Chapter 2

Solving Linear Equations

2.1 Linear Equations

2.1.1 Definition of Linear Equations

 \forall linear equations

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.
\end{cases} (2.1)$$

where $m, n \in \mathbb{N}^+$. The equations are linear, which means that the unknowns are only multiplied by numbers.

2.1.2 The Matrix Form of the Equations

The matrix form of linear equations 2.1 is

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

This linear equations could be expressed as

$$A\mathbf{x} = \mathbf{b}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & \cdots & | \end{bmatrix} = \begin{bmatrix} - & \mathbf{r}_1^{\mathrm{T}} & - \\ - & \mathbf{r}_2^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{r}_m^{\mathrm{T}} & - \end{bmatrix},$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

A is called the coefficient matrix. This linear equations could also be expressed as

$$A\mathbf{x} = x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \mathbf{r}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix} = \mathbf{b}.$$

2.2 Gauss-Jordan Elimination

2.2.1 Objective Matrix

 $\forall m \times n \text{ matrix } A$

$$A = \begin{bmatrix} A(1,1) & A(1,2) & \cdots & A(1,n) \\ A(2,1) & A(2,2) & \cdots & A(2,n) \\ \vdots & \vdots & \ddots & \vdots \\ A(m,1) & A(m,2) & \cdots & A(m,n) \end{bmatrix}$$

where $m, n \in \mathbb{N}^+$. $\forall 1 \leq i \leq m, 1 \leq j \leq n$ and $i, j \in \mathbb{N}^+$, A(i, j) represents the component at the *i*-th row, *j*-th column of A, so its value will not necessarily remain the same in the following steps of Gauss-Jordan Elimination.

2.2.2 Operations and Shorthands

1. $P_{(i,j)}A$

This notation represents a matrix multiplication, which means that switching the i-th row and j-th row of the matrix A. The matrix $P_{(i,j)}$ is shown as follows:

$$P_{(i,j)} = P = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}.$$

where P is a $m \times m$ matrix. For $1 \leq l \leq m, l \neq i, l \neq j$ and $l \in \mathbb{N}^+$, P(i,j) = P(j,i) = P(l,l) = 1 and other components of P is 0.

2. $D_{(i,k)}^{-1}A$

This notation represents a matrix multiplication, which means that multiplying the

i-th row of the matrix A by a number k. The matrix $D_{(i,k)}^{-1}$ is shown as follows:

$$D_{(i,k)}^{-1} = D^{-1} = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & k & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}.$$

where D^{-1} is a $m \times m$ matrix. For $k \in \mathbb{R}, 1 \leq l \leq m, l \neq i$ and $l \in \mathbb{N}^+, D^{-1}(i, i) = k, D^{-1}(l, l) = 1$ and other components of D^{-1} is 0.

3. $E_{(j,i,k)}A$

This notation represents a matrix multiplication, which means that adding the multiple of the *i*-th row of A by a number k into the j-th row of A. The matrix $E_{(j,i,k)}$ is shown as follows:

$$E_{(j,i,k)} = E = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & k & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}.$$

where E is a $m \times m$ matrix. For $k \in \mathbb{R}, 1 \leq l \leq m$ and $l \in \mathbb{N}^+$, E(j, i) = k, E(l, l) = 1 and other components of E is 0.

4. eliminationBelow(i, j)

The prerequisite of this operation is $A(i,j) \neq 0$. This notation represents a series of operations: For $l = i+1, i+2, \cdots, m$, adding the multiple of the *i*-th row of A by a number $-\frac{A(l,j)}{A(i,j)}$ into the l-th row of A. This operation is implemented as follows:

$$E_{\left[m,i,-\frac{A(m,j)}{A(i,j)}\right]}E_{\left[m-1,i,-\frac{A(m-1,j)}{A(i,j)}\right]}\cdots E_{\left[i+1,i,-\frac{A(i+1,j)}{A(i,j)}\right]}A.$$

