Particle spectrograph

Wave operator and propagator

$^{\#2}_{1^{\bullet}}$	0	0	0	$\frac{4i(3\alpha_0+4\beta_2)k}{(1+2k^2)(-3\alpha_0(\alpha_0+2\beta_2)+8\alpha_5\beta_2k^2)}$	$\frac{2 i \sqrt{2} k (3 \alpha_0 + 8 \beta_2 + 12 \alpha_5 k^2)}{(1 + 2 k^2)^2 (+3 \alpha_0 (\alpha_0 + 2 \beta_2) + 8 \alpha_5 \beta_2 k^2)}$	0	$\frac{4 k^2 (3 \alpha_0 + 8 \beta_2 + 12 \alpha_5 k^2)}{(1 + 2 k^2)^2 (-3 \alpha_0 (\alpha_0 + 2 \beta_2) + 8 \alpha_5 \beta_2 k^2)}$	ies			I	I	1	#2 #1 r 0+ r 0- o	2 0 0 0	0 0	0 0	0 $\frac{2}{\alpha_0}$							
$^{*1}_{1}$				0	0		0	Multiplicities				$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} + 2 \ \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2 \ \partial_{\sigma}\partial^{\beta}\sigma^{\alpha}\nabla^{\beta} = = 3$ $\partial_{\chi}\partial^{\alpha}t^{\chi\beta} + \partial_{\chi}\partial^{\beta}t^{\alpha\chi} + \partial_{\chi}\partial^{\chi}t^{\beta\alpha} + 2 \ \partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	10	#1 0 ⁺ r	1 1/2 B		0	0							a - Opfab a - Opfab OpA x - a z d y d
$^{\#2}_{1^{-}}\sigma_{\alpha}$	0 0	0 0	0 0	$\frac{2\sqrt{2}(3\alpha_0+4\beta_2)}{(1+2k^2)(-3\alpha_0(\alpha_0+2\beta_2)+8\alpha_5\beta_2k^2)}$	$\frac{6\alpha_0 + 16\beta_2 + 24\alpha_5k^2}{(1 + 2k^2)^2(-3\alpha_0(\alpha_0 + 2\beta_2) + 8\alpha_5\beta_2k^2)}$	0 0	$-\frac{2i\sqrt{2}k(3\alpha_0+8\beta_2+12\alpha_5k^2)}{(1+2k^2)^2(-3\alpha_0(\alpha_0+2\beta_2)+8\alpha_5\beta_2k^2)}$		1	$\hat{q}_{\partial^X}\partial_{\beta}\tau^{\alpha\beta} + 2 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$ 3	8 180				$\frac{1}{100}$ 0 0 $\frac{1}{0}$ 0 0 0 $\frac{4}{0}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 1		$0 \frac{\alpha_0}{2} 0^{\#1} 0^+ 0$;	#1 2 σαβχ	0 0 4 9	$\mathcal{A}_{\beta,\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} - \partial_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} - \beta_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} - \beta_{\beta} \partial_{\beta} \partial_{\beta}$
$_{1}^{\#1}$	0	0	0	$\frac{8\beta_2}{-3\alpha_0(\alpha_0+2\beta_2)+8\alpha_5\beta_2k^2}$	$\frac{2 \sqrt{2} (3 \alpha_0 + 4 \beta_2)}{(1 + 2 \lambda^2) (-3 \alpha_0 (\alpha_0 + 2 \beta_2) + 8 \alpha_5 \beta_2 k^2)}$	0	$-\frac{4i(3\alpha_0+4\beta_2)k}{(1+2k^2)(-3\alpha_0(\alpha_0+2\beta_2)+8\alpha_5\beta_2k^2)}$								$0^{+}\mathcal{A}$ $0^{+}\mathcal{A}$ $0^{+}\mathcal{A}$ $0^{+}\mathcal{A}$ $0^{+}\mathcal{A}$	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	#2 + 0 + + 0 0 0		2^{+1} 2^{+} \mathcal{A}^{-1} 2^{+} f^{-1} 2^{+} f^{-1} 2^{+} f^{-1} 2^{+} f^{-1} 1^{+} f^{-1} f^{-1}		$\frac{f^{2}}{2} + f \alpha \beta$ $\frac{i \alpha_{0} k}{2 \sqrt{2}}$ 0	$ \begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	$2^{+}\sigma_{\alpha\beta}$ $2^{+}\tau_{\alpha\beta}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_{\alpha\beta\chi} - \frac{2}{3} \beta_2 (\mathcal{A}^{\alpha\beta}{}^{\alpha} \mathcal{A}_{\beta\chi}^{X} - 2 \mathcal{A}_{\alpha\chi}^{X} \partial_{\beta}f^{\alpha\beta} + 2 \mathcal{A}_{\beta\chi}^{X} \partial^{\beta}f^{\alpha}{}_{\alpha} - \partial_{\beta}f^{X} \partial^{\beta}f^{\alpha}{}_{\alpha} - \partial_{\beta}f^{X} \partial^{\beta}f^{\alpha}{}_{\alpha} - \partial_{\beta}f^{X} \partial^{\beta}f^{\alpha}{}_{\alpha} - \partial_{\beta}f^{X} \partial^{\beta}f^{X} \partial^{\beta}f^{$
