

#### 1.2V TO 37V VOLTAGE REGULATOR

- OUTPUT VOLTAGE RANGE: 1.2 TO 37V
- OUTPUT CURRENT IN EXCESS OF 1.5A
- 0.1% LINE AND LOAD REGULATION
- FLOATING OPERATION FOR HIGH VOLTAGES
- COMPLETE SERIES OF PROTECTIONS: CURRENT LIMITING, THERMAL SHUTDOWN AND SOA CONTROL

#### **DESCRIPTION**

The LM117/LM217/LM317 are monolithic integrated circuit in TO-220, TO-220FP, TO-3 and D<sup>2</sup>PAK packages intended for use as positive adjustable voltage regulators.

They are designed to supply more than 1.5A of load current with an output voltage adjustable over a 1.2 to 37V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.



Figure 1: Schematic Diagram



September 2004 1/15

**Table 1: Absolute Maximum Ratings** 

| Symbol                          | Parameter                            | Parameter          |            |    |
|---------------------------------|--------------------------------------|--------------------|------------|----|
| V <sub>I</sub> - V <sub>O</sub> | Input-Reference Differential Voltage |                    | 40         | V  |
| Io                              | Output Current                       | Output Current     |            |    |
|                                 | Operating Junction Temperature for:  | LM117              | -55 to 150 |    |
| $T_{op}$                        |                                      | LM217              | -25 to 150 | °C |
|                                 |                                      | LM317              | 0 to 125   |    |
| P <sub>tot</sub>                | Power Dissipation                    | Internally Limited |            |    |
| T <sub>stg</sub>                | Storage Temperature                  |                    | -65 to 150 | °C |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

**Table 2: Thermal Data** 

| Symbol                | Parameter                           | D <sup>2</sup> PAK | TO-220 | TO-220FP | TO-3 | Unit |      |
|-----------------------|-------------------------------------|--------------------|--------|----------|------|------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case    | Max                | 3      | 3        | 5    | 4    | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient | Max                | 62.5   | 50       | 60   | 35   | °C/W |

Figure 2: Connection Diagram (top view)



**Table 3: Order Codes** 

| TYPE  | TO-220 | D <sup>2</sup> PAK | TO-220FP | TO-3   |
|-------|--------|--------------------|----------|--------|
| LM117 |        |                    |          | LM117K |
| LM217 | LM217T | LM217D2T           |          | LM217K |
| LM317 | LM317T | LM317D2T           | LM317P   | LM317K |

Figure 3: Basic Adjustable Regulator



**Table 4: Electrical Characteristics For LM117/LM217** ( $V_I - V_O = 5 \text{ V}$ ,  $I_O = 500 \text{ mA}$ ,  $I_{MAX} = 1.5 \text{ A}$  and  $P_{MAX} = 20 \text{ W}$ ,  $T_J = -55 \text{ to } 150^{\circ}\text{C}$  for LM117,  $T_J = -25 \text{ to } 150^{\circ}\text{C}$  for LM217, unless otherwise specified).

| Symbol               | Parameter                                            | Test Condition                                                           | ns                     | Min. | Тур.  | Max. | Unit |
|----------------------|------------------------------------------------------|--------------------------------------------------------------------------|------------------------|------|-------|------|------|
| $\Delta V_{O}$       | Line Regulation                                      | $V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}$                             | $T_J = 25^{\circ}C$    |      | 0.01  | 0.02 | %/V  |
|                      |                                                      |                                                                          |                        |      | 0.02  | 0.05 |      |
| $\Delta V_{O}$       | Load Regulation                                      | $V_O \le 5 V$                                                            | $T_J = 25^{\circ}C$    |      | 5     | 15   | mV   |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                        |                        |      | 20    | 50   |      |
|                      |                                                      | $V_O \ge 5 V$                                                            | $T_J = 25^{\circ}C$    |      | 0.1   | 0.3  | %    |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                        |                        |      | 0.3   | 1    |      |
| $I_{ADJ}$            | Adjustment Pin Current                               |                                                                          |                        |      | 50    | 100  | μΑ   |
| $\Delta I_{ADJ}$     | Adjustment Pin Current                               | $V_1 - V_0 = 2.5 \text{ to } 40V  I_0 = 1$                               |                        | 0.2  | 5     | μΑ   |      |
| V <sub>REF</sub>     | Reference Voltage (between pin 3 and pin 1)          | $V_I - V_O = 2.5 \text{ to } 40 \text{V } I_O = 10$<br>$P_D \le P_{MAX}$ | 1.2                    | 1.25 | 1.3   | V    |      |
| $\Delta V_{O}/V_{O}$ | Output Voltage<br>Temperature Stability              |                                                                          |                        |      | 1     |      | %    |
| I <sub>O(min)</sub>  | Minimum Load Current                                 | $V_{I} - V_{O} = 40 \text{ V}$                                           |                        |      | 3.5   | 5    | mA   |
| I <sub>O(max)</sub>  | Maximum Load Current                                 | $V_I - V_O \le 15 V$ $P_D <$                                             | P <sub>MAX</sub>       | 1.5  | 2.2   |      | Α    |
|                      |                                                      | $V_I - V_O = 40 \text{ V}$ $P_D < T_J = 25^{\circ}\text{C}$              | P <sub>MAX</sub>       |      | 0.4   |      |      |
| eN                   | Output Noise Voltage (percentage of V <sub>O</sub> ) | B = 10Hz to 100KHz                                                       | T <sub>J</sub> = 25°C  |      | 0.003 |      | %    |
| SVR                  | Supply Voltage Rejection (*)                         | $T_J = 25^{\circ}C$ f = 120Hz                                            | C <sub>ADJ</sub> =0    |      | 65    |      | dB   |
|                      |                                                      |                                                                          | C <sub>ADJ</sub> =10µF | 66   | 80    |      |      |

