EIGENVECTORS AND EIGENVALUES

An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ .

Note that an eigenvector cannot be zero. Allowing \mathbf{x} to be the zero vector would render the definition meaningless, because $A\mathbf{0} = \lambda \mathbf{0}$ is true for all real values of λ . An eigenvalue of $\lambda = 0$, however, is possible.

EXAMPLE. For the matrix

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

verify that $\mathbf{x}_1 = (1, 0)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_1 = 2$, and that $\mathbf{x}_2 = (0, 1)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_2 = -1$.

SOLUTION.

Multiplying \mathbf{x}_1 by A produces

$$A\mathbf{x}_{1} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
Eigenvalue Eigenvector

So, $\mathbf{x}_1 = (1, 0)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_1 = 2$. Similarly, multiplying \mathbf{x}_2 by A produces

$$A\mathbf{x}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
$$= -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

So, $\mathbf{x}_2 = (0, 1)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_2 = -1$.

Example.

Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

Verify that $\lambda_1 = 5$ is an eigenvalue of A corresponding to \mathbf{x}_1 and that $\lambda_2 = -1$ is an eigenvalue of A corresponding to \mathbf{x}_2 .

Solution.

To verify that $\lambda_1 = 5$ is an eigenvalue of A corresponding to \mathbf{x}_1 , multiply the matrices A and \mathbf{x}_1 , as follows.

$$A\mathbf{x}_1 = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{x}_1$$

Similarly, to verify that $\lambda_2 = -1$ is an eigenvalue of A corresponding to \mathbf{x}_2 , multiply A and \mathbf{x}_2 .

$$A\mathbf{x}_2 = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \lambda_2 \mathbf{x}_2.$$

EXAMPLE. For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

verify that

$$\mathbf{x}_1 = (-3, -1, 1)$$
 and $\mathbf{x}_2 = (1, 0, 0)$

are eigenvectors of A and find their corresponding eigenvalues.

SOLUTION.

Multiplying \mathbf{x}_1 by A produces

$$A\mathbf{x}_1 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix}.$$

So, $\mathbf{x}_1 = (-3, -1, 1)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_1 = 0$. Similarly, multiplying \mathbf{x}_2 by A produces

$$A\mathbf{x}_{2} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

So, $\mathbf{x}_2 = (1, 0, 0)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_2 = 1$.

EXAMPLE. Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \mathbf{u} and \mathbf{v} eigenvectors of A ?

SOLUTION.

$$A\mathbf{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4\mathbf{u}$$

$$A\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Thus \mathbf{u} is an eigenvector corresponding to an eigenvalue (-4), but \mathbf{v} is not an eigenvector of A, because $A\mathbf{v}$ is not a multiple of \mathbf{v} .

EXAMPLE. Show that 7 is an eigenvalue of matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, and find the corresponding eigenvectors.

SOLUTION. The scalar 7 is an eigenvalue of A if and only if the equation

$$A\mathbf{x} = 7\mathbf{x} \tag{1}$$

has a nontrivial solution. But (1) is equivalent to $A\mathbf{x} - 7\mathbf{x} = \mathbf{0}$, or

$$(A - 7I)\mathbf{x} = \mathbf{0} \tag{2}$$

To solve this homogeneous equation, form the matrix

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

The columns of A - 7I are obviously linearly dependent, so (2) has nontrivial solutions. Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations:

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The general solution has the form $x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Each vector of this form with $x_2 \neq 0$ is an eigenvector corresponding to $\lambda = 7$.

The equivalence of equations (1) and (2) obviously holds for any λ in place of $\lambda = 7$. Thus λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0} \tag{3}$$

has a nontrivial solution. The set of *all* solutions of (3) is just the null space of the matrix $A - \lambda I$. So this set is a *subspace* of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ . The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .

Eigenspaces

EXAMPLE. Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. An eigenvalue of A is 2. Find a basis for the corresponding eigenspace.

SOLUTION. Form

$$A - 2I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$$

and row reduce the augmented matrix for $(A - 2I)\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

At this point, it is clear that 2 is indeed an eigenvalue of A because the equation $(A - 2I)\mathbf{x} = \mathbf{0}$ has free variables. The general solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, \quad x_2 \text{ and } x_3 \text{ free}$$

The eigenspace is a two-dimensional subspace of \mathbb{R}^3 . A basis is

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}$$

If A is an $n \times n$ matrix with an eigenvalue λ and a corresponding eigenvector \mathbf{x} , then every nonzero scalar multiple of \mathbf{x} is also an eigenvector of A. This may be seen by letting c be a nonzero scalar, which then produces

$$A(c\mathbf{x}) = c(A\mathbf{x}) = c(\lambda \mathbf{x}) = \lambda(c\mathbf{x}).$$

It is also true that if \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors corresponding to the *same* eigenvalue λ , then their sum is also an eigenvector corresponding to λ , because

$$A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \lambda \mathbf{x}_1 + \lambda \mathbf{x}_2 = \lambda (\mathbf{x}_1 + \mathbf{x}_2).$$

In other words, the set of all eigenvectors of a given eigenvalue λ , together with the zero vector, is a subspace of \mathbb{R}^n . This special subspace of \mathbb{R}^n is called the **eigenspace** of λ .

