"sup" and "inf"

Definition 8

- 1. A set A of real numbers is bounded above if there exists a real number M such that $x \leq M$ for all $x \in A$. We call M an upper bound for A.
- 2. A set A of real numbers is bounded below if there exists a real number m such that $x \geq m$ for all $x \in A$. We call m a lower bound for A.
- 3. A set $A \subset \mathbb{R}$ is bounded if A is bounded above as well as bounded below.
- 4. If $A \subset \mathbb{R}$ is not bounded, then we say that A is *unbounded*.

Definition 9

If a set $A \subset \mathbb{R}$ has a smallest upper bound S, then we call S the supremum or sup of A and write $S = \sup A$. This means:

- 1. S is an upper bound for A.
- 2. If T is any upper bound for A, then $S \leq T$.

Definition 11

If a set $A \subset \mathbb{R}$ has a greatest lower bound I, then we call I the *infimum* or *inf* of A and write $I = \inf A$. This means:

- 1. I is a lower bound for A.
- 2. If J is any lower bound for A, then $I \geq J$.

Definition 9

If a set $A \subset \mathbb{R}$ has a smallest upper bound S, then we call S the supremum or sup of A and write $S = \sup A$. This means:

- 1. S is an upper bound for A.
- 2. If T is any upper bound for A, then $S \leq T$.

Theorem 10

Let $A \subset \mathbb{R}$. Then $\sup A = S$ if and only if the following two conditions hold:

- 1. S is an upper bound for A.
- 2. For each $\epsilon > 0$ there exists an $x \in A$ such that $x > S \epsilon$.

Theorem 12

Let $A \subset \mathbb{R}$. Then inf A = I if and only if the following two conditions hold:

- 1. I is a lower bound for A.
- 2. For each $\epsilon > 0$ there exists an $x \in A$ such that $x < I + \epsilon$.

The completeness property of \mathbb{R}

Each nonempty set of real numbers which is bounded above has a smallest upper bound.

Corollary

Each nonempty set of real numbers which is bounded below has a greatest lower bound.

Theorem 13

Suppose that f is increasing on $[a, \infty)$. Then $\lim_{x \to \infty} f(x)$ exists if and only if f is bounded above on $[a, \infty)$, in which case

$$\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}.$$

Theorem 10

Let $A \subset \mathbb{R}$. Then $\sup A = S$ if and only if the following two conditions hold:

- 1. S is an upper bound for A.
- 2. For each $\epsilon > 0$ there exists an $x \in A$ such that $x > S \epsilon$.

The comparison test for improper integrals of type I

Suppose that $a \in \mathbb{R}$ and f and g are continuous functions on $[a, \infty)$ such that $0 \le g(x) \le f(x)$ for all $x \ge a$.

- 1. If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- 2. If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

Theorem 13

Suppose that f is increasing on $[a, \infty)$. Then $\lim_{x\to\infty} f(x)$ exists if and only if f is bounded above on $[a, \infty)$, in which case

$$\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}.$$

The comparison test for improper integrals of type II

Suppose that a < b, f and g are continuous but unbounded on (a,b] and

- $0 \le g(x) \le f(x)$ for all $x \in (a, b]$.
 - 1. If $\int_a^b f(x) dx$ is convergent, then $\int_a^b g(x) dx$ is convergent.
 - 2. If $\int_a^b g(x) dx$ is divergent, then $\int_a^b f(x) dx$ is divergent.

The comparison test for improper integrals of type I

Suppose that $a \in \mathbb{R}$ and f and g are continuous functions on $[a, \infty)$ such that $0 \le g(x) \le f(x)$ for all $x \ge a$.

- 1. If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- 2. If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

Homework

Ex. 7.8 nr. 49, 53

The quotient test for improper integrals of type I

Suppose that $a \in \mathbb{R}$ and f and g are continuous functions on $[a, \infty)$ such that $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \geq a$.

- 1. If $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$ and $\int_a^\infty g(x)\,dx$ is convergent, then $\int_a^\infty f(x)\,dx$ is convergent.
- 2. If $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A>0$, then $\int_a^\infty g(x)\,dx$ is convergent if and only if $\int_a^\infty f(x)\,dx$ is convergent.
- 3. If $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$ and $\int_a^\infty g(x)\,dx$ is divergent, then $\int_a^\infty f(x)\,dx$ is divergent.

The quotient test for improper integrals of type II

Suppose that a < b, f and g are continuous but unbounded on (a,b] and $f(x) \ge 0$ and $g(x) \ge 0$ for all $x \in (a,b]$.

- 1. If $\lim_{x\to a+} \frac{f(x)}{g(x)} = 0$ and $\int_a^b g(x)\,dx$ is convergent, then $\int_a^b f(x)\,dx$ is convergent.
- 2. If $\lim_{x\to a+} \frac{f(x)}{g(x)} = A > 0$, then $\int_a^b g(x) \, dx$ is convergent if and only if $\int_a^b f(x) \, dx$ is convergent.
- 3. If $\lim_{x\to a+} \frac{f(x)}{g(x)} = \infty$ and $\int_a^b g(x)\,dx$ is divergent, then $\int_a^b f(x)\,dx$ is divergent.

Homework

Exercises 2 and 3 (Sunlearn)

Definition 14

Suppose that f is continuous on $[a, \infty)$. Then $\int_a^\infty f(x) \, dx$ is absolutely convergent if $\int_a^\infty |f(x)| \, dx$ is convergent.

 $\int_a^\infty f(x) \, dx$ is conditionally convergent if $\int_a^\infty f(x) \, dx$ is convergent and $\int_a^\infty |f(x)| \, dx$ is divergent.

Theorem 15

If $\int_a^\infty f(x) dx$ is absolutely convergent, then $\int_a^\infty f(x) dx$ is convergent.