Variational Optimization [1]

Xingdong Zuo

IDSIA, Switzerland

June 21, 2018

1 Introduction

Variational optimization (VO) is a technique to optimize a non-differentiable or discrete objective function with a differentiable bound on the optima. Let $x \in \mathcal{D} \subset \mathbb{R}^n$ be a vector in the domain and let f(x) be a non-differentiable function, our goal is to maximize the function, i.e. $f^* = \max_{x \in \mathcal{D}} f(x)$. We cannot use traditional gradient ascent techniques due to non-differentiability of f. In VO, we could replace it with a differentiable surrogate objective by a lower bound on the optimum of f(x)

$$f^* = \max_{x \in \mathcal{D}} f(x) \ge \mathbb{E}_{x \sim p(x|\theta)} [f(x)]$$
 (1)

where $p(x|\theta)$ is a probability distribution over \mathcal{D} parameterized by θ .

2 Differentiability of the variational bound

We could apply REINFORCE technique to obtain an unbiased gradient estimator, i.e.

$$\nabla_{\theta} \mathbb{E}_{x \sim p(x|\theta)} \left[f(x) \right] = \mathbb{E}_{x \sim p(x|\theta)} \left[f(x) \nabla_{\theta} \log p(x|\theta) \right]$$
 (2)

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_i) \nabla_{\theta} \log p(x_i | \theta)$$
 (3)

3 Concavity of the variational bound

Definition 3.1. Let $I \subset \mathbb{R}$ be an interval in real line, a function $f: I \to \mathbb{R}$ is concave if $\forall x, y \in I$ and $\forall \alpha \in [0, 1]$ such that

$$f((1-\alpha)x + \alpha y) > (1-\alpha)f(x) + \alpha f(y). \tag{4}$$

Alternatively, one can rewrite it as

$$f(x + \alpha(y - x)) \ge f(x) + \alpha(f(y) - f(x)). \tag{5}$$

Definition 3.2. A probability distribution $p(x|\theta)$ parameterized by θ is expectation affine if

$$\mathbb{E}_{x \sim p(x|\theta)} \left[f(x) \right] = \mathbb{E}_{z \sim q(z)} \left[f(\alpha(\theta)z + \beta(\theta)) \right] \tag{6}$$

where $\alpha(\theta)$, $\beta(\theta)$ are linear functions and q(z) is a probability distribution.

Theorem 3.1. If a function f(x) is concave and a probability distribution $p(x|\theta)$ parameterized by θ is expectation affine, then the variational lower bound $\mathbb{E}_{x \sim p(x|\theta)}[f(x)]$ is concave in θ .

Proof. Let $\lambda \in [0,1]$ be a scalar. We have

$$\begin{split} \mathbb{E}_{x \sim p(x|\lambda\theta_1 + (1-\lambda)\theta_2)} \left[f(x) \right] &= \mathbb{E}_{z \sim q(z)} \left[f(\alpha(\lambda\theta_1 + (1-\lambda)\theta_2)z + \beta(\lambda\theta_1 + (1-\lambda)\theta_2)) \right] \\ &= \mathbb{E}_{z \sim q(z)} \left[f(\lambda(\alpha(\theta_1)z + \beta(\theta_1)) + (1-\lambda)(\alpha(\theta_2)z + \beta(\theta_2))) \right] \\ &\geq \mathbb{E}_{z \sim q(z)} \left[\lambda f(\alpha(\theta_1)z + \beta(\theta_1)) + (1-\lambda)f(\alpha(\theta_2)z + \beta(\theta_2)) \right] \\ &= \lambda \mathbb{E}_{z \sim q(z)} \left[f(\alpha(\theta_1)z + \beta(\theta_1)) \right] + (1-\lambda)\mathbb{E}_{z \sim q(z)} \left[f(\alpha(\theta_2)z + \beta(\theta_2)) \right] \\ &= \lambda \mathbb{E}_{x \sim p(x|\theta_1)} \left[f(x) \right] + (1-\lambda)\mathbb{E}_{x \sim p(x|\theta_2)} \left[f(x) \right] \end{split}$$

The Theorem 3.1 indicates that if f(x) has unique global optimum, so does its variational lower bound.

4 Estimation of distribution algorithm

Given the optimization problem $f^* = \max_{x \in \mathcal{D}} f(x)$ where f(x) is non-differentiable. We could instead optimize the variational lower bound $\mathbb{E}_{x \sim p(x|\theta)}[f(x)]$.

The general procedure is shown as following

- 1. Prior distribution $p_0(x|\theta_0)$
- 2. Iteratively
 - (a) Generate solution set $\{x_n\}$ and evaluate them $\{f(x_n)\}$
 - (b) Update distribution: $p(x|\theta_{i+1}) = F(p(x|\theta_i), \{x_n\}, \{f(x_n)\})$ for some function F.

References

[1] Joe Staines and David Barber. "Variational optimization". In: $arXiv\ preprint\ arXiv:1212.4507\ (2012)$.