

Probability Theory and Combinatorics

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Repetition from last time
- Bayesian probability calculations and total probability
- Bernoulli trials
- Combinatorics
- An experiment

Basic Probability

Probability theory tells us what is in the sample given nature

Basic Axions:

Axion 1: $0 \le Pr(A) \le 1$

Axion 2: Pr(S) = 1

S: Sample space

A: Event

λ: Sample point

 Often (but not always) we use the relative frequency:

$$\Pr(A) = \frac{N_A}{N}$$

Basic Probability

• Complement: $Pr(A) = 1 - Pr(\bar{A})$

• Union: $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

• Joint: $Pr(A \cap B) = Pr(A|B) \cdot Pr(B) = Pr(B|A) \cdot Pr(A)$

• Conditional: Pr(A|B)

Bayes Rule and Independence

Bayes Rule:

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B|A) \cdot Pr(A)}{Pr(B)}$$

A and B independent:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

$$Pr(B|A) = Pr(B)$$
 and $Pr(A|B) = Pr(A)$

Total Probability

We sometime call it the marginal

Pr(A) of an event is the total probability of that event.

$$Pr(A) = Pr(A \cap B) + Pr(A \cap \overline{B})$$
$$= Pr(A|B) \cdot Pr(B) + Pr(A|\overline{B}) \cdot Pr(\overline{B})$$

Total Probability

We sometime call it the marginal

Pr(A) of an event is the total probability of that event.

$$Pr(A) = Pr(A \cap B_1) + Pr(A \cap B_2) + \dots + Pr(A \cap B_i) + \dots$$

= $Pr(A|B_1) \cdot Pr(B_1) + Pr(A|B_2) \cdot Pr(B_2) + \dots$

where the B_i 's are mutually exclusive $(B_i \cap B_j = \emptyset \text{ for } i \neq j)$ and $S = B_1 \cup B_2 \cup ... \cup B_i \cup ...$

Summary of Probability

 $Pr(A) = \frac{N_A}{N_S}$ Relative frequency:

 $Pr(\bar{A}) = 1 - Pr(A)$ Complement:

 $Pr(\bar{A} \cap B) = Pr(B) - Pr(A)$ if $A \subset B$ **Exclusive:**

 $Pr(A \cap B) = Pr(A) \cdot Pr(B)$ Independence:

- In a conversation effort, we look for dead orcas when we are visiting an ocean.
- Given (conditioned) that we have selected an ocean to examine, how many males and females orcas will we observe?

Gender\ location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female (B)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

Orca Example (Cont'd)

The probability selecting an ocean is identical.

Event A₁: Atlantic

Event A₂: Antartica

Event A₃: Pacific

Event A₄: Seaworld

S			
A ₁	A_2		
A_3	A_4		

$$Pr(A_1) = Pr(A_2) = Pr(A_3) = Pr(A_4) = \frac{1}{4}$$

 $Pr(A_1) + Pr(A_2) + Pr(A_3) + Pr(A_4) = 1$

The events $A_1 - A_4$ are mutually exclusive.

Orca Example Total Probability

The event B, that the orca is a male, can then be written as:

$$B = (B \cap A_1) \cup (B \cap A_2) \cup (B \cap A_3) \cup (B \cap A_4)$$

• The total probability of a found killer whale, being a male, since event $A_1 - A_4$ are mutually exclusive (sum rule):

$$Pr(B) = Pr(B \cap A_1) + Pr(B \cap A_2) + Pr(B \cap A_3) + Pr(B \cap A_4)$$

We rewrite with Bayes rule:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2) + Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$$

Total Probability:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2)$$

 $+ Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$

Gender\ location	Atlantic (A₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female (B)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

$$Pr(B) = \frac{8}{10} \cdot \frac{1}{4} + \frac{3}{10} \cdot \frac{1}{4} + \frac{1}{12} \cdot \frac{1}{4} + \frac{19}{28} \cdot \frac{1}{4} = 0,465$$

We can also use a Graphical approach with Venn diagrams.

 The total probability of B is given by the marked area divided by the area of S.

Orca Example

 If an orca found is a male, what is the probability of us being in the Antartica?

$$Pr(A_2|B)$$

We use Bayes rule:

$$Pr(A_2|B) = \frac{Pr(A_2 \cap B)}{Pr(B)} = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)}$$

•
$$Pr(B) = 0.47$$
; $Pr(A_2) = 0.25$; $Pr(B|A_2) = 0.3$

$$Pr(A_2|B) = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)} = \frac{0.3 \cdot 0.25}{0.47} = 0.16$$

Orca Example

- Is locations of the found orca independent of gender?
- How would you test it?

