Organização de Arquivos

Prof^a. Patricia D M Plentz

UFSC / CTC / INE

Disciplina INE5609 – Estruturas de Dados

Objetivos desta Aula

 Estudo de técnicas de armazenamento e recuperação de dados em memória secundária.

Principais tipos de arquivos:

- Arquivos Seqüenciais;
- Arquivos Indexados;
- Arquivos Invertidos;
- Arquivos de texto.

Plano de Aula

- Introdução
- Tipos de acesso / dispositivos
- Princípios básicos da Gerência de Arquivos
- Tipos de arquivos
- Principais operações sobre arquivos

Introdução

- Arquivo
 - Conjunto de dados residente em um

Dispositivo de Armazenamento Secundário.

Tipos de Acesso / Dispositivos

- Acesso Sequencial
 - Dados podem ser lidos somente na mesma ordem em que foram gravados.
 - A gravação dos dados é realizada após a área utilizada.
 - Exemplo: Fita Dat

- Acesso Aleatório
 - Dados podem ser lidos e gravados* em qualquer ordem.

Exemplo: Disco, CD.

* à exceção do CD.

Acesso Sequencial - Exemplo

• Fita Dat

- Tempo para acesso aos dados é muito grande;
- Utilizada para armazenar dados que serão acessados poucas vezes e não serão alterados.
- Uso típico: Backup.

Acesso Aleatório - Exemplo

- Disco
 - Tempo para acesso aos dados é menor;
 - Utilizada para armazenar dados que serão frequentemente acessados e alterados.
 - Uso típico: Banco de dados e sistemas em geral.
- Base para as técnicas que serão estudadas.

Características Memória RAM x Memória Secundária

- Memória RAM
 - Vantagens: velocidade de acesso aos dados.

Desvantagens: volátil.

- Memória Secundária
 - Vantagens: não volátil.

 Desvantagens:
 velocidade de acesso aos dados.

Características Memória RAM x Memória Secundária

 A memória RAM é utilizada para temporariamente armazenar dados que serão acessados/modificados, isto é, processados;

 A memória de armazenamento secundário é utilizada para armazenar dados por um tempo indeterminado, antes e depois de serem processados.

Características Memória RAM x Memória Secundária

Solução Intuitiva:

 O sistema operacional carrega todos os dados que um programa precisa para a memória RAM.

 Após o processamento ser realizado, o sistema operacional armazena na memória secundária os dados inseridos/alterados.

• Problema:

 Ler e gravar <u>todos</u> os dados de um arquivo pode levar muito tempo e talvez eles não caibam na memória;

Talvez apenas uma parte do arquivo seja necessária.

Organização de Arquivos

- A organização de arquivos se refere a um conjunto de técnicas para (eficientemente):
 - Classificar arquivos e conteúdos de arquivos;
 - Realizar busca de dados em arquivos;
 - Inserir / Alterar / Eliminar dados em um arquivo;
- Maior restrição: tempo de acesso aos dados.

- Solução para o problema de leitura / escrita de dados:
 - Trabalhar com dados organizados em arquivos;
 - Trazemos para a memória apenas os dados que queremos alterar;
 - Escrevemos em disco dados que devem ser inseridos no arquivo;
 - Retiramos do disco dados que queremos excluir.

Maior restrição: tempo de acesso aos dados.

Solução:

- Organizamos os arquivos de forma a minimizar o tempo de acesso aos dados;
- Eficiência na organização tem prioridade maior que economia de espaço (pode ser desperdiçado moderadamente)

Gerência de Arquivos: Princípio Básico

- Organizar os dados de forma a minimizar o número de acessos à memória secundária para executar uma operação (procura, inserção, alteração, deleção).
- Para isto utiliza-se:
 - Organizações de dados mais rígidas de que na memória (mesmo que isso signifique desperdício de espaço)
 - técnicas de *indexação*
 - algoritmos de busca

Estrutura do Disco

Estrutura do disco

Estrutura do Disco

- Disco Exemplo típico para uma memória secundária de acesso aleatório.
- Compreender a forma de armazenamento é importante.
- Modelo de estruturação do disco serve para todos os outros meios secundários.

