

實作估計總作業時間的網路服務

基於郵件狀態改變及其改變的時間

團隊名稱:bigdata最後希望

带隊教授:趙逢毅博士

成 員:胡芯瑜

陳博文

石振琳

鄭龍森

摘要

信件(包裏)從離開寄件人手中開始,到達收 件人手上結束,在這過程當中存在許多變數,例 如氣候、路況、送件量、路途遠近、路線規劃方 式等;但基於確切的郵件狀態變化加上狀態變化 的時間差距,雖然在巨觀上具有一定程序,但在 細節上卻存在著不確定性,藉由馬可夫鏈(英語: Markov chain)的計算推估郵件在離開寄件者手中 完成資料登錄之後,需要多少的時間能送達收件 者的手上;而在送件過程中,郵務中心也可以即 時監控運送過程的異常狀態,以縮短異常排除時 間,提高郵件運送效率。

提案動機

「XXX!掛號!掛號!」

曾幾何時,粗獷嘹亮的掛號唱名聲響遍大街小巷,而時光荏苒,曾經的掛號唱名因電鈴而不再常聽,但等待信件的心卻是不變。工業化的發展加速了人們的腳步,也壓縮了等待的心;尤以近年電商發展迅速,甚有電商喊出6小時到貨服務,而郵件呢?擁有最悠久歷史、最熟悉街頭巷尾的郵務系統,有沒有可能發展出幾點收信(包裏)的服務呢?

答案是可以的,大量的歷史資料、健全的作業流程,只要搭配一套完整的系統,讓寄件人在郵局收到信件(包裹)建檔開始,就能知道對方什麼時候可以收到;也許是愛情的思念,又或許是親情的掛念,因為郵務系統的精準送達,讓懸著的一顆心不再因為未知的等待而焦躁不安。

觀察

- 郵件追蹤查詢資料
- 各欄位的關係

轉換

• 網路模型的有向路 徑圖

發現

- 狀態和狀態之間為 隨機過程
- 郵件主要的狀態改變路徑

網路模型(network model)

定義

1.點:郵件的狀態代碼、處理局號

2. 線:狀態的改變

3. 依據狀態、郵件號碼、時間決定線的連結

狀態-狀態之間的關係(10000筆資料)

局號-狀態之間的關係(10,000筆資料)

馬可夫鏈模型

馬可夫性質:

在目前以及所有過去事件的條件下,任何未來事件發生的機率,和過去的事件是不相關的(獨立的),而僅和目前的狀態相關。

具備馬可夫性質的隨機過程則稱為馬可夫鏈。

原理:

利用歸納事件的所有狀態,統計出事件的狀態轉移的機率,表示成轉移機率矩陣來進行模擬分析,參數可隨時間具有系統性,顧客用來預測未來事件狀態的轉移或是空間擴張的趨勢。

處理環境

目前處理環境:

硬體:個人PC

作業系統:WINDOWS 10專業版

軟體:Anaconda3(64-bit)、EXCEL

程式語言: PYTHON 3

資料庫:無

分析流程

分析架構

分析報表結果

狀態變化	計數	平時時數	百分比	累計百分比
Z -> Y	75,647,648	21.20	26.00%	26.00%
Y -> I	74,231,948	6.11	25.51%	51.51%
A -> Z	61,845,982	7.88	21.25%	72.76%
Y -> H	17,046,769	5.12	5.86%	78.62%
Z -> Z	13,297,445	12.92	4.57%	83.19%
H -> Y	12,348,865	25.20	4.24%	87.44%
Z -> G	6,987,350	15.92	2.40%	89.84%
G -> I	5,335,784	60.16	1.83%	91.67%
H -> Z	4,378,472	8.19	1.50%	93.18%
Y -> G	2,363,505	20.20	0.81%	93.99%
G -> Y	1,306,300	0.83	0.45%	94.44%
T -> Z	1,283,155	3.86	0.44%	94.88%
A -> A	1,192,365	542.03	0.41%	95.29%
A -> Y	1,182,150	26.91	0.41%	95.69%
P -> Y	1,155,135	12.34	0.40%	96.09%
I -> Q	1,013,289	15.41	0.35%	96.44%
G -> T	891,498	452.02	0.31%	96.75%
Z -> P	885,811	18.32	0.30%	97.05%
Z -> I	836,587	31.69	0.29%	97.34%
X -> H	731,999	4.81	0.25%	97.59%
I -> A	627,866	478.43	0.22%	97.80%
I -> Z	530,107	287.71	0.18%	97.99%
A -> V	463,495	20.59	0.16%	98.15%

資料筆數: 381,043,734

有效筆數: 290,977,795

郵件筆數: 89,227,622

平均狀態變化:4.27

由於數據過多, 故取累計百分 比至98%。

狀態分析圖

藍色線為狀態變化取累計統計至20,橙色線為20至接近30之間的狀態,由圖可知,在20之前的狀態較為穩定(藍色線13條),而在20之後狀態變化大增(橙色線19條)。

分析結果

以目前一季的資料量(381,043,734)、郵件數量(89,227,622)、平均狀態變化量(4.27)的資料來看,平均每秒需處理49筆的郵件查詢量,而以某電商雙11時以七台伺服器處理每秒約300筆客戶查詢需求推估,服務上線之後約需一台伺服器即可處理每日郵務查詢的需求。

面臨問題

資訊不足

由於無法取得完整郵務處理局號 及其地址,原本計劃配合圖資系 統進行流程可視化的作業告停, 待取得完整資料之後,可考慮重 啟可視化作業。

後續計劃

處理環境

目前處理環境:

硬體:個人PC

作業系統:LINUX + Hadoop cluster

軟體: Anaconda3(64-bit)

程式語言: PYTHON 3

後續計劃

處理方式

重新規劃處理環境,以叢集方式處理整個 年度的資料量,甚至經由新資料的加入,重新 計算推估時間,以符合環境的變化。

而在最終結果,希望能在郵局窗口完成資料登錄之後能立即知道信件(包裹)送達的時間,並經由界面的運用,讓郵務中心及送(收)件人能查詢所需相關訊息。

後續計劃

用網頁呈現(預估郵件送達時間的網路服務)

寄件者鄰近郵局	
收件者鄰近郵局	
預估到達時間	

研究限制:

無法以寄件者地址或收件者地址為輸入欄位,是因為資料無法取得,故為研究限制