# A modeling approach to forecasting data with reporting delay

24º SINAPE | Simpósio Nacional de Probabilidade e Estatística



Izabel Nolau

August, 2022

Instituto de Matemática Universidade Federal do Rio de Janeiro

Joint work with Dani Gamerman (UFRJ/UFMG) and Leonardo S Bastos (FIOCRUZ)





Monitoring the spread of illnesses through a surveillance system is essential!

A surveillance system aims to:

and should present:

- sensitivity
- specificity
- timeliness



Lack of timeliness may be due to:

- laboratory confirmation
- logistical problems
- infrastructure difficulties

The difference between the reported and the true disease incidence varies according to the reporting delays

This is a problem where the observable data will eventually become available

! observed data  $\neq$  truth



SARI cases in Belo Horizonte, Brazil by reporting date





SARI cases in Belo Horizonte by reporting date up to week 25





Suppose today is 20/6/2020 (week 25)





We aim to predict the occur-but-not-yet-reported cases





and in the future, compare with what actually happened





#### Now + Forecasting = Nowcasting!

There are different approaches in the literature:

- Regression-like approach using proxies (Ginsberg et al., 2009)
- Model historic delay to correct present data (Brookmeyer and Damiano, 1989)
- Bayesian hierarchical modeling approach (Bastos et al., 2019)

In these models, there is no specific component relating to the disease dynamics that collaborate toward forecasting

We aim to propose a Bayesian model that enables nowcasting and forecasting!



- ∘ *T*: current time (today)
- t: time index, varying in  $\{1, 2, \dots, T + H\}$
- o D: maximum relevant delay
- o d: delay index, varying in  $\{k, k+1, \ldots, D\}$
- $\circ$   $n_{t,d}$ : number of events occurred at time t recorded after d units of time
- $N_t = \sum_{d=k}^{D} n_{t,d}$ : total number of events occurred at time t
- ! when there is concomitant available information, set k=0



| -         |                    |                  |                     |                  |                  |
|-----------|--------------------|------------------|---------------------|------------------|------------------|
| t         | 0                  | 1                | <br>D − 1           | D                | N                |
| 1         | n <sub>1,0</sub>   | n <sub>1,1</sub> | <br>$n_{1,D-1}$     | n <sub>1,D</sub> | N <sub>1</sub>   |
| 2         | $n_{2,0}$          | $n_{2,1}$        | <br>$n_{2,D-1}$     | $n_{2,D}$        | N <sub>2</sub>   |
| 3         | n <sub>3,0</sub>   | $n_{3,1}$        | <br>$n_{3,D-1}$     | $n_{3,D}$        | N <sub>2</sub>   |
| :         |                    |                  |                     |                  | :                |
| T-D       | $n_{T-D,0}$        | $n_{T-D,1}$      | <br>$n_{T-D,D-1}$   | $n_{T-D,D}$      | N <sub>T-D</sub> |
| T - D + 1 | $n_{T-D+1,0}$      | $n_{T-D+1,1}$    | <br>$n_{T-D+1,D-1}$ | $n_{T-D+1,D}$    | $N_{T-D+1}$      |
| :         |                    |                  |                     |                  | :                |
| T — 1     | $n_{T=1,0}$        | $n_{T=1,1}$      | <br>$n_{T-1,D-1}$   | $n_{T-1,D}$      | $N_{T-1}$        |
| T         | $n_{T,0}$          | $n_{T,1}$        | <br>$n_{T,D-1}$     | $n_{T,D}$        | N <sub>T</sub>   |
| T+1       | $n_{T+1,0}$        | $n_{T+1,1}$      | <br>$n_{T+1,D-1}$   | $n_{T+1,D}$      | $N_{T+1}$        |
| T+2       | n <sub>T+2,0</sub> | $n_{T+2,1}$      | <br>$n_{T+2,D-1}$   | $n_{T+2,D}$      | $N_{T+2}$        |
| :         |                    |                  |                     |                  | :                |
| T + H     | $n_{T+H,0}$        | $n_{T+H,1}$      | <br>$n_{T+H,D-1}$   | $n_{T+H,D}$      | N <sub>T+H</sub> |

