(11)'Publication number :

2001-352101

(43) Date of publication of application: 21.12.2001

(54) LIGHT EMITTING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a light emitting device having fluorescent substance which absorbs ultraviolet radiation from a light emitting element, converts the wavelength and generates a light, and especially to provide a light emitting device which can generate a light with high luminance, high efficiency and excellent reliability, irrespective of usage environment. SOLUTION: This light emitting device is provided with a light emitting element wherein at least a light emitting layer is composed of nitride semiconductor; and inorganic phosphor which absorbs at least a part of a light generated from the light emitting element, converts the wavelength and generates fluorescence. The main peak of emission spectrum from the light emitting element is in a range of 360-390 nm. The inorganic phosphor generates fluorescence of infrared and is composed of at least one kind of phosphor selected from LiAlO2:Fe, Al2O3:Cr, CdS:Ag, CdAlO3:Cr, Y3Al5O12:Cr.

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-352101

(P2001-352101A) (43)公開日 平成13年12月21日(2001.12.21)

(51) Int. C1. 7	•	識別記号		FΙ		Ŧ	マコード(参考)
H 0 1 L	33/00			H 0 1 L	33/00	N 4	H001
						C 5	
C 0 9 K	11/08			C 0 9 K	11/08	Z	
	11/56	CPC			11/56	CPC	
	11/64	CPB			11/64	CPB	
	審査請求	未請求 請求項の数4	OL			(全12頁)	最終頁に続く

(21)出願番号

特願2000-168493 (P2000-168493)

(22) 出願日

平成12年6月6日(2000.6.6)

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72) 発明者 竹亭 諭

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

Fターム(参考) 4H001 CA04 CA05 XA03 XA08 XA13

- XA16 XA39 XA48 XA64 YA24

YA26 YA47

5F041 AA11 AA12 CA04 CA34 CA40

CA58 DA43 DA47 EE25

(54) 【発明の名称】発光装置

(57)【要約】

【課題】本発明は、発光素子からの紫外発光を吸収し波 長変換して発光させる蛍光物質を有する発光装置に係わ り、特に使用環境によらず高輝度、高効率且つ信頼性良 く発光可能な発光装置に関する。

【解決手段】本発明は、少なくとも発光層が窒化物半導体である発光素子と、該発光素子が発光する発光の少なくとも一部を吸収し波長変換して蛍光を発する無機蛍光体とを有する発光装置であって、発光素子からの発光スペクトルが主ピークとして360nmから390nm内にあると共に、無機蛍光体が赤外の蛍光を発し、 $LiAlO_2:Fe、Al_2O_3:Cr、CdS:Ag、GdAlO_3:Cr、Y_3Al_5O_{12}:Cr$ から選択される少なくとも一種の蛍光体であることを特徴とする発光装置である。

【特許請求の範囲】

【請求項1】少なくとも発光層が窒化物半導体である発 光素子と、該発光素子が発光する発光の少なくとも一部 を吸収し波長変換して蛍光を発する無機蛍光体とを有す る発光装置であって、

前記発光素子からの発光スペクトルが主ピークとして360nmから390nm内にあると共に、前記無機蛍光体が赤外の蛍光を発し、

LiAlO2: Fe,

Al₂O₃:Cr、

CdS:Ag、

GdAlOs: Cr、

Y3A 15O12: Cr,

から選択される少なくとも一種の蛍光体であることを特 徴とする発光装置。

【請求項2】前記発光素子が n 型窒化物系化合物半導体層と、p 型窒化物系化合物半導体層との間に、ダブルヘテロ構造となり n 型不純物を含む I n α G a 1-α N 層の活性層を有し、

前記n型不純物濃度が5×10¹⁷/cm³未満、

前記 $I n \alpha G a_{1-} \alpha N$ 層の α 値が0より大きく0. 1以下、

前記 $I n \alpha G a_{I-\alpha} N$ 層の膜厚が100 オングストローム以上、1000 オングストローム以下の発光素子であることを特徴とする請求項1 に記載の発光装置。

【請求項3】前記発光素子が n 型窒化物系化合物半導体層と、p 型窒化物系化合物半導体層との間に、ダブルヘテロ構造となり n 型不純物を含む I n δ G a 1- δ N 層の活性層を有し、

前記不純物濃度が5×10¹⁷/cm³以上、

前記 $I n \delta G a_{1-} \delta N$ 層の δ 値が 0 より大きく 0. 1 以下.

前記 $I n \delta G a_{1-} \delta N$ 層の膜厚が 1 0 0 オングストローム以上の発光素子であることを特徴とする請求項 <math>1 に記載の発光装置

【請求項4】前記発光素子がAlを含有するGaN基板上にn型及びp型窒化物系化合物半導体を積層してなる請求項1乃至3に記載の発光装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、LEDディスプレイ、バックライト光源、信号機、光センサー、光プリンターヘッド、照光式スイッチ、インジケータ及び各種照明などに利用される発光装置などに係わる。

[0002]

【従来技術】発光ダイオード(以下、LEDともいう) やレーザーダイオード(以下、LDともいう)は、小型 で効率が良く鮮やかな色の発光をする。また、半導体素 子であるため球切れなどの心配がない。振動やON/OFF 点灯の繰り返しに強いという特徴を有する。そのため各 50

種インジケータや種々の光源として利用されている。最 近、超高輝度高効率な発光ダイオードとしてRGB

(赤、緑、青色)などの発光ダイオードがそれぞれ開発された。これに伴いRGBの三原色を利用したLEDディスプレイが省電力、長寿命、軽量などの特長を生かして飛躍的に発展を遂げつつある。

【0003】発光ダイオードは使用される発光層の半導体材料、形成条件などによって紫外から赤外まで種々の発光波長を放出させることが可能とされている。また、10 優れた単色性のピーク波長を有する。

【発明が解決する課題】

【0004】しかしながら、より広い分野において様々な発光波長が高輝度に求められている現在では、十分ではなく、更なる改良が求められている。

[0005]

【課題を解決するための手段】本発明の請求項1に記載の発光装置は、少なくとも発光層が窒化物半導体である発光素子と、該発光素子が発光する発光の少なくとも一部を吸収し波長変換して蛍光を発する無機蛍光体とを有する発光装置である。特に、発光素子からの発光スペクトルは主ピークとして360nmから390nm内にあり、無機蛍光体は赤外の蛍光を発し、LiAlO2:Fe、Al $_2$ O3:Cr、CdS:Ag、GdAlO3:Cr、Y $_3$ Al $_5$ O1 $_2$:Cr、から選択される少なくとも一種の蛍光体である。

【0008】本発明の請求項4に記載の発光装置は、前記発光素子がAlを含有するGaN基板上にn型及びp型窒化物系化合物半導体を積層してなる発光装置である。

[0009]

【発明の実施の形態】本発明者は、種々の実験の結果、 光エネルギーが非常に高い発光波長を発光する発光素子 からの発光波長を蛍光物質によって変換させる発光装置

2

において、特定の発光素子及び特定の蛍光物質を選択す ることにより高輝度、長時間の使用時における発光効率 低下や色ずれを防止し高輝度に発光できることを見出し 本発明を成すに至った。

