AMENDMENTS

JC17 Rec'd PCT/PTO 09 JUN 2005

In the Claims

Canceled Claims

Please cancel claims 1-99, without prejudice.

Amended Claims

1.(canceled)Laminate comprising a monofilm-formed or multifilm-formed ply(A) and another monofilm-formed or multifilm-formed ply (B) both mainly consisting of orientable thermoplastic polymer material, in which A has a fluted configuration and B on a first side is adhesive bonded in bonding zones to the crests on a first side of A, characterised in that a) B also has a fluted configuration, the flute direction of B forming an angle from generally about 30 up to and including 90 to the flute direction of A and the said bonding zones being on the crests of the first side of B to produce spot bonding with the crests on the first side of A, b) the adhesive bonding is i) directly A to B and established through a lamination layer on A and/or B; ii) established through a separate thin bonding film; or iii) through a fibrous web adapted for bonding, and c) the wavelengths of the flutes in A and/or B are no longer than 5 mm, and the wavelengths of the flutes in both A and B are less than 10 mm.

2.(canceled)Laminate according to claim 1, characterised in that either the thickness of each of the said plies is generally the same in bonded and unbonded zones, or at least one of the plies exhibits first solid-state- attenuated zones extending parallel to the flute direction, each bonding zone mainly being located within such a first attenuated zone whereby each first attenuated zone is understood as delimited by the positions where the thickness is an average between the minimum thickness of this ply within the first attenuated zone and theply's maximum thickness within the adjacent non-bonded zone.

3.(canceled)Laminate according to claim 1 or 2 characterised in that the flute wavelength in each of the two plies is no more than 4 mm, preferably no more than 3 mm and still more preferably no more than 2 mm.

4.(canceled)Laminate according to any of the preceding claims characterised in that in each

of the two plies the curved length of a flute is on average at least 5% and preferably at least

10% longer than the linear wavelength, the curved length being understood as the length of

a curve through the cross section of a full flute wave including the bonding zone which curve

lies in the middle between the two surfaces of the ply.

5.(canceled)Laminate according to claim 4, characterised in that in at least one of said plies

the said average is at least 15%.

6.(canceled)Laminate according to any of the preceding claims, characterised in that the

width of each bonding zone in at least one of the two plies is no less than 15%, preferably

no less than 20%, and still more preferably no less than 30% of the flute wavelength.

7.(canceled)Laminate according to any of the preceding claims, characterised in that the

flutes in at least one of the two plies are evenly formed and extend in a generally rectilinear

shape.

8.(canceled)Laminate according to any of the preceding claims, characterised in that the

flutes in at least one of the two plies while extending mainly along one direction, are curved

or zig-zagging and/or branched.

9.(canceled)Laminate according to any of the preceding claims, characterised in that the

flutes in at least one of the two plies while extending mainly along one direction are

differently shaped in a pattern which gives a visual effect showing a name, text, logo or

similar.

10.(canceled)Laminate according to any of the preceding claims, characterised in that at least

one of the two plies has a metallic or iridescent gloss, or the two plies have different colours.

11.(canceled)Laminate according to any of the preceding claims, characterised in that the

main direction in which the flutes of A extend is generally substantially perpendicular to the

main direction in which the flutes of B extend.

12.(canceled)Laminate according to claim 11, characterised in that one of the said two

directions essentially coincide with the machine direction of the lamination.

13.(canceled)Laminate according to any of the preceding claims, characterised in that A,

outside its first attenuated zones if such zones are present, is molecularly oriented mainly in

a direction parallel to the direction of its flutes or in a direction close to the latter as

determined by shrinkage tests.

14.(canceled)Laminate according to claim 13, characterised in that B also is molecularly

oriented and B's orientation outside its first attenuated zones if such zones are present is

higher than A's average orientation in the same direction outside its first attenuated zones if

such zones are present, the said two orientations being observable by shrinkage tests.

15.(canceled)Laminate according to claims 13 or 14, characterised in that the yield tension

in A in a direction parallel with its flutes and/or the yield tension in B in a direction parallel

with its flutes, both referring to the cross-section of the respective ply and determined in

non-bonded narrow strips at an extension velocity of 500%min-1, is no less than 30 MPa,

preferably no less than 50 MPa and still more preferably no less than 75 MPa.

16.(canceled)Laminate according to any of the preceding claims, characterised in that B has

a lower coefficient of elasticity than A, both as measured in the direction perpendicular to

the flute direction of A.

17.(canceled)Laminate according to claim13, characterised in that the choice of material for

B and of depth of A's fluting is such that by stretching of the laminate perpendicular to the

direction of A's fluting up to the point where A's waving has disappeared, B still has not

undergone any significant plastic deformation, preferably B comprises a thermoplastic

elastomer.

18.(canceled)Laminate according to claim 13,14 or 15, characterised in that B, outside its

first attenuated zones if such zones are present, has a main direction of molecular orientation

parallel to the direction of the flutes or in a direction close to the latter as provable by

shrinkage tests.

19.(canceled)Laminate according to claim 13, characterised in that A is composed of several

films, and the said main direction of molecular orientation, is the resultant of different

monoaxial or biaxial orientations in the said films optionally mutually differently directed.

20.(canceled)Laminate according to claim 18, characterised in that B is composed of several

films, and the said main direction of orientation is the resultant of differentmonoaxial or

biaxial orientations in the said films optionally mutually differently directed.

21.(canceled)Laminate according to any of the preceding claims in which first attenuated

zones are present in at least one of the two plies characterised in that if such zones of

attenuated ply extend in their transverse direction beyond the corresponding zones of bonding

into non-bonded zones of the ply, the extensions within each non-bonded zone are limited

to a total width which leaves more than half of and preferably no less than 70% of the width

of the non-bonded zone as not belonging to any first attenuated zone, these widths being the

distances measured along the curved surfaces.

22.(canceled)Laminate according to any of claims 1 to 20 in which first attenuated zones are

present in at least one of the plies and in which the bonding zones are generally coincident

with the first attenuated zones.

23..(canceled)Laminate according to any of the preceding claims in which first attenuated

zones are present at least in one of the two plies. characterised by a second

solid-state-attenuated zone between each pair of adjacent first attenuated zones, said second

attenuated zones being narrower than said first attenuated zones and located on the

non-bonded crests of the respectively ply.

24.(canceled)Laminate according to any of the preceding claims, in which at least one of the

two plies exhibits solid-state-attenuated zones characterised in that the first attenuated zones

of the ply are attenuated so that the minimum thickness in such zone is less than 75% of the

maximum thickness of the ply in the non-bonded zone, preferably less than 50% and more

preferably less than 30% of that maximum thickness.

25.(canceled)Laminate according to any of the preceding claims, characterised in that A and

B consist of material which is orientable at room temperature, preferably they mainly consist

of polyolefin.

26.(canceled)Laminate according to any of the preceding claims, characterised in that the

spot-bonding between plies A and B is effected through a lower melting surface layer on at

least one of the plies, formed in a coextrusion process.

27.(canceled) Laminate according to any of the preceding claims, characterised in that at least

one of the plies comprises a barrier film, e. g. for protection against oxygen or other gaseous

materials.

28.(canceled)Laminate according to any of the preceding claims, characterised in that at least

some of the flutes in one or both plies are flattened at intervals and preferably bonded across

each ones entire width at the flattened locations to make the two arrays of flutes form closed

pockets.

29.(canceled)Laminate according to claim 28, characterised in that the flattened portions of

a number of mutually adjacent flutes or of all flutes are in array.

30.(canceled)Laminate according to any of claims 1 to 23 characterised in that by the choice

of polymer material or by an incorporated filler or by orientation, the coefficient of elasticity

E in at least one of the plies, measured in the unbonded zone of the ply in the direction

parallel to the flute, as an average over the unbonded zone is no less than 700 MPa, and

preferably no less than 1000 MPa.

