Complete Algorithmic Problems Documentation

Compiled from Markdown Files

August 3, 2025

Contents

1	Eas	y Problems						
	1.1	Array and String Problems						
		1.1.1 Two Number Sum						
		1.1.2 Two Number Sum (Sorted)						
		1.1.3 Valid Subsequence						
		1.1.4 Sorted Squared Array						
		1.1.5 Tournament Winner						
		1.1.6 Non-Constructible Change						
		1.1.7 Transpose Matrix						
	1.2	Binary Search Tree Problems						
		1.2.1 Find Closest Value in BST						
		1.2.2 Branch Sums						
		1.2.3 Node Depths						
	1.3	Expression Tree and Graph Problems						
		1.3.1 Evaluate Expression Tree						
		1.3.2 Depth-First Search						
	1.4	Greedy Algorithms						
		1.4.1 Minimum Waiting Time						
		1.4.2 Class Photos						
		1.4.3 Tandem Bicycle						
		1.4.4 Optimal Freelancing						
	1.5	Linked List Problems						
		1.5.1 Remove Duplicates from Linked List						
		1.5.2 Middle Node						
	1.6	Dynamic Programming						
		1.6.1 Get Nth Fibonacci						
		1.6.2 Product Sum						
	1.7	Searching and Sorting						
		1.7.1 Binary Search						
		1.7.2 Find Three Largest Numbers						
		1.7.3 Bubble Sort						
		1.7.4 Insertion Sort						
		1.7.5 Selection Sort						
	1.8							

		1.8.1	Is Palindrome	6
		1.8.2	Caesar Cipher Encryptor	6
		1.8.3	Run-Length Encoding	6
		1.8.4	Common Characters	7
		1.8.5	Generate Document	7
		1.8.6	First Non-Repeating Character	7
		1.8.7	Semordnilap	7
2	N / L	1! T	Problems	8
4	2.1		Algorithms	8
	۷.1	2.1.1	Three Number Sum	8
		2.1.1 $2.1.2$	Smallest Difference	8
		2.1.2 $2.1.3$	Move Element to End	8
		2.1.3 $2.1.4$	Monotonic Array	8
		2.1.4 $2.1.5$	Spiral Traverse	9
		2.1.6	Longest Peak	9
		2.1.0 $2.1.7$		9
			Array of Products	
		2.1.8	First Duplicate Value	9
		2.1.9	Merge Overlapping Intervals	9
			Best Seat	
			Zero Sum Subarray	9
			Missing Numbers	10
			Majority Element	10
	0.0		Sweet and Savory	10
	2.2		Search Tree Algorithms	10
		2.2.1	Validate BST	10
		2.2.2	BST Traversal	10
		2.2.3	Min Height BST	10
		2.2.4	Find Kth Largest Value in BST	11
		2.2.5	Reconstruct BST	11
		2.2.6	Invert Binary Tree	11
		2.2.7	Binary Tree Diameter	11
		2.2.8	Find Successor	11
		2.2.9	Height Balanced Binary Tree	11
			Merge Binary Trees	11
			Symmetrical Tree	12
			Split Binary Tree	12
	2.3		nic Programming	12
		2.3.1	Max Subset Sum No Adjacent	12
		2.3.2	Number of Ways to Make Change	12
		2.3.3	Min Number of Coins for Change	12
		2.3.4	Levenshtein Distance	12
		2.3.5	Number of Ways to Traverse Graph	13
		2.3.6	Kadane's Algorithm	13
	2.4		Algorithms	13
		2.4.1	Single Cycle Check	13

	2.4.2	River Sizes	13
	2.4.3	Remove Islands	13
	2.4.4	Cycle in Graph	13
	2.4.5	Minimum Passes of Matrix	14
	2.4.6	•	14
	2.4.7	0	14
	2.4.8		14
	2.4.9	The state of the s	14
2.5		0	14
	2.5.1	1	14
	2.5.2	1 1	15
2.6	Linked		15
	2.6.1		15
	2.6.2		15
	2.6.3	0 0	15
2.7	Recurs	0	15
	2.7.1	Permutations	15
	2.7.2		15
	2.7.3	Phone Number Mnemonics	16
	2.7.4	Staircase Traversal	16
	2.7.5	Blackjack Probability	16
	2.7.6	Reveal Minesweeper	16
	2.7.7	Search in Sorted Matrix	16
	2.7.8	Three Number Sort	16
2.8	Stack A	Algorithms	17
	2.8.1	Min Max Stack	17
	2.8.2	Balanced Brackets	17
	2.8.3	Sunset Views	17
	2.8.4	Best Digits	17
	2.8.5	Sort Stack	17
	2.8.6	Next Greater Element	17
	2.8.7		18
	2.8.8	Colliding Asteroids	18
2.9	String	Algorithms	18
	2.9.1	Longest Palindromic Substring	18
	2.9.2	Group Anagrams	18
	2.9.3	Valid IP Addresses	18
	2.9.4		18
	2.9.5	Minimum Characters for Words	19
	2.9.6		19
2.10	Trie A	lgorithms	19
	2.10.1	Suffix Trie Construction	19
	2.10.2	Suffix Trie Search	19

3	\mathbf{Adv}	vanced	Problems	20
	3.1	Array	and Matrix Problems	20
		3.1.1	Four Number Sum	20
		3.1.2	Subarray Sort	20
		3.1.3	Largest Range	20
		3.1.4	Min Rewards	20
		3.1.5	Zigzag Traverse	21
		3.1.6	Longest Subarray with Sum	21
		3.1.7	Count Squares	21
		3.1.8	Maximum Sum Submatrix	21
		3.1.9	Largest Rectangle Under Skyline	21
	3.2	Tree a	nd BST Problems	21
		3.2.1	Same BSTs	21
		3.2.2	Validate Three Nodes	22
		3.2.3	Repair BST	22
		3.2.4	Sum BSTs	22
		3.2.5	Max Path Sum in Binary Tree	22
		3.2.6	Find Nodes Distance K	22
	3.3	Dynan	nic Programming	22
		3.3.1	Max Sum Increasing Subsequence	22
		3.3.2	Longest Common Subsequence	23
		3.3.3	Min Number of Jumps	23
		3.3.4	Knapsack Problem	23
		3.3.5	Disk Stacking	23
		3.3.6	Numbers in Pi	23
		3.3.7	Maximize Expression	23
		3.3.8	Dice Throws	23
		3.3.9	Juice Bottling	24
	3.4	Graph	Algorithms	24
		3.4.1	Knight Connection	24
		3.4.2	Dijkstra Algorithm	24
		3.4.3	Topological Sort	24
		3.4.4	Kruskal Algorithm	24
		3.4.5	Prim Algorithm	24
		3.4.6	Boggle Board	25
		3.4.7	Largest Island	25
	3.5		l List Problems	25
		3.5.1	Continuous Median	25
		3.5.2	Find Loop	25
		3.5.3	Reverse Linked List	25
		3.5.4	Merge Linked Lists	25
		3.5.5	Shift Linked List	26
		3.5.6	Lowest Common Manager	26
	3.6	String	Problems	26
		3.6.1	Interweaving Strings	26
		262	Solve Sudoku	26

		3.6.3	Generate Div Tags
		3.6.4	Ambiguous Measurements
		3.6.5	Longest Substring Without Duplication
		3.6.6	Underscorify Substring
		3.6.7	Pattern Matcher
		3.6.8	Multi String Search
		3.6.9	Longest Most Frequent Prefix
		3.6.10	Shortest Unique Prefixes
	3.7	Sorting	g and Searching
		3.7.1	Sort K Sorted Array
		3.7.2	Shifted Binary Search
		3.7.3	Search for Range
		3.7.4	Quickselect
		3.7.5	Index Equals Value
		3.7.6	Quick Sort
		3.7.7	Heap Sort
		3.7.8	Radix Sort
4	•		anced Problems 30
	4.1		ization and Resource Allocation
		4.1.1	Apartment Hunting
		4.1.2	Calendar Matching
		4.1.3	Waterfall Streams
		4.1.4	Minimum Area Rectangle
		4.1.5	Line Through Points
		4.1.6	Right Smaller Than
	4.2	Tree a	nd Graph Algorithms
		4.2.1	Iterative Inorder Traversal
		4.2.2	Flatten Binary Tree
		4.2.3	Right Sibling Tree
		4.2.4	All Kinds of Node Depths
		4.2.5	Compare Leaf Traversal
		4.2.6	Airport Connections
		4.2.7	Two-Edge-Connected Graph
	4.3	Dynan	nic Programming and Optimization
		4.3.1	Max Profit With K Transactions
		4.3.2	Palindrome Partitioning Min Cuts
		4.3.3	Longest Increasing Subsequence
		4.3.4	Longest String Chain
		4.3.5	Square of Zeroes
		4.3.6	Number of Binary Tree Topologies
		4.3.7	Non-Attacking Queens
	4.4	Advan	ced String Algorithms
		4.4.1	Knuth-Morris-Pratt Algorithm
		4.4.2	Smallest Substring Containing
		4.4.3	Longest Balanced Substring

