Introduction to Data Engineering 07 Clustering, Outlier, Novelty Detection and Duplicate Detection

Junbo Huang and Angelie Kraft and Cedric Möller and David Rath and Ricardo Usbeck https://lernen.min.uni-hamburg.de/course/view.php?id=2917

How do we learn? -> how do children learn?

- How do we learn? -> how do children learn?
- Behaviorists: conditioning -> Reinforcement learning

- How do we learn? -> how do children learn?
- Behaviorists: conditioning -> Reinforcement learning
- Albert Bandura: social learning theory -> Imitation learning

- How do we learn? -> how do children learn?
- Behaviorists: conditioning -> Reinforcement learning
- Albert Bandura: social learning theory -> Imitation learning
- Lower-level learning?
 - Perception? Cognition? Concept learning?

- How do we learn? -> how do children learn?
- Behaviorists: conditioning -> Reinforcement learning
- Albert Bandura: social learning theory -> Imitation learning
- Lower-level learning?
 - Perception? Cognition? Concept learning?
 - Wittgenstein, 1953: language acquisition through pointing¹

¹Wittgenstein, L. (1953). Philosophical investigations.

- How do we learn? -> how do children learn?
- Behaviorists: conditioning -> Reinforcement learning
- Albert Bandura: social learning theory -> Imitation learning
- Lower-level learning?
 - Perception? Cognition? Concept learning?
 - Wittgenstein, 1953: language acquisition through pointing².
 - ► Eleanor Rosch, 1978: Category formation is strongly connected to forming prototypical concepts³.

²Wittgenstein, L. (1953). Philosophical investigations.

³Rosch, E. (1978). Principles of categorization.

- The concept of birdiness.
- Robin is a more typical bird than a penguin.

Figure . I Birdiness ranking

Source: Aitchison, J. (1994). Words in the mind: An introduction to the mental lexicon. page 54.

- The concept of birdiness.
- Robin is a more typical bird than a penguin.
- Bias in prototyping?
 - Misunderstanding.

Source: Aitchison, J. (1994). Words in the mind: An introduction to the mental lexicon. page 54.

Overview

- Distance Measures
 - Distance Between Points
 - Distance Between Clusters
- Clustering
- Clustering
 - Hard Clustering
 - Soft Clustering
- Outliers, Novelty and Duplicate Detection

Two Types of Distance Measures

Two Types of Distance Measures

- Distance between points
- Distance between clusters

Distance Metric

Consider a metric space \mathcal{X} . A distance metric is a mapping $d: \mathcal{X} \times \mathcal{X} \to [0, \inf)$ which satisfies the following properties:

- non-negativity: $d(x_i, x_i) \ge 0$
- identity: $d(x_i, x_j) = 0 \Leftrightarrow x_i = x_j$
- symmetry: $d(x_i, x_j) = d(x_j, x_i)$
- triangle inequality: $d(x_i, x_j) \le d(x_i, x_k) + d(x_k, x_j)$

where $x_i, x_j, x_k \in \mathcal{X}$.

Distance Metric

Remarks:

- In Mathematics, the term metric is used only when the axioms are fulfilled.
- In ML, distance metric often refers to the similarity or dissimilarity measure and it may not satisfy all the axioms (e.g., cosine distance).
- Therefore, if you are clear that the axioms are satisfied, use the term metric.

Distance Between Points

Given two points $x, y \in \mathbb{R}^n$,

• Euclidean Distance:

$$d(x,y) = \sqrt{\sum_{i}^{n} (x_i - y_i)^2}$$

Manhattan Distance / City Block Distance:

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• (Any parametrized distance metric)

How can one measure distance between two clusters?

Given two clusters X and Y.

•
$$D_{centroid}(X, Y) = d(\frac{1}{|X|} \sum_{x \in X} x, \frac{1}{|Y|} \sum_{y \in Y} y)$$

 D_{min} , D_{max} , D_{mean} , $D_{centroid}$ ignore the variances of data.

D_{min}, *D_{max}*, *D_{mean}*, *D_{centroid}* ignore the variances of data.

Solution: Mahalanobis Distance

Mahalanobis Distance

Idea: Scaling of distances using the covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

$$D_{\Sigma}(X,Y) = \sqrt{(x-y)^T \Sigma^{-1}(x-y))}$$

Properties:

- Example continuous continuos cont
- If Σ is an identity matrix, the above equation represents Euclidean distance.
- It is a good distance measure between sets/clusters.
- Can also be used to measure distances between a point and sets/clusters.
- Spectral distance metric learning: parametrizing Σ.

A Clustering Problem

Clustering German cities based on the location using Euclidean distance.

- Hamburg
- Bremen
- Hannover
- Leipzig
- Frankfurt
- Nürnberg

Source: Google maps

A Clustering Problem

Distance Matrix

A matrix where each entry represents the euclidean distance (in km) between two cities.

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

Types of Clustering Algorithm

- Hard clustering algorithms
 - Hard assignment of clusters
 - ► Hierarchical clustering, k-means⁴...
- Soft clustering algorithms
 - Probabilistic assignment of clusters
 - Gaussian Mixture Models...

Hierarchical Clustering

- Do not need to pre-define number of clusters *k*.
- Two complementary methods:
 - Agglomerative Clustering: bottom-up
 - Divisive Clustering: top-down

Basic agglomerative clustering:

- Assign each object to its own single-object cluster.
- Choose the closest pair of clusters and merge them into a single cluster.
- Calculate the distance between the new cluster and each of the old clusters.
- Assign Repeat steps 2 and 3 until all the objects are in a single cluster.

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

• {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- (Hamburg, Bremen), {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- (Hamburg, Bremen, Hannover), {Leipzig}, {Frankfurt}, {Nürnberg}

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen, Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen, Hannover}, {Leipzig}, {Frankfurt, Nürnberg}

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- 4 (Hamburg, Bremen), {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- (Hamburg, Bremen, Hannover), (Leipzig), (Frankfurt), (Nürnberg)
- 4 (Hamburg, Bremen, Hannover), (Leipzig), (Frankfurt, Nürnberg)
- (Hamburg, Bremen, Hannover, Leipzig), (Frankfurt, Nürnberg)

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- 4 (Hamburg, Bremen), {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen, Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen, Hannover}, {Leipzig}, {Frankfurt, Nürnberg}
- {Hamburg, Bremen, Hannover, Leipzig}, {Frankfurt, Nürnberg} -> Single-linkage clustering
- **⑤** {Hamburg, Bremen, Hannover}, {Leipzig, Frankfurt, Nürnberg} -> Complete-linkage clustering

Recall: Distance Between Clusters

Given two clusters X and Y:

- - single-linkage clustering
- - complete-linkage clustering
- $D_{mean}(X,Y) = \frac{1}{|X||Y|} \sum_{x \in X, y \in Y} d(x,y)$
- $D_{centroid}(X, Y) = d(\frac{1}{|X|} \sum_{x \in X} x, \frac{1}{|Y|} \sum_{y \in Y} y)$

	Hamburg	Bremen	Hannover	Leipzig	Frankfurt	Nürnberg
Hamburg	0	95	133	294	393	462
Bremen		0	100	310	330	433
Hannover			0	214	262	338
Leipzig				0	293	229
Frankfurt					0	187
Nürnberg						0

- {Hamburg}, {Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen}, {Hannover}, {Leipzig}, {Frankfurt}, {Nürnberg}
- (Hamburg, Bremen, Hannover), {Leipzig}, {Frankfurt}, {Nürnberg}
- {Hamburg, Bremen, Hannover}, {Leipzig}, {Frankfurt, Nürnberg}
- {Hamburg, Bremen, Hannover, Leipzig}, {Frankfurt, Nürnberg}
- (Hamburg, Bremen, Hannover, Leipzig, Frankfurt, Nürnberg)

Dendrogram: a diagram representing a binary tree.

