Санкт-Петербургский государственный университет
Моделирование социально-экономических систем
Лекции
Доцент кафедры математического моделирования
энергетических систем, кандидат физмат. наук Александр Юрьевич Крылатов

Оглавление

1	Балансовая модель производства	2
	1.1 Модель «затрата - выпуск» (англ. input - output)	2
2	Лекции 2-3	6
	2.1 Прямая и двойственная задачи линейного программирования	6
	2.2 Задачи о дополнительности	8
3	Лекция 4	14
4	Лекции 5-6	17
	4.1 Двойственная задача программирования	17
	4.2 Задача выпуклого программирования	18
	4.3 Численные методы решения задач нелинейного программирования с огра-	
	ничениями	22
5	Лекция 7	2 3
6	Лекции 8-9	26
	6.1 Дуополия Курно (1838 г.)	26
	6.2 Более сложные модели производства	
	6.3 Дуополия Бертрана (1883 г.)	29
	6.4 Дуополия Хотеллинга (1929 г.)	29
	6.5 Дуополия Штакельберга (1934 г.)	30
7	Лекция 10	32
8	Лекция 11	33
	8.1 Двухуровневая оптимизация	33
9	Рекомендуемая дитература	35

Балансовая модель производства

1.1 Модель «затрата - выпуск» (англ. input - output)

Предположим следующее:

- 1) Количество продукции характеризуется одним числом (у каждого экономического объекта).
- 2) Комплектность потребления: для выпуска продукции экономический объект должен получить продукты от других объектов.
- 3) Линейность : для увеличения количества производства в n раз, необходимо увеличить ресурс в n раз.
- 4) Делимость на конечный продукт и на продукт, который будет использоваться в производстве.

Пусть n — количество субъектов (экономических субъектов), x_i — количество производства продукта i,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix},$$

 x_{ji} — количество продукта j, необходимого для производства i.

$$\begin{cases} x_{1i} = \alpha_{1i}x_i \\ x_{2i} = \alpha_{2i}x_i \\ \dots \\ x_{ni} = \alpha_{ni}x_i \end{cases}$$

$$A = \left[\begin{array}{cccc} \alpha_{11} & \dots & \alpha_{1n} \\ \dots & \dots & \dots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{array} \right]$$

Определение 1.1. A — матрица коэффициентов прямых затрат (матрица технологических коэффициентов).

Матрица A — положительно полуопределённая ($z^T A z \ge 0$, для любых ненулевых векторов z).

 y_i – количество *i*-го продукта на продажу.

$$\sum_{i=1}^{n} \alpha_{ji} x_i + y_i = x_j \qquad \forall j = \overline{1, n};$$
$$Ax + y = x \leftrightarrow y = (E - A)x$$

$$x = (E - A)^{-1}y$$
$$x_j \ge 0 \qquad \forall j = \overline{1, n}.$$

Для того, чтобы это уравнение имело единственное решение необходимо и достаточно, чтобы $det(E-A) \neq 0$.

3амечание 1.1. Далее под обозначением $x \ge 0$ будем понимать покомпонентную неотрицательность вектора x.

Определение 1.2. Квадратная матрица A, такая, что $A_{ij} \ge 0 \ \forall ij$, называется продуктивной, если существует хотя бы один такой вектор $\bar{x} > 0$, что $(E - A)\bar{x} > 0$.

Теорема 1.1. (О существовании и единственности решение балансовой системы уравнений) Матрица A продуктивна, тогда и только тогда, когда существует, единственно и неотрицательно решение системы (E-A)x=y для любого вектора $y\geq 0$.

Доказательство. Достаточность.

Рассмотрим $\bar{y}>0$ и $\bar{x}\geq 0.$ $(E-A)\bar{x}=\bar{y}>0$ \rightarrow $\bar{x}>A\bar{x}$ \rightarrow $\bar{x}\geq 0.$ $(E-A)\bar{x}>0$

Лемма 1.1. Если A – продуктивна, то

$$\lim_{\nu \to \infty} A^{\nu} = 0 \qquad \nu \in N$$

Доказательство. $\bar{x}\stackrel{\mathrm{def}}{>} A\bar{x}\geq 0$. Существует $\lambda:0<\lambda<1$ такая, что

$$\lambda \bar{x} > A\bar{x}$$
.

Домножим обе части на A:

$$\lambda A\bar{x} \ge A^2\bar{x} \ge 0$$

A теперь на λ :

$$\lambda^2 \bar{x} > \lambda A \bar{x} \ge 0$$

Не трудно увидеть, что $\lambda^2 \bar{x} > A^2 \bar{x} \geq 0$. Тогда продолжая этот процесс получим

$$\lambda^{\nu}\bar{x} > A^{\nu}\bar{x} > 0.$$

Так как $\lambda^{\nu} \to 0$ при $\nu \to \infty$, то $A^{\nu} \to 0$ при $\nu \to \infty$.

Лемма 1.2. Если A – продуктивна и существует такой вектор \bar{x} , что выполняется $\bar{x} \geq A\bar{x}$, то $\bar{x} \geq 0$.

Доказательство.

$$ar{x} \geq Aar{x} \geq A^2ar{x} \geq \cdots \geq A^{
u}ar{x}$$

 $ar{x} \geq A^{
u}ar{x} \to 0$, при $\nu \to \infty$
 $ar{x} > 0$

Лемма 1.3. Если A – продуктивна, то $det(E-A) \neq 0$.

Доказательство. От противного.

Если A – продуктивна, но det(E - A) = 0.

Пусть существует такой вектор $\hat{x} \neq 0$, и пусть $(E-A)\hat{x} = 0 \stackrel{\text{Lemmal.2}}{\Longrightarrow} \hat{x} \geq 0$. Теперь возьмем вектор $(-\hat{x}), \ (E-A)(-\hat{x}) = 0 \stackrel{\text{Lemmal.2}}{\Longrightarrow} (-\hat{x}) \geq 0$. Пришли к противоречию.

Необходимость.

$$(E - A)x = y \quad \forall y \ge 0$$

По Лемме 1.3 $det(E-A) \neq 0$, следовательно решение единственно.

$$(E-A)x \geq 0$$

В силу Леммы $1.2 \ x \ge 0$.

Теорема 1.2. Матрица $A \ge 0$ – продуктивна тогда и только тогда, когда $S = (E-A)^{-1}$ существует и не отрицательна.

Доказательство. Необходимость.

$$S = \{\sigma_{ij}\}_i^j$$

Рассмотрим $(E-A)x=u_i$, где

$$u_j = \begin{pmatrix} 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{pmatrix}$$
 (Единица на j -ом месте)

В силу теоремы (1.1) (E-A)x = y имеет единственное решение x = Sy, следовательно $\sigma_{ij} \ge 0 \quad \forall i = \overline{1, n}.$

Достаточность.

Рассмотрим $\hat{x}: (E-A)^{-1}u$

$$u = \begin{pmatrix} 1 \\ \dots \\ 1 \\ \dots \\ 1 \end{pmatrix}$$

$$\hat{x} = \sum_{i=1}^{n} \sigma_{ij}$$

Так как $|E-A| \neq 0, (E-A)^{-1}$ – ни один столбец не состоит из нулей. Тогда

$$\hat{x} = \sum_{i=1}^{n} \sigma_{ij} > 0$$

$$(E - A)\hat{x} = u > 0$$

$$S = (E - A)^{-1}$$

Определение 1.3. Компоненты матрицы S называются коэффициентами полезных затрат, а S – матрица коэффициентов полных затрат.

$$x = Sy$$

Составление плана не ясно, нужны комментарии.

Теорема 1.3. Если А продуктивная, то $\lim_{\nu \to \infty} y_{\nu} = (E - A)^{-1} y_0$.

Доказательство.
$$y_{\nu} = (E - A)^{-1}y_0 - (E - A)^{-1}A^{\nu+1}y_0 \to (E - A)^{-1}y_0$$

Пример про составление плана с двумя определениями не понятно. Спросить.

Лекции 2-3

2.1 Прямая и двойственная задачи линейного программирования

Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу линейного программирования, называемую двойственной или сопряженной по отношению к исходной или прямой. Связь исходной и двойственной задач заключается главным образом в том, что решение одной из них может быть получено непосредственно из решения другой.

Прямая задача: Двойственная задача:
$$\max_x c^T x \qquad \qquad \min_y d^T y$$

$$Ax \leq d \qquad \qquad A^T y \geq c$$

$$x \geq 0 \qquad \qquad y \geq 0$$

Лемма 2.1. Если x — допустимое решение прямой задачи, и вектор y — допустимое решение двойственной задачи:

$$c^T x \le x^T A^T y \le d^T y \tag{2.1}$$

Теорема 2.1. $c^Tx^\star=d^Ty^\star$, $\epsilon\partial e\ x^\star,\ y^\star$ – оптимальные решения (2.1).

$$L(d) = (c, x^{\star}) = (d, y^{\star})$$

$$\triangle L(d) = L(d + \triangle d) - L(d) = (d + \triangle d, y + \triangle y) - (d, y) =$$

$$= (\triangle d, y) + (d, \triangle y) + (\triangle d, \triangle y), \text{ при малом } \triangle d: \triangle y = 0[!!!!!!]$$

$$\triangle L(d) = (\triangle d, y)$$

Теорема 2.2. Для того, чтобы допустимые решения x и y прямой и двойственной задачи были оптимальными, необходимо и достаточно, чтобы имело место следующее:

$$y_j^* = 0, \ if \ \sum_{i=1}^m a_{ij} x_i^* < d_j$$
 (2.2)

$$x_i^* = 0, if \sum_{j=1}^n a_{ij} y_j^* < c_i$$
 (2.3)

Если же прямая задача является (??? какой), то необходимо и достаточно выполнение только второго условия.