Gender\ location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female (B)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

$$Pr(A_2 \mid \bar{B}) = \frac{Pr(\bar{B} \mid A_2)Pr(A_2)}{Pr(\bar{B})} = \frac{0.7 \cdot 0.25}{1 - 0.47} = 0.33 \neq 0.16 = Pr(A_2 \mid B)$$

Orca Example Conclusion

 Prior: What is the probability of us being in the Antartica?

$$Pr(A_2) = 0.25$$

 Likelihood: A tacked orca is found dead in Antartica, what is the probability of it being male?

$$Pr(B|A_2) = 0.3$$

 Posterior: A tacked orca whale is found dead and is a male, what is the probability of us being in Antartica?

$$Pr(A_2|B) = 0.16$$

- In a conversation effort, we pick up dead orcas from different oceans.
- The dead orcas are marked with the ocean and collected in the same container.
- A dead orca is randomly picked from the container:
 What is the probability that the orca is a male?

Gender\ location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female (B)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

Total Probability:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2)$$
$$+ Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$$

	S	
A_1		A_2
	T B -	
A_3		A_4

Gender\ location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)	Total
Female (B)	2	7	11	9	29
Male (B)	8	3	1	19	31
Total	10	10	12	28	60

$$Pr(B) = \frac{10}{60} \cdot \frac{8}{10} + \frac{10}{60} \cdot \frac{3}{10} + \frac{12}{60} \cdot \frac{1}{12} + \frac{28}{60} \cdot \frac{19}{28} = \frac{8+3+1+19}{60} = \frac{31}{60} = 0,517$$

 If an orca found is a male, what is the probability that it is from the Antartica?

$$Pr(A_2|B)$$

We use Bayes rule:

$$Pr(A_2|B) = \frac{Pr(A_2 \cap B)}{Pr(B)} = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)}$$

• Pr(B) = 0.517; $Pr(A_2) = 0.167$; $Pr(B|A_2) = 0.3$

$$Pr(A_2|B) = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)} = \frac{0.3 \cdot 0.167}{0.517} = \frac{3}{31} = 0.097$$

Tests and Types of Errors

We can classify testing with two outcomes as:

Given	Disease (True)	No disease (False)
Positive test	Sensitivity	Type I Error
Negative test	Type II Error	Specificity

Example: Ebola Test

- Event E: Patient are infectious with Ebola.
- Event T: The Ebola test is positive.

Example: Ebola Test

 Prior: What are the probability of a patient having Ebola?

 Likelihood: What are the probability of a positive test given infectious with Ebola? Or of a negative test given not infectious with Ebola?

$$Pr(T|E)$$
 Sensitivity $Pr(ar{T}|ar{E})$ Specificity

 Posterior: What are the probability of being infectious given that a test is positive?

Example: Ebola Test — Total Probability

 Prior: What are the probability of a patient having ebola?

$$Pr(E) = 0.01$$
 $Pr(\bar{E}) = 1 - 0.01 = 0.99$

Likelihood: What are the probabilities of the tests?

$$Pr(T|E)=0,9$$
 Sensitivity $Pr(\bar{T}|\bar{E})=0,8$ Specificity

 Complement: What are the probability of a patient having a positive test without being infectious?

$$Pr(T|\bar{E}) = 1 - Pr(\bar{T}|\bar{E}) = 0, 2$$

Example: Ebola Test — Total Probability

 Total Probability with the Sum Rule: What are the probability of a patient having a positive test?

$$Pr(T) = Pr(T \cap E) + Pr(T \cap \bar{E})$$

The Product Rule: We can with Bayes rule find

$$Pr(T) = Pr(T|E) Pr(E) + Pr(T|\overline{E}) Pr(\overline{E})$$

= 0,9 \cdot 0,01 + 0,2 \cdot 0.99
= 0,207

Ebola Example — Posterior

We have: We now know the probabilities:

$$P(E)=0,01$$
 Prior $P(T)=0,207$ Total probability $P(T|E)=0,9$ Likelihood

 Product Rule: What are the probability of being infectious given that a test is positive?

$$Pr(E|T) = \frac{Pr(T|E)Pr(E)}{Pr(T)} = \frac{0.9 \cdot 0.01}{0.207} = 0.043$$

Ebola Example — Posterior

What are the probability of being infectious given that a test is positive?

$$Pr(E|T) = \frac{Pr(T|E)Pr(E)}{Pr(T)} = \frac{0.9 \cdot 0.01}{0.207} = 0.043$$

What are the probability of <u>not</u> being infectious given that a test is positive?

$$Pr(\bar{E} \mid T) = 1 - Pr(E|T) = 0.957$$

What are the probability of <u>not</u> being infectious given a negative test?

$$Pr(\bar{E}|\bar{T}) = \frac{Pr(\bar{T}|\bar{E})Pr(\bar{E})}{Pr(\bar{T})} = \frac{0.8 \cdot 0.99}{0.793} = 0.999$$

