Approximate Similarity Search Under Edit Distance Using Locality Sensitive Hashing

Algorithm

We consider a random underlying function ρ which takes an alphabet (Σ) and the length of the output string (|s|) as the parameters and returns random numbers (r1, r2). $\therefore \rho$ would have $|\Sigma| \times |s|$ keys which would all return 2 random values in [0,1).

We randomly choose a value of $p \leq 1/3$.

d is the length of the maximum string and n is the total number of strings.

How to Hash:

1. Calculate p_a and p_r :

$$p_a = \sqrt{\frac{p}{1+p}}$$

$$p_r = \frac{\sqrt{p}}{\sqrt{1+p} - \sqrt{p}}$$

- 2. Initialise i = 0 and s = "".
- 3. **Hashing:** while i < |x| and $|s| < \frac{8d}{1-p_a} + 6 \log n$, we get the values (r1, r2) from $\rho(x_i, |s|)$:
 - (a) if $r1 \leq p_a$, hash-insert: append \perp to s
 - (b) if $r1 > p_a$ and $r2 \le p_r$, hash-replace: append \perp to s and increment i
 - (c) if $r1 > p_a$ and $r2 > p_r$, hash-match: append x_i to s and increment i.

Analysis

Note: we consider only the case where $h_{\rho}(x) = h_{\rho}(y)$ as they would belong to the same bucket. We ignore the cases where $h_{\rho}(x) \neq h_{\rho}(y)$, as the grid walk in this case would end up at STOP node.

Note: if $h_{\rho}(x) = h_{\rho}(y)$, then, hash-match occurs only when $x_{i_x} = y_{i_y}$ as hash-math inserts the actual alphabet (not \perp) in which case both $\tau_k(x)$ and $\tau_k(y)$

would have same operation.

For every value in transcript (τ) of x and y, we can define the edit distance operation as:

When $x_{i_x} \neq y_{i_y}$

-x , 0-y		
$ au_k(y)$	ED Operation	
hash-insert	loop	
hash-replace	insert	
hash-insert	delete	
hash-replace	replace	
	hash-insert hash-replace hash-insert	

When $x_{i_x} = y_{i_y}$

$\tau_k(x)$	$\tau_k(y)$	ED Operation
hash-insert	hash-insert	loop
hash-replace	hash-replace	match
hash-match	hash-match	match

Hence, given any two string x and y, if $h_{\rho}(x) = h_{\rho}(y)$, then we can find a path from (0,0) to (|x|,|y|) in the Edit Distance table which can be derived from the above table. And applying these operations on x, we would get the string y.

Note: in [McC21], they have considered a "STOP" state in the Edit Distance table which is visited in case of inconsistency.

Lemmas and Proofs

Lemma (Lemma 6). For any string x of length d, $\Pr_{\rho}(\tau(x,\rho) \text{ is complete}) \geq 1 - 1/n^2$.

Proof. Recall that a transcript $\tau(x,\rho)$ is complete if $|\tau(x,\rho)| < 8d/(1-p_a) + 6\log n$. If the transcript contains l insert operations, $|\tau(x,\rho)| \le d+l$ since the maximum length of a string is d.

We check the bounds for the probability of $l > 7d/(1 - p_a) + 6 \log n$.

Consider success to be when we do not have hash-insert operations. This behaves like a geometric progression with probability $=(1-p_a)$. The expected number of hash-inserts we need to get an operation which is not a hash-insert would be $\frac{1}{1-p_a}$. Hence,

$$E[l] = \frac{d}{1 - p_a}$$

The relevant Chernoff bound is:

$$\Pr(X \ge (1+\delta)E[X]) \le \left(\frac{e^{\delta}}{(1+\delta)(1+\delta)}\right)^{E[X]}$$
$$= e^{[\delta-(1+\delta)\ln(1+\delta)]*E[X]} \tag{1}$$

We will be manipulating Equation (1) in the sequel.

To calculate $Pr(l > 7d/(1 - p_a) + 6 \log n)$ with $E[X] = d/(1 - p_a)$, we set $\delta = 6 + \frac{6(1-p_a)\log n}{d}.$ We know that $\delta - (1+\delta)\ln(1+\delta) \le -\delta^2/3$, when $0 \le \delta \le 1$ [HR90].

