

Discrete Applied Mathematics 60 (1995) 285-291

DISCRETE APPLIED MATHEMATICS

A note on biased and non-biased gamesth

Xiaoyun Lu1

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Received 12 June 1991; revised 24 February 1993

Abstract

In this paper, we consider two spanning tree games played on the complete graph of order n. We also consider the connection between biased games and non-biased games.

1. Introduction

Let X be a finite set and $\mathscr{H} = \{A_1, A_2, \dots, A_m\}$ be a family of subsets of X. We say that the pair (\mathscr{H}, X) is a hypergraph. Each $A \in \mathscr{H}$ is called an edge of \mathscr{H} , and X is the vertex set of \mathscr{H} . We assume that $X = \bigcup_{i=1}^m A_i$.

Given such X and \mathcal{H} as above, we can define several games on X as follows:

- (1) [r, s; t]-game: Two players, maker and breaker, alternately take previously untaken vertices of X, with the breaker going first, such that the breaker takes r vertices per move and the maker takes s vertices per move. The game continues until all the vertices of X have been taken. If the breaker (or maker) is the last player and the remaining vertices in X are fewer than r (or s), then he takes all of them. The maker's goal is to take a subset of X containing at least t pairwise disjoint edges of \mathcal{H} . The player who achieves his goal is the winner. If the maker from achieving his goal. The player who achieves his goal is the winner. If the maker has a winning strategy for the [r, s; t]-game, then we say that \mathcal{H} is [r, s; t]-achievable, or \mathcal{H} is [r, s; t], for short.
- (2) [r, s; t]-avoidance game: This is a counterpart of the [r, s; t]-game. Two players, antimaker and antibreaker, alternately take previously untaken vertices of X, with the antibreaker going first, such that the antibreaker takes r vertices per move and the antimaker takes s vertices per move. The game continues until all the vertices of X have been taken. If the antibreaker (or antimaker) is the last player and the

This work forms part of the author's thesis, under the direction of Professor Jeff Kahn.

¹ Present address: Department of Mathematics, University of Illinois at Urbana-Champaign, IL 61801, USA.

remaining vertices in X are fewer than r (or s), then he takes all of them. The antimaker's goal here is to avoid achieving a subset of X containing t pairwise disjoint e 'ges of \mathcal{H} and the antibreaker's goal is to force the antimaker to achieve such a subset. If the antibreaker has a winning strategy for the [r, s; t]-avoidance game, then we say that \mathcal{H} is [r, s; t]-unavoidable.

Remark 1. Of course, the [r, s; t] and [r, s; t]-avoidance games on \mathcal{H} are equivalent to the corresponding [r, s; 1]-games on the hypergraph (\mathcal{H}', X) , whose edges are all unions of t pairwise disjoint edges of \mathcal{H} . Nonetheless, we consider the present usage is more natural.

Remark 2. It is easy to see (as in the "strategy-stealing" argument) that if \mathcal{H} is [r, s, t]-achievable, then the maker also wins if we modify the rules to allow the maker to take at most r but not 0 vertices per move, and the breaker at most s but not 0 vertices per move.

(3) $[r, s; \varepsilon, \mathcal{H}]$ -game: Given $\frac{1}{2} > \varepsilon > 0$, two players, I and II, alternately take previously untaken vertices of X, with I playing first such that he takes r vertices per move and II takes s vertices per move. The game continues until all the vertices of X have been taken. If I (or II) is the last player and the remaining vertices in X are fewer than r (or s), then he takes all of them. We say I wins the game if there exists an $A \in \mathcal{H}$ such that I has taken at least $(1 - \varepsilon)|A|$ vertices of A. Otherwise, he is the loser. (Note that here the "maker" is player I.) If r = s = 1, then we just write $[\varepsilon, \mathcal{H}]$, for short.

(4) $[r, s; \varepsilon, \mathcal{M}]$ -avoidance game: This is the counterpart of (3). In this game, I again plays first and his goal is to take fewer than $(1 - \varepsilon)|A|$ vertices A for each $A \in \mathcal{M}$. Once again, we call this $[\varepsilon, \mathcal{M}]$ -avoidance game if r = s = 1.

In the [r, s; t]-game, if r = s, the game is called an *unbiased* game, otherwise, it is called *biased*. The concept of biased games was introduced by Chvátal and Erdős [6].

Two general problems of interest are:

- (1) For a given \mathcal{H} , find (estimate) the maximum t for which \mathcal{H} is [1, 1; t].
- (2) For a given \mathcal{H} , find (estimate) the maximum r for which \mathcal{H} is [r, 1; 1].

