

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №4 по дисциплине "Моделирование"

Тема Моделирование работы системы массового обслуживания
Студент <u>Малышев И. А.</u>
Группа <u>ИУ7-71Б</u>
Оценка (баллы)
Преподаватель: Рудаков И. В.

1 Задание

Смоделировать работу системы, состоящей из генератора, очереди и обслуживающего аппарата. Генерация заявок происходит по закону равномерного распределения с заданными параметрами а, b. Обработка заявок происходит по закону распределения Гаусса с заданными параметрами μ , σ .

Требуется определить длину очереди, при которой не будет потери сообщений.

Также смоделировать работу системы с построенной обратной связью, в качестве параметра используется процент обработанных заявок, вновь поступивших на обработку.

Протяжка модельного времени должна осуществляться по Δt и по событийному принципу. Обозначить, есть ли разница в результатах.

2 Решение

2.1 Теоретическая часть

2.1.1 Система массового обслуживания

CMO — это система, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО осуществляется обслуживающими аппаратами. Классическая СМО содержит в себе от одного до бесконечного числа подобных аппаратов.

2.1.2 Протяжка модельного времени по Δt

Принцип Δt заключается в последовательном анализе состояний всех элементов системы в некоторый момент времени $t+\Delta t$ по заданному состоянию этих элементов в момент времени t. При этом новое состояние элементов определяется в соответствии с их алгоритмическим описанием с учётом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на текущий момент времени.

2.1.3 Протяжка модельного времени по событийному принципу

Характерным свойством систем обработки информации является тот факт, что состояние отдельных элементов изменяется в некоторые дискретные моменты времени, совпадающие с моментами времени поступления сообщений в систему и так далее. Моделирование и продвижение времени в системе посему так же удобно проводить, используя событийный принцип, при котором состояние всех элементов имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из элементов системы.

2.2 Листинг

Далее представлен фрагмент программы, выполняющий поставленное задание.

2.3 Результаты работы

На рисунках 2.1-2.2 представлен пользовательский интерфейс программы в исходном состоянии.

Рис. 2.1: Пользовательский интерфейс программы до генерации чисел.

Рис. 2.2: Пользовательский интерфейс программы до ввода чисел.

2.3.1 Пример генерации чисел

На рисунках 2.3 представлен пример результатов работы программы с указанными данными.

Рис. 2.3: Исходные данные и результат.

2.3.2 Примеры ручного ввода

На рисунках 2.4-2.6 представлен пример результатов работы программы с указанными данными.

Рис. 2.4: Числа 1..10.

Рис. 2.5: Числа 1..10 в обратном порядке.

Рис. 2.6: Случайные данные.