# Numerical Analysis of the Movement of a Damped, Driven Pendulum

## Danming Wang, 5833587

### March 15, 2020

Group Members: Danming Wang (5833587), Xing Su (4502266), Xilin Huang (5562194), Zhixin Liu (7445224), Li Guo (7593601), Wenrui Wang (5813373)

## Contents

| 1 | MOTIVATION                                       | 2           |
|---|--------------------------------------------------|-------------|
| 2 | PROBLEM STATEMENT                                | 2           |
| 3 | NOTATIONS AND THEOREM                            | 2           |
| 4 | ANALYSIS 4.1 Lipschitz Continuity 4.2 Well Posed | 3<br>3<br>5 |
| 5 | METHODS                                          | 6           |
| 6 | RESULTS                                          | 6           |
| 7 | CONCLUSION                                       | 9           |

### 1 MOTIVATION

In real life, some objects oscillate in a similar way as how a damped and driven pendulum moves. Our project is inspired by these real-life situations, such as the oscillation driven by earthquake. We aim at building a model of a non-linear damped and driven pendulum to study its movement.

### 2 PROBLEM STATEMENT

Our project simulates a non-linear damped and driven pendulum. By applying different driven force, our pendulum's movement can change between chaotic and unchaotic.

We formulated our problem into an initial-value problem as follows:

$$\frac{d^2\theta}{dt^2} = -q\frac{d\theta}{dt} - \frac{g}{l}\sin\theta + b_0\cos\omega_D t = f(t,\theta), \ a \le t \le b, \ \theta(a) = \alpha_1, \theta'(a) = \alpha_2$$

Next, we can rewrite this second-order initial-value problem into a system of first-order initial-value problems by letting  $u_1 = \theta$  and  $u_2 = \frac{d\theta}{dt}$ . Let  $D = \{(t, u_1, u_2) | a \le t \le b \text{ and } -\infty < u_i < \infty, \text{ for each } i = 1, 2\}$ . Then we get

$$f(t, u_1, u_2) = \begin{cases} u'_1 &= u_2 = f_1(t, u_1, u_2) \\ u'_2 &= -q \cdot u_2 - \frac{g}{l} \sin(u_1) + b_0 \cdot \cos(\omega_D t) = f_2(t, u_1, u_2) \end{cases}$$

with initial conditions  $u_1(a) = \alpha_1$  and  $u_2(a) = \alpha_2$ . In this way, we can use the Runge-Kutta method for system of differential equations to solve for  $u_1 = \theta$  and  $u_2 = \theta' = \omega$ .

## 3 NOTATIONS AND THEOREM

#### **Notation:**

- 1.  $\theta$ : angular displacement
- 2.  $\theta' = \omega$ : angular velocity
- 3. g: the acceleration of gravity (=  $9.8m/s^2$ )
- 4. *l*: length of the string
- 5. q: damping parameter
- 6.  $b_0$ : driving force parameter
- 7.  $\omega_D$ : driving angular frequency

**Mean Value Theorem:** Suppose f(x) is a function that satisfies both of the following:

1. f(x) is continuous on the closed interval [a, b].

2. f(x) is differentiable on the open interval (a, b).

Then there is a number c such that a < c < b and  $f'(c) = \frac{f(b) - f(a)}{b - a}$ .

## 4 ANALYSIS

### 4.1 Lipschitz Continuity

*Proof.* We can write  $f(t, u_1, u_2)$  into matrix form:

$$f(t, u_1, u_2) = \begin{bmatrix} f_1(t, u_1, u_2) \\ f_2(t, u_1, u_2) \end{bmatrix}$$
$$= \begin{bmatrix} u_2 \\ -q \cdot u_2 - \frac{g}{l} \sin(u_1) + b_0 \cdot \cos(\omega_D t) \end{bmatrix}$$

To prove that  $f(t, u_1, u_2)$  is Lipschitz continuous on the set D, it suffices to prove that there exists L > 0 such that  $||f(t_1, u_1, u_2) - f(t_1, z_1, z_2)||_2 \le L||(t_1, u_1, u_2) - (t_2, z_1, z_2)||_2$  for any  $(t_1, u_1, u_2), (t_2, z_1, z_2) \in D$ .

