An Investigation of Factors Influencing Emergency Healthcare Expenditures

due November 16, 2021 by 11:59 ${\rm PM}$

Maggie Lundberg, Riya Mohan, and Izzy Kjaerulff

11/16/2021

Abstract

Nature of the Data

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normal Distribution of Mean Pub

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normal Distribution of Mean Priv

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Normal Distribution of Mean Out

The normal distribution for public spending, private spending, and out-of-pocket pending all show a severe right skew in the data. Therefore, all three variables do not meet the normal distribution assumption needed for many tests, such as ANOVA; however, this can easily be resolved by applying a log transformation to the data to give a fairly normal distribution of the data.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 198 rows containing non-finite values (stat_bin).

Log Normal Distribution of Mean

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Warning: Removed 198 rows containing non-finite values (stat_bin).

Log Normal Distribution of Mean

$\operatorname{stat_bin}()$ using $\operatorname{bins} = 30$. Pick better value with $\operatorname{binwidth}$.

Warning: Removed 198 rows containing non-finite values (stat_bin).

Log Normal Distribution of Mean

These graphs of the log distribution of the various spending means appear to be fairly normal in distribution, which means they meet the requirements to be used in various analyses.

Gender

Does the emergency department spend a different amount of money on males and females? This is looking at all spending, not taking into account type of insurance.

```
spending_malefemale <- spending %>%
filter(sex %in% c("Female", "Male"))
```

In order to analyze spending, we must convert all mean spending reports to log scale.

```
spending_malefemale <- spending_malefemale %>%
  filter(mean_all != 0) %>%
  filter(mean_pub != 0) %>%
  filter(mean_pri != 0) %>%
  filter(mean_oop != 0) %>%
  mutate(lmean_all = log(mean_all)) %>%
  mutate(lmean_pub = log(mean_pub)) %>%
  mutate(lmean_pri = log(mean_pri)) %>%
  mutate(lmean_oop = log(mean_oop))
```

First this t-test looks at overall differences in log mean emergency department spending between males and females

```
t.test(spending_malefemale$lmean_all~spending_malefemale$sex) %>%
print()
```

```
##
## Welch Two Sample t-test
##
## data: spending_malefemale$lmean_all by spending_malefemale$sex
## t = 1.4247, df = 6219.5, p-value = 0.1543
## alternative hypothesis: true difference in means between group Female and group Male is not equal to
## 95 percent confidence interval:
## -0.0315862  0.1996079
## sample estimates:
```

```
## mean in group Female
               18.06275
                                     17.97874
##
Next, performing a t-test on each type of insurance to see if there is a difference in spending between males
and females:
t.test(spending_malefemale$lmean_pub~spending_malefemale$sex) %>%
 print()
##
   Welch Two Sample t-test
##
## data: spending_malefemale$lmean_pub by spending_malefemale$sex
## t = 1.8142, df = 6201, p-value = 0.0697
## alternative hypothesis: true difference in means between group Female and group Male is not equal to
## 95 percent confidence interval:
## -0.00833746 0.21532602
## sample estimates:
## mean in group Female
                          mean in group Male
               17.40512
                                     17.30162
t.test(spending_malefemale$lmean_pri~spending_malefemale$sex) %>%
 print()
##
##
   Welch Two Sample t-test
##
## data: spending_malefemale$lmean_pri by spending_malefemale$sex
## t = 0.70583, df = 6254.9, p-value = 0.4803
## alternative hypothesis: true difference in means between group Female and group Male is not equal to
## 95 percent confidence interval:
## -0.08283085 0.17603825
## sample estimates:
## mean in group Female
                          mean in group Male
               16.82891
                                     16.78231
t.test(spending_malefemale$lmean_oop~spending_malefemale$sex) %>%
  print()
##
   Welch Two Sample t-test
##
## data: spending_malefemale$lmean_oop by spending_malefemale$sex
## t = 0.9799, df = 6230.6, p-value = 0.3272
## alternative hypothesis: true difference in means between group Female and group Male is not equal to
## 95 percent confidence interval:
## -0.0615859 0.1846904
## sample estimates:
## mean in group Female
                          mean in group Male
##
               14.66032
                                     14.59877
```

mean in group Male

All three of these t-tests indicate that there is not enough evidence to reject the null hypothesis that emergency department spending is the same for males and females who have public insurance, private insurance, or pay out of pocket. Add specific numbers

