Arquitectura de Computadores

"Caches"

Docente: Pedro Sobral
http://www.ufp.pt/~pmsobral

Arquitectura de Computadores : caches (1)

Pedro Sobral © UFP

Arquitectura de Computadores : caches (2)

Hierarquia de memória (1/3)

° Processador

- Executa instruções na ordem dos nanosegundos aos picosegundos
- Guarda uma quantidade muito pequena de código e dados nos seus registos

° Memória

- Com mais capacidade do que os registos, mas também limitada
- · Tempo de acesso na ordem dos ~50-100ns

° Disco

- · GRANDE capacidade (virtualmente ilimitada)
- · Muito lento: ~milisegundos

Arquitectura de Computadores : caches (3)

Pedro Sobral © UFP

Hierarquia de memória (2/3)

Tamanho da memória em cada nível

Arquitectura de Computadores : caches (4)

Hierarquia de memória (3/3)

- ° Cada nível que se encontra mais próximo do processador, tem que:
 - · Ser de menor tamanho
 - · Ser mais rápido
 - Conter um subconjunto dos dados do nível inferior (os dados usados recentemente)
- O nível inferior (geralmente o disco rígido) contém todos os dados disponíveis
- ° E os outros níveis?

Arquitectura de Computadores : caches (5)

Pedro Sobral © UFP

Fazer "Cache" da memória

- Apresentamos três níveis na hierarquia de memória: processador, memoria, disco rígido.
- As diferenças nas velocidades de funcionamento entre o processador e a memória levaram à adição de um novo nível: a memória cache
- º Implementada com tecnologia SRAM: muito rápida mas mais cara que a memória DRAM usada na memória principal.
 - "S" = Static, não necessita de refrescamento, ~10ns
 - "D" = Dynamic, necessita de refrescamento, ~60ns

Arquitectura de Computadores : caches (6

Analogia da hierarquia de memória: Biblioteca (1/2)

- Está a escrever um relatório (Processador) numa mesa da Biblioteca
- ° Biblioteca é equivalente ao disco rígido
 - · Capacidade essencialmente ilimitada
 - · Muito tempo necessário para obter um livro
- ° Mesa é a memória
 - Menor capacidade: significa que é necessário devolver um livro quando ela fica sem espaço
 - Mais simples e rápido encontrar um livro na mesa uma vez que já foi requisitado

Analogia da hierarquia de memória: Biblioteca (2/2)

- Os livros abertos na mesa são a cache
 - Menor capacidade: são poucos os livros que podemos ter abertos na mesa; quando não há espaço, é necessário fechar um livro.
 - · Muito, muito mais rápido de obter a informação
- ° Ilusão criada: TODOS os livros da biblioteca abertos na mesa
 - Manter o maior número possível de livros usados recentemente abertos na mesa uma vez que é provável que voltem a ser necessários.
 - Manter o maior número possível de livros na mesa, uma vez que é muito mais rápido do que obtê-los da prateleira da biblioteca.

Arquitectura de Computadores : caches (9)

Pedro Sobral © UFP

Bases da hierarquia de memória

- ° O disco rígido contém toda a informação.
- Quando o processador necessita de informação ela é copiada para níveis de memória superiores.
- ° A "cache" contém copias de dados em memória que estão a ser usados.
- A memória contém copias de dados do disco que estão a ser usados.
- Esta organização tem por base o <u>Acesso</u> <u>Localizado</u>: se estamos a usar uma certa informação agora, então provavelmente vamos voltar a usá-la brevemente

Arquitectura de Computadores : caches (10)

Desenho da "cache"

- ° Como se organiza a "cache"?
- ° Como mapear todos os endereços de memória na "cache"?

(Recorde que a "cache" é um subconjunto da memória príncipal, portanto múltiplos endereços de memória são mapeados na mesma localização na "cache"…)

- ° Com sabemos que elementos da memória se encontram na cache?
- ° Como localizá-los rapidamente?

Arquitectura de Computadores : caches (11)

Pedro Sobral © UFP

"Cache" de mapeamento directo (1/4)

- Numa cache de mapeamento directo, cada endereço de memória está associado com um possível bloco da cache
 - Portanto, basta verificar numa única posição da cache se lá se encontram os dados necessários
 - O bloco é a unidade de transferência entre a cache e a memória principal
- ° Há outros tipos de cache com desempenho superior ao mapeamento directo (caches associativas) mas por questões de tempo não as vamos estudar.