Доказательство. Достаточность

$$1) \sum_{i=1}^{m} a_{ij}x_{i} \leq d_{j}, \ \forall j = \overline{1,n}$$

$$y_{j} \left(\sum_{i=1}^{m} a_{ij}x_{i}\right) = y_{j}d_{j}, \ \forall j = \overline{1,n}$$

$$\sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}x_{i}y_{j} = (d,y)$$

$$2) \sum_{j=1}^{n} a_{ij}y_{j} \geq c_{i}$$

$$\sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}x_{i}y_{j} = (c,x)$$

$$(d,y) = (c,x) \Rightarrow \text{ оптимальное}$$

Необходимость

$$(d, y) = (c, x) = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} x_i y_j$$
$$\sum_{i=1}^{m} d_i x_i = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} y_j \Rightarrow$$
$$\Rightarrow \sum_{i=1}^{m} (d_i - \sum_{j=1}^{n} a_{ij} y_j) = 0$$

$$\max c^T x \qquad \Leftrightarrow \qquad \min dy$$

$$Ax = d \qquad \qquad A^T y \ge c$$

$$x \ge 0$$

$$L_1 = c^T x + \lambda^T (Ax - d) + \eta^T x$$

$$L_2 = d^T y + \omega^T (c - A^T y)$$

 $\eta^T x = 0$ – третье условие Куна-Таккера \Rightarrow если $x = \omega$ и $\lambda = y,$ то Лагранжианы одинаковы.

2.2 Задачи о дополнительности

$$\max_{x} c^{T} x \qquad \qquad \min_{y} b^{T} y$$

$$Ax \le b \qquad \qquad A^{T} y \ge c$$

$$x \ge 0 \qquad \qquad y \ge 0$$

$$z^T \omega(z) = 0$$
$$z \ge 0$$
$$\omega \ge 0$$

$$\overline{z} = b^T y \ge y^T A x \ge c^T x = \underline{z}$$
 – верхняя и нижняя оценки

$$b^{T}y^{*} = c^{T}x^{*}$$

$$Ax - v = b, \ v \ge 0, \ x \ge 0$$

$$A^{T}y + u = c, \ u \ge 0, \ y \ge 0$$

$$(2.4)$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} c \\ -b \end{pmatrix} + \begin{pmatrix} 0 & -A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Из
$$(2.4) \Rightarrow x^T u + y^T v = 0$$

$$\omega=q+Mz$$
, где $q=\begin{pmatrix}c\\-b\end{pmatrix}$ $M=\begin{pmatrix}0&-A^T\\A&0\end{pmatrix}$

$$z = \begin{pmatrix} x \\ y \end{pmatrix} \implies \omega(z) = 0$$

[?????]

Теорема 2.3. Экстремальная задача

$$\min f(x)$$

$$f- выпуклая$$

$$g_1(x) = 0$$

$$g_i- выпуклые$$

$$\vdots$$

$$g_m(x) = 0$$

$$g_{m+1}(x) \leq 0$$

$$\vdots$$

$$g_{m+n} \leq 0$$

имеет оптимальное решение тогда и только тогда, когда

$$1) \frac{\partial L}{\partial x} = 0$$
 $2) g_i(x) \ \forall i = \overline{1,m}$ $3) \lambda_j g_j(x) = 0 \ \forall j = \overline{m+1,m+n}$ λ_q — множители Лагранжа, $: \lambda_q \geq 0, \ \forall q = \overline{m+1,m+n}$

9

 Π ример 1.

$$\min_{x} \sum_{i=1}^{n} \int_{0}^{x_{i}} f_{i}(u) du$$

$$\sum_{i=1}^{n} x_{i} = F$$

$$f_{i} \ge 0$$

$$L = \sum_{i=1}^{n} \int_{0}^{x_i} f_i(u) du + \omega(F - \sum_{i=1}^{n} x_i) + \sum_{i=1}^{n} (-x_i) \eta_i$$

$$\frac{\partial L}{\partial x_i} = f_i(x_i) - \omega - \eta_i$$
$$f_i(x_i) = \omega + \eta_i$$
$$\eta_i x_i \neq 0 \ \forall i$$

$$f_i(x_i^*) \begin{cases} = \omega, \ x_i^* > 0 \\ \ge \omega, \ x_i^* = 0 \end{cases}$$

[Добавить картинки и больше описания]

2.2.1 next lection

$$\max_{x} \sum_{i=1}^{n} \int_{0}^{x_{i}} f_{i}(u)du = \min_{x} \sum_{i=1}^{n} g(x_{i})$$

$$\sum_{i=1}^{n} x_{i} = F$$

$$f_{i} \ge 0$$

$$\eta_{i} \ge 0$$

$$L = \sum_{i=1}^{n} \int_{0}^{x_i} f_i(u) du + \omega(F - \sum_{i=1}^{n} x_i) + \sum_{i=1}^{n} (x_i) \eta_i$$

$$f_i(x_i) = \omega - \eta_i$$

$$f_i(x_i^*) \begin{cases} = \omega, \ x_i^* > 0 \\ \le \omega, \ x_i^* = 0 \end{cases}$$

Рис. 2.1

Рис. 2.2

[new example]

$$\min_{x} \sum_{i=1}^{n} f_i(x_i) x_i$$
$$\sum_{i=1}^{n} x_i = F$$
$$f_i \ge 0$$

$$L = \sum_{i=1}^{n} f_i(x_i)x_i + \omega(F - \sum_{i=1}^{n} x_i) + \sum_{i=1}^{n} (-x_i)\eta_i$$
$$\frac{\partial L}{\partial x_i} = f_i(x_i) + \frac{\partial f_i(x_i)}{\partial x_i}x_i - \omega - \eta_i$$
$$f_i(x_i) + \frac{\partial f_i(x_i)}{\partial x_i}x_i = \omega + \eta_i$$

$$f_i(x_i) + \frac{\partial f_i(x_i)}{\partial x_i} x_i \begin{cases} = \omega, \ x_i^* > 0 \\ \ge \omega, \ x_i^* = 0 \end{cases}$$

[рисунок перевернутой параболы]

$$\min_{x} \sum_{i=1}^{n} \int_{0}^{x_{i}} f_{i}(u) du$$
$$\sum_{i=1}^{n} x_{i} = F$$
$$x_{i} \ge 0$$

$$f_i(x_i^{\star}) \begin{cases} = \omega, \ x_i^{\star} > 0 \\ \ge \omega, \ x_i^{\star} = 0 \end{cases}$$

Пусть $f_i(x_i) = a_i + b_i x_i$. Тогда

$$a_i + b_i x_i^* \begin{cases} = \omega, \ x_i^* > 0 \\ \ge \omega, \ x_i^* = 0 \end{cases}$$

$$x_i^{\star} \begin{cases} = \omega - a_i, \ a_i \le \omega \\ = 0, \ a_i > \omega \end{cases}$$

[тут еще раз проверить с индексом к]

Перенумеруем a_i , чтобы $a_1 \leq a_2 \leq \cdots \leq a_n$. Существует такой номер k, что выполняется $a_k \leq \omega < a_{k+1}$. Тогда

$$\sum_{i=1}^{n} x_{i}^{\star} = \sum_{i=1}^{k} x_{i}^{\star} = \sum_{i=1}^{k} \frac{\omega}{b_{i}} - \sum_{i=1}^{k} \frac{a_{i}}{b_{i}} = F$$

$$\omega = \frac{F + \sum_{i=1}^{k} \frac{a_{i}}{b_{i}}}{\sum_{i=1}^{k} \frac{1}{b_{i}}}$$

$$x_{i}^{\star} = \begin{cases} \frac{1}{b_{i}} \frac{F + \sum\limits_{i=1}^{k} \frac{a_{i}}{b_{i}}}{\sum\limits_{i=1}^{k} \frac{1}{b_{i}}} - \frac{a_{i}}{b_{i}}, & i \leq k \\ 0, & i > k \end{cases}$$

Ищем k:

$$a_k \le \frac{F + \sum_{i=1}^k \frac{a_i}{b_i}}{\sum_{i=1}^k \frac{1}{b_i}} < a_{k+1}$$

$$a_k \sum_{i=1}^k \frac{1}{b_i} - \sum_{i=1}^k \frac{a_i}{b_i} \le F < a_{k+1} \sum_{i=1}^k \frac{1}{b_i} - \sum_{i=1}^k \frac{a_i}{b_i}$$

[line] [picture]

