

PCT/EP2004/053040

EPO - DG 1

14. 12. 2004

(83)

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 29 NOV. 2004

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

A handwritten signature in black ink, enclosed in an oval border.

Martine PLANCHE

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

SIEGE
26 bis, rue de Saint-Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

26 bis, rue de Saint Pétersbourg - 75800 Paris Cedex 08

Pour vous informer : INPI DIRECT

DINPI 0 825 83 85 87

0,15 € TTC/min

Télécopie : 33 (0)1 53 04 52 65

Réserve à l'INPI

REMISE DES PIÈCES

DATE **2 DEC 2003**

IEU **75 INPI PARIS 34 SP**

N° D'ENREGISTREMENT **0314134**

NATIONAL ATTRIBUÉ PAR L'INPI

DATE DE DÉPÔT ATTRIBUÉE
PAR L'INPI **02 DEC. 2003**

Vos références pour ce dossier
(facultatif) **63 254**

Confirmation d'un dépôt par télécopie

N° attribué par l'INPI à la télécopie

3. NATURE DE LA DEMANDE

Demande de brevet

Demande de certificat d'utilité

Demande divisionnaire

Demande de brevet initiale

Cochez l'une des 4 cases suivantes

ou demande de certificat d'utilité initiale

N° Date Date Date Date

N° Date Date Date Date

N° Date Date Date Date

3. TITRE DE L'INVENTION (200 caractères ou espaces maximum)

CONVERTISSEUR ANALOGIQUE-NUMERIQUE RAPIDE

**4. DÉCLARATION DE PRIORITÉ
OU REQUÊTE DU BÉNÉFICE DE
LA DATE DE DÉPÔT D'UNE
DEMANDE ANTÉRIEURE FRANÇAISE**

Pays ou organisation
Date N°

Pays ou organisation
Date N°

Pays ou organisation
Date N°

S'il y a d'autres priorités, cochez la case et utilisez l'imprimé « Suite »

5. DEMANDEUR (Cochez l'une des 2 cases)

Personne morale Personne physique

Nom
ou dénomination sociale

ATMEL GRENOBLE S.A.

Prénoms

Forme juridique

Société Anonyme

N° SIREN

13 411 470 656

Code APE-NAF

1111

Domicile
ou
siège

Rue

Avenue de Rochepleine

Code postal et ville

13 811 210 SAINT-EGREVE

Pays

FRANCE

Nationalité

Française

N° de téléphone (facultatif)

N° de télécopie (facultatif)

Adresse électronique (facultatif)

S'il y a plus d'un demandeur, cochez la case et utilisez l'imprimé « Suite »

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

N° 11354*03

REQUÊTE EN DÉLIVRANCE

page 1/2

Cet imprimé est à remplir lisiblement à l'encre noire

DB 540 9 W / 030103

BEST AVAILABLE COPY

BREVET D'INVENTION
CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE
page 2/2

BR2

Réserve à l'INPI

REMISE DES PIÈCES

DATE 2 DEC 2003

LIEU 75 INPI PARIS 34 SP

N° D'ENREGISTREMENT 0314134

NATIONAL ATTRIBUÉ PAR L'INPI

DB 540 W / 210502

16 MANDATAIRE (s'il y a lieu)

GUERIN

Nom

Michel

Prénom

THALES

Cabinet ou Société

N ° de pouvoir permanent et/ou
de lien contractuel

9336

Adresse

Rue

31-33, Avenue Aristide Briand

9411117 ARCUEIL CEDEX

FRANCE

N ° de téléphone (facultatif)

01 41 48 45 32

N ° de télécopie (facultatif)

01 41 48 45 01

Adresse électronique (facultatif)

Les inventeurs sont nécessairement des personnes physiques

Oui
 Non : Dans ce cas remplir le formulaire de Désignation d'inventeur(s)
Uniquement pour une demande de brevet (y compris division et transformation)

7 INVENTEUR (S)

Les demandeurs et les inventeurs
sont les mêmes personnes

Oui
 Non : Dans ce cas remplir le formulaire de Désignation d'inventeur(s)

