

Programación en Eviews

Richard P. Pérez Palma Ponce rperezpalma19@gmail.com

I- Introducción al Eviews

Archivos de Trabajo (Workfile)

wf(page=nombre_pestaña) nombre_workfile (cod_frecuencia) [frecuencia]

WF: Object > New Object

Series

Equation

Group

lector

Vlatrix

Table

- Opción 1: Series {nombre}
- **Opción 2:** Genr *{nombre}*
- Ejemplo:

series pbi = @trend + @nrnd*100 pbi.line series cons =@trend*0.2+@nrnd*10 cons.line

WF: Object > New Object

Series

Equation

Group

Vector

Vlatrix

Table

- Equation {nombre}.ls [var_end var_exog]
- Ejemplo:

Equation eq1.ls pbi c cons Show eq1

WF: Object > New Object

Series

Equation

Group

Vector

Matrix

Table

- Group {nombre} [Variables]
- Ejemplo:

Group Variables_Macro pbi consumo Show Variables_Macro Variables_Macro.line Variables_Macro.line(m)

WF: Object > New Object

Series

Equation

Group

Vector

Matrix

Table

- Vector(dimensión) {nombre}
- Formas de Llenado:

```
Opción 1:
```

```
{nombre}(num_fila) = [Dato]
Ejemplo:
```

vector(5) cuadrados
show cuadrados
cuadrados(1) = 1

Opción 2:

{nombre}.fill [Datos]
Ejemplo:

cuadrados.fill 1,4,9,16,25

WF: Object > New Object

Series

Equation

Group

Vector

Matrix

Table

- Matrix(filas, columnas) {nombre}
- Formas de Llenado:

```
Opción 1:
```

```
{nombre}(fila , columna) = [Dato]
Ejemplo:
matrix(3,3) X
```

```
X(1,1) = 1
```

Opción 2:

{nombre}.fill(b=c) [Datos] Ejemplo:

X.fill(b=r) 1,2,3,4,5,6,7,8,10

WF: Object > New Object

Series

Equation

Group

Jector

viatrix

Table

- Table {nombre}
- Forma de Llenado: {nombre}(fila, columna) = [Dato]
- Ejemplo

Table Resultados_Mat Resultados_Mat(1,1) = "Resultados" Resultados_Mat(3,1) = "Determinante"

Color de Texto

(nombre_tabla).settextcolor(rango) color

Fondo

Ancho de Celda

Formato de Número

Color de Texto

Fondo

(nombre_tabla).setfillcolor(rango) color

Ancho de Celda

Formato de Número

Color de Texto

Fondo

Ancho de Celda

(nombre_tabla).setwidth(Núm. Columna) Tamaño

Formato de Número

Color de Texto

Fondo

Ancho de Celda

Formato de Número

(nombre_tabla).setformat (rango) cód.form

Nomenclaturas de Tablas (Colores y Formatos)

Colores

Blue

Red

Black

White

Green

Purple

Orange

Yellow

Gray

Código Formato

g: Datos Significativos

f: Números decimales

e: Notación científica

p: | Porcentajes

r: Fracción

II- Repaso Estadístico, Importación de datos y Gráficos

Funciones Estadísticas

Función de Distribución Acumulativa (CDF)

Función de Densidad (PDF)

Función Quantil (CDF Inversa)

Generar Variables
Aleatorias

@cnorm(x)

Función de Distribución Acumulativa (CDF)

Función de Densidad (PDF)

Función Quantil (CDF Inversa)

Generar Variables
Aleatorias

@dnorm(x)

Función de Distribución Acumulativa (CDF)

Función de Densidad (PDF)

Función Quantil (CDF Inversa)

Generar Variables
Aleatorias

@qnorm(probabilidad)

Función de Distribución Acumulativa (CDF)

Función de Densidad (PDF)

Función Quantil (CDF Inversa)

Generar Variables
Aleatorias

- Series (nombre) @r(función)
- Funciones:
 - @rnorm
 - @rfdist(v1,v2)
 - @rchisq(V)
 - @rlalplace
 - @rtdist(v)

