Events, Corporate Bonds and Securitizations

DR. DAVID C. SHIMKO New York University

VL04

Valuation for Financial Engineers

Review: GVE and the binomial interest model

Assumptions

- Equally likely outcomes ($\sigma_r = 1\%$)
- O ZCB pays \$100 at time 2
- o k = 25%
- \circ $\sigma_{\text{V}} = 0.5(V_{\text{up}} V_{\text{down}})$

$$V_0 = \frac{avg(95.69,97.56)}{1.03} + 0.25(0.5(95.69 - 97.56))$$

Value a barrel of oil received in one year

CAPM

[(0) |+r+p FORW

GVE

BEST

Now take it one step further!

3

Risk-neutrality ---- "trick" to imagine we are in a risk-neutral world for pricing convenience, but really pricing in a risky world

- Certainty-equivalent V₁
 - o 93.59(1.03) = 96.39
- Reset probabilities to get $E[V_1]=CEQ$

$$\pi^* = (96.39 - 97.56)/(95.69 - 97.56) = 62.5\%$$

- $^{\circ}$ 1- π^* = 37.5%
- Then, the forward rate is the expected spot rate using these riskneutral probabilities
 - 0.625*0.045 + 0.375*0.025 = 3.75%
- And the valuation can be done with no risk adjustment
 - 0.625*95.69 + 0.375*97.56/1.03 = 93.59

^{*} Please note: Usually a tree is defined for forward rates, so no risk adjustment is ever needed

Tips for mini project 2

- Step 1. Modify each row of your bond dataset to include some additional columns (see below).
- Step 2. I recommend creating an integer maturity date code to avoid dealing with months that have different day counts. Every interval of "1" in my code corresponds to two weeks in calendar time.
- Step 3. Accrued interest is computed using the Treasury Direct formula in the assignment.
- Step 4. "t" is time measured in years, and d(t) is the discount factor associated with date t, continuously compounded.
- Step 5. Compute the theoretical bond prices based on your chosen d(t), and then then find the function d(t)to fit as closely as possible.

				Bid/Ask/Avg	2					Days	365			
				Today	9/7/2022					Settlemer	0			
LC code	Last coup	Next coup	Mat Code	Maturity	Yld to Mty (A	Bid Price	Ask Price	Cpn	Accr %	Invoice	t (mat)	d(t)	Fitted	SSQ comp
1	3/15/2022	9/15/2022	13	9/15/2022	0.27	99.96	100.02	1.50	0.96	100.74	0.02	0.9992	100.67	0.00
2	3/31/2022	9/30/2022	14	9/30/2022	1.82	99.85	99.90	0.13	0.87	99.95	0.06	0.9978	99.84	0.01
2	3/31/2022	9/30/2022	14	9/30/2022	2.12	99.93	99.98	1.75	0.87	100.74	0.06	0.9978	100.65	0.01
2	3/31/2022	9/30/2022	14	9/30/2022	1.80	99.95	100.00	1.88	0.87	100.82	0.06	0.9978	100.72	0.01
3	4/15/2022	10/15/2022	15	10/15/2022	2.37	99.84	99.90	1.38	0.79	100.44	0.10	0.9964	100.32	0.01
4	4/30/2022	10/31/2022	16	10/31/2022	2.49	99.61	99.66	0.13	0.71	99.70	0.15	0.9948	99.55	0.03
4	4/30/2022	10/31/2022	16	10/31/2022	2.43	99.85	99.92	1.88	0.71	100.58	0.15	0.9948	100.42	0.03

Determining the cash flow map

- Step 6: For each maturity code, determine if the bond makes a coupon payment on that date (1) or does not (0)
- Step 7: You now have enough information to price the bonds

