Methods of Homotopy Theory in Algebraic Geometry from the Viewpoint of Cohomology Operations

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

July 25, 2022

Outline

- 1 Background
- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

Motivation: methods of homotopy theory

the study of objects in geometry and topology

methods of homotopy theory

the study of related homotopy classes

the study of objects in geometry and topology

methods of homotopy theory capture sufficient geometric features

the study of related homotopy classes

Examples of methods of homotopy theory

Theorem (Steenrod 1951)

Let X be a paracompact space and G be a topological group, then

$$\mathcal{B}\mathrm{un}_G(X)\cong [X,BG]$$

Examples of methods of homotopy theory

Theorem (Steenrod 1951)

Let X be a paracompact space and G be a topological group, then

$$\mathcal{B}\mathrm{un}_{G}(X)\cong [X,BG]$$

Theorem (Thom 1954)

Let G be a subgroup of $\mathrm{GL}(F,k)$ for $F=\mathbb{R},\mathbb{C},$ or $\mathbb{H}.$ Let X be a manifold, then

 $\{cobordism\ classes\ of\ G$ -submanifolds in $X\}\cong [X,MG]$

Motivation: computational tools

the study of objects in geometry and topology

methods of homotopy theory capture sufficient geometric features

the study of related homotopy classes

Motivation: computational tools

Motivation: computational tools

(Multiplicative) cohomology theory $E^*: X \mapsto E^*(X)$ a \mathbb{Z} -graded module (algebra). (contravariant functors)

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
graded modules (algebras)

(Multiplicative) cohomology theory E^* : $X \mapsto E^*(X)$ a \mathbb{Z} -graded module (algebra). (contravariant functors) Cohomology operation $Q_n \colon E^* \to E^{*+n}$. (natural transformations)

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
graded modules (algebras)

(Multiplicative) cohomology theory $E^*\colon X\mapsto E^*(X)$ a \mathbb{Z} -graded module (algebra). (contravariant functors) Cohomology operation $Q_n\colon E^*\to E^{*+n}$. (natural transformations) The graded algebra of cohomology operations E^*E .

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
 graded modules (algebras)

(Multiplicative) cohomology theory $E^*\colon X\mapsto E^*(X)$ a \mathbb{Z} -graded module (algebra). (contravariant functors) Cohomology operation $Q_n\colon E^*\to E^{*+n}$. (natural transformations) The graded algebra of cohomology operations E^*E .

$$[X,Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y,E^*X) \xrightarrow{\text{finer structure}} \mathbf{Maps}(E^*Y,E^*X)$$
graded modules (algebras) graded E^*E -modules

compute it by homological methods!

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

•
$$Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$$

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

- $Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$
- $Sq^0 = id$ and Sq^1 is the mod-2 Bockstein operation;

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

- $Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$
- $Sq^0 = id$ and Sq^1 is the mod-2 Bockstein operation;
- $Sq^{i}(u) = u^{2}$, if $i = \dim u$;

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

- $Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$
- $Sq^0 = id$ and Sq^1 is the mod-2 Bockstein operation;
- $Sq^{i}(u) = u^{2}$, if $i = \dim u$;
- $Sq^{i}(u) = 0$, if $i > \dim u$;

Let $H\mathbb{Z}/2$ be the mod-2 ordinary cohomology theory.

Theorem (Steenrod 1950s)

- $Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$
- $Sq^0 = id$ and Sq^1 is the mod-2 Bockstein operation;
- $Sq^{i}(u) = u^{2}$, if $i = \dim u$;
- $Sq^{i}(u) = 0$, if $i > \dim u$;
- **Cartan's formula**: $Sq^{i}(uv) = \sum_{j=0}^{i} Sq^{j}(u) \cdot Sq^{i-j}(v)$.

The mod-2 Steenrod algebra

Let $\mathcal{A}_2^* := H\mathbb{Z}/2^*H\mathbb{Z}/2$ and it is called the **mod-2 Steenrod** algebra.

Theorem (Adem 1952)

$$Sq^{a}Sq^{b} = \sum_{j=0}^{\lfloor a/2 \rfloor} {b-1-j \choose a-2j} Sq^{a+b-j} Sq^{j}, \text{ if } 0 < a < 2b.$$

The mod-2 Steenrod algebra

Let $\mathcal{A}_2^* := H\mathbb{Z}/2^*H\mathbb{Z}/2$ and it is called the **mod-2 Steenrod** algebra.