Armazenamento em Disco

Modelo Simplificado:

- Dados são organizados em superfícies, trilhas e setores, blocos.
- Um arquivo pode ser imaginado como sendo constituído por uma seqüência de dados no disco.
- Acesso é feito através do posicionamento de um cabeçotes de r/w em qualquer ponto.
- Uma unidade de alocação do disco (um bloco ou um setor) possui um endereço físico no disco.
- Podemos endereçar estes da mesma forma que fazemos com a RAM

• Modelo mais realista:

- O disco pode apresentar <u>fragmentação</u>: isto é, os dados não estão exatamente em espaços contíguos, mas em unidades de alocação longe umas das outras, encadeadas como uma lista.
- O encadeamento é tarefa do sistema operacional e do hardware (controladora) do disco.

Armazenamento em Disco

- Custo de acesso ao disco:
 - Tempo de busca (seek time): tempo de deslocamento do mecanismo de acesso de uma trilha para outra;
 - Latência rotacional: tempo para que o inicio do bloco que contenha o registro a ser lido passe pelo cabeçote de leitura/gravação;
 - Tempo de transferência: quantidade de tempo necessário para que um bloco (ou setor) seja transferido para um buffer de memória.

Tipos de Arquivos

- Sob o ponto de vista de armazenamento de informações, existe basicamente dois tipos de arquivos:
 - Arquivos de formato variável
 - Arquivos de registro.

Aplicação Típica

- Acesso ao arquivo inteiro de formato variável:
 - Computação gráfica
 - Engenharia de software
 - CAD
 - Documentos
- Acesso a registros
 - Banco de dados
 - Processamento transacional

Arquivos de Formato Variável

- A única unidade de endereçamento possível é o byte.
 - Os arquivos não são organizados em estruturas.
 - Exemplo: arquivo texto.
 - São tratados como arquivos de acesso seqüencial.

Arquivos de Registros

 São organizados em unidades, chamadas registros.

- São conjuntos de dados de tamanho fixo, mesmo que uma parte não seja aproveitada.
- As técnicas de <u>Organização de Arquivos</u> são voltadas para arquivos do tipo registro.

Arquivo de Registro

Terminologia Empregada

Arquivo

Coleção de registros lógicos;

Registro lógico

 Seqüência de campos ou atributos da entidade ou do objeto sendo modelado;

Campos

 Corresponde a cada uma das informações que se deseja modelar a respeito da entidade ou objeto considerado. Ex.: Nome, salário, cargo, etc.

Terminologia Empregada

- Exemplo:
 - Entidade: Carro;

Quais são os possíveis atributos da entidade Livro?

Atributos: cor, marca, modelo, placa.

Terminologia Empregada

- Registro físico
 - O armazenamento de um arquivo é feito, via de regra, por blocos de registros lógicos;
 - Um bloco corresponde a quantidade de dados transferidos em um acesso simples;
 - Um bloco de registros lógicos corresponde a um registro físico.

Terminologia Empregada

- Em cada leitura ou gravação é lido ou gravado um bloco e não apenas um registro lógico
 - Usualmente, o tamanho dos blocos é constante e coincidente com uma unidade de armazenamento do meio físico utilizado (ex.: setores, trilhas em disco magnético).
 - Fator de bloco: número (inteiro) de registros lógicos por bloco.

Estrutura de Acesso

Exemplo: Arquivo de Funcionário

Tipos de Registros Lógicos

Exemplo de Registros com Campo Variável

A B C D E F01 F02 F03

A – Código

B – Nome

C – Tamanho do campo D

D – Endereço

E – Ocorrências de F (1 a 10)

F – Disciplinas

01 Pascal

02 Inglês

03 Organização

de Dados

Registros de Tamanho Fixo

- nr div fb : bloco onde está o registro
- nr mod fb : posição do registro no bloco
 - nr : posição relativa no arquivo
 - fb : fator de bloco

Registros de Tamanho Variável

- Problemas de acesso, exceto o serial;
- Problemas de atualização, podendo haver aumento de tamanho do registro;
- As vezes é conveniente deixar alguns itens em um tamanho padrão, por serem usados com grande freqüência. Assim, evita-se a expansão à cada vez que são manipulados.

Arquivos Seqüenciais

- Para acessar um dado registro em um arquivo seqüencial é necessário percorrer todos os que o antecedem.
 - É a forma mais simples de implementar operações de inserção, remoção e consulta.
- Os registros podem estar:
 - Desordenados;
 - Ordenados (chaves): fisicamente ou logicamente

• Desordenado:

	PACIENTE	SANGUE	RH	DOAÇÃO	CONTATO	PESO
1	Zé	A	+	12/12/03	(79)223.1542	80
2	Beto	В	-	12/10/02	(79)8801.2017	70
3	Clô	О	+	11/09/04	(79)9941.1388	72
4	Gil	AB	-	02/02/05	(81)2212.6711	95
5	Sara	A	-	10/01/04	(11)2213.0909	73

