分

109 學年度第一學期五專數學

一、單一選擇題(共 70 分,每題 10 分)

1. (D) 在坐標平面上, A點坐標 (4cos15°, 4cos75°) 與原點的距離為何? (A)1 (B)2 (C)3 (D)4

解析: $\overline{OA} = \sqrt{(4\cos 15^\circ)^2 + (4\cos 75^\circ)^2} = 4\sqrt{\cos^2 15^\circ + \cos^2 75^\circ} = 4\sqrt{\cos^2 15^\circ + \sin^2 15^\circ} = 4$

2. (A) 若 θ 為銳角且 $\cot \theta = \frac{2}{3}$,則 $\frac{3\sin \theta - 2\cos \theta}{2\sin \theta + 3\cos \theta} = ?$ (A) $\frac{5}{12}$ (B) $\frac{12}{13}$ (C) $-\frac{5}{12}$ (D) $-\frac{12}{13}$

解析: 原式 = $\frac{\frac{3\sin\theta - 2\cos\theta}{\sin\theta}}{\frac{2\sin\theta + 3\cos\theta}{\sin\theta}} = \frac{3 - 2\cot\theta}{2 + 3\cot\theta} = \frac{5}{12}$

3. (D) 面積為 $\frac{3\pi}{5}$ 的扇形,若圓心角為 150°,則其半徑為何? (A) $\frac{3}{5}$ (B) $\frac{5}{6}$ (C) 90 (D) $\frac{6}{5}$

解析: $150^{\circ} = \frac{5\pi}{6}, \frac{3\pi}{5} = \frac{1}{2} \cdot r^2 \cdot \frac{5\pi}{6}$ $\Rightarrow r^2 = \frac{36}{25} \Rightarrow r = \frac{6}{5}$

4. (D)下列敘述何者錯誤? (A)sin²40°+cos²40°=1 (B)tan20°=cot70° (C)cos10°×sec10°=1 (D)tan²60°-csc²60°=-1

解析: (D) $\tan^2 60^\circ - \csc^2 60^\circ = (\sqrt{3})^2 - (\frac{2}{\sqrt{3}})^2 = \frac{5}{3}$

5. (B) 設 P(1,5)、Q(-3,9) 為坐標平面上兩點,若 A點在 \overline{PQ} 的延長線上,且 \overline{PA} : $\overline{AQ}=5:3$,

則 A 點坐標為何? (A)(9,-15) (B)(-9,15) (C)($\frac{-17}{3},\frac{35}{3}$) (D)($\frac{17}{3},\frac{-35}{3}$)

解析: $\Rightarrow A(x,y)$

- $\therefore \overline{PA} : \overline{AQ} = 5 : 3 \Rightarrow \overline{PQ} : \overline{QA} = 2 : 3$
- $\therefore (-3,9) = (\frac{2x+3}{5}, \frac{2y+15}{5}) \Rightarrow A(x,y) = A(-9,15)$
- 6. (B) 設 x > 0、 y > 0,若 xy = 24,則 $\frac{x}{3} + \frac{y}{2}$ 之最小值為 (A)2 (B)4 (C)8 (D)16

解析: $\frac{\frac{x}{3} + \frac{y}{2}}{2} \ge \sqrt{\frac{xy}{6}} \Rightarrow \frac{x}{3} + \frac{y}{2} \ge 4 \quad \therefore$ 最小值 = 4

7. (D) 不等式 |2x-1| > 5 之解為 (A) x > 5 或 x < -5 (B) -2 < x < 3 (C) x > 2 或 x < -3 (D) x > 3 或 x < -2

解析: $|2x-1| > 5 \Rightarrow 2x-1 > 5$ 或 $2x-1 < -5 \Rightarrow 2x > 6$ 或 $2x < -4 \Rightarrow x > 3$ 或 x < -2

二、計算與證明題(共30分,每題10分)

1. 試求 $\sqrt{2}\sin 45^{\circ} + \sqrt{3}\cot 60^{\circ} - \tan^2 60^{\circ} + \csc^3 30^{\circ}$ 之值。

答案: 原式 =
$$\sqrt{2} \times \frac{1}{\sqrt{2}} + \sqrt{3} \times \frac{1}{\sqrt{3}} - (\sqrt{3})^2 + 2^3$$

= $1 + 1 - 3 + 8 = 7$

2. 對所有實數 x , $x^2 + kx + (2k-3) > 0$, 試求 k 的範圍 。

答案:
$$x^2 + kx + (2k - 3) > 0$$

$$\Rightarrow \begin{cases} a = 1 > 0 \\ \Delta = k^2 - 4 \times 1 \times (2k - 3) < 0 \end{cases}$$

$$\Rightarrow k^2 - 8k + 12 < 0$$

$$\Rightarrow (k - 6)(k - 2) < 0 \Rightarrow 2 < k < 6$$

3. 試求函數 $y = x^2 + 2x - 3$ 圖形的(1)頂點與對稱軸 (2)此函數的最大或最小值?其值為何?

答案: (1)
$$y = x^2 + 2x - 3$$

配方法:
$$y = (x^2 + 2x + 1^2) - 3 - 1^2$$

$$y = (x+1)^2 - 4$$

再利用平移方法:

$$y = x^2 \to \text{ properties } y = (x+1)^2 \to \text{ properties } y = (x+1)^2 - 4$$

故此圖形頂點為(-1,-4)

對稱軸為
$$x+1=0$$
 (即 $x=-1$)

(2)因圖形開口向上,所以最低點為(-1,-4)

故函數有最小值為-4

