第九讲: 关系及其基本性质

姓名: 丁保荣 学号: <u>171860509</u>

2017年11月27日

请独立完成作业,不得抄袭。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

第一部分 作业

题目 (UD:10.2)

Let $X = \{1, 2, 3, 4, 5\}.$

- (a) If possible, define a relation on X that is an equivalence relation.
- (b) If possible, define a relation on X that is reflexive, but neither symmetric nor transitive.
- (c) If possible, define a relation on X that is symmetric, but neither reflexive nor transitive.
- (d) If possible, define a relation on X that is transitive, but neither reflexive nor symmetric.

解答:

- (a) define $x \sim y$ if and only if x = y
- (b) define $x \sim y$ if and only if $0 \le x y \le 1$
- (c) define $x \sim y$ if and only if x=6-y
- (d) define $x \sim y : 1 \sim 2$, $2 \sim 3$ and $1 \sim 3$

题目 (UD:10.4)

Define a relation \sim on R^2 as follows: For $(x_1,x_2),(y_1,y_2) \in R^2$, we say that $(x_1,x_2) \sim (y_1,y_2)$ if and only if both x_1 - y_1 and x_2 - y_2 are even integers. Is this relation an equivalence relation? Why or why not?

解答:

Yes, this relation is an equivalence.

(i) for reflexive:

 \therefore for $(x_1,x_2) \sim (y_1,y_2)$, we have both x_1 - y_1 and x_2 - y_2 are even integers

- \therefore we can let x_1-y_1 and x_2-y_2 are 0
- \therefore we have $x_1=y_1$ and $x_2=y_2$
- : we have $(x_1,x_2) \sim (x_1,x_2)$
- : this relation is reflexive
- (ii) for symmetric
 - \therefore for $(x_1,x_2) \sim (y_1,y_2)$, we have both x_1-y_1 and x_2-y_2 are even integers
 - \therefore we also have both y_1 - x_1 and y_2 - x_2 are even integers
 - $(y_1,y_2) \sim (x_1,x_2)$
 - \therefore this relation is symmetric
- (iii) for transitive
 - \therefore for $(x_1,x_2) \sim (y_1,y_2)$, we have both x_1-y_1 and x_2-y_2 are even integers
 - \therefore we also have for $(y_1,y_2) \sim (z_1,z_2)$, we have both y_1 - z_1 and y_2 - z_2 are even integers
 - \therefore we have both x_1 - z_1 and x_2 - z_2 are even integers
 - $(x_1,x_2) \sim (z_1,z_2)$
 - : this relation is transitive

题目 (UD:10.5)

Let X be a nonempty set with an equivalence relation \sim on it. Prove that for all elements x and y in X, the equality $E_x=E_y$ holds if and only if $x\sim y$.

解答:

- (1)
- \therefore we have $\mathbf{E}_x = \mathbf{E}_y$
- $\therefore \{y \in X : x \sim y\} = \{x \in X : y \sim x\}$
- ∴ x~y
- (2)
- \therefore we have $x\sim y$ and this relation is an equivalence
- ∴ y~x
- $\therefore \{y \in X : x \sim y\} = \{x \in X : y \sim x\}$
- $\therefore E_x = E_u$

Based on (1) and (2), we have for all elements x and y in X, the equality $E_x=E_y$ holds if and only if $x\sim y$.

题目 (UD:10.8)

Recall that a **polynomial** p over R is an expression of the form $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0$ where each $a_j \in R$ and $n \in N$. The largest integer j such that $a_j \neq 0$ is the degree of p. We define the degree of the constant polynomial p=0 to be $-\infty$. (A polynomial over R defines a function $p:R \to R$.)

(a) Define a relation on the set of polynomials by $p \sim q$ if and only if p(0)=q(0). Is this

an equivalence relation? If so, what is the equivalence class of the polynomial given by p(x)=x?

- (b) Define a relation on the set of polynomials by $p \sim q$ if and only the degree of p is the same as the degree of q. Is this an equivalence relation? If so, what is E_r if r(x)=3x+5?
- (c) Define a relation on the set of polynomials by $p \sim q$ if and only the degree of p is less than or equal to the degree of q. Is this an equivalence relation? If so, what is E_r where $r(x)=x^2$?

