VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Artificial Intelligence (23CS5PCAIN)

Submitted by

V Tanusree (1BM22CS313)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Artificial Intelligence (23CS5PCAIN)" carried out by **V Tanusree** (1BM22CS313), who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Artificial Intelligence (23CS5PCAIN) work prescribed for the said degree.

Prameetha Pai	Dr. Kavitha Sooda
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Experiment Title
1	Implement Tic –Tac –Toe Game Implement vacuum cleaner agent
2	Implement 8 puzzle problems using Depth First Search (DFS) Implement Iterative deepening search algorithm
3	Implement A* search algorithm
4	Implement Hill Climbing search algorithm to solve N-Queens problem
5	Simulated Annealing to Solve 8-Queens problem
6	Create a knowledge base using propositional logic and show that the given query entails the knowledge base or not.
7	Implement unification in first order logic
8	Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning.
9	Create a knowledge base consisting of first order logic statements and prove the given query using Resolution
10	Implement Alpha-Beta Pruning.

Github Link:

https://github.com/TanuVasthi/1BM22CS313 AI LAB

Program 1

Implement Tic –Tac –Toe Game

Tic Tac Toe: Algorithm:

classmate
Date Page
1024. CAB-1
Tic tac toe game.
function minimax (node, depth, ic Maximizing Place
if node is a terminal state:
seturn evaluate (node)
if is Maximizing Player:
best value = -infinity
for each child in node:
value = minimax(child, depth+1, false)
best Value = max(best Value, value)
leturn best Valve
The second secon
else:
best Value + infinity
o child in node:
value - minimax (child, applied)
hest Value = min best value, value
igetain bestvalue.
all the same of th

```
Code:
```

```
board=([['1','1','1'],['1','1'],['1','1'],['1','1']])

def check(board,user):
    for i in range(3):
        if(board[0][i]==user and board[1][i]==user and board[2][i]==user):
            return True
        if(board[i][0]==user and board[i][1]==user and board[i][2]==user):
```

```
return True
    if(board[0][0]==user and board[1][1]==user and board[2][2]==user):
      return True
    if(board[0][2]==user and board[1][1]==user and board[2][0]==user):
      return True
  return False
def show(board):
  for b in board:
    print(b)
def full(board):
  for i in range(3):
    for j in range(3):
      if(board[i][j] == '1'):
        return False
  return True
user=0
user1=input("Enter user name:")
user2=input("Enter user name:")
while True :
  if (full(board)) :
    print("Draw")
    break
if(user==0):
    show(board)
    print(user1 + " play")
    row=int(input("Enter row:"))
    col=int(input("Enter col:"))
    if(board[row][col]=='1'):
      board[row][col]='X'
    else:
      print("Wrong!")
     continue
    if(check(board,'X')):
      print(user1 + " won!")
      break
    else:
      user=1
  if(full(board)):
      print("Draw")
      break
if(user==1):
```

```
show(board)
 print(user2 + " play")
 row=int(input("Enter row:"))
 col=int(input("Enter col:"))
 if(board[row][col]=='1'):
   board[row][col]='0'
 else:
   print("Wrong!")
   continue
 if(check(board,'0')):
   print(user2 + " won!")
   break
 else:
   user=0
if full(board):
      print("Draw")
      break
```

```
\Pi
                                         x|x|0
-+-+-
                                        |0|
    Enter position for 0: 5
    x| |
                                         x| |
      Enter position for 0: 4
                                         x|x|0
                                         0|0|
    x|x|
     -+-+-
      |0|
                                         x|x|o
                                         o|o|x
                                         -+-+-
X| |
     Enter position for 0: 3
     x|x|o
                                         Enter position for 0: 8
                                         x|x|o
      |0|
                                         o|o|x
     \mathbf{H}
                                         x|o|
      x|x|o
      0|0|x
      x|o|x
      Draw!
```

Vacuum World:

cost=0

def vacuum(state1, state2, loc):
 global cost

```
if state1 == "0" and state2 == "0":
    print("All done")
    return
```

```
if loc == "A":
    if state1 == "1" and state2=="1":
        print("Cleaned A")
        cost= cost+1
        state1 = "0"
        state1 = input("Is A dirty again?: ")
        vacuum(state1,state2,"A")
    elif state1=="1" and state2=="0":
        print("Cleaned A")
        cost= cost+1
        state1 = "0"
        state1 = input("Is A dirty again?: ")
        state2 = input("Is B dirty again?: ")
        vacuum(state1,state2,"A")
    elif state1=="0" and state2=="1":
        print("Moving to B")
        loc="B"
        vacuum(state1,state2,loc)
```

```
elif loc == "B":
    if state1 == "1" and state2=="1":
        print("Cleaned B")
        cost= cost+1
        state2 = "0"
        state2 = input("Is A dirty again?: ")
        vacuum(state1,state2,"B")
    elif state1=="0" and state2=="1":
        print("Cleaned B")
        cost= cost+1
        state1 = "0"
        state1 = input("Is A dirty again?: ")
        state2 = input("Is B dirty again?: ")
        vacuum(state1,state2,"A")
    elif state1=="1" and state2=="0":
        print("Moving to B")
        loc="B"
        vacuum(state1,state2,loc)
```

```
print("Enter both states and location of vacuum")
state1 = input("Enter state 1 (0 or 1): ")
state2 = input("Enter state 2 (0 or 1): ")
loc = input("Enter loc (A or B): ")
vacuum(state1, state2, loc)
print("Total cost " + str(cost))
```

```
→ Enter both states and location of vacuum

    Enter state 1 (0 or 1): 1
    Enter state 2 (0 or 1): 1
    Enter loc (A or B): A
    Cleaned A
    Is A dirty again?: 1
    Cleaned A
    Is A dirty again?: 0
    Moving to B
    Cleaned B
    Is A dirty again?: 0
    Is B dirty again?: 1
    Moving to B
    Cleaned B
    Is A dirty again?: 0
    Is B dirty again?: 0
    All done
    Total cost 4
```