【0010】特に本発明の発光素子に用いられる窒化物 系化合物半導体は、紫外光 (発光波長の主ピークが36 0 n m から390 n m) を効率よく発光することができ る。しかしながら蛍光物質から見ると励起光源の励起波 長範囲が上述の如く極めて狭く、且つピーク性を持って いる。そのため、発光装置の発光効率を向上させるため 10 には選択された特定の発光素子及び特定の蛍光物質との 組み合わせが必要となる。

【0011】即ち、発光装置に用いられる蛍光物質とし ては、

1. 耐光性に優れていることが要求される。特に、発光 素子などの微小領域から強放射されるために発光素子に 接して或いは近接して設けられた蛍光物質は、太陽光の 約30倍から40倍にもおよぶ強照射強度にも十分耐え る必要がある。

【0012】2. 発光光率を向上させるため、窒化物系 20 化合物半導体からの発光波長に対して効率よく励起され ること。

【0013】3.励起によって効率よく発光可能なこ

【0014】4.発光素子近傍に配置される場合、温度 特性が良好であること。

【0015】5. 発光ダイオードの利用環境に応じて耐 候性があること

【0016】6. 発光素子などを損傷しないこと。

【0017】7. 色調が組成比或いは複数の蛍光物質の 30 混合比で連続的に変化可能なことなどの特徴を有するこ とが求められる。

【0018】これらの条件を満たすものとして本発明 は、発光素子として発光層に高エネルギーバンドギャッ プを有する窒化物系化合物半導体素子を、蛍光物質とし て本発明の無機蛍光体から選択される少なくとも一種を 用いる。これにより発光素子から放出された高エネルギ 一光を長時間近傍で高輝度に照射した場合であっても発 光色の色ずれや発光輝度の低下が極めて少ない発光装置 とすることができる。

【0019】具体的な発光装置の一例として、チップタ イプLEDを図1に示す。チップタイプLEDの筐体1 03内に窒化ガリウム系半導体を用いたLEDチップ1 02を半田105を用いてフリップチップボンド固定さ せてある。LEDチップ102の各電極と筐体に設けら れた各電極104は固定され、それぞれ電気的に接続さ せてある。本発明の無機蛍光体から選択される少なくと も一種をSiO2と混合分散させたものを筐体の一部を 構成するガラス106に塗布する。筐体上に封止用のガ ることができる。このような発光ダイオードに電力を供 給させることによってLEDチップ102を発光させる ことができる。LEDチップ102からの紫外光によっ て励起された蛍光物質からの発光による発光装置とする ことができる。以下、本発明の構成部材について詳述す る。

【0020】(蛍光物質)本発明に用いられる蛍光物質 は、発光素子の紫外光により励起されて赤外光を発光す る無機蛍光体である。具体的な蛍光物質としては、Li AlO₂: Fe、Al₂O₃: Cr、CdS: Ag、Gd AlO₃: Cr、Y₃Al₅O₁₂: Cr、から選択される 少なくとも一種の蛍光体である。

【0021】蛍光物質の分布は、蛍光物質を含有する部 材、形成温度、粘度や蛍光物質の形状、粒径、粒度分布 などを調整させることによって種々形成させることがで きる。したがって、使用条件などにより蛍光物質の分布 濃度を、種々選択することができる。このような分布を 分散性よく制御する目的で蛍光物質の平均粒径が0.2 μ mから0. 7μ mであることが好ましい。また、粒度 分布が0.2<10gシグマ<0.45であることが好 ましい。

【0022】また、複数種の蛍光物質を利用する場合 は、コーティング部及び/又はモールド部材などである 硝子などの透光性無機部材や樹脂などの透光性有機部材 中に複数の蛍光物質を混合させて形成させてもよいし、 各蛍光物質ごとの多層膜として形成させてもよい。さら に、透光性無機部材である硝子などの内壁及び/又は外 壁に蛍光物質をバインダーと共に塗布する。塗布後バイ ンダーを焼却するなどによりバインダーを飛ばした蛍光 物質に発光素子からの励起波長を照射させ発光させるこ ともできる。

【0023】上記蛍光物質を用い、紫外光と赤外光の両 方が発光可能な発光装置とすることで、両方の機能を合 わせ持つ光センサーや、赤外光による加熱と紫外光によ る光硬化を同時に行うことができる樹脂等の硬化装置に 応用することができる。一方、発光素子が発光し蛍光物 質で変換されなかった光をピグメントなどにより吸収さ せることで蛍光物質からの蛍光のみを外部に放出させる こともできる。

【0024】本発明に用いられる蛍光物質に加えて、発 光素子が放出する紫外光の一部を吸収して効率良く発光 する無機蛍光体としては、以下に示す蛍光体が挙げられ

【0025】青色発光する無機蛍光体としては、(S r, Ca, Ba, Mg) 5 (PO4) 3Cl: Eu, (S r, Ca, Mg) 5 (PO₄) 3Cl: Eu, (Ba, C a) 5 (PO4) 3Cl: Eu, Sr5 (PO4) 3Cl: E $u \times Sr_3 (PO_4)_2 : Eu \times (Sr, Mg)_2 P_2 O_7 :$ Eu, $Sr_2P_2O_7$: Eu, $Sr_2P_2O_7$: Sn, Ba_2 ラスを配置させることでチップタイプLEDを構成させ 50 P₂Oァ:Ti、(Sr, Ca)₁o(PO₄)eCl₂・B₂

O₃: Eu, (Sr, Mg) ₃ (PO₄) ¹/₂: Cu, 2Sr $O \cdot (P_2O_5 \cdot B_2O_3) : Eu, (Ba, Mg) Si_2$ O₅: Eu、 (Sr, Ba) Al₂Si₂O₈: Eu、Ba 3MgSi2O8: Eu, Sr2Si3O8 · 2 SrCl2: Eu, Zn₂SiO₄: Ti, BaAl₈O₁₃: Eu, B a Mg₂Al₁₆O₂₇: Eu, Mn, CaAl₂O₄: E u, Nd, Sr₄Al₁₄O₂₅: Eu, SrMgAl₁₀O 17: Eu, BaMgAl 10O17: Eu, SrAl 4O7: Eu, Dy, Sr₄Al₁₄O₂₅: Eu, Dy, CaW O₄, CaWO₄: Pb, MgWO₄, ZnS: Ag, N i, ZnS; Ag, Cl, ZnS: Ag, Cu, Zn S: Ag, Fe, Al, ZnS: Cu, Ag, Cl, Z nS:Cu, Au, Al, ZnS:Tm, ZnS:P b, Cu、ZnS:Zn、ZnS:Zn, Ga、ZnG a_2O_4 , Zn (S, Se) : Ag, (Zn, Cd) S: Ag, Ni、(Zn, Cd) S:Ag, Al、Y2Si Os: M¹(但し、M¹はTm、Ceより選択される少な くとも1種)、(Ca, Mg) SiO3: Ti、CaF 2:Eu、M²₂O₂S:Tm(但し、M²はY、La、G d、Luより選択される少なくとも1種)、M²OX: Ce(但し、M²はY、La、Gd、Luより選択され る少なくとも1種であり、XはBr、Crより選択され る少なくとも1種)、(M², M³) TaO4:Nb(但 し、M²はY、La、Gd、Luより選択される少なく とも1種であり、M³はMg、Ca、Sr、Baより選 択される少なくとも1種)、が挙げられる。

