The Square Tile Problem

Harry Richman

University of Michigan

15 November 2018

Floor:

Floor:

Problem:

- square tiles of any size, \$1 each
- what is minimal cost C(11, 13)?

Floor:

Theorem (Dehn):

A square tiling of a \mathbb{Q} -rectangle must have \mathbb{Q} -side lengths.

Floor:

Problem:

- square tiles of any integer size, \$1 each
- what is minimal cost C(11, 13)?

What tilings work?

What tilings work?

"dumb" tiling: $C(11, 13) \le 11 \cdot 13 = 143$

What tilings work?

"greedy" tiling: $C(11, 13) \le 1 + 5 + 2 = 8$

What tilings work?

better tiling: $C(11, 13) \le 6$

What tilings work?

better (best??) tiling: $C(11, 13) \le 6$

Problem: floor of dimensions m by n

- square tiles of integer size, \$1 each
- what is minimal cost C(m, n)?

Problem: floor of dimensions m by n

- square tiles of integer size, \$1 each
- what is minimal cost C(m, n)?

Upper bound: "dumb" tiling

$$C(m, n) \leq mn$$
.

Problem: floor of dimensions m by n

- square tiles of integer size, \$1 each
- what is minimal cost C(m, n)?

Upper bound: "dumb" tiling

$$C(m, n) \leq mn$$
.

Lower bound: assume $m \le n$; largest tile is $\le m$ by m

$$\Rightarrow C(m, n) = (\# \text{ squares}) \ge \frac{\text{total area}}{\text{max. tile area}} = \frac{mn}{m^2} = n/m$$

 \overline{OPEN} Problem: floor of dimensions m by n

- square tiles of integer size, \$1 each
- what is minimal cost C(m, n)?

Upper bound: "dumb" tiling

$$C(m, n) \leq mn$$
.

Lower bound: assume $m \le n$; largest tile is $\le m$ by m

$$\Rightarrow C(m, n) = (\# \text{ squares}) \ge \frac{\text{total area}}{\text{max. tile area}} = \frac{mn}{m^2} = n/m$$

Upper bound: "greedy" tiling

Upper bound: "greedy" tiling $C(11, 13) \le 1 + 5 + 2 = 8$

$$C(11,13) \le 1+5+2=8$$

	-)
	2	>
11	-	2
	2	2
	[2
	1	1

Upper bound: "greedy" tiling $C(11, 13) \le 1 + 5 + 2 = 8$

$$C(11,13) \le 1+5+2=8$$

Continued fraction: $\frac{13}{11} = 1 + \frac{2}{11} = 1 + \frac{1}{5 + \frac{1}{2}}$

Upper bound: "greedy" tiling $C(11, 13) \le 1 + 5 + 2 = 8$

$$C(11,13) \le 1 + 5 + 2 = 8$$

Continued fraction:
$$\frac{13}{11}=1+\frac{2}{11}=1+\frac{1}{5+\frac{1}{2}}$$

 $\Rightarrow C(m, n) \leq \text{(sum of continued-fraction terms)}$

Lower bound: $C(m, n) \ge n/m$

Can this be improved?

Lower bound: $C(m, n) \ge n/m$

Can this be improved?

$$C(1,13) = 13 = n/m$$

Lower bound: $C(m, n) \ge n/m$

Can this be improved?

$$C(1,13) = 13 = n/m$$

If "aspect ratio" n/m is bounded, lower bound CAN be improved

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(\mathsf{voltage}\ \mathsf{drop}) = (\mathsf{current}) \times (\mathsf{resistance})$$

Ohm's Law:

$$(voltage drop) = (current) \times (resistance)$$

Consider "current-voltage space":

Square tiles \leftrightarrow unit resistors in IV-space!

A Lower Bound

Theorem (Kenyon)

Let C(m, n) be the minimal cost of square-tiling a floor of size m by n, where m and n have no common factor. Then

$$C(m, n) \ge \log_2(n)$$

References

R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte (1940) The Dissection of Rectangles into Squraes *Duke Math. J.*, 7, no. 1, pp. 312–340.

Richard Kenyon (1996)

Tiling a Rectangle with the Fewest Squares

J. Combin. Theory Ser. A, 76, pp. 272-291.

Thank you!