App_Store Clustering

Data description

Column Name	Description
id	App ID
track_name	App Name
size_bytes	Size in bytes
currency	Currency Type
price	Price ammount
ratingcounttot	User Rating counts (for all versions)
ratingcountver	User Rating counts (for current version)
user_rating	Average User Rating value (for all versions)
userratingver	Average User Rating value (for current version)
ver	Latest version code
cont_rating	Content Rating
prime_genre	Primary Genre
sup_devices.num	Number of supporting devices
ipadSc_urls.num	Number of screenshots showed for display

Description	Column Name
Number of supported languages	lang.num
Vpp Device Based Licensing Enabled	vpp_lic

Important Libraries

```
In [204]: import pandas as pd
   import numpy as np
   from matplotlib import pyplot as plt
   import seaborn as sns
   from warnings import filterwarnings
   filterwarnings("ignore")
   !pip3 install ppscore
   import ppscore as pps
   #Import Library RobustScaler
   from sklearn.preprocessing import RobustScaler
   #CLuster Model
   from sklearn.cluster import KMeans
   from sklearn.metrics import silhouette_score
```

Requirement already satisfied: ppscore in c:\users\shaimaa\anaconda3\lib\site-p ackages (1.2.0) Requirement already satisfied: pandas<2.0.0,>=1.0.0 in c:\users\shaimaa\anacond a3\lib\site-packages (from ppscore) (1.2.4) Requirement already satisfied: scikit-learn<1.0.0,>=0.20.2 in c:\users\shaimaa \anaconda3\lib\site-packages (from ppscore) (0.24.1) Requirement already satisfied: pytz>=2017.3 in c:\users\shaimaa\anaconda3\lib\s ite-packages (from pandas<2.0.0,>=1.0.0->ppscore) (2021.1) Requirement already satisfied: numpy>=1.16.5 in c:\users\shaimaa\anaconda3\lib \site-packages (from pandas<2.0.0,>=1.0.0->ppscore) (1.20.1) Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\shaimaa\anaco nda3\lib\site-packages (from pandas<2.0.0,>=1.0.0->ppscore) (2.8.1) Requirement already satisfied: six>=1.5 in c:\users\shaimaa\anaconda3\lib\sitepackages (from python-dateutil>=2.7.3->pandas<2.0.0,>=1.0.0->ppscore) (1.15.0) Requirement already satisfied: scipy>=0.19.1 in c:\users\shaimaa\anaconda3\lib \site-packages (from scikit-learn<1.0.0,>=0.20.2->ppscore) (1.6.2) Requirement already satisfied: joblib>=0.11 in c:\users\shaimaa\anaconda3\lib\s ite-packages (from scikit-learn<1.0.0,>=0.20.2->ppscore) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\shaimaa\anacond

a3\lib\site-packages (from scikit-learn<1.0.0,>=0.20.2->ppscore) (2.1.0)

Read Data

In [205]: #Load_data
data = pd.read_csv('C:\\Users\\Shaimaa\\Desktop\\AppleStore.csv' ,sep =',' , enco
data.head()

Out[205]:

	Unnamed: 0	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_v
0	1	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	2
1	2	281796108	Evernote - stay organized	158578688	USD	0.00	161065	2
2	3	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.00	188583	282
3	4	282614216	eBay: Best App to Buy, Sell, Save! Online Shop	128512000	USD	0.00	262241	64
4	5	282935706	Bible	92774400	USD	0.00	985920	532

In [206]: #drop column (Unnamed) as semiler ID column
data drop(['Unnamed: 0'], axis=1 inplace=T

data.drop(['Unnamed: 0'], axis=1 ,inplace=True)
#show data after drop

data.head(2)

Out[206]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
0	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	26	
1	281796108	Evernote - stay organized	158578688	USD	0.00	161065	26	
4								•

```
In [207]: #data about data
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 7197 entries, 0 to 7196
          Data columns (total 16 columns):
                Column
                                  Non-Null Count
                                                  Dtype
                ____
                                  _____
                                                   ----
           0
               id
                                  7197 non-null
                                                   int64
           1
               track_name
                                  7197 non-null
                                                  object
           2
               size_bytes
                                  7197 non-null
                                                  int64
           3
               currency
                                  7197 non-null
                                                  object
           4
                                  7197 non-null
               price
                                                  float64
           5
               rating_count_tot 7197 non-null
                                                   int64
           6
               rating count ver
                                  7197 non-null
                                                   int64
           7
                                  7197 non-null
                                                  float64
               user rating
                                                  float64
           8
               user_rating_ver
                                  7197 non-null
           9
               ver
                                  7197 non-null
                                                  object
           10 cont_rating
                                  7197 non-null
                                                  object
           11 prime genre
                                  7197 non-null
                                                  object
           12 sup_devices.num
                                  7197 non-null
                                                  int64
           13 ipadSc urls.num
                                  7197 non-null
                                                  int64
           14 lang.num
                                  7197 non-null
                                                   int64
           15 vpp lic
                                  7197 non-null
                                                   int64
          dtypes: float64(3), int64(8), object(5)
          memory usage: 899.8+ KB
          data has float64(for 3 columns), int64(8 columns), object(5 columns)
          will Apply encoding for object columns
In [208]:
          #show shape of data 7197 Row and 16 columns
          data.shape
Out[208]: (7197, 16)
In [209]: data.isnull().sum().sum()
          #not found null data
Out[209]: 0
In [210]: | data.currency.value_counts()
          #All of Apps has same currency paid
Out[210]: USD
                  7197
          Name: currency, dtype: int64
```

```
In [211]: data.nunique()
          #target maybe vpp_lic
Out[211]: id
                               7197
          track_name
                               7195
          size_bytes
                               7107
          currency
                                  1
          price
                                 36
          rating count tot
                               3185
                               1138
          rating_count_ver
          user_rating
                                 10
          user_rating_ver
                                 10
                               1590
          ver
          cont_rating
                                  4
          prime genre
                                 23
          sup_devices.num
                                 20
          ipadSc_urls.num
                                  6
          lang.num
                                 57
          vpp lic
                                  2
          dtype: int64
```

