The Baseline Observation BIOS 667

Bahjat F. Qaqish
Department of Biostatistics
CB 7420, McGavran Greenberg Hall
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7420
email: qaqish@bios.unc.edu
www.bios.unc.edu/~qaqish

The Question

- A 2-group study, $x_i = 0$ versus $x_i = 1$
- Randomized:

Control or placebo or group 0: $x_i = 0$ Active treatment or group 1: $x_i = 1$

• Non-randomized (Observational):

Drug A: $x_i = 0$

Drug B: $x_i = 1$

• Non-randomized (Observational):

Non-smoker: $x_i = 0$

Smoker: $x_i = 1$

- Baseline response: Y_{i0} at time 0 Follow up response: Y_{i1} at time 1
- Since x_i is either 0 or 1, we can write

 $E[Y_{i1}|x_i] = \delta_1 + \delta_2 x_i$

 $E[Y_{i1}|x_i=0]=\delta_1$

 $E[Y_{i1}|x_i=1] = \delta_1 + \delta_2$

• The treatmet contrast (treatment effect) is

$$\delta_2 = E[Y_{i1}|x_i = 1] - E[Y_{i1}|x_i = 0]$$

• The difference between the group means at time 1:

$$\delta_2 = E[Y_{i1}|x_i = 1] - E[Y_{i1}|x_i = 0]$$

- δ_2 is the *marginal* treatmet contrast or difference between group means at time 1
- \bullet δ_2 is the key parameter of interest
- δ_2 can be estimated by regressing Y_{i1} on x_i , i.e. fitting $\mathrm{E}[Y_{i1}|x_i] = \delta_1 + \delta_2 x_i$
- Question: Adjust for baseline by regressing Y_{i1} on x_i and Y_{i0} ???
- Would the slope for x_i still estimate δ_2 ???

The Answers

- Start by finding $E[Y_{i1}|Y_{i0},x_i]$
- Assume bivariate normality of (Y_{i0}, Y_{i1}) ; i.e. one bivariate normal for $x_i = 0$ and another for $x_i = 1$
- $E[Y_{i1}|Y_{i0}, x_i = 0] = \alpha_1 + \alpha_2 Y_{i0}$ follows from bivariate normality
- $E[Y_{i1}|Y_{i0}, x_i = 1] = \beta_1 + \beta_2 Y_{i0}$ follows from bivariate normality
- Combine into a single equation:

$$E[Y_{i1}|Y_{i0},x_i] = (\alpha_1 + \alpha_2 Y_{i0}) + \{(\beta_1 - \alpha_1) + (\beta_2 - \alpha_2)Y_{i0}\}x_i$$

- $E[Y_{i1}|Y_{i0},x_i]$ contains an interaction term, x_iY_{i0}
- ullet The conditional treatmet contrast

$$(\beta_1 - \alpha_1) + (\beta_2 - \alpha_2)Y_{i0}$$

depends on Y_{i0}

- Answer (part 1): Regressing Y_{i1} on x_i and Y_{i0} would be correct if $\beta_2 \alpha_2 = 0$, i.e. if there is "no interaction"
- Interaction term: $(\beta_2 \alpha_2)x_iY_{i0}$
- Make the assumption NI: $\beta_2 \alpha_2 = 0$
- Now, with NI, we have:

$$E[Y_{i1}|Y_{i0},x_i] = (\alpha_1 + \alpha_2 Y_{i0}) + (\beta_1 - \alpha_1)x_i$$

- Under NI, the *conditional* treatmet contrast is $\beta_1 \alpha_1$.
- Under NI, if we regress Y_{i1} on x_i and Y_{i0} , the slope for x_i will estimate $\beta_1 \alpha_1$
- The question now: Assuming NI, is $\beta_1 - \alpha_1 = \delta_2$???
- If the answer is yes, then regressing Y_{i1} on x_i and Y_{i0} produces the right answer, the slope for x_i will estimate δ_2
- So, is $\beta_1 \alpha_1 = \delta_2$???
- To obtain the marginal expectation, apply double-expectation to

$$E[Y_{i1}|Y_{i0},x_i] = (\alpha_1 + \alpha_2 Y_{i0}) + (\beta_1 - \alpha_1)x_i$$