However, our value of $\delta = 6 + \frac{6(1-p_a)\log n}{d} > 6$, hence we cannot use the above bound. Instead, we use the fact that:

$$\delta - (1 + \delta) \ln(1 + \delta) \le -\delta/3$$

when $\delta > 1$.

Substituting this in Equation (1) and using the fact that $\frac{6d}{(1-p_a)} > 0$, we get:

$$\Pr(l \ge (1+\delta)E[X]) \le e^{-\delta E[X]/3}$$

$$< e^{-(6d/(1-p_a)+6\log n)/3}$$

$$< e^{-(6\log n)/3}$$

$$= 1/n^2$$

Hence, $\Pr(l < 7d/(1 - p_a) + 6\log n) > 1 - 1/n^2$

Lemma (Lemma 7). Consider a walk through G(x,y) which at step i takes the edge with label corresponding to $q_i(x, y, \rho)$. Assume k is such that the prefix $g(x,y,\rho)[k]$ of length k is alive. Then after k steps, the walk arrives at node $(i(x,k,\rho),i(y,k,\rho)).$

Proof. Intuitively:

If the gridwalk $q(x, y, \rho)$ is derived from transcript τ , then at the iteration k, the position would be at $(i(x,k,\rho),i(y,k,\rho))$, i.e. the respective pointers of x and y (provided that we do not enounter "STOP" in the process, i.e., the gridwalk is alive).

Lemma (Lemma 8). Let x and y be any two strings, and ρ be any underlying function where both $\tau(x,\rho)$ and $\tau(y,\rho)$ are complete.

Then $h_{\rho}(x) = h_{\rho}(y)$ if and only if $g(x, y, \rho)$ is alive. Furthermore, if $h_{\rho}(x) =$ $h_{\rho}(y)$ then the path defined by $g(x,y,\rho)$ reaches node (|x|,|y|).

Proof. Intuitively:

 $g(x,y,\rho)$ is not alive only when it goes to the stop node, this happens only when one of the hash values is a hash-match and the other is not. As hash-match records the value of x_i , and if $h_{\rho}(x) = h_{\rho}(y)$, then both the hashes would have hash-match. Also, if it is alive, as we end each string with \$, it has to go to the very end, hence it will reach (|x|, |y|) and the hash values would be equal.

Lemma (Lemma 9). Let x and y be any two strings, and for any k < 1 $8d/(1-p_a)+6\log n$ Let E_k be the event that $i(x,k,\rho)<|x|,\ i(y,k,\rho)<|y|,\ and$ $x_{i(x,k,\rho)} \neq y_{i(y,k,\rho)}$. Then if $\Pr_{\rho}[E_k] > 0$, the following four conditional bounds hold:

$$\Pr_{\rho}[g_k(x, y, \rho) = loop|E_k] = p_a^2$$

$$\Pr_{\rho}[g_k(x, y, \rho) = delete|E_k] = p_a(1 - p_a)p_r$$

$$\Pr_{\rho}[g_k(x, y, \rho) = insert|E_k] = p_a(1 - p_a)p_r$$

$$\Pr_{\rho}[g_k(x, y, \rho) = replace|E_k] = (1 - p_a)^2 p_r^2$$

Proof.

$$\Pr_{\rho}(\tau_k(x,\rho) = hash - insert|E_k) = p_a$$

$$\Pr_{\rho}(\tau_k(x,\rho) = hash - replace|E_k) = (1 - p_a)p_r$$

$$\Pr_{\rho}(\tau_k(x,\rho) = hash - match|E_k) = (1 - p_a)(1 - p_r)$$

Loop operation occurs when $\tau_k(x,\rho)$ is hash-insert and $\tau_k(y,\rho)$ is hash-insert. Similarly, delete occurs when we have hash-replace-hash-insert, insert occurs when we have hash-replace and replace occurs when we have hash-replace. Multiplying the probabilities, we get the above values.

