FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: N5702L, G2, G3

Trade mark: NUU

FCC ID: 2ADINN5702L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of sample receipt: 09 Oct., 2017

Date of Test: 09 Oct., to 03 Nov., 2017

Date of report issue: 06 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of theCCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Nov., 2017	Original

Tested by: Date: 06 Nov., 2017

Test Engineer

Reviewed by: Date: 06 Nov., 2017

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5		
5.		
5.		
5.		
5.	COVER PAGE VERSION CONTENTS TEST SUMMARY GENERAL INFORMATION 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF E.U.T 5.3 TEST MODE 5.4 DESCRIPTION OF SUPPORT UNITS 5.5 LABORATORY FACILITY 5.6 LABORATORY FACILITY 5.7 TEST INSTRUMENTSLIST TEST RESULTS ANDMEASUREMENT DATA 6.1 ANTENNA REQUIREMENT 6.2 RADIATED EMISSION 6.2.1 Field Strength Of The Fundamental Signal 6.2.2 Spurious Emissions 6.3 20DB BANDWIDTH 6.4 FREQUENCY TOLERANCE 6.5 CONDUCTED EMISSION TEST SETUP PHOTOS EUT CONSTRUCTIONAL PHOTOS	5
-		
•		
5.	.7 TEST INSTRUMENTSLIST	7
6	TEST RESULTS ANDMEASUREMENT DATA	8
6.	.1 Antenna requirement	8
6.	.2 RADIATED EMISSION	9
	· ·	
_		
٠.		
6.	.5 CONDUCTED EMISSION	20
7	TEST SETUP PHOTOS	23
8	EUT CONSTRUCTIONAL PHOTOS	24

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.225 (a)	Pass
Spurious emissions	15.225(d) & 15.209	Pass
20dB Bandwidth	15.215(c)	Pass
Frequency tolerance	15.225 (e)	Pass
Conducted Emission	15.207	Pass

Remarks:

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	N5702L,G2, G3
Operation Frequency:	13.56MHz
Channel numbers:	1
Modulation type:	ASK
Antenna Type:	Internal Antenna
Antenna gain:	1dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh
AC adapter with two plugs :	Model: HNEM050200UU Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2000mA
Remark:	Model No.: N5702L, G2, G3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

5.3 Test mode

Transmitting mode:	node: Keep the EUT in transmitting mode with modulation					
Pre-Test Mode:						
CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:						
Axis	Axis X Y Z					
Field Strength(dBuV/m)	Field Strength(dBuV/m) 56.48 56.77 56.75					
Final Test Mode:						
According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo).						

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instrumentslist

Radia	Radiated Emission:								
Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018			
2	Loop Antenna	Com-power	AL-130	CCS078	02-25-2017	02-24-2018			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	02-25-2017	02-24-2018			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018			
4	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018			
5	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018			
6	Spectrum analyzer	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018			

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No	Cal.Date	Cal.Date				
item	Test Equipment	Manuracturer	Inventory No.	(mm-dd-yy)	(mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018				
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018				
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT make use of an integrated antenna, The typical gain of the antenna is 1dBi.