One can also raise similar problems for the avoidance games. We shall consider a special case of problem (1) in Section 2, and here we give an answer to the following problem.

(3) Find the maximum value f(r) such that if \mathcal{H} is [r, 1; 1], then \mathcal{H} is [1, 1; f(r)].

Theorem 1. $f(r) = \lceil r/2 \rceil$, where $\lceil x \rceil$ denotes the least integer not less than x.

Proof. We prove $f(r) \ge \lceil r/2 \rceil$ first. In other words, we shall prove the following statement: if \mathscr{H} is $\lceil r, 1; 1 \rceil$, then it is $\lceil 1, 1; \lceil r/2 \rceil \rceil$.

By Remark 2 above, we only need to consider the case r = 2k - 1 for some positive integer k; that is, we must show that if \mathcal{H} is [2k - 1, 1; 1], then it is also [1, 1; k].

We now consider the [1,1;k]-game, and denote the maker's [k(i-1)+1]th through (ki)th moves by $y_i^{(1)}, \ldots, y_i^{(k)}$, the breaker's moves are denoted simply by x_1, x_2, \ldots

The maker's strategy is just this: for the move $y_i^{(j)}$ he pretends (again using Remark 2) that he is playing the "modified" [2k-1,1;1] game G_j in which his opponent may take 2k-1 or fewer but not 0 vertices per move.

He regards his opponent's previous moves in this imagined game as being $x_1, ..., x_{(i-1)k+j}, y_1^{(i)}, ..., y_1^{(j-1)}, y_1^{(j+1)}, ..., y_1^{(j)}, ..., y_1^{(j)}, ..., y_1^{(j)}, ..., y_2^{(j-1)}, y_2^{(j+1)}, ..., y_2^{(j)}, ..., y_1^{(j)}, ..., y_1^{(j)}$, while his own are $y_1^{(i)}, y_2^{(i)}, ..., y_{i-1}^{(j)}$, and he chooses his if th move in g_j , which is $y_i^{(j)}$ in the real [1, 1; k]-game, accordingly. Thus $y_1^{(j)}, y_2^{(j)}, ...$, is a sequence of moves chosen according to a winning strategy for the maker in some [2k-1, 1; 1]-game G_i on \mathscr{H} , and so $\{y_1^{(i)}, y_2^{(j)}, ...\}$ contains an edge of \mathscr{H} .

On the other hand, we give an example to show that $f(r) = \lceil r/2 \rceil$. Let \mathscr{H} be the family of r+1 singletons. Then \mathscr{H} is [r,1;1]. For this \mathscr{H} , it is easy to see that $f(r) = \lceil r/2 \rceil$. \square

Remark 3. If we instead defined [r, s; t]-games to have the maker going first, then the quantity corresponding to f(r) would be 1 for all r, as is easily seen by taking \mathcal{H} to consist of all sets containing some fixed element of X.

The following theorem is very useful, although we do not need it in this paper.

Theorem 2 [4]. If $\frac{1}{2} > \varepsilon > 0$ and

$$\sum_{A \in \mathcal{X}} (2(1-\varepsilon)^{1-\varepsilon} \varepsilon^{\varepsilon})^{-|A|} < \frac{1}{2(1-\varepsilon)},$$

then II has a winning strategy for the $\lceil \varepsilon, \mathcal{H} \rceil$ -game.

For the $[\varepsilon, \mathcal{H}]$ -avoidance game, we have a similar result.

Theorem 3 (Lu [9, 10]). If $\frac{1}{2} > \varepsilon > 0$, |X| is even, and

$$\sum_{A \in \mathcal{X}} (2(1-\varepsilon)^{1-\varepsilon} \varepsilon^{\varepsilon})^{-|A|} < 1,$$

then I has a winning strategy for the $[\varepsilon, \mathcal{K}]$ -avoidance game.

2. Spanning tree games

We discuss two spanning tree games played on K_n , the complete graph of order n. For undefined graph terminology, see, for example, [5]. For more games of this type, see [1-4, 6.9-11].