	4.4.4	Strings Made Up Of Strings	34
4.5	Graph	and Pathfinding Algorithms	34
	4.5.1	A* Algorithm	34
	4.5.2	Rectangle Mania	34
	4.5.3	Detect Arbitrage	34
4.6	Advan	ced Data Structures	34
	4.6.1		34
	4.6.2	Continuous Median	35
	4.6.3		35
4.7	Linked		35
	4.7.1		35
	4.7.2		35
	4.7.3		35
	4.7.4		35
4.8	Advan	•	36
	4.8.1		36
	4.8.2		36
	4.8.3		36
	4.8.4		36
4.9			36
1.0	4.9.1	0	36
	4.9.2		36
	4.9.3		37
	4.9.4	1 1	37
4 10			37
1.10		1	37
		0 1	37
			37
			37
			38
			38
			38
		±	38
			38
л 11		ced Tree Problems	
4.11		Same BSTs	
			39
			39
		•	39
			39
		· ·	39 39
1 10			
4.12		v	39
		1	39
			10
			10
	4.12.4	Longest Subarray with Sum	40

	4.12.5	Knight Connection	4(
4.13	Advan	ced String and Pattern Matching	40
	4.13.1	Interweaving Strings	40
	4.13.2	Solve Sudoku	40
	4.13.3	Generate Div Tags	41
	4.13.4	Ambiguous Measurements	41

Chapter 1

Easy Problems

1.1 Array and String Problems

1.1.1 Two Number Sum

Problem: Find two numbers in array that sum to target value. **Solution:** Use hash set to store seen numbers, check for complement.

Time: O(n), Space: O(n)

Key Insight: Use hash table for O(n) time, or sort and use two pointers for O(n log n) time.

1.1.2 Two Number Sum (Sorted)

Problem: Alternative solution using sorted array.

Solution: Use two pointers from ends, move based on sum comparison.

Time: $O(n \log n)$, Space: O(1)

Key Insight: Two-pointer technique works well with sorted arrays.

1.1.3 Valid Subsequence

Problem: Check if sequence is subsequence of array.

Solution: Use pointer to track sequence position, traverse array once.

Time: O(n), Space: O(1)

Key Insight: Single pass with pointer tracking is optimal.

1.1.4 Sorted Squared Array

Problem: Return sorted array of squares of input array.

Solution: Use two pointers from ends, fill result from largest to smallest.

Time: O(n), Space: O(n)

Key Insight: Largest squares come from largest absolute values at ends.

1.1.5 Tournament Winner

Problem: Determine tournament winner based on competitions and results.

Solution: Use hash map to track team scores, find maximum.

Time: O(n), Space: O(k)

Key Insight: Hash map for O(1) score updates and lookups.

1.1.6 Non-Constructible Change

Problem: Find minimum amount of change that cannot be created. **Solution**: Sort coins, track current change created, check gaps.

Time: $O(n \log n)$, Space: O(1)

Key Insight: If $coin \ i$, $current_change + 1$, we found the gap.

1.1.7 Transpose Matrix

Problem: Transpose the given matrix.

Solution: Create new matrix with swapped dimensions, fill by swapping indices.

Time: O(n*m), Space: O(n*m)

Key Insight: Swap row and column indices: result[j][i] = matrix[i][j].

1.2 Binary Search Tree Problems

1.2.1 Find Closest Value in BST

Problem: Find closest value to target in BST.

Solution: Recursive traversal, update closest value, navigate based on target.

Time: O(h), Space: O(h)

Key Insight: Use BST property to eliminate half the tree each step.

1.2.2 Branch Sums

Problem: Calculate sum of all branches in binary tree.

Solution: Recursive DFS, track running sum, add to result at leaves.

Time: O(n), Space: O(h)

Key Insight: Use recursion to explore all paths to leaves.

1.2.3 Node Depths

Problem: Calculate sum of depths of all nodes in binary tree. **Solution**: Recursive traversal, pass current depth, sum all depths.

Time: O(n), Space: O(h)

Key Insight: Each node's depth = parent's depth + 1.

1.3 Expression Tree and Graph Problems

1.3.1 Evaluate Expression Tree

Problem: Evaluate a binary expression tree.

Solution: Recursive evaluation, apply operators at internal nodes.

Time: O(n), Space: O(h)

Key Insight: Post-order traversal evaluates expressions correctly.

1.3.2 Depth-First Search

Problem: Perform DFS on graph and return array of node names. **Solution**: Recursive traversal, add current node, process all children.

Time: O(v + e), Space: O(v)

Key Insight: Use recursion to explore all connected nodes.

1.4 Greedy Algorithms

1.4.1 Minimum Waiting Time

Problem: Calculate minimum total waiting time for queries.

Solution: Sort queries, process shortest first, multiply by remaining queries.

Time: $O(n \log n)$, Space: O(1)

Key Insight: Shortest queries should be processed first to minimize waiting.

1.4.2 Class Photos

Problem: Determine if students can be arranged in two rows for photo. **Solution:** Sort both arrays, determine front row, check height constraints.

Time: O(n log n), Space: O(1)

Key Insight: Front row must be entirely shorter than back row.

1.4.3 Tandem Bicycle

Problem: Calculate total speed of tandem bicycles.

Solution: Sort both arrays, pair based on fastest/slowest preference.

Time: $O(n \log n)$, Space: O(1)

Key Insight: For maximum speed, pair fastest with fastest; for minimum, pair fastest with slowest.

1.4.4 Optimal Freelancing

Problem: Find optimal schedule for freelancing jobs.

Solution: Sort by payment, schedule on latest possible day within deadline.

Time: $O(n \log n)$, Space: O(1)

Key Insight: Greedy approach: take highest paying job on latest available day.

1.5 Linked List Problems

1.5.1 Remove Duplicates from Linked List

Problem: Remove duplicates from linked list.

Solution: Use two pointers, skip duplicates by linking to next distinct node.

Time: O(n), Space: O(1)

Key Insight: In-place removal by updating next pointers.

1.5.2 Middle Node

Problem: Find middle node of linked list.

Solution: Use two pointers (slow and fast), slow moves at half speed.

Time: O(n), Space: O(1)

Key Insight: Fast pointer reaches end when slow pointer is at middle.

1.6 Dynamic Programming

1.6.1 Get Nth Fibonacci

Problem: Calculate nth Fibonacci number.

Solution: Iterative approach, track previous two numbers.

Time: O(n), Space: O(1)

Key Insight: Only need to track last two numbers, not entire sequence.

1.6.2 Product Sum

Problem: Calculate product sum of special array with nested arrays.

Solution: Recursive traversal, multiply by depth level.

Time: O(n), Space: O(d)

Key Insight: Use recursion to handle nested structures, track depth.

1.7 Searching and Sorting

1.7.1 Binary Search

Problem: Perform binary search to find target in sorted array.

Solution: Divide and conquer, eliminate half the search space each step.

Time: $O(\log n)$, Space: O(1)

Key Insight: Halve search space each iteration for logarithmic time.

1.7.2 Find Three Largest Numbers

Problem: Find three largest numbers in array.

Solution: Track three largest values, update and shift as needed.

Time: O(n), Space: O(1)

Key Insight: Only need to track three values, not entire array.

1.7.3 Bubble Sort

Problem: Sort array using bubble sort algorithm.

Solution: Compare adjacent elements, swap if needed, repeat until sorted.

Time: $O(n^2)$, Space: O(1)

Key Insight: Largest elements "bubble up" to their correct positions.

1.7.4 Insertion Sort

Problem: Sort array using insertion sort algorithm.

Solution: Build sorted array incrementally, insert each element in correct position.

Time: $O(n^2)$, Space: O(1)

Key Insight: Each element is inserted into already sorted portion.

1.7.5 Selection Sort

Problem: Sort array using selection sort algorithm.

Solution: Find minimum element, swap to front, repeat for unsorted portion.

Time: $O(n^2)$, Space: O(1)

Key Insight: Find minimum of unsorted portion and place at beginning.

