The Peeling Decoder: Theory and some Applications

Krishna R. Narayanan Thanks to Henry Pfister, Avinash Vem, Nagaraj Thenkarai Janakiraman, Kannan Ramchandran, Jean-Francois Chamberland

> Department of Electrical and Computer Engineering Texas A&M University

Introduction

Message passing algorithms

- Remarkably successful in coding theory
- Used to design capacity-achieving codes/decoders for a variety of channels
- Tools have been developed to analyze their performance

Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the performance of a simple peeling decoder for the BEC and p-ary symmetric channels.

Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the performance of a simple peeling decoder for the BEC and p-ary symmetric channels.

Goal 2

Show that the following problems have the same structure as channel coding problems and show how to use the peeling decoder to solve them.

Problems

- Uncoordinated massive multiple access
- Sparse Fourier transform (SFT) computation
- Sparse Walsh-Hadamard transform computation
- Compressed sensing
 - Data stream computing
 - Group testing
 - Compressive phase retrieval

Remembering Sir David MacKay

David Mackay's rediscovery of LDPC codes and his very interesting book on Information Theory has undoubtedly had a big influence on the field.

Channel coding problem

- ullet Transmit a message $\underline{m} = [m_1, \dots, m_k]^T$ through a binary erasure channel
- ullet Encode the k-bit message \underline{m} into a n-bit codeword \underline{x}
- ullet Redundancy is measured in terms of rate of the code R=k/n

Capacity achieving sequence of codes

Capacity achieving sequence of codes

• Capacity $C(\epsilon) = 1 - \epsilon$

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes $\{\mathcal{C}^n\}$
- Probability of erasure P_e^n
- Rate \mathbb{R}^n
- \bullet Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes $\{\mathcal{C}^n\}$
- Probability of erasure P_e^n
- Rate \mathbb{R}^n
- \bullet Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$
- Find efficient encoders/decoders in terms encoding and decoding complexities

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes $\{\mathcal{C}^n\}$
- Probability of erasure P_e^n
- Rate Rⁿ
- Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$
- Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

- Introduced by Elias in 1954 as a toy example
- Has become the canonical model for coding theorists to gain insight

(n,k) Binary linear block codes - basics

G is a $n \times k$ generator matrix

$$\begin{bmatrix} g_{1,1} & \cdots & g_{k,l} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ g_{n,1} & & g_{k,l} \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Example - (6,3) code

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

(n,k) Binary linear block codes - basics

G is a $n \times k$ generator matrix

$$\begin{bmatrix} g_{1,1} & \cdots & g_{k,l} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ g_{n,1} & & g_{k,l} \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Example - (6,3) code

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Parity check matrix - **H** is a
$$(n-k) \times n$$
 matrix s.t. $\mathbf{HG} = \mathbf{0} \Rightarrow \mathbf{H}\underline{x} = 0$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Tanner graph representation of codes

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$

$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Variable nodes

- Gallager'63, Tanner'81
- Parity check matrix implies that $\mathbf{H}x = 0$
- Code constraints can be specified in terms of a bipartite (Tanner) graph

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Tanner Graph

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Received block

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
 - If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Peeling Step 1

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Peeling Step 2

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Peeling Step 2

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$
$$x_2 \oplus x_3 \oplus x_6 = 0$$

Peeling Step 3

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
 - If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$x_1 \oplus x_3 \oplus x_4 = 0$$

 $x_1 \oplus x_2 \oplus x_5 = 0$ $x_2 \oplus x_3 \oplus x_6 = 0$

Peeling Step 3

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
 - If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 $E = 1 \bigcirc$
 $B = 1 \bigcirc$

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values

Peeling Step 4

• If there is a check node with a single edge, it can be recovered

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages ∈ {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

Peeling decoder is a greedy decoder

$$\mathbf{H} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$$

$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Peeling decoder is a greedy decoder

$$\mathbf{H} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$$

$$x_1 \oplus x_2 \oplus x_5 = 0$$

$$x_2 \oplus x_3 \oplus x_6 = 0$$

Linearly independent set of equations

$$x_1 \oplus x_2 \oplus x_3 = x_4$$

$$x_1 \oplus x_2 = x_5$$

$$x_2 \oplus x_3 = x_6$$

Degree distributions

• VN d.d. from node perspective - $L(x) = \sum_i L_i x^i = \frac{3}{6} x + \frac{2}{6} x^2 + \frac{1}{6} x^3$

