6CH ELECTRONIC VOLUME WITH TONE CONTROL

DESCRIPTION

The M62446AFP is 6ch electronic volume with tone control. This IC is revised from M62446FP. The extended function of M62446AFP is volume level and tone control level. M62446AFP is easy to use more than M62446FP.

FEATURES (note) * is an extended function.

• 6ch Electric volume

Volume level: 0 to -95dB(1dB/step)*

<M62446FP:0 to -79dB(1dB/step)>

Tone control

Bass/Treble: -14dB to +14dB(2dB/step)*

<M62446FP:-10dB to +10dB(2dB/step)>

• Noise voltage: 1.5µVrms <M62446FP:2.2µVrms>

• 4 Output ports

• Bypass mode is high quality sound.

Outline 42P2R-A 0.8mm pitch 450mil ssop (8.4mm×17.5mm×2.0mm)

APPLICATION

DVD, Home Audio equipment, TV

RECOMMENDED OPERATING CONDITIONS

Supply voltage range-----±4.5 to ±7.5V(analog), 4.5 to 5.5V(digital) Recommended supply voltage-----±7.0V(analog), 5.0V(digital)

PIN CONFIGURATION AND BLOCK DIAGRAM

6CH ELECTRONIC VOLUME WITH TONE CONTROL

PIN DESCLIPTION

Pin No.	Symbol	Function	Circuit
1	OUT4	1 Unionom	
2	OUT3	D (OUTDUT	OUTPUT:PMOS Transistor
2 3	OUT2	Port OUTPUT	open drain ─ !≥
4	OUT1	•	1 to 4
5	AVDD	Analog positive Power supply	+7V
7	GNDS		***
10 12	GNDC	CND	Connect to analog CND
12	GNDR	GND	Connect to analog GND
14	GNDL		
6	SW in		
8	SR in	Valuma INDUT	6,8,9,11
9	SL in	Volume INPUT	>
11	C in		18 to $22K\Omega \geqslant \frac{1}{2} \implies 0$ 33,34,35,36
36	SW out		(TYP) ↓ □
35	SR out	Volume OUTPUT	
34	SL out	.	
33	C out		
13	R in		13 ,15
 		Tone INPUT	70KΩ 🔰 🔼
15	L in		(TYP) ▼
16	BYPASSR	L,R Volume INPUT	16,17 🔾 🗣
17	BYPASSL	in BYPASS mode	
		L OUTPUT	$70K\Omega$ \uparrow 18 to $22K\Omega$
31	Lout		(TYP) (TYP) (TYP) (TYP)
32	Rout	R OUTPUT	(TTP) (TYP) ¥ 5 31,32
18	LTRE	tone	\mathcal{A}
ļ		Treble cycle	\
25	RTRE	control	18,25
19	LBASS3		
24	RBASS3	tone	
20	LBASS2	Bass cycle	2.3KΩ 2
23	RBASS2	control	(TYP)
21	LBASS1	1	
26	RBASS1	1	19,24 20,23 21,22
22	CR2	Tone	
		OUTPUT	26,28
28	CL2		
27	CR1	. L,R	27,29 🔾 👇
29	CL1	Volume INPUT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
29 31	Lout	L OUTPUT	$70K\Omega$ 18 to $22K\Omega$ 31,32
32	Rout	R OUTPUT	(TYP) ▼ (TYP) ▼ □
30	AVSS	Analog negative Power Supply	-7V
37	AGND	Analog GND	
38	DGND	Digital GND	
39	LATCH	Latch INPUT	20 40 44
40	DATA	Data INPUT	39,40,41
		Clock INPUT	INPUT : schmitt trigger type
41	CLK	Forward data	
42	DVDD	Digital Power supply	+5V

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condition	Ratings	Unit
Voupply	0 1 1/1/1/	AVDD-AVSS	16	V
Vsupply	Supply Voltage	DVDD-DGND	7	V
Pd	Power dissipation	Ta≤25 ºC	1000	mW
Kθ	Thermal derating	Ta>25 ºC	10	mW/ºC
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +125	°C

THERMAL DERATING(MAXMUM RATING) (with the standard board)

*Standard board

• board size 70mm X 70mm

• board thickness 1.6mm

• board material glass epoxy

• copper pattern

copper thickness 18µm

copper size 0.25mm(wide) 30mm(length/lead)

RECOMMENDED OPRETING CONFITION

(Ta=25°C, unless otherwise noted.)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Analog positive Supply Voltage	AVDD		4.5	7.0	7.5	٧
Analog negative Supply Voltage	AVSS		-7.5	-7.0	-4.5	٧
Digital Supply Voltage	DVDD		4.5	5.0	5.5	V
High-level Input Voltage	VIH		DVDD×0.7	_	DVDD	٧
Low-level Input Voltage	VIL		DGND		DVDD×0.3	V

(Note) AVSS≤DGND<DVDD≤AVDD

RERATIONSHIP BETWEEN DATA AND CLOCK AND LATCH

note: CLOCK and LATCH function at raising edges of pulse.