5. eliminationAbove(i, j)

The prerequisite of this operation is $A(i,j) \neq 0$. This notation represents a series of operations: For $l = 1, 2 \cdots, i-1$, adding the multiple of the *i*-th row of A by a number $-\frac{A(l,j)}{A(i,j)}$ into the *l*-th row of A. This operation is implemented as follows:

$$E_{[i-1,i,-\frac{A(i-1,j)}{A(i,j)}]}\cdots E_{[2,i,-\frac{A(2,j)}{A(i,j)}]}E_{[1,i,-\frac{A(1,j)}{A(i,j)}]}A.$$

6. $\mathbf{searchPivot}(i, j)$

This notation represents a series of operations to search the pivot at the i-th row and no less than j-th column of the matrix A:

- (1) If $A(i,j) \neq 0$, A(i,j) is the pivot at the *i*-th row of the matrix A.
- (2) If A(i,j) = 0, we check $A(i+1,j), A(i+2,j), \dots, A(m,j)$ from the small row number to the large row number.
 - a. If $A(l,j) \neq 0$ where $i < l \leq m$ and $l \in \mathbb{N}^+$, A(l,j) is the pivot. Then we take the operation $P_{(i,l)}A$. Now A(i,j) is the pivot at the *i*-th row of the matrix A.
 - b. If $A(i,j) = A(i+1,j) = \cdots = A(m,j) = 0$, we take the operation $\mathbf{searchPivot}(i,j+1)$, $\mathbf{searchPivot}(i,j+2)$, \cdots , $\mathbf{searchPivot}(i,n)$ from the small column number to the large column number.
 - (a) If we can search the pivot in the operation $\mathbf{searchPivot}(i,l)$ where $j < l \le n$ and $l \in \mathbb{N}^+$, after the exchange of rows (if there is), A(i,l) is the pivot at the *i*-th row of the matrix A.
 - (b) If we have reached **searchPivot**(i, n) but still can not find the pivot. There is no pivot at the *i*-th row of the matrix A.

2.2.3 The Flow of Gauss-Jordan Elimination

Gauss-Jordan Elimination which is applied to the matrix A is shown as follows:

- 1. **searchPivot**(1, 1), and we find the pivot $A(1, c_1)$ where $1 \le c_1 \le n$ and $c_1 \in \mathbb{N}^+$;
- 2. eliminationBelow $(1, c_1)$;
- 3. **searchPivot** $(2, c_1 + 1)$, and we find the pivot $A(2, c_2)$ where $c_1 + 1 \le c_2 \le n$ and $c_2 \in \mathbb{N}^+$;

- 4. eliminationBelow $(2, c_2)$;
- 5. **searchPivot** $(3, c_2 + 1)$, and we find the pivot $A(3, c_3)$ where $c_2 + 1 \le c_3 \le n$ and $c_2 \in \mathbb{N}^+$;
- 6. eliminationBelow $(3, c_3)$;
- 7. **searchPivot** $(4, c_3 + 1)$, and we find the pivot $A(4, c_4)$ where $c_3 + 1 \le c_4 \le n$ and $c_3 \in \mathbb{N}^+$;
- 8. eliminationBelow $(4, c_4)$;

We teriminate this process until we meet one of these three situations:

- 1. We have found the pivot at the m-th row of the matrix A;
- 2. We have found the pivot at the n-th column of the matrix A;
- 3. We have found that a row of the matrix A does not have a pivot.

