Exercise 1 (Exercise 1). Prove that all three definitions of representations of finite groups given in the lecture notes are equivalent. Then, for the examples of the groups G and H from Examples 2.1 and 2.2 in the lecture notes, express these representations as a vector space with an action, and as a module.

The definitions in question are:

Definition 1. A representation of a group G over a field \mathbb{F} is a homomorphism

$$\rho: G \to \mathrm{GL}_n(\mathbb{F})$$

where $GL_n(\mathbb{F})$ is the group of invertible $n \times n$ matrices over \mathbb{F} .

Definition 2. A representation of a group G over a field \mathbb{F} is an \mathbb{F} -vector space V along with an action $G \triangleright V$ by linear transformations, i.e. a homomorphism $\rho : G \to \operatorname{GL}(V)$.

Definition 3. A representation of a group G over a field \mathbb{F} is an $\mathbb{F}G$ -module V. (Here $\mathbb{F}G$ is the group ring consisting of formal linear combinations of elements of G over \mathbb{F} . A module is essentially a "vector space over a ring".)

Answer

Observe that the first definition gives rise to a map

$$G \to \operatorname{Aut}(V), g \mapsto \rho(g)$$

where $V = \mathbb{F}^n$ and $\rho(g)$ acts as a linear transformation on $v \in V$. This is an action because ρ is a homomorphism, namely:

$$\diamond \ \rho(e) = I_{n \times n}.$$

 \diamond And $\rho(gh) = \rho(g)\rho(h)$ once again because ρ is a homomorphism.

So naturally we get the definition of representation as a vector space. On the flipside any representation map can extend its domain to the group ring via linearity:

$$\widehat{\rho}\left(\sum_{g\in G}c_gg\right) := \sum_{g\in G}c_g\rho(g)$$