

Topics

Motion Compensation

Data Consistency Conditions

Summary

Take Home Messages

Further Readings

Motion Compensation

- Result in reconstruction artifacts in the final images: motion blur
- Degraded image quality lowers diagnostic confidence.
- **Effects increase** with acquisition time.

Figure 1: Motion-free

Figure 2: Motion-corrupted

Motion Compensated Reconstruction

Motion-Detection

Motion-Compensation

- Image registration to estimate the displacement due to respiratory motion.
- Apply displacement field on acquired data.

Reconstruction

 Reconstruction of the resulting motion-compensated data.

Motion Compensated Reconstruction: Resulting Images

Figure 7: Reformatted images showing the right coronary artery (RCA) reconstructed (a) without any correction and (b) using motion compensation. (c) An additional navigator-gated scan is performed for reference.

Motion Compensation

Figure 8: Experimental results in porcine model p1 of the central slice and a relative heart phase of 80 %. (W 1630 HU, C 50 HU, slice thickness 1.0 mm). The ECG-gated reconstruction was windowed to be visually comparable (images courtesy of Kerstin Müller, Pattern Recognition Lab, FAU).

Bulk Rigid Motion / Online Calibration

- Scanner-related:
 - Imperfect system geometry (C-Arm wobble)
 - Outdated calibration
- Patient-related:
 - Patients suffering from stroke (rigid head motion)
 - Slight tremor while standing (rigid case)

- → Motion model with few parameters
- → Interventional application requires fast computation.

Data Consistency Metrics

Goal:

- Describe consistency that is inherent to a CT acquisition.
- Allow the correction of sources of "inconsistency": motion, scatter, truncation.

Data Consistency Metrics

Goal:

- Describe consistency that is inherent to a CT acquisition.
- Allow the correction of sources of "inconsistency": motion, scatter, truncation.

Pros:

- Without the use of markers
 - → No change in patient preparation
- Purely image-based
 - → No additional sensors
- Before/without reconstruction
 - \rightarrow Fast

Data Consistency Metrics

Goal:

- Describe consistency that is inherent to a CT acquisition.
- Allow the correction of sources of "inconsistency": motion, scatter, truncation.

Pros:

- Without the use of markers
 - → No change in patient preparation
- Purely image-based
 - → No additional sensors
- Before/without reconstruction
 - \rightarrow Fast

Cons:

- Works only for certain applications/geometries
- Many results from simulations published (since over 25 years)
- Few real data results published
- Never applied in real systems

Topics

Motion Compensation

Data Consistency Conditions

Summary

Take Home Messages

Further Readings

Data Consistency Conditions

Parallel beam conditions:

- Projection moments (Helgason & Ludwig, 1985)
- Sinogram Fourier space (Natterer & Edholm, 1986)

Extensions:

- Moments:
 - Fan beam (Clackdoyle)
 - Cone beam (Clackdoyle & Desbat)
- Fourier Space:
 - Fan beam (Mazin & Pelc)
 - Cone beam (Brokish & Bresler)

$$\int_{0}^{2\pi} \left(\int_{-\infty}^{\infty} s^{m} p(s, \Theta) ds \right) e^{-ik\Theta} d\Theta = 0$$
$$\forall k, m \in \mathbb{N} \wedge k > m \ge 0$$

$$\int_{0}^{2\pi} \left(\int_{-\infty}^{\infty} s^{m} p(s, \Theta) ds \right) e^{-ik\Theta} d\Theta = 0$$

$$\forall k, m \in \mathbb{N} \wedge k > m \ge 0$$

Example (m=0)

- Inner integral becomes the total mass of the projection.
- Outer integral constrains all frequencies (k>m) to 0.
- ⇒ Total mass is identical in all projections.

Sinogram Fourier Space

Topics

Motion Compensation

Data Consistency Conditions

Summary

Take Home Messages

Further Readings

Take Home Messages

- In image processing algorithms that depend on multiple acquisitions like image reconstruction, motion creates artifacts in uncompensated images.
- Motion compensation is a broad research topic, but approaches using data consistency are rather scarce and mostly deal with simulated data only.
- In the following units we look deeper into data consistency and epipolar geometry.

Further Readings

André Aichert et al. "Epipolar Consistency in Transmission Imaging". In: *IEEE Transactions on Medical Imaging* 34.11 (Nov. 2015), pp. 2205–2219. DOI: 10.1109/TMI.2015.2426417

Acknowledgements:

Universitätsklinikum Erlangen

