

Kurs:Mathematik für Anwender/Teil I/28/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3311936434 3 2 2 3 4 2 2 0 4 59

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Der Betrag einer reellen Zahl.

- 2. Der Real- und der Imaginärteil einer komplexen Zahl z.
- 3. Die reelle Exponentialfunktion.
- 4. Eine *Stammfunktion* zu einer Funktion $f:]a, b[
 ightarrow \mathbb{R}.$
- 5. Die Matrizenmultiplikation.
- 6. Die *lineare Unabhängigkeit* von Vektoren v_1, \ldots, v_n in einem K-Vektorraum V.

Lösung

1. Für eine reelle Zahl $x \in \mathbb{R}$ ist der *Betrag* folgendermaßen definiert.

$$|x| = \left\{ egin{aligned} x, ext{ falls } x \geq 0 \,, \ -x, ext{ falls } x < 0 \,. \end{aligned}
ight.$$

- 2. Zu einer komplexen Zahl $z = a + b\mathbf{i}$ nennt man a den Realteil und b den Imaginärteil von z.
- 3. Die Funktion

$$\mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto \exp x := \sum_{n=0}^{\infty} rac{x^n}{n!},$$

heißt (reelle) Exponentialfunktion.

- 4. Eine Funktion $F:]a,b[\to \mathbb{R}$ heißt *Stammfunktion* zu f, wenn F auf]a,b[differenzierbar ist und F'(x)=f(x) für alle $x \in]a,b[$ gilt.
- 5. Es sei K ein Körper und es sei A eine m imes n-Matrix und B eine n imes p-Matrix über K. Dann ist das Matrixprodukt AB

diejenige m imes p-Matrix, deren Einträge durch

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}$$

gegeben sind.

6. Die Vektoren v_1, \ldots, v_n heißen *linear unabhängig*, wenn eine Gleichung

$$\sum_{i=1}^n a_i v_i = 0$$

nur bei $a_i=0$ für alle i möglich ist.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über beschränkte Teilmengen von \mathbb{R} .
- 2. Der Satz über die Konvergenz des Cauchy-Produktes.
- 3. Der Satz über die Beziehung von Stetigkeit und Riemann-Integrierbarkeit.

Lösung

- 1. Jede nichtleere nach oben beschränkte Teilmenge der reellen Zahlen besitzt ein Supremum in \mathbb{R} .
- 2. Es seien

$$\sum_{k=0}^{\infty} a_k \text{ und } \sum_{k=0}^{\infty} b_k$$

zwei absolut konvergente Reihen reeller Zahlen. Dann ist auch das Cauchy-Produkt $\sum_{k=0}^{\infty} c_k$ absolut konvergent und für die

Summe gilt

$$\sum_{k=0}^{\infty} c_k = \left(\sum_{k=0}^{\infty} a_k
ight) \cdot \left(\sum_{k=0}^{\infty} b_k
ight).$$

3. Sei $m{I}$ ein reelles Intervall und sei

$$f:I\longrightarrow \mathbb{R}$$

eine stetige Funktion. Dann ist $m{f}$ Riemann-integrierbar.

Aufgabe (1 Punkt)

Man finde eine äquivalente Formulierung für die Aussage "Frau Maier-Sengupta hat nicht alle Tassen im Schrank" mit Hilfe einer Existenzaussage.

Lösung

Es gibt eine Tasse, die Frau Maier-Sengupta nicht im Schrank hat.

Aufgabe (1 Punkt)

Es seien L,M,N und P Mengen und es seien

$$F: L \longrightarrow M, \ x \longmapsto F(x), \ G: M \longrightarrow N, \ y \longmapsto G(y),$$

und

$$H:N\longrightarrow P,\,z\longmapsto H(z),$$

Abbildungen. Zeige, dass dann

$$H\circ (G\circ F)=(H\circ G)\circ F$$

gilt.

Lösung

Zwei Abbildungen $\alpha, \beta: L \to P$ sind genau dann gleich, wenn für jedes $x \in L$ die Gleichheit $\alpha(x) = \beta(x)$ gilt. Sei also $x \in L$. Dann ist

$$(H\circ (G\circ F))(x)=H((G\circ F)(x))\ =H(G(F(x)))\ =(H\circ G)(F(x))\ =((H\circ G)\circ F)(x).$$

Aufgabe (9 (2+1+2+2+2) Punkte)

Zwei Schwimmer, A und B, schwimmen auf einer 50-Meter-Bahn einen Kilometer lang. Schwimmer A schwimmet 3m/s (das ist besser als der Weltrekord) und Schwimmer B schwimmt 2m/s.

