

PCD: Quiz 4

PCD: Quiz 4

O e-mail do participante (**igor.ribeiro@unifesp.br**) foi registrado durante o envio deste formulário.

Analisando o algoritmo concorrente a seguir, composto por instruções atômicas, * e considerando um cenário composto pela seguinte ordem de execução das instruções: p1, p2, q1, q2, q-fim, p1, p-fim. Qual o resultado de saída da linha p2 a ser exibido?

integer n ← 1	
р	q
p1: while (n<3)	q1: n ← n + 1
p2: write(n)	q2: n ← n + 1

_	
	2
V.	

Analisando o algoritmo concorrente a seguir, composto por instruções atômicas, * e considerando um cenário composto pela seguinte ordem de execução das instruções: q1, q2, p1, p-fim, q-fim. Qual o resultado de saída da linha p2 a ser exibido?

integer n ← 1	
р	q
p1: while (n<3)	q1: n ← n + 1
p2: write(n)	q2: n ← n + 1

- \bigcirc 2
- 1,3
- nada é exibido
- N.D.A.

Analisando o algoritmo concorrente a seguir, composto por instruções atômicas, * e considerando um cenário composto pela seguinte ordem de execução das instruções: q1, p1, p2, q2, p1, q-fim, p-fim. Qual o resultado de saída da linha p2 a ser exibido?

integer n ← 1	
р	q
p1: while (n<3)	q1: n ← n + 1
p2: write(n)	q2: n ← n + 1

- 2
- 1,3
- nada é exibido
- N.D.A.

Analisando o algoritmo concorrente a seguir, composto por instruções atômicas, * e considerando um cenário composto pela seguinte ordem de execução das instruções: p1, p2, p1, q1, q2 q-fim, p2, p1, p-fim. Qual o resultado de saída da linha p2 a ser exibido?

integer n ← 1	
р	q
p1: while (n<3)	q1: n ← n + 1
p2: write(n)	q2: n ← n + 1

- \bigcirc .
- \bigcirc 2
- 1,3
- nada é exibido
- N.D.A.

Considerando o código abaixo, onde as instruções são atômicas, indique qual o valor final da variável global "v" ao final da execução (considerando que as duas threads finalizaram), para a seguinte sequencia de execuções: t1, t-fim, u1, u2, u-fim.

integer v ← 0	
t	u
t1: v ← 1	u1: int i ← v
	u2: v ← i * 2

- V=1
- v=2
- v=0
- N.D.A.

Considerando o código abaixo, onde as instruções são atômicas, indique qual o valor final da variável global "v" ao final da execução (considerando que as duas threads finalizaram), para a seguinte sequencia de execuções: u1, u2, u-fim, t1, t-fim.

integer v ← 0	
t	u
t1: v ← 1	u1: int i ← v
	u2: v ← i * 2

=1

	-)	V-2
Λ.		v – z

Considerando o código abaixo, onde as instruções são atômicas, indique qual o valor final da variável global "v" ao final da execução (considerando que as duas threads finalizaram), para a seguinte sequencia de execuções: u1, t1, t-fim, u2, u-fim.

integer v ← 0		
t	u	
t1: v ← 1	u1: int i ← v	
	u2: v ← i * 2	

\bigcirc	ν= 1
\bigcirc	V=

Considerando o código abaixo, onde as instruções são atômicas, indique qual o valor final da variável global "v" ao final da execução (considerando que as duas threads finalizaram), para a seguinte sequencia de execuções: t1, u1, t-fim, u2, u-fim.

integer v ← 0	
t	u
t1: v ← 1	u1: int i ← v
	u2: v ← i * 2

v=1
v —

	v=2
(-)	

A respeito do algoritmo de Dekker, marque as alternativas corretas *

- pode causar "Deadlock"
- Enquanto um processo está esperando para entrar na seção crítica, está consumindo CPU
- pode causar "Starvation"
- É aplicável originalmente a apenas 2 processos

Quando um processo/thread apto a executar fica em espera indefinidamente, diz- * se que:
Ocorre um "Deadlock"
O Houve falha de proteção a uma seção crítica
Ocorre um "Starvation"
○ N.D.A.

Este formulário foi criado em Universidade Federal de Sao Paulo.

Google Formulários

·