

Motivation

- You have trained many neural networks.
- We seek to deploy neural networks in the real world.
- Are networks robust to the inputs that are built to fool them?
 - Useful for spam classification, malware detection, network intrusion detection, etc.

Non-targeted

Example of Attack

Anything other than "Cat" **Targeted**

Misclassified as a specific

ResNet-50

Example of Attack

The target is "Star Fish"

Benign Image

0.64

Attacked Image

Example of Attack

Network

= ResNet-50

The target is "Keyboard"

Benign Image

Attacked Image

Non-perceivable

$$d(x^0, x) \le \varepsilon$$
 Need to consider human perception

• L2-norm

$$d(x^{0}, x) = \|\Delta x\|_{2}$$

= $(\Delta x_{1})^{2} + (\Delta x_{2})^{2} + (\Delta x_{3})^{2} \cdots$

L-infinity

$$d(\mathbf{x}^{0}, \mathbf{x}) = ||\Delta \mathbf{x}||_{\infty}$$
$$= max\{|\Delta x_{1}|, |\Delta x_{2}|, |\Delta x_{3}|, \dots\}$$

small L-∞ nge

$$w^*, b^* = arg \min_{w,b} L$$
 Difference?

Attack Approach Update input, not parameters

$$x^* = arg \quad \min \quad L(x)$$

Gradient Descent

Start from original image x^0

For
$$t = 1$$
 to T
$$x^t \leftarrow x^{t-1} - \eta g$$

$$\boldsymbol{g} = \begin{bmatrix} \frac{\partial L}{\partial x_1} |_{x=x^{t-1}} \\ \frac{\partial L}{\partial x_2} |_{x=x^{t-1}} \\ \vdots \end{bmatrix}$$

$$w^*, b^* = arg \min_{w,b} L$$
 Difference?

Update input, not parameters

Gradient Descent

Start from original image x^0

For
$$t=1$$
 to T
$$x^t \leftarrow x^{t-1} - \eta g$$
 If $d(x^0, x) > \varepsilon$
$$x^t \leftarrow fix(x^t)$$

L-infinity

update

$$\mathbf{x}^* = arg \min_{d(\mathbf{x}^0, \mathbf{x}) \le \varepsilon} L(\mathbf{x})$$

Fast Gradient Sign Method (FGSM)

https://arxiv.org/abs/1412.6572

Start from original image x^0

For
$$t = 1$$
 to T
$$x^t \leftarrow x^{t-1} - \eta g$$

L-infinity

Fast Gradient Sign Method (FGSM)

$$\varepsilon$$
 x^0

t from original image
$$x^{0}$$

$$t = 1 \text{ to } T$$

$$x^{t} \leftarrow x^{t-1} - \eta g$$

$$\varepsilon$$

$$\begin{bmatrix} +1 \\ -1 \\ +1 \\ \vdots \end{bmatrix}$$

$$g = \\ \pm 1 \\ sign \left(\frac{\partial L}{\partial x_{1}} |_{x=x^{t-1}} \right) \\ sign \left(\frac{\partial L}{\partial x_{2}} |_{x=x^{t-1}} \right) \\ \vdots$$

if t > 0, sign(t) = 1; otherwise, sign(t) = -1

$$\mathbf{x}^* = arg \min_{d(\mathbf{x}^0, \mathbf{x}) \le \varepsilon} L(\mathbf{x})$$

Iterative FGSM

https://arxiv.org/abs/1607.02533

Start from original image x^0

For
$$t=1$$
 to T
$$x^t \leftarrow x^{t-1} - \eta g$$
 If $d(x^0, x) > \varepsilon$
$$x^t \leftarrow fix(x^t)$$

$$\mathbf{g} = \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_1}|_{x=x^{t-1}}\right) \\ \mathbf{g} = \\ \pm 1 \end{bmatrix} \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_2}|_{x=x^{t-1}}\right) \\ \vdots \end{bmatrix}$$

White Box v.s. Black Box

- In the previous attack, we know the network parameters θ
 - This is called White Box Attack.
- You cannot obtain model parameters in most online API.
- Are we safe if we do not release model?
- No, because *Black Box Attack* is possible. 😊

Black Box Attack

If you have the training data of the target network

Train a proxy network yourself

Using the proxy network to generate attacked objects

What if we do not know the training data?

Black Box Attack

https://arxiv.org/pdf/1611.02770.pdf

這裡都是non-target attack,target attck比較難

Be Attacked

Proxy

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	0%	13%	18%	19%	11%
ResNet-101	19%	0%	21%	21%	12%
ResNet-50	23%	20%	0%	21%	18%
VGG-16	22%	17%	17%	0%	5%
GoogLeNet	39%	38%	34%	19%	0%

(lower accuracy → more successful attack)

Ensemble Attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	0%	0%	0%	0%	0%
-ResNet-101	0%	1%	0%	0%	0%
-ResNet-50	0%	0%	2%	0%	0%
-VGG-16	0%	0%	0%	6%	0%
-GoogLeNet	0%	0%	0%	0%	5%

The attack is so easy! Why?

To learn more:

Adversarial Examples Are Not Bugs, They Are Features

https://arxiv.org/abs/1905.02175

One pixel attack

Source of image: https://arxiv.org/abs/1710.08864

Cup(16.48%) Soup Bowl(16.74%)

Bassinet(16.59%)
Paper Towel(16.21%)

Video: https://youtu.be/tfpKIZIWidA

joystick

Teapot(24.99%)
Joystick(37.39%)

Hamster(35.79%) Nipple(42.36%)

Universal Adversarial Attack

https://arxiv.org/abs/1610.08401

Black Box Attack is also possible!

Beyond Images

感謝吳海濱同學提供實驗結果

Speech processing

Detect synthesized speech

Natural language processing

https://arxiv.org/abs/1908.07125

exercise

Question: Why did he walk? For exercise, Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times for each foot every night, saying that it stimulated his brain cells.

Question: Why did the university see a drop in applicants? In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university became a

crime and poverty

Attack in the Physical World

- An attacker would need to find perturbations that generalize beyond a single image.
- Extreme differences between adjacent pixels in the perturbation are unlikely to be accurately captured by cameras.
- It is desirable to craft perturbations that are comprised mostly of colors reproducible by the printer.

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP .	STOP
5′ 15°	STOP		STOP	STOP	STOP
10′ 0° https://arxiv.org/ab	STOP		STOP	STOP	STOP
s/1707.08945 10′ 30°		1 2 1 × 1 ×	STOP	STOP	STOP
40′ <mark>0</mark> °					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Attack in the Physical World

read as an 85-mph sign

https://youtu.be/4uGV_fRj0UA

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Adversarial Reprogramming

"Backdoor" in Model

https://arxiv.org/abs/1804.00792

Attack happens at the training phase

be careful of unknown dataset

Passive Defense

Passive Defense

Image Compression

8.9M 68.34K

https://arxiv.org/abs/1704.01155 https://arxiv.org/abs/1802.06816

Generator

https://arxiv.org/abs/1805.06605

Input image

Passive Defense - Randomization

https://arxiv.org/abs/1711.01991

Adversarial Training for Free!

https://arxiv.org/abs/1904.12843

Proactive Defense

Adversarial Training

Training a model that is robust to adversarial attack.

Given training set
$$\mathcal{X} = \{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \cdots, (x^N, \hat{y}^y)\}$$

Using ${\mathcal X}$ to train your model

For n = 1 to N

Can it deal with new algorithm?

Find adversarial input \tilde{x}^n given x^n by an attack algorithm

Find the problem

We have new training data

$$\mathcal{X}' = \{ (\widetilde{\mathbf{x}}^1, \widehat{\mathbf{y}}^1), (\widetilde{\mathbf{x}}^2, \widehat{\mathbf{y}}^2), \cdots, (\widetilde{\mathbf{x}}^N, \widehat{\mathbf{y}}^y) \}$$

Using both \mathcal{X} and \mathcal{X}' to update your model Fix it!

Data Augmentation

Concluding Remarks

- Attack: given the network parameters, attack is very easy.
- Even black box attack is possible
- Defense: Passive & Proactive
- Attack / Defense are still evolving.

Acknowledgement

感謝作業十助教團隊林毓宸同學、黃啟斌同學幫 忙蒐集參考

- FGSM (https://arxiv.org/abs/1412.6572)
- Basic iterative method (https://arxiv.org/abs/1607.02533)
- L-BFGS (https://arxiv.org/abs/1312.6199)
- Deepfool (https://arxiv.org/abs/1511.04599)
- JSMA (https://arxiv.org/abs/1511.07528)
- C&W (https://arxiv.org/abs/1608.04644)
- Elastic net attack (https://arxiv.org/abs/1709.04114)
- Spatially Transformed (https://arxiv.org/abs/1801.02612)
- One Pixel Attack (https://arxiv.org/abs/1710.08864)
- only list a few

What happened?