Degree distributions

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6} x + \frac{2}{6} x^2 + \frac{1}{6} x^3$
- VN d.d. from edge perspective $\lambda(x)=\sum_i \lambda_i x^{i-1}=\frac{3}{10}+\frac{4}{10}x+\frac{3}{10}x^2$

Degree distributions

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6} x + \frac{2}{6} x^2 + \frac{1}{6} x^3$
- VN d.d. from edge perspective $\lambda(x) = \sum_i \lambda_i x^{i-1} = \frac{3}{10} + \frac{4}{10}x + \frac{3}{10}x^2$
- \bullet CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3} x^3 + \frac{1}{3} x^4$

Degree distributions

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$
- VN d.d. from edge perspective $\lambda(x)=\sum_i \lambda_i x^{i-1}=\frac{3}{10}+\frac{4}{10}x+\frac{3}{10}x^2$
- CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3} x^3 + \frac{1}{3} x^4$
- \bullet CN d.d. from edge perspective $\rho(x) = \sum_i \rho_i x^{i-1} = \frac{6}{10} x^2 + \frac{4}{10} x^3$

Degree distributions

$$\bullet$$
 Rate - $r(\lambda,\rho)=1-\frac{l_{\rm avg}}{r_{\rm avg}}=1-\frac{\int_0^1\rho(x)~dx}{\int_0^1\lambda(x)~dx}$

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6} x + \frac{2}{6} x^2 + \frac{1}{6} x^3$
- \bullet VN d.d. from edge perspective $\lambda(x)=\sum_i \lambda_i x^{i-1}=\frac{3}{10}+\frac{4}{10}x+\frac{3}{10}x^2$
- CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3} x^3 + \frac{1}{3} x^4$
- CN d.d. from edge perspective $\rho(x) = \sum_i \rho_i x^{i-1} = \frac{6}{10} x^2 + \frac{4}{10} x^3$

LDPC code ensemble

$\mathsf{LDPC}(n,\lambda,\rho)$ ensemble

- Ensemble of codes obtained by using different permutations π
- · Assume there is only one edge between every var node and check node
- For every n, we get an ensemble of codes with the same (λ, ρ)
- Low density parity check (LDPC) ensemble if graph is of low density

• If we pick a code uniformly at random from the LDPC (n,λ,ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l,n\to\infty$?

- If we pick a code uniformly at random from the LDPC (n,λ,ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l,n\to\infty$?
 - Analyze the average prob. of erasure over the ensemble
 - For almost all realizations P_e^n concentrates around the average

- If we pick a code uniformly at random from the LDPC (n,λ,ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l,n\to\infty$?
 - Analyze the average prob. of erasure over the ensemble
 - ullet For almost all realizations P_e^n concentrates around the average

Relevant literature

- Papers by Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann 97-'02
- Explained in Modern coding theory by Richardson and Urbanke
- Henry Pfister's course notes on his webpage

Computation graph

Computation graph $C_l(x_1, \lambda, \rho)$ of bit x_1 of depth l (l-iterations) is the neighborhood graph of node x_1 of radius l.

Computation graph

Computation graph $C_l(x_1, \lambda, \rho)$ of bit x_1 of depth l (l-iterations) is the neighborhood graph of node x_1 of radius l. Consider the example $C_{l=1}(\lambda(x)=x, \rho(x)=x^2)$

Computation graph

Computation graph $\mathcal{C}_l(x_1,\lambda,\rho)$ of bit x_1 of depth l (l-iterations) is the neighborhood graph of node x_1 of radius l. Consider the example $\mathcal{C}_{l=1}(\lambda(x)=x,\rho(x)=x^2)$

Computation tree

For fixed (l_{max}, r_{max}) , in the limit of large block lengths a computation graph of depth-l looks like a tree with high probability

