

Objetivos

- Introducir el concepto de verificación y validación.
- Presentar el proceso de verificación

Verificación y Validación

- Es un proceso de ciclo de vida completo.
- Inicia con las revisiones de los requerimientos y continúa con las revisiones del diseño, inspecciones del código hasta la prueba.
- Validación: ¿Estamos construyendo el producto correcto?
- Verificación: ¿Estamos construyendo el producto correctamente?

Verificación y Validación

- Falla: error en un producto de trabajo
- <u>Producto de trabajo</u>: salida de cualquier actividad correspondiente al ciclo de vida de desarrollo:

Verificación y Validación

Por qué existen las fallas...

Ruido de comunicación

Limitaciones de memoria

- Los límites de la memoria a corto plazo: 7 +|- 2
- "Las fallas más persistentes están relaciondas con la complejidad inherente al producto que se desarrolla"*

* Robert Glass, "Persistent Software Errors: 10 Years L 1st International Software Testing Analysis & Review Conference

١	/erificación y Validación
Α	lgunos ejemplos:
F	allas mayores
	En código: E tror lógico, estructural u otro que pueda ocasionar una falla operacional. En diseño: Una expresión en el diseño que pudiera ocasionar una falla operacional si se implementara tal cual está especificado.
	En requerimientos: " Una expresión en los requerimientos que pudiera ocasionar que no se cumpliera con las necesidades del cliente, o una expresión ambigua o información faltante que requerirá una investigación posterior.
	En plan de prueba o casos de prueba: • Una condición que podría ocasionar que no se detectaran fallas en el programa o que la prueba no pueda llevarse a cabo o repetirse.

Verificación y Validación Algunos ejemplos: Fallas menores • En código o diseño: • Una violación a los estándares de codificación o de diseño (E): comentarios en el código), que no ocasionará una falla operacional pero puede reducir la claridad y causar problemas de mantenimiento. • En requerimientos: • Un requerimiento que no pueda probarse. • En plan de prueba o casos de prueba: • Información que no está clara o que pudiera causar que se requiera esfuerzo de testing innecesario debido a la redundancia.

Verificación y Validación Algunos ejemplos: Notas cosméticas • En documentación: • Errores de tipeo, • Errores ortográficos, • Errores gramaticales, • Se necesita actualizar el documento con una plantilla más nueva (existe una versión más nueva) • Se necesita actualizar la historia de revisiones del documento. • En código: • Se necesita actualizar los datos de copyright de un código fuente utilizado • Una sugerencia alternativa (Ej. Un algoritmo de búsqueda diferente)

Verificación y Validación • Principios • La **prevención** es mejor que la cura • Evitar es más efectivo que eliminar • La retroalimentación enseña efectivamente • Olvidarse de la **perfección**, no se puede conseguir • Enseñar a pescar, en lugar de dar el pescado Verificación y Validación Existen dos aproximaciones complementarias: • Revisiones Técnicas • Pruebas de Software Revisiones Técnicas • Proceso de V & V estático • Principal objetivo detectar defectos y corregirlos en las etapas tempranas del desarrollo. Origen: 1976 Fagan introdujo proceso de inspecciones basado en experiencia en HW para detectar defectos lo más cerca posible de su generación • Practicadas por industria de SW en la que calidad y retrabajo son • Muchas variantes respecto a las inspecciones de Fagan

J					-/		
к	ev/	S	on	29	Ie	cni	cas

- Puede inspeccionarse cualquier representación legible del sw
- Se aplican en varios momentos del desarrollo.
- El trabajo técnico necesita ser revisado por la misma razón que los lápices necesitan gomas: errar es humano.
- Algunas clases de errores se le pasan por alto mas fácilmente al que los origina que a otras personas.
- Motiva a realizar un mejor trabajo.
- No requieren que el programa se ejecute.

