Geometría

Juan Pablo Cabaña

Universidad Tecnológica Nacional

Training Camp 2024

Gracias Sponsors!

Organizador

Diamond

Universidad Nacional de Rosario

Gold

Presentacion

Temario

1 Vector

2 Polar Sort - Convex Hull

3 Línea

4 Segmento

Temario

- 1 Vector
- 2 Polar Sort Convex Hull
- 3 Línea

4 Segmento

Vector: Definiciones

Vector de N componentes

Conjunto ordenado de n numeros:

$$(a_1, ..., a_N)$$

R^N

Conjunto de todos los vectores de dimension N $(a_1, ..., a_N)$, donde a_i es un numero real. En esta clase nos vamos a centrar en R^2 , es decir los vectores de pares ordenados (a_1, a_2) .

Vector: Definiciones

Interpretacion geometrica

- Como los puntos del plano xy estan descritos por un par ordenado (x, y) podemos considerarlos equivalentes a los vectores de R^2 .
- Tambien pueden considerase a los vectores en \mathbb{R}^2 como una entidad con magnitud y direccion.

¿Que podemos hacer con vectores?

- Norma de un vector U
- Suma/Resta de dos vectores U y V
- Multiplicar/Dividir un vector U por un numero K
- Producto punto entre dos vectores U y V
- Producto cruz entre dos vectores U y V
- Proyectar un vector U sobre un vector V

8 / 46

Juan Pablo Cabaña Geometría TC 2024

Norma de un vector

Largo o extension de un vector U en el espacio:

$$|U| = \sqrt{x^2 + y^2}$$

Suma de dos vectores

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$$

$$\mathbf{v}_1 + \mathbf{v}_2$$

Resta de dos vectores

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}$$

10 / 46

Juan Pablo Cabaña Geometría TC 2024

Distancia entre dos puntos

Distancia entre dos puntos

• Dado dos puntos U y V, el vector que va de V a U es U-V.

11 / 46

Juan Pablo Cabaña TC 2024

Distancia entre dos puntos

- Dado dos puntos U y V, el vector que va de V a U es U-V.
- Dado un vector, ya sabemos calcular su longitud.

Distancia entre dos puntos

- Dado dos puntos U y V, el vector que va de V a U es U-V.
- Dado un vector, ya sabemos calcular su longitud.

$$|U-V|$$

Multiplicar/Dividir por un escalar

$$k * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} k * x \\ k * y \end{pmatrix}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

 Juan Pablo Cabaña
 Geometría
 TC 2024
 12 / 46

Producto punto de dos vectores

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} * \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = x_1 * x_2 + y_1 * y_2$$

Teorema

Sean U y V vectores en R^2 diferentes del vector cero, y sea α el angulo formado entre U y V, entonces:

$$U*V=|U||V|*cos(\alpha)$$

Interpretacion geometrica

Dado un vector U, que conjunto de puntos tienen igual producto punto con U?

< ロト < 個 ト < 重 ト < 重 ト 三 重 の < @

Interpretacion geometrica

Dado un vector U, que conjunto de puntos tienen igual producto punto con U?

$$\begin{pmatrix} x \\ y \end{pmatrix} * \begin{pmatrix} x_u \\ y_u \end{pmatrix} = k$$

$$x * x_u + y * y_u = k$$

Interpretacion geometrica

Dado un vector U, que conjunto de puntos tienen igual producto punto con U?

$$\begin{pmatrix} x \\ y \end{pmatrix} * \begin{pmatrix} x_u \\ y_u \end{pmatrix} = k$$
$$x * x_u + y * y_u = k$$

Al fijar el valor del producto punto (K), obtenemos una linea perpendicular al vector U.

◆ロト ◆個ト ◆ 差ト ◆ 差 ・ かくで

Interpretacion geometrica

Podemos interpretar el producto punto entre una direccion U y un punto V, como una medida de "que tan lejos esta el punto V en la direccion U".

 Juan Pablo Cabaña
 Geometría
 TC 2024
 15 / 46

Algunas observaciones

Dados dos vectores de norma conocida:

• Que valores puede tomar el producto punto de ellos?