Dendrogram: a diagram representing a binary tree.

Dendrogram: a diagram representing a binary tree.

Dendrogram: a diagram representing a binary tree.

Properties of agglomerative clustering?

Properties:

- Any distance measure can be used
- we only need the distance matrix
- No parameters
- Resulting dendrogram needs to be analyzed to decide number of desired clusters
- Slow when the number of samples is large
- Greedy, deterministic

K-means Algorithm

- Randomly choose k examples as initial centroids.
- Create k clusters by assigning each example to its closest centroid.
- Compute k new centroids by averaging examples in each cluster.
- Repeat step 2 and 3 until centroids don't change.

How to choose k?

Possible solutions:

- Run k-means multiple times with random initialization.
- Take a subset of the data, and run hierarchical clustering.
- Statistics
 - The elbow method
 - ★ Calculate the Within-Cluster-Sum of Squared Errors (WCSS) for different values of k
 - The Silhouette Method
 - ★ Measure how similar a point is to its own cluster (cohesion) compared to other clusters (separation)

Properties of K-means

- Only one parameter k.
 - Implicitly defines scale and resulting shape of clusters.
- Fast.
- Greedy, non-deterministic -> local optima, depending on initial conditions.

Problems of K-means

- Sensitive to outliers.
 - Outliers highly influence clustering result in naïve k-means;
 - Outliers can be handled in the preprocessing step, or with algorithms which are robust to outliers,e.g., DBSCAN.
- What if we don't know k?
 - Other algorithms, e.g., hierarchical clustering or DBSCAN.
- What if data does not depict circular shape?
 - If you know how the data should look like,
 - You can choose other algorithms that have a more relaxed constraint on the shape of clusters, e.g., soft clustering or DBSCAN.

- Ester, 1996
- No need to define k
- Density-based clustering algorithm
 - Density connected points belong to the same cluster
- Not entirely deterministic.
- Two parameters:
 - ▶ epsilon *ϵ*
 - Minimum number of points MinPts

- Find all core points given ϵ and *MinPts*.
- For each core point if it is not already assigned to a cluster, create a new cluster.
- Find recursively all its density connected points and assign them to the same cluster as the core point.
- Assign points that do not belong to any cluster as noise/ outliers.

- Find all core points given ϵ and *MinPts*.
- For each core point if it is not already assigned to a cluster, create a new cluster.
- Find recursively all its density connected points and assign them to the same cluster as the core point.
- Assign points that do not belong to any cluster as noise/ outliers.

- Find all core points given ϵ and *MinPts*.
- For each core point if it is not already assigned to a cluster, create a new cluster.
- Find recursively all its density connected points and assign them to the same cluster as the core point.
- Assign points that do not belong to any cluster as noise/ outliers.

- Find all core points given ϵ and MinPts.
- For each core point if it is not already assigned to a cluster, create a new cluster.
- Find recursively all its density connected points and assign them to the same cluster as the core point.
- Assign points that do not belong to any cluster as noise/ outliers.

- Find all core points given ϵ and MinPts.
- For each core point if it is not already assigned to a cluster, create a new cluster.
- Find recursively all its density connected points and assign them to the same cluster as the core point.
- Assign points that do not belong to any cluster as noise/ outliers.

Pros:

- Robust to outliers
- No need to define k
- Arbitrary cluster shape.

Cons:

- Difficult to choose ϵ if data is not well understood.
- "curse of dimensionality".
 - a good distance measure is difficult.

Problems of DBSCAN?

One problem:

- How to cluster a point between two clusters?
- Both k-means and DBSCAN assign one cluster to each data point.
- There is no "likelihood" in cluster assignments.

So far,

- clusters are described by a set of data points or by the centers
 - -> clusters are disjoint
- This is called hard clustering.
- Each data point is assigned to a single cluster.
- No way to express uncertainty/confidence about the assignment to a cluster.

Now,

- Describe data by probability distribution P(x).
- Soft clustering:
- A data point is assigned to the clusters with uncertainty/confidence.
- As a result, clusters do not have hard boundaries.

