Recap of what we're done

- 0) ML flow
- 1) Linear regression (Regression)
- 2) Maire Bayes (Classification)

Difference > Regression vs Classification] Supervised Learning

Student make me DB, Sabra

Student make me DB work at microsoft?

2 8000

1 800 100 k

100 k

100 1 81 79 51 ?

Trees Decision

Rain

DIS

- Can be used for classification AND regression But mainly famous because of classification.

2					7
Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

HoT

Weak

Entropy, Information Gain, Gini Coefficient

MIN

Entropy. - 2 P(x) log2 P(x) D(Monied) In college A HULCHVeres,

Measuring the amount

of surprise

p (monied)

Information Praise IG

Thousand IG

Thousand IG

Thousand The (Y/X)

The (X, Y) = H(Y) -H(Y/X)

Aprilocinens

6. We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. (For this problem, you can write your answers using log_2 , but it may be helpful to note that $log_3 \approx 1.6$.)

	GPA	Studied	Passed
1	L	F	F
ź	L	T	Tr)
3	M	F	F
	M	Т	T
45	Н	F	T
کر	Н	Т	T

6. We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. (For this problem, you can write your answers using \log_2 , but it may be helpful to note that $log_3 \approx 1.6$.)

4	1/2	\mathcal{G}
GPA	Studied	Passed
L	(E)	E /
L	Ī.	T
$\widetilde{\mathrm{M}}$	F	F
M	Т	T
Н	F	T
H	T	T

H (Pass) = 0.92

Two frostures

6. We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. (For this problem, you can write your answers using \log_2 , but it may be

	,			, ,
Feature -	elpful to	note that l	og ₂ 3≈1.6	Ounsut
	GPA	Studied	Passed	
	L	F	F	
	L	T	T	
	M	F	F	
	M	T	T	
	Н	F	T	
	Н	T	T	

6 817

Studied

Org max IG (Pass, Features:)

because it has the highest information

6. We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. (For this problem, you can write your answers using log_2 , but it may be

he know this already

			^	~~	Ţ
	(GPA	Studied	Passed	
1		L	F	F	
2	Ţ,	Ŀ	T	_ T]	
3		M	F	F	\uparrow
376		M	T	T	
5	l '	H	F	T	X
j		H	T	T	∖ل

P (GPA: M) - 2/6

helpful to note that $log_2 3 \approx 1.6.$)

A:L P(Pass=T|GPA=L)=1/2

MPR:H P(Pass=T|GPA=M)=1/2

MPR:H P(Pass=T|GPA=H)=1

Pass = FALSE (Fair) P(Pass = F | GPA = L) = 1/2 P(Pass = F | GPA = M) = 1/2 P(Pass = F | GPA = M) = 1/2

H(Pessigia) = - EPGAPA) = P(Pessigia) 6. We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or

helpful to note that $log_{..}3 \approx 1.6$.)

	-	
GPA	Studied	Passed
L	F	F
/ L	T	T
M	F	F
M	T	Т
Н	F	T
Н	T	T

We will use the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied. (For this problem, you can write your answers using
$$log_2$$
, but it may be helpful to note that $log_2 3 \approx 1.6$.)

$$\frac{GPA | Studied | Passed}{L | F | F} | F |$$

$$L | T | T |$$

$$M | F | F |$$

$$M | T | T |$$

$$H | F | T |$$

$$H | F | T |$$

$$H | T | T |$$

$$H$$

Decision Trees

IG (Pass, Age 746)

- 6 Honder of samples for each atyony
- * Information goth of each category

Problems with DT

1) Overfitting

2) overcome by 2 memods

a) Pre-Pruning

b) Post-Pring

Classification

Regression

https://medium.datadriveninvestor.com/decision-tree-algorithm-with-hands-on-example-e6c2afb40d38

https://www.kaggle.com/code/prashant111/decision-tree-classifier-tutorial#14.-Decision-Tree-Classifier-with-criterion-entropy-

Ensemble Learning -> The foundation of Rondom Forest

DT + SUM + NB

Why ensemble learning?

RF: DT+DT+ DT....

Example: 3 classifiers, each is correct with 60% accuracy

- Ensemble: combination of this 3 -> take the majority vote
- What is the accuracy of this ensemble?
- Answer: 3 votes ensemble is wrong if there are at least 2 wrong predictions
- Case 1: Exactly 2 wrong predictions: 3*0.4*0.4*0.6 = 0.288
- Case 2: All 3 are wrong: 0.4³ = 0.064
- Total: 0.352 ->ensemble is correct with 64.8% accuracy
- Another example: 1000 classifiers with 51% accuracy each -> 75% accuracy

Law of the large numbers

Ensemble learning

Common practices

Classifiers should be independent:

DTA is not dependent on DTB

- Correlated classifiers don't work well together (why?)
 - E.g., 2 classifiers: both make mistakes at the same data points
 - Their combination will not be better at all
- Ensemble (completely) different classifiers المعادية ا

SUM + KB + BT V SUM + JUN + NB X

- Vary the training data (bagging and pasting)
- Vary the feature sets (random patches & random subspaces)

Bagging and pasting

Kardom

Randomly sample a subset of training data to train each classifier

Sagging (= bootstrap aggregating): choose with replacement (can sample) same data point for the same classifier multiple times)

Pasting: choose without replacement (cannot sample the same data point

