#### (19) World Intellectual Property Organization International Bureau





#### (43) International Publication Date 30 May 2003 (30.05.2003)

### **PCT**

#### (10) International Publication Number WO 03/044089 A1

(51) International Patent Classification7: C08L 63/00, 81/04, H01L 21/56

(21) International Application Number: PCT/US02/36872

(22) International Filing Date:

18 November 2002 (18.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/331,523

19 November 2001 (19.11.2001)

(71) Applicant (for all designated States except US): HENKEL LOCTITE CORPORATION [US/US]; 1001 Trout Brook Crossing, Rocky Hill, CT 06067 (US).

- (72) Inventor; and
- (75) Inventor/Applicant (for US only): KONARSKI, Mark, M. [US/US]; 4 Merritt Lane, Old Saybrook, CT 06475 (US).
- (74) Agents: CUNNINGHAM, Marina, F.; McCormick, Paulding & Huber LLP, 185 Asylum Street, CityPlace II, Hartford, CT 06103-3402 et al. (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERMOSETTING RESIN COMPOSITIONS USEFUL AS UNDERFILL SEALANTS



(57) Abstract: The present invention provides a thermosetting resin composition useful as a highly filled low CTE underfilling sealant composition which completely fills the underfill space in a semiconductor device, such as a flip chip assembly which includes a semiconductor chip mounted on a carrier substrate, enables the semi-conductor to be securely connected to a circuit board by heat curing and with good productivity, and demonstrates acceptable heat shock properties (or thermal cycle properties). The thermosetting resin composition which is used as an underfilling sealant between such a semiconductor device and a circuit board to which the semiconductor device is electrically connected, includes an epoxy resin component, a latent hardener component, and a polysulfide-based toughening component. The latent hardener component includes a modified amide component and a latent catalyst therefor. Optionally, the inventive composition includes a filler, desirably at least a portion of the filler should have a particle size in the range of 1 to 1,000 nanometers.

LC-469/PCT

# THERMOSETTING RESIN COMPOSITIONS USEFUL AS UNDERFILL SEALANTS

#### BACKGROUND OF THE INVENTION

#### Field of the Invention

[0001] This invention relates to thermosetting resin compositions useful as underfill sealants for mounting to a circuit board semiconductor chips or semiconductor device packages, which have a semiconductor chip on a carrier substrate. Reaction products of these compositions demonstrate improved adhesion after exposure to elevated temperature conditions, improved resistance to moisture absorption and improved resistance to stress cracking.

#### Brief Description of Related Technology

[0002] In recent years, the popularity of smaller-sized electronic appliances has made desirable size reduction of semiconductor devices. As a result, chip packages are becoming reduced in size to substantially that of the bare die themselves. Such smaller-sized chip packages improve the characteristics of

5

the microelectronic device in which it is used, while retaining many beneficial operating features. This serves to protect semiconductor bare chips, and increases their reliability and useful life.

- onductors on a circuit board by use of solder connection or the like. However, when the resulting chip/circuit board structure is subjected to conditions of thermal cycling, reliability becomes suspect due to fatigue of the solder connection between the circuit board and the chip assembly. Recent manufacturing advances provide a sealing resin (often referred to as underfill sealant) in the space created by the mounting of a direct chip
- grid array ("BGA")/land grid array ("LGA") assembly or a flip

  15 chip ("FC") assembly] onto a circuit board to relieve stresses

  caused by thermal cycling. Underfill sealants have been seen to

  improve heat shock properties and enhance the reliability of such

  structures.

attach package ("DCA") [such as a chip scale package ("CSP")/ball

- [0004] Of course, curable resin compositions generally are known. See e.g., U.S. Patent No. 4,645,803 (Kohli) which relates to curable epoxy resin compositions of reinforcing filaments and epoxy resins together with a primary amine-functional curing agent with or without a polyamine curing agent and a curing catalyst which when cured into a fiber matrix is useful in preparing composites and prepreg materials for structural
  - applications.

    [0005] In addition, U.S. Patent No. 4,499,245 (Ikeguchi)

    relates to a curable resin composition requiring a mixture and/or
    a reaction product of (a) a polyfunctional dicyandiamide,
- 30 prepolymer of the dicyandiamide or coprepolymer of the dicyandiamide and an amine and (b) a polyhydantion resin -- a phenolic-based epoxy curative. In addition, a polyfunctional maleimide, prepolymer of the maleimide or coprepolymer of the

maleimide and an amine may be included as a component (c). These compositions are reported to be useful as coating materials for rust prevention, flame resistance, flame retardation; electrical insulation varnish; and laminates for use with furniture,

5 building materials, and sheathing materials.

[0006] More specifically, thermosetting compositions of dicyandiamides and epoxy resins are also generally known. See e.g., Japanese patent document JP 62-275,123, an English-language abstract of which speaks to a resin composition for preparing

prepreg materials with reinforcing fiber for structural applications. The compositions are reported to include certain dicyandiamides, bismaleimide, polyether sulfone (as a non-reactive thermoplast whose use is as a toughening agent) and bisphenol F- or A-type epoxy resin. In addition, the composition

15 is reported to be optionally hardened by a hardening catalyst, one of which is noted as imidazole.

[0007] U.S. Patent No. 4,918,157 (Gardner) relates to the use of urea compounds as latent cure accelerators for dicyandiamides, and to thermosetting dicyandiamide formulations of dicyandiamides and urea compounds. More specifically, the '157 patent claims a thermosetting composition of a dicyandiamide; a urea compound selected from alkyl aryl ureas, aryl ureas and mixtures thereof; and an epoxy resin. The curable dicyandiamide formulations of the '157 patent are reportedly useful as matrix resins, and for

25 the production of prepreg, fiber-reinforced laminates, composites and the like.

[0008] Epoxy curing systems are also known. See e.g., U.S. Patent No. 3,862,260 (Sellers), in which a curing agent of a trifunctional hardener (such as the reaction product of one mole of bisphenol A with one mole of formaldehyde) and an imidazole is disclosed.

[0009] These uses for thermosetting resin compositions appear to be directed to structural applications, as contrasted to the

microelectronic application to which the compositions of the present invention are directed. To that end, the use of epoxy resin compositions as matrix compositions for fiber reinforcement in prepreg, composite and laminate materials for structural

- 5 materials differs significantly from the use of epoxy resin compositions as an adhesive and encapsulant in microelectronic applications, such as with electrical solder junctions in semiconductor chips, and creates different demands and requirements from the uncured resin as well as cured reaction products thereof.
- [0010] A drawback to resin compositions presently used in microelectronics applications, such as for underfill sealants, has been the ability of providing such resins with a commercially acceptable useful working life at room temperature or dispensing temperatures.
  - [0011] Generally, at temperatures near room temperature, the resins begin to cure upon introduction of the curing agent or catalyst. This causes viscosity increases which leads to reduced dispensability. While such viscosity increase may be alleviated
- 20 to some degree by using a liquid curing agent or catalyst, liquid catalysts tend to decrease latency to a point which is not commercially practical with current production demands. And introduction of a solid catalyst, such as imidazole, has limited applicability because its presence often changes the rheological properties of the composition, and decreases flow.
  - [0012] Thus, due at least in part to their limited useful working life, manufacturing capacity of certain microelectronic production lines has been hampered by these shortcomings of conventional underfill sealant compositions.
- 30 [0013] Accordingly, it would be desirable for an underfilling sealant composition to provide good adhesive properties while flowing and curing in a reasonable time to be commercially appealing and possessing an extended useful working life.

