

CHAPTER 7

Eigen Value and Eigen Vector

Introduction

- Let **A** be a square matrix of dimension $n \times n$ and let **v** be a vector of dimension n.
- The product, Y = Av can be viewed as a linear transformation from *n*-dimensional into itself.
- We want to find scalars (λ) for which there exists a nonzero vector **v** such that

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

that is, the linear transformation $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ maps \mathbf{v} onto the multiple $\lambda \mathbf{v}$.

ullet When this occurs, we call old v an eigen vector that corresponds to the eigen value (λ), and together they form the eigen pair (λ), \mathbf{v} for A.

Introduction

 The identity matrix [I] can be used to express equation

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

as

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{I}\mathbf{v}$$

which is then rewritten in the standard form for a linear system as,

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$$

Introduction

This linear system,

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$$

has nontrivial solutions if and only if the matrix $\bf A$ - $\lambda {\bf I}$ is singular, that is

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

 When the determinant is expanded, it becomes a polynomial of degree n, which is called the characteristic polynomial,

$$p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}|$$

Eigen Value and Eigen Vector

• If **A** is an $n \times n$ matrix, then its n eigen values λ_1 , $\lambda_2,...,\lambda_n$ are the roots of the characteristic polynomial

$$p(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I})$$

• If λ is an eigen value of **A** and the nonzero vector **v** has the property that

$$Av = \lambda v$$

then v is called an eigen vector of A corresponding to the eigen value λ .

Eigen Value and Eigen Vector

Example:

• Let,
$$A = \begin{bmatrix} 3 & 6 \\ 1 & 4 \end{bmatrix}$$

• The characteristic polynomial of the matrix A:

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 3 & 6 \\ 1 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 - \lambda & 6 \\ 1 & 4 - \lambda \end{bmatrix}$$
$$P_1(\lambda) = \det|A - \lambda I| = \lambda^2 - 7\lambda + 6 = (\lambda - 6)(\lambda - 1)$$

• Therefore, the eigen values of **A** are λ = 6 and λ = 1.

Eigen Value and Eigen Vector

Example:

• Let,
$$B = \begin{bmatrix} -1 & 6 & -12 \\ 0 & -13 & 30 \\ 0 & -9 & 20 \end{bmatrix}$$

Then,

$$\mathbf{B} - \lambda \mathbf{I} = \begin{bmatrix} -1 - \lambda & 6 & -12 \\ 0 & -13 - \lambda & 30 \\ 0 & -9 & 20 - \lambda \end{bmatrix}$$

The characteristic polynomial of the matrix B

$$P_1(\lambda) = det|B - \lambda I| = \lambda^3 - 6\lambda^2 + 3\lambda + 10$$

= $(\lambda + 1)(\lambda - 5)(\lambda - 2)$

• The eigen values are λ = -1; λ = 5 and λ = 2.

Eigen Value

- To find eigen values when the dimension n is small:
 - Find the coefficient of the characteristic polynomial
 - Finds its root
 - Find the nonzero solutions of the homogeneous linear system $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$
- Finding the determinant of an $n \times n$ matrix is computationally expensive and finding good approximations to the roots of $p(\lambda)$ is also difficult.

Theorem

• Assume that **A** is $n \times n$ matrix and let

$$\lambda_{i}, i = 1, 2, ..., n$$

are eigen values of A

(1)
$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$$
 2)
$$\prod_{i=1}^{n} \lambda_i = |A|$$

• Assume that **A** is $n \times n$ matrix, and let B_i denote the disk in the complex plane with center a_{ii} and radius r_i

$$r_{i} = \sum_{j=1}^{n} |a_{ij}|$$

$$B_{i} = |\lambda - a_{ii}| \le r_{i}$$

• If $S = \bigcup_{i=1}^{n} B_i$ then all the eigen values of **A** lie in the set S.

Example:

Let,
$$A = \begin{bmatrix} 3 & -2 & 1 \\ -1 & 3 & 1 \\ 1 & -2 & -4 \end{bmatrix}$$
.

Estimate the eigen values of matrix A using the

Gerschgorin's circle theorem.

Example - Solution:

Example – Solution (cont'd):

• Circle

Example – Solution (cont'd):

Row 2:

center

Example - Solution (cont'd):

• Circle

Example – Solution (cont'd):

Row 3:

center

$$|\lambda - (-4)| < |1| + |-2|$$

$$|\lambda + 4| < 3$$

$$-7 < \lambda < -1$$

$$\lambda \in (-7, -1)$$

radius

Example – Solution (cont'd):

• Circle

Power Method

- The **power method** is an iterative technique used to determine the **dominant eigen value** of a matrix that is, the eigen value with the largest magnitude.
- By modifying the method slightly, it can also be used to determine other eigen values.
- One useful feature of the power method is that it produces not only an eigen value, but also the associated eigen vector.

