EXHIBIT F

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800, EP-TA845, S2MM101

Title: POWER SYSTEM WITH POWER CONVERTERS HAVING AN ADAPTIVE CONTROLLER

Priority Date: Dec. 01, 2006

Filed Date: Feb. 23, 2007

Issued Date: Mar. 09, 2010

Expiration Date: Aug 06, 2027

Inventors: Daniel A. Artusi; Ross Fosler;

Allen F. Rozman

Claims: 1, 3, 6, & 16

Claim 1
A (CON) power converter coupled to a (PCC) power system controller configured to receive a (S) signal
indicating a (OP) system operational state of a (LD) load coupled thereto, comprising:
a (PS) power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output
characteristic at an (OUT) output thereof; and
a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to
enter a (PCOP) power converter operational state
as a function of said (S) signal indicating said (OP) system operational state,
said (CON) controller further configured to provide a (OS) signal to control said (DC) duty cycle of said (PS)
power switch as a function of said (OC) output characteristic and in accordance with said (COM) command,
thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to improve an
operating efficiency thereof as a function of said (OP) system operational state.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

A (CON) power converter coupled to a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state of a (LD) load coupled thereto, comprising:

IC1 works in conjunction with IC21 and IC22 on the EP-TA800.

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020, Note: The citation pertains to only the document excerpt not the schematics or other data.

DFN-14			
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.
3	Voc	Power Supply	IC power supply.
4	DET	Analog Input	AC unplug detect.
5	V _{BUS}	Analog Input/ Output	Monitor V _{BUS} voltage after N-FET switch.
6	V _{BUS_S}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.
7	CC2	Analog Input/ Output	Configuration Channel 2.
8	CC1	Analog Input/ Output	Configuration Channel 1.
9	18-	Analog Input	Output current sensing terminal - (for current sensing resistor).
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).

A power converter coupled to a power system controller configured to receive a (S) signal indicating a (OP) system operational state of a load coupled thereto, comprising:

Claim 1

a (PS) power switch configured to conduct for a duty cycle to provide a (OC) regulated output characteristic at an (OUT) output thereof; and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

Claim 1

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish data roles between two attached ports
- \mathbf{OC}
- Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

 $\textbf{Source:} \ https://usb.org/sites/default/files/USB\%20Type-C\%20Spec\%20R2.0\%20-\%20August\%202019.pdf,\ Note:\ The\ citation\ pertains\ to\ only\ the\ document\ excerpt\ not\ the\ schematics\ or\ other\ data.$

5

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800 Claim 1 a power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an output thereof; \mathbf{OC} \mathbf{OC} \mathbf{OC} VBUS OUT=5V, no load VBUS OUT=5V, 1A load VBUS OUT=5V, 2A load Drain of Q01 OC \mathbf{OC} VBUS_OUT=9V, no load VBUS_OUT=9V, 1A load VBUS_OUT=9V, 2A load WWW.... Drain of Q01

Claim 1

a power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an output thereof; and

Claim 1

a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to enter a (PCOP) power converter operational state

COM PCOP

Pin Number	Pin Name	Туре	Pin Description
1	GND	Ground	Ground.
2	DLNK	Analog Input	Digital communication link signal. Used for secondary-side to primary-side communication for all rapid change information, which includes <u>output voltage</u> requests, <u>output current limits</u> , output voltage undershoot, and over-voltage protection.
3	V _{SENSE}	Analog Input	Auxiliary voltage sense. Used for primary-side regulation and secondary-to-primary communication through main transformer.
4	CFG	Analog Input	Used for CDC configuration and auxiliary winding open protection.
5	I _{SENSE}	Analog Input	Primary-side current sense. Used for cycle-by-cycle peak-current control and limit in primary-side CV/CC regulation.
6	SOURCE	Power Input	Connect to the source of external power MOSFET. Inside the IC, it is connected to internal MOSFET and startup V _{CC} charge circuit.
7	GATE	Output	Gate drive for external MOSFET switch.
8	Voc	Power Input	IC power supply.

Source: Dialog Semiconductor iW1791 AC/DC Primary Side Rapid Charge PWM Controller with High Resolution Voltage/Current Control, Product Summary Rev. 1.51 05-OCT-2018, Note: The citation pertains to only the document excerpt not the schematics or other data.

Preliminary - Subject to Change

as a function of said (S) signal indicating said (OP) system operational state,

IC1 works in conjunction with IC21 and IC22 on the EP-TA800.

