 Zscore (PREVIOUS_LAND_VALUE) 24.36322 -.17337 .000 .000 Zscore (PREVIOUS_IMPROVEMEN T_VALUE) 29.59779 -.09913 a. Convergence achieved due to no or small change in cluster Zscore(YEAR_BUILT) .05505 1.16423 centers. The maximum (BIG_IMPROVEMENT_YEA R) -.29680 1.38141 absolute coordinate change for any center is .000. The Zscore(TAX_LEVY) 47.34306 -.13833 current iteration is 2. The 1.28085 -.73193 Zscore (NEIGHBOURHOOD_CODE minimum distance between initial centers is 67.222. Zscore(REPORT_YEAR) -.45895 1.32959

Fig 2: Initial Cluster Centers and Iteration History.

Final Cluster Centers

Final Cluster Centers						
	Clus					
	1	2				
Zscore(FOLIO)	.24895	17821				
Zscore (LAND_COORDINATE)	.24895	17821				
Zscore (FROM_CIVIC_NUMBER)	35554	00931				
Zscore (TO_CIVIC_NUMBER)	69700	30432				
Zscore (CURRENT_LAND_VALUE)	23.53900	11036			Final Cluster Centers	
Zscore (CURRENT_IMPROVEMEN T_VALUE)	20.68018	04665	50			Variables Zscore(FOLIO) Zscore(LAND_COORDINATE) Zscore(FROM_CIVIC_NUMBER) Zscore(TO_CIVIC_NUMBER)
Zscore (TAX_ASSESSMENT_YEAR)	90479	.01790	40			Zscore(CURRENT_LAND_VALUE) Zscore (CURRENT_IMPROVEMENT_VALUE)
Zscore (PREVIOUS_LAND_VALUE)	24.18016	11019	30			ZSCOTE(TAX_ASSESSMENT_YEAR) ZSCOTE(PREVIOUS_LAND_VALUE) ZSCOTE (PREVIOUS_IMPROVEMENT_VALUE)
Zscore (PREVIOUS_IMPROVEMEN T_VALUE)	28.63494	04563	Values			Zscore(YEAR_BUILT) Zscore(BIC_IMPROVEMENT_YEAR) Zscore(TAX_LEVY) Zscore(NEIGHBOURHOOD_CODE) Zscore(REPORT_YEAR)
Zscore(YEAR_BUILT)	.05505	.48452				
Zscore (BIG_IMPROVEMENT_YEA R)	29680	.39461	10			_
Zscore(TAX_LEVY)	43.50381	09691				
Zscore (NEIGHBOURHOOD_CODE)	1.28085	.27231	-10	Cluster 1	Cluster 2	_
Zscore(REPORT_YEAR)	90608	.01648			Cluster	

Fig 3: Final Cluster Centers

ANOVA

ANOVA results reveal that F tests should be utilized descriptively, given the intentional clustering to minimize differences among cases. With 408,962 cases in Cluster 2 and only 2 in Cluster 1, the observed significance levels lack correction for the minimized differences.

		AN	OVA						
	Cluster		Erro						
	Mean Square	df	Mean Square	df	F	Sig.			
Zscore(FOLIO)	.365	1	.983	408962	.371	.542			
Zscore (LAND_COORDINATE)	.365	1	.983	408962	.371	.542			
Zscore (FROM_CIVIC_NUMBER)	.240	1	.982	408962	.244	.621			
Zscore (TO_CIVIC_NUMBER)	.308	1	.738	408962	.418	.518			
Zscore (CURRENT_LAND_VALUE)	1118.579	1	.003	408962	334654.854	<.001			
Zscore (CURRENT_IMPROVEMEN T_VALUE)	859.199	1	.001	408962	614541.695	<.001			
Zscore (TAX_ASSESSMENT_YEAR)	1.703	1	1.004	408962	1.697	.193			
Zscore (PREVIOUS_LAND_VALUE)	1180.037	1	.004	408962	322722.246	<.001			
Zscore (PREVIOUS_IMPROVEMEN T_VALUE)	1645.143	1	.002	408962	1084474.670	<.001	Number of Cases in		
Zscore(YEAR_BUILT)	.369	1	.251	408962	1.471	.225	1 (each Cl	uster
Zscore (BIG_IMPROVEMENT_YEA R)	.956	1	.407	408962	2.349	.125	Cluster	1	2.000
Zscore(TAX_LEVY)	3802.027	1	.003	408962	1327956.583	<.001	Cluster		2.000
Zscore (NEIGHBOURHOOD_CODE	2.034	1	1.118	408962	1.820	.177		2	408962.000
Zscore(REPORT_YEAR)	1.702	1	1.003	408962	1.697	.193	Valid		408964.000
The F tests should be used maximize the differences corrected for this and thus	among cases in di	fferent clu	isters. The obsei	rved signific	cance levels are no	t	Missina		464520.000

Fig 4: ANOVA

Multilayer Perceptron

The Multilayer Perceptron (MLP) model is structured with one hidden layer, employing hyperbolic tangent as the activation function. Training and testing involve an 80-20 split, with covariates including CURRENT_LAND_VALUE, CURRENT_IMPROVEMENT_VALUE, PREV_LAND_VALUE, PREV_IMPROVEMENT_VALUE, TAX_LEVY, BIG_IMPROVEMENT_YEAR. The model achieves convergence in two iterations.

