# <u>VLM2Scene: Self-Supervised Image-Text-LiDAR Learning with Foundation Models for Autonomous Driving Scene Understanding</u>

Guibiao Liao, Jiankun Li, Xiaoqing Ye

# Problem/Objective

Self-supervised 3D representation for Scene understanding

# Contribution/Key Idea

- 3D에서의 Vision / Language foundation models(VLMs)을 동시 사용
- Challenge of LiDAR(sparse&noise)의 극복 가능성을 보여줌 by Image-text

# Scene Understanding

- Image understanding(ex. CLIP)의 3D 버전
  - Semantic 정보를 이용한
    - 3D Object detection
    - 3D semantic segmentation
    - etc
  - 주되게는 LiDAR only / LiDAR + Camera
    - LiDAR의 noise, sparse → Challenge





#### Introduction

- This Paper overcome the limitation of
  - Cost of 3D annotation
  - Difficulty of transferring 2D to 3D
  - VLMs that are only used for 2D
  - Potential noise and sparse of points
  - Lack of realistic and detailed description



#### Introduction

- This Paper overcome the limitation of
  - Cost of 3D annotation
    - → Self-supervised method
  - Difficulty of transferring 2D to 3D
  - VLMs that are only used for 2D
     → VLMs(CLIP, BLIP-2, SAM) 정보를
    - 통합하여 3D에 적용
  - Potential noise and sparse of points
    - → Semantic-Filter Region(SFR) 도입
  - Lack of realistic and detailed description
    - → Region Caption Prompts(RCP) 도입



#### Method - VLM2Scene



- Region Caption Prompts(RCP)
  - 이미지 내의 각 영역의 구체적인 텍스트 설명을 생성(위치, 관계, 색상 속성 등)
- Region Semantic Assignment(RSA)
  - 이미지, 포인트 내의 영역에 가장 적합한 카테고리를 할당
- Semantic-Filtered Region Contrastive Loss(SFR)
  - Contrastive learning을 통한 false positive 필터링



- Region Caption Prompts(RCP)
  - 이미지 내의 각 영역의 구체적인 텍스트 설명을 생성 (위치, 관계, 색상 속성 등)
- Region Semantic Assignment(RSA)
  - 이미지, 포인트 내의 영역에 가장 적합한 카테고리를 힐 당
- Semantic-Filtered Region Contrastive Loss(SFR)
  - Contrastive learning을 통한 false positive 샘플 필터링

원본 이미지가 아닌 SAM을 통과한 이미지를 사용하여 general이 아닌 specific semantic 정보에 대한 prompts를 추출하도록 Pretrain



- Lack of realistic and detailed description
  - -> Region Caption Prompts(RCP) 도입 김범준

- Region Caption Prompts(RCP)
  - 이미지 내의 각 영역의`구체적인 텍스트 설명을 생성 (위치, 관계, 색상 속성 등)
- Region Semantic Assignment(RSA)
  - 이미지, 포인트 내의 영역에 가장 석합한 카테고리를 할당
- Semantic-Filtered Region Contrastive Loss(SFR)
  - Contrastive learning을 통한 false positive 샘플 필트
- → SAM 마스크 내부 픽셀 중 가장 많은 class를 채택
- → SAM 마스크와 point를 align 하여 가장 많은 class를 채택



CLIP: Lack of precise edges by pixel-level vs

RSA: Semantic consistency by region-level

- Region Caption Prompts(RCP)
  - o 이미지 내의 각 영역의 구체적인 텍스트 설명을 생성 (위치, 관계, 색상 속성 등)
- Region Semantic Assignment(RSA)
   이미지 내의 영역에 가장 적합한 카테고리를 할당
- Semantic-Filtered Region Contrastive Loss(SFR)
  - Contrastive learning을 통한 false positive 샘플 필터 링



SAM

$$\mathcal{L}_{sfr}(\mathbf{P}, \mathbf{Q}) = -\frac{1}{M} \sum_{i=0}^{M} \log \left[ \frac{e^{((\mathbf{p}_{i} \cdot \mathbf{q}_{i})/\tau)}}{\sum_{j \neq i} \mathbf{T}_{ij} \cdot e^{((\mathbf{p}_{i} \cdot \mathbf{q}_{j})/\tau)} + e^{((\mathbf{p}_{i} \cdot \mathbf{q}_{i})/\tau)}} \right].$$
(2)

Cosine similarity  $\epsilon > \Phi(t_i,x_i) - \Phi(t_i,x_j)$ 

#### Method - VLM2Scene



## Experiments

| Method                            | Reference |       | KITTI |       |       |       |       |       |
|-----------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|
| Method                            | Reference | LP    | 1%    | 5%    | 10%   | 25%   | 100%  | 1%    |
| Random                            | N/A       | 8.10  | 30.30 | 47.84 | 56.15 | 65.48 | 74.20 | 39.50 |
| PointContrast (Xie et al. 2020)   | ECCV20    | 21.90 | 32.50 | -     | -     | -     | -     | 41.10 |
| DepthContrast (Zhang et al. 2021) | ICCV21    | 22.10 | 31.70 | -     | -     | -     | -     | 41.50 |
| PPKT (Liu et al. 2021)            | arXiv21   | 35.90 | 37.80 | 53.74 | 60.25 | 67.14 | 74.52 | 44.00 |
| SLidR (Sautier et al. 2022)       | CVPR22    | 38.80 | 38.30 | 52.49 | 59.84 | 66.91 | 74.79 | 44.60 |
| CLIP2Scene (Chen et al. 2023)     | CVPR23    | -     | 33.05 | 52.18 | 59.87 | 66.87 | 74.63 | 43.10 |
| ST-SLidR (Mahmoud et al. 2023)    | CVPR23    | 40.48 | 40.75 | 54.69 | 60.75 | 67.70 | 75.14 | 44.72 |
| VLM2Scene (Ours)                  |           | 51.54 | 47.59 | 58.08 | 63.08 | 68.39 | 75.42 | 47.37 |

