<u>Dashboard</u> / My courses / <u>CS102 2024 1</u> / <u>General</u> / <u>Tree (New)</u>

fuesday, 12 March 2024, 10:32 AM finished fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:32 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM min 2 secs fuesday, 12 March 2024, 10:33 AM fuesday, 12 M				
fuesday, 12 March 2024, 10:33 AM min 2 secs 2.00 out of 30.00 (40%)				
min 2 secs 2.00 out of 30.00 (40%) true?				
2.00 out of 30.00 (40 %) true?				
true?				
nay be neither complete binary tree nor full an never be both complete binary tree and finary trees are full binary trees	•	her		~

Question 2				
ncorrect				
Mark 0.00 out of 1.00				
What can be the maximum	height of a binary tree ha	ving n nodes?		
Please note that a tree wit	h only one node will hav	e height of 0.		
○ a. <i>n</i> −1				
\bigcirc b. $nlog(n)$				
lacksquare c. $log(n)$				×
\bigcirc d. $(n-1)log(n)$				
Your answer is incorrect.				
The correct answer is:				
n–1				
Question 3				
Correct				
Mark 1.00 out of 1.00				
Consider a complete graph	G with 4 vertices. The gra	ıph G has spanning	trees.	
○ a. 15				
b. 16				~
O c. 13				
O d. 8				
Your answer is correct.				
The correct answer is:				
16				

Let <i>T</i> be a tree with <i>N</i> nodes, and let <i>C</i> ₀ denote the number of children of a node <i>p</i> of <i>T</i> , then the total number of children of tree <i>T</i> shall be a. N b. N-1 c. N+1 d. <i>N</i> ² e. None of these Your answer is incorrect. The correct answer is: N-1 Outston 5 Correct Mark 1.00 out of 1.00 Given an expression tree <i>T</i> . Which traversal in this <i>T</i> will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	Question 4	
Let <i>T</i> be a tree with <i>N</i> nodes, and let <i>C_p</i> denote the number of children of a node <i>p</i> of <i>T</i> , then the total number of children of tree <i>T</i> shall be a. N b. N-1 c. N+1 c. N+1 d. <i>N</i> ² e. None of these Your answer is incorrect. The correct answer is: N-1 Gueston 5 Correct Mark 100 out of 1:00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	ncorrect	
shall be a. N b. N-1 c. N+1 d. N ² e. None of these Your answer is incorrect. The correct answer is: N-1 Coversion 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	/lark 0.00 out of 1.00	
shall be a. N b. N-1 c. N+1 d. N ² e. None of these Your answer is incorrect. The correct answer is: N-1 Coversion 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these		
shall be a. N b. N-1 c. N+1 d. N ² e. None of these Your answer is incorrect. The correct answer is: N-1 Counts 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	Let T be a tree with N nodes, and let C_p denote the number of children of a node p of T. then the total number of children of a node p of T.	per of children of tree <i>T</i>
 b. N-1 c. N+1 d. N² e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
 b. N-1 c. N+1 d. N² e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
© c. N+1 ○ d. N² ○ e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? ○ a. Preorder Traversal ○ b. Inorder Traversal ○ c. Postorder Traversal ○ d. Level order Traversal ○ e. None of these	O a. N	
d. N³ e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	O b. N-1	
 d. N²² e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	C N+1	×
● e. None of these Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? ■ a. Preorder Traversal ■ b. Inorder Traversal ■ c. Postorder Traversal ■ d. Level order Traversal ■ e. None of these Your answer is correct. The correct answer is:		
Your answer is incorrect. The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	\bigcirc d. N^2	
The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	○ e. None of these	
The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
The correct answer is: N-1 Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these	Your answer is incorrect.	
Question 5 Correct Mark 1.00 out of 1.00 Given an expression tree T, Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these		
Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	N-1	
Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	Duestion 5	
Given an expression tree T. Which traversal in this T will give us the infix expression? a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
 a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	Mark 1.00 out of 1.00	
 a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
 a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	Given an expression tree T. Which traversal in this T will give us the infix expression?	
 b. Inorder Traversal c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
 c. Postorder Traversal d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	a. Preorder Traversal	
 d. Level order Traversal e. None of these Your answer is correct. The correct answer is:	b. Inorder Traversal	~
 d. Level order Traversal e. None of these Your answer is correct. The correct answer is:		
e. None of theseYour answer is correct.The correct answer is:	C. Postorder Traversal	
Your answer is correct. The correct answer is:	○ d. Level order Traversal	
Your answer is correct. The correct answer is:	e None of these	
The correct answer is:		
The correct answer is:		
	Your answer is correct.	
Inorder Traversal		
	The correct answer is:	

Question 6	
ncorrect	
Mark 0.00 out of 1.00	
The preorder traversal of a binary search tree is 15, 10, 12, 11, 20, 18, 16, 19. What is the pos	torder traversal of this tree?
a. 20, 19, 18, 16, 15, 12, 11, 10	
O b. 11, 12, 10, 16, 19, 18, 20, 15	
o. 10, 11, 12, 15, 16, 18, 19, 20	
d. 19, 16, 18, 20, 11, 12, 10, 15	×
○ e. None of these	
Your answer is incorrect.	
The correct answer is:	
11, 12, 10, 16, 19, 18, 20, 15	
ncorrect	
Incorrect	
ncorrect	nodes and all the nodes at the last level
ncorrect Mark 0.00 out of 1.00 A binary tree in which if all its levels except possibly the last, have the maximum number of r	nodes and all the nodes at the last level
A binary tree in which if all its levels except possibly the last, have the maximum number of rappear as far left as possible, is known as	nodes and all the nodes at the last level
Mark 0.00 out of 1.00 A binary tree in which if all its levels except possibly the last, have the maximum number of rappear as far left as possible, is known as Select one:	
A binary tree in which if all its levels except possibly the last, have the maximum number of rappear as far left as possible, is known as Select one: 1. 2-3-4 tree	
appear as far left as possible, is known as Select one: 1. 2-3-4 tree 2. Full binary tree	
A binary tree in which if all its levels except possibly the last, have the maximum number of rappear as far left as possible, is known as Select one: 1. 2-3-4 tree 2. Full binary tree 3. Complete binary tree	

Question 8 Incorrect	
Mark 0.00 out of 1.00	
Consider a binary tree having 12 nodes, what is the minimum depth of the binary tree?	
Note: A binary tree with only root node has depth 0.	
Select one:	
○ 1.2	
◎ 2.4	× Incorrect
O 3. 1	
O 4.3	
Incorrect	
The correct answer is: 3	
Question 9	
ncorrect	
Mark 0.00 out of 1.00	
Consider a binary tree in which every node has a value greater than value of any node in its left su nodes in its right subtree. An inorder traversal of this binary tree shall result in	ubtree but less than value of all
Select one:	
1. a sorted sequence in ascending order	
2. a sorted sequence in descending order	
3. sequence is sorted only of tree is a complete or full binary tree	× Incorrect
 4. sequence is not always sorted 	
Incorrect	

Question 10		
Incorrect		
Mark 0.00 out of 1.00		

Consider a node X in a Binary Tree. Given that X has two children, let Y be Inorder successor of X. Which of the following is true about Y?

Select one:

- 1. Y has left child
- 2. None of these

Incorrect

× Incorrect

- 3. Y has both children
- 4. Y has no left child

Incorrect

The correct answer is: Y has no left child

Question 11

Incorrect

Mark 0.00 out of 1.00

Consider the above binary tree, if the postorder traversal gives a b - c d * + then the label of nodes 1,2,3,4,5,6,7 respectively will be.

Select one:

- 1. +,a,-,b,+,c,*,d
- 2. +,-,*,a,b,c,d
- 3. -,a,b,+,*,c,d
- 4. +,-,a,b,*,c,d,-

Incorrect

The correct answer is: +,-,*,a,b,c,d

Question 12
Correct
Mark 1.00 out of 1.00

Evaluate the following prefix expression. Assume that numbers are of 1 digit size. * - + 4 3 5 / + 2 4 3

Select one:

- 0 1, 1
- 2.4
- 3.8
- 0 4.0

Correct

The correct answer is: 4

Question 13

Incorrect

Mark 0.00 out of 1.00

For the Binary tree shown in figure, the post-order traversal sequence is:

Select one:

- 1. A B D H I E C F G J K
- 2. H D I B E A F C J G K
- O 3. HIDEBFJKGCA
- 4. A B C D E F G H I J K

Incorrect

The correct answer is: H I D E B F J K G C A

Correct

Incorrect

14 0 out of 1.00	
Ocut of 1 00	
7 001 01 1.00	
a postfix expression abcd ^ ^-ghi*-/, which can be the infix expression :	
t one:	
. (a-b^c^d)/(g-h*i)	
. (a-b^c^d/g-h*i)	×
. (b^c^d-a)/(h*i-g)	
. (a-b^d^c)*(g-h/i)	
orrect answer is: (a-b^c^d)/(g-h*i)	
15	
0 out of 1.00	
time needed to solve tower of hanoi puzzle with 6 disks, considering one move t	takes 5 seconds, is
t one:	
. 325 sec.	
320 sec.	
. 320 sec.	✓
3. 320 sec.	~
3. 320 sec.	✓

4, 10:37 AM	Tree (New): Attempt review	
Question 16		
Incorrect		
Mark 0.00 out of 1.00		
Prefix of the following infix expression is: 2	7 – ((((X + 6) * 9) –7) / Y)	
Select one:		
1. / - * + X 8 9 7 Y		× Incorrect
2. Y 7 9 6 X + * - /		
3. / * - + X 6 9 7 Y		
4. None of these		
Incorrect		
The correct answer is: None of these		
The correct answer is, None of these		
Question 17		
Correct		
Mark 1.00 out of 1.00		
The maximum number of nodes in a binar	y tree of height h is:	
Select one:		
1. 2*(h+1)		
○ 2.2^h-1		
3. 2^(h+1)-1		✓ Correct
○ 4. 2^(h-1)-1		
- , ,		
Correct		
The correct answer is: 2^(h+1)-1		

Tree (New): Attempt review Question 18 Incorrect Mark 0.00 out of 1.00 The number of rotations needed to insert the sequence of elements 16, 14, 10, 18, 25 into an empty AVL Tree: Select one: 0 1.0 2.2 3.3 Incorrect 4. 1 Incorrect The correct answer is: 2 Question 19 Correct Mark 1.00 out of 1.00 The postfix form of an expression (A + B)*(C*D - E)*F / G is Select one: 1. AB + CD * E - FG /** Correct ○ 2. / AB + CDE * - * F * G \bigcirc 3. AB + CD * E - F * * G / 4. AB + CD * E − *F * G / Correct The correct answer is: AB + CD \star E - FG $/\star\star$

3/12/24, 10:37 AM Tree (New): Attempt review Question 20 Incorrect Mark 0.00 out of 1.00 The pre-order traversal of a binary search tree is given by 11, 8, 6, 1, 7, 9, 10, 16, 15, 19, 17, 21. Then the post-order traversal of this tree is: Select one: 0 1. 1, 6, 7, 8, 9, 10, 11, 15, 16, 17, 19, 21 Incorrect 2. 7, 1, 6, 8, 9, 10, 21, 17, 19, 15, 16, 11 3. 1, 7, 6, 10, 9, 8, 15, 17, 21, 19, 16, 11 4. 7, 6, 1, 10, 9, 8, 15, 16, 17, 21, 19, 11 Incorrect The correct answer is: 1, 7, 6, 10, 9, 8, 15, 17, 21, 19, 16, 11 Question **21** Incorrect Mark 0.00 out of 1.00 The result evaluating the prefix expression $+ - *73 / 62 ^52$ (assume that numbers are of 1 digit size) is Select one: 0 1.43 2.37 3. -2 4.50 The correct answer is: 43

Question 22
Incorrect
Mark 0.00 out of 1.00

Traversing sequence generated by Depth First Search(DFS) for the given graphs, if starting at node B is:

Select one:

- 1. B A C D G F E
- 2. B G D C A F E
- 3. B A D C G F E
- 4. Cannot be generated

Incorrect

The correct answer is: B A D C G F E

Question 23

Correct

Mark 1.00 out of 1.00

What can be the contents of stack from bottom to top, at one of the time instants while evaluating a postfix expression: 5 8 4 / + 3 2 * - (assume that numbers are of 1 digit size)?

Select one:

- 7, 6
- 7,5
- 5, 0
- 7, 1

The correct answer is: 7, 6

Incorrect

Tree (New): Attempt review Question 24 Incorrect Mark 0.00 out of 1.00 (H) What is the inorder traversal sequence of the above binary tree? Select one: 1. A H B G I C F E D 2. G F E I H D C B A Incorrect O 3. GHFIEABDC 4. A H G I F E B C D Incorrect The correct answer is: G H F I E A B D C Question 25 Correct

Mark 1.00 out of 1.00

What is the maximum height possible of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.

Select one:

- 1. 3
- 2.4
- 3.2
- 4.5

Correct

The correct answer is: 3

Correct

Correct Mark 1.00 out of 1.00	
What is the maximum number of nodes in a binary tree at level I, assume root node is at level 0?	
Select one: ○ 1. 2^I-1	
2. 2^I	✓ Correct
3. None of these	
○ 4. 2^(I-1)	
Correct	
The correct answer is: 2^I	
Question 27	
Correct	
Correct Mark 1.00 out of 1.00	
Correct	
Correct Mark 1.00 out of 1.00	
Correct Mark 1.00 out of 1.00 Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)?	
Correct Mark 1.00 out of 1.00 Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35	
Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34	
Correct Mark 1.00 out of 1.00 Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34 III. 24, 20, 18, 16, 12, 8, 4	
Correct Mark 1.00 out of 1.00 Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34 III. 24, 20, 18, 16, 12, 8, 4 IV. 3, 6, 7, 19, 20, 25, 28 Select one:	✓ Correct
Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34 III. 24, 20, 18, 16, 12, 8, 4 IV. 3, 6, 7, 19, 20, 25, 28 Select one: ① 1. II and III only	✓ Correct
Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34 III. 24, 20, 18, 16, 12, 8, 4 IV. 3, 6, 7, 19, 20, 25, 28 Select one: 1. II and III only 2. I and IV only	✓ Correct
Which of the following is/are correct inorder traversal sequence(s) of any given binary search tree(s)? I. 4, 5, 7, 8, 16, 17, 35 II. 5, 8, 9, 14, 10, 15, 34 III. 24, 20, 18, 16, 12, 8, 4 IV. 3, 6, 7, 19, 20, 25, 28 Select one: 1. Il and III only 2. I and IV only 3. II and IV only	✓ Correct

Abstract Airk 0.00 out of 1.00 Which of the following statements about binary trees is NOT true? Select one: 1. Every non-empty tree has exactly one root node 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children Incorrect The correct answer is: Every node has exactly two children	X Incorrect
Which of the following statements about binary trees is NOT true? Select one: 1. Every non-empty tree has exactly one root node 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children	X Incorrect
Which of the following statements about binary trees is NOT true? Select one: 1. Every non-empty tree has exactly one root node 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children	* Incorrect
Select one: 1. Every non-empty tree has exactly one root node 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children	X Incorrect
 1. Every non-empty tree has exactly one root node 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children 	* Incorrect
 2. Every non-root node has exactly one parent 3. Every node has exactly two children 4. Every node has at most two children 	X Incorrect
 3. Every node has exactly two children 4. Every node has at most two children 	
 4. Every node has at most two children Incorrect	
Incorrect	
The correct answer is: Every node has exactly two children	
uestion 29	
prrect	
ark 1.00 out of 1.00	
Which of the following tree traversal techniques visits root node last?	
Select one:	
1. inorder	
2. level order	
3. postorder	✓ Correct
4. preorder	
Correct	

Tree (New): Attempt review Question 30 Incorrect Mark 0.00 out of 1.00 Which traversals of Tree 1 and Tree 2 respectively, will produce the same sequence of node names? Tree 2 D Tree 1 Select one: 1. Postorder, Inorder 2. Postorder, Postorder Incorrect 3. Inorder, Preorder 4. Preorder, Postorder Incorrect The correct answer is: Postorder, Inorder ■ Trees (New) Jump to... Heap (New) ►