Cas	e Proce	ssing Sum	mary				
		N	Percent				
Sample	Training	672107	80.1%	5			
	Testing	167335	19.9%	5			
/alid		839442	100.0%	5			
Excluded	t	34042					
Γotal		873484					
		Netw	ork Info	rmation			
nput Lay	yer	Covariates		1	CURRENT_LAN D_VALUE		
			2	CURRENT_IMP ROVEMENT_V ALUE			
		3	PREVIOUS_LAN D_VALUE				
			4	PREVIOUS_IMP ROVEMENT_V ALUE			
				5	REPORT_YEAR		
				6	TAX_LEVY		
				7	BIG_IMPROVE MENT_YEAR		
		Number of U	nits ^a		7		
		Rescaling Me	thod for C	ovariates	Standardized		
Hidden I	Layer(s)	Number of H	idden Lay	ers	1		
		Number of U	nits in Hid	den Layer 1 ^a	5		
		Activation Fu	nction		Hyperbolic tangent		
Output L	ayer	Dependent V	'ariables	1	LEGAL_TYPE		
		Number of U	nits		3		
	Activation Function						
		Activation Fu	nction		Softmax		

	Model Summary	
Training	Cross Entropy Error	118003.715
	Percent Incorrect Predictions	6.5%
	Stopping Rule Used	Maximum number of epochs (100) exceeded
	Training Time	0:02:15.20
Testing	Cross Entropy Error	28974.427
	Percent Incorrect Predictions	6.3%

Dependent Variable: LEGAL_TYPE

Parameter Estimates

	Predicted								
Hidden Layer 1							Output Layer		
Predictor H(1			H(1:2)	H(1:3)	H(1:4)	H(1:5)	[LEGAL_TYPE =LAND]	[LEGAL_TYPE =OTHER]	[LEGAL_TYPE =STRATA]
Input Layer	(Bias)	698	1.613	2.643	074	.337			
	CURRENT_LAND_VALUE	-1.680	6.790	-1.097	-1.302	101			
	CURRENT_IMPROVEMENT _VALUE	927	1.351	.124	.110	606			
	PREVIOUS_LAND_VALUE	-2.819	4.881	813	941	.681			
	PREVIOUS_IMPROVEMENT _VALUE	-1.074	651	.040	196	.358			
	REPORT_YEAR	.085	196	.102	-1.122	181			
	TAX_LEVY	-1.096	8.440	619	235	.623			
	BIG_IMPROVEMENT_YEAR	402	.024	1.996	2.238	.412			
Hidden Layer 1	(Bias)						2.199	-4.047	2.090
	H(1:1)						1.254	275	-1.850
	H(1:2)						3.428	846	-3.478
	H(1:3)						843	844	1.571
	H(1:4)						.745	-1.560	.867
	H(1:5)						468	129	192

Fig 5: Multilayer Perceptron

Classification

Classification results for the Dependent Variable LEGAL_TYPE present observed and predicted values for LAND, STRATA, and OTHER categories.

Fig 6: Classification

Area Under the Curve

AUC values indicate strong predictive performance, particularly for LAND and STRATA with scores of 0.976 each. The OTHER category exhibits a slightly lower AUC of 0.679, suggesting a relatively lower predictive ability.

Area Under the Curve						
		Area				
LEGAL_TYPE	LAND	.976				
	OTHER	.679				
	STRATA	.976				

Fig 7: AUC

Normalized Importance provides insights into the contribution of variables to the model. Notably, BIG_IMPROVEMENT_YEAR holds the highest importance at 100%, followed by PREV_IMPROVEMENT_VALUE at 75.1%, and CURRENT_LAND_VALUE at 78.2%. These findings underscore the significance of these variables in predicting legal types based on property characteristics.

Fig 8: Independent Variable Importance

III. Conclusion:

This comprehensive analysis combines descriptive statistics, clustering, ANOVA, and advanced techniques like Multilayer Perceptron and Classification to derive meaningful insights from property tax data. The descriptive statistics offer a nuanced understanding of variable distributions, while clustering and ANOVA caution against hasty interpretations. The MLP model and subsequent classification demonstrate the robustness of the predictive framework, with AUC values providing a quantitative measure of performance. The identification of variable importance contributes to a refined understanding of the factors influencing legal types. This technical exploration lays a solid foundation for leveraging data-driven insights in business-oriented decision-making within the realm of property tax assessments.

IV. References:

Property tax report. (n.d.). https://opendata.vancouver.ca/explore/dataset/property-tax-report/table/?sort=-tax-assessment-year