Let $\mathscr{F} = \{F_1, F_2, \dots\}$ be a family of graphs, and G be a graph of order n. Let \mathscr{F}_G be the family of all those subgraphs G^* of G such that G^* is isomorphic to some $F \in \mathscr{F}$. Let X = E(G) be our game board. A winning set is an edge set $A \subseteq E$ such that $G(A) \in \mathscr{F}_G$, where G(A) is the subgraph of G induced by A. If we let $\mathscr{H}(G,\mathscr{F})$ be the family of all such winning sets A, then we have the corresponding [r,s;t]-achievement game and [r,s;t]-avoidance game. We say \mathscr{F} is [r,s;t] on G if $\mathscr{H}(G,\mathscr{F})$ is [r,s;t]. Similarly, we say that \mathscr{F} is [r,s;t]-unavoidable on G if $\mathscr{H}(G,\mathscr{F})$ is.

Let $V = V(K_n)$ be the vertex set of K_n , and \mathcal{F}_n be the set of all spanning trees of K_n . For $A \subseteq V$, let $\overline{A} = V - A$, and $[A, \overline{A}] = \{xy | x \in A, y \in \overline{A}\}$.

2.1. The achievement game

Theorem 4. \mathcal{F}_n is $[1,1; \lceil n/4 \rceil]$ on K_n .

To prove Theorem 4, we need the following two well-known results. The first one is due to Lovász [8].

Theorem 5. A graph of order n can be covered by $\lceil n/2 \rceil$ edge-disjoint paths and cycles.

Corollary 1. K_{2k} can be covered by k edge-disjoint Hamiltonian paths and K_{2k+1} by k Hamilton cycles.

Corollary 2. K_n has $\lceil n/2 \rceil$ edge-disjoint Hamiltonian paths.

The next result is due to Lehman [7]. Let G = (V, E) be a multigraph, \mathcal{F}_G be the set of all spanning trees of G. Lehman proved the following theorem.

Theorem 6. \mathcal{F}_G is [1, 1; 1] if and only if G has two edge-disjoint spanning trees.

Proof of Theorem 4. By Corollary 2, $K_n \text{ has } \lceil n/2 \rceil$ edge-disjoint Hamiltonian paths, which are, in particular, spanning trees of K_n . Let $P_1, P_2, \ldots, P_{\{n/2\}}$ be such a family of [n/2] paths. Let $G_i = P_{2i-1} \cup P_{2i}$ for $i = 1, 2, \ldots, [n/4]$. Then by Theorem 6, each \mathcal{F}_{G_i} is [1, 1; 1] since G_i has two edge-disjoint spanning trees. In other words, the maker can obtain a spanning tree on each G_i , thus [n/4] edge-disjoint spanning trees in total. Therefore, the maker can use the following explicit winning strategy. Before the game, he finds [n/4] edge-disjoint subgraphs $G_1, \ldots, G_{\{n/4\}}$. Now, the original game is divided into [n/4] sub-games. In each sub-game, he has a winning strategy as in [7], and he may continue these as above to win the full game. Thus \mathcal{F}_n is [1, 1; [n/4]]. \square

This result is the best possible since it is impossible to obtain $\lfloor n/4 \rfloor + 1$ edge-disjoint spanning trees, and it is the first nontrivial hypergraph for which we know the exact maximum t for which the hypergraph is $\lfloor 1, 1; t \rfloor$.

2.2. The avoidance game

In this subsection, we consider the avoidance game for the spanning tree problem. We are going to show the following result.

Theorem 7. Given any $1 > \eta > 0$, there exists an $N = N(\eta)$, such that if $n \ge N$, then \mathcal{F}_n is $[1,1:[\frac{1}{4}(1-\eta)n]]$ -unavoidable on K_n .

To prove this theorem, we need a result from graph theory.

Let G = (V, E) be a multigraph and let P be a partition of V into p nonempty subsets V_1, \ldots, V_p . Let e(G) = |E| for any graph G. Put |P| = p and denote by $G \mid P$ the multigraph of order p obtained from G by contracting each V_i into a vertex v_i . (We delete all those edges with both ends in V_i for each i and keep all other edges. Thus $G \mid P$ is loopless.) We use t_i to denote $|V_i|$. If G contains k edge-disjoint spanning trees, then clearly

$$e(G|P) \ge k(p-1) = k(|P|-1).$$

Tutte and Nash-Williams proved the converse is also true.

Theorem 8 (Nash-Williams [12] and Tutte [13]). Let G be a loopless multigraph such that $e(G|P) \ge k(|P|-1)$ for every partition P of V. Then G contains k edge-disjoint spanning trees.

