第11章 决策树

不同分类器的特点

K近邻:

- 模型就是训练数据
- 拟合训练数据很快
 - 只是存储数据
- 预测比较慢
 - 需要计算大量的距离
- 判定边界较灵活

不同分类器的特点

逻辑回归:

- 模型就是参数
- 拟合训练数据可能较慢
 - 必须找到最优参数
- 预测较快
 - 计算期望值
- 判定边界较简单,缺乏灵活性

J. Ross Quinlan 罗斯.昆兰 1943-

决策树 (decision tree) 算法起源于 E.B.Hunt等人于1966年发表的论文 "experiments in Induction", 但真正 让决策树成为机器学习主流算法的 还是Quinlan (罗斯.昆兰) (2011年 获得了数据挖掘领域最高奖KDD创 新奖),昆兰在1979年提出了ID3算 法,掀起了决策树研究的高潮。现 在最常用的决策树算法是C4.5是昆兰 在1993年提出的。现在有了商业应 用新版本是C5.0。

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- 想要根据temperature, humidity, wind, outlook 来预测是否打网球
- 使用特征来划分数据,进 而预测结果

Nodes

Leaves

- 想要根据temperature, humidity, wind, outlook 来预测是否打网球
- 使用特征来划分数据,进 而预测结果
- 预测类别结果的决策树

Nodes Temperature: >= Mild Humidity: = Normal No Tennis Play Tennis

Leaves

预测连续值的回归树

- 例如: 使用喜马拉雅山脉的坡度和高度
- 预测平均降水量(连续值)
- 叶子节点的值是其所有成 员的平均值

决策树应用举例

金融

保险

医疗

遥感

创建一个决策树

- 选取一个特征,把数据 分成两部分,构成一个 二叉树
- 继续选取特征,划分数据

何时停止分裂

直到:

- · 叶子节点纯了——仅包 含一类实例
- 达到最大深度
- 达到某一性能指标

创建最优决策树

- 使用贪婪搜索:每一步 寻找最优划分
- 什么是最优划分?
- 最大化不纯度减小量的 划分
- 如何度量不纯度?

分类错误公式:

分类错误公式:

$$E(t) = 1 - \max_{i}[p(i|t)]$$

划分前的分类错误:

$$1 - 8/12 = 0.3333$$

分类错误公式:

$$E(t) = 1 - \max_{i}[p(i|t)]$$

划分后左边的分类错误:

$$1 - 2/4 = 0.5000$$

分类错误公式:

$$E(t) = 1 - \max_{i}[p(i|t)]$$

划分后右边的分类错误:

$$1 - 6/8 = 0.2500$$

分类错误公式:

$$E(t) = 1 - \max_{i}[p(i|t)]$$

分类错误的变化:

$$= 0$$

- 使用分类错误,分裂停止
- 问题:叶子节点仍然不是同质的
- 尝试另外一个性能指标?

信息熵: 度量样本集合纯度最常用的一种指标

熵的公式:

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Ent(t)或Ent(D), D为对应的数据集

熵的公式:
$$H(t) = -\sum_{i=1}^{n} p(i|t) \log_2[p(i|t)]$$

划分前的熵:

$$-8/12*log_2(8/12)-4/12*log_2(4/12)$$

= 0.9183

熵的公式:

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

划分后左边的熵:

 $-2/4*log_2(2/4)-2/4*log_2(2/4)$

= 1.0000

熵的公式:

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

划分后右边的熵:

 $-6/8*log_2(6/8)-2/8*log_2(2/8)$

= 0.8113

熵的公式
$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

熵的变化:

$$0.9183 - 4/12*1.0000 - 8/12*0.8113$$

= 0.0441

- 基于熵的划分允许继续 分裂下去
- 最终达到叶子节点同质 的目标
- 为什么熵可以达到这一目标,而分类错误不行?

分类错误vs熵

- 分类错误是一个平坦函数, 在中心点达到最大值
- 中心点表示的是0.5/0.5 的划分
- 分类指标偏向于远离中心 点的结果

分类错误vs熵

- 熵具有相同的最大值,但 是弯曲的曲线
- 曲度使得分裂可以继续到 叶子节点纯了为止
- 为什么?

