# Trend analysis with trend:: CHEAT SHEET

## **Monotonic Trends**

Analyse time series data for monotonic trends (consistently increasing or decreasing trends) and whether the trends are statistically significant





## Installation

library(trend)

# **Trend Detection**

**MANN-KENDALL TEST** (Detect monotonic trends in series) mk.test(x, alternative = c("two.sided", "greater", "less"), continuity = TRUE)

**SEASONAL MANN-KENDALL TEST** (Detect monotonic trend in monthly data and compute scores for each month) smk.test(x, alternative = c("two.sided", "greater", "less"), continuity = TRUE) %>% summary()

**CORRELATED SEASONAL MANN-KENDALL TEST** (Perform a Seasonal Mann-Kendall test in the presence of correlated seasons or data are corelated with e.g. the preceding months) csmk.test(x, alternative = c("two.sided", "greater", "less"))

**MULTIVARIATE MANN-KENDALL TEST** (Detect global trend between data collected at multiple sites)
mult.mk.test(x, alternative = c("two.sided", "greater", "less"))

**PARTIAL MANN-KENDALL TEST** (Test can be conducted in the presence of co-variates)

- I. cor.test(x, y, alternative = c("two.sided", "less", "greater"), method = c("pearson", "kendall", "spearman"), exact = NULL, conf.level = 0.95, continuity = FALSE, ...) First test to see if variables x and y are correlated (p < 0.05)</p>

**PARTIAL CORRELATION TREND TEST** (Magnitude of linear trend in x while covariate (y) is partialled out )

partial.cor.trend.test(x, z, method = c("pearson", "spearman"))

# Magnitude of Trend

Calculate the average change in x with time

#### **SEN'S SLOPE**

sens.slope(x, conf.level = 0.95)

#### **SEASONAL SEN'S SLOPE**

sea.sens.slope(x)

# **Change Point Detection**

Analyze data for homogeneity and identify points/times where there are changes in the statistical properties of the time series

**PETTITT'S TEST** (non-parametric method)

```
data(maxau) ; plot(maxau[,"s"])
s.res <- pettitt.test(maxau[,"s"])
n <- s.res$nobs
i <- s.res$estimate
s.1 <- mean(maxau[1:i,"s"])
s.2 <- mean(maxau[(i+1):n,"s"])
s <- ts(c(rep(s.1,i), rep(s.2,(n-i))))
tsp(s) <- tsp(maxau[,"s"])
lines(s, lty=2)</pre>
```



Change point at K = 35 (2000) and change in mean values from 27 to 16

#### **LAZANTE'S TEST** (non-parametric method)

```
data(maxau) ; plot(maxau[,"s"])
s.res <- lanzante.test(maxau[,"s"])
n <- s.res$nobs
i <- s.res$estimate
s.1 <- mean(maxau[1:i,"s"])
s.2 <- mean(maxau[(i+1):n,"s"])
s <- ts(c(rep(s.1,1), rep(s.2,(n-i))))
tsp(s) <- tsp(maxau[,"s"])
lines(s, lty=2)</pre>
```



Change point at K = 35 (2000) and change in mean values from 27 to 16

### **STANDARD NORMAL HOMOGENIETY TEST** (assuming data is normally

distributed)

```
data(Nile)
(out <- snh.test(Nile))
plot(out)</pre>
```



#### **BUISHAND RANGE TEST** (assuming data is normally distributed)

```
data(Nile)
(out <- bu.test(Nile))
plot(out)</pre>
```



# Randomness

Test series for any recognizable patterns or regularities

#### **WALLIS AND MOORE PHASE FREQUENCY TEST**

wm.test(x) test for randomness

#### **BARTEL'S TEST FOR RANDOMNESS**

bartels.test(xs) test for randomness

#### WALD-WOLFOWITZ TEST FOR STATIONARITY AND INDEPENDENCE

ww.test(x) test for independence and stationarity