

QUESTION BANK

DEFINITE INTEGRATION

MANOJ CHAUHAN SIR(IIT-DELHI)
EX. SR. FACULTY (BANSAL CLASSES)

Q.1 The value of the definite integral,
$$\int_{0}^{\sqrt{ln\left(\frac{\pi}{2}\right)}} \cos\left(e^{x^2}\right) \cdot 2x \, e^{x^2} dx \text{ is}$$

(A) 1

- (B) $1 + (\sin 1)$
- (C) $1 (\sin 1)$ (D) $(\sin 1) 1$
- The value of the definite integral $\int\limits_{0}^{\pi/2} \sin \left| \, 2x \alpha \, \right| dx \ \, \text{where} \, \, \alpha \in [0,\pi]$ Q.2
 - (A) 1

- (B) $\cos \alpha$ (C) $\frac{1+\cos \alpha}{2}$ (D) $\frac{1-\cos \alpha}{2}$
- Value of the definite integral $\int\limits_{-1/2}^{1/2}(\ sin^{-1}(3x-4x^3)-cos^{-1}(4x^3-3x)\)\,dx$ Q.3
 - (A)0
- (B) $-\frac{\pi}{2}$ (C) $\frac{7\pi}{2}$
- Let $f(x) = \int_{2}^{x} \frac{dt}{\sqrt{1+t^4}}$ and g be the inverse of f. Then the value of g'(0) is Q.4
 - (A) 1

- (B) 17
- (C) $\sqrt{17}$
- (D) none of these
- If a, b and c are real numbers then the value of $\lim_{t\to 0} ln \left(\frac{1}{t} \int_{0}^{t} (1+a\sin bx)^{c/x} dx \right)$ equals Q.5
 - (A) abc

- (B) $\frac{ab}{a}$ (C) $\frac{bc}{a}$ (D) $\frac{ca}{b}$
- The value of the definite integral $\int_{0}^{\infty} \frac{dx}{(1+x^a)(1+x^2)}$ (a>0) is Q.6
- (B) $\frac{\pi}{2}$
- (C) π
- (D) some function of a.
- Q.7 Let $a_n = \int_{1}^{\pi/2} (1-\sin t)^n \sin 2t \, dt$ then $\lim_{n\to\infty} \sum_{n=1}^n \frac{a_n}{n}$ is equal to
 - (A) 1/2

- (D) 3/2
- The value of the definite integral $\int_{\hat{x}}^{3\pi/4} ((1+x)\sin x + (1-x)\cos x) dx$, is Q.8
 - (A) $2 \tan \frac{3\pi}{g}$ (B) $2 \tan \frac{\pi}{4}$ (C) $2 \tan \frac{\pi}{g}$
- (D)0

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.18	(A) \sqrt{e} Let f be a one-to-one of the value of the definite (A) 10 Let $f(x)$ be a function so The value of the integral (A) $e - \frac{1}{2}e^2 - \frac{5}{2}$	e integral $\int_{3}^{7} f^{-1}(x) dx$ ed (B) 11 attisfying f'(x)=f(x) with	(C) e^2 th that $f(2) = 3$ and $f(5) = 4$ quals (C) 12 or $f(0) = 1$ and g be the func	(D) $e - 1$ $= 7. \text{ Given } \int_{2}^{5} f(x) dx = 17, \text{ then}$ (D) 13 etion satisfying $f(x) + g(x) = x^{2}$.
	the value of the definite (A) 10 Let $f(x)$ be a function so The value of the integral (A) $e - \frac{1}{2}e^2 - \frac{5}{2}$	e integral $\int_{3}^{7} f^{-1}(x) dx$ except (B) 11 atisfying f'(x)=f(x) with al $\int_{0}^{1} f(x)g(x) dx$ is	quals $(C) 12$ of $f(0) = 1$ and g be the fund	(D) 13 etion satisfying $f(x) + g(x) = x^2$.
Q.19	(A) 10 Let $f(x)$ be a function so The value of the integral (A) $e - \frac{1}{2}e^2 - \frac{5}{2}$	(B) 11 atisfying f'(x)=f(x) with al $\int_{0}^{1} f(x)g(x) dx$ is	(C) 12 a f(0) = 1 and g be the fund	etion satisfying $f(x) + g(x) = x^2$.
Q.19	Let $f(x)$ be a function so The value of the integral $f(x)$ $f($	atisfying $f'(x) = f(x)$ with al $\int_{0}^{1} f(x)g(x) dx$ is	f(0) = 1 and g be the fund	etion satisfying $f(x) + g(x) = x^2$.
	The value of the integral (A) $e - \frac{1}{2}e^2 - \frac{5}{2}$	al $\int_{0}^{1} f(x)g(x) dx$ is		
		(B) $e - e^2 - 3$	(C) $\frac{1}{2}$ (e – 3)	1 2 3
	g(x) dt		2	(D) $e - \frac{1}{2}e^2 - \frac{1}{2}$
Q.20	Let $f(x) = \int_0^x \sqrt{1+t^2}$	where $g(x) = \int_{0}^{\cos x} (1 + \sin x)$	$\int dt \cdot Also h(x) = e^{- x }$	and $f(x) = x^2 \sin \frac{1}{x}$ if $x \neq 0$
	and $f(0) = 0$ then $f'(\frac{1}{2})$	$\left(\frac{\pi}{2}\right)$ equals		
	(A) $l'(0)$	(B) h'(0 ⁻)	(C) h'(0 ⁺)	(D) $\lim_{x\to 0} \frac{1-\cos x}{x\sin x}$
Q.21	$\lim_{t\to 0} \int_{0}^{2\pi} \frac{ \sin(x+t)-\sin(x+t) }{ t }$	$\frac{ \mathbf{n} \mathbf{x} }{ \mathbf{d} \mathbf{x} }$ equals		
	(A) 0	(B) 1	(C) 2	(D) 4
Q.22	The value of $\int_{-1}^{1} \frac{dx}{(2-x)}$	$\frac{dx}{dx}$ is		
	(A) 0	(B) $\frac{\pi}{\sqrt{3}}$	(C) $\frac{2\pi}{\sqrt{3}}$	(D) cannot be evaluated
Q.23	$\lim_{n\to\infty} \frac{\pi}{6n} \left[\sec^2 \left(\frac{\pi}{6n} \right) + \right]$	$-\sec^2\left(2\cdot\frac{\pi}{6n}\right) + \dots + \sec^2\left(2\cdot\frac{\pi}{6n}\right)$	$e^2(n-1)\frac{\pi}{6n} + \frac{4}{3}$ has th	ne value equal to
	$(A) \frac{\sqrt{3}}{3}$	(B) $\sqrt{3}$	(C) 2	$(D) \frac{2}{\sqrt{3}}$
Q.24	For $f(x) = x^4 + x $, le	et $I_1 = \int_0^{\pi} f(\cos x) dx$ an	$dI_2 = \int_{0}^{\pi/2} f(\sin x) dx \text{ the}$	en $\frac{I_1}{I_2}$ has the value equal to
	(A) 1	(B) 1/2	(C) 2	(D) 4

