FEATURES

- OUTPUT SWITCH CURRENT IN EXCESS OF 1.5A
- 2% REFERENCE ACCURACY
- LOW QUIESCENT CURRENT:2.5mA(TYP.)
- OPERATING FROM 3V TO 40V
- FREQUENCY OPERATION TO 100KHz
- ACTIVE CURRENT LIMITING
- MOISTURE SENSITIVITY LEVEL 3
- MC34063AG is Halogen Free products

APPLICATION

- Battery Chargers
- NICs / Switches / Hubs
- ADSL Modems
- Negative Voltage Power Supplies

ORDERING INFORMATION

Device	Package
MC34063AD	SOP-8
MC34063AGD	30F-6
MC34063AN	DIP-8

DESCRIPTION

The MC34063A series is a monolithic control circuit delivering the main functions for DC-DC voltage converting.

The device contains an intermal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit driver and high current output switch.

Output voltage is adjustable through two external resistors with a 2% reference accuracy.

Employing a minimum number of external components the MC34063A devices series is designed for Step-Down, Step-Up and Voltage-Inverting applications.

BLOCK DIAGRAM

THERMAL DATA

SYMBOL	PARAMETER	DIP-8	SOP-8	UNIT
$R_{\text{thi-amb}}$	Thermal Resistance Junction-ambient () Max	100	160	°C/w

 $^{(\}dot{\ })$ This Value depends from thermal design of PCB on which the device is mounted.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	VALUE	UNIT
V _{cc}	Power Supply Voltage	50	V
V _{ir}	Comparator input Voltage Range	-0.3 to 40	V
V_{SWC}	Switch Collector Voltage	40	V
V_{SWE}	Switch Emitter Voltage (VSWC=40V)	40	V
V_{CE}	Switch Collector to Emitter Voltage	40	V
V_{dc}	Driver Collector Voltage	40	V
I _{dc}	Driver Collector Current	100	mA
I _{sw}	Switch Current	1.5	Α
P _{tot}	Power Dissipation at T _{amb} =25 ℃ (for Plastic Package)	1.25	W
	(for SOIC Package)	0.625	
T _{op}	Operating Ambient Temperature Range	-30 to +125	$^{\circ}$
T _{stg}	Storage Temperature Range	-40 to +150	$^{\circ}$

Absolute Maximum Rating are those values beyond which damage to the device may occur.

Functional operation under these condition is not implied.

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, V_{CC} =5V, T_a = T_{LOW} to T_{HIGH} , unless otherwise specified, see note 2)

OSCILLATOR

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Fosc	Frequency	$V_{pin5} = 0 \text{ V , C}_{T} = 1 \text{nF , T}_{a} = 25^{\circ}\text{C}$	24	33	42	KHz
I _{chg}	Charge Current	$V_{CC} = 5 \text{ to } 40V , T_a = 25^{\circ}C$	24	35	42	μA
I _{dischg}	Discharge Current	$V_{CC} = 5 \text{ to } 40V , T_a = 25^{\circ}C$	140	220	260	μA
I _{dischg} /I _{chg}	Discharge to Charge Current Ratio	Pin 7= V _{CC} ,T _a = 25°C	5.2	6.5	7.5	
V _{ipk(sense)}	Current Limit Sense Voltage	I _{chg} = I _{dischg} ,T _a = 25°C	250	300	350	mV

OUTPUT SWITCH

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{CE(sat)}$	Saturation Voltage,	I _{SW} = 1A ,Pins 1,8 connected		1.0	1.3	V
	Darlington connection					
V _{CE(sat)}	Saturation Voltage	I_{SW} = 1A , R_{pin8} = 82 Ω to V_{CC} ,		0.45	0.7	V
		Forced β ~ 20				
h _{FE}	DC Current Gain	I _{SW} = 1A, V _{CE} = 5V, T _a = 25°C	50	75		
I _{C(off)}	Collector Off-State Current	V _{CE} = 40V		0.01	100	μA

