وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحالات

الخميس 27 حزيران 2013 مسابقة في مادة الرياضيات الاسم: عدد المسائل: ست المدة: أربع ساعات الرقم:

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة.

يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الإلتزام بترتيب المسائل الوارد في المسابقة)

I-(2 Points)

Répondre par vrai ou faux à chacune des propositions suivantes en justifiant la réponse.

- 1) Les points A, B et C d'affixes respectives $z_A = 2$, $z_B = 2e^{i\frac{2\pi}{3}}$ et $z_C = 2e^{i(-\frac{2\pi}{3})}$ sont les trois sommets d'un triangle équilatéral.
- 2) Pour tout entier naturel non nul n, $Z = \frac{(1+i\sqrt{3})^n (1-i\sqrt{3})^n}{2}$ est un réel.
- 3) Pour tout réel x de l'intervalle]-1 ; 0[, on $a:e^{\left|ln(x+1)\right|}=x+1.$
- 4) Pour tout réel b, l'équation $\ln x = -x + b$ admet dans]0; $+\infty$ [une solution unique.

II-(2 Points)

Dans l'espace rapporté à un repère orthonormé direct (O; \vec{i} , \vec{j} , \vec{k}), on considère les deux points A (1; 1; 1) et B (5; 2; 0).

(P) et (P') sont deux plans d'équations respectives (P) : x + 2y - 2z + 3 = 0 et (P') : 2x + y + 2z = 0.

On désigne par (d) la droite d'intersection de (P) et (P').

- 1) Vérifier qu'un système d'équations paramétriques de (d) est : $\begin{cases} x = -2t + 1 \\ y = 2t 2 & \text{où t est un paramètre réel.} \\ z = t \end{cases}$
- 2) a- Montrer que les deux plans (P) et (P') sont perpendiculaires.
 - b- Calculer les distances respectives de B à (P) et à (P') et calculer la distance de B à (d).
- 3) a-Déterminer une équation du plan (Q) formé par (d) et B.
 - b- Démontrer que (d) et (AB) sont non coplanaires.
- 4) a- Calculer les coordonnées du point d'intersection E de (P) avec la droite (AB).
 - b- Montrer que les points A et B sont situés du même côté par rapport au plan (P).

III-(3 Points)

Le plan est rapporté à un repère orthonormé direct (O ; \overrightarrow{u} , \overrightarrow{v}).

x et y sont des réels tels que $y \neq 0$.

A tout point M d'affixe z = x + i y on associe le point M' d'affixe z' telle que $z' = z^3 + z$.

- 1) a-Vérifier que $(z \overline{z})(z^2 + z\overline{z} + \overline{z}^2 + 1) = (z' \overline{z'})$ où \overline{z} et $\overline{z'}$ sont les conjugués respectifs de z et z'.
 - b- Justifier que si z' est un réel, alors $(z \overline{z})(z^2 + z\overline{z} + \overline{z}^2 + 1) = 0$.
 - c-Déduire que si z' est un réel, alors le point M varie sur l'hyperbole (H) d'équation $3x^2 y^2 + 1 = 0$.
- 2) a- Déterminer les sommets et les asymptotes de (H).
 - b- Déterminer un foyer de (H) et sa directrice associée.
 - c- Tracer (H).
- 3) Soit I le point de (H) d'abscisse 1 et d'ordonnée positive.
 - a- Ecrire une équation de la tangente (T) à (H) en I.
 - b- La droite (T) coupe les asymptotes de (H) en E et G. Démontrer que I est le milieu de [EG].

IV- (3 Points)

Dans un plan orienté, on considère un cercle (C)

de centre O, de diamètre [AB] et de rayon 2 cm.

I et J sont deux points de ce cercle tels que :

$$(\overrightarrow{BI}, \overrightarrow{BA}) = -\frac{\pi}{3} [2\pi] \text{ et } (\overrightarrow{BA}, \overrightarrow{BJ}) = -\frac{\pi}{6} [2\pi].$$

La droite (L) est tangente en B au cercle (C).

Soit S la similitude de centre B qui transforme I en J.

- 1) Déterminer un angle de S et vérifier que son rapport k est égal à $\sqrt{3}$.
- 2) a-Montrer que l'image de la droite (AI) par S est (AJ).
 - b-Trouver l'image de (AB) par S.
 - c- Déduire S(A) puis trouver S(J).
- 3) Déterminer l'image (C') de (C) par S et calculer l'aire de (C').

