

STANDARDIZED

UXO TECHNOLOGY DEMONSTRATION SITE

SCORING RECORD NO. 929

SITE LOCATION:
ABERDEEN PROVING GROUND

DEMONSTRATOR: NOVA RESEARCH, INC. 1900 ELKIN STREET, SUITE 230 ALEXANDRIA, VA 22308

TECHNOLOGY TYPE/PLATFORM: EM63 3D MKII DUAL MODE/PUSHCART

> AREAS COVERED: BLIND GRID

PREPARED BY:
U.S. ARMY ABERDEEN TEST CENTER
ABERDEEN PROVING GROUND, MD 21005-5059

JANUARY 2011

Prepared for: SERDP/ESTCP MUNITIONS MANAGEMENT ARLINGTON, VA 22203

U.S. ARMY DEVELOPMENTAL TEST COMMAND ABERDEEN PROVING GROUND, MD 21005-5055

DISTRIBUTION UNLIMITED, JANUARY 2011.

DISPOSITION INSTRUCTIONS

Destroy this document when no longer needed. Do not return to the originator.

The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (07.04-0188),

1215 Jefferson Davis Highway, Suite 1204, Arlin penalty for failing to comply with a collection of in PLEASE DO NOT RETURN YOUR FO	ngton, VA 22202-4302. Respondents formation if it does not display a currer RM TO THE ABOVE ADDRESS	should be aware that notwithsta tly valid OMB control number. 5.	anding any other provision of law, no person shall be subject to any
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)
January 2011	Fir		1 to 4 June 2010
4. TITLE AND SUBTITLE STANDARDIZED UXO TECHNO SCORING RECORD NO. 929	OLOGY DEMONSTRATION		CONTRACT NUMBER
SCORING RECORD NO. 929		5b.	GRANT NUMBER
		5c.	PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d.	PROJECT NUMBER
McClung, Stephen J.			8-CO-160-UXO-021
		5e.	TASK NUMBER
		5f. 1	WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NA U.S. Army Aberdeen Test Center	ME(S) AND ADDRESS(ES)	.	8. PERFORMING ORGANIZATION REPORT NUMBER
400 Colleran Road Aberdeen Proving Ground, MD 2	1005-5059		ATC-10476
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS	G(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Program Manager SERDP/ESTCP			
Munitions Management Arlington, VA 22203			11. SPONSOR/MONITOR'S REPORT NUMBER(S) Same as Item 8
12. DISTRIBUTION/AVAILABILITY ST Distribution unlimited.	ATEMENT		Same as from 6
13. SUPPLEMENTARY NOTES			
None			
14. ABSTRACT			
ordnance (UXO) utilizing the APG Star coordinated by J. Stephen McClung an include the U.S. Army Corps of Engin	ndardized UXO Technology Ded d the Standardized UXO Techneers, the Environmental Securi	emonstration Site calibration hology Demonstration Site ty Technology Certification	n Program to detect and discriminate inert unexploded n lanes and open field sites. This Scoring Record was Scoring Committee. Organizations on the committee n Program, the Strategic Environmental Research and I, and the U.S. Army Aberdeen Test Center.
15. SUBJECT TERMS			
Environmental Security Technology indirect fire, pushcart.	Certification Program, APG,	Standardized UXO Tech	nnology Demonstration Site, blind grid, open field,
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. TH	17. LIMITATION O ABSTRACT	F 18. NUMBER 19a. OF PAGES	NAME OF RESPONSIBLE PERSON
Unclassified Unclassified Unc	lassified SAR	19b.	TELEPHONE NUMBER (Include area code)

ACKNOWLEDGMENTS

Authors:

Leonardo Lombardo
J. Stephen McClung, Jr.
William Burch
Homeland Defense and Sustainment Division (HDSD)
U.S. Army Aberdeen Test Center (ATC)
Aberdeen Proving Ground (APG)

Rick Fling Aberdeen Test Support Services (ATSS) Sverdrup Technology, Inc. Aberdeen Proving Ground

Christina McClung
U.S. Army Aberdeen Test Center
Survivability Lethality Directorate
Aberdeen Proving Ground

TABLE OF CONTENTS

		PAGE
	ACKNOWLEDGMENTS	i
	SECTION 1. GENERAL INFORMATION	
1.1	BACKGROUND	1
1.2	SCORING OBJECTIVES	1
	1.2.1 Scoring Methodology	2
	1.2.2 Scoring Factors	4
	SECTION 2. DEMONSTRATION	
2.1	DEMONSTRATOR INFORMATION	7
	2.1.1 Demonstrator Point of Contact (POC) and Address	7
	2.1.2 System Description	7
	2.1.3 Data Processing Description	8
	2.1.4 Data Submission Format	10
	2.1.5 Demonstrator Quality Assurance (QA) and Quality Control (QC) 2.1.6 Additional Records	10 10
2.2	APG SITE INFORMATION	10
2.2	2.2.1 Location	11
	2.2.2 Soil Type	11
	2.2.3 Test Areas	11
	2.2.4 Standard and Nonstandard Inert Munitions Targets	14
2.3	ATC SURVEY COMMENTS	16
	SECTION 3. FIELD DATA	
3.1	DATE OF FIELD ACTIVITIES	17
3.2	AREAS TESTED/NUMBER OF HOURS	17
3.3	TEST CONDITIONS	17
	3.3.1 Weather Conditions	17
	3.3.2 Field Conditions	17
2.4	3.3.3 Soil Moisture	18
3.4	FIELD ACTIVITIES	18 18
	3.4.2 Calibration	18
	3.4.3 Downtime Occasions	18
	3.4.4 Data Collection	19
	3.4.5 Demobilization	19
3.5	PROCESSING TIME	19
3.6	DEMONSTRATOR'S FIELD PERSONNEL	19
3.7	DEMONSTRATOR'S FIELD SURVEYING METHOD	19
3.8	SUMMARY OF DAILY LOGS	19

SECTION 4. TECHNICAL PERFORMANCE RESULTS

		PAGE
4.1	ROC CURVES USING ALL MUNITIONS CATEGORIES	21
4.2	PERFORMANCE SUMMARIES	24
4.3	EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION	29
4.4	LOCATION ACCURACY	33
	SECTION 5. APPENDIXES	
A	TERMS AND DEFINITIONS	A-1
В	DAILY WEATHER LOGS	B-1
C	SOIL MOISTURE	C-1
D	DAILY ACTIVITY LOGS	D- 1
E	REFERENCES	E-1
F	ABBREVIATIONS	F - 1
G	DISTRIBUTION LIST	G-1

SECTION 1. GENERAL INFORMATION

1.1 BACKGROUND

Technologies under development for the detection and discrimination of military munitions (MM) (i.e. unexploded ordnance {UXO} and discarded military munitions {DMM}) require testing so that performance can be characterized. To that end, Standardized Test Sites have been developed at Aberdeen Proving Ground (APG), Maryland, and U.S. Army Yuma Proving Ground (YPG), Arizona. These test sites provide a diversity of geology, climate, terrain, and weather as well as diversity in munitions and clutter. Testing at these sites is independently administered and analyzed by the government for the purposes of characterizing technologies, tracking performance with system development, comparing performance of different systems, and comparing performance in different environments (ref 1).

The Standardized UXO Technology Demonstration Site Program is a multiagency program spearheaded by the U.S. Army Environmental Command (USAEC). The U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Corps of Engineers Engineering Research and Development Center (ERDC) provide programmatic support. The program is being funded and supported by the Environmental Security Technology Certification Program (ESTCP), the Strategic Environmental Research and Development Program (SERDP), and the U.S. Army Environmental Quality Technology (EQT) Program.

1.2 SCORING OBJECTIVES

The objective in the Standardized UXO Technology Demonstration Site Program is to evaluate the detection and discrimination capabilities of a given technology under various field and soil conditions. Inert munitions and clutter items are positioned in various orientations and depths in the ground.

The evaluation objectives are as follows:

- a. To determine detection and discrimination effectiveness under realistic scenarios with various targets, geology, clutter, density, topography, and vegetation.
 - b. To determine cost, time, and workforce requirements to operate the technology.
- c. To determine the demonstrator's ability to analyze survey data in a timely manner and provide prioritized Target Lists with associated confidence levels.
- d. To provide independent site management to enable the collection of high quality, ground-truth (GT), geo-referenced data for post-demonstration analysis.

