1

NCERT Analog- 12.7.7

EE23BTECH11045 - Palavelli Srija*

Question 12.7.7: A charged $30\mu F$ capacitor is connected to a 27mH inductor. What is the angular frequency of free oscillations of the circuit?

Solution:

Description	Value
Capacitance	$30\mu F$
Inductance	27 <i>mH</i>
Angular Frequency	??
	Capacitance Inductance

INPUT PARAMETERS

Fig. 0. LC Circuit Diagram

From Kirchhoff's Voltage Law (KVL):

$$V(t) = V_L + V_C \tag{1}$$

Using reactances from Fig. 0,

$$V(s) = sLI(s) + \frac{1}{sC}I(s)$$
 (2)

$$=I(s)\left(Ls+\frac{1}{sC}\right)\tag{3}$$

$$\implies I(s) = \frac{V(s)}{\left(Ls + \frac{1}{sC}\right)} \tag{4}$$

Fig. 0. LC Circuit Diagram

At resonance, the reactances of capacitor and inductor cancel out as follows:

$$Ls + \frac{1}{sC} = 0 \tag{5}$$

$$\implies s = j \frac{1}{\sqrt{LC}} \tag{6}$$

s can be expressed in terms of angular resonance frequency as

$$s = j\omega_0 \tag{7}$$

on comparing (6) and (7)

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{8}$$

$$\omega_0 = \frac{1}{\sqrt{(30 \times 10^{-6}) \times (27 \times 10^{-3})}}$$
 (9)

$$=\frac{1}{\sqrt{8.1\times10^{-7}}}\tag{10}$$

$$\approx 1.11 \times 10^3 \,\text{rad/s} \tag{11}$$