PCT/US02/36872

#### SUMMARY OF THE INVENTION

[0014] The present invention provides a thermosetting resin composition useful as an underfilling sealant composition which 5 (1) fills the underfill space in a semiconductor device, such as a FC assembly which includes a semiconductor chip mounted on a carrier substrate or a CSP, which includes a semiconductor chip mounted on a carrier substrate, (2) enables the semiconductor to be securely connected to a circuit board by short-time heat curing and with good productivity, (3) demonstrates excellent heat shock properties (or thermal cycle properties), and (4) provides a composition that does not begin to cure at conventional underfill dispensing temperatures and exhibits commercially desirable flow properties, even when highly filled with an inorganic filler, such as at or above a 75 weight percent filler loading level.

[0015] The thermosetting resin compositions of this invention which are used as underfill sealants between such a semiconductor device and a circuit board to which the semiconductor device is electrically connected, includes an epoxy resin component, a latent hardener component and a polysulfide-based toughening component. The latent hardener component includes a modified amide component, such as dicyandiamide, a latent catalyst therefor, such as an imidazole, a diazabicycloundecaene ("DBU") salt, a tertiary amine salt, and/or a modified urea. Desirably, the latent catalyst is an imidazole, particulalry one in the

[0016] By using the thermosetting resin compositions of this invention, semiconductor devices, such as flip chip assemblies, 30 may be (1) assembled quickly and without production line down time because of improved cure speed and extended useful working life, and (2) securely connected to a circuit board by short-time heat curing of the composition; with the resulting mounted

solid state.

structure (at least in part due to the cured composition) demonstrating excellent heat shock properties (or thermal cycle properties).

[0017] The compositions of this invention may also be used for sicroelectronic applications beyond sealing underfill, such as with glob top, die attachment and other applications for thermosetting compositions in which high filler loadings and an extended useful working life are desirable.

[0018] The benefits and advantages of the present invention
10 will become more readily apparent after a reading of the
"Detailed Description of the Invention" together with the figure.

# BRIEF DESCRIPTION OF THE FIGURE

[0019] Figure 1 depicts a cross-sectional view showing an example of a mounted structure with which the thermosetting resin composition of the present invention is used as an underfill sealant.

# DETAILED DESCRIPTION OF THE INVENTION

20 [0020] As noted above, the thermosetting resin compositions which are useful as underfill sealants between a semiconductor device and a circuit board to which the semiconductor device is electrically connected, include an epoxy resin component, a latent hardener component and a polysulfide-based toughening component. The latent hardener component includes a modified amide component, such as dicyandiamide, component and a latent catalyst, such as an imidazole, a DBU salt, a tertiary amine salt, and/or a modified urea. Desirably, the latent catalyst is an imidazole, particularly one in the solid state. Optionally, the inventive composition includes a filler, desirably at least a portion of the filler should have a particle size in the range of 1 to 1,000 nanometers.

[0021] Typically, an unfilled inventive composition includes about 100 parts by weight of the epoxy resin component; 0 to about 30 parts by weight, such as about 5 to about 25 parts, dersirably about 10 parts, of the latent hardener component, of 5 which 0 to about 15 parts, such as about 5 to about 10 parts, desirably 7 parts, is comprised of the modified amide component, such as dicyandiamide and 0 to about 15 parts, such as about 1 to about 5 parts, such as about 3 parts, is comprised of the latent catalyst therefor, such as an imidazole, a DBU salt, a tertiary 10 amine, and/or a modified urea; and 0 to about 30 parts, such as about 5 to about 25 parts, desirably about 10 parts, of the polysulfide-based toughening component.

[0022] The epoxy resin component of the present invention may include any common epoxy resin. This epoxy resin may be

- optionally, together with at least one monofunctional epoxy resin. Ordinarily, the multifunctional epoxy resin should be included in amount within the range of about 20 parts to about 100 parts of the epoxy resin component. In the case of bisphenol
- 20 F-type epoxy resin, desirably the amount thereof should be in the range of from about 40 to 80 parts.
  - [0023] A monofunctional epoxy resin, if present, should ordinarily be used as a reactive diluent, or crosslink density modifier. In the event such a monofunctional epoxy resin is
- 25 included as a portion of the epoxy resin component, such resin should be employed in an amount of up to about 20% by weight based on the total epoxy resin component.
  - [0024] The monofunctional epoxy resin should have an epoxy group with an alkyl group of about 6 to about 28 carbon atoms,
- 30 examples of which include  $C_6-C_{28}$  alkyl glycidyl ethers,  $C_6-C_{28}$  fatty acid glycidyl esters and  $C_6-C_{28}$  alkylphenol glycidyl ethers. [0025] Such epoxy resin(s) include generally, but are not limited to, polyglycidyl ethers of polyvalent phenols, for

example pyrocatechol; resorcinol; hydroquinone; 4,4'-dihydroxydiphenyl methane; 4,4'-dihydroxy-3,3'-dimethyldiphenyl methane; 4,4'-dihydroxydiphenyl dimethyl methane; 4,4'-dihydroxydiphenyl methane; 4,4'-dihydroxydiphenyl

- 5 cyclohexane; 4,4'-dihydroxy-3,3'-dimethyldiphenyl propane; 4,4'-dihydroxydiphenyl sulfone; tris(4-hydroxyphyenyl)methane; polyglycidyl ethers of the chlorination and bromination products of the above-mentioned diphenols; polyglycidyl ethers of novolacs (i.e., reaction products of monohydric or polyhydric phenols with
- aldehydes, formaldehyde in particular, in the presence of acid catalyst; polyglycidyl ethers of diphenols obtained by esterifying 2 moles of the ethers of diphenols obtained by esterifying 2 moles of the sodium salt of an aromatic hydrocarboxylic acid with 1 mole of a dihaloalkane or dihalogen
- 15 dialkyl ether (<u>see U.K. Pat. No. 1,017,612</u>, the disclosure of which is hereby expressly incorporated herein by reference); and polyglycidyl ethers of polyphenols obtained by condensing phenols and long-chain halogen paraffins containing at least two halogen atoms (<u>see U.K. Pat. No. 1,024,288</u>, the disclosure of which is hereby expressly incorporated herein by reference).
  - [0026] Commercially available examples of reactive diluents from CVC Chemicals include o-cresyl glycidyl ether (GE-10), p-t-butyl phenyl glycidyl ether (GE-11), neopentyl glycol di-glycidyl ether (GE-20), 1,4-butanediol di-glycidyl ether (GE-21), and
- 25 cyclohexanedimethanol glycidyl ether (GE-22). Other reactive diluents available commercially from CVC include castor oil triglycidyl ether (GE-35) and propoxylated glycerin tri-glycidyl ether (GE-36).
- [0027] Other suitable epoxy compounds include polyepoxy

  30 compounds based on aromatic amines and epichlorohydrin, such as N,N'-diglycidyl-aniline; N,N'-dimethyl-N,N'-diglycidyl-4,4'-diaminodiphenyl methane; N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane; N-diglycidyl-4-aminophenyl glycidyl

ether; and N,N',N'-tetraglycidyl-1,3-propylene bis-4-aminobenzoate.