Mat coo	de <u>1</u> 23456789###	13	14	15	16	17	18
Date	# # # # # # # # # # # #	9/15/22	9/30/22	10/15/22	10/31/22	11/15/22	11/30/22
	123456789###	13	14	15	16	17	18
t	###########	0.02	0.06	0.10	0.15	0.19	0.23
y(t)	0000000000000	0.035	0.035	0.035	0.035	0.035	0.035
d(t)	0000000000000	0.99923317	0.99779695	0.9963628	0.9948353	0.9934054	0.99197756
SUM							
	100000000000000	1	0	0	0	0	0
	100000000000000	0	1	0	0	0	0
	100000000000000	0	1	0	0	0	0
	100000000000000	0	1	0	0	0	0
	100000000000000	0	0	1	0	0	0
	100000000000000	0	0	0	1	0	0
	100000000000000	0	0	0	1	0	0
	100000000000000	0	0	0	1	0	0
	10000000000000	0	0	0	0	1	0
	10000000000000	0	0	0	0	1	0
	10000000000000	0	0	0	0	0	1
	10000000000000	0	0	0	0	0	1

And now...returning to the lecture!

The GVE and Events

• Assume capital gains or cash flows might be affected by an event that happens with a constant probability of π per period

- Capital gains: The asset may drop to zero due to termination or default
 - If the event triggers the loss of the entire asset, then the capital gain is the negative of the asset value
 - **The asset may drop to a "recovery value" of (1-\lambda)**V
- o Cash flows: The level of cash flows might be subject to a windfall
- Even if there is no pricing for risk, we still need to account for expected gains or losses

Case 1

8

- An automobile insurance policy pays C in the event of a claim, and o otherwise
- Assume
 - ${\color{olive} \circ}$ Maximum one event per year, probability π per year
 - Perpetual auto policy
 - No risk charge, but expected losses should be considered
- In this case we can write the GVE as

$$rac{1}{2} rV_0 = (V_1 - V_0) + \pi C$$

- × Since the payment or non-payment of the claim does not change the asset value, the capital gain is zero, i.e. $V_1 = V_0$
- ➤ This was true for simple perpetuities as well

$$\circ V_0 = \frac{\pi c}{r}$$

▼ This is a perpetuity of the expected cash flow each period

Case 2

9

- A life insurance policy pays \$B at death ("B" for benefit) but can only be exercised once. Except sometimes in Brooklyn...
- Assume
 - The policy is paid in full at inception
 - \circ The conditional probability of death in every year is δ
 - Theoretically, a perpetual contract without aging effects
 - No risk charge, just expected values

The GVE suggests

$$rV_0 = (V_1 - V_0) + \delta(B - V_0)$$

- ▼ Interpret V as the value of the asset while it is in force (i.e. alive)
- ➤ Again, because this is a perpetuity, the capital gain must be zero

$$V_0 = \frac{\delta B}{r+\delta}$$

ex. I am buying a call option on Enron stock, use option pricing model to value it. BUT if I assume Enron has a constant probability of dropping to zero (delta)

× This is interpreted as a perpetuity of the expected cash flow every year, but discounted at a higher rate $r+\delta$ to reflect "termination" risk

Case 3

10

A corporate bond has a constant periodic default rate.

Assume

- o In the event of default with probability π , conditional on non-default before that date, a fraction λ of the loan value is lost
- There is no risk compensation, just an adjustment for expected losses
- Hint: Divide the bond into a non-defaultable portion and a defaultable portion

Then

- O The nondefaultable portion is assumed to be (1-λ) times the bond's present value at the risk free rate...
- \circ PLUS λ times the present value of the risky part
 - \star As in VLo2, the expected payments decline at an exponential rate of π
 - × The IRR on these cash flows is $\frac{r+\pi}{1-\pi}$

The BIS Defaultable Bond Model

11

Parameters

- Face value = 1000
- Coupon = 5.5%
- \circ Lambda = 60% Recovery = 40%
- o Pi = 3%
- r = 4%
- Cash flows contingent on default date

π = probability of default

 $\lambda =$ loss given default

Expected present value

$$\frac{(1-\pi)+\pi(1-\lambda)}{(1+r)} = \frac{1-\pi\lambda}{1+r} \approx \frac{1}{1+(r+\pi\lambda)}$$

 $\pi\lambda$ = Approximate credit spread (no risk premium)

