Variables

- 1. Años
- 2. Sexo
- 3. Tipo de dolor torácico (4 valores)
- 4. Presión arterial en reposo
- 5. Colesterol sérico en mg/dl
- 6. Azúcar en sangre en ayunas > 120 mg/dl
- 7. Resultados electrocardiográficos en reposo (valores 0,1,2)
- 8. Frecuencia cardíaca máxima alcanzada
- 9. Angina inducida por el ejercicio
- 10. Oldpeak = depresión del ST inducida por el ejercicio en relación con el reposo
- 11. Pendiente del segmento ST de ejercicio máximo
- 12. Número de vasos principales (0-3) coloreados por fluoroscopia
- 13. Thal: 3 = normal; 6 = defecto fijo; 7 = defecto reversible
- 14. Variable Interes

Setup

```
!pip install pyspark
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
     Collecting pyspark
       Downloading pyspark-3.4.0.tar.gz (310.8 MB)
                                                  - 310.8/310.8 MB 2.7 MB/s eta 0:00:00
       Preparing metadata (setup.py) ... done
     Requirement already satisfied: py4j==0.10.9.7 in /usr/local/lib/python3.10/dist-packages (from pyspark) (0.10.9.7)
     Building wheels for collected packages: pyspark
       Building wheel for pyspark (setup.py) ... done
       Created wheel for pyspark: filename=pyspark-3.4.0-py2.py3-none-any.whl size=311317130 sha256=1d2eb22ea7fc16a810f5ef0dde5ac5fb96cdd6be5
       Stored in directory: /root/.cache/pip/wheels/7b/1b/4b/3363a1d04368e7ff0d408e57ff57966fcdf00583774e761327
     Successfully built pyspark
     Installing collected packages: pyspark
     Successfully installed pyspark-3.4.0
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
import pyspark.sql
from pyspark.sql.functions import col, when
from pyspark.sql import functions as F
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.sql.types import *
from pyspark.ml.classification import LogisticRegression
from\ py spark. ml.\ evaluation\ import\ Binary Classification Evaluator,\ Multiclass Classification Evaluator
# sc.stop()
```

Inicializando Spark

```
conf = SparkConf().setMaster("local").setAppName("Enfermedad al Corazon")

# Inicializo el Spark Context
sc = SparkContext(conf = conf)

distFile = sc.textFile('https://raw.githubusercontent.com/Rwyld/Data-Science-Models/main/BigData/Heart%20Data.data')
#distFile.collect() # visualización de datos
```

Creando el DataFrame

```
spark = SparkSession.builder.getOrCreate()
columnas = ['Años', 'Sexo', 'TipoDolor', 'PresionArterial', 'Colesterol', 'AzucarAyuna', 'Electrocardio', 'FrecuenciaCardio', 'Angina', 'Oldp
data = distFile.map(lambda x: x.split()).toDF(columnas)
data.show()
```

