Transfer learning enables predictions in network biology (Geneformer)

Nature 2023

Outline

- Background
- Pre-training fine-tuning framework
- Dataset
- Tasks

Gene expression

Gene regulatory network

The expression of genes are controlled by other genes.

Different cell types have different gene expression

Gene expression can be viewed as a table

Cells in different states have different gene expression

Gene expression can be viewed as a table

Motivation

- Understanding the gene regulatory network helps us know what is the cause of the disease, so we can focus on correcting the cause instead of the effect
- However, discovering the gene regulatory networks needs a lot of transcriptomic data, which prohibits the network discovery when the data is limited (e.g., rare diseases).

Idea

 The idea is to first self-supervisedly pretrain a model on rich transcriptomic data, and then fine-tune on the limited transcriptomic data. a Self-supervised large-scale pretraining

This idea is quite common these days (NLP & CV)...

Democratize fundamental understanding of network dynamics to vast array of downstream applications

Large-scale dataset: Genecorpus-30M

- 29,900,531 human single-cell transcriptomes
 - Collected from a broad range of tissues from publicly available data
 - 561 sub-datasets from 112 sources (after 2016)
 - excluded cells with high mutational burdens (for example, malignant cells and immortalized cell lines)

Tissue representation of Genecorpus-30M

Placenta	Prostate	Breast	Brain
Adrenal	Small intestine	Lymphatic	Decidua (
Unlabelled	Adipose	Tonsil	Bone marrow
Pancreas	Endothelial	Bladder	Oesophagus
Airway	Bone	Stomach	Skin
Cord blood	Pluripotent	Embryo	Eye
Spleen	Intestine, NOS	Nasal	Testis
Thymus	Yolk sac	Ear	Large intestine
Lymph node	Muscle		Liver
			•
			Lung Heart

Rank value encoding

- Represented as the rank of normalized expression level.
 - The normalization is shown below
 - Normalization priortizes the genes that distinguish cell state
 - Normalization deprioritizes ubiquitously highly expressed housekeeping genes (e.g., right most gene)
 - Normalization remove technical artefacts that cause systematical biases

Expression level (darker = higher)

Geneformer architecture

- A regular MaskLM transformer based on open-source library (huggingface)
- Each gene is treated as a token
 - 25,424 tokens for protein-coding or miRNA genes,
 which are detected in a median of 173,152 cells within Genecorpus-30M
 - 2 special tokens for masking and padding
- The input is a "sentence" of genes

6 layers

Max length: 2048

• Embed dim: 256

• Attn head: 4

• FF dim: 512

Mask rate: 15%

Training details

- Effieciency:
 - Length grouping (each minibatch contains the sentences with similar length)
 - Deepspeed distributed training (12 V100s on 3 nodes, 3 days)
 - seems to use model partition and CPU offloading

Fine-tuning

- Fine-tune an additional task specific transformer layer
- Only a single training epoch to avoid overfitting

Fine-tuning with limited task-specific data

..

Fine-tuning task: dosage sensitivity prediction

- The gene can duplicate. The same gene can occur more than once in the chromosome.
- Some genes are dosage sensitive, the change of their copy number has larger effect.
- The task is to classify whether the gene is dosage sensitive (binary classification).

- Only 10,000 cells are used to finetune Geneformer.
- Geneformer achieves best AUC compared with SVM, random forest (RF), and logistic regression (LR).
- 6L, 4L, 3L, 1L: Geneformer without pre-training

Fine-tuning task: Network dynamics predictions

- We want to predict whether a gene is in the central of the regulatory network (binary classification).
- Fine-tuned on 30,000 normal endothelial cells without perturbation data.
- Tested on NOTCH1 (N1)-dependent gene network

Zero-shot task: In silico gene perturbation

- We want to manually activate a gene.
- Assume = G1 G2 G3 G4
- We want to activate G3, so move G3 to the front.
 - / ' = G3 G1 G2 G4
- Given G3 G1 G2 G4, Geneformer outputs
 - The gene emb (word emb) of G1 to G4
 - The cell emb (sentence emb) by averaging the word emb of second last layer
- The cosine similarity to the other cell / is calcuated to determine the effect of the purtabation

Attention analysis

- 20% of attention heads significantly attended transcription factors more than other genes
- Attention heads in the earliest layers were consistently the most diverse in terms of gene ranks they attended, suggesting that the model initially orients to the observed cell state through a joint survey of distinct portions of the input space.
- The middle layers were most broad in terms of gene ranks they attended
- The final layers were dominated by centrality-driven attention heads that focused on the highest ranked genes that uniquely define each cell state

Thanks!