搜索

东南大学计算机学院 方效林

本章内容

- 树的搜索
- 人员分配
- 旅行商问题
- A*算法

■ 很多问题可以表示成为树。于是,这些问题可以使用树搜索算法来求解

м

- CNF-SAT可满足问题
 - 。给定n个布尔变量 $x_1, x_2, ..., x_n$,和m个子句,子句是1个或多个个文字(变量或变量的非)的析取操作
 - \rightarrow 如: $(\overline{x}_1 \lor x_2)$, $(\overline{x}_3 \lor x_1 \lor x_5)$
 - 。给定这m个子句的合取范式
 - \rightarrow $(\overline{x}_1 \lor x_2) \land (x_7 \lor x_9 \lor \overline{x}_{10}) \land \cdots \land x_5$
 - □ 问该合取范式的值可否为真?

- 把问题表示为树
 - □ 通过不断地为赋值集合分类来建立树

■ 8数码问题

□ 输入: 具有8个编号小方块的魔方

2	3	
5	1	4
6	8	7

□ 输出: 移动系列, 经过这些移动, 魔方达如下状态

1	2	3
8		4
7	6	5

■ 转换为树搜索问题

2	3	
5	1	4
6	8	7

2	3	4
5	1	
6	8	7

- 汉密尔顿环问题
 - □ 输入: 具有n个节点的连通图G=(V, E)
 - □ 输出: G中是否具有汉密尔顿环
 - ▶ 沿着G的n条边经过每个节点一次, 并回到起始节点的 环称为G的一个汉密尔顿环

有汉密尔顿环图:

无汉密尔顿环图:

■ 转换为树搜索问题

■ 转换为树搜索问题

- 树的搜索策略
 - □广度优先搜索
 - □ 深度优先搜索

.

树的搜索

■ 树的搜索策略

- □广度优先搜索
 - ▶ 1. 构造由根组成的队列Q;
 - ▶ 2. If Q 的第一个元素x是目标节点 Then 停止;
 - ▶ 3. 从Q中删除x, 把x的所有子节点加入Q的末尾;
 - > 4. If Q空 Then 失败 Else goto 2.

v

树的搜索

■ 树的搜索策略

- 深度优先搜索
 - ▶ 1. 构造一个由根构成的单元素栈S;
 - ▶ 2. If Top(S)是目标节点 Then 停止;
 - ▶ 3. Pop(S), 把Top(S)的所有子节点压入栈顶;
 - > 4. If S空 Then 失败 Else goto 2.

■ 求解子集合和问题

□ 输入: S={7, 5, 1, 2, 10}

□ 输出: 是否存在S' ⊆ S, 使得Sum(S')=9

.

- 搜索策略的优化
 - 爬山法
 - Best first strategy
 - 。分支界限法

×

树的搜索

■ 搜索策略的优化

- 爬山法
 - ▶ 在深度优先搜索过程中,我们经常遇到多个节点可以 扩展的情况,首先扩展哪个?
 - ▶爬山策略使用贪心方法确定搜索的方向,是优化的深度优先搜索策略
 - ▶ 爬山策略使用启发式测度来排序节点扩展的顺序

■ 搜索策略的优化

- 爬山法
 - ▶ 用8-Puzzle问题来说明爬山策略的思想
 - ▶ 启发式测度函数: f(n)=W(n), W(n)是节点n中处于错误位置的方块数.
 - ▶ 例如, 如果节点n如下, 则f(n)=3, 因为方块1、2、8处于错误位置.

2	8	3
1		4
7	6	5

м

树的搜索

■ 搜索策略的优化

- 爬山法
 - ▶ 1. 构造由根组成的单元素栈S;
 - ▶ 2. If Top(S)是目标节点 Then 停止;
 - > 3. Pop(S);
 - ▶ 4. S的子节点按照其启发测度由大到小的顺序压入S;
 - > 5. If S空 Then 失败 Else goto 2.

м

- 搜索策略的优化
 - Best first strategy
 - ▶ 结合深度优先和广度优先的优点
 - ▶ 根据一个评价函数, 在目前产生的所有节点中选择具有最小评价函数值的节点进行扩展.

v

树的搜索

■ 搜索策略的优化

- Best first strategy
 - > 1. 使用评价函数构造一个堆H, 首先构造由根
 - 组成的单元素堆;
 - ▶ 2. If H的根r是目标节点 Then 停止;
 - ▶ 3. 从H中删除r, 把r的子节点插入H;
 - > 4. If H空 Then 失败 Else goto 2.

