

DoWES

Jan Kämper & Florian Börgel

Universität Oldenburg Semester 2016 11.10.2016

- Selection of Main Parameters
- Rotor design, BEM
- Control and characteristic curves
- Tower design, modal analysis
- External conditions
- 6 Fatigue load analysis
- Extreme load analysis

- Selection of Main Parameters
- 2 Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- **5** External conditions
- 6 Fatigue load analysis
- Extreme load analysis

Formulas

Results

Main parameters	Unit	Value
Calculate total conversion efficiency	m	0.4704
Total wind power that needs to be extracted	kW	7439.258
Rated wind speed (rounded up)	m/s	11
Rotor radius (rounded up)	m	54
Blade length (without hub)	m	52.75
Rotor area (rounded radius)	m ²	9160.884
Specific rating (design)	W/m²	382.051
λD Design tip speed ratio	-	7.454
Rotor rated speed	rpm	14.5
Blade element length (8 elements, same length)	m	6.593

Estimation of AEP

$$\mathsf{AEP} = \sum_{\mathsf{v}} \mathsf{n}_{\mathsf{v}} \cdot \mathsf{p}_{\mathsf{v}}$$

with:

n = number of hours

p = power curve

v = wind speed

Resulting Energy yield

AEP = 13,49GWh

Lift-to-drag ratio

Table: Main aerodynamic parameters

- Selection of Main Parameters
- Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- **5** External conditions
- 6 Fatigue load analysis
- Extreme load analysis

BEM algorithm

Blade design

Station	1	2	3	4	5	6	7	8	9
	Cylinder	65-421	65-421	65-421	65-421	65-415	65-415	65-415	65-415
Blade	3.297	9.891	16.484	23.078	29.672	36.≥66	42.859	49.453	52.750
Chord	6,628	5,426	3,935	3,014	2,425	1,887	1,617	1,413	1,329
Twist	27,590	11,022	3,813	0,055	-2,211	-2,715	-3,783	-4,580	-4,907

Prandtl tip losses

Hansen and Snel 3d correction

Pitching moment

$$M = C_m \cdot A \cdot c \cdot \rho \cdot v^2 \cdot 0.5$$

Result by summing up the sections along the blade

$$M(5.5m/s) = 15.881Nm$$

 $M(11m/s) = 278.705Nm$

- Selection of Main Parameters
- 2 Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- **External** conditions
- 6 Fatigue load analysis
- Extreme load analysis

WT Perf

```
Turbine Data
                            NumBlade:
                                                               Number of blades.
35.95
                                                              Number of brades.
Rotor radius [length].
Hub radius [length or div by rad
Precone angle, positive downwind
Shaft tilt [deg].
                            RotorRad:
1.2
                           HubRad:
                            PreCone:
 5.0
                           Tilt:
                                                               Yaw error [deg].
Hub height [length or div by rad
Number of blade segments (entire
                            Yaw:
70.0
                           HubHt:
                           NumSea:
                        Chord Affile PrntElem
   RE1m
            Twist
3.421875
                     29.36987577
                                          5.070530343
                                                                         FALSE
7.765625
                    14.20925825
                                          4.459489198
                                                                         FALSE
12.109375
                     6.823436492
                                          3. 384116952
                                                                         FALSE
16.453125
                                          2.650669029
                                                                         FALSE
                     2.753876508
20.796875
                    0.230641975
                                          2.160752278
                                                                         FALSE
25.140625
                     -1,473157945
                                          1.815959346
                                                                         FALSE
29.484375
                     -2.69646261
                                          1.563239845
                                                                         FALSE
33.828125
                     -3.615679163
                                          1.370923606
                                                                         FALSE
```


How does the wind turbine operate below and above rated wind speed?

How does the wind turbine operate below and above rated wind speed?

- below rated wind speed it is still possible to achieve a high power coefficient c_p for 9 m/s is 0.544

How does the wind turbine operate below and above rated wind speed?

- below rated wind speed it is still possible to achieve a high power coefficient c_n for 9 m/s is 0.544
- if the wind speed is higher than the rated wind speed the power coefficient drops significantly

How does the wind turbine operate below and above rated wind speed?

- below rated wind speed it is still possible to achieve a high power coefficient c_p for 9 m/s is 0.544
- if the wind speed is higher than the rated wind speed the power coefficient drops significantly
- Constant TSR leads to a high power coefficient

- Selection of Main Parameters
- 2 Rotor design, BEM
- 3 Control and characteristic curves
- Tower design, modal analysis
- **5** External conditions
- 6 Fatigue load analysis
- Extreme load analysis

Tower eigenfrequency

Adding a 10% safety margin to the rotor rated speed which represents the maximum stationary rotor speed:

$$f_{\rm o} = \Omega_{rated} \cdot 1.1 = \frac{14.5}{60} Hz \cdot 1.1 = 0.2658 Hz$$

Design range: Classical soft-stiff design

Wall thickness

Can be obtained from the eigenfrequency and some other parameters

With fsolve: t = 0.0318m

Campbell diagram

- Selection of Main Parameters
- 2 Rotor design, BEM
- 3 Control and characteristic curves
- 4 Tower design, modal analysis
- External conditions
- 6 Fatigue load analysis
- Extreme load analysis

Software during the design process

Turbulence intensity

Free stream (NTM)

$$\sigma = I_{ref} * (0.75 * v_{hub} + 5.6m/s)$$
$$I = \sigma/v_{hub}$$

V	5 <i>m/s</i>	10 <i>m/s</i>	15 <i>m/s</i>	25 <i>m/s</i>
l	0.2618	0.1834	0.1573	0.1364
Operational condition	partial	partial	full	full

Wakes (Frandsen model)

$$\sigma = I_{ref} * (0.75 * v_{hub} + 5.6m/s)$$
$$I = \sigma/v_{hub}$$

V	5 <i>m/s</i>	10 <i>m/s</i>	15 <i>m/s</i>	25 <i>m/s</i>
4 · d	0.2667	0.1867	0.1594	0.1370
8 · d	0.2621	0.1827	0.1562	0.1349

Comparison

- Rotor design, BEM

- Fatigue load analysis

Bending moments

Comparison of DELs (free stream vs wake)

- Selection of Main Parameters
- 2 Rotor design, BEM
- Control and characteristic curves
- 4 Tower design, modal analysis
- **5** External conditions
- 6 Fatigue load analysis
- Extreme load analysis

Loadcase 2.3

250

300

200

150

300

Loadcase 1.5

Tower fore-aft for EWS

Blade flapwise for EWS

Modified brakes and failure timing 2.3

Thanks!