OneRoof Pipeline Architecture

OneRoof Development Team

2025-07-08

Table of contents

1	Mai	n Workflow Entry Point	2			
	1.1	main.nf	2			
2	Plat	form-Specific Workflows	3			
	2.1	NANOPORE Workflow (workflows/nanopore.nf)	3			
	2.2	ILLUMINA Workflow (workflows/illumina.nf)	3			
3	Sub-workflows and Dependencies					
	3.1	Data Gathering Workflows	4			
		3.1.1 GATHER_NANOPORE (subworkflows/gather_nanopore.nf)	4			
		3.1.2 GATHER_ILLUMINA (subworkflows/gather_illumina.nf)	5			
	3.2	Processing Workflows	5			
		3.2.1 ILLUMINA_CORRECTION (subworkflows/illumina_correction.nf)	5			
		3.2.2 PRIMER_HANDLING (subworkflows/primer_handling.nf)	5			
		3.2.3 ALIGNMENT (subworkflows/alignment.nf)	6			
		3.2.4 VARIANTS (subworkflows/variant_calling.nf)	6			
		3.2.5 CONSENSUS (subworkflows/consensus_calling.nf)	6			
	3.3	Optional Feature Workflows	7			
		3.3.1 PHYLO (subworkflows/phylo.nf)	7			
		3.3.2 METAGENOMICS (subworkflows/metagenomics.nf)	7			
		3.3.3 HAPLOTYPING (subworkflows/haplotyping.nf)	7			
4	Key	Modules/Processes	8			
	4.1	Critical Processes for Testing	8			
		4.1.1 dorado.nf	8			
		4.1.2 minimap2.nf	8			
		4.1.3 ivar.nf	8			
		4.1.4 samtools.nf	8			
		4.1.5 validate.nf	8			

5	Critical Testing Paths	8
	5.1 Minimal Test Path (No Primers)	8
	5.2 Full Test Path (With Primers)	9
	5.3 Key Input Requirements	
6	Output Structure	9
	6.1 Nanopore Output Tree	9
	6.2 Illumina Output Tree	10
7	Configuration and Parameters	10
	7.1 Platform-Specific Defaults	10
	7.2 Resource Management	
	7.3 Key Process Labels	
8	Error Handling and Retry Strategy	11
9	Testing Considerations	11
	9.1 Critical Validation Points	11
	9.2 Edge Cases to Test	
	9.3 Integration Test Scenarios	

This document provides a comprehensive map of the OneRoof Nextflow pipeline structure, including workflow dependencies, data flow, and critical testing points.

1 Main Workflow Entry Point

1.1 main.nf

- Purpose: Central orchestrator that routes to platform-specific workflows
- Key Functions:
 - Platform detection (Nanopore vs Illumina) based on input parameters
 - Input channel initialization for all required files
 - Workflow selection and invocation
 - Email notification on completion

Input Channels:

- ch_primer_bed: Optional primer BED file
- ch_refseq: Required reference FASTA
- ch_ref_gbk: Optional GenBank file for annotation
- ch_contam_fasta: Optional contamination sequences
- ch_metagenomics_ref: Optional metagenomics reference

- ch_snpeff_config: Optional SnpEff configuration
- ch_primer_tsv: Optional primer TSV file
- ch_sylph_tax_db: Optional Sylph taxonomy database

2 Platform-Specific Workflows

2.1 NANOPORE Workflow (workflows/nanopore.nf)

Workflow DAG:

```
graph TD
    A[GATHER_NANOPORE] --> B[PRIMER_HANDLING]
B --> C[ALIGNMENT]
C --> D[CONSENSUS]
C --> E[VARIANTS]
C --> F[HAPLOTYPING]
C --> G[METAGENOMICS]
D --> H[PHYLO]
E --> I[SLACK_ALERT]

style B fill:#f9f,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5
```

Note

Dashed boxes indicate optional workflow components

Key Parameters:

- platform = "ont"
- min_variant_frequency = 0.2
- min_qual = 10

2.2 ILLUMINA Workflow (workflows/illumina.nf)

Workflow DAG:

```
graph TD
    A[GATHER_ILLUMINA] --> B[ILLUMINA_CORRECTION]
    B --> C[PRIMER_HANDLING]
    C --> D[ALIGNMENT]
```

```
D --> E[CONSENSUS]
D --> F[VARIANTS]
D --> G[PHYLO]
D --> H[METAGENOMICS]
E --> I[SLACK_ALERT]
F --> I
style C fill:#f9f,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5
```