31.(canceled)Laminate according to any of the preceding claims, characterised in that at least

some of the channels formed by the flutes in A and B, which channels may be closed to

pockets, contain a filling material in particulate, fibrous, filament or liquid form.

32.(canceled)Laminate according to claim 31, characterised in that said material is a

preservative for goods intended to become packed in or protected by the laminate, preferably

an oxygen scavenger or ethylene scavenger, a biocide, such as a fungicide or bactericide, a

corrosion inhibitor or a fire extinguishing agent, optionally with micro-perforations

established in the flutes to enhance the effect of said preservative.

33.(canceled)Laminate according to any of the preceding claims, characterised in that both

A and B are supplied with a multitude of perforations, whereby the perforations do not reach

into the bonded spots, and the perforations in A are displaced from the perforations in B so

as to cause gas or liquid when passing through the laminate, to run a distance through the

flutes generally parallel to the main surfaces of the laminate; the channels formed by the

flutes may be closed to form pockets.

34.(canceled)Laminate according to claim 33, characterised in that the channels or pockets

contain filling material adapted to act as a filter material by holding back suspended particles

from a fluid passing through the channels or pockets or is an absorbent or ion-exchanger

capable of absorbing or ion-exchanging matter dissolved in such fluid, said filler optionally

being fibre-formed or yarn-formed.

35.(canceled)Laminate according to claim 34, in which by choice of hydrophobic properties

of at least the inner surfaces of the channels or pockets formed by the flutes and by selected

small spacing of said channels or pockets, and choice of the distances between the mutually

displaced perforations in A and B, there is achieved a desirable balance between the pressure

needed to allow water through the laminate and the laminate's capability to allow air and

vapour to pass therethrough.

36.(canceled)Laminate according to claim 33, characterised by a nap of fibre-like film

portions protruding from the borders of the perforations of at least on one surface of the

laminate.

37.(canceled)Laminate according to claim 35 or 36, used as a sanitary backsheet, preferably

on a diaper or as a sheet for covering a patient during surgery.

38.(canceled)Laminate according to claim 35 or 36, used for insulation of buildings.

39.(canceled)Laminate according to claim 33 or 34 used as a geotextile which allows water

to pass but holds fine particles back.

40.(canceled)A bag made from the laminate according to any of the claims 1 to 33,

characterised in that the flutes on one of the two major surfaces of the bag are generally

perpendicular to the flutes on the other major surface of the bag.

41.(canceled) Method of manufacturing a laminate of a first monofilm-formed or

multifilm-formed ply with a second monofilm-formed or multifilm-formed ply both mainly

consisting of orientable thermoplastic polymer material, in which the first ply hasa waved

flute configuration, and. the second ply on a first side is adhesive bonded in bonding zones

to the crests on a first side of A, in which further the waved flute structure of the first ply is

formed by the use of a grooved roller, and the said bonding with the second ply is carried out

under heat and pressure and also under use of a grooved roller, characterised in that a) the

second ply also is given a waved configuration, whereby under use of at least one grooved

roller the flute direction of the second ply is made at an angle to the flute direction of the first

ply and the said bonding zones are established on the crests of the first side of the second ply

to introduce spot bonding with the crests on the first side of the first ply, b) the adhesive

bonding i) is directly first to second ply and established through a lamination layer on at least

one of these plies; ii) established through a separate thin bonding film; or iii) established

through a fibrous web adapted to the bonding; and c) the wavelengths of the flutes in both

plies are no longer than 10 mm, and the wavelengths of the flutes in at least one of the plies

are no longer than 5 mm.

42.(canceled)Method according to claim 41, characterised in that the films constituting at

least one of the two plies are made by coextrusion in which there is coextruded a lower

melting surface layer to enable the lamination without any melting of the main body of the

plies.

43.(canceled)Method according to claim 41 or 42, characterised in that the two plies consist

of material which is orientable at room temperature, preferably they mainly consist of

polyolefin.

44.(canceled)Method according to any of claims 41 to 43 characterised in that prior to the

said bonding process at least one of said plies is solid-state stretched in narrow zones to form

first attenuated zones which are parallel to the selected direction of fluting in the ply, said

stretching being generally perpendicular to the said direction and carried out between a set

of grooved rollers both different from the grooved roller for lamination, and that the grooved

roller for lamination is coordinated with the said set of grooved rollers for stretching in such

a way that each zone of bonding mainly becomes located within a first attenuated zone.

45.(canceled) Method according to claim 44, characterised in that prior to or after the

formation of the first attenuated zones, another set of grooved rollers produces second

attenuated zones which are another series of solid- state oriented narrow zones in the same

ply, parallel with the first attenuated zones and narrower than the latter, while the grooved

rollers which produce said second attenuated zone are coordinated with the grooved rollers

which produce the first attenuated zones so that each second attenuated zone becomes

located generally in the middle between two neighbouring first attenuated zones.

46.(canceled)Method according to claim 44 in which the lamination layer is heated to the

lamination temperature by heating from the opposite side of the ply, and in which the

temperature of the laminating roller and the thickness of the film in the first attenuated zones

is such as to allow the laminating layer to reach said lamination temperature whilst the

thickness of the ply outside the attenuated zone which is in contact with the crests of the

grooved lamination roller is such that the lamination layer outside the attenuated zone does

not reach said lamination temperature, where the first attenuated zones and the bonding zones

become generally coincident.

47.(canceled) Method according to any of claims 41 to 46, characterised in that the pitch of

the grooved roller which produces the lamination on the crests is at the highest 3,0 mm,

preferably no more than 2,0 mm and still more preferably no more than 1,5 mm.

48.(canceled) Method according to any of claims 41 to 47, characterised in that prior to the

forming of the waved flute structure and if the methods of claims 44 to 46 are used, also prior

to the formation of the attenuated zones, the film or films constituting at least one of the plies

are supplied with orientation in one or both directions, the resultant main direction of

orientation in such ply being essentially in the direction which is selected to become its

direction of fluting.

49.(canceled)Method according to any of claims 41 to 48, characterised in that at least a part

of the depth of each flute in at least one of the two plies, is carried out after the lamination

by thermal shrinkage of the other ply in a direction essentially perpendicular to the

predetermined direction of such flutes.

50.(canceled)Method according to claim 44, characterised in that a suitably distinct. stripe

formation of the first attenuated zone is established at least in part by giving the crests on the

grooved stretching roller intended to produce the stripes a temperature which is higher than

the temperature on the crests on the other grooved stretching roller and/or by giving the crests

on the grooved stretching roller intended to produce the stripes a radius of curvature which

is smaller than the radius of curvature of the crests on the matching grooved stretching roller.

51.(canceled)Method according to any of claims 41 to 50, characterised in that the flute

structure in one of the plies is established essentially in the machine direction under a

generally transverse orientation process by taking the ply before lamination through a set of

driven mutually intermeshing grooved rollers, the grooves on the rollers being circular or

helical and forming an angle of at least 60 with the roller axis.

52.(canceled) Method according to claim 51, characterised in that this ply is passed directly

from its exit from the last of the grooved stretching and fluting rollers to the grooved

lamination roller, these two grooved rollers being in close proximity to each other and having

the same pitch when measured at each ones operational temperature and being mutually

adjusted in the axial direction for alignment of the grooves.

53.(canceled) Method according to claim 51, characterised in that this ply is passed from its

exit from the last of the grooved and fluting rollers to the grooved lamination roller over one

or a series of heated, grooved transfer rollers, the grooved rollers in the row starting with the

grooved stretching rollers and ending with the grooved lamination roller each being in close

proximity to its neighbour or neighbours, whereby each of the grooved rollers in the row has

the same pitch when measured at their respective operational temperature, and being

mutually adjusted in the axial direction for alignment of the grooves.