1.2.1 Scoring Methodology

- a. The scoring of the demonstrator's performance is conducted in two stages: response stage and discrimination stage. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of clutter detection (P_{cd}) or the probability of false positive (P_{fp}) . Those that do not correspond to any known item are termed background alarms. The background alarms are addressed as either probability of background alarm (P_{ba}) or background alarm rate (BAR).
- b. The response stage scoring evaluates the ability of the system to detect emplaced targets without regard to ability to discriminate munitions from other anomaly sources. For the blind grid response stage, the demonstrator provides a target response from each and every grid square along with a threshold below which target responses are deemed insufficient to warrant further investigation. This list is generated with minimal processing and, since a value is provided for every grid square, includes amplitudes both above and below the system noise level. For the open field, the demonstrator provides a list of all anomalies deemed to exceed a demonstrator selected target detection threshold. An item (either munition or clutter) is counted as detected if a demonstrator indicates an anomaly within a specified distance (Halo Radius (R_{halo})) of a ground truth item.
- c. The discrimination stage evaluates the demonstrator's ability to correctly identify munitions as such and to reject clutter. For the blind grid discrimination stage, the demonstrator provides the output of the discrimination stage processing for each grid square. For the open field, the demonstrator provides the output of the discrimination stage processing for anomaly reported in the response stage. The values in these lists are prioritized based on the demonstrator's determination that a location is likely to contain munitions. Thus, higher output values are indicative of higher confidence that a munitions item is present at the specified location. For digital signal processing, priority ranking is based on algorithm output. For other discrimination approaches, priority ranking may be based on rule sets or human judgment. The demonstrator also specifies the threshold in the prioritized ranking that provides optimum performance, (i.e., that is expected to retain all detected munitions and reject the maximum amount of clutter).
- d. The demonstrator is also scored on efficiency and rejection ratios, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of munitions detections from the anomaly list, while rejecting the maximum number of anomalies arising from nonmunitions items. Efficiency measures the fraction of detected munitions retained after discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the maximum number of munitions detectable by the sensor and its accompanying clutter detection/false positive rate or BAR.

- e. Based on configuration of the GT at the standardized sites and the defined scoring methodology, in some cases, there exists the possibility of having anomalies within overlapping halos and/or multiple anomalies within halos. In these cases, the following scoring logic is implemented:
- (1) In situations where multiple anomalies exist within a single R_{halo} , the anomaly with the strongest response or highest ranking will be assigned to that particular GT item. If the responses or rankings are equal, then the anomaly closest to the GT item will be assigned to the GT item. Remaining anomalies are retained and scored until all matching is complete.
- (2) Anomalies located within any R_{halo} that do not get associated with a particular GT item are excess alarms and will be disregarded.
- f. In some cases, groups of closely spaced munitions have overlapping halos. The following scoring logic is implemented (App A, fig. A-1 through A-9):
 - (1) Overall site scores (i.e., P_d) will consider only isolated munitions and clutter items.
- (2) GT items that have overlapping halos (both munitions and clutter) will form a group and groups may form chains.
- (3) Groups will have a complex halos composed of the composite halos of all its GT items.
- (4) Groups will have three scoring factors: groups found, groups identified, and group coverage. Scores will be based on 1:1 matches of anomalies and GT.
- (a) Groups Found (Found): the number of groups that have one or more GT items matched divided by the total number of groups. Demonstrators will be credited with detecting a group if any item within the group is matched to an anomaly in their lists.
- (b) Groups Identified (ID): the number of groups that have two or more GT items matched divided by the total number of groups. Demonstrators will be credited with identifying that a group is present if multiple items within the composite halo are matched to anomalies in their lists.
- (c) Group Coverage (Coverage): the number of GT items matched within groups divided by the total number of GT items within groups. This metric measures the demonstrator accuracy in determining the number of anomalies within a group. If five items are present and only two anomalies are matched, the demonstrator will score 0.4. If all five are matched, the demonstrator will score 1.0.
 - (5) Location error will not be reported for groups.

- (6) Demonstrators will not be asked to call out groups in their scoring submissions. If multiple anomalies are indicated in a small area, the demonstrator will report all individual anomalies.
 - (7) Excess alarms within a halo will be disregarded.
- g. All scoring factors are generated utilizing the Standardized UXO Probability and Plot Program, version 4.

1.2.2 Scoring Factors

Factors to be measured and evaluated as part of this demonstration include:

- a. Response stage ROC curves:
- (1) Probability of detection (P_d res).
- (2) Probability of clutter detection (P_{cd}).
- (3) Background alarm rate (BAR res) or probability of background alarm (P_{ba}^{res}).
- b. Discrimination stage ROC curves:
- (1) Probability of detection (P_d disc).
- (2) Probability of false positive (P_{fp}) .
- (3) Background alarm rate (BAR disc) or probability of background alarm ($P_{ba}^{\ disc}$).
- c. Metrics:
- (1) Efficiency (E).
- (2) False positive rejection rate (R_{fp}) .
- (3) Background alarm rejection rate (R_{ba}).
- d. Other:
- (1) Probability of detection by size, depth, and density.
- (2) Classification by type (i.e., 20-, 40-, 105-mm, etc.).
- (3) Location accuracy for single munitions.

- (4) Equipment setup, calibration time, and corresponding worker-hour requirements.
- (5) Survey time and corresponding worker-hour requirements.
- (6) Reacquisition/resurvey time and worker-hour requirements (if any).
- (7) Downtime due to system malfunctions and maintenance requirements.

SECTION 2. DEMONSTRATION

2.1 DEMONSTRATOR INFORMATION

2.1.1 <u>Demonstrator Point of Contact (POC) and Address</u>

POC: Mr. Dan Steinhurst

(202) 767-3556

Address: Nova Research, Inc.

1900 Elkin Street, Suite 230 Alexandria, VA 22308

2.1.2 System Description (provided by demonstrator)

a. The EM63-3D MkII (EM633D) (fig. 1) is a multiple transmitter - multiple receiver transient electromagnetic induction (EMI) system from Geonics, Ltd. designed to collect data for the detection, location and characterization of sub-surface metallic objects, particularly unexploded munitions items. It has three large transmit (Tx) coils arranged in orthogonal directions (orange loops) and three smaller orthogonal receive (Rx) coils (inside the box suspended within the transmitter cube). The axis of the Z coil is vertical, the X coil axis points along track in the direction of travel, and the Y coil axis points cross track to the left. There is also an upper receive coil that is used to suppress noise in the vertical receive channel (black coil suspended above main receiver coil assembly). The EM633D can operate at three different base frequencies: 7.5 Hz, 30 Hz and 75 Hz. At 7.5 Hz, the secondary field decay is sampled at 26 time gates ranging from 0.39 to 25.3 msec after the primary field cutoff. The response is truncated at the higher base frequencies, sampling the first 20 gates (to 7.3 msec) at 30 Hz and the first 16 (to 3.0 msec) at 75 Hz. Data rates are 2.5 samples per second per Tx coil at the 7.5 Hz base frequency and 5 samples per second per Tx coil at the 30 Hz and 75 Hz base frequencies. The data acquisition system is designed to be paired with a GPS unit to record the positions of the sensor readings, or use an integral wheel tick counter to locate the data along a survey line.

b. The sensor is deployed on its standard wheels resulting in a sensor-to-ground offset of approximately 47 cm to the Z transmitter coil. Sensor locations are provided by an attached GPS system whose output is logged into the system data logger as the sensor data are being logged. A Trimble R8 GNSS GPS unit will provide cm-level positioning at a rate of 10 Hz. With the 30 Hz base frequency, EMI data are logged at 5 samples/sec for each Tx coil which when combined with the nominal 0.75 m/sec survey speed results in a down-track sample spacing of 15 cm for each Tx coil. Survey line spacing will be 50 cm. A series of guidance strings will be placed on the field with a spacing of 1.5 m. The sensor operator will survey lines to the left, directly over, and to the right of each string.

Figure 1. EM63 3D MKII/pushcart.

2.1.3 <u>Data Processing Description (provided by demonstrator)</u>

- a. Target selection criteria: Both the sensor and GPS data are collected and time stamped by the EM63-3D data logger. The data are stored in a coded ASCII format. All processing will be done by an analyst with the IDL software package and routines developed by SAIC. If present, glitches in the sensor and GPS data will be removed. If sensor drift is present, the data will be temporally de-medianed to remove it. The width of the de-median window will be a function of target density. All data will be mapped to UTM coordinates as well as local x, y coordinates (based on the local grid) from the recorded GPS latitude, longitude. The positions will be interpolated to the time stamp of the sensor; data from each transmit coil will be at a slightly different location, because they fire sequentially. If present, latency between sensor and GPS will be corrected with a small time shift.
- (1) The mapped data will be presented in the form of raster plots, contour plots and color image plots. Background noise levels will be determined by visual inspection. Detection will be based on a threshold slightly above this noise level (2 to 3 times). Cases near threshold will be determined by self-consistency between the various transmit/receive coil signals. A spike on one channel with no response on the others will be disregarded.
- (2) On the blind grid, each cell will be inspected for signals above threshold and self-consistency between the transmit/receive channels. If reasonable signals exist, the cell will be labeled as a detection and the data within this cell separated out and passed on to the parameter estimation process. If no signal is present above threshold, the cell will be labeled as a blank.

(3) On the indirect fire field, signals above threshold must be inspected to determine individual anomalies. The strongest signal is on the Z transmit/Z receive channel. This channel will be used to determine possible object locations with signal above threshold. In cases where there are possible overlapping signals from several objects, the other transmit/receive pairs will be used to try to separate their signals. For individual and separable signatures, a detection will be declared and the data separated out and passed on to the parameter estimation process. If by inspection of the data, the signature appears to be from multiple objects, but the data cannot be separated, a detection will be declared, but the item will be flagged as cannot analyze. These and any signatures that are clear detections, but cannot be fit well by the parameter estimation process, will end up in the cannot analyze category.

b. Parameter estimation.