Q.25 If
$$g(x) = \int_{0}^{x} \cos^{4} t dt$$
, then $g(x + \pi)$ equals

(A)
$$g(x) + g(\pi)$$
 (B) $g(x) - g(\pi)$

(B)
$$g(x) - g(\pi)$$

$$(C) g(x) g(\pi)$$

(C)
$$g(x) g(\pi)$$
 (D) $[g(x)/g(\pi)]$

Q.26
$$\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} e^{-x/2} \frac{\sqrt{1-\sin x}}{1+\cos x} dx \text{ is}$$

(A)
$$\left[e^{-\pi/2} \frac{2}{\sqrt{3}} - e^{-\pi/4} \sqrt{2} \right]$$

(B)
$$2e^{-\pi/3} \left[\frac{e^{\pi/6}}{\sqrt{3}} - 1 \right]$$

(C)
$$2e^{-\pi/2} \left(\frac{e^{\pi/3}}{\sqrt{3}} - \sqrt{2} e^{\pi/4} + e^{\pi/6} \right)$$

(D)
$$\left[2e^{-\pi/3} - \sqrt{2} e^{-\pi/4} \right]$$

Q.27 Let f be a positive function. Let
$$I_1 = \int_{1-k}^k x \, f(x(1-x)) dx$$
; $I_2 = \int_{1-k}^k f(x(1-x)) dx$, where $2k-1 > 0$. Then $\frac{I_2}{I_1}$ is

- (C) 1

(D)2

Q.28 If
$$\lim_{a\to\infty} \frac{1}{a} \int_0^\infty \frac{x^2 + ax + 1}{1 + x^4} \cdot \tan^{-1} \left(\frac{1}{x}\right) dx$$
 is equal to $\frac{\pi^2}{k}$ where $k \in \mathbb{N}$ equals

- (D)32

Q.29 Suppose that the quadratic function
$$f(x) = ax^2 + bx + c$$
 is non-negative on the interval $[-1, 1]$. Then the area under the graph of f over the interval $[-1, 1]$ and the x-axis is given by the formula

$$(A) A = f(-1) + f(1)$$

(B)
$$A = f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right)$$

(C)
$$A = \frac{1}{2} [f(-1) + 2f(0) + f(1)]$$
 (D) $A = \frac{1}{3} [f(-1) + 4f(0) + f(1)]$

(D)
$$A = \frac{1}{3} [f(-1) + 4f(0) + f(1)]$$

Q.30 If
$$\int_{0}^{f(x)} t^{2} dt = x \cos \pi x$$
, then f'(9)

- (A) is equal to $-\frac{1}{9}$ (B) is equal to $-\frac{1}{3}$ (C) is equal to $\frac{1}{3}$ (D) is non existent

Q.31 Let
$$I(a) = \int_0^{\pi} \left(\frac{x}{a} + a \sin x\right)^2 dx$$
 where 'a' is positive real. The value of 'a' for which $I(a)$ attains its minimum value is

(A)
$$\sqrt{\pi\sqrt{\frac{2}{3}}}$$

(A)
$$\sqrt{\pi \sqrt{\frac{2}{3}}}$$
 (B) $\sqrt{\pi \sqrt{\frac{3}{2}}}$ (C) $\sqrt{\frac{\pi}{16}}$

