Operation Analytics and Investigating Metric Spike

By Sudhansu

AGENDA

- □ Project Description
- Approach
- Tech-Stack Used
- Insights
- ☐ Result

Project Description

With the help of operation analytics, the company can find the areas on which it must improve upon. Being one of the most important parts of a company, this kind of analysis is further used to understanding between cross-functional teams, and more effective workflows. Investigating metric spike is also an important part of operation analytics as being a Data Analyst we must be able to understand or make other teams understand questions like- Why is there a dip in daily engagement? Why have sales taken a dip? Etc. Questions like these must be answered daily and for that it's very important to investigate metric spike.

working for a company like Microsoft designated as Data Analyst Lead and is provided with different data sets, tables from which I must derive certain insights out of it and answer the questions asked by different departments.

Approach

Database creation: Created and inserted the values in the database using the DDL & DML SQL queries provided by the product manager(as per project) in the MySQL database using MySQL workbench.

Extraction of insights: After creating the database required insights are generated from the database tables by running SQL queries in MySQL workbench.

Tech-Stack Used

Used MySQL Community Server - GPL Version 8.0.29 and Connector Version C++ 8.0.29 for creating my project as MySQL Community Server - GPL is a free and open-source relational database management system that uses SQL.

Insights: Job Data

Number of jobs reviewed: Amount of jobs reviewed over time.task: Calculate the number of jobs reviewed per hour per day for November 2020?

```
WITH jobs_review_per_hr
    AS (SELECT ds AS "review date",
    Round(Count(job_id) / Sum(time_spent) * 3600) AS "review_per_hr"
    FROM    job_data
    WHERE    Month(ds) = 11
    GROUP BY ds)
SELECT Round(Sum(review_per_hr) / 30) AS "jobs reviewed per hr per day"
FROM    jobs_review_per_hr;
```


/* Throughput: It is the no. of events happening per second.task: Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?*/

	review_date	jobs_review_per_sec	7-days rolling average
•	2020-11-01	0.019	0.019
	2020-11-02	0.012	0.016
	2020-11-03	0.019	0.017
	2020-11-04	0.017	0.017
	2020-11-05	0.012	0.016
	2020-11-06	0.020	0.017
	2020-11-07	0.013	0.016
	2020-11-08	0.012	0.015
	2020-11-09	0.013	0.015
	2020-11-10	0.014	0.014
	2020-11-11	0.015	0.014
	2020-11-12	0.021	0.015
	2020-11-13	0.014	0.015
	2020-11-14	0.012	0.014
	2020-11-15	0.013	0.015
	2020-11-16	0.019	0.015
	2020-11-17	0.014	0.015
	2020-11-18	0.017	0.016

6

/*Percentage share of each language: Share of each language for different contents.task: Calculate the percentage share of each language in the last 30 days?*/

```
SELECT language,
    Round(Count(*) / Sum(Count(*))
OVER() * 100, 2) AS "percentage share(%)"
FROM job_data
WHERE Month(ds) = 11
GROUP BY language
ORDER BY Round(Count(*) / Sum(Count(*))
OVER() * 100, 2) DESC;
```

	language	percentage share(%)		
•	French	17.39		
	English	17.10		
	Arabic	17.10		
	Hindi	16.52		
	Persian	16.52		
	Italian	15.36		

/*Duplicate rows: Rows that have the same value present in them.task: Let's say you see some duplicate rows in the data. How will you display duplicates from the table?*/

