Вопросы минимума для подготовки к экзамену по физике

Май 2025

Ответы на вопросы

1. Определение материальной точки, абсолютно твердого тела.

Материальная точка: Тело, размерами которого можно пренебречь в данной задаче, обладающее массой.

Абсолютно твердое тело: Тело, деформации которого пренебрежимо малы, расстояния между точками неизменны.

2. Определение траектории, пройденного пути, перемещения.

Траектория: Линия, описываемая движущейся точкой.

Пройденный путь: Скаляр, равный длине траектории, s.

Перемещение: Вектор \vec{s} , соединяющий начальную и конечную позиции точки.

3. Определение мгновенной скорости, мгновенного ускорения.

Мгновенная скорость: $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$. Мгновенное ускорение: $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$.

4. Определение тангенциального ускорения, нормального ускорения.

Tангенциальное ускорение: $a_{ au}=rac{dv}{dt}$, вдоль траектории, изменяет модуль скорости.

Нормальное ускорение: $a_n = \frac{v^2}{R}$, перпендикулярно траектории, изменяет направление.

5. Определение угловой скорости, углового ускорения.

Угловая скорость: $\omega = \frac{d\phi}{dt}$, мера скорости вращения (рад/с). Угловое ускорение: $\alpha = \frac{d\omega}{dt}$, мера изменения угловой скорости (рад/с²).

6. Определения периода и частоты обращения.

Период: T — время одного полного оборота (с). Частота: $\nu=\frac{1}{T}$ — число оборотов в секунду (Гц).

7. Определение массы. Принцип эквивалентности.

 Macca : Мера инертности и гравитационного взаимодействия тела $(m, \kappa \Gamma)$. $\mathit{Принцип}$ эквивалентности: Инертная и гравитационная массы эквивалентны.

8. Определение силы.

 $\mathit{Cuлa}$: Векторная величина, вызывающая ускорение тела, $\vec{F}=m\vec{a}$ (H).

9. Импульс материальной точки, импульс механической системы.

Импульс материальной точки: $\vec{p} = m\vec{v}$ (кг·м/с).

Импульс системы: $\vec{P} = \sum m_i \vec{v_i}$, сумма импульсов всех точек.

- 10. Три закона Ньютона.
 - (а) Тело сохраняет состояние покоя или равномерного движения, если $\vec{F}=0$.
 - (b) $\vec{F} = m\vec{a}$.
 - (c) $\vec{F}_{12} = -\vec{F}_{21}$.
- 11. Закон Всемирного тяготения.

 $F = G \frac{m_1 m_2}{r^2}$, где $G = 6.67 \cdot 10^{-11} \, \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{\kappa r}^2$, r — расстояние.

12. Закон сохранения импульса.

Если $\sum \vec{F}_{\mathtt{BHeIII}} = 0$, то $\vec{P} = \sum m_i \vec{v}_i = \mathtt{const.}$

13. Определение работы.

Работа силы: $\vec{A} = \vec{F} \cdot \vec{s} \cos \alpha$ (Дж).

14. Определение мощности. Мощность: $P=\frac{dA}{dt}=\vec{F}\cdot\vec{v}\cos\alpha$ (Вт).

15. Определение кинетической, потенциальной и полной механической энергии.

Кинетическая энергия: $K = \frac{1}{2} m v^2$ (Дж).

Потенциальная энергия: U = mgh (гравитация) или $U = \frac{1}{2}kx^2$ (упругость).

Полная энергия: E = K + U.

16. Теорема об изменении кинетической энергии.

Работа равна изменению кинетической энергии: $A = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$.

17. Закон сохранения полной механической энергии.

В замкнутой системе с консервативными силами: E = K + U = const.

18. Момент импульса материальной точки, момент импульса механической системы.

Момент импульса точки: $\vec{L} = \vec{r} \times \vec{p}$ (кг·м²/с).

Момент импульса системы: $\vec{L} = \sum_{i} \vec{r_i} \times \vec{p_i}$.

19. Определение момента силы. Момент силы: $\vec{M} = \vec{r} \times \vec{F}$ (H·м).

20. Основное уравнение динамики вращательного движения.

 $M = I \alpha$, где I — момент инерции, α — угловое ускорение.

21. Закон сохранения момента импульса механической системы.

Если $\vec{M}_{\mathrm{внеш}} = 0$, то $\vec{L} = I\omega = \mathrm{const.}$

22. Момент инерции материальной точки, момент инерции твердого тела.

Момент инерции точки: $I = mr^2$.

Момент инерции тела: $I = \sum m_i r_i^2$ или $I = \int r^2 dm$.

23. Теорема Штейнера, правило аддитивности.