If A is an $n \times n$ matrix with an eigenvalue λ , then the set of all eigenvectors of λ , together with the zero vector

 $\{0\} \cup \{x: x \text{ is an eigenvector of } \lambda\},\$

is a subspace of \mathbb{R}^n . This subspace is called the **eigenspace** of λ .

Theorem.

The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3×3 case. If A is upper triangular, then $A - \lambda I$ has the form

$$A - \lambda I = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

The scalar λ is an eigenvalue of A if and only if the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution, that is, if and only if the equation has a free variable. Because of the zero entries in $A - \lambda I$, it is easy to see that $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has a free variable if and only if at least one of the entries on the diagonal of $A - \lambda I$ is zero. This happens if and only if λ equals one of the entries a_{11} , a_{22} , a_{33} in A.

EXAMPLE. Let
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$. The eigenval-

ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example? This happens if and only if the equation

$$A\mathbf{x} = 0\mathbf{x} \tag{4}$$

has a nontrivial solution. But (4) is equivalent to $A\mathbf{x} = \mathbf{0}$, which has a nontrivial solution if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not invertible.

Theorem.

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

PROOF Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly dependent. Since \mathbf{v}_1 is nonzero, one of the vectors in the set is a linear combination of the preceding vectors. Let p be the least index such that \mathbf{v}_{p+1} is a linear combination of the preceding (linearly independent) vectors. Then there exist scalars c_1, \dots, c_p such that

$$c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p = \mathbf{v}_{p+1} \tag{5}$$

Multiplying both sides of (5) by A and using the fact that $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$ for each k, we obtain

$$c_1 A \mathbf{v}_1 + \dots + c_p A \mathbf{v}_p = A \mathbf{v}_{p+1}$$

$$c_1 \lambda_1 \mathbf{v}_1 + \dots + c_p \lambda_p \mathbf{v}_p = \lambda_{p+1} \mathbf{v}_{p+1}$$
(6)

Multiplying both sides of (5) by λ_{p+1} and subtracting the result from (6), we have

$$c_1(\lambda_1 - \lambda_{p+1})\mathbf{v}_1 + \dots + c_p(\lambda_p - \lambda_{p+1})\mathbf{v}_p = \mathbf{0}$$
(7)

Since $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent, the weights in (7) are all zero. But none of the factors $\lambda_i - \lambda_{p+1}$ are zero, because the eigenvalues are distinct. Hence $c_i = 0$ for $i = 1, \dots, p$. But then (5) says that $\mathbf{v}_{p+1} = \mathbf{0}$, which is impossible. Hence $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ cannot be linearly dependent and therefore must be linearly independent.

EXAMPLE. Is 5 an eigenvalue of
$$A = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix}$$
?

SOLUTION.

The number 5 is an eigenvalue of A if and only if the equation $(A - 5I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution. Form

$$A - 5I = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 \\ 3 & -5 & 5 \\ 2 & 2 & 1 \end{bmatrix}$$

and row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 1 & 0 \\ 3 & -5 & 5 & 0 \\ 2 & 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 8 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 0 & -5 & 0 \end{bmatrix}$$

At this point, it is clear that the homogeneous system has no free variables. Thus A - 5I is an invertible matrix, which means that 5 is *not* an eigenvalue of A.

EXAMPLE. If **x** is an eigenvector of A corresponding to λ , what is A^3 **x**? SOLUTION.

If x is an eigenvector of A corresponding to λ , then $Ax = \lambda x$ and so

$$A^{2}\mathbf{x} = A(\lambda \mathbf{x}) = \lambda A\mathbf{x} = \lambda^{2}\mathbf{x}$$

Again, $A^3\mathbf{x} = A(A^2\mathbf{x}) = A(\lambda^2\mathbf{x}) = \lambda^2 A\mathbf{x} = \lambda^3\mathbf{x}$. The general pattern, $A^k\mathbf{x} = \lambda^k\mathbf{x}$, is proved by induction.

EXAMPLE.

