

数理统计 - 茆诗松等 - 笔记

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

致谢

感谢 勇敢的 自己

目录

弗一 草		J
1.1	总体与概率	1
	1.1.1 总体与个体	1
	1.1.2 样本	1
1.2	样本数据的整理与表示	1
	1.2.1 经验分布函数	1
	1.2.2 频数频率分布表	2
1.3	统计量及其分布	2
	1.3.1 统计量与抽样分布	2
	1.3.2 样本均值极其抽样分布	2
	1.3.3 样本方差	3
	1.3.4 样本矩及其函数	3
	1.3.5 次序统计量及其分布	4
	1.3.6 样本分位数与分位数	5
	1.3.7 五数概括与箱线图	6
1.4	三大抽样分布	6
	1.4.1 χ^2 分布	7
	1.4.2 F 分布	7
	1.4.3 T 分布	8
1.5	充分统计量	8
	1.5.1 充分性	8
	1.5.2 因子分解定理	8
给一辛	: 参数估计	0
	· 多数 li	9
2.1	2.1.1 点估计及无偏性	9
	2.1.2 有效性	9
2.2	矩估计及相关性	9
2,2	2.2.1 替换原理和矩法估计	9
	2.2.2 概率函数已知时未知参数的矩估计	10
	2.2.3 相合性	
2.3	最大似然估计	
2.3	2.3.1 最大似然估计	
	2.3.2 渐进正态性	
2.4	最小方差无偏估计	
2.4	2.4.1 均方误差	
	2.4.2 一致最小方差无偏估计	
	2.4.3 充分性原则	
	2.4.4 Cramer-Rao 不等式	
2.5	Bayes 估计	
	Sayes 日 1	
۷.0	-VUVI / 3EVI H J / T Z PUU	17

	2.6.1 Bayes 公式的密度函数形式	14
	2.6.2 Bayes 估计	14
	2.6.3 共轭先验分布	15
2.7	区间估计	15
	2.7.1 区间估计的概念	15
	2.7.2 枢轴量法	16
	2.7.3 单个正态总体参数的置信区间	16
	2.7.4 大样本置信区间	
	2.7.5 样本量的确定	17
	2.7.6 两个正态总体下的置信区间	
第三章	假设检验	18
3.1	假设检验的基本思想与概念	18
	3.1.1 假设检验问题	18
	3.1.2 假设检验的基本步骤	18
	3.1.3 检验的 p 值	19
3.2	正态总体参数假设检验	20
	3.2.1 单个正态总体均值的检验	20
	3.2.2 两个正态总体均值差的检验	21
	3.2.3 成对数据检验	22
	3.2.4 正态总体方差的检验	22
3.3	其他分布参数的假设检验	23
3.4	似然比检验与分布拟合检验	23
	3.4.1 似然比检验的思想	23
	3.4.2 分布数据的 χ^2 拟合优度检验	24
	3.4.3 分布的 χ ² 拟合优度检验	
	3.4.4 列联表的独立性检验	25
3.5	正态性检验	25
	3.5.1 正态概率纸	
	3.5.2 W 检验	
	3.5.3 EP 检验	
3.6	非参数检验	
	3.6.1 游程检验	
	3.6.2 符号检验	
		27
	DV In land of the	
第四章	方差分析与回归分析	28
4.1	方差分析	28
	4.1.1 问题的提出	28
	4.1.2 单因子方差分析的统计模型	28
	4.1.3 平方和分解	29
	4.1.4 检验方法	30
	4.1.5 参数估计	31
	4.1.6 重复数不等情形	31
4.2	多重比较	32

	目录
4.2.1 水平均值差的置信区间	32
4.2.2 多重比较问题	
4.2.3 重复数相等的 T 法	. 33
4.2.4 重复数不等场合的 S 法	. 33
4.3 方差齐性检验	. 34
4.3.1 Hartley 检验	
4.3.2 Bartlett 检验	
4.3.3 修正的 Bartlett 检验	
4.4 一元线性回归	
4.4.1 变量间的两类关系	
4.4.2 一元线性回归模型	
4.4.3 回归系数的最小二乘估计	
4.4.4 回归模型的显著性检验	
4.4.5 估计与预测	
4.4.6 曲线回归方程的比较	. 38
t录 A 概率模型	39

第一章 统计量及其分布

1.1 总体与概率

1.1.1 总体与个体

总体:研究对象的全体**个体**:构成总体的每个成员

1.1.2 样本

样本: 从总体中随机的抽取 n 个个体,记其指标值为

$$x_1, \cdots, x_n$$

那么此称为总体的一个样本,n 称为**样本容量**,或简称样本量,样本中的个体称为**样品**。

简单随机抽样原则: 随机性, 独立性

定义 1.1.1 (联合分布函数)

总体 X 具有分布函数 F(x), x_1, \cdots, x_n 为取自该总体的容量为 n 的样本, 那么样本联合分布函数为

$$F(x_1, \cdots, x_n) = \prod_{k=1}^n F(x_k)$$

1.2 样本数据的整理与表示

1.2.1 经验分布函数

定义 1.2.1 (经验分布函数)

对于取自总体分布函数为 F(x) 的样本 x_1, \dots, x_n , 记其对应的次序统计量为 $x_{(1)}, \dots, x_{(n)}$, 定义该样本的经验分布函数为

$$F_n(x) = \begin{cases} 0, & x < x_{(1)} \\ k/n, & x_{(k)} \le x < x_{(k+1)}, k = 1, \dots, n-1 \\ 1, & x \ge x_{(n)} \end{cases}$$

命题 1.2.1 (经验分布函数的性质)

- 1. $F_n(x)$ 非减且右连续。
- 2. $F_n(-\infty) = 0$, $F_n(+\infty) = 1$

定理 1.2.1 (Glivenko 定理)

对于取自总体分布函数为 F(x) 的样本 x_1, \dots, x_n , 记其经验分布函数为 $F_n(x)$, 那么

$$P\left(\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|=0\right)=1$$

1.2.2 频数频率分布表

定义 1.2.2 (频数频率分布表)

- 1. 对样本进行分组:通常为5~20个。
- 2. 确定每组组距:

3. 确定每组组限:

$$(a_0, a_1], \cdots, (a_{n-1}, a_n]$$

4. 统计样本数据落入每个区间的个数——频数

表 1.1: 频数频率分布表

分组区间	频数	频率
$(a_0, a_1]$	f_1	$\frac{f_1}{n}$
		$\sum_{k=1}^{\infty} f_k$
:	:	:
$(a_{n-1}, a_n]$	f_n	$\frac{f_n}{n}$
		$\sum_{k=1}^{\infty} f_k$

1.3 统计量及其分布

1.3.1 统计量与抽样分布

定义 1.3.1 (统计量)

对于取自总体的样本 x_1, \dots, x_n , 若 $T = T(x_1, \dots, x_n)$ 中不含有任何位置参数, 那么称 T 为统计量。

•

定义 1.3.2 (抽样分布)

统计量的分布称为抽样分布。

•

1.3.2 样本均值极其抽样分布

定义 1.3.3 (样本均值)

对于取自总体的样本 x_1, \dots, x_n , 其算术平均值称为样本均值, 记为 \overline{x} , 即

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

特别的, 在分组样本中, 样本均值的近似公式为

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{m} x_k f_k$$

其中m为组数, x_k 为第k组的组中值, f_k 为第k组的频数,同时

$$n = \sum_{k=1}^{n} f_k$$

命题 1.3.1 (样本均值的性质)

1. 样本的所有偏差之和为 0, 即

$$\sum_{k=1}^{n} (x_k - \overline{x}) = 0$$

2. 对于任意 $c \in \mathbb{R}$, 成立

$$\sum_{k=1}^{n} (x_k - \overline{x})^2 \le \sum_{k=1}^{n} (x_k - c)^2$$

当且仅当 $c=\overline{x}$ 时等号成立。

定理 1.3.1

对于取自总体的样本 x_1, \dots, x_n , 记其样本均值为 \overline{x} 。

- 1. 如果总体分布为 $N(\mu, \sigma^2)$, 那么 \overline{x} 满足分布 $N(\mu, \frac{\sigma^2}{n})$ 。
- 2. 对于一般的总体的分布, 记 $E(x) = \mu$, $Var(x) = \sigma^2$, 那么当 $n \to \infty$ 时, \overline{x} 满足近似分布 $N(\mu, \frac{\sigma^2}{n})$,

$$\overline{x} \dot{\sim} N(\mu, \frac{\sigma^2}{n})$$

1.3.3 样本方差

定义 1.3.4 (样本方差)

对于取自总体的样本 x_1, \cdots, x_n , 定义其样本方差为

$$s^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{k} - \overline{x})^{2} = \frac{1}{n-1} \left(\sum_{k=1}^{n} x_{k}^{2} - n\overline{x}^{2} \right)$$

定理 1.3.2

对于具有二阶矩的总体 X, 即 $E(X)=\mu$, ${\rm Var}(X)=\sigma^2<+\infty$, 取自总体的样本 x_1,\cdots,x_n , 记 \overline{x} 和 s^2 分别为样本均值和样本方差, 那么

$$E(\overline{x}) = \mu, \qquad \text{Var}(\overline{x}) = \frac{\sigma^2}{n}$$

 $E(s^2) = \sigma^2$

1.3.4 样本矩及其函数

定义 1.3.5 (样本原点矩)

对于取自总体的样本 x_1, \dots, x_n , 定义其样本 k 阶原点矩为

$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$

定义 1.3.6 (样本中心矩)

对于取自总体的样本 x_1, \dots, x_n , 定义其样本 k 阶中心矩为

$$b_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k$$

定义 1.3.7 (样本偏差)

对于取自总体的样本 x_1, \dots, x_n , 定义其样本偏差为

$$\hat{\beta_s} = \frac{b_3}{b_2^{3/2}}$$

命题 1.3.2 (样本偏差的性质)

样本偏差反应总体分布密度曲线的对称性。

1. $\hat{\beta}_s = 0$: 完全对称

2. $\hat{\beta}_s > 0$: 存在右长尾

3. $\hat{\beta}_s < 0$: 存在左长尾

定义 1.3.8 (样本峰度)

对于取自总体的样本 x_1, \cdots, x_n , 定义其样本峰度为

$$\hat{\beta_k} = \frac{b_3}{b_2^{\frac{3}{2}}} - 3$$

命题 1.3.3 (样本峰度的性质)

样本峰度反应总体分布密度曲线在其峰值附近的陡峭程度。

1. $\hat{\beta}_k > 0$: 比正态分布陡峭, 称为尖顶型

2. $\hat{\beta}_k < 0$: 比正态分布平缓, 称为平顶型

1.3.5 次序统计量及其分布

定义 1.3.9 (次序统计量)

对于取自总体的样本 x_1, \cdots, x_n , 称其次序统计量为

$$x_{(1)},\cdots,x_{(n)}$$

其中 $x_{(1)} \le \cdots \le x_{(n)}$ 。

定理 1.3.3 (单个次序统计量的分布)

对于取自总体的样本 x_1, \cdots, x_n , 如果 X 的密度函数为 p(x), 分布函数为 F(x), 那么第 k 个次序统计量 $x_{(k)}$ 的密度函数为

$$p_k(x) = \frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} (1 - F(x))^{n-k} p(x)$$

推论 1.3.1

 $1. x_{(1)}$ 的密度函数为

$$p_1(x) = np(x)(1 - F(x))^{n-1}$$

分布函数为

$$F_1(x) = 1 - (1 - F(x))^n$$

 $2. x_{(n)}$ 的密度函数为

$$p_n(x) = np(x)(F(x))^{n-1}$$

分布函数为

$$F_n(x) = (F(x))^n$$

定理 1.3.4 (两个次序统计量的联合分布)

对于取自总体的样本 x_1, \dots, x_n , 如果 X 的密度函数为 p(x), 分布函数为 F(x), 那么第 i 个次序统计量 $x_{(i)}$ 和第 j 个次序统计量 $x_{(j)}$ 的联合分布密度函数为

$$p_{ij}(x,y) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} (F(x))^{i-1} (F(x) - F(y))^{j-i-1} (1 - F(y))^{n-j} p(x) p(y)$$

其中 i < j。

C

1.3.6 样本分位数与分位数

定义 1.3.10 (样本 p 分位数)

对于取自总体的样本 x_1, \dots, x_n , 定义其样本 p 分位数为

$$m_p = \begin{cases} x_{([np+1])}, & np \notin \mathbb{Z} \\ \frac{1}{2} \left(x_{(np)} + x_{(np+1)} \right), & np \in \mathbb{Z} \end{cases}$$