[0028] Particularly desirable examples of the multifunctional epoxy resin include bisphenol A-type epoxy resin, bisphenol F-

5 type epoxy resin, phenol novolac-type epoxy resin, and cresol novolac-type epoxy resin.

[0029] Among the epoxy resins suitable for use herein are polyglycidyl derivatives of phenolic compounds, such as those available commercially under the tradenames EPON 828, EPON 1001,

10 EPON 1009, and EPON 1031, from Shell Chemical Co.; DER 331, DER 332, DER 334, and DER 542 from Dow Chemical Co.; RE-310-S, RE-404-S and BREN-S from Nippon Kayaku, Japan. Other suitable epoxy resins include polyepoxides prepared from polyols and the like and polyglycidyl derivatives of phenol-formaldehyde novolacs, the

15 latter of which are available commercially under the tradenames DEN 431, DEN 438, and DEN 439 from Dow Chemical Company. Cresol analogs are also available commercially ECN 1235, ECN 1273, and ECN 1299 from Vantico, Inc. SU-8 is a bisphenol A-type epoxy novolac available from Interez, Inc. Polyglycidyl adducts of

20 amines, aminoalcohols and polycarboxylic acids are also useful in this invention, commercially available resins of which include GLYAMINE 135, GLYAMINE 125, and GLYAMINE 115 from F.I.C.

Corporation; ARALDITE MY-720, ARALDITE MY-721, ARALDITE MY-722, ARALDITE 0500, and ARALDITE 0510 from Vantico and PGA-X and PGA-C

25 from the Sherwin-Williams Co.

[0030] And of course combinations of the different epoxy resins are also desirable for use herein.

[0031] In choosing epoxy resins for the epoxy resin component of the compositions of the present invention, consideration

30 should also be given to viscosity and other properties. As noted, the latent hardener includes a modified amide and a latent catalyst therefor.

[0032] The modified amide, such as the cyano-functionalized amide dicyandiamide or cyanoguanidine (available commercially as CG-1400 or CG-1600 from Air Products), may be included in an amount up to about 5 weight percent, such as about 1 to about 2 weight percent., based on the total composition.

- [0933] The latent catalyst for the modified amide includes imidazoles, such as imidazole and derivatives thereof, such as isoimidazole, imidazole, alkyl substituted imidazoles, such as 2-methyl imidazole, 2-ethyl-4-methylimidazole, 2,4-
- dimethylimidazole, butylimidazole, 2-heptadecenyl-4methylimidazole, 2-methylimidazole, 2-undecenylimidazole, 1vinyl-2-methylimidazole, 2-n-heptadecylimidazole, 2undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2ethyl 4-methylimidazole, 1-benzyl-2-methylimidazole, 1-propyl-2-
- 15 methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-methylimidazole, 1-guanaminoethyl-2-methylimidazole and addition products of an imidazole methylimidazole and addition products of an imidazole and trimellitic acid, 2-n-
- 20 heptadecyl-4-methylimidazole and the like, generally where each alkyl substituent contains up to about 17 carbon atoms and desirably up to about 6 carbon atoms; aryl substituted imidazoles, such as phenylimidazole, benzylimidazole, 2-methyl-4,5-diphenylimidazole, 2,3,5-triphenylimidazole, 2-
- 25 styrylimidazole, 1-(dodecyl benzyl)-2-methylimidazole, 2-(2-hydroxyl-4-t-butylphenyl)-4,5-diphenylimidazole, 2-(2-methoxyphenyl)-4,5-diphenylimidazole, 2-(3-hydroxyphenyl)-4,5-diphenylimidazole, 2-(p-dimethylaminophenyl)-4,5-diphenylimidazole, 2-(2-hydroxyphenyl)-4,5-diphenylimidazole,
- di (4,5-diphenyl-2-imidazole) -benzene-1,4, 2-naphthyl-4,5-diphenylimidazole, 1-benzyl-2-methylimidazole, 2-p-methoxystyrylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole (commercially available under the tradename 2PHZ from Shikoku,

Tokyo, Japan) and the like, generally where each aryl substituent contains up to about 10 carbon atoms and desirably up to about 8 carbon atoms.

[0034] Particulary desirable latent catalysts include DBU5 phenolate, available commercially from Air Products under the tradename SA1, DBU-hexanoate available commercially from Air Products under the tradename SA102, DBU-formate available commercially from, Air Products under the tradename SA610, and DBU-p-toluenesulfonate available commercially from Air Products under the tradename SA501.

[0035] Still other latent catalysts include phenyldimethyl urea, available commercially from CVC under the tradename U-405, toluene bis(dimethyl urea) available commercially from CVC under the tradename U-410, and methylene diphenyl bis(dimethyl urea),

15 available commercially from CVC under the tradename U415.

[0036] Tertiary amine salts are also desirable.

[0037] Of course, combinations of these latent catalysts are also desirable.

[0038] As the polysulfide-based toughening component, many 20 materials may be used. For instance, a polysulfide-based toughening components of the general formulae may be used:

$$HS-(R-SS)_n-R-SH$$

and

 $HS-(R-SS)_a-CH_2-CH-CH_2-(SS-R)_b-SH$ 

(SS-R)<sub>c</sub>-SH

where R is an alkyl ether, such as  $-(CH_2)_2-0-CH_2-0-(CH_2)_2-$ , and a +b+c=n.

30 [0039] A particularly desirable material is known as THIOKOL LP-3, available commercially from Rohm and Haas Company, Philadelphia, PA, where n is 6 and about 2 mole percent branching

25

exists. LP-3 is also reported to have a molecular weight of about 1,000.

[0040] Another particularly desirable material is avaliable commericially from Akcros Chemicals, Manchester, Great Britain under the tradename THIOPLAST, such as G1 (n is 19-21, 1.8-2 percent thiol content, and a 3,300-3,700 molecular weight), G4 (n is less than 7, less than 5.9 percent thiol content, and less than 1,100 molecular weight), G12 (n is 23-26, 1.5-1.7 percent thiol content, and a 3,900-4,400 molecular weight), G21 (n is 12-15, 2.5-3.1 percent thiol content, and a 2,100-2,600 molecular weight), G22 (n is 14-18, 2.1-2.7 percent thiol content, and a 2,400-3,100 molecular weight), G112 (n is 23-25, 1.5-1.7 percent thiol content, and a 3,900-4,300 molecular weight), and G131 (n is 30-38, 1.5-1.7 percent thiol content, and a 5,000-6,500

15 molecular weight). The THIOPLAST polysulfide-based toughening components are reported to be prepared from the polycondensation of bis-(2-chloro-ethyl-)formal with alkali polysulfide.

