Testul 1

Problema 1 Utilizați metoda lui Romberg și o cuadratură adaptivă pentru a aproxima cu o precizie de 10^{-9} integrala

$$\int_0^{48} \sqrt{1 - \cos^2 x} \, \mathrm{d}x$$

Explicați de ce pot să apară dificultăți și reformulați problema astfel încât să se poată obține mai ușor o aproximație precisă.

Testul 2

Problema 2 Determinați lungimea arcului de curba parametrică

$$x(t) = (1 - \cos(t))\cos(t)$$

$$y(t) = (1 - \cos(t))\sin(t), \quad t \in [0, 2\pi].$$

folosind o cuadratură adaptivă și metoda lui Romberg. Indicație: formula este

$$\ell = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Testul 3

Problema 3 Evaluaţi $\int\limits_0^1 \frac{\exp(x)}{\sqrt{x}} \mathrm{d}\,x$ utilizând o cuadratură adaptivă și metoda lui Romberg

- (a) rezolvând problema aşa cum este enunțată;
- (b) utilizând o schimbare de variabilă;
- (c) utilizând o tehnică de dezvoltare în serie.

 $Comparați\ rezultatele.$

Testul 4

Problema 4 Funcția $y(x) = e^{-x^2} \int_0^x e^{t^2} dt$ se numește integrala lui Dawson.

Tabelați această funcție pentru $x=0,\ 0.1,\ \ldots,\ 0.5$ (cu adquad2 și Romberg). Pentru a evita evaluările de funcții nenecesare, descompuneți integrala într-o sumă de integrale pe subintervale.

Testul 5

Problema 5 Funcția Bessel de ordinul zero $J_0(x)$ se poate calcula cu formula

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta.$$

Utilizați formula pentru a evalua $J_0(x)$ pentru x = 1.0, 2.0, 3.0 cu o cuadratură adaptivă și cu metoda lui Romberg și comparați rezultatul obținut cu cel furnizat de MATLAB.

Testul 6

Problema 6 O sferă de rază R plutește pe jumătate scufundată într-un lichid. Dacă este împinsă în jos până când planul diametral este la distanța p (0 < $p \le R$) sub suprafața lichidului și apoi este eliberată, perioada vibrației care se produce astfel este

$$T = 8R\sqrt{\frac{R}{g(6R^2 - p^2)}} \int_{0}^{2\pi} \frac{dt}{\sqrt{1 - k^2 \sin^2 t}},$$

unde $k^2 = p^2/\left(6R^2 - p^2\right)$ și $g = 10m/s^2$. Pentru R = 1 și p = 0.5, 0.75, 1.0 găsiți T (cu o cuadratură adaptivă și cu Romberg, $\varepsilon = 1e - 9$).

Testul 7

Problema 7 Utilizați o cuadratură adaptivă și metoda lui Romberg cu diverse toleranțe pentru a aproxima π prin

$$\pi = \int_{-1}^{1} \frac{2}{1+x^2} \, \mathrm{d} \, x.$$

Cum variază precizia și numărul de evaluări de funcție odată cu toleranța? Reprezentați grafic.

Testul 8

Problema 8 Integrala exponențială

$$E_1(x) = \int_{1}^{\infty} e^{-tx} \frac{\mathrm{d} x}{x}, \qquad t > 0,$$

apare în studiul transferului radiativ și în teoria transportului. Integrala se transformă succesiv

$$E_{1}(t) = \int_{1}^{\infty} e^{-x} \frac{dx}{x} + \int_{t}^{1} e^{-x} \frac{dx}{x}$$

$$= -\left\{ \int_{1}^{\infty} e^{-x} \frac{dx}{x} - \int_{0}^{1} (1 - e^{-x}) \frac{dx}{x} \right\}$$

$$+ \int_{t}^{1} \frac{dx}{x} + \int_{0}^{t} (1 - e^{-x}) \frac{dx}{x}.$$

Expresia dintre acolade are valoarea aproximativă $\gamma=0.5772156649015329$ (constanta lui Euler). Al doilea termen se integrează analitic la $-\ln t$. Deci,

$$E_1(t) = -\gamma - \ln t + \int_0^t (1 - e^{-x}) \frac{\mathrm{d} x}{x}.$$

Evaluați $E_1(t)$ pentru t = 1.0, 2.0, 3.0. Apare vreo dificultate datorită comportării integrandului în x = 0?

Problemă obligatorie

Problema 9 (a) Arătați că extrapolarea în formula repetată a trapezului din $R_{i,1}$ şi $R_{i+1,1}$ ne dă regula repetată a lui Simpson cu pasul h_i în $R_{i,i}$.

(b) Arătați că $R_{i,3}$ din metoda lui Romberg poate fi exprimat cu ajutorul regulii Boole-Villarceau repetate (cu pasul h_i), a cărei variantă elementară este

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{90} \left[7f(a) + 32f\left(\frac{3a+b}{4}\right) + 12f\left(\frac{a+b}{2}\right) + 32f\left(\frac{a+3b}{4}\right) + 7f(b) \right]$$

(c) Verificați practic punctele (a) și (b) pentru $\int_1^2 \ln x \, dx$ cu ajutorul unor grafice de tip loglog ale erorii în funcție de pasul h.