$_{1}^{\#1}_{+}\tau_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$\frac{2i \ k(\alpha_0 + 4 \ \alpha_5 \ k^2)}{\alpha_0^2 \ (1 + k^2)^2}$	$\frac{2k^2(\alpha_0\!+\!4\alpha_5k^2)}{\alpha_0^2(1\!+\!k^2)^2}$	0	0	0	0	t form	<i>αβ</i> == 0	9	$\alpha_{\mathbf{t}^{\beta X}} == \hat{q} \partial^X \partial_{\beta} \mathbf{t}^{\beta \alpha}$	$\partial^{\alpha} t^{\beta \chi} + \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + \partial_{\chi} \partial^{\alpha} t^{\chi \beta} + \partial_{\chi} \partial^{\beta} t^{\alpha \chi}$	tors:	#1 1+ 9	(† αβ	$\frac{\alpha_0}{4} + \alpha_5 k$ $\frac{\alpha_0}{2\sqrt{2}}$,2 _0		$\frac{i \ a_0 k}{2 \sqrt{2}}$	0 0	0	0	0 0	0 0	$a_{\alpha\beta\chi} - \frac{2}{3}\beta_2 (\mathcal{A}^{\alpha\beta})$ $a_{\lambda}f_{\alpha}^{\chi} + 2\beta^{\beta}f_{\alpha}$ $2\partial_{\beta}\mathcal{A}^{\alpha\beta} - 2f^{\alpha\beta}$ $\partial_{\gamma}\mathcal{A}_{\alpha} \stackrel{?}{\circ} \partial_{\gamma}\mathcal{A}^{\alpha\beta} = .$
$_{1}^{\#2}^{\#2}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2(\alpha_0 + 4\alpha_5k^2)}{\alpha_0^2(1 + k^2)^2}$	$\frac{2i \ K(\alpha_0 + 4 \ \alpha_5 \ k^2)}{\alpha_0^2 \ (1 + k^2)^2}$	0	0	0	0	n Covariant	$\partial_{\beta}\partial_{\alpha} \tau^{\alpha\beta}$	$\begin{array}{c} \alpha \\ \sigma \end{array} == 0 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} :$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$:	$\frac{a\beta}{\sigma} == 0 \frac{\partial_x \partial^\alpha t}{\partial x^{\alpha}}$	Total expected gauge generators:	#1 1 ⁺)	$\alpha \beta$ $\alpha \beta$ $\alpha \beta$ $\alpha \beta$	$-\frac{i \ q_0 k}{2 \sqrt{2}}$	0	0	0	0 $\frac{\alpha_0}{4} + \frac{2\beta_2}{3} + \alpha_9$	5 k ²	0 $-\frac{3\alpha_0+4\beta_2}{6\sqrt{2}}$	0	$0 \\ -\frac{1}{6} i (3 \alpha_0 + 4 \beta_2) k$	$== \iiint (f^{\alpha\beta} \ t_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha}$ $== 0$ $\geq 2 \partial_{\alpha\beta}$
$1^+ \sigma_{lphaeta}$	0	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	0	0	0	0	ity form		i k1	0	+ i k 1 + 0	ected g		A †	0	0	0		$-\frac{3 \alpha_0 + 4 \beta_2}{6 \sqrt{2}}$		<u>β2</u> 3	0	$\frac{1}{3}i\sqrt{2}\beta_2k$	f^{aeta} $t_{a\mu}$
. [$1^+\sigma^+$	$1^+ \sigma^+$	$\frac{#1}{1}\tau + \alpha \beta$	$\frac{*1}{1}\sigma^{+}$	$\frac{#2}{1^{-}}\sigma^{+}$	$\frac{#1}{1}\tau + \frac{\alpha}{\alpha}$	$\frac{#2}{1^-}$ $t + \frac{\alpha}{1}$	Spin-parity	$0^{+} \tau == 0$	$\frac{\#2}{1^- t} + 2$	$\frac{\#1}{1^- t} \alpha == 0$	$\frac{#1}{1^+ t} \alpha \beta +$	Total exp		$f \uparrow^{\alpha}$ $f \uparrow^{\alpha}$	0	0	0		$\frac{1}{6} i \left(3 \alpha_0 + 4 \beta_1 \right)$	0 3 ₂) k -	$\frac{1}{3}i\sqrt{2}\beta_2k$	0	$\frac{2\beta_2 k^2}{3}$	S == S

Massive and massless spectra

Unitarity conditions