其中 $p \in (0,1)$ 。

1

定义 **1.3.11** (α 分位数)

对于随机变量 X, 称 x_{α} 为其 α 分位数, 如果

$$P(X \le x_{\alpha}) = \alpha$$

•

定理 1.3.5

如果总体密度函数为 p(x), x_p 为其 p 分位数, p(x) 在 x_p 处连续且 $p(x_p)>0$, 那么当 $n\to +\infty$ 时,样本 p 分位数 m_p 的渐进分布为

$$m_p \dot{\sim} N\left(x_p, \frac{p(1-p)}{np^2(x_p)}\right)$$

C

1.3.7 五数概括与箱线图

定义 1.3.12 (五数概括)

$$x_{\min}$$
, $Q_1 = m_{0.25}$, $m_{0.5}$, $Q_3 = m_{0.75}$, x_{\max}

定义 1.3.13 (箱线图)

- 1. 画一个箱子,其两侧恰为第一4分位数和第三4分位数,在中位数位置上画一条竖线,其在箱子内,这个箱子包含了样本中50%的数据。
- 2. 在箱子左右两侧各引出一条水平线,分别至最小值和最大值为止。每条线段中包含了样本 25% 的数据。

1.4 三大抽样分布

表 1.2: 三大抽样分布

分布名称	表示	统计量的构造	抽样分布密度函数	期望	方差	特征函数
正态分布	$N(\mu, \sigma^2)$		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$	μ	σ^2	$e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$
Γ 分布	$\Gamma(\alpha,\lambda)$		$p(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x > 0$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(1 - \frac{it}{\lambda}\right)^{-\alpha}$
χ^2 分布	$\chi^2(n)$	$\chi^{2}(n) = \sum_{k=1}^{n} (N(0,1))^{2}$	$p(x) = \frac{1}{\Gamma(\frac{n}{2})2^{\frac{n}{2}}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, x > 0$	n	2n	$(1-2it)^{-\frac{n}{2}}$
F 分布	F(m,n)	$F(m,n) = \frac{\chi^2(m)/m}{\chi^2(n)/n}$	$p(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, x > 0$	$\frac{n}{n-2}$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$	
t 分布	t(n)	$t(n) = \frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$	$p(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, x \in \mathbb{R}$	0	$\frac{n}{n-2}$	

定义 1.4.1 (Γ 函数)

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

命题 1.4.1 (分布间的联系)

1. 若 $X \sim N(0,1)$, 那么

$$X^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$

因此

$$\chi^2(n) = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

2. 如果 $X \sim N(\mu, \sigma^2)$, 那么

$$aX + b \sim N(a\mu + b, a^2\sigma^2)$$

3. 如果独立分布 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$, 那么

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

4. 如果 $X \sim \Gamma(\alpha, \lambda)$, 那么

$$aX \sim \Gamma(\alpha, \frac{\lambda}{a})$$

5. 如果独立分布 $X \sim \Gamma(\alpha_1, \lambda)$ 和 $Y \sim \Gamma(\alpha_2, \lambda)$, 那么

$$X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$$

1.4.1 χ^2 分布

定义 **1.4.2** (χ^2 分布)

对于独立同分布于标准正态分布的 N(0,1) 的随机变量 X_1,\cdots,X_n ,称随机变量 $X=X_1^2+\cdots+X_n^2$ 的分布为自由度为 n 的 χ^2 分布,记作 $X\sim\chi^2(n)$,其密度函数为

$$p(x) = \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, \qquad x > 0$$

命题 **1.4.2** (χ^2 分布的性质)

对于来自正态总体 $N(\mu, \sigma^2)$ 的样本 x_1, \dots, x_n , 记其样本均值和样本方差分别为 \overline{x} 和 s^2 , 那么

 $1. \overline{x}$ 和 s^2 相互独立。

2.

$$\overline{x} \sim N(\mu, \frac{\sigma^2}{n})$$

3.

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) = \Gamma\left(\frac{n-1}{2}, \frac{1}{2}\right)$$

即

$$s^2 \sim \Gamma\left(\frac{n-1}{2}, \frac{n-1}{2\sigma^2}\right)$$

1.4.2 F 分布

定义 1.4.3 (F 分布)

对于独立的随机变量 $X\sim\chi^2(m)$ 和 $Y\sim\chi^2(n)$,称随机变量 $F=\frac{X/m}{Y/n}$ 的分布为自由度为 m 和 n 的 F 分布,记作 $F\sim F(m,n)$,其密度函数为

$$p(x) = \frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, x > 0$$

推论 1.4.1

对于独立的分别来自 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 的样本 x_1,\cdots,x_m 和 y_1,\cdots,y_m ,那么记其样本方差分别为 s_x^2 和 s_y^2 ,那么

$$\frac{s_x^2/\sigma_1^2}{s_y^2/\sigma_2^2} \sim F(m-1, n-1)$$

C

1.4.3 T 分布

定义 1.4.4 (T 分布)

对于独立的随机变量 $X\sim N(0,1)$ 和 $Y\sim \chi^2(n)$,称随机变量 $t=\frac{X}{\sqrt{\frac{Y}{n}}}$ 的分布为自由度为 n 的 t 分布,记作 $t\sim t(n)$,其密度函数为

$$p(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, x \in \mathbb{R}$$

推论 1.4.2

对于来自正态分布 $N(\mu, \sigma^2)$ 的样本 x_1, \cdots, x_n , 记其样本均值和样本方差分别为 \overline{x} 和 s^2 , 那么

$$\frac{\sqrt{n}(\overline{x}-\mu)}{s} \sim T(n-1)$$

推论 1.4.3

对于独立的分别来自 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$ 的样本 x_1,\cdots,x_m 和 y_1,\cdots,y_m ,那么记其样本方差分别为 s_x^2 和 s_y^2 ,且

$$s_w^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}$$

那么

$$\frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim T(m + n - 2)$$

<u>(</u>

1.5 充分统计量

1.5.1 充分性

定义 1.5.1 (充分统计量)

对于来自总体分布函数为 $F(x;\theta)$ 的样本 x_1, \dots, x_n ,称统计量 $T = T(x_1, \dots, x_n)$ 为 θ 的充分统计量,如果给定 T 的取值后,样本 x_1, \dots, x_n 的条件分布与 θ 无关。

1.5.2 因子分解定理

定理 1.5.1 (Fischer-Neyman 因子分解定理)

对于来自总体概率函数为 $f(x;\theta)$ 的样本 x_1, \dots, x_n , 那么 $T = T(x_1, \dots, x_n)$ 为充分统计量的充分必要条件为,存在函数 $g(t,\theta)$ 和 $h(x_1, \dots, x_n)$,使得对于任意的 θ 和 x_1, \dots, x_n ,成立

$$f(x_1, \dots, x_n; \theta) = g(T(x_1, \dots, x_n); \theta)h(x_1, \dots, x_n)$$

定理 1.5.2

对于充分统计量 T, 如果存在函数 h, 使得 T = h(S), 那么统计量 S 也为充分统计量。

 \sim

第二章 参数估计

2.1 点估计的概念

2.1.1 点估计及无偏性

定义 2.1.1 (点估计)

对于来自总体的样本 x_1, \dots, x_n , 用于估计未知参数 θ 的统计量 $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ 称为 θ 的点估计。

4

定义 2.1.2 (无偏估计)

对于 θ 的点估计 $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$, θ 的参数空间为 Θ , $\hat{\theta}$ 为 θ 的无偏估计, 如果对于任意 $\theta \in \Theta$, 成立

定义 2.1.3 (可估参数)

称参数 θ 为可估参数,如果存在无偏估计 $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ 。

2.1.2 有效性

定义 2.1.4 (有效性)

对于 θ 的两个无偏估计 $\hat{\theta}_1$ 和 $\hat{\theta}_2$,称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效,如果对于任意 $\theta \in \Theta$,成立

$$Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$$

且存在 $\theta_0 \in \Theta$, 使得成立

 $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$

*

2.2 矩估计及相关性

2.2.1 替换原理和矩法估计

定义 2.2.1 (替换原理)

- 1. 用样本矩替换总体矩。
- 2. 用样本矩的函数替换总体矩的函数。

根据替换原理, 在总体分布形式未知场合对参数作出估计:

- 1. 用样本均值 \overline{x} 估计总体均值 E(X)。
- 2. 用样本方差 s^2 估计总体方差 Var(X)。
- 3. 用事件 A 出现的频率估计事件 A 发生的概率。
- 4. 用样本 p 分位数估计总体的 p 分位数。

定理 2.2.1 (Khinchin 大数定律)

对于独立同分布的随机变量序列 X_1, \dots, X_n , 如果对于任意 $i=1, \dots, n$, 总体 X 的 k 阶原点矩 $E(X^k)$ 存在,那么对于任意 $\varepsilon > 0$,成立

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i^k - E(X^k) \right| \ge \varepsilon \right\} = 0$$

2.2.2 概率函数已知时未知参数的矩估计

定义 2.2.2 (矩估计)

对于具有概率函数 $p(x;\theta_1,\cdots,\theta_k)$ 的总体,以及样本 x_1,\cdots,x_n ,其中 $(\theta_1,\cdots,\theta_k)\in\Theta$ 是未知参数或参数向量,如果总体的 i 阶原点矩 μ_i 存在,而且 $\theta_i=\theta_i(\mu_1,\cdots,\mu_k)$,其中 $1\leq i\leq k$,那么 θ_i 的矩估计为

$$\hat{\theta}_i = \theta_i(a_1, \cdots, a_k), \quad i = 1, \cdots, k$$

其中 a_i 为样本i阶原点矩

$$a_i = \frac{1}{n} \sum_{j=1}^{n} x_j^i, \quad i = 1, \dots, k$$

进一步,对于 $\theta_1, \dots, \theta_k$ 的函数 $\eta = g(\theta_1, \dots, \theta_k)$ 的矩估计为

$$\hat{\eta} = g(\hat{\theta}_1, \cdots, \hat{\theta}_k)$$

2.2.3 相合性

定义 2.2.3 (相合性)

对于未知参数 θ ,以及 θ 的一个估计量 $\hat{\theta}_n = \hat{\theta}_n(x_1, \cdots, x_n)$,称 $\hat{\theta}_n$ 为参数 θ 的相合估计,如果对于任意 $\varepsilon > 0$,成立

$$\lim_{n \to \infty} P\left(\left| \hat{\theta}_n - \theta \right| \ge \varepsilon \right) = 0$$

定理 2.2.2 (相合估计的充分条件)

对于 θ 的一个估计量 $\hat{\theta}_n = \hat{\theta}_n(x_1, \dots, x_n)$,如果

$$\lim_{n \to \infty} E(\hat{\theta}_n) = \theta, \qquad \lim_{n \to \infty} \text{Var}(\hat{\theta}_n) = 0$$

那么 $\hat{\theta}_n$ 为参数 θ 的相合估计。

定理 2.2.3 (相合估计在连续函数下的像为相合估计)

如果 $\hat{\theta}_{n_1}, \dots, \hat{\theta}_{n_k}$ 分别是 $\theta_1, \dots, \theta_k$ 的相合估计, $\eta = g(\theta_1, \dots, \theta_k)$ 是连续函数,那么 $\hat{\eta} = g(\hat{\theta}_{n_1}, \dots, \hat{\theta}_{n_k})$ 是 η 的相合估计。

2.3 最大似然估计

2.3.1 最大似然估计

定义 2.3.1 (似然函数)

对于概率函数为 $p(x;\theta)$ 的总体,其中 $\theta \in \Theta$ 为一个或多个未知参数组成的参数向量, Θ 为参数空间, x_1, \dots, x_n 是来自该总体的样本,称样本的联合概率函数

$$L(\theta) = L(\theta; x_1, \dots, x_n) = \prod_{k=1}^{n} p(x_k; \theta)$$

为样本的似然函数。

定义 2.3.2 (最大似然估计 MLE)

对于概率函数为 $p(x;\theta)$ 的总体,其中 $\theta \in \Theta$ 为一个或多个未知参数组成的参数向量, Θ 为参数空间, x_1,\cdots,x_n 是来自该总体的样本,统计量 $\hat{\theta}=\hat{\theta}(x_1,\cdots,x_n)$ 为 θ 的最大似然估计,如果对于任意 $\theta \in \Theta$,成立

$$L(\hat{\theta}) \ge L(\theta)$$

定理 2.3.1 (最大似然估计的不变性)

如果 $\hat{\theta}$ 为 θ 的最大似然估计,那么对于任意函数g, $g(\hat{\theta})$ 是 $g(\theta)$ 的最大似然估计。

定理 2.3.2 (正态分布参数的最大似然估计)