Ordenados Fisicamente:

	PACIENTE	SANGUE	RH	DOAÇÃO	CONTATO	PESO
1	Beto	В	-	12/10/02	(79)8801.2017	70
2	Clô	О	+	11/09/04	(79)9941.1388	72
3	Gil	AB	-	02/02/05	(81)2212.6711	95
4	Sara	A	-	10/01/04	(11)2213.0909	73
5	Zé	A	+	12/12/03	(79)223.1542	80

Ordenado logicamente (por links)

	PACIENTE	SANGUE	RH	DOAÇÃO	CONTATO	PESO	LINK
0							2
					<u> </u>		
1	Zé	A	+	12/12/03	(79)223.1542	80	-1
_	D (10/10/02	(70)0001 2017	70	2
2	Beto	В	-	12/10/02	(79)8801.2017	70	3
3	Clô	0	+	11/09/04	(70)0041 1299	72	4
	Clo	U		11/09/04	(79)9941.1388	12	4
4	Gil	AB	_	02/02/05	(81)2212.6711	95	5
	on	112		02/02/03	(01)2212.0711		
5	Sara	A	-	10/01/04	(11)2213.0909	73	1
					` ′		

Arquivo Sequencial - Chave Primária

- Uma chave é um campo usado para identificar um registro como único.
 - Índice é uma estrutura de dados que mantém o conjunto de chaves de um arquivo e o endereço respectivo do registro de cada chave.

Registros
 fisicamente
 ordenados
 por uma
 chave
 primária ou
 chave de
 ordenação.

Número
1000
1050
1075
1100
1300
1350
1400
•••
· <u></u> . <u></u> . <u></u> .

Nome	Idade	Salário
Ademar	25	900
Afonso	34	1200
Carlos	51	1500
Darci	42	970
Elber	38	875
Genaro	29	1340
Helena	20	1190
		•••

- Indicação de Uso
 - Memória de acesso seqüencial;
 - Indicado para arquivos que sofrem recuperações / atualizações por lotes (em batch);
- Contra-indicação
 - Quando há mais de uma chave;
 - Quando exige-se respostas em tempo real;
 - Aplicações com inserções / exclusões arbitrárias.

Exercício:

- Há vantagens em manter arquivos seqüenciais ordenados por links?
 - Vantagens em relação a que outra organização?
 - Em relação a que critérios?
 - ✓ Espaço de armazenamento?
 - ✓ Tempo de processamento das operações básicas?
 - Há desvantagens?

Arquivo Seqüencial Desordenado

Aplicação de Arquivos Desordenados:

- Na implementação de aplicações cujo tempo destinado ao desenvolvimento é curto.
- Para manter pouco dados, mas de forma permanente.
- Quando os dados são ordenados naturalmente, conforme a entrada destes.

Arquivo Sequencial Desordenado

- Operações que podem ser realizadas:
 - Inserção
 - Exclusão
 - Consulta
 - Alteração
 - Classificação
 - Recuperação

Inserção

Os registros são inseridos no final do arquivo.

	Paciente	Sangue	RH	Doação	Peso
0	Zé	•••	•••	•••	•••
1	Maria	•••	•••	•••	•••
2	Ana	•••	•••	***	•••
3	João	•••	***	***	•••
4					

^{*} Somente se não houver preocupação com repetição de chaves.

Exclusão

- Requer do programador cuidado com os espaços livres.
- Os espaços livres podem ser invalidados (exclusão lógica) para posterior reutilização ou compactação (exclusão física).
- A exclusão pode ser efetuada registro a registro ou em lotes.

• Exclusão - Exercício:

Sendo objetivo do programador evitar desperdício de memória, a implementação de exclusões lógicas devem provocar alteração da operação de inclusão em arquivo seqüencial desordenado? Justifique:

• Busca (Pesquisa):

- Consiste em exibir os campos:
 - ✓ De um registro referente a uma dada chave busca específica.
 - ✓ De todos os registros do arquivo busca total.
- Depende a organização do arquivo.
- Trata-se de uma operação fim da computação merecendo atenção redobrada do programador.

Alteração:

Para execução desta é necessário:

- Fazer a busca do registro a ser alterado;
- Ler os novos dados;
- Gravar estes (novos) sobre os já existentes.
- É conveniente alterar chaves de ordenação e busca?

Referências Bibliográficas

- Material Prof. Aldo von Wangenheim (INE/UFSC);
- Material Prof^a. Kenia Kodel (UFS);