Eigenvalues of the Adjoint Representation

This program attempts to provide a unique visualization of the root space of a finite-dimensional semi-simple Lie algebra.

Table of Contents

- 1. Overview
- 2. Definitions
- 3. A Closer Look at the 10 Steps
 - 1. User Input
 - 2. Basis Generation
 - 3. The Cartan Subalgebra
 - 4. Calculating the Adjoint Representations
 - 5. Choosing the Subset C
 - 6. The Spanning Set
 - 7. Eigenvectors and Eigenvalues
 - 8. The Fixed Vector
 - 9. The λ and θ Pairs
 - 10. Plotting the Points
- 4. Examples

Overview

The images this program produces is achieved in the following 9 steps:

- 1. The user provides two values: n and k.
- 2. Generate a basis for the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$.
- 3. Find a basis, \mathcal{B} , for a Cartan subalgebra of $\mathfrak{sl}_n(\mathbb{C})$.

- 4. For each $X_i \in \mathcal{B}$, calculate the adjoint representation ad_{X_i} .
- 5. Calculate a subset $C\subset \mathbb{C}$, such that |C|=k.
- 6. Calculate a finite spanning set, $S = \{\sum_{i=1}^k c_i \mathrm{ad}_{X_i} \mid c_i \in C\}.$
- 7. Letting $d=\dim(\mathfrak{sl}_n(\mathbb{C}))$, then for each $s\in S$, calculate the set of all Eigenvectors $E_s=\{v\in\mathbb{C}^d\mid \exists \lambda: sv=\lambda v\}.$
- 8. Select a fixed vector $w \in \mathbb{C}^d$.
- 9. For each Eigenvector $e\in\bigcup_{s\in S}E_s$, consider its Eigenvalue, $\lambda\in\mathbb{C}$ and the angle $0\leq\theta<2\pi$, between e and w.
- 10. For each of these (λ, θ) pairs, plot λ as a pixel in \mathbb{R}^2 , and give it an RGB value as a function of θ .

Definitions