Chapter 2: Vectors and Matrices

K. Jünemann
Department Informations- und Elektrotechnik
HAW Hamburg

Content

Chapter 2: Vectors and Matrices

Points and vectors

Elementary vector operations

Scalar product

Application: specular reflection

Basis of \mathbb{R}^N

The vector product

Matrices

Points and vectors

- $ightharpoonup \mathbb{R}^2$: plane
- ▶ R³: space
- $ightharpoonup \mathbb{R}^N$: *N*-dimensional space

Points in \mathbb{R}^N :

▶ A point P in \mathbb{R}^N is specified by N coordinates: $P = (p_1, p_2, \dots, p_N)$

 Different points have different coordinates

Points and vectors

Vectors in \mathbb{R}^N :

- A vector is a set of parallel arrows with
 - same lengths
 - same directions
- ▶ It is specified by *N* components

$$\vec{v} = (v_1, v_2, \dots, v_N)$$

► Each point V defines a vector $\vec{v} = \overline{OV}$: arrow between origin and V

$$\overline{OV} = (v_1, v_2, \dots v_N).$$

 $ightharpoonup \overline{OV}$ is called *position vector* of V.

Points and vectors

Relation between points and vectors:

▶ Difference between two points P and Q: vector \overline{PQ} with coordinates: $(q_1 - p_1, \dots, q_N - p_N)$

- Rules:
 - ▶ point P + vector \vec{v} = point Q coordinates of Q: $(p_1 + v_1, p_2 + v_2, \dots p_N + v_N)$
 - vector + vector = vector
 - point + point: undefined

A triangle (face) in \mathbb{R}^3 consists of

- ▶ A vertex (point) A = (1, 0, 1)
- ► Two edges (sides) $\vec{b} = (1, 0, 1)$ and $\vec{c} = (-1, 2, 1)$ emanating from A

Find

- ▶ the two other vertices B and C
- ▶ the edge \vec{a} between \vec{B} and \vec{C}

Elementary vector operations

1.) Transposition: Exchanging rows and columns

$$\begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix}^T = (v_1, \dots, v_N), \qquad (v_1, \dots, v_N)^T = \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix}$$

2.) Length of a vector (Pythagorean theorem):

$$|\vec{v}| = \sqrt{\sum_{k=1}^{N} v_k^2} = \sqrt{v_1^2 + \ldots + v_N^2}$$

Elementary vector operations

3.) *Multiplication* with a scalar λ :

$$\lambda \vec{\mathbf{v}} = (\lambda \mathbf{v}_1, \dots, \lambda \mathbf{v}_N)$$

- ightharpoonup changes length of \vec{v}
- leaves direction unchanged (for $\lambda > 0$)
- flips direction (for $\lambda < 0$)

Elementary vector operations

4.) Vector addition:

$$\vec{v}+\vec{w}=(v_1+w_1,\ldots,v_N+w_N)$$

Two important versions:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + \ldots + v_N w_N = \sum_{k=1}^N v_k w_k$$

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos(\theta)$$

Special cases:

- $ightharpoonup \vec{v}$ and \vec{w} perpendicular $\iff \vec{v} \cdot \vec{w} = 0$
- $\vec{v} \cdot \vec{v} = |\vec{v}|^2$ (because $\theta = 0$)

- What's the angle between the vectors $\vec{u} = (2, -1, 1)$ and $\vec{v} = (1, 1, 2)$?
- ▶ What's the angle between the diagonal and an edge of a cube in \mathbb{R}^3 ?

Scalar product as projection:

$$ightharpoonup ec{w} = ec{w}_{\parallel} + ec{w}_{\perp}$$

 $|\vec{w}_{\parallel}|$: length of orthogonal projection of \vec{w} onto direction of \vec{v} .

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot \left(\vec{w}_{\parallel} + \vec{w}_{\perp} \right) = \underbrace{\vec{v} \cdot \vec{w}_{\parallel}}_{|\vec{v}||\vec{w}_{\parallel}|} + \underbrace{\vec{v} \cdot \vec{w}_{\perp}}_{0} = |\vec{v}||\vec{w}_{\parallel}|$$

 $\vec{v} \cdot \vec{w} = |\vec{v}|$ times length of projection of \vec{w} on \vec{v}

Unit vector: vector with length 1

ightharpoonup Given some vector \vec{v}

$$ec{e}_{v}:=rac{ec{v}}{|ec{v}|}$$

is called unit vector along \vec{v}

- Unit vectors just carry directional information
- $\vec{e} \cdot \vec{w}$: projection of some vector \vec{w} into the direction of a unit vector \vec{e} .

