Lists : a general sequence of elements

Marc Coiffier

Contents

The elements of a sequen	ce					•			•	•				-
List combinators					 									

'utils require import

• Required module: utils

Sometimes in life, we want to do a series of tasks in a certain order, or sort objects in a sequence. In mathematical disciplines, lists play a similar semantic role, allowing us to express sequences of related elements.

The elements of a sequence

The simplest kind of list is either an empty list, or a list containing one element, followed by another list. Given a type A of elements, we can define lists of type A in the following context:

```
'List_context {
Type '.List ->
A 'a -> .List 'l -> .List ? ? '.cons ->
.List '.nil -> } def
```

Armed with this context, defining the usual constructors for the List type and its members becomes easy :

The list recursor, $\lambda(l:List\,A)$. $\mu(l)$, has type $\forall (l:List\,A)$ (List $P:List\,A \to Set_1$), $(\forall (a:A) (l_0:List\,A)$, List $P:List\,P (cons\,a\,l_0)) \to List P (cons\,a\,l_0)$. We can now start to define non-trivial combinators that work on lists, such as "map" and "append":

List combinators

```
list_map has type \forall (A:Set_0) (B:Set_0), (A \to B) \to List A \to List B.
```

```
'list_append Type 'A -> List ( A ) dup 'x -> 'y -> x (
 List ( A )
 cons ( A )
 y ) ! ! ! def
```

list_append has the type $\forall (A: Set_0), List A \rightarrow List A \rightarrow List A$.