- (1) All channels of the EM63-3D data from a given anomaly will be simultaneously fit to the standard dipole polarization model. The fit procedure uses a non-linear Marquardt-Levenberg algorithm. Besides object location, depth, and orientation, the three polarization components will be fit for all of the sensor's time gates. Besides these model parameters, several goodness-of-fit parameters are also recorded: reduced chi-square, fit coherence, and RMS error. Overall signal strength is also noted.
- (2) After this unconstrained fit for all model parameters, a library of expected UXO polarizations is used to perform a constrained fit. The fit tries to match the data using the library polarizations. This is done for all of the UXO items in the library, and the best library fit result is kept. For the blind grid, the library will consist of polarizations for all six expected items (25mm, 37mm, 60mm, 81mm, 105mm, and 105mm HEAT). For the indirect fire area, the library will involve only the 60mm, 81mm, and 105mm. The best library constrained fit will record the item type, the object location, depth, and orientation and the fit quality.
- c. Classification: Discrimination of UXO items from clutter will make use of a library ratio test. The fit qualities from the unconstrained fit and library fit will be compared. As the ratio of library to unconstrained fits approaches one, the item is most likely UXO of the type matched in the library. The library ratio value provides an easy ranking factor for the discrimination stage in the standardized scoring spreadsheet. The threshold will be set based on training data. This ratio test has been applied successfully with other sensors at both the standardized test sites and other discrimination studies.
- d. Training: Because it is a new sensor, the EM63-3D will be evaluated at the Naval Research Laboratory's Blossom Point test site before the APG test. The APG test items will be measured at various depths and orientations in a test pit. Surveys will be done on the test field. The field conditions at Blossom Point are quite similar to APG. The results will be analyzed to determine the signal strength from the test items and the noise levels during survey. From this detection thresholds can be set. Fit results will be used to establish a library of expected polarizations from the test UXO. Fits from UXO and clutter will be used to establish a discrimination threshold as well.

2.1.4 <u>Data Submission Format</u>

Data were submitted for scoring in accordance with data submission protocols outlined on the USAEC Web site www.uxotestsites.org. These submitted data are not included in this report in order to protect GT information.

2.1.5 <u>Demonstrator Quality Assurance (QA) and Quality Control (QC) (provided by demonstrator)</u>

During startup and collection, the GPS and sensor equipment will be checked for appropriate settings and response. As the data are collected and downloaded at both the Blossom Point training tests and at the APG demonstration, they will be inspected by an on-site data analyst. The GPS data will be inspected for poor fix quality (PDOP), drops outs, and sudden shifts. The tracks will be evaluated for complete coverage of the site and the required lane spacing. The sensor data will be evaluated for drops outs, spikes, drifts, error flags, appropriate noise levels, etc. This process will be completed every 1/2 to 1 day and any regions of missed or poor data will be revisited. Initial parameter estimation will also be started on-site. Parameters returned on the calibration grid will be compared to those expected based on the ground truth and previous measurements. Fits performed on blind grid and indirect fire data will be checked for reasonable fit quality and, presumably, occasional matches to the expected buried test items.

2.1.6 Additional Records

The following record(s) by this vendor can be accessed via the Internet as Microsoft Word documents at www.uxotestsites.org.

2.2 APG SITE INFORMATION

2.2.1 Location

The APG Standardized Test Site is located within a secured range area of the Aberdeen Area. The Aberdeen Area of APG is located approximately 30 miles northeast of Baltimore at the northern end of the Chesapeake Bay. The Standardized Test Site encompasses 17 acres of upland and lowland flats, woods, and wetlands.

2.2.2 Soil Type

According to the soils survey conducted for the entire area of APG in 1998, the test site consists primarily of Elkton Series type soil (ref 2). The Elkton Series consist of very deep, slowly permeable, poorly drained soils. These soils formed in silty aeolin sediments and the underlying loamy alluvial and marine sediments. They are on upland and lowland flats and in depressions of the Mid-Atlantic Coastal Plain. Slopes range from 0 to 2 percent.

ERDC conducted a site-specific analysis in May 2002 (ref 3). The results basically matched the soil survey mentioned above. Seventy percent of the samples taken were classified as silty loam. The majority (77 percent) of the soil samples had a measured water content between 15 and 30 percent with the water content decreasing slightly with depth.

For more details concerning the soil properties at the APG test site, go to www.uxotestsites.org on the Web to view the entire soils description report.

2.2.3 Test Areas

A description of the test site areas at APG is presented in Table 1. A test site layout is shown in Figure 2.

TABLE 1. TEST SITE AREAS

Area	Description
Calibration lanes	Contains 14 standard munitions items buried in six positions, with representation of clutter, at various angles and depths to allow demonstrators to calibrate their equipment.
Blind grid	Contains 400 grid cells in a 0.5-acre site. The center of each grid cell contains either munitions, clutter, or nothing.
Open field	A 10-acre site composed of generally open and flat terrain with minimal clutter and minor navigational obstacles. Vegetation height varies from 15 to 25 cm. This area is subdivided into four subareas (legacy, direct fire, indirect fire, and challenge).
	• Open field (legacy) The legacy subarea contains the same wide variety of randomly-placed munitions that were present in the open field prior to the January 2008 general reconfiguration of the site.
	• Open field (direct fire) The direct fire subarea contains only three munition types that could be typically found at an impact area of a direct fire weapons range. Munitions and clutter are placed in a pattern typical for these munitions.
	• Open field (indirect fire) The indirect fire subarea contains only three munition types that could be typically found at an impact area of an indirect fire weapons range. Munitions and clutter are placed in a pattern typical for these munitions.
	• Open field (challenge) The challenge subarea is easily reconfigurable to meet the specific needs and requirements of the demonstrator or the program sponsor. Any results from this area are not reported in the standardized scoring record.
Woods	1.34-acre area consisting of cleared woods (tree removal with only stumps remaining), partially cleared woods (including all underbrush and fallen trees), and virgin woods (i.e., woods in natural state with all trees, underbrush, and fallen trees left in place).
Moguls	1.30-acre area consisting of two areas (the rectangular or driving portion of the course and the triangular section with more difficult, nondrivable terrain). A series of craters (as deep as 0.91 m) and mounds (as high as 0.91 m) encompass this section.

Figure 2. Test site layout.

2.2.4 Standard And Nonstandard Inert Munitions Targets

The standard and nonstandard munitions items emplaced in the test areas are presented in Table 2. Standardized targets are members of a set of specific munitions items that have identical properties to all other items in the set (caliber, configuration, size, weight, aspect ratio, material, filler, magnetic remanence, and nomenclature). Nonstandard targets are inert munitions items having properties that differ from those in the set of standardized items.

TABLE 2. INERT MUNITIONS TARGETS

	Munition	Calibration		Open Field	Open Field	Open Field		
Item	Type	Lanes	Blind Grid	Direct Fire	Indirect Fire	Legacy	Moguls	Woods
20-mm Projectile M55	S	X				X	X	X
25-mm Projectile M794	S	X	X	X				
37-mm Projectile M47	S	X	X	X				
40-mm Projectile MKII Bodies	S	X				X	X	X
BDU-28 Submunition	S	X				X	X	X
BLU-26 Submunition	S	X				X	X	X
M42 Submunition	S	X				X	X	X
57-mm Projectile APC M86	S	X				X	X	X
60-mm Mortar M49A3	S	X	X		X			
2.75-in. Rocket M230	S	X				X	X	X
81-mm Mortar M374	S	X	X		X	X	X	X
105-mm HEAT Rounds M456	S					X	X	X
105-mm HEAT Round M490	S	X	X	X				
105-mm Projectile M60	S	X	X		X	X	X	X
155-mm Projectile M483A1	S	X				X	X	X
20-mm Projectile M55	NS					X	X	X
20-mm Projectile M97	NS					X	X	X
40-mm Projectile M813	NS					X	X	X
60-mm Mortar (JPG)	NS					X	X	X
60-mm Mortar M49	NS					X	X	X
2.75-in. Rocket M230	NS					X	X	X
2.75-in. Rocket XM229	NS					X	X	X
81-mm Mortar (JPG)	NS					X	X	X
81-mm Mortar M374	NS					X	X	X
105-mm Projectile M60	NS					X	X	X
155-mm Projectile M483A	NS					X	X	X

S = Standard munition.

NS = Nonstandard munition.

JPG = Jefferson Proving Ground.

HEAT = high-explosive antitank.

2.3 ATC SURVEY COMMENTS

Demonstrator's submitted Discrimination Stage data/rankings had to be inverted to allow ROC Curves to be generated for this scoring record.

SECTION 3. FIELD DATA

3.1 DATE OF FIELD ACTIVITIES (1 to 4 June 2010)

3.2 AREAS TESTED/NUMBER OF HOURS

Areas tested and total numbers of hours operated at each site are presented in Table 3.

TABLE 3. AREAS TESTED AND NUMBER OF HOURS

Area	Number of Hours
Calibration lanes	7.92
Blind grid	14.42
Open field	
Woods	
Mogul	
Mine grid	

Note: Table 3 represents the total time spent in each area.

