ECE 548: Electronic Design I

Lab 5: Three-Terminal Devices - MOSFETs

Name: Nick Snya

Objective:

- To understand and experimentally determine the I-V characteristics of an n-channel MOSFET.
- To build and understand the operation of a CMOS (Complementary MOSFET) logic inverter.

1. N-channel MOSFET (NMOS)

- Assemble the circuit in Figure 1(a) using a 2N7000 n-channel MOSFET. Use channel 1 of the DC supply to power V_{GS} and channel 2 for $V_{DD}. \\$
- For a fixed value of V_{GS} , adjust the V_{DD} value until the desired V_{DS} is obtained in order to measure the current (I_D) through the MOSFET. Use the table below.

Figure 1(a)

Figure 1(b)

	V _{DS} = 0.2V		V _{DS} = 0.5V		V _{DS} = 1V		V _{DS} = 1.5V		V _{DS} = 2V	
	V _{DD}	I _D	V _{DD}	ID	V _{DD}	ID	V_{DD}	I _D	V _{DD}	I _D
V _{GS} = 1V	0.44	0924	0.86	0.038	1.42	0.043	1,5	0	2	0
V _{GS} = 2V	6.71	0,052	1.64	0.116	2.76	0.181	1.5	0.099	2	0,098
V _{GS} = 3V	0.83	0.063	2.02	0.154	3,65	9,009	2.05	0.055	2,53	0.053
V _{GS} = 4V	0.90	0.71	2.08	0.163	3,25	0,225	4.28	0.282	5.04	0,309

• Plot I_D vs. V_{DS} for $V_{GS} = 1V$, 2V, 3V, and 4V.

ullet What is the estimated threshold voltage (V_t) of the NMOS?

0.6V

ullet Based on the estimated V_{TN} , indicate the triode region and the saturation region on the graph above (use a dotted line to draw the boundary between the two regions).

Get TA's initial

2. CMOS Logic Inverter

Construct the circuit in Figure 2 below using the NMOS
(2N7000) and the PMOS (TP0606). Note that Figure 1(b)
applies to both NMOS and PMOS transistors.

Figure 2

 \bullet Complete the following table by varying the input voltage V_{in} from 0 V to 5 V.

Complete the following table by varying the input voltage viii vi										5\/		
[V.	OV	0.5V	1V	1.5V	2V	2.5V	3V	3.5V	4V	4.5V	34
	Vin	00	0.0		-		00	21 6	14 6	U DE	4.19	4.18
	Vout	5	5	5	5	5	9.89	4,79	4.60	1000	50 .	100

Using the data from the above table, plot the voltage transfer characteristics (V_{out} vs. V_{in}) in the axes provided below.

• What is the estimated threshold voltage for the logic inverter?

Get TA's initial: