UNIT TEST PACKAGE DOCUMENTATION

PETRO KOLOSOV

ABSTRACT. This pdf file represents a documentation for Unit Tests package, which related to the math. research

Contents

1.	Installation and execution	1
2.	Unit test 1	1
3.	Unit test 2	2
4.	Unit test 3	2
5.	Unit test 4	2
6.	Unit test 5	2
7.	Unit test 6	2
8.	Unit test 7	2
9.	Unit test 8	2
10.	Unit test 9	2
11.	Unit test 10	2
12.	Unit test 11	3
13.	Unit test 12	3
14.	Unit test 13	3
15.	Unit test 14	3
16.	Unit test 15	3
17.	Unit test 16	3

1. Installation and execution

Prior the unit test execution, one has to download the package main_definitions.m from https://github.com/kolosovpetro/research_unit_tests. Installation is done by clicking File -> Install..., choose main_definitions.m by installing from source. Then recall the package main_definitions.m in Mathematica notebook using the commands

Needs["MainDefinitions'"]
Needs["UnitTests'"]

2. Unit test 1

Verifies an identity

$$\mathbf{P}_{a,b}^{m}(n) = \mathbf{P}_{b}^{m}(n) - \mathbf{P}_{a}^{m}(n)$$

3. Unit test 2

Verifies an identity

$$\mathbf{P}_{a,b}^m(n) = \sum_k \mathbf{X}_k^m(a,b) (-1)^{m-k} n^k$$

4. Unit test 3

Verifies an identity

$$\mathbf{X}_k^m(a,b) = \mathbf{X}_k^m(b) - \mathbf{X}_k^m(a)$$

5. Unit test 4

Verifies an identity

$$\mathbf{X}_{t}^{m}(a,b) = (-1)^{m} \sum_{k=1}^{2m-t+1} \mathbf{H}_{m,t}(k) (b^{k} - a^{k})$$

6. Unit test 5

Verifies an identity

$$\mathbf{P}_{a,b}^{m}(n) = \sum_{k} (-1)^{2m-k} \sum_{\ell=1}^{2m-k+1} \mathbf{H}_{m,k}(\ell) (b^{\ell} - a^{\ell}) n^{k}$$

7. Unit test 6

Verifies an identity

$$\mathbf{Q}_{a,b}^r(n) = \mathbf{Q}_b^r(n) - \mathbf{Q}_a^r(n)$$

8. Unit test 7

Verifies an identity

$$(f_t^r * f_t^r)[n] = \mathbf{Q}_{t,n-t+1}^r(n), \quad n \ge 1.$$

9. Unit test 8

Verifies an identity

$$n^{2m+1} + 1 = \sum_{r>0} \mathbf{A}_{m,r} (f_0^r * f_0^r)[n], \quad n > 0, \quad n \in \mathbb{N}$$

10. Unit test 9

Verifies an identity

$$n^{2m+1} - 1 = \sum_{r \ge 0} \mathbf{A}_{m,r} (f_1^r * f_1^r)[n], \quad n > 0, \quad n \in \mathbb{N}$$

11. Unit test 10

Verifies an identity

$$\mathbf{X}_{t}^{m}(a,b) = (-1)^{m} \sum_{i=t}^{m} \mathbf{A}_{m,j} (-1)^{j} {j \choose t} (S_{2j-t}(b) - S_{2j-t}(a))$$

12. Unit test 11

Verifies an identity

$$\mathbf{P}_{a,b}^{m}(n) = \sum_{k} \sum_{j > k} (-1)^{2m+j-k} \mathbf{A}_{m,j} \binom{j}{k} (S_{2j-k}(b) - S_{2j-k}(a)) n^{k}$$

13. Unit test 12

Verifies an identity

$$\mathbf{P}_{a+b}^{m}(a+b) \equiv \sum_{k} {2m+1 \choose k} a^{2m+1-k} b^{k}$$

14. Unit test 13

Verifies an identity

$$n^{2m+1} = \mathbf{P}_n^m(n)$$

15. Unit test 14

Verifies an identity

$$n^s = n^{[s \text{ is even}]} \mathbf{P}_n^{\lfloor \frac{s-1}{2} \rfloor}(n)$$

16. Unit test 15

Verifies an identity

$$\mathbf{P}_{t,n-t+1}^{m}(n) = \sum_{r} \mathbf{A}_{m,r} \mathbf{Q}_{t,n-t+1}^{r}(n) \equiv \sum_{r} \mathbf{A}_{m,r} (f_{t}^{r} * f_{t}^{r})[n], \quad n \ge 1.$$

17. Unit test 16

Verifies an identity

$$\mathbf{P}_n^m(n) - \mathbf{P}_{1,n+1}^m(n) = 1$$