第1章

原理

1.1 Maxwell 方程式

フォトニック結晶における電磁波の振る舞いは、Maxwell 方程式によって記述される。Maxwell 方程式は以下のように表される。

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{1.1.1}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{j} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{1.1.2}$$

$$\nabla \cdot \mathbf{D} = \rho \tag{1.1.3}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{1.1.4}$$

今回は、自由電荷や電流のない均一な誘電物質の混合誘電媒体を考えるため、 $\rho=0$ 、j=0 となる。また、低損失の誘電体において、 $\mathbf{D}=\epsilon(r)\mathbf{E}(\mathbf{r})$ 、透過率 $\mu=1$ とみなすことで $\mathbf{B}(\mathbf{r})=\mu\mathbf{H}(\mathbf{r})=\mathbf{H}(\mathbf{r})$ となる。

一般に、E と H は時間空間における複雑な関数であるが、Maxwell 方程式は線形であることから、E と H を時間と空間の関数に分離することができる。すなわち、 $E(r,t)=E(r)e^{-i\omega t}$ 、 $H(r,t)=H(r)e^{-i\omega t}$ とすることができ、Maxwell 方程式は以下のように表される。

$$\nabla \cdot \boldsymbol{H}(\boldsymbol{r}) = 0 \tag{1.1.5}$$

$$\nabla \cdot \boldsymbol{D}(\boldsymbol{r}) = 0 \tag{1.1.6}$$

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = -\frac{i\omega}{c} \boldsymbol{H}(\boldsymbol{r}) \tag{1.1.7}$$

$$\nabla \times \boldsymbol{H}(\boldsymbol{r}) = \frac{i\omega}{c} \epsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}) \tag{1.1.8}$$

式 (1.1.7) と式 (1.1.8) より E(r) を消去して、H(r) についての式に整理すると以下のマスター方程式を得ることができる。

$$\nabla \times \left(\frac{1}{\epsilon(\boldsymbol{e})} \nabla \times \boldsymbol{H}(\boldsymbol{r})\right) = \left(\frac{\omega}{c}\right)^2 \boldsymbol{H}(\boldsymbol{r}) \tag{1.1.9}$$

式 (1.1.9) を固有値問題とするために、左辺の H(r) に作用する演算子 $\hat{\Theta}$ を定義する。演算子 $\hat{\Theta}$ は 回転を取り、 $\epsilon(r)$ で割って再度回転を取る微分演算子である。

次に、2つのベクトル場 F と G について内積を以下のように定義する。

$$(\mathbf{F}, \mathbf{G}) = \int d\mathbf{r} \mathbf{F}^*(\mathbf{r}) \cdot \mathbf{G}(\mathbf{r})$$
 (1.1.10)

このとき、演算子 $\hat{\Theta}$ は、任意のベクトル場 F,G に対して次の内積関係が成立する。

$$(\mathbf{F}, \hat{\Theta}\mathbf{G}) = (\hat{\Theta}\mathbf{F}, \mathbf{G}) \tag{1.1.11}$$

式 (1.1.11) は、演算子 $\hat{\Theta}$ がエルミート演算子であることを示しており、これはマスター方程式 (1.1.9) を解くときに得られる固有値が実数になりうことや固有値が異なる固有関数は互いに直行することなど、量子力学のシュレディンガー方程式と類似している。

マスター方程式 (1.1.9) に Bloch の定理を適用すると、マスター方程式の解は次のように表される。

$$H_k(r) = e^{i\mathbf{k}\cdot\mathbf{r}} \mathbf{u}_k(r) = e^{i\mathbf{k}\cdot\mathbf{r}} \mathbf{u}_k(r+R)$$
(1.1.12)

ここで、k はブロッホ波ベクトル、R は格子ベクトルである。

1.2 逆オパール (Inverse Opals) 構造

逆オパール構造は、フォトニック結晶の構造の1つである。逆オパール構造は、球状の粒子を三次元的に配置した構造であり、図1.1のように、球状の粒子の間隔を空洞とし、空洞の中に誘電体を充填した構造である。

../images/inv_opals.png

図 1.1 逆オパール構造の電子顕微鏡像 [?] p.103 より引用

微細な球体を懸濁させたコロイドを蒸発させることにより fcc 格子に自己集合させることができるので合成オパールは容易に製造することができる。合成オパールの球間に高誘電体物質を浸透させ、球を溶解させることで構造を反転させ、空気穴の逆オパールを作製することができる。

1.3 ギャップ-ミッドギャップ比

マスター方程式 1.1.9 において、 $\epsilon(r)$ を拡大または縮小した $\epsilon'(r)$ を考える。このとき、 $\epsilon'(r)=\epsilon(r/s)$ であり、尺度に関するパラメータ s を用いて表すことができる。r'=sr、 $\nabla'=\nabla/s$ と変数変換を行うと、式 1.1.9 は以下のように表される。

$$s\nabla' \times \left(\frac{1}{\epsilon(\mathbf{r}'/s)}s\nabla' \times \mathbf{H}(\mathbf{r}'/s)\right) = \left(\frac{\omega}{c}\right)^2 \mathbf{H}(\mathbf{r}'/s)$$
 (1.3.1)

 $\epsilon(r'/s) = \epsilon'(r')$ であることに注意して両辺を s で割ると、

$$\nabla' \times \left(\frac{1}{\epsilon'(\mathbf{r}')}\nabla' \times \mathbf{H}(\mathbf{r}'/s)\right) = \left(\frac{\omega}{cs}\right)^2 \mathbf{H}(\mathbf{r}'/s)$$

$$= \left(\frac{\omega'}{c}\right)^2 \mathbf{H}(\mathbf{r}'/s)$$
(1.3.2)

これは、モードプロファイル H'(r') = H(r'/s)、周波数 $\omega' = \omega/s$ に関するマスター方程式である。ここである結晶を係数 s だけ拡大したときを考える。このとき、対応する周波数 ω は 1/s 倍になる。このとき、ギャップの中間部の周波数 ω_m とバンドギャップ幅 $\Delta\omega$ の比をギャップ-ミッドギャップ比と呼ぶ。ギャップ-ミッドギャップ比は、 $\Delta\omega/\omega_m$ で表される。以下に示す通りギャップ-ミッドギャップ比結晶のスケールに依存しない有用な評価手法である。

$$\frac{\Delta\omega}{\omega_m} = \frac{\frac{\omega_{\max}}{s} - \frac{\omega_{\min}}{s}}{\frac{\omega_{\max}}{s} + \frac{\omega_{\min}}{s}} = \frac{\omega_{\max} - \omega_{\min}}{\frac{\omega_{\max} + \omega_{\min}}{2}}$$

ここで、 ω_{\max} はバンドギャップの上端、 ω_{\min} はバンドギャップの下端における周波数である。