Лабораторная работа №3

Тема: Разработка программ с использованием операторов выбора, цикла и передачи управления.

Цель: Научиться разрабатывать программы с использованием операторов выбора, цикла, передачи управления.

Выполнение работы:

Пример 1. Проверка числа на чётность/нечётность

```
using System;
using System.Windows.Forms;
using Microsoft. Visual Basic;
class OddEvenDemo {
static void Main () {
         // Целочисленные переменные:
         int number, reminder;
         // Считывание целого числа:
         number=Int32.Parse(
              Interaction.InputBox(
                  // Текст в окне:
                  "Введите целое число:",
                  // Название окна:
                  "Проверка")
         );
         // Вычисляется остаток от деления на 2:
         reminder=number%2;
         string txt="Вы ввели ";
         // Использован тернарный оператор:
         txt+=(reminder==0?"4eTHOe":"He4eTHOe")+" 4MCJO!";
         MessageBox.Show(txt);
     }
}
       Пример 2. Использование условного оператора
using System.Windows.Forms;
using Microsoft. Visual Basic;
class UsingIDemo{
  static void Main() {
         // Переменная для определения типа пиктограммы:
         MessageBoxIcon icon;
         // Переменные для определения текста сообщения,
         // заголовка окна и имени пользователя:
         string msq, title, name;
         // Считывание имени пользователя:
         name=Interaction.InputBox(
```

```
// Текст над полем ввода:
             "Как Вас зозут?",
             // Название окна:
             "Знакомимся");
        // Проверка введенного пользователем текста:
        if (name=="") { // Если текст не введен
        // Пиктограмма ошибки:
        icon=MessageBoxIcon.Error;
             // Текст сообщения:
             msq="Очень жаль, что мы не познакомились!";
            // Заголовок окна:
             title="Знакомство не состоялось";
        else{ // Если текст введен
        // Информационная пиктограмма:
            icon=MessageBoxIcon.Information;
            // Текст сообщения:
            msq="Очень приятно, "+name+"!";
            // Заголовок окна:
            title="3HaKOMCTBO состоялось";
        // Отображение сообщения (аргументы - текст
        // сообщения, заголовок, кнопки и пиктограмма):
        MessageBox.Show(msg, title, MessageBoxButtons.OK, icon);
}
      Пример 3. Даны три числа: a, b, c. Могут ли эти числа быть длинами
сторон треугольника? Если «да», то вычислить его площадь, используя
формулу Герона:
      using System;
namespace Prim IF 2
class Program
public static void Main(string[] args)
double a, b, c, p, s;
Console.Write("a=");
a = double.Parse(Console.ReadLine());
Console. Write ("b=");
b = double.Parse(Console.ReadLine());
Console.Write("c=");
c = double.Parse(Console.ReadLine());
if(a + b > c \&\& b + c > a \&\& a + c > b)
Console.WriteLine("Треугольник существует");
```

p = (a + b + c) / 2;

```
s = Math.Sqrt(p * (p - a) * (p - b) * (p - c));
Console.WriteLine("s={0}", s);
}
else
Console.WriteLine("Треугольник не существует");
Console.Write("Press any key to continue . . . ");
Console.ReadKey(true);
}
}
```

<u>Пример 4.</u> По номеру дня недели вывести на экране монитора название этого дня недели.

```
using System;
namespace Prim switch
class Program
public static void Main(string[] args)
Console.WriteLine("Задайте номер недели:");
int n = int.Parse(Console.ReadLine());
switch(n)
{
case 1:
Console.WriteLine("Понедельник");
break;
case 2:
Console.WriteLine("Вторник");
break;
case 3:
Console.WriteLine("Среда");
break;
case 4:
Console.WriteLine("Четверг");
break;
case 5:
Console.WriteLine("Пятница");
break;
case 6:
Console.WriteLine("Cyббота");
break;
case 7:
Console.WriteLine("Воскресенье");
default:
Console.WriteLine("Неверный номер для
дня недели: {0}", n);
break;
Console.Write("Press any key to continue . . .");
```

```
Console.ReadKey(true);
}
}
}
     <u>Пример 5.</u> Найти сумму квадратов первых n натуральных чисел (Цикл
while)
     using System;
     namespace Prim while
     {
     class Program
     public static void Main(string[] args)
     int i, n, s;
     Console.Write("n=");
     n = int.Parse(Console.ReadLine());
     s = 0;
     i = 1;
     while (i \le n)
     s += i * i;
     i++;
     }
     Console.WriteLine("s={0}", s);
     Console.Write("Press any key to continue . . . ");
     Console.ReadKey(true);
     }
     }
     Пример 6. Найти сумму квадратов первых n натуральных чисел (Цикл
do)
     using System;
     namespace Prim do
     class Program
     public static void Main(string[] args)
     {
     int i, n, s;
     do
     Console.WriteLine("Задайте n>0:");
     n = int.Parse(Console.ReadLine());
     while (n < 1);
```

s = 0; i = 1; do {

```
s += i * i;
i++;
}
while(i <= n);
Console.WriteLine("s={0}", s);
Console.Write("Press any key to continue . . . ");
Console.ReadKey(true);
}
}</pre>
```