54.(canceled) Method according to any of claims 41 to 50, characterised in that each grooved

roller used to form the flutes in one of the plies and each grooved roller used to form the first

attenuated zones in this. ply according to claim 44 if such zones are produced, and each

grooved roller used to form the second attenuated zones according to claim 45 if such zones

are formed in this ply and a grooved roller which the ply follows before and during the

lamination if such roller is used, are rollers in which the grooves are essentially parallel with

the roller axis, and means are provided to hold the flutes of the said ply in the respective

grooves during the passage from the position where the flutes are formed to the position

where lamination takes place, said holding means adapted to avoid a frictional rubbing on

the ply during said passage.

55.(canceled)Method according to claim 54, characterised in that the flutes in this ply are

formed by use of an air jet or a transverse row of air jets which directs A into the grooves on

the forming roller.

56.(canceled)Method according to any of claims 54 or 55, characterised in that first

attenuated zones are formed accordingly to claim 44 by grooved rollers acting in coordination

with the grooved roller used for lamination, and said coordination consists in an automatic

fine regulation of the relative velocities between the rollers.

57.(canceled)Method according to claim 56, characterised in that said second attenuated

zones are formed according to claim 45 by grooved rollers acting in coordination with the

grooved rollers used to produce the first attenuated zones, and said coordination consists in

an automatic fine regulation, of the relative velocities between the rollers.

58.(canceled)Method according to any of claims 41 to 57, characterised in that after the

lamination at least some of the flutes in each ply are flattened in locations placed at intervals,

preferably under heat and pressure sufficient to bond the plies to each other in said locations

so that the two arrays of flutes together form closed pockets.

59.(canceled)Method according to claim 58, characterised in that at least some of the

flattening is carried out with bars or cogs which have their longitudinal direction arranged

generally in the machine direction and/or the direction transverse to this.

60.(canceled) Method according to any of claims 41 to 59, characterised in that particulate,

liquid or fibre-or yarn-formed material is filled into some at least of the channels formed by

the two arrays of flutes, this filling taking place prior to or during the lamination.

61.(canceled)Method according to claim 60, characterised in that after filling the filled

channels are closed at intervals by pressure and heat to form filled pockets.

62.(canceled) Method according to claim 60 or claim 61, characterised in that prior to,

simultaneously with or following the filling step perforations are made in the laminate at

least on one side to help the filling material or part thereof dissipate into the surroundings or

to allow air or liquid to pass through the filling material.

63.(canceled) Method according to any of claims 41 to 62, characterised in that there is made

a multitude of perforations in the first and in the second ply, but limited to areas, where the

two plies are not bonded together, and the perforations in the first ply being displaced from

the perforations in the second ply to force air or liquid which passes through the laminate to

run a distance along one or more channels.

64.(canceled)Method according to any of claims 41 to 63, characterised in that in one

process step there is melted a multitude of holes in the first but not in the second ply or in the

second but not in the first ply, these holes being formed by contacting flutes of the first ply

with protruding surface parts of a hot roller, which are moved at essentially the same velocity

as the laminate.

65.(canceled)Method according to claim 64, characterised in that the holes are formed by

contacting flutes of the second ply with protruding preferably sharp, surface parts of a hot

roller, which are moved at essentially the same velocity as the laminate, while heat insulating

material prevents the flutes from contacting the hot surfaces of the roller, and preferably the

laminate is pressed towards the protruding parts by means of air jets.

66.(canceled)Method according to claim 64 or claim 65, characterised in that there is drawn

a protruding nap of fibre-like film portions out from the molten surroundings of the holes by

blowing air in between the laminate and the hot roller, where the laminate leaves the roller.

67.(canceled)A method of manufacturing a laminate of a first ply with a second ply both

mainly consisting of orientable thermoplastic polymer material and each having one face

comprising a lamination layer in which the first and second plies are continuously fed in face

to face relationship with the lamination layers in direct contact with one another between a

pair of laminating rollers between which heat and pressure is applied, whereby the lamination

layers become adhered to one another, in which the second ply is oriented mainly

transversely of the machine direction, and is generally not shrinkable in solid state in the direction transverse to its orientation, and the first ply as it is fed to the lamination rollers is heat-shrinkable mainly in a shrink direction which is generally parallel with the machine direction, the lamination rollers apply heat and pressure in bonding zones arranged in continuous or discontinuous rectilinear lines extending in a direction which is generally perpendicular to said shrink direction, and after lamination the first ply is caused to shrink in solid orsemisolid state in the said shrink direction, whereby the second ply becomes fluted with flutes extending perpendicular to said shrink direction and having a wavelength at the highest about 5 mm.

68.(canceled)A method of manufacturing a laminate of a first ply with a second ply both mainly consisting of orientable thermoplastic polymer material and each having one face comprising a lamination layer in which the first and second plies are continuously fed in face to face relationship with the lamination layers in direct contact with one another between a set of laminating devices between which heat and pressure is applied, whereby the lamination layers become adhered to one another, in which the second ply is oriented mainly transversely of the machine direction, and is generally not shrinkable in solid state in the direction transverse to its orientation, and is prior to the lamination rollers, segmentally stretched in its machine direction to introduce first attenuated zones perpendicular to the machine direction, the first ply as it is fed to the lamination rollers is heat-shrinkable mainly in a shrink direction which is generally parallel with the machine direction, the laminating devices comprise on the side facing the second ply a heated flat roller or a heated porous bar adapted to produce a film of hot air to press the plies towards the opposite laminating device, which may be either a roller or a similar bar, the speed of the machine and the temperatures of the rollers being adapted to heat the lamination layer in said first attenuated zones to the lamination temperature, but not to heat the lamination layer in the adjacent non-attenuated zones to the lamination temperature, whereby bonding takes place only in the attenuated zones, and after lamination the first ply is caused to shrink in solid orsemisolid state in the

said shrink direction, whereby the second ply becomes fluted with flutes extending

perpendicular to said shrink direction and having a wavelength at the highest about 5 mm.

69.(canceled) A method according to claim 67 or claim 68 in which said wavelength is at the

highest about 3 mm.

70.(canceled)A method according to any of claims 67 to 69, in which the first ply is kept

substantially flat throughout the manufacturing process.

71.(canceled)A method according to claim 67, in which the first ply is supplied with waves

prior to the lamination, the wavelength being at the highest about 5 mm, preferably at the

highest about 3 mm, and the lamination zones are on the crests on one side of the waved first

ply.

72.(canceled)A method according to any of claims 67 to 71 characterised in that, by use of

a take-off roller (13) of slightly waved surface, the laminate on its whole is supplied with a

longitudinal waving to eliminate a tendency to curling around its transverse direction.

73.(canceled)A method according to claim 67 in which said rectilinear lines are

discontinuous and in which the discontinuities in adjacent lines are aligned in the shrink

direction.

74.(canceled)Laminating apparatus comprising a grooved roller for fluting a first ply of

thermoplastic polymer material, a grooved roller for fluting a second ply of thermoplastic

polymer material, means for directing the first and second plies from their respective grooved

rollers to a laminating station with the plies arranged in face to face contact with one another

and with the flutes of the first ply generally directed at an angle to the flutes of the second

ply, the laminating station comprising grooved laminating rollers which apply heat and

pressure between the plies to bond the plies together at the crests of the flutes of the second

ply to form a laminate, the grooved fluting rollers and the grooved laminating rollers having

groove pitches such that in the laminate the plies each have flutes of wavelength less than

10 mm and the flutes of at least one of the plies have a wavelength no longer than 5 mm.

75.(canceled)Apparatus according to claim 74 comprising a first set of grooved stretching

rollers upstream from the laminating station for at least one of the plies, which stretches the

material of the respective ply in a solid state and in a direction generally perpendicular to the

flutes to form first attenuated zones, wherein the grooved stretching rollers, grooved fluting

rollers and grooved laminating rollers are coordinated so that the first attenuated zones

become the crests of the flutes and the bonding zones are mainly located within first

attenuated zones.

