RNN

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
0	Beginner	16
	Intermediate	4
♦	Advanced	
♦	Expert	

Goal				
4722	16			
5722	18			
Total Completed				
20				

¹ MLP Parameter Sizes

size(W₁) =
$$4 \times 4$$

size(b₁) = 4×1
size(W₂) = 3×4
size(b₂) = 3×1

$$Y = \phi_2(W_2 \cdot \phi_1(W_1 \cdot X + b_1) + b_2)$$

² Calculate an RNN (t = 1)

³ Calculate an RNN (t = 2)

⁴✓ Calculate an RNN (t = 3)

This activity is standalone, not dependent on the previous one.

⁵ ○ Counting Parameters (small)

$$size(X_t) = \underline{3}$$

$$size(h_t) = _____$$

$$size(y_t) = \underline{\qquad \qquad 2}$$

$$size(W_{hx}) = 3 \times 3$$

$$size(b_h) =$$

$$size(W_{hh}) = 3 * 3$$

$$size(W_{yh}) = \frac{2 \times 3}{2}$$

$$size(b_y) = \frac{2 \times 1}{2}$$

⁶✓ Counting Parameters (large)

$$size(X_t) = 512 \times 1$$

 $size(h_t) = 128 \times 1$
 $size(Y_t) = 256 \times 1$
 $size(W_{hx}) = 128 \times 512$
 $size(b_h) = 128 \times 1$
 $size(W_{hh}) = 128 \times 128$
 $size(W_{yh}) = 256 \times 128$

 $size(b_v) = \underline{256} \times 1$

⁷✓ O RNN → MLP

Delete the components to turn this architecture into a regular MLP without recurring hidden states.

Adding Parameters

Suppose we increase the hidden state's dimension by 1.

What would be the new parameter sizes?

size(
$$W_{hx}$$
) = $\frac{4 \times 3}{4 \times 1}$
size(b_h) = $\frac{4 \times 1}{4 \times 4}$
size(W_{hh}) = $\frac{4 \times 4}{2 \times 4}$
size(W_{yh}) = $\frac{2 \times 4}{2 \times 1}$
of New Parameters = 13

(Hint: You can try to draw the extra cells as visual aid)

⁹✓ Graph → Matrix

Delete the unwanted parts to match the graph to the right.

¹⁰✓ ■ RNN Matrix → Graph

Complete the graphical

Sequence to Sequence

Sequence to Sequence

Remove unwanted components to make it a seq-to-seq model

Calculate an Encoder

 $\varphi_{1,}\varphi_{2:}\mathsf{ReLU}$

¹⁵✓ O Multilayer RNN (t = 1)

¹⁶✓ O Multilayer RNN (t = 1)

¹⁷ Multilayer RNN (t = 2)

¹⁸✓ O Multilayer RNN (t = 3)

¹⁹ O Identify "No Dependency" Links

Cross out the dependency links to match the matrix form.

²⁰ Calculate the Gradient of Softmax + CE Loss

Х	e^x	round
0	1	1
1	2.71828	3
2	7.38906	7
3	20.08554	20
4	54.58715	55
5	148.41316	148

