Definition (Sous-espace vectoriel de l'espace vectoriel \mathbb{R}^n)

Un sous-espace vectoriel de \mathbb{R}^n est un sous-ensemble W de \mathbb{R}^n qui vérifie les trois propriétés suivantes :

- (a) $\vec{0} \in W$ (contient le vecteur nul)
- (b) Si $\vec{v}_1 \in W$ et $\vec{v}_2 \in W$, alors $\vec{v}_1 + \vec{v}_2 \in W$ (stable pour l'addition)
- (c) Si $\vec{v} \in W$ et $\lambda \in \mathbb{R}$, alors $\lambda \vec{v} \in W$ (stable pour la multiplication par un scalaire).

Un sous-espace vectoriel W est stable par combinaison linéaire : Si $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_s$ sont dans W, alors pour tous $\lambda_1, \lambda_2, \ldots \lambda_s$ dans $\mathbb R$ nous avons

$$\sum_{i=1}^s \lambda_i \vec{v_i} = \Big(\ldots \big((\lambda_1 \vec{v_1}) + (\lambda_2 \vec{v_2}) \big) + \ldots + (\lambda_s \vec{v_s}) \Big) \in W$$

Chapitre 1 Chapitre 2 Chapitre 3

Exercice

Soit
$$W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2, x \ge 0, y \ge 0 \right\}$$
. Est-ce que W est un sous-espace vectoriel de \mathbb{R}^2 ?

L'ensemble W est constitué de tous les vecteurs dans le premier quadrant du plan x, y. Ce n'est pas un sous-espace vectoriel de \mathbb{R}^2 car non stable par la multiplication par un scalaire négatif.

Image d'une fonction

FIGURE – Image d'une fonction

Résumé (Propriétés de l'image d'une application linéaire)

L'image d'une application linéaire $T: \mathbb{R}^m \to \mathbb{R}^n$ est l'espace vectoriel engendré noté Im(T). On a :

- (a) $\overrightarrow{0} \in \operatorname{Im}(T)$,
- (b) $\forall \overrightarrow{v}_1 \in \text{Im}(T)$, $\forall \overrightarrow{v}_2 \in \text{Im}(T)$, alors $\overrightarrow{v}_1 + \overrightarrow{v}_2 \in \text{Im}(T)$, (stabilité de l'addition)
- (c) $\forall \overrightarrow{v} \in \text{Im}(T)$, $\forall \lambda \in \mathbb{R}$, alors $\lambda \overrightarrow{v} \in \text{Im}(T)$ (stabilité de la multiplication par un scalaire).

Il résulte des propriétés (b) et (c) que l'image d'une application linéaire T est stable par combinaisons linéaires : si des vecteurs $\overrightarrow{V}_1, \dots, \overrightarrow{V}_p$ sont dans l'image de $T, \lambda_1, \dots, \lambda_p$ sont des scalaires, alors $\lambda \overrightarrow{V}_1 + \dots + \lambda_p \overrightarrow{V}_p$ est encore dans l'image de T.

Propriétés de Im(T)

- (a) $\overrightarrow{0} \in \text{Im}(T)$, car $\overrightarrow{0} = A\overrightarrow{0} = T(\overrightarrow{0})$.
- (b) Soient $\overrightarrow{V}_1 \in \text{Im}(T)$ et $\overrightarrow{V}_2 \in \text{Im}(T)$.

- $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 = T(\overrightarrow{w}_1) + T(\overrightarrow{w}_2) = T(\overrightarrow{w}_1 + \overrightarrow{w}_2) \in \text{Im}(T)$
- (c) Soient $\overrightarrow{V} \in \operatorname{Im}(T)$ et $\lambda \in \mathbb{R}$
- $\Rightarrow \exists \overrightarrow{w} \in \mathbb{R}^m \text{ tel que } \overrightarrow{v} = T(\overrightarrow{w})$
- $\Rightarrow \lambda \overrightarrow{v} = \lambda T(\overrightarrow{w}) = T(\lambda \overrightarrow{w}) \in \text{Im}(T)$

Soit
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 la projection orthogonale sur le plan x_1, x_2 , c'est-à-dire $T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$. Alors $\mathrm{Im}(T)$ est le plan x_1, x_2 , constitué par les vecteurs de la forme $\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$, $x_i \in \mathbb{R}$.