Arquitectura de Computadores : caches (12

"Cache" de mapeamento directo (3/4)

- Ou una vez que múltiplos endereços de memória são mapeados no mesmo índice da cache como saber qual está guardado?
- ° E se o tamanho do bloco é > 1 byte?
- Resposta: dividir o endereço de memória em 3 campos

"Cache" de mapeamento directo (4/4)

- ° Todos os campos são inteiros sem sinal.
- Índice: especifica o índice da cache (qual a "linha" ou bloco da cache que devemos usar)
- Desvio: uma vez encontrado o bloco correcto, especifica qual o byte pretendido nesse bloco
- Etiqueta: os restantes bits depois do desvio e do índice são usados para distinguir entre todos os endereços que podem ser mapeados na mesma posição da cache

Arquitectura de Computadores : caches (15)

Pedro Sobral © UFP

Terminologia das "caches"

- Quando tentamos ler a memória 3 coisas podem acontecer:
- 1. Sucesso na cache:
 o bloco da cache é válido e contém o endereço
 solicitado, portanto a informação é lida da cache
- Falta na cache:

 O bloco indicado no endereço está vazio, portanto temos que o ler da memória principal
- 3. Falta na cache com substituição de bloco:
 No bloco indicado não se encontra o endereço solicitado portanto, o bloco existente é descartado e o bloco apropriado é copiado da memória principal

Arquitectura de Computadores : caches (16)

Cache de mapeamento directo: exemplo (1/3)

- Suponha que temos 16Kbytes numa cache de mapeamento directo com blocos de 4 palavras
- ° Qual será o tamanho da etiqueta, índice e deslocamento numa arquitectura de 32 bit?
- ° Deslocamento
 - Necessita de especificar o byte correcto dentro de um bloco.
 - · Cada bloco contém 4 palavras de 32 bit

= 16 bytes

= 24 bytes

São necessários <u>4 bits</u> para especificar o byte correcto

Arquitectura de Computadores : caches (17)

Pedro Sobral © UFP

Cache de mapeamento directo: exemplo (2/3)

- ° Índice: (~índice num "vector de blocos")
 - · Necessita de indicar a linha correcta na cache
 - · cache contém 16 KB = (24 * 210)=214 bytes
 - bloco contém 2⁴ bytes (4 palavras)
 - # blocos/cache
 - bytes/cache bytes/bloco
 - = 2¹⁴ bytes/cache 2⁴ bytes/bloco
 - = 2¹⁰ blocos/cache
 - São necessários 10 bits para especificar os blocos (linhas) da cache

Arquitectura de Computadores : caches (18)

Cache de mapeamento directo: exemplo (3/3)

- º Etiqueta: usar os restantes bits como etiqueta
 - tam. etiqueta = tam. endereço desvio índice
 = 32 4 10 bits
 = 18 bits
 - Portanto a etiqueta é composta pelos <u>18 bits</u> mais à esquerda do endereço de memória
- ° Porque não usar os 32 bits como etiqueta?
 - Todos os bytes num bloco necessitam de ter a mesma etiqueta.
 - O índice tem que ser o mesmo para todos os endereços de um bloco, portanto é redundante na verificação da etiqueta. Sendo assim, fica de fora para poupar memória (10 bits neste exemplo).

Arquitectura de Computadores : caches (19)

Pedro Sobral © UFP

EID – Entender o tamanho da cache

ÁREA (tamanho da cache B)

 $2^{(A+L)} = 2^{A} * 2^{L}$

= Altura (# de blocos)

* Largura (tamanho de um bloco, B/bloco)

Etq Indice Desvio

(L) Largura (Tamanho do bloco, B/bloco)

(A)Altura (# of blocos)

Arquitectura de Computadores : caches (20

Exemplo: Acesso à cache de map. directo

- 0 Ex.: 16KB de tamanho, map. directo, Blocos de 4 palayras
- Ler 4 enderecos:
 - 1. 0x0000014
 - 2. 0x000001C
 - 3.0×00000034
 - 4. 0x00008014
- Valores em memória à direita:
 - Apenas se considera a existência da cache e memória na hierarquia

000001C 0000030 00000034 00000038 000003C 00008010 00008014 00008018 0000801cl Pedro Sobral © UFP

Memória

C

d

Ender. (hex) Conteúdo

0000010

00000014

00000018

Arquitectura de Computadores : caches (21)

Exemplo: Acesso à cache de map. directo

- ° 4 Endereços:
 - •0x00000014, 0x0000001C, 0x00000034, 0x00008014
- ° 4 Endereços divididos (por conveniência) nos campos Etiqueta, Índice, Desvio

00000000000000000 0000000001 0100 00000000000000000 000000001 1100 00000000000000000 0000000011 0100 00000000000000010 0000000001 0100

> Índice Etiqueta Desvio

Arquitectura de Computadores : caches (22)

