Examen de Matemática Discreta II 20 de julio de 2007

Número de Examen	Cédula	Nombre y Apellido			

1. (30 puntos)

Consideramos \mathbb{Z}_n el conjunto de los enteros módulo n con la suma y el producto habituales. Sea \mathbb{U}_n el conjunto de los invertibles respecto del producto.

- a) Probar que $[a] \in \mathbb{Z}_n$ es invertible (respecto del producto) si y sólo si mcd(a, n) = 1.
- b) Supongamos que $n = 117 \times 263 = 36031$. Determinar si [2502] y [512] tienen inverso en \mathbb{Z}_{36031} y en caso afirmativo hallarlo(s).
- c) ¿Cuántos elementos tiene \mathbb{U}_{36031} ?
- d) Calcular $1500^{9432} \pmod{36031}$.

2. (35 puntos)

Un subgrupo H de G es característico si para todo $f \in \operatorname{Aut}(G) = \{ h : G \to G \mid h \text{ es morfismo biyectivo} \}$ (automorfismos de G) se cumple que $f(H) \subseteq H$.

- a) Probar que el Z(G) es un subgrupo característico de G.
- $b)\,$ Probar que cualquier subgrupo característico es un subgrupo normal.
- c) Consideremos $Int(G) = \{i_a : a \in G\}$ donde $i_a : G \to G$ es tal que $i_a(x) = axa^{-1}$. Probar: 1) $Int(G) \triangleleft Aut(G)$; 2) $G/Z(G) \cong Int(G)$.
- d) Considerar S_n con $n \geq 3$.

Probar: 1) $Z(S_n) = \{id\}$; 2) $Int(S_n) \cong S_n$.

3. (35 puntos)

- a) Describir el método de Diffie Hellman para acuerdo de clave.
- b) Edubijes y Tomás se ponen de acuerdo en el primo p=71 y g=7. Tomás elige el número secreto n=69 y Edubijes le envía $g^m=23$. ¿Cuál es la clave secreta que acuerdan Edubijes y Tomás?
- c) Asignamos valores a algunos caracteres según la tabla siguiente:

A	С	L	О	Н	U	M	R	S	Е	Т
0	1	2	3	4	5	6	7	8	9	10

Definimos el criptosistema afín de la siguiente manera: para $a,b \in \mathbb{Z}$ con $1 \le a \le 10, 0 \le b \le 10$ definimos la siguiente función de encriptado $E: \mathbb{Z}_{11} \to \mathbb{Z}_{11} \ / \ E(x) = ax + b \pmod{11}$.

Sea K ($0 \le K < 71$) la clave acordada por Edubijes y Tomás en la parte anterior, escribamos $K = a \cdot 11 + b$ con $0 \le a < 11$ y $0 \le b < 11$. Para encriptar un texto se encripta letra a letra usando la función de encriptado. Encriptar el texto HOLA.

- d) Supongamos ahora que somos espías y que sabemos que Edubijes le envía a Tomás un mensaje encriptado según el criptosistema anterior (esta vez desconocemos los valores a y b de la función de encriptado). Espías ayudantes han descubierto que el mensaje original (sin encriptar) comienza con la letra C y termina con la letra U y que el mensaje encriptado es ESLH.
 - i) Hallar la función de encriptar (o sea los valores de a y b) que usan Edubijes y Tomás.
 - ii) Desencriptar el mensaje ESLH.