MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe, 6.189 Multicore Programming Primer, January (IAP) 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 3

Introduction to Parallel Architectures

Implicit vs. Explicit Parallelism

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Implicit Parallelism: Superscalar Processors

- Issue varying numbers of instructions per clock
 - statically scheduled
 - using compiler techniques
 - in-order execution
 - dynamically scheduled
 - Extracting ILP by examining 100's of instructions
 - Scheduling them in parallel as operands become available
 - Rename registers to eliminate anti dependences
 - out-of-order execution
 - Speculative execution

Pipelining Execution

IF: Instruction fetch

EX: Execution

ID: Instruction decode

WB: Write back

	Cycles									
Instruction #	1	2	3	4	5	6	7	8		
Instruction i	IF	ID	EX	WB						
Instruction i+1		IF	ID	EX	WB					
Instruction i+2			IF	ID	EX	WB				
Instruction i+3				IF	ID	EX	WB			
Instruction i+4					IF	ID	EX	WB		

Super-Scalar Execution

	Cycles									
Instruction type	1	2	3	4	5	6	7			
Integer	IF	ID	EX	WB						
Floating point	IF	ID	EX	WB						
Integer		IF	ID	EX	WB					
Floating point		IF	ID	EX	WB		_			
Integer			IF	ID	EX	WB				
Floating point			IF	ID	EX	WB				
Integer				IF	ID	EX	WB			
Floating point				IF	ID	EX	WB			

2-issue super-scalar machine

Data Dependence and Hazards

Instr_J is data dependent (aka true dependence) on Instr_{I:}

```
I: add r1,r2,r3
J: sub r4,r1,r3
```

- If two instructions are data dependent, they cannot execute simultaneously, be completely overlapped or execute in out-oforder
- If data dependence caused a hazard in pipeline, called a Read After Write (RAW) hazard

ILP and Data Dependencies, Hazards

- HW/SW must preserve program order: order instructions would execute in if executed sequentially as determined by original source program
 - Dependences are a property of programs
- Importance of the data dependencies
 - 1) indicates the possibility of a hazard
 - 2) determines order in which results must be calculated
 - 3) sets an upper bound on how much parallelism can possibly be exploited
- Goal: exploit parallelism by preserving program order only where it affects the outcome of the program

Name Dependence #1: Anti-dependence

- Name dependence: when 2 instructions use same register or memory location, called a name, but no flow of data between the instructions associated with that name; 2 versions of name dependence
- Instr_J writes operand <u>before</u> Instr_I reads it

```
I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7
```

Called an "anti-dependence" by compiler writers. This results from reuse of the name "r1"

 If anti-dependence caused a hazard in the pipeline, called a Write After Read (WAR) hazard

Name Dependence #2: Output dependence

Instr_J writes operand <u>before</u> Instr_I writes it.

```
I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7
```

- Called an "output dependence" by compiler writers.
 This also results from the reuse of name "r1"
- If anti-dependence caused a hazard in the pipeline, called a Write After Write (WAW) hazard
- Instructions involved in a name dependence can execute simultaneously if name used in instructions is changed so instructions do not conflict
 - Register renaming resolves name dependence for registers
 - Renaming can be done either by compiler or by HW

Control Dependencies

 Every instruction is control dependent on some set of branches, and, in general, these control dependencies must be preserved to preserve program order

```
if p1 {
    s1;
};
if p2 {
    s2;
}
```

- S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1.
- Control dependence need not be preserved
 - willing to execute instructions that should not have been executed, thereby violating the control dependences, if can do so without affecting correctness of the program
- Speculative Execution

Speculation

- Greater ILP: Overcome control dependence by hardware speculating on outcome of branches and executing program as if guesses were correct
 - Speculation ⇒ fetch, issue, and execute instructions as if branch predictions were always correct
 - Dynamic scheduling ⇒ only fetches and issues instructions
- Essentially a data flow execution model: Operations execute as soon as their operands are available

Speculation in Rampant in Modern Superscalars

- Different predictors
 - Branch Prediction
 - Value Prediction
 - Prefetching (memory access pattern prediction)
- Inefficient
 - Predictions can go wrong
 - Has to flush out wrongly predicted data
 - While not impacting performance, it consumes power

Today's CPU Architecture:

Heat becoming an unmanageable problem

Image by MIT OpenCourseWare.

