Exercises from Dummit and Foote Chapter 14 on Galois Theory

Wesley Basener

June 28, 2025

- **Problem 1.1.** (a) Show that if the field K is generated over F by the elements $\alpha_1, ..., \alpha_n$ then an automorphism σ of K fixing F is uniquely determined by $\sigma(\alpha_1), ..., \sigma(\alpha_n)$. In particular show that an automorphism fixes K if and only if it fixes a set of generators for K.
- (b) Let $G \leq \operatorname{Gal}(K/F)$ be a subgroup of the Galois group of the extension K/F and suppose $\sigma_1, ..., \sigma_k$ are generators for G. Show that the subfield E/F is fixed by G if and only if it is fixed by the generators $\sigma_1, ..., \sigma_k$.

Proof. (a) Let σ be any automorphism on K fixing F. Then, for any $k = a_0 + a_1\alpha_1 + ... + a_n\alpha_n$ in K, $\sigma(k) = \sigma(a_0) + \sigma(a_1)\sigma(\alpha_1) + ... + \sigma(a_n)\sigma(\alpha_n)$. Using the fact that σ fixes F, we have $\sigma(k) = a_0 + a_1\sigma(\alpha_1) + ... + a_n\sigma(\alpha_n)$. Hence the image of any $k \in K$ on σ is uniquely determined by $\sigma(\alpha_1), ..., \sigma(\alpha_n)$. From this, it is obvious that σ fixes K if it fixes the generators for K.

(b). Denote the generators of E over F by $\alpha_1, ..., \alpha_m$. Suppose G fixes E/F. From part (a), this is true if and only if $\sigma_i(\alpha_j) = \alpha_j$ for all $i \in [1, k], j \in [1, m]$. Hence, any element of a E/F is fixed by any element of G.

Problem 1.3. Determine the fixed field of complex conjugation on \mathbb{C} .

Proof. Complex conjugation is the function $\sigma: a+bi \mapsto a-bi$, which obviously fixes a. Hence, the fixed field of complex conjugation is \mathbb{R} the real numbers.

Problem 1.5. Determine the automorphisms of the extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ explicitly.

Proof. There is only one basis element to this extension, namely $\sqrt[4]{2}$. Since $-\sqrt[4]{2} \neq \sqrt[4]{2}$, the automorphism $\sigma: a+b\sqrt[4]{2} \mapsto a-b\sqrt[4]{2}$ is not the identity. Hence, the automorphisms of this extension are $\{1,\sigma\}$.

Problem 1.7. This problem determines $Aut(\mathbb{R}/\mathbb{Q})$.

- (a) Prove that any $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ takes squares to squares and takes positive reals to positive reals. Conclude that a < b implies $\sigma a < \sigma b$ for every $a, b \in \mathbb{R}$ Conclude that a < b implies $\sigma a < \sigma b$ for every $a, b \in \mathbb{R}$.
- (b) Prove that $-\frac{1}{m} < a b < \frac{1}{m}$ implies $-\frac{1}{m} < \sigma a \sigma b < \frac{1}{m}$ for every positive integer m. Conclude that σ is a continuous map on \mathbb{R} .
- (c) Prove that any continuous map on \mathbb{R} which is the identity on \mathbb{Q} is the identity map, hence $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = 1$.

Proof. (a) Let σ be an automorphism on \mathbb{R}/\mathbb{Q} . Suppose x is a real square. Then, $x = p^2$ for real number p. Hence, we have $\sigma(x) = \sigma(p^2) = \sigma(p)\sigma(p)$. Thus, σ sends squares to squares.

Let y be any positive real number. Since y is positive, \sqrt{y} is real. From the first part of this proof, we know that $\sigma(y) = \sigma(\sqrt{y}\sqrt{y}) = q^2$ for some real number q. Since we are limited to the real numbers, q^2 is positive. Hence, $\sigma(y)$ is positive.

For any $a, b \in \mathbb{R}$, a < b implies 0 < b - a. Hence, from the prior paragraph, $0 < \sigma(b) - \sigma(a)$. Adding $\sigma(a)$ to both sides yields $\sigma(a) < \sigma(b)$. Note that setting b = 0 proves that σ sends negatives to negatives.

(b). Suppose a,b are real numbers such that $-\frac{1}{m} < a-b < \frac{1}{m}$ for some positive integer m. Since m is an integer, it can be rewritten as $\sum_{i=0}^{m} 1$. Hence, $\sigma(m) = \sum_{i=0}^{m} \sigma(1) = \sum_{i=0}^{m} 1 = m$.

We can rewrite the above inequality as -1 < m(a-b) < 1. Which is the same as having m(a-b)-1 is negative and m(a-b)+1 is positive. From part (a), we know σ sends positives to positives and negatives to negatives. Hence, $\sigma(m(a-b)-1)=m(\sigma(a)-\sigma(b))-1$ is negative and $\sigma(m(a-b)-1)=m(\sigma(a)-\sigma(b))+1$ is positive. Which of course implies $-\frac{1}{m}<\sigma(a)-\sigma(b)<\frac{1}{m}$ To show that σ is continuous, let x be any real number and let $\epsilon>0$. We can find a natural number N

To show that σ is continuous, let x be any real number and let $\epsilon > 0$. We can find a natural number N such that $\frac{1}{N} < \epsilon$. Then, for any x_0 such that $|x - x_0| < \frac{1}{N}$, we have $|\sigma(x) - \sigma(x_0)| < \frac{1}{N} < \epsilon$. Hence, σ is continuous.

(c). Suppose $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ fixes \mathbb{Q} . Let x be any real number. Then by the density of the rationals in \mathbb{R} , for any $\epsilon > 0$, there exists some $q \in \mathbb{Q}$ such that $|x - q| < \epsilon$ Hence, $|\sigma(x - q)| = |\sigma(x) - q| < \epsilon$ which is only possible if $\sigma(x) = x$. Thus, any such σ mus be the identity function. Therefore, $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = 1$.

Problem 1.9. Determine the fixed field of the automorphism $t \mapsto t+1$ of k(t).

Proof. Any element of k(t) will have the form $\frac{\sum a_i t^i}{\sum b_i t^i}$ with $\gcd(\sum a_i x^i, \sum b_i x^i) = 1$. Suppose we have an element such that $\frac{\sum a_i (t+1)^i}{\sum b_i (t+1)^i} = \frac{\sum a_i t^i}{\sum b_i t^i}$. Then, $\frac{\sum a_i (t+1)^i}{\sum b_i (t+1)^i} - \frac{\sum a_i t^i}{\sum b_i t^i} = 0$ and since both fractions remain irreducible, we would have $\sum b_i (t+1)^i = \sum b_i t^i$. Thus, we would also have $\sum a_i (t+1)^i = \sum a_i (t)^i$. Hence, the fixed field of k(t) is precisely the set of rational functions whose numerators and denominators are both fixed by the automorphism.