Then it follows that

$$||(t_1, u_1, u_2) - (t_2, z_1, z_2)||_2 = \sqrt{(t_1 - t_2)^2 + (u_1 - z_1)^2 + (u_2 - z_2)^2}$$

and

$$\begin{aligned} & \left\| \begin{bmatrix} f_1(t_1, u_1, u_2) \\ f_2(t_1, u_1, u_2) \end{bmatrix} - \begin{bmatrix} f_1(t_2, z_1, z_2) \\ f_2(t_2, z_1, z_2) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} u_2 \\ -q \cdot u_2 - \frac{g}{l} \sin(u_1) + b_0 \cdot \cos(\omega_D t_1) \end{bmatrix} - \begin{bmatrix} z_2 \\ -q \cdot z_2 - \frac{g}{l} \sin(z_1) + b_0 \cdot \cos(\omega_D t_2) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} u_2 - z_2 \\ -q \cdot u_2 - \frac{g}{l} \sin(u_1) + b_0 \cdot \cos(\omega_D t_1) - (-q \cdot z_2 - \frac{g}{l} \sin(z_1) + b_0 \cdot \cos(\omega_D t_2)) \end{bmatrix} \right\|_2 \\ &= \left\| \begin{bmatrix} u_2 - z_2 \\ q \cdot (z_2 - u_2) + \frac{g}{l} (\sin(z_1) - \sin(u_1)) + b_0 \cdot (\cos(\omega_D t_1) - \cos(\omega_D t_2)) \end{bmatrix} \right\|_2 \\ &= \sqrt{(u_2 - z_2)^2 + \left[ q \cdot (z_2 - u_2) + \frac{g}{l} (\sin(z_1) - \sin(u_1)) + b_0 \cdot (\cos(\omega_D t_1) - \cos(\omega_D t_2)) \right]^2} \end{aligned}$$

Notice that  $(u_2-z_2)^2 \le (u_1-z_1)^2 + (u_2-z_2)^2 + (t_1-t_2)^2$  since  $(u_1-z_1)^2 \ge 0$  and  $(t_1-t_2)^2 \ge 0$ .

Next, we can calculate that

$$\begin{split} & \frac{\left[q\cdot(z_2-u_2)+\frac{q}{l}(\sin(z_1)-\sin(u_1))\right]^2}{(l_1-l_2)^2+(u_1-z_1)^2+(u_2-z_2)^2} \\ & \leq \frac{\left[q\cdot(z_2-u_2)+\frac{q}{l}(\sin(z_1)-\sin(u_1))\right]^2}{(u_1-z_1)^2+(u_2-z_2)^2} \\ & = \frac{q^2\cdot(z_2-u_2)^2+\frac{q^2}{l^2}(\sin(z_1)-\sin(u_1))^2+2q\frac{q}{l}(z_2-u_2)(\sin(z_1)-\sin(u_1))}{(u_1-z_1)^2+(u_2-z_2)^2} \\ & = \frac{q^2\cdot(z_2-u_2)^2}{(u_1-z_1)^2+(u_2-z_2)^2}+\frac{\frac{q^2}{l^2}(\sin(z_1)-\sin(u_1))^2}{(u_1-z_1)^2+(u_2-z_2)^2} \\ & + \frac{2q\frac{q}{l}(z_2-u_2)}{\sqrt{(u_1-z_1)^2+(u_2-z_2)^2}}\cdot\frac{(\sin(z_1)-\sin(u_1))}{\sqrt{(u_1-z_1)^2+(u_2-z_2)^2}} \\ & \leq \frac{q^2\cdot(z_2-u_2)^2}{(u_2-z_2)^2}+\frac{\frac{q^2}{l^2}(\sin(z_1)-\sin(u_1))^2}{(u_1-z_1)^2}+\frac{2q\frac{q}{l}(z_2-u_2)}{\sqrt{(u_2-z_2)^2}}\cdot\frac{(\sin(z_1)-\sin(u_1))}{\sqrt{(u_1-z_1)^2}} \\ & = q^2+\frac{g^2}{l^2}(\sin'(w))^2+\frac{2q\frac{q}{l}(z_2-u_2)}{|u_2-z_2|}\cdot\frac{(\sin(z_1)-\sin(u_1))}{|u_1-z_1|} \\ & \text{where $w$ is between $u_1$ and $z_1$ by Mean Value Theorem} \\ & \leq q^2+\frac{g^2}{l^2}(\cos(w))^2+\frac{2q\frac{q}{l}|z_2-u_2|}{|u_2-z_2|}\cdot\left|\frac{\sin(z_1)-\sin(u_1)}{u_1-z_1}\right| \\ & \leq q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\sin'(w)| \text{ where $w$ is between $u_1$ and $z_1$ by Mean Value Theorem} \\ & = q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\sin'(w)| \text{ where $w$ is between $u_1$ and $z_1$ by Mean Value Theorem} \\ & = q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\cos(w)| \\ & \leq q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\cos(w)| \\ & \leq q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\cos(w)| \\ & \leq q^2+\frac{g^2}{l^2}+2q\frac{g}{l}\cdot|\cos(w)| \leq 1 \end{split}$$