76.(canceled)Apparatus according to claim 75 comprising, between the said grooved

stretching rollers and the laminating station, a second set of grooved stretching rollers, which

stretches the material of the said respectively in a solid state and in a direction generally

perpendicular to the flutes to form second attenuated zones extending parallel to and between

said first attenuated zones which are narrower than said first attenuated zones, whereby the

second attenuated zones become the troughs of the flutes.

77.(canceled)Apparatus according to claim 75 or 76 in which the crests of the grooves of the

laminating roller are wider than the first attenuated zone and in which the side of the ply

opposite to the face in contact with the other ply is heated in the lamination station,

preferably by supplying heat to the interior of the grooved laminating roller.

78.(canceled)Apparatus according to any of claims 74 to 77 in which the grooves in the

rollers are formed such that the flutes in the two plies are generally mutually perpendicular,

preferably the flutes in the first ply being substantially parallel to the machine direction.

79.(canceled)Apparatus according to claim 78 comprising, upstream of the fluting rollers,

for at least one of the plies, an orienting station for providing the ply with uniaxial or

unbalanced biaxial orientation with the main direction of orientation being generally parallel

to the flute direction.

80.(canceled) Apparatus according to of claim 75 in which the grooved stretching rollers

consist of a set of driven mutually intermeshing grooved rollers, the grooves on the rollers

being circular or helical and forming an angle of at least 60 with the respective roller axis.

81.(canceled)Apparatus according to claim 80 in which the last. of the grooved stretching

rollers is in close proximity to the grooved laminating roller and the grooves of each are of

the same pitch at the operating temperature of the apparatus and being aligned.

82.(canceled)Apparatus according to claim 80 which comprises one or a series of heated

grooved transfer rollers located between the last of the grooved stretching rollers and the

grooved laminating roller, adjacent rollers being close together, the grooves of the stretching,

transfer and laminating rollers having the same pitch at the operating temperature of the

apparatus and being aligned with one another.

83.(canceled)Apparatus according to any of claims 74 to 82 in which the grooved fluting

roller for one of the plies has the grooves arranged substantially parallel with the roller axis

and in which substantially frictionless holding means are provided for holding the flutes of

the respective ply in the grooves.

84.(canceled)Apparatus according to claim 83 in which the frictionless holding means

comprises air pressure difference between opposite sides of the ply at the groove.

85.(canceled)Apparatus according to any of claims 74 to 84 in which downstream of the

grooved laminating roller in the lamination station there is a flute flattening station in which

at least some of the flutes in each ply are flattened and the plies bonded to one another under

heat and pressure to form closed pockets.

86.(canceled) Apparatus according to claim 85 in which the flute flattening station comprises

barsand/or cogs extending generally in the machine direction or the cross-direction and

counter rollers, bars or cogs against which to bear.

87.(canceled)Apparatus according to any of claims 74 to 86 comprising flute filling means

for filling the flutes of one or both plies before or during the lamination station with

particulate, fibre or liquid material.

88.(canceled)Apparatus according to any of claims 74 to 87 comprising perforating means

for cutting or melting holes into the flutes of one or both plies in non-bonded zones.

89.(canceled)Apparatus according to claim 88 in which the perforating means comprise a

driven perforating roller having an arrangement of heated protrusions which contact and melt

the material in the flutes of the respective ply.

90.(canceled)Apparatus according to claim 89 further comprising pressurised air outlets for

directing air at the ply while the material surrounding the perforations is molten.

91.(canceled)Apparatus according to claim 89 or 90 in which the flutes of the ply are

directed into contact with said protrusions by air jets directed at the surface of the ply

opposite to the perforating roller.

92.(canceled)Laminating apparatus comprising a grooved roller for fluting a first ply of

heat-shrinkable thermoplastic polymer material having a main shrink direction parallel to the

flute direction, means for continuously directing the fluted first ply and a second ply of thermoplastic material in face-to-face relationship to a laminating station, the laminating station comprising laminating rollers between which heat and pressure is applied in laminating zones between the crests of the flutes of the fluted first ply and the second ply whereby bonding zones are formed extending in continuous or discontinuous rectilinear lines along the crests of the flutes at which the plies are bonded to one another, the apparatus further comprising a heat shrink station in which the first ply in the bonded product is heated to its heat shrink temperature and allowed to shrink, the bonding zones being adapted to allow the second ply to become fluted upon shrinkage of the first ply, the wavelength of the fluting being less than 5 mm.

93.(canceled)Apparatus according to claim 92 in which the second ply is fed to the laminating station as a substantially planar web.

94.(canceled)Apparatus according to claim 92 or 93 in which the laminating station comprises a pair of grooved rollers, between which the heat and pressure is applied for lamination, the grooves of the laminating roller in contact with the first ply being parallel to and under operating conditions, having the same pitch as the grooves of the fluting roller for the first ply, and the grooves of the laminating roller in contact with the second ply being arranged at an angle, preferably substantially perpendicular to these grooves.

95.(canceled)Apparatus according to claim 92 or 93 in which the laminating station comprises a grooved laminating roller and a substantially smooth counter roller between which the heat and pressure is applied for lamination with the grooved laminating roller in contact with the first ply; the grooves of the grooved laminating roller being parallel to and, under operating. conditions, having the same pitch as the grooves of the fluting roller for the first ply.

96.(canceled)Apparatus according to claim 95 which comprises a stretching station for the second ply at which the second ply is segmentally stretched in solid state to produce first attenuated zones extending in a direction at an angle to the direction of the flutes of the first ply, preferably perpendicularly thereto, wherein the substantially smooth laminating roller is heated to a temperature which heats the opposite surface of the second ply in the first attenuated zones to the laminating temperature while the adjacent areas do not reach that temperature.

97.(canceled)Apparatus according to any of claims 74 to 96 in which the land on the crest of the or each grooved laminating roller is at least 15%, preferably at least 20%, more preferably at least 30% of the pitch of the grooved of that roller.

98.(canceled)Laminating apparatus comprising a grooved roller for fluting a first ply of thermoplastic polymer material, a grooved roller for fluting a second ply of thermoplastic polymer material, means for directing the first and second plies from their respective grooved rollers between a set of laminating devices with the plies arranged in face to face contact with one another and with the flutes of the first ply generally directed at an angle to the flutes of the second ply, the set of laminating devices, comprising, on the side facing the second ply, a heated porous bar and on the side facing the first ply, an opposite laminating device, wherein said porous bar is adapted to produce a film of hot air to press the plies towards the opposite laminating device and bond the plies together at the crests of the flutes of the second ply to form a laminate, and the opposite laminating device is a roller or a porous bar, the grooved fluting rollers having groove pitches such that in the laminate the plies each have flutes of wavelength less than 10 mm and the flutes of at least one of the plies have a wavelength. no longer than 5 mm.

99.(canceled)Apparatus according to any of claims 74 to 98 in which the pitch of any grooved roller is no more than 4 mm, preferably no more than 3 mm, more preferably no

more than 2 mm.