1.8 String Manipulation

1.8.1 Is Palindrome

Problem: Check if string is palindrome.

Solution: Use two pointers from ends, compare characters moving inward.

Time: O(n), Space: O(1)

Key Insight: Compare characters from both ends simultaneously.

1.8.2 Caesar Cipher Encryptor

Problem: Encrypt string using Caesar cipher.

Solution: Shift each character by key, handle wrapping around alphabet.

Time: O(n), Space: O(n)

Key Insight: Use modulo to handle key wrapping: key = key % 26.

1.8.3 Run-Length Encoding

Problem: Encode string using run-length encoding.

Solution: Count consecutive characters, encode as count + character.

Time: O(n), Space: O(n)

Key Insight: Track current character and count, reset when character changes.

1.8.4 Common Characters

Problem: Find characters common to all strings.

Solution: Track minimum count of each character across all strings.

Time: O(n*m), Space: O(c)

Key Insight: Character must appear in all strings with minimum frequency.

1.8.5 Generate Document

Problem: Check if document can be generated from characters. **Solution**: Count available characters, check if sufficient for document.

Time: O(n + m), Space: O(c)

Key Insight: Use hash map to track character frequencies.

1.8.6 First Non-Repeating Character

Problem: Find first non-repeating character in string.

Solution: Count character frequencies, find first with count 1.

Time: O(n), Space: O(1)

Key Insight: Two-pass approach: count frequencies, then find first unique.

1.8.7 Semordnilap

Problem: Find all semordnilap pairs (words that are reverse of each other).

Solution: Use hash set, check if reverse of each word exists.

Time: O(n*m), Space: O(n)

Key Insight: Check if reverse of each word exists in the set.

Chapter 2

Medium Problems

2.1 Array Algorithms

2.1.1 Three Number Sum

Problem: Find all triplets in array that sum to target value.

Solution: Sort array, use three pointers (one fixed, two moving), eliminate duplicates.

Time: $O(n^2)$, Space: O(n)

Key Insight: Use sorting and two-pointer technique to avoid $O(n^3)$ complexity.

2.1.2 Smallest Difference

Problem: Find pair of numbers (one from each array) with smallest absolute difference.

Solution: Sort both arrays, use two pointers to find closest pair.

Time: $O(n \log n + m \log m)$, **Space**: O(1)

Key Insight: Moving larger pointer can only increase difference.

2.1.3 Move Element to End

Problem: Move all instances of specified integer to end of array.

Solution: Use two pointers from ends, swap when left pointer finds target element.

Time: O(n), Space: O(1)

Key Insight: Use two pointers to avoid extra space.

2.1.4 Monotonic Array

Problem: Check if array is entirely non-increasing or non-decreasing. **Solution**: Single pass, track direction, check for direction breaks.

Time: O(n), Space: O(1)

Key Insight: Track direction and check for breaks.

2.1.5 Spiral Traverse

Problem: Traverse 2D array in spiral order starting from top-left.

Solution: Use four boundary variables, traverse in four directions, update boundaries.

Time: O(n), Space: O(n)

Key Insight: Use four boundary variables to track spiral pattern.

2.1.6 Longest Peak

Problem: Find length of longest peak (strictly increasing then strictly decreasing).

Solution: Find peak points, expand left and right to find full peak length.

Time: O(n), Space: O(1)

Key Insight: Expand from peak points to find full peak boundaries.

2.1.7 Array of Products

Problem: Return array where each element is product of every other number.

Solution: Two-pass algorithm - left products then right products.

Time: O(n), Space: O(n)

Key Insight: Use two passes to avoid division and handle zeros.

2.1.8 First Duplicate Value

Problem: Find first duplicate value in array where values are between 1 and n.

Solution: Use array as hash set, mark visited indices as negative.

Time: O(n), Space: O(1)

Key Insight: Use array indices as hash table, mark visited as negative.

2.1.9 Merge Overlapping Intervals

Problem: Merge overlapping intervals in list of intervals. **Solution**: Sort intervals, merge overlapping ones sequentially.

Time: O(n log n), Space: O(n)

Key Insight: Sort first, then merge overlapping intervals sequentially.

2.1.10 Best Seat

Problem: Find best seat in row where 0=empty, 1=occupied. Best seat maximizes distance to

closest person.

Solution: Find largest consecutive empty section, sit in middle.

Time: O(n), Space: O(1)

Key Insight: Find largest consecutive empty section and sit in middle.

2.1.11 Zero Sum Subarray

Problem: Check if there exists a subarray that sums to zero.

Solution: Use hash table to store prefix sums.

Time: O(n), Space: O(n)

Key Insight: If same prefix sum appears twice, subarray between them sums to zero.

2.1.12 Missing Numbers

Problem: Find all missing numbers in array containing numbers from 1 to n.

Solution: Use array as hash set, mark existing numbers as negative.

Time: O(n), Space: O(1)

Key Insight: Use array indices to track which numbers exist.

2.1.13 Majority Element

Problem: Find the majority element in array (appears more than n/2 times).

Solution: Boyer-Moore voting algorithm.

Time: O(n), Space: O(1)

Key Insight: Cancel out pairs of different elements, remaining element is majority.

2.1.14 Sweet and Savory

Problem: Find best sweet and savory dish combination that comes closest to target.

Solution: Sort dishes by type, use two pointers to find optimal pair.

Time: O(n log n), Space: O(n)

Key Insight: Separate sweet and savory dishes, use two-pointer technique.

2.2 Binary Search Tree Algorithms

2.2.1 Validate BST

Problem: Check if binary tree is valid Binary Search Tree. **Solution**: Recursive validation with min/max bounds.

Time: O(n), Space: O(h)

Key Insight: Pass valid range to each subtree recursively.

2.2.2 BST Traversal

Problem: Perform different types of tree traversals.

Solution: Inorder (Left-Root-Right), Preorder (Root-Left-Right), Postorder (Left-Right-Root).

Time: O(n), Space: O(n)

Key Insight: Different traversal orders visit nodes in different sequences.

2.2.3 Min Height BST

Problem: Construct BST with minimum height from sorted array. **Solution:** Use middle element as root, recursively build subtrees.

Time: O(n), Space: O(n)

Key Insight: Use middle element as root to ensure balanced tree.

2.2.4 Find Kth Largest Value in BST

Problem: Find kth largest value in Binary Search Tree. **Solution**: Reverse inorder traversal, stop after k elements.

Time: O(h + k), Space: O(h)

Key Insight: Reverse inorder traversal gives values in descending order.

2.2.5 Reconstruct BST

Problem: Reconstruct BST from preorder traversal.

Solution: First element is root, find split point for left/right subtrees.

Time: O(n), Space: O(n)

Key Insight: Preorder gives root first, then left subtree, then right subtree.

2.2.6 Invert Binary Tree

Problem: Invert a binary tree (mirror image). **Solution**: Recursively swap left and right children.

Time: O(n), Space: O(h)

Key Insight: Swap children at each node recursively.

2.2.7 Binary Tree Diameter

Problem: Find the diameter of a binary tree (longest path between any two nodes).

Solution: Calculate height and update diameter at each node.

Time: O(n), Space: O(h)

Key Insight: Diameter = $\max(\text{left_height} + \text{right_height})$ for any node.

2.2.8 Find Successor

Problem: Find the in-order successor of a given node in a BST.

Solution: If right child exists, find leftmost node in right subtree. Otherwise, find closest ancestor

where node is in left subtree. **Time**: O(h), **Space**: O(1)

Key Insight: Successor is either leftmost node in right subtree or closest ancestor.

2.2.9 Height Balanced Binary Tree

Problem: Check if a binary tree is height-balanced.

Solution: Calculate height and check balance at each node.

Time: O(n), Space: O(h)

Key Insight: Tree is balanced if left and right subtrees are balanced and height difference < 1.

2.2.10 Merge Binary Trees

Problem: Merge two binary trees by adding corresponding nodes.

Solution: Recursively merge corresponding nodes.

Time: $O(\min(n1, n2))$, Space: $O(\min(h1, h2))$

Key Insight: Add values of corresponding nodes, handle null nodes.

2.2.11 Symmetrical Tree

Problem: Check if a binary tree is symmetrical (mirror image of itself).

Solution: Compare left and right subtrees recursively.

Time: O(n), Space: O(h)

Key Insight: Tree is symmetrical if left and right subtrees are mirrored.

2.2.12 Split Binary Tree

Problem: Check if a binary tree can be split into two trees with equal sums. **Solution**: Calculate total sum, check if any subtree has half the total sum.

