Machine Learning Based Real-Time Geosteering

Ngoc Tran

May 06th 2018

Data Analytics Final Project

Introduction & Problems

- 14000 horizontal well drilled in 2018 targeted shale plays
- However, a few shale plays have multiple target zone.
- Real-time geosteering applications: remain in-zone or steer towards a target
- Knowledge of petrophysical/ rock mechanical properties surrounding drilling bit
- LWD -> information with considerable addition costs

Can we use Drilling measurements to interpret rock properties?

Machine Learning
Techniques to
predict lithology by
using MWD data

Data Acquisition

- Dataset released by Equinor and taken from Volve field in Norwegian Continental Shelf
- 12 wells (open hole and MWD logs) and 3 cored wells
 - Open Hole logs: neutron, density, GR, sonic and PE logs
 - MWD: surface RPM, WOB, Torque, ROP, Downhole Pressure and Temperature, Mud Pump Flow Rate, ECD, etc.

Workflow

Log Data – Sonic (DT), Gamma Ray (GR), Density (RHOB), MWD

Basic statistic analysis: Boxplots and Linear Regression

Identify Lithology Clusters on DT, GR and RHOB

- 15 wells
- K-means and Self-Organizing Map (SOM)

Petrophysical Significance of Lithology clusters

Identify cluster properties using core data (3 wells)

Predict Lithology clusters using MWD data

- Outlier removal (Z-score), Scaling and Centering on 12 wells
- KNN, Support Vector Machine and Random Forest

Basic Statistics Analysis - Lithology

- Box plots for log variables in 15 wells:
 - GR
 - Compressional P-wave slowness (DT)
 - Bulk Density (RHOB)
- Similar distribution

Basic Statistics Analysis – MWD data

- ROP and WOB shows similar distribution
- Torque, Pressure, ECD reveals different distribution -> Different depths of zone of interest -> Depth-dependent variables

Linear Regression: DT vs. NPHI

Residual plot

OLS Regression Results

Dep. Variable:		NPHI		R-squared:		0.851
Model:		0LS	Adj. R	-squared:		0.851
Method:		Least Squares	F-stat	F-statistic:		3.192e+05
Date:	Su	n, 05 May 2019	Prob (Prob (F-statistic):		0.00
Time:		18:49:57	Log-Li	kelihood:		1.0526e+05
No. Observations:		55945	AIC:			-2.105e+05
Df Residuals:		55943	BIC:			-2.105e+05
Df Model:		1				
Covariance Type:		nonrobust				
=============					=======	========
cc	oef	std err	t	P> t	[0.025	0.975]

DT .	0.0060	1.07e-05	564	1.976	0.000	0.006	0.006
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	1.	.339 .000 .846 .932		,		0.262 363668.706 0.00 424.
=========	=======		=====		========	=======	

0.000

-0.301

-0.298

PR(>F)

NaN

ANOVA results

Intercept

-0.2998

	df		mean_sq	
T				319197.624797
esidual	55943.0	76.045287	0.001359	NaN

Linear Regression on Torque vs. Temperature

Residual plot

OLS Regression Results

Dep. Variable:	Torque	R-squared:	0.207
Model:	OLS	Adj. R-squared:	0.207
Method:	Least Squares	F-statistic:	1.355e+04
Date:	Sun, 05 May 2019	Prob (F-statistic):	0.00
Time:	18:57:50	Log-Likelihood:	-1.3964e+05
No. Observations:	51860	AIC:	2.793e+05
Df Residuals:	51858	BIC:	2.793e+05
Df Model:	1		
Covariance Type:	nonrohust		

coef	std err	t	P> t	[0.025	0.975]
5.1219	0.118	43.408	0.000	4.891	5.353
0.1588	0.001	116.425	0.000	0.156	0.161

Kurtosis:	11.937	Cond. No.	651.
Skew:	0.808	Prob(JB):	0.00
Prob(Omnibus):	0.000	Jarque-Bera (JB):	178226.590
Omnibus:	12838.246	Durbin-watson:	0.085

ANOVA results

	df	sum_sq	mean_sq	F
DownT	1.0	173133.536519	173133.536519	13554.864581
Residual	51858.0	662371.717758	12.772797	NaN