Пример 7. Найти сумму квадратов первых n натуральных чисел (Цикл

```
using System;
namespace Prim for
class Program
public static void Main(string[] args)
int i, n, s;
do
Console.WriteLine("Задайте n>0:");
n = int.Parse(Console.ReadLine());
while (n < 1);
for(i = 1, s = 0; i \le n; i++)
s += i * i;
Console.WriteLine("s={0}", s);
Console.Write("Press any key to continue . . . ");
Console.ReadKey(true);
}
}
}
```

Варианты индивидуальных заданий

Задание 1. Алгоритмы с ветвлением

for)

Составить графическую схему алгоритма и написать программу вычисления выражения y=f(x) в соответствии с видом выражения, приведенном в таблице 1. В программе предусмотреть вывод

- значения аргумента x;
- вычисленного значения выражения у;

Таблица 1- Варианты индивидуального задания 1

Вариант		Вид функции
	$\int 1/x$,	$ec\pi u \ x \ge -5, \ x \ne 0$ (1)
1	$y = \left\{ x^2, \right.$	ecnu $x \le -10$ (2)
	$\sqrt{ x+1 }$	$\overline{1}$ в ост. случаях (3)
2		если $x \le 0, x \ne -10$ (1)
	$y = \begin{cases} \sqrt{x+1} \end{cases}$	ecnu x > 1 (2)
	$\left[1/x\right]$	в ост. случаях (3)
	$\int x + e^2$	$x, \qquad ecnu \ x \le 0, x \ne -1 \tag{1}$
3	$y = \left\{ \cos^2 y \right\}$	$x, ecnu \ 0 < x \le 3,14$ (2)
	x	ϵ ост. случаях (3)
	$\int x^3$,	если $x > 1$, $x \neq 20$ (1)
4	$y = \left\{ x^2, \right.$	$ecnu - 5 \le x \le 5 \tag{2}$
	$\lfloor \lg x \rfloor$	в ост. случаях (3)
	$\int \sqrt{x}$	если $x \ge 100, x \ne 105$ (1)
5	$y = \begin{cases} \sqrt[3]{x}, \end{cases}$	$ec\pi u \ x \ge 100, \ x \ne 105$ (1) $ec\pi u \ x = 20 \ u\pi u \ x = 40$ (2)
	$x^2 + 1$	в ост. случаях (3)
	$\left(\sqrt[3]{x},\right)$	ecnu x > 2 (1)
6	$y = \begin{cases} 1/x, \end{cases}$	$ec\pi u \ x \le 2 \ u \ x \ne 0$ (2)
	x^2-1	в ост. случаях (3)
		$ecnu \ x \ge 5, \ x \ne 9 \tag{1}$
7	$y = \left\{ x^2 + \right\}$	x , $ec\pi u \ x \le 1$ (2)
	$x^3 + x$	\sqrt{x} в ост. случаях (3)
	$\left[1-3x,\right]$	$ec\pi u \ x > 0, x \neq 8$ (1)
8	$y = \left\{ x^2 - \sin x \right\}$	$\mathbf{n} x$, $ec\pi u x \le 1$ (2)
	$\cos x$	в ост. случаях (3)
		если $x \ge 8, x \ne 10$ (1)
9	$y = \begin{cases} 2x^2 + 1 \end{cases}$	$\sqrt[3]{x}$, если $x \le 1$ (2) в ост. случаях (3)
	\sqrt{x}	в ост. случаях (3)
	$\int \sqrt{x}$	$ec\pi u \ x \ge 4$ (1)
10	$y = \begin{cases} 2x + 3, \\ x^3 - 4 \end{cases}$	$ecnu x \le 1$ (2)
	$ x^3-4 $	в ост. случаях (3)