Decomposition of vectors:

Explicit formulas for decomposing \vec{w} along and perpendicular to \vec{v} :

$$ert ec{w}_{\parallel} ert = ec{e}_{
u} \cdot ec{w} \implies ec{w}_{\parallel} = (ec{e}_{
u} \cdot ec{w}) ec{e}_{
u} = rac{ec{v} \cdot ec{w}}{ec{v}^2} ec{v} \ ec{w}_{\perp} = ec{w} - ec{w}_{\parallel}$$

Decompose $\vec{w}=(1,2,3)$ as $\vec{w}_{\perp}+\vec{w}_{\parallel}$, where \vec{w}_{\perp} is perpendicular and \vec{w}_{\parallel} along $\vec{v}=(2,-1,-2)$. Check your result using the scalar product.

What's the orthogonal projection P' of the point P = (2, -1, 3) onto the vector $\vec{v} = (4, -1, 2)$?

Specular reflection: angle of incidence equals the angle of reflection: $\theta_{in} = \theta_{out}$

Simple example:

- Reflection plane parallel to y-axis.
- ▶ What is \vec{v}_{out} for $\vec{v}_{in} = (1.1, 1)$? $\vec{v}_{out} = (-1.1, 1)$

What is \vec{v}_{out} for $\vec{v}_{in} = (1, 0)$?

General case: reflection plane is characterized by unit normal vector \vec{n} .

 $ec{v}_{\mathsf{in}}$ can be decomposed into $ec{v}_{\mathsf{in}} = ec{v}_{\parallel} + ec{v}_{\perp}$

- ▶ Perpendicular component: $\vec{v}_{\perp} = (\vec{v}_{\mathsf{in}} \cdot \vec{n}) \vec{n}$
- ▶ Reflection turns \vec{v}_{\perp} into $-\vec{v}_{\perp}$!
- $ightharpoonup \vec{v}_{\parallel}$ remains unchanged!

Reflected vector: $\vec{v}_{out} = \vec{v}_{\parallel} - \vec{v}_{\perp}$ Express in terms of \vec{v}_{in} and \vec{n} :

$$\vec{v}_{out} = \underbrace{\vec{v}_{in} - \vec{v}_{\perp}}_{\vec{v}_{\parallel}} - \vec{v}_{\perp}$$

$$= \vec{v}_{in} - 2\vec{v}_{\perp} = \vec{v}_{in} - 2(\vec{v}_{in} \cdot \vec{n}) \vec{n}$$

Consistency: $\vec{v}_{\text{out}}^2 = \vec{v}_{\text{in}}^2$ (check this!)

Specular reflection law:

$$ec{v}_{\text{out}} = ec{v}_{\text{in}} - 2 \left(ec{v}_{\text{in}} \cdot ec{n}
ight) ec{n}$$

with

- $ightharpoonup \vec{v}_{in}$ incoming vector
- $ightharpoonup \vec{v}_{\text{out}}$ outgoing vector
- n: unit normal of reflection plane

- ▶ Magnitude of speed does not change: $|\vec{v}_{out}| = |\vec{v}_{in}|$
- valid in any dimension (not just 2D)
- ► No need to calculate any angles
- See also example 3.13 in *Immersive Math*, Chapter 3.7 http://immersivemath.com/ila/index.html

Basis of \mathbb{R}^N

A set of N vectors $\vec{b}_1, \dots, \vec{b}_N \in \mathbb{R}^N$ is called a *basis* if any vector $\vec{v} \in \mathbb{R}^N$ can be written as linear combination

$$\vec{v} = v_1 \vec{b_1} + \ldots + v_N \vec{b}_N$$

 v_1, \ldots, v_N are components of \vec{v} with respect to that basis.

Basis of \mathbb{R}^N

Important special cases:

- ► Orthogonal basis: all \vec{b}_k are pairwise perpendicular, i.e. $\vec{b}_k \cdot \vec{b}_l = 0$ for $k \neq l$.
- Normal basis: all \vec{b}_k are unit vectors.
- Orthonormal basis: Basis is orthogonal and normal

Standard orthonormal basis of \mathbb{R}^3 :

$$\vec{e_x}$$
, $\vec{e_y}$, $\vec{e_z}$

Different notation:

$$\vec{e_1}\;,\;\vec{e_2}\;,\;\vec{e_3}$$

Basis of \mathbb{R}^N

Component notation (here in \mathbb{R}^3):

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \;,\; \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \;,\; \vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