解答:

(a) yes.

$$E_{p(x)=x} = \{q(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 : a_j \in R \text{ and } n \in N\}$$

(b) yes.

$$E_{r(x)=3x+5} = \{q(x)=ax+b : a\neq 0\}$$

(c) No

题目 (UD:11.3)

- (a) For each $r \in R$, let $A_r = \{(x,y,z) \in R^3 : x+y+z=r\}$. Is this a partition of R^3 ? If so, give a geometric description of the partitioning sets.
- (b) For each r∈R, let $A_r = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$. Is this a partition of \mathbb{R}^3 ? If so, give a geometric description of the partitioning sets.

解答:

(a) yes.

Each partitioning set is a plane.

(b) yes.

when r=0, the partitioning set is a dot.

for other r, the partitioning set is a sphere (only the surface).

题目 (UD:11.7)

Consider the set P of polynomials with real coefficients. Decide whether or not each of the following collection of sets determines a partition of P. If you decide that it does determine a partition, show it carefully. If you decide that it does not determine a partition, list the part(s) of the definition that is (are) not satisfied and justify your claim with an example. (See Problem 10.8 for more information about polynomials.)

- (a) For $m \in N$, let A_m denote the set of polynomials of degree m.
- (b) For $c \in R$, let A_c denote the set of polynomials such that p(0)=c.
- (c) For a polynomial q, let A_q denote the set of all polynomials p such that q is a factor

of p; that is, there is a polynomial r such that p=qr.

(d) For $c \in R$, let A_c denote the set of polynomials such that p(c)=0.

解答:

- (a) this doesn't determine a partition of P.
- : the degree of (p(x)=0) is $-\infty$
- ...the set of (A_m) doesn't include $B=\{p(x)=0\}$
- (b) this determines a partition of P.
- (i) we can easily note that A_c is nonempty
- (ii) first, we can easily conclude that $\bigcup_{c \in R} A_c \subseteq P$

then, for every polynomial \in P, we can denote it by $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+c$ where each $a_i \in R$ and $n \in N$.

- p(0)=0
- \therefore p(x) \in A_c for some c \in R
- $\therefore P \subseteq \bigcup_{c \in R} A_c$
- $\therefore \bigcup_{c \in R} A_c = P$
- (iii) If $A_a \cap A_b \neq \emptyset$ (a,b \in R)
- \therefore there exist a p(x) $\in A_a \cap A_b$
- \therefore p(0)=a and p(0)=b
- ∴ a=b
- $\therefore A_a = A_b$

Based on (i),(ii) and (iii), this determines a partition of P

(c) this doesn't determine a partition of P.

$$A_1=P$$
 while $A_x \subseteq P$ and $A_x \neq \emptyset$

- $\therefore A_1 \cap A_x \neq \emptyset \text{ and } A_1 \neq A_x$
- : this doesn't satisfy the third condition
- : this doesn't determine a partition of P.
- (d) this doesn't determine a partition of P.

for $p(x)=x^2+1$, we cannot find $c \in R$ to let p(c)=0

- \therefore p(x)=x²+1 \notin A_c for any of c \in R
- $\therefore \bigcup_{c \in R} A_c \neq P$
- : this doesn't determine a partition of P.

题目 (UD:11.8)

For two nonempty disjoint sets, I and J, let $\{A_{\alpha}: \alpha \in I\}$ be a partition of R^+ and $\{A_{\alpha}: \alpha \in J\}$ be a partition of $R^- \cup \{0\}$. Prove that $\{A_{\alpha}: \alpha \in I \cup J\}$ is a partition of R.