PR(>F)

0.0 NaN

K-Means Clustering on Log Data

Self Organizing Map (SOM) for 3 clusters

KNeighbors Classification

- This technique predicts facies cluster based on MWD
 - Features: MWD Data
 - Target: Facies
 - Number of Samples: 51877 & Number of features: 6
- Using train_test_split package given by Python
 - Train set: 80% Dataset & Test set: 20 % Dataset
- Hyperparameter Optimization by using GridSearch and Cross Validation KFold

	param_n_neighbors	param_p	mean_test_score
0	3	1	0.939182
1	3	1.5	0.935977
5	5	1	0.935327
2	3	2	0.933688
6	5	1.5	0.931496

memorization performance: 0.9738319558564854 generalization performance: 0.9457401696222051

Support Vector Machine (SVM) classification

- This technique predicts facies cluster based on MWD
 - Features: MWD Data
 - Target: Facies
- Using train_test_split package given by Python
 - Train set: 80% Dataset & Test set: 20 % Dataset
 - Dataset removed outlier (Z-score) and scaled
- SVM Model Parameter: C= 10, kernel= Radial Basis Function (rbf)

	,				, ,	
 Confusion Matrix 	[[4675 [6 [134	656	307] 100] 3309]]			
			precision	recall	f1-score	support
		0	0.97	0.94	0.95	4985
		1	0.91	0.86	0.88	762
		2	0.89	0.94	0.92	3508
• Scores	avg / t	otal	0.94	0.93	0.93	9255

generalization performance: 0.93354943273906 memorization performance: 0.9317592392478928

Support Vector Machine (SVM) classification

Random Forest

- Using train_test_split package given by Python
 - Train set: 80% Dataset & Test set: 20 % Dataset
 - Dataset outlier removed (Z-score) and scaled
- This method also allows to evaluate the variable importance
- Initial tuning parameter: n_estimators= 200, max_depth = 5, max_features = 4
- As for initial tuning parameter
 - Memorization performance: 0.882
 - Generalization performance: 0.884

support	f1-score	recall	precision	
4985	0.93	0.91	0.94	0
762	0.69	0.54	0.93	1
3508	0.86	0.92	0.81	2
9255	0.88	0.88	0.89	avg / total

Random Forest Hyperparameter Optimization

and Validation on Log

 Hyperparameter optimization with GridSearch and KFold cross validation

	param_max_depth	param_min_samples_split	mean_test_score	std_test_score
16	8	10	0.929760	0.000478
15	8	5	0.928707	0.000932
17	8	15	0.928652	0.001016
12	7	5	0.917711	0.000801
13	7	10	0.917603	0.001510

memorization performance: 0.9375945537065052 generalization performance: 0.9349540788762831

support	f1-score	recall	precision	
4985	0.95	0.94	0.98	0
762	0.89	0.86	0.92	1
3508	0.92	0.95	0.89	2
0055		0.03		
9255	0.94	0.93	0.94	avg / total

Conclusions

- The unsupervised and supervised techniques shows the great promise
- Unsupervised methods allow the predictions of 3 facies
- Supervised methods
 - KNN gives 94% accuracy in cluster prediction on test dataset
 - SVM gives 94% accuracy in cluster prediction on test dataset
 - Random Forest gives 93% accuracy in cluster prediction on test dataset
- Application to drilling automation and advisory systems
 - Prevent out-of-zone drilling
 - Minimizes rig-time and equipment
 - Cost saving

References

• The dataset for the current study has been taken from the Volve field on the Norwegian Continental Shelf (NCS) released by Equinor ASA. Weblink: https://data.equinor.com/authenticate. [70,000 samples. 21 features]

Workflow

Log Data – Sonic (DTCO), Gamma Ray (GR), Young Modulus (YME), Poisson ratio (PR), MWD

- Exploratory Data Analysis
- Missingness
- Feature Engineering

Identify Brittleness/Frackability Clusters on DT, GR and RHOB

K-means and SOM

Petrophysical Significance of Lithology clusters

Identify cluster properties using core data (3 wells)

Predict Lithology clusters using MWD data

- Outlier removal (), Scaling and Centering on 12 wells
- KNN, Support Vector Z-score Machine and Random Forest