Exploratory Data Analaysis

How do you visualize price distribution of paid apps ?

```
In [212]: data.price.value_counts()
#4056 free apps
#another apps is paid
```

```
Out[212]: 0.00
                      4056
           0.99
                       728
           2.99
                       683
           1.99
                       621
                       394
           4.99
           3.99
                       277
           6.99
                       166
           9.99
                        81
           5.99
                        52
           7.99
                        33
                        21
           14.99
           19.99
                        13
                         9
           8.99
                         8
           24.99
                         6
           13.99
           11.99
                         6
           29.99
                         6
           12.99
                         5
           15.99
                         4
                         3
           59.99
                         3
           17.99
           39.99
                         2
           27.99
                         2
                         2
           49.99
                         2
           22.99
                         2
           23.99
                         2
           20.99
                         2
           16.99
           21.99
                         1
           47.99
                         1
           99.99
                         1
                         1
           249.99
                         1
           18.99
                         1
           34.99
           299.99
                         1
           74.99
                         1
           Name: price, dtype: int64
```

In [213]: sns.distplot(data.price)

Out[213]: <AxesSubplot:xlabel='price', ylabel='Density'>


```
In [214]: free_apps = data[(data.price==0.00)]
    paid_apps = data[(data.price>0)]
```

In [215]: free_apps.head(2)

Out[215]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
1	281796108	Evernote - stay organized	158578688	USD	0.0	161065	26	
2	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.0	188583	2822	
4								>

```
In [216]: paid_apps.head(2)
Out[216]:
                      id track_name size_bytes currency price rating_count_tot rating_count_ver user_
                            PAC-MAN
               281656475
                                     100788224
                                                    USD
                                                          3.99
                                                                        21292
                                                                                           26
                            Premium
                            Shanghai
               283619399
                                      10485713
                                                    USD
                                                          0.99
                                                                         8253
                                                                                         5516
                             Mahjong
In [217]: paid_apps.price.value_counts()
Out[217]: 0.99
                      728
           2.99
                      683
           1.99
                      621
           4.99
                       394
           3.99
                      277
           6.99
                      166
           9.99
                        81
           5.99
                        52
           7.99
                        33
           14.99
                        21
           19.99
                        13
           8.99
                         9
           24.99
                         8
           29.99
                         6
           11.99
                         6
           13.99
                         6
           12.99
                         5
           15.99
                         4
           17.99
                         3
                         3
           59.99
                         2
           16.99
           39.99
                         2
                         2
           23.99
           27.99
                         2
                         2
           20.99
                         2
           22.99
           49.99
                         2
           74.99
                         1
           47.99
                         1
           18.99
                         1
           249.99
                         1
           34.99
                         1
           99.99
                         1
           21.99
                         1
           299.99
                         1
           Name: price, dtype: int64
```

The number of apps decreases with increasing his price

```
In [218]: free_apps.price.value_counts()
```

Out[218]: 0.0 4056

Name: price, dtype: int64

```
In [219]: sns.distplot(free_apps['price'])
```

Out[219]: <AxesSubplot:xlabel='price', ylabel='Density'>


```
In [220]: sns.distplot(paid_apps['price'])
```

Out[220]: <AxesSubplot:xlabel='price', ylabel='Density'>


```
In [221]: sns.histplot(paid_apps['price'])
```

Out[221]: <AxesSubplot:xlabel='price', ylabel='Count'>


```
In [222]: plt.style.use('fivethirtyeight')
    plt.figure(figsize=(6,4))

    plt.subplot(2,1,2)
    plt.title('Visual price distribution')
    sns.stripplot(data=paid_apps,y='price',jitter= True,orient = 'h' ,size=6)
    plt.show()
```


from this graph The number of apps that have a price greater than 50 is few compared to before 50 USD

```
In [223]: Top_Apps=paid_apps[paid_apps.price>50][['track_name','price','prime_genre','user_
Top_Apps
#7 Top apps with price, prime_genre and user rating
```

Out[223]:

	track_name	price	prime_genre	user_rating
115	Proloquo2Go - Symbol-based AAC	249.99	Education	4.0
162	NAVIGON Europe	74.99	Navigation	3.5
1136	Articulation Station Pro	59.99	Education	4.5
1479	LAMP Words For Life	299.99	Education	4.0
2181	Articulation Test Center Pro	59.99	Education	4.5
2568	KNFB Reader	99.99	Productivity	4.5
3238	FineScanner Pro - PDF Document Scanner App + OCR	59.99	Business	4.0

Top 7 apps on the basis of price

```
In [224]: #Function for visualizaiton
    def visualizer(x, y, plot_type, title, xlabel, ylabel, rotation=False, rotation_v
        plt.figure(figsize=figsize)

    if plot_type == "bar":
        sns.barplot(x=x, y=y)
    elif plot_type == "count":
        sns.countplot(x)

    plt.title(title, fontsize=20)
    plt.xlabel(xlabel, fontsize=18)
    plt.ylabel(ylabel, fontsize=18)
    plt.yticks(fontsize=13)
    if rotation == True:
        plt.xticks(fontsize=13, rotation=rotation_value)
    plt.show()
```

```
In [225]: Top_Apps = Top_Apps.sort_values('price', ascending=False)
    visualizer(Top_Apps.price,Top_Apps.track_name, "bar", "TOP 7 APPS ON THE BASIS OF
    #names of track in y axis to be readable
```



```
In [226]: paid_apps.head(2)
```

Out[226]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
0	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	26	
5	283619399	Shanghai Mahjong	10485713	USD	0.99	8253	5516	
4								

In [227]:	#sum of all paid apps
	<pre>sum_paid = paid_apps.price.value_counts().sum() sum_paid</pre>

Out[227]: 3141

In [228]:	#sum of all free apps
	<pre>sum_free = free_apps.price.value_counts().sum()</pre>
	sum_tree

Out[228]: 4056

How does the price distribution get affected by category?