Пусть нам известны $f_i(x_i)$, нам нужно найти F. Эластичный спрос

$$\min_{x} \sum_{i=1}^{n} \int_{0}^{x_{i}} f_{i}(u)du - \int_{0}^{F} g^{-1}(\gamma)d\gamma$$

$$F - \sum_{i=1}^{n} x_{i} = 0$$

$$x_{i} \ge 0$$

$$\eta_{i} \ge 0$$

$$L = \sum_{i=1}^{n} \int_{0}^{x_{i}} f_{i}(u)du - \int_{0}^{F} g^{-1}(\gamma)d\gamma + \omega(F - \sum_{i=1}^{n} x_{i}) + \sum_{i=1}^{n} (-x_{i})\eta_{i}$$

$$\frac{\partial L}{\partial x_{i}} = f_{i}(x_{i}) - \omega\eta_{i} = 0$$

$$\frac{\partial L}{\partial F} = \omega - g^{-1}(F) = 0$$

$$f_{i}(x_{i}) = \omega + \eta_{i}$$

$$\omega = g^{-1}(F)$$

Пусть $g^{-1}(F) = T - F$, следовательно

$$\sum_{i=1}^{k} \frac{\omega}{b_i} - \sum_{i=1}^{k} \frac{a_i}{b_i} = F$$

$$\sum_{i=1}^{k} \frac{\omega}{b_i} - \sum_{i=1}^{k} \frac{a_i}{b_i} = T - \omega$$

$$\omega = \frac{T + \sum_{i=1}^{k} \frac{a_i}{b_i}}{1 + \sum_{i=1}^{k} \frac{1}{b_i}}$$

$$F = \frac{T\sum i = 1^k \frac{1}{b_i} + \sum_{i=1}^k \frac{a_i}{b_i}}{1 + \sum i = 1^k \frac{1}{b_i}} a_k \le \frac{T\sum i = 1^k \frac{1}{b_i} + \sum_{i=1}^k \frac{a_i}{b_i}}{1 + \sum i = 1^k \frac{1}{b_i}} < a_k + 1$$

Т – лояльность потребителей к потерям (задержкам).

2.2.2 Задача. Первая лабораторная

$$\min_x \sum_{i=1}^n \int\limits_0^{x_i} f_i(u) du, \ \text{где } f_i - \text{любые выпуклые функции}$$

$$\sum_{i=1}^n x_i = F$$

$$x_i \geq 0$$
 Вывод: $x, \ f_i(x_i)$.

2.2.3 Метод Франка-Вульфа

- 1. Задаем x^0 (например $x_i = \frac{F}{n}$), LBD = 0
- 2. $\overline{z}(x) = z(x^k) + \nabla z(x^k)(x x^k)$ минимизируем функцию. $\min \overline{z}(x)$

$$\sum_{i=1}^{n} x_i = F$$

$$x_i \ge 0$$

$$\text{Получаем}$$

Получаем y^k . Вводим направление спуска $p^k = y^k - x^k$.

- 3. $LBD = \max\{LBD, \overline{z}(y^k)\}$ Критерий сходимости: $\frac{\overline{z}(x^k) LBD}{LBD} < \varepsilon$
- 4. $arg\min\{z(x^k+lp^k)|0\leq l\leq 1\}$ находим длину шага
- 5. $x^{k+1} = x^k + l_k p^k$ проверяем критерий сходимости, если не выполнено то возвращаемся к шагу 2.

Лекция 4

Рис. 3.1

 $F = \sum_{j=1}^m F^j$ – имеется m групп пользователей, F^j – поток группы. Каждая группа стремиться минимизировать совой поток:

$$\min_{f^j} \sum_{i=1}^n t_i(f_i) f_i^j, \qquad f^j = (f_1^j, f_2^j, \dots, f_n^j) - \text{стратегия}$$

$$\sum_{i=1}^n f_i^j = F^j, \qquad f_i = \sum_{j=1}^m f_i^j$$

$$\frac{\partial L^j}{\partial f_i^j} = t_i(f_i) + \frac{\partial t_i(f_i)}{\partial f_i^j} f_i^j - \omega^j - \eta_i^j = 0$$

$$t_i(f_i) + \frac{\partial t_i(f_i)}{\partial f_i^j} f_i^j \begin{cases} = \omega^j & f_i^j > 0 \\ > \omega^j & f_i^j = 0 \end{cases}$$

$$t_i(f_i) = a_i + b_i f_i$$

$$a_i + b_i \sum_{j=1}^m f_i^j + b_i f_i^j \begin{cases} = \omega^j & f_i^j > 0 \\ \geq \omega^j & f_i^j = 0 \end{cases}$$

$$f_i^1 + \dots + 2f_i^j + \dots + f_i^m \begin{cases} = \frac{\omega^j - a_i}{b_i} & f_i^j > 0 \\ \geq \frac{\omega^j - a_i}{b} & f_i^j = 0 \end{cases}$$

Глава 3. Лекция 4

$$\begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 2 \end{pmatrix} \begin{pmatrix} f_i^1 \\ f_i^2 \\ \vdots \\ f_i^m \end{pmatrix} = \begin{pmatrix} \frac{\omega^1 - a_i}{b_i} \\ \frac{\omega^2 - a_i}{b_i} \\ \vdots \\ \frac{\omega^m - a_i}{b_i} \end{pmatrix}$$

Следовательно

$$\begin{pmatrix} f_i^1 \\ f_i^2 \\ \vdots \\ f_i^m \end{pmatrix} = \begin{pmatrix} \frac{m}{m+1} & \frac{-1}{m+1} & \cdots & \frac{-1}{m+1} \\ \frac{-1}{m+1} & \frac{m}{m+1} & \cdots & \frac{-1}{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{-1}{m+1} & \frac{-1}{m+1} & \cdots & \frac{m}{m+1} \end{pmatrix} \begin{pmatrix} \frac{\omega^1 - a_i}{b_i} \\ \frac{\omega^2 - a_i}{b_i} \\ \vdots \\ \frac{\omega^m - a_i}{b_i} \end{pmatrix}$$

Для экономии времени и места обозначим $\xi_i^j = \frac{\omega^j - a_i}{b_i}$.

$$f_{i}^{j} = \xi_{i}^{j} - \frac{1}{m+1} \sum_{q=1}^{m} \xi_{i}^{q}$$

$$F^{j} = \sum_{i=1}^{m} f_{i}^{j} = \sum_{i=1}^{n} \xi_{i}^{j} - \frac{1}{m+1} \sum_{i=1}^{n} \sum_{q=1}^{m} \xi_{i}^{q}$$

$$\begin{pmatrix} F^{1} \\ F^{2} \\ \vdots \\ F^{m} \end{pmatrix} = \begin{pmatrix} \frac{m}{m+1} & \frac{-1}{m+1} & \cdots & \frac{-1}{m+1} \\ \frac{-1}{m+1} & \frac{m}{m+1} & \cdots & \frac{-1}{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{-1}{m+1} & \frac{-1}{m+1} & \cdots & \frac{m}{m+1} \end{pmatrix} \begin{pmatrix} \sum_{i=1}^{n} \xi_{i}^{1} \\ \vdots \\ \sum_{i=1}^{n} \xi_{i}^{2} \\ \vdots \\ F^{m} \end{pmatrix}$$

$$\begin{pmatrix} \sum_{i=1}^{n} \xi_{i}^{1} \\ \vdots \\ \sum_{i=1}^{n} \xi_{i}^{2} \\ \vdots \\ F^{m} \end{pmatrix}$$

$$\begin{pmatrix} F^{1} \\ F^{2} \\ \vdots \\ F^{m} \end{pmatrix}$$

Отсюда

$$\sum_{i=1}^{n} \xi_{i}^{j} = F^{1} + \dots + 2F^{j} + \dots + F^{m}$$

$$\sum_{i=1}^{n} \frac{\omega^{j} - a_{i}}{b_{i}} = F^{j} + \sum_{i=1}^{m} F^{i}$$

$$\omega^{j} = \frac{F^{j} + \sum_{i=1}^{m} F^{i} + \sum_{i=1}^{n} \frac{a_{i}}{b_{i}}}{\sum_{i=1}^{n} \frac{1}{b_{i}}}$$

$$\xi_{i}^{j} = \frac{1}{b_{i}} \frac{F^{j} + \sum_{q=1}^{m} F^{q} + \sum_{s=1}^{n} \frac{a_{s}}{b_{s}}}{\sum_{s=1}^{n} \frac{1}{b_{s}}} - \frac{a_{i}}{b_{i}}$$

Глава 3. Лекция 4 16

Если m=1, то

$$f_i^j = \frac{1}{b_i} \frac{F + \frac{1}{2} \sum_{s=1}^n \frac{a_s}{b_s}}{\sum_{s=1}^n \frac{1}{b_s}} + \frac{1}{2} \frac{a_i}{b_i}$$

$$T^{u\varepsilon}(f_i) = \sum_{i=1}^n \int_0^{f_i} t_i(u) du$$

$$T^{so}(f_i) = \sum_{i=1}^n t_i(f_i) f_i$$

$$T_m^{r\varepsilon}(f_i) = \sum_{j=1}^m \sum_{i=1}^n t_i(f_i) f_i^j$$

$$T^{so} \le T_m^{r\varepsilon} \le T^{u\varepsilon}$$

$$T^{so} = T_1^{n\varepsilon} \leq T_2^{n\varepsilon} \leq \dots \leq T_{|F|}^{n\varepsilon} = T_{\infty}^{n\varepsilon} = T^{u\varepsilon} [!!!!!!!!!!!!]$$

