

Specification and Verification

Lecture 6: Model checking TSs against LTL

Guillermo A. Pérez

November 3, 2024

TL;DR: This lecture in short

What is model checking? Why study it?

Essentially checking whether a transition system satisfies some formal specification

Main references

- Christel Baier, Joost-Pieter Katoen: **Principles of Model Checking.** MIT Press 2018.
- Mickael Randour: Verification course @ UMONS.

Required and target competences

What tools do we need?

Discrete maths, formal language theory, computational models

What skills will we obtain?

- theory: the automata-theoretic tools usual for verification
- practice: algorithms used at every step of the model-checking pipeline

How will these skills be useful?

Model checking is the most-widely adopted automatic verification technique

- 1 LTL model checking
- 2 From LTL to NBA

- 3 From LTL to NBA: inherently exponential
- 4 From LTL to NBA: no reverse transformation
- 5 NBA-based LTL model checking

LTL model checking: decision problem

Definition: LTL model checking problem

Given a TS \mathcal{T} and an LTL formula φ , decide if $\mathcal{T} \models \varphi$ or not.

+ if $\mathcal{T} \not\models \varphi$ we would like a counter-example (trace witnessing it)

LTL model checking: decision problem

Definition: LTL model checking problem

Given a TS \mathcal{T} and an LTL formula φ , decide if $\mathcal{T} \models \varphi$ or not.

- + if $\mathcal{T} \not\models \varphi$ we would like a counter-example (trace witnessing it)
- ⇒ Model checking algorithm via automata-based approach (Vardi and Wolper, 1986)

Intuition.

- \blacksquare Represent φ as an NBA
- Use it to try to find a path π in $\mathcal T$ such that $\pi \not\models \varphi$
- lacksquare If one is found, a prefix of it is an *error trace*; otherwise, $\mathcal{T} \models \varphi$

$$\mathcal{T} \models \varphi$$
 iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi) \\ \quad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing$$

Line 3 uses negation for paths.

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing$$

Line 3 uses negation for paths.

Line 4 uses the existence of an NBA for any ω -regular language and the fact that **all LTL** formulas describe ω -regular languages.

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$$

Line 3 uses negation for paths.

Line 4 uses the existence of an NBA for any ω -regular language and the fact that **all LTL** formulas describe ω -regular languages.

Line 5 reduces the language intersection problem to the satisfaction of a persistence property over the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$. The idea is to check that no trace yielded by \mathcal{T} will satisfy the acceptance condition of the NBA $\mathcal{A}_{\neg \varphi}$.

Overview of the algorithm

- 1 LTL model checking
- 2 From LTL to NBA
- 3 From LTL to NBA: inherently exponential
- 4 From LTL to NBA: no reverse transformation

5 NBA-based LTL model checking

From LTL to GNBA: examples

■ NBA for \Box (req $\rightarrow \Diamond$ resp)

From LTL to GNBA: examples

■ NBA for \Box (req $\rightarrow \Diamond$ resp)

■ NBA for $\Diamond \Box a$

From LTL to GNBA: examples

■ NBA for \Box (req $\rightarrow \Diamond$ resp)

■ NBA for $\Diamond \Box a$

■ GNBA for $\Box \Diamond crit_1 \land \Box \Diamond crit_2$

Goal

For an LTL formula φ , build GNBA \mathcal{G}_{φ} over alphabet 2^{P} such that $\mathcal{L}(\mathcal{G}_{\varphi}) = \operatorname{Words}(\varphi)$.

Goal

For an LTL formula φ , build GNBA \mathcal{G}_{φ} over alphabet 2^{P} such that $\mathcal{L}(\mathcal{G}_{\varphi}) = \operatorname{Words}(\varphi)$.

■ Assume φ only contains core operators \wedge , \neg , \bigcirc , \mathcal{U} (w.l.o.g., see core syntax) and $\varphi \neq \top$ (otherwise, trivial GNBA).

Goal

For an LTL formula φ , build GNBA \mathcal{G}_{φ} over alphabet 2^{P} such that $\mathcal{L}(\mathcal{G}_{\varphi}) = \operatorname{Words}(\varphi)$.

- Assume φ only contains core operators \wedge , \neg , \bigcirc , \mathcal{U} (w.l.o.g., see core syntax) and $\varphi \neq \top$ (otherwise, trivial GNBA).
- What will the states of \mathcal{G}_{φ} be?

Goal

For an LTL formula φ , build GNBA \mathcal{G}_{φ} over alphabet 2^{P} such that $\mathcal{L}(\mathcal{G}_{\varphi}) = \operatorname{Words}(\varphi)$.

- Assume φ only contains core operators \wedge , \neg , \bigcirc , \mathcal{U} (w.l.o.g., see core syntax) and $\varphi \neq \top$ (otherwise, trivial GNBA).
- What will the states of \mathcal{G}_{φ} be?
 - Let $w = a_0 a_1 a_2 \cdots \in \operatorname{Words}(\varphi)$. Idea: "extend" the sets $a_i \subseteq P$ with subformulas ψ of φ .

Goal

For an LTL formula φ , build GNBA \mathcal{G}_{φ} over alphabet 2^{P} such that $\mathcal{L}(\mathcal{G}_{\varphi}) = \operatorname{Words}(\varphi)$.

