

CS 224

Fall 2023-2024

Lab 6 Preliminary Report

Hüseyin Uzun

21702559

Section 3

Part 1

No:	Cache Size KB	N way cache	Word Size in bits	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Word Block Offset Size in bits1	Byte Offset Size in bits2	Block Replacement Policy Needed (Yes/No)
1	128	1	32	4	2^13	15	13	2	2	No
2	128	4	32	16	2^9	17	9	4	2	Yes
3	128	Full	32	16	1	26	0	4	2	Yes
4	256	2	64	8	2^11	15	11	3	3	No
5	256	4	64	32	2^8	16	8	5	3	Yes
6	256	Full	16	16	1	27	0	4	1	Yes

Part 2

Memory Address	Set No.	Hit (yes/no)
Accessed (hex)		
00 00 20 24	00	No
00 00 20 42	00	No
00 00 20 68	01	No
00 00 20 04	00	No
00 00 20 0C	01	No
00 00 20 4C	01	No

Part 3

Memory Address Accessed (hex)	Set No.	Hit (yes/no)
00 00 20 2C	01	No
00 00 20 48	01	No
00 00 20 44	00	No
00 00 20 0C	01	No
00 00 20 04	00	No
00 00 20 0C	01	Yes

Part 4

a)

Physical memory = 2^32

Block offset = $log(Block size) = log(2^6) = 6$

Index size = 1024/64 = 16

16/2 = 8

There is no change to SRAM size because it only changes cache's performance.

Part 5

```
# CS224

# Lab 6 Preliminary Part 5.

# Section 3

# Hüseyin Uzun

# 21702559

.text

main:

li $v0, 4

la $a0, prompt

syscall
```

```
syscall
   move $s1, $v0
   mul $s0, $s1, $s1
   li $a0, 4
   mul $a0, $a0, $s0
   li $v0, 9
   syscall
   move $s2, $v0
   move $s7, $s0
   move $s5, $s2
   li $s6, 1
loop:
   sw $s6, 0($s5)
   addi $s7, $s7, -1
   addi $s6, $s6, 1
   addi $s5, $s5, 4
   bne $s7, $zero, loop
```

menu:

li \$v0, 4 la \$a0, menuPrompt syscall

```
li $v0, 5
  syscall
  beq $v0, $zero, exit
  beq $v0, 1, row
  beq $v0, 2, column
  beq $v0, 3, element
exit:
      li $v0, 4
      la $a0, exitPrompt
      syscall
      li $v0, 10
      syscall
row:
      move $s3, $s2
      li $t1, 4
      mul $s4, $t1, $s1
      li $t2, 0
      li $a0, 0
      move $t3, $s1
rowAddLoop:
      lw $a1, 0($s3)
      add $a0, $a0, $a1
      add $s3, $s3, $s4
```

```
subi $t3, $t3, 1
bne $t3, $zero, rowAddLoop

li $v0, 1
syscall

la $a0, comma
li $v0, 4
syscall

li $a0, 0
move $t3, $s1
addi $t2, $t2, 1
```

In \$a0, 0 move \$t3, \$s1 addi \$t2, \$t2, 1 move \$s3, \$s2 mul \$t6, \$t1, \$t2 add \$s3, \$s3, \$t6 bne \$t2, \$s1, rowAddLoop j menu

column:

move \$s3, \$s2 li \$t1, 4 mul \$s4, \$t1, \$s1 move \$t3, \$s1 move \$t4, \$s1 li \$t2, 0 li \$a0, 0

```
columnAddLoop:
      lw $a2, 0($s3)
      add $a0, $a0, $a2
      add $s3, $s3, $t1
      addi $t2, $t2, 1
      bne $t2, $s1, columnAddLoop
      li $v0, 1
      syscall
      la $a0, comma
      li $v0, 4
      syscall
      li $a0, 0
      li $t2, 0
      subi $t3, $t3, 1
      bne $t3, $zero, columnAddLoop
     j menu
element:
      move $s3, $s2
      li $t2, 4
      li $v0, 4
```

la \$a0, rowPrompt

```
syscall
```

li \$v0, 5

syscall

move \$t0, \$v0

li \$v0, 4

la \$a0, columnPrompt

syscall

li \$v0, 5

syscall

move \$t1, \$v0

addi \$t1, \$t1, -1

addi \$t0, \$t0, -1

mul \$t1, \$t1, \$s4

mul \$t0, \$t0, \$t2

add \$t1, \$t0, \$t1

add \$s3, \$s3, \$t1

li \$v0, 4

la \$a0, elementPrompt

syscall

lw \$a0, 0(\$s3)

li \$v0, 1

syscall

j menu

.data

matrix: .space 1024

prompt: .asciiz "Enter matrix size: "

exitPrompt: .asciiz "Program is done."

result: .asciiz "Summation: "

menuPrompt: .asciiz "\n1. Obtain summation of matrix elements row-major (row by row) summation\n2. Obtain summation of matrix elements column-major (column by column) summation\n3. Display desired elements of the matrix by specifying its row and column member\n0. Exit\n "

rowPrompt: .asciiz "Row: "

columnPrompt: .asciiz "Column: "

elementPrompt: .asciiz "The element is: "

comma: .asciiz ", "