Algunas observaciones

Dados dos vectores de norma conocida:

• Que valores puede tomar el producto punto de ellos?

$$U*V = |U||V|*\cos(\alpha) \rightarrow -|U||V| \leq U*V \leq |U||V|$$

16 / 46

Juan Pablo Cabaña TC 2024

Algunas observaciones

Dados dos vectores de norma conocida:

- Que valores puede tomar el producto punto de ellos? $U*V = |U||V|*cos(\alpha) \rightarrow -|U||V| \leq U*V \leq |U||V|$
- En que direccion el producto punto es maximo y minimo?

Algunas observaciones

Dados dos vectores de norma conocida:

- Que valores puede tomar el producto punto de ellos? $U*V = |U||V|*cos(\alpha) \rightarrow -|U||V| \leq U*V \leq |U||V|$
- En que direccion el producto punto es maximo y minimo? Alcanza un maximo cuando U y V tienen igual direccion $(cos(\alpha) = 1)$ y un minimo cuando tienen direccion opuesta $(cos(\alpha) = -1)$

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

Aplicaciones del producto punto

• Determinar si dos vectores son perpendiculares.

Aplicaciones del producto punto

- Determinar si dos vectores son perpendiculares.
- Ordenar un conjunto de puntos en una cierta direccion U.

Aplicaciones del producto punto

- Determinar si dos vectores son perpendiculares.
- Ordenar un conjunto de puntos en una cierta direccion U.
- Encontrar el punto mas cercano/lejano en una direccion U.

Aplicaciones del producto punto

- Determinar si dos vectores son perpendiculares.
- Ordenar un conjunto de puntos en una cierta direccion U.
- Encontrar el punto mas cercano/lejano en una direccion U.
- Resolver problemas de optimizacion.

Proyeccion de un vector U sobre un vector V

$$proj_V U = V * \frac{U * V}{V * V}$$

Interpretacion geometrica

Es la proyeccion ortogonal del vector U sobre la linea que contiene al vector V.

Aplicaciones de la proyeccion de vectores

 Dado un punto P y una linea/segmento L, encontrar el punto en L mas cercano a P.

Producto cruz

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} x \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = x_1 * y_2 - x_2 * y_1$$

Teorema

Sean U y V vectores en R^2 diferentes del vector cero, y sea α el angulo que va de U a V en sentido antihorario, entonces:

$$UxV = |U||V| * sen(\alpha)$$

Interpretacion geometrica

Podemos interpretar el producto cruz entre dos vectores U y V como el "area con signo" del paralelogramo que tiene como lados a U y V.

Aplicaciones del producto cruz

• Determinar si dos vectores son paralelos.

Aplicaciones del producto cruz

- Determinar si dos vectores son paralelos.
- Dado un vector U y un punto P, saber si P esta a la izquierda de U.

Aplicaciones del producto cruz

- Determinar si dos vectores son paralelos.
- Dado un vector U y un punto P, saber si P esta a la izquierda de U.
- Dados dos vectores, calcular el area del paralelogramo que los tiene como lados.
- Dados tres puntos, calcular el area del triangulo formado.

Vector:

```
typedef long long T;
    typedef double ld;
2
    struct pto {
3
4
        T x, y;
        pto() : x(0), y(0) {}
5
        pto(T _x, T _y) : x(_x), y(_y) {}
6
        pto operator+(pto b) { return pto(x+b.x, y+b.y); }
        pto operator-(pto b) { return pto(x-b.x, y-b.y); }
9
        pto operator+(T k) { return pto(x+k, y+k); }
        pto operator*(T k) { return pto(x*k, y*k); }
10
11
        pto operator/(T k) { return pto(x/k, y/k); }
        T operator*(pto b) { return x*b.x + y*b.y; }
12
13
        pto proj(pto b) { return b*((*this)*b) / (b*b); }
        T operator^(pto b) { return x*b.y - y*b.x; }
14
        ld norm() { return sqrt(x*x + y*y); }
15
        ld dist(pto b) { return (b - (*this)).norm(); }
16
    };
17
```

