Abstract Algebra by Pinter, Chapter 25

Amir Taaki

Abstract

Chapter 24 on Factoring Polynomials

Contents

1	A. Examples of Factoring into Irreducible Factors	2
	1.1 Q1	2
	1.2 Q2	2
	1.3 Q3	3
	1.4 Q4	3
	1.5 Q5	3
	1.6 Q6	3
2	B. Short Questions Relating to Irreducible Polynomials	3
_	2.1 Q1	3
	2.2 Q2	3
	2.3 Q3	3
	2.4 Q4	3
	2.5 Q5	3
	2.6 Q6	4
	2.7 Q7	4
	2.1 %	_
3	C. Number of Irreducible Quadratics over a Finite Field	4
	3.1 Q1	4
	3.2 Q2	4
	3.3 Q3	4
	3.4 Q4	4
4	D. Ideals in Domains of Polynomials	4
	4.1 Q1	4
	4.2 Q2	4
	4.3 Q3	5
	4.4 Q4	5
	4.5 Q5	5
	4.6 Q6	5
	4.7 Q7	5
5	E. Proof of the Unique Factorization Theorem	5
•	5.1 Q1	5
	5.2 Q2	6
	5.3 Q3	6
	·	
6	F. A Method for Computing the gcd	6
	6.1 Q1	6
	6.2 Q2	6
	6.3 Q3	6
	6.4 Q4	6
7	F. A Transformation of $F[x]$	7
	7.1 Q1	7
	7 2 02	7

7.3	Q3		 																					7
7.4	Q4																							7
7.5	\sim																							7

1 A. Examples of Factoring into Irreducible Factors

1.1 Q1

$$\mathbb{Q}: x^4 - 4 = (x^2 - 2)(x^2 + 2)$$

$$\mathbb{R}: x^4 - 4 = (x - \sqrt{2})(x + \sqrt{2})(x^2 + 2)$$

$$\mathbb{C}: x^4 - 4 = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{2}i)(x + \sqrt{2}i)$$

1.2 Q2

Factor $x^6 - 16$

$$\mathbb{Q}:(x^3-4)(x^3+4)$$

$$\mathbb{R}: (x^3 - (\sqrt[3]{4})^3)(x^3 + (\sqrt[3]{4})^3) = (x - \sqrt[3]{4})(x^2 + \sqrt[3]{4}x + (\sqrt[3]{4})^2)(x + \sqrt[3]{4})(x^2 - \sqrt[3]{4}x + (\sqrt[3]{4})^2)$$

(using the sum and differences of cubes formulas: $a^3+b^3=(a+b)(a^2-ab+b^2)$ and $a^3-b^3=(a-b)(a^2+ab+b^2)$.)

Using the quadratic formula to find the roots, for \mathbb{C} and setting $b = \sqrt[3]{4}$ we get:

$$(x^{6} - 16) = (x - b)(x^{2} + bx + b^{2})(x + b)(x^{2} - bx + b^{2})$$

$$a = 1, b = \sqrt[3]{4}, c = b^{2} = (\sqrt[3]{4})^{2}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{b^{2} - 4b^{2}}}{2}$$

$$= \frac{-b \pm b\sqrt{-3}}{2}$$

$$= \frac{-b - b\sqrt{3}i}{2}, \frac{-b + b\sqrt{3}i}{2}$$

And so therefore the roots for $(x^2 + bx + b^2)$ are:

$$(x^{2} + bx + b^{2}) = (x - \left[\frac{-b - b\sqrt{3}i}{2}\right])(x - \left[\frac{-b + b\sqrt{3}i}{2}\right])$$

$$(x^{2} + \sqrt[3]{4}x + (\sqrt[3]{4})^{2}) = (x - \left[\frac{-\sqrt[3]{4} - \sqrt[3]{4}\sqrt{3}i}{2}\right])(x - \left[\frac{-\sqrt[3]{4} + \sqrt[3]{4}\sqrt{3}i}{2}\right])$$

$$= \left(x + \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x + \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)$$

Likewise

$$(x^{2} - \sqrt[3]{4}x + (\sqrt[3]{4})^{2}) = \left(x - \frac{\sqrt[3]{4}}{2} - \frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x - \frac{\sqrt[3]{4}}{2} + \frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)$$

Thus

$$(x^{6}-16) = (x-\sqrt[3]{4})\left(x+\frac{\sqrt[3]{4}}{2}-\frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x+\frac{\sqrt[3]{4}}{2}+\frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)(x+\sqrt[3]{4})\left(x-\frac{\sqrt[3]{4}}{2}-\frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x-\frac{\sqrt[3]{4}}{2}+\frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x+\sqrt[3]{4}\right)\left(x+\sqrt[3]{4}-\frac{\sqrt[3]{4}}{2}\sqrt{3}i\right)\left(x+\sqrt[3]{4}-\frac{\sqrt[3]{4$$