Computation Tree Ensemble- $\mathcal{T}_l(\lambda, \rho)$

Ensemble of bipartite trees of depth l rooted in a variable node (VN) where

- Root node has i children(CN's) with probability L_i
- Each VN has i children(CN's) with probability λ_i
- Each CN has i children(VN's) with probability ρ_i

Example:
$$C_{l=1}(\lambda(x) = x, \rho(x) = x^2)$$

Recall

- $\rho(x) = \sum_{i} \rho_i x^{i-1}$
- $\sum_{i} \rho_i = 1$
- $\lambda(x) = \sum_{i} \lambda_i x^{i-1}$
- $\sum_{i} \lambda_i = 1$

$$x_0 = \epsilon$$

Recall

- $\rho(x) = \sum_{i} \rho_i x^{i-1}$
- $\sum_{i} \rho_i = 1$
- $\lambda(x) = \sum_{i} \lambda_i x^{i-1}$
- $\sum_{i} \lambda_i = 1$

$$x_0 = \epsilon$$

$$y_l = 1 - \rho(1 - x_{l-1})$$

Recall

- $\rho(x) = \sum_{i} \rho_i x^{i-1}$
- $\sum_{i} \rho_i = 1$
- $\lambda(x) = \sum_{i} \lambda_i x^{i-1}$
- $\sum_{i} \lambda_i = 1$

$$x_0 = \epsilon$$

$$y_l = 1 - \rho(1 - x_{l-1})$$

$$x_l = \epsilon \lambda(y_l)$$

Recall

- $\rho(x) = \sum_{i} \rho_i x^{i-1}$
- $\sum_{i} \rho_i = 1$
- $\lambda(x) = \sum_{i} \lambda_i x^{i-1}$
- $\sum_{i} \lambda_{i} = 1$

$$x_0 = \epsilon$$

$$y_l = 1 - \rho(1 - x_{l-1})$$

$$x_l = \epsilon \lambda(y_l)$$

$$x_l = \epsilon \lambda(1 - \rho(1 - x_{l-1}))$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\mathbb{E}_{\mathsf{LDPC}(\lambda,\rho)}[x_1] = \sum_{T \in \mathcal{T}_1(\lambda,\rho)} P(T) * x_1(T,\epsilon)$$

$$= \epsilon (\rho_4 y_1^{(3)} + \rho_5 y_1^{(4)})^2$$

$$= \epsilon (1 - \rho_4 (1 - \epsilon)^3 - \rho_5 (1 - \epsilon)^4)^2$$

$$= \epsilon \lambda (1 - \rho (1 - \epsilon))$$

Threshold

Convergence condition

$$x_l = \epsilon \lambda (1 - \rho (1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

$$x_l \text{ converges to 0 if } \quad f(\epsilon, x) < x, \ x \in (0, \epsilon]$$
 There is a fixed point if
$$f(\epsilon, x) = x, \text{ for some } x \in (0, \epsilon]$$

Threshold

Convergence condition

$$x_l = \epsilon \lambda (1 - \rho(1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

 x_l converges to 0 if $f(\epsilon,x) < x, \ x \in (0,\epsilon]$ There is a fixed point if $f(\epsilon,x) = x$, for some $x \in (0,\epsilon]$

Threshold

Convergence condition

$$x_l = \epsilon \lambda (1 - \rho(1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

 x_l converges to 0 if $f(\epsilon,x) < x, \ x \in (0,\epsilon]$ There is a fixed point if $f(\epsilon,x) = x$, for some $x \in (0,\epsilon]$

The threshold $\epsilon^{BP}(\lambda, \rho)$ is defined as

$$\epsilon^{\mathsf{BP}}(\lambda,\rho) = \sup\{\epsilon \in [0,1] : x_l \to 0 \text{ as } l \to \infty\}$$

Exit charts - Ashikmin, Kramer, ten Brink'04

Node functions

- Var node function: $v_{\epsilon}(x) = \epsilon \lambda(x)$
- Check node function: $c(x) = 1 \rho(1 x)$

Optimality of EXIT chart matching

- Var node function: $v_{\epsilon}(x) = \epsilon \lambda(x)$
- Check node function: $c(x) = 1 \rho(1 x)$

• Understand what degree distributions $(\lambda(x),\rho(x))$ mean

- Understand what degree distributions $(\lambda(x), \rho(x))$ mean
- \bullet Given a (λ,ρ) and $\epsilon,$ what will be the P_e^n as $l,n\to\infty$?