Theorem (Adem 1952)

$$Sq^{a}Sq^{b} = \sum_{j=0}^{\lfloor a/2 \rfloor} {b-1-j \choose a-2j} Sq^{a+b-j} Sq^{j}, \ \ \text{if } 0 < a < 2b.$$

Theorem (Serre 1953)

 $\{Sq^I \mid all \ 2\text{-admissible sequences } I\}$ is a $\mathbb{Z}/2\text{-basis of } \mathcal{A}_2^*$ and Adem relations determines the all the relations.

Theorem (Steenrod 1962)

Theorem (Steenrod 1962)

$$P_p^i \colon H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$

Theorem (Steenrod 1962)

$$P_p^i: H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$

$$P_p^0 = \mathrm{id};$$

Theorem (Steenrod 1962)

$$P_p^i: H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$

$$P_p^0 = \mathrm{id};$$

$$P_p^i(u) = u^p \text{ if } 2i = \dim u;$$

Theorem (Steenrod 1962)

$$P_p^i: H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$

$$P_{p}^{0} = id;$$

$$P_p^i(u) = u^p \text{ if } 2i = \dim u;$$

$$P_p^i(u) = 0$$
, if $2i > \dim u$;

Theorem (Steenrod 1962)

- $P_p^i: H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$
- $P_{p}^{0} = id;$
- $P_p^i(u) = u^p \text{ if } 2i = \dim u;$
- $P_p^i(u) = 0$, if $2i > \dim u$;
- **Cartan's formula**: $P_p^i(uv) = \sum_{j+k=i} P_p^j(u) P^k(v)$.

Adem relations in mod-p ordinary cohomology theory

Let β be the mod-p Bockstein operations. If a < pb, then

$$P_p^a P_p^b = \sum_{j=0}^{[a/p]} {(p-1)(b-j)-1 \choose a-pj} P_p^{a+b-j} P_p^j$$

if $a \leq b$, then

$$\begin{split} P_{p}^{a}\beta P_{p}^{b} &= \sum_{j=0}^{[a/p]} \binom{(p-1)(b-j)-1}{a-pj} \beta P_{p}^{a+b-j} P_{p}^{j} \\ &+ \sum_{j=0}^{[(a-1)/p]} (-1)^{a+j-1} \binom{(p-1)(b-j)-1}{a-pj-1} \beta P_{p}^{a+b-j} P_{p}^{j} \end{split}$$

The mod-p Steenrod algebra

The mod-p Steenrod operation St_p^i is defiend as

$$St_p^i = egin{cases} P_p^k, & i = 2k(p-1) \ eta P_p^k, & i = 2k(p-1) + 1 \ 0, & ext{otherwise}. \end{cases}$$

Theorem (Cartan-Serre 1950s)

 $\{St_p^I \mid \text{all } p\text{-admissible sequences } I\}$ is a $\mathbb{Z}/p\text{-basis of } \mathcal{A}_p^*$ and Adem relations determines the all the relations.

Applications of the Steenrod operations

Theorem (Borel-Serre 1953)

If n > 3, then S^{2n} does not admit an almost complex structure.

Applications of the Steenrod operations

Theorem (Borel-Serre 1953)

If n > 3, then S^{2n} does not admit an almost complex structure.

Theorem (Thom 1954)

Any mod-2 homology class of a finite complex K can be realized as a manifold. For any integral homology class y of K, there exists N such that Ny can be realized as an oriented manifold.

The classical Adams spectral sequences

Theorem (Adams 1958)

Given spaces or spectra X and Y, there exists a cohomological spectral sequence $\{E_*^{*,*}\}$ called **Adams spectral sequence** such that

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}_p^*}^{s,t}(H\mathbb{Z}/p^*Y,H\mathbb{Z}/p^*X) \Rightarrow ([X,Y]_{t-s})_p^{\wedge}$$

where $([X, Y]_{t-s})_p^{\wedge}$ is the p-completion of the group of stable homotopy classes $\operatorname{colim}_n[\Sigma^{n+t-s}X, \Sigma^nY]$.