Time: O(n), Space: O(h)

Key Insight: If total sum is odd, cannot split. Otherwise, look for subtree with half sum.

2.3 Dynamic Programming

2.3.1 Max Subset Sum No Adjacent

Problem: Find maximum sum of non-adjacent elements in array. **Solution:** DP with formula: current = max(include, exclude).

Time: O(n), Space: O(1)

Key Insight: At each step, choose between including or excluding current element.

2.3.2 Number of Ways to Make Change

Problem: Find number of ways to make change for amount n using given denominations.

Solution: DP with formula: ways[amount] += ways[amount - denom].

Time: O(nd), Space: O(n)

Key Insight: Use DP to build up solutions from smaller amounts.

2.3.3 Min Number of Coins for Change

Problem: Find minimum number of coins needed to make change.

Solution: DP with formula: min(current, previous + 1).

Time: O(nd), Space: O(n)

Key Insight: Use DP to find minimum coins for each amount.

2.3.4 Levenshtein Distance

Problem: Calculate edit distance between two strings.

Solution: DP matrix with min(delete, insert, replace) operations.

Time: O(mn), Space: O(mn)

Key Insight: Use DP to find minimum operations to transform one string to another.

2.3.5 Number of Ways to Traverse Graph

Problem: Find number of ways to traverse graph from top-left to bottom-right.

Solution: DP with formula: dp[i][j] = dp[i-1][j] + dp[i][j-1].

Time: O(wh), Space: O(wh)

Key Insight: Each cell can be reached from above or left.

2.3.6 Kadane's Algorithm

Problem: Find the maximum subarray sum.

Solution: Keep track of current and global maximum.

Time: O(n), Space: O(1)

Key Insight: Reset current sum to current element if it becomes negative.

2.4 Graph Algorithms

2.4.1 Single Cycle Check

Problem: Check if single cycle exists in array where each element represents a jump.

Solution: Follow jumps, track visited nodes, check if back to start.

Time: O(n), Space: O(n)

Key Insight: Single cycle visits each node exactly once and returns to start.

2.4.2 River Sizes

Problem: Find sizes of all rivers in matrix where 1=water, 0=land.

Solution: DFS to find connected components of water cells.

Time: O(wh), Space: O(wh)

Key Insight: Use DFS to find connected components of water cells.

2.4.3 Remove Islands

Problem: Remove islands (1s not connected to border) from matrix. **Solution**: Mark all 1s connected to border, remove unmarked 1s.

Time: O(wh), Space: O(wh)

Key Insight: Mark all 1s connected to border, then remove unmarked 1s.

2.4.4 Cycle in Graph

Problem: Check if cycle exists in directed graph.

Solution: DFS with recursion stack to detect back edges.

Time: O(V + E), Space: O(V)

Key Insight: Use recursion stack to detect back edges in DFS.

2.4.5 Minimum Passes of Matrix

Problem: Find minimum passes needed to convert all negative numbers to positive.

Solution: Simulate conversion process pass by pass.

Time: O(wh * passes), **Space**: O(wh)

Key Insight: Simulate the conversion process pass by pass.

2.4.6 Two Colorable

Problem: Check if a graph is two-colorable (bipartite). **Solution**: DFS with color assignment, check for conflicts.

Time: O(V + E), Space: O(V)

Key Insight: Use DFS to assign colors and check for conflicts.

2.4.7 Task Assignment

Problem: Assign tasks to workers optimally. **Solution**: Sort tasks, pair fastest with slowest.

Time: $O(n \log n)$, Space: O(n)

Key Insight: Pair fastest worker with slowest task to minimize total time.

2.4.8 Valid Starting City

Problem: Find a valid starting city for a circular route. **Solution**: Track fuel remaining, reset when negative.

Time: O(n), Space: O(1)

Key Insight: Start from city where fuel remaining becomes negative.

2.4.9 Stable Internships

Problem: Find stable internship assignments using Gale-Shapley algorithm.

Solution: Use Gale-Shapley algorithm for stable matching.

Time: $O(n^2)$, Space: $O(n^2)$

Key Insight: Use Gale-Shapley algorithm for stable matching.

2.5 Heap Algorithms

2.5.1 Min Heap Construction

Problem: Build a min heap from an array. **Solution**: Sift down from last parent to root.

Time: O(n), Space: O(1)

Key Insight: Start from last parent and sift down each node.

2.5.2 Min Heap Operations

Problem: Implement min heap operations (insert, remove, peek).

Solution: Sift up for insert, sift down for remove. **Time**: O(log n) per operation, **Space**: O(1)

Key Insight: Maintain heap property with sift up/down operations.

2.6 Linked List Algorithms

2.6.1 Remove Kth Node From End

Problem: Remove the kth node from the end of a linked list. **Solution**: Use two pointers, fast pointer moves k steps ahead.

Time: O(n), Space: O(1)

Key Insight: Use two pointers to find kth node from end in one pass.

2.6.2 Sum of Linked Lists

Problem: Add two numbers represented as linked lists. **Solution:** Add corresponding digits, handle carry. **Time:** $O(\max(n, m))$, **Space:** $O(\max(n, m))$

Key Insight: Add digits from right to left, handle carry.

2.6.3 Merging Linked Lists

Problem: Find the intersection point of two linked lists. **Solution**: Find lengths, align pointers, find intersection.

Time: O(n + m), Space: O(1)

Key Insight: Align pointers by adjusting for length difference.

2.7 Recursion and Backtracking

2.7.1 Permutations

Problem: Generate all permutations of an array.

Solution: Recursive approach, choose each element as first.

Time: O(n!), Space: O(n!)

Key Insight: Use recursion to build permutations by choosing each element as first.

2.7.2 Powerset

Problem: Generate all subsets (powerset) of an array.

Solution: Backtracking approach, include/exclude each element.

Time: $O(2^n)$, Space: $O(2^n)$

Key Insight: Use backtracking to explore all possible combinations.

2.7.3 Phone Number Mnemonics

Problem: Generate all possible mnemonics for a phone number.

Solution: Backtracking with digit-to-letter mapping.

Time: $O(4^n * n)$, Space: $O(4^n * n)$

Key Insight: Use backtracking to explore all letter combinations for each digit.

2.7.4 Staircase Traversal

Problem: Find number of ways to climb staircase with given height and max steps.

Solution: Recursive approach, try all possible step sizes.

Time: $O(k^n)$, Space: O(n)

Key Insight: Use recursion to explore all possible step combinations.

2.7.5 Blackjack Probability

Problem: Calculate probability of reaching target in blackjack. **Solution**: Recursive probability calculation with memoization.

Time: O(target), Space: O(target)

Key Insight: Use recursion with memoization to calculate probabilities.

2.7.6 Reveal Minesweeper

Problem: Reveal cells in minesweeper board starting from given position.

Solution: BFS to reveal connected safe cells.

Time: O(wh), Space: O(wh)

Key Insight: Use BFS to reveal all connected safe cells.

2.7.7 Search in Sorted Matrix

Problem: Search for target value in sorted matrix.

Solution: Start from top-right, eliminate half the search space each step.

Time: O(n + m), Space: O(1)

Key Insight: Use matrix properties to eliminate half the search space each step.

2.7.8 Three Number Sort

Problem: Sort array containing only three distinct values according to given order.

Solution: Three pointers to partition array in one pass.

Time: O(n), Space: O(1)

Key Insight: Use three pointers to partition array in one pass.

2.8 Stack Algorithms

2.8.1 Min Max Stack

Problem: Implement stack that tracks minimum and maximum values.

Solution: Use auxiliary stack to track min/max at each push.

Time: O(1) all operations, **Space**: O(n)

Key Insight: Maintain auxiliary stack with min/max information.

2.8.2 Balanced Brackets

Problem: Check if a string has balanced brackets.

Solution: Use stack to match opening and closing brackets.

Time: O(n), Space: O(n)

Key Insight: Use stack to match opening and closing brackets.

2.8.3 Sunset Views

Problem: Find buildings that have a sunset view.

Solution: Use stack to track buildings with sunset view.

Time: O(n), Space: O(n)

Key Insight: Use stack to track buildings with sunset view.

2.8.4 Best Digits

Problem: Find the best digits by removing k digits to get the largest possible number.

Solution: Use stack to maintain largest digits.

Time: O(n), Space: O(n)

Key Insight: Use stack to maintain largest digits.

2.8.5 Sort Stack

Problem: Sort a stack using only stack operations. **Solution:** Use temporary stack to sort elements.

