Záverečná písomka (25. 6. 2009)

Príklad 1. Odpovedzte na otázky z výrokovej logiky:

- (a) čo je formula?
- (b) čo je tautológia, kontradikcia, splniteľná formula?
- (c) čo je teória a čo je model?
- (d) čo znamenajú výrazy $\{\varphi_1,...,\varphi_n\} \vdash \varphi$ a $\{\varphi_1,...,\varphi_n\} \models \varphi$?
- (e) čo je dôkaz formuly φ ?

Príklad 2. Zistite akú Boolovu funkciu reprezentuje logický neurón, reprezentujte ju tabuľkou spolu s hodnotou vstupu do prechodovej funkcie a napíšte jej DNF formu

Príklad 3. Použitím rezolučnej metódy rozhodnite či teória T má model a či formula α je logickým dôsledkom T, $T \vdash \alpha$,

$$T = \{x \Rightarrow y, y \Rightarrow (z \lor \neg x), \neg t \Rightarrow (t \land \neg z), t \Rightarrow x\}, \ \alpha = z$$

Príklad 4. Prepíšte tvrdenie prirodzeného jazyka do formuly predikátovej logiky, vytvorte negáciu tejto formuly a prepíšte túto formulu do tvrdenia prirodzeného jazyka.

- (a) Vtáky sa množia vajcami.
- (b) Existuje taký športovec, ktorý nemá dobrú fyzickú kondíciu.
- (c) Každé nepárne číslo je prvočíslo.
- (d) Existuje taký, čo navštívil Anglicko a hovorí po anglicky...
- (e) Existuje dym bez ohňa.

Príklad 5. Rozhodnite pre každú formulu, či je tautológia, kontradikcia, alebo či je splniteľná formula, ktorá nie je tautológia:

(a)
$$(\exists x P(x)) \lor (\exists x \neg P(x))$$
,

(b)
$$\forall x (P(x) \vee \neg P(x))$$
,

(c)
$$(\exists x P(x)) \Rightarrow (\forall x P(x))$$
,

(d)
$$(\forall x P(x)) \land (\exists x \neg P(x))$$
.

Príklad 6. Rozhodnite pomocou sémantického tabla, či teória T je konzistentná.

$$T = \{ \forall x (P(x) \land R(x)), \neg \exists x R(x), \neg P(a) \}.$$

Príklad 7. Riešte tieto sylogizmy:

(a) Každý študent je maturant Každý maturant nie je analfabet (b) niektorí študenti sú kominári niektorí kominári sú maturanti

?

(c) niektorí fyzici sú astronómovia každý chemik nie je fyzik (c) Každý študent nie je analfabet niektorí analfabeti sú včelári

9

Príklad 8. Pomocou prirodzenej dedukcie odvoďte formuly:

(a)
$$(p \Rightarrow q) \land (p \Rightarrow r) \Rightarrow (p \Rightarrow q \land r)$$

(b)
$$(\forall x \varphi(x)) \Rightarrow (\exists y \varphi(y))$$

Príklad 9. Pomocou sémantických tabiel preverte, či formuly modálnej logiky sú pravdivé vo svete w_0 :

(a)
$$w_0 \models \Box(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \Box \psi)$$
,

(b)
$$w_0 \models \Diamond \varphi \Rightarrow \Box \varphi$$
,

?

Cvičenie 10. Vypočítajte pravdivostné hodnoty intuicionistickej formuly

$$p \Rightarrow ((\neg (p \land q)) \lor (\neg q \lor \neg r))$$

v každom svete pre Kripkeovský model špecifikovaný reláciou R, pričom každý vrchol je ohodnotený trojicou pravdivostných hodnôt premenných p, q a r.

Z nasledujúcich dvoch príkladov vyberte jeden a ten riešte, v prípade, že budete riešiť oba, započíta sa vám lepší výsledok z týchto dvoch.

Príklad 11a. Zistite pre ktoré hodnoty premenných p a q je výroková formula vo fuzzy logike pravdivá $(p \land (p \Rightarrow q)) \Rightarrow q$.