Table 1: Performance comparison with other methods pre-trained on nuScenes and fine-tuned on nuScenes, and SemanticKITTI. LP indicates linear probing with frozen backbones. We report the mIoU scores for evaluation.

## Experiments

| Method        | mIoU | barrier | bicycle | pns  | car  | const. veh. | motorcycle | pedestrian | traffic cone | trailer | truck | drive. surf. | other flat | sidewalk | terrain | manmade | vegetation |
|---------------|------|---------|---------|------|------|-------------|------------|------------|--------------|---------|-------|--------------|------------|----------|---------|---------|------------|
| Random        | 30.3 | 0.0     | 0.0     | 8.1  | 65.0 | 0.1         | 6.6        | 21.0       | 9.0          | 9.3     | 25.8  | 89.5         | 14.8       | 41.7     | 48.7    | 72.4    | 73.3       |
| PointContrast | 32.5 | 0.0     | 1.0     | 5.6  | 67.4 | 0.0         | 3.3        | 31.6       | 5.6          | 12.1    | 30.8  | 91.7         | 21.9       | 48.4     | 50.8    | 75.0    | 74.6       |
| DepthContrast | 31.7 | 0.0     | 0.6     | 6.5  | 64.7 | 0.2         | 5.1        | 29.0       | 9.5          | 12.1    | 29.9  | 90.3         | 17.8       | 44.4     | 49.5    | 73.5    | 74.0       |
| PPKT          | 37.8 | 0.0     | 2.2     | 20.7 | 75.4 | 1.2         | 13.2       | 45.6       | 8.5          | 17.5    | 38.4  | 92.5         | 19.2       | 52.3     | 56.8    | 80.1    | 80.9       |
| SLidR         | 38.3 | 0.0     | 1.8     | 15.4 | 73.1 | 1.9         | 19.9       | 47.2       | 17.1         | 14.5    | 34.5  | 92.0         | 27.1       | 53.6     | 61.0    | 79.8    | 82.3       |
| CLIP2Scene    | 33.1 | 0.0     | 1.9     | 10.4 | 70.2 | 1.5         | 9.1        | 41.3       | 0.0          | 20.0    | 28.3  | 87.8         | 15.6       | 37.1     | 52.7    | 74.8    | 77.6       |
| ST-SLidR      | 40.8 | 0.0     | 2.7     | 16.0 | 74.5 | 3.2         | 25.4       | 50.9       | 20.0         | 17.7    | 40.2  | 92.0         | 30.7       | 54.2     | 61.1    | 80.5    | 82.9       |
| Ours          | 47.6 | 0.0     | 7.3     | 49.0 | 77.7 | 17.1        | 30.3       | 53.2       | 40.7         | 20.2    | 51.9  | 92.5         | 36.2       | 57.6     | 62.3    | 82.2    | 83.0       |

Table 2: Per-class 3D semantic segmentation IoU performance on the nuScenes vaild set when fine-tuning with 1 % labels.



nuScenes

## Experiments

| Methods  | C        | Componen     | nuScenes     |      |      |  |
|----------|----------|--------------|--------------|------|------|--|
|          | RCP      | SFR          | RSA          | 1%   | 5%   |  |
| Baseline |          |              |              | 38.8 | 51.6 |  |
|          | <b>√</b> |              |              | 43.4 | 54.6 |  |
| Ours     |          | $\checkmark$ |              | 43.8 | 55.0 |  |
|          |          |              | $\checkmark$ | 42.1 | 53.6 |  |
|          | ✓        | $\checkmark$ |              | 46.5 | 56.9 |  |
|          |          | $\checkmark$ | $\checkmark$ | 45.4 | 56.3 |  |
|          | ✓        | ✓            | $\checkmark$ | 47.6 | 58.1 |  |

| Strategies | Methods                | nuscenes |             |  |  |
|------------|------------------------|----------|-------------|--|--|
| Strategies | Wiethous               | 1%       | 5%          |  |  |
|            | only template prompts  | 45.4     | 56.3        |  |  |
| RCP        | only RCP               | 46.5     | 57.1        |  |  |
| KCF        | Ours                   | 47.6     | <b>58.1</b> |  |  |
|            | w point-level          | 43.4     | 54.6        |  |  |
| RSC        | w super-pixel          | 44.1     | 55.1        |  |  |
| KSC        | w/o semantic filtering | 45.0     | 55.9        |  |  |
|            | Ours                   | 47.6     | <b>58.1</b> |  |  |

Table 3: Ablation Study of each component.

Table 4: Experimental results for different strategies.