Лекции 5-6

4.1 Двойственная задача программирования

Рассмотрим задачу о нахождении максимума функции f(x) при заданных ограничениях $g_i(x) \geqslant 0, \ i = \overline{1, m}$:

$$\max_{x \in X} f(x) \tag{4.1}$$

$$X = \{ x \mid x \in \mathbb{R}^n, \ g_i(x) \ge 0, \ i = \overline{1, m} \}, \ m < n$$
 (4.2)

Построим функцию Лагранжа этой задачи:

$$F(x,y) = f(x) + \sum_{i=1}^{m} y_i g_i(x)$$
(4.3)

И поставим вопрос о поиске величины:

$$\max_{x \in R^n} \min_{y \in Y} F(x, y), \ Y = \{ \ y \mid y_i \ge 0, \ i = \overline{1, m} \}$$
 (4.4)

Определение 4.1. Пара (x^0, y^0) называется седловой точкой функции F(x, y) на множестве $X \times Y$, если выполняется:

$$F(x, y^0) \leqslant F(x^0, y^0) \leqslant F(x^0, y), \ \forall x \in X, \ \forall y \in Y$$

Иначе говоря, если точка (x^0,y^0) является седловой, то

$$\max_{x \in X} F(x, y^0) = \min_{y \in Y} F(x^0, y) = F(x^0, y^0)$$

Введем в рассмотрение величины:

$$\upsilon = \sup_{x \in X} \inf_{y \in Y} F(x, y), \ \bar{\upsilon} = \inf_{y \in Y} \sup_{x \in X} F(x, y)$$

Лемма 4.1.

$$v\leqslant \bar{v}$$
 или, что то же самое, $\sup_{x\in X}\inf_{y\in Y}F(x,y)\leqslant \inf_{y\in Y}\sup_{x\in X}F(x,y)$

Доказательство.

$$\upsilon = \sup_{x \in X} \inf_{y \in Y} F(x, y) \leqslant \sup_{x \in X} F(x, y'), \ \forall y' \in Y$$

и следовательно:

$$v \leqslant \inf_{y \in Y} \sup_{x \in X} F(x, y) = \bar{v}$$

Теорема 4.1. Для того, чтобы функция F(x,y) имела седловую точку на множестве $(x,y) \in X \times Y$, необходимо и достаточно, чтобы выполнялось условие:

$$\max_{x \in X} \min_{y \in Y} F(x, y) = \min_{y \in Y} \max_{x \in X} F(x, y)$$

Теорема 4.2. $3a\partial a u u (4.1), (4.2) u (4.3), (4.4)$ эквивалентны:

- 1. $\bar{v} = v$:
- 2. $\max_{x \in X} f(x) = \max_{x \in R^n} \min_{y \in Y} F(x, y)$.

Доказательство. Введем в рассмотрение функцию $\varphi(x) = \inf_{y \in Y} F(x,y)$.

Для любого $x \in X$ и для любого номера $i \in \{1, 2, ..., m\}$ справедливо неравенство $q_i(x) \ge 0$, поэтому $F(x, y) \ge f(x)$ и, соответственно, $\varphi(x) = F(x, 0) = f(x)$, $\forall x \in X$.

Если же $x \notin X$, то g(i) < 0 хотя бы для одного номера $i \in \{1, 2, ..., m\}$. Построим такую последовательность векторов $\{y^k\} \in Y$, чтобы $y_i^k \to \infty$. Тогда $F(x, y^k) \to -\infty$, из чего следует, что $\varphi(x) = -\infty$, $\forall x \notin X$.

Таким образом, если $X \neq \emptyset$, то $v = \sup_{x \in R} \varphi(x) = \sup_{x \in X} f(x) = \inf_{y \in Y} \sup_{x \in X} F(x,y) = \bar{v}$, и решения задач (4.1),(4.2) и (4.3),(4.4) могут существовать только одновременно и совпадают.

При $X = \emptyset$ обе задачи не имеют решения.

Определение 4.2. Задача (4.3),(4.4) называется двойственной задачей по отношению к задаче (4.1),(4.2). Соотношение $v=\bar{v}$ называется соотношением двойственности, а теоремы, устанавливающие это соотношение, называются теоремами двойственности.

Теорема 4.3. Если функция Лагранжа (4.3) имеет седловую точку на $\mathbb{R}^n \times Y$, то выполняется соотношение двойственности: пусть точка (x^0, y^0) является седловой, тогда x^0 соответствует решению задачи (4.1), (4.2), а y^0 задачи (4.3), (4.4).

4.2 Задача выпуклого программирования

Определение 4.3. Функция f(x) называется выпуклой на X, если $\forall x', x'' \in X$ выполняется соотношение:

$$f(\lambda x' + (1 - \lambda)x'') \leqslant \lambda f(x') + (1 - \lambda)f(x''), \forall \lambda \in [0, 1]$$

Аналогично вводится определение вогнутой функции.

Определение 4.4. Функция f(x) называется вогнутой на X, если $\forall x', x'' \in X$ выполняется соотношение:

$$f(\lambda x' + (1 - \lambda)x'') \geqslant \lambda f(x') + (1 - \lambda)f(x''), \forall \lambda \in [0, 1]$$

Определение 4.5. Задачей выпуклого программирования называется задача (4.1), (4.2) при условии, что f(x) и $g_i(x)$ – вогнутые функции.

Лемма 4.2. Множество допустимых решений задачи выпуклого программирования 4.1, 4.2 является выпуклым. Любой локальный максимум является глобальным.

Доказательство. Пусть $x', x'' \in X$, т. е. $g_i(x') \geqslant 0$, $g_i(x'') \geqslant 0$, $i = \overline{1,m}$. Рассмотрим значение функций $g_i(x)$ в точке $x = \lambda x' + (1 - \lambda)x''$:

$$g_i(x) = g_i(\lambda x' + (1 - \lambda)x'') \geqslant \lambda g_i(x') + (1 - \lambda)g_i(x'') \geqslant 0$$

Следовательно x также принадлежит X, и X – выпуклое множество.

Пусть x^* – точка локального максимума. Это значит, что $f(x) \geqslant f(x), \ \forall x \in X \cap S(x^*, \varepsilon)$, где $S(x^*, \varepsilon)$ – малая окрестность точки x^* .

Предположим, что существует точка $\hat{x} \in X$ и $f(\hat{x}) > f(x^*)$. Тогда для точки $\tilde{x} = \lambda x^* + (1 - \lambda)\hat{x}, \ \lambda \in (0, 1)$ справедливо:

$$f(\tilde{x}) \geqslant \lambda f(x^*) + (1 - \lambda)f(\hat{x}) > \lambda f(x^*) + (1 - \lambda)f(x^*) = f(x^*)$$

и существует такое $\lambda \in (0,1)$, что $\tilde{x}(\lambda) \in X \cap S(x^*,\varepsilon)$. Получаем противоречие, указывающее на ошибочность сделанного предположения.

Значит, для любой точки $x \in X$ выполняется соотношение $f(x) \leq f(x^*)$, что соответствует определению глобального максимума в точке x^* .

Теорема 4.4. Пусть X и Y – выпуклые, замкнутые и ограниченные подмножества евклидова пространства, а функция $F(x,y) \in C(X \times Y)$ вогнута по $x, \ \forall y \in Y$, и выпукла по $y, \ \forall x \in X$. Тогда F(x,y) имеет седловую точку на $X \times Y$.

Определение 4.6. Задача выпуклого программирования удовлетворяет условию Слейтера, если $\exists x \in \mathbb{R}^n : g_i(x) > 0, \ i = \overline{1, m}$.

Теорема 4.5. Если задача выпуклого программирования удовлетворяет условию Слейтера, то необходимым и достаточным условием оптимальности точки x^0 в задаче (4.1), (4.2) является существование такого вектора $y^0 \in Y$, чтобы точка (x^0, y^0) была седловой для (4.3).

Доказательство.

Достаточность следует из теоремы 4.3.

Необходимость. Введем в рассмотрение следующие множества:

$$A = \left\{ z = (z_1, z_2, ..., z_m, z_{m+1})^T | z_i \leqslant g_i(x), i = \overline{1, m}, z_{m+1} \leqslant f(x) \right\},$$

$$B = \left\{ z = (z_1, z_2, ..., z_m, z_{m+1})^T | z_i > 0, i = \overline{1, m}, z_{m+1} > f(x^0) \right\},$$

где x^0 — решение задачи выпуклого программирования, а x — произвольная точка множества \mathbb{R}^n .

Покажем, что множествл A является выпуклым. Пусть

$$z', z'' \in A \Rightarrow z' \leqslant g_i(x'), \ z'' \leqslant g_i(x''), \ z'_{m+1} \leqslant f(x'), \ z''_{m+1} \leqslant f(x'')$$

Рассмотрим точку $z^{\alpha} = \alpha z' + (1 - \alpha)z''$.

$$z_i^{\alpha} \leqslant \alpha g_i(x') + (1 - \alpha)g_i(x'') \leqslant g_i(\alpha x' + (1 + \alpha)x'') = g_i(x^{\alpha}),$$

где $x^{\alpha} = \alpha x' + (1 + \alpha)x'', i = \overline{1, m}$

$$z_{m+1}^{\alpha} \leqslant \alpha f(x') + (1 - \alpha)x'' \leqslant f(x^{\alpha}),$$

т.е. $z^{\alpha} \in A$, поэтому A – выпуклое множество.

