Student Name: Guangyu Lin

Collaboration Statement:

Total hours spent: 4 hours

I discussed ideas with these individuals:

- TODO
- TODO
- . . .

I consulted the following resources:

- office hour with Professor
- TODO
- . . .

By submitting this assignment, I affirm this is my own original work that abides by the course collaboration policy.

Links: [HW1 instructions] [collab. policy]

Contents

1a: Problem Statement

Let $\rho \in (0.0, 1.0)$ be a Beta-distributed random variable: $p \sim \text{Beta}(a, b)$. Show that $\mathbb{E}[\rho] = \frac{a}{a+b}$.

Hint: You can use these identities, which hold for all a > 0 and b > 0:

$$\Gamma(a) = \int_{t=0}^{\infty} e^{-t} t^{a-1} dt \tag{1}$$

$$\Gamma(a+1) = a\Gamma(a) \tag{2}$$

$$\int_{0}^{1} \rho^{a-1} (1 - \rho)^{b-1} d\rho = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
 (3)

1a: Solution

 $\mathbb{E}[\rho]$

= $\mathbb{E}[Beta(a,b)]$ substitute the beta pdf by definition

= $\sum \mu c(a,b) \mu^{a-1} (1-\mu)^{b-1}$ move the c(a,b) outside of the function

 $=c(a,b)\Sigma\mu^a\mu^{b-1}$ by gamma function's identity 3

=
$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \cdot \frac{\Gamma(a+1)\cdot\Gamma(b)}{\Gamma(a+b+1)}$$
 by using the second identity

=
$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \cdot \frac{a\Gamma(a)\Gamma(b)}{(a+b)\Gamma(a+b)}$$
 by cancel some terms we can get

$$=\frac{a}{a+b}$$

1b: Problem Statement

Let μ be a Dirichlet-distributed random variable: $\mu \sim \text{Dir}(a_1, \dots a_V)$.

Show that $\mathbb{E}[\mu_w] = \frac{a_w}{\sum_{v=1}^V a_v}$, for any integer w that indexes a vocabulary word.

** Hint:** You can use the identity:

$$\int \mu_1^{a_1 - 1} \mu_2^{a_2 - 1} \dots \mu_V^{a_V - 1} d\mu = \frac{\prod_{v=1}^V \Gamma(a_v)}{\Gamma(a_1 + a_2 \dots + a_V)}$$
(4)

1b: Solution

$$\mathbb{E}[\mu_w]$$

= $\Sigma \mu \text{DirPDF}(\mu|a)$ substitute Dirichlet distribution by its definition

= $\Sigma c(a) \prod_{v=1}^V \mu^{a_v}$ move the c(a) outside of the function because it is a constant

= $c(a) \sum \prod_{v=1}^{V} \mu^{a_v}$ using Dirichlet distribution's identity

=
$$\frac{\Gamma(\Sigma a_v)}{\prod_v \Gamma(a_v)} \cdot \frac{\prod \Gamma(a_v+1)}{\Gamma(\Sigma a_v+1)}$$
 using gamma function identity

$$= \frac{\Gamma(\Sigma a_v)}{\prod_v \Gamma(a_v)} \cdot \frac{a_v \prod \Gamma(a_v)}{\Sigma a_v \Gamma(\Sigma a_v)} \text{ cancel some terms and we get}$$

$$=\frac{a_v}{\Sigma a_v}$$

2a: Problem Statement

Show that the likelihood of all N observed words can be written as:

$$p(X_1 = x_1, X_2 = x_2, \dots, X_N = x_N | \mu) = \prod_{v=1}^V \mu_v^{n_v}$$
 (5)

2a: Solution

$$p(X_1 = x_1, ..., X_n = x_n | \mu)$$

= $\prod_{n=1}^{N} CatPMF(X_n|\mu)$ by the definition of categorical distribution

=
$$\prod_{n=1}^{N} \prod_{v=1}^{V} \mu^{X_{nv}}$$
 because $n_v = \sum_{n=1}^{N} [X_n = V]$ so we can get

$$= \prod_{v=1}^{V} \mu_v^{n_v}$$

2b: Problem Statement

Derive the next-word posterior predictive, after integrating away parameter μ .