In [229]: data.prime_genre.value_counts() Out[229]: Games 3862 Entertainment 535 Education 453 Photo & Video 349 Utilities 248 Health & Fitness 180 Productivity 178 Social Networking 167 Lifestyle 144 Music 138 Shopping 122 Sports 114 Book 112 Finance 104 Travel 81 News 75 72 Weather Reference 64 Food & Drink 63 Business 57 Navigation 46 Medical 23 Catalogs 10 Name: prime_genre, dtype: int64

Top app category is Games Games # is 3862 and Entertainment # is 535

In [230]: data.head()

Out[230]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
0	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	26	
1	281796108	Evernote - stay organized	158578688	USD	0.00	161065	26	
2	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.00	188583	2822	
3	282614216	eBay: Best App to Buy, Sell, Save! Online Shop	128512000	USD	0.00	262241	649	
4	282935706	Bible	92774400	USD	0.00	985920	5320	
4								•

In [231]: new_data_cate = data.groupby([data.prime_genre])[['id']].count().reset_index().so
 new_data_cate.columns = ['prime_genre','# of Apps']
 new_data_cate.head()
 #Categories and number of apps in each category

Out[231]:

	prime_genre	# of Apps
7	Games	3862
4	Entertainment	535
3	Education	453
14	Photo & Video	349
21	Utilities	248

In [232]: #Top_Categories accorrding number of apps
new_data_cate.head(10)

Out[232]:

	prime_genre	# of Apps
7	Games	3862
4	Entertainment	535
3	Education	453
14	Photo & Video	349
21	Utilities	248
8	Health & Fitness	180
15	Productivity	178
18	Social Networking	167
9	Lifestyle	144
11	Music	138

In [233]: sns.barplot(y = 'prime_genre',x = '# of Apps', data=new_data_cate.head(10))

Out[233]: <AxesSubplot:xlabel='# of Apps', ylabel='prime_genre'>

In [234]: #Lower Categories according number of apps Categories unpopular
new_data_cate.tail(10)

Out[234]:

	prime_genre	# of Apps
5	Finance	104
20	Travel	81
13	News	75
22	Weather	72
16	Reference	64
6	Food & Drink	63
1	Business	57
12	Navigation	46
10	Medical	23
2	Catalogs	10

```
In [235]: sns.barplot(x= '# of Apps' , y = 'prime_genre' , data = new_data_cate.tail(10))
```

Out[235]: <AxesSubplot:xlabel='# of Apps', ylabel='prime_genre'>


```
In [236]: plt.figure(figsize=(10,5))
    plt.scatter(y=paid_apps.prime_genre ,x=paid_apps.price,c='DarkBlue')
    plt.title('Price & Category')
    plt.xlabel('Price')
    plt.ylabel('Category')
    plt.show()
```


- Top Price in important Category (Business, Navigation, Education, Productivity)
- in another side price for all of apps less than 50 USD
- · Education Apps has a higher price
- · Shopping Apps has a lower price

What about paid apps Vs Free apps?

```
In [237]: free_apps.head(2)
```

Out[237]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
1	281796108	Evernote - stay organized	158578688	USD	0.0	161065	26	
2	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.0	188583	2822	
4								•

In [238]: paid_apps.head(2)

Out[238]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
0	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	26	
5	283619399	Shanghai Mahjong	10485713	USD	0.99	8253	5516	

```
In [239]: names = ['sum_free', 'sum_paid']
    values = [sum_free, sum_paid]
    plt.figure(figsize=(3, 3))
    plt.suptitle('Count of free and paid apps')
    plt.bar(names, values)
    plt.show()
```


count of paid apps less than count of free apps

```
In [240]: print('number of Catigories in free apps is' , len(free_apps.prime_genre.value_o
    print('number of Catigories in paid apps is' , len(paid_apps.prime_genre.value_o
    #all categories has free & paid apps
```

number of Catigories in free apps is 23 number of Catigories in paid apps is 23

In [241]: free_apps.head()

Out[241]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rat
1	281796108	Evernote - stay organized	158578688	USD	0.0	161065	26	
2	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.0	188583	2822	
3	282614216	eBay: Best App to Buy, Sell, Save! Online Shop	128512000	USD	0.0	262241	649	
4	282935706	Bible	92774400	USD	0.0	985920	5320	
6	283646709	PayPal - Send and request money safely	227795968	USD	0.0	119487	879	
4								>

```
In [242]: free = free_apps.prime_genre.value_counts().sort_index().to_frame()
    paid = paid_apps.prime_genre.value_counts().sort_index().to_frame()
    total = data.prime_genre.value_counts().sort_index().to_frame()
    free.columns=['free']
    paid.columns=['paid']
    total.columns=['total']
    fig =free.join(paid).join(total)
    fig['%paid'] = fig.paid*100 /fig.total
    fig['%free'] = fig.free*100/ fig.total
    fig
```

Out[242]:

	free	paid	total	%paid	%free
Book	66	46	112	41.071429	58.928571
Business	20	37	57	64.912281	35.087719
Catalogs	9	1	10	10.000000	90.000000
Education	132	321	453	70.860927	29.139073
Entertainment	334	201	535	37.570093	62.429907
Finance	84	20	104	19.230769	80.769231
Food & Drink	43	20	63	31.746032	68.253968
Games	2257	1605	3862	41.558778	58.441222
Health & Fitness	76	104	180	57.777778	42.22222
Lifestyle	94	50	144	34.722222	65.277778
Medical	8	15	23	65.217391	34.782609
Music	67	71	138	51.449275	48.550725
Navigation	20	26	46	56.521739	43.478261
News	58	17	75	22.666667	77.333333
Photo & Video	167	182	349	52.148997	47.851003
Productivity	62	116	178	65.168539	34.831461
Reference	20	44	64	68.750000	31.250000
Shopping	121	1	122	0.819672	99.180328
Social Networking	143	24	167	14.371257	85.628743
Sports	79	35	114	30.701754	69.298246
Travel	56	25	81	30.864198	69.135802
Utilities	109	139	248	56.048387	43.951613
Weather	31	41	72	56.944444	43.055556

In general # of Free apps greater than # of paid apps but in (Business, Education, Health, Fitness, Medical, Music, Navigation, Photo & Video, Productivity, Reference, Utilities, Weather) # of paid apps greater than # of free apps

```
In [243]: # for pie chart
pies = fig[['%free','%paid']].head()
pies.columns=['free %','paid %']
```

In [244]: plt.figure(figsize=(15,10))
 pies.T.plot.pie(subplots=True,figsize=(20,4),colors=['#D62598','#FBDD7A'],autopct
 plt.show()

<Figure size 1080x720 with 0 Axes>

Cataloge has Higher # of Free-Apps

Education has Higher # of Paid-Apps

Are paid apps good enough?

