Algebra

Gruppi

- S insieme e $m: S \times S \rightarrow S$
 - o (S,m) semigruppo \iff vale la proprietà associativa in m su S
 - $lacksquare m(x,m(y,z))=m(m(x,y),z) \quad orall x,y,z\in S$
 - \circ (S,m) monoide \iff è un semigruppo in cui esiste l'elemento neutro rispetto a m
 - $\blacksquare \exists e \mid m(x,e) = m(e,x) = x \quad \forall x \in S$
 - se esiste, e è unico
 - per assurdo, $\exists e_1, e_2 \mid e_1 \neq e_2$ elementi neutri, allora

$$egin{aligned} m(x,e_1) &= m(e_1,x) = x \ m(x,e_2) &= m(e_2,x) = x \end{aligned} \Rightarrow m(e_1,x) = m(e_2,x) \implies e_1 = e_2 ext{ necessariamente}$$

- o (S,m) gruppo \iff è un monoide in cui esiste l'inverso per ogni elemento di S
 - $\exists x^{-1} \mid m(x,x^{-1}) = m(x^{-1},x) = e \quad orall x \in S$
 - se esiste, x^{-1} è unico
- o (S,m) gruppo abeliano \iff è un gruppo in cui vale la proprietà commutativa in m su S
 - $m(x,y) = m(y,x) \quad \forall x,y \in S$

Esempi

- X, Y insiemi, $Y^X = \{f \mid f : X \to Y\}$
 - X, Y finiti $\Rightarrow |Y^X| = |Y|^{|X|}$
 - △ MANCA DIMOSTRAZIONE
 - o (X^X, \circ) è monoide
 - $\bullet \quad (f \circ g) \circ h = f \circ (g \circ h)$
 - $\forall X$, $\exists id_X \mid id_X : X \to X : x \to x$, che costituisce dunque l'elemento neutro, mappando ogni elemento in
 - o $S_X = \{f \mid f : X \to Y \text{ biiettiva}\}$ è detto gruppo simmetrico di X
 - $\bullet \quad |S_X| = |X|!$
 - (S_X, \circ) è un **gruppo**, non commutativo se $|X| \geq 3$

Anelli

- A insieme
- $\bullet + : A \times A \implies A$
- $*: A \times A \implies A$
- (A, +, *) and \iff
 - \circ (A, +) gruppo abeliano
 - \circ (A,*) monoide
 - vale la **proprietà distributiva** della forma a*(b+c) = a*b + a*c
- $a*b=b*a \quad \forall a,b\in A \implies (A,*,+)$ è un anello commutativo
- $\exists x^{-1} \ \forall x \in A \ | \ x * x^{-1} = x^{-1} * x = e \implies (A, +, *)$ è un campo

Esempi

- $(\mathbb{Z}, +, \cdot)$ è un anello commutativo
- $(\mathbb{C}, +, \cdot)$ è un campo
- \triangle MANCA DIMOSTRAZIONE polinomi a coefficienti in A

Numeri complessi

- $egin{aligned} ullet & \mathbb{C} = \left\{ a + ib \mid a,b \in \mathbb{R}, \ i \mid i^2 = -1
 ight\} \ ullet & z \in \mathbb{C} \implies egin{cases} a := \operatorname{Re}(z) \ b := \operatorname{Im}(z) \end{cases} \end{aligned}$

•
$$\begin{cases} z = a + ib \\ w = c + id \end{cases} \implies z + w = (ac - bd) + i(ad + bc)$$

• $z = a + ib \implies \overline{z} := a - ib$

$$\circ \ \overline{z} + \overline{w} = \overline{z+w}$$

$$\circ \ \overline{z} \cdot \overline{w} = \overline{z \cdot w}$$

• $|z|=\sqrt{a^2+b^2}$

$$\begin{array}{c} -\sqrt{u} + b \\ \circ z \in \mathbb{C}, z \neq 0 \implies z = |z|e^{i\theta} \text{ dove } e^{i\theta} = \cos\theta + i\sin\theta \text{ è detta formula di Eulero} \\ \circ \arg(z) := \begin{cases} \cos\theta = \frac{a}{|z|} \\ \sin\theta = \frac{b}{|z|} \end{cases} \implies \exists ! \ 0 \leq \theta \leq 2\pi$$

ullet $\operatorname{arg}(z)\subset\mathbb{R}$ è l'insieme delle soluzioni del sistema, mentre $\operatorname{Arg}(z)$ è la soluzione principale

$$z \cdot \overline{z} = (a+ib)(a-ib) = a^2 - (ib)^2$$
 $\Rightarrow a^2 - i^2b^2 = a^2 + b^2 = |z|^2$

$$\circ \ \ z \cdot \overline{z} = |z|^2 \implies z = \frac{|z|^2}{\overline{z}} \implies z^{-1} = \frac{z}{|z|^2} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$$

 $\circ \ \frac{z \cdot \overline{z}}{|z|^2} = 1 \implies \mathbb{C} \text{ ammette inversi moltiplicativi} \implies (\mathbb{C}, +, *) \text{ è un campo}$

•
$$|z \cdot w| = |z||w|$$
, $\arg(z \cdot w) = \arg(z) + \arg(w)$

• $|\overline{w}| = |w|$, $\arg(\overline{w}) = -\arg(w)$

•
$$|w^{-1}| = |w|^{-1}$$
, $\arg(w^{-1}) = -\arg(w)$

•
$$\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$$
, $\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w)$

$$o z^n = r^n e^{in\theta}, \ \arg(z^n) = n \arg(z)$$

Teorema fondamentale dell'algebra

Data un'equazione $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$, con $a_0, a_1, a_2, \ldots, a_n \in \mathbb{C}$, $n \ge 1, a_n \ne 0 \implies \exists x \in \mathbb{C}$

Relazioni

- dato un insieme S, allora $R := R \mid R \subseteq S \times S$
- R è una relazione di equivalenza \iff
 - riflessiva: R riflessiva $\iff xRx \quad \forall x \in S$
 - simmetrica: R simmetrica $\iff xRy \implies yRx \quad \forall x,y \in S$
 - transitiva: R transitiva $\iff xRy, yRz \implies xRz \quad \forall x, y, z \in S$
- R è un ordine parziale \iff
 - $\circ \;\;R$ riflessiva, transitiva e antisimmetrica
 - R antisimmetrica $\iff xRy, yRx \implies x = y \quad \forall x, y \in S$
- R ordine totale \iff
 - - $R \text{ totale} \iff xRy \vee yRx \quad \forall x,y \in S$

Esempi

- $\forall X, A, B \subset P(X), A \subset B$ è ordine parziale su P(X)
 - \circ \triangle MANCA DIMOSTRAZIONE
- $m, n \in \mathbb{N}, \ m \mid n \ (\text{"m divide n"}) \iff \exists p \in \mathbb{N} \mid mp = n$
 - è ordine parziale
 - riflessività: $\forall x \in \mathbb{N}, x \mid x \Rightarrow \exists p \in \mathbb{N} \mid xp = x \implies p = 1 \in \mathbb{N}$
 - transitività: $\forall d, m, m \in \mathbb{N}, \ d \mid m \wedge m \mid m \implies d \mid m$
 - $\left.\begin{array}{l} d\mid m\Rightarrow \exists p_1\in\mathbb{N}\mid dp_1=m\\ m\mid m\Rightarrow \exists p_2\in\mathbb{N}\mid mp_2=n\end{array}\right\}\Rightarrow dp_1p_2=n\Rightarrow d\mid n \text{ poich\'e } p_1\in\mathbb{N}\wedge p1\in\mathbb{N}\implies p_1p_2\in\mathbb{N}$
 - antisimmetria: $\forall m, m \in \mathbb{N}, \ m \mid m \land m \mid m \implies m = n$
 - $egin{aligned} m \mid n \Rightarrow \exists p_1 \in \mathbb{N} \mid mp_1 = n \ n \mid m \Rightarrow \exists p_2 \in \mathbb{N} \mid np_2 = m \end{aligned} \Rightarrow p_1p_2 = 1 \implies p_1 = p_2 = 1 \text{ perché } p_1, p_2 \in \mathbb{N}, \text{ quindite } p_1 = p_2 = 1 \text{ perché } p_1, p_2 \in \mathbb{N}, \text{ quindite } p_1 = p_2 = 1 \text{ perché } p_2 = p_2 = 1 \text{ perché } p_2 = p_2$ $np_2 = m \wedge p_2 = 1 \implies n = m$
- $a,b \in \mathbb{Z}, \ a \equiv b \pmod{n} \iff m \mid b-a \text{ detta congruenza modulo } n$
 - è una relazione di equivalenza
 - $riflessivit\grave{a}: \forall a \in \mathbb{Z}, \ a \equiv a \pmod n \implies n \mid a-a \implies n \mid 0, e$ $n\mid 0 \implies \exists p\in \mathbb{Z}\mid n\cdot p=0 \implies p=0\in \mathbb{Z}$

```
■ simmetria: \forall a, b \in \mathbb{Z}, \ a \equiv b \pmod n \implies b \equiv a \pmod n

■ a \equiv b \pmod n \implies n \mid b - a \implies \exists p_1 \in \mathbb{Z} \mid n \cdot p_1 = b - a

■ b \equiv a \pmod n \implies n \mid a - b \implies \exists p_2 \in \mathbb{Z} \mid n \cdot p_2 = b - a

■ np_1 = b - a \implies b = np_1 + a

■ np_2 = a - b

■ n \neq 0, quindi p_2 + p_1 = 0 \implies p_2 = -p_1

■ per definizione di p_2,

np_2 = b - a \implies n(-p_1) = b - a \implies (-1) \cdot np_1 = b - a \implies np_1 = a - b \implies n \mid b - a

■ tansitivta: \forall a, b, c \in \mathbb{Z}, a \equiv b \pmod n, b \equiv c \pmod n \implies a \equiv c \pmod n

■ a \equiv b \pmod n \implies n \mid b - a \implies \exists p_1 \in \mathbb{Z} \mid n \cdot p_1 = b - a

■ b \equiv c \pmod n \implies n \mid c - b \implies \exists p_2 \in \mathbb{Z} \mid n \cdot p_2 = b - a

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

■ np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b

• np_1 = b - a \implies b = np_1 + a

np_2 = c - b \implies n \mid c - a \implies
```