Time: $O(n^2)$, Space: O(n)

Key Insight: Use temporary stack to sort elements.

2.8.6 Next Greater Element

Problem: Find the next greater element for each element in the array.

Solution: Use stack to find next greater element.

Time: O(n), Space: O(n)

Key Insight: Use stack to find next greater element.

2.8.7 Reverse Polish Notation

Problem: Evaluate a reverse polish notation expression. **Solution**: Use stack to evaluate postfix expression.

Time: O(n), Space: O(n)

Key Insight: Use stack to evaluate postfix expression.

2.8.8 Colliding Asteroids

Problem: Simulate asteroid collisions. **Solution:** Use stack to simulate collisions.

Time: O(n), Space: O(n)

Key Insight: Use stack to simulate collisions.

2.9 String Algorithms

2.9.1 Longest Palindromic Substring

Problem: Find the longest palindromic substring in a string.

Solution: Expand around center for each character.

Time: $O(n^2)$, Space: O(1)

Key Insight: Expand around center for each character.

2.9.2 Group Anagrams

Problem: Group words that are anagrams of each other.

Solution: Use sorted word as key in hash map. **Time**: O(n * k * log k), **Space**: O(n * k)

Key Insight: Use sorted word as key in hash map.

2.9.3 Valid IP Addresses

Problem: Generate all valid IP addresses from a string of digits.

Solution: Backtracking with IP validation.

Time: O(1), Space: O(1)

Key Insight: Use backtracking with IP validation.

2.9.4 Reverse Words in String

Problem: Reverse the order of words in a string.

Solution: Split by spaces and reverse.

Time: O(n), Space: O(n)

Key Insight: Split by spaces and reverse.

2.9.5 Minimum Characters for Words

Problem: Find minimum characters needed to write all words. **Solution**: Find maximum count of each character across all words.

Time: O(n * k), Space: O(c)

Key Insight: Find maximum count of each character across all words.

2.9.6 One Edit

Problem: Check if two strings are one edit away from each other.

Solution: Compare strings character by character.

Time: O(n), Space: O(1)

Key Insight: Compare strings character by character.

2.10 Trie Algorithms

2.10.1 Suffix Trie Construction

Problem: Build a suffix trie from a string. **Solution**: Insert all suffixes into trie.

Time: $O(n^2)$, Space: $O(n^2)$

Key Insight: Insert all suffixes into trie.

2.10.2 Suffix Trie Search

Problem: Check if string is contained in the trie. **Solution**: Traverse trie following string characters.

Time: O(m), Space: O(1)

Key Insight: Traverse trie following string characters.

Chapter 3

Advanced Problems

3.1 Array and Matrix Problems

3.1.1 Four Number Sum

Problem: Find all quadruplets in array that sum to target value.

Solution: Use hash table to store pairs and their sums, find complements.

Time: $O(n^2)$ average, $O(n^3)$ worst, Space: $O(n^2)$

Key Insight: Store pair sums in hash table, look for complements to form quadruplets.

3.1.2 Subarray Sort

Problem: Find smallest subarray that needs sorting to make entire array sorted.

Solution: Find min/max values out of order, determine boundaries.

Time: O(n), Space: O(1)

Key Insight: Elements out of order determine the boundaries of subarray to sort.

3.1.3 Largest Range

Problem: Find largest range of consecutive integers in array.

Solution: Use hash table to track visited numbers, expand from each number.

Time: O(n), Space: O(n)

Key Insight: Use hash table for O(1) lookups, expand left and right from each number.

3.1.4 Min Rewards

Problem: Distribute minimum rewards based on scores (higher scores get more rewards).

Solution: Two-pass algorithm - left to right, then right to left.

Time: O(n), Space: O(n)

Key Insight: Two passes ensure all constraints are satisfied.

3.1.5 Zigzag Traverse

Problem: Traverse 2D array in zigzag pattern.

Solution: Track direction and handle edge cases at boundaries.

Time: O(n), Space: O(n)

Key Insight: Change direction when hitting array boundaries.

3.1.6 Longest Subarray with Sum

Problem: Find longest subarray that sums to target. **Solution**: Use hash table to store cumulative sums.

Time: O(n), Space: O(n)

Key Insight: If sum[i] - sum[j] = target, subarray j+1 to i sums to target.

3.1.7 Count Squares

Problem: Count number of squares of 1s in binary matrix.

Solution: DP - each cell represents size of largest square ending there.

Time: O(m*n), Space: O(m*n)

Key Insight: DP[i][j] = min(DP[i-1][j], DP[i][j-1], DP[i-1][j-1]) + 1.

3.1.8 Maximum Sum Submatrix

Problem: Find maximum sum of submatrix of given size.

Solution: 2D sliding window with prefix sums.

Time: O(m*n), Space: O(m*n)

Key Insight: Use prefix sums to calculate submatrix sums in O(1).

3.1.9 Largest Rectangle Under Skyline

Problem: Find area of largest rectangle under skyline. **Solution**: Stack-based approach to track increasing heights.

Time: O(n), Space: O(n)

Key Insight: Use stack to maintain increasing heights, calculate area when popping.

3.2 Tree and BST Problems

3.2.1 Same BSTs

Problem: Check if two arrays represent same BST. **Solution**: Recursive comparison with BST property.

Time: O(n²) worst, Space: O(d)

Key Insight: Compare roots, then recursively compare left and right subtrees.

3.2.2 Validate Three Nodes

Problem: Check if node_two is descendant of node_one and node_three is descendant of node_two.

Solution: Check both directions of the relationship.

Time: O(h), Space: O(1)

Key Insight: Search from both nodes to find the relationship.

3.2.3 Repair BST

Problem: Repair BST where exactly two nodes have been swapped.

Solution: Inorder traversal to find swapped nodes.

Time: O(n), Space: O(h)

Key Insight: Inorder traversal reveals swapped nodes in sorted sequence.

3.2.4 Sum BSTs

Problem: Calculate sum of all values in BST.

Solution: Recursive traversal. **Time**: O(n), **Space**: O(h)

Key Insight: Simple recursive sum of current node and subtrees.

3.2.5 Max Path Sum in Binary Tree

Problem: Find maximum path sum in binary tree. **Solution**: Recursive DFS with path tracking.

Time: O(n), Space: O(h)

Key Insight: At each node, consider path through node or max of left/right subtree.

3.2.6 Find Nodes Distance K

Problem: Find all nodes at distance k from target node.

Solution: BFS from target with distance tracking.

Time: O(n), Space: O(n)

Key Insight: Build parent map, use BFS to explore all directions.

3.3 Dynamic Programming

3.3.1 Max Sum Increasing Subsequence

Problem: Find maximum sum of increasing subsequence.

Solution: DP with binary search optimization.

Time: O(n log n), Space: O(n)

Key Insight: Use binary search to find optimal position for each element.

3.3.2 Longest Common Subsequence

Problem: Find length of longest common subsequence between two strings.

Solution: Dynamic programming matrix.

Time: O(m*n), Space: O(m*n)

Key Insight: DP[i][j] = max(DP[i-1][j], DP[i][j-1]) or DP[i-1][j-1] + 1 if match.

3.3.3 Min Number of Jumps

Problem: Find minimum jumps needed to reach end of array.

Solution: Greedy algorithm with reach tracking.

Time: O(n), Space: O(1)

Key Insight: Track current reach and max reach, jump when current reach is exhausted.

3.3.4 Knapsack Problem

Problem: Solve 0/1 knapsack problem. **Solution:** Dynamic programming.

Time: O(n*capacity), Space: O(n*capacity)

Key Insight: DP[i][w] = max(DP[i-1][w], DP[i-1][w-weight[i]] + value[i]).

3.3.5 Disk Stacking

Problem: Find maximum height by stacking disks.

Solution: DP with sorting. Time: $O(n^2)$, Space: O(n)

Key Insight: Sort by dimensions, use DP to find optimal stacking.

3.3.6 Numbers in Pi

Problem: Find minimum spaces needed to separate pi into valid numbers.

Solution: DP with memoization. **Time**: $O(n^3 + m)$, **Space**: O(n + m)

Key Insight: Try all possible prefixes, memoize results.

3.3.7 Maximize Expression

Problem: Maximize A - B + C - D where A,B,C,D are array elements.

Solution: DP with state tracking.

Time: O(n), Space: O(1)

Key Insight: Track state of expression building with DP.

3.3.8 Dice Throws

Problem: Count ways to roll n dice to get total sum.

Solution: Dynamic programming.

