ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина:

«Вычислительная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

«Аппроксимация функции методов наименьших квадратов»

Вариант 11

Выполнил:

Студент гр. Р32151 Черных Роман Александрович

Проверил:

Машина Екатерина Алексеевна

Санкт-Петербург 2023г.

Цель работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Задание:

1. Методика проведения исследования:

- a. Вычислить меру отклонения: $-S = \sum_{i=1}^n [\varphi(x_i) y_i]^2$ для всех исследуемых функций.
- b. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S.
- c. Сформировать массивы предполагаемых эмпирических зависимостей $(\phi(x_i)\varepsilon)$.
- d. Определить среднеквадратическое отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение.
- е. Построить графики полученных эмпирических функций.

Программная реализация задачи:

а. Предусмотреть ввод исходных данных из файла/консоли (таблица y=f(x) должна

содержать 10–12 точек)

- b. Реализовать метод наименьших квадратов, исследуя все функции п.1.
- с. Предусмотреть вывод результатов в файл/консоль.
- d. Для линейной зависимости вычислить коэффициент корреляции Пирсона.
- е. Программа должна отображать наилучшую аппроксимирующую функцию.
- f. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом).

Вычислительная реализация задачи:

- *а)* Для заданной функции (см. таблицу 1) построить наилучшие линейное и квадратичное приближения по 11 точкам указанного интервала.
- *b)* Найти среднеквадратические отклонения. Ответы дать с тремя знаками после запятой.
- *c)* Построить графики линейного и квадратичного приближений и заданной функции.
- *d)* Привести в отчете подробные вычисления.

Рабочие формулы используемых методов:

Параметры $a_0, a_1, a_2, ... a_m$ эмпирической формулы находятся из условия минимума функции $S = S(a_0, a_1, a_2, ... a_m)$. Так как здесь параметры выступают в роли независимых переменных функции S, то ее минимум найдем, приравнивая к нулю частные производные по этим переменным.

$$\frac{\partial S}{\partial a_0} = 2 \sum_{i=1}^n a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i = 0$$

$$\frac{\partial S}{\partial a_1} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i = 0$$

$$\dots \dots \dots$$

$$\frac{\partial S}{\partial a_m} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i^m = 0$$

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения:

$$\begin{cases} a_0n + a_1 \sum_{i=1}^{n} x_i + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{m-1} + a_m \sum_{i=1}^{n} x_i^m &= \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + \dots + a_{m-1} \sum_{i=1}^{n} x_i^m + a_m \sum_{i=1}^{n} x_i^{m+1} &= \sum_{i=1}^{n} x_i y_i \\ \dots &\dots &\dots \\ a_0 \sum_{i=1}^{n} x_i^m + a_1 \sum_{i=1}^{n} x_i^{m+1} + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{2m-1} + a_m \sum_{i=1}^{n} x_i^{2m} &= \sum_{i=1}^{n} x_i^m y_i \end{cases}$$

В матричном виде:

Вычислительная реализация задачи:

Функция: $y = \frac{5x}{x^4 + 11}$

Составим таблицу с точками и значениями функции в этих точках на промежутке $x \in [-2,0]$ с шагом 0.2:

x_i	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
$f(x_i)$	-0.37	-0.419	-0.456	-0.47	-0.459	-0.42	-0.351	-0.269	-0.181	-0.09	0

	х	x^2	x^3	x^4	У	x*y	x^2*y
1	-2	4	-8	16	-0,37037	0,740741	-1,48148
2	-1,8	3,24	-5,832	10,4976	-0,41865	0,753572	-1,35643
3	-1,6	2,56	-4,096	6,5536	-0,45575	0,729195	-1,16671
4	-1,4	1,96	-2,744	3,8416	-0,47165	0,660306	-0,92443
5	-1,2	1,44	-1,728	2,0736	-0,45894	0,550728	-0,66087
6	-1	1	-1	1	-0,41667	0,416667	-0,41667
7	-0,8	0,64	-0,512	0,4096	-0,35058	0,280466	-0,22437
8	-0,6	0,36	-0,216	0,1296	-0,26955	0,161731	-0,09704
9	-0,4	0,16	-0,064	0,0256	-0,1814	0,072558	-0,02902
10	-0,2	0,04	-0,008	0,0016	-0,0909	0,018179	-0,00364
11	0	0	0	0	0	0	0
Σ							
	-11	15,4	-24,2	40,5328	-3,48445	4,384143	-6,36066

Линейная аппроксимация

$$y(x) = a + bx$$

$$\begin{cases} an + b\sum x_i &= \sum y_i \\ a\sum x_i + b\sum x_i^2 &= \sum x_i y_i \end{cases}$$

$$\Delta = n \cdot \sum x_i^2 - (\sum x_i)^2 = 48.4$$

$$\Delta_a = \sum y_i \cdot \sum x_i^2 - \sum x_i \cdot \sum x_i y_i = -5.435$$

$$a = \frac{\Delta_a}{\Delta} = -0.11229$$

$$\Delta_b = n \cdot \sum x_i y_i - \sum y_i \cdot \sum x_i = 9.896648$$

$$b = \frac{\Delta_b}{\Delta} = 0.204476$$

$$y(x) = -0.11229 + 0.204476x$$

x_i	y_i	$\varphi(x_i)$	$(\varphi(x_i) - y_i)^2$	
-2	-0,37037037	-0,521242	0,022762249	
-1,8	-0,418651384	-0,4803468	0,003806324	
-1,6	-0,455746969	-0,4394516	0,000265539	
-1,4	-0,471647262	-0,3985564	0,005342274	
-1,2	-0,458940154	-0,3576612	0,010257427	
-1	-0,416666667	-0,316766	0,009980143	
-0,8	-0,350581966	-0,2758708	0,005581758	
-0,6	-0,269551466	-0,2349756	0,001195491	
-0,4	-0,181396024	-0,1940804	0,000160893	
-0,2	-0,09089587	-0,1531852	0,003879961	
0	0	-0,11229	0,012609044	
		Σ	0,075841103	

$$\sigma = \sqrt{\frac{\sum (\varphi(x_i) - y_i)^2}{n}} = 0.083034$$

Квадратичная аппроксимация

$$y(x) = a + bx + cx^{2}$$

$$\begin{cases}
an + b\sum x_{i} + c\sum x_{i}^{2} &= \sum x_{i} \\
a\sum x_{i} + b\sum x_{i}^{2} + c\sum x_{i}^{3} &= \sum x_{i}y_{i} \\
a\sum x_{i}^{2} + b\sum x_{i}^{3} + c\sum x_{i}^{4} &= \sum x_{i}y_{i}^{2}
\end{cases}$$

$$\Delta = \begin{vmatrix} n & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix} = 66,44352$$

$$\Delta_{a} = \begin{vmatrix} \sum x_{i} & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i}y_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}y_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix} = 343,8348 \Rightarrow a = \frac{\Delta_{a}}{\Delta} = 5,174843$$

$$\Delta_{b} = \begin{vmatrix} n & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum x_{i}y_{i} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}y_{i}^{2} & \sum x_{i}^{4} \end{vmatrix} = -65,8702 \Rightarrow b = \frac{\Delta_{b}}{\Delta} = -0,99137$$

$$\Delta_{c} = \begin{vmatrix} n & \sum x_{i} & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}y_{i} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}y_{i}^{2} \end{vmatrix} = 17,01728 \Rightarrow c = \frac{\Delta_{c}}{\Delta} = 0,256116$$

x_i	y_i	$\varphi(x_i)$	$(\varphi(x_i) - y_i)^2$	
-2	-0,37037	8,182051	73,14391	
-1,8	-0,41865	7,789128	67,36765	
-1,6	-0,45575	7,416695	61,97534	
-1,4	-0,47165	7,064751	56,7973	
-1,2	-0,45894	6,733296	51,72826	
-1	-0,41667	6,422331	46,77188	
-0,8	-0,35058	6,131855	42,02198	
-0,6	-0,26955	5,861868	37,5943	
-0,4	-0,1814	5,61237	33,56773	
-0,2	-0,0909	5,383362	29,9675	
0	0	5,174843	26,779	
		Σ	527,7149	

$$\sigma = \sqrt{\frac{\sum(\varphi(x_i) - y_i)^2}{n}} = 0,00689$$

Результат выполнения программы:

```
Ведите источник точек.
Файл: 1
Консоль: 2
Готовая функция: 3.
...
Полученные точки: [[4.0, 4.0], [5.0, 1.0], [6.0, 10.0], [7.0, 15.0], [8.0, 20.0], [9.0, 21.0], [10.0, 30.0], [1.0, 1.0], [2.0, 3.0], [3.0, 4.0]]
Коэффициент корреляции Пирсона равен: 0.923
Линейной аппроксимацией получена функция: 3.085х + -6.067, S = 135.886, sigma = 3.685
Квадратичной аппроксимацией получена функция: 0.413х^2 + -1.456х + 3.016, S = 45.798, sigma = 2.14
Кубической аппроксимацией получена функция: -0.008х^3 + 0.548х^2 + -2.077х + 3.715, S = 45.583, sigma = 2.135
Экспоненциальной аппроксимацией получена функция: 0.888e^0.355*x, S = 71.454, sigma = 2.673
Логарифиической аппроксимацией получена функция: 10.94 ln(x) + -5.624, S = 342.124, sigma = 5.849
Степенной апроксимацией получена функция: 0.777х^1.38, S = 246.602, sigma = 4.966
Минимальное среднеквадратичное отклонение: 2.135
Лучшая аппроксимация: кубическая
```


Вывод:

В результате выполнения данной лабораторной работы мной был изучен и реализован на языке Python метод аппроксимации функции — метод наименьших квадратов. К достоинствам метода можно отнести: простые расчеты — необходимо лишь найти коэффициенты; простота функции; разнообразие возможных аппроксимирующих функций. Основным недостатком МНК является чувствительность оценок к резким выбросам, которые встречаются в исходных данных.