Teorema della divisione euclidea con il resto

$$m, n \in \mathbb{Z}, n > 0 \implies \exists ! \ q, r \in \mathbb{Z} \mid m = nq + r, \ 0 \le r < n$$

Sottogruppi

• $H \subset G$ sottogruppo di un gruppo $(G, \cdot) \iff$ • $\exists e \in H \mid e \text{ è l'elemento neutro}$ • H è chiuso rispetto al prodotto• $\forall x, y \in H, \ x \cdot y \in H$ • H è chiuso rispetto agli inversi• $\forall x \in H, \ \exists x^{-1} \in H$ • $(\mathbb{Z}, +) \subset (\mathbb{Q}, +) \subset (\mathbb{R}, +) \subset (\mathbb{C}, +)$ tutti sottogruppi

■ △ MANCA DIMOSTRAZIONE

Classi di equivalenza

 $\bullet \quad [x] := \{ y \in S \mid x \sim y \}$ $\circ \quad x \in [x] \quad \forall x \in S$

- $x \sim x \quad \forall x \in S$ per definizione

 $\forall x,y \in S, \ [x] = [y] \iff x \sim y \lor [x] \cap [y] = \varnothing \iff x \nsim y$, quindi due classi di equivalenza o coincidono, o non si intersecano

 $\sec x \sim y, \exists z \in [x] \Rightarrow \frac{z \sim x}{x \sim y}$ $z \sim y$ per transitività, quindi $z \in [y]$ $\sec y \sim x, \exists z \in [y] \Rightarrow \frac{z \sim y}{y \sim x}$ $z \sim x$ per transitività, quindi $z \in [x]$ quindi $\forall z \in [x], \ x \sim y \implies z \in [y]$ e $\forall z \in [y], \ y \sim x \implies z \in [x]$, quindi [x] = [y] necessariamente

 $\sec x \nsim y$, e per assurdo $[x] \cap [y] \neq \varnothing$ allora $\exists z \mid z \in [x] \land z \in [y] \Rightarrow z \sim x \land z \sim y \implies x \sim y$ per transitività

 $S/\sim = \{[x] \mid x \in S\}$ è l'insieme di tutte le classi di equivalenza, detto insieme quoziente
- $S/\sim = \{[x] \mid x \in S\}$ è l'insieme di tutte le classi di equivalenza, detto **insieme quoziente** presa come relazione di equivalenza la congruenza modulo n, si definisce $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\} \implies |\mathbb{Z}_n| = n$, in cui ogni elemento è la classe di equivalenza di ogni intero fino ad n-1, e $[x] = \{y \in \mathbb{Z} \mid y \equiv x \pmod n\}$ $\exists ! \ q, r \in \mathbb{Z} \mid m = nq + r \quad \forall m, n \in \mathbb{Z} \text{ per il teorema della divisione euclidea con il resto, dunque}$ $\exists q \mid m = nq + r \implies nq = m r \implies n \mid m r \implies \exists q \mid m \equiv r \pmod n \implies [x] \in [Z]_n, [x] \neq \emptyset \quad \forall n \in \mathbb{Z}$

