IN THE CLAIMS:

The following listing replaces all prior versions of the claims.

1-13. (Cancelled)

14. (Previously presented) A compound having the formula

$$\begin{array}{c|c} & & & & \\ R_1 & & & \\ N & & & \\ N & & & \\ N & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

wherein

- m and n are 1 to 2 and x = 1-20;
- each of B is independently selected from the group consisting of H, HO, NH₂, naturally occurring nucleobases adenine (A), thymine (T), cytosine (C) and guanine (G), non-naturally occurring nucleobases, DNA intercalators, heterocyclic moieties and reporter ligands;
- each chiral monomeric unit is independently selected from the four possible diastereomers; and
- R₁=H or Flurophore or Biotin, R₂=OH or NH(CH₂)₂COOH or NH(CH₂)₃NH(CH₂)₄NH(CH₂)₃NH₂.

15. (Previously presented) A compound having the formula

that is heteropolymeric aepPNA III comprising non-chiral aeg unit of aminoethylglycyl PNA I and chiral aep monomeric unit IV

$$R_1 \stackrel{N}{H} \stackrel{A}{\longrightarrow} R_2$$

wherein

- each chiral monomer unit is independently selected from the four possible diastereomers;
- a, b, c, d, m, n are integers with independent values in the range 1 to 10;
- R_1 is H, COCH₃ or L (L = dansyl, carboxyfluoresceinyl);
- R₂ is OH, NH₂, NHCH₂CH₂COOH, or NH(CH₂)₃NH(CH₂)₄ NH(CH₂)₃NH₂, and
- each of B is independently selected from the group consisting of H, HO, NH₂, naturally occurring nucleobases, non-naturally occurring nucleobases, DNA intercalators, heterocyclic moieties and reporter ligands.
- 16. (Previously presented) The compound as claimed in claim 15, wherein
 - i) m=n=1, B=T, R₁=H, R₂= NH(CH₂CH₂)COOH, a=7, b=1, c=d=0;
 - ii) m=n=1, B=T, R_1 =H, R_2 = NH(CH₂CH₂)COOH, a=c=3, b=d=1;

iii) m=n=1, B=T, R₁=H, R₂= NH(CH₂CH₂)COOH, a=b=c=d=1, repeating twice in that order;

- iv) m=n=1, B=T, $R_1=H$, $R_2=NH(CH_2CH_2)COOH$, a=b=c=0, d=8; and
- v) m=n=1, B=T, R₁=H, R₂= NH(CH₂CH₂)COOH, a=d=0, b=1, c=7.
- 17. (Previously presented) The compound as claimed in claim 15, wherein said compound is synthesized by adaptation of standard solution phase peptide synthesis procedures or standard solid phase peptide synthesis procedures.
- 18. (Previously presented) The compound as claimed in claim 16, wherein said compound is synthesized by adaptation of standard solution phase peptide synthesis procedures or standard solid phase peptide synthesis procedures.
- 19. (Previously presented) A monomer precursor-synthon of formula IV

$$R_1$$
 R_2 R_2 R_3 R_4 R_4 R_5 R_6

wherein

- R₁=H, Boc or Fmoc:
- $R_2 = OMe$, H, OEt or OBenzyl;
- chirality at positions 2 and 4 results in four diastereomers (2S,4R), (2R,4S), (2S,4S) and (2R,4R); and
- T is a nucleobase.
- 20. (Previously presented) The monomer precursor-synthon as claimed in claim 19 wherein T is a naturally occurring nucleobase.

21. (Canceled)

22. (Currently amended) A process for sequence specific recognition of a single or double stranded polynucleotide DNA or RNA compound according to claim 14, wherein said compound is a single or double stranded polynucleotide DNA or RNA, comprising contacting a compound of formula 4a or 6a using compounds of formulae 4a and 6a

with a composition, and detecting a binding product comprising the compound of formula 4a or 6a in said composition.

23. (Currently amended) A process for sequence specific recognition of a single or double stranded polynucleotide DNA or RNA compound according to claim 15, wherein said compound is a single or double stranded polynucleotide DNA or RNA, comprising contacting a compound of formula 4a or 6a using compounds of formulae 4a and 6a

with a composition, and detecting a binding product comprising the compound of formula 4a or 6a in said composition.

- 24. (Previously presented) A pharmaceutical composition comprising a compound according to claim 14, along with any other pharmaceutically effective agent.
- 25. (Previously presented) A pharmaceutical composition comprising a compound according to claim 15, along with any other pharmaceutically effective agent.
- 26. (Previously presented) A process for preparing compounds of formulae 4a and 6a

comprising the steps of

- A. a) synthesizing (N-Boc)-2-aminoethanol from 2-aminoethanol;
 - b) synthesizing (N-Boc)-2-aminoethylbromide from (N-Boc)-2-aminoethanol;
- B. N-alkylation of 4-hydroxyprolinemethylester with (N-Boc)-2-aminoethanol prepared as in step A;
 - (i) alkylation of 4*R*-hydroxy-2*S*-prolinemethylester with (N-Boc)-2-aminoethylbromide to obtain 1-(N-Boc-aminoethyl)-4*R*-hydroxy-2*S*-prolinemethyl ester;
 - (ii) alkylation of 4*R*-hydroxy-2*R*-prolinemethylester with (N-Boc)-2-aminoethyl bromide to obtain 1-(N-Boc-aminoethyl)-4*R*-hydroxy-2*R*-prolinemethyl ester;
 - (iii) alkylation of 4S-hydroxy-2R-prolinemethylester with (N-Boc)-2-aminoethyl bromide to obtain 1-(N-Boc-aminoethyl)-4S-hydroxy-2R-prolinemethylester;
 - (iv) alkylation of 4S-hydroxy-2S-prolinemethylester with (N-Boc)-2-aminoethyl bromide to obtain 1-(N-Boc-aminoethyl)-4S-hydroxy-2S-prolinemethylester;

C. Mitsunobu reaction of compounds 1-(N-Boc-aminoethyl)-4R-hydroxy-2S-prolinemethyl ester and (N-Boc)-2-aminoethanol prepared according to steps B(i) and B(ii) with N3-benzoylthymine, to produce monomer synthons of formulae 4a and 6a, respectively.