对于来自正态分布 $N(\mu, \sigma^2)$ 的样本 x_1, \dots, x_n , 记样本均值为 \overline{x} , 样本方差为 s^2 , 那么 μ 和 σ^2 的最大似 然估计分别为

$$\hat{\mu} = \overline{x}, \qquad \hat{\sigma}^2 = \frac{n-1}{n}s^2$$

2.3.2 渐进正态性

定义 2.3.3 (渐进正态分布)

参数 θ 的相合估计 $\hat{\theta}_n$ 称为渐进正态的,如果存在趋于 0 的非负常数序列 $\sigma_n(\theta)$,使得成立 $\frac{\hat{\theta}_n-\theta}{\sigma_n(\theta)}$ 依分布收敛于标准正态分布。此时也称 $\hat{\theta}_n$ 服从渐进正态分布 $N(\theta,\sigma_n^2(\theta))$,记为 $\hat{\theta}_n \sim AN(\theta,\sigma_n^2(\theta))$ 。 $\sigma_n^2(\theta)$ 称为 $\hat{\theta}_n$ 的渐近方差。

定理 2.3.3

对于密度函数为 $p(x;\theta)$ 的总体 X, 其中 $\theta \in \Theta$, 如果

- 1. 对于任意 x, 以及任意 $\theta \in \Theta$, 偏导数 $\frac{\partial \ln p}{\partial \theta}$, $\frac{\partial^2 \ln p}{\partial \theta^2}$ 和 $\frac{\partial^3 \ln p}{\partial \theta^3}$ 都存在。
- 2. 对于任意 $\theta \in \Theta$, 成立

$$\left| \frac{\partial p}{\partial \theta} \right| < F_1(x), \qquad \left| \frac{\partial^2 p}{\partial \theta^2} \right| < F_2(x), \qquad \left| \frac{\partial^3 p}{\partial \theta^3} \right| < F_3(x)$$

其中函数 $F_1(x), F_2(x), F_3(x)$ 满足

$$\int_{-\infty}^{\infty} F_1(x) dx < \infty, \qquad \int_{-\infty}^{\infty} F_2(x) dx < \infty$$
$$\sup_{\theta \in \Theta} \int_{-\infty}^{\infty} F_3(x) p(x; \theta) dx < \infty$$

3. 对于任意 $\theta \in \Theta$, 成立

$$0 < I(\theta) = \int_{-\infty}^{\infty} \left(\frac{\partial \ln p}{\partial \theta} \right)^2 p(x; \theta) dx < \infty$$

那么对于来自该总体的样本 x_1, \dots, x_n , 存在未知参数 θ 的最大似然估计 $\hat{\theta}_n = \hat{\theta}_n(x_1, \dots, x_n)$, 且 $\hat{\theta}_n$ 具有相合性和渐近正态性,同时

$$\hat{\theta}_n \sim AN\left(\theta, \frac{1}{nI(\theta)}\right)$$

 \odot

2.4 最小方差无偏估计

2.4.1 均方误差

定义 2.4.1 (均方误差)

对于 θ 的点估计 $\hat{\theta} = \hat{\theta}(x_1, \cdots, x_n)$, 称 $E(\hat{\theta} - \theta)^2$ 为 $\hat{\theta}$ 关于 θ 的均方误差,记为 $MSE(\hat{\theta}, \theta)$,或 $M_{\theta}(\hat{\theta})$ 。

命题 2.4.1 (均方误差的性质)

1. - 对于 θ 的任意估计 $\hat{\theta}$ 而言,成立

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

2. 对于 θ 的无偏估计 $\hat{\theta}$ 而言,成立

$$MSE(\hat{\theta}, \theta) = Var(\hat{\theta})$$

定义 2.4.2 (一致最小均方误差估计)

对于样本 x_1, \dots, x_n ,以及待估参数 θ 的一个估计类,称 $\hat{\theta}(x_1, \dots, x_n)$ 是该估计类中 θ 中的一致最小均方误差估计,如果对于该估计类中另外任意一个 θ 的估计 $\tilde{\theta}$,在参数空间 Θ 上均成立

$$MSE_{\theta}(\hat{\theta}) \leq MSE_{\theta}(\tilde{\theta})$$

2.4.2 一致最小方差无偏估计

定义 2.4.3 (一致最小方差无偏估计 UMVUE)

对于 θ 的一个无偏估计 $\hat{\theta}$, 称 $\hat{\theta}$ 是 θ 的一致最小方差无偏估计, 如果对于 θ 的任意无偏估计 $\tilde{\theta}$, 在参数空间 Θ 上均成立

$$\operatorname{Var}_{\theta}(\hat{\theta}) \leq \operatorname{Var}_{\theta}(\tilde{\theta})$$

定理 2.4.1

对于来自某总体的样本 $X=(x_1,\cdots,x_n)$,如果 $\hat{\theta}=\hat{\theta}(X)$ 是 θ 的一个无偏估计, $\mathrm{Var}(\hat{\theta})<\infty$,那么 $\hat{\theta}$ 是 θ 的一致最小方差无偏估计的充分必要条件是,对于任意满足 $E(\varphi(X))=0$ 和 $\mathrm{Var}(\varphi(X))<\infty$ 的 $\varphi(X)$,以及任意 $\theta\in\Theta$,成立

$$Cov_{\theta}(\hat{\theta}, \varphi) = 0$$

即

$$E(\hat{\theta}\varphi) = 0$$

\odot

2.4.3 充分性原则

定理 2.4.2

对于来自总体概率密度函数为 $p(x;\theta)$ 的样本 x_1,\dots,x_n , 如果 $T=T(x_1,\dots,x_n)$ 是 θ 的充分统计量,那么对于 θ 的任意无偏估计 $\hat{\theta}=\hat{\theta}(x_1,\dots,x_n)$,成立 $\tilde{\theta}=E(\hat{\theta}|T)$ 是 θ 的无偏估计,且

$$Var(\tilde{\theta}) \le Var(\hat{\theta})$$

2.4.4 Cramer-Rao 不等式

定义 2.4.4 (Fisher 信息量)

对于满足如下条件的概率函数为 $p(x;\theta),\theta\in\Theta$ 的总体

- 1. 参数空间 Θ 是直线上的一个开区间。
- 2. 支撑 $S = \{x : p(x; \theta) > 0\}$ 与 θ 无关。
- 3. 导数 $\frac{\partial}{\partial \theta}p(x;\theta)$ 对任意 $\theta \in \Theta$ 均存在。
- 4. 对于 $p(x;\theta)$, 积分与微分运算可交换次序, 即

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} p(x; \theta) dx = \frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} p(x; \theta) dx = 0$$

5. 期望 $E\left(\frac{\partial}{\partial \theta} \ln p(x;\theta)\right)^2$ 存在。

称

$$I(\theta) = E\left(\frac{\partial}{\partial \theta} \ln p(x; \theta)\right)^2$$

为总体分布的 Fisher 信息量。如果二阶导数 $\frac{\partial^2}{\partial \theta^2} p(x;\theta)$ 对于任意 $\theta \in \Theta$ 存在,那么

$$I(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2} \ln p(x;\theta)\right)$$

定理 2.4.3 (Cramer-Rao 不等式)

对于满足 Fisher 信息量定义的总体分布 $p(x;\theta)$, $X=(x_1,\cdots,x_n)$ 是来自该总体的样本,如果 T=T(X) 是 $g(\theta)$ 的任意无偏估计,即

$$g(\theta) = \int_{\mathbb{D}_n} T(X) L(X; \theta) dX$$

其中 $L(x_1, \dots, x_n; \theta)$ 为 $X = (x_1, \dots, x_n)$ 的总体概率密度函数

$$L(X;\theta) = \prod_{k=1}^{n} p(x_k;\theta)$$

并且 $g'(\theta) = \frac{\partial g(\theta)}{\partial \theta}$ 存在,同时对于任意 $\theta \in \Theta$, $g(\theta)$ 的微商可在积分号下进行,即

$$g'(\theta) = \int_{\mathbb{R}^n} T(X) \frac{\partial}{\partial \theta} L(X; \theta) dX$$

(对于离散总体,将上述积分号改为求和符号)那么

$$Var(T) \ge \frac{(g'(\theta))^2}{nI(\theta)}$$

其中 $I(\theta)$ 为总体分布的 Fisher 信息量, $\frac{(g'(\theta))^2}{nI(\theta)}$ 称为 $g(\theta)$ 的无偏估计的方差的 C-R 下界。当等号成立时,称 T=T(X) 为 $g(\theta)$ 的有效估计,有效估计一定是一致最小方差无偏估计。

2.5 Bayes 估计

2.6 统计判断的基础

Bayes 学派基本观点: 任意未知量都可看作随机变量,可用一个概率分布去描述,这个分布称为先验分布。

2.6.1 Bayes 公式的密度函数形式

定理 2.6.1 (Bayes 公式的密度函数形式)

- 1. $p(x \mid \theta)$ 表示随机变量 θ 取给定值时总体的条件概率函数。
- 2. 根据参数 θ 的先验信息确定先验分布 $\pi(\theta)$ 。
- 3. 样本 $X=(x_1,\cdots,x_n)$ 的产生分两步进行,首先设想从先验分布 $\pi(\theta)$ 产生一个个体 θ_0 ,其次从 $p(X\mid\theta)$ 中产生一组样本,此时样本 X 的联合条件概率函数为

$$P(X \mid \theta_0) = \prod_{k=1}^n p(x_k \mid \theta)$$

4. 由于 θ_0 是设想出来的, 因此需要考虑 $\pi(\theta)$, 那么样本 X 和参数 θ 的联合分布为

$$h(X, \theta) = P(X \mid \theta)\pi(\theta)$$

5. 将 $h(X,\theta)$ 分解为

$$h(X, \theta) = \pi(\theta \mid X)m(X)$$

其中m(X)为X的边际概率函数

$$m(X) = \int_{\Omega} h(X, \theta) d\theta = \int_{\Omega} P(X \mid \theta) \pi(\theta) d\theta$$

进而θ的后验分布为

$$\pi(\theta \mid X) = \frac{h(X, \theta)}{m(X)} = \frac{P(X \mid \theta)\pi(\theta)}{\int_{\Theta} P(X \mid \theta)\pi(\theta)d\theta}$$

2.6.2 Bayes 估计

定义 2.6.1 (Bayes 估计)

由后验分布 $\pi(\theta \mid X)$ 估计 θ 有三种常用的方法:

- 1. 最大后验估计: 后验分布的密度函数的最大值点。
- 2. 后验中位数估计: 后验分布的中位数。

3. 后验期望估计:后验分布的均值。 称后验期望估计为 Bayes 估计,记为 $\hat{\theta}$ 。

2.6.3 共轭先验分布

定义 2.6.2 (共轭先验分布)

对于总体分布 $p(x;\theta)$ 中的参数 θ , $\pi(\theta)$ 是其先验分布, 如果对于任意来自该总体的样本观测值得到的后验分布 $\pi(\theta \mid X)$ 与 $\pi(\theta)$ 属于同一个分布族, 那么称该分布族为 θ 的共轭先验分布 (族)。

2.7 区间估计

2.7.1 区间估计的概念

定义 2.7.1 (置信区间)

对于总体的参数 $\theta \in \Theta$,以及来自该总体的样本 x_1, \cdots, x_n , 给定 $\alpha \in (0,1)$,如果两个统计量 $\hat{\theta}_L = \hat{\theta}_L(x_1, \cdots, x_n)$ 和 $\hat{\theta}_U = \hat{\theta}_U(x_1, \cdots, x_n)$,满足对于任意 $\theta \in \Theta$,成立

$$P_{\theta}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) \ge 1 - \alpha$$

那么称随机区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 为 θ 的置信水平为 $1-\alpha$ 的置信区间, 或简称 $[\hat{\theta}_L, \hat{\theta}_U]$ 为 θ 的 $1-\alpha$ 置信区间。其中 $\hat{\theta}_L$ 和 $\hat{\theta}_U$ 分别称为 θ 的(双侧)置信下限和置信上限。

定义 2.7.2 (同等置信区间)

对于总体的参数 $\theta \in \Theta$,以及来自该总体的样本 x_1, \dots, x_n ,给定 $\alpha \in (0,1)$,如果两个统计量 $\hat{\theta}_L = \hat{\theta}_L(x_1, \dots, x_n)$ 和 $\hat{\theta}_U = \hat{\theta}_U(x_1, \dots, x_n)$,满足对于任意 $\theta \in \Theta$,成立

$$P_{\theta}(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha$$

那么称随机区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 为 θ 的置信水平为 $1-\alpha$ 的同等置信区间。