- Assume φ only contains core operators \wedge , \neg , \bigcirc , \mathcal{U} (w.l.o.g., see core syntax) and $\varphi \neq \top$ (otherwise, trivial GNBA).
- What will the states of \mathcal{G}_{ω} be?
 - Let $w = a_0 a_1 a_2 \cdots \in \operatorname{Words}(\varphi)$. Idea: "extend" the sets $a_i \subseteq P$ with subformulas ψ of φ .
 - Obtain $\overline{w} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i \iff a_i a_{i+1} a_{i+2} \ldots \models \psi.$$

 \blacksquare \overline{w} will be a run for w in the GNBA \mathcal{G}_{φ} .

■ Let $\varphi = a \mathcal{U} (\neg a \wedge b)$ and $w = \{a\} \{a, b\} \{b\} \dots$

- Let $\varphi = a \mathcal{U} (\neg a \land b)$ and $w = \{a\} \{a, b\} \{b\} \dots$
 - \blacksquare States B_i are subsets of

$$\underbrace{\{a, \neg a, b, \neg a \land b, \varphi\}}_{\text{subformulas of } \varphi} \, \cup \, \underbrace{\{\neg b, \neg (\neg a \land b), \neg \varphi\}.}_{\text{their negation}}$$

Negations also considered for technical reasons

- Let $\varphi = a \mathcal{U} (\neg a \land b)$ and $w = \{a\} \{a, b\} \{b\} \dots$
 - \blacksquare States B_i are subsets of

$$\underbrace{\{a, \neg a, b, \neg a \land b, \varphi\}}_{\text{subformulas of } \varphi} \, \cup \, \underbrace{\{\neg b, \neg (\neg a \land b), \neg \varphi\}.}_{\text{their negation}}$$

- Negations also considered for technical reasons
- $a_0 = \{a\}$ is extended with $\neg b$, $\neg(\neg a \land b)$ and φ as they hold in w and no other subformula holds

- Let $\varphi = a \mathcal{U} (\neg a \land b)$ and $w = \{a\} \{a, b\} \{b\} \dots$
 - \blacksquare States B_i are subsets of

$$\underbrace{\{a, \neg a, b, \neg a \land b, \varphi\}}_{\text{subformulas of } \varphi} \, \cup \, \underbrace{\{\neg b, \neg (\neg a \land b), \neg \varphi\}.}_{\text{their negation}}$$

- Negations also considered for technical reasons
- $a_0 = \{a\}$ is extended with $\neg b$, $\neg(\neg a \land b)$ and φ as they hold in w and no other subformula holds
- lacksquare $a_1 = \{a, b\}$ with $\neg(\neg a \land b)$ and φ as they hold in w[1..]

- Let $\varphi = a \mathcal{U} (\neg a \land b)$ and $w = \{a\} \{a, b\} \{b\} \dots$
 - \blacksquare States B_i are subsets of

$$\underbrace{\{a, \neg a, b, \neg a \land b, \varphi\}}_{\text{subformulas of } \varphi} \, \cup \, \underbrace{\{\neg b, \neg (\neg a \land b), \neg \varphi\}.}_{\text{their negation}}$$

- Negations also considered for technical reasons
- $a_0 = \{a\}$ is extended with $\neg b$, $\neg(\neg a \land b)$ and φ as they hold in w and no other subformula holds
- lacksquare $a_1 = \{a, b\}$ with $\neg(\neg a \land b)$ and φ as they hold in w[1..]
- $a_2 = \{b\}$ with $\neg a$, $\neg a \land b$ and φ as they hold in w[2..]

- Let $\varphi = a \mathcal{U} (\neg a \land b)$ and $w = \{a\} \{a, b\} \{b\} \dots$
 - \blacksquare States B_i are subsets of

$$\underbrace{\{a, \neg a, b, \neg a \land b, \varphi\}}_{\text{subformulas of } \varphi} \, \cup \, \underbrace{\{\neg b, \neg (\neg a \land b), \neg \varphi\}.}_{\text{their negation}}$$

- Negations also considered for technical reasons
- $a_0 = \{a\}$ is extended with $\neg b$, $\neg(\neg a \land b)$ and φ as they hold in w and no other subformula holds
- \blacksquare $a_1 = \{a, b\}$ with $\neg(\neg a \land b)$ and φ as they hold in w[1..]
- $a_2 = \{b\}$ with $\neg a$, $\neg a \land b$ and φ as they hold in w[2..]

$$\underbrace{\{a,\neg b,\neg(\neg a \wedge b),\varphi\}}_{B_0}\underbrace{\{a,b,\neg(\neg a \wedge b),\varphi\}}_{B_1}\underbrace{\{\neg a,b,\neg a \wedge b,\varphi\}}_{B_2}\dots$$

 $=\overline{w}$

■ Sets B_i will be the states of GNBA \mathcal{G}_{φ}

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$
- How do we encode the meaning of the logical operators?

