

Task 3

Group-4

Team Introduction

Group 4 Members

- 1. Yash Mohta
- Amal krishna A S
- 3. Zubin Zaheer
- 4. Sarayana Kumar Krishna Kumar
- 5. Steffen Tillmann

Responsibilities

Data Preprocessing:

Steffen Tillmann, Amal Krishna A S, Saravana Kumar Krishna Kumar

Neural Networks:

Zubin Zaheer, Yash Mohta

Task

Use acceleration data from Smartphone 2 with 2-,5- and 10-fold cross validation

Overview / Timeline

Goal: To differentiate between normal and impared walking using Machine Learning

Data Collection

Data collection was done using Phyphox Application

Data Preprocessing

- Collection and Filtering the data to remove noise
- Rotation of data
- Segment trial into sample
- 4. Resample to same frame number
- 5. Check and remove malicious sequence

Neural Network

Comparing Random Forest and CNN

Optimization and Result

Tuning the parameters of ML algorithm

Packages used

For the project, following packages were used:

- Tensor flow + Keras
- 2. Panda & Numpy
- 3. Scipy
- 4. Sklearn
- 5. Matplotlib (Plotting of results)

Neural Networks
Data Preprocessing
Signal processing
Classification models
Plotting of results

Data Preprocessing

Filter Noise and Extract Motion sequence

Rotation of Data

Segment trail and resampling

Checking and removing malicious sequence

A single Butterworth filter with a cutoff frequency of 10 Hz is used to reduce a large component of noise from the data.

Extraction of the motion sequence is done by the distance between the peaks in the data.

Based on the average mean of oscillations we were able to measure the acceleration due to gravity in the y-axis and rotate the data accordingly

Low cut off frequency filter was applied so only a sinusoidal oscillation remains. The peaks were determined and the signal was then split based on these peaks, as two peaks make one step of the walking sequence. This was performed based on the data of the y-axis. Then, the segmented data was resampled to 200 data points.

Steps that deviate too much from the mean of all steps from a walking sequence were thrown out.

CONFUSION MATRIX - KFOLD + Random Forest Classifier

		Actual Values				
		1	0			
Predicted Values	1	TRUE POSITIVE You're pregnant	FALSE POSITIVE You're pregnant			
	0	You're not pregnant TYPE 2 ERROR	TRUE NEGATIVE You're not pregnant			

Source: TowardsDatascience.com

Two parameters choose for model study

Accuracy: (tp + tn) / N

Misclassification rate: (fp+fn) / N

tp: True Positive tn: True Negative fn: False Negative

fp: False Positive

Input Array Shape	11959 * 600 (Resample length: 200 * 3 Dimensions

	Accuracy (μ, σ)	Misclassific ation rate (μ, σ)	F - score
K – 2 fold	0.95 ,0.004	0.04, 0.004	0.96
K – 5 fold	0.96, 0.003	0.03, 0.003	0.97
K – 10 fold	0.96, 0.005	0.03, 0.005	0.96

Note: The above parameters were determined from the confusion matrix based on record wise sampling to determine effectiveness of our classifier

Tuning Random Forest

- Used GridSearch CV for getting optimum hyper-parameters.
- Optimum Hyper parameter were overfitting the test data.
- Hence we finally went with a simpler model of the classifier (no of trees =100)

```
{'bootstrap': False,
 'max_depth': 10,
 'max_features': 'auto',
 'min_samples_leaf': 3,
 'min_samples_split': 2,
 'n_estimators': 100}
```

Optimum parameters from GridSearch

```
forest = RandomForestClassifier(n_estimators=100, criterion='gini',bootstrap=False, max_features='auto')
```

Classifier settings used

Model of the Keras Dense Neural Network

```
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input shape=(600,)),
tf.keras.layers.Dense(1000, activation = 'relu'),
tf.keras.layers.Dense(500, activation = 'relu'),
tf.keras.layers.Dense(2, activation = 'softmax')
model.compile(optimizer = 'adam',
          loss = 'sparse categorical crossentropy',
          metrics = ['accuracy'])
```

Neural Network - Validation (keras)

Based on this information, it was decided to go ahead with Option B with 2 Dense layers of 1000 and 500 neurons each as computational time was similar in both cases. Option A had more variation compared to Option B.

Neural Network - KFold Validation

Accuracy of the dense neural network based on the number of folds

	Accuracy in %
K – 2 fold	96.6
K – 5 fold	97.4
K – 10 fold	97.2

Conclusion

- Both the Keras Dense Neural Network and Random forest Classifier performed well with the classification task as the train and test splits were done record wise.
- The accuracy that we see here is not actual and is boosted, since during record wise split the ,the model will have seen similar data to the test set during training.

Therefore, both (RF and NN) are good classifiers to differentiate between normal and impared walking as there is not much of a difference in the accuracies obtained.

Thank you for your attention!

