北京化工大学 2008——2009 学年第一学期

《数字信号处理》期末考试试卷 B (补考)

班级	级:		姓名:		学号: _		分数 <u>: </u>			_
题号	_	_	Ξ	四	五	六	七	八	总分	
得分										
一、填	空:(每	小题 2	分,共:	20分)						,
1 . 系统	充 y(n) =	= a ·x(t	on) + c :	为线性系	统的的统	条件是		, ;	内移不变	系统的
条件	牛为		o							
2.两个	〉级联系统	统可以交	換先后 /	顺序,依	x据的是 [‡]	卷积运算	的 _		律。	
3. 对于	F只有一·	个极点一	-个零点	的系统,	当极点征		-0.5 、	零点在原	京点时 , ⁻	该系统
是_		_通滤波	器。							
4.通过	过给序列	补 O , ī	可以减小	DFT所	得频谱的	勺			0	
5 . 某处	上理器完 /	成一次复	東需要	10 µs	,若忽略	复加时间	可,则当	i进行 1	024点 D)FT时 , ,
用基	甚 2FFTi	十算约需	i	S	•					
6. —	卜单位冲 》	敫响应长	度为	9的FIF	R 系统,	直接采用	用横截型	实现时割	需要乘的	系数
是_	个	· , 用二四	价节(横	截型结构	勾)级联	实现时需	需要乘的	系数是		个。
7.最力	大相位延F	时系统的	D极点全	在 z平	面的单位	立圆之 _	,零,	点全在单	位圆之	o
8. —	卜非稳定 [的因果系	系统,可I	以通过级	以联		_系统的	方法变成	稳定系 约	充。
9 . 与	FIR 滤波	器相比	,IIR 滤	認波器的:	主要优点	徒			o	
10 . 滤	ᇗ波器群巍	延迟 で(e ^{j ©}) 与相	自位响应	β (e ^{iω})	的关系是	릩			0
二、判	断题:(每小题	2分, 共	共 10 分)					
1.系	统 y(n -	-1) - 0.	3y(n -	2) = 2x	x(n) + 0	.5x(n –	1) - 0.8	3x(n - 2	2) 是非	因果系
统。									()

2.FIR 滤波器是稳定的,因为它没有极点,零点位置不影响系统稳定性。	()
3.线性相位系统的零极点是单位圆两侧镜像对称的。	()
4.N 为奇数、 h(n)奇对称的 FIR 滤波器可以设计成低通滤波器。	()
5.为提高抽样率,可先对序列插入 0值,然后再经模拟低通滤波器滤波。	()
三、(10 分) 求序列 x(n) = cos(πn)·R₁(n) 的 4 点 DFT。		

五、(10分)推导说明利用 FFT程序模块计算 IDFT的方法。

六、(15 分) 一个因果的线性移不变系统,其系统函数在 z 平面有 2 个一阶极点 2 个一阶零点,极点分别位于 z=0.6、z=0.5,零点分别位于 z=2、z=-0.4,且有 H (z) $\Big|_{z=1}$ = 7。

- a) 求 H(z) 及 h(n) , 并分析系统的稳定性;
- b) 写出系统差分方程;
- c) 画出系统的直接型结构;
- d) 说明能构成几种一阶级联型结构,并画出其中一个。

七、(10分)利用双线性变换法将模拟系统 $H_a(s) = \begin{cases} s+4 \\ s^2 - 0.1s - 0.2 \end{cases}$

波器,若映射关系为 $z = \frac{1+s}{1-s}$,求所得数字滤波器的系统函数。 1-s

八、(15分)设计一线性相位 FIR 低通滤波器,对应的模拟低通滤波器频响特性

$$H_d(e^{j\Omega}) = \begin{cases} e^{-j\Omega \alpha}, & |\Omega| \le 2\pi \times 2.5 \times 10^3 \text{ rad/s} \\ 0, & 其它 \end{cases}$$

抽样频率 $f_s = 1000$ Hz ,要求阻带衰减不小于 -40dB ,过渡带宽 $\Delta \omega = 0.15\pi$ 。

(1) 采用窗函数法设计(设计后不需检查指标是否满足要求)

(2) 分析采用其他窗含数分别会有什么问题。

附:

矩形窗
$$w(n) = R_N(n)$$
 1.8 π/N -21

汉宁窗
$$w(n) = \frac{1}{2} \left[1 - \cos \left(\frac{2\pi n}{N-1} \right) \right] R_N(n)$$
 6.2 π/N -44

海明窗
$$w(n) = \left[0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right)\right]R_N(n)$$
 6.6 π/N -53

布拉克曼窗
$$w(n) = \left[0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)\right]R_N(n)$$
 -74