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$
- How do we encode the meaning of the logical operators?
 - \land , \neg and \top impose *consistent formula sets* B_i in the states (e.g., a and $\neg a$ is not possible)

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$
- How do we encode the meaning of the logical operators?
 - \land , \neg and \top impose *consistent formula sets* B_i in the states (e.g., a and $\neg a$ is not possible)
 - encoded in the transition relation (must be consistent)

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$
- How do we encode the meaning of the logical operators?
 - \land , \neg and \top impose *consistent formula sets* B_i in the states (e.g., a and $\neg a$ is not possible)
 - ○ encoded in the *transition relation* (must be consistent)
 - U split according to the expansion law into local condition (encoded in states) and next-step one (encoded in transitions)

- Sets B_i will be the states of GNBA \mathcal{G}_{φ}
- $\overline{w} = B_0 B_1 B_2 \dots$ is a run for w in \mathcal{G}_{φ} by construction
- Accepting condition chosen such that \overline{w} is accepting if and only if $w \models \varphi$
- How do we encode the meaning of the logical operators?
 - \land , \neg and \top impose *consistent formula sets* B_i in the states (e.g., a and $\neg a$ is not possible)
 - ○ encoded in the *transition relation* (must be consistent)
 - U split according to the expansion law into local condition (encoded in states) and next-step one (encoded in transitions)
 - Meaning of \mathcal{U} is the *least solution* of the expansion law \Longrightarrow reflected in the choice of acceptance sets for \mathcal{G}_{φ}

From LTL to GNBA: closure of a formula

Definition: closure of φ

The set $Closure(\varphi)$ consists of all sub-formulas ψ of φ and their negation $\neg \psi$

E.g., for
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
,

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}.$$

From LTL to GNBA: closure of a formula

Definition: closure of φ

The set $Closure(\varphi)$ consists of all sub-formulas ψ of φ and their negation $\neg \psi$

E.g., for
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
,

Closure(
$$\varphi$$
) = { $a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi$ }.

$$\hookrightarrow |\operatorname{Closure}(\varphi)| = \mathcal{O}(|\varphi|).$$

From LTL to GNBA: closure of a formula

Definition: closure of φ

The set $Closure(\varphi)$ consists of all sub-formulas ψ of φ and their negation $\neg \psi$

E.g., for
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
,

Closure(
$$\varphi$$
) = { $a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi$ }.

$$\hookrightarrow |\operatorname{Closure}(\varphi)| = \mathcal{O}(|\varphi|).$$

Sets B_i are elementary subsets of $Closure(\varphi)$

Intuition: a set B is elementary if there is a path π such that B is the set of all formulas $\psi \in \text{Closure}(\varphi)$ with $\pi \models \psi$

From LTL to GNBA: elementary sets

Definition: elementary set

A set of sub-formulas $B \subseteq \operatorname{Closure}(\varphi)$ is *elementary* if:

- 1. B is logically consistent, i.e., for all $\varphi_1 \wedge \varphi_2, \psi \in \text{Closure}(\varphi)$

 - $\bullet \psi \in B \implies \neg \psi \not\in B$
 - $\top \in \text{Closure}(\varphi) \Longrightarrow \top \in B$

From LTL to GNBA: elementary sets

Definition: elementary set

A set of sub-formulas $B \subseteq \operatorname{Closure}(\varphi)$ is *elementary* if:

- 1. B is logically consistent, i.e., for all $\varphi_1 \wedge \varphi_2, \psi \in \text{Closure}(\varphi)$

 - $\bullet \psi \in B \implies \neg \psi \not\in B$
 - $\top \in \text{Closure}(\varphi) \Longrightarrow \top \in B$
- 2. *B* is locally consistent, i.e., for all $\varphi_1 \mathcal{U} \varphi_2 \in \text{Closure}(\varphi)$

 - $\blacksquare \varphi_1 \mathcal{U} \varphi_2 \in B \land \varphi_2 \notin B \Longrightarrow \varphi_1 \in B$

From LTL to GNBA: elementary sets

Definition: elementary set

A set of sub-formulas $B \subseteq \operatorname{Closure}(\varphi)$ is *elementary* if:

- 1. B is logically consistent, i.e., for all $\varphi_1 \wedge \varphi_2, \psi \in \text{Closure}(\varphi)$

 - $\bullet \psi \in B \implies \neg \psi \not\in B$
 - $\top \in \text{Closure}(\varphi) \Longrightarrow \top \in B$
- 2. *B* is locally consistent, i.e., for all $\varphi_1 \mathcal{U} \varphi_2 \in \text{Closure}(\varphi)$
- 3. *B* is maximal, i.e., for all $\psi \in \text{Closure}(\varphi)$
 - $\Psi \notin B \implies \neg \psi \in B$

Let
$$\varphi = a \, \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

Let
$$\varphi = a \, \mathcal{U} \, (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{ a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi \}$$

■ Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?

Let
$$\varphi = a \, \mathcal{U} \, (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{ a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi \}$$

- Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. Logically and locally consistent but **not maximal** because $\neg a \land b \in \text{Closure}(\varphi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$

Let
$$\varphi = a \, \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

- Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. Logically and locally consistent but **not maximal** because $\neg a \land b \in \text{Closure}(\varphi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$
- Is $B = \{a, b, \neg a \land b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?

Let
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

- Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. Logically and locally consistent but **not maximal** because $\neg a \land b \in \text{Closure}(\varphi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$
- Is $B = \{a, b, \neg a \land b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. It is not logically consistent because $a \in B$ and $\neg a \land b \in B$

Let
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

- Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. Logically and locally consistent but **not maximal** because $\neg a \land b \in \text{Closure}(\varphi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$
- Is $B = \{a, b, \neg a \land b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. It is not logically consistent because $a \in B$ and $\neg a \land b \in B$
- Is $B = \{ \neg a, \neg b, \neg (\neg a \land b), \varphi \} \subset \text{Closure}(\varphi)$ elementary?