- \bullet Understand what degree distributions $(\lambda(x),\rho(x))$ mean
- Given a (λ,ρ) and ϵ , what will be the P_e^n as $l,n\to\infty$?
- Can you compute the threshold?

- \bullet Understand what degree distributions $(\lambda(x),\rho(x))$ mean
- \bullet Given a (λ,ρ) and $\epsilon,$ what will be the P_e^n as $l,n\to\infty$?
- Can you compute the threshold?
- Is a $(\lambda(x), \rho(x))$ pair optimal?

Back to theory: from erasures to errors

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \dots, W^{p-1}$ are distinct

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \dots, W^{p-1}$ are distinct

Example \mathbb{F}_5

- W = 2
- $W^0 = 1, W^1 = 2, W^2 = 4, W^3 = 3$

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \dots, W^{p-1}$ are distinct

Example \mathbb{F}_5

- W = 2
- $W^0 = 1, W^1 = 2, W^2 = 4, W^3 = 3$

p need not be prime

- Everything can be extended to finite fields with $q=2^r$ elements
- May be extended to integers not sure

p-symmetric channel and error correction

Error correction coding

- Another simple channel model which has been extensively considered
- Has been the canonical model for algebraic coding theorists

Generalized LDPC code and error channels

- GLDPC introduced by Tanner in 1981
- Each check is a (\tilde{n}, \tilde{k}) , t-error correcting code
- If there are $\leq t$ errors in a check, it can be recovered
- For now, assume no miscorrections

Peeling process is same for erasure and error channels

- Assume 1-error correcting check code and no miscorrections
- One-to-one correspondence between messages passed DE can be used
- Not optimal for the error channel but it is not bad at high rates
- Spatially coupled versions are optimal at high rates (Jian, Pfister and N)

Erasures to errors - tensoring and peeling

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\otimes$$

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W & W^2 & W^3 & W^4 & W^5 \end{bmatrix}$$

$$\tilde{\mathbf{H}} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & W^2 & W^3 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & W & 0 & 0 & W^4 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & W & W^2 & 0 & 0 & W^5 \end{bmatrix}$$

- W is a primitive element in the field
- Each check is a 1-error correcting code
- If there is exactly one error in a check, it can be recovered

Product code

- Special case of generalized LDPC code
- Let component code ${\cal C}$ be an $(\tilde{n}, \tilde{k}, \tilde{d}_{\min})$ linear code
- Well-known that ${\cal P}$ is an $(\tilde{n}^2, \tilde{k}^2, \tilde{d}_{\min}^2)$ linear code

Product code

- Special case of generalized LDPC code
- Let component code ${\cal C}$ be an $(\tilde{n}, \tilde{k}, \tilde{d}_{\min})$ linear code
- Well-known that ${\cal P}$ is an $(\tilde{n}^2, \tilde{k}^2, \tilde{d}_{\min}^2)$ linear code

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Received block

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Row decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Row decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Column decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Column decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Decoding successful

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Or trapped in a stopping set

Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Assumptions

- Errors are randomly distributed in rows and columns
- # errors in each row/col $\sim \mathsf{Poisson}(M)$)

Density Evolution(DE) for Product Codes - Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Assumptions

- Errors are randomly distributed in rows and columns
- # errors in each row/col $\sim Poisson(M)$)

Main Idea

- Removal of corrected vertices (degree ≤ t) from row codes ⇔ removal of random edges from column codes uniformly at random
- # of errors in row/column changes after each iter
- Track the distribution

row codes

column codes

DE continued

Tail of the Poisson distribution

$$\pi_t(m) = \sum_{j \ge t} e^{-m} m^j / j!$$

Effect of first step of decoding

If the # errors is Poisson with mean M, Mean # of errors after decoding is

$$m(1) = \sum_{j \ge t+1} j e^{-M} M^j / j! = M \pi_t(M)$$

Evolution of degree distribution (d=2) - first iteration

- Row decoding
 - Before row decoding
 - ullet Distribution: Poisson(M), Mean: M
 - After row decoding
 Distribution: Truncated Poisson(M)
 - Mean: $M\pi_t(M) = m(1)$

