# Summary of DSS28 Efficiency Measurements Nov 21, 2008 G. Jones and S. Weinreb

- 1. Efficiency
- 2. Beam Patterns
- 3. Tsys Tipping Curves
- 4. Tertiary Patterns
- 5. LFF RFI
- 6. Conclusions

#### DSS28 Test Configuration, Nov 21 and Nov 23, 2008

- The telescope, tertiary, receiver, and spectrometer were controlled from Caltech through two computer terminals with screen-shots below
- Ryan Dorcey and an ITT person were in the DSS28 alidade room to start the telescope control system and take control if needed.





# DSS28 Efficiency and Tsys Measurements Using Cygnus, 100 MHz bandwidth, spectrometer detector

|                                        | Date   | 19-Nov-08 | 19-Nov-08 | 19-Nov-08 | 19-Nov-08 | 21-Nov-08 | 21-Nov-08 | 21-Nov-08 | 21-Nov-08 | 21-Nov-08 |
|----------------------------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Re                                     | ceiver | HFF       | HFF       | HFF       | HFF       | LFF       | LFF       | HFF       | LFF       | LFF       |
| Physical Area of 34m reflector         |        | 907.922   | 907.922   | 907.922   | 907.922   | 907.922   | 907.922   | 907.922   | 907.922   | 907.922   |
| Degrees per Jansky, K/J, 100% Eff      |        | 0.329     | 0.329     | 0.329     | 0.329     | 0.329     | 0.329     | 0.329     | 0.329     | 0.329     |
| Frequency                              | MHz    | 5280      | 7380      | 11480     | 3480      | 3480      | 2222      | 2222      | 1515      | 1440      |
| Wavelength, cm                         |        | 5.7       | 4.1       | 2.6       | 8.6       | 8.6       | 13.5      | 13.5      | 19.8      | 20.8      |
| Beamwidth, 70*lambda/diameter          | Deg    | 0.117     | 0.084     | 0.054     | 0.177     | 0.177     | 0.278     | 0.278     | 0.408     | 0.429     |
| Cygnus angular width, max              | Deg    | 0.027     | 0.027     | 0.027     | 0.027     | 0.027     | 0.027     | 0.027     | 0.027     | 0.027     |
| Cygnus flux, Ott Table 5, equation     |        | 342.0     | 202.5     | 101.4     | 656.8     | 656.8     | 1325.4    | 1325.4    | 2413.5    | 2613.1    |
| Cygnus flux, Baars Table 3, equatio    | n      | 338.1     | 222.9     | 128.7     | 567.9     | 567.9     | 992.3     | 992.3     | 1598.0    | 1702.1    |
| Tcal, low                              | K      | 10.0      | 6.5       | 5.0       | 12.5      | 12.0      | 18.0      | 24.0      | 35.0      | 35.0      |
| Pout, off source, cal OFF, tert -35 de | g      | 1.925     |           |           |           |           |           |           |           |           |
| Pout, off source, cal ON, tert -35 deg | 1      | 2.830     |           |           |           |           |           |           |           |           |
| Gain, Out/K                            |        | 0.091     | 0.066     | 0.029     | 0.167     | 0.009     | 0.014     | 0.024     | 0.012     | 0.009     |
| Tsys, tert -35 deg                     |        | 21.3      | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |
| Tertiary peak angle, deg               |        | -6.30     | -6.24     | -6.05     | -6.20     | 82.00     | 82.00     | -6.20     | 82.00     | 82.00     |
| Pout, tert at peak, cal off            |        | 2.75      | 1.85      | 0.760     | 5.320     | 0.818     | 1.280     | 1.520     | 2.270     | 2.150     |
| Pout, tert at peak, cal on             |        |           |           | 0.906     | 7.410     | 0.931     | 1.540     | 2.090     | 2.700     | 2.470     |
| Tsys, tert peak, off Cygnus            |        | 30.4      | 28.0      | 26.0      | 31.8      | 86.9      | 88.6      | 64.0      | 184.8     | 235.2     |
| Pout, tert at peak, on Cygnus,cal ON   |        |           | 3.50      |           |           |           |           |           |           |           |
| Pout, tert at peak, on Cygnus          |        | 6.14      | 3.07      | 0.973     | 14.900    | 1.190     | 3.420     | 4.720     | 5.450     | 4.750     |
| Tsys, tert at peak, on Cygnus          |        | 67.8      | 46.4      | 33.3      | 89.1      | 126.4     | 236.8     | 198.7     | 443.6     | 519.5     |
| Tant, Cygnus                           | K      | 37.5      | 18.4      | 7.3       | 57.3      | 39.5      | 148.2     | 134.7     | 258.8     | 284.4     |
| Tant, 100%, Cygnus                     |        | 111.9     | 70.0      | 37.8      | 196.7     | 196.7     | 314.0     | 314.0     | 525.7     | 559.9     |
| Efficiency                             |        | 0.335     | 0.264     | 0.193     | 0.291     | 0.201     | 0.472     | 0.429     | 0.492     | 0.508     |