Let
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

- Is $B = \{a, b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. Logically and locally consistent but **not maximal** because $\neg a \land b \in \text{Closure}(\varphi)$, yet $\neg a \land b \notin B$ and $\neg (\neg a \land b) \notin B$
- Is $B = \{a, b, \neg a \land b, \varphi\} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow No. It is not logically consistent because $a \in B$ and $\neg a \land b \in B$
- Is $B = \{ \neg a, \neg b, \neg (\neg a \land b), \varphi \} \subset \text{Closure}(\varphi)$ elementary?
 - \hookrightarrow **No.** Logically consistent but **not locally consistent** because $\varphi = a \mathcal{U} (\neg a \land b) \in B$ and $\neg a \land b \notin B$ but $a \notin B$

Let
$$\varphi = a \, \mathcal{U} \, (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{ a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi \}$$

Let
$$\varphi = a \, \mathcal{U} (\neg a \wedge b)$$
:

$$\operatorname{Closure}(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

All elementary sets?

Let
$$\varphi = a \mathcal{U} (\neg a \wedge b)$$
:

$$Closure(\varphi) = \{a, \neg a, b, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi\}$$

All elementary sets?

$$B_{1} = \{a, b, \neg(\neg a \land b), \varphi\}$$

$$B_{2} = \{a, b, \neg(\neg a \land b), \neg \varphi\}$$

$$B_{3} = \{a, \neg b, \neg(\neg a \land b), \varphi\}$$

$$B_{4} = \{a, \neg b, \neg(\neg a \land b), \neg \varphi\}$$

$$B_{5} = \{\neg a, \neg b, \neg(\neg a \land b), \neg \varphi\}$$

$$B_{6} = \{\neg a, b, \neg a \land b, \varphi\}$$

For formula φ over P, let $\mathcal{G}_{\varphi} = (Q, A = 2^P, \delta, I, \mathcal{F})$ where:

■ $Q = \{B \subseteq \text{Closure}(\varphi) \mid B \text{ is elementary}\},$

For formula φ over P, let $\mathcal{G}_{\varphi} = (Q, A = 2^P, \delta, I, \mathcal{F})$ where:

- $Q = \{B \subseteq \text{Closure}(\varphi) \mid B \text{ is elementary}\},$
- $\blacksquare I = \{B \in Q \mid \varphi \in B\},\$

For formula φ over P, let $\mathcal{G}_{\varphi} = (Q, A = 2^P, \delta, I, \mathcal{F})$ where:

- $Q = \{B \subseteq \text{Closure}(\varphi) \mid B \text{ is elementary}\},$
- $\mathcal{F} = \{F_{\varphi_1 \mathcal{U} \varphi_2} \mid \varphi_1 \mathcal{U} \varphi_2 \in \text{Closure}(\varphi)\}$ with $F_{\varphi_1 \mathcal{U} \varphi_2} = \{B \in Q \mid \varphi_1 \mathcal{U} \varphi_2 \notin B \lor \varphi_2 \in B\}.$
- Intuition: for any run $B_0B_1B_2...$, if $\varphi_1 \mathcal{U} \varphi_2 \in B_0$, then φ_2 must eventually become true (\leadsto ensured by the acceptance condition)

For formula φ over P, let $\mathcal{G}_{\varphi} = (Q, A = 2^P, \delta, I, \mathcal{F})$ where:

- $Q = \{B \subseteq \text{Closure}(\varphi) \mid B \text{ is elementary}\},$
- $\mathcal{F} = \{F_{\varphi_1 \mathcal{U} \varphi_2} \mid \varphi_1 \mathcal{U} \varphi_2 \in \operatorname{Closure}(\varphi)\}$ with $F_{\varphi_1 \mathcal{U} \varphi_2} = \{B \in Q \mid \varphi_1 \mathcal{U} \varphi_2 \notin B \lor \varphi_2 \in B\}.$
- Intuition: for any run $B_0B_1B_2...$, if $\varphi_1 \mathcal{U} \varphi_2 \in B_0$, then φ_2 must eventually become true (\leadsto ensured by the acceptance condition)

Observe that $\mathcal{F} = \emptyset$ if no until in φ . \Longrightarrow All runs are accepting in this case.

The transition relation $\delta \colon Q \times 2^P \to 2^Q$ is given by:

The transition relation $\delta \colon Q \times 2^P \to 2^Q$ is given by:

- For $a \in 2^P$ and $B \in Q$, if $a \neq B \cap P$, then $\delta(B, a) = \emptyset$
- Intuition: transitions only exist for the set of propositions that are true in B, i.e., $B \cap P$ is the only readable letter at state B

The transition relation $\delta \colon Q \times 2^P \to 2^Q$ is given by:

- For $a \in 2^P$ and $B \in Q$, if $a \neq B \cap P$, then $\delta(B, a) = \emptyset$
- Intuition: transitions only exist for the set of propositions that are true in B, i.e., $B \cap P$ is the only readable letter at state B
- If $a = B \cap P$, then $\delta(B, a)$ is the set of all elementary sets of formulas B' satisfying
 - (i) for every $\bigcirc \psi \in \mathrm{Closure}(\varphi)$, $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) for every $\varphi_1 \ \mathcal{U} \ \varphi_2 \in \text{Closure}(\varphi)$,

$$\varphi_1 \ \mathcal{U} \ \varphi_2 \in B \iff (\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \ \mathcal{U} \ \varphi_2 \in B'))$$

