Systemy Sztucznej Inteligencji dokumentacja projektu

Obliczanie prawdopodobieństwa wystąpienia udaru na podstawie danych pacjenta

Wiktor Machoń, Piotr Kołodziejski $29~\mathrm{maja}~2022$

Część I

Opis programu

Celem projektu jest zbudowanie klasyfikatora w oparciu o Naiwny Klasyfikator Bayesa. Klasyfikator ten ma za zadanie ocenić czy dany pacjent, ze swoimi parametrami jest w grupie zagrożonej dostaniem udaru.

Instrukcja obsługi

Program został napisany w języku programowania Python przy użyciu Jupyter notebook. Program (plik z rozszerzeniem .ipynb) należy uruchomić z poziomu aplikacji Jupyter Notebook. Plik .csv z danymi powinien znajdować się w tym samym folderze, co plik rozwiązania.

Dodatkowe informacje

Aby klasyfikator uznać za działający, jego trafność predykcji musi być na poziomie co najmniej 85 procent.

Część II

Opis działania

Naiwny klasyfikator Bayesa tworzymy w oparciu o Twierdzenie Bayesa, które opisujemy poniższym równaniem:

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)} \tag{1}$$

W naszym programie używamy zmiennych X (dla danych wejściowych) oraz y (dla danych wyjściowych), więc nasz wzór przyjmuje postać:

$$P(y|X) = \frac{P(X|y) * P(y)}{P(X)} \tag{2}$$

Przyjmujemy naiwne założenie, że zmienne są od siebie niezależne, co implikuje, że:

$$P(X|y) = P(x_1|y) * P(x_2|y) * \dots * P(x_n|y)$$
(3)

Prawdopodobieństwo obliczamy dla y, więc P(X) jest stałą, co oznacza, że możemy usunąć ją z równania otrzymując przybliżenie:

$$P(X|y) = P(y) * \prod_{i=1}^{n} P(x_i|y)$$
 (4)

Korzystając z tego wzoru musimy wyznaczyć maksymalną wartość y.

Algorytm

Implementacja Naiwnego Klasyfikatora Bayesa w oparciu o Twierdzenie Bayesa, opisane wyżej. Dane z pliku .csv wczytujemy korzystając w biblioteki pandas, tworząc tym samym dataframe. Zamieniamy wartości tekstowe na liczbowe oraz dzielimy zbiór na treningowy i testowy, tak że ten pierwszy to 70 procent zbioru. Przed podziałem policzone zostały średnie i odchylenia stadardowe dla każdej klasy.

```
Data: Dane wejściowe dataframe X
Result: Klasy kolejnych wierszy - lista Predictions
Wczytaj dataframe. Predictions = [...];
foreach i \in X.index do
   Zainicjuj listę ClassLikelihood;
   Przypisz obecny wiersz jako obiekt do zmiennej instance = X.loc[i];
   foreach cls \in classes do
      Utwórz listę FeutureLikelihoods;
      Dodaj do listy FeutureLikelihoods log(prior[cls]);
      foreach col \in xTrain.columns do
          data = instance[col];
          mean = means[col].loc[cls];
          variance = var[col].loc[cls];
          Obliczyć gęstość prawdopodobieństwa
           Likelihood = Normal(data, mean, variance)
           if Likelihood! = 0 then
             Likelihood = np.log(Likelihood);
          else
             Likelihood = 1/len(xTrain);
          end
      end
      TotalLikelihood = sum(FeatureLikelihoods);
      ClassLikelihood.append(TotalLikelihood);
   end
   MaxIndex = ClassLikelihood.index(max(ClassLikelihood));
   Prediction = classes[MaxIndex];
   Predictions.append(Prediction);
end
```

Algorithm 1: Algorytm drukowania informacji o liczbie parzystej/nieprarzystej.

