Project Documentation

Project Title: Predicting Life Expectancy using Machine Learning

Intern Name: Khwaja Bilkhis

Index

S.no	Topic	Page
1	INTRODUCTION	2
	1.1 Overview	2
	1.2 Purpose	2
2	LITERATURE SURVEY	2
	2.1 Existing problem	2
	2.2 Proposed solution	2
3	THEORITICAL ANALYSIS	3
	3.1 Block diagram	3
	3.2 Hardware / Software designing	4
4	EXPERIMENTAL INVESTIGATIONS	5
5	RESULT	6
6	ADVANTAGES & DISADVANTAGES	8
7	APPLICATIONS	8
8	CONCLUSION	8
9	FUTURE SCOPE	8
10	BIBILOGRAPHY	9
	APPENDIX	10
	A. Source code	10

1. Introduction

1.1 Overview

A typical Regression Machine Learning project leverages historical data to predict insights into the future. This problem statement is aimed at predicting Life Expectancy rate of a country given various features.

1.2 Purpose

Life expectancy is a statistical measure of the average time a human being is expected to live, Life expectancy depends on various factors: Regional variations, Economic Circumstances, Sex Differences, Mental Illnesses, Physical Illnesses, Education, Year of their birth and other demographic factors. This problem statement provides a way to predict average life expectancy of people living in a country when various factors such as year, GDP, education, alcohol intake of people in the country, expenditure on healthcare systems and some specific disease related deaths that happened in the country are given.

2. Literature Survey

2.1 Existing Problem

Although there have been many studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that the effect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries.

2.2 Proposed Solution

This model resolves both the factors stated above by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this model will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its

3. Theoretical analysis

3.1 Block Diagram

3.2 Hardware/Software Designing

4.Experimental Investigations

	Year	Life expe ctanc y	Adult Morta lity	infant death s	Alcoh ol	perce ntage expen diture	Hepat itis B	Measle s	ВМІ	under -five death s	Polio	Total expe nditu re	Dipht heria	HIV/A IDS	GDP	Popul ation	thinn ess 1-19 years	thinn ess 5-9 years	Inco me comp ositio n of resou rces	Scho oling
cou	2938 .000 000	2928. 00000 0	2928. 00000 0	2938. 00000 0	2744. 00000 0	2938.0 00000	2385. 00000 0	2938.0 00000	2904. 00000 0	2938. 00000 0	2919. 00000 0	2712. 0000 0	2919. 00000 0	2938. 00000 0	2490.0 00000	2.2860 00e+0 3	2904. 00000 0	2904. 00000 0	2771. 00000 0	2775. 00000 0
mea n	2007 .518 720	69.22 4932	164.7 96448	30.30 3948	4.602 861	738.25 1295	80.94 0461	2419.5 92240	38.32 1247	42.03 5739	82.55 0188	5.938 19	82.32 4084	1.742 103	7483.1 58469	1.2753 38e+0 7	4.839 704	4.870 317	0.627 551	11.99 2793
std	4.61 3841	9.523 867	124.2 92079	117.9 26501	4.052 413	1987.9 14858	25.07 0016	11467. 272489	20.04 4034	160.4 45548	23.42 8046	2.498 32	23.71 6912	5.077 785	14270. 169342	6.1012 10e+0 7	4.420 195	4.508 882	0.210 904	3.358 920
min	2000 .000 000	36.30 0000	1.000 000	0.000 000	0.010 000	0.0000 00	1.000 000	0.0000 00	1.000 000	0.000 000	3.000 000	0.370 00	2.000 000	0.100 000	1.6813 50	3.4000 00e+0 1	0.100 000	0.100 000	0.000 000	0.000
25%	2004 .000 000	63.10 0000	74.00 0000	0.000 000	0.877 500	4.6853 43	77.00 0000	0.0000 00	19.30 0000	0.000 000	78.00 0000	4.260 00	78.00 0000	0.100 000	463.93 5626	1.9579 32e+0 5	1.600 000	1.500 000	0.493 000	10.10 0000
50%	2008 .000 000	72.10 0000	144.0 00000	3.000 000	3.755 000	64.912 906	92.00 0000	17.000 000	43.50 0000	4.000 000	93.00 0000	5.755 00	93.00 0000	0.100 000	1766.9 47595	1.3865 42e+0 6	3.300 000	3.300 000	0.677 000	12.30 0000
75%	2012 .000 000	75.70 0000	228.0 00000	22.00 0000	7.702 500	441.53 4144	97.00 0000	360.25 0000	56.20 0000	28.00 0000	97.00 0000	7.492 50	97.00 0000	0.800 000	5910.8 06335	7.4203 59e+0 6	7.200 000	7.200 000	0.779 000	14.30 0000
max	2015 .000 000	89.00 0000	723.0 00000	1800. 00000 0	17.87 0000	19479. 91161 0	99.00 0000	212183 .00000 0	87.30 0000	2500. 00000 0	99.00 0000	17.60 000	99.00 0000	50.60 0000	119172 .74180 0	1.2938 59e+0 9	27.70 0000	28.60 0000	0.948 000	20.70 0000

5. Result

The obtained Regression model has following coefficients for every feature considered

	Coefficient
	Coefficient
Adult Mortality	-1.626953e-02
infant deaths	8.389445e-02
Alcohol	-7.817120e-02
percentage expenditure	4.462377e-04
ВМІ	3.177180e-02
under-five deaths	-6.386235e-02
Polio	7.904515e-03

Total expenditure	7.659089e-02				
Diphtheria	1.583841e-02				
Hepatitis B	-7.400443e-03				
HIV/AIDS	-4.430984e-01				
GDP	9.786084e-06				
Population	-3.302396e-11				
thinness 1-19 years	-6.452201e-02				
Income composition of resources	1.023292e+01				
Schooling	8.880559e-01				

Model Evaluation

MAE: 2.6021747066702856 MSE: 11.403838201944144 RMSE: 3.3769569440465395 R^2: 0.852399041924826

Actual Vs Predicted Result

6. Advantages and Disadvantages

<u>Advantages</u>

- Immunization and human development index are considered
- Utilizes past data to predict future values
- Assists countries figure out factors affecting the health of their population

<u>Disadvantages</u>

- Results can never be 100% accurate.
- There might be other factors which are affecting Life Expectancy and not included in this model.
- There might be a more complex and hybrid model which can require data set larger than current ones and can give more accurate results.