++	+	+			H		+	+	+	+	+	+-
Años	Sexo	TipoDolor	PresionArterial	Colesterol	AzucarAyuna	Electrocardio	FrecuenciaCardio	Angina	Oldpeak	PendienteST	NumeroVasos	Thal \
++	+	+			h		h	+	+	+	+	+-
70.0	1.0	4.0	130.0	322.0	0.0	2.0	109.0	0.0	2.4	2.0	3.0	3.0
67.0	0.0	3.0	115.0	564.0	0.0	2.0	160.0	0.0	1.6	2.0	0.0	7.0
57.0	1.0	2.0	124.0	261.0	0.0	0.0	141.0	0.0	0.3	1.0	0.0	7.0
64.0	1.0	4.0	128.0	263.0	0.0	0.0	105.0	1.0	0.2	2.0	1.0	7.0
74.0	0.0	2.0	120.0	269.0	0.0	2.0	121.0	1.0	0.2	1.0	1.0	3.0
65.0	1.0	4.0	120.0	177.0	0.0	0.0	140.0	0.0	0.4	1.0	0.0	7.0
56.0	1.0	3.0	130.0	256.0	1.0	2.0	142.0	1.0	0.6	2.0	1.0	6.0
59.0	1.0	4.0	110.0	239.0	0.0	2.0	142.0	1.0	1.2	2.0	1.0	7.0
60.0	1.0	4.0	140.0	293.0	0.0	2.0	170.0	0.0	1.2	2.0	2.0	7.0
63.0	0.0	4.0	150.0	407.0	0.0	2.0	154.0	0.0	4.0	2.0	3.0	7.0
59.0	1.0	4.0	135.0	234.0	0.0	0.0	161.0	0.0	0.5	2.0	0.0	7.0
53.0	1.0	4.0	142.0	226.0	0.0	2.0	111.0	1.0	0.0	1.0	0.0	7.0
44.0	1.0	3.0	140.0	235.0	0.0	2.0	180.0	0.0	0.0	1.0	0.0	3.0
61.0	1.0	1.0	134.0	234.0	0.0	0.0	145.0	0.0	2.6	2.0	2.0	3.0
57.0	0.0	4.0	128.0	303.0	0.0	2.0	159.0	0.0	0.0	1.0	1.0	3.0
71.0	0.0	4.0	112.0	149.0	0.0	0.0	125.0	0.0	1.6	2.0	0.0	3.0
46.0	1.0	4.0	140.0	311.0	0.0	0.0	120.0	1.0	1.8	2.0	2.0	7.0
53.0	1.0	4.0	140.0	203.0	1.0	2.0	155.0	1.0	3.1	3.0	0.0	7.0
64.0	1.0	1.0	110.0	211.0	0.0	2.0	144.0	1.0	1.8	2.0	0.0	3.0
40.0	1.0	1.0	140.0	199.0	0.0	0.0	178.0	1.0	1.4	1.0	0.0	7.0
++	+	+					h		+	+	+	+-

only showing top 20 rows

Creando la Variable "Enfermo"

data = data.withColumn("Enfermo", when(col("Thal") > 3, 1).otherwise(0)) data.show()

nos Sexo I1	+s poDoIor Presi	lonArterial Co. +	+	carAyuna Eleci	trocardio Frecu 	enciaCardio A +-	ngina 0] +-	.dpeak Pend	11enteSI Nume	rovasos Tha
0.0 1.0	4.0	130.0	322.0	0.0	2.0	109.0	0.0	2.4	2.0	3.0 3.
7.0 0.0	3.0	115.0	564.0	0.0	2.0	160.0	0.0	1.6	2.0	0.0 7.
7.0 1.0	2.0	124.0	261.0	0.0	0.0	141.0	0.0	0.3	1.0	0.0 7.
4.0 1.0	4.0	128.0	263.0	0.0	0.0	105.0	1.0	0.2	2.0	1.0 7.
4.0 0.0	2.0	120.0	269.0	0.0	2.0	121.0	1.0	0.2	1.0	1.0 3.
5.0 1.0	4.0	120.0	177.0	0.0	0.0	140.0	0.0	0.4	1.0	0.0 7.
6.0 1.0	3.0	130.0	256.0	1.0	2.0	142.0	1.0	0.6	2.0	1.0 6.
9.0 1.0	4.0	110.0	239.0	0.0	2.0	142.0	1.0	1.2	2.0	1.0 7.
0.0 1.0	4.0	140.0	293.0	0.0	2.0	170.0	0.0	1.2	2.0	2.0 7.
3.0 0.0	4.0	150.0	407.0	0.0	2.0	154.0	0.0	4.0	2.0	3.0 7.
9.0 1.0	4.0	135.0	234.0	0.0	0.0	161.0	0.0	0.5	2.0	0.0 7.
3.0 1.0	4.0	142.0	226.0	0.0	2.0	111.0	1.0	0.0	1.0	0.0 7.
4.0 1.0	3.0	140.0	235.0	0.0	2.0	180.0	0.0	0.0	1.0	0.0 3.
1.0 1.0	1.0	134.0	234.0	0.0	0.0	145.0	0.0	2.6	2.0	2.0 3.
7.0 0.0	4.0	128.0	303.0	0.0	2.0	159.0	0.0	0.0	1.0	1.0 3.
1.0 0.0	4.0	112.0	149.0	0.0	0.0	125.0	0.0	1.6	2.0	0.0 3.
6.0 1.0	4.0	140.0	311.0	0.0	0.0	120.0	1.0	1.8	2.0	2.0 7.
3.0 1.0	4.0	140.0	203.0	1.0	2.0	155.0	1.0	3.1	3.0	0.0 7.
4.0 1.0	1.0	110.0	211.0	0.0	2.0	144.0	1.0	1.8	2.0	0.0 3.
0.0 1.0	1.0	140.0	199.0	0.0	0.0	178.0	1.0	1.4	1.0	0.0 7.

