Bayesian Statistics

Chapter 2. Beliefs and Probabilities

Hojin Yang

Department of Statistics Pusan National University

Introduction

- We first discuss what properties a reasonable belief function should have, and show that probabilities have these properties
- We review the basic properties of discrete and continuous random variables and probability distributions
- Finally, we explore the link between independence and exchangeability

2.1. Belief Functions and Probabilities

- Let F, G, and H be three possibly overlapping statements about the world
- For example:

```
F = \{ a person graduates from college\}

G = \{ a person's income is in the highest 10%\}

H = \{ a person lives in a large city\}
```

 Let Be(·) be a belief function: assigns numbers to statements such that the larger the number, the higher the degree of belief

- Some philosophers have tried to relate beliefs to preferences over bets
- Be(F) > Be(G): prefers to bet "F is true" than "G is true"
- We also want Be(·) to describe our beliefs under certain conditions
- Be(F|H) > Be(G|H): prefers to bet that "F is also true" than bet "G is also true" if we knew that "H were true"
- Be(F|G) > Be(F|H): if we were forced to bet on F, we would prefer to do it under the condition that "G is true" rather than "H is true"

Axioms of Beliefs

 Any function that is to numerically represent our beliefs should have the following properties:

- B1. $Be(\text{not } H|H) \leq Be(F|H) \leq Be(H|H)$
- B2. $Be(F \text{ or } G|H) \ge \max\{Be(F|H), Be(G|H)\}$
- B3. Be(F and G|H) can be derived from Be(G|H) and Be(F|G and H)
- How should we interpret these properties? Are they reasonable?

- B1 says that the number we assign to Be(F|H), our conditional belief in F given H, is bounded below and above by the numbers we assign to complete disbelief (Be(not H|H)) and complete belief (Be(H|H))
- B2 says that our belief that the truth lies in a given set of possibilities should not be smaller than any separate possibilities
- B3 says that if we have to decide whether or not F and G
 are true, knowing that H is true, we could do this by first
 deciding whether or not G is true given H, and if so, then
 deciding whether or not F is true given G and H

Axioms of Probability

- Now let's compare B1, B2 and B3 to the standard axioms of probability
- Suppose F ∪ G means F or G, F ∩ G means F and G an Ø is the empty set
- A function, P(·) satisfying P1, P2 and P3, also satisfies B1, B2 and B3

P1.
$$0 = P(\text{not } H|H) \le P(F|H) \le P(H|H) = 1$$

P2. $P(F \cup G|H) = P(F|H) + P(G|H)$ if $F \cap G = \emptyset$
P3. $P(F \cap G|H) = P(G|H)P(F|G \cap H)$

 Therefore, if we use a probability function to describe our beliefs, we have satisfied the axioms of belief

2.2. Events, Partitions and Bayes' Rule

Definition: Partition

A collection of sets $\{H_1, \ldots, H_K\}$ is a partition of the set \mathcal{H} if

- 1. the events are disjoint, which we write as $H_i \cap H_j = \emptyset \ \forall i \neq j$
- 2. the union of the sets is \mathcal{H} , *i.e.*, $\cup_{j=1}^K H_j = \mathcal{H}$
 - Examples
 - Let ${\mathcal H}$ be someone's religious orientation. Partitions include
 - {Protestant, Catholic, Jewish, other, none }
 - {Christian, non-Christian }
 - Let \mathcal{H} be someone's number of children. Partitions include
 - { 0, 1, 2, 3 or more }
 - $-\ \{\ 0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ \dots\}$

- Suppose $\{H_1, \ldots, H_K\}$ is a partition of \mathcal{H} , $P(\mathcal{H}) = 1$, and E is some specific event
- The axioms of probability imply the following:
- Rule of total probability

$$\sum_{k=1}^K P(H_k) = 1$$

Rule of marginal probability

$$P(E) = \sum_{k=1}^{K} P(E \cap H_k) = \sum_{k=1}^{K} P(E|H_k)P(H_k)$$

· Bayes' rule

$$P(H_j|E) = \frac{P(E|H_j)P(H_j)}{P(E)}$$
$$= \frac{P(E|H_j)P(H_j)}{\sum_{j=1}^{K} P(E|H_j)P(H_j)}$$

- We consider data on the education level and income for a sample of males over 30 years of age
 - Let {H₁, H₂, H₃, H₄} be the lower 25th percentile, the second 25th percentile, the third 25th percentile and the upper 25th percentile in terms of income
 - So, $\{P(H_1), P(H_2), P(H_3), P(H_4)\} = \{0.25, 0.25, 0.25, 0.25\}$
 - {H₁, H₂, H₃, H₄} is a partition and so these probabilities sum to 1

