$$\begin{split} F_{rxm} &= F_{m2} + F_{m3} - F_{m1} - F_{m4}, F_{rxo} = 0 \\ F_{rym} &= F_{m1} + F_{m2} + F_{m3} + F_{m4}, F_{ryo} = F_{o1} + F_{o2} \\ \theta F_{rm} &= \tan^{-}1 \Big(\frac{F_{rym}}{F_{rxm}} \Big), \theta F_{ro} = 0 \\ F_{rx} &= F_{rxm}, F_{ry} = F_{rym} + F_{ryo}, \theta F_{r} = \tan^{-1} \Big(\frac{F_{ry}}{F_{rx}} \Big) \\ F_{rx} &= F_{m2} + F_{m3} - F_{m1} - F_{m4} \\ F_{ry} &= F_{m1} + F_{m2} + F_{m3} + F_{m4} + F_{o1} + F_{o2} \\ \theta F_{r} &= \tan^{-1} \Big(\frac{F_{m1} + F_{m2} + F_{m3} + F_{m4} + F_{o1} + F_{o2}}{F_{m2} + F_{m3} - F_{m1} - F_{m4}} \Big) \end{split}$$

$$\begin{split} F_{rim} &= F_{m2} + F_{m4} \\ F_{lm} &= F_{m1} + F_{m3} \\ \tau_{rm} &= \frac{L+W}{4} (F_{rim} - F_{lm}) \\ \tau_{ro} &= \frac{W}{2} (F_{o2} - F_{o1}) \\ \tau_{r} &= \tau_{rm} + \tau_{ro} \\ \tau_{r} &= \frac{L+W}{4} (F_{rim} - F_{lm}) + \frac{W}{2} (F_{o2} - F_{o1}) \\ \tau_{r} &= \frac{L+W}{4} (F_{m2} + F_{m4} - F_{m1} - F_{m3}) + \frac{W}{2} (F_{o2} - F_{o1}) \end{split}$$

Let $T=\{m,o\},\,N_m=\{1,2,3,4\}$ and $N_o=\{1,2\}.$ For all $t\in T$ and $n\in N_t,$ we have

$$k_{\{tn\}}^{\mathrm{min}} \leq F_{\{tn\}} \leq k_{\{tn\}}^{\mathrm{max}}$$

Now we want to make some way to input θF_r , τ_r , and for all $t \in T$ and $n \in N_t$: $k_{\{tn\}}^{\min}$ and $k_{\{tn\}}^{\max}$ and then somehow get out for all $t \in T$ and $n \in N_t$: $F_{\{tn\}}$ that maximizes $F_{rx} + F_{ry}$

First let's find the "objective functionz". Substituting we get

$$F_{m2} + F_{m3} - F_{m1} - F_{m4} + F_{m1} + F_{m2} + F_{m3} + F_{m4} + F_{o1} + F_{o2}$$

Simplifying we then get

$$2F_{m2} + 2F_{m3} + F_{o1} + F_{o2}$$

We can then use the simplex algorithm to solve this. It says to maximize c^T x subject to $Ax \leq b$ and $x \geq 0$ where

- A is an $m \times n$ matrix
- $b \in \mathbb{R}^m$
- $c \in \mathbb{R}^n$
- $x \in \mathbb{R}^n$ are the decision variables

In this case the decision variables or x vector would be F_{m1} , F_{m2} , F_{m3} , F_{m4} , F_{o1} , F_{o2}

Now we need to linearize θF_r .

First we flip around the trig function to get

$$\tan(\theta F_r) = \frac{F_{m1} + F_{m2} + F_{m3} + F_{m4} + F_{o1} + F_{o2}}{F_{m2} + F_{m3} - F_{m1} - F_{m4}}$$

Then simplifying we get

$$F_{m1} + F_{m2} + F_{m3} + F_{m4} + F_{o1} + F_{o2} - \tan(\theta F_r)(F_{m2} + F_{m3} - F_{m1} - F_{m4}) = 0$$