Exact credit spread (one period) =
$$\frac{\pi\lambda(1+r)}{(1-\pi\lambda)}$$

Probability Outcome

- Let's include the possibility that the market requires a risk premium k (as a percentage) in addition to expected losses
- Then for a one-period bond promising to pay C

$$rac{1}{2} rV_0 + kV_0 = (0 - V_0) + (1 - \pi\lambda)C$$
 $V_0 \approx \frac{C}{1 + r + k + \pi\lambda}$

- These names are applied for coupon bonds and ZCBs:
 - o Bond (promised) yield = $r + k + \pi \lambda$
 - \circ Credit spread = $k + \pi \lambda$

Bonds vs Loans Review

14

Bonds

- Traded on a public market
- Monitored by a trustee
- Indentures requirements for issuer
- Impossible to negotiate or change

Loans

- Private transaction with bank
- Heavy monitoring
- Covenants promises to keep
- Much higher recoveries in default (lower LGDs)

Types of bonds

15

- Debenture (straight bond) general obligation of company
- Callable bond ←

Issuer has right to repurchase (call) for a fixed price --- two reasons

- (1) Corporate interest rate has fallen, making it profitable to refinance (market rates fall or company credit spread falls)
- (2) Call if indenture requires it, e.g. before acquisition or major change, bond must be refinanced
- Nonrefundable bond

Putable bond

Perpetual debenture

ZCB (Zero Coupon Bond)

NONREF- like a callable bond, but cannot be refinanced because of (1)

r(callable) > r(nonref) > r(debenture)

Putable - Investor has the right to sell bond back to issuer at fixed price

r(putable) < r(debenture)

- STRIPs
- Convertible bond

Investor has the option to convert bond to shares at fixed ratio r(convertible) < r(debenture)

Adjustable bond

terms changeable over time

Structured bond

securitizations

OAS: Option-adjusted spread

16

Callable bonds

debenture

- Value of callable bond = Value of noncallable bond Value of issuer's call option
- Convertible bond
 - Value of convertible = Value of nonconvertible bond + Value of investors' call
- OAS = yield of bond with options if held to maturity
 yield of bond without options

Important bond abbreviations

17

Courtesy BIS

Basel accords

- Bank for International Settlements
- PD = π = Annual conditional default probability
- LGD = λ = Loss given default (percentage)
- $EL = expected loss = \pi \lambda$
- Corporate bond YTM

government bond of

- = Risk-free rate(same maturity) + Expected loss rate
 - + Additional market credit risk premium

Corporate Bonds

18

Most Active Investment Grade Bonds

Credit rating may differ according to which bond is issued by the company

i.e. credit rating of issue, not issuer

	Issuer Name	Symbol	Coupon	Maturity	Moody's®/S&P	High	Low	Last	Change	Yield%
	GE CAP INTL FDG CO MEDIUM TERM NTS BOOK	GE4373444	2.342%	11/15/2020	A2/AA-	99.24900	98.91400	99.00900	-0.296000	2.708436
	CITIGROUP INC	C4114236	2.550%	04/08/2019	Baa1/BBB+	100.45400	100.08000	100.15000	-0.009000	2.422841
	TRANSCANADA PIPELINES LTD	TRP4566319	2.125%	11/15/2019	A3/	99.60000	99.48800	99.48800	-0.138000	2.413118
	JPMORGAN CHASE & CO	JPM4260166	2.750%	06/23/2020	A3/A-	100.66400	100.23840	100.50500	-0.130000	2.526826
d	WELLS FARGO BK N A SAN FRANCISCO CALIF M	WFC4432931	2.150%	12/06/2019	Aa2/AA-	100.04700	99.46300	99.48200	-0.374000	2.432825
	PNC BK N A PITTSBURGH PA MEDIUM TERM SR	PNC4341038	1.950%	03/04/2019	A2/A	99.70700	99.64300	99.67500	-0.020000	2.243243
	GE CAP INTL FDG CO MEDIUM TERM NTS BOOK	GE4373445	4.418%	11/15/2035	A2/AA-	106.11400	105.10300	105.29900	-1.266000	3.999004
	GENERAL ELEC CO	GE4105158	4.500%	03/11/2044	A2/AA-	107.78600	106.69200	107.31300	-0.813000	4.043973
	JPMORGAN CHASE & CO	JPM4203225	2.250%	01/23/2020	A3/A-	100.35900	99.54400	99.62900	-0.107000	2.440085
	BOARD TRUSTEES LELAND STANFORD JR UNIV	STUY4236061	3.460%	05/01/2047	/AAA	100.49200	100.26400	100.49200	0.751000	3.433025

