JEE-Main-27-07-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: Let $A = \begin{bmatrix} 4 & -2 \\ \alpha & \beta \end{bmatrix}$. If $A^2 + \gamma A + 18I = 0$, then $\det(A)$ equals:

Options:

- (a) 18
- (b) 18
- (c) -50
- (d) 50

Answer: (b)

Solution:

Characteristic equation of matrix:

$$\begin{bmatrix} 4 - \lambda & -2 \\ \alpha & \beta - \lambda \end{bmatrix} = 0$$

$$\Rightarrow 4\beta + \lambda^2 - (\beta + 4)\lambda + 2\alpha = 0$$

$$\therefore A^2 - (\beta + 4)A + 2\alpha I = 0$$

$$\Rightarrow \gamma = 0 - \beta + 4 & 2\alpha + 4\beta = 18$$

 $\det(A) = 4\beta + 2\alpha = 18$

Question: The area of region enclosed by $y \le 4x^2, x^2 \le 9y, y \le 4$ is equal to:

Options:

- (a) $\frac{40}{3}$
- (b) $\frac{56}{3}$
- (c) $\frac{112}{3}$
- (d) $\frac{80}{3}$

Answer: (d)

Solution:

Required Area =
$$2\int_{0}^{4} \left(3\sqrt{y} - \frac{\sqrt{y}}{2}\right) dy$$

$$=2\cdot\frac{5}{2}\int_{0}^{4}\sqrt{y}dy$$

$$=5\left[\frac{2}{3}y^{\frac{3}{2}}\right]_0^4$$

$$=\frac{10}{3}(4)^{\frac{3}{2}}=\frac{80}{3}$$

Question: If the length of the latus rectum of a parabola whose focus is (a, a) and tangent at its vertex is x + y = a, is 16. Then |a| is equal to:

Options:

- (a) $2\sqrt{3}$
- (b) $2\sqrt{2}$
- (c) $4\sqrt{2}$
- (d) 4

Answer: (c)

Solution:

Length of perpendicular from focus to tangent at vertex:

$$I = \left| \frac{a}{\sqrt{2}} \right|$$

So length of latus rectum will be, 4l = 16

$$\Rightarrow 2\sqrt{2} |a| = 16$$
$$\Rightarrow |a| = 4\sqrt{2}$$

$$\Rightarrow |a| = 4\sqrt{2}$$

Question: Let $f(x) = \frac{\left(729 p(1+x)^{\frac{1}{7}}\right) - 3}{\left(729(1+qx)^{\frac{1}{3}}\right) - 9}$, and f(x) is continuous at x = 0, then:

Options:

(a)
$$21qf(0) - p = 0$$

(b)
$$21q^2 f(0) - p^3 = 0$$

(c)
$$21p^2 f(0) - q^3 = 0$$

(d)
$$p^2 f(0) - 7q^2 = 0$$

Answer: (a)

Solution:

 $\lim_{x\to 0} f(x)$ exists if numerator of f(x) is zero at x=0.

Clearly, p = 3

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3\left[(x+1)^{\frac{1}{7}} - 1 \right]}{9\left[(1+qx)^{\frac{1}{3}} - 1 \right]}$$

$$=\frac{1}{3}\left(\frac{\frac{1}{7}}{\frac{q}{3}}\right)=\frac{1}{7q}=f(0)$$

So,
$$21qf(0) = 3 = p$$

$$\Rightarrow 21qf(0) - p = 0$$

Question: Let $f(x) = \min\{[x], [x-1], [x-2], ..., [x-10]\}$ where [] denotes greatest integer

function. Then $\int_{0}^{10} (f(x) + |f(x)| + f^{2}(x)) dx$ is equal to:

Options:

- (a) 55
- (b) 385
- (c) 5050
- (d) 270

Answer: (b)

Solution:

Clearly
$$f(x) = [x-10]$$

Here
$$f(x) \le 0 \ \forall \ x \in (0,10)$$

So,
$$\int_{0}^{10} (f(x) + |f(x)|) dx = 0$$

Now,
$$\int_{0}^{10} f^{2}(x) dx = \int_{0}^{10} ([x]-10)^{2} dx$$

$$= \int_{0}^{1} 100 \, dx + \int_{1}^{2} 81 \, dx + \int_{2}^{3} 64 \, dx + \dots + \int_{9}^{10} 1 \, dx$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + 10^{2})$$

$$= \frac{10 \times 11 \times 21}{6}$$

$$= 385$$

Question: The value of $\int_{0}^{2} \left(\left| 2x^{3} - 3x \right| + \left[x - \frac{1}{2} \right] \right) dx$, where [.] is greatest integer function is:

Options:

- (a) $\frac{7}{6}$
- (b) $\frac{19}{12}$
- (c) $\frac{17}{4}$
- (d) $\frac{3}{2}$

Answer: (c)

Solution:

Given,
$$\int_{0}^{2} \left(\left| 2x^{3} - 3x \right| + \left[x - \frac{1}{2} \right] \right) dx$$

$$\int_{0}^{2} \left| 2x^{3} - 3x \right| dx + \int_{0}^{2} \left[x - \frac{1}{2} \right] dx$$

$$= \int_{0}^{\sqrt{\frac{3}{2}}} \left(3x - 2x^{3} \right) dx + \int_{\sqrt{\frac{3}{2}}}^{2} \left(2x^{3} - 3x \right) dx + \int_{0}^{\frac{1}{2}} \left[x - \frac{1}{2} \right] dx + \int_{\frac{3}{2}}^{\frac{3}{2}} \left[x - \frac{1}{2} \right] dx + \int_{\frac{3}{2}}^{2} \left[x - \frac{1}{2} \right] dx$$

$$= \left[\frac{3x^{2} - x^{4}}{2} \right]_{0}^{\sqrt{\frac{3}{2}}} + \left[\frac{x^{4} - 3x^{2}}{2} \right]_{\sqrt{\frac{3}{2}}}^{2} + \left(-\frac{1}{2} \right) + 0 + \left(\frac{1}{2} \right)$$

$$= \frac{9}{8} + 2 + \frac{9}{8}$$

Question: If the line of intersection of the planes ax + by = 3 and ax + by + cz = 0 makes an angle 30° with the plane y - z + 2 = 0, then the direction cosines of line are:

