BOOK RECOMMENDATION DATA ANALYSIS

MEHNAZ SHEIKH

DATE: 01st DECEMBER 2024

TASK 1: BUILDING A RECOMMENDER SYSTEM COLLABORATIVE FILTERING WITH PROXIMITY CALCULATIONS CODE:

Generate book recommendations for all users in the dataset without metadata and save results to a CSV file.

Parameters:

```
k_1311 (int): Number of similar users to consider.top_n_1311 (int): Number of top recommendations to return for each user.output_file_1311 (str): Path to save the recommendations CSV file.
```

Returns:

None

** ** **

all recommendations 1311 = []

```
num users 1311 = sparse matrix 1311.shape[0]
  for user id 1311 in range(1, num users 1311 + 1):
    zero_indexed_user_id_1311 = user_id_1311 - 1
    distances 1311, indices 1311 =
knn 1311.kneighbors(sparse matrix 1311[zero indexed user id 1311], n neighbors=k 1311 +
1)
    similar users 1311 = indices 1311.flatten()[1:]
    similarity scores 1311 = 1 - distances 1311.flatten()[1:]
    similar users matrix 1311 = sparse matrix 1311[similar users 1311].toarray()
    weighted ratings 1311 = np.dot(similar users matrix 1311.T, similarity scores 1311)/
(similarity scores 1311.sum() + 1e-8)
    user rated books 1311 =
sparse matrix 1311[zero indexed user id 1311].toarray().flatten() > 0
    weighted ratings 1311[user rated books 1311] = 0
    recommended indices 1311 = np.argsort(-weighted ratings 1311)[:top n 1311]
    recommendation scores 1311 = weighted ratings 1311[recommended indices 1311]
    for idx 1311, score 1311 in zip(recommended indices 1311,
recommendation scores 1311):
       all recommendations 1311.append({
         "User ID": user id 1311,
         "Book ID": idx 1311,
         "Recommendation Score": score 1311
       })
    if user id 1311 \% 1000 == 0:
       print(f"Processed {user id 1311}/{num users 1311} users.")
  pd.DataFrame(all recommendations 1311).to csv(output file 1311, index=False)
  print(f"All recommendations saved to {output file 1311}")
recommend books for all users no metadata 1311(
  k 1311=10,
```

```
top_n_1311=5,
output_file_1311="recommendations_all_users.csv"
```

WHAT THE CODE DOES

The code above is used to recommend 5 books to different user, using the libSVM file that we generated in task 1 using the sparse matrix.

The first part is where we upload the file using the load_svmlight_file. Then use the cosine similarity for finding the nearest neighbor.

The recommendation logic:

- 1. For each user, find the nearest neighbor.
- 2. Aggregate the similarity score.
- 3. Exclude the books that the users have already read.
- 4. Recommend the top 5 books for every user

Save the CSV file as "Recommend all user".

CODE SCREENSHOT

OUTPUT

SELECTED FILE ON THE JUPYTER HOME SCREEN IS THE GENERATED CSV FILE THAT RECOMMENDS BOOK FOR ALL THE USERS USING THE LIBSVM FILE THAT WE CREATED IN PHASE 1

The CSV file recommends the best 5 books for each user, and all provides the recommended store for each book.