Theoretical computer science

Tutorial - week 11

April 1, 2021

Agenda

- ► Non-determinism:
 - ► NDFSA to DFSA
 - ► PDA
 - ► TM

NDFSA to DFSA

Algorithm for NDFSA to DFSA

- 1. Create state table from the given NDFA
- 2. Create a blank state table under possible input alphabets for the equivalent DFA
- 3. Mark the start state of the DFA by q_0 (Same as the NDFA)
- 4. Find out the combination of States $q_0, q_1, ..., q_n$ for each possible input alphabet
- Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6
- The states which contain any of the accepting states of the NDFA are the accepting states of the equivalent DFA

NDFSA to FSA: example

Let us consider the following NDFSA:

First, we build a transition table for NDFSA:

q	$\delta(q,0)$	$\delta(q,\!1)$
ightarrowq0	$\{q1,q2\}$	{q1}
*q1	{cp}	{q1, q3}
*q2	Ø	{q0}
q3	{q2}	{q0}

Using table from previous slide, let us create a similar table, but this time for FSA. Initially, the table is empty:

q	$\delta(q,0)$	$\delta(q,\!1)$
•••		

We begin by adding the initial state and the set of states:

q	$\delta(q,0)$	$\delta(q,\!1)$
→q0	$\{q1,q2\}$	{q1}

The initial state can take us to two new states that are not yet in the table. Note that we treat a set of states as a single state now!

q	$\delta(q,0)$	$\delta(q,\!1)$
→q0	{q1,q2}	{q1}
{q1,q2}		
q1		

The next step is to find possible states for $\{q1,q2\}$ and q3. For q3 it is trivial, you just need to look it up in the original NDFSA table. However, the transition for $\{q1,q2\}$ will be a union of sets:

$$\delta(q1, q2, 0) = \delta(q1, 0) \cup \delta(q2, 0) = \{q3\}$$

$$\delta(q1, q2, 1) = \delta(q1, 1) \cup \delta(q2, 1) = \{q0, q1, q3\}$$

The initial state can take us to two new states that are not yet in the table. Note that we treat a set of states as a single state now!

q	$\delta(q,0)$	$\delta(q,1)$
→q0	$\{q1,q2\}$	{q1}
{q1,q2}	{q3}	{q0,q1,q3}
q1		

The next step is to find possible states for $\{q1,q2\}$ and q3. For q3 it is trivial, you just need to look it up in the original NDFSA table. However, the transition for $\{q1,q2\}$ will be a union of sets:

$$\delta(q1, q2, 0) = \delta(q1, 0) \cup \delta(q2, 0) = \{q3\}$$

$$\delta(q1, q2, 1) = \delta(q1, 1) \cup \delta(q2, 1) = \{q0, q1, q3\}$$

Repeat the steps above until we have included all states from the original NDFSA and there are no new states.

q	$\delta(q,0)$	$\delta(q,\!1)$
ightarrowq0	$\{q1,q2\}$	{q1}
$\{q1,q2\}$	{q3}	{q0,q1,q3}
q1	{q3}	{q1,q3}

After repeating previous steps and depicting final states (step 6) we will arrive to the following table:

q	$\delta(q,0)$	$\delta(q,1)$
ightarrowq0	$\{q1,q2\}$	{q1}
$*{q1,q2}$	{q3}	${q0,q1,q3}$
*q1	{q3}	{q1,q3}
q3	{q2}	{q0}
$*{q0,q1,q3}$	$\{q1,q2,q3\}$	${q0,q1,q3}$
$*{q1,q3}$	${q2,q3}$	${q0,q1,q3}$
*q2	Ø	{q0}
*{q1,q2,q3}	{q2,q3}	{q0,q1,q3}
*{q2,q3}	{q2}	{q0}

NDFSA to FSA: result (table representation)

q	$\delta(q,0)$	$\delta(q,1)$
→q0	$\{q1,q2\}$	{q1}
*q12	{q3}	${q0,q1,q3}$
*q1	{q3}	{q1,q3}
q3	{q2}	{q0}
*q013	${q1,q2,q3}$	{q0,q1,q3}
*q13	{q2,q3}	{q0,q1,q3}
*q2	Ø	{q0}
*q123	{q2,q3}	{q0,q1,q3}
*q23	{q2}	{q0}

NDFSA to FSA: result (graphical representation)

Finally, we can build the resulting DFSA:

Example

Build DFSA from the NDFSA that recognizes the language: $L_1 = \{x \in \{a, b\}^* \mid x \text{ contains ab}\}$

Deterministic PDA: recap

A Deterministic PDA – Formal Definition

A Deterministic Pushdown Automaton (DPDA)

A PDA $M=\langle Q,I,\Gamma,\delta,q_0,Z_0,F\rangle$ is deterministic if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $x \in I \cup \{\epsilon\}$, and every $\gamma \in \Gamma$, the set $\delta(q, x, \gamma)$ has at most one element.
- 2. For every $q \in Q$, every $x \in I$, and every $\gamma \in \Gamma$, the two sets $\delta(q, x, \gamma)$ and $\delta(q, \epsilon, \gamma)$ cannot both be non-empty.