- Let E be the event that a randomly sampled person from the survey has a college education
- From the survey data

$$\{P(E|H_1), P(E|H_2), P(E|H_3), P(E|H_4)\} = \{.11, .19, .31, .53\}$$

- These probabilities do not sum to 1, because they represent the proportions of people with college degrees in the four different income subpopulations H₁, H₂, H₃ and H₄
- Income distribution of the college-educated population:

$${P(H_1|E), P(H_2|E), P(H_3|E), P(H_4|E)} = {.09, .17, .27, .47}$$

• This distribution differs from $P(H_j) = 0.25$ and these probabilities do sum to 1

- In Bayesian inference {H₁, H₂, H₃, H₄} often refer to disjoint hypotheses or states of nature and E refers to the outcome of a study
- To compare hypotheses post-experimentally, we often calculate the following ratio

$$\begin{split} \frac{P(H_i|E)}{P(H_j|E)} &= \frac{P(E|H_i)P(H_i)/P(E)}{P(E|H_j)P(H_j)/P(E)} \\ &= \frac{P(E|H_i)P(H_i)}{P(E|H_j)P(H_j)} \\ &= \frac{P(E|H_i)}{P(E|H_j)} \times \frac{P(H_i)}{P(H_j)} \\ &= \text{``Bayes factor''} \times \text{``prior beliefs''} \end{split}$$

 Bayes' rule tells us how our beliefs should change after seeing the data

Independence

Definition: Independence

Two events F and G are conditionally independent given H if

$$P(F \cap G|H) = P(F|H)P(G|H)$$

- How do we interpret conditional independence?
- By Axiom P3, $P(F \cap G|H) = P(G|H)P(F|H \cap G)$
- If F and G are conditionally independent given H, then

$$P(G|H)P(F|H \cap G) \stackrel{\text{always}}{=} P(F \cap G|H) \stackrel{\text{indep}}{=} P(F|H)P(G|H)$$

$$P(G|H)P(F|H \cap G) = P(F|H)P(G|H)$$

$$P(F|H \cap G) = P(F|H)$$

- Conditional independence therefore implies that $P(F|H \cap G) = P(F|H)$
- If we know H is true and F and G are conditionally independent given H, then knowing G does not change our belief about F

Random Variables

- Let Y be a random variable
- Let y be the set of all possible values of Y
- Y is discrete if the set of possible outcomes is countable, meaning that Y can be expressed as $\mathcal{Y} = \{y_1, y_2, \dots\}$
- The event that the outcome Y of our survey has the value y is expressed as {Y = y}
- For each $y \in \mathcal{Y}$, P(Y = y) will be p(y) and this function of y is called the probability density function of Y
 - 1. $0 \le p(y) \le 1$ for all $y \in \mathcal{Y}$
 - $2. \sum_{y \in \mathcal{Y}} p(y) = 1$
- In general, $P(Y \in A) = \sum_{y \in A} p(y)$

- Let \mathcal{Y} be R the set of all real numbers
- Probability distributions for Y define a cumulative distribution

$$F(y) = P(Y \leq y)$$

- Note that $F(\infty) = 1$, $F(-\infty) = 0$, and $F(b) \le F(a)$ if b < a
 - 1. P(Y > a) = 1 F(a)
 - 2. $P(a < Y \le b) = F(b) F(a)$
- If F is continuous, we say that Y is a continuous random variable

 For every continuous cdf F, there exists a positive function p(y) such that

$$F(a) = \int_{-\infty}^{a} p(y) dy$$

- p(y) is called the probability density function of Y
 - 1. $0 \le p(y)$ for all $y \in \mathcal{Y}$
 - $2. \int_{y \in R} p(y) dy = 1$
- In general, $P(Y \in A) = \int_{y \in A} p(y) dy$
- Unlike the discrete case, p(y) is not the probability Y = y
- However, if $p(y_1) > p(y_2)$, we will informally say that y_1 has a higher probability than y_2

Descriptions of Distributions

The mean or expectation of an unknown quantity Y

$$E[Y] = \sum_{y \in \mathcal{Y}} yp(y)$$
 if Y is discrete $E[Y] = \int_{y \in \mathcal{Y}} yp(y)dy$ if Y is continuous

 This is the center of mass of the distribution but it is not in general equal to either of

mode: the most probable value of Y

median: the value of Y in the middle of the distribution

Measure of spread is the variance of a distribution

$$Var[Y] = E[(Y - E(Y))^{2}]$$

= $E[Y^{2}] - E[Y]^{2}$

- Standard deviation is the square root of Var[Y]
- Alternative measures of spread are based on quantiles
- The α -quantile is the value y_{α} such that

$$F(y_{\alpha}) = P(Y \leq y_{\alpha}) = \alpha$$

- The interquartile range is the interval $(y_{0.25}, y_{0.75})$
- This range contains 50% of the mass of the distribution
- Similarly, the interval $(y_{0.025}, y_{0.975})$ contains 95% of the mass of the distribution

Joint Distributions

Let

 \mathcal{Y}_1 , \mathcal{Y}_2 be two countable sample spaces Y_1 , Y_2 be two random variables, taking values in \mathcal{Y}_1 , \mathcal{Y}_2 respectively.

