Notes of Advanced Physical Chemistry II

hebrewsnabla

October 12, 2019

Contents

	ip Theory: the Exploitation of Symmetry
12.1	The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify
	Numerical Calculations
12.2	The Symm of Mols Can Be Described by a Set of Symm Elements
	Identity
	Rotation
	Reflection
	Inversion
	Rotation Reflection
	12.2.1 Point Groups of Interest to Chemists
12.3	The Symm Operators of a Mol Form a Group
	12.3.1 Point Group for Some Mols
	No Symm Axis
	C_n
	S_n
	C_{nv}
	C_{nh}
	D_n
	D_{nd}
	D_{nh}
	T_d
	O_h
	I_h
12.4	Symm Operators Can Be Represented by Matrices
12.5	The C_{3v} Point Group Has a 2-D Irreducible Representation
12.6	The Most Important Summary of the Properties of a Point Group Is Its Character
	Table
	basis
	class
	notations
12.7	Several Mathematical Relations Involve the Characters of Irreducible Representation
	notations
	order
	character
	reduce a given reducible repr Γ
19.8	Use Symm Arguments to Predict Which Elements in a Secular Det Equals 0

	12.9 Generating Operators Are Used to Find LCAOs That Are Bases for IrRepr	6
13	Molecular Spectroscopy	6
	13.1	6
	13.2 Rotational Transitions Accompany Vibrational Transitions	6
	13.3	6
	13.4	6
	13.5 Overtones Are Observed in Vibrational Spectra	6
	13.6 Electronic Spectra Contains Electronic, Vibrational and Rotational Info	6
	13.7 Franck-Condon Principle Predicts the Relative Intensities of Vibronic Transitions	7
	13.8 The Rotational Spectrum of a Polyatomic Mols Depends Upon the Principal Mo-	
	ments of Inertia of the Mol	7
	13.9 The Vibrations of Polyatomic Mols Are Represented by Normal Coordinates	7
	13.10Normal Coordinates Belong to Irreducible Representations of Mol Point Groups .	7
	13.11Selection Rules Are Derived from TD Perturbation Theory	7
	13.12The Selection Rule in the Rigid-Rotator Approx Is $\Delta J = \pm 1$	8
	13.13The Harmonic-Oscillator Selection Rule Is $\Delta \nu = \pm 1 \ldots \ldots \ldots$	8
		_
14	Nuclear Magnetic Resonance Spectroscopy	8
	14.1 Nuclei Have Intrinsic Spin Angular Momenta	8
	14.2 Magnetic Moments Interact with Magnetic Fields	8
	14.3	8
	14.4 The Magnetic Field Acting upon Nuclei in Mols Is Shielded	8
	14.5 Chemical Shifts Depend upon the Chemical Environment of the Nucleus	8
	14.6 Spin-Spin Coupling	8
	14.7 Spin-Spin Coupling Between Chemically Equivalent Protons	Ĉ
	14.8 The $n \pm 1$ Rule	C

Introduction

TA: 刘琼 G403

12 Group Theory: the Exploitation of Symmetry

Matrices

 $det(\mathbf{A}) = 0 \implies \mathbf{A}$ is a singular matrix.

- 12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify Numerical Calculations
- 12.2 The Symm of Mols Can Be Described by a Set of Symm Elements

E	
C_n	Rotation by $360^{\circ}/n$
σ	
i	
S_n	

Table 1: Symmetry elements and operators

Identity

Rotation

σ_h	horizontal
σ_v	vertical
σ_d	diagonal (vertical and bisects the angle between C_2 axis)

Table 2

Reflection

Inversion

Rotation Reflection

$$\hat{S}_n = \hat{\sigma}_h \times \hat{C}_n \tag{12.1}$$

12.2.1 Point Groups of Interest to Chemists

C_{nv}	
C_{nh}	Rotation by $360^{\circ}/n$
D_{nh}	
D_{nv}	
D_{nd}	
T_d	

Table 3: Symmetry elements and operators

The Symm Operators of a Mol Form a Group

A set of operators form a group if they satisfy:

- 1. closed under multiplication 乘法封闭
- 2. associative multiplication 乘法结合律
- 3. only one identity operator 单位元
- 4. everyone has only one inverse 逆元

12.3.1 Point Group for Some Mols

No Symm Axis

 C_1 – nothing C_s – σ

 $C_i - i$

 C_n

 S_n

 C_{nv} – C_n and $n\sigma_v$

 $C_{nh} - C_n$ and σ_h

 $D_n - C_n$ and $nC_2 \perp C_n$ e.g. 一点点交错的 C_3H_6, C_2 在 3 个角平分线处

 $D_{nd} - C_n(\text{also } S_{2n}) \text{ and } nC_2 \perp C_n \text{ and } n\sigma_d$

 D_{nh} – C_n and $nC_2 \perp C_n$ and σ_h

 T_d 主轴是 S_4

 O_h

 I_h

- 12.4 Symm Operators Can Be Represented by Matrices
- 12.5 The C_{3v} Point Group Has a 2-D Irreducible Representation
- 12.6 The Most Important Summary of the Properties of a Point Group Is Its Character Table

basis

class same characters - in a class.
of class = # of irred represtn.

notations

- 1. A:, B:, E:2D, T:3D
- 2. A_1 : symm wrt C_2/σ_v , A_2 : antisymm wrt that.
- 3. A': symm wrt σ_h , A'': antisymm wrt that.
- 4. A_g :, A_u :

12.7 Several Mathematical Relations Involve the Characters of Irreducible Representation

notations

XU G.X.	McQuarrie	
$D^{(\nu)}(R)$		
$\chi^{(\nu)}(R)$	$\chi_j(R)$	
$n_{ u}$	d_{j}	dimension of repr matrix
$a_{ u}$	a_{j}	
$\underline{}$	h	

Table 4

order

$$\sum_{\nu} n_{\nu}^2 = g \tag{12.2}$$

character

$$\sum_{R} D_{il}^{(\nu)} D_{jm}^{*(\mu)} = \frac{g}{n_{\nu}} \delta_{\mu\nu} \delta_{ij} \delta_{lm}$$
 (12.3)

$$\sum_{R} \chi^{(\nu)}(R) \chi^{*(\mu)}(R) = g \delta_{\mu\nu}$$
 (12.4)

$$\sum_{R} \chi^{(\nu)}(R) = 0 \quad (\nu \neq A_1)$$
(12.5)

reduce a given reducible repr Γ $\operatorname{Suppose}$

$$\chi(R) = \sum_{\nu} a_{\nu} \chi^{(\nu)}(R)$$
 (12.6)

thus

$$a_{\nu} = \frac{1}{g} \sum_{R} \chi(R) \chi^{(\nu)}(R)$$
 (12.7)

- 12.8 Use Symm Arguments to Predict Which Elements in a Secular Det Equals 0
- 12.9 Generating Operators Are Used to Find LCAOs That Are Bases for IrRepr

$$\widehat{\mathbf{P}}_{j} = \frac{d_{j}}{h} \sum_{\widehat{\mathbf{R}}} \chi_{j}(\widehat{\mathbf{R}}) \, \widehat{\mathbf{R}}$$
(12.8)

13 Molecular Spectroscopy

13.1

	micro	far IR	IR	visible & UV
f/Hz				
λ/m				
$\bar{\nu}/\mathrm{cm}^{-1}$				
λ/m $\bar{ u}/\mathrm{cm}^{-1}$ $E/\mathrm{J}\mathrm{mol}^{-1}$				
process				

Table 5

- 13.2 Rotational Transitions Accompany Vibrational Transitions
- 13.3
- 13.4
- 13.5 Overtones Are Observed in Vibrational Spectra

$$G(v) = \tilde{\nu}_e \left(v + \frac{1}{2} \right) - \tilde{x}_e \tilde{\nu}_e \left(v + \frac{1}{2} \right)^2$$
(13.1)

 \tilde{x}_e : anharmonicity cons.

