BAB XIII SIMETRI LIPAT, SIMETRI PUTAR dan PENCERMINAN

I. Simetri Lipat

Simetri lipat adalah jumlah lipatan yang membuat suatu bangun datar menjadi dua bagian yang sama besar.

a. Simeti lipat pada Bujur Sangkar

Bujur sangkar mempunyai 4 simetri lipat :

- simetri lipat pertama

A bertemu dengan D dan B bertemu dengan C

- simetri lipat kedua

A bertemu dengan B dan C bertemu dengan D

- simetri lipat ketiga

- A bertemu dengan C
 - BD adalah sumbu simetri yang membagi bangunan menjadi dua bagian yang sama besar
- simetri lipat keempat

- B bertemu dengan D
 - AC adalah sumbu simetri yang membagi bangunan menjadi dua bagian yang sama besar
- b. simetri lipat pada persegi panjang

Persegi panjang mempunyai 2 simetri lipat

- simetri lipat pertama

A betemu dengan D dan B bertemu dengan C

- simetri lipat kedua

A bertemu dengan B dan D bertemu dengan C

c. simetri lipat pada segitiga sama kaki

Segitiga sama kaki mempunyai 1 simetri lipat A bertemu dengan B, dimana C sebagai sumbu simetri

d. simetri lipat pada segitiga sama sisi

Segitiga sama sisi mempunyai 3 simetri lipat

- simetri lipat pertama
- C sebagai sumbu simetri maka A bertemu dengan B
- simetri lipat kedua
- A sebagai sumbu simetri maka B bertemu dengan C
- simetri lipat ketiga

B sebagai sumbu simetri maka A bertemu dengan C

e. simetri lipat pada Trapesium

- Trapesium sama kaki

Trapesium sama kaki mempunyai 1 simetri lipat yaitu : A bertemu dengan B dan D bertemu dengan C

- Trapesium sembarang

Simetri lipat trapesium sembarang dan siku-siku adalah 0

f. simetri lipat pada Jajaran Genjang

Simetri lipat pada jajaran genjang adalah 0

g. simetri lipat pada Belah ketupat

Simetri lipat mempunyai 2 simetri lipat

- simetri lipat pertama B bertemu dengan D dengan AC sebagai sumbu simetri
- simetri lipat kedua A bertemu dengan C dengan BD sebagai sumbu simetri

h. simetri lipat pada Layang-layang

Layang-layang mempunyai 1 simetri lipat

A bertemu dengan C dengan BD sebagai sumbu simetri

i. simetri lipat pada Elips Oval

Elips Oval mempunyai 2 simetri lipat

- simetri lipat pertama B bertemu dengan D dengan AC sebagai sumbu simetri
- simetri lipat kedua A bertemu dengan C dengan BD sebagai sumbu simetri

j. simetri lipat pada Lingkaran

Lingkaran mempunyai simetri lipat yang **jumlahnya tak terhingga**, Karena lingkaran bisa dibagi dua dengan jumlah tak terhingga dengan banyak (tak terhingga) sumbu simetri

II. Simetri Putar

Simetri putar adalah putaran pada suatu bangun datar samapai dengan satu kali putaran penuh pada pusat simetri sehingga kembali pada bingkainya seperti semula

a. Simetri Putar pada Bujur Sangkar

Bujur sangkar mempunyai 4 simetri putar

Putaran pertama : $A \rightarrow D \rightarrow C \rightarrow B \rightarrow A$ (A ke D, D ke C, C ke B dan B ke A)

Putaran kedua : $A \rightarrow C$; $B \rightarrow D$; $C \rightarrow A$; $D \rightarrow B$ Putaran ketiga : $A \rightarrow B$; $B \rightarrow C$; $C \rightarrow D$; $D \rightarrow A$

Putaran keempat : $A \rightarrow A$; $B \rightarrow B$; $C \rightarrow C$; $D \rightarrow D$ (Posisi semula)

b. Simetri Putar pada Persegipanjang

Persegi panjang mempunyai 2 simetri putar.

Putaran pertama: $A \rightarrow C$; $B \rightarrow D$; $C \rightarrow A$; $D \rightarrow B$ Putaran kedua : $A \rightarrow A$; $B \rightarrow B$; $C \rightarrow C$; $D \rightarrow D$

c. Simetri Putar pada Segitiga sama sisi

Segitiga sama sisi mempunyai 3 simetri putar

Putaran pertama : $A \rightarrow C$; $B \rightarrow A$; $C \rightarrow B$ Putaran kedua : $A \rightarrow B$; $B \rightarrow C$; $C \rightarrow A$ Putaran ketiga : $A \rightarrow A$; $B \rightarrow B$; $C \rightarrow C$

WWW.BELAJAR-MATEMATIKA.COM

d. Simetri Putar pada Elips Oval					
Mempunyai 2 simetri putar					
e. Simetri Putar pada Ligkaran					
Mempunyai tak terhingga simetri putar					
f. Simetri putar jajaran genjang, belah ketupat dan segitiga sama kaki					
trapesium mempunyai 2 simetri putar					
Mempunyai 2 simetri putar					
Mempunyai 1 simetri putar					
Mempunyai 1 simetri putar					

Tabel Beberapa Bangun Datar dengan Simetri Lipat dan Simetri Putar

No	Bangun Datar	Nama Bangun	Simetri Lipat	Simetri Putar
		Persegi (Bujur Sangkar)	4	4
		Persegi panjang	2	2
		Segitiga sama sisi	3	3
		Segitiga sama kaki	1	1
	\Diamond	Belah Ketupat	2	2
		Layang-layang	1	1
		Jajaran Genjang	0	2
		Lingkaran	Tak hingga	Tak hingga
		Elips	2	2

III. Pencerminan (Refleksi)

Pencerminan menurut arti geometri adalah menggambar bayangan cermin suatu bangun. Suatu benda akan membentuk bayangan yang sifatnya berkebalikan apabila benda tersebut dicerminkan.