Let
$$V = V(K_n)$$
 and $\mathscr{H} = \{ \lceil A, \overline{A} \rceil \mid 0 \neq A \subset V \}.$

Lemma 1. Given $\frac{1}{2} > \varepsilon > 0$, there exists an $N = N(\varepsilon)$ such that, if $n \ge N$, then I has a winning strategy for the $\lceil \varepsilon, \mathcal{H} \rceil$ -avoidance game.

Proof. By Theorem 3, we only need to show that

$$I_n = \sum_{k=1}^{n-1} \binom{n}{k} c^{-k(n-k)} \to 0,$$

where

$$c = 2(1-\varepsilon)^{(1-\varepsilon)}\varepsilon^{\varepsilon} > 1.$$

and this can be verified quite easily.

Remark 4. In the proof of Lemma 1, we have not mentioned the parity of $|X| = \binom{n}{2}$. It is easy to see that this does not invalidate the proof since $I_n \to 0$. For a detailed remark, see [11, Remark 9, p. 42].

Proof of Theorem 7. Let $\varepsilon = \frac{1}{2}(1 - \eta)$. We assume $n \ge N$, where N is defined in Lemma 1. By Lemma 1, the antibreaker as the first player has a winning strategy for the $[\cdot, \mathcal{H}]$ -avoidance game. We claim that this is also a winning strategy for the $[1,1;[\varepsilon/2)n]$ -avoidance game for \mathcal{F}_n . Let $V_1 \cup \cdots \cup V_k = V$ be a partition P of $V = V(K_n)$. We want to show that (M is the antimaker's final graph, the subgraph of K_n induced by all edges taken by the antimaker)

$$e(M \mid P) \geqslant \left\lceil \frac{\varepsilon}{2} (k-1)n \right\rceil.$$

We may assume that $k \ge 2$. In the graph $M \mid P$, we have $d(v_i) \ge \varepsilon t_i (n - t_i)$, by Lemma 1, where $d(v_i)$ denotes the degree of v_i in $M \mid P$. So

$$e(M \mid P) = \frac{1}{2} \sum_{i=1}^{k} d(v_i)$$

$$\geqslant \frac{\varepsilon}{2} \sum_{i=1}^{k} t_i (n - t_i)$$

$$= \frac{\varepsilon}{2} \left(n^2 - \sum_{i=1}^{k} t_i^2 \right).$$

If k is fixed, let $f(t_1, ..., t_k) = n^2 - \sum_{i=1}^k t_i^2$. Subject to $\sum_{i=1}^k t_i = n$, then

$$f(t_1,...,t_k) \ge f(1,...,1,n-k+1)$$

= $(k-1)(2n-k)$,

and hence

$$e(M \mid P) \geqslant \frac{\varepsilon}{2}(k-1)(2n-k)$$
$$\geqslant \frac{\varepsilon}{2}(k-1)n$$
$$= \frac{1}{4}(1-\eta)(k-1)n.$$

By Theorem 8, M has at least $[(\epsilon/2)n] = [\frac{1}{4}(1-\eta)n]$ edge-disjoint spanning trees. Thus we proved that \mathcal{F}_n is $[1,1; [\frac{1}{4}(1-\eta)n]]$ -unavoidable. \square

Acknowledgements

The author is very grateful to Professor J. Kahn and Professor J. Beck for their help, and to the referees for their comments.

References

- [1] J. Beck, Van Der Waerden and Ramsey type games, Combinatorica 1 (1981) 103-116.
- [2] J. Beck, Remarks on positional games, Acta Math. Acad. Sci. Hungar. 40 (1982) 65-71.
- [3] J. Beck, Random graphs and positional games on the complete graph, Ann. Discrete Math. 28 (1983) 7-14.
- [4] J. Beck and L. Csirmaz, Variations on a game, J. Combin. Theory Ser. A 33 (1982) 297-315.
- [5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
- [6] V. Chvátal and P. Erdős, Biased positional games, Ann. Discrete Math. 2 (1978) 221-229.
- [7] A. Lehman, A solution of the Shannon switching game, J. Soc. Indist. Math. 12 (1964) 687-725.
- [8] L. Lovász, On covering of graphs, in: Theory of Graphs (Academic Press, New York, 1968) 231-236.
- [9] X. Lu, A matching game, Discrete Math. 94 (1991) 199-207.
- [10] X. Lu, Hamiltonian games, J. Combin. Theory Ser B 55 (1992) 18-32.
- [11] X. Lu, Hamilton cycles and games on graphs, Thesis (1992); Dimacs Technical Report 36 (1992).
- [12] C.St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
- [13] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221–230.