Cache de 16 Kbytes com blocos de 16bytes ^o Bit de validação: determina se estão dados guardados na linha (quando o computador é inicializado todas as entradas estão a 0)							
,	<mark>⁄alid.</mark> ce Eta	0x0-3	0 x 4-7	0 x 8-b	0xc-f		
_	0						
0 1 2 3 4 5 6 7	0						
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						
•••			•••				
102	20						
1021	30						
AND RESIDENCE PERMANAGE PE	Arquitectura de 0	Computadores : caches (23)			Pedro Sobral © UFP		

1	l. Ler 0	x0000001	4						
° 00000000000000000 000000001 0100									
Eta. Índice Desvio									
Índ.	alid. <u>Etg.</u>	0x0-3	0x4-7	0x8-b	0xc-f				
	0								
1	0								
2	0								
4	0								
0 1 2 3 4 5 6 7	0								
6 7	0								
•		•							
	.		•••						
1022 1023									
AD PESSOA	-	mputadores : caches (24)			Pedro Sobral © UE				

Não contém dados válidos! ° 00000000000000000 000000001 0100								
Eta. Índice Desvio								
Ind	id. Etq.	0x0-3	0 x 4-7	0x8-b	0xc-f			
9 4								
1234567								
3 0	_							
4 0	_							
6								
7 L								
•••			•••					
1022								
10230								
VOSSE A	Arquitectura de Computadores : caches (26) Pedro Sobral © UFP							

	Ler o b	loco e ac	tualizar a	cache				
° <u>0000000000000000</u> 000000001 0100								
V	alid.	Etq.	Índ	ice Desv	io			
Índ.	Etq.	0x0-3	0x4-7	0x8-b	0xc-f			
0	0 /	а	b	C	d			
2	0	<u> </u>						
3 4	0							
0 1 2 3 4 5 6 7	0							
7	0							
•••			•••					
1022								
10230 Arquitectura de Computadores : caches (27) Pedro Sobral © UFP								

O Índice é válido								
° 00000000000000000 000000001 1100								
Valid. Etq. Índice Desvio								
Índ.		Etg.	0x0-3	0x4-7	0x8-b	0xc-f		
0		0		L				
1 2	6	U	а	b	С	d		
3	ŏ							
4	0							
1234 567	0							
6	0							
'								
•••	_			•••				
1022								
102:								
O PESSOA	Arquitectura de Computadores : caches (30) Pedro Sobral © UFP							

3. Ler 0x00000004 = 000 0011 0100 ° 00000000000000000 000000011 0100								
	ali		Etq.	Índice		0		
Índ.	uii	Etg.	0x0-3	0x4-7	0x8-b	0xc-f		
0	0			_				
1	밁	0	а	b	С	d		
3	0							
0 1 2 3 4 5 6 7	0							
5	0							
7	Ŏ							
•••				•••				
1022 1023								
ON ET NOW ESSON		uitectura de Col	mputadores : caches (33)			Pedro Sobral ® UF		

		00000000 Etq.	0010 <u>000000</u> Índi d		0
va ₋ .	lid. Et	a. 0x0-		0x8-b	
1 5	0		-		d
0 1 2 3 4 5 6 7	<u>1 0</u> 0	<u>a</u>	b	C	d
3	1 0	е	f	g	h
4	0 0				
6	0				
7 L	0				
•••			•••		
022					
023	0				

Portanto, ler o bloco 1, que está válido Etq. Índice **Desvio** Valid. 0x0-30x4 - 7d-8x00xc-fInd. Etq. 0 <u>1</u>2 3 4 5 6 7 0 а b С d 0 g h е Pedro Sobral © UFP

falta, substituir o bloco 1 e a etiqueta									
° <u>000000000000000000000000000000000000</u>									
Índ.	Etq.	0x0-3	0x4-7	0x8-b	0xc-f				
0	0								
1	1 2	i		k					
2	0 1 0	е	f	a	h				
ے ⊿	0	 		9	••				
0 1 2 3 4 5 6 7	0								
6	0								
7	0								
•••									
1022	0								
1023									
PESSOA PESSOA	Arquitectura de C	omputadores : caches (40)			Pedro Sobral ⊚ UFF				

Exercício: O que acontece? colha: sucesso, falta, falta com subst

° Escolha: sucesso, falta, falta com subst. Valores retornados: a ,b, c, d, e, ..., k, l

° Ler endereço 0x0000030 ? 00000000000000000 000000011 0000

° Ler endereço 0x000001c ? 00000000000000000 000000001 1100

Cache

T 7						Cache
Índ.	ılid	Etg.	0x0-3	0 x 4-7	0x8-b	0xc-f
0	0	-				
1	1	2		į	k	
2	0			-		
3	1	0	е	f	g	h
1 2 3 4 5 6	0					
5	0					
6	0					
HOVA TOUR	0					
ONING	4	uita atuus da Ca		•••		-