解答:

(i) we can easily note that for every $\alpha \in I \cup J$, $A\alpha \neq \emptyset$

(ii)

 A_{α} : A_{α} : A

 $\therefore \bigcup_{\alpha \in I} \mathbf{A}\alpha = \mathbf{R}^+$ and $\bigcup_{\alpha \in J} \mathbf{A}\alpha = \mathbf{R}^- \, \cup \, \{0\}$

 $\therefore \bigcup_{\alpha \in I} \mathbf{A}\alpha \cup \bigcup_{\alpha \in J} \mathbf{A}\alpha = \mathbf{R}^+ \cup (\mathbf{R}^- \cup \{0\})$

 $\therefore \bigcup_{\alpha \in I \cup J} A\alpha = R$

(iii)

if both i and $j \in I(\text{or } J)$ and $A_i \cap A_j \neq \emptyset$, we conclude from the condition that $A_i = A_j$ if $i \in I$ and $j \in J$ we can conclude from the condition that $A_i \cap A_j = \emptyset$

 \therefore for i,j \in I \cup J, if $A_i\cap A_j\neq\emptyset$, we can conclude that $A_i=A_j$

Based on (i), (ii) and (iii), $\{A_{\alpha} : \alpha \in I \cup J \}$ is a partition of R.

题目 (UD:11.9)

Let X be a nonempty set and $\{A_{\alpha} : \alpha \in I\}$ be a partition of X.

- (a) Let B be a subset of X such that $A_{\alpha} \cap B \neq \emptyset$ for every $\alpha \in I$. Is $\{A_{\alpha} \cap B : \alpha \in I\}$ a partition of B? Prove it or give a counterexample.
- (b) Suppose further that $A_{\alpha} \neq X$ for every $\alpha \in I$. Is $\{X \setminus A_{\alpha} : \alpha \in I\}$ a partition of X? Prove it or give a counterexample.

解答:

- (a) yes, $\{A_{\alpha} \cap B : \alpha \in I\}$ is a partition of B
- (i) we can easily see from the condition that $A_{\alpha} \cap B \neq \emptyset$ for every $\alpha \in I$
- (ii)

first, for every
$$\alpha \in I$$
, $A_{\alpha} \cap B \subseteq B$

$$\therefore \bigcup_{\alpha \in I} (A_{\alpha} \cap B) \subseteq B$$

then,
$$\therefore B \subseteq X \text{ and } X = \bigcup_{\alpha \in I} A_{\alpha}$$

$$\therefore B \subseteq \bigcup_{\alpha \in I} A_{\alpha}$$

$$\therefore B \subseteq \bigcup_{\alpha \in I} (A_{\alpha} \cap B)$$

$$\therefore \bigcup_{\alpha \in I} (A_{\alpha} \cap B) = B$$

(iii)

if
$$A_i \cap B \cap A_j \cap B \neq \emptyset$$
 (i,j \in I)

$$\therefore A_i \cap A_j \neq \emptyset \ (i,j \in I)$$

 \therefore according to the condition, $A_i=A_j$

$$\therefore A_i \cap B = A_j \cap B$$

Based on (i), (ii) and (iii), $\{A_{\alpha} \cap B : \alpha \in I\}$ is a partition of B

(b) No

Let
$$X = \{1,2,3\}$$
 $A_1 = \{1\}$ $A_2 = \{2\}$ $A_3 = \{3\}$

$$\therefore$$
 we have $X \setminus A_1 = \{2,3\}$, $X \setminus A_2 = \{1,3\}$, $X \setminus A_3 = \{1,2\}$

$$\therefore A_1 \cap A_2 = \{3\} \neq \emptyset \text{ but } A_1 \neq A_2$$

: it doesn't satisfy the third condition.

题目 (UD:12.10)

Let S and T be nonempty bounded subsets of R.

- (a) Show that $\sup(S \cup T) \ge \sup S$, and $\sup(S \cup T) \ge \sup T$.
- (b) Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$
- (c) Try to state the results of (a) and (b) in English, without using mathematical symbols.

解答:

(a)

∴ for all $x \in S$, we have $x \le \sup S$ and for all $y \in T$, we have $y \le \sup T$

there are three cases: S>T,S<T,S=T

- (i) S>T
- \therefore sup $S \ge x$ and sup $S \ge \sup T \ge y$
- \therefore sup S is the upper bound of S \cup T

if there is M<sup S that M is also the upper bound of S \cup T, then M is also the upper bound of S

- \therefore it contradicts with that sup S is the least upper bound of S
- \therefore sup S is the supremum of S \cup T
- (ii)S<T

it is similar to (i)

 \therefore sup T is the supremum of S \cup T

(iii)S=T

following the above, we can easily conclude that sup T or sup S is the supremum of $S \cup T$

- \therefore we can conclude that $\sup\{S \cup T\} = \max(\sup S, \sup T)\}$
- $\therefore \sup(S \cup T) \ge \sup S$, and $\sup(S \cup T) \ge \sup T$.