FIGURE – Projection orthogonale sur le plan x_1, x_2

Definition (Espace vectoriel engendré par une famille de vecteurs)

Soit $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ une famille de vecteurs dans \mathbb{R}^n . L'ensemble des combinaisons linéaires de ces vecteurs est l'espace vectoriel engendré par cette famille de vecteurs .

$$\frac{\operatorname{Vect}(\overrightarrow{v}_{1}, \overrightarrow{v}_{2}, \cdots, \overrightarrow{v}_{m}) =}{\left\{\lambda_{1} \overrightarrow{v}_{1} + \lambda_{2} \overrightarrow{v}_{2} + \cdots + \lambda_{m} \overrightarrow{v}_{m}, \quad \lambda_{1}, \lambda_{2}, \cdots, \lambda_{m} \in \mathbb{R}\right\}.}$$

Si $V = \operatorname{Vect}(\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m)$, la famille $\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m$ engendre V ou est une famille génératrice de V.

 $\mathsf{NB}: V = \mathrm{Vect}(\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m) \subset \mathbb{R}^n \text{ est un sous-espace vectoriel de } \mathbb{R}^n.$

Chanitre 1 Chanitre 2 Chanitre 3

FIGURE - -

Proposition (Image d'une application linéaire)

L'image d'une application linéaire $T(\overrightarrow{x}) = A\overrightarrow{x}$ est l'espace vectoriel engendré par les vecteurs colonnes de A. On note cet espace $\operatorname{Im}(T)$.

Démonstration

$$T(\overrightarrow{x}) = A\overrightarrow{x} = \begin{bmatrix} \overrightarrow{v}_1 & \overrightarrow{v}_2 & \cdots & \overrightarrow{v}_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$
$$= x_1 \overrightarrow{v}_1 + x_2 \overrightarrow{v}_2 + \cdots + x_m \overrightarrow{v}_m.$$
$$\Rightarrow \operatorname{Im}(T) = \operatorname{Vect}(\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m).$$

 \mathbb{R}^n est engendré par les vecteurs $\overrightarrow{e}_1, \overrightarrow{e}_2, \cdots, \overrightarrow{e}_n$.

Chapitre 1 Chapitre 2 Chapitre 3

Problem

Déterminer
$$\operatorname{Im}(T)$$
, où $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(\overrightarrow{x}) = A\overrightarrow{x}$, avec $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$.

L'image de T est l'ensemble des vecteurs "atteints" par T:

$$T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
$$= x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3x_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = (x_1 + 3x_2) \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Im(T) est la droite D de vecteur directeur $\overrightarrow{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Ce qui précède assure que $\operatorname{Im}(T) \subset D$. Soit alors $\lambda \in \mathbb{R}$. Il existe une infinité de x_1 et x_2 dans \mathbb{R} , tels que $x_1 + 3x_2 = \lambda$ (par exemple $x_1 = \lambda$ et $x_2 = 0$).

Pour chaque x_1 et x_2 ainsi choisis, $T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \overrightarrow{u}$. Donc $D \subset \operatorname{Im}(T)$ et finalement $D = \operatorname{Im}(T)$.

Chapitre 1 Chapitre 2 Chapitre

On notera que les deux vecteurs colonnes de la matrice

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
 qui représente T , $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ et $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$ sont parallèles, ou bien encore "colinéaires"

FIGURE – Image de T

Exercice

Déterminer
$$\operatorname{Im}(T)$$
, où $T:\mathbb{R}^2 \to \mathbb{R}^3$, $T(\overrightarrow{x}) = A\overrightarrow{x}$, avec

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}.$$

Chapitre 1 Chapitre 2 Chapitre 3

L'image de $\mathcal T$ est l'ensemble des vecteurs "atteints" par $\mathcal T$, c'est-à-dire tous les vecteurs de la forme

$$T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},$$

c'est-à-dire l'ensemble des combinaisons linéaires des vecteurs

$$\overrightarrow{V}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \overrightarrow{V}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

L'image de T est le plan **engendré** par les vecteurs \overrightarrow{v}_1 et \overrightarrow{v}_2 , aussi décrit comme le plan qui passe par l'origine et les deux extrémités des vecteurs v_1 et v_2 .

