

Методы распределенной обработки больших объемов данных в Hadoop

Лекция 14: Hadoop в Поиск@Mail.Ru

Немного истории...

- Компоненты поиска
 - Поисковый робот (Web Spider)
 - Индексаторы
 - Поисковый кластер
 - Ранжирование
 - Вертикальный поиск
 - Картинки
 - Видео
 - Новости
 - Статистика

Мотивация

Общее хранилище данных

Единый вычислительный кластер

Hadoop

- Джентльменский набор
 - HDFS
 - MapReduce
 - HBase
 - Oozie
 - Pig
- Статистика
 - Ganglia
 - Hdpstat

Почему Hadoop?

- Production-ready
- Open-source
- Активное сообщество
- Коммерческая поддержка
- Но были и сомнения...

JAVA!

Почему HBase?

- Распределенный, многомерный, отсортированный тар
 - Быстрая произвольная запись (put)
 - Хорошая скорость последовательного чтения (scan)
- Хранение данных по колонкам
- Есть из коробки
 - Шардинг
 - Репликация
 - Отказоустойчивость
- Работает поверх HDFS
 - Локальность данных
- Поддержка MapReduce

Поисковый робот Old school

Поисковый робот

- Плюсы
 - Простота архитектуры и стабильность работы!
- Недостатки
 - Процесс обкачки и обработки синхронный
 - Снижение общей производительности
 - Нет общей базы у спайдеров
 - Невыполнимость ряда задач
 - Сложность подключения данных от других компонент
 - Сложность получения данных от спайдера для других компонент

Поисковый робот New generation H

Что мы храним в HBase

- Копия рунета + лучшая часть иностранного интернета
 - Скаченный контент
 - Метаинформация по сайтам и страницам
 - Ссылки
 - Статусы
- Флаги, ранки
- Логи
- Поисковые запросы

Работа с Hadoop

Трудности перевода

- Разработка: C++ vs Java
 - Много старого С++ кода
 - Java Native Interface
 - Java разработчики
- Тестирование MapReduce задач
 - Minicluster (локально)
 - MRUnit
 - Тестовый кластер
 - Тестовые данные
 - Отладка и профилирование в распределенной среде
- Shared данные
 - Protocol Buffers

Трудности перевода 2

- Разделение ресурсов
 - Кривая задача не должна «убивать» кластер
 - Контроль свободных ресурсов
- Обновление и новая конфигурация
 - Рестарт кластера
- Подводные камни в эксплуатации

Эксплуатация: Ganglia

Overview of hadoop-2 @ 2014-12-11 15:23

Эксплуатация: Ganglia

Эксплуатация: Ganglia

Полезные уроки Hadoop

- Скорость задачи равна скорости самого медленного маппера/редьюсера
- Много файлов зло!
- Много мелких файлов двойное зло!
 - CombineInputFormat
- Mecтo в hdfs
 - Минимум 10-15% должно быть свободно
- Счетчики и логирование для профилирования и отладки задач
- Пулы для групп задач
 - Распределение ресурсов, FairScheduler
- Квоты на место в HDFS

Полезные уроки HBase

- Распределение данных имеет большое значение
 - Равномерное распределение ключей по таблице
- Используйте **bulkload** при массовой загрузки данных
- Много get'ов зло!
 - Читайте данные последовательно
 - Используйте reduce join
- Минимальная длина имени
 - CF, keys, qualifiers

Немного статистики

- Три Hadoop-кластера
 - Большой, быстрый и тестовый
- Размер всех кластеров
 - ~500 серверов
 - ~10000 CPUs
- Объем хранилища ~11 Пб
- Размер НВаѕе ~1.5 Пб
- 45 млрд урлов
- 20 млрд скачанных урлов

Вопросы к экзамену

Вопросы к экзамену

- 1. Распределенные системы, проблемы и способы решения, подход MapReduce
- 2. Архитектура MapReduce, сплит данных, таски map и reduce, плюсы и минусы, combiner, shuffle и sort, failover, streaming, примеры задач
- 3. Обработка графов на MapReduce, подход к реализации, плюсы и минусы
- 4. Архитектура HDFS, плюсы и минусы, блоки, операции read/write, репликация, failover
- 5. Архитектура HBase, плюсы и минусы, таблицы и регионы, compactions, failover
- 6. Архитектура Pig и Hive, основные операции и API, сравнение, плюсы и минусы
- 7. Дизайн и архитектура ZooKeeper, примитивы, znode, failover, примеры использования

Вопросы к экзамену

- 8. NoSQL, шардинг, CAP-теорема, eventual consistency, schemaless DB, consistent hashing
- 9. Архитектура YARN, управление ресурсами, контейнеры, реализация MapReduce
- 10. Архитектура Spark, RDD, Dependencies, Fault Tolerance, реализация WordCount
- 11. Mahout, алгоритмы классификации, кластеризации и рекомендаций
- 12. Обработка больших графов и вычислительная модель Pregel, пример реализации Apache Giraph

Вопросы к экзамену (Реализация)

- 1. Вычисления среднего значения на MapReduce
- 2. CrossCorrelation на MapReduce
- 3. Реляционных паттернов на на MapReduce
- 4. WordCount на MapReduce
- 5. TF-IDF на MapReduce
- 6. BFS на MapReduce
- 7. PageRank на MapReduce
- 8. WordCount на Pig
- 9. WordCount на Hive
- 10. Simple lock на ZooKeeper
- 11. Leader election на ZooKeeper

Вопросы?

