

Theory of Computation CS F351

Vishal Gupta
Department of Computer Science and Information Systems
Birla Institute of Technology and Science
Pilani Campus, Pilani

Lecture: Pumping Lemma for CFL's

Pumping Lemma for CFL

- Pumping lemma for regular languages told us that if there was a string long enough to cause a cycle in the DFA for the language, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.
- For CFL's the situation is a little more complicated.
- We can always find two pieces of any sufficiently long string to "pump" together.
 - This means: if we repeat each of the two pieces the same number of times, we get another string in the language.

Statement of Pumping Lemma for CFL

Let $G = (V, \sum, R, S)$ be a CFG. Then any string $w \in L(G)$ of length greater than $\Phi(G)^{|V|}$ (i.e. there exists a constant p such that |w| >= p) can be rewritten as $w = u \vee x \vee y \vee z$ such that

- 1. $|vxy| \leq p$.
- 2. |vy| > 0.
- 3. For all $i \ge 0$, $uv^i x y^i z$ is in L(G).

Example

Prove that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Proof: Suppose L is a CFL and let p be the pumping length. Let $w = a^p b^p c^p$. Then, according to pumping lemma, w can be written as u v x y z, with the required conditions.

Case1: v and y contain only one type of alphabet symbol, i.e. v or y does not contain both a's and b's, or both b's and c's.

Case 2: v and y contain more that one type of symbol.

Proof of Pumping Lemma for CFL's

Proof:

Let w be a string, and let T be the parse tree with root labelled S and with yield w that has smallest number of leaves among all parse trees with the same root and yield.

- Since, T's yield is $> \Phi(G)^{|V|}$, T has a path of length atleast (|V| + 1) nodes.
- This path has atleast |V| + 2 nodes, with only one labelled as a terminal, and the remaining non-terminals.
- This means that number of nodes in the path are greater than number of non-terminals. That is atleast one non-terminal will repeat itself along the path.

Example

Prove that $L = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not a CFL.

Examples (Try these)

Using Pumping lemma, prove that the following languages are non CFL's.

$$L1 = \{a^n \mid n >= 1 \text{ is a prime number}\}$$

$$L2 = \{a^{n2} \mid n >= 0\}$$

$$L3 = \{www \mid w \in (a+b)^*\}$$

L4 =
$$\{w \in (a+b+c)^* \mid w \text{ has equal number of a's, b's, and c's} \}$$

Next

Determinism and Parsing