Let's think about soft assignment in Deep Learning...

• What is the probability distribution outputted by a neural network?

Source: Feron, B., Moraleda, G., Vossen, J., & Monti, A. Probabilistic Short-Term Residential Load Forecasting based on Feed Forward and LSTM Recurrent Neural Networks.

Let's think about soft assignment in Deep Learning...

- What is the probability distribution outputted by a neural network?
- Softmax $(x_i) = \frac{\exp(x_i)}{\sum_i \exp(x_i)}$
- What is probability?

Source: Feron, B., Moraleda, G., Vossen, J., & Monti, A. Probabilistic Short-Term Residential Load Forecasting based on Feed Forward and LSTM Recurrent Neural Networks.

Let's think about soft assignment in Deep Learning...

- What is the probability distribution outputted by a neural network?
- Softmax $(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$
- Probability≠Softmax output⁵

Source: Feron, B., Moraleda, G., Vossen, J., & Monti, A. Probabilistic Short-Term Residential Load Forecasting based on Feed Forward and LSTM Recurrent Neural Networks.

⁵Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International Conference on Machine Learning (pp. 1321-1330). PMLR.

Gaussian Mixture Models (GMMs)

- Assign a Gaussian to each cluster center.
- Linear superposition of K Gaussians.

$$p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

- $\mathcal{N}(\cdot)$ denotes a Gaussian with mean μ and covariate matrix Σ .
- π_k denotes the *a priori* probability that a data point belongs to cluster k.

Gaussian Mixture Models

A density model where we combine a finite number of K Gaussian distributions $\mathcal{N} = (\mathbf{x} | \mu_k, \Sigma_k)$ so that

$$p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

$$0 \leq \pi_k \leq 1, \sum_{k=1}^K \pi_k = 1$$

- \bullet $\theta := \{\pi_k, \mu_k, \Sigma_k : k = 1, 2, ..., K\}$
- Goal: optimize θ such that the GMM fits the data (Maximum Likelihood Estimate).

Gaussian Mixture Models

Problem formulation:

- Given dataset $\mathcal{X} = \{x_1, x_2, ..., x_N\}, n = 1, ..., N$, where x_n are drawn i.i.d. from an unknown distribution p(x). Our objective is to find a good approximation of this unknown distribution p(x) by means of a GMM with K mixture components, given a set of parameters $\theta := \{\pi_k, \mu_k, \Sigma_k : k = 1, 2, ..., K\}$.
- Typically done by likelihood maximization (or negative log likelihood minimization).

$$p(\mathcal{X}|\theta) = \prod_{n=1}^{N} p(x_n|\theta), \text{ where } p(x_n|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$$

$$\mathcal{L} = -\log p(\mathcal{X}|\theta) = -\sum_{n=1}^{N} \log p(x_n|\theta) = -\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$$

• Goal: find θ^* that minimizes the loss (negative log-likelihood) \mathcal{L} .

Gaussian Mixture Models

An important concept: Responsibility

$$r_{nk} := \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k))}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

- is defined as the responsibility of the k^{th} mixture component for data point x_n .
- Responsibility is the soft assignment of clusters.
- To update r_{nk} , we need $\{\pi_k, \mu_k, \Sigma_k : k = 1, 2, ..., K\}$.
- To update $\{\pi_k, \mu_k, \Sigma_k : k = 1, 2, ..., K\}$, we need r_{nk} .
- Needs an iterative solution.

- Initialize π_k, μ_k, Σ_k .
- *E-step*: Evaluate responsibilities r_{nk} for every data point x_n using current parameters π_k , μ_k , Σ_k :

$$r_{nk} := \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k))}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

• *M-step*: Re-estimate parameters π_k , μ_k , Σ_k using the current responsibilities r_{nk} (from E-step):

$$\mu_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} x_{n}, \quad \pi_{k} = \frac{N_{k}}{N},$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}.$$

Repeat E-step and M-step until convergence.