Algorytm odrzucania najmniej istotnych kolumn

Algorithm 2: Algorytm odrzucania najmniej istotnych kolumn

Implementacja

W pliku z danymi występowały dane tekstowe, więc żeby móc je wykorzysztać zostały one przekszałcone w dane numeryczne. Gdy dla danej klasy występowały tylko dwie wartości to zostały one przekształcone na wartości 0 lub 1. Gdy wartości było więcej to dodawano kolejne liczby naturalne. Jeżeli nie ma konkretnej informacji (jak np. *Other* w klasie *gender*) wartości takiej zostało przypisane -1.

```
def ToNumData(X):
      for col in X.columns:
2
          if col == "gender":
3
               for row_nr in range(len(X[col])):
                   if(X[col].iloc[row_nr] == "Male"):
                       X[col].iloc[row_nr] = 0
                   elif (X[col].iloc[row_nr] == "Female"):
                       X[col].iloc[row_nr] = 1
                   elif (X[col].iloc[row_nr] == "Other"):
                       X[col].iloc[row_nr] = -1
10
          elif col == "ever_married":
11
               for row_nr in range(len(X[col])):
12
                   if(X[col].iloc[row_nr] == "Yes"):
13
                       X[col].iloc[row_nr] = 1
14
                   elif (X[col].iloc[row_nr] == "No"):
15
                       X[col].iloc[row_nr] = 0
16
          elif col == "Residence_type":
               for row_nr in range(len(X[col])):
18
                   if(X[col].iloc[row_nr] == "Rural"):
19
                       X[col].iloc[row_nr] = 1
                   elif (X[col].iloc[row_nr] == "Urban"):
                       X[col].iloc[row_nr]
22
          elif col == "smoking_status":
23
               for row_nr in range(len(X[col])):
24
25
                   if(X[col].iloc[row_nr] == "formerly smoked"):
                       X[col].iloc[row_nr] = 1
26
                   elif (X[col].iloc[row_nr] == "never smoked"):
                       X[col].iloc[row_nr] = 0
                   elif (X[col].iloc[row_nr] == "smokes"):
29
                       X[col].iloc[row_nr] = 2
30
                   elif (X[col].iloc[row_nr] == "Unknown"):
31
                       X[col].iloc[row_nr] = -1
          elif col == "work_type":
33
               for row_nr in range(len(X[col])):
34
                   if(X[col].iloc[row_nr] == "Never_worked"):
35
                       X[col].iloc[row_nr] = 0
                   elif (X[col].iloc[row_nr] == "Govt_job"):
37
                       X[col].iloc[row_nr] = 1
38
                   elif (X[col].iloc[row_nr] == "Private"):
39
                       X[col].iloc[row_nr] = 2
                   elif (X[col].iloc[row_nr] == "children"):
41
                       X[col].iloc[row_nr] = -1
42
                   elif (X[col].iloc[row_nr] == "Self-employed"):
                       X[col].iloc[row_nr] = 3
45
      return X
46
```

Testy

Sprawdzenie jak różne formy zatrudnienia mają się do możliwości wystąpienia udaru.

Rysunek 1: Forma zatrudnienia a możliwość wystąpienia udaru

Eksperymenty

W ramach sprawdzenia i głębszej analizy danych sprawdzono jakie kolumny mają wpływ na wynik klasyfikacji. Gdy kolumna ta nie miała wpływu została odrzucania. W ten sposób efektywność wzrosła z 86 do 92 procent.

```
2 def colSelection(y,X):
      i = 1
3
      cols_and_acc = dict()
      for col1 in X.columns:
          x1 = X.drop(col1, axis = 1)
          for col2 in x1.columns:
              x2 = x1.drop(col2, axis = 1)
              prediction = Predict(x2)
              cols_and_acc[str(col1 + " and " + col2)] = round(Accuracy(y,
10
                   prediction), 5)
11
      print("Accuracy without columns "+max(cols_and_acc, key=cols_and_acc
12
         .get)+": "+str(cols_and_acc[max(cols_and_acc, key=cols_and_acc.
         get)]))
```

```
colSelection(yVal,xVal)
```