(b)

I have done it in (a)

 \therefore we can conclude that $\sup\{S \cup T\} = \max(\sup S, \sup T)\}$

(c)

for (a): the supremum of the union of sets S and T is greater than the supremum of set S or that of set T

for (b): the supremum of the union of sets S and T is the maximum of the supremum of set S and that of set T

题目 (UD:12.13b)

Let \sim denote a relation on a set S. The relation \sim is called a *partialorder* if the following three conditions are satisfied.

- (i) (Reflexive property) For all $x \in S$, we have $x \sim x$.
- (ii) (Transitive property) For all $x,y,z \in S$, if $x \sim y$ and $y \sim z$, then $x \sim z$.
- (iii)(Antisymmetric property) For all $x,y \in S$, if $x \sim y$ and $y \sim x$, then x=y.

The relation \sim is a **totalorder** on the set S if, in addition, (iv) below is satisfied.

- (iv) For all $x,y \in S$, either $x \sim y$ or $y \sim x$.
- (b) Let A be a set containing at least two elements. We define an order on P(A) using the regular set inclusion \in . Show that $(P(A),\in)$ is a partial order, but not a total order.

解答:

- (b)
- (i) for every $x \in \mathcal{P}(A)$, we can easily conclude that $x \subseteq x$
- ∴ x~x
- (ii) for every $x,y,z \in \mathcal{P}(A)$ and $x \sim y$ and $y \sim z$, we have $x \subseteq y$ and $y \subseteq z$
- $\therefore x \subseteq z$
- ∴ x~z
- (iii) for every $x,y \in \mathcal{P}(A)$ and $x \sim y$ and $y \sim x$, we have $x \subseteq y$ and $y \subseteq x$
- ∴ x=y
- (iv) for $z,w\in A$, let $x=\{z\}$, $y=\{w\}$, we have $x,y\in \mathcal{P}(A)$, but $x\not\subseteq y$ and $y\not\subseteq x$

Based on (i), (ii), (iii), and (iv) ,we can conclude that $(P(A), \in)$ is a partial order, but not a total order.

题目 (UD:12.16)

You showed in Problem 12.13 that $(P(Z), \in)$ is a partial order. For every nonempty subset \mathcal{A} of $\mathcal{P}(\mathcal{Z})$ we say that $U \in \mathcal{P}(\mathcal{Z})$ is an upper set of \mathcal{A} , if $X \in U$ for all $X \in \mathcal{A}$. A nonempty set $\mathcal{A} \in \mathcal{P}(\mathcal{Z})$ will be called an upper bounded set if there is an upper set of \mathcal{A} in $\mathcal{P}(\mathcal{Z})$. We say $U_0 \in \mathcal{P}(\mathcal{Z})$ is a least upper set if (i) U_0 is an upper set of \mathcal{A} and (ii) if U is another upper set of \mathcal{A} , then $U_0 \in U$.

- (a) Let $\mathcal{B} = \{\{1,2,5,7\},\{2,8,10\},\{2,5,8\}\}$. Show that \mathcal{B} is an upper bounded set and find a least upper set of \mathcal{B} , if there is one.
- (b) Prove that every nonempty subset of $\mathcal{P}(\mathcal{Z})$ is upper bounded.
- (c) Define "lower set," "lower bounded set," and "greatest lower set."
- (d) Let \mathcal{A} be a nonempty subset of $\mathcal{P}(\mathcal{Z})$. Using union and intersection, find an expression for least upper set of \mathcal{A} and greatest lower set of \mathcal{A} .
- (e) Prove that $(\mathcal{P}(\mathcal{Z}), \subseteq)$ has the "least upper set property" (in other words, show every upper bounded set has a least upper set).