Power Method

• If λ_1 is an eigen value of **A** that is larger in absolute value than any other eigen value, it is called the dominant eigen value.

• An eigen vector \mathbf{v}_1 corresponding to λ_1 is called a dominant eigen vector.

Power Method

- To apply the power method, we assume that the $n \times n$ matrix **A** has n eigen values $\lambda_1, \lambda_2, ..., \lambda_n$ with an associated collection of linearly independent eigenvectors $\{v^{(1)}, v^{(2)}, ... v^{(n)}\}$
- We assume that **A** has precisely one eigen value, λ_1 that is largest in magnitude, so that

$$\left|\lambda_{1}\right| > \left|\lambda_{2}\right| \ge \left|\lambda_{3}\right| \ge \dots \ge \left|\lambda_{n}\right|$$

$$A\mathbf{v} = \lambda \mathbf{v}$$

$$\mathbf{v} = \frac{1}{\lambda} A \mathbf{v}$$

• Start with vector, **v**⁽⁰⁾

$$\mathbf{v}^{(1)} = \frac{1}{m_1} A \mathbf{v}^{(0)}$$

Generate the sequence {v^(k)} recursively, using

$$\mathbf{v}^{(k+1)} = \frac{1}{m_{k+1}} A \mathbf{v}^{(k)}$$
 $k = 0,1,2....$

• Where m_{k+1} is the coordinate of $Av^{(k)}$ of largest magnitude (in the case of a tie, choose the coordinate that comes first).

• The sequences $\{v^{(k)}\}$ and $\{m_k\}$ will converge to \boldsymbol{v} and λ , respectively.

$$\lim_{k\to\infty} v_k = v \qquad \qquad \lim_{k\to\infty} m_k = \lambda$$

• **Termination criteria:** Select a tolerance (error), ε >0 and generate $\mathbf{v}_1, \dots, \mathbf{v}_{k+1}$ until

$$\left\|\mathbf{v}^{(k+1)} - \mathbf{v}^{(k)}\right\| < \varepsilon$$

Example:

Let,

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Use the Power method to approximate the most dominant eigen value of the matrix. Let $v^{(0)}=(0,0,1)^T$ and iterate until ε =0.001.

Example – Solution:

$$\mathbf{v} = A\mathbf{v}^{(0)} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$$

$$m_1 = 5$$

 $m_1 = 5$ (largest magnitude)

$$\mathbf{v}^{(1)} = \frac{1}{m_1} * A \mathbf{v}^{(0)} = \sqrt[V]{m_1} = 1/5 \begin{vmatrix} -1 \\ 1 \\ 5 \end{vmatrix} = \begin{vmatrix} -0.2 \\ 0.2 \\ 1.0 \end{vmatrix} ||\mathbf{v}^{(1)} - \mathbf{v}^{(0)}|| > \varepsilon$$
 (next iteration)

$$\mathbf{v} = A\mathbf{v}^{(1)} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix} \begin{bmatrix} -0.2 \\ 0.2 \\ 1.0 \end{bmatrix} = \begin{bmatrix} -0.8 \\ 0.8 \\ 3.4 \end{bmatrix}$$
 $m_2 = 3.4$

$$m_2 = 3.4$$

$$\mathbf{v}^{(2)} = \mathbf{v}/m_2 = 1/3.4 \begin{bmatrix} -0.8 \\ 0.8 \\ 3.4 \end{bmatrix} = \begin{bmatrix} -0.235 \\ 0.235 \\ 1.0 \end{bmatrix} \qquad \begin{vmatrix} \mathbf{v}^{(2)} - \mathbf{v}^{(1)} || > \varepsilon \\ \text{(next iteration)} \end{vmatrix}$$

$$\left\|\mathbf{v}^{(2)} - \mathbf{v}^{(1)}\right\| > \mathcal{E}$$
 (next iteration)

k		$(v^{(k)})^T$			$(Av^{(k)})^T$		m_{k+1}
0	0	0	1	-1	1	5	5
1	-0.2	0.2	1	-0.8	0.8	3.4	3.4
2	-0.235	0.235	1	-0.765	0.765	3.12	3.12
3	-0.245	0.245	1	-0.755	0.755	3.04	3.04
4	-0.248	0.248	1	-0.752	0.752	3.016	3.016
5	-0.249	0.249	1	-0.751	0.751	3.008	3.008
6	-0.250	0.250	1	-0.750	0.750	3.000	3.000
7	-0.250	0.250	1				

$$\left\|\mathbf{v}^{(7)}-\mathbf{v}^{(6)}\right\|<\varepsilon$$

$$\lambda_1 \approx m_7 = 3.000$$

$$\mathbf{v}_1 \approx \mathbf{v}^{(7)} = \begin{bmatrix} -0.250\\ 0.250\\ 1.000 \end{bmatrix}$$

