Corrigé exercice 45:

Rappel de cours : Soit a et b deux réels, a non nul. Les solutions de l'équation différentielle y' = ay + b sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{ax} - \frac{b}{a}$, avec k une constante réelle.

- 1. $2y'-y=2 \Leftrightarrow 2y'=y+2 \Leftrightarrow y'=\frac{1}{2}y+1$, on est donc dans le cas où $a=\frac{1}{2}$ et b=1. Donc les solutions de 2y'-y=2 sont les fonctions définies sur \mathbb{R} par $y(x)=k\mathrm{e}^{\frac{x}{2}}-2$, où k est un réel.
- 2. $\sqrt{2}y' = \sqrt{6}y 1 \Leftrightarrow y' = \frac{\sqrt{6}}{\sqrt{2}}y \frac{1}{\sqrt{2}} \Leftrightarrow y' = \sqrt{3}y \frac{1}{\sqrt{2}}$, on est donc dans le cas où $a = \sqrt{3}$ et $b = -\frac{1}{\sqrt{2}}$. Donc les solutions de $\sqrt{2}y' = \sqrt{6}y 1$ sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{\sqrt{3}x} + \frac{\sqrt{6}}{6}$, où k est un réel.

Corrigé exercice 46:

- 1. $2y' + 3y = 3y' 2y + 3 \Leftrightarrow y' = 5y 3$, on est donc dans le cas où a = 5 et b = -3. Donc les solutions de 2y' + 3y = 3y' 2y + 3 sont les fonctions définies sur \mathbb{R} par $y(x) = k\mathrm{e}^{5x} + \frac{3}{5}$, où k est un réel. On détermine k tel que $F\left(\frac{1}{5}\right) = -\frac{2}{5} \Leftrightarrow k\mathrm{e}^{5\times\frac{1}{5}} + \frac{3}{5} = -\frac{2}{5} \Leftrightarrow k\mathrm{e} = -1 \Leftrightarrow k = -\mathrm{e}^{-1}$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = -\mathrm{e}^{-1} \times \mathrm{e}^{5x} + \frac{3}{5} = -\mathrm{e}^{5x-1} + \frac{3}{5}$.
- 2. $2y' 3y = 2y 3y' + 5 \Leftrightarrow 5y' = 5y + 5 \Leftrightarrow y' = y + 1$, on est donc dans le cas où a = b = 1. Donc les solutions de 2y' 3y = 2y 3y' + 5 sont les fonctions définies sur \mathbb{R} par $y(x) = ke^x 1$, où k est un réel. On détermine k tel que $F(0) = 1 \Leftrightarrow ke^0 1 = 1 \Leftrightarrow k = 2$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = 2e^x 1$.
- 3. $3y'-3y=2y'-2y+e^2 \Leftrightarrow y'=y+e^2$, on est donc dans le cas où a=1 et $b=e^2$. Donc les solutions de $3y'-3y=2y'-2y+e^2$ sont les fonctions définies sur $\mathbb R$ par $y(x)=ke^x-e^2$, où k est un réel. On détermine k tel que $F(2)=2e^2 \Leftrightarrow ke^2-e^2=2e^2 \Leftrightarrow ke^2=3e^2 \Leftrightarrow k=3$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x\in\mathbb R$ par $F(x)=3e^x-e^2$.