7. Applications

- Timely recognition of the right moment to start Advance Care Planning
- We can see how different economics impact health

8. Conclusion

The project tries to create a model based on data provided by the World Health Organization (WHO) to evaluate the life expectancy of human beings. The data offers a time frame from 2000 to 2015. The data originates from here:

https://www.kaggle.com/kumarajarshi/life-expectancy-who/data.

Here, Linear Regression algorithm is used in building a model to predict the life expectancy. In order to build this model IBM Cloud Services were used. In IBM Cloud Services, Watson Studio was used to create a python notebook which contained the main python code. Then, Node-RED flow was created where the UI for the model was designed and finally ML services were integrated with Node-RED.

9. Future Scope

- Increase R² Score of the model by using Cross Validation
- Insert feature 'Country' in the Regression Model
- Use multiple data sets to build Regression model

10.Bibliography

IISPS_INT_3269_Predicting Life Expectancy using Machine Learning

- https://www.kaggle.com/kumarajarshi/life-expectancy-who
- https://bookdown.org/caoying4work/watsonstudio-workshop/jn.html
- https://www.ibm.com/watson/products-services
- https://developer.ibm.com/technologies/machine-learning/series/learning-path-machine-learning-for-developers/

Appendix

A. Source Code

```
import types
  import pandas as pd
  from botocore.client import Config
   import ibm boto3
5 import matplotlib.pyplot as plt
   import numpy as np
7 import seaborn as sns
8 %matplotlib inline
9
10 def iter (self): return 0
11
12 # @hidden cell
13 # The following code accesses a file in your IBM Cloud Object Storage. It includes your
   credentials.
14 # You might want to remove those credentials before you share the notebook.
15 client cf4cd54841054407ab5e5bdef2945f2e = ibm boto3.client(service name='s3',
16
     ibm api key id='4v6P7 fYbOwBhyA99cccTi4WiEbQ11pT8DiaGBv41OW-',
17
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
18
     config=Config(signature version='oauth'),
19
     endpoint url='https://s3.eu-geo.objectstorage.service.networklayer.com')
20
21 body =
   client cf4cd54841054407ab5e5bdef2945f2e.get object(Bucket='khwaja-donotdelete-pr-j
   nh11fyjb65fq7',Key='Life Expectancy Data.csv')['Body']
22 # add missing iter method, so pandas accepts body as file-like object
23 if not hasattr(body, " iter "): body. iter = types.MethodType( iter , body)
24
25 who = pd.read csv(body)
26 who.head()
27 ##Cleaning data
28 df=who[['Life expectancy', 'Adult Mortality',
29
       'infant deaths', 'Alcohol', 'percentage expenditure',
30
        'BMI', 'under-five deaths', 'Polio', 'Total expenditure',
31
       'Diphtheria', 'Hepatitis B',' HIV/AIDS', 'GDP', 'Population',
```

```
32
       'thinness 1-19 years',
33
       'Income composition of resources', 'Schooling']]
34 df = df.dropna()
35 df = df.dropna(how='all',axis=1)
36 ##Applying Regression
37 \text{ X} = \text{df.drop('Life expectancy', axis=1)}
38 y = df['Life expectancy']
39
40 from sklearn.model selection import train test split
41 X train, X test, y train, y test = train test split(X, y, test size=0.2,random state=10)
42 from sklearn.linear model import LinearRegression
43 lm = LinearRegression()
44 lm.fit(X train,y train)
45 ##Modal Evaluation
46 from sklearn import metrics
47 predictions = lm.predict(X test)
48 plt.scatter(y test, predictions)
49
50 print('MAE:', metrics.mean absolute error(y_test, predictions))
51 print('MSE:', metrics.mean squared error(y test, predictions))
52 print('RMSE:', np.sqrt(metrics.mean squared error(y test, predictions)))
53 print('R^2:', metrics.r2 score(y test, predictions))
54 ##Scoring Endpoint Creation
55 !pip install watson-machine-learning-client
56 from watson machine learning client import WatsonMachineLearningAPIClient
57 wml credentials={
58 "apikey": "VroV2wwlrqW9tQl-2v2dveXXR3lvEZJvNClIyX-Xfoy8",
59 "instance id": "94cb1802-512d-4244-a010-e5714229dd3a",
60 "url": "https://eu-gb.ml.cloud.ibm.com"
61 }
62 client = WatsonMachineLearningAPIClient( wml credentials )
63 model props = {client.repository.ModelMetaNames.AUTHOR NAME: "KB",
64
65
            client.repository.ModelMetaNames.NAME: "LifeExpectancy"}
66 model artifact = client.repository.store model(lm, meta props=model props)
67 published model uid = client.repository.get model uid(model artifact)
```

IISPS_INT_3269_Predicting Life Expectancy using Machine Learning

69 scoring_endpoint = client.deployments.get_scoring_url(deployment)