#### Notations and definitions

We consider a sample of size n. Let X be the variable or the character studied,

- The **statistical series** is formed by the set of data  $(x_i)_{i \leq n}$
- The **range (étendue)** of an ordered series is the number e defined by  $e = x_{\max} x_{\min} = x_{(n)} x_{(1)}$ ; such that  $x_{\min}$  is the smallest observation that is  $x_{(1)}$  and  $x_{\max}$  is the greatest observation  $x_{(n)}$ .

**Remark:** A statistical series is always represented in increasing order. In the discrete case, it often happens that observations are repeated, let  $n_i$  the number of occurences (or repetitions) of  $x_i$ ;

- $n_i$  is called **number or absolute frequency (effectif)** of  $x_i$ .
- Note  $x_1, \dots, x_k$  the observations of respective numbers  $n_1, \dots, n_k$ .

Notations and definitions

- The **relative frequency (fréquence)** of the modality  $x_i$  is  $f_i = \frac{n_i}{n}$ .

**Remark:** We have  $\sum\limits_{i=1}^k n_i = n; 0 \leq f_i < 1$  and  $\sum\limits_{i=1}^k f_i = 1$ 

- The **percentage** of the modality  $x_i$  is  $p_i = \frac{n_i}{n} \times 100$ .
- The **increasing cumulative number** corresponding to the modality  $x_i$  is  $n_i^c \nearrow = n_1 + n_2 + \cdots + n_i$ .
- The **decreasing cumulative number** corresponding to the modality  $x_i$  is  $n_i^c \searrow = n_k + n_{k-1} + \cdots + n_i$ .

The presentation of a statistical series is done by a table, this presentation differs according to the nature of the studied character.

Statistical table - Qualitative data

### Example (1)

We take the example of the family situation of 30 employees.

| X : Family | Numbers |
|------------|---------|
| situation  | ni      |
| S          | 16      |
| М          | 9       |
| D          | 3       |
| W          | 2       |
| Total      | 30      |

Statistical table - Qualitative data

### Example (1)

We take the example of the family situation of 30 employees.

| X : Family | Numbers        | Frequency |
|------------|----------------|-----------|
| situation  | n <sub>i</sub> | $f_i$     |
| S          | 16             | 0.5333    |
| М          | 9              | 0.3000    |
| D          | 3              | 0.1000    |
| W          | 2              | 0.0667    |
| Total      | 30             | 1         |

Statistical table - Qualitative data

### Example (1)

We take the example of the family situation of 30 employees.

| X : Family | Numbers        | Frequency | Percentage |
|------------|----------------|-----------|------------|
| situation  | n <sub>i</sub> | $f_i$     | $p_i$      |
| S          | 16             | 0.5333    | 53.33      |
| М          | 9              | 0.3000    | 30         |
| D          | 3              | 0.1000    | 10         |
| W          | 2              | 0.0667    | 6.67       |
| Total      | 30             | 1         | 100        |

Graphical representation - Distribution of numbers for qualitative character

### Example (1)

We take the example of the family situation of 30 employees

#### Bar or pipe chart



Graphical representation - Distribution of numbers for qualitative character

### Circular diagram (Pie chart)

Sector for "Single"

$$\theta_S \longrightarrow 16$$
 $360 \longrightarrow 30$ 
 $\Longrightarrow \theta_S = \frac{16 \times 360}{30} = 192^\circ$ 

Sector for "Married"

$$\frac{\theta_M \longrightarrow 9}{360 \longrightarrow 30} \implies \theta_M = \frac{9 \times 360}{30} = 108^{\circ}$$

Graphical representation - Distribution of numbers for qualitative character

### Circular diagram (Pie chart)

Sector for "Divorced"

$$\begin{array}{ccc} \theta_D \longrightarrow 3 \\ 360 \longrightarrow 30 \end{array} \implies \theta_D = \frac{3 \times 360}{30} = 36^{\circ} \end{array}$$

Sector for "Widow"

$$\theta_W \longrightarrow 2 \atop 360 \longrightarrow 30 \implies \theta_W = \frac{2 \times 360}{30} = 24^{\circ}$$

Graphical representation - Distribution of numbers for qualitative character

#### Circular diagram or Pie chart



Statistical table - Discrete variable (Discrete quantitative character)