In [245]: data[data['rating_count_tot']==data['rating_count_tot'].max()]
#Most rated & highest total rating for all version app:

Out[245]:

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_ra
16	284882215	Facebook	389879808	USD	0.0	2974676	212	
4								

```
In [246]: sns.set_style('white')
    sns.violinplot(x=paid_apps['user_rating'],color='#D62598')
    plt.xlim(0,5)
    plt.xlabel('Rating (0 to 5 stars)')
    _ = plt.title('Distribution of App Ratings')
```

Distribution of App Ratings


```
In [248]: bins = (0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5)
    plt.style.use('seaborn-white')
    plt.hist(paid_apps[paid_apps['cont_rating']=='4+']['user_rating'],alpha=.8,bins=t
    plt.xticks((0,1,2,3,4,5))
    plt.title('User Ratings (4+)')
    plt.xlabel('Rating')
    plt.ylabel('Frequency')
    _ = plt.xlim(right=5.5)
```


Rating of paid Apps between 3.5 - 5

maybe say is good paid apps

higher Rating in Shopping & Catalogs

apps has high price also has high user-rating acording for that paid apps is good enough

In [251]: Lower_Apps=paid_apps[paid_apps.price<=50][['track_name','price','prime_genre','us
Lower_Apps.head()</pre>

Out[251]:

	track_name	price	prime_genre	user_rating
0	PAC-MAN Premium	3.99	Games	4.0
5	Shanghai Mahjong	0.99	Games	4.0
8	PCalc - The Best Calculator	9.99	Utilities	4.5
9	Ms. PAC-MAN	3.99	Games	4.0
10	Solitaire by MobilityWare	4.99	Games	4.5

lower_apps in price also has high user-rating so paid apps is good

```
In [252]: Lower_Apps = Lower_Apps.sort_values('price', ascending=True)
    lower = Lower_Apps.head()
    visualizer(lower.user_rating,lower.track_name, "bar", "Lower 5 APPS ON THE BASIS
```


Out[253]: <seaborn.axisgrid.PairGrid at 0x2272768d3a0>

As the size of the app increases do they get pricier?

```
In [254]: plt.style.use('seaborn-white')
    plt.scatter(data['size_bytes'],data['price'])
    plt.title('Byte Size vs. Price')
    plt.xlabel('Size (Bytes)')
    plt.ylabel('Price')
    plt.xlim(0)
```

Out[254]: (0.0, 4227238656.0)

size of App not corelated with price

we show that if size is big ,price is low

the value of an app to the user isn't necessarily related to its size.

How are the apps distributed category wise? Can we split by paid category?

```
In [255]: | grp = paid_apps.groupby('prime_genre')
           x = grp['user_rating'].agg(np.mean)
          y = grp['price'].agg(np.sum)
           z = grp['user_rating_ver'].agg(np.mean)
           print(x)
          print(y)
           print(z)
           prime genre
           Book
                                 3.739130
           Business
                                 3.878378
           Catalogs
                                 4.500000
                                 3.331776
           Education
           Entertainment
                                 3.410448
                                 3.325000
           Finance
           Food & Drink
                                 3.500000
           Games
                                 3.904984
           Health & Fitness
                                 3.788462
           Lifestyle
                                 3.210000
          Medical
                                 3.633333
           Music
                                 4.014085
           Navigation
                                 3.057692
           News
                                 3.323529
           Photo & Video
                                 3.807692
           Productivity
                                 4.030172
           Reference
                                 3.522727
                                 4.500000
           Shopping
           Social Networking
                                 2.916667
           Sports
                                 3.128571
           Travel
                                 3.380000
           Utilities
                                 3.140288
           Weather
                                 3.853659
           Name: user_rating, dtype: float64
           prime genre
           Book
                                  200.54
           Business
                                  291.63
                                    7.99
           Catalogs
           Education
                                 1824.79
           Entertainment
                                  475.99
                                   43.80
           Finance
           Food & Drink
                                   97.80
                                 5533.95
           Games
           Health & Fitness
                                  344.96
                                  127.50
           Lifestyle
           Medical
                                  201.85
           Music
                                  667.29
           Navigation
                                  189.74
           News
                                   38.83
           Photo & Video
                                  514.18
           Productivity
                                  770.84
           Reference
                                  309.56
                                    1.99
           Shopping
           Social Networking
                                   56.76
                                  108.65
           Sports
           Travel
                                   90.75
                                  408.61
           Utilities
           Weather
                                  115.59
```

```
Name: price, dtype: float64
prime_genre
                      3.163043
Book
Business
                      3.729730
Catalogs
                      5.000000
                      2.992212
Education
Entertainment
                      3.129353
Finance
                      2.000000
Food & Drink
                      2.575000
Games
                      3.777882
Health & Fitness
                      3.485577
Lifestyle
                      2.960000
Medical
                      3.366667
Music
                      3.683099
Navigation
                      2.500000
News
                      2.647059
Photo & Video
                      3.681319
                      3.689655
Productivity
Reference
                      2.920455
Shopping
                      5.000000
Social Networking
                      2.729167
Sports
                      2.885714
Travel
                      3.640000
Utilities
                      2.899281
Weather
                      3.597561
Name: user_rating_ver, dtype: float64
```

Name: aser_racing_very acype: risacon


```
In [257]: # lets plot
plt.plot(x)
```

Out[257]: [<matplotlib.lines.Line2D at 0x22727a087f0>]

High Rating with catalogs, shopping

Low rating in social networking

```
In [258]: # for x
    plt.figure(figsize=(16,5))
    plt.plot(x, 'ro')
    plt.xticks(rotation=90)
    plt.title('Category wise rating')
    plt.xlabel('Categories')
    plt.ylabel('Rating')
    plt.show()
```



```
In [259]: # for Y
    plt.figure(figsize=(16,5))
    plt.plot(y, 'r--')
    plt.xticks(rotation=90)
    plt.title('Category wise pricing')
    plt.xlabel('Categories')
    plt.ylabel('Prices')
    plt.show()
```



```
In [260]: # reducing the number of categories to 5 categories

s = data.prime_genre.value_counts().index[:4]

def categ(x):
    if x in s:
        return x
    else :
        return "Others"

data['broad_genre']= data.prime_genre.apply(lambda x : categ(x))
```

```
In [261]: data['broad_genre'].value_counts()
```

Out[261]: Games 3862 Others 1998 Entertainment 535 Education 453 Photo & Video 349

Name: broad_genre, dtype: int64

```
In [262]: BlueOrangeWapang = ['#fc910d','#f5ed05','#09ed52','#ed3b09','#e01bda']
    plt.figure(figsize=(15,15))
    label_names=data.broad_genre.value_counts().sort_index().index
    size = data.broad_genre.value_counts().sort_index().tolist()

my_circle=plt.Circle((0,0), 0.5, color='white')
    plt.pie(size, labels=label_names, colors=BlueOrangeWapang ,autopct = '%1.0f%%',)
    p=plt.gcf()
    p.gca().add_artist(my_circle)
    plt.show()
```



```
In [263]: free = data[data.price==0].broad_genre.value_counts().sort_index().to_frame()
    paid = data[data.price>0].broad_genre.value_counts().sort_index().to_frame()
    total = data.broad_genre.value_counts().sort_index().to_frame()
    free.columns=['free']
    paid.columns=['paid']
    total.columns=['total']
    five_ca = free.join(paid).join(total)
    five_ca['Paid_per'] = five_ca.paid*100 /five_ca.total
    five_ca['Free_per'] = five_ca.free*100/ five_ca.total
    five_ca
```

Out[263]:

	free	paid	total	Paid_per	Free_per
Education	132	321	453	70.860927	29.139073
Entertainment	334	201	535	37.570093	62.429907
Games	2257	1605	3862	41.558778	58.441222
Others	1166	832	1998	41.641642	58.358358
Photo & Video	167	182	349	52.148997	47.851003

```
In [264]: plt.figure(figsize=(15,15))
          f=pd.DataFrame(index=np.arange(0,10,2),data=five_ca['free'].values,columns=['num'
          p=pd.DataFrame(index=np.arange(1,11,2),data=five ca['paid'].values,columns=['num'
          final = pd.concat([f,p],names=['labels']).sort index()
          final.num.tolist()
          plt.figure(figsize=(25,25))
          group names=data.broad genre.value counts().sort index().index
          group size=data.broad genre.value counts().sort index().tolist()
          h = ['Free', 'Paid']
          subgroup names= 5*h
          sub= ['#45cea2','#fdd470']
          subcolors= 5*sub
          subgroup size=final.num.tolist()
          # First Ring (outside)
          fig, ax = plt.subplots()
          ax.axis('equal')
          mypie, _ = ax.pie(group_size, radius=2.5, labels=group_names, colors=BlueOrangeWa
          plt.setp( mypie, width=1.2, edgecolor='white')
          # Second Ring (Inside)
          mypie2, _ = ax.pie(subgroup_size, radius=1.6, labels=subgroup_names, labeldistane
          plt.setp( mypie2, width=0.8, edgecolor='white')
          plt.margins(0,0)
          # show it
          plt.show()
```


In [265]: paid_apps.plot(kind='density' , subplots=True , layout=(4,4) , sharex=False , fontsize=8 , figsize=(10,10)) plt.tight_layout() Density Density Density size_bytes price rating_count_tot 5 1e9 1e6 1e9 0.0004 Density Density Den sity Density sup devices num rating_count_ver user_rating_ver user_rating 0.2 0.0000 0.15 0.6 Den sity Density Density ipadSc_urls.num lang.num vpp_lic

In [266]: data.plot(kind='density' , subplots=True , layout=(4,4) , sharex=False , fontsize=8 , figsize=(10,10)) plt.tight_layout() 1e-9 1e-5 id price Density Density Density 5 size_bytes rating_count_tot 5 1e9 1e9 1e6 user_rating ver rating_count_ver Density Density Density Density 52 sup_devices.num user_rating 0.0000 Density 5 Density Density ipadSc_urls.hum lang.num vpp_lic 0.25

```
In [267]: data.rating_count_tot.value_counts()
Out[267]: 0
                    929
          1
                    120
          7
                     48
          9
                     47
          5
                     46
          3116
                      1
          3120
                      1
          1073
                      1
          3124
                      1
          10239
          Name: rating_count_tot, Length: 3185, dtype: int64
In [268]: free_apps.vpp_lic.value_counts()
Out[268]: 1
                4035
                  21
          Name: vpp_lic, dtype: int64
In [269]: paid_apps.vpp_lic.value_counts()
Out[269]: 1
                3112
                  29
          Name: vpp_lic, dtype: int64
In [270]: |data.vpp_lic.value_counts()
Out[270]: 1
                7147
                  50
          Name: vpp_lic, dtype: int64
In [271]: | sns.histplot(data['lang.num'])
Out[271]: <AxesSubplot:xlabel='lang.num', ylabel='Count'>
              3500
              3000
              2500
              2000
              1500
              1000
               500
                                 20
                                             40
                                                         60
                                        lang.num
```

Feature Engineering

```
In [272]: from sklearn.preprocessing import LabelEncoder
          USD LABEL = LabelEncoder()
          data['currency']= USD_LABEL.fit_transform(data['currency'])
In [273]: data.drop(['broad_genre'] ,
                    #['currency'],
                    axis = 1, inplace = True)
In [274]: | data.drop(['currency'],
                    axis = 1, inplace = True)
In [275]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 7197 entries, 0 to 7196
          Data columns (total 15 columns):
               Column
                                 Non-Null Count Dtype
          ---
               _____
                                                 ____
           0
               id
                                 7197 non-null
                                                 int64
               track_name
                                 7197 non-null
                                                 object
           1
           2
               size bytes
                                 7197 non-null
                                                 int64
           3
               price
                                 7197 non-null
                                                 float64
           4
               rating_count_tot 7197 non-null
                                                 int64
           5
               rating_count_ver 7197 non-null
                                                 int64
           6
                                                 float64
               user_rating
                                 7197 non-null
           7
               user_rating_ver
                                 7197 non-null
                                                 float64
           8
               ver
                                 7197 non-null
                                                 object
           cont_rating
10 prime_genre
                                 7197 non-null
                                                 object
                                 7197 non-null
                                                 object
           11 sup_devices.num 7197 non-null
                                                 int64
           12 ipadSc_urls.num
                                7197 non-null
                                                 int64
           13 lang.num
                                 7197 non-null
                                                 int64
           14 vpp lic
                                 7197 non-null
                                                 int64
          dtypes: float64(3), int64(8), object(4)
          memory usage: 843.5+ KB
In [276]: #encoding object columns int
          track name LABEL = LabelEncoder()
          data['track name']= track name LABEL.fit transform(data['track name'])
In [277]: ver_LABEL = LabelEncoder()
          data['ver']= ver LABEL.fit transform(data['ver'])
          prime genre LABEL = LabelEncoder()
          data['prime genre']= prime genre LABEL.fit transform(data['prime genre'])
          cont rating LABEL = LabelEncoder()
          data['cont_rating']= cont_rating_LABEL.fit_transform(data['cont_rating'])
```

```
In [278]: data.head()
```

