

РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Оценка макроэкономических зависимостей с использованием методов снижения размерности в данных

Отчёт по научно-исследовательской работе

2018

Михаил Гареев 30-15-01

mkhlgrv@gmail.com

Научный руководитель: к.э.н. Полбин А.В.

Актуальность исследования

При оценке моделей из макроэкономики часто можно столкнуться с тем, что параметров относительно много, а наблюдений - мало. Иногда эту проблему решается использованием методов снижения размерности в данных.

Цели и задачи

Цель:

 Проверка некоторых гипотез макроэкономики при помощи методов снижения размерности в данных и создание на их основе предсказательных моделей для макроэкономических показателей.

Задачи:

- 1. Обзор методов снижения размерности (LASSO, Post-LASSO, Dantzig Selector и др.).
- 2. Применение этих методов для оценки макроэкономических зависимостей, анализ результатов, сравнение с другими методами оценивания и с результатами, полученными ранее.
- 3. Построение предсказательных моделей.
- 4. Создание процедуры мэтчинга стран на основе их макроэкономических показателей.

Разреженная линейная модель с высокой размерностью в данных

Модель:

$$\beta_0 + \varepsilon_i, \epsilon_i \sim N(0, \sigma^2), \beta_0 \in \mathbb{R}^p, i = 1, \dots, n,$$

где:

- y_i это значения объясняемой переменной,
- $ightharpoonup x_i$ это значения p-размерной объясняющей переменной,
- $\mathbf{\varepsilon}_i$ значения независимых случайных ошибок в каждом наблюдении i,

при этом возможно, что $p \geq n$, но только s < n компонентов вектора β_0 не равны 0.

Можно ли уменьшить размерность модели?

Oracle Problem

Задача (Oracle Problem):

$$\min_{\beta \in \mathbb{R}^p} \mathbb{E}_n \left[(y_i - x_i'\beta)^2 \right] + \sigma^2 \frac{\|\beta\|_0}{n}, \tag{1}$$

где $\|\beta\|_0$ — это количество ненулевых компонентов в векторе β , обобщение понятия нормы для степени 0.

Гёльдерова норма для вектора x степени p:

$$||x||_p = \sqrt[p]{\sum_i |x_i|^p},$$

где обычно $p \ge 1$.

Решение (1) — это баланс между ошибкой регрессии и количеством ненулевых коэффициентов из вектора β .

Методы снижения размерности оптимизируют эмпирические аналоги задачи (1).

AIC/BIC

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{\boldsymbol{i}} = 1^n \left[(y_{\boldsymbol{i}} - x_{\boldsymbol{i}}{'}\beta)^2 \right] + \frac{\lambda}{n} \left\| \beta \right\|_0,$$

где λ — параметр штрафа.

LASSO

$$\hat{\beta}^{\text{LASSO}} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{i} = 1^n \left[(y_i - x_i{'}\beta)^2 \right] + \frac{\lambda}{n} \left\| \beta \right\|_1,$$

где λ — параметр штрафа, выбирается алгоритмически.

Post-LASSO

- 1. Использовать метода LASSO, найти $\hat{\beta}$.
- **2**. Применить МНК-регрессию, оценивая только неисключенные параметры β :

$$\tilde{\beta} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{i} = 1^n \left[(y_i - x_i^{'}\beta)^2 \right] + \frac{\lambda}{n} \left\| \beta \right\|_1, \beta_j = 0 |/hatbeta_j = 0.$$

Dantzig Selector

$$\beta^{/\hat{text}DS}\min_{\beta\in\mathbb{R}^p}\|\beta\|_1$$
 s.t. $|x_i\beta-y_i|\leq \lambda \forall i=1,\dots,n,$

где λ — параметр штрафа, выбирается алгоритмически.

Проверка гипотезы конвергенции с помощью методов снижения размерности

Однофакторная модель

Модель

$$g_i = \alpha + \beta ln(G_i) + \varepsilon_i, \epsilon_i \sim N(0, \sigma^2),$$

где:

- g_i средний за 1980–1984 темп роста реального ВВП на душу населения,
- ▶ G_i логарифим ВВП на душу населения в 1980 г. (в долларах) для страны $i, i = 1, \dots, 245$.

Данные:

Проверка гипотезы конвергенции с помощью методов снижения размерности.

Использование LASSO

Модель

$$g_i = \alpha + \beta ln(G_i) + \varepsilon_i, \epsilon_i \sim N(0, \sigma^2),$$

где:

- g_i средний за 1980–1984 темп роста реального ВВП на душу населения,
- ▶ G_i логарифим ВВП на душу населения в 1980 г. (в долларах) для страны $i, i = 1, \dots, 245$.

Проверка гипотезы конвергенции с помощью методов снижения размерности.

Данные

Проверка гипотезы конвергенции с помощью методов снижения размерности.

Сравнение результатов

Таблица: Результаты регрессий

	g	
	(1)	(2)
G	0.001 (-0.005, 0.007)	-0.0112 (-0.022, 0.001)
С	-0.010 (-0.055, 0.034)	-0.03 (-0.032, 0.041)
Наблюдений	120	120
R^2	0.001	0.001
Adjusted R ²	-0.007	-0.007
lambda		2.7870
Поличение	*n <0 1· **n <0 05· ***n <0 01	

Примечание:

*p<0.1; **p<0.05; ***p<0.01

Краткий вывод и планы

- Методы снижения размерности (LASSO, Post-LASSO и др.)
 потенциально представляют собой мощный инструмент для нахождения и проверки макроэкономических зависимостей.
- Планы на ближайшее время:
 - ⇒ Сделать осмысленные LASSO, Post-Lasso регрессии для проверки гипотезы конвергенции на основе современных данных Всемирного банка.
 - ⇒ Проверить другие макроэкономические гипотезы с помощью методов снижения размерности.

Спасибо за внимание

Оценка макроэкономических зависимостей с использованием методов снижения размерности в данных

Михаил Гареев 90-15-01

mkhlgrv@gmail.com

Источники

- Belloni, Alexandre and Chernozhukov, Victor High dimensional sparse econometric models: An introduction. Springer, 2011
- Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. Lasso methods for gaussian instrumental variables models 2011
- Barro, Robert J. and Lee, Jong-Wha Data Set for a Panel of 138 Countries 1994
- Candes, Emmanuel, and Terence Tao.
 The Dantzig selector: Statistical estimation when p is much larger than n.
 The Appele of Statistics 25.6 (2007): 2313, 2354.
 - The Annals of Statistics 35.6 (2007): 2313-2351.
- Akaike, Hirotugu.A new look at the statistical model identification.

IEEE transactions on automatic control 19.6 (1974): 716-723.