Teorema di Lagrange (teoria dei gruppi)

xH = {xh | h ∈ H} dove H ⊂ G e x ∈ G, è detta classe laterale sinistra di H in G
 quando G è finito, |xH| = |H| perché per ogni elemento x che genera xH, xH è l'insieme dei prodotti di x con ogni elemento di H

- $H \to xH$ è biunivoca $\forall x \in G$
- $G/H = \{xH \mid x \in G\}$ è l'insieme delle classi laterali sinistre, e poiché sono disgiunte a due a due, e la loro unione equivale a G, allora ogni xH è una **partizione** di G
-
 $\circ \ |G| = |H| \cdot [G:H]$ è il teorema di Lagrange
 - ullet |G| è la cardinalità di G
 - |H| è la cardinalità di H, che equivale a |xH| $\forall x \in G$
 - ullet [G:H] è la cardinalità di |G/H|, ovvero il numero di classi laterali sinistre

Ideali

- (A, +, *) anello commutativo
- $I \subset A \text{ ideale } \iff$
 - $(I, +) \subset (A, +)$ è un sottogruppo
 - $\circ \ \, \forall x \in I, a \in A \Rightarrow ax \in I \Rightarrow A \cdot I \subset I$
- nel caso in cui (A, +, *) non sia commutativo, basta aggiungere che $I \cdot A \subset I$
- $I \subset \mathbb{Z}$ ideale $\Longrightarrow \exists ! d \geq 0 \mid I = I(d) := \{xd \mid x \in \mathbb{Z}\}$
 - o esistenza
 - $\bullet \quad d := \min(I \cap \mathbb{Z}_{>0})$
 - se $I = \{0\} \implies I = I(0)$, altrimenti $I \cap \mathbb{Z}_{>0} \neq \emptyset$
 - $\forall x \in I \mid x < 0 \implies (-x) > 0$, e $(-x) \in I$ per definizione di I, quindi anche se ho un numero negativo, posso considerare il suo opposto per la dimostrazione
 - $I(d) = I \implies I(d) \subset I \land I \subset I(d)$
 - $I(d) \subset I$
 - $\forall x \in I(d), \exists y \in \mathbb{Z} \mid x = dy \text{ per definizione}$
 - $d \in I$ per definizione, quindi $dy \in I \implies x \in I \implies I(d) \subset I$ in quanto $I \subset \mathbb{Z}$ ideale, e dunque $I \cdot \mathbb{Z} \subset I$ (poiché \mathbb{Z} è anello commutativo)
 - $I \subset I(d)$
 - $\forall x \in I, \exists !q, r \in \mathbb{Z} \mid x = dq + r, \quad 0 \le r < d$, per il teorema della divisione euclidea con il resto, e $d \ne 0$ per ipotesi
 - $r=0 \implies x=dq \implies x \in I(d)$ per definizione, dunque $I \subset I(d)$
 - se, per assurdo, $r \neq 0$
 - $x \in I$ per ipotesi, $dq \in I(d) \implies dq \in I$ per dimostrazione precedente, quindi $x = dq + r \implies r = x dq \in I$, ma poiché $r \neq 0$ per ipotesi, allora $r \in I \cap \mathbb{Z}_{>0}$
 - per definizione, $0 \le r < d$, ma $d := \min(I \cap \mathbb{Z}_{>0})$, quindi il minimo numero che d può assumere è 1, e poiché $r < d \implies r = 0$ necessariamente

