CSCI 210: Computer Architecture Lecture 18: Clocks and Timing

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Lynn Conway

- Computer Scientist, Electrical Engineer and Transgender Activist born in 1938
- At Xerox Park, worked on multi-project wafers, which allowed printing multiple circuit designs on a single silicon wafer
- Co-authored Introduction to VLSI Systems in 1981, which became the standard textbook in chip design
- In 1983, developed the *Metal Oxide Semiconductor Implementation Service* system, an internet-based system for rapid-prototyping and small-run fabrication of new chip designs
 - Allowed academics and small businesses to develop their own chips for the first time

Last Class We Implemented A 1-bit CPU with

- And
- Or
- Nor
- Add
- Subtract
- Set less than
- Overflow detection

Adding Conditional Branching

Want to be able to support beq, bne, etc

Need to be able to check equality

• If a = b, then a - b = 0

Detect 0 in Multi-bit ALU

Subtract a – b

- Take output from each 1-bit ALU
 - If they are equal, all outputs should be 0

We know Result0-Result31 are all 0 if we perform a ____ operation on Result0 though Result31, and it outputs

- A. AND, 0
- B. OR, 0
- C. NAND, 1
- D. XOR, 0
- E. None of the above

Detect 0 in Multi-bit ALU

Subtract a – b

Take output from each 1-bit ALU

- OR outputs together
 - If any output is 1, result will be 1, else 0
- Negate the result

32-bit ALU with zero check

Symbol for Multi-bit ALU

ALU Questions?

Logic Gates and Timing Diagrams

Which of the following most closely maps to Y (the output of the inverter)?

E None of the above.

Select the correct output for Y

Timing diagrams and voltage measurements

- Timing diagrams show signals changing over time
- We're looking at logical signals (0s and 1s)
- Voltage levels map to 0s and 1s
- Therefore, we can measure the voltage over time with a tool like an oscilloscope to see this with real hardware

AND gate waveforms

- Inputs
 - Yellow
 - Blue
- Output
 - Pink

Two Types of Logic Components

Combinational logic

Circuits whose outputs are pure functions of its inputs

Logical gates (AND, OR, NOT, XOR, etc.)

Decoders, multiplexers, adders, ALUs

State Elements

Output depends on input, AND a value saved inside the element

State elements have memory

Set-Reset (S-R) Latch

- Output (Q) depends on S, R, AND previous value of Q
- Stores 1 bit of state
- Output Q can change over time: changing inputs S or R can cause Q to change which causes the inputs to the NOR gates to change which can cause Q to change and so on

State element's state

- The state of an S-R latch is the value stored in the latch
- The state changes over time depending on the inputs and the current state
- For an S-R latch, the next state Q_{next} is derived from the inputs S and R and the current state Q_{curr}
- The next few questions will ask you what Q_{next} is for given S and R inputs; options are 0, 1, Q_{curr} , Q_{curr} , or none of the above if something else occurs

S-R Latch: Given S = 1, R = 0, what is Q_{next} ?

	Q _{next}
A	0
В	1
С	Q _{curr}
D	$\overline{Q_{curr}}$
E	None of the above

S-R Latch: Given S = 0, R = 1, what is Q_{next} ?

	Q _{next}
Α	0
В	1
С	Q _{curr}
D	$\overline{Q_{curr}}$
E	None of the above

S-R Latch: Given S = 0, R = 0, what is Q_{next} ?

	Q _{next}
Α	0
В	1
С	Q _{curr}
D	$\overline{Q_{curr}}$
E	None of the above

S-R Latch: Given S = 1, R = 1, what are Q_{next} and the secondary output \overline{Q}_{next} ?

	Q _{next}	$\overline{Q_{next}}$
Α	0	1
В	1	0
С	Q _{curr}	$\overline{Q_{curr}}$
D	$\overline{\mathrm{Q}_{\mathrm{curr}}}$	Q _{curr}
E	None of the above	

S-R Latch

- Set (S=1, R=0): $Q_{next} = 1$
- Reset (S=0, R=1): $Q_{next} = 0$
- Neither (S=0, R=0): $Q_{next} = Q_{curi}$

Terminology

- The S-R latch is a bistable multivibrator
 - Bistable: two stable states—set Q = 1, Q = 0 and reset Q = 0, Q = 1
 - Monostable: one stable state, one unstable state; the circuit returns to the stable state after a short time in the unstable state
 - Astable: two unstable states and the circuit switches between them
 - Multivibrator: a digital circuit that uses feedback
 - The name comes from the first such circuit that produced a square wave which had many harmonics, hence *multivibrateur*

Clock

Oscillates between 1 and 0 at a set rate

Used with elements that have memory

 Next time: we'll add a clock input to the S-R latch to make a clocked S-R latch