DATA TIMING(Recommended conditions)

DIGITAL BLOCK TIMING REGULATION

_		L	imits		
Symbol	Parameter	Min	typ	Max	Unit
tcr	CLOCK cycle time	8	_	-	
t _{WHC}	CLOCK pulse width ("H"level)	3.2	-	_	
t _{WLC}	CLOCK pulse width ("L"level)	3.2	ı	-	
tr	CLOCK,DATA,LATCH rise time	-	-	0.8	
tf	CLOCK,DATA,LATCH fall time	-	-	0.8	
t_{SD}	DATA setup time	1.6	-	_	µsec
t_{HD}	DATA hold time	1.6		_	
t _{SL}	LATCH setup time	2	1	_	
t_WHL	LATCH pulse width	3.2	_	_	
t _{SC}	CLOCK start time after LACTH	3.2	_	_	

DIGITAL CONTROL SPECIFICATION

Fore kinds of input format options are available by changing slot settings of DE and DF. (When the IC is powered up , the internal settings are not fixed.)

(1)	D01	D11	D21	D31	D41	D51	D61	D71	D81	D91	DA1	DB1	DC1	DD1	DE	DF
		TONE	CON	Т	1	2	3	4	TONE CONT					TONE		
	TLEBLE				TPUT NT Hi				BASS	;		0	BYPASS :1	0	0	

(2)	D02	D12	D22	D32	D42	D52	D62	D72	D82	D92	DA2	DB2	DC2	DD2	DE	DF
			VOL	UME	Lch					V	OLUM	IE Rcl	n		0	1

(3)	D03	D13	D23	D33	D43	D53	D63	D73	D83	D93	DA3	DB3	DC3	DD3	DE	DF
			VOL	UME	Cch					V	OLUM	IE SW	/ch		1	0

(4)	D04	D14	D24	D34	D44	D54	D64	D74	D84	D94	DA4	DB4	DC4	DD4	DE	DF
			VOL	UME	SLch					V	OLUM	IE SR	ch		1	1

SETTING CODE

(1) Tone control (bass / treble)

(Note) * is an extended function.

	<u> </u>				
ATT	Treble	D01	D11	D21	D31
Α11	bass	D81	D91	DA1	DB1
* - 1	I4dB	1	1	1	1
* - 1	I2dB	1	1	0	1
- 1	I0dB	1	1	1	0
-	8dB	1	1	0	0
-	6dB	1	0	1	1
-	4dB	1	0	1	0
-	2dB	1	0	0	1
+	- 0dB	0	0	0	0
+	- 2dB	0	0	0	1
+	- 4dB	0	0	1	0
+	- 6dB	0	0	1	1
+	- 8dB	0	1	0	0
+	10dB	0	1	1	0
* +	12dB	0	1	0	1
* +	14dB	0	1	1	1

(2) Port output

D41	D51				
D61	D71				
Out:H		1			
Out:L		0			

(3) BYPASS control

DD1	
BYPASS	1
TONE	0

Note: Do not input other data than the above.

6CH ELECTRONIC VOLUME WITH TONE CONTROL

(4)-1 VOLUME (0 to -39dB) Note: Do not input other data than the above.