Príklad 11b. Pomocou metódy sémantických tabiel dokážte tautologičnosť formuly modálnej logiky $\Diamond(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \Diamond \psi)$.

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

Riešenie

Príklad 1. Odpovedzte na otázky z výrokovej logiky:

- (a) čo je formula?
- (b) čo je tautológia, kontradikcia, splniteľná formula?
- (c) čo je teória a čo je model?
- (d) čo znamenajú výrazy $\{\varphi_1,...,\varphi_n\} \vdash \varphi$ a $\{\varphi_1,...,\varphi_n\} \models \varphi$?
- (e) čo je dôkaz formuly φ ?
- (a) Formula je reťazec, ktorý obsahuje znaky výrokových premenných z množiny $\{p,q,r,...\}$ a znaky logických spojok $\{\Rightarrow,\land,\lor,\neg\}$. Štruktúra reťazcov je definovaná rekurentne postupom

formula::=premenná | (formula) | (formula \land formula) | (formula \lor formula) | (formula) | (\neg formula)

- (b) Formula sa nazýva tautológia (kontradikcia) vtedy a len vtedy, ak pre každú interpretáciu premenných je pravdivá (nepravdivá); formula sa nazýva splniteľná vtedy a len vtedy, keď existuje aspoň jedna interpretácia premenných, pre ktorú je pravdivá.
- (c) Teóriou sa nazýva každá neprázdna množina formúl. Hovoríme, že teória má model vtedy a len vtedy, ak existuje taká interpretácia, že všetky formuly z teórie sú pravdivé.
- (d) Formula φ sa nazýva logický dôsledok množiny formúl T (čo označíme $T \vdash \varphi$ vtedy a len vtedy, ak $\varphi \in T$ alebo je bezprostredným dôsledkom T alebo je bezprostredným dôsledkom T rozšírenej o niektoré jej logické dôsledky.

Formula φ sa nazýva tautologický dôsledok teórie T (čo označíme $T \vDash \varphi$) vtedy a len vtedy, ak každý model teórie T je aj modelom formuly φ (t.j. formula φ je v ňom pravdivá).

Príklad 2. Zistite akú Boolovu funkciu reprezentuje logický neurón a napíšte jej DNF formu

$$y = s(x_1 + x_2 - x_3 - x_4 - 2)$$

#	x_1	x_2	x_3	x_4	$s(x_1+x_2-x_3-x_4-2)$	у
1	0	0	0	0	s(-2)	0
2	0	0	0	1	s(-3)	0
3	0	0	1	0	s(-3)	0
4	0	0	1	1	s(-4)	0

5	0	1	0	0	s(-1)	0
6	0	1	0	1	s(-2)	0
7	0	1	1	0	s(-2)	0
8	0	1	1	1	s(-3)	0
9	1	0	0	0	s(-1)	0
10	1	0	0	1	s(-2)	0
11	1	0	1	0	s(-2)	0
12	1	0	1	1	s(-3)	0
13	1	1	0	0	s(0)	1
14	1	1	0	1	s(-1)	0
15	1	1	1	0	s(-1)	0
16	1	1	1	1	s(-2)	0

$$\varphi(x_1, x_2, x_3, x_4) = (x_1 \wedge x_2 \wedge \overline{x}_3 \wedge \overline{x}_4)$$

Príklad 3. Použitím rezolučnej metódy rozhodnite či teória T má model a či formula α je tautologickým dôsledkom T, $T \models \alpha$,

$$T = \{x \Rightarrow y, y \Rightarrow (z \lor \neg x), \neg t \Rightarrow (t \land \neg z), t \Rightarrow x\}, \ \alpha = z$$

Ak $T = \{C_1, C_2, ..., C_n\}$, potom vlastnosť $T \models \alpha$ je ekvivalentná platnosti implikácie

$$C_1 \wedge C_2 \wedge ... \wedge C_n \Rightarrow \alpha$$

Negácia tejto implikácie má tvar

$$C_1 \wedge C_2 \wedge ... \wedge C_n \wedge \neg \alpha$$

Ak sa nám podarí dokázať, že táto formula je kontradikcia, potom platí $T \vDash \alpha$.

