Activity selection problem / maximum disjoint interval

You are given **n** activities with their start and finish times. Select the maximum number of activities that can be performed by a single person, assuming that a person can only work on a single activity at a time.

Algorithm:

- 1. Sort all activities based on their finish time.
- $2. \ \mbox{Choosing}$ the first activity from the sorted list.
- 3. Select the next activity from the sorted list only if its start time is greater than or equal to the finish time of the previously selected activity.
- 4. Repeat Step 3 for all the remaining activities in the sorted list.

Question: Maximum tasks that can be performed without any overlapping

Start Time (s)	Finish Time (f)	Task Name
5	9	T1
1	2	T2
3	4	T3.

0	6	T <u>4</u>
5	7	T5
8	9	Т6

Answer:

1. Sort all activities based on their finish time.

>		
Start Time (s)	Finish Time (f)	Task Name
		T
)	.2	T
3	9	3
0	6	h ×
<u> </u>	7 (T 1/
-	٩	
J	-	n
8	ラ・ '	0

T2, T3, T5, T6

Max a wity performel = 4.

Tc-> nlyn.

previous tack. End thre <= next tack. Short Time.

HW GFG Job Squencing Problem - Greeds approach