Accuracy without columns hypertension and avg_glucose_level: 0.92532

Rysunek 2: Po odrzuceniu powyższych kolumn klasyfikator ma wyższą skuteczność

Pełen kod aplikacji

```
1 import numpy as np
2 import random as rd
3 import pandas as pd
4 import seaborn as sns
5 import matplotlib as plt
7 strokes = pd.read_csv('healthcare-dataset-stroke-data.csv')
8 strokes.info()
9 strokes.describe()
10 strokes.head()
12 sns.violinplot(y='stroke', x='work_type', data=strokes, inner='quartile
13
14 sns.pairplot(strokes, hue='stroke', markers='+')
15
16 def ToNumData(X):
      for col in X.columns:
17
          if col == "gender":
18
               for row_nr in range(len(X[col])):
19
                   if(X[col].iloc[row_nr] == "Male"):
                       X[col].iloc[row_nr] = 0
21
                   elif (X[col].iloc[row_nr] == "Female"):
22
                       X[col].iloc[row_nr] = 1
23
                   elif (X[col].iloc[row_nr] == "Other"):
                       X[col].iloc[row_nr] = -1
25
26
          elif col == "ever_married":
27
               for row_nr in range(len(X[col])):
28
                   if(X[col].iloc[row_nr] == "Yes"):
29
                       X[col].iloc[row_nr] = 1
                   elif (X[col].iloc[row_nr] == "No"):
                       X[col].iloc[row_nr] = 0
33
          elif col == "Residence_type":
34
               for row_nr in range(len(X[col])):
35
                   if(X[col].iloc[row_nr] == "Rural"):
36
                       X[col].iloc[row_nr] = 1
37
                   elif (X[col].iloc[row_nr] == "Urban"):
                       X[col].iloc[row_nr] = 0
40
          elif col == "smoking_status":
41
```

```
for row_nr in range(len(X[col])):
42
                   if(X[col].iloc[row_nr] == "formerly smoked"):
43
                        X[col].iloc[row_nr] = 1
44
                   elif (X[col].iloc[row_nr] == "never smoked"):
45
                        X[col].iloc[row_nr] = 0
46
                   elif (X[col].iloc[row_nr] == "smokes"):
47
                        X[col].iloc[row_nr] = 2
48
                   elif (X[col].iloc[row_nr] == "Unknown"):
49
                        X[col].iloc[row_nr] = -1
51
           elif col == "work_type":
52
               for row_nr in range(len(X[col])):
53
                   if(X[col].iloc[row_nr] == "Never_worked"):
54
                        X[col].iloc[row_nr] = 0
55
                   elif (X[col].iloc[row_nr] == "Govt_job"):
56
                        X[col].iloc[row_nr] = 1
                    elif (X[col].iloc[row_nr] == "Private"):
58
                        X[col].iloc[row_nr] = 2
59
                   elif (X[col].iloc[row_nr] == "children"):
60
                        X[col].iloc[row_nr] = -1
61
                    elif (X[col].iloc[row_nr] == "Self-employed"):
62
                        X[col].iloc[row_nr] = 3
63
64
      return X
65
67 #Dropping rows where bmi is NaN
68 strokes.dropna(subset= ["bmi"], inplace=True)
70 #Changing non-numeric data to numeric types
71 strokes = ToNumData(strokes)
72 strokes["gender"] = pd.to_numeric(strokes["gender"])
73 strokes["ever_married"] = pd.to_numeric(strokes["ever_married"])
74 strokes["Residence_type"] = pd.to_numeric(strokes["Residence_type"])
75 strokes["smoking_status"] = pd.to_numeric(strokes["smoking_status"])
76 strokes["work_type"] = pd.to_numeric(strokes["work_type"])
78 strokesTrain = strokes.sample(frac=0.7, random_state=1)
79 strokesVal = strokes.drop(strokesTrain.index)
81 yTrain = strokesTrain["stroke"]
82 xTrain = strokesTrain.drop("stroke", axis = 1).drop("id", axis = 1)
83