解答:

- (a) Let $U_0 = \{1, 2, 5, 7, 8, 10\}$
- \therefore for every $X \in \mathcal{B}$, we $X \subseteq U_0$

 $\therefore \mathcal{B}$ is an upper bounded set

And the least upper set of \mathcal{B} is $U_0 = \{1, 2, 5, 7, 8, 10\}$

- (b) Let $U=\mathcal{Z}$
- \therefore for every $\mathcal{A} \subseteq \mathcal{P}(\mathcal{Z})$ and every $X \in \mathcal{A}$, we have $X \subseteq \mathcal{Z}$
- $\therefore X \subseteq U$
- $\therefore \mathcal{A}$ is an upper bounded set
- \therefore every nonempty subset of $\mathcal{P}(\mathcal{Z})$ is upper bounded.
- (c)

For every nonempty subset \mathcal{A} of $\mathcal{P}(\mathcal{Z})$ we say that $U \in \mathcal{P}(\mathcal{Z})$ is a lower set of \mathcal{A} , if $U \subseteq X$ for all $X \in \mathcal{A}$. A nonempty set $\mathcal{A} \subseteq \mathcal{P}(\mathcal{Z})$ will be called an lower bounded set if there is a lower set of \mathcal{A} in $\mathcal{P}(\mathcal{Z})$. We say $U_0 \in \mathcal{P}(\mathcal{Z})$ is a greatest upper set if (i) U_0 is a lower set of \mathcal{A} and (ii) if U is another lower set of \mathcal{A} , then $U \subseteq U_0$.

(d)

the least upper set of $\mathcal{A} = \bigcup A_{\alpha}$ (for every $A_{\alpha} \in \mathcal{A}$)

the greatest lower set of $\mathcal{A} = \bigcap A_{\alpha}$ (for every $A_{\alpha} \in \mathcal{A}$)

(e)

for every upper bounded set A, we can let $U_0 = \bigcup A_\alpha$ (for every $A\alpha \in A$)

- \therefore we can easily conclude that for every $X \in \mathcal{A}$, we have $X \subseteq U_0$
- \therefore U₀ is an upper set of \mathcal{A}

Then ,we need to prove U_0 is the least one

we set a set $U_1 \subsetneq U_0$

there is $x \notin U_1$ but $\in \bigcup A_{\alpha}$ (for every $A\alpha \in \mathcal{A}$)

then there is $x \notin U_1$ but $\in A_\alpha$ $(A\alpha \in A)$

we can let $X=A\alpha$, then $X\not\subseteq U_1$

- \therefore U₁ is not an upper set of \mathcal{A}
- \therefore U₀is the least upper set of \mathcal{A}
- ... every upper bounded set has a least upper set

and we prove that every nonempty subset of $\mathcal{P}(\mathcal{Z})$ is upper bounded in (b)

 $\mathcal{L}(\mathcal{P}(\mathcal{Z}), \subseteq)$ has the "least upper set property"

题目 (UD:12.20)

Suppose we define ∞ to be an object that satisfies $a \le \infty$ for all $a \in R$. Prove that $\infty \ne R$.

解答:

Let we suppose $\infty \in \mathbb{R}$

- $\therefore \infty + 1 \in R$
- $\therefore \infty + 1 > \infty$

but it contradicts with $a \le \infty$ for all $a \in R$

... what we suppose is not right

 $\therefore \infty \neq R$.

题目 (UD:12.22)

Prove that if a is a rational number, then there is an irrational number b such that a < b.

解答:

let b=a+ $\sqrt{2}$

- $\because \sqrt{2}$ is an irrational number and a is a rational number
- \therefore b=a+ $\sqrt{2}$ is am irrational number and b>a
- : if a is a rational number, then there is an irrational number b such that a < b.

题目 (UD:12.23)

Prove that for two arbitrary real numbers a and b with a
b, there is an irrational number c such that a
c
b.(Hint: Consider $a/\sqrt{2}$ and $b/\sqrt{2}$.)

解答:

we can find an x that $a/\sqrt{2} < x < b/\sqrt{2}$

- : according to Theorem 12.11 we have find an x that is a rational number let $x=\sqrt{2}c$
- \therefore c is an irrational number and a<c
b
- \therefore for two arbitrary real numbers a and b with a
b, there is an irrational number c such that a<c
b.

第二部分 订正

题目 (题号)

题目。

错因分析: 简述错误原因(可选)。

订正:

正确解答。

第三部分 反馈

你可以写:

• 对课程及教师的建议与意见

- 教材中不理解的内容
- 希望深入了解的内容
- 等