 ${\it Data is from September~2017, including~term~structure}$

Decomposition of yield:

19

- Citigroup YTM = 2.42%
- Risk-free rate (1.5 years) = 1.39%
- Total credit spread = 2.42% 1.39% = 1.03%
- Probability of default = 0.22% (Moody's Baa 1 year)
- LGD = 60% (assumed)
- Expected loss = $0.0022 \times 0.60 = 0.13\%$
- Additional risk premium = 1.03% 0.13% = 0.90%

Implied risk premium

Credit ratings

20

Key concepts

- Investment grade
- Short & long term
- Implications of ratings
- Impact of ratings on bond value

Мо	ody's		8&P		Fi	tch	Rating description	
Long-term	Short-term	Long-term	Short-term	Lon	g-term	Short-term	Rating description	
Aaa		AAA		А	AAA		Prime	
Aa1		AA+	A-1+	A	AA+	F1+		
Aa2	P-1	AA	A-1+	-	AA	FI+	High grade	INVESTMENT GRADE
Aa3	P-1	AA-		A	AA-			
A1		A+	A-1		A+	F1		
A2		А	A-1		Α	FI	Upper medium grade	
A3	P-2	A-			A-	F2		
Baa1	F-2	BBB+	A-2	В	BB+	F2		
Baa2	P-3	BBB		В	ВВВ	F3	Lower medium grade	
Baa3	F-2	BBB-	A-3	В	BB-	13		
Ba1		BB+		Е	3B+		Non-inttt-	
Ba2		BB			ВВ		Non-investment grade speculative	
Ba3		BB-	В	Е	3B-	В		
B1		B+			B+			NONINVESTMENT
B2		В			В		Highly speculative	GRADE
B3		B-			B-			SPECULATIVE
Caa1	Not Prime	CCC+		C	CC+			0. 20022
Caa2	NotFillio	ccc		С	cc		Substantial risks	HIGH YIELD
Caa3		CCC-	С	C	CC-	С		II II II CONDO
Ca		CC		(cc		Extremely speculative	JUNK BONDS
- Cu		С			С		Default imminent	
С		RD		D	DD			
1		SD	D	I	DD	D	In default	
1		D			D			

Bond ratings

21

Estimate PD (pi)

	Moody's	Nov 2006 S	Nov 2006 Special Comment p 14					
		20-year	1-year	1-month				
INV GRADE	Aaa	0.64%	0.03%	0.0027%				
	Aa	0.65%	0.03%	0.0027%				
	Α	1.55%	0.08%	0.0065%				
	Baa	4.27%	0.22%	0.0182%				
	Ba	13.84%	0.74%	0.0620%				
	В	25.20%	1.44%	0.1209%				
	Caa-C	41.23%	2.62%	0.2212%				

S&P 2015 Annual Global Corporate Default Study p 10										
	1	-year	1-month							
AAA		0.01%	0.0008%							
AA		0.02%	0.0017%							
Α		0.06%	0.0050%							
BBB		0.19%	0.0158%							
ВВ		0.73%	0.0610%							
В		3.77%	0.3197%							
ccc/c		26.36%	2.5176%							

Moody's and S&P are the leading bond rating agencies for corporate debt (though there are other significant players, like Fitch)

They both put out regular studies of realized default rates by rating class

These ratings can be very important – institutional investors/creditors are often restricted to investing in obligors meeting a minimum rating standard

In particular, bonds are typically segregated into "Investment Grade" (Moody's Baa & up/ S&P BBB and up) or "High Yield" (rest). High Yield is sometimes referred to as "Junk"!

