Lab 2: Design and Simulation of Sequential Logic Circuits -- Synchronous Counters

CEG 2136 B - Computer Architecture Fall 2017

School of Electrical Engineering and Computer Science University of Ottawa

Course Coordinator: Dr. Sawsan Abdul-majid

Group 18 Felix Singerman 7970742

Nasser Haidar 8543506

Experiment Date: September 21, 2017 Submission Date: September 27, 2017

Theoretical Part

1. Introduction of problem

In this lab, we created sequential circuit diagrams using various logic gates and JK Flip Flops in order to gain additional practice with the Altera DE2-115 board and the Quartus II software. This lab also introduced us to testing with an oscilloscope and allowed us to begin familiarizing ourselves with the oscilloscope.

2. Discussion of problem

The problem for this lab consisted of designing sequential circuits based on the state diagrams provided.

Figure 1: A state diagram of a Modulo 6 counter

Figure 2: A state diagram of a 4-bit synchronous BCD counter

3. Discussion of algorithmic solution

We used ANDs, NOTs and JK Flip Flops to build the sequential circuits. The diagram for part 1 contained a clock and reset inputs, three JK Flip Flops and three outputs. The diagram for part 2 contained a clock and reset inputs, four JK Flip Flops and four outputs.

Design Part

1. Presentation of the design methodology applied to solving the lab problems

3 Bit Synchronous Modulo 6 Counter

From the state diagrams, an excitation table can be made to determine the values of the inputs in the JK Flip Flops. From the values determined in the excitation table, a K-Map can be made to find the simplified equation for the input. Then using these equations, a circuit diagram can be designed.

Present	Next	Synchronous		ous
State	State	Inputs		
msb lsb	msb lsb	msb		lsb
$Q_2Q_1Q_0$	$\mathbf{Q_2}\mathbf{Q_1}\mathbf{Q_0}$	J_2K_2	J_1K_1	J_0K_0
000	010	0 x	1 x	0 x
001	XXX	ХX	ХX	ХX
010	110	1 x	x 0	0 x
011	101	1 x	x 1	x 0
100	000	x 1	0 x	0 x
101	100	x 0	0 x	x 1
110	011	x 1	x 0	1 x
111	XXX	ХX	ХX	хх

Table 1: The Excitation Table for the JK flip-flops Modulo 6 counter

J2	Q1Q0			
Q2	00 01 11 10			
0	0	Х	1	1
1	Х	Х	Х	Х

J2 = Q1

Table 2: K-Map for J2

K2	Q1Q0				
Q2	00	00 01 11 10			
0	Х	Х	Х	Х	
1	1	0	Х	1	

K2 = Q0'

Table 3: K-Map for K2

Table 4: K-Map for J1

J1	Q1Q0				
Q2	00	00 01 11 10			
0	1	Х	Х	Х	
1	0	0	Х	Х	

J1 = Q2'

Table 5: K-Map for K1

K1	Q1Q0			
Q2	00 01 11 10			
0	Х	Х	1	0
1	Х	Х	Х	0

K1 = Q0

Table 6: K-Map for J0

J0	Q1Q0			
Q2	00 01 11 10			
0	0	Х	Х	0
1	0	Х	Х	1

J0 = Q1Q2

Table 7: K-Map for K0

K0	Q1Q0				
Q2	00	00 01 11 10			
0	Х	Х	0	Х	
1	Х	1	Х	Х	

K0 = Q1'

Figure 1: A circuit diagram of a modulo 6 counter

Figure 2: Simulation of 3-bit synchronous BCD on the oscilloscop

Table 8: The Excitation Table for the JK flip-flops 4-bit synchronous BCD counter

Current ABCD	Next ABCD	JAKA	JBKB	JCKC	JDKD
0000	0001	ОХ	ОХ	ОХ	1X
0001	0010	ОХ	0X	1X	X1
0010	0011	ОХ	0X	х0	1X
0011	0100	0X	1X	X1	X1
0100	0101	ОХ	х0	0X	1X
0101	0110	0X	х0	1X	X1
0110	0111	0X	х0	х0	1X
0111	1000	1X	X1	X1	X1
1000	1001	хо	0X	OX	1X
1001	0000	X1	0X	0X	X1