1.3 Q3

Note f(x) = 0 implies it has roots and so is reducible.

$$1, x, x^2 + x + 1, x^3 + x^2 + 1, x^3 + x + 1$$

 $x^4 + x^3 + 1, x^4 + x^2 + 1, x^4 + x + 1$

1.4 Q4

$$x^2 + 2 = (x+a)(x+b)$$

Find x given $x^2 + 2 = 0$. The only squares in \mathbb{Z}_5 are 1 and 4. Neither is valid for x so $x^2 + 2$ is irreducible in \mathbb{Z}_5 .

$$x^4 - 4 = (x^2 - 2)(x^2 + 2)$$
$$= (x^2 + 3)(x^2 + 2)$$

1.5 Q5

$$f(2) = 0, f(4) = 0$$

Roots are 2+3=0 and 4+1=0. Factoring we get $2(x+3)(x+1)^2$ (actually I just used a Berklecamp calculator).

1.6 Q6

$$(3x+4)(4x+3) = x$$
$$(2x+1)(3x+2) = x+2$$
$$(4x+3)(3x+1) = x+3$$

2 B. Short Questions Relating to Irreducible Polynomials

2.1 Q1

Polynomials of degree 1 in a field are irreducible. There are no zero divisors. Multiplying constant terms produces another constant term. Multiplying factors with degrees m and n respectively will produce a new factor with degree m + n, and since there are no zero divisors the product of two non-zero coefficients can never be zero.

2.2 Q2

If a(x) and b(x) have different degrees they cannot be associates since there are no zero divisors in a field and so no constant term can cancel factors in a polynomial.

Assume a(x) and b(x) have the same degree. Then their leading terms are both x^n . If there is some constant term c > 1 such that $a(x) = c \cdot b(x)$ then the leading term of $c \cdot b(x)$ will be cx^n which is not the leading term in a(x). Hence there is a contradiction and both polynomials are *not* associates.

2.3 Q3

a(x) and b(x) are distinct so $a(x) \neq b(x)$, and since a(x) and b(x) cannot be factored, then they share no factors and are relatively prime.

2.4 Q4

An associate of a(x) is b(x) = ka(x), and since a(x) is irreducible, so is b(x), hence all associates of a(x) are irreducible if a(x) is irreducible.

2.5 Q5

In a field, no constants multiplied can equal 0, so there is no ka(x) = 0.

2.6 Q6

$$|\mathbb{Z}_p| = \phi(p) = p - 1$$

There are p-1 possible values for k and hence p-1 associates of non-zero a(x).

2.7 Q7

Polynomial factors for $x^2 + 1$ are lower degree since it's reducible in \mathbb{Z}_p .

 $a(x) = x^2 + 1 = kp_1(x)p_2(x)$ where $p_1(x)$ and $p_2(x)$ are monic irreducible polynomials.

$$x^{2} + 1 = k(x+a)(x+b)$$
 in $\mathbb{Z}_{p}[x]$
 $a+b \equiv 0 \pmod{p}$
 $ab \equiv 1 \pmod{p}$

Since $a, b \in \mathbb{Z}_p$, then p = a + b (otherwise $a = ka_1, b = kb_1$ and $p = a_1 + b_1$)

3 C. Number of Irreducible Quadratics over a Finite Field

3.1 Q1

By theorem 4, each factorization is unique so $(x + a_1)(x + b_1) \neq (x + a_2)(x + b_2)$ for all $a_1, b_1, a_2, b_2 \in \mathbb{Z}_5$.

 $(x+a)^2$, there are 5 possible values and $\binom{5}{2} = 10$, so there are 10 combinations for (x+a)(x+b) (disregarding order since \mathbb{Z}_5 is commutative). There are 15 reducible monic quadratics in $\mathbb{Z}_5[x]$.

3.2 Q2

There are 15 reducible monics, and 0 is not an associate, 1 is unity, leaving ka(x) different associates where $k \in \{2, 3, 4\}$ and |k| = 5 - 2 = 3.

Therefore the total number of reducible quadratics is $4 \times 15 = 60$.

The total number of quadradics in $\mathbb{Z}_5[x]$ is $5^3 = 125$ from all the possible combos of $ax^2 + bx + c$.

So there are 125 - 60 irreducible quadratics.

