DATA	Distance (mm) x	Capacitance (picoFarads) y	1/r (1/Distance)	C/(3.14*Distance*Distance)
	7	1.5	0.142857143	0.009749123
	8	3	0.125	0.014928344
	9	4.5	0.111111111	0.017692852
	10	6.6	0.1	0.021019108
	11	8.7	0.090909091	0.022898352
	12	10.3	0.083333333	0.022779547

Fit -> 1.252380952

LINEST OUTPUT						
Slope ->	1.805714286	-11.38761905	<- y intercept			
			<- uncert of y-			
Uncertainty ->	0.060090634	0.58001212	int			
R^2 ->	0.995589824	0.251377159	<- Variance			
Fisher ->	902.9932178	4				
	57.06057143	0.252761905				

Distance vs. Capacitance

A1. Yes, the values are reasonable. This is further reinforced by the R^2 value approaching 1.

A2. I calculated the average capacitance to be 1.76. | 1.76 - 1.80 | = 0.4 = t. I suspect that the error comes from environmental electro-magnetic "noise". I also suspect that the data might be a little more accurate if the distances were shifted from 6mm - 11mm. The C/Area formula data suggests that some kind of "local max" is reached at approximately 11mm. Is this the limit of the "Gaussian surface"?

Randy McMillan

rmcmillan1@mail.usf.edu