Robust Statistical Methods for Image Processing

Supervised Research Exposition (EE 451)
Kalpesh Patil (130040019)

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Introduction

- Robust Statistical Models
 - Presence of large outliers in practical data
 - Susceptibility of unsupervised clustering
 Techniques to such outliers

- Inferencing using statistical models
 - Bayesian estimation of parameters
 - Intractable integrals
 - Approximate methods

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

GMM

- Weighted mixture of Gaussian densities
- Means, covariance matrices and membership weights

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- EM algorithm for parameter estimation
 - E step

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

M step

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

Limitations of GMM

- Assumption that data-points belong to Gaussian distribution
- Fails to model large outliers
 Very less density on points away from centres
- Need of "heavy-tailed" distribution to model large outliers

Student-t Distribution

 Combination of infinitely many "scaled covariance" Gaussians

$$\int \phi(y_j; \mu, \frac{\Sigma}{u}) du$$

- Scale parameter (u) distributed according to Gamma density
- Functional form of t-distribution

$$f(y_j; \mu, \Sigma, \nu) = \frac{\Gamma(\frac{\nu+p}{2})}{|\Sigma|^{1/2} (\pi \nu)^{\frac{p}{2}} \Gamma(\frac{\nu}{2})} (1 + \delta(y_j; \mu, \Sigma)/\nu))^{-\frac{\nu+p}{2}}$$
$$\delta(y_j; \mu, \Sigma) = (y_j - \mu)^T \Sigma^{-1} (y_j - \mu)$$

SMM

- Low degrees of freedom implies heavier tails and thus robustness
- Modelling of data points in SMM

$$Y_j|(u_j, z_{ij} = 1) = N(\mu_i, \frac{\Sigma_i}{u_j})$$

• EM algorithm for parameter updates

$$U_j|(z_{ij}=1) = gamma(\frac{v_i}{2}, \frac{v_i}{2})$$

More complex update equation than Gaussian Doesn't have closed form update for DoF

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)

Probabilistic Graphical Models

- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Probabilistic Graphical Models

- Used to denote "dependence" relationship amongst random variables
- Joint distribution using DAG
- Nodes: random variables

Edges: Conditional dependence

$$p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Variational Bayesian Approximation

Total evidence of data given model structure (independent of parameters)

$$Pr(X|H_M) = \int_{\theta} Pr(X|\theta, H_M) Pr(\theta|H_M) d\theta$$

Intractable integrals, hence approximations used

- Numerical Approximation:
 Numerically solve integrals. e.g. MCMC method
- 2. Variational Bayesian Approach:
 Assumption: Joint distribution factorizes into components

VBGMM

- Priors over parameters of model
 - Mean and (inverse) covariance:Gaussian-Wishart prior
 - Mixture proportions:
 Dirichlet distribution
- Joint probability

$$p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda})p(\mathbf{Z}|\boldsymbol{\pi})p(\boldsymbol{\pi})p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\boldsymbol{\Lambda})$$

VBEM algorithm
 Variational Bayesian EM algorithm for optimization

VBSMM

- Priors over parameters of model
 - Mean and (inverse) covariance:
 Gaussian-Wishart prior
 - Mixture proportions
 Dirichlet distribution
 - Degree of freedomNo prior

Joint probability

$$Pr(\theta_s|H_M) = D(\pi|\kappa_0) \prod_{m=1}^{M} NW(\mu_m, \Lambda_m|\theta_{NW_0}).$$

VBEM algorithm

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM

Experiments and Results

- Qualitative Comparison (GMM vs SMM)
- Quantitative Comparison (GMM vs SMM)
- Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Experimental Setup

- 2D toy dataset consisting of 3 Gaussian components with common diagonal covariance matrix
- 200 data-points sampled from each component
- Outliers away from the cluster centres are added to the original data
- Try to fit GMM, SMM, VBGMM, VBSMM on data with and without outliers
- Also compute total likelihood for VB methods