- Erstelle in einem Diagramm für beide Schwimmer den Graphen der jeweiligen Abbildung, die für die Zeit zwischen 0 und 100 Sekunden angibt, wie weit der Schwimmer von der Startlinie zu diesem Zeitpunkt (wirklich, also unter Berücksichtigung der Wenden) entfernt ist.
- 2. Wie weit von der Startlinie entfernt befindet sich Schwimmer $m{A}$ (und Schwimmer $m{B}$) nach $m{30}$ Sekunden?
- 3. Nach wie vielen Sekunden begegnen sich die beiden Schwimmer zum ersten Mal?
- 4. Wie oft begegnen sich die beiden Schwimmer (Start mitzählen)?
- 5. Wie oft überrundet Schwimmer A den Schwimmer B?

Lösung

1.

- 2. Nach 30 Sekunden hat Schwimmer A 90 Meter zurückgelegt, er ist also 50 Meter hin und 40 Meter zurückgeschwommen. Somit befindet er sich 10 Meter vom Start entfernt. Nach 30 Sekunden hat Schwimmer B 60 Meter zurückgelegt, er befindet sich also 40 Meter vom Start entfernt.
- 3. Die erste Begegnung findet statt, wenn Schwimmer $m{A}$ das erste Mal zurückschwimmt und $m{B}$ noch hinschwimmt. Wir machen den Ansatz

$$2t = 50 - 3(t - 16\frac{2}{3})$$
 .

Dies führt auf

$$5t=100\,,$$

also

$$t = 20$$
.

- 4. Nach 100 Sekunden sind beide Schwimmer wieder am Startpunkt (siehe die Skizze), A hat dabei 300 Meter zurückgelegt, B nur 200 Meter. In diesem Zeitraum begegnen sie sich fünfmal (den Start mitgezählt, die letzte Begegnung jedoch nicht), dies wiederholt sich dreimal und dann muss A noch 100 Meter schwimmen, wobei er B noch einmal unterwegs begegnet. Dies führt auf 17 Begegnungen.
- 5. Schwimmer A überrundet Schwimmer B dreimal, nämlich am Startpunkt nach 100s, nach 200s und nach 300s.

Aufgabe (3 Punkte)

Man finde ein Polynom f vom Grad ≤ 2 , für welches

$$f(1) = 10, f(-2) = 1, f(3) = 16$$

Lösung

Mit dem Ansatz

$$f = aX^2 + bX + c$$

gelangen wir zum linearen Gleichungssystem

$$a+b+c=10,$$

$$4a-2b+c=1,$$

$$9a + 3b + c = 16$$
.

Die Gleichungen II-I und III-I sind

$$3a - 3b = -9$$

und

$$8a+2b=6.$$

Daraus ergibt sich (2II'+3III')

$$30a=0\,,$$

also

$$a=0$$
.

Daraus ergibt sich

$$b = 3$$

und

$$c=7$$
.

Es ist also

$$f=3X+7.$$

Aufgabe (6 (2+4) Punkte)

Zeige, dass in einem archimedisch angeordneten Körper die folgenden Eigenschaften gelten.

- 1. Zu jedem x>0 gibt es eine natürliche Zahl n mit $\dfrac{1}{n}< x$.
- 2. Zu zwei Elementen x < y gibt es eine rationale Zahl n/k (mit $n \in \mathbb{Z}, \ k \in \mathbb{N}_+$) mit $x < \frac{n}{k} < y$.

Lösung

(1). Es ist x^{-1} eine wohldefinierte, nach Lemma 5.2 (Mathematik für Anwender (Osnabrück 2019-2020)) (7) positive reelle Zahl. Aufgrund des Archimedes-Axioms gibt es eine natürliche Zahl $n \in \mathbb{N}$ mit $n > x^{-1}$. Dies ist nach Lemma 5.2 (Mathematik für Anwender (Osnabrück 2019-2020)) (8) äquivalent zu

$$rac{1}{n} = n^{-1} < (x^{-1})^{-1} = x$$
 .

(2). Wegen y>x ist y-x>0 und daher gibt es nach (2) ein $k\in\mathbb{N}_+$ mit $\frac{1}{k}< y-x$. Wegen (1) gibt es auch ein $n'\in\mathbb{N}$ mit $n'\frac{1}{k}>x$. Wegen der Archimedes-Eigenschaft gibt es ein $\tilde{n}\in\mathbb{N}$ mit $\tilde{n}\geq -xk$. Nach Lemma 5.2 (Mathematik für Anwender (Osnabrück 2019-2020)) (3) gilt daher $(-\tilde{n})\frac{1}{k}\leq x$. Daher gibt es auch ein $n\in\mathbb{Z}$ derart, dass

$$nrac{1}{k}>x ext{ und } (n-1)rac{1}{k}\leq x$$

ist. Damit ist einerseits $x < rac{n}{k}$ und andererseits

$$rac{n}{k} = rac{n-1}{k} + rac{1}{k} < x+y-x = y$$

wie gewünscht.

Aufgabe (4 Punkte)

Es sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{Q} , die keine Nullfolge sei. Zeige, dass es ein $N\in\mathbb{N}$ derart gibt, dass entweder alle x_n , $n\geq N$, positiv oder negativ sind.

Lösung

Da $(x_n)_{n\in\mathbb{N}}$ keine Nullfolge ist, gibt es ein $\epsilon>0$ derart, dass es zu jedem $n_0\in\mathbb{N}$ ein $n\geq n_0$ mit $|x_n|>\epsilon$ gibt. Da es sich um eine Cauchy-Folge handelt, gibt es zu $\epsilon/2$ ein k derart, dass für alle $m,n\geq k$ die Abschätzung $|x_m-x_n|\leq \epsilon/2$ gilt. Sei nun $n\geq k$ so gewählt, dass $|x_n|>\epsilon$ ist.

Bei $x_n>0$ gilt für alle $m\geq n$ die Abschätzung

$$egin{aligned} x_m &= x_n + x_m - x_n \ &\geq x_n - rac{\epsilon}{2} \ &\geq \epsilon - rac{\epsilon}{2} \ &= rac{\epsilon}{2}, \end{aligned}$$

so dass für $m \geq n$ alle Folgenglieder positiv sind.

Bei $x_n < 0$ gilt für alle $m \geq n$ die Abschätzung

$$egin{aligned} x_m &= x_n + x_m - x_n \ &\leq x_n + rac{\epsilon}{2} \ &\leq -\epsilon + rac{\epsilon}{2} \ &= -rac{\epsilon}{2}, \end{aligned}$$

so dass für $m \geq n$ alle Folgenglieder negativ sind.

Aufgabe (3 Punkte)

Entscheide, ob die reelle Folge

$$x_n = rac{3n^{rac{5}{4}} - 2n^{rac{4}{3}} + n}{4n^{rac{7}{5}} + 5n^{rac{1}{2}} + 1}$$

(mit $n \geq 1$) in $\mathbb R$ konvergiert und bestimme gegebenenfalls den Grenzwert.

Lösung

Wir erweitern mit $n^{-\frac{7}{5}}$ und erhalten

$$egin{aligned} x_n &= rac{3n^{rac{5}{4}} - 2n^{rac{4}{3}} + n}{4n^{rac{7}{5}} + 5n^{rac{1}{2}} + 1} \ &= rac{3n^{rac{5}{4} - rac{7}{5}} + 5n^{rac{1}{2}} + 1}{4n^{rac{7}{5} - rac{7}{5}} + 2n^{rac{4}{3} - rac{7}{5}} + n^{1 - rac{7}{5}}} \ &= rac{3n^{-rac{3}{5} - rac{7}{5}} + 5n^{rac{1}{2} - rac{7}{5}} + n^{-rac{7}{5}}}{4 + 5n^{-rac{9}{10}} + n^{-rac{7}{5}}}. \end{aligned}$$

Folgen der Form n^{-q} , $q \in \mathbb{Q}_+$, konvergieren gegen 0, nach den Rechengesetzen für konvergente Folgen konvergiert diese Folge also gegen 0.

Aufgabe (4 Punkte)

Beweise den Satz über die Konvergenz der geometrischen Reihe.