M

树的搜索

■ 搜索策略的优化

- 。分支界限法
 - > 产生分支的机制(使用前面的任意一种策略)
 - ▶ 产生一个界限(可以通过发现可能解)
 - ▶ 进行分支界限搜索, 即剪除不可能产生优化解的分支.
- □ 0/1背包问题
 - ▶ 给定 n 个物品和一个背包,物品 i 的重量是 wi,价值 vi,背包容量为C,问如何选择装入背包的物品,使装入背包中的物品的总价值最大?

1

人员分配问题

■ 问题定义

- □ 人的集合 $P = \{P_1, P_2, ..., P_n\}, P_1 < P_2 < ... < P_n$
- □ 工作的集合 $J=\{J_1,J_2,...,J_n\}$, J是偏序集合
- □ 矩阵 $[C_{ij}]$, C_{ij} 是工作 J_i 分配到 P_i 的代价

输出

- □ 矩阵 $[X_{ij}], X_{ij}=1$ 表示 P_i 被分配 $J_i, \sum_{i,j} C_{ij}X_{ij}$ 最小
- □ 每个人被分配一种工作,不同人分配不同工作
- \square 如果 $f(P_i) \leq f(P_j)$,则 $P_i \leq P_j$

给定 $P={P_1, P_2, P_3}, J={J_1, J_2, J_3}, J_1 \le J_3, J_2 \le J_3$ $P_1 \rightarrow J_1, P_2 \rightarrow J_2, P_3 \rightarrow J_3$ 是可能的解。 $P_1 \rightarrow J_1, P_2 \rightarrow J_3, P_3 \rightarrow J_2$ 不可能是解。

м

人员分配问题

- 转换为树搜索问题
 - 五朴排序
 - 输入: 偏序集合(S,≤)
 - □ 输出: S的拓朴序列是<s1, s2, ..., sn>,
 - □ 满足: 如果si≤sj, 则si排在sj的前面.

s₁ s₃ s₇ s₄ s₉ s₅ s₂ s₈ s₆

■ 问题的解空间

- $P_1 \rightarrow J_{k1}$ 、 $P_2 \rightarrow J_{k2}$ 、...、 $P_n \rightarrow J_{kn}$ 是一个可能解,则 J_{k1} 、 J_{k2} 、...、 J_{kn} 必是一个拓朴排序的序列.
- $P=\{P_1, P_2, P_3, P_4\}, J=\{J_1, J_2, J_3, J_4\}, J$ 的偏序如下

■ 问题的树表示(即用树表示所有拓朴排序序列)

м

人员分配问题

- 拓朴序列树的生成算法
 - □ 输入: 偏序集合S, 树根root.
 - □ 输出: 由S的所有拓朴排序序列构成的树.
 - □ 1. 生成树根root;
 - □ 2. 选择偏序集中没有前序元素的所有元素, 作为
 - 。 root的子节点;
 - 3. For root的每个字节点v Do
 - □ 4. S=S-{v};
 - □ 5. 把v作为根, 递归地处理S.

■ 拓朴序列树的生成算法

- 计算解的代价的下界
 - 把代价矩阵某行(列)的各元素减去同一个数,不影响优化解的求解
 - 代价矩阵的每行(列)减去同一个数(该行或列的最小数), 使得每行和每列至少有一个零, 其余各元素非负.
 - □ 每行(列)减去的数的和即为解的下界

■ 每行(列)减去的数的和即为解的下界

解代价下界=12+26+3+10+3=54

м

人员分配问题

■ 解空间的加权树表示

- 分支界限搜索(使用爬山法)算法
 - □ 1. 建立根节点, 其权值为解代价下界;
 - □ 2. 使用爬山法, 类似于拓朴排序序列树生成算法
 - 或解问题,每产生一个节点,其权值为加工后的
 - 代价矩阵对应元素加其父节点权值;
 - □ 3. 一旦发现一个可能解, 将其代价作为界限, 循环
 - 」 地进行分支界限搜索: 剪掉不能导致优化解的
 - □ 子解, 使用爬山法继续扩展新增节点, 直至发现
 - □ 优化解.

$$\{P_1, P_2, P_3, P_4\}$$

$$\begin{cases}
J_1 & J_2 \\
J_3 & J_4
\end{cases}$$

.

旅行商问题

■ 问题定义

- □ 输入: 无向连通图G=(V, E),
- 。 **每个节点都没有到自身的边**,
- 。 每对节点之间都有一条非负加权边.
- □ 输出: 一条由任意一个节点开始
- 经过每个节点一次
- 。 最后返回开始节点的路径,
- □ 该路径的代价(即权值只和)最小.