only showing top 20 rows

Preprocesando Data

```
data.printSchema()
    root
      |-- Años: string (nullable = true)
      |-- Sexo: string (nullable = true)
      |-- TipoDolor: string (nullable = true)
      -- PresionArterial: string (nullable = true)
      |-- Colesterol: string (nullable = true)
      |-- AzucarAyuna: string (nullable = true)
      -- Electrocardio: string (nullable = true)
      -- FrecuenciaCardio: string (nullable = true)
      |-- Angina: string (nullable = true)
       -- Oldpeak: string (nullable = true)
      |-- PendienteST: string (nullable = true)
      |-- NumeroVasos: string (nullable = true)
      |-- Thal: string (nullable = true)
      |-- VariableInteres: string (nullable = true)
      |-- Enfermo: integer (nullable = false)
```

Observando las variables de la data, se encontro que los datos estaban siendo reconocidos como strings y no en datos numericos, por lo tanto habia que procesarlos nuevamente con su correspondiente tipo de variable.

```
columnas = ['Años', 'Sexo', 'TipoDolor', 'PresionArterial', 'Colesterol', 'AzucarAyuna', 'Electrocardio', 'FrecuenciaCardio', 'Angina', 'Oldp
columnasTipos = [DoubleType(), DoubleType(), DoubleType(), DoubleType(), DoubleType(), DoubleType(), DoubleType(), DoubleType(), DoubleType()
for colName, colType in zip(columnas, columnasTipos):
   data = data.withColumn(colName, data[colName].cast(colType))
data = data.withColumn('VariableInteres', data['VariableInteres'].cast(DoubleType()))
data.printSchema()
    root
      |-- Años: double (nullable = true)
      |-- Sexo: double (nullable = true)
      -- TipoDolor: double (nullable = true)
      |-- PresionArterial: double (nullable = true)
      |-- Colesterol: double (nullable = true)
      -- AzucarAyuna: double (nullable = true)
      -- Electrocardio: double (nullable = true)
      -- FrecuenciaCardio: double (nullable = true)
       -- Angina: double (nullable = true)
      -- Oldpeak: double (nullable = true)
      -- PendienteST: double (nullable = true)
      -- NumeroVasos: double (nullable = true)
      |-- Thal: double (nullable = true)
      |-- VariableInteres: double (nullable = true)
      |-- Enfermo: integer (nullable = false)
```

Comprobamos que todas las variables corresponden a una variable numerica.

Assembler Data

```
#Probando sin la variable "VariableInteres", pero dio el mismo resultado
#columnas2 = ['Años', 'Sexo', 'TipoDolor', 'PresionArterial', 'Colesterol', 'AzucarAyuna', 'Electrocardio', 'FrecuenciaCardio', 'Angina', 'Ol
assembler = VectorAssembler(inputCols = columnas, outputCol='features')
output = assembler.transform(data)
modelData = output.select('features', 'Enfermo')
modelData.show()
```

+	+	+
	features	Enfermo
+	+	+
[70.0,1.0,4.	0,130	0
[67.0,0.0,3.	0,115	1
[57.0,1.0,2.	0,124	1
[64.0,1.0,4.	0,128	1
[74.0,0.0,2.	0,120	0
[65.0,1.0,4.	0,120	1
[56.0,1.0,3.	0,130	1
[59.0,1.0,4.	0,110	1
[60.0,1.0,4.	0,140	1
[63.0,0.0,4.	0,150	1
[59.0,1.0,4.	0,135	1
[53.0,1.0,4.	0,142	1
[44.0,1.0,3.	0,140	0
[61.0,1.0,1.	0,134	0
[57.0,0.0,4.	0,128	0
[71.0,0.0,4.	0,112	0
[46.0,1.0,4.	0,140	1
[53.0,1.0,4.	0,140	1
[64.0,1.0,1.	0,110	0
[40.0,1.0,1.	0,140	1
+	+	+