定义 2.7.3 (单侧置信下限)

对于总体的参数 $\theta \in \Theta$,以及来自该总体的样本 x_1, \dots, x_n ,给定 $\alpha \in (0,1)$,如果统计量 $\hat{\theta}_L = \hat{\theta}_L(x_1, \dots, x_n)$ 满足对于任意 $\theta \in \Theta$,成立

$$P_{\theta}(\hat{\theta}_L \le \theta) \ge 1 - \alpha$$

那么称 $\hat{\theta}_L$ 为 θ 的(单侧)置信下限。

定义 2.7.4 (单侧置信上限)

对于总体的参数 $\theta \in \Theta$,以及来自该总体的样本 x_1, \cdots, x_n ,给定 $\alpha \in (0,1)$,如果统计量 $\hat{\theta}_U = \hat{\theta}_U(x_1, \cdots, x_n)$ 满足对于任意 $\theta \in \Theta$,成立

$$P_{\theta}(\hat{\theta}_U \ge \theta) \ge 1 - \alpha$$

那么称 $\hat{\theta}_U$ 为 θ 的(单侧) 置信上限。

2.7.2 枢轴量法

定理 2.7.1 (构造枢轴量的方法)

- 1. 构造函数 $G = G(x_1, \dots, x_n, \theta)$,使得 G 的分布不依赖于 θ ,此函数 G 称为枢轴量。
- 2. 选择常数 a,b, 使得对于给定 $\alpha \in (0,1)$, 使得成立

$$P(a \le G \le b) = 1 - \alpha$$

3. 将不等式 $a \leq G \leq b$ 等价变形为 $\hat{\theta}_L \leq \theta \leq \hat{\theta}_U$, 即

$$P_{\theta}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

那么区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 为 θ 的置信水平为 $1-\alpha$ 同等置信区间。

4. 其中常数 a,b 的选择应该使得区间 $[\hat{\theta}_L,\hat{\theta}_U]$ 的长度最短, 否则使得成立

$$P(G < a) = P(G > b) = \frac{\alpha}{2}$$

称这样得到的置信区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 为等尾置信区间。

2.7.3 单个正态总体参数的置信区间

表 2.1: 单个正态总体参数的置信区间

目标	条件	枢轴量	分布	置信区间		
μ	σ已知	$\frac{\sqrt{n}(\overline{x}-\mu)}{\sigma}$	N(0,1)	$\left[\overline{x} - \frac{\sigma}{\sqrt{n}} n_{1-\frac{\alpha}{2}}, \overline{x} + \frac{\sigma}{\sqrt{n}} n_{1-\frac{\alpha}{2}} \right]$		
μ	σ未知	$\frac{\sqrt{n}(\overline{x}-\mu)}{s}$	T(n-1)	$\left[\overline{x} - \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}}, \overline{x} + \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}} \right]$		
σ^2	μ 未知	$\frac{(n-1)s^2}{\sigma^2}$	$\chi^2(n-1)$	$\left[\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}, \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}\right]$		

2.7.4 大样本置信区间

在有些场合,寻找枢轴量及其分布比较困难。在样本量充分大时,可用渐进分布来构造近似的置信区间。以下为二点分布关于比例 p 的置信区间。

对于来自二点分布 b(1,p) 的样本 x_1, \dots, x_n , 由中心极限定理

$$N = \frac{\sqrt{n}(\overline{x} - p)}{\sqrt{p(1-p)}} \dot{\sim} N(0, 1)$$

因此置信水平为 $1-\alpha$ 的同等置信区间为

$$\left[\frac{1}{1+\frac{n_{1-\frac{\alpha}{2}}^{2}}{n}}\left(\overline{x}+\frac{n_{1-\frac{\alpha}{2}}^{2}}{2n}-\sqrt{\frac{\overline{x}(1-\overline{x})}{n}n_{1-\frac{\alpha}{2}}^{2}+\left(\frac{n_{1-\frac{\alpha}{2}}^{2}}{2n}\right)^{2}}\right), \qquad \frac{1}{1+\frac{n_{1-\frac{\alpha}{2}}^{2}}{n}}\left(\overline{x}+\frac{n_{1-\frac{\alpha}{2}}^{2}}{2n}+\sqrt{\frac{\overline{x}(1-\overline{x})}{n}n_{1-\frac{\alpha}{2}}^{2}+\left(\frac{n_{1-\frac{\alpha}{2}}^{2}}{2n}\right)^{2}}\right)\right]$$

其中 $n_{1-\frac{\alpha}{2}}$ 为 N(0,1) 的 $1-\frac{\alpha}{2}$ 分位数。由于 n 充分大,略去 $\frac{n_{1-\frac{\alpha}{2}}^2}{n}$ 项,因此置信水平为 $1-\alpha$ 的同等置信区间 近似为

$$\left[\overline{x} - n_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \quad \overline{x} + n_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right]$$

2.7.5 样本量的确定

定义 2.7.5 (保证概率)

称置信水平 $1-\alpha$ 为保证概率。

*

定义 2.7.6 (绝对误差)

称置信区间的半径 (即长度的一半) 为绝对误差。

2.7.6 两个正态总体下的置信区间

 x_1,\cdots,x_m 是取自 $N(\mu_1,\sigma_1^2)$ 的样本, y_1,\cdots,y_n 是取自 $N(\mu_2,\sigma_2^2)$ 的样本,两个样本相互独立,记 \overline{x} 和 \overline{y} 分别记为两者的样本均值, s_x^2 和 s_y^2 分别记为两者的样本方差。

表 2.2: 两个正态总体下的置信区间

目标	条件	枢轴量	分布	置信区间
$\mu_1 - \mu_2$	σ_1^2 和 σ_2^2 已知	$\frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$	N(0,1)	$\left[(\overline{x} - \overline{y}) - n_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}, (\overline{x} - \overline{y}) + n_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} \right]$
$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2$ 未知	$\frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{s_w\sqrt{\frac{1}{m}+\frac{1}{n}}}$	T(m+n-2)	$\left[(\overline{x} - \overline{y}) - s_w t_{1 - \frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{1}{n}}, (\overline{x} - \overline{y}) + s_w t_{1 - \frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{1}{n}} \right]$
$\mu_1 - \mu_2$	$\frac{\sigma_2^2}{\sigma_1^2} = c \Box \mathfrak{A}$	$\frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{s_{w_c} \sqrt{\frac{1}{m} + \frac{c}{n}}}$	T(m+n-2)	$\left[\left[(\overline{x} - \overline{y}) - s_{w_c} t_{1 - \frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{c}{n}}, (\overline{x} - \overline{y}) + s_{w_c} t_{1 - \frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{c}{n}} \right] \right]$
$\mu_1 - \mu_2$	n ₁ 和 n ₂ 充分大	$\frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}}$	N(0,1)	$\left[(\overline{x} - \overline{y}) - n_{1 - \frac{\alpha}{2}} \sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}, (\overline{x} - \overline{y}) + n_{1 - \frac{\alpha}{2}} \sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}} \right]$
$\mu_1 - \mu_2$	一般情况	$\frac{(\overline{x} - \overline{y}) - (\mu_1 - \mu_2)}{s_0}$	T(l)	$\left[(\overline{x} - \overline{y}) - s_0 t_{1 - \frac{\alpha}{2}}, (\overline{x} - \overline{y}) + s_0 t_{1 - \frac{\alpha}{2}} \right]$
σ_2^2/σ_1^2	一般情况	$\frac{s_x^2/\sigma_1^2}{s_y^2/\sigma_2^2}$	F(m-1, n-1)	$\begin{bmatrix} \frac{s_x^2}{s_y^2} \frac{1}{f_{1-\frac{\alpha}{2}}}, & \frac{s_x^2}{s_y^2} \frac{1}{f_{\frac{\alpha}{2}}} \end{bmatrix}$

其中

$$\begin{split} s_w^2 &= \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2} \\ s_{wc}^2 &= \frac{(m-1)s_x^2 + (n-1)\frac{s_y^2}{c}}{m+n-2} \\ s_0^2 &= \frac{s_x^2}{m} + \frac{s_y^2}{n} \\ l &= \left[\frac{s_0^4}{\frac{s_x^4}{m^2(m-1)} + \frac{s_y^4}{n^2(n-1)}} \right] \end{split}$$

第三章 假设检验

3.1 假设检验的基本思想与概念

3.1.1 假设检验问题

基本思想:如果试验结果与假设 H 发生矛盾,那么拒绝原假设 H,否则接受原假设 H。假设检验问题:

- 1. 假设:两个非空不交参数集合。
- 2. 检验: 通过样本对一个假设作出"对"或"不对"的具体判断规则。
- 3. 参数假设检验问题: 假设可用一个参数的集合表示的检验问题。

3.1.2 假设检验的基本步骤

一、建立假设

对于来自参数分布族 $\{F(x,\theta):\theta\in\Theta\}$ 的样本 x_1,\cdots,x_n ,其中 Θ 为参数空间,如果非空集合 $\Theta_0\subset\Theta$,那么命题 $H_0:\theta\in\Theta_0$ 称为**原假设或零假设**,命题 $H_a:\theta\in\Theta\setminus\Theta_0$ 称为**对立假设或备择假设**,那么 H_0 对 H_a 的假设检验问题记为

$$H_0: \theta \in \Theta_0$$
 vs $H_a: \theta \in \Theta \setminus \Theta_0$

如果 Θ_0 仅含有一个点,那么称 H_0 为简单原假设,否则称为复杂原假设或复合原假设。当 H_0 为简单假设时,其形式可写为 $H_0: \theta = \theta_0$,此时备择假设通常有如下三种可能:

$$H_1: \theta \neq \theta_0, \qquad H_2: \theta < \theta_0, \qquad H_3: \theta > \theta_0$$

称 H_0 vs H_1 为双侧假设或双边假设, H_0 vs H_2 以及 H_0 vs H_3 为单侧假设或单边假设。

在假设检验中,通常将不宜轻易否定的假设作为原假设。

二、选择检验统计量,给出拒绝域形式

当有了具体的样本后,将样本空间划分为两个互不相交的部分 W 和 \overline{W} ,当样本属于 W 时,拒绝 H_0 ,否则接受 H_0 。称 W 为该检验的**拒绝域**, \overline{W} 为该检验的**接受域**。事实上,在拒绝域和接受域外,还有**保留域**,但通常将保留域合并于接受域内。

选择分布已知的**检验统计量** T(X),确定拒绝域 W 的形式。

三、选择显著性水平

当 $\theta \in \Theta_0$ 时,样本由于随机性却落入了拒绝域 W,于是采取了拒绝 H_0 的错误决策,称之为**第一类错误**或**拒真错误**,记第一类错误概率为

$$\alpha(\theta) = P\{X \in W \mid H_0\}, \quad \theta \in \Theta_0$$

当 $\theta \in \Theta \setminus \Theta_0$ 时,样本由于随机性却落入了接受域 \overline{W} ,于是采取了接受 H_0 的错误决策,称之为**第二类错** 误或取伪错误,记第二类错误概率为

$$\beta(\theta) = P\{X \in \overline{W} \mid H_a\}, \quad \theta \in \Theta \setminus \Theta_0$$

定义 3.1.1 (势函数)

对于检验问题

$$H_0: \theta \in \Theta_0$$
 vs $H_a: \theta \in \Theta \setminus \Theta_0$

其拒绝域为 W, 那么定义势函数为

$$\rho(\theta) = P_{\theta}(X \in W), \quad \theta \in \Theta$$

即

$$\rho(\theta) = \begin{cases} \alpha(\theta), & \theta \in \Theta_0 \\ 1 - \beta(\theta), & \theta \in \Theta \setminus \Theta_0 \end{cases}$$

定义 3.1.2 (显著性检验)

对于检验问题

$$H_0: \theta \in \Theta_0$$
 vs $H_a: \theta \in \Theta \setminus \Theta_0$

其势函数为 $\rho(\theta)$, 如果一个检验满足对于任意 $\theta \in \Theta_0$, 成立

$$\rho(\theta) \le \alpha$$

那么称该检验为显著性水平为 α 的显著性检验, 简称水平为 α 的检验。

四、给出拒绝域

依据显著性水平 α 以及拒绝域 W 的形式,确定具体的拒绝域。

五、做出判断

由拒绝域 W 唯一相互确定的判断准则为

- 1. 如果 $(x_1, \dots, x_n) \in W$,那么拒绝 H_0 。
- 2. 如果 $(x_1, \dots, x_n) \in \overline{W}$, 那么接受 H_0 。

3.1.3 检验的 p 值

定义 3.1.3 (检验的 p 值)

在假设检验问题中, 利用样本观测值能够作出拒绝原假设的最小显著性水平称为检验的 p 值。

- 1. 如果 $p \leq \alpha$, 那么在显著性水平 α 下拒绝 H_0 。
- 2. 如果 $p > \alpha$, 那么在显著性水平 α 下接受 H_0 。

.