	ds	job_id	actor_id	event	language	time_spent	org	count_of_dulplicate_rows
•	2020-10-16	8	1032	decision	Hindi	80	С	2
	2020-10-19	23	1006	decision	Italian	84	Α	2
	2020-10-20	14	1026	transfer	French	94	В	2
	2020-10-21	14	1015	skip	Persian	85	Α	3
	2020-10-23	6	1047	skip	English	81	D	3
	2020-10-24	11	1018	transfer	Italian	81	В	2
	2020-10-25	22	1021	decision	Italian	74	D	2
	2020-10-25	23	1014	decision	English	56	С	3
	2020-10-25	20	1029	transfer	Hindi	75	D	2
	2020-10-26	12	1024	decision	Hindi	112	D	2
	2020-10-26	18	1021	skip	Persian	107	В	2
	2020-10-30	5	1042	transfer	Hindi	96	A	4
	2020-10-30	19	1026	transfer	Persian	60	C	3
	2020-11-01	21	1017	skip	English	44	С	2
	2020-11-03	5	1034	transfer	Hindi	34	D	2
	2020-11-04	24	1042	skip	Hindi	44	Α	2
	2020-11-05	22	1050	decision	Hindi	119	Α	2
	2020-11-08	10	1046	decision	French	111	С	2
	2020-11-10	7	1050	skip	Arabic	104	В	3
	2020-11-10	14	1046	decision	Hindi	63	D	2
	2020-11-10	9	1019	decision	Italian	62	D	3
	2020-11-14	19	1043	decision	Persian	108	D	3
	2020-11-15	15	1022	skip	Arabic	79	В	3
	2020-11-15	4	1014	skip	Hindi	108	В	2
	2020-11-17	24	1024	decision	Arabic	104	В	3

Insights: Investigating metric spike

/* Case Study 2 (Investigating metric spike) *//* User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service. Your task: Calculate the weekly user engagement?*/

```
SELECT Concat("week-", Week(occurred_at), " ", Year(occurred_at)) AS
   "week number",
   Count(user_id) AS
   "count of weekly engagement"
FROM events_table
WHERE event_type = "engagement"
GROUP BY 1
ORDER BY 1;
```

	week number	count of weekly engagement
١	week-17 2014	8019
	week-18 2014	17341
	week-19 2014	17224
	week-20 2014	17911
	week-21 2014	17151
	week-22 2014	18413
	week-23 2014	18280
	week-24 2014	19052
	week-25 2014	18642
	week-26 2014	19061
	week-27 2014	19881
	week-28 2014	20776
	week-29 2014	20067
	week-30 2014	21533
	week-31 2014	18556
	week-32 2014	16612
	week-33 2014	16145
	week-34 2014	16127
	week-35 2014	784

/* User Growth: Amount of users growing over time for a product. Your task: Calculate the user growth for product?*/

```
WITH new_active_users

AS (SELECT Date_format(activated_at, "%m %y") AS "Months",

Count(user_id) AS "New_users"

FROM users

WHERE state = "active"

GROUP BY 1)

SELECT *,

Round(( new_users / Lag(new_users, 1, 160)

OVER(ORDER BY "months") - 1 ) * 100, 2)

AS "% growth rate"

FROM new_active_users
```

	Months	New_users	% growth rate
١	January 2013	160	0.00
	February 2013	160	0.00
	March 2013	150	-6.25
	April 2013	181	20.67
	May 2013	214	18.23
	June 2013	213	-0.47
	July 2013	284	33.33
	August 2013	316	11.27
	September 2013	330	4.43
	October 2013	390	18.18
	November 2013	399	2.31
	December 2013	486	21.80
	January 2014	552	13.58
	February 2014	525	-4.89
	March 2014	615	17.14
	April 2014	726	18.05
	May 2014	779	7.30
	June 2014	873	12.07
	July 2014	997	14.20
	August 2014	1031	3.41

/* Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?*/

```
WITH signup users
    AS (SELECT user id,
               Week (occurred at) AS "sign up week"
        FROM events table
        WHERE event type = "signup flow"
               AND event name = "complete signup"),
     engagement users
    AS (SELECT user id,
               Week (occurred at) AS "first engagement week"
        FROM events table
        WHERE event type = "engagement"),
     cal table
    AS (SELECT e.user id,
               e.first engagement week AS "week num",
               first engagement week - sign up week AS "retention week"
        FROM engagement users e
               LEFT JOIN signup users s
                      ON e.user id = s.user id)
SELECT week num,
       Sum (CASE
            WHEN retention week = 1 THEN 1
            ELSE 0
          END) AS "No. of users weekly retain"
FROM cal table
GROUP BY week num
ORDER BY week num;
```

	week_num	No. of users weekly retain
١	17	168
	18	365
	19	364
	20	377
	21	362
	23	387
	22	389
	24	404
	25	394
	29	425
	26	403
	30	456
	28	438
	27	420
	31	392
	32	357
	33	349
	34	349