only showing top 20 rows

StandardScaler Data

```
scaler = StandardScaler(inputCol = 'features', outputCol= 'scaledFeatures', withMean = True, withStd= True)
scalerModel = scaler.fit(modelData)
scaledData = scalerModel.transform(modelData)
finalData = scaledData.select('scaledFeatures', 'Enfermo')
finalData.show(truncate=False)
```

scaledFeatures

[1.7089200771370505, 0.6882216640697679, 0.8693133244601348, -0.07527006652510361, 1.3996132196232811, -0.41625583610924666, 0.97984406415487, -0.4162583610924666, 0.97984406415487, -0.4162583610924666, -0.4162583610924660, -0.4162583610924660, -0.4162583610924666, -0.41625861092460, -0.41625861092460, -0.4162586100, -0.4162660, -0.4162660, -0.4162660, -0.416260, -0.416600, -0.416600, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0.416000, -0. $\lceil 0.2817705480504328, 0.6882216640697679, -1.2357503311832385, -0.41118606589333, 0.21941509719877408, -0.41625583610924666, -1.02438243070737, -1.02438243070707, -1.02438243070707, -1.02438243070707, -1.024382430707, -1.02438243070707, -1.02438243070707, -1.024382430707, -1.0243824307, -1.024382407, -1.024882407, \lfloor 2.148043009163702, -1.4476386726984776, -1.2357503311832385, -0.6351300654721477, 0.3741951788282176, -0.41625583610924666, 0.97984406415487, 0.41625683610924666, 0.97984406415487, 0.41625683610924666, 0.97984406415487, 0.41625683610924666, 0.97984406415487, 0.41625683610924666, 0.97984406415487, 0.41625683610924666, 0.97984406415487, 0.4162667, 0.97984406415487, 0.416267, 0.416257, 0.41627, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0.4167, 0$ $\lceil [0.5013320140637586, 0.6882216640697679, 0.8693133244601348, -1.1949900644191918, -0.20623012728219564, -0.41625583610924666, 0.9798440641548 \rceil$ $\begin{bmatrix} 0.6111127470704215, 0.6882216640697679, 0.8693133244601348, 0.48458993242194043, 0.8385354237165482, -0.41625583610924666, 0.979844064154877, 0.8882316436164, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406916, 0.88823166406, 0.88823166406, 0.88823166406, 0.88823166406, 0.88823166406, 0.88823166406, 0.88823166406, 0.8882316, 0.8882416, 0.8882316, 0.8882316, 0.8882316,$ $\lfloor 0.9404549460904101, -1.4476386726984776, 0.8693133244601348, 1.0444499313689843, 3.0441515869361186, -0.41625583610924666, 0.979844064154877, 0.9494949913689843, 0.94949913689843, 0.9494949913689843, 0.949499136898448, 0.949499136898448, 0.949499136898448, 0.94949913689844, 0.94949913689844, 0.94949913689844, 0.9494991368984, 0.9494991368984, 0.9494991368984, 0.9494991368984, 0.9494991368984, 0.9494991368984, 0.9494991368984, 0.94949914, 0.94949914, 0.94949914, 0.94949914, 0.94949914, 0.94949914, 0.9494914, 0.94949914, 0.94949914, 0.9494984, 0.94949984, 0.949484, 0.949484, 0.949484, 0.949484, 0.949484, 0.949484, 0.949484, 0$ [0.5013320140637586, 0.6882216640697679, 0.8693133244601348, 0.2046599329484184, -0.30296767830059784, -0.41625583610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.41625783610924666, -1.0243824307073, -0.4162578610924666, -1.0243824307073, -0.4162578610924666, -1.0243824307073, -0.4162578610924660, -1.0243824307073, -0.4162578610924660, -1.0243824307073, -0.41625786100, -0.41625786100, -0.4162578610, -0.4162578610, -0.4162578610, -0.4162578610, -0.4162578610, -0.4162578610, -0.4162578610, -0.4162578610, -0. $\begin{bmatrix} -1.145378981036185, 0.6882216640697679, -0.1832185033615519, 0.48458993242194043, -0.2836201680969174, -0.41625583610924666, 0.9798440641548 \end{bmatrix}$ $\lfloor [0.7208934800770844, 0.6882216640697679, -2.2882821590049254, 0.14867393305371399, -0.30296767830059784, -0.41625583610924666, -1.02438243076, -1.024382424076, -1.0244824076, -1.0244824076, -1.0244824076, -1.0244824076, -1.0244824076, -1.0244824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076, -1.0248824076,$ [1.8187008101437134, -1.4476386726984776, 0.8693133244601348, -1.083018064629783, -1.9475060456134354, -0.41625583610924666, -1.0243824307073][-0.15735238397621878, 0.6882216640697679, 0.8693133244601348, 0.48458993242194043, -0.9027404946146915, 2.3934710576281684, 0.97984406415487, 0.984916146915, 0.984916146915, 0.984916146916, 0.98491646916, 0.98491646916, 0.98491646916, 0.98491646916, 0.98491646916, 0.98491646916, 0.98491646916, 0.98491646916, 0.9849166, 0.9849166, 0.9849166, 0.9849166, 0.984916, 0.9849166, 0.984916, 0.9849166, 0.9849166, 0.9849166, 0.984916, 0.9849166, 0. $\lceil [-1.5845019130628364, 0.6882216640697679, -2.2882821590049254, 0.48458993242194043, -0.9801305354294133, -0.41625583610924666, -1.02438243070, -1.024382430, -1.02438240, -1.02438240, -1.02438240, -1.02438240, -1.02438240, -1.02438240, -1.0248840, -1.0248840, -1.0248840, -1.02488240, -1.0248840, -1.0248840, -1.0248840, -1.0248840$

