TAGIL: Temporal Attention Guided Imitation Learning

Luca von Mayer - 2427051

INTRO

- Human demonstration enables AI to replicate complex decisions.
- Models predict actions from visual cues; we add reaction times to improve predictions.
- Longer decisions serve as a proxy for challenging states, enhancing model focus.

METHODS

- 1. Atari-HEAD dataset: gaze points & reaction times.
- 2. Temporal Gaze Network:
- Predicts human gaze & state difficulty,
- Inputs: frames, motion & low-level visual saliency.
- Cutputs: gaze heatmaps, difficulty (easy/hard).
- C Handles rare hard states (0.1%) via SMOTE (synthetic hard samples) & Focal Loss,
- 3. TAGIL (Action Prediction Network):
 - Processes raw & gaze-masked frames + difficulty input.
 - **C** Difficulty-weighted loss for challenging states. ■

RESULTS

Game	AGIL	TAGIL
Ms. Pacman*	69.24 ± 0.5	77.46 ± 0.1
Breakout	83.79 ± 0.3	84.45 ± 0.3
Freeway	$\textbf{93.28} \pm \textbf{0.3}$	92.85 ± 0.5
Bank Heist*	58.13 ± 0.4	$ 63.52 \pm 0.3 $
Montezuma's Revenge	$\textbf{88.96} \pm \textbf{0.2}$	87.90 ± 0.5
Berzerk*	54.48 ± 0.8	$\boxed{\textbf{64.83} \pm \textbf{0.3}}$

Percentage validation accuracy (mean ± std dev) of AGIL vs TAGIL across 6 Atari games. The * indicates significant (t-test).

DISCUSSION

- **T-GAZE** matches baseline gaze prediction (minor trade-off from synthetic data).
- **TAGIL** achieves up to 10% improvement in games with maze-like environments and multiple threats, maintains performance in simple pattern-based games.

Knowing how **long** humans take to make decisions improves behaviour cloning.

Overview of the Atari-HEAD dataset: data collection process, key data fields (e.g., image frames, actions, gaze points, reaction times), and research applications.

Examples of Ms. Pac-Man states classified as easy and hard. Red dots indicate ground truth gaze predictions. Reaction times (ms), a proxy for difficulty, align with the intuitive difficulty of these states.

Game	GAZE	T-GAZE
Ms. Pacman	0.2494 ± 0.003	0.2483 ± 0.003
Breakout	0.3220 ± 0.014	0.3337 ± 0.002
Freeway	0.3939 ± 0.004	0.3833 ± 0.002
Bank Heist	0.3376 ± 0.005	0.3354 ± 0.007
Montezuma's Revenge	0.4012 ± 0.006	0.3807 ± 0.003
Berzerk	0.2845 ± 0.007	0.2717 ± 0.001

Validation IOU (mean ± standard deviation) between Gaze and T-Gaze models across 6 Atari games.

Comparison between Gaze maps: showing baseline and T-Gaze heatmaps in green and red, respectively, with ground-truth gaze points as red dots, while the lowerleft displays the difficulty predictions.