Множество B представляет собой открытый ортант с вершиной в точке $(0,0,...,f(x^0))^T$, поэтому B также выпукло.

В силу оптимальности вектора x^0 множества A и B не пересекаются, т. е. $A \cap B = \emptyset$. Значит, по теореме о разделяющей гиперплоскости существует такой ненулевой вектор $a = (a_1, a_2, ..., a_{m+1})^T$, что

$$(a, z^1) \le (a, z^2), \ \forall z^1 \in A, z^2 \in B$$
 (4.5)

Предположим, что $a_i < 0$, тогда, выбирая последовательность $\{z^k\} \in B$ таким образом, чтобы $z_i^k \to \infty$, а остальные компоненты были равны нулю, получим $(a, z^k) \to -\infty$, что противоречит неравенству (4.5), следовательно предположение неверно.

Так как точка $(0,0,...,f(x^0))^T$ является предельной для множества B, то выполняется неравенство:

$$\sum_{i=1}^{m} a_i g_i(x) + a_{m+1} f(x) \leqslant a_{m+1} f(x^0)$$
(4.6)

Поэтому $a_{m+1}>0$, поскольку, если $a_{m+1}=0$, то из (4.6) получаем $\sum_{i=1}^m a_i g_i(x)\leqslant 0, \forall x\in X$, что противоречит условию Слейтера.

Положим $y_i^0 = \frac{a_i}{a_{m+1}}, \ i = \overline{1,m},$ тогда из (4.6) следует:

$$\sum_{i=1}^{m} y_i^0 g_i(x) + f(x) \leqslant f(x^0), \ \forall x \in R$$
 (4.7)

При $x=x^0$ получаем $\sum_{i=1}^m y_i^0 g_i(x^0) \leqslant 0$. Но $y_i^0 \geqslant 0, \ g_i(x^0) \geqslant 0 \Rightarrow \sum_{i=1}^m y_i^0 g_i(x^0) \geqslant 0$. Значит

$$\sum_{i=1}^{m} y_i^0 g_i(x^0) = 0 (4.8)$$

Прибавив эту сумму к правой части (4.7), получим: $F(x, y^0) \leqslant F(x^0, y^0), \forall x \in X$.

Поскольку $\sum_{i=1}^m y_i g_i(x^0) \geqslant 0, \forall y \geqslant 0$, имеем $F(x^0, y^0) \leqslant F(x^0, y), \forall y \geqslant 0$. Значит, (x^0, y^0) – седловая точка.

Определение 4.7. Ограничения, которые выполняются в некоторой точке как равенства называются активными. Множество $I(x)=\{\ i\mid 1\leqslant i\leqslant m,\ g_i(x)=0\}$ - совокупность индексов активных ограничений.

Из свойства (4.8) седловой точки получаем, что $y_i^0 = 0, \forall i \notin I(x^0)$. Поэтому для определения x^0 и ненулевых y_i^0 имеем систему:

$$\begin{cases}
\frac{\partial f(x)}{\partial x_j} + \sum_{i \in I(x^0)} y_i^0 \frac{\partial g_i(x^0)}{\partial x_j} = 0, \\
g_i(x^0) = 0, \ i \in I(x^0)
\end{cases} \tag{4.9}$$

Теорема 4.6. Система (4.9) представляет собой необходимые и достаточные условия оптимальности для задачи выпуклого программирования в случае, когда $R = R^n$.

Теорема 4.7. Необходимые и достаточные условия оптимальности для задачи выпуклого программирования в случае $R = \{ x \mid x \ge 0 \}$ можно представить в виде системы:

$$\begin{cases} \frac{\partial F(x^0, y^0)}{\partial x_j} \leqslant 0, \ j = \overline{1, n}, \\ \sum_{j=1}^n \frac{\partial F(x^0, y^0)}{\partial x_j} x_j^0 = 0, \\ g_i(x^0) y_i^0 = 0, \ i = \overline{1, m}. \end{cases}$$

21

Рассмотрим более общую задачу о поиске

$$max_{x \in R^n} f(x)$$

при ограничениях

$$g_i(x) \geqslant 0, \ i = \overline{1, m}$$

 $H_k(x) = 0, \ k = \overline{1, r}$

Для данной задачи справедлива следующая теорема.

Теорема 4.8. Если f(x) и $g_i(x)$ – вогнутые на гиперплоскости, определяемой уравнениями $H_k(x)=0,\ i=\overline{1,m},\ u$ на этой гиперплоскости выполняются условия Слейтера, то решение x^0 существует и является глобальным максимумом. При этом для функции Лагранжа $L(x,y,\nu)=f(x)+\sum_{i=1}^m y_ig_i(x)-\sum_{k=1}^r \nu_k H_k(x)$ существуют такие $y_i^0\geqslant 0,\ i=\overline{1,m}$ и $\nu_k^0,\ k=\overline{1,r},\$ что в точке (x^0,y^0,ν^0) выполняются следующие условия:

$$\begin{cases} \frac{\partial L}{\partial x_j} = 0, \ j = \overline{1, n}, \\ \frac{\partial L}{\partial y_i} \geqslant 0, \ i = \overline{1, m}, \\ y_i^0 \frac{\partial L}{\partial y_i} = 0, \ i = \overline{1, m}, \\ \frac{\partial L}{\partial \nu_k} = 0, \ k = \overline{1, r}, \end{cases}$$

Пример 2. На предприятии имеется два вида ресурсов. Цена ресурса первого вида 3 единицы, второго – 4 единицы. Известно, что из x_1 первого ресурса и x_2 второго ресурса можно получить $z(x_1, x_2) = \sqrt{x_1^2 + x_2^2}$ единиц продукта. Какое распределение ресурсов будет оптимальным, если всего на производство выделено 24 единицы?

Рис. 4.1

Математическая модель задачи выглядит следующим образом:

$$z(x^{0}) = \max_{x} \sqrt{x_{1}^{2} + x_{2}^{2}},$$
$$3x_{1} + 4x_{2} \leq 24,$$
$$x_{1} \geq 0, \ x_{2} \geq 0$$

Множество допустимых решений заштриховано на рис. 4.1. Если целевой функции придавать фиксированные значения 1, 2, 3, ..., то будем получать окружности с центром в начале координат и радиусом 1, 2, 3, Начертим ряд окружностей (линии уровня целевой функции). Из рисунка видно, что функция $z(x_1,x_2)=\sqrt{x_1^2+x_2^2}$ достигает наибольшего значения, равного 8, в точке (8;0), т.е. $z_{\rm max}=z(8;0)=8$.

4.3 Численные методы решения задач нелинейного программирования с ограничениями

В зависимости от наличия ограничений градиентные методы модифицируются путем проекции полученного нового приближения на допустимое множество значений $x \in X$:

1. Градиентные методы:

$$x^{k+1} = x^k + \alpha_k f'(x^k)$$
, где $f(x^k + \alpha_k f'(x^k)) = \max_{\alpha \ge 0} f(x^k + \alpha f'(x^k))$;

2. Проективные методы:

$$x^{k+1} = P_x(x^k + \alpha_k f'(x^k)).$$

Лекция 7

$$\min \sum_{i=1}^{n} \int_{0}^{f_{i}} t_{i}(u) du$$

$$a_{i}(f_{i}) = t_{i}(f_{i}) - t'_{i}(f_{i}) f_{i}$$

$$b_{i}(f_{i}) = t'_{i}(f_{i})$$

$$\sum_{i=1}^{n} f_{i} = F$$

$$f_{i} \geqslant 0, \forall i = \overline{1, n}$$

 f_i^k : перенумеруем f_i, u_i, b_i, t_i так, чтобы $a_1(f_1^k) \leqslant ... \leqslant a_n(f_n^k)$. Мы их перенумеровываем каждый раз все. Далее находим m^k - количество не нулевых f_i .

$$\omega^{k} = \frac{F + \sum_{i=1}^{n} \frac{a_{i}(f_{i}^{k})}{b_{i}(f_{i}^{k})}}{\sum_{i=1}^{m^{n}} \frac{1}{b_{i}(f_{i}^{k})}}$$

 $a_{m^k}(f^k_{m^k})\leqslant \omega^k < a_{m^{k+1}}(f^k_{m^{k+1}})$ Как только находим m^k ищем

$$f_i^{k+1} = \begin{cases} \frac{1}{b_i(f_i^k)} (F + \sum_{s=1}^{m^k} \frac{a_s(f_s^k)}{b_s(f_s^k)}) \\ \sum_{s=1}^{m^n} \frac{1}{b_s(f_s^n)} \\ 0, \ i > m^k \end{cases} - \frac{a_i(f_i^k)}{b_i(f_i^k)}, \ i \leqslant m^k$$

Предложение: на первом шаге взять $f_i^0 = \frac{F}{n}, \forall i = \overline{1,n}$ Для простоты будем рассматривать вариант $m^n = m^*$

Рассмотрим
$$f_i^{k+1}-f_i^*=f_i^k-rac{t_i(f_i^k)}{t_i'(f_i^k)}+rac{F-\sum\limits_{s=1}^m\left[f_s^k-rac{t_s^k(f_s^k)}{t_s'(f_s^k)}
ight]}{\sum\limits_{s=1}^m\frac{t_i'(f_i^k)}{t_s'(f_s^k)}}-f_i^*$$
. Далее разложим F и

внесем под сумму.