Implement 8 puzzle problems using DFS and BFS

8 puzzle using DFS and BFS: Algorithm:

```
LAB 3
10/24
     8 puzzle game
     BFS.
     Let fringe be a dist containing the initial state
     LOOP
         If fringe is empty cretuen failure
         Node + remove first Ctringe
        if Node is goal
           Node
        else
           generate all successors of Node, and
           add generated nodes to the back of fring
      Fud Coop
      DFS.
          fringe be a dist containing the initials
      loop
                 The acturn the path from initial state
                 generate all successors of Node, an
                add generated nodes to the souls
                 fringe
       End woop
```

```
Code:
count=0;
def print_state(in_array):
    global count
    count+=1
    for row in in_array:
        print(' '.join(str(num) for num in row))
    print()

def helper(goal, in_array, row, col, vis):
    # Marking current position as visited
    vis[row][col] = 1
    drow = [-1, 0, 1, 0] # Dir for row : up, right, down, left
```

```
dcol = [0, 1, 0, -1] # Dir for column
    dchange = ['Up', 'Right', 'Down', 'Left']
    # Print current state
    print("Current state:")
    print state(in array)
    # Check if the current state is the goal state
    if in array == goal:
        print_state(in_array)
        print(f"Number of states:{cnt}")
        return True
    # Explore all possible directions
    for i in range(4):
        nrow = row + drow[i]
        ncol = col + dcol[i]
        # Check if the new position is within bounds and not visited
        if 0 \le \text{nrow} < \text{len(in\_array)} and 0 \le \text{ncol} < \text{len(in\_array[0])} and not
vis[nrow][ncol]:
            # Make the move (swap the empty space with the adjacent tile)
            print(f"Took a {dchange[i]} move")
            in array[row][col], in array[nrow][ncol] = in array[nrow][ncol],
in_array[row][col]
            # Recursive call
            if helper(goal, in_array, nrow, ncol, vis):
                return True
            # Backtrack (undo the move)
            in array[row][col], in array[nrow][ncol] = in array[nrow][ncol],
in array[row][col]
    # Mark the position as unvisited before returning
    vis[row][col] = 0
    return False
# Example usage
initial_state = [[1, 2, 3], [0, 4, 6], [7, 5, 8]] # 0 represents the empty space
goal_state = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
visited = [[0] * 3 for _ in range(3)] # 3x3 visited matrix
empty_row, empty_col = 1, 0 # Initial position of the empty space
found_solution = helper(goal_state, initial_state, empty_row, empty_col, visited)
print("Solution found:", found_solution)
```

```
Current state:
        1 2 3
        4 6 8
         7 5 0
        Took a Left move
        Current state:
        1 2 3
        4 6 8
        7 0 5
        Took a Left move
        Current state:
        1 2 3
        4 6 8
        0 7 5
        Took a Down move
        Current state:
        1 2 3
        4 5 6
        7 0 8
        Took a Right move
        Current state:
         1 2 3
        4 5 6
        7 8 0
        1 2 3
        4 5 6
        7 8 0
        Number of states:42
         Solution found: True
Iterative deepening search algorithm:
Code:
#iterative-deepening
```

```
from collections import deque
```

```
class PuzzleState:
   def __init__(self, board, zero_pos, moves=0, previous=None):
        self.board = board
        self.zero_pos = zero_pos # Position of the zero tile
```

```
# Number of moves taken to reach this state
        self.moves = moves
        self.previous = previous # For tracking the path
   def is_goal(self, goal_state):
        return self.board == goal_state
   def get_possible_moves(self):
        moves = []
        x, y = self.zero_pos
        directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] # Up, Down, Left, Right
        for dx, dy in directions:
            new_x, new_y = x + dx, y + dy
            if 0 \le \text{new}_x \le 3 and 0 \le \text{new}_y \le 3:
                new_board = [row[:] for row in self.board]
                # Swap the zero tile with the adjacent tile
                new\_board[x][y], new\_board[new\_x][new\_y] = new\_board[new\_x][new\_y], new\_board[x][y]
                moves.append((new_board, (new_x, new_y)))
        return moves
def ids(initial_state, goal_state, max_depth):
   for depth in range(max_depth):
        visited = set()
        result = dls(initial_state, goal_state, depth, visited)
        if result:
            return result
   return None
def dls(state, goal_state, depth, visited):
   if state.is_goal(goal_state):
        return state
   if depth == 0:
        return None
   visited.add(tuple(map(tuple, state.board))) # Mark this state as visited
   for new_board, new_zero_pos in state.get_possible_moves():
        new_state = PuzzleState(new_board, new_zero_pos, state.moves + 1, state)
        if tuple(map(tuple, new_board)) not in visited:
            result = dls(new_state, goal_state, depth - 1, visited)
            if result:
                return result
   visited.remove(tuple(map(tuple, state.board))) # Unmark this state
   return None
def print_solution(solution):
   path = []
   while solution:
        path.append(solution.board)
        solution = solution.previous
   for board in reversed(path):
        for row in board:
            print(row)
        print()
# Define the initial state and goal state
```