Note: $p_r = p_a/(1-p_a)$, hence, $p_r(1-p_a) = p_a$. We can write $p_a(1-p_a)p_r = p_a^2$ and $(1-p_a)^2p_r^2 = p_a^2$. Substituting the values above, we get, $\Pr_{\rho}[g_k(x,y,\rho) = loop|E_k] = \Pr_{\rho}[g_k(x,y,\rho) = delete|E_k] = \Pr_{\rho}[g_k(x,y,\rho) = insert|E_k] = \Pr_{\rho}[g_k(x,y,\rho) = replace|E_k] = p_a^2$

Lemma (Lemma 11). Let x and y be two strings that do not contain \$. Then if ED(x,y)=r,

- 1. there exists a transformation T of length r that solves $x \cdot \$$ and $y \cdot \$$
- 2. there does not exist any transformation T' of length < r that solves $x \cdot \$$ and $y \cdot \$$

Proof. ED can be transformed into transformation.

ED of x and y is same as the ED of $x \cdot \$$ and $y \cdot \$$. AS ED is the minimum distance between the strings, we cannot find a transformation of length less than that.

Note: T is the edit operations from the Edit Distance whereas \mathcal{T} is obtained from the Grid Walk by removing loop and match.

For each transformation, we find the first index which differs from y and apply the transformation there. We generate r such strings in the process.

Lemma (Lemma 12). Let x and y be two distinct strings and let $T = \mathcal{T}(x, y, \rho)$. Then $h_{\rho}(x) = h_{\rho}(y)$ if and only if T solves x and y.

Proof. If $T = \mathcal{T}(x, y, \rho)$ solves x and y, then the gridwalk $g(x, y, \rho)$ starts at (0,0) and ends at (|x|, |y|), this is possible only when $h_{\rho}(x) = h_{\rho}(y)$ If $h_{\rho}(x) = h_{\rho}(y)$, then $\mathcal{T}(x, y, \rho)$ would be derived from the gridwalk $g(x, y, \rho)$ and hence it would solve x and y.

Lemma (Lemma 13). For any \$-\$ terminal strings x and y, let T be a transformation of length t that is valid for x and y. Then

$$p^t - 2/n^2 \le \Pr_{\rho}(T \text{ is a prefix of } \mathcal{T}(x, y, \rho)) \le p^t$$

Proof. 1. To prove $\Pr_{\rho}(T \text{ is a prefix of } \mathcal{T}(x,y,\rho)) \leq p^t$:

Define G_T as: all the transformations T_g which contain T as a prefix, G_T is the set of all the gridwalks such that T_g are derived from G_T .

 $\implies G_T$ is alive(as G_T does not contain STOP).

To calculate the $\Pr(g(x, y, \rho) \in G_T)$

Induction approach:

- (a) **Base Step:** for t = 0, all the transforms are valid, hence, $\Pr(g(x, y, \rho) \in G_T) = 1$.
- (b) Inductive Hypothesis: $\sum \Pr_{\rho}(g(x,y,\rho)[t-1])$ is a prefix of $G_{T'}$ = $p^{(t-1)}$ where $G_{T'}$ is a set of all the transformations T_g with the last operation removed.
- (c) Inductive Step:

Let the last operation be σ .

 $g(x, y, \rho) = g'(x, y, \rho) \cdot \sigma \cdot \{loop, match\}^* \cdot \{loop\}^*$ Define:

 $g'' = g'(x, y, \rho) \cdot \sigma,$

 $g''' = g'' \cdot \{loop, match\}^*,$

 $g(x, y, \rho) = g''' \cdot \{loop\}^*$

The Probability can be defined as:

 $\Pr_{\rho}(g(x, y, \rho) \in G_T) = \Pr_{\rho}(g'(x, y, \rho) \in G_{T'}) \cdot \Pr(g'' \in G_T | g'(x, y, \rho) \in G_{T'}) \cdot \Pr(g''' \in G_T | g'' \in G_T) \cdot \Pr_{\rho}(g(x, y, \rho) \in G_T | g''' \in G_T)$

Note: we can directly multiply the probabilities as all the values are subset of the respective conditions.

Now.

 $\Pr_{\rho}(g'(x, y, \rho) \in G_{T'}) = p^{t-1}$ — from Inductive hypothesis

 $\Pr(g'' \in G_T | g'(x, y, \rho) \in G_{T'}) = p_a^2$ — as from Lemma 9, all the operations have a probability of p_a^2 .