Now, the matrix A has become the Row Echelon Form (REF). There are l pivots in this matrix where $1 \leq l \leq \min\{m,n\}$ and $l \in \mathbb{N}^+$. The REF of the matrix A is shown as follows:

$$U = \begin{bmatrix} B_1 & B_2 & \cdots & B_l \end{bmatrix}$$

where

$$B_{j} = \begin{bmatrix} e_{1\left(j+\sum_{i=0}^{j-1}k_{i}\right)} & b_{1\left(j+1+\sum_{i=0}^{j-1}k_{i}\right)} & \cdots & b_{1\left(j+\sum_{i=0}^{j}k_{i}\right)} \\ e_{2\left(j+\sum_{i=0}^{j-1}k_{i}\right)} & b_{2\left(j+1+\sum_{i=0}^{j-1}k_{i}\right)} & \cdots & b_{2\left(j+\sum_{i=0}^{j}k_{i}\right)} \\ \vdots & \vdots & \ddots & \vdots \\ e_{(j-1)\left(j+\sum_{i=0}^{j-1}k_{i}\right)} & b_{(j-1)\left(j+1+\sum_{i=0}^{j-1}k_{i}\right)} & \cdots & b_{(j-1)\left(j+\sum_{i=0}^{j}k_{i}\right)} \\ a_{j} & b_{j\left(j+1+\sum_{i=0}^{j-1}k_{i}\right)} & \cdots & b_{j\left(j+\sum_{i=0}^{j}k_{i}\right)} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

and $1 \leq j \leq l$, $k_0 = 0$ and $j, k_1, k_2, \dots, k_l \in \mathbb{N}^+$. The implicit constraint is

$$l + \sum_{i=0}^{l} k_i = n.$$

The Row Echelon Form (REF) of the matrix A could be transformed into the Reduced Row Echelon Form (RREF). The process is shown as follows:

1.
$$D_{\left(l,\frac{1}{a_l}\right)}^{-1} \cdots D_{\left(2,\frac{1}{a_2}\right)}^{-1} D_{\left(1,\frac{1}{a_1}\right)}^{-1} A;$$

- 2. elimination Above(1, 1);
- 3. eliminationAbove $(2, 2 + k_1)$;

l+1. eliminationAbove $\left(l,l-2+\sum\limits_{i=1}^{l-1}k_i\right)$.

Now, the matrix A has become the <u>Reduced Row Echelon Form (RREF)</u>. There are stll l pivots in this matrix. The RREF of the matrix A is shown as follows:

$$R = \begin{bmatrix} RB_1 & RB_2 & \cdots & RB_l \end{bmatrix}$$

where

$$RB_{j} = \begin{bmatrix} 0 & c & & & & & & & & & & \\ & 1 \left(j + 1 + \sum_{i=0}^{j-1} k_{i} \right) & \cdots & c & & & \\ & 2 \left(j + 1 + \sum_{i=0}^{j-1} k_{i} \right) & \cdots & c & & \\ & 2 \left(j + 1 + \sum_{i=0}^{j-1} k_{i} \right) & \cdots & c & & \\ & \vdots & & \vdots & & \ddots & \vdots & \\ 0 & c & & & & \vdots & & \\ & (j-1) \left(j + 1 + \sum_{i=0}^{j-1} k_{i} \right) & \cdots & c & \\ & & \left(j - 1 \right) \left(j + \sum_{i=0}^{j} k_{i} \right) & & \\ 1 & c & & & & & \\ & j \left(j + 1 + \sum_{i=0}^{j-1} k_{i} \right) & \cdots & c & \\ & & j \left(j + \sum_{i=0}^{j} k_{i} \right) & & & \\ 0 & 0 & \cdots & 0 & & \\ \vdots & \vdots & \ddots & \vdots & & \\ 0 & 0 & \cdots & 0 & & \\ \end{bmatrix}$$

and $1 \leq j \leq l$, $k_0 = 0, j, k_1, k_2, \dots, k_l \in \mathbb{N}^+$. The implicit constraint is

$$l + \sum_{i=0}^{l} k_i = n.$$

However, there may be zero columns in U and R, but the conclusion will not change too much.