Вариант	Вид функции		
	$\left(\lg^2 2x, \qquad ecnu \ x \ge 5\right) \tag{1}$		
11	$y = \left\{ 2x^2, \qquad ecnu \ x < -2 \right. \tag{2}$		
	$\sin x$ в ост. случаях (3)		
12	$\sqrt{ 2x-x^2-1 }, \qquad ecnu \ x \le -1, \ x \ne -4 $ (1)		
	$y = \left\{ \ln (x+3), \qquad ecnu \ x > 0 \right. \tag{2}$		
	x/2 в ост. случаях (3)		
	$\left\{ x/3, \qquad ec\pi u - 3 \le x \le 3 \qquad (1) \right\}$		
13	$y = \begin{cases} \lg(x^2 + 1), & ec\pi u \ x < -3 \end{cases}$ (2)		
	$y = \begin{cases} \lg(x^2 + 1), & ecnu \ x < -3 & (2) \\ \sqrt{x^3 - 2} & eocm. cлучаяx & (3) \end{cases}$		
	$\left \left x^3 + 4 \right , \qquad ecnu \ x \le -1 \ unu \ x = 0 (1)$		
14	$y = \begin{cases} \sqrt{x/2}, & ecnu \ x \ge 8 \end{cases} \tag{2}$		
	x^3 в ост. случаях (3)		
	$\sqrt{3x^2 + 4}, \qquad ecnu \ x \ge 2 \qquad (1)$		
15	$y = \left\{ \ln x - 2 , \qquad ec\pi u \ x < 0 \right. \tag{2}$		
	$\cos x$ в ост. случаях (3)		
16	$\begin{cases} tg \ x/2, & ecnu \ 0 < x \le 2 \end{cases} \tag{1}$		
	$y = \left\{ x^2 + 1, \qquad ec\pi u \ x \le 0 \right. \tag{2}$		
	$\cos^2 x$ в ост. случаях (3)		
	$\left[\sqrt{x^2 - 2x}, \qquad ecnu \ x \ge 10\right] \tag{1}$		
17	$y = \left\{ e^{x/2}, \qquad ecnu \ x \le 1 \right. \tag{2}$		
	$\ln x + x^3/4 \qquad \qquad \textit{в ост. случаях} \qquad (3)$		
	$ecnu x \le 0 (1)$		
18	$y = \begin{cases} \sqrt{ x^2 - 2 }, & ecnu \ 0 < x < 7 \\ x/2 - x^2 & ecm. cлучаях \end{cases} $ (2)		
19	$ \sqrt{e^{2x}}, \qquad ecnu \ x \ge 0 \qquad (1) $		
	$y = \left\{ \cos x/3, \qquad ec\pi u \ x < -1 \right. \tag{2}$		
	$ x+1 \qquad \qquad \textit{b ocm. chyvasx} \qquad (3)$		
	$\left(x/3 + x^2, \qquad ecnu \ 0 \le x \le 3 (1)\right)$		
20	$y = \begin{cases} x + 3, & ecnu \ x < 0 \end{cases} $ (2) $\sqrt{2x} \qquad \qquad \text{в ост. случая} \qquad (3)$		
	$\sqrt{2x}$ в ост. случая (3)		

Вариант	Вид функции		
	$\int \sqrt{x+1}$,	$ecnu \ x \ge 8, \ x \ne 10$ (1)	
21	$y = \begin{cases} 0.6x, \end{cases}$	если $0 < x < 8$ (2)	
	$\left \lg x + 3 \right $	в ост. случаях (3)	
	$\left[2x^2,\right]$	если $x > 0, x \neq 3$ (1)	
22	$y = \begin{cases} \sqrt{x^2 + 1} \\ x + 5 \end{cases}$	$ecлu x \le -2$ (2)	
		в ост. случаях (3)	
	$\sqrt{x-1}$,	если $x \ge 10, x \ne 20$ (1)	
23	$y = \left\{ 1/x + e^{2x}, \right.$	$ec\pi u \ x < 0$ (2)	
	$\ln (x+1)$	в ост. случаях (3)	
	$\sqrt{ 2x-x^2-1 },$	если $x \le -1$, $x \ne -4$ (1)	
24	$y = \left\{ \ln (x+3), \right.$	$ecлu \ x > 0$ (2)	
	x/2	ε ост. случаях (3)	
	$\cos^2 x/2$,	если $x > 3$ (1)	
25	$y = \left \lg \left 2x + 4 \right \right $	$ec\pi u - 2.5 \le x \le 3 \qquad (2)$	
	3/x	в ост. случаях (3)	
	$\left(e^{-x}+1,\right)$	если $x \ge 1$ (1)	
26	$y = \begin{cases} \lg 2x, \\ x^2 \end{cases}$	ecnu $1 < x \le 5$ (2)	
	x^2	в ост. случаях (3)	
	$\left[\lg^2 x/2,\right]$	если $x > 0, x \neq 2$ (1)	
27	$y = \left\{ 2e^{x+1}, \right.$	$ecnu x \le -1$ (2)	
	$\sqrt{5+x^2}$	в ост. случаях (3)	
	$\int x^3/2$,	если $x > 0, x \neq 2$ (1)	
28	$y = \left\{ 2e^{x+1}, \right.$	$ecnu \ x \le -1$ (2)	
	$\sqrt{5+x^2}$	в ост. случаях (3)	
	$\int \sqrt{x+2}$,	если $x \ge 7$ или $x = -1$ (1)	
29	$y = \left\{ x - 1 \right.,$	$ecлu 0 < x < 7 \tag{2}$	
	$ x^2+4 $	в ост. случаях (3)	
	$\sqrt{\lg^2 x + 1}$,	$ecnu \ x \ge 1$ (1)	
30	$y = \left\{ 1/x + e^x, \right.$	$ec\pi u \ x \le -1$ (2)	
	$y = \begin{cases} 1/x + e^x, \\ 0.5x^2 \end{cases}$	в ост. случаях (3)	

