(a) 10

 $(Resposta\ correcta:\ 1,2\ valores.\ Resposta\ errada:\ (-0,4)\ valores.)$

(b) 32

Duração: duração: 2h00 tolerância: 30 m

(d) 10^5

(Continua no verso)

Justifique as suas respostas e apresente os cálculos efectuados. Mude de folha quando mudar de grupo.

Grupo 1

Na sua folha de resposta, indique, para cada item, qual a opção correcta. Apresente os resultados na forma de uma grelha.

1.	Um	certo	código	binário	é uma	sequência	de	cinco	dígitos,	que	podem	ser	zeros	ou	uns	(considere,

como exemplo, 00110). Quantos sequência existem, nestas condições, com exactamente três zeros?

 ${\bf 2.}$ Dados dois acontecimentos A e B contidos num espaço de acontecimentos X, sabe-se que

(c) 50

		$P(A B) = \frac{1}{3}, P(B A)$	$=\frac{1}{4}$ e que $AUB = X$							
	Qual o valor de $P(A \cap B)$?									
	(a) $\frac{1}{9}$	(b) $\frac{1}{6}$	(c) $\frac{1}{3}$	(d) $\frac{1}{2}$						
3.	3. Sejam a, b números reais tais que $e^{a+b} = 1$ e $\ln(a) = 4$. Qual o valor de b ?									
	(a) $-e^4$	(b) -4	(c) 2	(d) e^2						
4.	4. Considere a função definida em \mathbb{R} por $f(x) = x^2 + \cos(2x)$. Qual dos seguintes valores é uma abcissa de um ponto de inflexão do gráfico de f ?									
	(a) 0	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$						
5.	5. Seja $z=r\cdot\mathrm{cis}\left(\theta\right)$ um número complexo não nulo. Sabemos que									
	$w = cis\left(\frac{\pi}{3}\right) \cdot z$									
	é um número complexo com parte real nula. Qual das seguintes opções pode representar um argumento θ de $z?$									
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) 0						
6. Qual o limite da sucessão $u_n = \tan\left(\frac{\pi}{4} + \frac{1}{2n}\right)$?										
	(a) $\frac{\sqrt{3}}{3}$	(b) 1	(c) $\sqrt{3}$	(d) $+\infty$						

Grupo 2

- [1,4] (a) Justifique que a equação $e^{-x} = \ln(x)$ tem pelo menos uma solução $x_0 \in]1,3[$. Para tal, estude a existência de zeros para a função $h(x) = e^{-x} \ln(x)$.
- [1,4] (b) Admita que a solução x_0 da equação $e^{-x} = \ln(x)$ considerada na alínea anterior é única. Utilizando a calculadora gráfica, indique uma aproximação de x_0 às centésimas.

(Alternativa: Estude a monotonia da função definida em \mathbb{R}^+ por $h(x) = e^{-x} - \ln(x)$ e justifique que a solução da equação $e^{-x} = \ln(x)$ considerada na alínea (a) é única.)

Grupo 3

Considere a função

$$f(x) = \begin{cases} \frac{1 - \cos(2x)}{x} & \text{se } x \in]-\infty, 0[\\ 0 & \text{se } x = 0\\ \frac{\ln(1 + x^2)}{x} & \text{se } x > 0 \end{cases}$$

- [1,5] (a) Mostre que f é contínua em x = 0.
- [1,5] **(b)** Determine os zeros da função f no intervalo $[-2\pi, 0]$.
- [1,0] (c) Estude a existência de assímptota horizontal para f em $+\infty$. (Pode utilizar o facto de que, para valores de x suficientemente grandes, $\ln(1+x^2) < \ln(x^3)$.)

Grupo 4

Considere a função $g: \mathbb{R}^+ \to \mathbb{R}$ definida por $g(t) = e^{-t}$. Dado $P = (x, e^{-x})$, um ponto no gráfico de g, considere a recta r, tangente ao gráfico no ponto P. A recta r intersecta o eixo das ordenadas e o eixo das abcissas nos pontos Q e R, respectivamente. Seja A a área do triângulo OQR, em que O é a origem do referencial.

[2,0] (a) Verifique que a área A do triângulo OQR é dada, em função da abcissa x do ponto P, por

$$A(x) = \frac{1}{2} \cdot e^{-x} \cdot (x+1)^2$$
 $(x > 0)$

[2,0] (b) Determine os intervalos de monotonia da função A(x) e estude a existência de extremos.

Grupo 5

[1,0] (a) Determine a forma algébrica do número complexo

$$w = \frac{(\operatorname{cis}(\frac{\pi}{3}))^5}{(1-i)^2}$$

[1,0] (b) Determine a área da região delimitada, no plano complexo, pelas condições

$$z \cdot \overline{z} \ge 1$$
, $0 \le Im(z) \le 1$ e $0 \le Re(z) \le 1$