Lecture 22: Dedekind Domains

Roy Zhao

2/26/24

1 Definition

Recall from last time:

Definition 1.1. A connected Shimura datum is a pair (G, u) where G/\mathbb{Q} is a semisimple algebraic group and $u: S^1 \to G^{\mathrm{ad}}_{\mathbb{R}}$ is a homomorphism satisfying:

- 1. Only the characters $z,1,z^{-1}$ occur in the representation of S^1 on $\mathrm{Lie}(G^{\mathrm{ad}})_{\mathbb{C}}$ defined by $Ad \circ u$
- 2. $\operatorname{ad}(u(-1))$ is a Cartan involution on $G_{\mathbb{R}}^{\operatorname{ad}}$
- 3. G^{ad} has no \mathbb{Q} -factor H such that $H(\mathbb{R})$ is compact.

Remark. The first condition says that we are parametrizing Hodge structures of weight 1, the second says that the u is not too strange and should behave like taking the conjugate transpose, and the last is a not so necessary condition that is used to to say that arithmetic subgroups are Zariski dense.

Given a connected Shimura datum (G, u) and a level structure $\Gamma \subset G^{ad}(\mathbb{Q})^+$, which is an arithmetic subgroup, we can construct a connected Shimura variety which is

$$\Gamma \backslash D := \Gamma \backslash G_{\mathbb{R}}^{\mathrm{ad},+} u.$$