COMPARATOR

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{th}	Threshold Voltage	T _a = 25°C	1.225	1.25	1.275	V
		T _a = T _{LOW} to T _{HIGH}	1.21		1.29	V
Reg _{line}	Threshold Voltage Line Regulation	V _{CC} = 3 to 40V		1	5	mV
I _{IB}	Input Bias Current	V _{IN} = 0V		-5	-400	nA

TOTAL DEVICE

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{cc}	Supply Current	V_{CC} = 5 to 40V, C_T =1 nF		1.4	4	mA
		Pin7= V_{CC} , V_{pin5} > V_{th} , Pin2=GND				
		Remaining pins open				
		for MC34063A				

Notes

- 1) Maximum package power dissipation limit must be observed.
- 2) T_{LOW} = '-30°C, T_{HIGH} = '+125°C
- 3) If Darlington configuration is not used, care must be taken to avoid deep saturation of output switch.

The resulting switch-off time may be adversely affected.

In a Darlington configuration the following output driver condition is suggested:

Forced β of output current switch= ${l_{\text{OUTPUT}}}/({l_{\text{CDRIVER}}}\text{-}1^{\text{mA}^{\star}}){\geq}10$

^{*} Current less due to a built in 1kΩ antileakage resistor.

TYPICAL ELECTRICAL CHARACTERISTICS

Emitter Follower Configuration Output Saturation Voltage vs Emitter Current

Common Emitter Configuration Output Switch Saturation Voltage vs Collector Current

Power Collector Emitter Ssturation Voltage $(V_{\text{CE(sat)}})$ vs Temperature

Output Switch ON-OFF Time vs Oscillator Timing Capacitor

Darlington Configuration Collector Emitter Saturation Voltage (V_{CE(sat)}) vs Temperature

Current Limit Sense Voltage Voltage (V_{ipk}) vs Temperature

TYPICAL ELECTRICAL CHARACTERISTICS (Continued)

Reference Voltage vs Temperature

Bias Current vs Temperature

Supply Current vs Temperature

Supply Current vs Input Voltage

TYPICAL APPLICATION CIRCUIT

Step-Up Converter

Step-Down Converter

Step-Up With External NPN Switch

Voltage Inverting Converter

Step-Down With External NPN Switch

Step-Down With External PNP Switch

Voltage Inverting With External NPN Switch

Voltage Inverting With External PNP Saturated Switch

Dual Output Voltage

Higher Output Power, Higher Input Voltage

Design Formula Table

Calculation	Step-Up	Step-Down	Voltage-Inverting
ton/toff	Vout + VF - Vin(min) Vin(min) - Vsat	Vout + VF Vin(min) - Vsat	Vout + VF Vin + Vsat
(ton/toff)max	1 fmin	1 fmin	1 fmin
Ст	4.0 X 10 ⁻⁵ ton	4.0 X 10 ⁻⁵ ton	4.0 X 10 ⁻⁵ ton
lpk(switch)	$2lout(max) \left(\frac{ton}{toff} + 1 \right)$	2Iout(max)	$2lout(max) \left(\frac{ton}{toff} + 1 \right)$
Rsc	0.3 / Ipk(switch)	0.3 / Ipk(switch)	0.3 / Ipk(switch)
L(min)	$\left(\frac{V_{\text{in(min)}} - V_{\text{sat}}}{I_{\text{pk(switch)}}}\right) x \text{ ton(max)}$	$\left(\frac{Vin(min)-Vsat-Vout}{Ipk(switch)}\right) x ton(max)$	$\left(\frac{V_{\text{in(min)}} - V_{\text{sat}}}{I_{\text{pk(switch)}}}\right) \times t_{\text{on(max)}}$
Со	$9 \frac{lout ton}{Vripple(pp)}$	$\frac{I_{pk(switch)}(ton + toff)}{8V_{ripple(pp)}}$	$9 \frac{lout ton}{Vripple(pp)}$

TERMS AND DEFINITIONS

Vsat - Saturation voltage of the output switch.

VF - Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

Vin - Nominal input voltage.

Vout - Desired output voltage.

lout - Desired output current.

fmin- Minimum desired output switching frequency at the selected values of Vin and Io.

V_{ripple(p-p)} – Desired peack-to-peack output ripple voltage. In practice the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.