Optimization Methods (CS1.404), Spring 2024 Lecture 22

Naresh Manwani

Machine Learning Lab, IIIT-H

April 18th, 2024

Orthogonal Projection

Projection Theorem

Let C be a closed convex set and $\mathbf{x} \in \mathbb{R}^n$. Let $P_C(\mathbf{x})$ denote the orthogonal projection of \mathbf{x} on the set C. Then $\mathbf{z} = P_C(\mathbf{x})$ if an only if $\mathbf{z} \in C$ and

$$(\mathbf{x} - \mathbf{z})^{\top}(\mathbf{y} - \mathbf{z}) \leq 0$$

for any $\mathbf{y} \in C$.

• Geometrically, it states that for a given closed and convex set C, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$, the angle between $\mathbf{x} - P_C(\mathbf{x})$ and $\mathbf{y} - P_C(\mathbf{x})$ is greater than or equal to 90 degrees.

Properties of Orthogonal Projection Operator

Theorem

Let C be a nonempty and closed convex set. Then

• For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^{\top}(\mathbf{v} - \mathbf{w}) \ge \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2$$

• Nonexpansiveness: For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$

$$||P_C(\mathbf{v}) - P_C(\mathbf{w})|| \le ||\mathbf{v} - \mathbf{w})||$$

Representation of Stationarity Using Orthogonal Projection Operator

Theorem

Let f be a continuously differentiable function over a closed and convex set $C \subseteq \mathbb{R}^n$. Let s > 0. Then $\mathbf{x}^* \in C$ is a stationary point of

(P) min
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in C$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

Note that above condition seems to depend on s, but by its equivalence to stationarity, it is essentially independent of s.

The Gradient Projection Method

• The stationarity condition $\mathbf{x}^* = P_{\mathcal{C}}(\mathbf{x}^* - s\nabla f(\mathbf{x}^*))$ motivates to solve the optimization problem

(P) min
$$f(\mathbf{x})$$

 $s.t. \mathbf{x} \in C$

Gradient Projection Method

Input: $\epsilon > 0$ (tolerance parameter) **Initialization:** Pick $\mathbf{x}_0 \in C$ arbitrarily

General Steps: For $k = 0, 1, 2, \ldots$ execute the following steps:

- Pick a stepsize t_k by a line search procedure.
- **③** If $\|\mathbf{x}_k \mathbf{x}_{k+1}\| \le \epsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Naresh Manwani OM April 18th, 2024 5

The Computation of Projections

- We now address the question, how does one compute the projection onto the convex set C.
- In general this is not a finite process. Nonetheless, for certain important convex sets *C* it can be done quite efficiently.

Projection onto box constraints

Let us suppose that C is given by $C := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \}$, where $\mathbf{I}, \mathbf{u} \in \mathbb{R}^n$ with $\mathbf{I} \leq \mathbf{u}$. Then P_C can be expressed component-wise as

$$P_C(\mathbf{x})_i = \begin{cases} l_i, & \text{if } x_i \leq l_i \\ x_i, & \text{if } l_i \leq x_i \leq u_i \\ u_i, & \text{if } x_i \geq u_i \end{cases}$$

Projection onto a Polyhedron

- Let C be the polyhedron given by $C := \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i^\top \mathbf{x} \leq b_i, i = 1, ..., m_1; \mathbf{p}_i^\top \mathbf{x} = q_j, j = 1, ..., m_2 \}.$
- ullet Then P_C is determined by solving the quadratic program

$$\begin{aligned} \min_{\mathbf{x}} & \|\mathbf{x} - \mathbf{y}\|^2 \\ s.t. & \mathbf{a}_i^\top \mathbf{x} \le b_i, \ i = 1, ..., m_1 \\ & \mathbf{p}_j^\top \mathbf{x} = q_j, \ j = 1, ..., m_2 \end{aligned}$$

Projection onto l_2 -ball with center $\bf 0$ and radius 1

- Let $C = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le 1 \}.$
- if $\mathbf{y} \in C$, then $P_C(\mathbf{y}) = \mathbf{y}$.
- If $\mathbf{y} \notin C$, then $\|\mathbf{y}\| > 1$. In that case, the closest point of \mathbf{y} in the set C is $\frac{\mathbf{y}}{\|\mathbf{y}\|}$ as I_2 norm of $\frac{\mathbf{y}}{\|\mathbf{y}\|}$ is 1.
- Combining the two, we get

$$P_{C}(\textbf{y}) = \begin{cases} \textbf{y}, & \text{if } \|\textbf{y}\| \leq 1 \\ \frac{\textbf{y}}{\|\textbf{y}\|}, & \text{if } \|\textbf{y}\| > 1 \end{cases} = \textbf{y} \begin{cases} \frac{1}{1}, & \text{if } \|\textbf{y}\| \leq 1 \\ \frac{1}{\|\textbf{y}\|}, & \text{if } \|\textbf{y}\| > 1 \end{cases} = \frac{\textbf{y}}{\max(1, \|\textbf{y}\|)}$$