3.2 正态总体参数假设检验

3.2.1 单个正态总体均值的检验

表 3.1: 单个正态总体均值的检验

检验	条件	H_0	H_a	统计检验量	分布	拒绝域	<i>p</i> 值
		$\mu \leq \mu_0$	$\mu > \mu_0$			$\{u \ge u_{1-\alpha}\}$	$1 - \Phi(u_0)$
u 检验	σ已知	$\mu \ge \mu_0$	$\mu < \mu_0$	$u = \frac{\sqrt{n}(\overline{x} - \mu_0)}{\sigma}$	N(0, 1)	$\{u \le u_{\alpha}\}$	$\Phi(u_0)$
		$\mu = \mu_0$	$\mu \neq \mu_0$			$\{ u \ge u_{1-\frac{\alpha}{2}}\}$	$2(1-\Phi(u_0))$
		$\mu \le \mu_0$	$\mu > \mu_0$			$\{t \ge t_{1-\alpha}\}$	$P(T \ge t_0)$
t 检验	σ未知	$\mu \ge \mu_0$	$\mu < \mu_0$	$t = \frac{\sqrt{n}(\overline{x} - \mu_0)}{s}$	T(n-1)	$\{t \le t_{\alpha}\}$	$P(T \le t_0)$
		$\mu = \mu_0$	$\mu \neq \mu_0$			$\{ t \ge t_{1-\frac{\alpha}{2}}\}$	$P(T \ge t_0)$

3.2.2 两个正态总体均值差的检验

表 3.2: 两个正态总体均值差的检验

检验	条件	H_0	H_a	检验统计量	分布	拒绝域	<i>p</i> 值
		$\mu_1 \le \mu_2$	$\mu_1 > \mu_2$			$\{u \ge u_{1-\alpha}\}$	$1 - \Phi(u_0)$
u 检验	σ_1,σ_2 已知	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	$u = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$	N(0,1)	$\{u \le u_{\alpha}\}$	$\Phi(u_0)$
		$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$			$\{ u \ge u_{1-\frac{\alpha}{2}}\}$	$2(1 - \Phi(u_0))$
		$\mu_1 \le \mu_2$	$\mu_1 > \mu_2$			$\{t \ge t_{1-\alpha}\}$	$P(T \ge t_0)$
t 检验	$\sigma_1 = \sigma_2$ 未知	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}}$	T(m+n-2)	$\{t \le t_{\alpha}\}$	$P(T \le t_0)$
		$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$			$\{ t \ge t_{1-\frac{\alpha}{2}}\}$	$P(T \ge t_0)$
		$\mu_1 \le \mu_2$	$\mu_1 > \mu_2$			$\{u \ge u_{1-\alpha}\}$	$1 - \Phi(u_0)$
u 检验	<i>m</i> , <i>n</i> 充分大	$\mu_1 \ge \mu_2$	$ \mu_1 < \mu_2 $	$u = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}}$	N(0,1)	$\{u \le u_\alpha\}$	$\Phi(u_0)$
		$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$			$\{ u \ge u_{1-\frac{\alpha}{2}}\}$	$2(1-\Phi(u_0))$
		$\mu_1 \le \mu_2$	$\mu_1 > \mu_2$			$\{t \ge t_{1-\alpha}\}$	$P(T \ge t_0)$
t 检验	一般情况	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_x^2}{m} + \frac{s_y^2}{n}}}$	T(l)	$\{t \le t_{\alpha}\}$	$P(T \le t_0)$
		$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	·		$\{ t \ge t_{1-\frac{\alpha}{2}}\}$	$P(T \ge t_0)$

其中

$$s_w^2 = \frac{(m-1)s_x^2 + (n-1)s_y^2}{m+n-2}$$

$$l = \left[\frac{\left(\frac{s_x^2}{m} + \frac{s_y^2}{n}\right)^2}{\frac{s_x^4}{m^2(m-1)} + \frac{s_y^4}{n^2(n-1)}}\right]$$

3.2.3 成对数据检验

表 3.3: 成对数据检验

H_0	H_a	统计检验量	分布	拒绝域	<i>p</i> 值
$\mu \leq 0$	$\mu > 0$			$\{t \ge t_{1-\alpha}\}$	$P(T \ge t_0)$
$\mu \geq 0$	$\mu < 0$	$t = \frac{\sqrt{n}\overline{d}}{s_d}$	T(n-1)	$\{t \le t_{\alpha}\}$	$P(T \le t_0)$
$\mu = 0$	$\mu \neq 0$			$\{ t \ge t_{1-\frac{\alpha}{2}}\}$	$P(T \ge t_0)$

3.2.4 正态总体方差的检验

表 3.4: 正态总体方差的检验

检验	条件	H_0	H_a	统计检验量	分布	拒绝域	<i>p</i> 值
		$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$			$\{\chi^2 \geq \chi^2_{1-\alpha}\}$	$P(\chi^2 \ge \chi_0^2)$
χ^2 检验	一个	$\sigma^2 \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\{\chi^2 \le \chi^2_\alpha\}$	$P(\chi^2 \le \chi_0^2)$
		$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$			$\{\chi^2 \le \chi^2_{\frac{\alpha}{2}}\} \cup \{\chi^2 \ge \chi^2_{1-\frac{\alpha}{2}}\}$	$2\min\{P(\chi^2 \le \chi_0^2), P(\chi^2 \ge \chi_0^2)\}$
		$\sigma_1^2 \le \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$			$\{F \ge F_{1-\alpha}\}$	$P(F \ge F_0)$
F 检验	两个	$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	$F = \frac{s_x^2}{s_y^2}$	F(m-1, n-1)	$\{F \le F_{\alpha}\}$	$P(F \le F_0)$
		$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$			$\{F \le F_{\frac{\alpha}{2}}\} \cup \{F \ge F_{1-\frac{\alpha}{2}}\}$	$2\min\{P(F \le F_0), P(F \ge F_0)\}$

3.3 其他分布参数的假设检验

检验	条件	H_0	H_a	统计检验量	分布	拒绝域	p 值
		$\lambda \leq \lambda_0$	$\lambda > \lambda_0$			$\{\chi^2 \geq \chi^2_{1-\alpha}\}$	$P(\chi^2 \ge \chi_0^2)$
χ^2 分布	$\operatorname{Exp}(\frac{1}{\lambda})$	$\lambda \geq \lambda_0$	$\lambda < \lambda_0$	$\frac{2n\overline{x}}{\lambda_0}$	$\chi^2(2n)$	$\{\chi^2 \le \chi^2_\alpha\}$	$P(\chi^2 \le \chi_0^2)$
		$\lambda = \lambda_0$	$\lambda \neq \lambda_0$			$\{\chi^2 \le \chi^2_{\frac{\alpha}{2}}\} \cup \{\chi^2 \ge \chi^2_{1-\frac{\alpha}{2}}\}$	$2\min\{P(\chi^2 \le \chi_0^2), P(\chi^2 \ge \chi_0^2)\}$
		$p \le p_0$	$p > p_0$				$P(x \ge x_0)$
B检验	B(1,p)	$p \ge p_0$	$p < p_0$	x	B(n,p)		$P(x \le x_0)$
		$p = p_0$	$p \neq p_0$				$2\min\{P(x \le x_0), P(x \ge x_0)\}$
		$\theta \le \theta_0$	$\theta > \theta_0$			$\{u \ge u_{1-\alpha}\}$	$1 - \Phi(u_0)$
u 检验	大样本分布 $F(x;\theta)$	$\theta \ge \theta_0$	$\theta < \theta_0$	$\frac{\sqrt{n}(\overline{x}-\theta_0)}{\sqrt{\sigma^2(\hat{\theta})}}$	N(0, 1)	$\{u \le u_{\alpha}\}$	$\Phi(u_0)$
		$\theta = \theta_0$	$\theta \neq \theta_0$			$\{ u \ge u_{1-\frac{\alpha}{2}}\}$	$2(1-\Phi(u_0))$

表 3.5: 其他分布参数的假设检验

其中分布 $F(x;\theta)$ 的均值为 θ , 方差为 $\sigma(\theta)$, $\hat{\theta}$ 为 θ 的最大似然估计。

3.4 似然比检验与分布拟合检验

3.4.1 似然比检验的思想

定义 3.4.1 (似然比)

对于来自密度函数为 $p(x;\theta),\theta\in\Theta$ 的总体的样本 x_1,\cdots,x_n , 对于如下检验问题

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_a: \theta \in \Theta \setminus \Theta_0$$

定义改假设检验问题的似然比统计量为

$$\Lambda(x_1, \dots, x_n) = \frac{\sup_{\theta \in \Theta} p(x_1, \dots, x_n; \theta)}{\sup_{\theta \in \Theta_0} p(x_1, \dots, x_n; \theta)}$$

即

$$\Lambda(x_1,\dots,x_n) = \frac{p(x_1,\dots,x_n;\hat{\theta})}{p(x_1,\dots,x_n;\hat{\theta}_0)}$$

其中 $\hat{\theta}$ 和 $\hat{\theta}_0$ 分别为参数空间 Θ 和 Θ_0 上的最大似然估计。

定义 3.4.2 (似然比检验 LRT)

对于来自密度函数为 $p(x;\theta), \theta \in \Theta$ 的总体的样本 x_1, \dots, x_n , 对于如下检验问题

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_a: \theta \in \Theta \setminus \Theta_0$$

其似然比统计量

$$\Lambda(x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n; \hat{\theta})}{p(x_1, \dots, x_n; \hat{\theta}_0)}$$

作为检验问题的检验统计量,且取拒绝域为 $W=\{\Lambda(x_1,\cdots,x_n)\geq\lambda_0\}$,其中临界值 λ_0 满足对于任意 $\theta\in\Theta_0$,成立

$$P_{\theta}(\Lambda(x_1,\cdots,x_n)\geq\lambda_0)\leq\alpha$$

那么称此检验为显著性水平为 α 的似然比检验。

3.4.2 分布数据的 χ^2 拟合优度检验

定理 3.4.1

总体被分为r类 A_1, \dots, A_r ,考虑假设检验

$$H_0: A_k$$
所占的比率为 p_k , $k=1,\dots,r$

其中 p_k 已知且 $\sum_{k=1}^r p_k = 1$ 。从该总体抽出 n 个样本, n_k 为样本中属于 A_k 的样本个数,记检验统计量为

$$\chi^{2} = \sum_{k=1}^{r} \frac{(n_{k} - np_{k})^{2}}{np_{k}}$$

那么当 H_0 成立时,成立

$$\chi^2 \xrightarrow{\mathcal{L}} \chi^2(r-1)$$

因此对于显著性水平 α ,拒绝域为 $W=\{\chi^2\geq\chi^2_{1-\alpha}\}$,检验的 p 值为 $p=P(\chi^2\geq\chi^2_0)$ 。

如果 A_k 出现的概率含有 s 个参数,那么可用最大似然估计方法估计出该 s 个参数,然后再算出 p_k 的估计值 \hat{p}_k ,于是统计检验量

$$\chi^2 = \sum_{k=1}^r \frac{(n_k - n\hat{p}_k)^2}{n\hat{p}_k} \xrightarrow{L} \chi^2(r - s - 1)$$

3.4.3 分布的 χ^2 拟合优度检验

对于来自分布函数为 F(x) 的总体的样本 x_1, \dots, x_n , 考虑假设检验问题

$$H_0: F(x) = F_0(x)$$

其中 $F_0(x)$ 为可含参的理论分布。

一、总体 X 为离散分布

如果总体 X 为至多可数个值 a_1,a_2,\cdots ,将其分为 r 类 A_1,\cdots,A_r ,使得每一个 A_k 中的样本个数 n_k 不小于 5,记 $P(X \in A_k) = p_k$,那么原假设检验转化为

$$H_0: A_k p_k, \quad k = 1, \cdots, r$$

二、总体 X 为连续分布

如果总体 X 的分布为 F_0 ,选取 $-\infty = a_0 < a_1 < \dots < a_{r-1} < a_r = \infty$,记 $A_k = (a_{k-1}, a_k]$,那么

$$p_k = P(X \in A_k) = F_0(a_k) - F_0(a_{k-1}), \quad k = 1, \dots, r$$

于是原假设转化为

$$H_0: A_k p_k, \quad k = 1, \cdots, r$$

3.4.4 列联表的独立性检验

将总体分为两个属性 A 和 B,其中 A 有 r 个类 A_1, \dots, A_r ,B 有 s 个类 B_1, \dots, B_s ,从总体中抽取 n 个样本,设其中有 n_{ij} 个个体属于 A_i 和 B_j ,构造列联表 $\{n_{ij}\}_{r \times s}$ 。