[0041] During application, the thermosetting resin compositions according to the present invention penetrate and 20 flow readily into the space between the circuit board and the semiconductor device, or at least show a reduction in viscosity under heated or use conditions thus penetrating and flowing easily.

[0042] Generally, it is desirable to prepare the thermosetting resin compositions of this invention by selecting the types and proportions of various so that the gel times will be tailored to a specified period of time (such as about 5 minutes or 6 minutes) at a temperature of about 165°C. In such case, the inventive compositions should show no or substantially no increase of viscosity after a period of time of about 30 minutes at underflow temperatures of about 90 to about 130°C. With such a gel time, the compositions penetrate into the space between the circuit board and the semiconductor device (e.g., of 50 to 200 μm)

13

relatively uniformly, and allow for an assembly of greater size to be filled without observing a viscosity increase in the composition thereby rendering it less effective for application.

[0043] Optionally, the thermosetting resin composition of the present invention may further contain other additives such as transition metal complexes as catalysts, defoaming agents, leveling agents, dyes, pigments and fillers. Moreover, the compositions may also contain photopolymerization initiators, provided such materials do not adversely affect the desired properties of the composition.

[0044] The transition metal complex may be chosen from a variety of organometallic materials or metallocenes. Those materials of particular interest herein may be represented by metallocenes within structure  $\underline{\mathtt{I}}$ :

15

$$Y_1$$
 $R_1$ 
 $R_1$ 
 $R_2$ 
 $R_2$ 

20

I

where  $R_1$  and  $R_2$  may be the same or different and may occur at least once and up to as many four times on each ring in the event of a five-membered ring and up to as many as five times on each ring in the event of a six-membered ring;

 $R_1$  and  $R_2$  may be selected from H; any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms, such as -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)<sub>3</sub> or the like; acetyl; vinyl; allyl; hydroxyl; carboxyl; - (CH<sub>2</sub>)<sub>n</sub>-OH, where n may be an integer in the range of 1 to about

8;  $-(CH_2)_n$ -COOR<sub>3</sub>, where n may be an integer in the range of 1 to about 8 and R<sub>3</sub> may be any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms; H; Li; Na;  $-(CH_2)_n$ -OR<sub>4</sub>, wherein n may be an integer in the range of 1 to about 8 and R<sub>4</sub> may be any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms; or  $-(CH_2)_nN^+(CH_3)_3$  X<sup>-</sup>, where n may be an integer in the range of 1 to about 8 and X may be Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, ClO<sub>4</sub> or BF<sub>4</sub>;

Y<sub>1</sub> and Y<sub>2</sub> may not be present at all, but when at least one is present they may be the same or different and may be selected from H, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, cyano, methoxy, acetyl, hydroxy, nitro, trialkylamines, triaryamines, trialkylphosphines, triphenylamine, tosyl and the like;

A and A' may be the same or different and may be C or N; m and m' may be the same or different and may be 1 or 2; and

 $\mbox{M}_{\rm e}$  is Fe, Ti, Ru, Co, Ni, Cr, Cu, Mn, Pd, Ag, Rh, Pt, Zr, Hf, Nb, V, Mo and the like.

[0046] Of course, depending on valence state, the element represented by  $M_{\rm e}$  may have additional ligands --  $Y_1$  and  $Y_2$  -- associated therewith beyond the carbocyclic ligands depicted above (such as where  $M_{\rm e}$  is Ti and  $Y_1$  and  $Y_2$  are  $Cl^-$ ).

[0047] Alternatively, metallocene structure <u>I</u> may be modified to include materials such as those within structure <u>II</u> below:

25



30

II

where  $R_1$ ,  $R_2$ ,  $Y_1$ ,  $Y_2$ , A,  $A^{\prime}$ , m,  $m^{\prime}$  and  $M_e$  are as defined above.

[0048] A particularly desirable example of such a material is where  $R_1$  and  $R_2$  are each H;  $Y_1$  and  $Y_2$  are each Cl; A and A' are each N; m and m' are each 2 and  $M_e$  is Ru.

5 [0049] Within metallocene structure <u>I</u>, well-suited metallocene materials may be chosen from within metallocene structure <u>III</u>:

10



15

#### III

where  $R_1$ ,  $R_2$  and  $M_{\rm e}$  are as defined above.

[0050] Particularly well-suited metallocene materials from within structure <u>I</u> may be chosen where R<sub>1</sub>, R<sub>2</sub>, Y<sub>1</sub>, Y<sub>2</sub>, m and m' are as defined above, and M<sub>e</sub> is chosen from Ti, Cr, Cu, Mn, Ag, Zr, Hf, Nb, V and Mo.

[0051] Desirably, the metallocene is selected from ferrocenes (i.e., where  $M_e$  is Fe), such as ferrocene, vinyl ferrocenes, ferrocene derivatives, such as butyl ferrocenes or

25 diarylphosphino metal-complexed ferrocenes [e.g., 1,1-bis
 (diphenylphosphino) ferrocene-palladium dichloride], titanocenes
 (i.e., where Me is Ti), such as bis(?5-2,4-cyclopentadien-1-yl) bis-[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl] titanium which is
 available commercially from Ciba Specialty Chemicals, Tarrytown,

30 New York under the tradename "IRGACURE" 784DC, and derivatives and combinations thereof. A particularly desirable metallocene is ferrocene.

[0052] And bis-alkylmetallocenes, for instance, bis-alkylferrocenes (such as diferrocenyl ethane, propanes, butanes and the like) are also desirable for use herein, particularly since about half of the equivalent weight of the material (as compared to a non-bis-metallocene) may be employed to obtain the sought-after results, all else being unchanged. Of these materials, diferrocenyl ethane is particularly desirable.

[0053] Of course, other materials are well-suited for use
 M<sub>e</sub>[CW<sub>3</sub>-CO-CH=C(O<sup>-</sup>)-CW'<sub>3</sub>]<sub>2</sub>, where M<sub>e</sub> is as defined above, and W and
10 W' may be the same or different and may be selected from H, and
 halogens, such as F and Cl. Examples of such materials include
 platinum (II) acetylacetonate ("PtACAC"), cobalt (II)
 acetylacetonate ("Co(II)ACAC"), cobalt (III) acetylacetonate
 ("Co(III)ACAC"), nickel (II) acetylacetonate ("NiACAC"), iron
15 (II) acetylacetonate ("Fe(II)ACAC"), iron (III) acetylacetonate
 ("Fe(III)ACAC"), chromium (II) acetylacetonate ("Cr(II)ACAC"),
 chromium (III) acetylacetonate ("Cr(III)ACAC"), manganese (III)
 acetylacetonate ("Mm(II)ACAC"), manganese (III) acetylacetonate
 ("Mm(III)ACAC") and copper (II) acetylacetonate ("CuACAC").

20 [0054] Of course, combinations of these transition metal complexes may also be employed.

[0055] In another additional aspect of this invention, there
is provided filled thermosetting compositions. These
compositions, in addition to the epoxy resin component and latent
25 hardener component, include a filler component.

[0056] The filler component acts to lower moisture pick up, and tends to increase viscosity. Appropriate filler components include silica, alumina, silica-coated aluminum nitride, silver flake and the like.