Теорема Штейнера: $I=I_0+md^2$, где I_0 — момент относительно центра масс. *Правило аддитивности*: $I_{\text{сумм}}=I_1+I_2+\dots$

24. Физический смысл момента инерции.

Момент инерции характеризует сопротивление тела вращению, зависит от распределения массы относительно оси.

25. Кинетическая энергия тела при вращении. Работа силы при вращении.

Кинетическая энергия: $K = \frac{1}{2}I\omega^2$.

 $Paбoma: A = M\phi$, где ϕ — угол поворота.

26. Свободные гармонические колебания и их характеристики.

Свободные гармонические колебания: Колебания без внешнего воздействия. Характеристики:

- Амплитуда (*A*): максимальное отклонение.
- Частота: $\nu = \frac{1}{T}$.
- Циклическая частота: $\omega = 2\pi \nu$.
- Период (T): время одного колебания.
- Φ asa: $\phi = \omega t + \phi_0$.

27. Уравнение плоской волны.

 $u(x,t)=A\cos(\omega t-kx+\phi_0)$, где $k=rac{2\pi}{\lambda}$ — волновое число.

28. Постулаты Эйнштейна.

- (а) Законы физики одинаковы во всех инерциальных системах отсчета.
- (b) Скорость света $c=\mathrm{const}$ для всех наблюдателей.

29. Гипотеза, длина волны де Бройля.

Гипотеза: Частицы обладают волновыми свойствами. Длина волны де Бройля: $\lambda=\frac{h}{p}$, где $h=6.63\cdot 10^{-34}$ Дж·с, p — импульс.

30. Физический смысл волновой функции.

Волновая функция $\psi(x,t)$ определяет вероятность нахождения частицы: $|\psi|^2$ — плотность вероятности.

31. Опытные газовые законы.

- Бойля-Мариотта: pV = const (T = const).
- Шарля: $\frac{p}{T} = \text{const}$ (V = const).
- Гей-Люссака: $\frac{V}{T}=\mathrm{const}$ ($p=\mathrm{const}$).
- Авогадро: Равные объемы содержат одинаковое число молекул.
- Дальтона: $p = \sum p_i$, где p_i парциальные давления.

32. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).

pV = nRT, где R = 8.31 Дж/(моль·К).

33. Закон распределения энергии молекулы по степеням свободы.

На каждую степень свободы приходится $\frac{1}{2}kT$ энергии, где $k=1.38\cdot 10^{-23}$ Дж/К.

- 34. Число степеней свободы.
 - Одноатомный газ: f = 3 (поступательные).
 - Двухатомный газ: f = 5 (3 поступательные + 2 вращательные).
 - Многоатомный газ: $f \ge 6$.
- 35. Внутренняя энергия идеального газа.

 $U = \frac{f}{2}nRT$, где f — число степеней свободы.

36. Диффузия. Закон Фика.

37. Теплопроводность. Закон Фурье.

Теплопроводность: Перенос тепла в среде. Закон Фурье: $q=-\kappa \frac{\partial T}{\partial x}$, где κ — коэффициент теплопроводности.

38. Внутреннее трение. Закон Ньютона.

Внутреннее трение: Сопротивление движению слоев жидкости. Закон Ньютона: $au=\eta \frac{\partial v}{\partial x}$, где η — коэффициент вязкости.

39. Первое начало термодинамики.

 $\Delta U = Q - A$, где ΔU — изменение внутренней энергии, Q — тепло, A — работа.

- 40. Первое начало термодинамики при изохорическом, изобарическом и изотермическом процессах.
 - Изохорический ($V={\sf const}$): A=0, $\Delta U=Q=rac{f}{2}nR\Delta T$.
 - Изобарический (p= const): $A=p(V_2-V_1)$, $\Delta U=rac{f}{2}nR\Delta T$, $Q=\Delta U+A$.
 - Изотермический ($T={
 m const}$): $\Delta U=0$, $Q=A=nRT\ln rac{V_2}{V_1}$.
- 41. Адиабатический процесс. Уравнение Пуассона.

Адиабатический процесс: Q=0, $pV^{\gamma}=\mathrm{const}$, где $\gamma=\frac{C_p}{C_V}$. Уравнение Пуассона: $pV^{\gamma}=\mathrm{const}$, $TV^{\gamma-1}=\mathrm{const}$.

42. Второе начало термодинамики.

Тепло не переходит самопроизвольно от холодного тела к горячему без работы. $\oint \frac{dQ}{T} \leq 0$.

43. Энтропия. Энтропия идеального газа.

Энтропия: Мера беспорядка, $S=\int \frac{dQ_{\text{обр}}}{T}.$ Энтропия идеального газа: $S=nC_V\ln T+nR\ln V+\text{const.}$

44. Статистический смысл второго начала термодинамики.