• The joint pdf or joint density of Y_1 and Y_2 is defined as

$$p_{Y_1,Y_2}(y_1,y_2) = P(\{Y_1 = y_1\} \cap \{Y_2 = y_2\}), \ \forall y_1 \in \mathcal{Y}_1, y_2 \in \mathcal{Y}_2$$

Marginal density of Y₁ can be from the joint density

$$p_{Y_1}(y_1) = P(Y_1 = y_1) = \sum_{y_2 \in \mathcal{Y}_2} p_{Y_1, Y_2}(y_1, y_2)$$

• Conditional density of Y_2 given $\{Y_1 = y_1\}$ can be as

$$\rho_{Y_2|Y_1}(y_2) = \frac{\rho_{Y_1,Y_2}(y_1,y_2)}{\rho_{Y_1}(y_1)}$$

- We should convince that
 - $\{p_{Y_1}, p_{Y_2|Y_1}\}$ can be derived from p_{Y_1, Y_2}
 - $\{p_{Y_2}, p_{Y_1|Y_2}\}$ can be derived from p_{Y_1, Y_2}
 - p_{Y_1,Y_2} can be derived from $\{p_{Y_1},p_{Y_2|Y_1}\}$
 - p_{Y_1,Y_2} can be derived from $\{p_{Y_2},p_{Y_1|Y_2}\}$
 - but p_{Y_1,Y_2} cannot be derived from $\{p_{Y_1},p_{Y_2}\}$
- The subscripts of density functions are often dropped, in which p(y₁) refers to p_{Y1}, p(y₁, y₂) refers to p_{Y1,Y2}(y₁, y₂), p(y₁|y₂) refers to p_{Y1|Y2}(y₁|y₂), etc

• If Y_1 and Y_2 are continuous, a cdf is given by

$$F_{Y_1,Y_2}(a,b) = P(\{Y_1 \le a\} \cap \{Y_2 \le b\})$$

• There is a function p_{Y_1,Y_2} such that

$$F_{Y_1,Y_2}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} p_{Y_1,Y_2}(y_1,y_2) dy_1 dy_2$$

- The function p_{Y_1,Y_2} is the joint density of Y_1 and Y_2
 - $p_{Y_1}(y_1) = \int_{\infty}^{\infty} p_{Y_1,Y_2}(y_1,y_2) dy_2$
 - $p_{Y_2|Y_1}(y_2) = p_{Y_1,Y_2}(y_1,y_2)/p_{Y_1}(y_1)$
- Mixed continuous and discrete variables are also possible

Bayes' Rule and Parameter Estimation

- Let
- θ : parameter or a certain characteristic of the population Y: data from population who has the characteristic
- We might treat θ as continuous and Y as discrete
- Estimation of θ derives from the calculation of $p(\theta|y)$
- y is the observed value of Y
- This calculation first requires that we have a joint density p(θ, y) representing our beliefs about θ and the survey outcome Y

- It is natural to construct this joint density from
 - $p(\theta)$ beliefs about θ
 - $p(y|\theta)$ beliefs about Y for each value of θ
- Having observed { Y = y}, we need to compute our updated beliefs about θ

$$p(\theta|y) = p(\theta, y)/p(y) = p(\theta)p(y|\theta)/p(y)$$

• Posterior density of θ_a relative to θ_b , conditional on Y = y

$$\frac{p(\theta_a|y)}{p(\theta_b|y)} = \frac{p(\theta_a)p(y|\theta_a)/p(y)}{p(\theta_b)p(y|\theta_b)/p(y)} = \frac{P(\theta_a)p(y|\theta_a)}{p(\theta_b)p(y|\theta_b)}$$

• This means that we do not need to compute p(y) in the relative posterior probabilities

• Another way to think about it is that, as a function of θ

$$p(\theta|y) \propto p(\theta)p(y|\theta)$$

• The constant of proportionality is 1/p(y), which could be computed from

$$p(y) = \int_{\Theta} p(y, \theta) d\theta = \int_{\Theta} p(y|\theta) p(\theta) d\theta$$

