### LEARNING TO RANK: FROM PAIRWISE APPROACH TO LISTWISE APPROACH

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Hang Li, ICML'2007

PPT Edited:

### Motivation: Ranking is the central issues of many applications.

- Learning to rank is useful for document retrieval, collaborative filtering, and many other applications.
- Take document retrieval as example: Assume that there is a collection of documents. The task is follows.
  - given a query, the **ranking function** assigns a score to each document
  - ranks the documents in descending order of the scores (represents the relevance of documents)
  - Learning: Get the ranking function to precisely predict the ranking lists
- learning to rank has been drawing attention in the machine learning

### Related Work: Learning based on pairwise approach

■ Basic idea:

for documents pair  $< d_x$ ,  $d_y >$ , classified as  $d_x > d_y$  or  $d_y > d_x$ 

- Examples:
  - Ranking SVM: Herbrich et al.(1999),
  - RankBoost: Freund et al.(1998),
  - Neural Network: Burges et al.(2005).
- Other approaches
- probability models for representing ranking lists of objects
  - Luce (1959), Plackett (1975)

### Related Work: Learning based on pairwise approach

#### Advantages:

- existing methodologies on classification can be directly applied
- the training data can be easily obtained

#### ■ Disadvantages:

- minimizing errors in classification of document pairs, rather than in ranking
- Assumption that the document pairs are generated i.i.d. is too strong
- the number of generated
- numbers of document pairs varies largely and models will bias toward queries with more document pairs(Table 2)

Table 2. Document-pair number distribution

| Pair Number | QUERY NUMBER |  |  |
|-------------|--------------|--|--|
| < 5000      | 61           |  |  |
| <10000      | 29           |  |  |
| <15000      | 8            |  |  |
| <20000      | 6            |  |  |
| >=20000     | 2            |  |  |

### Listwise Approach: Basic Idea

- use *documents list* as instances in learning
- listwise loss function based on two *probability models* 
  - permutation probability
  - top k probability
- model:Neural Network
- algorithm: Gradient Descent

### **Listwise Approach: Notation**

- $\blacksquare$  queries set: $Q = \{q^{(1)}, q^{(2)}, ..., q^{(m)}\}$
- documents set associated with  $q^{(i)}:d^{(i)}=\left(d_1^{(i)},d_2^{(i)},\dots,d_{n^{(i)}}^{(i)}\right)$ - size of set:  $n^{(i)}$
- target scores associated with  $d^{(i)}: y^{(i)} = (y_1^{(i)}, y_2^{(i)}, \dots, y_{n^{(i)}})$
- feature vector: $x_i^{(i)} = \Psi\left(q^{(i)}, d_i^{(i)}\right)$ which created from query-document pair  $\left(q^{(i)},d_i^{(i)}\right)$  ,  $i=1,2\ldots,m; j=1,2\ldots,n^{(I)}$
- Iist of features: $x^{(i)} = \left(x_1^{(i)}, \dots, x_{n^{(i)}}^{(i)}\right)$
- Ist of target scores: $y^i = (y_1^i, ..., y_{n^{(i)}}^{(i)})$
- training set: $\tau = \{x^{(i)}, y^{(i)}\}_{i=1}^{m}$
- ranking function: f- output for  $x_i^{(j)}$  (corresponding to  $d_j^{(i)}$ ):  $f\left(x_j^{(i)}\right)$ predicted scores list:  $z^{(i)} = \left(f\left(x_1^{(i)}\right), \dots, f\left(x_{n^{(i)}}^{(i)}\right)\right)$
- total losses:  $\sum_{i=1}^{m} L(y^{(i)}, z^{(i)})$  where L is a listwise loss function.

## Listwise Approach: Probability Models

- Permutation Probability
  - the probability of permutation  $\pi$  given the list of scores s

$$P_{s}(\pi) = \prod_{j=1}^{n} \frac{\phi(s_{\pi(j)})}{\sum_{k=j}^{n} \phi(s_{\pi(k)})}$$

- notation:
  - $\blacksquare$   $\pi$  is a permutation of n numbers corresponding to n documents
  - $\pi(j)$  is the  $j^{th}$  object(document) in permutation  $\pi$
  - s is a scores list, where  $s_{\pi(j)}$  is the score of  $j^{th}$  object in  $\pi$ 
    - s is given by y or z
  - ullet  $\phi(.)$  is an increasing and strictly positive function

## Listwise Approach: Probability Models

- Permutation Probability(con'd)
  - the probability of permutation  $\pi$  given the list of scores s:

$$P_{s}(\pi) = \prod_{j=1}^{n} \frac{\phi(s_{\pi(j)})}{\sum_{k=j}^{n} \phi(s_{\pi(k)})}$$

- In fact, only when the objects with larger scores ranked ahead of other objects in the permutation will the probability of the resulting permutation be higher.

# Listwise Approach: Top *k* Probability

- disadvantage of Permutation Probability:
  - calculation is too complex O(n!) for n documents
- Top k Probability:
  - only take top k positions into consideration, ignoring the rest.
  - there are in total  $\frac{n!}{(n-k)!}$  elements in top k subgroup  $g_k(j_1, j_2, ..., j_k)$  in which all the elements are permutation  $\pi$  having the same top k objetcs.

$$P_s(\mathcal{G}_k(j_1, j_2, ..., j_k)) = \sum_{\pi \in \mathcal{G}_k(j_1, j_2, ..., j_k)} P_s(\pi) = \prod_{t=1}^k \frac{\phi(s_{j_t})}{\sum_{l=t}^n \phi(s_{j_l})}$$

- the objects with larger scores ranked ahead in the k objects to promote a higher probability

#### Listwise Approach: Listwise loss function

- Define the metric between the top *k* **probability distributions** corresponding to the two given lists of scores as the listwise loss function (between two scores list).
- use *Cross Entropy* as metric:

$$L(y^{(i)}, z^{(i)}) = -\sum_{\forall g \in \mathcal{G}_k} P_{y^{(i)}}(g) \log(P_{z^{(i)}}(g))$$

### Listwise Approach: ListNet

Learning method:

Neural Network as model and Gradient Descent as optimization algorithm

lacktriangle With Cross Entropy as metric, the loss for query  $q^{(i)}$  becomes

$$L(y^{(i)},z^{(i)}(f_{\omega})) = -\sum_{\forall g \in \mathcal{G}_k} P_{y^{(i)}}(g) \log(P_{z^{(i)}(f_{\omega})}(g))$$

The gradient of  $L\left(y^{(i)}, z^{(i)}(f_{\omega})\right)$  with respect to parameter  $\omega$  can be calculated as follows  $\frac{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))}{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))} = \frac{\partial P_{\sigma(i)}(g)}{\partial P_{\sigma(i)}(g)} = \frac{\partial P_{\sigma(i)}(g)}{\partial P_{\sigma(i)}(g)}$ 

$$\Delta \omega = \frac{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))}{\partial \omega} = -\sum_{\forall g \in \mathscr{G}_k} \frac{\partial P_{z^{(i)}(f_{\omega})}(g)}{\partial \omega} \frac{P_{y^{(i)}}(g)}{P_{z^{(i)}(f_{\omega})}(g)}$$

### Listwise Approach: ListNet(con'd)

```
Algorithm 1 Learning Algorithm of ListNet
 Input:training data \{(x^{(1)}, v^{(1)}), (x^{(2)}, v^{(2)}), ..., (x^{(m)}, v^{(m)})\}
Parameter: number of iterations T and learning rate \eta
 Initialize parameter ω
 for t = 1 to T do
    for i = 1 to m do
       Input x^{(i)} of query q^{(i)} to Neural Network and com-
       pute score list z^{(i)}(f_{\omega}) with current \omega
       Compute gradient \triangle \omega using Eq. (5)
       Update \omega = \omega - \eta \times \Delta \omega
    end for
 end for
 Output Neural Network model ω
```

#### **Experimental Results**

- dataset : TREC, OHSUMED, CSearch
- evaluation:Normalized Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP)
- methods:ListNet, RankNet, Ranking SVM, RankBoost

# Experimental Results: Accuracy

■ ListNet *outperforms* the three baseline methods(on pair approaches) of RankNet, Ranking SVM, and RankBoost in terms of all measures on all datasets.

| Table 1. Ranking accuracies in terms of MAP |           |             |         |  |
|---------------------------------------------|-----------|-------------|---------|--|
| LISTNET                                     | RANKBOOST | RANKSVM     | RANKNET |  |
| 0.216                                       | 0.174     | 0.193       | 0.197   |  |
| 0.305                                       | 0.297     | 0.297       | 0.303   |  |
|                                             | 0.216     | 0.216 0.174 | 0.210   |  |



Figure 1. Ranking accuracies in terms of NDCG@n on TREC



Figure 2. Ranking accuracies in terms of NDCG@n on OHSUMED



Figure 3. Ranking accuracies in terms of NDCG@n on CSearch

# **Experimental Results:**Optimization processes

- Look at the correlations between the loss functions used by ListNet and RankNet and the measure of NDCG during the learning phase.
- the pairwise loss of RankNet does not inversely correlate with NDCG most of the time.
- the listwise loss of ListNet completely inversely correlates with NDCG.
- pairwise loss converges more slowly than listwise loss,
  - which means RankNet needs run more iterations in training than ListNet.



Figure 4. Pairwise loss v.s. NDCG@5 in RankNet



Figure 5. Listwise loss v.s. NDCG@5 in ListNet

#### Conclusions

- it is better to take this listwise approach than the traditional pairwise approach in learning to rank, using list of objects as instances instead of pairs in learning.
- the key issue for the listwise approach is to define a listwise loss function
  - make use of probability models: permutation probability and top k probability
  - transform ranking scores into probability distributions.
  - utilize any metric between probability distributions
- a learning method based on the approach, using Neural Network and Gradient Descent
- Experimental results show that the method works better than the existing pairwise methods
  - suggesting that it is better to take the listwise approach in learning to rank