의 존 구 문 분 석 (Dependency Parsing)

남궁영 한국해양대학교 컴퓨터공학과 자연언어처리실험실 young_ng@kmou.ac.kr

2019. 04. 17.

•••

Content

1. Syntactic Parsing

- ❖ Basic theory of SP
- Methodologies of SP
 - Constituency Parsing
 - Dependency Parsing

2. Dependency Parsing

- Basic theory of Dependency Parsing
- Dependency Parsing algorithm
 - Graph-based Parsing
 - Chart-based parsing
 - MST(Maximum Spanning Tree) parsing
 - Transition-based Parsing
 - Shift-Reduce parsing
- DP Resources
 - Datasets / Tools
- Universal Dependency
 - What is UD
 - Universal POS tags for UD
- DP Evaluation Metrics
 - UAS/ LAS

3. Deep-Learning Approaches to Dependency Parsing

- ❖ Neural Basic theory of DP
 - graph-based
 - transition-based
- Dependency Parsing with DL (with SOTA papers)
 - Stack LSTM
 - Sequence to Sequence
 - Pointer networks

4. Applied Deep-Learning for Dependency Parsing

- Supervised Dependency Parsing
 - Penn Treebank
 - Universal Dependency
- ❖ Neural Dependency Parsing for Korean
 - Dependency Parsing approaches for Korean
 - Applied DL for Korean DP(Comparative analysis)

5. Challenges and Future Directions

•••

Content

1. Syntactic Parsing

- ❖ Basic theory of SP
- Methodologies of SP
 - Constituency Parsing
 - Dependency Parsing

2. Dependency Parsing

- Basic theory of Dependency Parsing
- Dependency Parsing algorithm
 - Graph-based Parsing
 - Chart-based parsing
 - MST(Maximum Spanning Tree) parsing
 - Transition-based Parsing
 - Shift-Reduce parsing
- ❖ DP Resources
 - Datasets / Tools
- Universal Dependency
 - What is UD
 - Universal POS tags for UD
- ❖ DP Evaluation Metrics
 - UAS/ LAS

3. Deep-Learning Approaches to Dependency Parsing

- ❖ Neural Basic theory of DP
 - graph-based
 - transition-based
- Dependency Parsing with DL (with SOTA papers)
 - Stack LSTM
 - Sequence to Sequence
 - Pointer networks

4. Applied Deep-Learning for Dependency Parsing

- Supervised Dependency Parsing
 - Penn Treebank
 - Universal Dependency
- ❖ Neural Dependency Parsing for Korean
 - Dependency Parsing approaches for Korean
 - Applied DL for Korean DP(Comparative analysis)

5. Challenges and Future Directions

:: K M O U N L P :: Advanced Deep Learning, 2019

Syntactic Parsing

Basic Theory of Syntactic Parsing Methodology of Syntactic Parsing

Basic Theory of Syntactic Parsing

- ❖ The process of **analyzing the construction of a sentence** by recognizing a sentence and assigning a syntactic structure to it.
 - Input: a Sentence(String) or Grammar
 - Output: a Parse trees

- Two views of linguistic structure:
 - Phrase structure
 - ordering and organizing words into nested **constituents**
 - Dependency structure
 - analyzing the **relation** between head and modifier

Methodologies of Syntactic Parsing (1/2)

Constituency Parsing

- Phrase structure organizes words into nested constituents
 - Rules
 - Terminals & Non-terminals

[Rules]

$$S \rightarrow NP VP$$
 $VP \rightarrow N V$
 $NP \rightarrow N$

•••

[Phrase Structure Trees]

Dependency Parsing

 Dependency structure shows which words depend on (modify or are arguments of) which other words.

nodes: word-tokens

- links: **dependency relations** between words

[Dependency Trees]

Methodologies of Syntactic Parsing (2/2)

Constituency Parsing

- ❖ Not flexible with word-orders
- Language dependent
- ❖ No semantic information

