

$$F_{\nabla} = 2\pi \cdot r^3 \frac{\sqrt{\epsilon_B}}{c} \left(\frac{\epsilon - \epsilon_B}{\epsilon + 2\epsilon_B} \right) (\nabla \cdot I)$$

F_{∇} = Optical force on particle towards higher intensity

r = Radius of particle

ϵ_B = Dielectric constant of background medium

ϵ = Dielectric constant of particle

I = Light intensity (W/cm^2)

∇ = Spatial derivative

FIG. 1

*FIG. 2**FIG. 3**FIG. 4*

FIG. 4A

FIG. 5

FIG. 6

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10

FIG. 11A

FIG. 11B

FIG. 11C

9/19

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 13A

FIG. 13B

FIG. 13C

*FIG. 14A**FIG. 14B**FIG. 15**FIG. 17**FIG. 16**FIG. 18*

11/19
OPTICALLY
IDENTIFY AND
SEPARATE
LINE AT A TIME

FIG. 20

12/19

YU-CHI LIN - U.S. Patent & Trademark Office

FIG. 22

FIG. 23

14/19

FIG. 24

FIG. 25

Before:

SCATTER FORCE SEPARATION

After:

FIG. 26

FIG. 30

FIG. 31

FIG. 32

FIG. 33

Before

After

Difference

FIG. 34

DISTRIBUTION OF ESCAPE VELOCITIES
 READING TAKEN IN PBS/1% BSA BUFFER
 RAIN-X COATED SLIDE/CYTOSLIDE COATED COVERSHEET

FIG. 35

FIG. 36