Ejemplos de Distribución

Beginning of Name
@c
@d
@q
@r

Chi-square	<pre>@cchisq(x,v), @dchisq(x,v), @qchisq(p,v), @rchisq(v)</pre>	$f(x,v)=\frac{1}{2^{v/2}\Gamma(v/2)}x^{v/2-1}e^{-x/2}$ where $x\geq 0$, and $v>0$. Note that the degrees of freedom parameter v need not be an integer.
<i>F</i> -distribution	<pre>@cfdist(x,v1,v2), @dfdist(x,v1,v2), @qfdist(p,v1,v2), @rfdist(v1,v1)</pre>	$f(x, v_1, v_2) = \frac{v_1^{v_1/2}v_2^{v_2/2}}{B(v_1/2, v_2/2)}$ $x^{(v_1-2)/2}(v_2+v_1x)^{-(v_1+v_2)/2}$ where $x\geq 0$, and $v_1, v_2>0$. Note that the
		functions allow for fractional degrees of freedom parameters v_1 and v_2 .
Normal (Gaussian)	<pre>@cnorm(x), @dnorm(x), @qnorm(p), @rnorm, nrnd</pre>	$f(x) = (2\pi)^{-1/2} e^{-x^2/2}$ for $-\infty < x < \infty$.
Student's t -distribution	<pre>@ctdist(x,v), @dtdist(x,v), @qtdist(p,v), @rtdist(v)</pre>	$f(x, v) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\left(v\pi\right)^{\frac{1}{2}}\Gamma\left(\frac{v}{2}\right)} \left(1 + \left(\frac{x^2}{v}\right)\right)^{\frac{-(v+1)}{2}}$
		for $-\infty < x < \infty$, and $v > 0$. Note that $v = 1$, yields the Cauchy distribution.

Prueba de Hipótesis

1- Definir Hipótesis Nula

- 2- Definir el estadígrafo
- 3- Comparar con un estadístico

4- Concluir

Ejemplo:

Test de Normalidad

1- H₀: Existe Normalidad

2- Estadígrafo:

$$JB = n * (\frac{asimetr(a^2)}{6} + \frac{(Kurtosis - 3)^2}{24})$$

3- Estadístico: χ_2^2 . Comparar (o calcular el p-value) con el estadígrafo.

p-value = 1-
$$\chi_2^2$$
 (*JB*)

4- Concluir.

Creación de Gráficos

Más Usados:

Línea: .line Barra: .bar

Área: .area

Dispersión: .scat

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

- .setelem(1) lcolor(red)
- .setelem(2) lcolor(black)

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

- .setelem(1) lwidth(2)
- setelem(2) lwidth(3)

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

.addtext(t) Figura 1: Crecimiento del PBI y el Tipo de Cambio

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

- .setelem(1) legend(Crecimiento del PBI)
- .setelem(2) legend(Tipo de Cambio)

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

.options fillcolor(blue)

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

Color de Línea

Ancho de Línea

Agregar Título

Agregar Leyenda

Color de Fondo Interno

Color de Fondo Externo

Guardar Gráfico

III- Teoría Econométrica: Supuestos y Nociones Básicas

Modelos de Regresión Lineal General (MRLG)

Los Modelos de Regresión forman el núcleo de la econometría. A pesar de que los económetras estiman una gran variedad de modelos estadísticos usando diferentes tipos de data, la mayoría de esos modelos no son más que modelos de regresión o afines a ellos. El más elemental de los modelos de regresión es el modelo de regresión lineal general (MRLG), el cual puede ser representado por la siguiente ecuación:

$$y_t = \beta_1 + \beta_2 X_t + \varepsilon_t. \tag{1}$$

El subíndice t es usado para expresar las observaciones de una muestra. El numero total de observaciones es n, por lo tanto t toma valores de 1 a n. Cada observación cuenta con una variable independiente, denotada como y_t y variables endógenas (o explicativas) denotado por X_t .

y_t Variable Endógena, Regresionada o Dependiente

Variable Exógena, Regresoras o Independientes

 ε_t Término de Error o Disturbances

 x_t

Modelos de Regresión Lineal General (MRLG)

¿Como interpreter los parámetros? El parámetro β_0 se puede interpretar como aquel intercepto del modelo de regresión, es aquel término constante del cual parte nuestro modelo. Mientras que el parámetro β_1 representa el efecto marginal de la variable exógena (X) sobre la variable dependiente (Y). Matemáticamente hablando:

Ceteris Paribus:

$$\beta_1 = \frac{\partial y_t}{\partial x_t} \tag{2}$$

Tipo de Observaciones Corte Transversal: Individuos, empresas, países, etc.

Corta Serial: Series de tiempo de frecuencia mensual, trimestral, anual, etc.