【0026】緑色発光する無機蛍光体としては、BaA $l_{12}O_{19}: Mn, Ca_{10} (PO_4) _{6}F_2: Sb, Mn,$ $CeMgAl_{11}O_{19}:Tb, GdMgB_5O_{10}:Ce,$ Tb, $La_2O_3 \cdot O$. $2SiO_2 \cdot O$. $9P_2O_5 : C$ e, Tb、MgAl11O19: Ce, Tb, Mn、MgG a₂O₄: Mn, SrAl₂O₄: Eu, SrAl₂O₄: E u, Dy, Y₂O₃·Al₂O₃: Tb, Y₂SiO₅: C e, Tb, YBO3: Tb, Zn2GeO4: Mn, Sr5 (PO₄) ₃F: Sb, BaMg₂Al₁₆O₂₇: Eu, M n, ZnS: Au, Al, ZnS: Cu, Au, Al, ZnS:Cu, Cl, Zn (S, Se) : Ag, (Zn, Cd) S: Ag, Cl, (Zn, Cd) S: Au, Al, (Zn, Cd) S: Au, Cu, Al, (Zn,Cd) S:Cu, Al, (Zn, Cd) S:Cu, C l, (Zn, Cd) S:Ag, Ni, ZnO:Zn, M $^{2}_{2}O_{2}S$: Tb(但し、 M^{2} はY、La、Gd、Luより 選択される少なくとも1種)、M²₂O₂S:Pr(但 し、M²はY、La、Gd、Luより選択される少なく とも1種)、M²OX:Tb(但し、M²はY、La、G d、Luより選択される少なくとも1種であり、XはB r、Crより選択される少なくとも1種)、InB $O_3: Tb$, $Li_5Zn_8Al_5$ (GeO_4) $_4:Mn$, Sr Ga_2S_4 : Eu, Y_2 (Si, Ge) O_5 : Tb, Y_2S $i O_{5}: Pr, Y_{2}SiO_{5}: Tb, Y_{3}Al_{5}O_{12}: C$

【0027】赤色発光する無機蛍光体としては、M²B O₃: Eu (但し、M²はY、La、Gd、Luより選択 される少なくとも1種)、(Sr, Mg)₃(P O₄)₂: Sn, Mg₆As₂O₁₁: Mn, CaSiO₃: Pb, Mn, $Cd_2B_2O_5:Mn$, $YVO_4:Eu$, (C a, Zn, Mg) $_3$ (PO_4) $_2$: Sn, (Ce, Gd, Tb) $MgB_5O_{10}:Mn,Mg_4FGeO_6:Mn,M$ g₄F (Ge, Si) O₆: Mn, SrTiO₃: Pr, Al, CaTiO3: Eu, Gd2O3: Eu, (Gd, M⁴) ₂O₃: Eu(但し、M⁴はY、La、Luより選択 される少なくとも1種)、Gd2O2S:Eu、(Gd, M⁴) 2O2S:Eu(但し、M⁴はY、La、Luより選 択される少なくとも1種)、M²₂O₂S:Eu, Mg, M⁵(但し、M²はY、La、Gd、Luより選択される 少なくとも1種であり、M⁵はTi、Nb、Ta、Ga より選択される少なくとも1種)、MgF2: Mn、 $(KF, MgF_2) : Mn, (Zn, Be)_2SiO_4:$ Mn, Zn_3 (PO_4) $_2:Mn$, (Zn, Ca) $_3$ (PO4) 2: Mn, (Zn, Cd) S: Ag, Cl, (Zn, Cd) S: Cu, Al, (Zn, Cd) S: Cu, C l, (Zn, Mg) F₂: Mn, CaSiO₃: Pb, M n, Cd₅Cl (PO₄)₃:Mn, InBO₃:Eu, M gGeO4: Mn, MgSiO3: Mn, SnO2: E u, YVO_4 : Eu, ZrO_2 : Eu, (M^2, M^3) TaO4:Eu(但し、M²はY、La、Gd、Luより選 択される少なくとも1種であり、M³はMg、Ca、S r、Baより選択される少なくとも1種)、が挙げられ

【0028】白色発光する無機蛍光体としては、3Ca₃(PO₄)₂·Ca(F, Cl)₂:Sb、YVO₄:Dy、Y₂O₂S:Tb, Sm、(Zn, Cd)S:Au, Ag, Al、又は上記に示した各色発光の蛍光体の混合物から成る白色発光する混合蛍光体が挙げられる。

【0029】また、上記に示した蛍光体の混合物から成る混合蛍光体により、中間色を発光する無機蛍光体とすることができる。

【0030】例えば、本発明に用いられる赤外発光の無機蛍光体に加えて、上記に示した青色、緑色、赤色の各色発光の無機蛍光体を用いることにより、植物育成に必要な分光分布を有する発光装置を得ることができる。一般に、植物育成用の光源は、人間生活における照明用とは異なり、青色から赤外までの太陽光に近い分光分布が必要とされる。これは、植物の光合成反応の進行には、

照射光の量のほかに、照射光の分光分布が関連しており、植物栽培に用いる光源としては、分光分布が葉緑素 生合成スペクトルに類似していることが望ましいためである。

【0031】(発光素子)本発明に用いられる発光素子として、上記蛍光物質を効率良く励起できる窒化物系化合物半導体が挙げられる。発光素子は、MOCVD法やHVPE法等により基板上に窒化物系化合物半導体を形成させてある。窒化物系化合物半導体としては、 $In\alpha$ $A1\betaGa_{1-\alpha-\beta}N$ (但し、 $0\leq\alpha$ 、 $0\leq\beta$ 、 $\alpha+\beta\leq 1$)を発光層として形成させてある。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、 Λ 中の構造あるいはダブル Λ 中のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

【0032】窒化物系化合物半導体を形成させる基板にはサファイアと面の他、R面、A面を主面とするサファイア、その他、スピネル(MgA12O4)のような絶縁 20性の基板の他、SiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、GaN結晶等の材料を用いることができる。結晶性の良い窒化物系化合物半導体を比較的簡単に形成させるためにはサファイヤ基板との格子不整合を是正するためにバッファー層を形成することが望ましい。バッファー層は、低温で形成させた窒化アルミニウムや窒化ガリウムなどで形成させることができる。また、バッファ層はその上に形成する窒化物系化合物半導体の結晶性を左右するため2層以上で形成させても良 30い

【0033】この場合、サファイア基板上に低温成長バップァ層、その上に第2のバッファ層とすることができる。低温成長バッファ層の上に接して成長させる第2のバッファ層はアンドープの窒化物系化合物半導体、特に好ましくはアンドープのGaNとすることが望ましい。アンドープGaNとするとその上に成長させるn型不純物をドープした窒化物系化合物半導体の結晶性をより良く成長させることができる。この第2のバッファ層の膜厚は100オングストローム以上、10μm以下、さら40に好ましくは0.1μm以上、5μm以下の膜厚で成長させることが望ましい。

【0034】また、第2のバッファ層はクラッド層ではなく、GaN基板を作製するための下地層とする場合、A1混晶比のv値が0.5以下のA1、 $Ga_{1-v}N$ ($0 \le v \le 0.5$)とすることが好ましい。A1混晶比のv値が0.5を超えると、結晶欠陥というよりもむしろ結晶自体にクラックが入りやすくなってしまう。そのため、結晶成長自体が困難になる傾向にある。また膜厚は10 μ m以下に調整することがより好ましい。また、この第50

2のバッファ層にSi、Ge等のn型不純物をドープしても良い。

【0035】更に、本発明の発光素子は、発光スペクト ルが主ピークとして360nmから390nmに発光可 能なものであり、発光素子と蛍光体との光利用効率を高 めるためには、Alを含有するGaN基板上にn型及び p型窒化物半導体を積層したものが好ましい。このよう なAlを含有するGaN基板は、MOCVD法によって サファイア基板上に低温でGaNバッファ層を形成させ る。次に、成膜温度を上げ、バッファ層上にGaNを成 膜させる。続いてサファイア基板まで部分的にエッチン グさせ、平面から見るとストライプ状のGaN層を露出 させる。この上にHDVPE法によりGaNを厚膜で形 成する。さらに、SiOzをストライプ状に形成後、A 1を含有させたGaNをMOCVD法によって形成す る。Alを含有させたGaNまで研磨することで、、A 1を含有するGaN基板を形成させることができる。こ の基板を用いることにより、発光素子から放出される光 の吸収を抑制し、発光装置全体の出力を上げることがで きる。

【0036】窒化物系化合物半導体を使用したpn接合を有する発光素子例としては、バッファー層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、Znなどp型不純物を添加させた窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のコンタクト層を順に積層させた構成などとすることができる。

【0037】窒化ガリウム系半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化ガリウム半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、P型窒化ガリウム半導体を形成させる場合は、P型ドーパンドであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化ガリウム系化合物半導体は、p型ドーパントをドープしただけでは低抵抗化しにくいためp型ドーパント導入後に、炉による加熱、低速電子線照射やプラズマ照射等によりp型化させることが好ましい。

【0038】特に、360~390nmの紫外域に発光させる場合は、n型窒化ガリウムと、p型窒化ガリウムとの間に、ダブルヘテロ構造とさせn型不純物濃度が5×10 17 /cm 3 未満の窒化インジウム・ガリウム(InαGa₁-αN)であって、膜厚が100オングストローム以上1000オングストローム以下、Inの値αは0より多く0.1以下とすることで高効率に発光することができる。なお、n型不純物とはSi、S、Ge、Seから選択される少なくとも一種である。膜厚として100オングストローム以上、1000オングストローム

10 $5 \mu \, \mathrm{m以下}$ 、さらに好ましくは0. $3 \mu \, \mathrm{m以下}$ 、最も好

以下が好ましく、更に好ましぐは、200オングストローム以上、800オングストローム以下、最も好ましくは250オングストローム以上、700オングストローム以下である。

【0040】紫外域に高出力を有する発光素子としてG a Nとすると、およそ365nmの発光を得ることがで きる。しかしながら、出力は非常に低くAlを含有させ るとさらに出力が低下する傾向にある。これは、AIG aN、InAlNの結晶性によると推測される。AlG aN、InAlNなどを活性層にすると、バンドギャッ プエネルギーの関係からAl混晶比の高いクラッド層を 形成する必要がある。Al混晶比の高いクラッド層は結 晶性の良いものが得られにくい傾向にあるため、総合的 にA1を含む窒化物系化合物半導体を活性層とすると発 光素子の寿命が短くなる傾向にある。ところが、上述の 紫外域を高出力に発光する発光素子は、GaN活性層に 微量のInを含有させるだけで発光素子の出力が飛躍的 に向上し、例えば Inをわずかに含む GaNを活性層と 30 すると、GaNよりも10倍以上出力が向上する。従っ て、InαGa₁-αN、InδGa₁-δNのα値、δ値 とも0.1以下、好ましくは0.05以下、さらに好ま しくは0.02以下、最も好ましくは0.01以下に調 整する。なお、ここでInGaNとはAlを全く含まな いのではなく拡散などにより生ずる、例えばInよりも Al含有量が少ない状態のAlをも含むものである。

【0041】 さらに、本発明に利用される発光素子は、 I $n\alpha Ga_{1-}\alpha N$ 、 I $n\delta Ga_{1-}\delta N$ を含有する活性層に接して、 $Al_xGa_{1-x}N$ ($0< X \le 0$. 4)である窒 40 化物系化合物半導体を有しても良い。この $Al_xGa_{1-x}N$ N層は活性層の2つの主面のうち、いずれか一方に接していれば良く、必ずしも両方に接している必要はない。このような $Al_xGa_{1-x}N$ のX値は $0< X \le 0$. 4の範囲が好ましく、 $0< X \le 0$. 2の範囲がより好ましく、 $0< X \le 0$. 1の範囲が最も好ましい。

【0042】0.4よりも大きいと $A1_xGa_{1-x}$ N層中にクラックが入りやすい傾向にある。クラックが入るとその上に他の半導体を積層して素子構造を形成することが難しくなる傾向にある。 $A1_xGa_{1-x}$ Nの膜厚は0.

ましくは 0.1μ m以下の膜厚で形成する。 0.5μ m を越えるとA1混晶比を少なくしても、 $A1_xGa_{1-x}N$ 中にクラックが入りやすくなる傾向にあるからである。 【0043】 A1 の混晶比が特定の範囲にある窒化物系化合物半導体層を活性層の両主面側に接して形成した場合、それらの窒化物系化合物半導体層の膜厚が互いに異なることが望ましい。n 層側の $A1_xGa_{1-x}N$ 層を薄く

した方が出力が向上しやすい傾向にあった。なおn層側、p層側の $Al_xGa_{1-x}N$ の窒化物系化合物半導体は異なるAl混晶比を有していても良い。

[0044] observed AlxGa_{1-x}N $(0 < X \le$ 0. 4) である窒化物系化合物半導体よりも活性層から 離れた位置に I n_sG a_{1-s}N (0 ≤ s < 0.1、j > s、m>s) 若しくはAl_tGa_{1-t}N(0<t≦0. 4) である窒化物系化合物半導体を有することもでき る。この窒化物系半導体はGaNが好適に用いられる。 なお、AlxGa1-xNの窒化物系化合物半導体層と同様 に、n層内、p層内のいずれか一方に形成されていれば 良く、必ずしも両方に形成されている必要はない。In sGa1-sN、若しくはAltGa1-tNの膜厚は特に限定 するものではないが、n層側に形成する場合には10μ 方、p層側に形成する場合にはn層側よりも薄く形成す ることが望ましく、 $2 \mu m$ 以下、さらに好ましくは 1μ m以下の膜厚で形成する。なお、In_sGa_{1-s}N、若し くはAltGa1-tNは同一導電側の層に複数あっても良 V.