3.3 TEST CONDITIONS

3.3.1 Weather Conditions

An APG weather station located approximately 1 mile west of the test site was used to record average temperature and precipitation on a half-hour basis for each day of operation. The temperatures presented in Table 4 represent the average temperature during field operations from 0700 to 1700 hours, while precipitation data represent a daily total amount of rainfall. Hourly weather logs used to generate this summary are provided in Appendix B.

TABLE 4. TEMPERATURE/PRECIPITATION DATA SUMMARY

Date, 10	Average Temperature, °F	Total Daily Precipitation, in.
June 1	80.8	0.01
June 2	83.1	0.00
June 3	84.7	0.00
June 4	83.9	0.05

3.3.2 Field Conditions

NRL surveyed the calibration grid and blind grid areas. A few small puddles and wet areas from rain prior to testing were present in the calibration and blind grid areas.

3.3.3 Soil Moisture

Three soil probes were placed at various locations within the site to capture soil moisture data: blind grid, calibration, open field, and wooded areas. Measurements were collected in percent moisture and were taken twice daily (morning and afternoon) from five different soil depths (1 to 6 in., 6 to 12 in., 12 to 24 in., 24 to 36 in., and 36 to 48 in.) from each probe. Soil moisture logs are provided in Appendix C.

3.4 FIELD ACTIVITIES

3.4.1 <u>Setup/Mobilization</u>

These activities included initial mobilization and daily equipment preparation and breakdown. A six-person crew took 55 minutes to perform the initial setup and mobilization. A total of 30 minutes of equipment preparation was accrued, and end of day equipment breakdown totaled 20 minutes.

3.4.2 Calibration

NRL spent a total of 7 hours 55 minutes in the calibration lanes, of which 6 hours and 5 minutes were spent collecting data. One calibration exercise occurred while surveying the Blind Grid lasting 5 minutes.

3.4.3 **Downtime Occasions**

Occasions of downtime are grouped into five categories: equipment/data checks or equipment maintenance, equipment failure and repair, weather, demonstration site issues, or breaks/lunch. All downtime is included for the purposes of calculating labor requirements (section 5) except for downtime due to demonstration site issues. Demonstration site issues, while noted in the daily log, are considered nonchargeable downtime for the purposes of calculating labor costs and are not discussed. Breaks and lunches are discussed in this section and billed to the total site survey area.

- **3.4.3.1** Equipment/data checks, maintenance. Equipment data checks and maintenance activities accounted for 30 minutes of site usage time. These activities included changing out batteries and performing routine data checks to ensure the data were being properly recorded/collected. NRL spent no time for breaks and lunches.
- **3.4.3.2** Equipment failure or repair. No equipment failure or repair occurred during this survey.
- **3.4.3.3 Weather.** No weather delays occurred during the survey.

3.4.4 Data Collection

TABLE 5. TOTAL TIME NRL, SPENT PER AREA

Area	Time, hr/min
Blind grid	13 hours/5 minutes
Open field	
Legacy	
Direct fire	
Indirect fire	
Challenge	
Wooded	
Mine Grid	
Moguls	

Note: Table 5 represents the total time spent in each area collecting data.

3.4.5 <u>Demobilization</u>

The NRL survey crew conducted a demonstration of the calibration and Blind Grid. Demobilization occurred on 4 June 2010. On that day, it took the crew 55 minutes to break down and pack up their equipment.

3.5 PROCESSING TIME

NRL submitted the raw data from the demonstration activities on the last day of the demonstration, as required. The scoring submittal data were provided in September 2010.

3.6 DEMONSTRATOR'S FIELD PERSONNEL

Dan Steinhurst

Glenn Harbaugh

Bruce Barrow

Peter Knowles

Jim Kingdon

Ben Dameron

3.7 DEMONSTRATOR'S FIELD SURVEYING METHOD

NRL collected the data in a linear fashion, using a line spacing of 1 meter, stopping at each cell in the Blind Grid.

3.8 SUMMARY OF DAILY LOGS

Daily logs capture all field activities during this demonstration and are provided in Appendix D.

SECTION 4. TECHNICAL PERFORMANCE RESULTS

4.1 ROC CURVES USING ALL MUNITIONS CATEGORIES

The probability of detection for the response stage $(P_d^{\ res})$ and the discrimination stage $(P_d^{\ disc})$ versus their respective probability of clutter detection or probability of false positive within each area are shown in Figures 3 through 8. The probabilities plotted against their respective background alarm rate within each area are shown in Figures 9 through 14. Both figures use horizontal lines to illustrate the performance of the demonstrator at two demonstrator-specified points: at the system noise level for the response stage, representing the point below which targets are not considered detectable, and at the demonstrator's recommended threshold level for the discrimination stage, defining the subset of targets the demonstrator would recommend digging based on discrimination. Note that all points have been rounded to protect the GT.

Figure 3. EM633D/pushcart blind grid probability of detection for response and discrimination stages versus their respective probability of false positive.

Not reported

Figure 4. EM633D/pushcart open field (direct-fire) probability of detection for response and discrimination stages versus their respective probability of false positive.

Not reported

Figure 5. EM633D/pushcart open field (indirect-fire) probability of detection for response and discrimination stages versus their respective probability of false positive.

Not reported

Figure 6. EM633D/pushcart open field (legacy) probability of detection for response and discrimination stages versus their respective probability of false positive.

Not reported

Figure 7. EM633D/pushcart wooded probability of detection for response and discrimination stages versus their respective probability of false positive.

Not reported

Figure 8. EM633D/pushcart mogul probability of detection for response and discrimination stages versus their respective probability of false positive.

Figure 9. EM633D/pushcart blind grid probability of detection for response and discrimination stages versus their respective probability of background alarm.

Not reported

Figure 10. EM633D/pushcart open field (direct fire) probability of detection for response and discrimination stages versus their respective background alarm rate.

Not reported

Figure 11. EM633D/pushcart open field (indirect fire) probability of detection for response and discrimination stages versus their respective background alarm rate.

Not reported

Figure 12. EM633D/pushcart open field (legacy) probability of detection for response and discrimination stages versus their respective background alarm rate.

Not reported

Figure 13. EM633D/pushcart wooded probability of detection for response and discrimination stages versus their respective background alarm rate.

Not reported

Figure 14. EM633D/pushcart mogul probability of detection for response and discrimination stages versus their respective background alarm rate.

4.2 PERFORMANCE SUMMARIES

Results for each of the testing areas are presented in Tables 6a through 6f (for labor requirements, see section 5). The response stage results are derived from the list of anomalies above the demonstrator-provided noise level. The results for the discrimination stage are derived from the demonstrator's recommended threshold for optimizing munitions related cleanup by minimizing false alarm digs and maximizing munitions recovery. The lower and upper 90-percent confidence limits on P_d , P_{cd} , and P_{fp} were calculated assuming that the number of detections and false positives are binomially distributed random variables.

TABLE 6a. BLIND GRID TEST AREA RESULTS

	Res	ponse Stage				Discrimina	ation Stage			
^a Munitions	P_d^{res} : by typ	e			P_d^{disc} : by type					
Scores	All Types	105-mm	81/60-mm	37/25-mm	All Types 105-mm		81/60-mm	37/25-mm		
	0.99	1.00	1.00	1.00	0.97	1.00	0.98	0.98		
	0.98	0.97	0.97	1.00	0.94	0.97	0.93	0.93		
	0.94	0.88	0.88	0.93	0.90	0.88	0.83	0.83		
			b	By Depth						
0 to 4D	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
4D to 8D	1.00	1.00	1.00	1.00	0.93	1.00	0.80	0.95		
8D to 12D	0.78	0.83	0.00	1.00	0.67	0.83	0.00	0.50		
Clutter Scores	P_{cd}				P_{fp}					
	•			By Mass	•					
^b By Depth	All Mass	0 to 0.25 kg	>0.25 to 1 kg	>1 to 10 kg	All Mass	0 to 0.25 kg	>0.25 to 1 kg	>1 to 10 kg		
All Depth	0.60				0.46					
	0.54	0.21	0.83	1.00	0.40	0.19	0.65	0.30		
	0.48				0.34					
0 to 0.15 m	0.51	0.19	0.82	1.00	0.39	0.17	0.62	0.50		
0.15 to 0.3 m	0.75	0.40	0.86	1.00	0.50	0.40	0.86	0.00		
0.3 to 0.6 m	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	_	_	Backgro	und Alarm Ra		_	_	_		
	P _{ba} res: 0.01				P _{ba} ^{disc} : 0.01					

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

^bAll depths are measured to the center of the object.

TABLE 6b. OPEN FIELD DIRECT FIRE TEST AREA RESULTS (not covered)

Response Stage						Discrimination Stage						
^a Munitions	P_d^{res} : by typ	e			P_d^{disc} : by typ	P_d^{disc} : by type						
Scores	All Types	105-mm	37-mm	25-mm	All Types	105-mm	37-mm	25-mm				
By Density												
High												
Medium							-					
Low												
				^b By Depth								
0 to 4D							-					
4D to 8D												
8D to 12D							-					
Clutter	P_{cd}				P_{fp}							
Scores												
				By Mass								
^b By Depth	All Mass	0 to 0.25 kg	>0.25 to	>1 to 8 kg	All Mass	0 to 0.25 kg	>0.25 to	>1 to 8 kg				
			1 kg				1 kg					
All Depth												
0 to 0.15 m												
0.15 to 0.3 m												
0.3 to 0.6 m												
			Backg	round Alarm F	Rates							
	BAR ^{res} :				BAR ^{disc} :							
	•			Groups	_							
Found												
Identified												
Coverage												

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

^bAll depths are measured to the center of the object.