Options:

(a)
$$\frac{1}{\sqrt{2}}$$
, 0, $\frac{1}{2}$

(b)
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0$$

(c)
$$\frac{1}{\sqrt{5}}$$
, $-\frac{2}{\sqrt{5}}$, 0
(d) $\frac{1}{2}$, $-\frac{\sqrt{3}}{2}$, 0

(d)
$$\frac{1}{2}$$
, $-\frac{\sqrt{3}}{2}$, (

Answer: (b)

Solution:

Direction ratios of line of intersection (b, -a, 0)

As angle between this line and y-z+2=0 is 30°

$$\therefore \sin \theta = \left| \frac{a}{\sqrt{a^2 + b^2} \cdot \sqrt{2}} \right|$$

$$\Rightarrow a^2 = b^2$$

 \therefore Possible combination is $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0$

Question: If
$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \alpha + \gamma & \alpha + \beta \end{bmatrix}$$
 and $\frac{\left| adj \left(adj adj \left(adj$

 α, β, γ are distinct natural number, then number of triplets of (α, β, γ) is _____.

Answer: 55.00

Solution:

$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \alpha + \gamma & \alpha + \beta \end{bmatrix}$$

$$R_3 \rightarrow R_3 + R_1$$

$$\Rightarrow |A| = (\alpha + \beta + \gamma) \begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= (\alpha + \beta + \gamma)(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$$

$$\left| adj \left(adj \left(adj \left(adj \left(A \right) \right) \right) \right) \right| = \left| A \right|^{(2)^{4}} = \left| A \right|^{16}$$

$$|A| = (\alpha + \beta + \gamma)(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$$

Clearly
$$(\alpha + \beta + \gamma)^{16} = 2^{32} \cdot 3^{16}$$

$$\Rightarrow (\alpha + \beta + \gamma) = 12$$

Number of positive integral solutions = ${}^{11}C_2 = 55$

Question:
$$\frac{\left(2^{3}-1^{3}\right)}{\left(1\times7\right)}+\frac{\left\{\left(4^{3}-3^{3}\right)+\left(2^{3}-1^{3}\right)\right\}}{\left(2\times11\right)}+\frac{\left\{\left(6^{3}-5^{3}\right)+\left(4^{3}-3^{3}\right)+\left(2^{3}-1^{3}\right)\right\}}{\left(3\times15\right)}+... \quad upto \quad 15$$

terms

Answer: 120.00

Solution:

$$\frac{2^{3}-1^{3}}{1\times7} + \frac{4^{3}-3^{3}+2^{3}-1^{3}}{2\times11} + \dots$$

$$= 1+2+3+\dots$$

$$= \left(\frac{15\times16}{2}\right)$$

$$= 120$$

Question: Domain of
$$f(x) = \sin^{-1} \left[2x^2 - 3 \right] + \log_2 \left(\log_{\frac{1}{2}} \left(x^2 - 5x + 5 \right) \right)$$

Answer: $1, \frac{5-\sqrt{5}}{2}$

Solution:

$$-1 \le \left[2x^2 - 3\right] \le 1$$
$$-1 \le \left(2x^2 - 3\right) < 2$$

$$2 \le 2x^2 < 5$$

$$1 \le x^2 < \frac{5}{2}$$
(1)

$$\log_{\frac{1}{2}}\left(x^2 - 5x + 5\right) > 0$$

$$0 < x^2 - 5x + 5 < 1$$

$$\Rightarrow x^2 - 5x + 5 = 0$$
 and $x^2 - 5x + 4 < 0$

$$x \in \left(-\infty, \frac{5-\sqrt{5}}{2}\right) \cup \left(\frac{5+\sqrt{5}}{2}, \infty\right) \quad \dots(2)$$

and $x \in (1,4)$

Taking intersection of (1) and (2)

$$x \in \left(1, \frac{5 - \sqrt{5}}{2}\right)$$

Question: Let n^{th} term of any sequence is given by $T_n = \frac{-1^3 + 2^3 - 3^3 + 4^3 + ... + (2n)^3}{n(4n+3)}$, then

$$\sum_{n=1}^{15} T_n$$
 is equal to _____.

Answer: 120.00

Solution:

Solution:

$$T_{n} = \frac{2\left[2^{3} + 4^{3} + \dots + \left(2n^{3}\right)\right] - \left[1^{3} + 2^{3} + 3^{3} + \dots + \left(2n\right)^{3}\right]}{n\left(4n + 3\right)}$$

$$T_{n} = \frac{16\left(\frac{n\left(n + 1\right)}{2}\right)^{2} - \left(\frac{2n\left(2n + 1\right)}{2}\right)^{2}}{n\left(4n + 2\right)}$$

$$= \frac{n^{2}\left(4n + 3\right)}{n\left(4n + 3\right)} = n$$

$$\therefore \sum_{n=1}^{15} T_{n} = \frac{15 \times 16}{2} = 120$$