ApRES Field Tests

Execution Questions:

- What is our measurement of success here?
 - What are we comparing? Histograms?
- How will we standardize our data?
 - And format (file formats, file names)?

Things to test:

- Comprehensive description of different possibilities for apres measurements how do these set ups affect measurements, if at all?
 - Schematics
 - Decision making matrix
 - What worked well/what could be improved?
 - 100 bursts at 7m separation at ideal attn/gain with and without skidoo
 - 2 measurements
 - 100 bursts at 7m separation at ideal attn/gain with and without sleds
 - 2 measurements
- Interference with any other measurements? (ie. GPS, other GPR?)
- Attenuation settings
 - What settings work in different glaciological settings? E.g. ablation zone vs. accumulation, high elevation, dry snow/firn vs coastal, wet snow/firn environment
 - 100 bursts at 7m separation (standardization)
 - Attenuation: 0, 10, 20, 30 dB
 - Gain: -14, -4, 6
 - 12 measurements, each 100 bursts → 1200 s (20 minutes run time)
- Other quantitative or qualitative information from sites
 - Basic site characteristics
 - lat/lon/elev
 - Weather
 - Avg annual surface temp
 - Surface temp at time of deployment
 - Qualitative wx report during deployment
 - Precipitation, prolonged warm period, etc.
 - IDs for nearby met stations
 - Links to databases or files if available
 - Ice characteristics
 - Avg annual ice temp (also: temperate, polar, polythermal?)
 - Ice temp at time of deployment
 - Avg annual accum rate
 - Avg ice flow
 - Any info about ice flow at time of deployment
 - Ice depth
 - Characteristics of basal boundary (ice shelf vs terrestrial, subglacial h20?)

- Englacial characteristics (water in the system? Crevasses?)
- Accumulation or ablation zone?
- Changing antenna separation ideal setting for that location
 - 2m, 4m, 7m, 10m
 - 4 measurements, each 100 bursts? 400 s (~7 minutes run time)
- Cross polarized measurements ideal setting for that location
 - Hh, vv, hv, vh
 - 4 measurements, each 100 bursts? 400 s (~7 minutes run time)
- Changing number of subbursts 2000 chirps long?
 - 1 measurement at 2000 chirps → 2000 s (~34 minutes run time)
- ApRES while moving?
 - For folks with sled
 - 1 measurement, 1 km long
- How sensitive is ApRES to small displacements between survey and resurvey locations?
 - Same separation, attenuation settings
 - Along flow direction would be ideal try to account for ice parcel movement
 - Five points?

Questions of how to test:

- Phase-wrapping issues in locations where accumulation is really high
- Limitations of shallower environments
- Cores & shallow radar
- Best methods to locate survey/resurvey sites in high accumulation areas (Hunter/Eclipse/etc)

Questions for Keith:

- Feedback from other groups on what tests would be useful
- Involvement of other groups
- Why -14, -4, 6?

To do:

- Could this be a methodology paper?
- Google form for data collection
- Google form for what tests folks want to see

Study Sites:

Mount Hunter, AK (2022)
Juneau Icefield, AK (2022)
Summit Station, Greenland (2022)
Thwaites Glacier, Antarctica (2022)
Ilulissat, Greenland (2022)
Eclipse Icefield, Canada (2023)
George VI Ice Shelf, Antarctica (2023)