Machine Learning with Python

Life is too short, You need Python

실습 내용

- Carseats 데이터에 대해 모델링합니다.
- 다중 선형회귀 모델을 만들고 평가합니다.
- 특히 회귀 계수를 명확히 이해합니다.
- 예측 결과를 시각화합니다.

1.환경 준비

• 기본 라이브러리와 대상 데이터를 가져와 이후 과정을 준비합니다.

In [32]: # 라이브러리 불러오기

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns
import warnings

warnings.filterwarnings(action='ignore')
%config InlineBackend.figure format='retina'

In [33]: # 데이터 읽어오기

path = 'https://raw.githubusercontent.com/Jangrae/csv/master/Carseats.csv'

data = pd.read_csv(path)

2.데이터 이해

• 분석할 데이터를 충분히 이해할 수 있도록 다양한 탐색 과정을 수행합니다.

In [34]: # 상위 몇 개 행 확인 data.head()

Out[34]:		Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
	0	9.50	138	73	11	276	120	Bad	42	17	Yes	Yes
	1	11.22	111	48	16	260	83	Good	65	10	Yes	Yes
	2	10.06	113	35	10	269	80	Medium	59	12	Yes	Yes
	3	7.40	117	100	4	466	97	Medium	55	14	Yes	Yes
	4	4.15	141	64	3	340	128	Bad	38	13	Yes	No

데이터 설명

• Sales: 각 지역 판매량(단위: 1,000개)

• CompPrice: 경쟁사 가격 (단위: 달러)

• Income: 지역 평균 소득 (단위: 1,000달러)

• Advertising: 각 지역, 회사의 광고 예산 (단위: 1,000달러)

• Population: 지역 인구 수 (단위: 1,000명)

• Price: 자사 지역별 판매 가격 (단위: 달러)

• ShelveLoc: 진열 상태

• Age: 지역 인구의 평균 연령

• Education: 각 지역 교육 수준

• Urban: 도심 지역 여부 (Yes,No)

• US: 매장이 미국에 있는지 여부 (Yes, No)

In [35]: # 기술통계 확인 data.describe()

						,	,		
Out[35]:		Sales	CompPrice	Income	Advertising	Population	Price	Age	Educatio
	count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.00000
	mean	7.496325	124.975000	68.657500	6.635000	264.840000	115.795000	53.322500	13.90000
	std	2.824115	15.334512	27.986037	6.650364	147.376436	23.676664	16.200297	2.62052
	min	0.000000	77.000000	21.000000	0.000000	10.000000	24.000000	25.000000	10.00000
	25%	5.390000	115.000000	42.750000	0.000000	139.000000	100.000000	39.750000	12.00000
	50%	7.490000	125.000000	69.000000	5.000000	272.000000	117.000000	54.500000	14.00000
	75 %	9.320000	135.000000	91.000000	12.000000	398.500000	131.000000	66.000000	16.00000
	max	16.270000	175.000000	120.000000	29.000000	509.000000	191.000000	80.000000	18.00000
									
[36]:		<i>값 확인</i> snull().sum	1()						
[37]:		0 ising 0 tion 0 Loc 0 ion 0 int64	_only=True)						
t[37]:		S	ales CompF	Price Incon	ne Advertisir	ng Populatio	on Price	e Age	Education
r ~ ,] .		Sales 1.000							-0.051955
	Compl								0.025197
		ome 0.151							-0.056855
	Adverti								-0.033594
	Popula	_							-0.106378
		Price -0.444							0.011747
									0.011747
	Edward								
	Educa	ition -0.051	955 0.02	5197 -0.0568	55 -0.03359	94 -0.1063 ⁻	78 0.011747	0.006488	1.000000
									•

3.데이터 준비

• 전처리 과정을 통해 머신러닝 알고리즘에 사용할 수 있는 형태의 데이터를 준비합니다.

1) x, y 분리

```
In [38]: # target 확인
target = 'Sales'

# 데이터 분리
x = data.drop(target, axis=1)
y = data.loc[:, target]
```

2) 가변수화

```
In [39]: # 가변수화 대상: ShelveLoc, Education, Urban, US
dumm_cols = ['ShelveLoc', 'Education', 'Urban', 'US']
# 가변수화
x = pd.get_dummies(x, columns=dumm_cols, drop_first=True, dtype=int)
# 확인
x.head()
```

Out[39]:		CompPrice	Income	Advertising	Population	Price	Age	ShelveLoc_Good	ShelveLoc_Medium	Edu
	0	138	73	11	276	120	42	0	0	
	1	111	48	16	260	83	65	1	0	
	2	113	35	10	269	80	59	0	1	
	3	117	100	4	466	97	55	0	1	
	4	141	64	3	340	128	38	0	0	
4										•

3) 학습용, 평가용 데이터 분리

```
In [40]: # 모듈 불러오기
from sklearn.model_selection import train_test_split
# 데이터 분리
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1)
```

4.모델링

• 본격적으로 모델을 선언하고 학습하고 평가하는 과정을 진행합니다.

```
In [41]: # 1단계: 불러오기
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, r2_score

In [42]: # 2단계: 선언하기
model = LinearRegression()
```

```
# 3단계: 학습하기
In [43]:
          model.fit(x_train, y_train)
Out[43]:
          ▼ LinearRegression
          LinearRegression()
In [44]: # 4단계: 예측하기
          y_pred = model.predict(x_test)
In [45]: # 5단계: 평가하기
          print('MAE:', mean_absolute_error(y_test, y_pred))
          print('R2:', r2 score(y test, y pred))
          MAE: 0.8416098802896127
          R2: 0.8657819916636766
In [63]:
          # 회귀계수 확인
          print(list(x))
          print(model.coef )
          print(model.intercept )
          ['CompPrice', 'Income', 'Advertising', 'Population', 'Price', 'Age', 'ShelveLoc_Good', 'Shelve
          Loc_Medium', 'Education_11', 'Education_12', 'Education_13', 'Education_14', 'Education_15', 'Education_16', 'Education_17', 'Education_18', 'Urban_Yes', 'US_Yes']
          [ 9.42233545e-02 1.38354290e-02 1.29531548e-01 -5.23624544e-04
           -9.67176394e-02 -5.14878643e-02 4.85610255e+00 2.02857909e+00
           -2.75940270e-01 -2.24414376e-01 -2.15006864e-01 -1.29912858e-01
            1.22594171e-01 -3.67638446e-01 -3.34511218e-01 -3.84411744e-01
            1.78293080e-01 -2.41139115e-01]
          6.097879899078492
In [65]: df = pd.DataFrame()
          df['feature'] = list(x)
          df['coef'] = model.coef_
          df.head()
Out[65]:
                feature
                             coef
          0 CompPrice
                         0.094223
                 Income
                         0.013835
          2 Advertising
                         0.129532
          3 Population -0.000524
          4
                   Price -0.096718
In [77]: # 정렬
          df.sort_values(by='coef', ascending=True, inplace=True)
           # 시각화
          plt.figure(figsize=(5, 5))
          plt.barh('feature', 'coef', data=df) # 가중치 시각화 # 가중치가 적고 쓸모 없는 데이터 삭제
          plt.show()
```


5.기타

• 기타 필요한 내용이 있으면 진행합니다.

```
# 예측값, 실젯값 시각화
In [56]:
           # 시각화
          plt.figure(figsize=(12, 5))
          plt.plot(y_test.values, label='Actual')
          plt.plot(y_pred, label='Predicted')
          plt.legend()
          plt.ylabel('sales')
          plt.show()
                    Actual
            14
                    Predicted
            12
            10
             2
             0
                   ò
                                20
                                              40
                                                            60
                                                                          80
                                                                                       100
                                                                                                     120
```

24	2	20	오후	12.21
24.	J.	23.	エー	14.4

In []: