ME 360 Lecture 5

Ch. 1 Solving Equations (Root Finding)

We will learn the following Methods to find roots

- 1. The Bisection Method
- 2. Fixed Point Iteration
- 3. Newton-Raphson Method: uses devivative J
- 4. Secant Method

variation

5. Brent's Method: combines the best part of the above methods.

1. Bisection Method

Definition of voot:

The function f(x) has a voot at x=y if f(y)=0.

· Theorem:

Let f be a continuous function on [a,b], satisfying f(a) f(b) < 0. Then f has a voot between a and b, that is, there exists a number r satisfying a < r < b and f(r) = 0.

The bisection method is built on this theorem, We want to keep checking the sign of f(a) f(b) and narrow down the interval of [a, b]

to build an algorithm for Bisection Method, we need

- · Starting interval [a, b] where f(a)f(b)<0
- · a tolerance criteria for stopping the algorithm.

Pseudo Wde for Bisection Method Given initial interval [a,b] such that f(a) f(b)<0. while (b-a)/2 7 tol (tol: tolevance & stopping criteria) (=(A+b)/2if f(c)=0, stop, end (note: in Python, we don't use word "end" to indicate ending of if fla)f(c) <0 a loop, we use indentation b=C instead). else 0 - 6 end End , $Voot \propto (a+b)/2$

Example: let's find the root of $f(x)=x^2-2$ in [0,2] using Disection method

• We know that $\chi^2-2=0$ has two voots, $-\sqrt{2}$ $\sqrt{2}$, let's try to go through the numerical method to estimate $\sqrt{2}$.

· for the interest of time, we will set to)=0.1

a	6	(b-a)/2	C	f(a)	f(b)	f(c)
O	2	1	1	-2	2	- (
1	2	0.5	1.5	-	2	0.25
1	1.5	0.25	1,25	-	0.25	-0.4375
1.25	1.5	0.125	1.375	-0.4375	0.25	-0,109375
1.375	1.5	0.0625	<0.1			

now
$$(b-a)/2 = 0.0625 < tol = 0.1$$
, so our estimated voot is $[vost \approx (a+b)/2 = 1.4375]$

we know that 52×1.414 , so our result is within the 0.1 tolerance.

Exercise in class?

When we evaluate a numerical algorithm, we want to learn a few things:

1. accuracy

2. convergence speed (now fast to solution).

We will discuss these two factors when we compare bisection and fixed point method.

2. Fixed Point Iteration

· Definition of fixed point

The real number r is a fixed point of the function g if gur)=v.

Using Fixed Point Iteration to solve for g(x) = x is the Equivalent of finding root of g(x) - x = 0.

Fixed point iteration algorithms:

- · pick an initial guess Xo
- then $x_{i+1} = g(x_i)$ for i = 0, 1, 2, 3, ...

To write the algorithm step by step, we have
$$\chi_1 = g(\chi_0)$$

 $\chi_2 = g(\chi_1)$
 $\chi_3 = g(\chi_2)$

Note: the sequence x_i may or may not converge as i (the number of steps) goes to infinity, but, if g is continuous and x_i converges to a number r, then r is a fixed point. $g(r) = g(\lim_{i \to \infty} x_i) = \lim_{i \to \infty} g(x_i) = \lim_{i \to \infty} x_{i+1} = r$

(you can prove the above relationship using calculus).

How do we use fixed point iteration to do voot finding? Can we turn an equation of f(x)=0 to g(x)=x?

Let's use our bisection method example

$$f(\chi) = \chi^2 - 2$$

We can re-write the equation as

$$\chi^2 + \chi - 2 = \chi$$
 \Rightarrow $g(\chi) = \chi^2 + \chi - 2$

Of course, there is an easier May to solve it, we can directly have $X=\pm\sqrt{2}$. Here, $g(x)=\pm\sqrt{2}$.

But, for the sake of practicing the method, let's use the scenario of $g(x) = x^2 + x - 2$. With $x_0 = 1.0$

ì	χ_{i}	
0	1.0	
١	0.0	
2	-2 (now we are alternating between 012.0	,
3	-2 (now we are alternating between 042.0 0.0 (fixed point iteration failed.	
4	-7	

There could be many different scenario happening with fixed point iteration Let's look at the example from the text book (page 34)

We have a function: fix)=x3+x-1=0.

To convert it to the form of g(x)= x, we have a few DPHONS:

1.
$$\chi = 1 - \chi^3 \Rightarrow q(\chi) = 1 - \chi^3$$

1.
$$\chi = 1 - \chi^3 \implies g(\chi) = 1 - \chi^3$$

2. $\chi^3 = 1 - \chi$, $\chi = (1 - \chi)^{1/3} \implies g(\chi) = (1 - \chi)$

3. (a) add 2x3 to both side of the equation $3\chi^{3} + \chi - 1 = 2\chi^{3}$

$$(3\chi^2 + 1)\chi = 2\chi^3 + 1$$

$$\chi = \frac{1+2\chi^3}{1+3\chi^2} \Rightarrow g(\chi) = \frac{1+2\chi^3}{1+3\chi^2}$$

For opin	on 1: $g(x) = 1 - x^3$, $x_0 = 0.5$
ī	Xi
O	0.5
1	0.875
2	٥.330 ١
3.	0.9640
4.	0.1041
5	0.9989
6	0.0034
7	0.9999
8	0.0000
9	(.0)
iò	0.0 { alternating between 041
11	1.0 method failed.
12	0.0

For option Z: g(x)=(1-x)/3, x0=0.5 · have good convergence of v=0.6823 after 25 iteration

For opric	on 3: 91x	$)=(1+2x^3)/(1+3x^2), x_0=0.5.$
ì	Xì	
0	0.5	You get the first four digits correct
(0.7143	You get the first four digits correct after only 4 iterations!
2	0.6832	J
3	0.6823	
4	0.6823	
	•	

Why these three options behave so differently? Let's look at the shape of these three different 9(x) functions.

$$g(x) = 1 - x^3$$

$$G(x) = (1-x)^{1/3}$$

$$g(x) = \frac{1+2x^3}{1+3x^2}$$