记总体中的个体仅属于 A_i 和仅属于 B_j 的概率分别为 p_i . 和 $p_{\cdot j}$,总体中的个体同时属于 A_i 和 B_j 的概率为 p_{ij} ,那么得到二维离散分布表 $\{p_{ij}\}_{r\times s}$,A 和 B 两属性度量的假设可表述为

$$H_0: p_{ij} = p_{i}.p_{ij}, \quad i = 1, \dots, r; j = 1, \dots, s$$

 H_0 成立时 p_{ij} 的最大似然估计为

$$\hat{p}_{ij} = \frac{1}{n^2} \sum_{k=1}^{r} n_{kj} \sum_{k=1}^{s} n_{ik}$$

那么检验统计量为

$$\chi^2 = \sum_{i,j} \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \xrightarrow{L} \chi^2((r-1)(s-1))$$

因此对于显著性水平 α ,拒绝域为 $W = \{\chi^2 \ge \chi^2_{1-\alpha}\}$,检验的 p 值为 $p = P(\chi^2 \ge \chi^2_0)$ 。

3.5 正态性检验

3.5.1 正态概率纸

对于给定的样本观测值 x_1, \dots, x_n , 做点

$$\left(x_{(k)}, \frac{k - 0.375}{n + 0.25}\right), \quad k = 1, \dots, n$$

如果诸点在一条直线附近,那么认为该批数据来自正态总体;否则不认为该批数据来自正态总体。

3.5.2 W 检验

对于来自正态分布总体 $N(\mu, \sigma^2)$ 的样本 x_1, \dots, x_n , 其中 $8 \le n \le 50$, 定义 W 统计量为

$$W = \frac{\sum_{k=1}^{n} (w_k - \overline{w})^2 (x_{(k)} - \overline{x})^2}{\sum_{k=1}^{n} (w_k - \overline{w})^2 \sum_{k=1}^{n} (x_{(k)} - \overline{x})^2} = \frac{\sum_{k=1}^{\left[\frac{n}{2}\right]} w_k^2 (x_{(k)} - x_{(n+1-k)})^2}{\sum_{k=1}^{n} (x_{(k)} - \overline{x})^2}$$

其中

$$e = \begin{pmatrix} E\left(\frac{x_{(1)} - \mu}{\sigma}\right) \\ \vdots \\ E\left(\frac{x_{(n)} - \mu}{\sigma}\right) \end{pmatrix}, \qquad C = \begin{pmatrix} \operatorname{Cov}\left(\frac{x_{(1)} - \mu}{\sigma}, \frac{x_{(1)} - \mu}{\sigma}\right) & \cdots & \operatorname{Cov}\left(\frac{x_{(1)} - \mu}{\sigma}, \frac{x_{(n)} - \mu}{\sigma}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}\left(\frac{x_{(n)} - \mu}{\sigma}, \frac{x_{(1)} - \mu}{\sigma}\right) & \cdots & \operatorname{Cov}\left(\frac{x_{(n)} - \mu}{\sigma}, \frac{x_{(n)} - \mu}{\sigma}\right) \end{pmatrix}$$

$$\begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \frac{C^{-1}e}{\sqrt{e^T(C^{-1})^2e}}$$

拒绝域为 $\{W \leq W_{\alpha}\}$, 其中 W_{α} 为 α 分位数。

3.5.3 EP 检验

对于来自正态分布总体 $N(\mu, \sigma^2)$ 的样本 x_1, \dots, x_n , 其中 $n \ge 8$, 定义 EP 检验统计量为

$$T_{\rm EP} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{i=2}^{n} \sum_{j=1}^{i-1} \exp\left(-\frac{(x_j - x_i)^2}{2^{\frac{n-1}{n}} s^2}\right) - \sqrt{2} \sum_{k=1}^{n} \exp\left(-\frac{(x_k - \overline{x})^2}{4^{\frac{n-1}{n}} s^2}\right)$$

拒绝域为 $\{T_{\text{EP}} \geq T_{\text{EP}_{1-\alpha}}\}$,其中 $T_{\text{EP}_{1-\alpha}}$ 为 $1-\alpha$ 分位数。

3.6 非参数检验

3.6.1 游程检验

对于依时间顺序连续得到的样本观测值 x_1, \dots, x_n , 记样本中位数为 m_e , 对于 $k=1,\dots,n$, 记

$$y_k = \begin{cases} 1, & x_k \ge m_e \\ 0, & x_k < m_e \end{cases}$$

 y_1, \dots, y_n 构成 0-1 序列。

记 0-1 序列中 0 和 1 的个数分别为 n_1 和 n_2 ,游程总数为 R,那么 $1 < n_1, n_2 < n$ 且 $2 \le R \le n$ 。同时 $|n_1-n_2|$ 为 0 或 1。原假设为

H₀: 样本序列符合随机抽取的原则

R的分布如下

$$P(R=2k) = \frac{2\binom{n_1-1}{k-1}\binom{n_2-1}{k-1}}{\binom{n_1+n_2}{n_1}}, \quad k=1,\dots, \left[\frac{n_1+n_2}{2}\right]$$

$$P(R=2k+1) = \frac{\binom{n_1-1}{k-1}\binom{n_2-1}{k} + \binom{n_1-1}{k}\binom{n_2-1}{k-1}}{\binom{n_1+n_2}{n_1}}, \quad k=1,\dots, \left[\frac{n_1+n_2-1}{2}\right]$$

拒绝域为 $\{R \le R_{\frac{\alpha}{2}}\} \cup \{R \ge R_{1-\frac{\alpha}{2}}\}$,检验的 p 值为 $2\min\{P(R \le R_0), P(R \ge R_0)\}$ 。

3.6.2 符号检验

表 3.6: 符号检验

H_0	H_a	拒绝域	检验的 p 值
$x_p \le x_0$	$x_p > x_0$	$\{S^+ \ge c\}$	$\sum_{k=S_0^+}^{n} \binom{n}{k} (1-p)^k p^{n-k}$
$x_p \ge x_0$	$x_p < x_0$	$\{S^+ \le c\}$	$\sum_{k=0}^{S_0^+} \binom{n}{k} (1-p)^k p^{n-k}$
$x_p = x_0$	$x_p \neq x_0$	$\{S^+ \le c_1\} \cup \{S^+ \ge c_2\}$	$ 2\min \left\{ \sum_{k=0}^{S_0^+} \binom{n}{k} (1-p)^k p^{n-k}, \sum_{k=S_0^+}^n \binom{n}{k} (1-p)^k p^{n-k} \right\} $

其中 S^+ 为 $x_1 - x_0, \dots, x_n - x_0$ 中正数的个数,即

$$S^{+} = \sum_{k=1}^{n} I_{x_{k} > x_{0}}$$

3.6.3 秩和检验

定义 3.6.1 (秩)

对于来自连续分布 F(x) 的简单随机样本 x_1,\cdots,x_n ,次序样本为 $x_{(1)},\cdots,x_{(n)}$,称 x_k 秩为 r_k ,如果 $x_k=x_{(r_k)}$,记作 $R_k=r_k$ 。

定义 3.6.2 (秩统计量)

对于来自连续分布 F(x) 的简单随机样本 x_1,\cdots,x_n , R_k 为 x_k 的秩,那么称 $R=(R_1,\cdots,R_n)$ 为 x_1,\cdots,x_n 的秩统计量。

对于来自连续分布 $F(x-\theta)$ 的简单随机样本 x_1,\cdots,x_n ,其中 θ 为总体的中位数,记 R_k 为 $|x_k|$ 在 $|x_1|,\cdots,|x_n|$ 中的秩,定义符号秩和统计量为

$$W^{+} = \sum_{k=1}^{n} R_{k} I_{x_{k} > 0} \sim W^{+}(n)$$

H_0	H_a	拒绝域		
$\theta \leq 0$	$\theta > 0$	$\{W^+ \le W_\alpha^+\}$		
$\theta \ge 0$	$\theta < 0$	$\{W^+ \ge W_\alpha^+\}$		
$\theta = 0$	$\theta \neq 0$	$\{W^+ \le W_{\frac{\alpha}{2}}^+\} \cup \{W^+ \ge W_{1-\frac{\alpha}{2}}^+\}$		

其中 $W_{\alpha}^{+} + W_{1-\alpha}^{+} = \frac{1}{2}n(n-1)$ 。

对于来自连续分布 $F(x-\theta_1)$ 的简单随机样本 x_1,\cdots,x_m 和对于来自连续分布 $F(x-\theta_2)$ 的简单随机样本 y_1,\cdots,y_n ,产生的秩为

$$R = (Q_1, \cdots, Q_m, R_1, \cdots, R_n)$$

那么秩和统计量为

$$W = \sum_{k=1}^{n} R_k \sim W(m, n)$$

H_0	H_a	拒绝域
$\theta_1 \le \theta_2$	$\theta_1 > \theta_2$	$\{W \le W_{\alpha}\}$
$\theta_1 \ge \theta_2$	$\theta_1 < \theta_2$	$\{W \ge W_{\alpha}\}$
$\theta_1 = \theta_2$	$\theta_1 \neq \theta_2$	$\{W \le W_{\frac{\alpha}{2}}\} \cup \{W \ge W_{1-\frac{\alpha}{2}}\}$

其中 $W_{\alpha} + W_{1-\alpha} = n(m+n-1)$ 。

第四章 方差分析与回归分析

4.1 方差分析

4.1.1 问题的提出

因子: A

水平: A_1, \dots, A_r

结果: y_{ij} , 其中 $i=1,\cdots,r$

4.1.2 单因子方差分析的统计模型

在单因子试验中,记因子为 A,设其由 r 个水平,记为 A_1, \cdots, A_r ,在每一个水平下考察的指标可以看成一个总体,现有 r 个水平,故有 r 个总体,假定:

- 1. 每一个总体均为正态分布,记为 $N(\mu_k, \sigma_k^2)$,其中 $k=1, \cdots, r$ 。
- 2. 各总体的方差相同,记为 $\sigma_1^2 = \cdots = \sigma_r^2 = \sigma^2$ 。
- 3. 从每一总体中抽取的样本是互相独立的,即所有的试验结果 y_{ij} 都相互独立。作假设检验:

$$H_0: \mu_1 = \dots = \mu_r \quad \text{vs} \quad H_a: \mu_1, \dots, \mu_r$$

如果 H_0 成立,称因子 A 的 r 个水平没有显著差异,简称因此 A 不显著。 对 r 个总体每个作 m 次重复实现,得到试验结果 $\{y_{ij}\}_{r\times m}$,定义随机误差为

$$\varepsilon_{ij} = y_{ij} - \mu_i$$

那么试验结果 y_{ij} 的数据结构式为

$$y_{ij} = \mu_i + \varepsilon_{ij}$$

单因子方差分析的统计模型为

$$\begin{cases} y_{ij} = \mu_i + \varepsilon_{ij} \\ \varepsilon_{ij}$$
相互独立
$$\varepsilon_{ij} \sim N(0, \sigma^2) \end{cases}$$

总均值

$$\mu = \frac{1}{r} \sum_{k=1}^{r} \mu_k$$

因子 A 的第 k 个水平的主效应

$$a_i = \mu_i - \mu$$

容易知道

$$\sum_{k=1}^{r} a_k = 0$$

$$\mu_k = \mu + a_k$$

于是统计模型改写为

$$\begin{cases} y_{ij} = \mu + a_i + \varepsilon_{ij} \\ \sum_{i=1}^r a_i = 0 \\ \varepsilon_{ij}$$
相互独立
$$\varepsilon_{ij} \sim N(0, \sigma^2) \end{cases}$$

统计假设改写为

$$H_0: a_1 = \dots = a_r = 0 \text{ vs } H_a: a_1, \dots, a_r$$
 不全为0

4.1.3 平方和分解

一、实验数据

表 4.1: 符号检验

因子水平	因子水平 试验数据		均值	
A_1	y_{11},\cdots,y_{1m}	$T_1 = \sum_{j=1}^m y_{1j}$	$\overline{y}_1 = \frac{T_1}{m}$	
:	:	:	:	
A_r	y_{r1}, \cdots, y_{rm}	$T_r = \sum_{j=1}^m y_{rj}$	$\overline{y}_r = \frac{T_r}{m}$	
		$T = \sum_{i=1}^{r} T_i$	$\overline{y} = \frac{T}{rm} = \frac{T}{n}$	