Avaliação de desempenho

- Desenhar o sistema de memória de forma a minimizar o Tempo Médio de Acesso à Memória
 - · Minimizar:

TMAM= Tempo do sucesso da cache + (Penalidade por falta da cache x Taxa de faltas)

° Cria a ilusão de uma memória de grande capacidade, barata e rápida - em média

Exemplo

- ° Assuma
 - Tempo no caso de sucesso da cache = 1 ciclo
 - Taxa de faltas da cache = 5%
 - Penalidade por falta da cache = 20 ciclos
 - · Calcular TMAM...
- ° Tempo médio de acesso à memória
 - $= 1 + 0.05 \times 20$
 - = 1 + 1 ciclos
 - = 2 ciclos

Arquitectura de Computadores : caches (45

Pedro Sobral © UFP

Diminuindo a penalidade por falta da cache

- Quando a utilização de caches começou a ser popular a penalidade por cada falta era ~10 ciclos de relógio do processador.
- O Hoje em dia, com um processador a 2400 MHz (0.4ns por ciclo) e 80ns para aceder à DRAM ⇒ 200 ciclos de relógio do processador!

Solução: outra cache entre a memória e a cache do processador : <u>Cache de Segundo Nível (L2)</u>

Arquitectura de Computadores : caches (46)

L1 taxa de faltas

L1 penalidade por falta

TMAM =

Tempo sucesso L1 + Taxa de faltas L1* Penalidade por falta L1

Penalidade por falta L1 =

Tempo sucesso L2+ Taxa de faltas L2 * Penalidade por falta L2

Pedro Sobral © UFP

Analisando uma cache multi-nível

Temos portanto:

TMAM =

Tempo sucesso L1 + (Taxa de faltas L1*

(Tempo sucesso L2+ Taxa de faltas L2 * Penalidade por falta L2))

Valores típicos

°L1

- · tamanho: dezenas de KB
- · Tempo de sucesso: um ciclo de relógio
- · Taxa de faltas: 1-5%

° L2:

- · tamanho: centenas de KB
- · Tempo de sucesso: alguns ciclos de relógio
- · Taxa de faltas: 10-20%
- ° A taxa de faltas do nível 2 é a fracção das faltas do nível 1 que também não estão presentes no nível 2.
 - · Porquê tão elevada?

Arquitectura de Computadores : caches (49

Pedro Sobral © UFP

Exemplo: Com cache de nível 2

° Assuma

- · Tempo de sucesso L1 = 1 ciclo
- Taxa de faltas L1 = 5%
- Tempo de sucesso L2 = 5 ciclos
- Taxa de faltas L2 = 15% (% faltas L1 que faltam)
- Penalidade por falta L2 = 200 ciclos
- ° Penalidade por falta L1 = 5 + 0.15 * 200 = 35
- $^{\circ}$ TMAM = 1 + 0.05 x 35= 2.75 ciclos

Arquitectura de Computadores : caches (50

Exemplo: Sem cache de nível 2

° Assuma

- Tempo de sucesso L1 = 1 ciclo
- Taxa de faltas L1 = 5%
- Penalidade por falta L1 = 200 ciclos
- $^{\circ}$ TMAM = 1 + 0.05 x 200 = 11 ciclos
- ° 4x mais rápido com cache L2! (2.75 vs. 11)

Arquitectura de Computadores : caches (51)

Pedro Sobral © UFP

Como escrever a memória em cache?

° "Write-through"

- Actualizar a palavra no bloco da cache e a palavra correspondente em memória
- ° "Write-back"
 - Actualizar a palavra no bloco da cache
 - Permitir que a palavra correspondente em memória fique desactualizada.
 - ⇒ adicionar um bit ('dirty bit') a cada bloco indicando que a memória necessita de ser actualizada quando o bloco for substituído
 - ⇒ O SO actualiza a memória antes do I/O...
- ° O que se ganha com isto?

Arquitectura de Computadores : caches (52)

Concluindo...

- Gostariamos de ter a capacidade do disco rígido funcionando à velocidade do processador: infelizmente não é possível.
- ° Portanto criamos uma hierarquia de memória:
 - Cada nível sucessivamente inferior contém a "informação mais usada" pelo nível superior
 - Explora o ACESSO LOCALIZADO
 - Optimiza o caso comum, não se preocupa tanto com as excepções (príncipio usado no desenho do MIPS)

° Grande ideia!

- Se uma tarefa é custosa mas queremos executá-la repetidamente...
- executa-se uma vez e faz-se "caching"do resultado

HOUSE SOUND AND THE PROPERTY OF THE PROPERTY O

Arquitectura de Computadores : caches (53)