Time: O(n*total*faces), Space: O(n*total)

Key Insight: DP[i][j] = sum of DP[i-1][j-k] for all valid k.

3.3.9 Juice Bottling

Problem: Find optimal way to bottle juice to maximize profit.

Solution: Dynamic programming. **Time**: $O(n^2)$, **Space**: O(n)

Key Insight: Try all possible cuts, use DP to find optimal solution.

3.4 Graph Algorithms

3.4.1 Knight Connection

Problem: Find minimum moves for knight to reach from position a to b.

Solution: BFS with chess board constraints.

Time: O(1), Space: O(1)

Key Insight: Fixed board size makes this O(1), use BFS for shortest path.

3.4.2 Dijkstra Algorithm

Problem: Find shortest paths from start vertex to all other vertices.

Solution: Dijkstra's algorithm with priority queue.

Time: $O((V + E) \log V)$, Space: O(V)

Key Insight: Use priority queue to always process closest unvisited vertex.

3.4.3 Topological Sort

Problem: Perform topological sort on directed acyclic graph.

Solution: DFS with cycle detection. **Time**: O(V + E), **Space**: O(V)

Key Insight: Use DFS with visiting/visited states to detect cycles.

3.4.4 Kruskal Algorithm

Problem: Find minimum spanning tree using Kruskal's algorithm.

Solution: Union-Find with sorting. **Time**: O(E log E), **Space**: O(V)

Key Insight: Sort edges, use Union-Find to avoid cycles.

3.4.5 Prim Algorithm

Problem: Find minimum spanning tree using Prim's algorithm.

Solution: Priority queue with adjacency list.

Time: $O(E \log V)$, Space: O(V)

Key Insight: Use priority queue to always add minimum weight edge.

3.4.6 Boggle Board

Problem: Find all words from dictionary that can be formed on boggle board.

Solution: Trie + DFS.

Time: $O(nm * 8^s)$, Space: O(w*s)

Key Insight: Build trie from words, use DFS to explore all paths.

3.4.7 Largest Island

Problem: Find size of largest island in binary matrix.

Solution: DFS with area calculation. **Time**: $O(m^*n)$, **Space**: $O(m^*n)$

Key Insight: Use DFS to explore connected components, track maximum area.

3.5 Linked List Problems

3.5.1 Continuous Median

Problem: Maintain running median of stream of numbers.

Solution: Two heaps - max heap for lower half, min heap for upper half.

Time: O(log n) per insertion, **Space**: O(n)

Key Insight: Keep heaps balanced, median is max of lower heap or average.

3.5.2 Find Loop

Problem: Detect cycle in linked list and return cycle start node. **Solution**: Floyd's Cycle-Finding Algorithm (Tortoise and Hare).

Time: O(n), Space: O(1)

Key Insight: Use two pointers, find meeting point, then find cycle start.

3.5.3 Reverse Linked List

Problem: Reverse linked list iteratively. **Solution**: Three pointers (prev, curr, next).

Time: O(n), Space: O(1)

Key Insight: Update pointers in reverse direction.

3.5.4 Merge Linked Lists

Problem: Merge two sorted linked lists. **Solution:** Compare and link nodes. **Time:** O(n + m), **Space:** O(1)

Key Insight: Compare heads, link smaller one, advance pointer.

3.5.5 Shift Linked List

Problem: Shift linked list by k positions.

Solution: Find length, adjust k, find new head and tail.

Time: O(n), Space: O(1)

Key Insight: Normalize k, find new head by traversing length-k positions.

3.5.6 Lowest Common Manager

Problem: Find lowest common manager of two reports in organizational hierarchy.

Solution: DFS with return values.

Time: O(n), Space: O(h)

Key Insight: Return number of reports found, return node when count reaches 2.

3.6 String Problems

3.6.1 Interweaving Strings

Problem: Check if string three can be formed by interweaving strings one and two.

Solution: DP with memoization. **Time**: O(n*m), **Space**: O(n*m)

Key Insight: Try matching from both strings, memoize results.

3.6.2 Solve Sudoku

Problem: Solve 9x9 Sudoku puzzle.

Solution: Backtracking with constraint checking.

Time: $O(9^{\hat{}}(n^2))$, Space: $O(n^2)$

Key Insight: Try all numbers 1-9, check row/column/box constraints.

3.6.3 Generate Div Tags

Problem: Generate all valid combinations of opening and closing div tags.

Solution: Backtracking with balance tracking.

Time: $O(4^n / sqrt(n))$, Space: O(n)

Key Insight: Track open/close count, ensure balance.

3.6.4 Ambiguous Measurements

Problem: Check if target range can be measured using given measuring cups.

Solution: DP with memoization.

Time: O(n * (high - low)), **Space**: O(high - low)

Key Insight: Try all cup combinations, memoize results.

3.6.5 Longest Substring Without Duplication

Problem: Find longest substring without duplicate characters.

Solution: Sliding window with hash set. **Time**: O(n), **Space**: $O(\min(m, n))$

Key Insight: Expand window, shrink when duplicate found.

3.6.6 Underscorify Substring

Problem: Add underscores around all occurrences of substring in string.

Solution: Find all occurrences and merge overlapping ones.

Time: O(n*m), Space: O(n)

Key Insight: Find locations, collapse overlapping, insert underscores.

3.6.7 Pattern Matcher

Problem: Check if string matches pattern where x and y can be any strings.

Solution: Try different combinations of x and y.

Time: $O(n^2)$, Space: O(n)

Key Insight: Try different lengths for x and y, verify pattern.

3.6.8 Multi String Search

Problem: Find which small strings are contained in big string.

Solution: Build suffix trie and search. **Time**: $O(b^2 + ns)$, **Space**: $O(b^2 + ns)$

Key Insight: Build trie of all suffixes, search each small string.

3.6.9 Longest Most Frequent Prefix

Problem: Find longest prefix that appears in most strings.

Solution: Build prefix trie and count occurrences.

Time: O(n*s), Space: O(n*s)

Key Insight: Count prefix occurrences, find longest with majority.

3.6.10 Shortest Unique Prefixes

Problem: Find shortest unique prefix for each string. **Solution**: Build prefix trie and find unique prefixes.

Time: O(n*s), Space: O(n*s)

Key Insight: Stop when count becomes 1 for unique prefix.

3.7 Sorting and Searching

3.7.1 Sort K Sorted Array

Problem: Sort array where each element is at most k positions away from sorted position.

Solution: Use min heap to maintain k+1 elements.

Time: $O(n \log k)$, Space: O(k)

Key Insight: Use heap to maintain sorted window of k+1 elements.

3.7.2 Shifted Binary Search

Problem: Search for target in shifted sorted array.

Solution: Modified binary search. **Time**: O(log n), **Space**: O(1)

Key Insight: Check if left or right half is sorted, adjust search accordingly.

3.7.3 Search for Range

Problem: Find first and last occurrence of target in sorted array.

Solution: Binary search for first and last occurrence.

Time: $O(\log n)$, Space: O(1)

Key Insight: Use binary search twice - once for first, once for last.

3.7.4 Quickselect

Problem: Find kth smallest element in unsorted array.

Solution: Quickselect algorithm.

Time: O(n) average, $O(n^2)$ worst, Space: O(1)

Key Insight: Use partition from quicksort, recurse on relevant half.

3.7.5 Index Equals Value

Problem: Find first index where array[index] == index.

Solution: Binary search. **Time**: $O(\log n)$, **Space**: O(1)

Key Insight: Use binary search, adjust based on comparison.

3.7.6 Quick Sort

Problem: Sort array using quicksort algorithm. **Solution:** Divide and conquer with pivot selection. **Time:** O(n log n) average, O(n²) worst, **Space:** O(log n)

Key Insight: Choose pivot, partition around it, recurse on halves.

3.7.7 Heap Sort

Problem: Sort array using heapsort algorithm. **Solution**: Build max heap and extract elements.

Time: $O(n \log n)$, Space: O(1)

Key Insight: Build max heap, repeatedly extract maximum.

3.7.8 Radix Sort

Problem: Sort array using radix sort algorithm.

Solution: Sort by each digit from least to most significant.

Time: O(d * (n + k)), Space: O(n + k)

Key Insight: Use counting sort for each digit position.

Chapter 4

Very Advanced Problems

4.1 Optimization and Resource Allocation

4.1.1 Apartment Hunting

Problem: Find optimal block to live in that minimizes maximum distance to all required amenities. **Solution**: Calculate minimum distances for each requirement, find block with minimum maximum distance.

Time: O(B * R), Space: O(B * R)

Key Insight: Precompute distances for each requirement, then find minimum of maximums.