Table 9: K-Map for JA

JA	CD			
AB	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	Х	Х	Х	Х
10	Х	Х	Х	Х

JA = BCD

Table 10: K-Map for KA

КА	CD			
АВ	00	01	11	10
00	Х	х	х	х
01	Х	х	х	х
11	Х	х	х	х
10	0	1	х	Х

KA = D

Table 11: K-Map for JB

JB	CD			
AB	00	01	11	10
00	0	0	1	0
01	Х	Х	х	Х
11	Х	Х	х	Х
10	0	0	х	Х

JB = CD

Table 12: K-Map for KB

КВ	CD			
AB	00	01	11	10
00	Х	Х	х	Х
01	0	0	1	0
11	Х	Х	х	х
10	0	0	х	х

KB = CD

Table 13: K-Map for JC

JC	CD			
AB	00	01	11	10
00	0	1	х	х
01	0	1	х	Х
11	х	Х	х	Х
10	0	0	Х	х

JC = A'D

Table 14: K-Map for KC

кс	CD			
AB	00	01	11	10
00	х	х	1	0
01	Х	х	1	0
11	Х	х	х	х
10	Х	х	Х	Х

KC = D

Table 15: K-Map for JD

able 19: K Wap jer				
JD	CD			
АВ	00	01	11	10
00	1	х	Х	1
01	1	х	х	1
11	Х	х	Х	Х
10	1	х	х	1

JD = 1

Table 16: K-Map for KD

KD	CD			
AB	00	01	11	10
00	Х	1	1	х
01	1	Х	Х	1
11	Х	Х	Х	х
10	1	х	х	1

KD = 1

Figure 3: A circuit diagram of a 4 bit synchronous BCD counter

Figure 4: Waveform simulation of a 4 bit synchronous BCD counter

2. Discussion of used components (10) Explain each component and its implementation and give the circuit diagram.

AND Gate

A gate where the output is 1 if and only if both inputs have a value of 1, otherwise, its output is 0.

NOT Gate

A gate where the output is 1 if the input is 0, and vice versa.

JK Flip Flop

It is a gated SR Flip Flop that has a clock input which prevents the invalid output when both S and R are 1

Circuit Diagrams

Figure 5: A circuit diagram of a modulo 6 counter

Figure 6: A circuit diagram of a 4 bit synchronous BCD counter

3. Discussion of actual solution (10) Explain the actual implementation of the whole design and give the circuit diagrams.

We utilized JK Flip Flops as well as a Clear and Clock input for both circuits. Furthermore, we used NOT and AND gates. The way we connected each Flip Flop corresponds to the equations we got from doing our K-Maps from the pre-lab. After we created the circuit diagrams, we uploaded the modulo 6 counter onto the Altera board. We used one of the buttons to change states, and an LED to visualize the current state. For the 4 bit BCD counter, we used the Oscilloscope to simulate and visualize what our circuit does. The result of this is shown in figure 9.

Figure 7: A circuit diagram of a modulo 6 counter

Figure 9: Simulation of 3-bit synchronous BCD on the oscilloscope

Figure 8: A circuit diagram of a 4-bit synchronous BCD counter

Figure 9: Waveform for 4-bit synchronous BCD counter

4. Discussion of tool

Altera DE2-115 Board

This is a circuit board which consists of multiple pins, buttons, and LEDs. It allows us to visualize and test our designed circuits from the Quartus software.

Oscilloscope

This is an instrument used to display and analyze the waveform of electronic signals

Coaxial cable

A coaxial cable conducts electrical signal using an inner conductor. We used this cable as an output for the clock from the Altera DE2-115 board to the oscilloscope.

Ribbon cable

A ribbon cable is a cable with many conducting wires running parallel to each other on the same flat plane. This was used to connect the Altera DE2-115 board to the oscilloscope.

Wires

Small wires were used to connect the two ribbon cables together

5. Discussion of challenging problems

We had difficulties getting the waveform simulation to display for the 4-bit synchronous BCD counter. After much effort, we got it to work.