Homework 4

Deadline: Saturday, Nov. 12, 11:55 PM (Upload it to Gradescope.)

Fall 2022

Q1. Assume that we have a 2-way set associative cache. Assume that the addresses are 10 bits. Assume that the SA cache has 2 rows/sets (and 2 ways/lines per set). Assume that each cache block is 8 bytes, and each way/line is 32 bytes.

Answer the following questions:

a. What is the size of C, B, and S?

Blocks per way(or Line) =
$$32/8 = 4$$

2 Ways(or Lines) per Set and 2 Sets in the Cache = 4*2*2 = 16

$$C = Log(Blocks per Cache) = log 16 = 4$$

$$B = Log(Blocks per Line) = log 4 = 2$$

$$S = Log(Lines per Set) = log 2 = 1$$

b. What is the cache's block offset, index, and tag size?

So offset = 2 bits.

2 sets so Index bits = 1

Tag =
$$10 - 2 - 1 = 7$$
 bits.

c. Complete the following table for the cache. Assume that the cache is filled already except for two lines. Use <u>LRU</u> replacement policy where (1) means the most recently used.

HEX_addr	10-bit Binary	tag in hex	index	offset
111	0100010001	22	0	01
135	0100110101	26	1	01
304	1100000100	60	1	00
305	1100000101	60	1	01
110	0100010000	22	0	00

SA LRU	Addresses and tags are shown in HEX. Compute the tag for each Way (W0, W1,).					
	Set 0		Set 1			
Address	W0	W1	W0	W1	Hit/Miss	
110	00 (0)	22 (1)	00 (0)	00 (1)	M	
136	00 (0)	22 (1)	26 (1)	00 (0)	M	
121	24 (1)	22 (0)	26 (1)	00 (0)	M	
305	24 (1)	22 (0)	26 <mark>(0)</mark>	60 (1)	M	
111	24(0)	22(1)	26(0)	60(1)	Н	
135	24(0)	22(1)	26(1)	60 <mark>(0)</mark>	Н	
304	24(0)	22(1)	26(0)	60(1)	Н	
305	24(0)	22(1)	26(0)	60(1)	Н	
110	24(0)	22(1)	26(0)	60(1)	Н	

Q2. For any of the techniques below, comment on each column. For each cell put *Increase* (I), *Decrease* (D), or *Unchanged* (U).

	Hit Time	Miss Rate	Miss Penalty	Compulsory Miss	Conflict Miss	Capacity Miss
Prefetching ¹	U	D	U	D	U	U
Double the associativity (capacity and line size constant) ²	I	D	U	U	D	U
Bigger block size ³	I	D	I	U	D	D

More cache levels ⁴	U	U	D	U	U	U
Victim cache ⁵	I	D	U	U	D	U

Notes:

- ¹ Prefetching will speculatively fetch data in cache before core requests it, and therefore it can help with Compulsory misses, leading to reducing miss rate.
- ² Having more ways in a set helps decreasing conflict miss. Hit time will increase, if the cache does not have a parallel way lookup.
- ³ Assuming that a bigger block size increases the size of the cache. Otherwise, unchanged.
- ⁴ Assuming we are talking about hit time of only L1 cache, having an L2 cache will help decreasing Miss Penalty
- ⁵ High traffic Set's existing data will be evicted to Victim caches (rather than main memory or Lower level caches), therefore decreasing the Miss rate and conflict misses.