第一章 习题课

```
1. 给定文法G=({S,B,C,D,E},{0,1},P,S), 其中P:
 S\rightarrowABC, AB\rightarrow0AD, AB\rightarrow1AE, AB\rightarrow \epsilon, D0\rightarrow0D,
   D1\rightarrow1D, E0\rightarrow0E, E1\rightarrow1E, C\rightarrow \epsilon, DC\rightarrowB0C,
    EC \rightarrow B1C, 0B \rightarrow B0, 1B \rightarrow B1
试写出句子01100110的派生过程。
解: S \Rightarrow ABC \Rightarrow 0ADC \Rightarrow 0AB0C \Rightarrow 01AE0C \Rightarrow 01A0EC
\Rightarrow01A0B1C\Rightarrow01AB01C\Rightarrow011AE01C\Rightarrow011A0E1C\Rightarrow
011A01EC \Rightarrow 011A01B1C \Rightarrow 011A0B11C \Rightarrow 011AB011C
\Rightarrow0110AD011C\Rightarrow0110A0D11C\Rightarrow0110A01D1C\Rightarrow
0110A011DC \Rightarrow 0110A011B0C \Rightarrow 0110A01B10C \Rightarrow
0110A0B110C \Rightarrow 0110AB0110C \Rightarrow 01100110C \Rightarrow 01100110
```

- 2. 设计下列各文法G, 使得它们分别是:
 - G是个上下文无关文法,且
 L(G)={aⁱb^j c^k | i,j,k≥1}。
 - (2) G是个正规文法,且 L(G)={aⁱb^j c^k | i,j,k≥1}。
- (3) G是个上下文无关文法,且 L(G)={ ww^R | w∈{0,1}+}。其中w^R是w的逆转,例 如w=001, 则w^R=100.
- 解:设计一个文法G要验证: 凡是符合要求的句子G都能产生出来; G产生出来的所有句子都是符合要求的。
- (1) $G=(\{S,A,B,C\},\{a,b,c\},P,S)$ P: $S\rightarrow ABC$, $A\rightarrow aA|a$, $B\rightarrow bB|b$, $C\rightarrow cC|c$

- (2) $G=(\{S,A,B,C\},\{a,b,c\},P,S)$
 - P: $S \rightarrow aA$, $A \rightarrow aA|bB$, $B \rightarrow bB|cC$, $C \rightarrow cC|\epsilon$
- (3) G=({S},{0,1},P,S)
 - P: $S \rightarrow 0S0|1S1|00|11$

第二章 习题

- 1. 设计一个有限自动机(FA) M, 使得T(M)中的每个句子w同时满足下面三个条件:
 - 1) $w \in \{a,b,\}^*$;
 - 2) |w|是3的整数倍;
 - 3) w以a开头,以b结尾。

解:

2. 设计二个 FAM_1 和 M_2 ,分别满足

$$T(M_1)=\{0^{2i}\mid i$$
是自然数}

$$T(M_2) = \{0^{2i+1} \mid i=0,1,2,3,4,...\}$$

解: M₁:

3. 给定NFA M_1 =({p,q,r,s},{0,1}, δ ,p,{s}),如下表所示。 构造一个DFA M_2 ,使得 $T(M_1)$ = $T(M_2)$ 。

解: 令 M_2 =(K', Σ , δ ', q_0 ',F'), 其中 K' \subseteq 2^K, K'中的元素是由K的子集 $\{q_1,q_2,...,q_i\}$ 构成,但是要把子集 $\{q_1,q_2,...,q_i\}$ 作为的一个状态看待,

$$egin{array}{c|c|c|c} \delta & 0 & 1 \\ \hline p & \{p,q\} & \{p\} \\ q & \{r\} & \{r\} \\ r & \{s\} & \Phi \\ s & \{s\} & \{s\} \\ \hline \end{array}$$

因此把此子集写成 $[q_1,q_2,...,q_i]$ 。

$$q_0' = [q_0],$$

 $F'=\{[q_1,q_2,...,q_i]|[q_1,q_2,...,q_i]∈K'_\{q_1,q_2,...,q_i\}\cap F\neq \Phi\}$

$$\delta$$
': $K' \times \Sigma \rightarrow K'$, 对 $\forall [q_1,q_2,...,q_i] \in K'$, $\forall a \in \Sigma$, 有 δ '($[q_1,q_2,...,q_i]$, a)= $[p_1,p_2,...,p_j]$

当且仅当

$$\delta (\{q_1,q_2,...,q_i\},a) = \{p_1,p_2,...,p_j\}$$

4.将下面的 ε-NFA M等价变换成NFA M'。

解: M'=(K, Σ , δ ', q_0 ,F'), q_0 是M的开始状态,其中

$$F' = \begin{cases} F \bigcup \{q_0\} & \text{如果} \ \epsilon - \text{CLOUSURE}(q_0) \cap F \neq \Phi \\ F & \text{否则} \end{cases}$$

 δ ': 对任何q \in K,任何a \in Σ , δ '(q,a)= $\hat{\delta}$

 (\mathbf{q}, \mathbf{a}) 。 公式(1): 对于 $\forall \mathbf{q} \in \mathbf{K}$, $\hat{\delta}$ $(\mathbf{q}, \varepsilon) = \varepsilon$ -CLOSURE (\mathbf{q})

公式(2): 对于 $\forall q \in K, \forall w \in \Sigma^*, \forall a \in \Sigma,$

 $\hat{\delta}$ (q,wa)= ε -CLOSURE(δ ($\hat{\delta}$ (q,w),a))

因为f∉CLOSURE(a)={a,b},

所以F'=F={f}

δ': $\forall q \in K$,任何 $a \in \Sigma$,

$$\delta$$
 '(q,a)= $\hat{\delta}$ (q,a) .