【0045】また、n層側、またはp 層側の少なくとも一方に、バンドギャップエネルギーの小さなGaN 層とバンドギャップエネルギーの大きなAluGaluN (0 $< u \le 1$) 層とが積層された超格子構造よりなる窒化物系半導体層を有してもよい。AluGaluN は活性層に接して形成しても良いし、また活性層から離れた位置に形成しても良い。好ましくは活性層から離れた位置に形成して、キャリア閉じ込めとしてのクラッド層、若しくは電極を形成するためのコンタクト層として形成することが望ましい。このAluGaluNは同じく同一導電側の層に複数あっても良い。

40 【0046】超格子構造とする場合、GaN層及びAluGal-uN層の膜厚は100オングストローム以下、さらに好ましくは70オングストローム以下、最も好ましくは50オングストローム以下に調整する。100オングストロームより厚いと、超格子層を構成する各半導体層が弾性歪み限界以上の膜厚となり、膜中に微少なクラック、あるいは結晶欠陥が入りやすい傾向にある。また、膜厚の下限は特に限定せず1原子以上であればよい。AluGal-uNを超格子の構成層とすると、膜厚の厚いものに比較して、Al混晶比の高いものでもクラックが入りにくい。これはAluGal-uN層を弾性臨界膜

厚以下の膜厚で成長させていることによる。さらに、AluGaluNとGaNとは同一温度で成長できるため、超格子としやすい。一方が、InGaNであると成長雰囲気も変えなければならず、AlGaNとInGaNとで超格子を構成することは、AluGaluNとGaNとで超格子層を作る場合に比較して難しい。

【0047】GaN層及びAluGaluN層とを有する 超格子層が光閉じ込め層、及びキャリア閉じ込め層とし てクラッド層を形成する場合、活性層の井戸層よりもバ ンドギャップエネルギーの大きい窒化物系化合物半導体 10 を成長させる必要がある。バンドギャップエネルギーの 大きな窒化物系化合物半導体層とは、即ちAlの混晶比 の高い窒化物系化合物半導体である。Alの混晶比の高 い窒化物系化合物半導体を厚膜で成長させると、クラッ クが入りやすくなり結晶成長が非常に難しい。

【0048】しかしながら超格子層にすると、超格子層を構成する単一層をA1混晶比の多少高い層としても、 弾性臨界膜厚以下の膜厚で成長させているのでクラックが入りにくい。そのため、A1の混晶比の高い層を結晶性良く成長できることにより、光閉じ込め、キャリア閉 20じ込め効果が高くなり、LDでは閾値電圧、LEDではVf(順方向電圧)を低下させることができる。

【0049】更に、超格子層にはその超格子層の導電型を決定する不純物がドープされており、AluGal-uN層とGaN層とのn型不純物濃度が異なる変調ドープとすることができる。例えば一方の層のn型不純物濃度を小さく、好ましくは不純物をドープしない状態(アンドープ)として、もう一方を高濃度にドープすると、閾値電圧、Vf等を低下させることができる。これは不純物濃度の低い層を超格子層中に存在させることにより、その層の移動度が大きくなり、また不純物濃度が高いままで超格子層が形成できることにより、キャリア濃度が大きい層とが同時に存在することによる。不純物濃度が低い移動度の高い層と、不純物濃度が高いキャリア濃度が大きい層とが同時に存在することにより、キャリア濃度が大きい層とが同時に存在することにより、キャリア濃度が大きく、移動度も大きい層が形成される。そのため閾値電圧、Vfが低下すると推察される。

【0050】バンドギャップエネルギーの大きな窒化物系化合物半導体に高濃度に不純物をドープした場合、この変調ドープにより高不純物濃度層と、低不純物濃度層 40との間に二次元電子ガスができ、この二次元電子ガスの影響により抵抗率が低下すると推察される。例えば、n型不純物がドープされたバンドギャップの大きい窒化物系化合物半導体と、バンドギャップが小さいアンドープの窒化物系化合物半導体とを積層した超格子層では、n型不純物を添加した層と、アンドープの層とのヘテロ接合界面で、障壁層側が空乏化しバンドギャップの小さい層側の厚さ前後の界面に電子(二次元電子ガス)が蓄積する。

【0051】この二次元電子ガスがバンドギャップの小 50

さい側にできるので、電子が走行するときに不純物による散乱を受けないため、超格子の電子の移動度が高くなり抵抗率が低下する。なおp側の変調ドープも同様に二次元正孔ガスの影響によると推察される。またp層の場合、AlGaNはGaNに比較して抵抗率が高い。そこでAlGaNの方にp型不純物を多くドープすることにより抵抗率が低下するために、超格子層の実質的な抵抗率が低下するので発光素子を作製した場合に、閾値が低下する傾向にあると推察される。また、抵抗率が下がることにより、電極とのオーミックが得やすくなる。また、膜中のシリーズ抵抗も小さくなり閾値電圧、Vfの低い発光素子が得られる。

【0052】一方、バンドギャップエネルギーの小さな窒化物系化合物半導体層に高濃度に不純物をドープした場合、以下のような作用があると推察される。例えばA 1_u Ga 1_u N層とGaN層にp型不純物であるMgを同量でドープした場合、 $A1_u$ Ga 1_u N層ではMgのアクセプター準位の深さが大きく、活性化率が小さい。一方、GaN層のアクセプター準位の深さは $A1_u$ Ga 1_u N層に比べて浅く、Mgの活性化率は高い。例えばMgを 1×10^{20} /cm³ドープするとGaNでは 1×10^{18} /cm³程度のキャリア濃度が得られるのに対し、 $A1_u$ Ga 1_u Nでは 1×10^{17} /cm³程度のキャリア濃度しか得られない。

【0053】そこで $Al_uGa_{1-u}N/Ga_N$ とで超格子層とし、高キャリア濃度が得られる Ga_N 層の方に多く不純物をドープする。これにより高キャリア濃度の超格子層が得られる。しかも超格子構造としているためトンネル効果でキャリアは不純物濃度の少ない $Al_uGa_{1-u}N$ 層を移動する。そのため実質的にキャリアは $Al_uGa_{1-u}N$ 層の作用は受けず、 $Al_uGa_{1-u}N$ 層はバンドギャップエネルギーの高いクラッド層として作用する。バンドギャップエネルギーの小さな方の窒化物系化合物半導体層に不純物を多くドープしても、LD、LEDの 関値を低下させる上で非常に効果的である。なおこの説明はp型層側に超格子を形成する場合においても、同様の効果がある。

【0054】バンドギャップエネルギーが大きな窒化物系化合物半導体にn型不純物を多くドープする場合、バンドギャップエネルギーが大きな窒化物系化合物半導体への好ましいドープ量としては、 $1\times10^{17}/\mathrm{cm}^3\sim1$ $\times10^{20}/\mathrm{cm}^3$ 、さらに好ましくは $1\times10^{18}/\mathrm{cm}^3\sim5$ $\times10^{19}/\mathrm{cm}^3$ の範囲である。 $1\times10^{17}/\mathrm{cm}^3$ よりも少ないと、バンドギャップエネルギーが小さな窒化物系化合物半導体との差が少なくなって、キャリア濃度の大きい層が得られにくい傾向にある。また $1\times10^{20}/\mathrm{cm}^3$ よりも多いと、発光素子自体のリーク電流が多くなりやすい傾向にある。一方、バンドギャップエネルギーが小さな窒化物系化合物半導体のn型不純物濃度はバンドギ