<u>Задание 2.</u> Табулирование неразветвляющейся функции в равноотстоящих точках.

В соответствии с видом функции, приведенном в таблице 2, вычислить значения функции y=f(x,a,b) для значений аргумента x, изменяющегося в интервале от $x_{\text{нач}}$ до $x_{\text{кон}}$ с шагом Δx , и заданных констант а и b.

Исходные данные для отладки программы ($x_{\text{нач}}$, $x_{\text{кон}}$, Δx , a, b), выбрать самостоятельно из интервала значений, где заданные функции определены.

Таблица 2 - Варианты индивидуального задания 2

Вариант	Вид функции	Вариант	Вид функции
1	$y = \frac{arctg (a+x)}{\sqrt{a^3 + b^3}}$	16	$y = \frac{arctg\ bx}{1 + \sin^2 x}$
2	$y = \frac{1 + \sqrt{bx}}{0.5 + \sin^2 ax}$	17	$y = \frac{\sin^2 x + a}{\sqrt{x} + bx}$
3	$y = \frac{a - e^{bx}}{\ln 2x }$	18	$y = \sqrt{\frac{a + bx}{\ln^2 x}}$
4	$y = \frac{(a+bx)^2}{1+\cos^3 ax}$	19	$y = \frac{\ln^2(x-b)}{a\sqrt{x}}$ $y = \frac{a\ln^2 x}{b+\sqrt{x}}$
5	$y = \frac{b + \sin^2 ax}{e^{-x/2}}$	20	$y = \frac{a \ln^2 x}{b + \sqrt{x}}$
6	$y = \frac{\sin^2 x - a}{bx}$	21	$y = \frac{e^{ax} + b}{1 + \cos^2 x}$
7	$y = \frac{arctg^2 ax}{b + 0.5x}$	22	$y = \frac{a + \sqrt[3]{x}}{\sin^2 bx}$
8	$y = \frac{\ln\left(a^2 - x\right)}{b\sin^2 x}$	23	$y = \frac{a\sqrt{ x } - bx}{\ln^3 x}$
9	$y = \frac{a - \sqrt{bx}}{1 + \cos 2x }$	24	$y = \frac{a\sqrt{ x } - bx}{\ln^3 x}$ $y = \frac{\sqrt{ax} - b}{tg^2 x}$
10	$y = \frac{\ln^2(a+x)}{(b+x)^2}$	25	$y = e^{-x} \frac{a + bx}{\ln^2 x + 1 }$
11	$y = \frac{\sqrt{ a \ln x }}{1 + tg^2 bx}$	26	$y = \frac{tg^2 x - b}{e^{ax}}$
12	$y = \frac{1 + tg^2 x}{b + e^{x/a}}$	27	$y = \frac{arctg\ bx}{1 + \sqrt[3]{ax}}$
13	$y = \frac{\cos^2 2x + b}{\sqrt{1 + e^{ax}}}$	28	$y = \frac{\sin^3 ax}{ax + b}$
14	$y = \frac{\sqrt{ax + b}}{\ln^2 x }$	29	$y = \frac{e^{-ab}}{b + \cos^3 ax}$

Вариант	Вид функции	Вариант	Вид функции
15	$y = \frac{1 + \sin^2 ax}{b^2 + x^2}$	30	$y = \frac{\ln^2 x + b}{a\sqrt{x}}$

Шкала оценивания индивидуальных заданий

Задание 1	1-6 баллов
Задание 1 + Задание 2	1-8 баллов
Задание 1 + Задание 2 + Выполнение	
одного из заданий с использованием	1-10 баллов
формы	

Содержание отчета:

- 1. Номер и тема лабораторной работы.
- 2. Цель лабораторной работы.
- 3. Техническое оснащение.
- 4. Скриншоты выполнения примеров
- 5. При выполнении индивидуальных заданий в отчет внести изображение кода программы и окно выполнения программы.
- 6. Блок-схему построить в Visio, и перенести в отчет.
- 7. При выполнении программы с использованием формы, в отчет внести изображением формы с использованными элементами и модифицированной формы, так же окно программы после выполнения.
- 8. Вывод по лабораторной работе