在计算 \hat{s} (q,a)时,要将a理解成a路径!

例如 δ '(a,0)= $\hat{\delta}$ (a,0)={c,e,d,b} .

δ .		0	1
•	a	$\{c,e,d,b\}$	$\overline{\{d,b\}}$
	b	Ф	$\{d,b\}$
	c	$\{\mathbf{f}\}$	$\{f,d,b\}$
	d	$\{\mathbf{f}\}$	$\{d,b\}$
	e	$\{\mathbf{f}\}$	$\{f,d,b\}$
	f	Ф	Ф

6. 构造一个FA M, 使得T(M)的正规表达式为 01+((0+1)*1)*。

解: 1.分解表达式,找出基本单元: 0,1,01,1。设计接收这些基本单元的自动机如下:

7. 给定FA M如下图所示,求它所接收的语言T(M)的正

规表达式。

解:

$$r_{ij}^{0} = \begin{cases} a_{1} + a_{2} + \dots + a_{m} & i \neq j \\ a_{1} + a_{2} + \dots + a_{m} + \varepsilon & i = j \end{cases} \} \delta(q_{i}, a_{k}) = q_{j} \quad (1 \leq k \leq m)$$

$$r_{ij}^{k} = r_{ik}^{k-1} (r_{kk}^{k-1}) * r_{kj}^{k-1} + r_{ij}^{k-1}$$

$$r_{11}^{0} = 1 + \varepsilon \qquad r_{12}^{0} = 0 \qquad r_{21}^{0} = 1 \qquad r_{22}^{0} = 0 + \varepsilon$$

因为M接收的语言T(M)的正规表达式r为

$$\mathbf{r} = r_{12}^2 = r_{12}^1 (r_{22}^1) * r_{22}^1 + r_{12}^1$$

所以只求 r_{12}^1 和 r_{22}^1 即可。

$$r_{11}^{0} = 1 + \varepsilon \qquad r_{12}^{0} = 0 \qquad r_{21}^{0} = 1 \qquad r_{22}^{0} = 0 + \varepsilon$$

$$r_{12}^{1} = r_{11}^{0}(r_{11}^{0}) * r_{12}^{0} + r_{12}^{0} = (r_{11}^{0})^{+} r_{12}^{0} + r_{12}^{0} = ((r_{11}^{0})^{+} + \varepsilon)r_{12}^{0}$$

$$= (r_{11}^{0}) * r_{12}^{0} = (1 + \varepsilon) * 0 = 1 * 0$$

$$r_{22}^{1} = r_{21}^{0}(r_{11}^{0}) * r_{12}^{0} + r_{22}^{0} = 1(1 + \varepsilon) * 0 + 0 + \varepsilon$$

$$= 11 * 0 + 0 + \varepsilon = 1^{+} 0 + 0 + \varepsilon = (1^{+} + \varepsilon)0 + \varepsilon = 1 * 0 + \varepsilon$$

$$r = r_{12}^{2} = r_{12}^{1}(r_{22}^{1}) * r_{22}^{1} + r_{12}^{1} = r_{12}^{1}(r_{22}^{1})^{+} + r_{12}^{1} = r_{12}^{1}((r_{22}^{1})^{+} + \varepsilon)$$

$$= r_{12}^{1}(r_{22}^{1}) * = 1 * 0(1 * 0 + \varepsilon) * = 1 * 0(1 * 0) * = (1 * 0)^{+}$$

8.将下面有限自动机简化(要求有简化过程)。

解: 一.定义K上等价关系≡ 给定**DFA** M=(K, Σ , δ,q₀,F), $\forall p,q \in K$ $p \equiv q \Leftrightarrow \forall \forall x \in \Sigma^*, 有$ $\delta (\mathbf{p}, \mathbf{x}) \in \mathbf{F} \longleftrightarrow \delta (\mathbf{q}, \mathbf{x}) \in \mathbf{F}$

- 二. 商集K/≡
- 三.≡的逆关系≥

 $\mathbf{p} = \mathbf{q} \Leftrightarrow \exists \mathbf{x} (\mathbf{x} \in \Sigma^* \land \neg (\delta(\mathbf{p}, \mathbf{x}) \in \mathbf{F} \leftrightarrow \delta(\mathbf{q}, \mathbf{x}) \in \mathbf{F}))$ $\Leftrightarrow \exists \mathbf{x} (\mathbf{x} \in \Sigma^* \land)$ $((\delta(\mathbf{p},\mathbf{x}) \in \mathbf{F} \land \delta(\mathbf{q},\mathbf{x}) \notin \mathbf{F}) \lor (\delta(\mathbf{p},\mathbf{x}) \notin \mathbf{F} \land \delta(\mathbf{q},\mathbf{x}) \in \mathbf{F})))$ ⇔∃ \mathbf{x} (\mathbf{x} ∈ Σ *, 使得 δ (\mathbf{p} , \mathbf{x})与 δ (\mathbf{q} , \mathbf{x})恰有一个在 \mathbf{F} 中) 如果p≥q,称p与q是可区分的。判断p≥q是比较容易的。