Projection onto l_2 -ball with center $\mathbf{0}$ with radius r

- Let $C = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le r \}$.
- if $\mathbf{y} \in C$, then $P_C(\mathbf{y}) = \mathbf{y}$.
- If $\mathbf{y} \notin C$, then $\|\mathbf{y}\| > r$. In that case, the closest point of \mathbf{y} in the set C is $\frac{r\mathbf{y}}{\|\mathbf{y}\|}$ as I_2 norm of $\frac{\mathbf{y}}{\|\mathbf{y}\|}$ is r.
- Combining the two, we get

$$P_{C}(\mathbf{y}) = \begin{cases} \mathbf{y}, & \text{if } \|\mathbf{y}\| \leq r \\ \frac{r\mathbf{y}}{\|\mathbf{y}\|}, & \text{if } \|\mathbf{y}\| > r \end{cases} = r\mathbf{y} \begin{cases} \frac{1}{r}, & \text{if } \|\mathbf{y}\| \leq 1 \\ \frac{1}{\|\mathbf{y}\|}, & \text{if } \|\mathbf{y}\| > 1 \end{cases} = \frac{r\mathbf{y}}{\max(r, \|\mathbf{y}\|)}$$

Projection onto l_2 -ball with center **c** with radius 1

- Let $C = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} \mathbf{c}|| \le 1 \}.$
- Let z = y c and u = x c. Thus,

$$\arg\min_{\mathbf{x}:\|\mathbf{x}-\mathbf{c}\|\leq 1} \ \|\mathbf{y}-\mathbf{x}\|^2 = \arg\min_{\mathbf{u}:\|\mathbf{u}\|\leq 1} \ \|\mathbf{z}-\mathbf{u}\|^2 = \frac{\mathbf{z}}{\max(1,\|\mathbf{z}\|)}$$

• Using $\mathbf{y} = \mathbf{z} + \mathbf{c}$, we have $\mathbf{y}_{sol} = \mathbf{z}_{sol} + \mathbf{c}$, we have

$$\arg\min_{\mathbf{x}:\|\mathbf{x}-\mathbf{c}\|\leq 1} \ \|\mathbf{y}-\mathbf{x}\|^2 = \frac{\mathbf{z}}{\max(1,\|\mathbf{z}\|)} + \mathbf{c} = \frac{\mathbf{y}-\mathbf{c}}{\max(1,\|\mathbf{y}-\mathbf{c}\|)} + \mathbf{c}$$

Naresh Manwani OM April 18th, 2024

Projection onto l_2 -ball with center **c** with radius r

- Let $C = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} \mathbf{c}|| \le r \}.$
- Let z = y c and u = x c. Thus,

$$\arg\min_{\mathbf{x}: \|\mathbf{x} - \mathbf{c}\| \le r} \ \|\mathbf{y} - \mathbf{x}\|^2 = \arg\min_{\mathbf{u}: \|\mathbf{u}\| \le r} \ \|\mathbf{z} - \mathbf{u}\|^2 = \frac{r\mathbf{z}}{\max(r, \|\mathbf{z}\|)}$$

• Using $\mathbf{y} = \mathbf{z} + \mathbf{c}$, we have $\mathbf{y}_{sol} = \mathbf{z}_{sol} + \mathbf{c}$, we have

$$\arg\min_{\mathbf{x}:\|\mathbf{x}-\mathbf{c}\| \le r} \|\mathbf{y}-\mathbf{x}\|^2 = \frac{r\mathbf{z}}{\max(r,\|\mathbf{z}\|)} + \mathbf{c} = \frac{r(\mathbf{y}-\mathbf{c})}{\max(r,\|\mathbf{y}-\mathbf{c}\|)} + \mathbf{c}$$

Sufficient Decrease Lemma for Projected Gradient Descent

Lemma

Suppose that $f \in \mathbb{C}^{1,1}(C)$, where C is a closed convex set. Then for any $x \in C$ and $t \in (0, 2/L)$, the following inequality will hold.

$$f(\mathbf{x}) - f(P_C(\mathbf{x} - t\nabla f(\mathbf{x}))) \ge t\left(1 - \frac{Lt}{2}\right) \|\frac{1}{t}(\mathbf{x} - P_C(\mathbf{x} - t\nabla f(\mathbf{x})))\|^2.$$

• When $C = \mathbb{R}^n$, the obtained inequality is exactly the same as the one obtained for unconstrained case.