/*Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly. Your task: Calculate the weekly engagement per device?*/

```
SELECT Concat("week-", Week(occurred_at), "", Year(occurred_at)) AS
    "week number",
    device,
    Count(user_id) AS
    "count of weekly engagement"

FROM events_table
WHERE event_type = "engagement"
GROUP BY 1,
    2
ORDER BY 1,
    2;
```

	week number	device	count of weekly engagement
٠	week-17 2014	acer aspire desktop	67
	week-17 2014	acer aspire notebook	206
	week-17 2014	amazon fire phone	83
	week-17 2014	asus chromebook	251
	week-17 2014	dell inspiron desktop	187
	week-17 2014	dell inspiron notebook	503
	week-17 2014	hp pavilion desktop	132
	week-17 2014	htc one	190
	week-17 2014	ipad air	330
	week-17 2014	ipad mini	205
	week-17 2014	iphone 4s	217
	week-17 2014	iphone 5	706
	week-17 2014	iphone 5s	473
	week-17 2014	kindle fire	57
	week-17 2014	lenovo thinkpad	793
	week-17 2014	mac mini	59
	week-17 2014	macbook air	490
	week-17 2014	macbook pro	1516
	week-17 2014	nexus 10	145
	week-17 2014	nexus 5	382
	week-17 2014	nexus 7	177
	week-17 2014	nokia lumia 635	128
	week-17 2014	samsumg galaxy tablet	70
	week-17 2014	samsung galaxy note	116

/* Email Engagement: Users engaging with the email service. Your task: Calculate the email engagement metrics?*/

```
SELECT Week (occurred at) AS week num,
       CASE
              WHEN action = 'sent weekly digest' THEN 1
               ELSE 0
       end AS "sent weekly digest",
       CASE
              WHEN action = 'email open' THEN 1
              ELSE 0
       end AS "email open",
       CASE
              WHEN action = 'email clickthrough' THEN 1
               ELSE 0
       end AS "email clickthrough",
       CASE
              WHEN action = 'sent reengagement email' THEN 1
               ELSE 0
       end AS "sent reengagement email"
       email events )
FROM
SELECT week num,
         avg(sent_weekly_digest) AS "sent_weekly_digest Rate",
avg(email_open) AS "email_open Rate",
         avg(email clickthrough) AS "email clickthrough Rate",
         avg(sent reengagement email) AS "sent reengagement email Rate"
         email metric
FROM
GROUP BY week num
ORDER BY week num;
```

W	veek_num	sent_weekly_digest Rate	email_open Rate	email_dickthrough Rate	sent_reengagement_email Rate
17	7	0.6232	0.2128	0.1139	0.0501
18	3	0.6345	0.2224	0.1049	0.0383
19	9	0.6216	0.2267	0.1113	0.0404
20)	0.6162	0.2264	0.1143	0.0431
21	1	0.6352	0.2282	0.0997	0.0369
22	2	0.6359	0.2156	0.1066	0.0419
23	3	0.6239	0.2234	0.1118	0.0409
24	4	0.6161	0.2292	0.1099	0.0448
25	5	0.6377	0.2179	0.1054	0.0390
26	5	0.6299	0.2222	0.1061	0.0418
27	7	0.6224	0.2249	0.1137	0.0390
28	3	0.6292	0.2248	0.1077	0.0383
29	9	0.6398	0.2171	0.1051	0.0379
30)	0.6229	0.2324	0.1059	0.0388
31	1	0.6527	0.2325	0.0766	0.0382
32	2	0.6659	0.2285	0.0714	0.0342
33	3	0.6473	0.2310	0.0791	0.0426
34	4	0.6433	0.2391	0.0767	0.0767
35	5	0.0000	0.3228	0.2992	0.0760

Results

□ In this project, I learned how to apply advanced SQL concepts like Windows Functions, etc. I understood how the real-world industry works. It helped me in mastering my SQL concepts. I learned how to ask the right questions given the circumstances. From the given data and questions, which columns to consider and how to find the valuable insights which help the business to grow. I learned how the company find different areas related to the company to improve it further. I got to know about investigating metric spike (why there is a boom and why there is a dip).

Thank you