Generalization and Distributed Learning of GFlowNets

Tiago da Silva, Amauri Souza, Omar Rivasplata, Vikas Garg, Samuel Kaski, Diego Mesquita

Keywords — GFlowNets, Distributed learning, PAC-Bayes

TL;DR

- we introduce the first non-vacuous generalization bounds for GFlowNets,
- we develop the first Azuma-type PAC-Bayesian bounds for understanding the generalization of GFlowNets under the light of Martingale theory,
- we demonstrate the harmful effect of the trajectory length on the proven learnability of a generalizable policy for GFlowNets,
- we introduce the first distributed algorithm for learning GFlowNets, Subgraph Asynchronous Learning, and show that it drastically accelerates learning convergence and mode discovery when compared against a centralized approach for relevant benchmark tasks

I. BACKGROUND: GFLOWNETS

GFlowNets are amortized algorithms for sampling from distributions over discrete and compositional objects (such as graphs).

Figure 1: A GFlowNet learns a forward policy on a state graph.

A flow network is defined over an extension \mathcal{S} of \mathcal{G} , which then represents the sink nodes. To navigate through this network and sample from \mathcal{G} in proportion to a **reward** function $R: \mathcal{G} \to \mathbb{R}_+$, a forward (resp. backward) policy $p_F(\tau)$ ($p_B(\tau|x)$) is used.

$$p_{F}(\tau) = \prod_{(s,s')\in\tau} p_{F(s'\mid s)} \text{ and } \sum_{\tau \rightsquigarrow g} p_{F}(\tau) = R(g). \tag{1}$$

To achieve this, we parameterize $p_F(\tau)$ as a neural network trained by minimizing

$$\mathcal{L}_{TB}(p_F) = \mathbb{E}\left[\left(\log \frac{p_F(\tau)Z}{p_B(\tau \mid x)R(x)}\right)^2\right]. \tag{2}$$

for a given $p_B(\tau|x)$. GFlowNets can be trained in an **off-policy** fashion and the above expectation can be under any full-support distribution over trajectories.

II. BACKGROUND: PROBABLY APPROXIMATELY CORRECT BAYESIAN BOUNDS

Let \mathcal{L} be a loss function on a parameter space Θ , e.g., the squared loss. Also, let $\hat{\mathcal{L}}(\theta, X)$ be its empirical counterpart evaluated on a dataset X.

PAC-Bayesian bounds. Given "prior" Q (independent of X) and posterior P distributions over Θ , a PAC-Bayesian bound establishes an upper limit for the expectation of (unobserved) $\mathcal L$ based on the (observed) $\hat{\mathcal L}$ and a complexity term φ and a confidence level δ

$$\mathbb{E}_{\theta \sim P}[\mathcal{L}(\theta)] \leq \mathbb{E}_{\theta \sim P}\left[\hat{\mathcal{L}}(\theta, \boldsymbol{X})\right] + \varphi(\delta, P, Q, |\boldsymbol{X}|). \tag{3}$$

When $\mathcal{L}(\theta) \leq B$ a.e., we refer to a bound as *vacuous* if

$$\mathbb{E}_{\theta \sim P} \left[\hat{\mathcal{L}}(\theta, \boldsymbol{X}) \right] + \varphi(\delta, P, Q, |\boldsymbol{X}|) \ge B. \tag{4}$$

Otherwise, the bound is *non-vacuous*. Historically, the search for non-vacuous PAC-Bayesian bounds has been associated to the search for provably generalizable learning algorithms. In this regard, recent works have built upon the basic PAC-Bayesian inequalities to obtain theoretical guarantees for GANs, transformers, armed bandits, and variational autoencoders.

Data-dependent priors for PAC-Bayesian bounds. Often, φ involves the KL divergence between P and Q, which dominates the upper bound and commonly results in vacuously true statements. To circumvent this issue, we separate $X = X_\alpha \cup X_{1-\alpha}$ into disjoint and independent subsets. A posterior P is learned on $X_{1-\alpha}$ through conventional methods and a prior Q is subsequently learned on X_α by minimizing the PAC-Bayesian upper bound,

$$Q^{\star} = \operatorname{argmin}_{Q} \mathbb{E}_{\theta \sim P} \left[\hat{\mathcal{L}}(\theta, \boldsymbol{X}_{\alpha}) \right] + \varphi(\delta, P, Q, \alpha |\boldsymbol{X}|). \tag{5}$$

III. Non-vacuous Generalization Bounds for GFlowNets

There are four ingredients for a PAC-Bayesian bound: a bounded risk functional \mathcal{L} , a prior distribution Q, a posterior distribution P, and a learning algorithm. In alignment with the broader literature, we use a diagonal Gaussian distribution for both P and Q with fixed (small) variance. For learning, we use SGD.

A bounded risk functional for GFlowNets. In a recent work, we demonstrated that Flow Consistency in Subgraphs (FCS) is a sound and tractable learning objective for GFlowNets.

$$FCS(\pi, p_{\top}) = \mathbb{E}_{\mathcal{B}} \left[TV(\pi^{\mathcal{B}}, p_{\top}^{\mathcal{B}}) \right], \tag{6}$$

in which $\pi \propto R$ is the target distribution and

$$p_{\top(x)} = \sum_{\tau \text{ finishing at } x} p_{F(\tau)} \tag{7}$$

is the probability of $x \in \mathcal{G}$ under p_F ; the expectation is under a distribution of random independent subsets of \mathcal{G} . Intuitively, FCS measures the total variation TV between π and p_{\top} on random subgraphs of the underlying flow network.

The stochastic and bounded nature of FCS make it a suitable candidate for pursuing a PAC-Bayesian analysis of GFlowNets. We will refer to FCS by L and to its empirical counterpart by \hat{L} to emphasize its use as a risk functional for assessing the generalization of GFlowNets.

Non-vacuous generalization bounds. Let \mathcal{T}_n be a n-sized set of trajectories sampled from a stationary distribution. Also, let P and Q be distributions over Θ . Then,

$$L_{\text{FCS}}(P) \leq \hat{L}_{\text{FCS}}(P, \mathcal{T}_{1-\alpha}) + \min \left(\begin{cases} \eta + \sqrt{\eta \left(\eta + 2\hat{L}_{\text{FCS}}(P, \mathcal{T}_{1-\alpha}) \right)} \\ \sqrt{\frac{\eta}{2}} \end{cases} \right) \tag{8}$$

in which the complexity term η is, for chosen $\alpha \in (0, 1)$,

$$\eta := \frac{\mathrm{KL}(P \parallel Q) + \log \frac{2\sqrt{\lfloor (1-\alpha)n \rfloor}}{\delta}}{\lfloor (1-\alpha)n \rfloor}.$$
(9)

We optimize Equation 8 to obtain data-dependent priors Q over Θ . Figure 2 shows the resulting bounds are non-vacuous. These are the first positive and rigorous results regarding the genearlization GFlowNets in the literature.

Figure 2: Non-vacuous generalization bounds for GFlowNets.

Oracle generalization bounds for GFlowNets. Let $\mathcal L$ be the within-trajectory detailed balance loss function and assume that $\mathcal L \leq U$ a.e.. Additionally, define t_m as the maximum trajectory length within the flow network and T as a budget for the number of transitions.

$$\mathbb{E}_{\theta \sim P}[\mathcal{L}(\theta)] \leq \frac{1}{\beta} \mathbb{E}_{\theta \sim P} \left[\hat{\mathcal{L}}(\theta) \right] + \alpha_{T,n} \left(\text{KL}(P \parallel Q) + \log \frac{2}{\delta} \right) + \frac{\log t_m}{\beta T \lambda} + \gamma \frac{\lambda 2U^2}{\beta T} (10)$$

in which $\beta \in (0, 1)$, $\lambda > 0$, and

$$\alpha_{T,n} = \frac{U}{2\beta(1-\beta)n} + \frac{1}{\beta T\lambda}.$$
 (11)

IV. Subgraph Asynchronous Learning (SAL)

Equation 10 demonstrates that the larger trajectory length t_m play a key role in constraining the generalization potential of GFlowNets. To mitigate this effect, we propose a distributed divide-and-conquer learning algorithm that breaks up the state graph into smaller subgraphs and learns a GFlowNet for each subgraph. The resulting GFlowNets are aggregated in a final, efficient step. We refer to this approach as **Subgraph Asynchronous Learning** (SAL).

Figure 3: An illustration of SAL.

SAL. Let $\{(p_F^1, F_1), ..., (p_F^m, F_m)\}$ be m GFlowNets defined over each of the m components of the partition defining SAL. Also, let q_j be a distribution over the initial states and p_E^j be an distribution over trajecotires within the jth component S_j . Then, each $\left(p_F^j, F_j\right)$ is learned by minimizing the amortized trajectory balance loss over S_j

$$\mathcal{L}_{\text{ATB}}^{j}\left(p_{F}^{j}, F_{j}\right) = \mathbb{E}_{s \sim q_{j}} \mathbb{E}_{\tau \sim p_{E}^{j(\cdot \mid s)}} \left[\left(\log \frac{F_{j}(s) p_{F}^{j}(\tau \mid s)}{R(x) p_{B}^{j}(\tau \mid x)} \right)^{2} \right], \tag{12}$$
 which replaces Z by the flow function F^{j} in the conventional \mathcal{L}_{TB} .

Our experimental results in Figure 5 and Figure 6 show that SAL often accelerate training convergence and increase the mode-finding capability of the GFlowNet. These observations are in alignment with our theoretical analysis in Equation 10 (Figure 5) and corroborate the intuition that a divide-and-conquer approach enhances the exploration of the learning agent (Figure 6).

Figure 5: SAL improves learning convergence for the hypergrid environment.

Figure 6: SAL drastically accelerates mode-finding for benchmark tasks.

Recursive SAL. SAL can be hierarchically extended to accommodate nested partitions of the state graph. This is illustrated in Figure [ref], and the resulting method is referred to as Recursive SAL. Notably, the depth of the nested partition characterizes a trade-off between the number of trainable models and the difficult of the problem that each model solves. The balance between these factors should be addressed in a case-by-case basis in future endeavors.

Figure 7: Illustration of Recursive SAL as an hierarchical extension of SAL.