Naresh Manwani OM April 18th, 2024

Gradient Mapping

We define gradient mapping as

$$G_M(\mathbf{x}) = M\left[\mathbf{x} - P_C\left(\mathbf{x} - \frac{1}{M}\nabla f(\mathbf{x})\right)\right]$$

where M > 0.

- When $C = \mathbb{R}^n$, we see that $G_M(\mathbf{x}) = \nabla f(\mathbf{x})$. So, the gradient mapping is an extension of usual gradient operation.
- We see that $G_M(\mathbf{x}) = \mathbf{0}$ if and only $\mathbf{x} = P_C(\mathbf{x} \frac{1}{M}\nabla f(\mathbf{x}))$. This happens if and only if \mathbf{x} is a stationary point of optimization problem (P).
- Thus, we can use $||G_M(\mathbf{x})||$ as an optimality measure.
- Thus, the sufficient decrease property of projected gradient method essentially states that

$$f(\mathbf{x}) - f(P_C(\mathbf{x} - t \nabla f(\mathbf{x}))) \ge t \left(1 - \frac{Lt}{2}\right) \|G_{\frac{1}{t}}(\mathbf{x})\|^2.$$

Monotonicity Property of Norm of Gradient Mapping $G_M(\mathbf{x})$

Lemma

Let f be a continuously differentiable function defined on a nonempty closed convex set C. Suppose that $L_1 \ge L_2 > 0$. Then,

$$||G_{L_1}(\mathbf{x})|| \ge ||G_{L_2}(\mathbf{x})||$$

and

$$\frac{\|G_{L_1}(\mathbf{x})\|}{L_1} \leq \frac{\|G_{L_2}(\mathbf{x})\|}{L_2}$$

for any $\mathbf{x} \in \mathbb{R}^n$.

See Lemma 9.12 of Amir Beck's book.

Backtracking

- The procedure requires three parameters s, α, β where $s > 0, \alpha \in (0,1)$ and $\beta \in (0,1)$.
- The choice of t_k is done as follows. First, t_k is set to be equal to the initial guess s.
- Then while

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))) < t_k \|G_{\frac{1}{t_k}}(\mathbf{x}_k)\|^2.$$

we set $t_k = \beta t_k$.

• In other words, the step size is chosen as $t_k = s\beta^{i_k}$, where i_k is the smallest nonnegative integer for which the condition

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - s\beta^{i_k} \nabla f(\mathbf{x}))) \ge s\beta^{i_k} \|G_{\frac{1}{s\beta^{i_k}}}(\mathbf{x})\|^2.$$

is satisfied.

Backtracking for $f \in \mathbb{C}^{1,1}_L(C)$

• If $f \in \mathbb{C}^{1,1}_L(C)$, then for $\mathbf{x} = \mathbf{x}_k$, we can write

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t \nabla f(\mathbf{x}_k))) \ge t \left(1 - \frac{Lt}{2}\right) \|G_{\frac{1}{t}}(\mathbf{x}_k)\|^2.$$

• For any $t \leq \frac{2(1-\alpha)}{L}$, the following inequality holds.

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t\nabla f(\mathbf{x}_k))) \ge \alpha t_k \|G_{\frac{1}{t}}(\mathbf{x}_k)\|^2.$$

- This implies that the backtracking procedure ends when t_k is smaller or equal to $\frac{2(1-\alpha)}{L}$.
- ullet Note that the backtracking procedure is finite for $\mathbb{C}^{1,1}$ functions.

Lower bound on t_k in Backtracking

- We can find lower bound on t_k as follows.
- Either t_k is equal to s or the backtracking procedure is invoked, meaning that the stepsize $\frac{t_k}{\beta}$ did not satisfy the backtracking condition.
- Using the property that $t_k \leq \frac{2(1-\alpha)}{L}$, we have $\frac{t_k}{\beta} > \frac{2(1-\alpha)}{L}$. Thus, $t_k > \frac{2\beta(1-\alpha)}{L}$.
- ullet To summarize, in the backtracking procedure, the chosen stepsize t_k satisfies

$$t_k \ge \min\left(s, \frac{2\beta(1-lpha)}{L}\right).$$