Intel Developer Forum, Spring 2004 - Pat Gelsinger (Pentium at 90 W)

Cube relationship between the cycle time and pow

Pentium-IV

- Pipelined
 - minimum of 11 stages for any instruction
- Instruction-Level Parallelism

Image removed due to copyright restrictions.

- Can execute up to 3 x86 instructions per cycle
- Data Parallel Instructions
 - MMX (64-bit) and SSE (128-bit) extensions provide short vector support
- Thread-Level Parallelism at System Level
 - Bus architecture supports shared memory multiprocessing

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Explicit Parallel Processors

- Parallelism is exposed to software
 - Compiler or Programmer
- Many different forms
 - Loosely coupled Multiprocessors to tightly coupled VLIW

Little's Law

Parallelism = Throughput * Latency

- To maintain throughput T/cycle when each operation has latency L cycles, need T*L independent operations
- For fixed parallelism:
 - decreased latency allows increased throughput
 - decreased throughput allows increased latency tolerance

Types of Parallelism

Pipelining

Data-Level Parallelism (DLP)

Thread-Level Parallelism (TLP)

Instruction-Level Parallelism (ILP)

Translating Parallelism Types

Thread Parallel

Issues in Parallel Machine Design

- Communication
 - how do parallel operations communicate data results?
- Synchronization
 - how are parallel operations coordinated?
- Resource Management
 - how are a large number of parallel tasks scheduled onto finite hardware?
- Scalability
 - how large a machine can be built?

Flynn's Classification (1966)

Broad classification of parallel computing systems based on number of instruction and data streams

- SISD: Single Instruction, Single Data
 - conventional uniprocessor
- SIMD: Single Instruction, Multiple Data
 - one instruction stream, multiple data paths
 - distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
 - shared memory SIMD (STARAN, vector computers)
- MIMD: Multiple Instruction, Multiple Data
 - message passing machines (Transputers, nCube, CM-5)
 - non-cache-coherent shared memory machines (BBN Butterfly, T3D)
 - cache-coherent shared memory machines (Sequent, Sun Starfire, SGI Origin)
- MISD: Multiple Instruction, Single Data
 - no commercial examples

My Classification

- By the level of sharing
 - Shared Instruction
 - Shared Sequencer
 - Shared Memory
 - Shared Network

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Shared Instruction: SIMD Machines

- Illiac IV (1972)
 - 64 64-bit PEs, 16KB/PE, 2D network
- Goodyear STARAN (1972)
 - 256 bit-serial associative PEs, 32B/PE, multistage network
- ICL DAP (Distributed Array Processor) (1980)
 - 4K bit-serial PEs, 512B/PE, 2D network
- Goodyear MPP (Massively Parallel Processor) (1982)
 - 16K bit-serial PEs, 128B/PE, 2D network
- Thinking Machines Connection Machine CM-1 (1985)
 - 64K bit-serial PEs, 512B/PE, 2D + hypercube router
 - CM-2: 2048B/PE, plus 2,048 32-bit floating-point units
- Maspar MP-1 (1989)
 - 16K 4-bit processors, 16-64KB/PE, 2D + Xnet router
 - MP-2: 16K 32-bit processors, 64KB/PE

Shared Instruction: SIMD Architecture

 Central controller broadcasts instructions to multiple processing elements (PEs)

- Only requires one controller for whole array
- Only requires storage for one copy of program
- All computations fully synchronized

Cray-1 (1976)

First successful supercomputers

Images removed due to copyright restrictions.

