(i) Printed Pages: 3

Roll No.

(ii) Questions : 14

: 14 Sub. Code : 0 8 2

Exam. Code: 0 0

0 0 1 3

Bachelor of Commerce 3rd Semester (1129)

BUSINESS MATHEMATICS AND STATISTICS Paper—BCM-304

Time Allowed: Three Hours

[Maximum Marks: 80

Note: (1) Attempt any four questions from Section-A.

- (2) Attempt any two questions from Section-B.
- (3) Attempt any two questions from Section-C.

SECTION—A

I. Define Elementary Column transformation and show that:

$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0.$$

II. Define inverse of a matrix and verify:

 $(AB)^{-1} = B^{-1}A^{-1}$ for the matrices

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}.$$

III. If $e^x + e^y = e^{x+y}$ then show that,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{y-x}$$
.

IV. Define average and discuss its objectives in brief.

0820/FF-7626

1

Turn over

V. From the following, compute Q_1 and Q_3 :

$$X = 10$$
 20 30 40 50 60 70
 $Y = 2$ 3 5 10 5 3 2

VI. Give in brief the methods of collecting Primary Statistical data. 4×5=20

SECTION—B

VII. Given
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
, verify that $AA^{-1} = A^{-1}A = I_3$

where I_3 is identity matrix of order 3.

VIII.(a) Show that:

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$$

(b) Solve the following system of equations by inverse method:

$$2x_{1} - x_{2} + 3x_{3} = 9$$

$$x_{2} - x_{3} = -1$$

$$x_{1} + x_{2} - x_{3} = 0$$

IX. Differentiate $(\log x)^{\log x} + (1 + x)^{2x}$ w.r.t. x.

X. Find maxima and minima of $\frac{(x-1)(x-6)}{x-10}$ or $\frac{x^2-7x+6}{x-10}$ or

$$\frac{2x^2 - 14x + 12}{2x - 20}$$
. $2 \times 15 = 30$

SECTION—C

- XI. Define Index Number and discuss its types.
- XII. Calculate Karl Pearson's coefficient of skewness from the following data:

- XIII. Define primary and secondary data. Explain various methods of collecting primary data.
- XIV. Fit a straight line to the following data taking X as the independent variable:

X	2011	2012	2013	2014	2015	2016	
Y	1	1.8	3.3	4.5	6.3	10	
						2×15=3	0