PENGUAT SINYAL KECIL JFET

Tegangan gate ke source mengontrol arus drain source.

gm = Transkonduktansi (siemens)

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

$$g_{m} = g_{mo} \left(1 - \frac{V_{GS}}{V_{p}} \right)$$

$$g_{mo} = \frac{2I_{DSS}}{|V_{p}|}$$

$$\begin{split} I_{D} &= I_{DSS} (1 - \frac{V_{GS}}{V_{p}})^{2} \\ gm &= gmo \bigg(\sqrt{\frac{I_{D}}{I_{DSS}}} \bigg) \end{split}$$

gm = Transkonduktansi di titik Q gmo= Transkonduktansi untuk tegangan gate =0

Grafik gm terhadap VGS

MODEL JFET SEDERHANA

Rangkaian Equivalent ac dari JFET

Pengendalian I_D oleh V_{GS} tampak sebagai sebuah sumber arus gmV_{GS} yang Terhubung dari drain ke source. Impedansi input digambarkan sebagai rangkaian Terbuka, dan impedansi output digambarkan sebagai r_d

PENGUAT - PENGUAT JFET (JFET Amplifier)

- 1. Penguat JFET Common Source (CS)
- 2. Penguat JFET Common Gate (CG)
- 3. Penguat JFET Common Drain (CD)

Penguat Common Source (CS) Self bias

Prosedur analisa rangkaian equivalent ac

- 1. Asumsikan seluruh kapasitor C1, C2, Cs short untuk sinyal ac
- 2. DC supply dibuat short circuit
- 3. Ganti FET menjadi rangkaian model small signal

Small Signal model

Analisa JFET CS Amplifier

Rangkaian equivalent ac

Penyederhanaan rangkaian equivalent ac

Voltage gain, $A_{v} = \frac{v_{o}}{v_{in}}$

$$v_o = i_o R_L$$
 = $-g_m v_{gs} R_L$, $R_L = R_D / r_d$

Out put impedansi. $Z_o = r_d R_D = \frac{r_d R_D}{r_d + R_D}$

Input impedansi., $Z_{in} = R_G$

$$\therefore A_{v} = \frac{v}{v} = -g_{m}R_{L}, R_{L} = R_{D} \| r_{d}$$

Analisa CS Amplifier dengan voltage Divider Bias

Rangkaian equivalent ac

Voltage gain, $A_{v} = \frac{v_{o}}{v_{in}}$

$$v_o = i_o R_L = -g_m v_{gs} R_L, R_L = R_D // r_d$$
 $v_{in} = v_{gs}$

$$\therefore A_{v} = \frac{v}{v} = -g_{m}R_{L}, R_{L} = R_{D} \| r_{d} \|$$

Input impedansi., $Z_{in} = R_1 // R_2$

Output impedansi.,
$$Z_o = r_d || R_D = \frac{r_d R_D}{r_d + R_D}$$

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}} \bigg|_{\mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}}$$

Common-Source (CS) Self-Bias

Tanpa C_s memberikan efek pada penguatan rangkaian

Perhitungan

Input impedance:

$$Z_i = R_G$$

Output impedance:

$$Z_0 \cong R_D \Big|_{r_d \ge 10R_D}$$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}} \Big|_{r_{d} \ge 10(R_{D} + R_{S})}$$

Analisa CD Amplifier (SOURCE FOLOWER)

Rangkaian equivalent ac

Asumsi rd=0

Input impedansi., $Z_{in} = R_G$

Output impedansi., $Z_o = R_S || R_L$

Voltage gain,
$$A_v = \frac{v_o}{v_{in}}$$

 $v_o = i_o r_s = g_m v_{gs} r_s$, $r_s = R_S // R_L$
 $v_{in} = v_{gs} + v_o \rightarrow v_{gs} = v_{in} - v_o$
 $v_o = g_m (v_{in} - v_o) r_s$
 $v_o = g_m v_{in} r_s - g_m v_o r_s$
 $v_o (1 + g_m r_s) = g_m v_{in} r_s$

$$A_{v} = \frac{v_{o}}{v_{in}} = \frac{g_{m}r_{s}}{(1 + g_{m}r_{s})}$$

Analisa CG Amplifier

Output impedansi., $Z_o = R_D \| R_L$

Rangkaian equivalent ac

Voltage gain,
$$A_v = \frac{v_o}{v_{in}}$$

$$v_o = i_o r_s = g_m v_{gs} r_s, \ r_s = R_D // R_L$$

$$v_{in} = v_{gs}$$

$$A_v = \frac{v_o}{v_{in}} = \frac{g_m v_{gs} r_s}{v_{gs}} = g_m r_s$$

Input impedansi.,
$$Z_{in} = \frac{V_{in}}{I_{in}}$$
, $I_{in} = g_m V_{gs} + I_{Rs}$

$$Z_{in} = \frac{1}{g_m} //Rs$$

Output impedansi., $Z_o = R_D || R_L$