What are the probability of being infectious given that a test is negative?

$$Pr(\mathbf{E} \mid \overline{T}) = 1 - Pr(\overline{E} \mid \overline{T}) = 0.001$$

Ebola Example — Conclusion

 If the test is negative, it is allmost certain (99,9%) that you're not being infectious:

$$Pr(\bar{E}|\bar{T}) = 0.999$$

 If the test is positive, there is still only a small risk (4,3%) that you actually are being infectious:

$$Pr(E|T) = 0.043$$

Monty Hall Dilemma

- We have three doors
- Behind two of the doors is a goat
- Behind one door is a million dollars (\$)
- What is the chance of guessing behind which door the money is?

$$Pr(\$|1) = Pr(\$|2) = Pr(\$|3) = \frac{1}{3}$$

Monty Hall Dilemma cont'd

- We make a selection of a door, say door 2, without open it.
- The quizmaster eliminates one of the doors (\$), which we did not select, based on his knowledge on the goat situation, say door 1.
- We can now reselect between door 2 and 3.
- What are the probabilities of the money being behind the two doors? Should we switch door?

Monty Hall Dilemma cont'd

 What are the probabilities of the money being behind the two doors? Should we switch door?

The Binomial Distribution

We have n repeated trials.

- Bernoulli trial
- Each trial has two possible outcomes
 - Success probability p
 - Failure probability q=1-p
- What is the probability of having k successes out of n trials?
- We write this question as:

$$Pr_n(k) = \frac{n!}{k! (n-k)!} p^k q^{n-k} = \binom{n}{k} p^k q^{n-k}$$

• Faculty: $n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ 0! = 1

Bernoulli Trial

Definition: The binomial coefficient is defined as:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Number of ways to select k objects out of a collection of n objects

Example: Out of 10 children, what is the probability that exactly 2 are girls?

$$Pr_n(k) = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

$$= \frac{10!}{2!(10-2)!} (0,5)^2 (1-0,5)^{10-2} = 0,044$$

Combinatorics

- Take an object from a collection of n objects.
- Repeat the test k times.

Types of Experiments:

- With or without replacement
- Ordered or unordered

Example:

What is the probability that if I have two children that the oldest is a girl and the youngest is a boy?

- Ordered.
- With replacement.

Ordered with Replacement

- Take an object from a collection of n objects.
- Put it back each time.
- Repeat the test k times.
- The sequence of the objects matters.
- The number of combinations is: n^k
 - Each trial has n possible outcomes
 - All the trials are independent

Ordered without Replacement

- Take an object from a collection of n objects.
- Do not put it back each time.
- Repeat the test k times.
- The sequence of the objects matters.
- The number of combinations is:

$$_{n}P_{k} = P_{k}^{n} = \frac{n!}{(n-k)!} = n \cdot (n-1) \dots (n-k+1)$$

The 1st trial has n possible outcomes, the 2nd trial has n-1 possible outcomes, ..., the k'th trial has n-k+1 possible outcomes

Unordered without Replacement

- Take an object from a collection of n objects.
- Do not put it back each time.
- Repeat the test k times.
- The sequence of the objects do not matter.
- The number of combinations is:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

The k ordered draws can be shuffled in k! different ways (sequences)

Unordered with Replacement

- Take an object from a collection of n objects.
- Put it back each time.
- Repeat the test k times.
- The sequence of the objects do not matter.
- The number of combinations is:

$$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$$

Each time we draw an object, we should replace an object (except for the last draw). This correspond to we start with n+k-1 object and draw k objects unordered without replacement.

Summary of Combinatorics

 We can summarise the number of possible outcomes of k trials, sampled from a set of n objects.

		Replacement		
		With	Without	
Sam-	Ordered	n^k	$P_k^n = \frac{n!}{(n-k)!}$	
pling	Unordered	$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$	$\binom{n}{k} = \frac{n!}{k! (n-k)!}$	

Experiment: Birthday Example

- k=35 students
- n=365 (number of days in the year)
- What are the probability that at least two have birthday on the same day (E)?

All have different Ordered sampling without replacement (k unique birthsdays in n days)

Complement rule

$$\Pr(E) = 1 - \Pr(\bar{E}) = 1 - \frac{\frac{n!}{(n-k)!}}{n^k} = 1 - \frac{\frac{365!}{(365-35)!}}{365^{35}} > 80\%$$

Ordered sampling with replacement (all possible combinations of k students birthdays in n days)

- k=50 students: Pr(E)>97%
- k=75 students: Pr(E) > 99,97%

Words and Concepts to Know

Type I Error Prior Binomial coefficient Sampling Unordered Replacement Specificity Likelihood Combinatorics Bernoulli Trial Sensitivity Posterior Ordered Binomial distribution Type II Error