16.5 Curl and Divergence.

Curl.

Definition.

Cross product formula.

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$$

EXAMPLE 1 If $\mathbf{F}(x, y, z) = xz \, \mathbf{i} + xyz \, \mathbf{j} - y^2 \, \mathbf{k}$, find curl \mathbf{F} .

3 Theorem If f is a function of three variables that has continuous second-order partial derivatives, then

$$\operatorname{curl}(\nabla f) = \mathbf{0}$$

EXAMPLE 2 Show that the vector field $\mathbf{F}(x, y, z) = xz \,\mathbf{i} + xyz \,\mathbf{j} - y^2 \,\mathbf{k}$ is not conservative.

Theorem If **F** is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = \mathbf{0}$, then **F** is a conservative vector field.

EXAMPLE 3

(a) Show that

$$\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$$

is a conservative vector field.

(b) Find a function f such that $\mathbf{F} = \nabla f$.

Physical interpretation.

Definition.

Dot product formula.

$$\operatorname{div} \mathbf{F} = \nabla \, \boldsymbol{\cdot} \, \mathbf{F}$$

EXAMPLE 4 If $\mathbf{F}(x, y, z) = xz \mathbf{i} + xyz \mathbf{j} - y^2 \mathbf{k}$, find div \mathbf{F} .

Theorem If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

 $\operatorname{div}\operatorname{curl}\mathbf{F}=0$

EXAMPLE 5 Show that the vector field $\mathbf{F}(x, y, z) = xz \,\mathbf{i} + xyz \,\mathbf{j} - y^2 \,\mathbf{k}$ can't be written as the curl of another vector field, that is, $\mathbf{F} \neq \text{curl } \mathbf{G}$.

Incompressible Flow.

Laplace's Equation.

I. First Formula with curl.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} \, dA$$

II. Second formula with divergence.

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \, dA$$