2

- a-Vérifier que S o S est une homothétie dont on déterminera le centre et le rapport.
- b- Déterminer, en fonction de n, le rapport et un angle de la similitude S_n.
- c-Trouver les valeurs de n pour que S_n soit une homothétie.

V- (3 Points)

Une urne contient cinq boules rouges et cinq boules vertes.

On tire, au hasard et simultanément, trois boules de l'urne.

On considère les événements suivants :

- •E: « Les trois boules tirées sont rouges »
- •F: « Parmi les trois boules tirées il y a exactement deux boules rouges»
- •G : « Parmi les trois boules tirées il y a au plus une boule rouge».
- 1) Calculer les probabilités P(E), P(F) et P(G).
- 2) Dans cette question un jeu se déroule de la façon suivante :

Un joueur tire au hasard et simultanément trois boules de l'urne.

- Si l'événement G est réalisé, alors il **ne gagne rien** et le jeu s'arrête.
- Si l'un des événements E ou F est réalisé, alors il tire une nouvelle boule parmi les sept boules restantes dans l'urne.
 - -Si cette boule tirée est verte, alors il gagne dix points ;
 - -sinon il gagne deux points.

On considère l'évènement D : « le joueur gagne dix points ».

- a- Calculer les probabilités P (D/E) et P (D/F).
- b- Montrer que P(D) est égale à $\frac{25}{84}$.
- c- Le joueur gagne 10 points. Quelle est la probabilité qu'il ait tiré 3 boules rouges.
- d- On désigne par X la variable aléatoire égale au nombre des points gagnés par le joueur.

Déterminer la loi de probabilité de X et calculer son espérance mathématique E(X).

VI – (7 Points)

A-

On donne l'équation différentielle (E) : y'' - 4y' + 4y = 4x - 4 où y est une fonction de x.

On pose y = z + x.

- 1) Trouver une équation différentielle (E') satisfaite par z.
- 2) Résoudre (E') puis déduire la solution générale de (E).
- 3) Déterminer la solution particulière de (E) dont la courbe représentative, dans un repère orthonormé $(O; \vec{i}, \vec{j})$, admet au point G d'abscisse 0 une tangente d'équation y = x 1.

B-

Soit g la fonction définie sur \mathbb{R} par $g(x) = 4xe^{2x} + 1$.

- 1) Déterminer g'(x) et dresser le tableau de variations de g.
- 2) Déduire le signe de g(x).

C-

Dans ce qui suit, soit f la fonction définie sur \mathbb{R} par $f(x) = x + (2x - 1) e^{2x}$.

On désigne par (C) la courbe représentative de f dans le repère $(O; \vec{i}, \vec{j})$

- 1) a-Démontrer que la droite (d) d'équation y = x est une asymptote à (C).
 - b-Etudier, suivant les valeurs de x, la position relative de (C) et (d) et préciser les coordonnées de leur point d'intersection A.
 - c-Déterminer $\lim_{x\to +\infty} f(x)$.
- 2) a-Vérifier que f'(x) = g(x) et dresser le tableau de variations de f.
 - b- Démontrer que (C) coupe l'axe des abscisses en un seul point K d'abscisse α puis vérifier que $0.40 < \alpha < 0.41$.
 - c- Tracer (C).
- 3) Soit h la fonction réciproque de f dans $\mathbb R$. On désigne par (H) la courbe représentative de h.
 - a- Montrer que le point A appartient à (H) et écrire une équation de la tangente en A à (H).
 - b-Tracer (H) dans le même repère que (C).
 - c- Calculer $\int (2x-1)e^{2x} dx$ et déduire l'aire S du domaine limité par (H), l'axe des abscisses et la droite (d).
- 4) Soit n un entier naturel tel que $n \ge 2$.
 - a- Démontrer, par récurrence sur n, que $f^{(n)}(x) = 2^n [2x + n 1] e^{2x}$. (f $f^{(n)}$ étant la dérivée nième de f).
 - b- Etudier le sens de variation de la suite (U_n) de terme général $U_n = f^{(n)}(0)$.
 - c- Démontrer que la suite (U_n) n'est pas convergente.

