Chapitre 5: Les réseaux 3ème génération; UMTS

1

Réseaux Mobiles

Fatma Louati Ben Mustapha - Kaouther Sethom

2º Ingénieur informatique - Enicarthage

2020-2021

Standards, services, fréquences et débits

Présentation

- UMTS (Universal Mobile Telecommunications System)
- Une des technologies de téléphonie mobile de troisième génération (3G): aussi appelée 3GSM
 - Compatibilité des services mobiles de 3ème génération avec les réseaux de seconde génération
- Le principe de l'UMTS est souvent résumé dans la formule **anyone**, **anywhere**, **anytime**
 - Doit permettre l'acheminement des communications indépendamment de la localisation de l'abonné
- Particularité des technologies 3G: avoir un réseau cœur IP
- Repose sur la technique d'accès multiple **W-CDMA** (*Wide band Code Division Multiple Access*)

Hiérarchie des cellules de l'UMTS

Les services de l'UMTS

Fréquences attribuées à l'UMTS

- CAMR de 1992 organisée par l'UIT
 - TDD: 1 885,00 à 1 920,00 MHz (35 MHz de largeur) et 2 010,00 à 2 025,00 MHz (15 MHz);
 - FDD: 1 920,00 à 1 980,00 MHz (60 MHz uplink) et 2 110,00 à 2 170,00 MHz (60 MHz downlink)
 - Bandes satellites: 1 980,00 à 2 010,00 MHz (30 MHz uplink) et 2 170,00 à 2 200,00 MHz (30 MHz downlink).
 - D'autres bandes:
 - 900 MHz (partagées entre le GSM et UMTS en Europe et en France)
 - 700 MHz et 1 700 MHz en Amérique du Nord et en Asie.
 - La bande de fréquence affectée à chaque cellule radio est de **5 MHz** avec une largeur spectrale réelle de 4,685 MHz.

Débits théoriques

Version initiale

- Débit maximum théorique atteint (descendant) = 1,920 Mbit/s:
- Supérieur au débit initial du GSM (9,6 kbit/s) et à celles des variantes du GSM: GPRS et EDGE (384 kb/s pour l'EDGE).
- Permettait des débits en
 - 144 kb/s pour une utilisation mobile en mouvement rapide (voiture, train...) et en zones rurales loin de l'antenne ;
 - 384 kb/s pour une utilisation piétonne;
 - Jusqu'à 2 000 kb/s depuis un point fixe (terminal immobile) et dans des conditions idéales.

Débits théoriques

Version 7 et 8 (HSPA+ ou 3,75G)

- Nouvelles améliorations de la norme UMTS
- FDD (2013):
 - Débits descendants pics de **21 Mb/s**, **42 Mb/s** en « Dual Carrier DC »
 - Débit de **84 Mb/s** en mode multi antennes **MIMO**.
- En 2014: « DC-HSPA+ » Supportée par les smartphones et les tablettes:
 - Utilise deux cellules radio simultanément (deux bandes de fréquence UMTS adjacentes de 5 MHz); permet un débit pic descendant de 42 Mb/s.
- Débits théoriques crêtes supposent un terminal immobile, placé dans des conditions de réception radio parfaites et, en pratique, avoir un seul terminal actif à un instant donné dans la cellule radio (zone couverte par la ou les antennes).

Architecture globale du réseau UMTS

Architecture du réseau UMTS 1. Le mobile

Évolution des technologies de l'informatique et des télécommunications

Intégration de système d'exploitation et d'applications sur les terminaux UMTS.

- Le mobile s'adapte sur différents réseaux
 - Utilise les réseaux GSM / GPRS / UMTS pour une couverture nationale tout en faisant appel aux réseaux de satellites pour une couverture mondiale si nécessaire.
- Est équipé d'un navigateur, une évolution du browser WAP présent dans le système GSM actuel.

Architecture du réseau UMTS 1. Le mobile - La carte USIM

- Assure la **sécurité** du terminal et la **confidentialité** des communications.
- Utilisation d'algorithmes de cryptage.
- Un certain nombre de fonctionnalités sont assurées par les cartes USIM de troisième génération:
 - La détection des fausses stations de base.
 - L'utilisation des clés de cryptage plus longues
 - La protection des données d'identité de l'abonné et de son terminal.

Architecture du réseau UMTS 2. Le réseau d'accès

- Réseau d'accès UTRAN (Universal /UMTS TerrestrialRadio Access Network)
 - Transférer les données générées par l'usager.
 - Permet la confidentialité et la protection des informations.
 - Permet une estimation de la position géographique
 - Se charge d'allouer et de maintenir des ressources radio nécessaires à la communication.

Architecture du réseau UMTS 2. Le réseau d'accès - NodeB

- Le rôle principal du NodeB est d'assurer les fonctions de réception et de transmission radio pour une ou plusieurs cellules du réseau d'accès de l'UMTS avec un équipement usager.
- Le NodeB travaille au niveau de la couche physique du modèle OSI.