13.6 Electronic Spectra Contains Electronic, Vibrational and Rotational Info

$$\tilde{v}_{obs} = \tilde{T}_e + \dots \tag{13.2}$$

13.7 Franck-Condon Principle Predicts the Relative Intensities of Vibronic Transitions

13.8 The Rotational Spectrum of a Polyatomic Mols Depends Upon the Principal Moments of Inertia of the Mol

$$\begin{pmatrix}
I_{xx} & I_{xy} & I_{xz} \\
I_{xy} & I_{yy} & I_{yz} \\
I_{xz} & I_{yz} & I_{zz}
\end{pmatrix} \xrightarrow{\text{diagnalization}} \begin{pmatrix}
I_{A} & & \\ & I_{B} & \\ & & I_{C}
\end{pmatrix}$$
(13.3)

	top	requisition
$I_C = I_B > I_A = 0$		
$I_C = I_B = I_A$	sph top	$2C_n, n \geq 3$
$I_C = I_B > I_A$	prolate symm top	
$I_C > I_B = I_A$	oblate symm top	
$I_C \neq I_B \neq I_A$	asymm	

Table 6

13.9 The Vibrations of Polyatomic Mols Are Represented by Normal Coordinates

13.10 Normal Coordinates Belong to Irreducible Representations of Mol Point Groups Contribution to $\chi(R)$ per unmoved atom

$\hat{\mathbf{R}}$	contribution per unmoved atom

Table 7

Now we get Γ_{3N} .

Subtract the irreducible representations corresponding to translational (x, y, z) and rotational (R_x, R_y, R_z) degrees of freedom, we get Γ_{vib} .

13.11 Selection Rules Are Derived from TD Perturbation Theory

Consider a mol interacting w/ EM radiation. The EM field

$$\mathbf{E} = \mathbf{E}_0 \cos 2\pi \nu t \tag{13.4}$$

$$\hat{\mathbf{H}}^{(1)} = -\boldsymbol{\mu} \cdot \mathbf{E} = -\boldsymbol{\mu} \mathbf{E}_0 \left(e^{i \, 2\pi\nu t} + e^{-i \, 2\pi\nu t} \right) / 2 \tag{13.5}$$

$$\Psi(t) = a_1(t)\Psi_1(t) + a_2(t)\Psi_2(t)$$
(13.6)

$$a_1(t) \widehat{H}^{(1)} \Psi_1 + a_2(t) \widehat{H}^{(1)} \Psi_2 = i \hbar \left(\Psi_1 \frac{da_1}{dt} + \Psi_2 \frac{da_2}{dt} \right)$$
 (13.7)

$$a_1(t) \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \Psi_1 \right\rangle + a_2(t) \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \Psi_2 \right\rangle = \mathrm{i} \, \hbar \left(0 + \frac{\mathrm{d} a_2}{\mathrm{d} t} \, \mathrm{e}^{-\,\mathrm{i} \, E t / \hbar} \right) \tag{13.8}$$

$$i\hbar \frac{\mathrm{d}a_2}{\mathrm{d}t} = e^{-i(E_1 - E_2)t/\hbar} \left\langle \psi_2 \left| \widehat{\mathbf{H}}^{(1)} \right| \psi_1 \right\rangle$$
 (13.9)

$$\frac{\mathrm{d}a_2}{\mathrm{d}t} \approx \dots \tag{13.10}$$

13.12 The Selection Rule in the Rigid-Rotator Approx Is $\Delta J=\pm 1$

$$\langle J', M' | \mu_z | J, M \rangle = \int_0^{2\pi} d\phi \int_0^{\pi} Y_{J'}^{M'*} \mu_z Y_J^M \sin\theta d\theta$$