2.2.4 Gauss-Jordan Elimination and Linear Equations

 \forall linear equations, we eliminate the unknowns with only 0 coefficients to get the coefficient matrix A and vector \mathbf{b}

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

where $m, n \in \mathbb{N}^+$ and $\forall \ 1 \leq i \leq n, \ i \in \mathbb{N}^+$

$$a_{1i}^2 + a_{2i}^2 + \dots + a_{mi}^2 \neq 0.$$

The augmented matrix of the linear equations is

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}.$$

In order to find the solution of these linear equations, we apply the Gauss-Jordan Elimination into this augmented matrix to get its RREF matrix

$$\begin{bmatrix} RB_1 & RB_2 & \cdots & RB_l & \mathbf{d}. \end{bmatrix}$$

where (assume that there exists solutions in the linear equations)

$$RB_{j} = \begin{bmatrix} 0 & c & & & & & & & & & & & & \\ & 1 \left(j+1+\sum\limits_{i=0}^{j-1}k_{i} \right) & \cdots & c & & & & \\ & 2 \left(j+1+\sum\limits_{i=0}^{j-1}k_{i} \right) & \cdots & c & & & \\ & 2 \left(j+\sum\limits_{i=0}^{j}k_{i} \right) & & & 2 \left(j+\sum\limits_{i=0}^{j}k_{i} \right) \\ \vdots & \vdots & \ddots & \vdots & & \\ 0 & c & & & & \vdots \\ 0 & c & & & & & \vdots \\ 0 & c & & & & & & \\ & (j-1) \left(j+1+\sum\limits_{i=0}^{j-1}k_{i} \right) & \cdots & c \\ & & j \left(j+1+\sum\limits_{i=0}^{j-1}k_{i} \right) & \cdots & c \\ & & j \left(j+\sum\limits_{i=0}^{j}k_{i} \right) \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} d_{1} \\ d_{2} \\ \vdots \\ d_{l-1} \\ d_{l} \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

and $1 \le j \le l$, $k_0 = 0$, $j, k_1, k_2, \dots, k_l \in \mathbb{N}^+$.

The solution of the linear equations is divided into two parts:

1. Free Variables:

$$x_{2}, x_{3}, \cdots, x_{1+k_{1}} \in \mathbb{R};$$

$$x_{3+k_{1}}, x_{4+k_{1}}, \cdots, x_{2+k_{1}+k_{2}} \in \mathbb{R};$$

$$x_{4+k_{1}+k_{2}}, x_{5+k_{1}+k_{2}}, \cdots, x_{3+k_{1}+k_{2}+k_{3}} \in \mathbb{R};$$

$$\vdots$$

$$x_{l+1+\sum_{i=1}^{l-1} k_{i}}, x_{l+2+\sum_{i=1}^{l-1} k_{i}}, \cdots, x_{l+\sum_{i=1}^{l} k_{i}} \in \mathbb{R}.$$

2. Pivots:

$$\begin{split} x_1 &= d_1 - \sum_{j=0}^{l-1} \sum_{u=1}^{k_{j+1}} c_1 \binom{j+u+1+\sum\limits_{i=0}^{j} k_i}{x} \binom{j+u+1+\sum\limits_{i=0}^{j} k_i}{y}, \\ x_{2+k_1} &= d_2 - \sum_{j=1}^{l-1} \sum_{u=1}^{k_{j+1}} c_2 \binom{j+u+1+\sum\limits_{i=1}^{j} k_i}{x} \binom{j+u+1+\sum\limits_{i=1}^{j} k_i}{y}, \\ x_{3+k_1+k_2} &= d_3 - \sum_{j=2}^{l-1} \sum_{u=1}^{k_{j+1}} c_3 \binom{j+u+1+\sum\limits_{i=2}^{j} k_i}{x} \binom{j+u+1+\sum\limits_{i=2}^{j} k_i}{y}, \\ &\vdots \\ x_{l+\sum\limits_{i=1}^{l-1} k_i} &= d_l - \sum_{j=l-1}^{l-1} \sum_{u=1}^{k_{j+1}} c_l \binom{j+u+1+\sum\limits_{i=l-1}^{j} k_i}{y} \binom{j+u+1+\sum\limits_{i=l-1}^{j} k_i}{y}. \end{split}$$