(C)
$$\sqrt{\frac{\pi}{16}}$$

(D)
$$\sqrt{\frac{\pi}{13}}$$

Q.32	Let $u = \int_{0}^{\pi/2} \cos\left(\frac{2\pi}{3}\sin^{2}\theta\right) d\theta$	$\int dx dx dv = \int dx dv$	$\int_{0}^{\pi/2} \cos\left(\frac{\pi}{3}\sin x\right) dx$, then the	relation between u and v is
	(A) 2u = v	(B) 2u = 3v	(C) u = v	(D) u = 2v

Q.33
$$\int_{0}^{1} \frac{\tan^{-1} x}{x} \, dx =$$

(A)
$$\int_{0}^{\pi/4} \frac{\sin x}{x} dx$$
 (B) $\int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (C) $\frac{1}{2} \int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (D) $\frac{1}{2} \int_{0}^{\pi/4} \frac{x}{\sin x} dx$

Q.34 Let $f(x) = \int_{3}^{x} \frac{dt}{\sqrt{t^4 + 3t^2 + 13}}$. If g(x) is the inverse of f(x) then g'(0) has the value equal to

(A)
$$\frac{1}{11}$$
 (B) 11 (C) $\sqrt{13}$ (D) $\frac{1}{\sqrt{13}}$

Q.35 Domain of definition of the function $f(x) = \int_0^x \frac{dt}{\sqrt{x^2 + t^2}}$ is

(A) R (B) R⁺ (C) R⁺ \cup {0} (D) R - {0}

Q.36 The set of values of 'a' which satisfy the equation $\int_{0}^{2} (t - \log_{2} a) dt = \log_{2} \left(\frac{4}{a^{2}}\right) is$ (A) $a \in \mathbb{R}$ (B) $a \in \mathbb{R}^{+}$ (C) a < 2 (D) a > 2

Q.37
$$\lim_{x \to \infty} \left(x^3 \int_{-1/x}^{1/x} \frac{\ln(1+t^2)}{1+e^t} dt \right)$$
 equals

(A) 1/3 (B) 2/3 (C) 1 (D) 0

Q.38 Variable x and y are related by equation $x = \int_{0}^{y} \frac{dt}{\sqrt{1+t^2}}$. The value of $\frac{d^2y}{dx^2}$ is equal to

(A)
$$\frac{y}{\sqrt{1+y^2}}$$
 (B) y (C) $\frac{2y}{\sqrt{1+y^2}}$ (D) 4y

Q.39 The value of the definite integral $\int_{-1}^{1} \frac{dx}{(1+e^x)(1+x^2)}$ is

(A) $\pi/2$ (B) $\pi/4$ (C) $\pi/8$ (D) $\pi/16$

Q.40 If f & g are continuous functions in [0, a] satisfying f(x) = f(a-x) & g(x) + g(a-x) = 4 then $\int_{0}^{a} f(x).g(x)dx =$

(A)
$$\frac{1}{2} \int_{0}^{a} f(x) dx$$
 (B) $2 \int_{0}^{a} f(x) dx$ (C) $\int_{0}^{a} f(x) dx$ (D) $4 \int_{0}^{a} f(x) dx$

Q.48 The interval [0, 4] is divided into n equal sub-intervals by the points $x_0, x_1, x_2, \dots, x_{n-1}, x_n$ where $0 = x_0 < x_1 < x_2 < x_3 \dots < x_n = 4$. If $\delta x = x_i - x_{i-1}$ for $i = 1, 2, 3, \dots$ in then $\lim_{\delta x \to 0} \sum_{i=1}^{n} x_i \delta x_i$ is equal to

(A) 4 (B) 8 (C) $\frac{32}{1000}$ (D) 16 **ETOOS Academy Pvt. Ltd.**: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.49	The absolute value of	$\int_{10}^{19} \frac{(\sin x) dx}{(1+x^8)}$ is less than	1	
	(A) 10^{-10}		(C) 10^{-7}	(D) 10 ⁻⁹
Q.50	Let $a > 0$ and let $f(x)$ is	monotonic increasing su	ch that $f(0) = 0$ and $f(a) = 0$	= b then $\int_{0}^{a} f(x) dx + \int_{0}^{b} f^{-1}(x) dx$
O 51	equals (A) $a + b$ $\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} \text{ is equal } t$	(B) ab + b	(C) ab + a	(D) ab
Q.31	$n \to \infty$ $(n!)^{1/n}$ is equal to			
	(A) e	(B) $\frac{1}{e}$	(C) 1	(D) $\int_{0}^{1} \ln x dx$
Q.52	The value of the limit,	$\lim_{n\to\infty} \int_0^1 \frac{n \cdot x^{n-1}}{1+x} dx \text{ is equ}$	uals	
	(A) 0	(B) 1/2	(C) 1	(D) non existent
Q.53	The value of the definite	e integral $\int_{19}^{37} (\{x\}^2 + 3(\sin \theta))^2$	$(2\pi x)$ dx where $\{x\}$ den	notes the fractional part function.
	(A) 0	(B) 6	(C) 9	(D) can not be determined
Q.54	If $\int_{-1/\sqrt{3}}^{1/\sqrt{3}} \frac{x^4}{1-x^4} \cos^{-1} \frac{1}{1}$	$\frac{2x}{+x^2}dx = k \int_0^{1/\sqrt{3}} \frac{x^4}{1-x^4}dx$	dx then 'k' equals	
	(A) π	(B) 2π	(C) 2	(D) 1
Q.55	$\int_{0}^{\infty} f\left(x + \frac{1}{x}\right) \cdot \frac{\ln x}{x} dx$			
		(B) is equal to one	2	(D) can not be evaluated
Q.56	The value of the definit	te integral $\int_{0}^{\pi/2} \sqrt{\tan x} dx$, is	
		V =	(C) $2\sqrt{2} \pi$	2 1 2
Q.57	Positive value of 'a' so t	that the definite integral	$\int_{a}^{a^{2}} \frac{dx}{x + \sqrt{x}} \text{ achieves the}$	smallest value is
	(A) $\tan^2\left(\frac{\pi}{8}\right)$	(B) $\tan^2\left(\frac{3\pi}{8}\right)$	(C) $\tan^2\left(\frac{\pi}{12}\right)$	(D) 0