Lösung

Für jedes x und jedes $n\in\mathbb{N}$ gilt die Beziehung

$$(x-1)igg(\sum_{k=0}^n x^kigg)=x^{n+1}-1$$

und daher gilt für die Partialsummen die Beziehung (bei $x \neq 1$)

$$s_n = \sum_{k=0}^n x^k = rac{x^{n+1}-1}{x-1} \, .$$

Für $n \to \infty$ und |x| < 1 konvergiert dies wegen Lemma 8.1 (Mathematik für Anwender (Osnabrück 2019-2020)) und Aufgabe 8.22 (Mathematik für Anwender (Osnabrück 2019-2020)) gegen $\frac{-1}{x-1} = \frac{1}{1-x}$.

Aufgabe (3 Punkte)

Es sei

$$f(x) = 2x^3 - 4x + 5.$$

Zeige, dass für alle $x \in \mathbb{R}$ die folgende Beziehung gilt: Wenn

$$|x-3|\leq rac{1}{800}\,,$$

dann ist

$$|f(x)-f(3)|\leq \frac{1}{10}\,.$$

Lösung

Unter der Bedingung

$$|x-3| \leq \frac{1}{800}$$

ist

$$|f(x) - f(3)| = |2x^3 - 4x + 5 - 2 \cdot 3^3 + 4 \cdot 3 - 5|$$
 $= |2(x^3 - 3^3) - 4(x - 3)|$
 $\leq 2|x^3 - 3^3| + 4|x - 3|$
 $\leq 2|x - 3| \cdot |x^2 + 3x + 3^2| + \frac{4}{800}$
 $\leq 2 \cdot \frac{1}{800} \cdot |16 + 12 + 9| + \frac{4}{800}$
 $= \frac{78}{800}$
 $\leq \frac{1}{10}$.

Aufgabe (2 Punkte)

Beweise den Satz über die Ableitung von Potenzfunktionen $x\mapsto x^{lpha}$.

Lösung

Nach Definition . ist

$$x^{\alpha} = \exp(\alpha \ln x)$$
.

Die Ableitung nach x ist aufgrund von Satz 16.3 (Mathematik für Anwender (Osnabrück 2019-2020)) und Korollar 16.6 (Mathematik für Anwender (Osnabrück 2019-2020)) unter Verwendung der Kettenregel gleich

$$(x^lpha)' = (\exp(lpha\, \ln x))' = rac{lpha}{x} \cdot \exp(lpha\, \ln x) = rac{lpha}{x} x^lpha = lpha x^{lpha-1} \, .$$

Aufgabe (2 Punkte)

Beweise den Mittelwertsatz der Differentialrechnung für differenzierbare Funktionen

$$g:\mathbb{R}\longrightarrow\mathbb{R}$$

und ein kompaktes Intervall $[a,b]\subset\mathbb{R}$ aus dem Mittelwertsatz der Integralrechnung (es muss nicht gezeigt werden, dass die Durchschnittsgeschwindigkeit im Innern des Intervalls angenommen wird).

Lösung

Aufgrund des Mittelwertsatz der Integralrechnung, angewendet auf die Ableitung g', gibt es ein $c \in [a,b]$ mit

$$g(b)-g(a)=\int_a^b g'(t)dt=(b-a)g'(c)\,.$$

Division durch b-a liefert den Mittelwertsatz der Differentialrechnung.

Aufgabe (3 Punkte)

Es sei

$$f(x) = 1 - rac{x^2}{2} + rac{x^4}{24}$$
 .

Zeige, dass f zwischen 1 und 2 eine Nullstelle besitzt, und bestimme diese bis auf einen Fehler von $\frac{1}{4}$.

Lösung

Es ist

$$f(1) = 1 - \frac{1}{2} + \frac{1}{24} > 0$$

und

$$f(2)=1-2+rac{16}{24}=-1+rac{2}{3}<0\,,$$

deshalb gibt es nach dem Zwischenwertsatz eine Nullstelle zwischen $oldsymbol{1}$ und $oldsymbol{2}$. Es ist

$$egin{aligned} f\left(rac{3}{2}
ight) &= 1 - rac{\left(rac{3}{2}
ight)^2}{2} + rac{\left(rac{3}{2}
ight)^4}{24} \ &= 1 - rac{9}{8} + rac{27}{128} \ &= rac{11}{128} \ &> 0. \end{aligned}$$

Deshalb gibt es eine Nullstelle in $[rac{3}{2},2]$. Es ist

$$egin{aligned} f\left(rac{7}{4}
ight) &= 1 - rac{\left(rac{7}{4}
ight)^2}{2} + rac{\left(rac{7}{4}
ight)^4}{24} \ &= 1 - rac{49}{32} + rac{2401}{6144} \ &= rac{6144 - 9408 + 2401}{1536} \ &< 0. \end{aligned}$$

Eine Nullstelle liegt also in $[\frac{3}{2}, \frac{7}{4}]$.

