Lecture 32, Nov. 8

32.1 Example. Determine whether 125 is a unit in \mathbb{Z}_{471} and, if so, find 125^{-1} .

Solution. We use EA with BS.

EA:

$$471 = 3 \cdot 125 + 96$$
$$125 = 1 \cdot 96 + 29$$
$$96 = 3 \cdot 29 + 9$$
$$29 = 3 \cdot 9 + 2$$

$$9 = 4 \cdot 2 + 1$$

BS:

$$1, -4, 13, -43, 56, -211$$

So we have $471 \cdot 56 - 125 \cdot 211 = 1$

Thus $125^{-1} = -211 = 260$ in \mathbb{Z}_{471} .

- **32.2 Definition** (Group). A group is a set G with an element e (called the identity element) and one binary operation $*: G \times G \to G$ such that
 - 1. * is associative. For all $a, b, c \in G$ we have

$$a*(b*c) = (a*b)*c$$

2. e is an identity for all $a \in G$

$$a * e = e * a = a$$

3. every $a \in G$ has a inverse. For all $a \in G$ there exists $b \in G$ such that

$$a * b = b * a = e$$

- **32.3 Definition** (Abelian Group). A group G is called abelian (or commutative) when
 - 4 * is commutative. For all $a, b \in G$ we have

$$a * b = b * a$$

Note.

- 1. the identity element $e \in G$ is unique. For all $a, u \in G$, if (a * u = a or u * a = a) then e = u
- 2. the inverse of $a \in G$ is unique. For all $a, b, c \in G$, if (a * b = e) and c * a = e) then b = c
- **32.4 Example.** When R is a ring, R is also an abelian group under its addition operation + (which we can call the additive group of R).

32.5 Example. Also when R is a ring, the set of all invertible elements in R under multiplication is a group, which we call the group of units of R, and denoted by R^* or R^\times

Remark. A product of two units is a unit.

32.6 Example. When F is a field, all non zero elements in F are invertible, so $F^* = F \setminus \{0\}$

32.7 Example. $(\mathbb{Z}[\sqrt{2}])^* = \{ \pm u^k \mid k \in \mathbb{Z} \}$

32.8 Definition. The group of units in \mathbb{Z}_n is called the group of units modulo n and it is denoted by U_n

$$U_n = \mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid a \text{ is invertible } \}$$
$$= \{ a \in \{1, 2, 3, \dots, n\} \mid gcd(a, n) = 1 \}$$

Remark. The reason we can write gcd(a, n) is because gcd(a, n) = gcd([a], n)

Remark. For $n \in \mathbb{Z}$ with $n \ge 2$ and $a, b \in \mathbb{Z}$, we cannot define

$$gcd([a],[b]) = gcd(a,b)$$

because for a, b, c, $d \in \mathbb{Z}$, $a = c \mod n$ and $b = d \mod n$ do not imply that gcd(a, b) = gcd(c, d).

32.9 Definition (Euler phi function). The map $\varphi \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ denoted by $\varphi(n) = |U_n|$ for $n \ge 2$, (where for a finite set S, |S| denotes the number of elements in S), is called the Euler phi function.

So we have

$$\varphi(n) = |U_n| = |\{a \in \mathbb{Z}_n \mid gcd(a, n) = 1\}|$$

=the number of integers a with $1 \le a \le n$ such that $gcd(a, n) = 1$

- **32.10 Example.** $\varphi(20) = 8$.
- **32.11 Example.** When p is prime and $k \in \mathbb{Z}^+$,

$$\varphi(p^k) = p^k - p^{k-1}$$

32.12 Theorem. For

$$n = \prod_{i=1}^{l} p_i^{k_i}$$

where p_i are distinct primes and $k_i \in \mathbb{Z}^+$

$$\varphi(n) = \varphi(\prod_{i=1}^{l} p_i^{k_i})$$

$$= \prod_{i=1}^{l} \varphi(p_i)^{k_i}$$

$$= \prod_{i=1}^{l} p_i^{k_i} (1 - \frac{1}{p_i})$$

$$= n \prod_{i=1}^{l} (1 - \frac{1}{p_i})$$

$$= n \prod_{p|n} (1 - \frac{1}{p})$$

Powers Modulo n

32.13 Example. What day will it be in 2¹⁰⁰ days?