Disease category and gov spending

ANOVA: null hypothesis: means of spending the same for each disease category assume outcomes are normally distributed, same variance, and samples are independent

```
summary(aov(lmean_all~agg_cause,data=spending_malefemale))
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## agg_cause    14   19152   1368.0   521.9 <2e-16 ***
## Residuals   6365   16685    2.6
## ---
## Signif. codes: 0 '***   0.001 '**   0.01 '*   0.05 '.' 0.1 ' ' 1</pre>
```

Based on the p-value here of these data or more extreme data it is highly unlikely the null hypothesis is true. Therefore, we perform step-down tests using a Holm correction for multiple comparisons

```
diseasepair <- pairwise.t.test(spending_malefemale$lmean_all, spending_malefemale$agg_cause, p.adj =
sigpairs <- broom::tidy(diseasepair) %>%
filter(p.value<0.05) %>%
arrange(group1,group2)
nrow(sigpairs)
```

```
## [1] 92
```

The step-down t tests indicate 61 disease category pairs are different out of 105~## idk if the "all ages" group will mess u up because it changed the response in my age comparison , indicating most disease categories do differ in the amount of government spending by the emergency department.

Age

!! had to take out the observations with "All Ages" because I think it will just mess up the pairs but let me know what you think or whether you think there's anything we can do with that group

```
spending_noall <- spending_malefemale %>%
filter(age_group_name != "All Ages")
```

We wonder whether there is a correlation between government healthcare expenditures in the emergency department and age. The age variable is categorical, split into 19 groups that generally include 5 years each, apart from the first (<1 year) and last (85 plus) groups.

To address this question, we began by using an overall test with ANOVA.

Below is an overall test of the null hypothesis that all of the means for age groups across the years are equal, as opposed to the alternative that at least one mean is different.

```
summary(aov(mean_all~age_group_name,data = spending_noall))
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## age_group_name    18 2.843e+19 1.579e+18    29.45 <2e-16 ***
## Residuals    6031 3.235e+20 5.364e+16
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1</pre>
```

In this F-test (ndf = 18, ddf = 6229), a significant difference among age groups was identified. Our p-value tells us that this data (or data more extreme) would be very unlikely if the null hypothesis were true because it shows statistical significance at an alpha well below 0.05. Therefore, we reject the null hypothesis that the mean expenditures for all age groups are equal.

To see which specific means may be different from one another, we used planned step-down tests with a Holm correction to minimize Type I errors.

```
agepair <- pairwise.t.test(spending_noall$mean_all, spending_noall$age_group_name, p.adj = "holm")
sigagepairs <- broom::tidy(agepair) %>%
  filter(p.value<0.05) %>%
  arrange(group1,group2)
nrow(sigagepairs)
```

[1] 98

The pairwise t-tests used for our ANOVA step-down tests suggest that there are 97 different age pairs out of the 171 possible combinations. This tells us that more age pairs are different than are similar and that therefore the majority of age group pairs differ in terms of mean expenditures.

```
# select the variables want, including the mean for the groups, age_group_name
# pivot_longer -> cols, names_to = "whateveryouwant", values_to = "customname %>%
# ggplot(aes(x = age_group_name, y = customname, color = whateveryouwant))

ggplot(data = spending_noall, aes(x = age_group_name, y = mean_all)) +
geom_bar(position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = 45,hjust = 1)) +
scale_y_continuous(labels = scales::comma) +
labs(
    x = "Age Group",
    y = "Mean Spending of All Payers",
    title = "Emergency Department General Expenditures"
    )
```