Mean updates μ_k

• The mean μ_k is pulled toward a data point x_n with the strength given by r_{nk} .

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} x_n$$

• N_k is defined as the total responsibility of the k^{th} mixture component for the entire dataset.

$$N_k := \sum_{n=1}^N r_{nk}$$

Importance-weighted Monte Carlo estimate of the mean.

Mean updates μ_k

(a) GMM density and individual components prior to updating the mean values.

(b) GMM density and individual components after updating the mean values.

Source: Mathematics for Machine Learning. page 355.

Covariance updates \sum_{k}

• The covariance matrix is re-estimated based on the new responsibilities r_k

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (x_n - \mu_k) (x_n - \mu_k)^T$$

- Importance-weighted covariance of data points x_n associated with the k^{th} mixture component.
- Proof:
 - ▶ Take the partial derivative of the log-likelihood with respect to Σ_k .
 - Set the partial derivative to 0.

Covariance updates \sum_{k}

(a) GMM density and individual components prior to updating the variances.

(b) GMM density and individual components after updating the variances.

Source: Mathematics for Machine Learning. page 358.

Mixture weights updates π_k

• The mixture weights are updated based on the new responsibilities r_k

$$\pi_k = \frac{N_k}{N}$$

- N denotes number of data points.
- The ratio of the total responsibility of the k^{th} cluster and the number of data points.

Mixture weights updates π_k

(a) GMM density and individual components prior to updating the mixture weights.

(b) GMM density and individual components after updating the mixture weights.

Source: Mathematics for Machine Learning, page 360.

Source: Mathematics for Machine Learning. page 362.

New stuff?

- DeepCluster (Caron et al. 2018)
- Deep k-means (Fard, Thonet, and Gaussier 2020)
- Swapping Assignments between multiple Views (SwAV) (Caron et al. 2020)
- Prototypical contrastive learning (Li et al. 2020)

Outliers, Novelty and Duplicate Detection

- Anomaly detection
 - Outlier detection,
 - Novelty detection.
- Samples located in low-density region.
- Outliers typically pollutes the data,
- whereas novelties gain insight about the data.
- Methods:
 - DBSCAN,
 - Mahalanobis distance, etc.

Summary

- Different types of distance metrics and their characteristics.
 - Distance metrics between points,
 - Distance metrics between clusters.
- Hard clustering algorithms.
 - Hierarchical clustering, k-means, and DBSCAN.
 - Easy to use,
 - But no confidence measurement; can be slow due to "curse of dimensionality".
- Soft clustering algorithms.
 - Gaussian mixture models, Expectation-Maximization algorithm.
 - Soft assignment of clusters with uncertainty.
- Application: anomaly detection.

For next time, please read about data quality https://5stardata.info/en/

References

- Ester, M., Kriegel, H. P., Sander, J., Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231).
- Deisenroth, M. P., Faisal, A. A., Ong, C. S. (2020). Mathematics for machine learning.
 Cambridge University Press.
- Ozdemir, S. (2016). Principles of data science. Packt Publishing Ltd.
- Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M. (2022). Spectral, Probabilistic, and Deep Metric Learning: Tutorial and Survey. arXiv preprint arXiv:2201.09267.
- Caron, M., Bojanowski, P., Joulin, A., Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the European conference on computer vision (ECCV) (pp. 132-149).

References

- Fard, M. M., Thonet, T., Gaussier, E. (2020). Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters, 138, 185-192.
- Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A. (2020). Unsupervised learning
 of visual features by contrasting cluster assignments. Advances in Neural Information
 Processing Systems, 33, 9912-9924.
- Ia Rosa, L. E. C., Oliveira, D. A. B. (2022). Learning from Label Proportions with Prototypical Contrastive Clustering.
- Li, J., Zhou, P., Xiong, C., Hoi, S. C. (2020). Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966.
- Guo, C., Pleiss, G., Sun, Y., Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International Conference on Machine Learning (pp. 1321-1330). PMLR.