 $\Pr(g''' \in G_T | g'' \in G_T) = 1$ — as G_T does not contain "STOP" and we are done with the last operation, the only option left is "LOOP" or "MATCH" if $x_{i_x} = y_{i_y}$ then we have "MATCH", o.w. "LOOP". $\Pr_{\rho}(g(x, y, \rho) \in G_T | g''' \in G_T) = \frac{1}{1 - p_a^2}$ — as addind loop operations

is like a Poisson distribution with the probability of success=1 - p_a^2 Multiplying all, we get: $\Pr_{\rho}(g(x,y,\rho) \in G_T) = p^{t-1} \frac{p_a^2}{1-p_a^2} = p^t$

2. To prove $p^t - 2/n^2 \leq \Pr_{\rho}(T \text{ is a prefix of } \mathcal{T}(x, y, \rho))$: $T \text{ is a prefix of } \mathcal{T}(x, y, \rho) \text{ if } g(x, y, \rho) \in G_T \text{ and } g(x, y, \rho) \text{ is complete, i.e.,}$ the transcripts $\tau(x, \rho)$ and $\tau(y, \rho)$ are complete:

$$\Pr(T \text{ is a prefix of } \mathcal{T}(x, y, \rho)) = \Pr(g(x, y, \rho) \in G_T) + \Pr(g(x, y, \rho) \text{ is complete})$$

- $\Pr(g(x, y, \rho) \in G_T \cap g(x, y, \rho) \text{ is complete})$

$$\begin{split} \Pr(g(x,y,\rho) \in G_T) &= p^t \text{—from point 1} \\ \Pr(g(x,y,\rho) \text{ is complete}) &= 1 - \Pr(g(x,y,\rho) \text{ is not complete}) \\ &= 1 - \Pr(\tau(x,\rho) \text{ is not complete} | \tau(y,\rho) \text{ is not complete}) \\ &\geq 1 - (\Pr(\tau(x,\rho) \text{ is complete}) + \Pr(\tau(y,\rho) \text{ is complete})) \\ &\qquad - \text{using union bound} \\ &= 1 - (\frac{1}{n^2} + \frac{1}{n^2}) \text{—from Lemma 6} \\ &= 1 - \frac{2}{n^2} \end{split}$$

$$\Pr(g(x, y, \rho) \in G_T \cap g(x, y, \rho) \text{ is complete}) \le 1$$

- $\Pr(g(x, y, \rho) \in G_T \cap g(x, y, \rho) \text{ is complete}) \ge -1$

Adding all, we get:

$$\Pr(T \text{ is a prefix of } \mathcal{T}(x, y, \rho)) \ge p^t - \frac{2}{n^2}$$

Bounds on Collision Probability:

Lemma (Combining Lemma 14 and Lemma 15:). If x and y satisfy $ED(x,y) \le r$, then $\Pr_{\rho}(h_{\rho}(x) = h_{\rho}(y)) \ge p^r - \frac{2}{n^2}$. If x and y satisfy $ED(x,y) \ge cr$, then $\Pr_{\rho}(h_{\rho}(x) = h_{\rho}(y)) \le (3p)^{cr}$.

Proof. We get the lower bound from **Lemma 13**, if $ED(x,y) \leq r$, then there exists a transformation T of size less than r. The probability that T is a prefix of $\mathcal{T}(x,y,\rho) \geq p^t - \frac{2}{n^2}$.

For the upper bound, let \mathcal{T} be the set of all the transformations that solve x and y, then $\Pr_{h \in H}(h(x) = h(y)) = \sum_{T \in \mathcal{T}} p^{|T|}$.

We can imagine the transformations in form of a trie with each node having 3 children for insert delete and replace and the minimum depth of any leaf is cr. For all the nodes with depth > cr, we merge the children into the parent node, so the probability value which was earlier $3p^i$ for the 3 child nodes would now

be p^{i-1} which is obviously greater as p < 1/3. Hence,

$$\begin{split} \Pr_{h \in H}(h(x) = h(y)) &= \sum_{T \in \mathcal{T}} p^{|T|} \\ &\leq \sum_{T \in \mathcal{T}} p^{cr} \\ &= (3p)^{cr} \text{—as we have } 3^{cr} \text{ leaves} \end{split}$$

References

[HR90] T. Hagerup and C. Rüss. A Guided Tour of Chernoff Bounds. Information Processing Letters, 33:305–308, 1989/90.

[McC21] S. McCauley. Approximate similarity search under edit distance using locality-sensitive hashing. In ICDT~2021, pages 21:1-21:22,~2021.