■ 使用分类错误,函数是平坦的

■ 使用分类错误,函数是平坦的

- 使用分类错误,函数是平坦的
- 最终的平均分类错误很有可能 与父节点的分类错误相等
- 从而导致提前停止

■ 使用熵,函数有个"鼓包"

- 使用熵,函数有个"鼓包"
- 使得子节点的平均熵少于父 节点的熵
- 从而产生信息增益,使得分 裂可以继续

信息增益(information gain)

假定离散属性a有n个可能的取值{ $a_1, a_2, ..., a_n$ },若使用a来对样本集D进行划分,则会产生n个分支节点,其中第i个分支节点包含了D中所有在属性a上取值为 a_i 的样本,记为 D_i ,则

$$Gain(D, a) = Ent(D) - \sum_{i=1}^{n} \frac{|D_i|}{|D|} Ent(D_i)$$

信息增益(information gain)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

信息增益率(information gain ratio)

$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

$$IV(a) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \log_2 \frac{|D_i|}{|D|}$$
属性 a 的固有值

信息增益率(information gain ratio)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

基尼指数

- 实际中,常使用基尼指数 做分裂
- 其函数类似于熵---也有 "鼓包"
- 没有对数

$$Gini(t) = \sum_{i=1}^{n} p(i|t)[1 - p(i|t)] = 1 - \sum_{i=1}^{n} p(i|t)^{2}$$

基尼指数(Gini index)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

决策树高方差(high variance)

- 问题: 决策树容易过拟合
- 数据微小的变化能对预测结果产生较大的影响---high variance

修剪决策树

- 问题: 决策树容易过拟合
- 数据微小的变化能对预测结果产生较大的影响---high variance
- 解决方案: 修剪决策树
 - 预剪枝
 - 后剪枝

预剪枝

- 在决策树构建过程中,依据预先 设定的条件,提前终止树的生长。
- Scikit-Learn中:
 - 决策树的最大深度 (max_depth)
 - 决策树的最大叶子数 (max_leaf_nodes)
 - 可分裂节点应包含的最少样例数(min_samples_split)
 - 叶节点应包含的最少样例数 (min_samples_leaf)
 - 不纯度减少的最小量 (min_impurity_decrease)

后剪枝

- 在决策树构建完成之后进行剪枝, 得到一棵简化的树。
- 自底向上地考察每个非叶节点,如果将其子树剪去,成为一个叶节点,能带来决策树泛化性能提升,则将该子树替换为叶节点
- 错误率降低剪枝 (reduced-error pruning, REP)

后剪枝

■ Scikit-Learn从0.22版本开始实现了代价复杂度剪枝(cost-complexity, CCP)策略

$$\alpha = \frac{C(t) - C(T_t)}{|T_t| - 1}$$

- $|T_t|$ 为子树中叶节点的个数
- $C(T_t)$ 和C(t)分别是剪枝前后该子树的预测错误(或者所有叶节点的不纯度之和)
- 计算树中每个非叶节点的α值, 然后循环剪掉具有最小α值的子 树,直到最小α值大于用户预先 给定的参数值ccp_alpha为止。

预剪枝vs. 后剪枝

■ 一般情形下,后剪枝决策树的欠 拟合风险很小,泛化性能往往优 于预剪枝决策树。但后剪枝训练 时间比未剪枝和预剪枝决策树都 要大得多。

连续值处理

给定样本集D和连续属性a,假定a在D上有n个不同的取值,从小到大排序后记为 $\{a_1,a_2,...,a_n\}$,若使用划分点t来对其进行划分,将D分为子集 D_t^- 和 D_t^+ (D_t^- :在属性a上取值 $\leq t$, D_t^+ :在属性a上取值> t)。

连续值处理

对相邻的属性取值 a_i 与 a_{i+1} 来说,在区间 [a_i , a_{i+1})中取任意值所产生的划分结果相同。

把区间[a_i , a_{i+1}) 的中位点 $\frac{a_i^{+a_{i+1}}}{2}$ 作为候选划分点,则可参照离散属性值一样来考察这些划分点。

连续值处理

选取最优的划分点进行样本集合的划分,

假设
$$T_a = \left\{ \frac{a_i + a_{i+1}}{2} \middle| 1 \le i \le n-1 \right\}$$
, 则

$$Gain(D, a) = \max_{t \in T_a} Gain(D, a, t)$$

$$= \max_{t \in T_a} \left(Ent(D) - \sum_{\lambda \in \{-, +\}} \frac{|D_t^{\lambda}|}{|D|} Ent(D_t^{\lambda}) \right)$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.360	0.370	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

缺失值处理

- 如何在属性值缺失的情况下进行划分属性的 选择?
- 给定划分属性,若样本在该属性上的值缺失, 如何对样本进行划分?

