

Universidade do Minho Escola de Engenharia

16-QAM

TRABALHO REALIZADO POR:

FRANCISCO SILVA A68491

Universidade do Minho Escola de Engenharia

Contextualização

Através das ondas rádios conseguimos transmitir informação (p.e: audio, imagens) ponto a ponto. Isto é conseguido através da modulação de um sinal RF.

E o que é a modulação? Modulação é definido como a variação de um ou mais propiedades de um sinal RF para representar a informação que se pretende transmitir.

Existe vários tipos de modulação: Modulation Methods

Universidade do Minho Escola de Engenharia

Continuação

É possível modular a amplitude e a fase simultaneamente, onde separa-se o sinal original em dois tipos de componentes:

- I em fase;
- Q em quadratura.

Digital Modulation - Why use I and Q?

I/Q formats

Modulatore I Q

Universidade do Minho

Escola de Engenharia

16-QAM

16-QAM: 16-state Quadrature Amplitude Modulation.

Quadratura tem o significado de quando o sinal se altera entre as fases de estados são separadas por 90º.

16 estados por causa de 2⁴=16, onde 4 são o número de bits por simbolo que são transmitidos.

Na figura seguinte podemos observar a constelação 16-QAM.

				(9	
Symbol Transmitted	Carrier Phase	Carrier Amplitude		9	10°	
0000	225°	0.33	4353			450
0001	255°	0.75	135°	•	•	• 45°
0010	195°	0.75				
0011	225°	1.0	1			
0100	135°	0.33	•	•	•	•
0101	105°	0.75				
0110	165°	0.75	180~	_		— 0° I
0111	135°	1.0	1 -	-		-
1000	315*	0.33	1 -		- 20	
1001	285°	0.75	1			
1010	345°	0.75	225°	•	•	• 315°
1011	315°	1.0				
1100	45°	0.33				
1101	75°	0.75	270°			
1110	15°	0.75	1			
1111	45°	1.0	1			

Universidade do Minho

Escola de Engenharia

Caracterísiticas

Aplicações principais:

- Rádio Digital;
- Televisão Digital;
- Modens ADSL.

Eficiêcia espectral à volta até 14 bits/s/Hz

I	ľ	Output
0	0	-0.22 V
0	1 0	-0.821 V
1	0	+0.22 V
1	1	+0.821 V
	(a)
a	Q′	Output
0	0	-0.22 V
0	1	-0.821 V
1	0	+0.22 V
1	1	+0.821 V
		(b) ((d)

BPSK

BPSK: Binary Phase Sift Keying – onde os 0's e 1's de uma mensagem binária é representada pelas diferentes fases de estado do sinal. ϑ =0° para bit 1 and ϑ =180° para bit 0.

BPSK Modulated output wave

16-QAM vs BPSK

A vantagem do uso de QAM é quanto maior for a ordem de modulação, será permitido ao carry transportar mais bits de informação por simbolo, selecionando uma maior ordem, teremos uma maior taxa de dados, porém encontramos uma enorme desvantagem pois quanto maior a ordem, mais susciptível o sinal a interferência e a ruído dos canais por isso é que BPSK encontramos um sinal mais resistência a interferência e menor ruído dos canais.

QAM FORMATS & BIT RATES COMPARISON

MODULATION	BITS PER SYMBOL	SYMBOL RATE
BPSK	1	1 x bit rate
QPSK	2	1/2 bit rate
8PSK	3	1/3 bit rate
16QAM	4	1/4 bit rate
32QAM	5	1/5 bit rate
64QAM	6	1/6 bit rate

QAM FORMATS & NOISE PERFORMANCE

MODULATION	ηв	EB / NO FOR BER = 1 IN 10 ⁶
16QAM	2	10.5
64QAM	3	18.5
256QAM	4	24
1024QAM	5	28

Universidade do Minho

Escola de Engenharia

Referências

http://erendemir.weebly.com/uploads/4/8/5/0/4850484/qpsk and 16qam digital modulation.pdf

https://www.rohm.com/electronics-basics/wireless/modulation-methods

http://www.eletr.ufpr.br/marlio/te241/aula3.pdf

https://www.gaussianwaves.com/2010/04/bpsk-modulation-and-

demodulation-2/

https://www.electronics-notes.com/articles/radio/modulation/quadrature-

amplitude-modulation-types-8gam-16gam-32gam-64gam-128gam-

256qam.php