#### GAVRT DSS28 Antenna Patterns, X and Y Polarizations

Cross-Elevation and Elevation Scans through Cygnus, Nov 19, 2008

Blue 3480 MHz, Red 5280 MHz, and Green 7380 MHz



### DSS28 Patterns at 11,280 MHz

Cygnus Source, Nov 21, 2008, 1014am PST, Tertiary -6.07 degrees Elevation 27.8 degrees, Efficiency 19%, Tsys = 26K

Theoretical Beamwidth at 70\*lambda/D = .054 degrees





#### DSS28 Tipping Curve – Tsys of HFF Receiver vs Elevation Angle at 5380 MHz

- Data of Nov 19, 2008 ~630PM. DSS27 off. Tertiary pointed at HFF
- Spectrometer used as detector with 100 MHz bandwidth
- Data calibrated by separate Tsys measurement of ~30K at zenith
- Increase in noise is ~8K from zenith to 30 degrees





# Tertiary Scans at 5280 MHz On Cygnus

- •Peak Cygnus response is at -6.76 degrees from encoder zero.
- •Vertical scale is 11K per division.
- •Top curve is X polarization; bottom curve is Y polarization.
- Spillover noise peaks at about +/7 degrees from peak gain point
- With tertiary -20 degrees off peak
   Tsys = 22K, at peak gain point
   Tsys = 30K.

Off Cygnus, 1 degree in Az







#### **Tertiary Scans on Cygnus**

- •Top chart is at 3480 MHz. The two traces are the two polarizations.
- •Bottom chart is at 11,480 MHz
- Note difference in horizontal and vertical scales.
- The peak at -6.5 degrees is due to Cygnus. Peaks at 0 and -14 degrees are due to spillover.





## LFF Tsys and RFI

Tsys and RFI level in the 0.5 to 4 GHz range increased significantly when the receiver was moved from the DSS13 pad to the DSS28 vertex

Tsys of LFF X, Blue on Ground Near DSS13, Aug 27, 2008 Red on DSS28, Sep 06, 2008



#### **RFI Due to LFF Cryocooler Drive Electronics**

The switch-mode driver generates 5 MHz harmonics in the GHz range

- •Data below is for 1540 MHz (left) to 1420 MHz (right), the abscissa is IF frequency
- •Red curves are for the LFF receiver and blue curves are for the HFF receiver
- •Vertical scale is in log power. Thus 1 div is 5 dB and the 5 MHz harmonics are a few dB above receiver noise
- Other RFI is present

#### Cryocooler Power Off



#### Cryocooler Power On



### Conclusions

- The measured efficiency using the radio source Cygnus as a calibrator ranged from 51% at 1440 MHz and 19% at 11,480 MHz. Focusing errors are suspected as being the source of the decreased efficiency at high frequencies.
- Tsys of HFF from 3.5 to 11.5 GHz is ~30K at zenith with tertiary peaked for maximum gain. It decreases to 22K if the tertiary is pointed away from the feed and increases to ~38K at elevation of 30 degrees (as measured at 5.3 GHz).
- At 2.2 GHz the HFF efficiency of 43% and Tsys of 64K which is gives better Aeff/Tsys than the LFF (47% and 89K).
- The LFF is picking up much RFI below 2 GHz and the cooler driver has been identified as one source of the RFI. Further tests of the vertex TV camera and receiver power supplies are needed to check for RFI.