功函数实验

胡淏崴 核 21 2022011139

摘要

功函数(work function),又称溢出功,描述了电子溢出金属表面所需要的能量。本文通过研究真空玻璃管的热电子发射,测量钨电极的发射电流以研究钨金属的功函数。实验使学生理解热电子的发射规律,理解计算功函数的里查孙直线法。

1. 实验仪器

(1) 直热式二极管:

H 和 K 为灯丝的两端, A1 为阳极, A2 为环状匀场电极。

A1 与 HK 中心间的电势差是加速电压;

R6与R7电阻相同, 故C点电压近似于KH中心电压;

H 与 K 之间的电势差提供加热电流;

A1 引出溢出电流。

- (2) 电压源. 有三通道。
- (3) 电压表*2, 一个四位半电压源, 一个五位半电压源。

2. 实验原理

(1) 热电子发射的里查孙一杜什曼公式

在量子统计理论中,能量是量子化的,能量分布满足费米-狄拉克公式。在一个能级仅能容纳自旋不同的两个电子的情形下,总自由电子数 N_e 在能量间隔dE内的电子数为:

$$\frac{dN_e}{N_e} = c(\frac{4\pi}{h^3}(2m_e)^{3/2}\frac{E^{1/2}}{\exp((E - E_F)/kT) + 1}dE)$$

该公式描述了电子在一定温度下的分布状态,由公式可知,在 T>0 的条件下,会存在一定的电子突破势垒,从而溢出金属,当 T 提高时,溢出的电子会更多。

描述热电子发射电流密度/。的里查孙-杜什曼公式为:

$$J_e = AT^2 \exp\left(-\frac{\Phi}{kT}\right)$$

虽然该公式没有考虑势垒对电子的平均反射因素,但这种失误只会引入一个常量,对问题整体没有影响。最终得到 $I_e = I_e S$ 。

(2) 里查孙直线法测量功函数

仅需对里查孙一杜什曼公式两侧取对数,即可去除一些难求的变量的影响,得到公式:

$$lg\frac{I_e}{T^2} = \lg(A'S) - 5040\Phi\frac{1}{T}$$

(3) 发射电流I_e的测量

发出的电子会造成空间电荷积累,因此,需要加速电压来削弱空间电荷积累。外加电场直接增强热电子发射的现象称为肖特基效应。在加速电场作用下,阻碍电子逸出的势垒 W 的高度被减小,从而使发射电流增大。根据理论推导,有公式:

$$\lg(I'_e) = \lg I_e + \frac{0.1912}{T} \frac{1}{\sqrt{r_k \ln{(r_a/r_k)}}} \sqrt{V_a}$$

(4) 温度 T 的测量

采用间接测量法,根据流过灯丝的电流公式:

$$T = 1343.79 + 1168.884I_f + 291.6705\ln(I_f)$$

3. 实验内容

(1) 连接电路如图

(2) 在不同的温度环境下测量发射电流

在加热电流从 0.5A 到 0.65A 中去 6 个数值,对每个温度求加速电压从 25V 到 120V 变化时发射电流的值,测 7 个点,记录数据。

4. 数据分析

(1) 用两轮最小二乘直线拟合的方法处理数据,求出 Φ 。并计算不同温度 T 下的 $\lg(I_e)$ 时同时给出其标准差。

首先,依据加热电流,求出不同电流环境下的加热温度如下:

lf		Т	
	0.5		1726.061
	0.53		1778.123
	0.56		1829.249
	0.59		1879.537
	0.62		1929.069

0.65 1977.918

依据肖特基效应,求出不同温度环境下理想发出电流的值:

Т	lg(le)
1726.061	-6.41925
1778.123	-5.97149
1829.249	-5.55843
1879.537	-5.19086
1929.069	-4.83648
1977.918	-4.51489

 $lg(I_e)$ 的标准偏差为 0. 649856824。 再根据里查孙直线法,线性回归得:

$\Phi = 4.800909784$

(2)根据肖特基效应和查理孙直线法,得到多元回归方程,从而求解Φ利用 MATLAB 进行多元拟合,得到Φ的值:

$$\Phi = 4.7282$$

可以看到,拟合效果很好,且 Φ 值与两次线性回归的结果相近。因此,两种方法均可行。

5. 原始数据

O. W.							
	om						
Re	1001						
Т		sqrt(Va)	Va	Ve(mV)	le'	lg(le')	
1726.061		4.876474136	23.78	0.459	0.000000459	-6.33819	
		5.897457079	34.78	0.486	0.000000486	-6.31336	
		6.911584478	47.77	0.507	0.000000507	-6.29499	
		7.920858539	62.74	0.529	0.000000529	-6.27654	
		8.929165695	79.73	0.55	0.00000055	-6.25964	
		9.934787366	98.7	0.57	0.00000057	-6.24413	

	10.89403507	118.68	0.588	0.000000588	-6.23062
Т	sqrt(Va)	Va	Ve(mV)	le'	lg(le')
1778.123	4.865182422	23.67	1.267	0.000001267	-5.89722
	5.887274412	34.66	1.326	0.000001326	-5.87746
	6.902173571	47.64	1.384	0.000001384	-5.85886
	7.913279977	62.62	1.438	0.000001438	-5.84224
	8.921883209	79.6	1.489	0.000001489	-5.82711
	9.928746144	98.58	1.538	0.000001538	-5.81304
	10.88806686	118.55	1.582	0.000001582	-5.80079
Т	sqrt(Va)	Va	Ve(mV)	le'	lg(le')
1829.249	4.851803788	23.54	3.207	0.000003207	-5.4939
	5.876223277	34.53	3.349	0.000003349	-5.47508
	6.892749814	47.51	3.476	0.000003476	-5.45892
	7.90569415	62.5	3.598	0.000003598	-5.44394
	8.915155635	79.48	3.706	0.000003706	-5.43109
	9.922701245	98.46	3.812	0.000003812	-5.41885
	10.88255485	118.43	3.907	0.000003907	-5.40816
Т	sqrt(Va)	Va	Ve(mV)	le'	lg(le')
1879.537	4.838388161	23.41	7.497	0.000007497	-5.12511
	5.865151319	34.4	7.82	0.00000782	-5.10679
	6.883313156	47.38	8.121	0.000008121	-5.09039
	7.896834809	62.36	8.405	0.000008405	-5.07546
	8.907300377	79.34	8.672	0.000008672	-5.06188
	9.915644205	98.32	8.923	0.000008923	-5.04949
	10.87658034	118.3	9.154	0.000009154	-5.03839
Т	sqrt(Va)	Va	Ve(mV)	le'	lg(le')
1929.069	4.824935233	23.28	16.775	0.000016775	-4.77534
	5.853204251	34.26	17.382	0.000017382	-4.7599
	6.873863542	47.25	18	0.000018	-4.74473
	7.888599369	62.23	18.59	0.00001859	-4.73072
	8.9	79.21	19.139	0.000019139	-4.71808
	9.909086739	98.19	19.656	0.000019656	-4.7065
	10.87014259	118.16	20.133	0.000020133	-4.69609
Т	sqrt(Va)	Va	Ve(mV)	le'	lg(le')
1977.918	4.810405388	23.14	35.092	0.000035092	-4.45479
	5.841232747	34.12	36.502	0.000036502	-4.43768
	6.863672486	47.11	37.8	0.0000378	-4.42251
	7.879720807	62.09	39.012	0.000039012	-4.4088
	8.892131353	79.07	40.145	0.000040145	-4.39637
	9.901515036	98.04	41.209	0.000041209	-4.38501
	10.86370103	118.02	42.218	0.000042218	-4.3745