initial_state = PuzzleState(

```
board=[[1, 2, 3],
         [4, 0, 5],
         [7, 8, 6]],
   zero_pos=(1, 1)
goal_state = [
  [1, 2, 3],
  [4, 5, 6],
   [7, 8, 0]
# Perform Iterative Deepening Search
max_depth = 20 # You can adjust this value
solution = ids(initial_state, goal_state, max_depth)
if solution:
   print("Solution found:")
   print_solution(solution)
else:
   print("No solution found.")

→ Solution found:
       [1, 2, 3]
       [4, 0, 5]
       [7, 8, 6]
       [1, 2, 3]
       [4, 5, 0]
       [7, 8, 6]
       [1, 2, 3]
       [4, 5, 6]
       [7, 8, 0]
```

 $\frac{\textbf{Program 3}}{\textbf{Implement A* search algorithm}}$ Algorithm:

25/10/24	CAB 4		Page C
001			Manhattan.
	8- pu33le game. A* implementation.	Los de	1 2 3 4 0 5 f(n) = g(n) + h(n) 1 8 6 = 0 + 2 = 0
	function A* search (problem) returns a solution or failure node a node a with n state: problem initialstate n.g. 0	Carre	1 0 3 1 2 3 1 2 3 4 2 5 4 8 5 0 4 5 4 5 0 7 8 6 7 0 6 7 8 6 7 8 6 P(n)=1+3.4 2(n)=1+3.4 2(n)=1+1=
	initialstate n.g. 0 frontier & a priority queve ordered by ascending 9th, only element n loop do if empty! (frontier) then return failure n & pop (frontier)		- 1 2 0 1 2 3 4 5 6 > Goal state. 7 8 6 7 8 0 reached.
	if problem goaltest (n. state) then ceturn solution (n) for each action at n problem.		Misplaced files. 4 a 3 fin)= 2
	n'e chita Node (problem. n. a) ineat (n', g(n') + h(n), frontier).		4 0 5 4(n): 2 10 3
			f=4 f-1+3:4 f-1+3:4 f=1+1:2 1 2 0 1 2 3 4 5 3 4 5 6 7 4000 s.

```
Code:
Misplaced Tiles
def mistil(state, goal):
  count = 0
  for i in range(3):
     for j in range(3):
       if state[i][j] != goal[i][j]:
          count += 1
  return count
def findmin(open_list, goal):
  minv = float('inf')
  best_state = None
  for state in open_list:
    h = mistil(state['state'], goal)
    f = state['g'] + h
    if f < minv:
       minv = f
```

```
best state = state
  open_list.remove(best_state)
  return best state
def operation(state):
  next_states = []
  blank_pos = find_blank_position(state['state'])
  for move in ['up', 'down', 'left', 'right']:
     new_state = apply_move(state['state'], blank_pos, move)
     if new state:
       next_states.append({
          'state': new_state,
          'parent': state,
          'move': move,
          'g': state['g'] + 1
        })
  return next_states
def find_blank_position(state):
  for i in range(3):
     for j in range(3):
       if state[i][j] == 0:
          return i, j
  return None
def apply_move(state, blank_pos, move):
  i, j = blank pos
  new_state = [row[:] for row in state]
  if move == 'up' and i > 0:
     new_state[i][j], new_state[i - 1][j] = new_state[i - 1][j], new_state[i][j]
  elif move == 'down' and i < 2:
     new_state[i][j], new_state[i+1][j] = new_state[i+1][j], new_state[i][j]
  elif move == 'left' and i > 0:
     new_state[i][j], new_state[i][j - 1] = new_state[i][j - 1], new_state[i][j]
  elif move == 'right' and j < 2:
     new_state[i][i], new_state[i][i+1] = new_state[i][i+1], new_state[i][i]
  else:
     return None
  return new_state
def print_state(state):
  for row in state:
     print(' '.join(map(str, row)))
initial_state = [[2,8,3], [1,6,4], [7,0,5]]
goal\_state = [[1,2,3], [8,0,4], [7,6,5]]
open_list = [{'state': initial_state, 'parent': None, 'move': None, 'g': 0}]
```

```
visited_states = []
while open_list:
  best_state = findmin(open_list, goal_state)
  print("Current state:")
  print_state(best_state['state'])
  h = mistil(best_state['state'], goal_state)
  f = best\_state['g'] + h
  print(f"g(n): {best_state['g']}, h(n): {h}, f(n): {f}")
  if best_state['move'] is not None:
     print(f"Move: {best_state['move']}")
  print()
  if mistil(best_state['state'], goal_state) == 0:
     goal_state_reached = best_state
     break
  visited_states.append(best_state['state'])
  next_states = operation(best_state)
  for state in next_states:
     if state['state'] not in visited_states:
       open_list.append(state)
moves = []
while goal_state_reached['move'] is not None:
  moves.append(goal_state_reached['move'])
  goal_state_reached = goal_state_reached['parent']
moves.reverse()
print("\nMoves to reach the goal state:", moves)
print("\nGoal state reached:")
print_state(goal_state)
```

```
Current state:
164
g(n): 0, h(n): 5, f(n): 5
Current state:
1 0 4
765
Move: up
Current state:
184
g(n): 2, h(n): 4, f(n): 6
Move: up
Current state:
283
7 6 5
g(n): 2, h(n): 4, f(n): 6
Move: left
Current state:
023
765
Move: left
084
7 6 5
g(n): 4, h(n): 2, f(n): 6
Move: down
Current state:
8 0 4
7 6 5
g(n): 5, h(n): 0, f(n): 5
Move: right
Moves to reach the goal state: ['up', 'up', 'left', 'down', 'right']
Goal state reached:
1 2 3
8 0 4
```