二、组内偏差与组间方差

记

$$\begin{aligned} y_{ij} - \overline{y} &= (y_{ij} - \overline{y}_i) + (\overline{y}_i - \overline{y}) \\ \overline{\varepsilon}_i &= \frac{1}{m} \sum_{j=1}^m \varepsilon_{ij} \\ \overline{\varepsilon} &= \frac{1}{r} \sum_{j=1}^m \overline{\varepsilon}_i = \frac{1}{n} \sum_{i,j} \varepsilon_{ij} \end{aligned}$$

组内偏差为

$$y_{ij} - \overline{y}_i = \varepsilon_{ij} - \overline{\varepsilon}_i$$

组间偏差为

$$\overline{y}_i - \overline{y} = a_i + \overline{\varepsilon}_i - \overline{\varepsilon}$$

三、偏差平方和及其自由度 偏差平方和

$$Q = \sum_{k=1}^{n} (y_k - \overline{y})^2$$

自由度

$$f_Q = n - 1$$

四、总平方和分解公式

总偏差平方和

$$S_T = \sum_{i,j} (y_{ij} - \overline{y})^2 = \sum_{i,j} y_{ij}^2 - \frac{T^2}{n}, \quad f_T = n - 1$$

组内偏差平方和(因子 A 的偏差平方和)

$$S_A = m \sum_{i=1}^r (\overline{y}_i - \overline{y})^2 = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{T^2}{n}, \quad f_A = r - 1$$

组内偏差平方和 (误差偏差平方和)

$$S_e = \sum_{i,j} (y_{ij} - \overline{y}_i)^2 = \sum_{i,j} y_{ij}^2 - \frac{1}{m} \sum_{i=1}^r T_i^2, \quad f_e = n - r$$

总平方和分解式

$$S_T = S_A + S_e$$

4.1.4 检验方法

均方

$$MS = \frac{Q}{f_Q}$$

因子均方和误差均方

$$MS_A = \frac{S_A}{f_A}, \qquad MS_e = \frac{S_e}{f_e}$$

定理 4.1.1

1.

$$\frac{S_e}{\sigma^2} \sim \chi^2(n-r), \quad E(S_e) = (n-r)\sigma^2$$

2.

$$E(S_A) = (r-1)\sigma^2 + m\sum_{i=1}^{r} a_i^2$$

3. 若 H₀ 成立, 那么

$$\frac{S_A}{\sigma^2} \sim \chi^2(r-1), \quad E(S_e) = (r-1)\sigma^2$$

4. SA 与 Se 相互独立。

检验统计量

$$F = \frac{\text{MS}_A}{\text{MS}_e} \sim F(r - 1, n - r)$$

拒绝域

$$W = \{F > F_{1-\alpha}\}$$

- 1. $F \ge F_{1-\alpha}$: 拒绝原假设,认为因子 A 显著。
- 2. $F \leq F_{1-\alpha}$: 接受原假设,认为因子 A 不显著。

检验的 p 值为

$$p = P(F \ge F_0)$$

表 4.2: 单因子方差分析表

	来源	平方和	自由度	均方	F 比	<i>p</i> 值
	因子 A	S_A	$f_A = r - 1$	$MS_A = \frac{S_A}{f_A}$	$F = \frac{MS_A}{MS_e}$	$p = P(F \ge F_0)$
	误差 e	S_e	$f_e = n - r$	$MS_e = \frac{S_e}{f_e}$		
Ì	总和 T	S_T	$f_T = n - 1$			

4.1.5 参数估计

一、点估计

1.

$$y_{ij} \sim N(\mu + a_i, \sigma^2)$$

2. μ 的最大似然估计为

$$\hat{\mu} = \overline{y}$$

3. a_i 的最大似然估计为

$$\hat{a}_i = \overline{y}_i - \overline{y}$$

4. σ² 的最大似然估计为

$$\hat{\sigma}^2 = MS_e$$

二、置信区间

由于

$$\overline{y}_i \sim N(\mu_i, \frac{\sigma^2}{m}), \qquad \frac{S_e}{\sigma^2} \sim \chi^2(n-r)$$

因此

$$\frac{\sqrt{m}(\overline{y}_i - \mu_i)}{\sqrt{\hat{\sigma}^2}} \sim T(f_e)$$

进而 μ_i 的 $1-\alpha$ 的置信区间为

$$\left[\overline{y}_i - t_{1-\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{m}}, \quad \overline{y}_i + t_{1-\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{m}}\right]$$

4.1.6 重复数不等情形

一、数据

记从第 i 个水平下的总体获得 m_i 个试验结果,记为 y_{i1},\cdots,y_{im_i} ,其中 $i=1,\cdots,r$,实验总次数为 $n=m_1+\cdots+m_r$,统计模型为

$$\begin{cases} y_{ij} = \mu_i + \varepsilon_{ij} \\ \varepsilon_{ij}$$
相互独立
$$\varepsilon_{ij} \sim N(0, \sigma^2) \end{cases}$$

二、总均值

加权均值

$$\mu = \frac{1}{n} \sum_{i=1}^{r} m_i \mu_i$$

水平效应:

$$a_i = \mu_i - \mu$$

统计模型为

$$\begin{cases} y_{ij} = \mu + a_i + \varepsilon_{ij} \\ \sum_{i=1}^r m_i a_i = 0 \\ \varepsilon_{ij} \\ \varepsilon_{ij} \sim N(0, \sigma^2) \end{cases}$$

四、各平方和的计算

$$T_{i} = \sum_{j=1}^{m_{i}} y_{ij}, \qquad \overline{y}_{i} = \frac{T_{i}}{m_{i}}$$

$$T = \sum_{i,j} y_{ij} = \sum_{i=1}^{r} T_{i}, \qquad \overline{y} = \frac{T}{n}$$

$$S_{T} = \sum_{i,j} (y_{ij} - \overline{y})^{2} = \sum_{i,j} y_{ij}^{2} - \frac{T^{2}}{n}, \qquad f_{T} = n - 1$$

$$S_{A} = \sum_{i=1}^{r} m_{i} (\overline{y}_{i} - \overline{y})^{2} = \sum_{i=1}^{r} \frac{T_{i}^{2}}{m_{i}} - \frac{T^{2}}{n}, \qquad f_{A} = r - 1$$

$$S_{e} = \sum_{i,j} (y_{ij} - \overline{y}_{i})^{2} = \sum_{i,j} y_{ij}^{2} - \sum_{i=1}^{r} \frac{T_{i}^{2}}{m_{i}}, \qquad f_{e} = n - r$$

4.2 多重比较

4.2.1 水平均值差的置信区间

检验问题

$$H_0: \mu_i - \mu_j = 0$$
 vs $H_a: \mu_i - \mu_j \neq 0$

由于

$$\overline{y}_i - \overline{y}_j \sim N\left(\mu_i - \mu_j, \left(\frac{1}{m_i} + \frac{1}{m_j}\right)\sigma^2\right)$$

而 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$,因此

$$\frac{(\overline{y}_i - \overline{y}_j) - (\mu_i - \mu_j)}{\sqrt{\left(\frac{1}{m_i} + \frac{1}{m_j}\right)\hat{\sigma}^2}} \sim T(n - r)$$

那么置信水平为1-α的置信区间为

$$\left[\overline{y}_i - \overline{y}_j - t_{1-\frac{\alpha}{2}}\sqrt{\left(\frac{1}{m_i} + \frac{1}{m_j}\right)\hat{\sigma}^2}, \quad \overline{y}_i - \overline{y}_j + t_{1-\frac{\alpha}{2}}\sqrt{\left(\frac{1}{m_i} + \frac{1}{m_j}\right)\hat{\sigma}^2}\right]$$

这也是检验问题的接受域 \overline{W} 。如果包含 0,那么接受原假设,认为 μ_i 和 μ_j 无显著差异;反之拒绝原假设,认为 μ_i 和 μ_j 存在显著差异。

4.2.2 多重比较问题

首先经过方差检验,表明因子 A 是显著的,即 r 个水平均值不全相等,那么考虑如下多重比较问题检验

$$H_0^{ij}: \mu_i = \mu_j, \quad 1 \le i < j \le r$$

拒绝域

$$W = \bigcup_{1 \le i < j \le r} \{ |\overline{y}_i - \overline{y}_j| \ge c_{ij} \}$$

4.2.3 重复数相等的 T 法

当 $m_1 = \cdots = m_r = m$ 时,记 $c_{ij} = c$,于是检验统计量为

$$\frac{\sqrt{m}(\overline{y}_i - \mu_i)}{\hat{\sigma}} \sim T(n - r)$$

当原假设成立时, $\mu_1 = \cdots = \mu_r = \mu$, 此时

$$P(W) = P\left(q(r, n - r) \ge \frac{c\sqrt{m}}{\hat{\sigma}}\right)$$

其中 t 化极差统计量为

$$q(r, n-r) = \max_{1 \leq i \leq r} \frac{\sqrt{m}(\overline{y}_i - \mu_i)}{\hat{\sigma}} - \min_{1 \leq j \leq r} \frac{\sqrt{m}(\overline{y}_j - \mu_j)}{\hat{\sigma}}$$

仅与n和r有关。由 $P(W) = \alpha$,可知

$$c = q_{1-\alpha} \frac{\hat{\sigma}}{\sqrt{m}}$$

因此,如果

$$|\overline{y}_i - \overline{y}_j| \ge q_{1-\alpha} \frac{\hat{\sigma}}{\sqrt{m}}$$

那么认为水平 A_i 和 A_j 存在显著差异,反之认为水平 A_i 和 A_j 无显著差异。

4.2.4 重复数不等场合的 S 法

由于

$$\frac{(\overline{y}_i - \overline{y}_j) - (\mu_i - \mu_j)}{\sqrt{\left(\frac{1}{m_i} + \frac{1}{m_j}\right)\hat{\sigma}^2}} \sim T(n - r)$$

当原假设成立时, $\mu_1 = \cdots = \mu_r = \mu$, 此时

$$\frac{(\overline{y}_i - \overline{y}_j)^2}{\left(\frac{1}{m_i} + \frac{1}{m_i}\right)\hat{\sigma}^2} \sim F(1, n - r)$$

 $c_{ij} = c\sqrt{\frac{1}{m_i} + \frac{1}{m_i}}$,那么

$$P(W) = P\left(\max_{1 \le i < j \le r} \frac{(\overline{y}_i - \overline{y}_j)^2}{\left(\frac{1}{m_i} + \frac{1}{m_i}\right)\hat{\sigma}^2} \ge \frac{c^2}{\hat{\sigma}^2}\right)$$

其中

$$\frac{\max_{1 \le i < j \le r} \frac{(\overline{y}_i - \overline{y}_j)^2}{\left(\frac{1}{m_i} + \frac{1}{m_j}\right)\hat{\sigma}^2}}{r - 1} \sim F(r - 1, n - r)$$

由 $P(W) = \alpha$,可知

$$\frac{c^2}{\hat{\sigma}^2} = (r-1)f_{1-\alpha}$$

即

$$c_{ij} = \sqrt{(r-1)f_{1-\alpha}\hat{\sigma}^2 \left(\frac{1}{m_i} + \frac{1}{m_j}\right)}$$

其中 $f_{1-\alpha}$ 为 F(r-1,n-r) 的 $1-\alpha$ 分位数。因此,如果

$$|\overline{y}_i - \overline{y}_j| \ge \sqrt{(r-1)f_{1-\alpha}\hat{\sigma}^2\left(\frac{1}{m_i} + \frac{1}{m_j}\right)}$$

那么认为水平 A_i 和 A_j 存在显著差异;反之认为水平 A_i 和 A_j 无显著差异。

4.3 方差齐性检验

方差齐性检验

$$H_0: \sigma_1^2 = \cdots = \sigma_r^2$$

4.3.1 Hartley 检验

对于单因子方差分析中含有r个样本,当 $m_1 = \cdots = m_r = m$ 时,设第i个样本方差为

$$s_i^2 = \frac{1}{m-1} \sum_{k=1}^{m} (y_{ij} - \overline{y}_i)^2$$

检验统计量为

$$H = \frac{\max\{s_i^2\}}{\min\{s_i^2\}} \sim H(r, m-1)$$

拒绝域为

$$W = \{ H \ge H_{1-\alpha} \}$$

4.3.2 Bartlett 检验

对于单因子方差分析中含有 r 个样本, 设第 i 个样本方差为

$$s_i^2 = \frac{1}{m_i - 1} \sum_{k=1}^{m_i} (y_{ij} - \overline{y}_i)^2 = \frac{Q_i}{f_i}$$