TABLE 6c. OPEN FIELD INDIRECT FIRE TEST AREA RESULTS

	Re	sponse Stage	Discrimination Stage							
^a Munitions	P_d^{res} : by typ	e			P_d^{disc} : by type					
Scores	All Types	105-mm	81-mm	60-mm	All Types	105-mm	81-mm	60-mm		
	0.87	0.93	0.92	0.83	0.87	0.93	0.92	0.83		
	0.85	0.89	0.88	0.77	0.85	0.89	0.88	0.77		
	0.81	0.83	0.82	0.71	0.81	0.83	0.82	0.71		
				By Density						
High	0.73	0.85	0.82	0.52	0.73	0.85	0.82	0.52		
Medium	0.84	0.87	0.86	0.79	0.84	0.87	0.86	0.79		
Low	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94		
				^b By Depth						
0 to 4D	0.91	0.96	1.00	0.81	0.91	0.96	1.00	0.81		
4D to 8D	0.79	0.84	0.80	0.64	0.79	0.84	0.80	0.64		
8D to 12D	0.68	0.25	0.78	0.75	0.68	0.25	0.78	0.75		
Clutter	P_{cd}				P_{fp}					
Scores					-					
				By Mass						
^b By Depth	All Mass	0 to 0.25 kg	>0.25 to	>1 to 8 kg	All Mass	0 to 0.25 kg	>0.25 to	>1 to 8 kg		
			1 kg				1 kg			
All Depth	0.44				0.44					
	0.41	0.20	0.61	0.74	0.41	0.20	0.61	0.74		
	0.38				0.38					
0 to 0.15 m	0.39	0.20	0.63	0.75	0.39	0.20	0.63	0.75		
0.15 to 0.3 m	0.45	0.25	0.44	0.65	0.45	0.25	0.44	0.65		
0.3 to 0.6 m	0.75	0.00	0.67	1.00	0.75	0.00	0.67	1.00		
			Backgr	ound Alarm R						
BAR ^{res} : 0.07 BAR ^{disc} : 0.07										
				Groups						
Found	0.90				0.90					
Identified	0.00				0.00					
Coverage	0.44				0.44					

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

^bAll depths are measured to the center of the object.

TABLE 6d. OPEN FIELD LEGACY TEST AREA RESULTS (not covered)

Response Stage							Discrimination Stage				
^a Munitions	P_d^{res} : by type						P_d^{disc} : by type				
Scores	All Type		all Mo	edium	Large	All Type		all M	edium	Large	
					bp., p						
0 to 4D	l		1		^b By Depth	I					
4D to 8D											
8D to 12D											
> 12D											
Clutter	P_{cd}					P_{fp}					
Scores					D 14						
ho o	1			1 .	By Mass				1 .		
^b By Depth	All	0 to	>0.25 to	>1 to		All	0 to	>0.25 to	>1 to	< 10kg	
41175 (1	Mass	0.25 kg	1 kg	10 kg	g	Mass	0.25 kg	1 kg	8 kg		
All Depth											
0 to 0.15 m											
0.15 to 0.3 m											
0.3 to 0.6 m											
> 0.6 m											
				Bac	kground Alarm	Rates			I	·	
	BAR ^{res} :				<u> </u>	BAR ^{disc} :					
					Groups						
Found											
Identified											
Coverage											

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

^bAll depths are measured to the center of the object.

TABLE 6e. WOODED TEST AREA RESULTS (not covered)

Response Stage						Discrimination Stage				
^a Munitions	P_d^{res} : by	type				P_d^{disc} : by type				
Scores	All Type		all	Medium	Large	All Types		all	Medium	Large
						ĺ				
			-	-						
^b By Depth										
0 to 4D										
4D to 8D										
8D to 12D										
> 12D										
Clutter Scores	P_{cd}					P_{fp}				
					By Mass					
^b By Depth	All	0 to	>0.25			All	0 to	>0.25		
	Mass	$0.25 \mathrm{kg}$	1 kg	10 kg	5	Mass	0.25 kg	1 kg	g 8 kg	
All Depth										
0 1 0 1 7										
0 to 0.15 m										
0.15 to 0.3 m										
0.3 to 0.6 m										
> 0.6 m				 D1	 	 D-4				
	D A Dres.			Bacı	kground Alarm	BAR ^{disc} :				
	BAR ^{res} :					BAK :				
Farmed					Groups					
Found										
Identified										
Coverage										

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

^bAll depths are measured to the center of the object.

TABLE 6f. MOGUL TEST AREA RESULTS (not covered)

Response Stage						Discrimination Stage				
^a Munitions	P_d^{res} : by type				P_d^{disc} : by type					
Scores	All Type		all	Medium	Large	All Types		all	Medium	Large
			-	· -				-		
^b By Depth								ı		
0 to 4D										
4D to 8D										
8D to 12D										
> 12D										
Clutter	P_{cd}					P_{fp}				
Scores	D. 14				By Mass	<u></u>				
^b By Depth	All	0 to	>0.25	to >1 to		All	0 to	>0.25	to >1 to	< 10kg
ву Деріп	Mass	0.25 kg	>0.25 1 kg			Mass	0.25 kg	>0.25 1 kg		< 10kg
All Depth			Ŭ					Ŭ		
_										
0 to 0.15 m										
0.15 to 0.3 m										
0.3 to 0.6 m										
> 0.6 m										
				Bacl	ground Alarm	Rates				
	BAR ^{res} :					BAR ^{disc} :				
			_		Groups					
Found										
Identified										
Coverage										

^aIn cells with offset data entries, the numbers to the left are the result and the two numbers to the right are an upper and lower 90-percent confidence interval for an assumed binomial distribution.

4.3 EFFICIENCY, REJECTION RATES, AND TYPE CLASSIFICATION

Efficiency and rejection rates are calculated to quantify the discrimination ability at specific points of interest on the ROC curve: (1) at the point where no decrease in P_d is suffered (i.e., the efficiency is by definition equal to one) and (2) at the operator selected threshold. These values are presented in Tables 7a through 7f.

^bAll depths are measured to the center of the object.

TABLE 7a. BLIND GRID EFFICIENCY AND REJECTION RATES (not covered)

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point	0.97	0.26	0.55
With No Loss of P _d	1.00	0.00	0.00

TABLE 7b. OPEN FIELD (DIRECT) EFFICIENCY AND REJECTION RATES (not covered)

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point			
With No Loss of P _d	-		

TABLE 7c. OPEN FIELD (INDIRECT) EFFICIENCY AND REJECTION RATES

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point			
With No Loss of P _d	-		

TABLE 7d. OPEN FIELD (LEGACY) EFFICIENCY AND REJECTION RATES (not covered)

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point			
With No Loss of P _d	-		

TABLE 7e. WOODED EFFICIENCY AND REJECTION RATES (not covered)

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point			
With No Loss of P _d			

TABLE 7f. MOGUL EFFICIENCY AND REJECTION RATES (not covered)

	Efficiency (E)	False Positive Rejection Rate	Background Alarm Rejection Rate
At Operating Point			
With No Loss of P _d		-	

At the demonstrator's recommended setting, the munitions items that were detected and correctly discriminated were further scored on whether their correct type could be identified (tables 8a through 8f). Correct type examples include 20-mm projectile, 105-mm HEAT projectile, and 2.75-inch Rocket. A list of the standard type declaration required for each munitions item was provided to demonstrators prior to testing. The standard types for the three example items are 20-mmP, 105H, and 2.75-inch.

TABLE 8a. BLIND GRID CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS (not covered)

Size	Percentage Correct
25mm	87%
37mm	53%
60mm	93%
81mm	80%
105mm	13%
105 artillery	33%
Overall	60%

TABLE 8b. OPEN FIELD DIRECT FIRE CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS (not covered)

Size	Percentage Correct
25mm	
37mm	
105mm	
Overall	

TABLE 8c. OPEN FIELD INDIRECT FIRE CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS

Size	Percentage Correct
60mm	^a NA
81mm	^a NA
105mm	^a NA
Overall	^a NA

^aVendor covered the area but did not identify the item size.

TABLE 8d. OPEN FIELD LEGACY CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS (not covered)

Size	Percentage Correct
Small	
Medium	
Large	
Overall	

TABLE 8e. WOODED CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS (not covered)

Size	Percentage Correct
Small	
Medium	
Large	
Overall	

TABLE 8f. MOGUL CORRECT TYPE CLASSIFICATION OF TARGETS CORRECTLY DISCRIMINATED AS MUNITIONS (not covered)

Size	Percentage Correct
Small	
Medium	
Large	
Overall	

4.4 LOCATION ACCURACY

The mean location error and standard deviations appear in Tables 9a through 9f. These calculations are based on average missed distance for munitions correctly identified during the response stage. Depths are measured from the center of the munitions to the surface. For the blind grid, only depth errors are calculated because (X, Y) positions are known to be the centers of the grid square.

