

Systematic evaluation of computational tools to identify potential drug-resistant mutations in the absence of experimental complexes

Qisheng Pan¹, Stephanie Portelli¹, Thanh Binh Nguyen¹, David B. Ascher¹

¹The Australian Centre for Ecogenomics, School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia

Can we use Al programs to model biological molecules to study mutations and their potential effect on drug resistance?

• Drug resistance caused by mutations, especially in many rapidly-evolved systems such as viruses, bacteria, and human cancer cells, raises significant global health concerns.

Fig 1. Effect of mutations on drug binding

- •While many researchers incorporate **Artificial Intelligence** (AI) programs like **AlphaFold2** to study mutations and drug resistance, there is no systematic assessment on the methods to identify potential drug resistant mutations without using experimental structures.
- · Here, we presented this work to fill the gap.

Fig 2. Methodology: research analysis workflow

Yes we can, but we need to pay attention to ...

Fig 3. Predictive performance of methods to identify potential drug resistant mutations when taking Al-generated molecules as inputs.

- In this work, we observed that there is ~15% performance deterioration for the current methods when using AlphaFold2-based molecules as inputs to identify potential drug-resistant mutations.
- This consistent performance deterioration could also be observed in different biochemical properties of receptors, such as interface mutations.

Fig 4. Area Under Precision-Recall Curve (AUPRC)

Potential application

• This work could provide **fundamental guidelines** for better interpretation on the predictions of current methods when using AI-generated protein-ligand complexes as inputs to characterise potential drug-resistant mutations, which may provide new insights to improve drug efficacy.

Acknowledgement

We thanks the support of SAAFE 2024 AMR Solutions Summit and Research Training Scholarships from The University of Queensland.

Digitial poster

Personal website

qisheng-pan.github.io