Enunciado

Dado cuatro puntos, determinar que figura forman:

• Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.
- Rombo: tiene cuatro lados de igual largo.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.
- Rombo: tiene cuatro lados de igual largo.
- Paralelogramo: tiene dos pares de lados paralelos.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.
- Rombo: tiene cuatro lados de igual largo.
- Paralelogramo: tiene dos pares de lados paralelos.
- Trapecio: tiene un par de lados paralelos.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.
- Rombo: tiene cuatro lados de igual largo.
- Paralelogramo: tiene dos pares de lados paralelos.
- Trapecio: tiene un par de lados paralelos.
- Romboide: tiene simetría de reflexión a través de una diagonal.

Enunciado

Dado cuatro puntos, determinar que figura forman:

- Cuadrado: tiene cuatro angulos rectos y cuatro lados iguales.
- Rectangulo: tiene cuatro angulos rectos.
- Rombo: tiene cuatro lados de igual largo.
- Paralelogramo: tiene dos pares de lados paralelos.
- Trapecio: tiene un par de lados paralelos.
- Romboide: tiene simetría de reflexión a través de una diagonal.
- Ninguno.

Temario

• Vector

- 2 Polar Sort Convex Hull
- 3 Línea
- 4 Segmento

Juan Pablo Cabaña TC 2024 26 / 46

Polar Sort

Dado un punto O, un vector V, el polar sort de un conjunto de puntos S es el ordenamiento de los puntos de S, en sentido antihorario, tomando a O como centro y V como direccion inicial.

Polar Sort

Polar Sort

Dado un punto O, un vector V, el polar sort de un conjunto de puntos S es el ordenamiento de los puntos de S, en sentido antihorario, tomando a O como centro y V como direccion inicial.

Polar Sort: Implementacion

```
struct cmp {
        pto o, v;
         cmp(pto no, pto nv) : o(no), v(nv) {}
         bool half(pto p) {
4
             assert(!(p.x == 0 && p.y == 0)); // (0,0) isn't well defined
5
             return (v \hat{p}) < 0 \mid | ((v \hat{p}) == 0 \&\& (v * p) < 0);
6
7
         bool operator()(pto% p1, pto% p2) {
8
             return mp(half(p1 - o), T(0)) < mp(half(p2 - o), ((p1 - o) ^ (p2 - o)))
10
11
    };
```

Convex Hull: Definicion

Convex Hull

- Un conjunto de puntos es convexo si contiene todos los segmentos entre todo par de puntos del conjunto.
- El convex hull de un conjunto de puntos S es el conjunto convexo minimo que contiene a S.

Convex Hull: Definicion

Convex Hull

- Un conjunto de puntos es convexo si contiene todos los segmentos entre todo par de puntos del conjunto.
- El convex hull de un conjunto de puntos S es el conjunto convexo minimo que contiene a S.

Convex Hull: Definicion

Convex Hull

- Un conjunto de puntos es convexo si contiene todos los segmentos entre todo par de puntos del conjunto.
- El convex hull de un conjunto de puntos S es el conjunto convexo minimo que contiene a S.

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

Ordenar los puntos por x, luego por y.

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

- Ordenar los puntos por x, luego por y.
- Recorrer los puntos ordenados:

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

- Ordenar los puntos por x, luego por y.
- Recorrer los puntos ordenados:
 - Si $|UH| \ge 2$, sean U y V los dos ultimos puntos agregados.

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

- Ordenar los puntos por x, luego por y.
- Recorrer los puntos ordenados:
 - Si $|UH| \ge 2$, sean U y V los dos ultimos puntos agregados. Mientras $\overrightarrow{UV} \times \overrightarrow{UP} \ge 0$ borrar V de UH.
 - Agregar P a UH.

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

- Ordenar los puntos por x, luego por y.
- Recorrer los puntos ordenados:
 - Si $|UH| \ge 2$, sean U y V los dos ultimos puntos agregados. Mientras $\overrightarrow{UV} \times \overrightarrow{UP} \ge 0$ borrar V de UH.
 - Agregar P a UH.