### Example (2)

| X : Number  | Numbers        |  |
|-------------|----------------|--|
| of children | n <sub>i</sub> |  |
| 0           | 11             |  |
| 1           | 16             |  |
| 2           | 21             |  |
| 3           | 25             |  |
| 4           | 17             |  |
| 5           | 8              |  |
| 6 and more  | 2              |  |
| Total       | 100            |  |

Statistical table - Discrete variable (Discrete quantitative character)

### Example (2)

| X : Number  | Numbers        | Frequency |
|-------------|----------------|-----------|
| of children | n <sub>i</sub> | $f_i$     |
| 0           | 11             | 0.11      |
| 1           | 16             | 0.16      |
| 2           | 21             | 0.21      |
| 3           | 25             | 0.25      |
| 4           | 17             | 0.17      |
| 5           | 8              | 0.08      |
| 6 and more  | 2              | 0.02      |
| Total       | 100            | 1         |

Statistical table - Discrete variable (Discrete quantitative character)

### Example (2)

| X : Number  | Numbers        | Frequency | %     |
|-------------|----------------|-----------|-------|
| of children | n <sub>i</sub> | $f_i$     | $p_i$ |
| 0           | 11             | 0.11      | 11    |
| 1           | 16             | 0.16      | 16    |
| 2           | 21             | 0.21      | 21    |
| 3           | 25             | 0.25      | 25    |
| 4           | 17             | 0.17      | 17    |
| 5           | 8              | 0.08      | 8     |
| 6 and more  | 2              | 0.02      | 2     |
| Total       | 100            | 1         | 100   |

Statistical table - Discrete variable (Discrete quantitative character)

### Example (2)

| X : Number  | Numbers        | Frequency | %     |      |
|-------------|----------------|-----------|-------|------|
| of children | n <sub>i</sub> | $f_i$     | $p_i$ | n; 🗡 |
| 0           | 11             | 0.11      | 11    | 11   |
| 1           | 16             | 0.16      | 16    | 27   |
| 2           | 21             | 0.21      | 21    | 48   |
| 3           | 25             | 0.25      | 25    | 73   |
| 4           | 17             | 0.17      | 17    | 90   |
| 5           | 8              | 0.08      | 8     | 98   |
| 6 and more  | 2              | 0.02      | 2     | 100  |
| Total       | 100            | 1         | 100   | _    |

Statistical table - Discrete variable (Discrete quantitative character)

### Example (2)

| X : Number  | Numbers        | Frequency | %     |                  |                  |
|-------------|----------------|-----------|-------|------------------|------------------|
| of children | n <sub>i</sub> | $f_i$     | $p_i$ | $n_i^c \nearrow$ | $n_i^c \searrow$ |
| 0           | 11             | 0.11      | 11    | 11               | 100              |
| 1           | 16             | 0.16      | 16    | 27               | 89               |
| 2           | 21             | 0.21      | 21    | 48               | 73               |
| 3           | 25             | 0.25      | 25    | 73               | 52               |
| 4           | 17             | 0.17      | 17    | 90               | 27               |
| 5           | 8              | 0.08      | 8     | 98               | 10               |
| 6 and more  | 2              | 0.02      | 2     | 100              | 2                |
| Total       | 100            | 1         | 100   | _                | _                |

Graphical representation - Distribution of numbers for discrete character

The example on the distribution of families according to the number of children is repeated.

| X : Number  | Numbers        |
|-------------|----------------|
| of children | n <sub>i</sub> |
| 0           | 11             |
| 1           | 16             |
| 2           | 21             |
| 3           | 25             |
| 4           | 17             |
| 5           | 8              |
| 6 and more  | 2              |
| Total       | 100            |

Graphical representation - Distribution of the numbers for discrete variable

#### Bar chart



Graphical representation - Distribution of the numbers for discrete variable

### The polygon of numbers



Graphical representation - Distribution of the increasing cumulative numbers for discrete variable

### Example (2)

The example on the distribution of families according to the number of children is repeated.

| X : Number  | Numbers        |                      |
|-------------|----------------|----------------------|
| of children | n <sub>i</sub> | n <sub>i</sub> /     |
| 0           | 11             | 11                   |
| 1           | 16             | 27                   |
| 2           | 21             | 48                   |
| 3           | 25             | 73                   |
| 4           | 17             | 90                   |
| 5           | 8              | 98                   |
| 6 and more  | 2              | 100                  |
| Total       | 100            | 4 <del>-</del> - + + |