Глава 5. Лекция 7

$$f_i^{k+1} - f_i^* = (f_i^k - f_i^*) - \frac{t_i(f_i^k) - t_i(f_i^*)}{t_i'(f_i^k)} - \frac{t_i(f_i^*)}{t_i'(f_i^k)} - \frac{\sum_{s=1}^m \left[f_s^k - f_s^* - \frac{t_s(f_s^k) - t_s(f_s^*)}{t_s'(f_s^k)} - \frac{t_s(f_s^*)}{t_i'(f_i^k)} - \frac{t_s(f_s^k)}{t_i'(f_s^k)} \right]}{\sum_{s=1}^m \frac{t_i'(f_s^k)}{t_s'(f_s^k)}}$$

Теперь, пользуясь замечательным свойством $t_i(f_i^\star) = \omega, \ \forall i$

$$\begin{split} f_i^{k+1} - f_i^* &= (f_i^k - f_i^*) - \frac{t_i(f_i^k) - t_i(f_i^*)}{t_i'(f_i^k)} - \frac{\omega}{t_i'(f_i^k)} - \frac{\sum\limits_{s=1}^m \left[f_s^k - f_s^* - \frac{t_s(f_s^k) - t_s(f_s^*)}{t_s'(f_s^k)} - \frac{\omega}{t_i'(f_i^k)} \right]}{\sum\limits_{s=1}^m \frac{t_i'(f_i^k)}{t_s'(f_s^k)}} = \\ &= (f_i^k - f_i^*) - \frac{t_i(f_i^k) - t_i(f_i^*)}{t_i'(f_i^k)} - \frac{\omega}{t_i'(f_i^k)} - \frac{\sum\limits_{s=1}^m \left[f_s^k - f_s^* - \frac{t_s(f_s^k) - t_s(f_s^*)}{t_s'(f_s^k)} \right] - \omega \sum\limits_{s=1}^m \frac{1}{t_i'(f_i^k)}}{t_i'(f_i^k)} - \frac{1}{t_i'(f_i^k)} - \frac{1}{t_i'(f_i^$$

$$f_i^{k+1} - f_i^* = (f_i^k - f_i^*) - \frac{t_i(f_i^k) - t_i(f_i^*)}{t_i'(f_i^k)} - \frac{\omega}{t_i'(f_i^k)} - \frac{\sum_{s=1}^m \left[f_s^k - f_s^* - \frac{t_s(f_s^k) - t_s(f_s^*)}{t_s'(f_s^k)} \right]}{\sum_{s=1}^m \frac{t_i'(f_i^k)}{t_s'(f_s^k)}} + \frac{\omega}{t_i'(f_i^k)}$$

Воспользуемся разложением Лагранжа

$$f_i^{k+1} - f_i^* = (f_i^k - f_i^*) - \frac{t_i'(\theta_i^k)}{t_i'(f_i^k)} (f_i^k - f_i^*) - \frac{\sum_{s=1}^m \left[f_s^k - f_s^* - \frac{t_s'(\theta_s^k)}{t_s'(f_s^k)} (f_s^k - f_s^*) \right]}{t_i'(f_i^k) \sum_{s=1}^m \frac{1}{t_s'(f_s^k)}}$$

$$f_i^{k+1} - f_i^* = \left[1 - \frac{t_i'(\theta_i^k)}{t_i'(f_i^k)}\right] (f_i^k - f_i^*) - \frac{\sum\limits_{s=1}^m \left[1 - \frac{t_s'(\theta_s^k)}{t_s'(f_s^k)} (f_s^k - f_s^*)\right]}{t_i'(f_i^k) \sum\limits_{s=1}^m \frac{1}{t_s'(f_s^k)}}$$

Далее обозначим $g_i^k = 1 - \frac{t_i'(\theta_i^k)}{t_i'(f_i^k)}; \mathcal{L} = t_i'(f_i^k) \sum_{s=1}^m \frac{1}{t_s'(f_s^k)};$

$$|f_i^k - f_i^*| \leqslant |g_i^k||f_i^k - f_i^*| + rac{\left|\sum\limits_{i=1}^m d_s^k(f_s^k - f_s^*)
ight|}{|\mathcal{L}_i^k|}$$
 $\sum_{i=1}^m |f_i^{n+1} - f_i^*| \leqslant \sum_{i=1}^m |g_i^k||f_i^k - f_i^*| + \sum_{i=1}^m rac{1}{|\mathcal{L}_i^k|} \left|\sum_{s=1}^m (f_s^k - f_s^*)
ight|$ Отсюда получаем $\sum_{i=1}^m |f_i^k - f_i^*| \leqslant 2\sum_{i=1}^m |g_i||f_i^k - f_i^*|$

Глава 5. Лекция 7 25

Значит, следующий шаг ограничен сверху $\forall \varepsilon \; \exists \rho : f_i^k \in S_\rho(f^*);$ $\sum_{i=1}^m |f_i^{k+1} - f_i^*| \leqslant \varepsilon \sum_{i=1}^m |f_i^k - f_i^*| < \varepsilon^{k+1} \sum_{i=1}^m |f_i^0 - f_i^k|$ Теперь покажем, что $|f_i^{k+1} - f_i^*| \leftrightarrow |f_i^k - f_i^*|^2$

$$\begin{aligned} &t_{i}(f_{i}) = t_{i}(f_{i}^{*}) + t_{i}'(f_{i}^{*})(f_{i}^{k} - f_{i}^{*}) + \frac{t_{i}''(f_{i}^{k})}{2}(f_{i}^{k} - f_{i}^{*})^{2} \\ &t_{i}(f_{i}^{k}) = \omega + t_{i}'(f_{i}^{*})(f_{i}^{k} - f_{i}^{*}) + \frac{t_{i}''(f_{i}^{k})}{2}(f_{i}^{k} - f_{i}^{*})^{2} \\ &\frac{t_{i}(f_{i}^{k})}{t_{i}'(f_{i}^{*})} = \frac{\omega}{t_{i}'(f_{i}^{*})} + (f_{i}^{k} - f_{i}^{*}) + \frac{t_{i}''(f_{i}^{*})}{2t_{i}'(f_{i}^{*})}(f_{i}^{k} - f_{i}^{*})^{2} \\ &(f_{i}^{k} - f_{i}^{*}) - \frac{t_{i}(f_{i}^{k})}{t_{i}'(f_{i}^{*})} = -\frac{t_{i}''(f_{i}^{*})}{2t_{i}'(f_{i}^{*})}(f_{i}^{k} - f_{i}^{*})^{2} - \frac{\omega}{t_{i}'(f_{i}^{*})} \\ &f_{i}^{k+1} - f_{i}^{*} = (f_{i}^{k} - f_{i}^{*}) - \frac{t_{i}(f_{i}^{k})}{2t_{i}'(f_{i}^{*})} - \frac{\sum_{s=1}^{m} [\dots]}{\sum_{s=1}^{m} \frac{t_{i}'(f_{i}^{*})}{t_{s}'(f_{i}^{*})}} \\ &|f_{i}^{k+1} - f_{i}^{*}| \leq \left| \frac{t_{i}''(f_{i}^{*})}{2t_{i}'(f_{i}^{*})} \right| \left| f_{i}^{k} - f_{i}^{*} \right|^{2} + \left| \frac{\sum_{s=1}^{m} [\dots [!!!!!]]}{\sum_{s=1}^{m} \frac{t_{i}'(f_{i}^{*})}{t_{s}'(f_{s}^{k})}} \right| \\ &\sum_{i=1}^{m} |f_{i}^{k+1} - f_{i}^{*}| \leq \frac{3}{2} \sum_{i=1}^{m} \left| \frac{t_{i}''(f_{i}^{*})}{t_{i}'(f_{i}^{*})} \right| \left| f_{i}^{k} - f_{i}^{*} \right|^{2} \end{aligned}$$

Лекции 8-9

6.1 Дуополия Курно (1838 г.)

Некоторый продукт выпускается двумя фирмами. Фирма I выпускает q_1 единиц продукта, фирма II выпускает q_2 единиц продукта. Пусть p — некоторая начальная цена продукта, а c — его себестоимость.

Тогда прибыли фирм равны, соответственно:

$$B_1(q_1, q_2) = (p - q_1 - q_2)q_1 - cq_1$$

$$B_2(q_1, q_2) = (p - q_1 - q_2)q_2 - cq_2$$

Найдем равновесное состояние системы:

$$\begin{cases} \frac{\partial B_1(q_1, q_2)}{\partial q_1} = 0 \\ \frac{\partial B_2(q_1, q_2)}{\partial q_2} = 0 \end{cases} \implies \begin{cases} p - c - 2q_1 - q_2 = 0 \\ p - c - 2q_2 - q_1 = 0 \end{cases} \implies \begin{cases} q_1 = \frac{p - c - q_2}{2} \\ q_2 = \frac{p - c - q_1}{2} \end{cases}$$

Подставим выражение для q_1 во второе уравнение:

$$q_2 = \frac{p-c}{2} - \frac{p-c-q_2}{4} \Rightarrow q_2 = \frac{p-c}{3} \Rightarrow q_1 = \frac{p-c}{3}$$

6.2 Более сложные модели производства

Пусть n производителей выпускает m видов продуктов. Величина x_{ij} показывает, сколько единиц продукта j выпускает (потребляет, если величина x_{ij} отрицательная) производитель i.