2.3 Solutions to Ax = 0 and Ax = b

2.3.1 The Special Solution to Ax = 0

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+, \text{ for the equation } A\mathbf{x} = \mathbf{0} \text{ where } A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Suppose that $x_{p_1}, x_{p_2}, \dots, x_{p_r}$ are pivots; $x_{q_1}, x_{q_2}, \dots, x_{q_{n-r}}$ are free variables $(1 \leq p_1 < p_2 < \dots < p_r \leq n; 1 \leq q_1 < q_2 < \dots < q_{n-r} \leq n; 1 \leq r \leq n; p_1, p_2, \dots, p_r, q_1, q_2, \dots, q_{n-r}, r \in \mathbb{N}^+)$. If we apply Gauss-Jordan Elimination to the matrix A, then the pivots can be expressed as a function of free variables.

$$x_{p_1} = P_1(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$x_{p_2} = P_2(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$\vdots$$

$$x_{p_r} = P_r(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}).$$

where P_1, P_2, \cdots, P_r are polynomial functions.

A series of *n*-dimensional vectors: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}$ are constructed as the solutions to $A\mathbf{x} = \mathbf{0}$. $\forall 1 \leq i \leq n-r, 1 \leq j \leq n$ and $i, j \in \mathbb{N}^+$, the construction process of \mathbf{x}_i is shown as following:

1. The q_j -th component of \mathbf{x}_i is 1:

$$x_{q_i} = 1.$$

2. The $q_1, q_2, \dots, q_{j-1}, q_{j+1}, \dots, q_{n-r}$ -th component of \mathbf{x}_i are 0.

$$x_{q_1} = x_{q_2} = \dots = x_{q_{i-1}} = x_{q_{i+1}} = \dots = x_{q_{n-r}} = 0.$$

3. The p_1, p_2, \dots, p_r -th component of \mathbf{x}_i are determined as the polynomial functions above.

The special solution to $A\mathbf{x} = \mathbf{0}$ is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{n-r}$:

$$\mathbf{x}_n = x_{q_1}\mathbf{x}_1 + x_{q_2}\mathbf{x}_2 + \dots + x_{q_{n-r}}\mathbf{x}_{n-r},$$

where $x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}} \in \mathbb{R}$.

2.3.2 The Complete Solution to Ax = b

 $\forall m \times n \text{ matrix } A \text{ where } m, n \in \mathbb{N}^+ \text{ such that the equation } A\mathbf{x} = \boldsymbol{b} \text{ is solvable, let}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Suppose that $x_{p_1}, x_{p_2}, \dots, x_{p_r}$ are pivots; $x_{q_1}, x_{q_2}, \dots, x_{q_{n-r}}$ are free variables $(1 \leq p_1 < p_2 < \dots < p_r \leq n; \ 1 \leq q_1 < q_2 < \dots < q_{n-r} \leq n; \ 1 \leq r \leq n; \ p_1, p_2, \dots, p_r, q_1, q_2, \dots, q_{n-r}, \ r \in \mathbb{N}^+)$. If we apply Gauss-Jordan Elimination to the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$, then we can get the matrix $\begin{bmatrix} R & \mathbf{d} \end{bmatrix}$, where the matrix R is the RREF (Reduced Row Echelon Form) of the matrix R. The pivots can be expressed as a function of free variables.

$$x_{p_1} = d_1 + P_1(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$x_{p_2} = d_2 + P_2(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}),$$

$$\vdots$$

$$x_{p_r} = d_r + P_r(x_{q_1}, x_{q_2}, \cdots, x_{q_{n-r}}).$$

where P_1, P_2, \dots, P_r are polynomial functions.

The complete solution to $A\mathbf{x} = \mathbf{b}$ is divided into two parts: The particular solution \mathbf{x}_p to $A\mathbf{x}_p = \mathbf{b}$ and the special solution \mathbf{x}_n to $A\mathbf{x}_n = \mathbf{0}$.