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.67	The value of $\int_{-1}^{1} \frac{dx}{\sqrt{ x }}$	is		
	(A) $\frac{1}{2}$	(B) 2	(C) 4	(D) undefined
Q.68	$\int_{0}^{1} x \ln\left(1 + \frac{x}{2}\right) dx =$			
	$(A) \frac{3}{4} \left(1 - 2ln \frac{3}{2} \right)$	(B) $\frac{3}{2} - \frac{7}{2} \ln \frac{3}{2}$	(C) $\frac{3}{4} + \frac{1}{2} ln \frac{1}{54}$	(D) $\frac{1}{2}ln\frac{27}{2} - \frac{3}{4}$
Q.69	For $0 < x < \frac{\pi}{2}$, $\int_{1/2}^{\sqrt{3}/2} 1 dx$	$1 (e^{\cos x})$. $d(\sin x)$ is equ	al to :	
	$(A) \frac{\pi}{12}$		$(B)\frac{\pi}{6}$	
	(C) $\frac{1}{4} \left[\left(\sqrt{3} - 1 \right) + \left(\sin \sqrt{3} - 1 \right) \right]$	-sin1)]	(D) $\frac{1}{4} \left[\left(\sqrt{3} - 1 \right) - \left(\sin \sqrt{3} - 1 \right) \right]$	-sin1)]
Q.70	The true solution set o	f the inequality, $\sqrt{5x-6}$	$\frac{1}{-x^2} + \left(\frac{\pi}{2} \int_0^x dz\right) > x \int_0^{\pi} si$	$n^2 x dx is:$
	(A) R	(B) (1, 6)	(C)(-6,1)	(D)(2,3)
Q.71	The integral, $\int_{\pi/4}^{5\pi/4} (\cos \theta ^{2}) d\theta$	st sin t + sin t cos t) dt	t has the value equal to	
	(A) 0	(B) 1/2	(C) $1/\sqrt{2}$	(D) 1
Q.72	The value of the defini	te integral $\int_{0}^{\pi/2} \sin x \sin 2$	x sin 3x dx is equal to:	
	3	(B) $-\frac{2}{3}$	3	O
Q.73	If the value of the def (A) $2 = \sqrt{2}$	inite integral $\int_{\pi/6}^{\pi/4} \frac{1 + co}{e^x \sin^2 \theta}$	$\frac{t \times dx}{1 \times dx}$, is equal to ae ^{-$\pi/6$}	+ be ^{-$\pi/4$} then (a + b) equals (D) $2\sqrt{3} - \sqrt{2}$
				e following statement(s) is/are
Q.74	ture ?	v		
	$(A) U_n = 2^n V_n$	(B) $U_n = 2^{-n} V_n$		(D) $U_n = 2^{-2n} V_n$
Q.75	Let S (x) = $\int_{x^2}^{x^3} \ln t dt$	$(x > 0)$ and $H(x) = \frac{S'(x)}{x}$	$\frac{(x)}{x}$. Then $H(x)$ is:	
	(A) continuous but not	derivable in its domain	(B) derivable and co	ontinuous in its domain

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

(C) neither derivable nor continuous in its domain (D) derivable but not continuous in its domain.

Q.76 Let
$$f(x) = \frac{\sin x}{x}$$
, then $\int_{0}^{\pi/2} f(x) f\left(\frac{\pi}{2} - x\right) dx =$

(A)
$$\frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

(B)
$$\int_{0}^{\pi} f(x) dx$$

(C)
$$\pi \int_{0}^{\pi} f(x) dx$$

(D)
$$\frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

(A) $\frac{2}{\pi} \int_{0}^{\pi} f(x) dx$ (B) $\int_{0}^{\pi} f(x) dx$ (C) $\pi \int_{0}^{\pi} f(x) dx$ (D) $\frac{1}{\pi} \int_{0}^{\pi} f(x) dx$ [REASONING TYPE]

