TMD: Modeling Data for OS Library

The TMD format contains 3D modeling data which is compatible with the PlayStation expanded graphics library (libgs). TMD data is downloaded to memory and may be passed as an argument to functions provided by LIBGS. TMD files are created using the RSDLINK utility, which reads an RSD file created by the SCE 3D Graphics Tool or a comparable program.

The data in a TMD file is a set of graphics primitives—polygons, lines, etc.—that make up a 3D object. A single TMD file can contain data for one or more 3D objects.

Coordinate Values

Coordinate values in the TMD file follow the 3D coordinate space handled by the 3D graphics library. The positive direction of the X axis represents the right, the Y axis the bottom, and the Z axis the depth. The spatial coordinate value of each object is a signed 16-bit integer value ranging from -32768 to +32767.

In the 3D object design phase and within the RSD format, the vertex information is stored as a floating point value. Conversion from RSD into TMD involves converting and scaling vertex values as needed. The scale used is reflected in the object structure, described later, as the reference value. This value can provide an index for mapping from object to world coordinates. The current version of LIBGS ignores the scale value.

File Format

TMD files are configured by 4 blocks. They have 3 dimensional object tables, and 3 types of data entities—PRIMITIVE, VERTEX, and NORMAL—which configure these.

Header

The header section is composed of three word (12 bytes) data carrying information on data structure.

Figure 55: Structure of Header

ID: Data having 32 bits (one word). Indicates the version of a TMD file. The current version is 0x00000041.

FLAGS: Data having 32 bits (one word). Carries information on TIM data configuration. The least significant bit is FIXP. The other bits are reserved and their values are all zero. The FIXP bit indicates whether the pointer value of the OBJECT structure described later is a real address. A value of one means a real address. A value of zero indicates the offset from the start.

NOBJ: Integral value indicating the number of objects

Obj Table

The OBJ TABLE block is a table of structures holding pointer information indicating where the substance of each object is stored. Its structure is as shown below.

Figure 56: OBJ TABLE structure

OBJECT #1	
OBJECT #2	
:	
:	

The object structure has the following configuration:

```
struct object
      u_long *vert_top;
      u_long n_vert;
      u_long *normal top;
      u_long n_normal;
      u_long *primitive top;
      u_long n_primitive;
      long scale;
```

(Explanation of members)

Start address of a vertex vert top: Number of vertices n_vert: Start address of a normal normal_top: n_normal: Number of normals primitive_top: Start address of a primitive Number of primitives *n_primitive*:

Among the members of the structure, the meanings of the pointer values (vert top, normal top, primitive_top) change according to the value of the FIXP bit in the HEADER section. If the FIXP bit is 1, they indicate the actual address, and if the FIXP bit is 0, they indicate a relative address taking the top of the OBJECT block as the 0 address.

The type of the scaling factor is "signed long", and its value raised to the second power is the scale value. That is to say, if the scaling factor is 0, the scale value is an equimultiple; if the scaling factor is 2, the scale value is 4; if the scaling factor is -1, the scale value is 1/2. Using this value, it is possible to return to the scale value at the time of design.

Primitive

The PRIMITIVE section is an arrangement of the drawing packets of the structural elements (primitives) of the object. One packet stands for one primitive (see Figure below).

The primitives defined in TMD are different from the drawing primitives handled by libgpu. A TMD primitive is converted to a drawing primitive by undergoing perspective transformation processing performed by the libgs functions.

Each packet is of variable length, and its size and structure vary according to the primitive type.

Figure 57: Drawing Packet General Structure

Each item in the figure above is as follows:

Mode (8 bit)

Mode indicates the type of primitive and added attributes. They have the following bit structure:

Figure 58: Mode

CODE: 3 bit code expressing entities

001 = Polygon (triangle, quadrilateral)

010 = Straight line 011 = Sprite

OPTION: Varies with the option, bit and CODE values

(Listed with the list of packet data configurations described later)

Flag (8 bit)

Flag indicates option information when rendering and has the following bit configuration:

Figure 59: Flag

GRD: Valid only for the polygon not textured, subjected to light source calculation

1: Gradation polygon

0: Single-color polygon

FCE: 1: Double-faced polygon

0: Single-faced polygon

(Valid, only when the CODE value refers to a polygon.)

LGT: 1: Light source calculation not carried out

0: Light source calculation carried out

Ilen (8 bit)

Indicates the length, in words, of the packet data section.

Olen (8 bit)

Indicates the word length of the 2D drawing primitives that are generated by intermediate processing.

Packet Data

Parameters for vertices and normals. Content varies depending on type of primitive. Please refer to "Packet data configuration" which will be discussed later.

Vertex

The vertex section is composed of a set of structures representing vertices. The following gives the format of one structure.

Figure 60: Vertex Structure

VX, VY, XZ: x, y and z values of vertex coordinates (16-bit integer)

Normal

The normal section is composed of a set of structures representing normals. The following gives the format of one structure.