Credit – Loss Given Default

22

The table on the right shows prices at default for bonds at various levels of seniority. "Seniority" is the relative ranking in the capital structure – e.g., how much preference the bonds would get when it comes to handing out money under default.

This can be taken as being the effective recovery rate, or 1-λ. You can see that there is a lot of variation in the numbers, as measured by standard deviation.

LGD will also vary by other factors – most notably industry and state of the economy.

est recovery rate

				1 -	
Bond Seniority	Number of Issues			Weighted Price %	Standard Deviation %
Senior Secured				\checkmark	
	142	50.50	53.85	57.97	26.94
Investment Grade	245	50.50 39.00	44.05	44.42	
Non-Investment Grade	245	22100	44.05	44.42	29.23
Senior Unsecured					
Investment Grade	374	43.50	44.84	38.75	24.92
Non-Investment Grade	519	32.50	36.04	34.79	23.31
Senior Subordinated					
Investment Grade	16	27.31	37.10	34.29	27.48
Non-Investment Grade	402	27.31 27.90	32.74	30.20	24.16
Subordinated					
Investment Grade	18	4.00	24.27	6.38	29.52
Non-Investment Grade	204	28.92	32.54	29.64	
Non-mivestment Grade	204	28.92	32.34	29.04	22.68
Discount					
Investment Grade	1	17.15	13.63	13.63	25.13
Non-investment Grade	96	18.00	27.31	26.94	23.38

Source: NYU Salomon Center Default Databas

Simulating Event Occurrence

23

The hard way:

- Every period, choose a uniformly distributed random number between 0 and 1
- o If the value is less than π , then the event has occurred, otherwise it has not
- Repeat every period in sequence

Problem

o Each bond requires a large number of random numbers to generate the result!

generate the result!

$$ex. \ T = 177, \ = if(\rho ANN) < 0.01, 1, 0)$$
 $for physical part of the property of the$

Simulating an event – The easy way

24

- Suppose the probability of default for a corporate's bond is π per year, e.g. 2% per year
- The time to default is modeled as a geometric distribution
 - O Not available in Excel!
- Simulate default time using

$$t = \frac{\ln(1-u)}{\ln(1-\pi)}$$

*u is a uniformly distributed random number

The continuous equivalent: Poisson process

$$\tilde{u} = \Gamma(\tilde{t})$$
 $\tilde{z} = \Gamma(\tilde{u})$
 \tilde{u}
 $u=0.69$

- $u = F(t) = 1 e^{-\lambda t}$
- $t = F^{-1}(u) = -\ln(1-u)/\lambda$
- Find the mean using simulation

$$Z = \text{Normsinv} \left(\text{rand}(1) \right)$$

Part II

26

Securitization as a fixed income product

Example using Brownstone rental income

Mortgage-backed securities and event simulation

Valuing Collateralized Debt Obligations

Individual Borrowing: A Case Study

27

Assumptions

Townhouse value	1,000,000	
Annual expected income	90,000	net
Current return	9.00%	ROA

OPTION A: 60% personal loan with 6% interest

Cash out	60.00%	600,000
Townhouse equity		400,000
Income		90,000
Interest	6.00%	36,000
Net		54,000
ROI		13.50%

Three ways to borrow money

- 1. Take out a bank loan
- 2. Sell the cash flows to bond investors
- 3. Securitize the cash flows

- Is #2 feasible? Risks to bond investors:
 - o Damage to property, or insufficient maintenance
 - Lack of insurance on property
 - Fraud or theft by townhouse owner
 - Defaults or delays in payments from tenants
 - Property-specific risks

What does securitization mean here?

29

- Assemble 100 townhouses into a pool and assign a manager to operate them.
 - What are the manager responsibilities?
- Allow people to invest in a share of the pool
- Why would investors prefer this to buying a bond from an individual owner?
 - Manager risk mitigations
 - Diversification
- What could the securitization structuring team do to reduce the risk to bondholders and therefore the interest rate paid on the bonds?
 - Subordination
 - Overcollateralization

Excess spread

Credit enhancement

Subordination

In any given period, investors are paid before owners, i.e. "owners subordinate their claims to those of investors"

owners take "first-loss" position

Overcollateralization

may get a bank line of credit to cover investor losses up to some point

good because(a) bank has gone through credit process (b) bank take risk on its own to support structure

Excess Spread

all income over time must be paid to investors before owners

Should the homeowner securitize?