Tabela 1: Data structure in a reporting delay problem.



| d             | k               | k + 1             | <br>D − 1             | D                | N                |
|---------------|-----------------|-------------------|-----------------------|------------------|------------------|
| 1             | $n_{1,k}$       | $n_{1,k+1}$       | <br>$n_{1,D-1}$       | n <sub>1,D</sub> | N <sub>1</sub>   |
| 2             | $n_{2,k}$       | $n_{2,k+1}$       | <br>$n_{2,D-1}$       | $n_{2,D}$        | N <sub>2</sub>   |
| 3             | $n_{3,k}$       | $n_{3,k+1}$       | <br>$n_{3,D-1}$       | $n_{3,D}$        | N <sub>2</sub>   |
| :             |                 |                   |                       |                  | :                |
| T-D+k         | $n_{T-D+k,k}$   | $n_{T-D+k,k+1}$   | <br>$n_{T-D+k,D-1}$   | $n_{T-D+k,D}$    | $N_{T-D+k}$      |
| T - D + k + 1 | $n_{T-D+k+1,k}$ | $n_{T-D+k+1,k+1}$ | <br>$n_{T-D+k+1,D-1}$ | $n_{T-D+k+1,D}$  | $N_{T-D+k+1}$    |
| :             |                 |                   |                       |                  | :                |
| T — 1         | $n_{T-1,k}$     | $n_{T-1,k+1}$     | <br>$n_{T-1,D-1}$     | $n_{T-1,D}$      | $N_{T-1}$        |
| T             | $n_{T,k}$       | $n_{T,k+1}$       | <br>$n_{T,D-1}$       | $n_{T,D}$        | N <sub>T</sub>   |
| T + 1         | $n_{T+1,k}$     | $n_{T+1,k+1}$     | <br>$n_{T+1,D-1}$     | $n_{T+1,D}$      | $N_{T+1}$        |
| T+2           | $n_{T+2,k}$     | $n_{T+2,k+1}$     | <br>$n_{T+2,D-1}$     | $n_{T+2,D}$      | N <sub>T+2</sub> |
| :             |                 |                   |                       |                  | :                |
| T + H         | $n_{T+H,k}$     | $n_{T+H,k+1}$     | <br>$n_{T+H,D-1}$     | $n_{T+H,D}$      | N <sub>T+H</sub> |

**Tabela 2:** Data structure in a reporting delay problem, with first delay *k*.

## Proposed Model



We assume the following structure for  $N_t$ 

$$N_t \sim NegBin(\theta_t, \phi)$$
 $\theta_t = \frac{a_{\theta}c_{\theta}f_{\theta}\exp(-c_{\theta}t)}{[b_{\theta} + \exp(-c_{\theta}t)]^{f_{\theta}+1}}$ 

for t = 1, ..., T + H, such that

$$E[N_t] = \theta_t$$
 and  $Var[N_t] = \theta_t \left(1 + \frac{\theta_t}{\phi}\right)$ 

- (!) when  $\phi \to \infty$ , the Negative Binomial reduces to the Poisson
- (!) for t > T D + k,  $N_t$  is a function of unobserved quantities

## **Proposed Model**



We assume the following structure for  $n_{t,d}$ 

$$n_{t,d} \sim NegBin(\lambda_{t,d}, \sigma)$$
  
 $\log(\lambda_{t,d}) = \alpha_t + \beta_d$ 

for t = 1, ..., T + H, d = k + 1, ..., D, where

$$\exp(\alpha_t) = \frac{a_{\alpha}c_{\alpha}f_{\alpha}\exp(-c_{\alpha}t)}{[b_{\alpha} + \exp(-c_{\alpha}t)]^{f_{\alpha}+1}} \text{ and } \beta_d = \gamma d$$

- ! we do not specify a distribution for  $n_{t,k}$  since  $n_{t,d} = N_t \sum_{d=k+1}^{D} n_{t,d}$
- $\bullet$  must be greater than  $\sum_{d=k+1}^{D} \lambda_{t,d}$