Representación Matricial del MRLG

En búsqueda de un mejor análisis se usan la representación matricial del modelo. Sea entonces el siguiente modelo de regresión lineal general:

$$Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + \dots \beta_k X_{kt} + \varepsilon_t. \tag{3}$$

Se puede representar en matrices de la siguiente manera:

$$Y_{N\times 1} = X_{N\times K}\beta_{K\times 1} + \varepsilon_{N\times 1}. (4)$$

donde:

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n, \end{pmatrix}, \quad X = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1k} \\ X_{21} & X_{22} & \cdots & X_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nk} \end{pmatrix} = [X_1 \ X_2 \ \cdots \ X_K], \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$$

Supuestos del MRLG

Linealidad en Parámetros

No Heterocedasticidad

Supuestos sobre Var. Regresoras No Multicolinealidad (Rango Completo)

No Autocorrelación

Exogeneidad de las variables regresoras

Distribución Normal de los Errores

Supuestos sobre el error

Método de Estimación: Mínimos Cuadrados Ordinarios

El estimador de mínimos cuadrados que introducimos utiliza como criterio la minimización de la norma euclídea del vector ε , es decir, de la suma $\mathrm{SR} = \sum_1^T \widehat{\varepsilon}_t^2$, que denominaremos en lo sucesivo suma residual, sin mencionar explícitamente su dependencia de los residuos. La suma residual puede expresarse en su notación matricial como $\widehat{\varepsilon}'\widehat{\varepsilon}$, siendo $\widehat{\varepsilon}$ el vector de residuos Nx1, entonces :

$$\begin{array}{rcl} y & = & X\widehat{\beta} + \widehat{\varepsilon} \\ \min \ \widehat{\varepsilon}'\widehat{\varepsilon} & = & (y - X\widehat{\beta})'(y - X\widehat{\beta}) \\ S(\widehat{\beta}) & = & Y'Y - Y'X\widehat{\beta} - \widehat{\beta}'X'Y + \widehat{\beta}X'X\widehat{\beta} \\ \frac{\partial (S(\widehat{\beta}))}{\partial \beta} & = & -2X'Y + 2X'X\beta = 0 \end{array}$$

$$(X'X)\widehat{\beta} = X'Y$$

 $\widehat{\beta}_{MCO} = (X'X)^{-1}X'Y$

Obtenemos el siguiente estimador siempre y cuando $(X'X)^{-1}$ existe, es decir X debe tener rango completo. Luego analizamos la derivada de segundo orden para determinar si se presenta un máximo un mínimo:

$$\frac{\partial^2 (S(\widehat{\beta}))}{\partial \widehat{\beta} \partial \widehat{\beta}'} = 2X'X$$

Resultados del MRLG por Mínimos Cuadrados Ordinarios

• $\hat{\beta}_{mco} = (X'X)^{-1}(X'Y)$

Dependent Variable: LCIR Method: Least Squares Date: 02/09/14 Time: 21:44

Sample: 2000M01 2010M03 Included observations: 123

$var(\beta_{mco})$	$= \sigma_e^2 (X'X)^{-1}$	-
	$var(\beta_{mco})$	$var(\beta_{mco}) = \sigma_e^2 (X'X)^{-1}$

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-5.244999	0.033765	-29.85051	0.0000
LPBI	2.842340		84.18023	0.0000
TIPMN	-0.012944		-5.234310	0.0000

	-		
Disquered	0.000542	Maan danandantuur	8.979982
R-squared	0.989542	Mean dependent var	
Adjusted R-squared	0.989368	S.D. dependent var	0.522395
S.E. of regression	0.053866	Akaike info criterion	-2.980562
Sum squared resid	0.348180	Schwarz criterion	-2.911972
Log likelihood	186.3046	Hannan-Quinn criter.	-2.952701
F-statistic	5677.279	Durbin-Watson stat	1.236330
Prob(F-statistic)	0.000000		

•
$$t = \frac{\widehat{\beta}_i - \beta_i}{SD(\beta_i)}$$

•
$$\operatorname{var}(\beta) = \sigma(X'X)^{-1}$$

•
$$\sigma = \frac{\varepsilon' \varepsilon}{n-k}$$

•
$$F = \frac{R^2}{(1-R^2)} * \frac{(n-k)}{(k-1)} \sim F(k-1, n-k)$$

Niveles de Bondad de Ajuste

Dependent Variable: LCIR Method: Least Squares Date: 02/09/14 Time: 21:44 Sample: 2000M01 2010M03 Included observations: 123

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C LPBI TIPMN	-5.244999 2.842340 -0.012944	0.175709 0.033765 0.002473	-29.85051 84.18023 -5.234310	0.0000 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.989542 0.989368 0.053866 0.348180 186.3046 5677.279 0.000000	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	8.979982 0.522395 -2.980562 -2.911972 -2.952701 1.236330	

- $P^2 = 1 \frac{SCR}{STC}$
- $\bar{R}^2 = 1 \frac{SCR}{STC} \frac{(N-1)}{(N-K)}$

- R^2 nunca baja su valor cuando una variable es agregada
- El R^2 puede ser negativo
- Si existe un término constate entonces : $0 \le R^2 \le 1$
- R^2 es una medida lineal