Suppose that \mathbf{b}_1 and \mathbf{b}_2 are eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 , respectively, and suppose that \mathbf{b}_3 and \mathbf{b}_4 are linearly independent eigenvectors corresponding to a third distinct eigenvalue λ_3 . Does it necessarily follow that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ is a linearly independent set?

Yes. Suppose $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + (c_3\mathbf{b}_3 + c_4\mathbf{b}_4) = \mathbf{0}$. Since any linear combination of eigenvectors corresponding to the same eigenvalue is in the eigenspace for that eigenvalue, $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ is either $\mathbf{0}$ or an eigenvector for λ_3 . If $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ were an eigenvector for λ_3 , then $\{\mathbf{b}_1, \mathbf{b}_2, c_3\mathbf{b}_3 + c_4\mathbf{b}_4\}$ would be a linearly independent set, which would force $c_1 = c_2 = 0$ and $c_3\mathbf{b}_3 + c_4\mathbf{b}_4 = \mathbf{0}$, contradicting that $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ is an eigenvector. Thus $c_3\mathbf{b}_3 + c_4\mathbf{b}_4$ must be $\mathbf{0}$, implying that $c_1\mathbf{b}_1 + c_2\mathbf{b}_2 = \mathbf{0}$ also. $\{\mathbf{b}_1, \mathbf{b}_2\}$ is a linearly independent set so $c_3 = c_4 = 0$. Since all of the coefficients c_1, c_2, c_3 , and c_4 must be zero, it follows that $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4\}$ is a linearly independent set.

THE CHARACTERISTIC EQUATION

To find the eigenvalues and eigenvectors of an $n \times n$ matrix A, let I be the $n \times n$ identity matrix. Writing the equation $A\mathbf{x} = \lambda \mathbf{x}$ in the form $\lambda I\mathbf{x} = A\mathbf{x}$ then produces

$$(\lambda I - A)\mathbf{x} = \mathbf{0}.$$

This homogeneous system of equations has nonzero solutions if and only if the coefficient matrix $(\lambda I - A)$ is *not* invertible—that is, if and only if the determinant of $(\lambda I - A)$ is zero.

Let A be an $n \times n$ matrix.

1. An eigenvalue of A is a scalar λ such that

$$\det(\lambda I - A) = 0.$$

2. The eigenvectors of A corresponding to λ are the nonzero solutions of

$$(\lambda I - A)\mathbf{x} = \mathbf{0}.$$

The equation $det(\lambda I - A) = 0$ is called the **characteristic equation** of A. Moreover, when expanded to polynomial form, the polynomial

$$|\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0$$

is called the **characteristic polynomial** of A. This definition tells you that the eigenvalues of an $n \times n$ matrix A correspond to the roots of the characteristic polynomial of A. Because the characteristic polynomial of A is of degree n, A can have at most n distinct eigenvalues.

REMARK: The Fundamental Theorem of Algebra states that an *n*th-degree polynomial has precisely *n* roots. These *n* roots, however, include both repeated and complex roots. We will be concerned only with the real roots of characteristic polynomials—that is, real eigenvalues.

EXAMPLE.

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}.$$

SOLUTION.

The characteristic polynomial of A is

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix}$$

$$= (\lambda - 2)(\lambda + 5) - (-12)$$

$$= \lambda^2 + 3\lambda - 10 + 12$$

$$= \lambda^2 + 3\lambda + 2$$

$$= (\lambda + 1)(\lambda + 2).$$

So, the characteristic equation is $(\lambda + 1)(\lambda + 2) = 0$, which gives $\lambda_1 = -1$ and $\lambda_2 = -2$ as the eigenvalues of A. For $\lambda_1 = -1$, the coefficient matrix is

$$(-1)I - A = \begin{bmatrix} -1 - 2 & 12 \\ -1 & -1 + 5 \end{bmatrix} = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix},$$

which row reduces to

$$\begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix}$$

showing that $x_1 - 4x_2 = 0$. Letting $x_2 = t$, you can conclude that every eigenvector of λ_1 is of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad t \neq 0.$$

For $\lambda_2 = -2$, you have

$$(-2)I - A = \begin{bmatrix} -2 - 2 & 12 \\ -1 & -2 + 5 \end{bmatrix} = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}.$$

Letting $x_2 = t$, you can conclude that every eigenvector of λ_2 is of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3t \\ t \end{bmatrix} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ t \neq 0.$$

Try checking $Ax = \lambda_i x$ for the eigenvalues and eigenvectors in this example.

EXAMPLE. Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$.

