Subject Description Form

Subject Code	COMP4011						
Subject Title	Theory of Computation						
Credit Value	3						
Level	4						
Pre-requisite / Co-requisite / Exclusion	Pre-requisite: COMP3011						
Objectives	The objectives of this subject are to:						
	• provide students with concepts in theory of computation; and						
	• develop students' ability for comprehending mathematical proofs (in theory of computation).						
Intended	Upon completion of the subject, students will be able to:						
Learning Outcomes	Professional/academic knowledge and skills						
	(a) analyze and design automata and Turing machines;						
	(b) prove basic (mathematical) results in theory of computation; and						
	(c) demonstrate the understanding in computability, decidability, and complexity.						
	<u>Attributes for all-roundedness</u>						
	(d) solve problems independently; and						
	(e) think critically for improvement in solutions.						
Subject Synopsis/	Topic						
Indicative Syllabus	1. Automata						
	Finite automata (DFA, NFA).						
	2. Regular Expressions and Languages						
	Regular expressions, conversion between DFA and regular expressions, properties of regular languages.						
	3. Context-free Grammars and Languages						
	Context-free grammars, parse trees, ambiguity in grammars, normal forms, Chomsky hierarchy.						
	4. Pushdown Automata						
	Pushdown automata (PDA), pumping lemma, properties of PDA.						

	5. Turing Machines								
	Turing machines (TM), extensions to TM, relation to computers.								
	6. Computability and Decidability								
	Computability, Church-Turing thesis, the halting problem, other undecidable problems, technique of reduction.								
	 7. Intractable Problems The classes P and NP, NP-completeness. 8. Advanced Topics and Applications Polynomial-space Turing machines, randomized Turing machines, primality testing, cryptography, game theory, quantum computing. 								
Teaching/ Learning Methodology	Lectures provide students the main concepts of the topic, together with comprehensive examples for easy understanding. Tutorial sessions offer an opportunity to students for practicing their techniques. Assignments help students develop their design and analysis skills.								
Assessment Methods in Alignment with Intended	Specific assessment methods/tasks	% Intended subject learning outcomes to be assessed (Please tick as appropriate)							
Learning Outcomes			a	b	c	d	e		
	Continuous Assessment	60%							
	1. Assignments		√	√	✓	✓	✓		
	Examination	40%	✓	✓	✓	✓	✓		
	Total	100%							
	Explanation of the appropriateness of the assessment methods in assessing intended learning outcomes: Both assignments and examination are used to test students' understanding o subject materials.								
Student Study	Class contact:								
Effort Expected	Lecture					26 Hrs.			
	■ Tutorial				13 Hrs.				
	Other student study effort:								
	 Reading Book Chapters, Assignments Total student study effort 					66 Hrs.			
						105 Hrs.			

Reading List and References

Reference Book:

1. Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey D., *Introduction to Automata Theory, Languages, and Computation*, 3rd Edition, Pearson, ISBN 1292039051, 2013.