

Durée : 2 h. Calculatrice interdite. Les sous-parties sont en grande partie indépendantes. L'annexe est à séparer et à rendre avec votre copie. On veillera à encadrer les résultats et à justifier toute affirmation.

I - Problème 1 : Démodulation stéréo.

La radio FM est diffusée via des ondes électromagnétiques sur la plage de fréquences entre 87,5 MHz et 107 MHz. Le signal sonore à transmettre est modulé en fréquence. On cherche à fabriquer un démodulateur radio.

On considère le signal modulé en fréquence $e(t) = E_0 \cos \left[2\pi f_m(t) t \right]$ avec $f_m(t) = f_0 + \alpha \frac{\cos(2\pi f t)}{t}$ en supposant $2\pi\alpha f \ll f_0$ et $f \ll f_0$. En sortie de l'oscillateur à verrouillage de phase, on obtient un signal de tension $a(t) = A\cos(2\pi f_0 t)$.

Q1. Rappeler la définition de la fréquence instantanée, puis calculer la fréquence instantanée du signal modulé e(t).

- **Q2.** Exprimer w(t) de manière à faire apparaître les différentes bandes de fréquence de son spectre.
- Q3. En déduire que le montage ci-dessus permet de retrouver le signal utile de fréquence f, en précisant le cahier des charges du dernier bloc "?".
- **Q4.** On observe que le signal s(t) obtenu en sortie du démodulateur de fréquence est en fait composé de 2 signaux :

Le son transmis est en stéréophonie, L représente le son de gauche et R le son de droite. Proposer un montage permettant de reconstruire le signal L du canal de gauche et le signal R du canal de droite.

On attendra:

- o Un schéma-bloc du montage
- o les détails de la méthode de démodulation choisie
- o les fréquences de coupure des filtres

Toute démarche, même incomplète, sera valorisée

II - Problème 2 : Champ électrique près d'une ligne haute tension.

On étudie ici le champ électrique à proximité d'une ligne électrique très haute tension.

Pour simplifier les calculs, on ne considère qu'une ligne monophasée, constituée de deux câbles N et P cylindriques parallèles, supposés de longueurs infinies, de rayons identiques R et séparés d'une distance D grande devant R.

On modélise la ligne électrique d'un point de vue électrostatique. À chaque instant, les tensions entre les deux câbles sont opposées, et on note V_0 le potentiel du câble P.

Du fait de l'inégalité $D \gg R$, on admet que la charge linéique du câble P a pour expression $\lambda = \frac{2\pi\varepsilon_0 V_0}{\ln\left(\frac{D}{R}\right)}$, le câble N portant une charge opposée à celle de P.

On repère un point M de l'espace par ses coordonnées polaires (r, θ) , l'origine O étant placée au milieu de N et P.

Q5. Rappeler l'équation de Maxwell-Gauss ainsi que le théorème de Gauss pour l'électrostatique.

Q6. On considère dans un premier temps uniquement le fil infini situé en P, de charge linéique λ . Démontrer, en détaillant les étapes de votre raisonnement, que le champ électrique créé en un point M par ce fil vaut : $\overrightarrow{E_P}(\mathbf{M}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{\overrightarrow{PM}}{\mathbf{PM}^2}$.

Q7. Calculer le potentiel V(M) créé au point M par le câble P seul en fonction de λ , de PM et de ε_0 et d'une constante.

Q8. Exprimer le potentiel électrique $V(r, \theta)$ créé au point M par la ligne électrique constituée des deux câbles (on fixera arbitrairement le potentiel nul à l'infini).

Q9. Montrer que pour $r \gg D$ (approximation dipolaire), le potentiel peut s'écrire de manière approchée $V(r,\theta) \simeq \frac{\lambda D\cos\theta}{2\pi\varepsilon_0 r}$.

On donne l'expression du gradient en coordonnées cylindriques :

$$\overrightarrow{\operatorname{grad}} V(r,\theta) = \frac{\partial V}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial V}{\partial \theta} \overrightarrow{e_\theta}$$

Q10. Exprimer les composantes radiale et orthoradiale du champ électrique à grande distance de la ligne électrique. En déduire la norme du champ électrique et commenter sa dépendance vis-à-vis de r et de θ .

On considère une ligne THT ayant les caractéristiques suivantes : $V_0 = 400$ kV, D = 5 m, R = 3 cm et h = 15 m, et on rappelle que $\varepsilon_0 = 8,85 \times 10^{-12}$ F.m⁻¹

Q11. Calculer l'ordre de grandeur de la valeur E_0 du champ électrique au pied de la ligne électrique à partir de l'expression précédente.