Q.77 **Statement-1:** If
$$f(x) = \int_{0}^{1} (x f(t) + 1) dt$$
, then $\int_{0}^{3} f(x) dx = 12$

because

Statement-2: f(x) = 3x + 1

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

Q.78 Consider I =
$$\int_{-\pi/4}^{\pi/4} \frac{dx}{1 - \sin x}$$

because

Statement-2: $\int_{-a}^{a} f(x) dx = 0$, wherever f(x) is an odd function

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.
- **Statement-1:** The function $f(x) = \int_{0}^{x} \sqrt{1+t^2} dt$ is an odd function and g(x) = f'(x) is an even function. Q.79 because

Statement-2: For a differentiable function f(x) if f'(x) is an even function then f(x) is an odd

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (D) Statement-1 is false, statement-2 is true. (C) Statement-1 is true, statement-2 is false.
- Given $f(x) = \sin^3 x$ and P(x) is a quadratic polynomial with leading coefficient unity. Q.80

Statement-1:
$$\int_{0}^{2\pi} P(x) \cdot f''(x) dx \text{ vanishes.}$$

because

Statement-2:
$$\int_{0}^{2\pi} f(x) dx \text{ vanishes}$$

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

[COMPREHENSION TY

Paragraph for Question Nos. 81 to 83

Suppose $\lim_{t \to \infty} \frac{\int_0^x \frac{t^2 dt}{(a+t^r)^{1/p}}}{1-t^r} = l$ where $p \in \mathbb{N}, p \ge 2, a > 0, r > 0$ and $b \ne 0$.

Q.81 If *l* exists and is non zero then

(A)
$$b > 1$$

(B)
$$0 < b < 1$$

(C)
$$b < 0$$

(D)
$$b = 1$$

Q.82 If p = 3 and l = 1 then the value of 'a' is equal to

(D)
$$3/2$$

If p = 2 and a = 9 and l exists then the value of l is equal to Q.83

(B)
$$2/3$$

Paragraph for Question Nos. 84 to 86

Let the function *f* satisfies

$$f(x) \cdot f'(-x) = f(-x) \cdot f'(x)$$
 for all x and $f(0) = 3$.

The value of $f(x) \cdot f(-x)$ for all x, is Q.84

Q.85 $\int_{c_1}^{51} \frac{dx}{3 + f(x)}$ has the value equal to

Q.86 Number of roots of f(x) = 0 in [-2, 2] is

(B)
$$1$$

Paragraph for Question Nos. 87 to 89

Suppose f(x) and g(x) are two continuous functions defined for $0 \le x \le 1$.

Given
$$f(x) = \int_0^1 e^{x+t} \cdot f(t) dt$$
 and $g(x) = \int_0^1 e^{x+t} \cdot g(t) dt + x$.

Q.87 The value of f(1) equals

$$(C) e^{-1}$$

The value of g(0)-f(0) equals Q.88

(A)
$$\frac{2}{3-e^2}$$

(A)
$$\frac{2}{3-e^2}$$
 (B) $\frac{3}{e^2-2}$ (C) $\frac{1}{e^2-1}$

(C)
$$\frac{1}{e^2 - 1}$$

Q.89 The value of $\frac{g(0)}{g(2)}$ equals $(B) \frac{1}{3}$

(B)
$$\frac{1}{3}$$

(C)
$$\frac{1}{e^2}$$

(C)
$$\frac{1}{e^2}$$
 (D) $\frac{2}{e^2}$

Paragraph for Question Nos. 90 to 91

Consider the function defined on $[0, 1] \rightarrow R$

$$f(x) = \frac{\sin x - x \cos x}{x^2}$$
 if $x \neq 0$ and $f(0) = 0$

Q.90
$$\int_{0}^{1} f(x) dx \text{ equals}$$

- (A) $1 \sin(1)$ (B) $\sin(1) 1$ (C) $\sin(1)$
- $(D)-\sin(1)$

Q.91
$$\lim_{t \to 0} \frac{1}{t^2} \int_0^t f(x) dx$$
 equals

- (A) 1/3
- (B) 1/6
- (C) 1/12
- (D) 1/24

Paragraph for Question Nos. 92 to 94

Suppose a and b are positive real numbers such that ab = 1. Let for any real parameter t, the distance from the origin to the line $(ae^t)x + (be^{-t})y = 1$ be denoted by D(t) then

The value of the definite integral $I = \int_{0}^{1} \frac{dt}{(D(t))^{2}}$ is equal to

(A)
$$\frac{e^2 - 1}{2} \left(b^2 + \frac{a^2}{e^2} \right)$$

(B)
$$\frac{e^2 + 1}{2} \left(a^2 + \frac{b^2}{e^2} \right)$$

(C)
$$\frac{e^2-1}{2}\left(a^2+\frac{b^2}{e^2}\right)$$

(D)
$$\frac{e^2+1}{2}\left(b^2+\frac{a^2}{e^2}\right)$$

[5]

Q.93 The value of 'b' at which I is minimum, is

- (A) e
- (B) $\frac{1}{e}$ (C) $\frac{1}{\sqrt{e}}$

[4]

Minimum value of I is 0.94

$$(A) e - 1$$

(A)
$$e - 1$$
 (B) $e - \frac{1}{e}$

(D)
$$e + \frac{1}{e}$$

[3]

[MULTIPLE OBJECTIVE TYPE]