If we let X, Y be points, then it converges to the p-completion of the stable homotopy group of spheres.

$$H^n(X) \xrightarrow{\mathcal{P}^d} H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X)$$

$$[u] \qquad \qquad [u^d]_{\Sigma_d}$$
n-cocycle class
$$\Sigma_d$$
-equivariant *nd*-cocycle class

where \mathcal{P}^d is called **the** *d***-external power operation** and $\Delta^*\mathcal{P}^d$ is called **the** *d***-total power operation**.

$$H^n(X) \xrightarrow{\mathcal{P}^d} H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X)$$

$$[u] \qquad \qquad [u^d]_{\Sigma_d}$$
n-cocycle class
$$\Sigma_d$$
-equivariant *nd*-cocycle class

where \mathcal{P}^d is called **the** *d***-external power operation** and $\Delta^*\mathcal{P}^d$ is called **the** *d***-total power operation**.

$$H^n(X) \xrightarrow{\mathcal{P}^d} H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X)$$
 $[u] \qquad \qquad [u^d]_{\Sigma_d}$
 n -cocycle class Σ_d -equivariant nd -cocycle class

where \mathcal{P}^d is called **the** *d***-external power operation** and $\Delta^*\mathcal{P}^d$ is called **the** *d***-total power operation**.

Given $\alpha \in H_i(B\Sigma_d)$, then we have the cohomology operation derived from α is $[u] \mapsto \Delta^* \mathcal{P}^d([u]) \cap \alpha \in H^{nd-i}(X)$.

$$H^n(X) \xrightarrow{\mathcal{P}^d} H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X)$$
 $[u] \qquad \qquad [u^d]_{\Sigma_d}$
 n -cocycle class Σ_d -equivariant nd -cocycle class

where \mathcal{P}^d is called **the** *d***-external power operation** and $\Delta^*\mathcal{P}^d$ is called **the** *d***-total power operation**.

Given $\alpha \in H_i(B\Sigma_d)$, then we have the cohomology operation derived from α is $[u] \mapsto \Delta^* \mathcal{P}^d([u]) \cap \alpha \in H^{nd-i}(X)$. If we replace Σ_d by \mathbb{Z}/p and let i=p, then we get mod-p power

operations.

Outline

- 1 Background
- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

Definition (Spectra)

A spectrum $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$ is a sequence of pointed topological spaces E_n with basepoint-preserving maps $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$. If $\varepsilon_n \colon E_n \to \Omega E_{n+1}$ is a weak homotopy equivalence, it is called an Ω -spectrum.

Definition (Spectra)

A spectrum $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$ is a sequence of pointed topological spaces E_n with basepoint-preserving maps $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$. If $\varepsilon_n \colon E_n \to \Omega E_{n+1}$ is a weak homotopy equivalence, it is called an Ω -spectrum.

Theorem (Brown 1962)

Each generalized cohomology theory h^* is represented by an Ω -spectrum E_n such that $h^n(X) \cong [X, E_n]$.

Definition (Spectra)

A spectrum $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$ is a sequence of pointed topological spaces E_n with basepoint-preserving maps $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$. If $\varepsilon_n \colon E_n \to \Omega E_{n+1}$ is a weak homotopy equivalence, it is called an Ω -spectrum.

Theorem (Brown 1962)

Each generalized cohomology theory h^* is represented by an Ω -spectrum E_n such that $h^n(X) \cong [X, E_n]$.

Example

 $H^n(X;A) = [X,K(A,n)].$ In particular, $(H\mathbb{Z}/p)_n := K(\mathbb{Z}/p,n).$

Definition

A morphism $f: E \to F$ between spectra consists of $\{f_n: E_n \to F_n\}$ compatible with Σ and ε_n .

Given a based space X and a spectrum E, $(E \wedge X)_n := E_n \wedge X$. We say $f \simeq g : E \to F$ if there exists a map $h : E \wedge I_+ \to F$ such that $f = h_0$ and $g = h_1$.

the stable homotopy classes: $[E,F]^n:=[E,\Sigma^nF]$. the associated generalized cohomology: $E^*(X):=[\Sigma^\infty X,E]^*$. the associated generalized homology: $E_*(X):=[\Sigma^\infty S^0,E\wedge X]^*$.