其中 m_i 为第 i 个样本的容量且 $m_i \geq 5$, $Q_i = \sum_{k=1}^{m_i} (y_{ij} - \overline{y}_i)^2$ 和 $f_i = m_i - 1$ 为该样本的偏差平方和自由度。 s_i^2 的算术加权平均即为均方误差

$$MS_e = \frac{1}{f_e} \sum_{i=1}^r Q_i = \sum_{i=1}^r \frac{f_i}{f_e} s_i^2$$

其加权几何平均为

$$GMS_e = \left(\prod_{i=1}^r (s_i^2)^{f_i}\right)^{\frac{1}{f_e}}$$

其中 $f_e = \sum_{i=1}^r f_i = n - r$ 。由算术-几何平均不等式

$$MS_e \ge GMS_e$$

当且仅当 $s_1^2 = \cdots = s_r^2$ 时等号成立。而

$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} \dot{\sim} \chi^2(r-1)$$

其中

$$C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^{r} \frac{1}{f_i} - \frac{1}{f_e} \right)$$

因此拒绝域为

$$W = \left\{ B \ge \chi_{1-\alpha}^2 \right\}$$

4.3.3 修正的 Bartlett 检验

修正的检验统计量

$$B' = \frac{f_2 BC}{f_1 (A - BC)} \dot{\sim} F(f_1, f_2)$$

其中

$$f_1 = r - 1,$$
 $f_2 = \frac{r + 1}{(C - 1)^2},$ $A = \frac{f_2}{2 - C + \frac{2}{f_2 0}}$

拒绝域为

$$W = \{B' \ge F_{1-\alpha}\}$$

4.4 一元线性回归

4.4.1 变量间的两类关系

确定性关系,相关关系

4.4.2 一元线性回归模型

第一类回归问题

$$f(x) = E(Y \mid x) = \int_{-\infty}^{\infty} yp(y \mid x) dx$$

第二类回归问题

$$y = f(x) + \varepsilon$$

其中 $\varepsilon \sim N(0, \sigma^2)$ 。 一元回归模型:

$$\begin{cases} y_i = \beta_0 + \beta x_i + \varepsilon_i \\ \varepsilon_i \text{相互独立} \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases}$$

由数据 (x_i, y_i) 得到的 β_0 和 β 的估计 $\hat{\beta}_0$ 和 $\hat{\beta}$,称

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}x$$

为 y 关于 x 的回归函数。给定 $x = x_0$,称 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}x_0$ 为回归值。

4.4.3 回归系数的最小二乘估计

$$l_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y - \overline{y}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}$$

$$l_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2 = \sum_{i=1}^{n} x_i^2 - n \overline{x}^2$$

$$l_{yy} = \sum_{i=1}^{n} (y - \overline{y})^2 = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2 = \sum_{i=1}^{n} y_i^2 - n \overline{y}^2$$

 β_0 和 β 的最小二乘估计(LSE) $\hat{\beta}_0$ 和 $\hat{\beta}$ 为

$$\hat{\beta} = \frac{l_{xy}}{l_{xx}}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}\overline{x}$$

定理 4.4.1

在如下模型下, 成立

$$\begin{cases} y_i = \beta_0 + \beta x_i + \varepsilon_i \\ \varepsilon_i \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases}$$

1.

$$\hat{\beta}_0 \sim N\left(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}\right)\sigma^2\right), \qquad \hat{\beta} \sim N\left(\beta, \frac{\sigma^2}{l_{xx}}\right)$$

2.

$$\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}) = -\frac{\overline{x}}{l_{xx}}\sigma^2$$

3. 给定 x₀

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}x_0 \sim N\left(\beta_0 + \beta x_0, \left(\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{l_{xx}}\right)\sigma^2\right)$$

4.4.4 回归模型的显著性检验

显著性: $\beta \neq 0$ 称为显著, 否则称为不显著。

显著性假设检验:

$$H_0: \beta = 0$$
 vs $H_a: \beta \neq 0$

表 4.3: 方差分析表

来源	平方和	自由度	均方	F 比
回归	S_R	$f_R = 1$	$MS_R = \frac{S_R}{f_R}$	$F = \frac{MS_A}{MS_e}$
残差	S_e	$f_e = n - 2$	$MS_e = \frac{S_e}{f_e}$	
总和	S_T	$f_T = n - 1$		

-、F 检验

总偏差平方和:

$$S_T = \sum_{i=1}^n (y_i - \overline{y})^2 = l_{yy}$$

回归平方和:

$$S_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2 = \frac{l_{xy}^2}{l_{xx}}$$

残差平方和:

$$S_e = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

平方和分解:

$$S_T = S_R + S_e$$

定理 4.4.2

在如下模型下,成立

$$\begin{cases} y_i = \beta_0 + \beta x_i + \varepsilon_i \\ \varepsilon_i 相互独立 \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases}$$

1.

$$E(S_R) = \sigma^2 + \hat{\beta}l_{xx}, \qquad E(S_e) = (n-2)\sigma^2$$

2.

$$\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$$

3. 如果 H_0 成立, 那么

$$\frac{S_R}{\sigma^2} \sim \chi^2(1)$$

4. S_R 与 S_e 、 \overline{y} 独立。

 \Diamond

统计检验量

$$F = \frac{(n-2)S_R}{S_e} \sim F(1, n-2)$$

拒绝域为 $W = \{F \geq F_{1-\alpha}\}$ 。

二、T 检验

检验统计量

$$T = \frac{\sqrt{(n-2)l_{xx}}\hat{\beta}}{\sqrt{S_e}} \sim T(n-2)$$

拒绝域为 $W = \{|t| \ge t_{1-\frac{\alpha}{2}}\}$ 。

三、相关系数检验

相关系数假设检验:

$$H_0: \rho = 0$$
 vs $H_a: \rho \neq 0$

检验统计量: 相关系数

$$r = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}} = \sqrt{\frac{F}{F + (n-2)}} \sim r(n-2) = \sqrt{\frac{F(1, n-2)}{F(1, n-2) + (n-2)}}$$

- 1. |r|=1: (x_i,y_i) 共线。
- 2. r > 0: (x_i, y_i) 正相关。
- 3. r < 0: (x_i, y_i) 负相关。
- 4. r = 0: (x_i, y_i) 不相关。

拒绝域为 $W = \{|r| \geq r_{1-\alpha}\}$, 其中

$$r_{1-\alpha} = \sqrt{\frac{F_{1-\alpha}}{F_{1-\alpha} + (n-2)}}$$

4.4.5 估计与预测

一、 $E(y_0)$ 的置信区间 枢轴量为

$$\frac{\hat{y}_0 - E(y_0)}{\sqrt{\frac{S_e}{n-2}} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}} \sim T(n-2)$$

1 - α 的置信区间为

$$\left[\hat{y}_0 - t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_e}{n-2}} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}, \quad \hat{y}_0 + t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_e}{n-2}} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}\right]$$

二、 y_0 的预测区间

枢轴量为

$$\frac{y_0 - \hat{y}_0}{\sqrt{\frac{S_e}{n-2}} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}} \sim T(n-2)$$

预测区间为

$$\hat{y}_0 - t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_e}{n-2}} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}, \quad \hat{y}_0 + t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_e}{n-2}} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}$$

4.4.6 曲线回归方程的比较

决定系数: 越大说明残差越小, 回归曲线拟合越好。

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

剩余标准差:越小,回归曲线拟合越好。

$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}$$

附录 A 概率模型

				I	
概率模型	密度函数 $p(x)$	参数范围	数学期望 Εξ	方差 Dξ	特征函数 $f(t)$
退化分布 $I_c(x)$	$p(x) = \begin{cases} 1, & x = c \\ 0, & x \neq c \end{cases}$		c	0	e^{ict}
Bernoulli 分布	$p(x) = \begin{cases} 1 - p, & x = 0 \\ p, & x = 1 \end{cases}$	0	p	p(1-p)	$p\mathrm{e}^{it}+1-p$
二项分布 $B(n,p)$	$b(k;n,p) = \binom{n}{k} p^k (1-p)^{n-k}$	$0 \leq k \leq n; 0$	np	np(1-p)	$(pe^{it} + 1 - p)^n$
Poisson 分布 $P(\lambda)$	$p(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$	$k\in\mathbb{N}; \lambda>0$	λ	λ	$\mathrm{e}^{\lambda(\mathrm{e}^{it}-1)}$
几何分布	$g(k;p) = p(1-p)^{k-1}$	$k \in \mathbb{N}^*, 0$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{p \mathrm{e}^{it}}{1 - (1 - p) \mathrm{e}^{it}}$
超几何分布	$p_k = \frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$	$M,n \leq N; 0 \leq k \leq \min\{M,n\}$	$\frac{nM}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$	$\sum_{k=0}^{n} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} e^{ikt}$
Pascal 分布	$p_k = \binom{k-1}{r-1} p^r (1-p)^{k-r}$	$k \geq r, 0$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\big(\frac{(1-p)\mathrm{e}^{it}}{1-(1-p)\mathrm{e}^{it}}\big)^r$
负二项分布	$p_k = \binom{-r}{k} p^r (p-1)^k$	$k \in \mathbb{N}, 0 0$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$(\frac{p}{1-(1-p)\mathrm{e}^{it}})^r$
正态分布 $N(\mu, \sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		μ	σ	$\mathrm{e}^{i\mu t - \frac{1}{2}\sigma^2 t^2}$
均匀分布 $U[a,b]$	$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & 其他 \end{cases}$	a < b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{\mathrm{e}^{ibt} - \mathrm{e}^{iat}}{i(b-a)t}$
指数分布 Exp(λ)	$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$	$\lambda > 0$	λ^{-1}	λ^{-2}	$(1 - \frac{it}{\lambda})^{-1}$
χ ² 分布	$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ $p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$	$n \in \mathbb{N}^*$	n	2n	$(1-2it)^{-\frac{n}{2}}$
Γ 分布 $\Gamma(r,\lambda)$	$p(x) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$	$r, \lambda > 0$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	$(1-\frac{it}{\lambda})^{-r}$
Cauchy 分布	$p(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + (x - \mu)^2}$	$\mu \in \mathbb{R}, \lambda > 0$	不存在	不存在	$\mathrm{e}^{i\mu t - \lambda t }$
t 分布	$p(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$	$n \in \mathbb{N}^*$	0(n > 1)	$\frac{n}{n-2}(n>2)$	
Pareto 分布	$p(x) = \begin{cases} rA^r \frac{1}{x^{r+1}}, & x \ge A \\ 0, & x < A \end{cases}$	r, A > 0	(r > 1 时存在)	(r>2时存在)	
F 分布	$p(x) = \begin{cases} rA^r \frac{1}{x^{r+1}}, & x \ge A \\ 0, & x < A \end{cases}$ $p(x) = \begin{cases} \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{x^{\frac{m}{2}-1}}{(n+mx)^{\frac{m+n}{2}}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$	$m,n\in\mathbb{N}^*$	$\frac{n}{n-2}(n>2)$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}(n>4)$	
β分布	$p(x) = \begin{cases} \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1}, & 0 < x < 1\\ 0, & \text{其他} \end{cases}$	p,q>0	$\frac{p}{p+q}$	$\frac{pq}{(p+q)^2(p+q+1)}$	$\frac{\Gamma(p+q)}{\Gamma(p)} \sum_{k=0}^{\infty} \frac{\Gamma(p+k)(it)^k}{\Gamma(p+q+k)\Gamma(k+1)}$
对数正态分布	$p(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma}x} e^{\frac{(\ln x - \alpha)^2}{2\sigma^2}}, & x > 0\\ 0, & x \le 0 \end{cases}$	$\alpha, \sigma > 0$	$e^{\alpha + \frac{\sigma^2}{2}}$	$e^{2\alpha+\sigma^2}(e^{\sigma^2}-1)$	
Weibull 分布	$p(x) = \begin{cases} \alpha \lambda x^{\alpha - 1} e^{-\lambda x^{\alpha}}, & x > 0\\ 0, & x \le 0 \end{cases}$	$\lambda, \alpha > 0$	$\Gamma(\frac{1}{\alpha}+1)\lambda^{-\frac{1}{\alpha}}$	$\lambda^{-\frac{2}{\alpha}}(\Gamma(\frac{2}{\alpha}+1)-(\Gamma(\frac{1}{\alpha}+1))^2)$	
Rayleigh 分布	$p(x) = \begin{cases} xe^{-\frac{x^2}{2}}, & x \ge 0\\ 0, & x < 0 \end{cases}$		$\sqrt{\frac{\pi}{2}}$	$2-\frac{\pi}{2}$	