4. 判断可区分状态对的算法

引理2-1 设M=(K, Σ , δ , q_0 ,F)是DFA,则状态对(p,q)是可区分的(即p=q),当且仅当在下面算法中(p,q)格写上×。 begin

- 1. for $p \in F, q \in K-F$, do 给(p,q)格写 \times ;
- 2. for $F \times F$ 或 $(K-F) \times (K-F)$ 中每个状态对(p,q) $(p \neq q)$,do
- 3. if $\exists a \in \Sigma$,使得格($\delta(p,a)$, $\delta(q,a)$)内已经写上×,then begin
- 4. 给(p,q)格写×;
- 5. 如果刚刚写上×的格内有先前写入的状态对,此状态对的格同时也写入×。反复执行5,直到写入×的格内没有先前写入的状态对为止;

end

else /** 格(δ (p,a), δ (q,a))内无× **/

- 6. for 每个 $a \in \Sigma$, do
- 7. 把(p,q)写入格(δ (p,a), δ (q,a))内,除非 δ (p,a)= δ (q,a)。 end

执行此算法的结果用一个表表示,实际上,执行此算 法的过程就是向这个表内写入"×"的过程。

b	X				
c	X	X			
d	X	?	X		_
e	X	×	X	X	
f	X	X	X	X	(b,d)
	a	b	c	d	e

$$(a,b): \frac{|0 \ 1|}{a \ b} (a,c): \frac{|0 \ 1|}{a \ b} c \ a$$

$$(a,b): \frac{|0 \ 1|}{a \ b} (a,c): \frac{|0 \ 1|}{a \ b} (a,d): \frac{|0 \ 1|}{a \ b} (b,c): \frac{|0 \ 1|}{b \ e}$$

于是 K/≡{{a},{b,d},{c},{e,f}},

五. 构造简化的有限自动机

定理2-5.1 给定DFA $M=(K,\Sigma,\delta,q_0,F)$,可根据引理2-1中的算法构造出除去不可达状态的具有更少状态的DFA M',使得T(M')=T(M)。

证明: 先对M用引理2-1中的算法求出K/≡。再构造M':

 $M'=(K', \Sigma, \delta', [q_0], F')$, 其中

 $K'=\{[q]|[q]∈K/≡且在M中q是从q₀ 可达的状态\}$

 $\mathbf{F'} = \{ [\mathbf{q}] | \mathbf{q} \in \mathbf{F} \}$

δ': 对任何[q] \in K', 任何a \in Σ ,

 δ '([q],a)=[δ (q,a)]

 $K/={\{a\},\{b,d\},\{c\},\{e,f\}\}}={\{[a],[b],[c],[e]\}}, ([b]=[b,d],[e]=\{e,f\})$

 $K' = \{[a], [b], [c], [e]\}$ $F' = \{[e]\}$

 $M'=(K', \Sigma, \delta', [a], F')$

=({[a],[b],[c],[e]},{0,1}, δ ',[a],{[e]})

 δ '([q],a)=[δ (q,a)]

δ ':	0	1	_
[a]	[b]	[c]	
[b]	[e]	[e]	
[c]	[a]	[a]	
[e]	[b]	[e]	

9. 给定DFA M如图所示。求一个左线性文法G,使得

$$L(G)=T(M)$$
.

解:有两种方法。

方法1

- 1. 先将M逆转成M':
- 2.根据M'构造右线性文法G':

$$P={q\rightarrow ap|\delta(q,a)=p}\cup{q\rightarrow a|\delta(q,a)\in F}_{\circ}$$

$$S \rightarrow A|C| \epsilon$$

$$A \rightarrow 0B$$

$$B\rightarrow 0A|0C|1C|0$$

$$C \rightarrow 1A|1B|1$$

3.将G'逆转成左线性 文法G:

$$S \rightarrow A|C| \epsilon$$

$$A \rightarrow B0$$

$$B \rightarrow A0|C0|C1|0$$

$$C \rightarrow A1|B1|1$$

方法2

1. 先根据M构造右线性文法G':

A→0B|**1C**|**1** (其中**A**是开始变元)

 $B\rightarrow 0A|1C|0|1$

 $C\rightarrow 0B|1B$

2.再将G'直接变成左线性文法G: 根据定理:

$$(1)$$
 S $\rightarrow \alpha$, 当且仅当 S $\rightarrow \alpha \in P$;

$$(2) A_i \rightarrow \alpha$$
, 当且仅当 $S \rightarrow \alpha A_i \in P$;

$$(3)$$
 $A_i \rightarrow A_j \alpha$, 当且仅当 $A_j \rightarrow \alpha A_i \in P$;

$$(4)$$
 S \rightarrow A_j α , 当且仅当 A_j \rightarrow $\alpha \in P$ 。

(1)由A→1 得: A→1

(2)
$$\triangle A \rightarrow 0B$$
 得: $B \rightarrow 0$ $\triangle A \rightarrow 1C$ 得: $C \rightarrow 1$

(3)由
$$B\rightarrow 0A$$
 得: $A\rightarrow B0$ 由 $B\rightarrow 1C$ 得: $C\rightarrow B1$

$$(4)$$
由 B \rightarrow 0 得: A \rightarrow B0 由B \rightarrow 1 得: A \rightarrow B1

方法2

1. 先根据M构造右线性文法G':

A→0B|**1C**|**1**| ε (其中**A**是开始变元)

