Reliability Engineering Comprehensive Reference

Fundamental Concepts

Reliability Definition

- Reliability (R(t)) is the probability that a system will perform its intended function under stated conditions for a specified period of time
- Unreliability (F(t)) = 1 R(t)
- Mean Time Between Failures (MTBF) = $\frac{\text{Total Operating Time}}{\text{Number of Failure}}$
- Mean Time To Failure (MTTF) Used for non-repairable systems
- Mean Time To Repair (MTTR) Average time required to repair a failed component

Availability Metrics

- Availability (A) = $\frac{\text{MTTF}}{\text{MTTF+MTTR}}$ Inherent Availability (Ai) = $\frac{\text{MTTF}}{\text{MTTF+MTTR}}$ Operational Availability (Ao) = $\frac{\text{Operating Time}}{\text{Operating Time+Downtime}}$ Achieved Availability (Aa) = $\frac{\text{MTTF}}{\text{MTTF+M}}$ where \bar{M} is mean active maintenance time. nance time

Probability Distributions in Reliability

Exponential Distribution

- Most commonly used for constant failure rate systems
- Probability Density Function: $f(t) = \lambda e^{-\lambda t}$
- Reliability Function: $R(t) = e^{-\lambda t}$
- Failure Rate: $\lambda(t) = \lambda$ (constant)
- MTTF = $1/\lambda$

Weibull Distribution

- Most versatile distribution in reliability engineering
- Three-Parameter Form:

$$- f(t) = (\beta/\eta)((t-\gamma)/\eta)^{(\beta-1)}exp(-((t-\gamma)/\eta)^{\beta})$$

- Parameters:
 - $-\beta$ (Beta): Shape parameter
 - $-\eta$ (Eta): Scale parameter
 - $-\gamma$ (Gamma): Location parameter
- Reliability Function: $R(t) = exp(-((t-\gamma)/\eta)^{\beta})$
- Characteristics:
 - $-\beta < 1$: Decreasing failure rate
 - $-\beta = 1$: Constant failure rate (reduces to exponential)
 - $-\beta > 1$: Increasing failure rate

Normal Distribution

- Used for wear-out failures
- Probability Density Function: f(t) = $(1/(\sigma\sqrt{2\pi}))e^{-(t-\mu)^2/(2\sigma^2)}$
- Parameters:
 - $-\mu$: Mean life
 - $-\sigma$: Standard deviation

Lognormal Distribution

- Used for repair times and maintenance actions
- PDF: $f(t) = (1/(t\sigma\sqrt{2\pi}))e^{-(\ln(t)-\mu)^2/(2\sigma^2)}$
- Where μ and σ are the mean and standard deviation of $\ln(t)$

System Reliability Analysis

Series Systems

- Overall Reliability: $R_s = R_1 \times R_2 \times ... \times R_n$
- System fails if any component fails
- MTTF(system) = $1/(\lambda_1 + \lambda_2 + ... + \lambda_n)$

Parallel Systems

- Overall Reliability: $R_p = 1 [(1-R_1) \times (1-R_2) \times \ldots \times (1-R_n)]$
- System functions if at least one component works
- Improves system reliability

k-out-of-n Systems

- System works if at least k components out of n work
- Reliability: $R(k,n) = \sum_{i=k}^{n} {n \choose i} R^{i} (1-R)^{n-i}$

Failure Analysis

Failure Modes and Effects Analysis (FMEA)

- Risk Priority Number (RPN) = Severity × Occurrence × Detection
- Scale typically 1-10 for each factor
- Higher RPN indicates higher risk

Fault Tree Analysis (FTA)

Basic Events Symbols:

- Circle: Basic event
- Diamond: Undeveloped event
- Rectangle: Intermediate event
- House: External event

Gate Symbols:

- AND gate: Output occurs if all inputs occur
- OR gate: Output occurs if any input occurs
- Exclusive OR gate: Output occurs if exactly one input occurs

Common Cause Failures (CCF)

• Beta Factor Model: CCF = $\beta \times \lambda$ where β is the fraction of failures that are common cause

