1. Evaluation Metric/Visualization

Weighted F_β-score:

A weighted version of F1-score where β determines the importance of recall relative to precision.

$$F_{\beta} = (1 + \beta^2) \frac{Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$$

- If recall is more important, use $\beta > 1$ (e.g., $\beta = 2$).
- If precision is more important, user β < 1 (e.g., β = 0.5).

Why using Weighted F β -score: Recall is key for retrieval models.

- 4-star (or higher) ratings are labeled as "interested" and 3-star (or lower) as "not interested." However, some marginal ratings may still be acceptable.
- Ensuring the retrieval model returns enough relevant items makes recall critical.

F1-score:

When it is difficult to determine the best β for Weighted F β -score, standard F1-score can be used by setting thresholds for precision and recall.

Mean Reciprocal Rank (MRR):

 Reciprocal Rank (RR) measures the rank of the fist relevant item in the recommended list:

$$RR = \frac{1}{rank \ of \ the \ first \ relevant \ item}$$

- MRR is the average of reciprocal ranks across all users:

$$MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{rank \ of \ the \ first \ relevant \ item \ for \ user \ i}$$

- Example:
 - User A: Relevant item at rank 3 \rightarrow Reciprocal Rank = $\frac{1}{3}$
 - User B: Relevant item at rank 1 \rightarrow Reciprocal Rank = $\frac{1}{1}$
 - User C: No relevant item → Reciprocal Rank = 0
 - $MRR = \frac{1}{3}(\frac{1}{3} + 1 + 0) = 0.44$

Visualization:

- Precision-Recall curves.
- Bar chart of MRR for different users.

2. Advance Metric

a. Coverage

 Definition: Measures the proportion of the catalog (items or users) that the system can recommend:

$$Item\ Coverage = \frac{Number\ of\ unique\ items\ recommended}{Total\ number\ of\ items\ in\ the\ catalog}$$

- **Importance**: High coverage ensures a variety of items are recommended, not just popular ones.

b. Diversity

- **Definition**: Measures the dissimilarity among items in a single user's recommendation list.
- Use a similarity metric (e.g., cosine similarity) to calculate pairwise distances between items in the list:

$$Diversity = 1 - \frac{\sum_{i \neq j} Similarity(i, j)}{Number\ of\ item\ pairs}$$

Why It Matters: Balances personalization with exploration.

c. Novelty

- **Definition**: Assesses how unexpected or unique recommendations are. Less popular items contribute more to novelty.
- Example Metric: Inverse Popularity Score:

Novelty =
$$\frac{1}{N} \sum_{i=1}^{N} -\log_2(popularity \ of \ item \ i)$$

d. Serendipity

- **Definition**: Evaluates how surprising and delightful recommendations are beyond relevance.
- Example: Measure the difference between expected recommendations (e.g., predicted by collaborative filtering) and actual recommendations.

e. User Effort

- Definition: Measures the effort required by users to find relevant items.
- Example Metric: Average position of relevant items in the recommended list.

$$Effort = \frac{\sum_{i=1}^{N} Position \ of \ relevant \ item}{N}$$

f. Fairness

- Definition: Evaluates whether recommendations are equitably distributed among different user groups or item categories.

3. Optimizing Models

a. Improving Item Similarity Metric

- 1. Cosine Similarity: Measure angular similarity (baseline).
- 2. **Jaccard Index**: Focus on overlap of interaction sets, effective for binary interaction data.
- 3. Adjusted Cosine Similarity: Account for user biases.
- 4. **Pearson Correlation Coefficient**: Linear correlation for numerical ratings.
- 5. **Combine Multiple Metrics**: Weight each based on performance contribution.

b. Features Engineering

- Enhanced Weighting Schemes: Assign higher weights to recent interactions or higher ratings.
- 2. **Incorporate Additional Parameters**: Add user demographics, business categories, or sentiment analysis of reviews. Consider contextual factors like time of interaction, user location, or session data.

3. Timeliness and Time Decay:

- Exclude older reviews or apply decay factors (e.g., exponential decay).
- Example:

$$Weight = e^{-\lambda \cdot Age \ of \ Interaction}$$

• λ controls the rate of decay (e.g., 0.01 for gradual decay).

c. Negative Sampling

- Why: Enhances model training by focusing on harder-to-classify items.
- Dynamically generate negative samples during training/testing to address bias.

d. Loss Functions

- Experiment with ranking-specific loss functions like Bayesian Personalized Ranking (BPR) or Listwise Loss.

e. Hyperparameter Tuning

 Optimize parameters like learning rate or embedding dimensions via grid search or Bayesian optimization.

4. Testing Template

Stage	Retrieval			
Model				
	Item Collaborative Filtering			
Dataset	Yelp (sampled)			
Train Size	80% of dataset for normal case			
Evaluation Metric	Metric		Rationale	
	Recall		lost important metric in retrieval	
	Precision		Insures retrieved items are relevant	
	F1-score		Provides a balanced view of recall and	
			precision	
	Mean Reciproc		leasures ranking of relevant items	
	Weighted Fβ-	score	Adjusts the trade-off for recall and	
		ŗ	recision dynamically	
Baseline Model	Simplest Item Collaborative Filtering Model			
	- Item Similarity: Cosine Similarity			
	- Prediction Function:			
	\sum_{j} j like(user, item _j) × sim(item _j , item)			
	- Number of Neighbours: $k=100$			
	Features: Total of 1 feature is used			
	- Rate in Review Table			
	Results Overview (example):			
	Precision			
	Recall			
	F1-Score			
	MRR			
	Graphs: Precision-Recall Curve, Bar Chart of MRR for Different			
	Users			
Evaluation	Strategy 1: K-Nearest Neighbors (KNN)			
Strategies/Steps	Set-up:			
	1. Prepare user and business index tables.			
	2. Split 80/20 for train/test data.			
	3. Exclude test data during KNN computation.			
	4. Compute KNN results for evaluation.			
	Evaluation:			
	1. Take a pair of user_id and business_id as input.			
	2. Compute the list of item similarity with the user recent			
	interacted items (some may be 0, max case will have N			
	similarities).			
	3. Compute all the interest scores.			
	4. Compute the evaluation metric.			
	Precision	True Positive	User gave a rate of 4 or higher for business, predicted interest score is in top K results.	

	True Negative	User gave a rate of 3 or lower for	
		business, predicted interest score	
		is not in top K results.	
Recall	True	Same as Precision .	
	Positive		
	False Positive	User gave a rate of 3 or below for	
		business, predicted interest score	
		are in top K results.	
F1-Score	Usual Formula		
Mean		The respective rank of True	
Reciprocal	RR	Positive business in the top K	
Rank		results.	
Weighted	Q	B > 1 as recall is important here.	
Fβ-score	β		

Strategy 2: Leave-One-Out Cross-Validation (LOOCV) Set-up:

- 1. Set up the user and business index tables.
- 2. For each user, leave one interaction out of the training set and treat it as the test case.
- 3. Exclude this data from training.
- 4. Compute KNN results for evaluation.

Evaluation: Same metrics as Strategy 1, ensuring robust testing for individual interactions.