Revisiones Técnicas

- Ventajas
 Pueden descubrirse muchos errores
 - Pueden inspeccionarse versiones incompletas Pueden considerarse otro atributos de calidad
- Desventajas
 Es difícil introducir las inspecciones formales
 Sobrecargan al Inicio los costos y conducen a un ahorro sólo después de que los equipos adquieran experiencia en su uso.
 Requieren tiempo para organizarse y parecen ralentizar el proceso de desarrollo

Revisiones Técnicas

- Costos
- Costos
 Infraestructura:
 Entrenamiento
 Desarrollo/ajuste de plantillas e informes
 Desarrollo/ajuste de guías de lectura
 Implantación de programas de medición
 Herramientas de soporte
 Operacionales
 Tiempo en completar informes.
 Addicionales
 Addicionales

- Adicionales
 Preparar material, arreglar calendario, recolectar datos, etc.
 Tiempo dedicado a la mejora de calidad

Revisiones Técnicas						
Método	Objetivos Típicos	Atributos Típicos				
Walktroughs	Mínima Sobrecarga Capacitación de Desarrolladores Rápido retorno	Poca o ninguna preparación Proceso Informal No hay mediciones No FTR!				
Inspecciones	Detectar y remover todos los defectos eficiente y efectivamente	Proceso Formal Checklists Mediciones Fase de Verificación				

Revisiones Técnicas					
Tipo de documento	Revisores sugeridos				
Arquitectura o Diseño de alto nivel	Arquitecto, analista de requerimientos, diseñador, lider de proyecto, testers.				
Diseño detallado	Diseñador, arquitecto, programadores, testers				
Planes de proyecto	Líder de proyecto, stakeholders, representante de ventas o marketing, líder técnico, representante del área de calidad,				
Especificacion de requerimientos	Analista de requerimientos, líder de proyecto, arquitecto, diseñador, testers, representante de ventas y/o marketing				
Codigo fuente	Programador, diseñador, testers, analista de requerimientos				
Plan de testing	Tester, programador, arquitecto, diseñador, representante del área de calidad, analista de requerimientos				

Revisiones Técnicas - Inspección						
El Proceso de Inspe Duración de una in						
Operación	Código	Documentos				
Planificación	15 minutos	30 minutos				
Vista previa	500 LOC/h	500 líneas de texto/h				
Preparación	100 LOC/h	140 líneas de texto/h				
Inspección	125 LOC/h	140 líneas de texto/h				
Mejora del proceso	30 minutos	45 minutos				
Tamaño máximo por inspección	250 LOC	280 líneas de texto				

Revisiones Técnicas - Walkthrough

- Recorrida/ Walkthrough
 - Técnica de análisis estático en la que un diseñador o programador dirige miembros del equipo de desarrollo y otras partes interesadas a través de un producto de software y los participantes formulan preguntas y realizan comentarios acerca de posibles errores, violación de estándares de desarrollo y otros problemas

Revisiones Técnicas

En Resumen...

- Mejorar las pruebas
 Caro
 No sirve para remover errores en etapas tempranas
- Recorridas Walkthroughs
 Buenos resultados, pero se toman pocas métricas
 No hay control del proceso
- Inspecciones
 Mejores resultados, proceso controlado
 Métricas útiles a lo largo de todo el ciclo de vida del desarrollo

Revisiones Técnicas Puntos Claves Revisar al producto... no al productor Fijar una agenda y cumplirla Limitar el debate y las impugnaciones Enunciar las áreas de problemas, pero no tratar resolver cualquier problema que se manifieste Tomar notas escritas Limitar el nro. de participantes e insistir en la preparación por anticipado Desarrollar una lista de revisión Disponer recursos y una agenda Entrenamiento Repasar revisiones anteriores

Bibliografía Ingeniería de software – 9na Edición Ian Sommerville Software Inspection, Gilb, T. and Graham, D., Addison-Wesley, 1993 Advances in Software Inspections, Fagan, M., IEEE Transactions on Software Engineering, July 1986 IEEE Std 1028-1988 – Standard for Software Reviews and Audits