

IEORE4720 Deep Learning- Final Project

Deep Learning for Finance – Deep Portfolio

Group 5 - Members

Thibault Becker Marin Bergerot Paul De Kerdrel Achille Mascia Nicolas Tachet

Introduction

Objectives:

- Reproduce an index (IBB) by finding the right selection of investments using Deep Learning techniques
- 2. Reproduce an index (IBB) with anti-correlation in periods of large drawdowns to outperform the index i.e. reproduce a modified benchmark
- 3. Extend this technique to other index (S&P 500)

Step 1: Autoencoder

Step 1: Autoencoder

Parameters:

- learning_rate = 0.0004
- num_steps = 5000
- batch_size = 30
- lambda = 0.12
- val_dropout = 0.89

Choose our stocks:

The proximity of a stock to its auto-encoded version provides a measure for the similarity of a stock with the stock universe.

10 most communals

S - 10 least communals

Step 2: Calibration

Parameters:

- learning_rate = 0.0004
- num_steps = 1000
- batch_size = 10
- lambda = 0.1
- val_dropout = 0.88

Step 3: Validation (or Out-of-sample phase)

Results for S = 65

Results for different S values

Extension with the S&P

Results out-of-sample:

Conclusion

Does Deep Learning make a difference?

Machine Learning Pipeline

Results with ML

- Real index mean: 0.000266
- Portfolio mean: -3.562e-05 (Severely underperform)

Conclusion

By uncovering deep features using our Neural Networks, we observe a performance improvement compare to ML techniques. We are able to replicate and beat our benchmark.