NodeB avec antenne omnidirectionnelle

Architecture du réseau UMTS 2. Le réseau d'accès – Le RNC

- RNC (Radio Network Controller)
- Directement relié à un NodeB
- Gère:
 - Le contrôle de charge et de congestion des différents NodeB.
 - Le contrôle d'admission et d'allocation des codes pour les nouveaux liens radio (entrée d'un mobile dans la zone de cellules gérées ...).
- II existe deux types de RNC :
 - Le **Serving RNC** qui sert de passerelle vers le réseau.
 - Le **Drift RNC** qui a pour fonction principale le routage des données.

Architecture du réseau UMTS 3. Le réseau cœur

- Composé de trois parties :
 - Le domaine CS (Circuit Switched) utilisé pour la téléphonie.
 - Le domaine **PS** (*Packet Switched*) permet la commutation de paquets.
 - Les éléments communs aux domaines CS et PS.
- Ces deux domaines permettent aux équipements usagers de pouvoir gérer simultanément une communication paquets et circuits.

Architecture du réseau UMTS

3. Le réseau cœur – Utilisation des architectures réseau existantes

- UMTS s'appuie sur les éléments de base du réseau GSM et GPRS.
- Il est en charge de la commutation et du routage des communications (voix et données) vers les réseaux externes.

- Le réseau cœur se décompose en deux parties :
 - le domaine circuit et le domaine paquet.

Architecture du réseau UMTS 3. Le réseau cœur – Le dom aine circuit

- Permet de gérer les services **temps réels** dédiés aux conversations téléphoniques (vidéo-téléphonie, jeux vidéo, applications multimédia).
 - Applications nécessitant un temps de transfert rapide.
- Débit = 384 Kbits/s.
- L'infrastructure s'appuie sur les principaux éléments du réseau GSM : MSC/VLR et le GMSC afin d'avoir une connexion directe vers le réseau externe.

Architecture du réseau UMTS 3. Le réseau cœur – Le dom aine paquet

- Permet de gérer les services non temps réels.
 - Navigation sur Internet, gestion de jeux en réseaux, accès/utilisation des emails.
 - Applications moins sensibles au temps de transfert.
- Débit sept fois plus rapide que le mode circuit (environ 2Mbits/s).
- L'infrastructure s'appuie sur les principaux éléments du réseau GPRS : Le SGSN et le GGSN qui jouera le rôle de commutateur vers le réseau Internet et les autres réseaux publics ou privés de transmission de données.

Apports de l'UMTS

- Le <u>GSM</u> répond aux attentes en terme de communication de <u>type Voix</u>
- Le réseau <u>GPRS</u> répondra aux attentes en terme <u>d'échange de Data en</u> complément du réseau GSM.
- L'avènement des réseaux UMTS est l'ère du multimédia portable.
- L'UMTS est une excellente solution du point de vue technique

Contraintes de l'UMTS

- Proviennent essentiellement:
 - Rentabilité (ARPU suffisant? Culture consommateurs?)
 - Achat de matériel
 - Installation massive sur le territoire national
 - Achat de spectre d'émission
 - Exploitation, nouveaux terminaux

Partage des infrastructures UMTS

Partage des infrastrures

- Exemple: La France
- Cinq niveaux de partage
 - Niveau 1: Utilisation commune pour plusieurs opérateurs de tout ou partie des éléments passifs d'infrastructure : sites, génie civil, locaux techniques, pylônes, alimentation électrique, climatisation ...
 - Niveau 2: Mise en commun des antennes et de l'ensemble de la connectique associée.
 - Niveau 3: Partage des stations de base sous respect de deux contraintes:
 - Chaque opérateur doit garder le contrôle du NodeB afin de pouvoir exploiter en toute indépendance les fréquences qui lui ont été attribuées.
 - L'opérateur reste propriétaire des équipements actifs de la station de base, en particulier sur les dispositifs d'émission/réception sur la voie radio.

Partage des infrastrures

- Exemple: La France
- Cinq niveaux de partage
 - Niveau 4: Partage des RNC possible dès lors qu'il s'accompagne du maintien d'un contrôle logique sur le RNC de chacun des opérateurs indépendamment l'un de l'autre.
 - L'opérateur reste maître de :
 - L'allocation et de l'optimisation de la ressource radio.
 - La gestion de la mobilité et le contrôle des paramètres de handover.

Partage des infrastrures

- Exemple: La France
- Cinq niveaux de partage
 - Niveau 5: Possible mutualisation des commutateurs (MSC) et des routeurs (SGSN) du réseau fixe de l'opérateur mais l'ART exclut toute solution sur le partage des infrastructures conduisant à une mise en commun des fréquences entre opérateurs.

Conclusion sur le réseau UMTS

- L'UMTS est ainsi une extension du GPRS et fonctionne également en mode paquet.
- La vitesse de transmission offerte par les réseaux UMTS atteint 2 Mb/s.
- L'infrastructure UMTS permet l'élargissement des fréquences ainsi que la modification du codage des données.
- Mais les investissements en architecture réseau sont conséquents puisque le mode de communication entre les terminaux 3G et les NodesB est différent
 - => Les modifications matérielles sont très importantes.
- Sur le plan technique, les architectures des trois réseaux GSM, GPRS et UMTS sont complémentaires et interconnectées afin d'optimiser la qualité de service rendue à un abonné