Dependency Parsing

- Suitable for free word order(FWO)
 languages
 - constituent of the structure is quite fluid
 - frequent omission is occurred

Dependency Parsing

Basic Theory of Dependency Parsing
Dependency Parsing Algorithm
Dependency Parsing Resources
Universal Dependency
Evaluation Metrics

❖ Dependency syntax postulates that syntactic structure consists of relations between lexical items, normally binary asymmetric relations ("arrows") called dependencies

- Conditions: Connected / Acyclic / Single-head
 - Only one word is a dependent of ROOT

Definitions

 $L = \{l_1, l_2, \dots, l_m\}$: Arc label set

 $X = x_0, x_1, \dots, x_n$: Input sentence

Y : Dependency Graph/Tree

 $(i,j,k) \in Y indicates x_i \stackrel{l_k}{\rightarrow} x_j$

❖ Projectivity: A main characteristic of dependency trees

Non-projective

- with crossing arcs
- good for free word order languages
- good for long distance dependencies.

Projective

- ❖ does not contain any crossing arcs if $i \rightarrow j$, then $i \rightarrow *i'$ for any i' such that i < i' < j or j < i' < i.
- many dependency parsing algorithms can only handle projective trees

- Supervised dependency parsing
 - Learning
 - Given a training set D of sentences (annotated with dependency graphs), induce a parsing model M that can be used to parse new sentences.
 - Parsing
 - Given a parsing model **M** and a sentence **S**, derive the optimal dependency graph **G** for **S** according to **M**
- ⇒ the algorithms used to learn the model from data and parse a new sentence with the model

Graph-based Model

- Define a space of candidate dependency trees for a sentence
- Find the best parse for the entire sentence

- ❖ Eisner(1996)
- ❖ Collins et al. (1999)
- ❖ McDonald et al. (2005)

Transition-based Model

- Define a transition system for mapping a sentence to its dependency tree
- ❖ Learning: induce a model for predicting the next state transition, given the transition history
- Parsing: construct the optimal transition sequence, given the induced model
- ❖ Yamada and Matsumoto (2003)
- ❖ Nivre and Scholz (2004)

Graph-based Model

- Chart-based Parsing
 - projective
 - Eisner's Algorithm
- Maximum Spanning Tree(MST)
 - non-projective
 - Chu-Liu-Edmonds' Algorithm

Transition-based Model

- ❖ Shift-Reduce Parsing
 - usually produce projective parses
 - Arc-standard
 - Arc-eager

- **❖** Define a space of candidate dependency trees for a sentence
 - Learning: induce a model for scoring an entire tree
 - Parsing: find a tree with the highest score, given the induced model

Factor the weight/score graphs by subgraphs

$$Y^* = \underset{Y \in \Phi(X)}{argmax} \sum_{(x_i \to x_j) \in Y} score(x_i \to x_j)$$

Finding dependency tree with highest score = finding MST in directed graphs

Chu-Liu-Edmond's Algorithm

- Express sentence as fully connected directed graph
- Score each edge independently
- Find maximum spanning tree

❖ Chu-Liu-Edmond's Algorithm

- Every node should have one incoming edge(=one head)
- Select the edge of the highest score for each node
- If there's a cycle, the edge to be removed depends on an incoming edge.
 - Contract / Expand
- Termination condition:

- **❖** Chu-Liu-Edmond's Algorithm
 - Find the Best Incoming

Best Incoming Edge	
Book	a
that	i
flight	g

Best Incoming Edge

Dependency Parsing Algorithm

- Chu-Liu-Edmond's Algorithm
 - Subtract

the Max for Each	Book	а
	that	i
-4 C	flight	g
-3		

-4 C	flight	g
-3		
b		
a	Kic	ks Out
Book -2 that 0 flight	t) → i
(root)	(d → i
	C	→ g
-1	е	→ g
e -7		

Graham Neubig. 2019. Parsing with Dynamic Programming, CS11-747, Carnegie Mellon University http://phontron.com/class/nn4nlp2019/assets/slides/nn4nlp-15-dpparsing.pdf