 $B\rightarrow 0A|1C|0|1$

 $C\rightarrow 0B|1B$

因开始变元A出现在产生式右侧,故引入新的开始变元 S,

 $S \rightarrow A$ (其中S是开始变元)

 $A\rightarrow 0B|1C|1|$ ϵ

 $B\rightarrow 0A|1C|0|1$

 $C\rightarrow 0B|1B$

2.再将G'直接变成左线性文法G: 根据定理:

(1) S $\rightarrow \alpha$, 当且仅当 S $\rightarrow \alpha \in P$;

(2) $A_i \rightarrow \alpha$, 当且仅当 $S \rightarrow \alpha A_i \in P$;

(3) $A_i \rightarrow A_j \alpha$, 当且仅当 $A_j \rightarrow \alpha A_i \in P$;

(4) $S \rightarrow A_j \alpha$, 当且仅当 $A_j \rightarrow \alpha \in P_\circ$

(2) S→A 得: A→ ε

(3) 由A→0B 得: B→A0

由**B→0A** 得:**A** →**B0**

由C→0B 得:B→C0

(4)由A→1 得: S→A1

由 B→0 得: S→B0

由A→1C 得: C→A1

由B→1C 得: C→B1

由C→1B 得: B→C1

 $由 A \rightarrow ε$ 得: $S \rightarrow A$

由B→1 得: S→B1

整理得左线性文法G:

 $S \rightarrow A1|B0|B1|A$

 $A \rightarrow B0 | \epsilon$

 $B\rightarrow A0 \mid C0 \mid C1$

 $C\rightarrow A1|B1$

表面上看与方法1得结果略有些不同

 $S \rightarrow A|C|$ ϵ

 $A \rightarrow B0$

 $B \rightarrow A0|C0|C1|0$

 $C \rightarrow A1|B1|1$

10. 首先构造一个右线性文法G, 使得

$$L(G)=\{a^ib^j|i,j>0\}\cup\{c^k|k>0\}$$

再构造一个有限自动机M,使得T(M)=L(G)。

解: $\diamondsuit G = (\{S,A,B,C\},\{a,b,c\},P,S)$

P: $S \rightarrow A|C|$ ϵ

 $A \rightarrow aA|B| \epsilon$

 $B\rightarrow bB|b|\epsilon$

 $C \rightarrow cC |c| \epsilon$

 $\diamondsuit \mathbf{M} = (\{S,A,B,C\},\{a,b,c\},\delta,S,\{E\})$

11. 给定右线性文法G=({S,B,C,D},{0,1}, P, S), 其中P: S→B | C, B→0B | 1B | 011,

试求一个FA M, 使得 T(M)=L(G)。

 $C\rightarrow 0D \mid 1C \mid \epsilon, D\rightarrow 0C \mid 1D$

解: 此题与第10题类似。

要将G变成简单右线性文法,唯一要处理的产生式是

B→011, 将它变成:

 $B\rightarrow 0F$, $F\rightarrow 1G$, $G\rightarrow 1$

12. 证明L={ai|i是个素数}不是正规集。

证明:

- (1) 假设L是正规集。
- (2)令n是L满足正规集泵作用引理常数。
- (3)取 $z=a^m$, $m \ge n$ 且m是个素数。 $|z|=m \ge n$,根据正规集的泵作用引理,可将z写成 z=uvw 形式,其中 $|uv| \le n$, $|v| \ge 1$,且对任何 $i \ge 0$ 有 $uv^iw \in L$ 。
- (4)令 $u=a^{n1}$, $v=a^{n2}$, $w=a^{n3}$, 于是 $|uv|=n_1+n_2 \le n$, $|v|=n_2 \ge 1$, $n_1+n_2+n_3=m$, $z=uvw=a^{n1+n2+n3}=a^m$, $uv^iw=a^{n1+in2+n3}=a^{(n1+n2+n3)+(i-1)n2}=a^{m+(i-1)n2}$

取i=m+1,则

 $uv^{m+1}w=a^{m+(m+1-1)n2}=a^{m+mn2}=a^{m(1+n2)}$

由于 $n_2 \ge 1$,所以 $1+n_2 \ge 2$,而 $m \ge 2$,所以 $m(1+n_2)$ 不是素数,故 $uv^{m+1}w \not\in L$,产生矛盾。所以L不是正规集。

第三章 习题

1. 给定CFG G=({S,A,B,C},{a,b,c},P,S), 其中,

P: $S \rightarrow A|B$, $A \rightarrow Ab|bS|C|b$, $B \rightarrow AB|Ba$, $C \rightarrow AS \mid b$,

去掉G中的无用符号和单一生成式。

解:定义:给定CFG G=(V_N , V_T ,P,S),如果在G中存在派生 $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$,其中 $w \in V_T^*$, $X \in V_N \cup V_T$,则称符号X是有用的,否则X是无用的。

利用两个引理,去掉无用符号。

注意: 一定是先应用引理3-2.1, 后应用引理3-3.2!!!

