

Mathematics: Units 3C and 3D Formula sheet

Number and algebra: Calculus

Differentiation

If
$$f(x) = y$$
, then $f'(x) = \frac{dy}{dx}$

If
$$f(x) = x^n$$
, then $f'(x) = n x^{n-1}$

If
$$f(x) = e^x$$
, then $f'(x) = e^x$

	Function notation		Leibniz Notation	
	у	y [']	у	y [']
Product rule	f(x) g(x)	f'(x) g(x) + f(x) g'(x)	uv	$\frac{du}{dx}v + u\frac{dv}{dx}$
Quotient rule	$\frac{f(x)}{g(x)}$	$\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$	$\frac{u}{v}$	$\frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$
Chain rule	f(g(x))	f'(g(x)) g'(x)	y = f(u) and $u = g(x)$	$\frac{dy}{du} \times \frac{du}{dx}$

Integration

$$\int x^n dx = \frac{x^{n+1}}{x+1} + c \qquad n \neq 1$$

$$\int e^x dx = e^X + c$$

Fundamental Theorem of Calculus: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$ and $\int_a^b f'(x) dx = f(b) - f(a)$

Incremental formula: $\delta y \approx \frac{dy}{dx} \delta x$

Space and measurement: Measurement

Trapezium: Area = $\frac{1}{2}(a + b)$ ×height, where a and b are the lengths of the parallel sides

Prism: Volume = Area of base \times height

Cylinder: Total surface area = $2\pi r h + 2\pi r^2$ Volume = $\pi r^2 \times h$

Pyramid: Volume = $\frac{1}{3}$ × area of base × height

Cone: Total surface area = $\pi r s + \pi r^2$, s is the slant height Volume = $\frac{1}{3} \times \pi r^2 \times h$

Sphere: Total surface area = $4\pi r^2$ Volume = $\frac{4}{3}\pi r^3$

Volume of solids of revolution about the axes: $\int \pi y^2 dx$ and $\int \pi x^2 dy$

Space and measurement: Rate

If
$$y' = ky$$
, then $y = Ae^{kx}$

Chance and data: Quantify chance

Probability Laws

$$P(A) + P(\overline{A}) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B/A) = P(B)P(A/B)$$

Binomial distributions: Mean: $\mu = np$ and standard deviation: $\sigma = \sqrt{np(1-p)}$

Chance and data: Represent data

Central Limit Theorem:

Mean of the sample means, $\bar{\chi}$, equals the population mean, μ

Standard deviation of the sample means equals $\frac{\sigma}{\sqrt{n}}$

where σ is the population standard deviation.

Chance and data: Interpret data

Infer the mean of a population from a sample using $\bar{x} - z \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z \frac{\sigma}{\sqrt{n}}$

where *z* is the standard score for a confidence interval.

Note: Any additional formulas identified by the examination panel will be included in the body of the particular question.