PROJECT 3- Comcast-Telecom-Consumer-Complaints

DESCRIPTION -

Comcast is an American global telecommunication company. The firm has been providing terrible customer service. They continue to fall short despite repeated promises to improve. Only last month (October 2016) the authority fined them a \$2.3 million, after receiving over 1000 consumer complaints. The existing database will serve as a repository of public customer complaints filed against Comcast. It will help to pin down what is wrong with Comcast's customer service.

Data Dictionary -

Ticket #: Ticket number assigned to each complaint

Customer Complaint: Description of complaint

Date: Date of complaint

Time: Time of complaint

Received Via: Mode of communication of the complaint

City: Customer city

State: Customer state

Zipcode: Customer zip

Status: Status of complaint

Filing on behalf of someone

Analysis Task -

To perform these tasks, you can use any of the different Python libraries such as NumPy, SciPy, Pandas, scikit-learn, matplotlib, and BeautifulSoup.

- Import data into Python environment.
- Provide the trend chart for the number of complaints at monthly and daily granularity levels.
- · Provide a table with the frequency of complaint types.

Which complaint types are maximum i.e., around internet, network issues, or across any other domains.

- Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and Closed & Solved is to be categorized as Closed.
- Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:

Which state has the maximum complaints Which state has the highest percentage of unresolved complaints

· Provide the percentage of complaints resolved till date, which were received through the Internet and customer care calls.

Coding part -

Importing the req libraries

```
In [ ]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
```

```
In [53]:
```

```
%%HTML
<style type="text/css">
   table.dataframe td, table.dataframe th {
      border-style: solid;
   }
</style>
```

```
In [ ]:

df1 = pd.read_csv('./Comcast_telecom_complaints_data1.csv') # to read csv file #
df1
```

In [40]:

```
df1.head(5) ## to see first 5 rows of file
```

Out[40]:

	Ticket #	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
0	250635	Comcast Cable Internet Speeds	22-04- 15	22-Apr-15	3:53:50 PM	Customer Care Call	Abingdon	Maryland	21009	Closed	No
1	223441	Payment disappear - service got disconnected	4/8/2015	4-Aug-15	10:22:56 AM	Internet	Acworth	Georgia	30102	Closed	No
2	242732	Speed and Service	18-04- 15	18-Apr-15	9:55:47 AM	Internet	Acworth	Georgia	30101	Closed	Yes
3	277946	Comcast Imposed a New Usage Cap of 300GB that 	5/7/2015	5-Jul-15	11:59:35 AM	Internet	Acworth	Georgia	30101	Open	Yes
4	307175	Comcast not working and no service to boot	26-05- 15	26-May-15	1:25:26 PM	Internet	Acworth	Georgia	30101	Solved	No

Provide the trend chart for the number of complaints at monthly and daily granularity levels

dtype: int64 In [37]:

date_index

Filing on Behalf of Someone

Zip code Status

```
dfl.info()
```

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2224 entries, 2015-01-04 10:43:20 to 2015-12-06 13:18:20
Data columns (total 12 columns):
    Column
                                  Non-Null Count Dtype
 0
    Ticket #
                                  2224 non-null
                                                  object
     Customer Complaint
                                  2224 non-null
                                                  object
 2
                                  2224 non-null
                                                  object
                                                  datetime64[ns]
 3
     Date_month_year
                                  2224 non-null
    Time
                                  2224 non-null
                                                  object
    Received Via
                                  2224 non-null
                                                  object
 6
    City
                                  2224 non-null
                                                  object
     State
                                  2224 non-null
                                                  object
                                  2224 non-null
 8
    Zip code
                                                  int64
    Status
                                  2224 non-null
                                                  object
 10 Filing on Behalf of Someone 2224 non-null
                                                  object
                                  2224 non-null
                                                  datetime64[ns]
 11 date_index
dtypes: datetime64[ns](2), int64(1), object(9)
memory usage: 225.9+ KB
```

0

In [41]:

df1.describe()

Out[41]:

	Zip code
count	2224.000000
mean	47994.393435
std	28885.279427
min	1075.000000
25%	30056.500000
50%	37211.000000
75%	77058.750000
max	99223.000000

In [42]:

```
df1_dmy=df1.groupby('Date_month_year')
```

In [43]:

```
df1_dmy.size()
```

Out[43]:

```
Date_month_year
13-Apr-15
           24
13-Jun-15
           32
           12
13-May-15
14-Apr-15
            23
14-Jun-15
           16
6-Mar-15
            25
6-May-15
            29
6-Nov-15
            21
6-0ct-15
            25
            23
6-Sep-15
Length: 91, dtype: int64
```

In [44]:

```
df1.sort_values(['Date_month_year'], axis=0, ascending=True, inplace=True, kind='quicksort', na_position='last')
df1.head()
```

Out[44]:

	Ticket #	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone
1005	231757	monopoly	13- 04- 15	13-Apr-15	10:44:03 AM	Customer Care Call	Katy	Texas	77493	Closed	No
864	231729	comcast contract problem	13- 04- 15	13-Apr-15	10:28:49 AM	Internet	Houston	Texas	77049	Closed	No
1668	232972	Internet Speed	13- 04- 15	13-Apr-15	4:56:22 PM	Internet	Richmond	Indiana	47374	Closed	No
746	231821	Inability to get access to internet through Co	13- 04- 15	13-Apr-15	11:10:02 AM	Customer Care Call	Gainesville	Georgia	30506	Closed	Yes
392	231532	Comcast problems	13- 04- 15	13-Apr-15	12:24:21 AM	Customer Care Call	Chicago	Illinois	60612	Closed	No

In [45]:

```
df1['month'] = pd.DatetimeIndex(df1['Date_month_year']).month
df1.head()
```

Out[45]:

	Ticket #	Customer Complaint	Date	Date_month_year	Time	Received Via	City	State	Zip code	Status	Filing on Behalf of Someone	month
1005	231757	monopoly	13- 04- 15	13-Apr-15	10:44:03 AM	Customer Care Call	Katy	Texas	77493	Closed	No	4
864	231729	comcast contract problem	13- 04- 15	13-Apr-15	10:28:49 AM	Internet	Houston	Texas	77049	Closed	No	4
1668	232972	Internet Speed	13- 04- 15	13-Apr-15	4:56:22 PM	Internet	Richmond	Indiana	47374	Closed	No	4
746	231821	Inability to get access to internet through Co	13- 04- 15	13-Apr-15	11:10:02 AM	Customer Care Call	Gainesville	Georgia	30506	Closed	Yes	4
392	231532	Comcast problems	13- 04- 15	13-Apr-15	12:24:21 AM	Customer Care Call	Chicago	Illinois	60612	Closed	No	4

In [46]:

```
df1_month = df1.groupby('month')
df1_month_size = df1_month.size()
df1_month_size
```

Out[46]:

```
month
1
        55
2
        59
3
        45
       375
5
       317
6
      1046
7
        49
8
        67
9
        55
10
        53
11
        38
12
        65
dtype: int64
```

In [47]:

```
df1["Date_month_year"] = pd.to_datetime(df1["Date_month_year"])
```

```
In [48]:
```

```
plt.figure(figsize=(20,10))
df1['Date_month_year'].value_counts().plot()
plt.title('Trend showing Daily Number of complaints ')
plt.xlabel('Date Month Year')
plt.ylabel('Number of complains')
plt.show()
```


In [49]:

```
plt.figure(figsize=(20,10))
df1_month_size.plot()
plt.title('Trend showing Monthly Number of complaints')
plt.xlabel('Months')
plt.ylabel('Number of complains')
plt.show()
```


Provide a table with the frequency of complaint types

In [9]:

```
complain_type = df1['Customer Complaint'].str.lower().value_counts()
complain_type.head(20)
```

Out[9]:

comcast	102	
comcast data cap	30	
comcast internet	29	
comcast data caps	21	
comcast billing	18	
internet speed	15	
comcast service	15	
data caps	13	
unfair billing practices	13	
data cap	12	
comcast/xfinity	11	
comcast complaint	11	
comcast internet service	10	
billing	9	
billing issues	8	
comcast issues	5	
comcast billing complaint	5	
comcast billing practices	5	
comcast cable	5	
slow internet	5	
Name: Customer Complaint,	dtype:	int64
	- •	

In [53]:

```
complain_type_head = complain_type.head(20)
plt.figure(figsize=(10,10))
complain_type_head.plot.bar()
plt.title('Highest Number of Complaint Types ')
plt.xlabel('Complaint Type')
plt.ylabel('Number of complaints')
plt.show()
```


Observation - Maximum complaints are from data cap, internet problems and billing issues and services

**Create a new categorical variable with value as Open and Closed. Open & Pending is to be categorized as Open and

Closed & Solved is to be categorized as Closed**

```
In [12]:
df1.groupby('Status').size()
Out[12]:
Status
Closed
          363
0pen
Pending 154
Solved
         973
dtype: int64
In [13]:
df1['New Status'] = df1['Status']
In [14]:
df1['New Status'].replace(('Pending', 'Solved'), ('Open', 'Closed'), inplace=True)
df1.groupby('New Status').size()
Out[14]:
New Status
Closed 1707
0pen
          517
dtype: int64
```

Provide state wise status of complaints in a stacked bar chart. Use the categorized variable from Q3. Provide insights on:

Which state has the maximum complaints

In [52]:

df1.groupby('State').size()

Out[52]:

State	
Alabama	26
Arizona Arkansas	20 6
California	220
Colorado	80
Connecticut	12
Delaware	12
District Of Columbia	16
District of Columbia	1
Florida	240
Georgia	288
Illinois	164
Indiana	59
Iowa	1
Kansas	2
Kentucky	7
Louisiana	13
Maine	5
Maryland	78
Massachusetts	61
Michigan Minnesota	115 33
Mississippi	33 39
Missouri	39 4
Montana	1
Nevada	1
New Hampshire	12
New Jersey	75
New Mexico	15
New York	6
North Carolina	3
Ohio	3
Oregon	49
Pennsylvania	130
Rhode Island	1
South Carolina	18
Tennessee	143
Texas	71
Utah	22
Vermont	3
Virginia Washington	60 98
Washington West Virginia	98
dtype: int64	11
dcype. IIIco4	

In [16]:

df1['State'].value_counts()

Out[16]:

Georgia	288
Florida	240
California	220
Illinois	164
Tennessee	143
Pennsylvania	130
Michigan	115
Washington	98
Colorado	80
Maryland	78
New Jersey	75
Texas	71
Massachusetts	61
Virginia	60
Indiana	59
Oregon	49
Mississippi	39
Minnesota	33
Alabama	26
Utah	22
Arizona	20
South Carolina	18
District Of Columbia	16
New Mexico	15
Louisiana	13
New Hampshire	12
Delaware	12 12
Connecticut	11
West Virginia	7
Kentucky New York	6
Arkansas	6
Maine	5
Missouri	4
North Carolina	3
Vermont	3
Ohio	3
Kansas	2
Montana	1
Iowa	1
Nevada	1
District of Columbia	1
Rhode Island	1
Name: State, dtype: inte	_
	- •

In [23]:

```
plt.figure(figsize=(20,10))
df1['State'].value_counts().plot.bar()
plt.title('Highest Number of Complaint Types ')
plt.xlabel('State')
plt.ylabel('Number of complaints')
plt.show()
```


In [26]:

```
print(df1.groupby(['State', 'New Status']).size().unstack().plot(kind='bar', figsize = (15,20), stacked=True))
```

AxesSubplot(0.125,0.125;0.775x0.755)

Graph observation - Georgia has the maximum complaints (288)

Which state has the highest percentage of unresolved complaints

In [30]:

complaint_by_state = df1.groupby(['State','New Status']).size().unstack().fillna(0)
complaint_by_state

New Status State Alabama Arizona Arkansas California Colorado Connecticut	17.0 14.0 6.0 159.0	9.0 6.0 0.0 61.0
Alabama Arizona Arkansas California Colorado	14.0 6.0 159.0 58.0	6.0
Arizona Arkansas California Colorado	14.0 6.0 159.0 58.0	6.0
Arkansas California Colorado	6.0 159.0 58.0	0.0
California Colorado	159.0 58.0	
Colorado	58.0	61.0
Connecticut		22.0
1	9.0	3.0
Delaware	8.0	4.0
District Of Columbia	14.0	2.0
District of Columbia	1.0	0.0
Florida	201.0	39.0
Georgia	208.0	80.0
Illinois	135.0	29.0
Indiana	50.0	9.0
lowa	1.0	0.0
Kansas	1.0	1.0
Kentucky	4.0	3.0
Louisiana	12.0	1.0
Maine	3.0	2.0
Maryland	63.0	15.0
Massachusetts	50.0	11.0
Michigan	92.0	23.0
Minnesota	29.0	4.0
Mississippi	23.0	16.0
Missouri	3.0	1.0
Montana	1.0	0.0
Nevada	1.0	0.0
New Hampshire	8.0	4.0
New Jersey	56.0	19.0
New Mexico	11.0	4.0
New York	6.0	0.0
North Carolina	3.0	0.0
Ohio	3.0	0.0
Oregon	36.0	13.0
Pennsylvania	110.0	20.0
Rhode Island	1.0	0.0
South Carolina	15.0	3.0
Tennessee	96.0	47.0
Texas	49.0	22.0
Utah	16.0	6.0
Vermont	2.0	1.0
Virginia	49.0	11.0
Washington	75.0	23.0
West Virginia	8.0	3.0

Which state has the highest percentage of unresolved complaints

```
In [32]:
complaint_by_state.iloc[0,1]
closed_cont = []
opened_cont = []
for i in range(0, len(complaint_by_state)):
     closed_cont.append(complaint_by_state.iloc[i,0])
for i in range(0, len(complaint_by_state)):
     opened_cont.append(complaint_by_state.iloc[i,1])
In [33]:
closed_complains = np.array(closed_cont)
opened_complains = np.array(opened_cont)
In [34]:
percentage_opened = (opened_complains/(opened_complains+closed_complains)) * 100
percentage_closed = (closed_complains/(opened_complains+closed_complains)) * 100
percentage_opened
Out[34]:
                                        , 27.72727273, 27.5
array([34.61538462, 30.
                                , 0.
                                                     , 16.25
       25. , 33.33333333, 12.5 , 0. 27.7777778, 17.68292683, 15.25423729, 0.
                                                           , 50.
       42.85714286, 7.69230769, 40.
                                             , 19.23076923, 18.03278689,
                  , 12.12121212, 41.02564103, 25.
       20.
                                                              ο.
                 , 33.33333333, 25.33333333, 26.666666667, 0.
, 0. , 26.53061224, 15.38461538, 0.
        0.
        Θ.
       16.66666667, 32.86713287, 30.98591549, 27.27272727, 33.333333333,
       18.33333333, 23.46938776, 27.27272727])
In [35]:
dictionary = complaint_by_state.to_dict() # converting to dictionary
In [36]:
c = {} #closed
o = {} #opened
for k, v in dictionary.items(): # k represents keys and v represents values in dictionary
    if k == 'Closed':
       c.update(v)
    else:
       o.update(v)
In [37]:
# Finding a list with only states names
states = []
for keys in c:
    states.append(keys)
In [38]:
print("Length of states is {} and length of percentage open list is {}". format(len(states), len(percentage_opene
d)))
Length of states is 43 and length of percentage open list is 43
In [39]:
#fucntion to find the index of the maximum percentage value
def find_max_index(percentage_list):
    result = np.where(percentage_list == np.amax(percentage_list))
    return result[0]
```

```
In [40]:
#converting items in a list to a single integer
def convert(list_values):
   #convert to string first
   s = [str(i) for i in list_values]
    # Join list items using join()
   res = int("".join(s))
    return res
In [41]:
opened_max_index = convert(find_max_index(percentage_opened))
#closed_max_index = find_max_index(percentage_closed) # This is not needed because these are already resolved cas
                                                    # Finding the max number will give 8 total states.
                                                    # They have ONLY closed cases so the percentage is 100%.
In [42]:
print('Highest Unresolved Percentage is',percentage_opened.max(),'% from', states[opened_max_index])
Highest Unresolved Percentage is 50.0 % from Kansas
Kansas has the highest percentage of unresolved complaints. This can be seen from the stacked bar graph as well as the calculation shown
above.
Provide the percentage of complaints resolved till date, which were received
through the Internet and customer care calls
In [44]:
comcast_received = df1.groupby(['Received Via', 'New Status']).size()
print(comcast_received)
Received Via
                   New Status
Customer Care Call Closed
                                 864
                   0pen
                                 255
                                 843
Internet
                   Closed
                   0pen
                                 262
dtype: int64
```

```
In [46]:
closed = []
opened = []
for counter, value in enumerate(comcast_received):
    if counter % 2 == 0:
       closed.append(value)
    else:
```

```
opened.append(value)
In [47]:
```

```
closed = np.array(closed)
opened = np.array(opened)
```

```
In [48]:
percentage_open = (opened/(opened+closed)) * 100
percentage_close = (closed/(opened+closed)) * 100
```

```
In [49]:
```

```
print(percentage_open)
[22.78820375 23.71040724]
```

Customer Care Call - 22.78% Open

Internet - 23.71% Open

In [50]:

```
print(percentage_close)
```

[77.21179625 76.28959276]

Customer Care Call - 22.78% close

Internet - 23.71% close

END of PROJECT

In []: