

Ngôn ngữ lập trình C++

BÀI TẬP ÔN THI HSG TỈNH 2021

Cho bảng kí tự gồm N dòng và M cột. Ban đầu, tất cả các ô vuông của bảng có ghi một kí tự là dấu chấm '.'. Trò chơi CROSS WORD được mô tả như sau:

Có hai xâu kí tự X và Y. Xâu X gồm M kí tự chữ cái in hoa, xâu Y gồm N kí tự chữ cái in hoa. Người chơi có nhiệm vụ đặt xâu X vào hàng ngang của bảng, xâu Y vào cột của bảng sao cho:

- Các kí tự từ trái sang phải (trên dòng đặt xâu X) tạo thành xâu X.
- Các kí tự từ trên xuống dưới (trên cột đặt xâu Y) tạo thành xâu Y.
- Xâu X và Y giao nhau tại một kí tự (kí tự này thuộc cả hai xâu), kí tự này phải xuất hiện đầu tiên trong xâu X và xâu Y (ưu tiên xuất hiện đầu tiên trong X trước).

Yêu cầu: Bạn là người chơi trò chơi CROSS WORD, hãy tìm vị trí đặt xâu X và Y theo đúng yêu cầu của trò chơi.

Dữ liệu cho trong file CROSSWORD.INP gồm một dòng duy nhất chứa hai xâu X và Y. Hai xâu cách nhau bởi kí tự trống, gồm các kí tự chữ cái in hoa, có ít nhất một kí tự chung. Độ dài của xâu X và Y không quá 30.

Kết quả ghi ra file CROSSWORD.OUT gồm bảng sau khi đặt xâu X và Y vào đúng quy định của trò chơi.

Ví dụ:

CROSSWORD.INP	CROSSWORD.OUT
BANANA PIDZAMA	.P .I .D .Z BANANA .M
MAMA TATA	.T MAMA .T .A
REPUBLIKA HRVATSKA	H REPUBLIKA V A S K

Một số được gọi là số xấu xí nếu số đó là 1 hoặc khi phân tích thành các thừa số nguyên tố, chỉ chứa các thừa số thuộc {2, 3, 5}. Ví dụ: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12,...

Yêu cầu: Cho số nguyên dương n, tìm số xấu xí thứ n (trong dãy các số xấu xí được sắp xếp tăng dần).

Dữ liệu cho trong file UGLYNUM.INP gồm số nguyên dương n ($n \le 500$).

Kết quả ghi ra file UGLYNUM.OUT là số xấu xí thứ *n* tìm được.

Ví du:

UGLYNUM.INP	UGLYNUM.OUT
1	1 * * * * *
9	10
2	2

Cho n số nguyên dương a_1 , a_2 , ..., a_n không đồng thời bằng nhau. Tìm số nguyên dương d lớn nhất sao cho $a_1 \% d = a_2 \% d = ... = a_n \% d$.

Dữ liệu cho trong file remain.inp gồm:

- Dòng đầu ghi số nguyên dương n ($n \le 100$).
- Dòng sau ghi n số nguyên dương $a_1, a_2, ..., a_n$.

Kết quả ghi ra file remain.out là số nguyên dương d tìm được.

Ví du:

remain.inp	remain.out
3	2
379	· 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1

Giới hạn:

- Sub1: $a_i \le 10^6$;
- Sub2: $a_i \le 10^{16}$.

24♥. Sắp xếp đặc biệt – SpecSort.Cpp

Cho ba dãy số nguyên $A_1, A_2, ..., A_N; B_1, B_2, ..., B_N; C_1, C_2, ..., C_N$. Độ đặc biệt của ba dãy là số các chỉ số i ($1 \le i \le N$) thỏa mãn: $A_i < B_i < C_i$.

Yêu cầu: Hãy sắp xếp các dãy $A_1, A_2, ..., A_N$; $B_1, B_2, ..., B_N$; $C_1, C_2, ..., C_N$ sao cho độ đặc biệt của ba dãy sau khi sắp xếp là lớn nhất.

Dữ liệu cho trong file SpecSort.Inp gồm:

- Dòng 1 ghi số nguyên dương *N*.
- Dòng 2 ghi N số nguyên $A_1, A_2, ..., A_N$;
- Dòng 3 ghi N số nguyên $B_1, B_2, ..., B_N$;
- Dòng 4 ghi N số nguyên $C_1, C_2, ..., C_N$.

Design and Analysis of Algorithms

Kết quả ghi ra SpecSort.Out là độ đặc biệt lớn nhất của 3 dãy số có thể đạt được khi sắp xếp lại vị trí các số hạng trong từng dãy.

Ví dụ:

SpecSort.Inp	SpecSort.Out	Giải thích
5	3	Có thể sắp xếp lại 3 dãy như sau:
961418		1, 6, 8, 9, 14
2 10 3 12 11		3, 2, <mark>10, 12</mark> , 11
15 13 5 7 4		4, 7, <mark>15</mark> , <mark>13</mark> , 5

Giới hạn:

- $1 \le N \le 10^5$;
- $1 \le A_i, B_i, C_i \le 10^9$.

5☆. Ước bé thứ hai

Ta nhận thấy, với mọi số tự nhiên x > 1 đều có ít nhất là hai ước dương vì luôn có ước là 1 và x. Ta gọi ước nhỏ thứ 2 của x là second(x). Chú ý là ước dương nhỏ nhất của x luôn bằng 1.

Yêu cầu: Cho N số nguyên dương A_I , A_2 , ..., A_N ($A_i > 1$), hãy tính tổng second(A_I) + second(A_2) + ... + second(A_N).

Dữ liệu cho trong file SecondDivisor.Inp gồm:

- Dòng đầu ghi số nguyên dương N là số các số hạng của dãy.
- Dòng thứ 2 ghi N số nguyên dương A_1 , A_2 , ..., A_N .

Kết quả ghi ra file SecondDivisor.Out là tổng second(A_1) + second(A_2) + ... + second(A_N). *Ví dụ*:

SecondDivisor.Inp	SecondDivisor.Out	Giải thích
3	7	Ước nhỏ thứ 2 của 2 là 2
2 3 4		Ước nhỏ thứ 2 của 3 là 3
		Ước nhỏ thứ 2 của 4 là 2
		Tổng bằng $2 + 3 + 2 = 7$.

Giới hạn:

- 50% số test ứng với $N \le 2000$; $2 \le A_i \le 10^9$;
- 50% số test còn lại ứng với $N \le 500000$; $2 \le A_i \le 10^7$;

Ta gọi S_k là dãy các kí tự khi viết liên tiếp k số tự nhiên 1, 2, ..., k.

Ví dụ: $S_1 = 1$, $S_2 = 12$, $S_3 = 123$, $S_{12} = 123456789101112$.

Yêu cầu: Cho số tự nhiên i, tìm chữ số thứ i trong dãy vô hạn $S_1S_2S_3...$

Dữ liệu cho trong file SEQDIGIT.INP gồm:

• Dòng đầu ghi số nguyên dương t ($1 \le t \le 100$) là số testcase:

• t dòng tiếp theo, mỗi dòng ghi một số nguyên dương i ($1 \le i \le 2.10^9$).

Kết quả ghi ra file SEQDIGIT.OUT gồm t dòng, mỗi dòng là chữ số thứ i trong dãy vô hạn $S_1S_2S_3...$ Vi du:

SEQDIGIT.INP	SEQDIGIT.OUT	
2	2	
8	1	
2		

Giải thích: Dãy S₁S₂S₃S₄S₅S₆.... 112123123412345123456