Which of the following definite integral(s) vanishes 0.95

(A)
$$\int_{0}^{\pi/2} ln(\cot x) dx$$

(B)
$$\int_{0}^{2\pi} \sin^3 x \, dx$$

(C)
$$\int_{1/e}^{e} \frac{dx}{x (\ln x)^{1/3}}$$

(A)
$$\int_{0}^{\pi/2} ln(\cot x) dx$$
 (B) $\int_{0}^{2\pi} \sin^3 x dx$ (C) $\int_{1/e}^{e} \frac{dx}{x (ln x)^{1/3}}$ (D) $\int_{0}^{\pi} \sqrt{\frac{1 + \cos 2x}{2}} dx$

The equation $10x^4 - 3x^2 - 1 = 0$ has 0.96

- (A) at least one root in (-1, 0)
- (B) at least one root in (0, 1)
- (C) at least two roots in (-1, 1)
- (D) no root in (-1, 1)

Which of the following are true?

(A)
$$\int_{a}^{\pi-a} x \cdot f(\sin x) dx = \frac{\pi}{2} \cdot \int_{a}^{\pi-a} f(\sin x) dx$$
 (B) $\int_{-a}^{a} f(x)^{2} dx = 2 \cdot \int_{0}^{a} f(x)^{2} dx$

(B)
$$\int_{-a}^{a} f(x)^{2} dx = 2$$
. $\int_{0}^{a} f(x)^{2} dx$

(C)
$$\int_{0}^{n\pi} f(\cos^{2} x) dx = n$$
. $\int_{0}^{\pi} f(\cos^{2} x) dx$ (D) $\int_{0}^{b-c} f(x+c) dx = \int_{c}^{b} f(x) dx$

(D)
$$\int_{0}^{b-c} f(x+c) dx = \int_{c}^{b} f(x) dx$$

Q.98 The value of $\int_{0}^{1} \frac{2x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} dx$ is:

$$(A)\frac{\pi}{4} + 2 \ln 2 - \tan^{-1} 2$$

(B)
$$\frac{\pi}{4}$$
 + 2 ln2 - tan⁻¹ $\frac{1}{3}$

(C)
$$2 \ln 2 - \cot^{-1} 3$$

(D)
$$-\frac{\pi}{4} + \ln 4 + \cot^{-1} 2$$

Q.99 Suppose $I_1 = \int_{0}^{\pi/2} \cos(\pi \sin^2 x) dx$; $I_2 = \int_{0}^{\pi/2} \cos(2\pi \sin^2 x) dx$ and $I_3 = \int_{0}^{\pi/2} \cos(\pi \sin x) dx$, then

$$(A) I_1 = 0$$

(B)
$$I_2 + I_3 = 0$$

(C)
$$I_1 + I_2 + I_3 = 0$$

(D)
$$I_2 = I_3$$

Q.100 If $I_n = \int_0^1 \frac{dx}{(1+x^2)^n}$; $n \in \mathbb{N}$, then which of the following statements hold good?

(A)
$$2n I_{n+1} = 2^{-n} + (2n-1) I_n$$

(B)
$$I_2 = \frac{\pi}{8} + \frac{1}{4}$$

(C)
$$I_2 = \frac{\pi}{8} - \frac{1}{4}$$

(D)
$$I_3 = \frac{\pi}{16} - \frac{5}{48}$$

Q.101 If $f(x) = \int_{1}^{x} \frac{\ln t}{1+t} dt$ where x > 0 then the value(s) of x satisfying the equation,

$$f(x) + f(1/x) = 2$$
 is:

(C)
$$e^{-2}$$

$$(D) e^2$$

Q.102 Let $f(x) = \int_{-1}^{1} (1 - |t|) \cos(xt) dt$ then which of the following hold true?

(A) f(0) is not defined

(B) $\lim_{x\to 0} f(x)$ exists and equals 2

(C) $\underset{x\to 0}{\text{Lim}} f(x)$ exists and is equal to 1

(D) f(x) is continuous at x = 0

Q.103 The function f is continuous and has the property

f(f(x)) = 1 - x for all $x \in [0, 1]$ and $J = \int_{0}^{x} f(x) dx$ then

(A)
$$f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right) = 1$$

(B) the value of J equal to $\frac{1}{2}$

(C)
$$f\left(\frac{1}{3}\right) \cdot f\left(\frac{2}{3}\right) = 1$$

(D)
$$\int_{0}^{\pi/2} \frac{\sin x \, dx}{(\sin x + \cos x)^3}$$
 has the same value as J

Q.104 Let f(x) is a real valued function defined by:

$$f(x) = x^2 + x^2 \int_{-1}^{1} t \cdot f(t) dt + x^3 \int_{-1}^{1} f(t) dt$$

then which of the following hold(s) good?