Emergency Department General Expenditures

Public Insurance Expenditures

Private Insurance Expenditures

Out of Pocket Expenditures

##Interaction !!should this be moved to where we are looking at the interaction of factors? Here is a barplot showing the distribution of Emergency Department spending based on disease type and gender. ADD interpretation

```
ggplot(data = spending_malefemale, aes(x = agg_cause, y = lmean_all, fill = sex)) +
geom_bar(position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = 45,hjust = 1)) +
```

```
scale_y_continuous(labels = scales::comma) +
labs(
    x = "Disease Type",
    y = "Government Spending",
    title = "Emergency Department Spending Based on Disease Type and Gender",
    fill = "Gender"
    )
```

Emergency Department Spending Based on Disease Type and Gender

Disease Type

Gender and Age Interaction

```
mainefpub_fit <- linear_reg() %>%
 set_engine("lm") %>%
 fit(mean_pub ~ sex + age_group_id, data = spending)
tidy(mainefpub_fit)
## # A tibble: 4 x 5
##
    term
                    estimate std.error statistic
                                                   p.value
    <chr>
##
                       <dbl> <dbl> <dbl>
                                                     <dbl>
## 1 (Intercept) 323160777. 12674672.
                                           25.5 6.36e-139
## 2 sexFemale
                 -137203679. 16690186.
                                           -8.22 2.28e- 16
                 -203294134. 16690186.
## 3 sexMale
                                          -12.2 6.91e- 34
## 4 age_group_id
                     788767.
                               210299.
                                            3.75 1.77e- 4
glance(mainefpub_fit)$adj.r.squared
```