The stable homotopy categories

The essence is "inverting" S^1 with respect to \wedge by stablizing it.

Theorem

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum S is a unit.

The stable homotopy categories

The essence is "inverting" S^1 with respect to \wedge by stablizing it.

Theorem

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum $\mathbb S$ is a unit.

The construction of such categories is very complicated!

The stable homotopy categories

The essence is "inverting" S^1 with respect to \wedge by stablizing it.

$\mathsf{Theorem}$

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum $\mathbb S$ is a unit.

The construction of such categories is very complicated! There are three popular constructions, we choose the category of S-modules (EKMM) in this presentation.

The algebra of cohomology operations

Proposition

By Yoneda lemma and Brown's representability theorem, the algebra of cohomology operations on E is $E^*E := [E, E]^*$, the stable homotopy classes from E^* to itself.

In particular,
$$\mathcal{A}_p^* = H\mathbb{Z}/p^*H\mathbb{Z}/p$$
.

The algebra of cohomology operations

Proposition

By Yoneda lemma and Brown's representability theorem, the algebra of cohomology operations on E is $E^*E := [E, E]^*$, the stable homotopy classes from E^* to itself.

In particular, $\mathcal{A}_p^* = H\mathbb{Z}/p^*H\mathbb{Z}/p$.

Question

Given a ring spectrum E, how to determine power operations on E?

Extended powers and H_{∞} -structures

Given an S-module E, the jth **extended power** of E is defined to be $D_jE = (E\Sigma_j)_+ \wedge E^j)/\Sigma_j$.

Definition

An H_{∞} -ring spectrum is a \mathbb{S} -module M together with $\xi_j \colon D_j M \to M$ for $j \ge 0$ satisfying some homotopy coherence conditions.

Extended powers and H_{∞} -structures

Given an S-module E, the jth **extended power** of E is defined to be $D_jE = (E\Sigma_j)_+ \wedge E^j)/\Sigma_j$.

Definition

An H_{∞} -ring spectrum is a \mathbb{S} -module M together with $\xi_j \colon D_j M \to M$ for $j \ge 0$ satisfying some homotopy coherence conditions.

Example

HR, KU and MU are H_{∞} -ring spectra.

H_{∞} -structures give rise to power operations

Let E be an H_{∞} -ring spectrum.

Then we can derive power operations from $E_*(B\Sigma_j)$.

The generalized Adams spectral sequences

Theorem (Adams spectral sequences)

Given spaces or spectra X and Y and a cohomology theory E^* , there exists a cohomological spectral sequence $\{E_*^{*,*}\}$ such that

$$E_2^{s,t} = \operatorname{Ext}_{E^*E}^{s,t}(E^*Y, E^*X) \Rightarrow [X, Y]_{t-s}^E$$

where $[X, Y]_{t-s}^{E}$ is the set of stable homotopy classes from X to Y in an E-localization shifting t-s.

If E is an H_{∞} -ring spectra, then the induced power operations appear in the E_2 -page.

Outline

- 1 Background
- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

The construction of motivic homotopy theory

Construction (Morel-Voevodsky 1990s)

Let S be a qcqs Noetherian scheme of finite dimension and let Sm/S be the category of smooth schemes of finite type over S. Let $\Delta^{op}\mathbf{Shv}_{Nis}(\mathrm{Sm}/S)$ be the category of Nisnevich sheaves of simplicial sets with **projective model structure**. The unstable motivic homotopy cateogory is

$$\mathcal{H}(S) := L_{\mathbb{A}^1} \Delta^{op} \mathsf{Shv}_{\mathit{Nis}}(\mathrm{Sm}/S)$$

where $L_{\mathbb{A}^1}$ is the Bousfield localization with respect to the class generated by natural projections $X \times_S \mathbb{A}^1 \to X$ for all $X \in \mathrm{Sm}/S$.

Spheres in motivic homotopy category

Definition (Spheres in motivic homotopy category)

Simplicial circle S_s^1 (or denote it $S^{1,0}$): the constant sheaf valued at the $\Delta^1/\partial\Delta^1$.

Tate circle S^1_t (or denote it $S^{1,1}$): the sheaf represented by \mathbb{G}_m . Given a,b two non-negative integers with $a \geq b$, the bigraded motivic sphere $S^{a,b} := (S^1_t)^{\wedge b} \wedge (S^1_s)^{\wedge a-b}$.

Spheres in motivic homotopy category

Definition (Spheres in motivic homotopy category)

Simplicial circle S_s^1 (or denote it $S^{1,0}$): the constant sheaf valued at the $\Delta^1/\partial\Delta^1$.

Tate circle S^1_t (or denote it $S^{1,1}$): the sheaf represented by \mathbb{G}_m . Given a, b two non-negative integers with $a \geq b$, the bigraded motivic sphere $S^{a,b} := (S^1_t)^{\wedge b} \wedge (S^1_s)^{\wedge a-b}$.

Proposition

$$S^{2n,n} \simeq \mathbb{P}^n/\mathbb{P}^{n-1} \simeq \mathbb{A}^n/(\mathbb{A}^n - 0)$$

The motivic stable homotopy category

Construction

Recall that we obtain classical stable homotopy category by "inverting" the circle S^1 from h(Spaces), we obtain motivic stable homotopy category SH(S) over S by "inverting" $\mathbb{P}^1 \simeq S^1_t \wedge S^1_s$ from H(S), whose objects are called motive spectra.

The motivic stable homotopy category

Construction

Recall that we obtain classical stable homotopy category by "inverting" the circle S^1 from h(Spaces), we obtain motivic stable homotopy category SH(S) over S by "inverting" $\mathbb{P}^1 \simeq S^1_t \wedge S^1_s$ from H(S), whose objects are called motive spectra.

cohomology theory	classical spectrum	motivic spectrum
singular cohomology	$H\mathbb{Z}$	$H\mathbb{Z}_{mot}$
K-theory	KU	KGL
cobordism theory	MU	MGL

Table: Cohomology theories and spectra in classical setting and motivic setting

How motivic homotopy theory captures arithmetic data

Theorem (Morel 2004)

If k is a perfect field (with $\operatorname{char} k \neq 2$), then we have an isomorphism between graded rings

$$K_*^{MW}(k) \cong [S^0, S_t^1]_{\mathbb{P}^1}$$

How motivic homotopy theory captures arithmetic data

Theorem (Morel 2004)

If k is a perfect field (with $\operatorname{char} k \neq 2$), then we have an isomorphism between graded rings

$$K_*^{MW}(k) \cong [S^0, S_t^1]_{\mathbb{P}^1}$$

Theorem (Morel 2004)

If k is a perfect field (with $\operatorname{char} k \neq 2$), then we have an isomorphism between rings

$$GW(k) \cong [S^0, S^0]_{\mathbb{P}^1}$$

Theorem (Voevodsky 2003)

There exists
$$P_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$$
 and $B_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$ such that

Theorem (Voevodsky 2003)

There exists
$$P_{\ell}^i \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$$
 and $B_{\ell}^i \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$ such that

1
$$P_{\ell}^{0} = \mathrm{id}$$
 and $P_{\ell}^{n}(u) = u^{n}$ if $u \in H^{2n,n}$;

Theorem (Voevodsky 2003)

There exists $P_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$ and $B_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$ such that

- **1** $P_{\ell}^{0} = \mathrm{id}$ and $P_{\ell}^{n}(u) = u^{n}$ if $u \in H^{2n,n}$;
- **2** Cartan formula: if $\ell \neq 2$,

$$\begin{aligned} P_{\ell}^{i}(uv) &= \sum_{j=0}^{i} P_{p}^{j}(u) P^{i-j}(v) \\ B_{\ell}^{i}(uv) &= \sum_{i=0}^{i} B_{\ell}^{j}(u) P_{\ell}^{i-j}(v) + (-1)^{\deg(u)} P^{j}(u) B^{i-j}(v) \end{aligned}$$

Theorem (Voevodsky 2003)