1. The particular solution \mathbf{x}_p to $A\mathbf{x}_p = \mathbf{b}$

 \mathbf{x}_p is a *n*-dimensional vector. The construction process of \mathbf{x}_p is shown as following:

(a) The q_1, q_2, \dots, q_{n-r} -th component of \mathbf{x}_p are 0.

$$x_{q_1} = x_{q_2} = \dots = x_{q_{n-r}} = 0.$$

(b) The p_1, p_2, \dots, p_r -th component of \mathbf{x}_p are determined as the polynomial functions above.

2. The special soution \mathbf{x}_n to $A\mathbf{x}_n = \mathbf{0}$.

 \mathbf{x}_n is a n-dimensional vector. The construction process of \mathbf{x}_n is in the previous part.

Therefore, the complete solution to $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n$$
.

2.3.3 Solutions Conditions of Ax = b

Apply Gauss-Jordan Elimination into the argumented matrix $[A, \mathbf{b}]$ to get the matrix $[R, \mathbf{d}]$.

1. If there exists a row in the matrix $[R, \mathbf{d}]$ is

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & d \end{bmatrix}$$

where $d \neq 0$, which means that all elements in this row are 0 except the element at the last column. Then the linear equations have no solutions.

- 2. If there are no such rows as above in the matrix $[R, \mathbf{d}]$, assume that the number of pivots in the matrix is p and the number of unknowns is n
 - If p < n, then there are infinite solutions in the linear equations.
 - If p = n, then there is a unique solution in the linear equations.

In particular, if $\mathbf{b} = \mathbf{0}$, then the vector $\mathbf{0}$ is always a solution of the linear equations. Therefore, they can only have either a unique solution or infinite solutions.

2.4 Elimination = Factorization: A = LU

2.4.1 Elimination and A = LU

Suppose that A is a $n \times n$ square matrix where $n \in \mathbb{N}^+$. If we apply Gauss-Jordan Elimination into the matrix A to get its REF, and there are no any row switches in this process, then the matrix A becomes the product of two special matrices:

$$A = LU$$

where L is a lower triangular matrix and U is a upper triangular matrix. In addition, U is the REF of the matrix A. Suppose that

$$E_k \cdots E_2 E_1 A = U$$
,

where $k \in \mathbb{N}^+$ and E_1, E_2, \dots, E_k is a series of **eliminationBelow** operations in Gauss-Jordan Elimination. Therefore,

$$A = (E_k \cdots E_2 E_1)^{-1} U = (E_1^{-1} E_2^{-1} \cdots E_k^{-1}) U = LU.$$

2.4.2 A = LU and A = LDU

Suppose that A is a $n \times n$ square matrix where $n \in \mathbb{N}^+$ and A can be factored into A = LU. The matrix U can be splitted as the product of two special matrices. Suppose that the matrix U is

where $1 < k_1 < k_2 < \cdots < k_l = n$ and $k_1, k_2, \cdots, k_l \in \mathbb{N}^+$. The matrix U can be splitted as the product of two special matrices: D and U. Both the matrix D and the latter matrix U are $n \times n$ matrices. The matrix D is shown as follows:

$$D = \begin{bmatrix} p_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_l & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

The latter matrix U is shown as follows:

Thus, the matrix A becomes the product of three special matrices:

$$A = LDU$$
.

If $S = S^{T}$ is factored into LDU with no row switches, then U is exactly L^{T} :

$$S = LDL^{\mathrm{T}}.$$

2.4.3 PA = LU

Suppose that A is a $n \times n$ square matrix where $n \in \mathbb{N}^+$. If we apply Gauss-Jordan Elimination into the matrix A to get its REF, and there are row switches in this process, then the row switches can be done in advance. Their product P puts the rows of A in the right order, so that no exchanges are needed for PA. Then

$$PA = LU$$
.