Project #6

$Open CL\,Array\,\,Multiply,\,Multiply-Add,\,and\,\,Multiply-Reduce$

PangFa Chou | choupa@oregonstate.edu

- 1. The program was run on a rabbit server.
- 2. The result of the program can be presented as following tables and graphs: Table:

Multiply

1	A	В	c	D E
П	1024	8	128	13.27 MegaMults/Sec
2	1024	16	64	17.35 MegaMults/Sec
3	1024	32	32	16.183 MegaMults/Sec
4	1024	64	16	15.439 MegaMults/Sec
5	1024	128	8	16.77 MegaMults/Sec
6	1024	256	4	15.468 MegaMults/Sec
7	1024	512	2	15.015 MegaMults/Sec
8	524288	8	65536	1310.075 MegaMults/Sec
9	524288	16	32768	611.12 MegaMults/Sec
10	524288	32	16384	1268.289 MegaMults/Sec
11	524288	64	8192	456.056 MegaMults/Sec
12	524288	128	4096	1606.846 MegaMults/Sec
13	524288	256	2048	1867,688 MegaMults/Sec
14	524288	512	1024	408.237 MegaMults/Sec
15	1048576	8	131072	1863.453 MegaMults/Sec
16	1048576	16	65536	2074.215 MegaMults/Sec
7	1048576	32	32768	2971.051 MegaMults/Sec
18	1048576	64	16384	404.937 MegaMults/Sec
19	1048576	128	8192	1763.599 MegaMults/Sec
20	1048576	256	4096	174,494 MegaMults/Sec
21	1048576	512	2048	2894.66 MegaMults/Sec
22	2097152	8	262144	311.772 MegaMults/Sec
23	2097152	16	131072	3791.537 MegaMults/Sec
24	2097152	32	65536	4011.485 MegaMults/Sec
25	2097152	64	32768	4726.541 MegaMults/Sec
26	2097152	128	16384	3899.038 MegaMults/Sec
27	2097152	256	8192	5918.64 MegaMults/Sec
28	2097152	512	4096	4324.453 MegaMults/Sec
29	4194304	8	524288	2405.211 MegaMults/Sec
30	4194304	16	262144	4247.108 MegaMults/Sec
31	4194304	32	131072	6196.297 MegaMults/Sec
32	4194304	64	65536	7770.669 MegaMults/Sec
33	4194304	128	32768	10311.293 MegaMults/Sec
34	4194304	256	16384	8482.269 MegaMults/Sec
35	4194304	512	8192	8504.87 MegaMults/Sec
36	8388608	8	1048576	2099.065 MegaMults/Sec
37	8388608	16	524288	4955.258 MegaMults/Sec
38	8388608	32	262144	6755.065 MegaMults/Sec
39	8388608	64	131072	7083.429 MegaMults/Sec
40	8388608	128	65536	12313.246 MegaMults/Sec
41	8388608	256	32768	11541.33 MegaMults/Sec
42	8388608	512	16384	12981.704 MegaMults/Sec

Graph:

Multiply Performance

Multiply-Add

4	A	В	c	D	E
FIE	1024	8	128	19.001	MegaMults/Sec
2	1024	16	64	14.117	MegaMults/Sec
3	1024	32	32		MegaMults/Sec
4	1024	64	16		MegaMults/Sec
5	1024	128	8		MegaMults/Sec
6	1024	256	4		MegaMults/Sec
7	1024	512	2		MegaMults/Sec
8	524288	8	65536		MegaMults/Sec
9	524288	16	32768	1699.965	MegaMults/Sec
10	524288	32	16384	1696.001	MegaMults/Sec
ĬĬ.	524288	64	8192		MegaMults/Sec
12	524288	128	4096		MegaMults/Sec
13	524288	256	2048		MegaMults/Sec
14	524288	512	1024		MegaMults/Sec
15	1048576	8	131072		MegaMults/Sec
16	1048576	16	65536		MegaMults/Sec
17	1048576	32	32768		MegaMults/Sec
18	1048576	64	16384		MegaMults/Sec
19	1048576	128	8192		MegaMults/Sec
20	1048576	256	4096		MegaMults/Sec
21	1048576	512	2048		MegaMults/Sec
22	2097152	8	262144		MegaMults/Sec
23	2097152	16	131072		MegaMults/Sec
24	2097152	32	65536		MegaMults/Sec
25	2097152	64	32768		MegaMults/Sec
26	2097152	128	16384		MegaMults/Sec
27	2097152	256	8192		MegaMults/Sec
28	2097152	512	4096		MegaMults/Sec
29	4194304	8	524288		MegaMults/Sec
30	4194304	16	262144		MegaMults/Sec
31	4194304	32	131072		MegaMults/Sec
32	4194304	64	65536		MegaMults/Sec
33	4194304	128	32768		MegaMults/Sec
34	4194304	256	16384		MegaMults/Sec
35	4194304	512	8192		MegaMults/Sec
36	8388608	8	1048576		MegaMults/Sec
37	8388608	16	524288		MegaMults/Sec
38	8388608	32	262144		MegaMults/Sec
39	8388608	64	131072		MegaMults/Sec
40	8388608	128	65536		MegaMults/Sec
41	8388608	256	32768		MegaMults/Sec
42	8388608	512	16384		MegaMults/Sec

Multiply-Add Performance

Multiply-Add Performance

- 3. OvFor global workloads, performance improves when local workloads increase when the local job size equals 128, and the job size increases and performance peaks. For a given local workload, performance increases with the global workload.
- 4. There are many processing elements idle and lots of compute time is wasted when the local work size is too small.
- They basically have the same performance, but the Multiply is slightly better. I think it is because Multiply-Add is more complicated than Multiply, so the processing time of doing Multiply-Add is longer.
- 6. Before starting work, it is necessary to check work items' sizes because dif- ferent work sizes impact the different performances. If the data size is too small, it is unworthy to do it on GPU.

Part2

7.

Multiply Reduction

Table:

1	A	В	С	D	Е
10 10	1024	8	128	14.228	MegaMults/Sec
2	1024	16	64	13.718	MegaMults/Sec
3	1024	32	32	18.671	MegaMults/Sec
4	1024	64	16	10.244	MegaMults/Sec
5	1024	128	8	11.3	MegaMults/Sec
6	1024	256	4	17.256	MegaMults/Sec
7	1024	512	2	15.628	MegaMults/Sec
8	524288	8	65536	796.829	MegaMults/Sec
9	524288	16	32768	1190.26	MegaMults/Sec
10	524288	32	16384	1349.863	MegaMults/Sec
111	524288	64	8192	1723.526	MegaMults/Sec
12	524288	128	4096	1226.06	MegaMults/Sec
13	524288	256	2048	1071.581	MegaMults/Sec
14	524288	512	1024	1576.55	MegaMults/Sec
15	1048576	8	131072		MegaMults/Sec
16	1048576	16	65536	1644.147	MegaMults/Sec
17	1048576	32	32768	2097.013	MegaMults/Sec
18	1048576	64	16384	1849.67	MegaMults/Sec
19	1048576	128	8192	2263.184	MegaMults/Sec
20	1048576	256	4096	2160.533	MegaMults/Sec
21	1048576	512	2048	2124.352	MegaMults/Sec
22	2097152	- 8	262144	1377.181	MegaMults/Sec
23	2097152	16	131072		MegaMults/Sec
24	2097152	32	65536	2458,837	MegaMults/Sec
25	2097152	64	32768	3634,277	MegaMults/Sec
26	2097152	128	16384	4729.483	MegaMults/Sec
27	2097152	256	8192	798.872	MegaMults/Sec
28	2097152	512	4096	3027.106	MegaMults/Sec
29	4194304	8	524288	565,738	MegaMults/Sec
30	4194304	16	262144	2325,078	MegaMults/Sec
31	4194304	32	131072	3335,749	MegaMults/Sec
32	4194304	64	65536	4567.421	MegaMults/Sec
33	4194304	128	32768	4898.16	MegaMults/Sec
34	4194304	256	16384	5665,039	MegaMults/Sec
35	4194304	512	8192	4272.904	MegaMults/Sec
36	8388608	8	1048576	1631.149	MegaMults/Sec
37	8388608	16	524288	2518.819	MegaMults/Sec
38	8388608	32	262144	3985.272	MegaMults/Sec
39	8388608	64	131072	5792.485	MegaMults/Sec
40	8388608	128	65536	7433.704	MegaMults/Sec
41	8388608	256	32768	6905.682	MegaMults/Sec
42	8388608	512	16384	5906,784	MegaMults/Sec

Graphs:

- 8. Overall, every line is stable. However, when the line comes to 128, the performance becomes worse.
- 9. The reason might be when size 128. The GPU is not so busy and the overhead may cost too much time
- 10. It is necessary to check the size before starting work because even though it just changes a little bit, it is possible to have big change. If the data size is too small, it is not worth to do it on GPU.

- 11. We can see that the performance grows up really quick at first. Then, after they get bigger, the performance gradually approaches a certain value.
- 12. I think the reason why performance grows up so fast is because the more block size it has, its parallelism is better. Then, when the numtrials is larger, it starts to hit the peak performance so they gradually approach certain values.
- 13. It is because its block size is smaller. It exposes more parallelism when the blocksize is higher.
- 14. There is a difference between Project 1 and Project 5. The performance in project 1 grows up and drops at the beginning, and then grows up again. It is because of the false sharing problem, which the higher number of threads may cause worse performance at some point.
- 15. We should assign more block size in GPU parallel computing because it performs better.