Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 16 de julio de 2019.

En todos los ejercicios deben justificar los resultados a los que llegan.

Ejercicio 1.

a. Enunciar y demostrar el Lema de Euclides.

Solución: Ver notas teóricas.

b. Sean a, b enteros positivos, probar que

$$mcm(a,b) = \frac{a \cdot b}{mcd(a,b)}.$$

En esta parte deben probar cualquier propiedad que utilicen.

Solución: Ver notas teóricas.

c. Encontrar todos los a, b enteros positivos que cumplan $a \cdot b = 792$ y mcm(a, b) = 132. Solución: Multiplicando la segunda igualdad por mcd(a, b), y utilizando la parte anterior obtenemos que $a \cdot b = 132 \operatorname{mcd}(a, b)$. Igualando con la primer igualdad dada vemos que $132 \operatorname{mcd}(a, b) = 792$, por lo que mcd(a, b) = 6. Escribimos a = 6a' y b = 6b', y substituyendo obtenemos que $a' \cdot b' = 22 = 2 \cdot 11$. Como sabemos que mcd(a', b') = 1 vemos que todas las soluciones tienen que ser (a', b') = (1, 22), (2, 11), (11, 2), (22, 2). Y (a, b) = (6, 132), (12, 66), (66, 12), (132, 6).

Ejercicio 2. Para los siguientes sistemas de congruencias, determinar si tienen solución y en caso de que tengan solución hallarlas todas.

a.
$$\begin{cases} x \equiv 17 \pmod{44} \\ x \equiv 50 \pmod{99} \\ x \equiv 5 \pmod{12} \end{cases}$$
b.
$$\begin{cases} x \equiv 18 \pmod{44} \\ x \equiv 52 \pmod{99} \\ x \equiv 10 \pmod{12} \end{cases}$$

Solución:

a. Escribimos $44 = 2^2 \cdot 11$, $99 = 3^2 \cdot 11$ y $12 = 2^2 \cdot 3$. Luego de verificar que el sistema es compatible, vemos que es equivalente a: $\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 5 \pmod{9} \end{cases}$. De las dos primeras congruencias $x \equiv 6 \pmod{11}$ es fácil ver que $x \equiv 5 \pmod{4\cdot36}$, y el sistema es equivalente a: $\begin{cases} x \equiv 6 \pmod{11} \\ x \equiv 5 \pmod{36} \end{cases}$. De la

es fácil ver que $x \equiv 5 \pmod{4 \cdot 36}$, y el sistema es equivalente a: $\begin{cases} x \equiv 6 \pmod{11} \\ x \equiv 5 \pmod{36} \end{cases}$. De la segunda congruencia obtenemos x = 36k + 5 y si substituimos en la primera: $36k + 5 \equiv 6 \pmod{11}$. Por lo que $3k \equiv 1 \pmod{11}$ y $k \equiv 4 \pmod{11}$. Por lo que $x \equiv 36 \cdot 4 + 5 \pmod{4 \cdot 9 \cdot 11} \equiv 149 \pmod{396}$.

b. De la primera congruencia vemos que $x \equiv 7 \pmod{11}$ y de la segunda vemos que $x \equiv 8 \pmod{11}$. Concluimos entonces que el sistema no tiene solución.

Ejercicio 3. Sea el grupo de invertibles módulo 803, K = U(803).

a. Calcular 2^{90} (mód 803).

Solución: Observamos que $803 = 11 \cdot 73$, entonces por el Teorema Chino del Resto, vemos que $x \equiv 2^{90} \pmod{803}$ si y solo si $\begin{cases} x \equiv 2^{90} \pmod{11} \\ x \equiv 2^{90} \pmod{73} \end{cases}$ En la primera equivalencia aplicamos el Teorema de Fermat, como sabemos que $2^{10} \equiv 1 \pmod{11}$ concluimos que $2^{90} = (2^{10})^9 \equiv 1^9 \pmod{11} \equiv 1 \pmod{11}$.

Podemos hacer lo mismo con la segunda congruencia, $2^{90} \equiv 2^{18}$ (mód 73). Para hallar la potencia anterior usamos el método de exponenciación rápida. Para ello calculamos la

siguiente tabla:	k	$2^{2^k} \pmod{73}$	
	0	$\overline{2}$. Como 18 = 16 + 2 = 2 ⁴ + 2 ¹ vemos que 2 ¹ 8 = 2 ^{2⁴} 2 ^{2¹} \equiv
	1	4	
	2	16	
	3	37	
	4	55	
		,	

 $55 \cdot 4 \pmod{73} \equiv 20 \pmod{73} \equiv 1 \pmod{73}$. Concluimos que $2^{90} \equiv 1 \pmod{803}$.

b. Hallar el orden de $\bar{4} \in K$.