Out[278]:

	id	track_name	size_bytes	price	rating_count_tot	rating_count_ver	user_rating	user_
0	281656475	3676	100788224	3.99	21292	26	4.0	
1	281796108	1664	158578688	0.00	161065	26	4.0	
2	281940292	5870	100524032	0.00	188583	2822	3.5	
3	282614216	6132	128512000	0.00	262241	649	4.0	
4	282935706	527	92774400	0.00	985920	5320	4.5	
4								•

In [279]: data.drop(['id'] , axis =1 , inplace = True)

In [280]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7197 entries, 0 to 7196
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	track_name	7197 non-null	int32		
1	size_bytes	7197 non-null	int64		
2	price	7197 non-null	float64		
3	rating_count_tot	7197 non-null	int64		
4	rating_count_ver	7197 non-null	int64		
5	user_rating	7197 non-null	float64		
6	user_rating_ver	7197 non-null	float64		
7	ver	7197 non-null	int32		
8	cont_rating	7197 non-null	int32		
9	prime_genre	7197 non-null	int32		
10	<pre>sup_devices.num</pre>	7197 non-null	int64		
11	ipadSc_urls.num	7197 non-null	int64		
12	lang.num	7197 non-null	int64		
13	vpp_lic	7197 non-null	int64		
dtypes: float64(3), int32(4), int64(7)					

memory usage: 674.8 KB

In [281]: #Data about Data
data.describe().style.background_gradient(cmap='Purples')

Out[281]:

	track_name	size_bytes	price	rating_count_tot	rating_count_ver	user_ratin
count	7197.000000	7197.000000	7197.000000	7197.000000	7197.000000	7197.00000
mean	3597.221203	199134453.825066	1.726218	12892.907184	460.373906	3.52695
std	2077.028362	359206913.538703	5.833006	75739.408675	3920.455183	1.51794
min	0.000000	589824.000000	0.000000	0.000000	0.000000	0.00000
25%	1799.000000	46922752.000000	0.000000	28.000000	1.000000	3.50000
50%	3597.000000	97153024.000000	0.000000	300.000000	23.000000	4.00000
75%	5396.000000	181924864.000000	1.990000	2793.000000	140.000000	4.50000
max	7194.000000	4025969664.000000	299.990000	2974676.000000	177050.000000	5.00000

we found variation in data as standard deviation is different

some of columns has big outliers

```
In [282]: D_corr = data.corr()
D_corr.style.background_gradient()
```

Out[282]:

	track_name	size_bytes	price	rating_count_tot	rating_count_ver	user_rating
track_name	1.000000	-0.049030	-0.039913	-0.043531	-0.015036	-0.303899
size_bytes	-0.049030	1.000000	0.182392	0.004486	0.006337	0.066256
price	-0.039913	0.182392	1.000000	-0.039044	-0.018012	0.046601
rating_count_tot	-0.043531	0.004486	-0.039044	1.000000	0.163645	0.083310
rating_count_ver	-0.015036	0.006337	-0.018012	0.163645	1.000000	0.068754
user_rating	-0.303899	0.066256	0.046601	0.083310	0.068754	1.000000
user_rating_ver	-0.300058	0.086075	0.025173	0.088744	0.077840	0.774140
ver	0.031308	-0.139159	-0.010842	0.142502	-0.000678	0.113104
cont_rating	-0.068895	-0.044634	0.033551	-0.016398	-0.016948	0.064212
prime_genre	0.006130	-0.134438	-0.017413	0.039188	0.011090	0.000975
sup_devices.num	0.021808	-0.118347	-0.115361	0.008832	0.037951	-0.042451
ipadSc_urls.num	-0.145207	0.152697	0.066100	0.015734	0.024333	0.265671
lang.num	-0.081477	0.004614	-0.006713	0.137675	0.013287	0.170976
vpp_lic	-0.030828	-0.150418	-0.029942	-0.000982	0.006460	0.069816
4						•

Corellation between columns is very low

```
In [283]: mask = np.zeros_like(data.corr())
    mask[np.triu_indices_from(mask)] = True
    with sns.axes_style("ticks"):
        f, ax = plt.subplots(figsize=(9, 5))
        ax = sns.heatmap(data.corr(), mask=mask, vmax=.3,annot=True,fmt=".0%",linewic
```


Correlation between user_rating_var, user_rating is high 77%

ipadSc_urls.num, user_rating is 27%

ipadSc urls.num, user rating var is 28%

PPS(Predictive Power Score)

Non Linear Data

In [284]: #Calculating ppscore import ppscore c=pps.matrix(data)

Out[284]:

	x	у	ppscore	case	is_valid_score	metric	baseline_score	n
0	track_name	track_name	1.0	predict_itself	True	None	0.000000e+00	1
1	track_name	size_bytes	0.0	regression	True	mean absolute error	1.507944e+08	2
2	track_name	price	0.0	regression	True	mean absolute error	1.771204e+00	2
3	track_name	rating_count_tot	0.0	regression	True	mean absolute error	1.216113e+04	2
4	track_name	rating_count_ver	0.0	regression	True	mean absolute error	4.637924e+02	7
191	vpp_lic	prime_genre	0.0	regression	True	mean absolute error	2.912000e+00	3
192	vpp_lic	sup_devices.num	0.0	regression	True	mean absolute error	1.827400e+00	1
193	vpp_lic	ipadSc_urls.num	0.0	regression	True	mean absolute error	1.280600e+00	1
194	vpp_lic	lang.num	0.0	regression	True	mean absolute error	4.398600e+00	5
195	vpp_lic	vpp_lic	1.0	predict_itself	True	None	0.000000e+00	1

196 rows × 9 columns

```
In [285]: figsize=(20,20)
a = pps.matrix(data).pivot(columns='x', index='y', values='ppscore')
sns.heatmap(a, annot=True)
```

