Stanislas Thème

Une démonstration de la formule de Stirling

PSI 2020-2021

- - -

Dans ce problème, on montre que

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Partie I: Une suite convergente

Pour tout entier naturel n non nul, on pose

$$u_n = \frac{n^{n + \frac{1}{2}}}{e^n n!}.$$

- **1.** Montrer que $(n + \frac{1}{2}) \ln (1 + \frac{1}{n}) 1 \sim \frac{1}{12n^2}$.
- **2.** En déduire que la série $\sum \ln \frac{u_{n+1}}{u_n}$ converge. On notera $\widetilde{\ell}$ sa limite.
- **3.** Montrer que la suite (u_n) converge vers un réel ℓ tel que $\ell = e^{\widetilde{\ell}}$.
- **4.** En déduire qu'il existe $\ell > 0$ tel que

$$n! \sim \ell \sqrt{n} \left(\frac{n}{e}\right)^n$$
.

Partie II: Un calcul d'équivalent

Pour tout entier naturel n non nul, on pose

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) \, \mathrm{d}t.$$

5. Montrer soigneusement que

$$\forall n \in \mathbb{N}, (n+2)W_{n+2} = (n+1)W_n.$$

6. En déduire que la suite $((n+1)W_{n+1}W_n)$ est constante égale à $\frac{\pi}{2}$.

- **7.** En déduire que $\left(\frac{W_{n+2}}{W_n}\right)$ converge.
- **8.** Montrer que la suite (W_n) est décroissante.
- **9.** En déduire que $W_n \sim W_{n+1}$.
- **10.** Déduire des questions précédentes que $W_n \sim \sqrt{\frac{\pi}{2n}}$. On pourrait même montrer que

$$W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} \ et \ W_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}.$$

Partie III: Conclusion

11. En utilisant les résultats et notations des parties précédentes, montrer que $\ell = \sqrt{2\pi}$.