Cray-1 (1976)

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

Vector Instruction Execution

Vector Instruction Execution

Vector Unit Structure

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Shared Sequencer VLIW: Very Long Instruction Word

- Compiler schedules parallel execution
- Multiple parallel operations packed into one long instruction word
- Compiler must avoid data hazards (no interlocks)

VLIW Instruction Execution

VLIW execution with degree = 3

ILP Datapath Hardware Scaling

- Replicating functional units and cache/memory banks is straightforward and scales linearly
- Register file ports and bypass logic for N functional units scale quadratically (N*N)
- Memory interconnection among N functional units and memory banks also scales quadratically
- (For large N, could try O(N logN) interconnect schemes)
- Technology scaling: Wires are getting even slower relative to gate delays
- Complex interconnect adds latency as well as area
- => Need greater parallelism to hide latencies

Clustered VLIW

- Divide machine into clusters of local register files and local functional units
- Lower bandwidth/higher latency interconnect between clusters
- Software responsible for mapping computations to minimize communication overhead

36

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Shared Network: Message Passing MPPs

(Massively Parallel Processors)

- Initial Research Projects
 - Caltech Cosmic Cube (early 1980s) using custom Mosaic processors
- Commercial Microprocessors including MPP Support
 - Transputer (1985)
 - nCube-1(1986) /nCube-2 (1990)
- Standard Microprocessors + Network Interfaces
 - Intel Paragon (i860)
 - TMC CM-5 (SPARC)
 - Meiko CS-2 (SPARC)
 - IBM SP-2 (RS/6000)
- MPP Vector Supers
 - Fujitsu VPP series

Designs scale to 100s or 1000s of nodes

Message Passing MPP Problems

- All data layout must be handled by software
 - cannot retrieve remote data except with message request/reply
- Message passing has high software overhead
 - early machines had to invoke OS on each message (100μs-1ms/message)
 - even user level access to network interface has dozens of cycles overhead (NI might be on I/O bus)
 - sending messages can be cheap (just like stores)
 - receiving messages is expensive, need to poll or interrupt

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Shared Memory: Shared Memory Multiprocessors

- Will work with any data placement (but might be slow)
 - can choose to optimize only critical portions of code
- Load and store instructions used to communicate data between processes
 - no OS involvement
 - low software overhead
- Usually some special synchronization primitives
 - fetch&op
 - load linked/store conditional
- In large scale systems, the logically shared memory is implemented as physically distributed memory modules
- Two main categories
 - non cache coherent
 - hardware cache coherent

Shared Memory: Shared Memory Multiprocessors

- No hardware cache coherence
 - IBM RP3
 - BBN Butterfly
 - Cray T3D/T3E
 - Parallel vector supercomputers (Cray T90, NEC SX-5)
- Hardware cache coherence
 - many small-scale SMPs (e.g. Quad Pentium Xeon systems)
 - large scale bus/crossbar-based SMPs (Sun Starfire)
 - large scale directory-based SMPs (SGI Origin)

Cray T3E

Up to 2048 600MHz Alpha 21164 processors connected in 3D torus

- Each node has 256MB-2GB local DRAM memory
- Load and stores access global memory over network
- Only local memory cached by on-chip caches

YXZ

Image by MIT OpenCourseWare.

- Alpha microprocessor surrounded by custom "shell" circuitry to make it into effective MPP node. Shell provides:
 - multiple stream buffers instead of board-level (L3) cache
 - external copy of on-chip cache tags to check against remote writes to local memory, generates on-chip invalidates on match
 - 512 external E registers (asynchronous vector load/store engine)
 - address management to allow all of external physical memory to be addressed
 - atomic memory operations (fetch&op)
 - support for hardware barriers/eureka to synchronize parallel tasks

