Appendix A: Fourier integrals and the Dirac delta function		
A.1 Fourier series		
Fourier expansion	$f(x) = (2\pi)^{-1/2} \sum_{n=-\infty}^{\infty} C_n \exp(inx)$	
Kronecker delta	By integrating: $(2\pi)^{-1} \int_{-\pi}^{\pi} \exp[i(n-m)x] dx = \delta_{mn}$	
	where δ_{mn} is the Kronecker delta symbol defined as	
	$\delta_{mn} = 1,$ if $m = n$ = 0, if $m \neq n$.	
Fourier coefficients	we can use the Kronecker delta on the Fourier expansion	
	$C_m = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x) \exp(-imx) dx$	
Fourier in an interval L	For an interval with length L we substitute $x\rightarrow\pi x/L$:	
	$f(x) = (2\pi)^{-1/2} \sum_{n=-\infty}^{\infty} C_n \exp(\mathrm{i}n\pi x/L)$	
	where the coefficients C_m are given by	
	$C_m = L^{-1} \left(\frac{\pi}{2}\right)^{1/2} \int_{-L}^{L} f(x) \exp(-\mathrm{i} m\pi x/L) dx.$	
A.2 Fourier transforms		
Fourier transform	summate over infinitely many functions $f(x)=(2\pi)^{-1/2}\int_{-\infty}^{\infty}g(k)\exp(\mathrm{i}kx)\mathrm{d}k.$ By taking the limit $L\to\infty$ in (A.9) we find	
	$g(k) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} f(x) \exp(-ikx) dx.$	
A.2.1 Dirac delta function		
Dirac delta function	$\delta(x - x') = (2\pi)^{-1} \int_{-\infty}^{\infty} \exp[ik(x - x')] dk.$	
properties of Dirac delta	$f(x) = \int_{-\infty}^{\infty} f(x') \delta(x - x') \mathrm{d}x'$ which can be proven by inserting g(x) in f(x):	
	$f(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x') \exp(-ikx') dx' \right] \exp(ikx') dx'$	(x)dk
extra properties	$\int_{a}^{b} f(x)\delta(x - x_0) dx = f(x_0) $ if $a < x_0$	< <i>b</i>
	$= 0 if x_0 < a$	or $x_0 > b$ (A.26)
	$\delta(x) = \delta(-x)$	(A.27)
	$x\delta(x) = 0$	(A.28)
	$\delta(ax) = \frac{1}{ a }\delta(x), \qquad a \neq 0$	(A.29)
	$f(x)\delta(x-a) = f(a)\delta(x-a)$	(A.30)
	$\int \delta(a-x)\delta(x-b)\mathrm{d}x = \delta(a-b)$	(A.31)
	$\delta[g(x)] = \sum_{i} \frac{1}{ g'(x_i) } \delta(x - x_i)$	(A.32)

A.2.2 further properties of Fourier transforms		
$\int_{-\infty}^{\infty} f(x) ^2 dx$ $= (2\pi)^{-1} \int_{-\infty}^{\infty} dx \left[\int_{-\infty}^{\infty} g^*(k) \exp(-ikx) dk \int_{-\infty}^{\infty} g(k') \exp(ik'x) dk' \right]$ $= \int_{-\infty}^{\infty} g^*(k) \left[\int_{-\infty}^{\infty} g(k') \delta(k' - k) dk' \right] dk$		
$= \int_{-\infty}^{\infty} g(k) ^2 dk.$ The convolution of two functions f_{n} and f_{n}	(A.43)	
$F(x) = \int_{-\infty}^{\infty} f_1(y) f_2(x - y) dy.$	(A.44)	
and $g_1(k)$ and $g_2(k)$ are the Fourier transforms $G(k) = (2\pi)^{1/2} g_1(k) g_2(k)$.	of $f_1(x)$ and $f_2(x)$, respectively, then (A.45)	
	$\int_{-\infty}^{\infty} f(x) ^2 dx$ $= (2\pi)^{-1} \int_{-\infty}^{\infty} dx \left[\int_{-\infty}^{\infty} g^*(k) \exp(-ikx) dk \int_{-\infty}^{\infty} g^*(k) \left[\int_{-\infty}^{\infty} g(k') \delta(k'-k) dk' \right] dk$ $= \int_{-\infty}^{\infty} g(k) ^2 dk.$ The <i>convolution</i> of two functions f_1 and f_2 $F(x) = \int_{-\infty}^{\infty} f_1(y) f_2(x-y) dy.$ A straightforward calculation then shows that if and $g_1(k)$ and $g_2(k)$ are the Fourier transforms	