(A)
$$\int_{-1}^{1} t \cdot f(t) dt = \frac{10}{11}$$

(B)
$$f(1) + f(-1) = \frac{30}{11}$$

$$(C)\int\limits_{-1}^{1}t\cdot f(t)dt>\int\limits_{-1}^{1}f(t)dt$$

(D)
$$f(1) - f(-1) = \frac{20}{11}$$

Q.105 Let f(x) and g(x) are differentiable function such that $f(x) + \int_{0}^{x} g(t) dt = \sin x (\cos x - \sin x)$, and $(f'(x))^{2} + (g(x))^{2} = 1$ then f(x) and g(x) respectively, can be

$$(A) \frac{1}{2} \sin 2x, \sin 2x$$

(B)
$$\frac{\cos 2x}{2}$$
, $\cos 2x$

(C)
$$\frac{1}{2}\sin 2x$$
, $-\sin 2x$

(D)
$$-\sin^2 x$$
, $\cos 2x$

Q.106 Let $f(x) = \int_{-x}^{x} (t \sin at + bt + c) dt$ where a,b, c are non zero real numbers, then $\lim_{x \to 0} \frac{f(x)}{x}$ is

(A) independent of a

- (B) independent of a and b and has the value equals to c.
- (C) independent a, b and c.
- (D) dependent only on c.

Q.107 Let L = $\lim_{n\to\infty} \int_{a}^{\infty} \frac{n \, dx}{1 + n^2 x^2}$ where $a \in R$ then L can be

- (A) π
- (B) $\frac{\pi}{2}$
- (C)

(D) 1

[MATCH THE COLUMN]

Q.108 Column I (A) Suppose, $f(n) = \log_2(3) \cdot \log_3(4) \cdot \log_4(5) \dots \log_{n-1}(n)$

then the sum $\sum_{k=1}^{100} f(2^k)$ equals

(P) 5010

Column II

(B Let $f(x) = \sqrt{1 + x\sqrt{1 + (x+1)\sqrt{1 + (x+2)(x+4)}}}$

(Q) 5050

then $\int_{0}^{100} f(x) dx$ is

(R) 5100

(C In an A.P. the series containing 99 terms, the sum of all the odd numbered terms is 2550. The sum of all the 99 terms of the A.P. is

(S) 5049

(D) $\lim_{x\to 0} \frac{\prod_{r=1}^{100} (1+rx)-1}{x}$ equals

Q.109 Let $\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} (\sin x + \sin ax)^2 dx = L \text{ then}$

	Column I	Column II		
(A)	for $a = 0$, the value of L is	(P)	0	
(B)	for $a = 1$ the value of L is	(Q)	1/2	
(C)	for $a = -1$ the value of L is	(R)	1	
(D)	$\forall a \in R - \{-1, 0, 1\}$ the value of L is	(S)	2	

Q.110 Column I Column II

(A) The function
$$f(x) = \frac{e^{x \cos x} - 1 - x}{\sin x^2}$$
 is not defined at $x = 0$. (P) -1
The value of $f(0)$ so that f is continuous at $x = 0$ is

(B) The value of the definite integral
$$\int_{0}^{1} \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$
 equals $a + b \ln 2$ (Q) 0

(C) Given
$$e^n \int_0^n \frac{\sec^2 \theta - \tan \theta}{e^{\theta}} d\theta = 1$$
 then the value of $\tan (n)$ is equal to (R) 1/2

(D) Let
$$a_n = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \tan^{-1}(nx) dx$$
 and $b_n = \int_{\frac{1}{n+1}}^{\frac{1}{n}} \sin^{-1}(nx) dx$ then (S) 1

 $\lim_{n\to\infty}\frac{a_n}{b_n} \text{ has the value equal to}$

where a and b are integers then (a + b) equals

Q.111 Column–II Column–II

(A) If
$$f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1+t^3}}$$
 where $g(x) = \int_{0}^{\cos x} (1+\sin t^2)dt$ (P) 3

then the value of f' $(\pi/2)$

(B) If
$$f(x)$$
 is a non zero differentiable function such that (Q) 2

$$\int_{0}^{x} f(t)dt = (f(x))^{2} \text{ for all } x, \text{ then } f(2) \text{ equals}$$
 (R) 1

(C) If
$$\int_{a}^{b} (2+x-x^2) dx$$
 is maximum then $(a+b)$ is equal to (S) -1

(D) If
$$\lim_{x\to 0} \left(\frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0$$
 then $(3a+b)$ has the the value equal to

Q.112 Column-II Column-II

(A)
$$\lim_{x\to 0} \frac{1}{\sin x} \int_{0}^{\ln(1+x)} (1-\tan 2y)^{1/y} dy$$
 equals (P) 1

(B)
$$\lim_{x \to \infty} (e^{2x} + e^x + x)^{1/x} \text{ equals}$$
 (Q) e

(C) Let
$$f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2 x^2}$$
 then $\lim_{x \to 0} f(x)$ equals (R) e^2 (S) e^{-2}

Q.113 Let $f(\theta) = \int_{0}^{1} (x + \sin \theta)^2 dx$ and $g(\theta) = \int_{0}^{1} (x + \cos \theta)^2 dx$ where $\theta \in [0, 2\pi]$.