If $\ell = 2$, let $Sq^{2i} = P_2^i$, $Sq^{2i+1} = B_2^i$, τ be the generator of $H^{0,1}(K; \mathbb{Z}/2)$, and $\rho \in H^{1,1}(k; \mathbb{Z}/2)$ be the class of -1, then

$$Sq^{2i}(uv) = \sum_{j=0}^{i} Sq^{2j}(u)Sq^{2i-2j}(v) + \tau \sum_{s=0}^{i-1} Sq^{2s+1}(u)Sq^{2i-2s-1}(v)$$

$$Sq^{2i+1}(uv) = \sum_{j=0}^{i} (Sq^{2j+1}(u)Sq^{2i-2j}(v) + Sq^{2j}(u)Sq^{2i-2j-1}(v))$$

$$+ \rho \sum_{s=0}^{i-1} Sq^{2s+1}(u)Sq^{2i-2s-1}(v)$$

The Milnor conjecture and the Bloch-Kato conjecture

Voevodsky used motivic Steenrod operations to prove the following two theorems:

Theorem (Milnor conjecture, Voevodsky 2003)

Let k be a field of characteristic not equal to 2, then the norm residue homomorphisms $K_n^M(k)/2 \to H_{\text{\'et}}^n(k;\mathbb{Z}/2)$ are isomorphisms for all $n \ge 0$.

The Milnor conjecture and the Bloch-Kato conjecture

Voevodsky used motivic Steenrod operations to prove the following two theorems:

Theorem (Milnor conjecture, Voevodsky 2003)

Let k be a field of characteristic not equal to 2, then the norm residue homomorphisms $K_n^M(k)/2 \to H_{\text{\'et}}^n(k;\mathbb{Z}/2)$ are isomorphisms for all $n \geq 0$.

Theorem (Bloch-Kato conjecture, Voevodsky 2010)

Let k be a field of characteristic not equal to a prime ℓ , then the norm residue homomorphisms $K_n^M(k)/\ell \to H_{\text{\'et}}^n(k;\mathbb{Z}/\ell)$ are isomorphisms for all $n \geq 0$.

The motivic Steenrod algebras

Theorem (Voevodsky 2003, Voevodsky 2011)

Let k be field and ℓ be a prime coprime to $\operatorname{char}(k)$, and k contains a primitive ℓ th root of unity. Then the motivic cohomology

$$\mathbb{M}_{\ell} := H^{*,*}(k; \mathbb{Z}/\ell) \cong \frac{K_*^M(k)}{\ell}[\tau]$$

where $K_*^M(k)/\ell$ has degree (n, n) and τ is of degree (0, 1).

The motivic Steenrod algebras

Theorem (Voevodsky 2003, Voevodsky 2011)

Let k be field and ℓ be a prime coprime to $\operatorname{char}(k)$, and k contains a primitive ℓ th root of unity. Then the motivic cohomology

$$\mathbb{M}_{\ell} := H^{*,*}(k; \mathbb{Z}/\ell) \cong \frac{K_*^M(k)}{\ell}[\tau]$$

where $K_*^M(k)/\ell$ has degree (n, n) and τ is of degree (0, 1).

Theorem (Voevodsky 2003)

The bigraded motivic Steenrod algebra $\mathcal{A}_{\ell}^{*,*}$ on mod- ℓ motivic cohomology is generated by P^i_{ℓ} and B^i_{ℓ} over \mathbb{M}_{ℓ} and is characterized by motivic Adem relations.

The motivic Adams spectral sequences

Theorem (Dugger-Isaksen 2010, Hu-Kriz-Ormsby 2011, Kylling-Wilson 2019)

Let k be a field of characteristic not equal to a prime ℓ , let $\mathbb{M}_{\ell} := H^{*,*}(k; \mathbb{Z}/\ell)$, there is spectral sequence called **motivic** Adams spectral sequence such that

$$E_2 = \mathrm{Ext}_{\mathcal{A}_{\ell}^{*,*}}(\mathbb{M}_{\ell}, \mathbb{M}_{\ell}) \Rightarrow [\Sigma_{s,t}^{\infty} \mathrm{Spec}(k), \Sigma_{s,t}^{\infty} \mathrm{Spec}(k)]_{*,*}^{\mathbb{A}_{k}^{1}}$$

Outline

- 1 Background
- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

How the Adams spectral sequences detect information

We summerize Bruner's mechanism in the following diagram.

How the Adams spectral sequences detect information

We summerize Bruner's mechanism in the following diagram.

What hides behind the power operations

What hides behind the power operations

What hides behind the power operations

How motivic extended powers emerge in the motivic Adams spectral sequences

Question & Answer