

(b) Unreasonable Visual Attention

Visual Commonsense R-CNN

Tan Wang^{1,3} Jianqiang Huang^{2,3} Hanwang Zhang³ Qianru Sun⁴ ¹University of Electronic Science and Technology of China, ²Alibaba Damo Academy ³Nanyang Technological University, ⁴Singapore Management University

Key Words: 1) Common Sense; 2) Causality;

- 3) Un-/Self-supervised Learning;
- 4) Representation Learning

Motivation & Solution

- Today's CV systems are good at telling us "what" (e.g., classification) and "where" (e.g., detection), yet bad at knowing "why". --- Machine needs Common Sense!!!
- Cognitive Errors due to the lack of common sense.

(a) Inexact Visual Relationships

Q: Is this person good at skiing? A: No

• Our Solution: *Likelihood* -> Causal Intervention

A Toy Experiment

 We performed a toy experiment on MS-COCO with GT labels to compare the *difference* between P(Y|X)and P(Y | do(X)). --- Here comes the Confounder Bias!!!

Approach & Framework

Where is the Confounder Bias from?

Here we take X = "Toilet" as the example

Implementation: VC R-CNN Framework

- Visual Backbone: R-CNN; Training Objective: Causal Intervention
- The **Delivery** of VC R-CNN is a **region feature extractor** for any region proposal
- **Light**: fast & memory-efficient; **Non-intrusive**: just concatenate

Experiment Results

Image Captioning

Performance on Karpathy Test Split

Model	Feature	MS-COCO				Open Images			
		B4	M	R	С	B4	M	R	С
Up-Down	Obj	36.7	27.8	57.5	122.3	36.7	27.8	57.5	122.3
	+Cor	38.1	28.3	58.5	127.5	38.3	28.4	58.8	127.4
	+VC	39.5	29.0	59.0	130.5	39.1	28.8	59.0	130.0
	Obj	38.1	28.4	58.2	126.0	38.1	28.4	58.2	125.9
AoANet [†]	+Cor	38.8	28.9	58.7	128.6	38.9	28.8	58.7	128.2
	+VC	39.5	29.3	59.3	131.6	39.3	29.1	59.0	131.5
SOTA	AoANet	38.9	29.2	58.2	129.8	38.9	29.2	58.2	129.8

※ AoANet[†] indicates the AoANet [1] without the refine encoder. The grey row highlight the results of our VC feature in each model.

Performance on MSCOCO Test Server

Model	BLEU-4		METEOR		ROUGE-L		CIDEr-D	
Metric	c5	c40	c5	c40	c5	c40	c5	c40
Up-Down	36.9	68.5	27.6	36.7	57.1	72.4	117.9	120.5
SGAE	37.8	68.7	28.1	37	58.2	73.1	122.7	125.5
CNM	37.9	68.4	28.1	36.9	58.3	72.9	123.0	125.3
AoANet	37.3	68.1	28.3	37.2	57.9	72.8	124.0	126.2
Up-Down+VC	37.8	69.1	28.5	37.6	58.2	73.3	124.1	126.2
AoANet [†] +VC	38.4	69.9	28.8	38.0	58.6	73.8	125.5	128.1

※ Up-Down+VC and AoANet[†]+VC are the short for concatenated on [4] in Up-Down and AoANet[†].

VQA Performance on VQA2.0 Dataset

Model	Feature	MS-COCO				Open Images			
		Y/N	Num	Other	All	Y/N	Num	Other	All
Up-Down	Obj	80.3	42.8	55.8	63.2	80.3	42.8	55.8	63.2
	+Cor	81.5	44.6	57.1	64.7	81.3	44.7	57.0	64.6
	+VC	82.5	46.0	57.6	65.4	82.8	45.7	57.4	65.4
	Obj	84.8	49.4	58.4	67.1	84.8	49.4	58.4	67.1
MCAN	+Cor	85.0	49.2	58.9	67.4	85.1	49.1	58.6	67.3
	+VC	85.2	49.4	59.1	67.7	85.1	49.1	58.9	67.5
SOTA	MCAN	84.8	49.4	58.4	67.1	84.8	49.4	58.4	67.1

* The results on VQA2.0 Test Server can be found in our paper.

• VCR

Performance on VCR Dataset

Model	Feature	MS-0	COCO	Open Images		
1,10001	1 000010	$Q \rightarrow A$	$QA \rightarrow R$	$Q \rightarrow A$	$QA \rightarrow R$	
	Obj	65.9	68.2	65.9	68.2	
R2C	+Cor	66.5	68.9	66.6	69.1	
	+VC	67.4	69.5	67.2	69.9	
	Obj	69.1	69.6	69.1	69.6	
ViLBERT [†]	+Cor	69.3	69.9	69.2	70.0	
	+VC	69.5	70.2	69.5	70.3	
SOTA	ViLBERT [†]	69.3	71.0	69.3	71.0	

* We utilized the Vilbert (the full Vilbert [2] without the pretraining process) for fair comparison.

Qualitative Results

The t-SNE Visualization of Object Features

on a snow covered slope. table.

Up-Down Feature

- The "ski" feature of our VC R-CNN is reasonably closer to "leg" and "snow" than the Up-Down feature [3].
- VC R-CNN feature merges into sub-clusters (dashed boxes), implying that the common sense is actually multi-facet and varies from context to context.

• Reference

- [1] L. Huang et al. Attention on attention for image captioning. In ICCV, 2019.
- [2] J. Lu et al. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-andlanguage tasks. In NeurIPS, 2019.
- [3] P. Anderson et al. Bottom-up and top-down attention for image captioning and visual question answering. In CVPR, 2018.

Links

ArXiv: arxiv.org/abs/2002.12204 Code: github.com/Wangt-CN/VC-R-CNN

Zhihu Article: zhuanlan.zhihu.com/p/111306353