That is, show that after seeing the N training words, the probability of the next word X_* being vocabulary word v is:

$$p(X_* = v | X_1 = x_1 \dots X_N = x_n) = \int p(X_* = v, \mu | X_1 = x_1 \dots X_N = x_n) d\mu$$

$$= \frac{n_v + \alpha}{N + V\alpha}$$
(6)

2b: Solution

 $\int p(X_* = v, \mu | X_1 = x_1 \dots X_N = x_n) d\mu$ using product rule we can decompose it into two part

= $\int p(X_*|\mu, X_1, \dots, X_n) p(\mu|X_1, \dots, X_n) d\mu$ the first part can be written as $p(x_*|\mu)$ and the second part can be derived as DirPDF due to the conditional independence

= $\int Cat(x_* = v|\mu) \cdot DirPDF(\mu|\alpha + n)d\mu$ substitute by each distribution's definition

= $\int \mu_v \cdot c(\alpha+n) \cdot \prod_{v=1}^V \mu_v^{\alpha_v+n_v-1} d\mu$ moved the constant part outside of the integral

 $=c(\alpha+n)\int \mu_v\cdot\prod_{v=1}^V\mu^{\alpha_v+n_v-1}d\mu$ we can create β as a new vector that contains $[\alpha_1,\alpha_2,...,\alpha_v+1,\alpha_V]$ then we have

= $c(\alpha+n)\int \mu_v\cdot\prod_{v=1}^V\mu^{(\beta_v+n_v-1)}d\mu$ then we can use the identity of dirichlet distribution

 $=\frac{\Gamma(\Sigma_v\alpha_v+n_v)}{\prod_v\Gamma(\alpha_v+n_v)}\cdot\frac{\prod_v\Gamma(\beta_v+n_v)}{\Gamma(\Sigma_v\beta_v+n_v)} \text{ then we substitue the } \beta_v \text{ as } \alpha_v+1 \text{ and using the identity of gamma function we can get}$

 $=\frac{\Gamma(\Sigma_v\alpha_v+n_v)}{\prod_v\Gamma(\alpha_v+n_v)}\cdot\frac{(n_v+\alpha_v)\prod_v\Gamma(\alpha_v+n_v)}{\Sigma_v\alpha_v+n_v\Gamma(\Sigma_v\alpha_v+n_v)} \text{ we can cancel some terms and } \Sigma_v\alpha_v \text{ can be written as } N \text{ and } \Sigma_v n \text{ can be written as } N \text{ and we get}$

$$=\frac{n_v+\alpha}{N+V\alpha}$$

2c: Problem Statement

Derive the marginal likelihood of observed training data, after integrating away the parameter μ .

That is, show that the marginal probability of the observed N training words has the following closed-form expression:

$$p(X_1 = x_1 \dots X_N = x_N) = \int p(X_1 = x_1, \dots X_N = x_N, \mu) d\mu \tag{7}$$

$$= \frac{\Gamma(V\alpha) \prod_{v=1}^{V} \Gamma(n_v + \alpha)}{\Gamma(N + V\alpha) \prod_{v=1}^{V} \Gamma(\alpha)}$$
(8)

2c: Solution

 $\int p(X_1 = x_1, ..., X_n = x_n, \mu) d\mu$ using Bayes Rule we can get

= $\int p(X_1 = x_1, ..., X_n = x_n | \mu) \cdot p(\mu) d\mu$ substitute the first term by the result of 2a and the second part is just the dirichlet distribution

= $\int \prod_{v=1}^V \mu_v^{n_v} \cdot DirPDF(\mu|\alpha) d\mu$ so we can substitue with the definition of dirichlet distribution and we can get

= $\int \prod_{v=1}^V \mu_v^{n_v} \cdot c(\alpha) \cdot \prod_{v=1}^V \mu_v^{\alpha_v-1}$ we can move the constant part outside and combine these two terms

= $c(\alpha)\int\prod_{v=1}^V\mu_v^{\alpha_v+n_v-1}d\mu$ then we can use the identity of dirichlet distribution and get

$$=\frac{\Gamma(\Sigma_v\alpha_v)}{\prod_{v=1}^V\Gamma(\alpha_v)}\cdot\frac{\prod_{v=1}^V\Gamma(\alpha_v+n_v)}{\Gamma(\Sigma_v\alpha_v+n_v)} \text{ then } \Sigma_v\alpha_v \text{ can be written as } V\alpha \text{ and } \Sigma_v\alpha_v+n_v \text{ can}$$

be written as $V\alpha+N$ then we get

$$= \frac{\Gamma(V\alpha) \cdot \prod_{v=1}^{V} \Gamma(\alpha_v + n_v)}{\Gamma(N + V\alpha) \cdot \prod_{v=1}^{V} \Gamma(\alpha_v)}$$