<sup>(\*)</sup>  $C_{ADJ}$  is connected between pin 1 and ground.

**Table 5: Electrical Characteristics For LM317** ( $V_I - V_O = 5 \text{ V}$ ,  $I_O = 500 \text{ mA}$ ,  $I_{MAX} = 1.5 \text{ A}$  and  $P_{MAX} = 20 \text{ W}$ ,  $T_J = 0$  to 125°C, unless otherwise specified).

| Symbol               | Parameter                                            | Test Condition                                                               | ns                     | Min. | Тур.  | Max. | Unit |
|----------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------|------|-------|------|------|
| $\Delta V_{O}$       | Line Regulation                                      | $V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}$                                 | T <sub>J</sub> = 25°C  |      | 0.01  | 0.04 | %/V  |
|                      |                                                      |                                                                              |                        |      | 0.02  | 0.07 |      |
| $\Delta V_{O}$       | Load Regulation                                      | $V_O \le 5 V$                                                                | $T_J = 25^{\circ}C$    |      | 5     | 25   | mV   |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                            |                        |      | 20    | 70   |      |
|                      |                                                      | $V_O \ge 5 V$                                                                | $T_J = 25^{\circ}C$    |      | 0.1   | 0.5  | %    |
|                      |                                                      | $I_O = 10 \text{ mA to } I_{MAX}$                                            |                        |      | 0.3   | 1.5  |      |
| $I_{ADJ}$            | Adjustment Pin Current                               |                                                                              |                        |      | 50    | 100  | μΑ   |
| $\Delta I_{ADJ}$     | Adjustment Pin Current                               | $V_1 - V_0 = 2.5 \text{ to } 40 \text{ V}$ $I_0 = 10 \text{ mA to } I_{MAX}$ |                        |      | 0.2   | 5    | μA   |
| V <sub>REF</sub>     | Reference Voltage (between pin 3 and pin 1)          | $V_I - V_O = 2.5 \text{ to } 40 \text{ V}  I_O = P_D \le P_{MAX}$            | 1.2                    | 1.25 | 1.3   | V    |      |
| $\Delta V_{O}/V_{O}$ | Output Voltage<br>Temperature Stability              |                                                                              |                        |      | 1     |      | %    |
| I <sub>O(min)</sub>  | Minimum Load Current                                 | V <sub>I</sub> - V <sub>O</sub> = 40 V                                       |                        |      | 3.5   | 10   | mA   |
| I <sub>O(max)</sub>  | Maximum Load Current                                 | $V_I - V_O \le 15 V$ $P_D < 0$                                               | < P <sub>MAX</sub>     | 1.5  | 2.2   |      | Α    |
|                      |                                                      | $V_I - V_O = 40 \text{ V}$ $P_D < P_{MAX}$ $T_J = 25 ^{\circ} \text{C}$      |                        |      | 0.4   |      |      |
| eN                   | Output Noise Voltage (percentage of V <sub>O</sub> ) | B = 10Hz to 100KHz $T_J = 25^{\circ}C$                                       |                        |      | 0.003 |      | %    |
| SVR                  | Supply Voltage Rejection (*)                         | $T_J = 25^{\circ}C$ f = 120Hz                                                | C <sub>ADJ</sub> =0    |      | 65    |      | dB   |
|                      |                                                      |                                                                              | C <sub>ADJ</sub> =10µF | 66   | 80    |      |      |

<sup>(\*)</sup>  $C_{\mbox{\scriptsize ADJ}}$  is connected between pin 1 and ground.