Claim 1

DFN-14	N-14 Pin Name Type		Pin Description		
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.		
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.		
3	Voc	Power Supply	IC power supply.		
4	DET	Analog Input	AC unplug detect.		
5	V _{eus}	Analog Input/ Output	Monitor V _{eus} voltage after N-FET switch.		
6	V _{eus_o}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.		
7	CC2	Analog Input/ Output	Configuration Channel 2.		
8	CC1	Analog Input/ Output	Configuration Channel 1.		
9	IS-	Analog Input	Output current sensing terminal - (for current sensing resistor).		
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).		
11	SD	Analog Input/ Output	Connect to an external NTC resistor to measure the power adapter temperature.		
12	D-	Analog Input/ Output	USB D- signal.		
13	GND	Ground	Ground.		
14	D+	Analog Input/ Output	USB D+ signet.		

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020, Note: The citation pertains to only the document excerpt not the schematics or other data.

as a function of said (S) signal indicating said (OP) system operational state,

Claim 1

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

said (CON) controller further configured to provide a (OS) signal to control said duty cycle of said (PS) power switch as a function of said output characteristic and in accordance with said (COM) command,

COM

Pin Number	Pin Name	Type	Pin Description
1	GND	Ground	Ground.
2	DLNK	Analog Input	Digital communication link signal. Used for secondary-side to primary-side communication for all rapid change information, which includes output voltage requests, output current limits, output voltage undershoot, and over-voltage protection.
3	V _{SENSE}	Analog Input	Auxiliary voltage sense. Used for primary-side regulation and secondary-to-primary communication through main transformer.
4	CFG	Analog Input	Used for CDC configuration and auxiliary winding open protection.
5	I _{SENSE}	Analog Input	Primary-side current sense. Used for cycle-by-cycle peak-current control and limit in primary-side CV/CC regulation.
6	SOURCE	Power Input	Connect to the source of external power MOSFET. Inside the IC, it is connected to internal MOSFET and startup V _{CC} charge circuit.
7	GATE	Output	Gate drive for external MOSFET switch.
8	Voc	Power Input	IC power supply.

OS

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

said controller further configured to provide a signal to control said duty cycle of said power switch as a function of said output characteristic and in accordance with said (COM) command,

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

Claim 1

Claim 1

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to improve an operating efficiency thereof as a function of said (OP) system operational state.

CON

Claim 1

iW1791

AC/DC Primary-Side Rapid Charge™ PWM Controller with High Resolution Voltage/Current Control

OP

Dialog's innovative proprietary technology ensures that power supplies designed with the iW1791 and Dialog's secondary-side controllers can provide output voltage configurations of 3V to 20V for USB PD, 5V/9V/12V for QC2.0 and 3.6V to 12V in 200mV increments for QC3.0 and other proprietary protocols.

IOC

 Proprietary optimized load adaptive maximum constant frequency PWM switching with quasi-resonant operation achieves best size, efficiency, and common mode noise

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

thereby regulating an internal operating characteristic of said power converter to (EFF) improve an operating efficiency thereof as a function of said (OP) system operational state.

OP EFF

	EP-TA800 (5V testing)							
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency	
	0.008	0.000	5.120	0.000	0.000	0.000		
	0.011	0.412	5.110	0.020	0.102	0.148	0.359	
	0.021	0.800	5.100	0.100	0.510	0.522	0.653	
	0.062	2.990	5.080	0.500	2.540	2.595	0.868	
	0.101	5.550	5.070	1.000	5.070	5.109	0.921	
	0.148	8.635	5.020	1.500	7.530	7.542	0.873	
	0.185	11.240	5.000	2.000	10.000	9.983	0.888	
	0.222	14.130	4.980	2.500	12.450	12.560	0.889	
			EP-TA	800 (9V test	ing)			
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency	
	0.015	0.554	9.140	0.000	0.000	0.000		
	0.022	0.858	9.130	0.020	0.183	0.266	0.310	
	0.035	1.521	9.130	0.100	0.913	0.933	0.613	
	0.099	5.399	9.100	0.500	4.550	4.650	0.861	
	0.171	10.210	9.090	1.000	9.090	9.152	0.896	
	0.241	15.230	9.080	1.500	13.620	13.640	0.896	
	0.305	19.670	9.000	2.000	18.000	18.060	0.918	
	0.375	24.830	8.990	2.500	22.475	22.680	0.913	
	0.437	30.450	8.970	3.000	26.910	27.035	0.888	

Claim 3
The power converter as recited in claim 1 wherein said (PCC) power system controller is configured to receive a (DET) signal indicating a (STAT) power converter status of said (CON) power converter,
said (PCOP) power converter operational state being a function of said (STAT) power converter status.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

The power converter as recited in claim 1 wherein said (PCC) power system controller is configured to receive a (DET) signal indicating a (STAT) power converter status of said (CON) power converter,

DET

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0

Pin Number DFN-14	Pin Name	Туре	Pin Description	
1	DIS	Analog Output	Discharging circuit. Used	d for fast discharging of output capacitor.
2	DRV	Analog Output		on be used to drive optocoupler LED with g for transmitting signals to primary side.
3	V _{cc}	Power Supply	IC power supply.	
4	DET	Analog Input	AC unplug detect.	STAT
5	V _{BUS}	Analog Input/ Output	Monitor V _{BUS} voltage after	er N-FET switch.
6	V _{BUS_G}	Analog Input/ Output	Connect to external N-F	ET gate pin for gate-source voltage control.
7	CC2	Analog Input/ Output	Configuration Channel 2	<u>.</u>
8	CC1	Analog Input/ Output	Configuration Channel 1.	
9	IS-	Analog Input	Output current sensing terminal - (for current sensing resistor	
10	IS+	Analog Input	Output current sensing t	erminal + (for current sensing resistor).

said (PCOP) power converter operational state being a function of said (STAT) power converter status.

Claim 3

Pin Name	Туре	Pin Description	
DIS	Analog Output	Discharging circuit. Us	sed for fast discharging of output capacitor.
DRV	Analog Output		Can be used to drive optocoupler LED with ing for transmitting signals to primary side.
V _{cc}	Power Supply	IC power supply.	
DET	Analog Input	AC unplug detect.	STAT / PCOP
V _{BUS}	Analog Input/ Output	Monitor V _{BUS} voltage a	after N-FET switch.
V _{BUS_G}	Analog Input/ Output	Connect to external N	-FET gate pin for gate-source voltage control.
CC2	Analog Input/ Output	Configuration Channe	12.
CC1	Analog Input/ Output	Configuration Channe	11.
IS-	Analog Input	Output current sensing	g terminal - (for current sensing resistor).
IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).	
	DIS DRV Vcc DET VBUS CC2 CC1 IS-	DIS Analog Output DRV Analog Output Vcc Power Supply DET Analog Input VBUS Analog Input Output VBUS Analog Input Output CC2 Analog Input CC1 Analog Input Output Analog Input Output Analog Input Output Analog Input Analog Input Output Analog Input Analog Input Output Analog Input Output IS- Analog Input	DIS Analog Output Discharging circuit. Us DRV Analog Output External circuit drive. automatic current limit Vcc Power Supply IC power supply. DET Analog Input AC unplug detect. VBUS Analog Input/Output Connect to external NOUtput Configuration Channe CC2 Analog Input/Output Configuration Channe CC1 Analog Input/Output Configuration Channe CC1 Analog Input/Output Configuration Channe IS- Analog Input/Output Output current sensing

Note: If an AC unplug detect is observed the (PCOP) of the system is unpowered.

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020

Claim 6
A (SYS) power system coupled to a (LD) load, comprising:
a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state
of said (LD) load and
to select a (PCOP) power converter operational state as a function thereof; and
a (CON) power converter, including:
a (PS) power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output
characteristic at an (OUT) output thereof, and
a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to
enter said (PCOP) power converter operational state and
to provide a (S) signal to control said (DC) duty cycle of said (PS) power switch as a function of said (OC)
output characteristic and in accordance with said (COM) command,
thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to (EFF)
improve an operating efficiency thereof as a function of said (OP) system operational state.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

A (SYS) power system coupled to a (LD) load, comprising:

IC1 works in conjunction with IC21 and IC22 on the EP-TA800.

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020, Note: The citation pertains to only the document excerpt not the schematics or other data.

a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state of said (LD) load and

IC1 works in conjunction with IC21 and IC22 on the EP-TA800.

Claim 6

Source: Dialog Semiconductor iW657P USB Power Delivery 3.0 Controller with Integrated Current Sense Supports Qualcomm Quick Charge 4+, Product Summary Rev. 1.0 30-Mar-2020, Note: The citation pertains to only the document excerpt not the schematics or other

DFN-14			
1	DIS	Analog Output	Discharging circuit. Used for fast discharging of output capacitor.
2	DRV	Analog Output	External circuit drive. Can be used to drive optocoupler LED with automatic current limiting for transmitting signals to primary side.
3	Voc	Power Supply	IC power supply.
4	DET	Analog Input	AC unplug detect.
5	V _{BUS}	Analog Input/ Output	Monitor V _{BUS} voltage after N-FET switch.
6	V _{BUS_G}	Analog Input/ Output	Connect to external N-FET gate pin for gate-source voltage control.
7	CC2	Analog Input/ Output	Configuration Channel 2.
8	CC1	Analog Input/ Output	Configuration Channel 1.
9	18-	Analog Input	Output current sensing terminal - (for current sensing resistor).
10	IS+	Analog Input	Output current sensing terminal + (for current sensing resistor).

to select a (PCOP) power converter operational state as a function thereof; and

Claim 6

PCOP

Pin Number	Pin Name	Туре	Pin Description
1	GND	Ground	Ground.
2	DLNK	Analog Input	Digital communication link signal. Used for secondary-side to primary-side communication for all rapid change information, which includes output voltage requests, output current limits, output voltage undershoot, and over-voltage protection.
3	V _{SENSE}	Analog Input	Auxiliary voltage sense. Used for primary-side regulation and secondary-to-pri- mary communication through main transformer.
4	CFG	Analog Input	Used for CDC configuration and auxiliary winding open protection.
5	I _{SENSE}	Analog Input	Primary-side current sense. Used for cycle-by-cycle peak-current control and limit in primary-side CV/CC regulation.
6	SOURCE	Power Input	Connect to the source of external power MOSFET. Inside the IC, it is connected to internal MOSFET and startup V _{CC} charge circuit.
7	GATE	Output	Gate drive for external MOSFET switch.
8	Voc	Power Input	IC power supply.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

a (PS) power switch configured to conduct for a duty cycle to provide a (OC) regulated output characteristic at an (OUT) output thereof, and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish data roles between two attached ports
- \mathbf{OC}
- Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

 $\textbf{Source:} \ \text{https://usb.org/sites/default/files/USB\%20Type-C\%20Spec\%20R2.0\%20-\%20August\%202019.pdf, \ Note: The citation pertains to only the document excerpt not the schematics or other data.}$

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800 Claim 6 a power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an output thereof; \mathbf{OC} \mathbf{OC} \mathbf{OC} VBUS OUT=5V, no load VBUS OUT=5V, 1A load VBUS OUT=5V, 2A load Drain of Q01 OC \mathbf{OC} VBUS_OUT=9V, no load VBUS_OUT=9V, 1A load VBUS_OUT=9V, 2A load WWW.... Drain of Q01

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

a power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an output thereof,

Note: The charger will hold up the VBUS_OUT voltage at "4.5V under a 3.5A load but the charger shuts down when the load is increased beyond that. This O-scope capture was taken as the charger was going into one of those over-current protection shutdowns when the load was increased to "3.6A. Immediately after this capture, the VBUS_OUT voltage drops to 0V.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to enter said (PCOP) power converter operational state and

COM

PCOP

Pin Number	Pin Name	Туре	Pin Description		
1	GND	Ground	Ground.		
2	DLNK	Analog Input	Digital communication link signal. Used for secondary-side to primary-side communication for all rapid change information, which includes <u>output voltage</u> requests, <u>output current limits</u> , output voltage undershoot, and over-voltage protection.		
3	Vsexsc	Analog Input	Auxiliary voltage sense. Used for primary-side regulation and secondary-to- mary communication through main transformer.		
4	CFG	Analog Input	Used for CDC configuration and auxiliary winding open protection.		
5	I _{SENSE}	Analog Input	Primary-side current sense. Used for cycle-by-cycle peak-current control and limit in primary-side CV/CC regulation.		
6	SOURCE	Power Input	Connect to the source of external power MOSFET. Inside the IC, it is connected to internal MOSFET and startup V _{CC} charge circuit.		
7	GATE	Output	Gate drive for external MOSFET switch.		
8	Voc	Power Input	IC power supply.		

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

to provide a **(OS) signal to control** said duty cycle of said **(PS) power switch** as a function of said output characteristic and in accordance with said **(COM) command**,

COM

Pin Number	Pin Name	Type	Pin Description
1	GND	Ground	Ground.
2	DLNK	Analog Input	Digital communication link signal. Used for secondary-side to primary-side communication for all rapid change information, which includes output voltage requests, output current limits, output voltage undershoot, and over-voltage protection.
3	V _{SENSE}	Analog Input	Auxiliary voltage sense. Used for primary-side regulation and secondary-to-pri- mary communication through main transformer.
4	CFG	Analog Input	Used for CDC configuration and auxiliary winding open protection.
5	I _{SENSE}	Analog Input	Primary-side current sense. Used for cycle-by-cycle peak-current control and limit in primary-side CV/CC regulation.
6	SOURCE	Power Input	Connect to the source of external power MOSFET. Inside the IC, it is connected to internal MOSFET and startup V _{CC} charge circuit.
7	GATE	Output	Gate drive for external MOSFET switch.
8	Voc	Power Input	IC power supply.

OS

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

to provide a signal to control said duty cycle of said power switch as a function of said output characteristic and in accordance with said (COM) command,

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

Claim 6

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with command,

Note: The charger will hold up the VBUS_OUT voltage at "4.5V under a 3.5A load but the charger shuts down when the load is increased beyond that. This O-scope capture was taken as the charger was going into one of those over-current protection shutdowns when the load was increased to "3.6A. Immediately after this capture, the VBUS_OUT voltage drops to 0V.

thereby regulating an (IOC) internal operating characteristic of said (CON) power converter improve an operating efficiency thereof as a function of said (OP) system operational state.

CON

Claim 6

iW1791

AC/DC Primary-Side Rapid Charge™ PWM Controller with High Resolution Voltage/Current Control

OP

Dialog's innovative proprietary technology ensures that power supplies designed with the iW1791 and Dialog's secondary-side controllers can provide output voltage configurations of 3V to 20V for USB PD, 5V/9V/12V for QC2.0 and 3.6V to 12V in 200mV increments for QC3.0 and other proprietary protocols.

IOC

 Proprietary optimized load adaptive maximum constant frequency PWM switching with quasi-resonant operation achieves best size, efficiency, and common mode noise

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA800

thereby regulating an internal operating characteristic of said power converter to (EFF) improve an operating efficiency thereof as a function of said (OP) system operational state.

OP	FFF
OP	EFF

EP-TA800 (5V testing)							
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.008	0.000	5.120	0.000	0.000	0.000	
	0.011	0.412	5.110	0.020	0.102	0.148	0.359
	0.021	0.800	5.100	0.100	0.510	0.522	0.653
	0.062	2.990	5.080	0.500	2.540	2.595	0.868
	0.101	5.550	5.070	1.000	5.070	5.109	0.921
	0.148	8.635	5.020	1.500	7.530	7.542	0.873
	0.185	11.240	5.000	2.000	10.000	9.983	0.888
	0.222	14.130	4.980	2.500	12.450	12.560	0.889
			EP-TA	800 (9V test	ing)		
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.015	0.554	9.140	0.000	0.000	0.000	
	0.022	0.858	9.130	0.020	0.183	0.266	0.310
	0.035	1.521	9.130	0.100	0.913	0.933	0.613
	0.099	5.399	9.100	0.500	4.550	4.650	0.861
	0.171	10.210	9.090	1.000	9.090	9.152	0.896
·	0.241	15.230	9.080	1.500	13.620	13.640	0.896
	0.305	19.670	9.000	2.000	18.000	18.060	0.918
	0.375	24.830	8.990	2.500	22.475	22.680	0.913
	0.437	30.450	8.970	3.000	26.910	27.035	0.888

Claim 1
A (PC) power converter coupled to a (PCC) power system controller configured to receive a (S) signal
indicating a (OP) system operational state of a (LD) load coupled thereto, comprising:
a (PS) power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output
characteristic at an (OUT) output thereof; and
a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to
enter a (PCOP) power converter operational state
as a function of said (S) signal indicating said (OP) system operational state,
said (CON) controller further configured to provide a (OS) signal to control said (DC) duty cycle of said (PS)
power switch as a function of said (OC) output characteristic and in accordance with said (COM) command,
thereby regulating an (IOC) internal operating characteristic of said (PC) power converter to improve an
operating efficiency thereof as a function of said (OP) system operational state.

Claim 1

A (PC) power converter coupled to a power system controller configured to receive a signal indicating a system operational state of a (LD) load coupled thereto, comprising:

37

Exhibit F - U.S. Patent No. 7,675,759 – Samsung EP-TA845

A power converter coupled to a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state of a (LD) load coupled thereto, comprising:

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

A power converter coupled to a power system controller configured to receive a (S) signal indicating a (OP) system operational state of a load coupled thereto, comprising:

a (PS) power switch configured to conduct for a duty cycle to provide a (OC) regulated output characteristic at an (OUT) output thereof; and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

Claim 1

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- · Establish data roles between two attached ports
- OC
- Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

 $\textbf{Source:} \ https://usb.org/sites/default/files/USB\%20Type-C\%20Spec\%20R2.0\%20-\%20August\%202019.pdf,\ Note:\ The\ citation\ pertains\ to\ only\ the\ document\ excerpt\ not\ the\ schematics\ or\ other\ data.$

a power switch configured to conduct for a (DC) duty cycle to provide an (OC) output characteristic at an output thereof; and

Claim 1

Claim 1

a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to enter a (PCOP) power converter operational state

as a function of said (S) signal indicating said (OP) system operational state,

Claim 1

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

OP • Multi-r

Highly Integrated, Compact Footprint

- Multi-mode Quasi-Resonant (OR) / DCM / CCM flvback controller, high-voltage switch, secondary-side sensing and synchronous rectifier driver
- Optimized efficiency across line and load range

said (CON) controller further configured to provide a (OS) signal to control said duty cycle of said (PS) power switch as a function of said output characteristic and in accordance with said (COM) command,

Claim 1

Claim 1 Exhibit F - U.S. Pate

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

Claim 1

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

thereby regulating an (IOC) internal operating characteristic of said (PC) power converter to improve an operating efficiency thereof as a function of said (OP) system operational state.

OP

IOC

Claim 1

Highly Integrated, Compact Footprint

 Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller, high-voltage switch, secondary-side sensing and synchronous rectifier driver

· Optimized efficiency across line and load range

- Integrated FluxLink™, HIPOT-isolated, feedback link
- · Instantaneous transient response
- · Drives low-cost N-channel FET series load switch
- Integrated 3.6 V supply for external MCU

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

thereby regulating an internal operating characteristic of said power converter to (EFF) improve an operating efficiency thereof as a function of said (OP) system operational state.

OP	FFF
OP	EFF

	EP-TA845 (5v testing)						
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.008	0.000	5.040	0.000	0.000	0.000	
	0.011	0.346	5.040	0.020	0.101	0.146	0.422
	0.021	0.745	5.040	0.100	0.504	0.513	0.689
	0.063	2.886	5.010	0.500	2.505	2.554	0.885
	0.106	5.472	4.970	1.000	4.970	4.995	0.913
	0.165	8.330	4.920	1.500	7.380	7.432	0.892
	0.194	11.040	4.920	2.000	9.840	9.860	0.893
	0.233	13.760	4.850	2.500	12.125	12.290	0.893
			EP-T/	A845 (9V tes	ting)		
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.015	0.508	8.990	0.000	0.000	0.000	
	0.021	0.732	8.990	0.020	0.180	0.261	0.357
	0.036	1.415	8.970	0.100	0.897	0.916	0.647
	0.108	5.206	8.940	0.500	4.470	4.570	0.878
	0.193	9.804	8.910	1.000	8.910	9.030	0.921
	0.247	14.570	8.840	1.500	13.260	13.270	0.911
	0.314	19.410	8.820	2.000	17.640	17.640	0.909
	0.381	24.100	8.740	2.500	21.850	21.860	0.907
	0.441	28.730	8.710	3.000	26.130	26.110	0.909

Claim 6

A (SYS) power system coupled to a (LD) load, comprising:

a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state of said (LD) load and

to select a (PCOP) power converter operational state as a function thereof; and

- a (CON) power converter, including:
- a (PS) power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an (OUT) output thereof, and
- a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to enter said (PCOP) power converter operational state and

to provide a (S) signal to control said (DC) duty cycle of said (PS) power switch as a function of said (OC) output characteristic and in accordance with said (COM) command,

thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to (EFF) improve an operating efficiency thereof as a function of said (OP) system operational state.

Preliminary - Subject to Change

Claim 6

a (PCC) power system controller configured to receive a (S) signal indicating a (OP) system operational state of said (LD) load and

OP

Highly Integrated, Compact Footprint

- <u>Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller,</u> high-voltage switch, secondary-side sensing and synchronous rectifier driver
- Optimized efficiency across line and load range

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

Preliminary – Subject to Change

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

a (PS) power switch configured to conduct for a duty cycle to provide a (OC) regulated output characteristic at an (OUT) output thereof, and

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish data roles between two attached ports

 \mathbf{OC}

Discover and configure VBUS: USB Type-C Current modes or <u>USB Power Delivery</u>

CG2 00HM SHELL A1 (GND)
B12 (GND)
B12 (GND)
B12 (GND)
B13 (GND)
A1 (YPUS)
A4 (YPUS)
A5 (CC)
A5 (CC)
A5 (CC)
A6 (CD)
B7 (D)
B8 (D)
B9 (D)
B1 (GND)
A12 (GND)
A13 (GND)
A14 (GND)
A15 (GND)
A15 (GND)
A16 (GND)
A17 (GND)
A17 (GND)
A18 (GND)
A18 (GND)
A18 (GND)
A19 (GND)

Source: https://usb.org/sites/default/files/USB%20Type-C%20Spec%20R2.0%20-%20August%202019.pdf, Note: The citation pertains to only the document excerpt not the schematics or other data.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

a power switch configured to conduct for a (DC) duty cycle to provide a (OC) regulated output characteristic at an output thereof,

a (CON) controller configured to receive a (COM) command from said (PCC) power system controller to enter said (PCOP) power converter operational state and

Claim 6

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

to provide a (OS) signal to control said duty cycle of said (PS) power switch as a function of said output characteristic and in accordance with said (COM) command,

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

said controller further configured to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

to provide a signal to control said (DC) duty cycle of said power switch as a function of said (OC) output characteristic and in accordance with said command,

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to improve an operating efficiency thereof as a function of said (OP) system operational state.

OP

IOC

Highly Integrated, Compact Footprint

 Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller, high-voltage switch, secondary-side sensing and synchronous rectifier driver

· Optimized efficiency across line and load range

- Integrated FluxLink™, HIPOT-isolated, feedback link
- · Instantaneous transient response
- · Drives low-cost N-channel FET series load switch
- Integrated 3.6 V supply for external MCU

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung EP-TA845

thereby regulating an internal operating characteristic of said power converter to (EFF) improve an operating efficiency thereof as a function of said (OP) system operational state.

OP	EFF
----	-----

	EP-TA845 (5v testing)						
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.008	0.000	5.040	0.000	0.000	0.000	
	0.011	0.346	5.040	0.020	0.101	0.146	0.422
	0.021	0.745	5.040	0.100	0.504	0.513	0.689
	0.063	2.886	5.010	0.500	2.505	2.554	0.885
	0.106	5.472	4.970	1.000	4.970	4.995	0.913
	0.165	8.330	4.920	1.500	7.380	7.432	0.892
	0.194	11.040	4.920	2.000	9.840	9.860	0.893
	0.233	13.760	4.850	2.500	12.125	12.290	0.893
			EP-T/	A845 (9V tes	ting)		
vin	I_in (A)	meas_W_in	V_out	I_out (A)	calc_W_out	meas_W_out	Efficiency
	0.015	0.508	8.990	0.000	0.000	0.000	
	0.021	0.732	8.990	0.020	0.180	0.261	0.357
	0.036	1.415	8.970	0.100	0.897	0.916	0.647
	0.108	5.206	8.940	0.500	4.470	4.570	0.878
	0.193	9.804	8.910	1.000	8.910	9.030	0.921
	0.247	14.570	8.840	1.500	13.260	13.270	0.911
	0.314	19.410	8.820	2.000	17.640	17.640	0.909
	0.381	24.100	8.740	2.500	21.850	21.860	0.907
	0.441	28.730	8.710	3.000	26.130	26.110	0.909

Claim 16 A method of operating a (SYS) power system coupled to a (LD) load, comprising: receiving a (S) signal indicating a (OP) system operational state of said (LD) load; generating a (PCOP) power converter operational state as a function of said (OP) system operational state; inducing a (CON) power converter to enter said (PCOP) power converter operational state; and providing a (OS) signal to control a (DC) duty cycle of a (PS) power switch of said (CON) power converter as a function of an (OC) output characteristic thereof and in accordance with said (PCOP) power converter operational state, thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to improve an (EFF) operating efficiency thereof as a function of said (OP) system operational state.

Claim 16 Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101 A method of operating a (SYS) power system coupled to a (LD) load, comprising: SYS SYS SAMSUNG SYS

Preliminary - Subject to Change

receiving a (S) signal indicating a (OP) system operational state of said (LD) load;

Table 3-5 USB Type-C Receptacle Interface Pin Assignments for USB 2.0-only Support

Claim 16

Pin	Signal Name	Description	Mating Sequence	Pin	Signal Name	Description	Mating Sequence
A1	GND	Ground return	First	B12	GND	Ground return	First
A2				B11			
A3				B10			
A4	Vaus	Bus Power	First	B9	Vaus	Bus Power	First
A5	CC1	Configuration S	Second	B8	SBU2	Sideband Use (SBU)	Second
A6	Dp1	Positive half of the <u>USB 2.0</u> differential pair – Position 1	Second	В7	Dn2	Negative half of the <u>USB 2.0</u> differential pair - Position 2	Second
A7	Dn1	Negative half of the <u>USB 2.0</u> differential pair - Position 1	Second	B6	Dp2	Positive half of the <u>USB 2.0</u> differential pair – Position 2	Second
A8	SBU1	Sideband Use (SBU)	Second	B5	CC2	Configuration S	Second
A9	Vaus	Bus Power	First	B4	Vaus	Bus Power	First
A10				B3			
A11				B2			
A12	GND	Ground return	First	B1	GND	Ground return	First

CC1	CCZ	State	Position
Open	Open	Nothing attached	N/A
Rd	Open	20000	0
Open	Rd	Sink attached	(2)
Open	Ra		0
Ra	Open	Powered cable without Sink attached	0
Rd	Ra	Powered cable with Sink. <u>Vconn-Powered</u>	0
Ra	Rd	Accessory (VPA), or <u>Vconn-Powered USB</u> <u>Device</u> (VPD) attached	0
Rd	Rd	Debug Accessory Mode attached (Appendix B)	N/A
Ra	Ra	Audio Adapter Accessory Mode attached (Appendix A)	N/A

Highly Integrated, Compact Footprint

 Multi-mode Quasi-Resonant (QR) / DCM / CCM flyback controller, high-voltage switch, secondary-side sensing and synchronous rectifier driver

Optimized efficiency across line and load range

OP

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Universal Serial Bus Type-C Cable and Connector Specification, Release 2.0, August 2019

Preliminary - Subject to Change

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101 Claim 16 inducing a (CON) power converter to enter said (PCOP) power converter operational state; and VBUS_OUT= 5V (no load), then transitions to 9V (no load) M1.00ms A Ch2 % 320m\ 13 Oct 2020 16:29:48 Ch1 -Duty 14.49 % **PCOP CON** This burst of data was fed to CC1 by the external PD3.0 emulator, immediately after pressing its trigger button that sends the charger a request for 9V output at VBUS_OUT. TRAVEL ADAPTER ADAPTATEUR DE VOYAGE IODEL /MODÈLE : EP-TA845 M 20.0ms A Ch2 1 320mV PCOID SO WEST AND SO OF 9.0 V = 3.0 A OF 9.0 V = 3.0 A OF 9.0 V = 2.25 A OF 15.0 V = 3.0 A OF 20.0 V = 2.25 A OF 15.0 V = 2.1 A OF 20.0 V = 2.25 A OF 20.0 V = 2.25 A OF 20.0 V = 2.25 A OF 20.0 V = 2.1 A OF 20.0 13 Oct 2020 16:28:02 **PCOP 1**→▼ 80.0000ms Shown at 20ms/div scale in order to capture the entire transition from 5V to 9V at VBUS_OUT.

Exhibit F - U.S. Patent No. 7,675,759 – Samsung S2MM101

providing a (OS) signal to control a (DC) duty cycle of a (PS) power switch of said (CON) power converter

Claim 16

CON STREET ON S

Preliminary - Subject to Change

Claim 16

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101

providing a (COM) signal to control a (DC) duty cycle of a (PS) power switch of said (CON) power converter

VBUS_OUT= 5V, no load

VBUS_OUT= 5V, 1A load

VBUS_OUT= 5V, 2A load

VBUS_OUT= 5V, 1A load

VBUS_OUT= 5V, 2A load

VBUS_OUT= 5V, 1A load

VBUS_OUT= 5V, 1A load

VBUS_OUT= 5V, 2A load

VBUS_OUT= 9V, 1A load

VBUS_OUT= 9V, 1A load

VBUS_OUT= 9V, 2A load

Preliminary - Subject to Change

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101

as a function of an (OC) output characteristic thereof and in accordance with said (PCOP) power converter operational state,

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101

as a function of an (OC) output characteristic thereof and in accordance with said (PCOP) power converter operational state,

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101

thereby regulating an (IOC) internal operating characteristic of said (CON) power converter to improve an (EFF) operating efficiency thereof as a function of said (OP) system operational state.

Exhibit F - U.S. Patent No. 7,675,759 - Samsung S2MM101

thereby regulating an **(IOC)** internal operating characteristic of said **(CON)** power converter to improve an **(EFF)** operating efficiency thereof as a function of said **(OP)** system operational state.

Source: InnoSwitch3-Pro Family, Rev. M 8/20, Note: The citation pertains to only the document excerpt not the schematics or other data.