- Chu-Liu-Edmond's Algorithm
 - Contract a Node

Best Incomin	g Edge
Book	а
that	i
flight	g
that-flight	

Kicks Out
$b \rightarrow i$
$d \rightarrow i$
$c \rightarrow g$
$e \rightarrow g$

- Chu-Liu-Edmond's Algorithm
 - Recursively Call Algorithm

Best Incoming Edge	
Book	а
that	i
flight	g
that-flight	е

Kicks Out
$b \rightarrow i$
$d \rightarrow i$
c → g
$e \rightarrow g$

- ❖ Chu-Liu-Edmond's Algorithm
 - Expand Nodes and Delete Edge

Best Incomin	g Edge
Book	a
that	i
flight	g 🗶
that-flight	е

Kicks Out
$b \rightarrow i$
$d \rightarrow i$
$c \rightarrow g$
$e \rightarrow g$

- **❖** Define a transition system for mapping a sentence to its dependency tree
 - Learning: induce a model for predicting the next state transition, given the transition history
 - Parsing: construct the optimal transition sequence, given the induced model

❖ Arc-standard transition-based parser

Shift

Reduce
: create
dependencies

Start: $\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$

- 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$
- 2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j,w_i)\}$
- 3. Right-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_i$, β , $A \cup \{r(w_i,w_j)\}$

Finish: $\sigma = [w]$, $\beta = \emptyset$

❖ Arc-standard transition-based parser

Dependency Parsing

- Time complexity is linear, **O(n)**; only treat each word once
- There is no guarantee that we will even find the best tree given the model (There is a risk of error propagation)

❖ Arc-eager transition-based parser

arc-standard

Shift
$$(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)$$

LArc
$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|j,\beta,A \cup \{(j \rightarrow i)\})$$

RArc
$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|i,\beta,A \cup \{(i \rightarrow j)\})$$

arc-eager

Shift
$$(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)$$

LArc
$$(\sigma|i,j|\beta,A) \Rightarrow (\sigma,j|\beta,A \cup \{(j \rightarrow i)\})$$

RArc
$$(\sigma|i,j|\beta,A) \Rightarrow (\sigma|i|j,\beta,A \cup \{(i \rightarrow j)\})$$

Reduce
$$(\sigma|i,\beta,A) \Rightarrow (\sigma,\beta,A)$$

arcs are added between the top two words on the **stack**

between the topmost word on the stack and the topmost word on the buffer

can create arcs earlier than arc-standard model

❖ Arc-eager transition-based parser

Top-down style / can create arcs earlier than arc-standard model

❖ Treebank

- Treebanks are corpora in which each sentence has been <u>annotated</u> with a syntactic analysis.
- The annotation process requires detailed guidelines and measures for quality control.
- Producing a high-quality treebank is both time-consuming and expensive.

❖ Treebank

- Prague Dep. treebank 3.0 (2013)
 - 1,506,484 words, 87,913 sentences
- Danish Dep. treebank 1.0 (2004)
 - 100,200 words, 5,540 sentences
- SPMRL Shared Task Annotated Dataset (2013-2015)
 - Penn Treebank format, need license
- Stanford Dependencies (SD)
 - https://nlp.stanford.edu/software/dependencies_manual.pdf
 - 50 relations

Parser

- MaltParser (2007) :: transition-based
 - J. Hall, J. Nilsson and J. Nivre. http://www.maltparser.org/
 - J. Nivre. MaltParser: A language-independent system for data-driven dependency parsing
 - arc-standard/eager, projective/non-projective, ...
- MSTParser (2005) :: graph-based
 - J. Baldrige & R. McDonald. https://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
 - projective / non-projective
- Stanford's Neural Network Dependency Parser
 - https://nlp.stanford.edu/software/nndep.html
 - transition-based(2014) / graph-based(2017)
- SyntaxNet (2016) :: transition-based
 - Google. https://github.com/tensorflow/models/tree/master/research/syntaxnet
 - D, Andor et al., Globally Normalized Transition-Based Neural Networks
 - Parsey McParseface (trained English parser)

