INSTRUMENTATION Computer session 2

Linear regression and calibration curves
The case of concentration analysis of a solute using spectroscopy.

Tahani Madmad Brussels school of engineering - ECAM Electronics & computer science unit mdm@ecam.be

Useful definitions for analyte concentration analysis

Consider monochromatic light transmitted through a solution; with an incident intensity of I_0 and a transmitted intensity of I.

The transmittance, T, of the solution is defined as the ratio of the transmitted intensity, I, over the incident intensity, I0 and takes values between 0 and 1. However, it is more commonly expressed as a percentage transmittance (x100%).

$$T = \frac{I}{I_0}$$

The **absorbance**, *A*, of the solution is related to the transmittance and incident and transmitted intensities through the following relations:

$$A = \log_{10} \frac{I_0}{I}$$
$$A = -\log_{10} T$$

Beer's law: relationship between concentration and absorbance

The relationship between **absorbance** A and **concentration** C is defined by Beer-Lambert Law.

Beer's Law states that the **absorbance** of light absorbing matter in water **is directly proportional to its concentration**, expressed by the following equation:

$$A = \varepsilon \times b \times C$$

Where:

ε is the molar absorbtivity of the particular type of matter in the water sample, b is the path length of the water sample, c is the concentration of matter in the water sample.

Calibration curves

Amount of Substance Being Analyzed

Concentration

What is being calibrated?

- For each analyte (A), we calibrate the proportion between concentration (C_A) and signal (S_A)
- Single-point standardization is less desirable than multiple-point standardization

The proportionality constant is k_A

$$S_A = k_A \cdot C_A$$

Sensitivity

Selectivity and Sensitivity

 Sensitivity is the capability of responding reliably and measurably to changes in analyte concentration

Sensitivity

= slope of calibration curve

$$K_A = \frac{\text{change in signal}}{\text{change in analyte concentration}}$$

- Selectivity (or specificity) is the ability to distinguish the analyte from other species in the sample
 - Selectivity is avoiding interference

Linearity

- How well does a calibration curve follow a straight line?
- If you know the target analyte concentration, prepare standards ranging from 0.5 to 1.5 times the expected analyte concentration
- Measures of linearity are:
- Square of the correlation coefficient: R²
 - R² close to 1 is a very good fit, 0.995 or 0.999 are typical cutoffs
- May also consider the y-intercept of the calibration curve. It should be small (≤10%) compared to the response for the high end of the calibration curve
 - This tests how good the blank subtraction is

Keep your eyes open when making calibration curves

You can use the rest of the dynamic range if need be, but it needs a non-linear fit! Don't just fit a line blindly Dynamic range to the whole Linear curve range Only fit a line to the linear dynamic range C_1 Analyte concentration

Range

 Range is the concentration interval over which specifications are met for linearity, accuracy and precision

- Don't confuse this with
- <u>Linear Range</u> = concentration range over which a calibration curve is linear
- <u>Dynamic Range</u> = concentration range over which there is a measurable response

Webography - references

https://realtechwater.com/blog-post/what-is-the-relationship-between-absorbance-and-concentration/https://www.youtube.com/watch?v=XGIUFE8UMB4https://www.edinst.com/fr/blog/the-beer-lambert-law/