Sprawozdanie 2.

Rozkład LU macierzy trójdiagonalnej - rozwiązanie równania Poissona w jednym wymiarze

Mirosław Kołodziej

11.03.2021

1. Wstęp teoretyczny

1.1 Równanie Poissona

Równanie różniczkowe Poissona to niejednorodne równanie różniczkowe cząstkowe liniowe drugiego rzędu. Można je zapisać w postaci:

$$\nabla^2 v = f$$

Do rozwiązania tego równania potrzebujemy znać przedział rozwiązania oraz warunki brzegowe. Jeśli chcemy je rozwiązać za pomocą metod numerycznych, powinniśmy je najpierw zdyskretyzować.

1.2 Dyskretyzacja problemu

Dyskretyzacja to pojęcie dotyczące transformowania funkcji ciągłych. Jest ona pierwszym krokiem w procesie przygotowywania równań do ewaluacji numerycznej.

1.3 Macierz trójdiagonalna

Macierz trójdiagonalna (inaczej wstęgowa) to kwadratowa macierz, której wszystkie elementy są zerowe oprócz diagonali i wstęgi wokół niej. Macierz trójdiagonalna $A_{6,6}$ wygląda w następujący sposób:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & 0 & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} & 0 \\ 0 & 0 & 0 & a_{5,4} & a_{5,5} & a_{5,6} \\ 0 & 0 & 0 & 0 & a_{5,6} & a_{6,6} \end{bmatrix}$$

2. Problem

Naszym zadaniem było rozwiązanie układu Poissona postaci:

$$\nabla^2 v = -\rho(x)$$

w przedziałe $x \in [-X_b, X_b]$ z warunkiem brzegowym $V(-X_b) = V(X_b) = 0$ dla rozkładu gęstości:

$$\begin{cases} 0, & x \in [-X_b, -X_a) \\ 1, & x \in [-X_a, 0) \\ 0, & x = 0 \\ -1, & x \in (0, X_a] \\ 0, & x \in (X_a, X_b] \end{cases}$$

Kolejnym krokiem była dyskretyzacja równań. W tym celu wprowadziliśmy siatkę z węzłami

$$x_i = -X_h + h \cdot (i-1), i = 1, 2, ..., N$$

gdzie $h=\frac{2X_b}{N-1}$ jest odległością między węzłami, a N jest ilością wszystkich węzłów. Przyjęliśmy również $X_b=2$ oraz $X_a=\frac{1}{2}$. Drugą pochodną w równaniu Poissona zastąpiliśmy ilorazem różnicowym zdefiniowanym na siatce:

$$\nabla^2 v = \frac{d^2 V}{dx^2} = \frac{V_{i-1} - 2V_i + V_{i+1}}{h^2} = -\rho_i$$

gdzie h to odległość między węzłami siatki. Pozwoliło nam to na wygenerowanie układu równań w postaci:

$$\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 & 0 \\ a_2 & d_2 & c_2 & 0 & 0 & 0 \\ 0 & a_3 & d_3 & c_3 & 0 & 0 \\ & \ddots & \ddots & \ddots & \ddots & \\ 0 & 0 & 0 & a_{n-1} & d_{n-1} & c_{n-1} \\ 0 & 0 & 0 & 0 & a_n & d_n \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ \vdots \\ V_{n-1} \\ V_n \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \\ \vdots \\ \rho_{n-1} \\ \rho_n \end{bmatrix}$$

gdzie
$$d_i=rac{-2}{h^2}$$
, $a_i=ac_i=rac{1}{h^2}$

Wprowadziliśmy warunki brzegowe dla pierwszego i ostatniego równania. W pierwszym równaniu $d_1=1$, $c_1=0$ oraz $\rho_1=1$, zaś w ostatnim $d_n=1$, $a_n=0$ oraz $\rho_n=0$.

Do rozwiązania układu użyliśmy rozkładu LU dla macierzy trójdiagonalnej:

$$\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 & 0 \\ a_2 & d_2 & c_2 & 0 & 0 & 0 \\ 0 & a_3 & d_3 & c_3 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & a_{n-1} & d_{n-1} & c_{n-1} \\ 0 & 0 & 0 & 0 & a_n & d_n \end{bmatrix} = L \cdot U = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ l_2 & 1 & 0 & 0 & 0 & 0 \\ 0 & l_3 & 1 & 0 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & l_{n-1} & 1 & 0 \\ 0 & 0 & 0 & 0 & l_n & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 & c_1 & 0 & 0 & 0 & 0 \\ 0 & u_2 & c_2 & 0 & 0 & 0 \\ 0 & 0 & u_3 & c_3 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & l_{n-1} & c_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 0 & u_n \end{bmatrix}$$

Elementy macierzy L i U obliczyliśmy z następujących wzorów:

$$u_1 = d_1$$
 $l_i = \frac{a_i}{u_{i-1}}, \quad i = 2,3,...,N$
 $u_i = d_i - l_i c_{i-1}, \quad i = 2,3,...,N$

Rozwiązanie uzyskaliśmy dwuetapowo. Najpierw rozwiązaliśmy układ Ly = b:

$$y_1 = b_1$$
$$y_i = b_i - l_i y_{i-1}$$

gdzie b_i to elementy wektora wyrazów wolnych. Następnie rozwiązaliśmy drugi układ Uv = y:

$$v_n = \frac{y_n}{u_n}$$

$$v_i = \frac{y_i - c_i v_{i+1}}{u_i}, \qquad i = n-1, n-2, \dots, 1$$

Ostatnim krokiem było zdefiniowanie rozwiązania dokładnego:

$$V(x) = \begin{cases} \frac{x}{16} + \frac{1}{8}, & x \in [-X_b, -X_a] \\ -\frac{x^2}{2} - \frac{7}{16}x, & x \in [-X_a, 0] \\ \frac{x^2}{2} - \frac{7}{16}x, & x \in [0, X_a] \\ \frac{x}{16} - \frac{1}{8}, & x \in [X_a, X_b] \end{cases}$$

Wyniki generowaliśmy dla N=50 i N=500. Zapisaliśmy do pliku siatkę x oraz wektory: wyliczony i uzyskany teoretycznie w trzech kolumnach. Z otrzymanych danych wygenerowaliśmy wykres w Microsoft Excel.

3. Wyniki

3.1 Wykres V(x) i $V_t(x)$ dla N=50

3.2 Wykres V(x) i $V_t(x)$ dla N=500

4.Wnioski

Analizując wyniki, możemy stwierdzić, że rozwiązywanie równań Poissona za pomocą rozkładu LU daje bardzo dokładne wyniki. Jak widzimy na powyższych wykresach, im większa jest ilość węzłów N, tym wykres $V_t(x)$ (wartości teoretyczne) bardziej dokładnie odzwierciedla wykres V(x) (wartości numeryczne). Należy jednak zauważyć, że wzrasta nam przy tym czas działania programu.