Implement Hill Climbing search algorithm to solve N-Queens problem

Algorithm:


```
def hill_climbing(n):
    cost=0
    while True:
        # Initialize a random board
        current_board = list(range(n))
        random.shuffle(current_board)
        current_conflicts = calculate_conflicts(current_board)
```

```
while True:
           # Generate neighbors by moving each queen to a different position
           found_better = False
           for i in range(n):
               for j in range(n):
                   if j != current_board[i]: # Only consider different positions
                       neighbor_board = list(current_board)
                       neighbor_board[i] = j
                       neighbor_conflicts = calculate_conflicts(neighbor_board)
                       if neighbor_conflicts < current_conflicts:</pre>
                           current_board = neighbor_board
                           current_conflicts = neighbor_conflicts
                           cost+=1
                           found_better = True
                           break
               if found_better:
                   break
           # If no better neighbor found, stop searching
           if not found_better:
               break
       # If a solution is found (zero conflicts), return the board
       if current_conflicts == 0:
           return current_board, current_conflicts, cost
def print_board(board):
   n = len(board)
   for i in range(n):
       row = ['.'] * n
       row[board[i]] = 'Q' # Place a queen
       print(' '.join(row))
   print()
# Example Usage
solution, conflicts, cost = hill_climbing(n)
print("Final Board Configuration:")
print_board(solution)
print("Number of Cost:", cost)
       Final Board Configuration:
         . Q . .
         . . . Q
         . . Q .
         Number of Cost: 32
```

Algorithm:

Page Date	Page
N- Queens by Simulated Annealing	if delta <0 or vandom(0,1) < corp (-duta/temperature):
# initialise parameters temp: high initial temperature	current shate = neighbor = conflicts current = conflicts : neighbor = conflicts temperature * = cooling-rate
max iterations: max recording to calculate conflicts	else "No solution found"
function get conflicts (state): function get conflicts (state): setun count paix of queens in the same row (diagonal	of sourion
#function to generate random neighbor function get random neighbor (state):	conflicts = 0
nove a random queen to a different you in its column	Online.
Main (): current state: gardon initial state	
with one queen per commit	
while temperature >1 & current conflicts >0: for is to max-iterations neighbors get random-neighbor (current-state)	
neighbor conflicts: get conflicts (neighbor) delt a: neighbor-conflicts - annunt conflicts	

```
import numpy as np
from scipy.optimize import dual_annealing

def queens_max(position):
    # This function calculates the number of pairs of queens that are not attacking each other
    position = np.round(position).astype(int) # Round and convert to integers for queen positions
    n = len(position)
    queen_not_attacking = 0
```

```
for i in range(n - 1):
    no_attack_on_j = 0
    for j in range(i + 1, n):
        # Check if queens are on the same row or on the same diagonal
        if position[i] != position[j] and abs(position[i] - position[j]) != (j - i):
            no_attack_on_j += 1
    if no_attack_on_j == n - 1 - i:
        queen_not_attacking += 1

if queen_not_attacking == n - 1:
    queen_not_attacking += 1
```

```
return -queen_not_attacking # Negative because we want to maximize this value
# Bounds for each queen's position (0 to 7 for an 8x8 chessboard)
bounds = [(0, 7) \text{ for } \_ \text{ in range}(8)]
# Use dual_annealing for simulated annealing optimization
result = dual_annealing(queens_max, bounds)
# Display the results
best_position = np.round(result.x).astype(int)
best_objective = -result.fun # Flip sign to get the number of non-attacking queens
print('The best position found is:', best position)
print('The number of queens that are not attacking each other is:', best_objective)
The best position found is: [2 4 1 7 0 6 3 5]
     The number of queens that are not attacking each other is: 8
Program 6
Create a knowledge base using propositional logic and show that the given query entails the knowledge base
Code:
import itertools
# Function to evaluate an expression
def evaluate_expression(a, b, c, expression):
   # Use eval() to evaluate the logical expression
   return eval(expression)
# Function to generate the truth table and evaluate a logical expression
def truth_table_and_evaluation(kb, query):
   # All possible combinations of truth values for a, b, and c
   truth_values = [True, False]
combinations = list(itertools.product(truth_values, repeat=3))
   # Reverse the combinations to start from the bottom (False -> True)
 combinations.reverse()
  # Header for the full truth table
   print(f"{'a':<5} {'b':<5} {'c':<5} {'KB':<20}{'Query':<20}")</pre>
   # Evaluate the expressions for each combination
   for combination in combinations:
       a, b, c = combination
       # Evaluate the knowledge base (KB) and query expressions
       kb_result = evaluate_expression(a, b, c, kb)
       query_result = evaluate_expression(a, b, c, query)
       # Replace True/False with string "True"/"False"
       kb_result_str = "True" if kb_result else "False"
```