30 [0057] In addition, the filler desirable acts to better match the coefficient of thermal expansion ("CTE") of the substrates with which the inventive compostions are intended to be used.

For instance with respect to an underfill application in which a

semiconductor chip is to be bonded to a circuit board, the underfill space between the chip and board may be sealed with the inventive composition.

- [0058] In this regard, the particle size of the filler is desirably in the range of about 0.1-10 microns, such as on the order of about 2 microns. A silica filler having such a particle size is commercially available from Admatechs, Japan under the tradename ADMAFINE, such as ADMAFINE designations SO-C1 (average paricle size, 0.2 microns); SO-C2 (average paricle size, 0.4 -
- 10 0.6 microns); SO-C3 (average paricle size, 0.8 1.2 microns); SO-C5 (average paricle size, 1.5 2.0 microns); SO-E1 (average paricle size, 0.2 microns); SO-E2 (average paricle size, 0.4 0.6 microns); SO-E3 (average paricle size, 0.8 1.2 microns); and SO-E5 (average paricle size, 1.5 2.0 microns). The SO-E
- 15 versions have low iron (<2 ppm), low aluminum (6 ppm), low calcium (<2 ppm), and low chloride (<0.5 ppm).
  - [0059] Another source of silica filler with such particle size range is Tokuyama Corporation, Yamaguchi, Japan, which makes available commercially under the tradename EXCELICA, grades SE-8
- 20 (average particle size, 7.9 microns -- particle size
   distribution: more than 150 microns, < 0.001%; 106 150
   microns, < 0.01%; 75 106 microns, 0.0%; 45 75 microns, 0.2%;
   and less than 45 microns, 99.8%); SE-5 (average particle size,
   5.1 microns -- particle size distribution: more than 150</pre>
- 25 microns, < 0.001%; 106 150 microns, < 0.01%; 75 106 microns, 0.0%; 45 75 microns, 0.1%; and less than 45 microns, 99.9%); SE-3B (average particle size, 3.0 microns -- particle size distribution: more than 20 microns, < 0.1%); and SE-1 (average particle size, 1.9 microns).
- 30 [0060] In order to improve further these physical properties at least a portion of the filler component may include filler particles in the 1-1,000 nanometer ("nm") range. A commercially available example of such filler particles is sold under the

tradename NANOPOX, such as NANOPOX XP 22, by Hans Chemie,
Germany. NANOPOX fillers are monodisperse silica filler
dispersions in epoxy resins, at a level of up to about 50% by
weight. NANOPOX fillers ordinarily are believed to have a

5 particle size of about 5 nm to about 80 nm. And NANOPOX XP 22 is
reported to contain 40 weight percent of silica particles having
a particle size of about 15 nm in the diglycidyl ether of
bisphenol-F epoxy resin.

[0061] Other desirable materials for use as the inorganic filler component include those constructed of or containing aluminum oxide, silicon nitride, aluminum nitride, silica-coated aluminum nitride, boron nitride and combinations thereof.

[0062] When used, the inorganic filler component should be used in an amount of about 10 to about 80 percent by weight of the compostion, such as about 25 to about 75 percent by weight, desirably within the range of about 35 to about 70 percent by weight.

[0063] Reference to Figure 1 shows a mounted structure (<u>i.e.</u>, a flip chip package) in which a thermosetting resin composition of the present invention has been applied and cured.

[0064] The flip chip package 4 is formed by connecting a
semiconductor chip (a bare chip) 2 to a carrier substrate 1
 (e.g., a circuit board) and sealing the space therebetween
 suitably with a thermosetting resin composition 3. This
25 semiconductor device is mounted at a predetermined position on
 the carrier substrate 1, and electrodes 5 and 6 are electrically
 connected by a suitable electrical connection means 7 and 8, such
 as solder. In order to improve reliability, the space between
 the semiconductor chip 2 and the carrier substrate 1 is sealed
30 with the inventive thermosetting resin composition 3, and then
 cured. The cured product of the thermosetting resin composition
 should completely fill that space.

[0065] Carrier substrates may be constructed from ceramic
substrates of Al<sub>2</sub>O<sub>3</sub>, SiN<sub>3</sub> and mullite (Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>); substrates or
tapes of heat-resistant resins, such as polyimides; glassreinforced epoxy; ABS and phenolic substrates which are also used
5 commonly as circuit boards; and the like. Any electrical
connection of the semiconductor chip to the carrier substrate may
be used, such as connection by a high-melting solder or
electrically (or anisotropically) conductive adhesive, wire
bonding, and the like. In order to facilitate connections, the
10 electrodes may be formed as bumps.

[0066] After the semiconductor chip is electrically connected to the carrier substrate, the resulting structure is ordinarily subjected to a continuity test or the like. After passing such test, the semiconductor chip may be fixed thereto with a thermosetting resin composition, as described below. In this way, in the event of a failure, the semiconductor chip may be removed before it is fixed to the carrier substrate with the thermosetting resin composition.

[0067] Using a suitable application means, such as a dispenser, a thermosetting resin composition in accordance with this invention is applied to the periphery of the electronically-connected semiconductor chip. The composition penetrates by capillary action into the space between the carrier substrate and the semiconductor chip.

25 [0068] The thermosetting resin composition is then thermally cured by the application of heat. During the early stage of this heating, the thermosetting resin composition shows a significant reduction in viscosity and hence an increase in fluidity, so that it more easily penetrates into the space between the carrier substrate and the semiconductor chip. Moreover, by preheating the carrier substrate, the thermosetting resin composition is allowed to penetrate fully into the entire space between the carrier substrate and the semiconductor chip.

[0069] Cured reaction products of the thermosetting resin compositions of the present invention demonstrate excellent adhesive force, heat resistance and electric properties, and acceptable mechanical properties, such as flex-cracking resistance, chemical resistance, moisture resistance and the

like, for the applications for which they are used herein.

[0070] The amount of thermosetting resin composition applied should be suitably adjusted so as to fill the space between the carrier substrate and the semiconductor chip, which amount of

10 course may vary depending on application.

[0071] Thermosetting resin compositions of the present invention may ordinarily be cured by heating to a temperature in the range of about 140°C to about 180°C for a period of time of about 30 minutes to about 2 hours. However, generally after application of the composition, an initial cure time of about 10 minutes sets up the composition, and complete cure is observed after about 90 minutes at about 165°C. Thus, the composition of the present invention can be at moderately high temperatures and with long underfilling times which are necessary to achieve very low CTEs with high filler loadings and large sized dice.

[0072] The present invention will be more readily appreciated with reference to the examples which follow.

#### EXAMPLES

#### 25 Example 1

[0071] In this example, compositions in accordance with the present invention were prepared and evaluated for performance in contrast with compositions prepared without the dicyandiamide component or the latent hardener component. The compositions are set forth in Table 1.