3.3 Q3

$$n^3 - (n-1)\left[\binom{n}{2} + n\right]$$

3.4 Q4

$$n^4 - (n-1)\left[\binom{n}{3} + n\right]$$

4 D. Ideals in Domains of Polynomials

4.1 Q1

$$J = \langle b(x) \rangle = \langle a(x) \rangle$$

So it follows $\deg a(x) = \deg b(x)$ yet they are both in J and so multiples of each other. So a(x) and b(x) are associates.

4

4.2 Q2

$$a(x) = b(x)m(x) : b(x) \in F[x] \text{ and } J = \langle m(x) \rangle \implies a(x) \in J$$

$$a(x) \in J$$
 and $J = \langle m(x) \rangle \implies a(x) = b(x)m(x)$ for some $b(x) \in F[x]$

4.3 Q3

$$a(x)b(x) = kp_1(x)\cdots p_r(x)$$

 $J = \langle m(x) \rangle$ where m(x) is irreducible. Since J is an ideal $a(x)b(x) \in J \implies a(x)b(x) = c(x)m(x)$ for some $c(x) \in F[x]$. But m(x) is irreducible so $m(x) = p_i(x)$ where i is one of the factors from 1 to r.

Likewise if J is a prime ideal then $a(x)b(x) \in J \implies a(x) \in J$ or $b(x) \in J$. Say $a(x) \in J$, then $a(x) = kp_1(x) \cdots p_r(x) \implies p_i(x) \in J$ for some $i \in \{1, \dots, r\} \implies J = \langle m(x) \rangle$ where m(x) is irreducible.

4.4 Q4

p(x) is irreducible.

$$J = \langle p(x) \rangle$$

Let there be an ideal K such that $J \subset K$, and let $a(x) \in K$ such that $a(x) \notin J$.

Thus a(x) is not a multiple of p(x) and they share no common factors.

$$1 = r(x)a(x) + s(x)p(x)$$

$$\implies r(x)a(x) = 1 - s(x)p(x)$$

$$\implies r(a)a(x) \in J + 1$$

So a(x) is invertible and so $a(x) \in K \implies K = A$.

4.5 Q5

Coefficient sum of x-1 is 1+(-1)=0 so $x-1\in S$. x-1 is irreducible so it is a maximal ideal and $S=\langle x-1\rangle$.

4.6 Q6

$$g(a(x)) = g(a_0 + \dots + a_n x^n) = a_0 + \dots + a_n$$
$$k(x) \in K = \ker g \implies g(k(x)) = 0$$

From previous question $k = \langle x - 1 \rangle$.

$$g: F[x] \xrightarrow[\langle x-1 \rangle]{} F$$

 $F[x]/\langle x-1 \rangle \cong F$

4.7 Q7

$$a(x, y) = x \in J, b(x, y) = y \in J$$

But there is no polynomial in F[x, y] such that a(x, y) = r(x, y)b(x, y) and vice versa. Therefore J cannot be principal and F[x, y] can have non-principal ideals.

5 E. Proof of the Unique Factorization Theorem

5.1 Q1

Euclid's lemma for polynomials: let p(x) be irreducible. If $p(x) \mid a(x)b(x)$ then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.

If $p(x) \mid a(x)$ we are done. So lets assume $p(x) \nmid a(x)$. What integers are common divisors?

p(x) is irreducible, so the only divisors are ± 1 and $\pm p(x)$. But $p(x) \nmid a(x)$, so $\pm p(x)$ is not a common divisor of p(x) and a(x). So therefore that leaves ± 1 as their common divisors. So by theorem 2

$$1 = k(x)p(x) + l(x)a(x)$$

$$b(x) = k(x)p(x)b(x) + l(x)a(x)b(x)$$

But $p(x) \mid a(x)b(x)$ so there is an h(x) such that a(x)b(x) = p(x)h(x). Therefore

$$k(x)p(x)b(x) + l(x)p(x)h(x) = b(x)$$

that is p(x)[k(x)b(x) + l(x)h(x)] = b(x) or p(x) | b(x).

5.2 Q2

Grouping terms, we see that $p \mid a_1(x)$ or $p(x) \mid (a_2(x) \cdots a_n(x))$, and if $p(x) \nmid a_1(x)$, then $p(x) \mid a_2(x)$ or $p(x) \mid (a_3(x) \cdots a_n(x))$ and so on.

For corollary 2, $p(x) \mid q_i(x)$ for one of the factors. Since the factors $q_1(x) \cdots q_r(x)$ are irreducible, so if $p(x) \mid q_i(x)$ for some integer, that means $p(x) = q_i(x)$.