Fig. 1 – Lignes équipotentielles à proximité de la ligne très haute tension

Q12. Les symétries des lignes équipotentielles étaient-elles prévisibles? Pourquoi?

Q13. En déduire l'allure des lignes de champ électrique (à compléter sur le graphique en annexe, le câble chargé positivement à l'instant illustré étant à droite). Expliquer comment estimer la valeur du champ électrique au pied de la ligne électrique à partir de la seule étude de ces lignes équipotentielles. En France, un arrêté du 12 mai 2001 stipule que le champ électrique ne doit pas dépasser 5 kV/m au sol.

Q14. La ligne étudiée est-elle en accord avec la réglementation?

III - Problème 3 : Paratonnerre.

On souhaite déterminer la distance de sécurité à respecter vis-à-vis des paratonnerres durant un orage.

Lorsqu'un paratonnerre est exposé à un éclair, le courant électrique I provenant de l'éclair circule intégralement au travers du cylindre métallique du paratonnerre, puis rejoint le sol (de conductivité γ_s). On se place en régime stationnaire pour cette étude, c'est-à-dire durant la centaine de millisecondes où un courant établi I, imposé par le nuage, circule.

Fig. 2 – Schéma global puis zoomé de la situation

Le courant quitte le métal au-travers d'une demi-sphère, et est supposé radial (à symétrie sphérique) une fois dans le sol, on note $\overrightarrow{j} = j(r)\overrightarrow{e_r}$ la densité volumique de courant électrique.

- Q15. Rappeler l'équation de conservation de la charge électrique en 3D, puis sa simplification en régime stationnaire.
- **Q16.** Que peut-on alors dire sur le flux du vecteur \overrightarrow{j} et pourquoi?
- **Q17.** Justifier de façon rigoureuse que le courant électrique I(r) passant au-travers d'un hémisphère de rayon $r > R_a$ dans le sol est indépendant de r, et vaut donc I.
- **Q18.** En associant à votre calcul un schéma clair de la géométrie utilisée, exprimer la densité volumique de courant j(r) en fonction de I et de r.
- **Q19.** On suppose que le sol se comporte comme un conducteur électrique de conductivité γ_s . Rappeler l'expression reliant \overrightarrow{E} à \overrightarrow{j} .
- **Q20.** En déduire l'expression du champ \overrightarrow{E} régnant dans le sol, puis l'expression du potentiel électrique V(r) en fonction de I, r et γ_s . On prendra $V \to 0$ loin du point O.

On cherche à déterminer la résistance électrique du sol de conductivité γ_s .

Q21. Exprimer la résistance électrique R du sol entre R_a et R_b , puis entre R_a et $R_b \to +\infty$.

On appelle R_h la résistance du corps humain mesurée entre ses deux pieds supposés distants de a. Pour ne pas être électrocuté (c'est-à-dire pour ne pas que son corps ne soit traversé par un courant supérieur à une valeur seuil notée I_{max}), il faut que son pied le plus proche de la prise soit au minimum à une distance D du point O.

Q22. Déterminer la relation entre D, a, R_h , I, I_{max} et γ_s .

La résistivité ρ_s du sol est typiquement de l'ordre de 300 Ω .m.

Q23. En déduire, en justifiant, la valeur de la conductivité électrique γ_s du sol.

La résistivité de l'eau de pluie est de l'ordre de 10Ω .m.

- **Q24.** Lors d'un orage, justifier qualitativement de l'effet de l'humidité du sol sur sa résistance électrique, puis sur le risque d'électrocution.
- **Q25.** Proposer un ordre de grandeur de conductivité électrique γ_m plausible pour un métal, en déduire s'il est légitime ou non de négliger depuis le départ la résistance électrique du paratonnerre cylindrique, long de $\ell = 2$ m et d'un diamètre d = 1 cm.

Généralement pour un éclair on obtient un courant I de l'ordre de 10^4 A.

- **Q26.** Proposer un ordre de grandeur plausible pour I_{max} , pour a ainsi que pour R_h . En déduire une valeur en ordre de grandeur pour D, valeur que l'on commentera. Toute démarche, même incomplète, sera valorisée.
- **Q27.** Comment s'adapte le résultat précédent, si l'extrémité du paratonnerre est enterrée à une profondeur H?

Prénom:

IV - Annexe

Annexe à détacher et à rendre avec votre copie

Fig. 3 – À un instant t, simulation des équipotentielles entre les deux câbles chargés, le câble chargé négativement étant à gauche, et le câble chargé positivement étant à droite.

5/5

B. Bernard