84 yVal = strokesVal["stroke"]
85 xVal = strokesVal.drop("stroke", axis = 1).drop("id", axis = 1)
87 means = strokesTrain.groupby(["stroke"]).mean()
88 var = strokesTrain.groupby(["stroke"]).var()
89 classes = np.unique(strokesTrain["stroke"].tolist())
90 prior = (strokesTrain.groupby(["stroke"]).count()/len(strokesTrain)).
     iloc[:,0]
91
92 def Normal(n, mu, var):
      sd = np.sqrt(var)
93
      pdf = (np.e ** (-0.5 * ((n - mu)/sd) ** 2)) / (sd * np.sqrt(2 * np.
94
          pi))
```

```
return pdf # pdf - probability density function
95
96
97 def Predict(X):
       Predictions = []
98
99
       for i in X.index: # Loop through each instances
100
           ClassLikelihood = []
101
           instance = X.loc[i]
102
103
           for cls in classes: # Loop through each class
104
105
                FeatureLikelihoods = []
106
               FeatureLikelihoods.append(np.log(prior[cls])) # Append log
107
                   prior of class 'cls'
108
               for col in X.columns: # Loop through each feature
109
110
                    data = instance[col]
111
112
                    mean = means[col].loc[cls] # Find the mean of column '
113
                       col' that are in class 'cls'
                    variance = var[col].loc[cls] # Find the variance of
114
                       column 'col' that are in class 'cls'
115
                    Likelihood = Normal(data, mean, variance)
116
117
                    if Likelihood != 0:
118
                        Likelihood = np.log(Likelihood) # Find the log-
119
                            likelihood evaluated at x
                    else:
120
                        Likelihood = 1/len(X)
121
                    FeatureLikelihoods.append(Likelihood)
123
124
                TotalLikelihood = sum(FeatureLikelihoods) # Calculate
125
                   posterior
                ClassLikelihood.append(TotalLikelihood)
126
127
           MaxIndex = ClassLikelihood.index(max(ClassLikelihood)) # Find
128
               largest posterior position
           Prediction = classes[MaxIndex]
129
           Predictions.append(Prediction)
130
131
       return Predictions
134 PredictTrain = Predict(xTrain)
135 PredictVal = Predict(xVal)
137 def Accuracy(y, prediction):
138
       # Function to calculate accuracy
139
       y = list(y)
140
       prediction = list(prediction)
141
       score = 0
142
143
```

```
for i, j in zip(y, prediction):
           if i == j:
145
               score += 1
146
147
       return score / len(y)
148
149
150 round(Accuracy(yTrain, PredictTrain), 5)
151
152 round(Accuracy(yVal, PredictVal), 5)
153
154 def ColumnsSelection(y,X):
       for col in X.columns:
           x = X.drop(col, axis = 1)
156
           prediction = Predict(x)
157
           print(f"Accuracy without column {col}: {str(round(Accuracy(y,
158
               prediction)*100, 5))}%")
160 ColumnsSelection(yTrain,xTrain)
161
162 ColumnsSelection(yVal,xVal)
163
164 def colSelection(y,X):
165
       i = 1
166
       cols_and_acc = dict()
167
       for col1 in X.columns:
168
           x1 = X.drop(col1, axis = 1)
169
           for col2 in x1.columns:
170
                x2 = x1.drop(col2, axis = 1)
171
                prediction = Predict(x2)
172
                cols_and_acc[str(col1 + " and " + col2)] = round(Accuracy(y,
173
                    prediction), 5)
                i += 1
174
       print(f"Accuracy without columns {max(cols_and_acc, key=cols_and_acc
175
          .get)}: {str(cols_and_acc[max(cols_and_acc, key=cols_and_acc.get)
          ])}")
176
177 colSelection(yVal,xVal)
```