Figure 61: Normal Structure

NX, NY, NZ: x, y and z components of a normal (16-bit fixed-point value)

NX, NY and NZ values are signed 16-bit fixed-point values where 4096 is considered to be 1.0.

Figure 62: Fixed-Point Format

Sign: 1 bit Integral part: 3 bits

Decimal part: 12 bits

Packet Data Composition Table

This section lists packet data configurations for each primitive type.

The following parameters are contained in the packet data section:

Vertex(n)

Index value of 16-bit length pointing to a vertex. Indicates the position of the element from the start of the vertex section for an object covering the polygon.

Normal(n)

Index value of 16-bit length pointing to a normal. Same as Vertex.

Un, Vn

X and Y coordinate values on the texture source space for each vertex

Rn, Gn, Bn

RGB value representing polygon color being an unsigned 8-bit integer. Without light source calculation, the predetermined brightness value must be entered.

TSB

Carries information on a texture/sprite pattern.

Figure 63: TSB

TPAGE: Texture page number (0 to 31)

ABR: Semi-transparency rate (Mixture rate).

Valid, only when ABE is 1.

00 50%back + 50%polygon

10 100%back + 100%polygon

10 100%back - 100%polygon

11 100%back + 25%polygon

TPF: Color mode

00 4 bit 01 8 bit 10 15 bit

CBA

Indicates the position where CLUT is stored in the VRAM.

Figure 64: CBA

CLX: Upper six bits of 10 bits of X coordinate value for CLUT on the VRAM

CLY: Nine bits of Y coordinate value for CLUT on the VRAM

3 Vertex Polygon with Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to "3 vertex polygon with light source calculation."

Figure 65: Mode Value of 3 Vertex Polygon with Light Source Calculation

IIP: Shading mode

0: Flat shading

1: Gouraud shading

TME: Texture specification

0: Off

1: On

ABE: Translucency processing

0: Off

1: On

TGE: Brightness calculation at time of texture mapping

0: On

1: Off (Draws texture as is)

Figure 66: Packet Configuration of 3 Vertex Polygon with Light Source Calculation

Flat, No-Texture (solid)

0x20	0x00	0x03 0x04	
0x20*	В	G R	
Vert	Vertex 0		nal 0
Vertex 2		Vertex 1	

Flat, No-Texture (gradation)

0x20	0x04	0x05	0x06
0x20*	В0	G0	R0
_	B1	G1	R1
_	B2	G2 R2	
Vert	Vertex 0		nal 0
Vert	ex 2	Vertex 1	

Flat, Texture

0x24	0x00	0x05	0x07
Ci	ЗА	V0 U0	
TSB		V1	U1
_	_	V2 U2	
Vertex 0		Normal 0	
Vert	Vertex 2		ex 1

^{*} same value as mode

Gouraud, No-Texture (solid)

0x30	0x00	0x04 0x06		
0x30*	В	G R		
Vert	Vertex 0		nal 0	
Vert	ex 1	Normal 1		
Vertex 2		Normal 2		

Gouraud, No-Texture (gradation)

0x30	0x04	0x06	0x06
0x30*	В0	G0 R0	
_	B1	G1 R1	
_	B2	G2	R2
Vert	Vertex 0		nal 0
Vert	Vertex 1		nal 1
Vert	Vertex 2		nal 2

Gouraud, Texture

0x34	0x00	0x06	0x09
CE	CBA		U0
TS	TSB		U1
_	_	V2	U2
Vert	Vertex 0		nal 0
Vertex 1		Norn	nal 1
Vert	Vertex 2		nal 2

In the above example, the values of mode and flag indicate a single-faced polygon and semi-transparency processing not carried out.

4 Vertex polygon with Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to "3 vertex polygon with light source calculation."

Figure 67: Mode Value of 4 Vertex Polygon with Light Source Calculation

MS	В						LSI
0	0	1	 P 	1	TME	ABE	TGE

(bit 3 is set to designate a 4-vertex primitive)

Figure 68: Packet Configuration for 4 Vertex Polygon with Light Source Calculation

Flat, No-Texture (solid)

0x28	0x00	0x04 0x05			
0x28*	В	G R			
Vertex 0		Normal 0			
Vertex 2		Vertex 1			
		Vertex 3			

Flat, No-Texture (gradation)

0x28	0x04	0x07	0x08
0x28*	В0	G0	R0
_	B1	G1	R1
_	B2	G2	R2
_	В3	G3 R3	
Vert	Vertex 0		nal 0
Vert	Vertex 2		ex 1
_		Vertex 3	

Flat, Texture

0x2c	0x00	0x07 0x09		
CE	ЗА	V0	U0	
TS	TSB		U1	
_	_	V2	U2	
_	_	V3 U3		
Vertex 0		Normal 0		
Vert	Vertex 2		ex 1	
		Vert	ex 3	