Column decoding

- Before column decoding
 Distribution: Poisson(m(1)), Mean: m(1)
- After column decoding
 - Distribution: Truncated Poisson(m(1))
 - Mean: $m(2) = M\pi_t(m(1))$

After every decoding

- $\bullet \ \, {\sf Distribution} \,\, {\sf is a Truncated Poisson}\big(m(j)\big) \\$
- $P[\#errors = i] = b \frac{m(j)^i}{i!}$

Evolution of the degree distribution - jth iteration

Recursion

- m(0) = M
- $m(1) = M\pi_t(M)$
- $m(j) = M\pi_t(m(j-1))$

Reduction in the parameter

- Average no. of errors in each row (column) = $m(j)\pi_t(m(j))$
- Decoding of rows reduces the parameter by $\frac{m(j)\pi_t(m(j))}{m(j-1)\pi_t(m(j-1))} = \frac{M\pi(m(j))}{m(j-1)}$
- New parameter is $m(j+1) = M\pi(m(j))$

Threshold

In the limit of large \tilde{n} (length in each dimension), a t-error correcting product code can correct $\tilde{n}M$ errors when

$$M < \min_{m} \left\{ \frac{m}{\pi_t(m)} \right\}$$

Thresholds for asymptotically large field size

$Threshold = \tfrac{\#\ of parity symbols}{\#\ oferrors}$							
	d=2	d=3	d=4	d=5	d = 6	d=7	d=8
t = 1	4.0	2.4436	2.5897	2.8499	3.1393	3.4378	3.7383
t=2	2.3874	2.5759	2.9993	3.4549	3.9153	4.3736	4.8278
t = 3	2.3304	2.7593	3.3133	3.8817	4.4483	5.0094	5.5641
t = 4	2.3532	2.9125	3.5556	4.2043	4.8468	5.4802	6.1033

Notice that $L, K = O\left(N^{\frac{1-d}{d}}\right)$

Syndrome source coding

- Hx = 0
- Receive $\underline{r} = \underline{x} \oplus \underline{e}$
- $H\underline{r} = H\underline{e} = y$
- Recover \underline{x} and sparse \underline{e}

- $H\underline{s} = y$
- Set $\underline{r} = 0$ (Let a genie add \underline{x} to \underline{r})
- ullet y is given to the decoder
- Recover sparse \underline{s}

Application 2

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

 $oldsymbol{x[n]}$: Time domain signal of length N whose spectrum is K-sparse

$$x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\mathsf{sparse})}$$

Compute the locations and values of the ${\cal K}$ non-zero coefficients w.h.p

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

 $\boldsymbol{x}[\boldsymbol{n}]$: Time domain signal of length N whose spectrum is K-sparse

$$x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\mathsf{sparse})}$$

Compute the locations and values of the K non-zero coefficients w.h.p

Fast Fourier Transform (FFT)

- Sample complexity: N samples
- Computational complexity: $O(N \log N)$

We want sublinear sample and computational complexity

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

 $\boldsymbol{x}[\boldsymbol{n}]$: Time domain signal of length N whose spectrum is K-sparse

$$x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\mathsf{sparse})}$$

Compute the locations and values of the K non-zero coefficients w.h.p

Related work

- Spectral estimation Prony's method
- More recently Pawar and Ramchandran'13, Hassanieh, Indyk, Katabi'12

SFFT - A Sparse Graph Based Approach

Main Idea - Pawar and Ramchandran 2013

- Sub-sampling in time corresponds to aliasing in frequency
- Aliased coefficients ⇔ parity check constraints of GLDPC codes
- CRT guided sub-sampling induces a code good for Peeling decoder
- Problem is identical to syndrome source coding

SFFT - A Sparse Graph Based Approach

Main Idea - Pawar and Ramchandran 2013

- Sub-sampling in time corresponds to aliasing in frequency
- Aliased coefficients ⇔ parity check constraints of GLDPC codes
- CRT guided sub-sampling induces a code good for Peeling decoder
- Problem is identical to syndrome source coding

