Porządki

Materiały pomocnicze do wykładu

uczelnia: PJWSTK

przedmiot: Matematyka Dyskretna 1

wykładowca: dr Magdalena Kacprzak

Relacje porządkujące

Przykład: marynarka wojenna

kapitan marynarki

admirał

porucznik marynarki

chorąży

komandor

marynarz

mat

bosman

Przykład: marynarka wojenna

Przykład: marynarka wojenna

admirał, komandor, kapitan marynarki, porucznik marynarki, chorąży sztabowy, bosman, mat, marynarz

Przykład: wojska lądowe

pułkownik

generał

kapral

porucznik

plutonowy

major

sierżant

Przykład: wojska lądowe

Przykład: wojska lądowe

generał, pułkownik, major, porucznik, chorąży, sierżant, plutonowy, kapral

Przykład: PJWSTK - struktura

Prorektor ds. studenckich

Prodziekan Wydziału Informatyki

Dziekan Wydziału Informatyki

Prorektor ds. ogólnych

Rektor

Dziekan Wydziału Sztuki Nowych Mediów

Przykład: PJWSTK - struktura

Zbiór: {11,12,13,10}

Relacja: ≤

Zbiór: {10,11,12,13}

Relacja: ≤

Zbiór: {2,4,6,8}

Relacja: (podzielności)

Zbiór: {2,4,6,8}

Relacja: (podzielności)

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Zbiór: P(X), gdzie $X=\{1,2\}$,

P(X) = ????

Relacja: ⊆

Zbiór: P(X), gdzie $X=\{1,2\}$,

 $P(X)=\{\emptyset, \{1\},\{2\},\{1,2\}\}$

Relacja: ⊆

Zbiór: P(X), gdzie $X=\{1,2\}$,

 $P(X)=\{\emptyset, \{1\},\{2\},\{1,2\}\}$

Relację binarną r w zbiorze X nazywamy relacją **porządku częściowego** lub krótko relacją porządku wtedy i tylko wtedy, gdy jest ona **zwrotna**, **antysymetryczna** i **przechodnia**, tzn. dla wszystkich $x, y, z \in X$,

- 1. $(x,x) \in \Gamma$,
- 2. jeśli $(x,y) \in r$ i $(y,x) \in r$, to x = y,
- 3. jeśli $(x,y) \in r$ i $(y,z) \in r$, to $(x,z) \in r$.

Relacja: zwrotna, antysymetryczna, przechodnia

Diagramy Hassego

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Zbiór: {1,2,5,10}

Relacja: | (podzielności)

Diagram Hassego

Diagramem Hassego relacji porządku r w zbiorze X nazywamy graf niezorientowany G=(X,E), którego zbiorem wierzchołków jest zbiór X , a krawędzie są określone następująco

 $(x,y) \in E$ wttw $(x,y) \in r$ i nie istnieje $z \in X$, że $z \neq x$, $z \neq y$ i $(x,z) \in r$ i $(z,y) \in r$

Elementy wyróżnione

Element x_0 nazywamy maksymalnym w zbiorze uporządkowanym (X,r) wtedy i tylko wtedy, gdy nie istnieje $y \in X$ taki, że $x_0 \neq y$ i $(x_0,y) \in r$.

Element x₀ nazywamy minimalnym

w zbiorze uporządkowanym (X,r) wtedy i tylko wtedy, gdy nie istnieje $y \in X$ taki, że $x_0 \neq y$ i $(y,x_0) \in r$.

Element x₀ nazywamy najmniejszym

w zbiorze uporządkowanym (X,r) wtedy i tylko wtedy, gdy

dla każdego y∈X, $(x_0,y)∈r$.

Element x_0 nazywamy największym w zbiorze uporządkowanym (X,r) wtedy i tylko wtedy, gdy dla wszystkich $y \in X$, $(y,x_0) \in r$.

Elementy maksymalne **Przykład** Zbiór: {2,4,6,8,10,12,16} Relacja: (podzielności) Diagram Hassego:

Element minimalny i najmniejszy

Zbiór: {4,6,8,12,16,48}

Relacja: (podzielności)

Diagram Hassego:

Element maksymalny i największy

Relacja: (podzielności)

Diagram Hassego:

Elementy minimalne

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Diagram Hassego:

Element maksymalny i największy

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Diagram Hassego:

Element minimalny i najmniejszy

Zbiór: {4,8,16}

Relacja: (podzielności)

Diagram Hassego:

Element maksymalny i największy

Zbiór: {4,8,16}

Relacja: (podzielności)

Diagram Hassego:

Element minimalny i najmniejszy

Przykład: PJWSTK - struktura

Przykład: PJW Element największy i maksymalny

Przykład: PJWSTK - struktura

Ograniczenia i kresy zbiorów

Definicja

Niech r będzie relacją porządku w X oraz niech A będzie podzbiorem X.

Ograniczeniem górnym

zbioru A w X nazywamy element $x_0 \in X$, taki, że

 $(a,x_0)\in r$ dla wszystkich $a\in A$.

Definicja

Ograniczeniem dolnym

zbioru A w X nazywamy element $x_1 \in X$ taki, że

 $(x_1,a)\in r$ dla wszystkich $a\in A$.

Ograniczenia górne zbioru {2,6}

Ograniczenia górne zbioru {2,4}

Zbiór: {2,4,6,8,10,12,16}

Relacja: (podzielności)

Diagram Hassego:

Ograniczenie dolne zbioru {2,4}

Uwaga

Podzbiór zbioru uporządkowanego może mieć wiele różnych ograniczeń górnych i wiele różnych ograniczeń dolnych.

