Problem E. Binary Exponentiation

• 2023.10.23 00:30 Update: Fixed typo in Sample Input description.

Problem Description

Given four integers x, y, k, and p, please calculate $\left\lfloor \frac{x^y}{k} \right\rfloor \mod p$.

There are t testcases.

Input Format

- line 1: t
- line 2 + i ($0 \le i \le t 1$): $x \ y \ k \ p$

Output Format

ullet line 1+i ($0\leq i\leq t-1$): the answer for the $i^{
m th}$ testcase.

Constraints

- $1 \le t \le 100000$.
- $1 \le x, y, k, p \le 10^9$.
- All the inputs are integers.

Subtasks

- 1. (10 points) k = 1; $y \le 100$.
- 2. (65 points) k = 1.
- 3. (10 points) k = 2.
- 4. (5 points) $y \le 100$.
- 5. (10 points) No additional constraints.

No.	Testdata Range	Time Limit (ms)	Memory Limit (KiB)
Samples	1	1000	262144
1	2	1000	262144
2	2-3	1000	262144
3	4	1000	262144
4	2,5	1000	262144
5	1-6	1000	262144

Samples

Sample Input 1

```
7
2 20 1 998244353
987654321 100 1 1000000000
998244352 100 1 998244353
1000000000 1 1 100
314159265 358979323 1 846264338
314159265 358979323 2 846264338
314159265 358979323 846264338
```

This sample input satisfies the constraints of **Subtask 5**.

Sample Output 1

```
1048576

409912001

1

0

604903687

725584012

36855733
```

- ullet In the 1^{st} testcase: $2^{20} \bmod 998\, 244\, 353 = 1\, 048\, 576$.
- \bullet In the $3^{
 m rd}$ testcase: $998\,244\,352^{100}$ mod $998\,244\,353=(-1)^{100}$ mod $998\,244\,353=1$.
- \bullet In the $4^{\rm th}$ testcase: $1\,000\,000\,000^1\ mod\ 100=0$.