Uniquement pour une demande de brevet (y compris division et transformation)

8 RAPPORT DE RECHERCHE

Établissement immédiat
ou établissement différé

Uniquement pour les personnes physiques effectuant elles-mêmes leur propre dépôt

Paiement échelonné de la redevance
(en deux versements)

Oui
 Non

Uniquement pour les personnes physiques

Requise pour la première fois pour cette invention (joindre un avis de non-imposition)
 Obtenue antérieurement à ce dépôt pour cette invention (joindre une copie de la
décision d'admission à l'assistance gratuite ou indiquer sa référence) : AG

**9 RÉDUCTION DU TAUX
DES REDEVANCES**

Cochez la case si la description contient une liste de séquences

**10 SÉQUENCES DE NUCLEOTIDES
ET/OU D'ACIDES AMINÉS**

Le support électronique de données est joint

La déclaration de conformité de la liste de
séquences sur support papier avec le
support électronique de données est jointe

Si vous avez utilisé l'imprimé « Suite »,
indiquez le nombre de pages jointes

**11 SIGNATURE DU DEMANDEUR
OU DU MANDATAIRE**
(Nom et qualité du signataire)

Michel GUERIN

VISA DE LA PRÉFECTURE
OU DE L'INPI

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
... et de rectification pour les données vous concernant auprès de l'INPI.

BEST AVAILABLE COPY

CONVERTISSEUR ANALOGIQUE-NUMERIQUE RAPIDE

L'invention concerne les convertisseurs analogiques-numériques rapides à structure parallèle.

Le principe général d'un tel convertisseur est le suivant : un échantillonneur bloqueur fournit une tension analogique stabilisée pendant un bref intervalle de temps qui est le temps nécessaire à la conversion. Un ensemble de comparateurs en parallèle compare cette tension à des tensions de référence définies par un réseau de résistances en série alimentées par un courant constant.

Des structures de comparateurs à entrées différentielles sont utilisées de préférence parce qu'elles éliminent les erreurs dues aux fluctuations de tensions de mode commun. Dans ce cas, on utilise en général la structure suivante : la tension à convertir, sous forme d'une tension différentielle $V_{in}-V_{inN}$ est appliquée à l'entrée de l'échantillonneur bloqueur E/B qui a une structure différentielle ; les sorties différentielles complémentaires VS et VSN de l'échantillonneur bloqueur, représentant la tension à convertir ($VS-VSN$ est égal à V_i-V_{inN}) sont appliquées sur deux réseaux de N résistances précises, en série ; le courant I_0 dans les réseaux est fixé par des sources de courant identiques ; les prises intermédiaires entre les résistances des deux réseaux sont appliquées deux-à-deux aux entrées des N comparateurs de la manière suivante : la résistance de rang i du premier réseau (alimenté par VS) et la résistance de rang $N-i$ du deuxième réseau (alimenté par la tension complémentaire VSN) sont connectées aux entrées du comparateur COMPi de rang i . Les comparateurs basculent dans un sens ou dans un autre selon le niveau de la tension différentielle VS-VSN, et on peut dire en résumé que si la tension VS-VSN correspond à la limite de basculement du comparateur de rang i , tous les comparateurs de rang inférieur à i basculeront dans un sens et tous les comparateurs de rang supérieur à i basculeront dans l'autre sens ; l'état des sorties des comparateurs fournit donc une indication numérique du niveau de tension analogique différentielle d'entrée.

Cette disposition est rappelée sur la figure 1.

Pour des comparateurs rapides, destinés à fournir un signal numérique à une fréquence d'échantillonnage élevée et susceptibles de recevoir une tension d'entrée analogique pouvant varier rapidement, il se pose alors un problème de constante de temps de réaction de la structure qui vient d'être décrite : le réseau de résistances comprend de nombreuses résistances dès lors qu'on veut une haute résolution pour le comparateur. Ces résistances ont-elles même une capacité parasite et elles sont connectées à des comparateurs qui ont aussi des capacités parasites. La combinaison de ces résistances et de ces capacités parasites induit des constantes de temps de transmission entre les sorties de l'échantillonneur bloqueur et les entrées des comparateurs.