■ Intuition: (i) and (ii) reflect the semantics of ○ and U operators, (ii) is based on the expansion law

From LTL to GNBA: e.g. $\varphi = \bigcirc a$

From LTL to GNBA: e.g. $\varphi = \bigcirc a$

- $\blacksquare Q = \{\{a, \bigcirc a\}, \{a, \neg \bigcirc a\}, \{\neg a, \bigcirc a\}, \{\neg a, \neg \bigcirc a\}\}$
- $\mathcal{F} = \emptyset$

From LTL to GNBA: $\varphi = a \mathcal{U} b$ (1/3)

- Closure(φ) = {a, $\neg a$, b, $\neg b$, $a \mathcal{U} b$, $\neg (a \mathcal{U} b)$ }
- ⇒ Blackboard construction of the GNBA

From LTL to GNBA: $\varphi = a \mathcal{U} b$ (1/3)

- Closure(φ) = {a, $\neg a$, b, $\neg b$, $a \mathcal{U} b$, $\neg (a \mathcal{U} b)$ }
- ⇒ Blackboard construction of the GNBA

From LTL to GNBA: $\varphi = a \mathcal{U} b$ (2/3)

Some explanations

```
Let B_1 = \{a, b, a \mathcal{U} \ b\}, B_2 = \{\neg a, b, a \mathcal{U} \ b\}, B_3 = \{a, \neg b, a \mathcal{U} \ b\}, B_4 = \{\neg a, \neg b, \neg(a \mathcal{U} \ b)\} and B_5 = \{a, \neg b, \neg(a \mathcal{U} \ b)\}.
```

- \blacksquare $Q = \{B_1, B_2, B_3, B_4, B_5\}, I = \{B_1, B_2, B_3\}$
- $\mathcal{F} = \{F_{aUb}\} = \{\{B_1, B_2, B_4, B_5\}\}.$ $\hookrightarrow \mathcal{G}_{\omega}$ is actually a simple NBA
- Labels omitted for readability (recall label is $B \cap P$)
- From B_1 (resp. B_2), we can go anywhere because $a \mathcal{U} b$ is already fulfilled by $b \in B_1$ (resp. B_2)
- From B_3 , we need to go where $a \mathcal{U} b$ holds: B_1 , B_2 or B_3
- From B_4 , we can go anywhere because $\neg(a \ U \ b)$ is already fulfilled by $\neg a, \neg b \in B_4$
- From B_5 , we need to go where $\neg(a \mathcal{U} b)$ holds: B_4 or B_5

From LTL to GNBA: $\varphi = a \mathcal{U} b$ (3/3)

Sample words/runs:

■ $\{a\}\{b\}^{\omega} \in \operatorname{Words}(\varphi)$ has accepting run $B_3B_3B_2^{\omega}$ in \mathcal{G}_{φ}

From LTL to GNBA: $\varphi = a \mathcal{U} b$ (3/3)

Sample words/runs:

- \blacksquare $\{a\}$ $\{a\}$ $\{b\}^{\omega} \in \operatorname{Words}(\varphi)$ has accepting run $B_3B_3B_2^{\omega}$ in \mathcal{G}_{φ}
- $\{a\}^{\omega} \notin \operatorname{Words}(\varphi)$ has only one run B_3^{ω} in \mathcal{G}_{φ} and it is not accepting since $B_3 \notin F_{aUb}$

Idea: LTL \infty GNBA \infty NBA

Idea: LTL → GNBA → NBA

Theorem: LTL to NBA

For any LTL formula φ over propositions P, there exists an NBA \mathcal{A}_{φ} with $\mathrm{Words}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$ which can be constructed in time and space $2^{\mathcal{O}(|\varphi|)}$.

Idea: LTL → GNBA → NBA

Theorem: LTL to NBA

For any LTL formula φ over propositions P, there exists an NBA \mathcal{A}_{φ} with $\operatorname{Words}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$ which can be constructed in time and space $2^{\mathcal{O}(|\varphi|)}$.

Sketch

- 1. Construct the GNBA \mathcal{G}_{arphi}
 - \blacksquare $|\operatorname{Closure}(\varphi)| = \mathcal{O}(|\varphi|)$ and $|Q| \leq 2^{|\operatorname{Closure}(\varphi)|} = 2^{\mathcal{O}(|\varphi|)}$
 - lacksquare # accepting sets of $\mathcal{G}_{arphi}=\#$ until-operators in $arphi\leq\mathcal{O}(|arphi|)$

Idea: LTL → GNBA → NBA

Theorem: LTL to NBA

For any LTL formula φ over propositions P, there exists an NBA \mathcal{A}_{φ} with $\operatorname{Words}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi})$ which can be constructed in time and space $2^{\mathcal{O}(|\varphi|)}$.

