3. Eukaryotic chromosome structure

3.1 The mitotic (有丝分裂) chromosome

- Two identical sister chromatids (染色单体) joined at their centromeres (着丝粒).
- The ends of the chromosomes are the telomeres (端粒).

 Consecutive loops may trace a helical path along the length (长轴) of the chromosome.

3.2 The centromere

- The centromere is the constricted region where the two sister chromatids are joined in the metaphase chromosome.
 着丝粒是分裂中期两条姐妹染色单体相连的紧缩区域。
- It is the site of assembly of the kinetochore (动粒), a protein complex which provides a microtubule (微管) attachment point.

• The microtubules act as to separate and pull the chromatids (染色单体) to the poles (两极) at anaphase (后期) and telophase (末期).

• Function: Centromere is responsible for the correct segregation of the chromosome at mitosis and meiosis (减数分裂).

• Centromeres vary greatly in size.

In the majority of eukaryotes, centromeres are >40 kb and are composed of largely repetitive (重复的) DNA, known as satellite DNA (卫星DNA).

3.3 Telomeres

- Telomeres are specialized DNA sequences that form the ends of the linear DNA molecules of the eukaryotic chromosomes. 端粒是形成真核生物染色体线性DNA分子末端 的特化了的DNA序列。
- Telomeres consist of hundreds of copies of a simple, non-informational repetitive sequence (TG-rich repeat) with the 3'-end overhanging to (突出于) the 5'-end.

5' TTAGGGTTAGGGTTA GGGTTAGGG 3'
3' AATCCCAATCCC

Structure of a typical telomere

• TG-rich strand forms a loop by displacing its homolog (同源) in an upstream region of the telomere.

Telomere binding proteins, e.g. TRF2

TTAGGG AATCCC

TRF2

- Functions of telomeres
- (1) Seal and stabilize the chromosome ends

(The ends of linear chromosomes cannot be fully replicated.)

- (2) Related to aging and cancer
 - Telomeres are synthesized by telomerase (端粒酶).
 - Telomerase is a ribonucleoprotein enzyme.

RNA+Protein

3.4 Heterochromatin and euchromatin

 Chromosomes consist of heterochromatin (异染色质) and euchromatin (常染色质).

Heterochromatin

Densely packaged in interphase (not so compacted as at metaphase)

Dense staining with dyes

Typically found at centromeres, telomeres and other highly repetitive sequences. (one of X chromosomes in female mammals)

Euchromatin

Less densely packaged

Staining poorly with dyes

• Heterochromatin forms a series of discrete clumps (不连续的团块), and is most often found at the nuclear periphery (边缘), and at the nucleolus. Euchromatin has a relatively dispersed appearance in the nucleus and occupies most of the nuclear region.

- Heterochromatin is transcriptionally inactive.
 In contrast, euchromatin showed higher levels of gene expression.
 - Ribosomal DNA in the nucleolus has the general compacted appearance and behavior of heterochromatin (such as late replication), yet is engaged in very active transcription.
 - Active genes are contained within euchromatin, but only a minority of the sequences in euchromatin are transcribed at any time.

Euchromatin is not homogeneous (均一的).

Relative inactive regions

Consisting of chromosomal loops compacted in 30 nm fibers

Active regions $(\sim 10\%)$

'Beads on a string' structure

Be depleted of nucleosomes

Loose structure

3.5 DNase I hypersensitivity

Condensed chromatin

Deoxyribonuclease (脱氧核糖核酸酶) I (DNase I) cuts the backbone of DNA unless the DNA is protected by bound proteins.

Open chromatin

Naked(裸露的) DNA is easily cut by DNase I.

Treatment with DNase I

Condensed chromatin

Degraded DNA

- DNase I hypersensitivity has been used to map the regions of transcriptionally active chromatin:
 - Short regions: 30 nm fiber is interrupted by the binding of a <u>sequence-specific regulatory</u> <u>protein</u>.
 - Longer regions: where transcription is taking place.

 These regions vary between different cell types and different phases during cell development.

3.6 CpG methylation (甲基化)

 CpG methylation is the methylation of C-5 in the cytosine (胞嘧啶) base of 5'-CG-3' sequences in mammalian cells.

Functions of CpG methylation

- (1) Involved in keeping the appropriate level of chromosomal packing
 - CpG methylation induces tighter wrapping of DNA around the histone core.
 - Unmethylated CpG islands may be largely free of nucleosomes, and are coincident with regions of particular sensitivity to DNase I.

(2) Regulate gene expression

- The methylation of CpG is associated with transcriptionally inactive regions of chromatin.
- Unmethylated CpG islands surround the promoter regions
 of active genes (e.g. housekeeping genes 管家基因)

CpG methylation mutation

When 5-methylcytosine loses its amino group, thymine results. Since this is a normal DNA base, it is not repaired.

3.7 Histone modification

- Acetylation(乙酰化)
- Phosphorylation (磷酸化)
- Methylation(甲基化)
- Mono-ubiquitination (单泛素化)
- Chemical modification of histone proteins is believed to controls the degree of chromatin condensation.

(1) Acetylation (乙酰化)

Acetylation of histones neutralizes the positive charge of histones.

- The loss of positive charge reduces the affinity of the tails for the negatively charged backbone of the DNA.
- Histone amino-terminal tails are required to form the 30-nm fiber, and modification of the tails modulates this function.
- Histone acetylation is generally associated with gene activation.

(2) Phosphorylation (磷酸化)

- Phosphorylation occurs on the hydroxyl group (羟基) of serine (Ser), threonine (Thr) and tyrosine (Tyr).
- ➤ Phosphorylation introduces a negative charge in the form of the phosphate group. → Decondensed chromatin
- Histone phosphorylation is generally associated with gene activation.
- The condensation of chromosomes at mitosis is accompanied by the phosphorylation of histone H1.

(3) Methylation (甲基化)

Lysine methylation retains the positive charge, and lysine can be mono-, di-, or trimethylated.

> Arginine can be mono- or dimethylated.

(4) Mono-ubiquitination (单泛素化)

- ➤ 泛素连接酶可催化组蛋白 Lys残基与泛素之间成键。
- ▶ 组蛋白H2B的 单泛素化可能 导致基因沉默 或者影响延伸。

3.8 Histone variants

 All histones except H4 are members of families of related variants.

(H5 replaces H1 in some very inactive chromatin, for example in avian red blood cells.)

- Histone variants can be closely related or highly different from general histones.
- Different variants serve different functions in the cell.