EXPT.NO:

SOLAR CELL-CHARACTERISTICS

<u>AIM</u>: To study the V-I and V-P characteristics of solar cell and to determine the fill factor.

<u>APPARATUS</u>: solar cell, volt meter, ammeter, light source, load resistance and connecting wires.

FORMULA: Fill factor= $\frac{V_{mp} \times I_{mp}}{V_{oc} \times I_{sc}}$

Where $V_{mp} \rightarrow maximum power voltage = Volts$

 $I_{mp} \rightarrow maximum power current =Amp$

 $V_{oc} \rightarrow open circuit voltage = Volts$

 $I_{sc} \rightarrow short circuit current =Amp$

CIRCUIT:

MODEL GRAPH:

TABLES:

S.No.	Voltage(V) volts	Current(I) (mA)	Power(P) (mW)

PRECAUTIONS:

- 1) Ensure that the circuit connections are perfect.
- 2) Avoid direct contact of light source and solar cell.
- 3) Light from the lamp should fall normally on the cell.
- 4) Vary the voltage slowly and measure the corresponding current from ammeter.

RESULT:

- i) V-I and V-P characteristics of solar cell are studied.
- ii) Fill factor of given solar cell =

EXPT.NO:	MELDES EXPERIMENT
CALL LIAMO.	

DATE:

AIM: To determine the Frequency of electrically vibrating tuning fork by meldes apparatus in longitudinal and transverse modes.

<u>APPARATUS</u>: electrically vibrating tuning fork, thread, pulley with pan, weight box, battery, connecting wires.

FORMULA: 1) IN TRANSVERSE MODE

Frequency (n) =
$$\frac{1}{2l} \sqrt{\frac{T}{\mu}}$$
 Hz

2) IN LONGETUDINAL MODE

Frequency (n) =
$$\frac{1}{l} \sqrt{\frac{T}{\mu}}$$
 Hz

Where, $l \rightarrow \text{Length of each loop}$

 $T \rightarrow$ Tension suspended to string

 $\mu \rightarrow$ linear density of the thread

=cm

=..... dynes

=gm/cm

IN TRANSEVERSE MODE:

S.No.	Mass in pan(M) (gm)	Tension in string (T) =(M+m)g (dynes)	Length of the string(L) (cm)	Number of loops (x)	Length of each loop l=L/x (cm)	Frequency $(n) = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ (Hz)

Average Frequency(n) =Hz

IN LONGITUDINAL MODE:

S.No.	Mass in pan(M) (gm)	Tension in string (T) =(M+m)g (dynes)	Length of the string(L) (cm)	Number of loops (x)	Length of each loop l=L/x (cm)	Frequency $(n) = \frac{1}{l} \sqrt{\frac{T}{\mu}}$ (Hz)

Average Frequency(n) =Hz

Where, g → Acceleration due to gravity = 980 cm/sec²

m → pan mass = gm

PRECAUTIONS:

- 1) Should not operate more than 4 volt in battery.
- 2) You should take loops values by observing perfect loops.

RESULT: 1) Frequency in transverse mode (n) =.....Hz

2) Frequency in longitudinal mode (n) =.....Hz

EXPT.NO:

DATE:

STEWART AND GEE'S EXPERIMENT

<u>AIM</u>: To study the variation of magnetic field along the axis of current carrying circular coil using Stewart and Gees type of tangent galvanometer.

<u>APPARATUS</u>: Tangent galvanometer, battery eliminator, rheostat, commutator, plug key, ammeter, connecting wires.

FORMULA:

1) THEORETICALLY

From Boit-savert law,

Induced Magnetic field (B) =
$$\frac{\mu_0 n i r^2}{2(r^2+d^2)^{3/2}}$$
 Tesla (or) Wb/m²

2) EXPERIMENTALLY

From Tangent law,

Induced Magnetic field (B) = $B_H Tan \theta$ Tesla

Where, $\mu_0 \rightarrow$ permeability of free space = $4\pi \times 10^{-7}$ H/m

 $n \rightarrow \text{Number of turns in coil} = \dots$

 $i \rightarrow \text{Current across the coil} = amp$

 $r \rightarrow \text{Radius of the coil}$ =...... m

 $d \rightarrow \text{Distance between coil and Magnetometer}$ = m

 $B_H \rightarrow$ Horizontal component of earth magnetic field= 0.39×10^{-4} Tesla

 $\theta \rightarrow$ Mean deflection in magnetometer = (Degrees)

:	$B = \frac{\mu_0 n u r^2}{2(r^2 + d^2)^{3/2}}$	(tesla)	
	B = B _H Tan <i>\theta</i>		
	tan 0		
	$\theta = (\theta_E + \theta_W)/2$ tan β B = B _H Tan θ		
	1	θ_1 θ_2 θ_3 θ_4 θ_E θ_1 θ_2 θ_3 θ_4 θ_w	
	o o	θ4	
er	of th	θ3	
met	West	θ_2	
neto		θ_1	
nagı	S.No. (meters) East of the coil West of the coil	θΕ	
in in		θ	
tion		θ3	
flec		θ_2	
De	Ea	θ_1	
Distance Deflections in magnetometer	(meters)		
	S.No.		

RESULT: The variation of intensity of magnetic field at various points along the axis of current carrying circular coil using Stewart and Gee's method is studied.