query_result_str = "True" if query_result else "False"

```
# Convert boolean values of a, b, c to "True"/"False"
       a_str = "True" if a else "False"
       b_str = "True" if b else "False"
       c_str = "True" if c else "False"
       # Print the results for the knowledge base and the query
       print(f"{a_str:<5} {b_str:<5} {c_str:<5} {kb_result_str:<20} {query_result_str:<20}")</pre>
   # Additional output for combinations where both KB and query are true
   print("\nCombinations where both KB and Query are True:")
   print(f"{'a':<5} {'b':<5} {'c':<5} {'KB':<20}{'Query':<20}")</pre>
   # Print only the rows where both KB and Query are True
   for combination in combinations:
       a, b, c = combination
       # Evaluate the knowledge base (KB) and query expressions
       kb_result = evaluate_expression(a, b, c, kb)
       query_result = evaluate_expression(a, b, c, query)
       # If both KB and query are True, print the combination
       if kb result and query result:
           a_str = "True" if a else "False"
           b_str = "True" if b else "False"
           c_str = "True" if c else "False"
           kb_result_str = "True" if kb_result else "False"
           query_result_str = "True" if query_result else "False"
           print(f"{a_str:<5} {b_str:<5} {c_str:<5} {kb_result_str:<20} {query_result_str:<20}")</pre>
# Define the logical expressions as strings
kb = "(a or c) and (b or not c)" # Knowledge Base
query = "a or b" # Query to evaluate
# Generate the truth table and evaluate the knowledge base and query
truth_table_and_evaluation(kb, query)
 <del>∫</del>▼ a
                b
                        C
                                                       Query
       False False False
                                                      False
       False False True False
                                                      False
       False True False False
                                                      True
       False True True True
                                                      True
       True False False True
                                                      True
       True False True False
                                                      True
       True True False True
                                                      True
       True True True True
                                                      True
       Combinations where both KB and Query are True:
                b
                        C
                                                       Query
       False True True True
                                                      True
       True False False True
                                                      True
       True True False True
                                                      True
       True True True True
                                                      True
```

Implement unification in first order logic Algorithm:

