

Show Me Your Advertisement : AI를 통해 한눈에 알아보는 AD 효과

CONTENTS ^{목卦}

- 01 **상황분석** 프로젝트의 필요성과 접근 방식
- 02 프로젝트요약 프로젝트의 전반적인 개요와 요약
- 03 학습데이터 학습에 사용한 데이터 수집 및 전처리
- **모델아키텍처** 프로젝트에 사용한 모델 소개
- **명가지표** 광고 효과를 평가하기 위한 지표 소개
- 06 기대효과 프로젝트의 향후 보완점 및 기대 효과

SITUATION

상황분석

프로젝트의 필요성과 접근 방식

PPL 마케팅: Product Placement의 약자로서 주로 방송 프로그램 속의 소품으로 등장하는 상품

| 집사부 일체 프로그램이 간접 광고 예시

간접광고이 효과

간접광고는 그 특성으로 인해 소비자에게 발생하는 광고의 비호적인 태도를 크게 줄여줍니다.

간접광고의 가격, 부르는게 값

어벤져스에서의 간접광고는 60억원, 본드 25는 607억원에 책정되었습니다.

정량적 가격 책정 필요

간접광고의 가격 책정 시, 정성적 평가 뿐 아니라 정량적 평가가 필요합니다.

SITUATION

상황분석

프로젝트의 필요성과 접근 방식

광고주를 대상으로

광고 대상 제품이 다수의 영상에서 확실하게 홍보되었는지 점검해 볼 필요가 있습니다.

평가 지표

영상에서 광고 대상 제품이 등장한 빈도와 비중 등을 분석하고, 광고의 가치를 책정합니다.

영상 데이터 분석

영상 데이터를 분석하여 간접광고의 가치를 정량적으로 분석합니다.

정성적 평가 반영

결국, 광고는 시청자가 그 가치를 판단합니다. 시청자에게 미친 광고의 영향력을 설문조사로 수집하여 반영합니다.

SUMMARY

프로젝트 요약

프로젝트의 전반적인 개요와 요약

Object Detection 모델을 선정하여 학습시킵니다.

03. 모델 학습

04. 평가 지표 설정

영상 분석을 통해 광고 효과를 정량적으로 책정합니다.

> 영상 분석 **광고효**과 정량적 분석

기대 효과 **결론도출** 향후 보완점 05. 결론 도출

본 프로젝트의 결론을 제시합니다.

DATA PREPROCESSING

학습 데이터

학습에 사용한 데이터의 수집 및 전처리 방식

데이터 크롤링

'토레타' 이미지를 크롤링

데이터 라벨링

이미지 라벨링 진행

DATA PREPROCESSING

학습 데이터

학습에 사용한 데이터의 수집 및 전처리 방식

	TRAIN	TEST	TOTAL
WITHOUT AUGMENTATION	348	20	368
WITH AUGMENTATION	2088	20	2288

OBJECT DETECTION 모델 아키텍처

프로젝트에 사용한 모델 소개

DINO DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

모델 선정 기준 COCO Benchmark를 기준으로 최신 SOTA 모델!

다른 Detection 모델에 비하여 상대적으로 가벼운 모델!

DETR의 모든 최신 기술이 반영된 모델!

OBJECT DETECTION

모델 아키텍처

프로젝트에 사용한 모델 소개

OBJECT DETECTION

모델 아키텍처

프로젝트에 사용한 모델 소개

OBJECT DETECTION

ByteTrack

모델 아키텍처

평가지표 1

영상 간 상대적인 평가

		상세
	평균 bbox의 크기	B-Box의 크기를 평균한 것으로, 각 토레타의 크기를 의미
각 B-Box 관련	confidence score	하나의 토레타가 얼마나 식별이 잘 되는지, 강조가 되었는지를 의미
	평균 bbox의 등장 지속 시간	B-Box가 잠깐 스쳐 지나갔는지, 오래 노출되었는지, 지속 시간을 의미
전체 영상 관련	총 상호작용 시간	하나의 영상에서 '인물'이 토레타를 '직접 마신' 총 프레임 수를 의미
	총 등장 시간	하나의 영상에서 토레타가 나타난 총 프레임 수를 의미
	총 bbox 개수	하나의 영상에 총 몇 개의 B-Box, 즉 토레타가 등장하는지를 의미

	영상 1	영상 2	영상 3	 영상 7
평균 bbox의 크기				
confidence score				
평균 bbox의 등장 지 속 시간				
총 상호작용 시간				
총 등장 시간				
총 bbox 개수				

	영상 1	영상 2	영상 3	• • •	영상 7	
평균 bbox의 크기						MinMax Scaling
confidence score						
평균 bbox의 등장 지속 시간						
총 상호작용 시간						
총 등장 시간						
총 bbox 개수						

평가지표

가중합

	영상 1	영상 2	영상 3	• • •	영상 7	가증치
평균 bbox의 크기						5
confidence score						5
평균 bbox의 등장 지속 시간						10
총 상호작용 시간						50
총 등장 시간						10
총 bbox 개수						10
FINAL SCORE	0.31	0.26	0.65		0.10	

TESTING

DETECTION

Score : 0.66

Object Detection 시연 영상

TESTING

DETECTION

Score : 0.10

Object Detection 시연 영상

평7ト7日 丑 2

영상의 절대적인 점수 산정

평가지표

충격량과 광고량

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

$$\mathbf{I} = m\Delta \mathbf{v} = \mathbf{F} \cdot \Delta t$$

충격량

: 시간에 따라 물체에 작용한 힘을 모두 합한 물리량

평가기표

충격량과 광고량

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

$$\mathbf{I} = m\Delta \mathbf{v} = \mathbf{F} \cdot \Delta t$$

충격량

: 시간에 따라 물체에 작용한 힘을 모두 합한 물리량

물체에 작용한 힘 = 광고가 사람에게 미친 영향

평가지표

충격량과 광고량

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

$$\mathbf{I} = m\Delta \mathbf{v} = \mathbf{F} \cdot \Delta t$$

충격량

: 시간에 따라 물체에 작용한 힘을 모두 합한 물리량

물체에 작용한 힘 = 광고가 사람에게 미친 영향

평가지표

충격량과 광고량

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

따라 물체에 작용한 힘을 모두 합한 물리량 : 시간에

물체에 작용한 힘 = 광고가 사람에게 미친 영향

$$\mathbf{I} = m\Delta \mathbf{v} = \mathbf{F} \cdot \Delta t$$

광고량 보존의 법칙 강렬하게 잠깐 나오는 광고 = 약하고 길게 나오는 광고

평가지표

충격량과 광고량

$$\mathbf{I} = \int_{t_0}^{t_1} \mathbf{F}(t) \, dt$$

$$\mathbf{I} = m\Delta\mathbf{v} = \mathbf{F}\cdot\Delta t$$

앞서 구한 지표들을 독립변수로 하여 광고력 F를 구하는 모델을 구축

- 각 영상에 대한 광고 효과를 1점~10점 사이의 점수로 설문조사 진행
- 해당 데이터를 적절히 변형하여 로지스틱 회귀 모형을 적합

$$\log rac{p}{1-p} = eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_m x_m$$

평가지표

Coefficients:

EFFECTIVENESS

기대 효과 & 향후 보완점

프로젝트의 기대 효과 및 향후 보완점

- 광고주를 비롯한 관계자들에게 광고 품질을 평가할 수 있는 정량적 지표 제공
- 평가를 위한 모델에서 사용자가 직접 하이퍼 파라미터 조정 가능
- 물리의 충격량 개념을 도입하여 수학적으로 정의한 광고량의 계산이 합리적
- 광고주는 광고 제작에 지불한 금액에 알맞는 광고력을 협의 가능
- 광고 제품을 Detection, Tracking 함으로써 광고 효과를 시각적으로 확인 가능

EFFECTIVENESS

기대 효과 & 향후 보완점

프로젝트의 기대 효과 및 향후 보완점

- 주인공과 광고 제품간의 상호작용을 측정하는 방법론 보완 필요
- 과도한 광고는 시청자의 몰입을 방해하며, 광고 효과가 반감됨을 반영
- 평가 영상의 수(관측치)를 증가시켜 데이터의 정규성을 만족하도록 보완 필요
- 제품을 광고하는 영상 매체의 특성 고려 필요 (예능 vs 드라마 vs 유튜브 등)

APPENDIX

■ 소스코드

https://github.com/kkllun/Tobigs18_vision_conference

■ DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

소스코드: https://github.com/IDEA-Research/DINO.git

논문원본: https://arxiv.org/abs/2203.03605