缺失值处理

给定样本集D和属性a,令 \tilde{D} 表示D中在属性a上没有缺失值的样本子集。对于第一个问题,根据 \tilde{D} 来判断属性a的优劣。

缺失值处理

假定属性a在D上有n个可取值 $\{a_1,a_2,...,a_n\}$,令 \widetilde{D}_i 表示 \widetilde{D} 中在属性a上取值为 a_i 的样本子集, \widetilde{D}_k 表示 \widetilde{D} 中属于第k类 (k=1,2,...,K) 的样本子集。则 $\widetilde{D}_i = \bigcup_{i=1}^K \widetilde{D}_i$, $\widetilde{D}_i = \bigcup_{k=1}^K \widetilde{D}_k$ 。

缺失值处理

假设我们为每个样本x赋予一个权重 ω_x ,并

定义:

$$\rho = \frac{\sum_{x \in \widetilde{D}} \omega_x}{\sum_{x \in D} \omega_x}$$

$$\tilde{p}_k = \frac{\sum_{x \in \widetilde{D}_k} \omega_x}{\sum_{x \in \widetilde{D}_i} \omega_x} \qquad (1 \le k \le K)$$

$$\tilde{r}_i = \frac{\sum_{x \in \widetilde{D}_i} \omega_x}{\sum_{x \in \widetilde{D}_i} \omega_x} \qquad (1 \le k \le K)$$

缺失值处理

$$Gain(D, a) = \rho \times Gain(\widetilde{D}, a)$$

$$= \rho \times \left(Ent(\widetilde{D}) - \sum_{i=1}^{n} Ent(\widetilde{D}_i) \right)$$

$$Ent(\widetilde{D}) = -\sum_{k=1}^{K} \widetilde{p}_k \log_2 \widetilde{p}_k$$

缺失值处理

对于第二个问题,若样本x在划分属性a上取值已知,则将x划入与其取值对应的子节点,且样本权值在子节点中保持为 ω_x 。

若样本x在划分属性a上取值已未知,则将x同时划入所有子节点,且样本权值在与属性 a_i 对应的子节点中调整为 $\tilde{r}_i \cdot \omega_x$ 。

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	_	是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	_	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

决策树的优点

- 容易实现和解释
 - "if ... then ... else"逻辑
- 可以处理任何数据类型
 - 类别型,连续数值
- 无需数据预处理和缩放
- 易于追溯和倒推

criterion	测试条件选择标准 DecisionTreeClassifier的缺省值是 "gini",即用基尼指数作为衡量指标,也可以是 "entropy",即使用熵作为衡量指标; DecisionTreeRegressor的缺省值是 "mse",即使用均方差作为衡量指标,也可以是 "mae",即使用平均绝对值误差作为衡量指标。
splitter	测试条件选择策略 缺省值是"best",即选取最优划分条件,也可以是"random",表示随机 选取划分条件。
max_depth	决策树的最大深度 缺省值是没有深度限制。设置树的最大深度是为了防止过拟合。
min_samples_split	节点可分裂的最少样例数 缺省值是2。一个节点可以进一步分裂必须最少包含min_samples_split个样例 为了防止过拟合,可以增大此值。
min_samples_leaf	叶子节点的最少样例数 缺省值是1。一个叶子节点必须最少包含min_samples_leaf个样例。如果增大此值,可以及早停止过于细分叶子节点,防止过拟合。
max_features	选择测试条件可考虑的最大特征数 缺省值是没有最大特征数的限制,即可以考虑数据集中的所有特征。减少考 虑的特征数,一来可以减少决策树的生成时间;二来可以增大决策树的随机 性,有利于提升随机森林等集成学习模型的效果。
max_leaf_nodes	最大叶节点个数 缺省值是不限制叶节点的个数。它和树的最大深度类似,可以防止过拟合。
min_impurity_decrease	最小不纯度减少量 如果用某一测试条件划分节点带来的不纯度的减少量小于这个阈值,则不用 此测试条件划分该节点。