Предполагается, что каждого товара выпускается не меньше, чем потребляется:

$$\sum_{i=1}^{n} x_{ij} \geqslant 0, j = \overline{1, m} \tag{6.1}$$

Обозначим $x_i = (x_{i1}, x_{i2}, ..., x_{im})^T$ производственный план фирмы i. Введем в рассмотрение для каждой фирмы функцию полезности производственного плана $f_i(x_i)$.

Определение 6.1. Набор $x_1^*, ..., x_n^*$ является Парето-оптимальным, если выполняется:

1.
$$\forall i: f_i(x_i^*) = f_i(\hat{x}_i), \forall \hat{x}_i$$
 или

Глава 6. Лекции 8-9

2. $\exists i: f_i(x_i^*) > f_i(\hat{x}_i), \forall \hat{x}_i$

Пусть $p = (\pi_1, \pi_2, ..., \pi_m)^T$ – вектор стоимости продуктов. Поставим задачу максимизации функции полезности фирмы i при условии неубыточности производства.

$$\begin{cases}
\max_{x_i} f_i(x_i) \\
(p, x_i) \geqslant 0
\end{cases}$$
(6.2)

Пусть $x_i(p)$ – решение (6.2).

Определение 6.2. Решение (6.2): $p^*, x_1^*(p^*), x_2^*(p^*), ..., x_n^*(p^*)$, удовлетворяющее (6.1), называется балансовым равновесием.

Сделаем следующие предположения:

1. $\forall i \ x_i \in X_i$, где X_i - выпуклое, замкнутое, ограниченное множество;

2. Пусть
$$P = \left\{ (\pi_1,...,\pi_m)^T | \sum_{j=1}^m \pi_j = 1, \pi_j \geqslant 0, j = \overline{1,m} \right\}$$
 – симлекс в R^m , тогда:

$$\exists p \in P : \forall i \ \exists x_i \in X_i : (p, x_i) > 0;$$

3. $\forall i: f_i(x_i)$ – вогнутые.

Теорема 6.1. Пусть вышеуказанные предположения справедливы, тогда существует единственное решение (6.2), удовлетворяющее (6.1).

Определение 6.3.

- 1. Отображение g(x) переводит X в себя, если $\forall x \in X \ g(x) \in X$;
- 2. Отображение g(x) непрерывно в точке \bar{x} , если $\forall \{x_i\}: x_i \xrightarrow[i \to \infty]{} \bar{x}$ выполняется $g(x_i) \xrightarrow[i \to \infty]{} g(\bar{x});$
- 3. Отображение g(x) непрерывно на X, если g(x) непрерывно во всех $x \in X$;
- 4. Точка $x^0 \in X$ называется неподвижной точкой множества X относительно отображения g(x), если $g(x^0) = x^0$.

Теорема 6.2 (Брауэра). Пусть X – выпуклое, замкнутое, ограниченное множество, g(x) переводит X в себя. Тогда существует неподвижная точка.

Пемма 6.1 (!!!!!!!). Пусть X выпуклое, замкнутое, ограниченное множество, z(x) переводит X в себя. Пусть $\exists p \in P : (z(x), p) \geqslant 0, \ p = p(x)$. Тогда $z(x) \geqslant 0$.

Доказательство. $z(x)=(z_1(x),...,z_m(x))^T$. Введем в рассмотрение также отображение $r(p)=(r_1(p),...,r_m(p))^T$, где $r_i(p)=\frac{\pi_i+\max\{0,-z_i(x)\}}{\sum_{j=1}^m\pi_j+\sum_{j=1}^m\max\{0,-z_j(x)\}}$

$$\sum_{i=1}^m r_i(p) = 1, \ r(p) \in P \Longrightarrow \exists \hat{p} : r(\hat{p}) = \hat{p} \ (\text{по теореме Брауэра})$$

$$\hat{\pi}_i = \frac{\hat{\pi}_i + \max\{0, -z_i(\hat{p})\}}{\sum_{j=1}^m \hat{\pi}_j + \sum_{j=1}^m \max\{0, -z_j(\hat{p})\}}$$

Глава 6. Лекции 8-9

$$\max\{0, -z_i(\hat{p})\} = \hat{\pi}_i \sum_{j=1}^m \max\{0, -z_j(\hat{p})\}$$

$$\sum_{i=1}^{m} z_i(\hat{p}) \max\{0, -z_i(\hat{p})\} = (\hat{p}, z(\hat{p})) \sum_{j=1}^{m} \max\{0, -z_j(\hat{p})\}$$

Если $\exists z_i(x\hat{p} < 0)$, то приходим к противоречию.

 Π емма 6.2. Π усть X_i - выпуклое, замкнутое, ограниченное множество, $i=\overline{1,n}$. Тогда:

- 1. Существует единственное решение $x_i(p^*)$ задачи (6.2), удовлетворяющее (6.1);
- 2. $x_i(p^*)$ является непрерывным отображением симплекса P в R^m .

Доказательство. Единственность решения $x_i(p^*)$ является следствием вогнутости $f_i(x_i)$ и выпуклости X_i

Докажем непрерывность. Предположим, что $\exists \{p_k\}: \lim_{k\to\infty} p_k = \bar{p}$, но при этом $\lim_{k\to\infty} x_i(p_k) = \hat{x}_i \neq x_i(\bar{p}).$

$$(x_i(p_k), p_k) \geqslant 0 \ \forall k \Longrightarrow (\hat{x}_i, \bar{p}) \geqslant 0$$

при этом $f_i(x_i(\bar{p})) > f_i(\hat{x}_i) \Longrightarrow \exists \alpha : f_i(\hat{x}_i) < f_i(x_i(\bar{p})) - \alpha$. Значит, для достаточно больших номеров k справедливо соотношение:

$$f_i(x_i(p_k)) < f_i(x_i(\bar{p})) - \frac{\alpha}{2}$$
(6.3)

следовательно:

$$(p_k, x_i(\bar{p})) < 0$$
 (в силу единственности решения) (6.4)

$$\lim_{k \to \infty} (p_k, x_i(\bar{p})) = (\bar{p}, x_i(\bar{p})) \leqslant 0 \Longrightarrow (\bar{p}, x_i(\bar{p})) = 0$$

$$\lim_{k \to \infty} (p_k, x_i(\bar{p})) = 0 \tag{6.5}$$

Согласно предположению 2 на стр. 27: $\exists \tilde{x}_i \in X_i : (\bar{p}, \tilde{x}_i) > 0$, а значит:

$$(p_k, \tilde{x}_i) > \frac{(\bar{p}, \tilde{x}_i)}{2} > 0 \tag{6.6}$$

Покажем, что (6.3), (6.4), (6.5), (6.6) одновремененно невозможны.

Пусть $x_i^k = x_i(\bar{p}) + \lambda_k(\tilde{x}_i - x_i(\bar{p}))$, где $\lambda_k \in (0,1)$ выбирается из условия $(p_k, x_i^k) = 0$:

$$\lambda_k = -\frac{(p_k, x_i(\bar{p}))}{(p_k, \tilde{x}_i) - (p_k, x_i(\bar{p}))}$$

Значит, x_i^k принадлежит отрезку между $x_i(\bar{p})$ и \tilde{x}_i , следовательно $x_i^k \in X_i$. При этом $\lim_{k\to\infty} \lambda_k = 0$ (согласно (6.5)).

$$f_i(x_i^k) \leqslant f_i(x_i(p^k))$$

$$f_i(x_i^k) \geqslant f_i(x_i(\bar{p})) + \lambda_k(f_i(\tilde{x}_i) - f_i(x_i(\bar{p})))$$

$$f_i(x_i^k) > f_i(x_i(p_k)) + \frac{\alpha}{2}$$

Получаем противоречие.

6.3 Дуополия Бертрана (1883 г.)

Две фирмы выпускают взаимозаменяемые продукты. Фирма I продает свой продукт по цене q_1 , фирма II продает по цене q_2 . Пусть k – коэффициент взаимозаменяемости продуктов, а c – их себестоимость, d – начальный спрос.

Тогда прибыли фирм равны, соответственно:

$$H_1(q_1, q_2) = (d - q_1 + kq_2)(q_1 - c)$$

$$H_2(q_1, q_2) = (d - q_2 + kq_1)(q_2 - c)$$

Найдем равновесное состояние системы:

$$\begin{cases} \frac{\partial H_1(q_1, q_2)}{\partial q_1} = 0 \\ \frac{\partial H_2(q_1, q_2)}{\partial q_2} = 0 \end{cases} \implies \begin{cases} d + c - 2q_1 + kq_2 = 0 \\ d + c - 2q_2 + kq_1 = 0 \end{cases} \implies \begin{cases} q_1 = \frac{d + c + kq_2}{2} \\ q_2 = \frac{d + c + kq_1}{2} \end{cases}$$

Подставим выражение для q_1 во второе уравнение:

$$q_2 = \frac{1}{2}(d+c) + \frac{k}{4}(d+c+kq_2) \Rightarrow (4-k^2)q_2 = (k+2)(d+c)3 \Rightarrow q_2 = \frac{d+c}{2-k} \Rightarrow q_1 = \frac{d+c}{2-k}$$

6.4 Дуополия Хотеллинга (1929 г.)

Предполагается, что покупателями являются жители города, расположенного вдоль отрезка прямой [0,1] (например, вдоль шоссейной или железной дороги). Город заселен равномерно. Две фирмы, выпускающие одинаковый продукт по разным ценам $(q_1 \ u \ q_2)$, располагаются на противоположных концах города. В единицу времени жители желают приобрести a единиц товара вне зависимости от цены. Доставка товара требует от покупателя затрат в размере t за единицу товара на единицу расстояния.

Покупатель, находящийся на расстояниях x_1 и x_2 от фирм, сравнивает свои расходы на покупку и доставку единицы товара от каждой из фирм $(q_1 + tx_1 \text{ и } q_2 + tx_2)$ и выбирает ту из фирм, чей товар обходится ему дешевле. Таким образом, город разбивается на две зоны, каждая из которых примыкает к «своей» фирме. Граница между зонами располагается на таких расстояниях x_1 и x_2 от фирм, где горожанам безразлично, у какой фирмы производить свои покупки. Положение границы определяется уравнениями:

$$\begin{cases} q_1 + tx_1 = q_2 + tx_2, \\ x_1 + x_2 = 1 \end{cases}$$

Откуда
$$x_1 = \frac{1}{2} + \frac{q_2 - q_1}{2t}, \ x_2 = \frac{1}{2} + \frac{q_1 - q_2}{2t}.$$

Тогда прибыли фирм в единицу времени равны, соответственно:

$$H_1(q_1, q_2) = \frac{a}{2t}(t + q_2 - q_1)(q_1 - c),$$

$$H_2(q_1, q_2) = \frac{a}{2t}(t + q_1 - q_2)(q_2 - c),$$

где c – себестоимость продукта.

Глава 6. Лекции 8-9

Найдем равновесное состояние системы:

$$\begin{cases} \frac{\partial H_1(q_1, q_2)}{\partial q_1} = 0 \\ \frac{\partial H_2(q_1, q_2)}{\partial q_2} = 0 \end{cases} \implies \begin{cases} t + c - 2q_1 + q_2 = 0 \\ t + c - 2q_2 + q_1 = 0 \end{cases} \implies \begin{cases} q_1 = \frac{t + c + q_2}{2} \\ q_2 = \frac{t + c + q_1}{2} \end{cases}$$

Подставим выражение для q_1 во второе уравнение:

$$q_2 = \frac{1}{2}(t+c) + \frac{1}{4}(t+c+q_2) \Rightarrow q_2 = t+c \Rightarrow q_1 = t+c$$

6.5 Дуополия Штакельберга (1934 г.)

В дуополии Штакельберга предполагается иерархия игроков. Первым своё решение объявляет игрок I, после этого стратегию выбирает игрок II. Первый игрок называется лидером, а второй - ведомым. Обозначим через y = R(x) правило, по которому игрок II выбирает оптимальную реакцию на стратегию x первого игрока.

Определение 6.4. Равновесием по Штакельбергу называется пара стратегий (x^*, y^*) , где $y^* = R(x^*)$ – стратегия второго игрока, а стратегию x^* первый игрок выбирает, решая задачу максимизации своей прибыли:

$$H_1(x^*, y^*) = \max_x H_1(x, R(x))$$

Равновесие по Штакельбергу можно сравнить с задачей двухуровневой минимизаци временных затрат на пути, при нескольких возможных маршрутах.

Рис. 6.1

Пусть величина $T = \sum_{i=1}^{n} t_i(f_i, c_i) f_i$ соответствует суммарному времени, которое потра-

тит $F = f_1 + \cdots + f_n$ автомобилей, чтобы преодолеть участок пути, изображенный на рисунке 6.1 (рисунок для случая n = 3), где c_i пропускная способность маршрута i, f_i – количество автомобилей, выбравших данный маршрут, а $t_i(f_i, c_i)$ – среднее время движения по нему.

Здесь правилу y=R(x) соответствует решение задачи минимизации величины T при известных пропускных способностях маршрутов. Ее можно представить в виде задачи поиска:

$$\min_{f} \sum_{i=1}^{n} \int_{0}^{f_i} t_i(u, c_i) du$$

при условиях:

$$\begin{cases} \sum_{i=1}^{n} f_i = F, \\ f_i \geqslant 0, \ i = \overline{1, n} \end{cases}$$

Глава 6. Лекции 8-9

Таким образом, при фиксированных пропускных способностях $c = (c_1, ..., c_n)$ получаем конкретное оптимальное распределение автомобилей по маршрутам f = f(c).

Соответственно, выбор стратегии первого игрока из соотношения $H_1(x^*,y^*)=\max_x H_1(x,R(x))$ соответствует поиску оптимальных пропускных способностей:

$$\min_{c} \sum_{i=1}^{n} t_i(f_i, c_i) f_i$$

при условии

$$\sum_{i=1}^{n} c_i \leqslant C$$

Здесь $f = (f_1, ..., f_n)$ выбирается по указанному выше правилу f = f(c).

Лекция 10

[примеры про продажу электричества]

$$\min_f \sum_{(i,j)\in A)} \int\limits_0^{f_{ij}} \Theta_{ij}(au) d au$$
 $\sum_{i\in\omega_j} f_{ij} - \sum_{i\in u_j} f_{ji} = d_j$ ω_j – вход в j дугу $f_{ij} \geq 0$ u_j – исход из j дуги

лучше бы рассмотреть с нуля.

Лекция 11

8.1 Двухуровневая оптимизация

$$T=\min_{c}\sum_{i=1}^{n}t_{i}(f,c)f_{i}$$
 $\sum_{i=1}^{n}C_{i}\leqslant C$ где: $\min_{f}\sum_{i=1}^{n}\int_{0}^{f}t_{i}(u,c)du=Y(c)$ $\sum_{i=1}^{n}f_{i}=F$ $f_{i}\geqslant 0,\ \forall i=\overline{1,n}$

1. Линейная функция задержки $t_i(f_i,c_i)=a_i+c_if_i$, но тогда $\sum\limits_{i=1}^n\frac{1}{c_i}\geqslant \frac{1}{c}$; Выведем решение:

$$f_{i} = \begin{cases} \frac{1}{c_{i}} \left[F + \sum_{s=1}^{k} \frac{a_{s}}{c_{s}} \right] \\ \sum_{s=1}^{n} \frac{1}{c_{s}} \\ 0, \ i > k \end{cases} - \frac{a_{i}}{c_{i}}, \ i \leqslant k$$

где k определяется из условий: $\sum_{i=1}^k \frac{a_k-a_i}{c_i}\leqslant F<\sum_{i=1}^{k+1} \frac{a_{k+1}-a_i}{c_i}$ Пусть используются все n маршрутов (для удобства). То есть k=n

Глава 8. Лекция 11

$$\sum_{i=1}^{n} c_i \leqslant c$$

$$f_i = \begin{cases} c_i \left[F + \sum_{s=1}^{n} a_s b_s \right] \\ \sum_{s=1}^{k} c_s \\ 0, i > k \end{cases} - a_i c_i, if i \leqslant k$$

Теперь предположим, что у нас F в такой окрестности, что k=n, тогда

$$f_i = rac{c_i \left[F + \sum\limits_{s=1}^n a_s b_s
ight]}{\sum\limits_{s=1}^n c_s} - a_i c_i$$
. Отсюда получаем, что

$$T = \frac{F + \sum_{s=1}^{n} a_s c_s}{\sum_{s=1}^{n} c_s} \sum_{i=1}^{n} c_i \left[\frac{F + \sum_{s=1}^{n} a_s c_s}{\sum_{s=1}^{n} c_s} - a_i \right] \to \min_{c}$$

$$\sum_{i=1}^{n} c_i \leqslant c$$

Теперь запишем общий вид.

$$T = \frac{F + \sum_{s=1}^{n} a_s c_s}{\sum_{s=1}^{k} c_s} \sum_{i=1}^{k} c_i \left[\frac{F + \sum_{s=1}^{k} a_s c_s}{\sum_{s=1}^{k} c_s} - a_i \right] \to \min_{c}$$

$$a_1 \leqslant \dots \leqslant a_n;$$

Выпишем условие для k:

$$\sum_{i=1}^{k} c_i(a_k - a_i) \leqslant F < \sum_{i=1}^{k+1} c_i(a_{k+1} - a_i)$$

Эвристический подход. Алгоритм для решения последней задачи

$$1.C^{0} = (C_{1}^{0}, ..., C_{n}^{0}), C_{i}^{0} \geqslant 0, \forall i = \overline{1, n}$$

$$2.f^{0} = arg \left[\min_{f} \left(\sum_{i=1}^{n} \int_{0}^{f_{i}} |\sum_{i=1}^{n} f_{i} = F, f_{i} \ge 0, i = \overline{1, n} \right] \right]$$

$$3.T^{0} = \sum_{i=1}^{n} t_{i}(f^{0}, c_{i}^{0}) f_{i}^{0}$$

- 4. Сравнение T^0 в популяции. Выбираем 10 лучших
- 5. Новая популяция. Следовательно 100 штук образуют линейную комбинацию нулевой популяции.
- 6. Нахожим T^1 и выбираем 10 наилучших, затем сравниваем в 10-ю
лучшими из T^0 и берем 10 лучших из лучших

Рекомендуемая литература

1. «Новое индустриальное общество», Джон Кеннет Гэлбрейт