Diode Applications

Forward and reverse bias

Forward biased Connection

Reverse biased Connection

Ideal diode model

- •Short circuit when forward biased
- Open circuit when reversed biased

Diode and diode symbol

Practical diode simplified model

Load-Line Analysis

Drawing the load line and finding the point of operation.

$$I_D = \frac{E}{R} \bigg|_{V_D = 0 \text{ V}}$$

$$V_D = E|_{I_D = 0 A}$$

Series diode circuit

- Determine the state of the diode first.
- Si diodes need 0.7 V and Ge diodes need 0.3 V to turn on.
- Replace the diode with a model.
- Connect a series resistance in any diode circuit to limit the current.

Analysis:

$$V_D = V_T$$

$$V_R = E - V_T$$

$$I_D = I_R = \frac{V_R}{R}$$

Figure 2.10 Series diode configuration.

Figure 2.12 Substituting the equivalent model for the "on" diode of Fig. 2.10.

Reversed biased diode

• In this circuit of Fig. 2.13 the diode is reversed biased.

Analysis:

$$V_R = I_R R = I_D R = (0 \text{ A}) R = 0 \text{ V}$$

Figure 2.13 Reversing the diode of Fig. 2.10.

Figure 2.15 Substituting the equivalent model for the "off" diode of Figure 2.13.

Si and Ge diodes in series

EXAMPLE 2.9

Determine V_o and I_D for the series circuit of Fig. 2.21.

Figure 2.21 Circuit for Example 2.9.

Solution

$$V_o = E - V_{T_1} - V_{T_2} = 12 \text{ V} - 0.7 \text{ V} - 0.3 \text{ V} = 11 \text{ V}$$

 $I_D = I_R = \frac{V_R}{R} = \frac{V_o}{R} = \frac{11 \text{ V}}{5.6 \text{ k}\Omega} \cong 1.96 \text{ mA}$

Figure 2.22 Determining the unknown quantities for Example 2.9.

Back to back diode connection

Determine I_D , V_{D_2} , and V_o for the circuit of Fig. 2.23.

Figure 2.23 Circuit for Example 2.10.

Solution

Figure 2.26 Determining the unknown quantities for the circuit of Example 2.10.

$$V_o = I_R R = I_D R = (0 \text{ A})R = 0 \text{ V}$$

and

$$V_{D_2} = V_{\text{open circuit}} = E = 12 \text{ V}$$

Applying Kirchhoff's voltage law in a clockwise direction gives us

$$E - V_{D_1} - V_{D_2} - V_o = 0$$

and

$$V_{D_2} = E - V_{D_1} - V_o = 12 \text{ V} - 0 - 0$$

with

$$V_o = 0 \text{ V}$$

Parallel diodes

Determine V_0 , I_1 , I_{D_1} , and I_{D_2} for the parallel diode configuration of Fig. 2.30.

Figure 2.30 Network for Example 2.12.

Solution

Figure 2.31 Determining the unknown quantities for the network of Example 2.12.

The current

$$I_1 = \frac{V_R}{R} = \frac{E - V_D}{R} = \frac{10 \text{ V} - 0.7 \text{ V}}{0.33 \text{ k}\Omega} = 28.18 \text{ mA}$$

Assuming diodes of similar characteristics, we have

$$I_{D_1} = I_{D_2} = \frac{I_1}{2} = \frac{28.18 \text{ mA}}{2} = 14.09 \text{ mA}$$

Parallel reverse diodes

Solution

Redrawing the network as shown in Fig. 2.33 reveals that the resulting current direction is such as to turn on diode D_1 and turn off diode D_2 . The resulting current Iis then

$$I = \frac{E_1 - E_2 - V_D}{R} = \frac{20 \text{ V} - 4 \text{ V} - 0.7 \text{ V}}{2.2 \text{ k}\Omega} \approx 6.95 \text{ mA}$$

 $2.2k \times + 0.7 = 20 - 4$

Figure 2.33 Determining the unknown quantities for the network of Example 2.13.

Si and Ge diodes in parallel

Figure 2.34 Network for Example 2.14.

Figure 2.35 Determining V_o for the network of Fig. 2.34.

Series-parallel diodes

Figure 2.37 Determining the unknown quantities for Example 2.15.

Figure 2.36 Network for Example 2.15.

$$I_1 = \frac{V_{Tz}}{R_1} = \frac{0.7 \text{ V}}{3.3 \text{ k}\Omega} = 0.212 \text{ mA}$$

Applying Kirchhoff's voltage law around the indicated loop in the clockwise d tion yields

$$-V_2 + E - V_{T_1} - V_{T_2} = 0$$
 and
$$V_2 = E - V_{T_1} - V_{T_2} = 20 \text{ V} - 0.7 \text{ V} - 0.7 \text{ V} = 18.6 \text{ V}$$
 with
$$I_2 = \frac{V_2}{R_2} = \frac{18.6 \text{ V}}{5.6 \text{ k}\Omega} = 3.32 \text{ mA}$$

At the bottom node (a),

$$I_{D_2} + I_1 = I_2$$

 $I_{D_2} = I_2 - I_1 = 3.32 \text{ mA} - 0.212 \text{ mA} = 3.108 \text{ mA}$

and

Application of dc diode circuits

- To drive LEDs in power indicators circuits
- LED Lighting
- Logic circuits, etc

Points to keep in mind

• Before using a diode in a circuit, you must know at least the following:

 $Its forward current \ I_F,$ $Zener \ potential \ V_Z,$ $Maximum \ power \ dissipation \ (P_{D,max}),$ and operating temperature range.

Home work

- Solve problems at the end of Chapter 2
- Problem no. 6 to 11 and 13.

THANKS