#### **Preliminary Results**



To assess the effectiveness of the proposed model, artificial data was generated with  $\phi \to \infty$  and  $\sigma \to \infty$ 





The results accurately recovered the real parameters' values



| t  | 2         | 3        | 4        | 5        | 6        | 7       | 8       | 9       | 10      | N <sub>t</sub> |
|----|-----------|----------|----------|----------|----------|---------|---------|---------|---------|----------------|
| 27 |           |          |          |          |          |         |         |         | 5       | 567            |
|    |           |          |          |          |          |         |         |         | 2 (0;6) | 589 (542;642)  |
| 28 |           |          |          |          |          |         |         | 4       | 3       | 406            |
|    |           |          |          |          |          |         |         | 3 (0;7) | 2 (0;5) | 425 (383;468)  |
| 29 |           |          |          |          |          |         | 5       | 4       | 2       | 311            |
|    |           |          |          |          |          |         | 4 (0;8) | 2 (0;5) | 1 (0;4) | 306 (273;343)  |
| 30 |           |          |          |          |          | 3       | 6       | 1       | 1       | 209            |
|    |           |          |          |          |          | 4 (1;9) | 2 (0;6) | 1 (0;4) | 1 (0;3) | 219 (190;249)  |
| 31 |           |          |          |          | 8        | 2       | 5       | 2       | 0       | 185            |
|    |           |          |          |          | 5 (1;10) | 3 (0;7) | 2 (0;5) | 1 (0;3) | 0 (0;3) | 157 (130;182)  |
| 32 |           |          |          | 9        | 3        | 1       | 1       | 0       | 1       | 124            |
|    |           |          |          | 6 (2;11) | 3 (0;8)  | 2 (0;6) | 1 (0;4) | 1 (0;3) | 0 (0;2) | 112 (92;133)   |
| 33 |           |          | 9        | 8        | 2        | 6       | 1       | 1       | 0       | 83             |
|    |           |          | 7 (3;13) | 4 (1;9)  | 2 (0;6)  | 1 (0;4) | 1 (0;3) | 0 (0;2) | 0 (0;2) | 79 (62;98)     |
| 34 |           | 8        | 4        | 4        | 2        | 1       | 2       | 0       | 0       | 54             |
|    |           | 8 (3;15) | 5 (2;10) | 3 (0;7)  | 2 (0;5)  | 1 (0;3) | 0 (0;3) | 0 (0;2) | 0 (0;2) | 58 (44;73)     |
| 35 | 8         | 3        | 5        | 2        | 2        | 1       | 0       | 0       | 0       | 39             |
|    | 10 (4;16) | 6 (2;11) | 4 (0;8)  | 2 (0;5)  | 1 (0;4)  | 1 (0;3) | 0 (0;2) | 0 (0;2) | 0 (0;2) | 40 (29;55)     |

**Tabela 3:** True values (upper number), posterior median (lower number), and respective 95% credibility interval (in parenthesis) for the non-observed counts.

#### Conclusions



We are proposing a promising model to nowcast and forecast

The model can be used in real-time decision-making as well as in making shortterm and long-term predictions

The example shows the model's ability to recover the parameters accurately and nowcast the unobserved values

Future work: extend this model to accommodate more waves

#### Referências

- Bastos, L. S., Economou, T., Gomes, M. F., Villela, D. A., Coelho, F. C., Cruz, O. G., Stoner, O., Bailey, T., and Codeço, C. T. "A modelling approach for correcting reporting delays in disease surveillance data." *Statistics in medicine*, 38(22):4363–4377 (2019).
- Brookmeyer, R. and Damiano, A. "Statistical methods for short-term projections of AIDS incidence." Statistics in Medicine, 8(1):23–34 (1989).
- Gamerman, D. and Lopes, H. F. Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC press (2006).
- Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., and Brilliant, L. "Detecting influenza epidemics using search engine query data." *Nature*, 457(7232):1012–1014 (2009).
- Stoner, O., Economou, T., and Drummond Marques da Silva, G. "A hierarchical framework for correcting under-reporting in count data." *Journal of the American Statistical Association*, 114(528):1481–1492 (2019).