Ces constantes de temps ont en particulier l'effet néfaste suivant : puisque les réseaux de résistance sont croisés, le comparateur de rang i reçoit sur une entrée une tension $VS-i.r.l_0$ après un retard qui en gros est lié à la constante de temps introduite par un ensemble de i résistances élémentaires de valeur r en série, alors qu'il reçoit sur une autre entrée la tension $VSN-(N-i).r.l_0$ après un retard qui est lié plutôt à la constante de temps introduite par un ensemble de $N-i$ résistances. On comprend donc que cela ne pose pas de problème particulier quand i et $N-i$ sont presque identiques, mais que cela pose un problème lorsque i est proche de zéro ou de N et $N-i$ proche de N ou zéro : en effet, dans ce cas les constantes de temps sont très différentes, ce qui veut dire que le comparateur concerné va recevoir un niveau de tension plus rapidement sur une entrée que sur l'autre. Dans l'intervalle de temps il peut tout simplement fournir une indication fausse. Il y a donc un risque pour que les comparateurs qui sont à la frontière entre le basculement dans un sens ou dans l'autre fournissent une indication erronée. Cette erreur est d'autant plus sensible si la résolution ou la fréquence de conversion sont plus élevées<;

La présente invention a pour but de pallier cet inconvénient dans la mesure du possible.

On propose pour cela un convertisseur analogique-numérique à entrées différentielles et à structure parallèle, comprenant au moins un réseau de N résistances en série de valeur r et un réseau de N comparateurs, caractérisé en ce que

- le réseau de résistances en série reçoit une tension
 de référence (VH) et est parcouru par un courant fixe I_0 ;
 - le comparateur de rang i (i variant de 1 à N)
 comprend essentiellement un amplificateur différentiel double à
 quatre entrées, deux entrées recevant une tension différentielle
 VS-VN à convertir, une troisième étant reliée à une résistance
 de rang i du réseau, et une quatrième entrée étant reliée à une
 résistance de rang $N-i$ du réseau, l'amplificateur différentiel
 double fournissant une tension représentant une différence de
 la forme $(VS-VSN) - (N-2i)r.I_0$, et le comparateur basculant
 dans un sens ou dans l'autre selon le niveau de la tension VS-
 VSN et selon le rang i du comparateur lorsque cette différence
 change de signe.

L'amplificateur différentiel double à quatre entrées est en
 pratique constitué par deux amplificateurs différentiels simples qui ont
 leurs sorties reliées en parallèle, chacun d'eux recevant une des deux
 tensions différentielles d'entrée d'une part et une des deux tensions issues
 du réseau de résistances d'autre part.

Dans une réalisation avantageuse, le réseau de résistances est
 alimenté par une tension de référence variable issue d'un circuit
 d'asservissement qui asservit le niveau de tension du milieu du réseau de
 résistances à une tension égale à la tension de mode commun $(VS-VSN)/2$ présente sur la sortie de l'échantillonneur bloqueur. Cette tension
 égale à la tension de mode commun est de préférence prélevée en sortie
 d'un amplificateur tampon dont les caractéristiques de courant et de
 tension reproduisent les caractéristiques d'un amplificateur différentiel qui
 fournit les tensions analogiques à convertir VS et VSN. Cet amplificateur
 tampon reproduit donc en principe les caractéristiques de mode commun
 de l'amplificateur de sortie de l'échantillonneur bloqueur qui fournit le
 signal analogique à convertir.

Dans une autre réalisation avantageuse, le circuit
 d'asservissement fournit une tension de référence variable au réseau de
 résistances et à un autre réseau de résistances semblable au premier,

l'asservissement étant effectué à partir d'une tension prélevée au milieu de l'autre réseau de résistances.

D'autres caractéristiques et avantages de l'invention
5 apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :

- la figure 1, déjà décrite, représente la structure d'un convertisseur analogique-numérique différentiel rapide de l'art antérieur ;

- la figure 2 représente la structure d'un convertisseur selon
10 l'invention ;

- la figure 3 représente le schéma d'un comparateur élémentaire utilisé dans le schéma de la figure 2 ;

- la figure 4 représente une variante de réalisation dans laquelle une tension prélevée sur un point milieu du réseau de résistances sert à
15 l'asservissement de la tension appliquée à ce réseau ;

- la figure 5 représente une cellule de référence constituée de manière à fournir une tension de référence égale à la tension de mode commun de l'échantillonneur bloqueur ;

- la figure 6 représente une autre variante de réalisation dans
20 laquelle la tension servant à l'asservissement est prélevée sur un réseau miroir du premier réseau de résistances.

La figure 2 représente la structure générale du convertisseur selon l'invention. La sortie de l'échantillonneur bloqueur est une sortie
25 différentielle fournissant une tension VS et une tension complémentaire VSN, stables pendant la durée de la conversion de l'échantillon courant.

Un réseau de N résistances identiques de valeur r en série, est alimenté en courant constant de valeur I_0 à partir d'une tension haute VH ; une source de courant SC en série avec le réseau définit la valeur du courant constant I_0 . Si on appelle i le rang d'une résistance de valeur r dans l'ensemble en série, i variant de 1 à N-1, A_i est le noeud reliant la résistance de rang i et la résistance de rang i+1 ; A_0 est le nœud reliant la source de courant SC à la résistance de rang 1 ; VH est le potentiel du nœud A_N .

On peut calculer le potentiel en tout nœud du réseau de résistances à partir de VH, r et I_0 .

Le potentiel du nœud A_i est $VH - (N-i) \cdot r \cdot I_0$. Le potentiel du nœud A_{N-i} est $VH - i \cdot r \cdot I_0$.

Un réseau de N comparateurs doubles COMP; de rang $i = 1$ à N reçoit d'une part les tensions présentes sur les nœuds du réseau de résistances et d'autre part la tension VS et la tension VSN. Plus précisément, le comparateur double de rang i reçoit sur un premier groupe d'entrées d'une part la tension VS et d'autre part la tension présente sur le noeud A_{N-i} de rang $N-i$, et il reçoit sur un deuxième groupe d'entrées d'une part la tension complémentaire VSN et d'autre part la tension présente sur le nœud A_i de rang i .

Par comparateur double, on entend ici essentiellement un amplificateur différentiel double dont les sorties sont reliées entre elles de manière croisée comme on l'expliquera plus loin ; l'amplificateur différentiel double comprend simplement deux amplificateurs différentiels simples, le premier amplificateur recevant VS et le nœud A_{N-i} , le deuxième recevant VSN et le nœud A_i . Les sorties des amplificateurs sont réunies pour agir en sommateur ; en croisant les sorties on fait une différence, de sorte que les sorties fournissent une tension différentielle représentant, avec un coefficient correspondant au gain de l'amplificateur, la différence des différences de tension appliquées aux entrées prises deux à deux :

$$VS - (VH - i \cdot r \cdot I_0) \text{ et } VSN - \{VH - (N-i) \cdot r \cdot I_0\}$$

La sortie différentielle de l'amplificateur double représente alors :

$$VS - VSN - (N-2i) \cdot r \cdot I_0$$

Cette sortie, éventuellement réamplifiée par un amplificateur à grand gain, permet de convertir en un niveau logique le signe de la différence $VS - VSN - (N-2i) \cdot r \cdot I_0$

Tous les comparateurs pour lesquels $VS - VSN$ est supérieur à $(N-2i) \cdot r \cdot I_0$ basculent dans un sens, tous les comparateurs pour lesquels $VS - VSN$ est inférieur à $(N-2i) \cdot r \cdot I_0$ basculent dans l'autre sens.

La valeur numérique convertie est déterminée par le rang du comparateur tel que tous les comparateurs au-dessous de ce rang soient

dans un premier état et tous les comparateurs au-dessus de ce rang soient dans un second état.