[1] 0.01649634

```
interpub_fit <- linear_reg() %>%
  set_engine("lm") %>%
  fit(mean_pub ~ sex + age_group_id + sex*age_group_id, data = spending)
tidy(interpub_fit)
## # A tibble: 6 x 5
##
    term
                              estimate std.error statistic
                                                            p.value
##
     <chr>
                                 <dbl>
                                           <dbl> <dbl>
                                                              <dbl>
## 1 (Intercept)
                           314492259. 14260065.
                                                   22.1 2.98e-105
                           -131585903. 20166778.
                                                   -6.52 7.14e- 11
## 2 sexFemale
## 3 sexMale
                           -182906355. 20166778. -9.07 1.42e- 19
## 4 age group id
                            1183150. 364221.
                                                   3.25 1.16e- 3
## 5 sexFemale:age_group_id
                                                   -0.496 6.20e- 1
                              -255587.
                                        515086.
## 6 sexMale:age_group_id
                              -927563.
                                        515086.
                                                   -1.80 7.18e-
glance(interpub_fit)$adj.r.squared
## [1] 0.01664197
mainefpri_fit <- linear_reg() %>%
 set_engine("lm") %>%
  fit(mean_pri ~ sex + age_group_id, data = spending)
tidy(mainefpri_fit)
## # A tibble: 4 x 5
##
     term
                    estimate std.error statistic
                                                  p.value
##
     <chr>>
                       <dbl>
                                 <dbl>
                                          <dbl>
                                                     <dbl>
## 1 (Intercept) 365176029. 16146361.
                                           22.6 1.86e-110
## 2 sexFemale
                 -152650378. 21261756.
                                          -7.18 7.50e- 13
## 3 sexMale
                 -192702232. 21261756.
                                           -9.06 1.51e- 19
## 4 age_group_id
                    -901887.
                               267901.
                                          -3.37 7.64e- 4
glance(mainefpri_fit)$adj.r.squared
## [1] 0.01001681
interpri_fit <- linear_reg() %>%
  set_engine("lm") %>%
  fit(mean_pri ~ sex + age_group_id + sex*age_group_id, data = spending)
tidy(interpri_fit)
## # A tibble: 6 x 5
##
    term
                              estimate std.error statistic p.value
##
     <chr>>
                                           <dbl> <dbl>
                                 <dbl>
                                                             <dbl>
## 1 (Intercept)
                           375087738. 18167869. 20.6 9.60e-93
## 2 sexFemale
                           -166476777. 25693247. -6.48 9.65e-11
                           -208610961. 25693247.
## 3 sexMale
                                                   -8.12 5.25e-16
## 4 age_group_id
                             -1352831. 464032.
                                                   -2.92 3.56e- 3
                                                   0.959 3.38e- 1
## 5 sexFemale:age_group_id
                               629046.
                                         656240.
                                                   1.10 2.70e- 1
## 6 sexMale:age_group_id
                               723784.
                                         656240.
glance(interpri_fit)$adj.r.squared
## [1] 0.009960334
mainefoop_fit <- linear_reg() %>%
  set engine("lm") %>%
 fit(mean_oop ~ sex + age_group_id, data = spending)
```

```
tidy(mainefoop_fit)
## # A tibble: 4 x 5
##
     term
                    estimate std.error statistic
##
     <chr>>
                        <dbl>
                                  <dbl>
                                             <dbl>
                                                       <dbl>
## 1 (Intercept)
                   32646547.
                               1310040.
                                            24.9 5.50e-133
## 2 sexFemale
                   -13391357.
                               1725079.
                                            -7.76 9.14e- 15
## 3 sexMale
                                            -10.2 2.34e- 24
                  -17614550.
                               1725079.
## 4 age_group_id
                      -74643.
                                 21736.
                                             -3.43 5.97e-
glance(mainefoop fit)$adj.r.squared
## [1] 0.01226108
interoop_fit <- linear_reg() %>%
  set engine("lm") %>%
  fit(mean_oop ~ sex + age_group_id + sex*age_group_id, data = spending)
tidy(interoop_fit)
## # A tibble: 6 x 5
##
     term
                               estimate std.error statistic
                                                               p.value
##
     <chr>>
                                             <dbl>
                                                       <dbl>
                                                                 <dbl>
                                  <dbl>
                                         1474051.
## 1 (Intercept)
                              33466867.
                                                      22.7
                                                             2.82e-111
## 2 sexFemale
                             -14545204.
                                         2084624.
                                                      -6.98 3.20e- 12
## 3 sexMale
                                         2084624.
                                                      -9.08 1.33e- 19
                             -18921663.
## 4 age_group_id
                               -111964.
                                           37649.
                                                      -2.97 2.95e-
## 5 sexFemale:age_group_id
                                 52495.
                                           53244.
                                                       0.986 3.24e-
                                           53244.
                                                       1.12 2.64e-
## 6 sexMale:age_group_id
                                 59468.
glance(interoop_fit)$adj.r.squared
```

[1] 0.01221011

In order to test the possibility that there is a joint interaction of gender and age, a main effects and interaction effects linear regression model has been fit to the data. As a whole, it shows that the interaction of gender and age slightly increases the accuracy of the regression for public and private spending as seen by the increased adjusted R^2 value. However, for out-of-pocket spending, it decreases the adjusted R^2 value. Nevertheless, overall, the adjusted R^2 values for all three types of spending are incredibly low, which further point to our conclusion that age may not affect the level of spending from different sources.