Энтропия: $S=k\ln\Omega$, где Ω — число микросостояний. Второе начало: система стремится к максимуму Ω .

45. Электрический заряд и его свойства.

Электрический заряд: Свойство частиц, вызывающее электромагнитное взаимодействие (Кл).

 $\it Cвойства$: Дискретность ($\it q=ne$), сохранение, положительный/отрицательный.

46. Закон сохранения электрического заряда.

Суммарный заряд замкнутой системы сохраняется: $\sum q_i = \text{const.}$

47. Закон Кулона.

$$F=krac{q_1q_2}{r^2}$$
, где $k=rac{1}{4\pi arepsilon_0}$, $arepsilon_0=8.85\cdot 10^{-12}\, \Phi/{
m M}.$

48. Напряженность электростатического поля.

$$ec{E}=rac{ec{F}}{a}$$
, единица: В/м. Для точечного заряда: $E=rac{kq}{r^2}.$

49. Принцип суперпозиции электростатических полей.

$$ec{E} = \sum ec{E}_i$$
, где $ec{E}_i$ — поле от каждого заряда.

50. Теорема Гаусса для электростатического поля.

$$\oint \vec{E} \cdot d\vec{S} = rac{Q}{arepsilon_0}$$
, где Q — заряд внутри поверхности.

51. Теорема о циркуляции вектора напряженности электростатического поля.

$$\oint \vec{E} \cdot d\vec{l} = 0$$
, поле консервативно.

52. Потенциал.

$$U=rac{W}{q}$$
, где W — потенциальная энергия (В).

53. Разность потенциалов.

$$\Delta U = U_1 - U_2 = -\int \vec{E} \cdot d\vec{l}$$
.

54. Принцип суперпозиции для электростатических потенциалов. $U = \sum U_i$, где $U_i = \frac{kq_i}{r_i}$.

$$U = \sum U_i$$
, где $U_i = rac{kq_i}{r_i}$.

55. Связь между напряженностью и потенциалом. $\vec{E} = -\nabla U = -\left(\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\right).$

$$ec{E} = -
abla U = -\left(rac{\partial U}{\partial x}, rac{\partial U}{\partial y}, rac{\partial U}{\partial z}
ight)$$
.

56. Электрический диполь.

Система зарядов +q и -q на расстоянии l. Дипольный момент: $\vec{p}=q\vec{l}$.

57. Типы диэлектриков. Поляризация диэлектриков, виды поляризации.

Типы диэлектриков: Параэлектрики, диэлектрики, сегнетоэлектрики. Поляризация: $\vec{P} = \frac{\sum \vec{p}}{V}$.

Виды: Электронная, ионная, ориентационная.

58. Физический смысл диэлектрической проницаемости среды.

arepsilon характеризует способность среды ослаблять электрическое поле: $E=rac{E_0}{arepsilon}$.

59. Электрический гистерезис.

Запаздывание поляризации сегнетоэлектрика относительно внешнего поля.

60. Электроемкость уединенного проводника и конденсатора.

Электроемкость: $C = \frac{Q}{U}$ (Ф). Плоский конденсатор: $\overset{\circ}{C} = \frac{\varepsilon_0 \varepsilon S}{d}$. 61. Энергия заряженного конденсатора.

$$W = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QU$$
.

62. Энергия электрического поля.

Энергия поля в конденсаторе: $W = \frac{1}{2} \varepsilon_0 \varepsilon E^2 V$, где V — объем.

63. Объемная плотность энергии электрического поля.

$$w=\frac{1}{2}\varepsilon_0\varepsilon E^2$$
 (Дж/м³).

64. Условия существования и характеристики постоянного электрического тока.

 $\mathit{Условия}$: Наличие свободных зарядов и электрического поля. $\mathit{Характеристикu}$: Сила тока $I=\frac{dq}{dt}$, плотность тока $j=\frac{I}{S}$.

65. Законы Ома.

Интегральная форма: $I=rac{U}{R}$. Дифференциальная форма: $\vec{j}=\sigma \vec{E}$.

66. Работа и мощность тока.

Pабота: A = IUt.

 $extbf{ extit{Moщнocmb:}}\ P = IU = I^2R = rac{U^2}{R}.$

67. Закон Джоуля-Ленца.

 $Q=I^2Rt$, в дифференциальной форме: $q=
ho j^2 t$, где ho — удельное сопротивление.

68. Вектор магнитной индукции. Принцип суперпозиции.

Вектор магнитной индукции: \vec{B} , единица: Тл.

Принцип суперпозиции: $\vec{B} = \sum \vec{B_i}$.