Replacement Claims

- 1 100.(new) A laminate comprising a monofilm-formed or multifilm-formed ply A, and
- 2 another monofilm-formed or multifilm-formed ply B, both mainly comprising orientable
- 3 thermoplastic polymer material, in which A has a fluted configuration and B on a first side
- 4 is adhesive bonded in bonding zones to the crests on a first side of A,
- 5 where:
- 6 (a) B also has a fluted configuration, the flute direction of B forming an angle from
- 7 generally about 30 up to and including 90 to the flute direction of A and the said bonding
- 8 zones being on the crests of the first side of B to produce spot bonding with the crests on the
- 9 first side of A,
- 10 (b) the adhesive bonding is
- (i) directly A to B and established through a lamination layer on A and/or B;
- (ii) established through a separate thin bonding film; or
- 13 (iii) through a fibrous web adapted for bonding, and
- 14 (c) the wavelengths of the flutes in A and/or B are no longer than 5 mm, and the
- wavelengths of the flutes in both A and B are less than 10 mm.
- 1 101.(new) The laminate according to claim 100, wherein either the thickness of each of
- 2 the said plies is generally the same in bonded and unbonded zones, or at least one of the plies
- 3 exhibits first solid-state- attenuated zones extending parallel to the flute direction, each
- 4 bonding zone mainly being located within such a first attenuated zone whereby each first
- 5 attenuated zone is understood as delimited by the positions where the thickness is an average
- 6 between the minimum thickness of this ply within the first attenuated zone and theply's
- 7 maximum thickness within the adjacent non-bonded zone.
- 1 102.(new) The laminate according to claim 100, wherein the flute wavelength in each of
- 2 the two plies is no more than 4 mm, preferably no more than 3 mm and still more preferably

no more than 2 mm.

- 1 103.(new) The laminate according to claim 100, wherein each of the two plies the curved
- 2 length of a flute is on average at least 5% and preferably at least 10% longer than the linear
- 3 wavelength, the curved length being understood as the length of a curve through the cross
- 4 section of a full flute wave including the bonding zone which curve lies in the middle
- 5 between the two surfaces of the ply.
- 1 104.(new) The laminate according to claim 103, wherein at least one of said plies the said
- 2 average is at least 15%.
- 1 105.(new) The laminate according to claim 103, wherein the width of each bonding zone
- 2 in at least one of the two plies is no less than 15%, preferably no less than 20%, and still
- 3 more preferably no less than 30% of the flute wavelength.
- 1 106.(new) The laminate according to claim 100, wherein the flutes in at least one of the
- 2 two plies are evenly formed and extend in a generally rectilinear shape.
- 1 107.(new) The laminate according to claim 100, wherein the flutes in at least one of the
- 2 two plies while extending mainly along one direction, are curved or zig-zagging and/or
- 3 branched.
- 1 108.(new) The laminate according to claim 100, wherein the flutes in at least one of the
- 2 two plies while extending mainly along one direction are differently shaped in a pattern
- 3 which gives a visual effect showing a name, text, logo or similar.
- 1 109.(new) The laminate according to claim 100, wherein at least one of the two plies has
- 2 a metallic or iridescent gloss, or the two plies have different colours.

- 1 110.(new) The laminate according to claim 100, wherein the main direction in which the
- 2 flutes of A extend is generally substantially perpendicular to the main direction in which the
- 3 flutes of B extend.
- 1 111.(new) The laminate according to claim 110, wherein one of the said two directions
- 2 essentially coincide with the machine direction of the lamination.
- 1 112.(new) The laminate according to claim 100, wherein A, outside its first attenuated
- 2 zones if such zones are present, is molecularly oriented mainly in a direction parallel to the
- 3 direction of its flutes or in a direction close to the latter as determined by shrinkage tests.
- 1 113.(new) The laminate according to claim 112, wherein B also is molecularly oriented
- 2 and B's orientation outside its first attenuated zones if such zones are present is higher than
- 3 A's average orientation in the same direction outside its first attenuated zones if such zones
- 4 are present, the said two orientations being observable by shrinkage tests.
- 1 114.(new) The laminate according to claim 112, wherein the yield tension in A in a
- 2 direction parallel with its flutes and/or the yield tension in B in a direction parallel with its
- 3 flutes, both referring to the cross-section of the respective ply and determined in non-bonded
- 4 narrow strips at an extension velocity of 500%min-1, is no less than 30 MPa, preferably no
- 5 less than 50 MPa and still more preferably no less than 75 MPa.
- 1 115.(new) The laminate according to claim 100, wherein B has a lower coefficient of
- 2 elasticity than A, both as measured in the direction perpendicular to the flute direction of A.
- 1 116.(new) The laminate according to claim 112, wherein the choice of material for B and
- 2 of depth of A's fluting is such that by stretching of the laminate perpendicular to the direction
- 3 of A's fluting up to the point where A's waving has disappeared, B still has not undergone

any significant plastic deformation, preferably B comprises a thermoplastic elastomer.

- 1 117.(new) The laminate according to claim 112, wherein B, outside its first attenuated
- 2 zones if such zones are present, has a main direction of molecular orientation parallel to the
- 3 direction of the flutes or in a direction close to the latter as provable by shrinkage tests.
- 1 118.(new) The laminate according to claim 112, wherein A is composed of several films,
- 2 and the said main direction of molecular orientation, is the resultant of different monoaxial
- 3 or biaxial orientations in the said films optionally mutually differently directed.
- 1 119.(new) The laminate according to claim 117, wherein B is composed of several films,
- 2 and the said main direction of orientation is the resultant of different monoaxial or biaxial
- 3 orientations in the said films optionally mutually differently directed.
- 1 120.(new) The laminate according to claim 100, wherein the first attenuated zones are
- 2 present in at least one of the two plies wherein if such zones of attenuated ply extend in their
- 3 transverse direction beyond the corresponding zones of bonding into non-bonded zones of
- 4 the ply, the extensions within each non-bonded zone are limited to a total width which leaves
- 5 more than half of and preferably no less than 70% of the width of the non-bonded zone as
- 6 not belonging to any first attenuated zone, these widths being the distances measured along
- 7 the curved surfaces.
- 1 121.(new) The laminate according to claim 100, wherein the first attenuated zones are
- 2 present in at least one of the plies and in which the bonding zones are generally coincident
- 3 with the first attenuated zones.
- 1 122.(new) The laminate according to claim 100, wherein the first attenuated zones are
- 2 present at least in one of the two plies, characterised by a second solid-state-attenuated zone
- 3 between each pair of adjacent first attenuated zones, said second attenuated zones being

- 4 narrower than said first attenuated zones and located on the non-bonded crests of the
- 5 respectively ply.
- 1 123.(new) The laminate according to claim 100, wherein at least one of the two plies
- 2 exhibits solid-state-attenuated zones wherein the first attenuated zones of the ply are
- 3 attenuated so that the minimum thickness in such zone is less than 75% of the maximum
- 4 thickness of the ply in the non-bonded zone, preferably less than 50% and more preferably
- 5 less than 30% of that maximum thickness.
- 1 124.(new) The laminate according to claim 100, wherein A and B consist of material
- 2 which is orientable at room temperature, preferably they mainly consist of polyolefin.
- 1 125.(new) The laminate according to claim 100, wherein the spot-bonding between plies
- 2 A and B is effected through a lower melting surface layer on at least one of the plies, formed
- 3 in a coextrusion process.
- 1 126.(new) The laminate according to claim 100, wherein at least one of the plies
- 2 comprises a barrier film designed for protection against oxygen or other gaseous materials.
- 1 127.(new) The laminate according to claim 100, wherein at least some of the flutes in one
- 2 or both plies are flattened at intervals and preferably bonded across each ones entire width
- 3 at the flattened locations to make the two arrays of flutes form closed pockets.
- 1 128.(new) The laminate according to claim 127, wherein the flattened portions of a
- 2 number of mutually adjacent flutes or of all flutes are in array.
- 1 129.(new) The laminate according to any of claim 100, wherein by the choice of polymer
- 2 material or by an incorporated filler or by orientation, the coefficient of elasticity E in at least

