Схемы оценивания 9 класс

Задание 1. Как Уильям Томсон стал лордом Кельвином

Пункт	Содержание	Всего	Всего	Баллы	Оценки
	Содоржини	3a	3a	Burnibi	одения
		часть	пункт		
	Задача 1.	10			
Засчит	ываются правильные ответы с				
	циентами в обыкновенных дробях				
1.1	Значения сил токов 6х0,5=3		3	3	
1.2	Значение сопротивления всей цепи		5	5	
	Значение силы тока I_0			1	
	Значение силы тока I_3			1	
1.3	Значение отношения I_1/I_0		2	1	
	Значение отношения I_2 / I_1			1	
Задача	2.	10			
2.1	Основная идея – начальное пренебрежение		4	3	
	токами через поперечные резисторы				
	Значения сил токов $I_0 \approx I_1$			1	
2.2	Разность токов $\Delta I = (I_0 - I_1)$ есть сумма токов		6	2	
	утечки				
	Значения напряжений на поперечных			1	
	резисторах (5)			1	
	Значения сил токов (6)			1	
	Суммирование сил токов (8)			1	
	Численное значение			1	
Задача		15			
3.1	Идея расчета – отбросить первое звено		5	2	
	Уравнение (9)			1	
	Решение (11)			1	
	Результат (12)			1	
3.2	Рекуррентное соотношение (13)		3	1	
	Формула для геометрической прогрессии (14) с			2	
2.2	указанием отношения сил токов (16)				
3.3	Формула (16)		2	2	
3.4	Приближенное выражение (17)		5	2	
	Значение знаменателя прогрессии			1	
	Сила тока в цепи I_0			1	
	Формула (19)			1	
Задача 4		15			
	равильное округление штраф -1 балл)		•	1	
4.1	Формула для сопротивления (20)		3	1	
	Численное значение (21)			1	
	Сопротивление всего кабеля (22)			1	

4.2	Формула для сопротивления изоляции		4	1	
	Использованное среднее значение площади			1	
	радиуса изоляции				
	Численное значение			1	
	Сопротивление всей изоляции			1	
4.3	Эквивалентная схема цепочка Задачи 3		2	2	
4.4	Использование формулы (24)		6	2	
	Формула (27) при N > 100			2	
	Численное значение отношения сил токов			2	
	ВСЕГО за задание	50			

Задание 2. Вытекание

Пункт	Содержание	Всего	Всего	Баллы	Оценки
	<u>-</u>	за	за		
		часть	пункт		
Часть 1	1. Бросок	20			
1.1	Формула (3)		2	2	
1.2	Проекции ускорения и начальной скорости (1+1)		2	2	
1.3	Формула для $v_z(z)$ (6)		4	3	
	Указан знак минус			1	
1.4	Закон равноускоренного движения		4	1	
	Формула (9)			3	
1.5	График зависимости $z(t)$:		4		
	-парабола ветви вверх;			1	
	- максимальные значения h_0 ;			1	
	- вершина параболы - $ au$;			l	
	- максимальное время 2τ .			1	
1.6	Показатели степеней α и β (1+1)		2	2	
1.7	Значение C (решение квадратного уравнения)		2	1	
	выбран меньший корень			1	
Часть 2	2. Дырявый сосуд	20			
2.1	Использование закона сохранения энергии		6	2	
	Изменение потенциальной энергии			1	
	Кинетическая энергия струи			1	
	формула (18)			2	
2.2	Уравнение равенства объемов (19)		5	2	
	Отношение площадей через отношение диаметров			1	
	Формула (21)			1	
	указание знака			1	
2.3	Использование аналогии с движением шарика		5	2	
	формула для ускорения			2	
	правильный знак			1	

2.4	Формула (23)		1	1	
	Подстановка выражения для начальной			1	
	скорости				
2.5	Формула для времени (24)		1	1	
2.6	Численное значение времени		2	2	
	(за не правильное округление -1)				
	ВСЕГО за задание	40			