= ... (13.11)

- 13.13 The Harmonic-Oscillator Selection Rule Is $\Delta \nu = \pm 1$
- 14 Nuclear Magnetic Resonance Spectroscopy
- 14.1 Nuclei Have Intrinsic Spin Angular Momenta
- 14.2 Magnetic Moments Interact with Magnetic Fields
- 14.3
- 14.4 The Magnetic Field Acting upon Nuclei in Mols Is Shielded
- 14.5 Chemical Shifts Depend upon the Chemical Environment of the Nucleus
- 14.6 Spin-Spin Coupling

$$\hat{\mathbf{H}} = -\gamma B_0 (1 - \sigma_1) \hat{\mathbf{I}}_{z1} - \gamma B_0 (1 - \sigma_2) \hat{\mathbf{I}}_{z2} + 2\pi J_{12} \hat{\mathbf{I}}_1 \cdot \hat{\mathbf{I}}_2$$
(14.1)

$$\widehat{\mathbf{H}}^{(0)} = -\gamma B_0 (1 - \sigma_1) \hat{\mathbf{I}}_{z1} - \gamma B_0 (1 - \sigma_2) \hat{\mathbf{I}}_{z2} \quad \widehat{\mathbf{H}}^{(1)} 2\pi J_{12} \hat{\mathbf{I}}_1 \cdot \hat{\mathbf{I}}_2$$
 (14.2)

$$\psi_1^{(0)} = \alpha(1)\alpha(2) \qquad \qquad \psi_2^{(0)} = \beta(1)\alpha(2) \tag{14.3}$$

$$\psi_3^{(0)} = \alpha(1)\beta(2) \qquad \qquad \psi_4^{(0)} = \beta(1)\beta(2) \tag{14.4}$$

$$E_1^{(0)} = -\gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) \qquad \qquad E_2^{(0)} = -\gamma B_0 (\sigma_1 - \sigma_2) \tag{14.5}$$

$$E_3^{(0)} = \gamma B_0(\sigma_1 - \sigma_2) \qquad \qquad E_4^{(0)} = \gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) \tag{14.6}$$

perturbed to 1st order

$$E_1 = -\gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) + \frac{2\pi J_{12}}{4} \tag{14.7}$$

$$E_2 = -\gamma B_0(\sigma_1 - \sigma_2) - \frac{2\pi J_{12}}{4} \tag{14.8}$$

$$E_3 = \gamma B_0(\sigma_1 - \sigma_2) - \frac{2\pi J_{12}}{4} \tag{14.9}$$

$$E_4 = \gamma B_0 \left(1 - \frac{\sigma_1 + \sigma_2}{2} \right) + \frac{2\pi J_{12}}{4} \tag{14.10}$$

Since

$$\nu_0 = \frac{\gamma B_0}{2\pi} \tag{14.11}$$

$$\nu_{1 \to 2} = \nu_0 (1 - \sigma_1) - \frac{J_{12}}{2} \tag{14.12}$$

$$\nu_{1\to 3} = \nu_0 (1 - \sigma_2) - \frac{J_{12}}{2} \tag{14.13}$$

$$\nu_{1 \to 2} = \nu_0 (1 - \sigma_1) - \frac{J_{12}}{2}$$

$$\nu_{1 \to 3} = \nu_0 (1 - \sigma_2) - \frac{J_{12}}{2}$$

$$\nu_{2 \to 4} = \nu_0 (1 - \sigma_2) + \frac{J_{12}}{2}$$

$$\nu_{3 \to 4} = \nu_0 (1 - \sigma_1) + \frac{J_{12}}{2}$$

$$(14.12)$$

$$(14.13)$$

$$(14.14)$$

$$\nu_{3\to 4} = \nu_0(1-\sigma_1) + \frac{J_{12}}{2} \tag{14.15}$$

- Spin-Spin Coupling Between Chemically Equivalent Protons
- The n+1 Rule 14.8