Converting Tool

- The LTH Constituent-to-Dependency Conversion Tool for Penn-style Treebanks
 - used to prepare the English dependency treebanks in 2007-2009 CoNLL Sahred Task.
 - CoNLL-X format
 - http://nlp.cs.lth.se/software/treebank_converter/
- Stanford Dependencies
 - offering a converting option in the SD Parser
 - Penn Treebank(constituency) format → UD in CoNLL-U format
 - https://nlp.stanford.edu/software/stanford-dependencies.html

❖ What is Universal Dependency

- A **tagset** is a list of part-of-speech tags (POS tags for short), i.e. labels used to indicate the part of speech and sometimes also other grammatical categories (case, tense etc.) of each token in a text corpus.
- Universal POS tags are part-of-speech marks used in Universal Dependencies (UD) which is a project that is developing cross-linguistically consistent treebank annotation for many languages. The annotation scheme is based on an evolution of (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).

❖ What is Universal Dependency

 developing cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective.

- **❖** What is Universal Dependency
 - Universal Dependency Treebank
 - **(GitHub)** https://github.com/UniversalDependencies
 - (LINDAT/CLARIN) https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2895

(LINDAT/CLARIN > KonText) https://lindat.mff.cuni.cz/services/kontext/first_form?corpname=ud_23_ko_kaist_a

❖ What is Universal Dependency

UD relations

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj. obj. iobj.	csubj. ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	<u>advcl</u>	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl	<u>amod</u>	<u>det</u> clf case
Coordination	MWE	Loose	Special	Other
conj. cc	fixed flat compound	<u>list</u> p <u>arataxis</u>	orphan goeswith reparandum	punct root dep

- <u>ac1</u>: clausal modifier of noun (adjectival clause)
- advmod: adverbial modifier

advc1: adverbial clause modifier

- amod: adjectival modifier
- appos: appositional modifier
- aux: auxiliary
- <u>case</u>: case marking
- <u>cc</u>: coordinating conjunction
- <u>ccomp</u>: clausal complement
- clf: classifier
- compound: compound
- conj: conjunct
- <u>cop</u>: copula
- <u>csubj</u>: clausal subject
- <u>dep</u>: unspecified dependency
- det: determiner
- <u>discourse</u>: discourse element
- dislocated: dislocated elements
- <u>expl</u>: expletive

- <u>fixed</u>: fixed multiword expression
- <u>flat</u>: flat multiword expression
- goeswith: goes with
- iobj: indirect object
- list: list
- mark: marker
- nmod: nominal modifier
- nsubj: nominal subject
- nummod: numeric modifier
- obj: object
- ob1: oblique nominal
- orphan: orphan
- parataxis: parataxis
- punct: punctuation
- <u>reparandum</u>: overridden disfluency
- <u>root</u>: root
- vocative: vocative
- xcomp: open clausal complement

Universal Dependency

Universal POS tags for Universal Dependency

Open class words	Closed class words	Other
<u>ADJ</u>	<u>ADP</u>	PUNCT
ADV	<u>AUX</u>	SYM
INTJ	CCONJ	X
NOUN	DET	
PROPN	NUM	
<u>VERB</u>	PART	
	PRON	
	SCONJ	

- ADJ: adjective
- ADP: adposition
- ADV: adverb
- <u>AUX</u>: auxiliary
- cconj: coordinating conjunction
- DET: determiner
- <u>INTJ</u>: interjection
- NOUN: noun
- NUM: numeral
- PART: particle
- PRON: pronoun
- PROPN: proper noun
- <u>PUNCT</u>: punctuation
- <u>SCONJ</u>: subordinating conjunction
- SYM: symbol
- <u>VERB</u>: verb
- x: other

Evaluation Metrics

Methodology for evaluating parsers

Apply them to a test set taken from a treebank
 and compare the output of the parser to the gold standard annotation
 found in the treebank