al" LAB-7	b) if S= failure the victum failure
Unitication Algorithm.	
	c) if S # NIL tuen do,
Step 1 If the art is a variable or	a Apply & to the tremainder of both
constant, then	G and C2
a) If P, or P, are identical then	b. SUBST = APPEND (S, SUBST)
netus NIL	step 6 Return SUBST.
b) Else if U, is a variable,	
a then if the occurs in the then return	
FAILURE	
b. else vreturn & (42/41)3	
c) Else is le is a variable.	
a. If \$ occurs in \$ then return	
FAILURE.	
b Else neturn ξ(4, (42)3.	
d) Else viction FAILURE	
Step 2: If the initial predicate symbol in	
pland produce not same, then cutur	
FAILURE	
Step 3: If P. and P2 have a different	A CANADA SALA
number of arguments, then return FAILURE	
step 4: Set Supertitution set(SUBST) to NIL	
SKP 5: For i=1 to the no. of elements In Pi	
and their end with the oth	
a) call pointy function with the ith	
element of \$1 and ith element & \$12 and	
put the isesualt into S.	

```
import re

def occurs_check(var, x):
    """Checks if var occurs in x (to prevent circular substitutions)."""
    if var == x:
        return True
    elif isinstance(x, list): # If x is a compound expression (like a function or predicate)
        return any(occurs_check(var, xi) for xi in x)
    return False
```

```
def unify_var(var, x, subst):
    """Handles unification of a variable with another term."""
    if var in subst: # If var is already substituted
        return unify(subst[var], x, subst)
```

```
elif isinstance(x, (list, tuple)) and tuple(x) in subst: # Handle compound expressions
        return unify(var, subst[tuple(x)], subst)
   elif occurs_check(var, x): # Check for circular references
       return "FAILURE"
   else:
       # Add the substitution to the set (convert list to tuple for hashability)
       subst[var] = tuple(x) if isinstance(x, list) else x
       return subst
def unify(x, y, subst=None):
   Unifies two expressions x and y and returns the substitution set if they can be unified.
   Returns 'FAILURE' if unification is not possible.
   if subst is None:
       subst = {} # Initialize an empty substitution set
   # Step 1: Handle cases where x or y is a variable or constant
   if x == y: # If x and y are identical
       return subst
   elif isinstance(x, str) and x.islower(): # If x is a variable
       return unify_var(x, y, subst)
   elif isinstance(y, str) and y.islower(): # If y is a variable
        return unify_var(y, x, subst)
   elif isinstance(x, list) and isinstance(y, list): # If x and y are compound expressions (lists)
       if len(x) != len(y): # Step 3: Different number of arguments
           return "FAILURE"
       # Step 2: Check if the predicate symbols (the first element) match
       if x[0] != y[0]: # If the predicates/functions are different
           return "FAILURE"
       # Step 5: Recursively unify each argument
       for xi, yi in zip(x[1:], y[1:]): # Skip the predicate (first element)
            subst = unify(xi, yi, subst)
           if subst == "FAILURE":
                return "FAILURE"
       return subst
   else: # If x and y are different constants or non-unifiable structures
       return "FAILURE"
def unify_and_check(expr1, expr2):
   Attempts to unify two expressions and returns a tuple:
    (is_unified: bool, substitutions: dict or None)
   result = unify(expr1, expr2)
   if result == "FAILURE":
       return False, None
  return True, result
```

```
def display_result(expr1, expr2, is_unified, subst):
    print("Expression 1:", expr1)
```

```
print("Expression 2:", expr2)
   if not is_unified:
        print("Result: Unification Failed")
   else:
        print("Result: Unification Successful")
        print("Substitutions:", {k: list(v) if isinstance(v, tuple) else v for k, v in subst.items()})
def parse_input(input_str):
    """Parses a string input into a structure that can be processed by the unification algorithm."""
   # Remove spaces and handle parentheses
   input_str = input_str.replace(" ", "")
   # Handle compound terms (like p(x, f(y)) \rightarrow ['p', 'x', ['f', 'y']])
   def parse_term(term):
        # Handle the compound term
        if '(' in term:
            match = re.match(r'([a-zA-Z0-9_]+)\setminus((.*)\setminus)', term)
            if match:
                predicate = match.group(1)
                arguments_str = match.group(2)
                arguments = [parse_term(arg.strip()) for arg in arguments_str.split(',')]
                return [predicate] + arguments
        return term
return parse_term(input_str)
# Main function to interact with the user
def main():
   while True:
        # Get the first and second terms from the user
        expr1_input = input("Enter the first expression (e.g., p(x, f(y))): ")
        expr2_input = input("Enter the second expression (e.g., p(a, f(z))): ")
        # Parse the input strings into the appropriate structures
        expr1 = parse_input(expr1_input)
        expr2 = parse_input(expr2_input)
        # Perform unification
        is_unified, result = unify_and_check(expr1, expr2)
        # Display the results
        display_result(expr1, expr2, is_unified, result)
        # Ask the user if they want to run another test
        another_test = input("Do you want to test another pair of expressions? (yes/no): ").strip().lower()
        if another_test != 'yes':
            break
if __name__ == "__main__":
main()
```

```
Enter the first expression (e.g., p(x, f(y))): q(a,g(x,a),f(y))
Enter the second expression (e.g., p(a, f(z))): q(a,g(f(b),a),x)
Expression 1: ['q', 'a', 'g(x', 'a)', ['f', 'y']]
Expression 2: ['q', 'a', ['g', 'f(b'], 'a)', 'x']
Result: Unification Successful
Substitutions: {'g(x': ['g', 'f(b'], 'x': ['f', 'y']}
Do you want to test another pair of expressions? (yes/no): yes
Enter the first expression (e.g., p(x, f(y))): p(z,x,f(g(z))
Enter the second expression (e.g., p(a, f(z))): p(z,f(y),f(y))
Expression 1: ['p', 'z', 'x', ['f', 'g(z']]
Expression 2: ['p', 'z', ['f', 'y'], ['f', 'y']]
Result: Unification Successful
Substitutions: {'x': ['f', 'y'], 'g(z': 'y'}
Do you want to test another pair of expressions? (yes/no): yes
Enter the first expression (e.g., p(x, f(y))): p(f(a),g(x))
Enter the second expression (e.g., p(a, f(z))): p(x,x)
Expression 1: ['p', ['f', 'a'], ['g', 'x']]
Expression 2: ['p', 'x', 'x']
Result: Unification Failed
Do you want to test another pair of expressions? (yes/no): no
```

Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning

Algorithm:

			- Irrents
	Classante Date Page		Date Department of the Departm
1 1 - 11	IAB 8		
29/11/24	Forward Reasoning Algorithm fourtier For-FC-ASK (EB, of) virtum a	a)	Emily is ether a surgeon or lawyer occupation (Emily, Surgeon) V Occupation (Emily, Surgeon)
of New	Substitution or false inputs: kB. the knowledge base, a set of first- order definite clauses a, the query, are attended variables hew, the new sentences inferred for each iteration expect until new is empty new & f. 3 for each and in kB do (P1 ^ ^ P2 = 29) & STANDAROIZE VARIABLES (P2 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P3 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P4 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P4 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P4 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P5 ^ A P 2 = 29) & STANDAROIZE VARIABLES (P4 ^ A P 2 = 29) & STANDAROIZE VARIABLES		occupation (trings occupation) Joe is an actor, but he holds another jeb occupation (see, Acto) A Jol Occupation (see, O) ADJ All surgeons are doctos Applocupation (p. surgeon) => Occupation (p. Doctor)) Joes does not have a lawyer Applocupation (p. lawyer) => - (ustome (toespl)) Formity has a bass who is lawyer Jp (Besss(p, Formity) A Occupation (p. lawyer)) There exists a lawyer all of whose oustomers are doctod Jp (Occupation (p. dawyer) Atc (custome (c.p) Occupation (c. Doctor)) Premy surgeon has a lawyer Applocupation (p. surgeon) >> For (occupation) Lawyer Applocupation (p. surgeon) >> For (occupation)
New.	facts inferred: ?'Criminal (Robert)' 4		

```
Code:
```

```
# Define the knowledge base (KB) as a set of facts
KB = set()
# Premises based on the provided FOL problem
KB.add('American(Robert)')
KB.add('Enemy(America, A)')
KB.add('Missile(T1)')
KB.add('Owns(A, T1)')
# Define inference rules
def modus_ponens(fact1, fact2, conclusion):
    """ Apply modus ponens inference rule: if fact1 and fact2 are true, then conclude conclusion """
   if fact1 in KB and fact2 in KB:
        KB.add(conclusion)
        print(f"Inferred: {conclusion}")
def forward chaining():
    """ Perform forward chaining to infer new facts until no more inferences can be made """
   # 1. Apply: Missile(x) \rightarrow Weapon(x)
   if 'Missile(T1)' in KB:
        KB.add('Weapon(T1)')
        print(f"Inferred: Weapon(T1)")
   # 2. Apply: Sells(Robert, T1, A) from Owns(A, T1) and Weapon(T1)
   if 'Owns(A, T1)' in KB and 'Weapon(T1)' in KB:
        KB.add('Sells(Robert, T1, A)')
        print(f"Inferred: Sells(Robert, T1, A)")
   # 3. Apply: Hostile(A) from Enemy(A, America)
   if 'Enemy(America, A)' in KB:
        KB.add('Hostile(A)')
        print(f"Inferred: Hostile(A)")
   # 4. Now, check if the goal is reached (i.e., if 'Criminal(Robert)' can be inferred)
   if 'American(Robert)' in KB and 'Weapon(T1)' in KB and 'Sells(Robert, T1, A)' in KB and 'Hostile(A)' in KB:
        KB.add('Criminal(Robert)')
        print("Inferred: Criminal(Robert)")
   # Check if we've reached our goal
   if 'Criminal(Robert)' in KB:
        print("Robert is a criminal!")
   else:
        print("No more inferences can be made.")
# Run forward chaining to attempt to derive the conclusion
forward_chaining()
 → Inferred: Weapon(T1)
     Inferred: Sells(Robert, T1, A)
```

Create a knowledge base consisting of first order logic statements and prove the given query using Resolution

Algorithm:

LU	Page C	(C) Page (C)
20/12/2u	Conjuctive Normal form (CNP).	Resolution:
	Steps: Eliminate implications and	Step 1: content effect convert the statements to CNF
1000	bidirectionals $\alpha \rightarrow \beta$ is $- \times \vee \beta$ $\alpha \rightarrow \beta$ is $(\alpha \rightarrow \beta) \wedge (\beta \rightarrow \alpha)$	Step a negate the statement that needs to be proved
	Step a: Move negation invide - (4p) => 3p -(3p) => 4p	step 3: Repeat until there is contradiction
	step3: Standardize variables. (\forall x)(\forall y) (\forall x)(\forall y) (\forall x)(\forall y) (\forall A)(\forall B).	-> Take a clause known as parent clauses and revolve -> Unity the variables if needed.
	Chery: Skolenize variable.	step 4: If weitication is possible. It is proved by resolution.
	Jy f(y) 25 f(G1). Steps: Drop universal quantifices	
	ty f(y) » f(y)	
	step6: Distribute V over A (o(NB) V (A NB) (o(VA) A (a NB) A (BVA) A (BVB)	

```
# Define the knowledge base (KB)
KB = {
    "food(Apple)": True,
    "food(vegetables)": True,
    "eats(Anil, Peanuts)": True,
    "alive(Anil)": True,
    "likes(John, X)": "food(X)", # Rule: John likes all food
    "food(X)": "eats(Y, X) and not killed(Y)", # Rule: Anything eaten and not killed is food
    "eats(Harry, X)": "eats(Anil, X)", # Rule: Harry eats what Anil eats
    "alive(X)": "not killed(X)", # Rule: Alive implies not killed
    "not killed(X)": "alive(X)", # Rule: Not killed implies alive
}
# Function to evaluate if a predicate is true based on the KB
def resolve(predicate):
    # If it's a direct fact in KB
```

```
if predicate in KB and isinstance(KB[predicate], bool):
       return KB[predicate]
   # If it's a derived rule
   if predicate in KB:
       rule = KB[predicate]
       if " and " in rule: # Handle conjunction
           sub_preds = rule.split(" and ")
           return all(resolve(sub.strip()) for sub in sub_preds)
       elif " or " in rule: # Handle disjunction
            sub_preds = rule.split(" or ")
           return any(resolve(sub.strip()) for sub in sub_preds)
       elif "not " in rule: # Handle negation
           sub_pred = rule[4:] # Remove "not "
           return not resolve(sub_pred.strip())
       else: # Handle single predicate
           return resolve(rule.strip())
   # If the predicate is a specific query (e.g., likes(John, Peanuts))
   if "(" in predicate:
       func, args = predicate.split("(")
       args = args.strip(")").split(", ")
       if func == "food" and args[0] == "Peanuts":
           return resolve("eats(Anil, Peanuts)") and not resolve("killed(Anil)")
       if func == "likes" and args[0] == "John" and args[1] == "Peanuts":
           return resolve("food(Peanuts)")
   # Default to False if no rule or fact applies
   return False
# Query to prove: John likes Peanuts
query = "likes(John, Peanuts)"
result = resolve(query)
# Print the result
print(f"Does John like peanuts? {'Yes' if result else 'No'}")
 → Does John like peanuts? Yes
```

Implement Alpha-Beta Pruning

Algorithm:

Algorith	m:
	Classmate Date Page
aolizhu	Alpha-Beta Pruning
	function AlphaBetaSearch (state):
	afin with the nights val
	from Max Value (State, -0, +0)
1	function ManValue (state, a, B):
	if Terminal Test (state):
	return vtility (state)
with the	16-00
	for each action in Actions (state):
	V= max (V, Min Value (Result (state, action
	х. в))
Like	if VZB:
	retur V
43.3	$\alpha = \max(\alpha, \nu)$
	orefuen V.
	function Minvalue (state, a, B):
	if TerminalTest (state):
	vieturen Utility (state)
1000 - 120	V = +0
	for each action in Actions (state)
	V= min(v, Manvalve (Result (state, a)
	x , B))
	or we with the die
	getuen V
	B: min(B, V)
	retur V.
B. Carlotte	THE RESERVE OF THE PARTY OF THE

Code:

Alpha-Beta Pruning Implementation

def alpha_beta_pruning(node, alpha, beta, maximizing_player):

Base case: If it's a leaf node, return its value (simulating evaluation of the node)

if type(node) is int:

return node

```
# If not a leaf node, explore the children
  if maximizing_player:
     max eval = -float('inf')
     for child in node: # Iterate over children of the maximizer node
       eval = alpha beta pruning(child, alpha, beta, False)
       max_eval = max(max_eval, eval)
       alpha = max(alpha, eval) # Maximize alpha
       if beta <= alpha: # Prune the branch
          break
     return max eval
  else:
     min_eval = float('inf')
     for child in node: # Iterate over children of the minimizer node
       eval = alpha_beta_pruning(child, alpha, beta, True)
       min eval = min(min eval, eval)
       beta = min(beta, eval) # Minimize beta
       if beta <= alpha: # Prune the branch
          break
     return min eval
# Function to build the tree from a list of numbers
def build tree(numbers):
  # We need to build a tree with alternating levels of maximizers and minimizers
  # Start from the leaf nodes and work up
  current level = [[n] for n in numbers]
  while len(current level) > 1:
     next level = []
     for i in range(0, len(current_level), 2):
       if i + 1 < len(current\_level):
          next_level.append(current_level[i] + current_level[i + 1]) # Combine two nodes
       else:
          next_level.append(current_level[i]) # Odd number of elements, just carry forward
     current_level = next_level
  return current_level[0] # Return the root node, which is a maximizer
# Main function to run alpha-beta pruning
def main():
  # Input: User provides a list of numbers
numbers = list(map(int, input("Enter numbers for the game tree (space-separated): ").split()))
  # Build the tree with the given numbers
  tree = build_tree(numbers)
  # Parameters: Tree, initial alpha, beta, and the root node is a maximizing player
  alpha = -float('inf')
```

```
beta = float('inf')
  maximizing_player = True # The root node is a maximizing player

# Perform alpha-beta pruning and get the final result
  result = alpha_beta_pruning(tree, alpha, beta, maximizing_player)

print("Final Result of Alpha-Beta Pruning:", result)

if __name__ == "__main__":
  main()
```

Enter numbers for the game tree (space-separated): 10 9 14 18 5 4 50 3 Final Result of Alpha-Beta Pruning: 50