- 3 one of the plies, measured in the unbonded zone of the ply in the direction parallel to the
- 4 flute, as an average over the unbonded zone is no less than 700 MPa, and preferably no less
- 5 than 1000 MPa.
- 1 130.(new) The laminate according to claim 100, wherein at least some of the channels
- 2 formed by the flutes in A and B, which channels may be closed to pockets, contain a filling
- 3 material in particulate, fibrous, filament or liquid form.
- 1 131.(new) The laminate according to claim 130, wherein said material is a preservative
- 2 for goods intended to become packed in or protected by the laminate, preferably an oxygen
- 3 scavenger or ethylene scavenger, a biocide, such as a fungicide or bactericide, a corrosion
- 4 inhibitor or a fire extinguishing agent, optionally with micro-perforations established in the
- 5 flutes to enhance the effect of said preservative.
- 1 132.(new) The laminate according to claim 100, wherein both A and B are supplied with
- 2 a multitude of perforations, whereby the perforations do not reach into the bonded spots, and
- 3 the perforations in A are displaced from the perforations in B so as to cause gas or liquid
- 4 when passing through the laminate, to run a distance through the flutes generally parallel to
- 5 the main surfaces of the laminate; the channels formed by the flutes may be closed to form
- 6 pockets.
- 1 133.(new) The laminate according to claim 132, wherein the channels or pockets contain
- 2 filling material adapted to act as a filter material by holding back suspended particles from
- 3 a fluid passing through the channels or pockets or is an absorbent or ion-exchanger capable
- 4 of absorbing or ion-exchanging matter dissolved in such fluid, said filler optionally being
- 5 fibre-formed or yarn-formed.
- 1 134.(new) The laminate according to claim 133, wherein by choice of hydrophobic

- 2 properties of at least the inner surfaces of the channels or pockets formed by the flutes and
- 3 by selected small spacing of said channels or pockets, and choice of the distances between
- 4 the mutually displaced perforations in A and B, there is achieved a desirable balance between
- 5 the pressure needed to allow water through the laminate and the laminate's capability to allow
- 6 air and vapour to pass therethrough.
- 1 135.(new) The laminate according to claim 132, wherein by a nap of fibre-like film
- 2 portions protruding from the borders of the perforations of at least on one surface of the
- 3 laminate.
- 1 136.(new) The laminate according to claim 134, used as a sanitary backsheet, preferably
- 2 on a diaper or as a sheet for covering a patient during surgery.
- 1 137.(new) The laminate according to claim 134, used for insulation of buildings.
- 1 138.(new) The laminate according to claim 132, used as a geotextile which allows water
- 2 to pass but holds fine particles back.
- 1 139.(new) A bag made from the laminate according to any of the claims 100 to 139,
- 2 wherein the flutes on one of the two major surfaces of the bag are generally perpendicular
- 3 to the flutes on the other major surface of the bag.
- 1 140.(new) A method of manufacturing a laminate of a first monofilm-formed or
- 2 multifilm-formed ply with a second monofilm-formed or multifilm-formed ply both mainly
- 3 consisting of orientable thermoplastic polymer material, in which the first ply hasa waved
- 4 flute configuration, and the second ply on a first side is adhesive bonded in bonding zones
- 5 to the crests on a first side of A, in which further the waved flute structure of the first ply is
- 6 formed by the use of a grooved roller, and the said bonding with the second ply is carried out

- 7 under heat and pressure and also under use of a grooved roller, wherein a) the second ply also
- 8 is given a waved configuration, whereby under use of at least one grooved roller the flute
- 9 direction of the second ply is made at an angle to the flute direction of the first ply and the
- said bonding zones are established on the crests of the first side of the second ply to
- introduce spot bonding with the crests on the first side of the first ply, b) the adhesive
- bonding i) is directly first to second ply and established through a lamination layer on at least
- one of these plies; ii) established through a separate thin bonding film; or iii) established
- 14 through a fibrous web adapted to the bonding; and c) the wavelengths of the flutes in both
- plies are no longer than 10 mm, and the wavelengths of the flutes in at least one of the plies
- are no longer than 5 mm.
 - 1 141.(new) The method according to claim 140, wherein the films constituting at least one
- 2 of the two plies are made by coextrusion in which there is coextruded a lower melting surface
- 3 layer to enable the lamination without any melting of the main body of the plies.
- 1 142.(new) The method according to claim 140, wherein the two plies consist of material
- 2 which is orientable at room temperature, preferably they mainly consist of polyolefin.
- 1 143.(new) The method according to claim 1140, wherein prior to the said bonding process
- 2 at least one of said plies is solid-state stretched in narrow zones to form first attenuated zones
- 3 which are parallel to the selected direction of fluting in the ply, said stretching being
- 4 generally perpendicular to the said direction and carried out between a set of grooved rollers
- 5 both different from the grooved roller for lamination, and that the grooved roller for
- 6 lamination is coordinated with the said set of grooved rollers for stretching in such a way that
- 7 each zone of bonding mainly becomes located within a first attenuated zone.
- 1 144.(new) The method according to claim 143, wherein prior to or after the formation of
- 2 the first attenuated zones, another set of grooved rollers produces second attenuated zones

- 3 which are another series of solid-state oriented narrow zones in the same ply, parallel with
- 4 the first attenuated zones and narrower than the latter, while the grooved rollers which
- 5 produce said second attenuated zone are coordinated with the grooved rollers which produce
- 6 the first attenuated zones so that each second attenuated zone becomes located generally in
- 7 the middle between two neighbouring first attenuated zones.
- 1 145.(new) The method according to claim 143, wherein the lamination layer is heated to
- 2 the lamination temperature by heating from the opposite side of the ply, and in which the
- 3 temperature of the laminating roller and the thickness of the film in the first attenuated zones
- 4 is such as to allow the laminating layer to reach said lamination temperature whilst the
- 5 thickness of the ply outside the attenuated zone which is in contact with the crests of the
- 6 grooved lamination roller is such that the lamination layer outside the attenuated zone does
- 7 not reach said lamination temperature, where the first attenuated zones and the bonding zones
- 8 become generally coincident.
- 1 146.(new) The method according to claim 140, wherein the pitch of the grooved roller
- 2 which produces the lamination on the crests is at the highest 3,0 mm, preferably no more than
- 3 2,0 mm and still more preferably no more than 1,5 mm.
- 1 147.(new) The method according to claim 140, wherein prior to the forming of the waved
- 2 flute structure and if the methods of claim 143 is used, also prior to the formation of the
- 3 attenuated zones, the film or films constituting at least one of the plies are supplied with
- 4 orientation in one or both directions, the resultant main direction of orientation in such ply
- 5 being essentially in the direction which is selected to become its direction of fluting.
- 1 148.(new) The method according to claims 140, wherein at least a part of the depth of
- 2 each flute in at least one of the two plies, is carried out after the lamination by thermal
- 3 shrinkage of the other ply in a direction essentially perpendicular to the predetermined

- 4 direction of such flutes.
- 1 149.(new) The method according to claim 143, wherein a suitably distinct stripe formation
- 2 of the first attenuated zone is established at least in part by giving the crests on the grooved
- 3 stretching roller intended to produce the stripes a temperature which is higher than the
- 4 temperature on the crests on the other grooved stretching roller and/or by giving the crests
- 5 on the grooved stretching roller intended to produce the stripes a radius of curvature which
- 6 is smaller than the radius of curvature of the crests on the matching grooved stretching roller.
- 1 150.(new) The method according to claims 140, wherein the flute structure in one of the
- 2 plies is established essentially in the machine direction under a generally transverse
- 3 orientation process by taking the ply before lamination through a set of driven mutually
- 4 intermeshing grooved rollers, the grooves on the rollers being circular or helical and forming
- 5 an angle of at least 60 with the roller axis.
- 1 151.(new) The method according to claim 150, wherein this ply is passed directly from
- 2 its exit from the last of the grooved stretching and fluting rollers to the grooved lamination
- 3 roller, these two grooved rollers being in close proximity to each other and having the same
- 4 pitch when measured at each ones operational temperature and being mutually adjusted in
- 5 the axial direction for alignment of the grooves.
- 1 152.(new) The method according to claim 150, wherein this ply is passed from its exit
- 2 from the last of the grooved and fluting rollers to the grooved lamination roller over one or
- 3 a series of heated, grooved transfer rollers, the grooved rollers in the row starting with the
- 4 grooved stretching rollers and ending with the grooved lamination roller each being in close
- 5 proximity to its neighbour or neighbours, whereby each of the grooved rollers in the row has
- 6 the same pitch when measured at their respective operational temperature, and being
- 7 mutually adjusted in the axial direction for alignment of the grooves.

