Chapter 2: Digital Image Fundamentals

Origin42

Question 3. [Marks: 13]

151

[8]

b) Consider the image below with $V = \{0, 1, 2, 4\}$ and answer the followings:

p (2, 3) q (2, 3)

- i. What are the properties of Distance Function for Distance Metrics if there are 3 pixels p, q and r? [2]
- ii. Calculate the distances: $\underline{D_4(p,q)}$, $\underline{D_4(p,r)}$, $\underline{D_8(p,q)}$ and $\underline{D_e(p,q)}$. [2]
- iii. Define the terms N₄(p), N_D(p) and N₈(p) of above image. [T.5]
- iv. Does 4-path exist between p and q? Explain your answer. [1]
- v. Does m-path exist between p and q? Explain your answer. [1.5]

3.b. Solution: 024, Correction: 027

(i)

Properties of Distance function:

- $D(p, q) \ge 0$
- D(p, q) = D(q, p)
- $D(p, r) \le D(p, q) + D(q, r)$

(ii)

Index count will start from (1, 1), not (0, 0). Given,

	1	2	3	4
1	1(p)	4	3	4(r)
2	2	3	4	7
3	0	5	1	6
4	3	4	7	1(q)

D4 means City block distance. D4(p, q) = |1-4| + |1-4| = 6

D4 means City block distance. D4(p, r) = |1-4| + |1-1| = 3

D8 means Chessboard distance. D8(p, q) = max(|1-4|, |1-4|) = 3

De means Euclidean distance. De(p, q) = $sqrt((1-4)^2 + (1-4)^2) = 3sqrt(2)$

(iii)

N4(p) means 4 neighbors of p. Their positions are top, down, left, right. For P they are 4, 2.

ND(p) means diagonal neighbors of p. They are 3.

N8(p) means 4 neighbors and diagonal neighbors of p. They are 4, 2, 3.

(iv)

No. 4-path doesn't exist between p and q.

1(p)	→ 4	3	4(r)
2	3	4	7
0	6	1	6
3	4	7	1(q)

As, $v=\{0, 1, 2, 4\}$. There is no 4-path from p to q containing values of v.

(v)

Yes. m-path exists between p and q.

As, v={0, 1, 2, 4}. There is an m-path from p to q containing values of v.

Enigma41

Question 4:

b) Consider the two image subsets S1 and S2 and answer the following questions based on these two image subsets.

		SI	12			94	S2		
0	0	0	3	2	2	1(y)	2	1	2
0	1	0	2	1	1	1	2	2	0
0	0	0	1	1	1	0	2	3	2
0	0	1(x)	0	0	2	2	3	2	2
0	0	: 1	1	1	0	0	1	1	1

- i. Draw a digital path from S1 or S2 and explain? [2]
- ii. Does a four path exist between (x) and (y) for $V = \{1, 2\}$? [1]
- iii. Do four path and m-path exists between (x) and (y) for $V = \{1, 0\}$? [2] [If your answer is yes, draw the path. If no, explain why.]
- iv. Determine whether S1 and S2 are 4-adjacent for V={1,2}? [1]

4.b. Solution:

Recursive40

- b) Consider the image segment shown on the table where V be the set of gray level values used to define the connectivity in the image. Compute D₄, D₈ and D_m distances between pixel P and Q for,
 - i. $V = \{2, 3\}$
 - ii. $V = \{2, 6\}$

2(P):	-3,	2	6 .	1.
6 .	2	3	6	2
5	3	2_	3,	5
2	4	3	5	21
4	5	2	3	6(Q)

[6]

7.b. Solution:

(i)

Prototype39

4.

a) Consider the following matrix, which is part of an image.

[6]

q	w	
	p	
	u	

The values of pixels p, q, u and w belong to set V, which is the set of intensity values used to define adjacency.

- i. Are pixels p and q 4-adjacent? Are they 8-adjacent? Are they m-adjacent? Provide one answer to each question.
- ii. What is the Euclidean distance, the chessboard distance and the city-block distance between pixels q and u?
- iii. Is there a 4-path from pixel u to pixel q? If so, what is it?

Solution: 024

(i)

p and q 4 adjacent: No p and q 8 adjacent: Yes p and q m adjacent: No

(ii)

	1	2	3
1	q	w	
2		p	
3		u	

So, q(1, 1) and u(3, 2).

De/Euclidean distance. De(q, u) = $sqrt((1-3)^2 + (1-2)^2) = sqrt(5)$

D8/Chessboard distance. D8(q, u) = max(|1-3|, |1-2|) = 2

D4/City block distance. D4(q, u) = |1-3| + |1-2| = 3

(iii)

Yes. 4-path exists between u and q.

As, $v=\{p, q, u, w\}$. There is a 4-path from u to q containing values of v.

b) Consider the following 4×4 image (at the left) with respective pixel values (at the right). Zoom it to a 6×6 image using nearest neighbor interpolation.

[6.5]

180	160	160	140
110	110	120	140
110	140	120	120
120	160	160	170

4

170

Solution: 024

Nearest Neighbor Interpolation:

Given pixel values,

			_	
1	180	160	160	140
2	110	110	120	140
3	110	140	120	120

160

2

3

160

1

120

Input image row=4, column=4. Output image row=6, column=6.

Row ratio = 4/6, Column ratio = 4/6.

New row location = Row index x Row ratio

 $= \{123456\} \times (4/6)$

= {0.67 1.33 2 2.67 3.33 4}

= {1 2 2 3 4 4} // taking ceiling values

Row interpolation values,

	1	2	3	4
1	180	160	160	140
2	110	110	120	140
2	110	110	120	140
3	110	140	120	120
4	120	160	160	170
4	120	160	160	170

New column location = Column index x Column ratio

 $= \{123456\} \times (4/6)$

= {0.67 1.33 2 2.67 3.33 4}

= {1 2 2 3 4 4} // taking ceiling values

Column interpolation values,

	1	2	2	3	4	4
1	180	160	160	160	140	140
2	110	110	110	120	140	140
2	110	110	110	120	140	140
3	110	140	140	120	120	120
4	120	160	160	160	170	170
4	120	160	160	160	170	170

After row and column interpolation we get 6x6 pixel values