引理3-2.1 给定CFG G=(V_N , V_T , P, S),且L(G) $\neq \Phi$,可以找到一个与G等价的CFG G'=(V_N ', V_T , P', S),使得每个A $\in V_N$ ',都有w $\in V_T$ *,且在G'中有A \Rightarrow *w。证明: 1) 求 V_N '的算法:

begin

- (1) OLD $V_N := \Phi$
- (2) NEW $V_N := \{A | A \rightarrow w \in P \perp w \in V_T^*\}$
- (3) While OLD $V_N \neq NEW V_N$ do begin
- (4) OLD $V_N := NEW V_N$
- (5) NEW $V_N := OLD V_N \cup \{A | A \rightarrow \alpha \in P, \exists \alpha \in (V_T \cup OLD V_N)^*\}$

end

(6) $V_N' := NEWV_N$,

end

引理3-2.2 给定CFG G =(V_N , V_T , P, S),可以找到一个与G等价的CFG G', G' =(V_N' , V_T' , P', S),使得每个 $X \in (V_N' \cup V_T')$,都有 α , $\beta \in (V_N' \cup V_T')$,且在G' 中有派生 $S \Rightarrow \alpha X \beta$ 。

证明: 1. 执行下面迭代算法求 V N / 和 V T / 。

- 1) 置初值: V_N':={S}, V_T':=Φ;
- 2) 如果 $A \in V_N'$, 在P中又有产生式 $A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_m$,

则可以将 α_1 , α_2 ,..., α_m 中的所有变元加到 V_N , 中,将 α_1 , α_2 ,..., α_m 中的所有终极符加到中 V_T , 中。重复2)。

3) 若没有新的符号可加入到 V_N′、 V_T′中,算法停止。

最后得到 V_N' 、 V_T' 。

P: S→A|B, A→Ab|bS|C|b, B→AB|Ba, C→AS | b, 对G应用引理3-2.1, 执行上述算法, 得到的结果如下表所示。

循环次数i	初值	1	2	3
OLD V _N	Ф	{A,C}	$\{A,C,S\}$	
NEW V _N	{A,C}	{A,C,S}	{A,C,S}	

最后得**G**'CFG G'=({S,A,C},{a,b,c},P',S), 其中 P': $S\rightarrow A$, $A\rightarrow Ab|bS|C|b$, $C\rightarrow AS|b$ 实际上,只去掉了不能推出终极符串的变元**B**。 再对**G**'应用引理3-2.2:

P': $S \rightarrow A$, $A \rightarrow Ab|bS|C|b$, $C \rightarrow AS|b$

再对G'用引理3-2.2处理,执行算法的结果如下表所示:

循环次数i	初值	1	2	3
V , ''	{S}	{S,A}	{S,A,C}	
V _T "	Ф	Ф	{ b }	

最后得G"=({S,A,C},{b},P",S)

P'': $S \rightarrow A$, $A \rightarrow Ab|bS|C|b$, $C \rightarrow AS|b$

实际上只去掉了无用符号a和c。

下面对**G**"去掉单一产生式: 对任何**A**,**B** \in V_N , 如果有**A** \Rightarrow ***B**,且**B** \Rightarrow $\alpha_1 | \alpha_2 | ... | \alpha_n$ 是 **P**"中**B**的所有非单一产生式,则把所有 **A** \Rightarrow $\alpha_1 | \alpha_2 | ... | \alpha_n$ 加到**P**""中。

P": S→A, A→Ab|bS|C|b, C→AS|b
下面去掉单一产生式S→A, A→C, 得P"":
S→Ab|bS|C|b, A→Ab|bS|AS|b, C→AS|b
再去掉S→C, 得
S→Ab|bS|AS|b, A→Ab|bS|AS|b, C→AS|b
但是,可以看出C是无用符号,所以C→AS|b也被去掉。
最后得: G""=({S,A},{b},P"",S)
P"": S→Ab|bS|AS|b, A→Ab|bS|AS|b,

给定CFG G=({S,A,B,C},{a,b},P,S), 其中,
 P: S→ABC, A→BB| ε, B→CC|a, C→AA|b,
 去掉G中的 ε 生成式。

解: 首先求出可为零的变元,即可以推出 ε 的变元。 显然有A、C、B和S。

如果 $A \rightarrow X_1 X_2 ... X_n \in P$,则将所有形如 $A \rightarrow \alpha_1 \alpha_2 ... \alpha_n$ 的产生式都加到P'中,其中

- (1) 如果 X_i 不是可为零的,则 $\alpha_i = X_i$ 。
- (2) 如果 X_i 是可为零的,则 $\alpha_i = X_i$ 或者 $\alpha_i = \epsilon$ 。但是,如果所有 X_i (i=1,2,...n)都是可为零的,则不可所有 $\alpha_i = \epsilon$ 。

于是最后得:

 $S \rightarrow ABC|BC|AC|AB|C|B|A$, $A \rightarrow BB|B$, $B \rightarrow CC|C|a$,

 $C \rightarrow AA|A|b$

3. 给定CFG G=({S,A},{0,1},P,S), 其中,P: S→AA | 0, A→SS | 1,

将G写成GNF形式。

解: 此时G已经具备CNF形式。 $(A \rightarrow BC, D \rightarrow a)$

(1)变元重新命名: $\Diamond A_1 = S, A_2 = A$,

P: $A_1 \to A_2 A_2 | 0$, $A_2 \to A_1 A_1 | 1$,

(2)处理 $A_2 \rightarrow A_1 A_1 | 1$, 变成: $A_2 \rightarrow A_2 A_2 A_1 | 0 A_1 | 1$,

(3)处理左递归 $A_2 \rightarrow A_2 A_2 A_1 | 0A_1 | 1$,变成:

 $A_2 \rightarrow 0A_1|1|0A_1Z_2|1Z_2, Z_2 \rightarrow A_2A_1|A_2A_1Z_2,$

(4)处理 $A_1 \rightarrow A_2 A_2 | 0$,得

 $A_1 \rightarrow 0 A_1 A_2 |1A_2| 0 A_1 Z_2 A_2 |1Z_2 A_2| 0$

(5)处理 $\mathbb{Z}_2 \to \mathbb{A}_2\mathbb{A}_1 | \mathbb{A}_2\mathbb{A}_1 \mathbb{Z}_2$,分别得:

 $Z_2 \rightarrow 0A_1A_1 | 1A_1 | 0A_1Z_2A_1 | 1Z_2A_1$

 $Z_2 \rightarrow 0A_1A_1Z_2 | 1A_1Z_2 | 0A_1Z_2A_1Z_2 | 1Z_2A_1Z_2$

最后得G'=($\{A_1,A_2,Z_2\}$, $\{0,1\}$,P', A_1)

P': $A_1 \rightarrow 0A_1A_2|1A_2|0A_1Z_2A_2|1Z_2A_2|0$

 $A_2 \rightarrow 0A_1|1| 0A_1Z_2|1Z_2,$

 $Z_2 \rightarrow 0A_1A_1 | 1A_1 | 0A_1Z_2A_1 | 1Z_2A_1$

 $Z_2 \rightarrow 0A_1A_1Z_2 | 1A_1Z_2 | 0A_1Z_2A_1Z_2 | 1Z_2A_1Z_2$

4. 构造一个PDA M, 使得

 $T(M)=\{w|w\in\{a,b\}^* \land w \ \text{中a,b}的个数相等\}$ 。

解:设计思想:

有两个状态q₁和q₂: q₁是开始状态, q₂是终止状态。

栈内符号: A, B, R(R是开始时栈内符号)。

开始时:读a,向栈压入A;读b,向栈压入B。

之后: 当读a时: 如果栈顶是A,再向栈压入一个A;

如果栈顶是B,则B退栈。

当读b时:如果栈顶是B,再向栈压入一个B;

如果栈顶是A,则A退栈。

如果w中a,b的个数相等,则M读完w后,栈顶应该是R,此时M进入终止状态 q_2 。

```
A = \{\{q_1,q_2\},\{a,b\},\{A,B,R\},\delta,q_1,R,\{q_2\}\}\}
     \delta (q_1,a,R) = \{(q_1,AR)\} \delta (q_1,b,R) = \{(q_1,BR)\}
     \delta (\mathbf{q}_1,\mathbf{a},\mathbf{A}) = \{(\mathbf{q}_1,\mathbf{A}\mathbf{A})\} \qquad \delta (\mathbf{q}_1,\mathbf{a},\mathbf{B}) = \{(\mathbf{q}_1, \ \epsilon)\}
     \delta (\mathbf{q}_1, \mathbf{b}, \mathbf{A}) = \{ (\mathbf{q}_1, \ \epsilon) \} \qquad \delta (\mathbf{q}_1, \mathbf{b}, \mathbf{B}) = \{ (\mathbf{q}_1, \mathbf{BB}) \}
     \delta (\mathbf{q}_1, \ \epsilon, \mathbf{R}) = \{ (\mathbf{q}_2, \ \epsilon) \}
如w=bbabaa 时,M识别w的过程: ⇒表示ID间的变化。
(q_1,bbabaa,R) \Rightarrow (q_1,babaa,BR) \Rightarrow (q_1,abaa,BBR)
\Rightarrow(q<sub>1</sub>, baa,BR) \Rightarrow (q<sub>1</sub>,aa,BBR) \Rightarrow (q<sub>1</sub>,a,BR) \Rightarrow (q<sub>1</sub>, \epsilon,R)
\Rightarrow (q<sub>2</sub>, \epsilon, \epsilon)
再如w=abbab,看看M是如何拒绝接收的。
(q_1,abbab,R) \Rightarrow (q_1,bbab,AR) \Rightarrow (q_1,baa,R) \Rightarrow (q_1,aa,BR)
⇒ (q_1,a,R) ⇒ (q_1, \varepsilon,AR) 无下一个动作,w∉T(M)
```

5. 给定CFG G= ({S,A,B},{a,b,c},P,S), 其中
 P为: S→aAB | aA A→bSa | Ab | Bc | b,
 求一个PDA M, 使得T(M)=L(G)。

解:(1)先简化G,因为G中无 ε 产生式和单一产生式,所以只去掉无用符号:对G应用引理3-2.1,执行上述算法,得到的结果如下表所示:

循环次数i	初值	1	2	3
OLD V _N	Ф	{A}	{A, S}	
NEW V _N	{A}	$\{A,S\}$	$\{A,S\}$	

得G'=({S,A},{a,b,c},P',S)

P': $S \rightarrow aA$ $A \rightarrow bSa | Ab | b$,

P': $S \rightarrow aA$ $A \rightarrow bSa | Ab | b$,

再对G'应用引理3-2.2处理,执行算法的结果如下表所

循环次数i	初值	1	2	3
V , ',	{S}	{S,A}	{S,A}	
V _T ,,	Ф	{a}	{ a,b }	

得G''=({S,A},{a,b},P'',S)