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix} \begin{bmatrix} -0.25 \\ 0.25 \\ 1.0 \end{bmatrix} = 3.000 \begin{bmatrix} -0.25 \\ 0.25 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} -0.75 \\ 0.75 \\ 3.00 \end{bmatrix} = \begin{bmatrix} -0.75 \\ 0.75 \\ 3.00 \end{bmatrix}$$

Exercise

Given a matrix A as follows.

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{array} \right]$$

- a) Use the Gerschgorin's Circle Theorem to determine a region containing all the eigenvalues of
 A.
- b) Find the dominant eigenvalue (λ_1) and the corresponding eigenvector of matrix \boldsymbol{A} using **Power** method. Use $\underline{\boldsymbol{v}}^{(0)} = [0, 1, 0]^T$. Do calculation in 4 decimal points and take $\varepsilon = 0.005$
- Suppose that the smallest eigenvalue (λ_3) of matrix **A** is -1. Find the intermediate eigenvalue.

Consider the standard eigen value problem

$$Av = \lambda v$$

 By subtracting a scalar s from both sides of the standard eigen value problem, the eigen values of the matrix are shifted:

$$Av - sIv = \lambda v - sv$$

which yields $(\mathbf{A} - s\mathbf{I}) \mathbf{v} = (\lambda - s)\mathbf{v}$

and can be written as $\mathbf{A}_{\text{shifted}}\mathbf{v} = \lambda_{\text{shifted}}\mathbf{v}$

A_{shifted} is the shifted matrix,

$$\mathbf{A}_{\text{shifted}} = (\mathbf{A} - s\mathbf{I})$$

- $\lambda_{\text{shifted}} = \lambda s$ is the eigen value of the shifted matrix.
- Shifting matrix A by a scalar s shifts the eigen value by S.
- Shifting a matrix by a scalar does not affect the eigen vectors.

- Shifting of eigen values of a matrix can be used to find the opposite extreme eigen value, which is either
 - the smallest magnitude eigen value, or
 - > the largest magnitude eigen value of opposite sign.

- Consider a matrix whose eigen values are all the same sign; λ =1, 2, 4, and 8.
- λ = 8 is the eigen value of largest magnitude.
- λ =1 is the opposite extreme eigen value.
- The eigen value of largest magnitude λ_1 =8 can be found by the power method.
- Shifting the eigen values by s = 8, yields the shifted eigen values $\lambda = -7$, -6, -4, 0.

- The largest magnitude eigen value of the shifted matrix can be found by the power method; $\lambda_{\text{shifted. largest}} = -7$.
- The smallest eigen value of the original matrix may be found by

$$\lambda_{\text{smallest}} = \lambda_{\text{shifted, largest}} + 8 = -7 + 8 = 1$$

- Consider a matrix whose eigen values are both positive and negative; λ =-1, -2, 4, and 8.
- λ =8 is the eigen value of largest magnitude.
- λ =-2 is the opposite extreme eigen value.
- The eigen value of largest magnitude λ_1 =8 can be found by the power method.
- Shifting the eigen values by s = 8, yields the shifted eigen values $\lambda = -9$, -10, -4, 0.

- The largest magnitude eigen value of the shifted matrix can be found by the power method; λ_{shifted} largest = -10.
- The largest magnitude eigen value of opposite sign of the original matrix may be found by

$$\lambda_{largest, negative} = \lambda_{shifted, largest} + 8 = -10 + 8 = -2$$

The shifted power method can be summarized as follows:

- 1. Solve for the eigen value of largest magnitude λ_1 using the power method.
- 2. Shift the matrix **A** by $\mathbf{s} = \lambda_1$ to obtain the shifted matrix $\mathbf{A}_{\text{shifted}}$.
- 3. Solve for the eigen value λ_{shifted} by the power method.
- 4. Compute the opposite extreme eigen value of matrix **A** by

$$\lambda = \lambda_{\text{shifted}} + s$$

Example:

Let,
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

The dominant eigen value of **A** is $\lambda_1 = 3.0$.

Use the shifted power method to find the remaining eigen values of A.

Example – Solution:

Let
$$\boldsymbol{B} = \boldsymbol{A}_{\text{shifted}}$$

$$B = A - \lambda_1 I = A - 3I$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 2 & -1 \\ 1 & -3 & 1 \\ 4 & -4 & 2 \end{bmatrix}$$

Example – Solution (cont'd):

• Let, $v^{(0)} = [0, 1, 0]^T$ and $\varepsilon = 0.001$

$$\mathbf{v} = B\mathbf{v}^{(0)} = \begin{bmatrix} -2 & 2 & -1 \\ 1 & -3 & 1 \\ 4 & -4 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -4 \end{bmatrix}$$

$$|m_1| = -4$$

$$\mathbf{v}^{(1)} = \mathbf{v}/m_1 = \begin{bmatrix} -0.5\\ 0.75\\ 1.0 \end{bmatrix} \qquad \begin{vmatrix} \mathbf{v}^{(1)} - \mathbf{v}^{(0)} \end{vmatrix} > \varepsilon$$
(next iteration)

k		$(v^{(k)})^T$			$(Bv^{(k)})^T$		m_{k+1}
0	O	1	0	2	-3	-4	-4
1	-0.5	0.75	1	1.5	-1.75	-3	-3
2	-0.5	0.583	1	1.166	-1.249	-2.332	-2.332
3	-0.5	0.536	1	1.072	-1.108	-2.144	-2.144
4	-0.5	0.517	1	1.034	-1.051	-2.068	-2.068
5	-0.5	0.508	1	1.016	-1.024	-2.032	-2.032
6	-0.5	0.504	1	1.008	-1.012	-2.016	-2.016
7	-0.5	0.502	1	1.004	-1.006	-2.008	-2.008
8	-0.5	0.501	1	1.002	-1.003	-2.004	-2.004
9	-0.5	0.5	1	1.000	-1.000	-2.000	-2.000
10	-0.5	0.5	1				

Example – Solution (cont'd):

 The largest magnitude eigen value of the shifted matrix and its eigenvector,

$$\lambda_{shifted} = m_{10} = -2.0$$
 $\mathbf{v} = [-0.5, 0.5, 1.0]^T$

 The opposite extreme eigen value of matrix A and its eigenvector,

$$\lambda = \lambda_{shifted} + \lambda_1 = -2.0 + 3.0 = 1.0$$

$$\mathbf{v} = [-0.5, 0.5, 1.0]^T$$

$$A\mathbf{v} = \lambda \mathbf{v}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix} \begin{bmatrix} -0.5 \\ 0.5 \\ 1.0 \end{bmatrix} = 1.0 \begin{bmatrix} -0.5 \\ 0.5 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} -0.5 \\ 0.5 \\ 1.0 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0.5 \\ 1.0 \end{bmatrix}$$

Example – Solution (cont'd):

Since the opposite extreme eigenvalue λ =1, has the same sign as the largest magnitude eigen value of the original matrix λ_1 =3, all eigen values of **A** are positive and $\lambda=1$ is the smallest eigen value of matrix A.

- Matrix **A** has 3 eigen values, λ_1, λ_2 , and λ_3 .
- Let,

$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3|$$

- The largest eigen value of matrix \mathbf{A} , $\lambda_1 = 3$
- The smallest eigen value of matrix **A**, $\lambda_3 = 1$

Example – Solution (cont'd):

• Find the intermediate eigen value of matrix \mathbf{A} , λ_2

$$\sum_{i=1}^{3} \lambda_i = \sum_{i=1}^{3} a_{ii}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33} = 1 + 0 + 5 = 6$$

$$3 + \lambda_2 + 1 = a_{11} + a_{22} + a_{33} = 6$$

$$\lambda_2 = 6 - 1.0 - 3.0 = 2.0$$

Exercise

Given a matrix A as follows.

$$A = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$$

- a) Find the characteristics of polynomial of the matrix A.
- b) Find the smallest eigenvalue, λ_3 and the corresponding eigenvector of matrix A using **Shifted Power method**. Use $v^{(0)} = [1.0, 0.25, 1.0]$ and dominant eigenvalue, $\lambda_1 = 4$. Do calculation in 3 decimal points and take $\varepsilon = 0.005$. Round your smallest eigenvalue, λ_3 to the nearest integer.