$$(x \Rightarrow y) \land (y \Rightarrow (z \lor \neg x)) \land (\neg t \Rightarrow (t \land \neg z)) \land (t \Rightarrow x) \land \neg z$$

Prepíšeme ju do tvaru KNF

$$(\neg x \lor y) \land (\neg y \lor z \lor \neg x) \land \underbrace{(t \lor (t \land \neg z))}_{t \land (t \lor \neg z)} \land (\neg t \lor x) \land \neg z$$

Ak vynecháme opakujúce klauzule (dôsledok idempotentnosti konjunkcie a disjunkcie) dostaneme

$$(\neg x \lor y) \land (\neg y \lor z \lor \neg x) \land (t \lor \neg z) \land t \land (\neg t \lor x) \land \neg z$$

	1	2	3	4	5	6						
	$\neg x \lor y$	$\neg y \lor z \lor \neg x$	$t \vee \neg z$	t	$\neg z$	$\neg t \lor x$	7	8				
Z		1	0		0		$\neg y \lor t \lor \neg x$	$\neg y \lor \neg x$	9	10		
y	1						0	0	$\neg x \lor t$	$\neg x$	11	
\boldsymbol{x}						1			0	0	$\neg t$	12
t				1							0	

Záver: Platí tautologické vyplývanie

$$\{x \Rightarrow y, y \Rightarrow (z \lor \neg x), \neg t \Rightarrow (t \land \neg z), t \Rightarrow x\} \vdash z$$

Príklad 4. Prepíšte tvrdenie prirodzeného jazyka do formuly predikátovej logiky, vytvorte negáciu tejto formuly a prepíšte túto formulu do tvrdenia prirodzeného jazyka.

(a) Vtáky sa množia vajcami.

$$\forall x (Vtak(x) \Rightarrow Mnoz_vaj(x))$$

$$\exists x (Vtak(x) \land \neg Mnoz _vaj(x))$$

Existuje taký vták, ktorý sa nemnoží vajcami.

(b) Existuje taký športovec, ktorý nemá dobrú fyzickú kondíciu.

$$\exists x (sport(x) \land \neg fyz \ kond(x))$$

$$\forall x (sport(x) \Rightarrow fyz _kond(x))$$

Každý športovec má dobrú fyzickú kondíciu.

(c) Každé nepárne číslo je prvočíslo.

$$\forall x (neparne(x) \Rightarrow prime(x))$$

$$\exists x (neparne(x) \land \neg prime(x))$$

Niektoré nepárne čísla nie sú prvočísla.

(d) Existuje taký, čo navštívil Anglicko a hovorí po anglicky.

$$\exists x (navst_UK(x) \land hovori_angl(x))$$

$$\forall x (navst_UK(x) \Rightarrow \neg hovori_angl(x))$$

Každý, kto navštívil Anglicko nehovorí po anglicky.

(e) Existuje dym bez ohňa.

$$\exists x (dym(x) \land \neg ohen(x))$$

$$\forall x (dym(x) \Rightarrow ohen(x))$$

Každý dym je s ohňom.

Príklad 5. Rozhodnite pre každú formulu, či je tautológia, kontradikcia, alebo či je splniteľná formula, ktorá nie je tautológia:

(a)
$$(\exists x P(x)) \lor (\exists x \neg P(x)),$$

Pomocou formule $\exists x (P(x) \lor Q(x)) \equiv (\exists x P(x) \lor \exists x Q(x))$ prepíšeme skúmanú formulu do ekvivalentného tvaru

$$\exists x \underbrace{\left(P(x) \vee \neg P(x)\right)} \equiv 1$$

(b) $\forall x (P(x) \lor \neg P(x))$, táto formula je automatický pravdivá, pretože podformula stojaca za univerzálnym kvantifikátorom $(P(x) \lor \neg P(x)) \equiv 1$ pre každé indivíduum x.