and

$$\frac{2\left[q\cdot(z_{2}-u_{2})+\frac{g}{l}(\sin(z_{1})-\sin(u_{1}))\right]b_{0}\cdot(\cos(\omega_{D}t_{1})-\cos(\omega_{D}t_{2}))}{(u_{1}-z_{1})^{2}+(u_{2}-z_{2})^{2}+(t_{1}-t_{2})^{2}} \\
\leq \left(\frac{2g(z_{2}-u_{2})}{\sqrt{(u_{2}-z_{2})^{2}}}+\frac{2q(\sin(z_{1})-\sin(u_{1}))}{l\sqrt{(z_{1}-u_{1})^{2}}}\right)\cdot\frac{b_{0}(\cos(\omega_{D}t_{1})-\cos(\omega_{D}t_{2}))}{\sqrt{(t_{1}-t_{2})^{2}}} \\
\leq \left(2q+\frac{2g}{l}\cdot\frac{\sin(z_{1})-\sin(u_{1})}{|z_{1}-u_{1}|}\right)\cdot\frac{b_{0}\cdot\omega_{D}(\cos(\omega_{D}t_{1})-\cos(\omega_{D}t_{2}))}{(t_{1}-t_{2})\cdot\omega_{D}} \\
= \left(2q+\frac{2g}{l}\cdot\sin'(s)\right)\cdot b_{0}\omega_{D}\cdot\cos'(v),$$

where s is between  $z_1$  and  $u_1$ , and v is between  $\omega_D t_1$  and  $\omega_D t_2$  by Mean Value Theorem

$$\leq \left(2q + \frac{2g}{l}\right) \cdot b_0 \omega_D$$
, since  $\cos'(v) = -\sin(v) \leq 1$ 

and

$$\frac{b_0^2 \cdot (\cos(\omega_D t_1) - \cos(\omega_D t_2))^2}{(u_1 - z_1)^2 + (u_2 - z_2)^2 + (t_1 - t_2)^2}$$

$$\leq \frac{b_0^2 \cdot (\cos(\omega_D t_1) - \cos(\omega_D t_2))^2}{\omega_D^2 (t_1 - t_2)^2} \cdot \omega_D^2$$

$$\leq b_0^2 \cdot (\cos'(T))^2 \cdot \omega_D^2 \text{ where } T \text{ is between } \omega_D t_1 \text{ and } \omega_D t_2 \text{ by Mean Value Theorem}$$

$$\leq b_0^2 \omega_D^2, \text{ since } \cos'(T) = -\sin(T) \leq 1$$

Thus,

$$(u_{2} - z_{2})^{2} + \left[q \cdot (z_{2} - u_{2}) + \frac{g}{l}(\sin(z_{1}) - \sin(u_{1})) + b_{0} \cdot (\cos(\omega_{D}t_{1}) - \cos(\omega_{D}t_{2}))\right]^{2}$$

$$= (u_{2} - z_{2})^{2} + \left[q \cdot (z_{2} - u_{2}) + \frac{g}{l}(\sin(z_{1}) - \sin(u_{1}))\right]^{2} +$$

$$2\left[q \cdot (z_{2} - u_{2}) + \frac{g}{l}(\sin(z_{1}) - \sin(u_{1}))\right]b_{0} \cdot (\cos(\omega_{D}t_{1}) - \cos(\omega_{D}t_{2}))$$

$$+ \left[b_{0} \cdot (\cos(\omega_{D}t_{1}) - \cos(\omega_{D}t_{2}))\right]^{2}$$

$$\leq \left(1 + q^{2} + \frac{g^{2}}{l^{2}} + 2q\frac{g}{l} + \left(2q + \frac{2g}{l}\right) \cdot b_{0}\omega_{D} + b_{0}^{2}\omega_{D}^{2}\right)\left[(t_{1} - t_{2})^{2} + (u_{1} - z_{1})^{2} + (u_{2} - z_{2})^{2}\right]$$