Solución: Por la parte anterior sabemos que $4^{45} = 2^{90} \equiv 1 \pmod{803}$. Por lo que el orden de $\bar{4}$ tiene que ser un divisor de $45=3^2\cdot 5$. Los divisores de 45 son 1,3,5,9,15,45. Claramente $4^1, 4^3, 4^5$ no son 1 módulo 803. Si $4^9 \equiv 1 \pmod{803}$ entonces $2^{18} \equiv 4^9 \pmod{11} \equiv 1$ (mód 11), pero $2^{18} \equiv 2^8 \not\equiv 1 \pmod{11}$, concluyendo que $4^9 \not\equiv 1 \pmod{803}$. De igual manera, supongamos que $4^15 \equiv 1 \pmod{803}$, entonces $2^30 \equiv 1 \pmod{73}$, pero utilizando la tabla del ejercicio anterior vemos que $2^30 = 2^{16}2^82^42^2 \equiv 55 \cdot 37 \cdot 16 \cdot 4 \pmod{73} \equiv 8$ (mód 73), entonces $4^{15} \not\equiv 1 \pmod{803}$ y el orden de $\bar{4}$ tiene que ser 45.

c. Sabiendo que $2^{45} \not\equiv 1 \pmod{803}$, deducir el orden de $\bar{2} \in K$.

Solución: Utilizamos la fórmula:

$$45 = o(\bar{4}) = o(\bar{2}^2) = \frac{o(\bar{2})}{\text{mcd}(o(\bar{2}), 2)}.$$

Ahora, $mcd(o(\bar{2}), 2)$ puede ser 1 o 2, si es 1 entonces tendriamos que $o(\bar{2}) = 45$, pero por el dato dado eso no puede pasar. Concluimos que $mcd(o(\bar{2}), 2) = 2$ y $o(\bar{2}) = 90$.

- **d.** Para los siguientes grupos G verificar si existen homomorfismos no triviales $f: G \to K$.
 - i) $G=\mathbb{Z}_{803}$. ii) $G=\mathbb{Z}_{45}$. iii) $G=\mathbb{Z}_2$. iv) $G=S_3$.

Solución:

- i) Como $|\mathbb{Z}_{803}| = 803$ es coprimo a $|U(803)| = \varphi(803) = \varphi(11)\varphi(73) = 720$, vemos que no hay morfismos no triviales entre $G \vee K$.
- ii) Como G es cíclico de orden 45 y $\bar{1}$ es un generador, tenemos el morfismo no trivial dado por $f(k\bar{1}) = \bar{4}^k$, ya que $o(\bar{4}) = 45$.
- iii) Como G es cíclico de orden 2 y $\bar{1}$ es un generador, tenemos el morfismo no trivial dado por $f(k\bar{1}) = \overline{-1}^k$, ya que $o(\overline{-1}) = 2$.
- iv) Dados dos elementos τ y σ de S_3 de orden 2 y 3 respectivamente, vemos que S_3 = $\{id, \sigma, \sigma^2, \tau, \tau\sigma, \tau\sigma^2\}$. Podemos definir el morfismo dado por $f(\tau) = \overline{-1}$ y $f(\sigma) = \overline{1}$ (verificar que funciona).

Ejercicio 4.

a. Sean n y e datos utilizados por el protocolo RSA, y las funciones de cifrado E y descifrado D. Probar que D descifra correctamente.

Solución: Ver notas teóricas.

b. Sean n = 187 y e = 7, hallar la función de descifrado D.

Solución: Tenemos que hallar $d \equiv e^{-1}$ (mód $\varphi(187)$). Para ello aplicamos el Algoritmo de Euclides Extendido. Primero vemos que $187 = 11 \cdot 17$, por lo que $\varphi(187) = 160$. Vemos entonces que:

$$160 = 7 \cdot 22 + 6$$
$$7 = 6 \cdot 1 + 1$$

Entonces $1 = 7 \cdot 23 + 160 \cdot (-1)$, por lo que $7^{-1} \equiv 23 \pmod{160}$, y $D(y) = y^{23} \pmod{187}$.