21

| Component                |                 | Composition/(wt.%) |       |      |       |  |
|--------------------------|-----------------|--------------------|-------|------|-------|--|
| туре                     | Identity        | A                  | В     | С    | D     |  |
| Epoxy                    | Bisphenol F     | 25.75              | 22.27 | 28.3 | 27.25 |  |
| Polysulfide<br>Toughener | LP-3            | 2.5                | 2.3   | 2.7  | 2.5   |  |
| Imidazole                | 2PHZ<br>(Solid) | 0.25               | 0.23  | 1.5  | 0.25  |  |
| Dicyandamide             | CG-1400         | 1.5                | 1.2   |      |       |  |
| Silica                   | SO-E5           | 70                 | 74    | 67.5 | 70    |  |

[0072] Performance is evaluated in terms of capillary flow 5 distance of the liquid composition and glass transition temperature ("Tg") of the cured composition, results for which are set forth in Table 2.

Table 2

| Physical Property                          | Composition |        |       |      |  |  |  |
|--------------------------------------------|-------------|--------|-------|------|--|--|--|
| Physical Property                          | A           | В      | С     | D    |  |  |  |
| 50 Micron-gap,<br>flow distance<br>@ 120°C | >60 mm      | >60 mm | 23 mm | >60  |  |  |  |
| Тg                                         | 105°C       | 109°C  | 94°C  | 62°C |  |  |  |

10

[0073] Compositions A and B illustrate the benefits of including a modified amide, such as dicyandiamide. The inclusion of this component permits the composition to penetrate small gaps for long distances (>60 mm), while maintaining good Tg values and high filler loadings. In contrast, Composition C has a significantly shorter flow distance even at a lower filler loading, and Composition D has a low Tg value, making it unattractive for many end use applications.

#### Example 2

[0074] In this example, in contrast to Example 1, compositions were prepared and evaluated without the polysulfide-based toughening component. The composition componets are listed in Table 3. Performance is evaluated in terms of flow distance, moisture absorption and fracture toughenss  $(K_1C)$ , the results of which are shown in Table 4.

10

15

Table 3

COMPONENT

COMPOSITION/(WT.%)

| Type                      | Identity           | Е    | F     | G     | Н       | E1  | E2              |
|---------------------------|--------------------|------|-------|-------|---------|-----|-----------------|
| Ероху                     | Bisphenol F        | 25.7 | 28.55 | 28.05 | 28.05   | 20  | 15 <sup>-</sup> |
| Polysulfide Toughener     | LP-3               | 3    |       |       |         | 3   | 3               |
| Dicyandiamide             | CG-1400            | 1    | 1.1   | 1.1   | 1.1     | 11  | 0.9             |
| Imidazole                 | 2PHZ (Solid)       | 0.3  | 0.35  | 0.35  | 0.35    | 0.3 | 0.25            |
| CTBN Toughener            | HYCAR<br>1300X8    |      |       | 3     | <u></u> |     |                 |
| Acrylate Rubber Toughener | TACTIX<br>X071790a |      |       |       | 3       |     |                 |
|                           | SO-E5              | 70   | 70    | 67.5  | 67.5    | 70  | 70              |
| Filler                    | NANOPOX            |      |       |       |         | 5.7 | 10.85           |

Table 4

| Physical Property                                                |           |           | Compo    | sition   |           |           |
|------------------------------------------------------------------|-----------|-----------|----------|----------|-----------|-----------|
|                                                                  | E         | F         | <u>G</u> | <u>H</u> | <u>E1</u> | <u>E2</u> |
| 50 micron-gap Flow<br>Distance<br>@ 120°C                        | >60<br>mm | >60<br>mm | 36 mm    | 42 mm    | >60<br>mm | 56 mm     |
| Water Absorption<br>121°C/100%RH/2 ATM<br>96 hr. Pressure Cooker | 1.7%      | 1.8%      | 2.4%     | 2.3%     | 1.6%      | 1.4%      |
| Fracture Toughness, K <sub>1</sub> C                             | 2.42      | 1.51      | 2.17     | 2.07     |           |           |

 $<sup>{}^{*}</sup>K_{1}C$  estimated from other formulations with similar filler and toughener levels.

[0075] The use of the polysulfide-based toughener, LP-3, in Composition E demonstrates a desirable balance of high flow behaviour and toughness. However, the use of conventional toughners, such as a CTBN toughener (Composition G) and on acrylate rubber toughener (Composition H), do not exhibit the same desirable combination of physical properties. In addition, Compositions G and H demonstrate significantly moisture uptake, which is seen as detrimental.

[0076] The use of a nanoparticle-sized silica filler in combination with a micron-sized silica filler allowed for a greater filler level to be achieved (72.3 weight percent for Composition E1 and 74.3 weight percent for Composition E2, compared with 70 weight percent for Composition E), as well as permitting the compositions to maintain their flow distance properties and acheive a further reduction in the amount of moisture absorption.

#### Example 3

[0077] In this example, compositions were prepared with a solid imidazole and a liquid imidazole, and evaluated for performance. The compositions are set forth in Table 5.

Table 5

| Component                |                    | Composition/(wt.%) |       |         |           |  |
|--------------------------|--------------------|--------------------|-------|---------|-----------|--|
| Туре                     | Identity           | I                  | J     | K       | L         |  |
| Epoxy                    | Bisphenol F        | 25.75              | 22.27 | 25.75   | 25.75     |  |
| Polysulfide<br>Toughener | LP-3               | 2.5                | 2.3   | 2.7     | 2.5       |  |
| Tui do col o             | 2PHZ<br>(Solid)    | 0.25               | 0.23  |         | <b>~-</b> |  |
| Imidazole                | NXJ-60<br>(Liquid) |                    |       | <b></b> | 0.25      |  |
| Dicyandamide             | CG-1400            | 1.5                | 1.2   | 1.75    | 1.5       |  |
| Silica                   | SO-E5              | 70                 | 74    | 70      | 70        |  |

5

[0078] Here again, performance is evaluated in terms of capillary flow distance of the liquid composition and Tg of the cured composition, results for which are set forth in Table 6.

Table 6

| Physical Property                          | Composition |        |        |        |  |  |  |
|--------------------------------------------|-------------|--------|--------|--------|--|--|--|
| rmysical Propercy                          | I           | J      | · K    | L      |  |  |  |
| 50 Micron-gap,<br>Flow Distance<br>@ 120°C | >60 mm      | >60 mm | >60 mm | 42 mm  |  |  |  |
| Tg                                         | 105°C       | 109°C  | 70°C   | .106°C |  |  |  |

[0079] Compositions I and J illustrate the benefits of including a solid imidazole over a liquid imidazole (Composition 10 K) or no latent curative at all (Composition J).

[0080] Compositions I and J have high Tg values and penetrate small gaps for long distances.

[0081] The present invention has been illustrated above, though its true spirit and scope is defined by the claims.