5.3 Q3

Cancelling terms from both sides of

$$a(x) = kp_1(x) \cdots p_r(x) = lq_1(x) \cdots q_s(x)$$

Since for all $i \in \{1, ..., r\}$, $p_i(x) \mid (lq_1(x) \cdots q_s(x))$ then $p_i(x) = q_j(x)$ for some j in $\{1, ..., s\}$. Cancelling terms we eventually end up with k = l.

6 F. A Method for Computing the gcd

6.1 Q1

$$d(x) = \gcd(a(x), b(x))$$
$$a(x) = d(x)a_1(x)$$
$$b(x) = d(x)b_1(x)$$

$$a(x) = b(x)q_1(x) + r_1(x)$$

$$d(x)a_1(x) = d(x)b_1(x)q_1(x) + r_1(x)$$

$$r_1(x) = d(x)(a_1(x) - b_1(x)q_1(x))$$

$$\implies d(x) \mid r_1(x)$$

6.2 Q2

Using a long division calculator.

$$x^{4} + x^{3} + 2x^{2} + x - 1 = (x^{3} + 1)(x + 1) + (2x^{2} - 2)$$
$$x^{3} + 1 = (2x^{2} - 2)(\frac{x}{2}) + (x + 1)$$
$$2x^{2} - 2 = (x + 1)(2x - 2) + 0$$

 \implies gcd is x+1

6.3 Q3

$$x^{2}4 - 1 = (x^{1}5 - 1)x^{9} + (x^{9} - 1)$$

$$x^{1}5 - 1 = (x^{9} - 1)x^{6} + (x^{6} - 1)$$

$$x^{9} - 1 = (x^{6} - 1)x^{3} + (x^{3} - 1)$$

$$x^{6} - 1 = (x^{3} - 1)x^{3} + (x^{3} - 1)$$

$$x^{3} - 1 = (x^{3} - 1)1 + 0$$

 \gcd is x^3-1

6.4 Q4

$$x^{4} + x^{3} + 2x^{2} + 2x = (x^{3} + x^{2} + x + 1)x + (x^{2} + x)$$
$$x^{3} + x^{2} + x + 1 = (x^{2} + x)x + (x + 1)$$
$$x^{2} + x = (x + 1)x + 0$$

 $\gcd is x + 1$

7 F. A Transformation of F[x]

7.1 Q1

$$h[a(x)b(x)] = h(a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + a_nb_nx^{2n})$$

$$= a_0b_0x^{2n} + (a_0b_1 + a_1b_0)x^{2n-1} + \dots + a_nb_n$$

$$h[a(x)]h[b(x)] = h(a_0 + a_1x + \dots + a_nx^n)h(b_0 + b_1x + \dots + b_nx^n)$$

$$= (a_0x^n + a_1x^{n-1} + \dots + a_n)(b_0x^n + b_1x^{n-1} + \dots + b_n)$$

$$= a_0b_0x^{2n} + (a_0b_1 + b_0a_1)x^{2n-1} + \dots + a_nb_n$$

7.2 Q2

Injective: $\forall a(x), b(x) \in F[x], h[a(x)] = h[b(x)] \implies a(x) = b(x)$. This is trivially visible.

Surjective: $\forall b(x) \in F[x], \exists a(x) \in F[x] : h[a(x)] = b(x)$. The value of a(x) is simply b(x).

Indeed $h(h(a_0 + a_1x + \dots + a_nx^n)) = h(a_n + a_{n-1}x + \dots + a_0x^n) = a_0 + a_1x + \dots + a_nx^n$. This means that $h \cdot h = \epsilon$.

7.3 Q3

Let $a(x) = a_0 + a_1x + \cdots + a_nx^n$ be irreducible but $b(x) = a_n + a_{n-1}x + \cdots + a_0x^n$ be reducible so that b(x) = c(x)d(x). But then a(x) = h[b(x)] = h[c(x)d(x)] = h[c(x)]h[d(x)] meaning a(x) is in fact reducible.

7.4 Q4

$$h(a_0 + a_1x + \dots + a_nx^n) = a_n + a_{n-1}x + \dots + a_0x^n$$

$$= h[(b_0 + \dots + b_mx^m)(c_0 + \dots + c_qx^q)]$$

$$= h(b_0 + \dots + b_mx^m)h(c_0 + \dots + c_qx^q)$$

$$a_n + a_{n-1}x + \dots + a_0x^n = (b_m + \dots + b_0x^m)(c_q + \dots + c_0x^q)$$

7.5 Q5

$$a(c) = 0 \implies a(x) = b(x)(x - c)$$

$$\bar{a}(x) = h[a(x)] = h[b(x)]h(x - c)$$

$$= h[b(x)](1 - cx)$$

$$\bar{a}(1/c) = h[b(1/c)][1 - c(1/c)]$$

$$= 0$$