SG MATH- BAREME-2013

Q_1	Réponses	N
	Les 3 complexes ont même module 2, donc les points A, B et C appartiennent à un cercle de centre O et de	
1	rayon 2. On aussi $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CA} = \frac{2\pi}{3}$ donc les points A, B et C forment un triangle équilatéral. Vrai	1
2	$(1-i\sqrt{3})^n$ est le conjugué de $(1+i\sqrt{3})^n$, donc Z est un imaginaire pur. Faux	1
3	Pour $-1 < x < 0$; $0 < x + 1 < 1$, $\ln(x + 1) < 0$ donc $f(x) = e^{-\ln(x+1)} = \frac{1}{x+1}$. Faux	1
	Considérons la fonction f définie sur]0 ; $+\infty$ [par $f(x) = \ln x + x - b$.	
	$f'(x) = \frac{1}{x} + 1 f'(x) > 0 \text{ donc } f \text{ est strictement croissante avec } \lim_{x \to 0} f(x) = -\infty$	
4		1
	$et \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(\frac{\ln x}{x} + 1 - \frac{b}{x} \right) = +\infty.$	
	Donc l'équation $f(x) = 0$ admet une solution unique dans IR. Vrai	
Q_2	Réponses	Notes
	M est un point variable de (d), d'où $x_M = -2t + 1$, $y_M = 2t - 2$ et $z_M = t$.	
1	$x_M + 2y_M - 2z_M + 3 = -2t + 1 + 4t - 4 - 2t + 3 = 0$; donc (d) est incluse dans (P).	0,5
	$2x_M + y_M + 2z_M = -4t + 2 + 2t - 2 + 2t = 0$; donc (d) est incluse dans (P').	
	Ce qui donne que (d) est la droite d'intersection de (P) et (P').	
2.a	n_{P} (1; 2; -2), $n_{p'}$ (2; 1; 2). $n_{p} \square n_{p'} = 2 + 2 - 4 = 0$; donc (P) et (P') sont perpendiculaires.	0,5
	$d_1 = d (B \to (P)) = \frac{ 5 + 4 + 3 }{2} = 4. \ d_2 = d (B \to (P')) = \frac{ 10 + 2 }{2} = 4.$	
	(P) et (P') sont perpendiculaires.	
2. b	$[d (B \rightarrow (d))]^2 = d_1^2 + d_2^2 = 32;$	1
	$d(B \rightarrow (d)) = 4\sqrt{2}.$	
	Ou: par calcul direct	
	Pour z = 0; G (1; -2; 0) \in (d), $\overrightarrow{v_d}$ (-2; 2; 1) et \overrightarrow{GB} (4; 4; 0).	
3. a	Soit M(x; y; z) un point quelconque de (Q), d'où $\overrightarrow{GM} \square (\overrightarrow{GB} \wedge \overrightarrow{v_d}) = \begin{vmatrix} x-1 & y+2 & z \\ 4 & 4 & 0 \\ 2 & 2 & 1 \end{vmatrix} = 0$.	0,5
	Solit W(x, y, z) an point quereonque de (Q), a ou Givi $(GB \wedge V_d) = \begin{bmatrix} 4 & 4 & 6 \\ -2 & 2 & 1 \end{bmatrix}$	
	Une équation de (Q) est : $x - y + 4z - 3 = 0$.	
	-Si (AB) et (d) sont coplanaires, alors A est un point de (Q), mais $1-1+4-3 \neq 0$ donc A n'est pas un point	
	de(Q), d'où (AB) et (d) sont non coplanaires.	
3. b	-Ou A(1;1;1), B(5;2;0), G(1;-2;0) \in (d), F(-1;0;1) \in (d) $\begin{vmatrix} 4 & 1 & -1 \end{vmatrix}$	0,5
	\overrightarrow{AB} . $(\overrightarrow{AG} \land \overrightarrow{GF}) = \begin{vmatrix} 0 & -3 & -1 \\ 0 & -3 & -1 \end{vmatrix} = 4 \neq 0$; (AB) et (d) sont non coplanaires.	
	\overrightarrow{AB} . $(\overrightarrow{AG} \land \overrightarrow{GF}) = \begin{vmatrix} 4 & 1 & -1 \\ 0 & -3 & -1 \\ -2 & 2 & 1 \end{vmatrix} = 4 \neq 0$; (AB) et (d) sont non coplanaires.	
	$E \in (AB)$; $E (4k + 1; k + 1; -k + 1)$; $E \in (P)$ donc $x_E + 2y_E - 2z_E + 3 = 0$;	
4. b		0,5
	d'où k = $-\frac{1}{2}$ et E $(-1; \frac{1}{2}; \frac{3}{2})$.	
4. c	\overrightarrow{EA} $(2; \frac{1}{2}; -\frac{1}{2})$ et \overrightarrow{EB} $(6; \frac{3}{2}; -\frac{3}{2})$; \overrightarrow{EA} $\overrightarrow{EB} = 12 + \frac{3}{4} + \frac{3}{4} = \frac{27}{2} > 0$. Ou $\overrightarrow{EB} = 3\overrightarrow{EA}$	0.5
		0,5
	Donc les deux points A et B sont de même côté par rapport à (P).	

Q_3	Réponses	Notes
1a	$\left(z'-\overline{z}'\right)=z^3+z-\overline{z}^3-\overline{z}=z^3-\overline{z}^3+z-\overline{z}=(z-\overline{z})(z^2+z\overline{z}+\overline{z}^2+1).$	0,5
14	Ou bien: $(z-\overline{z})(z^2+z\overline{z}+\overline{z}^2+1)=z^3+z-(\overline{z}^3+z)=z'-\overline{z}'.$	0,5
1b	z' est réel; $z' = \overline{z'}$ d'où $(z' - \overline{z}') = 0$ soit $(z - \overline{z})(z^2 + z\overline{z} + \overline{z}^2 + 1) = 0$.	0,5
1c	z' est réel, alors on a $z-\overline{z}=0$: soit $z=\overline{z}$, donc $y=0$ à rejeter, on bien $z^2+\overline{z}z+\overline{z}^2+1=0$ soit $3x^2-y^2+1=0$ avec $y\neq 0$. Donc M varie sur la courbe (H) d'équation $3x^2-y^2+1=0$.	1
2a	$3x^2 - y^2 + 1 = 0 \text{ donc (H)}: y^2 - \frac{x^2}{\frac{1}{3}} = 1. \text{Les sommets de (H) sont A (0; 1) et A' (0; -1)}.$ Les asymptotes sont les droites d'équations : (L) $y = x\sqrt{3}$ et (L') : $y = -x\sqrt{3}$.	1
2b	Un foyer (H) est F (0; c) tel que $c^2 = a^2 + b^2 = \frac{4}{3} F\left(0; \frac{2\sqrt{3}}{3}\right)$ La directrice associée à F a pour équation : $Y = \frac{a^2}{c} = \frac{\sqrt{3}}{2}$	0,5
2c	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 x	0,5
3. a	L'équation de (T) est de la forme $y - y_I = y_I' (x - x_I)$ avec $x_I = 1$, $y_I = 2$. D'autre part on a : $6 x - 2 y y' = 0$, d'où $6 x_I - 2 y_I y_I' = 0$, soit $-4 y_I' + 6 = 0$ et $y_I' = \frac{3}{2}$. Donc l'équation de (T) est : $y - 2 = \frac{3}{2} (x - 1)$, soit (T) : $y = \frac{3}{2} x + \frac{1}{2}$.	1
3. b	Désignons par E le point d'intersection de (T) et (L), donc $\frac{3}{2}x + \frac{1}{2} = \sqrt{3}x \Leftrightarrow x_E = \frac{1}{2\sqrt{3} - 3}$ et par G le point d'intersection de (T) avec (L'), donc $\frac{3}{2}x + \frac{1}{2} = -\sqrt{3}x \Leftrightarrow x_G = \frac{-1}{2\sqrt{3} + 3}$ $\frac{x_E + x_G}{2} = 1 = x_I$ et comme E, G et I sont alignés, I est le milieu de [EG].	1
Q4	Réponses	Notes
1	$S = sim (B; k; \alpha): I \longrightarrow J.$ • $\alpha = (\overrightarrow{BI}, \overrightarrow{BJ}) = (\overrightarrow{BI}, \overrightarrow{BA}) + (\overrightarrow{BA}, \overrightarrow{BJ}) = -\frac{\pi}{3} - \frac{\pi}{6} = -\frac{\pi}{2} \pmod{2\pi}.$ • Le triangle IBJ est demi équilatéral car : $\overrightarrow{IBJ} = \frac{\pi}{2}$ et $\overrightarrow{HB} = \frac{\pi}{3}$. d'où $k = \frac{BJ}{BI} = tan \frac{\pi}{3} = \sqrt{3}$.	1
2. a	S((AI)) est une droite qui passe par le point $S(I) = J$ et est perpendiculaire à (AI) , et puisque AJBI est un rectangle $S((AI)) = (AJ)$.	0,5

2. b	S((AB)) est une droite qui passe par le point $S(B) = B$ et est perpendiculaire à (AB) , $S((AB)) = (L)$.	0,5
	$A \in (AI) \rightarrow S(A) = A' \in S(AI) = (AJ)$ $A' = A' =$	
2. c	$A \in (AI) \to S(A) = A' \in S(AI) = (AJ)$ $A \in (AB) \to S(A) = A' \in S(AB) = (L)$ $A' \text{ est le point d'intersection de (AJ) avec (L)}$	1
	• S(J) =J' or AIBJ est un rectangle direct donc A'JBJ' est un rectangle direct.	
	• (C) est le cercle de diamètre [AB], S ((C)) = (C') qui est le cercle de diamètre S [AB] = [A'B].	
3	• $A_{(C')} = k^2 A_{(C)} = 3\pi \times 2^2 = 12\pi u^2$.	1
4a	• $S \circ S = (B; 3; -\pi)$ donc $S \circ S = \text{hom } (B; -3)$.	0,5
		0,0
4b	$S_n = sim (B; (\sqrt{3})^n; -n\frac{\pi}{2}).$	0,5
40	S_n est une homothétie si et seulement si $-n\frac{\pi}{2} = k\pi$; donc, $n = -2k$; $k < 0$ n est pair.	1
4c	S_n est une nomothère si et seulement si $-n - k \pi$, donc, $n = -2k$, $k < 0$ il est pair.	1
Q5	Réponses	Notes
1	$P(E) = \frac{C_5^3}{C_{10}^3} = \frac{1}{12}. \qquad P(F) = \frac{C_5^2 \times C_5^1}{C_{10}^3} = \frac{5}{12}. \qquad P(G) = 1 - \frac{1}{12} - \frac{5}{12} = \frac{1}{2}.$	1,5
2. a	$P(D/E) = P(V/E) = \frac{5}{7}.$ $P(D/F) = P(V/F) = \frac{4}{7}.$	1
2. b	$P(D) = P(D \cap E) + P(D \cap E) = P(D/E) \times P(f) + P(D/F) \times P(F) = \frac{5}{7} \times \frac{1}{12} + \frac{4}{7} \times \frac{5}{12} = \frac{25}{84}.$	1
2c	$P(E/D) = \frac{P(E \cap D)}{P(D)} = \frac{5}{84} \times \frac{84}{25} = \frac{1}{5}.$	1
	$X(\Omega) = \{0; 2; 10\}.$ $P(X=0) = P(G) = \frac{1}{2}.$ $P(X=10) = \frac{25}{84}.$	
	17	
4	$P(X=2) = 1-[P(X=0) + P(X=10)] = \frac{17}{84}$.	1,5
	$E(X) = \sum x_i \times p_i = 0 \times \frac{1}{2} + 2 \times \frac{17}{84} + 10 \times \frac{25}{84} = \frac{284}{84}.$	
	2 04 04	
Q ₆ A.1	Réponses $y' = z'+1$, $y''=z''$ donc $z''-4z'-4+4z+4x=4x-4$ et $z''-4z'+4z=0$.	Notes
A.1 A.2	Equation caractéristique : $r^2 - 4r + 4 = 0$ d'où $r = 2$. $z = (ax + b)e^{2x}$ et $y = (ax + b)e^{2x} + x$.	0,5
A.2	Equation caracteristique: $1 - 41 + 4 = 0$ d ou $1 = 2$. $2 = (ax + b)e^{-1}$ et $y = (ax + b)e^{-1} + x$.	1
A.2	$f'(x)=1+ae^{2x} + 2(ax+b)e^{2x} \text{ donc } f'(0)=1+a+2b=1 \text{ ce qui donne } a=2. \text{ d'où } f(x)=x+(2x-1)e^{2x}$	1
	$g'(x) = 4 e^{2x} (1 + 2x).$	
	$\left \begin{array}{c c} x & -\infty & -\frac{1}{2} & +\infty \end{array}\right $	
B.1	g'(x) $ 0$ $+$	1
	g'(x) - 0 + + \infty = \infty	
	$g(x)$ $\frac{2}{1-\frac{2}{1-x}}$	
	$1-\frac{1}{e}$	
B.2	g(x) admet un minimum positif donc $g(x) > 0$ pour tout réel x.	0,5
C.1a	$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} (2x - 1)e^{2x} = \lim_{x \to +\infty} \left(2xe^{2x} - e^{2x}\right) = 0. \text{ Donc la droite (d) : } y = x \text{ est une}$	0,5
J.14	$\begin{array}{c} x \to -\infty & x \to -\infty \\ \text{asymptote à (C) en } -\infty \end{array}.$	0,5

C.1b.	$f(x) - y = (2x - 1)e^{2x} = 0 \text{ pour } x = \frac{1}{2} \text{ Donc} : \text{si } x = \frac{1}{2}, \text{ (C) et (d) se coupent au point A } (\frac{1}{2}; \frac{1}{2});$ $\text{si } x < \frac{1}{2} \text{ (C) est au-dessous de (d)}; \text{ et si } x > \frac{1}{2} \text{ (C) est au-dessus de (d)}.$	1
C.1c	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + (2x - 1) e^{2x}) = +\infty.$	0,5
C.2a	$f'(x) = 1+2e^{2x}+2(2x-1) e^{2x} = g(x)$ $x -\infty +\infty$ $f'(x) +$ $f(x) -\infty$	1
C.2b	Sur IR, f est continue et strictement croissante de $-\infty$ à $+\infty$, donc l'équation $f(x) = 0$ admet une solution unique α . De plus $f(0,4) \times f(0,5) = -0.045 \times 0.5 < 0$ ce qui donne $0.4 < \alpha < 0.5$.	1
C.2c	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} [1 + \frac{2x - 1}{x} e^{2x}] = +\infty.$ Donc (C) admet en $+\infty$ une branche parabolique parallèle à l'axe des ordonnées.	1
C.3.a	A appartient à (d), donc le symétrique de A par rapport à (d) est A. D'où A appartient à (H). $y - \frac{1}{2} = \frac{1}{f'\left(\frac{1}{2}\right)} \left(x - \frac{1}{2}\right) \Leftrightarrow y = \frac{1}{2e+1} \left(x - \frac{1}{2}\right) + \frac{1}{2}.$	1
C.3b	(H) est le symétrique de (C) par rapport à (d).(voir figure)	0,5
C.3c	Soit $u = 2x-1$ et $v' = e^{2x}$ donc $u' = 2$ et $v = \frac{1}{2}e^{2x}$ ce qui donne : $\int (2x-1)e^{2x}dx = \frac{1}{2}(2x-1)e^{2x} - +C$. A cause de la symétrie, l'aire S demandée est égale à l'aire S' du domaine limité par (C), la droite (d) et l'axe des ordonnées. $S' = \int_0^{0.5} (x-f(x)) dx = \int_0^{0.5} (1-2x)e^{2x} dx = \left[(1-x)e^{2x} \right]_0^{0.5} = \frac{e-2}{2}$. Donc $S = S' = \frac{e-2}{2}u^2$. Soit $a_n = 2^n [2x+n-1]e^{2x}$.	1,5
C.4a	Pour $n = 2$; $f''(x) = 4(e^{2x} + 2xe^{2x}) = 4(2x + 1) e^{2x}$. $a_2 = 4(2x + 1) e^{2x}$. Donc la formule est vraie. Supposons que $f^{(n)}(x) = a_n$ et démontrons que $f^{(n+1)}(x) = a_{n+1}$. En effet : $f^{(n+1)}(x) = [f^{(n)}]'(x) = 2^n [2 + 2(2x + n - 1)] e^{2x} = 2^n [4x + 2n] e^{2x} = 2^{n+1} [2x + n] e^{2x} = a_{n+1}$. Donc la formule est vraie pour tout entier naturel $n \ge 2$.	1
C.4b	$\begin{array}{c} U_n = 2^n \ (n-1) \ ; \\ U_{n+1} - U_n = 2^{n+1} (n) - 2^n \ (n-1) = 2^n \ (2n-n+1) = 2^n \ (n+1) > 0 \ ; \ (U_n) \ \text{est strictement croissante.} \end{array}$	0,5
C.4c	$\lim_{n\to\infty} U_n = \lim_{n\to\infty} 2^n (n-1) = +\infty, \text{ par suite } (U_n) \text{ n'est pas convergente.}$	0,5