#### What Is Claimed Is:

- 1. A thermosetting resin composition capable of sealing underfilling between a semiconductor device and a circuit board to which said semiconductor device is electrically connected, said composition comprising:
  - (a) an epoxy resin component;
  - (b) a latent hardener component comprising
    - (i) a modified amide; and
    - (ii) a latent catalyst therefor; and
  - (c) a polysulfide-based toughening component.
- 2. The composition of Claim 1, wherein the latent catalyst is a solid imidazole.
- 3. The composition of Claim 1, wherein said epoxy resin comprises at least one multifunctional epoxy resin.
- The composition according to Claim 1, wherein the epoxy resin component includes members selected from the group consisting of C<sub>6</sub>-C<sub>28</sub> alkyl glycidyl ethers; C<sub>6</sub>-C<sub>28</sub> fatty acid glycidyl esters; C6-C28 alkylphenol glycidyl ethers; polyglycidyl ethers of pyrocatechol, resorcinol, hydroquinone, 4,4'dihydroxydiphenyl methane, 4,4'-dihydroxy-3,3'-dimethyldiphenyl methane, 4,4'-dihydroxydiphenyl dimethyl methane, 4,4'dihydroxydiphenyl methyl methane, 4,4'-dihydroxydiphenyl cyclohexane, 4,4'-dihydroxy-3,3'-dimethyldiphenyl propane, 4,4'dihydroxydiphenyl sulfone, and tris(4-hydroxyphyenyl)methane; polyglycidyl ethers of the chlorination and bromination products of the above-mentioned diphenols; polyglycidyl ethers of novolacs; polyglycidyl ethers of diphenols obtained by esterifying ethers of diphenols obtained by esterifying salts of an aromatic hydrocarboxylic acid with a dihaloalkane or dihalogen dialkyl ether; polyglycidyl ethers of polyphenols obtained by condensing phenols and long-chain halogen paraffins containing at least two halogen atoms; N,N'-diglycidyl-aniline; N,N'-dimethyl-

N,N'-diglycidyl-4,4'-diaminodiphenyl methane; N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane; N-diglycidyl-4-aminophenyl glycidyl ether; N,N,N',N'-tetraglycidyl-1,3-propylene bis-4-aminobenzoate;

bisphenol A epoxy resin, bisphenol F epoxy resin, phenol novolac epoxy resin, and cresol novolac epoxy resin.

- 5. The composition according to Claim 1, wherein the epoxy resin component includes bisphenol F epoxy resin.
- 6. The composition according to Claim 1, wherein the latent hardener component is employed in an up to about 30 parts, per hundred parts of epoxy resin component.
- 7. The composition according to Claim 1, wherein the modified amide component is employed in an up to about 15 parts, per hundred parts of epoxy resin component.
- The composition according to Claim 1, wherein the 8. latent catalyst is an imidazole selected from the group consisting of imidazole, isoimidazole, 2-methyl imidazole, 2ethyl-4-methylimidazole, 2,4-dimethylimidazole, butylimidazole, 2-heptadecenyl-4-methylimidazole, 2-undecenylimidazole, 1-vinyl-2-methylimidazole, 2-n-heptadecylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2methylimidazole, 1-propyl-2-methylimidazole, 1-cyanoethyl-2methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1guanaminoethyl-2-methylimidazole and addition products of an imidazole methylimidazole and addition products of an imidazole and trimellitic acid, 2-n-heptadecyl-4-methylimidazole, phenylimidazol, benzylimidazole, 2-methyl-4,5-diphenylimidazole, 2,3,5-triphenylimidazole, 2-styrylimidazole, 1-(dodecyl benzyl)-2-methylimidazole, 2-(2-hydroxyl-4-t-butylphenyl)-4,5diphenylimidazole, 2-(2-methoxyphenyl)-4,5-diphenylimidazole, 2-(3-hydroxyphenyl)-4,5-diphenylimidazole, 2-(p-dimethylaminophenyl) -4, 5-diphenylimidazole, 2-(2-hydroxyphenyl) -4, 5-

diphenylimidazole, di(4,5-diphenyl-2-imidazole)-benzene-1,4, 2-naphthyl-4,5-diphenylimidazole, 1-benzyl-2-methylimidazole, 2-p-methoxystyrylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and the combinations thereof.

- 9. The composition according to Claim 1, wherein the latent catalyst is a tertiary amine salt.
- 10. The composition according to Claim 1, wherein the latent catalyst is a member selected from the group consisting of DBU-phenolate, DBU-hexanoate, DBU-formate, and DBU-ptoluenesulfonate.
- 11. The composition according to Claim 1, wherein the latent catalyst is a substituted urea.
- 12. The composition according to Claim 1, wherein the latent catalyst is a member selected from the group consisting of phenyldimethyl urea, toluene bis(dimethyl urea), and methylene diphenyl bis(dimethyl urea).
- 13. The composition according to Claim 1, wherein the polysulfide-based toughening component is a member selected from the group within the formulae consisting of:

$$HS-(R-SS)_n-R-SH$$
 and

$$HS-(R-SS)_a-CH_2-CH-CH_2-(SS-R)_b-SH$$
 |  $(SS-R)_c-SH$ 

wherein R is an alkyl ether, and a + b + c = n.

14. The composition according to Claim 13, wherein the polysulfide-based toughening component is within

$$HS-(R-SS)_a-CH_2-CH-CH_2-(SS-R)_b-SH$$
 |  $(SS-R)_c-SH$ 

wherein R is  $-(CH_2)_2-0-(CH_2)_2-$ , n is 6 and the molecular weight is about 1,000.

15. The composition according to Claim 1, wherein the polysulfide-based toughening component is employed in an amount up to about 20 parts, per hundred of epoxy resin component.

- 16. The composition according to Claim 1, wherein the polysulfide-based toughener component is employed in an amount within the range of 5 to about 15 parts, per hundred parts of epoxy resin component.
- 17. The composition according to Claim 1, further comprising a transition metal complex is a member selected from the group consisting of

$$Y_1$$
 $R_1$ 
 $R_1$ 
 $R_2$ 
 $R_2$ 

 $\underline{\mathbf{I}}$  wherein  $R_1$  and  $R_2$  may be the same or different and may occur at least once and up to as many four times on each ring in the event of a five-membered ring and up to as many as five times on each ring in the event of a six-membered ring;

 $R_1$  and  $R_2$  may be selected from H; any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms, such as -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)<sub>3</sub> or the like; acetyl; vinyl; allyl; hydroxyl; carboxyl; - (CH<sub>2</sub>)<sub>n</sub>-OH, wherein n may be an integer in the range of 1 to about 8; -(CH<sub>2</sub>)<sub>n</sub>-COOR<sub>3</sub>, wherein n may be an integer in the range of 1 to about 8 and  $R_3$  may be any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms; H; Li; Na; -

 $(CH_2)_n$ -OR<sub>4</sub>, wherein n may be an integer in the range of 1 to about 8 and R<sub>4</sub> may be any straight- or branched-chain alkyl constituent having from 1 to about 8 carbon atoms; or  $-(CH_2)_nN^+(CH_3)_3$  X<sup>-</sup>, where n may be an integer in the range of 1 to about 8 and X may be  $Cl^-$ ,  $Br^-$ ,  $I^-$ ,  $ClO_4^-$  or  $BF_4^-$ ;

 $Y_1$  and  $Y_2$  may not be present at all, but when at least one is present they may be the same or different and may be selected from H, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, cyano, methoxy, acetyl, hydroxy, nitro, trialkylamines, triaryamines, trialkylphospines, triphenylamine, tosyl and the like;

A and A' may be the same or different and may be C or N;  $\mbox{m and m' may be the same or different and may be 1 or 2;}$  and

 $M_{\rm e}$  is Fe, Ti, Ru, Co, Ni, Cr, Cu, Mn, Pd, Ag, Rh, Pt, Zr, Hf, Nb, V, and Mo;



#### II

wherein  $R_1$ ,  $R_2$ ,  $Y_1$ ,  $Y_2$ , A, A', m, m' and  $M_e$  are as defined above;



#### III

wherein  $R_1$ ,  $R_2$  and  $M_e$  are as defined above; and  $M_e$ [CW<sub>3</sub>-CO-CH=C(O)-CW'<sub>3</sub>]<sub>2</sub>, wherein  $M_e$  is as defined above, and W and W' may be the same or different and may be selected from H, and halogens.