Metrics

- Attachment score
 - the percentage of words that have the correct head and label
 - Unlabeled Attachment Score (UAS)
 - does not consider the semantic relation(e.g. Subj)
 - Labeled Attachment Score (LAS)
 - requires a semantic correct label

Evaluation Metrics

***** LAS

- word-based : how many words were parsed correctly
- **sentence-based** : calculate for each sentence what the percentage of correct dependencies is and then average over the sentences
- ex] a test set containing 2 sentences
 - the percentage of correct dependencies
 - 1st sentence: 10 中 9 (words)
 - 2nd sentence: 45 中 15 (words)

- **LAS_w** =
$$(9+15)/(10+45) = 0.436$$

LAS_s = (9/10 + 15/45) / 2 = 0.617

micro-avg LAS

macro-avg LAS

:: K M O U N L P :: Advanced Deep Learning, 2019

Deep-Learning Approaches to Dependency Parsing

Neural Basic Theory of Dependency Parsing
Dependency Parsing with Deep-Learning

Neural Basic Theory of Dependency Parsing

Graph-Based Model

Factored **the score** of each head-dependent relation

Transition-Based Model

Determine transition action

Neural Basic Theory of Dependency Parsing

❖ An Effective Neural Network Model for Graph-based Dependency Parsing

(Pei et al. 2015. ACL)

Neural Basic Theory of Dependency Parsing

He PRP

❖ A fast and Accurate Dependency Parser using Neural Networks

(Chen & Manning. 2014. EMNLP)

$$p = softmax(W_2h)$$

Hidden layer:

$$h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$$

Input layer: $[x^w, x^t, x^l]$

Configuration

Dependency Parsing with Deep-Learning

❖ Transition-Based Dependency Parsing with Stack Long Short-Term Memory

(C. Dyer et al. ACL 2015)

	Develo	opment	Test	
	UAS	LAS	UAS	LAS
S-LSTM	93.2	90.9	93.1	90.9
-POS	93.1	90.4	92.7	90.3
–pretraining	92.7	90.4	92.4	90.0
-composition	92.7	89.9	92.2	89.6
S-RNN	92.8	90.4	92.3	90.1
C&M (2014)	92.2	89.7	91.8	89.6

Table 1: English parsing results (SD)

$$\mathbf{p}_t = \max \left\{ \mathbf{0}, \mathbf{W}[\mathbf{s}_t; \mathbf{b}_t; \mathbf{a}_t] + \mathbf{d} \right\}$$

$$\mathbf{c} = \tanh\left(\mathbf{U}[\mathbf{h}; \mathbf{d}; \mathbf{r}] + \mathbf{e}\right)$$

Dependency Parsing with Pointer Network

Seq2seq Dependency Parsing

(Z. LI et al. COLING 2018)

Training

- convert each **head** into a **position** representation

Inferencing

- the parser picks a head for each word by predicting the relative position of the head.

Applied Deep-Learning for Dependency Parsing

Supervised Dependency Parsing
Unsupervised Dependency Parsing
Neural Dependency Parsing for Korean

Supervised Dependency Parsing

* Penn Treebank

Model		Year	POS	UAS	LAS	Paper
CVT + Multi-Task (Clark et al.)	G	2018	97.74	96.61	95.02	Semi-Supervised Sequence Modeling with Cross-View Training
Deep Biaffine (Dozat and Manning)	G	2017	97.3	95.74	94.08	Deep Biaffine Attention for Neural Dependency Parsing
jPTDP (Nguyen and Verspoor)	G	2018	97.97	94.51	92.87	An improved neural network model for joint POS tagging and dependency parsing
SyntaxNet (Andor et al.)	Т	2016	97.44	94.61	92.79	Globally Normalized Transition-Based Neural Networks
Distilled neural FOG (Kuncoro et al.)	G	2016	97.3	94.26	92.06	Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser
Distilled transition-based parse (Liu et al.)	r T	2018	97.3	94.05	92.14	Distilling Knowledge for Search-based Structured Prediction
Weiss et al.	Т	2015	97.44	93.99	92.05	<u>Structured Training for Neural Network Transition-Based</u> <u>Parsing</u>
BIST transition-based parser (Kiperwasser and Goldberg)	Т	2016	97.3	93.9	91.9	Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
Arc-hybrid (Ballesteros et al.)	T	2016	97.3	93.56	91.42	<u>Training with Exploration Improves a Greedy Stack-LSTM</u> <u>Parser</u>
BIST graph-based parser (Kiperwasser and Goldberg)	G	2016	97.3	93.1	91.0	Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations

Supervised Dependency Parsing

* CoNLL 2018 Shared Task, UD

Model	LAS	MLAS	BLEX	Paper
Stanford (Qi et al.)	74.16	62.08	65.28	Universal Dependency Parsing from Scratch
HIT-SCIR (Che et al.)	75.84	59.78	65.33	Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation
TurkuNLP (Kanerva et al.)	73.28	60.99	66.09	<u>Turku Neural Parser Pipeline: An End-to-End System for the CoNLL 2018</u> <u>Shared Task</u>
UDPipe Future (Straka)	73.11	61.25	64.49	UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task

- MLAS (morphology-aware labeled attachment score) : evaluation of POS tags and morphological features
- **BLEX** (bi-lexical dependency score): combines content-word relations with lemmatization (but not with tags and features)

Unsupervised Dependency Parsing

* Penn Treebank

Model	Year	UAS	Paper
Iterative reranking (Le & Zuidema)	2015	66.2	<u>Unsupervised Dependency Parsing - Let's Use Supervised Parsers</u>
Combined System (Spitkovsky et al.)	2013	64.4	Breaking Out of Local Optima with Count Transforms and Model Recombination - A Study in Grammar Induction
Tree Substitution Grammar DMV (Blunsom & Cohn)	2010	55.7	Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing
Shared Logistic Normal DMV (Cohen & Smith)	2009	41.4	<u>Shared Logistic Normal Distributions for Soft Parameter Tying in Unsupervised</u> <u>Grammar Induction</u>
DMV (Klein & Manning)	2004	35.9	<u>Corpus-Based Induction of Syntactic Structure - Models of Dependency and Constituency</u>

Neural Dependency Parsing for Korean

* Sejong Treebank

Model	Year	F1	UAS	LAS	Paper
NNLM+ReLU+dropout+MI feat. (이창기, 김준석, 김정희)	2014		90.37	88.17	<u>딥 러닝을 이용한 한국어 의존 구문 분석</u>
LSTM, Transition-based (이건일, 이종혁)	2015		90.33		<u>순환 신경망을 이용한 전이 기반 한국어 의존 구문 분석</u> (KIBS95, 97)
Stack LSTM, Transition-based (나승훈, 신종훈, 김강일)	2016		90.44	88.17	Stack LSTM 기반 한국어 의존 파싱을 위한 음절과 형태소의 결합 단어 표상 방법
의존 관계명 부착 (안재현, 이호경, 고영중)	2016	96.01			의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링
Pointer network (박천음, 이창기)	2016		91.65	89.34	<u>멀티 태스크 학습 기반 포인터 네트워크를 이용한 한국어 의</u> 존 구문 분석
Graph-based (나승훈, 이건일, 신종훈, 김강일)	2017		91.78	89.76	Deep Biaffine Attention을 이용한 한국어 의존 파싱
Pointer network (박천음, 이창기)	2017		91.79	89.50	포인터 네트워크를 이용한 한국어 의존 구문 분석

Challenges and Future Directions

Challenges and Future Directions

- ❖ Korean UD treebank
 - Dependency treebank
 - Converting tool
- Parser domain adaptation
 - How to capture the domain differences and improve the models for the target domain?
- Hybrid way

감 사 합 니 다.

남궁영 한국해양대학교 컴퓨터공학과 자연언어처리실험실 young_ng@kmou.ac.kr

2019. 04. 17.