Le nombre de résistances r donne la résolution du comparateur. L'ajustement du courant I_0 permet d'ajuster la plage de conversion, c'est-à-dire la valeur maximale de $VS-VSN$ qui peut être convertie avec la précision définie par le nombre de résistances r .

Pour minimiser les effets dus aux tensions de mode commun et à leurs fluctuations, on s'arrange pour que la tension au milieu du réseau de résistances, c'est-à-dire en pratique la tension présente sur le nœud A_{N2} , soit égale à la tension de mode commun des sorties de l'échantillonneur bloqueur :

$$VH \cdot r \cdot I_0 \cdot N/2 = (VS+VSN)/2$$

On règle donc VH en conséquence et on verra plus loin qu'on peut la régler à partir d'un asservissement.

La figure 3 représente la constitution détaillée d'un amplificateur différentiel double à sorties réunies croisées utilisé dans les comparateurs COMP_i de la figure 2. Les transistors représentés sont des transistors bipolaires mais ils peuvent être aussi MOS.

Il comprend deux amplificateurs différentiels linéaires simples à grand gain, identiques et constitués d'une manière classique, c'est-à-dire avec deux branches symétriques alimentées par le courant d'une seule source de courant constant, chaque branche comprenant un transistor en série avec une résistance de charge R . Les bases des transistors sont les entrées des amplificateurs. Le premier amplificateur reçoit VS sur la base du premier transistor $T1$ et le nœud A_{N1} sur la base du deuxième transistor $T2$. Le deuxième amplificateur reçoit VSN sur la base du premier transistor $T'1$ et le nœud A_1 sur la base du deuxième transistor $T'2$. Les sorties sont montées en sommateur mais croisées : la sortie constituée par le collecteur de $T1$ est reliée à la sortie constituée par le collecteur de $T'2$ pour constituer une première sortie de l'amplificateur différentiel double, et réciproquement les collecteurs de $T'1$ et $T2$ sont reliés pour constituer une deuxième sortie de l'amplificateur différentiel double ; la sortie du comparateur est constituée par l'une de ces sorties, par exemple le collecteur de $T1$ et $T'2$, ou bien par une sortie d'un

amplificateur à grand gain dont les entrées reçoivent les sorties de l'amplificateur double.

La figure 4 représente une variante de réalisation du convertisseur, dans laquelle la tension VH est déterminée automatiquement par un circuit asservi sur la tension de mode commun de l'échantillonneur bloqueur E/B.

On utilise un amplificateur différentiel AD à grand gain, ayant une première entrée reliée au nœud $A_{N/2}$ représentant le milieu du réseau de résistances et une deuxième entrée reliée à la sortie d'une cellule Cref de détermination de la tension de mode commun. La sortie de l'amplificateur différentiel fournit la tension VH, soit directement, soit par l'intermédiaire d'un amplificateur tampon de gain unitaire et de grande impédance d'entrée et de faible impédance de sortie ; une résistance peut également être intercalée entre la sortie de l'amplificateur tampon et la borne A_N .

La tension VH sur la borne A_N s'asservit automatiquement de manière que la différence de tensions à l'entrée de l'amplificateur soit pratiquement nulle. La tension VH prend donc une valeur telle que la tension du nœud $A_{N/2}$ soit égale à la tension de sortie de la cellule de référence.

La cellule Cref doit fournir une tension égale à la tension de mode commun $(VS+VN)/2$ qui existe en sortie de l'échantillonneur bloqueur. Pour cela, la cellule comprend simplement un étage amplificateur tampon constitué avec des éléments géométriquement semblables à ceux de l'étage de sortie de l'échantillonneur bloqueur.