14

ャップエネルギーが大きな窒化物系化合物半導体よりも少なければ良く、好ましくは1/10以上少ない方が望ましい。最も好ましくはアンドープとすると最も移動度の高い層が得られるが、膜厚が薄いため、バンドギャップエネルギーが大きな窒化物系化合物半導体側から拡散してくるn型不純物があると考えられる。そのため、n型不純物の量は1×10¹⁹/cm³以下が望ましい。n型不純物としてはSi、Ge、Se、S、O等の周期律表第IVB族、VIB族元素を選択することができる。より好ましくはSi、Ge、Sをn型不純物とすることができましくはSi、Ge、Sをn型不純物とすることができる。この作用は、バンドギャップエネルギーが大きな窒化物系化合物半導体層にn型不純物を少なくドープして、バンドギャップエネルギーが小さな窒化物系化合物半導体層にn型不純物を多くドープする場合も同様である。

【0055】以上、超格子層に不純物を好ましく変調ドープする場合について述べたが、バンドギャップエネルギーが大きい窒化物系化合物半導体層とバンドギャップエネルギーが小さい窒化物系化合物半導体層との不純物 濃度を等しくすることもできる。

【0056】上述の超格子層が p 側層に形成されていると、超格子構造が発光素子に与える作用は、超格子に n 側層の作用と同じであるが、さらに n 層側に形成した場合に加えて次のような作用がある。即ち、 p 型窒化物系化合物半導体は n 型窒化物系化合物半導体に比べて、通常抵抗率が 2 桁以上高い。そのため超格子層を p 層側に形成することにより、 V f の低下が顕著に現れる。

【0057】窒化物系化合物半導体はp型結晶が非常に得られにくい半導体であることが知られている。p型結晶を得るためp型不純物をドープした窒化物系化合物半 30 導体層をアニーリングして、水素を除去する技術が知られている。しかしp型が得られたといっても単にアニーリングしただけでは、その抵抗率は数Ω・cm以上もある場合がある。そこで、p型層を超格子層とすることにより結晶性が良くなる。そのため抵抗率が1桁以上低下するためVfの低下が現れやすい。

【0058】超格子層である上述の窒化物系化合物半導体層が p 側層に形成されている場合、バンドギャップエネルギーが大きな窒化物系化合物半導体層とバンドギャップエネルギーが小さな窒化物系化合物半導体層との p 40型不純物濃度が異なり、一方の層の不純物濃度を大きく、もう一方の層の不純物濃度を小さくする。超格子のn側層と同様に、バンドギャップエネルギーの大きな窒化物系化合物半導体層の方の p 型不純物濃度を大きくして、バンドギャップエネルギーの小さな窒化物系化合物半導体層の方の p 型不純物濃度を小さく、好ましくはアンドープとすると、閾値電圧、V f 等を低下させることができる。またその逆でも良い。つまりバンドギャップエネルギーの大きな窒化物系化合物半導体層の p 型不純物濃度を小さくして、バンドギャップエネルギーの小さ50

な窒化物系化合物半導体層のp型不純物濃度を大きくしても良い。理由は先に述べたとおりである。

【0059】超格子層とする場合、p型不純物の好まし いドープ量としては1×10¹⁸/cm³~1×10²¹/c m^3 、さらに好ましくは 5×10^{18} /cm³~ 5×10^{20} /c m³の範囲である。1×10¹⁸/cm³よりも少ないと、他 の窒化物系化合物半導体層との差が少なくなって、キャ リア濃度の大きい層が得られにくい傾向にある。また、 1×10²¹/cm³よりも多いと結晶性が悪くなる傾向に ある。一方、バンドギャップエネルギーが小さな窒化物 系化合物半導体のp型不純物濃度はバンドギャップエネ ルギーが大きな窒化物系化合物半導体よりも少なければ 良く、好ましくは1/10以上少ない方が望ましい。最 も好ましくはアンドープとすると最も移動度の高い層が 得られるが、膜厚が薄いため、バンドギャップエネルギ ーが大きな窒化物系化合物半導体側から拡散してくるp 型不純物が考えられるため、p型不純物の量は1×10 ²⁰/cm³以下が望ましい。p型不純物としてはMg、Z n、Ca、Be等の周期律表第IIA族、IIB族元素が好 ましく、より好ましくはMg、Ca等である。この作用 は、バンドギャップエネルギーが大きい窒化物系化合物 半導体層にP型不純物を少なくドープして、バンドギャ ップエネルギーが小さい窒化物系化合物半導体層にp型 不純物を多くドープする場合も同様である。

【0060】超格子を構成する窒化物系化合物半導体 は、不純物が高濃度にドープされる層が厚さ方向に対し 半導体層中心部近傍の不純物濃度が大きく、両端部近傍 の不純物濃度が小さい(好ましくはアンドープ)とする ことがより望ましい。具体的には、n型不純物としてS iをドープしたAlGaNと、アンドープのGaN層と で超格子層を形成した場合、AIGaNはSiをドープ しているのでドナーとして電子を伝導帯に出すが、電子 はポテンシャルの低いGaNの伝導帯に落ちる。GaN 結晶中にはドナー不純物をドープしていないので、不純 物によるキャリアの散乱を受けない。そのため電子は容 易にGaN結晶中を動くことができ、実質的な電子の移 動度が高くなる。これは前述した二次元電子ガスの効果 と類似しており、電子横方向の実質的な移動度が高くな り、抵抗率が小さくなる。さらに、バンドギャップエネ ルギーの大きいAlGaNの中心領域にn型不純物を高 濃度にドープすると効果はさらに大きくなる。即ちGa N中を移動する電子によっては、AlGaN中に含まれ るn型不純物イオン(この場合Si)の散乱を多少とも 受ける。しかしAIGaN層の厚さ方向に対して両端部 をアンドープとするとSiの散乱を受けにくくなるの で、さらにアンドープGaN層の移動度が向上するので ある。作用は若干異なるが、p層側のバンドギャップエ ネルギーが大きな窒化物系化合物半導体とバンドギャッ プエネルギーが小さな窒化物系化合物半導体とで超格子 を構成した場合も類似した効果があり、バンドギャップ

エネルギーの大きい窒化物系化合物半導体の中心領域に、p型不純物を多くドープし、両端部を少なくするか、あるいはアンドープとすることが望ましい。一方、バンドギャップエネルギーの小さな窒化物系化合物半導体にn型不純物を多くドープした層を、前述した不純物濃度の構成とすることもできる。

【0061】絶縁性基板を用いた発光素子の場合は、絶 縁性基板の一部を除去する、或いは半導体表面側から p 型及びn型用の電極面をとるためにp型半導体及びn型 半導体の露出面をエッチングなどによりそれぞれ形成さ 10 せる。各半導体層上にスパッタリング法や真空蒸着法な どによりAu、Alやそれら合金を用いて所望の形状の 各電極を形成させる。発光面側に設ける電極は、全被覆 せずに発光領域を取り囲むようにパターニングするか、 或いは金属薄膜や金属酸化物などの透明電極を用いるこ とができる。なお、p型GaNと好ましいオーミックが 得られる電極材料としては、Ni、Pt、Pd、Ni/ Au、Pt/Au、Pd/Au等が好適に挙げることが できる。n型GaNと好ましいオーミックが得られる電 極材料としてはAl、Ti、W、Cu、Zn、Sn、I 20 n等の金属若しくは合金等が好適に挙げることができ る。このように形成された発光素子をそのまま利用する こともできるし、個々に分割してLEDチップやLD素 子の如き構成とし使用してもよい。