6.2 Radiated Emission

U.Z Radiated Lillissio	-					
Test Requirement:	FCC Part15 C Se	ection 15.225(a) and 15.20	9		
Test Method:	ANSI C63.10:201	13				
Test Frequency Range:	9 kHz to 1000MF	lz				
Test site:	Measurement Dis	stance: 3m(Se	mi-Anechoid	Chamb	er)	
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	9kHz-150kHz	Quasi-peak	200Hz	600Hz	<u> </u>	
	150kHz-30MHz	Quasi-peak			-	
	30MHz-1GHz	Quasi-peak	120kHz	300KH	<u> </u>	
Limit	Above 1GHz Frequen	Peak	1MHz _imit (uV/m (3MHz	Peak Value Limit (dBuV/m @3m)	
Limit: (Field strength of the	13.553MHz-13	_	15848	<u> </u>	124.0	
fundamental signal)	13.410MHz-13.5 13.567MHz-13	553MHz &	334		90.5	
	13.110MHz-13.4 13.710MHz-14	.010MHz	106		80.5	
	by either making n	to the specified distance tances on at least one using the square of an				
Limit:	Frequency (MHz)	Limit (uV/m	n @3m)	Distance (m)	
(Spurious Emissions)	0.009-0.4		2400/F(300	
	0.490-1.7		24000/F	(kHz)	30	
	1.705-3	0	30		30	
	30-88 88-216		100 150		3	
	216-960		200		3	
	Above 1G		500		3	
Test Procedure:	the ground at 360 degrees b. The EUT was antenna, whi tower. c. The antenna ground to de horizontal an the measurer d. For each sus and then the and the rotats find the maxi e. The test-rece Specified Bar f. If the emission the limit specified the EUT we have 10dB m	t a 3 meter se to determine to determine to set 3 meters ch was mount height is varietermine the mid vertical polament. pected emissi antenna was able table was mum reading. Siver system wondwidth with Mon level of the cified, then tes ould be reportargin would be	mi-anechoice the position of away from the away from the ed from one eaximum valurizations of the ed from the ed f	camber. of the higher the interform of a variate of the he anter was arranged by the control of	ole 0.8 meters above. The table was rotated ghest radiation. erence-receiving riable-height antenna four meters above the field strength. Both an are set to make anged to its worst case in 1 meter to 4 meters ees to 360 degrees to ct Function and ct Function and degree and the peak values missions that did not the using peak, quasi-reported in a data	

Measurement Data

6.2.1 Field Strength Of The Fundamental Signal

: 3m chamber

: 15.225 POWER LIMIT 3m LOOP-FMZB 1519B HORIZONTAL : LTE mobile phone Condition

EUT

: N5702L Model Test mode : Power Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: YT

REMARK

	Freq			Cable Preamp Loss Factor					Remark
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	13.560	36.71	19.42	0.64	0.00	56.77	124.00	-67.23	

6.2.2 Spurious Emissions

9kHz-30MHz:

Horizontal:

Site

: 3m chamber : FCC 15.209 <30MHZ 3m LOOP-FMZB 1519B HORIZONTAL Condition

EUT : LTE mobile phone

Model : N5702L Test mode : NFC Mode

Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% 101KPa Test Engineer: YT

REMARK

munut									
	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/π		<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	0.010	47.01	20.90	0.02	0.00	67.93	128.33	-60.40	QP
1 2 3 4 5	0.064	42.24	20.84	0.19	0.00	63.27	111.85	-48.58	QP
3	0.138	33.87	19.91	0.25	0.00	54.03	105.10	-51.07	QP
4	0.183	31.01	20.38	0.31	0.00	51.70	102.60	-50.90	QP
5	0.830	20.73	20.45	0.59	0.00	41.77	69.35	-27.58	QP
6	13.551	22.14	19.42	0.64	0.00	42.20	70.75	-28.55	QP

Site

: 3m chamber : FCC 15.209 <30MHZ 3m LOOP-FMZB 1519B VERTICAL : LTE mobile phone Condition

EUT

Model : N5702L Test mode : NFC Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5 C Huni: 55% 101KPa

Test Engineer: YT REMARK :

EMAKK	:								
	77		Antenna				Limit	Over	P
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Kemark
	MHz	dBu∜	dB/m	₫₿	₫B	dBuV/m	dBuV/m	₫B	
1	0.009	48.86	20.90	0.02	0.00	69.78	128.61	-58.83	QP
2	0.063	43.16	20.90	0.19	0.00	64.25	112.03	-47.78	QP
3	0.141	34.46	20.09	0.26	0.00	54.81	104.88	-50.07	QP
4	0.182	30.29	20.38	0.31	0.00	50.98	102.70	-51.72	QP
4 5 6	0.567	23.26	20.34	0.50	0.00	44.10	72.71	-28.61	QP
6	13.551	21.19	19.42	0.64	0.00	41.25	70.75	-29.50	QP