TABLE 9a. BLIND GRID MEAN LOCATION ERROR AND STANDARD DEVIATION (not covered)

	Mean	Standard Deviation
Northing	N/A	N/A
Easting	N/A	N/A
Depth	0.02	0.05

TABLE 9b. OPEN FIELD DIRECT FIRE MEAN LOCATION ERROR AND STANDARD DEVIATION (not covered)

	Mean	Standard Deviation
Northing		
Easting		
Depth		

TABLE 9c. OPEN FIELD INDIRECT FIRE MEAN LOCATION ERROR AND STANDARD DEVIATION

	Mean	Standard Deviation
Northing		
Easting		
Depth		

TABLE 9d. OPEN FIELD LEGACY MEAN LOCATION ERROR AND STANDARD DEVIATION (not covered)

	Mean	Standard Deviation
Northing		
Easting		
Depth		

TABLE 9e. WOODED MEAN LOCATION ERROR AND STANDARD DEVIATION (not covered)

	Mean	Standard Deviation
Northing		
Easting		
Depth		

TABLE 9f. MOGUL MEAN LOCATION ERROR AND STANDARD DEVIATION (not covered)

	Mean	Standard Deviation
Northing		
Easting		
Depth		

SECTION 5. APPENDIXES

APPENDIX A. TERMS AND DEFINITIONS

GENERAL DEFINITIONS

Anomaly: Location of a system response deemed to warrant further investigation by the demonstrator for consideration as an emplaced munitions item.

Detection: An anomaly location that is within R_{halo} of an emplaced munitions item.

Military Munitions (MM): Specific categories of MM that may pose unique explosive safety risks, including UXO as defined in 10 USC 101(e)(5), DMM as defined in 10 USC 2710(e)(2) and/or munitions constituents (e.g., TNT, RDX) as defined in 10 USC 2710(e)(3) that are present in high enough concentrations to pose an explosive hazard.

Emplaced Munitions: A munitions item buried by the government at a specified location in the test site.

Emplaced Clutter: A clutter item (i.e., nonmunitions item) buried by the government at a specified location in the test site.

 R_{halo} : A predetermined radius about an emplaced item (clutter or munitions) within which an anomaly identified by the demonstrator as being of interest is considered to be a detection of that item. For the purpose of this program, a circular halo 0.5 meters in radius is placed around the center of the object for all clutter and munitions items.

Small Munitions: Caliber of munitions less than or equal to 40 mm (includes 20-mm projectile, 25-mm projectile, 37-mm projectile, 40-mm projectile, submunitions BLU-26, BLU-63, and M42).

Medium Munitions: Caliber of munitions greater than 40 mm and less than or equal to 81 mm (includes 57-mm projectile, 60-mm mortar, 2.75-inch rocket, and 81-mm mortar).

Large Munitions: Caliber of munitions greater than 81 mm (includes 105-mm HEAT, 105-mm projectile, and 155-mm projectile).

Group: Two or more adjacent GT items with overlapping halos.

GT: Ground truth

Response Stage Noise Level: The level that represents the signal level below which anomalies are not considered detectable. Demonstrators are required to provide the recommended noise level for the blind grid test area.

Discrimination Stage Threshold: The demonstrator-selected threshold level that is expected to provide optimum performance of the system by retaining all detectable munitions and rejecting the maximum amount of clutter. This level defines the subset of anomalies the demonstrator would recommend digging based on discrimination.

Binomially Distributed Random Variable: A random variable of the type which has only two possible outcomes, say success and failure, is repeated for n independent trials with the probability p of success and the probability l-p of failure being the same for each trial. The number of successes x observed in the n trials is an estimate of p and is considered to be a binomially distributed random variable.

RESPONSE AND DISCRIMINATION STAGE DATA

The scoring of the demonstrator's performance is conducted in two stages: response stage and discrimination stage. For both stages, the probability of detection (P_d) and the false alarms are reported as receiver-operating characteristic (ROC) curves. False alarms are divided into those anomalies that correspond to emplaced clutter items, measuring the probability of clutter detection (P_{cd}) or probability of false positive (P_{fp}) . Those that do not correspond to any known item are termed background alarms.

The response stage is a measure of whether the sensor can detect an object of interest. For a channel instrument, this value should be closely related to the amplitude of the signal. The demonstrator must report the response level (threshold) below which target responses are deemed insufficient to warrant further investigation. At this stage, minimal processing may be done. This includes filtering long- and short-scale variations, bias removal, and scaling. This processing should be detailed in the data submission.

For a multichannel instrument, the demonstrator must construct a quantity analogous to amplitude. The demonstrator should consider what combination of channels provides the best test for detecting any object that the sensor can detect. The average amplitude across a set of channels is an example of an acceptable response stage quantity. Other methods may be more appropriate for a given sensor. Again, minimal processing can be done, and the demonstrator should explain how this quantity was constructed in their data submission.

The discrimination stage evaluates the demonstrator's ability to correctly identify munitions as such, and to reject clutter. For the same locations as in the response stage anomaly list, the discrimination stage list contains the output of the algorithms applied in the discrimination-stage processing. This list is prioritized based on the demonstrator's determination that an anomaly location is likely to contain munitions. Thus, higher output values are indicative of higher confidence that a munitions item is present at the specified location. For electronic signal processing, priority ranking is based on algorithm output. For other systems, priority ranking is based on human judgment. The demonstrator also selects the threshold that the demonstrator believes will provide optimum system performance, (i.e., that retains all the detected munitions and rejects the maximum amount of clutter).

Note: The two lists provided by the demonstrator contain identical numbers of potential target locations. They differ only in the priority ranking of the declarations.

GROUP SCORING FACTORS

Based on configuration of the GT at the standardized sites and the defined scoring methodology, there exists munitions groups defined as having overlapping halos. In these cases, the following scoring logic is implemented (fig. A-1 through A-9):

- a. Overall site scores (i.e., P_d) will consider only isolated munitions and clutter items.
- b. GT items that have overlapping halos (both munitions and clutter) will form a group and groups may form chains.
- c. Groups will have a complex halos composed of all the composite halos of all its GT items.
- d. Groups will have three scoring factors: groups found groups identified and group coverage. Scores will be based on 1:1 matches of anomalies and GT.
- (1) Groups Found (Found): the number of groups that have one or more GT items matched divided by the total number of groups. Demonstrators will be credited with detecting a group if any item within the group is matched to an anomaly in their list.
- (2) Groups Identified (ID): the number of groups that have two or more GT items matched divided by the total number of groups. Demonstrators will be credited with identifying that a group is present if multiple items within the composite halo are matched to anomalies in their list.
- (3) Group Coverage (Coverage): the number of GT items matched within groups divided by the total number of GT items within groups. This metric measures the demonstrator accuracy in determining the number of anomalies within a group. If five items are present and only two anomalies are matched, the demonstrator will score 0.4. If all five are matched the demonstrator will score 1.0.
 - e. Location error will not be reported for groups.

- f. Demonstrators will not be asked to call out groups in their scoring submissions. If multiple anomalies are indicated in a small area, the demonstrator will report all individual anomalies.
 - g. Excess alarms within a halo will be disregarded.

A-1. Example of detected item.

A-2. Example of group found (found).

A-3. Example of group identified (ID).

A-4. Example of excess alarms disregarded.

A-5. Example of a group.

A-6. Example of group (1/4 = 0.25).

A-7. Example of group (2/4 = 0.5).

A-8. Example of group (3/4 = 0.75).

A-9. Example of group (4/4 = 1.0).

RESPONSE STAGE DEFINITIONS

Response Stage Probability of Detection (P_d^{res}): $P_d^{res} = (No. of response-stage detections)/(No. of emplaced munitions in the test site).$

Response Stage Clutter Detection (cd^{res}): An anomaly location that is within R_{halo} of an emplaced clutter item.

Response Stage Probability of Clutter Detection (P_{cd}^{res}) : $P_{cd}^{res} = (No. of response-stage clutter detections)/(No. of emplaced clutter items).$

Response Stage Background Alarm (ba^{res}): An anomaly in a blind grid cell that contains neither emplaced munitions nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced munitions or emplaced clutter item.

Response Stage Probability of Background Alarm (P_{ba}^{res}): Blind grid only: $P_{ba}^{res} = (No. of response-stage background alarms)/(No. of empty grid locations).$

Response Stage Background Alarm Rate (BAR^{res}): Open field any challenge area (including the direct and indirect firing sub areas) only: $BAR^{res} = (No. \text{ of response-stage background alarms})/(\text{arbitrary constant})$.

Note that the quantities P_d^{res} , P_{cd}^{res} , P_{ba}^{res} , and BAR^{res} are functions of t^{res} , the threshold applied to the response-stage signal strength. These quantities can therefore be written as $P_d^{res}(t^{res})$, $P_{cd}^{res}(t^{res})$, $P_{ba}^{res}(t^{res})$, and $BAR^{res}(t^{res})$.

DISCRIMINATION STAGE DEFINITIONS

Discrimination: The application of a signal processing algorithm or human judgment to sensor data to discriminate munitions from clutter. Discrimination should identify anomalies that the demonstrator has high confidence correspond to munitions, as well as those that the demonstrator has high confidence correspond to nonmunitions or background returns. The former should be ranked with highest priority and the latter with lowest.

