1 Objective

The objective is to measure the time constant of an RC circuit in order to verify the calculated values [1].

2 Equipment Used

• Digital Multimeter

• DC Power Supply

• Resistor: $20k\Omega$

• Capacitor: $2,200\mu F$

• Alligator (Clips) Jumper

3 Experiment Setup

1. Construct the circuit in Figure 10-1[1].

Figure 10-1 Series RC Circuit for Experimental Setup [1]

- 2. Measure the initial current [1].
- 3. Calculate the values of τ and 5τ in which τ is equal to R_{eq} times C_{eq} [1].
- 4. Collect data by timing the measurements of the current to ever 15 seconds and in order to measure the current remove the alligator clip from the circuit [1].
- 5. Take measurements every 15 seconds until 5τ and possibly further [1].
- 6. Repeat the previous 2 steps for trial 2 [1].
- 7. Take the average values of the two trials at each measured time [1].
- 8. Use the average current to calculate the voltage across the resistor [1].
- 9. Solve the voltage across the capacitor, V_c , which can be solved fro with the voltage across the resistor $V_c = (V_s V_R)$ [1].

4 Results

```
	au = 	ext{Initial Current} = 5	au =
```

Table 10-1: Data Table for RC Time Constant [1]

Time (min:sec)	Current (mA)		Resistor Voltage (V)	Capacitor Voltage (V)	
	Trial 1	Trial 2	Average	181 (1)	
0:00					
0:15					
0:30					
0:45					
1:00					
1:15					
1:30					
1:45					
2:00					
2:15					
2:30					
2:45					
3:00					
3:15					
3:30					
3:45					
4:00					
4:15					
4:30					
4:45					
5:00					
5:15					
5:30					
5:45					
6:00					

5 Conclusion

References

 $[1] \ \ UNCC \ ECE \ Department. \ Time \ constant \ of \ an \ rc \ circuit, \ 2023. \ [Online; \ accessed \ 21 \ November \ 2023].$