SOLUTION. We must find all scalars λ such that the matrix equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$

has a nontrivial solution. This problem is equivalent to finding all λ such

$$A - \lambda I = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}$$

This matrix fails to be invertible precisely when its determinant is zero. So the eigenvalues of A are the solutions of the equation

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix} = 0$$

Recall that

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

So

$$\det(A - \lambda I) = (2 - \lambda)(-6 - \lambda) - (3)(3)$$

$$= -12 + 6\lambda - 2\lambda + \lambda^2 - 9$$

$$= \lambda^2 + 4\lambda - 21$$

$$= (\lambda - 3)(\lambda + 7)$$

If $\det(A - \lambda I) = 0$, then $\lambda = 3$ or $\lambda = -7$. So the eigenvalues of A are 3 and -7.

EXAMPLE.

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

What is the dimension of the eigenspace of each eigenvalue?

SOLUTION.

The characteristic polynomial of A is

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3.$$

So, the characteristic equation is $(\lambda - 2)^3 = 0$.

So, the only eigenvalue is $\lambda = 2$. To find the eigenvectors of $\lambda = 2$, solve the homogeneous linear system represented by (2I - A)x = 0.

$$2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This implies that $x_2 = 0$. Using the parameters $s = x_1$ and $t = x_3$, you can find that the eigenvectors of $\lambda = 2$ are of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad s \text{ and } t \text{ not both zero.}$$

Because $\lambda = 2$ has two linearly independent eigenvectors, the dimension of its eigenspace is 2.

If an eigenvalue λ_1 occurs as a *multiple root* (k times) of the characteristic polynomial, then λ_1 has **multiplicity** k. This implies that $(\lambda - \lambda_1)^k$ is a factor of the characteristic polynomial and $(\lambda - \lambda_1)^{k+1}$ is not a factor of the characteristic polynomial.

EXAMPLE.

Find the eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

and find a basis for each of the corresponding eigenspaces.

SOLUTION.

The characteristic polynomial of A is

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ 0 & \lambda - 1 & -5 & 10 \\ -1 & 0 & \lambda - 2 & 0 \\ -1 & 0 & 0 & \lambda - 3 \end{vmatrix}$$
$$= (\lambda - 1)^2 (\lambda - 2)(\lambda - 3).$$

So, the characteristic equation is $(\lambda - 1)^2(\lambda - 2)(\lambda - 3) = 0$ and the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 2$, and $\lambda_3 = 3$. (Note that $\lambda_1 = 1$ has a multiplicity of 2.)

You can find a basis for the eigenspace of $\lambda_1 = 1$ as follows.

$$(1)I - A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -5 & 10 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & 0 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Letting $s = x_2$ and $t = x_4$ produces

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0s - 2t \\ s + 0t \\ 0s + 2t \\ 0s + t \end{bmatrix} = s \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \end{bmatrix}.$$

A basis for the eigenspace corresponding to $\lambda_1 = 1$ is

$$B_1 = \{(0, 1, 0, 0), (-2, 0, 2, 1)\}.$$
 Basis for $\lambda_1 = 1$

For $\lambda_2 = 2$ and $\lambda_3 = 3$, follow the same pattern to obtain the eigenspace bases

$$B_2 = \{(0, 5, 1, 0)\}$$
 Basis for $\lambda_2 = 2$
 $B_3 = \{(0, -5, 0, 1)\}$. Basis for $\lambda_3 = 3$

EXAMPLE.

Find the characteristic equation of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SOLUTION.

$$\det(A - \lambda I) = \det \begin{bmatrix} 5 - \lambda & -2 & 6 & -1 \\ 0 & 3 - \lambda & -8 & 0 \\ 0 & 0 & 5 - \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix}$$
$$= (5 - \lambda)(3 - \lambda)(5 - \lambda)(1 - \lambda)$$

The characteristic equation is

$$(5-\lambda)^2(3-\lambda)(1-\lambda)=0$$

Oſ

$$(\lambda - 5)^2(\lambda - 3)(\lambda - 1) = 0$$

Expanding the product, we can also write

$$\lambda^4 - 14\lambda^3 + 68\lambda^2 - 130\lambda + 75 = 0$$

In Examples $\det(A - \lambda I)$ is a polynomial in λ . It can be shown that if A is an $n \times n$ matrix, then $\det(A - \lambda I)$ is a polynomial of degree n called the **characteristic polynomial** of A.

EXAMPLE. The characteristic polynomial of a 6×6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$. Find the eigenvalues and their multiplicities.

SOLUTION. Factor the polynomial

$$\lambda^{6} - 4\lambda^{5} - 12\lambda^{4} = \lambda^{4}(\lambda^{2} - 4\lambda - 12) = \lambda^{4}(\lambda - 6)(\lambda + 2)$$

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and -2 (multiplicity 1).