Let $(T; \{V_t | t \in T\})$ be the given tree decomposition rooted at r. There are k $(s_i; t_i)$ terminal pairs. We focus on the tree-width 2 case. For convenience, we assume that there are no two pieces V_{t_1} and V_{t_2} where (t_1, t_2) is an edge and $V_{t_1} \subset V_{t_2}$. Consider the subgraph G_t . Note that there can be at most one i for which P_i both enters and leaves G_t , since any such path uses up at least 2 vertices of V_t . Note also that there can be at most 3 s_i - t_i terminal pairs that have one end in G_t and the other one outside (as the paths connecting such pairs must go through V_t .

- If there are 3 such pairs, that each node $v \in V_t$ must be connected via disjoint paths to one of them, and terminal pairs inside G_t must connect via paths inside G_t . There are O(1) cases here to consider depending on which of the nodes in V_t is used to connect which of the 3 separated terminal pairs.
- If there are 2 such terminal pairs, than of the at most 3 nodes in V_t 2 must be connected via disjoint paths to one of them, the third is either not used in any of the paths or is used by path connecting two terminals s_i and t_i inside, or two terminals outside G_t . Now there are O(k) cases to consider, depending on which terminal pair i is using the extra node.
- If there is only one such pair, than we can have one pair i with both terminals inside or outside of G_t , that uses 2 nodes in V_t , or the one path leaving G_t , can leave, come back and leave again, or one or two paths can use just one node in V_t while having both terminals inside or both outside of G_t . There are $O(k^2)$ cases to consider here.
- If there are no such pairs, than one path can use 2 or 3 nodes in V_t , or multiple paths can use one node each. Now there are $O(k^3)$ cases to consider.

We define multiple subproblems for each t according to the possibilities discussed above. For the at most 3 nodes in V_t there are at most $O(k^3)$ possible cases. This defines $O(k^3)$ subproblems. The value of a subproblem is simply 0 or 1 (or true or false) depending whether or not there are disjoint paths in G_t that satisfy the state of the nodes in V_t corresponding to the subproblem, that is, connect each $v \in V_t$ to the terminal in question inside G_t (and possibly connect the two nodes in V_t to each other, if needed), via disjoint paths inside G_t . The desired disjoint paths exists if and only if the value of one of the subproblems that connects all terminal pairs within the subgraph G_r (which is the whole graph).

Given values for all the subproblems associated with the children t_1, \ldots, t_d of a node t, we want to get the value of the given subproblem efficiently. To do this consider a node $v \in V_t$, the subproblem under question wants a particular paths P_i to go through this vertex in O(d) time.

 $^{^{1}}$ ex209.650.476