Chapter 14 - Problem Set 2

Calculus 3

## Section 5: The Chain Rule

Use The Chain Rule to find  $\frac{dz}{dt}$  or  $\frac{dw}{dt}$ .

**3.** 
$$z = xy^3 - x^2y$$
,  $x = t^2 + 1$ ,  $y = t^2 - 1$ 

**5.** 
$$z = \sin x \cos y$$
,  $x = \sqrt{t}$ ,  $y = 1/t$ 

7. 
$$w = xe^{y/z}$$
,  $x = t^2$ ,  $y = 1 - t$ ,  $z = 1 + 2t$ 

# 11-15 (odd)

Use the Chain Rule to find  $\frac{\partial z}{\partial s}$  and  $\frac{\partial z}{\partial t}$ 

**11.** 
$$z = (x - y)^5$$
,  $x = s^2 t$ ,  $y = st^2$ 

**13.** 
$$z = \ln(3x + 2y)$$
,  $x = s\sin t$ ,  $y = t\cos s$ 

**15.** 
$$z = (\sin \theta)/r$$
,  $r = st$ ,  $\theta = s^2 + t^2$ 

## 25-29 (odd)

Use the Chain Rule to find the indicated partial derivatives.

**25.** 
$$z = x^4 + x^2y$$
,  $x = s + 2t - u$ ,  $y = stu^2$ ;

$$\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u} \quad \text{when } s=4, t=e, u=1$$

**27.** 
$$w = xy + yz + zx$$
,  $x = r\cos\theta$ ,  $y = r\cos\theta$ ,  $z = r\theta$ ;

$$\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta} \quad \text{when } r=2, \theta=\pi/2$$

**29.** 
$$N = \frac{p+q}{p+r}$$
,  $p = u + vw$ ,  $q = v + uw$ ,  $r = w + uv$ 

$$\frac{\partial N}{\partial u}, \frac{\partial N}{\partial v}, \frac{\partial N}{\partial w}$$
 when  $u = 2, v = 3, w = 4$ 

Use Equation 5 to find  $\frac{dy}{dx}$ 

**31.** 
$$y \cos x = x^2 + y^2$$

Use Equations 6 to find  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial u}$ 

**35.** 
$$x^2 + 2y^2 + 3z^2 = 1$$

## Section 6: Directional Derivatives and the Gradient Vector

5, 7

Find the directional derivative of f at the given point in the direction indicated by the angle  $\theta$ .

**5**.

7.

- (a) Find the gradient of f
- (b) Evaluate the gradient at the point P
- (c) Find the rate of change of f at P in the direction of the vector  $\vec{u}$

9.

### 13, 15

Find the directional derivative of the function at the given point in the direction of the vector  $\vec{v}$ .

13.

15.

#### 21, 23

Find the directional derivative of the function at the point P in the direction of the point Q.

21.

**23**.

### 27, 29

Find the maximum rate of change of f at the given point and the direction in which it occurs.

27.

29.

37.

The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (1,2,2) is  $120^{\circ}$ 

(a) Find the rate of change of T at (1,2,2) in the direction toward the point (2,1,3).

(b) Show that at any point in the ball the direction of greatest increase in temperature is given by a vector that points toward the origin

# 47-51 (odd)

Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

- **47.**
- **49.**
- **51.**

# Section 7: Maximum and Minimum Values

5-21 (odd)

Find the local maximum and minumum values and saddle point(s) of the function. You are encouraged to use a calculator or computer to graph the function with a domain and viewpoint that reveals all the important aspects of the function.

**5.** 

7.

9.

11.

13.

**15.** 

17.

19.

21.

# 33-39 (odd)

Find the absolute maximum and minimum values of f on the set D.

33.

**35.** 

**37.** 

**39.** 

### 43

Find the shortest distance from the point (2,0,-3) to the plan x+y+z=1.

### 45

Find the points on the cone  $z^2 = x^2 + y^2$  that are closest to the point (4,2,0).

#### 47

Find three positive numbers whose sum is 100 and whose product is a maximum.

*55* 

A cardboard box without a lid is to have a volume of 32,000  $cm^3$ . Find the dimensions that minimize the amount of cardboard used.