30

Assumptions

Townhouse value	1,000,000
Annual expected income	90,000
Current return	9.00%

OPTION A: 60% personal loan with 6% interest

OPTION B: 80% securitized, 4% interest, \$5K annual fee

				structuring fee
Cash out	60.00%	600,000	Cash out 80.00%	800,000
Townhouse equity		400,000	Townhouse equity	200,000
Income		90,000	Income	90,000
Interest	6.00%	36,000	Interest 4.00%	32,000
Net		54,000	Fees	5,000
			Net	53,000//
ROI		13.50%		٧ /
			ROI	26.50%

What is a securitization, more generally?

31

- The conversion of risky cash flows into investable assets
- Examples
 - Mortgages and mortgage backed securities
 - Credit card receivables
 - Subprime loans
 - Trailer park loans
 - O David Bowie's future income
 - Collateralized Debt Obligations

How does it work?

Mortgage replaced by corporate bonds

mortgages sold into pools - profit from sale, servicing, redeploying capital to new originations ORIGINAL POOLS - pro-rata (proportionately) MODERN POOLS- CMO -Collateralized Mortgage Obligation - cash flows flows distributed according to "waterfall" rules timing and risk

Class A A tranche

Class B B-tranche Residual or Equity

time

- A trust owns the assets and distributes the cash flows generated by them
- O Distributions may be pro-rata or differentiated CMO, CDO
- Differences in cash flows are often prioritized according to risk or timing of receipt

Why securitize?

- Specialization banks with MBS and CMO
 - o For example, origination vs warehousing risk
- Change risk profile
 - Lower risk or higher risk; what type of risk
- Reduce need for (equity) capital townhouse example
 - Leverage customized to the asset
- Make prices publicly observable e.g. catastrophe bond
 - Create or increase a market for future securitizations
- Increase the value of the cash flows
 - O How does the pie become bigger when it is cut into slices?

The U.S. Mortgage Market

33

Value of mortgage debt outstanding in the U.S.

USD trillions

Real Estate > Mortgages & Financing

Value of mortgage debt outstanding in the United States from 2001 to 2021 (in trillion U.S. dollars)

Recent MBS Statistics

34

U.S. Mortgage-Related Securities Outstanding USD Billions

GNMA - guarantor

Agency (FHLMC, FNMA,

ex: jumbo loans

C = commercial; R = residential

		GN	MA)	Non-A	Agency	Total			
Y	Q	Agency MBS	Agency CMO	CMBS	RMBS	Agency	Non-Agency	Total	
2018	Q1	6,994.0	1,094.9	516.7	778.1	8,088.9	1,294.7	9,383.7	
	Q2	7,068.8	1,102.7	526.1	786.3	8,171.4	1,312.5	9,483.9	
	Q3	7,164.6	1,105.7	534.2	809.2	8,270.2	1,343.4	9,613.6	
	Q4	7,268.7	1,103.2	543.1	817.3	8,371.9	1,360.4	9,732.3	
2019	Q1	7,324.8	1,110.6	546.5	835.0	8,435.3	1,381.6	9,816.9	
								_	

Securities Industry and Financial Markets Association

Mortgage Notes

35

- Issued mortgages are about the same size as the U.S. debt market
- About 2/3 of these are securitized
 - Mortgages are packaged into pools, called *Mortgage-Backed Securities*, or MBS
 - Shares in these pools are sold to investors
 - Sometimes, investors agree to receive cash flows that have been sequenced into *tranches*
 - These are called CMO's or *Collateralized Mortgage Obligations*
- The failure of the CMO market was the primary (proximate) cause of the 2008 Credit Crisis in the U.S.

Cause:

- 1. Banks found mortage securitization profitable, needed volume 2. Loosened credit standards (ex. Alt-A "no documentation")
- 3. Property values dipped 4. Defaults increase 5. But, banks went to rating agencies, getting AAA ratings!!! 6. Blame financial engineers

Questions

36

How would you sell mortgages to investors?