Maintenance Strategies

Preventive Maintenance

- Time-Based Maintenance (TBM)
- Usage-Based Maintenance (UBM)
- Optimal Maintenance Interval: $T^* = \sqrt{\frac{2 \times C_p}{C_f \times \lambda}}$ where:
- $\begin{array}{l} \bullet \ \ \, C_p = \mbox{Preventive maintenance cost} \\ \bullet \ \ \, C_f = \mbox{Failure repair cost} \\ \end{array}$
- $\lambda = \text{Failure rate}$

Condition-Based Maintenance

- P-F Interval: Time between potential failure detection and functional failure
- Key Parameters:
 - Inspection interval < P-F interval
 - Cost of monitoring < Cost of failure × Probability of failure

Reliability-Centered Maintenance (RCM)

Seven Questions: 1. Functions and performance standards 2. Functional failures 3. Failure modes 4. Failure effects 5. Failure consequences 6. Proactive tasks 7. Default actions

Life Data Analysis

Life Testing

Types:

- Complete data
- · Right censored
- Left censored
- Interval censored

Acceleration Factors

Arrhenius Model:

• $AF = exp[\frac{E_a}{k}(\frac{1}{T_1} - \frac{1}{T_2})]$

where:

- $E_a = Activation energy$
- k = Boltzmann's constant
- $T_1, T_2 = \text{Temperatures in Kelvin}$

Standards and Specifications

Military Standards

- MIL-STD-785: Reliability Program Requirements
- MIL-HDBK-217: Reliability Prediction
- MIL-STD-2173: Reliability-Centered Maintenance

Commercial Standards

- ISO 9001: Quality Management Systems
- IEC 61508: Functional Safety
- SAE JA1011/1012: RCM Implementation

Key Performance Indicators (KPIs)

Reliability Metrics

- Reliability Growth Rate
- Failure Rate Trend
- Mean Time Between Critical Failures (MTBCF)
- System Availability
- First Time Fix Rate (FTFR)

Maintenance Metrics

- Planned Maintenance Percentage (PMP)
- Schedule Compliance
- Backlog Trend
- Mean Time to Repair (MTTR)
- Overall Equipment Effectiveness (OEE)

Statistical Testing and Analysis

Hypothesis Testing

- Null Hypothesis (H_0)
- Alternative Hypothesis (H_1)

- Type I Error (α)
- Type II Error (β)
- Power = 1β

Confidence Intervals

For exponential distribution:

- Lower bound = $\frac{2T}{\chi^2(\alpha/2)}$ Upper bound = $\frac{2T}{\chi^2(1-\alpha/2)}$ where T is total test time

Goodness of Fit Tests

- Kolmogorov-Smirnov Test
- Anderson-Darling Test
- Chi-Square Test

Cost Analysis

Life Cycle Cost (LCC)

Components: 1. Acquisition Cost 2. Operating Cost 3. Maintenance Cost 4. Disposal Cost

Cost of Poor Reliability

Factors: - Warranty Claims - Lost Production - Repair Costs - Customer Dissatisfaction - Brand Damage

Safety and Risk Assessment

Risk Assessment Matrix

Severity Levels: 1. Catastrophic 2. Critical 3. Marginal 4. Negligible

Probability Levels: 1. Frequent 2. Probable 3. Occasional 4. Remote 5. Improbable

Safety Integrity Levels (SIL)

- SIL 1: 10^{-1} to 10^{-2} failures per hour
- SIL 2: 10⁻² to 10⁻³ failures per hour
 SIL 3: 10⁻³ to 10⁻⁴ failures per hour
- SIL 4: 10^{-4} to 10^{-5} failures per hour

Testing and Confidence

Sample Size Determination

- Zero-failure testing: $n=\frac{\ln(1-C)}{\ln(R)}$ where C = confidence level, R = required
- For binomial success/failure: $n = \frac{\ln(1-C)}{\ln(1-p)}$ where p = probability of failure

Confidence Calculations

- Two-sided confidence bounds for exponential MTTF:
- Lower: $\frac{2T}{\chi^2_{1-\alpha/2,2f}}$ Upper: $\frac{2T}{\chi^2_{\alpha/2,2f}}$ One-sided bounds use $\chi^2_{1-\alpha,2f}$

Environmental Stress Screening

ESS vs Burn-in

- ESS: Dynamic stressing to precipitate latent defects
- Burn-in: Static conditions to age products
- Key differences:
 - ESS uses multiple stresses
 - ESS targets manufacturing defects
 - Burn-in targets infant mortality

ESS Program Development

- Stress Selection Criteria:
 - 1. Related to failure mechanisms
 - 2. Not exceeding design limits
 - 3. Measurable and controllable
- Common Stresses:
 - Temperature cycling
 - Vibration
 - Power cycling
 - Combined environments

Human Reliability Analysis

Performance Shaping Factors

- Task complexity
- Time pressure
- Environmental conditions
- Training and experience
- Procedures and documentation

- Supervision and teamwork
- Fatigue and stress

Error Prevention Strategies

- 1. Design for human factors
- 2. Clear procedures and instructions
- 3. Training and certification
- 4. Error-proofing (Poka-Yoke)
- 5. Regular feedback and improvement

Design of Experiments

Taguchi Methods

- Signal-to-noise ratios:
 - Larger is better: $S/N = -10 \log(\frac{1}{n} \sum \frac{1}{v_i^2})$

 - $\begin{array}{l} \text{ Nominal is best: } S/N = 10\log(\frac{\bar{y}^2}{s^2}) \\ \text{ Smaller is better: } S/N = -10\log(\frac{1}{n}\sum y_i^2) \end{array}$

Loss Functions

- Quality loss: $L(y) = k(y-T)^2$ where T = target value, k = cost coefficient

$$-C_n = \frac{USL - LSL}{6}$$

• Process capability indices:
$$- C_p = \frac{USL - LSL}{6\sigma} \\ - C_{pk} = min(\frac{USL - \mu}{3\sigma}, \frac{\mu - LSL}{3\sigma})$$

Statistical Life Measures

B-Life Analysis

- B-life: Time at which X% of units have failed
- For Normal Distribution:
 - $B_x = \mu + z_p \sigma$ where z_p is standard normal value at (x/100) proba-
- For Weibull Distribution:

$$-\ B_x = \eta [-\ln(1-x/100)]^{1/\beta}$$

Population Parameters

• Sample Variance Confidence Interval:

$$-\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}$$
 • Population Mean Confidence Interval:

$$-\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$$

Acceleration Testing

Common Models

- 1. Arrhenius (Temperature):

- 1. Arrhenius (Temperature):

 $AF = exp[\frac{E_a}{k}(\frac{1}{T_1} \frac{1}{T_2})]$ 2. Coffin-Manson (Mechanical Stress):

 $AF = (\frac{\Delta \varepsilon_1}{\Delta \varepsilon_2})^m$ 3. Inverse Power Law (Stress):

 $AF = (\frac{S_1}{S_2})^n$ 4. Eyring (Multiple Stresses):

 $AF = (\frac{T_1}{T_2})exp[\frac{B}{k}(\frac{1}{T_1} \frac{1}{T_2}) + C(V_1 V_2)]$

Reliability Growth Models

AMSAA-Duane Model

- Cumulative Failures: $N(t) = \lambda t^{\beta}$
- Instantaneous Failure Rate: $r(t) = \lambda \beta t^{\beta-1}$
- Cumulative Failure Rate: $r_c(t)=\lambda t^{\beta-1}$ Cumulative MTBF: $M_c(t)=\frac{1}{\lambda}t^{1-\beta}$

Spare Parts Analysis

Poisson Process Spares

- Probability of x spares needed: $P(X=x) = \frac{(\lambda t)^x e^{-\lambda t}}{x!}$ Probability of more than n spares: $P(X>n) = 1 \sum_{x=0}^n \frac{(\lambda t)^x e^{-\lambda t}}{x!}$

System with Spares

- Reliability with n spares: $R_s(t) = e^{-\lambda t} \sum_{i=0}^n \frac{(\lambda t)^i}{i!}$ Mean Time To System Failure: $MTSF = \frac{1}{\lambda} \sum_{i=0}^{n+1} i$

Fail-Safe Design

Principles

- 1. System remains safe when component fails
- 2. Failure detection and indication
- 3. Redundancy in critical functions
- 4. Graceful degradation

Implementation Methods

- Structural redundancy
- Functional redundancy

- Analytical redundancySafe-state defaultMonitoring and diagnostics