Aufgabe (4 Punkte)

Beweise die Substitutionsregel zur Integration von stetigen Funktionen.

Lösung

Wegen der Stetigkeit von f und der vorausgesetzten stetigen Differenzierbarkeit von g existieren beide Integrale. Es sei F eine Stammfunktion von f, die aufgrund von Korollar 19.5 (Mathematik für Anwender (Osnabrück 2019-2020)) existiert. Nach der Kettenregel hat die zusammengesetzte Funktion

$$t\mapsto F(g(t))=(F\circ g)(t)$$

die Ableitung $F^{\prime}(g(t))g^{\prime}(t)=f(g(t))g^{\prime}(t)$. Daher gilt insgesamt

$$\int_a^b f(g(t))g'(t)\,dt = (F\circ g)|_a^b = F(g(b)) - F(g(a)) = F|_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(s)\,ds\,.$$

Aufgabe (2 Punkte)

Bestimme die Übergangsmatrizen $M^{\mathfrak{u}}_{\mathfrak{v}}$ und $M^{\mathfrak{v}}_{\mathfrak{u}}$ für die Standardbasis \mathfrak{u} und die durch die Vektoren

$$v_1 = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}, \, v_2 = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}, \, v_3 = egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix} ext{ und } v_4 = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}$$

gegebene Basis $\mathfrak v$ im $\mathbb R^4$.

Lösung

In den Spalten von $M^{\mathfrak v}_{\mathfrak u}$ müssen die Koordinaten der Vektoren v_j bezüglich der Standardbasis u_i stehen, also ist direkt

$$M_{\mathfrak{u}}^{\mathfrak{v}} = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Umgekehrt ist wegen $u_1=v_2,u_2=v_4,u_3=v_1,u_4=v_3$

$$M^{\mathfrak{u}}_{\mathfrak{v}} = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Aufgabe (2 Punkte)

Es sei B eine n imes p-Matrix und A eine m imes n-Matrix und es seien

$$K^p \stackrel{B}{\longrightarrow} K^n \stackrel{A}{\longrightarrow} K^m$$

die zugehörigen linearen Abbildungen. Zeige, dass das Matrixprodukt $A \circ B$ die Hintereinanderschaltung der beiden linearen Abbildungen beschreibt.

Lösung

Die Gleichheit von linearen Abbildungen kann man auf der Standardbasis e_1, \dots, e_p des K^p nachweisen. Es ist

$$egin{aligned} (A \circ B)(e_k) &= A(B(e_k)) \ &= Aigg(\sum_{j=1}^n b_{jk}e_jigg) \ &= \sum_{j=1}^n b_{jk}igg(\sum_{i=1}^m a_{ij}e_iigg) \ &= \sum_{i=1}^m igg(\sum_{j=1}^n a_{ij}b_{jk}igg)e_i \ &= \sum_{i=1}^m c_{ik}e_i. \end{aligned}$$

Dabei sind die Koeffizienten

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}$$

gerade die Einträge in der Produktmatrix $A \circ B$.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Bestimme das charakteristische Polynom, die Eigenwerte mit Vielfachheiten und die Eigenräume zur reellen Matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Lösung

Das charakteristische Polynom ist

$$\det egin{pmatrix} x & -1 & 0 \ -1 & x & 0 \ 0 & 0 & x \end{pmatrix} = x^3 - x$$
 $= x(x^2 - 1)$ $= x(x - 1)(x + 1).$

Somit sind 0,1,-1 Eigenwerte mit algebraischer und geometrischer Vielfachheit 1.

Der Eigenraum zu 0 ist der Kern von $\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Dieser ist

$$\mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Der Eigenraum zu 1 ist der Kern von $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Dieser ist

$$\mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Der Eigenraum zu -1 ist der Kern von $\begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Dieser ist

$$\mathbb{R} \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight).$$

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht