

Introduction to Econometrics, 5th edition

Chapter 2: Properties of the Regression Coefficients and Hypothesis Testing

Model $Y = \beta_1 + \beta_2 X + u$

Null hypothesis: $H_0: \beta_2 = \beta_2^0$

Alternative hypothesis: $H_1: \beta_2 \neq \beta_2^0$

Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat the graphical explanation. We will just provide the mathematical derivation in the context of a regression.

Model

$$Y = \beta_1 + \beta_2 X + u$$

Null hypothesis:

$$H_0:\beta_2=\beta_2^0$$

Alternative hypothesis:

$$H_1:\beta_2\neq\beta_2^0$$

$$\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} > t_{\text{crit}}$$

or
$$\frac{\beta_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} < -t_{\text{crit}}$$

From the initial discussion in this section, we saw that, given the theoretical model $Y = \beta_1 + \beta_2 X + u$ and a fitted model, the regression coefficient $\hat{\beta}_2$ and the hypothetical value of β_2 are incompatible if either of the inequalities shown is valid.

Model

 $Y = \beta_1 + \beta_2 X + u$

Null hypothesis:

 $H_0: \beta_2 = \beta_2^0$

Alternative hypothesis: $H_1: \beta_2 \neq \beta_2^0$

Reject
$$H_0$$
 if
$$\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} > t_{\text{crit}} \qquad \text{or} \qquad \frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} < -t_{\text{crit}}$$

Reject
$$H_0$$
 if $\hat{\beta}_2 - \hat{\beta}_2^0 > \text{s.e.}(\hat{\beta}_2)$ $\Leftrightarrow_{\text{crit}}$ or $\hat{\beta}_2 - \hat{\beta}_2^0 < -\text{s.e.}(\hat{\beta}_2)$ $\Leftrightarrow_{\text{crit}}$

Multiplying through by the standard error of $\hat{\beta}_2$, the conditions for rejecting H_0 can be written as shown.

Model
$$Y = \beta_1 + \beta_2 X + u$$

Null hypothesis:
$$H_0: \beta_2 = \beta_2^0$$

Alternative hypothesis:
$$H_1: \beta_2 \neq \beta_2^0$$

Reject
$$H_0$$
 if $\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} > t_{\text{crit}}$ or $\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} < -t_{\text{crit}}$

Reject H_0 if $\hat{\beta}_2 - \beta_2^0 > \text{s.e.}(\hat{\beta}_2)$ or $\hat{\beta}_2 - \beta_2^0 < -\text{s.e.}(\hat{\beta}_2)$ reject H_0 if $\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2)$ reject H_0 reject H_0 if $\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2)$ reject H_0 reject H_0 if $\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2)$ reject H_0 r

The inequalities may then be re-arranged as shown.

Model
$$Y = \beta_1 + \beta_2 X + u$$

Null hypothesis:
$$H_0: \beta_2 = \beta_2^0$$

Alternative hypothesis: $H_1: \beta_2 \neq \beta_2^0$

Reject
$$H_0$$
 if $\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} > t_{\text{crit}}$ or $\frac{\hat{\beta}_2 - \beta_2^0}{\text{s.e.}(\hat{\beta}_2)} < -t_{\text{crit}}$

Reject H_0 if $\hat{\beta}_2 - \beta_2^0 > \text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}}$ or $\hat{\beta}_2 - \beta_2^0 < -\text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}}$

Reject H_0 if $\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}} > \beta_2^0$ or $\hat{\beta}_2 + \text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}} < \beta_2^0$

Do not reject H_0 if $\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}} > \beta_2^0$ or $\hat{\beta}_2 + \text{s.e.}(\hat{\beta}_2)$ $\textcircled{}_{\text{crit}} < \beta_2^0$

We can then obtain the confidence interval for β_2 , being the set of all values that would not be rejected, given the sample estimate $\hat{\beta}_2$. To make it operational, we need to select a significance level and determine the corresponding critical value of t.