^{*} same value as mode

Gouraud, No-Texture (solid)

0x38	0x00	0x05	0x08	
0x38*	В	G R		
Vert	Vertex 0		nal 0	
Vert	ex 1	Normal 1		
Vertex 2		Normal 2		
Vert	ex 3	Normal 3		

Gouraud, No-Texture (gradation)

0x38	0x04	0x08	0x08
0x38*	В0	G0	R0
_	B1	G1	R1
_	B2	G2	R2
_	В3	G3	R3
Vert	Vertex 0		nal 0
Vertex 1		Norn	nal 1
Vertex 2		Normal 2	
Vertex 3		Normal 3	

Gouraud, Texture

0x3c	0x00	0x08	0x0c
CE	ЗА	V0	U0
TS	SB	V1	U1
_	_	V2	U2
_	_	V3	U3
Vert	ex 0	Norn	nal 0
Vertex 1		Normal 1	
Vertex 2		Normal 2	
Vert	ex 3	Norn	nal 3

3 Vertex Polygon with No Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to "3 vertex polygon with light source calculation."

Figure 69: Mode Value of 3 Vertex Polygon with No Light Source Calculation

(bit 3 is set to designate a 4-vertex primitive)

Packet Configuration

Figure 70: Packet configuration for 3 Vertex Polygon with No Light Source Calculation

0x31	0x01	0x05	0x06
0x31*	В0	G0	R0
_	B1	G1	R1
_	B2	G2	R2
Vertex 1		Vert	ex 0
		Vert	ex 2

Gradation, No-Texture

Flat, Texture				
0x25	0x01	0x01 0x06 0x07		
CBA		V0	U0	
TSB		V1	U1	
_	_	V2	U2	
_	В	G R		
Vertex 1		Vertex 0		
		Vert	ex 2	

Gradation, Texture				
0x35	0x01	0x08	0x09	
CI	ЗА	V0	U0	
TS	SB	V1	U1	
_	_	V2	U2	
_	В0	G0	R0	
_	B1	G1	R1	
_	B2	G2	R2	
Vertex 1		Vert	ex 0	
_			ex 2	

4 Vertex Polygon with No Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to "3 vertex polygon with light source calculation."

Figure 71: Mode Value of 4 Vertex Polygon with No Light Source Calculation

MS	В						LSI	
0	0	 1 	₩	1	TME	ABE	TGE	

(bit 3 is set to designate a 4-vertex primitive)

^{*} same value as mode

Figure 72: Packet Configuration for 4 Vertex Polygon with No Light Source Calculation

Flat, No-Texture

	-		
0x29	0x01	0x03	0x05
0x29*	В	G	R
Vert	Vertex 1		ex 0
Vertex 3		Vert	ex 2

Gradation, No-Texture

0x39	0x01	0x06	0x08
0x39*	В0	G0	R0
_	B1	G1	R1
_	B2	G2	R2
_	В3	G3	R3
Vert	ex 1	Vert	ex 0
Vert	ex 3	Vertex 2	

Flat, Texture

0x2d	0x01	0x07	0x09
CBA		V0	U0
TSB		V1	U1
_	_	V2	U2
_	_	V3	U3
_	В	G	R
Vert	Vertex 1		ex 0
Vert	ex 3	Vertex 2	

Gradation, Texture

0x3d	0x01	0x0a	0x0c
CI	ВА	V0	U0
TS	SB	V1	U1
_	_	V2	U2
_	_	V3	U3
_	В0	G0	R0
_	B1	G1	R1
_	B2	G2	R2
_	В3	G3	R3
Vertex 1		Vert	ex 0
Vert	ex 3	Vertex 2	

Straight Line

Bit Configuration of Mode Value

The primitive section mode value bit configuration is as follows:

Figure 73: Mode Value of Straight Line

IIP: With or without gradation

0: Gradation off (Monochrome)

1: Gradation on

ABE: Translucency processing on/off

0: off 1: on

^{*} same value as mode

Figure 74: Packet Configuration for "Straight Line"

Gradation OFF

0x40	0x01	0x02	0x03
0x40*	В	G	R
Vertex 1		Vert	ex 0

Gradation ON

0x50	0x01	0x03	0x04
0x50*	В0	G0	R0
_	B1	G1	R1
Vert	Vertex 1		ex 0

3 Dimensional Sprite

A 3 dimensional sprite is a sprite with 3-D coordinates and the drawing content is the same as a normal sprite.

Bit Configuration of Mode Value

Figure 75: Mode Value of 3D Sprite

SIZ: Sprite size

00: Free size (Specified by W, H)

01: 1 x 1 10: 8 x 8 11: 16 x 16

ABE: Translucency processing

0: Off 1: On

Packet Data Configuration

Figure 76: Packet Configuration for Sprites

^{*} same value as mode