Key Parameters:

```
platform = "illumina"min_variant_frequency = 0.05min_qual = 20
```

3 Sub-workflows and Dependencies

3.1 Data Gathering Workflows

3.1.1 GATHER_NANOPORE (subworkflows/gather_nanopore.nf)

Purpose: Handle multiple Nanopore input formats

Input Options:

- 1. Remote POD5 monitoring (remote_pod5_location)
- 2. Local POD5 directory (pod5_dir)
- 3. Pre-called staging directory (precalled_staging)
- 4. Pre-processed data directory (prepped_data)

Process Flow:

```
graph LR
    A[POD5 Input] --> B[DOWNLOAD_MODELS]
    B --> C[BASECALL]
    C --> D[MERGE_BAMS]
    D --> E[DEMULTIPLEX]

F[Pre-called Input] --> G[VALIDATE_NANOPORE]
    E --> G
    G --> H[FILTER_WITH_CHOPPER]
    H --> I[COMPRESS_TO_SORTED_FASTA]
```

```
I --> J[FAIDX]
J --> K[EARLY_RASUSA_READ_DOWNSAMPLING]
```

3.1.2 GATHER_ILLUMINA (subworkflows/gather_illumina.nf)

Purpose: Process paired-end Illumina FASTQ files

Process Flow:

```
graph LR
   A[Paired FASTQs] --> B[VALIDATE_ILLUMINA]
   B --> C[MERGE_READ_PAIRS]
```

3.2 Processing Workflows

3.2.1 ILLUMINA_CORRECTION (subworkflows/illumina_correction.nf)

Purpose: Quality control and decontamination for Illumina reads

Process Flow:

```
graph TD
    A[CORRECT_WITH_FASTP] --> B[DECONTAMINATE]
    B --> C[FASTQC]
    C --> D[MULTIQC]
    B --> E[COMPRESS_TO_SORTED_FASTA]
    E --> F[FAIDX]
    F --> G[EARLY_RASUSA_READ_DOWNSAMPLING]

style B fill:#f9f,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5
```

3.2.2 PRIMER_HANDLING (subworkflows/primer_handling.nf)

Purpose: Validate primers and extract complete amplicons

Input Options:

- 1. Primer BED file
- 2. Primer TSV file

Process Flow:

```
graph TD
    A[ORIENT_READS] --> B[GET_PRIMER_PATTERNS]
    B --> C[FIND_COMPLETE_AMPLICONS]
    B --> D[TRIM_ENDS_TO_PRIMERS]
    D --> E[PER_AMPLICON_FILTERS]
    E --> F[MERGE_BY_SAMPLE]
```

3.2.3 ALIGNMENT (subworkflows/alignment.nf)

Purpose: Map reads to reference and generate coverage statistics

Process Flow:

```
graph TD
    A[ALIGN_WITH_PRESET] --> B[CONVERT_AND_SORT]
    B --> C[RASUSA_ALN_DOWNSAMPLING]
    C --> D[SORT_BAM]
    D --> E[INDEX]
    E --> F[MOSDEPTH]
    F --> G[PLOT_COVERAGE]
    G --> H[COVERAGE_SUMMARY]
```

3.2.4 VARIANTS (subworkflows/variant_calling.nf)

Purpose: Call and annotate variants

Process Flow:

```
graph TD
A[CALL_VARIANTS] --> B[CONVERT_TO_VCF]
B --> C[ANNOTATE_VCF]
C --> D[EXTRACT_FIELDS]
D --> E[MERGE_VCF_FILES]
```

3.2.5 CONSENSUS (subworkflows/consensus_calling.nf)

Purpose: Generate consensus sequences

Process Flow:

```
graph LR
   A[CALL_CONSENSUS] --> B[CONCAT]
```

3.3 Optional Feature Workflows

3.3.1 PHYLO (subworkflows/phylo.nf)

Purpose: Phylogenetic analysis using Nextclade

Process Flow:

```
graph LR
    A[CHECK_DATASET] --> B[DOWNLOAD_DATASET]
    B --> C[RUN_NEXTCLADE]
```

3.3.2 METAGENOMICS (subworkflows/metagenomics.nf)

Purpose: Metagenomic classification using Sylph

Process Flow:

```
graph TD
    A[SKETCH_DATABASE_KMERS] --> C[CLASSIFY_SAMPLE]
    B[SKETCH_SAMPLE_KMERS] --> C
    C --> D[OVERLAY_TAXONOMY]
    D --> E[MERGE_TAXONOMY]

style D fill:#f9f,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5
    style E fill:#f9f,stroke:#333,stroke-width:2px,stroke-dasharray: 5 5
```