- Hints
 - What do fixed income investors generally want?
 - Why don't mortgages fit this profile?
 - How can we make them fit?

• Notice, this is a *marketing* question

A sample allocation of CMO payments

How would you value a CMO?

How would you value a CDO?

- 1. SIMULATE interest rates (risk-free), default rates, prepayment
- 2. CONSIDER CORRELATIONS ex. interest rates fall --> bonds refinance (prepay)
- 3. SIMULATE CASH FLOWS TO POOL
- 4. Determine from waterfall how cash flows distributed
- 5. Value individual tranches by finding the PV of each tranche's cash flows
- 6. Complete a risk assessment for each tranche

Summary of Fixed Income Valuation Models

- Value cash flows, annuities and perpetuities with different growth patterns and known discount rates
- Value assets with irregular payment and discounting patterns
- Recover risk-free rates from ZCB term structure
- Value FRNs and their components
- Value inflation-linked cash flows
- Value cash flows in different currencies
 - Compute the forward exchange rate using arbitrage
 - See appendix
- Value insurance-linked and other event-driven cash flows
- Value defaultable cash flows
- Next week: Portfolio-based equity valuation

APPENDIX: Exchange rates

RATES TABLE 1 US Dollar Rates table		
Top 10 US Dollar	1.00 USD	Apr 30, 2019 14:24 UTC inv. 1.00 USD
Euro	0.891285	1.121975
British Pound	0.767611	1.302743
Indian Rupee	69.677374	0.014352
Australian Dollar	1.420660	0.703898
Canadian Dollar	1.345941	0.742975
Singapore Dollar	1.360817	0.734853
Swiss Franc	1.019249	0.981115
Malaysian Ringgit	4.137280	0.241705
Japanese Yen	111.372375	0.008979
Chinese Yuan Renminbi	6.735214	0.148473

Currency Terms

42

- Spot exchange rate The price of foreign currency paid today
 - o Direct quote: Units of foreign currency per USD
 - o Indirect quote: USD per unit of foreign currency (e.g. GBP, EUR)
- Forward exchange rate The price agreed today of foreign currency received and paid for in the future
- Currency swap An agreement to exchange currency in the future
- Domestic, offshore and foreign interest rates
 - O All risk-free rates are different
- Eurodollars
 - Dollar-denominated fixed income instruments traded outside the U.S.
- Purchasing Power Parity (PPP)
 - The theory that exchange rates are set so that equal value currency combinations purchase the same basket of real goods in different countries
- Interest Rate Parity (IRP) or covered interest arbitrage
 - The relationship between spot prices and forward prices of two currencies
- Arbitrage
 - Trading to make a risk-free profit from price discrepancies occurring in the market

How is the exchange rate determined?

- Markets
- Central banks/intervention
- Pegs
- Fixed exchange rates

Interest Rate Parity: Comparative forward rates

43

Interest rate parity illustration for direct quotation currencies

Time	Now	In t years	In CNY
USD	\$1	$(1+r_{\mathrm{USD}})^{\mathrm{t}}$	$F(t)(1+r_{\rm USD})^t$
CNY	¥1 (X _{CNY})	$X_{CNY}(1+r_{CNY})^t$	$X_{CNY}(1+r_{CNY})^{t}$

$$\frac{F(t)}{X_{CNY}} = \frac{(1 + r_{CNY})^t}{(1 + r_{USD})^t} \equiv (1 + \delta)^t$$

Interest Rate Parity

44

Say that the Euro is trading at 1.30 USD per 1 EUR

If the 1 year interest rates (annual payment) are 8% and 10% for the EUR and USD respectively, what is the 1 year forward exchange rate?

Time	Now	In 1 years
USD	\$1.30	1.3*(1.1)
EUR	€1	€1*(1.08)

$$F = \frac{1.3 * 1.1}{1 * 1.08} = 1.32 \ USD \ per \ EUR$$

In this example, which currency is *appreciating* relative to the other?

Hint: Higher inflation results in currency depreciation