FIGURE – Image de T

les deux vecteurs colonne de A ne sont pas **colinéaires**

Chapitre 1 Chapitre 2 Chapitre

Antécédant par une application linéaire

On considère $T: \mathbb{R}^3 \to \mathbb{R}^3$ donnée par

$$A = \frac{1}{9} \left[\begin{array}{rrrr} 5 & -4 & 2 \\ -4 & 5 & 2 \\ 2 & 2 & 8 \end{array} \right].$$

Trouver l'ensemble des $ec x \in \mathbb{R}^3$ tels que $T(ec x) = ec v = \left[egin{array}{c} -1/2 \ 1 \ 1 \end{array}
ight].$

Ce n'est pas un sous-espace vectoriel si $\vec{v} \neq \vec{0}$

Definition (Noyau d'une application linéaire)

Le noyau d'une application linéaire $T(\overrightarrow{x}) = A\overrightarrow{x}$ est l'ensemble des vecteurs \overrightarrow{x} solutions de l'équation $T(\overrightarrow{x}) = A\overrightarrow{x} = \overrightarrow{0}$. Cet ensemble est le plus souvent noté $\operatorname{Ker}(T)$ ou encore $\operatorname{Ker}(A)$ (de l'anglais "Kernel").

En d'autres termes le noyau de ${\cal T}$ est l'ensemble des solutions du système linéaire homogène

$$A\overrightarrow{x} = \overrightarrow{0}$$
.

Chapitre 1 Chapitre 2 Chapitre 3

FIGURE - Noyau/Image

Résumé

Étant donnée une application linéaire $T: \mathbb{R}^m \to \mathbb{R}^n$,

- L'image $\operatorname{Im}(T) \subset \mathbb{R}^n$ est un sous-espace vectoriel de l'ensemble d'arrivée \mathbb{R}^n .
- Le noyau $\operatorname{Ker}(T) \subset \mathbb{R}^m$ est un sous-espace vectoriel de l'ensemble de départ \mathbb{R}^m .

Chapitre 1 Chapitre 2 Chapitre 3

Soit T la projection orthogonale sur le plan x_1, x_2 dans \mathbb{R}^3 . Son noyau est l'ensemble des solutions de l'équation $T(\overrightarrow{x}) = \overrightarrow{0}$. Cet ensemble est constitué de l'axe x_3 , autrement dit $\mathrm{Vect}(\overrightarrow{e}_3)$.

Exercice

Trouver le noyau de l'application $T: \mathbb{R}^3 \to \mathbb{R}^2$

$$T(\overrightarrow{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \overrightarrow{x}.$$

Chapitre 1 Chapitre 2 Chapitre 3

On doit résoudre le système linéaire

$$T(\overrightarrow{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \overrightarrow{x} = \overrightarrow{0}.$$

En utilisant l'algorithme de Gauss-Jordan, on obtient

$$\operatorname{Frel} \left[\begin{array}{ccccc} 1 & 1 & 1 & \vdots & 0 \\ 1 & 2 & 3 & \vdots & 0 \end{array} \right] = \left[\begin{array}{ccccc} 1 & 0 & -1 & \vdots & 0 \\ 0 & 1 & 2 & \vdots & 0 \end{array} \right]$$

Par conséquent les solutions de ce système sont de la forme

$$egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} t \ -2t \ t \end{bmatrix} = t egin{bmatrix} 1 \ -2 \ 1 \end{bmatrix} = t \overrightarrow{u}, \quad t \in \mathbb{R}.$$

Donc $\operatorname{Ker}(T)$ dans ce cas est la droite engendrée par le vecteur

$$\overrightarrow{u} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \in \mathbb{R}^3.$$

Pour $T: \mathbb{R}^m \to \mathbb{R}^n$ $T(\overrightarrow{x}) = A\overrightarrow{x}$ avec m > n.

 $\overrightarrow{Ax} = 0$ a toujours des variables libres, et le système admet une infinité de solutions

 $\Rightarrow \operatorname{Ker}(T)$ contient une infinité de vecteurs.

Cela correspond à l'intuition qui nous dit qu'il y aura des "écrasements" si on cherche à plonger linéairement d'une manière ou d'une autre le "grand" espace \mathbb{R}^m dans le "plus petit" espace \mathbb{R}^n .

