1 The Model

The model is a simple disk+bulge galaxy, with the following parameters:

- R_{disk} , disk half-light radius
- F_{disk} , disk flux
- g_1^{disk} , disk intrinsic alignment
- g_2^{disk} , disk intrinsic alignment
- R_{bulge} , bulge half-light radius
- F_{bulge} , bulge flux
- g_1^{bulge} , bulge intrinsic alignment
- g_2^{bulge} , bulge intrinsic alignment
- g_1^{shear} , lensing shear
- g_2^{shear} , lensing shear
- \bullet mu, lensing magnification (this parameter is optional)

 g_1^{disk} , g_2^{disk} , g_1^{bulge} , and g_2^{shear} all model intrinsic alignment, but are parameterized like reduced shear in weak lensing formalism because it's easy to apply with galsim.

The bulge is drawn with a De Vaucouleurs profile, and the disk is drawn with an n=1 S'ersic profile. The image is convolved with a $\sigma=0.25$ arcsecond Gaussian PSF.

One important aspect of the model is that the disk and bulge can optionally be drawn with different r-g colors such that $(g-r)_{disk} \approx (g-r)_{bulge} - 2$. (n.b. I have to check to ensure that these magnitudes are being calculated correctly.) We have been treating the color difference between the disk and bulge like a prior in that we are interested in how much switching it on affects our fits, but our current treatment presumes perfect knowledge of the color difference between disk and bulge.