The quantity $f(\theta) - g(\theta) \forall \theta$ in the interval given in **column-I**, is

Column-I

(A) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ (P) negative

Column-II

(B)
$$\left(\frac{3\pi}{4}, \pi\right]$$
 (Q) positive

(C)
$$\left[\frac{3\pi}{2}, \frac{7\pi}{4}\right]$$
 (R) non negative

(D)
$$\left(0, \frac{\pi}{4}\right) \cup \left(\frac{7\pi}{4}, 2\pi\right)$$
 (S) non positive

Q.114 Column-II Column-II

(A)
$$\int_{0}^{1} (1 + (2008)x^{2008}) e^{x^{2008}} dx \text{ equals}$$
 (P) e^{-1}

(B) The value of the definite integral
$$\int_{0}^{1} e^{-x^{2}} dx + \int_{1}^{1/e} \sqrt{-\ln x} dx \text{ is equal to} \qquad (Q) \qquad e^{-1/4}$$

(C)
$$\lim_{n\to\infty} \left(\frac{1^1 \cdot 2^2 \cdot 3^3 \dots (n-1)^{n-1} \cdot n^n}{n^{1+2+3+\dots+n}} \right)^{\frac{1}{n^2}} \text{ equals}$$
 (R) $e^{1/2}$ (S) $e^{1/2}$

Q.115 Column-II Column-II

(A)
$$\int_{0}^{\pi} x \left(\sin^{2}(\sin x) + \cos^{2}(\cos x) \right) dx$$

(B)
$$\int_{0}^{\pi} \frac{x \, dx}{1 + \sin^2 x}$$
 (Q) $\frac{\pi^2}{2}$

(C)
$$\int_{0}^{\pi^{2}/4} \left(2\sin\sqrt{x} + \sqrt{x}\cos\sqrt{x}\right) dx \text{ equals}$$
 (R)
$$\frac{\pi^{2}}{4}$$

(S)
$$\frac{\pi^2}{2\sqrt{2}}$$

(P)

Q.116 Column-II Column-II

(A) Let
$$f(x) = \int x^{\sin x} (1 + x \cos x \cdot \ln x + \sin x) dx$$
 and $f(\frac{\pi}{2}) = \frac{\pi^2}{4}$ (P) rational then the value of $f(\pi)$ is

(B) Let
$$g(x) = \int \frac{1 + 2\cos x}{(\cos x + 2)^2} dx$$
 and $g(0) = 0$ (Q) irrational

then the value of
$$g\left(\frac{\pi}{2}\right)$$
 is (R) integral

(C) If real numbers x and y satisfy
$$(x + 5)^2 + (y - 12)^2 = (14)^2$$
 then the minimum value of $\sqrt{(x^2 + y^2)}$ is (S) prime

(D) Let
$$k(x) = \int \frac{(x^2 + 1) dx}{\sqrt[3]{x^3 + 3x + 6}}$$
 and $k(-1) = \frac{1}{\sqrt[3]{2}}$ then the value of $k(-2)$ is

ANSWERS

[SINGLE OBJECTIVE TYPE]

Q.1	C	Q.2	A	Q.3	В	Q.4	C	Q.5	A	Q.6	A	Q.7	A
Q.8	A	Q.9	D	Q.10	D	Q.11	A	Q.12	В	Q.13	В	Q.14	C
Q.15	C	Q.16	C	Q.17	A	Q.18	C	Q.19	D	Q.20	C	Q.21	D
Q.22	В	Q.23	A	Q.24	C	Q.25	A	Q.26	D	Q.27	D	Q.28	C
Q.29	D	Q.30	A	Q.31	A	Q.32	A	Q.33	C	Q.34	В	Q.35	D
Q.36	В	Q.37	A	Q.38	В	Q.39	В	Q.40	В	Q.41	C	Q.42	A
Q.43	A	Q.44	A	Q.45	D	Q.46	D	Q.47	C	Q.48	В	Q.49	C
Q.50	D	Q.51	A	Q.52	В	Q.53	В	Q.54	A	Q.55	A	Q.56	В
Q.57	A	Q.58	D	Q.59	D	Q.60	В	Q.61	C	Q.62	D	Q.63	В
Q.64	A	Q.65	D	Q.66	A	Q.67	C	Q.68	A	Q.69	A	Q.70	D
Q.71	A	Q.72	D	Q.73	A	Q.74	C	Q.75	В	Q.76	A	Q.77	C
Q.78	D	Q.79	C	Q.80	A	Q.81	D	Q.82	A	Q.83	В	Q.84	В
Q.85	A	Q.86	A	Q.87	A	Q.88	A	Q.89	В	Q.90	A	Q.91	В
Q.92	C	Q.93	D	Q.94	В								

[MULTIPLE OBJECTIVE TYPE]

Q.95 ABC	Q.96 ABC	Q.97 ABCD	Q.98 ACD	Q.99 ABC
Q.100 AB	Q.101 CD	Q.102 CD	Q.103 ABD	Q.104 BD
Q.105 CD	Q.106 AD	Q.107 ABC		

[MATCH THE COLUMN]

- Q.108 (A) S; (B) R; (C) S; (D) Q
- Q.109 (A) Q; (B) S; (C) P; (D) R
- Q.110 (A) R; (B) P; (C) S; (D) R
- Q.111 (A) S; (B) R; (C) R; (D) Q
- Q.112 (A) S; (B) R; (C) P; (D) Q, R
- Q.113 (A) Q; (B) R; (C) S; (D) P
- Q.114 (A) S; (B) P; (C) Q
- Q.115 (A) Q; (B) S; (C) Q
- Q.116~(A)~Q;~(B)~P;~(C)~P,~R;~(D)~P,~R,~S