Para hallar el lower hull solo hay que reemplazar $\overrightarrow{UV} \times \overrightarrow{UP} \geq 0$ por $\overrightarrow{UV} \times \overrightarrow{UP} \leq 0$.

Algoritmo

Hallar el upper hull y el lower hull por separado, luego unirlos. Veamos como hallar el upper hull (UH):

- Ordenar los puntos por x, luego por y.
- Recorrer los puntos ordenados:
 - Si $|UH| \ge 2$, sean U y V los dos ultimos puntos agregados. Mientras $\overrightarrow{UV} \times \overrightarrow{UP} \ge 0$ borrar V de UH.
 - Agregar P a UH.

Para hallar el lower hull solo hay que reemplazar $\overrightarrow{UV} \times \overrightarrow{UP} \geq 0$ por $\overrightarrow{UV} \times \overrightarrow{UP} \leq 0$.

Complejidad

Ordenar los puntos lleva O(N * log(N)), recorrer todos los puntos O(N), entonces O(N * log(N) + N) = O(N * log(N)).

Convex Hull: Implementacion

Polar Sort - Convex Hull: Almost Convex

Enunciado

Dado un conjunto de puntos S, un poligono P es casi convexo si:

- P es simple: sus vertices son diferentes y ningun lado se intersecta con otro.
- Los vertices de P pertenecen a S, y todos los puntos de S estan dentro o en el bode de P.

Sea R el poligono casi convexo de tamaño minimo, ¿Cuantos poligonos casi convexos Q existen tal que $|Q| \le |R| + 1$?.

Cotas

• 3 ≤ |*S*| ≤ 2000

4□ > 4□ > 4 = > 4 = > = 90

Temario

- Vector
- 2 Polar Sort Convex Hull
- 3 Línea
- 4 Segmento

Línea: Definicion

Linea

Sea P un punto en la linea L, y V un vector director de L, la linea L es el conjunto de puntos Q dados por:

$$Q = P + V * t, t \in R$$

Línea: Operaciones

Lineas paralelas

Línea: Operaciones

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

• Q esta a la izquierda de L si:

Línea: Operaciones

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

• Q esta a la izquierda de L si: $\overrightarrow{V} \times \overrightarrow{PQ} > 0$

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

- Q esta a la izquierda de L si: $\overrightarrow{V} \times \overrightarrow{PQ} > 0$
- Q esta a la derecha de L si:

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

- Q esta a la izquierda de L si: $\overrightarrow{V} \times \overrightarrow{PQ} > 0$
- Q esta a la derecha de L si: $\overrightarrow{V} \times \overrightarrow{PQ} < 0$

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

- Q esta a la izquierda de L si: $\overrightarrow{V} \times \overrightarrow{PQ} > 0$
- Q esta a la derecha de L si: $\overrightarrow{V} \times \overrightarrow{PQ} < 0$
- Q esta sobre L si:

Lineas paralelas

Dos lineas L1 y L2 son paralelas si sus vectores directores V_1 y V_2 cumplen:

$$V_1 \times V_2 = 0$$

Lado de un punto

Dada una linea L que contiene al punto P y con vector director V, y un punto cualquiera Q:

- Q esta a la izquierda de L si: $\overrightarrow{V} \times \overrightarrow{PQ} > 0$
- Q esta a la derecha de L si: $\overrightarrow{V} \times \overrightarrow{PQ} < 0$
- Q esta sobre L si: $\overrightarrow{V} \times \overrightarrow{PQ} = 0$

Punto mas cercano

Dada una linea L que contiene al punto P y con vector director V, el punto de L mas cercano a un punto cualquiera Q es:

Punto mas cercano

Dada una linea L que contiene al punto P y con vector director V, el punto de L mas cercano a un punto cualquiera Q es:

$$P + proj_V \overrightarrow{PQ}$$

Interseccion de lineas

Dadas las lineas:

$$P_1 + V_1 * \alpha, P_2 + V_2 * \beta$$

Interseccion de lineas

Dadas las lineas:

$$P_1 + V_1 * \alpha, P_2 + V_2 * \beta$$

Igualando:

$$P_1 + V_1 * \alpha = P_2 + V_2 * \beta$$

38 / 46

Juan Pablo Cabaña TC 2024

Interseccion de lineas

Dadas las lineas:

$$P_1 + V_1 * \alpha, P_2 + V_2 * \beta$$

Igualando:

$$P_1 + V_1 * \alpha = P_2 + V_2 * \beta$$

Multiplicando ambos lados por V_2 :

$$P_{1}xV_{2} + V_{1}xV_{2} * \alpha = P_{2}xV_{2} + V_{2}xV_{2} * \beta$$

$$P_{1}xV_{2} + V_{1}xV_{2} * \alpha = P_{2}xV_{2}$$

$$\alpha = \frac{(P_{2} - P_{1})xV_{2}}{V_{1}xV_{2}}$$

Linea: Implementacion

```
struct line{
2
         pto p, v;
        line(){}
3
         line(pto p_, pto v_): p(p_), v(v_) {}
4
5
         bool inside(pto q) { return abs(v^(q-p)) <= EPS; }</pre>
         bool left(pto q) { return v^(q-p)>EPS; }
         pto closest(pto q) { return p + (q-p).proj(v); }
8
         pto inter(line 1) {
             if(v^l.v<=EPS) return pto(INF,INF);</pre>
10
             return p+v*((1.p-p)^1.v)/(v*1.v);
11
         }
12
    };
13
```

Línea: Endless Turning

Enunciado

Dadas C calles (representadas como lineas) y la posicion inicial de un auto (representada como un punto), este va a moverse por las calles y en cada interseccion va a realizar un giro a la derecha. Si el auto empieza a moverse hacia el este ¿en que calle se encuentra el auto despues de N giros?

Cotas

- 1 ≤ C ≤ 100
- $1 < N < 10^{10}$

Temario

Vector

- 2 Polar Sort Convex Hull
- 3 Línea
- 4 Segmento

Segmento: Definicion

Segmento

Sean U y V los puntos extremos del segmento, el mismo queda definido por el conjunto de puntos P:

$$P = \overrightarrow{UV} * t + U, t \in [0, 1]$$

Juan Pablo Cabaña TC 2024 42 / 46

```
struct segm {
1
2
         pto s, e;
         segm(pto s_{,} pto e_{,} : s(s_{,} e(e_{,}) )
3
         pto closest(pto b) {
4
             pto bs = b - s, es = e - s;
5
             ld l = es * es;
6
             if (abs(1) <= EPS) return s:
7
            1d t = (bs * es) / 1:
8
            if (t < 0.) return s; // comment for lines
9
             else if (t > 1.) return e; // comment for lines
10
11
            return s + (es * t);
12
13
         bool inside(pto b) {
             return abs(s.dist(b) + e.dist(b) - s.dist(e)) < EPS;
14
15
         pto inter(segm b) { // if a and b are collinear, returns one point
16
             if ((*this).inside(b.s)) return b.s:
17
             if ((*this).inside(b.e)) return b.e;
18
             pto in = line(s, e).inter(line(b.s, b.e));
19
             if ((*this).inside(in) && b.inside(in)) return in;
20
            return pto(INF, INF);
21
22
    }:
23
```

Segmento: Regional Integration

Enunciado

Dado un conjunto de edificios de forma triangular (T), cuadrada (Q) y circular (C), una persona debe caminar de un edificio triangular a uno cuadrado. Seleccionar un edificio triangular y otro cuadrado de forma que se minimice la distancia caminada al sol (sin estar debajo de un edificio).

Cotas

•
$$(T + C) * (Q + C) \le 10^6$$

| ロト 4 🗗 ト 4 분 ト 4 분 ト 9 오 연

Problema Extra: Large Triangle

Enunciado

Dado N puntos y un entero S, encontrar tres puntos tal que el area del triangulo formado sea igual a S.

Cotas

• 3 ≤ *N* ≤ 2000

Consultas

Pueden preguntarme durante el tc o escribirme por:

- jp.cabana@icloud.com
- JPrime