only showing top 20 rows

Train Test Split

```
trainData , testData = finalData.randomSplit([0.5,0.5])
```

Modelamiento Regresión Logística

```
logicClass = LogisticRegression(featuresCol = 'scaledFeatures', labelCol = 'Enfermo')
model = logicClass.fit(trainData)
pred = model.transform(testData)
```

Metricas AUC y Precisión

```
evaluator = BinaryClassificationEvaluator(rawPredictionCol='prediction',labelCol = 'Enfermo')
AUC = evaluator.evaluate(pred)
print("AUC-ROC:", AUC)
accuracy = MulticlassClassificationEvaluator(labelCol="Enfermo", metricName="accuracy")
accuracy = accuracy.evaluate(pred)
print("Exactitud:", accuracy)
recall = MulticlassClassificationEvaluator(labelCol="Enfermo", metricName="recallByLabel")
recall = recall.evaluate(pred)
print("Recall:", recall)
f1 = MulticlassClassificationEvaluator(labelCol="Enfermo", metricName="f1")
f1Score = f1.evaluate(pred)
print("F1-Score:", f1Score)
     AUC-ROC: 1.0
     Exactitud: 1.0
     Recall: 1.0
     F1-Score: 1.0
```

Segun las metricas obtenidas, el obtener un "1.0" como resultado indica que el modelo tiene un rendimiento perfecto y que todas sus predicciones los esta clasificando correctamente.

```
# pred.select('Enfermo','prediction').show()
pred.show()
```

Comprobando los datos obtenidos en la prediccion con los datos de testeo, encontramos que los datos con una rawPrediction con un valor negativo los clasifica como 1 ("Enfermos") y los positivos en 0 ("Sanos").

- Corroborando Prediccion vs Enfermo

predData = pred.withColumn('correcta', F.when(F.col('Enfermo') == F.col('prediction'), True).otherwise(False))
predData.select('Enfermo', 'prediction', 'correcta').show()

+		+
Enfermo pr	ediction co	rrecta
+	+	+
0	0.0	true
0	0.0	true
1	1.0	true
0	0.0	true
0	0.0	true
1	1.0	true
0	0.0	true
1	1.0	true
0	0.0	true
1	1.0	true
0	0.0	true
0	0.0	true
0	0.0	true
1	1.0	true
+		

only showing top 20 rows

Corroboramos la prediccion realizada contra la variable Enfermo si corresponden efectivamente. Se observa en la variable 'Correcta' si ambos datos son iguales se da un True y sino es un False. En los datos que se observan todos corresponden.