. reg EARNING	GS S					
Source	SS	df	MS		Number of obs F(1, 498)	
Model Residual	6014.04474 64314.9215	1 6014	.04474 146429		Prob > F R-squared	= 0.0000 = 0.0855
Total	70328.9662				Adj R-squared Root MSE	
EARNINGS	Coef.			• •	[95% Conf.	Interval]
S _cons	1.265712 .7646844	.1854782 2.803765	6.82	0.000 0.785	.9012959	1.630128 6.273351

$$\hat{\beta}_2$$
 - s.e. $(\hat{\beta}_2)$ $\hat{\alpha}_{crit}$ $\hat{\beta}_2$ $\hat{\beta}_2$ + s.e. $(\hat{\beta}_2)$ $\hat{\alpha}_{crit}$

For an example of the construction of a confidence interval, we will return to the wage equation fitted earlier. We will construct a 95% confidence interval for β_2 .

. reg EARNINGS S							
Source	SS	df	MS		Number of obs F(1, 498)		
Model Residual	6014.04474 64314.9215	1 60	14.04474 9.146429		Prob > F R-squared Adj R-squared	= 0.0000 = 0.0855	
Total	70328.9662				Root MSE	= 11.364	
EARNINGS	Coef.		. t	• •	[95% Conf.	Interval]	
S _cons	1.265712 .7646844	.1854782 2.803765	6.82	0.000 0.785	.9012959	1.630128 6.273351	

$$\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2) \ \hat{\mathbf{w}}_{\text{crit}} \ \hat{\mathbf{p}}_2 \ \hat{\mathbf{p}}_2 + \text{s.e.}(\hat{\beta}_2) \ \hat{\mathbf{w}}_{\text{crit}}$$

$$\frac{1.266 - 0.185 \times 1.965 \le \beta_2 \le \frac{1.266 + 0.185 \times 1.965}{1.266 \times 1.965}$$

The point estimate β_2 is 1.266 and its standard error is 0.185.

. reg EARNINGS S							
Source	SS	df	MS		Number of obs F(1, 498)		
Model Residual	6014.04474 64314.9215	1 6014	.04474 146429		Prob > F R-squared	= 0.0000 = 0.0855	
Total	70328.9662				Adj R-squared Root MSE		
EARNINGS	Coef.				[95% Conf.	Interval]	
S _cons	1.265712 .7646844	.1854782 2.803765	6.82	0.000 0.785	.9012959	1.630128 6.273351	

$$\hat{\beta}_2 - \text{s.e.}(\hat{\beta}_2) \ & c_{crit} \ & \beta_2 \ & \hat{\beta}_2 + \text{s.e.}(\hat{\beta}_2) \ & c_{crit} \ & 1.266 - 0.185 \times 1.965 \le \beta_2 \le 1.266 + 0.185 \times 1.965$$

The critical value of t at the 5% significance level with 498 degrees of freedom is 1.965.

. reg EARNING	SS S					
Source	SS	df	MS		Number of obs =	
Model Residual		1 601	.4.04474		R-squared =	= 0.0000 = 0.0855
Total	70328.9662	499 140			Adj R-squared = Root MSE =	= 0.0837 = 11.364
EARNINGS	Coef.	Std. Err.		, ,	[95% Conf.]	[nterval]
S _cons	1.265712 .7646844	.1854782 2.803765	6.82 0.27	0.000 0.785	.9012959 -4.743982	1.630128 6.273351

$$\hat{\beta}_{2} - \text{s.e.}(\hat{\beta}_{2}) & & & & & & & \\ \hat{\beta}_{2} - \text{s.e.}(\hat{\beta}_{2}) & & & & \\ 1.266 - 0.185 \times 1.965 \le \beta_{2} \le 1.266 + 0.185 \times 1.965 \\ & & & & \\ 0.902 \le \beta_{2} \le 1.630 & & \\ \end{pmatrix}$$

Hence we establish that the confidence interval is from 0.902 to 1.630. Stata actually computes the 95% confidence interval as part of its default output, 0.901 to 1.630. The discrepancy in the lower limit is due to rounding error in the calculations we have made.

Copyright Christopher Dougherty 2016.

These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author.

The content of this slideshow comes from Section 2.6 of C. Dougherty, *Introduction to Econometrics*, fifth edition 2016, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oxfordtextbooks.co.uk/orc/dougherty5e/.

Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course EC2020 Elements of Econometrics www.londoninternational.ac.uk/lse.