Hence,

$$\sqrt{(u_2 - z_2)^2 + \left[q \cdot (z_2 - u_2) + \frac{g}{l}(\sin(z_1) - \sin(u_1)) + b_0 \cdot (\cos(\omega_D t_1) - \cos(\omega_D t_2))\right]^2} \\
\leq \sqrt{1 + q^2 + \frac{g^2}{l^2} + 2q\frac{g}{l} + \left(2q + \frac{2g}{l}\right) \cdot b_0 \omega_D + b_0^2 \omega_D^2} \cdot \sqrt{(t_1 - t_2)^2 + (u_1 - z_1)^2 + (u_2 - z_2)^2}$$

$$\Rightarrow L = \sqrt{1 + q^2 + \frac{g^2}{l^2} + 2q\frac{g}{l} + \left(2q + \frac{2g}{l}\right) \cdot b_0 \omega_D + b_0^2 \omega_D^2} > 0$$

#### 4.2 Well Posed

Claim:  $f(t, u_1, u_2)$  is continuous on D.

*Proof.* To prove  $f(t, u_1, u_2)$  is continuous on D, it suffices to prove that  $f_1(t, u_1, u_2)$  and  $f_2(t, u_1, u_2)$  are continuous on D.

Since  $f_1(t, u_1, u_2) = u_2$ , for all  $(t, u_1, u_2) \in D$ ,  $f_1(t, u_1, u_2) = u_2$  is continuous.

Since  $f_2(t, u_1, u_2) = -q \cdot u_2 - \frac{g}{l} \sin(u_1) + b_0 \cdot \cos(\omega_D t)$  for all  $(t, u_1, u_2) \in D$  and  $u_2$ ,  $\sin(u_1)$ , and  $\cos(\omega_D t)$  are continuous, by Algebraic Continuity Theorem,  $f_2(t, u_1, u_2)$  is continuous on D.

Therefore, 
$$f(t, u_1, u_2)$$
 is continuous on D.

Since  $f(t, u_1, u_2)$  is continuous on D by claim and it also satisfies Lipschitz continuity on D in the variables  $u_1, u_2$  by section 4.1, the initial value problem is well posed by Theorem 5.6 in textbook.

Thus, there exists an unique solution for  $u_1 = \theta$  and  $u_2 = \theta' = \omega$ .

## 5 METHODS

To approximate the solution of the system of first-order initial-value problems, we are going to use the Runge-Kutta method for system of differential equations.

## 6 RESULTS

Fix q = 0.5, g = 9.8, l = 9.8,  $\omega_D = \frac{2}{3}$ , h = 0.1. We will see how an increase in  $b_0$ , the driving force parameter, will change the oscillation from non-chaotic to chaotic.

Firstly, take  $b_0 = 0.9$  and consider  $0 \le t \le 100$ ,  $\theta(0) = 0$ ,  $\theta'(0) = 1$ . By using the Runge-Kutta method, we get approximations of  $\theta$  and  $\theta'$  at different times, and we can plot our approximations with respect to t as follows:

Figure 1: Angular displacement of the pendulum at various times.



Figure 2: Angular velocity of the pendulum at various times.



And the relation between  $\omega(t)$  and  $\theta(t)$  can be plotted as follows:



Figure 3: Relation between the angular velocity and angular displacement

From figure 1 and 2, we can see that both angular displacement and angular velocity change in a periodic way with respect to time. From figure 3, we can see that the orbit on the diagram will eventually enter the final state of travelling on a nearly elliptical cycle after undergoing a chaotic transient process.

Next, take  $b_0 = 1.15$  and consider  $0 \le t \le 1000$ ,  $\theta(0) = 0$ ,  $\theta'(0) = 1$ . By using the Runge-Kutta method, we get approximations of  $\theta$  and  $\theta'$  at different times, and we can plot our approximations with respect to t as follows:

Figure 4: Angular displacement of the pendulum at various times.



Figure 5: Angular velocity of the pendulum at various times.



And the relation between  $\omega(t)$  and  $\theta(t)$  can be plotted as follows:

Figure 6: Relation between the angular velocity and angular displacement



From figure 4 and 5, we can see that the angular displacement and angular velocity no longer

change in a periodic way with respect to time. From figure 6, we can see that the orbit on the diagram is complicated and disordered. Thus, when taking  $b_0 = 1.15$ , the movement of this non-linear damped and driven pendulum becomes chaotic and unpredictable.

## 7 CONCLUSION

Given all the other variables are fixed. If we only increase the driving force, then after a certain point, the movement of a non-linear damped and driven pendulum will change from non-chaotic and predictable to chaotic and unpredictable. Our simulation may be used in the prediction of earthquakes.