30MHz-1000MHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : LTE mobile phone

: N5702L Model : NFC Mode Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK:

	Limit	Over	
Level	Line		Remark
$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
32.55	43.50	-10.95	QP
24.35	46.00	-21.65	QP
	dBuV/m 29.03 20.89 32.55 24.03 24.35	Level Line dBuV/m dBuV/m 29.03 40.00 20.89 43.50 32.55 43.50 24.03 46.00 24.35 46.00	Level Line Limit dBuV/m dBuV/m dB

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

EUT : LTE mobile phone

: N5702L

Test mode : NFC Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

TOTOTICE									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	30.745	49.20	11.20	0.78	29.98	31.20	40.00	-8.80	QP
1 2 3 4 5	52.945	39.80	13.76	1.32	29.81	25.07	40.00	-14.93	QP
3	73.876	42.00	9.52	1.61	29.69	23.44	40.00	-16.56	QP
4	196.510	40.61	11.12	2.84	28.85	25.72	43.50	-17.78	QP
5	339.589	34.71	14.30	3.07	28.54	23.54	46.00	-22.46	QP
6	691.987	33.93	18.78	4.13	28.69	28.15	46.00	-17.85	QP

6.3 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.215 (c)					
Test Method:	ANSI C63.4:2014					
Receiver setup:	RBW=200Hz, VBW=300Hz, detector: Peak					
Limit:	The fundamental emission be kept within atleast the central 80% of the permitted band					
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results
0.532	11.2	Passed

Note: For 13.56MHz, permitted Band is 14 kHz, so the Limit is 11.2 kHz.

Test plot as follows:

Date: 2.NOV.2017 04:10:18

6.4 Frequency Tolerance

 attenuators. 3. The EUT was placed inside the temperature chamber. 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. 5. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement 1. Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. 	Toot Poquiroment	ECC Part15 C Section 15 225 (a)
Receiver setup: RBW=200Hz, VBW=300Hz, span=14kHz, detector: Peak Limit: ±0.01% of the operating frequency Transmitting mode Test Procedure: Frequency stability V.S. Temperature measurement 1. The equipment under test was powered by a fresh battery. 2. RF output was connected to spectrum analyzer via feed through attenuators. 3. The EUT was placed inside the temperature chamber. 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. 5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement 1. Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.	·	
Limit: ±0.01% of the operating frequency Test mode: Transmitting mode Frequency stability V.S. Temperature measurement 1. The equipment under test was powered by a fresh battery. 2. RF output was connected to spectrum analyzer via feed through attenuators. 3. The EUT was placed inside the temperature chamber. 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. 5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement 1. Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.		
Test mode: Transmitting mode Frequency stability V.S. Temperature measurement The equipment under test was powered by a fresh battery. RF output was connected to spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change. Test setup:	· ·	
Test Procedure: Frequency stability V.S. Temperature measurement 1. The equipment under test was powered by a fresh battery. 2. RF output was connected to spectrum analyzer via feed through attenuators. 3. The EUT was placed inside the temperature chamber. 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. 5. Turn EUT off and set the chamber temperature to –20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement 1. Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endopint, record the maximum frequency change. Test setup:	Limit:	±0.01% of the operating frequency
1. The equipment under test was powered by a fresh battery. 2. RF output was connected to spectrum analyzer via feed through attenuators. 3. The EUT was placed inside the temperature chamber. 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. 5. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement 1. Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endopint, record the maximum frequency change. Test setup:	Test mode:	Transmitting mode
Test setup: Spectrum Analyzer E.U.T	Test Procedure:	 The equipment under test was powered by a fresh battery. RF output was connected to spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.
E.U.T		
Ground Reference Plane	l est setup:	Non-Conducted Table
Test Instruments: Refer to section 5.8 for details	Test Instruments:	Refer to section 5.8 for details
Test mode: Refer to section 5.3 for details	Test mode:	Refer to section 5.3 for details
Test results: Passed	Test results:	Passed