- 18. The composition according to Claim 1, further comprising a filler.
- 19. The composition according to Claim 18, wherein the filler is an inorganic filler.
- 20. The composition according to Claim 19, wherein the inorganic filler is a silica filler.
- 21. The composition according to Claim 19, wherein the inorganic filler comprises a nanoparticle-sized silica filler.
- 22. Reaction products of the composition according to Claim 1.
- 23. A mounting structure for semiconductor devices, comprising:

a semiconductor device comprising a semiconductor chip mounted on a carrier substrate, and

a circuit board to which said semiconductor device is electrically connected,

wherein the space between the carrier substrate of said semiconductor device and said circuit board is sealed with a reaction product of the composition according to Claim 1.

24. A process for fabricating semiconductor devices, said process comprising the steps of:

electrically connecting a semiconductor device comprising a semiconductor chip mounted on a carrier substrate, to a circuit board;

infiltrating a thermosetting resin composition according to Claim 1 into the space between the carrier substrate of said semiconductor device and said circuit board; and curing the composition by the application of heat.

BNSDOCID: <WO\_\_\_\_03044089A1\_I\_>



A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08L63/00 C08L81/04 H01L21/56

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

 $\begin{array}{ll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{C08L} & \mbox{H01L} \\ \end{array}$ 

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

|            | ENTS CONSIDERED TO BE RELEVANT                                                                                                        | <del></del>           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                    | Relevant to claim No. |
| X          | WO 99 05196 A (SZCZEPNIAK ZBIGNIEW A<br>;KONARSKI MARK (US); LOCTITE CORP (US))<br>4 February 1999 (1999-02-04)<br>the whole document | 1-16,<br>18-24        |
| X          | EP 0 352 550 A (MITSUBISHI ELECTRIC CORP) 31 January 1990 (1990-01-31) claims 1-5                                                     | 1-16,<br>18-22        |
| X          | EP 0 547 905 A (MORTON INT LTD) 23 June 1993 (1993-06-23) claims 1-8,10-15/                                                           | 1-16,<br>18-22        |
|            |                                                                                                                                       |                       |

| Y Further documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | χ Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Special categories of cited documents:</li> <li>"A" document defining the general state of the art which is not considered to be of particular relevance</li> <li>"E" earlier document but published on or after the international filing date</li> <li>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</li> <li>"O" document referring to an oral disclosure, use, exhibition or other means</li> <li>"P" document published prior to the international filing date but later than the priority date claimed</li> <li>Date of the actual completion of the international search</li> <li>7 April 2003</li> </ul> | <ul> <li>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</li> <li>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</li> <li>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</li> <li>"&amp;" document member of the same patent family</li> <li>Date of mailing of the international search report</li> </ul> |
| Name and mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Authorized officer  Andriollo, G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Form PCT/ISA/210 (second sheet) (July 1992)

# REPORT SEARCH REPORT

Intertional Application No
PCT/US 02/36872

| (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                   | PCT/US 02/36872       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
|                                                                                                                                                                      |                       |  |  |
| ategory ° Citation of document, with indication,where appropriate, of the relevant passages                                                                          | Relevant to claim No. |  |  |
| PATENT ABSTRACTS OF JAPAN vol. 012, no. 482 (C-553), 15 December 1988 (1988-12-15) & JP 63 199218 A (ASAHI CHEM IND CO LTD), 17 August 1988 (1988-08-17) abstract    | 1-16,<br>18-24        |  |  |
| PATENT ABSTRACTS OF JAPAN vol. 012, no. 479 (C-552), 14 December 1988 (1988-12-14) & JP 63 193915 A (MITSUBISHI ELECTRIC CORP), 11 August 1988 (1988-08-11) abstract | 1-16,<br>18-24        |  |  |
| DATABASE WPI Week 197305 Derwent Publications Ltd., London, GB; AN 1973-06512u XP002237366 & JP 48 003238 B (SUN STAR CHEMICAL), 1973 abstract                       | 1,2                   |  |  |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

## ERNATIONAL SEARCH REPORT

Information on patent family members

Interactional Application No
PCT/US 02/36872

| Patent document cited in search report |    | Publication<br>date |      | Patent family member(s) | Publication<br>date |
|----------------------------------------|----|---------------------|------|-------------------------|---------------------|
| WO 9905196                             | Α  | 04-02-1999          | AU   | 728193 B2               | 04-01-2001          |
| WO 3300130                             | ,, | 0. 02 1333          | AU   | 8595998 A               | 16-02-1999          |
|                                        |    |                     | BR   | 9806065 A               | 31-08-1999          |
|                                        |    |                     | CN   | 1237186 T               | 01-12-1999          |
|                                        |    |                     | EP   | 0929592 A1              | 21-07-1999          |
|                                        |    |                     | JP   | 2001506313 T            | 15-05-2001          |
|                                        |    |                     | RU   | 2195474 C2              | 27-12-2002          |
|                                        |    |                     | WO   | 9905196 A1              | 04-02-1999          |
|                                        |    |                     | US   | 6342577 B1              | 29-01-2002          |
| EP 0352550                             | A  | 31-01-1990          | JР   | 2026529 C               | 26-02-1996          |
|                                        |    |                     | JP   | 2031491 A               | 01-02-1990          |
|                                        |    |                     | JP   | 7060918 B               | 28-06-1995          |
|                                        |    |                     | DE   | 68926073 D1             | 02-05-1996          |
|                                        |    |                     | DE   | 68926073 T2             | 31-10-1996          |
|                                        |    |                     | EP   | 0352550 A2              | 31-01-1990          |
|                                        |    |                     | US   | 5091481 A               | 25-02-1992<br>      |
| EP 0547905                             | Α  | 23-06-1993          | CA   | 2085077 A1              | 20-06-1993          |
|                                        |    |                     | ΕP   | 0547905 A1              | 23-06-1993          |
|                                        |    |                     | JP   | 2515956 B2              | 10-07-1996          |
|                                        |    |                     | JP   | 7145301 A               | 06-06-1995          |
|                                        |    |                     | US   | 5521274 A               | 28-05-1996<br>      |
| JP 63199218                            | Α  | 17-08-1988          | NONE |                         |                     |
| JP 63193915                            | A  | 11-08-1988          | NONE |                         |                     |
| JP 48003238                            | В  |                     | NONE |                         |                     |
|                                        |    |                     |      |                         |                     |

BEDI AVAILABLE COPY