Hence

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\theta)p(\theta)d\theta}$$

The numerator is the critical part

2.6. Independent Random Variables

- Y_1, \ldots, Y_n : r.v.s and θ : a parameter describing the population
- We say that Y_1, \ldots, Y_n are conditionally independent given θ if for every collection of n set $\{A_1, \ldots, A_n\}$

$$P(Y_1 \in A_1, \dots, Y_n \in A_n | \theta) = P(Y_1 \in A_1 | \theta) \times \dots \times P(Y_n \in A_n | \theta)$$

From our previous calculations, if independence holds,

$$P(Y_i \in A_i | \theta, Y_j \in A_j) = P(Y_i \in A_i | \theta)$$

• Conditional independence can be interpreted as meaning that Y_j gives no additional information about Y_i beyond that in knowing θ

Under independence, the joint density is given by

$$P(y_1,\ldots,y_n|\theta)=P(y_1|\theta)\times\cdots\times P(y_n|\theta)=\prod_{i=1}^n P(y_i|\theta)$$

• For such a case, we say that Y_1, \ldots, Y_n are conditionally independent and identically distributed (i.i.d.) denoted by

$$Y_1, \ldots, Y_n | \theta \sim p(y | \theta)$$

2.7. Exchangeability

Definition: Exchangeability

Let $p(y_1, ..., y_n)$ be the joint density of $Y_1, ..., Y_n$. If $p(y_1, ..., y_n) = p(y_{\pi_1}, ..., y_{\pi_n})$ for all permutations π of $\{1, ..., n\}$, then $Y_1, ..., Y_n$ are exchangeable.

- Roughly speaking, Y₁,..., Y_n are exchangeable if the subscript labels convey no information about the outcomes.
- Independence versus dependence
 - $P(Y_{10} = 1) = a$
 - $P(Y_{10} = 1 | Y_1 = Y_2 = \cdots = Y_9) = b$
 - Should we have a < b, a = b, or a > b?
 - If $a \neq b$ then Y_{10} is NOT independent of Y_1, \ldots, Y_9

Claim

If $\theta \sim p(\theta)$ and Y_1, \ldots, Y_n are conditionally i.i.d. given θ , then marginally (unconditionally on θ), Y_1, \ldots, Y_n are exchangeable.

Proof

If Y_1, \ldots, Y_n are conditionally i.i.d. given θ . Then for any permutation π of $\{1, \ldots, n\}$ and any set of values $(y_1, \ldots, y_n) \in \mathcal{Y}^n$

$$p(y_1,\ldots,y_n) = \int p(y_1,\ldots,y_n|\theta)p(\theta)d\theta$$
 marginal probability
$$= \int \left\{ \prod_{i=1}^n P(y_i|\theta) \right\} p(\theta)d\theta$$
 conditionally i.i.d
$$= \int \left\{ \prod_{i=1}^n P(y_{\pi_i}|\theta) \right\} p(\theta)d\theta$$
 product not depend on order
$$= p(y_{\pi_1},\ldots,y_{\pi_n})$$
 marginal probability

29/31

2.8. de Finetti's Theorem

We have seen that

$$\left. egin{aligned} Y_1, \dots, Y_n | \theta & \text{i.i.d.} \\ \theta \sim p(\theta) \end{aligned} \right\} \Rightarrow Y_1, \dots, Y_n \text{ are exchangeable}$$

• What about an arrow in the other direction?

Theorem: (de Finetti)

Let $y_i \in \mathcal{Y}$ for all $i \in \{1, 2, ...\}$. Suppose that, for any n, our belief model for $Y_1, ..., Y_n$ is exchangeable:

$$p(y_1,\ldots,y_n)=p(y_{\pi_1},\ldots,y_{\pi_n})$$

for all permutations π . Then our model can be written as

$$p(y_1,\ldots,y_n) = \int \left\{ \prod_{i=1}^n P(y_i|\theta) \right\} p(\theta) d\theta$$

for some parameter θ , $p(y|\theta)$, $p(\theta)$

 The main ideas of this and the previous section can be summarized as follows

$$\left. \begin{array}{l} Y_1, \ldots, Y_n | \theta \text{ i.i.d.} \\ \theta \sim p(\theta) \end{array} \right\} \Leftrightarrow Y_1, \ldots, Y_n \text{ are exchangeable for all } n$$

- For this condition to hold, we must have exchangeability and repeatability
- Exchangeability will hold if the labels convey no info
- Repeatability is reasonable, including the following
 - Y_1, \ldots, Y_n are outcomes of a repeatable experiment
 - Y_1, \ldots, Y_n are sampled from a finite population with replacement
 - Y_1, \ldots, Y_n are sampled from an infinite population without replacement