Sketch

- 1. Construct the GNBA \mathcal{G}_{φ}
 - \blacksquare $|\operatorname{Closure}(\varphi)| = \mathcal{O}(|\varphi|)$ and $|Q| \leq 2^{|\operatorname{Closure}(\varphi)|} = 2^{\mathcal{O}(|\varphi|)}$
 - \blacksquare # accepting sets of $\mathcal{G}_{\varphi} = \#$ until-operators in $\varphi \leq \mathcal{O}(|\varphi|)$
- 2. Construct the NBA \mathcal{A}_{φ}
 - lack # states of $\mathcal{A}_{arphi} = |Q| imes \#$ accepting sets of \mathcal{G}_{arphi}
 - # states of $\mathcal{A}_{\varphi} \leq 2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|) = 2^{\mathcal{O}(|\varphi|)} \cdot 2^{\log(\mathcal{O}(|\varphi|))} = 2^{\mathcal{O}(|\varphi|)}$

From LTL to... NBA: better? (1/3)

The algorithm presented here is conceptually simple but may lead to unnecessary large GNBAs (and thus NBAs)

From LTL to... NBA: better? (1/3)

The algorithm presented here is conceptually simple but may lead to unnecessary large GNBAs (and thus NBAs)

Example: the right NBA also recognizes $\bigcirc a$ but is *smaller*

From LTL to... NBA: better? (2/3)

Example: the right NBA also recognizes a U b but is much smaller

From LTL to... NBA: better? (2/3)

Example: the right NBA also recognizes $a \mathcal{U} b$ but is much smaller

Can we always do better?

From LTL to... NBA: better? (3/3)

In practice, there exist more efficient (but more complex) algorithms in the literature

From LTL to... NBA: better? (3/3)

In practice, there exist more efficient (but more complex) algorithms in the literature

Still, the exponential blowup cannot be avoided in the worst-case!

Theorem: lower bound for NBA from LTL formula

There exists a family of LTL formulas φ_n with $|\varphi_n| = \mathcal{O}(poly(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2^n states.

From LTL to... NBA: better? (3/3)

In practice, there exist more efficient (but more complex) algorithms in the literature

Still, the exponential blowup cannot be avoided in the worst-case!

Theorem: lower bound for NBA from LTL formula

There exists a family of LTL formulas φ_n with $|\varphi_n| = \mathcal{O}(poly(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2^n states.

⇒ Proof in the next slides

- 1 LTL model checking
- 2 From LTL to NBA
- 3 From LTL to NBA: inherently exponential
- 4 From LTL to NBA: no reverse transformation
- 5 NBA-based LTL model checking

Let P be arbitrary and non-empty, i.e., $2^{|P|} \ge 2$. Let

$$\mathcal{L}_n = \left\{ a_1 \dots a_n a_1 \dots a_n \tau \; \middle| \; a_i \subseteq P \; \land \; \tau \in (2^P)^\omega \right\} \quad \text{for } n \geq 0.$$

Let P be arbitrary and non-empty, i.e., $2^{|P|} \ge 2$. Let

$$\mathcal{L}_n = \left\{ a_1 \dots a_n a_1 \dots a_n \tau \; \middle| \; a_i \subseteq P \; \land \; \tau \in (2^P)^\omega \right\} \quad \text{for } n \geq 0.$$

This language is expressible in LTL, i.e., $\mathcal{L}_n = \operatorname{Words}(\varphi_n)$ for

$$\varphi_n = \bigwedge_{a \in P} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a).$$

Polynomial length: $|\varphi_n| = \mathcal{O}(|P| \cdot n^2)$.

Let P be arbitrary and non-empty, i.e., $2^{|P|} \ge 2$. Let

$$\mathcal{L}_n = \left\{ a_1 \dots a_n a_1 \dots a_n \tau \; \middle| \; a_i \subseteq P \; \land \; \tau \in (2^P)^\omega \right\} \quad \text{for } n \geq 0.$$

This language is expressible in LTL, i.e., $\mathcal{L}_n = \operatorname{Words}(\varphi_n)$ for

$$\varphi_n = \bigwedge_{a \in P} \bigwedge_{0 \le i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a).$$

Polynomial length: $|\varphi_n| = \mathcal{O}(|P| \cdot n^2)$.

Claim: any NBA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states.

Assume \mathcal{A} is such an automaton. Words $a_1 \dots a_n a_1 \dots a_n \varnothing^{\omega}$ belong to \mathcal{L}_n , hence are accepted by \mathcal{A} .

■ For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.

- For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.
- From $q(a_1 ... a_n)$, it is possible to visit an accepting state infinitely often by reading the suffix $a_1 ... a_n \varnothing^{\omega}$.

- For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.
- From $q(a_1 ... a_n)$, it is possible to visit an accepting state infinitely often by reading the suffix $a_1 ... a_n \varnothing^{\omega}$.
- If $a_1 \ldots a_n \neq a'_1 \ldots a'_n$, then $a_1 \ldots a_n a'_1 \ldots a'_n \varnothing^\omega \not\in \mathcal{L}_n = \mathcal{L}(\mathcal{A})$.

- For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.
- From $q(a_1 ... a_n)$, it is possible to visit an accepting state infinitely often by reading the suffix $a_1 ... a_n \varnothing^{\omega}$.
- If $a_1 \ldots a_n \neq a'_1 \ldots a'_n$, then $a_1 \ldots a_n a'_1 \ldots a'_n \varnothing^\omega \not\in \mathcal{L}_n = \mathcal{L}(\mathcal{A})$.
- Therefore, states $q(a_1 ... a_n)$ are all pairwise different.