Out[285]: <AxesSubplot:xlabel='x', ylabel='y'>


```
In [286]: mask = np.zeros_like(a)
    mask[np.triu_indices_from(mask)] = True
    with sns.axes_style("ticks"):
        f, ax = plt.subplots(figsize=(9, 5))
        ax = sns.heatmap(a, mask=mask, vmax=.3,annot=True,fmt=".0%",linewidth=0.5,squ
```



```
In [288]: data.shape
Out[288]: (7197, 14)
```

```
In [289]:
          outliers list = []
         # For each feature find the data points with extreme high or low values
         for feature in data.keys():
             # Calculate Q1 (25th percentile of the data) for the given feature
             Q1 = np.percentile(data[feature], 25)
             # Calculate Q3 (75th percentile of the data) for the given feature
             Q3 = np.percentile(data[feature], 75)
             # Use the interquartile range to calculate an outlier step (1.5 times the int
             step = (Q3 - Q1) * 1.5
             # Display the outliers
             print("Data points considered outliers for the feature '{}':".format(feature)
             outliers = list(data[~((data[feature] >= Q1 - step) & (data[feature] <= Q3 +</pre>
             display(data[~((data[feature] >= Q1 - step) & (data[feature] <= Q3 + step))])</pre>
             outliers list.extend(outliers)
         #print("List of Outliers -> \n :{}".format(outliers_list))
         Data points considered outliers for the feature 'track_name':
```

track_name size_bytes price rating_count_tot rating_count_ver user_rating_user_rating_ver

Data points considered outliers for the feature 'size_bytes':

	track_name	size_bytes	price	rating_count_tot	rating_count_ver	user_rating	user_ratir
16	1743	389879808	0.00	2974676	212	3.5	
103	4440	431771648	2.99	35074	403	4.5	
115	4054	723764224	249.99	773	10	4.0	
152	5327	430128128	6.99	54408	65	3.5	
281	2232	878883840	4.99	15142	73	4.0	

In [291]: | #new_data.head()

In [292]: |#new_data.shape

Standardizing - RobustScaler

```
In [293]: #Before clustering, we transform features from original version to standardize ve
           #Creat Object from RobustScaler
           s = RobustScaler()
           #fit transform for dataset
           data robustscaler = s.fit transform(data)
In [294]: data.columns
Out[294]: Index(['track_name', 'size_bytes', 'price', 'rating_count_tot',
                   'rating_count_ver', 'user_rating', 'user_rating_ver', 'ver',
                   'cont_rating', 'prime_genre', 'sup_devices.num', 'ipadSc_urls.num',
                   'lang.num', 'vpp_lic'],
                 dtype='object')
In [295]: df robust = pd.DataFrame(data robustscaler , columns=['track name', 'size bytes';
                   'rating_count_ver', 'user_rating', 'user_rating_ver', 'ver',
                   'cont_rating', 'prime_genre', 'sup_devices.num', 'ipadSc_urls.num',
                   'lang.num', 'vpp lic'])
           df robust.head()
Out[295]:
              track_name size_bytes
                                            rating_count_tot rating_count_ver user_rating_user_rating_ve
            0
                 0.021963
                           0.026927 2.005025
                                                   7.592043
                                                                  0.021583
                                                                                  0.0
                                                                                               0.2
                -0.537392
            1
                           0.454998 0.000000
                                                  58.142857
                                                                  0.021583
                                                                                  0.0
                                                                                               -0.2
            2
                 0.631915
                           0.024970 0.000000
                                                  68.095118
                                                                 20.136691
                                                                                 -0.5
                                                                                               0.2
            3
                 0.704754
                           0.232285 0.000000
                                                  94.734539
                                                                  4.503597
                                                                                  0.0
                                                                                               0.2
```

356.462929

38.107914

0.5

Clustering Model

-0.032434 0.000000

-0.853489

0.5

```
In [296]: ilist = [] #list of inertias #sum of distance between data point and center of cl
          n=25 #number of clusters
          for i in range (1,n):
              KMeanModel = KMeans(n_clusters=i , init='k-means++' , random_state=33 , algor
              KMeanModel.fit(df robust)#Fitting Model
              ilist.append(KMeanModel.inertia_)
          ilist
Out[296]: [11429215.571860189,
           7211367.732265211,
           4350808.28678941,
           2837358.064677662,
           2174276.895143953,
           1748572.0318372592,
           1387628.102377955,
           1152193.8861806358,
           1004561.1560823298,
           906868.0514840924,
           788015.5258390473,
           725511.5157764495,
           646151.2028919919,
           599251.6179133644,
           571054.0553285419,
           528035.342347889,
           498806.78537939937,
           455298.4605952475,
           436829.02094646613,
           413957.3789655431,
           379320.59971496544,
           360431.5459413131,
           332858.50885922246,
           320955.69714040525]
```

when number of cluster is big ,inertia is low

Elbow Graph for Inertias & # of clusters

```
In [297]: plt.plot(range(1,n) , ilist)
    plt.title('Elbow Graph')
    plt.xlabel('Clusters')
    plt.ylabel('Inertias')
    plt.show()
#elbo graph to show less inertias as accuracy will be increasing
```



```
In [298]: #calculate silhouette score
         score = []
         for n in range(2,11):
             KMean = KMeans(n_clusters=n , init='k-means++' , random_state=33 , algorithm=
             KMean.fit(df robust)
             result = KMean.labels
             score.append(silhouette score(df robust , result))
               0.9752360014334556
         2
         3
               0.9619417777367756
         4
               0.9094899476542044
         5
               0.912181616881109
         6
               0.8068755368146527
         7
               0.8396241892059226
         8
               0.7647708561974061
         9
               0.7683509898886909
         10
                0.7668877539481522
```

*Cluster 2 or 3 *

Elbow for # of cluster with silhouette_score

```
In [299]: plt.style.use("fivethirtyeight")
    plt.plot(range(2,11) , score)
    plt.title('*Elbow for # of cluster with silhouette_score*')
    plt.xlabel('Cluster')
    plt.ylabel('silhouette_score')
    plt.show()
```


3 Cluster

```
In [300]: KMeanModel = KMeans(n_clusters= 7, init='k-means++' , random_state=33 , algorithm
#algorithm is auto , full or elkan
#Fitting Model
KMeanModel.fit(df_robust)
y_predict=KMeanModel.predict(df_robust)
centers = KMeanModel.cluster_centers_
labels = KMeanModel.labels_
inertial= KMeanModel.inertia_
iteration=KMeanModel.n_iter_
```

```
In [301]: silhouette_Score = silhouette_score(df_robust , labels)
print('Silutescore Score for KMean :: ',silhouette_Score)
```