An arbitrary vector is a linear combination of basis vectors

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3$$

Calculation of components: $v_k = \vec{e_k} \cdot \vec{v}$ v_k : length of projection of \vec{v} onto basis vector $\vec{e_k}$

The vector product

Let $\vec{v}, \vec{w} \in \mathbb{R}^3$ be two vectors including an angle θ . The vector product $\vec{v} \times \vec{w}$ is a vector

- whose length is $|\vec{v}| |\vec{w}| \sin(\theta)$,
- which is perpendicular to \vec{v} and \vec{w} ,
- which forms a right-handed system with \vec{v} and \vec{w} .
- ▶ The vector product is special to \mathbb{R}^3 !
- The vector product is also known as cross product.

The vector product

Properties of the vector product:

- ▶ The vector product is unique to \mathbb{R}^3 .
- Due to orientation the vector product is anti-commutative: $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
- $\vec{v} \times \vec{w} = \vec{0} \iff \vec{v} \text{ and } \vec{w} \text{ are parallel.}$
- $|\vec{v} \times \vec{w}|$ is the area of the parallelogram spanned by \vec{v} and \vec{w} .

The vector product

Calculating the vector product: The definition implies

$$\vec{e}_1 \times \vec{e}_2 = \vec{e}_3 \; , \; \vec{e}_1 \times \vec{e}_3 = -\vec{e}_2 \; , \; \vec{e}_2 \times \vec{e}_3 = \vec{e}_1 .$$

Applying this to

$$\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + v_3 \vec{e}_3 \; , \; \vec{w} = w_1 \vec{e}_1 + w_2 \vec{e}_2 + w_3 \vec{e}_3$$

gives

$$\vec{v} imes \vec{w} = egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} imes egin{pmatrix} w_1 \ w_2 \ w_3 \end{pmatrix} = egin{pmatrix} v_2 w_3 - v_3 w_2 \ v_3 w_1 - v_1 w_3 \ v_1 w_2 - v_2 w_1 \end{pmatrix}$$

- Find a unit vector \vec{u} that is perpendicular to $\vec{v} = (2, -1, 1)$ and $\vec{w} = (1, 1, 2)$.
- ► Check your result by calculating $\vec{u} \cdot \vec{v}$ and $\vec{u} \cdot \vec{w}$.

Matrices

An $N \times N$ matrix is a collection of N column vectors $\vec{a}_1, \dots, \vec{a}_N \in \mathbb{R}^N$ written as

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Matrix element: akl

- First index k: row index
- Second index I: column index

Unit matrix:
$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Matrices

Matrix multiplication:

The *product* $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$ of two $N \times N$ matrices \mathbf{A} and \mathbf{B} is defined to be an $N \times N$ matrix with elements

$$c_{kl} = \sum_{n=1}^{N} a_{kn} b_{nl}$$

 c_{kl} : scalar product of the k-th row of **A** with the l-th column of **B**.

$$\begin{pmatrix}1&2\\3&4\end{pmatrix}\cdot\begin{pmatrix}5&6\\7&8\end{pmatrix}=\begin{pmatrix}19&22\\43&50\end{pmatrix}$$

Calculate the following products:

$$\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = ? \; , \qquad \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = ?$$

Matrices

Special cases of matrix multiplication:

Matrix × column vector = column vector

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 17 \\ 39 \end{pmatrix}$$

Row vector × matrix = row vector

$$\begin{pmatrix} 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 23 & 34 \end{pmatrix}$$

Other combinations don't work

Matrices

The *inverse matrix* of an $N \times N$ matrix **A** is the $N \times N$ matrix \mathbf{A}^{-1} satisfying

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{E}$$

- Only a square matrix can have an inverse matrix
- Even for a square matrix A⁻¹ need not exist
- ► For 2 × 2 matrices:

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Consider the matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

- ▶ Work out the inverse matrix \mathbf{A}^{-1} .
- ▶ Check the relation $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}$.

Matrices

Properties of matrix multiplication:

- ightharpoonup $A \cdot E = E \cdot A = A$
- ightharpoonup $A_1 \cdot A_2 \neq A_2 \cdot A_1$ (in general)
- $\blacktriangleright (\mathbf{A}_1 \cdot \mathbf{A}_2)^T = \mathbf{A}_2^T \cdot \mathbf{A}_1^T$
- $ightharpoonup (\mathbf{A}_1 \cdot \mathbf{A}_2)^{-1} = \mathbf{A}_2^{-1} \cdot \mathbf{A}_1^{-1}$