Ograniczenia dolne i ograniczenia górne danego zbioru A mogą, ale nie muszą, należeć do zbioru A.

Definicja

Kresem górnym (supremum)

zbioru A, podzbioru zbioru uporządkowanego (X,r) nazywamy najmniejsze ograniczenie górne zbioru A, oznaczone przez **sup A**, tzn. $x_0 = \sup A$ wttw

- 1. $(a,x_0)\in r$ dla każdego $a\in A$,
- 2. jeśli b jest ograniczeniem górnym zbioru A, to $(x_0,b)\in r$.

Definicja

Kresem dolnym (infimum)

podzbioru A zbioru uporządkowanego (X,r) nazywamy największe ograniczenie dolne zbioru A oznaczone przez **inf A**,

 $tzn. x_1 = inf A wttw$

- 1. $(x_1,a) \in r$ dla każdego $a \in A$,
- 2. jeśli b jest ograniczeniem dolnym zbioru A, to $(b,x_1)\in r$.

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Diagram Hassego:

Zbiór: {1,2,5,10}

Relacja: (podzielności)

Diagram Hassego:

Krata

Definicja

Zbiór uporządkowany, w którym dla dowolnych dwóch elementów istnieje kres górny i kres dolny nazywamy kratą

Zbiór: {2,4,6,8}

Relacja: (podzielności)

To nie jest krata!

Diagram Hassego

Porządek liniowy i dobry porządek

Definicja

Relację binarną r w zbiorze X nazywamy

porządkiem liniowym

wtedy i tylko wtedy, gdy

- 1. r jest relacją porządku częściowego,
- 2. r jest relacją spójną, tzn. dla dowolnych x,y∈X

 $(x,y)\in r \text{ lub } (y,x)\in r \text{ lub } x=y.$

Lemat

Niech (X,r) będzie zbiorem liniowo uporządkowanym, wtedy

- 1. jeśli w X istnieje element maksymalny, to jest on elementem największym,
- 2. jeśli w X istnieje element minimalny, to jest on elementem najmniejszym.

Zbiór: {14,11,12,13,10}

Relacja: ≤

Definicja

Relacją binarną w X nazywamy dobrym porządkiem

wtedy i tylko wtedy, gdy jest to porządek liniowy i dobrze ufundowany, tzn.

> każdy niepusty podzbiór zbioru X ma element pierwszy.

Zbiór {4,5,6,7} z relacją ≤ jest dobrym porządkiem.

Zbiór (4,7) z relacją ≤ NIE jest dobrym porządkiem.

Szczególne porządki

Porządek produktowy

Niech (U_1,r_1) , (U_2,r_2) , ..., (U_k,r_k) będą zbiorami częściowo uporządkowanymi.

Porządkiem produktowym

zdefiniowanym w zbiorze $U_1 \times U_2 \times ... \times U_k$ nazywamy relację \mathbf{r} taką że

$$(x_1, x_2, ..., x_k) r (x'_1, x'_2, ..., x'_k)$$

wttw, gdy

$$(x_1,x_1') \in r_1$$
, $(x_2,x_2') \in r_2$,, $(x_k,x_k') \in r_k$.

Porządek produktowy

Rozważmy zbiory (U_1, r_1) , (U_2, r_2) , gdzie $U_1 = U_2 = \{1, 2, 3, 5, 7\}$ oraz $r_1 = r_2 = \le$.

(3,2)

(1,1)

(5,7)

(1,5)

(2,3)

Porządek produktowy

Porządek słownikowy

Niech (U_1,r_1) , (U_2,r_2) , ..., (U_k,r_k) będą zbiorami częściowo uporządkowanymi.

Porządkiem słownikowym

zdefiniowanym w zbiorze $U_1 \times U_2 \times ... \times U_k$ nazywamy relację \mathbf{r} taką że

$$(x_1, x_2, ..., x_k) r (y_1, y_2, ..., y_k)$$

wttw, gdy

lub

istnieje m (1
$$\le$$
m \le k) takie, że $x_m \ne y_m$ i $(x_m, y_m) \in r_m$ i dla każdego i=1,...,m-1, $x_i = y_i$.

Porządek słownikowy

Porządek słownikowy

Niech Σ będzie ustalonym alfabetem uporządkowanym liniowo przez relację r. W zbiorze Σ^* definiujemy relację r_L , porządku leksykograficznego, następująco

$$(x_1, x_2, ..., x_n) r_L (y_1, y_2, ..., y_m)$$

wttw albo

 $n \le m$ i dla wszystkich $0 < i \le n$, $x_i = y_i$ albo istnieje takie $0 < k \le min(n,m)$, że dla każdego i, 0 < i < k,

$$x_i = y_i \text{ oraz } (x_k, y_k) \in r, x_k \neq y_k.$$

ab

babb

b

ac

ac

abc

marynarz

bosman

mat

kapitan

komandor

admirał

Niech Σ będzie ustalonym alfabetem uporządkowanym liniowo przez relację r. W zbiorze Σ^* definiujemy relację r^* , porządku standardowego, następująco

$$(x_1, x_2, ..., x_n) r^* (y_1, y_2, ..., y_m)$$

wttw albo

albo n=m i $(x_1,x_2,...x_n)$ r_n $(y_1,y_2,...y_n)$, gdzie r_n jest porządkiem słownikowym w Σ^n .

ab

babb

b

ac

ac

abc

marynarz

bosman

mat

kapitan

komandor

admirał

