Negotiating lexical uncertainty and expertise with disjunction

Roger Levy and Christopher Potts

COMMUNICATING IN LANGUAGE ABOUT LANGUAGE

- Languages are neither fixed across time nor identically reproduced in all speakers, but rather continually renegotiated during interactions.
- People accommodate to each other's usage patterns, form temporarily lexical pacts, and instruct each other about their linguistic views.
- Some of this communication in language about language is direct, as with explicit definitions, but much of it arrives via secondary pragmatic inferences.
- Disjunction supports what appear to be opposing inferences about language.
 - Hurfordian pressure: X or Y conveys that X and Y are disjoint
 - Definitional inference: X or Y conveys that X and Y are synonymous
- Cross-linguistically robust, so we seek a single pragmatic model that can derive both of these meanings from the semantics of disjunction given different contextual assumptions.

HURFORDIAN PERCEPTIONS AND INTENTIONS

Generalization: X or Y conveys that the speaker is using a lexicon where X and Y are disjoint, or addresses a speaker concern that the listener is using such a lexicon.

- (1) some of our American or Californian friends
- (2) the canoe or boat will be held by the stream's current
- (3) In 1940, 37% of us had gone to a church or synagogue in the last week.

Our corpus	
general or specific	75
specific or general	86

 $X ext{ or } Y ext{ usage correlates with } X ext{ implicating } not Y$

DISJUNCTIVE DEFINITION AND IDENTIFICATION

Generalization: can arise when speaker and listener are willing to coordinate on the speaker's lexicon

- (4) wine lover or oenophile
- (5) A Geological History of Manhattan or New York Island
- (6) New Haven or "the Elm City"
- (7) woodchuck or "land beaver"

- Motivation: speaker is a known expert and 'instructor'; listener is a known non-expert
- Motivation: speaker wishes to display expertise to another expert
- Motivation: speaker sees value in (temporarily or permanently) defining a term

Attested in Chinese, German, Hebrew, Ilokano, Japanese, Russian, and Tagalog. Seems to survive even where the language has a dedicated definitional disjunction morpheme (e.g., Finnish, Italian).

FURTHER INFORMATION

Paper, references, model code, corpus data: http://github.com/cgpotts/pypragmods/

Modeling communication with anxious experts

HURFORDIAN CONTEXTS

With high disjunction costs, exclusivization maximizes the justification for the long form.

l_0	\leftarrow	s_1	\leftarrow	l_1		
$\mathcal{L}^* \ w_1 \ w_2 \ w_1 \vee w_2$		\mathcal{L}^* ABC		$\mathcal{L}^* \ w_1 \ w_2 \ w_1 \vee w_2$		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$\mathcal{L}_1 \ w_1 \ w_2 \ w_1 \vee w_2$		\mathcal{L}_1 $A B C$				
$egin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
$\mathcal{L}_2 \ w_1 \ w_2 \ w_1 \lor w_2$		\mathcal{L}_2 ABC		$\boxed{\mathcal{L}_2 \ w_1 \ w_2 \ w_1 \vee w_2}$		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\leftarrow	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
Lexicon-specific agents						

	L_3 hears A or X	w_1	w_2	$w_1 \lor w_2$
	$\mathcal{L}^* \left[A: \{w_1\}, B: \{w_2\}, X: \{w_1, w_2\} \right]$	0	0	0.16
- • • •	$\mathcal{L}_1 \ \left[A: \{ \mathbf{w_1} \}, B: \{ \mathbf{w_2} \}, X: \{ \mathbf{w_2} \} \right]$	0	0	0.47
	$\mathcal{L}_2 \ \left[A: \{w_1\}, B: \{w_2\}, X: \{w_1\} \right]$	0	0	0.38
	$\alpha=2;\beta$	=]	l; C	$\overline{(or)} = 1$

Joint world-lexicon listener

DEFINITIONAL CONTEXTS

Require low disjunction costs and high β : the speaker is invested in communicating about the lexicon and can tolerate the cost of a disjunction that is synonymous with one of its disjuncts.

L_3 hears A or X	w_1	w_2	$w_1 \lor w_2$
$\mathcal{L}^*[A:\{w_1\},B:\{w_2\},X:\{w_1,w_2\}]$	0	0	0
$\mathcal{L}_2[A:\{w_1\},B:\{w_2\},X:\{w_2\}]$	0	0	0
$\mathcal{L}_3[A:\{w_1\},B:\{w_2\},X:\{w_1\}]$.88	0	.12
$\alpha = 5; \beta =$	7; ($\mathcal{I}(or$	$\overline{r} = 0.01$

CHARACTERIZATION

Summarizes a search over many parameter settings using a large lexicon and large world space.