Week 3 Note

Perceptron

Perceptron aka McCulloch-Pitts Neuron

- Perceptron Algorithm
 - 1: Initialize w=0
 - 2: while All training examples are not correctly classified do
 - 3: for $(x,y) \in S$ do
 - if $y \cdot w^T x \leq 0$ then 4:
 - $w \leftarrow w + yx$ 5:

We assume no bias for simplicity:

- \circ Loop over each (feature, label) pair in the dataset \circ If the pair (x,y) is misclassified
- \circ Update the weight vector w
- Gradient Descent for One-Layer NN
 - \circ 1: Initialize $w^{(1)} = 0, b^{(1)} = 0$
 - \circ 2: for $t=1,2,\ldots,T$ do
 - 3: Use (3), (2) to compute gradients

$$egin{aligned}
abla w &= -rac{1}{n} \sum_{i=1}^n rac{\partial C_i(w^{(t)})}{\partial w^{(t)}} \
abla b &= -rac{1}{n} \sum_{i=1}^n rac{\partial C_i(w^{(t)})}{\partial b^{(t)}} \end{aligned}$$

4: Update the model

$$egin{aligned} w^{(t+1)} &= w^{(t)} - \eta_t
abla w \ b^{(t+1)} &= b^{(t)} - \eta_t
abla b \end{aligned}$$

- Soft perceptron
- Chain rule

$$\frac{\partial}{\partial t}f = \frac{\partial f}{\partial g}\frac{\partial g}{\partial t}$$

• Gradient descent

$$rac{\partial}{\partial w_i}C = (\sigma(\sum_j^m w_j x_j + b) - y) \ \sigma'(\sum_j^m w_j x_j + b) \ x$$

- Backpropagation Algorithm
 - o Forward pass: Move forward through graph to compute all intermediate results
 - o Backward pass: Move backward through graph compute all gradients
- Computation Graphs
 - Directed and acyclic
 - Nodes: variables
 - Edges: computation
 - o Enable calc. of gradients
- Backpropagation
 - Efficient computation of gradients
 - Forward pass to compute values
 - o Backward pass to compute gradients
 - Use successor result

Roger Grosse: CSC 311 Spring 2020: Introduction to Machine Learning