(c) $(\exists x P(x)) \Rightarrow (\forall x P(x))$, navrhneme interpretáciu \mathcal{I} , pre ktorú je formula nepravdivá. Nech univerzum U je množina prirodzených čísel $\{0,1,2,3,...\}$ a P(x) je unárny predikát,

5

ktorého význam je "x je párne číslo". Ľavá časť implikácie $\exists x P(x)$ je evidentne pravdivá, "existuje také prirodzené číslo x, ktoré je párne". Pravá časť implikácie $\forall x P(x)$ je evidentne nepravdivá, nie "každé prirodzené číslo je párne". To znamená, že celková implikácia $(1 \Rightarrow 0)$ je nepravdivá. To znamená, že študovaná formula nie je ani tautológia a ani kontradikcia, je splniteľná (existujú interpretácie \mathcal{I} v ktorých je pravdivá, napr. ak predikát P(x) interpretujeme "x je nezáporné číslo").

(d) $(\forall x P(x)) \land (\exists x \neg P(x))$, túto formulu môžeme pomocou zákona pre negáciu univerzálneho kvantifikátora $(\neg \forall x P(x) \equiv \exists x \neg P(x))$ previesť do ekvivalentného tvaru $(\forall x P(x)) \land \neg (\forall x P(x))$, ktorá môže vzniknúť z elementárnej tautológie výrokovej logiky $p \land \neg p$ substitúciou $p/\forall x P(x)$, formula je kontradikcia.

Príklad 6. Rozhodnite pomocou sémantického tabla, či teória *T* je konzistentná.

$$T = \{ \forall x (P(x) \land R(x)), \neg \exists x R(x), \neg P(a) \}.$$

Príklad 7. Riešte tieto sylogizmy:

(a)

Každý študent je maturant Každý maturant nie je analfabet

?

Vykonáme prepis sylogizmu do formálneho tvaru

$$\varphi_1: \forall x (st(x) \Rightarrow mat(x)) \Rightarrow (st(t) \Rightarrow mat(t))$$

$$\varphi_2: \forall x (mat(x) \Rightarrow \neg analf(x)) \Rightarrow (mat(t) \Rightarrow \neg analf(t))$$

použitím hypotetického sylogizmu $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$

dostaneme

 $(st(t) \Rightarrow \neg analf(t))$ pre l'ubovol'né indivíduum t, čiže platí aj

$$\forall x (st(x) \Rightarrow \neg analf(x))$$

Záver zo sylogizmu je: "každý študent nie je analfabet"

(b)

niektorí študenti sú kominári niektorí kominári sú maturanti

?

$$\varphi_1: \exists x \left(st(x) \land kom(x)\right) \Rightarrow \left(st(a) \land kom(a)\right)$$

$$\varphi_2: \exists x \left(kom(x) \land mat(x)\right) \Rightarrow \left(kom(b) \land mat(b)\right)$$

Vo všeobecnosti platí $a \neq b$, z týchto dvoch implikácií nič nevyplýva, sylogizmus nemá platný záver.

(c)

niektorí fyzici sú astronómovia každý chemik nie je fyzik

?

$$\varphi_1: \exists x (fyz(x) \land astr(x)) \Rightarrow (fyz(a) \land astr(a))$$

$$\varphi_2: \forall x (chem(x) \Rightarrow \neg fyz(x)) \Rightarrow (chem(a) \Rightarrow \neg fyz(a))$$

Z premisy φ_1 vyplýva, že súčasne platí fyz(a) a astr(a). Použitím fyz(a) a predpokladu φ_2 spolu s pravidlom modus tollens dostaneme $\neg chem(a)$. To znamená, že záver sylogizmu má tvar

$$astr(a) \land \neg chem(a) \Rightarrow \exists x \ astr(x) \land \neg chem(x)$$

alebo, "niektorý astronómovia nie sú chemici".