La figure 5 représente la constitution de l'étage de sortie de l'échantillonneur bloqueur et la cellule de référence. L'étage de sortie de l'échantillonneur peut être symbolisé à partir d'un amplificateur linéaire différentiel AD1 chargé par deux résistances R1 et alimenté par une source de courant commune de valeur I1. Des amplificateurs tampons de gain unitaire sont reliés aux sorties différentielles de l'amplificateur ; ces amplificateurs tampons fournissent les tensions VS et VSN. La cellule de référence, alimentée par la même tension Vcc que l'échantillonneur bloqueur, utilise tout simplement un ensemble en série d'une résistance R2 et d'une source de courant de valeur I2, et un amplificateur tampon de

gain unitaire identique à ceux qui définissent les sorties de l'échantillonneur bloqueur. La résistance R_2 est égale à k fois (k arbitraire, plus grand que 1 pour limiter la consommation) la résistance de charge R_1 des étages de sortie de l'échantillonneur bloqueur ; la source de courant I_2 est égale à $1/k$ fois la source de courant I_1 de l'étage différentiel qui constitue l'étage de sortie différentiel de l'échantillonneur bloqueur.

Cette cellule fournit une tension V_{ref} qui est égale à la tension de mode commun $(V_S + V_{SN})/2$ de l'échantillonneur bloqueur.

La figure 6 représente une autre variante de réalisation du convertisseur, dans laquelle l'asservissement de la tension d'alimentation V_H du réseau de résistances est réalisé à partir d'un deuxième réseau de résistances, semblable au premier. Ce deuxième réseau est de préférence constitué de résistances de valeur $K.r$ et est parcouru par un courant I_0/k pour consommer moins de courant. La tension appliquée à l'extrémité du deuxième réseau (nœud A'_N du deuxième réseau) est la même tension V_H que celle qui est appliquée au nœud A_N du premier réseau. Elle est appliquée par un amplificateur tampon identique à celui qui applique la tension V_H au premier réseau, à partir de la sortie de l'amplificateur différentiel AD qui contrôle l'asservissement. Cet amplificateur différentiel, au lieu de recevoir le point milieu $A_{N/2}$ du premier réseau, reçoit le point milieu $A'_{N/2}$ du deuxième réseau. Les tensions sur tous les nœuds du deuxième réseau sont identiques à celles sur les nœuds correspondants du premier réseau, par conséquent l'asservissement à partir du nœud $A'_{N/2}$ est identique à un asservissement à partir du nœud $A_{N/2}$.

L'avantage de cette disposition est qu'on évite de perturber l'asservissement par des variations de niveaux de tension qui pourraient apparaître sur le nœud $A_{N/2}$ par influence capacitive ou influence du substrat semi-conducteur lors de variations importantes de la tension à convertir.

On a ainsi décrit un convertisseur analogique-numérique à réseau de résistances qui évite l'influence négative des constantes de temps dues aux capacités et résistances du réseau comme c'était le cas dans le schéma de la figure 1. En effet, le réseau de résistances ne reçoit

plus la tension à convertir mais une tension fixe (à part les fluctuations de niveau de mode commun qui interviennent seulement de manière secondaire).

Le convertisseur selon l'invention reste cependant un convertisseur différentiel, ce qui présente des avantages notamment pour l'élimination des distorsions dues aux harmoniques pairs des tensions à convertir.

Enfin, étant donné que les capacités parasites du réseau de résistances n'interviennent plus au premier ordre, on peut prévoir que le réseau de résistances est réalisé par des résistances de plus grande dimension dans le circuit intégré, ce qui permet de les réaliser avec une meilleure précision. Typiquement, alors qu'on s'obligeait à réaliser des résistances de l'ordre de 1 à 2 micromètres de largeur pour minimiser leurs capacités parasites, on peut passer par exemple à des résistances de l'ordre de 200 à 600 micromètres de large.

REVENDICATIONS

1. Convertisseur analogique-numérique à entrées différentielles et à structure parallèle, comprenant au moins un réseau de N résistances en série de valeur r et un réseau de N comparateurs, caractérisé en ce que

- 5 - le réseau de résistances en série reçoit une tension de référence (VH) et est parcouru par un courant fixe I_0 ;
- le comparateur ($COMP_i$) de rang i (i variant de 1 à N) comprend essentiellement un amplificateur différentiel double à quatre entrées, deux entrées recevant une tension différentielle $VS-VN$ à convertir, une troisième étant reliée à une résistance de rang i du réseau, et une quatrième entrée étant reliée à une résistance de rang $N-i$ du réseau, l'amplificateur différentiel double fournissant une tension représentant une différence de la forme $(VS-VSN) - (N-2i)r.I_0$, et le comparateur basculant dans un sens ou dans l'autre selon le niveau de la tension $VS-VSN$ et selon le rang i du comparateur lorsque cette différence change de signe.

