Chaîne suspendue

Cas statique

* On prend un élément infinitésimal de corde de longueur $dl = \sqrt{dx^2 + dy^2}$. On note $\alpha(x)$ l'angle de la corde par rapport à l'horizontal à l'abscisse x. On applique le principe fondamental de la statique :

$$\left\{ \begin{array}{l} -T(x)\cdot\cos(\alpha(x))+T(x+dx)\cdot\cos(\alpha(x+dx))=0\\ \\ -T(x)\cdot\sin(\alpha(x))+T(x+dx)\cdot\sin(\alpha(x+dx))-\mu g\sqrt{dx^2+dy^2}=0 \end{array} \right.$$

De la première équation, on voit que $T(x) \cdot \cos(\alpha(x)) = cste = T_0 \cos(\alpha_0)$, où T_0 et α_0 sont la tension et l'angle au début de la corde (par exemple. On a donc $T(x) = T_0 \cos(\alpha_0)/\cos(\alpha(x))$.

La seconde équation s'écrit :

$$\frac{\mathrm{d}}{\mathrm{d}x}T(x)\cdot\sin(\alpha(x)) = \mu g\sqrt{dx^2 + dy^2}$$

Avec la relation trouvée sur la tension, on obtient :

$$dx \frac{\mathrm{d}}{\mathrm{d}x} \left[T_0 \cos(\alpha_0) \tan(\alpha(x)) \right] = \mu g dx \sqrt{1 + \frac{dy^2}{dx^2}}$$

Comme tan(x) = dy/dx, on tombe sur l'équation différentielle :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{l_c} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

avec $l_c = T_0 \cos(\alpha_0)/\mu g$.

* Avec le changement de variable proposé, on a :

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{1}{l_a} \sqrt{1 + p(x)^2}$$

On obtient alors:

$$\frac{\mathrm{d}p}{\sqrt{1+p(x)^2}} = \frac{\mathrm{d}x}{l_c}$$

On reconnait que la primitive est la fonction inverse du sinus hyperbolique :

$$\sinh^{-1}(p) = \frac{x}{l_c} + \alpha \tag{1}$$

On obtient alors:

$$y(x) = l_c \cosh\left(\frac{x}{l_c} + \alpha\right) + \beta \tag{2}$$

Avec les conditions aux limites (y(-D/2) = y(+D/2) = 0), on a :

$$y(x) = l_c \left[\cosh \left(\frac{x}{l_c} \right) - \cosh \left(\frac{D}{2l_c} \right) \right]$$

* La tension horizontale est constante et vaut $T_h(x) = T_0 \cos(\alpha_0)$. La tension verticale est $T_v(x) = T(x)\sin(\alpha(x)) = T_0\cos(\alpha_0)\tan(\alpha(x)) = T_0\cos(\alpha_0)\frac{dy}{dx}$. On a donc :

$$T_v(x) = T_0 \cos(\alpha_0) \sinh\left(\frac{x}{l_c}\right)$$

* La longueur correspond à l'intégrale curviligne :

$$L = \int_C \mathrm{d}l = \int_{-D/2}^{D/2} dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

En utilisant l'équation différentielle trouvée précédemment, on a tout simplement :

$$L = \int_{-D/2}^{D/2} dx \frac{d^2y}{dx^2} = \left[\frac{dy}{dx}\right]_{-D/2}^{D/2} = 2l_c \sinh\left(\frac{D}{2l_c}\right)$$

La flèche correspond tout simplement à la différence entre le point le plus haut et le plus bas, soit -y(0):

$$h = l_c \left[\cosh \left(\frac{D}{2l_c} \right) - 1 \right]$$

On utilise la relation $\cosh^2 - \sinh^2 = 1$:

$$\left(\frac{h}{l_c} + 1\right)^2 - \left(\frac{L}{2l_c}\right)^2 = 1$$

et donc:

$$l_c = \frac{L^2/4 - h^2}{2h}$$

Ainsi, avec simplement une photo d'une chaîne suspendue, on peut connaitre L, h et α_0 , on en déduit l_c qui nous donne l'information sur T_0

Cas dynamique

- \diamond A ce moment là $T_0 \gg \mu g$, et donc $l_c \longrightarrow \infty$ et la corde est horizontale. L'angle $\alpha(x)$ est très petit. On néglige la gravité dans ce cas-là.
- On reprend le même raisonnement que précédemment en appliquant le principe fondamental de la dynamique et en négligeant la pesanteur. On trouve une équation d'Alembert, qui correspond à la propagation des ondes dans la corde :

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

avec $c = T_0/\mu$. Les solutions sont de la forme y(x,t) = f(t-x/c) + g(t+x/c): cela correspond à des ondes se propageant suivants les x croissants (f) et les x décroissants (g).

- \diamond Sachant que la corde est ancrée en x=-D/2 et x=+D/2, donner l'expression générale de y(x,t) dans le cas stationnaire.
- \diamond On excite la corde avec une excitation dessinée ci-dessous. Donner l'expression de y(x,t) dans ce cas-là.
- ♦ Si la corde décrite dans l'exercice est celle d'un instrument de musique (violon, guitare, piano...), comment expliquer la différence de timbre entre ces instruments pour une note donnée ?

Corde pendue verticalement

On considère une corde attachée au plafond à un point fixe en z=0 et laissée verticalement à elle-même dans le vide. Elle n'est soumise qu'à la gravité. On notera $\Psi(z,t)$ l'écart de la corde à la verticale à la hauteur z à l'instant t.

* En appliquant le principe fondamental de la dynamique, trouver une équation différentielle en $\Psi(z,t)$.

On cherche des solutions sous la forme $\Psi(z,t) = \alpha(z)\cos(\omega t) + \beta(z)\sin(\omega t)$.

- * Comment s'appellent ce type de solutions ? Déterminer l'équation différentielle vérifiée par α et β .
- * En posant $Z = \frac{z\omega^2}{g}$, trouver un nouveau système d'équation différentielle en $A(Z) = \alpha(z)/\alpha(0)$.
- * On cherche la solution sous la forme d'une série entière $A(Z) = \sum_k A_k Z^K$. Déterminer les coefficients K.
- * Comment pourrait-on trouver une relation de dispersion $\omega(k)$?