		Doy	D4V	Dov	Dov	DAV	DEV	DOV
A T	VOLUME	D0X	D1X	D2X	D3X	D4X	D5X	D6X
Ť		D7X	D8X	D9X	DAX	DBX	DCX	DDX
	0dB	0	0	0	0	0	0	0
	−1dB	0	0	0	0	0	0	1
	–2dB	0	0	0	0	0	1	0
	–3dB	0	0	0	0	0	1	1
	–4dB	0	0	0	0	1	0	0
	–5dB	0	0	0	0	1	0	1
	–6dB	0	0	0	0	1	1	0
	–7dB	0	0	0	0	1	1	1
	–8dB	0	0	0	1	0	0	0
	–9dB	0	0	0	1	0	0	1
	-10dB	0	0	0	1	0	1	0
	–11dB	0	0	0	1	0	1	1
	-12dB	0	0	0	1	1	0	0
	–13dB	0	0	0	1	1	0	1
	–14dB	0	0	0	1	1	1	0
	-15dB	0	0	0	1	1	1	1
	-16dB	0	0	1	0	0	0	0
	–17dB	0	0	1	0	0	0	1
	–18dB	0	0	1	0	0	1	0
	-19dB	0	0	1	0	0	1	1
	–20dB	0	0	1	0	1	0	0
	–21dB	0	0	1	0	1	0	1
	-22dB	0	0	1	0	1	1	0
	–23dB	0	0	1	0	1	1	1
	-24dB	0	0	1	1	0	0	0
	-25dB	0	0	1	1	0	0	1
	-26dB	0	0	1	1	0	1	0
	–27dB	0	0	1	1	0	1	1
	–28dB	0	0	1	1	1	0	0
	-29dB	0	0	1	1	1	0	1
	-30dB	0	0	1	1	1	1	0
	-31dB	0	0	1	1	1	1	1
	-32dB	0	1	0	0	0	0	0
	-33dB	0	1	0	0	0	0	1
	-34dB	0	1	0	0	0	1	0
	-35dB	0	1	0	0	0	1	1
	-36dB	0	1	0	0	1	0	0
	-37dB	0	1	0	0	1	0	1
	-38dB	0	1	0	0	1	1	0
	-39dB	0	1	0	0	1	1	1

6CH ELECTRONIC VOLUME WITH TONE CONTROL

(4)-2 VOLUME(-40 to - dB)

Note: Do not input other data than the above.

A T	VOLUME	D0X	D1X	D2X	D3X	D4X	D5X	D6X
Ť		D7X	D8X	D9X	DAX	DBX	DCX	DDX
	–40dB	0	1	0	1	0	0	0
	–41dB	0	1	0	1	0	0	1
	–42dB	0	1	0	1	0	1	0
	–43dB	0	1	0	1	0	1	1
	–44dB	0	1	0	1	1	0	0
	–45dB	0	1	0	1	1	0	1
	–46dB	0	1	0	1	1	1	0
	–47dB	0	1	0	1	1	1	1
	–48dB	0	1	1	0	0	0	0
	–49dB	0	1	1	0	0	0	1
	–50dB	0	1	1	0	0	1	0
	–51dB	0	1	1	0	0	1	1
	–52dB	0	1	1	0	1	0	0
	-53dB	0	1	1	0	1	0	1
	–54dB	0	1	1	0	1	1	0
	–55dB	0	1	1	0	1	1	1
	-56dB	0	1	1	1	0	0	0
	–57dB	0	1	1	1	0	0	1
	–58dB	0	1	1	1	0	1	0
	-59dB	0	1	1	1	0	1	1
	-60dB	0	1	1	1	1	0	0
	–61dB	0	1	1	1	1	0	1
	-62dB	0	1	1	1	1	1	0
	-63dB	0	1	1	1	1	1	1
	-64dB	1	0	0	0	0	0	0
	-65dB	1	0	0	0	0	0	1
	–66dB	1	0	0	0	0	1	0
	–67dB	1	0	0	0	0	1	1
	-68dB	1	0	0	0	1	0	0
	-69dB	1	0	0	0	1	0	1
	-70dB	1	0	0	0	1	1	0
	–71dB	1	0	0	0	1	1	1
	-72dB	1	0	0	1	0	0	0
	-73dB	1	0	0	1	0	0	1
\vdash	–74dB	1	0	0	1	0	1	0
	-75dB	1	0	0	1	0	1	1
	-76dB	1	0	0	1	1	0	0
	–77dB	1	0	0	1	1	0	1
-	-78dB	1	0	0	1	1	1	0
-	-79dB	1	0	0	1	1	1	1
	–∞dB	1	0	1	0	0	0	0
_			-	•	-	•	-	-

6CH ELECTRONIC VOLUME WITH TONE CONTROL

(4)-3 VOLUME (-80 to - dB)
This is an extended function from M62446FP.

_	This is an extended function from M62446FP.								
A		D0X	D1X	D2X	D3X	D4X	D5X	D6X	
T	VOLUME	D7X	D8X	D9X	DAX	DBX	DCX	DDX	
–∞dB		1	0	1	0	0	0	1	
	–∞dB	1	0	1	0	0	1	0	
	–∞dB	1	0	1	0	0	1	1	
	_								
	–∞dB	1	0	1	1	1	1	0	
	–∞dB	1	0	1	1	1	1	1	
	-80dB	1	1	0	0	0	0	0	
	-81dB	1	1	0	0	0	0	1	
	-82dB	1	1	0	0	0	1	0	
	-83dB	1	1	0	0	0	1	1	
	-84dB	1	1	0	0	1	0	0	
	-85dB	1	1	0	0	1	0	1	
	-86dB	1	1	0	0	1	1	0	
	-87dB	1	1	0	0	1	1	1	
	-88dB	1	1	0	1	0	0	0	
-89dB		1	1	0	1	0	0	1	
-90dB		1	1	0	1	0	1	0	
-91dB		1	1	0	1	0	1	1	
-92dB		1	1	0	1	1	0	0	
-93dB		1	1	0	1	1	0	1	
-94dB		1	1	0	1	1	1	0	
	–95dB	1	1	0	1	1	1	1	
	–∞dB	1	1	1	0	0	0	0	
	–∞dB	1	1	1	0	0	0	1	
	▼								
-	–∞dB	1	1	1	1	1	1	0	
	–∞dB	1	1	1	1	1	1	1	

6CH ELECTRONIC VOLUME WITH TONE CONTROL

ELECTRICAL CHARACTERISTICS

(Ta=25°C, AVDD/AVSS/DVDD=7/-7V/5V , f=1kHz,unless otherwise noted. Rg=1K Ω , RL=10K Ω , TONE CONTROL • VOL are set to 0dB/FLAT.)

(1) Power supply characteristics

Damanatan	0	Took condition	Limits			11.7
Parameter	Symbol	Test condition	Min	typ	Max	Unit
Analog positive circuit current	Aldd	Current at pin 5 No signal	1	2 2	35	mA
Analog negative circuit current	Alss	Current at pin 30 No signal	ı	22	35	mA
Digital circuit current	Dldd	Current at pin 42 No signal		1.0	2.0	mA

(2) Input / Output characteristics

			Limits			
Parameter	Symbol	Test condition	Min	typ	Max	Unit
Input resistance	Ri	13,15,16,17,27,29pin	35	70	150	ΚΩ
Maximum output voltage	VOM	6,8,9,11,13,15,16,17pinINPUT 31 to 36pinOUTPUT THD=1%	3.0	4.2		Vrms
Pass gain	Gv	Vi=0.2Vrms,FLAT ,8,9,11,13,15,16,17pinINPUT 31 to 36pinOUTPUT	-2.0	0	2.0	dB
Distortion	THD	BW=400 to 30KHz Vi=0.2Vrms , RL=10KΩ	_	0.002	0.09	%
	Vn(VOL)	31 to 36pin,Rg=0KΩ, JIS-A,VOL=0dB		1.5	6	μVrms
Output noise voltage	Vn(tone)	31,32pin JIS-A,VOL=0dB		5	20	μVrms
Maximum attenuation	ATTmax	31 to 36pin JIS-A,VOL=–∞dB		-100	-95	dB
Volume gain between channels	Dvol		-1.5	0	1.5	dB
Crosstalk between channels	СТ	Vo=0.5Vrms , RL=10K Ω ,JIS-A Rg=1K Ω		-80	-65	dB
Port output current	IL		0.2			mA

6CH ELECTRONIC VOLUME WITH TONE CONTROL

(3) Tone control characteristics

(Note) * is an expanded function.

Parameter	Symbol	Test condition		Limits		Unit
1 didilictor	-	103t donation	Min	typ	Max	Offic
	* T +14dB	Vo=0.2Vrms TLEBLE(f=10kHz), BASS(f=100Hz)	12	14	16	dB
	* T +12dB		10	12	14	dB
	T +10dB		8	10	12	dB
	T +8dB	Voltage gain (Input to pin13,15 Output from pin31,32 INPUT 13,15pin OUTPUT 31,32pin	6	8	10	dB
	T +6dB		4.5	6	7.5	dB
	T +4dB		2.5	4	5.5	dB
Tone control voltage gain	T +2dB		1	2	3	dB
Tone control voltage gain	T -2dB		-3	-2	-1	dB
	T -4dB		-5.5	-4	-2.5	dB
	T -6dB		-7.5	-6	-4.5	dB
	T -8dB		-10	-8	-6	dB
	T -10dB		-12	-10	-8	dB
	*T -12dB		-14	-12	-10	dB
	*T -14dB		-16	-14	-12	dB
Balance between channel	BALT	Input 13 ,15pin Vo=0.2Vrms Output31,32pin	-1.5	0	+1.5	dB

6CH ELECTRONIC VOLUME WITH TONE CONTROL

TEST CIRCUIT

SIGNAL PROCESSING DIAGRAM

Note.(1)The resistance value of Volume change about 18 to 22K by attenuated condition.

- (2)No built in a zero cross circuit.
- (3)When the mode changed(BYPASS/TONE), it is necessary the muting function.

APPLICATION EXAMPLE

(When using Tone control and Bypass)

DETAILED DIAGRAM OF PACKAGE OUTLINE

Keep safety first in your circuit designs!

•Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.