- For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.
- From $q(a_1 ... a_n)$, it is possible to visit an accepting state infinitely often by reading the suffix $a_1 ... a_n \varnothing^{\omega}$.
- If $a_1 \ldots a_n \neq a'_1 \ldots a'_n$, then $a_1 \ldots a_n a'_1 \ldots a'_n \varnothing^\omega \notin \mathcal{L}_n = \mathcal{L}(\mathcal{A})$.
- Therefore, states $q(a_1 ... a_n)$ are all pairwise different.
- Since each a_i can take $2^{|P|}$ different values, the number of different sequences $a_1 \ldots a_n$ of length n is $(2^{|P|})^n \ge 2^n$ (by non-emptiness of P).

- For every word $a_1 \ldots a_n$ of length n, A has a state $q(a_1 \ldots a_n)$ which can be reached after consuming $a_1 \ldots a_n$.
- From $q(a_1 ... a_n)$, it is possible to visit an accepting state infinitely often by reading the suffix $a_1 ... a_n \varnothing^{\omega}$.
- If $a_1 \ldots a_n \neq a'_1 \ldots a'_n$, then $a_1 \ldots a_n a'_1 \ldots a'_n \varnothing^\omega \notin \mathcal{L}_n = \mathcal{L}(\mathcal{A})$.
- Therefore, states $q(a_1 ... a_n)$ are all pairwise different.
- Since each a_i can take $2^{|P|}$ different values, the number of different sequences $a_1 \ldots a_n$ of length n is $(2^{|P|})^n \ge 2^n$ (by non-emptiness of P).
- Hence, the NBA has at least 2^n states.

- 1 LTL model checking
- 2 From LTL to NBA
- 3 From LTL to NBA: inherently exponential
- 4 From LTL to NBA: no reverse transformation
- 5 NBA-based LTL model checking

What have we learned?

What have we learned?

Corollary

Every LTL formula expresses an ω -regular property, i.e., for all LTL formula φ , $\operatorname{Words}(\varphi)$ is an ω -regular language.

Why? Because LTL can be transformed to NBA and NBAs coincide with ω -regular languages.

What have we learned?

Corollary

Every LTL formula expresses an ω -regular property, i.e., for all LTL formula φ , $\operatorname{Words}(\varphi)$ is an ω -regular language.

Why? Because LTL can be transformed to NBA and NBAs coincide with ω -regular languages.

The converse is false!

Recall
$$\mathcal{L}=\left\{a_0a_1a_2\cdots\in (2^{\{a\}})^\omega\;\middle|\; \forall\,i\geq 0,\;a\in a_{2i}
ight\}.$$

What have we learned?

Corollary

Every LTL formula expresses an ω -regular property, i.e., for all LTL formula φ , $\operatorname{Words}(\varphi)$ is an ω -regular language.

Why? Because LTL can be transformed to NBA and NBAs coincide with ω -regular languages.

The converse is false!

Recall $\mathcal{L} = \{a_0 a_1 a_2 \cdots \in (2^{\{a\}})^{\omega} \mid \forall i \geq 0, \ a \in a_{2i}\}.$ \forall There are ω -regular properties not expressible in LTL.

- 1 LTL model checking
- 2 From LTL to NBA
- 3 From LTL to NBA: inherently exponential
- 4 From LTL to NBA: no reverse transformation
- 5 NBA-based LTL model checking

Model checking algorithm for LTL

```
\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)
\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing
\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing
\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing
\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F
```


Model checking algorithm for LTL

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$$

It remains to consider the last line

Two remaining questions:

- 1. How to compute the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$?
- 2. How to check persistence, i.e., $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$?

Product of TS and NBA

Definition: product of TS and NBA

Let $\mathcal{T}=(S,A,\longrightarrow,I,P,L)$ be a TS without terminal states and $\mathcal{A}=(Q,A=2^P,\delta,I_{\mathcal{A}},F)$ a non-blocking NBA. Then, $\mathcal{T}\otimes\mathcal{A}$ is the following TS:

$$\mathcal{T} \otimes \mathcal{A} = (S', A, \longrightarrow', I', P', L')$$
 where

- lacksquare S'=S imes Q, P'=Q and $L'(\langle s,q\rangle)=\{q\}$,
- \blacksquare \longrightarrow' is the smallest relation such that if $s \stackrel{a}{\longrightarrow} t$ and $q \stackrel{L(t)}{\longrightarrow} p$, then $\langle s,q \rangle \stackrel{a}{\longrightarrow}' \langle t,p \rangle$,

Product of TS and NBA: example

Simple traffic light with two modes: red and green. LTL formula to check $\varphi = \Box \Diamond$ green.

 $TS \mathcal{T}$ for the traffic light

Product of TS and NBA: example

Simple traffic light with two modes: red and green. LTL formula to check $\varphi = \Box \Diamond$ green.

 $TS \mathcal{T}$ for the traffic light

 \implies Blackboard construction of $\mathcal{T} \otimes \mathcal{A}_{\neg \omega}$

Product of TS and NBA: example

Simple traffic light with two modes: red and green. LTL formula to check $\varphi = \Box \Diamond$ green.

 $TS \mathcal{T}$ for the traffic light

NBA
$$\mathcal{A}_{\neg \varphi}$$
 for $\neg \varphi = \Diamond \Box \neg green$

 \Longrightarrow Blackboard construction of $\mathcal{T}\otimes\mathcal{A}_{\neg \varphi}$

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \varphi$.

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \varphi$.

Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \stackrel{?}{\models} \Diamond \Box \neg F$ with $F = \{q_2\}$.