Graphical representation - Distribution of the increasing cumulative numbers for discrete variable

### Cumulative absolute frequency curve



Position and dispersion parameters

The data set of a statistical series is difficult to handle. It is therefore necessary to define a set of characteristic values (or parameters) that allow a condensed representation of the information contained in the statistical series. There are two categories of typical values:

- The 1st order parameters or position parameters: arithmetic mean, mode and median.
- The 2nd order parameters or dispersion parameters: variance, standard deviation (écart-type), coefficient of variation and interquartile range (étendue intequartile).

Position parameters - The Mode

The mode, noted *Mo*, of a character (qualitative or quantitative) is the most observed modality, i.e. the one which has the greatest numbers (or the greatest frequency). The mode may not exist and if it does, it may not be unique.

- The set 2, 2, 5, 7, 9, 9, 9, 10, 10, 11, 12, 18 has for mode Mo = 9
- The set 3, 5, 8, 10, 12, 15, 16 has no mode.
- The set 2, 2, 2, 5, 7, 9, 9, 9, 10, 10, 11, 12, 18 has two modes  $Mo_1 = 2$  and  $Mo_2 = 9$ , we say that it is a bimodal series.
- For example 1 the mode is Mo = Single.
- For example 2 the mode is Mo = 3.

Position parameters - The arithmetic mean

The arithmetic mean of a statistical series  $x_1, x_2, \dots, x_k$ , of a quantitative character X, and of respective numbers  $n_1, n_2, \dots, n_k$  is given by the real number X defined by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$$

where  $x_i$  is the modality i of the variable X and  $n = \sum_{i=1}^k n_i$ .

Position parameters - The arithmetic mean

### Example

Let's go back to example 2

| X : Number of children | Numbers | $n_i x_i$ |
|------------------------|---------|-----------|
| 0                      | 11      | 0         |
| 1                      | 16      | 16        |
| 2                      | 21      | 42        |
| 3                      | 25      | 75        |
| 4                      | 17      | 68        |
| 5                      | 8       | 40        |
| 6 and more             | 2       | 12        |
| Total                  | 100     | 253       |

hence  $\overline{X} = \frac{253}{100} = 2,53$ .

Position parameters - The median

Let be a statistical series of a variable X having for modalities (ordered in increasing order)  $x_1 < x_2 < \cdots < x_n$ . On The median of X is the number Me, if it exists, which divides the statistical series into two parts of equal numbers (containing the same number of observations) i.e. containing  $\left[\frac{n}{2}\right]$  observations.

Position parameters - The median for a discrete variable

Consider the scores of 19 students on the statistics exam:

The series is ordered in ascending order, so we have

Half of the series is 9 so

$$\underbrace{4, 5, 6, 7, 8, 9, 9, 10, 10}_{9 \text{ values}}, \underbrace{11, 11, 12, 12, 12, 13, 15, 15, 16}_{9 \text{ values}}.$$

the median is the number that divides the series into two parts of equal numbers, the value that achieves this is 11 so Me = 11.

Position parameters - The median for a discrete variable

We now add the note 7 to the previous series, so we have a series of 20 notes:

Half of the series is 10 so

$$\underbrace{4,5,6,7,7,8,9,9,10,10}_{10 \text{ values}},\underbrace{11,11,11,12,12,12,13,15,15,16}_{10 \text{ values}}.$$

the median is the value that divides the series into two parts of equal numbers, it is found between the last 10 and the first 11, in this case we will take the average value of these two scores, then  $Me=\frac{10+11}{2}=10$ , 5.

Position parameters - The median for a discrete variable

In a general way let X be a discrete variable taking the ordered values  $x_1, x_2, \dots, x_p, x_{p+1}, \dots, x_n$ , then if

$$n = 2p \Longrightarrow Me = \frac{x_{(p)} + x_{(p+1)}}{2}$$
  
 $n = 2p + 1 \Longrightarrow Me = x_{(p+1)}.$ 

Dispersion parameters

#### Definition

The dispersion parameter measures the dispersion of the observations around a central value, these values tell us about the tendency of the observations to concentrate or disperse around the central values.