(d)

Každý študent nie je analfabet niektorí analfabeti sú včelári

9

$$\phi_1: \forall x \left(st(x) \Rightarrow \neg analf(x) \right) \Rightarrow \left(st(a) \Rightarrow \neg analf(a) \right) \Rightarrow \left(analf(a) \Rightarrow \neg st(a) \right) \\
\phi_2: \exists x \left(analf(x) \land vce(x) \right) \Rightarrow \left(analf(a) \land vce(a) \right)$$

Z druhej premisy vyplýva, že analf(a) a vce(a). Použitím analf(a) s prvou premisou dostaneme $\neg st(a)$, spojením s vce(a) dostaneme

$$vce(a) \land \neg st(a) \Rightarrow \exists x \ vce(x) \land \neg st(x)$$

Záver zo sylogizmu je (za predpokladu, že existuje analfabet): "niektorý včelár nie je študent"

Príklad 8. Pomocou prirodzenej dedukcie odvoďte formuly:

(a)
$$(p \Rightarrow q) \land (p \Rightarrow r) \Rightarrow (p \Rightarrow q \land r)$$

- (1. predpoklad) 1. $p \Rightarrow q$ $p \Rightarrow r$ (2. predpoklad) 3. *p* (aktivácia pomocného predpokladu) 4. (modus ponens na 1. a 3.) 5. *r* (modus ponens na 2. a 3.)
- (introdukcia konjunkcie na 4. a 5.)
- 6. $q \wedge r$ $p \Rightarrow q \wedge r$ (deaktivácia 3.)

(b)
$$(\forall x \varphi(x)) \Rightarrow (\exists y \varphi(y))$$

- $\begin{array}{c|c}
 1. & \forall x \, \varphi(x) \\
 \hline
 2. & \varphi(t) \\
 3. & \exists x \, \varphi(x) \\
 4. & (\forall x \, \varphi(x)) \Rightarrow (\exists y \, \varphi(y))
 \end{array}$ aktivácia pomocného predpokladu konkretizácia všeob. kvantifikátora introdukcia existenčného kvantif.
 - deaktivácia 1

Príklad 9. Pomocou sémantických tabiel preverte, či formuly sú pravdivé vo svete w_0 :

(a)
$$w_0 \models \Box(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \Box \psi)$$

(b)
$$w_0 \models \Diamond \varphi \Rightarrow \Box \varphi$$
,

$$w_{0} \nvDash \Diamond \varphi \Rightarrow \Box \varphi$$

$$| w_{0} \models \Diamond \varphi$$

$$| w_{0} \nvDash \Box \varphi$$

$$| w_{1} \models \varphi \quad \exists w_{1} \in \Gamma(w_{0})$$

$$| w_{2} \nvDash \psi \quad \exists w_{2} \in \Gamma(w_{0})$$

$$| \varphi$$

Cvičenie 10. Vypočítajte pravdivostné hodnoty intuicionistickej formuly

$$p \Rightarrow ((\neg (p \land q)) \lor (\neg q \lor \neg r))$$

pre Kripkeovský model špecifikovaný reláciou R, pričom každý vrchol je ohodnotený trojicou pravdivostných hodnôt premenných p, q a r.

	1	2	3	4	5
p	0	0	0	1	1
q	1	1	1	1	1
r	0	0	1	0	1
$p \wedge q$	0	0	0	1	1
$\neg r$	0	0	0	0	0
$\neg q$	0	0	0	0	0
$\neg q \lor \neg r$	0	0	0	0	0
$\neg (p \land q)$	0	0	1	0	0
$(\neg (p \land q)) \lor (\neg r \lor \neg q)$	0	0	1	0	0
$p \Rightarrow (\neg (p \land q)) \lor (\neg r \lor \neg q)$	0	0	1	0	0

Z nasledujúcich dvoch príkladov vyberte jeden a ten riešte, v prípade, že budete riešiť oba, započíta sa vám lepší výsledok z týchto dvoch.

Príklad 11a. Zistite pre ktoré hodnoty premenných p a q je výroková formula vo fuzzy logike pravdivá $(p \land (p \Rightarrow q)) \Rightarrow q$.

Príklad 11b. Pomocou metódy sémantických tabiel dokážte tautologičnosť formuly modálnej logiky $\Diamond(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \Diamond \psi)$.

Obidve vetvi tabla sú uzavreté, preto formula je tautológia.