20 2. Convertisseur selon la revendication 1, caractérisé en ce que l'amplificateur différentiel double à quatre entrées est constitué par deux amplificateurs différentiels simples qui ont leurs sorties reliées en parallèle, chacun d'eux recevant une des deux tensions différentielles d'entrée d'une part et une des deux tensions issues du réseau de résistances d'autre part.

25 30 3. Convertisseur selon l'une des revendications 1 et 2, caractérisé en ce que le réseau de résistances est alimenté par une tension de référence variable (VH) issue d'un circuit d'asservissement (Cref, AD) qui asservit le niveau de tension du milieu du réseau de résistances à une tension égale à la tension de mode commun ($VS-VSN)/2$ présente sur la sortie de l'échantillonneur bloqueur.

4. Convertisseur selon la revendication 3, caractérisé en ce que le circuit d'asservissement fournit une tension de référence variable au réseau de résistances et à un autre réseau de résistances semblable au premier,
5 l'asservissement étant effectué à partir d'une tension prélevée au milieu de l'autre réseau de résistances.

10

1/5

Fig 1

BEST AVAILABLE COPY

FIG.1

BEST AVAILABLE COPY

2 / 5

Fig 2

FIG.2

BEST AVAILABLE COPY

3 / 5

Fig 3

Fig 5

FIG.3

FIG.5

4/5

Fig 4

FIG.4

BEST AVAILABLE COPY

5 / 5

Fig 6

FIG.6

6 bis, rue de Saint Pétersbourg - 75800 Paris Cedex 08

pour vous informer : INPI DIRECT

D'INPI DIRECT 0 825 83 85 87
0,15 € TTC/min

télécopie : 33 (0)1 53 04 52 65

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

N° 11235*03

DÉSIGNATION D'INVENTEUR(S) Page N° 1.../1..

(À fournir dans le cas où les demandeurs et les inventeurs ne sont pas les mêmes personnes)

Cet imprimé est à remplir lisiblement à l'encre noire

DB J13 @ W / 210103

Vos références pour ce dossier (facultatif)	63 254
---	--------

N° D'ENREGISTREMENT NATIONAL	03 14 1364
------------------------------	------------

TITRE DE L'INVENTION (200 caractères ou espaces maximum)

CONVERTISSEUR ANALOGIQUE-NUMRIQUE RAPIDE

LE(S) DEMANDEUR(S) :

ATMEL GRENOBLE S.A.

DESIGNE(NT) EN TANT QU'INVENTEUR(S) :

<input checked="" type="checkbox"/> Nom	MORISSON	
Prénoms	Richard	
Adresse	Rue	THALES Intellectual Property 31-33, Avenue Aristide Briand
	Code postal et ville	[9] [4] [1] [1] [7] ARCUEIL CEDEX
Société d'appartenance (facultatif)		
<input type="checkbox"/> Nom		
Prénoms		
Adresse	Rue	
	Code postal et ville	[] [] [] [] []
Société d'appartenance (facultatif)		
<input type="checkbox"/> Nom		
Prénoms		
Adresse	Rue	
	Code postal et ville	[] [] [] [] []
Société d'appartenance (facultatif)		

S'il y a plus de trois inventeurs, utilisez plusieurs formulaires. Indiquez en haut à droite le N° de la page suivi du nombre de pages.

DATE ET SIGNATURE(S)

DU (DES) DEMANDEUR(S)

OU DU MANDATAIRE

(Nom et qualité du signataire)

- 2 DEC. 2003

Michel GUERIN

EP 2004/053040