Задание 3. Теплокровный сферический кот

Пункт	Содержание	Всего	Всего	Баллы	Оценки
	, , r	3a	3a		,
		часть	пункт		
Часть	1. Спящие коты	18			
	Основная идея – тепловой баланс		6	2	
	Уравнение баланса (2)			2	
	Выражение для температур (3)			1	
1.1	Формула для температуры		3	2	
	Численное значение			1	
1.2.1	Формула для температуры		3	2	
	Численное значение			1	
1.2.2	Уравнение баланса (9)		6	3	
	Температура границы (10)			1	
	Уравнение (11)			1	
	Формула для коэффициента (12)			1	
Часть	2. «Живая» модель	42			
2.1	Оптимальная температура:		2	2	
	формула, численное значение (1+1)				
2.2	Нормировочная постоянная $C = \alpha_0$;		5	1	
	физический смысл;			1 1	
	формулы для $\overline{W}, \overline{q} \ (1+1);$			2	
	численное значение постоянной \overline{A} ;				
2.3	График $\overline{W}(t)$:		7		
	- парабола, ветви вниз;				
	- указаны точки нулей;			1	
	- правильные координаты вершины;			1	
	График $\overline{q}(t)$:			1	
	- прямая; - коэффициент наклона 1;			1	
	- проходит через вершину параболы;			1	
	- правильное значение нуля.			1	
2.4	Уравнение (18);		14	2	
	Графическая иллюстрация: две «правильные»				
	прямые;			2	
	температура $t_0 = 35^\circ$:			2	
	Численные значения корней уравнения (18)			$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	
	Выбран больший корень			1	

	температура $t_0 = 25^\circ$:				
	Численные значения корней уравнения (18);			2	
	Выбран больший корень;			1	
	Показана устойчивость и неустойчивость				
	корней.			4	
2.5	Графическая иллюстрация:		6		
	- прямая для максимальной температуры;			1	
	- прямая для минимальной температуры				
	(касательная к параболе)			1	
	Указана максимальная температура			1	
	Касательная – дискриминант равен нулю			2	
	Численное значение минимальной температуры			1	
2.6	Уравнение баланса (23)		3	1	
	Зависимость (24)			1	
	Графическая иллюстрация (прямые,			1	
	проходящие через вершину параболы)				
2.7	График зависимости $ lpha(t_0) $		2	2	
	кривая, выпуклостью вниз;				
2.8	Приближение (прямая проходит через вершину		3	2	
	параболы)				
	Численное значение коэффициента			1	
	ВСЕГО за задание 3	60			

Итоговая ведомость

Код работы	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после проверки				
Подпись проверяющего				
Изменения после ознакомления				
Итоговые баллы				
Подпись участника				
Подпись члена жюри				

Схемы оценивания 10 класс

Код работы_____

Задание 1. Цирковая разминка

Пункт	Содержание	Всего	Всего	Баллы	Оценки
		за	3a		
		часть	пункт		
Задача	1. Девочка на шаре	15	<u> </u>		
1.1	Условия равновесия:		4		
	- сумма сил равна нулю;			1	
	- сумма моментов сил равна нулю;			1	
	- условие устойчивости равновесия;			2	
	Энергетический поход:		11		
	- потенциальная энергия минимальна;			3	
	- потенциальная энергия пропорциональна				
	высоте центра масс;			1	
	- рисунок (с указанием положения ЦМ);			2	
	- вычисление высоты ЦМ формула (1);			2 2 2	
	- разложение по малому углу отклонения (4);			2	
	- условие равновесия (5);			1	
	Альтернатива: расчет моментов;		11		
	- моменты рассчитываются относительно				
	точки касания;			1	
	- момент силы тяжести – «возвращающий»;			2	
	- рисунок с указанием сил и их плеч;			2 2	
	- расчет плеча силы тяжести;			1	
	- условие равновесия (4):			2 2	
	- приближение малых углов;			2	
	- условие равновесия (5).			1	
Задача	2. Канатоходцы	20			
2.0	Расчет удлинения проволоки (1);		9	1	
	Приближение малого провисания (2);			2	
	Относительное удлинение (3);			1	
	Условие равновесия (4);			2	
	Приближение малого угла (5);			1	
	Связь силы упругости и удлинения (6)			2	
2.1	Доказательство линейности деформации;		7	2	
	Формула для силы (8)			1	
	Уравнение (9);			1	
	Формула для провисания (10);			2	
	Численное значение х			1	
2.2	Использование предельной точки;		4	1	
	Использование уравнения (6);			1	
	Максимальная масса:				
	- формула;			1	
	- численное значение;			11	
	За не правильное округление -1 балл				
	ВСЕГО за задание 1	35			

Задание 2. Газовые законы

Пункт	Содержание	Всего	Всего	Баллы	Оценки
11,111(1	содержите	3a	3a	Burnibi	одении
		часть	пункт		
Часть	1. Горизонтальный сосуд.	35			
1.0	Уравнение состояния газа;		6	2	
	1 закон термодинамики;			2	
	Выражение для внутренней энергии газа.			2	
1.1	Условия термодинамического равновесия (1)-(2)		13	2	
	Уравнения состояния (2)-(3)			2	
	Значения объемов V_{1a}, V_{1b}			2	
	Уравнение закона сохранения энергии (7)			2	
	Газ работы не совершает			1	
	Значения давлений (8)			2	
	Значения температуры (10)			2	
1.2	Значения объемов и параметров в части b неизменны		9	2	
	Изменение энергии равно количеству теплоты Уравнение (13)			2	
	Значение давления (15)			3	
	Значение температуры (17)			2	
1.3	Условия равновесия (18)		7	1	
	Значение давлений (20)			3	
	Значения температур (22)			3	
Часть 2	2. Вертикальный сосуд.	15			
2.1	Значения начальных объемов		15	1	
	Значения конечных объемов			1	
	Уравнение 1 закона термодинамики (27)			1	
	Разность давлений постоянна			1	
	Вычисление работы газа (28)			2	
	(изменение потенциальной энергии поршня)				
	Вычисление изменения внутренней энергии (29)			3	
	Вычисление ΔP			2	
	Выражение для изменения внутренней энергии (33)			2	
	Окончательное выражение для количества теплоты (34)			2	
	ВСЕГО за задание (2)	50			

Задание 3. Поле в диэлектрике

Пункт	Содержание	Всего	Всего	Баллы	Оценки
11,11111	Содержите	3a	3a	Buildi	одении
		часть	пункт		
Часть	1. Нормальное поле	40			
1.1	Определение емкости конденсатора		6	1	
	выражение для заряда на обкладке			1	
	выражение для разности потенциалов			2	
	Формула для напряженности (3)			2	
1.2	Основная идея – суперпозиция полей		7	2	
	Уравнение (4)			1	
	Уравнение (5)			1	
	Формула для поверхностной плотности (6)			2	
	Формула (7)			1	
1.3	Суперпозиция полей (7)		7	2	
	Связь между полями (8)			2	
	Использование «определения» ε			1	
	формула для плотности заряда (9)			2	
1.4	Напряженности полей вне и внутри пластины (10)-(11):		20	2	
1.4.1	формулы для плотностей зарядов; правильные знаки		4	2 2	
1.4.2	Емкость конденсатора		4		
	Расчет разности потенциалов (13)			2	
	Формула для емкости конденсатора (14)			2	
1.4.3	Давление поля		10		
	формула для давления (16)			2	
	Учет напряженности только внешних полей			3	
	формула (17)			2	
	окончательное выражение (18)			2	
	Пластина растягивается			1	
Часть	2. Наклонное поле	25			
2.1.1	Постоянство тангенциальных составляющих (обоснование)		7	2 1	
	Условие для нормальных составляющих (20)			2	
	Использование «тангенсов»			1	
	Закон преломления (22)			1	
2.1.2	Выражение для модуля поля внутри пластины (23)		3	2	
	Выражение для отношения полей (24)			1	
2.2.1	Выбор траектории для расчета разности потенциалов		10	2	
	Выражение для разности потенциалов (25)			1	
	Формула для разности потенциалов (28)			4	

	Формула для заряда на обкладках			1	
	Формула для емкости (29)			2	
2.2.2	Использование разложения косинуса		5	1	
	Преобразования (30)			2	
	Окончательный результат (31)			2	
	ВСЕГО за задание 3	65			

Итоговая ведомость

Код	работы	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после проверки				
Подпись проверяющего				
Изменения после ознакомления				
Итоговые баллы				
Подпись участника				
Подпись члена жюри				

Задание 1. Гигантомания

Пункт	Содержание	Всего	Всего	Баллы	Оценки		
	, , <u>1</u>	за	за		,		
		часть	пункт				
Задача	1.1 Падение камушка	10					
1.1.1.a			2				
	Результат (2): формула, численное значение			2		2	2
1.1.2 a			2				
	Результат (4): формула, численное значение			2		2	2
1.1.1б			4				
	Движутся два тела			1		1	1
	Ускорения равны <i>g</i>			1		0	1
	Результат (4): формула, численное значение			2		0	0
1.1.26			2				
	Результат (5): формула, численное значение			2		0	2
Задача	1.2 Космический корабль	8					
1.2.1a			3				
	Закон Ньютона (1)			1		1	1
	Результат (3): формула и численное значение			2		0	1
1.2.16			5				
	Движение вокруг ЦМ			1		1	1
	Радиус траектории – R/2			1		0	1
	Уравнение (5)			1		0	1
	Результат (7): формула и численное значение			2		0	1
Задача	1.3 Эталон часа	12					
1.3			12				
	Формула для периода мат. маятника не применима			2		0	1
	Рисунок (указаны силы или моменты сил)						
	Приближение малых углов отклонения			3		2	3
	траектория горизонтальна;модуль силы тяжести не изменяется;синус угла равен углу;						
	Уравнение (4) (или равносильное)			3		0	3
3	Уравнение (6)			2		0	2
	Результат (7): формула и численное значение			2		0	0

За неправильное округление (-1)				
ВСЕГО за Задание 1	30		9	23

Задание 2. Магнитное динамо

Пункт	Содержание	Всего	Всего	Баллы	Оценки		
		3a	3a				
Hoory 1	1. Поле в слое	часть	пункт				
		15	4				
1.1	Направления векторов		4	1		1	1
	вектор \vec{v}			1		1	1
	вектор $ec{E}$			1		1	1
	вектор \vec{B}			2		0	2
1.2	Магнитное поле		4				
	плотность тока (1)			2		0	2
	Формула (2)			2		0	0
1.3			2				
	Направления сил 1х2			2		0	1
1.4			5				
	Модуль электрической силы (3)			2		1	2
	Модуль магнитной силы (4)			3		1	3
Часть 2	2. Заряды и токи	25					
2.1	Формула для силы тока (5)		10	1			
	Формула для «напряжения» (6)			3			
	Формула для сопротивления (7)			1		1	1
	Закон Ома			1		-	-
	Уравнение (9)			4			
2.2	Идея: производная должна быть		5	2		0	0
2.2	положительна			_		O	O
	Выражение для скорости (10)			1		0	0
	Численное значение (11)			2		0	0
2.3	Результат: формула (13),		3	2		0	0
	численное значение			1			
2.4	Приближение (15)		7	2		0	0
	с численным обоснованием			1			
	Формулы для оценки времени (16)			3		0	0
	Численное значение			1		0	0
	3. Спасает ли модель масса	10					
электр			_	4			
3.1	Учет центробежной силы		5	1		0	0
	Уравнение стационарности (17)			2		0	0
	Плотность заряда (18)			2		0	0
3.2	Индукция магнитного поля		4			0	0
	формула,			1			
2.2	численное значение		1	3		0	0
3.3	Отрицательный ответ		1	I		0	0
	За неправильное округление (-1)						1.2
	ВСЕГО за задание 2	50				5	13

Задание 3. Таутохронизм и принцип Ферма

Пункт	Содержание	Всего за часть	Всего за пункт	Баллы	Оценки		
Часть	1. Математическое введение.	3					
1.1	Разложение (1)		1	1		1	1
1.2	Уравнение окружности		2	1		1	1
	Разложение (3)			1		1	1
Часть 2	2. Таутохронизм						
	«Традиционные выводы известных	формул	не оцени	ваются	!		
Задача	2.1	10			13		
2.1	Основная идея – постоянство времени			2		2	2
	Рисунок: ход луча;			1		0	2
	- указание геометрических			1			_
	параметров y, f						
	Формула для пути луча (4)			2		2	2
	Разложение (5)			2		0	2
	Функция поверхности (6)			1		0	1
	Формула для фокусного расстояния			1		0	1
Задача		10			23		
2.2	Рисунок: ход луча;	10		1		0	2
	- указание геометрических			1			
	параметров y, f						
	Время движения в среде (9)			1		1	1
	Равенство (10)			2		2	2
	Разложение (11)			2		0	2
	Функция поверхности (12)			1		0	1
	Формула для фокусного расстояния (14)			2		2	2
Задача	2.3	10			33		
2.3.1	Рисунок: ход луча;		9	1		0	9
	- указание геометрических			1			
	параметров у, f			_			
	Равенство (15)			2		0	
	Разложение (16) - (17)			3		0	
	Формула (19)			1		0	
2.2.2	Вывод: есть постоянство времени			1			
2.3.2	Формула (20)	_	1	1	4.0		
Задача		7			40		
2.4.1	Предложение считать «расстояния» отрицательными		2	2		2	2
2.4.2	Рисунок: ход луча;		5	1		0	2
	- указание геометрических			1			
	параметров y, f						
	Равенство (20)			1		0	1
	Разложение (21)			1		0	1

	Формула (22)			1		1	1
2.4.3	Обоснование принципа:		5				
	- волновая природа света;			2		1	2
	- интерференция волн;			2		0	2
	- все волны в одной фазе, поэтому			1		1	1
	максимум!					_	
Часть	3. Принцип Ферма						
Задача	3.1	10			55		
3.1	Рисунок с указанием всех			2		0	2
	параметров						
	Идея: время должно быть			2		0	2
	минимальным						
	Выражение для времени			2		0	2
	распространения (23)						
	Выражение для производной (24)			2		0	2
	Геометрические соотношения (25)			1		1	1
	Закон преломления (26)			1		1	1
Задача	3.2	10			65		
3.2.1	Формула для длины хорды (27)		8	1		1	1
	Формула для длины пути (28)			3		1	3
	Схематический график:					0	0
	- две ветви синусоиды;			1			
	- первая ниже второй;			1			
	- два максимума с правильным						
	указанием координат			2			
3.2.2	Правильные значения точек		2	2		2	2
	отражения						
Задача	3.3	5					
3.3.1	Формулировка: время движение			2		1	2
	экстремально или стационарно						
3.3.2	Обоснование:					0	3
	- вблизи «стационарной» точки						
	время распространения света по						
	близким траекториям почти						
	одинаково;			1			
	- различие времен имеет второй						
	порядок малости;			1			
	- максимум интерференции	= 0				24	(5
	ИТОГО за Задание 3	70				24	65

Итоговая ведомость

Кол	работы	
КОЛ	раооты	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после				
проверки				
Подпись				
проверяющего				
Изменения				
после				
ознакомления				

Итоговые баллы		
Подпись участника		
Подпись члена жюри		