HW Cache Cohernecy

- Bus-based Snooping Solution
 - Send all requests for data to all processors
 - Processors snoop to see if they have a copy and respond accordingly
 - Requires broadcast, since caching information is at processors
 - Works well with bus (natural broadcast medium)
 - Dominates for small scale machines (most of the market)
- Directory-Based Schemes
 - Keep track of what is being shared in 1 centralized place (logically)
 - Distributed memory => distributed directory for scalability (avoids bottlenecks)
 - Send point-to-point requests to processors via network
 - Scales better than Snooping
 - Actually existed BEFORE Snooping-based schemes

Bus-Based Cache-Coherent SMPs

- Small scale (<= 4 processors) bus-based SMPs by far the most common parallel processing platform today
- Bus provides broadcast and serialization point for simple snooping cache coherence protocol
- Modern microprocessors integrate support for this protocol

Sun Starfire (UE10000)

Up to 64-way SMP using bus-based snooping protocol

SGI Origin 2000

- Large scale distributed directory SMP
- Scales from 2 processor workstation to 512 processor supercomputer

Node contains:

- Two MIPS R10000 processors plus caches
- Memory module including directory
- Connection to global network
- Connection to I/O

Scalable hypercube switching network supports up to 64 two-processor nodes (128 processors total)

(Some installations up to 512 processors)

Image by MIT OpenCourseWare.

Outline

- Implicit Parallelism: Superscalar Processors
- Explicit Parallelism
- Shared Instruction Processors
- Shared Sequencer Processors
- Shared Network Processors
- Shared Memory Processors
- Multicore Processors

Phases in "VLSI" Generation

Multicores

Multicores

- Shared Memory
 - Intel Yonah, AMD Opteron
 - IBM Power 5 & 6
 - Sun Niagara
- Shared Network
 - MIT Raw
 - Cell
- Crippled or Mini cores
 - Intel Tflops
 - Picochip

Shared Memory Multicores: Evolution Path for Current Multicore Processors

Image removed due to copyright restrictions.

Multicore processor diagram.

- IBM Power5
 - Shared 1.92 Mbyte L2 cache
- AMD Opteron
 - Separate 1 Mbyte L2 caches
 - CPU0 and CPU1 communicate through the SRQ
- Intel Pentium 4
 - "Glued" two processors together

CMP: Multiprocessors On One Chip

 By placing multiple processors, their memories and the IN all on one chip, the latencies of chip-to-chip communication are drastically reduced

Primary AXI R/W 64-b bus

Optional AXI R/W 64-b bus 6.189 IAP 2007 MIT

Shared Network Multicores: The MIT Raw Processor

Images removed due to copyright restrictions.

- 16 Flops/ops per cycle
- 208 Operand Routes / cycle
- 2048 KB L1 SRAM

Raw's three on-chip mesh networks

Shared Network Multicore: The Cell Processor

- IBM/Toshiba/Sony joint project 4-5 years, 400 designers
 - 234 million transistors, 4+ Ghz
 - 256 Gflops (billions of floating pointer operations per second)
- One 64-bit PowerPC processor
 - 4+ Ghz, dual issue, two threads
 - 512 kB of second-level cache
- Eight Synergistic Processor Elements
 - Or "Streaming Processor Elements"
 - Co-processors with dedicated 256kB of memory (not cache)
- IO
 - Dual Rambus XDR memory controllers (on chip)
 - 25.6 GB/sec of memory bandwidth
 - 76.8 GB/s chip-to-chip bandwidth (to off-chip GPU)

Image removed due to copyright restrictions. IBM-Toshiba-Sony joint processor.

Mini-core Multicores: PicoChip Processor

- Array of 322 processing elements
- 16-bit RISC
- 3-way LIW
- 4 processor variants:
 - 240 standard (MAC)
 - 64 memory
 - 4 control (+ instr. mem.)
 - 14 function accellerators

Conclusions

- Era of programmers not caring about what is under the hood is over
- A lot of variations/choices in hardware
- Many will have performance implications
- Understanding the hardware will make it easier to make programs get high performance
- A note of caution: If program is too closely tied to the processor → cannot port or migrate
 - back to the era of assembly programming