FFAST for Computing the DFT - Pawar and Ramchandran 2013

- Sampling complexity: M = O(K) time domain samples
- Computational complexity: $O(K \log K)$

Subsampling and Aliasing - A Quick Review

Subsampling results in aliasing

- Let $x[n] \xrightarrow{N-DFT} X[k], k, n = 0, 1, ..., N-1$
- Let $x_s[n] = x[mL], \ m = 0, 1, \dots, N/L = M$ be a sub-sampled signal
- Let $x_s[m] \xrightarrow{M-DFT} X_s[l]$ be the DFT of the sub-sampled signal
- $\bullet \quad X_s[l] = M \sum_{p=0}^{L-1} X[l+pM]$

Aliasing and Sparse Graph Codes

FFAST Algorithm Example

Singleton Detection

Singleton condition for a checknode

- Let $i=\frac{-N}{i2\pi}\log(\frac{\tilde{X}_s[l]}{X_*[l]})$. If $0\leq i\leq N-1$, then checknode l is a Singleton.
- Pos(l) = i is the only variable node participating and $X_s[l]$ is its value.

FFAST Decoder

Peeling decoder

- 1 non-zero value among the neighbors of any right node can be recovered
- Iteratively errors can be corrected and analyzed for random non-zero coeffs

FFAST Decoder Example

Example 1

Let N=6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

Yes, recoverable!

Generalization

Reed Solomon component codes

- ullet $(X_s[l_1], ilde{X}_s[l_1])$ correspond to 2 syndromes of a 1-error correcting RS code
 - RS is over the complex field, no miscorrection

Product codes and FFAST (d=2)

- X: K-sparse spectrum of length $N = P_1P_2$ (P_1 and P_2 are co-prime)
- X': $P_1 \times P_2$ matrix formed by rearranging X according to mapping \mathcal{M}

$$\begin{array}{lcl} X_s[l_1] & = & \displaystyle\sum_{i=0}^{P_2-1} X[l_1+iP_1], & 0 \leq l_1 \leq P_2-1 \\ \\ Z_s[l_2] & = & \displaystyle\sum_{i=0}^{P_1-1} X[l_2+iP_2], & 0 \leq l_2 \leq P_1-1 \end{array}$$

Mapping

The mapping from X(r) to $X^{\prime}(i,j)$ is given by

$$(i,j) = \mathcal{M}(r) \equiv (r \mod P_2, r \mod P_1).$$

Note: CRT ensures that \mathcal{M} is bijective

Product codes and FFAST $(d \ge 3)$

$$N = P_1 \times P_2 \times \ldots \times P_d$$

$$(i_1, i_2, \dots, i_d) = \mathcal{M}(r) \equiv (r \mod f_1, r \mod f_2, \dots, r \mod f_d).$$

Connections between FFAST and Product Codes

 $\begin{array}{ccc} \mathsf{FFAST} & \Leftrightarrow \\ d \; \mathsf{stages} & \Leftrightarrow \\ 2t \; \mathsf{branches} & \Leftrightarrow \\ \mathsf{Non-zero} \; \mathsf{coefficients} & \Leftrightarrow \\ \mathsf{Recovery} \; \mathsf{of} \; \mathsf{coefficients} & \Leftrightarrow \\ \end{array}$

 $\begin{array}{c} \text{Product codes} \\ d\text{-dimensional product code} \\ t\text{-error correcting RS component codes} \\ \text{Error locations} \\ \text{Iterative decoding} \end{array}$

Thresholds

Theorem 1

Less sparse case: In the limit of large P, the FFAST algorithm with d branches and 2t stages can recover the FFT coefficients w.h.p if $K<\frac{2dt}{c_{d,t}}$.

$$c_{d,t} = \min_m \{ m/\pi^{d-1}(m) \}$$

Notice that $L,K=O\left(N^{\frac{1-d}{d}}\right)$

Interference-tolerant A/D Converter

Open problems

- If we use MAP decoding, is the subsampling procedure optimal?
- What happens when $N=2^i$?
- Bursty case? Can we have threshold theorems?
- Using this idea in actual applications

Questions?

Thank you!