【0062】LEDチップやLD素子として利用する場合は、形成された半導体ウエハー等をダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る。あるいは、先端のダイヤモンド針が往復 30直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割り半導体ウエハーからチップ状にカットする。このようにして窒化ガリウム系化合物半導体であるLEDチップなどの発光素子を形成させることができる。

【0063】以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。

[0064]

【実施例】(実施例1)LEDチップの発光層が少なくとも窒化ガリウム系化合物半導体として活性層がIno.oiGao.ooNであり、主発光ピークが368nmのLEDチップを用いる。LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジュウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化ガリウム系化合物半導体を成膜させることにより形成させる。ドーパントガスとしてSiH4とCp2Mgと、を切り替えることによって形成させてある。サファ 50

イヤ基板上に低温で形成させた窒化ガリウム半導体であ るバッファ層と、n導電性を有する窒化ガリウム半導体 であるコンタクト層、n型導電性を有する窒化ガリウム アルミニウム半導体であるクラッド層と、p型導電性を 有する窒化ガリウムアルミニウム半導体であるクラッド 層、p型導電性を有するコンタクト層との間にInGa Nの活性層を形成しpn接合を形成させる。(なお、p 型コンタクト層は、活性層側に不純物であるMgの拡散 がなされないようにp型クラッド層上の低不純物濃度の 窒化ガリウム層と、電極と接触する高不純物濃度の窒化 ガリウム層とを設けてある。また、活性層を400オン グストロームの膜厚で成長させる。P型導電性を有する 半導体は、成膜後400℃以上でアニールさせてあ る。) エッチングにより p n 各半導体表面を露出させた 後、スパッタリング法により各電極をそれぞれ形成させ る。こうして出来上がった半導体ウエハーをスクライブ ラインを引いた後、外力により分割させ発光素子として LEDチップを形成させる。

【0065】銀メッキした銅製リードフレームの先端にカップを有するマウント・リードにLEDチップをエポキシ樹脂でダイボンディングする。LEDチップの各電極とマウント・リード及びインナー・リードと、をそれぞれ金線でワイヤーボンディングし電気的導通を取る。【0066】LiAlO2:Fe無機蛍光体を次のようにして作製する。Al(OH)3156.0g、Li2C

にして作製する。A1 (OH) $_3156$. 0 g、 Li_2C O $_373$. 9 g及びFe (NO $_3$) $_3 \cdot 9$ H $_2O4$. 85 g をボールミルにより十分に混合し、混合原料を得る。これをアルミナルツボに入れ、空気中で 1250 $\mathbb C$ 、 2 時間焼成する。焼成品を粉砕し、篩を通してLiAl

O₂: Fe無機蛍光体を得る。得られた蛍光体は赤外に発光し、発光スペクトルのピーク波長は746nmである。発光スペクトルを図3に示す。

【0067】この蛍光体50重量部をマウント・リード上のカップ内に入れる。ゾルゲル法を用いて蛍光物質をTiO₂層に閉じこめる。こうしてLEDチップ上に蛍光物質が含有されたコーティング部が形成される。その後、さらにLEDチップや蛍光物質を外部応力、水分及び塵芥などから保護する目的で各リードと絶縁を採りつつガラスレンズを金属枠ではめ込みN₂でパージしたキ40 ャンタイプの発光ダイオードを形成させる。

【0068】さらに耐侯試験として温度25℃60mA通電、温度25℃20mA通電、温度60℃90%RH下で20mA通電の各試験においても500時間経過後においても蛍光物質に起因する変化は観測されない。

【0069】(実施例2)発光素子を以下の工程により 形成させる。サファイア基板(C面)を、反応容器内に おいて水素雰囲気中、1050℃で表面のクリーニング を行う。続いて、水素雰囲気中、510℃で、アンモニ アとTMG(トリメチルガリウム)を用い、サファイア 基板上にGaNよりなる低温成長バッファ層を約200 i7

オングストロームの膜厚で成長させる。"低温バッファ層 成長後、1050℃で、TMG及びアンモニアを用い、 アンドープGaN層よりなる第2のバッファ層を1μm の膜厚で成長させる。

【0070】1050℃で原料ガスとしてTMG、アン モニア及びシラン (SiH_4) を用い、 $Si&1 \times 10$ 18/cm3ドープしたn型GaNよりなるn側コンタクト 層を 2 μ mの膜厚で成長させる。

【0071】1050℃でTMG、TMA(トリメチル アルミニウム) アンモニア及びシランを用い、n側クラ 10 ッド層をアンドープのGaN層、50オングストローム と、Siを1×10¹⁸/cm³ドープしたAlo.1Gao.9 N層50オングストロームとを交互に積層してなる総膜 厚300オングストロームの超格子構造として成長させ る。

【0072】窒素雰囲気中、700℃でTMI、TM G、アンモニアを用い、n型不純物濃度が5×10¹⁷/ cm3未満となるノンドープIno.osGao.95Nよりな る活性層を400オングストロームの膜厚で成長させ る。

【0073】水素雰囲気中、1050℃でTMG、TM A、アンモニア、Cp2Mg(シクロペンタジエニルマ グネシウム)を用い、p側クラッド層をアンドープのG a N層 5 0 オングストロームと、Mgを1×10¹⁹/cm 3 ドープしたAlo, $_{1}$ Gao, $_{9}$ N層50オングストローム とを交互に積層してなる総膜厚600オングストローム の超格子構造として成長させる。

【0074】続いて、TMG、アンモニア、Cp2Mg で、Mgを1×10²⁰/cm³ドープしたGaNよりなる p側コンタクト層を0.12μmの膜厚で成長させる。 【0075】成長終了後、窒素雰囲気中、ウェーハを反 応容器内において、70·0℃でアニーリングを行い、p 型層をさらに低抵抗化した後、ウェーハを反応容器から 取り出し、最上層のp側コンタクト層の表面に所定の形 状のマスクを形成し、RIE(反応性イオンエッチン グ) 装置で p 側コンタクト層側からエッチングを行い、 n側コンタクト層の表面を露出させる。

【0076】エッチング後、最上層にあるp側コンタク ト層のほぼ全面に膜厚200オングストロームのNiと Auを含む透光性のp電極と、そのp電極の上にボンデ 40 ィング用のΑυよりなるρパッド電極を0.2μmの膜 厚で形成する。一方エッチングにより露出させたn型コ ンタクト層の表面にはWとAlを含むn電極を形成す る。最後にp電極の表面を保護するためにSiO2より なる絶縁膜を形成した後、ウェーハをスクライブにより 分離して350μm角の発光素子とする。順方向電圧2 0mAにおいて、およそ378nmの発光を示し、Vf は3. 3 V、出力は5 mWを示す。

【0077】上述の発光素子とAl2O3:Cr無機蛍光

せる。

【0078】 (実施例3) 実施例2において活性層をS iを1×10¹⁸/cm³ドープ、膜厚が500オングスト ロームである Ino.os Gao. 95 N層とした他は実施例 2 と同様にして発光装置を作製する。実施例2と同様の発 光特性を示す。