**Figure 4:** Output Current vs Input-output Differential Voltage



**Figure 5:** Dropout Voltage vs Junction Temperature



Figure 6: Reference Voltage vs Junction



Figure 7: Basic Adjustable Regulator



#### APPLICATION INFORMATION

The LM117/217/317 provides an internal reference voltage of 1.25V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see fig. 4), giving an output voltage  $V_O$  of:

$$V_O = V_{REF} (1 + R_2/R_1) + I_{ADJ} R_2$$

The device was designed to minimize the term  $I_{ADJ}$  (100µA max) and to maintain it very constant with line and load changes. Usually, the error term  $I_{ADJ}$  ×  $R_2$  can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM117/217317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulator are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor  $R_1$  (see fig. 4) should be tied as close as possible to the regulator, while the ground terminal of  $R_2$  should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow:

An input bypass capacitor of 0.1µF

An adjustment terminal to ground  $10\mu\text{F}$  capacitor to improve the ripple rejection of about 15 dB ( $C_{ADJ}$ ). An  $1\mu\text{F}$  tantalum (or  $25\mu\text{FAluminium}$  electrolytic) capacitor on the output to improve transient response. In additional to external capacitors, it is good practice to add protection diodes, as shown in fig.5. D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging.

Figure 8: Voltage Regulator with Protection Diodes



D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

Figure 9: Slow Turn-on 15V Regulator



Figure 10: Current Regulator



Figure 11: 5V Electronic Shut-down Regulator



Figure 12: Digitally Selected Outputs



(R<sub>2</sub> sets maximum V<sub>O</sub>)

Figure 13: Battery Charger (12V)



<sup>\*</sup>  $R_S$  sets output impedance of charger  $Z_O = R_S$  (1 +  $R_2/R_1$ ). Use of  $R_S$  allows low charging rates whit fully charged battery.

Figure 14: Current Limited 6V Charger



 $<sup>^{\</sup>star}$  R $_{3}$  sets peak current (0.6A for 1 0).  $^{\star\star}$  C $_{1}$  recommended to filter out input transients

### **TO-3 MECHANICAL DATA**

| DIM.   | mm.  |       |      |       | inch  |       |
|--------|------|-------|------|-------|-------|-------|
| DIIVI. | MIN. | TYP   | MAX. | MIN.  | TYP.  | MAX.  |
| Α      |      | 11.85 |      |       | 0.466 |       |
| В      | 0.96 | 1.05  | 1.10 | 0.037 | 0.041 | 0.043 |
| С      |      |       | 1.70 |       |       | 0.066 |
| D      |      |       | 8.7  |       |       | 0.342 |
| E      |      |       | 20.0 |       |       | 0.787 |
| G      |      | 10.9  |      |       | 0.429 |       |
| N      |      | 16.9  |      |       | 0.665 |       |
| Р      |      |       | 26.2 |       |       | 1.031 |
| R      | 3.88 |       | 4.09 | 0.152 |       | 0.161 |
| U      |      |       | 39.5 |       |       | 1.555 |
| V      |      | 30.10 |      |       | 1.185 |       |



### **TO-220 MECHANICAL DATA**

| DIM  | DIM.  |      |       |       | inch  |       |
|------|-------|------|-------|-------|-------|-------|
| DIN. | MIN.  | TYP  | MAX.  | MIN.  | TYP.  | MAX.  |
| А    | 4.40  |      | 4.60  | 0.173 |       | 0.181 |
| С    | 1.23  |      | 1.32  | 0.048 |       | 0.051 |
| D    | 2.40  |      | 2.72  | 0.094 |       | 0.107 |
| D1   |       | 1.27 |       |       | 0.050 |       |
| E    | 0.49  |      | 0.70  | 0.019 |       | 0.027 |
| F    | 0.61  |      | 0.88  | 0.024 |       | 0.034 |
| F1   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| F2   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| G    | 4.95  |      | 5.15  | 0.194 |       | 0.203 |
| G1   | 2.4   |      | 2.7   | 0.094 |       | 0.106 |
| H2   | 10.0  |      | 10.40 | 0.393 |       | 0.409 |
| L2   |       | 16.4 |       |       | 0.645 |       |
| L4   | 13.0  |      | 14.0  | 0.511 |       | 0.551 |
| L5   | 2.65  |      | 2.95  | 0.104 |       | 0.116 |
| L6   | 15.25 |      | 15.75 | 0.600 |       | 0.620 |
| L7   | 6.2   |      | 6.6   | 0.244 |       | 0.260 |
| L9   | 3.5   |      | 3.93  | 0.137 |       | 0.154 |
| DIA. | 3.75  |      | 3.85  | 0.147 |       | 0.151 |