- Need $E[Y_{i0}|x_i]$
- Since x_i is either 0 or 1, we can write $E[Y_{i0}|x_i] = \gamma_1 + \gamma_2 x_i$
- By double-expectation

$$E[Y_{i1}|x_{i}] = E[E[Y_{i1}|Y_{i0}, x_{i}]]$$

$$= E[\alpha_{1} + (\beta_{1} - \alpha_{1})x_{i} + \alpha_{2}Y_{i0}|x_{i}]$$

$$= \alpha_{1} + (\beta_{1} - \alpha_{1})x_{i} + \alpha_{2}E[Y_{i0}|x_{i}]$$

$$= \alpha_{1} + (\beta_{1} - \alpha_{1})x_{i} + \alpha_{2}(\gamma_{1} + \gamma_{2}x_{i})$$

$$= (\alpha_{1} + \alpha_{2}\gamma_{1}) + (\beta_{1} - \alpha_{1} + \alpha_{2}\gamma_{2})x_{i}$$

- Recall: $E[Y_{i1}|x_i] = \delta_1 + \delta_2 x_i$
- $\delta_1 = \alpha_1 + \alpha_2 \gamma_1$, $\delta_2 = \beta_1 - \alpha_1 + \alpha_2 \gamma_2 \text{ or } \beta_1 - \alpha_1 = \delta_2 - \alpha_2 \gamma_2$

• Answer (part 2): When regressing Y_{i1} on x_i and Y_{i0} , the slope for x_i will estimate $\beta_1 - \alpha_1 \neq \delta_2$. The bias is $-\alpha_2 \gamma_2$.

• Recall:

 α_2 is the slope in the regression of Y_{i1} on Y_{i0} (the same in both groups by NI, $\alpha_2 = \beta_2$).

 γ_2 is the difference between group means at baseline.

e.g. Positive bias if α_2 and γ_2 have different signs.

• But can that bias be 0?

$$\beta_1 - \alpha_1 = \delta_2$$
 if $\alpha_2 \gamma_2 = 0$

- $\alpha_2 \gamma_2 = 0$ if $\alpha_2 = 0$ or $\gamma_2 = 0$ (or both)
- $\bullet \ \alpha_2 = 0?$

Under NI, this also means $\alpha_2 = \beta_2 = 0$, Y_{i0} is independent of Y_{i1} . Not realistic for longitudinal outcomes.

• $\gamma_2 = 0$? This means that $E[Y_{i0}|x_i]$ does not depend on x_i . This is valid in a randomized study, but not in an observational (non-randomized) study.

Gain?

- If the study is randomized and there is no interaction (parallel regression lines for Y_{i1} on Y_{i0} in the two groups), what do we gain by adjusting for the baseline (regressing Y_{i1} on x_i and Y_{i0}) versus regressing Y_{i1} on x_i only?
- Without going into derivations, the answer is increased precision, smaller variance of $\hat{\delta}_2$.
- In the regression of Y_{i1} on x_i , the "variance" σ^2 is $var(Y_{i1})$, the marginal variance.
- In the regression of Y_{i1} on x_i and Y_{i0} , the "variance" σ^2 is $\text{var}(Y_{i1}|Y_{i0})$, the conditional variance.
- The main reason for the increased precision is the mathematical fact: conditional variance ≤ the marginal variance in the bivariate normal.
- Note: In distributions other than the bivariate normal, the conditional variance can exceed the marginal variance, depending on the specific value of the conditioning variable. Example: If (Y_{i0}, Y_{i1}) is bivariate Bernoulli, then $var(Y_{i1}|Y_{i0} = t)$ can exceed $var(Y_{i1})$. Exercise: Develop a numerical example.
- How much do we gain?
- Example: n-1 observations post-baseline, averaged; common variance σ^2 , common correlation ρ . Relative efficiency is

$$\frac{1+(n-1)\rho}{n}$$

e.g. $n = 4, \rho = 1/3$, relative efficiency = 0.5.

Loss?

- Even if the NI assumption is satisfied, in a non-randomized study the slope for x_i , when adjusting for baseline, estimates $\delta_2 \alpha_2 \gamma_2$, while the target quantity is δ_2 . BIAS.
- What if the NI assumption is not satisfied in a randomized study? The derivations become more complicated, but the answer is simple: the slope estimate for x_i will be a biased estimator of δ_2 .
- No pain, no gain?!