【0079】(実施例4)実施例2において、発光素子 をn側クラッド層をアンドープのAlo.1Gao.9N層5 0オングストロームと、Siを1×10¹⁸/cm³ドープ したGaN層50オングストロームとを交互に積層して なる総膜厚300オングストロームの超格子構造とし、 さらにp側クラッド層をアンドープのAlo.1Gao.9N 層50オングストロームと、Mgを1×10¹⁹/cm³ド ープしたGaN層50オングストロームとを交互に積層 してなる総膜厚600オングストロームの超格子構造と

【0080】上述の発光素子とCdS:Ag無機蛍光体 とした以外は実施例2と同様にして発光装置を形成させ

【0081】(実施例5)発光素子として活性層がIn o, o5G a o, 95Nであり、主発光ピークが368nmのL D素子を用いる。

【0082】サファイア基板の上に、GaNよりなる低 温成長バッファ層、アンドープGaN層よりなる第2の バッファ層、第2のバッファ層の表面にストライプ幅2 Oμm、ストライプ間隔 (窓部) 5μmのSiO₂より なる保護膜を 0. 1 μ m の膜厚で、ストライプが G a N の(11-00)方向に平行になるように形成する。保 護膜形成後、Al含有のGaNよりなるGaN層を10 μmの膜厚で成長させAl含有のGaN基板を形成させ る。GaN基板上にSiを1×1018/cm3以上ドープ したn型GaNよりなるn側コンタクト層、Siを5× 10¹⁸/cm³ドープしたIno.1Gao.9Nよりなるクラ ック防止層、次にSiを1×10¹⁹/cm³ドープしたn 型Alo.2Gao.sNよりなる層を40オングストローム と、アンドープのGaN層を40オングストロームの膜 厚で成長させ、これらの層を交互に、それぞれ100層 ずつ積層した、総膜厚0.8μmの超格子よりなるn側 クラッド層を成長させる。

【0083】アンドープAlo.osGao.95Nよりなるn 側光ガイド層、アンドープIno.oiGao.99Nよりなる 活性層、Mgを1×10¹⁹/cm³ドープしたp型Alo.2 Gao.sNであるp側キャップ層、Alo.oiGao.soN であるp側光ガイド層を形成させる。

【0084】次に、Mgを1×10¹⁹/cm³ドープした p型Alo.2Gao.sN層、アンドープGaNを40オン グストロームとを交互に積層成長した総膜厚 0.8μm の超格子構造よりなるp側クラッド層を形成させる。

【0085】最後に、p側クラッド層の上に、Mgを1 体とした以外は実施例1と同様にして発光装置を形成さ $50 \times 10^{20}/cm^3$ ドープしたp型GaNよりなるp側コン

タクト層を形成させる。

【0086】以上のようにして窒化物系化合物半導体を 成長させたウェーハをアニーリングを行いp型不純物を ドープした層をさらに低抵抗化させた後、最上層のp側 コンタクト層と、p側クラッド層とをエッチングして、 - 活性層よりも上部にある層をストライプ状のリッジ形状 とする。

【0087】次に、n側コンタクト層の表面を露出さ せ、TiとAlよりなるn電極をストライプ状に形成す る。一方p側コンタクト層のリッジ最表面にはNiとA 10 uよりなるp電極をストライプ状に形成する。

【0088】p電極と、n電極との間に露出した窒化物 系化合物半導体の表面にS.i O2よりなる絶縁膜を形成 し、絶縁膜を介してp電極と電気的に接続したpパッド 電極を形成する。

【0089】以上のようにして、n電極とp電極とを形 成したウェーハを研磨装置に移送し、窒化物系化合物半 導体を形成していない側のサファイア基板をラッピング し、除去する。ラッピング後、さらに細かい研磨剤で1 で全面をメタライズする。

【0.090】その後、Au/Sn側をスクライブして、 ストライプ状の電極に垂直な方向でバー状に劈開し、劈 開面に共振器を作製する。共振器面にSiO2とTiO2 よりなる誘電体多層膜を形成し、最後にp電極に平行な 方向で、バーを切断してレーザチップとする。次にチッ プをフェースアップ(基板とヒートシンクとが対向した 状態)でヒートシンクに設置した。形成されたLDは、 室温において、閾値電流密度2.0kA/cm²、閾値電 圧4.0 Vで、発振波長368nmの連続発振が確認さ 30 れる。

【0091】このような発光素子からの紫外レーザーを スクリーン上にバインダーと共に塗布させたYaAlsO 12: Cr無機蛍光体に照射できるよう光学的に接続させ る。スクリーン上には紫外線を発光する発光素子からの 光を更にレンズで集光させて投影させてある。集光され た紫外光を偏向ミラーにより走査させスクリーニングす ることで所望の画像を得ることができる。この場合にお いても蛍光物質が劣化することなく高輝度に赤外発光す る。

【0092】また、蛍光物質として、赤外に発光する上 記Y₃A l₅O₁₂: Cr無機蛍光体に代えて、青色、緑 色、赤色、白色、又は中間色に発光する無機蛍光体を用 いることができる。この場合も同様に色ずれ、発光効率 の低下の少ない発光装置とすることができる。

[0093]

【発明の効果】本発明の構成とすることにより高出力の 窒化物系化合物半導体の発光素子と、本発明の無機蛍光 体から選択される少なくとも一種とを利用した発光装置 とすることにより窒化ガリウム系化合物半導体から放出 された紫外光を効率よく蛍光物質によって変換させつ つ、高輝度且つ長時間の使用によっても色むら、輝度の 低下が極めて少ない高発光効率の発光装置とすることが できる。また、蛍光物質が短波長の励起波長により励起 されより長波長を発光するため、発光素子からの発光量 に比例して発光装置から蛍光物質の光が放出されること となる。

【0094】特に、紫外光と赤外光の両方が発光可能な 発光装置とすることで、両方の機能を合わせ持つ光セン `サーや、赤外光による加熱と紫外光による光硬化を同時 に行うことができる樹脂等の硬化装置に応用することが できる。また、可視光も含めて発光可能な発光装置とす れる。

【図面の簡単な説明】

【図1】図1は、本発明の発光装置の模式的断面図であ

【図2】図2は、本発明の別の発光装置の模式的断面図 である。

【図3】図3は、本発明の実施例1に使用される蛍光物 質の発光スペクトル例を示した図である。

【符号の説明】

101、201・・・蛍光物質が含有されたコーティン グ部

102、202・・・発光素子

103・・・ 筐体

104・・・筐体に設けられた電極

105・・・半田

106・・・ガラス

203・・・導電性ワイヤー

204・・・透光性無機部材となる低融点ガラス

205・・・マウント・リード

206・・・イシナー・リード

207・・・パッケージ

208・・・絶縁封止剤としての低融点ガラス

【図1】

【図3】

【図2】

発光スペクトル

フロントページの続き

(51) Int. Cl. 7

識別記号

C 0 9 K 11/64

CPM

11/80

CPM

FΙ

C 0 9 K 11/64

11/80

СРМ

СРМ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.