Transition

Transitions between configurations (\vdash) depend on the transition function. It is the way to commute from a PDA snapshot to another.

There are 2 cases:

- 1. The transition function is defined for an input symbol.
- 2. The transition function is defined for an ϵ move.

Transition – Case 1

If $(q', \alpha) \in \delta(q, i, A)$ then

$$(q, x, \gamma) \vdash (q', x', \gamma')$$

where (old snapshot)

- q is the current state
- $\rightarrow x = iy$
- $ightharpoonup \gamma = A\beta$ (for some $\beta \in \Gamma^*$)

then (new snapshot)

- ightharpoonup q' is the new state
- $\rightarrow x' = y$
- $ightharpoonup \gamma' = \alpha \beta$

Transition – Case 1 (Graphical representation)

Transition – Case 2

If
$$(q', \alpha) \in \delta(q, \epsilon, A)$$
 then

$$(q, x, \gamma) \vdash (q', x', \gamma')$$

where (old snapshot)

- q is the current state
- γ = Aβ (for some β ∈ Γ*)

then (new snapshot)

- ightharpoonup q' is the new state
- $\rightarrow x' = x$

Transition – Case 2 (Graphical representation)

Non-deterministic PDA.

Non-deterministic Pushdown Automaton (NDPDA)

Definition: NDPDA

A NDPDA is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, where $Q, I, \Gamma, q_0, Z_0, F$ are defined as in (D)PDA and the transition function is defined as

$$\delta: Q \times (I \cup {\epsilon}) \times \Gamma \to \mathbb{P}_{F(Q \times \Gamma^*)}$$

where \mathbb{P}_{F} indicates finite subsets.

Example: wcw^R

Detirministic PDA can accept $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$ where w^R is the reversed string w.

Example: wcw^R

Detirministic PDA can accept $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$ where w^R is the reversed string w.

Example: ww^R

NDPDA accepting $L_1 = \{ww^R \mid w \in \{a, b\}^*\}$ where w^R is the reversed string w.

Non-deterministic TM.

Turing Machine

Formal Definition

A Turing Machine (TM) with k-tapes is a tuple

$$T = \langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$$

where

Q is a finite set of states; I is the input alphabet; Γ is the memory alphabet; δ is the transition function; $q_0 \in Q$ is the initial state; $Z_0 \in \Gamma$ is the initial memory symbol; $F \subseteq Q$ is the set of final states.

Transition Function for Deterministic TM

The transition function for Deterministic TM

$$\delta: (Q-F)\times (I\cup\{{}_{-}\})\times (\Gamma\cup\{{}_{-}\})^k \to Q\times (\Gamma\cup\{{}_{-}\})^k\times \{R,L,S\}^{k+1}$$

where elements of $\{R, L, S\}$ indicate "directions" of the head of the TM:

R: move the head one position to the right;

L: move the head one position to the left;

S: stand still.

Remarks:

- the transition function can be partial;
- no transition outgoing from the final states;
- ▶ the symbol $_ \notin \Gamma \cup I$ is a special blank symbol on the tapes.

Transition Function for Non-Deterministic TM

To define a NDTM, we need to change the transition function (all the other elements remain as in a (D)TM):

Definition: NDTM

A NDTM is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, where $Q, I, \Gamma, q_0, Z_0, F$ are defined as in (D)TM and the transition function is defined as

$$\delta: (Q-F)\times (I\cup\{{}_{-}\})\times (\Gamma\cup\{{}_{-}\})^k \to \mathbb{P}\left(Q\times (\Gamma\cup\{{}_{-}\})^k\times \{R,L,S\}^{k+1}\right)$$

Acceptance: Among the various possible runs (with the same input) of the NDTM, it is sufficient that one of them succeeds to accept the input string.

Wrap up

► What have you learnt today?

Wrap up

- ▶ What have you learnt today?
- ▶ What for this could be useful?