partitions-leanblueprint

Carter Hastings

Quinn Oveson

June 25, 2025

0.1 Definitions

Definition 1 (Sequence). A sequence, denoted a or $\{a_n\}$, is a function $a: \mathbb{N} \to \mathbb{R}$.

Definition 2 (Convergence). A sequence $\{a_n\}$ converges to $L \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - L| < \varepsilon$. We say $\{a_n\}$ converges if there exists $L \in \mathbb{R}$ such that $\{a_n\}$ converges to L.

0.2 Theorems

Theorem 3 (Limit Laws).

Let $C \in \mathbb{R}$. Suppose $\{a_n\}$ converges to L and $\{b_n\}$ converges to K. Then

- (i) $\{Ca_n\}$ converges to CL
- (ii) $\{a_n + b_n\}$ converges to L + K.

Proof. Trivial. \Box

Lemma 4.

Suppose that there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \geq 0$. Then $\lim_{n \to \infty} a_n \geq 0$.

Theorem 5 (Order Limit Theorem).

Let $\{a_n\}$ and $\{b_n\}$ be sequences. Suppose that there exists an $N\in\mathbb{N}$ such that for all $n\geq N$, $a_n\leq b_n$. Then $\lim_{n\to\infty}a_n\leq \lim_{n\to\infty}b_n$.