Exercice

Trouver le noyau de l'application linéaire $T=\mathbb{R}^5 \to \mathbb{R}^4$ définie par $T(\overrightarrow{x})=A\overrightarrow{x}$, où A est la matrice

$$\begin{bmatrix} 1 & 5 & 4 & 3 & 2 \\ 1 & 6 & 6 & 6 & 6 \\ 1 & 7 & 8 & 10 & 12 \\ 1 & 6 & 6 & 7 & 8 \end{bmatrix}$$

Chapitre 1 Chapitre 2 Chapitre 3

$$T(\overrightarrow{x}) = A\overrightarrow{x} = \overrightarrow{0} \quad \Rightarrow \quad \text{Frel}(A) = \begin{bmatrix} 1 & 0 & -6 & 0 & 6 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} x_1 & -6x_3 & +6x_5 & =0 \\ x_2 & +2x_3 & -2x_5 & =0 \\ x_4 & +2x_5 & =0 \end{bmatrix},$$

$$\begin{bmatrix} x_1 & =6x_3 & -6x_5 \\ x_2 & =-2x_3 & +2x_5 \\ x_4 & = & -2x_5 \end{bmatrix},$$

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6s-6t \\ -2s+2t \\ s \\ -2t \end{bmatrix} = s \begin{bmatrix} 6 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -6 \\ 2 \\ 0 \\ -2 \end{bmatrix} = s\overrightarrow{u} + t\overrightarrow{v},$$

Remarque : tout sous-espace vectoriel de \mathbb{R}^n (engendré par m de vecteurs) est l'image d'une application linéaire $T:\mathbb{R}^m \to R^n$ Les exercices 169 et 170 (difficiles) montrent que tout sous-espace vectoriel de \mathbb{R}^n (engendré par un nb fini de vecteurs) est le noyau d'une application linéaire.

Exercice

On considère le plan $V \subset \mathbb{R}^3$ donné par l'équation $3x_1 + 9x_2 + 12x_3 = 0$.

- (a) Trouver une matrice B telle que V = Im(A).
- (b) Trouver une matrice A telle que V = Ker(A).

Chapitre 1 Chapitre 2 Chapitre 3

- (a) L'image d'une matrice est engendrée par ses vecteurs colonnes. Il suffit donc de décrire (si possible) V comme sous-espace vectoriel engendré par une famille de vecteurs.
- (b) L'équation du plan peut sécrire $\begin{bmatrix} 3 & 9 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$. Par conséquent $V = \operatorname{Ker} \begin{bmatrix} 3 & 9 & 12 \end{bmatrix}$.

Problem

Quelles sont les matrices $A \in M_{n,m}(\mathbb{R})$ qui vérifient $\operatorname{Ker}(A) = \{\overrightarrow{0}\}$. On donnera la réponse en terme du rang de A.

Solution.

On considère le système $A\overrightarrow{x} = \overrightarrow{0}$. Celui-ci admet $\overrightarrow{0}$ comme unique solution si et seulement si il n'y pas de variable libre, d'après la proposition 2, et donc si et seulement si $\operatorname{Rang}(A) = m$.

Chapitre 1 Chapitre 2 Chapitre 3

Résumé

Soit $A \in M_{n,m}(\mathbb{R})$. Alors $\operatorname{Ker}(A) = \{\overrightarrow{0}\}$ si et seulement si $\operatorname{Rang}(A) = m$ (ce qui implique que $m \le n$ puisque $m = \operatorname{Rang}(A) \le n$).

Soit $A \in M_n(\mathbb{R})$ une matrice carrée de taille $n \times n$. La matrice A est inversible si et seulement si $\operatorname{Ker}(A) = \{\overrightarrow{0}\}.$

Résumé (Différentes caractéristiques des matrices inversibles)

Soit $A \in M_n(\mathbb{R})$ une matrice carrée de taille $n \times n$. Les affirmations suivantes sont équivalentes.