P'': $S \rightarrow aA$ $A \rightarrow bSa \mid Ab \mid b$,

(2)将G"变成GNF形式

先变成: $S \rightarrow aA$, $A \rightarrow bSD \mid Ab \mid b$, $D \rightarrow a$,

处理左递归A→Ab|bSD|b,

变成: A→bSD | b | bSDZ|bZ, Z→b |bZ

最后得: S→aA, A→bSD|b|bSDZ|bZ, Z→b|bZ, D→a

```
S \rightarrow aA, A \rightarrow bSD|b|bSDZ|bZ, Z \rightarrow b|bz, D \rightarrow a,
(3)根据上述文法,构造PDAM'使得N(M')=L(G)
  M'=(\{q\},\{a,b\},\{S,A,D,Z\},\delta,q,S,\Phi)
\delta:由S→aA得: \delta (q,a,S)={(q,A)}
    由A→bSD|b|bSDZ|bZ得:
                       \delta (q,b,A) = \{(q,SD),(q,\epsilon),(q,SDZ),(q,Z)\}
    由Z\rightarrowb|bz得: δ (q,b,Z)={(q,ε),(q,Z)}
   曲D \rightarrowa 得: δ (q,a,D)={(q, ε)}
(4)根据M'变成M,使得T(M)=N(M').
  M = (\{q_0,q,q_1\},\{a,b\},\{S,A,D,Z,E\}, \delta',q_0,E,\{q_1\})
   δ ': δ '(q<sub>0</sub>, ε, E)={(q,SE)}
         \delta '(q,a,S)={(q,A)}
         \delta '(q,b,A)={(q,SD),(q, \varepsilon),(q,SDZ),(q,Z)}
         \delta '(q,b,Z)={(q, \varepsilon),(q,Z)}
         \delta '(q,a,D)={(q, \epsilon)}
         δ '(q, ε, E)= {(q<sub>1</sub>, ε)}
```

6. 给定PDA M=($\{q_0,q_1\},\{0,1\},\{Z_0,X\},\delta,q_0,\Phi$),其中 δ如下: (1) $\delta (\mathbf{q}_0, 1, \mathbf{Z}_0) = \{ (\mathbf{q}_0, \mathbf{X}\mathbf{Z}_0) \}$ (2) $\delta (\mathbf{q}_0, 1, \mathbf{X}) = \{ (\mathbf{q}_0, \mathbf{X}\mathbf{X}) \}$ (3) $\delta (q_0, 0, X) = \{(q_1, X)\}$ (4) $\delta (q_0, \epsilon, Z_0) = \{(q_0, \epsilon)\}$ (5) $\delta(q_1,1,X)=\{(q_1,\epsilon)\}$ (6) $\delta(q_1,0,Z_0)=\{(q_0,Z_0)\}$ 求一个CFG G 使得L(G)=N(M). 解: 令M=(K, Σ , Γ , δ , q_0 , Z_0 , Φ), N(M)=L。 构造一个CFG $G = (V_N, V_T, P, S)$, 其中 $V_N = \{[q,A,p]|q,p \in K,A \in \Gamma\} \cup \{S\} \quad V_T = \Sigma = \{0,1\}$ $V_{N} = \{S, [q_{0}, Z_{0}, q_{0}], [q_{0}, Z_{0}, q_{1}], [q_{1}, Z_{0}, q_{0}], [q_{1}, Z_{0}, q_{1}],$ $[q_0,X,q_0],[q_0,X,q_1],[q_1,X,q_0],[q_1,X,q_1]$ P中产生式有三种类型:

- 1. 对任何q∈K,有S→ $[q_0,Z_0,q]$ 。
 - 1) $S \rightarrow [q_0, Z_0, q_0]$
 - $2) S \rightarrow [q_0, Z_0, q_1]$
- 2. 对K中任何 $q,q_1,q_2,...,q_m,q_{m+1}=p$,任何 $a \in \Sigma \cup \{ \epsilon \}$,任何 $A,B_1,B_2,...,B_m \in \Gamma$,

只要 δ (q,a,A)中含有(q₁,B₁B₂...B_m),则有产生式 [q,A,p]→a[q₁,B₁,q₂][q₂,B₂,q₃]...[q_m,B_m,p]。

$$\pm (1) \delta (\mathbf{q_0,1}, \mathbf{Z_0}) = \{ (\mathbf{q_0, XZ_0}) \}$$

- 3) $[q_0,Z_0,q_0] \rightarrow 1[q_0,X,q_0][q_0,Z_0,q_0]$
- 4) $[q_0,Z_0,q_0] \rightarrow 1[q_0,X,q_1][q_1,Z_0,q_0]$
- 5) $[q_0,Z_0,q_1] \rightarrow 1[q_0,X,q_0][q_0,Z_0,q_1]$
- 6) $[q_0,Z_0,q_1] \rightarrow 1[q_0,X,q_1][q_1,Z_0,q_1]$

由(2)
$$\delta$$
 ($\mathbf{q_0}$,1, \mathbf{X})={($\mathbf{q_0}$, \mathbf{X} \mathbf{X})}得

7)
$$[q_0,X,q_0] \rightarrow 1[q_0,X,q_0][q_0,X,q_0]$$

8)
$$[q_0,X,q_0] \rightarrow 1[q_0,X,q_1][q_1,X,q_0]$$

9)
$$[q_0,X,q_1] \rightarrow 1[q_0,X,q_0][q_0,X,q_1]$$

10)
$$[q_0,X,q_1] \rightarrow 1[q_0,X,q_1][q_1,X,q_1]$$

由(3)
$$\delta$$
 ($\mathbf{q_0}$, $\mathbf{0}$, \mathbf{X})={($\mathbf{q_1}$, \mathbf{X})}得