# **TO-220FP MECHANICAL DATA**

| DIM  | mm.  |     |       |       |       |       |
|------|------|-----|-------|-------|-------|-------|
| DIM. | MIN. | TYP | MAX.  | MIN.  | TYP.  | MAX.  |
| Α    | 4.40 |     | 4.60  | 0.173 |       | 0.181 |
| В    | 2.5  |     | 2.7   | 0.098 |       | 0.106 |
| D    | 2.5  |     | 2.75  | 0.098 |       | 0.108 |
| Е    | 0.45 |     | 0.70  | 0.017 |       | 0.027 |
| F    | 0.75 |     | 1     | 0.030 |       | 0.039 |
| F1   | 1.15 |     | 1.50  | 0.045 |       | 0.059 |
| F2   | 1.15 |     | 1.50  | 0.045 |       | 0.059 |
| G    | 4.95 |     | 5.2   | 0.194 |       | 0.204 |
| G1   | 2.4  |     | 2.7   | 0.094 |       | 0.106 |
| Н    | 10.0 |     | 10.40 | 0.393 |       | 0.409 |
| L2   |      | 16  |       |       | 0.630 |       |
| L3   | 28.6 |     | 30.6  | 1.126 |       | 1.204 |
| L4   | 9.8  |     | 10.6  | 0.385 |       | 0.417 |
| L5   | 2.9  |     | 3.6   | 0.114 |       | 0.142 |
| L6   | 15.9 |     | 16.4  | 0.626 |       | 0.645 |
| L7   | 9    |     | 9.3   | 0.354 |       | 0.366 |
| DIA. | 3    |     | 3.2   | 0.118 |       | 0.126 |



# D<sup>2</sup>PAK MECHANICAL DATA

| DIM  |      | mm. |       |       | inch  | :h    |  |  |
|------|------|-----|-------|-------|-------|-------|--|--|
| DIM. | MIN. | TYP | MAX.  | MIN.  | TYP.  | MAX.  |  |  |
| А    | 4.4  |     | 4.6   | 0.173 |       | 0.181 |  |  |
| A1   | 2.49 |     | 2.69  | 0.098 |       | 0.106 |  |  |
| A2   | 0.03 |     | 0.23  | 0.001 |       | 0.009 |  |  |
| В    | 0.7  |     | 0.93  | 0.027 |       | 0.036 |  |  |
| B2   | 1.14 |     | 1.7   | 0.044 |       | 0.067 |  |  |
| С    | 0.45 |     | 0.6   | 0.017 |       | 0.023 |  |  |
| C2   | 1.23 |     | 1.36  | 0.048 |       | 0.053 |  |  |
| D    | 8.95 |     | 9.35  | 0.352 |       | 0.368 |  |  |
| D1   |      | 8   |       |       | 0.315 |       |  |  |
| Е    | 10   |     | 10.4  | 0.393 |       | 0.409 |  |  |
| E1   |      | 8.5 |       |       | 0.335 |       |  |  |
| G    | 4.88 |     | 5.28  | 0.192 |       | 0.208 |  |  |
| L    | 15   |     | 15.85 | 0.590 |       | 0.624 |  |  |
| L2   | 1.27 |     | 1.4   | 0.050 |       | 0.055 |  |  |
| L3   | 1.4  |     | 1.75  | 0.055 |       | 0.068 |  |  |
| М    | 2.4  |     | 3.2   | 0.094 |       | 0.126 |  |  |
| R    |      | 0.4 |       |       | 0.016 |       |  |  |
| V2   | 0°   |     | 8°    | 0°    |       | 8°    |  |  |



# Tape & Reel D<sup>2</sup>PAK-P<sup>2</sup>PAK-D<sup>2</sup>PAK/A-P<sup>2</sup>PAK/A MECHANICAL DATA

| DIM  |       | mm.   |       |       | inch  |       |
|------|-------|-------|-------|-------|-------|-------|
| DIM. | MIN.  | TYP   | MAX.  | MIN.  | TYP.  | MAX.  |
| А    |       |       | 180   |       |       | 7.086 |
| С    | 12.8  | 13.0  | 13.2  | 0.504 | 0.512 | 0.519 |
| D    | 20.2  |       |       | 0.795 |       |       |
| N    | 60    |       |       | 2.362 |       |       |
| Т    |       |       | 14.4  |       |       | 0.567 |
| Ao   | 10.50 | 10.6  | 10.70 | 0.413 | 0.417 | 0.421 |
| Во   | 15.70 | 15.80 | 15.90 | 0.618 | 0.622 | 0.626 |
| Ko   | 4.80  | 4.90  | 5.00  | 0.189 | 0.193 | 0.197 |
| Ро   | 3.9   | 4.0   | 4.1   | 0.153 | 0.157 | 0.161 |
| Р    | 11.9  | 12.0  | 12.1  | 0.468 | 0.472 | 0.476 |



#### **Table 6: Revision History**

| Date        | Revision | Description of Changes                                           |
|-------------|----------|------------------------------------------------------------------|
| 01-Sep-2004 | 10       | Mistake V <sub>REF</sub> ==> V <sub>O</sub> , tables 1, 4 and 5. |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com



This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.