Silutescore Score for KMean :: 0.8396241892059226

```
print('\n Labels is :: \n',labels)
print('\n Y_Predictions :: \n' , y_predict)
print('\n Inertial is :: ',inertial)
print('\n Iteration is :: ',iteration)
 Centers of 3 clusters ::
 [[ 3.63350681e-03 7.51607033e-01 8.92174357e-01 1.44515669e+00
   1.37572656e+00 -4.99568718e-01 -3.90921507e-01 1.70131433e-01
  -2.65526164e-01 7.74942496e-01 3.46032202e-01 -6.52458309e-01
   6.09586790e-01 -6.90051754e-03]
 [-2.67493443e-01 1.13559362e+00 1.96198383e-01 2.40553141e+02
                                  1.63043478e-01 8.74865992e-01
   1.85442602e+01 3.04347826e-01
  -3.04347826e-01 1.54347826e+00
                                  1.13043478e+00 -3.91304348e-01
  2.27329193e+00 -2.60208521e-18]
 [ 6.01195441e-02 -4.64170951e-02 6.21859296e-02 8.16063743e+01
   6.08585432e+02 3.12500000e-01
                                  1.56250000e-01 4.26369863e-02
  -3.75000000e-01 1.43750000e+00
                                 7.50000000e-01 -7.50000000e-01
   6.25000000e-01 -1.73472348e-181
 [-2.88851821e-01 3.90330772e+00 4.97487437e-01 1.17968174e+02
   1.27357554e+03 1.00000000e+00
                                  5.0000000e-01 -5.61643836e-02
  -2.00000000e+00
                  0.00000000e+00
                                  6.00000000e+00 0.00000000e+00
  1.71428571e+00 0.00000000e+001
 [-2.71545733e-01 5.51140415e-01
                                  0.00000000e+00 8.12873870e+02
  1.04856115e+01 2.50000000e-01
                                  0.00000000e+00
                                                 8.61986301e-01
  -1.11022302e-16 2.25000000e+00
                                  1.00000000e+00 -1.12500000e+00
   2.60714286e+00 0.00000000e+001
 [-8.71363391e-02 8.88801388e-01 9.41472066e-02 7.02542453e+01
   8.83977994e+00
                  2.50000000e-01
                                  1.08823529e-01 6.95777599e-01
  -4.23529412e-01 1.19411765e+00 5.05882353e-01 -4.79411765e-01
   1.37394958e+00 -1.17647059e-02]
 [-8.49279161e-02 7.29381205e-01 4.43790380e-01 3.50635805e+01
   1.41796095e+02 4.71428571e-01 2.64285714e-01 1.79804305e-01
                                  1.97142857e+00 -3.71428571e-01
  -4.00000000e-01 1.12857143e+00
  4.69387755e-01 -1.73472348e-18]]
 Labels is ::
 [0 5 5 ... 0 0 0]
 Y Predictions ::
 [0 5 5 ... 0 0 0]
 Inertial is :: 1387628.102377955
 Iteration is :: 8
```

In [302]: print('\n Centers of 3 clusters :: \n' , centers)

Visualising the Clusters

```
In [303]: #convert data fram to np.array to avoid error
    df_robust = np.array(df_robust) #that all
    # Visualising the clusters
    plt.scatter(df_robust[y_predict == 0, 0], df_robust[y_predict == 0, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 1, 0], df_robust[y_predict == 1, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 2, 0], df_robust[y_predict == 2, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 3, 0], df_robust[y_predict == 3, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 4, 0], df_robust[y_predict == 4, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 5, 0], df_robust[y_predict == 5, 1], s = 20, c
    plt.scatter(df_robust[y_predict == 6, 0], df_robust[y_predict == 6, 1], s = 20, c
    plt.scatter(KMeanModel.cluster_centers_[:, 0], KMeanModel.cluster_centers_[:, 1],
    plt.title('Clusters of Apps')
    plt.legend()
    plt.show()
```


Finally!...

after clustering we have 3 clusters from Apps according all features

future work use this cluster to apply classification model

```
In [304]: df_robust
Out[304]: array([[ 2.19627467e-02,
                                                         2.00502513e+00, ...,
                                       2.69269861e-02,
                     0.00000000e+00,
                                       1.28571429e+00,
                                                         0.00000000e+00],
                                                         0.00000000e+00, ...,
                   [-5.37392271e-01,
                                       4.54997800e-01,
                     0.00000000e+00,
                                                         0.00000000e+001,
                                       3.14285714e+00,
                                                         0.00000000e+00, ...,
                   [ 6.31915485e-01,
                                       2.49700390e-02,
                     0.00000000e+00,
                                                         0.00000000e+00],
                                       2.85714286e-01,
                   [-8.12621629e-01,
                                       1.04954565e-01,
                                                         1.00000000e+00, ...,
                    -2.00000000e+00,
                                      0.00000000e+00,
                                                         0.00000000e+00],
                                                         0.00000000e+00, ...,
                   [ 5.82429803e-01,
                                       6.14390388e-04,
                    -2.50000000e+00,
                                      1.42857143e-01,
                                                         0.00000000e+001,
                   [-5.40450375e-01, -4.63295863e-02,
                                                         0.00000000e+00, ...,
                    -2.50000000e+00,
                                       1.42857143e-01,
                                                         0.00000000e+00]])
In [305]: |df_robust = pd.DataFrame(df_robust ,columns=['track_name', 'size_bytes', 'price']
                   'rating_count_ver', 'user_rating', 'user_rating_ver', 'ver',
                   'cont_rating', 'prime_genre', 'sup_devices.num', 'ipadSc_urls.num',
                   'lang.num', 'vpp_lic'])
           df_robust.head()
Out[305]:
              track_name size_bytes
                                           rating_count_tot rating_count_ver user_rating user_rating_ve
                                       price
            0
                 0.021963
                           0.026927 2.005025
                                                   7.592043
                                                                  0.021583
                                                                                  0.0
                                                                                               0.2
                -0.537392
            1
                           0.454998 0.000000
                                                  58.142857
                                                                  0.021583
                                                                                  0.0
                                                                                               -0.2
            2
                 0.631915
                           0.024970 0.000000
                                                  68.095118
                                                                 20.136691
                                                                                 -0.5
                                                                                               0.2
            3
                 0.704754
                           0.232285 0.000000
                                                  94.734539
                                                                  4.503597
                                                                                  0.0
                                                                                               0.2
                -0.853489
                           356.462929
                                                                 38.107914
                                                                                  0.5
                                                                                               0.5
In [306]: | pre = pd.DataFrame(y predict ,columns=['cluster'])
           pre.head()
Out[306]:
              cluster
            0
                   0
            1
                   5
            2
                   5
            3
                   5
            4
                   1
In [307]:
           # Now we can use supervised learning
           #df_robust['Cluster'] =pre['cluster']
           #df_robust.head()
  In [ ]:
```