- (a) A est inversible,
- (b) Le système linéaire $\overrightarrow{Ax} = \overrightarrow{b}$ admet une unique solution pour chaque $\overrightarrow{b} \in \mathbb{R}^n$,
- (c) Le système linéaire $\overrightarrow{Ax} = \overrightarrow{b}_0$ admet une unique solution pour un certain $\overrightarrow{b}_0 \in \mathbb{R}^n$,
- (d) $Frel(A) = I_n$,
- (e) $\operatorname{Rang}(A) = n$,
- (f) $\operatorname{Im}(A) = \mathbb{R}^n$,
- (g) $\operatorname{Ker}(A) = \{\overrightarrow{0}\}.$

Chapitre 1 Chapitre 2 Chapitre 3

Problem

Montrer que les seuls sous-espaces vectoriels de \mathbb{R}^2 sont

- \mathbb{R}^2 lui-même,
- $\bullet \ \{\overrightarrow{0}\},\$
- toutes les droites passant par l'origine.

- ① $\{\overrightarrow{0}\}\$ et \mathbb{R}^2 sont sous-espaces vectoriel \mathbb{R}^2 . Pour tout $\overrightarrow{u} \neq \overrightarrow{0}$ dans \mathbb{R}^2 la droite $D_{\overrightarrow{u}} = \{\lambda \overrightarrow{u} | \lambda \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- ② Soit $W \neq \vec{0}$, alors $\exists \vec{u} \neq \vec{0}$ dans W et $D_{\vec{u}} \subset W$.

 - S'il n'existe pas $\vec{v} \in \mathbb{R}^2 \setminus D_{\vec{u}}$, alors $W = D_{\vec{u}}$. S'il existe $\vec{v} \in \mathbb{R}^2 \setminus D_{\vec{u}}$, alors le système $(\vec{u} \mid \vec{v})$ ne possède pas de solution et donc Frel de $A = (\vec{u} \ \vec{v})$ et Id_2 . La matrice A est inversible et pour tout \vec{w} dans \mathbb{R}^2 le système $(\vec{u}\vec{v} \mid \vec{w})$ possède une unique solution. Donc \vec{w} est combinaison linéaire de \vec{u} et \vec{v} , donc $W = \mathbb{R}^2$.

FIGURE - -

De même, les sous-espaces vectoriels de \mathbb{R}^3 sont

- $\{\overrightarrow{0}\}$ et \mathbb{R}^3 lui même,
- Les droites passant par l'origine (sous-espace vectoriel de dimension 1),
- Les plans passant par l'origine (sous-espace vectoriel de dimension 2),

La hiérarchie des sous-espaces vectoriels est liée à la **dimension** (concept qui sera explicite dans la section suivante).

Sous-Espaces de \mathbb{R}^2	Sous-Espaces de \mathbb{R}^3
$\{\overrightarrow{0}\}$	$\{\overrightarrow{0}\}$
droites passant par $\overrightarrow{0}$	droites passant par $\overrightarrow{0}$
\mathbb{R}^2	plans passant par $\overrightarrow{0}$
aucun	\mathbb{R}^3

Chapitre 1 Chapitre 2 Chapitre 3

Bases et indépendance linéaire

Exercice

Soit la matrice

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

Trouver des vecteurs dans \mathbb{R}^3 qui engendrent l'image de A. Quel est le plus petit nombre de vecteurs nécessaires pour décrire $\mathrm{Im}(A)$?

Im(A) est engendré par les vecteurs colonnes de A,

$$\overrightarrow{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \overrightarrow{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad \overrightarrow{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \overrightarrow{v}_4 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

FIGURE – Image de A.

Chanitre 1 Chanitre 2 Chanitre

$$\overrightarrow{v}_2 = 2\overrightarrow{v}_1 \in \mathrm{Vect}(\overrightarrow{v}_1, \overrightarrow{v}_3), \quad \overrightarrow{v}_4 = \overrightarrow{v}_1 + \overrightarrow{v}_3 \in \mathrm{Vect}(\overrightarrow{v}_1, \overrightarrow{v}_3).$$

Par conséquent les vecteurs \overrightarrow{v}_2 et \overrightarrow{v}_4 sont redondants et on a

$$\operatorname{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3,\overrightarrow{v}_4) = \operatorname{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_3).$$

On observe enfin que les vecteurs \overrightarrow{v}_1 et \overrightarrow{v}_3 ne sont pas parallèles, de sorte que l'image de A est engendrée par deux vecteurs et pas par un unique vecteur.