Age and Disease Type Interaction

```
agedismainpub_fit <- linear_reg() %>%
  set_engine("lm") %>%
  fit(mean_pub ~ agg_cause + age_group_id, data = spending)
tidy(agedismainpub_fit)
```

```
## # A tibble: 16 x 5
##
      term
                                               estimate std.error statistic p.value
##
      <chr>
                                                  <dbl>
                                                            <dbl>
                                                                      <dbl>
                                                                               <dbl>
##
   1 (Intercept)
                                                 9.99e7 26076508.
                                                                      3.83 1.28e- 4
                                                                     -2.92 3.48e- 3
##
   2 agg_causeCancers
                                                -1.06e8 36321927.
  3 agg_causeCardiovascular diseases
                                                 4.21e8 36321927.
                                                                     11.6
                                                                            7.57e-31
                                                 1.40e8 36796801.
##
  4 agg_causeChronic respiratory diseases
                                                                      3.80 1.45e- 4
## 5 agg causeCommunicable and nutrition ~
                                                 2.42e8 36321927.
                                                                      6.66
                                                                            2.89e-11
## 6 agg_causeDiabetes and kidney diseases
                                               -9.10e6 36321927.
                                                                     -0.251 8.02e- 1
```

```
9.11 9.79e-20
## 7 agg_causeDigestive diseases
                                             3.31e8 36321927.
## 8 agg_causeEndocrine disorders
                                             -9.14e7 36321927.
                                                                  -2.52 1.19e- 2
                                                                         4.90e-33
## 9 agg causeInjuries
                                              4.36e8 36321927.
                                                                  12.0
## 10 agg_causeMaternal and neonatal condi~
                                               5.21e6 36321927.
                                                                   0.143 8.86e- 1
## 11 agg causeMusculoskeletal conditions
                                               1.07e8 36321927.
                                                                    2.95 3.21e- 3
## 12 agg causeNeurological disorders
                                               6.44e7 36321927.
                                                                  1.77 7.61e- 2
## 13 agg causeOther non-communicable dise~
                                              1.75e8 36321927.
                                                                   4.81 1.54e- 6
                                                                   -3.10 1.96e- 3
## 14 agg causePrevention and coordination
                                              -1.13e8 36321927.
## 15 agg_causeSkin and other sense organ ~
                                               4.52e7 36321927.
                                                                    1.25 2.13e- 1
                                                                    3.85 1.19e- 4
## 16 age_group_id
                                               7.89e5
                                                        205015.
glance(agedismainpub_fit)$adj.r.squared
## [1] 0.06530174
agedisinterpub_fit <- linear_reg() %>%
 set_engine("lm") %>%
 fit(mean_pub ~ agg_cause + age_group_id + agg_cause*age_group_id, data = spending)
tidy(agedisinterpub fit)
## # A tibble: 30 x 5
##
     term
                                             estimate std.error statistic p.value
                                                                             <dbl>
##
      <chr>
                                                <dbl>
                                                          <dbl>
                                                                    <dbl>
## 1 (Intercept)
                                               1.24e8 31019162.
                                                                    4.01 6.16e- 5
## 2 agg_causeCancers
                                              -1.15e8 43867720.
                                                                   -2.62 8.81e- 3
                                                                   7.08 1.55e-12
## 3 agg_causeCardiovascular diseases
                                               3.11e8 43867720.
## 4 agg_causeChronic respiratory diseases
                                              1.22e8 44168605.
                                                                  2.76 5.78e- 3
                                                                  5.21 1.93e- 7
## 5 agg_causeCommunicable and nutrition ~
                                              2.29e8 43867720.
## 6 agg_causeDiabetes and kidney diseases
                                              -2.30e7 43867720.
                                                                  -0.524 6.01e- 1
                                                                  7.01 2.57e-12
## 7 agg_causeDigestive diseases
                                               3.07e8 43867720.
## 8 agg causeEndocrine disorders
                                              -1.00e8 43867720.
                                                                  -2.28 2.25e- 2
                                                                   8.49 2.34e-17
## 9 agg_causeInjuries
                                               3.72e8 43867720.
## 10 agg causeMaternal and neonatal condi~
                                             1.38e7 43867720.
                                                                   0.314 7.54e- 1
## # ... with 20 more rows
glance(agedisinterpub_fit)$adj.r.squared
## [1] 0.06778399
agedismainpri_fit <- linear_reg() %>%
 set engine("lm") %>%
 fit(mean_pri ~ agg_cause + age_group_id, data = spending)
tidy(agedismainpri_fit)
## # A tibble: 16 x 5
##
     term
                                            estimate std.error statistic
                                                                          p.value
##
      <chr>
                                               <dbl>
                                                         <dbl>
                                                                   <dbl>
                                                                             <dbl>
                                              9.57e7 32514561.
                                                                   2.94 3.26e-
## 1 (Intercept)
                                                                  -1.53 1.26e-
   2 agg_causeCancers
                                             -6.93e7 45289481.
   3 agg_causeCardiovascular diseases
                                              2.20e8 45289481.
                                                                  4.86 1.20e-
  4 agg_causeChronic respiratory diseas~
                                              1.02e8 45881596.
                                                                  2.22 2.65e-
## 5 agg_causeCommunicable and nutrition~
                                                                  3.80 1.44e-
                                              1.72e8 45289481.
## 6 agg_causeDiabetes and kidney diseas~
                                             -4.50e7 45289481.
                                                                  -0.993 3.20e-
                                                                       7.16e- 25
## 7 agg_causeDigestive diseases
                                                                 10.3
                                              4.68e8 45289481.
## 8 agg causeEndocrine disorders
                                             -5.93e7 45289481.
                                                                 -1.31 1.91e- 1
                                             1.01e9 45289481.
                                                                  22.3 1.06e-107
## 9 agg_causeInjuries
## 10 agg causeMaternal and neonatal cond~
                                            -1.36e7 45289481.
                                                                  -0.299 7.65e- 1
```

```
2.81 4.95e-
## 11 agg_causeMusculoskeletal conditions
                                              1.27e8 45289481.
## 12 agg_causeNeurological disorders
                                              8.64e7 45289481.
                                                                   1.91 5.66e-
                                                                   6.68 2.56e- 11
## 13 agg causeOther non-communicable dis~
                                              3.02e8 45289481.
## 14 agg_causePrevention and coordination
                                                                  -1.57 1.16e-
                                             -7.12e7 45289481.
## 15 agg_causeSkin and other sense organ~
                                              8.28e7 45289481.
                                                                   1.83 6.75e-
## 16 age_group_id
                                             -9.03e5
                                                       255631.
                                                                  -3.53 4.14e-
glance(agedismainpri_fit)$adj.r.squared
## [1] 0.09862747
agedisinterpri_fit <- linear_reg() %>%
 set engine("lm") %>%
 fit(mean_pri ~ agg_cause + age_group_id + agg_cause*age_group_id, data = spending)
tidy(agedisinterpri_fit)
## # A tibble: 30 x 5
##
     term
                                             estimate std.error statistic p.value
##
      <chr>
                                                <dbl>
                                                          <dbl>
                                                                    <dbl>
                                                                             <dbl>
##
  1 (Intercept)
                                               8.36e7 38715024.
                                                                    2.16 3.08e- 2
                                              -7.68e7 54751312.
                                                                   -1.40 1.61e- 1
##
   2 agg_causeCancers
   3 agg_causeCardiovascular diseases
                                               2.24e8 54751312.
                                                                    4.08 4.46e- 5
  4 agg_causeChronic respiratory diseases
                                               1.08e8 55126847.
                                                                    1.96 5.01e- 2
## 5 agg_causeCommunicable and nutrition ~
                                                                    3.41 6.49e- 4
                                               1.87e8 54751312.
## 6 agg_causeDiabetes and kidney diseases
                                              -5.10e7 54751312.
                                                                   -0.932 3.51e- 1
                                                                    9.37 8.87e-21
## 7 agg_causeDigestive diseases
                                               5.13e8 54751312.
## 8 agg_causeEndocrine disorders
                                              -6.58e7 54751312.
                                                                   -1.20 2.29e- 1
## 9 agg_causeInjuries
                                              1.11e9 54751312.
                                                                   20.2
                                                                          8.41e-89
## 10 agg causeMaternal and neonatal condi~
                                              -1.43e7 54751312.
                                                                   -0.260 7.95e- 1
## # ... with 20 more rows
glance(agedisinterpri_fit)$adj.r.squared
## [1] 0.09927656
agedismainoop_fit <- linear_reg() %>%
 set engine("lm") %>%
 fit(mean_oop ~ agg_cause + age_group_id, data = spending)
tidy(agedismainoop_fit)
## # A tibble: 16 x 5
##
     term
                                             estimate std.error statistic p.value
##
      <chr>
                                                <dbl>
                                                          <dbl>
                                                                    <dbl>
                                                                             <dbl>
##
  1 (Intercept)
                                               1.42e7 2659045.
                                                                    5.32 1.04e- 7
                                                                   -3.25 1.17e- 3
##
   2 agg_causeCancers
                                              -1.20e7 3703779.
  3 agg_causeCardiovascular diseases
                                               1.03e7 3703779.
                                                                    2.77 5.61e- 3
## 4 agg_causeChronic respiratory diseases
                                               3.71e6 3752202.
                                                                    0.989 3.23e- 1
## 5 agg_causeCommunicable and nutrition d~
                                                                    4.90 9.79e- 7
                                               1.81e7 3703779.
   6 agg_causeDiabetes and kidney diseases
                                              -8.09e6 3703779.
                                                                   -2.18 2.89e- 2
## 7 agg_causeDigestive diseases
                                               3.40e7 3703779.
                                                                   9.17 5.55e-20
## 8 agg_causeEndocrine disorders
                                              -9.97e6 3703779.
                                                                   -2.69 7.12e- 3
                                               6.76e7 3703779.
                                                                   18.2
                                                                          3.80e-73
## 9 agg_causeInjuries
                                                                   -1.63 1.04e- 1
## 10 agg_causeMaternal and neonatal condit~
                                              -6.02e6 3703779.
                                                                   1.61 1.06e- 1
                                               5.98e6 3703779.
## 11 agg_causeMusculoskeletal conditions
## 12 agg causeNeurological disorders
                                               1.64e6 3703779.
                                                                   0.442 6.58e- 1
## 13 agg_causeOther non-communicable disea~
                                               2.64e7 3703779.
                                                                   7.13 1.08e-12
## 14 agg_causePrevention and coordination
                                                                   -3.28 1.04e- 3
                                              -1.22e7 3703779.
```

```
## 15 agg_causeSkin and other sense organ d~
                                               2.73e6 3703779.
                                                                    0.736 4.62e- 1
## 16 age_group_id
                                              -7.47e4
                                                         20906.
                                                                   -3.57 3.53e- 4
glance(agedismainoop_fit)$adj.r.squared
## [1] 0.08631926
agedisinteroop_fit <- linear_reg() %>%
 set_engine("lm") %>%
 fit(mean_oop ~ agg_cause + age_group_id + agg_cause*age_group_id, data = spending)
tidy(agedisinteroop_fit)
## # A tibble: 30 x 5
##
     term
                                             estimate std.error statistic p.value
##
      <chr>
                                                                    <dbl>
                                                                             <dbl>
                                                <dbl>
                                                          <dbl>
## 1 (Intercept)
                                               1.37e7 3167013.
                                                                    4.34 1.43e- 5
                                                                   -2.96 3.11e- 3
## 2 agg_causeCancers
                                              -1.32e7 4478833.
                                                                    2.09 3.71e- 2
## 3 agg_causeCardiovascular diseases
                                               9.34e6 4478833.
## 4 agg_causeChronic respiratory diseases
                                               3.66e6 4509553.
                                                                    0.811 4.17e- 1
## 5 agg_causeCommunicable and nutrition d~
                                                                    4.41 1.06e- 5
                                               1.97e7 4478833.
                                                                   -2.03 4.23e- 2
## 6 agg_causeDiabetes and kidney diseases
                                              -9.10e6 4478833.
## 7 agg_causeDigestive diseases
                                               3.70e7 4478833.
                                                                    8.25 1.74e-16
                                                                   -2.46 1.38e- 2
## 8 agg_causeEndocrine disorders
                                              -1.10e7 4478833.
## 9 agg_causeInjuries
                                               7.30e7 4478833.
                                                                   16.3
                                                                          6.06e-59
## 10 agg_causeMaternal and neonatal condit~
                                              -6.49e6 4478833.
                                                                   -1.45 1.47e- 1
## # ... with 20 more rows
glance(agedisinteroop_fit)$adj.r.squared
```

[1] 0.08646145