

Sistemas Embarcados

Linux Kernel Inicialização do Sistema I/Os

- Arquitetura Genérica de um Sistema Embarcado com Linux
 - Normalmente com suporte para CPUs de 32-bits com MMU (Memory Management Unit)
 - RAM suficiente.
 - I/O (Entradas e Saídas) suficientes para o uso. Para desenvolvimento no *target*, devem pelo menos oferecer suporte para *Debug* ou verificação de problemas em produção.
 - O kernel deve ser capaz de dar boot através de um sistemas de arquivos (root) ou através de rede.

Kernel

- Deve gerenciar o hardware (baixo nível) e prover abstrações de alto nível para programas em modo usuário.
 - Dispositivos
 - Acesso de I/O (Entradas/Saídas)
 - Controle de processos (Escalonamento)
 - Compartilhamento de Memória
 - Sinais
 - etc.

Kernel

 Através da abstração do kernel é que é possível que aplicações possam rodar em plataformas com hardware diferente desde que se use o mesmo kernel.

- Interfaces de baixo-nível (Low-Level interfaces)
 - Específicas para cada configuração de hardware
 - Tem controle direto do hardware
 - Provém APIs independentes de hardware para as próximas camadas (registers, paging, etc) - Ex: controle de registradores e paginação de memória funcionam diferente no x86 e ARM.
 - Operações específicas de CPU e memória
 - Interfaces básicas para os dispositivos (devices)

- Componentes de Alto-nível (High-level components)
 - Processos
 - Arquivos
 - Sockets
 - Sinais

Dado que as APIs de baixo-nível são comuns entre diferentes arquiteturas, o código desta camada é praticamente constante independente da arquitetura.

Sistema de Arquivos

- Provê uma abstração lógica para a organização física de arquivos e diretórios
- Dispositivos de armazenamento:
 Discos, Memória Flash
- Exemplos de Sistemas de arquivos: FAT16, FAT32, NTFS, EXT3, EXT4, HFS ExFAT, ZFS.

- Protocolos de Rede
 - TCP/IP (IPv4 e IPv6)
 - IPX/SPX (LAN)
 - AppleTalk
 - WAN Networking
 - ISDN (Modem)
 - PPP (Point-to-Point-Protocol)
 - SLIP (Serial Line IP)
 - PLIP (Parallel Line IP)

- Bibliotecas (Libraries) e Serviços do Sistema (Deamons)
 - Um nível de abstração acima do kernel para prover APIs e serviços abstratos que interagem com o Kernel e facilitam o acesso das aplicações à funcionalidades do SO.
 - GNU C Library (main Linux Library) (glibc)
 - Em sistemas embarcados é possível usar bibliotecas menores que a glibc
 - Deamons. udev (/dev)
 - Geralmente as bibliotecas são linkadas dinamicamente (não fazem parte do binário da aplicação)
 - Em sistemas embarcados a linkagem estática (static linking libraries) pode ser preferida por reduzir o uso de memória e espaço em disco.

Inicialização

Etapas

- Bootloader (pode ser feito em mais de uma estágio). Ex:
 Bootloader 1, mais primário, Bootloader 2 mais complexo.
- Kernel
- Init process

Bootloader

Inicialização

- Bootloader
 - Muito dependente do hardware
 - Configurações:
 - Armazenado em memória de estado sólido
 - Disco (geralmente necessidade de um bootloader anterior)
 - Rede (necessita de um bootloader primário com o protocolo de rede)

Layout de Memória de Sistema

- Espaço de Endereços Físicos
- Espaço de Endereços Virtuais do Kernel

Layout de Memória de Sistema

Figure 2-6. Physical and virtual memory maps for the Compaq iPAQ

- PCI/PCI-X/PCIe
 - Padrão interno no PC

- ExpressCard (antigos cartões PCMCIA)
 - Extensão

- PC/104, PC/104-Plus, PCI-104, and PCI/104-Express
 - Computadores embarcados empilháveis.
 - Tolerâncias mecânicas
 e elétricas (mais robusto)

- SCSI/iSCSI Small Computer Systems Interface
 - High-end for NAS (pouco usado)
- USB Universal Serial Bus
 - Muito usado para periféricos
 - No direct network support
 - Needs root
- IEEE1394 (FireWire)
 - No root needed
 - Supports network

- 1²C Inter-Integrated Circuit
 - 1982 (Philips)
 - Desenvolvido para minimizar o número de conexões entre CIs de um circuito.
 - Necessita de somente 2 fios
 - SCL Serial Clock Signal
 - SDA Serial Data Line
 - Half Duplex
 - Pode ser usado com múltiplos mestres (O device que inicia a transação se torna master)
 - Escravos (Slaves) são identificados pelos primeiros 7 bits da comunicação
 - As velocidades de transmissão são padronizadas em 100 kbps, 400 kbps e 3.4 Mbps

• I²C - Inter-Integrated Circuit

• I²C - Inter-Integrated Circuit

• I²C - Inter-Integrated Circuit

- SPI Serial Peripheral Protocol
 - 1979 (Motorola). Também desenvolvido para comunicação entre Cls.
 - Necessita de 4 fios:
 - SCLK clock (Comunicação Síncrona)
 - SSn Slave Select
 - MOSI (Master Out-Slave In)
 - MISO (Master In-Slave Out)
 - Full Duplex
 - Somente um Master no barramento
 - Não há limite de velocidade definida pelo padrão e também não há verificação de recebimento.

- O linux suporta uma grande diversidade de dispositivos de entrada e saída
- The Linux Documentation Project (http://www.tldp.org/index.html)

- Serial Port
 - UART Universal Asynchronous Receiver-Transmitters
 - RS232 (Hardware interface) ±12V para distâncias maiores
 - /dev/ttyS0 a /dev/ttyS191

Serial Port

UART with 8 Databits, 1 Stopbit and no Parity

- Parallel Port
 - Multibit I/O (GPIO)
- Modem (Serial Ports)

- Data acquisition (DAQ)
 - Transdutores
- Teclado (Input to Terminal)
- Mouse (/dev/input)
- Display
 - Não há suporte nativo do kernel além do terminal
 - O desenho de interfaces é feito em modo usuário
- Som (somente em aplicação, não no kernel)
- Impressoras, Câmeras, etc. (Modo usuário)

Bibligrafia

 Karim Yaghmour, et. al; "Building Embedded Linux Systems" Publisher: O'Reilly, 2008