Vérifions par des calculs algébriques que $\begin{array}{c} \mathrm{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3,\overrightarrow{v}_4) = \mathrm{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_3). \text{ On a naturellement} \\ \mathrm{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_3) \subset \mathrm{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3,\overrightarrow{v}_4). \text{ On va vérifier l'inclusion} \\ \mathrm{inverse. \ Soit \ } \overrightarrow{v} \in \mathrm{Vect}(\overrightarrow{v}_1,\overrightarrow{v}_2,\overrightarrow{v}_3,\overrightarrow{v}_4) \text{ quelconque. Alors } \overrightarrow{v} \text{ est} \\ \mathrm{combinaison \ linéaire \ des \ vecteurs \ } \overrightarrow{v}_i, \text{ et on a} \\ \end{array}$

$$\overrightarrow{V} = \lambda_1 \overrightarrow{V}_1 + \lambda_2 \overrightarrow{V}_2 + \lambda_3 \overrightarrow{V}_3 + \lambda_4 \overrightarrow{V}_4 = \lambda_1 \overrightarrow{V}_1 + \lambda_2 (2 \overrightarrow{V}_1) + \lambda_3 \overrightarrow{V}_3 + \lambda_4 (\overrightarrow{V}_1 + \overrightarrow{V}_3) = (\lambda_1 + 2\lambda_2 + \lambda_4) \overrightarrow{V}_1 + (\lambda_3 + \lambda_4) \overrightarrow{V}_3 \in \text{Vect}(\overrightarrow{V}_1, \overrightarrow{V}_3),$$

Chapitre 1 Chapitre 2 Chapitre 3

Definition (Vecteurs redondants, indépendance linéaires, bases)

Soit une famille de vecteur $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ dans \mathbb{R}^n .

- \overrightarrow{V}_1 est redondant s'il est nul. Un vecteur $\overrightarrow{V}_j, j > 1$ est redondant si il est combinaison linéaire des vecteurs qui le précèdent dans la liste, $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_{j-1}$.
- Les vecteurs \$\overline{\psi}_1\$, \$\overline{\psi}_2\$, \$\cdots\$, \$\overline{\psi}_m\$ sont linéairement indépendants si aucun des vecteurs est redondant. Sinon, ils sont linéairement dépendants.
- La famille de vecteurs $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ est une **base** d'un sous-espace vectoriel V de \mathbb{R}^n , si chaque vecteur \overrightarrow{V}_j est dans V, si $V = \operatorname{Vect}(\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m)$ et si les vecteurs $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ sont linéairement indépendants.

Lorsque que $\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m$ sont linéairement indépendants, la famille $\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m$ est une famille libre. Lorsque que $\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m$ ne sont pas linéairement indépendants, ils forment une famille liée.

Dans la liste

$$\overrightarrow{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \overrightarrow{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad \overrightarrow{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \overrightarrow{v}_4 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

qui constitue la liste des vecteurs colonnes de A, les vecteurs \overrightarrow{V}_2 et \overrightarrow{V}_4 sont redondants, puisque $\overrightarrow{V}_2 = 2\overrightarrow{V}_1$ et $\overrightarrow{V}_4 = \overrightarrow{V}_1 + \overrightarrow{V}_3$. En retirant les vecteurs redondants, on observe que les vecteurs

$$\overrightarrow{V}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \overrightarrow{V}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},$$

sont linéairement indépendants (on vérifie aussi facilement que le système $x\overrightarrow{v}_1+y\overrightarrow{v}_3=\overrightarrow{0}$ n'admet que x=0 et y=0 comme unique solution). Donc la famille $(\overrightarrow{v}_1,\overrightarrow{v}_3)$ constitue une base de $V=\mathrm{Im}(A)$.

Chanitre 1 Chanitre 2 Chanitre

Résumé (Base de l'image d'une application linéaire)

Soit A une matrice (ou de manière équivalente on peut raisonner sur l'application linéaire qu'elle représente). On obtient une base de l'image de A, $\operatorname{Im}(A)$, en retirant de la famillle des vecteurs colonnes de A tous les vecteurs redondants.

Comment trouver les vecteurs redondants? Dans les cas faciles, on peut le faire à l'aide d'observations élémentaires. Sinon algorithme systématique basé sur la réduction de Gauss-Jordan...