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \varphi$.

Here, $\mathcal{T}\otimes\mathcal{A}_{\neg\varphi}\models\Diamond\Box\neg F$ with $F=\{q_2\}$. Yes! State $\langle s_1,q_2\rangle$ can be seen at most once, and state $\langle s_2,q_2\rangle$ is not reachable.

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \varphi$.

Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ with $F = \{q_2\}$. Yes! State $\langle s_1, q_2 \rangle$ can be seen at most once, and state $\langle s_2, q_2 \rangle$ is not reachable.

 \Longrightarrow There is no common trace between $\mathcal T$ and $\mathcal A_{\neg \varphi}$.

It remains to check $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ to see that $\mathcal{T} \models \varphi$.

Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$ with $F = \{q_2\}$. Yes! State $\langle s_1, q_2 \rangle$ can be seen at most once, and state $\langle s_2, q_2 \rangle$ is not reachable.

 \Longrightarrow There is no common trace between \mathcal{T} and $\mathcal{A}_{\neg \omega}$.

$$\Longrightarrow \mathcal{T} \models \varphi$$
.

Slightly revised traffic light: can switch off to save energy. Same formula φ (hence same NBA $\mathcal{A}_{\neg \varphi}$).

Slightly revised traffic light: can switch off to save energy. Same formula φ (hence same NBA $\mathcal{A}_{\neg \varphi}$).

Here, $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \not\models \Diamond \square \neg F$ with $F = \{q_2\}$. See for example path $\langle s_1, q_1 \rangle (\langle s_3, q_2 \rangle \langle s_1, q_2 \rangle)^{\omega}$ that visits q_2 infinitely often.

As for checking language non-emptiness of NBA, we reduce the problem to a cycle detection problem.

Persistence checking and cycle detection

Let \mathcal{T} be a TS without terminal states over P and φ a propositional formula over P, then

$$\mathcal{T} \not\models \Diamond \Box \varphi$$

 $\exists s \in \text{Reach}(\mathcal{T}), s \not\models \varphi \text{ and } s \text{ is on a cycle in the graph of } \mathcal{T}.$

As for checking language non-emptiness of NBA, we reduce the problem to a cycle detection problem.

Persistence checking and cycle detection

Let \mathcal{T} be a TS without terminal states over P and φ a propositional formula over P, then

$$\mathcal{T} \not\models \Diamond \Box \varphi \\ \updownarrow \\ \exists \, s \in \operatorname{Reach}(\mathcal{T}), \, s \not\models \varphi \text{ and } s \text{ is on a cycle in the graph of } \mathcal{T}.$$

In particular, it holds for $\varphi = \neg F$ as needed for LTL model checking (with F the acceptance set of the NBA $\mathcal{A}_{\neg \varphi}$).

- 1. Compute the reachable SCCs and check if one contains a state satisfying $\neg \varphi$.
 - \hookrightarrow Linear time but requires to construct entirely the product TS $\mathcal{T}\otimes\mathcal{A}_{\neg\varphi}$ which may be very large (exponential)

- 1. Compute the reachable SCCs and check if one contains a state satisfying $\neg \varphi$.
 - \hookrightarrow Linear time but requires to construct entirely the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$ which may be very large (exponential)
- 2. Another solution: on-the-fly algorithms
 - Construct \mathcal{T} and $\mathcal{A}_{\neg \varphi}$ in parallel and simultaneously construct the reachable fragment of $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$ via nested depth-first search.
 - \hookrightarrow Construction of the product "on demand".
 - → More efficient in practice (used in software solutions such as Spin).

- 1. Compute the reachable SCCs and check if one contains a state satisfying $\neg \varphi$.
 - \hookrightarrow Linear time but requires to construct entirely the product TS $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$ which may be very large (exponential)
- 2. Another solution: on-the-fly algorithms
 - Construct \mathcal{T} and $\mathcal{A}_{\neg \varphi}$ in parallel and simultaneously construct the reachable fragment of $\mathcal{T} \otimes \mathcal{A}_{\neg \varphi}$ via nested depth-first search.
 - \hookrightarrow Construction of the product "on demand".
 - → More efficient in practice (used in software solutions such as Spin).

Still, the complexity of LTL model checking remains high!

Wrap-up of the automata-based approach

$$\mathcal{T} \models \varphi \qquad \qquad \text{iff} \quad \operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap ((2^P)^\omega \setminus \operatorname{Words}(\varphi)) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) = \varnothing$$

$$\text{iff} \quad \operatorname{Traces}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \varnothing$$

$$\text{iff} \quad \mathcal{T} \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F$$

Complexity of this approach

The time and space complexity is $\mathcal{O}(|\mathcal{T}|) \cdot 2^{\mathcal{O}(|\varphi|)}$.

Complexity of LTL model checking

Complexity of the model checking problem for LTL

The LTL model checking problem is PSPACE-complete.

⇒ See the book for a proof by reduction from the membership problem for polynomial-space deterministic Turing machines.

Summary and conclusions

Automata, languages, expressions, and logic

- We have introduced an automata-based framework that allows us to check whether a system satisfies an LTL specification.
- Our main tool is a translation from LTL to NBAs.

Model checking

A TS can be model checked against an LTL formula in PSPACE using an on-the-fly algorithm.

- The sizes of the state-sets are huge in the automaton, thus huge in the product!
- How does one implement some of these algorithms?