М

旅行商问题

■ 设代价矩阵如下,计算根节点的代价下界

$$j = 1$$
 2 3 4 5 6 7
 $i = 1$ $\begin{bmatrix} \infty & 3 & 93 & 13 & 33 & 9 & 57 \\ 4 & \infty & 77 & 42 & 21 & 16 & 34 \\ 4 & 5 & 17 & \infty & 36 & 16 & 28 & 25 \\ 4 & 39 & 90 & 80 & \infty & 56 & 7 & 91 \\ 5 & 28 & 46 & 88 & 33 & \infty & 25 & 57 \\ 6 & 3 & 88 & 18 & 46 & 92 & \infty & 7 \\ 7 & 44 & 26 & 33 & 27 & 84 & 39 & \infty \end{bmatrix}$
 -26
 -7 -1

■ 得到如下根节点及其代价下界

所有解的集合

L.B=96

$$j = 1$$
 2 3 4 5 6 7 $i=1$ ∞ 0 83 9 30 6 50 2 0 ∞ 66 37 17 12 26 3 29 1 ∞ 19 0 12 5 4 32 83 66 ∞ 49 0 80 5 3 21 56 7 ∞ 0 28 6 0 85 8 42 89 ∞ 0 7 18 0 0 0 58 13 ∞

- 构造根节点的两个子节点
 - □ 选择使子节点代价下界增加
 - □ 最小的划分边(4, 6)
 - □ 建立根节点的子节点:
 - ▶ 左子节点为包括边(4, 6)的所有解集合
 - 左子节点为不包括边(4, 6)的所有解集合

■ 计算左右子节点的代价下界

- □ (4, 6)的代价为0, 所以左节点代价下界仍为96.
- □ 现计算右节点的代价下界:
 - ▶ 如果一个解不包含(4, 6), 它必包含一条从4出发的边和 进入节点6的边.
 - ▶由变换后的代价矩阵可知,具有最小代价由4出发的边为(4,1),代价为32.
 - ▶由变换后的代价矩阵可知,具有最小代价进入6的边为 (5,6),代价为0.
 - ▶ 于是, 右节点代价下界为: 96+32+0=128.

■ 计算左右子节点的代价下界

- 递归地构造左右子树
 - □构造左子树根对应的代价矩阵
 - ▶ 左子节点为包括边(4, 6)的所有解集合, 所以矩阵的第4 行和第6列应该被删除
 - 由于边(4, 6)被使用, 边(6, 4)不能再使用, 所以代价矩阵的元素C[6, 4]应该设置为∞
 - ▶ 结果矩阵如下

- 计算左子树根的代价下界
 - □ 矩阵的第5行不包含0
 - □ 第5行元素减3, 左子树根代价下界为: 96+3=99
 - 。结果矩阵如下

	\boldsymbol{j} =	<i>1</i>	2	3	4	5	7
i=			0	83	9	30	50
	2	0	∞	66	37	17	26
	3 29		1	∞	19	0	5
•	5	0	18	53	4	∞	25
	6	0	85	8	∞	89	0
	7	18	0	0	0	58	∞

- 构造右子树根对应的代价矩阵
 - 右子节点为不包括边(4, 6)的所有解集合, 只需要把 C[4, 6]设置为∞
 - □ 结果矩阵如下

$\int \infty$	0	83	9	30	6	50	
0	∞	66	37	17	12	26	
29	1	∞	19	0	12	5	
32	83	66	∞	49	∞	80	-:
3	21	56	7	∞	0	28	
0	85	8	42	89	∞	0	
18	0	0	0	58	13	∞	

-32

- 计算右子树根的代价下界
 - □矩阵的第4行不包含0
 - □ 第4行元素减32, 右子树根代价下界为: 128+32=160
 - 。结果矩阵如下

∞	0	83	9	30	6	50
0	∞	66	37	17	12	26
29	1	∞	19	0	12	5
0	51	34	∞	17	∞	48
3	21	56	7	∞	0	28
0	85	8	42	89	∞	0
18	0	0	0	58	13	∞

■ 目前的树为

L.B=96 所有解的集合 L.B=160 L.B=99 不包括边(4,6) 包括边(4,6)的 所有解集合 的所有解集合 左子树 右子树

×

A*算法

■ 基本思想

- □ (1). 使用Best-first策略搜索树;
- □ (2). 节点n的代价函数为f(n)=g(n)+h(n), g(n)是
- 。 从根到n的路径代价,h(n)是从n到某个目
- 标节点的优化路径代价;
- □ (3). 对于所有n, h(n) ≤ h*(n);
- □ (4). 当选择到的节点是目标节点时, 算法停止,
- 。 返回一个优化解.