Discrimination Stage Probability of Detection (P_d^{disc}): P_d^{disc} = (No. of discrimination-stage detections)/(No. of emplaced munitions in the test site).

Discrimination Stage False Positive (fp^{disc}): An anomaly location that is within R_{halo} of an emplaced clutter item.

Discrimination Stage Probability of False Positive (P_{fp}^{disc}): P_{fp}^{disc} = (No. of discrimination stage false positives)/(No. of emplaced clutter items).

Discrimination Stage Background Alarm (ba^{disc}): An anomaly in a blind grid cell that contains neither emplaced munitions nor an emplaced clutter item. An anomaly location in the open field or scenarios that is outside R_{halo} of any emplaced munitions or emplaced clutter item.

Discrimination Stage Probability of Background Alarm (P_{ba}^{disc}): $P_{ba}^{disc} = (No. of discrimination-stage background alarms)/(No. of empty grid locations).$

Discrimination Stage Background Alarm Rate (BAR disc): BAR disc = (No. of discrimination-stage background alarms)/(arbitrary constant).

Note that the quantities $P_d^{\, disc}$, $P_{fp}^{\, disc}$, $P_{ba}^{\, disc}$, and $BAR^{\, disc}$ are functions of $t^{\, disc}$, the threshold applied to the discrimination-stage signal strength. These quantities can therefore be written as $P_d^{\, disc}(t^{\, disc})$, $P_{fp}^{\, disc}(t^{\, disc})$, $P_{ba}^{\, disc}(t^{\, disc})$, and $BAR^{\, disc}(t^{\, disc})$.

RECEIVER-OPERATING CHARACTERISTIC (ROC) CURVES

ROC curves at both the response and discrimination stages can be constructed based on the above definitions. The ROC curves plot the relationship between P_d versus P_{cd} or P_{fp} and P_d versus BAR or P_{ba} as the threshold applied to the signal strength is varied from its minimum (t_{min}) to its maximum (t_{max}) value. P_d versus P_{fp} and P_d versus BAR being combined into ROC curves are shown in Figure A-10. Note that the "res" and "disc" superscripts have been suppressed from all the variables for clarity.

Figure A-10. ROC curves for open field testing. Each curve applies to both the response and discrimination stages.

METRICS TO CHARACTERIZE THE DISCRIMINATION STAGE

The demonstrator is also scored on efficiency and rejection ratio, which measure the effectiveness of the discrimination stage processing. The goal of discrimination is to retain the greatest number of munitions detections from the anomaly list while rejecting the maximum number of anomalies arising from nonmunitions items. The efficiency measures the fraction of detected munitions retained by the discrimination, while the rejection ratio measures the fraction of false alarms rejected. Both measures are defined relative to the entire response list, i.e., the maximum munitions detectable by the sensor and its accompanying clutter detection rate/false positive rate or background alarm rate.

_

¹Strictly speaking, ROC curves plot the P_d versus P_{ba} over a predetermined and fixed number of detection opportunities (some of the opportunities are located over munitions and others are located over clutter or blank spots). In an open field scenario, each system suppresses its signal strength reports until some bare-minimum signal response is received by the system. Consequently, the open field ROC curves do not have information from low signal-output locations, and, furthermore, different contractors report their signals over a different set of locations on the ground. These ROC curves are thus not true to the strict definition of ROC curves as defined in textbooks on detection theory. Note, however, that the ROC curves obtained in the blind grid test sites are true ROC curves.

Efficiency (E): $E = P_d^{disc}(t^{disc})/P_d^{res}(t_{min}^{res})$: Measures (at a threshold of interest) the degree to which the maximum theoretical detection performance of the sensor system (as determined by the response stage tmin) is preserved after application of discrimination techniques. Efficiency is a number between 0 and 1. An efficiency of 1 implies that all of the munitions initially detected in the response stage were retained at the specified threshold in the discrimination stage, t^{disc} .

False Positive Rejection Rate (R_{fp}) : $R_{fp} = 1$ - $[P_{fp}^{\ disc}(t^{disc})/P_{cd}^{\ res}(t_{min}^{\ res})]$: Measures (at a threshold of interest) the degree to which the sensor system's false positive performance is improved over the maximum false positive performance (as determined by the response stage tmin). The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all emplaced clutter initially detected in the response stage were correctly rejected at the specified threshold in the discrimination stage.

Background Alarm Rejection Rate (R_{ba}):

```
\begin{split} &Blind~grid:~R_{ba}=1\text{ - }[P_{ba}^{~disc}(t^{disc})\!/P_{ba}^{~res}(t_{min}^{~res})].\\ &Open~field:~R_{ba}=1\text{ - }[BAR^{disc}(t^{disc})\!/BAR^{res}(t_{min}^{~res})]). \end{split}
```

Measures the degree to which the discrimination stage correctly rejects background alarms initially detected in the response stage. The rejection rate is a number between 0 and 1. A rejection rate of 1 implies that all background alarms initially detected in the response stage were rejected at the specified threshold in the discrimination stage.

CHI-SQUARE COMPARISON

The Chi-square test for differences in probabilities (or 2 by 2 contingency table) is used to analyze two samples drawn from two different populations to see if both populations have the same or different proportions of elements in a certain category. More specifically, two random samples are drawn, one from each population, to test the null hypothesis that the probability of event A (some specified event) is the same for both populations.

The test statistic of the 2 by 2 contingency table is the Chi-square distribution with one degree of freedom. When an association between a more challenging terrain feature and relatively degraded performance is sought, a one-sided test is performed. A two-sided 2 by 2 contingency table is used in the Standardized UXO Technology Demonstration Site Program to compare performance between any two areas or subareas when the direction of degradation cannot be predetermined.

For a one-sided test, a significance level of 0.05 is used to set the critical decision limit. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, then the lower proportion tested will be considered significantly less than the greater one (degraded). If the test statistic calculated from the data is less than this value, then no degradation can be said to exist because of the terrain feature introduced.

For a two-sided test, a significance level of 0.10 is used to allow .05 on either side of the decision. It is a critical decision limit because if the test statistic calculated from the data exceeds this value, then the two proportions tested will be considered significantly different. If the test statistic calculated from the data is less than this value, then the two proportions tested will be considered not significantly different.

An exception must be applied when either a 0 or 100 percent success rate occurs in the sample data. The Chi-square test cannot be used in these instances. Instead, Fischer's test is used, and the critical decision limit for one-sided tests is the chosen significance level, which in this case is 0.05. With Fischer's test, if the test statistic is less than the critical value, then the proportions are considered to be significantly different.

An example follows that illustrates Standardized UXO Technology Demonstration Site blind grid results compared to those from the open field legacy. It should be noted that a significant result does not prove a cause-and-effect relationship exists between the two populations of interest; however, it does serve as a tool to indicate that one data set has experienced a degradation or change in system performance at a large enough level than can be accounted for merely by chance or random variation. Note also that a result that is not significant indicates that there is not enough evidence to declare that anything more than chance or random variation within the same population is at work between the two data sets being compared.

Demonstrator X achieves the following overall results after surveying the blind grid and open field (legacy) using the same system (results indicate the number of munitions detected divided by the number of munitions emplaced):

$$\begin{array}{ll} Blind \ grid & Open \ field \\ P_d^{\ res} \ 100/100 \ = \ 1.0 & 8/10 \ = \ .80 \end{array}$$

P_d res: BLIND GRID versus OPEN FIELD (legacy). Using the example data above to compare probabilities of detection in the response stage, all 100 munitions out of 100 emplaced munitions items were detected in the blind grid while 8 munitions out of 10 emplaced were detected in the open field. Fischer's test must be used since a 100 percent success rate occurs in the data. Fischer's test uses the four input values to calculate a test statistic of 0.0075 that is compared against the critical value of 0.05. Since the test statistic is less than the critical value, the smaller response stage detection rate (0.80) is considered to be significantly less at the 0.05 level of significance. While a significant result does not prove a cause-and-effect relationship exists between the change in survey area and degradation in performance, it does indicate that the detection ability of demonstrator X's system seems to have been degraded in the open field relative to results from the blind grid using the same system. This is an example of a one-sided Chi-squared test.

APPENDIX B. DAILY WEATHER LOGS

Date, 10	Time, ^a EST	Avg. Temp, °F	Total Precip., in.
1 Jun	0700	75.6	0.00
	0800	77.0	0.00
	0900	79.3	0.00
	1000	81.0	0.00
	1100	81.3	0.00
	1200	80.8	0.00
	1300	82.9	0.00
	1400	84.9	0.00
	1500	84.6	0.00
	1600	82.2	0.00
	1700	78.8	0.00
2 Jun	0700	72.9	0.00
	0800	77.5	0.00
	0900	81.1	0.00
	1000	82.6	0.00
	1100	84.2	0.00
	1200	85.3	0.00
	1300	85.3	0.00
	1400	86.2	0.00
	1500	86.7	0.00
	1600	86.5	0.00
	1700	86.2	0.00
3 Jun	0700	77.4	0.00
	0800	79.7	0.00
	0900	82.6	0.00
	1000	84.2	0.00
	1100	85.5	0.00
	1200	86.5	0.00
	1300	87.6	0.00
	1400	87.3	0.00
	1500	87.3	0.00
	1600	87.4	0.00
	1700	86.2	0.00

^aEastern Standard Time

Date, 10	Time, ^a EST	Avg. Temp, °F	Total Precip., in.
4 Jun	0700	73.9	0.00
	0800	80.1	0.00
	0900	83.7	0.00
	1000	84.9	0.00
	1100	84.0	0.00
	1200	84.6	0.00
	1300	86.5	0.00
	1400	86.5	0.00
	1500	86.4	0.00
	1600	87.1	0.00
	1700	73.9	0.00

APPENDIX C. SOIL MOISTURE

Date: 1 Jun 10		1 2 5 D 11 0/	D16 D 11 0/
Probe Location	Layer, in.	A.M. Reading, %	P.M. Reading, %
Wet area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		-1
Wooded area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Open area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Calibration lanes	0 to 6	14.6	14.5
	6 to 12	23.8	23.8
	12 to 24	24.1	24.0
	24 to 36	29.0	28.7
	36 to 48	37.8	37.6
Blind grid/moguls	0 to 6		
	6 to 12		
	12 to 24		
Ī	24 to 36		
Ţ	36 to 48		

Date: 2 Jun 10			
Probe Location	Layer, in.	A.M. Reading, %	P.M. Reading, %
Wet area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Wooded area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Open area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Calibration lanes	0 to 6	14.2	
	6 to 12	23.7	
	12 to 24	23.8	
	24 to 36	28.9	
	36 to 48	37.5	
Blind grid/moguls	0 to 6	10.1	10.0
	6 to 12	20.8	20.6
	12 to 24	25.7	25.4
	24 to 36	28.1	27.9
	36 to 48	34.7	34.6

Date: 3 Jun 10 Probe Location	Layer, in.	A.M. Reading, %	P.M. Reading, %
Wet area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Wooded area	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Open area	0 to 6		5.9
_	6 to 12		7.5
	12 to 24		10.2
	24 to 36		21.8
	36 to 48		23.6
Calibration lanes	0 to 6		
	6 to 12		
	12 to 24		
	24 to 36		
	36 to 48		
Blind grid/moguls	0 to 6	9.8	9.7
	6 to 12	20.2	20.2
	12 to 24	25.1	25.0
	24 to 36	27.7	27.6
	36 to 48	34.4	34.4

Date: 4 Jun 10 Probe Location	Layer, in.	A.M. Reading, %	P.M. Reading, %			
Wet area	0 to 6					
	6 to 12					
	12 to 24					
	24 to 36					
	36 to 48					
Wooded area	0 to 6					
	6 to 12					
	12 to 24					
	24 to 36		-			
	36 to 48		-			
Open area	0 to 6	5.7				
	6 to 12	7.4	1			
	12 to 24	10.3	-			
	24 to 36	21.6	-			
	36 to 48	23.5				
Calibration lanes	0 to 6					
	6 to 12					
	12 to 24		-			
	24 to 36		-			
	36 to 48		-			
Blind grid/moguls	0 to 6					
	6 to 12					
	12 to 24					
	24 to 36					
	36 to 48					

Date	No. of People	AreaTested	Status Start Time	Status Stop Time	Duration min.	Operational Status	Operational Status Comments	Track Method	Pattern	Field Conditions	
6/1/2010	6	CALIBRATION LANES	900	955	55	INITIAL SETUP	INITIAL MOBILIZATION	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	955	1010	15	CALIBRATION	CALIBRATE	GPS	LINEAR	SUNNY	HOT
6/1/2010	6	CALIBRATION LANES	1010	1050	40	DAILY START, STOP	EQUIPMENT SETUP	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1050	1135	45	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1135	1145	10	DOWNTIME DUE TO EQUIP MAINT/CHECK	DOWNLOAD DATA	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1145	1330	105	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1330	1340	10	DOWNTIME DUE TO EQUIP MAINT/CHECK	CHANGE BATTERIES	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1340	1615	155	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/1/2010	6	CALIBRATION LANES	1615	1620	5	CALIBRATION	CALIBRATE	GPS	LINEAR	SUNNY	HOT
6/1/2010	6	CALIBRATION LANES	1620	1635	15	DAILY START, STOP	BREAKDOWN END OF DAILY OPERATIONS	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	CALIBRATION LANES	745	755	10	DAILY START, STOP	EQUIPMENT SETUP	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	CALIBRATION LANES	755	800	5	CALIBRATION	CALIBRATE	GPS	LINEAR	SUNNY	HOT
6/2/2010	5	CALIBRATION LANES	800	900	60	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	900	1040	100	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	1040	1045	5	DOWNTIME DUE TO EQUIP MAINT/CHECK	DOWNLOAD DATA	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	1045	1110	25	DOWNTIME DUE TO EQUIP MAINT/CHECK	DATA CHECK	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	1110	1130	20	DAILY START, STOP	EQUIPMENT SETUP	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	1130	1600	270	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/2/2010	5	BLIND TEST GRID	1600	1620	20	DAILY START, STOP	BREAKDOWN END OF DAILY OPERATIONS	GPS	LINEAR	SUNNY	НОТ
6/3/2010	5	BLIND TEST GRID	730	740	10	DAILY START, STOP	EQUIPMENT SETUP	GPS	LINEAR	SUNNY	НОТ

Date	No. of People	AreaTested	Status Start Time	Status Stop Time	Duration min.	Operational Status	Operational Status Comments	Track Method	Pattern	Field Conditions	
6/3/2010	5	BLIND TEST GRID	740	745	5	CALIBRATION	CALIBRATE	GPS	LINEAR	SUNNY	НОТ
6/3/2010	5	BLIND TEST GRID	745	1440	415	COLLECTING DATA	COLLECTING DATA	GPS	LINEAR	SUNNY	НОТ
6/3/2010	5	OPEN FIELD	1440	1615	95	COLLECTING DATA	COLLECTING DATA INDIRECT FIRE	GPS	LINEAR	SUNNY	НОТ
6/3/2010	5	OPEN FIELD	1615	1630	15	DAILY START, STOP	BREAKDOWN END OF DAILY OPERATIONS	GPS	LINEAR	SUNNY	НОТ
6/4/2010	5	OPEN FIELD	720	735	15	DAILY START, STOP	EQUIPMENT SETUP	GPS	LINEAR	SUNNY	НОТ
6/4/2010	5	OPEN FIELD	735	740	5	CALIBRATION	CALIBRATE	GPS	LINEAR	SUNNY	HOT
6/4/2010	5	OPEN FIELD	740	815	35	COLLECTING DATA	COLLECTING DATA INDIRECT FIRE	GPS	LINEAR	SUNNY	НОТ
6/4/2010	5	OPEN FIELD	815	820	5	DOWNTIME DUE TO EQUIPMENT FAILURE	WHEEL AXLE BROKEN, NOT REPLACED	GPS	LINEAR	SUNNY	НОТ
6/4/2010	5	OPEN FIELD	820	915	55	DEMOBILIZATION	DEMOBILIZATION	GPS	LINEAR	SUNNY	НОТ

APPENDIX E. REFERENCES

- 1. Standardized UXO Technology Demonstration Site Handbook, DTC Project No. 8-CO-160-000-473, Report No. ATC-8349, March 2002.
- 2. Aberdeen Proving Ground Soil Survey Report, October 1998.
- 3. Data Summary, UXO Standardized Test Site: APG Soils Description, May 2002.

APPENDIX F. ABBREVIATIONS

APG = Aberdeen Proving Ground

ATC = U.S. Army Aberdeen Test Center ATSS = Aberdeen Test Support Services

BAR = background alarm rate

DMM = discarded military munitions EMI = electromagnetic interference

EQT = Environmental Quality Technology

ERDC = U.S. Army Corps of Engineers Engineering Research and

Development Center

EST = Eastern Standard Time

ESTCP = Environmental Security Technology Certification Program

GPS = Global Positioning System

GT = ground truth

HDSD = Homeland Defense and Sustainment Division

HEAT = high-explosive antitank JPG = Jefferson Proving Ground

MM = military munitions
NS = nonstandard munition
POC = point of contact

POC = point of contact QA = quality assurance QC = quality control

ROC = receiver-operating characteristic

S = standard munition

SAIC = Science Applications International Corporation SCEMP = Simplified Combined EMI Magnetometer Prototype

SERDP = Strategic Environmental Research and Development Program

USAEC = U.S. Army Environmental Command

UXO = unexploded ordnance

YPG = U.S. Army Yuma Proving Ground

APPENDIX G. DISTRIBUTION LIST

DTC Project No. 8-CO-160-UXO-021

Addressee	No. of <u>Copies</u>
Commander U.S. Army Aberdeen Test Center ATTN: TEDT-AT-SLE (Mr. J. Stephen McClung) 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059	1
Program Manager SERDP/ESTCP Munitions Management ATTN: Mr. Herb Nelson 901 North Stuart Street, Suite 303 Arlington, VA 22203	1
Nova Research, Inc. ATTN: Mr. Dan Steinhurst 1900 Elkin Street, Suite 230 Alexandria, VA 22308	1
Defense Technical Information Center 8725 John J. Kingman Road, Suite 0944 Fort Belvoir, VA 22060-6218	PDF