CSE 417 Autumn 2025

Lecture 8: Sorting as a Subroutine

Nathan Brunelle

Homeworks

HW 1 feedback released yesterday

HW 2 out, due Friday (today) 11:59pm.

Divide and Conquer Review

Divide and Conquer (Trominoes)

Base Case:

For a 2×2 board, the empty cells will be exactly a tromino

Divide:

Break of the board into quadrants of size $2^{n-1} \times 2^{n-1}$ each Put a tromino at the intersection such that all quadrants have one occupied cell

Conquer:

Cover each quadrant

Combine:

Reconnect quadrants

Divide and Conquer (Merge Sort)

Base Case:

If the list is of length 1 or 0, it's already sorted, so just return it (Alternative: when length is ≤ 15 , use insertion sort)

Divide:

Split the list into two "sublists" of (roughly) equal length

Conquer:

Sort both lists recursively

Combine:

Merge sorted sublists into one sorted list

Divide and Conquer (Integer Multiplication)

Base Case:

If there is only 1 place value, just multiply them Divide:

Break the operands into 4 values:

- x_1 is the most significant $\frac{n}{2}$ digits of x
- x_2 is the least significant $\frac{n}{2}$ digits of x
- y_1 is the most significant $\frac{n}{2}$ digits of y
- y_2 is the most significant $\frac{n}{2}$ digits of y

Conquer:

Compute each of x_1y_1 , x_1y_2 , x_2y_1 , and x_2y_2

Combine:

Return
$$2^{n}(x_1y_1) + 2^{\frac{n}{2}}(x_1y_2 + x_2y_1) + (x_2y_2)$$

Divide and Conquer (Karatsuba Method)

 x_1y_2

 x_1y_1

Base Case:

If there is only 1 place value, just multiply them

Divide:

Break the operands into 4 values:

- x_1 is the most significant $\frac{n}{2}$ digits of x
- x_2 is the least significant $\frac{n}{2}$ digits of x
- y_1 is the most significant $\frac{n}{2}$ digits of y
- y_2 is the most significant $\frac{n}{2}$ digits of y

Conquer:

Compute each of x_1y_1 , $(x_1 + x_2)(y_1 + y_2)$, and x_2y_2

$(x_1 + x_2)$ $(y_1 + y_2)$ x_2y_2

Combine:

Return

$$2^{n}(x_{1}y_{1}) + 2^{\frac{n}{2}}((x_{1} + x_{2})(y_{1} + y_{2}) - x_{1}y_{1} - x_{2}y_{2}) + (x_{2}y_{2})$$

Maximum Sum Subarray (D&C from reading)

Base Case:

If i = j then return i, i, arr[i] as the start, end, sum respectively

Divide:

Split the list into two "sublists" of (roughly) equal length. So the left is i to $\frac{i+j}{2}$ and the right is $\frac{i+j}{2}+1$ to j

Conquer:

Find the start, end and sum of each subarray. Call these leftStart, leftEnd, leftSum, rightStart, rightEnd, rightSum

Combine:

Find the best suffix of the left subarray and best prefix of the right subarray. Return depending on which of *leftSum*, *rightSum*, and *middleSum* is largest

Maximum Sum Subarray (Improved D&C)

Base Case:

If i = j then: start=i, end =i, max sum=arr[i], suffix start =i, suffix sum=arr[i], prefix start =i, prefix sum=arr[i] and total sum=arr[i]

Divide:

Split the list into two "sublists" of (roughly) equal length. So the left is i to $\frac{i+j}{2}$ and the right is $\frac{i+j}{2}+1$ to j

Conquer:

Find all 8 return values for each half, we'll have a *left* and *right* version of each

Combine:

Use the 16 return values from the conquer step to identify the 8 return values for this step (details on the next slide)

The "Technique of Computing More"

Sometimes, it's helpful to perform more tasks in your combine and conquer algorithm. We'll see 2 examples:

- 1) More tasks give better running time
- 2) More tasks enable correctness

Binary Tree Diameter

Binary Trees - Vocab Review

Nodes: Objects in the tree (labelled 1-8 here). They contain a value and may have a link to up to two other nodes

Child Node: a node linked to by some other node, that node is called its "parent". E.g. 4 is the child of 2

Sibling Nodes: two nodes that share a parent. E.g. 2 and 3 are siblings

Root Node: The unique node which has no parent. Node 1 is the root

Leaf Nodes: Nodes that have no children. 5,6,7, and 8 here

Binary Tree Height - Definition

Distance: The distance between two nodes is the number of links you must follow to get from one to the other. E.g. the distance from 2 to 8 is 2, the distance from 2 to 6 is 3.

Height: The height of a binary tree is the largest distance from the root to some leaf. The height of this tree is 3 (1 is 3 away from 7)

Binary Tree Diameter - Definition

Diameter: The maximum distance between two nodes in a binary tree. The diameter of this tree is 5, because 7 is distance 5 from node 6.

Binary Tree Diameter - Incorrect Algorithm

Base Case:

Split the tree into the left subtree and the right subtree

Conquer:

Find the diameter of each subtree

Combine:

Return the diameter of the left subtree + the diameter of the right subtree + 1

Incorrect Algorithm - Counterexample

Diameter of the left subtree: 0

Diameter of the right subtree: 0

Diameter of the whole tree: 2

Diameter ended up being: the distance to a left leaf + distance to a right leaf

Incorrect Algorithm - Counterexample

Diameter of the left subtree: 6

Diameter of the right subtree: 0

Diameter of the whole tree: 6

Diameter ended up being:

The diameter of a subtree

Binary Tree Diameter - Correct Algorithm

If the node is null the diameter and height are -1.