- 1 153.(new) The method according to claims 140, wherein each grooved roller used to form
- 2 the flutes in one of the plies and each grooved roller used to form the first attenuated zones
- 3 in this ply according to claim 143 if such zones are produced, and each grooved roller used
- 4 to form the second attenuated zones according to claim 144 if such zones are formed in this
- 5 ply and a grooved roller which the ply follows before and during the lamination if such roller
- 6 is used, are rollers in which the grooves are essentially parallel with the roller axis, and
- 7 means are provided to hold the flutes of the said ply in the respective grooves during the
- 8 passage from the position where the flutes are formed to the position where lamination takes
- 9 place, said holding means adapted to avoid a frictional rubbing on the ply during said
- 10 passage.
 - 1 154.(new) The method according to claim 153, wherein the flutes in this ply are formed
- 2 by use of an air jet or a transverse row of air jets which directs A into the grooves on the
- 3 forming roller.
- 1 155.(new) The method according to claim 153, wherein first attenuated zones are formed
- 2 accordingly to claim 143 by grooved rollers acting in coordination with the grooved roller
- 3 used for lamination, and said coordination consists in an automatic fine regulation of the
- 4 relative velocities between the rollers.
- 1 156.(new) The method according to claim 155, wherein said second attenuated zones are
- 2 formed according to claim 144 by grooved rollers acting in coordination with the grooved
- 3 rollers used to produce the first attenuated zones, and said coordination consists in an
- 4 automatic fine regulation, of the relative velocities between the rollers.
- 1 157.(new) The method according to claim 140, wherein after the lamination at least some
- 2 of the flutes in each ply are flattened in locations placed at intervals, preferably under heat

- 3 and pressure sufficient to bond the plies to each other in said locations so that the two arrays
- 4 of flutes together form closed pockets.
- 1 158.(new) The method according to claim 157, wherein at least some of the flattening is
- 2 carried out with bars or cogs which have their longitudinal direction arranged generally in
- 3 the machine direction and/or the direction transverse to this.
- 1 159.(new) The method according to claim 140, wherein particulate, liquid or fibre-or
- 2 yarn-formed material is filled into some at least of the channels formed by the two arrays of
- 3 flutes, this filling taking place prior to or during the lamination.
- 1 160.(new) The method according to claim 159, wherein after filling the filled channels
- 2 are closed at intervals by pressure and heat to form filled pockets.
- 1 161.(new) The method according to claim 157, wherein prior to, simultaneously with or
- 2 following the filling step perforations are made in the laminate at least on one side to help
- 3 the filling material or part thereof dissipate into the surroundings or to allow air or liquid to
- 4 pass through the filling material.
- 1 162.(new) The method according to claim 140, wherein there is made a multitude of
- 2 perforations in the first and in the second ply, but limited to areas, where the two plies are
- 3 not bonded together, and the perforations in the first ply being displaced from the
- 4 perforations in the second ply to force air or liquid which passes through the laminate to run
- 5 a distance along one or more channels.
- 1 163.(new) The method according to claim 140, wherein one process step there is melted
- 2 a multitude of holes in the first but not in the second ply or in the second but not in the first
- 3 ply, these holes being formed by contacting flutes of the first ply with protruding surface

- 4 parts of a hot roller, which are moved at essentially the same velocity as the laminate.
- 1 164.(new) The method according to claim 163, wherein the holes are formed by
- 2 contacting flutes of the second ply with protruding preferably sharp, surface parts of a hot
- 3 roller, which are moved at essentially the same velocity as the laminate, while heat insulating
- 4 material prevents the flutes from contacting the hot surfaces of the roller, and preferably the
- 5 laminate is pressed towards the protruding parts by means of air jets.
- 1 165.(new) The method according to claim 164, wherein there is drawn a protruding nap
- 2 of fibre-like film portions out from the molten surroundings of the holes by blowing air in
- 3 between the laminate and the hot roller, where the laminate leaves the roller.
- 1 166.(new) A method of manufacturing a laminate of a first ply with a second ply both
- 2 mainly consisting of orientable thermoplastic polymer material and each having one face
- 3 comprising a lamination layer in which the first and second plies are continuously fed in face
- 4 to face relationship with the lamination layers in direct contact with one another between a
- 5 pair of laminating rollers between which heat and pressure is applied, whereby the lamination
- 6 layers become adhered to one another, in which the second ply is oriented mainly
- 7 transversely of the machine direction, and is generally not shrinkable in solid state in the
- 8 direction transverse to its orientation, and the first ply as it is fed to the lamination rollers is
- 9 heat-shrinkable mainly in a shrink direction which is generally parallel with the machine
- 10 direction, the lamination rollers apply heat and pressure in bonding zones arranged in
- 11 continuous or discontinuous rectilinear lines extending in a direction which is generally
- 12 perpendicular to said shrink direction, and after lamination the first ply is caused to shrink
- in solid orsemisolid state in the said shrink direction, whereby the second ply becomes fluted
- 14 with flutes extending perpendicular to said shrink direction and having a wavelength at the
- 15 highest about 5 mm.

- A method of manufacturing a laminate of a first ply with a second ply both 1 mainly consisting of orientable thermoplastic polymer material and each having one face 2 3 comprising a lamination layer in which the first and second plies are continuously fed in face 4 to face relationship with the lamination layers in direct contact with one another between a 5 set of laminating devices between which heat and pressure is applied, whereby the lamination 6 layers become adhered to one another, in which the second ply is oriented mainly 7 transversely of the machine direction, and is generally not shrinkable in solid state in the 8 direction transverse to its orientation, and is prior to the lamination rollers, segmentally stretched in its machine direction to introduce first attenuated zones perpendicular to the 9 10 machine direction, the first ply as it is fed to the lamination rollers is heat-shrinkable mainly 11 in a shrink direction which is generally parallel with the machine direction, the laminating 12 devices comprise on the side facing the second ply a heated flat roller or a heated porous bar 13 adapted to produce a film of hot air to press the plies towards the opposite laminating device, which may be either a roller or a similar bar, the speed of the machine and the temperatures 14 15 of the rollers being adapted to heat the lamination layer in said first attenuated zones to the 16 lamination temperature, but not to heat the lamination layer in the adjacent non-attenuated 17 zones to the lamination temperature, whereby bonding takes place only in the attenuated 18 zones, and after lamination the first ply is caused to shrink in solid orsemisolid state in the 19 said shrink direction, whereby the second ply becomes fluted with flutes extending 20 perpendicular to said shrink direction and having a wavelength at the highest about 5 mm.
 - 1 168.(new) The method according to claim 167, wherein said wavelength is at the highest
 - 2 about 3 mm.
 - 1 169.(new) The method according to claim 167, in which the first ply is kept substantially
- 2 flat throughout the manufacturing process.
- 1 170.(new) The method according to claim 167, in which the first ply is supplied with

