

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 2 – Géométrie dans l'espace

EXERCICES D'APPLICATION

D'après ressources de Jean-Pierre Pupier.

Exercice 1

Soit un repère $\Re = (O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$. On donne les coordonnées dans \Re des points suivants correspondants respectivement à l'origine et à l'extrémité des vecteurs :

- $-\overrightarrow{V_1}$: point $A_1:(2,1,0)$, point $B_1:(3,1,0)$;
- $-\overrightarrow{V_2}$: point $A_2:(1,-3,0)$, point $B_2:(-2,-1,0)$;
- $-\overrightarrow{V_3}$: point A_3 : (1,1,0), point B_3 : (3,2,0);
- $-\overrightarrow{V_4}$: point $A_4: (-1,2,0)$, point $B_4: (1,1,0)$.

Question 1

Calculer les composantes de chaque vecteur dans la base B associée au repère B.

Question 2

Calculer la norme de chaque vecteur.

Question 3

Calculer la somme de ces quatre vecteurs dans la base \mathcal{B} .

Question 4

Écrire les composantes du vecteur unitaire colinéaire à $\overrightarrow{V_2}$ et de même sens dans la base \mathscr{B} .

Question 5

Calculer les produits scalaires $\overrightarrow{V_1} \cdot \overrightarrow{V_2}$ et $\overrightarrow{V_3} \cdot \overrightarrow{V_4}$.

Question 6

Calculer les produits vectoriels $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$ et $\overrightarrow{V_3} \wedge \overrightarrow{V_4}$.

Exercice 2

Question 1

Dessiner le troisième vecteur de la base orthonormée directe $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

Question 2

Exprimer les produits des vecteurs de base d'une base orthonormée directe.

$$\overrightarrow{x} \cdot \overrightarrow{y} \quad \overrightarrow{x} \wedge \overrightarrow{y} \quad \overrightarrow{y} \cdot \overrightarrow{z} \quad \overrightarrow{y} \wedge \overrightarrow{z} \quad \overrightarrow{x} \cdot \overrightarrow{z} \quad \overrightarrow{x} \wedge \overrightarrow{z}$$

1

CI 3 : CIN – Applications Ch. 2 : Géométrie – E

Question 3

Calculer le cosinus puis l'angle α formé par les vecteurs .

$$\overrightarrow{V_1} = \left[egin{array}{c} -1 \\ 2 \\ 2 \end{array}
ight]_{\mathscr{B}}$$

- **Question 4**
- **Question 5**
- Question 6
- Question 7
- **Question 8**
- **Question 9**
- **Question 10**
- **Question 11**