Measurement Data

Temperature (°C)	Voltage (Vdc)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)
-20	3.80	13.56008	0.001	±0.01
+50	3.80	13.56015	0.001	±0.01
+20	3.50	13.56011	0.001	±0.01
+20	4.20	13.56013	0.001	±0.01

6.5 Conducted Emission

Test Requirement:	FCC Part15 B Section 1	5.207							
Test Method:	ANSI C63.4:2014								
TestFrequencyRange:	150kHz to 30MHz	150kHz to 30MHz							
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz								
Limit:		Execution (MALIE) Limit (dBµV)							
	Frequency range (MHz)	Quasi-pe	eak /	Average					
	0.15-0.5								
	0.5-5 56 46								
	0.5-30	60		50					
Test setup:	* Decreases with the log		equency.						
Test procedure	Reference Plane LISN								
Took on discours out	positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.								
Test environment:	Temp.: 23°C	Humid.: 56	l .	101kPa					
Measurement Record:	Uncertainty: 3.28dB								
Test Instruments:	Refer to section 5.8 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Pass								

Measurement Data:

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : LTE mobile phone

Model : N5702L Test Mode : NFC mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT Test Mode

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu∀	dBu∜	<u>dB</u>	
1	0.150	45.47	-0.56	10.78	55.69	66.00	-10.31	QP
2	0.150	29.03	-0.56	10.78	39.25	56.00	-16.75	Average
3	0.198	40.35	-0.52	10.76	50.59	63.71	-13.12	QP
4	0.198	24.73	-0.52	10.76	34.97	53.71	-18.74	Average
1 2 3 4 5 6 7 8 9	0.249	36.04	-0.51	10.75	46.28	61.78	-15.50	QP
6	0.249	19.47	-0.51	10.75	29.71	51.78	-22.07	Average
7	0.346	33.93	-0.50	10.73	44.16		-14.89	
8	0.479	18.97	-0.49	10.75	29.23	46.36	-17.13	Average
9	0.527	32.80	-0.49	10.76	43.07	56.00	-12.93	QP
10	0.527	18.82	-0.49	10.76	29.09	46.00	-16.91	Average
11	8.501	37.48	0.07	10.88	48.43	60.00	-11.57	QP
12	8.546	21.58	0.07	10.88	32.53	50.00	-17.47	Average

Trace: 59

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : LTE Condition

EUT

: N5702L Model Test Mode : NFC mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>d</u> B	dB	dBu₹	dBu∀	<u>dB</u>	
1	0.154	44.44	-0.38	10.78	54.84	65.78	-10.94	QP
2	0.154	28.34	-0.38	10.78	38.74	55.78	-17.04	Average
3	0.190	36.82	-0.35	10.76	47.23	64.02	-16.79	QP
4	0.206	36.45	-0.34	10.76	46.87	63.36	-16.49	QP
1 2 3 4 5 6 7 8	0.307	20.21	-0.32	10.74	30.63	50.06	-19.43	Average
6	0.365	34.35	-0.32	10.73	44.76	58.61	-13.85	QP
7	0.365	23.27	-0.32	10.73	33.68	48.61	-14.93	Average
8	0.449	32.74	-0.31	10.74	43.17	56.89	-13.72	QP
9	0.449	22.96	-0.31	10.74	33.39	46.89	-13.50	Average
10	0.549	23.73	-0.30	10.76	34.19	46.00	-11.81	Average
11	1.184	19.75	-0.28	10.89	30.36			Average
12	7.977	37.05	0.22	10.85	48.12	60.00	-11.88	QP