## **Gaussian Blur**

1. Take a sample image.



Figure 1: Sample Image

2. Need to apply a Gaussian blur filter.

Def gen\_gaussian\_kernel(k\_siZe, sig): 
$$c = k\_siZe // 2$$
 
$$x, y = mgrid[0 - c : k\_siZe - c, 0 - c : k\_siZe - c]$$
 
$$g = 1 / (2 * pi * sig) * exp(-(square(x) + square(y)) / (2 * square(sig)))$$
 
$$return g$$

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Figure 2: Gaussian Filter Equation

Example of a 2-D Gaussian filters function:

Table 1: Example of 2-D Gaussian Filter

| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|------|------|------|------|------|------|------|
| 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
| 0.00 | 0.01 | 0.05 | 0.11 | 0.05 | 0.01 | 0.00 |
| 0.00 | 0.01 | 0.11 | 0.25 | 0.11 | 0.01 | 0.00 |
| 0.00 | 0.01 | 0.05 | 0.11 | 0.05 | 0.01 | 0.00 |
| 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Suppose, we have a 7x7 blue colour values of an image.

Table 2:7x7 blue colour values of an image

| 65 | 81 | 70 | 50 | 90 | 95 | 54 |
|----|----|----|----|----|----|----|
| 87 | 65 | 72 | 80 | 85 | 89 | 70 |
| 45 | 45 | 79 | 84 | 88 | 90 | 95 |
| 52 | 54 | 77 | 87 | 84 | 90 | 90 |

| 100 | 90  | 80 | 84 | 98 | 115 | 101 |
|-----|-----|----|----|----|-----|-----|
| 85  | 85  | 84 | 70 | 65 | 10  | 20  |
| 10  | 110 | 65 | 55 | 25 | 35  | 45  |

After applying the Gaussian filter,

**Table 3: Gaussian Filter Application Process** 

| 65 x 0.00  | 81 x 0.00  | 70 x 0.00 | 50 x 0.00 | 90 x 0.00 | 95 x 0.00  | 54 x 0.00  |
|------------|------------|-----------|-----------|-----------|------------|------------|
| 87 x 0.00  | 65 x 0.00  | 72 x 0.01 | 80 x 0.01 | 85 x 0.01 | 89 x 0.00  | 70 x 0.00  |
| 45 x 0.00  | 45 x 0.01  | 79 x 0.05 | 84 X 0.11 | 88 x 0.05 | 90 x 0.01  | 95 x 0.00  |
| 52 x 0.00  | 54 x 0.01  | 77 X 0.11 | 87 X 0.25 | 84 X 0.11 | 90 x 0.01  | 90 x 0.00  |
| 100 x 0.00 | 90 x 0.01  | 80 x 0.05 | 84 X 0.11 | 98 x 0.05 | 115 x 0.01 | 101 x 0.00 |
| 85 x 0.00  | 85 x 0.00  | 84 x 0.01 | 70 x 0.01 | 65 x 0.01 | 10 x 0.00  | 20 x 0.00  |
| 10 x 0.00  | 110 x 0.00 | 65 x 0.00 | 55 x 0.00 | 25 x 0.00 | 35 x 0.00  | 45 x 0.00  |

When we apply the filter, it will determine the new value of the blue colour pixel value for the centre pixel. This weighted average, the sum of the multiplications, becomes the new value for the centre pixel (3, 3).

Similarly, for different values of  $sigma(\sigma) = 1, 2, 3, 4, 5$ , the sample image in grayscale will be:



Figure 3: Sigma= 1



Figure 4: Sigma= 2



Figure 5: Sigma= 3



Figure 6: Sigma= 4



Figure 7: Sigma= 5

3. Now, the histograms of these 5 images are:



Figure 8: Histogram at Sigma=1



Figure 9: Histogram at Sigma=2



Figure 10:Histogram at Sigma=3



Figure 11: Histogram at Sigma=4



Figure 12: Histogram at Sigma=5

4. Correlation values for images at different sigma level:

**Table 4: Correlation Values at Different Sigma Levels** 

| Image at Different Sigma Level | Sigma=1 | Sigma=2  | Sigma=3  | Sigma=4  | Sigma=5  |
|--------------------------------|---------|----------|----------|----------|----------|
| Sigma=1                        |         | Positive | Positive | Negative | Negative |
| Sigma=2                        |         |          | Negative | Positive | Negative |
| Sigma=3                        |         |          |          | Positive | Positive |
| Sigma=4                        |         |          |          |          | Positive |