Divide:

Split the tree into the left subtree and the right subtree

Conquer:

Find the diameter and height of each subtree

h = 1 Combine:

Height = 1 + max(left height, right height)

Diameter = max(left diameter,

right diameter,

left height + right height +2)

Closest Pair of Tomatoes

Closest Pair of Points

Given:

• A sequence of n points $p_1, ..., p_n$ with real coordinates in 2 dimensions (\mathbb{R}^2)

Find:

• A pair of points p_i, p_j s.t. the Euclidean distance $d(p_i, p_i)$ is minimized

How about a $\Theta(n^2)$ algorithm?

• Try all possible pairs, keeping the smallest

Our goal:

• Use D&C to create a $\Theta(n \log n)$ algorithm

Closest Pair of Point D&C Idea

To get $\Theta(n \ log \ n)$, we will aim for $T(n) = 2T\left(\frac{n}{2}\right) + n$

Base Case:

If the number of points is small, do use a naïve solution

Divide:

Otherwise partition the points into 2 subsets

Running time "budget" O(n)

Conquer:

Find the closest pair of points in each subset

Combine:

Use those closest pairs of points to find the closest overall

Running time "budget" O(n)

Closest Pair: Base Cases

If
$$n = 1$$
 return ∞

If n = 2 return the distance

If n = 3 check all 3 pairs return the closest

Closest Pair: First Idea

Divide:

- Split using **median** *x*-coordinate
- each subpart has size n/2.

Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

Return the closer of the left pair and the right pair

Closest Pair: First Idea - Problem

Divide:

- Split using **median** *x*-coordinate
- each subpart has size n/2.

Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Finding the Closest Crossing Pair - 1st Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Procedure:

- For each point on the left, find its closest point on the right
- Save the closest seen as the crossing pair

Problem?

Running time is $\left(\frac{n}{2}\right)^2$

Finding the Closest Crossing Pair – 2nd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Observation:

- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

Procedure:

- Let δ be the closest distance from left and right
- For each point on the left that's within δ of the divide, find its closest match from among points within δ on the right

Problem with the 2nd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Observation:

- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

Problem:

We could still exceed our budget!

Solution:

- Re-apply the observation vertically!
- We only need to consider points within δ above the current point as well!

Finding the Closest Crossing Pair – 3rd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Procedure:

- Let δ be the closest distance from left and right
- From bottom to top, for each point p_l on the left that's within δ of the divide on the left:
 - compare it to each point on the right that is within δ of the divide and no more than δ above p_l

This will only fit within our budget if we compare each p_l to a constant number of other points

Divide and Conquer (Closest Pair of Points)

Preprocessing:

Make a copy of the points and sort by y coordinate (call this list L_{ν})

Base Case:

If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

Divide:

Find the median *x* coordinate

Partition L_x and L_y into the points on the left vs. right of the median

Conquer:

Recursively find the closest pair from among the left and right of the median

Combine:

Let δ be the closest from the left and the right solutions Filter L_{ν} to include only the points within δ of the median xFor each point p still in L_y :

- For each point within δ of p vertically:
- Compare p with that point and save if the distance is less than δ Return minimum of the saved pair and the one used for δ

Surprisingly, This works!

Preprocessing:

Make a copy of the points and sort by y coordinate (call this list L_{ν})

Base Case:

If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

Divide:

Find the median *x* coordinate

Partition L_x and L_y into the points on the left vs. right of the median

Conquer:

Recursively find the closest pair from among the left and right of the median

Combine:

Let δ be the closest from the left and the right solutions Filter L_v to include only the points within δ of the median xFor each point p still in L_y :

- For the next 7 points vertically:
- Compare p with that point and save if the distance is less than δ Return minimum of the saved pair and the one used for δ

Why is 7 enough?

Claim:

• For any point p in the "strip", the 8^{th} point above it is guaranteed to be more than δ away.

Proof:

- Consider a grid of $\frac{\delta}{2} \times \frac{\delta}{2}$ squares starting from p
- Any two points within the same square are at most $\frac{\delta}{\sqrt{2}}$ apart.

- Because $\sqrt{2} > 1$, we know that $\frac{\delta}{\sqrt{2}} < \delta$
- Therefore, there is at most one point per square
- Besides the one which contains p there are only 7 other squares within range δ

Full Algorithm

ClosestPair(*L*):

```
L_x = L sorted by x coordinate

L_y = L sorted by y coordinate

return ClosestPairRec(L_x, L_y)
```

```
ClosestPairRec(L_x, L_y):
  # Base cases omitted
  m = \text{median } x \text{ coordinate}
  P_{x1} = the points from L_x to the left of the median
  P_{v1} = the points from L_v to the left of the median
  P_{x2} = the points from L_x to the right of the median
  P_{v2} = the points from L_v to the right of the median
  a_1 = \text{ClosestPairRec}(P_{x1}, P_{v1})
  a_2 = \text{ClosestPairRec}(P_{x2}, P_{v2})
  a = closer of a_1 and a_2
  \delta = \operatorname{distance}(a)
  for each p in L_v:
    if p's x coordinate is more than \delta from m:
       remove p from L_{\nu}
  for each p in L_v:
    for each of the next 7 points q in L_{\nu}:
       if distance(p, q):
         a = (p, q)
  return a
```