- A*算法关键: 代价函数
 - 。对于任意节点n
 - > g(n)=从树根到n的代价
 - ▶ h*(n)=从n到目标节点的优化路径的代价
 - ▶ f*(n)=g(n) + h*(n)是节点n的代价
 - □ h*(n)为多少?
 - ▶ 不知道! 于是, f*(n)也不知道
 - □ 估计h*(n)
 - ▶ 使用任何方法去估计h*(n), 用h(n)表示h*(n)的估计
 - h(n) ≤ h*(n) 总为真
 - f(n)=g(n)+h(n) ≤ g(n)+h*(n)=f*(n)定义为n的代价

- A*算法本质:已经发现的解是优化解
 - □ 使用Best-first策略搜索树, 如果A*选择的节点是目标节点, 则该节点表示的解是优化解.
 - > 令n是任意扩展到的节点,t是选中目标节点.
 - ▶ 往证f(t)=g(t)是优化解代价.
 - 1). A*算法使用Best-first策略, f(t) ≤ f(n).
 - (2). A*算法使用h(n)≤h*(n)估计规则, f(t)≤f(n)≤f*(n).
 - ▶ (3). {f*(n)}中必有一个为优化解的代价, 令其为f*(s).
 - 我们有f(t) ≤ f*(s).
 - (4). t是目标节点h(t)=0, 所f(t)=g(t)+h(t)=g(t) ≤ f*(s).
 - (5). f(t)=g(t)是一个可能解, g(t) ≥ f*(s), f(t)=g(t)=f*(s).

$$g(V_1)=2 \qquad h(V_1)$$

$$g(V_2)=3 \qquad h(V_2)$$

$$h(V_1)=min\{2,3\}=2$$

 $h(V_3)=min\{2\}=2$
 $h(V_2)=min\{2,2\}=2$

$$f(V_1)=2+2=4$$

 $f(V_3)=4+2=6$
 $f(V_2)=2+2=5$

$$g(V_4)=2+2=4$$

 $g(V_2)=2+3=5$

$$h(V_4)=min{3,1}=1$$

 $h(V_2)=min{2, 2}=2$

$$f(V_4)=4+1=5$$

 $f(V_2)=5+2=7$

$$g(V_4)=3+2=5$$

 $g(V_5)=3+2=5$

$$h(V_4)=min{3,1}=1$$

 $h(V_5)=min{5}=5$

$$f(V_4)=5+1=6$$

 $f(V_2)=5+5=10$

$$g(V_5)=2+2+1=5$$

 $g(T)=2+2+3=7$

$$h(V_5) = min\{5\} = 5$$

 $h(T) = 0$

$$f(V_5)=5+5=10$$

 $f(V_2)=7+0=7$

母曲早 占粉

占数网格

一副骨牌共 28 张,由以下点数组合构成:

母曲早 占粉

再牌写	只 数	百牌写	只 数	再牌写	只 数	再牌写	只 数⋅
1	0 0	8	1 1	15	2 3	22	3 6 ₽
2	0 1	9	1 2	16	2 4	23	4 4
3	0 2	10	1 3	17	2 5	24	4 5
4	0 3	11	1 4	18	2 6	25	4 6
5	0 4	12	1 5	19	3 3	26	5 5 ₽
6	0 5	13	1 6	20	3 4	27	5 6
7	0 6	14	2 2	21	3 5	28	6 6 ₽

四曲旦 占粉

四曲旦 占粉

这 28 张牌可以摆成 7×8 的点数网格, 其对应的骨牌号如下所示:

骨牌是图...

7111	W SXL LIH							13 //	1 1	-H					
6	6	2	6	5	2	4	1	28	28	14	7	17	17	11	11
1	3	2	0	1	0	3	4	10	10	14	7	2	2	21	23
1	3	2	4	6	6	5	4	8	4	16	25	25	13	21	23
1	0	4	3	2	1	1	2	8	4	16	15	15	13	9	9
5	1	3	6	0	4	5	5	12	12	22	22	5	5	26	26
5	5	4	0	2	6	0	3	27	24	24	3	3	18	1	19
6	0	5	3	4	2	0	3	27	6	6	20	20	18	1	19 .

请从给定的点数网格a[1,2,...,7][1,2,...,8]使用搜索算法求出对应的骨牌号图b[1,2,...,7][1,2,...,8],有可能的话,给出相关剪枝策略。