

Capstone Project

Facebook comment volume prediction

Content

- 1. Problem statement
- 2. EDA/Feature analysis
- 3. Data Preprocessing
- 4. Machine Learning Models
- 5. Challenges
- 6. Conclusion

Problem Statement

- Prediction of comment volume traffic or simply to predict the number of comments a Facebook post would get within a certain number of hours after posting.
- Target variable was of continuous nature so it was a <u>regression</u> problem.
- We implemented linear and non-linear models such as Multiple Linear Regression, Regularized Regression, PCA, Random Forest and XGBoost to solve the problem.

Data Summary

Train dataset

 We had 5 variants of train dataset with different number of observations.

Training Set Variant	Instances count
Variant - 1	40,949
Variant - 2	81,312
Variant - 3	121,098
Variant - 4	160,424
Variant - 5	199,030

Test dataset

We had 10 different test dataset with 100 observations each

Features

We had 53 predictor variables and 1 target variable (continuous)

Train Dataset Analysis

Total 5 variants. Variant is defined as, how many instances of final training set is derived from single post of training set. This is done by selecting different base date/time for same post at random, process them individually.

No missing value was present

Feature Analysis (Target)

55% posts with nil comments

High number of posts with very few comments

output	percentage
0	55.07
1	12.68
2	6.42
3	3.87
4	2.87
241	0.00
209	0.00
145	0.00
720	0.00
496	0.00

Feature Analysis (Predictors)

Page Features - Page likes, Page type, Check-in Places, Page Returns

Comments Features w.r.t Time Intervals - CC1, CC2, CC3, CC4, CC5

Derived Features - Min, Max, Avg, Med and Sd of CC features.

Date/Time Features - 7 post published day and 7 base date/time day

Other basic Features - Len of Post, Base Time, Total Hours (for which comments received), Post Share Count.

- Page Type
- Too many labels with unknown mapping
- Unable to aggregate labels of

same category like business, entertainment, political

Removed the variable

Check-ins

- 1. Too many labels with unknown label encoding
- 2. 62% with 0 label
- 3. Removed the variable

(showing check-ins of 20 I

Day when post published

Day when people actively commenting

Feature Analysis (Predictors - Continuous)

Comments Received after H hours

Feature Analysis (Predictors - Continuous)

H_local - Hours, for which we have the comments (target) received

less than 10 comments distribution for < 24hr

For 98% of post the time was taken for 24 hrs
For hours less than 24, most of the posts got less than 10 comments

Feature Analysis (Predictors - Continuous)

CC1, CC2, CC3, CC4, CC5 and Derived Features

- CC5 was defined as CC2-CC3. So, among CC2, CC3 and CC5 we can remove one column to reduce the redundancy
- 1. CC1 & CC4 has strong correlation (1)
- Derived features also have high correlation

1. We have applied multi-collinearity removal methods to solve the issue

Pre-processing (Final Steps)

- Removed cat variables Page type, Check-ins, Post promotion status
- Changed date/time features to categorical and created two columns as weekdays and weekends.
- Removed redundant column CC3 and its corresponding derived features after checking with Random Forest Feature Importance
- Scaled the data using standardscaler method
- Applied regularization techniques to tackle multicollinearity

Machine Learning Models

We have Implemented Below Models

- 1. Multiple Linear Regression
- 2. Lasso Regression
- 3. Ridge Regression
- 4. Decision Tree Regression
- 5. Random Forest Regression
- 6. XGBoost Regression
- 7. Gradient Boosting Regression
- 8. KNN Regression

Compared Train and Test accuracy for all models

Model Evaluation (MSE, RMSE, MAE)

	Model Name	Train MSE	Test MSE	Train RMSE	Test RMSE	Train MAE	Test MAE
0	LinearRegression	850.86	3190.35	29.17	56.48	8.29	22.85
1	Lasso	852.55	3134.84	29.20	55.99	8.24	22.50
2	Ridge	850.93	3196.73	29.17	56.54	8.29	22.85
3	DecisionTreeRegressor	536.09	2806.87	23.15	52.98	5.93	20.74
4	RandomForestRegressor	468.10	2638.74	21.64	51.37	5.38	19.67
5	GradientBoostingRegressor	199.87	2288.09	14.14	47.83	3.45	20.02
6	XGBRegressor	60.48	2104.39	7.78	45.87	2.10	16.54
7	KNeighborsRegressor	687.80	4436.25	26.23	66.61	5.24	23.40

Model Evaluation (R2 and Adjusted R2)

	Model Name	Train R2 Score	Test R2 Score	Train Adjusted R2	Test Adjusted R2
0	LinearRegression	0.32	0.56	0.32	0.56
1	Lasso	0.32	0.57	0.32	0.57
2	Ridge	0.32	0.56	0.32	0.56
3	DecisionTreeRegressor	0.57	0.61	0.57	0.61
4	RandomForestRegressor	0.63	0.64	0.63	0.64
5	GradientBoostingRegressor	0.84	0.68	0.84	0.68
6	XGBRegressor	0.95	0.71	0.95	0.71
7	KNeighborsRegressor	0.45	0.39	0.45	0.39

Model Evaluation (Comparison of R2 Score)

Model Evaluation (XGBoost)

Evaluation metrics

XGBRegressor

Train R2_score	0.879605
Test R2_score	0.731225
Adjusted R2_score Train	0.879482
Adjusted R2_score Test	0.730950
Train MSE	151.706371
Test MSE	1947.551547
Train RMSE	12.316914
Test RMSE	44.131072
Train MAE	3.107697
Test MAE	18.750406

Best hyperparameter

```
max depth=7,
learning rate=.055,
min child weight = 3,
max leaf nodes= 15,
min samples leaf=6,
reg alpha=5,
min samples split=1,
n jobs=-1,
colsample bytree = 0.5,
random state = 45,
n estimators=60,
objective='reg:squarederror'
```


Model Evaluation (Feature Importance)

XGBoost

Challenges

- 5 variants of datasets
- Large train dataset
- Very small test dataset
- High number of features
- Skewed target 55% had 0 comments (unable to use log transform)
- Categorical variables with high number of labels (106 labels)
- Unknown label encoding so was not able to map labels with code
- High multicollinearity because of 25 derived variables

ΑI

Conclusion

- XGBoost performed best on our dataset with test adjusted R2 score of 0.73
- Gradient Boosting and Random Forest also performed well compared other models
- From feature importance plot of Random Forest, Gradient Boosting and XGBoosting we can conclude that most important features are
 - CC2 (Comment count in last 24 hrs w.r.t to selected basetime)
 - Base Time/Date
- Dataset was large, so unable to use grid-search to find the optimal hyperparameters. Model accuracy can be improved.

Q & A