3.3.3 HAPLOTYPING (subworkflows/haplotyping.nf)

Purpose: Viral haplotype reconstruction (Nanopore only)

Condition: Number of reference sequences equals number of amplicons

4 Key Modules/Processes

4.1 Critical Processes for Testing

4.1.1 dorado.nf

• DOWNLOAD_MODELS: Model caching

• BASECALL: GPU-based basecalling

• DEMULTIPLEX: Barcode demultiplexing

4.1.2 minimap2.nf

• ALIGN_WITH_PRESET: Platform-specific alignment

4.1.3 ivar.nf

• CALL_VARIANTS: Variant detection

• CALL_CONSENSUS: Consensus generation

• CONVERT_TO_VCF: Format conversion

4.1.4 samtools.nf

• CONVERT_AND_SORT: BAM processing

• INDEX: BAM indexing

4.1.5 validate.nf

• VALIDATE_NANOPORE: Input validation

• VALIDATE_ILLUMINA: Paired-end validation

• VALIDATE_PRIMER_BED: Primer validation

5 Critical Testing Paths

5.1 Minimal Test Path (No Primers)

1. Nanopore: POD5/FASTQ \rightarrow Basecall \rightarrow Align \rightarrow Consensus/Variants

2. Illumina: Paired FASTQs \rightarrow Merge \rightarrow Align \rightarrow Consensus/Variants

5.2 Full Test Path (With Primers)

- 1. Input validation
- 2. Primer handling and amplicon extraction
- 3. Alignment and coverage analysis
- 4. Variant calling and annotation
- 5. Consensus generation
- 6. Optional: Phylogenetics, metagenomics, haplotyping

5.3 Key Input Requirements

Minimal Requirements

- Reference FASTA (--refseq)
- Sequencing data:
 - Nanopore: POD5 files + kit name OR pre-called BAM/FASTQ
 - Illumina: Paired-end FASTQ directory

• Full Feature Requirements

- Primer BED file (--primer_bed) or TSV (--primer_tsv)
- Reference GenBank (--ref_gbk) for annotation
- SnpEff config for variant annotation
- Contamination FASTA for decontamination
- Metagenomics database for classification

6 Output Structure

6.1 Nanopore Output Tree

```
nanopore/
   01_basecalled_demuxed/
   02_primer_handling/
   03_alignments/
   04_consensus_seqs/
   05_variants/
   06_QC/
   07_phylo/
```

```
metagenomics/
haplotyping/
```

6.2 Illumina Output Tree

```
illumina/
   01_merged_reads/
   02_primer_handling/
   03_alignments/
   04_consensus_seqs/
   05_variants/
   06_QC/
   07_phylo/
   metagenomics/
```

7 Configuration and Parameters

7.1 Platform-Specific Defaults

Parameter	Nanopore	Illumina
min_variant_frequency	0.2	0.05
min_qual	10	20
Alignment preset	map-ont	sr

7.2 Resource Management

- pod5_batch_size: Controls GPU memory usage
- downsample_to: Coverage depth limiting
- basecall_max: Parallel basecalling instances
- low_memory: Resource-constrained mode

7.3 Key Process Labels

- big_mem: Memory-intensive processes (variant calling, consensus)
- GPU requirements: Dorado basecalling

8 Error Handling and Retry Strategy

Most processes implement:

```
errorStrategy { task.attempt < 3 ? 'retry' : 'ignore' }
maxRetries 2</pre>
```

This provides resilience against transient failures while preventing infinite loops.

9 Testing Considerations

9.1 Critical Validation Points

- 1. Input file validation (exists, correct format)
- 2. Primer validation (coordinates, sequences)
- 3. Read count filtering (empty file handling)
- 4. Platform-specific parameter application
- 5. Optional workflow branching

9.2 Edge Cases to Test

- Empty input files
- No reads passing filters
- Missing optional inputs
- Primer mismatches
- Low coverage regions
- Multiple reference sequences
- Remote file watching timeout

9.3 Integration Test Scenarios

- 1. **Minimal run**: reference + reads only
- 2. Full featured run: all optional inputs
- 3. Real-time processing: file watching
- 4. Multi-sample processing
- 5. Platform switching: same data, different platforms