4.1.2 Calendar Matching

Problem: Find available time slots for meeting between two people given their calendars.

Solution: Merge calendars, find gaps between meetings that fit meeting duration.

Time: O(C1 + C2), Space: O(C1 + C2)

Key Insight: Convert times to minutes, merge overlapping meetings, find available gaps.

4.1.3 Waterfall Streams

Problem: Calculate percentage of water that reaches each position at bottom of 2D waterfall.

Solution: DP approach, track water flow and splitting at blocks.

Time: O(W * H), Space: O(W * H)

Key Insight: Use DP to track water percentages, split water when blocked.

4.1.4 Minimum Area Rectangle

Problem: Find minimum area of rectangle that can be formed by any four points.

Solution: Try all pairs as diagonal corners, check if other corners exist.

Time: $O(N^2)$, Space: O(N)

Key Insight: Use hash set for O(1) corner existence check.

4.1.5 Line Through Points

Problem: Find maximum number of points that can be placed on single straight line.

Solution: Calculate slopes between all point pairs, find most common slope.

Time: $O(N^2)$, Space: O(N)

Key Insight: Use GCD to normalize slopes, count most frequent slope.

4.1.6 Right Smaller Than

Problem: For each element, count how many elements to its right are smaller.

Solution: Merge sort with inversion counting.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Use merge sort to count inversions efficiently.

4.2 Tree and Graph Algorithms

4.2.1 Iterative Inorder Traversal

Problem: Perform in-order traversal of binary tree using iteration.

Solution: Use stack to simulate recursion.

Time: O(N), Space: O(H)

Key Insight: Use stack to maintain path to current node.

4.2.2 Flatten Binary Tree

Problem: Flatten binary tree into linked list in pre-order traversal order. **Solution**: Recursive approach, connect left subtree between current and right.

Time: O(N), Space: O(H)

Key Insight: Recursively flatten subtrees, insert left between current and right.

4.2.3 Right Sibling Tree

Problem: Connect each node to its right sibling at same level. **Solution**: Level-by-level traversal, connect nodes at each level.

Time: O(N), Space: O(1)

Key Insight: Process each level, connect children to siblings.

4.2.4 All Kinds of Node Depths

Problem: Calculate sum of depths of all nodes in binary tree.

Solution: Recursive traversal, accumulate depths.

Time: O(N), Space: O(H)

Key Insight: Each node's depth = parent's depth + 1.

4.2.5 Compare Leaf Traversal

Problem: Compare leaf traversal of two binary trees.

Solution: Get leaf sequences using in-order traversal, compare.

Time: O(N1 + N2), Space: O(H1 + H2)

Key Insight: In-order traversal gives leaf sequence in order.

4.2.6 Airport Connections

Problem: Find minimum new routes needed to make all airports reachable from starting airport.

Solution: Find strongly connected components, count unreachable ones.

Time: O(A + R), Space: O(A + R)

Key Insight: Use Kosaraju's algorithm to find SCCs.

4.2.7 Two-Edge-Connected Graph

Problem: Check if graph is 2-edge-connected (removing any edge doesn't disconnect).

Solution: Find bridges using Tarjan's algorithm.

Time: O(V + E), Space: O(V + E)

Key Insight: Graph is 2-edge-connected if it has no bridges.

4.3 Dynamic Programming and Optimization

4.3.1 Max Profit With K Transactions

Problem: Find maximum profit with at most k transactions. **Solution**: DP with state tracking for transactions and days.

Time: O(N * K), Space: O(N * K)

Key Insight: Track max profit before buying for each transaction.

4.3.2 Palindrome Partitioning Min Cuts

Problem: Find minimum cuts needed to partition string into palindromes.

Solution: Build palindrome table, use DP to find minimum cuts.

Time: $O(N^2)$, Space: $O(N^2)$

Key Insight: Precompute all palindromes, then find minimum cuts.

4.3.3 Longest Increasing Subsequence

Problem: Find length of longest strictly increasing subsequence.

Solution: Patience sorting algorithm with binary search.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Use binary search to find optimal position for each element.

4.3.4 Longest String Chain

Problem: Find length of longest word chain where each word is formed by adding one letter.

Solution: Sort by length, use DP to find longest chain.

Time: $O(N * L^2)$, Space: O(N)

Key Insight: Try removing each character to find predecessor.

4.3.5 Square of Zeroes

Problem: Find largest square of zeroes in binary matrix. **Solution**: DP to track consecutive zeros right and below.

Time: $O(N^3)$, Space: $O(N^2)$

Key Insight: Precompute consecutive zeros, then check square formation.

4.3.6 Number of Binary Tree Topologies

Problem: Calculate number of different binary tree topologies with n nodes.

Solution: DP with Catalan number pattern.

Time: $O(N^2)$, Space: O(N)

Key Insight: Use Catalan number formula: C(n) = sum(C(i) * C(n-1-i)).

4.3.7 Non-Attacking Queens

Problem: Find number of ways to place n queens on $n \times n$ board without attacks.

Solution: Backtracking with pruning.

Time: O(N!), Space: O(N)

Key Insight: Use backtracking with row, column, and diagonal checks.

4.4 Advanced String Algorithms

4.4.1 Knuth-Morris-Pratt Algorithm

Problem: Find all occurrences of substring in string using KMP algorithm. **Solution**: Build failure function, use it to skip unnecessary comparisons.

Time: O(N + M), Space: O(M)

Key Insight: Use failure function to avoid recomparing known matches.

4.4.2 Smallest Substring Containing

Problem: Find smallest substring containing all characters from small string.

Solution: Sliding window with character counting.

Time: O(N + M), Space: O(M)

Key Insight: Use sliding window to find minimum valid substring.

4.4.3 Longest Balanced Substring

Problem: Find length of longest balanced substring (equal brackets).

Solution: Stack-based approach with index tracking.

Time: O(N), Space: O(N)

Key Insight: Use stack to track unmatched opening brackets.

4.4.4 Strings Made Up Of Strings

Problem: Check if big string can be constructed by concatenating small strings.

Solution: DP with string matching. **Time**: O(N * M), **Space**: O(N)

Key Insight: Use DP to track if each position can be reached.

4.5 Graph and Pathfinding Algorithms

4.5.1 A* Algorithm

Problem: Find shortest path from start to goal in grid using A* search.

Solution: Priority queue with heuristic function.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Use Manhattan distance heuristic with priority queue.

4.5.2 Rectangle Mania

Problem: Count number of rectangles that can be formed by given coordinates.

Solution: Try all pairs as diagonal corners, check if other corners exist.

Time: $O(N^2)$, Space: O(N)

Key Insight: Use hash set for O(1) corner existence check.

4.5.3 Detect Arbitrage

Problem: Detect arbitrage opportunity in currency exchange rate matrix. **Solution**: Convert to logarithms, use Floyd-Warshall to find negative cycles.

Time: $O(N^3)$, Space: $O(N^2)$

Key Insight: Convert multiplication to addition using logarithms.

4.6 Advanced Data Structures

4.6.1 LRU Cache

Problem: Implement Least Recently Used cache with O(1) operations.

Solution: Hash map with doubly linked list.

Time: O(1), Space: O(C)

Key Insight: Use hash map for O(1) access, doubly linked list for ordering.

4.6.2 Continuous Median

Problem: Maintain running median of stream of numbers.

Solution: Two heaps - max heap for lower half, min heap for upper half.

Time: O(log N) per insertion, **Space**: O(N)

Key Insight: Keep heaps balanced, median is max of lower heap or average.

4.6.3 Merge Sorted Arrays

Problem: Merge multiple sorted arrays into single sorted array.

Solution: Min heap to merge arrays efficiently.

Time: $O(N \log K)$, Space: O(N)

Key Insight: Use heap to always process smallest element.

4.7 Linked List Algorithms

4.7.1 Rearrange Linked List

Problem: Rearrange list so all nodes j k come before = k, which come before j, k.

Solution: Create three separate lists, then connect them.

Time: O(N), Space: O(1)

Key Insight: Use three pointers to maintain separate lists.

4.7.2 Linked List Palindrome

Problem: Check if linked list is palindrome.

Solution: Find middle, reverse second half, compare, restore.

Time: O(N), Space: O(1)

Key Insight: Use fast/slow pointers to find middle, reverse second half.

4.7.3 Zip Linked List

Problem: Rearrange list in zip pattern: first, last, second, second-to-last, etc.

Solution: Find middle, reverse second half, merge in zip pattern.

Time: O(N), Space: O(1)

Key Insight: Reverse second half, then merge alternating nodes.

4.7.4 Node Swap

Problem: Swap every two adjacent nodes in linked list.

Solution: Iterative approach with three pointers.

Time: O(N), Space: O(1)

Key Insight: Use dummy node to handle head case, swap pairs.

4.8 Advanced Sorting and Searching

4.8.1 Median of Two Sorted Arrays

Problem: Find median of two sorted arrays. **Solution**: Binary search on partition points. **Time**: O(log(min(M, N))), **Space**: O(1)

Key Insight: Use binary search to find correct partition.

4.8.2 Optimal Assembly Line

Problem: Assign tasks to workers to minimize maximum time any worker spends.

Solution: Binary search on maximum time with feasibility check.

Time: O(N * log(SUM)), Space: O(1)

Key Insight: Use binary search to find minimum feasible maximum time.

4.8.3 Merge Sort

Problem: Sort array using merge sort algorithm. **Solution**: Divide and conquer with merging.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Recursively sort halves, then merge sorted halves.

4.8.4 Count Inversions

Problem: Count number of inversions in array. **Solution**: Merge sort with inversion counting.

Time: O(N log N), Space: O(N)

Key Insight: Count inversions during merge step of merge sort.

4.9 Geometric and Matrix Algorithms

4.9.1 Largest Park

Problem: Find largest rectangular area for park surrounded by buildings.

Solution: Largest rectangle in histogram for each row.

Time: O(R * C), Space: O(C)

Key Insight: Use histogram approach for each row.

4.9.2 Water Area

Problem: Calculate total water area trapped between bars. **Solution**: Two-pointer approach with left/right max tracking.

Time: O(N), Space: O(1)

Key Insight: Water trapped = $min(left_max, right_max)$ - height.

4.9.3 Laptop Rentals

Problem: Find minimum number of laptops needed for rental times.

Solution: Sort start/end times, use two pointers.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Track overlapping intervals, count maximum simultaneous rentals.

4.9.4 Shorten Path

Problem: Shorten Unix-style file path by resolving . and .. components.

Solution: Stack-based approach. **Time**: O(N), **Space**: O(N)

Key Insight: Use stack to handle directory navigation.

4.10 Advanced Optimization Problems

4.10.1 Max Sum Increasing Subsequence

Problem: Find maximum sum of increasing subsequence.

Solution: DP with binary search optimization.

Time: $O(N \log N)$, Space: O(N)

Key Insight: Use binary search to find optimal position for each element.

4.10.2 Longest Common Subsequence

Problem: Find length of longest common subsequence between two strings.

Solution: Dynamic programming matrix. **Time**: O(M * N), **Space**: O(M * N)

Key Insight: DP[i][j] = max(DP[i-1][j], DP[i][j-1]) or DP[i-1][j-1] + 1 if match.

4.10.3 Min Number of Jumps

Problem: Find minimum jumps needed to reach end of array.

Solution: Greedy algorithm with reach tracking.

Time: O(N), Space: O(1)

Key Insight: Track current reach and max reach, jump when current reach is exhausted.

4.10.4 Knapsack Problem

Problem: Solve 0/1 knapsack problem. **Solution**: Dynamic programming.

Time: O(N * capacity), **Space**: O(N * capacity)

 $\textbf{Key Insight: } DP[i][w] = \max(DP[i-1][w], DP[i-1][w-weight[i]] + value[i]).$

4.10.5 Disk Stacking

Problem: Find maximum height by stacking disks.

Solution: DP with sorting. **Time**: $O(N^2)$, **Space**: O(N)

Key Insight: Sort by dimensions, use DP to find optimal stacking.

4.10.6 Numbers in Pi

Problem: Find minimum spaces needed to separate pi into valid numbers.

Solution: DP with memoization. **Time**: $O(N^3 + M)$, **Space**: O(N + M)

Key Insight: Try all possible prefixes, memoize results.

4.10.7 Maximize Expression

Problem: Maximize A - B + C - D where A,B,C,D are array elements.

Solution: DP with state tracking.

Time: O(N), Space: O(1)

Key Insight: Track state of expression building with DP.

4.10.8 Dice Throws

Problem: Count ways to roll n dice to get total sum.

Solution: Dynamic programming.

Time: O(N * total * faces), Space: O(N * total)

Key Insight: DP[i][j] = sum of DP[i-1][j-k] for all valid k.

4.10.9 Juice Bottling

Problem: Find optimal way to bottle juice to maximize profit.

Solution: Dynamic programming. **Time**: $O(N^2)$, **Space**: O(N)

Key Insight: Try all possible cuts, use DP to find optimal solution.

4.11 Advanced Tree Problems

4.11.1 Same BSTs

Problem: Check if two arrays represent same BST. **Solution**: Recursive comparison with BST property.

Time: $O(N^2)$ worst, Space: O(D)

Key Insight: Compare roots, then recursively compare left and right subtrees.

4.11.2 Validate Three Nodes

Problem: Check if node_two is descendant of node_one and node_three is descendant of node_two.

Solution: Check both directions of the relationship.

Time: O(H), Space: O(1)

Key Insight: Search from both nodes to find the relationship.

4.11.3 Repair BST

Problem: Repair BST where exactly two nodes have been swapped.

Solution: Inorder traversal to find swapped nodes.

Time: O(N), Space: O(H)

Key Insight: Inorder traversal reveals swapped nodes in sorted sequence.

4.11.4 Sum BSTs

Problem: Calculate sum of all values in BST.

Solution: Recursive traversal. **Time**: O(N), **Space**: O(H)

Key Insight: Simple recursive sum of current node and subtrees.

4.11.5 Max Path Sum in Binary Tree

Problem: Find maximum path sum in binary tree. **Solution**: Recursive DFS with path tracking.

Time: O(N), Space: O(H)

Key Insight: At each node, consider path through node or max of left/right subtree.

4.11.6 Find Nodes Distance K

Problem: Find all nodes at distance k from target node.

Solution: BFS from target with distance tracking.

Time: O(N), Space: O(N)

Key Insight: Build parent map, use BFS to explore all directions.

4.12 Advanced Matrix and Array Problems

4.12.1 Count Squares

Problem: Count number of squares of 1s in binary matrix.

Solution: DP - each cell represents size of largest square ending there.

Time: O(M * N), Space: O(M * N)

Key Insight: DP[i][j] = min(DP[i-1][j], DP[i][j-1], DP[i-1][j-1]) + 1.

4.12.2 Maximum Sum Submatrix

Problem: Find maximum sum of submatrix of given size.

Solution: 2D sliding window with prefix sums.

Time: O(M * N), Space: O(M * N)

Key Insight: Use prefix sums to calculate submatrix sums in O(1).

4.12.3 Largest Rectangle Under Skyline

Problem: Find area of largest rectangle under skyline. **Solution**: Stack-based approach to track increasing heights.

Time: O(N), Space: O(N)

Key Insight: Use stack to maintain increasing heights, calculate area when popping.

4.12.4 Longest Subarray with Sum

Problem: Find longest subarray that sums to target. **Solution**: Use hash table to store cumulative sums.

Time: O(N), Space: O(N)

Key Insight: If sum[i] - sum[j] = target, subarray j+1 to i sums to target.

4.12.5 Knight Connection

Problem: Find minimum moves for knight to reach from position a to b.

Solution: BFS with chess board constraints.

Time: O(1), Space: O(1)

Key Insight: Fixed board size makes this O(1), use BFS for shortest path.

4.13 Advanced String and Pattern Matching

4.13.1 Interweaving Strings

Problem: Check if string three can be formed by interweaving strings one and two.

Solution: DP with memoization. **Time**: O(N * M), **Space**: O(N * M)

Key Insight: Try matching from both strings, memoize results.

4.13.2 Solve Sudoku

Problem: Solve 9×9 Sudoku puzzle.

Solution: Backtracking with constraint checking.

Time: $O(9^{\hat{}}(N^2))$, Space: $O(N^2)$

Key Insight: Try all numbers 1-9, check row/column/box constraints.

4.13.3 Generate Div Tags

Problem: Generate all valid combinations of opening and closing div tags.

Solution: Backtracking with balance tracking.

Time: $O(4^N / sqrt(N))$, Space: O(N)

Key Insight: Track open/close count, ensure balance.

4.13.4 Ambiguous Measurements

Problem: Check if target range can be measured using given measuring cups.

Solution: DP with memoization.

Time: O(N * (high - low)), **Space**: O(high - low)

Key Insight: Try all cup combinations, memoize results.