

Discovering the intrinsic structure of ciliary motion

Joseph Monaco^{1*}, Maurice Marx², Chakra Chennubhotla^{2*}

¹TECBio REU @ Pitt, Dept. of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260

²Dept. of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260

*Dept. of Computer Science, University of Pittsburgh, Pittsburgh, PA, 15260

Goal

Quantify ciliary motion in terms of motion primitives via clustering and discover motion primitives indicative of abnormal ciliary motion

Types of Cilia

- Motile or immotile
- Motile cilia in respiratory tract beat in two steps
 - Power stroke
 - Recovery stroke

Ciliary Motion - Ciliopathies

Sinopulmonary disease

- Heterotaxy/Kartagener's
- Congenital heart disease

Manual detection of abnormal ciliary motion

Visual examination by experts in detecting ciliary beat abnormalities

Electron microscopy

Ciliary beat frequency

Approach

Dataset

• 78 patients

Nasal brush biopsy

• Labeled by clinicians on a discrete scale from 1-4

Optical Flow

- Apparent motion of objects between two frames
- Horizontal change and vertical change

Trajectories

- Describe ciliary motion as trajectories
- Dense trajectories

$$P_{t+1} = (x_{t+1}, y_{t+1}) = (x_t, y_t) + (M * \omega_t)|_{(x_t, y_t)}$$

$$P_1, P_2, P_3, ..., P_M$$

Feature Engineering

Average velocity

Trajectory mean

Curvature

Features – average velocity/trajectory mean

Clustering

- dbscan for each feature space
- Cluster fusion
 - Pick median feature
 - Combine clusters by picking largest intersection with median feature

Dynamic time warping

https://en.wikipedia.org/wiki/Dynamic_time_warping

Dynamic time warping – avg trajectory

Clustering – trajectories average velocity

- Trajectory points (x, y, t)
- Labeled according to average velocity clustering
- Location and velocity related

Clustering – final trajectories

 Trajectory visualization

 Labeled according to their final cluster

Cilia ratio in each cluster

Label	Cluster 0	Cluster 1	Cluster 2	Cluster 3
1 – most normal	0.846	0.698	0.513	0.000
2	0.000	0.000	0.000	0.000
3	0.043	0.067	0.128	0.000
4 – most abnormal	0.110	0.235	0.358	1.000

- 4 clusters discovered intrinsic motion patterns
- Little variability in abnormal motion
- Stronger variability in normal motion
 - Historically categorized as power/recovery stroke

Future Directions

• Show clusters to clinicians to refine clusters

Use topic modeling for cluster ratio

Acknowledgements

- Mentor Dr. Chakra Chennubhotla
- Maurice Marx
- Dr. Sherif Khattab
- NSF
- You!

• Questions?