Übungen zur Vorlesung "Algebra und Zahlentheorie"

WS 2011/2012

A. Schmitt

Übungsblatt 3

Abgabe: Bis Dienstag, den 15.11.2011, 10Uhr

Aufgabe 1 (Eine andere Definition des Gruppenbegriffs; 5+5 Punkte). Es seien G eine Menge und $: G \times G \longrightarrow G$, $(g,h) \longmapsto g \cdot h$, eine Verknüpfung mit folgenden Eigenschaften:

- ★ Das Assoziativgesetz ist erfüllt.
- \star Es gibt ein *linksneutrales Element* $e \in G$, d.h. für jedes $g \in G$ hat man $e \cdot g = g$.
- ★ Zu jedem Element $g \in G$ existiert ein *linksinverses Element* $g' \in G$, d.h. $g' \cdot g = e$.

In dieser Aufgabe soll gezeigt werden, dass (G, \cdot) eine Gruppe ist.

- a) Es seien $g \in G$ und $g' \in G$ ein Element mit $g' \cdot g = e$. Zeigen Sie $g \cdot g' = e$.
- b) Beweisen Sie, dass $g \cdot e = g$ für alle $g \in G$ gilt.

Aufgabe 2 (Eine neue Multiplikation auf \mathbb{R} ; 5+5 Punkte).

Auf \mathbb{R} wird folgende Verknüpfung definiert:

$$\star : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto a \cdot b + a + b.$$

- a) Zeigen Sie, dass * das Assoziativgesetz erfüllt und es ein neutrales Element gibt.
- b) Welche Elemente in \mathbb{R} besitzen bzgl. \star keine Inversen? Geben Sie die kleinste Teilmenge $N \subset \mathbb{R}$ an, für die $(\mathbb{R} \setminus N, \star)$ eine Gruppe ist.

Aufgabe 3 (Abelsche Gruppen; 6+4 Punkte).

- a) Es sei $g \in G$ eine Gruppe, so dass $g^2 = e$ für alle $g \in G$ gilt. Weisen Sie nach, dass G abelsch ist. Geben Sie für jedes $k \ge 1$ eine Gruppe G mit 2k Elementen an, in der $g^2 = e$ für jedes Gruppenelement $g \in G$ gilt.
- b) Es sei G eine **endliche** abelsche Gruppe. Zeigen Sie, dass

$$\prod_{g \in G} g^2 = e.$$

¹Wir werden später in der Vorlesung sehen, dass eine endliche Gruppe G, in der es ein Element $g \neq e$ mit $g^2 = e$ gibt, eine gerade Anzahl von Elementen besitzt.

Aufgabe 4 (Der Zykelgraph einer Gruppe; 4+3+3 Punkte).

Es sei G eine endliche Gruppe. Eine Teilmenge $M \subset G$ ist *zyklisch*, wenn ein Element $g \in G$ existiert, so dass

$$M = \langle g \rangle := \{ g^k | k \ge 0 \}.$$

Es sei

$$\mathfrak{M} := \{ M \subset G | M \text{ ist zyklisch } \}$$

die Menge aller zyklischen Teilmengen von G. Eine zyklische Teilmenge $M \in \mathfrak{M}$ ist maximal, wenn sie maximal bzgl. " \subset " ist, d.h.

$$\forall N \in \mathfrak{M}: M \subset N \implies M = N.$$

Für jede maximale zyklische Teilmenge $M \subset G$ wird ein Element $g \in G$ mit $M = \langle g \rangle$ gewählt. Es seien $g_1, ..., g_s \in G$ die so erhaltenen Elemente und $n_i := \#\langle g_i \rangle$, i = 1, ..., s. Der $Zykelgraph^2 \Gamma$ wird nun folgendermaßen definiert:

- \star Die Ecken von Γ sind die Elemente von G.
- * Die Punkte g_i^j und g_i^{j+1} werden durch eine Kante verbunden, $j=0,...,n_i-1$, i=1,...,s. Falls $n_i=2$, dann wird nur eine Kante zwischen e und g gezeichnet. (Man beachte $g_i^0=e=g_i^{n_i},\,i=1,...,s$.)

Beispiele:

- a) Zeigen Sie, dass der Durchschnitt zweier zyklischer Teilmengen von G zyklisch ist.
- b) Zeichnen Sie die Zykelgraphen von \mathbb{Z}_n , $n \in \mathbb{N}$, der Gruppen aus Aufgabe 3 a) und der Diedergruppe D_6 .
- c) Geben Sie eine Gruppe mit folgendem Zykelgraphen an:

²s. Skript Analysis I, Aufgabe 6.3.1, für die Defintion eines Graphen.