GMM vs. SMM without Outliers

Both GMM and SMM
 Perform almost equally good in absence of outliers

GMM vs. SMM with Outliers

- 20 outliers added to 600 datapoints
- GMM breaks down and performs poorly
- SMM shows robustness even in presence of outliers

Quantitative Analysis

Average Euclidean distance between cluster centers

$$d_{cluster-centers} = \frac{1}{K} \sum_{k=0}^{K} ||c_k^{est} - c_k^{orig}||_2$$

Mean cosine similarity between eigenvectors of covariance matrices

$$s_{eigen-cos} = \frac{1}{K} \sum_{k=0}^{K} \sum_{j=0}^{j=d} abs \left(\frac{v_{jk}^{est}.v_{jk}^{orig}}{||v_{jk}^{est}||_{2} ||v_{jk}^{orig}||_{2}} \right)$$

Quantitative Analysis

Results of GMM and SMM with and without outliers

10) VIII	without outliers		with outliers	
Quantity	GMM	SMM	GMM	SMM
$d_{cluster-centers}$	0.0820	0.0782	1.1148	0.0883
$s_{eigen-cos}$	1.9987	1.9987	1.7896	1.9987

- Both perform equally well in the absence of outliers
- SMM clearly outperforms GMM in presence of outliers in both measures

VBGMM vs. VBSMM (without Outliers)

- Recall: Variational Bayesian approach allows to compute Complete data likelihood Independent of parameters
- In absence of outliers as
 EM iterations proceed, both
 VBGMM and VBSMM seem
 to converge to the same to
 the same value

Variational lower bound on likelihood

VBGMM vs. VBSMM (with outliers)

- In presence of outliers VBSMM converge to a higher likelihood value than VBGMM
- VBSMM is able to justify data containing outliers better than VBGMM

Variational lower bound on likelihood

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Functional-MRI (fMRI) Introduction

- Functional Magnetic Resonance Imaging
 4 dimensional object i.e. 3 dimensional voxel data collected at various time instants
- Analyzes temporal aspects of activations in various parts of the brain

fMRI Clustering

- Clustering of f-MRI time series data gives an idea about which parts of the brain are stimulated synchronously
- Contains large amount of outliers
- K-means, GMM, Ward's hierarchical clustering, Spectral clustering, c-means,
 ICA etc. have been studied before
- We believe that SMM with some regularization in the form of spatial smoothening prior would perform better due to its robustness against outliers in fMRI data

- Introduction
- Clustering Methods
 - Gaussian Mixture Models (GMM)
 - Student-t Distribution Mixture Models (SMM)
- Probabilistic Graphical Models
- Variational Bayesian Approximation
 - VBGMM
 - VBSMM
- Experiments and Results
 - Qualitative Comparison (GMM vs SMM)
 - Quantitative Comparison (GMM vs SMM)
 - Likelihood Comparison (VBGMM vs VBSMM)
- Applications: Functional MRI (fMRI)
- Conclusion and Future Work
- References

Conclusion and Future work

- SMM is more robust to large outliers than GMM
 Even in the Bayesian framework VBSMM performs better than VBGMM
- In future we would like to implement SMM or VBSMM on fMRI data
- Need to tackle curse of dimensionality while analyzing a very high dimensional data like fMRI.
- Modifications to incorporate spatial and temporal priors while performing clustering on actual fMRI data

References

- [1] C. Bishop, "Pattern recognition and machine learning (information science and statistics), 1st edn. 2006. corr. 2nd printing edn," Springer, New York, 2007
- [2] G. J. McLachlan, S.-K. Ng, and R. Bean, "Robust cluster analysis via mixture models," Austrian Journal of Statistics, vol. 35, no. 2, pp. 157–174, 2006
- [3] C. Archambeau and M. Verleysen, "Robust bayesian clustering," Neural Networks, vol. 20, no. 1, pp. 129–138, 2007
- [4] M. J. Beal, Variational algorithms for approximate Bayesian inference. University of London United Kingdom, 2003.

Thanks!

Questions?