11)
$$[q_0, X, q_0] \rightarrow 0[q_1, X, q_0]$$

12)
$$[q_0,X,q_1] \rightarrow 0 [q_1,X,q_1]$$

由(4)
$$\delta$$
 ($\mathbf{q}_1, \mathbf{0}, \mathbf{Z}_0$)={($\mathbf{q}_0, \mathbf{Z}_0$)}得

13)
$$[q_1,Z_0,q_0] \rightarrow 0[q_0,Z_0,q_0]$$

14)
$$[q_1,Z_0,q_1] \rightarrow 0 [q_0,Z_0,q_1]$$

3. 对任何 $q,p \in K$,任何 $a \in \Sigma \cup \{ \epsilon \}$,任何 $A \in \Gamma$,

如果有 δ (q,a,A)中含有(p,ε),则有产生式 [q,A,p] \rightarrow a。

由(5)
$$\delta(\mathbf{q}_0, \varepsilon, \mathbf{Z}_0) = \{(\mathbf{q}_0, \varepsilon)\}$$
得

15)
$$[q_0,Z_0,q_0] \rightarrow \varepsilon$$

由(6) δ (
$$\mathbf{q}_1$$
,1, \mathbf{X})={(\mathbf{q}_1 , ε)}得

16)
$$[q_1, X, q_1] \rightarrow 1$$

下面对这些产生式进行整理。

1) $S \rightarrow [q_0, Z_0, q_0]$

 \times 2) S \rightarrow [q₀,Z₀,q₁]

 \times 3) $[q_0, \overline{Z_0, q_0}] \rightarrow 1[q_0, X, q_0][q_0, Z_0, q_0]$

4) $[q_0,Z_0,q_0] \rightarrow 1[q_0,X,q_1][q_1,Z_0,q_0]$

 \times 5) $[q_0, Z_0, q_1] \rightarrow 1[q_0, X, q_0][q_0, Z_0, q_1]$

 \times 6) $[q_0,Z_0,q_1] \rightarrow 1[q_0,X,q_1][q_1,Z_0,q_1]$

 \times 7) $[q_0,X,q_0] \rightarrow 1[q_0,X,q_0][q_0,X,q_0]$

 \times 8) $[q_0,X,q_0] \rightarrow 1[q_0,X,q_1][q_1,X,q_0]$

 \times 9) $[q_0,X,q_1] \rightarrow 1[q_0,X,q_0][q_0,X,q_1]$

10) $[q_0,X,q_1] \rightarrow 1[q_0,X,q_1][q_1,X,q_1]$

 $\times 11$) $[q_0, X, q_0] \rightarrow 0[q_1, X, q_0]$

12) $[q_0, X, q_1] \rightarrow 0 [q_1, X, q_1]$

13) $[q_1, Z_0, q_0] \rightarrow 0[q_0, Z_0, q_0]$

 \times 14) $[q_1, Z_0, q_1] \rightarrow 0 [q_0, Z_0, q_1]$

15) $[q_0,Z_0,q_0] \rightarrow \varepsilon$

16) $[q_1, X, q_1] \rightarrow 1$

去掉5)6)后,无产生式

无产生式

无产生式

将14)代入后,死循环

死循环

无产生式 无产生式

无产生式

去掉6)后,无产生式

最后得:

- 1) $S \rightarrow [q_0, Z_0, q_0]$
- 4) $[q_0,Z_0,q_0] \rightarrow 1[q_0,X,q_1][q_1,Z_0,q_0]$
- 10) $[q_0,X,q_1] \rightarrow 1[q_0,X,q_1][q_1,X,q_1]$
- 12) $[q_0, X, q_1] \rightarrow 0 [q_1, X, q_1]$
- 13) $[q_1,Z_0,q_0] \rightarrow 0[q_0,Z_0,q_0]$
- 15) $[q_0,Z_0,q_0] \rightarrow \varepsilon$
- 16) $[q_1, X, q_1] \rightarrow 1$

7. 求证下面语言L不是CFL,

 $L=\{a^k|k是个素数\}$ 。

证明: (1) 假设L是CFL。

- (2)令n是L满足CFL泵作用引理常数。
- (3)取z=a^m, m≥n 且m是个素数。|z|=m≥n, 根据CFL的泵作用引理,可将z写成 z=uvwxy 形式,其中|vwx|≤n, |vx|≥1, 且对任何i≥0 有 uvⁱwxⁱy∈L。
- (4)令u=aⁿ¹, v=aⁿ², w=aⁿ³, x=aⁿ⁴, y=aⁿ⁵,于是|vx|=n₂+n₄≥1, $n_1+n_2+n_3+n_4+n_5=m$, z=uvwxy=aⁿ¹⁺ⁿ²⁺ⁿ³⁺ⁿ⁴⁺ⁿ⁵=a^m, uvⁱwxⁱy=a^{n1+i*n2+n3+i*n4+n5}=a^{m+(i-1)n2+(i-1)n4}=a^{m+(i-1)(n2+n4)}

取i=m+1,则

 $uv^{m+1}wx^{m+1}y = a^{m+(m+1-1)(n^2+n^4)} = a^{m+m(n^2+n^4)} = a^{m(1+n^2+n^4)}$

由于 $n_2+n_4 \ge 1$,故 $1+n_2+n_4 \ge 2$,而 $m \ge 2$,所以 $m(1+n_2+n_4)$ 不是素数,故 $uv^{m+1}wx^{m+1}y \not\in L$,产生矛盾。所以L不是CFL。