CVPR 2020 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

2022.08.01

논문 리뷰

배성훈

- Research Background:
 - 기존의 연구는 CNN 정확도를 높이기 위해 Depth, Width, Resolution 중 한 가지 방법만을 선택해 성능을 향상
 - 이에 따라 저자는 Convolution Network의 정확성과 효율성을 향상시키는 원칙에 따른 Scale up 방법에 대한 의문
 - <u>Compound Coefficient</u>를 통해 <u>Depth, Width, Resolution을 균형 있게 Scaling</u>해 성능 향상

Method:

- Compound Scaling: Small Grid Search에 의해 결정되는 Width, Depth, Resolution scaling을 위한 **Constant coefficients**(lpha, eta, γ)
- 각 Layer에서 수행하는 연산 F는 고정해 Architecture 설계를 단순화
- 제한된 Resource 환경에서 모델의 정확도는 최대한 높이면서, 연산량은 최대한 줄임

(a) Standard Convolution
$$N = \bigoplus_{i=1...s} F_i^{L_i}(X_{< H_i, W_i, C_i >})$$

$$\max_{d, w, r} Accuracy(\mathcal{N}(d, w, r))$$

$$s.t. \quad \mathcal{N}(d, w, r) = \bigoplus_{i=1...s} \frac{\hat{\mathcal{F}}_i^{d \cdot \hat{L}_i}}{\mathsf{F} \, \mathsf{DS}} (X_{\langle r \cdot \hat{H}_i, r \cdot \hat{W}_i, w \cdot \hat{C}_i \rangle})$$

$$\mathsf{Memory}(\mathcal{N}) \leq \mathsf{target_memory} \quad \mathsf{Memory}(\mathcal{N}) \leq \mathsf{target_flops} \quad \mathsf{Resource}$$

d,w,r 은 Network Depth, Width, Resolution scaling을 위한 coefficients

- Method:
 - **<Compound Scaling 단계>**Step 1. Ø =1로 고정한 상태로, 앞서 정의한 수식에 α , β , γ 을 순차적으로 입력해 최적 값을 구함 Step 2. step 1에서만 진행해 얻어진 α , β , γ 고정하고 Ø를 임의적으로 입력해 비교
 - 제한된 범위에서 $\underline{\phi}$ 를 사용해 $\underline{\alpha}, \underline{\beta}, \underline{\gamma}$ Scaling

Compound Scaling

depth: $d = \alpha^{\phi}$

width: $w = \beta^{\phi}$

resolution: $r = \gamma^{\phi}$

s.t.
$$\alpha\cdot\beta^2\cdot\gamma^2\approx 2$$

$$\alpha\geq 1, \beta\geq 1, \gamma\geq 1$$
 제한 범위

Method:

Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients

w↑Fine grained feature 잘 포착, 학습이 쉬움Higher level feature 포착이 어려움

Method:

Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients

Method:

Scaling Up a Baseline Model with Different Network Width (w), Depth (d), and Resolution (r) Coefficients

Method:

- 3개의 dimension은 <u>독립적이지 않음</u> => w, d, r 각각에 다른 값을 scaling해 균형을 맞출 필요가 있음
- 네트워크가 깊어지고, 해상도가 높아질수록 정확도 향상

Scaling Network Factor vs Compound Scaling

Scaling Network Width for Different Baseline Networks

Method:

- MNasNet와 유사한 Neural Architecture Search 접근 방식을 사용
- Accuracy와 FLOPS를 모두 최적화하는 multi-objective search를 활용

MNasNet Approach

Model accuracy (on ImageNet)와 latency을 모델 목표로 사용해 <u>Best architecture를 찾음</u>

Model Architecture:

ImageNet에서 학습하는 데 사용 Accuracy and Latency 계산

Latency가 특정 지정된 값보다 낮을 때 Accuracy가 최대가 되도록 최적의 아키텍처가 달성될 때까지 반복.

• Method: NAS에서 정확도 및 FLOPS를 모두 챙길 수 있도록 최적화한 EfficientNet

EfficientNet-BO Baseline Network

(Ø 의 값에 따라 EfficientNet-B0, 1, ..., 7로 분류)

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Method:

• Squeeze-and-excitation optimization (SE) 추가

*Excitation: 압축된 정보를 weighted layer와 non-linear activation function으로 각 채널 별 중요도를 계산해 기존 input에 곱을 해주는 방식

Squeeze-and-excitation optimization (SE)

• Experiment:

- EfficientNet-B0 ~ B7 까지의 성능을 SOTA 모델과 비교
- 같은 성능 대비 Parameters와 FLOPS가 EfficientNet에서 더 낮음 (파라미터 수 약 8.4배 적음)

EfficientNet Performance Results on ImageNet

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPs	Ratio-to-EfficientNet
EfficientNet-B0	77.1%	93.3%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.1%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.1%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.6%	95.7%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.9%	96.4%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.6%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.3%	97.0%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

• Experiment:

• 기존에 연구된 모델에 compound scaling을 적용한 결과, single-dimension scaling보다 더 좋은 성능을 보임

Scaling Up MobileNets and ResNet

Single-dimension Scaling vs Compound Scaling

Model	FLOPS	Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017)	0.6B	70.6%
Scale MobileNetV1 by width (w=2) Scale MobileNetV1 by resolution (r=2) compound scale (d=1.4, w=1.2, r=1.3)	2.2B 2.2B 2.3B	74.2% 72.7% 75.6%
Baseline MobileNetV2 (Sandler et al., 2018)	0.3B	72.0%
Scale MobileNetV2 by depth (d=4) Scale MobileNetV2 by width (w=2) Scale MobileNetV2 by resolution (r=2) MobileNetV2 compound scale	1.2B 1.1B 1.2B 1.3B	76.8% 76.4% 74.8% 77.4%
Baseline ResNet-50 (He et al., 2016)	4.1B	76.0%
Scale ResNet-50 by depth (d=4) Scale ResNet-50 by width (w=2) Scale ResNet-50 by resolution (r=2) ResNet-50 compound scale	16.2B 14.7B 16.4B 16.7B	78.1% 77.7% 77.5% 78.8%

• Experiment: 기존의 Top level 모델보다 적은 Parameters와 FLOPS로도 좋은 성능을 보임

EfficientNet Performance Results on Transfer Learning Datasets

	Comparison to best public-available results					Comparison to best reported results						
	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)
CIFAR-10	NASNet-A	98.0%	85M	EfficientNet-B0	98.1%	4M (21x)	∥ [†] Gpipe	99.0%	556M	EfficientNet-B7	98.9%	64M (8.7x)
CIFAR-100	NASNet-A	87.5%	85M	EfficientNet-B0	88.1%	4M (21x)	Gpipe	91.3%	556M	EfficientNet-B7	91.7%	64M(8.7x)
Birdsnap	Inception-v4	81.8%	41M	EfficientNet-B5	82.0%	28M (1.5x)	GPipe	83.6%	556M	EfficientNet-B7	84.3%	64M(8.7x)
Stanford Cars	Inception-v4	93.4%	41M	EfficientNet-B3	93.6%	10M (4.1x)	[‡] DAT	94.8%	-	EfficientNet-B7	94.7%	-
Flowers	Inception-v4	98.5%	41M	EfficientNet-B5	98.5%	28M (1.5x)	DAT	97.7%	-	EfficientNet-B7	98.8%	-
FGVC Aircraft	Inception-v4	90.9%	41M	EfficientNet-B3	90.7%	10M (4.1x)	DAT	92.9%	-	EfficientNet-B7	92.9%	-
Oxford-IIIT Pets	ResNet-152	94.5%	58M	EfficientNet-B4	94.8%	17M (5.6x)	GPipe	95.9%	556M	EfficientNet-B6	95.4%	41M (14x)
Food-101	Inception-v4	90.8%	41M	EfficientNet-B4	91.5%	17M (2.4x)	GPipe	93.0%	556M	EfficientNet-B7	93.0%	64M (8.7x)
Geo-Mean						(4.7x)						(9.6x)

• Experiment: 기존의 Top level 모델보다 적은 Parameters와 FLOPS로도 좋은 성능을 보임

• Experiment:

• Class Activation Map을 시각화 했을 때 Depth, Width, Resolution을 각각 따로 Scaling up한 것 보다 Compound Scaling 했을 때 좀 더 객체들을 잘 담고 있고 정확함

EfficientNet Performance Results on Transfer Learning Datasets

Scaled Models

Model	FLOPS	Top-1 Acc.
Baseline model (EfficientNet-B0)	0.4B	77.3%
Scale model by depth (<i>d</i> =4)	1.8B	79.0%
Scale model by width ($w=2$)	1.8B	78.9%
Scale model by resolution $(r=2)$	1.9B	79.1%
Compound Scale ($d=1.4, w=1.2, r=1.3$)	1.8B	81.1%

Model Size vs ImageNet Accuracy

한줄평: 기존의 CNN Scaling 방식을 효과적인 Scaling 방법인 Compound Scaling을 제안해 성능을 효율적으로 향상했다. 단순하면서 직관적인 방법으로 좋은 성능을 달성한 만큼 인상 깊은 논문이다.