- o unicità
 - I(d) = I(-d), quindi l'unicità deriva dal fatto che $d := \min(I \cap \mathbb{Z}_{>0})$, e dunque nella dimostrazione è preso d positivo, ma vale il ragionamento analogo per d < 0 considerando I(-d)
 - $lacksquare I(a) = I(b) \iff a = \pm b \quad orall a, b \in \mathbb{Z} \mid a
 eq b$
 - $a = \pm b \implies I(a) = I(b)$
 - $a = b \implies I(a) \in I(b)$ coincidono
 - a = -b allora $I(-b) = \{k(-b) \mid k \in \mathbb{Z}\} = \{(-k)b \mid (-k) \in \mathbb{Z}\} = I(b)$, e $k, -k \in \mathbb{Z} \quad \forall k \in \mathbb{Z}$
 - $I(a) = I(b) \implies a = \pm b$
 - $I(a) = I(b) \implies a \in I(b) \in b \in I(a) \implies \exists p, q \in \mathbb{Z} \mid a = pb \land b = qa$, di conseguenza
 - $b=q(pb) \implies b=(qp)b \implies pq=1 \implies p=q=1 \lor p=q=-1 \implies a=\pm b$
- $\bullet \quad \forall a_1, \ldots a_n \in \mathbb{Z}, \quad \exists I(a_1, \ldots a_n) \mid \exists ! d \geq 0 : I(a_1, \ldots a_n) = I(d), \ \ d := \mathrm{MCD}(a_1, \ldots a_n)$
 - ♠ MANCA DIMOSTRAZIONE
 - $\forall x \in I(a_1, \dots, a_n), \ d \mid x$, dunque d è divisore comune
 - $\circ \ d$ è il $massimo \ tm \ i \ divisori \ comuni$
 - $\circ\;$ identità di Bézout
 - $\quad \blacksquare \quad \exists x,y \in \mathbb{Z} \mid ax+by=d \quad \forall a,b \in \mathbb{Z}$

Esempi

- $I(a) := \{ax \mid x \in A\}$ è detto ideale principale generato da a
 - \circ \triangle MANCA DIMOSTRAZIONE
- più in generale, $I(a_1,\ldots,a_n)=\{a_1b_1+\ldots a_nb_n\mid b_1,\ldots b_n\in A\}$ è l'ideale di A generato dagli $a_1,\ldots,a_n\in A$
 -
 ${\cal I}$ induce una relazione di equivalenza su
 A detta congruenza modulo ${\cal I}$
 - $\bullet \quad a \equiv b \pmod{I} \iff b a \in I$
- +: [x] + [y] = [x + y] e *: [x] * [y] = [x * y], allora (A/I, +, *) è un anello

Invertibili e divisori dello 0

- $(A, +, \cdot)$ anello commutativo
 - $a \in A$ è detto invertibile $\iff \exists a^{-1} \in A \mid a \cdot a^{-1} = e$
 - $\quad \blacksquare \quad A^* := \{a \in A \mid a \text{ invertibile}\} \subset A$
 - (A^*, \cdot) è un sottogruppo di (A, \cdot)
 - $1^{-1}=1 \implies 1$ invertibile $\implies 1 \in A^*$ per definizione di $A^* \implies \exists e \in A^*$
 - $\quad \blacksquare \quad \forall x,y \in A^* \quad x \cdot y \in A^*$
 - $\forall x \in A^* \exists x^{-1}$ per definizione di A^* , ma poiché x^{-1} è inverso di x, allora $x^{-1} \in A^*$ per definizione
 - (A^*, \cdot) è un gruppo
 - $\bullet \quad (xy)z = x(yz)$
 - $\exists e \text{ ed } \text{è } 1 \in A^*$
 - $\forall x \in A^* \quad \exists x^{-1} \text{ per definizione}$
 - $a \in A$ è detto divisore dello $0 \iff \exists b \in A, b \neq 0 \mid a \cdot b = 0$
 - A è detto dominio di integrità $\iff \not\exists x \mid x$ divisore dello 0 oltre a x=0
 - A è dominio di integrità \iff in A vale la legge di annullamento del prodotto
 - un divisore dello 0 non è invertibile

Insiemi quoziente \mathbb{Z}_n

- \mathbb{Z}_n dominio \iff n primo
 - \triangle MANCA DIMOSTRAZIONE
- $\forall [x] \in \mathbb{Z}_n, \ \mathrm{MCD}(x,n) = 1 \iff [x] \in \mathbb{Z}_n^*$
 - \triangle MANCA DIMOSTRAZIONE
 - $\quad \bullet \quad p \text{ primo} \implies \mathbb{Z}_p^* = \{[x] \in \mathbb{Z}_p \mid 0 < x < p\} = \mathbb{Z}_p \{0\}$
 - lacktriangledown p primo \Longrightarrow ogni numero è coprimo con p
 - $\not\exists x \mid [0]$ invertibile
 - $[p] \notin \mathbb{Z}_p$ per definizione di \mathbb{Z}_p
 - $lackbox{\hspace{0.1cm}$\bullet$}\hspace{0.2cm} p \ \mathrm{primo} \implies \mathbb{Z}_p \ \mathrm{campo}$