We have already determined a dispersion parameter, namely the range of a series,  $e = x_{(n)} - x_{(1)}$ .

Dispersion parameters - Interquartile range

The quartiles of a statistical series are the values noted  $Q_1$ ,  $Q_2$ ,  $Q_3$  that divide the statistical series into four subseries containing the same number of observations. Then there are three quartiles, the first quartile  $Q_1$ , the second quartile  $Q_2$  and the third quartile  $Q_3$ .

**Remark.** The second quartile  $Q_2$  is the median Me.

#### **Definition**

The interquartile range is the difference between the third and first quartile and is denoted by

$$IQR = Q_3 - Q_1$$
.

Dispersion parameters - Interquartile range for discrete variable

**Example:** Consider the marks of 21 students on the statistics exam

4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 15, 15, 16.

- Calculation of the second quartile: we have  $n=21=2\times 10+1 \Longrightarrow p=10$  hence  $Q_2=Me=x_{(p+1)}=x_{11}=10.$ 

4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 15, 15, 16.

Dispersion parameters - Interquartile range for discrete variable

- Calculation of the first quartile: the first sub-series contains  $\frac{n-1}{2}$  observations :  $\frac{n-1}{2}=10=2\times 5\Longrightarrow p=5$  hence  $Q_1=\frac{x_{(5)}+x_{(6)}}{2}=\frac{7+8}{2}=7.5$ .
- Calculation of the third quartile: The same goes for the second sub-series containing 10 observations, then  $Q_3 = \frac{x_{(10+1+5)} + x_{(10+1+6)}}{2} = \frac{12+13}{2} = 12.5$

4, 5, 6, 7, 7, 7.5, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12.5, 13, 13, 15, 15, 16

Then  $IQR = Q_3 - Q_1 = 12.5 - 7.5 = 5$ .

Dispersion parameters - Standard deviation

The standard deviation of a statistical series  $(x_1, x_2, \dots, x_k)$ , of a character X, and of respective numbers  $(n_1, n_2, \dots, n_k)$  is given by the real  $\sigma_X$  defined by

$$\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^n n_i \left( x_i - \overline{X} \right)^2}$$

where  $n = \sum_{i=1}^{n} n_i$ .

 $x_i$  is the modality i of the variable X.

**Remark 1.** We can also describe  $\sigma_X$  in the following form

$$\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^n n_i x_i^2 - \overline{X}^2}.$$

**Remark 2.** The variance of the variable X, noted Var(X), is the square of the standard deviation,

$$Var(X) = \sigma_X^2$$
.

Dispersion parameters - Standard deviation

Let's go back to example 2

| X : Number  | Numbers | $n_i x_i$ | $n_i x_i^2$ |
|-------------|---------|-----------|-------------|
| of children |         |           |             |
| 0           | 11      | 0         | 0           |
| 1           | 16      | 16        | 16          |
| 2           | 21      | 42        | 84          |
| 3           | 25      | 75        | 225         |
| 4           | 17      | 68        | 272         |
| 5           | 8       | 40        | 200         |
| 6 and more  | 2       | 12        | 72          |
| Total       | 100     | 253       | 869         |

hence 
$$\sigma_X = \sqrt{\frac{1}{n}\sum_{i=1}^n n_i x_i^2 - \overline{X}^2} = \sqrt{\frac{1}{100}\sum_{i=1}^n 869 - 2,53^2} \approx 1,51.$$
 And  $Var(X) = \sigma_X^2 = 2,2891.$ 

Dispersion parameters - Coefficient of variation

The coefficient of variation is a relative dispersion parameter expressed in percentage and defined by

$$CV_X = \frac{\sigma_X}{\overline{X}} \times 100.$$

The coefficient of variation in general if it is lower than 25% (for some authors it is 15% and for others 30%) one says that the series is homogeneous i.e. the observations are grouped around the average. Otherwise it is heterogeneous, i.e. the observations are scattered or far from the mean.

- $CV_X \le 25\%$ , we have a low dispersion,
- $25\% \le CV_X \le 80\%$ , observations are quite scattered,
- $CV_X \ge 80\%$ , a very strong dispersion.

For the previous example we have  $CV_X = 100\frac{1.51}{2.53} \approx 59,68\%$ .