Power law Dishibution
6~
Pareto Distribution
\sim
80-20 Rule Distribution
Tal Jan
80-20 Rule Distribution organisation 86-1. W - 20-1. Pepople
~ 1.0
family 80-1 20-1.
20% - 80%.
1 a f
Cricker-Run Planer
80 20
201. – 801. Cricket Ren Player 80 20 80
~
807/
20

To transferm payeto to normal Dist.

DBOX-cox transformation Delignormal transformation.

& Q-Q plot

P- value

Definition - It is the probability
for null hypothesis to be true.

Hypothesis testing

Nall hypothesis = Ho

Alternet hypothesis = H,

Distribution, $\mathcal{U} = \overline{X} = H_0$ $\mathcal{U} \neq \overline{X} = H_1$

-N = 100 => 86-1. relike -M = 10 => 60-1- relet

Two way to find CI.

D'we have given population SD. D'we have not given population SD

E.g. - Suppose SD is given or

D Avg Size of shouk in the sea [954.]

we are talong 954. as a CJ.

population SD

n = 30 $\overline{X} = 500$

« is significant value

d = 2.5 +2.5 = 5' = 0.05%

$$=$$
 $\frac{500 \pm 2}{2} \frac{100}{30}$

$$Z_{0.025} = 1 - 0.025 = 0.975$$

Range of the population meem is 464 — 535

$$\overline{X} = 500$$

1 464, 486, 560, 510, 520, 535 Y $M = \overline{X} - H_{\delta}$ z-test = when population SD is given/n≥30 t-test = when population so isnot n<30 gren 0.05 X = Domain expecttwo two one tail $\overline{\times} > M$ X = U $\sqrt{\chi} < 4$

One-Tailed Test	Two-Tailed Test	
A test of any statistical hypothesis, where the alternative hypothesis is one-tailed either right-tailed or left-tailed.	A test of a statistical hypothesis, where the alternative hypothesis is two-tailed.	
For one-tailed, we use either > or < sign for the alternative hypothesis.	For two-tailed, we use ≢ sign for the alternative hypothesis.	
When the alternative hypothesis specifies a direction then we use a one-tailed test.	If no direction is given then we will use a two-tailed test.	
Critical region lies entirely on either the right side or left side of the sampling distribution.	Critical region is given by the portion of the area lying in both the tails of the probability curve of the test statistic.	
Here, the Entire level of significance (α) i.e. 5% has either in the left tail or right tail.	It splits the level of significance (a) into half.	
Rejection region is either from the left side or right side of the sampling distribution.	Rejection region is from both sides i.e. left and right of the sampling distribution.	
It checks the relation between the variable in a singles direction.	It checks the relation between the variables in any direction.	
It is used to check whether the one mean is different from another mean or not.	It is used to check whether the two mean different from one another or not.	

E.g

$$N = 100$$
 $M = 120$
 $N = 5$
 $N = 30$
 $N = 140$

Suppose C.I. = 95% and 5% = 0.65
Two tail test =
$$6.025$$

$$Z-table = 1-0.025 = 0.975$$

$$lower = 140 - 1.96 \times \frac{5}{30}$$

$$= 141.78$$

140

$$\mathcal{M} = \overline{\chi}$$

one tal

6.03

0.06

60.03

Two fee!

0.94

11