Basic Math | Class 17 Relationship with the inverse mobis. 1) Friudtle iuverse motrix of the following matrices A if they exist. Is A regulor or singulor? USE E.B.T. a) $A := \begin{bmatrix} 5 & 2 & -3 \\ 3 & 1 & -2 \\ 2 & -3 & -4 \end{bmatrix} \in \mathbb{R}^{3\times3}$ 6) $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$ [-3 1 -7]

a) (a, az/az/	e, ez es/	I_3
e,	5 2 -3	1000	(F)
ez	3 1 -2	010	1.(-2) 3
e3	5 2 -3 -2 2 -3 -4	0 0 1	~ C
en	-1 0 1 3 1 - 2	1-20	1.2 1.10
az	31-2	010	2(E)
63		0 3 1	(+)
a3	-1010	1-20	S A
a_{2}	1 10	2 -30	5
e 3	1 0 0	10 -17 1	(-1)
$\overline{\alpha_3}$	001	11-191	
a_2	010,	-8 14 -1 10 -17 1	
an	100	10 -17 1	

The algorithm STOPS here (Ne could change basis enrezez to 93192,91) Here in the lost table we Change the order of the rows into the original order anaziaz = 19192 931e1e2 C3 91 100 0 10-17 1 0 0 -8 14-1 11 -19 1

So A has an inverse untrix so it is regular and its $\hat{A} = \begin{bmatrix}
10 & -17 & 1 \\
-8 & 14 & -1
\end{bmatrix}$ $\begin{bmatrix}
11 & -19 & 1
\end{bmatrix}$ What is vaule (A) = ? We could change oll vetors a 1 1 az 1 as so

rang A = 3

b)
$$\begin{vmatrix} a_1 & a_2 & a_3 & | e_1 & e_2 & e_3 \end{vmatrix}$$

 $e_1 & 1 & 1 & -1 & 1 & 0 & 0 & 0$
 $e_2 & 2 & 0 & 3 & 0 & 1 & 0 & 0$
 $e_3 & -3 & 1 & -7 & 0 & 0 & 1 & 1 & (-1) \end{pmatrix}$
 $e_1 & 4 & 0 & 6 & 1 & 0 & -1 & 64$
 $e_2 & 2 & 0 & 3 & 0 & 1 & 0 & 1 & (-1)$
 $e_1 & 4 & 0 & 6 & 1 & 0 & -1 & 64$
 $e_2 & 2 & 0 & 3 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1) & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 1 & (-1)$
 $e_1 & 0 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 & (-1)$
 $e_1 & 0 & 0 & 0 &$

In the line of en we nave 0 at column az So the algorithm STOPS We could change ez/ez to ana2 = | rout (A) = 2 | =) A dues not hove inverse so A is singular, 50 7A-" We an also find from Huis toble the solutions

of the hourgenous systam Ax = 0. So the boot toble $\frac{C_1}{a_1} = \frac{0}{1} = \frac{0}{3/2} = \frac{0}{0}$ $\frac{a_1}{a_2} = \frac{0}{0} = \frac{0}{1} = \frac{0}{5/2} = \frac{0}{0}$ Fixed variables: x,1x2. Free vouvable: X3 Solutions. $+3/_{3}X_{3}=0$ X2-5/2 X3 = 0

$$= \begin{cases} X_1 = -\frac{3}{5} \times 3 \\ X_2 = \frac{5}{5} \times 3 \end{cases}$$

$$= \begin{cases} X_3 \in \mathbb{R} & \text{fvce} \end{cases}$$

$$= \begin{cases} X_3 \in \mathbb{R} & \text{fvce} \end{cases}$$

$$= \begin{cases} X_1 \\ X_2 \\ X_3 \end{cases} = \begin{cases} -3/5 \times 3 \\ X_3 \end{cases} = \begin{cases} -3/5 \\ 5/2 \end{cases} = \begin{cases} -3/5$$

dim
$$S_h = 1$$
, and
 $(-3/5, 5/2, 1)$ is a basis in
 S_h .
 2 A:= $51-7-27$

a) rough (A)=?

3) is it regulor or singulor?

c)
$$b_1 = (-113, 7, 0) \in \mathbb{R}^5$$

 $b_2 = (015, 7, -1) \in \mathbb{R}^5$

Solve the systems: $Ax = 5_1 \text{ and } Ax = 6_2$

				~
	a1 a2 a3 a4	161		
ei	5 1 -7 -2	-1	0	FIF
ez	0211	3	5	
63	1 5 1 2	7	7	(-5)
Cy	-3-1 4 1	0	-1	=1.3
e_{1}	0 -24 -12 -12	-36	-35	4)P
e 2	02/11	3	50	1-12
a	1512	7	7	E E
e 4	02/1/2	21	20	(-t)

Ju Hu O lives of e, leg in column of 62 Hure ave no 0's (it's enough if one of Huem is not 0) =) AX=b2 has no solutim, so it is inconsistent · we changed ezies to $a_3, a_1 =)$ (romk (A) = 2 (and the system $Ax = b_1$ con le solved, so:

Fixed voriables: X1,X3
(bound-11-) Free variables: X21X4 =) Solutions: $2x_2+x_3+x_4=3$ ×1+3×2 + ×4= 4 $=)(\chi_3 = 3 - 2\chi_2 - \chi_4)$ 1×1=4-3×2-X4 (X2, X4 EIR) Scalar form of solutions.

Vector form: $\begin{array}{c}
\begin{pmatrix}
\times 1 \\
\times 2 \\
\times 3
\end{pmatrix} = \begin{pmatrix}
4 - 3 \times 2 - \times 4 \\
\times 2 \\
3 - 2 \times 2 - \times 4
\end{pmatrix}$ $\begin{array}{c}
\times 1 \\
\times 3 \\
\times 4
\end{pmatrix}$ $= \begin{pmatrix} 7 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} -3 \\ 1 \\ -2 \\ 0 \end{pmatrix} + \chi_{4} \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$ X4EIR; So Hu set of all solutions

$$S = \left\{ \begin{array}{l} x_{B} + x_{2} v_{2} + x_{4} v_{4} \\ x_{21} x_{4} \in \mathbb{R} \right\} = \\ = x_{B} + \left\{ \begin{array}{l} x_{2} v_{2} + x_{4} v_{3} \\ x_{21} x_{4} \in \mathbb{R} \right\} = \\ = x_{B} + Span \left(v_{21} v_{4} \right) = \\ = x_{B} + Sh \quad So \\ Sn = Span \left(v_{21} v_{4} \right) = \\ dim Sn = v_{1} - v_{1} = v_{1} - v_{2} = z_{1} \end{array}$$

=) NZIV4 is a bani's i'u Su (nomojenous solutions of AX=0) So d'un Ker A = -dim Sn= 2 rank (A) = 2 < 4 =) A is singular = DA! We an obso condude, that Let A = 0 (=) \$\frac{1}{4} A^{-1} THE END