- 2 waves prior to the lamination, the wavelength being at the highest about 5 mm, preferably
- 3 at the highest about 3 mm, and the lamination zones are on the crests on one side of the
- 4 waved first ply.
- 1 171.(new) The method according to claim 167, wherein, by use of a take-off roller (13)
- 2 of slightly waved surface, the laminate on its whole is supplied with a longitudinal waving
- 3 to eliminate a tendency to curling around its transverse direction.
- 1 172.(new) The method according to claim 167, wherein said rectilinear lines are
- 2 discontinuous and in which the discontinuities in adjacent lines are aligned in the shrink
- 3 direction.
- 1 173.(new) A laminating apparatus comprising a grooved roller for fluting a first ply of
- 2 thermoplastic polymer material, a grooved roller for fluting a second ply of thermoplastic
- 3 polymer material, means for directing the first and second plies from their respective grooved
- 4 rollers to a laminating station with the plies arranged in face to face contact with one another
- 5 and with the flutes of the first ply generally directed at an angle to the flutes of the second
- 6 ply, the laminating station comprising grooved laminating rollers which apply heat and
- 7 pressure between the plies to bond the plies together at the crests of the flutes of the second
- 8 ply to form a laminate, the grooved fluting rollers and the grooved laminating rollers having
- 9 groove pitches such that in the laminate the plies each have flutes of wavelength less than
- 10 mm and the flutes of at least one of the plies have a wavelength no longer than 5 mm.
- 1 174.(new) The apparatus according to claim 173, further comprising a first set of grooved
- 2 stretching rollers upstream from the laminating station for at least one of the plies, which
- 3 stretches the material of the respective ply in a solid state and in a direction generally
- 4 perpendicular to the flutes to form first attenuated zones, wherein the grooved stretching
- 5 rollers, grooved fluting rollers and grooved laminating rollers are coordinated so that the first

- 6 attenuated zones become the crests of the flutes and the bonding zones are mainly located
- 7 within first attenuated zones.
- 1 175.(new) The apparatus according to claim 174, further comprising, between the said
- 2 grooved stretching rollers and the laminating station, a second set of grooved stretching
- 3 rollers, which stretches the material of the said respectively in a solid state and in a direction
- 4 generally perpendicular to the flutes to form second attenuated zones extending parallel to
- 5 and between said first attenuated zones which are narrower than said first attenuated zones,
- 6 whereby the second attenuated zones become the troughs of the flutes.
- 1 176.(new) The apparatus according to claim 174, wherein the crests of the grooves of the
- 2 laminating roller are wider than the first attenuated zone and in which the side of the ply
- 3 opposite to the face in contact with the other ply is heated in the lamination station,
- 4 preferably by supplying heat to the interior of the grooved laminating roller.
- 1 177.(new) The apparatus according to claim 173, wherein the grooves in the rollers are
- 2 formed such that the flutes in the two plies are generally mutually perpendicular, preferably
- 3 the flutes in the first ply being substantially parallel to the machine direction.
- 1 178.(new) The apparatus according to claim 177, further comprising, upstream of the
- 2 fluting rollers, for at least one of the plies, an orienting station for providing the ply with
- 3 uniaxial or unbalanced biaxial orientation with the main direction of orientation being
- 4 generally parallel to the flute direction.
- 1 179.(new) The apparatus according to of claim 174, wherein the grooved stretching rollers
- 2 consist of a set of driven mutually intermeshing grooved rollers, the grooves on the rollers
- 3 being circular or helical and forming an angle of at least 60 with the respective roller axis.

- 1 180.(new) The apparatus according to claim 179, wherein the last of the grooved
- 2 stretching rollers is in close proximity to the grooved laminating roller and the grooves of
- 3 each are of the same pitch at the operating temperature of the apparatus and being aligned.
- 1 181.(new) The apparatus according to claim 179, further comprising one or a series of
- 2 heated grooved transfer rollers located between the last of the grooved stretching rollers and
- 3 the grooved laminating roller, adjacent rollers being close together, the grooves of the
- 4 stretching, transfer and laminating rollers having the same pitch at the operating temperature
- 5 of the apparatus and being aligned with one another.
- 1 182.(new) The apparatus according to claim 173, wherein the grooved fluting roller for
- 2 one of the plies has the grooves arranged substantially parallel with the roller axis and in
- 3 which substantially frictionless holding means are provided for holding the flutes of the
- 4 respective ply in the grooves.
- 1 183.(new) The apparatus according to claim 182, wherein the frictionless holding means
- 2 comprises air pressure difference between opposite sides of the ply at the groove.
- 1 184.(new) The apparatus according to claim 173, wherein downstream of the grooved
- 2 laminating roller in the lamination station there is a flute flattening station in which at least
- 3 some of the flutes in each ply are flattened and the plies bonded to one another under heat
- 4 and pressure to form closed pockets.
- 1 185.(new) The apparatus according to claim 184, wherein the flute flattening station
- 2 comprises barsand/or cogs extending generally in the machine direction or the cross-direction
- 3 and counter rollers, bars or cogs against which to bear.
- 1 186.(new) The apparatus according to claim 173, further comprising flute filling means

- 2 for filling the flutes of one or both plies before or during the lamination station with
- 3 particulate, fibre or liquid material.
- 1 187.(new) The apparatus according to claim 173, further comprising perforating means
- 2 for cutting or melting holes into the flutes of one or both plies in non-bonded zones.
- 1 188.(new) The apparatus according to claim 187, wherein the perforating means comprise
- 2 a driven perforating roller having an arrangement of heated protrusions which contact and
- 3 melt the material in the flutes of the respective ply.
- 1 189.(new) The apparatus according to claim 188, further comprising pressurised air
- 2 outlets for directing air at the ply while the material surrounding the perforations is molten.
- 1 190.(new) The apparatus according to claim 188, wherein the flutes of the ply are directed
- 2 into contact with said protrusions by air jets directed at the surface of the ply opposite to the
- 3 perforating roller.
- 1 191.(new) A laminating apparatus comprising a grooved roller for fluting a first ply of
- 2 heat-shrinkable thermoplastic polymer material having a main shrink direction parallel to the
- 3 flute direction, means for continuously directing the fluted first ply and a second ply of
- 4 thermoplastic material in face-to-face relationship to a laminating station, the laminating
- 5 station comprising laminating rollers between which heat and pressure is applied in
- 6 laminating zones between the crests of the flutes of the fluted first ply and the second ply
- 7 whereby bonding zones are formed extending in continuous or discontinuous rectilinear lines
- 8 along the crests of the flutes at which the plies are bonded to one another, the apparatus
- 9 further comprising a heat shrink station in which the first ply in the bonded product is heated
- 10 to its heat shrink temperature and allowed to shrink, the bonding zones being adapted to
- allow the second ply to become fluted upon shrinkage of the first ply, the wavelength of the

- 12 fluting being less than 5 mm.
 - 1 192.(new) The apparatus according to claim 191, wherein the second ply is fed to the
- 2 laminating station as a substantially planar web.
- 1 193.(new) The apparatus according to claim 191, wherein the laminating station
- 2 comprises a pair of grooved rollers, between which the heat and pressure is applied for
- 3 lamination, the grooves of the laminating roller in contact with the first ply being parallel to
- 4 and under operating conditions, having the same pitch as the grooves of the fluting roller for
- 5 the first ply, and the grooves of the laminating roller in contact with the second ply being
- 6 arranged at an angle, preferably substantially perpendicular to these grooves.
- 1 194.(new) The apparatus according to claim 191, wherein the laminating station
- 2 comprises a grooved laminating roller and a substantially smooth counter roller between
- 3 which the heat and pressure is applied for lamination with the grooved laminating roller in
- 4 contact with the first ply; the grooves of the grooved laminating roller being parallel to and,
- 5 under operating conditions, having the same pitch as the grooves of the fluting roller for the
- 6 first ply.
- 1 195.(new) The apparatus according to claim 194, further comprising a stretching station
- 2 for the second ply at which the second ply is segmentally stretched in solid state to produce
- 3 first attenuated zones extending in a direction at an angle to the direction of the flutes of the
- 4 first ply, preferably perpendicularly thereto, wherein the substantially smooth laminating
- 5 roller is heated to a temperature which heats the opposite surface of the second ply in the first
- 6 attenuated zones to the laminating temperature while the adjacent areas do not reach that
- 7 temperature.
- 1 196.(new) The apparatus according to any of claim 173, wherein the land on the crest of