69. Закон Био-Савара-Лапласа.

$$dec{B}=rac{\mu_0}{4\pi}rac{Idec{l} imesec{r}}{r^3}$$
, где $\mu_0=4\pi\cdot 10^{-7}\,\Gamma$ н/м.

70. Закон полного тока.

 $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{ exttt{CKB}}$, где $I_{ exttt{CKB}}$ — ток, пронизывающий контур.

71. Магнитный поток.

$$\Phi = BS \cos \theta$$
 (Вб).

72. Теорема Гаусса для магнитного поля.

 $\oint \vec{B} \cdot d\vec{S} = 0$, магнитное поле бездивергентно.

73. Сила Ампера.

 $d\vec{F} = Id\vec{l} \times \vec{B}$. Для прямого проводника: $F = IlB\sin\theta$.

74. Сила Лоренца.

$$\vec{F} = q\vec{v} \times \vec{B}$$
.

75. Явление электромагнитной индукции.

Возникновение ЭДС в контуре при изменении магнитного потока.

76. Закон Фарадея-Ленца.

 $\mathcal{E}=-rac{d\Phi}{dt}$, ток противодействует изменению потока.

77. Явление самоиндукции.

Возникновение ЭДС в контуре из-за изменения собственного тока.

78. Индуктивность.

 $L=rac{\Phi}{I}$ (Гн). Для соленоида: $L=\mu_0 n^2 Sl.$

79. Энергия магнитного поля.

$$W = \frac{1}{2}LI^{2}$$
.

80. Объемная плотность энергии магнитного поля.

$$w = \frac{1}{2} \frac{B^2}{\mu_0}$$
 (Дж/м³).

81. Намагниченность.

 $\vec{M} = rac{\sum \vec{\mu}}{V}$, сумма магнитных моментов в единице объема.

82. Физический смысл магнитной проницаемости среды.

 $\mu = \mu_0 (1 + \chi)$ характеризует усиление магнитного поля в среде.

83. Магнитный гистерезис.

Запаздывание намагниченности относительно внешнего магнитного поля.

84. Законы отражения и преломления света.

Закон отражения: Угол падения равен углу отражения, $\theta_i = \theta_r$. Закон преломления: $n_1 \sin \theta_1 = n_2 \sin \theta_2$, где n — показатель преломления.

85. Физический смысл абсолютного показателя преломления.

 $n = \frac{c}{r}$, отношение скорости света в вакууме к скорости в среде.

86. Явление интерференции света.

Наложение когерентных световых волн, приводящее к усилению или ослаблению интенсивности.

87. Условия максимумов и минимумов при интерференции света.

Максимум: $\Delta = m\lambda$.

 $extit{Muнимум: } \Delta = (m+\frac{1}{2})\lambda$, где Δ — разность хода.

88. Явление дифракции света и условия ее наблюдения.

Дифракция: Огибание светом препятствий.

 $\it Условия:$ Размер препятствия $pprox \lambda.$

89. Принцип Гюйгенса-Френеля.

Каждая точка волнового фронта — источник вторичных волн, результирующая волна определяется их интерференцией.

90. Условия главных максимумов при дифракции на дифракционной решетке.

 $d\sin\theta=m\lambda$, где d — период решетки, $m=0,\pm 1,\pm 2,\ldots$

91. Поляризованный свет и его виды.

Поляризованный свет: Вектор \vec{E} колеблется в одной плоскости.

Виды: Линейная, круговая, эллиптическая поляризация.

92. Двойное лучепреломление.

Расщепление луча в анизотропных кристаллах на обыкновенный и необыкновенный лучи.

93. Закон Малюса.

 $I=I_0\cos^2{ heta}$, где heta — угол между направлениями поляризации.

94. Уравнение Эйнштейна для внешнего фотоэффекта.

 $h
u=A+rac{1}{2}mv_{ ext{max}}^2$, где A — работа выхода.

95. Квантовая гипотеза света. Энергия, масса и импульс фотона.

Квантовая гипотеза: Свет состоит из фотонов.

Энергия: $E = h\nu$.

Масса: $m_0=0$, $m=\frac{h\nu}{c^2}$. Импульс: $p=\frac{h\nu}{c}=\frac{h}{\lambda}$.

96. Дефект массы. Энергия связи атомного ядра.

Дефект массы: $\Delta m = Z m_p + (A-Z) m_n - M$. Энергия связи: $E_{\text{CB}} = \Delta m c^2$.

97. Закон радиоактивного распада.

 $N=N_0e^{-\lambda t}$, где λ — постоянная распада, $T_{1/2}=rac{\ln 2}{\lambda}$ — период полураспада.